ДЕРЖАВНИЙ УНІВЕРСИТЕТ «ЖИТОМИРСЬКА ПОЛІТЕХНІКА»

Факультет інформаційно-комп'ютерних технологій Кафедра інженерії програмного забезпечення

Звіт з лабораторної роботи № 2 з дисципліни «Системи штучного інтелекту»

Виконав студент групи:

ІПЗ-19-2

Федоренко Евеліна

Перевірив:

Пулеко Ігор Васильович

Житомир 2022

Лабораторна робота № 2 ПОРІВНЯННЯ МЕТОДІВ КЛАСИФІКАЦІЇ ДАНИХ

Mema: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити різні методи класифікації даних та навчитися їх порівнювати.

Github: https://github.com/idontneedsleep/SAI-LR-2

Хід роботи

Завдання 2.1. Класифікація за допомогою машин опорних векторів (SVM)

Створіть класифікатор у вигляді машини опорних векторів, призначений для прогнозування меж доходу заданої фізичної особи на основі 14 ознак (атрибутів). Метою є з'ясування умов, за яких щорічний прибуток людини перевищує \$50000 або менше цієї величини за допомогою бінарної класифікації.

Випишіть у звіт всі 14 ознак з набору даних – їх назви, що вони позначають та вид (числові чи категоріальні).

Обчисліть значення інших показників якості класифікації (акуратність, повнота, точність) та разом з F1 занесіть їх у звіт. (Див. ЛР-1).

Зробіть висновок до якого класу належить тестова точка.

					ДУ «Житомирська політехніка».22.121.19.000 — Лр2		lo 2	
		№ докум.	Підпис	Дата			μ2	
Розро	б.	Федоренко Е.О.				Літ.	Арк.	Аркушів
Перев	ip.	Пулеко I. В.					2	21
Керіві	ник				Звіт з лабораторної роботи			
Н. кон	нтр.					ФІКТ Гр ІПЗ-19-2[2		13-19-2[2]
Затвер	<u></u> Эд.							

```
14 ознак набору даних:
аде — позначає вік, числові;
workclass — позначає робочий клас, категоріальні;
fnlwgt — числові;
education — категоріальні;
education-num — числові;
marital-status — категоріальні;
occupation — категоріальні;
relationship — категоріальні;
race — категоріальні;
sex — категоріальні;
capital-gain — числові;
capital-loss — числові;
hours-per-week — числові;
native-country — категоріальні.
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
X = X encoded[:, :-1].astype(int)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(LinearSVC(random state=0))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
y test pred = classifier.predict(X test)
accuracy = cross_val_score(classifier, X, y, scoring='accuracy', cv=3)
print("Accuracy score: " + str(round(100 * accuracy.mean(), 2)) + "%")
precision = cross_val_score(classifier, X, y, scoring='precision', cv=3)
print("Precision score: " + str(round(100 * precision.mean(), 2)) + "%")
recall = cross_val_score(classifier, X, y, scoring='recall', cv=3)
print("Recall score: " + str(round(100 * recall.mean(), 2)) + "%")
f1 = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=3)
print("F1 score: " + str(round(100 * f1.mean(), 2)) + "%")
input data = ['37', 'Private', '215646', 'HS-grad', '9', 'Never-married',
input data encoded = [-1] * len(input data)
input data encoded = np.array(input data encoded)
predicted class = classifier.predict([input data encoded])
print(label encoder[-1].inverse transform(predicted class)[0])
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
Accuracy score: 62.64%
 iterations.
  warnings.warn(
 iterations.
  warnings.warn(
 iterations.
Precision score: 69.18%
 iterations.
 iterations.
 iterations.
  warnings.warn(
Recall score: 38.24%
 iterations.
 iterations.
  warnings.warn(
F1 score: 56.15%
```

Рис. 1 Результат виконання програми

Висновок: тестова точка належить до класу <=50k, тобто людина заробляє менше або рівно 50к.

Завдання 2.2. Порівняння якості класифікаторів SVM з нелінійними ядрами

Використовуючи набір даних та код з попереднього завдання створіть та дослідіть нелінійні класифікатори SVM.

- з поліноміальним ядром;
- з гаусовим ядром;
- з сигмоїдальним ядром.

		Федоренко Е.О.				Арк.
		Пулеко I. В.			ДУ«Житомиоська політехніка».22.121.19.000— Ло2	
Змн.	Арк.	№ докум.	Підпис	Дата		

Для кожного виду класифікатора отримайте та запишіть у звіт показники якості алгоритму класифікації.

```
import matplotlib.pyplot as plt
from sklearn.multiclass import OneVsOneClassifier
input file = 'income data.txt'
X = []
y = []
count class1 = 0
count class2 = 0
max_datapoints = 25000
with open(input file, 'r') as f:
            X.append(data)
X = np.array(X)
X encoded = np.empty(X.shape)
        label encoder.append(current label encoder)
X = X encoded[:, :-1].astype(int)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(SVC(kernel='poly', degree=8, max iter=5000))
X train, X test, y train, y test = train test split(X, y, test size=0.2,
classifier.fit(X train, y train)
y test pred = classifier.predict(X test)
accuracy = cross val score(classifier, X, y, scoring='accuracy', cv=3)
print("Accuracy score: " + str(round(100 * accuracy.mean(), 2)) + "%")
precision = cross val score(classifier, X, y, scoring='precision', cv=3)
print("Precision score: " + str(round(100 * precision.mean(), 2)) + "%")
```

		Федоренко Е.О.		
		Пулеко I. В.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
Accuracy score: 58.41%
 pre-processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
 pre-processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
  warnings.warn(
Precision score: 41.6%
 pre-processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
 pre-processing your data with StandardScaler or MinMaxScaler.
Recall score: 33.05%
 pre-processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
F1 score: 46.5%
```

Рис. 2 Результат виконання програми

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
X = X_encoded[:, :-1].astype(int)
y = X_encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(SVC(kernel='rbf', max_iter=10000))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
y test pred = classifier.predict(X test)
accuracy = cross_val_score(classifier, X, y, scoring='accuracy', cv=3)
print("Accuracy score: " + str(round(100 * accuracy.mean(), 2)) + "%")
precision = cross_val_score(classifier, X, y, scoring='precision', cv=3)
print("Precision score: " + str(round(100 * precision.mean(), 2)) + "%")
recall = cross_val_score(classifier, X, y, scoring='recall', cv=3)
print("Recall score: " + str(round(100 * recall.mean(), 2)) + "%")
f1 = cross val score(classifier, X, y, scoring='f1 weighted', cv=3)
print("F1 score: " + str(round(100 * f1.mean(), 2)) + "%")
input data = ['37', 'Private', '215646', 'HS-grad', '9', 'Never-married',
input data encoded = [-1] * len(input data)
input data encoded = np.array(input data encoded)
predicted class = classifier.predict([input data encoded])
print(label encoder[-1].inverse transform(predicted class)[0])
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
C:\Users\ziraf\PycharmProjects\pythonProject\venv\Scripts\python.exe
Accuracy score: 78.61%
Precision score: 98.72%
Recall score: 14.26%
F1 score: 71.95%
<=50K

Process finished with exit code 0
```

Рис. 3 Результат виконання програми

```
import numpy as np
y = []
count_class1 = 0
\max datapoints = 25000
            X.append(data)
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
        label encoder.append(current label encoder)
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
classifier = OneVsOneClassifier(SVC(kernel='sigmoid', max iter=10000))
X train, X test, y train, y test = train test split(X, y, test size=0.2,
classifier.fit(X_train, y_train)
y test pred = classifier.predict(X test)
accuracy = cross_val_score(classifier, X, y, scoring='accuracy', cv=3)
print("Accuracy score: " + str(round(100 * accuracy.mean(), 2)) + "%")
precision = cross_val_score(classifier, X, y, scoring='precision', cv=3)
print("Precision score: " + str(round(100 * precision.mean(), 2)) + "%")
recall = cross_val_score(classifier, X, y, scoring='recall', cv=3)
print("Recall score: " + str(round(100 * recall.mean(), 2)) + "%")
f1 = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=3)
print("F1 score: " + str(round(100 * f1.mean(), 2)) + "%")
input data = ['37', 'Private', '215646', 'HS-grad', '9', 'Never-married',
input data encoded = np.array(input data encoded)
predicted class = classifier.predict([input data encoded])
print(label encoder[-1].inverse transform(predicted class)[0])
```

```
C:\Users\ziraf\PycharmProjects\pythonProject\venv\Scripts\python.exe
Accuracy score: 63.89%
Precision score: 27.01%
Recall score: 26.48%
F1 score: 63.77%
<=50K

Process finished with exit code 0
```

Рис. 4 Результат виконання програми

Висновок: за акуратністю і точністю найкращий вид класифікатора є нелінійній класифікатор SVM з гаусовим ядром, але за повнотою найкраще справився нелінійній класифікатор SVM з поліноміальним ядром. Загалом, найкраще виконує завдання класифікатор з гаусовим ядром.

		Федоренко Е.О.				Арк.
		Пулеко I. В.			ДУ«Житомирська політехніка».22.121.19.000- Лр2	11
Змн.	Арк.	№ докум.	Підпис	Дата	AS WAGING PLADE BY A PLOTIFIC AND A PLADE	11

Завдання 2.3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів

Необхідно класифікувати сорти ірисів за деякими їх характеристиками: довжина та ширина пелюсток, а також довжина та ширина чашолистків.

Також, в наявності ϵ вимірювання цих же характеристик ірисів, які раніше дозволили досвідченому експерту віднести їх до сортів: setosa, versicolor і virginica.

Використовувати класичний набір даних у машинному навчанні та статистиці - Iris. Він включений у модуль datasets бібліотеки scikit-learn. Лістинг програми:

```
from pandas import read csv
from sklearn.naive bayes import GaussianNB
import numpy as np
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
print(dataset.shape)
print(dataset.describe())
dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False, sharey=False)
pyplot.show()
scatter matrix(dataset)
pyplot.show()
array = dataset.values
y = array[:, 4]
X train, X validation, y train, y validation = train test split(X, y,
models = []
models.append(('LR', LogisticRegression(solver='liblinear', multi class='ovr')))
models.append(('LDA', LinearDiscriminantAnalysis()))
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
results = []
names = []
    kfold = StratifiedKFold(n splits=10, random state=1, shuffle=True)
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
model = SVC(gamma='auto')
model.fit(X_train, y_train)
predictions = model.predict(X validation)
print(accuracy_score(y_validation, predictions))
print(confusion_matrix(y_validation, predictions))
print(classification_report(y_validation, predictions))
X_{\text{new}} = \text{np.array}([[5, 2.9, 1, 0.2]])
print("Форма массива X new: {}".format(X new.shape))
prediction = model.predict(X new)
print("Прогноз: {}".format(prediction))
print("Спрогнозована мітка: {}".format(prediction[0]))
```

```
        C:\Users\ziraf\PycharmProjects\pythonProject\venv\Scripts\python.exe "F:/nice stuff/lab 4 course/штучний інтелект/lab2/LR_2_task_3.py"

        (150, 5)
        sepal-length
        sepal-width
        petal-length
        petal-length
        class

        0
        5.1
        3.5
        1.4
        0.2
        Iris-setosa

        1
        4.9
        3.0
        1.4
        0.2
        Iris-setosa

        2
        4.7
        3.2
        1.3
        0.2
        Iris-setosa

        3
        4.6
        3.1
        1.5
        0.2
        Iris-setosa

        4
        5.0
        3.6
        1.4
        0.2
        Iris-setosa

        5
        5.4
        3.9
        1.7
        0.4
        Iris-setosa

        6
        4.6
        3.4
        1.5
        0.2
        Iris-setosa

        8
        4.4
        2.9
        1.4
        0.2
        Iris-setosa

        10
        5.4
        3.7
        1.5
        0.1
        Iris-setosa

        11
        4.8
        3.4
        1.6
        0.2
        Iris-setosa

        12
        4.8
        3.0
        1.4
        0.1
        Iris-setosa
```

Рис. 5 Результат виконання програми

		Федоренко Е.О.		
		Пулеко I. В.	·	
Змн.	Арк.	№ докум.	Підпис	Дата

```
        sepal-length
        sepal-width
        petal-length
        petal-width

        count
        150.000000
        150.000000
        150.000000

        mean
        5.843333
        3.054000
        3.758667
        1.198667

        std
        0.828066
        0.433594
        1.764420
        0.763161

        min
        4.300000
        2.800000
        1.000000
        0.100000

        55%
        5.100000
        2.800000
        1.300000
        0.300000

        50%
        5.800000
        3.000000
        4.350000
        1.300000

        75%
        6.400000
        3.300000
        5.100000
        1.800000

        max
        7.900000
        4.400000
        6.900000
        2.500000

        class
        Iris-versicolor
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
        50
```

Рис. 6 Результат виконання програми

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	11
Iris-versicolor	1.00	0.92	0.96	13
Iris-virginica	0.86	1.00	0.92	6
accuracy			0.97	30
macro avg	0.95	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30
Форма массива X_ Прогноз: ['Iris-				
Спрогнозована мі	ітка: Iris-se	tosa		
Process finished	d with exit co	ode 0		

Рис. 7 Результат виконання програми

ı			Федоренко Е.О.				Арк.
I			Пулеко I. В.			ДУ«Житомирська політехніка».22.121.19.000- Лр2	1.4
I	Змн.	Арк.	№ докум.	Підпис	Дата	AS WAGING FIGURE AND	14

Рис. 8 Діаграма розмаху

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 9 Гістограма розподілу атрибутів датасета

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 10 Матриця діаграм розсіювання

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 11 Алгоритм порівняння

Висновок: Квітка належить до виду Iris-setosa. Було вибрано метод опорних векторів (SVM). Вдалося досягти 0.97 показника якості.

Завдання 2.4. Порівняння якості класифікаторів для набору даних завдання 2.1

По аналогії із завданням 2.3 створіть код для порівняння якості класифікації набору даних іпсоте_data.txt (із завдання 2.1) різними алгоритмами.

Використати такі алгоритми класифікації:

Логістична регресія або логіт-модель (LR)

Лінійний дискримінантний аналіз (LDA)

Метод k-найближчих сусідів (KNN)

Класифікація та регресія за допомогою дерев (CART)

Наївний баєсовський класифікатор (NB)

Метод опорних векторів (SVM)

		Федоренко Е.О.				Арк.
		Пулеко I. В.			ДУ«Житомирська політехніка».22.121.19.000- Лр2	10
Змн.	Арк.	№ докум.	Підпис	Дата	AS WAGING PLADE BY A PLOTIFIC AND A PLADE	10

Розрахуйте показники якості класифікації для кожного алгоритму. Порівняйте їх між собою. Оберіть найкращий для рішення задачі. Поясніть чому ви так вирішили у висновках до завдання.

```
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
input file = 'income data.txt'
X = []
y = []
count_class1 = 0
max datapoints = 25000
               X.append(data)
                X.append(data)
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
           label encoder.append(current label encoder)
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
X = X encoded[:, :-1].astype(int)
y = X = 1 encoded[:, -1].astype(int)
X train, X test, y train, y test = train test split(X, y, test size=0.2,
models = []
models.append(('LR', LogisticRegression(solver='liblinear', multi class='ovr')))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto', max_iter=10000)))
results = []
names = []
    names.append(name)
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
C:\Users\ziraf\PycharmProjects\pythonProject\venv\Scripts\python.exe
LR: 0.791993 (0.005400)
LDA: 0.811637 (0.005701)
KNN: 0.767748 (0.003026)
```

```
LR: 0.791993 (0.005400)

LDA: 0.811637 (0.005701)

KNN: 0.767748 (0.003026)

CART: 0.806706 (0.007189)

NB: 0.789133 (0.006934)

SVM: 0.753492 (0.000328)

Process finished with exit code 0
```

Рис. 12 Результат виконання програми

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 13 Результат виконання програми

Завдання 2.5. Класифікація даних лінійним класифікатором Ridge

Виправте код та виконайте класифікацію. Опишіть які налаштування класифікатора Ridge тут використані та що вони позначають. Опишіть які показники якості використовуються та їх отримані результати. Вставте у звіт та поясніть зображення Confusion.jpg. Опишіть, що таке коефіцієнт Коена Каппа та коефіцієнт кореляції Метьюза. Що вони тут розраховують та що показують.

```
Лістинг програми:
```

```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import RidgeClassifier
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from io import BytesIO
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
sns.set()
```

		Федоренко Е.О.			ł
		Пулеко I. В.			ЛЧ«Х
Змн.	Арк.	№ докум.	Підпис	Дата	113

Арк.

```
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
clf = RidgeClassifier(tol=1e-2, solver="sag")
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

print('Accuracy:', np.round(metrics.accuracy_score(y_test, y_pred), 4))
print('Precision:', np.round(metrics.precision_score(y_test, y_pred, average='weighted'), 4))
print('Recall:', np.round(metrics.recall_score(y_test, y_pred, average='weighted'), 4))
print('Recall:', np.round(metrics.fl_score(y_test, y_pred, average='weighted'), 4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test, y_pred), 4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test, y_pred), 4))
print('\t\t\tClassification Report:\n', metrics.classification_report(y_pred, y_test))

mat = confusion_matrix(y_test, y_pred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.ylabel('predicted label')
plt.ylabel('predicted label')
plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format="svg")
```

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

C:\Users\ziraf\PycharmProjects\pythonProject\venv\Scripts\python.exe

Accuracy: 0.7556
Precision: 0.8333
Recall: 0.7556
F1 Score: 0.7503

Cohen Kappa Score: 0.6431 Matthews Corrcoef: 0.6831

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	16
1	0.44	0.89	0.59	9
2	0.91	0.50	0.65	20
accuracy			0.76	45
macro avg	0.78	0.80	0.75	45
weighted avg	0.85	0.76	0.76	45

Process finished with exit code $\boldsymbol{0}$

Рис. 14 Результат виконання програми

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 15 Confusion.jpg

В класифікаторі Ridge були використані налаштування точності (tol=1e-2) та розв'язник Stochastic Average Gradient descent (solver="sag").

Показники якості, які використовувались — акуратність, точність, повнота, коефіцієнт Коена Каппа, коефіцієнт кореляції Метьюза.

Ha puc. 15 (Confusion.jpg) показана матриця confusion, як skicit-learn може навчатися класифікувати.

Коефіцієнт Коена Каппа — це статистика, яка вимірює міжрегіональну згоду якісних (категоріальних) предметів. Зазвичай вважається, що це надійніший захід, ніж простий розрахунок угоди про відсотки, оскільки к враховує випадкову угоду. Каппа Коена вимірює угоду між двома оцінювачами, кожен із яких класифікує N предметів на С взаємовиключних категорій.

В даному випадку коефіцієнт Коена Каппа (0.6431) показує істотну згоду.

		Федоренко Е.О.				Арк.
		Пулеко I. В.			ДУ«Житомирська політехніка».22.121.19.000— Лр2	24
Змн.	Арк.	№ докум.	Підпис	Дата		

Коефіцієнт кореляції Метьюза або коефіцієнт рhі використовується в машинному навчанні як міра якості бінарних (двокласних) класифікацій, запроваджених біохіміком Браяном У. Метьюзом у 1975 році.

Не дивлячись на те, що акуратність точність і повнота в нас доволі високі, коефіцієнт кореляції Метьюза — 0.6831, тому що його оцінка висока в тих випадках, коли класифікатор справляється і з негативними, і з позитивними значеннями.

Висновки: на даній лабораторній ми, використовуючи спеціалізовані бібліотеки та мову програмування Python, дослідили різні методи класифікації даних та навчилися їх порівнювати, порівняли різні види класифікатора SVM, проаналізували значення коефіцієнтів Коена Каппа і кореляції Метьюза, порівняли якості класифікаторів на основі класифікації ірисів.

		Федоренко Е.О.		
		Пулеко I. В.		
Змн.	Арк.	№ докум.	Підпис	Дата