MTH5105 Differential and Integral Analysis 2010-2011

Solutions 3

1 Exercises for Feedback

1) The functions sinh and cosh are given by

$$\sinh : \mathbb{R} \to \mathbb{R} , \qquad x \mapsto \frac{1}{2} (\exp(x) - \exp(-x)) ,$$

 $\cosh : \mathbb{R} \to \mathbb{R} , \qquad x \mapsto \frac{1}{2} (\exp(x) + \exp(-x)) .$

- (a) Prove that \sinh and \cosh are differentiable and that $\sinh' = \cosh$ and $\cosh' = \sinh$.
- (b) Prove that the function

$$f(x) = \cosh^2(x) - \sinh^2(x)$$

is constant by considering f'(x).

What is the value of the constant?

- (c) Prove that sinh is invertible.
- (d) Prove that $sinh(\mathbb{R}) = \mathbb{R}$. Hint: show that sinh(2x) > x for x > 0, and mimic the proof of the statement that $exp(\mathbb{R}) = \mathbb{R}^+$.
- (e) Prove that $\operatorname{arsinh} = \sinh^{-1}$ is differentiable, and that

$$\operatorname{arsinh}'(x) = \frac{1}{\sqrt{1+x^2}} .$$

Solution:

- (a) exp is differentiable, therefore \sinh and \cosh are differentiable. Using $\exp' = \exp$, the derivatives follow immediately.
- (b) f is differentiable, and $f'(x) = 2\cosh(x)\sinh(x) 2\sinh(x)\cosh(x) = 0$. By Theorem 2.5, f is constant. $f(0) = \cosh^2(0) \sinh^2(0) = 1$, so $\cosh^2(x) \sinh^2(x) = 1$.
- (c) $\sinh'(x) = \cosh(x) > 0$ for all $x \in \mathbb{R}$, therefore sinh is strictly increasing by Theorem 2.4, and therefore invertible by the corollary after Theorem 4.2.
- (d) Let x > 0. We have $\exp(x) > 1 + x$ (see proof of Theorem 3.3) and $\exp(-x) < 1$ (since exp is strictly increasing, and $\exp(0) = 1$), so that $\sinh(x) > x/2$. Let c > 0. From

$$\sinh(0) = 0 < c < \sinh(2c)$$

it follows by the IVT applied to the interval [0,2c], that there exists an $x \in (0,2c)$ such that $\sinh(x) = c$. A similar argument holds for c < 0, and for c = 0 we have $\sinh(0) = 0 = c$.

(e) $\sinh'(x) = \cosh(x) > 0$ for all $x \in \mathbb{R}$, therefore by Theorem 4.6, arish is differentiable and

$$\operatorname{arsinh}'(x) = \frac{1}{\cosh(\operatorname{arsinh}(x))}$$
.

Now $\cosh(x) = \sqrt{1 + \sinh^2(x)}$ (from (b), and the positive square root is taken as $\cosh(x)$ is positive), so that $\operatorname{arsinh}'(x) = 1/\sqrt{1+x^2}$.

2 Extra Exercises

- 2) (a) Find a bijective, continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ with f'(0) = 0 and a continuous inverse.
 - (b) Let $f: \mathbb{R}_0^+ \to \mathbb{R}$ be differentiable and decreasing. Prove or disprove: If $\lim_{x\to 0} f(x) = 0$, then $\lim_{x\to 0} f'(x) = 0$.

Solution:

(a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3$.

f is differentiable with continuous derivative $f'(x) = 3x^2$. We have f'(0) = 0.

The inverse is $f^{-1}: \mathbb{R} \to \mathbb{R}, x \mapsto x^{1/3}$.

As f is strictly increasing on \mathbb{R} , f is injective. $f(\mathbb{R}) = \mathbb{R}$ implies that f is surjective as well, so f is bijective.

As f is differentiable, it is continuous. Therefore f^{-1} is also continuous.

(b) This can be disproved by a counterexample.

Let $f: \mathbb{R}_0^+ \to \mathbb{R}$ be given by f(x) = -x.

f is differentiable and f'(x) = -1 for $x \ge 0$.

 $\lim_{x\to 0} f(x) = 0$, but $\lim_{x\to 0} f'(x) = -1$.

 Using the Intermediate Value Theorem, prove that a continuous function maps intervals to intervals.

Solution:

We use the following characterisation of an interval: $I \subseteq \mathbb{R}$ is an interval if and only if for all $x_1, x_2 \in I$ with $x_1 < x_2$,

$$x_1 < c < x_2 \Rightarrow c \in I$$
.

Let J = f(I). We need to show that J is an interval, i.e. for all $y_1, y_2 \in J$ with $y_1 < y_2, y_1 < c < y_2 \Rightarrow c \in J$:

Let $y_1, y_2 \in J$ with $y_1 < y_2$. Then there exist $x_1, x_2 \in I$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$.

As $y_1 \neq y_2$, necessarily $x_1 \neq x_2$ also, so either $x_1 < x_2$ or $x_2 < x_1$.

Consider, without loss of generality, the case $x_1 < x_2$. By assumption, f is a continuous function on I, so it is a continuous function on $[x_1, x_2]$ (or $[x_2, x_1]$, if $x_2 < x_1$).

Hence, by the intermediate value theorem, for all c with $y_1 < c < y_2$ there exists an $a \in [x_1, x_2]$ such that f(a) = c.

This implies that $c \in J$.

4*) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 2$ as $x \to 0$. Does it follow that f is differentiable at 0? If yes, give a rigorous proof; if no, provide a counter-example.

Solution:

Given x > 0, f is continuous on [0, x] and differentiable on (0, x). Hence, by the Mean Value Theorem applied to f on [0, x], there exists a $c \in (0, x)$ such that $f'(c) = \frac{f(x) - f(0)}{x - 0}$.

Similarly, if x < 0 then there exists a $c \in (x,0)$ such that $f'(c) = \frac{f(x) - f(0)}{x - 0}$. Clearly in both cases |c| < |x|, and $c \to 0$ as $x \to 0$. Therefore

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{c \to 0} f'(c) = 2$$

exists.

Thomas Prellberg, January 2011