

Skript $K ext{-Theorie}$ und die Hopf-Invariante

Mitschrift der Vorlesung "K-Theorie und die Hopf-Invariante" von Dr. Ulrich Penning

Jannes Bantje

15. April 2015

Aktuelle Version verfügbar bei

⇔GitHub

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

Sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files&t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein Mini-Computer ist permanent online, sodass jederzeit die aktuellste Version verfügbar ist. Clients 🗗 gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich

Vorlesungshomepage

 $\verb| https://www.math.uni-muenster.de/reine/u/topos/lehre/SS2015/KTheorie-Hopf/Hopf.html \mathbb{Z}^2 | the second of the second of$ Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "K-Theorie und die Hopf-Invariante, SoSe 2015", gelesen von Dr. Ulrich Penning. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs) oder Kommentare auf https://github.com/JaMeZ-B/latex-wwu♂.
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: T_EX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

¹ zB. https://try.github.io/levels/1/challenges/1 🗷, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

0.	Einführung0.1. Definition: Reelle Divisionsalgebra0.2. Theorem 1.1 (Adams)0.3. Geplanter Verlauf der Vorlesung	1					
1.	Kohomologietheorien 1.1. Definition: Kontravarianter Funktor						
2.	Vektorbündel 2.1. Definition: K-Vektorbündel 2.2. Definition: Vektorraumbündelmorphismus 2.3. Definition: Pullback 2.4. Lemma: Universelle Eigenschaft des Pullbacks 2.5. Lemma	5					
A.	Anhang A.1. Lokale Trivialität des Tangentialbündels auf S^n	9 9					
Ind	dex	Α					
Αb	Abbildungsverzeichnis						
То	Todo list						

0. Einführung

0.1. Definition

Eine \mathbb{R} -Algebra \mathcal{A} mit 1, die nicht notwendigerweise assoziativ ist, heißt **reelle Divisionsalgebra**, falls jedes Element $a \neq 0$ invertierbar ist.

Beispiele

Die reellen Zahlen \mathbb{R} , die komplexen Zahlen \mathbb{C} , die Quaternionen² \mathbb{H} und die sogenannten Cayley-Zahlen³ \mathbb{O} . Dabei ist $\mathbb{O} \cong \mathbb{H} \oplus \mathbb{H}$, wobei die Multiplikation wie folgt definiert ist:

$$(a,b) \cdot (d,c) = (ac - d^*b, da + bc^*)$$

Dabei ist d = x + iy + jz + kw und $d^* = x - iy - jz - kw$.

0.2. Theorem 1.1 (Adams)

Folgende Aussagen sind äquivalent:

- (i) \mathbb{R}^n besitzt die Struktur einer reellen Divisionsalgebra.
- (ii) Entweder ist n=1 oder $n\geqslant 2$ ist gerade und es gibt eine stetige Abbildung $f\colon S^{2n-1}\to S^n$ mit der sogenannten **Hopf-Invariante** 1.
- (iii) Es gilt $n \in \{1, 2, 4, 8\}$.

0.3. Geplanter Verlauf der Vorlesung

Wir werden diesen Satz mit Hilfe der sogenannten K-Theorie beweisen. Dazu müssen wir aber einiges an Vorarbeit leisten:

- 1. Verallgemeinerte Kohomologietheorien
- 2. Vektorbündel
- 3. K-Theorie
 - 3.1. Produkte in K-Theorie
 - 3.2. Bott-Periodizität
 - 3.3. Thom-Isomorphismus
- 4. Hopf-Invariante und der Beweis des Satzes

0. Einführung

² siehe auch https://de.wikipedia.org/wiki/Quaternion ☑️

³ auch Oktonionen oder reelle Okataven; siehe http://de.wikipedia.org/wiki/Oktave_(Mathematik) 🗗

1. Kohomologietheorien

1.1. Definition

Seien $\mathcal C$ und $\mathcal D$ Kategorien. Ein **kontravarianter Funktor** $F\colon \mathcal C\to \mathcal D$

- ordnet jedem Objekt $c \in \mathrm{Obj}(\mathcal{C})$ ein Objekt $F(c) \in \mathrm{Obj}(\mathcal{D})$ zu
- ordnet jedem Morphismus $f\colon c\to c'$ in $\mathrm{Mor}_{\mathcal{C}}(c,c')$ einen Morphismus $F(f)\colon F(c')\to F(c)$ zu

sodass folgende Eigenschaften gelten:

- Für $f \colon c \to c'$ und $g \colon c' \to c''$ gilt $F(g \circ f) = F(f) \circ F(g)$
- $F(\mathrm{id}_c) = \mathrm{id}_{F(c)}$

Beispiel (Dualraumfunktor)

Sei K ein Körper. Sei Vekt_K die Kategorie der endlich dimensionalen K-Vektorräume und linearen Abbildungen. Sei $^*\colon \mathsf{Vekt}_K\to \mathsf{Vekt}_K$ gegeben durch $V\mapsto \mathrm{Hom}_K(V,K)=V^*$. Für $f\colon V\to W$ sei $f^*\colon W^*\to V^*,\, \varphi\mapsto \varphi\circ f$. Dies ist ein kontravarianter Funktor. Insbesondere ist $(f\circ g)^*=g^*\circ f^*$.

1.2. Definition

Sei Top^2 die Kategorie der Raumpaare (X,A). Sei $V\colon\operatorname{Top}^2\to\operatorname{Top}^2$ der Funktor $(X,A)\mapsto (A,\emptyset)$. Sei R ein kommutativer Ring mit 1. Eine **verallgemeinerte Kohomologietheorie** $h^*=(h^n,\partial^n)_{n\in\mathbb{Z}}$ mit Werten in R-Moduln ist ein kontravarianter Funktor $h^*\colon\operatorname{Top}^2\to\operatorname{Gr-}R$ -Moduln ist einer natürlichen Transformation

$$\partial^* \colon h^* \circ V \to h^{*+1}$$
,

so dass die folgenden Eigenschaften gelten:

a) **Homotopieinvarianz**: Seien $f,g\colon (X,A)\to (Y,B)$ homotope Abbildungen von Raumpaaren. Dann gilt für alle $n\in\mathbb{Z}$:

$$h^n(f) = h^n(g)$$

b) Lange exakte Paarsequenz: Sei (X,A) ein Raumpaar. Seien $(A,\emptyset) \stackrel{i}{\hookrightarrow} (X,\emptyset)$ und $j\colon (X,\emptyset) \to (X,A)$ die kanonischen Inklusionen. Dann ist die Folge

$$\cdots \xrightarrow{\partial^{n-1}} h^n(X,A;R) \xrightarrow{h^n(j)} h^n(X,\emptyset;R) \xrightarrow{h^n(i)} h^n(A,\emptyset;R) \xrightarrow{\partial^n} h^{n+1}(X,A;R) \xrightarrow{} \cdots$$

c) **Ausschneidung**: Sei (X,A) ein Raumpaar, $U\subset A$, sodass $\overline{U}\subseteq \mathring{A}$. Dann ist die von der Inklusion $\iota\colon (X\setminus U,A\setminus U)\hookrightarrow (X,A)$ induzierte Abbildung $h^n(\iota)\colon h^n(X,A;R)\to h^n(X\setminus U,A\setminus U;R)$ ein Isomorphismus.

Bemerkungen

- (i) Wir schreiben kurz $h^n(X,A)$ für $h^n(X,A;\mathbb{Z})$ und f^* für $h^n(f)$, falls sich der Grad aus dem Kontext ergibt.
- (ii) $h^n(\{pt\}) =: h^n$ heißen Koeffizienten der Kohomologietheorie.
- (iii) Einige Kohomologietheorien besitzen ein **externes Produkt**, das heißt eine natürliche Transformation

$$h^n(X,A;R)\times h^m(Y,B;R)\longrightarrow h^{n+m}\bigl((X,A)\times (Y,B);R\bigr)$$

die bilinear und assoziativ ist. Dabei ist $(X, A) \times (Y, B) = (X \times Y, (A \times Y) \cup (X \times B))$.

Diagramm hinzufügen

rungseigenschaft

Falls ein externes Produkt für h^* existiert, dann ist $h^*(X,A;R) = \bigoplus_{n \in \mathbb{Z}} h^n(X,A;R)$ ein **gradu**ierter Ring mit der Multiplikation

$$h^n(X, A; R) \times h^m(X, A; R) \xrightarrow{\times} h^{n+m}(X, A; R)$$

1.3. Definition

Ein Raumpaar (X, A) heißt **Ko-Raumpaar**, falls

- X ein kompakter Hausdorffraum ist
- $A \subset X$ abgeschlossen ist
- die Inklusion $A \hookrightarrow X$ eine **Kofaserung** ist, das heißt für jede stetige Abbildung $f \colon A \times I \cup X \times \{0\} \to A$ Y existiert $H \colon X \times I \to Y$, sodass das folgende Diagramm kommutiert:

 $\hbox{Mit } Top_{Kof}^2\subseteq Top^2 \hbox{ bezeichnen wir die Kategorie der Ko-Raumpaare und stetigen Abbildungen}.$

Beispiel

- Sei X ein kompakter CW-Komplex, $A \subset X$ ein Unterkomplex. Dann ist $\iota \colon A \hookrightarrow X$ eine Kofaserung.
- ullet X eine kompakte Mannigfaltigkeit, A eine abgeschlossene Untermannigfaltigkeit.

Bemerkung

Falls $(X, \{x_0\})$ ein Objekt in Tor^2_{Kof} ist, dann heißt X wohlpunktiert.

Beispiel

 $X = [-1, 1] \times [-1, 1], x_0 = (0, 0), Y = X.$ Sei $\gamma : I \to X$ ein Pfad mit $\gamma(0) = (0, 0) = x_0$. Wir erhalten eine Abbildung $f: \{x_0\} \times I \cup X \times \{0\} \to X$

Kofaserung heißt in diesem Fall, dass der Raum X entlang des Pfades "mitgezogen" werden kann.

3 1. Kohomologietheorien

2. Vektorbündel

Sei für den Verlauf dieses Kapitels $K \in \{\mathbb{R}, \mathbb{C}\}.$

2.1. Definition

Sei X ein topologischer Raum. Eine stetige surjektive Abbildung $p \colon E \to X$ heißt K-**Vektorbündel**, falls gilt:

- a) $p^{-1}(\{x\}) =: E_x$ ist ein K-Vektorraum für alle $x \in X$. E_x heißt die **Faser** von E über x.
- b) Für alle $x\in X$ gibt es eine Umgebung U, ein $n\in\mathbb{N}$ und einen Homöomorphismus $\varphi_U\colon p^{-1}(U)\to U\times K^n$, sodass das folgende Diagramm kommutiert

und die Einschränkung $\varphi_U\big|_{E_x}\colon E_x\to K^n$ für alle $x\in U$ ein Isomorphismus von K-Vektorräumen ist. Diese Eigenschaft wird oft als **lokale Trivialität** bezeichnet.

Beispiel

- Sei X ein beliebiger topologischer Raum. Dann ist $X \times K^n \xrightarrow{\operatorname{pr}_X} X$ das **triviale Vektorbündel** über X.
- Betrachte $S^n \subset \mathbb{R}^{n+1}$. Sei $\mathrm{T}S^n = \big\{ (x,v) \in S^n \times \mathbb{R}^{n+1} \, \big| \, \langle x\,,\,v \rangle = 0 \big\}$. Definiere $p \colon \mathrm{T}S^n \to S^n$ durch $(x,v) \mapsto x$. Damit erhalten wir ein \mathbb{R} -Vektorbündel über S^n (Tangentialbündel).

Übung: Zeige lokale Trivialität. Siehe Anhang A.1

Bemerkung

Die Abbildung $x\mapsto \dim_K(E_x)$ ist stetig, also lokal konstant, das heißt über einem zusammenhängenden Raum hat ein Vektorbündel konstante Faserdimension.

2.2. Definition

Seien $p\colon E\to X$ und $p'\colon E'\to X'$ zwei K-Vektorbündel. Ein **Morphismus von Vektorbündeln** oder **Vektorraumbündelmorphismus** von E nach E' ist ein Paar (f,\overline{f}) von stetigen Abbildungen $\overline{f}\colon E\to E'$ und $f\colon X\to X'$, sodass das folgende Diagramm kommutiert

$$E \xrightarrow{\overline{f}} E'$$

$$\downarrow^{p'}$$

$$X \xrightarrow{f} X'$$

und sodass die Einschränkung $\overline{f}|_{E_x}\colon E_x\to E'_{f(x)}$ für jedes $x\in X$ ein K-Vektorraumhomomorphismus ist. Wir bezeichnen die Kategorie der endlich dimensionalen K-Vektorraumbündel über einem topologischen Raum X zusammen mit den Morphismen $(\mathrm{id}_X,\overline{f})$ mit $\mathrm{Vekt}_K(X)$.

4 2. Vektorbündel

Operationen mit Vektorbündeln

2.3. Definition

Seien X und Y topologische Räume. Sei $f\colon Y\to X$ eine stetige Abbildung und sei $p\colon E\to X$ ein Vektorbündel. Dann heißt

 $f^*E := \{(y, v) \in Y \times E \mid f(y) = p(v)\}$

Der Pullback lässt sich auch allgemein auf kategorieller Ebene definieren

zusammen mit der Abbildung $q\colon f^*E\to Y$, $(y,v)\mapsto y$ der **Pullback** von $p\colon E\to X$ entlang von f. Mit $\overline{f}(y,v)=v$ kommutiert das folgende Diagramm

$$f^*E \xrightarrow{\overline{f}} E$$

$$\downarrow p$$

$$Y \xrightarrow{f} X$$

2.4. Lemma

- a) $q: f^*E \to Y$ ist ein Vektorbündel und (\overline{f}, f) ist ein Morphismus von Vektorbündeln.
- b) $q\colon f^*E\to Y$ ist durch die folgende universelle Eigenschaft eindeutig (bis auf Isomorphie) charakterisiert:

Sei $r\colon F\to Z$ ein Vektorbündel, (\overline{g},g) ein Morphismus zwischen $r\colon F\to Z$ und $p\colon E\to X$. Sei weiter $g'\colon Z\to Y$ eine stetige Abbildung mit $f\circ g'=g$. Dann existiert genau ein $G\colon F\to f^*E$, so dass (G,g') ein Morphismus von Vektorbündeln ist und weiter $(\overline{f},f)\circ (G,g')=(\overline{g},g)$ gilt.

Beweis

Sei $y\in Y$. Sei $U\subset X$ eine Umgebung von f(y) in X, sodass eine lokale Trivialisierung $\varphi_U\colon p^{-1}(U)\to U\times K^n$ existiert. $V:=f^{-1}(U)$ ist eine Umgebung von y und es gilt

$$q^{-1}(V) = \{(y, v) \in V \times p^{-1}(U) \mid f(y) = p(v)\}$$

Wir definieren nun

$$\psi_V \colon q^{-1}(V) \longrightarrow V \times K^n \qquad (y, v) \longmapsto (y, \operatorname{pr}_{K^n} \circ \varphi_U(v))$$

$$K_V \colon V \times K^n \longrightarrow q^{-1}(V) \qquad (y, w) \longmapsto (y, \varphi_U^{-1}(f(y), w))$$

Dann gilt $\psi_V \circ \mathrm{K}_V = \mathrm{id}_{V \times K^n}$ und $\mathrm{K}_V \circ \psi_V = \mathrm{id}_{q^{-1}(V)}$. Außerdem kommutiert das Diagramm aus 2.1. Also ist ψ_V eine lokale Trivialisierung von $f^*E \to Y$ über V. Der Beweis von b) ist eine (einfache) Übungsaufgabe.

eventuell hinzufügen

Sei $\mathcal C$ eine (topologische) Kategorie. Hieraus lässt sich eine neue Kategorie $\mathcal C^{\mathrm{op}}$ definieren:

$$\operatorname{obj}(\mathcal{C}^{\operatorname{op}}) := \operatorname{obj}(\mathcal{C})$$
, $\operatorname{Mor}_{\mathcal{C}^{\operatorname{op}}}(c, d) := \operatorname{Mor}_{\mathcal{C}}(d, c)$

2. Vektorbündel 5

mit der neuen Komposition

•:
$$\operatorname{Mor}_{\mathcal{C}^{\operatorname{op}}}(c', c'') \times \operatorname{Mor}_{\mathcal{C}^{\operatorname{op}}}(c, c') \longrightarrow \operatorname{Mor}_{\mathcal{C}^{\operatorname{op}}}(c, c')$$

$$(f, g) \longmapsto f \bullet g = g \circ f$$

(Kovariante) Funktoren $\mathcal{C}^{\mathrm{op}} \to \mathcal{D}$ entsprechen dann kontravarianten Funktoren $\mathcal{C} \to \mathcal{D}$. Sei $\mathrm{Vekt}_K = \mathrm{Vekt}_K(\mathrm{pt})$ die Kategorie der endlichdimensionalen K-Vektorräume und linearen Abbildungen. Ein Funktor

$$F: \underbrace{\operatorname{Vekt}_K \times \ldots \times \operatorname{Vekt}_K}_r \times \underbrace{\operatorname{Vekt}_K^{\operatorname{op}} \times \ldots \times \operatorname{Vekt}_K^{\operatorname{op}}}_s \longrightarrow \operatorname{Vekt}_K$$
 [#]

heißt stetig, falls die induzierte Abbildung

$$\operatorname{Mor}_{\operatorname{Vekt}_{K}}(V_{1}, V_{1}') \times \ldots \times \operatorname{Mor}_{\operatorname{Vekt}_{K}}(V_{r}, V_{r}') \times \operatorname{Mor}_{\operatorname{Vekt}_{K}^{\operatorname{op}}}(V_{r+1}, V_{r+1}') \times \ldots \times \operatorname{Mor}_{\operatorname{Vekt}_{K}^{\operatorname{op}}}(V_{r+s}, V_{r+s}') \\ \longrightarrow \operatorname{Mor}_{\operatorname{Vekt}_{K}}(F(V_{1}, \ldots, V_{r}, V_{r+1}, \ldots, V_{r+s}), F(V_{1}', \ldots, V_{r}', V_{r+1}', \ldots, V_{r+s}'))$$

stetig ist (dies klappt nur für Kategorien, für die eine Topologie auf den Morphismen existiert!).

2.5. Lemma

Sei F ein stetiger Funktor wie in [#] und sei X ein topologischer Raum. Dann induziert F einen Funktor

$$F_X \colon \underbrace{\operatorname{Vekt}_K(X) \times \ldots \times \operatorname{Vekt}_K(X)}_r \times \underbrace{\operatorname{Vekt}_K(X)^{\operatorname{op}} \times \ldots \times \operatorname{Vekt}_K(X)^{\operatorname{op}}}_s \longrightarrow \operatorname{Vekt}_K(X)$$

der verträglich ist mit Pullbacks und $F_{\mathrm{pt}}=F$ erfüllt.

Beweis

Sei m=r+s. Definiere $F_X(E^{(1)},\ldots,E^{(m)})=\coprod_{x\in X}F(E^{(1)}_x,\ldots,E^{(m)}_x)$ als Menge. Sei U_i eine offene Überdeckung von X, so dass lokale Trivialisierungen

$$\varphi_i^{(k)} \colon (p^{(k)})^{-1}(U_i) \longrightarrow U_i \times K^{\ell_k}$$

existieren. F induziert Bijektionen

$$F_{U_i}(\varphi_i^{(1)},\ldots,\varphi_i^{(m)}):F_{U_i}((p^{(1)})^{-1}(U_i),\ldots,(p^{(m)})^{-1}(U_i))\longrightarrow U_i\times F(K^{\ell_1},\ldots,K^{\ell_m})$$

Jetzt gibt es eine eindeutige Topologie auf $F_X(E^{(1)},\dots,E^{(m)})$, so dass die eben definierten Abbildungen $\psi_i=F_{U_i}\left(\varphi_i^{(1)},\dots,\varphi_i^{(m)}\right)$ Homöomorphismen werden, wobei $U_i\times F\left(K^{\ell_1},\dots,K^{\ell_m}\right)$ die Produkttopologie trägt: Eine Menge $V\subset F_X(E^{(1)},\dots,E^{(m)})$ ist offen, falls sie die Vereinigung von Mengen der Form $\psi_i^{-1}(V_i)$ mit $V_i\subset U_i\times F\left(K^{\ell_1},\dots,K^{\ell_m}\right)$ offen ist und $\psi_j\circ\psi_i^{-1}(V)$ offen ist. Damit diese Definition konsistent ist, müssen wir folgendes prüfen: Sei $V\subset (U_i\cap U_j)\times F(K^{\ell_1},\dots,K^{\ell_m})$

Damit diese Definition konsistent ist, müssen wir folgendes prüfen: Sei $V \subset (U_i \cap U_j) \times F(K^{\ell_1}, \dots, K^{\ell_m})$ offen. Wir haben zu zeigen, dass dann auch $\psi_j \circ \psi_i^{-1}(V)$ offen ist. Aber es gilt $\psi_j \circ \psi_i^{-1}(x,v) = (x,\psi_{ij}(x)(v))$ für eine Abbildung

$$\psi_{ij} : U_i \cap U_j \longrightarrow \operatorname{End}_K (F(K^{\ell_1}, \dots, K^{\ell_m}))$$

Es gilt $\psi_{ij} = F\left(\psi_{ij}^{\scriptscriptstyle(1)},\ldots,\psi_{ij}^{\scriptscriptstyle(m)}\right)$ für stetige Abbildungen $\psi_{ij}^{\scriptscriptstyle(k)}\colon U_i\cap U_j\to\operatorname{End}_K(K^{e_k})$. Da F stetig ist, folgt, dass alle ψ_{ij} stetig sind und folglich auch $\psi_j\circ\psi_i^{-1}$. Somit ist $\psi_j\circ\psi_i^{-1}(V)$ offen. Es ist damit klar, dass $F_X(E^{\scriptscriptstyle(1)},\ldots,E^{\scriptscriptstyle(m)})\to X$ ein Vektorbündel ist, denn wir haben lokale Trivialisierungen konstruiert. Ferner gilt per Definition für eine stetige Abbildung $f\colon Y\to X$

$$f^*F_X(E^{(1)},\ldots,E^{(m)}) \cong F_Y(f^*E^{(1)},\ldots,f^*E^{(m)})$$

6 2. Vektorbündel

Beispiele

- \oplus : $Vekt_K \times Vekt_K \to Vekt_K$ ist stetig \Rightarrow direkte Summe von Vektorbündeln
- \otimes : Vekt $_K \times$ Vekt $_K \to$ Vekt $_K$ ist stetig \Rightarrow Tensorprodukt von Vektorbündeln
- Dualisieren von Vektorräumen $^*\colon \mathrm{Vekt}_K^\mathrm{op} o \mathrm{Vekt}_K$ ist stetig \Rightarrow duales Vektorbündel
- Hom : $\operatorname{Vekt}_K \times \operatorname{Vekt}_K^{\operatorname{op}} \to \operatorname{Vekt}_K$, $(V, W) \mapsto \operatorname{Hom}_K(W, V)$ ist stetig \Rightarrow Homomorphismenbündel $\operatorname{Hom}(E, F)$.

Seien $p\colon E\to X$ und $q\colon F\to X$ zwei K-Vektorbündel. Dann ist $E\times F\xrightarrow{(p,q)} X\times X$ auch ein Vektorbündel, wenn $E_X\times F_X$ die Vektorraumstruktur der äußeren direkten Summe trägt.

Übungsaufgabe

Sei $\Delta \colon X \to X \times X$ die Diagonalabbildung. Zeige, dass $\Delta^*(E \times F) \cong E \oplus F$ als Vektorbündel über X.

2. Vektorbündel

A. Anhang

A.1. Lokale Trivialität des Tangentialbündels auf S^{n}

Übung einfügen

A. Anhang

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar ♣

Ausschneidung, 2

externes Produkt, 2

Faser, 4

graduierter Ring, 3

Homotopieinvarianz, 2 Hopf-Invariante, 1

Ko-Raumpaar, 3 Koeffizienten der Kohomologietheorie, 2 Kofaserung, 3 kontravarianter Funktor, 2

Lange exakte Paarsequenz, 2

Morphismus von Vektorbündeln, 4

reelle Divisionsalgebra, 1

Vektorbündel, 4 Vektorraumbündelmorphismus, 4 verallgemeinerte Kohomologietheorie, 2

wohlpunktiert, 3

Index A

Abbildungsverzeichnis

To-do's und andere Baustellen

Diagramm hinzufügen	2
Figure: Skizze zu der Abbildung	3
eventuell hinzufügen	5
Übung einfügen	9

B Abbildungsverzeichnis