Numerical Optimization Graduate Course

Unconstrained Smooth Optimization

Part II: Line search-based and steepest descent methods

Wen Huang

School of Mathematical Sciences Xiamen University

Compiled on February 14, 2022

Line Search-Based Methods

Line Search Methods

A representative line search method

A descent method

```
Input: Initial iterate x_0;
Initial descent direction p_0 and set k \leftarrow 0;
while not accurate enough \mathbf{do}
Set x_{k+1} \leftarrow x_k + \alpha_k p_k with an appropriate step size \alpha_k;
Find a descent direction p_{k+1};
k \leftarrow k+1;
end while
```

Direction! and step size!

Basic idea

Define $h(\alpha) = f(x + \alpha p)$. The task is to find an appropriate step size α .

Is a step size such that $h(\alpha) < h(0)$ sufficient for global convergence?

Basic idea

Define $h(\alpha) = f(x + \alpha p)$. The task is to find an appropriate step size α .

Is a step size such that $h(\alpha) < h(0)$ sufficient for global convergence?

No! See an example:

Define $h(\alpha) = f(x + \alpha p)$. The task is to find an appropriate step size α .

Is a step size such that $h(\alpha) < h(0)$ sufficient for global convergence?

No! See an example:

- $f(x) = \frac{1}{2}x^2$, $x^* = 0$, and $x_0 = 1$
- Choose step size $\alpha_k = 2 \frac{1}{|x_k|2^{k+2}}$
- Update $x_{k+1} = x_k \alpha_k \nabla f(x_k) = -x_k \left(1 \frac{1}{|x_k| 2^{k+2}}\right)$
- $x_{2k} = \frac{1}{2} + \frac{1}{2^{2k+1}}$ and $x_{2k+1} = -\frac{1}{2} \frac{1}{2^{2k+2}}$
- Therefore, $f(x_{k+1}) < f(x_k)$
- ullet However, $x_{2k}
 ightarrow rac{1}{2}$ and $x_{2k+1}
 ightarrow -rac{1}{2}$

Basic idea

- Decrease is not sufficient. We need "sufficient" decrease.
- Sufficient descent condition on the objective function:

$$h(\alpha) \leq h(0) + c_1 \alpha h'(0),$$

where $c_1 \in (0,1)$. This condition is also called Armijo condition.

Sufficient decrease condition alone is still not sufficient for global convergence

•
$$f(x) = \frac{1}{2}x^2$$
, $x^* = 0$, and $x_0 = 1$

$$\bullet \ \alpha_k = \frac{1}{x_k 2^{k+2}}$$

•
$$x_{k+1} = x_k - \alpha \nabla f(x_k) = x_k - \frac{1}{2^{k+2}}$$

•
$$x_{k+1} = \frac{1}{2} + \frac{1}{2^{k+2}}$$

• The sufficient decrease condition is satisfied with $c_1 = 0.5$

• However
$$x_{k+1}=x_0-\sum_{i=0}^k rac{1}{2^{i+2}}
ightarrow rac{1}{2}
eq x^*$$
 as $k
ightarrow 0$

Sufficient decrease condition alone is still not sufficient for global convergence

•
$$f(x) = \frac{1}{2}x^2$$
, $x^* = 0$, and $x_0 = 1$

$$\bullet \ \alpha_k = \frac{1}{x_k 2^{k+2}}$$

•
$$x_{k+1} = x_k - \alpha \nabla f(x_k) = x_k - \frac{1}{2^{k+2}}$$

•
$$x_{k+1} = \frac{1}{2} + \frac{1}{2^{k+2}}$$

• The sufficient decrease condition is satisfied with $c_1 = 0.5$

• However
$$x_{k+1} = x_0 - \sum_{i=0}^k \frac{1}{2^{i+2}} \to \frac{1}{2} \neq x^*$$
 as $k \to 0$

Step size can not be too small. (Note that the step size α_k converges to zero in this example)

Definition 1 (Armijo-Goldstein condition)

The step size α satisfies

$$h(\alpha) \leq h(0) + c_1 \alpha h'(0),$$

where α is the largest value in the set

$$\{t^{(i)}: t^{(i)} \in [\tau_1 t^{(i-1)}, \tau_2 t^{(i-1)}], t^{(0)} = 1\},$$

for any $c_1 \in (0,1)$ and $0 < \tau_1 \le \tau_2 < 1$.

Note that if $\tau_1=\tau_2$, then the step size α can be found by a simple backtracking algorithm.

Simple backtracking algorithm

Backtracking

```
Input: Function h: \mathbb{R} \to \mathbb{R} with h'(0) < 0; initial step size \alpha^{(0)}; shrinking parameter \rho \in (0,1);
Set step size \alpha \leftarrow \alpha^{(0)};
while h(\alpha) > h(0) + c_1 \alpha h'(0) do \alpha \leftarrow \rho \alpha;
end while
```

Let α denote the step size satisfying the Armijo-Goldstein condition.

• Sufficient descent condition by its definition

$$h(\alpha) \leq h(0) + c_1 \alpha h'(0)$$

- Not too small
 - \bullet $\alpha=1$ if the initial step size is accepted
 - Otherwise,

$$h\left(\frac{\alpha}{\tau}\right) > h(0) + c_1 \frac{\alpha}{\tau} h'(0)$$

for $\tau \in [\tau_1, \tau_2]$.

Wolfe conditions

Definition 2 (Weak Wolfe conditions)

The step size α satisfies

$$h(\alpha) \le h(0) + c_1 \alpha h'(0)$$
 (Armijo condition), and $h'(\alpha) \ge c_2 h'(0)$ (Curvature condition),

for any $0 < c_1 < c_2 < 1$.

Definition 3 (Strong Wolfe conditions)

The step size α satisfies

$$h(\alpha) \le h(0) + c_1 \alpha h'(0)$$
 (Armijo condition), and $|h'(\alpha)| \le c_2 |h'(0)|$ (Curvature condition),

for any $0 < c_1 < c_2 < 1$.

Wolfe conditions

Let α denote the step size satisfying either the weak Wolfe conditions or the strong Wolfe condition.

- Sufficient descent condition by its definition
- Curvature condition implies that the step size can not be too small.

Existence of step sizes

Theorem 4 (Existence of step size satisfying the conditions)

Suppose $f \in C^1$. Let p_k be a descent direction at x_k , and assume f is bounded from below along the ray $\{x_k + \alpha p_k : \alpha > 0\}$. Then if $0 < c_1 < c_2 < 1$ and $0 < \tau_1 \le \tau_2 < 1$, there exists a step length satisfying the Armijo-Goldstein condition, a step size satisfying the weak Wolfe conditions and a step size satisfying the strong Wolfe conditions.

Definition 5 (Byrd-Nocedal conditions in [BN89])

The step size α satisfies

$$h(\alpha) - h(0) \le -\chi_1 \frac{h'(0)^2}{\|p\|^2}$$

or
 $h(\alpha) - h(0) \le \chi_2 h'(0)$,

for some values of $\chi_1, \chi_2 \in (0,1)$.

Byrd-Nocedal conditions [BN89]

Theorem 6

Let \mathcal{N}_0 denote $\{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$. If the gradient of f is Lipschitz continuous, i.e., $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ for all $x, y \in \mathcal{N}_0$, then Byrd-Nocedal conditions is implied by Armijo-Goldstein condition or Wolfe conditions.

Byrd-Nocedal conditions [BN89]

Theorem 6

Let \mathcal{N}_0 denote $\{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$. If the gradient of f is Lipschitz continuous, i.e., $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ for all $x, y \in \mathcal{N}_0$, then Byrd-Nocedal conditions is implied by Armijo-Goldstein condition or Wolfe conditions.

Note that χ_1 and χ_2 are typically chosen to be smaller than β/L , where β is a constant and L is the Lipschitz constant of $\nabla f(x)$.

Line search conditions summary

- The Armijo-Goldstein condition and weak/strong Wolfe conditions are easy to use
 - c_1 , c_2 , τ_1 , and τ_2 can be any positive values satisfying $0 < c_1 < c_2 < 1$ and $0 < \tau_1 < \tau_2 < 1$:
- The Byrd-Nocedal conditions are useful in theorem but not in implementation
 - Not easy to use: χ_1 depends on the Lipschitz constant of ∇f
 - Zoutendijk's condition;

Zoutendijk's Condition

Modified for the Byrd-Nocedal conditions

Theorem 7 (Zoutendijk's condition with slight modification)

Consider the line search algorithm below. Suppose $f \in C^1$ is bounded from below, α_k satisfies the Byrd-Nocedal conditions, and $\|p_k\| \ge \mu \|\nabla f(x_k)\|$ for all k>0 and a constant $\mu>0$. Then

$$\sum_{k\geq 0}\cos^2\theta_k\|\nabla f(x_k)\|^2<\infty.$$

Note: " $\|p_k\| \ge \mu \|\nabla f(x_k)\|$ " is not required if the Wolfe conditions are used.

A line search algorithm

Input: Initial iterate x_0 ;

Initial descent search direction p_0 at x_0 and set $k \leftarrow 0$;

while not accurate enough do

Set $x_{k+1} \leftarrow x_k + \alpha_k p_k$ with an appropriate step size α_k ;

Set p_{k+1} to be a descent direction at x_{k+1} ;

 $k \leftarrow k + 1$;

end while

Step Size Selection Algorithms

Polynomial interpolation based backtracking

- Quadratic polynomial
 - Three conditions: h(0), h'(0), and $h(\alpha_1)$;
 - Minimizer of the quadratic polynomial:

$$\alpha_{+} = \frac{-h'(0)\alpha_{1}^{2}}{2(h(\alpha_{1}) - h(0) - h'(0)\alpha_{1})}$$
(1)

- Cubic polynomial
 - Four conditions: h(0), h'(0), $h(\alpha_1)$, and $h(\alpha_2)$;
 - Minimizer of the cubic polynomial:

$$\alpha_{+} = \frac{-b + \sqrt{b^2 - 3ah'(0)}}{3a},\tag{2}$$

where

$$\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{\alpha_1 - \alpha_2} \begin{bmatrix} \frac{1}{\alpha_1^2} & \frac{-1}{\alpha_2^2} \\ \frac{-\alpha_2}{\alpha_1^2} & \frac{\alpha_1}{\alpha_2^2} \end{bmatrix} \begin{bmatrix} h(\alpha_1) - h(0) - h'(0)\alpha_1 \\ h(\alpha_2) - h(0) - h'(0)\alpha_2 \end{bmatrix}.$$

• Finally, set $\alpha = \min(\max(\alpha_+, \tau_1\alpha_1), \tau_2\alpha_1)$

Step Size Selection Algorithms

Polynomial interpolation based backtracking

```
Polynomial interpolation based backtracking algorithm
Input: Initial step size \alpha^{(0)}; 0 < \tau_1 < \tau_2 < 1; h(0) and h'(0);
Output: Step size \alpha_* satisfying the Armijo-Goldstein condition
   Set i \leftarrow 0:
   loop
      if h(\alpha^{(i)}) < h(0) + c_1 \alpha^{(i)} h'(0) then
         \alpha_* \leftarrow \alpha^{(i)} and return:
      end if
      if h(\alpha^{(i)}) > h(0) + c_1 \alpha^{(i)} h'(0) and i = 0 then
          Compute \tilde{\alpha} by (1) with \alpha_1 = \alpha^{(i)}:
      end if
      if h(\alpha^{(i)}) > h(0) + c_1 \alpha^{(i)} h'(0) and i > 0 then
          Compute \tilde{\alpha} by (2) with \alpha_1 = \alpha^{(i)} and \alpha_2 = \alpha^{(i-1)}:
      end if
      \alpha^{(i+1)} = \min(\max(\tilde{\alpha}, \tau_1 \alpha^{(i)}), \tau_2 \alpha^{(i)});
       i \leftarrow i + 1:
   end loop
```

Summary for Step Size Selections

- Other conditions
 - the Curry-Altman condition:

$$\alpha = \min\{\alpha > 0 : h'(\alpha) = \mu h'(0)\}, \ \mu \in [0, 1);$$

the Goldstein condition

$$h(0) + (1-c)\alpha h'(0) \le h(\alpha) \le h(0) + c\alpha h'(0), c \in (0,0.5);$$

- Both imply the Byrd Nocedal conditions
- etc
- Algorithms
 - Polynomial interpolation based algorithm [DS83, Algorithm A6.3.1mod] for the weak Wolfe conditions and [NW06] for the strong Wolfe conditions
 - etc
- The conditions and step size selection algorithms can be used for other line search based methods

Steepest Descent Methods

A Steepest Descent Method

A representative steepest descent method

A steepest descent method

```
Input: Initial iterate x_0, initial step size \alpha^{(0)};

Set k \leftarrow 0;

while not accurate enough do

Find a step size satisfying the Byrd-Nocedal conditions with initial step size \alpha^{(0)};

Set x_{k+1} \leftarrow x_k - \alpha_k \nabla f(x_k);

k \leftarrow k+1;

end while
```

- Global convergence follows from the Zoutendijk's condition
- Convergence rate?
- Initial step size?

Local Convergence Rate Analysis of the Steepest Descent Method

Theorem 8 (R-linear local convergence rate analysis)

Let $\mathcal{N}_{x_0} = \{x : f(x) \le f(x_0)\}$. Suppose $f \in C^2$, \mathcal{N}_{x_0} is convex, and there exists positive constants $0 < m \le M$ such that

$$m \le \lambda_{\min}(\nabla^2 f(x)) \le \lambda_{\max}(\nabla^2 f(x)) \le M$$

for all $x \in \mathcal{N}_{x_0}$, where $\lambda_{\min}(A)$, $\lambda_{\max}(A)$ denote the smallest and largest eigenvalues of A respectively. Let x^* denote the unique minimizer of f in \mathcal{N}_{x_0} and $\{x_k\}$ denote the iterates generated by the steepest descent method with the Byrd Nocedal conditions. Then we have

$$f(x_k) - f(x^*) \le \left(1 - \beta \frac{m}{M}\right)^k (f(x_0) - f(x^*))$$

where β is a positive constant.

Local Convergence Rate Analysis of the Steepest Descent Method

Theorem 9 (Sublinear local convergence rate analysis)

Let $\mathcal{N}_{x_0} = \{x : f(x) \le f(x_0)\}$. Suppose $f \in C^2$, \mathcal{N}_{x_0} is convex, and there exists positive constants M > 0 such that

$$0 \le \lambda_{\min}(\nabla^2 f(x)) \le \lambda_{\max}(\nabla^2 f(x)) \le M$$

for all $x \in \mathcal{N}_{x_0}$, where $\lambda_{\min}(A)$, $\lambda_{\max}(A)$ denote the smallest and largest eigenvalues of A respectively. Let x^* denote a minimizer of f in \mathcal{N}_{x_0} and $\{x_k\}$ denote the iterates generated by the steepest descent method with the Armijo-Goldstein condition with $c_1=0.5$ or the Wolfe conditions with $c_1=0.5$. Then we have

$$f(x_k) - f(x^*) \le \frac{\beta \|x_0 - x^*\|^2}{2k},$$

where β is a positive constant.

Methods in [NW06]

 Assume that ratio of the consecutive step sizes is proportional to the ratio of the consecutive first order values, i.e.,

$$\frac{\alpha_k^{(0)}}{\alpha_{k-1}} = \frac{\nabla f(x_{k-1})^T p_{k-1}}{\nabla f(x_k)^T p_k} \Longrightarrow \alpha_k^{(0)} = \alpha_{k-1} \frac{\nabla f(x_{k-1})^T p_{k-1}}{\nabla f(x_k)^T p_k}$$

• Assume that $\alpha_k^{(0)}$ is the minimizer of the quadratic polynomial q that interpolate $q(0) = h_{k-1}(0)$, $q'(0) = h'_{k-1}(0)$ and $q(\alpha_k^{(0)}) = h_k(0)$, i.e.,

$$\alpha_k^{(0)} = \frac{-h'_{k-1}(0)(\alpha_k^{(0)})^2}{2(h_k(0) - h_{k-1}(0) - h'_{k-1}(0)\alpha_k^{(0)})}$$

==

$$\alpha_k^{(0)} = \frac{2(h_k(0) - h_{k-1}(0))}{h'_{k-1}(0)}.$$

Convex quadratic problems

Consider

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x,$$

where A is a symmetric positive definite matrix. Let λ_i and v_i denote the eigenvalues and corresponding eigenvectors of A respectively.

- Gradient $\nabla f(x) = Ax$, let g_k denote $\nabla f(x_k)$
- $x_k = x_{k-1} \alpha_{k-1}g_{k-1} \Rightarrow g_k = g_{k-1} \alpha_{k-1}Ag_{k-1}$
- Let $g_k = \sum_{i=1}^n \mu_{k,i} v_i$
- $\mu_{k,i} = (1 \alpha_{k-1}\lambda_i)\mu_{k-1,i} = \dots = \left(\prod_{j=0}^{k-1} (1 \alpha_j\lambda_i)\right)\mu_{0,i}$
- If $\alpha_i = 1/\lambda_i$, then $\mu_{k,i} = 0$ for all $k \geq j$
- If $\alpha_k < 1/\max_i(\lambda_i)$ for all k, then $\mu_{k,i}$ is decreasing as $k \to \infty$ for all i.

Convex quadratic problems

- Ideally, *n*-steps terminates at the exact solution
- Goal: estimate reciprocal of eigenvalues to get step size
 - Step size by limited memory [Fle12]
 - Barzilai-Borwein (BB) step size [BB88]

Barzilai-Borwein (BB) step size

- Define $s_{k-1} = x_k x_{k-1}$ and $y_{k-1} = g_k g_{k-1} = As_{k-1}$
- $\bullet \ \mathsf{BB1:} \ \alpha_k^{\mathrm{BB1}} = \tfrac{s_{k-1}^\mathsf{T} s_{k-1}}{s_{k-1}^\mathsf{T} A s_{k-1}} = \tfrac{s_{k-1}^\mathsf{T} s_{k-1}}{s_{k-1}^\mathsf{T} y_{k-1}}$
- BB1: exact step size at iteration k-1
- BB2: $\alpha_k^{\text{BB2}} = \frac{s_{k-1}^T A s_{k-1}}{s_{k-1}^T A^2 s_{k-1}} = \frac{s_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}}$
- BB2: minimize gradient at iteration k-1
- $\frac{1}{\lambda_{\max}} \le \alpha_k^{\text{BB2}} \le \alpha_k^{\text{BB1}} \le \frac{1}{\lambda_{\min}}$
- Empirically, BB step sizes tend to sweeping the reciprocals of the spectrum of A.
- Adaptive BB variants, e.g., [ZGD06]

Nonlinear problems

- Step size by limited memory
- BB step size
 - Not always positive
 - Wolfe ⇒ positivity
 - Safeguard with methods in [NW06]

Preference for good initial step size

Convex quadratic problems

The function value is not monotonically descent but the iterates converges to the minimizer.

Nonlinear problems: nonmonotonic line search

Algorithm 1 Nonmonotonic line search with BB step size

```
Input: Initial iterate x_0, a positive integer m > 0, \rho \in (0,1); 1: for k = 0, 1, 2, ... do
```

- 2: Set step size $\alpha_k = \alpha_k^{(0)}$;
- 3: while $f(x_k \alpha_k \nabla f(x_k)) > \max(f(x_k), f(x_{k-1}), \dots, f(x_{k-m+1})) + c_1 \alpha_k h'_k(0)$ do
- 4: $\alpha_k \leftarrow \rho \alpha_k$;
- 5: end while
- 6: $x_{k+1} \leftarrow x_k \alpha_k \nabla f(x_k)$;
- 7: $k \leftarrow k + 1$;
- 8: end for

References I

J. Barzilai and J. M. Borwein.

Two-Point Step Size Gradient Methods.

IMA Journal of Numerical Analysis, 8:141-148, 1988.

R. H. Byrd and J. Nocedal.

A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM Journal on Numerical Analysis, 26(3):727–739, 1989.

J. E. Dennis and R. B. Schnabel.

Numerical methods for unconstrained optimization and nonlinear equations.

Springer, New Jersey, 1983.

Roger Fletcher.

A limited memory steepest descent method.

Mathematical Programming, 135(1):413-436, Oct 2012.

J. Nocedal and S. J. Wright.

Numerical Optimization.

Springer, second edition, 2006.

Bin Zhou, Li Gao, and Yu-Hong Dai.

Gradient methods with adaptive step-sizes.

Computational Optimization and Applications, 35(1):69-86, Sep 2006.