Review: Limitations of hard switching converter

- ⇒ Device stress ↑
- ⇒ Switching loss ↑
- \Rightarrow EMI

- → Zero current switching
- → Zero voltage switching

Stress on device 1.

To reduce the converter size and weight

- \Rightarrow Switching Frequency (F_s) \uparrow
- \Rightarrow The above limitations become worse as F_s \uparrow

- ⇒ Solution → Switch ON/OFF the device when the voltage across it AND/OR the current through it is ZERO.
 - Zero Voltage / Zero Current switching converter.
 - ⇒ Soft switched converter
 - ⇒ Resonant Converter
 - ⇒ Some sort of LC resonance

- ⇒ Power electronic equipment which utilizes a resonant L-C circuit as a part of the power conversion process
 - ⇒ Resonance frequency of L-C is very high
 - ⇒ Depending upon the power level, it could be of the order of 300-500 KHz
 - ⇒ Size of L & C is very small

Advantages

- ⇒ Devices stress ↓
- ⇒ Low EMI
- ⇒ Switching Losses ; 0
- ⇒ Separate L & C are required
- ⇒ parasitic elements can be enhanced than distract the circuit performance.
- ⇒ Possible to improve the diode recovery

Dis-advantage

- ⇒ Circuit is complicated
- ⇒ High peak current

Applications

- ⇒ Power supplies
- ⇒ Induction heating

DC - AC Converters: Inverters

Why is there a need?

Power is generated → AC

Voltage induced in the conductor rotating in a magnetic field is <u>AC</u>.

 $U.P.S \rightarrow Input is 12V$

Constant 'V' & constant 'F' supply is required.

Now consider a 3-4 IM

Stator field is rotating at $N_s = \frac{120 \text{ F}}{P}$

Rotor is stationary $(N_r = 0)$

$$N_s - N_r = N_s$$

- \Rightarrow Current in rotor \rightarrow Current in stator
- → supply current is very high (□ 6 I_{RATED})

Assume that 'T_i' is constant.

$$T_1$$
 = developed torque

$$\approx$$
 constant = $\frac{P_2}{2 \pi n_s}$

- ⇒ Air-gap power input is constant
- ⇒ Input power is constant
 - → almost independent of speed
- \Rightarrow In order to \downarrow the speed, \downarrow the applied voltage (F is constant)

$$T \propto V^2$$

- \Rightarrow speed \downarrow from N_{r1} to N_{r2}
- ∴ 'F' is constant, N_s is constant. N_r has to \downarrow .

 \therefore P₂ is constant \Rightarrow sP₂ has dissipated as heat.

$$\Rightarrow T_{\rm e} \propto P_2 \propto \frac{l^2 R}{s}$$

$$\therefore$$
 I \propto \sqrt{s}

when required torque is constant

- \Rightarrow Stator copper loss \uparrow
- \Rightarrow Heat \uparrow and $\eta \downarrow$

If $T_{l} \propto N_{r}^{2} \rightarrow$ Fan type of load

$$\propto (1-s)^2$$

$$T_e \propto \frac{I^2R}{s}$$

$$\therefore I = (1-s)s^{\frac{1}{2}}$$

If the process requires wide variation in speed

 \Rightarrow N_s should be changed especially for T_L = constant

[in principle, this may not be required for fan type of loads]

⇒ Even for fan type of load, it is preferred.

$$N_{s} = \frac{120 \text{ F}}{P}$$

⇒ Frequency of stator supply should be changed