1.	次の式を因数分解せよ。
	(1) $(x^2+x-5)(x^2+x-7)+1$
	$(2) 9b^2 + 3ab - 2a - 4$
	(3) $a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 2abc$
2.	次の に最も適する語句を (\mathcal{P}) \sim (エ) から選べ。 x , y は実数とする。
	(1) $x < 1$ は $x \le 1$ であるための
	(2) $x < y$ is $x^4 < y^4$ resolved by $x < y < y^4$ resolved by $x < y < y < y < y < y < y < y < y < y < $
	(3) $xy+1=x+y$ は x , y のうち少なくとも 1 つは 1 であるための。
	(4) $\triangle ABC$ において、 $\angle A < 90^\circ$ は、 $\triangle ABC$ が鋭角三角形であるための。
	(ア) 必要十分条件である (イ) 必要条件であるが十分条件ではない
	(ウ) 十分条件であるが必要条件ではない (エ) 必要条件でも十分条件でもない
	1. /F
3.	$a=rac{1+\sqrt{5}}{2}$ のとき,次の式の値を求めよ。
	(1) $a^2 - a - 1$ (2) $a^4 + a^3 + a^2 + a + 1$
4.	k を $k>2$ を満たす定数とする。このとき、 x についての不等式 $5-x \le 4x < 2x + k$ の解
	は $^{'}$ である。また,不等式 $5-x \le 4x < 2x+k$ を満たす整数 x がちょうど 5 つ存
	++3 5 + 5 7 1 0 1
	在するような定数 k の値の範囲は 1 である。
_	
5.	(1) 不等式 $a(x+1)>x+a^2$ を解け。ただし、 a は定数とする。
5.	
5.	(1) 不等式 $a(x+1)>x+a^2$ を解け。ただし、 a は定数とする。
5.	 (1) 不等式 a(x+1)>x+a² を解け。ただし, a は定数とする。 (2) 不等式 ax<4-2x<2x の解が 1<x<4 a="" li="" であるとき,="" の値を求めよ。<="" 定数=""> 以下の問いでは解決過程も採点対象である。 </x<4>
5.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。
	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。
	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし、 a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき、定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ 、 $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき、 $x + y = 7$ であるから、
	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = 7$ であるから, $x^2 + y^2 = 9$ 、 $x^3 + y^3 = 2$ 、 $x^4 + y^4 = 2$ 、 $x^5 + y^5 = 2$ となる。
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし、 a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき、定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ 、 $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき、 $x + y = 7$ であるから、
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = {}^{7}$ であるから, $x^2 + y^2 = {}^{9}$ 、 $x^3 + y^3 = {}^{2}$ 、 $x^4 + y^4 = {}^{4}$ 、 $x^5 + y^5 = {}^{9}$ となる。 不等式 $ x - 1 + 2 x - 3 \le 11$ を解け。
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = {}^{7}$ であるから, $x^2 + y^2 = {}^{9}$ 、 $x^3 + y^3 = {}^{x}$ 、 $x^4 + y^4 = {}^{x}$
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = {}^{7}$ であるから, $x^2 + y^2 = {}^{9}$ 、 $x^3 + y^3 = {}^{2}$ 、 $x^4 + y^4 = {}^{4}$ 、 $x^5 + y^5 = {}^{9}$ となる。 不等式 $ x - 1 + 2 x - 3 \le 11$ を解け。
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = {}^{T}$ であるから, $x^2 + y^2 = {}^{t}$ 、 $x^3 + y^3 = {}^{t}$
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = {}^{T}$ であるから, $x^2 + y^2 = {}^{t}$ 、 $x^3 + y^3 = {}^{t}$
6.	(1) 不等式 $a(x+1) > x + a^2$ を解け。ただし, a は定数とする。 (2) 不等式 $ax < 4 - 2x < 2x$ の解が $1 < x < 4$ であるとき,定数 a の値を求めよ。 以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。 $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = {}^{T}$ であるから, $x^2 + y^2 = {}^{t}$ 、 $x^3 + y^3 = {}^{t}$

内田碧 11-2 数学 問題

式の値

- **10** $x+y=\frac{5}{6}$, $xy=\frac{1}{6}$ のとき, 次の式の値を求めよ。

 - (1) $x^2 + y^2$ (2) $\frac{x}{y} + \frac{y}{x}$ (3) $x^3 + y^3$
- [13 大阪経大]

ポイントチェック』

11
$$x = \frac{4}{\sqrt{6} + \sqrt{2}}$$
, $y = \frac{4}{\sqrt{6} - \sqrt{2}}$ であるとき, $x^2 + xy + y^2 = \tau$ (16 大阪経大)

無理数と対称式の値 x, yの対称式はx+y, xyで表される。 直接代入すると計算が大変であるから, 式を変形して考える。

- * $oldsymbol{12}$ $\sqrt{14}$ の整数部分を a, 小数部分を b とするとき, 次の問いに答えよ。
 - (2) $\frac{1}{b}$ の整数部分を c, 小数部分を d とするとき, c, d の値を求めよ。

[15 東北学院大]

 整数部分と小数部分

 ボイント
 実数 A の整数部分が x のとき、小数部分 y は y=A-x

***13**
$$\frac{x+y}{3} = \frac{y+z}{6} = \frac{z+x}{7}$$
 (±0) のとき、 $\frac{x^3+y^3+z^3}{xyz}$ の値を求めよ。

[15 明治大]

比例式 (比例式)= k とおくと, 式の値が計算しやすくなる。

..... A 問題 ____

- ***14** (1) $x + \frac{1}{x} = 2\sqrt{7}$ のとき, $x^2 + \frac{1}{x^2} = 7$, $x^3 + \frac{1}{x^3} = 4$, $x^4 + \frac{1}{x^4} = 0$, $x^5 + \frac{1}{x^5} = x$ $rac{1}{x^5}$ [15 駒澤大]
 - (2) 実数 a, b が a+b=-1, $a^3+b^3=-19$ を満たすとき. $a^2+b^2=7$ $a^5 + b^5 = 1$ $\sqrt{5}$ $\sqrt{5}$
- **15** $\sqrt{7+4\sqrt{3}}$ の整数部分を a, 小数部分を b とするとき, $\frac{a}{b} \frac{b}{a+b-1}$ の値
- **16** 相異なる実数 α , β が $\begin{cases} \alpha^2 + \sqrt{3}\beta = \sqrt{6} \\ \beta^2 + \sqrt{3}\alpha = \sqrt{6} \end{cases}$ を満たすとき, $\alpha + \beta = 7$, $\alpha\beta=1$ β $\alpha\beta=1$ β $\alpha\beta=1$ β β β β β β β β β [16 近畿大]

______B 問題

- **17** a は定数とする。3つの数 x, y, z は関係式 xyz=2(xy+yz+zx), x+y+z=a を満たす。
- (1) (x-2)(y-2)(z-2) を a の式で表せ。
- (2) x, y, zのうち少なくとも1つが2であるとする。このとき、aの値を求 めよ。また、 $x^3+v^3+z^3$ の値を求めよ。 〔11 岡山理科大〕
- **14** (1) 2次, 3次の展開の公式を利用して, $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$ を $x + \frac{1}{x}$ で表す。
 - **16** α , β が相異なる実数であるから $\alpha-\beta=0$
 - **17** (2) x, y, z のうち少なくとも 1 つが 2 であるとき (x-2)(y-2)(z-2)=0

内田碧 11-3 数学 問題

1次不等式

■基本問題■■							
		(23)	早百	BB	*	Ħ	

18 (1) 不等式 $\frac{3(x-1)}{2} \le 2(3x+1)$ を解け。

[16 東邦大]

(2) 1次不等式 0.3x-5≥1-1.2x の解を求めよ。

[15 北見工大]

ポイントチェック !

19 2つの不等式 -x<2(x+9), $\frac{3x-4}{6}<-2x+7$ を同時に満たす整数 x の [12 鶴見大] 値をすべて求めよ。

連立不等式の整数解 連立不等式の解は、それぞれの不等式の解の共通 ボイント 範囲。まず不等式を解き、その解のうち、整数であるものを考える。

(1) 不等式 |2x-1|<9 を解け。 2) 不等式 |2x+1|>9 を解け。

[11 千葉工大]

〔20 岡山理科大〕

絶対値を含む不等式 c>0 のとき、 ボイント 不等式 |x| < c の解は -c < x < c, 不等式 |x| > c の解は x < -c, c < x

*21 お菓子を子どもに分けたい。お菓子は、1人に7個ずつ分けると36個余り、 16個ずつ分けると最後の1人に不足が生ずるという。お菓子の個数を x 個, 子 どもの人数をy人とおくとx=7y+7 , $0 \le x-4$ (y-1)<16 である。 x. y はともに自然数であることに注意すると, (x, y)= $^{\flat}$ である。 「類 12 敬愛大]

1次不等式を利用する文章題 求めたいものを x, y などの文字でおき, ボイント 問題文の条件から不等式を作る。あとは不等式を解き, 問題に適してい るものを解とすればよい。

- ***22** (1) a, b は定数で a>0, b>0 とする。不等式 $ax \le -2x+3 \le bx+2$ の 解が $\frac{1}{10} \le x \le \frac{1}{5}$ であるとき, a, b の値を求めよ。
 - (2) a を実数の定数とする。

不等式 $5x+3 \ge x+a \cdots (1)$, $x-2 \ge 3x-a \cdots (2)$ について、① を満たす xのうち、最小の整数が2である α の値の範囲は γ < $\alpha \leq 1$ である。 さらに①、②を同時に満たすxのうち、整数が2だけである α の値の範囲 は ゥ < a < エ である。 〔20 昭和女子大〕

- (1) 不等式 |5x-41| < 2x+1 を満たす整数xの最大値と最小値を求めよ。
 - (2) 不等式 2|x-2|+|x-1|<3 を解け。

[13 甲南大]

24 A さんとBさん合わせて 52 本のボールペンを持っている。いま, A さん がBさんに自分が持っているボールペンのちょうど $\frac{1}{2}$ をあげてもまだAさん の方が多く、さらに3本あげるとBさんの方が多くなる。A さんが初めに持っ ていたボールペンの本数を求めよ。 [06 国士舘大]

k を実数の定数とする。2 つの不等式

をともに満たす実数xが存在するようなkの値の範囲を求めよ。

[12 金沢工大]

- **22** (1) $ax \le -2x+3$, $-2x+3 \le bx+2$ をそれぞれ解く。
 - (2) ② を満たす x のうち、最大の整数が 2 である場合を考える。
- 23 (2) 3つの場合に分けて考える。
- **25** まず不等式 |x-1| < 6, |x-k| < 2 をそれぞれ解く。 その解を数直線上に表して考えるとわかりやすい。

内田碧 11-1 数学 解答

- 1. 次の式を因数分解せよ。
 - (1) $(x^2 + x 5)(x^2 + x 7) + 1$
 - (2) $9b^2 + 3ab 2a 4$
 - (3) $a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 2abc$
 - (1) $(x^2+x-5)(x^2+x-7)+1=\{(x^2+x)-5\}\{(x^2+x)-7\}+1$ $=(x^2+x)^2-12(x^2+x)+36$ $=(x^2+x-6)^2$ $=\{(x+3)(x-2)\}^2$ $=(x+3)^2(x-2)^2$
 - (2) $9b^2 + 3ab 2a 4 = (3b 2)a + (3b + 2)(3b 2)$ =(3b-2)(a+(3b+2))=(a+3b+2)(3b-2)
 - (3) $a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 2abc$ $=(b+c)a^2+(b^2+2bc+c^2)a+b^2c+bc^2$ $=(b+c)a^2+(b+c)^2a+(b+c)bc$ $=(b+c)\{a^2+(b+c)a+bc\}$ =(b+c)(a+b)(a+c)=(a+b)(b+c)(c+a)
- 2. 次の に最も適する語句を $(\mathcal{P})\sim(\mathbf{I})$ から選べ。x, yは実数とする。
 - (1) x<1は x≤1 であるための</p>
 - (2) x < yは $x^4 < y^4$ であるための
 - (3) xy+1=x+y は x, y のうち少なくとも 1 つは 1 であるための
 - (4) $\triangle ABC$ において、 $\angle A < 90^\circ$ は、 $\triangle ABC$ が鋭角三角形であるための
 - (ア) 必要十分条件である
- (イ) 必要条件であるが十分条件ではない
- (\dot{D}) 十分条件であるが必要条件ではない (I) 必要条件でも十分条件でもない
- (1) $x < 1 \Longrightarrow x \le 1$ は明らかに真。 $x \le 1 \Longrightarrow x < 1$ は偽。 (反例) x = 1

したがって (ウ)

- (2) $x < y \Longrightarrow x^4 < y^4$ は偽。 (反例) x = -1, y = 0 $x^4 < y^4 \Longrightarrow x < y$ は偽。 (反例) x = 0, y = -1したがって (エ)
- (3) $xy+1=x+y \iff (x-1)(y-1)=0$ \iff x, y の うち少なくとも 1 つは 1 は真。

したがって (ア)

- (4) $\triangle ABC$ において、 $\angle A < 90^{\circ} \Longrightarrow \triangle ABC$ が鋭角三角形 は偽。 (反例) $\angle A = 30^{\circ} < 90^{\circ}$, $\angle B = 100^{\circ}$, $\angle C = 50^{\circ}$ $\triangle ABC$ が鋭角三角形 \Longrightarrow $\angle A < 90$ ° は真。 したがって (イ)
- 3. $a=\frac{1+\sqrt{5}}{2}$ のとき、次の式の値を求めよ。

- (2) $a^4 + a^3 + a^2 + a + 1$
- (1) $a = \frac{1+\sqrt{5}}{2}$ $\hbar = 6$ $2a-1=\sqrt{5}$
- 両辺を 2乗して $(2a-1)^2=5$
- よって $4a^2-4a-4=0$
- ゆえに $a^2-a-1=0$
- (2) (1) から $a^2 = a + 1$
 - $a^3 = a^2 a = (a+1)a = a^2 + a = (a+1) + a = 2a + 1$ $a^4 = a^3 a = (2a+1)a = 2a^2 + a = 2(a+1) + a = 3a + 2$
 - したがって $a^4 + a^3 + a^2 + a + 1$ =(3a+2)+(2a+1)+(a+1)+a+1 $=7a+5=7\cdot\frac{1+\sqrt{5}}{2}+5=\frac{17+7\sqrt{5}}{2}$
- 4. k を k>2 を満たす定数とする。このとき、x についての不等式 $5-x \le 4x < 2x + k$ の解 である。また、不等式 $5-x \le 4x < 2x + k$ を満たす整数 x がちょうど 5 つ存

在するような定数 k の値の範囲は

(5-x<4x)4x < 2x + k

よって *x*≥1 ······① $5-x \leq 4x$ から $-5x \leq -5$

4x < 2x + k から 2x < k

よって $x < \frac{k}{2}$ ……②

k>2 であるから、①、② の共通範囲を求めて $1 \le x < \frac{k}{2}$

また、これを満たす整数xがちょうど5つ存在するとき、その整数xは x=1, 2, 3, 4, 5

ゆえに $5 < \frac{k}{2} \le 6$

すなわち ¹10<k≤12

- 5. (1) 不等式 $a(x+1) > x + a^2$ を解け。ただし、a は定数とする。
 - (2) 不等式 ax < 4 2x < 2x の解が 1 < x < 4 であるとき、定数 a の値を求めよ。
 - (1) 与式から (a-1)x > a(a-1) ····· ①
 - [1] a-1>0 table a>1 table b
 - これを満たすxの値はない。
 - [3] a-1<0 $\Rightarrow x < a$

[a>1 obs x>a]a=1のとき 解はない よって |a<1 0 b b x< a

- (2) 4-2x<2x から -4x<-4よって x>1 ゆえに、解が1 < x < 4となるための条件は、ax < 4 - 2x ……① の解がx < 4とな ることである。
- ① $\begin{picture}(20,0) \put(0,0){\line(0,0){10}} \put(0$
- [1] a+2>0 +2

 $\frac{4}{a+2}=4$ よって

ゆえに 4=4(a+2)

よって a=-1

これはa > -2を満たす。

- [2] a+2=0 $\Rightarrow x \Rightarrow b \Rightarrow a = -2$ observed beta = 0 x < 4よって、解はすべての実数となり、条件は満たされない。
- [3] a+2<0 すなわち a<-2 のとき、② から $x>\frac{4}{a+2}$ このとき条件は満たされない。
- $[1]\sim[3]$ $\forall a \in -1$

以下の問いでは解決過程も採点対象である。 根拠や記述が不十分な場合は減点対象となる。

6. $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ のとき, $x + y = \sqrt[7]{2}$

 $x^2 + y^2 = \sqrt[3]{}$, $x^3 + y^3 = \sqrt[3]{}$, $x^4 + y^4 = \sqrt[3]{}$

$$(\mathcal{T}) \quad x + y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{(\sqrt{3} - \sqrt{2})^2 + (\sqrt{3} + \sqrt{2})^2}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}$$
$$= \frac{(3 - 2\sqrt{6} + 2) + (3 + 2\sqrt{6} + 2)}{3 - 2} = 10$$

- (1) $xy = \frac{\sqrt{3} \sqrt{2}}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} \sqrt{2}} = 1$
- ($\dot{\mathcal{D}}$) $x^2 + y^2 = (x + y)^2 2xy = 10^2 2 \cdot 1 = 98$
- (\pm) $x^3 + y^3 = (x + y)^3 3xy(x + y) = 10^3 3 \cdot 1 \cdot 10 = 970$
- 別解 $x^3 + y^3 = (x + y)(x^2 xy + y^2) = 10 \cdot (98 1) = 970$
- (†) $x^4 + y^4 = (x^2 + y^2)^2 2x^2y^2 = (x^2 + y^2)^2 2(xy)^2$
- (イ), (ウ) の結果から $x^4 + y^4 = 98^2 2 \cdot 1^2 = 9602$
- (\cancel{D}) $x^5 + y^5 = (x^2 + y^2)(x^3 + y^3) x^2y^3 x^3y^2$ $=(x^2+y^2)(x^3+y^3)-(x+y)(xy)^2$
- $(\mathcal{T}) \sim (\mathfrak{T})$ の結果から $x^5 + y^5 = 98 \cdot 970 10 \cdot 1^2 = 95050$
- 別解 $x^5 + y^5 = (x + y)(x^4 + y^4) xy^4 x^4y$ $=(x+y)(x^4+y^4)-xy(x^3+y^3)$
- (\mathcal{T}) , (\mathcal{T}) , (\mathcal{T}) , (\mathcal{T}) の結果から $x^5 + y^5 = 10 \cdot 9602 1 \cdot 970 = 95050$

内田碧 11-1 数学 解答

7. 不等式 $|x-1|+2|x-3| \le 11$ を解け。

(1) [1] x < 1 のとき、不等式は $-(x-1)-2(x-3) \le 11$

 $-\frac{4}{3} \leq x < 1 \quad \cdots \quad \bigcirc$ x < 1 との共通範囲は

[2] $1 \le x < 3$ のとき、不等式は $x-1-2(x-3) \le 11$ z > -6

 $1 \le x < 3$ との共通範囲は $1 \le x < 3$ ……②

[3] $3 \le x$ のとき、不等式は $x-1+2(x-3) \le 11$ よって *x*≤6

 $3 \le x$ との共通範囲は $3 \le x \le 6 \quad \cdots \quad 3$

求める解は、①~③ を合わせた範囲で $-\frac{4}{3} \le x \le 6$

(2) [1] x<7のとき,不等式は -(x-7)-(x-8)<3よって x>6 x < 7 との共通範囲は 6 < x < 7 ……① [2] $7 \le x < 8$ のとき、不等式は (x-7)-(x-8) < 3

よって、1 < 3 となり、常に成り立つから、[2] の場合の [2]不等式の解は $7 \le x < 8$ ②

[3] $8 \le x$ のとき、不等式は (x-7)+(x-8)<3よって *x*<9

 $8 \le x$ との共通範囲は $8 \le x < 9$ …… ③ 求める解は、① \sim ③ を合わせた範囲で 6 < x < 9

[1]

- 8. (1) a, b が有理数のとき, $a+b\sqrt{2}=0$ ならば a=b=0 であることを証明せよ。ただ し、 $\sqrt{2}$ は無理数である。
 - (2) 等式 $(2+3\sqrt{2})x+(1-5\sqrt{2})y=13$ を満たす有理数 x, y の値を求めよ。
 - (1) $a+b\sqrt{2}=0$ であって $b \ne 0$ である有理数 a, b がある, と仮定する。 $b \ne 0$ である有理数 b があるとすると, $a + b\sqrt{2} = 0$ から

$$\sqrt{2} = -\frac{a}{b}$$
 ····· ①

a, b は有理数であるから,① の右辺は有理数であるが,これは $\sqrt{2}$ が無理数である ことと矛盾する。

したがって 「a, b が有理数であるとき, $a+b\sqrt{2}=0$ ならば b=0」 $a+b\sqrt{2}=0$ であって b=0 のとき, a=0 であるから,

a, b が有理数のとき

 $a+b\sqrt{2}=0$ ならば a=b=0 である。

- (2) 与式を変形して $2x+y-13+(3x-5y)\sqrt{2}=0$
 - x, y が有理数のとき, 2x+y-13, 3x-5y も有理数であり, $\sqrt{2}$ は無理数であるか ら, (1) により 2x+y-13=0 ……①, 3x-5y=0 ……②
- ①, ② を連立して解くと x=5, y=3

場合分けの意味の違いについて

5(1)の「不等式 $a(x+1)>x+a^2$ を解け。」という問題は、定数 a の値によって、不等式 の解が異なる。定数aがどんな値なのかわからない以上は、すべてのケースを答える必

要がある。そのために、定数aによって場合分けをして、a=1のとき 解はない

(a>1 obs x>a)|a<1 $0 \ge \delta x < a$

と書いたものすべてがこの不等式の解となる。

5(2)の問題では、不等式 ax < 4 - 2x < 2x の解自体は、(1)と同様に定数 a の値により異な

$$\begin{cases} a > -2 \text{ obs} & x < \frac{4}{a+2} \end{cases}$$

り、
$$a=-2$$
 のとき すべての実数 となる。しかし、問題で問われているのはこの不 $a<-2$ のとき $x>\frac{4}{a+2}$

等式の解が 「1 < x < 4 であるとき、定数 a の値」であり、この不等式の解ではない。 条件をみたすaを調べる段階では、当然場合分けをしなければいけないが、最終的には

(a > -2 のとき a = -1条件をみたすaは何かということであり、 a=-2のとき 存在しない という解答は a < -2 のとき 存在しない

誤りであり、「a=-1」が問題に対する解答となる。

7 は、「不等式 $|x-1|+2|x-3| \le 11$ を解け」という問題である。不等式を解けというの は、不等式を満たすxの範囲(不等式の解)を求めよということである。今回は、絶対 値が含まれているためにこのままでは処理ができない。そこで、調べるxの範囲を一端 3つに分けて、絶対値を外して調べている。

絶対値の外した不等式をまずは解くが、その解がそのまま元の不等式の解(条件をみたす xの範囲)になるわけではない。各々のケースのように絶対値を外せるのはあくまでそ の範囲内のみの話であるので、出てきた不等式の解と、絶対値をそのように外せる x の 範囲の共通部分のみが、元の不等式の解となる。

x<1のとき $-\frac{4}{3} \le x<1$ $1 \le x < 3$ のとき $1 \le x < 3$ と解答するのも また、3つにわけて調べて出てきたものを $x \ge 3$ のとき $3 \le x \le 6$

意味を分かっていない。この3つの場合分けはあくまで絶対値を外す都合で、いきなり実 数全体を調査するのではなく、一端調査区間を限定して調べただけである。問題で問われ ているのは「結局 不等式を満たす x の範囲 (不等式の解) はどこなのか?」ということ であり、最終的にまとめなければならない。

背理法について

背理法は命題の結論の否定を成立すると仮定し、そこから矛盾を導くことで命題が真であ るということを証明する方法である。

8の問題で、圧倒的に多い誤答が「 $a \Rightarrow 0$ かつ $b \Rightarrow 0$ 」と仮定して背理法を実行しようと する答案である。このように仮定して矛盾が生じた際に背理法で導かれる結論は、「a 今回の解答のポイントは、まずは「b=0」であることを背理法を用いて「 $b \neq 0$ 」の 仮定から矛盾を導いて示した後に、 「a=0 を b=0 から導く」と 2 段階に分けて示すこ とにある。論理を考えず、何となくそれっぽいことを書いても証明では何の意味も為さな い。背理法では、結論を何にしているのかを強く意識すること。

前提条件の確認

定理や公式を用いる際には前提条件のチェックが必要不可欠である。特に、問題の中で 誘導があり前問の事実を使う場合には、出題者が最も注目しているポイントであり、他の 問題以上に意識して答案に起こさなければならない。8の問題では(1)の事実を使って(2)を 求めなさいということである。(1)で示した事実は「a, b が有理数のとき, $a+b\sqrt{2}=0$ ならば a=b=0 である」ということで、前提条件は「a, b が有理数」ということであ る。(2)において a, b に相当するのは「a=2x+y-13, b=3x-5y」であるから、言及 すべきは「2x+y-13, 3x-5yも有理数」である。しっかりと出題者と会話ができるよ うになってください。出題者が寂しくて泣いています。

内田碧 11-2 数学 解答

(2)
$$(与式) = 2x^2 + (3y+1)x$$
 $1 \longrightarrow -3 \longrightarrow -$
 $-(2y^2 - 7y + 3)$ $2 \longrightarrow -1 \longrightarrow -$
 $= 2x^2 + (3y+1)x$ $2 \longrightarrow 3 \longrightarrow -$
 $-(y-3)(2y-1)$
 $= (x+(2y-1)||2x-(y-3)|$
 $= (x+2y-1)(2x-y+3)$
 $1 \longrightarrow 2y-1 \longrightarrow 4y-2$
 $-(y-3) \longrightarrow -y+3$
 $2 \longrightarrow -(y-3)(2y-1)$ $3y+1$

(3)
$$(5\pi) = a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2$$

 $= (b - c)a^2 - (b^2 - c^2)a + (b^2c - bc^2)$
 $= (b - c)a^2 - (b + c)(b - c)a + bc(b - c)$
 $= (b - c)\{a^2 - (b + c)a + bc\}$
 $= (b - c)(a - b)(a - c)$
 $= -(a - b)(b - c)(c - a)$

(4)
$$(\not = \not x) = (x^4 - 2x^2 + 1) - 16x^2 = (x^2 - 1)^2 - (4x)^2$$

= $\{(x^2 - 1) + 4x\}\{(x^2 - 1) - 4x\}$
= $(x^2 + 4x - 1)(x^2 - 4x - 1)$

8 (1) (与式)=
$$(\sqrt{2}+\sqrt{3})^2-(\sqrt{5})^2=2\sqrt{6}$$

よって
$$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$$
$$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{(\sqrt{2}+\sqrt{3}+\sqrt{5})(\sqrt{2}+\sqrt{3}-\sqrt{5})}$$
$$=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}}$$
$$=\frac{\sqrt{6}(\sqrt{2}+\sqrt{3}-\sqrt{5})}{2\cdot 6}$$
$$=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$$

(2) (ア) (与式)=
$$\sqrt{28+2\sqrt{25\times3}} = \sqrt{25} + \sqrt{3}$$

= $5+\sqrt{3}$

(イ) (与式)=
$$\sqrt{\frac{54-2\sqrt{49\times5}}{2}}$$
= $\frac{\sqrt{49}-\sqrt{5}}{\sqrt{2}}=\frac{7-\sqrt{5}}{\sqrt{2}}$
= $\frac{7\sqrt{2}-\sqrt{10}}{2}$

(3)
$$\sqrt{a^2 - 2\sqrt{a^2 - 2a + 1}} = \sqrt{a^2 - 2\sqrt{(a - 1)^2}} = |a| - 2|a - 1|$$

- [1] a < 0 $\emptyset \ge \delta$ |a| - 2|a - 1| = (-a) - 2|-(a - 1)| = a - 2
- [2] $0 \le a < 1$ $\emptyset \ge b$ |a| - 2|a - 1| = a - 2[-(a - 1)] = 3a - 2
- [3] $1 \le a \text{ obs}$ |a|-2|a-1|=a-2(a-1)=-a+2

9
$$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$

$$= \{a+(b+c)| \{a^2-(b+c)a+b^2-bc+c^2\} \}$$

$$= a^3+\{(b+c)-(b+c)\}a^2$$

$$+\{-(b+c)^2+(b^2-bc+c^2)\}a$$

$$+(b+c)(b^2-bc+c^2)$$

$$= a^3-3bca+b^3+c^3=7a^3+b^3+c^3-3abc$$

$$\stackrel{?}{\sharp} \sim 8x^3+27y^3+18xy-1$$

$$= (2x)^3+(3y)^3+(-1)^3-3\cdot 2x\cdot 3y\cdot (-1)$$

$$\stackrel{?}{\sharp} \sim (7) \Rightarrow 6$$

$$8x^3+27y^3+18xy-1$$

$$= (2x+3y-1)\{(2x)^2+(3y)^2+(-1)^2$$

$$-2x\cdot 3y-3y\cdot (-1)-(-1)\cdot 2x\}$$

$$= (2x+3y-1)(4x^2+9y^2+1-6xy+3y+2x)$$

$$= (2x+3y-1)(4x^2-6xy+9y^2+2x+3y+1)$$

- 10) (1) $(4\pi) = (x+y)^2 2xy$ = $\left(\frac{5}{6}\right)^2 - 2 \cdot \frac{1}{6} = \frac{13}{36}$
- (2) $(5 \pm 3) = \frac{x^2 + y^2}{xy} = \frac{13}{36} \div \frac{1}{6} = \frac{13}{6}$ (3) $(5 \pm 3) = (x + y)^3 - 3x\sqrt{x + y}$
 - $= \left(\frac{5}{6}\right)^3 3 \cdot \frac{1}{6} \cdot \frac{5}{6} = \frac{35}{216}$ (与式) = $(x + y)(x^2 xy + y^2)$ = $(x + y)(x^2 + y^2) xy$ = $\frac{5}{6}\left(\frac{13}{36} \frac{1}{6}\right) = \frac{35}{216}$

1 1
$$x+y=\frac{4}{\sqrt{6}+\sqrt{2}}+\frac{4}{\sqrt{6}-\sqrt{2}}$$

=\frac{4(\sqrt{6}-\sqrt{2})+4(\sqrt{6}+\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}=\frac{8\sqrt{6}}{6-2}
=2\sqrt{6},

$$xy = \frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{4}{\sqrt{6} - \sqrt{2}} = \frac{16}{6 - 2} = 4$$

$$\downarrow \uparrow z \uparrow \dot{z} \circ \tau$$

$$x^{2} + xy + y^{2} = (x + y)^{2} - xy = (2\sqrt{6})^{2} - 4 = 720,$$

$$x^{3} + x^{2}y + xy^{2} + y^{3} = (x + y)^{3} - 2xy(x + y)$$

$$= (2\sqrt{6})^{3} - 2 \cdot 4 \cdot 2\sqrt{6}$$

$$= 732\sqrt{6}$$

- 1 2 1) $3^2 < 14 < 4^2 \pm 9$ $3 < \sqrt{14} < 4$
- (2) $\frac{1}{b} = \frac{1}{\sqrt{14} 3} = \frac{\sqrt{14} + 3}{(\sqrt{14} 3)(\sqrt{14} + 3)}$ $= \frac{\sqrt{14} + 3}{5}$ $3 < \sqrt{14} < 4 \pm 9 \quad 6 < \sqrt{14} + 3 < 7$

内田碧 11-2 数学 解答

よって
$$\frac{6}{5} < \frac{\sqrt{14} + 3}{5} < \frac{7}{5}$$
 $\frac{6}{5} = 1.2, \frac{7}{5} = 1.4$ であるから $c = 1$
ゆえに $d = \frac{\sqrt{14} + 3}{5} - c = \frac{\sqrt{14} - 2}{5}$

1 3
$$\frac{x+y}{3} = \frac{y+z}{6} = \frac{z+x}{7} = k$$
 とおくと、 $k \Rightarrow 0$ で $x+y=3k$ ①、 $y+z=6k$ ②。
 $(1+2) + 3 h \cdot 5 \cdot 2(x+y+z) = 16k$ よって $(x+y+z) = 8k \cdot 16k$ ④
④ -②、④ -③、④ -① から、それぞれ $(x=2k) \cdot y=k$ 、 $(z=5k) \cdot 16k$ よって $(x+y+z) = 8k \cdot 16k$...
 $(x+y+z) = 8k \cdot 16k$...④
 $(x+y+z) = 1$

$$\begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array}{ll} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \hspace{0.2cm} \end{array} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \end{array} \hspace{0.2cm} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \hspace{0.2cm} \begin{array}{ll} \end{array} \hspace{0.2cm} \hspace{0.2c$$

(2)
$$a+b=-1$$
 であるから
$$a^3+b^3=(a+b)^3-3ab(a+b)$$

$$=(-1)^3-3ab\cdot(-1)=-1+3ab$$

$$a^3+b^3=-19$$
 であるから $-1+3ab=-19$
よって $ab=-6$
ゆえに $a^2+b^2=(a+b)^2-2ab$

1 6
$$\alpha^2 + \sqrt{3} \beta = \sqrt{6}$$
① $\beta^2 + \sqrt{3} \alpha = \sqrt{6}$ ② ① -2 より $\alpha^2 - \beta^2 - \sqrt{3}(\alpha - \beta) = 0$ 整理すると $(\alpha - \beta)((\alpha + \beta) - \sqrt{3}) = 0$ $\alpha \neq \beta$ より、 $\alpha - \beta \neq 0$ であるから $\alpha + \beta - \sqrt{3} = 0$ したがって $\alpha + \beta = ^T\sqrt{3}$ ① $+2$ より $\alpha^2 + \beta^2 + \sqrt{3}(\alpha + \beta) = 2\sqrt{6}$ よって $(\alpha + \beta)^2 - 2\alpha\beta + \sqrt{3}(\alpha + \beta) = 2\sqrt{6}$ はたがって $\alpha\beta = ^43 - \sqrt{6}$ また $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$ $= \frac{(\sqrt{3})^2 - 2(3 - \sqrt{6})}{3 - \sqrt{6}} = \frac{2\sqrt{6} - 3}{3 - \sqrt{6}}$ $= \frac{(2\sqrt{6} - 3)(3 + \sqrt{6})}{(3 - \sqrt{6})(3 + \sqrt{6})}$ $= \frac{3 + 3\sqrt{6}}{9 - 6} = ^91 + \sqrt{6}$

また,このとき x+y+z=a=2 であるから

17 (1) (x-2)(y-2)(z-2)

内田碧 11-3 数学 解答

$$x^{3} + y^{3} + z^{3}$$

$$= (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx) + 3xyz$$

$$= 2(x^{2} + y^{2} + z^{2} - xy - yz - zx) + 3 \cdot 2(xy + yz + zx)$$

$$= 2(x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2zx)$$

$$= 2(x + y + z)^{2} = 2 \cdot 2^{2} = 8$$

18 (1) 両辺に 2 を掛けて $3(x-1) \le 4(3x+1)$ すなわち $3x-3 \le 12x+4$

よって
$$-9x \le 7$$
 ゆえに $x \ge -\frac{7}{9}$

- (2) 両辺に 10 を掛けて $3x-50 \ge 10-12x$ すなわち $15x \ge 60$ よって $x \ge 4$
- 19 -x < 2(x+9) から -x < 2x+18 よって -3x < 18 ゆえに x > -6 ……① $\frac{3x-4}{6} < -2x+7$ の両辺に 6 を掛けると 3x-4 < -12x+42

よって 15x < 46 ゆえに $x < \frac{46}{15}$ ②

- ① と② の共通範囲を求めると $-6 < x < \frac{46}{15}$ これを満た寸整数 x の値は -5, -4, -3, -2, -1, 0, 1, 2, 3
- 2.0 (1) |2x-1|<9から -9<2x-1<9 よって -8<2x<10 ゆえに -4<x<5
- (2) |2x+1| > 9 から 2x+1 < -9, 9 < 2x+1よって x < -5, 4 < x
- **21** 1人に7個ずつ分けると 36 個余るから x=7y+⁷36 ……①

また、1 人に 16 個ずつ分けると最後の 1 人に不足が生じるから $0 \le x - {}^{1}16(y-1) < 16$ これに x=7y+36 を代入すると

 $0 \le (7y+36) - 16(y-1) < 16$

よって $0 \le -9y + 52 < 16$ ゆえに $-52 \le -9y < -36$

したがって $4 < y \le \frac{52}{0}$

yは自然数であるから y=5このとき、①から $x=7\cdot5+36=71$ したがって $(x, y)={}^{9}(71, 5)$

2 2 1) $ax \le -2x + 3 \text{ h : } (a+2)x \le 3$ $a+2>0 \text{ h : } 6 \text{ $x \le \frac{3}{a+2}$ } \cdots \oplus 1$ $\pm \text{$h$: } -2x + 3 \le hx + 2 \text{ h : } 6 \text{ $1 \le (h+2)x$}$ b+2>0 から $\frac{1}{b+2} \le x$ ……②
不等式の解は、①、② の共通範囲であるから $\frac{1}{b+2} \le x \le \frac{3}{a+2}$ よって $\frac{1}{b+2} = \frac{1}{10}$, $\frac{3}{a+2} = \frac{1}{5}$ これを解いて a=13, b=8

(2) $5x+3 \ge x+a$ ① $\hbar \cdot \beta$ $x \ge \frac{a-3}{4}$ $x-2 \ge 3x-a$ ② $\hbar \cdot \beta$ $x \le \frac{a-2}{2}$

① を満たすxのうち、最小の整数が2であるaの範囲は $1 < \frac{a-3}{4} \le 2$

すなわち 7 7<a \leq ^11 \cdots 0 3 また、 2 8 を満たす $_{x}$ のうち、最大の整数が $_{2}$ 7 2 8 ある $_{3}$ 8 の範囲は $_{4}$ 9 \leq $\frac{a-2}{2}$ <3

すなわち $6 \le a < 8$ …… ④ ②、④ から、①、② を同時に満たすxのうち、整数が2だけであるaの値の範囲は $^{9}7 < a < ^{x}8$

23 (1) [1] 5x-41<0 すなわち $x<\frac{41}{5}$ のとき 不等式は -(5x-41)<2x+1 これを解くと $x>\frac{40}{7}$ $x<\frac{41}{5}$ との共通範囲は $\frac{40}{7}< x<\frac{41}{5}$ ……①

[2] $5x-41 \ge 0$ すなわち $x \ge \frac{41}{5}$ のとき
不等式は 5x-41 < 2x+1これを解くと x < 14 $x \ge \frac{41}{5}$ との共通範囲は $\frac{41}{5} \le x < 14$ ……②
不等式の解は、① と② を合わせた範囲で

 $\frac{40}{7} < x < 14$

これを満たす整数 x の最大値は 13、最小値は 6

(2) [1] x<1 のとき 不等式は -2(x-2)-(x-1)<3すなわち 3x>2 よって $x>\frac{2}{3}$ x<1 との共通範囲は $\frac{2}{7}< x<1$

[2] $1 \le x < 2$ のとき 不等式は -2(x-2) + (x-1) < 3すなわち x > 0 $1 \le x < 2$ との共通範囲は $1 \le x < 2$

内田碧 11-3 数学 解答

[3] 2≦xのとき 不等式は 2(x-2)+(x-1)<3 すなわち 3x<8

 $2 \le x$ との共通範囲は $2 \le x < \frac{8}{3}$

- $[1] \sim [3]$ から、求める解は $\frac{2}{3} < x < \frac{8}{3}$
- **24** Aさんが初めに持っていたボールペンの本数をx本とすると、Bさんが初めに持っていたボールペンの本数は (52-x)本条件から

$$\begin{cases} x - \frac{1}{3}x > (52 - x) + \frac{1}{3}x & \cdots \\ x - \frac{1}{3}x - 3 < (52 - x) + \frac{1}{3}x + 3 & \cdots \end{cases}$$

- ③ と ④ の共通範囲は $39 < x < \frac{87}{2}$

すなわち 39<x<43.5

初めに A さんが B さんにあげるボールペンの本数 $\frac{x}{2}$ は整数であるから、x は 3 の倍数である。

100 m = 42

したがって、42本。

25 |x-1| < 6 the -6 < x - 1 < 6

|x-k| < 2 bis -2 < x-k < 2x > x < k+2

与えられた連立不等式を満たす実数 x が存在するための条件は -5 < k+2 かつ k-2 < 7

2 6 (1) $U=\{1, 3, 5, 8, 10, 13, 17\}$, $A=\{1, 5, 8, 10)$ から $\overline{A}=\{3, 13, 17\}$ これと $B=\{8, 10, 17\}$ から

 $\overline{A} \cup B = \{3, 8, 10, 13, 17\}$

(2) 逆: $\lceil x > 0$ または y > 0 ならば x + y > 0」 これは偽である。

(反例) x=1, y=-2

対偶: $\lceil x \le 0 \text{ かo } y \le 0 \text{ ならば } x + y \le 0 \rfloor$ これは裏である。

- **2 7** $A=\{1, 3, 5, 7, 9\}, B=\{3, 6, 9, 12\}, C=\{2, 3, 5, 7\}$
- (1) $A \cap C = \{3, 5, 7\}$
- (2) $B \cup C = \{2, 3, 5, 6, 7, 9, 12\}$ であるから $A \cap (B \cup C) = \{3, 5, 7, 9\}$
- (3) $A \cup B \cup C = \{1, 2, 3, 5, 6, 7, 9, 12\}$ であるから $\overline{A \cup B \cup C} = \{4, 8, 10, 11\}$
- (4) $A \cup C = \{1, 2, 3, 5, 7, 9\}$ であるから $\overline{A \cup C} = \{4, 6, 8, 10, 11, 12\}$ よって $B \cap (\overline{A \cup C}) = \{6, 12\}$
- **28** (1) 「 $x=3 \implies x^2=9$ 」は真である。 「 $x^2=9 \implies x=3$ 」は偽である。 (反例) x=-3 よって, x=3 であることは, $x^2=9$ であるための十分条件ではあるが, 必要条件ではない。 (${}^{7}(b)$)
 - (2) 「 $ab=0 \implies a=0$ かつ b=0」は偽である。 (反例) a=0, b=1「a=0 かつ $b=0 \implies ab=0$ 」は真である。 よって、ab=0 であることは、a=0 かつ b=0であるための必要条件ではあるが、十分条件で はない。 ($^{1}(a)$)
- (3) a, b は実数であるから $a^2+b^2-2a-2b+2=0$ $\iff (a-1)^2+(b-1)^2=0$ $\iff a-1=0, b-1=0$ $\iff a=1, b=1$

ゆえに、 $a^2+b^2-2a-2b+2=0$ であることは、a=b=1 であるための必要十分条件である。 $\binom{9}{(\mathbf{c})}$

- 29 (1) 命題 Pの対偶は、次の命題である。 「a, b, cがすべて奇数ならば、 a²+b²+c²は奇数である」
- (2) a, b, c がすべて奇数ならば, a=2p+1, b=2q+1, c=2r+1 (p, q, r は整数) と表される。

 $\begin{array}{l} \mbox{$\sharp$} > \mbox{$\tau$} & a^2 + b^2 + c^2 \\ = (2p+1)^2 + (2q+1)^2 + (2r+1)^2 \\ = 4p^2 + 4p + 1 + 4q^2 + 4q + 1 + 4r^2 + 4r + 1 \\ = 2(2p^2 + 2p + 2q^2 + 2q + 2r^2 + 2r + 1) + 1 \end{array}$

 $2p^2+2p+2q^2+2q+2r^2+2r+1$ は整数であるから、 $a^2+b^2+c^2$ は奇数である。

したがって、対偶が真であるから、命題Pも真である。