Introdução à Computação Gráfica

Uéliton Freitas

Universidade Católica Don Bosco - UCDB freitas.ueliton@gmail.com

23 de agosto de 2014

Sumário

- Introdução
- 2 Notações
- 3 Conjuntos
 - Notações
 - Intervalos
- 4 Funções
 - Notação de uma Função
 - Funções Injetoras
 - Funções Sobrejetoras
 - Funções Bijetoras
 - Função Inversa

Introdução

O que será revisto?

- Notações dos elementos.
- Conjuntos.
- Funções.

Notações Matemáticas Convencionais

• A maioria das variáveis estarão em itálico: x,y.

- A maioria das variáveis estarão em itálico: x,y.
- Vetores estarão em negrito e em letras romanas: u.

- A maioria das variáveis estarão em itálico: x,y.
- Vetores estarão em negrito e em letras romanas: u.
- Matrizes estarão em letras romanas, negrito e em caixa alta: A.

- A maioria das variáveis estarão em *itálico*: x,y.
- Vetores estarão em negrito e em letras romanas: u.
- Matrizes estarão em letras romanas, negrito e em caixa alta: A.
- Algumas letras são utilizadas para denotar alguns conjuntos como:
 - R: Números Reais.
 - R+: Números Reais Positivos.
 - \mathbb{R}_0^+ : Números Reais **não** negativos.

Conjuntos

Notações Matemáticas Convencionais

• Conjuntos são denotados por letras maiúsculas: B.

Conjuntos

- Conjuntos são denotados por letras maiúsculas: B.
- \bullet O produto cartesiano de dos conjuntos B \times C é denotado por:
 - $B \times C = \{(b, c) : b \in B, c \in C\}$
 - Conjuntos de todos os pares ordenados (b, c) tal que $b \in B$ e $c \in C$.

- Conjuntos são denotados por letras maiúsculas: B.
- \bullet O produto cartesiano de dos conjuntos B \times C é denotado por:
 - $B \times C = \{(b, c) : b \in B, c \in C\}$
 - Conjuntos de todos os pares ordenados (b, c) tal que $b \in B$ e $c \in C$.
- O produto de $\mathbb{R} \times \mathbb{R}$ é denotado por \mathbb{R}^2 .

Conjuntos

- Conjuntos são denotados por letras maiúsculas: B.
- \bullet O produto cartesiano de dos conjuntos B \times C é denotado por:
 - $B \times C = \{(b, c) : b \in B, c \in C\}$
 - Conjuntos de todos os pares ordenados (b, c) tal que $b \in B$ e $c \in C$.
- O produto de $\mathbb{R} \times \mathbb{R}$ é denotado por \mathbb{R}^2 .
- Produtos de alta ordem de $\mathbb R$ são denotados por $\mathbb R^2, \mathbb R^3, \mathbb R^4, ...$

Intervalos

- O intervalo fechado $[a, b] \in \mathbb{R}$ é o conjunto de todos os números reais entre a e b incluindo os mesmos.
 - $[a, b] = \{x : a \le x \le b\}$

Intervalos

- O intervalo fechado $[a, b] \in \mathbb{R}$ é o conjunto de todos os números reais entre a e b incluindo os mesmos.
 - $[a, b] = \{x : a \le x \le b\}$
- O intervalo semi aberto $(a, b], [a, b) \in \mathbb{R}$ é o conjunto de todos os números reais entre a e b, que **podem** ou **não** incluir os mesmos.
 - $(a, b] = \{x : a < x \le b\}$
 - $[a, b) = \{x : a \le x < b\}$

Intervalos

- O intervalo fechado $[a,b] \in \mathbb{R}$ é o conjunto de todos os números reais entre a e b incluindo os mesmos.
 - $[a, b] = \{x : a \le x \le b\}$
- O intervalo semi aberto $(a, b], [a, b) \in \mathbb{R}$ é o conjunto de todos os números reais entre a e b, que **podem** ou **não** incluir os mesmos.
 - $(a, b] = \{x : a < x \le b\}$
 - $[a,b) = \{x : a \le x < b\}$
- O intervalo aberto $(a, b) \in \mathbb{R}$ é o conjunto de todos os números reais entre a e b, que **não** incluem os mesmos.
 - $(a, b) = \{x : a < x < b\}$

- Outras convenções de intervalos:
 - Intervalo de a(inclusive) até mais infinito:

$$[a,\infty)=\{x:a\leq\infty\}$$

Intervalos

Conjuntos

Notações Matemáticas Convencionais

- Outras convenções de intervalos:
 - Intervalo de a(inclusive) até mais infinito:

$$[a,\infty)=\{x:a\leq\infty\}$$

• Intervalo de $-\infty$ até b(inclusive):

$$(-\infty, b] = \{x : -\infty \le b\}$$

Funções

- Uma função f é denotada da seguinte forma:
 - $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$

Funções

- Uma função f é denotada da seguinte forma:
 - $\bullet \ f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$
- O nome da função é f.

Funções

- Uma função f é denotada da seguinte forma:
 - $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$
- O nome da função é f.
- O elemento do lado esquerdo da seta(→) é denominado
 Domínio.

Funções

- Uma função f é denotada da seguinte forma:
 - $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$
- O nome da função é f.
- O elemento do lado esquerdo da seta(→) é denominado
 Domínio.
- O elemento do lado direito da seta(→) é denominado
 Imagem ou Codomínio.

Funções

Funções Injetoras

- Seja a função $g: A \rightarrow B$.
- Dizemos que uma função g é **injetora** se $\forall a_1, a_2 \in A, g(a_1) \neq g(a_2) \in B$.

Funções Injetoras

Funções

Funções Injetoras

• Dizemos que uma função g é **injetora** se $\forall x_1, x_2 \in A, g(x_1) \neq g(x_2) \in B$.

Exemplo de uma Função Injetora

• Seja a função: $g: \mathbb{R} \to \mathbb{R}_0^+: g(x) = x^2$

Funções Sobrejetoras

Funções

Funções Sobrejetoras

- Seja a função $f: A \rightarrow B$.
- Dizemos que uma função f é **sobrejetora** se, e somete se: $\forall b \in B, \exists a \in A : b = f(a).$

Funções

Funções Sobrejetora

• Dizemos que uma função f é **sobrejetora** se, e somete se: $\forall y \in B, \exists x \in A : y = f(x).$

Exemplo de uma Função Sobrejetora

• Seja a função: $f: \mathbb{R} \to \mathbb{R}: f(x) = x^3$

Funções

Funções Bijetoras

- Seja a função $h: A \rightarrow B$.
- h é bijetora se é injetora e sobrejetora.

Funções Bijetoras

Funções

Funções Bijetoras

- Seja a função $h: A \rightarrow B$.
- h é bijetora se é injetora e sobrejetora.

Exemplo de uma Função Bijetora

• Seja a função: $h: \mathbb{R} \to \mathbb{R}: h(x) = 2x$

Função Inversa

Funções

Funções Inversas

- Seja a função $h: A \rightarrow B$.
- Definimos como função inversa de h, a função $h^{-1}: B \to A$ tal que: $h \circ h^{-1} = id_x$ e $h^{-1} \circ h = id_y$.
- $h(h^{-1}(x)) = x e h^{-1}(h(x)) = y$

Função Inversa

Funções

Funções Inversas

- Seja a função $h: A \rightarrow B$.
- Definimos como função inversa de h, a função $h^{-1}: B \to A$ tal que: $h \circ h^{-1} = id_x$ e $h^{-1} \circ h = id_y$ tal que $h(h^{-1}(x)) = x$ e $h^{-1}(h(x)) = y$

Exemplo de uma Função Inversa

• Seja a função: $h: \mathbb{R} \to \mathbb{R}: h(x) = 2x$

Funções

Exemplo de uma Função Inversa

• Seja a função: $h: \mathbb{R} \to \mathbb{R}: h(x) = 2x$

$$h(x) = 2x \tag{1}$$

$$h^{-1}(x) = \frac{y}{2} \tag{2}$$

$$h(h^{-1}(x)) = 2(\frac{y}{2}) = y$$
 (3)

$$h^{-1}(h(x)) = \frac{2x}{2} = x \tag{4}$$