Building distributed machine learning pipeline

Vojtěch Juránek

JBoss - a division by Red Hat

27. 1. 2017, DEVCONF.CZ, Brno

Data today

Source: http://www.couchbase.com/nosql-resources/what-is-no-sql

Dealing with unstructured data

 There are classes of problems where simple (e.g. linear) models work fine, but there are also classes there liner models fail.

Deep learning

Deep learning

Source: http://www.kdnuggets.com/2016/10/deep-learning-key-terms-explained.html

- Pressure to react/process data immediately as it arrives, provide user immediate feedback.
- Big Data → Fast Data

- Pressure to react/process data immediately as it arrives, provide user immediate feedback.
- Big Data → Fast Data

- Pressure to react/process data immediately as it arrives, provide user immediate feedback.
- Big Data → Fast Data

- Process data once it arrives (data/event streaming).
- Do the data analysis with frameworks which keep the data in memory during processing.
- If possible, keep data in memory during whole application stack.
- More in my DevConf 2016 talk (slides).

- Pressure to react/process data immediately as it arrives, provide user immediate feedback.
- Big Data → Fast Data

- Process data once it arrives (data/event streaming).
- Do the data analysis with frameworks which keep the data in memory during processing.
- If possible, keep data in memory during whole application stack.
- More in my DevConf 2016 talk (slides).

- Pressure to react/process data immediately as it arrives, provide user immediate feedback.
- Big Data → Fast Data

- Process data once it arrives (data/event streaming).
- Do the data analysis with frameworks which keep the data in memory during processing.
- If possible, keep data in memory during whole application stack.
- More in my DevConf 2016 talk (slides).

- Pressure to react/process data immediately as it arrives, provide user immediate feedback.
- Big Data → Fast Data

- Process data once it arrives (data/event streaming).
- Do the data analysis with frameworks which keep the data in memory during processing.
- If possible, keep data in memory during whole application stack.
- More in my DevConf 2016 talk (slides).

5/22

What we have so far?

What we have so far?

Problem

What we have so far?

Problem

- Data which requires (complicated) non-liner model to sort out.
- We'd like to process and pass incoming data through whole application stack immediately.

Deep NN/learning frameworks

- There are many . . .
- ... Caffe, CNTK, Deeplearning4j, TensorFlow, ...
- Brief comparison on Wikipedia:

```
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
```

Deep NN/learning frameworks

- There are many ...
- ... Caffe, CNTK, Deeplearning4j, TensorFlow, ...

Deep NN/learning frameworks

- There are many . . .
- ... Caffe, CNTK, Deeplearning4j, TensorFlow, ...
- Brief comparison on Wikipedia:

```
\verb|https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software|\\
```


- Open source software library for machine learning developed by Google Brain team, white paper: arXiv:1603.04467
- Google's second generation machine learning system (first one was DistBelief), open sourced more then year ago (Nov. 2015).
- Used by Google speech recognition, Google photos and other Google products.
- Used also by many other projects, e.g. Mozilla DeepSpeech project (there's a talk by Tilman Kamp about this project here at DevConf on Sunday)

9/22

- Open source software library for machine learning developed by Google Brain team, white paper: arXiv:1603.04467
- Google's second generation machine learning system (first one was DistBelief), open sourced more then year ago (Nov. 2015).
- Used by Google speech recognition, Google photos and other Google products.
- Used also by many other projects, e.g. Mozilla DeepSpeech project (there's a talk by Tilman Kamp about this project here at DevConf on Sunday)

- Open source software library for machine learning developed by Google Brain team, white paper: arXiv:1603.04467
- Google's second generation machine learning system (first one was DistBelief), open sourced more then year ago (Nov. 2015).
- Used by Google speech recognition, Google photos and other Google products.
- Used also by many other projects, e.g. Mozilla DeepSpeech project (there's a talk by Tilman Kamp about this project here at DevConf on Sunday)

- Open source software library for machine learning developed by Google Brain team, white paper: arXiv:1603.04467
- Google's second generation machine learning system (first one was DistBelief), open sourced more then year ago (Nov. 2015).
- Used by Google speech recognition, Google photos and other Google products.
- Used also by many other projects, e.g. Mozilla DeepSpeech project (there's a talk by Tilman Kamp about this project here at DevConf on Sunday)

- Graph represents TF computation.
- Graph nodes act as mathematical operations
- Graph edges represent matrices (tensors)
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.

- Graph represents TF computation.
- Graph nodes act as mathematical operations.
- Graph edges represent matrices (tensors)
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.

- Graph represents TF computation.
- Graph nodes act as mathematical operations.
- Graph edges represent matrices (tensors).
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.

- Graph represents TF computation.
- Graph nodes act as mathematical operations.
- Graph edges represent matrices (tensors).
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.

- Graph represents TF computation.
- Graph nodes act as mathematical operations.
- Graph edges represent matrices (tensors).
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.

- Graph represents TF computation.
- Graph nodes act as mathematical operations.
- Graph edges represent matrices (tensors).
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.

- Graph represents TF computation.
- Graph nodes act as mathematical operations.
- Graph edges represent matrices (tensors).
- Session represents a client accessing particular TF runtime.
- Variable is a variable with pre-defined value (pre-defined parameter).
- Placeholder is a variable placeholder and its value will be injected into the session.
- Checkpoint use for storing variable/trained model/etc.


```
1 import tensorflow as tf
3|b = tf.Variable(tf.zeros([100]))
4 W = tf.Variable(tf.random_uniform \
   ([784,100],-1,1))
6 x = tf.placeholder(name="x")
7 \text{ relu} = \text{tf.nn.relu}(\text{tf.matmul}(W, x) + b)
8 \mid C = [\ldots]
10 \mid s = tf.Session()
in for step in xrange (0, 10):
    x_{in} = [...] #construct 100-D input array
12
   result = s.run(C, feed_dict={x: x_in})
13
   print step, result
14
```


Brief list of some others TF features

- Storing graphs and checkpoints into language neutral files (protobuf format).
- Supports computation on CPU as well as on GPU, optionally supports CUDA.

```
with tf.Session() as sess:
with tf.device("/gpu:1"):
```

Can be run across the cluster, uses grpc for communication

Brief list of some others TF features

- Storing graphs and checkpoints into language neutral files (protobuf format).
- Supports computation on CPU as well as on GPU, optionally supports CUDA.

```
with tf.Session() as sess:
with tf.device("/gpu:1"):
```

Can be run across the cluster, uses grpc for communication

Brief list of some others TF features

- Storing graphs and checkpoints into language neutral files (protobuf format).
- Supports computation on CPU as well as on GPU, optionally supports CUDA.

```
with tf.Session() as sess:
with tf.device("/gpu:1"):
```

Can be run across the cluster, uses grpc for communication

```
vith tf.device("/job:ps/task:0"):
   weights_1 = tf.Variable(...)
2
   biases 1 = tf.Variable(...)
3
  [\ldots]
5 with tf.device("/job:worker/task:7"):
    layer_1 = tf.nn.relu(tf.matmul(input, weights_1) +
6
       biases_1)
   logits = tf.nn.relu(tf.matmul(layer_1, weights_2) +
7
       biases_2)
 [...]
9 with tf.Session("grpc://worker7.example.com:2222") as sess:
    sess.run(train_op)
10
```

TensorFlow integration with Infinispan/Java

- Typically you create the model in Python and run it in C++ or Java app.
- TensorFlow Java API support still TBD, see TF issue #5and issue #3
- C++ API via JNI can be used as a workaround for Java.
- You can use some existing library, e.g. javacpp-presets.

```
| GraphDef graph = new GraphDef();
2 ReadBinaryProto(Env.Default(), modelPath, graph);
3 SessionOptions options = new SessionOptions();
4 this.session = new Session(options);
5 Status status = session.Create(graph);
6 [...]
7 Tensor img = new Tensor(DT_FLOAT, new TensorShape(1, image.
     length));
8|FloatBuffer imgBuff = img.createBuffer();
9 imgBuff.put (image);
10 [ . . . ]
| TensorVector outputs = new TensorVector();
12 Status status = session.Run(new StringTensorPairVector(new
     String[] { "images" }, new Tensor[] { img }),
softmax_linear/logits"), outputs);
```

In-memory data grid: Infinispan

http://infinispan.org/

- Data grid platform, written in Java
- In-memory No-SQL key-value data store, (optionally) schema-less
- Distributed cache offers massive memory
- Elastic and scalable can run on hundreds of nodes
- Highly available no SPOF, resilient to node failures
- Transactional
- Supports indexing and searching
- Many other features

Infinispan eviction and cache stores

Eviction: removing entries from the cache.

Cache store: a way how to store cache content in some external (persistent) storage.

There are many, JDBC, JPA, clouds, LevelDB, Cassandra . . . and also **Ceph** cache store.

ki Loader

Application

cache

Ceph

http://ceph.com/

- Distributed object storage.
- Provides interfaces to object, block and file system storage in unified data cluster.
- Scalable to the exabyte level.
- Highly available no SPOF, resilient to node failures.
- Open source.

Ceph architecture and Infinispan cache store

- rados is distributed object store
- Infinispan cache store accesses rados directly via librados (using Java JNI client).

Ceph cache store configuration:

(details on https://github.com/vjuranek/infinispan-cachestore-ceph).

```
<
```

Sources available on https://github.com/vjuranek/tf-ispn-demo

NN "Hello world" - MNIST data sample

- Recognition of hand written digits.
- Besides simplicity, TF has very detailed tutorial for MNIST (for beginners as well as for experts)

Sources available on https://github.com/vjuranek/tf-ispn-demo

NN "Hello world" - MNIST data sample

- Recognition of hand written digits.
- Besides simplicity, TF has very detailed tutorial for MNIST (for beginners as well as for experts)

Sources available on https://github.com/vjuranek/tf-ispn-demo

NN "Hello world" - MNIST data sample

- Recognition of hand written digits.
- Besides simplicity, TF has very detailed tutorial for MNIST (for beginners as well as for experts)

● C++ 30.6% ■ Java 28.9% ■ Python 24.2% ■ QML 8.5% ■ JavaScript 4.2% ■ HTML 2.1% ■ QMake 1.5%

Summary

- Building pipeline for complex data processing in real time can be quite easy if you use the right tools.
- TensorFlow is very powerful machine learning framework.
- Infinispan is real middleware which can glue together various pieces of your application stack and server as its backbone.

Summary

- Building pipeline for complex data processing in real time can be quite easy if you use the right tools.
- TensorFlow is very powerful machine learning framework.
- Infinispan is real middleware which can glue together various pieces of your application stack and server as its backbone.

Summary

- Building pipeline for complex data processing in real time can be quite easy if you use the right tools.
- TensorFlow is very powerful machine learning framework.
- Infinispan is real middleware which can glue together various pieces of your application stack and server as its backbone.

Question?

SIMPLE ANSWERS

TO THE QUESTIONS THAT GET ASKED ABOUT EVERY NEW TECHNOLOGY:

WILL MAKE US ALL GENIUSES?	NO
WILL MAKE US ALL MORONS?	NO
WILL DESTROY WHOLE INDUSTRIES?	YES
WILL MAKE US MORE EMPATHETIC?	NO
WILL MAKE US LESS CARING?	NO
WILL TEENS USE FOR SEX?	YES
WERE THEY GOING TO HAVE SEX ANYWAY?	YES
WILL DESTROY MUSIC?	NO
WILL DESTROY ART?	NO
BUT CAN'T WE GO BACK TO A TIME WHEN-	NO
WILL BRING ABOUT WORLD PEACE?	NO
WILL CAUSE WIDESPREAD ALIENATION BY CREATING A WORLD OF EMPTY EXPERIENCES?	WE WERE ALREADY ALIENATED

http://infinispan.org/

Thank you for your attention!