$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

OMITTED FROM SUMMARY TABLE

This entry was previously called T_0 .

$f_2(2150)$ MASS

f₂(2150) MASS, COMBINED MODES (MeV)

VALUE (MeV) TECN COMMENT

2157±12 OUR AVERAGE Includes data from the 2 datablocks that follow this one.

• • We do not use the following data for averages, fits, limits, etc. • •

¹ UMAN 06 E835 5.2 $\overline{p}p \rightarrow \eta \eta \pi^0$ 2170 ± 6 80k

¹ Statistical error only.

$\eta\eta$ MODE

TECN COMMENT DOCUMENT ID

The data in this block is included in the average printed for a previous datablock.

2157±12 OUR AVERAGE

2151 ± 16	BARBERIS	00E		450 $pp \rightarrow p_f \eta \eta p_s$
2175 ± 20	PROKOSHKIN	95 D	GAM4	$300 \ \pi^- \ \text{N} \rightarrow \ \pi^- \ \text{N} \ 2\eta$
				450 $pp \rightarrow pp2\eta$
2120 ± 2E	CINICOVCKI	0.4	$C \wedge V \wedge A$	4E0 nn . nn2m

SINGOVSKI 94 GAM4 450 $pp \rightarrow pp2\eta$ • We do not use the following data for averages, fits, limits, etc.

² ABELE 2140 ± 30 99B CBAR

³ ARMSTRONG 93C E760 $\overline{p}p \rightarrow \pi^0 \eta \eta \rightarrow 6\gamma$ 2104 ± 20

$\eta\pi\pi$ MODE

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $2135 \pm 20 \pm 45$

⁴ ADOMEIT

96 CBAR 0 1.94 $\overline{p}p \rightarrow \eta 3\pi^0$

Created: 5/30/2017 17:21

$\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
~ 2090	⁵ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
~ 2120	⁶ OAKDEN	94	RVUE	0.36–1.55 $\overline{p}p \rightarrow \pi\pi$
~ 2170	⁷ MARTIN	80 B	RVUE	
~ 2150	⁷ MARTIN	80 C	RVUE	
~ 2150	⁸ DULUDE	78 B	OSPK	$1-2 \overline{p} p \rightarrow \pi^0 \pi^0$

 $^{^2}$ Spin not determined. 3 No J^{PC} determination.

⁴ ANISOVICH 00E recommends to withdraw ADOMEIT 96 that assumed a single $J^P =$ 2⁺ resonance.

S-CHANNEL $\overline{p}p$, $\overline{N}N$ or $\overline{K}K$

VALUE (MeV)	DOCUMENT ID	TECN CHG	COMMENT
ullet $ullet$ We do not use	the following data for average	s, fits, limits, e	tc. • • •
$2139^{+}_{-}\stackrel{8}{9}$	⁹ EVANGELIS 97	SPEC	0.6-2.4 $\overline{p}p \rightarrow K_S^0 K_S^0$
~ 2190	⁹ CUTTS 78E	CNTR	$0.97-3 \ \overline{p} p \rightarrow \overline{N} N$
2155 ± 15	9,10 COUPLAND 77	CNTR 0	$0.7-2.4 \overline{p}p \rightarrow \overline{p}p$
$2193\pm~2$	^{9,11} ALSPECTOR 73	CNTR	$\overline{p}p$ S channel

⁹ Isospins 0 and 1 not separated.

$K\overline{K}$ MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	g data for avera	ges, f	its, limit	s, etc. • • •
2200 ± 13	VLADIMIRSK	.06	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
2150 ± 20	ABLIKIM	04E	BES2	$J/\psi \rightarrow \omega K^+ K^-$
2130 ± 35	BARBERIS	99	OMEG	$450 pp \rightarrow p_S p_f K^+ K^-$

f₂(2150) WIDTH

f₂(2150) WIDTH, COMBINED MODES (MeV)

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **152±30 OUR AVERAGE** Includes data from the 2 datablocks that follow this one. Error

152±30 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 1.4. See the ideogram below.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$182\pm11$$
 80k 12 UMAN 06 E835 5.2 \overline{p} $p
ightarrow ~\eta \eta \pi^0$

Created: 5/30/2017 17:21

⁵ OAKDEN 94 makes an amplitude analysis of LEAR data on $\overline{p}p \to \pi\pi$ using a method based on Barrelet zeros. This is solution A. The amplitude analysis of HASAN 94 includes earlier data as well, and assume that the data can be parametrized in terms of towers of nearly degenerate resonances on the leading Regge trajectory. See also KLOET 96 and MARTIN 97 who make related analyses.

⁶ From solution B of amplitude analysis of data on $\overline{p}p \rightarrow \pi\pi$.

 $^{^7}I(J^P)=0$ (2+) from simultaneous analysis of $p\overline{p} \to \pi^-\pi^+$ and $\pi^0\pi^0$.

⁸IG(JP) = 0+(2+) from partial-wave amplitude analysis.

 $[\]frac{10}{11}$ From a fit to the total elastic cross section.

 $^{^{11}}$ Referred to as T or T region by ALSPECTOR 73.

 $^{^{12}\,\}mathrm{Statistical}$ error only.

f₂(2150) WIDTH, COMBINED MODES (MeV)

$\eta\eta$ MODE

VALUE (MeV) DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

152±30 OUR AVERAGE	Error includes scale	factor of 1.4.	See the ideogram below.
$280\!\pm\!70$	BARBERIS	00E	450 $pp \rightarrow p_f \eta \eta p_S$
150 ± 35	PROKOSHK	IN 95D GAM4	$300 \pi^- N \rightarrow \pi^- N2n$

450 $pp \rightarrow pp2\eta$ SINGOVSKI 130 ± 30 94

GAM4 450 $pp \rightarrow pp2\eta$ • • • We do not use the following data for averages, fits, limits, etc. • • •

¹³ ABELE 310 ± 50 99B CBAR

 14 ARMSTRONG 93C E760 $\overline{p}p
ightarrow ~\pi^0 \eta \eta
ightarrow ~6 \gamma$ 203 ± 10

Created: 5/30/2017 17:21

 $^{^{13}\,\}mathrm{Spin}$ not determined. $^{14}\,\mathrm{No}~J^{PC}$ determination.

 $f_2(2150)$ WIDTH, $\eta\eta$ MODE (MeV)

$\eta\pi\pi$ MODE

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT

The data in this block is included in the average printed for a previous datablock.

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $250 \pm 25 \pm 45$

 $^{15}\,\mathrm{ADOMEIT}$

96 CBAR 0

1.94 $\overline{p}p \rightarrow \eta 3\pi^0$

Created: 5/30/2017 17:21

$\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT II)	TECN	COMMENT
250 OUR ESTIMATE				
• • • We do not use the following	lowing data for averag	es, fits,	limits,	etc. • • •
~ 70	¹⁶ OAKDEN	94	RVUE	0.36 – $1.55 \ \overline{p} p \rightarrow \pi \pi$
~ 250	¹⁷ MARTIN	80 B	RVUE	
~ 250	¹⁷ MARTIN	80 C	RVUE	
~ 250	¹⁸ DULUDE	78 B	OSPK	$1-2 \overline{p} p \rightarrow \pi^0 \pi^0$
16 See however KLOFT 06	who fit $\pi^{+}\pi^{-}$ only	and fin	d wayo	t = t + t + t + t + t + t + t + t + t +

See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

 $^{^{15}}$ ANISOVICH 00E recommends to withdraw ADOMEIT 96 that assumed a single $J^P=$ 2⁺ resonance.

 $^{^{17}}I(J^P)=0(2^+)$ from simultaneous analysis of $p\overline{p}\to\pi^-\pi^+$ and $\pi^0\pi^0$. $^{18}I^G(J^P)=0^+(2^+)$ from partial-wave amplitude analysis.

S-CHANNEL $\overline{p}p$, $\overline{N}N$ or $\overline{K}K$

VALUE (MeV) DOCUMENT ID TECN CHG COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 56^{+31}_{-16} 0.6-2.4 $\overline{p}p \rightarrow K_S^0 K_S^0$ ¹⁹ EVANGELIS... 97 **SPEC** ^{20,21} COUPLAND 77 $0.7-2.4 \overline{p}p \rightarrow \overline{p}p$ 135 ± 75 CNTR 0 ²¹ ALSPECTOR 73 98 ± 8 **CNTR** $\overline{p}p$ S channel

$K\overline{K}$ MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	ng data for averages,	fits, limit	ts, etc. • • •
$91\!\pm\!62$			40 $\pi^- p \rightarrow K_S^0 K_S^0 n$
150 ± 30			$J/\psi ightarrow \omega K^+ K^-$
270 ± 50	BARBERIS 99	OMEG	$450 pp \rightarrow p_S p_f K^+ K^-$

f₂(2150) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\pi\pi$	
Γ_2	$\eta\eta$	seen
Γ ₂ Γ ₃	$K\overline{K}$	seen
Γ_4	$f_2(1270)\eta$	seen
Γ_5	$a_2(1320)\pi$	seen
Γ ₆	p p	seen

f2(2150) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma(\eta\eta)$						Γ_3/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
1.28 ± 0.23		BARBERIS	00E		450 $pp \rightarrow$	$p_f \eta \eta p_s$
\bullet \bullet We do not use t	he followir	ng data for averages	, fits,	limits, e	etc. • • •	
< 0.1	95	²² PROKOSHKIN	95 D	GAM4	300 π^- N -	$\rightarrow \pi^- N2\eta$,

²² Using data from ARMSTRONG 89D.

 $\Gamma(\pi\pi)/\Gamma(\eta\eta)$ Γ_1/Γ_2 CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

450 $pp \rightarrow pp2\eta$

Created: 5/30/2017 17:21

²³ PROKOSHKIN 95D GAM4 300 $\pi^- N \rightarrow \pi^- N 2\eta$, 450 $pp \rightarrow pp2\eta$

 $^{^{19}}$ Isospin 0 and 2 not separated.

 $[\]frac{20}{20}$ From a fit to the total elastic cross section.

²¹ Isospins 0 and 1 not separated.

²³ Derived from a $\pi^0 \pi^0 / \eta \eta$ limit.

 $\Gamma(f_2(1270)\eta)/\Gamma(a_2(1320)\pi)$

 Γ_4/Γ_5

VALUE	DOCUMENT ID		TECN	COMMENT	
0.79 ± 0.11	²⁴ ADOMEIT	96	CBAR	$1.94 \ \overline{p} p \rightarrow \eta$	$13\pi^0$
²⁴ Using B(a_2 (1320) $\rightarrow \eta \pi$) = 0.145				
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$					Γ_6/Γ

VALUE **EVTS** DOCUMENT ID TECN COMMENT 73 ALEXANDER 10 CLEO $\psi(2S) \rightarrow \gamma p \overline{p}$

$f_2(2150)$ REFERENCES

ALEXANDER	10	PR D82 092002	J.P. Alexander <i>et al.</i>	(CLEO Collab.)
UMAN	06	PR D73 052009	I. Uman <i>et al.</i>	(FNAL E835)
VLADIMIRSK	. 06	PAN 69 493	V.V. Vladimirsky et al.	(ITEP, Moscow)
		Translated from YAF 69		
ABLIKIM	04E	PL B603 138	M. Ablikim <i>et al.</i>	(BES Collab.)
ANISOVICH	00E	PL B477 19	A.V. Anisovich et al.	
BARBERIS	00E	PL B479 59	D. Barberis <i>et al.</i>	(WA 102 Collab.)
ABELE	99B	EPJ C8 67	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
BARBERIS	99	PL B453 305	D. Barberis et al.	(Omega Expt.)
EVANGELIS	97	PR D56 3803	C. Evangelista et al.	(LEAR Collab.)
MARTIN	97	PR C56 1114	B.R. Martin, G.C. Oades	(LOUC, AARH)
ADOMEIT	96	ZPHY C71 227	J. Adomeit et al.	(Crystal Barrel Collab.)
KLOET	96	PR D53 6120	W.M. Kloet, F. Myhrer	(RUTG, NORD)
PROKOSHKIN	95D	PD 40 495	Y.D. Prokoshkin	(SERP) IGJPC
		Translated from DANS 3-	44 469.	,
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
OAKDEN	94	NP A574 731	M.N. Oakden, M.R. Pennington	(DURH)
SINGOVSKI	94	NC 107A 1911	A.V. Singovsky	`(SERP)
ARMSTRONG	93C	PL B307 394	T.A. Armstrong et al.	(FNAL, FERR, GÈNO+)
ARMSTRONG	89D	PL B227 186	T.A. Armstrong, M. Benayoun	(ATHU, BARI, BIRM+)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
DULUDE	78B	PL 79B 335	R.S. Dulude <i>et al.</i>	(BROW, MIT, BARI) JP
COUPLAND	77	PL 71B 460	M. Coupland <i>et al.</i>	(LOQM, RHEL)
ALSPECTOR	73	PRL 30 511	J. Alspector <i>et al.</i>	(RUTG, UPNJ)
				()

Created: 5/30/2017 17:21