# GRAYSCALE HISTOGRAM

### **HISTOGRAM**

- In statistics, Histogram is a graphical representation showing distribution of data
- The histogram of an image represents the pixel intensity values.
  - This histogram is a graph showing the number of pixels in an image at each different intensity value found in that image
- 8-bit **grayscale** image: 256 different intensities



### GRAYSCALE HISTOGRAM

Histogram can be plotted in two methods:

- First Method:
  - X axis: each gray scale intensity levels and Y axis: no of pixels of each intensity
  - The histogram of a digital image with gray levels in the range (0, L-1) is a discrete function  $h(r_k) = n_k$

where  $r_k : k^{th}$  gray level,  $n_k : no$  of pixels

| 0 | 1 | 5 | 1 | 7 | 2 | 0 | 3 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 5 | 5 | 5 | 2 | 4 | 5 |
| 4 | 5 | 1 | 4 | 1 | 5 | 1 | 4 |
| 5 | 1 | 2 | 4 | 5 | 2 | 6 | 3 |
| 5 | 2 | 6 | 4 | 0 | 4 | 0 | 5 |
| 4 | 0 | 2 | 4 | 7 | 4 | 6 | 2 |
| 5 | 1 | 6 | 1 | 0 | 1 | 1 | 5 |
| 4 | 5 | 2 | 4 | 2 | 5 | 2 | 5 |

| Gray  | No. of |
|-------|--------|
| Level | Pixels |
| 0     | 8      |
| 1     | 10     |
| 2     | 10     |
| 3     | 2      |
| 4     | 12     |
| 5     | 16     |
| 6     | 4      |
| 7     | 2      |



### NORMALIZED HISTOGRAM

#### • Second method:

- Dividing each histogram values with no of pixels
- X axis has gray levels and Y-axis probability of occurrence of gray levels
- $P(\mu_k) = nk/n$

Where,  $\mu_k$  – gray level,  $n_k$  – no, of pixels in k<sup>th</sup> gray level, n – total number of pixels in an image.

| Gray<br>Level | No. of<br>Pixels | Pr      |
|---------------|------------------|---------|
| 0             | 8                | 0.125   |
| 1             | 10               | 0.15625 |
| 2             | 10               | 0.15625 |
| 3             | 2                | 0.03125 |
| 4             | 12               | 0.1875  |
| 5             | 16               | 0.25    |
| 6             | 4                | 0.0625  |
| 7             | 2                | 0.03125 |



## Why Histogram?

- Basis for numerous spatial domain processing techniques
- Used effectively for image enhancement
- Provide useful image statistics
- Useful in image processing applications such as image compression and segmentation

## Histograms

• Great deal of information can be obtained just by looking at histogram



## Histogram Processing

- Two methods of image enhancement:
  - Histogram stretching
  - Histogram equalization

- Stretching increases the dynamic range of the image and hence improves the contrast of the image
- Basic shape is not modified but range if histogram values are stretched.



$$S = T(r) = ((S_{max} - S_{min}) / (r_{max} - r_{min})) \times (r - r_{min}) + S_{min}$$

Where,  $S_{max}$  – max gray level of output image  $S_{min}$  – min gray level of output image  $r_{max}$  – max gray level of input image  $r_{min}$  – min gray level of input image

• Ex. 1) Perform histogram stretching so that the new image has a dynamic range of 0 to 7 [0, 7]

| Gray<br>Levels   | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7 |
|------------------|---|---|----|----|----|----|----|---|
| No. of<br>Pixels | 0 | 0 | 50 | 60 | 50 | 20 | 10 | 0 |

• Ex. 1) Perform histogram stretching so that the new image has a dynamic range of 0 to 7 [0, 7]

| Gray Levels   | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7 |
|---------------|---|---|----|----|----|----|----|---|
| No. of Pixels | 0 | 0 | 50 | 60 | 50 | 20 | 10 | 0 |

$$S_{max} = 7$$
;  $S_{min} = 0$ ;  $r_{max} = 6$ ;  $r_{min} = 2$   
 $S = ((S_{max} - S_{min}) / (r_{max} - r_{min})) \times (r - r_{min}) + S_{min}$   
 $= ((7 - 0) / (6 - 2) \times (r - 2) + 0$   
 $S = (7/4) \times (r - 2)$ 

| r | (7/4)x(r-2)      | = S |
|---|------------------|-----|
| 2 | (7/4) x 0        | = 0 |
| 3 | (7/4) x 1 = 1.75 | = 2 |
| 4 | (7/4)x 2 = 3.5   | = 4 |
| 5 | (7/4) x 3 = 5.25 | = 5 |
| 6 | (7/4) x 4        | = 7 |

• Ex. 1) Perform histogram stretching so that the new image has a dynamic range of 0 to 7 [0, 7]

| Gray Levels               | 0  | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
|---------------------------|----|---|----|----|----|----|----|----|
| No. of Pixels<br>(Input)  | 0  | 0 | 50 | 60 | 50 | 20 | 10 | 0  |
| No. of Pixels<br>(Output) | 50 | 0 | 60 | 0  | 50 | 20 | 0  | 10 |



• Ex.2) Perform histogram stretching so that the new image has a dynamic range from 0 to 7.

| Gray Levels            | 0   | 1  | 2  | 3  | 4 | 5  | 6 | 7  |
|------------------------|-----|----|----|----|---|----|---|----|
| No. of Pixels          | 100 | 90 | 85 | 70 | 0 | 0  | 0 | 0  |
| No. of Pixels (Output) | 100 | 0  | 90 | 0  | 0 | 85 | 0 | 70 |

## Histogram Equalization

- Linear stretching is a good technique but not perfect
- Equalization spread out the Gray levels in an image so that they are evenly distributed across the range
- The histogram of resultant image is made flat as possible



## Histogram Equalization: Steps

- 1. Find the histogram values and the sum of values
- 2. Then normalize the histogram (Calculate the probability)
- 3. Then find the Cumulative Distribution Frequency (CDF)

$$CDF_i = \sum_{j=0}^{t} P_j$$

- 4. Multiply each value by max Gray level and round it, to get the Gray level of the output image
- 5. Plot the image using one to one correspondence

## Histogram Equalization

• Ex 1. Perform histogram equalization on the following subset of an image

| 2 | 2 | 3 | 4 | 3 |
|---|---|---|---|---|
| 2 | 3 | 4 | 4 | 3 |
| 2 | 3 | 5 | 4 | 4 |
| 3 | 4 | 5 | 6 | 3 |
| 2 | 3 | 3 | 4 | 2 |

| Gray Level    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---------------|---|---|---|---|---|---|---|---|
| No. of Pixels | 0 | 0 | 6 | 9 | 7 | 2 | 1 | 0 |

| Gray<br>Level | No. of<br>Pixels | Pr   | CDF  | CDF x<br>Max L | New<br>Gray<br>Level |
|---------------|------------------|------|------|----------------|----------------------|
| 0             | 0                | 0    | 0    | 0              | 0                    |
| 1             | 0                | 0    | 0    | 0              | 0                    |
| 2             | 6                | 0.24 | 0.24 | 1.68           | 2                    |
| 3             | 9                | 0.36 | 0.6  | 4.2            | 4                    |
| 4             | 7                | 0.28 | 0.88 | 6.16           | 6                    |
| 5             | 2                | 0.08 | 0.96 | 6.72           | 7                    |
| 6             | 1                | 0.04 | 1    | 7              | 7                    |
| 7             | 0                | 0    | 1    | 7              | 7                    |

| Gray Level                | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---------------------------|---|---|---|---|---|---|---|---|
| No. of Pixels             | 0 | 0 | 6 | 9 | 7 | 2 | 1 | 0 |
| No. of Pixels<br>(Output) | 0 | 0 | 6 | 0 | 9 | 0 | 7 | 3 |

| 2 | 2 | 3 | 4 | 3 |
|---|---|---|---|---|
| 2 | 3 | 4 | 4 | 3 |
| 2 | 3 | 5 | 4 | 4 |
| 3 | 4 | 5 | 6 | 3 |
| 2 | 3 | 3 | 4 | 2 |



| 2 | 2 | 4 | 6 | 4 |
|---|---|---|---|---|
| 2 | 4 | 6 | 6 | 4 |
| 2 | 4 | 7 | 6 | 6 |
| 4 | 6 | 7 | 7 | 4 |
| 2 | 4 | 4 | 6 | 2 |

# HISTOGRAM MATCHING (HISTOGRAM SPECIFICATION)

- The process of Histogram Matching takes in an input image and produces an output image that is based upon a specified histogram.
- Histogram matching modifies an image based on the contrast of another image



Input image

Specified image

Output image



Ex.1 Perform histogram matching using the given image sets.

#### Input Image

| 0 | 1 | 5 | 1 | 7 | 2 | 0 | 3 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 5 | 5 | 5 | 2 | 4 | 5 |
| 4 | 5 | 1 | 4 | 1 | 5 | 1 | 4 |
| 5 | 1 | 2 | 4 | 5 | 2 | 6 | 3 |
| 5 | 2 | 6 | 4 | 0 | 4 | 0 | 5 |
| 4 | 0 | 2 | 4 | 7 | 4 | 6 | 2 |
| 5 | 1 | 6 | 1 | 0 | 1 | 1 | 5 |
| 4 | 5 | 2 | 4 | 2 | 5 | 2 | 5 |

#### Specified Image

| 4 | 6 | 5 | 6 | 6 | 7 | 5 | 5 |
|---|---|---|---|---|---|---|---|
| 5 | 5 | 4 | 4 | 4 | 7 | 4 | 4 |
| 5 | 6 | 4 | 5 | 5 | 6 | 6 | 5 |
| 5 | 4 | 7 | 4 | 5 | 4 | 6 | 7 |
| 4 | 5 | 5 | 5 | 4 | 4 | 6 | 5 |
| 6 | 5 | 4 | 5 | 6 | 6 | 7 | 4 |
| 6 | 4 | 5 | 4 | 7 | 4 | 6 | 5 |
| 7 | 6 | 6 | 5 | 4 | 5 | 6 | 7 |

#### Input Image Gray Level Distribution

| Gray Levels   | 0 | 1  | 2  | 3 | 4  | 5  | 6 | 7 |
|---------------|---|----|----|---|----|----|---|---|
| No. of Pixels | 8 | 10 | 10 | 2 | 12 | 16 | 4 | 2 |

#### Specified Image Gray Level Distribution

| Gray Levels   | 0 | 1 | 2 | 3 | 4  | 5  | 6  | 7 |
|---------------|---|---|---|---|----|----|----|---|
| No. of Pixels | 0 | 0 | 0 | 0 | 20 | 20 | 16 | 8 |

#### Input Image Gray Level Equalization

| Gray<br>Level | No. of<br>Pixels | Pr      | CDF     | CDF x<br>(L-1) | New Gray<br>Level (H) |
|---------------|------------------|---------|---------|----------------|-----------------------|
| 0             | 8                | 0.125   | 0.125   | 0.875          | 1                     |
| 1             | 10               | 0.15625 | 0.28125 | 1.96875        | 2                     |
| 2             | 10               | 0.15625 | 0.4375  | 3.0625         | 3                     |
| 3             | 2                | 0.03125 | 0.46875 | 3.28125        | 3                     |
| 4             | 12               | 0.1875  | 0.65625 | 4.59375        | 5                     |
| 5             | 16               | 0.25    | 0.90625 | 6.34375        | 6                     |
| 6             | 4                | 0.0625  | 0.96875 | 6.78125        | 7                     |
| 7             | 2                | 0.03125 | 1       | 7              | 7                     |

64

#### Specified Image Gray Level Equalization

| Gray<br>Level | No. of<br>Pixels | Pr     | CDF    | CDF x<br>(L-1) | New Gray<br>Level (S) |
|---------------|------------------|--------|--------|----------------|-----------------------|
| 0             | 0                | 0      | 0      | 0              | 0                     |
| 1             | 0                | 0      | 0      | 0              | 0                     |
| 2             | 0                | 0      | 0      | 0              | 0                     |
| 3             | 0                | 0      | 0      | 0              | 0                     |
| 4             | 20               | 0.3125 | 0.3125 | 2.1875         | 2                     |
| 5             | 20               | 0.3125 | 0.625  | 4.375          | 4                     |
| 6             | 16               | 0.25   | 0.875  | 6.125          | 6                     |
| 7             | 8                | 0.125  | 1      | 7              | 7                     |

#### Final Mapping

| Gray Level | Н | S | Мар |
|------------|---|---|-----|
| 0          | 1 | 0 | 4   |
| 1          | 2 | 0 | 4   |
| 2          | 3 | 0 | 5   |
| 3          | 3 | 0 | 5   |
| 4          | 5 | 2 | 6   |
| 5          | 6 | 4 | 6   |
| 6          | 7 | 6 | 7   |
| 7          | 7 | 7 | 7   |

#### Histogram of the Resultant Image

| Gray Level | No. of Pixels<br>(Input) | Resultant<br>Map | No. of Pixels<br>(Output) |
|------------|--------------------------|------------------|---------------------------|
| 0          | 8                        | 4                | 0                         |
| 1          | 10                       | 4                | 0                         |
| 2          | 10                       | 5                | 0                         |
| 3          | 2                        | 5                | 0                         |
| 4          | 12                       | 6                | 18                        |
| 5          | 16                       | 6                | 12                        |
| 6          | 4                        | 7                | 28                        |
| 7          | 2                        | 7                | 6                         |