BodyFat Project

Zhengyong Chen, Xiangsen Dong, Xupeng Tang, Zhaoqing Wu

Overview

- Data Cleaning
- Model Selection
- Trade-off
- Final Model

Data Cleaning

Data Cleaning

- We converted the unit of Height to **cm**.
- We imputed individual 42's Height due to an unusually low value.

Individual	Original Value	Imputed Value	Imputation Method
42	74.93 cm	181.47 cm	Using ADIPOSITY and WEIGHT

 We removed three individuals (IDNO: 39, 41, 216) due to outliers detected across multiple variables using the IQR method.

Individual	Outlier_Variables
39	WEIGHT, ADIPOSITY, NECK, CHEST, ABDOMEN, HIP, THIGH, KNEE, ANKLE, BICEPS, WRIST
41	WEIGHT, ADIPOSITY, CHEST, ABDOMEN, HIP, THIGH, WRIST
216	BODYFAT, DENSITY, ADIPOSITY, ABDOMEN

Data Cleaning

- We deleted column DENSITY and IDNO.
- We scaled the data before modeling.

Final Data: 249 rows with 14 predictors

Predictors: AGE, WEIGHT, HEIGHT, ADIPOSITY, NECK, CHEST, ABDOMEN, HIP, THIGH, KNEE, ANKLE, BICEPS, FOREARM, WRIST

Model Selection

Model Construction Principles

Select variables:

Stepwise regression

Reason:

Stepwise regression iteratively adds or removes predictors, effectively identifying the most valuable variables for predicting body fat and excluding those with lesser contributions.

Consideration of Candidate Models

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Single Variable Model \rightarrow Two Variable Model \rightarrow

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \qquad Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i \qquad Y_i = \beta_0 + \beta_1 X_{1i} X_{2i} + \epsilon_i$$

Interaction Term Model

$$Y_i = \beta_0 + \beta_1 X_{1i} X_{2i} + \epsilon_i$$

The variable "Abdomen" is present in all the best models:

$$Y_i = \beta_0 + \beta_1 \mathrm{Abdomen}_i^2 + \beta_2 X_i + \epsilon_i$$
 where Xi is one of other factors

Next step: We will select among these models based on performance metrics such as R² and MSE.

Trade-off

Trade-Offs

Accuracy: we measured accuracy using the following criteria

RMSE

- Pros: RMSE measures the average prediction error, indicating model accuracy
- Cons: Sensitive to outliers. But we have removed them

adjust R2

- Pros: Accounts for model complexity, prevents overfitting, useful for multiple predictors.
- Cons: Does not provide a direct measure of prediction error. 🔐 But we could combine 2 metric 🤗

Simplicity: Measure by linear models with different number of predictors:

BODYFAT ~ AGE + WEIGHT + NECK + ABDOMEN + THIGH + FOREARM + WRIST

BODYFAT ~ ABDOMEN 😂

BODYFAT ~ WEIGHT + ABDOMEN

BODYFAT ~ ABDOMEN * WEIGHT

BODYFAT ~ ABDOMEN squared

BODYFAT ~ ABDOMEN squared + WEIGHT

BODYFAT ~ ABDOMEN + ABDOMEN squared + WEIGHT

Trade-Offs

Robustness-method select:

Definition: The definition of robustness is how model could hold its performance on noisy data.

Hence by definition, we evaluate robustness by add noise on training/test dataset. But the question is, where should we add noise?

- \triangleright Method 1: Train 1 model on training set, then test on both the original test set and a noisy test set with noise added to both ($X_{test} Y_{test}$).
 - Model trained only on clean data; weak against noisy test data.
 - Does not consider training noise, limiting comprehensive robustness evaluation.
- Method 2: Train 1 model on training set, then test on both the original test set and a noisy test set with noise added to only X_{test}
 - Ignores target noise, failing to assess output uncertainty.
 - Trained only on original data, lacks robustness against noisy training data.
- \triangleright Method 3: Train two models: one on the original dataset, and another with noise added to only X_{train} , then test both on the same test set.
 - limiting the model's adaptability to target noise, making output noise robustness unclear. 📀
- Method 4: Train two models: one on the original dataset, and another with noise added to only Y_{train} , then test both on the same test set.
 - leaving input noise effects untested.

Trade-Offs

Robustness – Final Proposal method:

- **Final method**: Train two models: one on the original dataset, and another with noise added to both (Y_{train}, X_{train}) , then test both on the same test set.
 - Noise added to both input features XX and targets YY in training enhances adaptability to real-world uncertainties. (> <

Process:

For each fold $k = 1, 2, \ldots, K$:

- 1. Split the dataset into training set $D_{\text{train},k}$ and testing set $D_{\text{test},k}$.
- 2. For each model $m \in \text{models}$:
 - Train the baseline model m on $D_{\text{train},k}$.
 - Add Gaussian noise $\mathcal{N}(0,\sigma^2)$ to $D_{\mathrm{train},k}$ and train the noiseperturbed model m_{noise} on this noisy dataset.
- 3. Evaluate both m and m_{noise} on $D_{\text{test},k}$ using the metric:

$$MSE(m, D_{test,k}), \quad MSE(m_{noise}, D_{test,k})$$

After completing the cross-validation, compare the robustness of the models using the **retention rate** r, defined as:

1, Accuracy Retention in Noisy Data

$$RetentionRate = 1 - \frac{|metric_{noisy} - metric_{original}|}{metric_{original}}$$

metric = MSE

Why Use Cross-Validation in Robustness Testing?

- Training and evaluating on a single train-test split can lead overfitting or overestimating the model's performance.
- If evaluated on a single data split, the model's performance may be dominated by the characteristics of the particular split, such as anomalies or certain data points.

Results

model	adjusted_R	MSE	retention_MSE_rate	num_predictors
BODYFAT ~ AGE + WEIGHT + NECK + ABDOMEN + THIGH + FOREARM + WRIST	0.727	0.272	0.978	7
BODYFAT ~ ABDOMEN	0.666	0.33	0.993	1
BODYFAT ~ WEIGHT + ABDOMEN	0.708	0.292	0.987	2
BODYFAT ~ ABDOMEN * WEIGHT	0.023	0.978	0.982	1
BODYFAT ~ ABDOMEN_squared	0.013	0.985	0.999	1
BODYFAT ~ ABDOMEN_squared + WEIGHT	0.539	0.461	0.997	2
BODYFAT ~ ABDOMEN + ABDOMEN_squared + WEIGHT	0.709	0.286	0.981	3

Combining all of above results, our final model is BODYFAT ~ WEIGHT + ABDOMEN, since it has relatively large R2 value and small MSE, few predictors and high retention rate

Final Model

Bodyfat_scaled = 1.18*Abdomen_scaled - 0.42Weight_scaled.

sample mean of Bodyfat = 18.94%, sample sd of Bodyfat = 7.75%,

sample mean of Abdomen = 92.08 cm, sample sd of Abdomen = 9.85 cm,

sample mean of Weight = 177.69 lbs, sample sd of weight = 26.48 lbs.

Bodyfat (%)= -44.71 (%)+ 0.93*Abdomen (cm) - 0.12*Weight (lbs)

Example

A man of 200 lbs weight and 100 cm abdomen circumference, his body fat is predicted to be:

$$(1.18 \times \frac{100 - 92.08}{9.85} - 0.42 \times \frac{200 - 177.69}{26.48}) \times 7.75\% + 18.94\% = 23.55\%.$$

Example

We have developed this model into a Shiny app: https://andrewchanshiny.shinyapps.io/Bodyfat-Group10-P2-628/

Body Fat Prediction Model — GROUP 10 **Input Parameters** Select Age Group Abdomen Circumference (cm): 20-29 years 100 BodyFat Percentage Table for Men (Measure around your abdomen at navel level.) Weight (lbs): Category Percentage 200 Low (Increased Health Risk) <8% (Kg to lbs: multiply kg by 2.20.) Excellent/Fit (Healthy) <=10.5% Good/Normal (Healthy) 10.6-14.8% Predict Body Fat Fair/Average (Healthy) 14.9-18.6% Predicted Body Fat Percentage Poor (Increased Health 18.7-23.1% Risk) 23.55 % High (Increased Health >=23.2% Risk) For any inquiries, contact us at: zchen2353@wisc.edu, xdong95@wisc.edu, xtang254@wisc.edu, zwu535@wisc.edu

P-value of predictors is greatly less than 0.01, which indicates statistical significance.

Analysis on residuals

Strength:

Easy to use.

A certain level of accuracy.

Weakness

Since we only use simplest model and combination of predictors, the result is far from optimal.

Thanks for listening