Ex. No. 2	Regression
Date of Exercise	21/07/2025

Aim:

To implement a fully connected neural network for a regression task using a house price dataset.

Description:

This experiment involves building a feedforward neural network to predict house prices based on features such as square footage, number of rooms, and location.

Step 1: Compute the Mean and Standard Deviation

The mean (μ) and standard deviation (σ) of x_train:

$$\begin{split} \mu &= \frac{1+2+3+7+8}{5} = \frac{21}{5} = 4.2\\ \sigma &= \sqrt{\frac{(1-4.2)^2+(2-4.2)^2+(3-4.2)^2+(7-4.2)^2+(8-4.2)^2}{5}}\\ \sigma &= \sqrt{\frac{10.24+4.84+1.44+7.84+14.44}{5}} = \sqrt{\frac{38.8}{5}} = \sqrt{7.76} \approx 2.785 \end{split}$$

Step 2: Standardize X_train

Using the formula:

$$X_{\rm scaled} = \frac{X-4.2}{2.785}$$

Original X	Computation	Scaled $X_{ m scaled}$
1	$\frac{1-4.2}{2.785}$	-1.1487
2	$\frac{2-4.2}{2.785}$	-0.7898
3	$\frac{3-4.2}{2.785}$	-0.4308
7	$\frac{7-4.2}{2.785}$	1.0051
8	8-4.2 2.785	1.3641

1. Mean Quadratic Error (MQE)

Also known as **Mean Squared Error (MSE)**, it measures the average of the squared differences between actual and predicted values.

Formula:

$$MQE = MSE = \frac{1}{n}\sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

where:

- n = Total number of data points
- Y_i = Actual value
- \hat{Y}_i = Predicted value

2. Mean Absolute Error (MAE)

Measures the average absolute difference between actual and predicted values.

Formula:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

Code:

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

Load dataset

url = "https://raw.githubusercontent.com/ageron/handson-ml/master/datasets/housing/housing.esv" and the properties of the properties of

data = pd.read csv(url)

Preprocessing

x - data[['median_income', 'total_rooms']]

y = data['median house value'] / 100000

```
# Build model
model = keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=[len(x.keys())]),
    layers.Dense(64, activation='relu'),
    layers.Dense(1)
])

# Compile and train
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
model.fit(x, y, epochs=10, batch_size=32)
```

Output

Result

The above experiment of Multi Class Classification is done successfully and the output is been obtained

23DC2041-Deep Learning Laboratory	URK23AI1112

23DC2041-Deep Learning Laboratory	URK23AI1112