

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-10

Nome: Luiz Gustavo Caobianco

No processo industrial de fabricação de pneus sabe-se que o composto que forma a borracha pode apresentar imperfeições que impedem a sua utilização. Diversas amostras dessas imperfeições foram coletadas, sendo também realizadas as medidas referentes a três grandezas $\{x_1, x_2, x_3\}$ que participam do processo de fabricação das respectivas borrachas. Entretanto, a equipe de engenheiros e cientistas não tem sentimento de como essas variáveis podem estar relacionadas.

Assim, pretende-se aplicar uma Rede de Kohonen (SOM), conforme mostrado na figura abaixo, com o objetivo de detectar as eventuais similaridades e correlações entre essas variáveis, pois se tem como objetivo final o posterior agrupamento das amostras imperfeitas em classes.

Portanto, baseado nos dados fornecidos no apêndice, treine a rede de Kohonen, considerando N_1 =16 e taxa de aprendizado η =0.001, sendo que o grid topológico é bidimensional (4x4), tendo raio de vizinhança entre os neurônios igual a 1. Logo, o diagrama esquemático do grid está como se segue:

De posse dos resultados advindos do treinamento da rede, efetuou-se uma análise neste conjunto e verificou-se que as amostras 1-20, 21-60 e 61-120 possuem particularidades em comum, podendo ser então consideradas três classes distintas, denominadas de classe A, B e C, respectivamente. Portanto, têm-se as seguintes questões:

1. Indique quem são os conjuntos de neurônios representados no grid que fornecem respostas relativas às classes A, B e C.

Resposta: Em azul, a classe A. Em vermelho, a classe B. Em verde, a classe C.

2. Para as amostras da tabela abaixo indique a que classes as mesmas pertencem.

Amostra	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Classe
1	0.2471	0.1778	0.2905	Α
2	0.8240	0.2223	0.7041	В
3	0.4960	0.7231	0.5866	С
4	0.2923	0.2041	0.2234	С
5	0.8118	0.2668	0.7484	В
6	0.4837	0.8200	0.4792	В
7	0.3248	0.2629	0.2375	Α
8	0.7209	0.2116	0.7821	Α
9	0.5259	0.6522	0.5957	Α
10	0.2075	0.1669	0.1745	Α
11	0.7830	0.3171	0.7888	Α
12	0.5393	0.7510	0.5682	С

3. Demonstrar que a regra de alteração de pesos "Norma Euclidiana" para um padrão *x* é obtida a partir da minimização da função erro quadrático:

$$E = \frac{1}{2} \sum_{i} (w_i^{(j)} - x_i)^2$$

onde *j* é o índice do neurônio vencedor.

Resposta: Este exercício encontra-se feito à mao e anexado ao fim deste trabalho.