Eulerian and Hamiltonian graphs

Sylwia Cichacz

Akademia Górniczo-Hutnicza w Krakowie

December 19, 2021, Kraków

Problem: Does there exist a closed trail in the graph G that passes through all edges?

Definition:

An Eulerian cycle in a graph G is a closed walk that contains each edge exactly once (a closed trail).

Definition:

An Eulerian cycle in a graph G is a closed walk that contains each edge exactly once (a closed trail).

An Eulerian graph is a connected graph that contains an Eulerian walk.

Definition:

An Eulerian cycle in a graph G is a closed walk that contains each edge exactly once (a closed trail).

An Eulerian graph is a connected graph that contains an Eulerian walk.

Definition:

An Eulerian cycle in a graph G is a closed walk that contains each edge exactly once (a closed trail).

An Eulerian graph is a connected graph that contains an Eulerian walk.

Is G jest Eulerian?

Theorem: L. Euler; 1736

A connected graph ${\it G}$ possesses an Eulerian cycle iff the degree of every vertex is even.

Theorem: L. Euler; 1736

A connected graph G possesses an Eulerian cycle iff the degree of every vertex is even.

Definition:

An Eulerian walk is a graph G is that uses each edge exactly once.

Definition:

An Eulerian walk is a graph G is that uses each edge exaclly once. If such a path exists, then the graph G is called semieulerian graph.

Definition:

An Eulerian walk is a graph G is that uses each edge exaclly once. If such a path exists, then the graph G is called semieulerian graph.

A semieulerian graph is a a graph that exactly two vertices of odd

Definition:

A bridge (cut-edge) is an edge of a graph whose deletion increases its number of connected components.

Definition:

A bridge (cut-edge) is an edge of a graph whose deletion increases its number of connected components.

Definition:

A bridge (cut-edge) is an edge of a graph whose deletion increases its number of connected components.

Does G have a bridge?

Definition:

A bridge (cut-edge) is an edge of a graph whose deletion increases its number of connected components.

Does G have a bridge?

An edge is a bridge iff it is not contained in any cycle.

Definition:

A bridge (cut-edge) is an edge of a graph whose deletion increases its number of connected components.

Does G have a bridge?

An edge is a bridge iff it is not contained in any cycle.

Step 0: First make sure that the graph is connected and all vertices have even degree.

Step 0: First make sure that the graph is connected and all vertices have even degree.

Step 1: Start at any vertex.

- **Step 0:** First make sure that the graph is connected and all vertices have even degree.
- **Step 1:** Start at any vertex.
- **Step 2:** Travel through an edge if

- **Step 0:** First make sure that the graph is connected and all vertices have even degree.
- Step 1: Start at any vertex.
- **Step 2:** Travel through an edge if
 - (a) is not a bridge for the untraveled part, or

- **Step 0:** First make sure that the graph is connected and all vertices have even degree.
- Step 1: Start at any vertex.
- **Step 2:** Travel through an edge if
 - (a) is not a bridge for the untraveled part, or
 - (b) there is no other alternative.

- **Step 0:** First make sure that the graph is connected and all vertices have even degree.
- Step 1: Start at any vertex.
- **Step 2:** Travel through an edge if
 - (a) is not a bridge for the untraveled part, or
 - (b) there is no other alternative.
- **Step 3:** Label the edges in the order in which you travel them.

- **Step 0:** First make sure that the graph is connected and all vertices have even degree.
- **Step 1:** Start at any vertex.
- **Step 2:** Travel through an edge if
 - (a) is not a bridge for the untraveled part, or
 - (b) there is no other alternative.
- **Step 3:** Label the edges in the order in which you travel them.
- **Step 4:** When you cannot travel any more, **STOP**. (You are done!)

Problem: Does there exist a cycle in the graph G that passes through all vertices?

Problem: Does there exist a cycle in the graph G that passes through all vertices?

Problem: Does there exist a cycle in the graph G that passes through all vertices?

Definicja

A Hamiltonian cycle in a graph G is a cycle which contains all the vertices of G.

Definicja

A Hamiltonian cycle in a graph G is a cycle which contains all the vertices of G.

A Hamiltonian path in a graph G is a path which contains all the vertices of G.

Definicja

A Hamiltonian cycle in a graph G is a cycle which contains all the vertices of G.

A Hamiltonian path in a graph G is a path which contains all the vertices of G.

A graph G which possesses a hamiltonian cycle is called the Hamiltonian graph.

Definicja

A Hamiltonian cycle in a graph G is a cycle which contains all the vertices of G.

A Hamiltonian path in a graph G is a path which contains all the vertices of G.

A graph G which possesses a hamiltonian cycle is called the Hamiltonian graph.

A graph which possesses a hamiltonian path (but not cycle) is called the semihamiltonian graph.

Definicja

A Hamiltonian cycle in a graph G is a cycle which contains all the vertices of G.

A Hamiltonian path in a graph G is a path which contains all the vertices of G.

A graph G which possesses a hamiltonian cycle is called the Hamiltonian graph.

A graph which possesses a hamiltonian path (but not cycle) is called the semihamiltonian graph.

• For Eulericity, there was a nice, locally checkable necessary and sufficient condition.

- For Eulericity, there was a nice, locally checkable necessary and sufficient condition.
- No such condition is known for Hamiltonicity.

- For Eulericity, there was a nice, locally checkable necessary and sufficient condition.
- No such condition is known for Hamiltonicity.
- The question, whether a given graph *G* is Hamiltonian or not, is NP-complete.

- For Eulericity, there was a nice, locally checkable necessary and sufficient condition.
- No such condition is known for Hamiltonicity.
- The question, whether a given graph G is Hamiltonian or not, is NP-complete.
- Hence the existence of a simple algorithm for checking it is unlikely.

- For Eulericity, there was a nice, locally checkable necessary and sufficient condition.
- No such condition is known for Hamiltonicity.
- The question, whether a given graph G is Hamiltonian or not, is NP-complete.
- Hence the existence of a simple algorithm for checking it is unlikely.
- There exist easily checkable, sufficient, but not necessary conditions for Hamiltonicity.

 Many of them are are varietient of "if a great has many
 - Many of them are are variations of "if a graph has many edges then it is Hamiltonian".

Theorem: Dirac, 1952

If a simple graph G = (V, E) with |V| = n > 3 satisfies

$$\forall v \in V : \deg(v) \ge \frac{n}{2}$$

then G is Hamiltonian.

Theorem: Dirac, 1952

If a simple graph G = (V, E) with |V| = n > 3 satisfies

$$\forall v \in V : \deg(v) \ge \frac{n}{2}$$

then G is Hamiltonian.

Theorem: Dirac, 1952

If a simple graph G = (V, E) with |V| = n > 3 satisfies

$$\forall v \in V : \deg(v) \ge \frac{n}{2}$$

then G is Hamiltonian.

Theorem: Ore, 1960

If a simple graph G = (V, E) with |V| = n > 3 satisfies

$$\forall v, w \in V : (\text{if } uv \notin E \implies \deg(v) + \deg(w) \ge n)$$

then G is Hamiltonian.

Definition:

A tree is a connected graph without cycles.

Definition:

A tree is a connected graph without cycles.

Definition:

A tree is a connected graph without cycles.

Every tree is a bipartite graph.

Theorem:

Theorem:

If G = (V, E) is a connected graph, then the following are equivalent.

 $oldsymbol{0}$ G is a tree.

Theorem:

- $oldsymbol{0}$ G is a tree.
- ② G has no cycles.

Theorem:

- ① G is a tree.
- ② G has no cycles.
- **3** For every pair of distinct vertices u and v in G, there is exactly one path from u to v.

Theorem:

- G is a tree.
- G has no cycles.
- For every pair of distinct vertices u and v in G, there is exactly one path from u to v.
- **④** G e is disconnected for any edge e ∈ E(G).

Theorem:

- $oldsymbol{0}$ G is a tree.
- ② G has no cycles.
- **3** For every pair of distinct vertices u and v in G, there is exactly one path from u to v.
- **④** G e is disconnected for any edge e ∈ E(G).
- **5** |E| = |V| 1.

Theorem:

A tree with n vertices has exactly n-1 edges.

Theorem:

A tree with n vertices has exactly n-1 edges.

Theorem:

A tree with n vertices has exactly n-1 edges.

Proof:

Theorem:

A tree with n vertices has exactly n-1 edges.

Proof: by induction.

Theorem:

A tree with n vertices has exactly n-1 edges.

Proof: by induction. If n = 1, the graph cannot have any edges or there would be a loop, with the vertex connecting to itself, so there must be n - 1 = 0 edges.

Theorem:

A tree with n vertices has exactly n-1 edges.

Proof: by induction. If n = 1, the graph cannot have any edges or there would be a loop, with the vertex connecting to itself, so there must be n - 1 = 0 edges.

Suppose that every tree with k vertices has precisely k-1 edges.

Definition:

A forest is a disjoint union of trees.

Definition:

A forest is a disjoint union of trees.

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

A labeled tree gives a Prüfer sequence by:

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

A labeled tree gives a Prüfer sequence by: Repeat n-2 times:

• Pick the leaf with the smallest label, call it v.

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of *v*'s neighbor in the output sequence.

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of *v*'s neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

Definition:

A Prüfer sequence of length n-2, for $n \ge 2$, is any sequence of integers between 1 and n, with repetitions allowed.

- Pick the leaf with the smallest label, call it v.
- Put the label of v's neighbor in the output sequence.
- Remove *v* from the tree

A Prüfer sequence determines a labeled tree by:

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

L=(1,2,3,4,5,6,7,8)

- A Prüfer sequence determines a labeled tree by:
- L the ordered list of numbers $1, 2, \ldots, n$.
- P Prüfera sequence.

L=(1,2,3,4,5,6,7,8)

- A Prüfer sequence determines a labeled tree by:
- L the ordered list of numbers $1, 2, \ldots, n$.
- P Prüfera sequence.

$$L=(1,2,3,4,5,6,7,8)$$

$$P=(2,2,1,8,6,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

$$L=(1,2,3,4,5,6,7,8)$$

$$P=(2,2,1,8,6,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

Repeat n-2 times:

• Let *k* be the smallest number in *L* which is not in *P*.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let *k* be the smallest number in *L* which is not in *P*.
- Let j be the first number in P.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let *k* be the smallest number in *L* which is not in *P*.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

Repeat n-2 times:

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge kj to the graph.
- Remove k from L and the first number in P.

$$L=(1,2,3,4,5,6,7,8)$$

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

Repeat n-2 times:

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

$$L=(1,2,3,4,5,6,7,8)$$

$$P=(2,2,1,8,6,8)$$

• • • • • • • • • 1 2 3 4 5 6 7 8

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge kj to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

Repeat n-2 times:

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge kj to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

Repeat n-2 times:

- Let *k* be the smallest number in *L* which is not in *P*.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let *k* be the smallest number in *L* which is not in *P*.
- Let j be the first number in P.
- Add the edge kj to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

Repeat n-2 times:

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

L=(1,**X,X,X**,5,6,7,8)

1 2 3 4 5 6 7 8

L=(1,**X,X,X**,8,6,8)

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with n labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove *k* from *L* and the first number in *P*.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let j be the first number in P.
- Add the edge *kj* to the graph.
- Remove k from L and the first number in P.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let *k* be the smallest number in *L* which is not in *P*.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove *k* from *L* and the first number in *P*.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

- Let k be the smallest number in L which is not in P.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove *k* from *L* and the first number in *P*.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

Repeat n-2 times:

- Let *k* be the smallest number in *L* which is not in *P*.
- Let *j* be the first number in *P*.
- Add the edge kj to the graph.
- Remove *k* from *L* and the first number in *P*.

When this is completed there will be two numbers left in L, add the edge corresponding to these two numbers.

A Prüfer sequence determines a labeled tree by:

L – the ordered list of numbers $1, 2, \ldots, n$.

P – Prüfera sequence.

WStart with *n* labeled isolated vertices.

Repeat n-2 times:

- Let *k* be the smallest number in *L* which is not in *P*.
- Let *j* be the first number in *P*.
- Add the edge *kj* to the graph.
- Remove *k* from *L* and the first number in *P*.

When this is completed there will be two numbers left in L, add the edge corresponding to these two numbers.

Prüfer coding and decoding

Prüfer coding and decoding

Prüfer coding and decoding are inverse operations, that means that there is a one-to-one correspondence between labeled trees with n vertices and Prüfer sequences of length n-2.

Definition:

A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G.

Definition:

A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G.

Definition:

A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G.

Definition:

A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G.

Definition:

A rooted tree is a tree with a vertex designated as root (it can be any vertex).

Definition:

A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G.

Definition:

A rooted tree is a tree with a vertex designated as root (it can be any vertex). A rooted tree introduces a parent - child relationship between the vertices and the notion of depth in the tree.

Theorem: Cayley's Formula

The number of spanning labeled trees of K_n is n^{n-2} , for $n \ge 2$.

Theorem: Cayley's Formula

The number of spanning labeled trees of K_n is n^{n-2} , for $n \ge 2$.

Theorem: Cayley's Formula

The number of spanning labeled trees of K_n is n^{n-2} , for $n \ge 2$.

The number of spanning trees of K_n is the same as the number of sequences with (n-2) elements with repetitions from the set $\{1, 2, \ldots, n\}$.

Theorem: Cayley's Formula

The number of spanning labeled trees of K_n is n^{n-2} , for $n \ge 2$.

The number of spanning trees of K_n is the same as the number of sequences with (n-2) elements with repetitions from the set $\{1,2,\ldots,n\}$. Thus each Prüfer sequence corresponds to exactly one spanning tree of K_n .

Depth-First Search (DFS).

• Chose a root r a label it.

- lacktriangle Chose a root r a label it.
- 2 Let v := r

- Chose a root r a label it.
- \bigcirc Let v := r
- 3 Label a non-labeled neighbor w of v, v := r, otherwise go up.

- \bigcirc Chose a root r a label it.
- \bigcirc Let v := r
- **3** Label a non-labeled neighbor w of v, v := r, otherwise go up.

- ① Chose a root r a label it.
- \bigcirc Let v := r
- **3** Label a non-labeled neighbor w of v, v := r, otherwise go up.

Breadth-first search (BFS)

• Chose a root r a label it.

- lacktriangle Chose a root r a label it.
- 2 Let v := r

- Chose a root r a label it.
- \bigcirc Let v := r
- 3 Label all non-labeled neighbors w of v, otherwise go up.

- \bigcirc Chose a root r a label it.
- \bigcirc Let v := r
- \odot Label all non-labeled neighbors w of v, otherwise go up.

- \bigcirc Chose a root r a label it.
- \bigcirc Let v := r
- \odot Label all non-labeled neighbors w of v, otherwise go up.

Weighted graphs

Definition:

A weighted graph is a graph, in which each edge has a weight (some real number).

Weighted graphs

Definition:

A weighted graph is a graph, in which each edge has a weight (some real number). Formally G = (V, E, w), where $w: E \to \mathbb{R}^+$.

Weighted graphs

Definition:

A weighted graph is a graph, in which each edge has a weight (some real number). Formally G = (V, E, w), where $w: E \to \mathbb{R}^+$. The weight of a graph is the sum of the weights of all edges:

$$w(G) = \sum_{e \in E} w(e).$$

Definition:

A weighted graph is a graph, in which each edge has a weight (some real number). Formally G = (V, E, w), where $w: E \to \mathbb{R}^+$. The weight of a graph is the sum of the weights of all edges:

$$w(G) = \sum_{e \in E} w(e).$$

Definition:

A weighted graph is a graph, in which each edge has a weight (some real number). Formally G = (V, E, w), where $w: E \to \mathbb{R}^+$. The weight of a graph is the sum of the weights of all edges:

$$w(G) = \sum_{e \in E} w(e).$$

Graph G

$$w(G) = \sum_{e \in E} w(e) = 26.$$

Problem:

Problem: Find the shortest trail in the weighted graph from the root S.

Problem: Find the shortest trail in the weighted graph from the

root S.

Solution: Dijkstra's algorithm

Problem: Find the shortest trail in the weighted graph from the

root S.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v)

Problem: Find the shortest trail in the weighted graph from the root *S*.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v)

p(v) – a neighbor of v on the path

Problem: Find the shortest trail in the weighted graph from the root S.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v)

p(v) – a neighbor of v on the path

1 Let I(s) = 0, $I(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V$

Problem: Find the shortest trail in the weighted graph from the root S.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v) p(v) – a neighbor of v on the path

- ① Let I(s) = 0, $I(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V$
- ② Let $S = \emptyset$. Unless $S \neq V$ do

Problem: Find the shortest trail in the weighted graph from the root S.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v) p(v) – a neighbor of v on the path

- ① Let I(s) = 0, $I(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V$
- 2 Let $S = \emptyset$. Unless $S \neq V$ do
 - pick $u \in V \setminus S$ with minimal I(u) and add it to S

Problem: Find the shortest trail in the weighted graph from the root S.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v) p(v) – a neighbor of v on the path

- 1 Let I(s) = 0, $I(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V$
- ② Let $S = \emptyset$. Unless $S \neq V$ do
 - pick $u \in V \setminus S$ with minimal I(u) and add it to S
 - ② $\forall v \in V \setminus S : uv \in E(G)$ and I(v) > I(u) + w(vu) set I(v) = I(u) + w(vu) and p(v) = u if it is smallest than the previous one, then we put it in the table

Problem: Find the shortest trail in the weighted graph from the root S.

Solution: Dijkstra's algorithm

I(v) – distances (the weight of a path from s to v) p(v) – a neighbor of v on the path

- 1 Let I(s) = 0, $I(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V$
- ② Let $S = \emptyset$. Unless $S \neq V$ do
 - pick $u \in V \setminus S$ with minimal I(u) and add it to S
 - ② $\forall v \in V \setminus S : uv \in E(G)$ and I(v) > I(u) + w(vu) set I(v) = I(u) + w(vu) and p(v) = u if it is smallest than the previous one, then we put it in the table

Problem: Find the shortest trail in the weighted graph from the root S.

Solution: Dijkstra's algorithm

- I(v) distances (the weight of a path from s to v) p(v) a neighbor of v on the path
 - 1 Let I(s) = 0, $I(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V$
 - ② Let $S = \emptyset$. Unless $S \neq V$ do
 - pick $u \in V \setminus S$ with minimal I(u) and add it to S
 - ② $\forall v \in V \setminus S : uv \in E(G)$ and I(v) > I(u) + w(vu) set I(v) = I(u) + w(vu) and p(v) = u if it is smallest than the previous one, then we put it in the table

The shortest path from s to v is $v, p(v), p(p(v)), \ldots, s$.

	1	2	3	4	5	S
1	0	8	8	8	8	1
2	χ	3	3	~	5	2
3	X	X	3	5	5	3
4	×	X	X	5	4	5
5	×	×	X	5	×	4

	1	2	3	4	5_
1	Q	0	Q	Q	0
2	χ	7	1	0	1
3	X	×	1	2	1
4	X	×	X	2	3
5	X	Y	X	2	X

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	Х	3	3	00	5	

	1	2	3	4	5
1	0	0	0	0	0
2				0	

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2

	1	2	3	4	5
	0				
2	X	1	1	0	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	5	5	

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	Х	X	1	2	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	Х	Х	3	5	5	3

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X	1	2	$\overline{1}$

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	5	5	3
4	X	X	X	5	4	

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X	1	2	1
4	X	X	X	2	3

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	5	5	3
4	X	X	X	5	4	5

	1	2	3	4	5
	0				0
2	Х	1	1	0	1
3	X	X	1	2	1
4	X	X	X	2	3

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	5	5	3
4	X	X	X	5	4	5
5	X	X	X	5	X	

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X	1	2	1
4	X	X	X	2	3
5	X	X	X	2	X

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	5	5	3
4	X	X	X	5	4	5
5	X	Х	Х	5	X	4

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X	1	2	1
4	X	X	X	2	3
5	X	X	X	2	X

Definition:

A minimum spanning tree in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Definition:

A minimum spanning tree in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Uwaga: Remark: The minimum spanning tree may not be unique.

Definition:

A minimum spanning tree in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Uwaga: Remark: The minimum spanning tree may not be unique. However, if the weights of all the edges are pairwise distinct, it is indeed unique.

Let
$$T = (V, E)$$
 be a tree of size $|E| = m$

Let
$$T = (V, E)$$
 be a tree of size $|E| = m$

• $T = (V, E_1), E_1 = \emptyset, (T - \text{forest of isolated vertices})$

Let
$$T = (V, E)$$
 be a tree of size $|E| = m$

- $T = (V, E_1), E_1 = \emptyset, (T \text{forest of isolated vertices})$
- ② Let $e_1, \ldots, e_m : w(e_1) \le w(e_2) \le \ldots w(e_m)$

Let T = (V, E) be a tree of size |E| = m

- $T = (V, E_1), E_1 = \emptyset, (T \text{forest of isolated vertices})$
- ② Let $e_1, ..., e_m : w(e_1) \le w(e_2) \le ... w(e_m)$
- **③** for i = 1, ..., m if $e_i = uv$ for u and v in different componets of T, then $e_i ∈ E_1$

Let T = (V, E) be a tree of size |E| = m

- **1** $T = (V, E_1), E_1 = \emptyset, (T \text{forest of isolated vertices})$
- ② Let $e_1, \ldots, e_m : w(e_1) \le w(e_2) \le \ldots w(e_m)$
- **③** for i = 1, ..., m if $e_i = uv$ for u and v in different componets of T, then $e_i ∈ E_1$

Let T = (V, E) be a tree of size |E| = m

- **1** $T = (V, E_1), E_1 = \emptyset, (T \text{forest of isolated vertices})$
- ② Let $e_1, ..., e_m : w(e_1) \le w(e_2) \le ... w(e_m)$
- **③** for i = 1, ..., m if $e_i = uv$ for u and v in different componets of T, then $e_i ∈ E_1$

$$v_3v_5$$
, v_2v_4 , v_1v_3 , v_1v_2 , v_1v_5 , v_3v_4 , v_3v_6

$$E_1 = (v_3v_5, v_2v_4, v_1v_3, v_1v_2)$$

Prim algorithm

Prim algorithm similar to Dijkstra (we count distances to the tree not a vertex).

Prim algorithm similar to Dijkstra (we count distances to the tree not a vertex).

k(v) – a distance form a tree

- k(v) a distance form a tree
- p(v) a neighbor of v in the tree

- k(v) a distance form a tree p(v) a neighbor of v in the tree
 - ① Take any $s \in V$ and let I(s) = 0, $k(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V(S)$

- k(v) a distance form a tree p(v) a neighbor of v in the tree
 - Take any $s \in V$ and let I(s) = 0, $k(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V(S)$
 - 2 Let $S = \emptyset$. Unless $S \neq V$ do

- k(v) a distance form a tree p(v) a neighbor of v in the tree
 - Take any $s \in V$ and let I(s) = 0, $k(v) = \infty$ for $v \neq s$ and p(v) = 0 for $v \in V(S)$
 - 2 Let $S = \emptyset$. Unless $S \neq V$ do
 - pick $u \in V \setminus S$ with minimal k(u) and add it to S

- k(v) a distance form a tree p(v) a neighbor of v in the tree
 - ① Take any $s \in V$ and let I(s) = 0, k(v) = ∞ for $v \neq s$ and p(v) = 0 for $v \in V(S)$
 - 2 Let $S = \emptyset$. Unless $S \neq V$ do
 - pick $u \in V \setminus S$ with minimal k(u) and add it to S
 - $\forall v \in V \setminus S : uv \in E(G) \text{ and } k(v) > (vu) \text{ set } k(v) = w(vu) \\ \text{and } p(v) = u \text{ moreover } E_1 = \{vp(v) : v \in S\}$

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	

	1	2	3	4	5
	0				
2	X	1	1	0	1

_		1	2	3	4	5	S
	1	0	00	00	00	00	1
-	2	X	3	3	00	5	2

	1				
	0				
2	Х	1	1	0	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	2	5	

				4	
1	0	0	0	0	0
2	Х	1	1	0	1
3	X	X	1	2	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	2	5	4

	1	2	3	4	5
	0				0
	X				1
3	X	X	1	2	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	2	5	4

			3	- 1	5
1				0	0
2	X	1	1	0	1
3	X	X	1	2	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	Х	3	2	5	4

				4	
	0				0
2	Х	1	1	0	1
3	Х	X	1	2	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	2	5	4
4	X	Х	3	X	5	

	1	2	3	4	5
1	0	0	0	0	0
2	Х	1	1	0	1
3	X	X		2	1
4	X	X	1	X	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	2	5	4
4	X	X	3	X	5	3

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X		2	1
4	X	X	1	X	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	X	3	3	00	5	2
3	X	X	3	2	5	4
4	X	X	3	X	5	3

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X	1	2	1
$\overline{4}$	X	X	1	X	1

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	Х	3	3	00	5	2
3	Х	X	3	2	5	4
4	X	X	3	X	5	3
5	X	X	X	X	1	

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	X	1	2	1
4	X	X	1	X	1
5	x	\mathbf{x}	x	x	3

		1	2	3	4	5	S
-	1	0	00	00	00	00	1
4	2	X	3	3	00	5	2
	3	X	X	3	2	5	4
4	4	X	X	3	X	5	3
	5	X	X	X	X	1	5

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	х	1	2	1
4	X	X	1	X	1
5	x	X	\mathbf{x}	x	3

	1	2	3	4	5	S
1	0	00	00	00	00	1
2	Х	3	3	00	5	2
3	Х	Х	3	2	5	4
4	X	X	3	X	5	3
5	X	X	X	X	1	5

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X	х	1	2	1
4	X	X	1	X	1
5	х	х	x	X	3

	1	2	3	4	5
1	0	0	0	0	0
2	X	1	1	0	1
3	X		1	2	1
4	X	X	1	X	1
5	Х	X	X	X	3