



Calculer l'aire des 3 figures suivantes.





- 1. Calculer le périmètre du carré en cm.
- 2. Calculer l'aire du carré en cm<sup>2</sup>.
- 3. Calculer le périmètre du rectangle en cm.
- 4. Calculer l'aire du rectangle en cm<sup>2</sup>.
- 5. Calculer le périmètre du triangle rectangle en cm.
- 6. Calculer l'aire du triangle rectangle en cm<sup>2</sup>.

6M11-1





Calculer l'aire des 3 figures suivantes.

6M11-1





- 1. Calculer le périmètre du carré en cm.
- 2. Calculer l'aire du carré en cm<sup>2</sup>.
- 3. Calculer le périmètre du rectangle en cm.
- 4. Calculer l'aire du rectangle en cm<sup>2</sup>.
- 5. Calculer le périmètre du triangle rectangle en cm.
- 6. Calculer l'aire du triangle rectangle en cm<sup>2</sup>.





Calculer l'aire des triangles suivants

6M20







1.

Calculer l'aire des disques suivants. Donner la valeur exacte et une valeur approchée au dixième près.

6M22-1





1.

2.



Calculer l'aire des parallélogrammes suivants

5M10







#### Corrections '



- 1.  $\mathcal{P}_{FGHI} = 6 \text{ cm} + 6 \text{ cm} + 6 \text{ cm} + 6 \text{ cm} = 24 \text{ cm}$
- **2.**  $A_{FGHI} = 6 \text{ cm} \times 6 \text{ cm} = 36 \text{ cm}^2$
- **3.**  $\mathcal{P}_{JKLM} = 4$  cm + 3 cm + 4 cm + 3 cm = 14 cm
- **4.**  $A_{JKLM} = 4 \text{ cm} \times 3 \text{ cm} = 12 \text{ cm}^2$
- 5.  $\mathcal{P}_{NOP} = 4$  cm + 4 cm + 5,7 cm = 13.7 cm
- **6.**  $A_{NOP} = 4 \text{ cm} \times 4 \text{ cm} \div 2 = 8 \text{ cm}^2$



- 1.  $\mathcal{P}_{FGHI} = 4$  cm + 4 cm + 4 cm + 4 cm = 16 cm
- **2.**  $A_{FGHI} = 4 \text{ cm} \times 4 \text{ cm} = 16 \text{ cm}^2$
- **3.**  $P_{JKLM} = 5$  cm + 3 cm + 5 cm + 3 cm = 16 cm
- 4.  $A_{JKLM} = 5 \text{ cm} \times 3 \text{ cm} = 15 \text{ cm}^2$
- 5.  $\mathcal{P}_{NOP} = 2 \text{ cm} + 2 \text{ cm} + 2.8 \text{ cm} = 6.8 \text{ cm}$
- **6.**  $A_{NOP} = 2 \text{ cm} \times 2 \text{ cm} \div 2 = 2 \text{ cm}^2$



- 1.  $\mathcal{A}_{CDE} = \frac{1}{2} \times CD \times FE = \frac{1}{2} \times 5 \text{ cm} \times 6 \text{ cm} = 15 \text{ cm}^2$
- 2.  $\mathcal{A}_{GHI} = \frac{1}{2} \times GH \times JI = \frac{1}{2} \times 6 \text{ cm} \times 3 \text{ cm} = 9 \text{ cm}^2$



- 1.  $A_1 = 8 \times 8 \times \pi = 64\pi \approx 201,1$  cm<sup>2</sup>
- 2.  $A_1 = \frac{8}{2} \times \frac{8}{2} \times \pi = 16\pi \approx 50.3 \text{ cm}^2$





- 1. Dans chaque parallélogramme, le segment en pointillés est perpendiculaire à deux côtés opposés, c'est donc une hauteur.
  - Pour obtenir l'aire, il faut multiplier cette **hauteur** par la longueur de la **base** correspondante.

 $\mathcal{A}_{HIJK} = 6 \text{ cm} \times 4 \text{ cm} = 24 \text{ cm}^2$ 

- 2. Dans chaque parallélogramme, le segment en pointillés est perpendiculaire à deux côtés opposés, c'est donc une hauteur.
  - Pour obtenir l'aire, il faut multiplier cette hauteur par la longueur de la base correspondante. $\mathcal{A}_{LMNO}=3$  cm  $\times$  2 cm =6 cm<sup>2</sup>