

DATA AUGMENTATION OF MAGNETOGRAMS FOR SOLAR

Allison Liu Mentor: Dr. Wendy Carande

MOTIVATION

Solar Research

We care to characterize and understand the Sun...it gives us life!

Protecting Astronauts

High-energy solar radiation is harmful to the human body and can cause biological damage

Space Exploration

Accurate solar flare prediction is a concern that inhibits space travel

Communications

Large solar flares can disrupt critical infrastructure like the power grid, GPS, and radio communications

Source: NASA Source: NASA Source: NASA Source: NOAA

Solar flare prediction is done largely by humans → Machine Learning ~2010

DATA

We use line-of-sight magnetograms:

- from the SOHO/MDI magnetogram dataset (96m cadence)
- from the SDO/HMI magnetogram dataset (720s cadence)

METHODS: IMAGE TRANSLATION

Image-to-Image Translation: generate a synthetic version of an given image with a modification

Good for super-resolution problems!

METHODS

Generative Adversarial Network (GAN) - 2014

MODEL EXPLORATION

Image Translation: Most models require INPUT→ OUTPUT image training pairs

Pix2Pix (2016)

"General Purpose"

Paired

Isola et. al. 2016

CycleGAN (2017)

Unpaired

Zhu et. al. 2017

CUT (2020)

Model training is faster and less memory-intensive

Unpaired

Park et. al. 2020

RESULTS

200 epochs

200 epochs

400 epochs

CONCLUSION

Goal: Create a dataset of super-resolved SOHO/MDI images of SDO/HMI quality

- Identified data overlap
- Created image training pairs
- Tested 3 GAN models to upsample the MDI images
 - Pix2Pix introduced some strange image artifacts
 - CycleGAN and CUT worked well

Takeaways:

- Start simple
- Modify existing and well-documented models
- This technique shows promise for creating a high-quality combined solar magnetogram dataset!

Next steps:

- Rotate MDI images in preprocessing
- Get a quantitative error calculation -- RMS Error
- Training, getting a new GPU!
 - More iterations
 - Training on full-sized images
 - Patchwise

ACKNOWLEDGEMENTS

Dr. Wendy Carande

Dr. Andrés Muñoz-Jaramillo

Katy Luttrell

This research was funded by the SWx TREC Deep Learning Lab.

APPENDIX - CYCLEGAN

Patchwise contrastive learning

Feature extraction

Park et. al. 2020

Discriminator Loss:

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

GAN Loss:

$$\begin{split} \mathcal{L}_{cGAN}(G,D) = & \mathbb{E}_{x,y}[\log D(x,y)] + \\ & \mathbb{E}_{x,z}[\log(1-D(x,G(x,z))], \end{split}$$

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1].$$

$$G^* = rg \min_{G} \max_{D} \mathcal{L}_{cGAN}(G,D) + \lambda \mathcal{L}_{L1}(G).$$

Isola et. al. 2016