Solving a System of Linear Equations Graphically

Warm up: Here's a Google map of the area near our school. Can you identify an intersection on the map?

Similarly, a point of intersection in math is a point where 2 or more lines cross on the graph. Today, we are going to solve graphically for a point of intersection of a system of linear equations!

A system of equations is a _______ Collection ___ of equations. Hence, a system of linear equations is a collection of ______ equations. When we have a system of equations, we can often solve for the point(s) of intersection, also known as the $\underline{solution(s)}$ to the system of equations. root(s)

Example 1: Plot the two linear relations on the same plane:

Observations:

The two lines intersect (meet) at the point $(\frac{4}{5},\frac{3}{2})$. This point <u>lies</u> on BOTH straight lines, y = -x + 1and y = -2x + 5. Thus,

(4,-3) is said to satisfy both linear equations.

Furthermore, $(4, \frac{3}{2})$ is said to be the SOLUTION to the linear system

$$\begin{cases} y = -x + 1 \\ y = -2x + 5 \end{cases}$$

Because (4,-3) satisfies both linear equations

For $y = -x + 1$					
LS	RS				
y	-2+1				
= -3	= - (4)+1				
	= -3				

		7			•	
What can we do to make sure that our solution is indeed correct?						
						0
For $y = -x + 1$			For 21 - 201 E		since LS=RS	450
LS	RS		LS	RS	both lines,	,
y	-x+1		4	-2×15		J. mot
= -3	= - (4)+1		3	-2×+5 = -2(4)+5	(4,-3) 15 1	M PUI
	= -3			= -3		

Example 2: Verify whether or not (7, -3) is the solution to the linear system $\begin{cases} y = 2x - 17 \\ y = -3x - 2 \end{cases}$

The 2. Verify whether of not
$$(7, -3)$$
 is the solution to the linear system $y = -3x - 2$

$$y = 2x - 17$$

$$y = -3x - 2$$

$$(7, -3)$$
 is Not the PoI |
$$y = -3x - 2$$

$$(7, -3)$$
 is Not the PoI |
$$y = -3x - 2$$

$$(7, -3)$$
 is Not the PoI |
$$y = -3x - 2$$

$$(7, -3)$$
 is Not the PoI |
$$y = -3x - 2$$

$$(7, -3)$$
 is Not the PoI |

For
$$x + y = 5$$

$$x = 5$$

For
$$x - y = 1$$

$$x = 1$$

$$y = 1$$

Observations:

Do you think there will always be a point of intersection for a system of linear equations?

Example 4: Find the solution to this linear system
$$y = \frac{1}{2}x + 3$$

$$2x + 4y = 8$$

$$2x + 4y = 8$$

$$x = 4$$

$$(4,0)$$

$$(0,2)$$
Observations:

Parallel and distinct

lines!

So how can we know without graphing that a linear system will have a point of intersection or not? $y = m \pi + b$

- · Infinite solutions: same slopes + same y-int's (identical lines)
- · NO solutions: same slopes but diff yrint's (parallel and disknot)
- · 1 solution: diff slopes (y-int doesn't matter)