Undecidability

Beulah A.

AP/CSE

Revisit - TM

• A Turing machine (TM) is a 7-tuple

$$M = (Q \cup \{h_a, h_r\}, \Sigma, \Gamma, \delta, q_0, B, F)$$
 where

- Q A finite set of states of the finite control. $Q + h_a$ and h_r
- Σ A finite set of input symbols
- Γ A set of tape symbols, with Σ being a subset
- q_0 The start state, in Q
- *B* The blank symbol in Γ , *not* in Σ (should not be an input symbol)
- *F T*he set of final or accepting states

Example

 $L = \{xx \mid x \in (a,b)^*\}$

Parsing example with h_a,h_r

$q_0\Delta aba$	$\vdash \Delta q_1 aba$	$\vdash \Delta Aq_2ba$	$\vdash^* \Delta Abaq_2\Delta$	$\vdash \Delta Abq_3a$
	$\vdash \Delta Aq_4bA$	$\vdash \Delta q_4 AbA$	$\vdash \Delta Aq_1bA$	$\vdash \Delta ABq_2A$
	$\vdash \Delta Aq_3BA$	$\vdash \Delta A h_r B A$	(reject)	
$q_0\Delta ab$	$\vdash \Delta q_1 ab$	$\vdash \Delta Aq_2b$	$\vdash \Delta Abq_2\Delta$	$\vdash \Delta Aq_3b\Delta$
	$\vdash \Delta q_4 A B$	$\vdash \Delta Aq_1B$	$\vdash \Delta q_5 AB$	$\vdash q_5 \Delta a B$
	$\vdash \Delta q_6 a B$	$\vdash \Delta Aq_8B$	$\vdash \Delta Ah_r B$	(reject)
$q_0\Delta aa$	$\vdash \Delta q_1 aa$	$\vdash \Delta Aq_2a$	$\vdash \Delta Aaq_2\Delta$	$\vdash \Delta Aq_3a\Delta$
	$\vdash \Delta q_4 A A$	$\vdash \Delta Aq_1A$	$\vdash \Delta q_5 A A$	$\vdash q_5 \Delta a A$
	$\vdash \Delta q_6 a A$	$\vdash \Delta Aq_8A$	$\vdash \Delta q_9 A$	$\vdash \Delta Aq_6\Delta$
	$\vdash \Delta A h_a \Delta$	(accept)		

Recursive (R) and Recursively Enumerable(RE) Languages

Decidability vs. Undecidability

• There are two types of TMs (based on halting):

(Recursive)

TMs that always halt, no matter accepting or non-accepting ≡ DECIDABLE PROBLEMS

(Recursively enumerable)

TMs that are guaranteed to halt only on acceptance. If non-accepting, it may or may not halt (i.e., could loop forever).

- Undecidability:
 - Undecidable problems are those that are <u>not</u> recursive

Recursive Language

- A Language L is Recursive if and only if there is a TM that decides L.
 - Let $M=(Q, \Sigma, \Gamma, \delta, q_0, B, H)$ such that
 - $H = \{h_a, h_r\}$
 - $L \subseteq \Sigma^*$ Is a language
 - Assume that the initial configuration of the TM is (q_0, w)
 - M decides L if, for all strings $w \in \Sigma^*$
 - Either $w \in L$, in which case M accepts w
 - Or w ∉ L, then M rejects w

Recursive Enumerable Language

- A Language L is Recursive Enumerable if and only if there is a TM that semidecides L.
 - Let $M=(Q, \Sigma, \Gamma, \delta, q_0, B, H)$ such that
 - $H = \{h_a, h_r\}$
 - $L \subseteq \Sigma^*$ Is a language
 - Assume that the initial configuration of the TM is (q_0, w)
 - M semidecides L if, for all strings $w \in \Sigma^*$
 - Either $w \in L$, in which case M accepts w
 - Or $w \notin L$, then M does not halt

Recursive Languages & Recursively Enumerable (RE) languages

• Any TM for a <u>Recursive</u> language is going to look like this:

• Any TM for a <u>Recursively Enumerable</u> (RE) language is going to look like this:

Closure Properties of Recursive (R) and Recursively Enumerable(RE) Languages

Recursive Languages are closed under complementation

• If L is Recursive, L is also Recursive

Are Recursively Enumerable Languages closed under complementation? (NO)

• If L is RE, L need not be RE

Recursive Langs are closed under Union

- Let $M_u = TM$ for $L_1 \cup L_2$
- M_{ij} construction:
 - 1. Make 2-tapes and copy input w on both tapes
 - 2. Simulate M_1 on tape 1
 - 3. Simulate M_2 on tape 2
 - 4. If either M_1 or M_2 accepts, then M_u accepts
 - 5. Otherwise, M_u rejects.

Recursive Langs are closed under Intersection

- Let $M_n = TM$ for $L_1 \cap L_2$
- \bullet M_n construction:
 - 1. Make 2-tapes and copy input w on both tapes
 - 2. Simulate M_1 on tape 1
 - 3. Simulate M_2 on tape 2
 - 4. If either M_1 AND M_2 accepts, then M_n accepts
 - 5. Otherwise, M_n rejects.

Other Closure Property Results

- Recursive languages are also closed under:
 - Concatenation
 - Kleene closure (star operator)
 - Homomorphism, and inverse homomorphism
- RE languages are closed under:
 - Union, intersection, concatenation, Kleene closure

- RE languages are *not* closed under:
 - complementation