Introdução

O dataset em anexo contém informações baixadas em Tableau Free Public Datasets, com a seguinte descrição:

Carga Global de Doenças - Estimando a carga de doenças, lesões e fatores de risco globalmente nos anos de 1970 e 2010. Fonte: Instituto de Métricas e Avaliação de Saúde (IHME)

O conjunto de dados contém as seguintes colunas:

- 1. Country Code: Um código que representa o país.
- 2. Country Name: O nome do país.
- 3. Year: O ano dos dados.

Death Rate Per 100,000 object

dtype: object

- 4. Age Group: O grupo etário dos indivíduos.
- 5. Sex: O sexo dos indivíduos (Masculino, Feminino, Ambos).
- 6. Number of Deaths: O número de mortes.
- 7. Death Rate Per 100,000: A taxa de mortalidade por 100.000 indivíduos.

O objetivo desse notebook é fazer uma análise exploratória com algumas perguntas para compreender melhor o comportamento dos dados, identificar padrões, tendências, discrepâncias e levantar hipóteses.

Análise geral do Dataset

```
In [1]:
        import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
In [2]:
        from google.colab import drive
        drive.mount('/content/drive')
        Mounted at /content/drive
In [3]: taxa = pd.read csv('/content/drive/MyDrive/python dados/IHME GBD 2010 MORTALITY AGE SPECIFIC BY COUNTRY 1970 20
        taxa.shape
In [4]:
         (58905, 7)
Out[4]:
        taxa.head()
In [5]:
                                                            Sex Number of Deaths Death Rate Per 100,000
Out[5]:
           Country Code Country Name Year Age Group
        0
                                                                            19,241
                                                                                                318,292.90
                             Afghanistan 1970
                                                 0-6 days
                                                            Male
        1
                    AFG
                             Afghanistan 1970
                                                 0-6 days Female
                                                                            12,600
                                                                                                219,544.20
         2
                                                                            31,840
                                                                                                270,200.70
                    AFG
                             Afghanistan 1970
                                                 0-6 days
                                                            Both
                    AFG
                                                                                                 92,701.00
        3
                             Afghanistan 1970
                                                7-27 days
                                                            Male
                                                                            15.939
                    AFG
                             Afghanistan 1970
                                                7-27 days Female
                                                                            11,287
                                                                                                 68,594.50
In [6]: taxa.dtypes
Out[6]:
                  Country Code object
                 Country Name object
                                 int64
                          Year
                     Age Group object
                           Sex object
              Number of Deaths object
```

Therefore and a consideral ID-set Date Decided 200 and a little base of Date by the consideration of the set of the consideration of th

Iransformando a variavei "Death Kate Per 100,000" e "Number of Deaths" em valores tipo float e int, respectivamente,

```
para podermos realizar os cálculos necessários.
   In [7]: taxa['Death Rate Per 100,000']=taxa['Death Rate Per 100,000'].str.replace(',','').astype(float)
   In [8]: taxa['Number of Deaths']=taxa['Number of Deaths'].str.replace(',','').astype(int)
   In [9]: taxa.isnull().sum()
   Out[9]:
                                                                   0
                                        Country Code 0
                                      Country Name 0
                                                        Year 0
                                             Age Group 0
                                                          Sex 0
                                Number of Deaths 0
                     Death Rate Per 100.000 0
                    dtype: int64
 In [10]: taxa['Country Name'].unique()
'China', "Cote d'Ivoire", 'Cameroon',
'Congo, the Democratic Republic of the', 'Congo', 'Colombia',
'Comoros', 'Cape Verde', 'Costa Rica', 'Cuba', 'Cyprus',
'Czech Republic', 'Germany', 'Djibouti', 'Dominica', 'Denmark',
'Dominican Republic', 'Algeria', 'Ecuador', 'Egypt', 'Eritrea',
'Spain', 'Estonia', 'Ethiopia', 'Finland', 'Fiji', 'France',
'Micronesia, Federated States of', 'Gabon', 'United Kingdom',
'Georgia', 'Ghana', 'Guinea', 'Gambia', 'Guinea-Bissau',
'Equatorial Guinea', 'Greece', 'Grenada', 'Guatemala', 'Guyana',
'Honduras', 'Croatia', 'Haiti', 'Hungary', 'Indonesia', 'India',
'Ireland', 'Iran, Islamic Republic of', 'Iraq', 'Iceland',
'Israel', 'Italy', 'Jamaica', 'Jordan', 'Japan', 'Kazakhstan',
'Kenya', 'Kyrgyzstan', 'Cambodia', 'Kiribati',
```

```
'Israel', 'Italy', 'Jamaica', 'Joruan, Japan, 'Kenya', 'Kyrgyzstan', 'Cambodia', 'Kiribati', 'Korea, Republic of', 'Kuwait', "Lao People's Democratic Republic", 'Lebanon', 'Liberia', 'Libyan Arab Jamahiriya', 'Saint Lucia', 'Lesotho', 'Lithuania', 'Luxembourg', 'Latvia', 'Mexico'.
                                                      'Sri Lanka', 'Lesotho', 'Lithuania', 'Luxembourg', 'Latvia',
'Morocco', 'Moldova', 'Madagascar', 'Maldives', 'Mexico',
'Marshall Islands', 'Macedonia, the Former Yugoslav Republic of',
'Mali', 'Malta', 'Myanmar', 'Montenegro', 'Mongolia', 'Mozambique',
'Mauritania', 'Mauritius', 'Malawi', 'Malaysia', 'Namibia',
'Niger', 'Nigeria', 'Nicaragua', 'Netherlands', 'Norway', 'Nepal',
'New Zealand', 'Oman', 'Pakistan', 'Panama', 'Peru', 'Philippines',
                                                        'Papua New Guinea', 'Poland'
                                                      "Korea, Democratic People's Republic of", 'Portugal', 'Paraguay', 'Occupied Palestinian Territory', 'Qatar', 'Romania', 'Russian Federation', 'Rwanda', 'Saudi Arabia', 'Sudan', 'Senegal', 'Singapore', 'Solomon Islands', 'Sierra Leone', 'El Salvador', 'Somalia', 'Serbia', 'Sao Tome and Principe', 'Suriname', 'Slovakia', 'Slovakia', 'Slovakia', 'Sweden', 'Swaziland', 'Sevchelles'
                                                      'Somatla', 'Serbla', 'Sao Tome and Principe', 'Suriname',
'Slovakia', 'Slovenia', 'Sweden', 'Swaziland', 'Seychelles',
'Syrian Arab Republic', 'Chad', 'Togo', 'Thailand', 'Tajikistan',
'Turkmenistan', 'Timor-Leste', 'Tonga', 'Trinidad and Tobago',
'Tunisia', 'Turkey', 'Taiwan', 'Tanzania, United Republic of',
'Uganda', 'Ukraine', 'Uruguay', 'United States', 'Uzbekistan',
                                                        'Saint Vincent and the Grenadines', 'Venezuela', 'Viet Nam',
                                                         'Vanuatu', 'Samoa', 'Yemen', 'South Africa', 'Zambia', 'Zimbabwe'],
                                                    dtype=object)
In [11]: taxa['Year'].unique()
Out[11]: array([1970, 1980, 1990, 2000, 2010])
```

Vamos excluir todas as linhas que possuem o valor 'Both' na coluna 'Sex' pois na variável 'Number of Deaths' é a soma dos dois sexos e em 'Death Rate Per 100,000' é a média ponderada. Isso pode acabar duplicando os valores finais e a distorção dos valores no gráfico.

```
In [12]:
         taxa = taxa.loc[taxa['Sex'] != 'Both']
         taxa
```

Out[12]:		Country Code	Country Name	Year	Age Group	Sex	Number of Deaths	Death Rate Per 100,000
	0	AFG	Afghanistan	1970	0-6 days	Male	19241	318292.9
	1	AFG	Afghanistan	1970	0-6 days	Female	12600	219544.2
	3	AFG	Afghanistan	1970	7-27 days	Male	15939	92701.0
	4	AFG	Afghanistan	1970	7-27 days	Female	11287	68594.5
	6	AFG	Afghanistan	1970	28-364 days	Male	37513	15040.1
	58897	ZWE	Zimbabwe	2010	75-79 years	Female	4720	8713.0
	58899	ZWE	Zimbabwe	2010	80+ years	Male	5699	17281.6
	58900	ZWE	Zimbabwe	2010	80+ years	Female	7606	16179.4
	58902	ZWE	Zimbabwe	2010	All ages	Male	82010	1320.1
	58903	ZWE	Zimbabwe	2010	All ages	Female	77420	1211.2

39270 rows \times 7 columns

Também vamos excluir as colunas que possuem 'All Age' na coluna 'Age Group' pela mesma ideia do 'Both'.

:		Country Code	Country Name	Year	Age Group	Sex	Number of Deaths	Death Rate Per 100,000
	0	AFG	Afghanistan	1970	0-6 days	Male	19241	318292.9
	1	AFG	Afghanistan	1970	0-6 days	Female	12600	219544.2
	3	AFG	Afghanistan	1970	7-27 days	Male	15939	92701.0
	4	AFG	Afghanistan	1970	7-27 days	Female	11287	68594.5
	6	AFG	Afghanistan	1970	28-364 days	Male	37513	15040.1
	58894	ZWE	Zimbabwe	2010	70-74 years	Female	4677	5755.0
	58896	ZWE	Zimbabwe	2010	75-79 years	Male	4407	10365.2
	58897	ZWE	Zimbabwe	2010	75-79 years	Female	4720	8713.0
	58899	ZWE	Zimbabwe	2010	80+ years	Male	5699	17281.6
	58900	ZWE	Zimbabwe	2010	80+ years	Female	7606	16179.4

 $37400 \text{ rows} \times 7 \text{ columns}$

Neste projeto iremos trabalhar apenas com os países da América do Sul.

In [16]: america_sul.head()

Out[16]:		Country Code	Country Name	Year	Age Group	Sex	Number of Deaths	Death Rate Per 100,000
	1575	ARG	Argentina	1970	0-6 days	Male	6425	121527.0
	1576	ARG	Argentina	1970	0-6 days	Female	4739	92984.7
	1578	ARG	Argentina	1970	7-27 days	Male	2458	15763.3
	1579	ARG	Argentina	1970	7-27 days	Female	1842	12219.6
	1581	ARG	Argentina	1970	28-364 days	Male	9092	3745.7

A seguir iremos responder algumas perguntas sobre o novo DataSet para extrairmos informações.

Perguntas

1. Qual país tem a maior média de taxa de mortalidade por 100.000 indivíduos ao longo de todos os anos?

```
In [17]: taxa_media = america_sul.groupby('Country Name')['Death Rate Per 100,000'].mean()
taxa_media = taxa_media.sort_values(ascending=False)
taxa_media
```

Out [17]: Death Rate Per 100,000

Country Name	
Bolivia	9149.7815
Suriname	7702.1300
Guyana	7664.4745
Peru	7121.8885
Brazil	7074.4675
Paraguay	5858.1595
Argentina	5160.6965
Venezuela	4598.6425
Uruguay	4534.4735
Colombia	4323.5900
Chile	4225.7000
Ecuador	4064.4180

dtype: float64

A Bolívia é a que possui maior taxa de mortalidade por 100.000 indivíduos ao longo dos anos.

2. Trace um gráfico de linhas contendo todos os países e a evolução das mortes ao longo dos anos.

```
In [18]: evolucao = america_sul.groupby(['Country Name','Year'])[['Number of Deaths']].sum()
evolucao
```

Out[18]: Number of Deaths

Country Name	Year	
Argentina	1970	211102
	1980	220437
	1990	243728
	2000	273739
	2010	306456
Bolivia	1970	70949
	1980	63454
	1990	59623
	2000	54858
	2010	54623
Brazil	1970	875096
	1980	888350
	1990	886886
	2000	1012174
	2010	1209844
Chile	1970	83675
	1980	75082
	1990	80575
	2000	80607
	2010	96913
Colombia	1970	149986
	1980	149874

	1990	172752
	2000	206104
	2010	228681
Ecuador	1970	59184
	1980	54868
	1990	51938
	2000	60177
	2010	64902
Guyana	1970	5797
	1980	6219
	1990	6232
	2000	5831
	2010	5641
Paraguay	1970	15467
	1980	17817
	1990	18910
	2000	24764
	2010	33757
Peru	1970	200712
	1980	136093
	1990	131137
	2000	118514
	2010	129895
Suriname	1970	2937
	1980	2895
	1990	2695
	2000	2939
	2010	3110
Uruguay	1970	26754
	1980	28405
	1990	29310
	2000	31669
	2010	32216
Venezuela	1970	64009
	1980	73241
	1990	85113
	2000	105456
	2010	145098

```
In [19]: plt.figure(figsize=(12, 6))

sns.lineplot(
    data=evolucao,
    x='Year',
    y='Number of Deaths',
    hue='Country Name',
    marker='o',
    palette='tab20'
)

plt.title('Evolução do Número de Mortes na América do Sul')
plt.xlabel('Ano')
plt.ylabel('Número de Mortes')
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.grid(True)
plt.tight_layout()
plt.show()
```


É possível perceber que o Brasil sempre apresentou o maior número de mortes ao longo do período analisado, com um aumento acentuado a partir de 1990. Países como Argentina, Colômbia e Venezuela também registraram um crescimento contínuo no número de óbitos. Um destaque positivo é o Peru, que mostra uma tendência de queda nas mortes ao longo dos anos. Por fim, os demais países não apresentaram variações significativas, mantendo-se relativamente estáveis em relação a essa variável.

3. Existem diferenças significativas nas taxas de mortalidade entre homens e mulheres em diferentes grupos etários para os países da América do Sul?

In [20]: grupo = america_sul.groupby(['Country Name', 'Sex', 'Age Group'])[['Death Rate Per 100,000']].mean().reset_inde
grupo

	Country Name	Sex	Age Group	Death Rate Per 100,000
C) Argentina	Female	0-6 days	55991.14
1	L Argentina	Female	1-4 years	137.30
2	2 Argentina	Female	10-14 years	33.84
3	3 Argentina	Female	15-19 years	61.30
4	Argentina	Female	20-24 years	74.84
475	V enezuela	Male	65-69 years	2879.76
476	S Venezuela	Male	7-27 days	6995.16
477	V enezuela	Male	70-74 years	4321.16
478	S Venezuela	Male	75-79 years	6223.20
479	Venezuela	Male	80+ years	11954.52

480 rows \times 4 columns

```
In [21]:
    plt.figure(figsize=(14, 8))
    sns.boxplot(
        data=america_sul,
        x='Age Group',
        y='Death Rate Per 100,000',
        hue='Sex'
    )
    plt.title('Comparação da Taxa de Mortalidade entre Homens e Mulheres por Faixa Etária (América do Sul)')
    plt.xlabel('Faixa Etária')
    plt.ylabel('Taxa de Mortalidade por 100.000')
    plt.legend(title='Sexo')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


É possível observar que, nas faixas etárias iniciais, a taxa de mortalidade é mais acentuada, com uma diferença perceptível entre os gêneros: os homens apresentam uma mediana de mortalidade mais elevada que as mulheres. Durante a infância e a fase adulta, essa diferença de gênero não é tão expressiva, embora haja um aumento gradual na taxa de mortalidade com o avanço da idade. Já a partir dos 60 anos, a diferença volta a se destacar, com os homens apresentando, de forma predominante, taxas medianas de mortalidade superiores às das mulheres.

4. Como a taxa de mortalidade por 100.000 indivíduos varia entre diferentes grupos etários dentro do Brasil? Utilize um histograma contendo a distribuição das mortes por ano para cada uma das faixas etárias.

```
brasil = america sul.loc[america sul['Country Name'] == 'Brazil']
In [22]:
          brasil.head()
Out[22]:
                Country Code Country Name Year
                                                    Age Group
                                                                       Number of Deaths Death Rate Per 100,000
          7245
                                                                                   52758
                                                                                                         161760.0
                         BRA
                                        Brazil 1970
                                                       0-6 days
                                                                  Male
          7246
                                                                                                         115954.1
                         BRA
                                        Brazil 1970
                                                       0-6 days
                                                               Female
                                                                                   36142
          7248
                         BRA
                                       Brazil 1970
                                                      7-27 days
                                                                                   28889
                                                                                                          30202.6
                                                                  Male
                                                                                   24198
                                                                                                          26378.9
          7249
                          BRA
                                        Brazil 1970
                                                      7-27 days
                                                               Female
          7251
                         BRA
                                        Brazil 1970 28-364 days
                                                                  Male
                                                                                  110478
                                                                                                           7502.2
          dist ano = brasil.groupby(['Year', 'Age Group'])[['Number of Deaths']].sum().reset index()
In [23]:
          dist ano
```

:		Year	Age Group	Number of Deaths
	0	1970	0-6 days	88900
	1	1970	1-4 years	69628
	2	1970	10-14 years	9294
	3	1970	15-19 years	13777
	4	1970	20-24 years	16978
	95	2010	65-69 years	97168
	96	2010	7-27 days	7439
	97	2010	70-74 years	118027
	98	2010	75-79 years	121809
	99	2010	80+ years	341104

100 rows × 3 columns

```
In [24]: df_plot = dist_ano[dist_ano['Age Group'] != 'All ages']

df_pivot = df_plot.pivot(index='Year', columns='Age Group', values='Number of Deaths')

cores = sns.color_palette("tab20", n_colors=len(df_pivot.columns))

plt.figure(figsize=(16, 8))

df_pivot.plot.area(color=cores, legend=True, figsize=(16, 8))

plt.title('Distribuição das Mortes por Ano e Faixa Etária (Brasil)', fontsize=16)

plt.xlabel('Ano', fontsize=14)

plt.ylabel('Número de Mortes', fontsize=14)

plt.legend(title='Faixa Etária', bbox_to_anchor=(1.05, 1), loc='upper left', ncol=2, fontsize='small')

plt.tight_layout()

plt.grid(True, linestyle='--', alpha=0.5)

plt.show();
```


Nota-se uma queda significativa nas mortes entre crianças e jovens ao longo dos anos, especialmente nas faixas de 0 a 4 anos, indicando avanços na saúde pública e na prevenção de doenças.

Entretanto, há um aumento expressivo nas mortes entre pessoas com 60 anos ou mais, especialmente na faixa de 80+ anos. Isso reflete o envelhecimento da população e o aumento da longevidade. Também é possível observar um crescimento no total de mortes, possivelmente ligado ao aumento populacional.

O gráfico evidencia uma transição demográfica, com a mortalidade se concentrando cada vez mais nas faixas etárias mais avançadas.

5. Qual a evolução das mortes por gênero para o Brasil? Trace um gráfico de linhas com cada uma delas representando um dos gêneros ao longo dos anos.

```
fem masc = brasil.groupby(['Year','Sex'])[['Number of Deaths']].sum().reset index()
In [25]:
          fem masc
                    Sex Number of Deaths
            Year
         0 1970 Female
                                    370432
         1 1970
                                    504664
                    Male
                                    367680
         2 1980 Female
         3 1980
                                    520670
                    Male
                                    359384
         4 1990 Female
            1990
                    Male
                                    527502
           2000 Female
                                   422183
            2000
                    Male
                                    589991
                                    520090
           2010 Female
            2010
                    Male
                                    689754
```

```
In [26]: plt.figure(figsize=(12, 6))
    sns.lineplot(data=fem_masc, x='Year', y ='Number of Deaths', hue='Sex', marker='o')
    plt.title('Evolução de Mortes por Gênero no Brasil')
    plt.xlabel('')
    plt.ylabel('')
    plt.legend(title='Gênero')
    plt.show()
```


Claramente é possível notar que o genêro masculino sempre teve um número de mortes maior que o feminino. Interessante notar também que a partir de 1990 ambos tem um comportamento semelhante, crescendo rapidamente o número de mortes, o que não acontece antes de 1990 que o número de mortes no masculino cresce e no feminino diminui.

6. Qual grupo etário tem o maior número de mortes no Brasil? Este número é o mesmo quando olhamos para todos os anos em comparação com quando consideramos apenas os últimos 10 anos?

```
In [27]: etario = brasil.groupby('Age Group')['Number of Deaths'].sum()
  etario = etario.sort_values(ascending=False)
  etario
```

Number of Deaths Out[27]: **Age Group** 80+ years 793258 28-364 days 492916 398556 70-74 years 75-79 years 387086 65-69 years 351749 315775 60-64 years 0-6 days 312226 55-59 years 269544 50-54 years 235082 45-49 years 198441 40-44 years 166996 1-4 years 159650 7-27 days 141406

140477

123946

115144

111289

82921

38660

37228

dtype: int64

35-39 years 30-34 years

25-29 years

20-24 years

15-19 years

10-14 years

5-9 years

```
In [28]: brasil['Year'].unique()
Out[28]: array([1970, 1980, 1990, 2000, 2010])
In [29]: ultimos_10anos = brasil.loc[brasil['Year'] >= 2000]
ultimos_10anos = ultimos_10anos.groupby('Age Group')['Number of Deaths'].sum()
ultimos_10anos = ultimos_10anos.sort_values(ascending=False)
ultimos_10anos
```

Out[29]:	Number of Deaths
OUT LZ91:	Number of Deaths

Age Group	
80+ years	548774
75-79 years	214732
70-74 years	213704
65-69 years	181083
60-64 years	162355
55-59 years	137459
50-54 years	118425
45-49 years	100276
40-44 years	79637
0-6 days	73929
35-39 years	65700
28-364 days	64825
30-34 years	56963
25-29 years	53395
20-24 years	51661
15-19 years	37391
7-27 days	21079
1-4 years	18800
10-14 years	12061
5-9 years	9769

dtype: int64

Ao analisar as duas tabelas, observa-se que, em geral, pessoas com mais de 80 anos apresentam o maior número de óbitos. É interessante notar que a faixa etária de 28 a 364 dias ocupa a segunda posição na tabela agregada de todos os anos; entretanto, na tabela referente aos últimos 10 anos, essa faixa se posiciona de maneira mais intermediária, possivelmente refletindo os avanços na medicina. Ademais, enquanto na tabela dos últimos 10 anos os maiores números de mortes correspondem às faixas etárias mais elevadas, na tabela completa a distribuição se mostra mais aleatória.

7. Qual país apresentou a melhoria mais significativa nas taxas de mortalidade por 100.000 indivíduos ao longo do período analisado?

In [30]: taxa_media_ano = america_sul.groupby(['Country Name','Year'])[['Death Rate Per 100,000']].mean().reset_index()
taxa_media_ano

Out[30]:

	Country Name	Year	Death Rate Per 100,000
0	Argentina	1970	8009.8125
1	Argentina	1980	5878.7825
2	Argentina	1990	4969.3625
3	Argentina	2000	3864.3325
4	Argentina	2010	3081.1925
5	Bolivia	1970	13484.2700
6	Bolivia	1980	10531.4100
7	Bolivia	1990	8726.6675
8	Bolivia	2000	7046.1350
9	Bolivia	2010	5960.4250
10	Brazil	1970	10599.1150
11	Brazil	1980	8803.7675
12	Brazil	1990	6787.6150
13	Brazil	2000	5216.8450
14	Brazil	2010	3964.9950
15	Chile	1970	7793.0525
16	Chile	1980	5377.8300

17	Chile	1990	3813.0375
18	Chile	2000	2235.3075
19	Chile	2010	1909.2725
20	Colombia	1970	5718.9825
21	Colombia	1980	4881.3025
22	Colombia	1990	4055.6700
23	Colombia	2000	3711.3800
24	Colombia	2010	3250.6150
25	Ecuador	1970	5654.9425
26	Ecuador	1980	4713.6850
27	Ecuador	1990	3846.4675
28	Ecuador	2000	3487.5425
29	Ecuador	2010	2619.4525
30	Guyana	1970	8812.9000
31	Guyana	1980	8663.3375
32	Guyana	1990	7955.5850
33	Guyana	2000	6681.5150
34	Guyana	2010	6209.0350
35	Paraguay	1970	7775.0000
36	Paraguay	1980	6919.9525
37	Paraguay	1990	5390.0800
38	Paraguay	2000	4879.2075
39	Paraguay	2010	4326.5575
40	Peru	1970	11268.8225
41	Peru	1980	8539.4450
42	Peru	1990	7021.6950
43	Peru	2000	4848.7525
44	Peru	2010	3930.7275
45	Suriname	1970	9472.1350
46	Suriname	1980	8840.8450
47	Suriname	1990	7808.1175
48	Suriname	2000	6683.3275
49	Suriname	2010	5706.2250
50	Uruguay		6726.9200
51	Uruguay	1980	5883.3300
52	Uruguay		4412.5700
53	Uruguay	2000	3346.5800
54	Uruguay		2302.9675
55	Venezuela	1970	6515.2675
56	Venezuela	1980	5420.9700
57	Venezuela	1990	4533.5650
58	Venezuela	2000	3601.2400
59	Venezuela	2010	2922.1700

```
In [31]: sns.lineplot(data=taxa_media_ano, x='Year', y='Death Rate Per 100,000', hue='Country Name')

plt.title('Evolução da Taxa de Mortalidade nos países da América do Sul')
plt.xlabel('Ano')
plt.ylabel('Taxa de Mortalidade')
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.grid(True)
plt.tight_layout()
plt.show()
```



```
ano_min = taxa_media_ano['Year'].min()
ano_max = taxa_media_ano['Year'].max()
taxa_min_max = taxa_media_ano[taxa_media_ano['Year'].isin([ano_min, ano_max])]
taxa min max
```

Out[32]:

	Country Name	Year	Death Rate Per 100,000
0	Argentina	1970	8009.8125
4	Argentina	2010	3081.1925
5	Bolivia	1970	13484.2700
9	Bolivia	2010	5960.4250
10	Brazil	1970	10599.1150
14	Brazil	2010	3964.9950
15	Chile	1970	7793.0525
19	Chile	2010	1909.2725
20	Colombia	1970	5718.9825
24	Colombia	2010	3250.6150
25	Ecuador	1970	5654.9425
29	Ecuador	2010	2619.4525
30	Guyana	1970	8812.9000
34	Guyana	2010	6209.0350
35	Paraguay	1970	7775.0000
39	Paraguay	2010	4326.5575
40	Peru	1970	11268.8225
44	Peru	2010	3930.7275
45	Suriname	1970	9472.1350
49	Suriname	2010	5706.2250
50	Uruguay	1970	6726.9200
54	Uruguay	2010	2302.9675
55	Venezuela	1970	6515.2675
59	Venezuela	2010	2922.1700

```
In [36]:
         pivot = taxa_min_max.pivot(index='Country Name', columns='Year', values='Death Rate Per 100,000')
         pivot['Difference'] = pivot[1970] - pivot[2010]
         print(pivot)
```

```
Year
                    1970
                              2010 Difference
Country Name
Argentina
              8009.8125
                         3081.1925
                                     4928.6200
Bolivia
              13484.2700
                         5960.4250
                                     7523.8450
              10599.1150
Brazil
                         3964.9950
                                     6634.1200
Chile
              7793.0525
                         1909.2725
                                     5883.7800
Colombia
               5718.9825
                         3250.6150
                                     2468.3675
              5654.9425
                         2619.4525
                                      3035.4900
Ecuador
               8812.9000
Guyana
                         6209.0350
                                      2603.8650
              7775.0000
Paraguay
                         4326.5575
                                      3448.4425
Peru
              11268.8225
                          3930.7275
                                      7338.0950
              9472.1350
                         5706.2250
                                     3765.9100
Suriname
               6726.9200
                         2302.9675
                                      4423.9525
Uruguay
Venezuela
              6515.2675 2922.1700
                                      3593.0975
```

```
In [38]: pivot_max = pivot['Difference'].max()
   print(pivot_max)
```

7523.845

Assim, o país que apresentou a melhoria mais significativa nas taxas de mortalidade por 100.000 indivíduos entre 1970 e 2010 foi a Bolívia, com uma redução de 7.523,85 mortes por 100.000 habitantes.