(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-43491

(43)公開日 平成11年(1999)2月16日

(51) Int.Cl. ⁶		識別記号	FΙ		
C07F	5/02		C 0 7 F	5/02	D
G11B	7/24	5 1 6	G11B	7/24	516

審査請求 未請求 請求項の数5 OL (全28頁)

(21)出願番号	特願平9-203662	(71) 出願人 000005887
		三井化学株式会社
(22)出願日	平成9年(1997)7月30日	東京都千代田区霞が関三丁目2番5号
		(71)出願人 000179904
		山本化成株式会社
		大阪府八尾市马削町南1丁目43番地
		(72)発明者 佐々木 浩之
		大阪府八尾市弓削町南一丁目43番地 山本
		化成株式会社内
		(72)発明者 熊谷 洋二郎
		大阪府八尾市马削町南一丁目43番地 山本
		化成株式会社内
		(74)代理人 弁理士 若林 忠 (外4名)
		最終頁に続く

(54) 【発明の名称】 ピロメテン金属キレート化合物及びそれを用いた光記録媒体

(57)【要約】

【課題】 波長520~690nmのレーザーで良好な 高密度記録及び再生が可能な追記型光記録媒体及びこれ に使用されるピロメテン金属キレート化合物を提供す

【解決手段】 下記一般式(I)で示されるピロメテン 金属キレート化合物を記録層に含有してなる光記録媒 体。

【化1】

【特許請求の範囲】

【請求項1】 下記一般式(I)で示されるピロメテン 金属キレート化合物。

【化1】

〔式中、R₁、R₂、R₃、R₄、R₅、R₆及びR₇は、各 々独立に水素原子、ハロゲン原子、ニトロ基、シアノ 基、ヒドロキシ基、アミノ基、カルボキシル基、スルホ ン酸基、炭素数1~20のアルキル基、ハロゲノアルキ ル基、アルコキシアルキル基、アルコキシ基、アルコキ シアルコキシ基、アリールオキシ基、ジアルキルアミノ アルコキシ基、アルキルチオアルコキシ基、アシル基、 アルコキシカルボニル基、アルキルアミノカルボニル 基、ジアルキルアミノカルボニル基、アルキルカルボニ ルアミノ基、アリールカルボニルアミノ基、アリールア ミノカルボニル基、アリールオキシカルボニル基、アラ ルキル基、アリール基、ヘテロアリール基、アルキルチ オ基、アリールチオ基、アルケニルオキシカルボニル 基、アラルキルオキシカルボニル基、アルコキシカルボ ニルアルコキシカルボニル基、アルキルカルボニルアル コキシカルボニル基、モノ(ヒドロキシアルキル)アミ ノカルボニル基、ジ (ヒドロキシアルキル) アミノカル ボニル基、モノ (アルコキシアルキル) アミノカルボニ ル基、ジ(アルコキシアルキル)アミノカルボニル基ま たは炭素数2~20のアルケニル基を表し、X1及びX2 は、炭素数1~20のアルキル基、ハロゲノアルキル 基、アルコキシアルキル基、アルキルチオアルキル基、 ジアルキルアミノアルキル基、アルコキシ基、アルコキ シアルコキシアルコキシ基、アルキルチオアルコキシ 基、ジアルキルアミノアルコキシ基、ジアルキルアミノ アルコキシアルコキシ基、アルキルチオ基、アルコキシ アルキルチオ基、アルキルチオアルキルチオ基、ジアル キルアミノアルキルチオ基、アリールオキシ基、アリー ルチオ基、ヘテロアリール基、ヘテロアリールオキシ 基、ヘテロアリールチオ基及びハロゲン原子を表す。但 40 し、X1及びX2が同時にハロゲン原子になることはな V1.]

【請求項2】 基板上に、少なくとも、記録層及び反射層を有する光記録媒体において、記録層中に、請求項1記載のピロメテン金属キレート化合物を含有する光記録媒体。

【請求項3】 波長520~690nmの範囲から選択されるレーザー光に対して記録及び再生が可能である請求項2記載の光記録媒体。

【請求項4】 レーザー波長において、記録層の屈折率 50 きた。DVDは4.7GBの記録容量を有する再生専用

が1.8以上、且つ、消衰係数が $0.04\sim0.40$ である請求項2記載の光記録媒体。

【請求項5】 波長520~690nmの範囲から選択されるレーザー光に対して、基板側から測定した反射率が20%以上である請求項2~4のいずれかに記載の光記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規なピロメテン 10 金属キレート化合物、及びこれを用いた、従来に比較し て高密度に記録及び再生可能な光記録媒体に関する。

[0002]

【従来の技術】コンパクトディスク(以下、CDと略 す) 規格に対応した追記型光記録媒体としてCD-R (CD-Recordable)が提案・開発されてい る[例えば、日経エレクトロニクス No. P. 107, 1989年1月23日号、OPTICAL DA TA STORAGE DIGEST SERIES vol.1 P45, 1989 等]。こ のCD-Rは図1に示すように透明樹脂基板1上に記録 層2、反射層3、保護層4がこの順で積層されており、 該記録層に高パワーのレーザー光を照射することによ り、記録層が物理的或いは化学的変化を起こし、ピット の形で情報を記録する。形成されたピット部位に低パワ ーのレーザー光を照射し、反射率の変化を検出すること によりピットの情報を再生することができる。このよう な光記録媒体の記録・再生には一般に波長770~83 Onmの近赤外半導体レーザーを用いており、レッドブ ックやオレンジブック等のCDの規格に準拠しているた め、CDプレーヤーやCD-ROMプレーヤーと互換性

【0003】しかし、上記の従来の媒体の記録容量は650MB程度であり、動画の記録を考慮すると容量が十分でなく、情報量の飛躍的増加に伴い情報記録媒体に対する高密度化・大容量化の要求は高まっている。

を有するという特徴を有する。

【0004】また、光ディスクシステムに利用される短波長半導体レーザーの開発が進み、波長680nm、650nm及び635nmのの赤色半導体レーザーが実用化されている[例えば、日経エレクトロニクス、No.592、P.65、1993年10月11日号]。記録・再生用レーザーの短波長化及び対物レンズの開口数を大きくすることによりビームスポットを小さくすることができ、高密度な光記録媒体が可能になる。実際に半導体レーザーの短波長化、対物レンズの開口数大化、データ圧縮技術などにより動画を長時間記録できる大容量の光記録媒体が開発されてきている[例えば、日経エレクトロニクス、No.589、P.55、1993年8月30日号、No.594、P.169、1993年11月8日号]。最近では、2時間以上の動画をデジタル記録したデジタルビデオディスク(DVD)が開発されてきた。DVDは47GBの記録容量を有する再生専用

の媒体であり、この容量に合った記録可能な光ディスク の開発がさらに要望されている。

【 0 0 0 5 】また、YAGレーザーの高調波変換による 5 3 2 n mのレーザーも実用可されている。

【0006】532nmよりさらに短波長の490nm の青/緑色半導体レーザーも研究されているが、まだ実 用化の段階まで至っていない [例えば、Applied Physics Letter, P. 1272-12 74, Vol. 59 (1991) や『日経エレクトロニ クス』No. 552, P. 90, 1992年4月27日 10

号〕。

【0007】短波長レーザーを使用した場合、光ディスクの線記録密度と半径方向記録密度は理論的には同等に高密度化できるが、現状では、半径方向の記録密度は線記録密度ほど大きくすることは困難である。レーザー光は溝又はランドにより回折散乱されるため、トラックピッチを狭くするほど信号検出光量が低下する。また、十分なトラッキング信号が得られる深さを保ったままトラックピッチを狭くするにも成形上限界がある。また溝が深く狭いと、記録層を均一に成膜することが困難である。さらに、溝とランドのエッジ部分は平滑ではなく微小凹凸があるため、ノイズの原因となる。このような悪影響はある程度トラックピッチが狭くなったところで急激に生じる。これらのことを考慮すると、波長520 nmで対物レンズの開口数が0.6では溝ピッチの限界は約0.5μmと考えられる。

【0008】追記型光記録媒体の色素層にレーザー光を 照射し、物理変化又は化学変化を生じさせることでピッ トを形成させる際、色素の光学定数、分解挙動が良好な ピットができるかの重要な要素となる。分解しずらいも のは感度が低下し、分解が激しいか又は、変化しやすい ものはピット間及び半径方向のランド部への影響が大き くなり、信頼性のあるピット形成が困難になる。従来の CD-R媒体では、高密度で用いられているレーザー波 長では色素層の屈折率も低く、消衰係数も適度な値では ないため、反射率が低く変調度が十分に取れなかった。 さらには、絞られたビームで小さいピットを開けるべき ところが、周りへの影響が大きく分布の大きいピットに なったり、半径方向へのクロストークが悪化した。逆に ピットが極端に小さくなり十分な変調度が取れない場合 もあった。従って、記録層に用いる色素の光学的性質、 分解挙動の適切なものを選択する必要がある。

【0009】例えば、特開平6-199045号公報には、波長680nmの半導体レーザーで記録再生可能な光記録媒体が提案されている。この媒体は、記録層にシアニン色素を用いており高密度の記録再生の可能性は示しているものの、実際に高密度に記録した記述はない。【0010】

【発明が解決しようとする課題】本発明の目的は、新規 なピロメテン金属キレート化合物、及びこれを含有す

る、波長520~690nmの短波長レーザーでの記録 及び再生が可能な高密度記録に適した光記録媒体を提供 することにある。

4

[0011]

【課題を解決するための手段】本発明者らは、上記課題 を解決すべく鋭意検討を重ねた結果、本発明を完成する に至った。即ち、本発明は、

下記一般式(I)で示されるピロメテン金属キレート化合物。

0 【0012】

【化2】

$$\begin{array}{c|cccc}
R_5 & R_4 & R_3 \\
R_7 & N & R_1 \\
\hline
R_7 & X_1 & X_2
\end{array}$$
(I)

〔式中、R1、R2、R3、R4、R5、R6及びR7は、各 々独立に水素原子、ハロゲン原子、ニトロ基、シアノ 20 基、ヒドロキシ基、アミノ基、カルボキシル基、スルホ ン酸基、炭素数1~20のアルキル基、ハロゲノアルキ ル基、アルコキシアルキル基、アルコキシ基、アルコキ シアルコキシ基、アリールオキシ基、ジアルキルアミノ アルコキシ基、アルキルチオアルコキシ基、アシル基、 アルコキシカルボニル基、アルキルアミノカルボニル 基、ジアルキルアミノカルボニル基、アルキルカルボニ ルアミノ基、アリールカルボニルアミノ基、アリールア ミノカルボニル基、アリールオキシカルボニル基、アラ ルキル基、アリール基、ヘテロアリール基、アルキルチ オ基、アリールチオ基、アルケニルオキシカルボニル 基、アラルキルオキシカルボニル基、アルコキシカルボ ニルアルコキシカルボニル基、アルキルカルボニルアル コキシカルボニル基、モノ(ヒドロキシアルキル)アミ ノカルボニル基、ジ(ヒドロキシアルキル)アミノカル ボニル基、モノ (アルコキシアルキル) アミノカルボニ ル基、ジ(アルコキシアルキル)アミノカルボニル基ま たは炭素数2~20のアルケニル基を表し、X1及びX2 は、炭素数1~20のアルキル基、ハロゲノアルキル 基、アルコキシアルキル基、アルキルチオアルキル基、 ジアルキルアミノアルキル基、アルコキシ基、アルコキ シアルコキシアルコキシ基、アルキルチオアルコキシ 基、ジアルキルアミノアルコキシ基、ジアルキルアミノ アルコキシアルコキシ基、アルキルチオ基、アルコキシ アルキルチオ基、アルキルチオアルキルチオ基、ジアル キルアミノアルキルチオ基、アリールオキシ基、アリー ルチオ基、ヘテロアリール基、ヘテロアリールオキシ 基、ヘテロアリールチオ基及びハロゲン原子を表す。但 し、X1及びX2が同時にハロゲン原子になることはな ("()

50 【0013】 ② 基板上に、少なくとも、記録層及び反

射層を有する光記録媒体において、記録層中に、**①**記載 のピロメテン金属キレート化合物を含有する光記録媒 体、

③ 波長520~690nmの範囲から選択されるレーザー光に対して記録及び再生が可能である②記載の光記録媒体、

Φ レーザー波長において、記録層の屈折率が1.8以上、且つ、消衰係数が0.04~0.40である②記載の光記録媒体、

⑤ 波長520~690nmの範囲から選択されるレーザー光に対して、基板側から測定した反射率が20%以上である②~④のいずれかに記載の光記録媒体、に関するものである。

[0014]

【発明の実施の形態】本発明の一般式(I)で示される ピロメテン金属キレート化合物において、R1、R2、R 3、R₄、R₅、R₆及びR₇の具体例としては、水素原 子; ニトロ基; シアノ基; ヒドロキシ基; アミノ基; カ ルボキシ基;スルホン酸基;フッ素、塩素、臭素、ヨウ 素のハロゲン原子;メチル基、エチル基、n-プロピル 基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチ ル基、2-メチルブチル基、1-メチルブチル基、neo-ペン チル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピ ル基、cyclo-ペンチル基、n-ヘキシル基、4-メチルペン チル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、3,3-ジメチルブチル基、2,3-ジメチ ルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチ ル基、1,2-ジメチルブチル基、1,1-ジメチルブチル基、 3-エチルブチル基、2-エチルブチル基、1-エチルブチル 基、1,2,2-トリメチルブチル基、1,1,2-トリメチルブチ ル基、1-エチルブチル基、1,2,2-トリメチルブチル基、 1,1,2-トリメチルブチル基、1-エチル-2-メチルプロピ ル基、cyclo-ヘキシル基、n-ヘプチル基、2-メチルヘキ シル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチルペンチル基、n-オクチ ル基、2-エチルヘキシル基、2,5-ジメチルヘキシル基、 2,5,5-トリエチルペンチル基、2,4-ジメチルヘキシル 基、2,2,4-トリメチルペンチル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、4-エチルオクチル 基、4-エチル-4,5-ジメチルヘキシル基、n-ウンデシル 基、n-ドデシル基、1,3,5,7-テトラメチルオクチル基、 4-ブチルオクチル基、6,6-ジエチルオクチル基、n-ペン タデシル基、3,5-ジメチルヘプチル基、2,6-ジメチルヘ プチル基、2,4-ジメチルヘプチル基、2,2,5,5-テトラメ チルヘキシル基、1-cyclo-ペンチル-2,2-ジメチルプロ ピル基、1-cyclo-ヘキシル-2,2-ジメチルプロピル基等 の炭素数1~20の直鎖、分岐又は環状のアルキル基; クロロメチル基、ジクロロメチル基、フルオロメチル 基、トリフルオロメチル基、ペンタフルオロエチル基、

ノナフルオロブチル基等のハロゲノアルキル基;メトキシエチル基、エトキシエチル基、iso-プロピルオキシエチル基、3-メトキシプロピル基、2-メトキシブチル基等のアルコキシアルキル基;

6

【0015】メトキシ基、エトキシ基、n-プロポキシ 基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ 基、sec-ブトキシ基、t-ブトキシ基、n-ペントキシ基、 iso-ペントキシ基、neo-ペントキシ基、n-ヘキシルオキ シ基、n-ドデシルオキシ基等のアルコキシ基;メトキ 10 シエトキシ基、エトキシエトキシ基、3-(iso-プロピル オキシ) プロピルオキシ基等のアルコキシアルコキシ 基;フェノキシ基、2-メチルフェノキシ基、4-メチルフ ェノキシ基、4-t-ブチルフェノキシ基、2-メトキシフェ ノキシ基、4-iso-プロピルフェノキシ基等のアリールオ キシ基; 2-ジメチルアミノエトキシ基、2-(2-ジメチル アミノエトキシ) エトキシ基、4-ジメチルアミノブトキ シ基、1-ジメチルアミノプロパン-2-イルオキシ基、3-ジメチルアミノプロポキシ基、2-ジメチルアミノ-2-メ チルプロポキシ基、2-ジエチルアミノエトキシ基、2-(2 20 -ジエチルアミノエトキシ)エトキシ基、3-ジエチルア ミノプロポキシ基、1-ジエチルアミノプロポキシ基、2-ジ-iso-プロピルアミノエトキシ基、2-ジ-n-ブチルアミ ノアミノエトキシ基等の直鎖又は分岐のジアルキルアミ ノアルコキシ基:2-メチルチオエトキシ基、2-エチルチ オエトキシ基、2-n-プロピルチオエトキシ基、2-iso-プ ロピルチオエトキシ基、2-n-ブチルチオエトキシ基、2iso-ブチルチオエトキシ基等のアルキルチオアルコキシ 基;

【0016】ホルミル基、アセチル基、エチルカルボニ ル基、n-プロピルカルボニル基、iso-プロピルカルボニ ル基、n-ブチルカルボニル基、n-ペンチルカルボニル 基、iso-ペンチルカルボニル基、neo-ペンチルカルボニ ル基、2-メチルブチルカルボニル基、ニトロベンジルカ ルボニル基等のアシル基;メトキシカルボニル基、エト キシカルボニル基、イソプロピルオキシカルボニル基、 2,4-ジメチルブチルオキシカルボニル基等のアルコキシ カルボニル基;メチルアミノカルボニル基、エチルアミ ノカルボニル基、n-プロピルアミノカルボニル基、n-ブ チルアミノカルボニル基、n-ヘキシルアミノカルボニル 基等のアルキルアミノカルボニル基; ジメチルアミノカ ルボニル基、ジエチルアミノカルボニル基、ジ-n-プロ ピルアミノカルボニル基、ジ-n-ブチルアミノカルボニ ル基、N-メチル-N-シクロヘキシルアミノカルボニル基 等のジアルキルアミノカルボニル基:アセチルアミノ 基、エチルカルボニルアミノ基、ブチルカルボニルアミ ノ基等のアルキルカルボニルアミノ基;フェニルアミノ カルボニル基、4-メチルフェニルアミノカルボニル基、 2-メトキシフェニルアミノカルボニル基、4-n-プロピル フェニルアミノカルボニル基等のアリールアミノカルボ 50 ニル基;フェニルカルボニルアミノ基、4-エチルフェニ

30

50

8

ルカルボニルアミノ基、3-ブチルフェニルカルボニルア ミノ基等のアリールカルボニルアミノ基;フェノキシカ ルボニル基、2-メチルフェノキシカルボニル基、4-メト キシフェノキシカルボニル基、4-t-ブチルフェノキシカ ルボニル基等のアリールオキシカルボニル基:

【0017】ベンジル基、ニトロベンジル基、シアノベ ンジル基、ヒドロキシベンジル基、メチルベンジル基、 ジメチルベンジル基、トリメチルベンジル基、ジクロロ ベンジル基、メトキシベンジル基、エトキシベンジル 基、トリフルオロベンジル基、ナフチルメチル基、ニト ロナフチルメチル基、シアノナフチルメチル基、トリフ ルオロメチルナフチルメチル基等のアラルキル基;フェ ニル基、ニトロフェニル基、シアノフェニル基、ヒドロ キシフェニル基、メチルフェニル基、ジメチルフェニル 基、トリメチルフェニル基、ジクロロフェニル基、メト キシフェニル基、エトキシフェニル基、トリフルオロメ チルフェニル基、N,N-ジメチルアミノフェニル基、ナフ チル基、ニトロナフチル基、シアノナフチル基、ヒドロ キシナフチル基、メチルナフチル基、トリフルオロメチ ルナフチル基等のアリール基;ピロリル基、チエニル 基、フラニル基、オキサゾイル基、イソオキサゾイル 基、オキサジアゾイル基、イミダゾイル基、ベンゾオキ サゾイル基、ベンゾチアゾイル基、ベンゾイミダゾイル 基、ベンゾフラニル基、インドイル基等のヘテロアリー ル基;

【0018】メチルチオ基、エチルチオ基、n-プロピル チオ基、iso-プロピルチオ基、n-ブチルチオ基、iso-ブ チルチオ基、sec-ブチルチオ基、t-ブチルチオ基、n-ペ ンチルチオ基、iso-ペンチルチオ基、2-メチルブチルチ オ基、1-メチルブチルチオ基、neo-ペンチルチオ基、1, 2-ジメチルプロピルチオ基、1,1-ジメチルプロピルチオ 基等のアルキルチオ基;フェニルチオ基、4-メチルフェ ニルチオ基、2-メトキシフェニルチオ基、4-t-ブチルフ ェニルチオ基等のアリールチオ基;アリルオキシカルボ ニル基、2-ブテノキシカルボニル基等のアルケニルオキ シカルボニル基;ベンジルオキシカルボニル基、フェネ チルオキシカルボニル基等のアラルキルオキシカルボニ ル基:メトキシカルボニルメトキシカルボニル基、エト キシカルボニルメトキシカルボニル基、n-プロポキシカ ルボニルメトキシカルボニル基、イソプロポキシカルボ ニルメトキシカルボニル基等のアルコキシカルボニルア ルコキシカルボニル基;メチルカルボニルメトキシカル ボニル基、エチルカルボニルメトキシカルボニル基等の アルキルカルボニルアルコキシカルボニル基;

【0019】 ヒドロキシエチルアミノカルボニル基、2-ヒドロキシプロピルアミノカルボニル基、3-ヒドロキシ プロピルアミノカルボニル基等のモノ(ヒドロキシアル キル)アミノカルボニル基;ジ(ヒドロキシエチル)ア ミノカルボニル基、ジ(2-ヒドロキシプロピル)アミノ カルボニル基、ジ(3-ヒドロキシプロピル)アミノカル

ボニル基等のジ (ヒドロキシアルキル) アミノカルボニ ル基;メトキシメチルアミノカルボニル基、メトキシエ チルアミノカルボニル基、エトキシメチルアミノカルボ ニル基、エトキシエチルアミノカルボニル基、プロポキ シエチルアミノカルボニル基等のモノ(アルコキシアル キル) アミノカルボニル基: ジ(メトキシエチル) アミ ノカルボニル基、ジ (エトキシメチル) アミノカルボニ ル基、ジ (エトキシエチル) アミノカルボニル基、ジ (プロポキシエチル) アミノカルボニル基等のジ (アル コキシアルキル) アミノカルボニル基; ビニル基、プロ ペニル基、1-ブテニル基、iso-ブテニル基、1-ペンテニ ル基、2-ペンテニル基、2-メチル-1-ブテニル基、3-メ チル-1-ブテニル基、2-メチル-2-ブテニル基、2,2-ジシ アノビニル基、2-シアノ-2-メチルカルボキシルビニル 基、2-シアノ-2-メチルスルホンビニル基等のアルケニ ル基等が挙げられる。

【0020】X1、X2の具体例としては、メチル基、エ チル基、n-プロピル基、iso-プロピル基、n-ブチル基、 iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペン チル基、iso-ペンチル基、2-メチルブチル基、1-メチル 20 ブチル基、neo-ペンチル基、1,2-ジメチルプロピル基、 1,1-ジメチルプロピル基、cyclo-ペンチル基、n-ヘキシ ル基、4-メチルペンチル基、3-メチルペンチル基、2-メ チルペンチル基、1-メチルペンチル基、3,3-ジメチルブ チル基、2,3-ジメチルブチル基、1,3-ジメチルブチル 基、2,2-ジメチルブチル基、1,2-ジメチルブチル基、1, 1-ジメチルブチル基、3-エチルブチル基、2-エチルブチ ル基、1-エチルブチル基、1,2,2-トリメチルブチル基、 1,1,2-トリメチルブチル基、1-エチルブチル基、1,2,2-トリメチルブチル基、1,1,2-トリメチルブチル基、1-エ チル-2-メチルプロピル基、cyclo-ヘキシル基、n-ヘプ チル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、2,4-ジメチル ペンチル基、n-オクチル基、2-エチルヘキシル基、2,5-ジメチルヘキシル基、2,5,5-トリエチルペンチル基、2, 4-ジメチルヘキシル基、2,2,4-トリメチルペンチル基、 n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル 基、4-エチルオクチル基、4-エチル-4,5-ジメチルヘキ シル基、n-ウンデシル基、n-ドデシル基、1,3,5,7-テト ラメチルオクチル基、4-ブチルオクチル基、6,6-ジエチ ルオクチル基、n-ペンタデシル基、3,5-ジメチルヘプチ ル基、2,6-ジメチルヘプチル基、2,4-ジメチルヘプチル 基、2,2,5,5-テトラメチルヘキシル基、1-cyclo-ペンチ ル-2,2-ジメチルプロピル基、1-cyclo-ヘキシル-2,2-ジ メチルプロピル基等の炭素数1~20の直鎖、分岐又は 環状のアルキル基;

【0021】クロロメチル基、ジクロロメチル基、フル オロメチル基、トリフルオロメチル基、ペンタフルオロ エチル基、ノナフルオロブチル基等のハロゲノアルキル 基;メトキシエチル基、エトキシエチル基、iso-プロピ

アミノアルキル基:

ルオキシエチル基、3-メトキシプロピル基、2-メトキシ ブチル基等のアルコキシアルキル基;2-メチルチオエチ ル基、2-エチルチオエチル基、2-n-プロピルチオエチル 基、2-iso-プロピルチオエチル基、2-n-ブチルチオエチ ル基、2-iso-ブチルチオエチル基等のアルキルチオアル キル基:2-ジメチルアミノエチル基、2-(2-ジメチルア ミノエトキシ)エチル基、4-ジメチルアミノブチル基、1 -ジメチルアミノプロパン-2-イル基、3-ジメチルアミノ プロピル基、2-ジ-iso-プロピルアミノエチル基、2-ジ-

【0022】メトキシ基、エトキシ基、n-プロポキシ 基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ 基、sec-ブトキシ基、t-ブトキシ基、n-ペントキシ基、 iso-ペントキシ基、neo-ペントキシ基、n-ヘキシルオキ シ基、n-ドデシルオキシ基、シクロヘキシルオキシ基、 4-メチルシクロヘキシルオキシ基、4-エチルシクロヘキ シルオキシ基、2-n-プロピルシクロヘキシルオキシ基、 4-t-ブチルシクロヘキシルオキシ基、アダマンタン-1-イルオキシ基、ボルネオル基等のアルコキシ基;2-メト キシエトキシ基、1-メトキシブタン-2-イルオキシ基、1 -メトキシブタン-1-イルオキシ基、1-メトキシプロパン -2-イルオキシ基、2-(2-メトキシエトキシ) エトキシ 基、2-エトキシエトキシ基、2-(エトキシエトキシ)エト キシ基、2-エトキシプロパン-2-イルオキシ基、2-iso-プロポキシエトキシ基、2-ブトキシエトキシ基、2-iso-ブトキシエトキシ基、2-t-ブトキシエトキシ基、2-(2-ブトキシエトキシ)エトキシ基等の直鎖又は分岐のアル コキシアルコキシ基: 2-メチルチオエトキシ基、2-エチ ルチオエトキシ基、2-n-プロピルチオエトキシ基、2-is 30 o-プロピルチオエトキシ基、2-n-ブチルチオエトキシ 基、2-iso-ブチルチオエトキシ基等のアルキルチオアル コキシ基; 2-ジメチルアミノエトキシ基、2-(2-ジメチ ルアミノエトキシ)エトキシ基、4-ジメチルアミノブト キシ基、1-ジメチルアミノプロパン-2-イルオキシ基、3 -ジメチルアミノプロポキシ基、2-ジメチルアミノ-2-メ チルプロポキシ基、2-ジエチルアミノエトキシ基、2-(2 -ジエチルアミノエトキシ) エトキシ基、3-ジエチルア ミノプロポキシ基、1-ジエチルアミノプロポキシ基、2-ジ-iso-プロピルアミノエトキシ基、2-ジ-n-ブチルアミ ノアミノエトキシ基等の直鎖又は分岐のジアルキルアミ ノアルコキシ基;フェノキシ基、2-メチルフェノキシ 基、4-メチルフェノキシ基、4-t-ブチルフェノキシ基、 2-メトキシフェノキシ基、4-iso-プロピルフェノキシ基 等のアリールオキシ基:

【0023】メチルチオ基、エチルチオ基、n-プロピル チオ基、iso-プロピルチオ基、n-ブチルチオ基、iso-ブ チルチオ基、sec-ブチルチオ基、t-ブチルチオ基、n-ペ ンチルチオ基、iso-ペンチルチオ基、1,2-ジメチルプロ ピルチオ基、1,1-ジメチルプロピルチオ基等のアルキル 50 1.0

チオ基;フェニルチオ基、2-メチルフェニルチオ基、4-メチルフェニルチオ基、4-t-ブチルフェニルチオ基、2-メトキシフェニルチオ基、4-t-ブチルフェニルチオ基等 のアリールチオ基;フッ素、塩素、臭素、ヨウ素のハロ ゲン原子を挙げることができる。

【0024】本発明の一般式(I)で示されるピロメテ ン金属キレート化合物は、以下のようにして容易に製造 することができる。即ち代表的には、まず、一般式(I I)で示される化合物と一般式(III)で示される化合 n-ブチルアミノエチル基等の直鎖又は分岐のジアルキル 10 物、または一般式(IV)で示される化合物と一般式 (V) で示される化合物を例えば臭化水素酸、塩化水 素、オキシ塩化リン等の酸触媒の存在下で反応させる、 或いは(II)または(IV)で示される化合物と一般式 (VI)で示される化合物を反応させる。次いで三フッ化 ホウ素、三塩化ホウ素等と反応させ一般式(VII)で示 される化合物を合成する。次にナトリウムメトキシド、 カリウムエトキシド等のアルコキシド類、ナトリウムフ ェノキシド、ナトリウム-2-メトキシフェノキシド等の フェノキシド類、ブチルマグネシウムブロマイド、ブチ 20 ルリチウム、フェニルマグネシウムブロマイド等の有機 金属試薬類、メチルメルカプタンナトリウム、4-t-ブチ ルフェニルチオールナトリウム塩等のチオール塩類等と 反応する。

[0025]

【化3】

$$R_7$$
 R_5 R_5 (II)

(式中、R5、R6及びR7は前記に同じ。)

[0026]

【化4】

$$R_1$$
 R_3 R_4 (III)

(式中、R1、R2、R3及びR4は前記に同じ。) [0027]

40 【化5】

$$R_1$$
 R_3 R_3 R_3

(式中、R1、R2及びR3は前記に同じ。)

[0028]

【化6】

(式中、R4、R5、R6及びR7は前記に同じ。)

[0029]

【化7】

$$R_4$$
 X_3 (VI)

(式中、R4は前記に同じ。X3は塩素、臭素を表す。) 【0030】

【化8】

$$\begin{array}{c|c}
R_5 & R_4 & R_3 \\
R_7 & X_3 & X_4
\end{array}$$

$$\begin{array}{c}
1 & 2 \\
R_3 & R_2 \\
R_1 & R_1
\end{array}$$
(VII)

(式中、 X_4 及び X_5 はフッ素、塩素、臭素、ヨウ素を表す。)

【 0 0 3 1 】 一般式 (I) で示されるピロメテン金属キ 10 レート化合物の具体例としては、表 - 1 に示す置換基を 有する化合物が挙げられる。

[0032]

【表1】

	1	3										1 4	L ,
	×	-O-n-C ₄ H ₉	-SC ₂ H ₅	tĽ	\bigcirc	ட	-0-n-C ₅ H ₁₁	Q	ш	Ŀ	-0-n-C ₃ H ₂	-SCH ₃	æ
	×	-0-n-C.Hg	-SC ₂ H ₅	-I-C ₃ H,		-OCH3	-O-n-C ₅ H ₁₁		-O-i-C₄H ₉	CF3	-0-n-C ₃ H ₇	-SCH3	-S-i-C₄H ₉
	R,	Ę,	Ļ,	- OCH3	ĊŖ	-NHCH3	ڬ <u>ۣ</u>	-SCH ₃	ڳ ٻ	Ę.	Ę,	护	—o-(н)
	ጼ	Ç.	-ÇH²	I	-SC ₂ H _s	-C ₂ H ₅	-C ₂ H ₅	I	-ÇHş	Ŧ	_co_	-CON(CH2OH)2	-C ₂ H ₅
表-1	Rs	Ļ	Ą	ξ̈́	Ϋ́	ਝੁੰ	Ļ	Ą	-CO ₂ C ₂ H ₅	ਹ	-CH ₃	ξ̈́	ĊH³
	궣	I	I	I	I	I	I	I	I	工	I	I	I
	മ്	Ę	-n-C ₄ H ₉	Ç H	ξ̈́	ĊĦ³	Ŷ	ř. ř	T+C4H _p	Ö	ή̈́	ĊĻ	-i-C₄H ₉
	R_2	ς ξ	-Ç.Hş	I	-C ₂ H _s	ť	I	-S-{\rightarrow}-t-C,H,	-C ₂ H ₅ -	ェ	-C ₂ H _s	Ŧ	-C ₂ H ₅
	. 8	ب ې	ĊĤ,	-OCH	ĕ	-SC ₂ H ₅	P	Ĭ Ÿ	←+c,H,	ÇH³	-O-i-C4Hg	-ĊH³	(H)-0-
	化合物	-	2	က	4	ĸ	g		æ	თ	6	£	12

[0033]

* *【表2】

		15									16	5	
	×̈́	ıL	ட	ட	ட		-O-n-C ₅ H ₁₁	-OCH3	-0C2Hs		ਹ	ட	-n-C ₆ H ₁₃
	×	-C ₆ H ₁₃	OMe	$-C_2H_5$	-O-i-C ₃ H ₂		-0-n-C ₅ H ₁₁	-OCH3	-OC ₂ H ₅	Ŷ	- - -	-n-C ₆ H ₁₃	-n-CeH ₁₃
	R,	çĥ	,ch	-CH ₃	-0-(H)-t-C,H,	CF.	-CH³	NO ₂	-\\\-\\\-\\\\-\\\\\\\\\\\\\\\\\\\\\\\\	-CH3	-C2H5	ÇĤ	СН³
(九)	ď	I	-ÇHş	I	ĊH,	IL	-ÇHç	-C ₂ H ₅	-C ₂ H ₅	Ę,	I	-C ₂ H ₅	-C ₂ H ₅
表-1(続き	Rs	ĊĦ³	ب ٻ	ب ۲	Ą	Ļ	Ϋ́	-CH ₃	ξ̈́	ĘĤ,	ή̈	ĊĦĴ	ς Ή
	ď	I	I	I	I	I	I	I	I	Ę	Ę	ξ̈́	-ÇH³
	ૡ૾	ب ٻ	Ę	ξ̈́	ξ̈́	ညီ	Ę	ĊĦ		Ę	Ę	-ÇH ₃	-CH3
	R	NO ₂	-Ç ₂ Hş	-CONC ₂ H ₅	-C ₂ H ₅	-COCH ₃	-C ₂ H _s		I	Ŧ	چ ڳ	-C ₂ H ₅	-C ₂ H ₅
	Ŗ	cH ₃	-conh	ĊH,	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ť		, CH		Ϋ́	-OCH3	ÇH,	ĊĤ³
	化合物	13	4	15	9	17	\$	6	20	21	22	23	24

【0034】 * *【表3】

					表-1(続き)	()			
化合物	αŽ	~	జా	呸	ዲ	යී	R,	×	**
25	Ļ Ļ	ច	ਠ	ب	çĤ	-n-C ₄ H ₃	-n-C₄H₃	-0C _H	ட
26		I		ξ̈́	ÇĤ	I	Å H	C ₂ H ₅	-C ₂ H ₁
27	ڳ ٻ	-C ₂ H ₅	ĊĦ	Ŗ	-ÇH	-C ₂ H ₅	Ċ Ŧ	Ŷ	ш
28	ç F	Ç.₩	宁	Ą	гно	-C ₂ H ₅	ب ب	P	\bigcirc
29	-CONC2Hs	I	Ą	ਮੁੰ	-'n-C₁H₃	I	-n-C4H3	-0-n-C ₅ H ₁₁	ιL
99	슢	ς ξ	Ç	Ę,	÷,	-C ₂ H ₅	Ļ	OCH3	-OCH3
31	훗	Ż Ę	Ļ	ξ̈́	ť	ζ, Ť,	Ļ Ę	-O-n-C ₅ H ₁₁	ட
32	-C00H	ე Ļ	ÇĤ	Ą	-n-C,H ₉	-C ₂ H ₅	-CO ₂ C ₂ H ₅	-n-C ₄ H ₉	동
33	Ą	-ÇHş	Ļ	Ϋ́	-CH ₃	-C ₂ H ₅	라	-SCH ₃	-SCH ₃
8	ᆼ	-CH ₂ OC ₂ H ₅	Ą	£	-0-{\rightarrow-t-C_4H_6}	$-s$ $ C_2H_5$	ć.	-n-C ₆ H ₁₃	-n-C ₆ H ₁₃
35	ည ်	Ş	Ξ	ξ̈		Ι	, Ļ		- Ince
36	Ę,	-ÇHş	-CH ₃	Ę,	-CH3	-C ₂ H _s	-CH ₃	-O-n-C ₅ H ₁₁	

[0035]

* *【表4】

		19				\ 1	L 1 /				2		
	X	Cz.	—————————————————————————————————————	ιL	-SC ₂ H ₆	-0-n-C ₁ H ₅	ш	A. P.	-C ₆ H ₁₃	u.	-0C,H5	-0-i-C ₃ H ₇	ட
	×	C.F.	$- \hspace{-1.5cm} - \hspace{-1.5cm} C_5 H_{17}$	-0-\\\	-SC ₂ H ₆	-OC ₂ H _s	ОСН ₃	OF PO		-i-C ₄ H ₉	- Coc₂H₅	-O-i-C ₃ H ₇	(H)
	Ж	-CO ₂ C ₂ H ₆	ç	Ę	Ļ.	-CH ₃	-CO ₂ C ₂ H ₅	-OCH3	-CH ₂ SCH ₃	-CH ₂ OC ₂ H ₅	-0CH ₂ OC ₂ H ₅	ćĻ	-9СН ₃
表-1(続き)	ኤ	I	-COCH ₃	-OCH3 -CH3 -O(CH2)2N(CH3)2 -C2H5	_co_	ODNH-	Ļ Ļ	(I	.H ₃) ₂ -CH ₃	-n-C4H3	Ç, ₽,	I	I
表	ሚ	÷ Ę	Ę,	O(CH ₂) ₂ N(C	Ϋ́	ٻ	-CO ₂ C ₂ H ₅	Ą	-CH3 -CH3 -O(CH2)2N(CH3)2 -CH3	\bigcirc s-	Ļ	-0-n-C ₅ H ₁₁	- OCH3
	잗	ή̈	ξ̈́	ĊĘ,	Ę,	Ą	宁 -	ڳ	Ę̈́	Ç	Ļ	Ç	ئے بی
	ď	Ę,	ξ̈́	OCH3	ਨੂੰ	Ċ Ĥ	Ļ	Ļ	Ļ Ļ	Ļ	Ļ,	Ą	-CH3 -C _{H5}
	ፚ	-SO ₃ H	-C ₂ H ₅	Ċ Ļ	-C ₂ H _s	Ι	-SC(CH ₃) ₃	-C ₂ H _s	-C ₂ H ₅	ÇĦŞ	-C2H2	I	-n-C ₄ H ₃
	ጸ	-CH ₃	-CH ₂ OCH ₃	○ -s-	-0-{}-i-C ₃ H,	-Ç,F _s	,CH	-N(CH ₃) ₂	-CH2SCH3	-S-(-)-t-C ₄ H ₉	-0CH2OC2Hs	-S-n-C ₄ H ₉	-CH³
	化合物	37	38	39	40	4	42	43	4	45	46	47	48

[0036]

* *【表5】

\sim	1
4	Т

				表-1	表-1(続き)					
化合物	Ϋ́	<u>م</u> ر	S.	잗	ď	యో	υ ζ	×	××	
49	ç Ç	ō	ਹ	ζ Ť	ច	ō	ξ̈́	-n-C,H,	Q, H	21
20	-0CHs	Ļ Ļ	-OC ₂ H ₅	-C ₂ H ₅	-0(CH ₂) ₂ OH	Ċ H	-OC ₂ H _s	-O-n-C ₅ H ₁₁	ட	
51	ţ,	ζΉς	-ĊH³	ςΉς	-NHCOC ₂ H _s	-SC ₂ H ₅	÷ H	Ŧ	ਠ	
52	-CH2SC2H5	Ļ	-CH ₂ SC ₂ H ₃	-C ₂ H ₅	ĊĤ³	-C ₂ H _s	£	-0-i-C _t H ₉	-O-i-C ₄ H ₉	
53		I		Ş Ę	-CF ₃	Ċ. Ł.	Ċ.	-O-n-C ₆ H ₁₁	ă	'
22	-CH ₂ OC ₂ H ₅	Ą	Ϋ́	۲ ^۳	ÇĤ	I	-SCH3	← n-C ₃ H, —	⟨ _}-n- c ₃H,	, 1 4)
55	T-C,H,	-C ₂ H ₅	-t-C ₄ H ₉	Ċ,Ħţ	-n-C ₃ H ₂	I	-r-C₃H₁	-i-C ₃ H ₇	동	
28	-CON(CH ₂ OCH ₃) ₂	ည္ခ်	ή̈́	-n-C ₃ H ₇	Image: Control of the	工	-n-C ₆ H ₁₃	-n-C ₆ H ₁₃	-n-C ₆ H ₁₃	
57	, Ç	-COCH3	ъ́-	-h-C ₃ H,	-C ₂ F _s	-C ₂ H _s	$\zeta_{2}^{F_{5}}$	-0(CH ₂) ₂ OC ₂ H ₅	ΙL	
88	-n-C ₁₂ H ₂₅	I	, H	-n-C₃H₁	, HO	-CON(CH2OH)2	ÇĤ	-SCH ₃	-SCH ₃	2
69	-O(CH ₂) ₂ SCH ₃	-C ₂ H ₅	-i-C ₄ H ₉	-n-C₃H,	ĊĦ³	-C ₂ H _s	СĤ	-0-n-C ₁₀ H ₂₁	ட	22
09	-CH ₃	-NO ₂	-CH3	-i-C ₃ H,	-CH ₃	-NO ₂	-CH³	-o-(H)-t-Bu	НО	付册工

[0037]

1	23	10		_						2	2 4	ı
X	ш	C2H	ō	G. C.	Œ	-0-C ₂ H ₅	-0(CH ₂)4OH	-S-n-C ₆ H ₁₃	ō	ட	-n-C ₆ H ₁₃	-n-C ₆ H ₁₃
×		C,Hs	-n-C,H,	P-P-	-CH2OC2H5	- - - -	-O(CH ₂)4OH	-S-n-C ₆ H ₁₃	-0CH ₃	-0-(H)-CH ₃	-n-C ₆ H ₁₃	-n-C ₆ H ₁₃
R,	ÇH³	ξ̈́	-ĊH³	ÇĤ	ĊĦĴ	NO ₂		-NO ₂	Ç.₩	\Diamond	ÇĤ	ÇH³
r) Re	-C ₂ H _s	I	-C ₂ H ₅	-ÇH	Br	-C _. H ₅	-ĊH³	ညှ်	I	-C ₂ H ₅	-CON(n-C ₄ H ₉) ₂	-C ₂ H ₅
ATIME C	Ϋ́	护	Ę,	皇	ā	ဂ ်		-n-C ₄ H ₉	ညီ	ភ្ជុំ	Ą	-CH³
2	-i-C ₃ H ₇	÷C ₃ H,	-n-C₄H₃	-i-C ₁ H ₉	-n-C₄H₅	-(CH ₂),OH	-n-C ₅ H ₁₁	-n-C ₅ H ₁₁	-i-C ₅ H ₁₁	-(CH ₂) ₅ SCH ₃	-i-C ₅ H ₁₁	-n-C ₆ H ₁₃
R	-CH ₃	ਝੂੰ	Ģ.	Ę	ਨੂੰ	-CO ₂ CH ₃		-n-C ₄ H ₉	ਨੂੰ	Ļ	ਨੂੰ	÷.
R ₂	-C ₂ H ₅	-CONC ₂ H ₅	-C ₂ H ₅	I	ς, Ής		ÇH	Ξ	Ć₂H₅	-C ₂ H ₅	Ç F	-Ç-Hş
R ₁	-conh	-CH2OC2H5	0-0-	Ļ	$- \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - C_2 H_s$	-CO ₂ CH ₃		-NO ₂	Ę,	-O(CH ₂) ₂ SC ₂ H ₅	-O(CH ₂) ₂ OCH ₃	ĊH³
化合物	61	62	63	23	65	8	29	89	69	70	71	72

[0038]

* *【表7】

		2 5	5			\ .	14/				2	15 26	rm丁I.
	×	$- c_{JH_{S}}$	-0 C_2 H_5	-i-C ₅ H ₁₁	ਹ	-OCH3	LL	ıL	-SC ₂ H ₅	Ŷ		ш	←C ₂ H ₅
	×	$- \left\langle \begin{array}{c} \mathbf{c_{2}H_{5}} \end{array} \right.$	-0 C_2 H_5	-i-C ₆ H ₁₁	-0-n-C _s H ₁₁	-OCH3	-0-	OnceH1	-SC ₂ H ₅	#3-		∩B-0-0-B⊓	←C ₂ H ₅
	χ,	, CH3	ť.	<u>o</u>	-n-C4H ₉	\bigcirc	-OCH3	-CO ₂ C ₂ H ₅	Ŧ	-CH ₂ SCH ₃	ب ٻ	-n-C ₄ H ₉	Ę,
	డ్	-n-C4H9	-C ₂ H ₅	Ç	I	-C ₂ H ₅	I	-h-C ₄ H ₉	Q	ō	-n-C ₃ H ₇	I	-C _H s
表-1(続き)	ጜ	ĊH³	Ę,	Ę	-n-C₄H₀		Ι	-n-C₄H₃		ច	Ļ	-n-C₄H₃	ÇF
揪	ď	-n-C ₆ H ₃₃	Ŧ	-i-C ₆ H ₁₃	-n-C ₆ H ₁₇	-n-C ₈ H ₁₇	-n-C ₈ H ₁₇	-CH ₂ SC ₂ H ₅	-(CH ₂) ₄ OCH ₃	-CH ₂ OC ₂ H ₅	Ÿ	-CH ₂ SCH ₃	-C-S-C-Bu
	చొ	-(СН₂)₄ОН	皇	ج ب	ĊĤ	ب ٿ	ဂ ် ည	ξ̈́	兑	ဂ္ဂ် န်	ڳ	ဂ္ဂ် ည	Ċ F
	R ₂	I	N(n-Bu) ₂	გ	-CON(C ₂ H ₅) ₂	-CO ₂ C ₂ H ₅ -SCH(CH ₃) ₂	-NO ₂	-C ₂ H _s	ĊĤ	-Ç.Hş	-h-C ₃ H ₇	H ₃) ₂ -C ₂ H ₅	-C ₂ H _s
	ሏ	-NEt	-CH3	ō	çH	-CO _C H ₅	ب	H0007	ä	동	Ϋ́	-CH2SCH(CH3)2 -	Ę,
	化合物	73	74	75	9/	11	78	79	80	28	82	83	8

[0039]

	27					2,H5	-n- C ₆ H ₁₃		2,H2	28	
×		LL _8		-0C ₂ H ₅	-n-C ₃ H ₂			L		ច	ш
×	-C ₈ H ₁ ,	-0-{}-t-с₄н	-O-n-C _t H _g	-n-C ₃ H ₇	-OCH3	— n-C ₆ H₁₃	-C ₆ H ₁₃	-i-C₄H₀	-OC _P H ₅	-O-i-C ₃ H,	-O-n-C ₅ H ₁₁
R,	Ę Ę	-1-C ₃ H ₇	Ļ	ĊŖ	-CO ₂ C ₂ H ₆	0-	Ļ	I	Ċ Ĥ	ĊĤ	Ho OH
ď	-COCH ₃	ڳ ڄ	മ്	-HNCO-	奋	C2Hs	-C ₂ H ₅	-n-C₄H₀	Ē	I	-C ₂ H ₅
2	-CH ₃	-n-C3H	Ę	ਝੁੰ	-CO ₂ C ₂ H ₅	Ļ Ļ	Ę,	-0-i-C₃H,	ť	-C2H,CI	ť
쬬	-CH ₃ -CH ₂ SC ₂ H ₄ OCH ₃	-CH ₂ SCH ₃	-C-S-	-C-S-C-Et	\Diamond		Q	<u>E</u>	C ₂ H ₅	—————————————————————————————————————	-n-C ₆ H ₁₃
ď	÷ Ę	-O-n-C₄H₃	P	ភ្ជុំ	Ę,	Ļ, Ļ	-Ç H	, ĊŖ	ĊH₃	ĊĤ	ĊĤ
δ.	-C ₂ H ₅	ڬ ڃ	ਨੂੰ	\bigcirc	-n-C ₄ H ₉	$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle = C_2 H_s$	-C ₂ H ₅	t-C ₄ H ₉ -C ₂ H ₅	B	I	-Ç.Hş
αź	-CH ₂ OCH ₃	__200-	P	-CH ₂ OC ₂ H ₅	-CH ₂ SCH ₃ -n-C	- \rightarrow_{0-}	£	-s-	ĊH³	-CH ₂ Cl	-C ₂ H ₄ OH -C ₂
化合物	85	8	87	88	68	8	91	92	93	46	96

[0040]

* *【表9】

		29				(10	,			3 0	付册丁
	X ₂	-n-C ₄ H ₉	-CH ₂ OC ₂ H ₅	-O-i-C4H3	IL	동	lL.	-n-C ₆ H ₁₃	→n-C ₃ H,	N S	-C ₂ H ₅
	,×	C ₂ H ₅	-CH ₂ OC ₂ H ₅	n-C ₆ H ₁₃	-n-C ₄ H ₉	HQ	-SC ₂ H ₅	-n-C ₆ H ₁₃	-n-C ₃ H,	NO NO NO NO NO NO NO NO NO NO NO NO NO N	$- \left\langle \begin{array}{c} - c_2 H_5 \end{array} \right $
	R,	-CH3	Ę Ę	, H	Ą	Ļ	-C ₂ H ₅	Ģ.		Ę. Ļ	
()	Rs	L	-CH	-(CH ₂)₄OH	-C ₂ H ₅	I	-CH ₂ SCH ₃	S-T-t-C ₄ H ₉	I	ă	-SCH ₃
表-1(続き	ጿ	-CH2OCH3	호 두	Ę,	Ċ F	Ċ Ľ	ĊĦ	۔ ڳ	P	ភ្នំ	
	₽\$	CH ³	H ₃ C CH ₃	-Net	-OMe	OEt	-0-i-Pr	Ö	B,	NMe ₂	₩o OH
	æ	Ę.	ξ̈́	ئى	ξ̈́	Ę	Ϋ́	Ą	ڳ	Ą	ÇH3
	R ₂	Ι	ڳ ڇ	т "Н	-C ₂ H _s	Ş. Ş.	Ę	-t-C ₄ H ₉	-S-t-C ₄ H ₉	-CON(CH ₃) ₂	-SO ₃ H
	αž	NO 2	Ϋ́		ή̈́	-(CH ₂)₄OH	-CH ₂ SCH ₃	-CH³ -S-	ÇĤ	Ļ	-CH3
	化合物	96	26	86	8	9	101	102	103	401	105

[0041]

* *【表10】

				1 JUNE 1					
化合物	ሚ	R ₂	R	ሌ.	చ	Re	ъ,	×	X
92	-CH ₂ OCH ₃	Ċ,	, CH3	NO ₂	ťγ	S-	Ą	-0-i-C ₃ H,	-0-i-C ₃ H ₇
107	—————————————————————————————————————	Ϋ́		9	Ą	-S-t-C,H	Ą		
108	ť	ζ Ļ	Ę	CO ₂ C ₂ H ₅	Ą	ä	ညီ	-0CH5	-0C ₂ H ₅
109	-C ₂ F ₅	I	,ch	H _c os-	ဂ္ဂ် မ်	ς Έ	Ę	-C ₃ H,	ō
110	ਮੁੰ	ζ Ļ	Å.	Ą	ည် ညီ	숬 F	Ę	Ę OCH I	осн ^з
=======================================	-N(CH ₃) ₂	ĊHs	ĊĤ,	-C ₂ H ₅ N(CH ₃) ₂	Ċ Ļ	ረት ት	-0C ₂ H ₅	- C ₂ H ₅	$-c_2H_5$
112	-сн ₂ sсн ₃	۲ ^۳	Ċ Ę		Ę,	Н	,CH,	CH ₃	CH ³
113		മ്		S-CH ₃		ង់	Participation	P	
411	-OCH2OC2Hs	ᅻ 국	ÇH	CF ₃	ဌ်	Å Å	ξ̈́	-0-n-C ₄ H ₉	щ
115	-S-n-C,H	I	ĊŖ.	L'A'A'	ဂ္ဂ ႕	ਠ	ភ្នំ	-O-n-C ₃ H,	-O-n-C ₃ H ₇
116	Ę,	-n-C3H,	-CH3	-CF3	بِ ب	-n-C ₃ H,	-CH ₃	-n-C ₅ H ₁₁	-n-C ₅ H ₁₁

【0042】 【表11】

【0043】本発明の記録媒体の具体的構成について以下に説明する。光記録媒体とは予め情報を記録されている再生専用の光再生専用媒体及び情報を記録して再生することのできる光記録媒体の両方を示すものである。但し、ここでは適例として後者の情報を記録して再生のできる光記録媒体、特に基板上に記録層、反射層を有する光記録媒体に関して説明する。この光記録媒体は図1に示すような基板、記録層、反射層及び保護層が順次積層している4層構造を有しているか、図2に示すような貼り合わせ構造を有している。即ち、基板1、上に記録層2、が形成されており、その上に密着して反射層3、が

設けられており、さらにその上に接着層4'を介して基板5'が貼り合わされている。ただし、記録層2'の下または上に別の層があってもよく、反射層の上に別の層があってもかまわない。

【0044】基板の材質としては、基本的には記録光及び再生光の波長で透明であればよい。例えば、ポリカーボネート樹脂、塩化ビニル樹脂、ポリメタクリル酸メチル等のアクリル樹脂、ポリスチレン樹脂、エポキシ樹脂等の高分子材料やガラス等の無機材料が利用される。これらの基板材料は射出成形法等により円盤状に基板に成形される。必要に応じて、基板表面に案内溝やピットを形成することもある。このような案内溝やピットは、基板の成形時に付与することが好ましいが、基板の上に紫外線硬化樹脂層を用いて付与することもできる。通常CDとして用いる場合は、厚さ1.2mm程度、直径80ないし120mm程度の円盤状であり、中央に直径15mm程度の穴が開いている。

【0045】本発明においては、基板上に記録層を設けるが、本発明の記録層は、 λ maxが450~630 n m 20 付近に存在する一般式(I)で示されるピロメテン金属キレート化合物を含有する。中でも、520 n m ~690 n m から選択される記録及び再生レーザー波長に対して適度な光学定数(光学定数は複素屈折率(n+ki)で表現される。式中のn,kは、実数部nと虚数部kに相当する係数である。ここでは、nを屈折率、kを消衰係数とする。)を有する必要がある。

【0046】一般に有機色素は、波長入に対し、屈折率 nと消衰係数kが大きく変化する特徴がある。nが1. 8より小さい値になると正確な信号読み取りに必要な反 射率と信号変調度は得られず、kが0.40を越えても 反射率が低下して良好な再生信号が得られないだけでな く、再生光により信号が変化しやすくなり実用に適さな い。この特徴を考慮して、目的とするレーザー波長にお いて好ましい光学定数を有する有機色素を選択し記録層 を成膜することで、高い反射率を有し、且つ、感度の良 い媒体とすることができる。

【0047】本発明の一般式(I)で表される化合物は、通常の有機色素に比べ、吸光係数が高く、また置換基の選択により吸収波長域を任意に選択できるため、前記レーザー光の波長において記録層に必要な光学定数(nが1.8以上、且つ、kが0.04~0.40であり、好ましくは、nが2.0以上で、且つ、kが0.04~0.20)を満足する極めて有用な化合物である。【0048】本発明の光記録媒体を520nm~690nmから選択されるレーザー光で再生する場合、基本的には、反射率が20%以上であれば一応可能ではあるが、30%以上の反射率が好ましい。

【0049】また、記録特性などの改善のために、波長450~630nmに吸収極大を有し、520~690nmでの屈折率が大きい前記以外の色素と混合してもよ

50

い。具体的には、シアニン色素、スクアリリウム系色素、ナフトキノン系色素、アントラキノン系色素、ポルフィリン系色素、テトラピラポルフィラジン系色素、インドフェノール系色素、ピリリウム系色素、チオピリリウム系色素、アズレニウム系色素、トリフェニルメタン系色素、キサンテン系色素、インダスレン系色素、インジゴ系色素、チオインジゴ系色素、メロシアニン系色素、チアジン系色素、アクリジン系色素、オキサジン系色素、チアジン系色素、アクリジン系色素、オキサジン系色素の混合であってもよい。これらの色素の混合制合は、0.1~30%程度である。【0050】記録層を成膜する際に、必要に応じて前記の色素に、クエンチャー 色素分解促進剤 紫外線吸収

【0050】記録層を成膜する際に、必要に応じて前記の色素に、クエンチャー、色素分解促進剤、紫外線吸収剤、接着剤等を混合するか、あるいは、そのような効果を有する化合物を前記色素の置換基として導入することも可能である。

【0051】クエンチャーの具体例としては、アセチルアセトナート系、ビスジチオーαージケトン系やビスフェニルジチオール系等のビスジチオール系、チオカテコール系、サリチルアルデヒドオキシム系、チオビスフェノレート系等の金属錯体が好ましい。また、アミン系も好適である。

【0052】熱分解促進剤としては、例えば、金属系アンチノッキング剤、メタロセン化合物、アセチルアセトナート系金属錯体等の金属化合物が挙げられる。

【0053】さらに、必要に応じて、バインダー、レベリング剤、消泡剤等を併用することもできる。好ましいバインダーとしては、ポリビニルアルコール、ポリビニルピロリドン、ニトロセルロース、酢酸セルロース、ケトン樹脂、アクリル樹脂、ポリスチレン樹脂、ウレタン樹脂、ポリビニルブチラール、ポリカーボネート、ポリオレフィン等が挙げられる。

【0054】記録層を基板の上に成膜する際に、基板の耐溶剤性や反射率、記録感度等を向上させるために、基板の上に無機物やポリマーからなる層を設けても良い。ここで、記録層における一般式(I)で示されるピロメテン金属キレート化合物の含有量は、30%以上、好ましくは60%以上である。尚、実質的に100%であることも好ましい。

【0055】記録層を設ける方法は、例えば、スピンコート法、スプレー法、キャスト法、浸漬法等の塗布法、スパッタ法、化学蒸着法、真空蒸着法等が挙げられるが、スピンコート法が簡便で好ましい。

【0056】スピンコート法等の塗布法を用いる場合には、一般式(I)で示されるピロメテン金属キレート化合物を1~40重量%、好ましくは3~30重量%となるように溶媒に溶解あるいは分散させた塗布液を用いるが、この際、溶媒は基板にダメージを与えないものを選ぶことが好ましい。例えば、メタノール、エタノール、イソプロピルアルコール、オクタフルオロペンタノール、アリルアルコール、メチルセロソルブ、エチルセロ

ソルブ、テトラフルオロプロパノール等のアルコール系溶媒、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ジメチルシクロヘキサン等の脂肪族又は脂環式炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、四塩化炭素、クロロホルム、テトラクロロエタン、ジブロモエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、ジオキサン等のエーテル系溶媒、アセトン、3-ヒドロキシー3-メチルー2-ブタノン等のケトン系溶媒、酢酸エチル、乳酸メチル等のエステル系溶媒、水などが挙げられる。これらは、単独で用いてもよく、或いは、複数混合して用いてもよい。

【0057】なお、必要に応じて、記録層の色素を高分子薄膜などに分散して用いたりすることもできる。

【0058】また、基板にダメージを与えない溶媒を選択できない場合は、スパッタ法、化学蒸着法や真空蒸着法などが有効である。

【0059】色素層の膜厚は、特に限定するものではないが、好ましくは50~300nmである。色素層の膜厚を50nmより薄くすると、熱拡散が大きいため記録出来ないか、記録信号に歪みが発生する上、信号振幅が小さくなる。また、膜厚が300nmより厚い場合は反射率が低下し、再生信号特性が悪化する。

【0060】次に記録層の上に、好ましくは、厚さ50 ~300nmの反射層を形成する。反射層の材料として は、再生光の波長で反射率の十分高いもの、例えば、A u、Al、Ag、Cu、Ti、Cr、Ni、Pt、T a、Cr及びPdの金属を単独あるいは合金にして用い ることが可能である。この中でもAu、A1、Agは反 射率が高く反射層の材料として適している。これ以外で も下記のものを含んでいてもよい。例えば、Mg、S e、Hf、V、Nb、Ru、W、Mn、Re、Fe、C o、Rh、Ir、Zn、Cd、Ga、In、Si、G e、Te、Pb、Po、Sn、Biなどの金属及び半金 属を挙げることができる。また、Auを主成分としてい るものは反射率の高い反射層が容易に得られるため好適 である。ここで主成分というのは含有率が50%以上の ものをいう。金属以外の材料で低屈折率薄膜と高屈折率 40 薄膜を交互に積み重ねて多層膜を形成し、反射層として 用いることも可能である。

【0061】反射層を形成する方法としては、例えば、スパッタ法、イオンプレーテイング法、化学蒸着法、真空蒸着法等が挙げられる。また、基板の上や反射層の下に反射率の向上、記録特性の改善、密着性の向上等のために公知の無機系または有機系の中間層、接着層を設けることもできる。

ぶことが好ましい。例えば、メタノール、エタノール、 【0062】さらに、反射層の上の保護層の材料として イソプロピルアルコール、オクタフルオロペンタノー は反射層を外力から保護するものであれば特に限定しな ル、アリルアルコール、メチルセロソルブ、エチルセロ 50 い。有機物質としては、熱可塑性樹脂、熱硬化性樹脂、

電子線硬化性樹脂、UV硬化性樹脂等を挙げることができる。また、無機物質としては、SiO2、Si3N4、MgF2、SnO2等が挙げられる。熱可塑性樹脂、熱硬化性樹脂などは適当な溶剤に溶解して塗布液を塗布し、乾燥することによって形成することができる。UV硬化性樹脂は、そのままもしくは適当な溶剤に溶解して塗布液を調製した後にこの塗布液を塗布し、UV光を照射して硬化させることによって形成することができる。UV硬化性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートなどのアクリレート樹脂を用いることができる。これらの材料は単独であるいは混合して用いてもよいし、1層だけでなく多層膜にして用いてもよい。

【0063】保護層の形成の方法としては、記録層と同様にスピンコート法やキャスト法などの塗布法やスパッタ法や化学蒸着法等の方法が用いられるが、この中でもスピンコート法が好ましい。

【0064】保護層の膜厚は、一般には $0.1\sim100$ μ mの範囲であるが、本発明においては、 $3\sim30$ μ m であり、好ましくは $5\sim20$ μ mがより好ましい。

【0065】保護層の上に更にレーベル等の印刷を行うこともできる。

【0066】また、反射層面に保護シートまたは基板を 貼り合わせる、あるいは反射層面相互を内側とし対向さ せ光記録媒体2枚を貼り合わせる等の手段を用いてもよ い。基板鏡面側に、表面保護やゴミ等の付着防止のため に紫外線硬化樹脂、無機系薄膜等を成膜してもよい。

【0067】本発明でいう波長520~690nmのレーザーは、特に限定はないが、例えば、可視領域の広範囲で波長選択のできる色素レーザーや波長633nmの 30へリウムネオンレーザー、最近開発されている波長680、650、635nm付近の高出力半導体レーザー、波長532nmの高調波変換YAGレーザーなどが挙げられる。本発明では、これらから選択される一波長または複数波長において高密度記録及び再生が可能となる。

[0068]

【実施例】以下に本発明の実施例を示すが、本発明はこれらの実施例により何ら限定されるものではない。

【0069】実施例1 ピロメテン金属キレート化合物(1)の合成

元素分析値(C 25 H 41 N 2 O 2 B

-ジメチル-4-エチルピロール5.0g及び2,4-ジメチル-3-エチルピロール4.1gを溶解し、オキシ三塩化リン5.6gを滴下し、20℃で1時間撹拌した。濃縮後、n-ヘキサン200m1にて洗浄し、トルエン300m1とN,N-ジイソプロピルエチルアミン18.4gを加え、室温で30分間撹拌した後、ボロントリフルオリドエーテル錯体19.2gを加え、更に1時間撹拌した。水洗後、トルエンを溜去し、メタノールにて再結晶し、下記構造式(VII-a)で示される化合物を4.5g得た。

38

* 窒素気流下、ジクロロメタン30 m 1 に2-ホルミル-3,5

[0070]

【化9】

【0071】次に、窒素気流下、n-ブチルアルコール30gに金属ナトリウム0.38gを加え、80℃にて1時間撹拌して金属ナトリウムを溶解した後、式(VII-a)で示される化合物1.0gを加え、90℃で5時間撹拌した。水100m1に排出し、トルエン200m1にて抽出し、水洗後、溶媒を溜去した。カラムクロマトグラフィー(シリカゲル/トルエン:酢酸エチル=9:1)にて精製し、下記構造式(1)で示される化合物を1.2g得た。

[0072]

【化10】

【 0 0 7 3 】下記分析結果より目的物であることを確認 した。

[0074]

*40 【表12】

九米万 7 1 個(C 25	II 4I IN 2 C 2 D)	•	
7. 1	С	Н	N
計算值(%)	72.81	10.02	6.79
実測値(%)	72.88	9.96	6.84

 $MS (m/e) : 412 (M^{+})$

【0075】このようにして得られた化合物はトルエン溶液中にて487 n mに極大吸収を示し、グラム吸光係数は 1.74×10^5 m 1/g. c mであった。

【0076】実施例2 ピロメテン金属キレート化合物※50 イド21.0gを滴下し、40℃で1時間撹拌した。室

※(23)の合成

窒素気流下、ジクロロメタン20m1に2,4-ジメチル-3 -エチルピロール15.0gを溶解し、アセチルクロラ イド21.0gを滴下し、40℃で1時間撹拌した。室

40

温まで冷却し、濃縮後、n-ヘキサン200m1にて洗浄 し、トルエン500m1とN,N-ジイソプロピルエチルア ミン67.5gを加え、室温で30分間撹拌した後、ボ ロントリフルオリドエーテル錯体70.2gを加え、更 に1時間撹拌した。水洗後、トルエンを溜去し、メタノ ールにて再結晶し、下記構造式(VII-b)で示される 化合物を8.0g得た。

[0077]

【化11】

【0078】次に、窒素気流下、無水テトラヒドロフラ ン50m1に式(VII-b)で示される化合物1.0g を溶解し、5℃冷却下、n-ヘキシルマグネシウムブロマ* *イド(1.0mo1/L:テトラヒドロフラン)3.1 4m1を滴下し、30分間撹拌した。2%塩酸100m 1に排出し、トルエン100m1にて抽出し、水洗後、 溶媒を溜去した。カラムクロマトグラフィー(シリカゲ ル/トルエン:n-ヘキサン=5:5)にて精製し、下記 構造式(23)で示される化合物を0.77g得た。 [0079]

【化12】

$$\begin{array}{c}
N = 10.1 \times 10^{-1} \\
N$$

【0080】下記分析結果より目的物であることを確認 した。

[0081]

【表13】

元素分析值	(C 24	Н	38 N	2	В	F)	:

	С	H	N
計算値(%)	74.99	9.96	7. 29
実測値(%)	75.03	9. 91	7. 33

(21)

10

 $MS(m/e):384(M^{+})$

【0082】このようにして得られた化合物はトルエン 溶液中にて518nmに極大吸収を示し、グラム吸光係 数は2.25×10 5 m1/g.cmであった。

【0083】実施例3 ピロメテン金属キレート化合物 (24)の合成

窒素気流下、無水テトラヒドロフラン20m1に前記式 30 (VII-b)で示される化合物1.0gを溶解し、20 ℃冷却下、n-ヘキシルマグネシウムブロマイド(1.0 mo1/L: テトラヒドロフラン) 7.54m1を滴下 し、30℃にて30分間撹拌した。2%塩酸100m1 に排出し、トルエン100m1にて抽出し、水洗後、溶 媒を溜去した。カラムクロマトグラフィー(シリカゲル /トルエン:n-ヘキサン=3:7)にて精製し、下記構※

※造式(24)で示される化合物を1.15g得た。

[0084]

$$(4.13)$$

N

N

N

N

(24)

【0085】下記分析結果より目的物であることを確認 した。

[0086]

【表14】

元素分析値 (C 30 H 51 N 2 B): CН Ν 計算値(%) 79.99 11.41 6.22 実測値(%) 80.01 11.35 6.25

 $MS(m/e):451(M^{+})$

【0087】このようにして得られた化合物はトルエン 溶液中にて511nmに極大吸収を示し、グラム吸光係 数は2.07×10⁵m1/g.cmであった。

【0088】実施例4 ピロメテン金属キレート化合物 (27)の合成

窒素気流下、無水テトラヒドロフラン50m1に前記式 (VII-b)で示される化合物1.0gを溶解し、5℃ \star 50 で示される化合物を0.71g得た。

★冷却下、フェニルマグネシウムブロマイド(2.0mo 1/L:テトラヒドロフラン) 1.57m1を滴下し、 1時間撹拌した。2%塩酸100m1に排出し、トルエ ン100m1にて抽出し、水洗後、溶媒を溜去した。カ ラムクロマトグラフィー (シリカゲル/トルエン:n-へ キサン=35:65) にて精製し、下記構造式(27)

[0089]

【化14】

42

*【0090】下記分析結果より目的物であることを確認

[0091] 【表15】

元素分析値 (C 24 H 30 N 2 B F):

7 - 7 1 7 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1	11 00 1 1 2 1 7 7		
	С	Н	N
計算值(%)	76.60	8.03	7.44
実測値(%)	76.53	8. 11	7. 48

 $MS(m/e):376(M^*)$

【0092】このようにして得られた化合物はトルエン 溶液中にて522nmに極大吸収を示し、グラム吸光係 数は1.89×10⁵ml/g.cmであった。

【0093】実施例5 ピロメテン金属キレート化合物 (28)の合成

窒素気流下、無水テトラヒドロフラン20m1に前記式 20 (VII-b)で示される化合物1.0gを溶解し、20 ℃冷却下、フェニルマグネシウムブロマイド(2.0m o 1/L: テトラヒドロフラン) 4.71m1を滴下 し、30℃にて30分間撹拌した。2%塩酸100m1 に排出し、トルエン100m1にて抽出し、水洗後、溶 媒を溜去した。カラムクロマトグラフィー(シリカゲル /トルエン:n-ヘキサン=2:8) にて精製し、下記構※

※造式(28)で示される化合物を1.16g得た。

[0094]

【化15】

【0095】下記分析結果より目的物であることを確認 した。

[0096]

【表16】

元素分析値(C 30 H 35 N 2 B):

	С	Н	N
計算値(%)	82.94	8. 12	6. 45
実測値(%)	82.89	8. 17	6. 51

 $MS (m/e) : 434 (M^{*})$

【0097】このようにして得られた化合物はトルエン 溶液中にて516 nmに極大吸収を示し、グラム吸光係 数は1.72×10 5 ml/g.cmであった。

【0098】実施例6 ピロメテン金属キレート化合物 (30)の合成

メタノール25m1に前記式(VII-b)で示される化 合物 0.5gを溶解し、ナトリウムメトキシド1.0g 40 を加え、還流温度にて5時間撹拌した。水100m1に 排出し、トルエン150m1にて抽出し、水洗後、溶媒 を溜去した。カラムクロマトグラフィー(シリカゲル/ トルエン: 酢酸エチル=7:3) にて精製し、下記構造 式(30)で示される化合物を0.51g得た。

★【0099】

【化16】

【0100】下記分析結果より目的物であることを確認 した。

[0101]

【表17】

- 元素分析値(C so H st N s O s B):

323132211	11 3111 20 212 /		
	С	H	N
計算値(%)	70.18	9.13	8.18
実測値(%)	70.14	9.17	8. 25

 $MS(m/e):342(M^{+})$

【0102】このようにして得られた化合物はトルエン 溶液中にて522 n m に極大吸収を示し、グラム吸光係 数は 1.85×10^5 m 1/g. c m であった。

【 0 1 0 3 】 実施例 7 ピロメテン金属キレート化合物 10 (3 1) の合成

窒素気流下、n-ペンチルアルコール20gに金属ナトリウム0.072gを加え、80℃にて1時間撹拌して金属ナトリウムを溶解した後、前記式(VII-b)で示される化合物1.0gを加え、90℃にて5時間撹拌した。水100m1に排出し、トルエン100m1にて抽出し、水洗後、溶媒を溜去した。カラムクロマトグラフィー(シリカゲル/トルエン:酢酸エチル=95:5)にて精製し、下記構造式(31)で示される化合物を *

*0.81 g得た。

[0104]

【化17】

$$\begin{array}{c}
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
F
\end{array}$$
(31)

44

【 0 1 0 5 】下記分析結果より目的物であることを確認 した。

[0106]

【表18】

元素分析值 (C 23 H 36 N 2 O B F):

	С	Н	N
計算値(%)	71.50	9.39	7. 25
実測値(%)	71.42	9.33	7. 29

30

 $MS(m/e):386(M^{+})$

【0107】このようにして得られた化合物はトルエン 溶液中に7523 n m に極大吸収を示し、グラム吸光係 数は 1.37×10^{5} m 1/g. c m であった。

【0108】実施例8 ピロメテン金属キレート化合物 (33) の合成

ジオキサン10m1に、前記式(VII-b)で示される 化合物0.5gを溶解し、15%メチルメルカプタンナトリウム水溶液2.43gを加え、90℃にて3時間撹拌した。水100m1に排出し、酢酸エチル200m1にて抽出し、水洗後、溶媒を溜去した。カラムクロマトグラフィー(シリカゲル/酢酸エチル:エタノール=9

5:5)にて精製し、下記構造式(33)で示される化※

※合物を0.31g得た。

[0109]

【化18】

【 O 1 1 O 】下記分析結果より目的物であることを確認 した。

[0111]

【表19】

元素分析值(C20H31N2S2B):

	С	Н	N
計算值(%)	64.16	8.35	7.48
実測値(%)	64.11	8.39	7.54

 $MS(m/e):374(M^{+})$

【0112】このようにして得られた化合物はトルエン溶液中にて520 n mに極大吸収を示し、グラム吸光係数は 1.71×10^5 m 1/g. c mであった。

【0113】実施例9 ピロメテン金属キレート化合物 (36) の合成

窒素気流下、無水テトラヒドロフラン20m1に前記式 キサン=5:5)にて精製し、下 (31)で示される化合物0.5gを溶解し、10 \mathbb{C} 合 \bigstar 50 される化合物0.48g 得た。

★却下、フェニルマグネシウムブロマイド(2.0mol/L:テトラヒドロフラン)0.65mlを滴下し、30分間撹拌した。2%塩酸100mlに排出し、トルエン100mlにて抽出し、水洗後、溶媒を溜去した。カラムクロマトグラフィー(シリカゲル/トルエン:n-へキサン=5:5)にて精製し、下記構造式(36)で示される化合物を0.48g得た

[0114]

【化19】

$$(E 1 9)$$

$$n-C_{\delta}H_{11}$$

$$(36)$$

*【O115】下記分析結果より目的物であることを確認

[0116] 【表20】

元素分析値(C29 H41 N2 OB):

	С	Н	N
計算值(%)	78.37	9.30	6.30
実測値(%)	78.32	9.24	6.35

 $MS(m/e):444(M^{*})$

【0117】このようにして得られた化合物はトルエン 溶液中にて519 nmに極大吸収を示し、グラム吸光係 数は1.31×10 5 ml/g.cmであった。

【0118】実施例10 ピロメテン金属キレート化合 物(64)の合成

窒素気流下、ジクロロメタン20m1に2-イソバレル-3,5-ジメチル-4-エチルピロール1.0g及び2,4-ジメ チルピロール0.46gを溶解し、オキシ三塩化リン 0.81gを滴下した。40℃にて1時間撹拌し、濃縮 後、n-ヘキサン300m1にて洗浄し、トルエン300 m1とN,N-ジイソプロピルエチルアミン2.69gを加 え、室温で30分間撹拌した後、ボロントリフルオリド エーテル錯体2.81gを加え、更に1時間撹拌した。 水洗後、トルエンを溜去し、カラムクロマトグラフィー (シリカゲル/トルエン:酢酸エチル=8:2)にて精 製し、下記構造式(VII-c)で示される化合物をO. 93g得た。

[0119]

【化20】

※【0120】次に、窒素気流下、無水テトラヒドロフラ ン20m1に式(VII-c)で示される化合物0.5g を溶解し、10℃冷却下、p-トルイルマグネシウムブロ マイド(1.0mo1/L: テトラヒドロフラン)3. 16mlを滴下し、20℃にて1時間撹拌した。2%塩 20 酸100m1に排出し、トルエン100m1にて抽出 し、水洗後、溶媒を溜去した。カラムクロマトグラフィ ー(シリカゲル/n-ヘキサン:トルエン=8:2)にて 精製し、下記構造式(64)で示される化合物を0.6 3 g 得た。

[0121]

【化21】

【0122】下記分析結果より目的物であることを確認 した。

[0123]

【表21】

九米万711 (C3	311 41 1 1 2 13 / .		·		
	С	H	N		
計算值(%)	83.18	8. 67	5.88		
実測値(%)	83.13	8.61	5. 90		

30

 $MS (m/e) : 476 (M^{+})$

【0124】このようにして得られた化合物はトルエン 溶液中にて509nmに極大吸収を示し、グラム吸光係 数は1.81 \times 10 5 m1/g.cmであった。

【0125】実施例11 ピロメテン金属キレート化合 物(72)の合成

★窒素気流下、無水テトラヒドロフラン20m1に前記式 (VII-a) で示される化合物1.0gを溶解し、n-へ キシルマグネシウムブロマイド(1.0mo1/L:テ トラヒドロフラン) 11.5m1を滴下し、30℃にて ★50 1時間撹拌した。2%塩酸100m1に排出し、トルエ

[0128]

【表22】

47

ン100m1にて抽出し、水洗後、溶媒を溜去した。カ ラムクロマトグラフィー(シリカゲル/n-ヘキサン)に て精製し、下記構造式(72)で示される化合物を1. 04g得た。

[0126]

【化22】

$$\begin{array}{c|c}
 & \text{n-C}_{6}H_{13} \\
 & \text{N} \\
 & \text{n-C}_{6}H_{13}
\end{array}$$

$$\begin{array}{c|c}
 & \text{n-C}_{6}H_{13} \\
 & \text{n-C}_{6}H_{13}
\end{array}$$

$$\begin{array}{c|c}
 & \text{(72)}
\end{array}$$

10

元素分析值(Cas Han Na R)

707K73 VI III (© 00				
	С	Н	N	
計算值(%)	80.74	11.81	5. 38	
実測値(%)	80.79	11.77	5.42	

 $MS(m/e):520(M^{+})$

【0129】このようにして得られた化合物はトルエン 溶液中にて517 nmに極大吸収を示し、グラム吸光係 数は $1.92 \times 10^5 \text{ m l/g.cm}$ であった。

【0130】実施例12

ピロメテン金属キレート化合物(1)0.2gをジメチ ルシクロヘキサン10mlに溶解し、色素溶液を調製し た。基板は、ポリカーボネート樹脂製で連続した案内溝 (トラックピッチ: 0.8μm)を有する直径120m $m\phi$ 、厚さ1.2mmの円盤状のものを用いた。

【0131】この基板上に色素溶液を回転数1500r pmでスピンコートし、70℃にて3時間乾燥して、記 録層を形成した。この記録層の吸収極大は552nmで 30 あり、光学定数は、680nmではnが2.2、kは 0.04であり、650nmではnが2.2、kは0. 06であり、635nmではnが2.4、kは0.07 である。

【0132】この記録層の上にバルザース社製スパッタ 装置(CDI-900)を用いてAuをスパッタし、厚 さ100nmの反射層を形成した。スパッタガスには、 アルゴンガスを用いた。スパッタ条件は、スパッタパワ -2.5kW、スパッタガス圧1.0×10⁻²Torr で行った。

【0133】さらに反射層の上に紫外線硬化樹脂SD-17 (大日本インキ化学工業製)をスピンコートした 後、紫外線照射して厚さ6μmの保護層を形成し、光記 録媒体を作製した。

【0134】得られた光記録媒体に、波長635nmで レンズの開口度が 0.6の半導体レーザーヘッドを搭載 したパルステック工業製光ディスク評価装置(DDU-1000)及びKENWOOD製EFMエンコーダーを 用いて、線速度3.5m/s、レーザーパワー8mWで 最短ピット長O. 44μmになるように記録した。記録※50 し、その上にポリカーボネート樹脂製で直径120mm

※後、650 nm及び635 nm赤色半導体レーザーヘッ ド(レンズの開口度は0.6)を搭載した評価装置を用 いて信号を再生し、反射率、エラーレート及び変調度を 測定した結果、いずれも良好な値を示した。

【0135】次に680nm半導体レーザーヘッドを搭 載したパルステック工業製光ディスク評価装置(DDU -1000)及びKENWOOD製EFMエンコーダー を用いて、線速度1.4m/s、レーザーパワー10m Wで最短ピット長 0.60μ mになるように記録した。 この記録した媒体を680nm、650nm及び635 nm赤色半導体レーザーヘッドを搭載したパルステック 工業製光ディスク評価装置(DDU-1000)を用い て信号を再生し、反射率、エラーレート及び変調度を測 定した。いずれも良好な値を示した。

【0136】このように、この媒体は複数のレーザー波 長で記録及び再生を良好に行うことが出来た。

【0137】なお、エラーレートはケンウッド社製CD デコーダー(DR3552)を用いて計測し、変調度は 以下の式により求めた。

[0138]

【数1】

40

(信号の最大強度) - (信号の最小強度) 変調度= (信号の最大強度)

【0139】実施例13

基板にポリカーボネート樹脂製で連続した案内溝(トラ ックピッチ: 0.8 μ m)を有する直径120mm ϕ 、 厚さ0.6mmの円盤状のものを用いる以外は実施例1 2と同様にして塗布及び反射層を形成した。

【0140】さらに反射層上に紫外線硬化性接着剤SD -301 (大日本インキ化学工業製)をスピンコート

48 *【O127】下記分析結果より目的物であることを確認

φ、厚さ0.6mmの円盤状基板を乗せた後、紫外線照射して貼り合わせした光記録媒体を作製した。

【0141】作製した媒体に、0.6mm厚に対応した635nm半導体レーザーヘッドを搭載している以外は実施例12と同様にパルステック工業製光ディスク評価装置(DDU-1000)及びKENWOOD製EFMエンコーダーを用いて記録した。記録後、650nm及び635nm赤色半導体レーザーヘッドを搭載した評価装置を用いて信号を再生し、反射率、エラーレート及び変調度を測定した結果、いずれも良好な値を示した。

【0142】実施例14~23

表-1に記載したピロメテン金属キレート化合物〔(23)、(24)、(27)、(28)、(30)、(31)、(33)、(36)、(64)、(72)〕を用いる以外は、実施例13と同様にして光記録媒体を作製した。作製した媒体に実施例13と同様に635nm半導体レーザーへッドを搭載したパルステック工業製光ディスク評価装置(DDU-1000)及びKENWOOD製EFMエンコーダーを用いて記録した。記録後、650nm及び635nm赤色半導体レーザーへッドを搭載した評価装置を用いて信号を再生し、反射率、エラーレート及び変調度を測定した結果、いずれも良好な値を示した。

【0143】実施例24

ピロメテン金属キレート化合物(30)と塗布溶媒にジアセトンアルコールを用い、基板にポリカーボネート樹脂製で連続した案内溝(トラックピッチ: 0.53μ m)を有する直径 $120mm\phi$ 、厚さ0.6mmの円盤状のものを用いる以外は実施例13と同様にして光記録媒体を作製した。

【0144】この記録層の吸収極大は528 n m であり、光学定数は、532 n m では n が 2 . 5 、 k が 0 . 12 である。

【0145】作製した媒体に、0.6mm厚に対応した 532nmYAG高周波変換レーザーヘッドを搭載した 光ディスク評価装置及びKENWOOD製EFMエンコーダーを用いて、線速度3.8m/s、レーザーパワー 7mWで記録した。記録後、同評価装置を用いて信号を

5.0

再生した結果、反射率は約50%、エラーレートが9cps及び変調度が0.66であり、いずれも良好な値を示した。

【0146】比較例1

実施例13において、ピロメテン金属キレート化合物の代わりに、ペンタメチンシアニン色素NK-2929 [1,3,3,1',3',3'-ヘキサメチル-2',2'-(4,5,4',5'-ジベンゾ)インドジカルボシアニンパークロレート、日本感光色素研究所製]を用いること以外は同様にして光記10 録媒体を作製した。作製した媒体に実施例12と同様に635nm半導体レーザーヘッドを搭載したパルステック工業製光ディスク評価装置(DDU-1000)及びKENWOOD製EFMエンコーダーを用いて、線速度3.5m/s、レーザーパワー7mWで記録した。記録後、650nm及び635nm赤色半導体レーザーヘッドを搭載した評価装置を用いて信号を再生した結果、反射率は低く、エラーレートは大きく、変調度も小さかった。更に長時間再生していると信号が劣化した。

【0147】比較例2

20 比較例1において、NK2929の代わりにトリメチンシアニン色素NK79[1,3,3,1',3',3'-ヘキサメチル-2',2'-インドジカルボシアニンアイオダイド、日本感光色素研究所製]を用いたこと以外は同様にして光記録媒体を作製した。作製した媒体に実施例12と同様に635nm半導体レーザーヘッドを搭載したパルステック工業製光ディスク評価装置(DDU-1000)及びKENWOOD製EFMエンコーダーを用いて、線速度3.5m/s、レーザーパワー7mWで記録した。記録後、650nm及び635nm赤色半導体レーザーヘッドを30搭載した評価装置を用いて信号を再生した結果、波形が歪み、エラーレートは大きく、変調度も小さかった。更に長時間再生していると信号が劣化した。

【0148】以上の実施例12~23及び比較例1~2において、記録層の光学定数及び各媒体を635nmで記録して、650nm及び635nmで再生した時の反射率、エラーレート、変調度を表-2にまとめて示す。

[0149]

【表23】

表 - 2								
実施例	12	13	14	15	16	17	18	19
化合物 no	1	1	23	24	27	28	30	31
吸収極大 (nm)	493	493	523	518	526	524	528	530
光学定数								
650nm n*1	2.2	2.2	2.3	2.2	2.1	2.2	2.2	2.0
k*2	0.06	0.05	0.04	0.05	0.05	0.06	0.04	0.05
635nm n*1	2.4	2.4	2.6	2.5	2.4	2.3	2.4	2.3
k*2	0.07	0.08	0.07	0.08	0.05	0.07	0.07	0.08
635nm 記録								
650nm 再生								
反射率 (%)	59	56	58	57	57	56	58	55
エラーレート (cps)	9	8	10	9	10	8	8	10
変調度	0.64	0.65	0.66	0.68	0.63	0.67	0.65	0.67
635nm 再生								
反射率 (%)	55	54	55	56	55	57	55	57
エラーレート (cps)	9	8	10	10	9	8	10	9
変調度	0.65	0.69	0.68	0.69	0.66	0.69	0.68	0.67

^{*1}n; 屈折率 *2k;消衰係数

[0150]

* *【表24】

					. 1777	- - 1	
表-2(続き)						
実施例		20	21	22	23	比較例1	比較例 2
化合物		33	36	64	72	NK2929	NK79
吸収極大	(nm)	526	526	516	522	640	550
光学定数							
650nm	n*1	2.3	2.1	2.3	2.2	1.9	2.1
	k*2	0.06	0.06	0.05	0.06	1.35	0.08
635nm	ı n	2.6	2.5	2.4	2.5	1.8	2.3
	k	0.08	0.06	0.07	0.06	1.30	0.10
635nm 記録	录						
650nm 再	生						
反射率	(%)	58	56	57	56	9	56
エラーレー	(cps)	11	9	10	10	3000	550
変調度		0.68	0.66	0.68	0.66	0.13	0.35
635nm 再	生						
反射率	(%)	57	56	55	58	9	60
エラーレート	(eps)	11	10	9	10	2500	350
変調度		0.68	0.69	0.66	0.68	0.15	0.38

^{*1} n; 屈折率 *2 k; 消衰係数

[0151]

【発明の効果】本発明のピロメテン金属キレート化合物 を記録層中に用いることにより、高密度光記録媒体とし 40 2 記録層 て非常に注目されている波長520~690nmのレー ザーで記録再生が可能な追記型光記録媒体を提供するこ とが可能となる。

【図面の簡単な説明】

【図1】従来の光記録媒体及び本発明の層構成を示す模 式的断面構造図である。

【図2】本発明の光記録媒体の層構成を示す模式的断面 構造図である。

※【符号の説明】

- 1 基板
- - 3 反射層
- 4 保護層
- 1 基板
- 2'記録層
- 3 / 反射層
- 4′接着層
- 5 3 基板

フロントページの続き

(72)発明者 三沢 伝美 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内

(72) 発明者 詫摩 啓輔 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 **PAT-NO:** JP411043491A

DOCUMENT-IDENTIFIER: JP 11043491 A

TITLE: PYRROMETHENE METALLIC

CHELATE COMPOUND AND OPTICAL RECORDING MEDIUM USING THE

SAME

PUBN-DATE: February 16, 1999

INVENTOR-INFORMATION:

NAME COUNTRY

SASAKI, HIROYUKI

KUMAGAI, YOJIRO

MISAWA, TSUTAYOSHI

TAKUMA, HIROSUKE

ASSIGNEE-INFORMATION:

NAME COUNTRY

MITSUI CHEM INC N/A

YAMAMOTO CHEM INC N/A

APPL-NO: JP09203662

APPL-DATE: July 30, 1997

INT-CL (IPC): C07F005/02 , G11B007/24

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain the subject new compound, comprising a specific pyrromethene metal

chelate compound, capable of carrying out good high-density recording and reproducing with a laser at a wavelength within a specific range and usable in a recording layer of a write once type optical recording medium such as a compact disk.

SOLUTION: This new pyrromethane type metallic chelate compound is represented by formula I (R1 to R7 are each H, a halogen, nitro, cyano, OH, amino, carboxyl, sulfonic acid, a 1-20C alkyl, an alkoxy, an aryl, a heteroaryl, a 2-20C alkenyl, etc.; X1 an X2 are each a 1-20C alkyl, a halogenoalkyl, an alkoxy, an alkylthio, an aryloxy, an arylthio, a heteroaryl or a halogen, with the proviso that X1 and X2 are not simultaneously the halogen) and is useful for an optical recording medium, etc., capable of carrying out the high-density recording and reproducing with a laser at a wavelength within the range of 520-690 nm. The compound is obtained by reacting pyrrole derivatives represented by formulae II and III in the presence of an acidic catalyst, then reacting the resultant compound with a boron trihalide and further reacting the obtained compound with a metallic alkoxide, etc.

COPYRIGHT: (C) 1999, JPO