RFID-Authentifikation

P. Bischofberger, J. Birnbreier, C. Ludwig Fachinformatiker Systemintegration

Abstract

Es wurde ein Programm entwickelt, welches die Authentifizierung eines Users per RFID-Chip ermöglicht. Die ID des Chips wird kontaktlos ausgelesen und mit einer SQL-Datenbank abgeglichen. Ist der User hinterlegt wird ein Relay geschalten, welches den Türöffner aktiviert. Die User-Datenbank kann über das Programm administriert werden. Zudem werden alle erfolgreichen Zutritte gelogged.

RFID

stehtfürRadio-Frequency-IDentification. Ein Sender-Empfänger Systemfürberührungsloses Identifizieren.

Das Lesegerät erzeugt ein elektromagnetisches Wechselfeld. Der Transponder (oder RFID-Tag) empfangt und absorbiert diese Wellen, was dann als Stromversorgung für das Tag fungiert. Der Mikrochip im Tag decodiert das empfangene Signal und codiert daraufhin die Antwort - im einfachsten Fall die Tag-ID. (1)

Komponenten/Software

Raspberry-Pi 3b+ Debian 11
5v Relais MariaDB
RFID RC522 Read/Writer Python

Schaltplan

Das RC522 Modul wird mitdenRaspberryGPIOs verbunden. Über jeweils einen digital Out wird das Relay und die LED angesteuert. Das Relay schliesst den Türöffner-Stromkreis. Die LED dient als optisches Feedback.

Datenbank

Auf Basis von MariaDB wurde eine einfache Datenbank aufgesetzt, in welcher die User

verwaltet werden und zugehörige Logs bei erfolgreicher Authentifizierung erfolgen.

CREATE TABLE users (user_id INT PRIMARY KEY AUTO_INCREMENT, rfid BIGINT UNIQUE, name VARCHAR(80), active TINYINT(1) DEFAULT 1 users *log_id *user_id CREATE TABLE logs (name active log_id INT PRIMARY KEY AUTO_INCREMENT, time_stamp TIMESTAMP, user_id INT REFERENCES users(user_id), *PK, /FK users: *user_id, rfid, name, active logs: *log_id, time_stamp, /user_id

Referenzen

(1) Wikipedia - RFID

(2) Hardware & Security, Tobias Scheible

(3) Alibaba

Sicherheit-Aspekte

Wird die Tag-ID im Klartext übertragen (wie in unserem Fall), besteht ein großes Sicherheits -Risiko. Ein Angreifer kann mit einem Lesegerät unbemerkt die ID des Tags auslesen (Antenne im Rucksack/Hose) und dadurch den Tag klonen. Bei fortgeschrittenen Varianten ist ein kleiner Mikrocontroller mit kryptografischen Funktionen verbaut. Hierfür müssen Reader und Tag miteinander kompatibel sein. Weit verbreitet ist der MIFARE-Classic Standard, der jedoch als unsicher gilt. (2)

Angriffsvektoren

Ziel eines Angreifers ist es den RFID Tag auszulesen, um eine Kopie zu erstellen und dadurch die Zutrittskontrolle zu umgehen.

- 1. RF Field Detector (für Reconnaisance)
- 2. RFID-Tag-Cloner
- 3. Proxmark 3 RDV4.01
- 4. NFC-Kill

Detektoren sind nichts anderes als kleine Antennen mit einer LED, um RFID Felder aufzuspüren. Typische Frequenzen sind 13,56 MHz, 125 kHz und 134 kHz. Mit **Clonern** lassen sich einfache Standard-Tags kopieren auf beschreibbare Tags. Der **Proxmark 3** ist das «schweizer Taschenmesser» unter den RFID-Tools. Mit ihm lassen sich sehr viele Standards simulieren und man kann den Mifare Classic Schutzumgehen, mit der zugehörigen Software unter Kali-Linux. Mit einem **NFC-Kill Tool,** welches ein sehr starkes elektromagnetisches Feld erzeugt, lässt sich ein RFID-Tag zerstören.

Abb.4: Proxmark 3 RDV4.01 (4)

Fazit

fritzing

- --> Sicherheit des eingesetzten Standards gegeben oder wurde er schon gebrochen?
- --> RFID-Blocker benutzen um Auslesen zu verhindern
- --> Falls möglich einen 2. Faktor benutzen.
- --> Nutzer Security-Awareness-Schulungen