BUNDESREPUBLIK DEUTSCHLAND

URKUNDE

über die Erteilung des

Patents

Nr. 102 45 540

IPC

G01C 19/72

Bezeichnung

Verfahren zur Regelung der Arbeitsfrequenz eines faseroptischen Gyroskops

Patentinhaber

Litef GmbH, 79115 Freiburg, DE

Erfinder

Voigt, Sven, 79111 Freiburg, DE; Spahlinger, Günter, Dr., 70188 Stuttgart, DE

Tag der Anmeldung

30.09.2002

53931 p

EINGEGANGEN MÜLLER • HOFFMANN : PARTNER

16. Sep. 2004

Kopie an Tax gegeben am

München, den 16.09.2004

Der Präsident des Deutschen Patent- und Markenamts

Dr. Whole

Dr. Schade

(10) **DE 102 45 540 B3** 2004.09.16

(12)

Patentschrift

(21) Aktenzeichen: 102 45 540.6

(22) Anmeldetag: 30.09.2002

(43) Offenlegungstag: -

(45) Veröffentlichungstag

der Patenterteilung: 16.09.2004

(51) Int Cl.7: G01C 19/72

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden.

(71) Patentinhaber:

Litef GmbH, 79115 Freiburg, DE

(74) Vertreter:

Müller - Hoffmann & Partner Patentanwälte, 81667

München

(72) Erfinder:

Voigt, Sven, 79111 Freiburg, DE; Spahlinger,

Günter, Dr., 70188 Stuttgart, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 197 53 427 C1

DE 196 29 260 C1

DE 101 30 159 A1

DE 698 01 435 T2

DE 695 10 776 T2

(54) Bezeichnung: Verfahren zur Regelung der Arbeitsfrequenz eines faseroptischen Gyroskops

(57) Zusammenfassung: Bei dem Verfahren zur Regelung der Arbeitsfrequenz eines faseroptischen Gyroskops (FOG 100) mit geschlossener Regelschleife, bei welchem das demodulierte Ausgangssignal des FOG-Detektors (10) als Ist-Signal einerseits den Eingang eines FOG-Hauptreglers (14) und andererseits über ein Austastfilter (20) einen den Systemtakt des FOG bestimmenden VCO (12) beaufschlagt, ist erfindungsgemäß vorgesehen, ein Zusatzmodulationssignal als Analogsignal (ΦE) separaten Phasen-Korrekturelektroden zuzuführen, die zusammen mit den Elektroden eines digitalen Phasenmodulators in einem integriert-optischen Chip (MIOC 11) ausgebildet sind. Durch das erfindungsgemäße Verfahren und die besondere Gestaltung des MIOC (11) lässt sich die Arbeitsfrequenz des FOG exakt regeln.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zur Regelung der Arbeitsfrequenz eines faseroptischen Gyroskops (FOG) mit geschlossener Regelschleife, bei welchem ein demoduliertes Ausgangssignal des FOG-Detektors als Ist-Signal einerseits den Eingang eines FOG-Hauptreglers und andererseits über ein Austastfilter einen den Systemtakt des FOG bestimmenden VCO beaufschlagt, wobei das Ausgangssignal des FOG-Hauptreglers als Modulationssignal einem in einem multifunktionalen optischen Chip (MI-OC) ausgebildeten digitalen Phasenmodulator zugeführt wird, und wobei zur Bestimmung und Regelung der exakten Arbeitsfrequenz des FOG dem demodulierten, zum Austastfilter gelangenden Detektorausgangssignal ein periodisches Zusatzmodulationssignal überlagert wird. Im Zusammenhang mit der Erfindung wird außerdem ein multifunktional integrierter-optischer Chip (MIOC) für ein faseroptisches Gyroskop (FOG) beschrieben, der sich zur Realisierung des erfindungsgemäßen Verfahrens eignet.

Stand der Technik

[0002] In DE 197 53 427 C1 ist ein digitaler Phasenmodulator, insbesondere für faseroptische Drehratensensoren mit geschlossener Regelschleife, beschrieben, bei dem zur Erhöhung der Auflösung ein niedersignifikanter Anteil eines von einem FOG-Hauptregler gelieferten binären Ansteuersignals über einen Digital/ Analog-Wandler relativ niedriger Auflösung in ein Analogsignal gewandelt wird, das einer auf dem den digitalen Phasenmodulator enthaltenden integriert-optischen Chip separat vorgesehenen weiteren Elektrode zugeführt wird. Damit lässt sich die Auflösung von beispielsweise 8 auf ca. 10 Bit erhöhen. Die separate Elektrode oder gegebenenfalls ein separates Elektrodenpaar ist dem digitalen Phasenmodulator unmittelbar zugeordnet.

[0003] In der nicht vorveröffentlichten DE-Patentanmeldung 101 30 159.6 wird ein Verfahren zur Vermeidung von Bias-Fehlern aufgrund synchroner Einstreuung bei faseroptischen Gyroskopen mit geschlossener Regelschleife vorgeschlagen, bei dem vorgesehen ist, dem demodulierten Ausgangssignal des FOG-Detektors ein im Abtasttakt des FOG periodisches Signal in Form einer Zusatzmodulation am digitalen Phasenmodulator innerhalb eines multifunktionalen integrierten optischen Chips zu überlagern. Die im demodulierten Detektorsignal vorhandenen Reste dieser Zusatzmodulation werden detektiert und einem Hilfsregelkreis zugeführt, welcher die Arbeitsfrequenz so nachregelt, dass die Zusatzmodulation möglichst zu Null wird.

[0004] Die Implementierung dieses bekannten Verfahrens, die zu einer erheblichen Erhöhung der Genauigkeit bei FOGs führt, hat jedoch in der Praxis durch die Verwendung eines gemischten Ansteuersignals am Phasenmodulator des MIOCs zu prakti-

schen Schwierigkeiten, insbesondere zu einem gewissen Zielkonflikt, geführt, wenn gleichzeitig versucht wird, die Auflösung des digitalen Phasenmodulators ohne Vergrößerung der Baulänge des MIOCs anders zu lösen als in der oben genannten DE-Patentschrift beschrieben. Dies gilt insbesondere dann, wenn der Phasenmodulator zur Erhöhung der Auflösung mit nicht-binären Ansteuersignalen betrieben werden soll.

[0005] Aus DE 695 10 776 T2 ist ein multifunktionaler integriert-optischer Chip für ein faseroptisches Gyroskop bekannt, in dem als mindestens eine Funktionsgruppe ein durch parallel zu einer Lichtführungsstrecke angeordnete Elektroden realisierter Phasenmodulator implementiert ist.

[0006] Aus DE 698 01 435 T2 sowie DE 196 29 260 C1 sind jeweils mehrere hintereinander geschaltete Phasenkorrekturelektroden bekannt, denen ein Zusatzsignal als Analogsignal zugeführt wird.

Aufgabenstellung

[0007] Der Erfindung liegt damit die Aufgabe zugrunde, das Verfahren zur Regelung der Arbeitsfrequenz eines FOG zu vereinfachen.

[0008] Diese Aufgabe wird bei einem Verfahren der eingangs genannten Gattung gemäß der Erfindung dadurch gelöst, dass ein periodisches Zusatzsignal zur Frequenzbestimmung bzw. Frequenzregelung des FOG als Analogsignal separaten im MIOC ausgebildeten Phasenkorrektur-Elektroden zugeführt wird.

[0009] Ein multifunktionaler integriert-optischer Chip (MIOC) für ein faseroptisches Gyroskop, in dem als mindestens eine Funktionsgruppe ein durch parallel zu einer Lichtführungsstrecke angeordnete Elektroden realisierter Phasenmodulator implementiert ist, eignet sich zur Realisierung des erfindungsgemäßen Verfahrens dadurch, dass zusätzlich zum Phasenmodulator ein parallel zur Lichtführungsstrecke angeordnetes Elektrodenpaar vorhanden ist zur Beaufschlagung eines Lichtstrahls auf der Lichtführungsstrecke mit einem periodischen Zusatzmodulationssignal zur Regelung der Arbeitsfrequenz des Gyroskops.

[0010] Eine optimierte Baugröße des integriert-optischen Chips lässt sich dann erzielen, wenn das zusätzliche Elektrodenpaar zwischen dem digitalen Phasenmodulator und einem Strahlteiler innerhalb des Chip angeordnet ist.

Ausführungsbeispiel

[0011] Die Erfindung und vorteilhafte Einzelheiten werden nachfolgend unter Bezug auf die Zeichnungen in beispielsweiser Ausführungsform näher erläutert. Es zeigen:

[0012] **Fig.** 1 ein schematisiertes Blockschaltbild der Architektur eines FOGs mit Darstellung der erfindungsgemäßen Arbeitsfrequenzregelung; und

[0013] Fig. 2 in etwas vereinfachter Darstellung die Draufsicht auf einen multifunktionalen integriert-optischen Chip (MIOC) mit zusätzlichen Elektroden zur vorteilhaften Realisierung des erfindungsgemäßen Regelverfahrens.

[0014] Die optische Architektur eines faseroptischen Kreisels wird als grundsätzlich bekannt vorausgesetzt; sie ist daher in Fig. 1 nur als Block 100 dargestellt. Das vom Detektor 10 des FOG 100 gelieferte Messsignal, das die Drehrateninformation enthält, wird durch einen FOG-Demodulator 13 demoduliert und beaufschlagt, da es sich um einen faseroptischen Kreisel mit geschlossener Regelschleife handelt, den Eingang eines FOG-Hauptreglers 14, der unter anderem ausgangsseitig ein vorzugsweise nicht-binäres U_x- bzw. Rückstellsignal an einen in einem multifunktonalen integriert-optischen Chip, d. h. einem MIOC 11, ausgebildeten digitalen Phasenmodulator 24 liefert, der in spiegelsymmetrischer Ausführung in grundsätzlich bekannter Weise die nach einer Strahlteilung 23 entstandenen und gegenläufig eine (nicht gezeigte) Messspule durchsetzende Lichtstrahlen auf zwei Lichtführungsstrecken L1, L2 beeinflusst (vgl. Fig. 2). Außer dem FOG-Demodulator 13 und dem FOG-Hauptregler 14 ist eine Zusatzmodulationseinrichtung 15 vorhanden, deren periodisches Signal øE einerseits dem Modulationssignal vom FOG-Hauptregler überlagert wird und dann über ein Austastfilter 20 einen spannungssteuerbaren Oszillator VCO 12 steuert, der den Arbeitstakt des FOG-Kreiselsystems bestimmt. Erfindungsgemäß gelangt das Zusatzmodulationssignal φE auf einen im MIOC 11 ausgebildeten Analogteil, der - wie die Fig. 2 zeigt - durch ein zusätzliches vom digitalen Phasenmodulator unabhängiges Elektrodenpaar 25 realisiert ist. Auf die zusätzliche Elektrode, bzw. im dargestellten Beispiel der Fig. 2 das Elektrodenpaar 25, wird also das im Abtasttakt periodische Zusatzmodulationssignal φE mit kleiner Amplitude gegeben und erzeugt typischerweise - jedoch in keiner Weise einschränkend - eine maximale Phasenverschiebung von π/32. Diese Phasenverschiebung ist ausreichend, um nach der Demodulation ein Signal zu erzeugen, welches über das Austastfilter 20 den VCO 12 so steuert, dass die gewünschte Arbeitsfrequenz des FOG-Systems exakt eingehalten wird. Abweichend von der in der nicht vorveröffentlichten DE-Patentanmeldung 101 30 159.6 beschriebenen Lösung wird das periodische Zusatzmodulationssignal øE zur Bestimmung der Kreiselfrequenz nicht dem digitalen MIOC-Modulationssignal hinzuaddiert, sondern wird direkt auf die zusätzliche Analogelektrode bzw. das Elektrodenpaar 25, also auf den Analogteil 22 des MIOCs 11 gegeben.

[0015] Der besondere Vorteil der Erfindung ist, dass das Zusatzmodulationssignal φΕ nicht digital umgesetzt werden muss, und eine Addition von Modulationssignal und Zusatzmodulation entfällt.

Patentansprüche

1. Verfahren zur Regelung der Arbeitsfrequenz eines faseroptischen Gyroskops (FOG) mit geschlossener Regelschleife, bei welchem ein demoduliertes Ausgangssignal des FOG-Detektors als Ist-Signal einerseits den Eingang eines FOG-Hauptreglers und andererseits über ein Austastfilter einen den Systemtakt des FOG bestimmenden VCO beaufschlagt, wobei das Ausgangssignal des FOG-Hauptreglers als Modulationssignal einem in einem multifunktionalen integriertoptischen Chip (MIOC) ausgebildeten digitalen Phasenmodulator zugeführt wird, und wobei zur Bestimmung und Regelung der exakten Arbeitsfrequenz des FOG dem demodulierten, zum Austastfilter gelangenden Detektorausgangssignal ein periodisches Zusatzmodulationssignal überlagert wird, dadurch gekennzeichnet, dass das Zusatzmodulationssignal als Analogsignal separaten im MIOC ausgebildeten Phasen-Korrekturelektroden zugeführt wird.

Es folgen 2 Blatt Zeichnungen

Anhängende Zeichnungen

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

₩ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☑ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
T OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.