ANOVA

Analysis of Variance

- Analysis of variance:
 - One-way
 - Two-way
 - Repeated measures
 - Non-parametric

Comparing Means of Several Groups

- T-test compares means of two groups
- What if we have more?
- Perform multiple t-tests
 - Multiple testing issues

6 tests

in general: n groups give n(n-1)/2 tests

One Way Analysis of Variance

- Alternative is one way ANOVA
- Illustrate with example
 - Does blood group have an effect on blood pressure in mmHg

0	Α	В
115	127	105
122	126	123
118	115	132
127	118	113
110	109	118

Outline

- Test if groups have common mean (H₀)
- Assume groups have a common variance
- Produce two estimates of variance $-s_B^2$ and $s_{W_s}^2$ (only s_B^2 holds under H_0)
- Under $H_0 s_B^2 = s_{W_A}^2$ we expect $s_B^2/s_W^2 = 1$
- Assume data are normally distributed - Distribution of s²_B/s²_W under H₀ is known

Example

- Are data scattered about common mean?
 - Do we need to account for group means
- In this case scattered about common mean

Example

- · Groups have common mean
 - Variation of group means around over-all mean
 - Much less than data points around group mean

Recall - Sample Variance

• Calculated from formula:

Partitioning the Variance

• Split total variation (sums of squares) in parts

$$\begin{split} \sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)^{2} &= \sum_{i=1}^{N} \left(\left(x_{i} - m_{i}\right) + \left(m_{i} - \overline{x}\right)\right)^{2} \\ &= \sum_{i=1}^{N} \left(x_{i} - m_{i}\right)^{2} + \sum_{i=1}^{N} \left(m_{i} - \overline{x}\right)^{2} \\ \text{sum of variations within} \\ \text{each group} & \text{sum of variations} \\ \text{between group means} \end{split}$$

where \boldsymbol{m}_{i} is the appropriate group mean for observation \boldsymbol{x}_{i}

Example - Total Sum of Squares

Example – Within Sums of Squares

	0	Α	В	O A B
_	115	127	105	11.56 64.00 174.24
	122	126	123	12.96 49.00 23.04
	118	115	132	0.16 16.00 190.44
	127	118	113	73.96 1.00 27.04
	110	109	118	70.56 100.00 0.04
1	18.4	119	118.2	squared differences from group mean

Within groups sum of squares (WSS) = $\sum_{i=1}^{N} (x_i - m_i)^2 = 814$

Example – Between Sums of Squares

Total SS (TSS)= 815.73

0	Α	В		0	Α	В	
115	127	105		0.018	0.218	0.111	
122	126	123		0.018	0.218	0.111	
118	115	132		0.018	0.218	0.111	
127	118	113		0.018	0.218	0.111	
110	109	118		0.018	0.218	0.111	
118.4	119	118.2	squared differences group mean to mean				
$\overline{\mathbf{x}} = 118.53$							
Between group means SS (BSS) = $\sum_{i=1}^{N} (m_i - \overline{x})^2 = 1.73$							

Estimating Variance Between Groups

$$\begin{split} \frac{1}{n_0 - 1} \sum_{\sigma} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 &\approx \sigma^2 & \sum_{\sigma} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 \approx \left(\mathbf{n}_0 - 1 \right) \sigma^2 \\ \frac{1}{n_A - 1} \sum_{A} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 &\approx \sigma^2 & \sum_{A} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 \approx \left(\mathbf{n}_A - 1 \right) \sigma^2 \\ \frac{1}{n_B - 1} \sum_{B} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 &\approx \sigma^2 & \sum_{B} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 \approx \left(\mathbf{n}_B - 1 \right) \sigma^2 \\ & \text{WSS} = \sum_{A = 0}^{N} \left(\mathbf{x}_i - \mathbf{m}_i \right)^2 \approx \left(\mathbf{N} - \mathbf{k} \right) \sigma^2 \end{split}$$

where k is the number of groups (=3 here)

Mean Sums of Squares

$$WSS = \sum_{i=1}^{N} (x_i - m_i)^2 \approx (N-k)\sigma^2$$

MSS = WSS/(N-k) is an estimate of the variance

Estimating Variance Between Groups

BSS =
$$\sum_{i=1}^{N} (m_i - \overline{x})^2 \approx (k-1)\sigma^2$$

MSS = BSS/(k-1) is an estimate of the variance

The ANOVA Table

ANOVA

Blood Pressure							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups Within Groups	BSS WSS	k-1 N-k	BSS/k-1 WSS/N-k	BSS/k-1 WSS/N-k	p-value		
Total	Total SS	N-1		1			

| Df Sum Sq Mean Sq F value Pr(>F) Group 2 1.7 0.87 0.013 0.987 Residuals 12 814.0 67.83

Assumptions

Summary

- Comparing means from several groups
- · Assuming the data are normal
- Assuming groups have the same variance
- Constructing two estimates of that variance
- If their ratio is big reject idea of common means
- Analysing variance to test for difference in means

Post Hoc Tests

- Tukey
 - Compare all pairs of columns
- Bonferroni
 - Compare all pairs of columns or selected pairs
- Dunnett
 - Compare all columns to control column
- Trend test
 - Test for linear trend in means across columns