RENDSZER- ÉS IRÁNYÍTÁSTECHNIKA

MÁSODIK HÁZI FELADAT

Réda Vince – Z697LX

1. táblázat. Házi feladat kódja

ϑ_0	ϑ_1	ϑ_2	ϑ_3	ϑ_4
36 V	60°	10%	3%	50 ms

Mechatronika, Optika és Gépészeti Informatika Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem

2020. december 2.

Tartalomjegyzék

1.	PI sa	zabályzó tervezése pólus-zérus kiejtéssel	4
	a.	P és I paraméterek számítása	4
	b.	Egységugrás válasz	5
	c.	Állandósult szögsebesség	5
2.	PD s	szabályzó tervezése pólus-zérus kiejtéssel	6
	a.	P és D paraméterek számítása	6
	b.	Egységugrás válasz	7
	c.	Állandósult szögsebesség	7
3.	PI p	ozíció szabályozás szimmetrikus optimum módszerrel	8
	a.	P és I paraméterek számítása	8
	b.	Egységugrás válasz	9
	c.	Állandósult szögsebesség	10
4.	PID	pozíció szabályozás szimmetrikus optimum módszerrel	11
	a.	P, I és D paraméterek számítása	11
	b.	Egységugrás válasz	12
	c.	Állandósult szögsebesség	13
5.	Szög	gsebesség szabályozás állapotvisszacsatolással	14
	a.	Pólusok számítása	14
	b.	A szabályozó mátrix számítása	15
	c.	Ugrásfüggvény	15
	d	Állandósult érték	16

	e.	Alapkompenzáció számítása	16
	f.	Alapjelkompenzált ugrásválasz	17
	g.	Állandósult érték	17
	h.	Statikus alapjelkompenzáció	17
	i.	Statikus alapjelkompenzált ugrásválasz	18
	j.	Állandósult érték	18
6.	Pozí	ció szabályozás állapotvisszacsatolással	19
	a.	Pólusok számítása	19
	b.	A szabályozó mátrix számítása	19
	c.	Ugrásfüggvény	20
	d.	Állandósult érték	21
	e.	Alapkompenzáció számítása	21
	f.	Alapjelkompenzált ugrásválasz	22
	g.	Állandósult érték	22
	h.	Statikus alapjelkompenzáció	22
	i.	Statikus alapjelkompenzált ugrásválasz	23
	j.	Állandósult érték	23

A második házi feladat a tárgyhoz kapcsolódó első házi feladat folytatása. A rendszer paraméterei és egyenleteit ott tárgyaltam, amelyeket itt fel fogok használni.

Az egyenáramú motor paraméterei

2. táblázat. A motor és a hajtómű paraméterei

Név	Jelölés	Katalógus-beli érték	SI-beli érték
armatúra ellenállás	$R_{\rm a}$	11,1 Ω	11,1 Ω
armatúra induktivitás	L_{a}	1,52 mH	$1,52 \cdot 10^{-3} \text{ H}$
nyomatékállandó	$k_{ m m}$	$58,2 \frac{\text{mNm}}{\text{V}}$	$0.0582 \frac{\text{Nm}}{\text{V}}$
sebességállandó	$k_{ m s}$	$164 \frac{\text{rpm}}{\text{V}}$	$17,17 \frac{\text{rad}}{\text{Vs}}$
elektromos állandó	$k_{\rm e}$	$0,006097 \frac{V}{rpm}$	$0.05822 \frac{\mathrm{Vs}}{\mathrm{rad}}$
forgórész tehetetlenségi nyomatéka	J_{a}	$44,6 \text{ gcm}^2$	$4,46\cdot10^{-6}~{ m kgm}^2$
névleges szögsebesség	ω_{n}	4430 rpm	$463,91 \frac{\text{rad}}{\text{s}}$
névleges áramerősség	i_{n}	0,804 A	0,804 A
névleges feszültség	u_{n}	36 V	36 V

(a) A motor hatásvázlata

(b) A visszacsatolt rendszer hatásvázlata

1. ábra. A szakasz és a teljes rendszer hatásvázlatai

1. PI szabályzó tervezése pólus-zérus kiejtéssel

a. P és I paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a W_c szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{I}}{sT_{I}} \tag{1}$$

alakú. $T_{\rm I}$ -vel a motor legnagyobb időállandóját ejtjük ki, tehát ezt válasszuk $T_{\rm I}=T_1=0.0145$ s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{\Psi}{(T + T_{1}s)(1 + T_{2}s)} P \frac{T + sT_{1}}{sT_{1}} = \frac{\Psi P}{T_{1}} \frac{1}{s(1 + sT_{2})},$$
 (2)

ahol T_1 és T_2 a szabályozott szakasz időállandója, Ψ a nullfrekvenciás erősítés.

Most írjuk fel a fáziskésést az $s = j\omega$ helyettesítéssel.

$$\varphi(\omega) = \underbrace{-\frac{\pi}{2}}_{\text{integráló tag miatt}} - \underbrace{\operatorname{arctg}(T_2\omega)}_{\text{kisebbik időállandó}}.$$
(3)

A megadott fázistartalék $\varphi_{\rm t}=\vartheta_1=60^\circ$. A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{\rm t} = \varphi(\omega_{\rm c}) + \pi \Rightarrow \omega_{\rm c} = 4176.1 \, \frac{\rm rad}{\rm s}$$
 (4)

Ha ω_c a vágási körfrekvencia, definíció szerint $|W_x(\omega_c)| = 1$. Ez alapján P = 4,0709.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 2. ábra igazol.

2. ábra. Szabályozott rendszer Bode-diagramja

b. Egységugrás válasz

Az előrevezető ág $W_{\mbox{\scriptsize x}}$, a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{5}$$

mivel a visszacsatoló ágban $W_{\rm fb}=1$. Ezt meg kell szorozni az $\omega_{\rm noload}=5860~{\rm rpm}=613{,}6578~\frac{{\rm rad}}{{\rm s}}$ referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.

3. ábra. PI egységugrás-válasz

c. Állandósult szögsebesség

A bemenet legyen $X=\frac{\omega_{\rm ref}}{s}$, a rendszer válasz $Y=W_{\rm cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty}=\lim_{s\to 0}sY=613{,}6578.$

2. PD szabályzó tervezése pólus-zérus kiejtéssel

a. P és D paraméterek számítása

Az 1b. ábra mutatja a rendszerünket, ahol a Wc szabályzó átviteli függvénye

$$W_{c} = P \frac{1 + sT_{D}}{1 + snT_{D}} \tag{6}$$

alakú. $T_{\rm D}$ -vel a motor második legnagyobb időállandóját ejtjük ki,

tehát ezt válasszuk $T_{\rm D}=T_2=1,\!3825\cdot 10^{-4}$ s értékűre, az első házi feladatban kiszámoltak alapján.

Az előrevezető ág átviteli függvénye ekkor leegyszerűsödik:

$$W_{x} = \frac{\Psi}{(1+T_{1}s)(1+T_{2}s)} P \frac{1+sT_{2}}{1+snT_{D}} = \frac{\Psi P}{(1+sT_{1})(1+snT_{2})},$$
(7)

ahol T_1 és T_2 a szabályozott szakasz időállandója, Ψ a nullfrekvenciás erősítés.

Most írjuk fel a fáziskésést az $s = j\omega$ helyettesítéssel.

$$\varphi(\omega) = -\underbrace{\arctan(T_1\omega)}_{\text{nagyobbik időállandó}} - \underbrace{\arctan(nT_2\omega)}_{\text{szűrő időállandó}}.$$
(8)

A megadott fázistartalék most is $\varphi_t = \vartheta_1 = 60^\circ$. A következő egyenlet megoldása adja a vágási körfrekvenciát:

$$\varphi_{\rm t} = \varphi(\omega_c) + \pi \Rightarrow \omega_{\rm c} = 41920 \, \frac{\rm rad}{\rm s}$$
 (9)

Ha $\omega_{\rm c}$ a vágási körfrekvencia, definíció szerint $|{\rm W_x}(\omega_{\rm c})|=1$. Ez alapján $P=40{,}9024$.

A MATLAB-ban található margin függvény segítségével ellenőrizzük a számolást, amit a 2. ábra igazol.

4. ábra. Szabályozott rendszer Bode-diagramja

b. Egységugrás válasz

Az előrevezető ág $W_{\boldsymbol{x}}$, a zárt kör átviteli függvénye ebből

$$W_{cl} = \frac{W_x}{1 + W_x},\tag{10}$$

mivel a visszacsatoló ágban $W_{\rm fb}=1$. Ezt meg kell szorozni az $\omega_{\rm noload}=5860~{\rm rpm}=613{,}6578~\frac{{\rm rad}}{{\rm s}}$ referencia szögsebességgel.

A PI-szabályozott rendszer egységugrás-válaszát a MATLAB-os step függvény adja meg.

5. ábra. PI egységugrás-válasz

c. Állandósult szögsebesség

A bemenet legyen $X=\frac{\omega_{\rm ref}}{s}$, a rendszer válasz $Y=W_{\rm cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty}=\lim_{s\to 0}sY=612{,}7855.$

3. PI pozíció szabályozás szimmetrikus optimum módszerrel

a. P és I paraméterek számítása

A DC motor szögsebességének integrálásával kapjuk meg annak pozícióját. A módosított hatásvázlatot a 6. ábra mutatja.

6. ábra. Pozíció-szabályzott DC motor hatásvázlata

Írjuk fel az előrevezető ág átviteli függvényét:

$$W_{x} = W_{c}W_{p}\frac{1}{s} = \frac{\Psi P (T_{I}s + 1)}{s^{2}T_{I}(T_{1}s + 1)(T_{2}s + 1)},$$
(11)

ahol Ψ a szabályozott szakasz erősítése.

Ezután írjuk fel a fázistolást a körfrekvencia függvényében:

$$\varphi(\omega) = -\pi - \arctan(T_1\omega) - \arctan(T_2\omega) + \arctan(T_1\omega). \tag{12}$$

Ennek a függvénynek a szélsőértékét keressük. Ehhez tegyük nullává a deriváltat:

$$\frac{\partial \varphi}{\partial \omega} = \frac{T_{\rm I}}{T_{\rm I}^2 \,\omega^2 + 1} - \frac{T_2}{T_2^2 \,\omega^2 + 1} - \frac{T_1}{T_1^2 \,\omega^2 + 1} = 0. \tag{13}$$

Ebből megkaptunk egy ω_c értéket, ami T_I -től függ. Ezt helyettesítsük be a fázistartalékhoz tartozó képletbe, ami kiadja T_I -t és ezáltal ω_c numerikus értékét is:

$$\varphi_{t} = \pi + \varphi(\omega_{c}). \tag{14}$$

Ebből $T_{\rm I}=0.204~{\rm s}$, és $\omega_{\rm c}=18.2783~{\rm rad\over s}$.

Már csak a P körerősítést kell meghatároznunk, ami ugyanúgy történik mint az első feladatban:

$$|W_{\mathbf{x}}(\omega_{\mathbf{c}})| = 1 \Rightarrow P = 1,0642. \tag{15}$$

Ellenőrizzük, hogy a fázistartalék tényleg 60°-e a margin függvénnyel.

7. ábra. Pozíció-szabályzott rendszer Bode-diagramja, fázistartalék feltüntetve

Ez teljesül.

b. Egységugrás válasz

Egy kör fordulat szabályozása esetén a bemenet Laplace-transzformáltja $X=\frac{2\pi}{s}$, a kimenet ebből $Y=W_{cl}X$. Ezt a szokásos step függvény ki is rajzolja nekünk időtartományban, amit a 8. ábra mutat.

8. ábra. PI egységugrás-válasz

c. Állandósult szögsebesség

Az előző részfeladatban kiszámolt kimenetet felhasználva az állandósult szög érték: $\theta_{\infty}=\lim_{s\to 0}sY=6,2832\,\mathrm{rad}.$

Az állandósult hiba a PI szabályzótól vártan zérus.

4. PID pozíció szabályozás szimmetrikus optimum módszerrel

a. P, I és D paraméterek számítása

Az előző feladatból a szabályzót változtassuk meg egy PID kontrollerre:

$$W_{c} = P \frac{(1 + T_{I}s)(1 + T_{D}s)}{s(1 + nT_{D})}.$$
(16)

Válasszuk meg a deriváló tag időállandóját úgy, hogy az kiejtse a szabályozott szakasz egyik pólusát, tehát legyen $T_{\rm D}=T_2$.

Írjuk fel az előrevezető ág átviteli függvényét:

$$W_{x} = W_{c}W_{p}\frac{1}{s} = \frac{P}{s^{2}} \frac{(1 + T_{1}s)(1 + T_{D}s)}{1 + nT_{D}s} \frac{\Psi}{(1 + sT_{1})(1 + sT_{2})}$$
(17)

ahol Ψ a szabályozott szakasz erősítése.

Ezután írjuk fel a fázistolást a körfrekvencia függvényében:

$$\varphi(\omega) = -\pi - \arctan(T_1 \omega) - \arctan(n T_D \omega) + \arctan(T_I \omega). \tag{18}$$

Ennek a függvénynek a szélsőértékét keressük. Ehhez tegyük nullává a deriváltat:

$$\frac{\partial \varphi}{\partial \omega} = \frac{T_{\rm I}}{(T_{\rm I}\omega)^2 + 1} - \frac{nT_{\rm D}}{(T_{\rm D}\omega)^2 + 1} - \frac{T_{\rm I}}{(T_{\rm I}\omega)^2 + 1} = 0.$$
 (19)

Ebből megkaptunk egy ω_c értéket, ami $T_{\rm I}$ -től függ. Ezt helyettesítsük be a fázistartalékhoz tartozó képletbe, ami kiadja $T_{\rm D}$ -t és ezáltal ω_c numerikus értékét is:

$$\varphi_{\mathsf{t}} = \pi + \varphi(\omega_{\mathsf{c}}). \tag{20}$$

Ebből $T_{\rm I}=0{,}2022$ s, és $\omega_{\rm c}=18{,}4589$ ${{\rm rad}\over{\rm s}}.$

Már csak a P körerősítést kell meghatároznunk, ami ugyanúgy történik mint az első feladatban:

$$|W_x(\omega_c)| = 1 \Rightarrow P = 1,0747.$$
 (21)

Ellenőrizzük, hogy a fázistartalék tényleg 60°-e a margin függvénnyel.

9. ábra. PID pozíció-szabályzott rendszer Bode-diagramja, fázistartalék feltüntetve

Ez teljesül.

b. Egységugrás válasz

Egy kör fordulat szabályozása esetén a bemenet Laplace-transzformáltja $X=\frac{2\pi}{s}$, a kimenet ebből $Y=W_{cl}X$. Ezt a szokásos step függvény ki is rajzolja nekünk időtartományban, amit a 10. ábra mutat.

10. ábra. PID egységugrás-válasz

c. Állandósult szögsebesség

Az előző részfeladatban kiszámolt kimenetet felhasználva az állandósult szög érték: $\theta_{\infty}=\lim_{s\to 0}sY=6,2832\,\mathrm{rad}.$

Az állandósult hiba a PID szabályzótól vártan zérus.

5. Szögsebesség szabályozás állapotvisszacsatolással

a. Pólusok számítása

Írjuk át a rendszerünket állapotteres alakra, valamint a W_c kontrollert cseréljük le a K_x , K_{rx} és K_{ru} állapotvisszacsatoló és alapjelkompenzáló mátrixokra. A $\mathbf D$ és $\mathbf K_{rx}$ mátrix esetünkben zérus, és $\mathbf K_{ru}$ egységnyi.

11. ábra. Állapottér modell hatásvázlata

A rendszer átviteli függvény formában van megadva:

$$W_{p} = \frac{\Psi}{(1+T_{1}s)(1+T_{2}s)} = \frac{\Psi}{T_{1}T_{2}s^{2} + (T_{1}+T_{2})s + 1} = \frac{\frac{\Psi}{T_{1}T_{2}}}{s^{2} + \frac{T_{1}+T_{2}}{T_{1}T_{2}}s + \frac{1}{T_{1}T_{2}}}.$$
 (22)

Írjuk át ezt állapottér modellre, irányíthatósági kanonikus alakra:

$$Y = \frac{\frac{\Psi}{T_1 T_2}}{s^2 + \frac{T_1 + T_2}{T_1 T_2} s + \frac{1}{T_1 T_2}} U$$
 (23)

$$X := \frac{1}{s^2 + \frac{T_1 + T_2}{T_1 T_2} s + \frac{1}{T_1 T_2}} U \Rightarrow$$
 (24)

$$u = \ddot{x} + \frac{T_1 + T_2}{T_1 T_2} \dot{x} + \frac{1}{T_1 T_2} x \Rightarrow$$
 (25)

$$\underbrace{\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{1}{T_1 T_2} & -\frac{T_1 + T_2}{T_1 T_2} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x \\ \dot{x} \end{bmatrix}}_{\mathbf{Y}} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{R}} \mathbf{u} \tag{26}$$

$$\mathbf{y} = \underbrace{\begin{bmatrix} \underline{\Psi} \\ \overline{T_1 T_2} \end{bmatrix}}_{\mathbf{C}} 0 \underbrace{\begin{bmatrix} x \\ \dot{x} \end{bmatrix}} + \underbrace{\begin{bmatrix} 0 \end{bmatrix}}_{\mathbf{D}} \mathbf{u}$$
 (27)

A feladatkiírás alapján a domináns időállandó $\widetilde{T}_1 = 50~{\rm ms}~= 0{,}05~{\rm s}$ kell hogy legyen.

Az átviteli függvény karakterisztikus egyenlete legyen a következő alakú:

$$\widetilde{p}(s) = (s - p_1)(s - p_2) = s^2 + a_1 s + a_0.$$
 (28)

A kívánt túllövés adott. Ez a ξ csillapítástól függ. Ezek alapján ki tudjuk számítani a a_1 és a_0 együtthatókat, valamint a pólusokat.

$$\Delta v = 0.1 = \exp\left(\frac{-\xi\pi}{\sqrt{1-\xi^2}}\right) \Rightarrow \xi = 0.5912$$
 (29)

$$T_1 = \frac{\log \vartheta_3^{-1}}{\xi \omega_n} \Rightarrow \omega_n = 118,6341$$
 (30)

$$\beta = \xi \omega_n \tag{31}$$

$$\omega_d = \omega_n \sqrt{1 - \xi^2} \tag{32}$$

$$p_1 = -\beta + i * \omega_d = -70,1312 + 95,6853i \tag{33}$$

$$p_2 = -\beta - i * \omega_d = -70,1312 - 95,6853i \tag{34}$$

Ebből $a_0 = 14074$ és $a_1 = 140,26$

b. A szabályozó mátrix számítása

A visszacsatolás miatt

$$\mathbf{u} = \mathbf{r} - \mathbf{K}_{\mathbf{x}}\mathbf{x} \tag{35}$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{r} - \mathbf{B}\mathbf{K}_{\mathbf{x}}\mathbf{x} \tag{36}$$

$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K}_{\mathbf{x}})\,\mathbf{x} + \mathbf{B}\mathbf{r} \tag{37}$$

Ebben a feladatrészben tehát a referencia bemenetre nézve a bemeneti mátrix nem változik, az új rendszermátrix pedig $\tilde{\mathbf{A}} = \mathbf{A} - \mathbf{B}\mathbf{K}_x$. A \mathbf{K}_x mátrixot a kívánt pólusok alapján kell megválasztani a következőképpen. a kívánt pólusok legyenek.

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{T_1 T_2} & -\frac{T_1 + T_2}{T_1 T_2} \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{T_1 T_2} - k_1 & -\frac{T_1 + T_2}{T_1 T_2} - k_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix}$$
(38)

Ebből a keresett mátrix

$$\mathbf{K} = \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} -4.85 \cdot 10^5 & -7162 \end{bmatrix}. \tag{39}$$

c. Ugrásfüggvény

Az üresjárati szögsebesség $\omega_{\text{noload}} = 5860 \text{ rpm} = 613,6578 \frac{\text{rad}}{\text{s}}$. Az ugrásválaszt a rendszermátrixok ismeretében a MATLAB step függvénye rajzolja ki.

12. ábra. A rendszer ugrásválasza

d. Állandósult érték

Az állapottér rendszerünket írjuk vissza MATLAB segítségével átviteli függvény alakra (W_{cl}) , amivel könnyen tudunk állandósult értéket számolni. A bemenet legyen $X = \frac{\omega_{noload}}{s}$, a rendszer válasz $Y = W_{cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 3.74 \cdot 10^5.$

e. Alapkompenzáció számítása

Ha nincs statikus alapjelkompenzáció, vagyis $\mathbf{K}_{rx}\equiv 0$, akkor éljünk a $\mathbf{K}_{ru}:=\mathbf{K}_{r}$ jelöléssel, az érthetőség kedvéért.

Most állítsuk be a \mathbf{K}_r mátrixot úgy, hogy $\lim_{t \to \infty} \mathbf{y} = \mathbf{r}$ igaz legyen. Ezt a következő összefüggés adja meg:

$$\mathbf{K}_{r} = -\left(\mathbf{C}\widetilde{\mathbf{A}}^{-1}\mathbf{B}\right)^{-1} = \left[0,0016\right]. \tag{40}$$

f. Alapjelkompenzált ugrásválasz

13. ábra. A rendszer ugrásválasza alapjelkompenzálóval

g. Állandósult érték

A 6.d. részfeladathoz hasonló módon járunk el. A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty}=\lim_{s\to 0}sY=613{,}6578.$

h. Statikus alapjelkompenzáció

Most legyen \mathbf{K}_{rx} nullától különböző. Ekkor

$$\begin{bmatrix} \mathbf{K}_{rx} \\ \mathbf{K}_{ru} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1.17 \cdot 10^{-7} \\ 0 \\ 0.058 \end{bmatrix}. \tag{41}$$

i. Statikus alapjelkompenzált ugrásválasz

Írjuk fel a rendszer átviteli függvényét r-től y-ig.

$$\mathbf{u} = (\mathbf{K}_{ru} + \mathbf{K}_{x}\mathbf{K}_{rx})\mathbf{r} - \mathbf{K}_{x}\mathbf{x} \tag{42}$$

$$\mathbf{x} = \frac{1}{s} \left(\mathbf{B} \mathbf{u} + \mathbf{A} \mathbf{x} \right) \tag{43}$$

$$\mathbf{x} = \frac{1}{s} \left(\mathbf{B} \left(\mathbf{K}_{ru} + \mathbf{K}_{x} \mathbf{K}_{rx} \right) \mathbf{r} + \left(\mathbf{A} - \mathbf{B} \mathbf{K}_{x} \right) \mathbf{x} \right)$$
(44)

$$\mathbf{x} = \frac{1}{s} \left(\mathbf{B} \mathbf{u} + \mathbf{A} \mathbf{x} \right)$$

$$\mathbf{x} = \frac{1}{s} \left(\mathbf{B} \left(\mathbf{K}_{ru} + \mathbf{K}_{x} \mathbf{K}_{rx} \right) \mathbf{r} + \left(\mathbf{A} - \mathbf{B} \mathbf{K}_{x} \right) \mathbf{x} \right)$$

$$\mathbf{x} = \left(\mathbf{I} - \frac{1}{s} \left(\mathbf{A} - \mathbf{B} \mathbf{K}_{x} \right) \right)^{-1} \frac{1}{s} \mathbf{B} \left(\mathbf{K}_{ru} + \mathbf{K}_{x} \mathbf{K}_{rx} \right) \mathbf{r}$$

$$(43)$$

$$\mathbf{x} = \left(\mathbf{I} - \frac{1}{s} \left(\mathbf{A} - \mathbf{B} \mathbf{K}_{x} \right) \right)^{-1} \frac{1}{s} \mathbf{B} \left(\mathbf{K}_{ru} + \mathbf{K}_{x} \mathbf{K}_{rx} \right) \mathbf{r}$$

$$(45)$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} = \boxed{\frac{a_0}{s^2 + a_1 s + a_0}} \tag{46}$$

Az egységugrás válasz ebből a szokásos módon számítható.

14. ábra. A rendszer ugrásválasza statikus alapjelkompenzálóval

j. Állandósult érték

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty}=\lim_{s\to 0}s{\rm Y}=613{,}6578.$

6. Pozíció szabályozás állapotvisszacsatolással

a. Pólusok számítása

15. ábra. Integrátorral kiegészített állapottér modell

A zárt rendszer pólusai $p_1 = -70,\!13 + 95.69i, p_2$ ennek komplex konjugáltja.

$$p_3 = 3\operatorname{Re}(p_1). \tag{47}$$

b. A szabályozó mátrix számítása

$$\widetilde{p}(s) = s^3 + \widetilde{a}_2 s^2 + \widetilde{a}_1 s + \widetilde{a}_0 \tag{48}$$

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -|\widetilde{a}_{2}| & -|\widetilde{a}_{1}| & -|\widetilde{a}_{0}| \end{bmatrix}$$
(49)

$$p(s) = (s - p_1)(s - p_2)(s - \underbrace{p_3}_{\equiv 0}) = s^3 + a_2 s^2 + a_1 s + a_0$$
(50)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -|a_2| & -|a_1| & -|a_0| \end{bmatrix}$$
 (51)

$$\mathbf{A}_{d} = \mathbf{A} - \mathbf{B}\mathbf{K}_{x} \Rightarrow \mathbf{K}_{x} = \begin{bmatrix} 2961089, 26 & -469771, 98 & -6951, 58 \end{bmatrix}$$
 (52)

c. Ugrásfüggvény

Az üresjárati szögsebesség $\omega_{\rm noload}=5860~{\rm rpm}=932.648~{\rm rad\over s}$. Az ugrásválaszt a rendszermátrixok ismeretében a MATLAB step függvénye rajzolja ki.

16. ábra. A rendszer ugrásválasza

d. Állandósult érték

Az állapottér rendszerünket írjuk vissza MATLAB segítségével átviteli függvény alakra (W_{cl}), amivel könnyen tudunk állandósult értéket számolni. A bemenet legyen $X=\frac{\omega_{noload}}{s}$, a rendszer válasz $Y=W_{cl}X$.

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 2 \cdot 10^7.$

e. Alapkompenzáció számítása

Ha nincs statikus alapjelkompenzáció, vagyis $\mathbf{K}_{rx} \equiv 0$, akkor éljünk a $\mathbf{K}_{ru} := \mathbf{K}_r$ jelöléssel, az érthetőség kedvéért.

Most állítsuk be a \mathbf{K}_{r} mátrixot úgy, hogy $\lim_{t \to \infty} \mathbf{y} = \mathbf{r}$ igaz legyen. Ezt a következő összefüggés adja meg:

$$\mathbf{K}_{r} = -\left(\mathbf{C}\widetilde{\mathbf{A}}^{-1}\mathbf{B}\right)^{-1} = \left[4,6684 \cdot 10^{-5}\right].$$
 (53)

f. Alapjelkompenzált ugrásválasz

17. ábra. A rendszer ugrásválasza alapjelkompenzálóval

g. Állandósult érték

A 6.d. részfeladathoz hasonló módon járunk el. A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty}=\lim_{s\to 0}sY=932{,}648.$

h. Statikus alapjelkompenzáció

Most legyen \mathbf{K}_{rx} nullától különböző. Ekkor

$$\begin{bmatrix} \mathbf{K}_{rx} \\ \mathbf{K}_{ru} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1,17 \cdot 10^{-7} \\ 0 \\ 0,0582 \end{bmatrix}.$$
 (54)

i. Statikus alapjelkompenzált ugrásválasz

Írjuk fel a rendszer átviteli függvényét r-től y-ig.

$$\mathbf{u} = (\mathbf{K}_{ru} + \mathbf{K}_{x}\mathbf{K}_{rx})\mathbf{r} - \mathbf{K}_{x}\mathbf{x} \tag{55}$$

$$\mathbf{x} = \frac{1}{s} \left(\mathbf{B} \mathbf{u} + \mathbf{A} \mathbf{x} \right) \tag{56}$$

$$\mathbf{x} = \frac{1}{s} (\mathbf{B}\mathbf{u} + \mathbf{A}\mathbf{x})$$

$$\mathbf{x} = \frac{1}{s} (\mathbf{B} (\mathbf{K}_{ru} + \mathbf{K}_{x} \mathbf{K}_{rx}) \mathbf{r} + (\mathbf{A} - \mathbf{B} \mathbf{K}_{x}) \mathbf{x})$$
(56)

$$\mathbf{x} = \left(\mathbf{I} - \frac{1}{s} \left(\mathbf{A} - \mathbf{B} \mathbf{K}_{x}\right)\right)^{-1} \frac{1}{s} \mathbf{B} \left(\mathbf{K}_{ru} + \mathbf{K}_{x} \mathbf{K}_{rx}\right) \mathbf{r}$$
 (58)

$$\mathbf{y} = \mathbf{C}\mathbf{x} = \boxed{\frac{400}{s^2 + 23,646s + 400}} \tag{59}$$

Az egységugrás válasz ebből a szokásos módon számítható.

18. ábra. A rendszer ugrásválasza statikus alapjelkompenzálóval

j. Állandósult érték

A végérték-tétel alapján az állandósult szögsebesség $\omega_{\infty} = \lim_{s \to 0} s Y = 932{,}648.$

Hivatkozások

[1] DC motor adatlapja

https://www.maxongroup.com/maxon/view/product/motor/dcmotor/amax/amax32/236671