## Communicating Secret Information Without Secret Messages

Naya Nagy, Marius Nagy and Selim G. Akl

School of Computing Queen's University Canada

SUM ERGO COMPUTO

#### Main Result

 We show that secret information can be shared by a sender and a receiver without it ever being encrypted in a secret message.

- Our protocol relies on the assumption that public information can be protected, an assumption present in all cryptographic protocols.
- It is equivalent to a one-time pad protocol.

## Background

#### Conventional Cryptosystems

- Secret-key cryptosystems
  - Substitution (confusion) and permutation (diffusion)
  - One-time pad

#### Unconventional Cryptosystems

- Public-key cryptosystems
- Quantum cryptography (secret keys without prior encounter)
- Communicating secret information without secret messages

## Background

#### Conventional Cryptosystems

Secret-key cryptosystems

Alice: 
$$C = E_k(M)$$
  $\longrightarrow$  Bob:  $M = E_k^{-1}(C)$ 

Substitution (confusion) and permutation (diffusion)

Alice: LOVE→TEAH→HATE—→Bob: HATE→TEAH→LOVE

One-time pad

Alice: 
$$C = 1011 \oplus 1101 = 0110 \longrightarrow Bob$$
:  $M = 0110 \oplus 1101 = 1011$ 

#### Unconventional Cryptosystems

- Public-key cryptosystems
- Quantum cryptography (secret keys without prior encounter)
- Communicating secret information without secret messages



#### ONE TIME PAD

Key for message 1: 100111001011000111..... Key for message 2: 011001100111000011..... Key for message *n*: 1011100001101010.....

## Background

#### Conventional Cryptosystems

- Secret-key cryptosystems
  - Substitution (confusion) and permutation (diffusion)
  - One-time pad

#### Unconventional Cryptosystems

• Public-key cryptosystems

Alice: 
$$C = B(M)$$
  $\longrightarrow$  Bob:  $M = B^{-1}(C)$ 

- Quantum cryptography (secret keys without prior encounter)
- Communicating secret information without secret messages

## The basic RSA public key cryptosystem

- 1. Bob generates two large prime numbers p and q and computes  $n = p \times q$
- 2. Bob generates e such that gcd(e, (p-1)(q-1)) = 1
- 3. Bob generates d such that  $ed = 1 \mod (p 1)(q 1)$
- 4. Bob publishes (e,n) as his public key, while keeping p, q, and d secret.

# When Alice wishes to send a message *M* secretly to Bob

- 1. Alice looks up Bob's public key (e, n), computes  $C = M^e \mod n$  and sends C to Bob.
- 2. Upon receipt of C, Bob computes  $M = C^d \mod n$ .

## Note:

- 1. Digital Signature: Alice can use her secret key to "sign" her message.
- The security of the RSA cryptosystem rests on the difficulty of factoring large numbers
- 3. However, other attacks on the basic RSA cryptosystem (besides factoring *n*) are possible, making it generally insecure.

Even more secure versions than the basic RSA can be compromised.

In particular, when quantum computing becomes a reality, it will be possible to factor large numbers very quickly and break the RSA cryptosystem.

This would signal the end of e-commerce which relies heavily on public-key cryptography.

Fortunately, quantum computing will also provide the solution in the form of quantum cryptography.

## Background

#### Conventional Cryptosystems

- Secret-key cryptosystems
  - Substitution (confusion) and permutation (diffusion)
  - One-time pad

#### **Unconventional Cryptosystems**

- Public-key cryptosystems
- Quantum cryptography (secret keys without prior encounter)

Alice: 
$$q_1, q_2, \ldots, q_n \leftarrow$$
 Qubit Provider  $\longrightarrow$  Bob:  $q'_1, q'_2, \ldots, q'_n$ 

$$C = E_k(M) \longrightarrow$$

$$M = E_k^{-1}(C)$$

Communicating secret information without secret messages

| Alice | 0 | 1       | 1   | 0             | 0             | 1          | 0      | 0      | 0             | 1       | 0   | 0             | 1   | 1 | 0      |
|-------|---|---------|-----|---------------|---------------|------------|--------|--------|---------------|---------|-----|---------------|-----|---|--------|
|       | × | +       | ×   | +             | +             | +          | ×      | ×      | +             | +       | ×   | +             | ×   | × | ×      |
|       | 7 | <b></b> | _   | $\rightarrow$ | $\rightarrow$ | $\uparrow$ | 7      | 7      | $\rightarrow$ | <b></b> | 7   | $\rightarrow$ | X   | X | 7      |
|       |   |         |     |               |               |            |        |        |               |         |     |               |     |   |        |
| Bob   | + | +       | ×   | +             | ×             | X          | +      | ×      | ×             | +       | +   | +             | ×   | + | ×      |
| Bob   | + | +       | × 1 | + 0           | ×<br>0        | × 1        | +<br>1 | ×<br>0 | × 1           | +       | + 0 | + 0           | × 1 | + | ×<br>0 |

## Background

#### Conventional Cryptosystems

- Secret-key cryptosystems
  - Substitution (confusion) and permutation (diffusion)
  - One-time pad

#### **Unconventional Cryptosystems**

- Public-key cryptosystems
- Quantum cryptography (secret keys without prior encounter)
- Communicating secret information without secret messages

## Some intuition

Suppose you and a friend wish to communicate in secret.

In order to arrange for this to happen, you get together and choose a book that you both like and of which both of you have the exact same edition.

Let's say you wish to send your friend this message:

## STAY SAFE

You use the agreed upon book to create the secret message to send.

In the **book**, you find an S on page 30, line 12, character 6, a T on page 2, line 21, character 14, an A on page 100, line 22, character 20, a Y on page 62, line 17, character 26, a space on page 26, line 18, character 8, an S on page 3, line 2, character 13, an A on page 205, line 1, character 1, an F on page 25, line 18, character 18, an E on page 5, line 21, character 18.

You send to your friend the sequence: 30,12,6,2,21,14,100,22,20,62,17,26...5,21,18

Using the book, your friend recreates the message **STAY SAFE**.

This is the well-known "book cipher" algorithm.

It can be improved by using a different book for each message.

The only trouble is that you need to meet your friend (in person or virtually) in order to set up the process (choosing the book or books) before starting to exchange messages.

The algorithm to follow is, in some sense, the "book cipher" approach to cryptography revisited, with a quantum twist that is theoretically unbreakable.

And you don't need to meet your friend before starting the secret exchange.

## Communicating secret information without secret messages

#### What is new?

- There is no encryption key as such
  - Alice encodes her secret message using a public nondeterministic algorithm

- There is no encryption as such
  - Alice encodes each bit of her secret message as a nondeterministically selected index in a binary array, and transmits it publicly.

## Communicating secret information without secret messages

#### Furthermore:

- Like public-key cryptography, there is no prior meeting,
  - but unlike public-key cryptography there is no secret key

- 2 Like one-time pads, each bit is used once,
  - but unlike one-time pads, there is no secret encounter.

## What is a qubit?

A qubit in superposition is defined by

$$q = \alpha |0\rangle + \beta |1\rangle,$$

where 
$$|\alpha|^2 + |\beta|^2 = 1$$
.

When measured in the computational basis,

$$|0\rangle$$
 and  $|1\rangle$ ,

 $|\alpha|^2$  is the probability to measure a 0, and  $|\beta|^2$  is the probability to measure a 1.

## When are two qubits entangled?

An ensemble of two qubits has the general form

$$q_A q_B = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$
,

where 
$$|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$
.

An ensemble of two qubits is entangled if the states of the two qubits are dependent.

The entangled states we use are the four Bell states:

$$\Phi^{+} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \qquad \Phi^{-} = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle),$$

$$\Psi^{+} = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), \qquad \Psi^{-} = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle).$$

These states also form a basis for measuring an ensemble of two qubits.

## The setting

The setting consists of a set of users and a central authority (CA).



## The setting

Each user can store  $\ell$  qubits in an entanglement with  $\ell$  qubits in the CA.



#### The CA:

- Is trusted.
- Knows the identity of every user.
- Performs on demand an entanglement swapping acting on two arbitrary user memories. As a result the two users have an array of pairwise entangled qubits.

Entanglement swapping is a variant of quantum teleportation.

Suppose there exists an entangled qubit pair  $q_1q'_1$ .

The arbitrary, possibly unknown, state of  $q'_1$  can be teleported to a geographically remote location using a second entangled pair  $q'_2q_2$ .

As a result  $q_1q_2$  are entangled.

Entanglement swapping has been demonstrated in practice.

This procedure is applied here to obtain an entanglement between two arbitrary users.

The central authority performs the quantum transformations necessary.

Note that the central authority does not need to touch the qubits of any user.

Consider two users  $n_1$  and  $n_2$  that want to share and entangled qubit pair.

 $n_1$  has qubits entangled with the CA and so does  $n_2$ .

Let one of these pairs be  $q_1q_1'$ , where  $q_1$  is physically located at user  $n_1$  and  $q_1'$  is located in the CA.



Similarly,  $q_2'q_2$  is the pair shared by the CA with user  $n_2$ , where  $q_2'$  belongs to the CA and  $q_2$  belongs to user  $n_2$ .

These four qubits form an ensemble

ensemble = 
$$q_1q_1'q_2'q_2$$
.

Assuming both qubit pairs  $(q_1, q_1')$  and  $(q_2, q_2')$  are entangled in the  $\Phi^+$  Bell state, the ensemble can be rewritten as

$$\begin{aligned} \textit{ensemble} &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ &= \frac{1}{2}(|0000\rangle + |0011\rangle + |1100\rangle + |1111\rangle). \end{aligned}$$

Rewriting the CA's two qubits  $q'_1$  and  $q'_2$  in the Bell basis:

$$\begin{array}{l} \textit{ensemble} = \frac{1}{2}(|0\rangle \otimes \frac{1}{\sqrt{2}}(|\Phi^{+}\rangle + |\Phi^{-}\rangle) \otimes |0\rangle + \\ |0\rangle \otimes \frac{1}{\sqrt{2}}(|\Psi^{+}\rangle + |\Psi^{-}\rangle) \otimes |1\rangle + \\ |1\rangle \otimes \frac{1}{\sqrt{2}}(|\Psi^{+}\rangle - |\Psi^{-}\rangle) \otimes |0\rangle + \\ |1\rangle \otimes \frac{1}{\sqrt{2}}(|\Phi^{+}\rangle - |\Phi^{-}\rangle) \otimes |1\rangle) \\ \\ = \frac{1}{2\sqrt{2}}(|0\rangle \otimes |\Phi^{+}\rangle \otimes |0\rangle + |1\rangle \otimes |\Phi^{+}\rangle \otimes |1\rangle + \\ |0\rangle \otimes |\Phi^{-}\rangle \otimes |0\rangle - |1\rangle \otimes |\Phi^{-}\rangle \otimes |1\rangle + \\ |0\rangle \otimes |\Psi^{+}\rangle \otimes |1\rangle + |1\rangle \otimes |\Psi^{+}\rangle \otimes |0\rangle + \\ |0\rangle \otimes |\Psi^{-}\rangle \otimes |1\rangle - |1\rangle \otimes |\Psi^{-}\rangle \otimes |0\rangle). \end{array}$$

The CA now measures the qubits physically located at the station,  $q_1'$  and  $q_2'$ , in the Bell basis  $(\Phi^+, \Phi^-, \Psi^+, \Psi^-)$ .

It is interesting to see what happens to the state of the other two qubits after this measurement.

#### **BEFORE**



#### **AFTER**



#### **BEFORE**



#### AFTER



The CA will have to communicate the result of the measurement to one of the two users.

This user will be chosen to be the one initiating the entanglement swapping, namely, user  $n_1$  with whom the central authority is in direct communication.

The following is the list of possible measurement results by the central authority.

If the CA has measured:

 $\bullet$   $\Phi^+$ . The remaining qubits have collapsed to

$$ensemble_{1,4} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle). \tag{1}$$

 $q_1q_2$  are entangled by a Bell  $\Phi^+$  entanglement.  $n_1$  knows the measured value of its qubit  $q_1$  will coincide with the measured value of  $n_2$ 's qubit  $q_2$ .

 $\bullet$   $\Phi^-$ . The remaining qubits have collapsed to

$$ensemble_{1,4} = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle). \tag{2}$$

 $q_1q_2$  are not quite in a  $\Phi^+$  entanglement, as the phase is rotated. Still, the values measured for the qubits coincide, and that is sufficient to have a consensus on the measured values of  $q_1q_2$ .

If the CA has measured:

 $\bullet$   $\Psi^+$ . The remaining qubits have collapsed to

$$ensemble_{1,4} = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle). \tag{3}$$

The bit value of  $n_1$  is reversed with respect to the bit value of  $n_2$ . After measuring its qubit,  $n_1$  has to take the complement of the resulting bit.

 $\bullet$   $\Psi^-$ . The remaining qubits have collapsed to

$$ensemble_{1,4} = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle). \tag{4}$$

Now  $n_1$ 's qubit compared to  $n_2$ 's qubit has both the bit value reversed and the phase rotated. After measuring its qubit,  $n_1$  has to take the complement of the resulting bit.

The CA has to communicate with  $n_1$  by a public channel so that the user knows the value measured by the CA:  $\Phi^+$ ,  $\Phi^-$ ,  $\Psi^+$ , or  $\Psi^-$ .

The CA has to send only one bit of information to discriminate between the measured values:

- a 0 for  $\Phi^+$  or  $\Phi^-$
- a 1 for  $\Psi^+$  or  $\Psi^-$ .

For a 0, user  $n_1$  measures its qubit directly.

For a 1, user  $n_1$  has to measure its qubit and then complement the resulting binary value in order to obtain the value measured by user  $n_2$ .

After the communication step, users  $n_1$  and  $n_2$  will be able to have a consensus on the value of a bit without having ever met.

## The protocol: An example

Suppose user  $n_1$  wants to send a message to user  $n_2$ .

For example, the message to be sent is 11001, of length  $\ell_m = 5$ .

#### Phase I: Entanglement Swapping.

**Step 1:**  $n_1$  requests from CA an entanglement connection with  $n_2$ .

**Step 2:** CA looks up two arrays of qubits entangled with  $n_1$  and  $n_2$ , respectively.

The length of each of these two arrays should be longer than the length of the message, for example  $3 \times \ell_m = 15$ .

### The protocol: An example

Let the CA array entangled with  $n_1$  be

$$a'_1 = q1'_1 q1'_2 \dots q1'_{3 \times \ell_m}.$$

Thus,  $n_1$  has a corresponding array

$$a_1 = q1_1 \ q1_2 \dots q1_{3 \times I_m}.$$

The CA array entangled with  $n_2$  is

$$a_2' = q2_1' q2_2' \dots q2_{3 \times \ell_m}'.$$

Thus,  $n_2$  has the corresponding array

$$a_2 = q2_1 q2_2 \dots q2_{3 \times \ell_m}.$$



**Step 3:** CA performs a pairwise entanglement swapping on all ensembles

$$q1_i \ q1'_i \ q2'_i \ q2_i$$

with  $1 \le i \le 3 \times \ell_m$ .

As a result all pairs  $q1_i q2_i$  are entangled in one of the Bell states.

|                                       | The | Qubit | Arrays |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|-----|-------|--------|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1   | 2     | 3      | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-  | Ψ+    | Φ+     | Φ+ | Ψ- | ψ- | Φ+ | Ψ+ | Φ+ | Ψ- | Ψ- | Ψ+ | Φ- | Ψ+ | Φ+ |
| Bit sent by the<br>CA to n1           | 0   | 1     | 0      | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1   | 1     | 1      | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1   | 0     | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1   | 0     | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
|                                       |     |       |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n1 identifies n2                      | 1   | 0     |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |     |       | 1      | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |     |       |        |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

|                                       | The | Qubit. | Arrays |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|-----|--------|--------|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1   | 2      | 3      | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-  | Ψ+     | Φ+     | Φ+ | Ψ- | Ψ- | Φ+ | Ψ+ | Φ+ | ψ- | Ψ- | Ψ+ | Φ- | Ψ+ | Φ+ |
| Bit sent by the<br>CA to n1           | 0   | 1      | 0      | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1   | 1      | 1      | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1   | 0      | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1   | 0      | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
|                                       |     |        |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n1 identifies n2                      | 1   | 0      |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |     |        | 1      | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |     |        |        |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

The row entitled "Entanglement Measured by the CA" shows the values measured by the CA for each

$$q1'_{i} q2'_{i}$$
,  $1 \le i \le 3 \times \ell_{m}$ .

This measurement causes the collapse of the qubits  $q1_i$ , held by  $n_1$ , shown in the row entitled "n1 - measured",

and the collapse of the qubits  $q_i^2$ , held by  $n_i^2$ , shown in the row entitled "n2 - measured".

**Step 4:** CA confirms to  $n_1$  that the entanglement swapping has been performed and transmits an array of bits that identify the type of entanglement.

In our case, the CA transmits the array 010011010111010.

|                                       | The Qubit Arrays |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-               | Ψ+ | Φ+ | Φ+ | ψ- | ψ- | Φ+ | Ψ+ | Φ+ | Ψ- | Ψ- | Ψ+ | Φ- | Ψ+ | Φ+ |
| Bit sent by the<br>CA to n1           | 0                | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1                | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1                | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1                | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
|                                       |                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| n1 identifies n2                      | 1                | 0  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |                  |    | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |                  |    |    |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

Based on these bits,  $n_1$  transforms each measured qubit to fit the corresponding qubit of  $n_2$ .

This transformation is shown in the row "n1 - transformed".

Phase II: Handshake.

Step 1: User  $n_1$  identifies user  $n_2$ .

 $n_1$  reads the first k=2 qubits of the  $3 \times \ell_m = 15$  qubits of its array  $a_1$ .

All readings in this phase are performed in the computational basis

$$(|0\rangle \text{ and } |1\rangle).$$

Note that  $k \ll 3 \times \ell_m$ .

In practice, k has to be sufficiently large to discriminate among all the users in the network.

These k bits are the identifier of the message and are broadcast publicly over the network to identify the destination user  $n_2$ .

In our example, the first bits broadcast over the network are 10.

|                                       | The | Qubit i | Arrays |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|-----|---------|--------|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1   | 2       | 3      | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-  | Ψ*      | φ+     | Φ+ | Ψ- | ψ- | Φ+ | Ψ+ | Φ+ | Ψ- | Ψ- | ψ+ | Φ- | Ψ* | Φ+ |
| Bit sent by the<br>CA to n1           | 0   | 1       | 0      | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1   | 1       | 1      | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1   | 0       | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1   | 0       | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n1 identifies n2                      | 1   | 0       |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |     |         | 1      | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |     |         |        |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

### Step 2:

Each user now reads the first k qubits of its workable memory.

A user considers itself addressed if the qubits read from its memory coincide with the id of the message. In our case, user  $n_2$  reads the proper sequence of qubits 10.

#### Step 3: User $n_2$ identifies user $n_1$ .

 $n_2$  reads the next k=2 qubits in its memory and broadcasts them back, again publicly over the network.

These qubits serve  $n_2$  to identify  $n_1$ .

In our case the qubits sent back are 11.

|                                       | The Qubit Arrays |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-               | Ψ+ | Φ+ | φ+ | ψ- | ψ- | Φ+ | Ψ+ | Φ+ | Ψ- | Ψ- | ψ+ | Φ- | Ψ+ | Φ+ |
| Bit sent by the<br>CA to n1           | 0                | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1                | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1                | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1                | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
|                                       |                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| n1 identifies n2                      | 1                | 0  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |                  |    | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |                  |    |    |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

### Step 4:

When  $n_1$  receives the broadcast message from  $n_2$ , the handshake is complete.

#### Phase III: Creating the message.

This phase is equivalent to carving a message into an array of random bits.

### Step 1:

User  $n_1$  has the message to be sent 11001.

For every bit in the message,  $n_1$  searches for a bit of the same value in the rest of the qubits of the entangled array.

In our example, the message has to be carved into the array starting from index  $2 \times k + 1 = 5$  until index  $3 \times \ell_m = 15$ .

The following indices may be chosen: 5, 8, 11, 13, 14.

Or: 15, 10, 12, 13, 8.

Note that the bits at those indices yield the correct message to be sent 11001.

|                                       | The Qubit Arrays |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1                | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-               | Ψ+ | Φ+ | Φ+ | Ψ- | Ψ- | Φ+ | Ψ+ | Φ+ | Ψ- | Ψ- | Ψ+ | Φ- | Ψ+ | Φ+ |
| Bit sent by the<br>CA to n1           | 0                | 1  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1                | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1                | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1                | 0  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
|                                       |                  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| n1 identifies n2                      | 1                | 0  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |                  |    | 1  | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |                  |    |    |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

### Step 2:

 $n_1$  broadcasts the array of indices that represent the message bits:

5, 8, 11, 13, 14.

### Step 3:

 $n_2$  receives the order of the qubits and reads the message accordingly.

|                                       | The | Qubit | Arrays |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------------------------------|-----|-------|--------|----|----|----|----|----|----|----|----|----|----|----|----|
|                                       | 1   | 2     | 3      | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| Entanglement<br>Measured by<br>the CA | Φ-  | Ψ+    | Φ+     | Φ+ | Ψ- | Ψ- | Φ+ | Ψ+ | Φ+ | Ψ- | Ψ- | Ψ+ | Φ- | Ψ+ | Φ+ |
| Bit sent by the<br>CA to n1           | 0   | 1     | 0      | 0  | 1  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| n1 - measured                         | 1   | 1     | 1      | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| n1-transformed                        | 1   | 0     | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| n2 - measured                         | 1   | 0     | 1      | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |
|                                       |     |       |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n1 identifies n2                      | 1   | 0     |        |    |    |    |    |    |    |    |    |    |    |    |    |
| n2 identifies n1                      |     |       | 1      | 1  |    |    |    |    |    |    |    |    |    |    |    |
| Message                               |     |       |        |    | 1  |    |    | 1  |    |    | 0  |    | 0  | 1  |    |

### Conclusion

The protocol transmits a secret message from a source to a destination in a communication network.

Users of the network are endowed with quantum memories, memories of qubits that keep their quantum state of superposition or entanglement until read or written.

Phase II steps 1 and 2, and in fact any broadcast that the source and destination send over the network, can be authenticated.

#### Conclusion

An eavesdropper meddling with the transmission within the network can gain absolutely no knowledge about the content of the message.

Moreover, all communication between the users may contain an identification of the user, excluding the possibility of masquerading.

The only trusted authority is the CA, that knows the identities of all users. Note that:

- The CA is trusted to perform the desired entanglement swapping only.
- Even the CA cannot have any access to the content of the secret message.
- The CA needs to have a public authenticated classical channel with the source user.

### Conclusion

Thus, the protocol protects the content of the message from attacks of

- listening to the network,
- masquerading as a user, or
- listening to the communications of the CA and the network.

#### All information transmitted is public.

The success of the protocol relies on quantum entanglement and teleportation.