Problem A: Merging arrays

You are given two arrays, sorted in non-decreasing order. Merge them into one sorted array.

Input

The first line contains integers n and m, the sizes of the arrays ($1 \le n$, $m \le 10^5$). The second line contains n integers a_i , elements of the first array, the third line contains m integers b_i , elements of the second array. ($-10^9 \le a_i$, $b_i \le 10^9$).

Output

Print n + m integers, the merged array.

Input	Output
67	1 2 3 6 8 9 13 13 15 18 18 21 25
1 6 9 13 18 18	
2 3 8 13 15 21 25	

Problem B: Number of smaller

You are given two arrays, sorted in non-decreasing order. For each element of the second array, find the number of elements in the first array strictly less than it.

Input

The first line contains integers n and m, the sizes of the arrays ($1 \le n$, $m \le 10^5$). The second line contains n integers a_i , elements of the first array, the third line contains m integers b_i , elements of the second array. ($-10^9 \le a_i$, $b_i \le 10^9$).

Output

Print *m* numbers, the number of elements of the first array less than each of the elements of the second array.

Input	Output
67	1123466
1 6 9 13 18 18	
2 3 8 13 15 21 25	

Problem C: Number of equal

You are given two arrays, sorted in non-decreasing order. Find the number of pairs (i, j) for which $a_i = b_i$.

Input

The first line contains integers n and m, the sizes of the arrays ($1 \le n$, $m \le 10^5$). The second line contains n integers a_i , elements of the first array, the third line contains m integers b_i , elements of the second array. ($-10^9 \le a_i$, $b_i \le 10^9$).

Output

Print one number, the answer to the problem.

Input	Output
87	11
11333588	
1 3 3 4 5 5 5	

Problem D : Segment with small sum

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le 1 \le r \le n)$ is good if the sum of elements on this segment is at most s. Your task is to find the longest good segment.

Input

The first line contains integers n and s ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^9$).

Output

Print one number, the length of the longest good segment. If there are no such segments, print -1.

Input	Output
7 20	4
2643689	

Problem E: Segment with big sum

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le l \le r \le n)$ is good if the sum of elements on this segment is at least s. Your task is to find the shortest good segment.

Input

The first line contains integers n and s ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^9$).

Output

Print one number, the length of the shortest good segment. If there are no such segments, print -1.

Input	Output
7 20	3
2643689	

Problem F: Number of segments with small sum

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le l \le r \le n)$ is good if the sum of elements on this segment is at most s. Your task is to find the number of good segments.

Input

The first line contains integers n and s ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^9$).

Output

Print one integer, the number of good segments.

Input	Output
7 20	19
2643689	

Problem G: Number of segments with big sum

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le 1 \le r \le n)$ is good if the sum of elements on this segment is at least s. Your task is to find the number of good segments.

Input

The first line contains integers n and s ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^9$).

Output

Print one integer, the number of good segments.

Input	Output
7 20	9
2643689	

Problem H : Segments with small set

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le l \le r \le n)$ is good if there are no more than k unique elements on this segment. Your task is to find the number of different good segments.

Input

The first line contains integers n and k ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^9$).

Output

Print one integer, the number of good segments.

Input	Output
7 3	20
2643683	

Problem H: Segments with small set

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le l \le r \le n)$ is good if there are no more than k unique elements on this segment. Your task is to find the number of different good segments.

Input

The first line contains integers n and k ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^9$).

Output

Print one integer, the number of good segments.

Input	Output
7 3	20
2643683	

Problem I: Segment with small spread

Given an array of n integers a_i . Let's say that the segment of this array a[1; r] $(1 \le l \le r \le n)$ is good if the difference between the maximum and minimum elements on this segment is at most k. Your task is to find the number of different good segments.

Input

The first line contains integers n and k ($1 \le n \le 10^5$, $1 \le s \le 10^{18}$). The second line contains integers a_i ($1 \le a_i \le 10^{18}$).

Output

Print the number of good segments.

Input	Output
7 3	16
2643689	

Problem J: Two sum

You are given an array of n integers, and your task is to find two values (at distinct positions) whose sum is x.

Input

The first input line has two integers n and x, the array size and the target sum.

The second line has n integers $a_1, a_2, ..., a_n$, the array values.

Output

Print two integers, the positions of the values. If there are several solutions, you may print any of them. If there are no solutions, print IMPOSSIBLE.

Constraints

 $1 \le n \le 2.10^5$.

$$1 \le x$$
, $a_i \le 10^9$.

Input	Output
48	2 4
2751	