微积分与逼近论

邓明格

七月在线

mingge_deng@brown.edu

April 7, 2017

主要内容

- 1 微分学回顾
 - 极限与导数
 - 泰勒级数
 - 牛顿法与梯度下降法
- 2 积分学回顾
 - 黎曼积分
 - 勒贝格积分与概率
- 3 概率论简单回顾
 - 两大基本定理
 - 参数估计

$\epsilon - \delta$ 语言

极限

对于任意的正数 $\epsilon > 0$,存在正数 δ ,使得任何满足 $|x - x_0| < \delta$ 的 x,都有 $|f(x) - L| < \delta$,称函数 f 在 x_0 处的极限为 L,记为

$$\lim_{x \to x_0} f(x) = L \tag{1}$$

3 / 33

$\epsilon - \delta$ 语言

连续

- 通俗描述: 函数 f(x) 在某一点 x_0 的一个邻域上有定义,则函数 f 在 x_0 点连续当且仅当 f 在 x 趋于 x_0 时的极限等于 $f(x_0)$, i.e., $\lim_{x\to x_0} f(x) = f(x_0)$ 。
- $\epsilon \delta$ 描述:函数 $f: \mathbb{D} \subset \mathbb{R} \to \mathbb{R}$ 。 x_0 是 \mathbb{D} 中一点,并且 f 在 x_0 的一个邻域上有定义。如果对任意的正实数 ϵ ,都存在正实数 δ ,使得对任意 $x \in \mathbb{D}$,只要 $|x x_0| < \delta$,就有 $|f(x) f(c)| < \epsilon$,那么就说 f 在 x_0 处连续。

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ ⑤

无穷小(大)

无穷小 (大): $f \to 0$ $(f \to \infty)$

例: 比较 sin(x) 与 tan(x) 在 $x \to 0$ 处的极限

$$\lim_{x \to 0} \frac{\sin(x)}{\tan(x)} = \lim_{x \to 0} \cos(x) = \cos(0) = 1$$
 (2)

故 sin(x) 与 tan(x) 在 $x \to 0$ 处的极限为同阶无穷小。

邓明格 (七月在线)

无穷小(大)阶数

无穷小(大)的阶数: f 趋于 $0(\infty)$ 的速度

o 记号

 $x \to 0$, 如果 $\lim_{x\to 0} f(x) = 0$ 且 $\lim_{x\to 0} f(x)/x^n = 0$, 那么 f(x) 为 n 阶以上 无穷小,记为 $f(x) = \mathbf{o}(x^n)$.

O记号

 $x \to 0$, 如果 $\lim_{x\to 0} f(x) = 0$ 且 $\lim_{x\to 0} f(x)/x^n$ 存在且不为零, 那么 f(x) 为 n 阶无穷小,记为 $f(x) = \mathbf{O}(x^n)$.

重要极限

重要极限

- $\lim_{x\to 0} \sin(x)/x = 1$
- $\lim_{x\to\infty} x^{\alpha}/e^x = 0$, $\forall \alpha > 0$
- $\lim_{x\to\infty} \ln(x)/x^{\alpha} = 0$, $\forall \alpha > 0$
- $\lim_{x\to\infty} (1+1/x)^x = e$

作业 1: 证明以上极限

作业 2: 比较常见函数在零点处的无穷小阶数(泰勒级数)

4□▶ 4□▶ 4□▶ 4 □▶ 3□ 900

导数定义及线性逼近

导数定义

如果一个函数 f(x) 在 x_0 附近有定义,且存在极限,

$$L = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{3}$$

那么 f(x) 在 x_0 处可导且导数 $f'(x_0) = L$.

导数线性逼近

如果存在一个实数 L 使得 f(x) 满足,

$$f(x) = f(x_0) + L(x - x_0) + \mathbf{o}(x - x_0), \quad x \to x_0$$
 (4)

那么 f(x) 在 x_0 处可导且导数 $f'(x_0) = L$.

8 / 33

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017

求导法则

求导法则

• 链式法则:
$$\frac{d}{dx}(g \circ f) = \frac{dg}{dx}(f) \cdot \frac{df}{dx}$$

• 加法法则:
$$\frac{d}{dx}(g+f) = \frac{dg}{dx} + \frac{df}{dx}$$

• 乘法法则:
$$\frac{d}{dx}(g \cdot f) = \frac{dg}{dx} \cdot f + g \cdot \frac{df}{dx}$$

• 除法法则:
$$\frac{d}{dx}(\frac{g}{f}) = \frac{\frac{dg}{dx} \cdot f - \frac{df}{dx} \cdot g}{f^2}$$

作业 1: 证明链式法则(导数定义)

作业 2: 证明其他求导法则(链式法则)

作业 3: 求 x 的导数 (链式法则)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (^)

高阶导数

函数的导数函数仍然可导,那么导数函数的导数是二阶导数,二阶导数函数的导数是三阶导数,记为

$$f^{(n)}(x) = \frac{d}{dx}f^{(n-1)}(x) = \frac{d^n}{dx^n}f(x)$$
 (5)

- 一阶导数是对函数的线性逼近,高阶导数是对导数函数的线性逼近。
- 一阶导数告诉函数的单调性,二阶导数告诉函数的凹凸性。

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q ()

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017 10 / 33

全微分与偏导数

二元函数的全微分与偏导数

如果 f(x,y) 是一个二元函数,而且存在 L_x 和 L_y 使得:

$$f(x_0 + \Delta_x, y_0 + \Delta_y) = f(x_0, y_0) + L_x \Delta_x + L_y \Delta_y + \mathbf{o}(|\Delta_x| + |\Delta_y|)$$
 (6)

那么 f(x,y) 在 (x_0,y_0) 点处可微,且 L_x,L_y 分别是 f 在 x,y 方向上的的偏导数,记为

$$\frac{\partial}{\partial x}f(x_0,y_0) = L_x \quad \frac{\partial}{\partial y}f(x_0,y_0) = L_y \tag{7}$$

全微分与偏导数

二元函数的二阶偏导数

如果 f(x,y) 是一个二元函数,而且存在 $L_x, L_y, L_{xy}, L_{x^2}, L_{y^2}$ 使得:

$$f(x_{0} + \Delta_{x}, y_{0} + \Delta_{y}) = f(x_{0}, y_{0}) + L_{x}\Delta_{x} + L_{y}\Delta_{y} + L_{xy}\Delta_{x}\Delta_{y} + \frac{L_{x^{2}}}{2}\Delta_{x}^{2} + \frac{L_{y^{2}}}{2}\Delta_{y}^{2} + \mathbf{o}(|\Delta_{x}|^{2} + |\Delta_{y}|^{2})$$
(8)

那么 f(x,y) 在 (x_0,y_0) 点处二阶可微,且二阶偏导数为

$$\frac{\partial^2}{\partial x^2} f(x_0, y_0) = L_{x^2} \quad \frac{\partial^2}{\partial x \partial y} f(x_0, y_0) = L_{xy} \quad \frac{\partial^2}{\partial y^2} f(x_0, y_0) = L_{y^2} \quad (9)$$

泰勒级数定义

f(x) 是一个无限次可导的函数,那么在任何一点 x_0 附近可以对 f(x) 做泰勒级数展开

$$f(x_0 + \Delta_x) = f(x_0) + f'(x_0)\Delta_x + \frac{f'(x_0)}{2}\Delta_x^2 + \dots + \frac{f^{(n)}(x_0)}{n!}\Delta_x^n + \mathbf{o}(\Delta_x^n)$$
(10)

- 泰勒级数是对函数的多项式逼近(或逐次线性逼近)。
- 泰勒级数是微分学的巅峰或精髓。
- 麦克劳林级数 $(x_0 = 0)$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

13 / 33

常见函数的泰勒级数

•
$$e^x = 1 + x + x^2/2 + \cdots + x^n/n! + o(x^n)$$

•
$$\ln(1+x) = x - x^2/2 + x^3/3 + \dots + (-1)^{n-1}x^n/n + o(x^n)$$

•
$$\sin(x) = x - x^3/6 + \dots + (-1)^n x^{2n+1}/(2n+1)! + o(x^{2n+1})$$

•
$$\cos(x) = 1 - x^2/2 + x^4/24 + \dots + (-1)^n x^{2n}/(2n)! + o(x^{2n})$$

作业: 证明欧拉公式 $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ (泰勒级数)

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ 壹 ○ 夕へで

14 / 33

邓明格 (七月在线) 矩阵与凸优化

洛必达法则

f,g 为无穷阶可导的函数,且 $f(x_0) = g(x_0) = 0$, $g'(x_0) \neq 0$, 那么

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \tag{11}$$

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017 15 / 33

求解简单微分方程

求满足如下条件的解析函数 f(x):

$$f''(x) = -f(x), \quad f(0) = 0, \quad f'(0) = 1$$
 (12)

提示:
$$f(x) = \sum_{0}^{\infty} f^{(n)}(0)x^n/n!$$
, $f''(x) = \sum_{0}^{\infty} f^{(n+2)}(0)x^n/n!$

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017 16 / 33

微分方程数值求解

基本思路: 用差分方程来逼近微分方程, 用邻点函数的值来表示当前的导数

• 向前差分:
$$f'(x_0) = \frac{f(x_0+h)-f(x_0)}{h} + \mathbf{O}(h)$$

• 向后差分:
$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + \mathbf{O}(h)$$

• 中心差分:
$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + \mathbf{O}(h^2)$$

• 二阶中心差分
$$f'(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} + \mathbf{O}(h^2)$$

微分方程 Lf(x) = g(x),其中 L 为微分算子,最终可以写成 Af = g 的矩阵方程形式来求解 f(x) 在格点上的值。

- (ロ)(部)((E)(E)(E)(9Q(

可微函数极值问题

极值点条件

- 全局极小值: 如果对于任何 x, 都有 $f(x_*) \le f(x)$, 那么 x_* 就是全局极小值点.
- 局部极小值: 如果存在一个正数 δ 使得,对于任何满足 $|x-x_*| < \delta$ 的 x, 都有 $f(x_*) \le f(x)$,那么 x_* 就是局部极小值点.(方圆 δ 内的极小值点).
- 不论是全局极小值还是局部极小值一定满足一阶导数/梯度为零, f = 0 或者 $\nabla f = 0$.

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ ⑤

梯度下降法回顾

如果实值函数 $F(\mathbf{x})$ 在点 \mathbf{x}' 处可微且有定义,那么函数 $F(\mathbf{x})$ 在 \mathbf{x}' 点沿 着梯度相反的方向 $-\nabla F(\mathbf{x}')$ 下降最快。

考虑到这一点,我们可以从函数 $F(\mathbf{x})$ 的局部极小值的初始估计 \mathbf{x}_0 出 发,并考虑如下序列 $\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,...$,使得

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma \nabla F(\mathbf{x}_n) \tag{13}$$

因此可得到 $F(\mathbf{x}_0) \geq F(\mathbf{x}_1) \geq F(\mathbf{x}_2) \geq \dots$, 那么 (\mathbf{x}_n) 将收敛到期望的极 值。

邓明格 (七月在线) 矩阵与凸优化

牛顿法理解思路一:函数零点问题

求 x_0 附近函数 f(x) 的零点。

$$0 = (x - x_0)f(x_0) + f(x_0)$$
 (14)

新求得的点的命名为 x_1 , 通常 x_1 会比 x_0 更接近方程 f(x) = 0 的解, 可以利用 x_1 开始下一轮迭代

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (15)

对于极值问题,相当于求解其一阶导数函数的零点问题。

牛顿法理解思路二:函数的二次逼近

在初始点 x0 处, 二阶泰勒级数逼近:

$$f(x_0 + \Delta_x) = f(x_0) + f'(x_0)\Delta_x + \frac{f'(x_0)}{2}\Delta_x^2 + \mathbf{o}(\Delta_x^2) \approx g(\Delta_x)$$
 (16)

关于 Δ_x 的二次函数 $g(\Delta_x)$ 的极值点为 $-\frac{f'(x_0)}{f''(x_0)}$, 故逼近点

 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ 更接近极值点,重复此步骤得到序列 x_n

$$x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)}$$
 (17)

 $\lim_{n\to\infty} x_n$ 将收敛于 x_0 附近的极值点。 对于多元函数,更新序列为

$$x_{n+1} = x_n - (\mathcal{H}f(x_n))^{-1} \cdot \nabla f(x_n)$$
(18)

其中 Hf 为 Hessian 矩阵。

梯度下降法与牛顿法的比较

- 都是对连续函数的局部逼近,梯度下降法是一阶逼近,而牛顿法为 二阶逼近。
- 由于为局部逼近,得到的解均为局部极值,故 x₀ 的选取极其重要。
- 梯度下降法为一阶收敛,牛顿法为二阶收敛,但需要求解 Hessian 矩阵。

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017 22 / 33

一维曲线面积: 无穷求和

黎曼积分的定义

f(x) 为开区间 (a, b) 上的一个连续函数,对于任意一个对定义域区间的分割 T,

$$\int_{a}^{b} f(x)dx = \lim_{||T|| \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}, \quad \Delta x_{i} = x_{i} - x_{i-1}, \quad x_{i-1} \le \xi_{i} \le x_{i} \quad (19)$$

- 1. 黎曼积分的几何意义为非负函数图像下方的图像面积。

邓明格 (七月在线)

黎曼积分可积的充要条件

黎曼可积的充要条件

$$\int_{a}^{b} f(x)dx = \lim_{||T|| \to 0} \sum_{i=1}^{n} M_{i} \Delta x_{i} = \lim_{||T|| \to 0} \sum_{i=1}^{n} m_{i} \Delta x_{i}$$
 (20)

 $\sharp \oplus M_i = \sup\{f(x) : x_{i-1} \le x_i\}, \quad m_i = \inf\{f(x) : x_{i-1} \le x_i\}$

或者等价于: $\forall \epsilon > 0$, 存在划分 T, 使得 $\sum_{i} = 1^{n} \omega_{i} \Delta x_{i} \leq \epsilon$, 其中 $\omega_{i} = M_{i} - m_{i}$.

黎曼不可积函数: δ 函数(狄拉克函数),上积分为1,下积分为0.

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017 24 / 33

牛顿-莱布尼茨公式

牛顿 -莱布尼茨公式

如果 f(x) 是定义在闭区间 [a,b] 上的可微函数,那么就有

$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$
 (21)

不定积分表示为

$$\int f(t)dt = f(x) + C \tag{22}$$

牛顿-莱布尼茨公式展示了微分与积分的基本关系: 在一定程度上微分与积分互为逆运算.

25 / 33

勒贝格积分

基本思想:不从分割定义域入手,从分割值域入手。

勒贝格积分

$$(L) \int_{a}^{b} f(x) dx = \lim_{\delta \to 0} \sum_{i=1}^{n} \xi_{i} m(M_{i})$$
 (23)

其中 $M_i = \{x : y_{i-1} \le f(x) \le y_i\}, \quad y_{i-1} \le \xi \le y_i.$ 用 $m(M_i)$ 表示集合 M_i 的"长度"或度量。

勒贝格积分与概率

勒贝格自己的比喻:

- 1. 勒贝格积分:欠人一笔钱,现在要还,按照钞票的面值分类,清点每 类面额总值,再相加。
- 2. 黎曼积分:不按面额分类,按从口袋掏出的先后次序相加。

测度概念和概率概念的联系:

测度----概率

积分———期望

大数定理与中心极限定理

大数定理

X 是随机变量, μ 是 X 的期望, σ 是 X 的方差. $\{X_k\}_{k=1}^{\infty}$ 为 i.i.d. 随机变量,那么 $\bar{X}_n = \frac{\sum_{k=1}^n X_k}{n}$ 依概率收敛于 μ , 也就是说对于任何 $\epsilon > 0$ 有

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \epsilon) = 0 \tag{24}$$

中心极限定理

X 是随机变量, μ 是 X 的期望, σ 是 X 的方差. $\{X_k\}_{k=1}^{\infty}$ 为 i.i.d. 随机变量, $\bar{X}_n = \frac{\sum_{k=1}^n X_k}{2}$, 那么

$$Z_n = \frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) \tag{25}$$

28 / 33

依分布收敛于标准正态分布 N(0,1).

参数估计问题

参数估计问题

已知一个随机变量 X 的分布函数 $f_{\theta}(X)$, 其中 $\theta = (\theta_1, ..., \theta_k)$ 为未知参数,利用已有样本 $X_1, ..., X_n$ 对参数 θ 或者 θ 的函数 $g(\theta)$ 作出估计。

- 1. 点估计: 用样本的一个函数 $T(X_1,...,X_n)$ 估计 $g(\theta)$
- 2. 区间估计:用一个置信区间去估计 $g(\theta)$

邓明格 (七月在线) 矩阵与凸优化 April 7, 2017 29 / 33

矩估计

矩估计

基本原理: 大数定理,对于任何 i.i.d 变量 X, 当 $n \to \infty$, $\frac{1}{n} \sum_{i}^{n} X_{i}$ 收敛于 E(X),同理其 k 阶矩也满足大数定理, $\frac{1}{n} \sum_{i}^{n} X_{i}^{k}$ 收敛于 $E(X^{k})$,可以构造 k 组方程求救。

两点分布的矩估计

X 服从两点分布取值为 $\{-1,1\}$, $P(-1) = 1 - \theta$, $P(1) = \theta$, 用样本 $X_1, ... X_n$ 估计参数 θ .

能用低阶矩不用高阶矩!!!

作业:正态分布的参数矩估计。

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

极大似然估计

给定随机变量的分布与未知参数,利用观测到的样本计算似然函数,选择最大化似然函数的参数作为参数估计量.

似然函数

假设 $X = (X_1, ..., X_n$ 样本的观测值. 那么整个样本的似然函数就是

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(X_i)$$
 (26)

这是一个关于 θ 的函数, 选取使得 $L(\theta)$ 最大化的 $(\hat{\theta})$ 作为 θ 估计量.

作业:正态分布的参数极大似然估计。

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (C)

点估计的评判

- 相合性 (consistency): 当样本数量趋于无穷时,估计量收敛于参数 真实值.
- 无偏性 (bias): 对于有限的样本,估计量所符合的分布之期望等于参数真实值.
- 有效性 (efficiency): 估计值所满足的分布方差越小越好.
- 渐进正态性 (asymptotic normality): 当样本趋于无穷时,去中心化去量纲化的估计量符合标准正态分布.

作业:正态分布的参数矩估计以及极大似然估计是否无偏?

谢谢大家!!