

UNCLASSIFIED

AD 269 912

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

269912

531800
Lyon Inc. -- Detroit, Mich.
Deep Drawn
A2 1st Stage Polaris Motor
Chamber and Aft Closure
Contract N0w 60-0630(FBM)
General Report #13
September 30, 1961

62-2-1
XEROX

Copy No. 17

LYON INCORPORATED
DETROIT, MICHIGAN

General Report No. 13
for the period
August 31 through September 30, 1961
on

DEEP DRAWN
PRE-PRODUCTION UNITS
A2 1ST STAGE POLARIS ROCKET MOTOR CHAMBERS
AND
A2 1ST STAGE POLARIS AFT CLOSURES

Submitted to:

Bureau of Naval Weapons
Code SP-271
Contract: N0w 60-0630(FBM)

INCORPORATED

ORDNANCE PRODUCTS DIVISION

MANUFACTURERS
OF

CARTRIDGE CASES • BOMBS • ROCKET MOTOR CHAMBERS
AND MISSILE COMPONENTS

13881 WEST CHICAGO BOULEVARD
DETROIT 28, MICHIGAN

September 30, 1961

Director, Special Projects
Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.

Attention: Special Projects Office (Code SP-271)

Subject: General Report No. 13 on deep-drawn pre-production
units of the A2 1st stage Polaris rocket motor
chambers and A2 1st stage Polaris aft closures

Reference: Contract N0W 60-0630(FBM)
Supplies and Services - Item 3

Gentlemen:

This report summarizes the progress made during the period of August 31 through September 30, 1961, in the design, development, fabrication and/or procurement and installation of special production tooling to deep draw the Polaris A2 1st stage rocket motor chamber and A2 1st stage aft closure.

Copies of this General Report are being distributed according to the attached Distribution List for Metal Parts as specified in the contract.

September 30, 1961

- 2 -

I Special Tooling -- Material and Fabrication

(A) A2 1st Stage Aft Closure #1976585 (integral nozzle sleeves)

1. Thrust Port Sizing Die -- D-20063

Fabrication of the components needed for this die assembly has been completed and the die placed in operation.

2. Final Nozzle Sleeve Sizing Die -- D-20064

Fabrication of the components needed for this die assembly has been completed and the die placed in operation.

II Special Tooling -- Tryout and Development

(A) A2 1st Stage Aft Closure #1976585 (integral nozzle sleeves)

1. Review of Past Development

It will be recalled that during the last report period, the development of the five restrike operations on aft closure #AX-6 had indicated that certain modifications of the upset rings were necessary to increase the support of the nozzle sleeve during forming. These modifications were made in the final days of the last report period. In addition, the remaining five aft closures had been processed through the first restrike operation. Two of these five aft closures, AX-2 and AX-3, were selected for development of the restrike operations with the above modifications and for the development of the nozzle sleeve final sizing die.

2. Development of Restrike Operations

Processing of aft closures through the second, third, fourth, and fifth restrike operations with modified upset rings was

Director, Special Projects

September 30, 1961

- 3 -

started on September 2, 1961, and the initial development of these operations was completed by September 12, 1961. The modified upset rings were found to provide the necessary support needed to maintain and establish the height of the sleeve on the convex or outer side of the membrane. During this processing, the component details of the thrust port sizing die and the final nozzle sleeve sizing die were received, carefully inspected and their dimensions recorded. It should be noted that the punches and inserts for the sizing operations were designed to work with the present contoured die sections used for clamping. Set up of the sizing operations is similar to the restrike operations and requires only replacement of the punches and inserts. No extensive dismantling or set up of the dies is necessary for these operations.

3. Nozzle Sleeve Sizing Operation

On September 13, 1961, the nozzle sleeve sizing die was installed in the press and the development was completed by September 14, 1961. The function of this operation is to iron the inner diameter of the sleeve to obtain the necessary length of nozzle sleeve on the concave or inner side of the membrane. In addition, the two ribs present on the outboard portion of the nozzle sleeve (at the 4 o'clock and 8 o'clock positions) on the convex side are brought closer to size.

4. Final Nozzle Sleeve Sizing Operation

Development of this operation was started on September 16 and completed on closure AX-2 on September 20, 1961. The

September 30, 1961

- 4 -

function of this operation is to size the outer diameter surfaces of the nozzle sleeve and to provide additional sleeve length on the convex or outer side of the membrane. The initial development on this die was done with aft closure #AX-6. After completion of this sizing operation AX-6 was submitted to our Ordnance laboratory for metallurgical evaluation of grain flow pattern and other factors. The results of this evaluation will be presented in a future report. Processing through the final sizing was started on aft closure #AX-2 and after completion of the press operations it was dimensionally inspected and submitted for rough machining prior to heat treatment. Processing of aft closure #AX-3 through the final sizing operation was then started. We expect to eliminate one of the sizing operations in the future.

5. Processing Balance of Aft Closures

Following the development of the final sizing operation, processing of aft closures #AX-4 and AX-5 through the restrike operations was started. At the end of this report period these aft closures had been brought up through the third restrike operation. Pancaked blanks #AY-1 through AY-6, inclusive, should be ready for processing and further development work by the next report period.

III Rough Machining and Magnetic Particle Inspection

A careful dimensional inspection of aft closure #AX-2 was made after rough machining and the dimensions were recorded. The aft closure was then subjected to magnetic particle inspection (in accordance with specification MIL-I-6868A) to insure the absence of defects prior to being heat treated. This inspection revealed that no defects were present.

- 5 -

IV Heat Treat Procedure

The heat treatment cycle used to harden aft closure #AX-2 was as follows:

1. Preheated in a salt bath furnace at 1275° F. for 30 minutes
2. Heated in a salt bath furnace at 1625° for 2 hours
3. Quenched in an agitated salt bath at 325° F. for 5 minutes
4. Double tempered in a salt bath furnace at 475° F. for 2 hours each cycle

Following heat treatment, the aft closure was again given a magnetic particle inspection and, in addition, was subjected to complete ultrasonic and radiographic inspection. Both the magnetic particle inspection and the radiography were conducted in accordance with the applicable government specifications. Because immersion ultrasonic testing equipment is not available in this area, the sonic testing was performed by contact methods using the same quality criteria required in OS9426A. No defects were found during any of the above nondestructive testing.

Both radial and tangential test strips were heat treated with aft closure #AX-2 and were tested for mechanical properties and depth of decarburization. The results obtained on these test strips were as follows.

	<u>Required</u>	<u>AX2-R</u>	<u>AX2-T</u>
0.2% Yield Strength-psi	200,000 to 220,000	201,500	199,500
Ultimate Strength-psi	Not specified	241,000	238,000
Elongation - % in 2 ins.	6.0	10.0	9.5
Core Rockwell "C" hardness	Not specified	49.5	49.5
Depth of Partial Decarburization - ins.	0.004 max.	0.016	0.016

Director, Special Projects

September 30, 1961

- 6 -

It will be noted that a marginal condition exists in yield strength. Prior tests on the heat treatment response of this material indicated a maximum yield strength of about 210,000 psi when the surfaces of the test specimen are not partially decarburized. The presence of partial surface decarburization will of course reduce yeild strength. This reduction, however, is justified when consideration is given to the substantial increase afforded in fracture toughness by desensitization of the surface.

We have done considerable work on the control of salt bath oxide level and are sure that we can lower the amount of partial decarburization. For proper desensitization of the membrane thickness a layer of partial decarburization, 0.006"-0.010" in depth, should be present after hardening. Tests to establish the effect of partial decarburization upon yield strength are in process and will be presented in the next report. In addition, the test data pertaining to the control limits required for oxide content of the liquid salt are being compiled and will also be presented in the next report.

V Finish Machining

Aft closure #AX-2 was submitted for finish machining near the end of this report period. Machining and final inspection of the closure should be completed in time for shipment to Aerojet-General for hydrostatic pressure testing in the first week of October.

Sincerely yours,

Wayne A. Martin

Wayne A. Martin, Director
Lyon Ord. Res. and Mfg.

DISTRIBUTION LIST

National Aeronautics & Space Administration
1512 H St., N. W.
Washington 25, D. C.
Attn: Chief, Division of Research
Information (1 copy)

Commander
Air Force Ballistic Missile Division
Hq. Air Res. and Dev. Command
P. O. Box 262
Inglewood, California
Attn: WDSOT (1 copy)

Commanding General
Aberdeen Proving Ground
Maryland
Attn: Ballistic Research Laboratories
ORDBG-BLI (1 copy)

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Library (1 copy)

Commander
Army Ballistic Missile Agency
Redstone Arsenal, Alabama
Attn: ORDAB-HSI (1 copy)

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: RMMP (2 copies)

Commander
Wright Air Development Center
Wright-Patterson Air Force Base
Ohio
Attn: WCLPEX (1 copy)

Commander
Armed Services Technical
Information Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPCR (10 copies)

Department of the Army
Office, Chief of Ordnance
Washington 25, D. C.
Attn: ORDTB (1 copy)

Commander
Army Rocket and Guided Missile Agency
Redstone Arsenal
Alabama
Attn: Technical Library
ORDXR-OTL (2 copies)

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: D-3, Tech. Library (2 copies)

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: RMMP 43 (1 copy)

NOW 60-0630(FBM)

Aerojet-General Corporation
P. O. Box 296
Azusa, California
Attn: Librarian (1 copy)
VIA: Bureau of Naval Weapons Representative
6352 North Irwindale Avenue
Azusa, California

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 3, California
Attn: I. E. Newlan, Chief, Reports
Group (1 copy)
VIA: U. S. Inspector of Naval Material
929 South Broadway
Los Angeles 15, California

Thiokol Chemical Corporation
Redstone Division
Huntsville, Alabama
Attn: Technical Director (1 copy)
VIA: Commanding General
Army Ordnance Missile Command
Redstone Arsenal
Huntsville, Alabama

Ingersoll Kalamazoo Division
Borg-Warner Corporation
1810 North Pitcher Street
Kalamazoo, Michigan
Attn: J. W. Schiffel, Chief Engineer
Special Projects Office (1 copy)
VIA: Inspector of Naval Material
6233 Concord Avenue
Detroit 11, Michigan

Grand Central Rocket Company
P. O. Box 111
Redlands, California
Attn: Helen Ashman, Librarian (1 copy)
VIA: Inspector of Naval Material
929 South Broadway
Los Angeles 15, California

Thiokol Chemical Corporation
Utah Division
Brigham City, Utah
Attn: Technical Director (1 copy)
VIA: Branch Offices
Inspector of Naval Material
Salt Lake City, Utah

Armour Research Foundation of
Illinois Institute of Technology
Chicago 16, Illinois
Attn: Fluid Dynamics and Systems
Research (1 copy)
VIA: Inspector of Naval Material
608 South Dearborn Street
Chicago 5, Illinois

U. S. Naval Weapons Plant
Washington 25, D. C.
Attn: Code 722, Engineering Dept.

U. S. Naval Research Laboratory
Washington, D. C.
Attn: Mr. J. Kies, Code 6210

Solid Propellant Information Agency
Applied Physics Laboratory
The John Hopkins University
Silver Springs, Maryland
Attn: K. G. Britton (3 copies)

Thiokol Chemical Corporation
Elkton Division
Elkton, Maryland
Attn: Librarian (1 copy)
VIA: Inspector of Naval Material
401 Water Street
Baltimore 2, Maryland

Astrodyne, Incorporated
P. O. Box 548, Air Force Plant 66
McGregor, Texas
Attn: A. P. Anderson (1 copy)
VIA: Inspector of Naval Material
1114 Commerce Street
Dallas, Texas

American Machine and Foundry Company
Mechanics Research Department
1104 South Wabash Avenue
Chicago 5, Illinois
Attn: A. D. Kafadar (1 copy)
VIA: Inspector of Naval Material
608 South Dearborn Street
Chicago 5, Illinois

NW 60-0630(FBM)

Allegany Ballistics Laboratory
Hercules Powder Company
Cumberland, Maryland
Attn: R. Winer (1 copy)
VIA: Resident Inspector of Naval Material
Allegany Ballistics Laboratory
Cumberland, Maryland

Lockheed Aircraft Corporation
Missiles and Space Division
1122 Jagels Road
Sunnyvale, California
Attn: Mr. H. H. Patton (2 copies)
VIA: Bureau of Naval Weapons Rep.
P. O. Box 504
Sunnyvale, California
Attn: Cdr. P. S. McManus (1 copy)

Mellon Institute
4400 Fifth Avenue
Pittsburgh 13, Pennsylvania (1 copy)
VIA: Inspector of Naval Material
Old Post Office Building
Pittsburgh 19, Pennsylvania

Pratt and Whitney Aircraft Corporation
Division of United Aircraft Corporation
East Hartford, Connecticut (1 copy)
VIA: Bureau of Naval Weapons Rep.
Pratt and Whitney Aircraft Corp.
United Aircraft Corp.
East Hartford 8, Connecticut

Excelco Developments, Inc.
Silver Creek, New York (1 copy)
VIA: Inspector of Naval Material
Buffalo District
740 Main Street
Buffalo 2, New York

General Electric Company
FPO Technical Information Center
P. O. Box 196, Cincinnati 15, Ohio (1 copy)
VIA: Bureau of Naval Weapons Rep.
North American Aviation, Inc.
4300 East Fifth Avenue
Columbus 16, Ohio

Allison Division
General Motors Corporation
Indianapolis 6, Indiana
VIA: Air Force Plant Repre. (OCAMA)
Allison Division GMC
Indianapolis 6, Indiana

Hercules Powder Company
Bacchus Works
Magna, Utah
Attn: Librarian
VIA: Branch Offices
Inspector of Naval Material
Salt Lake City, Utah

Director, Special Projects
Attn: SP-20 (4 copies)
SP-27 (2 copies)
SP-274 (2 copies)

Aerojet-General Corporation
P. O. Box 1168
Sacramento, California
Attn: Dr. W. R. Kirchner (3 copies)
VIA: Bureau of Naval Weapons
Resident Representative
P. O. Box 1947
Sacramento, California
Attn: Cdr. T. J. Christman

A. O. Smith Corporation
Milwaukee 1, Wisconsin
Attn: F. J. Altmann (1 copy)
Engineering Manager
Space-Ordnance District
VIA: Inspector of Naval Material
2266 North Prospect Avenue
Milwaukee 2, Wisconsin

Defense Metals Information Center
 Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio (1 copy)
VIA: Bureau of Naval Weapons Rep.
North American Aviation, Inc.
4300 East Fifth Avenue
Columbus 16, Ohio

Rocketdyne
6633 Canoga Avenue
Canoga Park, California
VIA: Bureau of Naval Weapons Rep.
North American Aviation, Inc.
Los Angeles 45, California

Commanding Officer
U. S. Army Ordnance, Frankford Arsenal
Philadelphia 37, Pennsylvania
Attn: Ord BA-1320 - Mr. H. Markus

NOW 60-0630(FBM)

UNCLASSIFIED

UNCLASSIFIED