

MPLAB® Harmony 3 之基础篇(38)

-- 利用 PMSM_FOC 组件加速电机控制应用开发

Microchip Technology Inc.

MCU32 产品部

一、概述

电机控制程序是介于片上周边库(Peripheral Libraries, PLIB)和应用程序(Applications)之间的驱动层,如下图所示。

电机控制程序具有以下特点:

- 向下直接访问 PLIB, 向上则供应用程序访问, 并屏蔽与 PLIB 有关的信息。
- 其内部通常没有复杂的层级架构。
- 要求高度优化的代码,以节约 CPU 带宽。

Harmony 3 图形化配置界面(MHC)中的 PMSM_FOC 组件是一个用于自动生成上述电机控制程序的图形化工具。其特点包括:

- 与 PLIB 组件的紧密交互
 - 自动配置与之连接的 PLIB 组件,无需用户手动配置。
 - 可以方便地更换 PLIB 组件。
- 丰富的配置选项
 - 可选则多种转子位置获取方法,例如各类无传感器估算方法。
 - 可选 MCHP 官方电机或者其它电机。
 - 可选 MCHP 官方驱动印板 MCLV2、MCHV3,或其它印板。
- 经过优化的代码生成
 - 代码经过模块化设计,易于维护。
 - 代码经过优化, 节约 CPU 带宽。

本文会介绍 PMSM_FOC 组件的使用方法,并以基于 PIC32MKMCF 的电机控制程序为例,交代详细的操作步骤。

(一) 基础知识

为了更好地理解本文档内容,建议具备以下知识:

- 1. MPLAB X IDE 和 Harmony 3 的基本操作方法
- 2. 基础的嵌入式编程/调试经验

(二) 所需工具

硬件:

1. MCLV-2 低压电机控制印板

2. PIC32MK motor control PIM (plug-in-module)

3. PMSM 电机(Hurst DMA0204024B101)

4. MPLAB ICD 4 调试器

5. MPLAB ICD 4 转接套件

软件:

- 1. MPLAB X IDE: v5.40 或更新版本
- 2. MPLAB XC32 编译器: v2.41 或更新版本
- 3. MPLAB Harmony 3 Configurator (MHC) v3.4.0 或更新版本
- MPLAB Harmony 3 framework csp v3.7.1 dev_packs v3.7.0 mhc v3.4.1 motor_control v3.5.0

或更新版本

5. X2CScope 串口调试工具: v2.0.6 或更新版本

二、 PMSM_FOC 组件的使用方法

使用 PMSM FOC 组件生成电机控制程序的步骤如下所述。

- 初始化:添加 PMSM FOC 组件到 MHC 项目界面。
- 连接 PLIB 组件:例如 ADC, PWM, QEI等。
- 配置 PMSM FOC 组件:选择电机,选择印板,选择电机控制方法等。
- 配置 MCU 引脚: 在引脚配置界面中, 指定所需引脚。
- 生成代码。
- 修改 main.c 文件: 在 while(1)循环中调用特定函数。

以下进行分步讲解,并且介绍所生成软件的模型。

(一) 初始化

首先,将 Harmony 3 framework 升级到"概述"章节中指定的版本。

然后,在 MPLAB X IDE 中打开或者新建一个 Harmony 3 项目,并且为该项目打开 MHC。

在 Available Components 标签中,找到并双击 PMSM_FOC,或者将其拖拽到 Project Graph 标签中。

(二) 连接 PLIB 组件

MHC 中的组件可以拥有两种接口:依赖接口(dependency)和能力接口(capability)。依赖接口显示在组件图形的左侧,表示该组件依赖于其它组件。能力接口显示在组件图形的右侧,表示该组件能支持其它组件。

PMSM_FOC 有四个依赖性接口: ADC, PWM, QDEC(正交位置解码器), X2CScope(串口调试工具)。用户应将需要的 PLIB 加入 Project Graph 标签中,并且把对应的能力接口与依赖接口连接起来。

(三) 配置 PMSM_FOC 组件

配置印板

首先,可以选择 MCLV2、MCHV3、或其它印板。若是 MCLV2 或 MCHV3,那么相关参数,例如最大电流、母线电压等,会自动配置好。若是其它印板,那么用户需要自行输入相关参数值。

然后,根据硬件情况配置 MCU 的 PWM 模块。

最后,根据硬件情况配置 MCU 的 ADC 模块。

配置电机

可以选择 MCHP 的官方指定电机: Hurst DMA0204024B101、 Hurst DMB0224C10002、Leadshine EL5-M0400-1-24,或其它电机。

若是官方指定电机,那么电机参数会自动配置好。若是其它电机,那么用户需要自行输入电机参数值。

配置电机控制选项

可供配置的选项包括: 获取电机转速和位置反馈的方法, 电机的运转模式(速度闭环、速度开环、力矩模式), (无传感器控制的)开环启动参数,等等。

配置电流、速度控制环

可在此输入d轴、q轴电流控制器和速度控制器的参数。

(四) 配置 MCU 引脚

在引脚配置(Pin Configuration)界面中,配置需要用到的所有引脚。

(五) 生成代码及软件模型

触发生成代码指令后,MHC 会生成多个源文件,其中包含了对 PMSM 进行 FOC 控制所需的完整代码。

代码的软件结构及其和源文件的关系,如下图所示。

绝大部分电机控制任务会在 ADC 中断服务函数中被周期性地执行;而查询按钮、电位器信息的任务,在 while(1)循环中执行。它们的流程图如下所示。

(六) 修改 main.c 文件

在 while(1)循环中,调用 PMSM_FOC_Tasks()函数。如果希望使用 X2CScope 串口调试工具,那么还要调用 X2CScope_Communicate()函数。

```
int main ( void )
{
    /* Initialize all modules */
    SYS_Initialize ( NULL );

    while ( true )
    {
        /* Maintain state machines of all polled MPLAB Harmony modules. */
        SYS Tasks ( );
        PMSM_FOC_Tasks();
        X2CScope_Communicate();
}

/* Execution should not come here during normal operation */
    return ( EXIT_FAILURE );
}
```


三、 利用 PMSM_FOC 生成基于 PIC32MKMCF 的无传感器 FOC 控制程序

本章将详细讲解一个例子:利用 PMSM_FOC 生成基于 PIC32MKMCF 的无传感器 FOC 控制程序。Harmony3 的 motor_control 模块所提供的例程 mclv2_pic32_mk_mcf_pim.X 就是这样开发的。

(一) 硬件平台搭建

将 PIC32MKMCF PIM 和 External Op_amp configuration 印板安装到 MCLV2 上。

将 ICD4 调试器的一端与 MCLV2 连接,另一端与上位机连接。

将电机的动力线连接到 MCLV2 的 M1、M2、M3 插座。

确保 MCLV2 上的跳针位置如下图所示。

将"USB 转 RS232"线缆的 USB 端连接至上位机;将其 RS232端连接至 MCLV2的 J10 插座。

(二) 创建项目

在 MPLAB X IDE 中,点击 File -> New Project; 在新建项目向导窗口中,选择"32-bit MPLAB Harmony Project"; 在下一步中,选择 Harmony 3 Framework 的路径。

接着,输入项目的保存路径、项目文件夹名称、项目名称。

最后,选择目标 MCU 为 PIC32MK1024MCF100。

(三) 打开 MHC

点击 **Tools** -> **Embedded** -> **MPLAB Harmony Configurator**; 确认或输入 Harmony 3 Framework 的路径,选择默认的 DFP 和 CMSIS 路径。

(四) 连接组件

将 PMSM_FOC 组件和所需 PLIB 组件加入 Project Graph 窗口中,并将它们连接起来,如下图所示。注意,由于 PMSM_FOC 默认选择无传感器控制方法,因此其依赖接口并不包括 QDEC。

(五) 配置 PMSM_FOC 组件

点击 PMSM_FOC 组件;选择印板为 MCLV2;选择电机为 Hurst DMA0204024B101;选择位置反馈方法为 SENSORLESS – PLL Estimator。

(六) 配置 MCU 引脚

点击 MHC -> Tools -> Pin Configuration。所有需要使用的引脚都必须手动配置。按照下表所示,配置所有引脚。

Peripheral	Pin	Function	Description
ADCHS	RA11	AN9	Phase V Current
	RE15	AN15	Potentiometer
	RA4	AN24	Phase U Current
	RA12	AN10	DC bus voltage
MCPWM	RB14	PWM1H	PWMH0
	RB12	PWM2H	PWMH1
	RB10	PWM3H	PWMH2
	RB15	PWM1L	PWML0

	RB13	PWM2L	PWML1
	RB11	PWM3L	PWML2
	RB4	FLT15	Fault pin
Switches and LED	RG1	GPIO	Switch S2
	RC7	GPIO	Switch S3
	RF5	GPIO (output pin)	LED D17
	RG15	GPIO (output pin)	LED D2
UART2	RC8	U2RX	UART_Rx
	RB9	U2TX	UART_Tx

(七) 生成代码

(八) 修改 main.c 文件

将以下代码复制到 while(1)循环中。


```
PMSM_FOC_Tasks();

X2CScope Communicate();
```

```
int main ( void )
{
    /* Initialize all modules */
    SYS_Initialize ( NULL );

    while ( true )
    {
        /* Maintain state machines of all polled MPLAB Harmony modules. */
        SYS Tasks ( );
        PMSM_FOC_Tasks();
        X2CScope_Communicate();
    }

    /* Execution should not come here during normal operation */
    return ( EXIT_FAILURE );
}
```

(九) 设置项目属性

在项目属性配置窗口中,首先在默认目录,即 Conf: [(project name)]下:

选择调试工具(Connected Hardware Tool)为 ICD-4;并选择编译工具(Compiler Toolchain):一般建议选择最新版本的 XC32。

然后进入 Loading 目录,勾选"Load symbols when programming or building for production (slows process)"。这是为了让 X2CScope 工具正常工作的必要操作。

(十) 运行例程

为 MCLV2 连接 DC24V 电源。

编译并烧写(Build and Program)项目至目标 MCU。

按下 S2 按钮以启动电机。

转动(蓝色)电位器以调节转速指令。

按下 S2 按钮以停止电机。

按下 S3 按钮以改变电机转动方向。

再次按下 S2 按钮以启动电机。

利用 X2CScope 的 Scope 窗口观察相关全局变量,确认电机运行状态。例如下图所示,观察了电机 U 相、V 相电流反馈和估算的转子磁链角度波形。

所有操作结束后,按下 S2 按钮以停止电机,并断开 DC24V 电源。

四、总结

本文首先回顾了电机驱动软件与下层 PLIB 和上层应用软件之间的关系,然后介绍了 MHC 中用于自动生成电机驱动软件的工具: PMSM_FOC 组件。接着,详细解释了 PMSM_FOC 组件的每一个使用步骤。最后,提供了一个实例供读者参考。借此,希望能为读者快速上手 PMSM_FOC 组件提供帮助。