# CS 65500 Advanced Cryptography

Lecture 23: Private Information Retrieval

Instructor: Aarushi Goel

Spring 2025

## Agenda

- Definition, Motivation
- → Bingle Server PIR from additively homomorphic encryption.

  → Damgard Jurik encryption.

#### Homework 6:

- OI use can assume H is a random oracle, i.e., return random outputs. Thuefore  $Pr[H(x) = H(y)] \leq \frac{1}{|F|}$
- Remember in PCG, we want the output of Setup to be sublinear in the length of vector  $\vec{a}$ ,  $\vec{c}$ .
- Observe that un this question, you are effectively showing that unearly homomorphic scaret-key enaryption (with some additional special properties) is equivalent to public-key encryption.

  Such equivalence does not hold for regular secret-key encryption schemes. There are known separation results.

## Private Information Retrieval (PIR) Client Server if [N] Input! index database di Output: \* Correctness: client learns the desired record di. \* Security: the (malicious) server should learn nothing about i. We do not require privacy for Server's DB. Otherwise, this would be equivalent

### Trivial Solution

- → Sinu we do not care about privacy for the server, a trivial approach would be to let the client download the entire DB.
- → Server's communication: O(N)
- \* Goal: The goal ûs to minimize the size of serveis response to the client. Hence we want to design more efficient constructions.

### Applications.

If we can do this, we can use PIR as the basic building block for several privacy-preserving protocols, with applications in:

- \* private DNS 100kup \* contact discovery
- \* safe browsing \* anonymous meuaging.
- \* private contact tracing

Q: (an we design PIR schemes where the computation time for the server is sublinear in N?

A: No! It has to be atleast linear.

If it were sublinear, that would mean some records in the DB we ignored and the server will learn they are NOT di.

Recent Breakthrough: Doubly-efficient PIR. (2022)

Server can do some preprocessing on the DB. Subsequently all queries can be answered in sublinear time.

By Wei-Kai Lin, Ethan Mook, Daniel Wichs.

(NOT TODAY)

#### K-Server PIR

- → This is a relaxed version of single-server PIR, where K-servers hold copies of the same DB. The client wants to retrieve an element from this dabase
- → Security: Unless all servers collude, none of them learn any information about i.
  - Q: Can we build 2-server PIR using any of the primitives that we have discussed in this course so far?
  - A: Yes, using 2-party distributed point functions. How? (Think!!)

Single-Server PIR using Additively Homomorphic Encryption.

- → Let's assume all elements un the database & Zp.
- → Let (Gen, Enc, Dec) be an additively homomorphic public-key encryption scheme with message space Zp.



Server

Input: di, --, dN

ct = & dj. ctj

Client

î

+je[N], j ≠ i ctj = Enc (pK,0)

cti = Enc (pk,1)

Dec (sk, ct) -> di

Problem: Server communication is sublinear, but client's communication is larger than the DB.

## Single-Server PIR with sublinear Client Communication (Candidate?)





#### Server

#### Client

$$i^* = \lfloor i^{\prime} / \sqrt{N} \rfloor$$

$$\forall j \in [\sqrt{N}] j \neq i^* \quad ctj = Enc(pK,0)$$

$$cti* = Enc(pK,1)$$

$$\forall j \in [In]: Aj = (\underbrace{\leq dj+k}) \cdot ctj$$

$$j^* = i \mod N$$
  
 $\forall k \in [N], K \neq j^* ct_K = Enc(pK, 0)$   
 $ct_{j^*} = Enc(pK, 1)$ 

$$A = \underbrace{z}_{i \in \Gamma_{i} N} \underbrace{ct_{j}}_{i} \times A_{j}$$

We can also recuse on this idea.

#### Final PIR scheme

We can recursively use the idea discussed earlier as follows:

- $\rightarrow$  problem with this approach is that each Aj is itself a ciphertext. As a result, Aj might not be in  $\mathbb{Z}_p$ .
- Inless Aj can be efficiently mapped to an element in  $\mathbb{Z}_p$ , we cannot rely on the homomorphic properties of the encryption scheme that has message space  $\mathbb{Z}_p$  to compute  $A = S \cdot \overline{ct}_j \cdot Aj$

What we want: a \*recursive\* homomorphic encryption scheme where ciphertext in one level is plaintext in the next level.

To recursively use of this idea, we additionally want the ciphertext size to only increase \*additively\* from level to level.

- Damgård-Jurik Encryption Scheme.

  → Based on the \*decisional composite residuosity\* assumption (DCR)
- → Additively homomorphic.
- → Can be used to encrypt messages ∈ Zns.
- $\rightarrow$  elements in  $\mathbb{Z}_n^s$  can be represented using slogn bits.
- → slogn bits are encrypted to a ciphertext of size (S+1) logn bits
- → Generalization of Paillie's enryption scheme.