

Linear Regression

Data Science Decal

Hosted by Machine Learning at Berkeley

Agenda

Background

Model Estimation

Assumptions

Model Testing

Next Steps

Background

Where are we?

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make predictions
- The data has **continuous** labels (y)
 - i.e. prices, heights, miles per gallon, etc.
- The data has a set of **explanatory** variables (x_i)
 - i.e. sales, weights, engine power, etc.
- How does a computer make predictions?

Why linear regression?

- Regression is one of the most commonly used methods by data scientists
- It is simple, fast, interpretable, and powerful
- The techniques we use here are widely applicable
- It is practical!
 - (Physics) Ohm's law, Hooke's law, Charles's law
 - (Economics) Okun's law

Linear regression

- Suppose we have p predictor variables x_1, x_2, \ldots, x_p
- We can approximate y as a linear function of the $x_i's$:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

- θ_i 's are the **parameters** (also called **weights**) which we need to estimate
- We introduce $x_0 = 1$ for simplicity so that:

$$y = \sum_{i=1}^{p} \theta^{T} x$$

Warm-up: predicting house prices

• Suppose we have the following data about houses:

Price	# of Square Feet	# of Bedrooms
221,900	1180	3
538,000	2570	3
:	i	
1,225,000	5420	4

- Let's predict the price of a house from the number of square feet it has
- Our linear model has the form:

$$h_{\theta}(sqft) = \theta_0 + \theta_1 sqft$$

Model Estimation

How do we choose θ ?

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- We can translate this goal into mathematics by defining the cost function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

- $J(\theta)$ sums the squared **residuals**
- ullet To have an accurate model, we want to **minimize** $J(\theta)$

Minimizing the cost function

- **Idea**: choose θ to minimize $J(\theta)$
- We can use a search algorithm that follows the scheme:
 - ullet Choose an initial guess for heta
 - Repeatedly update θ to make $J(\theta)$
 - ullet Keep doing this until $J(\theta)$ reaches its minimum

Updating θ **to minimize** $J(\theta)$

- **Note**: $J(\theta)$ is a convex quadratic function (has nice properties)
- From Math 53: the direction of greatest increase is the same direction of the gradient vector
- **Idea**: let's update θ by traversing the opposite direction instead
- This scheme is known as gradient descent

$$\theta \leftarrow \theta - \epsilon \nabla_{\theta} J(\theta)$$

 \bullet is called the **learning rate**

Visualizing gradient descent

Deriving the update rule

• Let's start with the case where we only have one training example $(x^{(1)}, y^{(1)})$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (h_{\theta}(x^{(1)}) - y^{(1)})^{2}$$

$$= 2(\frac{1}{2}) (h_{\theta}(x^{(1)}) - y^{(1)}) \nabla_{\theta} (h_{\theta}(x^{(1)}) - y^{(1)})$$

$$= (h_{\theta}(x^{(1)}) - y^{(1)}) \nabla_{\theta} (\theta^{T} x^{(1)} - y^{(1)})$$

$$= (h_{\theta}(x^{(1)}) - y^{(1)}) x^{(1)}$$

• For a single training example, the update rule is:

$$\theta \leftarrow \theta - \epsilon(y^{(1)} - h_{\theta}(x^{(1)}))x^{(1)}$$

Gradient descent for linear regression

• For *n* training examples:

$$\theta_j \leftarrow \theta - \epsilon \sum_{i}^{n} (h_{\theta}(x^{(i)}) - y^{(1)}) x_j^{(i)}$$

for
$$j = 1, \ldots, p$$
 and $i = 1, \ldots, n$

- This rule is also called the LMS update rule ("least mean squares")
- Size of update is proportional to the residual term $(y^{(i)} h_{\theta}(x^{(i)}))$
- If the prediction $h_{\theta}(x^{(i)})$ is close the actual $y^{(i)}$ then the parameters θ shouldn't need much changing

Stochastic gradient descent for linear regression

While $J(\theta)$ is not minimized:

For
$$i=i,\ldots,n$$
:
$$\theta_j \leftarrow \theta_j - \epsilon(h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \quad \text{(for each j)}$$

Choosing the learning rate

Linear regression can be solved in an easier way...

- SGD is the basis for many optimization algorithms
- Not necessary for linear regression, as there exists a closed form solution
- ullet We can find the optimal θ by solving the **normal equations**

Another interpretation

• Recall the equation for a linear model:

$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip}$$

• The outcome, y, which we observe can be thought of as:

$$y_i = h_{\theta}(x_i) + \epsilon_i$$

where ϵ is some unobserved error

- We don't know the true θ is, so we estimate it with $\hat{\theta}$
- Our predictions for test points are then

$$\hat{y} = h_{\hat{\theta}}(x)$$

Linear regression in matrix form

• We can rewrite linear regression as

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

In compressed notation:

$$\vec{y} = X\vec{\theta} + \vec{\epsilon}$$

 Here, we're using capital letters to represent matrices, and arrows to represent vectors

Estimating θ

- We want our estimate, $\hat{\theta}$ to be accurate
- We can be accurate by trying to minimize error
- We can be accurate by minimizing our residuals

$$e_i = y_i - \vec{\theta}^T x_i$$

- More mathematically convenient to minimize squared residuals
- That is,

$$\hat{\vec{\theta}} = \operatorname{argmin}_{\vec{\theta}} \sum_{i=1}^{n} (y_i - (\theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip})^2$$

Estimation (least squares)

$$\begin{split} \hat{\theta} &= \operatorname{argmin}_{\vec{\theta}} ||\vec{y} - X\vec{\theta}||_2^2 \\ &= \operatorname{argmin}_{\vec{\theta}} (\vec{y} - X\vec{\theta})^T (\vec{y} - X\vec{\theta}) \\ &= \operatorname{argmin}_{\vec{\theta}} \vec{y}^T \vec{y} - 2\vec{y}X\vec{\theta} + \vec{\theta}^T X^T X\vec{\theta} \end{split}$$

Let
$$Q = ||\vec{y} - X\vec{\theta}||_2^2$$

Taking the derivative with respect to the vector $\vec{\theta}$:

$$\frac{\partial Q}{\partial \vec{\theta}} = 2X^T X \vec{\theta} - 2X^T \vec{y} = 0$$

$$\hat{\theta} = (X^T X)^{-1} X^T \vec{y}$$

Some facts

- $\hat{\theta}$ is indeed a minimizer (the second derivative is negative)
- Gauss Markov Theorem: $\hat{\theta}$ is BLUE (best linear unbiased estimator)
- The residuals are:

$$\vec{e} = (\vec{y} - \hat{\vec{y}}) = (I_{n \times x} - X(X^T X)^{-1} X^T) \vec{y}$$
$$[\hat{\vec{y}} = X \hat{\theta} = X(X^T X)^{-1} X^T Y]$$

ullet $\hat{ heta}$ is a random variable and thus has variance:

$$\begin{aligned} \mathit{Var}(\hat{\theta}) &= \mathit{Var}((X^TX)^{-1}X^TY) = (X^TX)^{-1}X^T\mathit{Var}(\vec{y})X(X^TX)^{-1} \\ &= \sigma^2(X^TX)^{-1} \end{aligned}$$

$$[Var(\vec{y}) = \sigma^2 I_{n \times n}]$$

Model interpretation

• Recall, once we have our estimate $\hat{\theta}$, we can predict new x's using:

$$\hat{y}_i = \hat{\theta_0} + \hat{\theta_1} x_{i1} + \dots + \hat{\theta}_p x_{ip}$$

• In matrix notation:

$$\hat{\vec{y}} = X \hat{\vec{\theta}}$$

- For a one unit increase in x_{ik} , we expect y_i to, **on average** increase by $\hat{\theta}_k$
- If we take the log of the independent variables, the dependent variable, or both, then the above interpretation changes to involve percent changes

Assumptions

Assumptions

- Regression is a good summary of data, assuming the data has some key properties
- We need to know what those assumptions are, how to test for them, and what to do when they fall apart

Assumptions: what are they?

- Linearity
- Normality of errors

$$\epsilon_i \sim N(0, \sigma^2)$$

• Homoscedasticity (constant variance)

$$Var(\epsilon_i) = \sigma^2 \neq \sigma^2(x)$$

• Independence of errors

$$\epsilon_i \underline{\parallel} \epsilon_j \qquad \forall i \neq j$$

Linearity

 Scatter plot of Y vs. standardized residuals should have no pattern

Normality of errors

- Plot a histogram of the estimated errors (called residuals)
- QQplot
- Many tests exist: Kolomogorov-Smirnov, Shapiro-Wilk, ...

Homoscedasticity

- Plot of Y vs. residuals should have equal variation across vertical slices
- Tests: Brusch-Pagan, White test, ...

Independence of errors

- Autocorrelation plots
 - Most of the residuals should fall within the 95% confidence band around 0
- Durban-Watson test

Assumptions: what do we do if they are not satisfied?

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...
- If the errors are not normal...
 - Often, this isn't a big problem
 - Transformations help here too
 - Maybe subsets of the data are more normal than the overall set
 - Outliers and/or high leverage points may contribute to this issue

Assumptions: what do we do if they are not satisfied?

- If the data exhibits heteroscedasticisity...
 - Log transformations are helpful
 - Search for and remove outliers/high-leverage points
 - Use a more advanced model (ARCH: auto-regressive conditional heteroscedasticity)
 - Hetereoscedasticity may arise from violation of one of the other assumptions
- If the errors are not independent...
 - You have a structural problem in your model
 - Very hard to fix...
 - One way that I am aware of: identify an appropriate ARMA process and fit a generalized least squares model

Example of the beauty of a log transform

Model Testing

Model Testing: Questions

Once we have estimated $\hat{\theta}$, we have some questions:

- Is θ_i significantly different from 0? (Is the variable X_i relevant?)
- How confident are we about what the true θ is?
- How do we know what independent variables to use?

Model Testing: Answers

Once we have estimated $\hat{\vec{\theta}}$, we have some questions:

- Is θ_i significantly different from 0? (Is the variable X_i relevant?)
 - Perform some hypothesis tests
 - t-tests, F-tests, etc...
 https://en.wikipedia.org/wiki/Statistical_
 hypothesis_testing
- How confident are we about what the true β is?
 - Construct a confidence interval (many different kinds)
 https://en.wikipedia.org/wiki/Confidence_interval
- How do we know what independent variables to use?
 - Let's talk about this one some more

Feature Selection (Model Validation)

- Before we do any feature selection, we need to make sure to split our dataset into a training set and a validation set
- Greedy forwards selection
- Greedy backwards selection
- Other search algorithms...
- Many different "goodness" metrics exist to compare models:
 - R² (want more), MSE (want less), AIC and BIC (want less), ...
 - MSE (mean squared error):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Next Steps

Generalizations of the linear model

- Classification problems: logistic regression, support vector machines
- Non-linearity: kernel smoothing, splines and generalized additive models; nearest neighbor methods
- Interactions: tree-based methods, bagging, random forests and boosting (also capture non-linearities)
- Regularized fitting: ridge regression and lasso

Other related methods of interest for the practical data s tist...

- Polynomial transformations
- Basis expansions
- Dummy coding of categorical inputs
- Time series models
- Hierarchical modeling
- Causal inference
- Spatial models

Questions?