Calculus III Lecture 3

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Cross product of vectors
 - Determinants
 - Cross product in coordinates

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

If we tighten a bolt

• If we tighten a bolt using a wrench,

 If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:
 - component \mathbf{F}_o orthogonal to the plane of rotation

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:
 - component \mathbf{F}_o orthogonal to the plane of rotation
 - ullet component ${f F}_
 ho$ in the plane of rotation towards/away from the center

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:
 - component \mathbf{F}_o orthogonal to the plane of rotation
 - ullet component ${f F}_{
 ho}$ in the plane of rotation towards/away from the center
 - component \mathbf{F}_{θ} tangent to the motion of the wrench.

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:
 - component \mathbf{F}_o orthogonal to the plane of rotation
 - ullet component ${f F}_{
 ho}$ in the plane of rotation towards/away from the center
 - component \mathbf{F}_{θ} tangent to the motion of the wrench.
- Only \mathbf{F}_{θ} contributes to the bolt motion.

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:
 - component \mathbf{F}_o orthogonal to the plane of rotation
 - ullet component ${f F}_{
 ho}$ in the plane of rotation towards/away from the center
 - component \mathbf{F}_{θ} tangent to the motion of the wrench.
- Only \mathbf{F}_{θ} contributes to the bolt motion.
- The force of bolt motion τ is proportional to length of wrench.

- If we tighten a bolt using a wrench, it moves in direction perpendicular to the motion of the wrench.
- Let arm of the wrench: given by vector r.
- Suppose we are applying a force F at arm of the wrench. The force has three components:
 - component F_o orthogonal to the plane of rotation
 - ullet component ${f F}_
 ho$ in the plane of rotation towards/away from the center
 - component \mathbf{F}_{θ} tangent to the motion of the wrench.
- Only \mathbf{F}_{θ} contributes to the bolt motion.
- The force of bolt motion τ is proportional to length of wrench.
- It turns out $\tau = \mathbf{r} \times (\mathbf{F}_{\rho} + \mathbf{F}_{\theta})$, where \times is the vector cross product.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

Definition (Cross product)

 $\mathbf{u} \times \mathbf{v}$ is the vector uniquely determined by the following.

- If u, v are non-zero and non-collinear.
 - $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .
 - The magnitude of $\mathbf{u} \times \mathbf{v}$ equals $|\mathbf{u}||\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\alpha$.
 - The direction of u × v is such that when viewed from the tip of u × v, v is counter-clockwise from u.
- If \mathbf{u} , \mathbf{v} are colinear or zero then $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

There are a couple of hand rules to help figure out the direction of the cross product.

Let \mathbf{u} , \mathbf{v} non-zero vectors, $\alpha = \angle(\mathbf{u}, \mathbf{v})$.

Let \mathbf{u} , \mathbf{v} non-zero vectors, $\alpha = \angle(\mathbf{u}, \mathbf{v})$.

$$\bullet \ |\mathbf{v} \times \mathbf{u}| = |\mathbf{u} \times \mathbf{v}|.$$

Let \mathbf{u} , \mathbf{v} non-zero vectors, $\alpha = \angle(\mathbf{u}, \mathbf{v})$.

• $|\mathbf{v} \times \mathbf{u}| = |\mathbf{u} \times \mathbf{v}|$. Indeed, that is because

$$|\operatorname{orth}_{\boldsymbol{u}} \mathbf{v}| = |\mathbf{v}| \sin \alpha \Longrightarrow |\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \alpha$$

Let \mathbf{u} , \mathbf{v} non-zero vectors, $\alpha = \angle(\mathbf{u}, \mathbf{v})$.

• $|\mathbf{v} \times \mathbf{u}| = |\mathbf{u} \times \mathbf{v}|$. Indeed, that is because

$$|\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{v}|\sin\alpha \Longrightarrow |\mathbf{u}\times\mathbf{v}| = |\mathbf{u}|\,|\mathbf{v}|\,\sin\alpha$$

Cross product is anti-symmetric:

$$\mathbf{V} \times \mathbf{U} = -\mathbf{U} \times \mathbf{V}$$
.

Let \mathbf{u} , \mathbf{v} non-zero vectors, $\alpha = \angle(\mathbf{u}, \mathbf{v})$.

• $|\mathbf{v} \times \mathbf{u}| = |\mathbf{u} \times \mathbf{v}|$. Indeed, that is because

$$|\mathbf{orth}_{\mathbf{u}}\mathbf{v}| = |\mathbf{v}|\sin\alpha \Longrightarrow |\mathbf{u}\times\mathbf{v}| = |\mathbf{u}|\,|\mathbf{v}|\,\sin\alpha$$

Cross product is anti-symmetric:

$$\mathbf{V} \times \mathbf{U} = -\mathbf{U} \times \mathbf{V}$$

Cross product is linear in each argument:

$$\mathbf{u} \times (a\mathbf{v} + b\mathbf{w}) = a\mathbf{u} \times \mathbf{v} + b\mathbf{u} \times \mathbf{w}$$

 $(a\mathbf{u} + b\mathbf{w}) \times \mathbf{v} = a\mathbf{u} \times \mathbf{v} + b\mathbf{w} \times \mathbf{v}$

orth_u is a linear operator

Theorem

$$orth_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = orth_{\mathbf{u}}\mathbf{v}_1 + orth_{\mathbf{u}}\mathbf{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

orth_u is a linear operator

Theorem

$$orth_{u}(v_{1}+v_{2})=orth_{u}v_{1}+orth_{u}v_{2}$$

Proof.

Geometric proof:

Algebraic proof:

$$\text{orth}_{\boldsymbol{u}}(\boldsymbol{v}_1+\boldsymbol{v}_2)=(\boldsymbol{v}_1+\boldsymbol{v}_2)-\text{proj}_{\boldsymbol{u}}(\boldsymbol{v}_1+\boldsymbol{v}_2)$$

Theorem

$$orth_u(v_1 + v_2) = orth_uv_1 + orth_uv_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \frac{\text{proj}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2)}{\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2))} \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\frac{\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2)}{\text{proj}_{\textbf{u}}(\textbf{v}_2)}) \end{aligned}$$

Theorem

$$orth_{\boldsymbol{u}}(\boldsymbol{v}_1+\boldsymbol{v}_2)=orth_{\boldsymbol{u}}\boldsymbol{v}_1+orth_{\boldsymbol{u}}\boldsymbol{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_u(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_u(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_u(\textbf{v}_1) + \text{proj}_u(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_u(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_u(\textbf{v}_2)) \end{aligned}$$

Theorem

$$orth_{\boldsymbol{u}}(\boldsymbol{v}_1+\boldsymbol{v}_2)=orth_{\boldsymbol{u}}\boldsymbol{v}_1+orth_{\boldsymbol{u}}\boldsymbol{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_u(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_u(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_u(\textbf{v}_1) + \text{proj}_u(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_u(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_u(\textbf{v}_2)) \end{aligned}$$

Theorem

$$orth_{\boldsymbol{u}}(\boldsymbol{v}_1+\boldsymbol{v}_2)=orth_{\boldsymbol{u}}\boldsymbol{v}_1+orth_{\boldsymbol{u}}\boldsymbol{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) &= (\textbf{v}_{1} + \textbf{v}_{2}) - \text{proj}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) \\ &= (\textbf{v}_{1} + \textbf{v}_{2}) - (\text{proj}_{u}(\textbf{v}_{1}) + \text{proj}_{u}(\textbf{v}_{2})) \\ &= (\textbf{v}_{1} - \text{proj}_{u}(\textbf{v}_{1})) + (\textbf{v}_{2} - \text{proj}_{u}(\textbf{v}_{2})) \\ &= \text{orth}_{u}\textbf{v}_{1} + \text{orth}_{u}\textbf{v}_{2} \end{aligned}$$

Theorem

$$orth_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = orth_{\mathbf{u}}\mathbf{v}_1 + orth_{\mathbf{u}}\mathbf{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) &= (\textbf{v}_{1} + \textbf{v}_{2}) - \text{proj}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) \\ &= (\textbf{v}_{1} + \textbf{v}_{2}) - (\text{proj}_{u}(\textbf{v}_{1}) + \text{proj}_{u}(\textbf{v}_{2})) \\ &= (\textbf{v}_{1} - \text{proj}_{u}(\textbf{v}_{1})) + (\textbf{v}_{2} - \text{proj}_{u}(\textbf{v}_{2})) \\ &= \text{orth}_{u}\textbf{v}_{1} + \frac{\text{orth}_{u}\textbf{v}_{2}}{\end{aligned}$$

Theorem

 $orth_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = orth_{\mathbf{u}}\mathbf{v}_1 + orth_{\mathbf{u}}\mathbf{v}_2$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) &= (\textbf{v}_{1} + \textbf{v}_{2}) - \text{proj}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) \\ &= (\textbf{v}_{1} + \textbf{v}_{2}) - (\text{proj}_{u}(\textbf{v}_{1}) + \text{proj}_{u}(\textbf{v}_{2})) \\ &= (\textbf{v}_{1} - \text{proj}_{u}(\textbf{v}_{1})) + (\textbf{v}_{2} - \text{proj}_{u}(\textbf{v}_{2})) \\ &= \text{orth}_{u}\textbf{v}_{1} + \text{orth}_{u}\textbf{v}_{2} \end{aligned}$$

Theorem

$$orth_u(v_1 + v_2) = orth_uv_1 + orth_uv_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) &= (\textbf{v}_{1} + \textbf{v}_{2}) - \text{proj}_{u}(\textbf{v}_{1} + \textbf{v}_{2}) \\ &= (\textbf{v}_{1} + \textbf{v}_{2}) - (\text{proj}_{u}(\textbf{v}_{1}) + \text{proj}_{u}(\textbf{v}_{2})) \\ &= (\textbf{v}_{1} - \text{proj}_{u}(\textbf{v}_{1})) + (\textbf{v}_{2} - \text{proj}_{u}(\textbf{v}_{2})) \\ &= \text{orth}_{u}\textbf{v}_{1} + \text{orth}_{u}\textbf{v}_{2} \end{aligned}$$

Let \mathcal{P} : plane $\perp \mathbf{u}$.

Theorem

$$orth_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = orth_{\mathbf{u}}\mathbf{v}_1 + orth_{\mathbf{u}}\mathbf{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_{\textbf{u}}(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= \text{orth}_{\textbf{u}}\textbf{v}_1 + \text{orth}_{\textbf{u}}\textbf{v}_2 \end{aligned}$$

Let \mathcal{P} : plane $\perp \mathbf{u}$.

Theorem

$$orth_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = orth_{\mathbf{u}}\mathbf{v}_1 + orth_{\mathbf{u}}\mathbf{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_{\textbf{u}}(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= \text{orth}_{\textbf{u}}\textbf{v}_1 + \text{orth}_{\textbf{u}}\textbf{v}_2 \end{aligned}$$

Let \mathcal{P} : plane $\perp \mathbf{u}$.

Theorem

$$orth_u(v_1 + v_2) = orth_uv_1 + orth_uv_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_{\textbf{u}}(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= \text{orth}_{\textbf{u}}\textbf{v}_1 + \text{orth}_{\textbf{u}}\textbf{v}_2 \end{aligned}$$

Let \mathcal{P} : plane $\perp \mathbf{u}$.

Theorem

$$\operatorname{orth}_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = \operatorname{orth}_{\mathbf{u}}\mathbf{v}_1 + \operatorname{orth}_{\mathbf{u}}\mathbf{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_{\textbf{u}}(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= \text{orth}_{\textbf{u}}\textbf{v}_1 + \text{orth}_{\textbf{u}}\textbf{v}_2 \end{aligned}$$

Let \mathcal{P} : plane $\perp \mathbf{u}$.

Theorem

$$orth_{\mathbf{u}}(\mathbf{v}_1 + \mathbf{v}_2) = orth_{\mathbf{u}}\mathbf{v}_1 + orth_{\mathbf{u}}\mathbf{v}_2$$

Proof.

Geometric proof:

Algebraic proof:

$$\begin{aligned} \text{orth}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) &= (\textbf{v}_1 + \textbf{v}_2) - \text{proj}_{\textbf{u}}(\textbf{v}_1 + \textbf{v}_2) \\ &= (\textbf{v}_1 + \textbf{v}_2) - (\text{proj}_{\textbf{u}}(\textbf{v}_1) + \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= (\textbf{v}_1 - \text{proj}_{\textbf{u}}(\textbf{v}_1)) + (\textbf{v}_2 - \text{proj}_{\textbf{u}}(\textbf{v}_2)) \\ &= \text{orth}_{\textbf{u}}\textbf{v}_1 + \text{orth}_{\textbf{u}}\textbf{v}_2 \end{aligned}$$

Let \mathcal{P} : plane $\perp \mathbf{u}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{aligned} u \times v_1 &= u \times orth_u v_1 \\ u \times v_2 &= u \times orth_u v_2 \\ u \times (v_1 + v_2) &= u \times (orth_u (v_1 + v_2)) \end{aligned}$$

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{aligned} u \times \textbf{v}_1 &= u \times \text{orth}_u \textbf{v}_1 \\ u \times \textbf{v}_2 &= u \times \text{orth}_u \textbf{v}_2 \\ u \times (\textbf{v}_1 + \textbf{v}_2) &= u \times (\text{orth}_u (\textbf{v}_1 + \textbf{v}_2)) \\ &= u \times (\text{orth}_u (\textbf{v}_1) + \text{orth}_u (\textbf{v}_2)) \end{aligned}$$

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{aligned} \textbf{u} \times \textbf{v}_1 &= \textbf{u} \times \text{orth}_{\textbf{u}} \textbf{v}_1 \\ \textbf{u} \times \textbf{v}_2 &= \textbf{u} \times \text{orth}_{\textbf{u}} \textbf{v}_2 \\ \textbf{u} \times (\textbf{v}_1 + \textbf{v}_2) &= \textbf{u} \times (\text{orth}_{\textbf{u}} \, (\textbf{v}_1 + \textbf{v}_2)) \\ &= \textbf{u} \times (\text{orth}_{\textbf{u}} \, (\textbf{v}_1) + \text{orth}_{\textbf{u}} \, (\textbf{v}_2)) \end{aligned}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{array}{l} \textbf{u} \times \textbf{v}_1 = \textbf{u} \times \text{orth}_{\textbf{u}} \textbf{v}_1 \\ \textbf{u} \times \textbf{v}_2 = \textbf{u} \times \text{orth}_{\textbf{u}} \textbf{v}_2 \\ \textbf{u} \times (\textbf{v}_1 + \textbf{v}_2) = \textbf{u} \times (\text{orth}_{\textbf{u}} (\textbf{v}_1 + \textbf{v}_2)) \\ = \textbf{u} \times (\text{orth}_{\textbf{u}} (\textbf{v}_1) + \text{orth}_{\textbf{u}} (\textbf{v}_2)) \end{array}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{array}{l} \textbf{u}\times \textbf{v}_1 = \textbf{u}\times \text{orth}_{\textbf{u}}\textbf{v}_1\\ \textbf{u}\times \textbf{v}_2 = \textbf{u}\times \text{orth}_{\textbf{u}}\textbf{v}_2\\ \textbf{u}\times (\textbf{v}_1+\textbf{v}_2) = \textbf{u}\times (\text{orth}_{\textbf{u}}\,(\textbf{v}_1+\textbf{v}_2))\\ = \textbf{u}\times (\text{orth}_{\textbf{u}}\,(\textbf{v}_1)+\text{orth}_{\textbf{u}}\,(\textbf{v}_2))\\ \Rightarrow \text{suffices to prove theorem when }\textbf{v}_1,\textbf{v}_2\perp \textbf{u}.\\ \text{Since } (\textbf{a}\textbf{u})\times \textbf{v} = \textbf{a}(\textbf{u}\times \textbf{v}) \Rightarrow \text{suffices to prove theorem when } |\textbf{u}| = 1. \end{array}$$

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{array}{l} u\times \textbf{v}_1 = u\times \text{orth}_u\textbf{v}_1\\ u\times \textbf{v}_2 = u\times \text{orth}_u\textbf{v}_2\\ u\times (\textbf{v}_1+\textbf{v}_2) = u\times (\text{orth}_u (\textbf{v}_1+\textbf{v}_2))\\ = u\times (\text{orth}_u (\textbf{v}_1)+\text{orth}_u (\textbf{v}_2)) \end{array}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$. Since $(a\mathbf{u}) \times \mathbf{v} = a(\mathbf{u} \times \mathbf{v}) \Rightarrow$ suffices to prove theorem when $|\mathbf{u}| = 1$.

When $|\mathbf{u}| = 1$, applying $\mathbf{u} \times$ rotates all vectors in the plane \mathcal{P} at angle $\frac{\pi}{2}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{aligned} u \times v_1 &= u \times \text{orth}_u v_1 \\ u \times v_2 &= u \times \text{orth}_u v_2 \\ u \times (v_1 + v_2) &= u \times (\text{orth}_u (v_1 + v_2)) \\ &= u \times (\text{orth}_u (v_1) + \text{orth}_u (v_2)) \end{aligned}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$. Since $(a\mathbf{u}) \times \mathbf{v} = a(\mathbf{u} \times \mathbf{v}) \Rightarrow$ suffices to prove theorem when $|\mathbf{u}| = 1$.

When $|\mathbf{u}| = 1$, applying $\mathbf{u} \times$ rotates all vectors in the plane \mathcal{P} at angle $\frac{\pi}{2}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{array}{l} u\times v_1=u\times orth_uv_1\\ u\times v_2=u\times orth_uv_2\\ u\times (v_1+v_2)=u\times (orth_u\,(v_1+v_2))\\ =u\times (orth_u\,(v_1)+orth_u\,(v_2)) \end{array}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$. Since $(a\mathbf{u}) \times \mathbf{v} = a(\mathbf{u} \times \mathbf{v}) \Rightarrow$ suffices to prove theorem when $|\mathbf{u}| = 1$.

When $|\mathbf{u}| = 1$, applying $\mathbf{u} \times$ rotates all vectors in the plane \mathcal{P} at angle $\frac{\pi}{2}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{array}{l} u\times v_1=u\times orth_uv_1\\ u\times v_2=u\times orth_uv_2\\ u\times (v_1+v_2)=u\times (orth_u\,(v_1+v_2))\\ =u\times (orth_u\,(v_1)+orth_u\,(v_2)) \end{array}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$. Since $(a\mathbf{u}) \times \mathbf{v} = a(\mathbf{u} \times \mathbf{v}) \Rightarrow$ suffices to prove theorem when $|\mathbf{u}| = 1$.

When $|\mathbf{u}| = 1$, applying $\mathbf{u} \times$ rotates all vectors in the plane \mathcal{P} at angle $\frac{\pi}{2}$.

Theorem

$$\mathbf{u} \times (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u} \times \mathbf{v}_1 + \mathbf{u} \times \mathbf{v}_2.$$

Geometric justification.

$$\begin{aligned} u \times \textbf{v}_1 &= u \times \text{orth}_u \textbf{v}_1 \\ u \times \textbf{v}_2 &= u \times \text{orth}_u \textbf{v}_2 \\ u \times (\textbf{v}_1 + \textbf{v}_2) &= u \times (\text{orth}_u \, (\textbf{v}_1 + \textbf{v}_2)) \\ &= u \times (\text{orth}_u \, (\textbf{v}_1) + \text{orth}_u \, (\textbf{v}_2)) \end{aligned}$$

 \Rightarrow suffices to prove theorem when $\mathbf{v}_1, \mathbf{v}_2 \perp \mathbf{u}$. Since $(a\mathbf{u}) \times \mathbf{v} = a(\mathbf{u} \times \mathbf{v}) \Rightarrow$ suffices to prove theorem when $|\mathbf{u}| = 1$.

When $|\mathbf{u}|=1$, applying $\mathbf{u}\times$ rotates all vectors in the plane $\mathcal P$ at angle $\frac{\pi}{2}$. The statement of the theorem now follows from the fact that rotation preserves sums of vectors.

• Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.

- Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.
- Since σ one to one, $(\sigma(1), \sigma(2), \dots, \sigma(n))$ have no repetition.

- Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.
- Since σ one to one, $(\sigma(1), \sigma(2), \dots, \sigma(n))$ have no repetition.

Definition

A one-to-one function from the set $\{1, 2, ..., n\}$ to itself is called a permutation ("shuffling").

- Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.
- Since σ one to one, $(\sigma(1), \sigma(2), \dots, \sigma(n))$ have no repetition.

Definition

A one-to-one function from the set $\{1, 2, ..., n\}$ to itself is called a permutation ("shuffling").

• There are *n*! different permutations:

- Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.
- Since σ one to one, $(\sigma(1), \sigma(2), \dots, \sigma(n))$ have no repetition.

Definition

A one-to-one function from the set $\{1, 2, ..., n\}$ to itself is called a permutation ("shuffling").

- There are *n*! different permutations:
 - there are n ways to select $\sigma(1)$,

- Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.
- Since σ one to one, $(\sigma(1), \sigma(2), \dots, \sigma(n))$ have no repetition.

Definition

A one-to-one function from the set $\{1, 2, ..., n\}$ to itself is called a permutation ("shuffling").

- There are *n*! different permutations:
 - there are n ways to select $\sigma(1)$,
 - n-1 ways to select $\sigma(2)$ (one number is already taken),

- Let $\sigma: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ be one to one function.
- Since σ one to one, $(\sigma(1), \sigma(2), \dots, \sigma(n))$ have no repetition.

Definition

A one-to-one function from the set $\{1, 2, ..., n\}$ to itself is called a permutation ("shuffling").

- There are *n*! different permutations:
 - there are n ways to select $\sigma(1)$,
 - n-1 ways to select $\sigma(2)$ (one number is already taken),
 - and so on, total: $n \cdot (n-1) \cdots 1 = n!$ ways to make a permutation.

 Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are (2,3,4,1) and (1,3,4,2) are

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are not transpositions of one another.

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are not transpositions of one another.
- Write the numbers $(\sigma(1), \sigma(2), \dots, \sigma(n))$ in a sequence.

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are not transpositions of one another.
- Write the numbers $(\sigma(1), \sigma(2), \dots, \sigma(n))$ in a sequence.
- Using transpositions, get from $(\sigma(1), \sigma(2), \dots, \sigma(n))$ to the properly ordered sequence $1, 2, \dots, n$.

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another. (2,3,4,1) and (1,3,4,2) are **not** transpositions of one another.
- Write the numbers $(\sigma(1), \sigma(2), \dots, \sigma(n))$ in a sequence.
- Using transpositions, get from $(\sigma(1), \sigma(2), \dots, \sigma(n))$ to the properly ordered sequence $1, 2, \dots, n$.
- Number of transpositions used varies depending how we do it, but parity (even-ness) of # of transpositions is always the same.

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are not transpositions of one another.
- Write the numbers $(\sigma(1), \sigma(2), \dots, \sigma(n))$ in a sequence.
- Using transpositions, get from $(\sigma(1), \sigma(2), \dots, \sigma(n))$ to the properly ordered sequence $1, 2, \dots, n$.
- Number of transpositions used varies depending how we do it, but parity (even-ness) of # of transpositions is always the same.

Definition

If we can get from $(\sigma(1), \sigma(2), \dots, \sigma(n))$ to $(1, 2, \dots, n)$ with even # of transpositions, define $sign(\sigma)$ to be 1, else define $sign(\sigma)$ to be -1.

- Given two sequences of numbers, define them to be transpositions of one another if one is obtained from the other with a single swap of neighboring numbers.
- (2,3,4,1) and (2,4,3,1) are transpositions of one another.
 (2,3,4,1) and (1,3,4,2) are not transpositions of one another.
- Write the numbers $(\sigma(1), \sigma(2), \dots, \sigma(n))$ in a sequence.
- Using transpositions, get from $(\sigma(1), \sigma(2), \dots, \sigma(n))$ to the properly ordered sequence $1, 2, \dots, n$.
- Number of transpositions used varies depending how we do it, but parity (even-ness) of # of transpositions is always the same.
- If $sign(\sigma) = 1$, σ is called even, if $sign(\sigma) = -1$, σ is called odd.

Definition

If we can get from $(\sigma(1), \sigma(2), \dots, \sigma(n))$ to $(1, 2, \dots, n)$ with even # of transpositions, define $sign(\sigma)$ to be 1, else define $sign(\sigma)$ to be -1.

• To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board.

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n)).$
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2 \qquad (1,\sigma(1)) = (1,2)$$

	1	2	3	4
1	?	?	?	?
2				
3				
4				

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

• To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.

- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

Corresponding peaceful rook placement:

2020

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

- To each permutation σ , assign n pairs of numbers $(1, \sigma(1))$, $(2, \sigma(2)), \dots (n, \sigma(n))$.
- Consider a $n \times n$ chess board. Interpret pair $(k, \sigma(k))$ as (row, column)-coordinates in the board.
- For each pair $(k, \sigma(k))$, place a rook on the board.

$$\sigma(1) = 2$$
 $(1, \sigma(1)) = (1, 2)$

Corresponding peaceful rook placement:

• $\sigma(k)$ are different \Rightarrow rook placements are peaceful: rooks never hit one another. i.e., no two points lie on same column or row.

• Let A be $n \times n$ (square) table of numbers.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ii}
 - no comma between indices i, j in aii

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{cccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}.$$

First row

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}.$$

Second row

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

*n*th row

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}.$$

First column

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

Second column

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}.$$

nth column

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ij}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.

- Let A be $n \times n$ (square) table of numbers.
- Technical term: A is a (square) matrix.
- Matrices are often denoted by surrounding with ()-parenthesis:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array}\right).$$

- Most common convention for matrix notation:
 - $(i,j)^{th}$ entry of a matrix = denoted by letter with indices i,j, such as a_{ji}
 - no comma between indices i, j in a_{ii}
 - first index stands for row, second for column.
- Non-square matrices: used & important but we discuss them elsewhere.

$$\det A = \left| \begin{array}{ccccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array} \right|$$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

• The formula for the determinant is:

$$\det A = \sum_{ ext{all permutations } \sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} sign(\sigma) \quad .$$

$$\det A = \left| \begin{array}{cccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array} \right|$$

• The formula for the determinant is:

$$\det A = \sum_{ ext{all permutations } \sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} sign(\sigma) \quad .$$

• For every permutation σ we have one summand.

$$\det A = \left| \begin{array}{ccccccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array} \right|$$

• The formula for the determinant is:

$$\det A = \sum_{\text{all permutations } \sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} sign(\sigma) .$$

- For every permutation σ we have one summand.
- Every pair $(k, \sigma(k))$ can be identified with a peaceful of a rook placement (as described in previous slides/lectures).

$$\det A = \left| \begin{array}{ccccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array} \right|$$

• The formula for the determinant is:

$$\det A = \sum_{ ext{all permutations } \sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} sign(\sigma) \quad .$$

- For every permutation σ we have one summand.
- Every pair $(k, \sigma(k))$ can be identified with a peaceful of a rook placement (as described in previous slides/lectures).
- For each rook placement we have a summand obtained by multiplying the numbers on which the rooks are standing.

$$\det A = \left| \begin{array}{cccccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{array} \right|$$

• The formula for the determinant is:

$$\det A = \sum_{ ext{all permutations } \sigma} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} sign(\sigma) \quad .$$

- For every permutation σ we have one summand.
- Every pair $(k, \sigma(k))$ can be identified with a peaceful of a rook placement (as described in previous slides/lectures).
- For each rook placement we have a summand obtained by multiplying the numbers on which the rooks are standing.
- The sign of each summand is determined by the sign of the permutation.

$$\det \left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| =$$

• We specialize the $n \times n$ determinant formula to the case n = 2.

$$\det \left| \begin{array}{cc} \bullet & a_{12} \\ a_{21} & \bullet \end{array} \right| =$$

- We specialize the $n \times n$ determinant formula to the case n = 2.
- There are two peaceful rook placements for a 2×2 chessboard.

$$\det \left| \begin{array}{cc} a_{11} & \bullet \\ \bullet & a_{22} \end{array} \right| =$$

- We specialize the $n \times n$ determinant formula to the case n = 2.
- There are two peaceful rook placements for a 2×2 chessboard.

$$\det \begin{vmatrix} \bullet & a_{12} \\ a_{21} & \bullet \end{vmatrix} = a_{11}a_{22}$$

- We specialize the $n \times n$ determinant formula to the case n = 2.
- There are two peaceful rook placements for a 2 x 2 chessboard.
- For each peaceful rook placement we got one summand.

2 × 2 determinants

$$\det \begin{vmatrix} a_{11} & \bullet \\ \bullet & a_{22} \end{vmatrix} = a_{11}a_{22} \quad a_{12}a_{21}$$

- We specialize the $n \times n$ determinant formula to the case n = 2.
- There are two peaceful rook placements for a 2×2 chessboard.
- For each peaceful rook placement we got one summand.

2 × 2 determinants

$$\det \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- We specialize the $n \times n$ determinant formula to the case n = 2.
- There are two peaceful rook placements for a 2 x 2 chessboard.
- For each peaceful rook placement we got one summand.
- The permutation $(\sigma(1), \sigma(2)) = (2, 1)$ is odd, so one of the summands comes with negative sign.

$$\det \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

• We specialize the $n \times n$ determinant formula to the case n = 3.

$$\det \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3×3 chessboard.

$$\det \begin{vmatrix} \bullet & a_{12} & a_{13} \\ a_{21} & \bullet & a_{23} \\ a_{31} & a_{32} & \bullet \end{vmatrix} = \frac{a_{11}a_{22}a_{33}}{a_{13}a_{22}a_{33}}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3 × 3 chessboard.
- For each peaceful rook placement we got one summand.

$$\det \begin{vmatrix} a_{11} & \bullet & a_{13} \\ a_{21} & a_{22} & \bullet \\ \bullet & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3 x 3 chessboard.
- For each peaceful rook placement we got one summand.

$$\det \begin{vmatrix} a_{11} & a_{12} & \bullet \\ \bullet & a_{22} & a_{23} \\ a_{31} & \bullet & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} \\ + a_{13}a_{21}a_{32} \end{vmatrix}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3 × 3 chessboard.
- For each peaceful rook placement we got one summand.

$$\det \begin{vmatrix} a_{11} & a_{12} & \bullet \\ a_{21} & \bullet & a_{23} \\ \bullet & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} \\ - a_{13}a_{22}a_{31} \end{vmatrix}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3×3 chessboard
- For each peaceful rook placement we got one summand.

$$\det \begin{vmatrix} \bullet & a_{12} & a_{13} \\ a_{21} & a_{22} & \bullet \\ a_{31} & \bullet & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} \\ - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} \end{vmatrix}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3×3 chessboard.
- For each peaceful rook placement we got one summand.

$$\det \begin{vmatrix} a_{11} & \bullet & a_{13} \\ \bullet & a_{22} & a_{23} \\ a_{31} & a_{32} & \bullet \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} \\ - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} \\ - a_{12}a_{21}a_{33} \end{vmatrix}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3×3 chessboard.
- For each peaceful rook placement we got one summand.

3 × 3 determinants

$$\det \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} \\ - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} \\ - a_{12}a_{21}a_{33} \end{vmatrix}$$

- We specialize the $n \times n$ determinant formula to the case n = 3.
- There are 6 = 3! peaceful rook placements for a 3 × 3 chessboard
- For each peaceful rook placement we got one summand.
- The rook placements along the down-right "broken" diagonals correspond to even permutations, and the rook placements along the right-up "broken" diagonals correspond to negative permutations.

Cross Product in Coordinates

- Let i, j, k: unit vectors along coordinate axes.
- We have that

$$\begin{array}{lll} i\times i=0, & j\times j=0, & k\times k=0 \\ i\times j=k, & j\times k=i, & k\times i=j \\ j\times i=-k, & k\times j=-i, & i\times k=-j \end{array}$$

• Let
$$\begin{array}{lll} \mathbf{u} & = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k} & = (u_1, u_2, u_3) \\ \mathbf{v} & = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} & = (v_1, v_2, v_3) \end{array}$$
.

•

$$\mathbf{u} \times \mathbf{v} = (u_{1}\mathbf{i} + u_{2}\mathbf{j} + u_{3}\mathbf{k}) \times (v_{1}\mathbf{i} + v_{2}\mathbf{j} + v_{3}\mathbf{k})$$

$$= (u_{2}v_{3} - u_{3}v_{2})\mathbf{i} + (u_{3}v_{1} - u_{1}v_{3})\mathbf{j} + (u_{1}v_{2} - u_{2}v_{1})\mathbf{k}$$

$$\mathbf{u} \times \mathbf{v} = (u_{1}, u_{2}, u_{3}) \times (v_{1}, v_{2}, v_{3}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{vmatrix}$$

$$\mathbf{u} \times \mathbf{v} = (u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Find
$$\mathbf{u} \times \mathbf{v}$$
, where $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (6, 5, 4)$.

$$\mathbf{u} \times \mathbf{v} = (u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (6, 5, 4)$.

$$\mathbf{u} \times \mathbf{v} = (1,2,3) \times (6,5,4) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 6 & 5 & 4 \end{vmatrix}$$

$$\mathbf{u} \times \mathbf{v} = (u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (6, 5, 4)$.

$$\mathbf{u} \times \mathbf{v} = (1,2,3) \times (6,5,4) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 6 & 5 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 3 \\ 5 & 4 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 3 \\ 6 & 4 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 6 & 5 \end{vmatrix} \mathbf{k}$$

$$\mathbf{u} \times \mathbf{v} = (u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (6, 5, 4)$.

$$\mathbf{u} \times \mathbf{v} = (1,2,3) \times (6,5,4) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 6 & 5 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 3 \\ 5 & 4 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 3 \\ 6 & 4 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 6 & 5 \end{vmatrix} \mathbf{k}$$
$$= (2 \cdot 4 - 3 \cdot 5)\mathbf{i} - (1 \cdot 4 - 3 \cdot 6)\mathbf{j} + (1 \cdot 5 - 2 \cdot 6)\mathbf{k}$$

$$\mathbf{u} \times \mathbf{v} = (u_1, u_2, u_3) \times (v_1, v_2, v_3) = \begin{vmatrix} \mathbf{I} & \mathbf{J} & \mathbf{K} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (6, 5, 4)$.

$$\mathbf{u} \times \mathbf{v} = (1,2,3) \times (6,5,4) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 6 & 5 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & 3 \\ 5 & 4 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 3 \\ 6 & 4 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 6 & 5 \end{vmatrix} \mathbf{k}$$
$$= (2 \cdot 4 - 3 \cdot 5)\mathbf{i} - (1 \cdot 4 - 3 \cdot 6)\mathbf{j} + (1 \cdot 5 - 2 \cdot 6)\mathbf{k}$$
$$= -7\mathbf{i} + 14\mathbf{j} - 7\mathbf{k} = (-7, 14, -7).$$

Use \times to find vector perpendicular to two given

Recall $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} and \mathbf{v} .

Example

Find a vector **w** perpendicular to $\mathbf{u} = (1, 1, 0) = \mathbf{i} + \mathbf{j}$ and $\mathbf{v} = \mathbf{j} + \mathbf{k} = (0, 1, 1)$.

$$w = (i+j) \times (j+k) = i \times j + i \times k + j \times j + j \times k = = k-j+0+i = i-j+k = (1,-1,1).$$

Use × to find area of triangle in space

• A, B, C points in space, $\mathbf{u} = \mathbf{AB}$, $\mathbf{v} = \mathbf{AC}$.

Use \times to find area of triangle in space

- A, B, C points in space, $\mathbf{u} = \mathbf{AB}$, $\mathbf{v} = \mathbf{AC}$.
- Then $|\mathbf{w}| = |\mathbf{orth_u v}| = \text{ distance from } C \text{ to } AB$.

Use \times to find area of triangle in space

- A, B, C points in space, $\mathbf{u} = \mathbf{AB}$, $\mathbf{v} = \mathbf{AC}$.
- Then $|\mathbf{w}| = |\mathbf{orth_u v}| = \text{distance from } C \text{ to } AB$.
- $|\mathbf{u} \times \mathbf{v}| = |\mathbf{orth_uv}| |\mathbf{u}| = 2 \operatorname{area}(ABC) = \operatorname{area}(ABDC)$

Use \times to find area of triangle in space

- A, B, C points in space, $\mathbf{u} = \mathbf{AB}$, $\mathbf{v} = \mathbf{AC}$.
- Then $|\mathbf{w}| = |\mathbf{orth_u v}| = \text{ distance from } C \text{ to } AB$.
- $|\mathbf{u} \times \mathbf{v}| = |\mathbf{orth_u v}| |\mathbf{u}| = 2 \operatorname{area}(ABC) = \operatorname{area}(ABDC)$
- |u × v| = Area of parallelogram on sides u and v.

Find the area of the triangle A(1,2,3), B(2,3,1), C(3,1,2).

Area(
$$ABC$$
) = $\frac{1}{2}|AB \times AC| = \frac{1}{2}|(1,1,-2) \times (2,-1,-1)|$
 = $\frac{1}{2}|(-3,-3,-3)|$
 = $\frac{3\sqrt{3}}{2}$.

• A, B, C, D points in space;

D A B

Todor Milev 2020

- A, B, C, D points in space;
- \bullet u = AB, v = AC, w = AD;

- A, B, C, D points in space;
- \bullet u = AB, v = AC, w = AD;
- $R = R(\mathbf{u}, \mathbf{v}, \mathbf{w})$: box on sides $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

- A, B, C, D points in space;
- \bullet u = AB, v = AC, w = AD;
- $R = R(\mathbf{u}, \mathbf{v}, \mathbf{w})$: box on sides $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- $Vol(R) = |\mathbf{u} \times \mathbf{v}||\mathbf{r}| = |\mathbf{u} \times \mathbf{v}||\mathbf{proj}_{\mathbf{u} \times \mathbf{v}}\mathbf{w}| = |\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$.

- A, B, C, D points in space;
- \bullet $\mathbf{u} = \mathbf{AB}, \mathbf{v} = \mathbf{AC}, \mathbf{w} = \mathbf{AD};$
- $R = R(\mathbf{u}, \mathbf{v}, \mathbf{w})$: box on sides $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- $Vol(R) = |\mathbf{u} \times \mathbf{v}||\mathbf{r}| = |\mathbf{u} \times \mathbf{v}||\mathbf{proj}_{\mathbf{u} \times \mathbf{v}}\mathbf{w}| = |\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$.

Definition

The quantity $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$ is called the scalar triple product of $\mathbf{w}, \mathbf{u}, \mathbf{v}$.

- A, B, C, D points in space;
- \bullet $\mathbf{u} = \mathbf{AB}, \mathbf{v} = \mathbf{AC}, \mathbf{w} = \mathbf{AD};$
- $R = R(\mathbf{u}, \mathbf{v}, \mathbf{w})$: box on sides $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
- $Vol(R) = |\mathbf{u} \times \mathbf{v}||\mathbf{r}| = |\mathbf{u} \times \mathbf{v}||\mathbf{proj}_{\mathbf{u} \times \mathbf{v}}\mathbf{w}| = |\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})|$.

Definition

The quantity $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$ is called the scalar triple product of $\mathbf{w}, \mathbf{u}, \mathbf{v}$.

• If $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$, then

$$\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

$$\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = ? +?+?-? -? -?$$

Todor Miley

Lecture 3

2020

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

$$\begin{vmatrix}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{vmatrix} = -1 + 1 + ? - ? - ? - ?$$

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} = -1 + 1 + 1 - ? - ? - ?$$

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} = -1 + 1 + 1 - (-1) - ? - ?$$

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} = -1 + 1 + 1 - (-1) - (-1) - ?$$

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

$$\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = -1 + 1 + 1 - (-1) - (-1) - (-1)$$

$$= -1 + 1 + 1 - (-1) - (-1) - (-1)$$

Find the volume of the parallelepiped (slanted box) with vertex at the origin spanned by the vectors (-1, 1, 1), (1, -1, 1), (1, 1, -1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

Find the volume of the tetrahedron with vertices (1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, 1, 1).

 $Vol(tetrahedron) = \frac{1}{6}Vol(Box generated by any 3 edges)$

Find the volume of the tetrahedron with vertices (1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1). $u_1=?$ $u_2=?$

Vol(tetrahedron) = $\frac{1}{6}$ Vol(Box generated by any 3 edges)

 $u_3=?$

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1).

$$\mathbf{u}_1 = (1, -1, -1) - (1, 1, 1) = (0, -2, -2)$$

$$\mathbf{u}_2 = (-1, 1, -1) - (1, 1, 1) = (-2, 0, -2)$$

$$\mathbf{u}_3 = (-1, -1, 1) - (1, 1, 1) = (-2, -2, 0)$$

Vol(tetrahedron) =
$$\frac{1}{6}$$
Vol(Box generated by any 3 edges)

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1).

$$\mathbf{u}_1 = (1, -1, -1) - (1, 1, 1) = (0, -2, -2)$$

$$\mathbf{u}_2 = (-1, 1, -1) - (1, 1, 1) = (-2, 0, -2)$$

$$\mathbf{u}_3 = (-1, -1, 1) - (1, 1, 1) = (-2, -2, 0)$$

Vol(tetrahedron) =
$$\frac{1}{6}$$
Vol(Box generated by any 3 edges)
= $\frac{1}{6}$ det $\begin{pmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix}$

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1).

$$\mathbf{u}_1 = (1, -1, -1) - (1, 1, 1) = (0, -2, -2)$$

$$\mathbf{u}_2 = (-1, 1, -1) - (1, 1, 1) = (-2, 0, -2)$$

$$\mathbf{u}_3 = (-1, -1, 1) - (1, 1, 1) = (-2, -2, 0)$$

Vol(tetrahedron) =
$$\frac{1}{6}$$
Vol(Box generated by any 3 edges)
= $\frac{1}{6}$ det $\begin{pmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix}$ = $\frac{1}{6}$ |?

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1).

$$\mathbf{u}_1 = (1, -1, -1) - (1, 1, 1) = (0, -2, -2)$$

$$\mathbf{u}_2 = (-1, 1, -1) - (1, 1, 1) = (-2, 0, -2)$$

$$\mathbf{u}_3 = (-1, -1, 1) - (1, 1, 1) = (-2, -2, 0)$$

Vol(tetrahedron) =
$$\frac{1}{6}$$
Vol(Box generated by any 3 edges)
= $\frac{1}{6}$ det $\begin{pmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix}$ = $\frac{1}{6}$ | -16|

Find the volume of the tetrahedron with vertices (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1).

$$\mathbf{u}_1 = (1, -1, -1) - (1, 1, 1) = (0, -2, -2)$$

$$\mathbf{u}_2 = (-1, 1, -1) - (1, 1, 1) = (-2, 0, -2)$$

$$\mathbf{u}_3 = (-1, -1, 1) - (1, 1, 1) = (-2, -2, 0)$$

Vol(tetrahedron) =
$$\frac{1}{6}$$
Vol(Box generated by any 3 edges)
 = $\frac{1}{6} \left| \det \begin{pmatrix} 0 & -2 & -2 \\ -2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix} \right| = \frac{1}{6} |-16| = \frac{8}{3}.$

Do the points (1,2,3), (2,3,5), (3,5,7), (5,7,11) lie in one plane?

Example

Do the points (1,-1,-1), (-1,1,-1), (-1,-1,1), (1,2,3) lie in one plane?

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;
 - Vol(R(u, v, w)) ≠ 0;

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;
 - Vol(R(u, v, w)) ≠ 0;
 - $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \neq 0$.

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;
 - $Vol(R(\mathbf{u}, \mathbf{v}, \mathbf{w})) \neq 0$;
 - $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \neq 0$.
- If any of the above is valid: $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is a frame.

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;
 - $Vol(R(\mathbf{u}, \mathbf{v}, \mathbf{w})) \neq 0$;
 - $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \neq 0$.
- If any of the above is valid: $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is a frame.
- Rectangular coordinate system → fundamental frame (u, v, w)

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;
 - $Vol(R(\mathbf{u}, \mathbf{v}, \mathbf{w})) \neq 0$;
 - $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \neq 0$.
- If any of the above is valid: $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is a frame.
- Rectangular coordinate system \rightarrow fundamental frame $(\mathbf{u}, \mathbf{v}, \mathbf{w})$
- The hand rules for determining directions of cross products $(w=u\times v)$ are consistent with this coordinate system if and only if

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) > 0$$

- The following are equivalent:
 - every vector in space can be decomposed along u, v, w;
 - the box $R(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is non-degenerate;
 - $Vol(R(\mathbf{u}, \mathbf{v}, \mathbf{w})) \neq 0$;
 - $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \neq 0$.
- If any of the above is valid: (u, v, w) is a frame.
- Rectangular coordinate system → fundamental frame (u, v, w)
- The hand rules for determining directions of cross products $(\mathbf{w} = \mathbf{u} \times \mathbf{v})$ are consistent with this coordinate system if and only if

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) > 0$$

Definition

The frame $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is positively oriented if $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) > 0$.