

Uji Lanjut: Pembandingan terencana

Dosen: Dr. Utami Dyah Syafitri

Outline

Uji Bonferroni

Memungkinkan membuat perbandingan antar perlakuan, antara perlakuan dengan kelompok perlakuan, atau antar kelompok perlakuan

Misalnya: Ada empat perlakuan A, B, C dan D. Ingin membuat perbandingan: 1. A vs BCD 2. AB vs CD 3. C vs D

1.
$$H_0: \mu_A = \frac{\mu_B + \mu_C + \mu_D}{3}$$

2.
$$H_0: \frac{\mu_A + \mu_B}{2} = \frac{\mu_C + \mu_D}{2}$$

3. $H_0: \mu_C = \mu_D$

3.
$$H_0: \mu_C = \mu_D$$

$$\begin{split} \hat{L}_i &\pm BS_{\hat{L}_i} \\ \hat{L}_i &= \sum_{i=1}^t C_i \overline{Y}_i \text{ dan } B = t_{(\frac{\alpha}{2g};dbg)} \\ S_{\hat{L}_i}^2 &= KTG \sum_{i=1}^t \frac{C_i^2}{r_i} \qquad g = \text{banyaknya jumlah perbandingan} \end{split}$$

Contoh kasus (1)

- Suatu percobaan dilakukan untuk mengetahui bagaimana pengaruh penambahan nitrogen terhadap pertumbuhan rumput.
- Perlakuan yang dicobakan adalah: (1) tidak ada penambahan nitrogen (2) ditambahkan 100 kg di musim gugur (3) ditambahkan 100 kg di musim semi (4) ditambahkan 50 kg di musim gugur dan 50 kg di musim semi
- Percobaan dilakukan pada tiga tipe tanah yang berbeda.

Data yang diperoleh

Perlakuan		Kelompol	k	Rata-rata	Total perlakuan
	I	II	III	perlakuan $(\overline{y_i})$	$(y_{i.})$
Kontrol	9.90	12.30	11.40	11.20	33.60
Fall	11.40	12.90	12.70	12.33	37.00
Spring	12.10	13.40	12.90	12.80	38.40
Split	10.10	12.20	11.90	11.40	34.20
Rata-rata kelompok $(\overline{y_{.j}})$	10.88	12.70	12.23	$\bar{y}_{}$ = 11.93	
Total kelompok $(y_{.j})$	43.50	50.80	48.90		<i>y</i> =143.20

ANOVA yang diperoleh sbb:

Sumber keragaman	db	JK	KT	Fhit	
Perlakuan	3	5.2	1.7333	18.43	$F_{0.05(3,6)} = 4.757$
Tipe tanah	2	7.1717	3.5858	40.20	$F_{0.05(2,6)} = 5.143$
Galat	6	0.5350	0.0892		
Total	11	12.9067			

- 1. Pengaruh perlakuan: Karena Fhit = $18.43 > F_{0.05(3,6)} = 4.757$ maka tolak H0, perlakuan mempunyai pengaruh yang nyata pada rata-rata respon
- 2. Pengaruh kelompok: Karena Fhit = $40.20 > F_{0.05(2,6)} = 5.143$ maka tolak H0, kelompok mempunyai pengaruh yang nyata pada rata-rata respon

Uji lanjut: Hipotesis yang ingin diuji

- Apakah terdapat perbedaan pertumbuhan rumput dari yang tidak diberi nitrogen dengan diberi nitrogen?
- Apakah ada perbedaan pertumbuhan rumput jika diberikan nitrogen pada saat musim gugur dengan musim semi?

Koefisien kontras

1.
$$H_0: \mu_1 = \frac{\mu_2 + \mu_3 + \mu_4}{3}$$

2. $H_0: \mu_2 = \mu_3$

2.
$$H_0: \mu_2 = \mu_3$$

1.
$$H_0: 3\mu_1 - 1\mu_2 - 1\mu_3 - 1\mu_2 = 0$$

2.
$$H_0: 1\mu_2 - 1\mu_3 = 0$$

Penyelesaian – Uji Bonferroni

$$\hat{L}_i = \sum_{i=1}^t C_i \overline{Y}_{i.} \quad S_{\hat{L}_i}^2 = KTG \sum_{i=1}^t \frac{C_i^2}{r_i} \qquad B = t_{(\frac{\alpha}{2g}; dbg)}$$

Pengambilan keputusan: jika batas bawah dan batas atas mempunyai tanda yang sama, maka Tolak H0

KONTRAS

- Kontras merupakan kombinasi linear dari rataan perlakuan yang ingin dibandingkan.
- Jika ulangannya sama maka:

$$C = \Sigma c_i y_{i..}$$
, dengan retriksi $\Sigma c_i = 0$
 $JKC = (\Sigma c_i y_i)^2 / r \Sigma c_i^2$, dengan db =1

- KTC = JKC, karena db =1
- F_{hit} = KTC / KTG
- Tolak Hojika $F_{hit} > F_{\alpha(1,dbg)}$

Kontras orthogonal

Dua buah contrast dengan koefisien $\{c_i\}$ dan $\{d_i\}$ dikatakan othogonal jika Σ $c_id_i = 0$

Maximal kontras yang saling orthogonal yang dapat dibentuk sebanyak **db** perlakuan

Hipotesis yang ingin diuji

- Apakah terdapat perbedaan pertumbuhan rumput dari yang tidak diberi nitrogen dengan diberi nitrogen?
- Apakah ada perbedaan pertumbuhan rumput jika diberikan nitrogen pada saat musim gugur dengan musim semi?
- Apakah ada perbedaan pertumbuhan rumput jika diberikan pada saat musim gugur atau musim semi dengan diberikan pada kedua musim tersebut?

Penyelesaian

Kontrast	Perlakuan						
	Kontrol	Fall	Spring	Split			
K vs FSpSpl	3	-1	-1	-1			
F vs Sp	0	1	-1	0			
FSp vs Spl	0	1	1	-2			

$$KTG = 0.0892$$

$$JKC = (\Sigma c_i y_{i.})^2 / r \Sigma c_i^2$$

	Kontrol	Fall	Spring	Split	$\sum C_i y_i$	$\sum C_i^2$	r	JKC	KTC	Fhit
Y _{total}	33.6	37	38.4	34.2						
$C_{\mathtt{1}}$	3	-1	-1	-1	-8.80	12	3	2.151	2.151	24.12*
C_2	0	1	-1	0	-1.40	2	3	0.327	0.327	3.66
C_3	0	1	1	-2	7.00	6	3	2.722	2.722	30.52*

Anova

Sumber keragaman	db	JK	KT	Fhit
Perlakuan	3	5.2	1.7333	18.43*
K vs FSpSpl	1	2.151	2.151	24.12*
F vs Sp	1	0.327	0.327	3.66
FSp vs Spl	1	2.722	2.722	30.52*
Tipe tanah	2	7.1717	3.5858	40.20
Galat	6	0.5350	0.0892	
Total	11	12.9067		

$$F0.05(3,6) = 4.757$$
 $F0.05(1,6) = 5.987$

Syntak in R

```
setwd("D:/Utami/Dell Laptop PMB/Pribadi UDS/Bahan Kuliah/slide
dasar rancob")
dataRAK = read.csv("Data RAK kontrast.csv", sep = ";", dec=",",
header=TRUE)
View(dataRAK)
dataRAK$kel = as.factor(dataRAK$Kelompok)
View(dataRAK)
RAK = aov(Respon ~Perlakuan+kel, data=dataRAK)
summary(RAK)
contrasts(dataRAK\$Perlakuan) <- cbind(c(-1, 3, -1, -1), c(-1, 0, 0,1),
C(-1, 0, 2, -1)
contrasts(dataRAK$Perlakuan)
summary.aov(RAK, split= list(Perlakuan=list("Tanpa Nitrogen vs Dgn
Nitrogen" = 1, "Fall vs Spring" = 3, "Fall, Spring vs Split"=2)))
```


Output R

Output in R

```
> summary.aov(RAK, split= list(Perlakuan=list("Tanpa Nitrogen vs Dgn Nitrogen" =
1, "Fall vs Spring" = 3, "Fall, Spring vs Split"=2)))
                                            Df Sum Sq Mean Sq F value
                                                                       Pr(>F)
                                                        1.733 19.439 0.001713 **
                                               5.200
Perlakuan
                                                        2.151
                                                              24.125 0.002679 **
                                               2.151
  Perlakuan: Tanpa Nitrogen vs Dgn Nitrogen 1
                                            1 0.327
                                                        0.327
                                                                3.664 0.104123
  Perlakuan: Fall vs Spring
  Perlakuan: Fall, Spring vs Split
                                            1 2.722
                                                        2.722 30.530 0.001480 **
                                                              40.215 0.000335 ***
kel
                                             2 7.172
                                                        3.586
Residuals
                                             6 0.535
                                                        0.089
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```


POLINOMIAL ORTHOGONAL

- Digunakan untuk menguji trend pengaruh perlakuan terhadap respon (linier, kuadratik, kubik, dst) → berlaku untuk perlakuan yang kuantitatif
- Bentuk Model:

Linier
$$\rightarrow Y_i = b_0 + b_1 X_i + \epsilon_I$$

Kuadratik $\rightarrow Y_i = b_0 + b_1 X_i + b_2 X_i^2 + \epsilon_i$
Kubik $\rightarrow Y_i = b_0 + b_1 X_i + b_2 X_i^2 + b_3 X_i^3 + \epsilon_i$

• Bentuk umum polinomial ordo ke-n adalah:

$$Y = \alpha_0 P_0(X) + \alpha_1 P_1(X) + \alpha_2 P_2(X) + \ldots + \alpha_n P_n(X) + \epsilon_i$$

dimana

$$P_0(X) = 1; P_1(X) = \lambda_1 \left[\frac{X - \overline{X}}{d} \right]; P_2(X) = \lambda_2 \left[\left(\frac{X - \overline{X}}{d} \right)^2 - \left(\frac{a^2 - 1}{12} \right) \right]$$

$$P_{n+1}(X) = \lambda_{n+1} \left[P_1(X) P_n(X) - \frac{n^2 (a^2 - n^2)}{4(4n^2 - 1)} P_{n-1}(X) \right], n \ge 2$$

dengan: a=banyaknya taraf faktor, d=jarak antar faktor, n=polinomial ordo ke-n

Tabel Kontras Polinomial Ortogonal untuk jarak taraf yang sama

Jumlah Perlakuan	Orde Polinomial		T1	T2	T3	T4	T5
P=3	Linier	1	1	0	1		
P=3	Kuadratik	3	1	-2	1		
	Linier	2	- 3	-1	1	3	
P=4	Kuadratik	1	1	-1	1	1	
	Kubik	10/3	-1	3	- 3	1	
	Linier	1	-2	-1	0	1	2
P=5	Kuadratik	1	2	-1	-2	-1	2
	Kubik	5/6	-1	2	0	-2	1
	Kuartik	35/12	1	-4	6	-4	1

Contoh kasus (2)

- Suatu percobaan dilakukan untuk mengetahui pengaruh suhu terhadap potensi dari suatu antibiotik
- Data yang diperoleh sebagai berikut:

suhu							
10°	30°	50°	70°	90°			
62	26	16	10	13			
55	26	15	11	11			
57	31	23	18	9			

Penyelesaian

	10°	30°	50°	70°	90°	Ciyi	Ci2	r	JKC
Ytotal	174	83	54	39	33				
Linier	-2	-1	0	1	2	-326	10	3	3542.53
Kuadratik	2	-1	-2	-1	2	184	14	3	806.10
Kubik	-1	2	0	-2	1	-53	10	3	93.63
Kuartik	1	-4	6	-4	1	43	70	3	8.80

ANOVA

Sumber keragaman	db	JK	KT	Fhit
	G. 10			
Temperature	4	4451.067	1112.767	87.850*
Linier	1	3542.533	3542.533	279.674*
Kuadratik	1	806.095	806.095	63.639*
Kubik	1	93.633	93.633	7.392*
Kuartik	1	8.805	8.805	0.695
Galat	10	126.667	12.667	
Total	14	4577.733		

$$F_{0.05(4,10)} = 3.478$$
 $F_{0.05(1,10)} = 4.964$

$$F_{0.05(1,10)} = 4.964$$

Persamaan Regresi dalam bentuk Polinomial

Intercept

$$\hat{\alpha}_1 = \frac{\sum_{i=1}^t c_i y_i}{r \sum_{i=1}^t c_i^2} = \frac{-326}{3(10)} = -10,867$$
 Linear
$$\hat{\alpha}_2 = \frac{\sum_{i=1}^t c_i y_i}{r \sum_{i=1}^t c_i^2} = \frac{184}{3(14)} = 4,381$$
 Kuadratik

•
$$\hat{\alpha}_3 = \frac{\sum_{i=1}^t c_i y_i}{r \sum_{i=1}^t c_i^2} = \frac{-53}{3(10)} = -1,767$$
 Kubik

$$\hat{y}_i = 25,533 - 10,867P_1(X) + 4,381P_2(X) - 1,767P_3(X)$$

Transformasi ke dalam bentuk *x* (linear)

$$\hat{y}_i = 25,533 - 10,867P_1(X)$$

$$\hat{y}_i = 25,533 - 10,867\lambda_1 \left[\frac{x - \bar{x}}{d} \right]$$

$$\hat{y}_i = 25,533 - 10,867(1) \left[\frac{x - 50}{20} \right]$$

$$\hat{y}_i = 25,533 - 0,543x + 27,167$$

$$\hat{y}_i = 52,7 - 0,543x$$

Transformasi ke dalam bentuk *x* (kuadratik)

•
$$\hat{y}_i = 25,533 - 10,867P_1(X) + 4,381P_2(X)$$

•
$$\hat{y}_i = 25,533 - 10,867\lambda_1 \left[\frac{x - \bar{x}}{d} \right] + 4,381\lambda_2 \left[\left(\frac{x - \bar{x}}{d} \right)^2 - \frac{a^2 - 1}{12} \right]$$

•
$$\hat{y}_i = 25,533 - 10,867(1) \left[\frac{x-50}{20} \right] + 4,381(1) \left[\left(\frac{x-50}{20} \right)^2 - \frac{5^2-1}{12} \right]$$

$$\hat{y}_i = 52.7 - 0.543x + 4.381((0.05x - 2.5)^2 - 2)$$

•
$$\hat{y}_i = 52.7 - 0.543x + 0.011x^2 - 1.095x + 18.619$$

•
$$\hat{y}_i = 71,319 - 1,639x + 0,011x^2$$

Tugas:

Lakukan transformasi ke dalam bentuk x untuk pengaruh kubik!

Persamaan model

	Dugaan model	R ²
Linier	$\hat{y} = 52.7 - 0.543x$	0.771
Kuadratik	$\hat{y} = 71.319 - 1.639x + 0.011x^2$	0.950
Kubik	$\hat{y} = 81.809 - 2.769x - 0.039x^2 - 0.0000$	x ³ 0.970

Kurva respon

 $R^2_{linear} = 0.774$ $R^2_{Quadratic} = 0.950$ $R^2_{Cubic} = 0.970$

Syntaks in R

```
dataSuhu = read.csv("Orthogonal.csv", sep = ";",
dec=",", header=TRUE)
View(dataSuhu)
dataSuhu$Perl = as.factor(dataSuhu$Perlakuan)
Ortho = aov(Respon ~ Perl, data=dataSuhu)
summary(Ortho)

contrasts(dataSuhu$Perl) <- contr.poly(5)
summary.aov(Ortho, split= list(Perl=list("Linear" = 1, "Kuadratik" = 2, "Kubik"=3, "Kuartik"=4)))</pre>
```


Output R

```
> contrasts(dataSuhu$Perl) <- contr.poly(5)</pre>
> summary.aov(Ortho, split= list(Perl=list("Linear" = 1,
"Kuadratik" = 2, "Kubik"=3, "Kuartik"=4)))
                  Df Sum Sq Mean Sq F value Pr(>F)
                       4451
                               1113 87.850 9.51e-08 ***
Perl
                               3543 279.674 1.22e-08 ***
  Perl: Linear
                       3543
  Perl: Kuadratik
                      806
                                806
                                    63.639 1.21e-05 ***
                                    7.392
                                             0.0216 *
  Perl: Kubik
                         94
                                 94
                                    0.695
                                             0.4239
  Perl: Kuartik
Residuals
                  10
                       127
                                 13
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```


Terima kasih