3.7. LINEAR MAPS 99

Definition 3.22. The set of all linear maps between two vector spaces E and F is denoted by Hom(E,F) or by $\mathcal{L}(E;F)$ (the notation $\mathcal{L}(E;F)$ is usually reserved to the set of continuous linear maps, where E and F are normed vector spaces). When we wish to be more precise and specify the field K over which the vector spaces E and F are defined we write $\text{Hom}_K(E,F)$.

The set Hom(E, F) is a vector space under the operations defined in Example 3.1, namely

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in E$, and

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in E$. The point worth checking carefully is that λf is indeed a linear map, which uses the commutativity of * in the field K (typically, $K = \mathbb{R}$ or $K = \mathbb{C}$). Indeed, we have

$$(\lambda f)(\mu x) = \lambda f(\mu x) = \lambda \mu f(x) = \mu \lambda f(x) = \mu(\lambda f)(x).$$

When E and F have finite dimensions, the vector space Hom(E, F) also has finite dimension, as we shall see shortly.

Definition 3.23. When E = F, a linear map $f: E \to E$ is also called an *endomorphism*. The space Hom(E, E) is also denoted by End(E).

It is also important to note that composition confers to $\operatorname{Hom}(E,E)$ a ring structure. Indeed, composition is an operation $\circ: \operatorname{Hom}(E,E) \times \operatorname{Hom}(E,E) \to \operatorname{Hom}(E,E)$, which is associative and has an identity id_E , and the distributivity properties hold:

$$(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f;$$

 $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2.$

The ring Hom(E, E) is an example of a noncommutative ring.

It is easily seen that the set of bijective linear maps $f: E \to E$ is a group under composition.

Definition 3.24. Bijective linear maps $f: E \to E$ are also called *automorphisms*. The group of automorphisms of E is called the *general linear group (of E)*, and it is denoted by $\mathbf{GL}(E)$, or by $\mathrm{Aut}(E)$, or when $E = \mathbb{R}^n$, by $\mathbf{GL}(n,\mathbb{R})$, or even by $\mathbf{GL}(n)$.

Although in this book, we will not have many occasions to use quotient spaces, they are fundamental in algebra. The next section may be omitted until needed.