

Advanced Machine Learning

8. Time Series Analytics

Part II – Advanced Models

Prof. Dr. Volker Herbort

Learning Objectives

- Understand the challenges of real world time series
- Get an overview of suitable ANN types for time series forecasts
 - Understand the advantages
 - Prepare data appropriately
- Understand the concept of Time Series classification
 - Classical Approach using Distance Based Methods
 - New approach using different types of ANNs

- Time Series are not always simple....
- Forcast using ANNs
- Time Series Classification

Downside of simple models

- Simple Models focus on...
 - complete data: missing or corrupt data is generally unsupported.
 - linear relationships: excludes more complex joint distributions.
 - fixed temporal dependence: the relationship between observations at different times, and in turn the number of lag observations provided as input, must be diagnosed and specified.

Downside ctd.

- Simple Models focus on...
 - univariate data: many real-world problems have multiple input variables.
 - one-step forecasts: many real-world problems require forecasts with a longtime horizon.

Time Series are not always simple

- Last week's focus...
 - Univariate time series with one-step forecast
 - 1 series as input, 1 forcast value as output
 - Simple models involving only 1 time dimension
- Many real world problems...
 - Multivariate time series with multi-step forecast
 - n series as input, m forecast values as output
 - Simple models do not work anymore...
 - Solution => Apply e.g. ANNs as regressors for forecast

■ Time Series are not always simple....

- Forcast using ANNs
 - Multi Layer Perceptron
 - Recurrent Neural Networks
 - Long short-term Memory Networks
 - Gated Recurrent Units
- Time Series Classification

Multi Layer Perceptron (MLP)

- Feed-Forward Network with Back Propagation
 - Regressor and Classifier

feature vector X and output vector Z

MLP for Time Series

- MLPs can be used for forecasting time series
 - Feature extraction/modelling in data preparation
 - cleasing, interpolation, etc.
 - create samples using e.g. sliding windows
 - removing seasonality and trends
 - Modelling of non-linear relationships
 - Applicability
 - For simple univariate series gain over basic methods is questionable.
 - Advantages for multivariate time series

Data Preparation for MLP

Recap: Sliding Window

Transformation into feature vector for supervised learning

=> also usable for e.g. Regression Trees

Challenges

- Feature selection
 - choosing the rights lags for input vector
 - classic tools like (P)ACF might help
 - Transformation to stationary series esp. trend removal

■ Time Series are not always simple....

Forcast using ANNs

- Multi Layer Perceptron
- Recurrent Neural Networks
- Long short-term Memory Networks
- Gated Recurrent Units

Time Series Classification

Recap: RNN

- MLP with Memory-Connection
 - Integrates the values of predecessors

- natural sequential learning (like time series)
- Problems of RNNs
 - Only recent values are considered
 - Exploding/Vanishing Gradient

■ Time Series are not always simple....

Forcast using ANNs

- Multi Layer Perceptron
- Recurrent Neural Networks
- Long short-term Memory Networks
- Gated Recurrent Units

Time Series Classification

Recap: LSTM

- Special implementation of RNN
 - Solves problem of vanishing gradient
 - Used for e.g. Speech Recognition

LSTM

Forget Gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input Gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Actual Cell

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

LSTM for Time Series²

- LSTMs
 - ...can bridge very long time lags.
 - ...can handle noise, distributed representations and continuous values.

...do not require an a priori choice of a finite number of states.

 ...work well over a broad range of parameters such as learning rate, input gate bias and output gate bias.

■ Time Series are not always simple....

Forcast using ANNs

- Multi Layer Perceptron
- Recurrent Neural Networks
- Long short-term Memory Networks
- Gated Recurrent Units

Time Series Classification

Gated Recurrent Unit (GRU)

- Simplified LSTM
 - No Cell State => hidden state for memory
 - Update Gate replaces Input and Forget Gate
 - Reset Gate decides on long term memory
 - => easier to compute

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- Time Series are not always simple....
- Multi Layer Perceptron
- Recurrent Neural Networks
 - Long short-term Memory Networks
 - Gated Recurrent Units

Time Series Classification

Time Series Classification (TSC)

- In addition to forecasts time series can be also be used for classification e.g.
 - Speech recognition (word from audio signal)
 - Appliance detection from electricity usage
 - Activity recognition from fitness watch

Classic TSC

- Subsequence Matching
 - Query (shapelet) q contains n values

Approach: Sliding Window of size n

Source: Skript zur Vorlesung: Spatial, Temporal, and Multimedia Databases Sommersemester 2009, LMU München Prof. Dr. Hans-Peter Kriegel, Dr. Peer Kröger, Dr. Peter Kunath, Dr. Matthias Renz, Arthur Zimek

Classic TSC ctd.

- Whole Sequence Matching
 - Compare whole series t with query q using distance function $dist(q,t) = \sqrt[2]{\sum_{i=1}^{n}(q_i t_i)^2}$

Source: Skript zur Vorlesung: Spatial, Temporal, and Multimedia Databases Sommersemester 2009, LMU München Prof. Dr. Hans-Peter Kriegel, Dr. Peer Kröger, Dr. Peter Kunath, Dr. Matthias Renz, Arthur Zimek

Challenges in Classical TSC

- Subject dependent sensor data
 - Amplitude (weight, volume,...)
 - normalisation of signals

- Frequence (running speed, voice,..)
 - Dynamic Time Warping

Source: Skript zur Vorlesung: Spatial, Temporal, and Multimedia Databases Sommersemester 2009, LMU München Prof. Dr. Hans-Peter Kriegel, Dr. Peer Kröger, Dr. Peter Kunath, Dr. Matthias Renz, Arthur Zimek

New Approach for TSC³

- Use CNNs who...
 - fuse feature extraction and feature classification into a single learning body. They can learn to optimize the features directly from the raw input.
 - can process large inputs with a great computational efficiency compared to the conventional fullyconnected Multi-Layer Perceptrons (MLP) networks.
 - are immune to small transformations in the input data including translation, scaling, skewing, and distortion.
 - can adapt to different input sizes.

CNNs for TSC

- The trick is the use of a 1D convolution
 - filters are used to prepare data and learn features
 e.g.
 - up and down sequences
 - peaks and plateaus

CNNs for TSC

- Multivariate time series t of length n
 - filter width is similar to width of t = k (1d Convolution)
 - filter length depends on purpose of filter (window)
 - Number of filters reflects features to be detected
 - Filter(s) applied from t₁ until tn depending on stride size

Source: https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57

Example 1D CNN

Multi-Scale CNN⁴

Idea

Use already transformed versions of time series as

References

- [2] Sepp Hochreiter & Jürgen Schmidhuber, "Long Short-Term Memory", Neural Computation 9 (8) 1735-1780,1997
- [3] Kiranyaz et. al, 1D Convolutional Neural Networks and Applications A Survey
- [4] Zhicheng Cui, Wenlin Chen, Yixin Chen, Multi-Scale Convolutional Neural Networks for Time Series Classification