

In the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Claim 1. (Canceled)

1 2. (Original) A computer implemented method of rasterizing a
2 page in a page description language in a multiprocessor integrated
3 circuit comprising the steps of:

4 interpreting said page in said page description language with a
5 first processor of said multiprocessor integrated circuit;

6 spawning a subtask from said first processor to another of said
7 processors for sorting polygon edges in increasing minimum Y
8 coordinate.

3. (Canceled)

1 4. (Currently Amended) The computer implemented method of
2 claim 5 2, wherein each of said other processors is a digital signal
3 processor having an integer multiplier unit and said method further
4 comprising:

5 spawning a subtask from said first processor to another of said
6 processors for detecting a Y coordinate of edge intersection
7 determined to occur between Y coordinates Ytop and Ybottom via
8 successive midpoint approximation by repeatedly

9 calculating a difference in the X coordinates of the
10 respective edges at Ytop and Ybottom are computed by

11

12 $x_{1step} = x_1 - x_1$

13 $x_{2step} = x_2 - x_2$

14

15 where: x₁ and x₂ are respective X coordinates of two edges at

16 Y_{bottom}; and X₁ and X₂ are respective X coordinates of said two

17 edges at Y_{top},

18 calculating the X coordinates of the respective edges at Y

19 coordinate Y = (y₁+y₂)/2 by

20

21 X₁ = (x₁ + x_{1step})/2

22 X₂ = (x₂ + x_{2step})/2

23

24 setting Y_{bottom} as (Y + Y_{bottom})/2 if X₂ > X₁ at Y, and

25 setting Y_{top} as (Y+Y_{top})/2 if X₂ < X₁, and until a Y coordinate

26 of the intersection point is obtained with a desired accuracy.

1 5. (Currently Amended) The computer implemented method of

2 claim 5 2, wherein said first processor is a reduced instruction set

3 processor having a floating point computation unit and said method

4 further comprising:

5 calculating a Y coordinate of edge intersection employing

6 said floating point calculation unit of said first processor by

7

8
$$Y = (c_1 - c_2) / (b_2 - b_1)$$

9

10 where: a first edge has vertices (X₁, Y₁) and (X₂, Y₂) with b₁ =

11 X₁ - X₂ and c₁ = X₂*Y₁ - X₁*Y₂; and a second edge has vertices

12 (X₃, Y₃) and (X₄, Y₄) with b₂ = X₃ - X₄ and c₂ = X₄*Y₃ - X₃*Y₄.

Claims 6 to 10. (Canceled)

1 11. (New) The computer implemented method of claim 2, wherein

2 the multiprocessor integrated circuit includes plural other

3 processors and the method further comprising:

4 forming a queue of parallel tasks with said first processor;
5 and
6 dispatching a parallel task from said queue to a next available
7 other processor.