Tables de hachage HAI503I – Algorithmique 4

Bruno Grenet

Université de Montpellier - Faculté des Sciences

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouvert

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Résolution par chaînage
- 2.2 Hachage parfai
- 2.3 Adressage ouver

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Résolution par chaînage
- 2.2 Hachage parfai
- 2.3 Adressage ouver

Les dictionnaires Python

Comment implanter le type dict de Python?

```
>>> d = {}
>>> d[1515] = 'Bataille de Marignan'  # Ajout d'élément
>>> d[1492] = 'Colomb en Amérique'
>>> d[1492] = 'Ascension du Mont Aiguille'  # Modification
>>> 1789 in d  # Recherche
False
>>> d[1492]
'Ascension du Mont Aiguille'
```

La structure de données dictionnaire Version algorithmique

- Ensemble de couples (cléf, valeur)
- Opérations disponibles :
 - ► CRÉATION d'un dictionnaire vide
 - INSERTION d'un couple
 - Modification d'une valeur → RéInsertion
 - Recherche d'une clef \rightarrow renvoie la valeur ou une erreur

Objectif

Les opérations Création, Insertion et Recherche doivent être rapides!

Hypothèse simplificatrice

- Les clefs sont des entiers
- ightharpoonup Théorie: toute donnée est codée en binaire ightharpoonup interprétation comme un entier
- Pratique : on se ramène à des entiers, mais pas forcément de cette facon

Quelles solutions?

Dictionnaire de *n* éléments, clef entre 0 et *N*-1

Tableau

- ► Taille : *N*
- ightharpoonup Création : O(N)
- ► Insertion : O(1) ✓
- ightharpoonup Recherche: O(1)

Liste chaînée

- ► Taille : *n*
- Création : O(1)
- ▶ INSERTION : O(n)
- ightharpoonup Recherche : O(n)

Arbre hinaire de recherche

- ightharpoonup Taille: n
- ightharpoonup Création : O(1) \checkmark
- ► Insertion : $O(h) \rightarrow O(\log n)$ si équilibré \checkmark
- ▶ RECHERCHE : $O(h) \rightarrow O(\log n)$ si équilibré \sim

Tas

- ► Taille: *n*► Création: *O*(1) ✓ ⋈ 𝑉(*n*)
- ► Insertion : $O(\log n)$ ~
- ightharpoonup Recherche: $O(\log n) \sim$

1.1 Structure de données dictionnaire

1.2 Tables de hachage

1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouver

Tables de hachage

Formalisation

Clefs

- ▶ Univers *U* des clefs possibles : $U = \{0, ..., N-1\}$
- ► Clefs utilisées : $K \subset U$, de taille n

Table de taille *m*

- ▶ Indices entre 0 et m-1
- Une case contient une valeur, voire plusieurs
- Une case peut être vide

Fonction de hachage

► Fonction $h: U \rightarrow \{0, \ldots, m-1\}$

Insertion du couple (k, v) dans la case $T_{[h(k)]}$

Questions à résoudre

Collisions

- Que fait-on si $h(k_1) = h(k_2)$?
 - Plusieurs valeurs dans une case (liste chaînée, etc.)
 - Utiliser une autre case ?
- Est-ce que $h(k_1) = h(k_2)$ arrive souvent ?
 - ► Comment choisir *h*?

Caractéristiques

- ► Taille : $m \rightarrow$ comment choisir m par rapport à n et N?
- ightharpoonup Création : O(m)
- ► INSERTION : calcul de h(k) puis insertion en case h(k) → quelle complexité ?
- **P** RECHERCHE : calcul de h(k) puis recherche dans la case h(k) o quelle complexité ?

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouver

Problématique des fonctions de hachage

Contexte

- ► Choix d'une fonction $h: \{0, ..., N-1\} \rightarrow \{0, ..., m-1\}$
- Fonction utilisée pour un ensemble de clefs K de taille $n \ll N$

Collisions évitables ?

- Avec $N \gg m$, forcément des collisions $h(k_1) = h(k_2)$!
- ▶ Mais on stocke n clefs : si $n \le m$?
 - Pour un ensemble de clefs, possible de trouver *h* sans collision
 - Mais... on ne connaît pas les clefs à l'avance!

Problématique

- On veut choisir h avant de connaître les clefs
- On voudrait éviter les collisions entre clefs... sans les connaître!

Pas le choix : une fonction de hachage doit être choisie aléatoirement !

Modèles aléatoires des fonctions de hachage

On tire h uniformément parmi les fonctions de U dans $\{0, \ldots, m-1\}$

Représentation de h

- ▶ Pour chaque k, une valeur $h(k) \rightarrow \text{tableau } H$ de taille N
- ▶ Tirage de $h \rightarrow$ tirage uniforme et indépendant de chaque $H_{[k]}$ dans $\{0, \dots, m-1\}$

Avantage et inconvénient

- Avantage : très bonnes propriétés probabilistes
 - Pour tout $k_1 \neq k_2$, $Pr_h[h(k_1) = h(k_2)] = 1/m$
- ▶ Inconvénient : totalement **irréaliste** \rightarrow tableau de taille N, temps du tirage

Remarques

- Parfois utilisé en théorie car
 - les preuves sont (un peu) simples
 - les résultats obtenus parfois (très) proches du comportement pratique
- Objectif : modèle réaliste avec propriétés proches

Modèle universel des fonctions de hachage

On fixe un ensemble ${\mathcal H}$ de fonctions de hachage et on tire h uniformément dans ${\mathcal H}$

Définition

Un ensemble \mathcal{H} de fonctions de $\{0,\ldots,N-1\}$ dans $\{0,\ldots,m-1\}$ est universel si pour tout $k_1 \neq k_2$, $\Pr_{h \in \mathcal{H}}[h(k_1) = h(k_2)] \leq 1/m$.

Remarques

- ▶ Probabilité que deux éléments collisionnent ≤ probabilité dans le modèle aléatoire
- L'ensemble de toutes les fonctions est universel... mais irréaliste!
- ightharpoonup On sait construire des ensembles \mathcal{H} universels réalistes

Ensemble universel intéressant

- ▶ Ensemble pas trop gros \rightarrow représentation de h assez petite
- ► Tirer uniformément $h \in \mathcal{H}$ doit être efficace
- ightharpoonup Calculer h(k) doit être rapide

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouvert

Problématique

Contexte

- ► Table *T* avec fonction de hachage $h: \{0, ..., N-1\} \rightarrow \{0, ..., m-1\}$
- Ensemble de clefs *K*

Que fait-on si $h(k_1) = h(k_2)$ pour deux clefs $k_1 \neq k_2$?

Deux (familles de) solutions

- Mettre plusieurs éléments dans une même case
 - Résolution par chaînage
 - Hachage parfait
- ► Trouver une autre case libre : adressage ouvert

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouver

Résolution par chaînage : principe

Résolution par chaînage

Chaque case de T contient une liste chaînée

Algorithmes

- RECHERCHE de k:
 Calcul de h(k)

 - Parcours de la liste contenue dans $T_{[h(k)]}$
 - Complexité : $O(\ell(k))$ où $\ell(k)$ est la taille de la liste $T_{[h(k)]}$
- ► Insertion de (k, v):
 - ightharpoonup Idem Recherche pour savoir si k est dans le dictionnaire
 - ▶ Si k apparaît déjà dans la liste contenue dans $T_{[b(k)]}$, on remplace sa valeur par v
 - Sinon, on ajoute (k, v) à la liste $T_{[h(k)]}$
 - Complexité : $O(\ell(k))$ où $\ell(k)$ est la taille de la liste $T_{[h(k)]}$

Quelle efficacité?

▶ Une opération coûte O(L), où $L = \max_{k \in K} \ell(k) \rightarrow \text{quelle taille maximale }?$

Efficacité de la résolution par chaînage

Théorème

Soit T une table de hachage de taille m, avec $\frac{h}{t}$ tirée uniformément dans un ensemble \mathcal{H} universel. Si T contient n éléments et que les collisions sont résolues par chaînage, l'espérance de la complexité de l'Insertion et de la Recherche est O(n/m).

Preuve

Il suffit de regardu le cas air on fait me RECHERCHE infructueure.

On vent montrer que si k & T,
$$\text{Eh}[e(k)] = \Theta(7/m)$$

On sait que pour k' $\pm k$ $\text{Peh}[h(k) = h(k')] \leq 1/m$.

 $e(k) = \left| \frac{1}{2} k e \cdot k \cdot h(k') = h(k) \right| \times 1 + \text{Peh}[h(k')] \times 0$
 $e(k) = \frac{1}{2} k e \cdot k \cdot h(k') = h(k') \times 1 + \text{Peh}[h(k')] \times 0$
 $e(k) = \frac{1}{2} k e \cdot k \cdot h(k') = h(k') \times 1 + \text{Peh}[h(k')] \times 0$

21/4

Bilan sur le chaînage

Complexité

- Complexité espérée de chaque opération : $O(\alpha)$ où $\alpha = \frac{n}{m}$ est le *taux de remplissage*
- ► Si le taux est autour de 1 : O(1) en moyenne
- ▶ Attention : l'espérance du pire cas n'est pas $O(\alpha)$!
 - $ightharpoonup \mathbb{E}[\max_k \ell(k)]
 eq \max_k \mathbb{E}[\ell(k)]$

La résolution par chaînage marche bien de manière *amortie*, mais certaines opérations peuvent être coûteuses

Pourquoi des listes chaînées ?

- Arbres binaires de recherche ou tas dans chaque case
 - Complexité moyenne en $O(\log \alpha)$
 - Complexité pire cas en $\max_k \log \ell(k)$
- ► Et pourquoi pas des tables de hachage?

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouver

Éviter les collisions

Si la table est suffisamment grande, il n'y a pas de collision (avec bonne probabilité)

Lemme

Si $m = n^2$, et h est tirée uniformément dans un ensemble universel \mathcal{H} , alors la probabilité qu'il existe deux clefs $k_1 \neq k_2$ telles que $h(k_1) = h(k_2)$ est $\leq \frac{1}{2}$.

$$C = V.a.$$
 qui désigne le nb total si collisions
 $C = \sum_{\substack{k_1 < k_2 \\ k_1, k_2 \in K}} C_{k_1, k_2}$ où $C_{k_1, k_2} = \begin{cases} 0 & \text{sinon} \end{cases}$

$$\mathbb{E}\left[C\right] = \sum_{k_1 < k_2} \mathbb{E}\left[C_{k_1 \mid k_2}\right] = \sum_{k_1 < k_2} \Pr\left[h(k_1) = h(k_2)\right] \leq \sum_{k_1 < k_2} \frac{1}{m} = \frac{1}{m} \binom{n}{2} = \frac{n(n-1)}{2n^2} \leq \frac{1}{2}$$

Le hachage parfait

Objectif

- ► Un table de hachage *statique*
 - ► Insertion de *n* couples
 - puis uniquement des Recherches
- ► Chaque Recherche de complexité O(1) dans le pire cas
- ightharpoonup Taille totale de la table : O(n)
- ► Temps de création de la table : O(n)

c(2)

Principes

- ▶ Une table principale T avec fonction de hachage h, de taille m = n
- ► Chaque case $T_{[i]}$ contient une table de hachage secondaire $S^{(i)}$
- ▶ La table $S^{(i)}$ est de taille m_i , avec fonction de hachage $h_i: U \to \{0, \dots, m_i 1\}$
- ► Chaque case de $S^{(i)}$ ne peut contenir qu'un élément (pas de chaînage)
- lacksquare Clef k en case $S^{(i)}_{[j]}$ où i=h(k) et $j=h_i(k) o$ Recherche en O(1)

Création de la table

Algorithme

- 1. Choisir m = n et tirer $h: U \to \{0, \dots, m-1\}$ dans un ensemble universel \mathcal{H}
- **2**. Calculer tous les *hachés* $h(k_i)$, $1 \le i \le n$
- 3. Pour j = 0 à m 1:
- 4. $m_j \leftarrow$ nombre de clefs k_i telles que $h(k_i) = j$
- 5. Créer une table $S^{(j)}$ de taille m_j^2
- 6. Tirer $h_j:U o\{0,\ldots,m_j^2\}$ dans un ensemble universel
- 7. Insérer dans $S^{(j)}$ tous les couples (k_i, v_i) tq $h(k_i) = j$
- 8. En cas de collision, goto 5.

Lemme

L'espérance du temps de calcul de l'algorithme de création est O(n)

Taille totale de la table

Théorème

L'espérance de la taille totale d'une table de hachage parfaite est $\mathbb{E}\Big[\sum_{j=0}^n m_j^2\Big] \leq 2n$

Bilan sur le hachage parfait

Complexités

- INSERTION en complexité *amortie* $O(1) \rightarrow \text{création complète de la table en temps } O(n)$
- RECHERCHE en temps O(1) à tous les coups
- Mémoire nécessaire : $O(n) \rightarrow$ pas de perte de place

Au delà des tables statiques

- Comment gérer des Insertions et Recherches imbriquées ?
 - Même résultat !
- Comment gérer des suppressions ?
 - ► Plus subtile
 - Idées proches des tableaux dynamiques

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouvert

Principe

Si la case pour insérer (k, v) est occupée, trouver une autre case!

Formellement

- \blacktriangleright *m* fonctions de hachage $h_1, ..., h_m$
 - ▶ 1^{er} essai : Insertion en case $h_1(k)$
 - ightharpoonup 2ème essai : Insertion en case $h_2(k)$
 - **...**
 - $ightharpoonup m^{
 m ème}$ essai : Insertion en cas $h_m(k)$
- ► Condition : pour tout k, $\{h_1(k), \ldots, h_m(k)\}$ est une *permutation* de $\{0, \ldots, m-1\}$

Algorithmes

- ► RECHERCHE : explorer $T_{[h_1(k)]}$, $T_{[h_2(k)]}$, ...
 - ▶ si on trouve $k \rightarrow \text{gagn\'e}$!
 - ▶ si on trouve une case vide $\rightarrow k$ n'est pas dans T
- ► Insertion : explorer jusqu'à trouver une case vide

Constructions d'adressage ouvert

Construire les *m* fonctions à partie d'une (ou deux) fonctions de hachage

Quelques possibilités pratiques

```
► Sondage linéaire : h_i(k) = (h(k) + i) \mod m
```

Sondage quadratique : $h_i(k) = (h(k) + ai^2 + bi) \mod m$ (bien choisir a et b!)

► Sondage binaire : $h_i(k) = h(k) \oplus i$

(si $m=2^{\ell}$)

Double hachage: $h_i(k) = (h^{(1)}(k) + ih^{(2)}(k)) \mod m$

(conditions sur $h^{(1)}$ et $h^{(2)}$)

...

Analyse de l'adressage ouvert

Hypothèse: pour tout k, $\{h_1(k), \ldots, h_m(k)\}$ est une permutation aléatoire

Théorème

Si le facteur de remplissage est $\alpha=n/m<1$, l'espérance du nombre de cases visitées pour une Recherche infructueuse est $\leq \frac{1}{1-\alpha}$.

Bilan sur l'adressage ouvert

Idée de principe

- ▶ Une seule table principale, un seul élément par case
- ► Si une case est occupée, aller ailleurs!
- ► Plusieurs solutions pour *aller ailleurs*

Complexité espérée (modèle aléatoire)

► Insertion ou Recherche infructueuse :
$$\frac{1}{1-\alpha}$$

RECHERCHE réussie :
$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$
 (admis)

$$\alpha = \frac{1}{2} \qquad \alpha = \frac{9}{10}$$

$$\leq 1,387 \leq 2,559$$

Pour aller plus loin : hachage du coucou

- ▶ Deux fonctions de hachage $h^{(1)}$ et $h^{(2)}$ deux emplacements possibles par clef
- ► Insertion de (k, v):
 - Insertion en case $h^{(1)}(k)$
 - ▶ Si la case contenait (k', v'), on le déplace à son autre emplacement
 - ► Et récursivement...
- Et ça marche!

Conclusion sur la résolution des collisions

Les collisions sont inévitables!

Deux familles de résolutions

- Chaînage, hachage parfait, ...
 - Gérer les collisions en mettant plusieurs éléments par case
 - Complexité liée au nombre maximal d'éléments par case et à la structure de données
- Adressage ouvert
 - ► Gérer les collisions en cherchant une autre case libre
 - Complexité liée au nombre de cases à inspecter
- ightarrow Dans les deux cas : complexité liée au nombre de collisions

Cas des dictionnaires Python

- Fonction de hachage pas aléatoire! $h(i) = i \mod (2^{61} 1)$ si i est un entier
- Résolution des collisions par adressage ouvert
 - Ordre de parcours des cases un peu complexe
- Solution théoriquement faible, à peu près correcte en pratique

Analyse des temps de calcul

for i in range(N):

d[randrange(2**61*N**2)] = i

Analyse des temps de calcul

for i in range(N): d[randrange(2**61*N**2)] = i

$$d = \{\}$$

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Résolution par chaînage
- 2.2 Hachage parfait
- 2.3 Adressage ouver

Objectif

Rappel de la définition

Un ensemble \mathcal{H} de fonctions de $\{0,\ldots,N-1\}$ dans $\{0,\ldots,m-1\}$ est universel si pour tout $k_1 \neq k_2$, $\Pr_{h \in \mathcal{H}}[h(k_1) = h(k_2)] \leq 1/m$.

Contraintes sur \mathcal{H}

- ► Suffisamment grand pour avoir une probabilité $\leq 1/m$
- ▶ Suffisamment petit pour savoir représenter $h \in \mathcal{H}$ avec une place raisonnable
- ▶ Suffisamment *simple* pour savoir tirer $h \in \mathcal{H}$ en temps raisonnable

${\cal H}$ de taille polynomiale en N

- ▶ Nombre de couples de clefs possibles $\binom{N}{2}$ → au moins autant de fonctions h
- ▶ Représentation d'une fonction h en $O(\log N)$ bits \rightarrow similaire à une clef
- ▶ Tirage aléatoire en $O(\log N)$ → équivalent au calcul de h(k)

Hachage multiplicatif

Définition

Soit $\mathcal{H}_p^{N,m} = \{h_{a,b} : 0 < a < p, 0 \le b < p\}$ la famille de fonctions définies par

$$h_{a,b}: \begin{cases} \{0,\ldots,N-1\} & \to & \{0,\ldots,m-1\} \\ k & \mapsto & ((ak+b) \bmod p) \bmod m \end{cases}$$

où p est un nombre premier > N

Représentation et tirage aléatoire

- ▶ Tirage aléatoire de $h_{a,b}$: tirage de $a \in \{1, ..., p-1\}$ et $b \in \{0, ..., p-1\}$
- ▶ Représentation de $h_{a,b}$: (a, b, p)
- ► Taille : $|\mathcal{H}_p^{N,m}| = p(p-1) > N^2$

Théorème

La famille $\mathcal{H}_p^{N,m}$ est universelle (pour tout N, m et $p \geq N$)

Outil : système linéaire modulo p

Lemme

Soit $k_1 \neq k_2$ et $u \neq v$ dans $\mathbb{Z}/p\mathbb{Z}$, alors il existe un unique couple $a, b \in \mathbb{Z}/p\mathbb{Z}$ tel que $u = ak_1 + b$ et $v = ak_2 + b$.

Preuve du théorème

Théorème (réécrit)

Pour tout $k_1 \neq k_2$, $\Pr_{a,b}[h_{a,b}(k_1) = h_{a,b}(k_2)] \leq 1/m$

Bilan sur la famille universelle

Utilisation de la famille

- Création du dictionnaire : tirage aléatoire de a et b
- Complexité du calcul de $h_{a,b}(k) = ((ak + b) \mod p) \mod m$
 - Additions, multiplications, divisions d'entiers $\leq p^2 : O(\log^2 p) = O(\log^2 N)$
 - ► Taille d'une clef $\rightarrow O(\log N)$

Autres familles universelles

- $h_a(k) = (ak \bmod 2^w) \operatorname{div} 2^{w-\ell}$
- $h_{\vec{c}}(k) = ((\sum_i c_i k^i) \mod p) \mod m$

quasi-universelle (*cf* TD) fortement universelle

Conclusion sur les tables de hachage

Tables de hachage

- Structure de données très efficace, et très répandue
- Autres structures dérivées des tables de hachage (filtres de Bloom, etc.)
- Constructions pratiques inspirées de la théorie

Gestion des collisions

- ► Chaînage \rightarrow complexité amortie O(1) dans le modèle universel
- ightharpoonup Hachage parfait ightarrow complexité pire cas O(1) dans le modèle universel
- Adressage ouvert \rightarrow complexité amortie O(1) dans le modèle aléatoire
 - Difficile: même résultat dans le modèle (fortement-)universel

Construction de familles universelles

- ▶ $h_{a,b}(k) = (((ak + b) \mod p) \mod m)$ fournit une famille universelle
- Construction d'autres familles universelles
- Meilleures garanties : familles fortement universelles

Pour aller plus loin

Fonctions de hachage

- Utiles au delà des tables de hachage (empreinte numérique, etc.)
- ► Riche théorie, basée sur les probabilités
- ► Hachage d'autres objets (chaînes de caractères, graphes, ...)
- Autre type de fonctions de hachage : fonctions de hachage cryptographiques

Dans les langages de programmation

- ► Tables de hachages souvent proposées (dictionnaires)
- Fonctions de hachage non aléatoires
- Comportement souvent bon en pratique, mais possibles mauvaises surprises

Et en pratique

- Fonctions de hachages utilisées partout !
- lacktriangle Applications critiques o utilité de la théorie