

Description

Image

Caption

1. Rubber trees in Kerala, India © M.arunprasad at en.wikipedia - (CC BY-SA 3.0) 2. Rubber bands in different colors. © Bill Ebbesen at en.wikipedia - (CC BY-SA 3.0)

The material

Natural Rubber was known to the natives of Peru many centuries ago, and is now one of Malaysia's main exports. It made the fortune of Giles Macintosh who, in 1825, devised the rubber-coated waterproof coat the still bears his name. Latex, the sap of the rubber tree, is cross-linked (vulcanized) by heating with sulfur; the amount of the cross-linking determines the properties. It is the most widely used of all elastomers - more than 50% of all produced.

Composition (summary)

(CH2-C(CH3)-CH-CH2)n

General properties

Density	57.4	-	58.1	lb/ft^3			
Price	* 1.61	-	1.77	USD/lb			
Date first used	1751						
Mechanical properties							
Young's modulus	2.18e-4	-	3.63e-4	10^6 psi			
Shear modulus	8.7e-5	-	1.16e-4	10^6 psi			
Bulk modulus	* 0.203	-	0.218	10^6 psi			
Poisson's ratio	0.499	-	0.5	•			
Yield strength (elastic limit)	2.9	-	4.35	ksi			
Tensile strength	3.19	-	4.64	ksi			
Compressive strength	3.19	-	4.79	ksi			
Elongation	500	-	800	% strain			
Fatigue strength at 10^7 cycles	0.609	-	0.653	ksi			
Fracture toughness	0.137	-	0.228	ksi.in^0.5			
Mechanical loss coefficient (tan delta)	* 0.8	-	1.9				
Thermal properties							
Glass temperature	-109	-	-81.7	°F			
Maximum service temperature	156	-	224	°F			
Minimum service temperature	-69.1	-	-45.7	°F			
Thermal conductor or insulator?	Good insulator						
Thermal conductivity	0.0578	-	0.0809	BTU.ft/h.ft^2.F			
Specific heat capacity	0.43	-	0.597	BTU/lb.°F			
Thermal expansion coefficient	83.3	-	250	µstrain/°F			

Electrical properties

Electrical conductor or insulator?	Good insulator			
Electrical resistivity	1e15	-	1e16	µohm.cm
Dielectric constant (relative permittivity)	3	-	4.5	
Dissipation factor (dielectric loss tangent)	7e-4	-	0.003	
Dielectric strength (dielectric breakdown)	406	-	584	V/mil

Optical properties						
Transparency	Translucent					
Processability						
Castability	4	-	5			
Moldability	4	-	5			
Machinability	2	-	3			
Weldability	1					
Eco properties						
Embodied energy, primary production	* 6.96e3	-	7.69e3	kcal/lb		
CO2 footprint, primary production	* 1.97	-	2.18	lb/lb		

Supporting information

Design guidelines

Natural rubber is an excellent, cheap, general-purpose elastomer with large stretch capacity and useful properties from -50 C to 115 C, but with poor oil, oxidation, ozone and UV resistance. It has low hysteresis - and is thus very bouncy.

Typical uses

Recycle

Gloves, Car tires, seals, belts, anti-vibration mounts, electrical insulation, tubing, rubber lining pipes and pumps.

Links

Reference

ProcessUniverse

Producers