Lab 3 RM

Viktor Sjoberg

2023-11-28

```
library(readr)
library(ggplot2)
library(gt)
library(boot)
library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 4.1-8
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
##
       expand, pack, unpack
setwd("/Users/viktorsjoberg/Desktop/high-dimensional/Assignment 3")
data <- load('Lab3.Rdata')</pre>
```

Task 1

a)

```
standardize_gene_expression <- function(data) {
    # Apply the standardization function to each column (gene)
    standardized_data <- apply(data, 2, function(x) {
        mean_x <- mean(x)
        sd_x <- sd(x)
        (x - mean_x) / sd_x + mean_x</pre>
```

```
})
  return(as.data.frame(standardized_data))
}

xx_standardized <- standardize_gene_expression(xx)</pre>
```

b)

```
xx_adjusted <- xx_standardized - 10</pre>
```

c)

We'll use the first five individuals to estimate the vector of the means. This involves using the maximum likelihood estimator and both James-Stein estimators

```
# Using first five individuals
first_five <- xx_adjusted[1:5,]
# Maximum Likelihood Estimator
mle_estimate <- apply(first_five,2,'mean')</pre>
sigma2 <- apply(first_five,2,'sd')</pre>
m_sigma <- mean(sigma2)</pre>
# James-Stein Estimators
# Shrinkage towards zero
js_shrink_zero <- function(estimate) {</pre>
  shrinkage_factor <- (1 - (p - 2) / sum((estimate^2))*m_sigma/5)*mle_estimate
  return(shrinkage_factor)
}
# James-Stein Estimator - Shrinkage towards the common mean
p <- 300
js_shrink_common <- function(estimate) {</pre>
  shrinkage_factor <- (1 - common_mean)*mle_estimate + common_mean*mean(mle_estimate)
  return(shrinkage_factor)
}
# Apply the James-Stein estimators
js_zero_estimate <- js_shrink_zero(mle_estimate)</pre>
js_common_estimate <- js_shrink_common(mle_estimate)</pre>
# Now the lengths should match
length(js_zero_estimate) # Should be equal to the number of genes
```

```
## [1] 300
length(js_common_estimate) # Should be equal to the number of genes
```

[1] 300

In this case we know that sigma is equal to one however in a real scenario we often dont know what sigma is so i have estimated it whit the first 5 rows. The first five rows will thus be a smaple and the data set will be seen as the population.

d)

i)

```
xx_rest <- xx_adjusted[6:nrow(xx_adjusted),]
average_rest <- colMeans(xx_rest)

# Create a data frame for ggplot
data_to_plot <- data.frame(
   Average_Expression = rep(average_rest, times = 3),
   Estimate = c(mle_estimate, js_zero_estimate, js_common_estimate),
   Method = factor(rep(c("MLE", "JS Zero", "JS Common"), each = length(average_rest)))
)

# Plot with ggplot
ggplot(data_to_plot, aes(x = Estimate, y = Average_Expression, color = Method)) +
   geom_point() +
   geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "black") +
   labs(x = "Estimate", y = "true mean", title = "Scatter Plot of Estimates") +
   scale_color_manual(values = c("MLE" = "red", "JS Zero" = "blue", "JS Common" = "green")) +
   theme_minimal() +
   theme(legend.title = element_blank())</pre>
```

Scatter Plot of Estimates

Since the estimeted sigma is close to one it does not change the outcome that much.

ii)

```
# Function to calculate squared error
squared_error <- function(estimate, true_value) {
    sum((estimate - true_value)^2)
}

# Calculating squared errors
se_mle <- squared_error(mle_estimate, average_rest)
se_js_zero <- squared_error(js_zero_estimate, average_rest)
se_js_common <- squared_error(js_common_estimate, average_rest)

squared_errors <- data.frame(
    Method = c("MLE", "JS Zero", "JS Common"),
    Squared_Error = c(se_mle, se_js_zero, se_js_common)
)

squared_errors_gt <- gt(squared_errors)
gt_output <- "gt img/squared_errors_gt.png"
gtsave(squared_errors_gt, gt_output)</pre>
```

Method

Squared_Error

MLE

83.61966

JS Zero

77.43922

JS Common

75.16283

Task 2

```
set.seed(123) # For reproducibility
n <- 1000 # Number of observations
p <- 950 # Number of variables</pre>
```

```
sigma <- 1/sqrt(1000) # Standard deviation</pre>
# Generate the design matrix X
X <- matrix(rnorm(n*p,0,sigma), nrow = n, ncol = p)</pre>
dim(X)
## [1] 1000 950
# Generate the response variable Y
beta <- c(rep(3, 5), rep(0, p-5)) # Coefficients
epsilon <- rnorm(n, mean = 0, sd = 1) # Noise vector
mu <- X%*%beta
Y <- X %*% beta + epsilon
dim(Y)
## [1] 1000
# Function to perform the analysis
perform_analysis <- function(X, Y, num_vars, sigma, n) {</pre>
  # Subset the design matrix to the first num_vars variables
  X_sub <- X[, 1:num_vars]</pre>
  # Convert to data frame for use in lm()
  df <- as.data.frame(X_sub)</pre>
  names(df) <- paste0("V", 1:num_vars) # Assign column names for the formula
  df\$Y \leftarrow Y # Add the response variable to the dataframe
  # Fit the linear model using the dataframe and a formula interface
  formula <- as.formula(paste("Y ~ ", paste(names(df)[1:num_vars], collapse=" + "), " - 1", sep=""))</pre>
  fit <- lm(formula, data = df)</pre>
  # a) Estimate beta and calculate RSS and PE
  beta hat <- coef(fit)</pre>
  muhat <- X_sub%*%beta_hat</pre>
  rss <- sum(resid(fit)^2)
  pe <- sum((muhat-mu)^2)+n
  rss_adjust <- rss + 2*num_vars
  # c) Leave-one-out cross-validation to estimate PE
  fit_glm <- glm(df$Y ~ X_sub, family=gaussian())</pre>
  loo <- cv.glm(df, fit_glm, K = n)</pre>
  pe_loo <- mean(loo$delta)</pre>
  return(list(beta_hat = beta_hat, RSS = rss, rss_adjust = rss_adjust, pe = pe, PE_loo = pe_loo))
}
# Perform the analyses for each number of variables
#vars_2 <- perform_analysis(X, Y, 2, sigma, n)</pre>
\#vars_5 \leftarrow perform_analysis(X, Y, 5, sigma, n)
#vars_10 <- perform_analysis(X, Y, 10, sigma, n)</pre>
#vars_100 <- perform_analysis(X, Y, 100, sigma, n)</pre>
#vars_500 <- perform_analysis(X, Y, 500, sigma, n)</pre>
#vars_950 <- perform_analysis(X, Y, p, sigma, n)</pre>
#write_rds(vars_2, "fit/vars_2.rds")
#write rds(vars 5, "fit/vars 5.rds")
#write_rds(vars_10, "fit/vars_10.rds")
#write_rds(vars_100, "fit/vars_100.rds")
```

```
#write_rds(vars_500, "fit/vars_500.rds")
\#write\_rds(vars\_950, "fit/vars\_950.rds")
vars_2 <- read_rds("fit/vars_2.rds")</pre>
vars_5 <- read_rds("fit/vars_5.rds")</pre>
vars_10 <- read_rds("fit/vars_10.rds")</pre>
vars_100 <- read_rds("fit/vars_100.rds")</pre>
vars_500 <- read_rds("fit/vars_500.rds")</pre>
vars_950 <- read_rds("fit/vars_950.rds")</pre>
var_names <- c("vars_2", "vars_5", "vars_10", "vars_100", "vars_500", "vars_950")</pre>
results_df <- data.frame("Number of Variables" = numeric(),
                          RSS = numeric(),
                          rss_adjust = numeric(),
                          PE = numeric(),
                          PE_loo = numeric())
for (var_name in var_names) {
  # Retrieve the variable from the environment
  var_value <- get(var_name)</pre>
  # Append the values to the results data frame
  results_df <- rbind(results_df, data.frame("Number of Variables" = as.numeric(gsub("vars_", "", var_n
                                                RSS = var_value$RSS,
                                                RSS_adjust = var_value$rss_adjust,
                                                PE = var_value$pe,
                                                PE_loo = var_value$PE_loo
                                                ))
}
min_values <- sapply(results_df[, 2:5], min)</pre>
results_gt <- gt(results_df)</pre>
for (i in seq_along(min_values)) {
  results_gt <- results_gt %>%
    text_transform(
      locations = cells_body(
        columns = i+1,
        rows = results_df[[i+1]] == min_values[[i]]
      fn = function(x) {
        html("<span style='color: red;'>", x, "</span>")
      }
    )
}
gt_output2 <- "gt img/results_gt.png"</pre>
gtsave(results_gt, gt_output2)
```

RSS	RSS_adjust	PE	PE_loo
1012.94651	1016.9465	1030.172	1.048200
975.50314	985.5031	1006.064	1.085599
970.29381	990.2938	1011.273	1.090805
870.40886	1070.4089	1111.158	1.191656
458.74345	1458.7435	1522.824	1.602427
60.20503	1960.2050	1921.362	2.002739
	1012.94651 975.50314 970.29381 870.40886 458.74345	1012.94651 1016.9465 975.50314 985.5031 970.29381 990.2938 870.40886 1070.4089 458.74345 1458.7435	1012.94651 1016.9465 1030.172 975.50314 985.5031 1006.064 970.29381 990.2938 1011.273 870.40886 1070.4089 1111.158

The more variables you have the less will RSS be. So we don't get much information just by looking att RSS. Both RSS_adjust and pe suggests that 5 variables is the optimal number of variables. The prediction error using leave-one-out cross validation is best when only two varibales where used.