H20T3A2

- a) Bestimmen Sie alle holomorphen Funktionen $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ mit Re f(z) > 0 für alle $z \in \mathbb{C} \setminus \{0\}$. Hinweis: Überlegen Sie zunächst, warum die Singularität bei z = 0 hebbar ist.
- b) Es sei Log : $\mathbb{C} \setminus]-\infty,0] \to \mathbb{C}$ der Hauptzweig des Logarithmus. Bestimmen Sie den Konvergenzradius der Potenzreihe von Log mit Entwicklungspunkt $e^{\frac{3\pi i}{4}}$.

Zu a)

Da $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ holomorph ist, ist auch $e^{-f}: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ holomorph mit $\left|e^{-f(z)}\right| = e^{-Re\,f(z)} \le e^{-0} = 1$ für alle $z \in \mathbb{C} \setminus \{0\}$. Damit ist 0 eine hebbare Singularität von e^{-f} und es gibt eine holomorphe Fortsetzung $h: \mathbb{C} \to \mathbb{C}; z \to \begin{cases} e^{-f(z)}, z \neq 0 \\ h(0), z = 0 \end{cases}$ mit $|h(z)| \le 1$ für alle $z \in \mathbb{C}$. (denn $|h(0)| = \left|\lim_{z \to 0} e^{-f(z)}\right| \le 1$. Somit ist $|h(z)| \le 1$ holomorph mit $|e^{-f(z)}| \le 1$ für alle $|h(z)| \le 1$ für alle

Wegen $h(z) = c = e^{-f(z)}$ für alle $z \in \mathbb{C} \setminus \{0\}$ ist $c \neq 0$ und daher gibt es $\eta \in \mathbb{C}$ mit $c = e^{\eta}$, also ist $e^{-f(z)} = c = e^{\eta}$ für alle $z \in \mathbb{C} \setminus \{0\}$, also gilt $-f(z) - \eta = 2k\pi i, k \in \mathbb{Z}$ für alle $z \in \mathbb{C} \setminus \{0\}$, bzw. $f(z) \in \{-\eta + 2k\pi i : k \in \mathbb{Z}\}$. Da dies eine diskrete Menge ist und somit keine offene Teilmenge besitzt, so ist f konstant nach dem Satz von der Gebietstreue (da f holomorph auf dem Gebiet $\mathbb{C} \setminus \{0\}$, aber $f(\mathbb{C} \setminus \{0\})$ ist kein Gebiet).

Die gesuchten Funktionen haben also alle die Form $f_w: \mathbb{C}\setminus\{0\}\to\mathbb{C}; z\to w$ mit $w\in\mathbb{C}$, Re(w)>0.

$$e^{\frac{3\pi i}{4}} = -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \text{ und dann ist } dist\left(e^{\frac{3\pi i}{4}},] - \infty, 0\right] = \inf\left\{\left|-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} - x\right| x \in] - \infty, 0\right\}\right\} = \frac{1}{\sqrt{2}}.$$
Sei $M = \left\{z \in \mathbb{C} : \left|e^{3\pi i/4} - z\right| < \frac{1}{\sqrt{2}}\right\} \text{ und } f : M \to \mathbb{C}; z \to Log(z) \text{ die Einschränkung Log}_{M}.$

Da M eine offene Kreisscheibe mit Radius $\frac{1}{\sqrt{2}}$ um $e^{3\pi i/4}$ ist, ist f holomorph und die Potenzreihenentwicklung von f um $e^{3\pi i/4}$ konvergiert auf M, d.h. der Konvergenzradius der Potenzreihenentwicklung von Log in $e^{3\pi i/4}$ erfüllt $\rho \geq \frac{1}{\sqrt{2}}$.

Für $z = |z|e^{i\varphi} \in \mathbb{C} \setminus]-\infty,0]$ (d.h. für $\varphi \in]-\pi,\pi[$) gilt: $Log(z) = \ln(|z|) + i\varphi$. Deshalb gilt für $x \in]-\infty,0]$: $\lim_{\varphi \nearrow \pi} Log(|x|e^{i\varphi}) = \ln(|x|) + i\pi \neq \lim_{\varphi \searrow -\pi} Log(|x|e^{i\varphi}) = \ln(|x|) - i\pi$ und Log lässt sich deshalb an keiner Stelle $x \in]-\infty,0]$ stetig (also erst recht nicht holomorph) fortsetzen. Daher ist der Konvergenzradius von Log in $e^{3\pi i/4}$ auch $\rho \leq \frac{1}{\sqrt{2}}$. (Denn sonst gäbe diese Potenzreihe eine holomorphe Fortsetzung von Log auf Punkte von $]-\infty,0]$.)

Insgesamt ist also $\rho=\frac{1}{\sqrt{2}}=dist\left(e^{\frac{3\pi i}{4}},]-\infty,0]\right)$ der Konvergenzradius der Potenzreihenentwicklung von Log in $e^{\frac{3\pi i}{4}}$.