Draw a slope field for each of the following differential equations. Each tick mark is one unit.

$$2. \ \frac{dy}{dx} = 2y$$

$$3. \frac{dy}{dx} = x + y$$

$$4. \frac{dy}{dx} = 2x$$

$$5. \frac{dy}{dx} = y - 1$$

$$6. \frac{dy}{dx} = -\frac{y}{x}$$

Match the slope fields with their differential equations.

(A)

(B)

(C)

(D)

7.
$$\frac{dy}{dx} = \sin x$$
 8. $\frac{dy}{dx} = x - y$ 9. $\frac{dy}{dx} = 2 - y$ 10. $\frac{dy}{dx} = x$

9.
$$\frac{dy}{dx} = 2 - y$$

10.
$$\frac{dy}{dx} = x$$

Match the slope fields with their differential equations.

(A)

(B)

(C)

(D)

11.
$$\frac{dy}{dx} = 0.5x -$$

12.
$$\frac{dy}{dt} = 0.5y$$

13.
$$\frac{dy}{dx} = -\frac{x}{y}$$

11.
$$\frac{dy}{dx} = 0.5x - 1$$
 12. $\frac{dy}{dx} = 0.5y$ 13. $\frac{dy}{dx} = -\frac{x}{y}$ 14. $\frac{dy}{dx} = x + y$

The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?

(A)
$$y = x^2$$

$$(B) y = e^x$$

(C)
$$y = e^{-x}$$

(A)
$$y = x^2$$
 (B) $y = e^x$ (C) $y = e^{-x}$ (D) $y = \cos x$ (E) $y = \ln x$

(E)
$$y = \ln x$$

16.

The slope field for a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?

(A)
$$y = \sin x$$

$$(B) y = \cos x$$

(C)
$$y = x^2$$

(B)
$$y = \cos x$$
 (C) $y = x^2$ (D) $y = \frac{1}{6}x^3$ (E) $y = \ln x$

$$(E) \ \ y = \ln x$$

- 17. Consider the differential equation given by $\frac{dy}{dx} = \frac{xy}{2}$.
- (A) On the axes provided, sketch a slope field for the given differential equation.

- (B) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x) through the point (1, 1). Then use your tangent line equation to estimate the value of f(1.2).
- (C) Find the particular solution y = f(x) to the differential equation with the initial condition f(1) = 1. Use your solution to find f(1.2).
- (D) Compare your estimate of f(1.2) found in part (b) to the actual value of f(1.2) found in part
- (E) Was your estimate from part (b) an underestimate or an overestimate? Use your slope field to explain why.
- 18. Consider the differential equation given by $\frac{dy}{dx} = \frac{x}{y}$.
- (A) On the axes provided, sketch a slope field for the given differential equation.

- (B) Sketch a solution curve that passes through the point (0, 1) on your slope field.
- (C) Find the particular solution y = f(x) to the differential equation with the initial condition f(0) = 1.
- (D) Sketch a solution curve that passes through the point (0, -1) on your slope field.
- (E) Find the particular solution y = f(x) to the differential equation with the initial condition f(0) = -1.