Powerfunction Simulation for the z-Test

SETUP:

- Assumptions: Gaussian iid random sample (X_1, \ldots, X_n) , where $X_i \sim N(\mu, \sigma^2)$ for all $i = 1, \ldots, n$.
- Test H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$.
- Fix values for the significance level α , the mean μ , the variance σ^2 , and the sample size n. For instance: $\alpha = 0.05$, $\mu \in \{-2, -1.5, \dots, -0.5, 0, 0.5, \dots, 1.5, 0.2\}$, $\sigma = 1$, $\mu_0 = 0$, and $n = \{10, 15, 20\}$.

MONTE-CARLO ALGORITHM:

- 1. Simulate a realization from the iid random sample (X_1, \ldots, X_n) .
- 2. Compute $Z_{obs} = \frac{\sqrt{n}(\bar{X} \mu_0)}{\sigma}$, where $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$
- 3. Save test-decision:

Criterion	Decision	Save Value
$-\frac{1}{ Z_{obs} > q_{1-\alpha/2}}$	Rejection of H_0	D = 1
$ Z_{obs} < q_{1-\alpha/2}$	No rejection of H_0	D = 0

Repeat Steps 1-3 a large number of times, e.g., R = 10,000 times and save all binary test-decisions D_1, \ldots, D_R . Then

$$\beta_{n,\alpha}(\mu) \approx \bar{D}_R := \frac{1}{R} \sum_{r=1}^R D_r,$$

where the approximation error $|\beta_{n,\alpha}(\mu) - \bar{D}_R|$ can be made arbitrarily small as $R \to \infty$.

THEORETICAL JUSTIFICATION:

- $D := 1_{(|Z_{obs}| > q_{1-\alpha/2})} \in \{0, 1\}$ is a Bernoulli random variable with probabilities P(D = 1) = p and P(D = 0) = 1 p.
- Note that p depends on α , n, σ^2 , μ , and μ_0 .
- By the Weak Law of Large Numbers¹ we have that

$$\bar{D}_R \to_P E(D) = p$$
 as $R \to \infty$,

where $p = \beta_{n,\alpha}(\mu)$.

• That is, for instance under $H_0: \mu = \mu_0$, we have that $p = \alpha$.

¹See, for instance, www.statlect.com/asymptotic-theory/law-of-large-numbers