

COURSE STRUCTURE

Course Code	COS3117B
Course Category	Core
Course Title	Introduction to Machine Learning
Teaching Scheme and Credits	L T Laboratory Credits
Weekly load hrs.	3 2

Pre-requisites:

Basic knowledge of Linear algebra, probability and Statistics

Course Objectives:

- 1. Understanding various learning strategies
- 2. Mathematical representation of Machine learning problems and solutions

Course Outcomes:

Students will learn to

- 1. Use Machine learning using linear methods and non linear methods
- 2. Develop an appreciation for what is involved in learning models from data.
- 3. Understand a wide variety of learning algorithms.
- 4. Understand how to evaluate models generated from data.
- 5. Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.

Course Contents:

- 1. Introduction to Learning
- 2. Linear Regression
- 3. Classification
- 4. Neural Networks and Decision Tree
- 5. Unsupervised Learning
- 6. Support Vector Machines

Prepared By Checked and Verified By Approved By

Mr Navanth Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

Application Application

Prof. Dr. Shubhalaxmi Joshi

Learning Resources:

Reference Books:

- 1. Introduction to Machine Learning (Second Edition): Ethem Alpaydın, The MIT Press (2010).
- 2. Pattern Recognition and Machine Learning: Christopher M. Bishop, Springer (2006)
- 3. Bayesian Reasoning and Machine Learning: David Barber, Cambridge University Press (2012)
- 4. Machine Learning, Tom Mitchell

Web Resources:

- 1. https://towardsdatascience.com/
- 2. https://github.com/josephmisiti/awesome-machine-learning.

Pedagogy:

Participative learning, discussions, experiential learning through practical problem solving, assignments, numerical solving, Tutorial.

Assessment Scheme:

Class Continuous Assessment (CCA): 60 marks

Mid Term Examination	FAT 1	FAT 2 (Formative	
(MCQ Online Test	(Formative	Assessment Test 1)	Total
/Direct Internal	Assessment Test	,	
Examination	1)		
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 marks

Syllabus

Module	Contents		Workload in Hrs		
No.	Contents	Theory	Lab	Assess	
1	Introduction to Learning: Why Machine learning, Examples of Machine Learning, Problems, Structure of Learning. Supervised, Unsupervised and Reinforcement Learning.	3	-	-	

Prepared By

Checked and Verified By

Approved By

Prof. Dr. Shubhalaxmi Joshi

Mr Navanth Shete

Assistant Professor

Dept of Computer Science & Dean

Dept of Computer Science & Application

Dept of Computer Science & Application

Dept of Computer Science & Application

2	Linear regression: SSE; gradient descent; Simple Linear Regression, multiple linear regression Overfitting and underfitting; bias and variance, training, validation, test data	5	-	-
3	Classification: decision boundaries; nearest neighbor methods Probability and classification Linear classifiers: Bayes' Rule and Naive Bayes Model Logistic regression decision boundary (linear and non-linear), metrics for logistic regression (accuracy, sensitivity, specificity etcetera concepts), Receiver- operating characteristic (RoC) curve, use of RoC curve to find out optimum decision boundary	10	-	-
4	Neural Networks & Decision tree: Concept of neural networks, perceptron, decision tree, random forest	7	-	-
5	Unsupervised learning: clustering, k-means, hierarchical agglomeration, Dunn's index	2	-	-
6	Support vector machines: Concept of margin, support vectors and large-margin classifiers, kernel tricks	3		

Mr Navanth Shete
Assistant Professor
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application

COURSE STR UCTURE

Course Code					
Course Category	CORE	! !			
Course Title	Interne	Internet of Things			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs	3			2	

Pre-requisites:

- 1. Knowledge of networking, sensing, databases, programming, and related technology.
- 2. Familiarity with business concepts and marketing.

Course Objectives:

- 1. Vision and Introduction to IoT.
- 2. Understand IoT Market perspective.
- 3. Data and Knowledge Management and use of Devices in IoT Technology.
- 4. Understand State of the Art IoT Architecture.
- 5. Real World IoT Design Constraints, Industrial Automation and Commercial Building Automation in IoT.

Course Outcomes:

On completion of the course, student will be able to-

- 1. Students will understand IoT Market perspective.
- 2. Students will get Data and Knowledge Management and use of Devices in IoT Technology.
- 3. Students will understand State of the Art IoT Architecture.
- 4. Students will get Real World IoT Design Constraints, Industrial Automation and Commercial Building Automation in IoT.

Course Contents:

M2M to IoT

M2M to IoT – A Market Perspective

M2M and IoT Technology Fundamentals

IoT Architecture-State of the Art

IoT Reference Architecture

Prepared By Checked and Verified By Approved By

Ms Sheetal Rajapurkar Ms Sheetal Rajapurkar BoS Chairperson & Associate

Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science & Application Application

Learning Resources: Reference Books: 1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.Data Warehousing in the Real World, Anahory, Murray, Pearson Education 2. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014. 3. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013 **Supplementary Reading:** 1. Collaborative Internet of Things (C-IoT): For Future Smart Connected Life and Business 2. By Fawzi Behmann, Kwok Wu Weblinks: www.tutorialspoint.com **Pedagogy:** Participative learning, discussions, Problem Solving, experiential learning through practical problem solving, assignment, PowerPoint presentation **Assessment Scheme:**

Prepared By	Checked and Verified By	Approved By
		Prof. Dr. Shubhalaxmi Joshi
Ms Sheetal Rajapurkar	Ms Sheetal Rajapurkar	BoS Chairperson & Associate
Assistant Professor	Dept of Computer Science &	Dean
Dept of Computer Science &	Application	Dept of Computer Science &
Application		Application

Class Continuous Assessment (CCA) 60 Marks

Mid Term Ex	amination	FAT 1	FAT 2 (Formative	
(MCQ Online '	Γest /Direct	(Formative	Assessment Test 1)	Total
Internal Example 1	mination A	Assessment Test		
		1)		
30 Mar	rks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus:

Module	Contents		Workload in Hrs	
No.			Lab	Assess
	M2M to IoT			
1	The Vision-Introduction, From M2M to IoT, M2M towards IoT-	4		
	the global context, A use case example, Differing Characteristics			
	M2M to IoT – A Market Perspective			
	Introduction, M2M Value Chains, IoT Value Chains, An			
	emerging industrial structure for IoT, The international driven			
2	global value chain and global information monopolies. M2M to	4		
	IoT-An Architectural Overview—Building an architecture, Main			
	design principles and needed capabilities, An IoT architecture			
	outline, standards considerations			
	M2M and IoT Technology Fundamentals			
	Devices and gateways, Local and wide area networking, Data			
3	management, Business processes in IoT, Everything as a	7		
	Service(XaaS), M2M and IoT Analytics, Knowledge			
	Management			
4	IoT Architecture-State of the Art	7		

Ms Sheetal Rajapurkar Ms Sheetal Rajapurkar BoS Chairperson & Associated Assistant Professor Dept of Computer Science & Dept of Computer Science & Application Dept of Computer Science Application	sociate

	Introduction, State of the art, Architecture Reference Model-			
	Introduction, Reference Model and architecture, IoT reference			
	Model, CICSO Reference Model			
	IoT Reference Architecture			
	Introduction, Functional View, Information View, Deployment			
	and Operational View, Other Relevant architectural views. Real-			
5	World Design Constraints- Introduction, Technical Design	8		
	constraints-hardware is popular again, Data representation and	0		
	visualization, Interaction and remote control. Industrial			
	Automation- Service-oriented architecture-based device			
	integration,			

Prepared By

Checked and Verified By

Approved By

Prof. Dr. Shubhalaxmi Joshi

Ms Sheetal Rajapurkar

Assistant Professor

Dept of Computer Science & Dean

Dept of Computer Science & Application

Dept of Computer Science & Application

Dept of Computer Science & Application

Prepared By

Checked and Verified By

Approved By

Ms Sheetal Rajapurkar Assistant Professor Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application Prof. Dr. Shubhalaxmi Joshi BoS Chairperson & Associate Dean Dept of Computer Science & Application

Sign
(< Name >
<(Dean / Director / Principal)>

COURSE STR UCTURE

Course Code					
Course Category	B.Sc. C	B.Sc. Computer Science			
Course Title	Theore	Theoretical Computer Science			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs	3			2	

Pre-requisites:

1. Basic understanding of mathematical concepts

Course Objectives:

- 1. To understand concept of Regular languages and Finite Automata
- 2. To understand concepts of Context free languages and Pushdown Automata
- 3. To understand concepts of Turing Machine

Course Outcomes:

On completion of the course, student will be able to—functioning, capabilities, computability, complexity as well as the limitations of different mathematical models

Course Contents:

Introduction

Symbol, Alphabet, String, Prefix & Suffix of Strings

Regular Expression, Regular Language and Finite Automata

Regular expression: Definition & Example, Regular Expressions Identities.

Context Free Grammar and Languages

Grammar-Definition and Examples, Derivation, Reduction, Definition and Examples.

Push Down Automaton

Definition of PDA and examples, Construction of PDA using empty stack and final State method **Turing Machine**

Model and Definition of TM, Design of Turing Machines

Learning Resources:

Prepared By Checked and Verified By Approved By

Ms Gauri Dhongade Ms Sheetal Rajapurkar BoS Chairperson & Associate
Teaching Associate Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

Prof. Dr. Shubhalaxmi Joshi

Reference Books:

- 1. Introduction to Automata theory, Languages and computation By John E. Hopcroft and Jeffrey Ullman –Narosa Publishing House.
- 2. Theory of Computer Science (Automata, Language & Computation) K. L. P. Mishra & N. Chandrasekaran, PHI Second Edition
- 3. Introduction to Automata theory, Languages and computation By John Hopcroft, Rajeev Motwani and Jeffrey Ullman –Third edition Pearson Education

Pedagogy:

Participative learning, discussions, algorithm, Flowchart & Program writing, experiential learning through practical problem solving, assignment, PowerPoint presentation.

Assessment Scheme:

Class Continuous Assessment (CCA) 60 Marks

Mid Term Examination (MCQ Online Test /Direct Internal Examination	FAT 1 (Formative Assessment Test 1)	FAT 2 (Formative Assessment Test 1)	Total
30 Marks	15 Marks	15 Marks	60 Marks

Term End Examination: 40 Marks

Syllabus:

Module	Contents	Workload in Hrs			
No.	Contents	Theory	Lab	Assess	
Prepa	ed By Checked and Verified By Approved By				

Ms Gauri Dhongade Teaching Associate Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

1	Unit 1: Introduction Symbol, Alphabet, String, Prefix & Suffix of Strings, Formal Language, Operations on Languages.	1	-	-
2	Unit 2: Regular Expression, Regular Language and Finite Automata Regular expression: Definition & Example Regular Expressions Identities. Finite Automata Deterministic finite Automaton -Definition, DFA as language recognizer, DFA as a pattern recognizer. Nondeterministic finite automaton- Definition and Examples. NFA TO DFA NFA with \(\varepsilon\)-Transitions- Definition and Examples. NFA with \(\varepsilon\)-Transitions to DFA & Examples Finite automaton with output-Mealy and Moore machine, Definition and Examples Minimization of DFA-Algorithm & Problem using Table Method. Regular Languages-Definition and Examples. Conversion of RE To FA-Examples. Pumping lemma for regular languages and applications. Closure properties of regular Languages (Union, Concatenation, Complement, Intersection and Kleene closure)	9	-	-
3	Unit 3: Context Free Grammar and Languages Grammar-Definition and Examples Derivation, Reduction, Definition and Examples. Chomsky Hierarchy. CFG- Definition & Examples. LMD, RMD, ,Parse Tree Ambiguous Grammar- Concept & Examples. Simplification of CFG: Removing Useless Symbols, Removing unit productions	8	-	-

Ms Gauri Dhongade Teaching Associate Dept of Computer Science & Application Ms Sheetal Rajapurkar Dept of Computer Science & Application

	Removing ϵ productions & Nullable symbols Normal Forms: Chomsky Normal Form (CNF) Method & Problem Greibach Normal form (GNF) Method & Problem Regular Grammar: Definition Left linear and Right Linear Grammar-Definition and Example.			
	Equivalence of FA & Regular Grammar Construction of regular grammar equivalent to a given DFA Construction of a FA from the given right linear grammar Closure Properties of CFL's (Union, concatenation and Kleen closure) Method and examples			
4	Unit 4: Push Down Automaton Definition of PDA and examples Construction of PDA using empty stack and final State method: Examples using stack method Definition DPDA & NPDA Examples of DPDA & NPDA CFG (in GNF) to PDA: Method and examples	6	-	-
5	Unit 5: Turing Machine Model and Definition of TM Design of Turing Machines Problems on language recognizers. Language accepted by TM Types of Turing Machines Introduction to LBA (Basic Model) & CSG(Without Problems) Recursive Languages and Recursively enumerable Languages. Turing Machine Limitations	6	-	-

Ms Gauri Dhongade M
Teaching Associate Dept of Computer Science & A
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application

COURSE STRUCTURE

Course Code				
Course Category	Cor	Core Computer Science		
Course Title	Lab	Lab on ML		
Teaching Scheme and Credits	L	T	Laboratory	Credits
Weekly load hrs.	-	-	3	1

Pre-requisites:

- 1. Knowledge of Python
- 2. Desirable: Knowledge of Jupyter Notebook, Scikit-Learn

CourseObjectives:

- 1. To implement Machine Learning algorithms in Python.
- 2. To use the algorithm to solve real life problems

Course Outcomes:

Student will be able to

- 1. Construct and implement Python codes for Machine learning algorithms.
- 2. Implement the Python codes on real life data.
- 3. Analyze and improve the performance of the Python codes for better solutions.

Course Contents:

- 1. Linear Regression
- 2. Classification
- 3. Neural Networks and Decision Tree
- 4. Unsupervised Learning
- 5. Support Vector Machines

Learning Resources:

Reference Books:

- 1. Introduction to Machine Learning with Python, Andreas C. Müller & Sarah Guido, O'reilly.
- 2. Hands-on Machine Learning with Scikit-Learn & TensorFlow, Aurélien Géron, O'reilly.

3.

Prepared By Checked and Verified By Approved By

Prof. Dr. Shubhalaxmi Joshi

Mr Navanath Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean

Dept of Computer Science & Application Dept of Computer Science &

Application Application

Data Resources:

- 1. https://www.kaggle.com/
- 2. https://github.com/

Weblinks:

- 1. https://www.tutorialspoint.com/android/index.htm
- 2. https://www.javatpoint.com/android-tutorial
- 3. https://www.tutorialspoint.com/ios/index.htm
- 4. https://www.raywenderlich.com/ios

Pedagogy:

- 1. Practical development of Python codes for Machine Learning algorithms
- 2. Analyzing and improving the performance of the Python codes using Scikit-Learn.
- 3. Implementing on real life data.
- 4. Participative learning, discussions, algorithm, programming concepts, experiential learning through practical problem solving, assignments, Tutorial

Assessment Scheme: (LCA & END TERM):

Laboratory Continuous Assessment (LCA): 60 marks

Mid Term Lab Test (MCQ Online Test /Direct Internal Examination	Lab Performance	Lab Assignment / Lab Book	Total
30 Marks	20 Marks	10 Marks	60 Marks

Term End Examination: 40 marks

Syllabus:

Prepared By Checked and Verified By Approved By

Mr Navanath Shete Ms Sheetal Rajapurkar BoS Chairperson & Associate
Assistant Professor Dept of Computer Science & Dean
Dept of Computer Science & Application Dept of Computer Science & Application

Application Application

Prof. Dr. Shubhalaxmi Joshi

Module	Lab Work	No. of Labs
	Practice visualization using matplotlib, seaborn.	
1	Implement simple linear regression model on a standard data set and plot the	02
	least square regression fit. Comment on the result. [One may use inbuilt data	
	sets like Boston, Auto etc]	
	Implement multiple regression model on a standard data set and plot the	
2	least square regression fit. Comment on the result. [One may use inbuilt	02
	data sets like Carseats, Boston etc].	
	Fit a classification model using following:	10
3	(i) logistic regression	
	(ii) k-nearest neighbour	
	(iii) Naïve Bayes	
	(iv) Decision tree	
	(v) Perceptron	
	on a standard data set and compares the results based on standard metrics.	
	[Inbuilt datasets like Smarket, Weekly, Auto, Boston etc may be used for	
	the purpose].	
	Implement clustering with the following:	10
4	(i) K-means	
	(ii) Hierarchical clustering	
	On a standard data set like Iris, etc.	
	Implement SVM on a standard data set by selecting different kernels like RBF,	06
5	Linear, Polynomial. Comment on result based on standard metrics.	

Mr Navanath Shete
Assistant Professor
Dept of Computer Science &
Application

Ms Sheetal Rajapurkar Dept of Computer Science & Application