Machine Learning

Instructor

Dr. Ashwini Kumar Singh

<u>UNIT-1</u>

Review of logic and knowledge system - language, axiom, hypothesis, theorem, logic & types, what is ML, Inductive bias in ML, AI pyramid, Pattern classification pipeline, Linear algebra in ML, Probabilistic logic and statistical inference (Random expt./ variable), CDF, WLLN, Bayes, Markov & Chernoff bound, Hypothesis testing and performance indices - ROC, Estimation detection, Optimality of Bayes, bias-variance, underfit-overfit, entropy as Information, Cover's packing lemma, Curse of dimensionality, Case study: Wealth - optimal payoffs in portfolios (stock market).

(Layman's term)

Human can learn from past experience and make decision of its own

What is this object?

What is this object?

Let us ask the same question to him

What is this object?

Let us ask the same question to him

[But, he is a human being. He can observe and learn]

Let us make him learn

Let us make him learn

Let us ask the same question now

What is this object?

CAR

CAR

BIKE

BIKE

Past experience

Let us ask the same question now

What about a Machine?

Machines follow instructions

[It can not take decision of its own]

What about a Machine?

We can ask a machine

- To perform an arithmetic operations such as
 - Addition
 - Multiplication
 - Division

Machines follow instructions

What about a Machine?

- Comparison
- Print
- Plotting a chart

Machines follow instructions

[We want a machine to act like a human]

[to identify this object.]

Price in 2025?

[predict the price in future]

I made met him yesterday

[Natural Language understand, and correct grammar]

[Recognize Faces]

[What do we do?

Just like, what we did to human,

we need to provide experience to the machine.

]

[
This what we called as Data or Training dataset

So, we first need to provide training dataset to the machine

[extract required patterns]

In summary, what is machine learning?

Given a machine learning problem

- Identify and create the appropriate dataset
- Perform computation to learn
 - Required rules, pattern and relations

Machine Learning Paradigms

- Supervised
- Unsupervised Learning
- Reinforcement learning

[We as human being solve various types of problem in our day-to-day life, <pause> Various decisions need to be taken.

Depending on the nature of the problem, machine learning tasks can be broadly divided in]

[In supervised learning, we need some thing called a Labelled Training Dataset]

[Given a labelled dataset, the task is to devise a function which takes the dataset, and a new sample, and produces an output value.]

[Given a labelled dataset, the task is to devise a function which takes the dataset, and a new sample, and produces an output value.]

[Given a labelled dataset, the task is to devise a function which takes the dataset, and a new sample, and produces an output value.]

[If the possible output values of the function are predefined and discrete/categorical, it is called Classification

[Predefined classes means, it will produce output only from the labels defined in the dataset. For example, even if we input a bus, it will produce either CAR or BIKE] $$_{34}$$

Classifier

Dataset

Regression

Dataset

Regression

The classification and Regression problems are supervised, because the decision depends on the characteristics of the ground truth labels or values present in the dataset, which we define as experience]

What is Unsupervised Learning

Dataset

[In the unsupervised learning, we do not need to know the labels or Ground truth values]

What is Unsupervised Learning

Clustering

Dataset

[The task is to identify the patterns like group the similar objects together]

What is Unsupervised Learning

Dataset

Association Rules Mining

[Association rules like]

More Example Unsupervised Learning

Dataset

More Example Unsupervised Learning

Dataset

More Example Unsupervised Learning

Customers who viewed this item also viewed

agent

Another Example

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

Baby Learn from the Trials and Errors

Reinforcement Learning

Machine Learning:

Study of algorithms that

- improve their performance P
- at some task T
- with experience E

well-defined learning task: <P,T,E>

First machine learning model from Scratch

Teach a machine to identify vehicle types

#Wheel Height Weight Color

Identify the features which can represent the objects

$$F = \{f_1 f_2 f_3 \dots f_k\}$$

Feature set={ #Wheel Height Weight Color }

#Wheel Height Weight Color

Identify the features which can represent the objects

$$F = \{f_1 f_2 f_3 \dots f_k\}$$

For every sample, assign value to corresponding feature

$$v_i = \{w_{i1}w_{i2}w_{i3} \dots w_{ik}\}$$

where w_{ij} is the value assigned for the feature f_j

For every object, assign value to corresponding feature

$$v_i = \{w_{i1}w_{i2}w_{i3}...w_{ik}\}$$

where w_{ij} is the value assigned for the feature f_j

Vector Space Model

This form of representation is called **Vector Space Model**

Are all features useful? **Features** #Wheel Height Weight Color **Features Vectors** Red < 500 Blue 5.5 600 **Good Features** • #Wheel 5 550 Yellow Height • Weight 2 200 Red **Bad Feature** 2 3.5 150 blue • Colour 2 Yellow 250

Let us consider single feature

Given the #Wheel, identify the vehicle

Let us estimate

Let us estimate the probability (type | #wheel)

Ask the question now

There are multiple ways

There are multiple ways

If selected feature is not sufficient

If selected feature is not sufficient

More Features

Estimate the probabilities, and ask the same question

Estimate the probabilities, and ask the same question

Multiple ways

Multiple ways

Summary

- Identify the features
- Represent the vehicles by the features
- Remove non-informative features
- Build the classification model from the data
- Perform the classification task

Machine Learning vs Programming

Traditional Programming

Output

Computer

Automating automation

Getting computers to

Program