LEHRSTUHL FÜR DATENBANKSYSTEME UND DATA MINING

Kapitel 4: Suchen

Einfache Suchverfahren: Lineare Suche, Binäre Suche, Interpolationssuche

Suchbäume: Binäre Suchbäume, AVL- Bäume, Splay-Bäume, B-Baum, R-Baum Hashing

Motivation zum Suchen

- Anwendungsbeispiele:
 - Daten zu bestimmtem Schlüssel in einer Datenbank abfragen
 - Warensendung in einem Regallager finden
 - Eintrag in einem Wörterbuch

 In der Regel werden Duplikate ausgeschlossen, also jeder Schlüssel identifiziert maximal

einen Datensatz

Dr. Marcus Gossler (https://commons.wikimedia.org/wiki/File:Latin_dictionary.jpg), "Latin dictionary", https://creativecommons.org/licenses/by-sa/3.0/legalcode

Heinrich Taxis GmbH + Co. KG (https://commons.wikimedia.org/wiki/File:Hochregallager.jpg), https://creativecommons.org/licenses/by-sa/4.0/legalcode

Problemdefinition "Suchen"

- Universum: Die Menge, in der die Schlüsselwerte existieren.
 - Beispiel: European Article Number (EAN-13) $|U| = 10^{13}$

Eingabe:

Folge von Datensätzen

$$D_1, D_2, D_3, \dots, D_n = S \subset U$$

- Jeder Datensatz besitzt eine Schlüsselkomponente D_i . key
- Jeder Datensatz kann außerdem weitere Informationseinheiten enthalten (z.B. Name, Adresse, PLZ, etc.)

Ausgabe:

- Falls der Schlüssel nicht vorhanden ist, ist das Resultat leer
- Sonst liefere Daten zum enthaltenen Schlüssel

Suche nach nicht-vorhandenen Schlüsseln

- Im Allgemeinen dauert die Suche nach einem Element, welches nicht in S enthalten ist, länger als die Suche nach enthaltenen Elementen.
 - Erfolgreiche Suche: kann oft frühzeitig abgebrochen werden (wenn das Element gefunden wurde)
 - Nicht erfolgreiche Suche: bis zum Ende suchen, um sicherzustellen, dass der Schlüssel nicht in S enthalten ist.

Lineare Suche

Lineare Suche durchläuft S sequenziell

```
seek(2) S = 9,A = 5,C = 3,D = 1,G = 2,H = 6,B = 7,F = 8,M = 4,I = 10,E
```

- Wird auch als sequenzielle Suche bezeichnet
- S kann ungeordnet sein

```
Object seek (Integer a, Entry<Integer,Object>[] S) {
  for (int i = 0; i < S.length; i++) {
    if (S[i].getKey() == a)
      return S[i].getValue();
  }
  return null;
}</pre>
```

Lineare Suche: Komplexität

- Annahme: Die Wahrscheinlichkeit, dass der gesuchte Schlüssel an Position $1 \le i \le n$ ist, beträgt $\frac{1}{n}$ (jede Position ist gleich wahrscheinlich).
- Falls Schlüssel enthalten ist, werden im Mittel $\frac{n}{2}$ Vergleiche benötigt.
- Im schlimmsten Fall wird die gesamte Liste durchlaufen $\Rightarrow O(n)$

Binäre Suche

Voraussetzung: S ist sortiert

Binäre Suche halbiert den Suchbereich sukzessive

```
Object seek (Integer a, Entry<Integer,Object>[] S) {
  int low=0;
  int high = S.length-1;
  while (low <= high) {
    int mid = (high + low)/2;
    if (a == S[mid])
      return mid;
    else if (a < S[mid])
      high = mid - 1;
    else /* a > S[mid] */
      low = mid + 1;
  }
  return null;
}
```

Binäre Suche: Komplexität

- Falls Liste nicht vorsortiert ist, entsteht Zusatzaufwand $O(n \log n)$.
- Daher für allem geeignet bei
 - Vorsortierten Daten.
 - Daten, die selten verändert, aber auf denen häufig gesucht wird.
- Bei jedem Schleifendurchlauf halbiert sich der durchsuchte Bereich $T(n) = T\left(\frac{n}{2}\right) + 1$
- Damit ist die Komplexität $O(\log n)$, auch im Worst-Case.

Anwendungsbeispiel: Suffix-Array

- Problem: Suche nach Teilzeichenketten P (Pattern) in einer Sequenz S (Text, DNA, Signal, ...)
- Beispiel: Die Zeichenkette "münchen" enthält unter anderem "mü", "ünch", "chen", …
- Die Suche nach dem Pattern "apfel" wird erfolglos bleiben.
- Trivialer Ansatz (wie lineare Suche):
 - Durchlaufe S mit einem Suchfenster der Größe P.
 - Teste für jede Position alle Fenstersymbole auf Gleichheit mit S.
 - -O(|P||S|), geht das besser?

SuffixArray: Aufbau

S: M I S S I S S I P P I \$

Array mit Indexpositionen erstellen Jede Position repräsentiert ein Suffix:

	8 9 10 11
M	P P I \$ P I \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

SuffixArray: Aufbau

S: M I S S I S S I P P I \$

Generiertes Indexarray lexikographisch sortieren

11	10	7	4	1	0	9	8	6	3	5	2
\$	\$	I P P I \$	S	S S P P S S \$	M I S S I P P I S S I	P \$	P P \$	S I P P I \$	S S P P \$	S S I P P I \$	S S I S S I P P I \$

SuffixArray: Speicherung mit Zeigern

SuffixArray: Suche

• Suche P = SSI

SSI > M...

\$ I I I I M P P S S S S S S S S S S S S S S S S S	
P S S S \$ I P S I I I P S I I P S P S P S P S P S	S S I S I P P I \$

SuffixArray: Suche

• Suche P = SSI

11	10	7	4	1	0	9	8	6	3	5	2
\$	 \$	P	S	S	M	P \$	P P I \$	S I P P I \$	S	S S I P P I \$	S S I S S I P P I \$

SuffixArray: Suche

• Suche P = SSI

SSI ~ SSI...

11	10	7	4	1	0	9	8	6	3	5	2
11 \$	10 \$	P	1 S S I P I \$	1	M S S P P S S I	9 P \$	8 P P I \$	S P S	3 S S P P \$	5 S S I P P I \$	S S I S S I P P I \$
				\$	\$						

SuffixArray: Komplexität

- $O(\log |S|)$ Schritte für die Suche (binäre Suche)
- O(|P|) Zeichenvergleiche in jedem dieser Schritte
- Insgesamt: $O(|P| \log |S|)$ Zeichenvergleiche insgesamt mit O(|S|) Speicher.

Interpolationssuche

Voraussetzung: S ist sortiert, Elemente sind gleichverteilt

```
seek(7) S = 1,A 2,C 3,D 4,G 5,H 6,B 7,F 8,M 9,I 10,E
```

Schätze gesuchte Position durch lineare Interpolation

Interpolationssuche

Voraussetzung: S ist sortiert, Elemente sind gleichverteilt

Schätze gesuchte Position durch lineare Interpolation

Interpolationssuche: Komplexität

- Worst-Case (keine Gleichverteilung der Elemente):
 - O(n), denn betrachte folgendes Beispiel mit seek(9):

• Average-Case Komplexität: $O(\log \log n)$ (ohne Beweis)

Zusammenfassung: Einfache Suche

Methode	Lineare Suche	Binäre Suche	Interpolationssuche
Suche (Avg.)	$\frac{n+1}{2}$	$[\log_2 n + 1]$	$\log \log n$
Suche (Worst)	n	$[\log_2 n + 1]$	n
Speicher	n	n	n
Vorteil	Keine Initialisierung	Worst-Case auch $O(\log n)$	Schnelle Suche
Nachteil	Hohe Suchkosten	Sortiertes Array	Sortiertes Array Starke Bedingung an Datenverteilung

Suche in Bäumen

- Bisher Suche in linearen Strukturen (Mengen, Listen)
- Sortierte Arrays nur sinnvoll für statische Mengen, da Einfügen und Entfernen in O(n) liegen.
- Nun betrachten wir Bäume, um Daten strukturiert zu speichern.
- Einfügen, Löschen und Suchen von Elementen ist komplexer.
- Effiziente Lösungen für die Verwendung eines Sekundärspeichers.

11 17 18 19 23 32 37 38 39 42 43 45 48

- Start bei der Mitte -> Wurzel
- Aufteilen in linken und rechten Teil (ohne Mitte)

- Start bei der Mitte -> Wurzel
- Aufteilen in linken und rechten Teil (ohne Mitte)

- Start bei der Mitte -> Wurzel
- Aufteilen in linken und rechten Teil (ohne Mitte)

- Start bei der Mitte -> Wurzel
- Aufteilen in linken und rechten Teil (ohne Mitte)

Binäre Suchbäume: Definition

Ein binärer Suchbaum für eine Menge von Schlüsseln

$$S = \{x_1, x_2, \dots, x_n\}$$

besteht aus einer Menge beschrifteter Knoten

$$v = \{v_1, v_2, \dots, v_n\}$$

mit Beschriftungsfunktion $value: v \rightarrow S$

• Die Beschriftungsfunktion bewahrt die Ordnung in der Form: Wenn v_i im linken Teilbaum von v_k liegt und v_j im rechten Teilbaum dann $value(v_i) \leq value(v_k) \leq value(v_j)$

Binärer Suchbaum vs. Heap

- Ein binärer Suchbaum und ein Heap unterscheiden sich durch ihre strukturellen Invarianten:
 - Wenn v_i im linken Teilbaum von v_k liegt und v_j im rechten Teilbaum, dann gilt:

Min-Heap	Binärer Suchbaum	Max-Heap
$value(v_k) \le value(v_i)$ $value(v_k) \le value(v_j)$	$value(v_i) \le value(v_k)$ $value(v_k) \le value(v_j)$	$value(v_i) \le value(v_k)$ $value(v_j) \le value(v_k)$
9	18	32
11 17	11 23	17 23
32 23 18 19	9 17 19 32	9 11 19 18

- Idee: Rekursive Erkundung eines Pfades
 - Suche nach Schlüssel s beginnt an der Wurzel v = root
 - Falls der aktuelle Knoten v Schlüssel s enthält $\rightarrow s$ gefunden!
 - Falls nicht:
 - v ist Blatt $\rightarrow s$ nicht enthalten!
 - Schlüssel ist kleiner als $value(v) \rightarrow Suche im linken Teilbaum$
 - Schlüssel ist größer als $value(v) \rightarrow Suche im rechten Teilbaum$

- Idee: Rekursive Erkundung eines Pfades
 - Suche nach Schlüssel s beginnt an der Wurzel v = root
 - Falls der aktuelle Knoten v Schlüssel s enthält $\rightarrow s$ gefunden!
 - Falls nicht:
 - v ist Blatt $\rightarrow s$ nicht enthalten!
 - Schlüssel ist kleiner als $value(v) \rightarrow Suche im linken Teilbaum$
 - Schlüssel ist größer als $value(v) \rightarrow Suche im rechten Teilbaum$
- Beispiel: Suche nach 17

- Idee: Rekursive Erkundung eines Pfades
 - Suche nach Schlüssel s beginnt an der Wurzel v = root
 - Falls der aktuelle Knoten v Schlüssel s enthält $\rightarrow s$ gefunden!
 - Falls nicht:
 - v ist Blatt $\rightarrow s$ nicht enthalten!
 - Schlüssel ist kleiner als $value(v) \rightarrow Suche im linken Teilbaum$
 - Schlüssel ist größer als $value(v) \rightarrow Suche im rechten Teilbaum$
- Beispiel: Suche nach 17

- Idee: Rekursive Erkundung eines Pfades
 - Suche nach Schlüssel s beginnt an der Wurzel v = root
 - Falls der aktuelle Knoten v Schlüssel s enthält $\rightarrow s$ gefunden!
 - Falls nicht:
 - v ist Blatt $\rightarrow s$ nicht enthalten!
 - Schlüssel ist kleiner als $value(v) \rightarrow Suche im linken Teilbaum$
 - Schlüssel ist größer als $value(v) \rightarrow Suche im rechten Teilbaum$
- Beispiel: Suche nach 17

Binäre Suchbäume: Implementierung Knoten

- Basierend auf Binärbäumen
- Schlüsselwert muss vergleichbar sein
 - In Java: Comparable-Interface
- Objekte können auch vergleichbar sein, z.B. Integer, Double...

```
class Node {
 Comparable key;
 Object value;
 Node left;
 Node right;
 // Einfügen eines Schlüssel-Objekt-Paares:
 Object insert(Comparable key, Object value);
 // Suche des Werts zu einem Objekt:
 Object get(Comparable key);
  // Löschen eines Schlüssel-Objekt-Paares:
  remove(Comparable key);
```

Binäre Suchbäume: BST()

- Wrapper BST sinnvoll, damit leere Bäume repräsentiert werden können.
- Datenkapselung: Strukturinformationen bleiben in den Klassen, außer Werten und Schlüssel keine Rückgabe.

```
class BST {
 Node root;
  int size();
  boolean isEmpty();
 // Einfügen eines Schlüssel-Objekt-Paares:
 Object insert(Comparable key, Object value);
 // Suche des Werts zu einem Objekt:
 Object get(Comparable key);
 // Löschen eines Schlüssel-Objekt-Paares:
  remove(Comparable key);
```

Binäre Suchbäume: get(key)

```
// In BST:
Object get(Comparable key){
  return (root == null ? null : root.get(key));
// In Node:
Object get(Comparable key){
  if(key == this.key)
    return this.value;
  if(key < this.key && this.left != null)</pre>
    return this.left.get(key);
  if(key > this.key && this.right != null)
    return this.right.get(key);
  return null;
```

Binäre Suchbäume: Einfügen

- Intuition für insert(key, value)
 - Suche den Schlüssel key im Baum.
 - Falls key schon im Baum existiert, ersetze das vorherige Objekt.
 - Falls nicht, hält die Suche in einem Blatt.
 - Abhängig vom Blattschlüssel füge einen neuen Knoten mit (key, value) als linker oder rechter Kindknoten bei diesem Blatt ein.

Binäre Suchbäume: Löschen

- Intuition für remove(key)
 - Suche den Knoten v mit Schlüssel key im Baum.
 - Falls key nicht im Baum existiert, passiert nichts.
 - Falls v ein Blatt ist, lösche den Zeiger darauf.
 - Falls v ein innerer Knoten ist, finde rechtesten Knoten v' (größten Schlüssel) im linken Teilbaum. Tausche v mit v'. Lösche dann den Blattknoten v.

Remove(18)

Suchbäume für lexikografische Schlüssel

- Beispiel: Deutsche Monatsnamen
 - Sortierung lexikographisch

Einfügen in kalendarischer Reihenfolge (nicht mehr ausbalanciert

- Ausgabe durch InOrder-Traversierung (siehe Kap. 1):
- Apr Aug Dez Feb Jan Jul Jun Mae Mai Nov Okt Sep

Binäre Suchbäume: Komplexität

- Analyse der Laufzeit Insert und Remove
 - Suchen der entsprechenden Position im Baum.
 - Lokale Änderungen im Baum in O(1).
- Analyse des Suchverfahrens
 - Anzahl Vergleiche entspricht maximale Pfadtiefe des Baumes
 - Sei h(t) die Höhe des Baumes t, dann ist die Komplexität der Suche O(h(t)).
 - Wir wissen: Hat t genau n Knoten, dann gilt: $h+1 \le n \le 2^{h+1}-1$
 - Damit gilt im Worst-Case Komplexität O(n) und im Best-Case $O(\log n)$.

Binäre Suchbäume: Fazit

- Operationen insert(), get() und remove() haben im optimalen Fall eine gute Komplexität $O(\log n)$.
- Die Operationen insert() und remove() können den Baum aber entarten lassen zu einer linearen Liste.

- Idee: Modifiziere insert() und remove(), sodass die Teilbäume jedes Knotens ungefähr gleich groß bleiben.
- Diese Eigenschaft nennt man balanciert.

AVL-Bäume

- Historisch erste Variante eines balancierten Baums.
- Name basiert auf den Erfindern: Adelson-Velsky & Landis.
- Definition: Ein AVL-Baum ist ein binärer Suchbaum mit folgender Strukturbedingung: Für alle Knoten gilt, dass die Höhen der beiden Teilbäume sich höchstens um eins unterscheiden.
- Die Suche funktioniert exakt so wie bei binären Suchbäumen.
- Nur nach insert und remove muss eventuell rebalanciert werden.

AVL-Bäume: Beispiele

- Untersuchung der Komplexität
 - Die Operation Search hängt weiterhin von der Höhe des Baums ab.
 - Frage: Wie hoch kann ein AVL-Baum für eine gegebene Knotenanzahl n maximal werden?
 - Oder: Aus wie vielen Knoten muss ein AVL-Baum der Höhe h mindestens bestehen?

AVL-Bäume: Anzahl der Knoten

- Gesucht ist die minimale Knotenanzahl.
- Betrachte minimal gefüllte Bäume. N(h) sei die minimale Anzahl Knoten eines AVL-Baums der Höhe h.
 - Höhe h = 0: N(h) = 1Wurzel
 - Höhe h = 0: N(h) = 2 nur ein Zweig gefüllt
 - Höhe h = 0: N(h) = 3Wurzel mit einem min. Baum h = 1und einem min. Baum h = 2

AVL-Bäume: Anzahl der Knoten

- Für beliebigen minimal gefüllten AVL-Baum der Höhe $h \ge 2$ gilt:
 - Die Wurzel besitzt zwei Teilbäume
 - Ein Teilbaum hat die Höhe h-1
 - Der andere Teilbaum hat die Höhe h-2

AVL-Bäume: Anzahl der Knoten

Für beliebigen minimal gefüllten AVL-Baum gilt damit:

$$N(h) = \begin{cases} 1 & , h = 0 \\ 2 & , h = 1 \\ N(h-1) + N(h-2) + 1 & , h > 1 \end{cases}$$

- -N(h) = 1, 2, 4, 7, 12, 20, 33, 54
- Zur Erinnerung die Fibonacci-Reihe:

$$fib(h) = \begin{cases} 0 & , h = 0 \\ 1 & , h = 1 \\ fib(h-1) + fib(h-2) & , h > 1 \end{cases}$$

$$- fib(h) = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$$

- Beweisbar: N(h) = fib(h+3) 1
- Daher heißen AVL-Bäume auch Fibonacci-Bäume.

AVL-Bäume: Höhe in Abhängigkeit der Knotenanzahl

- N(h) = fib(h+3) 1
- Formel von Moivre-Binet: $fib(h) = \frac{\varphi^h \psi^h}{\sqrt{5}}$ mit $\varphi = \frac{1 + \sqrt{5}}{2}$, $\psi = \frac{1 \sqrt{5}}{2}$
- Für große h gilt: $fib(h) \approx \frac{\varphi^h}{\sqrt{5}}$
- Damit gilt für $N(h) \le n$:

$$fib(h+3) - 1 \le n$$

$$\Leftrightarrow \frac{\varphi^{h+1}}{\sqrt{5}} \le n+1$$

$$\Leftrightarrow \log_{\varphi} \frac{1}{\sqrt{5}} + h + 3 \le \log_{\varphi}(n+1)$$

$$\Leftrightarrow h \le \log_{\varphi}(n+1) + const$$

$$\Leftrightarrow h \le \frac{\log_{2}(n+1)}{\log_{2}\varphi} = 1.4404 \log_{2}(n+1) + const$$

• Ein AVL-Baum ist maximal 44% höher als ein maximal ausgeglichener binärer Suchbaum (Suchkomplexität).

AVL-Bäume: Balance

- Wie müssen die Operationen Einfügen und Löschen verändert werden, damit die Balance eines AVL-Baums gewährleistet wird?
- Wir speichern bei jedem Knoten die Höhendifferenz (Balance b) der beiden Teilbäume:

 $b = H\ddot{o}he(rechter Teilbaum) - H\ddot{o}he(Linker Teilbaum)$

AVL-Bäume: Einfügen

- Zuerst normales Einfügen wie bei binären Bäumen.
- Beim Einfügen kann sich nur die Balance b von Knoten ändern, die auf dem Suchpfad liegen.
- Wird das AVL-Kriterium verletzt, gehe den Suchpfad zurück und aktualisiere die Balance.

AVL-Bäume: Einfachrotation

Rechtsrotation (rechts-rechts)

Beispiel: Einfügung war in Teilbaum "links links" (Balance=-2)

Kritischer Knoten n+2 n+2 n+1 n+2 n+1 n+1 n+2 n+1 n+

Baum ist nach der Rotation wieder balanciert

AVL-Bäume: Einfachrotation

Linksrotation (links-links)

Symmetrisch zur Rechtsrotation

AVL-Bäume: Doppelrotation

LR-Rotation (links-rechts)

Eine einfache Rotation ist nicht mehr ausreichend, da der problematische Baum innen liegt

→ der Baum B2 muss näher betrachtet werden

AVL-Bäume: Doppelrotation

RL-Rotation (rechts-links)

Wie man sieht, ist es dabei egal, ob der neue Knoten im Teilbaum B2a oder B2b eingefügt wurde Die RL-Rotation geht analog zur LR-Rotation (symmetrischer Fall)

AVL-Bäume: Komplexität beim Einfügen

- Die Rotationen stellen das AVL-Kriterium im rebalancierten Unterbaum wieder her und sie bewahren die Sortierreihenfolge
- Wenn ein Baum rebalanciert wird, ist der entsprechende Unterbaum danach immer genauso hoch wie vor dem Einfügen.
 - → der restliche Baum bleibt konstant und muss nicht überprüft werden
 - → beim Einfügen eines Knotens benötigt man höchstens eine Rotation zur Rebalancierung.

Aufwand:

Einfügen + Rotieren

$$O(h)$$
 + $const = O(\log(n))$

AVL-Bäume: Löschen

Vorgehensweise

- Zuerst "normales" Löschen wie bei binären Bäumen
- Nur für Knoten auf diesem Pfad kann das AVL-Kriterium verletzt werden (wie beim Einfügen)

Ablauf:

- Nach dem "normalen" Löschen den kritischen Knoten bestimmen (nächster Vorgänger zum tatsächlich entfernten Knoten mit Balance $b=\pm 2$)
- Dieser ist Ausgangspunkt der Reorganisation (hier Rotation genannt)
- Rotationstyp wird bestimmt, als ob im gegenüberliegenden Unterbaum ein Knoten eingefügt worden wäre

AVL-Bäume: Löschen

Nachteil

- Wie man sieht, ist der linke Teilbaum danach nicht mehr vollkommen ausbalanciert
- D.h., AVL-Balance wird zum Teil durch Abnahme von vollkommenen Teilbaumbalancen erkauft.

AVL-Bäume: Komplexität beim Löschen

- Beim Löschen eines Knotens wird
 - das AVL-Kriterium wiederhergestellt, die Sortierreihenfolge bleibt erhalten
 - kann es vorkommen, dass der rebalancierte Unterbaum nicht die gleiche Höhe wie vor dem Löschen besitzt
 - → auf dem weiteren Pfad zur Wurzel kann es zu weiteren Rebalancierungen (des obigen Typs, also immer im anderen Unterbaum) kommen
 - \rightarrow beim Löschen werden maximal h Rotationen benötigt

Aufwand:

Entfernen + Rotieren

$$O(h)$$
 + $O(h) = O(\log(n))$

Splay-Bäume

- Problem bei AVL-Bäumen:
 Basieren auf Prämisse der Gleichverteilung der Anfragen.
- Bei Nicht-Gleichverteilung (einige Anfragen treten häufiger auf), ist es wünschenswert, wenn sich der Baum an diese anpasst.
 - → Splay-Bäume
- Splay-Bäume sind selbstoptimierende Binärbäume, für die keine Balancierung notwendig ist.

Grundidee:

- Bei jeder Suche nach einem Schlüssel wird dieser durch Rotationen zur Wurzel des Suchbaums.
- Nachfolgende Operationen lassen den Schlüssel schrittweise tiefer in den Baum wandern.
- Wird regelmäßig der gleiche Schlüssel angefragt, so wandert er nicht besonders tief in den Baum und kann somit schneller gefunden werden.

Splay-Bäume: Eigenschaften

- Splay-Bäume basieren auf den normalen Operationen Suchen, Einfügen und Löschen.
- Nur Suchen und Einfügen sind mit der Operation Splay gekoppelt.
- Der Splay platziert das gegebene Element als Wurzel des Baums.
- Splay-Bäume haben keine strukturelle Invariante wie AVL-Bäume, welche für deren Effizienz verantwortlich ist.
 - Einzig der Splay führt zu einer heuristischen Restrukturierung.

Splay-Bäume: Operationen

- Suchen
 - Normale Binärsuche im Suchbaum
 - Endet in Knoten x mit Schlüssel k
 - Bei Erfolg: Wende Operation Splay auf Knoten x an
 - Sonst: NOP (no-operation)
- Einfügen
 - Normale Binärsuche im Suchbaum
 - Einfügen eines Knotens als Blatt
 - Wende Splay auf diesen Knoten an
- Löschen
 - Normale Binärsuche im Suchbaum
 - Entferne den gefundenen Knoten wie im Binärbaum

Splay-Bäume: Splay-Operation

- Der Splay repositioniert einen gegebenen Baumknoten als Wurzel.
- Umsetzung: Sukzessives Rotieren, bis der Knoten die Wurzel ist.
- Die Art der Rotation ist abhängig vom Kontext des Knotens x, wobei 3 Fälle zu unterscheiden sind:
 - Der Knoten x hat die Wurzel als Vorgänger:
 - Hier reicht eine einzelne Rechts- bzw. Linksrotation (zig bzw. zag) wie bei AVL-Bäumen

Splay-Bäume: Splay-Operation

- Der Knoten x ist ein linkes Kind und der Vorgänger p(x) ist ein rechtes Kind bzw. umgekehrt:
 - Hier ist eine Doppelrotation vonnöten, wie sie als RL- bzw. LR-Rotation bei AVL-Bäumen bekannt ist. Beim Splay-Baum werden diese Operationen als zig-zag bzw. zag-zig bezeichnet.)

Splay-Bäume: Splay-Operation

- Der Knoten x sowie sein Vorgänger p(x) sind linke bzw. rechte Kinder:
 - In diesem Fall werden zwei Einzelrotationen durchgeführt, jedoch in Top-Down-Reihenfolge (zig-zig bzw. zag-zag), d.h. anders als bei AVL-Bäumen.

Splay-Bäume: Komplexität

- Ein Splay-Baum mit n Knoten hat eine amortisierte
 Zeitkomplexität von O(log n). Amortisierte Komplexität
 berechnet die durchschnittliche Komplexität über eine WorstCase-Sequenz von Operationen im Gegensatz zu einer reinen
 Worst-Case-Abschätzung aller Operationen.
- Es lässt sich zeigen, dass sich Splay-Bäume asymptotisch wie optimale Suchbäume verhalten.

Splay-Bäume: Zusammenfassung

- + Gut geeignet zur Umsetzung von Caches oder Garbage Collection.
- + keine Strukturinvariante wie bei AVL, d.h. sie sind speichereffizienter als diese, da die Knoten keine zusätzlichen Informationen speichern müssen(z.B. den Balancegrad).
- + Geringerer Programmieraufwand.
- Bei Gleichverteilung der Anfragen ist die Suchkomplexität schlechter als bei einfachen binären Suchbäumen.

Verwendung von Sekundärspeicher

Motivation

- Falls Daten persistent gespeichert werden müssen
- Falls Datenmenge zu groß für Hauptspeicher

Sekundärspeicher/Festplatte

 Festplatte besteht aus übereinanderliegenden rotierenden Platten mit magnetischen/optischen Oberflächen, die in Spuren und Sektoren eingeteilt sind

Zugriffszeit Festplatten

- Suchzeit [ms]: Armpositionierung (Translation)
- Latenzzeit [ms]: Rotation bis Blockanfang
- Transferzeit [ms/MB]: Übertragung der Daten

Verwendung von Sekundärspeicher

Blockgrößen

- Größere Transfereinheiten sind günstiger
- Gebräuchlich sind Seiten der Größe 4kB oder 8kB

Problem

- Seitenzugriffe sind teurer als Vergleichsoperationen
- Ziel: Möglichst viele ähnliche Schlüssel auf einer Seite (Block) speichern

Mehrwegbäume

Knoten haben $n \ge 2$ Nachfolger

Knoten $K = (P_0, k_1, P_1, k_1, P_2, ..., P_{m-1}, k_m, P_m)$ eines n-Wege-Suchbaums B besteht aus:

- Grad: m = Grad(K) ? n

- Schlüssel: $k_i = (1 \le i \ \square \ m)$

- Zeiger: P_i auf die Unterbäume $(0 \le i \ \square \ m)$

B-Baum: Suchbaumeigenschaft

- Innerhalb einer Seite sind die Schlüssel bzgl. der auf ihnen definierten Ordnung sortiert, sie liegen logisch jeweils zwischen zwei Verweisen auf ein Kind.
- Das bedeutet: Sei K(p) die Menge der Schlüssel in dem von p referenzierten Teilbaum, m sei die Anzahl der in der Seite gespeicherten Schlüssel. Dann gilt:
 - $\forall y \ \mathbb{Z} \ K(p_0) \colon \ y < x_1$
 - $\forall y \ \mathbb{Z} \ K(p_i), 1 < i < m-1: \ x_i < y < x_{i+1}$
 - $\forall y \ \mathbb{Z} \ K(p_m) \colon x_m \leq y$

B-Baum: Beispiel

- Die Ordnung $k \in IN$ bestimmt man aus der Größe einer Plattenseite
 - Beispielgrößen: Seite 4 kByte,
 Objekt 42 Byte, Zeiger 8 Byte

- 2k Objekte + (2k + 1) Zeiger = 4096 Byte
- Damit $2k \approx (4096 8) / 50 = 81$, also k = 40.

B-Baum: Suche

- Suchen eines Objektes anhand eines Suchschlüssels
 - Beginne Suche in der Wurzel
 - (binäre) Suche auf jeweiligem Knoten
 - Falls gefunden: Rückgabe des Objektes
 - Sonst: im entsprechenden Teilbaum rekursiv weitersuchen
 - Falls keine Teilbäume existieren (Blattebene): Misserfolgsmeldung

B-Baum: Höhenabschätzung

Wie viele Schlüssel sind <u>mindestens</u> in einem B-Baum der Ordnung *k* enthalten?

Höhe	Schlüssel	Verweise	k = 10	k = 100
0	1	2	1	1
1	2 * <i>k</i>	2(k+1)	20 + 1 = 21	201
2	2(k+1)*k	2(k+1)*(k+1)	220 + 21 = 241	20.401
3	$2(k+1)^2 * k$	$2(k+1)^2 * (k+1)$	2420 + 241 = 2861	2.060.601
4	$2(k+1)^3*k$	$2(k+1)^4$	26620 + 2861 = 29.481	208.120.801

Damit hat ein Baum mit 1000 Schlüsseln maximal die Höhe 1. Ein Baum mit 1.000.000 Schlüsseln wird nie höher als Höhe 3.

B-Baum: Höhenabschätzung

Höhe	Schlüssel	Verweise	k beliebig
0	1	2	1
1	2 * <i>k</i>	2(k+1)	2k + 1
2	2(k+1)*k	2(k+1)*(k+1)	$2k\big((k+1)+1\big)+1$
3	$2(k+1)^2 * k$	$2(k+1)^2*(k+1)$	$2k((k+1)^2 + (k+1) + 1) + 1$
4	$2(k+1)^3 * k$	$2(k+1)^4$	$2k((k+1)^3 + (k+1)^2 + (k+1) + 1) + 1$

Die minimale Schlüsselzahl s_{min} eines Baumes der Höhe $h \ge 0$:

$$s_{min} = 1 + 2k \sum_{i=0}^{h-1} (k+1)^i = 2(k+1)^h - 1$$

Damit ist die maximale Höhe logarithmisch abhängig von der Anzahl der Schlüssel s:

$$h \le \log_{2(k+1)} \frac{s+1}{2} \approx \log_{k+1} s$$

B-Baum: Höhenabschätzung

Wie viele Schlüssel sind maximal in einem B-Baum der Ordnung k enthalten?

Höhe	Schlüssel	Verweise	k = 10	k = 100
0	2 <i>k</i>	2k + 1	20	200
1	2k*(2k+1)	$(2k+1)^2$	420 + 20 = 440	40.400
2	$2k*(2k+1)^2$	$(2k+1)^3$	8.820 + 440 = 9.260	8.120.600
3	$2k*(2k+1)^3$	$(2k+1)^4$	185.220 + 9.260 = 194.480	1.632.240.800
4	$2k*(2k+1)^4$	$(2k+1)^5$	3.889.620 +194.489 = 4.084.109	328.080.401.000

B-Baum: Höhenabschätzung

Höhe	Schlüssel	Verweise	k beliebig
0	2 <i>k</i>	2k + 1	2k
1	2k * (2k + 1)	$(2k+1)^2$	$2k\big(1+(2k+1)\big)$
2	$2k*(2k+1)^2$	$(2k+1)^3$	$2k(1 + (2k + 1) + (2k + 1)^2)$
3	$2k*(2k+1)^3$	$(2k+1)^4$	$2k(1 + (2k + 1) + (2k + 1)^2 + (2k + 1)^3)$
4	$2k*(2k+1)^4$	$(2k+1)^5$	$2k(1+\cdots+(2k+1)^4)$

Die maximale Schlüsselzahl s_{max} eines Baumes der Höhe $h \ge 0$:

$$s_{max} = 2k \sum_{i=0}^{h} (2k+1)^{i} = (2k+1)^{h+1} - 1$$

Damit ist die minimale Höhe logarithmisch abhängig von der Anzahl der Schlüssel s:

$$h \ge \log_{2k+1}(s+1) - 1 \approx \log_{2k+1} s$$

B-Baum: Einfügen

- Durchlaufe den Baum und suche das Blatt B, in welches der neue Schlüssel gehört
- Füge x sortiert dem Blatt hinzu
- Wenn hierdurch das Blatt $B = (x_1, ..., x_{2k+1})$ überläuft \rightarrow Split
 - Erzeuge ein neues Blatt B'
 - Verteile Schlüssel auf altes und neues Blatt $B = (x_1, ..., x_k)$ und $B' = (x_{k+2}, ..., x_{2k+1})$
 - Füge den Schlüssel x_{k+1} dem Vorgänger hinzu ggf. erzeuge neuen Vorgänger: x_{k+1} dient als Trennschlüssel für B und B'
- Vorgänger kann auch überlaufen, ggf. rekursiv bis zur Wurzel weiter splitten
- Wenn die Wurzel überläuft
 - Wurzel teilen
 - Mittlerer Schlüssel x_{k+1} wird neue Wurzel mit zwei Nachfolgern

hier k=1

B-Baum: Einfügen

B-Baum: Einfügen

B-Baum: Löschen

- Suche den Knoten N, welcher den zu löschenden Schlüssel x enthält
- Falls *B* ein innerer Knoten
 - \rightarrow Suche den größten Schlüssel x' im Teilbaum links des Schlüssel x
 - \rightarrow Ersetze x im Knoten B durch x'
 - \rightarrow Lösche x' aus seinem ursprünglichen Blatt B'
- Falls N ein Blatt ist, lösche den Schlüssel aus dem Blatt
 - \rightarrow Hierbei ist es möglich, dass N nun weniger als k Schlüssel enthält
 - → Reorganisation unter Einbeziehung der Nachbarknoten
 - → Bemerkung: Nur die Wurzel hat keine Nachbarknoten und darf weniger als k Schlüssel enthalten

B-Baum: Unterlauf beim Löschen

- Nach einer Löschoperation sei der Knoten N unterläufig
- Fall 1: N ist die Wurzel
 - Wurzel wird gelöscht, wenn diese keine Schlüssel mehr beinhaltet → Baum ist leer
- Fall 2: N hat einen Nachbarn M mit mehr als k Schlüssel
 - Dann Ausgleich von N durch die Schlüssel x_i aus dem Nachbarknoten M unter Einbeziehung des Vorgängers
- Fall 3: N hat einen Nachbarn M mit genau k Elementen
 - Dann Verschmelze N und M inklusive dem zugehörigen
 Schlüssel im Vorgänger x zu einem Knoten
 - Entferne x aus dem Vorgänger
 - Im Vorgänger bleibt noch ein Zeiger auf den verschmolzenen Knoten bestehen

B-Baum: Unterlauf – Verschmelzen

Aus dem Knoten $N = (x_1 ... x_k)$ soll der Schlüssel x_i entfernt werden

- Sei $M = (x'_1 ... x'_k)$ ein Nachbarknoten mit **genau** k Schlüsseln
- O.B.d.A sei M rechts von N und p der Trennschlüssel im Vorgänger V
- Verschmelze die Knoten N und M zu M', füge p zu K' hinzu und lösche N
- Entferne p sowie den Verweis auf N aus dem Vorgänger V ggf. rekursiv bis zur Wurzel (enthält diese danach keine Schlüssel mehr, so wird das einzige Kind zur neuen Wurzel)

Beispiel:

B-Baum mit k=2

Lösche Schlüssel 19

Verschmelze (43, 46, 51, 63)

Entferne (p = 46)

Verschmelzen = inverse Operation zum Split

Bsp: k = 2

B-Baum: Unterlauf – Ausgleich

Aus dem Knoten $N = (x_1 ... x_k)$ soll der Schlüssel x_i entfernt werden

- Sei $M = (x'_1 ... x'_k)$ ein Nachbarknoten mit **mehr** als k Schlüsseln (n > k)
- O.B.d.A sei M rechts von N und p der Trennschlüssel im Vorgänger
- Verteile die Schlüssel $x_1 \dots x_a, p, x'_1 \dots x'_n$ auf die Knoten M und N
- Ersetze den Schlüssel p im Vorgänger durch den mittleren Schlüssel
- M und N haben nun jeweils min, k Schlüssel

Beispiel:

B-Baum mit k = 2

Lösche Schlüssel 19

Ausgleich (21, 43, 46, 51, 63)

Praktische Anwendung: B+- Baum

- In der Praxis will man neben den eigentlichen Schlüsseln oft zusätzlich noch weitere Daten (z.B. Attribute oder Verweise auf weitere Datensätze) speichern.
 - Bsp.: Zu einer Matrikelnummer soll jeweils noch Name, Studiengang,
 Anschrift, etc. abgelegt werden.

 X_2

 a_2

 b_2

• Lösung: Speichere in den Knoten des B-Baums jeweils den Schlüssel x_i und dessen Attribute a_i, b_i, c_i , ...
Bsp.:

 $a_1 \mid b_1$

- Problem: Durch mehr Daten in den inneren Knoten (Seiten) sinkt der Verzweigungsgrad und die Baumhöhe steigt → kontraproduktiv
- Lösung: Eigentliche Daten in die Blätter, im Baum darüber nur "Wegweiser" → Konzept des B+-Baums

B+-Baum

- Ein B+-Baum ist abgeleitet vom B-Baum und hat zwei Knotentypen
 - Innere Knoten enthalten keine Daten (nur Wegweiserfunktion)
 - Nur Blätter enthalten Datensätze (oder Schlüssel und Verweise) auf Datensätze)
 - Als Trennschlüssel (Separatoren, Wegweiser) nutzt man z.B. die Schlüssel selbst oder ausreichend lange Präfixe
 - Für ein effizientes Durchlaufen großer Bereiche der Daten sind die Blätter miteinander verkettet

82

B+-Baum: Bereichsanfrage

 Neben exakten Suchanfragen müssen Datenbanken oft Bereichsanfragen (= Intervallanfragen) realisieren Beispiel in SQL: SELECT * FROM TableOfValues WHERE value BETWEEN '9' AND '46'

 Verkettung der Blätter ermöglicht effiziente Bereichsabfragen Beispiel Bereichsanfrage

B-Baum: Vergleich Verzweigungsgrad

- Datensätze (#) stehen entweder direkt in den Knoten (ggf. bei Primärindex) oder sind ausgelagert und über Verweise referenziert (z.B. bei Sekundärindex)
- Bei der Größenabschätzung für B-Bäume sind diese Daten noch nicht berücksichtigt
- Beispiel: Seite 4096 B, Datenpointer 8 B, Knotenpointer 4 B, Schlüssel 16 Bytes
 - B-Baum: pro Knoten maximal 2k + 1 Knotenpointer, 2k Datenpointer, 2k Schlüssel
 - Dann muss $(2k + 1) * 4 + 2k * 8 + 2k * 16 ② 4096 \Rightarrow 56k \le 4092 \Rightarrow k \le 73.1$, also k maximal 73
 - Verzweigungsgrad maximal 2k + 1 = 147

B+-Baum: Vergleich Verzweigungsgrad

- Wie beim B-Baum:
 Seite 4096 B, Datenpointer 8 B, Knotenpointer 4 B, Schlüssel 16 B
- Zusätzlich: Verkettungspointer (Blätter) = Knotenpointer = 4 Bytes
- B+-Baum:
 - pro innerem Knoten (Directory) maximal 2k + 1 Knotenpointer, 2k Schlüssel
 - pro Blatt maximal 2k Datenpointer, 2k Schlüssel,
 2 Verkettungspointer
 - Innerer Knoten: $(2k+1)*4+2k*16 \le 4096 \Rightarrow 40k \le 4092 \Rightarrow k \le 102,3$ Also k maximal 102, Verzweigungsgrad maximal 2k+1=205
 - Blätter: $2k * 8 + 2k * 16 + 2 * 4 \le 4096 \Rightarrow 48k \le 4088 \Rightarrow k \le 85.1$
 - k maximal 85
 - Füllgrad 170 maximal

Räumliche Daten

Beispiel Punktdaten in 2D

- 2D Punktdaten können durch einen B-Baum über (x, y) indiziert werden
- Beispiele für Anfragen sind
 - a) Punktanfragen
 - b) Alle Objekte in einem bestimmten Bereich
 - c) Nächster Nachbar

Zusammengesetzte Schlüssel (Composite)

Einsatzgebiet

- Bäume können auf zusammengesetzte Schlüssel erweitert werden
 - Dabei wird zuerst nach der ersten und dann nach der zweiten Komponente sortiert (lexikografische Ordnung)
 - Beispiel: Nachname, Vorname
 Punktdaten (x,y)

Anwendung

 Suche Nachname=, Müller' durchläuft alle Blätter des Teilbaumes unter , Müller'

UND Vorname=, Hans' endet in einem Blatt

Räumliche Daten

Beispiel: Bereichsanfrage

Annahme: B-Baum auf (x, y)

- x > 10 AND x < 150
- -y > 2 AND y < 50
- Die Selektion nach x schränkt den Suchbereich nicht gut ein

Beispiel: Nächster-Nachbarn-Anfrage (NN)

- Suche nach NN in der x-Umgebung würde nicht das gewünschte Resultat bringen
- NN bzgl. x muss nicht NN bzgl. x,y sein, d.h. schlechte Unterstützung der Suche durch Hauptsortierung nach x

R-Baum

Struktur eines R-Baumes (Guttman, 1984)

- Zwei Knotentypen wie in B+-Baum
 - Blattknoten enthalten Punktdaten
 - Innere Knoten enthalten Verweise auf Nachfolgerknoten sowie deren MBRs
 - MBRs (Minimal Bounding Regions): kleinste Rechtecke, welches alle Punkte im darunterliegenden Teilbaum beinhalten
 - MBRs haben also Wegweiserfunktion
 - MBRs können Punkte, aber auch geometrische Objekte enthalten

Aufbau

- Balance analog zum B-Baum
- Regionen können überlappen
- Beim Suchen ggf. Besuch mehrerer Teilbäume, auch bei Punktanfragen

R-Baum: Bereichsanfragen

- Nicht alle MBRs müssen durchsucht werden.
 - "Pruning" des Suchraums
- Distanz zu Rechtecken:
 - Abschätzung über minimale Distanz von Punkt zu Rechtecken.

Eingabe: Punkt p, Radius r

- 1. Starten bei Wurzel
- 2. Tiefensuche auf Baum
- 3. Untersuche jeweils Kindknoten von Nichtblattknoten, deren Rechteck den Bereich um p schneidet (Bestimmung mittels Abstand)
- 4. Überprüfe in Blattknoten, ob
 - Abstand des Punkts p zu einem der Rechtecke <= Radius

R-Baum: Nächste-Nachbarn-Anfragen

 Nächste-Nachbar-Anfragen basieren auf sukzessiver Verkleinerung von Bereichsanfragen.

Abbruch, wenn nur noch ein Element in der

Bereichsanfragenumgebung.

```
Eingabe: Punkt p
Initialisierung: resultdist = ∞, result = ⊥
Start mit: NN-Suche(p, Wurzel)
procedure NN-Suche (p:Punkt, n: Knoten)
if n ist Blattknoten then
    for i = 1 to n.Anzahl_Rechtecke do
        if dist(p, n.RE[i]) ≤ resultdist then
            result := n.RE[i];
            resultdist := dist(p,n.RE[i]);
else // n ist Directoryknoten //
    for i = 1 to n.Anzahl_Kinder do
        if dist(p, n.RE[i]) ≤ resultdist then
            NN-Suche (p,n.Kind[i]);
```


Zusammenfassung: Mehrwegbäume

- B-Bäume
 - Verbesserung der binären Bäume für die Speicherung auf Festplatten
 - Bereichsabfragen durch verkettete Blätter (B+-Baume)
 - B+-Bäume sind die für den praktischen Einsatz wichtigste Variante des B-Baums
- R-Bäume
 - Mehrdimensionale Daten
 - Bereichsanfrangen, Nächster-Nachbar-Anfragen
- Hochdimensionale Daten
 - R-Bäume sind für hochdimensionale Daten ungeeignet, wegen starker Überlappung der Wegweiser
 - Dieses Problem der hohen Dimensionen tritt insbesondere beim Data Mining auf

Suche in konstanter Zeit

- Bisher: Statt lineare Suche erlauben Bäume für viele Anwendungen durch geeignete Strukturierung, den Suchaufwand auf $O(\log n)$ zu reduzieren.
- Einfügen, Löschen und Zugriff in $O(\log n)$.
- Wenn wir den Suchraum noch cleverer strukturieren, können wir dann noch schneller werden?

Bitvektor-Darstellung für Mengen

Verwende Schlüssel i' als Index im Bitvektor (= Array von Bits)

Bitvektor: Bit[i] = 0 wenn
$$i \in S$$

Bit[i] = 1 wenn
$$i \notin S$$

• Beispiel:
$$N = \{0,1,2,3,4\}, M_1 = \{0,2,3\}, M_2 = \{0,1\}$$

$$Bit(M_1) = \begin{pmatrix} 1\\0\\1\\1\\0 \end{pmatrix}, \quad Bit(M_2) = \begin{pmatrix} 1\\1\\0\\0\\0 \end{pmatrix}$$

Bitvektor-Darstellung: Komplexität

Operationen

– Insert, Delete O(1) setze/lösche entsprechendes Bit

- Search O(1) teste entsprechendes Bit

- Initialize O(N) setze ALLE Bits des Arrays auf 0

Speicherbedarf

- Anzahl Bits O(N) maximale Anzahl Elemente

- Problem bei Bitvektor
 - Initialisierung kostet O(N)
 - Verbesserung durch spezielle Array-Implementierung
 - Ziel: Initialisierung O(1)

Hashing

- Ziel: Zeitkomplexität Suche O(1) wie bei Bitvektor-Darstellung Initialisierung O(1)
- Ausgangspunkt
 Bei Bitvektor-Darstellung wird der Schlüsselwert direkt als Index in einem Array verwendet
- Grundidee
 Oft hat man ein sehr großes Universum (z.B. Strings)
 Aber nur eine kleine Objektmenge (z.B. Straßennamen einer Stadt)
 Für die ein kleines Array ausreichend würde
- Idee
 Bilde verschiedene Schlüssel auf dieselben Indexwerte ab.
 Dadurch Kollisionen möglich

Hashing

- Grundbegriffe:
 - U ist das Universum aller Schlüssel
 - $-S \subseteq U$ die Menge der zu speichernden Schlüssel mit n = |S|
 - T die Hash-Tabelle der Größe m
- Hashfunktion h:
 - Berechnung des Indexwertes zu einem Schlüsselwert x
 - Schlüsseltransformation: $h: U \rightarrow \{0, ..., m-1\}$
 - -h(x) ist der Hash-Wert von x
- Hashing wird angewendet wenn:
 - |U| sehr groß ist
 - $-|S| \ll |U|$ Anzahl der zu speichernden Elemente ist viel kleiner als die Größe des Universums

Anwendung von Hashing als Prüfziffer

 IBAN (International Bank Account Number): Aufbau einer deutschen IBAN

D	E	X	Х	b	b	b	b	b	b	b	b	k	k	k	k	k	k	k	k	k	k
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Land Prüfziffern

Bankleitzahl

Kontonummer

Ländercode beachten:

 $A \rightarrow 10, B \rightarrow 11, ...$

- Berechnung der Prüfziffer:
 - $xx = 98 bbbbbbbbkkkkkkkkkkk131400 \mod 97$
- Universum: 10¹⁸ Bank-/Kontonummern (theoretisch) möglich
- Hashwerte: $02 \le xx \le 98$
- Durch die schnelle Berechnung k\u00f6nnen viele Fehler bereits bei Eingabe gemeldet werden (z.B. Zahlendreher)

Hashing-Prinzip

Grafische Darstellung - Beispiel: Studenten

- Gesucht:
 - Hashfunktion, welche die Matrikelnummern möglichst gleichmäßig auf die 800 Einträge der Hash-Tabelle abbildet

Hashfunktion

- Dient zur Abbildung auf eine Hash-Tabelle
 - Hash-Tabelle **T** hat m Plätze (Slots, Buckets)
 - In der Regel $m \ll |U|$ daher Kollisionen möglich
 - Speichern von |S| = n Elementen (n < m)
 - Belegungsfaktor $\alpha = n/m$
- Anforderung an eine Hashfunktion
 - $-h:domain(K) \rightarrow \{0, 1, ..., m-1\}$ soll surjektiv sein.
 - -h(K) soll effizient berechenbar sein, idealerweise in O(1).
 - h(K) soll die Schlüssel möglichst gleichmäßig über den Adressraum verteilen, um dadurch Kollisionen zu vermeiden (Hashing = Streuspeicherung).
 - -h(K) soll unabhängig von der Ordnung der K sein in dem Sinne, dass in der Domain "nahe beieinander liegende" Schlüssel auf nicht nahe beieinander liegende Adressen abgebildet werden.

Hashfunktion: Divisionsmethode

- Hashfunktion:
 - $-h(k) = K \mod m$ für numerische Schlüssel
 - $-h(k) = ord(K) \mod m$ für nicht-numerische Schlüssel
- Konkretes Beispiel für ganzzahlige Schlüssel:

$$h: domain(K) \rightarrow \{0,1,...,m-1\} \text{ mit } h(K) = K \text{ mod } m$$

• Sei *m*=11

Schlüssel: 13,7,5,25,8,18,17,31,3,11,9,30,24,27,21,19,...

Beispiel: Divisionsmethode

• Für Zeichenketten: Benutze die ord-Funktion zur Abbildung auf ganzzahlige Werte, z.B.

$$h: STRING a$$
 $\begin{cases} len(STRING) \\ \sum_{i=1} ord(STRING[i]) \end{pmatrix} mod m$

JAN
$$\rightarrow$$
 25 mod 17 = 8 MAI \rightarrow 23 mod 17 = 6 SEP \rightarrow 40 mod 17 = 6
FEB \rightarrow 13 mod 17 = 13 JUN \rightarrow 45 mod 17 = 11 OKT \rightarrow 46 mod 17 = 12
MAR \rightarrow 32 mod 17 = 15 JUL \rightarrow 43 mod 17 = 9 NOV \rightarrow 51 mod 17 = 0
APR \rightarrow 35 mod 17 = 1 AUG \rightarrow 29 mod 17 = 12 DEZ \rightarrow 35 mod 17 = 1

- Wie sollte m aussehen?
 - m = 2^d → einfach zu berechnen
 K mod 2^d liefert die letzten d Bits der Binärzahl K → Widerspruch zur Unabhängigkeit von K
 - m gerade $\rightarrow h(K)$ gerade $\Leftrightarrow K$ gerade \rightarrow Widerspruch zur Unabhängigkeit von K
 - m Primzahl \rightarrow hat sich erfahrungsgemäß bewährt

Beispiel Hashfunktion

• Einsortieren der Monatsnamen in die Symboltabelle

$$h(c) = (N(c_1) + N(c_2) + N(c_3)) \mod 17$$

0	November
1	April, Dezember
2	März
3	
4	
5	
6	Mai, September
7	
8	Januar

9	Juli
10	
11	Juni
12	August, Oktober
13	Februar
14	
15	
16	

3 Kollisionen

Perfekte Hashfunktion

- Eine Hashfunktion ist perfekt:
 - wenn für $h: U \to \{0, ..., m-1\}$ mit $S = \{k_1, ..., k_n\} \subseteq U$ gilt $h(k_i) = h(k_j) \Leftrightarrow i = j$
 - also für die Menge S keine Kollisionen auftreten
- Eine Hashfunktion ist minimal:
 - wenn m=n ist, also nur genau so viele Plätze wie Elemente benötigt werden
- Im Allgemeinen können perfekte Hashfunktionen nur ermittelt werden, wenn alle einzufügenden Elemente und deren Anzahl (also S) im Voraus bekannt sind (static Dictionary)
 - → In der Praxis meist nicht gegeben!

- Verteilungsverhalten von Hashfunktionen
 - Untersuchung mit Hilfe von Wahrscheinlichkeitsrechnung
 - S sei ein Ereignisraum
 - -E ein Ereignis $E \subseteq S$
 - P sei eine Wahrscheinlichkeitsverteilung
- Beispiel: Gleichverteilung
 - einfache Münzwürfe: $S = \{Kopf, Zahl\}$
 - Wahrscheinlichkeit für Kopf

$$P(Kopf) = \frac{1}{2}$$

- n faire Münzwürfe: $S = \{Kopf, Zahl\}^n$
- Wahrscheinlichkeit für n-mal Kopf P(n-mal Kopf) = $\left(\frac{1}{2}\right)^n$ (Produkt der einzelnen Wahrscheinlichkeiten)

- Analogie zum Geburtstagsproblem (-paradoxon)
 - Wie groß ist die Wahrscheinlichkeit, dass mindestens 2 von n
 Leuten am gleichen Tag Geburtstag haben?
 - -m=365 Größe der Hash-Tabelle (Tage), n= Anzahl Personen
- Eintragen des Geburtstages in die Hash-Tabelle
 - -p(i,m) = Wahrscheinlichkeit, dass für das i-te Element eine Kollision auftritt

$$- p(1,m) = 0$$

da keine Zelle belegt

$$- p(2,m) = 1/m$$

da 1 Zellen belegt

$$- p(i,m) = (i-1)/m$$

da (i-1) Zellen belegt

- Eintragen des Geburtstages in die Hash-Tabelle
 - Wahrscheinlichkeit für keine einzige Kollision bei n Einträgen in eine Hash-Tabelle mit m Plätzen ist das Produkt der einzelnen Wahrscheinlichkeiten

$$P(NoCol|n,m) = \prod_{i=1}^{n} \left(1 - p(i,m)\right) = \prod_{i=0}^{n-1} \left(1 - \frac{i}{m}\right)$$

 Die Wahrscheinlichkeit, dass es mindestens zu einer Kollision kommt, ist somit

$$P(Col|n,m) = 1 - P(NoCol|n,m)$$

Kollisionen bei Geburtstagstabelle

Anzahl Personen n	P(Col n,m)
10	0,11695
20	0,41144
22	0,47570
23	0,50730
24	0,53835
30	0,70632
40	0,89123
50	0,97037

- Schon bei einer Belegung von 23/365 = 6% kommt es zu 50% zu mindestens einer Kollision
- Daher Strategie für Kollisionen wichtig
- Wann ist eine Hashfunktion gut?
- Wie groß muss eine Hash-Tabelle in Abhängigkeit zu der Anzahl Elemente sein?

• Wie muss m in Abhängigkeit zu n wachsen, damit P(NoCol|n,m) konstant bleibt?

$$P(NoCol|n,m) = \prod_{i=0}^{n-1} \left(1 - \frac{i}{m}\right)$$

• Durch Anwendung der Logarithmus-Rechenregel kann ein Produkt in eine Summe umgewandelt werden: $ab = e^{\ln(ab)} = e^{\ln a + \ln b}$

$$P(NoCol|n, m) = \exp\left(\sum_{i=0}^{n-1} \ln\left(1 - \frac{i}{m}\right)\right)$$

- Logarithmus: $ln(1 \varepsilon) \approx -\varepsilon$
- Da $n \ll m$ gilt: $\ln\left(1 \frac{i}{m}\right) \approx -\left(\frac{i}{m}\right)$

Auflösen der Gleichung

$$P(NoCol|n,m) \approx \exp\left(-\sum_{i=0}^{n-1} \ln\left(\frac{i}{m}\right)\right) = \exp\left(-\frac{n(n-1)}{2m}\right) \approx \exp\left(-\frac{n^2}{2m}\right)$$

• Ergebnis: Kollisionswahrscheinlichkeit bleibt konstant wenn m (Größe der Hash-Tabelle) quadratisch mit n (Zahl der Elemente) wächst

Hashing: Umgang mit Kollisionen

- Kollisionen treten auf, wenn zwei Schlüssel den selben Hashwert erhalten und an die gleiche Stelle gespeichert werden müssen.
- Kollisionen sind kein Nachteil beim Hashing, sondern ein dazugehöriger Mechanismus.
- Tritt eine Kollision auf, so gibt es zwei populäre Auflösungsstrategien:
 - Offenes Hashing mit geschlossener Adressierung
 - Geschlossenes Hashing mit offener Adressierung

Achtung: In der Literatur gerne als Offenes/Geschlossenes Hashing abgekürzt und dann teils vertauscht benutzt!

Offenes Hashing mit geschlossener Adressierung

- Speicherung der Schlüssel außerhalb der Tabelle, z.B. als verkettete Liste.
- Bei Kollisionen werden Elemente unter der selben Adresse abgelegt.
- Die externe Speicherstruktur hat großen Einfluss auf Effektivität und Effizienz.

Geschlossenes Hashing mit offener Adressierung

- Bei Kollision wird mittels bestimmter Sondierungsverfahren eine freie Adresse gesucht.
- Jede Adresse der Hashtabelle nimmt höchstens einen Schlüssel auf.
- Das Sondierungsverfahren bestimmt die Effizienz, so dass nur wenige Sondierungsschritte nötig sind.

Polynomielles Sondieren

- Für $j = 0 \dots m$ teste Hashadresse $h(x,j) = (h(x) + c_1 j + c_2 j^2 + \cdots) \mod m$ bis eine freie Adresse gefunden wird.
- Für $h(x,j) = (h(x) + c_1 j) \mod m$ sprechen wir von linearem Sondieren.

• Für $h(x,j) = (h(x) + c_2 j^2) \mod m$ sprechen wir von quadratischem Sondieren.

 Problem: Clusterbildung, für viele gleiche Schlüssel werden die gleichen Positionen sondiert.

Geschlossenes Hashing: Komplexität

Hier: Anzahl Sondierungsschritte

– Einfügen:

$$C_{Ins}(n,m)$$

– Erfolglose Suche:

$$C_{search}^-(n,m)$$

– Erfolgreiche Suche:

$$C_{search}^+(n,m)$$

– Löschen:

$$C_{Del}(n,m)$$

- m: Größe der Hash-Tabelle

- n: Anzahl der Einträge

 $-\alpha = \frac{n}{m}$: Belegungsfaktor der Hash-Tabelle

Belegung α		
0,5	≈ 2	≈ 1,38
0,7	≈ 3,3	≈ 1,72
0,9	≈ 10	≈ 2,55
0,95	≈ 20	≈ 3,15

min. n=19 und m=20 damit α =0,95 (bei ganzen Zahlen)

Doppelhashing

- Doppelhashing soll Clusterbildung verhindern, dafür werden zwei unabhängige Hashfunktionen verwendet.
- Dabei heißen zwei Hashfunktionen h und h' unabhängig, wenn gilt
 - Kollisionswahrscheinlichkeit $P(h(x) = h(y)) = \frac{1}{m}$
 - $-P(h'(x) = h'(y)) = \frac{1}{m}$
 - $-P(h(x) = h(y) \wedge h'(x) = h'(y)) = \frac{1}{m^2}$
- Sondierung mit $h(x,j) = (h(x) + h'(x) \cdot j^2) \mod m$
- Nahezu ideales Verhalten aufgrund der unabhängigen Hashfunktionen h(x)h(y)

Hashing: Suchen nach Löschen

- Offenes Hashing: Behälter suchen und Element aus Liste entfernen → kein Problem bei nachfolgender Suche
- Geschlossenes Hashing:
 - Entsprechenden Behälter suchen
 - Element entfernen und Zelle als gelöscht markieren
 - Notwendig da evtl. bereits hinter dem gelöschten Element andere Elemente durch Sondieren eingefügt wurden
 - (In diesem Fall muss beim Suchen über den freien Behälter hinweg sondiert werden)
 - Gelöschte Elemente dürfen wieder überschrieben werden

Hashing: Zusammenfassung

- Anwendung:
 - Postleitzahlen (Statische Dictionaries)
 - IP-Adresse zu MAC-Adresse (i.d.R. im Hauptspeicher)
 - Datenbanken (Hash-Join)
- Vorteil
 - Im Average Case sehr effizient (O(1))
- Nachteil
 - Skalierung: Größe der Hash-Tabelle muss vorher bekannt sein
 - Abhilfe: Spiral Hashing, lineares Hashing
 - Keine Bereichs- oder Ähnlichkeitsanfragen
 - Lösung: Suchbäume

Suchen: Zusammenfassung

Hashing

- Extrem schneller Zugriff für Spezialanwendungen
 - Bestimmung einer Hashfunktion für die Anwendung
 - Beispiel: Symboltabelle im Compilerbau, Hash-Join in Datenbanken

Binärer Bäum (AVL-Baum, Splay-Baum)

- Allgemeines effizientes Verfahren für Indexverwaltung im Hauptspeicher
 - Bereichsanfragen möglich, da explizit ordnungserhaltend
 - Bei Updates effizienter als sortierte Arrays

B-Baum, B+-Baum, R-Baum, etc.

- Effiziente Implementierung für die Verwendung von blockorientierten Sekundärspeichern
- B+-Bäume werden in nahezu allen Datenbanksystemen eingesetzt