Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

S2-CAN: Sufficiently Secure Controller Area Network

ACSAC 2021, Virtual 12/09/21

Most car hackings have one thing in common!

CAN Injection?!

In-Vehicle Network **Architecture OBD-II ECU** Infotainment Powertrain-CAN **MOST ECU** Chassis-FlexRay Central **ECU** Gateway **ECU** Body **ECU ECU** CAN 2 ECU ECU Body-CAN 1 Sub-Bus LIN 1 Sub-Bus LIN 2

CAN Injection?!

OBJECTIVE

Inject Well-Formed CAN Message to IVN

GOAL

Compromise or Break Vehicle's Functionalities

CHALLENGE

Semantics/Translation Tables
Proprietary to OEM

CAN Injection?!

So, what're out there?

	Protection	Algorithm	HW/SW	Bus Load	Latency	MAC Length	Security Level
CaCAN [Ku14]	Authenticity + Freshness	SHA256-HMAC	HW+SW	+100%	+2.2-3.2μs	I Byte	2 ⁷
IA-CAN [Ha15]	Authenticity	Random. CAN ID + CMAC	SW	+0%	8bit: +72ms 32bit: +150 μs	I-4 Bytes	2 ⁷ - 2 ³¹
vatiCAN [Nü16]	Authenticity + Freshness	SHA3-HMAC	SW	+16.2%	+3.3ms	8 Bytes	2 ⁶³
TESLA [Pe00]	Authenticity + Freshness	PRF + HMAC	SW	+0%	+500ms	10 Bytes	2 ⁷⁹
LeiA [Ra16]	Authenticity + Freshness	MAC	SW	+100%	N/A	8 Bytes	2 ⁶³
CANAuth[Hell]	Authenticity + Freshness	HMAC	HW+SW	+0%	N/A	10 Bytes	2^{79}

COST

Resource-constrained (legacy) ECUs

LATENCY

Hard Real-Time Requirements

• BUS LOAD

Must be below 80%, ideally below 30% to avoid scheduling issues

So, what're out there?

Protection

Algorithm

HW/SW Bus Load Latency

MAC Length **Security Level**

S2-CAN: Our SOLUTION

- Breaks away from traditional cryptography-based solutions (S-CAN)
- Addresses three key feasibility issues
- Offers good practical -- albeit relaxed -- security guarantees

TRADE-OFF BETWEEN PERFORMANCE AND SECURITY

COST

Resource-constrained (legacy) ECUs

LATENCY

Hard Real-Time Requirements

SW

+75µs

BUS LOAD

Must be below 80%, ideally below 30% to avoid scheduling issues

S2-CAN

Confidentiality +

Authenticity + Freshness

Circular Shift +
Internal ID Match

+0%

N/A

~249

How does S2-CAN work?

- (1) Internal ID = Rand(0, N-1)
- (2) Internal Position = FS(Y)
- (3) Internal Counter = Rand $(0, 2^{16}-1)$

 $q_j = LEFTZEROPAD(int_ID_j, 8) \oplus cnt_j$

0 1 2 3 4 5 6 7

(4) Encoding Parameter $f = (r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7), r_1 \in [0,7]$

Circular Shift
Example: f = (3, 2, 1,...)

How to obtain these 4 parameters?

PERIODIC HANDSHAKES

S2-CAN Handshake

Security Requirements

All traffic encrypted with AES128 and authenticated with HMAC SHA256.

Handshake is periodic, needs to be repeated for every new session with session cycle T.

Experimental Setup

- Benchmark of latency and computational resources
 - 3x Arduino Mega 2560 with SeeedStudio CAN Shield

- Free Space and Security Analysis
 - Four different models of same OEM
 - Ground truth translation tables ("DBC files") for Free Space analysis
 - Raw CAN Data collected with OpenXC, applied S2-CAN for security analysis

Evaluation: Free Space in CAN IDs

Vehicle	Bus	#CAN IDs		#IDs with Free Space	Usable CAN IDs (%)
Vehicle A	HSI	102	31	63	92.2
	HS2	53	2	35	69.8
Vehicle B	HS	81	5	26	38.3
	MS	62	3	16	30.6
Vehicle C	HSI	57	7	38	78.9
	HS2	42	1	26	64.3
Vehicle D	HSI	58	7	43	86.2
	HS2	51	4	38	82.4

- 60-80% of all CAN IDs can be used by default
- Re-balancing further helps increase # of usable CAN IDs

Evaluation: Benchmark

Handshake Latency

# Slave ECUs	2	5	10	25
Avg.Total Handshake Time (ms)	303	529	907	2037

- Handshake finishes in 2 seconds after starting the car
- New handshake overlaps with previous session, no "black-out"

Other Metrics

- CPU Overhead: 0.04%
- RAM Overhead: 0.8%
- Flash Memory Overhead: 1.3%

Operation Latency

- S2-CAN has overhead of 75 μs
- 44x faster than next-best approach

Evaluation: Security Analysis

- Brute-force integrity parameters: ~ 2⁴⁹ combinations
- "Smart Attack" with LibreCAN+
- I. Crack Encoding: 400 combinations
- 2. Authenticate Correctly: Determine counter position and internal ID

$$t_a = t_r + t_{st1} + t_{st2} + t_i \approx t_r + t_{st1} > T$$

S2-CAN secure if Session Cycle T smaller than total attack time!

t _{stl}	CAN (LibreCAN)	S2-CAN (LibreCAN+)
Veh.A	0:27	10:33
Veh. B	0:36	18:32
Veh. C	0:26	10:42
Veh. D	0:26	10:52

T_{max} ≈ 18-20 minutes

Conclusion

Secure and Feasible CAN Bus Possible by Security-Performance Tradeoff

Feasibility

First secure CAN approach to satisfy OEM requirements, guaranteed backward-compatible

Performance

Negligible resource overhead compared to regular CAN

Security

Secure with correct choice of session cycle

Q & A

Mert D. Pesé

Junhui Li

Jay W. Schauer

Kang G. Shin

References

- [Kul4] Kurachi, R., Matsubara, Y., Takada, H., Adachi, N., Miyashita, Y. and Horihata, S., 2014, November. CaCAN-centralized authentication system in CAN (controller area network). In 14th Int. Conf. on Embedded Security in Cars (ESCAR 2014).
- [Hal5] Han, K., Weimerskirch, A. and Shin, K.G., 2015. A practical solution to achieve real-time performance in the automotive network by randomizing frame identifier. Proc. Eur. Embedded Secur. Cars (ESCAR), pp. 13-29.
- [Nü16] Nürnberger, S. and Rossow, C., 2016, August. —vatican—vetted, authenticated can bus. In International Conference on Cryptographic Hardware and Embedded Systems (pp. 106-124). Springer, Berlin, Heidelberg.
- [Pe00] A. Perrig, R. Canetti, J. Tygar, and D. Song. 2000. Approaches for secure and efficient in-vehicle key management. In Proceedings of the IEEE Symposium on Security and Privacy (SP 2000).
- [Ra16] A.-I. Radu and F.D. Garcia. 2016. LeiA: a lightweight authentication protocol for CAN. Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016 878 (2016).
- [HeII] A.Van Herrewege, D. Singelee, and I. Verbauwhede. 2011. CANAuth a simple, back-ward compatible broadcast authentication protocol for CAN bus. ECRYPT Workshop on Lightweight Cryptography (2011).