白芍网络药理学

2024-01-04

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要		1
	1.1	需求和结果	1
2	前言		1
3	材料	和方法	1
	3.1	材料	1
	3.2	方法	1
4	分析	结果	2
5	结论	7	2
9			_
6		分析流程	2
	6.1	TCMSP 白芍成分获取	2
	6.2	白芍总苷 (Total glucosides of paeony, TGP) 成分	2
		6.2.1 白芍总苷 (Total glucosides of paeony, TGP) 成分和筛选	2
	<i>c</i> o	6.2.2 白芍总苷 (Total glucosides of paeony, TGP) 成分的靶点预测	5
	6.3	白芍总苷 (Total glucosides of paeony, TGP) 的网络药理学分析	6
		6.3.1 白芍总苷 (Total glucosides of paeony, TGP) 成分-靶点	6
		6.3.2 白芍总苷 (Total glucosides of paeony, TGP) 和过敏性鼻炎 (allergic rhinitis, AR) 靶 其用的交集	-
		基因的交集	7 8
	6.4	6.3.3 勺约苷 (Paeomnorm, P) 相过敏性鼻炎 (allergic rimitis, AR) 靶基因的父集	9
	0.4	6.4.1 白芍总苷 (Total glucosides of paeony, TGP) 与 AR 交集基因的富集分析	9
		6.4.2 芍药苷 (Paeoniflorin, P) 与 AR 交集基因的富集分析	10
	6.5	0.4.2	11
	0.0	6.5.1 芍药苷 (Paeoniflorin, P)	11
		σει σειμοιμίστη, τ / · · · · · · · · · · · · · · · · · ·	11
Re	efere	nce	13
T,	ist	of Figures	
	1	Filterd TGP	5
	2	SwissTargetPrediction results	6
	3	Network pharmacology visualization	7
	4	Baishao TGP targets intersect with AR related targets	7
	5	Targets of compounds and related disease	8
	6	Paeoniflorin targets intersect with AR related targets	9
	7	Network pharmacology visualization of Paeoniflorin	9
	8	TGP Interect genes KEGG enrichment	10

11 Pae Interect genes GO enrichment 12 Overall combining Affinity	9	TGP Interect genes GO enrichment	10
12 Overall combining Affinity	10	Pae Interect genes KEGG enrichment	11
13 Paeoniflorin combine USP5	11	Pae Interect genes GO enrichment	11
14 Paeoniflorin combine SOX18	12	Overall combining Affinity	12
List of Tables 1 Baishao Compounds and targets	13	Paeoniflorin combine USP5	12
1 Baishao Compounds and targets	14	Paeoniflorin combine SOX18	13
•	List	of Tables	
2 TCMSP Baishao the found TGP	1	Baishao Compounds and targets	2
	2	TCMSP Baishao the found TGP	4

1 摘要

1.1 需求和结果

- 白芍总苷 Total glucosides of paeony 中主要化学成分 10-20 个 (TCMSP 筛选下口服利用度等) 及各个化学成分对应的作用靶点 (gene 与 AR 过敏性鼻炎相关),最终形成 drug-chemical-target gene 靶点图
- 将获得的靶点进行 GO, KEGG 富集分析,目标靶点为 USP5,关联成分为芍药苷 Paeoniflorin
- 将芍药苷 pae 单独拎出,形成 pae-targets-pathway 网络,此处形成的 target genes 的 GO、KEGG 富集图也需要,备注 USP5 参与哪些部分(功能、通路)
- 分子对接模拟芍药苷与 USP5 互作
- 转至第 2 步目标靶点为 SOX18, 关联成分为芍药苷 Paeoniflorin
- 第3步中备注 SOX18 参与哪些部分(功能、通路)
- 分子对接模拟芍药苷与 SOX18 互作

注: USP5 和 SOX18 不参与功能、通路。其它分析结果见 6

2 前言

3 材料和方法

3.1 材料

3.2 方法

Mainly used method:

- R package ClusterProfiler used for gene enrichment analysis.¹
- The API of UniProtKB (https://www.uniprot.org/help/api_queries) used for mapping of names or IDs of proteins .
- R package PubChemR used for querying compounds information .
- Web tool of SwissTargetPrediction used for drug-targets prediction.²
- Website TCMSP https://tcmsp-e.com/tcmsp.php used for data source.³
- AutoDock vina used for molecular docking.⁴
- $\bullet\,$ The Human Gene Database ${\tt GeneCards}$ used for disease related genes prediction. 5
- R package biomaRt used for gene annotation.⁶
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 TCMSP 白芍成分获取

Table 1 (下方表格) 为表格 Baishao Compounds and targets 概览。

(对应文件为 Figure+Table/Baishao-Compounds-and-targets.xlsx)

注:表格共有 990 行 3 列,以下预览的表格可能省略部分数据;表格含有 39 个唯一 'Mol ID'。

Table 1: Baishao Compounds and targets

Mol ID	Molecule Name	Target name
MOL001246	(1R)-()-Nopinone	Gamma-aminobutyric-acid rec
MOL001246	(1R)-()-Nopinone	Cytochrome P450-cam
MOL001246	(1R)-()-Nopinone	Lysozyme
MOL001246	(1R)- $()$ -Nopinone	Alcohol dehydrogenase 1C
MOL001246	(1R)- $()$ -Nopinone	Nicotinate-nucleotide-dime
MOL001393	myristic acid	Prostaglandin G/H synthase 1
MOL001393	myristic acid	Prostaglandin G/H synthase 2
MOL001393	myristic acid	Cholinesterase
MOL001393	myristic acid	Phospholipase A2
MOL001393	myristic acid	Rhinovirus coat protein
MOL001393	myristic acid	Ig gamma-1 chain C region
MOL001393	myristic acid	Ferrichrome-iron receptor
MOL001393	myristic acid	3-oxoacyl-[acyl-carrier-pro
MOL001393	myristic acid	Nuclear receptor coactivator 2
MOL001393	myristic acid	Nuclear receptor coactivator 1

6.2 白芍总苷 (Total glucosides of paeony, TGP) 成分

6.2.1 白芍总苷 (Total glucosides of paeony, TGP) 成分和筛选

根据提供的文献,搜集其中的白芍总苷 (Total glucosides of paeony, TGP)7。

TGP:

 $442534, \ 51346141, \ 21631105, \ 21631106, \ 138113866, \ 14605198, \ 50163461, \ 102000323, \\ 494717, \ 138108175, \ 124079396, \ 101382399, \ 102516499, \ 71452334, \ 137705343$

以 PubChemR 获取这些化合物的同义名:

442534:

Paeoniflorin, 23180-57-6, Peoniflorin, Paeonia moutan, NSC 178886, UNII-21AIQ4EV64, 21AIQ4EV64, CCRIS 6494, EINECS 245-476-2, PAEONIFLORIN (USP-RS), PAEONIFLORIN [USP-RS], NSC-178886, ((2S,2aR,2a1S,3aR,4R,5aR)-4-Hydroxy-2-methyl-2a-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2...

51346141:

Albiflorin, 39011-90-0, SCHEMBL24008597, AC-34702

21631105:

Oxypaeoniflorin, Oxypaeoniflora, 39011-91-1, UNII-3A7O4NBD5S, 3A7O4NBD5S, OXYPEONIFLORIN, NSC 258310, NSC-258310, J17.727J, beta-D-GLUCOPYRANOSIDE, (1AR,2S,3AR,5R,5AR,5BS)-TETRAHYDRO-5-HYDROXY-5B-(((4-HYDROXYBENZOYL)OXY)METHYL)-2-METHYL-2,5-METHANO-1H-3,4-DIOXACYCLOBUTA(CD)PENTALEN-1A(2H)-YL, bet...

21631106:

Benzoylpaeoniflorin, 38642-49-8, CHEMBL4861111, CHEBI:69583, HMS3886L18, MFCD00869479, s9149, AKOS037645102, CCG-270143, AC-34005, AS-57134, Q27137925

138113866:

 $A866179, \quad -D-Glucopyranoside, tetrahydro-5-hydroxy-5b-[[(4-hydroxybenzoyl)oxy]methyl]-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta[cd]pentalen-1a(2H)-yl,6-benzoate,[1aR-(1aa,2b,3aa,5a,5ba)]-$

(Others):

• • •

根据同义名,在 Tab. 1 中搜索这些化合物,得到:

Table 2 (下方表格) 为表格 TCMSP Baishao the found TGP 概览。

(对应文件为 Figure+Table/TCMSP-Baishao-the-found-TGP.xlsx)

注: 表格共有 85 行 15 列,以下预览的表格可能省略部分数据;表格含有 1 个唯一'Herb_pinyin_name'。

Table 2: TCMSP Baishao the found TGP

Herb_p	Mol ID	Molecu3	Molecu4	MW	AlogP	Hdon	Hacc	OB (%)	Caco-2
Baishao	MOL000106	PYG	https:	126.12	1.03	3	3	22.98	0.69
Baishao	MOL001218	Pisol	https:	186.38	4.62	1	1	18.5	1.23
Baishao	MOL001246	(1R)-(https:	138.23	1.52	0	1	57.86	1.23
Baishao	MOL001393	myrist	https:	228.42	5.46	1	2	21.18	1.07
Baishao	MOL001396	PENTAD	https:	242.45	5.91	1	2	20.18	1.08
Baishao	MOL001402	Octaco	https:	394.86	13.15	0	0	8.15	1.91
Baishao	MOL001644	Dodecanal	https:	184.36	4.59	0	1	21.52	1.4
Baishao	MOL001801	salicy	https:	138.13	1.17	2	3	32.13	0.63
Baishao	MOL001888	2,2-di	https:	128.24	2.09	1	1	82.54	1.22
Baishao	MOL001889	Methyl	https:	294.53	6.64	0	2	41.93	1.46
Baishao	MOL001890	octade	https:	252.54	8.14	0	0	19.5	1.87
Baishao	MOL001891	9-meth	https:	178.24	3.55	0	0	26.87	1.95
Baishao	MOL001892	Diprop	https:	250.32	3.29	0	4	66.3	0.78
Baishao	MOL001893	BU3	https:	90.14	-0.14	2	2	34.87	0.19
Baishao	MOL001894	Bicetyl	https:	450.98	14.97	0	0	8.03	1.96

根据 OB、DL 筛选:

Figure 1 (下方图) 为图 Filterd TGP 概览。

(对应文件为 Figure+Table/Filterd-TGP.pdf)

Figure 1: Filterd TGP

6.2.2 白芍总苷 (Total glucosides of paeony, TGP) 成分的靶点预测

通过 SwissTargetPrediction 预测靶点。

Figure 2 (下方图) 为图 SwissTargetPrediction results 概览。

(对应文件为 Figure+Table/SwissTargetPrediction-results.pdf)

 ${\bf Figure~2:~SwissTargetPrediction~results}$

6.3 白芍总苷 (Total glucosides of paeony, TGP) 的网络药理学分析

6.3.1 白芍总苷 (Total glucosides of paeony, TGP) 成分-靶点

Figure 3 (下方图) 为图 Network pharmacology visualization 概览。

(对应文件为 Figure+Table/Network-pharmacology-visualization.pdf)

Figure 3: Network pharmacology visualization

6.3.2 白芍总苷 (Total glucosides of paeony, TGP) 和过敏性鼻炎 (allergic rhinitis, AR) 靶基因的 交集

Figure 4 (下方图) 为图 Baishao TGP targets intersect with AR related targets 概览。

(对应文件为 Figure+Table/Baishao-TGP-targets-intersect-with-AR-related-targets.pdf)

Figure 4: Baishao TGP targets intersect with AR related targets

Intersection:

LGALS3, EGFR, VEGFA, CYP2D6, SELP, SERPINE1, PIK3CG, MMP9, ITK, ADRB2, STAT3, PTGS2

(上述信息框内容已保存至 Figure+Table/Baishao-TGP-targets-intersect-with-AR-related-targets-content)

Figure 5 (下方图) 为图 Targets of compounds and related disease 概览。

(对应文件为 Figure+Table/Targets-of-compounds-and-related-disease.pdf)

Figure 5: Targets of compounds and related disease

6.3.3 芍药苷 (Paeoniflorin, P) 和过敏性鼻炎 (allergic rhinitis, AR) 靶基因的交集

Figure 6 (下方图) 为图 Paeoniflorin targets intersect with AR related targets 概览。

(对应文件为 Figure+Table/Paeoniflorin-targets-intersect-with-AR-related-targets.pdf)

Figure 6: Paeoniflorin targets intersect with AR related targets

Intersection:

LGALS3, VEGFA, SERPINE1, SELP, ADRB2, CYP2D6, STAT3, PTGS2

(上述信息框内容已保存至 Figure+Table/Paeoniflorin-targets-intersect-with-AR-related-targets-content)

Figure 7 (下方图) 为图 Network pharmacology visualization of Paeoniflorin 概览。

(对应文件为 Figure+Table/Network-pharmacology-visualization-of-Paeoniflorin.pdf)

Figure 7: Network pharmacology visualization of Paeoniflorin

6.4 富集分析

6.4.1 白芍总苷 (Total glucosides of paeony, TGP) 与 AR 交集基因的富集分析

Figure 8 (下方图) 为图 TGP Interect genes KEGG enrichment 概览。

(对应文件为 Figure+Table/TGP-Interect-genes-KEGG-enrichment.pdf)

Figure 8: TGP Interect genes KEGG enrichment

Figure 9 (下方图) 为图 TGP Interect genes GO enrichment 概览。

(对应文件为 Figure+Table/TGP-Interect-genes-GO-enrichment.pdf)

Figure 9: TGP Interect genes GO enrichment

6.4.2 芍药苷 (Paeoniflorin, P) 与 AR 交集基因的富集分析

Figure 10 (下方图) 为图 Pae Interect genes KEGG enrichment 概览。

(对应文件为 Figure+Table/Pae-Interect-genes-KEGG-enrichment.pdf)

Figure 10: Pae Interect genes KEGG enrichment

Figure 11 (下方图) 为图 Pae Interect genes GO enrichment 概览。

(对应文件为 Figure+Table/Pae-Interect-genes-GO-enrichment.pdf)

Figure 11: Pae Interect genes GO enrichment

6.5 分子对接

对接的对象为: SOX18, USP5

6.5.1 芍药苷 (Paeoniflorin, P)

Figure 12 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 12: Overall combining Affinity

Figure 13 (下方图) 为图 Paeoniflorin combine USP5 概览。

(对应文件为 Figure+Table/442534_into_2dag.png)

Figure 13: Paeoniflorin combine USP5

Figure 14 (下方图) 为图 Paeoniflorin combine SOX18 概览。

(对应文件为 Figure+Table/442534_into_sox18.png)

Figure 14: Paeoniflorin combine SOX18

Reference

- 1. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation **2**, (2021).
- 2. Daina, A., Michielin, O. & Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. *Nucleic Acids Research* 47, W357–W364 (2019).
- 3. Ru, J. et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics 6, (2014).
- 4. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).
- 5. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics **54**, 1.30.1–1.30.33 (2016).
- 6. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 7. Jiang, H. et al. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases,

and mechanisms of action. Journal of Ethnopharmacology ${f 258},$ (2020).