

Practice: Evaluation Research

Session 03 - GCM and LCSM

psy112 - Evaluation Research

Faculty VI / UOL

Summer term 2025

Content

GCMs

2 LCSMs

Summary

Model 1: First-Order Linear Growth Curve Model (GCM)

Model 1: Linear Growth Curve Model (GCM)

- **Description:** This is the most fundamental growth model. It captures a constant, straight-line pattern of change over time by estimating an initial level (Intercept, L) and a constant rate of change (Slope, S) for each individual.
- **Simple Equation:** The average score at time *t* is determined by the average starting point and the average slope.

$$E[Y_t] = \alpha_L + t \cdot \alpha_S$$

 When to Use: Use this model when your theory suggests that change should occur at a steady, constant rate over the entire measurement period.

Model 2: Quadratic (Second-Order) GCM

Model 2: Quadratic (Second-Order) GCM

- **Description:** This model captures non-linear change by adding a quadratic slope factor (S_{qua}) . It allows for one curve in the trajectory, representing acceleration or deceleration in the rate of change.
- Simple Equation: The average score is now also a function of time squared.

$$E[Y_t] = \alpha_L + t \cdot \alpha_{S_{lin}} + t^2 \cdot \alpha_{S_{qua}}$$

 When to Use: Use this when you expect the rate of change to change over time. For example, learning might be rapid at first and then slow down.

Model 3: GCM with a Time-Invariant Covariate

Model 3: GCM with a Time-Invariant Covariate

- **Description:** This model, also called a conditional GCM, explains individual differences in growth trajectories. It tests if a stable characteristic (X), like a personality trait or group membership, predicts the initial level (L) or rate of change (S).
- **Simple Equation:** The average Intercept and Slope now depend on the value of the covariate X.

$$E[L] = \alpha_L + \gamma_L X \quad | \quad E[S] = \alpha_S + \gamma_S X$$

• When to Use: Use this when your goal is to explain *why* individuals show different patterns of change.

Model 4: Nonlinear GCM (Latent Basis)

Model 4: Nonlinear GCM (Latent basis)

- **Description:** This model offers flexibility by letting the data determine the shape of the trajectory. Instead of fixing all slope loadings (e.g., 0, 1, 2, 3), some are freely estimated (λ_1, λ_2) , allowing the model to capture unspecified non-linear patterns.
- Simple Equation: The average score's change depends on the estimated time loadings (λ_t) .

$$E[Y_t] = \alpha_L + \lambda_t \cdot \alpha_S$$

• When to Use: Ideal for exploring the shape of change when theory is unclear, or for modeling abrupt shifts, such as those caused by an intervention.

Model 5: Latent Change Score (LCS) Model

Kievit et al. (2018)

Model 5: Latent Change Score (LCS) Model

- **Description:** Unlike GCMs which model the overall trajectory, the LCS model focuses directly on the **change** between consecutive time points. It models the state at Time 2 as a function of the state at Time 1 plus a latent change score (Δ) .
- **Simple Equation:** The score at the next time point is the score from the previous time point plus the estimated change.

$$E[\mathsf{State}_{t+1}] = E[\mathsf{State}_t] + E[\Delta_{\mathsf{change}}]$$

 When to Use: When your research question is about the dynamics of change itself, such as what influences the transition from one state to the next.

Model 6: Multigroup LCS Model

Model 6: Multigroup LCS Model

- Description: This extends the LCS model to compare the dynamics of change between two or more distinct groups (e.g., an intervention group vs. a control group). The entire model is estimated separately for each group.
- Simple Equation: Equations are estimated for each group to test for differences in key parameters.

$$E[\Delta D_{\text{Intervention}}]$$
 vs. $E[\Delta D_{\text{Control}}]$

 When to Use: This is a powerful tool for randomized controlled trials (RCTs) to test if an intervention caused a different process of change compared to a control condition.

Summary of Model Differences

Model Name	Primary Focus	Key Feature	Best Use Case
Linear GCM	Overall Trajectory	Assumes a constant,	Testing hypotheses
	, ,	linear rate of change.	about steady growth
			or decline.
Quadratic GCM	Overall Trajectory	Models one curve	When the rate of
		in the trajectory	change is expected to
		(acceleration/decel-	change over time.
		eration).	
Conditional GCM	Explaining Differ-	Uses a time-invariant	Understanding
	ences	covariate to predict	*why* individuals or
		intercept and/or	groups show different
		slope.	growth patterns.
Latent Basis GCM	Exploring Shape	Freely estimates	When theory is
		some slope loadings	unclear about the
		to let the data define	shape of change, or
		the shape.	for modeling inter-
		·	ventions.
LCS Model	Dynamics of Change	Directly models the	Investigating the pro-
		change between con-	cess of change itself
		secutive time points.	and what influences
			transitions.
Multigroup LCS	Comparing Dynamics	Estimates separate	Testing if an inter-
		LCS models for	vention or group
		different groups.	membership al-
			ters the process of
			change.

Next session

Topic: Causality

©Dr. Daniel Kristanto & Prof. Andrea Hildebrandt

 $daniel.kristanto@uni-oldenburg.de\ \&\ andrea.hildebrandt@uni-oldenburg.de$

