Quark Container

- Secure Container Runtime

-- Next Generation Container Infrastructure

Quark - KVM based Secure Container from scratch Secure + High Performance + Low Cost + Kubernetes Compatible

Secure Container

- Hypervisor based security isolation
- Dedicate OS Kernel per Container
- Design for Cloud native workload
- Low memory footprint
- Fast start up
- High performance
- Support OCI interface

Hypervisor virtual network

- Design for Cloud native workload
- Network virtualization in hypervisor
- Http stack in hypervisor
- High performance
- Interoperate with VM network and container network
- Support CNI interface

Container Orchestration

- Extension of Kubernetes
- Multi-tenant support
- Schedule both VM and Container
- Compatible operation interface as Kubernetes

Existing Secure Container

- Open Source
- 2. Acquired by Ant Finance
- 3. Hypervisor: Optimized Qumu
- 4. OS Kernel: Optimized Linux Kernel

- 1. From Google
- 2. User for GCP Cloud function
- 3. Hypervisor: reimplementation
- 4. OS Kernel: reimplementation
- 5. Use golang and legacy design from ptrace

- Firecracker: From AWS
- 2. Used for AWS Lambda
- 3. Hypervisor: Firecracker
- 4. OS Kernel: Normal Linux Kernel

	Quark Container	Kata	gVisor	Firecracker
Memory Overhead	12 MB	180MB	20 ~ 30 MB	5MB Hypervisor + 100+MB Linux Kernel
Optimization potential	Very High	Low	High	Medium
Kubernetes compatible	Yes	Yes	Yes	No
Performance	High	Low	Medium to High	Medium

Pain Point: Containerized Application on VM

- 1. Docker container is not secure: VM isolation is must in multi-tenant environment
- Virtual machine overhead
 - a. Memory: 100MB ~ 300MB memory overhead per VM
 - b. File IO: 10~20% throughput decrease
 - c. Network IO: VM network + container network leads to 5~10% throughput decrease
- 3. Management: VM management (e.g. OpenStack) + Container orchestration (E.g. K8s)
 - . Extra management layer overhead
 - Decrease resource utilization.
 - c. Increase IT operation cost
- 4. Can't meet cloud native resource management model
 - Autoscale
 - b. Service migration
 - c. Cloud function

Container Infrastructure

Container Infrastructure V2: Security Container Central

- 1. High computation density: 2MB overload per container
- 2. Low latency auto scale: 50 ~ 100ms boot up overhead
- 3. Low overhead container runtime: 5% ~ 10%
 - a. Network
 -). 10
 - c. Computation
- 4. High security

Container Infrastructure V1: Virtual Machine Central

- Security/Resource isolation: VM based isolation
- 2. Network: VM based VPC
- 3. Container: Running over VM

Not suitable for Cloud native application

- High overhead
 - a. Memory
 - b. IO
 - c. Network
- 2. Difficult to support auto scale

Virtual Machine

Easy to migrate from Legacy workload

Virtual Machine + Container

Running containerized workload on existing infrastructure

Hypervisor OS

-- Reimplement OS hosted on Linux Hypervisor for containerized workload

Quark Kernel

- Reimplemented Linux compatible OS running in Hypervisor
- Running as Linux application
- No need to support physical device

Quark Network

- Underlay TCP network stack running as Linux application
- Virtual Private Network
- High performance and low latency

Quark Visor

- HyperVisor only support Quark Kerne
- Optimized for Linux Syscall interface
- High secure, Low cost and High performance
- Kubernetes Container interface (OCI)

VS

Hypervisor OS

- Designed for running as Linux application
- Design for containerized workload Limited System Call
- High performance, Low cost
 - Embedded Container interface

Linux VM

- Design running all kind of hardwar
- 2. Design for all kind of workload, complex full system call
- High cost to run on Hypervisor
- 4. Extra layer for Container support

Quark Architecture

Quark Architecture

Quark

