WHAT IS CLAIMED IS

1. A method for reducing the interfering effect of a radar transmitter occupying a nominal frequency bandwidth into an other operating band, where said other operating band is spaced from said nominal frequency bandwidth by a third frequency band, said method comprising the steps of:

generating at said radar transmitter a constantamplitude pulse centered at a frequency within said nominal
frequency bandwidth of said radar and having a nominal bandwidth
which lies within said nominal frequency bandwidth, and which
also has an actual bandwidth which extends into said other
operating band;

applying phase perturbations to said constantamplitude pulse so as to produce a phase-perturbed constantamplitude pulse centered at said frequency within said nominal
frequency bandwidth of said radar with reduced amplitude of that
portion of said actual bandwidth of said constant-amplitude
pulse which lies within said other operating band; and

transmitting said phase-perturbed constant-amplitude pulse toward a radar target.

2. A method for reducing interference between constant-amplitude long-range and short-range radar subpulses, where said long-range radar subpulses are centered at a first frequency and have a first nominal passband and said short-range pulses are centered at a second frequency, different from said first frequency and having a second nominal passband, the passband of at least one of said long-range and short-range

radar subpulses extending at least partially into said nominal passband of the other of said long-range and short-range radar subpulses, said method comprising the steps of:

selectively applying phase perturbations to said one of said long-range and short-range radar subpulses to tend to null that portion of said passband of said one of said long-range and short-range radar subpulses which extends into said nominal passband of said other one of said long-range and short-range radar subpulses.

- 3. A method according to claim 2, wherein said step of selectively applying phase perturbations includes the steps of:
- (a) Compute $s_k\text{,}$ the nominal pulse's k^{th} digital sample as:

$$s_k = \cos\left(2\pi \left(\frac{f_0}{f_s}\right)k + \theta_k\right)$$

where:

k is a sample index ranging between 1 and N, the total number of samples in the net pulse;

 f_0 is the pulse's center frequency at the input to the digital-to-analog (D/A) converter;

 f_s is the sample rate at which the signal samples are to be read out of a digital memory (and the same rate at which the D/A converter operates); and

- θ_k is the pulse's nominal phase modulation function;
 - (b) compute the phase perturbation as:

$$\phi = \lambda \left[\lambda \mathbf{D} \mathbf{R} \mathbf{D} + \mathbf{I} \right]^{-1} \mathbf{D} \mathbf{R} \mathbf{s}$$

PTN\36292.1

where:

 φ is an N x 1 column vector of phase perturbation samples with k^{th} element equal to $\varphi_k;$

 $\boldsymbol{\lambda}$ is a positive scalar, greater than unity, whose value determines null depth;

 \boldsymbol{D} is an N x N diagonal matrix (all off-diagonal elements are zero) whose k^{th} diagonal element is similar to s_k with the cosine function replaced by the sine;

 ${\bf R}$ is an N x N matrix that determines null center frequency, width, and shape;

I is an N x N identity matrix; and

s is an N x 1 vector whose k^{th} element is equal to s_k , to thereby define a k^{th} signal sample as

$$\widetilde{s}_k = \cos\left(2\pi\left(\frac{f_0}{f_s}\right)k + \theta_k + \phi_k\right)$$

where the tilde indicates a sample of the phase-perturbed pulse and ϕ_k is the k^{th} sample of the phase perturbation that creates the desired spectral null.