Distributed Information Systems: Spring Semester 2016

Quiz 3		
Student Name:Student ID:	Date: 7 Apr 2016 Time: 11:15AM to 11:30AM	
Total number of question Each question has a single		
1. Which of following is wrong about data guide?		
\square $a)$ The data guide summarizes the data in a concise way ((i.e., every path occurs only once)	
\square b) The nodes in a data guide define classes of nodes in the	e data graph	
\square $c)$ The data guide is a deterministic schema graph		
$\boxtimes d$) The dataguide can never have cycles		
2. Given the transactions in the following table, which of the fe	following statements is true ?	
Transaction ID Purchased Items		
1 A,B,C		
2 A,C		
3 A,D 4 B,E		
1 15,12		
\square a) $A \implies C$ with unknown support and $\approx 66.67\%$ confidence.	ence	
\Box b) $C \implies A$ with 100% support and 50% confidence		
$\boxtimes c$) $A \implies C$ with 50% support and $\approx 66.67\%$ confidence		
$\Box d$) $C \implies A$ with unknown support and 50% confidence		
3. Given a frequent itemset T of size $k \geq 2$, computed from a minimum support, which of the following is true :	database of shopping transaction with a given	
$\boxtimes a$) There exist at least k frequent itemsets of size $k-1$.		
\square b) Using the apriori algorithm, the database has been scan	nned $k+1$ times to find T .	
\square c) We can build at least $k-1$ association rules with confi-		
\Box d) If another frequent itemset T' differs from T by exactly itemset.	y one element, then $T \cup T'$ is a $k+1$ frequent	
4. For schema integration we constructed a Naive Bayes class data instance i with features T_i belongs to a class A.	sifier that determines with which probability a	
Which of the following probabilities is not used to train the	e classifier	
\Box a) $P(A)$, the probability that an instance belongs to class	: A	
\Box b) $P(t A)$, the probability that a feature $t \in T_i$ occurs for		
$\boxtimes c$) $P(A T_i)$, the probability that an instance belongs to cla		
\square d) all the three probabilities are used		
5. When integrating heterogeneous databases (e.g. in healthca schemas need to be related to each other according to seman	, ,	
$\square a$) Schema analysis		

 \square b) Schema extraction $\boxtimes c)$ Schema matching \square d) Schema subsumption

O. VVI	nich of the following is false in the context of the Apriori algorithm for association rule mining:
$\Box a$) The PRUNE step removes all k -itemsets that contain a non frequent $(k-1)$ -itemset.
$\boxtimes b$) After the JOIN and PRUNE step, all remaining k -itemsets are frequent k-itemsets.
$\Box c$) The Apriori algorithm reduces the number of database accesses compared to a brute-force approach.
$\Box d$) Identifying frequent itemsets in partitions of the database can improve the algorithm's performance in large datasets.
7. Giv	ven sets $A = \{a, b, c, d, f\}$ and $B = \{a, b, c, d, e\}$, the Jaccard similarity between A and B is:
$\Box a$) 5
$\Box b$)4/25
$\boxtimes c$) 2 / 3
$\Box d$) 4 / 5
8. Giv	ven an association rule $I \implies J$. Confidence is the probability
$\Box a$) $P(I,J)$
$\boxtimes b$) $P(J I)$
	P(I J)
$\sqcup c$	