

COMSOL 2014

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly

COMSOL
CONFERENCE
2014 BOSTON

Robert Coker and Jim Knox

NASA Marshall Space Flight Center, Huntsville, Alabama,
35812, USA

Introduction

- Advanced Exploration Systems (AES) Program:
 - pioneering approaches for rapidly developing prototype systems
 - validating concepts for human missions beyond Earth orbit
- Atmosphere Resource Recovery and Environmental Monitoring Project (ARREM):
 - mature environmental subsystems
 - ***derived directly from the ISS subsystem architecture***
 - reduce developmental and mission risk
 - demonstrate concepts for human missions beyond Earth orbit

- Goal: *Predictive model of the Carbon Dioxide Removal Assembly (CDRA)*
- Here, focus on the Desiccant Beds (1D)
- Need to know sorbent behavior (isotherms, LDF, etc.)

Cylindrical Breakthrough Test (CBT)

- Multiple sorbents: RK38, 13X G544, 5A G522, SG G40, SG B152
- Multiple sorbates: CO₂, H₂O
- Variable flow rates, concentrations, and temperatures

- Well diagnosed (TCs, FCs, DPs, PTs, masses)
- Insulated
- Surrogate for CDRA DBs

Model Approach

- Use Toth isotherms from other work
- Use dimensionless correlations (Re, Nu, Pe, Pr, Sc)
 - Derives mass dispersion and thermal transfer coefficients
- Assume binary mass diffusion is valid
- Assume constant porosity
- Use Rumpf-Gupte permeability relationship
- 1D ‘plug flow’ style model with wall corrections
- Fit the single remaining model parameter using CBT data
 - Across-the-board validity of the 1D LDF model?

COMSOL Model

Use COMSOL Multiphysics to solve 7 PDEs:

- 1st order Ergun equation for interstitial velocity
- Gas pressure assuming ideal gas law
- Sorbate concentration via diffusion & advection
- Pellet loading via LDF & Toth
- Sorbent temperature with sorption physics
- Gas temperature (not in eqlbrm with sorbent)
- Wall housing temperature

- BCs tricky in COMSOL (applied only to flux terms)
- Time-dependent inlet conditions (flow rate, T_{gas} , concentration)
- Temperature-dependent material properties
- Adsorption and Desorption half-cycles with changing BCs

1-D Model PDEs

$$\rho_g \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(\frac{\mu_g}{\epsilon} \frac{\partial(\epsilon u)}{\partial x} \right) = - \left(\frac{\partial P}{\partial x} + u \left(\frac{\epsilon \mu_g}{\kappa} + \epsilon^2 |u| \rho_g A + \frac{\partial q}{\partial t} \frac{(1-\epsilon)}{\epsilon} M_a + \rho_g \frac{\partial u}{\partial x} \right) \right)$$

$$\frac{\epsilon}{R_s T_g} \frac{\partial P}{\partial t} + \frac{\partial}{\partial x} \left(\frac{\epsilon u P}{R_s T_g} \right) + P \frac{\partial \left(\frac{\epsilon}{R_s T_g} \right)}{\partial t} = - \frac{\partial q}{\partial t} (1-\epsilon) M_a$$

$$0 = \epsilon \frac{\partial c}{\partial t} + (1-\epsilon) \frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(-D_x \frac{\partial c}{\partial x} - D_x \frac{c}{M_{mix}} \frac{\partial M_{mix}}{\partial x} + D_x \frac{c}{\rho_g} \frac{\partial \rho_g}{\partial x} + u \epsilon c \right)$$

LDF parameter

$$\frac{\partial q}{\partial t} = (q_* - q) k_m \quad \leftarrow$$

$$(1-\epsilon) \rho_s c_{ps} \frac{\partial T_s}{\partial t} + \frac{\partial}{\partial x} \left(-k_s (1-\epsilon) \frac{\partial T_s}{\partial x} \right) = A h_{sg} (T_g - T_s) - \partial H (1-\epsilon) \frac{\partial q}{\partial t}$$

$$\epsilon \rho_g c_{pg} \frac{\partial T_g}{\partial t} + \frac{\partial}{\partial x} \left(-k_{gx} \epsilon \frac{\partial T_g}{\partial x} \right) = A h_{sg} (T_s - T_g) - \epsilon \rho_g c_{pg} u \frac{\partial T_g}{\partial x} + \frac{P_I h_{gc} (T_c - T_g)}{A_f}$$

$$\rho_c c_{pc} \frac{\partial T_c}{\partial t} + \frac{\partial}{\partial x} \left(-k_c \frac{\partial T_c}{\partial x} \right) = \frac{P_I h_{gc} (T_g - T_c)}{A_c} + \frac{P_O h_{Ac} (T_A - T_c)}{A_c}$$

Example H₂O SG CBT Results

- Water vapor on Silica Gel Grade 40
- Flow is at 8 SLPM with an inlet dew point of 0.5°C
- Residuals dominated by *experimental* error in dew point sensors
- Model good enough to point out SLPM error
- Variability of testing conditions an issue
- Model has early temperature adsorption hump not seen in data
 - Not evident with higher flow rates or inlet dew points

Example CO₂ 5A CBT Results

- Carbon Dioxide on 5A zeolite RK38
- Flow is at 16 SLPM with an inlet partial vapor pressure of 5 Torr
- Consistently missing inlet sharp peak
- Temperature falloff and asymptotic behavior incorrect in models
- Excellent match to breakthrough curve

Summary

- Have constructed a *predictive* desiccant bed model
 - Applied to CBT
 - Various sorbates, sorbents, flow rates, concentrations
 - Next: Generalize PDEs to 2D and 3D (!)
 - Or: Use COMSOL modules
 - Velocity and pressure modules appropriate?
 - Have verified thermal modules give PDE results, but:
 - Assumption of $T_g \sim T_s$ not always valid
- Then: Apply same model methodology to CDRA Sorbent Beds
 - Complex 3D geometry
 - Including heaters
 - Uses vacuum desorption
 - Have to model H_2O/CO_2 sorption competition

→Full System Predictive CDRA Model!