Apuntes de Topología I

Lara Olmos Camarena 3 de julio de 2017

Referencias

- [1] Apuntes de Topología. Cursos 2015 a 2017. UAM. Profesor: Mª Ángeles Zurro.
- [2] Capítulos I, II y III 2016-2017. UAM. José García-Cuerva.
- [3] Topología. James R. Munkres. 2ª edición.

Secundarias:

- [4] Problemas de topología general. G. Fleitas y J. Margalef.
- [5] Introducción a la topología. Juan Margaleff Roig y Enrique Outerelo Domínguez.

¡OJO! Estos apuntes no están libres de errores. Para cualquier corrección contactar: lara.olmos@estudiante.uam.es

Índice

1.	Bloque I: Conceptos básicos 4		
	1.1.	Espacios topológicos	4
		1.1.1. Topologías habituales	4
	1.2.	Bases y subbases	5
		1.2.1. Construcción de una topología a partir de una base, τ_{β}	6
	1.3.	Comparación de topologías	6
	1.4.	Topología asociada a un orden	8
		1.4.1. Orden lexicográfico	9
	1.5.	Topología producto	9
		1.5.1. Sobre X × Y	9
		1.5.2. Sobre un número finito de espacios topológicos	12
		1.5.3. Espacio producto de infinitos factores	13
	1.6.	Topología de subespacio	14
		1.6.1. Topología de subespacio y producto	15
		1.6.2. Topología de subespacio y del orden	16
	1.7.	Entornos	17
	1.8.	Interior de un conjunto	18
	1.9.	Conjuntos cerrados	19
		Adherencia o cierre de un conjunto	20
	1.11.	Exterior y frontera	21
	1.12.	Puntos de acumulación y conjunto derivado	22
	1.13.	Funciones continuas	23
		1.13.1. Funciones continuas y espacio producto de infinitos factores	26
		1.13.2. Criterio local de continuidad	27
	1.14.	Homeomorfismos, funciones abiertas y cerradas	28
	1.15.	Convergencia y espacios topológicos Hausdorff	29
	1.16.	Espacios métricos	31
		1.16.1. Funciones continuas y metrizabilidad	33
		1.16.2. Convergencia uniforme	34
		1.16.3. Completitud	35
	1.17.	Axiomas de numerabilidad	36
	1.18.	Topología y espacio cociente	37
		1.18.1. Aplicaciones cociente	38
		1.18.2. Ejemplos	41
2.	Bloq	ue II: Compacidad y conexión	43
	2.1.	Compacidad	43
		2.1.1. Cubrimientos y recubrimientos de espacios topológicos	43
		2.1.2. Espacio topológico compacto	44
		2.1.3. Producto de espacios compactos	46
		2.1.4. Subconjuntos compactos en \mathbb{R}^n y en espacios métricos	47
		2.1.5. Compactos para la topología del orden	49

1. Bloque I: Conceptos básicos

1.1. Espacios topológicos

Definición 1 (Topología sobre un conjunto). Una topología sobre un conjunto X es una colección τ de subconjuntos de X, $\tau \subset P(X)$, con las propiedades:

- 1. \emptyset (vacío) y X (total) pertenecen a τ.
- 2. La unión de elementos de cualquier subcolección de τ está en τ . Es decir, dada $\{A_{\lambda}\}_{\lambda\in\Lambda}\ con\ A_{\lambda}\in\tau,\,\forall\lambda\in\Lambda\Rightarrow\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\tau.$
- 3. La **intersección** de los elementos de cualquier subcolección finita de τ están en τ . Es decir, para $A \in \tau$, $B \in \tau \Rightarrow A \cap B \in \tau$.

El par (X, τ) es un **espacio topológico**.

Definición 2 (Conjunto abierto). Un subconjunto U de X es un conjunto abierto de X si U pertenece a la topología sobre X, τ.

$$U \subset X$$
, U abierto de $X \Leftrightarrow U \in \tau$

Definición 3 (Conjunto cerrado). Un subconjunto K de X es un conjunto cerrado de X si el **complementario de K** es abierto.

$$K \subset X\text{, } K \text{ cerrado de } X \Leftrightarrow C_X K \in \tau$$

Ejemplo 1. Dado el conjunto $X = \{a, b, c\}$.

- $\tau_1 = {\emptyset, X, {\alpha, b}, {c}}$ es una topología sobre X.
- $\tau_2 = {\emptyset, X, {\alpha, b}}$ es una topología sobre X.
- $\tau_3 = \{\emptyset, X, \{a, b\}, \{b, c\}\}$ no es una topología sobre X, porque $\{b\} = \{a, b\} \cap \{b, c\}$ y $\{b\} \notin \tau_3$.

1.1.1. Topologías habituales

Sea X un conjunto cualquiera.

- La colección de todos los subconjuntos de X es una topología sobre X, la topología discreta. En esta topología, los conjuntos unipuntuales son abiertos y cerrados. Para cada $x_0 \in X$, $G = \{x_0\} \in \tau$ luego G es abierto para τ . Además, $C_XG = X \setminus \{x_0\} \in \tau$, luego G es cerrado para τ.
- La topología compuesta únicamente por X y ∅ es la topología trivial.

■ **Topología de Zariski o cofinita**. Dada la colección de todos los subconjuntos U de X tales que

$$U \in \tau \Leftrightarrow C_X U \text{ es finito o } U = \emptyset$$

Es topología porque tanto X como \emptyset están en τ : C_XX es finito (por ser \emptyset) y $C_X\emptyset$ es todo X. Sea $\{U_{\alpha}\}$ una familia indexada de elementos no vacíos de τ .

- $\bigcup U_\alpha \in \tau$, porque $X \smallsetminus \bigcup U_\alpha = \bigcap (X \smallsetminus U_\alpha)$. El último conjunto es finito porque cada $X \setminus U_{\alpha} = C_X U_{\alpha}$ lo es.
- $\bigcap_{i=1}^n U_{\alpha} \in \tau$. Si $U_1, U_2, ..., U_n$ son elementos no vacíos de la topología, $X \setminus \bigcap_{i=1}^n U_{\alpha} = \bigcup_{i=1}^n (X \setminus U_i) = \bigcup_{i=1}^n C_X U_i$ (unión finita \Rightarrow conjunto finito).
- Colección (a,b) = $\{x : a < x < b\}$ intervalos abiertos de \mathbb{R} es la **topología usual** en \mathbb{R} .
- Topología límite inferior: $\tau = \{[a, b) : a, b \in X, a < b\}$
- Topología límite superior: $\tau = \{(\alpha, b] : \alpha, b \in X, \alpha < b\}$
- Topología complemento numerable: $\tau = \{U \subset X : X \setminus U \text{ numerable o } X \setminus U = X\}$

1.2. Bases y subbases

Definición 4 (Base para una topología). Si X es un conjunto no vacío, diremos que $\beta \subset P(X)$ es una **base** para una topología sobre X, τ_{β} , si satisface:

- 1. Para cada $x \in X \exists \Omega_x \in \beta$ elemento de la base que depende de x tal que $x \in \Omega_x$.
- 2. Si $B_1, B_2 \in \beta, x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \beta, x \in B_3 \text{ y } B_3 \subset B_1 \cap B_2.$

También, se llama **base** de la topología τ a cualquier colección de conjuntos abiertos $\beta \subset \tau$ que cumple que cualquier abierto es unión de alguna familia de conjuntos abiertos de β.

Consecuencia:
$$X = \bigcup_{B \in \beta} B$$
. $\bigcup_{B \in \beta} B \subset X$, por ser β una colección de subconjuntos de X . $\bigcup_{B \in \beta} B \supset X$ por la propiedad 1 de base.

Definición 5 (Subbase para una topología). Una subbase para una topología sobre X, Σ , es una familia de subconjuntos de X tal que su unión es X y cuyas intersecciones finitas forman una **base**. (También se dice que Σ genera la topología).

1.2.1. Construcción de una topología a partir de una base, τ_{β}

$$U \subset X, U \in \tau_{\beta} \Leftrightarrow \forall x \in U, \exists \Omega_{x} \in \beta, x \in \Omega_{x}, \Omega_{x} \subseteq U$$

Demostración de que τ_{β} es una topología sobre X:

- 1. $\emptyset \in \tau_{\beta}$ porque $\forall x \in \emptyset$, $\exists \Omega_x \in \beta$, $x \in \Omega_x$, $\Omega_x \subset \emptyset$. $X \in \tau_{\beta}$ porque por la propiedad 1 de base, se verifica que $\forall x \in X, \exists \Omega_x \in \beta, x \in \Omega_x, \Omega_x \subset X$.
- 2. Dada la familia $\{A_{\lambda}\}_{\lambda\in\Lambda}$ de elementos de τ_{β} , probamos que $A=\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\tau_{\beta}$. Para cada $x \in A$, existe un índice λ_0 tal que $x \in A_{\lambda_0}$. Puesto que A_{λ_0} es abierto, $\exists B \in \beta$ tal que $x \in B \subset A_{\lambda_0}$. Entonces $x \in B$ y $B \subset A$, por lo que A es abierto por definición.
- 3. Dados A, B $\in \tau_{\beta}$ veamos que A \cap B $\in \tau_{\beta}$. Sea $x \in A \cap B \Rightarrow \exists \Omega_{x} \in \beta, x \in \Omega_{x}, \Omega_{x} \subset A$. También, $\exists \tilde{\Omega}_x \in \beta, x \in \tilde{\Omega}_x, \tilde{\Omega}_x \subset B$. Por la propiedad 2 de base, $\exists \hat{\Omega}_x \in \beta, x \in \hat{\Omega}_x$, $\hat{\Omega}_{x} \subset \Omega_{x} \cap \tilde{\Omega}_{x} \subset A \cap B.$

Observación: Cada elemento de la base es un abierto de X en la topología τ_B , $\forall B \in \beta$, $B \in \tau_B$.

Proposición 1. Si X es un conjunto no vacío, β es una base para una topología, $\tau = \tau_{\beta}$. Entonces, τ es la familia de uniones arbitrarias de elementos de β .

Demostración:
$$U \in \tau \Rightarrow U = \bigcup_{x \in U} \Omega_x$$
.

1.3. Comparación de topologías

Sea X conjunto no vacío, τ_1 , τ_2 dos topologías sobre X.

Definición 6 (Más fina). τ_2 es más fina que $\tau_1 \Leftrightarrow$ todo abierto de τ_1 es abierto de $\tau_2 \Leftrightarrow$ $\tau_1 \subset \tau_2.$

Observación: La topología más fina que se puede dar sobre X es la topología discreta. Es decir, $\tau_{trivial} \subset \tau \subset \tau_{discreta}$.

Proposición 2. Si β_1 , β_2 son bases para las topologías τ_1 , τ_2 de X, respectivamente, son equivalentes:

- 1. τ_2 es más fina que τ_1 .
- 2. $\forall x \in X, \forall B_1 \in \beta_1, x \in B_1 \Rightarrow \exists B_2 \in \beta_2 \text{ tal que } x \in B_2 \text{ y } B_2 \subset B_1.$

Demostración:

 $(1\Rightarrow 2)$. Sea $x\in X$ y $B_1\in \beta_1$ con $x\in B_1$. Como τ_2 es más fina que $\tau_1,\tau_1\subset \tau_2\Rightarrow B_1\in \tau_2$. Luego, $B_1 = \bigcup \Omega_{\lambda}$, con $\Omega_{\lambda} \in \beta_2$. Como $x \in B_1$, $\exists \lambda_0 \in \Lambda$, con $x \in \Omega_{\lambda_0}$. Basta tomar $B_2 = \Omega_{\lambda_0}$.

 $(2\Rightarrow 1). \text{ Sea } U\in\tau_1\Rightarrow U=\bigcup_{\lambda\in\Lambda}B_{1,\lambda}\text{ con }B_{1,\lambda}\in\beta_1 \text{ } \forall \lambda\in\Lambda. \text{ Para cada }\lambda_0\in\Lambda, \text{ veamos }\lambda\in\Lambda$ que B_{1,λ_0} es abierto para τ_2 .

Para cada $x \in B_{1,\lambda_0}$, por hipótesis, $\exists B_{2,\lambda_0,x} \in \beta_2 \text{ con } x \in B_{2,\lambda_0,x}, B_{2,\lambda_0,x} \subset B_{1,\lambda_0} \Rightarrow$ $B_{1,\lambda_0} = \bigcup_{x \in B_{1,\lambda_0}} B_{2,\lambda_0,x} \Rightarrow U = \bigcup_{\lambda \in \Lambda} (\bigcup_{x \in B_{1,\lambda}} B_{2,\lambda,x}) \in \tau_2$

Proposición 3. Sea (X,τ) un espacio topológico y $\mathcal F$ una familia de abiertos para τ . Si F satisface:

$$\forall U \in \tau, \forall x \in U \Rightarrow \exists \Omega \in \mathcal{F}, x \in \Omega \subset U$$

Entonces, \mathcal{F} es una base para una topología y $\tau_{\mathcal{F}} = \tau$.

Ejemplo 1. La familia de abiertos $\mathcal{F} = \{(a, b) : a, b \in \mathbb{R}\}\$ de la topología usual es una base $y \tau_{usual} = \tau_{\mathfrak{F}}$.

Ejemplo 2. La colección $[a,b] = \{x : a \le x < b, a < b, a, b \in \mathbb{R}\}$ genera la **topología lí**mite inferior.

Comprobemos que la topología que genera $\beta_2 = \{[a,b): a,b \in \mathbb{R}\}$ no es la topología usual de \mathbb{R} , con base $\beta_1 = \{(a, b) : a, b \in \mathbb{R}\}$. De hecho, la topología límite inferior es **más fina** que la topología usual de \mathbb{R} .

 $\xi \tau_{\beta}$, $\subset \tau_{usual}$? Dado $x \in B_2 = [x, d]$, no existe $(a, d) = B_1$ abierto tal que $x \in B_1$ y que cumpla $B_1 \subset B_2$. Dicho de otra forma, $U_1 = [a, b]$ abierto de la topología límite inferior no puede ser un abierto en τ_{usual} , no puede escribirse como unión de elementos de β_1 .

Dicho de otra forma, un abierto de la topología usual (a, b) es abierto en la topología límite inferior.

Definición 7 (Topología generada por un conjunto $\Sigma \in P(X)$). Sea X un conjunto y Σ una colección cualquiera de subconjuntos de X. Entre todas las topologías que contienen a Σ la **menos fina** (o **topología mínima** en el orden de conjuntos) es aquella engendrada por Σ , aquella cuyos abiertos son las uniones de intersecciones de subfamilias finitas de Σ.

Definición 8 (Relación de orden u orden lineal). Sea $X \neq \emptyset$, se dice que **R** es una relación de orden (total) sobre **X** si se cumplen las propiedades:

- 1. Comparabilidad: $\forall x, y \in X, x \neq y \Rightarrow xRy \circ yRx$.
- 2. **Irreflexiva**: $\forall x, y \in X$, x R y, $y R x \Rightarrow (x \neq y)$. (Ningún $x \in X$ cumple x R x).
- 3. Transitiva: $\forall x, y, z \in X$, $xRy, yRz \Rightarrow xRz$.

Decimos que (X,R) es un conjunto (linealmente) ordenado.

Dados $a, b \in X$, denotamos los intervalos abiertos, cerrados, semiabiertos y rayos:

$$(a,b) = \{x \in X : a < x < b\}$$
 $[a,b] = \{x \in X : a \le x \le b\}$

$$(a, b] = \{x \in X : a < x \le b\}$$
 $[a, b) = \{x \in X : a \le x < b\}$

$$(\alpha, \infty) = \{x \in X : x > \alpha\}$$
 $[\alpha, \infty) = \{x \in X : x \geqslant \alpha\}$

$$(-\infty, \alpha) = \{x \in X : x < \alpha\} \qquad (-\infty, \alpha] = \{x \in X : x \leqslant \alpha\}$$

Definición 9 (Base para la topología asociada al orden). $\beta \subset P(X)$ formada por:

- 1. Todos los intervalos de la forma (a, b) con $a, b \in X$.
- 2. Si existe a_0 mínimo de X, incluye los intervalos: $[a_0,b)$ tales que $b\in X$.
- 3. Si existe b_0 **máximo** de X, incluye los intervalos: $(a, b_0]$ tales que $a \in X$.

Demostración:

- 1. Probemos que $\forall x \in X$, $\exists B \in \beta$ tal que $x \in B$. Sea $x \in X$.
 - Si x es mínimo de $X \Rightarrow \exists b \in X, b \neq x$ tal que $x \in B = [x, b) \in \beta$.
 - Si x es máximo de $X \Rightarrow \exists \alpha \in X$, $\alpha \neq x$ tal que $x \in B = (\alpha, x] \in \beta$.
 - Si x no es mínimo ni máximo de $X \Rightarrow \exists a < x \ y \ b > x \ para \ a,b \in X \ tal \ que <math>x \in B = (a,b) \in \beta$.
- 2. Probemos que dados B_1 , $B_2 \in \beta$, $\forall x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \beta$, $x \in B_3 \subset B_1 \cap B_2$. Si $B_1 = (a, b)$, $B_2 = (c, d)$ cumplen $\emptyset \neq B_1 \cap B_2 = (a, b) \cap (c, d)$, tenemos distintos casos, en función de las relaciones de orden entre los elementos a, b, c y d de X. En todos podemos encontrar $(e, f) = B_3 \subset B_1 \cap B_2$ tal que $x \in B_3$.

1.4.1. Orden lexicográfico

Sea $X = \mathbb{R}^2$, definimos la relación de orden:

$$(a,b) <_L (c,d) \Leftrightarrow \quad \left\{ egin{array}{l} a < c \\ a = c \Rightarrow b < d \end{array} \right.$$

El conjunto \mathbb{R}^2 no tiene máximo ni mínimo, por lo que la base de la topología generada en $(\mathbb{R}^2, <_{\mathbb{I}})$ tiene como abiertos:

$$(P,Q) = \{R \in \mathbb{R}^2 : P <_L R <_L Q \text{ donde } P,Q \in \mathbb{R}^2\}$$

Por ejemplo, siendo $Q_1=(0,1)$, P=(0,0) y $Q_2=(1,0)$, tenemos que:

$$\begin{split} (P,Q_1) &= \{(x,y) \in \mathbb{R}^2 : (0,0) <_L (x,y) <_L (0,1)\} \\ &\equiv \{0 < x \land 0 = x \Rightarrow 0 < y\} \ y \ \{x < 0 \land x = 0 \Rightarrow y < 1\} \equiv \{0 < y < 1\} \\ (P,Q_2) &= \{(x,y) \in \mathbb{R}^2 : (0,0) <_L (x,y) <_L (1,0)\} \\ &\equiv \{0 < x \land 0 = x \Rightarrow 0 < y\} \ y \ \{x < 1 \land x = 1 \Rightarrow y < 0\} \\ &\equiv \{0 < x < 1, y \in \mathbb{R}\} \bigcup \{x = 0, 0 < y\} \bigcup \{x = 1, y < 0\} \end{split}$$

Para describir un intervalo abierto de la topología usual de R para el eje de ordenadas en la topología asociada al orden lexicográfico, tenemos:

$$Y = \{(0,y): y>0\} = \bigcup_{n=1}^{\infty} (P,H_n) \quad \text{ con } H_n = (0,n) \in \mathbb{R}^2$$

Dicha unión es abierta para la topología asociada al orden. Tenemos que el eje de ordenadas completo es: $L := \bigcup_{n=1}^{\infty} ((0,-n),(0,n))$

1.5. Topología producto

1.5.1. Sobre $X \times Y$

Definición 10 (Topología producto sobre $X \times Y$). Sean (X, τ_X) , (Y, τ_Y) espacios topológicos. La **topología producto** sobre $X \times Y$ es la topología que tiene como **base** la colección β :

$$\beta_{X\times Y} = \{U\times V: U\in \tau_X, V\in \tau_Y\}$$

 $\beta_{X\times Y}$ no es topología, porque la unión de dos elementos disjuntos $U_1\times V_1$, $U_2\times V_2$ no se puede escribir como $U \times V$, $U \in \tau_X$, $V \in \tau_Y$.

Veamos si $\beta_{X\times Y}$ es base:

1.
$$(x_0, y_0) \in X \times Y \Rightarrow \exists U \in \tau_X, V \in \tau_Y, (x_0, y_0) \in U \times V$$
, basta que $U = X, V = Y$.

2. Sean $B_1 = U_1 \times V_1$, $B_2 = U_2 \times V_2$ y sea $(x_0, y_0) \in B_1 \cap B_2 = (U_1 \cap U_2) \times (V_1 \cap V_2)$. $\exists B_3 \text{ tal que } (x_0, y_0) \in B_3 \subseteq B_1 \cap B_2 \in \beta \text{ porque } U_1 \cap U_2 \in \tau_X \text{ y } V_1 \cap V_2 \in \tau_Y, \text{ por } V_1 \cap V_2 \in \tau_Y, \text{ por } V_2 \in$ la propiedad 3 de topología.

Proposición 4. Sean τ_X , τ_Y topologías con bases β_X , β_Y respectivamente. Entonces la colección:

$$C = \{A \times B : A \in \beta_X, B \in \beta_Y\}$$

es una base para la topología producto de $X \times Y$.

Demostración:

Generalmente
$$C = \{A \times B : A \in \beta_X, B \in \beta_Y\} \subset \beta = \{U \times V : U \in \tau_X, V \in \tau_Y\}.$$

Para ver que C es base de la topología producto $X \times Y$, verificamos que cualquier conjunto de β es unión de conjuntos de C. Supongamos que:

$$\begin{split} &U\in\tau_X \text{ se puede escribir como } U=\bigcup_{\lambda\in\Lambda}A_\lambda\text{ con }A_\lambda\in\beta_X\ \forall\lambda\in\Lambda\\ &V\in\tau_Y\text{ se puede escribir como }V=\bigcup_{\alpha\in\Lambda}B_\alpha\text{ con }B_\alpha\in\beta_Y\ \forall\alpha\in\Delta \end{split}$$

$$U\times V=(\bigcup_{\lambda\in\Lambda}A_\lambda)\times(\bigcup_{\alpha\in\Delta}B_\alpha)=\bigcup_{\lambda\in\Lambda,\alpha\in\Delta}(A_\lambda\times B_\alpha)\ con\ A_\lambda\times B_\alpha\in C\ \forall\lambda\in\Lambda,\forall\alpha\in\Delta.$$

Demostración alternativa:

Veamos que C cumple las propiedades de base.

- 1. $\forall (x,y) \in X \times Y \exists \Omega_{(x,u)} \in C \text{ tal que } (x,y) \in \Omega_{(x,u)}$. Basta tomar $\Omega_{(x,y)} = \Omega_x \times \Omega_y$ tales que $\Omega_x \in \beta_X$ y $\Omega_y \in \beta_Y$ con $x \in \Omega_x$, $y \in \Omega_y$ (existen por ser β_X y β_Y bases).
- 2. Sean $\Omega_1, \Omega_2 \in C$ con $(x, y) \in \Omega_1 \cap \Omega_2 \Rightarrow \exists \Omega_3 \in C$ tal que $(x, y) \in \Omega_3, \Omega_3 \subset \Omega_1 \cap \Omega_2$.

$$\left. \begin{array}{l} \Omega_{1} = \Omega_{1x} \times \Omega_{1y} \text{ con } \Omega_{1x} \in \beta_{X}, \Omega_{1y} \in \beta_{Y} \\ \Omega_{2} = \Omega_{2x} \times \Omega_{2y} \text{ con } \Omega_{2x} \in \beta_{X}, \Omega_{2y} \in \beta_{Y} \end{array} \right\} \Rightarrow x \in \Omega_{1x} \cap \Omega_{2x}, y \in \Omega_{1y} \cap \Omega_{2y}$$

Como β_X y β_Y son bases para X e Y respectivamente,

$$\begin{split} &\exists \Omega_{3x} \in \beta_X \text{ tal que } x \in \Omega_{3x}, \Omega_{3x} \subset \Omega_{1x} \cap \Omega_{2x} \\ &\exists \Omega_{3y} \in \beta_Y \text{ tal que } y \in \Omega_{3y}, \Omega_{3y} \subset \Omega_{1y} \cap \Omega_{2y} \end{split} \Rightarrow \Omega_3 = \Omega_{3x} \times \Omega_{3y} \in C, \ (x,y) \in \Omega_3, \\ &\Omega_3 \subset \Omega_1 \cap \Omega_2 \end{split}$$

La topología generada por $\beta_{X\times Y} = \{U\times V: U\in \tau_X, V\in \tau_Y\}$ es:

$$\tau_{X\times Y} = \{\bigcup_{\lambda\in\Lambda} (U_\lambda\times V_\lambda): U_\lambda\in\tau_X, V_\lambda\in\tau_Y, \forall\lambda\in\Lambda\}$$

Proposición 5. Si β_X y $\tilde{\beta}_X$ son bases de τ_X y β_Y y $\tilde{\beta}_Y$ son bases de $\tau_Y \Rightarrow \beta_X \times \beta_Y$ genera la misma topología en $X \times Y$ que $\tilde{\beta}_X \times \tilde{\beta}_Y$.

Definición 11 (Proyecciones de $X \times Y$). Son las aplicaciones **sobreyectivas**:

$$\begin{array}{ll} \pi_1: X \times Y \to X & \qquad \pi_2: X \times Y \to Y \\ \pi_1(x,y) = x & \qquad \pi_2(x,y) = y \end{array}$$

Si $U \in \tau_X$, tenemos que

$$\pi_1^{-1}(U) = \{(x,y) \in X \times Y : x \in U\} = U \times Y$$

y que $\pi_1^{-1}(U)$ es un conjunto abierto en $X \times Y$. Análogamente para $V \in \tau_Y$,

$$\pi_2^{-1}(V) = \{(x, y) \in X \times Y : y \in V\} = X \times V$$

es abierto para $X \times Y$.

Proposición 6. La colección $S = \{\pi_1^{-1}(U) : U \in \tau_X\} \cup \{\pi_2^{-1}(V) : V \in \tau_Y\}$ es una **subbase** para la topología producto sobre $X \times Y$.

Demostración: Veamos que S es subbase de la topología producto, para ello:

1. La unión de los elementos de la subbase es
$$X \times Y$$
.
$$\bigcup_{U \in \tau_X} \pi_1^{-1}(U) \cup \bigcup_{V \in \tau_Y} \pi_2^{-1}(V) = ((\bigcup_{U \in \tau_X} U) \times Y) \cup (X \times (\bigcup_{V \in \tau_Y} V)) = X \times Y$$

2. Las intersecciones finitas de elementos de la subbase forman abiertos de $X \times Y$. Dadas las familias $\{U_{\lambda}\}_{\lambda \in \Lambda}$ de τ_X , $\{V_{\lambda}\}_{\lambda \in \Lambda}$ de τ_Y , $W = \bigcap_{\lambda \in \Lambda} \pi_1^{-1}(U_{\lambda}) \cap \bigcap_{\lambda \in \Lambda} \pi_2^{-1}(V_{\lambda})$

$$=((\bigcap_{\lambda\in\Lambda}U_\lambda)\times Y)\cap (X\times (\bigcap_{\lambda\in\Lambda}V_\lambda))=(\bigcap_{\lambda\in\Lambda}U_\lambda)\times (\bigcap_{\lambda\in\Lambda}V_\lambda)$$

Por la propiedad 3 de topología, $\bigcap_{\lambda\in\Lambda}U_\lambda\in\tau_X$, $\bigcap_{\lambda\in\Lambda}V_\lambda\in\tau_Y$, por lo que W es un elemento de la base de la topología sobre $X \times Y$.

Observación: Para el caso de dos espacios topológicos tenemos:

$$\pi_1^{-1}(U)\cap\pi_2^{-1}(V)=(U\times Y)\cap(X\times V)=U\times V$$

Por tanto las dos formas de construir la topología producto (con la base $\beta_{X\times Y}$ y la subbase S) dan lugar a la misma topología. Veremos que en el caso de productos infinitos no.

Sobre un número finito de espacios topológicos

Definición 12 (Topología caja). Dado el conjunto $Y = \prod_{\lambda \in \Lambda} X_{\lambda}$, la topología caja es aquella generada por la base:

$$\beta = \{ \prod_{\lambda \in \Lambda} U_{\lambda} \text{ con } U_{\lambda} \in \tau_{\lambda} \forall \lambda \in \Lambda \}$$

Veamos que β es base.

1.
$$y = (x_{\lambda})_{{\lambda} \in {\Lambda}} \in Y \Rightarrow B = \prod_{{\lambda} \in {\Lambda}} X_{{\lambda}} \in {\beta}, X_{{\lambda}} \in {\tau}_{{\lambda}}.$$

2.
$$B_1 = \prod_{\lambda \in \Lambda} U_{1,\lambda}$$
, $B_2 = \prod_{\lambda \in \Lambda} U_{\lambda,2}$ $y \in B_1 \cap B_2$, $y = (x_{\lambda})_{\lambda \in \Lambda} \Rightarrow x_{\lambda} \in U_{1\lambda}$ o $x_{\lambda} \in U_{2\lambda} \ \forall \lambda \in \Lambda \Rightarrow B_1 \cap B_2 = \prod_{\lambda \in \Lambda} (U_{1,\lambda} \cap U_{2,\lambda})$

Proposición 7. Sea $\{(X_{\lambda}, \tau_{\lambda})\}_{{\lambda} \in \Lambda}$ una familia de espacios topológicos. Sea $Y = \prod_{\lambda \in \Lambda} X_{\lambda}$. Para cada $\lambda \in \Lambda$, definimos la aplicación:

$$\begin{array}{l} \pi_{\lambda}:Y\to X_{\lambda},\\ y=(x_{\mu})_{\mu\in\Lambda}\to x_{\lambda} \end{array}$$

Definimos

$$S\coloneqq \bigcup_{\lambda\in\Lambda}\{\pi_\lambda^{-1}(U_\lambda):U_\lambda \text{ abierto en } X_\lambda \text{ para } \tau_\lambda\}$$

es una **subbase** para la **topología producto de Y**, $\tau_Y = \tau_{prod}$.

Observación:
$$\bigcap_{n=1}^N \pi_n^{-1}(U_n) = \prod_{n=1}^N U_n$$

Demostración: Pongamos $\beta' = \{ \bigcap_{\lambda \in \Lambda} U_{\lambda} : U_{\lambda} \in S \}$, es decir, el conjunto de intersecciones finitas de elementos de S. Veamos que β' es una base:

1.
$$y \in Y \Rightarrow y \in B = Y \in \beta'$$
.

2. Sea $B_1, B_2 \in \beta', x \in B_1 \cap B_2$. Tenemos que:

$$B_1 \in \beta^{\,\prime} \Rightarrow \exists I_1 \subset \Lambda, |I_1| < \infty$$
 tal que

$$B_1 = \prod_{\lambda \in \Lambda} Y_{1\lambda} \text{ con } Y_{1\lambda} = \begin{cases} X_{\lambda} & \text{para } \lambda \notin I_1 \\ U_{1\lambda} \in \tau_{\lambda} & \text{para } \lambda \in I_1 \end{cases}$$

$$B_2 \in \beta' \Rightarrow \exists I_2 \subset \Lambda, |I_2| < \infty \text{ tal que}$$

$$B_2 = \prod_{\lambda \in \Lambda} Y_{2\lambda} \text{ con } Y_{2\lambda} = \begin{cases} X_{\lambda} & \text{para } \lambda \notin I_2 \\ U_{2\lambda} \in \tau_{\lambda} & \text{para } \lambda \in I_2 \end{cases}$$

Luego $\exists B_3$, tal que $x \in B_3$,

$$B_3 := B_1 \cap B_2 = \prod_{\lambda \in \Lambda} Y_{3\lambda} \text{ donde } Y_{3\lambda} = \begin{cases} X_{\lambda} & \text{si } \lambda \notin I_1 \cup I_2 \\ U_{1\lambda} \cap U_{2\lambda} & \text{si } \lambda \in I_1 \cap I_2 \\ U_{1\lambda} & \text{si } \lambda \in I_1 \setminus (I_1 \cap I_2) \\ U_{2\lambda} & \text{si } \lambda \in I_2 \setminus (I_1 \cap I_2) \end{cases}$$

Espacio producto de infinitos factores

Sea una familia numerable de espacios topológicos $(X_{\lambda}, \tau_{\lambda})$.

Proposición 8. (Comparación de las topologías caja y producto)

La **topología por cajas** sobre $\prod X_{\lambda}$ tiene como base a todos los conjuntos de la forma $\prod U_{\lambda}$ donde $U_{\lambda} \in \tau_{\lambda} \ \forall \lambda \in \Lambda$.

La **topología producto** sobre $\prod X_{\lambda}$ tiene como base a todos los U_{λ} donde U_{λ} es abierto en X_{λ} y $U_{\lambda} = X_{\lambda}$ excepto para un número finito de valores de λ . (Es decir, creamos los elementos de la base a partir de todas las intersecciones finitas de elementos de la subbase de la topología producto). Tenemos que para cada subconjunto finito de

$$\bigcap_{n\in F} \pi_n^{-1}(U_\lambda) = \prod_{n\in I\!\!N} V_n \text{ tal que } V_n = \left\{ \begin{array}{l} U_n \text{ si } n\in F \\ X_n \text{ si } n\notin F \end{array} \right.$$

Proposición 9. La topología caja es más fina que la topología producto, $\tau_{prod} \subset \tau_{caja}$.

Demostración: (Empleando la Proposición 2). Consideramos las topologías τ_{prod} y τ_{caja} del conjunto $\prod_{\lambda \in \Lambda} X_{\lambda}$, y sus respectivas bases, β_{prod} y β_{caja} .

Sea $x\in\prod_{\lambda\in\Lambda}X_\lambda$, $x=(x_\lambda)_{\lambda\in\Lambda}$, $x\in\prod_{\lambda\in\Lambda}U_\lambda$, $\prod_{\lambda\in\Lambda}U_\lambda\in\beta_{\text{caja}}$ porque cada $x_\lambda\in U_\lambda$ para algún $U_{\lambda} \in \tau_{\lambda}$.

Para un conjunto de índices finito F_0 , $\bigcap_{n\in F_0}\pi_n^{-1}(U_n)\in \beta_{prod}$ tal que $x\in\bigcap_{n\in F_0}\pi_n^{-1}(U_n)$ y

$$\textstyle \prod_{\lambda \in \Lambda} U_{\lambda} \subset \bigcap_{n \in F_0} \pi_n^{-1}(U_n) = \prod_{n \in \mathbb{N}} V_n \text{ donde } V_n = \left\{ \begin{array}{l} U_n \text{ si } n \in F_0 \\ X_n \text{ si } n \notin F_0 \end{array} \right.$$

1.6. Topología de subespacio

Definición 13 (Topología de subespacio). Sea (X, τ) un espacio topológico, Y un subconjunto de X, $Y \subset X$. La familia

$$\tau_Y = \{U \cap Y : U \in \tau\}$$

define una topología sobre Y, llamada la topología de subespacio (o inducida o heredada). (Y, τ_Y) es un **subespacio topológico** de (X, τ) .

Comprobamos que efectivamente es topología:

- 1. $\emptyset \in \tau, Y \subset X \Rightarrow \emptyset, Y \in \tau_Y$.
- $\text{2. }\forall\,\{A_\lambda\}_{\lambda\in\Lambda}\;A_\lambda\in\tau_Y\Rightarrow\bigcup_{\lambda\in\Lambda}A_\lambda\in\tau_Y.$

Para cada $\lambda \in \Lambda$, $A_{\lambda} = U_{\lambda} \cap Y$ para cada $U_{\lambda} \in \tau$. $\bigcup_{\lambda \in \Lambda} A_{\lambda} = (\bigcup_{\lambda \in \Lambda} U_{\lambda}) \cap Y \in \tau_{Y}$

3. $\forall A, B \in \tau_Y \Rightarrow A \cap B \in \tau_Y$

$$\begin{array}{ll} A = U \cap Y, U \in \tau \\ B = V \cap Y, V \in \tau \end{array} \Rightarrow (U \cap V) \cap Y = A \cap B \in \tau_Y \text{ porque } U \cap V \in \tau \end{array}$$

Ejemplo 3. Sea $Y = [-1, 1] \subset \mathbb{R}$, (\mathbb{R}, τ) , τ la topología usual de \mathbb{R} . Veamos si los siguientes conjuntos son abiertos o cerrados relativos de Y.

- A = $\{x \in Y : \frac{1}{2} < |x| < 1\} = (-1, \frac{-1}{2}) \cup (\frac{1}{2}, 1) = ((-1, \frac{-1}{2}) \cap Y) \cup ((\frac{1}{2}, 1) \cap Y)$. A es abierto en Y por ser unión de abiertos relativos de Y.
- B = $\{x \in Y : \frac{1}{2} < |x| \le 1\} = [-1, \frac{-1}{2}) \cup (\frac{1}{2}, 1] = ((-2, \frac{-1}{2}) \cap Y) \cup ((\frac{1}{2}, 2) \cap Y)$. B es abierto por ser unión de los abiertos de Y $[-1, \frac{-1}{2})$ y $(\frac{1}{2}, 1]$.
- $C = \{x \in Y : \frac{1}{2} \le |x| < 1\} = (-1, \frac{-1}{2}] \cup [\frac{1}{2}, 1)$ no es abierto en Y. El complementario de C es $C_Y(C) = \{-1\} \cup (\frac{-1}{2}, \frac{1}{2}) \cup \{1\}$, tampoco es abierto en Y, por lo que C no es cerrado.
- $\ \, D = \{x \in Y: \tfrac{1}{2} \leqslant |x| \leqslant 1\} = [-1, \tfrac{-1}{2}] \cup [\tfrac{1}{2}, 1] \ \, \text{no es abierto.} \ \, C_Y(D) = (\tfrac{-1}{2}, \tfrac{1}{2}) \ \, \text{s\'i es}$ abierto en Y, por tanto, D es cerrado.

Proposición 10. Sea Y subespacio de X, β base para τ de X, entonces, la colección de subconjuntos de Y:

$$\beta_{Y} = \{B \cap Y : B \in \beta\}$$

es base de la topología de subespacio τ_Y de Y.

Demostración:

- 1. Sea $y \in Y$. Tenemos que $y \in X$, por lo que $y \in B_u$ para algún $B_u \in \beta$, por ser β base para τ topología de X. Por tanto, $y \in B_y \cap Y$, $B_y \cap Y \in \beta_Y$.
- 2. Sean $B_1, B_2 \in \beta_Y$, sea $y \in B_1 \cap B_2$. Veamos que $\exists B_3 \in \beta_Y$ tal que $y \in B_3$ y $B_3 \subset B_1 \cap B_2$. Tenemos que $B_1 = A_1 \cap Y$, $B_2 = A_2 \cap Y$ para $A_1, A_2 \in \beta$, $y \in A_1 \cap A_2$. Como β es base, $\exists A_3 \in \beta$ tal que $y \in A_3$, $A_3 \subset A_1 \cap A_2$. Por tanto, basta considerar $B_3 = A_3 \cap Y$.

Proposición 11. Sea Y un subespacio de X. Ω es un abierto relativo en Y e Y es abierto en $X \Rightarrow \Omega$ es un abierto en X.

Demostración: Sea Ω abierto en Y, $\Omega = U \cap Y$, para algún $U \in \tau$. Como $U, Y \in \tau \Rightarrow$ $\Omega = U \cap Y \in \tau$ por la propiedad 3 de topología.

1.6.1. Topología de subespacio y producto

¿Es lo mismo el subespacio del producto que el producto de los subespacios?

Dados los espacios (X, τ_X) , (Y, τ_Y) consideramos $A \subset X$, $B \subset Y$. Tenemos dos formas diferentes de dar una topología sobre $A \times B$:

- Ver $A \times B$ como subespacio de $X \times Y$, $P_{A \times B}$.
- Dar en A y B las topologías τ_A , τ_B respectivamente y formar la topología producto en $A \times B$, el producto de los subespacios.

Proposición 12. La topología de subespacio del producto es igual que la topología del producto de los subespacios.

Demostración: Partiendo de la base de la topología producto de $X \times Y$:

$$\beta_{X\times Y} = \{U\times V: U\in \tau_X, V\in \tau_Y\}$$

Entonces para la topología de subespacio del producto tenemos:

$$\beta_{A\times B} = \{(U\times V)\cap (A\times B): U\in \tau_X, V\in \tau_Y\}$$

Por otro lado, la base para la topología producto es:

$$\beta = \{E \times F : E \in \tau_A, F \in \tau_B\} = \{(U \cap A) \times (V \cap B) : U \in \tau_X, V \in \tau_Y\}$$

Tenemos que $\beta_{A\times B}=\beta$ ya que $(U\times V)\cap (A\times B)=(U\cap A)\times (V\cap B)$.

$$(\supset) (x,y) \in ((U \cap A) \times (V \cap B)). \ x \in U \cap A, y \in V \cap B \Rightarrow (x,y) \in (U \times V), (x,y) \in (A \times B).$$

$$(\subset)(x,y) \in ((U \times V) \cap (A \times B)) \Rightarrow x \in U, x \in A \text{ e } y \in V, y \in B \Rightarrow x \in (U \cap A), y \in (V \cap B).$$

1.6.2. Topología de subespacio y del orden

Supongamos que (X, <) es un conjunto ordenado y consideremos $Y \subset X$. Hay dos maneras de dotar a Y de una topología:

- Considerar Y como **subespacio** del espacio topológico $(X, \tau_{<})$. Esta topología sobre Y es la topología de subespacio, τ_Y .
- Dar primero un orden en Y, es decir, restringir a Y el orden de X (Y es totalmente ordenado también). Después, dar en Y la topología de orden, $\tau_{<|\gamma|}$.

Proposición 13. $\tau_{<}|_{Y} \subset \tau_{Y}$

Observación: En general, $\tau_Y \neq \tau_{<|Y|}$.

Definición 14 (Convexo). En un conjunto ordenado X, un subconjunto Y se dice convexo si $\forall a, b \in Y$ y $\forall c \in X$, a < c < b se tiene que $c \in Y$.

Proposición 14. Sea X un conjunto totalmente ordenado. Entonces la colección de todos los rayos abiertos:

$$\Sigma = \{(-\infty, \alpha) : \alpha \in X\} \cup \{(\alpha, \infty) : \alpha \in X\}$$

es una subbase para la topología del orden sobre X.

Proposición 15. Sea (X, <) un conjunto ordenado y consideramos la topología del orden $\tau_{<}$. Sea Y un conjunto **convexo** Y = (a, b) $\delta(-\infty, b)$ $\delta(a, +\infty)$. Entonces,

$$\tau_Y = \tau_<|_Y$$
 es la topología asociada al orden en Y

Demostración: La subbase de τ_X es $S_X = \{(-\infty, a) : a \in X\} \cup \{(b, \infty) : b \in X\}$. Sabemos que $\forall B \in S_X \Rightarrow B \cap Y \in \tau_<|_Y$. La subbase para la topología $\tau_<|_Y$ es: $S_{<}|_{Y} = \{(-\infty, \alpha) : \alpha \in Y\} \cup \{(b, \infty) : b \in Y\}.$

Tenemos que probar que las topologías generadas por las bases que forman las subbases (con las intersecciones finitas de sus elementos) son iguales. Es decir, hay que comprobar que $\tau_Y \subset \tau_< | \subset Y, \tau_< |_Y \subset \tau_Y$, para cada posible subconjunto ordenado Y. Probaremos para el caso Y = (a, b).

Sea $B \in S \Rightarrow B \cap Y \in \tau_{<|Y|}$ por definición de subbase. Si $B = (-\infty, \alpha) = \{x \in X : x < \alpha\}$ \Rightarrow B \cap Y = {x \in Y : x < a}, entonces, $\tau_Y \subset \tau_<|_Y$.

Para ver el contenido contrario: $(a, b)_X = \{x \in X : a < x < b\}, (a, b)_Y = \{x \in Y : a < x < b\},$ $S < | \mathbf{y} = \{ (-\infty, \mathbf{y})_{\mathbf{Y}} : \mathbf{y} \in \mathbf{Y} \} \cup \{ (\mathbf{y}, \infty)_{\mathbf{Y}} : \mathbf{y} \in \mathbf{Y} \}$ $= \{(-\infty, y)_X \cap Y : y \in Y\} \cup \{(y, \infty)_X \cap Y : y \in Y\} = S_X \cap Y \equiv S_X.$

1.7. Entornos

Definición 15 (Entorno). Sea $\Omega \subset X$, $x \in X$. Se dice Ω es un **entorno** de x si $U \in \tau$ tal que $x \in U$, $U \subset \Omega$. $V(X) = {\Omega \subset X : V \text{ entorno de } x}$

Observación: Puede ser subconjunto abierto y/o cerrado o ni abierto ni cerrado en X.

Proposición 16. Las colecciones de todos los entornos de $\mathbb{V}(x)$, $x \in X$ de un espacio topológico satisfacen las propiedades:

- $\forall x \in X \ y \ \forall \Omega \in \mathbb{V}(x), x \in \Omega.$
- $U, V \in \mathbb{V}(x) \Rightarrow U \cap V \in \mathbb{V}(x)$
- $\Omega \subset U$, $\Omega \in V(x) \Rightarrow U \in V(x)$
- $\Omega \in \mathbb{V}(x) \Rightarrow \exists V \subset \Omega, V \in \mathbb{V}(X) \text{ y } \forall y \in V, \Omega \in \mathbb{V}(y)$

Observación: Estas propiedades son las que se deben verificar para que dada una familia de subconjuntos de X para cada $x \in X$, F(x) defina una única topología en X tal que $\forall x \in X \mathbb{V}(x) = F(x)$.

Proposición 17. Sea (X, τ) espacio topológico y sea Y subconjunto con la topología de subespacio. Tenemos que para cualquier $V \subset Y$ y cualquier $y \in Y$, son equivalentes:

- 1. V es entorno de y en la topología de subespacio.
- 2. $\exists U \subset X$ tal que U es entorno de y en el espacio topológico (X, τ) y $V = U \cap Y$.

Observación: Una forma de dar la topología de subespacio en Y sería considerar para cada $y \in Y$ la colección $F(y) = \{V \cap Y : V \in V(y)\}$ y ver que cumple las cuatro condiciones que caracterizan a los sistemas de entornos.

Definición 16 (Sistema fundamental de entornos o base de entornos de x). Un sistema fundamental de entornos de $x \in X$, β_x es una familia de subconjuntos de X tales que

$$\forall \Omega$$
 entorno de x, $\exists B \in \beta_x$ tal que $B \subset \Omega$

Ejemplo 4.
$$X = \mathbb{R}$$
, $\tau = \tau_{usual}$, $x \in \mathbb{R}$. $\{(x - \epsilon, x + \epsilon)\} = \beta_x$ para $\epsilon > 0$.

1.8. Interior de un conjunto

Sea (X, τ) un espacio topológico y sea A subconjunto de X. Sea $x \in X$.

Definición 17 (Punto interior). x es interior a $A \Leftrightarrow \exists U \in \tau, x \in U, U \subset A$.

Definición 18 (Interior de un conjunto). Es la unión de todos los abiertos contenidos en **A**. También, $Int(A) = \{x \in A : x \text{ es interior a } A\}$

Proposición 18. Int(A) es el **mayor abierto** contenido en A.

Proposición 19. A es abierto en $X \Leftrightarrow A = Int(A)$.

Proposición 20. $\forall A, B \subset X$, $Int(A \cap B) = Int(A) \cap Int(B)$.

Demostración: (\subset) Sea $x \in Int(A \cap B) \Rightarrow \exists U \in \tau \text{ tal que } x \in U, U \subset A \cap B \Rightarrow U \subset A y$ $U \subset B$. Por lo tanto, $x \in Int(A)$ y $x \in Int(B) \Rightarrow x \in Int(A) \cap Int(B)$.

(⊃) Sea $x \in Int(A) \cap Int(B) \Rightarrow x \in Int(A)$ y $x \in Int(B)$. Existen $U, V \in \tau$ tales que $x \in U$ y $x \in V$, $U \subset A$ y $V \subset B$. Por tanto, $x \in U \cap V \subset A \cap B$. $U \cap V \in \tau$, $x \in Int(A \cap B)$.

Proposición 21. Sea X conjunto y f : $P(X) \rightarrow P(X)$; $A \rightarrow f(A)$ aplicación que cumple:

1.
$$\forall A \subset X$$
, $f(A) \subset A$.

3.
$$\forall A, B \subset X, f(A \cap B) = f(A) \cap f(B)$$

2.
$$\forall A \subset X$$
, $f(f(A)) = f(A)$.

4.
$$f(X) = X$$

Entonces $\exists ! \tau$ en X tal que $\forall A \subset X$, Int(A) = f(A)

Demostración: Veamos que $\tau = \{A \subset X : f(A) = A\}$ es topología. $\emptyset \in \tau$ porque $f(\emptyset) \subset \emptyset \Rightarrow$ $f(\emptyset) = \emptyset \Rightarrow \emptyset \in \tau$. También $X \in \tau$ porque f(X) = X.

Por 3 tenemos que $C \subset D \Rightarrow f(C) \subset f(D)$. Entonces, $\forall \lambda \in \Lambda \ f(U_{\lambda}) \subset f(\bigcup U_{\lambda}) \Rightarrow$

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} = \bigcup_{\lambda \in \Lambda} f(U_{\lambda}) \subset f(\bigcup_{\lambda \in \Lambda} U_{\lambda}) \subset \bigcup_{\lambda \in \Lambda} U_{\lambda} \Rightarrow f(\bigcup_{\lambda \in \Lambda} U_{\lambda}) = \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

$$A, B \in \tau \text{ con } f(A) = A, f(B) = B \Rightarrow f(A \cap B) = f(A) \cap f(B) = A \cap B \Rightarrow A \cap B \in \tau$$

Por último, vemos si para esta τ tenemos que $\forall A \subset X$, Int(A) = f(A). $f(f(A)) = f(A) \Rightarrow f(A) \in \tau$. Como $f(A) \subset A \Rightarrow f(A) \subset Int(A)$.

En la otra dirección $Int(A) \subset A \Rightarrow Int(A) = f(Int(A)) \subset f(A)$.

1.9. Conjuntos cerrados

Recordemos que un subconjunto K de X es un conjunto cerrado de X si el complementario **de K**, $C_X K$ o $X \setminus K$, es abierto.

Proposición 22. Sea $X \neq \emptyset$, $F \subset P(X)$. Si se cumplen las propiedades:

- 1. \emptyset , $X \in F$.
- 2. La **intersección arbitraria** de elementos de F está en F.
- 3. La **unión finita** de elementos de F está en F.

Entonces $\exists \tau$ topología sobre X tal que $U \in \tau \Leftrightarrow C_X U \in F$.

Demostración:

- 1. \emptyset , X son cerrados porque sus complementarios son abiertos X, \emptyset respectivamente.
- 2. Dada una colección de conjuntos cerrados $\{A_{\alpha}\}_{\alpha\in I}$ aplicamos la ley de De Morgan:

$$X \smallsetminus \bigcap_{\alpha \in J} A_\alpha = \bigcup_{\alpha \in J} (X \smallsetminus A_\alpha)$$

Como los conjuntos $X \setminus A_{\alpha}$ son abiertos por definición, la parte derecha es unión arbitraria de abiertos, por tanto, abierto. Así, $\bigcap A_{\alpha}$ es cerrado.

3. Si A_i es cerrado para i = 1, ..., n consideramos la ecuación

$$X \smallsetminus \bigcup_{i=1}^n A_i = \bigcap_{i=1}^n (X \smallsetminus A_i)$$

El conjunto de la parte derecha es una intersección finita de abiertos, por tanto abierto. Así $\bigcup A_i$ es cerrado.

Proposición 23. Sea Y subespacio de X. Un conjunto **A es cerrado en Y** \Leftrightarrow $A = F \cap Y$ para algún F cerrado en X.

Demostración: (\Leftarrow) Sea $A = F \cap Y$ con F cerrado en $X \Rightarrow X \setminus F$ es abierto en $X \Rightarrow (X \setminus F) \cap Y$ es abierto en Y. $(X \setminus F) \cap Y = Y \setminus A$, por lo que también es abierto $\Rightarrow A$ es cerrado en Y. (⇒) Sea A cerrado en Y ⇒ Y \setminus A es abierto en Y ⇒ Y \setminus A = U \cap Y para U abierto en X \Rightarrow X \ U es cerrado en X y A = (X \ U) \cap Y, donde X \ U es cerrado.

Proposición 24. Sea Y subespacio de X, $A \subset Y$. Si A es un cerrado en Y e Y es cerrado en $X \Rightarrow A$ es cerrado en X.

Sea (X, τ) un espacio topológico y sea A subconjunto de X. Sea $x \in X$.

Definición 19 (Punto adherente). x es adherente a $A \Leftrightarrow \forall K$ cerrado de X, $A \subset K \Rightarrow x \in K$.

Definición 20 (Adherencia de un conjunto). Es la intersección de todos los cerrados de X que contienen a A. También, $\overline{A} \equiv Adh(A) = \{x \in X : x \text{ es adherente a A}\}.$

Proposición 25. \overline{A} es el **menor cerrado** que contiene a A.

Proposición 26. $Int(A) \subset A \subset \overline{A}$.

Proposición 27. A es cerrado en $X \Leftrightarrow A = \overline{A} \Leftrightarrow A' \subset A$

Proposición 28. (Criterio para $x \in \overline{A}$)

- 1. $x \in \overline{A} \Leftrightarrow \forall \mathbf{U} \in \mathbf{\tau}$ tal que $x \in \mathbf{U}$, $\mathbf{U} \cap \mathbf{A} \neq \emptyset$. (Análogo si U entorno de x).
- 2. $x \in \overline{A} \Leftrightarrow \forall B \in \beta$ tal que $x \in B$, $B \cap A \neq \emptyset$.

Demostración: 1. $(x \in \overline{A} \Leftrightarrow \forall K \text{ cerrado en } X, A \subset K, x \in K) \Leftrightarrow \forall U \in \tau, x \in U, U \cap A \neq \emptyset$.

- (\rightarrow) Sea U abierto en X, $x \in U$. Sea $K = C_X U$, cerrado en X. Si $A \subset K \Rightarrow x \in K \Rightarrow x \notin U$, absurdo. Luego $K \not\supseteq A \Leftrightarrow C_X U \not\supseteq A$, por lo tanto, $U \cap A \neq \emptyset$.
- (\leftarrow) Sea K cerrado en X, $A \subset K$. Sea $U = C_X K$ abierto. Si $x \in U \Rightarrow U \cap A \neq \emptyset \Leftrightarrow C_X K \cap A \neq \emptyset$, pero $K \supset A$, absurdo. Si $x \notin C_X K \Rightarrow x \in K$.
- 2. (\rightarrow) $x \in \overline{A} \Rightarrow \forall B \in \beta, x \in B, B \cap A \neq \emptyset$. Misma demostración que en $1 \rightarrow$ para $B \in \beta$, B abierto en X (puesto que los elementos de la base son abiertos para la topología que genera dicha base).

$$(\leftarrow) \, \text{Sea} \, \, U \in \tau \Rightarrow U = \bigcup_{\lambda \in \Lambda} B_{\lambda}, \, B_{\lambda} \in \beta. \, \text{Como} \, x \in U \Rightarrow \exists \, \lambda_0 \in \Lambda, \, x \in B_{\lambda_0} \Rightarrow B_{\lambda_0} \cap A \neq \emptyset.$$

$$\text{Como} \, \, B_{\lambda_0} \cap A \subset \bigcup_{\lambda \in \Lambda} (B_{\lambda} \cap A) = U \cap A \Rightarrow U \cap A \neq \emptyset.$$

Proposición 29. $\forall A, B \subset X, \overline{A \cup B} = \overline{A} \cup \overline{B}.$

Demostración:

(\subset) Sea $x \in \overline{A \cup B}$. Por definición, $\forall U \in \tau$ tal que $x \in U$ se cumple que $U \cap (A \cup B) \neq \emptyset$. Por tanto, $U \cap A \neq \emptyset$ o $U \cap B \neq \emptyset$. Si se da el primer caso, $x \in \overline{A}$; en el segundo, $x \in \overline{B}$. En ambas situaciones, $x \in \overline{A} \cup \overline{B}$.

(⊃) Sea $x \in \overline{A} \cup \overline{B}$. Bien $x \in \overline{A}$ o $x \in \overline{B}$. Si $x \in \overline{A} \Rightarrow \forall U \in \tau$, $x \in U$ y $U \cap A \neq \emptyset \Rightarrow$ $U \cap (A \cup B) \neq \emptyset \Rightarrow x \in \overline{A \cup B}$. Análogo para el caso $x \in \overline{B}$.

Proposición 30. Sea Y subespacio (con la topología de subespacio τ_Y) de (X, τ) . Entonces, $\forall E \subset Y$ el cierre de E en la topología de subespacio es:

$$Adh_{Y}(E) = Adh_{X}(E) \cap Y$$

Demostración: Los complementarios de los cerrados de Y son abiertos en Y, es decir, para $A \in \tau$, $Y \setminus (Y \cap A) = Y \cap C_X(Y \cap A) = Y \cap (C_X(Y) \cup C_X(A)) = Y \cap C_X(A) = Y \cap C$ donde C es un cerrado de (X, τ) . Como Adh_Y(E) es la intersección de todos los **cerrados de** $(Y,\tau_Y) \text{ que contienen a E: $Adh_Y(E) = \bigcap_{E \subset C} (Y \cap C) = Y \cap (\bigcap_{E \subset C} C) = Y \cap Adh_X E.$

Proposición 31. Sea X conjunto y f : $P(X) \rightarrow P(X)$; $A \rightarrow f(A)$ aplicación que cumple:

1.
$$\forall A \subset X$$
, $f(A) \subset A$.

3.
$$\forall A, B \subset X, f(A \cap B) = f(A) \cap f(B)$$

2.
$$\forall A \subset X$$
, $f(f(A)) = f(A)$.

4.
$$f(\emptyset) = \emptyset$$

Entonces $\exists ! \tau$ en X tal que $\forall A \subset X, \overline{A} = f(A)$

Definición 21 (Conjunto denso). A es **denso** \Leftrightarrow $Adh_X(A) = X$.

Exterior y frontera 1.11.

Definición 22 (Exterior de un conjunto). Es el conjunto de los puntos exteriores:

$$x \in X$$
 es exterior a $A \Leftrightarrow x \in Int(C_X(A))$

Proposición 32.
$$ext(A) = C_X(\overline{A}) = Int(C_X(A)).$$

$$x \notin \overline{A} \Leftrightarrow \exists V \in \mathbb{V}(x) \text{ tal que } V \cap A = \emptyset \Leftrightarrow$$

$$\exists V \in \mathbb{V}(x) \text{ tal que } V \subset C_X(A) \Leftrightarrow x \in Int(C_X(A))$$

Definición 23 (Frontera de un conjunto). $Fr(A) = \overline{A} \cap \overline{C_X(A)}$. Es cerrada.

- $Fr(A) = \overline{A} \setminus Int(A)$.
- $\overline{A} = Fr(A) \cup A.$
- La frontera de un conjunto es igual a la frontera de su complemento.
- $p \in Fr(A) \Leftrightarrow$ todo entorno de p contiene al menos un punto del conjunto y al menos un punto que no sea del conjunto.
- A cerrado \Leftrightarrow Fr(A) \subset A.
- A abierto \Leftrightarrow A \cap Fr(A) = \emptyset .

1.12. Puntos de acumulación y conjunto derivado

Sea (X, τ) un espacio topológico y sea $A \subset X$. Sea $x \in X$.

Definición 24 (Punto de acumulación de A). $x \in X$ es un punto de acumulación de A \Leftrightarrow Cada entorno de x corta a A en un punto distinto de x.

Definición 25 (Conjunto derivado). $A' = \{x \in X : x \text{ es punto de acumulación de } A\}$

Proposición 33.
$$\overline{A} = A \cup A'$$
.

Demostración:

 (\supset) A $\subset \overline{A}$ por definición. Veamos que A' $\subset \overline{A}$. Si $x \in A'$, para cada entorno de x, Ω_x , $\exists U_{\Omega_x} \subset \Omega_x$, $U_{\Omega_x} \in \tau$ tal que $x \in U_{\Omega_x} \Rightarrow U_{\Omega_x} \cap A \neq \emptyset$ (cada entorno de x interseca a A). Luego, por el teorema 9, $x \in \overline{A}$. $A \subset \overline{A}$ y $A' \subset \overline{A} \Rightarrow A \cup A' \subset \overline{A}$.

 (\subset) Sea $x \in \overline{A}$. Si $x \in A \Rightarrow x \in A \cup A'$, queda demostrado. Pero si $x \notin A \Rightarrow \forall \Omega$ entorno de x se da que $\Omega \cap A \neq \emptyset \Rightarrow \exists y \in \Omega \cap A \text{ con } y \neq x \Rightarrow x \in A'$.

Ejemplo 5. En el espacio topológico (\mathbb{R} , $\tau_{cofinita}$), consideremos el subconjunto $A = \{x_n : n \in \mathbb{N}\} \subset \mathbb{R} \text{ donde } x_{2p} = 1 - 1/2p \text{ y } x_{2p+1} = -1 + 1/(2p+1).$

Tenemos que $A' = \{1, -1\} \cup A = \mathbb{R} = \overline{A}$, porque podemos tomar entornos de cada $x \in A$ de forma que cortan en algún $y \in A$, $x \neq y$. Dichos entornos tienen abiertos de la forma $\mathbb{R} \setminus \{x_i\}_{i \in I}$ para un conjunto de índices I finito que cumplen la condición de corte con A.

En la topología usual, $A' = \{\{1\}, \{-1\}\}$

1.13. Funciones continuas

Sean (X, τ) , (Y, S) dos espacios topológicos, $f : X \to Y$ aplicación.

Definición 26 (Función continua). f es **continua** $\Leftrightarrow \forall V \in \tau_Y \Rightarrow f^{-1}(V) \in \tau_X$. (Análogo para entornos).

Ejemplo 6. $\pi_1: X \times Y \to X: (x,y) \to x$. $\pi_1^{-1}(U) = U \times Y \in \tau_{X \times Y}, U \in \tau_X \Rightarrow \pi_1$ es continua. También π_2 .

Proposición 34. Son equivalentes:

- 1. f continua.
- 2. $\forall A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$
- 3. $\forall F \subset Y$, F cerrado en $Y \Rightarrow f^{-1}(F)$ cerrado de X.

Demostración:

 $(3 \to 1)$. Sea $V \in \tau_Y$. Sea $F = C_Y(V)$ cerrado en $Y \Rightarrow f^{-1}(C_Y(V))$ cerrado en X. Como $f^{-1}(C_Y(V)) = C_X(f^{-1}(V))$. Luego $f^{-1}(V)$ es abierto.

Observación: $f^{-1}(C_Y(V)) = C_X(f^{-1}(V))$.

$$\begin{array}{l} x \in f^{-1}(C_Y(V)) \Rightarrow f(x) \in C_Y(V) \Rightarrow f(x) \notin V \Rightarrow x \notin f^{-1}(V) \Rightarrow x \in C_X(f^{-1}(V)) \\ x \in C_X(f^{-1}(V)) \Rightarrow x \notin f^{-1}(V) \Rightarrow f(x) \notin V \Rightarrow f(x) \in C_Y(V) \Rightarrow x \in f^{-1}(C_Y(V)) \end{array}$$

 $\begin{array}{l} (1 \to 2). \text{ Sea } x \in \overline{A} \text{ tal que } y = f(x). \text{ Sea } V \in \tau_Y, y \in V. \text{ Como } f \text{ es continua} \Rightarrow \\ U = f^{-1}(V) \in \tau_X. \text{ Tenemos que } x \in f^{-1}(y) \subset f^{-1}(V) = U \in \tau_X \Rightarrow U \cap A \neq \emptyset \text{ porque } x \in \overline{A}. \\ \text{Entonces, } \exists \alpha \in A, f(\alpha) \in V \Rightarrow f(\alpha) \in f(A) \cap V \Rightarrow f(A) \cap V \neq \emptyset. \end{array}$

 $(2 \to 3)$. Sea $F \subset Y$, F cerrado en Y. Pongamos $A = f^{-1}(F) \subset X \Rightarrow f(\overline{f^{-1}(F)}) \subset \overline{f(f^{-1}(F))}$. Veamos que $\overline{f^{-1}(F)}$ es cerrado $\Leftrightarrow \overline{f^{-1}(F)} = f^{-1}(F)$.

 (\supset) Tenemos que $f^{-1}(F)\subset \overline{f^{-1}(F)}$, por definición de cierre.

 $(\subset) \ \underline{f(f^{-1}(F))} = \underline{f(\{x \in X : f(x) \in F\})} = \underline{f(X)} \cap F \subset F \ \Rightarrow \ \underline{f(\overline{f^{-1}(F)})} \subset \overline{f(f^{-1}(F))} \subset \overline{F} = F$ $\Rightarrow \underline{f^{-1}(F)} \subset \underline{f^{-1}(F)}.$

Proposición 35.
$$f:(X,\tau) \to (Y,\tau')$$
 continua $\Leftrightarrow \forall B \subset Y, \overline{f^{-1}(B)} \subset f^{-1}(\overline{B}).$

Demostración: (\rightarrow) Sea $B \subset Y$. $B \subset \overline{B} \Rightarrow f^{-1}(B) \subset f^{-1}(\overline{B}) \Rightarrow \overline{f^{-1}(B)} \subset f^{-1}(\overline{B}) = f^{-1}(\overline{B})$ porque \overline{B} es cerrado en Y y f continua, luego $f^{-1}(\overline{B})$ es cerrado de X.

 (\leftarrow) Sea B cerrado en Y \Rightarrow B = \overline{B} \Rightarrow $\overline{f^{-1}(B)}$ \subset $f^{-1}(\overline{B})$ = $f^{-1}(B)$. Por def., $f^{-1}(B)$ \subset $\overline{f^{-1}(B)}$. Tenemos que $f^{-1}(B)$ = $\overline{f^{-1}(B)}$, luego es cerrado y así f continua.

$$\textbf{Proposición 36.} \ f:(X,\tau) \to (Y,\tau') \ continua \Leftrightarrow \forall N \subset Y \ f^{-1}(Int(N)) \subset Int(f^{-1}(N)).$$

Demostración:

$$(\rightarrow)$$
 Sea $N \subset Y$. $Int(N) \subset N \Rightarrow f^{-1}(Int(N)) \subset f^{-1}(N)$ y $f^{-1}(Int(N))$ es abierto $\Rightarrow f^{-1}(Int(N)) \subset Int(f^{-1}(N))$.

$$(\leftarrow)$$
 Sea $B \in \tau' \Rightarrow B = Int(B) \Rightarrow f^{-1}(B) = f^{-1}(Int(B)) \subset Int(f^{-1}(B))$. Luego $f^{-1}(B)$ es abierto.

Proposición 37. Sea β_Y una base para τ_Y . Entonces,

$$f: X \to Y$$
 es continua $\Leftrightarrow \forall B \in \beta_Y$, $f^{-1}(B) \in \tau_X$

Demostración:

 $(\rightarrow) \forall B \in \beta_Y, B \in \tau_Y$. Como f es continua, $f^{-1}(B) \in \tau_X$.

$$(\leftarrow) \text{ Sea } V \in \tau_Y, \ V = \bigcup_{\alpha \in \Delta} B_\alpha \text{ con } B_\alpha \in \beta_Y \Rightarrow f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in \Delta} B_\alpha) = \bigcup_{\alpha \in \Delta} f^{-1}(B_\alpha).$$
 Cada $f^{-1}(B_\alpha)$ es abierto, $f^{-1}(V) \in \tau_X$ también.

Proposición 38. Sea $f: X \to Y$ y sea Σ subbase de (Y, τ_Y) . Entonces, f es continua $\Leftrightarrow \forall S \in \Sigma$, $f^{-1}(S)$ es abierto

Demostración:

 (\rightarrow) Si f es continua y $\forall S \in \Sigma$, $S \in \tau_Y \Rightarrow f^{-1}(S) \in \tau_X$.

$$(\leftarrow) \text{ Sea } A \in \tau_Y. \ f^{-1}(A) = f^{-1}(\bigcup_{\lambda \in \Lambda} (\bigcap_{i=1}^n S_{i,\lambda})) = \bigcup_{\lambda \in \Lambda} (\bigcap_{i=1}^n f^{-1}(S_{i,\lambda})) \text{ es abierto en } X. \text{ Luego } f \text{ es continua.}$$

Proposición 39. Sea $\tau_1 \subset \tau_2$, τ_2 más fina que $\tau_1 \Leftrightarrow$

id :
$$(X, \tau_1) \rightarrow (X, \tau_2); x \rightarrow x$$
 es continua.

Demostración:

Proposición 40. Reglas de construcción de funciones continuas. Sean X,Y, Z espacios topológicos.

- 1. **Función constante**. $f: X \to Y$, $f(x) = y_0$, $\forall x \in X \Rightarrow f$ es continua.
- 2. **Composición**. Sean $f: X \to Y$ continua, $g: Y \to Z$ aplicaciones. Entonces, $g \circ f : X \to Z$ es continua.
- **dominio**. $f:(X,\tau)\to Y$ continua, $A\subset X$ 3. Restricción del $f_A = f|_A : (A, \tau_A) \to Y$ continua.
- 4. Restricción del recorrido. $f: X \to Y, W \subset Y, Im(f) \subset W \Rightarrow f: X \to W$ continua.
- 5. Inclusión. $f: X \to Y$ continua, $Y \subset Z$ y además $\tau_X = \tau_X|_Y \Rightarrow f: X \to Z$ continua.

Proposición 41. (Lema de pegado). Sea X espacio topológico unión de dos cerrados propios, $X = A \cup B$ con $A \subset X$, $B \subset X$.

Sean $f: A \to Y$, $g: B \to Y$ continuas con $f|_{A \cap B} = g|_{A \cap B} \Rightarrow \exists h: X \to Y$ continua y extensión de ambas, es decir, $h|_A = f$, $h|_B = g$.

Demostración: Sea $h: X = A \cup B \rightarrow Y, x \rightarrow h(x)$ donde

$$h(x) = \begin{cases} f(x) \text{ si } x \in A \\ g(x) \text{ si } x \in B \end{cases}$$

Sea F un cerrado de Y, veamos que $h^{-1}(F)$ es cerrado en X.

 $h^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$ con:

- $f^{-1}(F)$ es cerrado en X porque F es cerrado en A y A es cerrado en X
- $g^{-1}(F)$ es cerrado en X porque F es cerrado en B y B es cerrado en X.

Así, $h^{-1}(F)$ es cerrado en X por ser unión de cerrados de X.

Observación: No se puede generalizar el lema de pegado a una colección infinita de cerrados.

Proposición 42. Continuidad en productos. Sean $f: X \to Y$, $g: X \to Z$ continuas \Rightarrow la aplicación $h = f \times g$ es continua.

$$h := (f, g) : X \to Y \times Z$$
$$x \to (f(x), g(x))$$

Demostración: Sea Ω abierto en Y × Z. Entonces $\Omega = \bigcup_{\lambda \in \Lambda} V_{\lambda} \times W_{\lambda}$ con $V_{\lambda} \in \tau_{Y}$, $W_{\lambda} \in \tau_{Z}$

$$\Rightarrow h^{-1}(\Omega) = \bigcup_{\lambda \in \Lambda} h^{-1}(V_{\lambda} \times W_{\lambda})$$

Veamos que $h^{-1}(V_{\lambda} \times W_{\lambda})$ es abierto en $X \ \forall \lambda \in \Lambda$. Para ello, probemos que $h^{-1}(V_{\lambda} \times W_{\lambda}) = f^{-1}(V_{\lambda}) \cap g^{-1}(W_{\lambda})$ abierto en X.

$$(\subset)$$
 Sea $x \in h^{-1}(V_{\lambda} \times W_{\lambda}) \Rightarrow (f(x), g(x)) \in V_{\lambda} \times W_{\lambda} \Rightarrow x \in f^{-1}(V_{\lambda}), x \in g^{-1}(W_{\lambda}).$

$$\begin{array}{l} (\supset) \ \text{Sea} \ x \in (f^{-1}(V_{\lambda}) \cap g^{-1}(W_{\lambda})) \Rightarrow f(x) \in V_{\lambda} \ y \ g(x) \in W_{\lambda} \Rightarrow \\ (f(x), g(x)) = h(x) \in V_{\lambda} \times W_{\lambda} \Rightarrow x \in h^{-1}(V_{\lambda} \times W_{\lambda}). \end{array}$$

1.13.1. Funciones continuas y espacio producto de infinitos factores

Proposición 43. Sean $(X_{\lambda}, \tau_{\lambda})$, $\lambda \in \Lambda$ espacios topológicos. La topología producto τ_{P} es la mínima topología sobre $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ que hace que las proyecciones sean todas continuas:

$$\Pi_{\lambda}: X = \prod_{\lambda \in \Lambda} X_{\lambda} \to X_{\lambda}
x = (x_{\lambda})_{\lambda \in \Lambda} \to x_{\lambda}$$

Proposición 44. Sean $(X_{\lambda}, \tau_{\lambda})$, $\lambda \in \Lambda$ espacios topológicos. Formamos el producto cartesiano $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ en el que consideramos la topología producto dada por las τ_{λ} . Si consideramos otro espacio topológico (Y, S) y una aplicación $f : Y \to X$, entonces:

$$f:(Y,S)\to (X,\tau_p) \text{ es continua} \Leftrightarrow \forall \lambda\in \Lambda, \Pi_\lambda\circ f:(Y,S)\to (X_\lambda,\tau_\lambda) \text{ es continua}.$$

En otras palabras, si $f(y) = (f_{\alpha}(y))_{\alpha \in J}$, $f: (Y,S) \to (X,\tau_p)$ es continua $\Leftrightarrow \forall \lambda$, $f_{\lambda}:(Y,S)\to(X_{\lambda},\tau_{\lambda})$ es continua.

Demostración:

- (\rightarrow) La composición de funciones continuas es continua.
- (\leftarrow) f_{λ} continua implica que para cada $A \in \tau_{\lambda}$, $f_{\lambda}^{-1}(A) \in S$. Pero

$$f_{\lambda}^{-1}(A) = (\pi_{\lambda} \circ f)^{-1}(A) = f^{-1}(\pi_{\lambda}^{-1}(A))$$

Vemos con esto que para todo abierto G de la subbase Σ de τ_p se cumple que $f^{-1}(G)\in S$, así f continua.

1.13.2. Criterio local de continuidad

Definición 27 (Función continua en $x \in X$). f es **continua** en $x \in X$ \Leftrightarrow para cada entorno V de f(x) en (Y, τ_Y) , $V \in V(f(x))$ existe algún entorno U de x en (X, τ) , $U \in V(x)$ tal que $f(U) \subset V$. Análogamente, como $f(U) \subset V \equiv U \subset f^{-1}(V)$, existe $U \in V(x)$ tal que $f(U) \subset V \equiv f^{-1}(V) \in \mathbb{V}(x)$.

Proposición 45. f es continua $\Leftrightarrow \forall x \in X$, f es continua en x.

Demostración: (\rightarrow) Sea $x_0 \in X$, sea V entorno de $f(x_0)$. Entonces \exists W abierto $f(x_0) \in W \subset V$ \Rightarrow f⁻¹(W) es abierto en X, $x_0 \in f^{-1}(W) = U$.

Veamos si $f(f^{-1}(W)) \subset W \subset V$. Sea y = f(a) con $a \in f^{-1}(W) \Rightarrow f(a) \in W$.

 (\leftarrow) Veamos que dado Ω abierto de $Y \Rightarrow f^{-1}(\Omega)$ es abierto de X. Sea $x_0 \in f^{-1}(\Omega) \Rightarrow$ $f(x_0) \in \Omega$, Ω entorno de $f(x_0)$. Por hipótesis, $\exists U_{x_0}$ entorno de x_0 tal que $f(U_{x_0}) \subset \Omega \Rightarrow$ $U_{x_0} \subset f^{-1}(\Omega) \Rightarrow x_0 \in Int(f^{-1}(\Omega)).$

Proposición 46. Sean $f: X \to Y$ continua en $x_0 \in X$, $g: Y \to Z$ continua en $f(x_0) = y_0 \in Y \Rightarrow g \circ f : X \to Z$ es continua en x_0 .

Demostración: Dado $V \in \mathbb{V}((g \circ f)(x_0))$ queremos ver que $(g \circ f)^{-1}(V) \in \mathbb{V}(x_0)$. Pero $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ y como g es continua en $f(x_0) = y_0$ y $g(y_0) = g(f(x_0)) = g(f(x_0))$ $(g \circ f)(x_0)$, será $g^{-1}(V) \in V(y_0) = V(f(x_0))$.

Usando que f es continua en x_0 , llegamos a que $f^{-1}(g^{-1}(V)) \in V(x_0)$.

Proposición 47. Formulación local de la continuidad. $f: X \to Y$ es continua si existe una familia de abiertos $\{U_{\alpha}\}_{\alpha\in J}$ tal que $X=\bigcup\ U_{\lambda}$ y para cada $\lambda\in\Lambda$, $f|_{U_{\lambda}}$ es continua.

1.14. Homeomorfismos, funciones abiertas y cerradas

Definición 28 (Homeomorfismo). Sea $f:(X,\tau)\to (Y,S)$ aplicación es **homeomorfismo** \Leftrightarrow $\exists f^{-1} \ y \ f \ y \ f^{-1} \ son \ continuas.$

f biyectiva es homeomorfismo $\Leftrightarrow \forall U \subset X, U \in \tau \Leftrightarrow f(U) \in S$

- Dos espacios topológicos son **homeomorfos** si existe un homeomorfismo entre ellos.
- La composición de homeomorfismos es homeomorfismo.

Proposición 48. Si f : $X \rightarrow Y$ biyectiva, son equivalentes:

- 1. f homeomorfismo.
- 2. $\forall E \subset X$, E cerrado en $X \Leftrightarrow f(E)$ es cerrado en Y.
- 3. $\forall E \subset X$, $f(\overline{E}) = \overline{f(E)}$.

Definición 29 (Inclusión topológica de X en Y). Sea $f: X \to Y$ una aplicación continua e inyectiva entre espacios topológicos. Si la aplicación $\tilde{f}: X \to f(X); x \to f(x)$ es un **homeomorfismo** del espacio X sobre $(f(X), \tau_{subespacioY}) \Rightarrow f$ es una **inclusión topológica** de X en Y.

Observación: Para que $f: X \to Y$ sea inclusión topológica hay que pedir que para todo A abierto de Y:

$$\tilde{f}^{-1}(f(X)\cap A) = \{x\in X: f(x)\in A\} = f^{-1}(A)$$

sea abierto de X. Todo abierto de X ha de ser igual a $f^{-1}(A)$ para algún A abierto de Y.

Ejemplo 7. Sea $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ la esfera unidad de \mathbb{R}^2 , vista como espacio topológico con la topología que hereda de \mathbb{R}^2 .

La aplicación: f: $[0,1) \rightarrow S^1$; t $\rightarrow e^{2\pi t} = (\cos(2\pi t), \sin(2\pi t))$ es continua y biyectiva pero no homeomorfismo.

Por ejemplo, f([0,1/4)) no es abierto de S^1 puesto que f(0)=(1,0) no pertenece a ningún abierto de V de \mathbb{R}^2 tal que $V \cap S^1 \subset f([0, 1/4))$.

Definición 30 (Función abierta). f es abierta si lleva abiertos de X en abiertos de Y.

Definición 31 (Función cerrada). f es **cerrada** si lleva cerrados de X en cerrados de Y.

1.15. Convergencia y espacios topológicos Hausdorff

Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de puntos del espacio topológico (X,τ) .

Definición 32 (Sucesión converge a un punto). La sucesión converge al punto $a \in X$, $x_n \to a \Leftrightarrow \forall V \in \mathbb{V}(a), \exists n_0 \in \mathbb{N} \text{ tal que } \forall n \geqslant n_0, x_n \in V.$

Ejemplo 8. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de números reales con todos los términos distintos.

- Consideremos la topología de los complementos finitos en R. Entonces, tenemos que $\forall a \in \mathbb{R}$, $x_n \to a$. **Justificación**: Sea U entorno de a (podemos suponer abierto, forman base local). Como los abiertos no vacíos tienen complemento finito, basta excluir un número finito de términos de la sucesión (con índice menor que cierto n_0) para garantizar que los demás pertenecen a U.
- Consideramos la topología usual. Veamos que para cada sucesión solo hay un límite (y no varios como antes). Supongamos que $x_n \to a$ y $x_n \to b$, siendo $a \neq b$. Entonces por definición de convergencia, dado cualquier $\epsilon > 0 \; \exists n_0, n_1 \in \mathbb{N}$ tales que $\forall n\geqslant n_0, |x_n-\alpha|\leqslant \varepsilon \ y \ \forall n\geqslant n_1, |x_n-b|\leqslant \varepsilon. \ \text{Tomando} \ n_2=m\alpha x(n_0,n_1) \ \text{resul-}$ ta que $\forall n \geqslant n_2$, simultáneamente $|x_n - a| \leqslant \varepsilon$ y $|x_n - b| \leqslant \varepsilon$. Para ε suficientemente pequeño las dos condiciones son incompatibles: $(a - \epsilon, a + \epsilon) \cap (b - \epsilon, b + \epsilon) = \emptyset$.

Definición 33 (Espacio topológico Hausdorff). Sea (X, τ) espacio topológico. Decimos que X es un espacio topológico Hausdorff (o T_2) \Leftrightarrow

 $\forall x, y \in X, x \neq y, \exists U_x, U_y \text{ entornos de } x, y \text{ respectivamente tales que } U_x \cap U_y = \emptyset$

Proposición 49. Si $\{x_n\}_{n\in\mathbb{N}}$ es una sucesión de puntos de un espacio topológico T_2 , se tiene que $x_n \to a$ y $x_n \to b \Rightarrow a = b$.

Demostración: Si $x_n \to a$ y $x_n \to b$ con $a \neq b$, tomando entornos tenemos $x_n \in (U_a \cap U_b) \neq \emptyset$, contradicción con que el espacio es T_2 a partir de cierto n.

Proposición 50. Sea X un espacio topológico T_2 . Sea $A \subset X$, $|A| < \infty \Rightarrow A$ es cerrado.

Demostración: Basta considerar el caso $A = \{x_0\}$, pues si |A| = n, $A = \{x_1, ..., x_n\} = \bigcup_{j=1}^{n} \{x_j\}$

también es cerrado por ser unión de cerrados (aplicando inducción en n queda demostrado para un conjunto finito de más de un elemento).

Demostremos que A = A. Por definición $A \subset A$. Veamos $A \subseteq A$. Si tenemos $x \in A$ y $x \notin A$, es decir, $x \neq x_0 \Rightarrow \exists U_x$ entorno de x, U_{x_0} entorno de x_0 tal que $U_{x_0} \cap U_x = \emptyset$. Pero como $x \in \overline{A} \Rightarrow U_x \cap A \neq \emptyset \Rightarrow x_0 \in U_x \Rightarrow x_0 \in U_x \cap U_{x_0}$, llegamos a una contradicción. Por tanto, $\forall x \in \overline{A} \Rightarrow x \in A$. Por lo tanto, A es cerrado.

Proposición 51. Sea (X, τ) un espacio T_2 , $A \subset X$, $|A| \ge \aleph_0$.

$$x \in A' \Leftrightarrow \forall U$$
 entorno de x , $|U \cap A| \geqslant \aleph_0$

Demostración:

- (\leftarrow) Sea U entorno de x, $|U \cap A| = \infty \Rightarrow |(U \setminus \{x\}) \cap A| = \infty \Rightarrow (U \setminus \{x\}) \cap A \neq \emptyset$.
- (→) Supongamos que $\exists U$ entorno de $x = x_0$ tal que $|U \cap A| = n + 1 < \infty$.

$$U \cap A = \{x_0, ..., x_n\} \Rightarrow U \cap (A \setminus \{x_0\}) = \{x_1, ..., x_n\}$$

$$U \cap A = \{x_0, ..., x_n\} \Rightarrow U \cap (A \setminus \{x_0\}) = \{x_1, ..., x_n\}$$

$$\Omega = U \setminus \{x_1, ..., x_n\} = U \cap C_X(\bigcup_{j=1}^n \{x_j\}) = U \cap (\bigcup_{j=1}^n C_X(\{x_j\})) = \bigcup_{j=1}^n (U \cap C_X\{x_j\})$$

 Ω es un entorno de x_0 porque la intersección del abierto del entorno U con cada $C_X\{x_i\}$ es abierto por ser cada $C_X\{x_1\}$ abierto ya que X es T_2 .

Proposición 52.
$$(X, \tau)$$
 es $T_2 \Leftrightarrow \Delta = \{(x, x) : x \in X\} \subset X \times X$ es cerrada.

Demostración: (\rightarrow) Veamos que $\Omega = C_{X \times X}(\Delta) \subset X \times X$, es decir, que para $(x,y) \in \Omega$, $(x,y) \in Int(\Omega)$. Como $(x,y) \in \Omega \Rightarrow x \neq y \Rightarrow \exists U$ entorno de x, V entorno de y tal que $U \cap V = \emptyset$. Entonces $U \times V$ es un entorno de (x,y) en $X \times X \Rightarrow (U \times V) \cap \Delta = \emptyset$ \Rightarrow U × V $\subset \Omega$.

 (\leftarrow) Sean $x,y \in X$, $x \neq y \Rightarrow (x,y) \notin \Delta \Rightarrow (x,y) \in C_X(\Delta)$ abierto $\Rightarrow \exists U \times V$ abierto $x \in U$, V abierto tal que $y \in V$, $U \times V \subset C_X(\Delta) \Leftrightarrow U \cap V = \emptyset$. Por tanto, X es T_2 .

Proposición 53.

- 1. Todo conjunto ordenado con la topología asociada al orden es T_2 .
- 2. Sean X_1 y X_2 espacios $T_2 \Rightarrow X_1 \times X_2$ es T_2 .
- 3. (X, τ) es T_2 , $Y \subset X \Rightarrow (Y, \tau_Y)$ es T_2 .

Demostración:

(1) Sea < orden sobre X, $\tau_{<}$ topología asociada a dicho orden. Veamos que $(X, \tau_{<})$ es T_2 . Dados $x, y \in X$ con x < y, tenemos varios casos.

Caso 1: Si $\exists a$ tal que x < a < y, entonces:

- $x \in I_a$ donde si x es extremo inferior de X, $I_a = [x, a]$ es abierto en $\tau_{<}$. Si x no es extremo inferior de X entonces $\exists x_1 < x, x_1 \in X \Rightarrow I_\alpha = (x_1, \alpha)$.
- $y \in J_a$ donde si x es extremo superior de X, $J_a = (a, y]$ es abierto en $\tau_{<}$. Si x no es extremo superior de X entonces $\exists y_1 < y, y_1 \in X \Rightarrow J_a = (a, y_1)$.

Además, $I_{\mathfrak{a}} \cap J_{\mathfrak{a}} = \emptyset$.

Caso 2: No existe a entre x e y, I = (*, y), $J = (x, *) \Rightarrow I \cap J = \emptyset$.

(2) Sean $z_1 = (x_1, y_1), z_2 = (x_2, y_2) \in X \times Y, z_1 \neq z_2 \Rightarrow x_1 \neq x_2 \text{ ó } x_1 = x_2 \text{ y } y_1 \neq y_2.$ $\mathrm{Si}\ x_1\neq x_2\ \exists U_1\in\beta_{x_1}, U_2\in\beta_{x_2}, U_1\cap U_2=\emptyset \Rightarrow V_1=U_1\times Y\in\beta_{z_1}, V_2=U_2\times Y\in\beta_{z_2}.$ Tenemos que $V_1 \cap V_2 = \emptyset$.

 $\mathrm{Si}\ x_1=x_2\ y\ y_1\neq y_2\ \exists \Omega_1\in\beta_{y_1}, \Omega_2\in\beta_{y_2}, \Omega_1\cap\Omega_2=\emptyset.\ \mathrm{Tenemos}\ \mathrm{que}\ W_1=X\times\Omega_1\in\beta_{z_1}, \Omega_1\in\beta_{z_2}, \Omega_1\cap\Omega_2=\emptyset.$ $W_2 = X \times \Omega_2 \in \beta_{z_2}, W_1 \cap W_2 = \emptyset.$

(3) Sean $y_1, y_2 \in Y$, $y_1 \neq y_2 \Rightarrow \exists U_1$, U_2 abiertos en X de y_1 , y_2 respectivamente, tales que $U_1 \cap U_2 = \emptyset \Rightarrow \exists V_1 = U_1 \cap Y$, $V_2 = U_2 \cap Y$ entornos abiertos en Y de y_1 , y_2 respectivamente tales que $V_1 \cap V_2 \subset U_1 \cap U_2 = \emptyset$.

Proposición 54. Sea $f: X \to Y$ continua e Y es $T_2 \Rightarrow$

$$K = \{(x_1, x_2) : f(x_1) = f(x_2), x_1, x_2 \in X\}$$
 es cerrado en $X \times X$

Demostración: Como Y es $T_2 \Rightarrow \Delta = \{(y,y) : y \in Y\}$ es cerrado en $Y \times Y$. Formando la aplicación $h: X \times X \to Y \times Y$, $h(x_1, x_2) = (f(x_1), f(x_2)) \Rightarrow h^{-1}(\Delta)$ es cerrado en $X \times X$. $h^{-1}(\Delta) = \{(x_1, x_2) : (f(x_1), f(x_2)) \in \Delta\} = \{(x_1, x_2) : f(x_1) = f(x_2)\} = K$. Así, K es cerrado en $X \times X$.

Forma resumida de escribir la demostración: $K = (f, f)^{-1}(\Delta)$.

1.16. Espacios métricos

Definición 34 (Espacio métrico). Sea $X \neq \emptyset$, (X, τ_d) se dice espacio métrico si d es una aplicación $d: X \times X \to \mathbb{R}$ que cumple:

- 1. $\forall x, y \in X$, $d(x, y) \ge 0$ y $d(x, y) = 0 \Leftrightarrow x = y$.
- 2. $\forall x, y \in X, d(x, y) = d(y, x)$.
- 3. $\forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y)$

Definición 35 (Topología asociada a la distancia). $U \in \tau_d \Leftrightarrow \forall x \in U \ \exists \varepsilon > 0$ tal que $B_d(x, \epsilon) \subset U$.

- Bolas abiertas $B_d(x_0, \epsilon) = \{x \in X : d(x, x_0) < \epsilon\}.$
- Bolas cerradas $B_d(x_0, \epsilon) = \{x \in X : d(x, x_0) \le \epsilon\}.$
- La familia $F = \{B_d(x, \epsilon) : x \in X, \epsilon > 0\}$ es una **base** para τ_d .
- El conjunto $\beta_x = \{B_d(x, \epsilon) : \epsilon > 0\}$ es un sistema fundamental de entornos de x.

Definición 36 (Espacio métrico metrizable). (X, τ) es metrizable $\Leftrightarrow \exists d$ distancia $\tau = \tau_d$.

Proposición 55. (X, τ_d) es metrizable $\Rightarrow (X, \tau_d)$ es T_2 .

Corolario: $X = \mathbb{R}$, $\tau = \tau_{Zariski} \Rightarrow (\mathbb{R}, \tau_{Zariski})$ no es metrizable.

Definición 37 (Diámetro de un conjunto). Sea (X, d), $A \subset X$. El **diámetro** de A es

$$diam(A) = sup\{d(a_1, a_2) : a_1, a_2 \in A\}$$

Definición 38 (Conjunto acotado). A se dice **acotado** si diam $(A) < \infty$.

Proposición 56. Sea (X, d) espacio métrico y sea $\overline{d}: X \times X \to \mathbb{R}$, tal que

$$\overline{d}(x,y) = \min\{d(x,y), 1\}$$

Entonces, (X, \overline{d}) es un espacio métrico.

Ejemplo 9. En \mathbb{R} , $B_{\overline{d}}(0,\frac{1}{2}) = \{y \in \mathbb{R} : \overline{d}(y,0) < \frac{1}{2}\} = \{y \in \mathbb{R} : \min\{|y|,1\} < \frac{1}{2}\}$ $= B_{1/1}(0, \frac{1}{2})$

Definición 39 (Topología uniforme de \mathbb{R}^J). Sea J un conjunto de índices, $\mathbb{R}^J \in (x_\alpha)_{\alpha \in J}$.

$$\rho((x_{\alpha})_{\alpha \in I}, (y_{\alpha})_{\alpha \in I}) := \sup\{\overline{d}(x_{\alpha}, y_{\alpha}) : \alpha \in J\}$$

 (\mathbb{R}^J, ρ) es un espacio métrico, y la topología inducida, τ_ρ se llama **topología uniforme de**

Observación: $\mathbb{R}^J = \{ \varphi : J \to R; \alpha \to \varphi(x) := x_{\alpha} \} \in (x_{\alpha})_{\alpha \in J}$

Proposición 57.

- 1. La topología uniforme, τ_0 es \mathbb{R}^J es **más fina** que la topología producto.
- 2. Si $|J| = \infty$, entonces $\tau_{\rho} \neq \tau_{prod}$.

Demostración:

(1)
$$X = \mathbb{R}^J = \prod_{\alpha \in J}^x \alpha, x_\alpha = \mathbb{R} \ \forall \alpha \in J.$$

Veamos que $\tau_{prod} \subset \tau_{\rho}$. Basta demostrar que un abierto de la forma $U = \prod_{\alpha \in I} U_{\alpha}$ con $U_{\alpha} \subseteq \mathbb{R} \text{ si } \alpha \in \{x_1, ..., x_n\} \subset J \text{ o } U_{\alpha} = \mathbb{R} \alpha \in J \setminus \{x_1, ..., x_n\}.$

Veamos que todos los puntos de U son interiores. Sea $x \in U$, $x = (x_{\alpha})_{\alpha \in J}$, $x_{\alpha} \in U_{\alpha}$. Para $i=1,...,n,x_{\alpha_i}\in U_{\alpha_i}\Rightarrow \exists \varepsilon_i>0, B_{\overline{d}}(x_{\alpha_i},\varepsilon_i)\subset U_{\alpha_i}. Sea \ \varepsilon=min\{\varepsilon_1,...,\varepsilon_k\}. \ B_d(x_{\alpha_i},\varepsilon)\subset U_{\alpha}.$

 $B_{\rho}(x, \epsilon) = \{ y \in \mathbb{R}^{J} : \rho(x, y) < \epsilon \} = \{ y \in \mathbb{R}^{J} : \overline{d}(x_{\alpha}, y_{\alpha}) \leqslant \sup\{ \overline{d}(x_{\alpha}, y_{\alpha} : \alpha \in J) < \epsilon \} \subset U.$ Entonces, $x \in Int(U)$ para τ_{ρ} , U = Int(U), U es abierto para τ_{ρ} .

(2) Sea $B_{\rho}(0, \frac{1}{2}) = \{y \in \mathbb{R}^J : \sup\{\overline{d}(0, y_{\alpha}), \alpha \in J\} < \frac{1}{2}\} = \min\{d(0, y_{\alpha}), 1\} = 0$ $\{y \in \mathbb{R}^J : d(0,y_\alpha) < \frac{1}{2}, \alpha \in J\} = \prod_{\alpha \in J} B_d(0,\frac{1}{2})$ No es abierto para la topología producto, aunque sí para la topología caja.

Ejemplo 10. Veamos que el espacio de sucesiones, \mathbb{R}^w cumple $\mathbb{R}^w = \mathbb{R}^N$ con la topología producto en un espacio métrico.

1.16.1. Funciones continuas y metrizabilidad

Proposición 58. (Lema de la sucesión)

- 1. Sea (X, τ) espacio topológico. Sea $A \subset X$. Si existe una sucesión de puntos de A, $\{a_n\}_{n=0}^{\infty}$ tales que $a_n \xrightarrow{n \to \infty} x$, entonces $x \in \overline{A}$.
- 2. (X, d) espacio métrico, $A \subset X$, $x \in \overline{A} \Rightarrow \exists \{a_n\}_{n=0}^{\infty} a_n \in A \text{ tal que } a_n \xrightarrow{n \to \infty} x$.

Demostración: (1) Sea $U \in \beta_x$ entorno. Como $a_n \to x$, entonces $\exists n_0$ tal que $n \ge n_0$, $a_n \in U \Rightarrow a_n \in U \cap A \Rightarrow U \cap A \neq \emptyset$. Luego, $x \in A$.

(2) Sea $B_1=B_d(x,1)$. Sea $\alpha_1\in B_1\cap A\neq\emptyset$. Sea $\varepsilon_2=\frac{d(x,\alpha_1)}{2}$ y $B_2=B_d(x,\varepsilon_2)$. Entonces $\exists \alpha_2\in B_2\cap A\neq\emptyset$. Supongamos construídas las bolas $B_1\supset...\supset B_n$, $\alpha_i\in B_i\setminus B_{i+1}$ para i = 1, ..., n - 1.

Probamos por inducción. Tenemos que $\epsilon_{n+1} = \frac{1}{2}d(x, a_n)$, $B_{n+1} = B(x, \epsilon_{n+1})$, $a_{n+1} \in B_{n+1} \cap A \neq \emptyset$. Además, $B_{n+1} \subset B_n$. Así, por inducción en n construímos $\{a_n\}_{n=1}^{\infty}$, veamos que efectivamente converge, $a_n \rightarrow x$.

Sea $U \in \beta_x$, entonces $\exists \epsilon > 0$ tal que $B(x, \epsilon) \subset U \Rightarrow \exists n_0$ tal que $\epsilon_{n_0} < \epsilon$, por lo que $B(x, \epsilon_{n_0}) \subset B(x, \epsilon) \subset U, \forall n \geqslant n_0 \ \alpha_n \in B_n \subset B_{n_0} \subset B(x, \epsilon) \subset U.$

Proposición 59. Sea $f:(X, d_x) \to (Y, d_Y)$ una función. Son equivalentes:

- 1. $f:(X,\tau_{d_X})\to (Y,\tau_{d_Y})$ continua.
- $\text{2. } \forall x_0 \in X \text{, } \forall \varepsilon > 0 \text{, } \exists \delta > 0 \text{ tal que } y \in X \text{, } d_x(x_0,y) < \delta \Rightarrow d_Y(f(x_0),f(y)) < \varepsilon.$

Demostración: (1) \rightarrow (2) Sea x_0X , f continua en x_0 . Consideremos $B_Y(f(x_0); \epsilon) = V_{f(x_0)}$. $\text{Entonces,} \ \exists U_{x_0} \in \beta_{x_0} \ \text{tal que} \ f(U_{x_0}) \subset V_{f(x_0)} = VB_Y(f(x_0), \varepsilon) \Rightarrow \exists \delta > 0, \ B_x(x_0; \delta) \subset U_{x_0},$ $f(B_X(x_0;\delta)) \subset B_Y(f(x);\epsilon) \Rightarrow \exists \delta > 0 \ \forall y \in B_X(x_0;\epsilon) \text{ se tiene } f(y) \in B_Y(f(x_0),\epsilon) \Rightarrow \exists \delta > 0,$ $\forall y \in X$, $d_X(x_0, y) < \delta$, se tiene que $d_Y(f(x_0), f(y)) < \epsilon$.

 $(2) \rightarrow (1)$ Veamos que $\forall x_0 \in X$, f es continua en x_0 , (al ser continua localmente en todo punto, f es continua). Sea $V \in \beta_{f(x_0)}$. Sea $\epsilon > 0$ tal que $B_Y(f(x_0), \epsilon) \subset V$. Por el segundo apartado, $\exists \delta > 0$ tal que si $y \in B_X(x_0), \delta \Rightarrow f(y) \in B_Y(f(x_0), \delta)$. Si $U := B_X(x_0, \delta)$, entonces $f(U) \subset B_Y(f(x_0), \epsilon) \subset V$.

Proposición 60. Sea $f:(X,d_x)\to (Y,d_Y)$ una función. f es continua $\Leftrightarrow \forall x_n\to x$ en X, $f(x) \rightarrow f(x_0)$ en Y.

 $\textbf{Demostración:} \operatorname{Sea} \{x_n\}_{n=0}^{\infty}, x_n \to x. \operatorname{Sea} \{f(x)\}_{n=0}^{\infty} \operatorname{sucesi\'on en } Y. \operatorname{Veamos que} f(x_n) \to f(x).$ Sea $\epsilon > 0$, $V = B_Y(f(x), \epsilon)$. Por el teorema anterior, $\exists \delta > 0$ tal que $y \in B_x(x, \delta) \Rightarrow^*$ $f(y) \in B_Y(f(x), \epsilon).$

Consideremos $U = B_x(x, \delta)$. $x_n \to x$, se tiene que $\exists n_0$ tal que $n \geqslant n_0$, $x_n \in B_x(x, \delta) \Rightarrow^*$ $f(x_n) \in B_Y(f(x), \epsilon) = V.$

 $(2) \to (1)$ Recordemos el resultado: f continua $\Leftrightarrow f(\overline{A}) \subset f(A)$. Sea $A \subset X$. Sea $y \in f(\overline{A})$. Entonces y = f(x) para un $x \in \overline{A}$. Por el Lema de la sucesión $\exists a_n \in A$, $a_n \to x \Rightarrow f(a_n) \to f(x)$ \Rightarrow y = f(x) \in f(A).

1.16.2. Convergencia uniforme

Definición 40 (Convergencia uniforme). Sea $f_n: X \to (Y, d)$. Decimos que $\{f_n\}_{n=1}^{\infty}$ converge uniformemente a $f: X \to (Y, d)$ si $\forall \epsilon > 0 \ \exists N > 0 \ \forall n \geqslant N$ tal que $d(f_n(x), f(x)) < \epsilon$ $\forall x \in X$.

Proposición 61. Sea $f_n: (X, \tau) \to (Y, d)$ continuas. Si $f_n \to f$ uniformemente, entonces f es continua.

Demostración: Sea V abierto de Y. Veamos que $f^{-1}(V)$ es abierto en X. Sea $x_0 \in f^{-1}(V) \Rightarrow$ $y_0 = f(x_0) \in V$. Sea $\epsilon > 0$ tal que $B_Y(y_0, \epsilon) \subset V$.

Sea N > 0 tal que $\forall n \ge N$, $d_Y(f_n(x), f(x)) < \frac{\epsilon}{4}$, $\forall x \in X$. Tenemos que:

- $d_Y(f_N(x), f(x)) < \frac{\epsilon}{4}, \forall x \in X.$
- f_N es continua en x_0 . $\exists U \in \beta_{x_0}$ tal que $f_N(U) \subset B_d(f_N(x_0), \frac{\varepsilon}{2})$. Comprobemos si $f(U) \subset B_d(y_0, \epsilon) \subset V$.

 $y \in f(U), y = f(x), x \in U.$ $d_Y(y, y_0) = d_Y(f(x), f(x_0)) \le d_Y(f(x), f_N(x)) + d_Y(f_N(x), f(x_0))$ $\leq \frac{\epsilon}{4} + d_{\mathsf{Y}}(\mathsf{f}_{\mathsf{N}}(\mathsf{x}),\mathsf{f}_{\mathsf{N}}(\mathsf{x}_0)) + d_{\mathsf{Y}}(\mathsf{f}_{\mathsf{N}}(\mathsf{x}_0,\mathsf{f}(\mathsf{x}))) < \epsilon$

1.16.3. Completitud

Definición 41 (Sucesión de Cauchy). Sea (X, d) un espacio métrico. Sea $\{a_n\}_{n=1}^{\infty}$ una sucesión en (X, d). Se dice que la sucesión es de Cauchy \Leftrightarrow

$$\forall \varepsilon>0 \ \exists n_0>0 \ \text{tal que } n,m\geqslant n_0, \ d(\alpha_n,\alpha_m)<\varepsilon$$

Proposición 62. (Criterio de Cauchy) Para una sucesión $s = (x_n)_{n \in \mathbb{N}}$ de números reales, son equivalentes:

- s es convergente.
- s es una sucesión de Cauchy.

Proposición 63. Toda sucesión de números reales tiene alguna subsucesión monótona. Si tenemos una sucesión s de números $x_n \in \mathbb{R} \Rightarrow$ podemos encontrar una sucesión creciente de índices naturales n_k tales que la sucesión $s' = (x_{n_k})_{k=1}^{\infty}$ subsucesión monótona (o bien creciente o bien decreciente).

Proposición 64. (Teorema de Bolzano-Weierstrass) Toda sucesión acotada de números reales tiene alguna subsucesión convergente.

Definición 42 (Espacio completo). Un espacio métrico (X, d) es completo si toda sucesión de Cauchy es convergente.

Observación: $K \subset (X, d)$. X es completo, K cerrado $\Rightarrow K$ completo.

Lema. Sea un espacio métrico (X, d). Si cada sucesión de Cauchy admite una subsucesión convergente, entonces X es completo.

Demostración: $\{x_n\}_{n=1}^{\infty}$ de Cauchy. Veamos si $x_n \to x \in X$. Sea $\epsilon > 0$, sea n_0 tal que $\begin{array}{l} n\geqslant n_0,\, d(x,x_n)<\frac{\varepsilon}{2}\,\,\dot{d}(x_n,x)<\dot{d}(x_n,x_{n_0})+d(x_{n_0},x).\,\text{Sea N tal que }n,m>N,\\ d(x_n,x_m)<\frac{\varepsilon}{2}.\, Luego\,n_0'=m\alpha x(n_0,N),n>n_0',\, d(x_n,x)\leqslant d(x_n,x_{n_0}')+d(x_{n_0}',x)<\varepsilon. \end{array}$

Proposición 65. Sea (\mathbb{R}^* , d), donde d es la métrica euclídea. Entonces (\mathbb{R}^k , d) es completo.

Demostración: $\{x_n\}_{n=1}^\infty$ sucesión de puntos de \mathbb{R}^k que sea de Cauchy. Luego $\exists N, n, m \geqslant N$ tal que $d(x_n, x_m) < 1$. Denotemos $M = \max\{d(x_L, 0_{\mathbb{R}^k}), ..., d(x_{N-L}, 0_{\mathbb{R}^k}), 1 + d(x_N, \overline{0})\}$. Entonces $\forall n \geq N \ d(x_n, \overline{0}) \leq d(x_n, x_N) + d(x_N, \overline{0}) \leq 1 + d(x_N, \overline{0}) < M$

$$A=\{x_n\}_{n=1}^{\infty}\subset \mathbb{R}^k \text{ entonces } A\subset [-M,M]^k \Rightarrow x_n\to x\in \overline{A}\subset \overline{[-M,M]^k}=[-M,M]^k.$$

Observación: $(\mathbb{Q}, |.|)$ no es completo.

1.17. Axiomas de numerabilidad

Sea (X, τ) espacio topológico, $x \in X$.

Definición 43 (Base numerable). X tiene una base numerable en x si $\exists \tilde{\beta_x}$ una familia numerable de entornos de x tal que cada entorno de x contiene a uno de los $\tilde{\beta_x}$.

Definición 44 (1AN). X satisface el 1º axioma de numerabilidad ⇔ $\forall x \in X$, X tiene una base numerable en x.

Proposición 66. Sea (X, τ) espacio topológico.

- 1. (X,τ) satisface 1AN, $A\subset X$. $x\in \overline{A}\Rightarrow \exists \{\alpha_n\}_{n=1}^{\infty},\, \alpha_n\in A,\, \alpha_n\to x.$
- 2. $f: X \to Y$, X es 1AN, si cada sucesión $x_n \to x$ satisface $f(x_n) \to f(x)$, entonces f es continua.

Proposición 67.

- 1. Un subespacio topológico de un espacio 1AN es 1AN.
- 2. Un producto numerable de espacios 1AN es 1AN.

Definición 45 (2AN). X satisface el 2° axioma de numerabilidad \Leftrightarrow τ tiene una base β numerable.

Proposición 68. $2AN \Rightarrow 1AN$.

Ejemplo 11. (X, d) espacio métrico es 1AN.

Ejemplo 12. (\mathbb{R} , τ_{usual}) $\beta = \{(a, b) : a, b \in \mathbb{Q}\}$ es 2AN.

Lema. (X, τ) es 2AN, $A \subset X$, A discreto \Rightarrow A es numerable.

Demostración: $\varphi : A \to \beta$; $\alpha \to B_{\alpha}$, donde β es una base numerable de τ . $B_{\alpha} \cap A = \{\alpha\}$. Como φ es inyectiva, $|A| \leq |B| \leq \aleph_0$. Es inyectiva porque si $B_a = B_b \Rightarrow$ $\{a\} = B_a \cap A = B_b \cap A = \{b\}$

1.18. Topología y espacio cociente

Sea (X, τ) un espacio topológico y sea R una relación de equivalencia en X. Consideramos el conjunto cociente X/R cuyos elementos son las clases de equivalencia R(x), $x \in X$ donde

$$\forall x \in X \text{ para } R(x) = \{y \in X : xRy\}$$

La proyección canónica es: $\pi: X \to X/R$; $x \to R(x)$

Definición 46 (Topología cociente). Es la colección de subconjuntos de X/R:

$$\tau_{\pi} = \{U \subset X/R : \pi^{-1}(U) \in \tau\}$$

- $\quad \blacksquare \ \pi^{-1}(\emptyset) = \emptyset \in \tau \Rightarrow \emptyset \in \tau_\pi. \ \pi^{-1}(X/R) = X \in \tau \Rightarrow X/R \in \tau_\pi.$
- $\bullet \ \forall \alpha \in J \ U_{\alpha} \in \tau_{\pi} \Rightarrow \pi^{-1}(U_{\alpha}) \in \tau \Rightarrow \bigcup_{\alpha \in J} \pi^{-1}(U_{\alpha}) = \pi^{-1}(\bigcup_{\alpha \in J} U_{\alpha}) \in \tau \Rightarrow \bigcup_{\alpha \in J} U_{\alpha} \in \tau_{\pi}.$
- $\bullet \ A,B \in \tau_\pi \Rightarrow \pi^{-1}(A),\pi^{-1}(B) \in \tau \Rightarrow \pi^{-1}(A) \cap \pi^{-1}(B) = \pi^{-1}(A \cap B) \in \tau \Rightarrow$ $A \cap B \in \tau_{\pi}$.

Observación: $E \subset X/R$ es cerrado $\Leftrightarrow \pi^{-1}(E)$ es cerrado en X.

Definición 47 (Espacio topológico cociente). $(X/R, \tau_{\pi})$ es el espacio topológico cociente de (X, τ) por la relación de equivalencia R.

 $X/R \equiv X^*$ es partición de X (subconjuntos disjuntos cuya unión es X).

Definición 48 (Conjunto saturado). R relación de equivalencia en X, $A \subset X$ es **saturado** si:

$$\pi^{-1}(\pi(A)) = \{x \in X : \exists \alpha \in A \text{ tal que } xR\alpha\}$$

Proposición 69. X/R esp. top. cociente de X y sea $\pi: X \to X/R$ proyección canónica. Sea Y otro espacio topológico. Entonces:

$$g: X/R \to Y$$
 es continua $\Leftrightarrow g \circ \pi: X \to Y$ es continua.

Proposición 70. R rel. equiv., la proyección canónica $\pi: X \to X/R$, $f: X \to Y$ aplicación continua y constante en cada clase de equivalencia R(x), $x \in X$. Entonces,

$$\exists \tilde{\mathbf{f}}: X/R \to Y \text{ tal que } \tilde{\mathbf{f}} \circ \boldsymbol{\pi} = \mathbf{f}, \, \tilde{\mathbf{f}} \text{ continua}$$

Observación: \tilde{f} abierta (cerrada) $\Leftrightarrow f(U)$ es abierto (cerrado) para cada U abierto (cerrado) saturado de X.

1.18.1. Aplicaciones cociente

Sean (X, τ) , (Y, S) espacios topológicos. *Motivación:* ¿Y si no tenemos relación de equivalencia?

Definición 49 (Aplicación cociente). $p:(X,\tau)\to (Y,S)$ es aplicación cociente si cumple:

- Es sobreyectiva.
- Cualquier V es abierto de Y $\Leftrightarrow p^{-1}(V)$ es abierto de X. **Observación:** Es equivalente $K \subset Y$ cerrado $\Leftrightarrow p^{-1}(K)$ cerrado en X. Se sigue de: $p^{-1}(Y \setminus B) = X \setminus p^{-1}(B)$ para $B \subset Y$.

Observación: Si p es cociente \Rightarrow p es continua.

Proposición 71. p : $X \rightarrow Y$ sobreyectiva, continua y abierta \Rightarrow p aplicación cociente.

Demostración: Comprobemos que $\forall V \in S \Leftrightarrow p^{-1}(V) \in \tau$. (\rightarrow) Sea V abierto de Y, p continua $\Rightarrow p^{-1}(V)$ es abierto en X. (\leftarrow) $p^{-1}(V)$ es abierto en X, p abierta $\Rightarrow p(p^{-1}(V))$ es abierto en Y y como p es sobreyectiva $\Rightarrow p(p^{-1}(V)) = V$ abierto en Y.

Definición 50 (Conjunto saturado). Sea $C \subset X$, C es **saturado** respecto a la aplicación sobreyectiva $p: X \to Y \Leftrightarrow C$ contiene cada $p^{-1}(y)$ fibra que lo corta.

$$y \in Y \text{ tal que } p^{-1}(y) \cap C \neq \emptyset \Rightarrow p^{-1}(y) \subset C$$

Así, C es saturado si es igual a la imagen inversa completa de un subconjunto de Y.

Proposición 72. Dada $p: X \to Y$ aplicación **sobreyectiva**, son equivalentes:

- 1. p es aplicación cociente.
- 2. p es **continua** y lleva **abiertos saturados** de X en **abiertos** de Y.

Demostración:

 $(1 \to 2)$ p continua, C abierto saturado de X, $V := \mathfrak{p}(C) \subset Y$ es abierto en Y $\Leftrightarrow \mathfrak{p}^{-1}(V)$ es abierto en X. $p^{-1}(V) = p^{-1}(p(C)) = C$ por ser C saturado.

 $(2 \rightarrow 1)$ Tenemos que p es continua y sobreyectiva, veamos que es abierta (así es cociente).

Sea V abierto de $Y\Rightarrow p^{-1}(V)$ abierto en X, por ser p continua. $\bigcup \ p^{-1}(y)\subset p^{-1}(V)$, $p^{-1}(V)$ es abierto saturado de $X \Rightarrow p(p^{-1}(V)) = V$ (p sobreyectiva), abierto de Y.

Definición 51 (Topología cociente inducida a p). Sea $p: X \to A$ sobreyectiva. Sea $\Omega \subset A$ abierto en $\tau_p \Leftrightarrow p^{-1}(\Omega) \in \tau$. Entonces, la **topología cociente inducida por p** se define como:

$$\tau_{\mathfrak{p}} = \{\Omega \subset A : \mathfrak{p}^{-1}(\Omega) \in \tau\}$$

Proposición 73. Sea $p: X \to Y$, $q: Y \to Z$ aplicaciones cociente \Rightarrow $q \circ p : X \to Z$ es aplicación cociente

Observación: $p: X \to Y$, $q: G \to H$ aplicaciones cociente. En general **NO** se cumple que:

- 1. Dado $A \subset X \Rightarrow p_A : A \rightarrow Y$ es cociente.
- 2. $(p,q): X \times G \rightarrow Y \times H$ sea cociente. Se necesitan condiciones de compacidad. O que p y q sean abiertas.

Proposición 74. Sea $p: X \to Y$ una aplicación cociente. Sea Z un espacio topológico, $g: X \to Z$ continua y constante sobre las fibras $p^{-1}(y)$, $y \in Y$. Entonces, g induce una aplicación continua f tal que:

$$p:X\to Y=X^*,\,g:X\to Z\Rightarrow \exists f:Y\to Z \text{ tal que } f\circ p=g$$

Demostración: Para cada $y \in Y$ definimos $f(y) = g(p^{-1}(y))$. f está bien definida porque, dados $x_1, x_2 \in p^{-1}(y) \Rightarrow g(x_1) = g(x_2)$ por ser g constante sobre la fibra.

Veamos que f es continua. Sea V abierto de $Z \Rightarrow g^{-1}(V)$ es abierto de X por ser g continua. $U = g^{-1}(V)$ es abierto en $X \Leftrightarrow p(U)$ es abierto en Y. Pero, $p(U) = p(g^{-1}(V)) = f^{-1}(V)$.

Dado $y \in p(g^{-1}(V)) = f^{-1}(V)$, es decir, para cada $y_0 \in Y$, $f(y_0) \in V \equiv g(p^{-1}(y_0)) \in V$. $y = p(\alpha), \alpha \in q^{-1}(V); q(\alpha) \in V \Rightarrow q(p^{-1}(y)) = q(p^{-1}(p(\alpha))) = q(\alpha) \in V$

Proposición 75. Sea $p: X \to Y$ **sobreyectiva** y aplicación **cociente**.

$$\{y\} \subset Y \text{ cerrado} \Leftrightarrow p^{-1}(y) \text{ es cerrado en } X$$

Demostración: (\rightarrow) $V = C_Y(\{y\})$ abierto en $Y \Rightarrow p^{-1}(V) = C_X(p^{-1}(y))$ es abierto en X(por ser p cociente) \Rightarrow p⁻¹(y) es cerrado en X.

 (\leftarrow) Dado $\Omega = C_Y(\{y\})$ es abierto en $Y \Leftrightarrow p^{-1}(\Omega) \equiv C_X(p^{-1}(y))$ es abierto de X.

Proposición 76. p : $X \rightarrow Y$ aplicación cociente, A subespacio de X **saturado** con respecto a p y $p_A : A \to p(A)$.

- 1. A **abierto** o cerrado en $X \Rightarrow q$ es aplicación **cociente**.
- 2. Si p es **abierta** o cerrada \Rightarrow q es aplicación **cociente**.

Demostración: Paso 1.

- $q^{-1}(V) = p^{-1}(V)$ si $V \subset p(A)$. Como $V \subset p(A)$ y A es saturado, $p^{-1}(V) \subset A \Rightarrow$ $\mathfrak{p}^{-1}(V) = \mathfrak{q}^{-1}(V).$
- $p(U \cap A) = p(U) \cap p(A)$ si $U \subset X$. $p(U \cap A) \subset p(U) \cap p(A)$. Para probar la inclusión inversa supongamos y = p(u) = p(a) para algún $u \in U$ y $a \in A$. Como A es saturado, $p^{-1}(p(a)) \subset A \Rightarrow u \in A$. $y = p(u) \Rightarrow u \in U \cap A$.

Paso 2. Supongamos que A es abierto o p abierta. Dado $V \subset p(A)$, supongamos que $q^{-1}(V)$ es abierto en A. Veamos que V es abierto en p(A).

Supongamos A abierto. Como $q^{-1}(V)$ abierto en A y A abierto en $X \Rightarrow q^{-1}(V)$ abierto en X. Como $q^{-1}(V) = p^{-1}(V) \Rightarrow p^{-1}(V)$ es abierto en $X \Rightarrow V$ es abierto en Y (p es cociente) \Rightarrow V abierto en p(A).

Supongamos ahora p abierta. Como $q^{-1}(V) = p^{-1}(V)$ y $q^{-1}(V)$ es abierto en A, $p^{-1}(V) = U \cap A$ para algún U abierto en X. $p(p^{-1}(V)) = V$ por ser p sobreyectiva $\Rightarrow V = p(p^{-1}(V)) = p(U \cap A)$ $= p(U) \cap p(A)$. p(U) abierto en Y (p abierta), entonces V abierto en p(A).

Paso 3. Prueba análoga para el caso de cerrado (sustituir abierto por cerrado en el paso 2).

Proposición 77. Sea $g: X \to Z$ aplicación continua y sobrevectiva. Sea X^* partición de X: $X^* = \{q^{-1}(z) : z \in Z\} \subset X$. Sea $p : X \to X^*$ la proyección canónica de X a X^* . **Entonces:**

- 1. Z es $T_2 \Rightarrow (X^*, \tau^*)$ es T_2 .
- 2. g induce una aplicación **continua** y **biyectiva** $f: X^* \to Z$. f es homeomorfismo ⇔ g es aplicación cociente.

Observación: Sea $p: X \to Y$, p aplicación cociente. Sea $f: (Y, \tau_p) \to (Z, S)$, ¿induce un homeomorfismo?

Tenemos que ver si para $W \subset Z$ abierto, $f^{-1}(W) = V$ es abierto en Y, para ello ver si $p^{-1}(V)$ es abierto en X.

1.18.2. Ejemplos

Ejemplo 13. **Circunferencia unidad** (Pegar extremos de un intervalo).

Llevamos
$$I = [0, 1]$$
 sobre $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ mediante: $f : I \to \mathbb{S}^1$; $t \to e^{2\pi i t} = (\cos(2\pi t), \sin(2\pi t))$.

Definimos una relación de equivalencia en I identificando los puntos en los que f toma el mismo valor: $tRt' \Leftrightarrow f(t) = f(t')$. Esta relación nos da, para cada $t \notin \{0,1\}$, $R(t) = \{t\}$ y $R(0) = R(1) = \{0, 1\}$. Al pasar al cociente, \tilde{f} es biyectiva.

f también es continua, abierta porque cualquier abierto saturado A que contega a un extremo ha de contener a los intervalos $[0, \epsilon)$ y $(1 - \delta, 1]$ para ciertos $\delta, \epsilon > 0$. Esto garantiza que f(A) contiene un arco abierto que contiene a f(0) = (1,0). Por ser **continua y abierta**, la biyección f es un homeomorfismo.

Ejemplo 14. Cilindro (identificando punto a punto los lados verticales de un cuadrado).

$$f: I \times I \rightarrow I \times \mathbb{S}^1; (s,t) \rightarrow (s,e^{2\pi it}) = (s,cos(2\pi t),sen(2\pi t))$$

Definimos la relación de equivalencia en el cuadrado: $(s,t)R(s',t') \Leftrightarrow f(s,t) = f(s',t')$.

Para cada (s,t) tal que 0 < t < 1, $R(s,t) = \{(s,t)\}; \forall s \in I \ R(s,0) = R(s,1) = \{(s,0),(s,1)\}.$ Al pasar al cociente, f es biyectiva. f es continua y abierta, ya que cualquier abierto $A \subset I \times I$ que sea saturado y contenga a (s,0) contiene entornos de (s,0) y (s,1) cuya imagen conjunta contiene un entorno de (s, 1, 0). Esto garantiza que f(A) es entorno de f(s,0) = f(s,1) = (s,1,0). Por ser continua y abierta, la biyección \tilde{f} es un homeomorfismo.

Ejemplo 15. Toro topológico (identificando punto a punto tanto los lados verticales y horizontales de un cuadrado).

$$f: I \times I \to \mathbb{S}^1 \times \mathbb{S}^1; (s,t) \to (e^{2\pi i s}, e^{2\pi i t})$$

Definimos la relación de equivalencia: $(s,t)R(s',t')\Leftrightarrow f(s,t)=f(s',t')$. Las clases son:

- $R(s,t) = \{(s,t)\}, \forall t, s \in (0,1),$
- $R(0,t) = R(1,t) = \{(0,t), (1,t)\} \forall t \in (0,1),$
- $R(s,0) = R(s,1) = \{(s,0),(s,1)\} \forall s \in (0,1),$
- R(0,0) = R(0,1) = R(1,0) = R(1,1)

Al pasar al cociente, \tilde{f} es biyectiva. \tilde{f} es continua, abierta $\Rightarrow \tilde{f}$ es un homeomorfismo.

Otra forma: $f: I \times I \to \mathbb{R}^3$; $(s,t) \rightarrow ((1+\frac{1}{2}\cos(2\pi t))\cos(2\pi s), (1+\frac{1}{2}\cos(2\pi t))\sin(2\pi s), \frac{1}{2}\sin(2\pi t))$

Ejemplo 16. **Banda de Möebius**. Consideremos $X = [0, 1] \times [0, 1] \subset \mathbb{R}^2$. $X^* = \{ \{(x,y)\} : x \in (0,1), y \in (0,1) \} \cup \{ \{(0,y), (1,1-y)\} : y \in [0,1] \}$

Definamos $f: X^* \to S$, donde $S = \{p \in X^* : p = [(x, \frac{1}{2})], 0 \leqslant x \leqslant 1\} \cong \mathbb{S}^1$.

f está bien definida: $[(0,y)] = [(1,1-y)] \xrightarrow{f} [(0,\frac{1}{2})] = [(1,\frac{1}{2})],$

 $f^{-1}(\{[(x,\tfrac{1}{2})]:|x-x_0|<\varepsilon\})=(x_0-\varepsilon,x_0+\varepsilon)\times[0,1] \text{ es abierto en } [0,1]\times[0,1].$

 $f^{-1}(\{[(x,\frac{1}{2})]:|x|<\varepsilon,|1-x|<\varepsilon\})=[0,)\times[0,1]\cup(1-,1]\times[0,1]$ es abierto en $[0,1]\times[0,1]$ por ser unión de abiertos.

2. Bloque II: Compacidad y conexión

Compacidad 2.1.

2.1.1. Cubrimientos y recubrimientos de espacios topológicos

Definición 52 (Recubrimiento, subrecubrimiento y cubrimiento). (X, τ) espacio topológico, $A = \{A_i\}_{i \in I}$ familia de subconjuntos de X, Y un subespacio de X e I conjunto de índices arbitrario.

- A es un recubrimiento de $X \Leftrightarrow X = \bigcup_{i \in I} A_i$.
- A es un recubrimiento abierto si cada $A_i \in A$ es abierto.
- A es un subrecubrimiento de Y \Leftrightarrow Y $\subset \bigcup_{i \in I} A_i = X$.
- A es un cubrimiento de Y \Leftrightarrow Y $\subset \bigcup_{i \in I} A_i \subset X$.

Observación: Sea $A' \subset A$.

- A' es un subrecubrimiento de $A \Leftrightarrow A'$ es recubrimiento de X, $X = \bigcup_{i \in I} A'_i$.
- lacksquare A' es un subrecubrimiento de $A\Leftrightarrow A'$ es cubrimiento de $Y,Y\subset\bigcup_iA'_i\subset X.$

Proposición 78. Sea (X, τ) espacio topológico 2AN.

- 1. Todo recubrimiento abierto de X tiene un subrecubrimiento numerable.
- 2. Existe $D \subset X$ **denso** ($\overline{D} = X$) y numerable.

Demostración:

(1) Sea $\beta = \{B_n\}_{n \in \mathbb{N}}$ base numerable de τ . Sea $A = \{U_\lambda\}_{\lambda \in \Lambda}$ un recubrimiento abierto de X. Sea $n \in \mathbb{N}$, $\exists \alpha = \alpha(n)$ tal que $B_n \subset U_{\alpha(n)}$ por ser $U_{\alpha(n)} = \bigcup_{n \in \mathbb{N}} B_n$ abierto y β base.

$$\begin{split} A' &= \{U_{\alpha(n)}: n \in \mathbb{N}\} \subset A, |A'| \leqslant \aleph_0. \\ X &= \bigcup_{n \in \mathbb{N}} B_n \subset \bigcup_{n \in \mathbb{N}} U_{\alpha(n)} \subset X \Rightarrow X = \bigcup_{n \in \mathbb{N}} U_{\alpha(n)} = \bigcup_{u \in A'} U. \end{split}$$

$$(2) \; \text{Sea} \; \beta = \{B_n\}_{n \in \mathbb{N}}, \, B_n \neq \emptyset \Rightarrow \exists x_n \in B_n, \, D = \{x_n : n \in \mathbb{N}\} \subset X.$$

Sea $x \in X$. Sea V entorno de $x \Rightarrow \exists n$ tal que $x \in B_n \subset V$ (por definición de entorno, $x \in B_n \subset U \subset V$ donde U es un abierto en X). Entonces, $x_n \in B_n \cap D \subset V \cap D \Rightarrow$ $V \cap D = \emptyset$.

Espacio topológico compacto

Definición 53 (Espacio topológico compacto). (X, τ) espacio topológico se dice **compacto** si todo recubrimiento abierto de X tiene un subrecubrimiento finito. Un **subconjunto** $E \subset X$ es compacto \Leftrightarrow E con la topología de subespacio es compacto.

Proposición 79. $f: X \to Y$ continua, X compacto $\Rightarrow f(X)$ compacto.

Demostración: Sea $\zeta = \{W_{\lambda}\}_{{\lambda} \in \Lambda}$ cubrimiento abierto de f(X). Sea $A = \{f^{-1}(W_{\lambda})\}_{{\lambda} \in \Lambda}$ recubrimiento por abiertos de X. Sea $A = \{f^{-1}(W_{\lambda_1}), ..., f^{-1}(W_{\lambda_n})\}$ subrecubrimiento de A. Sea $\zeta' = \{W_{\lambda_1}, ..., W_{\lambda_n}\} \subset \zeta$.

$$\begin{split} &f(X)\subset\bigcup_{j=1}^nW_{\lambda_j}. \text{ En efecto, }y=f(x)\in f(X), \text{para }x\in X. \text{ Entonces, como }X=\bigcup_{j=1}^nf(W_{\lambda_j})\Rightarrow\\ &\exists j_0\in\{1,...,n\} \text{ tal que }x\in f^{-1}(W_{\lambda_{j_0}})\Rightarrow y=f(x)\in W_{\lambda_{j_0}}. \end{split}$$

Proposición 80. Sea (X,τ) espacio topológico $T_2,Y\subset X,Y$ compacto, $x_0\notin Y\Rightarrow \exists U,V$ abiertos en X tales que $x_0 \in U$, $Y \subset V$, $U \cap V = \emptyset$.

Demostración: Sea $y \in Y$. Como $x_0 \notin Y$, entonces $y \neq x_0$. Como X es T_2 , $\exists U_{x_0,y} \in \beta_{x_0}$ abierto, $V_y \in \beta_y$ abierto tal que $U_{x_0,y} \cap V_y = \emptyset$.

Sea $A = \{V_y \cap Y : y \in Y\}$. A es un recubrimiento abierto de Y. Y es compacto, $\exists y_1, ..., y_n \in Y$ tales que $A' = \{V_{y_1} \cap Y, ..., V_{y_n} \cap Y\}$ es un recubrimiento de Y.

$$U=U_{x_0,y}\cap...\cap U_{x_0,y_n} \text{ abierto, } \bigcup_{j=1}^n V_{y_j}\cap Y=Y\subset V=\bigcup_{j=1}^n V_{y_j} \text{ abierto finito.}$$

$$U \cap V \subset \bigcup_{j=1}^n U \cap V_{y_j} = \emptyset$$
, porque cada $U \cap V_{y_j} = \emptyset$.

Proposición 81. X compacto, $K \subset X$, K cerrado $\Rightarrow K$ compacto.

Demostración: Sea $\Omega = X \setminus K$ abierto de X. Sea $\zeta = \{U_{\lambda}\}_{{\lambda} \in \Lambda}$ un cubr. abierto de K. Sea $A=\{\Omega\}\cup\zeta \text{ un recubr. abierto de X. Sea }A'=\{\Omega\}\cup\{U_{\lambda_1},...,U_{\lambda_n}\}\subset A \text{ subrecubr. abierto }A$ $\text{de }X\Rightarrow \zeta'=\{U_{\lambda_1},...,U_{\lambda_n}\}\text{ satisface que }K\subset \bigcup_{j=1}^n U_{\lambda_j}.$

Proposición 82. (X, τ) T_2 , $Y \subset X$, Y compacto $\Rightarrow Y$ es cerrado.

Demostración: Sea $\Omega = C_X Y = X \setminus Y$. Sea $x_0 \in \Omega$. Veamos que $x_0 \in Int(\Omega)$. $\exists U, V$ abiertos en X tales que $x_0 \in U$, $V_0 \supset Y$, $U \cap V = \emptyset$. Luego $U \subset \Omega = C_XY$, $x_0 \in U \Rightarrow x_0 \in Int(\Omega)$. **Proposición** 83. f : $X \rightarrow Y$ continua y biyectiva, X compacto, $Y T_2 \Rightarrow f$ homeomorfismo.

Demostración: $f(X) \subset Y$ compacto $\Rightarrow Y = f(X)$ es compacto $Y = T_2$. Sea $X = T_2$ cerrado de $X = T_2$ compacto \Rightarrow K es compacto. $\tilde{f} = f|_K : K \to Y$ continua $\tilde{f}(K) = f(K)$ compacto, $f(K) \subset Y$ es $T_2 \Rightarrow f(K)$ es cerrado.

Proposición 84. (Conjunto compacto). (X, τ) espacio topológico, $Y \subset X$. Son equivalentes:

- 1. Y es compacto.
- 2. ∀ cubrimiento de Y por abiertos de X, tiene un subrecubrimiento finito.

$$Y \subset \bigcup_{\lambda \in \Lambda} U_{\lambda} \Rightarrow Y \subset \bigcup_{j=1}^n U_{\lambda_j}.$$

Demostración:

 $(1) \rightarrow (2)$ Sea $\zeta = \{U_{\lambda}\}_{{\lambda} \in \Lambda}$ un subrecubrimiento de Y por abiertos de x. Sea $A = \{U_{\lambda} \cap Y\}$ un recubrimiento de Y por abiertos Y. $\exists A' = \{U_{\lambda_1} \cap Y, ..., U_{\lambda_n} \cap Y\} \subset A$ subrecubrimiento

de A.
$$Y = \bigcup_{j=1}^n U_{\lambda_j} \cap Y \subset \bigcup_{j=1}^n U_{\lambda_j}$$
. Sea $\zeta' = \{U_{\lambda_1}, ..., U_{\lambda_n}\} \subset \zeta \Rightarrow \zeta'$ es un subrecubr. de ζ .

 $(2) \to (1)$ Sea $A = \{\Omega_{\lambda}\}_{{\lambda} \in {\Lambda}}$, Ω_{λ} abierto en Y. Para cada ${\lambda} \in {\Lambda}$, $\exists U_{\lambda} \in {\tau}$ tal que $\Omega_{\lambda} = U \cap Y$. Sea $\zeta = \{U_{\lambda} : \lambda \in \Lambda\}$. $Y \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$, ζ es un cubrimiento abierto de Y.

Sea
$$\zeta' = \{U_{\lambda_1},...,U_{\lambda_n}\} \subset \zeta$$
 subrecubrimiento de ζ .

Sea
$$\zeta' = \{U_{\lambda_1},...,U_{\lambda_n}\} \subset \zeta$$
 subrecubrimiento de ζ .
Luego $Y \subset \bigcup_{j=1}^n U_{\lambda_j}, Y \subset (\bigcup_{j=1}^n U_{\lambda_j}) \cap Y = \bigcup_{j=1}^n \Omega_{\lambda_j} \subset Y \Rightarrow Y = \bigcup_{j=1}^n \Omega_{\lambda_j}.$

Entonces $A' = {\Omega_{\lambda_1}, ..., \Omega_{\lambda_n}} \subset A$ es un subrecubrimiento abierto de Y.

Proposición 85. Un espacio topológico es **compacto** ⇔

- Toda familia de cerrados con intersección vacía tiene una subfamilia finita con intersección vacía.
- Toda familia de cerrados $\{E_{\lambda}\}_{{\lambda}\in{\Lambda}}$ que tiene una subfamilia finita $\{E_i\}_{i=1}^n$, $\bigcap_{i=1}^n E_i \neq \emptyset \Rightarrow \bigcap_{\lambda \in \Lambda} E_\lambda \neq \emptyset.$

Corolario. Si X es un espacio topológico compacto y tenemos una sucesión decreciente de cerrados no vacíos de X,

$$F_1 \supset F_2 \supset ... \supset F_n \supset ... \Rightarrow \bigcap_{j \in \mathbb{N}} F_j \neq \emptyset$$

Producto de espacios compactos

Proposición 86. Lema del tubo. Sea X e Y espacios topológicos, Y compacto y $x_0 \in X$. Para cada abierto N de $X \times Y$ tal que $\{x_0\} \times Y \subset N$, $\exists U_{x_0}$ entorno abierto de x_0 en Xtal que $U_{x_0} \times Y \subset N$.

Demostración: Sea N abierto de $X \times Y$ tal que $x_0 \times Y \subset N$. Para cada $y \in Y$ se tiene que $(x_0, y) \in \mathbb{N} = \operatorname{Int}(\mathbb{N})$. Entonces existe $W_y \times V_y$ entorno abierto de (x_0, y) , $W_y \times V_y \subset \mathbb{N}$.

 $\{x_0 \times V_y : y \in Y\}$ es un cubrimiento de $x_0 \times Y$. Pero como $x_0 \times Y$ es compacto, existen $y_1,...,y_n \in Y$ tales que $\{x_0 \times V_{y_1},...,x_0 \times V_{y_n}\}$ es un cubrimiento finito de $x_0 \times Y$.

 $U_{x_0}:=W_{y_1}\cap...\cap W_{y_n}$ entorno abierto de x_0 . Además $x_0\times Y\subset U_{x_0}\times Y=0$ $\left(\bigcap_{j=1}^{n}W_{j}\right)\subseteq\bigcap_{j=1}^{n}W_{y_{j}}\times\left(\bigcap_{j=1}^{n}V_{y_{j}}\right)\subset\bigcup_{j=1}^{n}W_{y_{j}}\times V_{y_{j}},W_{y_{j}}\times V_{y_{j}}\subset N.$

Proposición 87. Sean $(X_1, \tau_1), ..., (X_n, \tau_n)$ espacios topológicos **compactos** \Rightarrow $(X_1 \times ... \times X_n, \tau_1 \times ... \times \tau_n)$ es un espacio topológico **compacto**.

Demostración: Lo demostramos para n = 2, por inducción se generaliza. $(X_1, \tau_1) = (X, \tau_X), (X_2, \tau_2) = (Y, \tau_Y).$

Sea $F = {\Omega_{\lambda}}_{\lambda \in \Lambda}$ recubrimiento abierto de $X \times Y$. Sea $x_0 \in X$, $F_{x_0} = {\Omega_{\lambda} \cap (x_0 \times Y)}_{\lambda \in \Lambda}$. $\Omega_{\lambda,x_0} := \Omega_{\lambda} \cap (x_0 \times Y).$

Como $x_0 \times Y$ es compacto, entonces existen $\{\tilde{\Omega}_{\lambda_i,x_0}\}_{j\in J_{x_0}}$ es un cubrimiento abierto de $x_0 \times Y. \ N_{x_0} = \bigcap_{j \in J_{x_0}}^{\smile} x_0 \times Y \ \text{por el Lema del tubo,} \ \exists U_{x_0} \ \text{entorno abierto de} \ x_0 \ \text{en} \ X \ \text{tal que}$ $x_0\times Y\subset U_{x_0}\times Y\subset N_{x_0}.$

Sea $G = \{U_{x_0} : x_0 \in X\}$ recubrimiento abierto de X. Como X es compacto, tiene un subrecubrimiento finito $X = \bigcup_{1}^{m} U_{x_p}$.

$$\begin{split} X\times Y &= (\bigcup_{p=1}^m U_{x_p})\times Y = \bigcup_{p=1}^m (U_{x_p}\times Y) \subset \bigcup_{p=1}^m N_{x_p} = \bigcup_{p=1}^m (\bigcap_{j\in J_{x_p}} \tilde{\Omega}_{\lambda_j}) \subset \bigcup_{p=1}^m (\bigcap_{j\in J_{x_p}} \Omega_{\lambda_j}) \\ &\subset \bigcup_{p=1}^m \bigcup_{j\in J_{x_p}} \Omega_{\lambda_j}. \end{split}$$

Proposición 88. Teorema de Tychonoff. Si los espacios topológicos X_{λ} , $\lambda \in \Lambda$ son todos compactos, entonces el espacio topológico producto $X=\prod_{\lambda\in\Lambda}X_\lambda$ es también compacto.

2.1.4. Subconjuntos compactos en \mathbb{R}^n y en espacios métricos

Proposición 89. $E \subset \mathbb{R}^n$ es subconjunto compacto en $\mathbb{R}^n \Leftrightarrow$

- 1. $\forall \{x_j\}_{j=1}^{\infty}, x_j \in E \ \forall j$, tiene una **subsucesión que converge** a algún **punto de E**.
- 2. E es **cerrado** y **acotado** (existe alguna bola que lo contiene).
- 3. Todo recubrimiento abierto de E tiene un subrecubrimiento finito.

$$\forall \, \{U_{\lambda}\}_{\lambda \in \Lambda} \text{ familia de abiertos de } \mathbb{R}^n \text{ tal que } E \subset \bigcup_{\lambda \in \Lambda} U_{\lambda} \Rightarrow \exists \text{ conjunto finito de}$$

$$\text{indices tal que } E \subset \bigcup_{i=1}^n U_i$$

Demostración: Compacto ⇔ Cerrado y acotado.

 $(\rightarrow) X = \mathbb{R}^2$ es T_2 , E compacto, \Rightarrow E es cerrado. Sea $\rho(\tilde{x}, \tilde{y}) = \max\{|x_1 - y_1|, ..., |x_n - y_n|\}$. $\tilde{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, $\tilde{y} = (y_1, ..., y_n) \in \mathbb{R}^n$. $F = \{B(\tilde{0}, n) : n \in \mathbb{N}\}$. F es un cubrimiento de E, $\exists n_0 \in \mathbb{N}$ tal que $E \subset B(\tilde{0}, n_0) \Rightarrow E$ es acotado.

 (\leftarrow) Como E es acotado $\exists m_0$ tal que E \subset B($\tilde{0}$, m_0). Sea $\tilde{\mathfrak{a}}_0 \in \mathsf{E}$, $\rho(\tilde{\mathfrak{x}}, \tilde{\mathfrak{0}}) \leqslant \rho(\tilde{\mathfrak{x}}, \tilde{\mathfrak{a}}_0) + \rho(\mathfrak{a}_0, \tilde{\mathfrak{0}}) \leqslant \mathsf{N} + r = \lambda$. $\mathsf{E} = [-\lambda, \lambda]^n$, entonces, E es compacto. E es cerrado ⇒ compacto. El producto finito de espacios compactos es compacto.

Proposición 90. Todo conjunto compacto no vacío de R tiene máximo y mínimo.

$$\emptyset \neq E \subset \mathbb{R}$$
 y E compacto $\Rightarrow \exists m, M \in E$ tal que $\forall x \in E, m \leq x \leq M$

Proposición 91. Sea $f: K \subset \mathbb{R}^n \to \mathbb{R}^m$ continua y $K \subset \mathbb{R}^n$ compacto.

- La imagen continua de un compacto es compacto.
- f definida en K está acotada, es decir, $\sup_{x \in K} ||f(x)|| < \infty$.
- Una función f en K compacto alcanza en K su máximo y su mínimo, es decir, $\exists a, b \in K \text{ tales que } \forall x \in K, f(a) \leq f(x) \leq f(b).$

Definición 54 (Distancia de x a A, diámetro). (X, d) espacio métrico, $A \subset X$, $A \neq \emptyset$, $x_0 \in X$.

- **Distancia** de x_0 a A: $d(x_0, A) = \inf\{d(x_0, a) : a \in A\}$.
- **Diámetro**: $dia(A) = \sup\{d(a_1, a_2) : a_1, a_2 \in A\}$.

Definición 55 (Número de Lebesgue de un recubrimiento). (X, d) un espacio métrico, A un recubrimiento abierto de X. Para X compacto $\exists \delta > 0$ tal que para cada subconjunto $B \subset X$ con $dia(B) < \delta \exists$ un elemento del recubrimiento, $A \in A$ tal que $B \subset A$. δ es el número de Lebesgue del recubrimiento A.

Demostración: (del Lema del número de Lebesgue). Sea $A = \{A_{\lambda}\}_{{\lambda} \in \Lambda}$. Si $X \in A$, queda demostrado. Veamos para $X \notin A$. Como X es compacto, $X = A_1 \cup ... \cup A_n$ con $A_i \in A$. $C_i = X \setminus A_i$ cerrados.

Sea
$$f: X \to \mathbb{R}$$
; $x \to \frac{1}{n} \sum_{i=1}^{n} d(x, C_i)$, $f(x) \geqslant 0 \ \forall x \in X$.

Sea $B \subset X$, $diam(B) < \delta$. Sea $x_0 \in B \Rightarrow B \subset B_d(x_0, \delta)$. $max\{d(x_0, C_1), ..., d(x_0, C_n)\} > 0$ $\Rightarrow x_0 \in A_n$.

Veamos que
$$B_d(x_0; \delta) \subset A_m$$
. $\delta \leqslant f(x_0) = \frac{1}{n} \sum_{i=1}^n d(x_0, C_i) \leqslant d(x_0, C_m) \Rightarrow d(x_0, y) < \delta \leqslant d(x_0, C_m)$. $y \notin C_m$ porque debe darse que $\delta > 0$ y $d(x_0, y) > 0$.

Propiedades:

- $f : x \in X \to d(x, A) \in \mathbb{R}$ es una aplicación continua.
- Sea f tal que $\forall x \in X$, $f(x) > 0 \Rightarrow \exists \delta > 0$ tal que $\delta = \max\{f(x) : x \in X\}$ y $\delta = \min\{f(x) : x \in X\}.$

Definición 56 (Función uniformemente continua). Sea $f:(X,d_X)\to (Y,d_Y)$ función entre espacios métricos. f es uniformemente continua \Leftrightarrow

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \text{tal que } d_x(x_0, x_1) < \delta \Rightarrow d_Y(f(x_0), f(x_1)) < \epsilon$$

Proposición 92. (**Teorema de la continuidad uniforme**) $f: X \to Y$ continua entre espacios métricos, X es compacto \Rightarrow f es uniformemente continua.

 $\textbf{Demostración:} \, \text{Sea} \, \, \varepsilon > 0. \, \, \text{Consideramos} \, B_y = \{B_{d_y}(y, \tfrac{\varepsilon}{2}) : y \in Y\}. \, \text{Sea} \, \, A = \{f^{-1}(B_y)y \in Y\}$ recubrimiento abierto. Tenemos que, por ser f continua en X, $\exists \delta > 0$ tal que $\forall B \subset X$ $dia(B) < \delta$. $\exists y \in Y \text{ tal que } B \subset f^{-1}(B_u)$.

Sea
$$B = \{x_0, x_1\}$$
 tal que $dia(B) = d(x_0, x_1) < \delta \Rightarrow \exists y \in Y \text{ con } B \subset f^{-1}(B_y) \Rightarrow f(\tilde{B}) \subset B_y$. $d_Y(f(x_0), y) < \frac{\varepsilon}{2}, d_Y(f(x_0), y) < \frac{\varepsilon}{2} \Rightarrow d_Y(f(x_0), f(x_1)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Definición 57 (Punto aislado). $x_0 \in X$ **aislado** $\Leftrightarrow \{x_0\}$ es abierto.

Proposición 93. X es T_2 y $x_0 \in X$ es un punto aislado, $U \subset X$, $U \neq \emptyset \Rightarrow \exists V \subset U$ abierto tal que $x_0 \notin V$.

Proposición 94. X compacto y T_2 , si X no tiene puntos aislados \Rightarrow X no es numerable.

2.1.5. Compactos para la topología del orden

Proposición 95. Sea (X, \leq) totalmente ordenado con la topología del orden. Todo conjunto compacto no vacío de X tiene máximo y mínimo.

Proposición 96. Sea X un conjunto simplemente ordenado que verifica la propiedad de mínima cota superior. Entonces cada intervalo cerrado [a, b] es compacto para la topología del orden.

Proposición 97. Teorema de los valores extremos. Sea $f: X \to Y$ una aplicación continua, Y conjunto ordenado con la topología asociada al orden. Entonces, si X es compacto, existen puntos c,d en X tales que:

$$m = f(c) \leqslant f(x) \leqslant f(d) = M$$

Demostración: $A = f(X) \subset Y$, A es compacto.

- 1. A no tiene elemento maximal. Sea $A=\{(-\infty,\alpha):\alpha\in A\}, A\subset\bigcup_{\alpha\in A}(-\infty,\alpha)\Rightarrow$ $A \subset (-\infty, a_1) \cup ... \cup (-\infty, a_n) \Rightarrow \tilde{a} = \max\{a_1, ..., a_n\} \Rightarrow A \subset (-\infty, \tilde{a}) \ \tilde{a} = f(d) = M$ para algún $d \in X$. ¡Contradicción!
- 2. Si A no tiene elemento minimal. Sea $A=\{(\alpha,\infty):\alpha\in A\}\Rightarrow A\subset\bigcup_{\alpha\in A}(\alpha,\infty)\Rightarrow$ $A \subset (a_0, \infty) \cup ... \cup (a_n, \infty)$. $\tilde{a} \in A$, $\tilde{a} = min\{a_1, ..., a_n\} = f(c) = m$ para algún $d \in X$. Entonces, $A \subset (\tilde{a}, \infty) \Rightarrow m = f(c) \leqslant f(x)x \in X$.

2.1.6. Compactificación por un punto

Proposición 98. Un espacio topológico X es homeomorfo a un subespacio abierto de un espacio compacto y $T_2 \Leftrightarrow X$ es localmente compacto y T_2 .

Definición 58 (Localmente compacto). Sea X espacio topológico. Sea $x_0 \in X$. Diremos que X es **localmente compacto** en x_0 si existe $K \subset X$ compacto que contiene a un entorno de x_0 . **X es localmente compacto** si $\forall x_0 \in X$, X es localmente compacto en x_0 .

Proposición 99. Son equivalentes:

- 1. X localmente compacto y T_2 .
- 2. $\exists \tilde{X}$ espacio topológico tal que X es un subespacio topológico de \tilde{X} , $|\tilde{X} \setminus X| = 1$ y \tilde{X} es compacto y T_2 .

Además, si X es otro espacio que satisface el segundo punto, entonces existe un homeomorfismo $\varphi: \tilde{X} \to \hat{X}$ tal que $\varphi|_X = id_X$.

2.2. Conexión

Sea (X, τ) espacio topológico.

Definición 59 (Espacio topológico conexo). X es conexo \Leftrightarrow X no es unión de abiertos propios disjuntos.

$$\nexists$$
 A, B \in τ , A, B \neq \emptyset , X tales que X = A \cup B, A \cap B = \emptyset

Definición 60 (Subconjunto conexo). A \subset X es **conexo** \Leftrightarrow A con la topología de subespacio es conexo.

Proposición 100. Son equivalentes:

- 1. X es conexo.
- 2. Los únicos subconjuntos de X que son simultáneamente abiertos y cerrados (clo**pen)** son \emptyset y X.
- 3. X **no** es unión de dos **cerrados** no vacíos **disjuntos**.
- 4. \nexists A, B ⊂ X no vacíos tales que X = A ∪ B, $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.

Demostración:

- $(1 \to 2)$ Supongamos que X es conexo. Sea A abierto y cerrado, $A \neq \emptyset$, $X \Rightarrow A \cup C_X(A) = X$ con A abierto, $C_X(A)$ cerrado; también A cerrado y $C_X(A)$ abierto \Rightarrow X no es conexo.
- $(2 \rightarrow 1)$ Supongamos que X no es conexo $\Rightarrow \exists U, V$ abiertos tales que $X = U \cup V$ abierto, $U \cap V = \emptyset$. Como U es abierto, $C_X(U) = V$ es abierto y cerrado \Rightarrow U es abierto y cerrado no trivial.
- $(1 \rightarrow 3)$ Supongamos que X es conexo y que $X = K \cup F$ para K, F cerrados no vacíos $K \cap F = \emptyset$. Por un lado, $C_X(K) = F$, $C_X(F) = K \Rightarrow X = C_X(K) \cup C_X(F)$. Por otro lado, $\emptyset = C_X(K \cup F) = C_X(K) \cap C_X(F)$. Como X es unión de dos abiertos disjuntos no vacíos, no es conexo.
- $(3 \rightarrow 1)$ Supongamos que X no es conexo $\Rightarrow \exists U, V$ abiertos tales que $X = U \cup V$ abierto, $U \cap V = \emptyset \Rightarrow \emptyset = C_X(U \cup V) = C_X(U) \cap C_X(V)$ y $X = V \cup U = C_X(U) \cup C_X(V)$. X es unión de dos cerrados no vacíos disjuntos, contradicción con 3.
- $(1 \to 4)$ Supongo que $\exists A, B \subset X$ no vacíos tales que $X = A \cup B$, $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$ $\Rightarrow \overline{A} \cap B = \emptyset$, $\overline{A} \subset A \Rightarrow A$ es cerrado.
- \Rightarrow A $\cap \overline{B} = \emptyset$, $\overline{B} \subset B \Rightarrow B$ es cerrado.
- A, B $\neq \emptyset$, A \cap B = $\overline{A} \cap B = \emptyset \Rightarrow X$ es unión de dos cerrados disjuntos $\Rightarrow X$ no es conexo.
- $(4 \rightarrow 1)$ Supongamos que X no es conexo $\Rightarrow \exists A, B$ abiertos propios disjuntos tales que $X = A \cup B$. $C_X(A) = B y C_X(B) = A$, A y B son cerrados $\Rightarrow \emptyset = A \cap B = A \cap B = A \cap B$ $\Rightarrow (\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$ para A, B subconjuntos de X no vacíos, contradicción con 4.

Lema 1. Sea (X, τ) espacio topológico $\{C, D\}$ una partición propia de X en abiertos disjuntos. Si $A \subset X$ conexo $((A, \tau_A)$ es conexo) $\Rightarrow (A \subset C)$ ó $(A \subset D)$.

Demostración: Sea $X = C \cup D$, C, D abiertos propios disjuntos. Podemos escribir $A = A \cap (C \cup D) = (A \cap C) \cup (A \cap D)$ como abiertos relativos de A. Como A es conexo, tenemos dos opciones (no simultáneas): $\{A \cap C = \emptyset \Rightarrow A \subset D = C_X(C)\}\ y \{A \cap C = A\}$ \Rightarrow A \subset C}.

Definición 61 (Separación de un conjunto). Sea $A \subset X$. Una separación de A es una partición {C, D} de A en conjuntos no vacíos tales que ninguno contiene un punto de acumulación del otro.

Lema 2. A conexo ⇔ ∄ una separación de A.

Demostración: $(1 \rightarrow 2 \equiv \neg 2 \rightarrow \neg 1)$ Supongamos que \exists una separación $\{C, D\}$ de A. $A = C \cup D$, $C' \cap D = \emptyset$, $D' \cap C = \emptyset$. $Adh_A(C) = A \cap Adh_X(C) = A \cap (C' \cup C) = A \cap (C' \cup C)$ $(A \cap C) \cup (A \cap C') = C \cup [(C \cup D) \cap C'] = C \cup (C \cap C') \cup (D \cap C') = C$. Luego C es cerrado en A. Análogo para D, D es cerrado en A. Por tanto A no es conexo.

 $(2 \rightarrow 1 \equiv \neg 1 \rightarrow \neg 2)$ Si A es no conexo, $\exists C, D$ abiertos propios y disjuntos tales que $A = C \cup D$.

- $C = C_A(D)$ cerrado en $A \Rightarrow C = Adh_X(C) \cap A = Adh_X(C) \cap (C \cup D) =$ $(\overline{C} \cap C) \cup (\overline{C} \cap D) = C \cup (\overline{C} \cap D) \Rightarrow \overline{C} \cap D \subset C \Rightarrow C' \cap D \subset C.$ También, $C' \cap D \subset D$ pero $C \cap D = \emptyset \Rightarrow C' \cap D = \emptyset$.
- $D = C_A(C)$ cerrado en $A \Rightarrow D = Adh_X(D) \cap A = Adh_X(D) \cap (C \cup D) =$ $(\mathsf{D}\cap\mathsf{D})\cup(\mathsf{D}\cap\mathsf{C})=\mathsf{D}\cup(\mathsf{D}\cap\mathsf{C})\Rightarrow\mathsf{D}\cap\mathsf{C}\subset\mathsf{D}\Rightarrow\mathsf{D}'\cap\mathsf{C}\subset\mathsf{D}.$ También, $D' \cap C \subset C$ pero $C \cap D = \emptyset \Rightarrow D' \cap C = \emptyset$.

Proposición 101. $A \subset X$ conexo tal que $\forall B \subset X$, $A \subseteq B \subset \overline{A} \Rightarrow B$ es conexo en X.

Demostración: Si $B = C \cup D$ una separación de $B \Rightarrow A \subset C$ ó $A \subset D$. $A \subset C \Rightarrow B \subset \overline{A} \subset \overline{C} \Rightarrow B \cap D \subset \overline{C} \cap D \Rightarrow D = B \cap D \Rightarrow \overline{C} \cap D \neq \emptyset.$ $A \subset D \Rightarrow B \subset \overline{A} \subset \overline{D} \Rightarrow B \cap C \subset \overline{D} \cap C \Rightarrow C = B \cap C \Rightarrow \overline{D} \cap C \neq \emptyset.$ Pero $C' \cap D = \emptyset$ y $D' \cap C = \emptyset$, luego no existe separación de $B \Rightarrow B$ es conexo.

Proposición 102. La unión de una familia de subconjuntos conexos de un espacio topológico (X, τ) que tiene un punto en común es un conexo de X.

Demostración: Sea $F = \{A_{\lambda}\}_{{\lambda} \in {\Lambda}}$ familia de conexos de X tal que $\bigcap_{{\lambda} \in {\Lambda}} A_{\lambda} \neq \emptyset$. Sea ${\mathfrak p} \in \bigcap_{{\lambda} \in {\Lambda}} A_{\lambda}$. $\lambda \in \Lambda$ Sea $A = \bigcup A_{\lambda}$. Veamos que A es un conexo en X por contradicción.

Supongamos que $\exists \{C, D\}$ separación de $A \Rightarrow A = C \cup D$. Supongamos que $p \in C$. Veamos que A = C. Sea $\lambda \in \Lambda$, veamos que $A_{\lambda} \subset C$. En efecto, A_{λ} es conexo en A (por serlo en X), $A_{\lambda} \subset C \cup D \Rightarrow \{A_{\lambda} \subset C \Rightarrow p \in A_{\lambda} \Rightarrow p \in C\}$ ó $\{A_{\lambda} \subset D, \text{ pero llegamos a un absurdo}\}$ porque $p \in A_{\lambda}$, pero $p \in C$, $p \notin D$ }.

Proposición 103.

- $A \subset X$ es conexo \Leftrightarrow para cada par de abiertos $U, V \subset X$ tales que $A \subset U \cup V$ y $U \cap V \cap A = \emptyset \Rightarrow A \subset U \text{ y } A \cap V = \emptyset \text{ o bien } A \subset V \text{ y } A \cap U = \emptyset.$
- $A \subset X$ es conexo \Leftrightarrow para cada par de cerrados $F, G \subset X$ tales que $A \subset F \cup G$ y $F \cap G \cap A = \emptyset \Rightarrow A \subset F y A \cap G = \emptyset$ o bien $A \subset G y A \cap F = \emptyset$.

Proposición 104. X conexo, $f : X \to Y$ continua $\Rightarrow f(X)$ conexo.

Demostración: Sean U, V abiertos de Y, $f(X) \subset U \cup V$, $U \cap V \cap f(X) = \emptyset$. $f^{-1}(U) \text{ y } f^{-1}(V) \text{ son abiertos, } f^{-1}(U) \cup f^{-1}(V) = X \text{ y } f^{-1}(U) \cap f^{-1}(V) = \emptyset. \text{ Como } X \text{ es}$ conexo,

- o bien $f^{-1}(U) = \emptyset \Rightarrow f(X) \subset V$ y $f(X) \cap U = \emptyset$;
- o bien $f^{-1}(V) = \emptyset \Rightarrow f(X) \subset U \text{ y } f(X) \cap V = \emptyset$.

Luego f(X) es conexo.

Demostración alternativa: Supongamos que f(X) no es conexo $\Rightarrow f(X) = C \cup D$ separación de f(X). $X = f^{-1}(C) \cup f^{-1}(D)$ separación de $X \Rightarrow X$ no es conexo.

Lema 3. X conexo, $f: X \to Y$ continua, Y con topología discreta $\Rightarrow f$ es constante. **Demostración:** f(X) conexo de $Y \Rightarrow |f(X)| = 1 \exists y_0 \in Y$ tal que $f(x) = \{y_0\}$.

Proposición 105. Sea $E \subset X$ subconjunto conexo $\Rightarrow \overline{E}$ es conexo.

Demostración: $\overline{E} \subset F \cup G$ con F y G cerrados tales que $F \cap G \cap \overline{E} = \emptyset \Rightarrow E \subset F \cup G$ y $E \cap F \cap G = \emptyset$. Como E es conexo, será

- $E \subset F y E \cap G = \emptyset \Rightarrow \overline{E} \subset F y \overline{E} \cap G = \emptyset$.
- o $E \subset G$ y $E \cap F = \emptyset \Rightarrow \overline{E} \subset G$ y $\overline{E} \cap F = \emptyset$.

Así, \overline{E} es conexo.

2.2.1. Subconjuntos conexos de la recta real

Sea (X, R) con más de un elemento, R relación de orden en X.

Definición 62 (Propiedad de la mínima cota superior). R la cumple si $\forall A \subset X$ acotado superiormente, existe una mínima cota superior.

Definición 63 (Continuo lineal). Un conjunto ordenado es un continuo lineal si X tiene la propiedad de la mínima cota superior y \forall xRy $\Rightarrow \exists$ $z \in X$, xRz, zRy.

Proposición 106. (X, <) es continuo lineal $\Rightarrow X$, sus intervalos y los rayos $(-\infty, \alpha)$ o (α, ∞) son conexos con la **topología del orden**.

Demostración: Basta demostrar para abiertos de A, porque $Int(A) \subset \overline{A} \Rightarrow \overline{A}$ es conexo. Sea el abierto Y = X, (a,b), $(-\infty, \alpha)$ ó (α, ∞) , es decir, Y **convexo**, porque dados $\alpha, b \in Y$, $(a,b) \subset Y$. Sea $Y = A \cup B$ abiertos en Y disjuntos no vacíos. Sea $a \in A$, $b \in B$ y supongamos a < b, $a, b \in Y$. Entonces, $[a, b] \subset Y \Rightarrow [a, b] = A_0 \cup B_0$, donde $A_0 = [a, b] \cap A$ $y B_0 = [a, b] \cap B.$

Como A_0 está acotado superiormente $\Rightarrow \exists$ c mínima cota superior de A_0 , $c \leqslant b$.

- $c_0 \in A_0 \Rightarrow c_0 \neq b$, $c_0 = a$ ó fa $< c_0 < b$.Como A_0 es abierto, $\exists U_{c_0} \subset A$ entorno de c_0 , $U_{c_0} = [c_0, c) \subset A_0$ para algún $c \in A_0 \Rightarrow c_0$ no es mínima cota superior. Para $a = c_0$ contradicción también.
- $c_0 \in B_0$, $c_0 = b$ o $a < c_0 < b$. $(e, c_0] \subset B_0$ por ser B_0 abierto. Como $A_0 \cap B_0 \Rightarrow$ $\forall x \in A_0, x < c \Rightarrow e$ es cota superior de A_0 .

Como no podemos ubicar c_0 , no se puede separar los abiertos de $Y \Rightarrow Y$ es conexo.

Corolario. R con la topología usual es conexa. También sus intervalos y rayos.

Proposición 107. (Teorema del valor medio). Sea $f: X \to Y$ una aplicación continua del espacio topológico conexo X al espacio Y ordenado con la topología del orden. Si $a, b \in X y y \in Y \text{ tal que } f(a) < y < f(b) \Rightarrow \exists c \in X \text{ tal que } f(c) = y.$

Conexión en productos

Proposición 108. El producto cartesiano de espacios topológicos conexos es conexo con la topología producto.

Demostración: (Idea). Construímos $Y \subset \prod_{\lambda \in \Lambda} x_{\lambda}$ tal que Y es denso y conexo. Y es conexo y $\overline{Y} = \prod_{\lambda \in \Lambda} X_{\lambda}$. Para $b = \{b_{\lambda}\}_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} X_{\lambda}$, $n \in \mathbb{N}$. $\{\lambda_1, ..., \lambda_n\} \subset \Lambda$.

$$X_{\{\lambda_1,...,\lambda_n\}} := \prod_{\lambda \in \Lambda} B_{\lambda} \text{ donde } B_{\lambda} = \left\{ \begin{array}{l} X_{\lambda} \text{ si } \lambda \in \{\lambda_1,...,\lambda_n\} \\ \{b_{\lambda}\} \text{ si } \lambda \notin \{\lambda_1,...,\lambda_n\} \end{array} \right.$$

$$b\in\bigcap_{n\in\mathbb{N}}\bigcap_{J\subset\Lambda,|J|=n}X_J\neq\emptyset.\ X_J\ conexo\Rightarrow Y=\bigcup_{n\in\mathbb{N}}\bigcup_{J\subset\Lambda,|J|=n}X_J\ conexo.$$

Para seguir la demostración, necesitamos el siguiente lema.

Lema. Sea Z, W conexos \Rightarrow Z \times W es conexo.

Demostración:
$$T_z = (Z \times \{b\}) \cup (\{z\} \times W) \Rightarrow T_z \text{ conexo.} \bigcup_{z \in Z} T_z = Z \times W, (a, b) \in \bigcap_{z \in Z} T_z$$
 para b fijo $\Rightarrow Z \times W$ es conexo.

Siguiendo la demostración de la proposición, veamos que Y es denso.

 $x=(x_{\lambda})_{\lambda\in\Lambda}\in X$. ¿ \forall entorno de x tenemos un elemento de Y? $U=\prod_{\lambda\in\Lambda}U_{\lambda},\,U_{\lambda}=X_{\lambda}$ si $\lambda \notin \{\lambda_1, ..., \lambda_n\}\{b_{\lambda}\}.$

$$y = (y_{\lambda})_{\lambda \in \Lambda} \Leftrightarrow y_{\lambda} = \begin{cases} x_{\lambda}\lambda \in \{\lambda_{1}, ..., \lambda_{n}\} \\ b_{\lambda}\lambda \notin \{\lambda_{1}, ..., \lambda_{n}\} \end{cases}$$
$$y \in X_{I} \Rightarrow y \in U \cap X_{I} \subset (U \cap Y) \neq \emptyset.$$

2.2.3. Conexión local y componentes conexas

Sea (X, τ) espacio topológico. Definimos la relación entre los puntos:

$$xRy \Leftrightarrow \exists A \text{ conexo tal que } x, y \in A \subset X$$

Veamos que R es una relación de equivalencia, es decir, que se cumplen las propiedades:

- **Reflexiva**: xRx, basta $x = y \in A$.
- **Simétrica**: $xRy \Rightarrow yRx$. Si existe A conexo tal que $x, y \in A$ se verifican ambas.
- Transitiva: xRy, $yRz \Rightarrow xRz$. x, $y \in A$ conexo, y, $z \in B$ conexo $\Rightarrow x$, $z \in A \cup B$ que es conexo por $y \in A \cap B$.

Definición 64 (Componentes conexas). Clases de equivalencia en X dadas por la relación anterior. Para cada $x \in X$ la componente conexa $C_x = R(x)$ que contiene a x es el **máximo** conexo que contiene a x.

$$X^* = X/R = \{[x] : x \in X\}, [x] \subset X \text{ componente conexa de } x \}$$

Corolario. [x] conexo de X.

Demostración: Supongamos que [x] no es conexo de X. Sea Y = [x] = $C \cup D \Rightarrow x \in C$ ó $x \in D$. Sea $y \in D$, $y \in [x] \Rightarrow \exists H \subset X$ conexo. $x, y \in H \Rightarrow$

- $H \subset C$. Pero $y \in C \Rightarrow C \cap D \neq \emptyset$. Absurdo.
- $H \subset D$. Pero $x \in C \Rightarrow C \cap D \neq \emptyset$. Absurdo.

Proposición 109. Las componentes conexas de X son subespacios disjuntos y conexos de X cuya unión es X de forma que cada subespacio conexo de X no trivial interseca a una de ellas.

Demostración: $\{C_{\lambda}\}\lambda \in \Lambda$, C_{λ} componente conexa de X. $C(x_{\lambda}) = C_{\lambda} = [x_{\lambda}]$ para un $x_{\lambda} \in X$, $X = \bigcup C_{\lambda}$ (unión disjunta). Veamos que:

- 1. C_{λ} conexo. Si no lo es $C = C_{\lambda} = U \cup V$ para U,V abiertos disjuntos propios. Dados $x_0 \in U$, $y_0 \in V \Rightarrow x_0, y_0 \in C \exists A \text{ tal que } x_0, y_0 \in A \Rightarrow \{A \subset U \Rightarrow y_0 \in U\} \text{ } \delta$ $\{A \subset V \Rightarrow x_0 \in V\}$. Absurdo.
- 2. $A \subset X$ conexo $\Rightarrow \exists \lambda \in \Lambda, A \subset C_{\lambda}$.

Corolario. Cada **componente conexa** es **cerrada** de X.

Demostración: Como C_{λ} conexo $\Rightarrow \overline{C_{\lambda}}$ conexo y $C_{\lambda} \cap \overline{C_{\lambda}} \neq \emptyset \Rightarrow \overline{C_{\lambda}} \subset C_{\lambda} \Rightarrow \overline{C_{\lambda}} = C_{\lambda}$.

Proposición 110.

- 1. $f: X \to Y$ continua \Rightarrow la imagen de cada componente conexa de X está contenida en una componente conexa de Y.
- 2. Además, si $h: X \to Y$ homeomorfismo, h induce una correspondencia 1:1 entre las componentes conexas de X y las de Y y los que se corresponden son homeomorfas. (h(C(x)) = C(h(x)))

Ejemplo 17. $h: \mathbb{R} \to \mathbb{S}^1$. ¿h homeomorfismo? Consideremos $\mathbb{R} \setminus \{0\} \to \mathbb{S}^1 \setminus \{h(0)\}$. El primero tiene dos componentes conexas y el segundo solo una, por tanto, no pueden ser homeomorfos.

Definición 65 (Espacio topológico localmente conexo). (X, τ) es **localmente conexo** si cada $x \in X$ tiene un sistema fundamental de entornos que son todos conexos.

X localmente conexo \Leftrightarrow para cada $A \in \tau$ y $x \in A \exists V_x$ entorno conexo de x tal que $V \subset A$

Proposición 111. X es localmente conexo ⇔ las componentes conexas de los abiertos son abiertas.

2.2.4. Conexión por arcos o caminos

Sea (X, τ) espacio topológico y sean $x, y \in X$ con $x \neq y$.

Definición 66 (Arco o camino). Una aplicación **continua** $\gamma:[0,1]\to X, \gamma(0)=x_0, \gamma(1)=y_0$ es un **camino** o **arco** que conecta x_0 e y_0 .

- Si $x_0 = y_0$ se dice que γ es un **lazo** en x_0 .
- **Camino opuesto**. Sea γ el camino que une x e y. El camino que conecta y con x es:

$$\sigma: [0,1] \to X$$
 tal que $\sigma(t) = \gamma(1-t) \ \forall t \in [0,1]$

Definición 67 (Espacio topológico arcoconexo). X es arcoconexo o conexo por arcos si $\forall x_0, y_0 \in X, \exists \gamma : [0, 1] \rightarrow X$ continua tal que $\gamma(0) = x_0, \gamma(1) = y_0$.

Definición 68 (Subconjunto arcoconexo). $M \subset X$ es conexo por arcos en (X, τ) si (M, τ_M) es conexo por arcos.

Proposición 112. σ camino en $(X, \tau) \Rightarrow \text{Im}(\sigma)$ es compacto y conexo en (X, τ) .

Proposición 113. X arcoconexo \Rightarrow X conexo.

Demostración: $X = C \cup D$ una separación de X. Sea $c \in C$, $d \in D$. Sea $\gamma : [0, 1] \rightarrow X$ camino que une c con d. $\gamma(0) = c$, $\gamma(1) = d$.

- [0,1] conexo $\Rightarrow \gamma([0,1])$ conexo $\Rightarrow \gamma([0,1]) \subset C \Rightarrow d \in C$, absurdo.
- [0,1] conexo $\Rightarrow \gamma([0,1])$ conexo $\Rightarrow \gamma([0,1]) \subset D \Rightarrow c \in D$, absurdo.

Proposición 114. Todo conjunto **convexo** de un R-esp. vect. topológico es **arcoconexo**.

Definición 69 (Yuxtaposición de caminos). Es el camino $\sigma \circ \gamma : [0,1] \to X$:

$$(\sigma\gamma)(t) = \begin{cases} \sigma(2t) & 0 \leqslant t \leqslant \frac{1}{2} \\ \gamma(2t-1) & \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$

Proposición 115. $f:(X,\tau)\to (Y,S)$ continua y $A\subset X$ subconjunto **conexo por cami** $nos \Rightarrow f(A) \subset Y$ subconjunto conexo por caminos.

Demostración: Sea x' = f(x), y' = f(y) para $x, y \in A$. Sea $\sigma : [0, 1] \to A$ tal que $\sigma(0) = x$, $\sigma(1) = y$ camino $\Rightarrow f \circ \sigma : [0,1] \to f(A)$ camino tal que $(f \circ \sigma)(0) = x'$, $(f \circ \sigma)(1) = y'$. Luego f(M) es conexo por caminos.

Proposición 116. $(X_1, \tau_1), ..., (X_n, \tau_n)$ espacios topológicos no vacíos. Son equivalentes:

- 1. $\prod_{i=1}^{n} (X_i, \tau_i)$ es conexo por caminos.
- 2. (X_i, τ_i) es conexo por caminos $\forall i \in \{1, ..., n\}$.

Demostración:

 (\rightarrow) Aplicando la proposición anterior con las aplicaciones proyección (continuas y sobrevectivas).

 $(\leftarrow) \, \text{Sean} \, x,y \in \textstyle \prod_{i=1}^n X_i, x = (x_1,x_2,...,x_n), y = (y_1,y_2,...,y_n). \, \text{Sea} \, g : [0,1] \to \textstyle \prod_{i=1}^n X_i$ $\text{con } g(0) = x = \sigma(x) = (\sigma_1(0), \sigma_2(0), ..., \sigma_n(0)), g(1) = y = \sigma(y) = (\sigma_1(1), \sigma_2(1), ..., \sigma_n(1))$ con σ_i camino en X_i . Así g es camino en $\prod_{i=1}^n X_i$, por lo que $\prod_{i=1}^n X_i$ es conexo por caminos.

2.2.4.1 Componentes conexas por caminos

Sea (X, τ) espacio topológico. Consideramos la relación R_{α} en X:

$$xR_{\alpha}y \Leftrightarrow \exists \gamma : [0,1] \to X$$
 continua tal que $\gamma(0) = x, \gamma(1) = y$

Veamos que es **relación de equivalencia** en X:

■ **Reflexiva**. $\exists \sigma : [0,1] \to X$ tal que $\sigma(0) = x$, $\sigma(1) = y$, el camino opuesto $\gamma : [0,1] \to X$ tal que $\gamma(0) = y$, $\gamma(1) = x$. Formando el camino yuxtapuesto obtenemos el lazo: $\alpha := \sigma \gamma : [0,1] \rightarrow X$, $\alpha(0) = \alpha(1) = x$,

$$\alpha(t) = \begin{cases} \sigma(2t) & 0 \leqslant t \leqslant \frac{1}{2} \\ \gamma(2t-1) & \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$

- Simétrica. $xRy \Rightarrow yRx$. Dado $\sigma : [0,1] \rightarrow X$ con $\sigma(0) = x$, $\sigma(1) = y$, $\exists \gamma : [0,1] \rightarrow X$ tal que $\gamma(0) = y$, $\gamma(1) = x$ definido como $\gamma(t) = \sigma(1-t)$ para $t \in [0,1]$.
- Transitiva. xRy, $yRz \Rightarrow xRz$. Formamos el camino yuxtapuesto con $\sigma : [0,1] \rightarrow X$ tal que $\sigma(0) = x$, $\sigma(1) = y$ y $\gamma : [0, 1] \rightarrow X$ tal que $\gamma(0) = y$, $\gamma(1) = z$.

Definición 70 (Arcocomponentes o componentes conexas por caminos). Tenemos que $X/R_a = \{[x]_a : x \in X\}$, definimos las **arcocomponentes de X** como $C_a(x) = [x]_a \subset X$.

Proposición 117. Las arcocomponentes de X son subespacios disjuntos y conexos de X cuya unión es X de forma que cada subespacio conexo de X no trivial interseca a una de ellas.

Proposición 118. Sea X espacio topológico.

• Cada **arcocomponente** de X está contenida en cada **componente conexa** de X.

$$\forall \alpha \in X, [x]_{\alpha} \subset [x]$$

• Si X es localmente conexo por caminos \Rightarrow las componentes conexas y las arcocomponentes de X coinciden.

Demostración: (1) Por definición la componente conexa en x, [x] es el máximo conexo que contiene a x. Por tanto, $[x]_a \subset [x]$. (2) Supongamos que $P \subset C$ con X localmente arcoconexo. Sea Q la unión de todas las arcocomponentes de X que son distintas de P y que intersecan a C, cada una está contenida necesariamente en $C \Rightarrow C = P \cup Q$. X localmente $\operatorname{arcoconexo} \Rightarrow \operatorname{cada} \operatorname{arcocomponente} \operatorname{de} X \operatorname{es} \operatorname{un} \operatorname{abierto} \operatorname{de} X \Rightarrow \operatorname{las} \operatorname{arcocomponentes} \operatorname{de} P$ y Q son abiertas en $X \Rightarrow$ forman una separación de C ¡Contradicción! C es conexo.

Proposición 119. X conexo y localmente arcoconexo \Rightarrow X es arcoconexo.

Proposición 120. En $(\mathbb{R}, \tau_{usual})$, A abierto y conexo \Rightarrow A es conexo por caminos.

Proposición 121. C componente conexa y A conexo con $A \cap C \neq \emptyset \Rightarrow A \subset C$.

Proposición 122. Si X e Y son homeomorfos ⇒ tienen el mismo número de componentes conexas (por caminos también).

Bloque III: Homotopía 3.

Sean X, Y espacios topológicos. Sean f, $g: X \to Y$ aplicaciones continuas.

Definición 71 (Homotopía). f es **homotópica** a $g \Leftrightarrow \exists F : X \times [0, 1] \to Y$ **continua** tal que:

$$F(x, 0) = f(x) y F(x, 1) = g(x)$$

F es homotopía entre f y g. Notación: $f \sim g$.

Definición 72 (Homotopía de caminos). σ , γ caminos son homotópicos si tienen el mismo punto inicial y final, x_0 , x_1 , respectivamente, y si $\exists F : [0, 1] \times [0, 1] \to X$ continua tal que:

$$F(s,0) = \sigma(s) y F(s,1) = \gamma(s) \forall s \in [0,1]$$

 $F(0,t) = x_0 y F(1,t) = x_1 \forall t \in [0,1]$

F es homotopía de caminos entre σ y γ . Notación: $\sigma \sim_p \gamma$.

Proposición 123. ~ y ~_p son relaciones de equivalencia.

Demostración: (para \sim , análogo para \sim_p)

- Reflexiva: $f \sim f$. F(x, t) = f(x) es homotopía.
- Simétrica: $f \sim g$, $g \sim f$. F homotopía entre f y $g \Rightarrow G(x,t) = F(x,1-t)$ homotopía entre g y f.
- Transitiva: $f \sim g$, $g \sim h$. F homotopía entre f y g, G homotopía entre g y h. Definimos $H: X \times [0,1] \rightarrow Y$ como:

$$H(x,t) = \begin{cases} F(x,2t) & 0 \leqslant t \leqslant \frac{1}{2} \\ G(x,2t-1) & \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$

Ejemplo 18. Sean f y g aplicaciones cualesquiera de un espacio X en \mathbb{R}^2 . f y g son homotópicas, \exists F continua F(x, t) = (1 - t)f(x) + tg(x), F es la **homotopía por rectas** (F lleva f(x)a g(x) a lo largo de la recta que los une).

Definición 73 (Producto de caminos). σ camino de x_0 a x_1 en X, γ camino de x_1 a x_2 . El producto de los caminos es $\omega := \sigma * \gamma$ tal que:

$$\omega(s) = \begin{cases} \sigma(s) & 0 \leqslant s \leqslant \frac{1}{2} \\ \gamma(s) & \frac{1}{2} \leqslant s \leqslant 1 \end{cases}$$

 ω está bien definida ($\sigma(1) = \omega(0)$), ω es continua por el lema de pegado $\Rightarrow \omega$ es camino entre x_0 y x_2 .

Lema. $\sigma_1 \sim \sigma_2$, $\gamma_1 \sim \gamma_2$ con $\sigma_1(1) = \gamma_1(0)$ y $\sigma_2(1) = \gamma_2(0) \Rightarrow \sigma_1\gamma_1 \sim \sigma_2\gamma_2$.

Esta operación induce una operación bien definida sobre las clases de homotopía de caminos: $[\sigma] * [\gamma] = [\sigma * \gamma]$. Para comprobarlo, dada F homotopía entre σ_1, σ_2 y G homotopía entre γ_1, γ_2 , tenemos:

$$H(x,t) = \begin{cases} F(2s,t) & 0 \leqslant s \leqslant \frac{1}{2} \\ G(2s-1,t) & \frac{1}{2} \leqslant s \leqslant 1 \end{cases}$$

* es asociativa, tiene neutro a la izquierda y a la derecha, e inverso.

3.1. Grupo fundamental

Definición 74 (Grupo fundamental). Sea X espacio topológico y $x_0 \in X$. El conjunto de las clases de homotopía de caminos asociadas a los lazos de x_0 con la operación * es el **grupo fundamental** de X relativo a x_0 . Notación: $\Pi_1(X, x_0) := L_{x_0/\sim}$.

Observación: Generalmente, $(\Pi_1(X, x_0), *)$ es un grupo no conmutativo.

Definición 75 (Lazo constante en x_0). $c_{x_0}(s) = x_0 \ \forall s \in X$, $[c_{x_0}] * [\sigma] = [c_{x_0}\sigma] = [\sigma]$

Demostración:

$$\begin{aligned} [c_{x_0}]*[\sigma] &= [\sigma] \Leftrightarrow \exists \ F:[0,1] \times [0,1] \to X \ \text{tal que } F(s,0) = c_{x_0}\sigma, \ F(s,1) = \sigma(s), \\ F(0,t) &= x_0, \ F(1,t) = x_0. \end{aligned}$$

$$F(s,t) = \begin{cases} x_0 & 0 \leqslant s \leqslant \frac{1-t_0}{2} \\ \sigma\left(\frac{2s-1+t_0}{1+t_0}\right) & \frac{1-t_0}{2} \leqslant s \leqslant 1 \end{cases}$$

Proposición 124. Sea $f: X \to Y$, $x_0 \in X$.

- $\text{1. } \Pi_1(X,x_0) \xrightarrow{f_*} \Pi_1(X,x_0); [\sigma] \to [f \circ \sigma]. \ [0,1] \xrightarrow{\sigma} X \xrightarrow{\tau} Y,$ f* es homomorfismo de grupos: $f_*([\sigma] * [\tau]) = f_*([\sigma]) * f_*([\tau]). [f \circ (\sigma\tau)] = [(f \circ \sigma)(f \circ \tau)]$
- 2. X conexo por caminos, $x_0, x_1 \in X$ en la misma **arcocomponente** \Rightarrow $\Pi_1(X, x_0) \cong \Pi_1(X, x_1).$
- 3. $X \cong Y$ son **homeomorfos** (f homeomorfismo) $\Rightarrow \Pi_1(X, x_0) \cong \Pi_1(Y, f(x_0))$.

Ejemplo 19. $\Pi_1(S^1, x_1) = \mathbb{Z}$ para $x_1 \in S^1$.

3.2. Equivalencia homotópica de espacios

Definición 76 (Homomorfismo inducido por h). Sea f lazo en x_0 , $h:(X,x_0)\to (Y,y_0)$ una aplicación continua. h_* es el **homomorfismo inducido por h** relativo a x_0 .

$$h_*: \Pi_1(X, x_0) \to \Pi_1(Y, y_0)$$

 $h_*([f]) = [h \circ f]$

Definición 77. Sean X, Y espacios topológicos conexos por caminos son homotópicamente **equivalentes** si \exists f, g : Y \rightarrow X tales que g \circ f \sim id_Y y f \circ g \sim id_X.

Corolario. $(f \circ g)_* = (id_X)_* \Rightarrow f_* \circ g_* = (id_X)_*$. Análogo para $g_* \circ f_* = (id_Y)_*$. Luego $\Pi_1(X, x_0) = \Pi_1(Y, y_0)$ para $x_0 \in X, y_0 \in Y$.

Resultados (Notación: $pr_1 : X \times Y \rightarrow X$, $pr_2 : X \times Y \rightarrow Y$)

• $\sigma, \gamma : [0, 1] \to X \times Y \text{ con } \sigma(0) = \gamma(0), \sigma(1) = \gamma(1),$

$$\sigma \sim \gamma \Rightarrow \text{pr}_1 \circ \sigma \sim \text{pr}_1 \circ \gamma \text{, pr}_2 \circ \sigma \sim \text{pr}_2 \circ \gamma$$

• $\sigma, \gamma : [0, 1] \to X \times Y \text{ con } \sigma(1) = \gamma(0) \text{ y } h = \sigma \gamma \Rightarrow \mathfrak{pr}_i(h) = \mathfrak{pr}_i(\sigma) \mathfrak{pr}_i(\gamma) i = 1, 2.$

Proposición 125. Sea $X \equiv X'$ homotópicamente, $x_0 \in X, x_0' \in X'$. $Y \equiv Y'$ homotópicamente, $y_0 \in Y, y_0' \in Y'$. Entonces:

$$\Pi_1(X \times Y, (x_0, y_0)) \equiv \Pi_1(X', x_0') \times \Pi_1(Y', y_0') \equiv \Pi_1(X, x_0) \times \Pi_1(Y, y_0)$$

Ejemplo 20. (Cilindro) $\Pi_1(S^1 \times \mathbb{R}, (\mathfrak{p}_0, 0)) \equiv \Pi_1(S^1, \mathfrak{p}_0) \times \Pi_1(\mathbb{R}, 0) = \mathbb{Z} \times \{c_0\} = \mathbb{Z}, \text{ por-}$ que \mathbb{R} es contractible.

3.3. Retracto de deformación fuerte

Definición 78 (Retracto de deformación fuerte). Sea A subespacio de X, A es un retracto de deformación de X si la aplicación identidad de X es homótopa a una aplicación que lleva X a A dejando los puntos de A fijos. Es decir, $\exists H: X \times [0,1] \to X$ homotopía tal que:

 $H(x,1) = x \ \forall x \in X.$ $H(a,t) = a \ \forall a \in A.$ $H(x,0) \in A \ \forall x \in X.$

Proposición 126. Si A es un retracto de deformación fuerte de X $a_1 \in A \Rightarrow$ la aplicación inclusión $i:(A,a_0)\to (X,a_0)$ induce un isomorfimo en homotopía: $\Pi_1(A,x_0)\equiv \Pi_1(X,x_0)$.

3.3.1. Espacio contractible

Definición 79 (Espacio contractible). X contractible \Leftrightarrow X homotóp. equiv. a un punto.

Proposición 127. X es contractible \Leftrightarrow la identidad en X es homotópica a una constante: $id_X \sim_p c_{x_0} \Leftrightarrow \exists \ F: X \times [0,1] \to X \ \text{continua tal que} \ F(x,0) = id_X(x) \ y \ F(x,1) = c_{x_0}(x)$ $\forall x \in X$.

Ejemplo 21. $\geq \mathbb{R}^n$ es contractible en $\mathfrak{p}_0 = (0, \mathfrak{p})$? $F: \mathbb{R}^n \times [0, 1]$ continua tal que $F(p_0, t) = (1 - t)p_0 + p_0 t$

Corolario.

- 1. Todo \mathbb{R} ev topológico es contractible.
- 2. K convexo en \mathbb{R} ev top. es contractible.

Proposición 128. (Caracterización de los espacios contractibles). X contractible $\Leftrightarrow \forall Y$ espacio topológico, f, g : Y \rightarrow X continuas \Rightarrow f \sim_* g.

Proposición 129. Todo espacio contractible es conexo por arcos.

Demostración: Sea X contractible y sean $x, y \in X$. F : $X \times I \to X$ homotopía entre la identidad y la función constante x_0 , definimos:

$$h(t) = \begin{cases} F(x,2t) & \text{si } 0 \leqslant t \leqslant \frac{1}{2} \\ F(y,2-2t) & \text{si } \frac{1}{2} \leqslant t \leqslant 1 \end{cases}$$

y f es un camino en X que conecta x e y (es aplicación bien definida y continua).

Proposición 130. Si X es contractible, las aplicaciones continuas de X a Y o de Y a X para Y cualquier espacio topológico son homotópas a una constante.

Demostración: X contractible, $c_{x_0}: X \to X$ con $c_{x_0}(x) = x_0 \ \forall x \in X$. Sea $f: X \to Y$ continua, $f=f\circ id_X\sim f\circ c_{x_0}.$ Como $f\circ c_{x_0}$ es contante, f homótopa a una constante.

Análogo para $g: Y \to X$, $g = id_X \circ g \sim c_{\chi_0} \circ g$.

Proposición 131. X es contractible \Rightarrow para cada Y, X \times Y es homotópicamente equivalente a Y.

Definición 80 (Espacio simplemente conexo). X es **simplemente conexo** si es **conexo por caminos** y $\Pi_1(X, x_0)$ es el grupo **trivial** (un elemento, el neutro) para algún $x_0 \in X$, y por tanto $\forall x_0 \in X$.

Proposición 132. Si X es simplemente conexo, dos caminos cualesquiera con los mismos puntos inicial y final son homotópicos por caminos.

Proposición 133. Todo espacio contractible es simplemente conexo. **Demostración:** $\Pi_1(X) \equiv \Pi_1([x_0]) = \{[c_{x_0}]\}$ grupo trivial.

4. **Ejercicios**

Hoja 1

H1E7. Prueba que si β es una base para una topología sobre X, entonces la topología generada por β , τ_{β} , es igual a la intersección de todas las topologías sobre X que contienen аβ.

La **topología generada por** β es aquella cuyos abiertos cumplen que

$$U \in \tau_\beta \Leftrightarrow \forall x \in U \; \exists \Omega_x \in \beta \; \text{tal que} \; x \in \Omega_x \; y \; \Omega_x \subseteq U$$

Es decir, los abiertos de τ_{β} son las uniones arbitrarias de elementos de la base. Los conjuntos $U \in \beta$ son abiertos de τ_{β} , también las uniones arbitrarias e intersecciones de abiertos de τ_{β} .

 $La \ topología \ intersección \ de \ todas \ las \ topologías \ sobre \ X \ que \ contienen \ a \ \beta, \tau_\cap = \bigcap_{\beta \subset \tau_i} \tau_i,$ es aquella cuyos abiertos son:

- 1. \emptyset , $X \in \tau_{\cap}$, porque por definición de topología, \emptyset , X está en todas las topologías que contienen a β , τ_i .
- 2. $U \in \tau_{\cap} \Leftrightarrow U \in \tau_i \ \forall i$.
- 3. Uniones arbitrarias de los abiertos que pertenecen a todas las topologías que contienen a $\beta.$ Es decir, $\bigcup_{\lambda\in\Lambda}U_\lambda\in\tau_\cap$ para los $U_\lambda\in\tau_i.$
- 4. Intersecciones finitas de abiertos que pertenecen a todas las topologías que contienen a $\beta.$ Es decir, $\bigcap\limits_{i=1}^n U_j \in \tau_\cap$ para los $U_j \in \tau_i.$

Para ver que las topologías descritas son iguales, observamos que:

- $\tau_{\beta} \subset \tau_{\cap}$. Veamos que los abiertos de τ_{β} son abiertos de τ_{\cap} . Sea $U \in \tau_{\beta}$.
 - Si $U \in \beta$. Como cada τ_i contiene a β los elementos de β son abiertos para cada τ_i . Por tanto, U es abierto para τ_{\cap} .
 - Si U es unión arbitraria de abiertos de β . Entonces, U es unión de abiertos de τ_{\cap} por el punto anterior y por definición de topología dicha unión es abierta.
 - Si U es unión arbitraria o intersección finita de abiertos de τ_{β} . Entonces U se puede escribir como unión arbitraria o intersección finita, respectivamente, de abiertos de τ_i . Por tanto, $U \in \tau_i$. En consecuencia, U es abierto para τ_{\cap} .
- $\bullet \ \tau_\cap \subset \tau_\beta. \ \beta \subset \tau_\beta. \ Luego, \tau_\beta \cap (\bigcap_{\beta \subset \tau_i} \tau_i) \subset \tau_\beta.$

H1E8. Sea τ_i , $j \in J$ una familia de topologías sobre X. Demuestra que si existe una topología que **contiene a todas las** τ_i para $j \in J$ y además es la **menos** fina de todas las que verifican esta propiedad.

Ejemplo previo:

Sea $X = \{a, b, c, d\}$. Sea $\tau_1 = \{\emptyset, X, \{a\}, \{a, b\}\}, \ \tau_2 = \{\emptyset, X, \{c\}, \{b, c\}\}.$ Tenemos que $\tau_1 \cup \tau_2 = \{\emptyset, X, \{a\}, \{a, b\}, \{c\}, \{b, c\}\}$ no es topología, porque: $\{a,b\} \cap \{b,c\} = \{b\} \notin \tau_1 \cup \tau_2 \ y \ \{a\} \cap \{c\} = \{a,c\} \notin \tau_1 \cup \tau_2.$

También, recordemos que $\tau_{discreta}$ es la topología más fina que contiene a todas las topologías sobre X. $\tau_{trivial}$ es la topología menos fina. Además, (si $\tau_1 \cup \tau_2$ fuese topología), tenemos que $\tau_{discreta} \supset \tau_1 \cup \tau_2 \supset \tau_1, \tau_2 \supset \tau_1 \cap \tau_2 \supset \tau_{trivial}$.

La topología **menos fina** que contiene a τ_1 y τ_2 es:

$$\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$$

La topología buscada debe contener a los abiertos de cada τ_i , las intersecciones finitas de abiertos de las τ_i y las uniones arbitrarias de abiertos de las τ_i . Es decir, los abiertos son de la forma:

$$\Omega \in \tau \Leftrightarrow \Omega = \bigcup_{\lambda \in \Lambda} \big(\bigcap_{j_{\lambda} \in J_{\lambda}; \, |J_{\lambda}| < \infty} U_{j_{\lambda}} \big) \text{ con } U_{j_{\lambda}} \in \bigcup_{j \in J} \tau_{j}, \, U_{j_{\lambda}} \in \tau_{j_{\lambda}}$$

Veamos que efectivamente es una topología:

- 1. $\emptyset, X \in \tau$ porque $\emptyset, X \in \tau_i \forall j \in J$, por definición de topología.
- 2. Sean A, B $\in \tau$. Veamos que A \cap B $\in \tau$. (Por inducción se extiende a intersecciones finitas).

$$\begin{split} &A \in \tau \Rightarrow A = \bigcup_{\lambda \in \Lambda_1} \bigcap_{j_{\lambda} \in J_{\lambda}; \, |J_{\lambda}| < \infty} U_{j_{\lambda}}) \\ &B \in \tau \Rightarrow B = \bigcup_{\alpha \in \Lambda_2} \bigcap_{l_{\alpha} \in L_{\alpha}; \, |L_{\alpha}| < \infty} V_{l_{\alpha}}) \\ &A \cap B = \bigcup_{\lambda \in \Lambda_1} \{ (\bigcap_{j_{\lambda} \in J_{\lambda}; \, |J_{\lambda}| < \infty} U_{j_{\lambda}}) \cap B \} = \bigcup_{\lambda \in \Lambda_1} \bigcap_{j_{\lambda} \in J_{\lambda}; \, |J_{\lambda}| < \infty} U_{j_{\lambda}} \cap B) \text{ donde} \\ &U_{j_{\lambda}} \cap B = U_{j_{\lambda}} \cap (\bigcup_{\alpha \in \Lambda_2} \bigcap_{l \in L_{\alpha}; \, |L_{\alpha}| < \infty} V_{l_{\alpha}})) = \bigcup_{\alpha \in \Lambda_2} \bigcap_{l \in L_{\alpha}; \, |L_{\alpha}| < \infty} (U_{j_{\lambda}} \cap V_{l_{\alpha}})) \end{split}$$

$$\begin{split} \text{3. } \{A_{\gamma}\}_{\gamma \in \Gamma} \in \tau \Rightarrow \bigcup_{\gamma \in \Gamma} A_{\gamma} \in \tau \text{ donde } A_{\gamma} &= \bigcup_{\lambda_{\gamma} \in \Lambda_{\gamma}} (\bigcap_{j_{\gamma} \in J_{\lambda_{\gamma}}; \, |J_{\lambda_{\gamma}}| < \infty} U_{j_{\gamma}}) \\ \bigcup_{\gamma \in \Gamma} A_{\gamma} &= \bigcup_{\gamma \in \Gamma} (\bigcup_{\lambda_{\gamma} \in \Lambda_{\gamma}} (\bigcap_{j_{\gamma} \in J_{\lambda_{\gamma}}; \, |J_{\lambda_{\gamma}}| < \infty} U_{j_{\gamma}})) \text{ donde } U_{j_{\gamma}} \in \bigcup_{j \in J} \tau_{j}. \end{split}$$

Veamos que τ es la menos fina. Tenemos que $\tau=(\bigcap_{\{\tau_j\}_{j\in J}\subset\omega_\gamma}\omega_\gamma)\subset\omega_\gamma\forall\gamma.$

Hoja 3

H3E3. Demostrar que si f y g son funciones continuas definidas de X en Y siendo Y un espacio Hausdorff, entonces $A := \{x : f(x) = g(x)\}$ es cerrado en X.

Veamos que $C_X(A)$ es abierto. Sea $x \in C_X(A)$, se verifica $f(x) \neq g(x) \Rightarrow \exists V_1, V_2$ entornos abiertos en Y de f(x), g(x), respectivamente, tales que $f(x) \in V_1$, $g(x) \in V_2$, $V_1 \cap V_2 = \emptyset$, por ser Y Hausdorff.

Sean $U_1=f^{-1}(V_1)$, $U_2=f^{-1}(V_2)$ abiertos por ser f y g continuas. Tenemos que $U_1\cap U_2$ es abierto por ser intersección finita de abiertos y $x \in (U_1 \cap U_2) \neq \emptyset$. Veamos que $(U_1 \cap U_2) \subset C_X(A)$.

Sea $y \in U_1 \cap U_2$, $f(y) \in U_1$, $g(y) \in U_2 \Rightarrow f(y) \neq g(y) \Rightarrow y \notin A$. Luego $y \in C_X(A)$.