Spectrum-based Diagnosis for Run-time Systems

Nuno Cardoso

nunopcardoso@gmail.com

Supervisor: Professor Rui Abreu

Co-Supervisor: Professor David Garlan

Introduction

Fuzzinel

NFGE

Conclusions

- Context
- Spectrum-based Fault Localization
- Candidate Generation
- Candidate Ranking

Context

 Despite the advances made in the Computer Science domain, it remains practically impossible to create faultless systems

- ▶ Research in Self-healing Systems aims at:
 - 1. Improving the systems' dependability
 - 2. Reducing human intervention

Context

Diagnostic Problem

- A diagnostic problem occurs whenever the behavior of a particular system deviates from the expected behavior
- The challenge is to find the true root causes of the abnormal behavior

•00

Spectrum-based Fault Localization

Abstraction

Component – An indivisible¹ element of the system

Transaction – A set of component activations that:

- 1. Share a common goal
- 2. The correctness of the output can be verified

¹From a diagnosis point-of-view

000

Spectrum-based Fault Localization

Spectrum

Spectrum – A pair (A, e) encoding:

 A_{ij} – Activity of component j in transaction i

e_i - Error state of transaction i (pass/fail)

i	A_{ij}			e _i
,	c_1	c_2	<i>c</i> ₃	C ₁
1	1	1	0	1
2				
3				0

Spectrum-based Fault Localization

Spectrum

Spectrum – A pair (A, e) encoding:

 A_{ij} – Activity of component j in transaction i

e_i - Error state of transaction i (pass/fail)

i	A _{ij}			۵.
,	c_1	c_2	<i>c</i> ₃	eį
1	1	1	0	1
	1	0		1
3				0

Spectrum-based Fault Localization

Spectrum

Spectrum – A pair (A, e) encoding:

 A_{ij} – Activity of component j in transaction i

e_i - Error state of transaction i (pass/fail)

000

Spectrum-based Fault Localization

Spectrum

Spectrum – A pair (A, e) encoding:

 A_{ij} – Activity of component j in transaction i

e_i - Error state of transaction i (pass/fail)

i	A _{ij}			۵.
,	c_1	c_2	<i>c</i> ₃	eį
1	1	1	0	1
2	1	0	1	1
3	1	0	0	0

Spectrum-based Fault Localization

Norkflow

- 1. Generate possible explanations for the erroneous behavior
- 2. Minimize the number of unnecessarily inspected components

•00

Diagnostic Candidate

Candidate Every failed transaction activates at least one faulty component

Minimal No smaller subset of components meets the above criterion

MHS²

Conclusion

Candidate Generation

iagnostic Candidate

lgorithm

lgorithm

lgorithm

lgorithm

xample

xample

xample

xample

•00

Diagnostic Report

Intermittent Fault A fault that is not consistently triggered when activated

Nuno Cardoso

lgorithm

Nuno Cardoso 12

000

lgorithm

For each candidate $d \in D$

000

lgorithm

Example

$$D = \left\{ \left. \{ c_1 \right\}, \{ c_2, c_3 \} \right. \right\}$$

xample

0.33

0.66 g₁

$$D = \left\{ \left. \{ c_1 \right\}, \left\{ c_2, c_3 \right\} \right. \right\}$$

 $Pr({c_1} | A, e) = 0.993$ $Pr({c_2, c_3} | A, e) = 0.007$

xample

MHS²

MHS²

Fuzzinel

NFGE

Conclusions

Motivation

- Optimizations
- Parallelization

Motivation

- At run-time, diagnosis is a time-critical task
- ▶ The candidate generation problem is NP-Hard

Goals

- ▶ Compute the same # of candidates in a shorter period of time:
 - 1. Improve the algorithm's efficiency
 - 2. Enable parallel processing

Optimizations

Optimization 1

Optimizations

Optimization 2

MHS² 00 00●000 00000

Conclusior o ooo o

Optimizations

Optimization 3

Optimizations – Benchmark

Setup

 \rightarrow A generated by a Bernoulli process with parameters M, N, and R:

	М	e_i
		1
N	$\Pr(A_{ij}=1)=R$	1
		1

Throughput Number of candidates generated per second

Optimizations – Benchmark

M, N = 10

Optimizations – Benchmark

M, N = 10

Optimizations – Benchmark

M, N = 10000

Fuzz
00
00
00
00
00

Conclusion 0 000

Optimizations – Benchmark

M, N = 10000

Fuzzine 00 0000 000

Conclusio 0 000 0

Parallelization

1ap-Reduce

Parallelization

oad Division

MHS² 00 000000 0●000

Conclusior 0 000 0

Parallelization

oad Division

Conclusion

Parallelization

oad Division

MHS² 00 000000 0●000

Conclusior o ooo o

Parallelization

oad Division

Parallelization - Benchmark

Setup

 \triangleright A generated by a Bernoulli process with parameters M, N, and R:

	М	ei
		1
N	$\Pr(A_{ij}=1)=R$	1
		1

$$E_{np} = \frac{T_1}{T_{np} \times np}$$

1HS² 0 00000 00•0

Conclusior 0 000 0

Parallelization - Benchmark

A, N = 40

Parallelization – Benchmark

M, N = 10000

Introduction

 MHS^2

Fuzzine

NFGE

Conclusions

Fuzzinel

- Motivation
- Approach
- Benchmark

Fuzzinel •o oooo ooo

Introduction

Motivation

The distinction between "healthy" and "broken" is often indistinct and fuzzy, and often there is a gradual transition between these two states; a system often does not break down recognizably but deteriorates over time.

Ghosh, D., Sharman, R., Rao, H. R., and Upadhyaya, S. (2007). Self-healing systems - survey and synthesis.

Introduction

Problem

- √ The classic pass/fail model correctly encodes functional errors
- × The pass/fail model cannot encode the symptoms associated with performance errors (e.g., slowness)

MHS-00 000000 00000 Fuzzinel 00 •000 000 NFGE 0 000 Conclusior 0 000 0

Approach

Error Encoding

$$e = \begin{cases} 1 & \longrightarrow \mathsf{Fail} \\ 0 & \longrightarrow \mathsf{Pass} \end{cases}$$

$$e = \begin{cases} 1 & \longrightarrow \mathsf{Fail} \\ 0 & \longrightarrow \mathsf{Pass} \\ \end{bmatrix} 0; 1[& \longrightarrow \mathsf{Sub-optimal performance} \end{cases}$$

- \checkmark The throughput of a data storage system (tp) must be greater 1 GB/s
- × Between 1GB/s and 2GB/s the performance is sub-optimal

$$e_{crisp}(tp) = egin{cases} 1 & ext{if } tp < 1 \ 0 & ext{if } tp \geq 1 \end{cases}$$

$$e_{ extit{fuzzy}}(tp) = egin{cases} 1 & ext{if } tp < 1 \ 0 & ext{if } tp \geq 2 \ 2 - (tp - 1) & ext{if } 1 \leq tp < 2 \end{cases}$$

Approach

Error Encoding – Example

- \checkmark The throughput of a data storage system (tp) must be greater $1~{\sf GB/s}$
- ✓ Between 1GB/s and 2GB/s the performance is sub-optimal

$$e_{crisp}(tp) = \begin{cases} 1 & \text{if } tp < 1 \\ 0 & \text{if } tp \ge 1 \end{cases}$$

$$e_{fuzzy}(tp) = \begin{cases} 1 & \text{if } tp < 1 \\ 0 & \text{if } tp \ge 2 \\ 2 - (tp - 1) & \text{if } 1 \le tp < 2 \end{cases}$$

Fuzzinel 00 00•0 000

Conclusions 0 000 0

Approach

Error Encoding – Example

Fuzzinel

Conclusions 0 000 0

Approach

Error Encoding – Example

Fuzzinel 00 00•0 000

Conclusion 0 000 0

Approach

error Encoding – Example

Fuzzinel
00
000
000
000

Approach

Error Encoding – Example

Approach

Error Diagnostic

Approach

Error Diagnostic

Benchmark

Setup

(A, e) generated using a simulator¹

Diagnostic Quality Percentage of components that did not need to be inspected for the fault to be found

¹https://github.com/SERG-Delft/sfl-simulator

Fuzzinel 00 0000 0•0

Conclusion 0 000 0

Benchmark

Average Results

Benchmark

Paired Comparison

NFGE

- - Motivation
 - Approach
 - Benchmark

NFGE

Conclusior o ooo o

Introduction

Motivation

Both, autonomic computing and self-adaptive system research agree, only the knowledge of internal state (self aware) and external situation (context aware) allows for proper adaptation.

 $\mbox{Psaier, H. and Dustdar, S. (2011)}.$ A survey on self-healing systems: Approaches and systems.

- 1. Select system variables
- 2. Pass/Fail feedback lists
- 3. Kernel Density Estimation \rightarrow Probability Density Function

$$\mathbf{\breve{g}}_{\mathbf{j}}(st) = \frac{\mathbf{pdf}_{\mathsf{pass}}(st)}{\mathbf{pdf}_{\mathsf{pass}}(st) + \mathbf{pdf}_{\mathsf{fail}}(st)}$$

Approach

Example

$$FB_{pass} = \{5, 7, 15, 20, 40\}$$

 $FB_{fail} = \{40, 44, 60\}$

$$oldsymbol{f f g_j}(st) = rac{{\sf pdf_{pass}}(st)}{{\sf pdf_{pass}}(st) + {\sf pdf_{fail}}(st)}$$

Approach

Example

$$FB_{pass} = \{5, 7, 15, 20, 40\}$$

 $FB_{fail} = \{40, 44, 60\}$

$$oldsymbol{f f g}_{f j}(st)=rac{{\sf pdf}_{\sf pass}(st)}{{\sf pdf}_{\sf pass}(st)+{\sf pdf}_{\sf fail}(st)}$$

$$FB_{pass} = \{5, 7, 15, 20, 40\}$$

$$FB_{fail} = \{40, 44, 60\}$$

$$g_{j}(st) = \frac{pdf_{pass}(st)}{pdf_{pass}(st) + pdf_{fail}(st)}$$

$$0.2 \frac{pdf_{pass}(st)}{pdf_{pass}(st)}$$

$$0.5 \frac{f_{j}(st)}{g_{j}(st)}$$

$$0.5 \frac{f_{j}(st)}{g_{j}(st)}$$

Conclusio

NFGE

State Spectrum

$$A_{ij} = \begin{cases} 1, & c_j \text{ involved in transaction } i \\ 0, & \text{otherwise} \end{cases}$$

$$A_{ij} = \begin{cases} \langle st_1, \cdots, st_k \rangle, & c_j \text{ involved in transaction } i \\ \emptyset, & \text{otherwise} \end{cases}$$

Benchmark

Setup

- 1. Random reference goodness models
- 2. Feedback generated from reference models using a Bernoulli process
- Goodness estimations generated for different # of feedback observations

Estimation Error Absolute difference of the reference and estimated goodness values

Constant estimator
$$\breve{\mathbf{g}}_{\mathbf{j}}(st) = \frac{|FB_{pass}|}{|FB_{pass}| + |FB_{fail}|}$$

Benchmark

Goodness Modeling

Introduction

MHS

Fuzzine

NFGE

Conclusions Conclusions

- Hypothesis
- Contributions
- Future Work

Hypothesis

SFL algorithms can be improved to better cope with the accuracy and latency requirements of run-time environments.

Publications

Published

▶ MHS²

- Cardoso, N. and Abreu, R. 2014. An efficient distributed algorithm for computing minimal hitting sets. In Proceedings of the 25th International Workshop on Principles of Diagnosis, DX'14. (Best Paper Award)
- Cardoso, N. and Abreu, R. 2013. MHS²: A map-reduce heuristic-driven minimal hitting set search algorithm. In Proceedings of the 2013 International Conference on Multicore Software Engineering, Performance, and Tools, MUSEPAT'13, pages 25–36.
- Cardoso, N. and Abreu, R. 2013. A distributed approach to diagnosis candidate generation. In Proceedings of the 16th Portuguese Conference on Artificial Intelligence, EPIA'13, pages 175–186.

Fuzzinel

 Cardoso, N. and Abreu, R. 2014. Enhancing reasoning approaches to diagnose functional and non-functional errors. In Proceedings of the 25th International Workshop on Principles of Diagnosis, DX'14. (Best Paper Award Nominee)

NFGE

Cardoso, N. and Abreu, R. 2013. A kernel density estimate-based approach to component goodness modeling. In Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI'13.

Publications

Jnder Review

- ► MHS²
 - Artificial Intelligence Journal
- Fuzzinel
 - ▶ European Conference on Artificial Intelligence

Software

- ▶ *MHS*²: https://github.com/npcardoso/MHS2
- Crowbar

Future Work

- ▶ Technological challenges
 - Abstration specification
 - Distributed spectra collection
- Continuous system operation
 - Observation relevance
 - Model ageing

- Error Detection
 - Automatic oracle generation
 - Oracle confidence
- NFGE
 - Relevant state variables' detection
 - Automatic feedback generation

Nuno Cardoso 50/50

Spectrum-based Diagnosis for Run-time Systems

Nuno Cardoso

 ${\tt nunopcardoso@gmail.com}$

Supervisor: Professor Rui Abreu

Co-Supervisor: Professor David Garlan

