NATURAL LANGUAGE PROCESSING

LECTURE 5: LSTM, GRU

INDEX

- I. Vanishing Gradient Problem
- 2. LSTM
- 3. GRU
- 4. Why Gradients Explode or Vanish

Vanishing Gradient Problem

Gradient 사라짐 문제가 왜 중요할까?

- In the case of language modeling or question answering words from time steps far away are not taken into consideration when training to predict the next word
- Example:

Jane walked into the room. John walked in too. It was late in the day. Jane said hi to ____

Hochreiter et al., 1997]

, **,**

f: <u>Forget gate</u>, Whether to erase cell

i: Input gate, whether to write to cell

g: Gate gate (?), How much to write to cell

o: Output gate, How much to reveal cell

vector from

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

LSTM(Long Short-Term Memory)이란 무엇인가

The repeating module in an LSTM contains four interacting layers.

Core Idea: cell state 정보가 아무 변화없이 쭉 흐를 수 있는 구조 -> Long-term dependency 해결

이전에서 넘어온 cell state 정보를 얼마나 흘려보낼지에 대한 수문 (gate)이 존재

Forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Cell state에 추가할 정보를 생성하고 여기에, input gate를 통해 일부를 버림

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

버릴 것은 버린 (forget gate) 과거에서 넘어온 cell state에 현재 정보를 더해서 현재의 cell state를 생성

현재의 cell state를 tanh를 통과하고 여기에 output gate를 통과시켜 현재의 hidden state를 생성. 그 이후, 이 hidden state는 다음 time step으로 넘겨주고, 필요하면 output 쪽이나 next layer로 넘겨줌.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

GRU

GRU(Gated Recurrent Unit)란 무엇인가?

Why Gradients Explode or Vanish

Adjusting the weights based on the first input requires the error signal to travel backwards through the entire path highlighed in red.

Why Gradients Explode or Vanish

Consider a univariate version of the encoder:

• Forward pass:

$$z^{(t)} = wx^{(t)}$$
$$h^{(t)} = \phi(z^{(t)})$$

Backprop updates:

$$z^{(t)} = wx^{(t)} \qquad \overline{h^{(t)}} = \overline{z^{(t+1)}}w$$

$$h^{(t)} = \phi(z^{(t)}) \qquad \overline{z^{(t)}} = \overline{h^{(t)}}\phi'(z^{(t)})$$

Applying this recursively:

$$\overline{h^{(1)}} = w^{T-1} \phi'(z^{(2)}) \dots \phi'(z^{(T)}) \overline{h^{(T)}}$$

With linear activations:

$$\partial h^{(T)}/\partial h^{(1)} = w^{T-1}$$

Exploding:

$$w = 1.1, T = 50 \Rightarrow \frac{\partial h^{(T)}}{\partial h^{(1)}} = 117.4$$

• Vanishing:

$$w = 0.9, T = 50 \Rightarrow \frac{\partial h^{(T)}}{\partial h^{(1)}} = 0.00515$$

References

Stanford University CS231n: Convolutional Neural Networks for Visual Recognition

Deep Learning Summer School, Montreal 2016 - VideoLectures.NET

Understanding LSTM Networks -- colah's blog

The Unreasonable Effectiveness of Recurrent Neural Networks

Stanford University CS224d: Deep Learning for Natural Language Processing