LJAPUNOV STABILITÁS DEFINÍCIÓJA

Tekintsük az $\dot{x}=f(x,u,t)$ nemlineáris rendszert u(t)=0 vagy lerögzített $u(t)=u_0(t)$ ismert bemenet esetén, amely ekkor $\dot{x}=f(t,x)$ alakra hozható. Feltesszük, hogy $f\in C_{t,x}^{(0,1)}([a,\infty)\times D_x)$, azaz f folytonos t-ben és differenciálható x-ben, továbbá $a\in R^1$ és $D_x\subset R^n$ nyílt halmaz, pl. a=0 és $D_x=R^n$. Nemlineáris rendszerek esetén különféle stabilitás definíciók ismertek, de ezek közül a legelterjedtebb a Ljapunov-féle stabilitás definíció.

Definíció (Ljapunov-féle stabilitás):

Legyen $\xi(t)$ megoldása az $\dot{x} = f(t,x)$ differenciálegyenletnek. Azt mondjuk, hogy a $\xi(t)$ megoldás Ljapunov-féle értelemben **stabilis**, ha

 $\forall t_0 \in [a, \infty)$ és $\forall \varepsilon > 0$ esetén $\exists \delta(\varepsilon, t_0) > 0$, hogy ha x(t) megoldás és $||x(t_0) - \xi(t_0)|| < \delta(\varepsilon, t_0)$, akkor $\forall t \in [t_0, \infty)$ esetén $||x(t) - \xi(t)|| < \varepsilon$.

Vegyük észre, hogy a *megoldás* stabilitását definiáltuk, ahol a megoldás lehet egyensúlyi pont, határciklus, de tetszőleges más megoldás is.

A definíció úgy is megfogalmazható, hogy akárhol kicsit perturbálva $\xi(t)$ -hez képest, és innen indítva a rendszert, az új megoldás $\xi(t)$ közelében marad. Ennek szemléletes értelmezését mutatja a következő ábra.

Lantos: Nemlineáris rendszerek stabilitása

A következő elnevezések szokásosak:

- 1. A rendszer $\xi(t)$ megoldása **labilis**, ha $\xi(t)$ nem stabilis.
- 2. A rendszer $\xi(t)$ megoldása Ljapunov-féle értelemben **egyenletesen stabilis**, ha $\xi(t)$ Ljapunov-féle értelemben stabilis és $\delta(\varepsilon, t_0) = \delta(\varepsilon)$ nem függ t_0 -tól.
- 3. A rendszer $\xi(t)$ megoldása Ljapunov-féle értelemben **aszimptotikusan stabilis**, ha $\xi(t)$ Ljapunov-féle értelemben stabilis és $\forall t_0 \in [a, \infty)$ esetén $\exists \delta_1(t_0)$, hogy ha x(t) megoldás, amelyre teljesül $||x(t_0) \xi(t_0)|| < \delta_1(t_0)$, akkor $\lim_{t \to \infty} ||x(t) \xi(t)|| = 0$.

A gyakorlatban oly fontos aszimptotikus stabilitás azt jelenti, hogy akárhol kicsit perturbálva $\xi(t)$ -hez képest, és innen indítva a rendszert, az új megoldás $\xi(t)$ közelében marad és $t \to \infty$ esetén minden határon túl megközelíti azt, pl. befut a $\xi(t)$ = const egyensúlyi pontba vagy a $\xi(t)$ határciklusba.

Megmutatjuk, hogy a stabilitásvizsgálat visszavezethető a $\xi \equiv 0$ megoldás (egyensúlyi pont) stabilitásának vizsgálatára. Vezessük be ugyanis a $\widetilde{x}(t) := x(t) - \xi(t)$ jelölést, azaz legyen $x(t) = \xi(t) + \widetilde{x}(t)$, akkor

$$\frac{d\tilde{x}(t)}{dt} = \frac{dx(t)}{dt} - \frac{d\xi(t)}{dt} = f(t, \xi(t) + \tilde{x}(t)) - f(t, \xi(t))$$
$$=: \tilde{f}(t, \tilde{x}(t)),$$

ami azt jelenti, hogy a stabilitásprobléma új alakja

$$\frac{d\tilde{x}(t)}{dt} = \tilde{f}(t, \tilde{x}(t)),$$

$$\tilde{\xi}(t) \equiv 0 \text{ (egyensúlyi pont)} \Leftrightarrow \tilde{f}(t, 0) \equiv 0.$$

Ki kell azonban hangsúlyozni, hogy a transzformáció után teljesülnie kell az $\tilde{f}(t,0) \equiv 0$ feltételnek. A továbbiakban feltételezzük, hogy a transzformációt már elvégeztük, és elhagyjuk a "~" jelölést. A további vizsgálatokhoz szükség lesz a pozitív definit és a negatív definit függvény fogalmára.

Definíció (definit függvény):

- 1. A V(t, x) függvény **pozitív definit**, ha $\exists W(x)$ skalárértékű függvény, hogy $\forall ||x|| \neq 0$ esetén $V(t, x) \geq W(x) > 0$ és $V(t, 0) \equiv W(0) = 0$.
- 2. A V(t, x) függvény **negatív definit**, ha -V(t, x) pozitív definit.

LJAPUNOV STABILITÁSI TÉTELEK

Tétel (Ljapunov 1. tétele, direkt módszer):

Legyen $\xi \equiv 0$ egyensúlyi pont, azaz

$$\frac{dx}{dt} = f(t, x), \quad f(t, 0) \equiv 0, \quad f(t, x) \in C_{t, x}^{(0, 1)}.$$

1. Ha $\exists V(t,x) \in C_{t,x}^{(1,1)}([a,\infty) \times D_x)$ pozitív definit függvény (ún. Ljapunov függvény), hogy minden x(t) megoldásra a trajektória mentén

$$\dot{V}(t,x) := \frac{dV(t,x(t))}{dt} \le 0 \ (\dot{V} \text{ negativ szemidefinit}),$$

akkor a $\xi(t) \equiv 0$ megoldás (egyensúlyi pont) Ljapunovféle értelemben **stabilis**.

2. Ha pótlólagosan teljesül

$$\dot{V}(t,x) := \frac{dV(t,x(t))}{dt} < 0$$
 (\dot{V} negative definit),

akkor a $\xi(t) \equiv 0$ megoldás (egyensúlyi pont) Ljapunovféle értelemben **aszimptotikusan stabilis**.

A tétel bizonyítása visszavezethető arra, hogy folytonos függvény kompakt halmazon felveszi szélsőértékét.

Vegyük még észre, hogy

$$\frac{dV}{dt} = V_x' \frac{dx}{dt} + V_t' = \frac{\partial V}{\partial x} f(t, x) + \frac{\partial V}{\partial t}$$

A tétel bizonyítása helyett egy szemléletes magyarázatot adunk időinvariáns rendszer esetére. Tegyük ugyanis fel, hogy f és V nem függ az időtől, és a V(x)=c felületek olyanok, hogy

$$c_1 < c_2 \Longrightarrow \{x: V(x) \le c_1\} \subset \{x: V(x) \le c_2\},$$

vagyis a felületek ebben az értelemben egymásba skatulyázottak.

Tekintsük azt a pontot, ahol az x(t) trajektória átmegy a V(x) = c felületen. Akkor ebben a pontban a felület $V_x' = \operatorname{grad} V$ kifelé mutató normálisa és a trajektória $\frac{dx(t)}{dt} = f(x(t))$ érintője által bezárt szög tompaszög, mivel $< \operatorname{grad} V, f(x(t)) > < 0$, ezért a trajektória a felület belseje felé halad. Mivel ez folyamatosan teljesül és $V(x) = 0 \Leftrightarrow x = 0$, ezért a trajektória minden határon túl megközelíti a $\xi \equiv 0$ egyensúlyi pontot, ami szemléletesen igazolja az aszimptotikus stabilitást.

A direkt módszer használatához szükség van egy Ljapunov-függvény jelöltre, amelyre a tétel feltételei teljesülnek, és amelyből következtetni tudunk az egyensúlyi pont stabilitására. Ljapunov-függvényként sok esetben energia jellegű függvénnyel (kinetikus és/vagy potenciális energia) kisérletezünk.

Tétel (Ljapunov 2. tétele, indirekt módszer):

Legyen $\xi \equiv 0$ egyensúlyi pont, azaz

$$\frac{dx}{dt} = f(t, x), \quad f(t, 0) \equiv 0, \quad f(t, x) \in C_{t, x}^{(0, 1)}.$$

Vezessük be az

$$A(t) := f'_x(t, x)|_{x=0}$$
 és az $f_1(t, x) := f(t, x) - A(t)x$

jelöléseket. Ha teljesül, hogy

i)
$$\lim_{\|x\|\to 0} \sup_{t\geq 0} \frac{\|f_1(t,x)\|}{\|x\|} = 0$$
,

- ii) $A(\cdot)$ korlátos leképezés,
- iii) $\dot{x} = A(t)x$ lineáris rendszer egyenletesen aszimptotikusan stabilis,

akkor az eredeti nemlineáris rendszer $\xi(t) \equiv 0$ egyensúlyi pontja egyenletesen aszimptotikusan stabilis.

A bizonyítás gondolatmenete a következő. Tekintsük az $\dot{x} = A(t)x$ linearizált rendszert és annak $\Phi(t,\tau)$ alapmátrixát. Legyen

$$P(t) := \int_{t}^{\infty} \boldsymbol{\Phi}^{T}(\tau, t) \, \boldsymbol{\Phi}(\tau, t) \, d\tau, \text{akkor}$$

$$\langle Px, x \rangle = \langle \int_{t}^{\infty} \boldsymbol{\Phi}^{T}(\tau, t) \boldsymbol{\Phi}(\tau, t) \, d\tau \, x, x \rangle =$$

$$= \int_{t}^{\infty} \langle \boldsymbol{\Phi}^{T}(\tau, t) \boldsymbol{\Phi}(\tau, t) x, x \rangle d\tau = \int_{t}^{\infty} \left\| \boldsymbol{\Phi}(\tau, t) x \right\|^{2} d\tau \rangle 0,$$

mivel $\Phi(\tau,t)$ invertálható (és folytonos). Ezért $\langle Px, x \rangle$ egy Ljapunov-függvény jelölt, amelyre a következő feltételek teljesülnek:

- (1) P(t) pozitív definit és $\exists \alpha, \beta > 0$, hogy $\forall t, x : \alpha ||x||^2 \le \langle P(t)x, x \rangle \le \beta ||x||^2$,
- (2) $V(t, x) := \langle P(t)x, x \rangle$ pozitív definit függvény,
- (3) $\dot{V}(t,x) = \langle \dot{P}(t)x, x \rangle + \langle P(t)\dot{x}, x \rangle + \langle P(t)x, \dot{x} \rangle$ az $\dot{x} = A(t)x + f_1(t,x)$ nemlineáris rendszer trajektóriái mentén a következő alakra hozható:

$$\dot{V}(t,x) = \langle \{\dot{P}(t) + P(t)A(t) + A^{T}(t)P(t)\}x, x \rangle + 2 \langle P(t)f_{1}(t,x), x \rangle,$$

(4) Elvégezve a deriválást kapjuk, hogy

$$\dot{P}(t) = \int_{t}^{\infty} {\{\dot{\boldsymbol{\Phi}}^{T}(\tau,t)\boldsymbol{\Phi}(\tau,t) + \boldsymbol{\Phi}^{T}(\tau,t)\dot{\boldsymbol{\Phi}}(\tau,t)\}d\tau - \\ -\boldsymbol{\Phi}^{T}(t,t)\boldsymbol{\Phi}(t,t)}.$$

amelybe behelyettesítve a $\Phi(t,\tau)$ alapmátrix tulajdonságaiból következő

$$\frac{d}{dt}\boldsymbol{\Phi}^{T}(\tau,t) = -A^{T}(t)\boldsymbol{\Phi}^{T}(\tau,t)$$
$$\frac{d}{dt}\boldsymbol{\Phi}(\tau,t) = -\boldsymbol{\Phi}(\tau,t)A(t)$$

kifejezéseket átalakítások után kapjuk, hogy

$$\dot{P}(t) + P(t)A(t) + A^{T}(t)P(t) = -I.$$

(5) $\dot{V}(t,x) = -\|x\|^2 + 2 < P(t) f_1(t,x), x > < 0,$ mivel $\|2 < P(t) f_1(t,x), x > \|$ a tétel i) feltétele és (1) alapján kisebbé tehető $\|x\|^2$ -nél x = 0 valamely környezetében $\forall t \ge t_0$ esetén.

Vegyük észre, hogy Ljapunov indirekt módszere nem ad felvilágosítást az egyensúlyi pont vonzási környezetéről (az ú.n. attrakciós halmazról).

Ezért azt láttuk be, hogy a nemlineáris rendszer a tétel feltételeinek teljesülése esetén $\xi \equiv 0$ egyensúlyi pontjának csak valamilyen *kis környezetében* lesz biztosan aszimptotikusan stabilis (lokális stabilitás).

Korábban már foglalkoztunk az időinvariáns (autonóm, LTI) lineáris rendszerek stabilitásával. A rendszert akkor tekintettük stabilisnak, ha a kezdeti feltételek hatása lecseng, vagy ha a rendszer korlátos bemenő jelre korlátos kimenő jellel válaszol. Keressünk kapcsolatot eme stabilitás felfogás és a Ljapunov-féle stabilitás között.

Tétel (LTI rendszer stabilitása):

Tekintsük az $\dot{x} = Ax$ LTI rendszert, amelyre $\xi \equiv 0$ nyílván egyensúlyi pont. Legyen P konstans (szimmetrikus) pozitív definit mátrix (P > 0) és V(x) := < Px, x > a Ljapunovfüggvény jelölt. Végezzük el az $\dot{x} = Ax$ behelyettesítést \dot{V} kifejezésében:

$$\dot{V} = < P\dot{x}, x > + < Px, \dot{x} > = < (PA + A^T P)x, x > .$$

Akkor $\dot{V} < 0$ (negatív definit), ha $\exists Q > 0$ pozitív definit mátrix, hogy teljesül a **Ljapunov-egyenlet**:

$$PA + A^T P = -Q, P > 0, Q > 0.$$

A következő állítások ekvivalensek:

- i) Az A mátrix minden s_i sajátértékére teljesül Re $s_i < 0$.
- ii) $\exists Q > 0$, hogy a Ljapunov-egyenletnek $\exists P > 0$ megoldása.
- iii) $\forall Q > 0$ esetén a Ljapunov-egyenletnek létezik

$$P := \int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt > 0 \text{ megoldása.}$$

Csak az i) \Rightarrow iii) esetet **bizonyítjuk**. Mivel Q > 0, ezért a Q mátrixnak létezik pozitív definit négyzetgyöke: $\sqrt{Q} > 0$, ezért

$$< Px, x > = \int_{0}^{\infty} \left\| \sqrt{Q} e^{At} x \right\|^{2} dt > 0$$
, ha $x \neq 0$,

tehát P pozitív definit. Ha i) teljesül, akkor $\forall x$ esetén $x(t) = e^{At}x \rightarrow 0$. Ahhoz, hogy ebből következzék iii), már csak azt kell belátni, hogy P kielégíti a Ljapunovegyenletet $\forall x$ esetén.

Tekintsük ezért a Ljapunov-egyenlet bal oldalát:

$$(PA + A^{T}P)x = \int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt Ax + A^{T} \int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt x =$$

$$= \int_{0}^{\infty} e^{A^{T}t} Q e^{At} Ax dt + A^{T} \int_{0}^{\infty} e^{A^{T}t} Q e^{At} x dt =$$

$$= \int_{0}^{\infty} e^{A^{T}t} Q A e^{At} x dt + A^{T} \int_{0}^{\infty} e^{A^{T}t} Q e^{At} x dt =$$

$$= \int_{0}^{\infty} e^{A^{T}t} Q \dot{x}(t) dt + A^{T} \int_{0}^{\infty} e^{A^{T}t} Q x(t) dt.$$

Alkalmazzuk a differenciálás uv' = (uv)' - u'v szorzat szabályát $u = e^{A^T t}Q$ és $v' = \dot{x}(t)$ választással, akkor $(PA + A^T P)x =$ $= \int_0^\infty [e^{A^T t}Qx(t)]'dt - \int_0^\infty A^T e^{A^T t}Qx(t)dt + A^T \int_0^\infty e^{A^T t}Qx(t)dt =$ $= e^{A^T t}Qx(t)\Big|_0^\infty = -Qx,$

tehát P valóban kielégíti a Ljapunov-egyenletet. Beláttuk tehát, hogy i) \Rightarrow iii).

LA SALLE STABILITÁS TÉTELE

Definíció (invariáns halmaz):

Az M halmaz invariáns, ha bármelyik pontján átmenő trajektória (az $\dot{x} = f(x)$ differenciálegyenlet megoldása), annak bal odali és jobb oldali fele is, teljes egészében a halmazban fekszik. Ehhez elvben a halmaz pontja mint kezdeti feltétel körül a differenciálegyenlet megoldását pozitív és negatív időértékekre is meg kell határozni.

Ha egy E halmaz nem invariáns, akkor beszélhetünk az E által tartalmazott M maximális invariáns halmazról:

$$M = \max\{H \subset E : x(0) \in H, x(t) \text{ megold\'as}$$

$$\Rightarrow \forall t : x(t) \in H\}.$$

Tétel (**La Salle stabilitás tétele**): Legyen az $\dot{x} = f(x)$ rendszernek 0 = f(0) egyensúlyi pontja és $f(x) \in C_x^{(1)}$. Létezzen V(x) Ljapunov-függvény, mely kielégíti az alábbi feltételeket rögzített r > 0 esetén az $\{x: |V(x)| \le r\} =: \Omega_r$ kompakt halmazon:

- i) V(x) pozitív definit: $V(x) \ge 0$ és $V(x) = 0 \Leftrightarrow x = 0$,
- ii) $\dot{V}(x) = \operatorname{grad} V, f \ge 0$ (negatív szemidefinit),
- iii) $V(x) \in C_x^{(1)}$ (folytonosan differenciálható).

Legyen az $E = \{x \in \Omega_r : \dot{V}(x) = 0\}$ halmaz maximális invariáns halmaza M. Akkor tetszőleges $x(0) \in \Omega_r$ kezdeti feltételt kielégítő x(t) trajektória aszimptotikusan tart az M halmazhoz.

Ez részletesebben azt jelenti, hogy tetszőleges $\varepsilon > 0$ esetén létezik T, hogy minden t > T esetén x(t) az M halmaz ε -környezetében marad:

létezik
$$y(t, \varepsilon) \in M + \{x : ||x|| < \varepsilon\}, \text{ hogy } ||x(t) - y|| < \varepsilon.$$

Következmény: Ha az $E = \{x \in \Omega_r : \dot{V}(x) = 0\}$ halmaz maximális invariáns halmaza $M = \{0\}$, akkor tetszőleges $x(0) \in \Omega_r$ esetén az x(t) trajektória aszimptotikusan tart a 0 = f(0) egyensúlyi ponthoz.

Következmény: Legyen $x = (y^T, z^T)^T$ és teljesüljenek a La Salle-tétel feltételein kívül még:

- i) $\dot{V}(x) = \dot{V}(y, z) = 0 \Rightarrow y = 0$,
- ii) $\dot{y} = \varphi(y, z)$ alakú és $\varphi(0, z) = 0 \Leftrightarrow z = 0$.

Akkor az y = 0, z = 0 egyensúlyi pont aszimptotikusan stabilis.

Nyivánvaló ugyanis, hogy az i) feltétel és E definíciója miatt az $M \subset E$ halmaz minden pontjában y = 0. Innen következik az M halmaz invarianciája alapján $\dot{y} = 0$ minden M-ben futó x(t) trajektória esetén, és így ii) alapján z = 0. Ezért M egyetlen pontból áll, és így alkalmazható az előző következmény eredménye.

Példa (a La Salle-tétel használatának illusztrációja):

Tekintsünk egy nyíltláncú, merev, visszacsatolás nélküli robotot, amelynek állapotegyenlete

$$H(q)\ddot{q} + C(q, \dot{q})\dot{q} + D(q) = \tau$$

ahol rendre q, \dot{q}, \ddot{q} jelöli a csuklóváltozókból álló vektort, annak sebességét és gyorsulását, τ a szegmenseket meghajtó nyomatékok vektora, $H = [D_{jk}]$ az általánosított inercia mátrix, $C = [C_{ik}]$, $C_{ik} = \sum_j D_{ijk} \dot{q}_j$ és $C\dot{q}$ írja le az centripetális és Coriolis hatást. $D = [D_i]$ a gravitációs ha-

centripetális és Coriolis hatást, $D = [D_i]$ a gravitációs hatás.

Legyen a feladat a robot irányítása q_a = const alapjelváltás esetén (PTP, point-to-point control).

Legyen az irányítási törvény

$$\tau := D(q) + K_P(q_a - q) - K_D\dot{q}, K_P > 0, K_D > 0,$$

ami arányos+differenciáló szabályozásnak és nemlineáris előrecsatolásnak felel meg a gravitációs hatás alapján. A zárt szabályozási kört akkor

$$H\ddot{q} + C\dot{q} + D = D + K_P(q_a - q) - K_D\dot{q}$$

írja le, ahonnan következik

$$H\ddot{q} = -C\dot{q} + K_P(q_a - q) - K_D\dot{q}.$$

A robot kinetikus energiája a H > 0 mátrix kvadratikus alakja. Egy elemi rugó potenciális energiája $P = 0.5kx^2$, ahol x a rugó elmozdulása és k a rugóállandó. Ennek mintájára álljon a Ljapunov-függvény jelölt a kinetikus és a "potenciális" energia összegéből:

$$V = \frac{1}{2} < H\dot{q}, \dot{q} > + \frac{1}{2} < K_P(q_a - q), q_a - q > .$$

Felhasználjuk, hogy $\dot{H}-2C$ antiszimmetrikus mátrix, ezért kvadratikus alakja azonosan nulla, továbbá $\dot{q}_a=0$. Képezzük V deriváltját:

$$\begin{split} \dot{V} &= \frac{1}{2} < \dot{H}\dot{q}, \dot{q} > + \frac{1}{2} < H\ddot{q}, \dot{q} > + \frac{1}{2} < H\dot{q}, \ddot{q} > + \\ &+ \frac{1}{2} < K_P(\dot{q}_a - \dot{q}), q_a - q > + \frac{1}{2} < K_P(q_a - q), \dot{q}_a - \dot{q} > = \\ &= \frac{1}{2} < \dot{H}\dot{q}, \dot{q} > + < (-C\dot{q} + K_P(q_a - q) - K_D\dot{q}), \dot{q} > + \\ &+ < K_P(q_a - q), \dot{q}_a - \dot{q} > = \\ &= \frac{1}{2} < (\dot{H} - 2C)\dot{q}, \dot{q} > - < K_D\dot{q}, \dot{q} > = \\ &= - < K_D\dot{q}, \dot{q} > . \end{split}$$

Mivel $K_D > 0$, ezért $\dot{V} \le 0$ (negatív szemidefinit), tehát \dot{V} addig csökken, amíg $\dot{q} = 0$ be nem következik. Legyen

$$z \coloneqq q - q_a, \quad y \coloneqq \dot{q} \text{ és } x \coloneqq (y^T, z^T)^T, \text{ akkor}$$

$$\dot{y} = H^{-1} \{ -Cy - K_P z - K_D y \},$$

$$\dot{z} = y,$$

$$E = \{ x \colon \dot{V}(x) = 0 \}.$$

Legyen $M \subset E$ a maximális invariáns halmaz, akkor

$$x \in E \Leftrightarrow y = 0,$$

 $x \in M \Rightarrow y = 0 \Rightarrow \dot{y} = 0 \Rightarrow -H^{-1}K_P \ z = 0 \Rightarrow z = 0,$
 $M = \{0\}.$

A La Salle-tétel következménye szerint $x(t) \to 0$, ezért $z(t) = q(t) - q_a \to 0$. A választott szabályozási törvény esetén ezért a q(t) szabályozott jellemző aszimptotikusan tart a q_a = const alapjelhez.

K ÉS KL ÖSSZEHASONLÍTÁSI FÜGGVÉNYEK

Stabilitásvizsgálatot támogató függvények:

- (i) Az $\alpha:[0,a) \to R^+$ függvényt K-függvénynek nevezzük, ha $\alpha(\cdot)$ szigorúan monoton növekvő és $\alpha(0) = 0$. Speciálisan, ha $a = \infty$ és $\alpha(r) \to \infty$ ha $r \to \infty$, akkor $\alpha(r)$ egy K_∞ -függvény.
- (ii) A $\beta:[0,a)\times R^+\to R^+$ függvényt KL-függvénynek nevezzük, ha $\beta(r,s)$ teljesíti, hogy $\beta(\cdot,s)$ egy K-függvény az első változóban minden rögzített s esetén, míg $\beta(r,\cdot)$ monoton csökkenő a második változóban minden rögzített r esetén és $\beta(r,s)\to 0$ ha $s\to\infty$.

Példák:

 $\alpha(r) = \operatorname{atan}(r) \ K$ -függvény, de nem K_{∞} -függvény, azonban $\alpha(r) = r^c$ egy K_{∞} -függvény c > 0 esetén, míg $\beta(r,s) = r^c e^{-s}$ egy KL-függvény c > 0 esetén.

A következő tételek $\dot{x} = f(t, x)$ esetén érvényesek.

Tétel: A $\xi \equiv 0$ egyensúlyi pont

- (i) Egyenletesen stabil (US) \Leftrightarrow létezik $\alpha(r)$ K függvény és c > 0 függetlenül t_0 -tól, hogy teljesül $||x(t)|| \le \alpha(||x(t_0)||), \forall t \ge t_0 \ge 0, \forall ||x(t_0)|| < c$,
- (ii) Egyenletesen aszimptotikusan stabil (UAS) \Leftrightarrow létezik $\beta(r,s)$ KL-függvény és c > 0 függetlenül t_0 -tól, hogy teljesül $||x(t)|| \le \beta(||x(t_0)||, t-t_0), \forall t \ge t_0 \ge 0, \forall ||x(t_0)|| < c,$
- (iii) Globálisan egyenletesen aszimptotikusan stabil (GUAS) \Leftrightarrow létezik $\beta(r,s)$ KL-függvény, hogy teljesül $||x(t)|| \le \beta(||x(t_0)||, t-t_0), \forall t \ge t_0 \ge 0, \forall x(t_0) \in \mathbb{R}^n$.

A következő tétel a Ljapunov függvény és a K és KL függvények kapcsolatát mutatja be. Feltesszük, hogy $0 \in D \subset R^n$ nyílt halmaz, V(t,x) folytonosan differenciálható, $W_1(x) \le V(t,x) \le W_2(x)$, ahol $W_1(x), W_2(x)$ pozitív definit, továbbá $\frac{\partial V}{\partial x} f(t,x) + \frac{\partial V}{\partial t} \le 0$.

Tétel: Ha teljesülnek a fenti feltételek, akkor a $\xi \equiv 0$ egyensúlyi pont

(i) Egyenletesen stabil (US),

függvény esetén.

- (ii) Egyenletesen aszimptotikusan stabil (UAS), ha $\frac{\partial V}{\partial x} f(t,x) + \frac{\partial V}{\partial t} \le -W_3(x),$ ahol $W_3(x)$ pozitív definit,
- (iii) Ha az előző feltétel mellett teljesül még az is, hogy r és c megválasztható úgy, hogy $B_r := \{x : ||x|| \le r\} \subset D$ és $0 < c < \min_{\|x\|=r} W_1(x)$, akkor minden trajektóriára, amely $\{x \in B_r : W_2(x) \le c\}$ -ből indul, teljesül $\|x(t)\| \le \beta(\|x(t_0)\|, t-t_0), \forall t \ge t_0 \ge 0$ valamilyen KL-

Speciálisan, ha $D = R^n$ és $W_1(x)$ radiálisan korlátlan, akkor az egyensúlyi pont globálisan egyenletesen aszimptotikusan stabil (GUAS).

Megjegyzés: A rendkívül erős (iii) eredmény bizonyítása igényli a megkonstruálását olyan K-függvénynek, amelyekkel teljesül $\alpha_1(\|x\|) \leq W_1(x)$, $W_2(x) \leq \alpha_2(\|x\|)$, $\alpha_3(\|x\|) \leq W_3(x)$. Ezek ismeretében már választható $\alpha = \alpha_3 \circ \alpha_2^{-1}$, továbbá $y(t) =: \sigma(y_0, t - t_0)$, amely az

 $\dot{y} = -\alpha(y), \ y(t_0) = V(t_0, x(t_0))$ skalár nemlineáris differenciálegyenlet megoldása és végül

$$\beta(x(t_0), t - t_0) := \alpha_1^{-1}(\sigma(\alpha_2(||x(t_0)||), t - t_0)).$$

Bemenet-állapot stabilitás (input-to-state stability, ISS):

Az $\dot{x} = f(t,x,u)$ nemlineáris rendszert ISS stabilnak nebezzük, ha létezik $\beta(r,s)$ KL-függvény és $\gamma(r)$ K-függvény, hogy minden $x(t_0)$ kezdeti feltétel és minden u(t) korlátos bemenet esetén létezik az x(t), $\forall t \geq t_0$ megoldás, amely kielégíti a következő egyenlőtlenséget:

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0) + \gamma(\sup_{t_0 \le \tau \le t} ||u(\tau)||).$$

Tétel (ISS stabilitás elégséges feltétele): Teljesüljön

$$\alpha_{1}(\|x\|) \leq V(t,x) \leq \alpha_{2}(\|x\|)$$

$$\frac{\partial V}{\partial x} f(t,x,u) + \frac{\partial V}{\partial t} \leq -W_{3}(x), \forall \|x\| \geq \rho(\|u\|) > 0$$

minden $(t, x, u) \in [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m$, ahol $\alpha_1, \alpha_2 \in K_{\infty}$ -függvények, $\rho \in K$ -függvény és $W_3(x)$ pozitív definit. Akkor $\dot{x} = f(t, x, u)$ ISS stabil $\gamma := \alpha_1^{-1} \circ \alpha_2 \circ \rho$ választással.

BARBALAT-LEMMÁK

Lemma (Barbalat lemmák):

- 1. Legyen $f: R^1 \to R^1$ egyenletesen folytonos a $[0, \infty)$ intervallumon. Tegyük fel, hogy $\lim_{t \to \infty} \int_0^t f(\tau) d\tau$ létezik és véges. Akkor $\lim_{t \to \infty} f(t) = 0$.
- 2. Tegyük fel, hogy $f \in L_{\infty}$, $\dot{f} \in L_{\infty}$ és $\lim_{t \to \infty} \int_0^t f(\tau) d\tau$ létezik és véges. Akkor $\lim_{t \to \infty} f(t) = 0$.
- 3. Tegyük fel, hogy f(t) differenciálható, $\lim_{t\to\infty} f(t)$ létezik és véges, továbbá \dot{f} egyenletesen folytonos, akkor $\dot{f}(t)\to 0$, ha $t\to\infty$.

Bizonyítás:

1. Ha az első állítás nem igaz, akkor létezik $\varepsilon_0 > 0$, hogy minden T > 0 esetén található $T_1 \ge T$, amelyre teljesül $|f(T_1)| \ge \varepsilon_0$. Mivel f(t) egyenletesen folytonos, ezért létezik $\delta > 0$, hogy $|f(t+\tau) - f(t)| < \varepsilon_0 / 2$ minden t > 0 és $0 < \tau < \delta$ esetén. Ezért minden $t \in [T_1, T_1 + \delta]$ esetén

$$|f(t)| = |f(t) - f(T_1) + f(T_1)| \ge |f(T_1)| - |f(t) - f(T_1)|$$

> $\varepsilon_0 - \varepsilon_0 / 2 = \varepsilon_0 / 2$,

amiből következik

$$\left| \int_{T_1}^{T_1+\delta} f(t)dt \right| = \int_{T_1}^{T_1+\delta} \left| f(t) \right| dt > (\varepsilon_0/2)\delta,$$

ahol az egyenlőség a két integrál között teljesül, mert f(t) nem vált előjelet $t \in [T_1, T_1 + \delta]$ esetén. Ezért $\int_0^t f(\tau) d\tau$ nem konvergálhat véges határértékhez ha $t \to \infty$, ami ellentmondás. Ezért az első állítás igaz.

- 2. A második állítás következik abból a tényből, hogy ha $\dot{f} \in L_{\infty}$ akkor f egyenletesen folytonos és alkalmazható az első állítás.
- 3. A harmadik állítás következik abból a tényből, hogy $f(\infty) f(0) = \int_0^\infty \dot{f}(t)dt$ miatt a jobb oldal létezik és véges, ezért alkalmazható az első állítás f helyett \dot{f} -tal.

A következő lemma közvetlen következménye a Barbalat-lemmának, és olyan hatású, mint az invariáns halmaz tétel a Ljapunov stabilitás analízisben, de *időben változó* rendszer esetén.

Lemma (a Barbalat-lemma Ljapunov-féle alakja):

A skalárértékű V(x,t) függvény elégítse ki a következő három feltételt:

- i) V(x,t) alulról korlátos
- ii) $\dot{V}(x,t)$ negatív szemidefinit
- iii) $\dot{V}(x,t)$ egyenletesen folytonos t-ben.

Akkor $\dot{V}(x,t) \rightarrow 0$, ha $t \rightarrow \infty$.

Vegyük észre, hogy V(x,t) egyszerűen alulról korlátos lehet, nem kell pozitív definitnek lennie. Jegyezzük meg, hogy $\dot{V}(x,t)$ egyenletesen folytonos, ha $\ddot{V}(x,t)$ létezik és korlátos.

LP STABILITÁS

Lp norma:

$$\begin{aligned} & \left\| f \right\|_p = \left(\int_0^\infty \left| f(t) \right|^p dt \right)^{1/p} < \infty \Longrightarrow f \in L_p[0,\infty), \quad p \in [1,\infty) \\ & \left\| f \right\|_\infty = ess \ sup \left| f(t) \right| < \infty \Longrightarrow f \in L_\infty[0,\infty) \end{aligned}$$

Az így definiált függvényterek Banach-terek (lineáris normált tér, amelyben a Cauchy-sorozatok konvergensek).

Speciálisan p=2 esetén $L_2[0,\infty)$ Hilbert-tér (végtelen dimenziós Banach-tér, amelyben létezik < f,g> skalárszorzat és a norma skalárszorzattal van definiálva: $\|f\|_2^2 = < f,f>$).

Lp-stabil nemlineáris rendszer:

Legyen $G: L_p^n \to L_p^m$ nemlineáris rendszer, amely az $u \in L_p^n[0,\infty)$ bemenőjelet leképezi $y \in L_p^m[0,\infty)$ kimenőjelbe. Akkor a nemlineáris rendszer:

(i) L_p -stabil véges erősítéssel (wfg), ha létezik $\gamma_p, \beta_p \ge 0$ konstans, hogy $u \in L_p^n \Rightarrow \|y\|_p \le \gamma_p \|u\|_p + \beta_p$,

(ii) L_p -stabil véges erősítéssel bias nélkül (wb), ha létezik $\gamma_p \ge 0$ konstans, hogy

$$u \in L_p^n \Rightarrow ||y||_p \le \gamma_p ||u||_p.$$

Nemlineáris rendszer erősítése: $\gamma_p(G) = \inf{\{\gamma_p\}}$, amely kielégíti az (i) wfg vagy (ii) wb feltételt.

Tétel (kis erősítés tétel): Tekintsük az ábra szerinti nemlineáris rendszert, és legyen G_1, G_2 kauzális és L_2 -stabil wfg (wb), $\gamma_{1p} = \gamma_{1p}(G_1)$ és $\gamma_{2p} = \gamma_{2p}(G_2)$. Akkor a zárt rendszer L_2 -stabil, ha

$$\gamma_{1p} \cdot \gamma_{2p} < 1$$
.

PASSZÍV RENDSZEREK

Legyen $G: L_2^n \to L_2^n$ nemlineáris rendszer $(\langle u, y \rangle)$ skalárszorzathoz p = 2 és dim $u = \dim y$ kell)

Definíciók:

- (i) G passzív, ha $\exists \beta \in R^1$, hogy $< u, Gu >= \int_0^\infty < u(t), (Gu)(t) > dt \ge \beta, \ \forall u \in L_2,$
- (ii) G szigorúan bemenet passzív, ha $\exists \delta > 0, \beta \in \mathbb{R}^1$, hogy $\langle u, Gu \rangle \geq \delta \|u\|_2^2 + \beta$, $\forall u \in L_2$,
- (iii) G szigorúan kimenet passzív, ha $\exists \varepsilon > 0, \beta \in \mathbb{R}^1$, hogy $\langle u, Gu \rangle \geq \varepsilon ||(Gu)||_2^2 + \beta$, $\forall u \in L_2$.

Vegyük észre, hogy $u\equiv 0\in L_2$, ezért $0\geq \beta$. Könnyen megmutatható, hogy szigorúan kimenet passzív rendszer L_2 -stabil wfg.

Tétel (passzivitás L2 térben):

Tekintsük az ábra szerinti nemlineáris rendszert, és legyen $G_1, G_2 \in L_2^n$.

- (i) Ha G_1 és G_2 mindketten szigorúan kimenet passzív nemlineáris rendszerek és mindkét u_1 és u_2 bemenet aktív, akkor az (y_1, y_2) kimenet számára a zárt rendszer szigorúan kimenet passzív és L_2 -stabil wfg.
- (ii) Ha G_1 szigorúan kimenet passzív, G_2 passzív és $u_2 = 0$ (azaz csak u_1 aktív), akkor az y_1 kimenet számára a zárt rendszer szigorúan kimenet passzív és L_2 -stabil wfg.
- (iii) Ha G_1 passzív, G_2 szigorúan bemenet passzív és $u_2 = 0$ (azaz csak u_1 aktív), akkor az y_1 kimenet számára a zárt rendszer szigorúan kimenet passzív és L_2 -stabil wfg.

DISSZIPATÍV RENDSZEREK

A disszipativitás felfogható a passzivitás megfelelőjének állapottérben, ahol a nemlineáris rendszer:

$$\Sigma$$
: $\dot{x} = f(x,u), y = h(x,u), x \in \mathbb{R}^n, u, y \in \mathbb{R}^m$

Disszipatív rendszer definíciója:

A valós értékű s(u,y) függvény neve táplálási ráta (supply rate). A rendszert disszipatívnak nevezzük, ha létezik $S: R^n \to R^+$ ú.n. tároló függvény (storage function), hogy minden $x(t_0) \in R^n$ és minden $t_1 \ge t_0$ esetén teljesül a következő disszipativitási egyenlőtlenség:

$$S(x(t_1)) \le S(x(t_0)) + \int_{t_0}^{t_1} s(u(t), y(t)) dt.$$

Speciálisan egyenlőség esetén a rendszert veszteségmentesnek nevezzük. Az alkalmazásokban S(x) =: V(x) átveszi a Ljapunov függvény szerepét.

Példaként, tekintsük az $s(u, y) := \langle u, y \rangle$ táplálási rátát, és tegyük fel, hogy $S \ge 0$. Akkor teljesül

$$\int_0^T \langle u(t), y(t) \rangle dt \ge S(x(T)) - S(x(0)) \ge -S(x(0))$$

minden x(0), minden T > 0 és minden $u(\cdot)$ bemenőjel esetén, ezért a $G_{x(0)}$ bemenet-kimenet leképezés passzív a $\beta = -S(x(0))$ választás mellett. Itt S tekinthető a tárolt energiának, ami motiválja a következő definíciókat.

Passzív disszipatív rendszer definíciója;

A nem lineáris rendszer:

- (i) passzív, ha disszipatív $s(u, y) = \langle u, y \rangle$ esetén,
- (ii) szigotúan bemenet passzív, ha disszipatív és $s(u, y) = \langle u, y \rangle \delta ||u||^2$, ahol $\delta > 0$,
- (iii) *szigorúan kimenet passzív*, ha disszipatív és $s(u, y) = \langle u, y \rangle \varepsilon ||y||^2$, ahol $\varepsilon > 0$,
- (iv) konzervativ, ha veszteségmentes és $s(u, y) = \langle u, y \rangle$,
- (v) L_2 -erősítése $\leq \gamma$, ha disszipatív és $s(u, y) = \frac{1}{2} \gamma^2 ||u||^2 \frac{1}{2} ||y||^2, \text{ ahol } \gamma > 0.$

(65)

Például az utóbbi esetben

$$\frac{1}{2} \int_0^T (\gamma^2 \| u(t) \|^2 - \| y(t) \|^2) dt \ge S(x(T)) - S(x(0)) \ge -S(x(0)),$$

ahonnan átcsoportosítással következik

$$\int_0^T ||y(t)||^2 dt \le \gamma^2 \int_0^T ||u(t)||^2 dt + 2S(x(0)),$$

ami ekvivalens azzal, hogy a rendszer L_p -stabil wfg $\leq \gamma$.

A disszipativitási feltétel differenciális alakra is hozható, elosztván az egyenlőtlenséget $t_1 - t_0$ értékével és elvégezvén a $t_1 \rightarrow t_0$ határátmenetet.

Differenciális disszipativitási egyenlőtlenség:

$$S'_{x}(x)f(x,u) \le s(u,h(x,u)), \forall x,u,$$

$$S'_{x}(x) = \left(\frac{\partial S}{\partial x_{1}}(x) \dots \frac{\partial S}{\partial x_{n}}(x)\right).$$

Bemenet affin esetben $\Sigma_a : \dot{x} = f(x) + g(x)u, y = h(x),$

$$s(u, y) = \langle u, y \rangle = \langle u, h(x) \rangle,$$

 $S'_{x}(x)[f(x) + g(x)u] \leq u^{T}h(x), \forall x, u$

ahonnan (először u = 0 választással) következik:

Hill-Moylan feltételek:

$$S'_{x}(x)f(x) \le 0,$$

$$S'_{x}(x)g(x) = h^{T}(x).$$

Speciális esetek:

- (1) LTI rendszer esetén a feltételek ekvivalensek a Kalman-Yacubovitch-Popov feltételekkel, ha a tároló függvény $S(x) = \frac{1}{2}x^T P x$, ahol $P = P^T \ge 0$, nevezetesen $A^T P + PA \le 0$ és $B^T P = C$.
- (2) Ha Σ_a szigorúan kimenet passzív, $s(u,y) = \langle u,y \rangle \varepsilon \|y\|^2, \text{ ahol } \varepsilon > 0, \text{ akkor (először } u = 0 \text{ választással) teljesül}$ $S_x'(x)f(x) \leq -\varepsilon h^T(x)h(x),$ $S_x'(x)g(x) = h^T(x).$
- (3) Ha Σ_a véges L_2 -erősítésű, $s(u, y) = \frac{1}{2} \gamma^2 \|u\|^2 \frac{1}{2} \|y\|^2, \text{ akkor}$ $S'_x(x) [f(x) + g(x)u] \frac{1}{2} \gamma^2 \|u\|^2 + \frac{1}{2} \|h(x)\|^2 \le 0, \forall x, u.$

(4) A maximum az egyenlőtlenség bal oldalán akkor áll fenn, ha $u^* = \frac{1}{\gamma^2} g^T(x) S_x^T(x)$, amelyet visszahelyettesítve a Hamilton-Jacobi-Belmann egyenlőtlenséget kapjuk:

$$S'_{x}(x)f(x) + \frac{1}{2\gamma^{2}}S'_{x}(x)g(x)g^{T}(x)S'^{T}_{x}(x) + \frac{1}{2}h^{T}(x)h(x)$$

 $\leq 0, \forall x.$

Ezért a Σ_a bemenet affin rendszer L_2 -erősítése $\leq \gamma$, akkor és csakis akkor, ha az egyenlőtlenségnek létezik folytonosan differenciálható $S \geq 0$ megoldása. Megjegyezzük, hogy az egyenlőség alak szoros kapcsolatban áll a dinamikus programozás Hamilton-Jacobi-Belmann egyenletével.

Zero-állapot detektálhatóság:

A Σ_a bemenet affin rendszert zéró-állapot detektálhatónak nevezzük, ha $u(t) \equiv 0, \, y(t) \equiv 0, \, \forall t \geq 0 \Rightarrow \lim x(t) = 0$.

Tétel (passzivitás és aszimptotikus stabilitás kapcsolata):

Legyen Σ_a zéró-állapot detektálható. Legyen $S \geq 0$, ahol S(0) = 0 megoldása (2)-nek a szigorúan kimenet passzív esetben, vagy (3)-nak véges L_2 -erősítés esetén. Akkor $\xi \equiv 0$ aszimptotikusan stabilis egyensúlyi pont. Ha továbbá S(x) proper, azaz $\{x:S(x) \leq c\}$ kompakt, $\forall c > 0$, akkor az egyensúlyi pont globálisan aszimptotikusan stabil.

A továbbiakban összekapcsolt disszipatív rendszerek stabilitását vizsgáljuk, ahol a G_i nemlineáris rendszer állapotegyenlettel adott:

$$\Sigma_i : \dot{x}_i = f_i(x_i, e_i), y_i = h_i(x_i, e_i), i = 1,2.$$

Szigorú disszipativitási feltétel (SDC):

$$S_i(x_i(t_1)) \le S_i(x_i(t_0)) + \int_{t_0}^{t_1} (\langle e_i(t), y_i(t) \rangle - \varepsilon_i ||y_i(t)||^2) dt, i = 1, 2.$$

Tétel (visszacsatolt disszipatív rendszerek stabilitása):

- (1) Legyen mindkét Σ_1 és Σ_2 rendszer passzív (szigorúan kimenet passzív) és az (u_1,u_2) külső bemenőjelek aktívak, akkor a zárt rendszer az (y_1,y_2) kimenetre passzív (szigorúan kimenet passzív).
- (2) Elégítse ki S_i az (SDC) feltételt, legyen folytonosan differenciálható és legyen (izolált) lokális minimuma az x_i^* pontban, i = 1, 2, továbbá ne legyenek aktívak a külső bemenőjelek, azaz $u_1 = u_2 = 0$. Akkor (x_1^*, x_2^*) stabil egyensúlyi pontja a zárt rendszernek.
- (3) Legyen Σ_i szigorúan kimenet passzív és zéró-állapot detektálható. Elégítse ki S_i az (SDC) feltételt, legyen folytonosan differenciálható és legyen (izolált) lokális minimuma az $x_i^*=0$ pontban, i=1,2, továbbá ne legyenek aktívak a külső bemenőjelek, azaz $u_1=u_2=0$. Akkor (0,0) aszimptotikusan stabil egyensúlyi pontja a zárt rendszernek. Ha továbbá S_i nek globális minimuma van az $x_i^*=0$ pontban, i=1,2, akkor (0,0) globálisan aszimptotikusan stabil egyensúlyi pontja a zárt rendszernek.

Tétel (kis erősítés tétel disszipatív rendszerek esetén):

- (1) Legyen Σ_i zéró-állapot detektálható, véges γ_i erősítésű, i=1,2, és teljesüljön $\gamma_1 \cdot \gamma_2 < 1$. Elégítse ki S_i az (SDC) feltételt, legyen folytonosan differenciálható és legyen (izolált) lokális minimuma az $x_i^*=0$ pontban, i=1,2, továbbá ne legyenek aktívak a külső bemenőjelek, azaz $u_1=u_2=0$. Akkor (0,0) aszimptotikusan stabil egyensúlyi pontja a zárt rendszernek. Ha továbbá S_i -nek egyértelmű globális minimuma van az $x_i^*=0$ pontban, i=1,2, akkor (0,0) globálisan aszimptotikusan stabil egyensúlyi pontja a zárt rendszernek.
- (2) Legyen Σ_{ai} bemenet affin rendszer, véges γ_i erősítésű, i=1,2, és teljesüljön $\gamma_1 \cdot \gamma_2 < 1$. Elégítse ki S_i az (SDC) feltételt, legyen folytonosan differenciálható és $S_i(0) = 0$ (ezért $S_i(x)$ pozitív szemidefinit), és legyen $x_i^* = 0$ aszimptotikusan stabil egyensúlyi pontja a gerjesztetlen $\dot{x}_i = f_i(x_i)$ rendszernek, i=1,2, továbbá ne legyenek aktívak a külső bemenőjelek, azaz $u_1 = u_2 = 0$. Akkor (0,0) aszimptotikusan stabil egyensúlyi pontja a zárt rendszernek.