Conceptual exercises.

Special-purpose transformations:

For a study of congressional elections, you would like a measure of the relative amount of money raised by each of the two major-party candidates in each district. Suppose that you know the amount of money raised by each candidate; label these dollar values D_i and R_i . You would like to combine these into a single variable that can be included as an input variable into a model predicting vote share for the Democrats.

Discuss the advantages and disadvantages of the following measures:

- The simple difference, $D_i R_i$
- The ratio, D_i/R_i
- The difference on the logarithmic scale, $log D_i log R_i$
- The relative proportion, $D_i/(D_i + R_i)$.

Transformation

For observed pair of x and y, we fit a simple regression model

$$y = \alpha + \beta x + \epsilon$$

which results in estimates $\hat{\alpha} = 1$, $\hat{\beta} = 0.9$, $SE(\hat{\beta}) = 0.03$, $\hat{\sigma} = 2$ and r = 0.3.

1. Suppose that the explanatory variable values in a regression are transformed according to the $\mathbf{x}^* = \mathbf{x} - 10$ and that y is regressed on \mathbf{x}^* . Without redoing the regression calculation in detail, find $\hat{\alpha}^*$, $\hat{\beta}^*$, $\hat{\sigma}^*$, and r^* . What happens to these quantities when $\mathbf{x}^* = 10\mathbf{x}$? When $\mathbf{x}^* = 10(\mathbf{x} - 1)$?

If we transform x into x-10, $\hat{\alpha}^* = \hat{\alpha} + 10 \times \hat{\beta} = 1 + 10 \times 0.9 = 91$, $\hat{\beta}, \hat{\sigma}, r$ remains.

If we we change x into 10x, $\hat{\beta}^* = \frac{\hat{\beta}}{10} = 9 \times 10^{-2}$, $\hat{\sigma}^* = \frac{\hat{\sigma}}{10^2} = 3 \times 10^{-4}$, $\hat{\alpha}, r$ remains.

If we transform x into 10(x-1), $\hat{\alpha}^{\star}=91$, $\hat{\beta}^{\star}=9\times10^{-2}$, $\hat{\sigma}^{\star}=3\times10^{-4}$, r remains.

- 2. Now suppose that the response variable scores are transformed according to the formula $y^{\star\star} = y + 10$ and that $y^{\star\star}$ is regressed on x. Without redoing the regression calculation in detail, find $\hat{\alpha}^{\star\star}$, $\hat{\beta}^{\star\star}$, $\hat{\sigma}^{\star\star}$, and $r^{\star\star}$. What happens to these quantities when $y^{\star\star} = 5y$? When $y^{\star\star} = 5(y + 2)$?
- 3. In general, how are the results of a simple regression analysis affected by linear transformations of y and x?
- 4. Suppose that the explanatory variable values in a regression are transformed according to the $x^* = 10(x-1)$ and that y is regressed on x^* . Without redoing the regression calculation in detail, find $SE(\hat{\beta}^*)$ and $t_0^* = \hat{\beta}^*/SE(\hat{\beta}^*)$.
- 5. Now suppose that the response variable scores are transformed according to the formula $y^{\star\star} = 5(y+2)$ and that $y^{\star\star}$ is regressed on x. Without redoing the regression calculation in detail, find $SE(\hat{\beta}^{\star\star})$ and $t_0^{\star\star} = \hat{\beta}^{\star\star}/SE(\hat{\beta}^{\star\star})$.
- 6. In general, how are the hypothesis tests and confidence intervals for β affected by linear transformations of y and x?

Feedback comments etc.

If you have any comments about the homework, or the class, please write your feedback here. We love to hear your opinions.