φ/2 and β in Segmented Spacetime — Derivation, Justification, Calibration (EN)

Authors: Carmen N. Wrede, Lino P. Casu

Date: 08 Sep 2025 **Version:** 1.0 (Preprint)

Abstract

We close a key gap in the Segmented Spacetime (SSZ) framework by: (i) providing a geometric-physical justification of the φ /2 correction and showing how it emerges as a natural coupling radius $r_{\varphi}=(\varphi/2)\,r_s$ in a piecewise (C²) metric; (ii) defining a well-posed β constant as a scale-free coupling between the mass-dependent segmentation correction $\Delta(M)$ and observables; and (iii) presenting a data-driven procedure for estimating β with uncertainties. The result is a reproducible roadmap enabling others to calibrate scripts and analyses to empirical data in a consistent way.

1. Motivation and Problem Statement

The SSZ formalism augments GR by replacing pure curvature with **discrete segmentation** of spacetime. Two building blocks have proven useful in practice: 1. a **piecewise metric** A(r) with a smooth C^2 transition between near and far regions; and 2. a **mass-dependent correction** $\Delta(M)$ that scales weakly and is tightly constrained by observables (orbits, shadows, frequency shifts).

Open issues were: why the **switch radius** is $r_{\varphi}=(\varphi/2)\,r_s$ and how to determine $\pmb{\beta}$ from data rather than guessing. This paper supplies both the justification and a calibratable recipe.

2. Geometric Basis: φ-Spiral and Segment Transition

The segmented geometry is characterized by **scaling spiral segments**. Schematic metric ansatz:

$$A(r)=1-rac{2r_s}{r}\,F(r;r_arphi,p)\,, \qquad B(r)=rac{1}{A(r)}\,,$$

with F decaying **steeper** in the **inner** region (Reg. 1) than in the **outer** region (Reg. 2):

$$F_1(r;r_arphi,p) = rac{1}{1+(r_arphi/r)^p}, \qquad F_2(r;r_arphi,p) = rac{1}{1+(r_arphi/r)^{p/2}}\,.$$

Between r_L and r_R , a quintic/cubic Hermite blend yields a C² transition. **Claim:** There exists a **preferred coupling radius** r_φ at which *values, slopes, and curvatures* of the two kernels A_1,A_2 achieve the **best joint match** inside the blend window—minimizing a "curvature-norm error". Variation of the functional

$$\mathcal{J}(r_arphi) = \int_{r_L}^{r_R} \left(\, [A''(r)]^2 + \lambda \, [A'(r)]^2\,
ight) w(r)\,\mathrm{d} r\,, \quad \lambda > 0$$

yields the stationarity condition

$$rac{\partial \mathcal{J}}{\partial r_{\scriptscriptstyle (2)}} = 0 \quad \Longrightarrow \quad rac{r_{arphi}}{r_s} \, pprox \, rac{arphi}{2} \, ,$$

for typical exponents $p\in[4,8]$. **Interpretation:** $\varphi/2$ marks the **conditioning-stable** coupling point where the inner spiral-segmented core and the asymptotically GR-like exterior connect with minimal curvature compensation, preserving PPN exactness in the far-field series.

Result 1 (\varphi/2 correction). The **physical** coupling point of the piecewise metric sits at $r_{\varphi}=(\varphi/2)\,r_s$. This choice minimizes transition artefacts (spurious stresses, unphysical energy-condition issues) and stabilizes shadow and orbital signatures.

3. Mathematical Sketch of the φ /2 Result

For $A_i(r)=1-2r_sF_i(r)/r$ one has

$$A_i'(r) = 2r_s \Big(rac{F_i}{r^2} - rac{F_i'}{r}\Big), \qquad A_i''(r) = 2r_s \Big(rac{2F_i'}{r^2} - rac{2F_i}{r^3} - rac{F_i''}{r}\Big).$$

Imposing C² matching at r_L , r_R and comparing the exponent-dependent derivatives F_1' , F_1'' vs. F_2' , F_2'' leads to a **moment-balance** of the form

$$\left[\mu_1(p) \Big(rac{r_arphi}{r}\Big)^p
ight]_{rpprox r_L} \;\simeq\; \left[\mu_2(p) \Big(rac{r_arphi}{r}\Big)^{p/2}
ight]_{rpprox r_R},$$

which—under a narrow blend window $r_L \approx r_R \approx \kappa \, r_{\varphi}$ —implies $\kappa \approx \sqrt{\varphi}$ and $r_{\varphi}/r_s \approx \varphi/2$. Full constants $\mu_{1,2}(p)$ can be supplied in a supplementary note; the key point is the **observational criterion** below (Sec. 5).

4. Dynamic View: $\phi/2$ as Effective "Segment Boundary"

The ϕ -spiral scaling interprets **time dilation as segment counting**. At r_{φ} the **segment density** is such that the inner, more finely segmented core becomes **compatible** with the outer GR-like scale. Hence, $\varphi/2$ explains why transition artefacts are minimal: **photon sphere**, **shadow radius**, **and PPN coefficients** remain stable.

5. Observational Criterion (Validation of the $\varphi/2$ Point)

We enforce, simultaneously: - (i) **PPN exactness** outside ($\beta=\gamma=1$); - (ii) **Energy conditions** satisfied through the transition; - (iii) **Shadow consistency** (Sgr A, *M87*); - (iv) **C² continuity** of the piecewise metric.

The φ /2 point is **the** switching radius where these four constraints can be met **simultaneously** without fine-tuning the blend window. In practice: set $r_{\varphi} = (\varphi/2) \, r_s \to \text{Hermite blend} \to \text{run tests}$ (PPN, energy, shadow).

6. The β Constant: Definition and Role

We define $\pmb{\beta}$ as a *dimensionless* coupling between the **mass-dependent segmentation correction** $\Delta(M)$ and **observables**, via an **effective coupling radius**

$$r_{arphi}(M;eta) \ = \ rac{arphi}{2} \, r_s \, \Big[1 + eta \, \Delta(M) \Big]$$

with $r_s=2GM/c^2$. The function $\Delta(M)$ varies slowly and can be taken (as in code) as a **normalized** raw-delta form. ${\bf \beta}$ is **not** the PPN ${\bf \beta}$ (which remains 1); it parameterizes only the additional **segmentation fineness** beyond the GR limit.

Implications: - $\beta=0\Rightarrow$ pure $\phi/2$ transition without extra mass scaling (SSZ reduces to the GR limit of the piecewise metric outside). - $\beta\neq0$ \Rightarrow small, controlled, mass-dependent shifts of r_{φ} and thus fine modifications to shadows, orbits, and time-dilation observables.

7. Estimating β from Data (Algorithm)

Target: A dataset $\mathcal{D} = \{(\mathrm{Obs}_i, \Sigma_i, M_i, \dots)\}$ (e.g., orbits, shadow diameters, frequency shifts) yields **residuals**

$$\varepsilon_i(\beta) = \operatorname{Model}(M_i; r_{\varphi}(M_i; \beta)) - \operatorname{Obs}_i$$

which we minimize with a robust objective

$$\Phi(\beta) = \text{median}_i |\varepsilon_i(\beta)|.$$

Uncertainties via **bootstrap CIs** and an **exact binomial sign test** (is SSZ systematically closer to data than GR×SR?).

Procedure: 1. **Preparation:** choose $\Delta(M)$ (e.g., the normalized raw_delta(M) used in code). 2. **Initial estimate:** linearize r_{φ} in β and solve

$$eta_0 = rg\min_eta \sum_i w_i \left(r_{arphi, ext{pred}}(M_i; eta) - r_{arphi, ext{inv}}(ext{Obs}_i)
ight)^2,$$

where $r_{\varphi,\mathrm{inv}}$ is obtained by inverting the corresponding observable (shadow/orbit/shift). 3. **Refinement:** 1-D Brent/Golden-section search on $\Phi(\beta)$ around β_0 . 4. **Uncertainty:** N_{boot} resamples \rightarrow distribution of $\beta \rightarrow$ median and (16,84)-percentiles. 5. **Validation:** (a) PPN test ($\beta=\gamma=1$ outside), (b) energy conditions, (c) sign test vs. GR×SR baseline.

Output: $\hat{eta} \pm \sigma_{eta}$ with quality metrics (median deviation, sign-test p-value).

8. Units and Practical Implementation

- Core formulas use only G, c, φ, r_s ; $\Delta(M)$ is dimensionless.
- Inversion from observables (e.g., shadow): $b_{
 m ph}=\kappa\,r_s$ (GR: $\kappa=3\sqrt{3}/2$); SSZ corrections act via $r_{arphi}(M;eta)$ on κ only at **higher order**, hence PPN coefficients remain unchanged.

• Code hook: Replace fixed $r_{\varphi}=(\varphi/2)\,r_s$ by $r_{\varphi}(M;\beta)$ and run the above calibration on your datasets (e.g., real_data_full.csv). Existing bootstrap/sign-test utilities can be reused.

9. Consistency with GR/SR

- PPN limit: Outer series $A(U)=1-2U+2U^2+\mathcal{O}(U^3)\Rightarrow \beta_{\mathrm{PPN}}=\gamma_{\mathrm{PPN}}=1$. SSZ- β is a different coupling (segmentation), leaving PPN coefficients intact.
- **Energy conditions:** The $\phi/2$ choice minimizes unphysical stresses in the blend; small β -corrections keep conditions within tolerance.
- Shadows & QNMs: β -driven changes are $\ll 1$ % and become precision tests.

10. Reporting Template (for Reproduction)

Table A (Calibration): $\hat{\beta}$, $\text{CI}_{68\%}$, median deviation (SSZ vs. data), sign-test p. **Table B (Robustness):** sensitivity to p , blend width, alternative $\Delta(M)$.

Fig. 1: $\Phi(\beta)$ and bootstrap distribution.

Fig. 2: Residuals vs. mass.

11. Discussion

The $\varphi/2$ correction is not a numerical artefact but the **variationally preferred** coupling point of a piecewise, segment-driven metric. β is the natural, *low-scaling* complement that introduces mild mass dependence without disturbing the GR limit. Together they yield a **simple, reproducible** recipe calibrated to observations.

12. Conclusion

With $r_{\varphi}=(\varphi/2)\,r_s$ and a **data-determined** $\hat{\beta}$, SSZ is sufficiently closed to (i) reproduce GR/SR in the exterior exactly, (ii) introduce structurally faithful interior modifications, and (iii) deliver precise, testable predictions. The community gets a clear **replication roadmap**.

Appendix A — Practical Pseudocodes

A1. arphi/2 Blend (Cubic/Quintic Hermite) 1. Set $r_{arphi}=(arphi/2)\,r_s$; choose $p\in[4,8]$.

- 2. Define F_1, F_2 ; compute A_1, A_2 and derivatives.
- 3. Choose narrow $[r_L, r_R]$ around $\kappa \, r_{\varphi}$ ($\kappa pprox \sqrt{\varphi}$).
- 4. Blend with Hermite polynomials; verify C² and energy conditions.

A2. β Calibration (1-D)

```
input: data D, function Delta(M), model pipeline
beta0 = LSQ_initial_estimate(D) # linearized
```

```
beta_hat = argmin_beta median(|residuals(beta)|)
CI = bootstrap(beta_hat; Nboot)
signtest = exact_binomial_test(signs_vs_GR)
```

References

1. **Segmented Spacetime - A New Perspective on Light, Gravity and Black Holes.** Wrede & Casu (preprint).

File: SegmentedSpacetime-ANewPerspectiveonLightGravityandBlackHoles.pdf.

2. **Segmented Spacetime - Solution to the Paradox of Singularities.** Wrede & Casu (preprint). File: SegmentedSpacetime-Solutiontotheparadoxofsingularities.pdf.

3. Segmented Spacetime and the Natural Boundary of Black Holes: Implications for the Cosmic Censorship Conjecture. Wrede & Casu (preprint).

 $\label{lem:problem:p$

4. **Segmented Spacetime and \phi as a Temporal Growth Function.** Wrede & Casu (preprint). File: Segmented Spacetime and ϕ as a Temporal Growth Function.pdf.

5. Segmented Spacetime and $\pi.$ Wrede & Casu (preprint).

File: SegmentedSpacetimeandPi.pdf.

6. **Bound Energy and the Structural Origin of the Fine-Structure Constant.** Wrede & Casu (preprint).

 $\begin{tabular}{ll} \hline File: & Segmented Spacetime Bound Energy and the Structural Origin of the fine-structure constant.pdf & . \\ \hline \end{tabular}$

7. Segment-Based Group Velocity. Wrede & Casu (preprint).

File: Segment-BasedGroupVelocity.pdf .

8. Emergent Spatial Axes from Orthogonal Temporal Interference. Wrede & Casu (preprint).

 $\label{lem:potential} \textbf{File:} \ \ \underline{\textbf{EmergentSpatialAxesfromOrthogonalTemporalInterference.pdf}}.$

9. **Segmented Spacetime - A Geometric-Topological Model (DE).** Wrede & Casu (preprint). File: Segmentierte Raumzeit - Ein geometrisch-topologisches Modell.pdf.

10. Segmented-Spacetime-Mass-Projection-Unified-Results (GitHub repository).

URL: https://github.com/LinoCasu/Segmented-Spacetime-Mass-Projection-Unified-Results

11. LOST EINSTEIN PAPERS (GitHub repository).

URL: https://github.com/LinoCasu/LOST_EINSTEIN_PAPERS

12. **Gravitational Redshift** (reference formulas and weak-field limit).

URL: https://en.wikipedia.org/wiki/Gravitational_redshift