Fourier Bases on the "Skewed Sierpinski Gasket"

Calvin Hotchkiss

Iowa State University

Nebraska-Iowa Functional Analysis Seminar

November 5, 2016

Part 1:

A Fast Fourier Transform for Fractal Approximations

The Fractal Approximation S_N

Begin with an iterated function system generated by contractions $\{\psi_0, \psi_1, \dots, \psi_{K-1}\}$ on \mathbb{R}^d of the following form:

$$\psi_j(x) = A(x + \vec{b}_j)$$

where A is a $d \times d$ invertible matrix with ||A|| < 1. We require A^{-1} to have integer entries, the vectors $\vec{b}_j \in \mathbb{Z}^d$, and $\vec{b}_0 = \vec{0}$. Define the finite orbit:

$$S_N(\vec{0}) := \{ \psi_{j_{N-1}} \circ \psi_{j_{N-2}} \circ \cdots \circ \psi_{j_1} \circ \psi_{j_0}(\vec{0}) : j_k \in \{0, 1, \dots, K-1\} \}.$$

This orbit is our Nth fractal approximation.

A Fourier Basis on S_N

We then choose a second iterated function system generated by $\{\rho_0, \rho_1, \dots, \rho_{K-1}\}$ of the form

$$\rho_j(x) = Bx + \vec{c}_j$$

where $B = (A^T)^{-1}$, with $\vec{c}_j \in \mathbb{Z}^d$, and $\vec{c}_0 = \vec{0}$. Define the finite orbit:

$$\mathfrak{T}_{N}(\vec{0}) := \{ \rho_{j_{N-1}} \circ \rho_{j_{N-2}} \circ \cdots \circ \rho_{j_{1}} \circ \rho_{j_{0}}(\vec{0}) : j_{k} \in \{0, 1, \dots, K-1\} \}.$$

These are the frequencies for an exponential basis on $L^2(\mu_n)$, where $\mu_n = \frac{1}{K^N} \sum_{s \in S_n} \delta_s$.

Example: The "Skewed Sierpinski Gasket"

Let:

$$A=egin{pmatrix} 1/3 & 0 \ 0 & 1/3 \end{pmatrix} \qquad b_1=egin{pmatrix} 2 \ 0 \end{pmatrix} \qquad b_2=egin{pmatrix} 0 \ 2 \end{pmatrix}$$
 $c_1=egin{pmatrix} 1 \ 2 \end{pmatrix} \qquad c_2=egin{pmatrix} 2 \ 1 \end{pmatrix}$

So that

$$\begin{aligned} \psi_0 \begin{pmatrix} x \\ y \end{pmatrix} &= \frac{1}{3} \begin{pmatrix} x \\ y \end{pmatrix} & \rho_0 \begin{pmatrix} x \\ y \end{pmatrix} &= 3 \begin{pmatrix} x \\ y \end{pmatrix} \\ \psi_1 \begin{pmatrix} x \\ y \end{pmatrix} &= \frac{1}{3} \begin{pmatrix} x+2 \\ y \end{pmatrix} & \rho_1 \begin{pmatrix} x \\ y \end{pmatrix} &= 3 \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ \psi_2 \begin{pmatrix} x \\ y \end{pmatrix} &= \frac{1}{3} \begin{pmatrix} x \\ y+2 \end{pmatrix} & \rho_2 \begin{pmatrix} x \\ y \end{pmatrix} &= 3 \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} \end{aligned}$$

Approximations and Frequencies for Small N

Matrices

The $\{\vec{c}_i\}$ must be chosen so that the matrix

$$M_1 = (e^{-2\pi i \vec{c}_j \cdot A\vec{b}_k})_{j,k}$$

is invertible (or Hadamard).

We then define

$$M_N = \left(e^{-2\pi i \vec{s}_j \cdot \vec{t}_k}\right)_{\vec{t}_k \in \mathcal{T}_N, \vec{s}_j \in \mathcal{S}_N}$$

and show that M_N is a discrete Fourier Transform matrix for S_N .

Diţă's Construction

If A is a $K \times K$ Hadamard matrix, B is an $M \times M$ Hadamard matrix, and E_1, \ldots, E_{K-1} are $M \times M$ unitary diagonal matrices, then the $KM \times KM$ block matrix H defined by:

$$\begin{pmatrix} a_{00}B & a_{01}E_{1}B & \dots & a_{0(K-1)}E_{K-1}B \\ a_{10}B & a_{11}E_{1}B & \dots & a_{1(K-1)}E_{K-1}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{(K-1)0}B & a_{(K-1)1}E_{1}B & \dots & a_{(K-1)(K-1)}E_{K-1}B \end{pmatrix}$$

is a Hadamard matrix.

Similarly, if A, B, E_1, \ldots, E_{K-1} invertible, H will also be invertible.

For
$$C = A^{-1}$$
, H^{-1} is:

$$\begin{pmatrix} c_{00}B^{-1} & c_{01}B^{-1} & \dots & c_{0(\kappa-1)}B^{-1} \\ c_{10}B^{-1}E_1^{-1} & c_{11}B^{-1}E_1^{-1} & \dots & c_{1(\kappa-1)}B^{-1}E_1^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{(\kappa-1)0}B^{-1}E_{\kappa-1}^{-1} & c_{1(\kappa-1)}B^{-1}E_{\kappa-1}^{-1} & \dots & c_{(\kappa-1)(\kappa-1)}B^{-1}E_{\kappa-1}^{-1} \end{pmatrix}.$$

Complexity of Matrix Multiplication

Let \vec{v} be a vector of length KM. Consider $H\vec{v}$ where H is the block matrix as in Equation (9). Utilizing the block form of the matrix H, we obtain that the computational complexity of $H\vec{v}$ is

$$O(M^2K + MK^2),$$

whereas for a generic $KM \times KM$ matrix, the computational complexity is $O(K^2M^2)$. Thus, the block form of H reduces the computational complexity of the matrix multiplication.

A Fast Fourier Transform on S_N

The matrix M_N representing the exponentials with frequencies given by $\mathfrak{T}_N(\vec{0})$ on the fractal approximation $\mathfrak{S}_N(\vec{0})$, both ordered in a particular manner, has the form:

$$\left(\begin{array}{ccccc} m_{00}M_{N-1} & m_{01}D_{N,1}M_{N-1} & \dots & m_{0(K-1)}D_{N,K-1}M_{N-1} \\ m_{10}M_{N-1} & m_{11}D_{N,1}M_{N-1} & \dots & m_{1(K-1)}D_{N,K-1}M_{N-1} \\ \vdots & \vdots & \vdots & \vdots \\ m_{(K-1)0}M_{N-1} & m_{(K-1)1}D_{N,1}M_{N-1} & \dots & m_{(K-1)(K-1)}D_{N,K-1}M_{N-1} \end{array} \right) .$$

Where $m_{jk} = [M_1]_{jk}$ and the $D_{N,m}$ are unitary diagonal matrices.

Therefore, by Diţă's construction, M_N is invertible, and if M_1 is Hadamard, then M_N is also Hadamard.

Block form for Inverse

The matrix M_N representing the exponentials with frequencies given by \mathfrak{T}_N on the fractal approximation \mathfrak{S}_N , both ordered in a different manner, has the form:

$$\begin{pmatrix} m_{00}\widetilde{M}_{N-1} & m_{01}\widetilde{M}_{N-1} & \dots & m_{0(K-1)}\widetilde{M}_{N-1} \\ m_{10}\widetilde{M}_{N-1}\widetilde{D}_{N,1} & m_{11}\widetilde{M}_{N-1}\widetilde{D}_{N,1} & \dots & m_{1(K-1)}\widetilde{M}_{N-1}\widetilde{D}_{N,1} \\ \vdots & \vdots & \vdots & \vdots \\ m_{(K-1)0}\widetilde{M}_{N-1}\widetilde{D}_{N,K-1} & m_{(K-1)1}\widetilde{M}_{N-1}\widetilde{D}_{N,K-1} & \dots & m_{(K-1)(K-1)}\widetilde{M}_{N-1}\widetilde{D}_{N,K-1} \end{pmatrix}.$$

Where $\widetilde{D}_{N,\ell}$ are also unitary diagonal matrices.

Therefore, \widetilde{M}_N^{-1} has the form of Diţă's construction.

Complexity is $O(n \log n)$

By utilizing the block forms above, the computational complexity of multiplying a vector \vec{v} by either M_N or M_N^{-1} is reduced to $\mathcal{O}(N \cdot K^N)$, or, in terms of the matrix size $n = K^N$, $\mathcal{O}(n \log n)$.

This is the same computation time as the standard Fast Fourier Transform.

Part 2:

Fourier Bases on the Skewed Sierpinski Gasket

The full Skewed Sierpinski Gasket!

For any iterated function system on \mathbb{R}^d generated by contractions $\{\psi_0, \psi_1, \dots, \psi_{K-1}\}$ of the form:

$$\psi_j(x) = A(x + \vec{b}_j)$$

where A is a $d \times d$ invertible matrix with ||A|| < 1, J.E. Hutchinson (1981, [5]) proved there is a unique closed bounded set S with

$$S = \bigcup_{j=0}^{K-1} \psi_j(S)$$

That is, the "compact attractor set" S is invariant under $\{\psi_0, \psi_1, \dots, \psi_{K-1}\}$ and their compositions.

In the same paper, Hutchinson also showed that there is a Borel probability measure ν on S with the property that, for all continuous f:

$$\int_{S} f(\vec{x}) d\nu(x) = \frac{1}{K} \left(\sum_{j=0}^{K-1} \int f(\psi_{j}(\vec{x})) d\nu(x) \right).$$

For our example of $\{\psi_0, \psi_1, \psi_2\}$ above, the invariant set

$$S = \{(x, y) | x \in C_3, y \in C_3, x + y \in C_3\}$$

where C_3 is the standard middle-third Cantor set. We call the corresponding probability measure v_3 .

Is $\mathfrak{T} = \bigcup_{N} \mathfrak{T}_{N}(0,0)$ a complete set of frequencies for \mathfrak{S} ?

To (try to) show that

$$\mathcal{E} = \{ e^{2\pi i (t \cdot x)} \mid t \in \bigcup_{N} \mathfrak{T}_{N}(0,0) \}$$

is a Fourier basis for $L^2(\nu_3)$, we reconstruct it using a representation of the Cuntz algebra \mathcal{O}_3 on $L^2(\nu_3)$.

First, choose filters for $L^2(v_3)$:

$$m_0(x,y) = \frac{1}{\sqrt{3}} e^{2\pi i(x,y) \cdot (0,0)} = \frac{1}{\sqrt{3}}$$

$$m_1(x,y) = \frac{1}{\sqrt{3}} e^{2\pi i(x,y) \cdot (2,1)}$$

$$m_2(x,y) = \frac{1}{\sqrt{3}} e^{2\pi i(x,y) \cdot (1,2)}$$

An Orthonormal Set of Exponentials on S

Then for $j = 0, 1, 2, R(x, y) = 3(x, y) \mod 1$:

$$S_j f(x, y) = M = m_j(x, y) f(R(x, y))$$

satisfy the Cuntz relations: $S_i^* S_j = \delta_{i,j} I$ and $\sum_{j=0}^2 S_j S_j^* = I$.

 \mathcal{E} is the orbit of the constant function $\mathbb{1}$ under specific powers of these $\{S_i\}$; thus \mathcal{E} is an orthonormal set for $L^2(\nu_3)$.

We tried to show that \mathcal{E} was complete; however . . .

Answer: No!

Lemma (Jorgensen and Pedersen, 1998)

Let $Q_1(t):=\sum_{\lambda\in P}|\hat{\mu}(t-\lambda)|^2$, for $t\in\mathbb{R}^d$ and $\hat{\mu}$ the inverse Fourier transform $\hat{\mu}(t)=\int e^{-2\pi i(t\cdot x)}\;d\mu(x)$. Then $\{e^{2\pi i(\lambda\cdot x)}:\lambda\in P\}$ is an orthonormal basis for $L^2(\mu)$ if and only if $Q_1\equiv 1$ on \mathbb{R}^d .

In our case, for $P = \mathfrak{T} = \bigcup_N \mathfrak{T}_N(0,0)$, $\widehat{\nu}_3((-1/2,-1)-(a,b)) = 0$ for all $(a,b) \in \mathfrak{T}$. Therefore, $Q_1(-1/2,-1) = 0$ and \mathcal{E} is NOT a Fourier basis for $L^2(\nu_3)!$

Completing our spectrum

Theorem (Dutkay and Jorgensen, 2006)

Let $\Lambda \subset \mathbb{R}^d$ be the smallest set that contains -C for every W_B -cycle C, and such that $S\Lambda + L \subset \Lambda$. Then $\{e^{2\pi i\lambda \cdot x} | \lambda \in \Lambda\}$ is an orthonormal basis for $L_2(\mu_B)$.

For the case of $\mu_B = \nu_3$, $S = 3I_2$ and $L = \{(0,0), (1,2), (2,1)\}$; $S\Lambda + L = \{\rho_j(\Lambda) \mid j \in (0,1,2)\}$. The W_B -cycles are (0,0), (1,1/2), and (1/2,1).

A Complete Spectrum

Therefore, for

$$\mathfrak{T}_{N}(x,y) := \{ \rho_{j_{N-1}} \circ \rho_{j_{N-2}} \circ \cdots \circ \rho_{j_{1}} \circ \rho_{j_{0}}(x,y) : j_{k} \in \{0,1,2\} \},$$

then

$$\overline{\mathfrak{T}} = \bigcup_{N} \left(\mathfrak{T}_{N}(0,0) \cup \mathfrak{T}_{N}(-1/2,-1) \cup \mathfrak{T}_{N}(-1,-1/2) \right)$$

forms a complete set of frequencies for S.

$$\mathfrak{T}_5(0,0) \cup \mathfrak{T}_5(-1/2,-1) \cup \mathfrak{T}_5(-1,-1/2)$$

Another spectrum

Theorem (H. and Weber, 2016)

$$\{e^{2\pi i(u,u/2)\cdot(x,y)}|u\in\mathbb{Z}\}$$

is an orthonormal basis for $L^2(v_3)$.

This spectrum comes from the dual iterated function system:

$$\eta_0 \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix} \quad \eta_1 \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \eta_2 \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

which has W_B -cycles (0,0), (2,1), and (1,1/2).

Third iteration of the dual function system $\{\eta_j\}$ applied to (0,0), (-2,-1), and (-1,-1/2).

Thank you.

References

P. Diță, Some results on the parametrization of complex Hadamard matrices, J. Phys. A **37** (2004), no. 20, 5355–5374.

Dorin Ervin Dutkay and Palle E. T. Jorgensen, *Iterated Function Systems, Ruelle Operators, and Invariant Projective Measures*, Mathematics of Computation, **75** (2006), no. 256, 1931-1970.

—, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z. (2007) no. 256, 801-823.

Calvin Hotchkiss and Eric Weber, *A Fast Fourier Transform for Fractal Approximations*. Excursions in Harmonic Analysis: the February Fourier Talks at the Norbert Weiner Center, forthcoming.

John E. Hutchinson, *Fractals and self-similarity*, Indiana Univ. Math. J. **30** (1981), no. 5, 713–747.

Palle E. T. Jorgensen and Steen Pedersen, *Dense analytic subspaces in fractal* L^2 -spaces, J. Anal. Math. **75** (1998), 185–228.