Piston having a barrel of forged steel and a cooling channel

Patent number:

DE19846152

Publication date:

2000-04-13

Inventor:

KEMNITZ PETER (DE); ULLRICH MICHAEL (DE)

Applicant:

MAHLE GMBH (DE)

Classification:

- international:

F02B23/06; F02F3/00; F02F3/22; F02B23/02;

F02F3/00; F02F3/16; (IPC1-7): F02F3/22; F02F3/00;

F16J1/00

- european:

F02B23/06W; F02F3/00B; F02F3/22

Application number: DE19981046152 19981007

Priority number(s): DE19981046152 19981007

Also published as:

WO0020747 (A1) US6026777 (A1)

Report a data error here

Abstract not available for DE19846152
Abstract of corresponding document: **US6026777**

A piston with a cooling channel having a basic piston barrel made from forged steel and a box-shaped shaft, bosses and boss supports and connecting walls between the boss supports as well as a combustion trough. The piston increases the rigidity of the ring part. To accomplish this, the piston has a wall extending all around above the boss bores. A structural component is welded in between the wall and the piston head and limits the cooling channel. This design increases the rigidity of the ring part in pistons.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

₁₀ DE 198 46 152 A 1

(21) Aktenzeichen: 198 46 152.6 22) Anmeldetag: 7. 10. 1998 Offenlegungstag: 13. 4.2000

(5) Int. Cl.⁷: F 02 F 3/22 F 16 J 1/00

F 02 F 3/00

(7) Anmelder:

Mahle GmbH, 70376 Stuttgart, DE

② Erfinder:

Kemnitz, Peter, 71397 Leutenbach, DE; Ullrich, Michael, 71696 Möglingen, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

195 01 416 A1 DE 44 46 726 A1 41 34 528 A1 DE DE 30 32 671 A1 DE 24 34 902 A1 DD 1 30 368 A WO 80 02 308 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Kolben mit Kolbengrundkörper aus geschmiedetem Stahl und einem Kühlkanal
- Bei einem Kolben mit Kühlkanal, der einen Kolbengrundkörper aus geschmiedetem Stahl mit einem kastenförmigen Schaft, Naben und Nabenabstützungen und Verbindungswände zwischen den Nabenabstützungen sowie eine Verbrennungsmulde aufweist, soll die Steifigkeit der Ringpartie erhöht werden.

Hierzu weist der Kolben oberhalb der Nabenbohrungen eine umlaufende Wand auf. Zwischen dieser Wand und dem Kolbenboden ist ein Bauteil eingeschweißt, das den Kühlkanal begrenzt. Durch diese Konstruktion wird bei gattungsgemäßen Kolben die Steifigkeit der Ringpartie erhöht.

BEST AVAILABLE COPY

2

Beschreibung

Die Erfindung betrifft einen Kolben mit einem Kolbengrundkörper aus geschmiedetem Stahl und einem Kühlkanal nach dem Oberbegriff des Anspruchs 1.

Ein derartiger Kolben und ein verfahren zu seiner Herstellung ist aus der DE 44 46 726 A1 bekannt. Bei derartigen Kolben besteht das Problem, daß die Anbindung des Ringbandes an den Kolbengrundkörper nur über den Kolbenboden erfolgt und infolgedessen das Ringband einen 10 verformungsanfälligen Bereich darstellt.

Die Erfindung beschäftigt sich daher mit dem Problem, bei gattungsgemäßen Kolben Verformungen im Bereich des Ringbands zu minimieren.

Dieses Problem wird gelöst durch den kennzeichnenden 15 Teil des Anspruchs 1. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.

Durch die erfindungsgemäße Gestaltung – zumindest ein Teil des Ringbands und des Kolbenbodens wird durch ein durch zwei Schweißnähte mit dem Kolbengrundkörper verschweißtes Bauteil gebildet – wird die Steifigkeit der Ringpartie deutlich erhöht.

Der kastenförmige Schaft kann in Druck-Gegendruckrichtung entweder – wie in den Zeichnungen dargestellt – durch eine Ausnehmung vom Ringband getrennt sein oder 25 er kann mit diesem und damit auch mit der umlaufenden Wand 10 verbunden sein.

Zwar ist aus der WO 80/02308 ein Kolben aus Gußeisen bekannt, bei dem Oberteil und Nabenteil miteinander verschweißt sind und der oberhalb der Naben eine umlaufende 30 Rippe aufweist, diese ist jedoch nicht mit dem Oberteil verschweißt und hat keine Versteifungsfunktion.

Aus der DE 24 34 902 A ist ein Kolben bekannt, bei dem Teile des Ringbands und ein radial außenliegender Teil des Kolbenbodens durch ein eingeschweißtes Teil gebildet werden. Diese Maßnahme dient jedoch ausschließlich zur Bildung eines Kühlkanals, d. h. zur Lösung eines Problems, das beim gattungsgemäßen Stand der Technik im Regelfall schon durch Verschluß des spanend erzeugten Kühlkanals durch ein Blech gelöst ist.

Aus der DE 30 32 671 A ist ferner ein Kolben bekannt, bei dem ein Oberteil aus warmfestem Stahl und ein Unterteil aus fließgepreßtem Stahl verschweißt sind.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert. Es zeigt:

Fig. 1 einen erfindungsgemäßen Kolben, halbseitig in Bolzenrichtung geschnitten

Fig. 2 den erfindungsgemäßen Kolben nach Fig. 1, halbseitig geschnitten in DR-GDR-Richtung.

Der Kolben 1 besteht aus einem Kolbengrundkörper 2 und einem mit diesem verschweißtem Bauteil 3, das einen Teil der Ringpartie und den Feuersteg sowie einen Teil des Kolbenbodens 5 beinhaltet. Die Ringpartie und der Feuersteg werden gemeinsam mit dem Bezugszeichen 4 bezeichnet. Im Kolbenboden 5 ist eine Verbrennungsmulde 6 angeordnet. Der Kolbengrundkörper besteht aus den Naben, die eine Nabenbohrung 7 aufweisen, den Nabenabstützungen 8 und den Verbindungswänden 9 zwischen den Naben, einer oberhalb der Nabenbohrungen 7 angeformten, radial außerhalb der Naben und der Verbindungswände 9 zwischen den Naben liegenden umlaufenden Wand 10 und dem Kolbenboden 5 mit der Verbrennungsmulde 6.

Die umlaufende Wand 10 verläuft von den Naben bzw. den Verbindungswänden zwischen den Nabenabstützungen ausgehend nach radial außen schräg nach oben.

Die Schweißnähte sind als Axialnaht im radial außenliegenden Bereich des Kolbenbodens und als Radialnaht im Bereich des Ringbands zwischen Nut II und Nut III ange-

ordnet.

Der kastenförmige Schaft 11 kann entweder nur mit den Naben oder zusätzlich mit dem Ringband 4 verbunden sein.

Die umlaufende Wand 10 bildet im wesentlichen eine untere Begrenzung eines Kühlkanals 12 und das eingeschweißte Bauteil 3 bildet im wesentlichen eine radial äußere Begrenzung des Kühlkanals 12.

Patentansprüche

- 1. Kolben (1) mit einem Kühlkanal (12), der einen Kolbengrundkörper (2) aus geschmiedetem Stahl mit einem kastenförmigen Schaft (11), Naben mit Nabenbohrungen (7) und Nabenabstützungen (8) und Verbindungswänden (9) zwischen den Nabenabstützungen sowie eine Verbrennungsmulde (6) aufweist, gekennzeichnet durch die Merkmale
 - axial oberhalb der Nabenbohrungen (7) ist radial außerhalb der Nabenabstützung (8) und der Verbindungswände (9) einstückig mit dem Kolbengrundkörper (2) eine umlaufende Wand (10) angeformt,
 - zumindest ein Teil des Ringbands und ein radial außen liegender Teil des Kolbenbodens (5) werden durch ein mit dem Kolbengrundkörper (2) verschweißtes Bauteil (3) gebildet,
 - die umlaufende Wand (10) des Kolbengrundkörpers (2) und das mit dem Kolbengrundkörper
 (2) verschweißte Bauteil (3) bilden gemeinsam eine radial äußere und axial untere Begrenzungswand eines Kühlkanals (12), wodurch sich im Bereich der Ringpartie eine biegesteife Zone ergibt, der Stahl des Kolbengrundkörpers (2) hat ein Kohlenstoffäquivalent von mindestens 0,3%,
 - die Schweißnähte sind im MIG- oder MAG-Schweißverfahren, durch Laserschweißen oder durch Elektronenstrahlschweißen hergestellt.
- 2. Kolben nach Anspruch 1, dadurch gekennzeichnet, daß in der Innenform des Kolbens (1) ein federndes Blech (13) die untere Begrenzung eines inneren Kühlraumes bildet, das unter eigener Federvorspannung im Bereich der Nabenabstützung (8) fixiert ist.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.7: Offenlegungstag:

DE 198 46 152 A1 F 02 F 3/22 13. April 2000

Fig. 1

Fig. 2

