

Scenario-2 (Linearly Separable Data)

Identify the right hyper-plane:

- Here, we have three hyper-planes (A, B and C) and all are segregating the classes well.
- Now, How can we identify the right hyperplane?

Scenario-2 (Linearly Separable Data)

 Here, maximizing the distances between nearest data point (either class) and hyper-plane will help us to decide the right hyper-plane.

This distance is called Margin.

Scenario-2 (Linearly Separable Data)

 You can see that the margin for hyperplane C is high as compared to both A and B. Hence, we name the right hyper-plane as C.

Scenario-2 (Linearly Separable Data)

- Another lightning reason for selecting the hyper-plane with higher margin is robustness.
- If we select a hyper-plane having low margin then there is high chance of miss-classification.

Scenario-3 (Linearly Separable Data)

Identify the right hyper-plane:

Scenario-3 (Linearly Separable Data)

 Some of you may have selected hyper-plane B as it has higher margin compared to A.

Scenario-3 (Linearly Separable Data)

SVM selects the hyper-plane
 which classifies the classes accurately prior to
 maximizing margin.

Here, hyper-plane B has a classification error and A
has classified all correctly. Therefore, the right hyper-plane is A.

Problem with line A

у

- If we select a hyper-plane having low margin then there is high chance of missclassification on unseen data.
- The model is overfitting.
- Also the model is less confident while classifying data points.

×

Benefit of choosing Line B

- High confidence while classifying.
- Generalizes well on unseen data.
- Less over-fitting

But how to make the model
 choose Line B instead of Line A

Regularization Parameter C

 Used to control no. of mistakes that a model is allowed to make.

 If C value is high, model is not allowed to make any mistakes, sensitive to outliers also – Hard Margin SVM

Regularization Parameter C

- If C value is low, model can make some mistakes.
- Not affected by outliers.
- Generalizes well on unseen data Soft
 Margin SVM

Soft Margin SVM

Scenario-4 (Linearly Inseparable Data)

Find the hyper-plane to segregate to classes :

Scenario-4 (Linearly Inseparable Data)

 In this scenario, we can't have linear hyperplane between the two classes, so how does SVM classify these two classes?

 Till now, we have only looked at the linear hyper-plane.

Scenario-4 (Linearly Inseparable Data)

- SVM can solve this problem. Easily!
- It solves this problem by introducing additional feature.
- Here, we will add a new feature z = x² + y².

Scenario-4 (Linearly Inseparable Data)

Now, let's plot the data points on axis x and z:

Scenario-4 (Linearly Inseparable Data)

In above plot, points to consider are:

All values for z would be positive
 always because z is the squared sum of
 both x and y.

Scenario-4 (Linearly Inseparable Data)

 In the original plot, red circles appear close to the origin of x and y axes, leading to lower value of z and star relatively away from the origin result to higher value of z.

Agenda

- What is SVM?
- Ideology behind SVM
- Intuition Development
- Terminologies used in SVM
- How does it work?
- What is Kernel trick?

- Types of kernel
 - Polynomial Kernel
 - Gaussian RBF Kernel
- Support Vector Regression
- Pros and Cons of SVM
- Data preparation for SVM
- Use Case House Prices

What is Kernel trick?

Coming to the major part of the SVM for which it is most famous, the kernel trick.

The kernel computes in a way such that when you project the 2-D data into a 3-D space, the data points close to the center of the data gets to the top and those far away from center gets into the bottom of the 3-D space.