

Final Projet

Nelson Maloney

Table of Contents

Data Collection

Data Visualization

Modeling

Data Collection

Data Collection – Fast Fl

- Fast FI is an API that is built on top of Pandas DataFrames and Series
- Fast FI has lots of data (laptime information, weather data, car telemetry, etc.)
- All of Fast F1's data is downloaded from 2 sources:
 - The official FI data stream
 - Ergast web api
- Fast FI is very flexible, precise, and has its own built in functions, such as pick_fastest() (get fastest lap)

Data Origins

- Fast FI API to load in the data
 - Qualification and practice lap data
 - Weather data

- Data from every race from 2018 to 2021
- Data loaded by session per race per year

Time	DriverNumber	LapTime	LapNumber	Stint	PitOutTime	PitInTime	Sector1Time	Sector2Time	Sector3Time	Sector1SessionTime	Sector2SessionTime	Sector3SessionTime	SpeedI1	SpeedI2	SpeedFL	SpeedST	IsPersonalBest	Compound	TyreLife	FreshTyre	LapStartTime
0 days 0 00:53:23.995000	2 (0 days 00:01:34.233000	13.0	3.0	NaT	NaT	0 days 00:00:30.878000	0 days 00:00:25.279000	0 days 00:00:38.076000	0 days 00:52:20.640000	0 days 00:52:45.919000	0 days 00:53:23.995000	261.0	279.0	287.0	251.0	True	INTERMEDIATE	13.0	False	0 days 00:51:49.762000
0 days 00:40:45.211000	44 (0 days 0:01:34.225000	4.0	1.0	NaT	NaT	0 days 00:00:30.848000	0 days 00:00:25.401000	0 days 00:00:37.976000	0 days 00:39:41.834000	0 days 00:40:07.235000	0 days 00:40:45.211000	268.0	286.0	290.0	236.0	True	INTERMEDIATE	4.0	True	0 days 00:39:10.986000
0 days 2 01:00:37.407000	35 (0 days 0:01:35.589000	15.0	3.0	NaT	NaT	0 days 00:00:31.687000	0 days 00:00:25.439000	0 days 00:00:38.463000	0 days 00:59:33.505000	0 days 00:59:58.944000	0 days 01:00:37.407000	262.0	280.0	282.0	257.0	True	INTERMEDIATE	13.0	False	0 days 00:59:01.818000
0 days 01:03:19.272000	33 (0 days 00:01:31.680000	7.0	2.0	NaT	NaT	0 days 00:00:30.049000	0 days 00:00:24.535000	0 days 00:00:37.096000	0 days 01:02:17.641000	0 days 01:02:42.176000	0 days 01:03:19.272000	269.0	285.0	289.0	251.0	True	INTERMEDIATE	8.0	False	0 days 01:01:47.592000
0 days 00:42:46.913000		0 days 0:01:35.438000	13.0	3.0	NaT	NaT	0 days 00:00:31.316000	0 days 00:00:25.559000	0 days 00:00:38.563000	0 days 00:41:42.791000	0 days 00:42:08.350000	0 days 00:42:46.913000	264.0	281.0	287.0	259.0	True	INTERMEDIATE	11.0	True	0 days 00:41:11.475000
0 days 00:54:24.139000		0 days 0:01:25.322000	10.0	3.0	NaT	NaT	0 days 00:00:17.354000	0 days 00:00:36.801000	0 days 00:00:31.167000	0 days 00:53:16.171000	0 days 00:53:52.972000	0 days 00:54:24.139000	287.0	315.0	221.0	324.0	True	SOFT	3.0	True	0 days 00:52:58.817000
0 days 01:05:29.762000	5 (0 days 0:01:25.115000	17.0	4.0	NaT	NaT	0 days 00:00:17.450000	0 days 00:00:36.530000	0 days 00:00:31.135000	0 days 01:04:22.097000	0 days 01:04:58.627000	0 days 01:05:29.762000	285.0	314.0	222.0	321.0	True	SOFT	3.0	True	0 days 01:04:04.647000
0 days 01:06:03.233000	4 (0 days 0:01:24.106000	12.0	3.0	NaT	NaT	0 days 00:00:17.201000	0 days 00:00:36.345000	0 days 00:00:30.560000	0 days 01:04:56.328000	0 days 01:05:32.673000	0 days 01:06:03.233000	284.0	307.0	223.0	320.0	True	SOFT	3.0	True	0 days 01:04:39.127000
0 days 00:39:45.771000	77 (0 days 0:01:24.025000	9.0	3.0	NaT	NaT	0 days 00:00:17.191000	0 days 00:00:36.371000	0 days 00:00:30.463000	0 days 00:38:38.937000	0 days 00:39:15.308000	0 days 00:39:45.771000	288.0	316.0	218.0	321.0	True	SOFT	9.0	False	0 days 00:38:21.746000
1408 00:59:10.856000		0 days 00:01:25.048000	10.0	2.0	NaT	NaT	0 days 00:00:17.427000	0 days 00:00:36.646000	0 days 00:00:30.975000	0 days 00:58:03.235000	0 days 00:58:39.881000	0 days 00:59:10.856000	285.0	316.0	216.0	326.0	True	SOFT	3.0	True	0 days 00:57:45.808000

Data Prep

```
def create_laps(weather_data, session_data):
    Creates fastest laps dataframe with individual session data per driver. Data passed as arguments must be passed as a list of dataframes.
    concat_data = []
    fast_laps = []
   q_laps = []
    # Concatenating the weather and laps data and adding location and year data to identify our sessions
    for session in session_data:
        for weather in weather_data:
            weather.reset_index(inplace=True, drop=True)
            lw = pd.concat([session.laps, weather], axis=1)
            lw['Location'] = session.event.Location
            lw['Year'] = session.event.EventDate.year
        concat_data.append(lw)
    for session in concat_data:
        for driver in pd.unique(session.Driver):
            fast_laps.append(session.pick_driver(driver).pick_fastest())
    fast_laps = pd.DataFrame(fast_laps)
    return fast_laps
```

Data Cleaning

```
def laps processing(session):
   Automating data preprocessing, based on step by step preprocessing for FP1. All sessions share the same columns.
   session.TyreLife.fillna(session.LapNumber, inplace=True)
   session.SpeedI1.fillna(session.SpeedI1.mean(), inplace=True)
   session.SpeedI2.fillna(session.SpeedI2.mean(), inplace=True)
   session.SpeedST.fillna(session.SpeedST.mean(), inplace=True)
   session.SpeedFL.fillna(session.SpeedFL.mean(), inplace=True)
   session.LapTime.fillna(timedelta(0), inplace=True)
   session.Sector1Time.fillna(timedelta(0), inplace=True)
   session.Sector2Time.fillna(timedelta(0), inplace=True)
   session.Sector3Time.fillna(timedelta(0), inplace=True)
   session.Compound.replace({'HYPERSOFT':1, 'ULTRASOFT':2, 'SUPERSOFT':3, 'SOFT':4, 'MEDIUM':5, 'HARD':6, 'TEST':10, 'INTERMEDIATE':8, 'WET':9, 'UNKNOWN':0, 'C':11, '':4}, inplace=True)
   session.drop(['Time', 'DriverNumber', 'PitInTime', 'PitOutTime', 'Sector1SessionTime', 'Sector2SessionTime', 'FreshTyre', 'LapStartTime', 'LapStartDate', 'Rainfall', 'TrackStatus', 'Team'], inplace=True, axis=1)
   session.LapTime = session.LapTime.dt.total_seconds()
   session.Sector1Time = session.Sector1Time.dt.total seconds()
   session.Sector2Time = session.Sector2Time.dt.total seconds()
   session.Sector3Time = session.Sector3Time.dt.total_seconds()
   return session
```

Result

	LapTime	LapNumber	Stint	Sector1Time	Sector2Time	Sector3Time	SpeedI1	SpeedI2	SpeedFL	SpeedST	IsPersonalBest	Compound	TyreLife	Driver	IsAccurate	AirTemp	Humidity	Pressure	TrackTemp	WindDirection	WindSpeed	Location	Year
0	81.164	20.0	6.0	26.698	22.066	32.400	284.0	293.0	302.0	218.0	True	2	3.0	HAM	True	25.5	54.8	1018.5	29.9	290.0	0.3	Melbourne	2018.0
1	81.828	16.0	6.0	26.992	22.204	32.632	285.0	295.0	305.0	213.0	True	2	3.0	RAI	True	24.5	62.2	1018.8	27.8	330.0	0.2	Melbourne	2018.0
2	81.838	19.0	6.0	27.018	22.129	32.691	284.0	295.0	306.0	226.0	True	2	3.0	VET	True	24.5	62.6	1018.8	27.8	277.0	0.2	Melbourne	2018.0
3	81.879	17.0	6.0	26.971	22.241	32.667	279.0	288.0	298.0	257.0	True	2	3.0	VER	True	24.8	59.7	1018.7	28.6	291.0	0.3	Melbourne	2018.0
4	82.152	16.0	6.0	27.240	22.448	32.464	277.0	288.0	296.0	220.0	True	2	3.0	RIC	True	25.2	56.3	1018.6	29.3	289.0	0.4	Melbourne	2018.0
1532	84.338	7.0	2.0	17.281	36.465	30.592	289.0	318.0	222.0	322.0	True	4	3.0	LAT	True	25.2	55.5	1018.5	29.3	294.0	0.4	Abu Dhabi	2021.0
1533	84.423	4.0	1.0	17.130	36.527	30.766	290.0	319.0	222.0	323.0	True	4	4.0	RUS	True	25.4	54.0	1018.6	29.9	333.0	0.5	Abu Dhabi	2021.0
1534	84.779	3.0	1.0	17.315	36.523	30.941	288.0	319.0	220.0	322.0	True	4	3.0	RAI	True	25.5	55.0	1018.5	29.9	273.0	0.5	Abu Dhabi	2021.0
1535	84.906	8.0	3.0	17.419	36.340	31.147	289.0	319.0	219.0	324.0	True	4	3.0	MSC	True	25.2	55.5	1018.6	29.4	283.0	0.2	Abu Dhabi	2021.0
1536	85.685	8.0	3.0	17.522	36.868	31.295	287.0	318.0	215.0	324.0	True	4	3.0	MAZ	True	25.2	55.5	1018.6	29.4	283.0	0.2	Abu Dhabi	2021.0
1537 rov	ws x 23 coli	ımns																					

Data Visualizations Tuesday, August 16, 2022

Correlation Matrix

High Correlation

- Sector times Lap time
- Tire compound Lap time

Negative Correlation

- Finish line speed Lap time
- Lap number Lap time

Low Correlation

- Weather data Lap time
- Driver Lap time

Correlation Matrix

Correlation matrix without weather data

Correlation Matrix Without Weather Data FP2 2018																
LapTime -	1	-0.22	-0.14	0.65		0.6	-0.18	-0.077	-0.44	0.08	0.094	-0.065	-0.00043	-0.27	-0.091	-0.26
LapNumber -	-0.22	1	0.6	-0.17	-0.079	-0.18	0.016	-0.0087	0.16	-0.018	-0.17	0.43	-0.034	0.074	0.017	0.12
Stint -	-0.14	0.6	1	-0.096	-0.022	-0.16	0.091	0.093	0.084	-0.014	-0.12	0.043	0.027	0.17	0.067	0.1
Sector1Time -	0.65	-0.17	-0.096	1	0.27	0.07	-0.014	0.042	-0.23	0.032	0.12	-0.031	0.0063	-0.0068	0.023	-0.039
Sector2Time -	0.67	-0.079	-0.022	0.27	1	0.053	0.04	-0.32	-0.35	0.029	0.086	-0.036	-0.006	-0.055	-0.087	-0.23
Sector3Time -	0.6	-0.18	-0.16	0.07	0.053	1	-0.35	0.13	-0.24	0.096	-0.019	-0.07	-0.004	-0.41	-0.11	-0.22
SpeedI1 -	-0.18	0.016	0.091	-0.014	0.04	-0.35	1	0.17	-0.12	-0.042	-0.036	-0.059	-0.0094	0.47	-0.031	0.11
SpeedI2 -	-0.077	-0.0087	0.093	0.042	-0.32	0.13	0.17	1	-0.0095	0.22	-0.23	-0.13	-0.016	0.062	-0.12	0.12
SpeedFL -	-0.44	0.16	0.084	-0.23	-0.35	-0.24	-0.12	-0.0095	1	-0.13	-0.042	0.036	0.004	0.05	-0.00035	0.13
SpeedST -	0.08	-0.018	-0.014	0.032	0.029	0.096	-0.042	0.22	-0.13	1	0.0055	-0.0098	-0.0047	-0.029	0.031	-0.021
Compound -	0.094	-0.17	-0.12	0.12	0.086	-0.019	-0.036	-0.23	-0.042	0.0055	1	0.18	0.018	-0.026	0.48	-0.17
TyreLife -	-0.065	0.43	0.043	-0.031	-0.036	-0.07	-0.059	-0.13	0.036	-0.0098	0.18	1	0.01	-0.064	0.072	-0.006
Driver -	-0.00043	-0.034	0.027	0.0063	-0.006	-0.004	-0.0094	-0.016	0.004	-0.0047	0.018	0.01	1	-0.01	0.054	-0.0017
Location -	-0.27	0.074	0.17	-0.0068	-0.055	-0.41	0.47	0.062	0.05	-0.029	-0.026	-0.064	-0.01	1	-0.043	0.17
Year -	-0.091	0.017	0.067	0.023	-0.087	-0.11	-0.031	-0.12	-0.00035	0.031	0.48	0.072	0.054	-0.043	1	0.015
Delta -	-0.26	0.12	0.1	-0.039	-0.23	-0.22	0.11	0.12	0.13	-0.021	-0.17	-0.006	-0.0017	0.17	0.015	1
	LapTime -	LapNumber -	Stint -	Sector1Time -	Sector2Time -	Sector3Time -	SpeedI1 -	SpeedI2 -	SpeedFL -	SpeedST -	Compound -	TyreLife -	Driver -	Location -	Year -	Delta -

Comparing Distributions - Location

Comparing Distributions – Track Temp

Modeling

Models

- Predicting Lap Time
- Regession problem because a specific number is predicted
- Models used:
 - Radom Forest Regressor
 - Extra Trees Regressor
 - XGBoost Regressor
 - MLP Regressor

Training the Models

```
def train_model(practice_list, model, filename):
    # Seperating X & y
    X = practice_list.drop(['LapTime', 'Year', 'IsAccurate', 'IsPersonalBest', 'AirTemp', 'Humidity', 'Pressure', 'WindSpeed', 'WindDirection', 'TrackTemp', 'Driver'], axis=1)
    y = practice_list.LapTime
    # Scaling data
    StandardScaler().fit_transform(X, y)
    # Train test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    # Training, saving, loading and making predictions for evaluation metrics
    model.fit(X_train, y_train)
    joblib.dump(model, filename)
    model = joblib.load(filename)
    train_preds = model.predict(X_test)
    print(f'Training R2 score:{model.score(X_test, y_test)}')
    print(f'Training MSE: {mean_squared_error(y_test, train_preds)}')
    print(f'Train MAE: {mean_absolute_error(y_test, train_preds)}')
    return model
```

Training Results

MLP TRAINING SCORES

Training R2 score:0.9972779649778754 Training MSE: 0.40629735317697224

Train MAE: 0.4981446255043841

EXTRA TREES TRAINING SCORE

Training R2 score: 0.9992244094322533

Training MSE: 0.12089605303170213

Train MAE: 0.2469746341463352

XGBOOST TRAINING SCORE

Training R2 score:0.9964318382844187
Training MSE: 0.8351853145959757
Train MAE: 0.46549240166800515

RANDOM FOREST TRAINING SCORE

Training R2 score:0.9988195257739632

Training MSE: 0.3517124790875036

Train MAE: 0.3414141071428647

Hold Out Prediction Scores

MLP PREDICTION SCORE

MLP Regressor Hold Out Predictions MSE: 23.58911345582122 MLP Regressor Hold Out Predictions MAE: 3.3469207458795394

RANDOM FOREST PREDICTION SCORE

RandomForestRegressor Hold Out Predictions MSE: 105.21875730540634 RandomForestRegressor Hold Out Predictions MAE: 6.537633630136983

EXTRA TREES PREDICTION SCORE

Extra Trees Regressor Hold Out PredictionsMSE: 18.61427264383672
Extra Trees Regressor Hold Out Predictions MAE: 2.7670727168949685

XGBOOST PREDICTION SCORE

XGBoost Regressor Hold Out Predictions MSE: 28.29304706106421 XGBoost Regressor Hold Out Predictions MAE: 3.8292436979110938

Hyperparameter Tuning

```
X = fp2.drop(['LapTime', 'Year', 'IsAccurate', 'IsPersonalBest', 'AirTemp', 'Humidity', 'Pressure', 'WindSpeed', 'WindDirection', 'TrackTemp', 'Driver'], axis=1)
y = fp2.LapTime
# Building parameter grids for our models for hyperparameter tuning.
rf_grid = {'n_estimators': [25, 25, 50, 75],
           'max_depth': [2, 5, 10, 15],
           'min_samples_leaf': [2, 5, 7, 10],
           'max_leaf_nodes': [5, 10, 15, 20]}
ext_grid = {'n_estimators': [15, 25, 50, 75],
            'max_depth': [2, 5, 10, 15],
            'min_samples_leaf': [2, 5, 7, 10],
            'max_leaf_nodes': [5, 10, 15, 20]}
xgb_grid = {'n_estimators': [25, 25, 50, 75],
            'max_depth': [2, 5, 10, 15],
            'gamma': [0.01, 0.001, 0.0001, 0.00001],
            'min child weight': [0.9, 0.5, 0.25, 0.1, 0.01, 0.001],
            'subsample': [0.9, 0.5, 0.25, 0.1],
            'colsample_bytree': [0.9, 0.5, 0.25, 0.1]}
mlp_grid = {'hidden_layer_sizes': [(15,), (25,), (50,), (75,)],
            'alpha': [0.1, 0.01, 0.001],
            'learning_rate_init': [0.25, 0.1, 0.01],
            'max_iter': [2000],
            'tol': [0.1, 0.01, 0.001],
            'early stopping': [False, True],
            'n_iter_no_change': [15, 18, 20, 25]}
rs_rf_rg_jl = RandomizedSearchCV(rf_rg_jl, rf_grid, cv=10).fit(X, y)
rs ext rg jl = RandomizedSearchCV(ext rg jl, ext grid, cv=10).fit(X, y)
rs_xgb_rg_jl = RandomizedSearchCV(xgb_rg_jl, xgb_grid, cv=10).fit(X, y)
rs_mlp_rg_jl = RandomizedSearchCV(mlp_rg_jl, mlp_grid, cv=10).fit(X, y)
```

Hyperparameter Tuning - Results

MLP PREDICTION SCORE

Randomized Search MLP Regressor Hold Out Predictions R2 score: 0.9793511358208975

Randomized Search MLP Regressor Regressor Hold Out Predictions MSE: 2.572224339331646

Randomized Search MLP Regressor Regressor Hold Out Predictions MAE: 0.17262879716296148

EXTRA TREES PREDICTION SCORE

Randomized Search Extra Trees Regressor Hold Out Predictions R2 score: 0.9821502820844555
Randomized Search Extra Trees Regressor Hold Out Predictions MSE: 2.2235353225401058
Randomized Search Extra Trees Regressor Hold Out Predictions MAE: 1.1568782833634457

RANDOM FOREST PREDICTION SCORE

Randomized Search RandomForestRegressor Hold Out Predictions R2 score: 0.977658874625929
Randomized Search RandomForestRegressor Hold Out Predictions MSE: 2.7830289335431604
Randomized Search RandomForestRegressor Hold Out Predictions MAE: 1.1925070682549153

XGBOOST PREDICTION SCORE

Randomized Search XGBoost Regressor Hold Out Predictions R2 score: 0.9982118776215452
Randomized Search XGBoost Regressor Hold Out Predictions MSE: 0.22274600015142476
Randomized Search XGBoost Regressor Hold Out Predictions MAE: 0.318373037259873

XGBOOST BEST PARAMETERS

```
{'subsample': 0.5,
 'n_estimators': 25,
 'min_child_weight': 0.1,
 'max_depth': 10,
 'gamma': 0.01,
 'colsample_bytree': 0.5}
```

Results

REGRESSION LINE FOR PRACTICE DATA (HOLD OUT DATA)

REGESSION LINE FOR QUALIFICATION DATA

References

- Fast FI: https://theoehrly.github.io/Fast-FI/index.html
- Official F1 data stream: https://www.formula1.com/en/f1-live.html
- Ergast web api: http://ergast.com/mrd/
- AWS Machine Learning Blog: https://aws.amazon.com/fr/blogs/machine-learning/predicting-qualification-ranking-based-on-practice-session-performance-for-formula-l-grand-prix/
- XGBoost documentation: https://xgboost.readthedocs.io/en/stable/index.html
- Sklearn:
 - Extra Trees: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html#sklearn.ensemble.ExtraTreesRegressor.html
 - MLP: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
 - Random Forest: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Thank you

