■ Chapitre 16 ■

Calcul différentiel

- p désigne un entier naturel non nul (généralement $p \leq 3$).
- $\blacksquare \|\cdot\|$ désigne une norme sur \mathbb{R}^p et $\|\cdot\|_2$ la norme euclidienne.
- \bullet (e_1,\ldots,e_p) désigne la base canonique de \mathbb{R}^p .
- U désigne un ouvert de \mathbb{R}^p et $a \in U$.
- $\blacksquare f$ désigne une fonction de U dans \mathbb{R} .

Exercice 1. Soit $h \in \mathbb{R}^p$ un vecteur non nul. Montrer qu'il existe $\delta > 0$ tel que pour tout $t \in]-\delta, \delta[$, $a+th \in U$.

I. Applications continûment différentiables

I.1 Dérivées partielles

Définition 1 (Application partielle).

Pour tout $a = (a_1, \ldots, a_p) \in U$ et $i \in [1, p]$, l'application partielle en a selon la i-ème composante est définie par $f_{a,i}: t \mapsto f(a_1, \ldots, a_{i-1}, t, a_{i+1}, \ldots, a_n)$. De plus, il existe un ouvert $U_{a,i}$ contenant a_i tel que $f_{a,i}$ soit définie sur $U_{a,i}$.

Propriété 1.

Si f est continue sur U, alors, pour tous $i \in [1, p]$ et $a \in U$, l'application partielle $f_{a,i}$ est continue sur $U_{a,i}$.

Exercice 2. Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \frac{xy}{x^2+y^2}$ et f(0,0) = 0.

- 1. Montrer que les applications partielles de f sont continues.
- **2.** Déterminer $\lim_{x\to 0} f(x,x)$.

Définition 2 (Dérivées d'une fonction selon un vecteur).

La fonction f admet une dérivée partielle en a par rapport à la i-ème variable si l'application partielle $f_{a,i}$ admet une dérivée en a_i . Cette valeur est notée $\partial_i f(a)$ ou $\frac{\partial f}{\partial x_i}(a)$.

Exercice 3.

- **1.** Soient $(a,b,c) \in \mathbb{R}^3$ et $f:(x,y,z) \mapsto ax+by+cz$. Déterminer les dérivées partielles de f.
- **2.** Soit f la fonction de \mathbb{R}^2 définie par $f(x,y) = \frac{x^4y^4}{x^4+y^4}$ et f(0,0) = 0. Montrer que f est continue en (0,0) et déterminer ses dérivées partielles.
- **3.** Soit f la fonction de \mathbb{R}^2 définie par $f(x,y) = \frac{xy}{x^2+y^2}$ et f(0,0) = 0. Déterminer les dérivées partielles de f.
- **4.** Déterminer les dérivées partielles, lorsqu'elles existent, de la norme euclidienne usuelle $\|\cdot\|_2$.

I.2 Fonctions de classe \mathscr{C}^1

<u>Définition 3 (Fonctions de classe</u> \mathscr{C}^1).

Soit f une fonction définie sur U. La fonction f est de classe \mathscr{C}^1 si ses dérivées partielles sont définies et continues sur U. On note $\mathscr{C}^1(U,\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^1 sur U à valeurs réelles.

Théorème 1 (Développement limité d'ordre 1).

Soit f une fonction de classe \mathscr{C}^1 sur U et $a \in U$. Alors, il existe une fonction ε telle que $\lim_a \varepsilon = 0$ et pour tout $u \in U$,

$$f(u) = f(a) + \sum_{i=1}^{p} (u_i - a_i)\partial_i f(a) + ||u - a|| \varepsilon(u).$$

La fonction f admet un développement limité d'ordre 1 en a.

Exercice 4. Montrer que, si f est de classe \mathscr{C}^1 sur U, alors f est continue sur U.

I.3 Fonctions de classe \mathscr{C}^2

Définition 4 (Dérivées partielles d'ordre 2).

Soit f une fonction de classe \mathscr{C}^1 sur U et $(i,j) \in [1,p]^2$. Si $\partial_i f$ admet une dérivée partielle en a selon la j-ème variable, on note

$$\partial_j (\partial_i f) = \partial_{j,i}^2 f.$$

Lorsque i = j, on note $\partial_i^2 f$ cette dérivée.

Si toutes les dérivées partielles d'ordre 2 de f sont continues, f est de classe \mathscr{C}^2 sur U.

Théorème 2 (Théorème de SCHWARZ, Admis).

Soit f une fonction de classe \mathscr{C}^2 sur U. Alors, pour tout $(i,j) \in [1,p]^2$, $\partial_{i,j}^2 f = \partial_{i,j}^2 f$.

Exercice 5. Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \frac{xy^3}{x^2+y^2}$ et f(0,0) = 0. Déterminer les dérivées partielles $\partial_{1,2}^2 f(0,0)$ et $\partial_{2,1} f^2(0,0)$.

II. Différentielle et Gradient

II.1 Différentielle

Définition 5 (Différentielle).

Soient f une fonction de classe \mathscr{C}^1 sur U. L'application $h \mapsto \sum_{i=1}^P h_i \partial_i f(a)$ est la différentielle de f en a, notée df(a). L'application df(a) est une application linéaire. On note

$$df(a) \cdot h = \sum_{i=1}^{p} h_i \partial_i f(a).$$

Exercice 6. Déterminer la différentielle...

1. . . . d'une application constante.

2. ... de $f:(x,y,z) \mapsto ax + by + cz$, où $(a,b,c) \in \mathbb{R}^3$.

3. ... de u, où $u \in \mathcal{L}(\mathbb{R}^p, \mathbb{R})$.

4. . . . de la norme euclidienne $\|\cdot\|_2$.

Définition 6 (Gradient).

Soit f une fonction admettant des dérivées partielles selon chacune de ses variables. Le gradient de f en a est le vecteur

$$\nabla f(a) = \begin{pmatrix} \partial_1 f(a) \\ \vdots \\ \partial_p f(a) \end{pmatrix}.$$

Propriété 2 (Différentielle & Gradient).

Soit $f \in \mathcal{C}^1(U, \mathbb{R})$ et $a \in U$. Alors, pour tout $h \in \mathbb{R}^p$,

$$df(a) \cdot h = \langle \nabla f(a), h \rangle.$$

II.2 Opérations sur les fonctions de classe \mathscr{C}^1

Propriété 3 (Addition & Multiplication).

Soient f, g deux fonctions de classe \mathscr{C}^1 de U dans \mathbb{R} et λ un réel. Les fonctions $\lambda f + g$ et fg sont de classe \mathscr{C}^1 et

$$d(\lambda f + g)(a) = \lambda df(a) + dg(a),$$

$$d(fg)(a) = g(a)df(a) + f(a)dg(a).$$

Théorème 3 (Règle de la chaîne).

Soient f de classe \mathscr{C}^1 de U dans \mathbb{R} et $\gamma = (\gamma_1, \dots, \gamma_p)$ de $I \subset \mathbb{R}$ dans U de classe \mathscr{C}^1 . Alors, la fonction $f \circ \gamma$ est dérivable et pour tout $t \in I$,

$$(f \circ \gamma)'(t) = \sum_{i=1}^{p} \gamma_i'(t) \partial_i f(\gamma(t)) = df(\gamma(t)) \cdot \gamma'(t).$$

Exercice 7.

- **1.** Interpréter géométriquement la dérivée de $f \circ \gamma$.
- **2.** Montrer que $\nabla f(a)$ désigne la plus grande pente au point a.

Théorème 4 (Caractérisation des fonctions constantes).

Soient U un ouvert convexe et $f \in \mathcal{C}^1(U,\mathbb{R})$. L'application f est constante si et seulement si toutes ses dérivées partielles sont nulles.

Théorème 5 (Composition).

Soient $f: U \to \mathbb{R}$ et $(x,y): \mathbb{R}^2 \to U$ des fonctions de classe \mathscr{C}^1 . Alors, la fonction $g: (u,v) \mapsto f(x(u,v),y(u,v))$ est de classe \mathscr{C}^1 sur U et

$$\partial_1 g(u,v) = \partial_1 f(x(u,v),y(u,v)) \partial_1 x(u,v) + \partial_2 f(x(u,v),y(u,v)) \partial_1 y(u,v)$$
$$\partial_2 g(u,v) = \partial_1 f(x(u,v),y(u,v)) \partial_2 x(u,v) + \partial_2 f(x(u,v),y(u,v)) \partial_2 y(u,v)$$

Exercice 8. (Gradient en coordonnées polaires) Soit f une fonction définie sur \mathbb{R}^2 de classe \mathscr{C}^1 et $g:(r,\theta)\mapsto f(r\cos(\theta),r\sin(\theta))$.

- **1.** Expliciter le calcul précédent en notant $x:(r,\theta)\mapsto r\cos(\theta)$ et $y:(r,\theta)\mapsto r\sin(\theta)$.
- **2.** Exprimer ∇f en fonction des dérivées partielles de g et des vecteurs $\overrightarrow{u}_{\theta} = (\cos \theta, \sin \theta)$ et $\overrightarrow{v}_{\theta} = (-\sin \theta, \cos \theta)$.

III. Applications

III.1 Extrema et points critiques

Définition 7 (Extremum local / global).

Soit $f \in \mathcal{C}^1(U, \mathbb{R})$ et $a \in U$.

- (i). f présente un maximum local en a s'il existe un ouvert $V \subset U$ contenant a tel que pour tout $x \in V$, $f(x) \leq f(a)$.
- (ii). f présente un minimum local en a s'il existe un ouvert $V \subset U$ contenant a tel que pour tout $x \in V$, $f(x) \ge f(a)$.
- (iii). f présente un maximum global en a si pour tout $x \in U$, $f(x) \leq f(a)$.
- (iv). f présente un minimum global en a si pour tout $x \in U$, $f(x) \ge f(a)$.
- (v). Un extremum est un maximum ou un minimum.

Théorème 6 (Condition nécessaire d'existence d'un extremum).

Soit f une application admettant des dérivées partielles selon chacune de ses variables sur U. Si f présente un extremum local en a, alors a est un point critique de f, i.e. $\nabla f(a) = 0$.

Exercice 9.

- **1.** En étudiant la fonction $f:(x,y)\mapsto x^2-y^2$, montrer que la réciproque du théorème est fausse.
- **2.** Déterminer les extrema de la fonction f définie sur $\mathbb{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ par $f(x,y) = x^2 + xy + y^2.$

III.2 Exemples d'équations aux dérivées partielles

Exercice 10.

1. Équation des cordes vibrantes. Déterminer la forme des fonctions de classe \mathscr{C}^2 , solutions de l'équation aux dérivées partielles $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$. On effectuera le changement de variables (u, v) = (x + ct, x - ct).

2. Déterminer l'ensemble des fonctions $f:\mathbb{R}_+^*\times\mathbb{R}\to\mathbb{R}$ de classe \mathscr{C}^1 solutions de l'équation aux dérivées partielles $x\partial_1 f(x,y) + y\partial_2 f(x,y) = x^2 + y^2$.

On effectuera un changement de coordonnées en polaires.

IV. Géométrie : Courbes & Surfaces

IV.1 Courbes du plan

Notation.

 \blacksquare On suppose dans cette section que p=2.

Définition 8 (Courbe définie implicitement).

Soit $f \in \mathscr{C}^1(U,\mathbb{R})$. L'ensemble Γ des points de \mathbb{R}^2 solutions de l'équation f(x,y)=0 est soit vide, soit l'équation implicite d'une courbe.

Exercice 11. Soit $(a, b, c) \in \mathbb{R}^3$ tel que $b \neq 0$. Représenter le support des courbes définies par :

1.
$$ax + by + c = 0$$
.

3.
$$x^2 + y^2 - 9 = 0$$
.

2.
$$y - \cosh(x) = 0$$
.

4.
$$x^2 - y^2 = 0$$
.

Définition 9 (Point régulier).

Soit f une fonction de classe \mathscr{C}^1 de U dans \mathbb{R} et Γ la partie de \mathbb{R}^2 d'équation f(x,y) = 0. Le point $(x_0, y_0) \in \Gamma$ est un point régulier de Γ si $\nabla f(x_0, y_0) \neq 0$.

Exercice 12. Déterminer les points réguliers des exemples précédents.

Théorème 7 (Paramétrage local, Admis).

Soient $f \in \mathcal{C}^1(U,\mathbb{R})$ et $(x_0,y_0) \in \mathbb{R}^2$ un point régulier de Γ , i.e.

$$f(x_0, y_0) = 0$$
 et $\nabla f(x_0, y_0) \neq 0$.

Il existe $r > 0, \, \eta > 0$ et $\gamma:]-\eta, \eta[\to \mathbb{R}^2$ tels que

- (i). $\gamma(0) = (x_0, y_0),$
- (ii). $(1-\eta, \eta, \gamma)$ est un arc paramétré régulier,
- (iii). $\mathscr{B}((x_0,y_0),r)\subset U$ et pour tout $(x,y)\in\mathscr{B}((x_0,y_0),r),$

$$f(x,y) = 0 \Leftrightarrow \exists t \in]-\eta, \eta[; (x,y) = \gamma(t).$$

Le couple $(]-\eta,\eta[,\gamma)$ est un paramétrage local de la courbe Γ au voisinage de (x_0,y_0) .

Exercice 13. Reprendre les exemples précédents.

Théorème 8 (Tangente en un point régulier).

Soient $f \in \mathcal{C}^1(U, \mathbb{R})$, Γ la courbe définie par f(x, y) = 0 et (x_0, y_0) un point régulier de Γ .

- (i). La normale à Γ en (x_0, y_0) est la droite passant par (x_0, y_0) dirigée par $\nabla f(x_0, y_0)$.
- (ii). La courbe Γ possède en (x_0,y_0) une tangente d'équation

$$(x - x_0)\partial_1 f(x_0, y_0) + (y - y_0)\partial_2 f(x_0, y_0) = 0.$$

Exercice 14. Déterminer l'équation des tangentes pour...

1. ... une droite.

- **3.** . . . un cercle.
- **2.** ... la chaînette $\{y \cosh(x) = 0\}$.

Définition 10 (Ligne de niveau).

Soit $\lambda \in \mathbb{R}$. La ligne de niveau λ de f est la partie de \mathbb{R}^2 définie par $f(x,y) = \lambda$.

Propriété 4 (Normales aux lignes de niveau).

Soit f une fonction de classe \mathscr{C}^1 de U dans \mathbb{R} , $\lambda \in \mathbb{R}$ et (x_0, y_0) un point régulier de la ligne de niveau λ de f. Alors, $\nabla f(x_0, y_0)$ est orthogonal à la ligne de niveau λ de f et orientré dans le sens des valeurs croissantes de f, i.e. il existe $\eta > 0$ tel que la fonction

$$t \mapsto f((x_0, y_0) + t\nabla f(x_0, y_0))$$

soit strictement croissante sur] – η , η [.

Exercice 15. Illustrer le résultat précédent sur le cercle unité.

IV.2 Surfaces

Notation.

■ On suppose dans cette section que p = 3.

Définition 11 (Surface définie implicitement).

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. L'ensemble \mathscr{S} des points de \mathbb{R}^3 solutions de l'équation f(x,y,z)=0 est soit vide, soit l'équation implicite d'une surface.

Exercice 16. Représenter les surfaces définies par les équations

1.
$$ax + by + cz - d = 0$$
.

$$3. x^2 + y^2 + z^2 - 9 = 0.$$

2.
$$x^2 + y^2 = 1$$
.

4.
$$z = x^2 + y^2$$
.

Définition 12 (Point régulier).

Soit f une fonction de classe \mathscr{C}^1 de U dans \mathbb{R} et \mathscr{S} la partie de \mathbb{R}^2 d'équation f(x,y,z)=0. Le point $(x_0,y_0,z_0)\in\mathscr{S}$ est un point régulier de \mathscr{S} si $\nabla f(x_0,y_0,z_0)\neq 0$.

Définition 13 (Plan tangent en un point régulier).

Soient $f \in \mathcal{C}^1(U,\mathbb{R})$, \mathscr{S} la courbe définie par f(x,y,z) = 0 et (x_0,y_0,z_0) un point régulier de \mathscr{S} .

(i). La surface ${\mathscr S}$ possède en (x_0,y_0,z_0) un plan tangent d'équation

$$(x - x_0)\partial_1 f(x_0, y_0, z_0) + (y - y_0)\partial_2 f(x_0, y_0, z_0) + (z - z_0)\partial_3 f(x_0, y_0, z_0) = 0.$$

(ii). La normale au plan tangent à \mathscr{S} en (x_0, y_0, z_0) est dirigée par $\nabla f(x_0, y_0, z_0)$.

Exercice 17. Déterminer l'équation des plans tangents aux surfaces précédentes.

Définition 14 (Courbe tracée sur une surface).

Soit f une fonction de classe \mathscr{C}^1 de U dans \mathbb{R} et \mathscr{S} la partie de \mathbb{R}^3 d'équation f(x,y,z)=0. Une courbe tracée sur la surface \mathscr{S} est un arc paramétré (I,γ) , où I est un intervalle de \mathbb{R} et $\gamma=(x,y,z)$ vérifie

$$\forall t \in I, f(x(t), y(t), z(t)) = 0.$$

Propriété 5 (Tangente à une courbe dessinée sur une surface).

Soit $\Gamma = (I, \gamma)$ une courbe tracée sur une surface $\mathscr S$ d'équation f(x, y, z) = 0 où f est une fonction de classe $\mathscr C^1$. Si (x_0, y_0, z_0) est un point régulier de Γ et de $\mathscr S$, alors la tangente à Γ en ce point est incluse dans le plan tangent à $\mathscr S$ en ce point.

Exercice 18. Soit a > 0. Montrer que la courbe $\gamma : t \mapsto (\cos(at), \sin(at), at)$ est tracée sur la surface définie par $x^2 + y^2 = 1$. Représenter graphiquement ces objets puis illustrer la propriété précédente.

Approximation au sens des moindres carrés

Exercice 19. Soient $n \in \mathbb{N}^*$ et $((x_i, y_i))_{1 \le i \le n} \in (\mathbb{R}^2)^n$. On suppose que les réels x_1, \ldots, x_n ne sont pas tous égaux à une même valeur.

Posons f la fonction définie sur \mathbb{R}^2 par $f(\lambda, \mu) = \sum_{i=1}^n (\lambda x_i + \mu - y_i)^2$.

1. a) Calculer ∇f .

- **b)** En déduire que f possède un unique point critique noté $(\hat{\lambda}, \hat{\mu})$.
- \mathbf{c}) Montrer que f atteint, en ce point critique, un minimum global.
- 2. Retrouver le résultat précédent à l'aide d'un résultat d'algèbre linéaire.

Programme officiel (PSI)

Calcul différentiel (p. 24, 25)

Mathématiciens

SCHWARZ Hermann (25 jan. 1843 à Hermsdorf-30 nov. 1921 à Berlin).