

Unit - III 3.4 Ideal Transformer, Losses and Efficiency

Dr.Santhosh.T.K.

World's Largest Transformer

- SIEMENS's <u>transformer factory</u> in Nuremberg (Germany) to China
- 1,100KV transformer for the world's largest HVDC project in China
- capacity of 587 MVA
- Transformer size: 37.5 x 12 x 14.4 (m)
- Weight ~ 900 tons

Syllabus

UNIT – III 10 Periods

Principles of Electro Magnetics and Electro-mechanics: Electricity and Magnetism - magnetic field and faraday's law - self and mutual inductance - Ampere's law - Magnetic circuit - Magnetic material and B-H Curve – Single phase transformer - principle of operation - EMF equation - voltage ratio - current ratio – KVA rating - Electromechanical energy conversion – Elementary generator and motors.

Ideal Transformers

• Zero leakage flux:

-Fluxes produced by the primary and secondary currents are confined within the core

The windings have no resistance:

- Induced voltages equal applied voltages

The core has infinite permeability

- Reluctance of the core is zero
- Negligible current is required to establish magnetic flux

 Primary

• Loss-less magnetic core

- No hysteresis or eddy currents

Symbol for ideal transformer

Ideal transformer


```
V_1 – supply voltage;
```

V₂- output voltgae;

I_m- magnetising current;

E₁-self induced emf;

I₁- noload input current;

I₂- output current

E₂- mutually induced emf

Transformer Equations

Using Faraday's law, expressions for the primary and secondary voltages is as follows.

$$V_2 = N_2 \frac{d\Phi}{dt}. \qquad V_1 = N_1 \frac{d\Phi}{dt}.$$

Dividing the above equations we get,

$$\frac{V_2}{V_1} = \frac{N_2}{N_1}.$$

Assuming that there is no power loss,

$$\begin{aligned} V_2I_2 &= V_1I_1.\\ \frac{V_2}{V_1} &= \frac{I_1}{I_2} = \frac{N_2}{N_1} = K. \quad \text{K - transformation ratio} \end{aligned}$$

EMF Equation of a transformer

Let N_1 = No. of primary turns

 N_2 = No. of secondary turns

 ϕ_m = Maximum flux density in transformer core in Weber

 $=B_{\rm m}A$ where $B_{\rm m}$ -> flux density in the transformer core

A -> cross sectional Area of the transformer In an EMF equation, flux increases from its zero value to maximum value $\Phi_{\rm m}$ in one quarter of cycle

Average rate of change of flux =
$$\Phi_m/(1/4f)=4f \Phi_m$$
 wb/sec(1)

The average value of emf induced / turn = $4f \Phi_m$ (2)

If flux Φ_m varies sinusoid ally, then R.M.S value of induced EMF is obtained by multiplying the average value with form factor.

EMF Equation of a transformer -contd

Form factor=R.M.S value/Average value =
$$Vm/\sqrt{2}$$
(3)
= 1.11 (for sine wave)

R.M.S value of EMF/turn=
$$1.11*4f\Phi_{\rm m}$$
 volts(4)

Now,

R.M.S value of the induced EMF in the whole primary winding = (induced EMF/turn)*No of primary turns.

$$E_1 = 4.44 f N_1 \Phi_m$$
(5)

IIIy,

$$E_2 = 4.44 f N_2 \Phi_m$$
(6)

EMF equation of transformer - contd

If i_p is sinusoidal, the flux produced also sinusoidal, i.e

$$\Phi = \Phi_m \sin 2\pi ft \qquad \dots (7)$$

therefore
$$v_1 = N_1 \frac{d(\Phi_m \sin 2\pi ft)}{dt}$$

$$v_1 = N_1 2\pi f \Phi_m \cos 2\pi f t = N_1 2\pi f \Phi_m \sin (2\pi f t + \pi/2)$$
(8)

The peak value =
$$V_{pm} = N_1 2\pi f \Phi_m$$
(9)

and v_1 is leading the flux by $\pi/2$.

The rms value
$$V_1 = \frac{V_{1m}}{\sqrt{2}} = 0.707 \times N_1 2\pi f \Phi_m = 4.44 N_1 f \Phi_m$$
(10)

Voltage regulation of Transformer

Voltage regulation =
$$\frac{\text{no-load voltage} - \text{full-load voltage}}{\text{no-load voltage}}$$

recall
$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$

Secondary voltage on no-load $V_2 = V_1 \left(\frac{N_2}{N_1} \right)$

V₂ is a secondary terminal voltage on full load

Substitute we have
$$V_1 \left(\frac{N_2}{N_1} \right) - V_2$$
Voltage regulation =
$$\frac{V_1 \left(\frac{N_2}{N_1} \right) - V_2}{V_1 \left(\frac{N_2}{N_1} \right)}$$

Transformer Efficiency

Transformer efficiency is defined as (applies to motors, generators and

transformers):

$$\eta = \frac{P_{out}}{P_{in}} \times 100\%$$

$$\eta = \frac{P_{out}}{P_{out} + P_{loss}} \times 100\%$$

Types of losses incurred in a transformer:

Copper I²R losses

Hysteresis losses

Eddy current losses

Therefore, for a transformer, efficiency may be calculated using the following:

$$\eta = \frac{V_S I_S \cos \theta}{P_{Cu} + P_{core} + V_S I_S \cos \theta} x 100\%$$

All day efficiency

All day efficiency is defined as the ratio of total energy output of transformer to thetotal energy input in 24 hours.

ordinary commercial efficiency =
$$\frac{\text{out put in watts}}{\text{input in watts}}$$

$$\eta_{all \, \text{day}} = \frac{\text{output in kWh}}{\text{Input in kWh}} (for 24 \text{ hours})$$

•All day efficiency is always less than the commercial efficiency

Transformer with conservator and breather

Parts of a transformer

Conservator

- · Oil is stored in the conservator
- It prevents the oil from moisture contact in air during the expansion and contraction.

Breather

- It is a device which contains silica gel crystals.
- The gel absorbs the moisture in the atmosphere when the oil expands and contracts.

Explosive Vent

- It bursts when pressure inside the transformer becomes excessive and protects the transformer from damage.
- Transformer Tank filled with transformer Oil

Transformer-No load condition

Phasor diagram: Transformer on No-load

(a) Transformer on no-load (b) Phasor diagram of a transformer on no-load

Transformer – On load condition

Given that the intermediate current is 1 A, what is the current through the lightbulb?

- 1) 1/4 A
- 2) 1/2 A
- 3) 1 A
- 4) 2 A
- 5) 5 A

Given that the intermediate current is 1 A, what is the current through the lightbulb?

- 1) 1/4 A
 2) 1/2 A
 3) 1 A
 4) 2 A
 - 5) 5 A

Powerin = Powerout

 $240 \text{ V} \times 1 \text{ A} = 120 \text{ V} \times ???$

The unknown current is 2 A.

A 6 V battery is connected to one side of a transformer.

Compared to the voltage drop across coil A, the voltage across coil B is:

- 1) greater than 6 V
- 2) 6 V
- 3) less than 6 V
- 4) zero

A 6 V battery is connected to one side of a transformer.

Compared to the voltage drop across coil A, the voltage across coil B is:

- 1) greater than 6 V
- 2) 6 V
- 3) less than 6 V
- 4) zero

The voltage across B is zero.
Only a changing magnetic flux induces an emf. Batteries can provide only dc current.

1. A 250 kVA, 11 000 V/400 V, 50 Hz single-phase transformer has 80turns on the secondary. Calculate: (a) the approximate values of the primary and secondary currents; (b) the approximate number of primary turns; (c) the maximum value of the flux.

2. The maximum flux density in the core of a 250/3000-volt, 50 Hz transformer is 1.2 Wb/m^2. If the EMF per turn is 8 V, determine (i) primary and secondary turns

Voltage regulation of Transformer

Voltage regulation =
$$\frac{\text{no-load voltage} - \text{full-load voltage}}{\text{no-load voltage}}$$

recall
$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$

Secondary voltage on no-load $V_2 = V_1 \left(\frac{N_2}{N_1} \right)$

V₂ is a secondary terminal voltage on full load

Substitute we have
$$V_1 \left(\frac{N_2}{N_1} \right) - V_2$$
Voltage regulation =
$$\frac{V_1 \left(\frac{N_2}{N_1} \right) - V_2}{V_1 \left(\frac{N_2}{N_1} \right)}$$

Transformer Efficiency

Transformer efficiency is defined as (applies to motors, generators and

transformers):

$$\eta = \frac{P_{out}}{P_{in}} \times 100\%$$

$$\eta = \frac{P_{out}}{P_{out} + P_{loss}} \times 100\%$$

Types of losses incurred in a transformer:

Copper I²R losses

Hysteresis losses

Eddy current losses

Therefore, for a transformer, efficiency may be calculated using the following:

$$\eta = \frac{V_S I_S \cos \theta}{P_{Cu} + P_{core} + V_S I_S \cos \theta} x 100\%$$

Losses in a transformer

Core or Iron loss:

$$W_h = \eta B_{max}^{1.6} fV watt$$

$$W_e = \eta B_{max}^2 f^2 t^2 \ watt$$

Copper loss:

Total Copper loss =
$$I_1^2 R_1 + I_2^2 R_2$$

4. In a 25-kVA, 2000/200 V single phase transformer, the iron and full-load copper losses are 350 and 400 W respectively. Calculate the efficiency at unity power factor at full load.

5. In a 25-kVA, 2000/200 V single phase transformer, the iron and full-load copper losses are 350 and 400 W respectively. Calculate the efficiency with unity power factor at half full-load.

Summary

- Ideal Transformer
- Problems
 - EMF equation
 - Magnetic Circuits
 - Efficiency
 - Losses

3. A transformer core made of annealed steel sheet has the form and dimensions shown in Figure. A coil of N turns is wound on the central limb. The average length of magnetic circuit (i.e. path ABCDA or path EFGHE) is 30 cm. Determine the ampere-turns of the coil required to produce a flux density of 1 Wb/m 2 in the central leg. What will be the total amount of flux in the central leg and in each outside leg? Given that for annealed sheet steel (from B-H curve), H = 200 AT/m at 1 Wb/m 2.

B. =
$$\frac{4}{h}$$
 $A = \frac{4}{h}$
 $A =$