-175-

WHAT IS CLAIMED IS:

1. A compound of Formula I:

5

$$R^2$$
 R^3
 D^4
 N
 D^2
 R^5
 D^1
 R^1

10 wherein:

D¹ is a C₁-C₃ alkane-diyl;

D² is CH or nitrogen;

15

20

25

D⁴ is oxygen or sulfur;

R¹ is phenyl,

which phenyl is optionally substituted with one to three substitutents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

 R^2 is selected from the group consisting of hydroxy, C_1 - C_4 alkyl, optionally substituted phenyl, naphthyl, C_3 - C_{10} cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,

which C_1 - C_4 alkyl is optionally substituted with hydroxy, C_1 - C_2 alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

which pyridyl is further optionally substituted with one to two halo, C_1 - C_3 alkyl;

 R^3 is C_1 - C_4 alkyl, optionally substituted phenyl, -C(O)- R^4 , or - $S(O)_2$ - R^4 , which C_1 - C_4 alkyl is further optionally substituted with R^4 ;

R⁴ is optionally substituted phenyl;

or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

15

30

5

wherein the C_1 - C_4 alkyl is further optionally substituted with one to two substituents selected from the group consisting of C_1 - C_3 alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

- R⁶ and R⁷ are each independently hydrogen, C₁-C₄ alkyl, -S(O)₂-CH₃, or C₁-C₄ alkoxycarbonyl, or R⁶ and R⁷, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;
- R⁵ is hydrogen, halo, trifluoromethyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, furyl, pyrazolyl, imidazolyl, -NR¹³R¹⁴, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1$ - C_4 alkyl),

or R⁵ is a radical selected from the group consisting of:

5 wherein

W is a bond, $-CHR^{15}$ -, -C(O)-, -O-, $-NR^{15}$ -, or $-S(O)_q$ -;

q is 0, 1, or 2;

10

 R^{15} is selected from the group consisting of hydrogen, hydroxy, C_1 - C_4 alkyl, acetyl, carbamoyl, phenyl, benzyl, and $-S(O)_2CH_3$;

 Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

15

20

25

 R^{13} and R^{14} are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2$ - CH_3 or C_3 - C_6 cycloalkyl;

wherein the C_1 - C_4 alkyl is optionally substituted with one C_1 - C_2 alkoxy or di(C_1 - C_2 alkyl)amino;

or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C_1 - C_2 alkyl;

or a pharmaceutically acceptable salt thereof;

with the proviso that the following compounds are not claimed:

[5-methyl-1-(3-pyrrolidin-1-ylpropyl)-1H-1,2,3-triazol-4-yl]piperazin-1-yl-methanone; {1-[2-(4-nitrophenyl)ethyl]-5-methyl-1H-1,2,3-triazol-4-yl}piperazin-1-yl-methanone; [1-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazol-4-yl]piperazin-1-yl-methanone; [5-methyl-1-(3-imidazol-1-ylpropyl)-1H-1,2,3-triazol-4-yl]piperazin-1-yl-methanone; (5-methyl-1benzyl-1H-1,2,3-triazol-4-yl)piperazin-1-yl-methanone; (1-benzyl-5-methyl-1H-1,2,3-5 triazol-4-yl)-1,4-diazepan-1-yl-methanone; [1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazol-4-yl]-morpholin-4-yl-methanone; 1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1H-[1,2,3]triazole-4carboxylic acid (2-amino-ethyl)-(2-chloro-benzyl)-amide dihydrochloride; 1-(3,5-bistrifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-10 ethyl)-(2-chloro-benzyl)-amide hydrochloride; 1-(3,5-bis-trifluoromethyl-benzyl)-5morpholin-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-ethyl)-[1-(2-chlorophenyl)-ethyl]-amide dihydrochloride; 1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridyl-4-yl-1H-[1,2,3]triazole-4-carboxylic acid (2-amino-ethyl)-[1-(2-chloro-phenyl)-ethyl]-amide dihydrochloride; 15 {2-[[1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-(2chloro-benzyl)-amino]-ethyl}-carbamic acid tert-butyl ester; {2-[[1-(3,5-bistrifluoromethyl-benzyl)-5-chloro-1H-[1,2,3]triazole-4-carbonyl]-(2-chloro-benzyl)amino]-ethyl}-carbamic acid tert-butyl ester; (2-{[1-(3,5-bis-trifluoromethyl-benzyl)-5 $chloro-1H-[1,2,3] triazole-4-carbonyl]-[1-(2-chloro-phenyl)-ethyl]-amino}-ethyl)-ethyl-amino}-$ 20 carbamic acid tert-butyl ester; (2-{[1-(3,5-bis-trifluoromethyl-benzyl)-5-pyridin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-[1-(2-chloro-phenyl)-ethyl]-amino}-ethyl)-carbamic acid tertbutyl ester; {2-[[1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-(2-chloro-benzyl)-amino]-ethyl}-carbamic acid tert-butyl ester; and (2-{[1-(3,5-bis-trifluoromethyl-benzyl)-5-morpholin-4-yl-1H-[1,2,3]triazole-4-carbonyl]-[1-(2-25 chloro-phenyl)-ethyl]-amino}-ethyl)-carbamic acid tert-butyl ester.

- 2. The compound of Claim 1 wherein D^4 is oxygen.
- 30 3. The compound of Claim 1 or 2 wherein D² is nitrogen.
 - 4. The compound of Claims 1-3 wherein D¹ is methylene.

10

15

20

- 5. The compound of Claims 1-4 wherein R¹ is 3,5-bis-trifluoromethyl-phenyl.
- 6. The compound of Claims 1-5 wherein R⁵ is phenyl.

7. The compound of Claims 1-6 wherein R^2 is C_1 - C_4 alkyl, which is optionally substituted with optionally substituted phenyl.

- 8. The compound of Claim 7 wherein R^2 is 2-chloro-benzyl.
- 9. The compound of Claims 1-8 wherein R^3 is C_1 - C_4 alkyl, which C_1 - C_4 alkyl is optionally substituted with R^4 .
 - 10. The compound of Claim 9 wherein R^3 is methyl.
 - 11. The compound of Claims 1-6 wherein R^2 and R^3 , together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring, which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C_3 - C_6 cycloalkyl, pyridyl, halo, hydroxy, oxo, and C_1 - C_4 alkyl,
 - wherein the C_1 - C_4 alkyl is further optionally substituted with one to two substituents selected from the group consisting of C_1 - C_3 alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl.
- 12. The compound of Claim 11 wherein R² and R³, together with the nitrogen to which they are attached, form pyrrolidin-1-yl, which pyrrolidin-1-yl is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl,
- wherein the C_1 - C_4 alkyl is further optionally substituted with one to two substituents selected from the group consisting of C_1 - C_3 alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl.

- 13. The compound of Claim 12 wherein R² and R³, together with the nitrogen to which they are attached, form 2-(2-chloro-phenyl)-pyrrolidin-1-yl.
- 5 14. The compound of **Claim 1** wherein the compound is 1-(3,5-Bis-trifluoromethylbenzyl)-5-phenyl-1H-[1,2,3]triazole-4-carboxylic acid (2-chloro-benzyl)-methyl-amide.
 - 15. The compound of **Claim 1** wherein the compound is [1-(3,5-Bis-trifluoromethylbenzyl)-5-phenyl-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone.
 - 16. A pharmaceutical composition comprising a compound of Claim 1, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier, excipient, or diluent.
 - 17. A method for treating a condition associated with an excess of tachykinins, comprising: administering to a patient in need thereof an effective amount of a compound of Formula (I):

10

15

wherein:

25 D¹ is a C₁-C₃ alkane-diyl;

D² is CH or nitrogen;

D⁴ is oxygen or sulfur;

R¹ is phenyl,

which phenyl is optionally substituted with one to three substitutents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

 R^2 is selected from the group consisting of hydroxy, C_1 - C_4 alkyl, optionally substituted phenyl, naphthyl, C_3 - C_{10} cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,

10

15

25

30

5

which C_1 - C_4 alkyl is optionally substituted with hydroxy, C_1 - C_2 alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

which pyridyl is further optionally substituted with one to two halo, C_1 - C_3 alkyl;

 R^3 is C_1 - C_4 alkyl, optionally substituted phenyl, -C(O)- R^4 , or - $S(O)_2$ - R^4 , which C_1 - C_4 alkyl is further optionally substituted with R^4 ;

20 R⁴ is optionally substituted phenyl;

or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

wherein the C_1 - C_4 alkyl is further optionally substituted with one to two substituents selected from the group consisting of C_1 - C_3 alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

 R^6 and R^7 are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2$ - CH_3 , or C_1 - C_4 alkoxycarbonyl, or R^6 and R^7 , together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

R⁵ is hydrogen, halo, trifluoromethyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, furyl, pyrazolyl, imidazolyl, -NR¹³R¹⁴, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1$ - C_4 alkyl),

or R⁵ is a radical selected from the group consisting of:

15

25

wherein

20 W is a bond, $-CHR^{15}$ -, -C(O)-, -O-, $-NR^{15}$ -, or $-S(O)_{q}$ -;

q is 0, 1, or 2;

R¹⁵ is selected from the group consisting of hydrogen, hydroxy, C₁-C₄ alkyl, acetyl, carbamoyl, phenyl, benzyl, and -S(O)₂CH₃;

 Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

 R^{13} and R^{14} are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2$ - CH_3 or C_3 - C_6 cycloalkyl;

wherein the C_1 - C_4 alkyl is optionally substituted with one C_1 - C_2 alkoxy or di(C_1 - C_2 alkyl)amino;

or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C_1 - C_2 alkyl;

- or a pharmaceutically acceptable salt thereof.
 - 18. The method of Claim 17 wherein the condition associated with an excess of tachykinins is selected from the group consisting of depression, anxiety, irritable bowel syndrome, and emesis.

15

19. A compound of Formula (I):

$$R^2$$
 R^3
 D^4
 N
 D^2
 R^5
 D^1
 R^1

20

wherein:

 D^1 is a C_1 - C_3 alkane-diyl;

25 D² is CH or nitrogen;

D⁴ is oxygen or sulfur;

R¹ is phenyl,

which phenyl is optionally substituted with one to three substitutents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

- R² is selected from the group consisting of hydroxy, C₁-C₄ alkyl, optionally substituted phenyl, naphthyl, C₃-C₁₀ cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,
- which C_1 - C_4 alkyl is optionally substituted with hydroxy, C_1 - C_2 alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

which pyridyl is further optionally substituted with one to two halo, C_1 - C_3 alkyl;

R³ is C_1 - C_4 alkyl, optionally substituted phenyl, -C(O)- R^4 , or - $S(O)_2$ - R^4 , which C_1 - C_4 alkyl is further optionally substituted with R^4 ;

R⁴ is optionally substituted phenyl;

or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C_3 - C_6 cycloalkyl, pyridyl, halo, hydroxy, oxo, and C_1 - C_4 alkyl;

wherein the C_1 - C_4 alkyl is further optionally substituted with one to two substituents selected from the group consisting of C_1 - C_3 alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

25

 R^6 and R^7 are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2$ - CH_3 , or C_1 - C_4 alkoxycarbonyl, or R^6 and R^7 , together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

R⁵ is hydrogen, halo, trifluoromethyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, furyl, pyrazolyl, imidazolyl, -NR¹³R¹⁴, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1$ - C_4 alkyl),

or R⁵ is a radical selected from the group consisting of:

15

25

$$(IC) , and (ID) ;$$

wherein

20 W is a bond, -CHR¹⁵-, -C(O)-, -O-, -NR¹⁵-, or -S(O)_q-;

q is 0, 1, or 2;

 R^{15} is selected from the group consisting of hydrogen, hydroxy, C_1 - C_4 alkyl, acetyl, carbamoyl, phenyl, benzyl, and $-S(O)_2CH_3$;

 Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

 R^{13} and R^{14} are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2$ - CH_3 or C_3 - C_6 cycloalkyl;

wherein the C_1 - C_4 alkyl is optionally substituted with one C_1 - C_2 alkoxy or di(C_1 - C_2 alkyl)amino;

or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C_1 - C_2 alkyl;

or a pharmaceutically acceptable salt thereof, for use in therapy.

10

20. Use of a compound of Formula (I):

$$R^2$$
 R^3 D^4 N D^2 R^5 N D^1 R^1

15

wherein:

D¹ is a C₁-C₃ alkane-diyl;

20 D² is CH or nitrogen;

D⁴ is oxygen or sulfur;

R¹ is phenyl,

which phenyl is optionally substituted with one to three substitutents independently selected from the group consisting of halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, cyano, difluoromethyl, trifluoromethyl, and trifluoromethoxy;

10

15

20

25

30

R² is selected from the group consisting of hydroxy, C₁-C₄ alkyl, optionally substituted phenyl, naphthyl, C₃-C₁₀ cycloalkyl, pyridyl, optionally substituted pyrrolidinyl, optionally substituted piperidinyl,

which C_1 - C_4 alkyl is optionally substituted with hydroxy, C_1 - C_2 alkoxy, optionally substituted phenyl, pyridyl, -NR⁶R⁷, or naphthyl;

which pyridyl is further optionally substituted with one to two halo, C₁-C₃ alkyl;

 R^3 is C_1 - C_4 alkyl, optionally substituted phenyl, -C(O)- R^4 , or $-S(O)_2$ - R^4 , which C_1 - C_4 alkyl is further optionally substituted with R^4 ;

R⁴ is optionally substituted phenyl;

or R² and R³, together with the nitrogen to which they are attached, form a 4-11 membered heterocyclic ring,

which heterocyclic ring is further optionally substituted with one to four substituents independently selected from the group consisting of optionally substituted phenyl, C₃-C₆ cycloalkyl, pyridyl, halo, hydroxy, oxo, and C₁-C₄ alkyl;

wherein the C_1 - C_4 alkyl is further optionally substituted with one to two substituents selected from the group consisting of C_1 - C_3 alkoxy, optionally substituted phenyl, oxo, phenoxy, pyridyl, and pyrrolidinyl;

 R^6 and R^7 are each independently hydrogen, C_1 - C_4 alkyl, $-S(O)_2$ - CH_3 , or C_1 - C_4 alkoxycarbonyl, or R^6 and R^7 , together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

 R^5 is hydrogen, halo, trifluoromethyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, furyl, pyrazolyl, imidazolyl, -NR¹³R¹⁴, pyridyloxy, benzyloxy, phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino,

which phenyl, phenoxy, pyrrolyl, thienyl, phenylthio, or anilino group may be optionally substituted on the ring with one to two substituents independently selected from the group consisting of halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, and $-S(O)_q(C_1$ - C_4 alkyl),

or R⁵ is a radical selected from the group consisting of:

wherein

15

W is a bond, -CHR¹⁵-, -C(O)-, -O-, -NR¹⁵-, or -S(O)_q-;

q is 0, 1, or 2;

R¹⁵ is selected from the group consisting of hydrogen, hydroxy, C_1 - C_4 alkyl, acetyl, carbamoyl, phenyl, benzyl, and $-S(O)_2CH_3$;

 Z^1 , Z^2 , and Z^3 are each independently CH or nitrogen;

25 R¹³ and R¹⁴ are each independently hydrogen, C₁-C₄ alkyl, -S(O)₂-CH₃ or C₃-C₆ cycloalkyl;

wherein the C_1 - C_4 alkyl is optionally substituted with one C_1 - C_2 alkoxy or di(C_1 - C_2 alkyl)amino;

or R¹³ and R¹⁴, together with the nitrogen to which they are attached, form a 4-7 membered saturated heterocyclic ring;

which 4-7 membered saturated heterocyclic ring is further optionally substituted with one to two C_1 - C_2 alkyl;

or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment of a condition associated with an excess of tachykinins.

21. A compound selected from the group consisting of: [1-(3,5-Bis-trifluoromethyl-benzyl)-5-(1-oxy-pyridin-4-yl)-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)pyrrolidin-1-yl]-methanone, [1-(3,5-Bis-trifluoromethyl-benzyl)-5-(1-oxy-pyridin-3-yl)-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone, and (R)-[1-(3,5-Bis-trifluoromethyl-benzyl)-5-(3,6-dihydro-2H-pyridin-1-yl)-1H-[1,2,3]triazol-4-yl]-[2-(2-chloro-phenyl)-pyrrolidin-1-yl]-methanone.