Perception & Multimedia Computing

Week 11 - Signals as Sinusoids

Michael Zbyszyński Lecturer, Department of Computing Goldsmiths University of London

https://goo.gl/Zfb9NK

Please fill in the survey at the link above

Key challenges in computing with audio

- How do we experience (see, hear) a piece of media (audio, image, video, etc.)?
- How can we efficiently create media to have a desired effect?
- How can we efficiently process media to have a desired effect?
- How can we efficiently analyze media to understand its contents?
- How can we represent media in a computer for storage, transmission, processing, analysis, etc.?

Becoming a sound ninja...

https://www.scientificamerican.com/article/a-learning-secret-don-t-take-notes-with-a-laptop/

SCIENTIFIC AMERICAN.

English - Cart O Sign In | Register

THE SCIENCES MIND HEALTH TECH SUSTAINABILITY EDUCATION VIDEO PODCASTS BLOGS STORE Q

MIND

A Learning Secret: Don't Take Notes with a Laptop

Students who used longhand remembered more and had a deeper understanding of the material

By Cindi May on June 3, 2014 📮 26 Véalo en español

ADVERTISEMENT | REPORT AD

READ THIS NEXT

The Science of Education: Back to School

Signals as Sinusoids & Implications for Audio Perception

Key challenges in computing with audio

- How do we experience (see, hear) a piece of media (audio, image, video, etc.)?
- How can we efficiently create media to have a desired effect?
- How can we efficiently process media to have a desired effect?
- How can we efficiently analyze media to understand its contents?
- How can we represent media in a computer for storage, transmission, processing, analysis, etc.?

Two insights for answering these questions

- 1. Sound, image, video, etc. are functions
- 2. All functions can be represented as sums of simpler functions

Sometimes called "basis functions"

or...

Or...

Today's lecture

We can represent any function as a sum of sinusoids.

Why sinusoids?

They're perceptually & physically relevant

e.g. sound frequency, volume, timbre, location, vowel, ...; image contour shape, edges, texture, ...

We have mathematical & computational tools that make working with sines convenient & efficient

Fourier analysis, Fast Fourier Transform, filters

Last term

- Wave propagation
- Intro to audio perception: pitch, volume, location
- Basic analog-to-digital conversion: Sampling & quantising
- Intro to perception & and synthesis of complex waveforms

Today

- Understanding signals as sums of sinusoids
- Fourier analysis (i.e., which sinusoids to sum?)
- Using sinusoids to understand perception of complex audio waveforms
 - Pitched & unpitched sounds
 - Consonance and dissonance
 - Human speech
- Implications for synthesis and analysis

Waveforms as sums of sinusoids

How to synthesize more interesting sounds?

1. Generate waveforms with different basic shapes

Other waveforms...

How to synthesize more interesting sounds?

- 1. Generate waveforms with different basic shapes
- 2. Add multiple sines together

^^^ Same expressive potential ^^^

We can express any* waveform as a sum of sinusoids

*requires waveform be either infinitely periodic or (more likely) finite in duration

S =
$$A_1 \sin(2\pi f_1 t + \Phi_1)$$

+ $A_2 \sin(2\pi f_2 t + \Phi_2)$
+ $A_3 \sin(2\pi f_3 t + \Phi_3)$
+ ...

Intro to Fourier Analysis

Given a waveform, what are its sinusoidal components?

If
$$s(t) = A_1 sin(2\pi f_1 t + \Phi_1)$$

 $+ A_2 sin(2\pi f_2 t + \Phi_2)$
 $+ A_3 sin(2\pi f_3 t + \Phi_3)$
 $+ ...$
What are A_n , f_n , Φ_n for all n ?

Plotting magnitude spectra

(amplitude & frequency, ignoring phase)

$$s = A \sin(2\pi*(100)*t)$$

Plotting magnitude spectra (amplitude & frequency, ignoring phase)

$$s = A \sin(2\pi^*(200)^*t)$$

Plotting magnitude spectra (amplitude & frequency, ignoring phase)

$$s = 2A \sin(2\pi^*(200)^*t)$$

Plotting magnitude spectra (amplitude & frequency, ignoring phase)

Why plot magnitude spectra?

Audio waveform

Spectrum

How to obtain a magnitude spectrum?

- 1. Choose some finite segment of the waveform to analyze
- 2. Compute Fast Fourier Transform (FFT), which will tell us magnitude & phase for sinusoids at different frequencies
- 3. Plot, with frequency on x-axis and magnitude on y-axis (don't plot phase)

Result shows frequency content throughout the analyzed segment (no way to tell if/how things change over time within the segment)

Example: Spectra in Audacity

Try changing size

Demo

Examining Audio Spectra using Audacity

- Practical tip: try different window sizes & types
- Magnitude typically expressed in dB
 - 0 dB is a reference point here, corresponding to amplitude of 1 (dBy = 20 log₁₀(y))
 - OdB doesn't mean same thing as when measuring sound volume!
 - Frequencies typically present with "negative" decibels
 - BUT 6dB rule of thumb still applies

Using frequency content to reason about audio perception

Flute playing "D" above middle C

Violin playing same note

Rule of Thumb #1

Pitched sounds have sinusoidal components that are harmonically related.

If
$$s(t) = A_1 sin(2\pi f_1 t + \Phi_1)$$

+ $A_2 sin(2\pi f_2 t + \Phi_2)$
+ $A_3 sin(2\pi f_3 t + \Phi_3)$
+ ...

Then
$$f_2 = 2 \times f_1$$

 $f_3 = 3 \times f_1$
 $f_4 = 4 \times f_1$
 $f_5 = 5 \times f_1$
etc.

e.g., {100, 200, 300, 400}
Or {250, 500, 750, 1000}
etc.

http://www.youtube.com/watch?v=6JeyiM0YNo4

000	CourseworkPart1	
display mode: sum of all h harmonic number: 6 (pres	armonics (press m to switch between modes) ss up or down to increase/decrease)	
fundamental frequency: tension: 10.0 (press left o maximum amplitude: 20.0	I.O r right to increase/decrease) (press + or - to increase/decrease)	

Harmonic Modes of Vibration

λ = v/f and v (speed) is constant

Recall:

http://en.wikipedia.org/wiki/Harmonic

http://www.youtube.com/watch?v=Ut7gy_7NDRI

Rule of Thumb #1

Pitched sounds have sinusoidal components that are harmonically related.

This is due to the physics of strings and air columns. When bowed / plucked / blown / etc., they will vibrate in certain way and not others.

Rule of Thumb #2

The pitch we hear is determined by the fundamental frequency

Flute playing "D" above middle C

Violin playing same note

5000Hz 7000Hz

10000Hz 12000Hz

1500

OHz 2000Hz

Sine wave at 294 Hz

Sine at 392 Hz

Flute

Violin

The instrument will sound the same as a sine wave with frequency f_0

frequency

Rule of Thumb #3

The degree to which a sound's frequencies are harmonically related influences the degree to which we hear it as "pitched."

(less harmonically related = less pitched)

-18dB

-60dB--66dB--**72dB**--78dB-

Ciblon

Snare

White noise

Why aren't drums pitched?

Strings, air columns vibrate at harmonics:

•2D surfaces do not (inharmonicity)

Modes on a drum head

http://www.acs.psu.edu/drussell/demos/membranecircle/circle.html

One sound or many?

Snare

Orchestra

Single or multiple sound sources?

These make it more likely to hear a single sound ->

- Harmonic relationship
- Shared onset time
- Shared location
- Shared changes in amplitude (envelope)
- Shared changes in frequency (vibrato)

Harmonic relationship

Sound with 5 harmonically-related partials (200, 400, 600, 800, 1000Hz)

Sound with 5 inharmonically-related partials (200, 311, 682, 1300, 2109Hz)

Onset time (when does the sound begin?)

8 harmonics, shared onset time

Same 8 harmonics, different onset times

Shared location

8 Harmonics, 4 panned left and 4 panned right

4 moving left→ right, other 4 moving right → left

Same 4, all centre

Shared changes in amplitude

Envelope:

Describes changes in the overall amplitude of a signal over time:

Envelope demos

Shared changes in frequency: vibrato demos

Vibrato demo: the soprano illusion

Single or multiple sound sources?

The following make it more likely to hear a single sound:

- Harmonic relationship
- Shared onset time
- Shared location
- Shared changes in amplitude (envelope)
- Shared changes in frequency (vibrato)

Compare to Gestalt principles of visual perception

Consonance & Dissonance

Rule of Thumb #4

Dissonance is caused by simultaneous frequencies that are close together

Two pitched sounds
(sinusoids or complex
waveforms) played
simultaneously can be
perceived as consonant or
dissonant.

(not absolute binary, also has cultural dimensions)

Perception impacted by:

- Relative pitch of sounds
- Absolute pitch of sounds
- Timbre of sounds

When frequencies are relatively close:

Beating

"Roughness"

Beating (2 waves close in frequency)

$$sin(A) + sin(B) = 2 sin \left[\frac{A+B}{2} \right] cos \left[\frac{A-B}{2} \right]$$

Audio examples

Basilar membrane

When two tones are close in frequency, they excite nearby locations on basilar membrane.

Critical band

A range of frequencies around a given tone within which addition of a second tone will interfere with accurate perception of the original tone.

Two simultaneous tones with different frequencies but within same critical band will sound "dissonant" or "rough."

Critical bands and the basilar membrane

Two pitched sounds
(sinusoids or complex
waveforms) played
simultaneously can be
perceived as consonant or
dissonant.

(not absolute binary, also has cultural dimensions)

Perception impacted by:

- Relative pitch of sounds
- Absolute pitch of sounds
- Timbre of sounds

When sounds aren't just sinusoids

- Do harmonics/partials line up?
- Or do they fall within same critical bands, without lining up exactly?

Demo

Consonant intervals reinforce each other

IMPORTANT FOR EXAM

This is a text the exam, do signal percep decomposition you will do or exam copies exams. For experception w

Basic principle

We perceive it as unpleasant when our ability to accurately sense something is interfered with!

Speech analysis & perception

Human speech

Listen to vowels: What do you hear?

- Constant pitch, volume
- Changing "tone quality"

Rule of Thumb #5

Different vowels are distinguished by relative strengths of particular frequency ranges ("formants")

Formants

Different vowels exhibit greater magnitude in different regions of the frequency spectrum.

Formants

The first two formants are sufficient to distinguish vowel sound.

Consonants

No definite pitch

(unperiodic, inharmonically related partials)

Still distinguishable by frequency content

Singer's Formant

Trained singers have additional formant around 3000Hz.

That allows a singer to be heard above orchestra!

Source-filter model of voice synthesis & analysis

Singing voice demo

Cross-synthesis

Demo: guitar source spectrum shaped by voice spectrum

Practical applications

- Speech synthesis
- Speech as spectral manipulation
- Compression
- Auto-tune

Speech perception also has a visual component

Demo: McGurk effect

http://www.youtube.com/watch?v=jtsfidRq2tw

Wrap-up

Implications of sinusoidal decomposition

- Synthesis
- Compression
- Processing

Implications of audio percetion principals

- Synthesis
- Compression
- Processing

Exam preparation

Can you write an essay on _____ perception?

Can you look at a spectrum and reason about what it will sound like?

Can you talk about how sinusoidal decomposition is useful?

Lab on Monday at 3pm!

