Question 1:

1.1 State diagram of DFA

1.2 Full formal specifications of the Machine

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$\delta : Q \times \Sigma \to Q$$

$$\delta(q_0, 0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_2$$

$$\delta(q_1, 1) = q_0$$

$$\delta(q_2, 0) = q_0$$

$$\delta(q_2, 1) = q_3$$

$$\delta(q_3, 0) = q_3$$

$$\delta(q_3, 1) = q_3$$

$$q_0 \in Q : \text{initial state}$$

$$F = q_0, q_1, q_2$$

Question 2:

2.1 Two simpler languages

2.2 Combine together

Question 3:

Question 4:

- 1. From the question, we already know that the complement of $L_{0>1}$: \overline{L} is regular if $L_{0>1}$ is regular, so we can use this to prove that $L_{0>1}$ is not a regular language by contradiction by using \overline{L}
- 2. Assume \overline{L} is regular
- 3. Let n be the pumping length given by the pumping lemma
- 4. Choose $\omega = 0^n 1^{n+k}, k \ge 0$
- 5. Let $w=xyz\in\overline{L}$ and $|w|\geq n$ and w follows pumping lemma as well
- 6. Since $|xy| \le n$ so no matter how we split the string, x will consist of only 0's and so will y
- 7. Take k=1, i=3 as example, $w=xy^iz=xyyyz$, since y consists at least one 0, then no matter how we divide string, 0's will always be more than 1's, for example: w=00111, when y=0, w becomes 0000111 and this does not meet the requirement
- 8. So $w \notin L_{\leq}$ and thus we can conclude \overline{L} is not regular, so $L_{0>1}$ is also not regular

Question 5:

5.1

5.2

- 1. Assume L_{\leq} is regular
- 2. Let n be the pumping length given by the pumping lemma
- 3. Let $w=xyz\in L_{\leq}$ and $|w|\geq n$ and w follows pumping lemma as well
- 4. Let w be the string ababb, and divide in substring x,y,z, we know $\forall i \geq 0, xy^iz \in L_{\leq}$
- 5. $|y| \ge 1$, and no matter how we divide x, y, z, the result string does not meet the requirement, for example: Let i = 2, when y = a, w = abaabb, in which a's are more than succeeding b's, when y = ab, w = abababb, still more a's than succeeding b's
- 6. So $w \notin L_{\leq}$ and thus we can conclude L_{\leq} is not regular

Question 6:

- 1. Assume L_* is regular
- 2. Let n be the pumping length given by the pumping lemma
- 3. Let $w=xyz\in L_*$ and $|w|\geq n$ and w follows pumping lemma as well
- 4. Let w be the string 10*10=100, and divide in substring x,y,z, we know $\forall i \geq 0, xy^iz \in L_*$
- 5. $|y| \ge 1$, and no matter how we divide x,y,z, the equation is always incorrect, for example: Let i=2, when y=10, 10*1010=100 is incorrect, when y=1, 10*110=100 is also incorrect
- 6. So $w \notin L_*$ and thus we can conclude L_* is not regular