Examples of NOT OK using car package

Kyun-Seop Bae MD PhD

2023-04-08 07:45:37

Contents

1	Test	ed Version and Books used for the Validation	3
	1.1	Packages Used	3
	1.2	Books and Articles used for the Test	3
2	Snee	e EMS ANOVA 1974	4
3	Goo	dnight	9
	3.1	p33	9
4	SAS	for Linear Models 4e	11
	4.1	p403	11
	4.2	p417	14
	4.3	p431	16
5	Saha	ai - Unbalanced	20
	5.1	Table 15.3	20
	5.2	Table 16.3	24
6	Fede	erer - Variations	29
	6.1	Example 2.2	29
	6.2	Example 3.1	32
	6.3	Example 5.1	41
	6.4	Example 7.1	47
	6.5	Example 7.3	51
	6.6	Example 8.1	57
	6.7	Example 9.2	60
	6.8	Example 10.1	63

7	Hink	elmann & Kempthorne - Volume 1	77
	7.1	p410	77
8	Sear	le - Linear Models 2e	80
	8.1	7.2 (p390, 59%)	80
	8.2	7.2 (p393, 60%)	81
9	Web	site examples	83
	9.1	https://github.com/djnavarro/psyr	83
10	Bioe	quivalence (BE) data example	85
11	Sess	sion Information	87

1 Tested Version and Books used for the Validation

1.1 Packages Used

• 'sasLM' version: 0.9.8

• 'SAS' version: 9.4 Licensed and University Edition

• 'car' version: 3.1.1

• R version: R version 4.2.3 (2023-03-15 ucrt)

The 'car' package is not necessary for 'sasLM.' It is used for the comparison of the results.

If you see any difference betwwen 'car' and 'sasLM', 'SAS' results coincide with 'sasLM', not with 'car.'

Before 'sasLM' is available on CRAN, you can download using the following command in R.

```
install.packages("sasLM", repos="http://r.acr.kr")
```

1.2 Books and Articles used for the Test

- 1. Snee RD. Computation and Use of Expected Mean Squares in Analysis of Variance. J Qual Tech. 1974:6(3);128-137.
- 2. Goodnight JH. The General Linear Models Procedure, Proceedings of the First International SAS User's Group, SAS Institute, Raleigh, N.C. 1976.
- 3. Littell RC, Stroup WW, Freund RJ. SAS for Linear Models 4e. John Wiley & Sons Inc. 2002.
- 4. Sahai H, Ojeda MM. Analysis of Variance for Random Models Volume 2 Unbalanced Data. 2005.
- 5. Federer WT, King F. Variations on Split Plot and Split Block Experiment Designs. John Wiley & Sons Inc. 2007.
- 6. Hinkelmann K, Kempthorne O. Design and Analysis of Experiments Volume 1 Introduction to Experimental Design. 2e. John Wiley & Sons Inc. 2008.
- 7. Searle SR, Gruber MHJ. Linear Models 2e, Kindle Edition. John Wiley & Sons Inc. 2016.

2 Snee EMS ANOVA 1974

Reference

- Snee RD. Computation and Use of Expected Mean Squares in Analysis of Variance. J Qual Tech. 1974:6(3);128-137.
- (1) MODEL

```
Snee = read.csv("http://r.acr.kr/Snee_EMS_ANOVA1974.csv")
Snee = af(Snee, c("Machine", "Analyst", "Test", "Day"))
Snee
```

	Machine	Analyst	Test	Day	Y
1	1	1	1	1	6.1
2	1	1	1	2	8.5
3	1	1	1	3	8.6
4	1	1	1	4	9.3
5	1	1	1	5	8.1
6	1	1	1	6	8.5
7	1	1	1	7	9.8
8	1	1	1	8	9.0
9	1	1	1	9	11.0
10	1	1	1	10	9.7
11	1	1	1	11	10.5
12	1	1	1	12	8.3
13	1	1	1	13	8.4
14	1	1	1	14	10.2
15	1	1	1	15	9.3
16	1	1	1	16	7.1
17	1	1	1	17	5.8
18	1	1	1	18	8.9
19	1	1	1	19	11.5
20	1	1	1	20	10.3
21	1	1	1	21	9.1
22	1	1	1	22	5.7
23	1	1	1	23	8.5
24	1	1	1	24	9.6
25	1	1	1	25	9.4
26	1	1	1	26	10.3
27	1	1	1	27	7.0
28	1	1	1	28	11.5
29	1	1	1	29	6.0
30	1	1	1	30	8.0
31	1	1	1	31	13.4
32	1	1	1	32	12.1

33	1	1	1	33	14.2
34	1	1	1	34	10.0
35	1	1	1	35	6.5
36	1	1	1	36	6.5
37	1	1	1	37	9.2
38	1	1	1	38	11.0
39	1	1	1	39	8.6
40	1	1	1	40	8.9
41	1	1	1	41	6.6
42	1	1	1	42	8.4
43	1	1	2	1	6.6
44	1	1	2	2	9.6
45	1	1	2	3	6.7
46	1	1	2	4	7.2
47	1	1	2	5	7.1
48	1	1	2	6	9.0
49	1	1	2	7	9.8
50	1	1	2	8	8.0
51	1	1	2	9	10.9
52	1	1	2	10	10.6
53	1	1	2	11	8.4
54	1	1	2	12	10.6
55	1	1	2	13	7.2
56	1	1	2	14	8.0
57	1	1	2	15	8.7
58	1	1	2	16	8.7
59	1	1	2	17	6.8
60	1	1	2	18	6.6
61	1	1	2	19	7.1
62	1	1	2	20	10.0
63	1	1	2	21	9.5
64	1	1	2	22	7.7
65	1	1	2	23	8.8
66	1	1	2	24	12.2
67	1	1	2	25	10.4
68	1	1	2	26	10.6
69	1	1	2	27	10.6
70	1	1	2	28	7.3
71	1	1	2	29	7.0
72	1	1	2	30	7.0
73	1	1	2	31	9.2
74	1	1	2	32	11.7
75	1	1	2	33	10.6
76	1	1	2	34	10.4
77	1	1	2	35	8.4
78	1	1	2	36	6.8
79	1	1	2	37	10.1
80	1	1	2	38	11.0

81	1	1	2	39	10.0
82	1	1	2	40	8.0
83	1	1	2	41	7.2
84	1	1	2	42	8.8
85	1	2	1	1	6.6
86	1	2	1	2	8.2
87	1	2	1	3	8.0
88	1	2	1	4	6.5
89	1	2	1	5	2.3
90	1	2	1	6	4.0
91	1	2	1	7	11.7
92	1	2	1	8	6.8
93	1	2	1	9	10.5
94	1	2	1	10	10.3
95	1	2	1	11	10.0
96	1	2	1	12	8.8
97	1	2	1	13	6.7
98	1	2	1	14	8.9
99	1	2	1	15	9.9
100	1	2	1	16	8.2
101	1	2	1	17	7.5
102	1	2	1	18	6.6
103	1	2	1	19	3.1
104	1	2	1	20	7.2
105	1	2	1	21	10.7
106	1	2	1	22	8.4
107	1	2	1	23	7.6
108	1	2	1	24	12.6
109	1	2	1	25	9.6
110	1	2	1	26	12.6
111	1	2	1	27	10.8
112	1	2	1	28	5.1
113	1	2	1	29	6.6
114	1	2	1	30	8.6
115	1	2	1	31	12.5
116	1	2	1	32	10.4
117	1	2	1	33	10.6
118	1	2	1	34	7.2
119	1	2	1	35	7.8
120	1	2	1	36	4.4
121	1	2	1	37	8.7
122	1	2	1	38	11.2
123	1	2	1	39	10.3
124	1	2	1	40	7.0
125	1	2	1	41	7.7
126	1	2	1	42	7.6
127	2	1	1	1	8.8
128	2	1	1	2	8.1

```
129
           2
                              3 7.4
                    1
                          1
130
           2
                    1
                          1
                              4
                                 8.0
131
           2
                    1
                              5
                                 9.5
                         1
132
           2
                    1
                          1
                              6
                                 9.2
           2
                    1
                              7 12.8
133
                          1
           2
134
                    1
                              8
                                 9.2
           2
                    1
                              9 11.3
135
                         1
           2
136
                    1
                             10
                                 9.3
                          1
137
           2
                    1
                         1
                             11
                                 4.0
138
           2
                    1
                         1
                             12
                                 9.7
           2
                    1
139
                         1
                             13
                                 4.6
           2
140
                    1
                         1
                             14
                                 2.1
           2
                                 9.7
141
                    1
                             15
                          1
           2
                    1
                             16 10.0
142
                         1
           2
143
                    1
                         1
                             17 10.2
           2
144
                    1
                         1
                             18 9.2
145
           2
                    1
                         1
                             19 10.8
           2
146
                    1
                         1
                             20 9.4
           2
                    1
147
                         1
                             21 10.3
           2
                    1
                             22 10.3
148
                          1
           2
149
                    1
                             23 8.3
                          1
           2
150
                    1
                          1
                             24 11.6
           2
151
                    1
                             25
                                9.4
                         1
152
           2
                    1
                          1
                             26 11.3
           2
153
                    1
                         1
                             27 11.4
           2
154
                    1
                         1
                             28
                                 9.6
155
           2
                    1
                             29
                                 2.2
                          1
           2
                    1
156
                         1
                             30
                                 6.6
           2
157
                    1
                         1
                             31 11.5
           2
158
                    1
                         1
                             32
                                 9.1
           2
159
                    1
                                 4.6
                         1
                             33
           2
160
                    1
                         1
                             34
                                 7.9
161
           2
                    1
                         1
                             35
                                 9.0
           2
162
                    1
                         1
                             36
                                 8.1
163
           2
                    1
                         1
                             37
                                 9.4
           2
164
                    1
                         1
                             38 10.9
           2
                    1
                             39
                                 9.0
165
                         1
           2
166
                    1
                          1
                             40
                                 7.8
           2
                    1
167
                         1
                             41
                                 9.3
168
           2
                    1
                          1
                             42 6.8
```

GLM(Y ~ Day/Machine/Analyst/Test, Snee)

\$ANOVA

Response : Y

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 167 751.27 4.4986

```
RESIDUALS
                      0.00
CORRECTED TOTAL 167 751.27
$Fitness
Root MSE
            Y Mean Coef Var R-square
       NA 8.736905
                         NA
$`Type I`
                         Df Sum Sq Mean Sq F value Pr(>F)
                         41 365.58 8.9166
Day
Day:Machine
                         42 196.59 4.6807
Day:Machine:Analyst
                         42 118.80 2.8285
Day: Machine: Analyst: Test 42 70.30 1.6739
$`Type II`
                         Df Sum Sq Mean Sq F value Pr(>F)
Day
                         41 365.58 8.9166
                         42 196.59 4.6807
Day:Machine
Day:Machine:Analyst
                         42 118.80 2.8285
Day: Machine: Analyst: Test 42 70.30 1.6739
$`Type III`
                         Df Sum Sq Mean Sq F value Pr(>F)
Day
                         41 359.44 8.7669
Day:Machine
                         42 199.40 4.7477
Day:Machine:Analyst
                         42 118.80 2.8285
Day: Machine: Analyst: Test 42 70.30 1.6739
options(contrasts=c("contr.sum", "contr.poly"))
```

Anova(lm(Y ~ Day/Machine/Analyst/Test, Snee), type=3, singular.ok=TRUE)

NOT WORKING

3 Goodnight

Reference

• Goodnight JH. The General Linear Models Procedure, Proceedings of the First International SAS User's Group, SAS Institute, Raleigh, N.C. 1976.

3.1 p33

(2) MODEL

```
p33 = read.csv("http://r.acr.kr/Goodnight-p33.csv")
p33 = af(p33, c("A", "B"))
p33
 ΑB
      У
1 1 1 2.96
2 1 2 7.90
3 2 1 4.79
4 2 2 9.55
5 3 3 9.53
GLM(y \sim A + B + A:B, p33) # p35
$ANOVA
Response : y
               Df Sum Sq Mean Sq F value Pr(>F)
MODEL
                4 34.905 8.7261
RESIDUALS
                0.000
CORRECTED TOTAL 4 34.905
$Fitness
Root MSE y Mean Coef Var R-square
      NA 6.946
                      NA
                                 1
$`Type I`
   Df Sum Sq Mean Sq F value Pr(>F)
    2 11.3739 5.6870
    1 23.5225 23.5225
A:B 1 0.0081 0.0081
$`Type II`
   Df Sum Sq Mean Sq F value Pr(>F)
Α
    1 3.0276 3.0276
    1 23.5225 23.5225
```

```
A:B 1 0.0081 0.0081

$`Type III`

CAUTION: Singularity Exists!

Df Sum Sq Mean Sq F value Pr(>F)

A 1 3.0276 3.0276

B 1 23.5225 23.5225

A:B 1 0.0081 0.0081

options(contrasts = c("contr.sum", "contr.poly"))

Anova(lm(y ~ A + B + A:B, p33), type=3, singular.ok=TRUE) # NOT WORKING
```

4 SAS for Linear Models 4e

Reference

• Littell RC, Stroup WW, Freund RJ. SAS for Linear Models 4e. John Wiley & Sons Inc. 2002.

4.1 p403

(3) MODEL

```
p403 = read.table("http://r.acr.kr/sas4lm/p403.txt", header=TRUE)
p403 = af(p403, c("PATIENT", "VISIT"))
p403
```

	PATTENT	SEQUENCE	VISTT	BASEHR.	HR	DRUG	RESIDT	RESTDS
1	1	В	2	86	86	placebo	0	0
2	1	В	3	86	106	test	-1	-1
3	1	В	4	62	79		1	0
4	2	F	2	48	66	test	0	0
5	2	F	3	58	56	placebo	1	0
6	2	F	4	74	79	-	-1	-1
7	3	В	2	78	84	placebo	0	0
8	3	В	3	78	76	test	-1	-1
9	3	В	4	82	91	standard	1	0
10	4	D	2	66	79	standard	0	0
11	4	D	3	72	100	test	0	1
12	4	D	4	90	82	placebo	1	0
13	5	С	2	74	74	test	0	0
14	5	C	3	90	71	standard	1	0
15	5	C	4	66	62	placebo	0	1
16	6	В	2	62	64	placebo	0	0
17	6	В	3	74	90	test	-1	-1
18	6	В	4	58	85	standard	1	0
19	7	A	2	94	75	standard	0	0
20	7	A	3	72	82	placebo	0	1
21	7	A	4	100	102	test	-1	-1
22	8	A	2	54	63	standard	0	0
23	8	A	3	54	58	placebo	0	1
24	8	A	4	66	62	test	-1	-1
25	9	D	2	82	91	${\tt standard}$	0	0
26	9	D	3	96	86	test	0	1
27	9	D	4	78	88	placebo	1	0
28	10	C	2	86	82	test	0	0
29	10	C	3	70	71	$\operatorname{standard}$	1	0
30	10	C	4	58	62	placebo	0	1
31	11	F	2	82	80	test	0	0

20	4.4	17	2	00	70	1 h -	4	^
32	11	F	3	80	78	placebo	1	0
33	11	F	4	72		standard	-1	-1
34	12	E	2	96	90	placebo	0	0
35	12	E	3	92	93		-1	-1
36	12	E	4	82	88	test	0	1
37	13	D	2	78	87		0	0
38	13	D	3	72	80	test	0	1
39	13	D	4	76	78	placebo	1	0
40	14	F	2	98	86	test	0	0
41	14	F	3	86	86	placebo	1	0
42	14	F	4	70	79	standard	-1	-1
43	15	Α	2	86	71	standard	0	0
44	15	Α	3	66	70	placebo	0	1
45	15	Α	4	74	90	test	-1	-1
46	16	E	2	86	86	placebo	0	0
47	16	E	3	90	103	standard	-1	-1
48	16	E	4	82	86	test	0	1
49	17	A	2	66	83	standard	0	0
50	17	Α	3	82	86	placebo	0	1
51	17	Α	4	86	102	test	-1	-1
52	18	F	2	66	82	test	0	0
53	18	F	3	78	80	placebo	1	0
54	18	F	4	74	95	-	-1	-1
55	19	E	2	74	80	placebo	0	0
56	19	E	3	78	79	-	-1	-1
57	19	E	4	70	74	test	0	1
58	20	В	2	66	70	placebo	0	0
59	20	В	3	74	62	test	-1	-1
60	20	В	4	62	67		1	0
61	21	C	2	82	90	test	0	0
62	21	C	3	90		standard	1	0
63	21	C	4	76	82	placebo	0	1
64	22	C	2	82	82	test	0	0
65	22	C	3	66		standard	1	0
66	22	C	4	90	82	placebo	0	1
67	23	E	2	82	66	placebo	0	0
68	23	E	3	74		standard	-1	-1
69	23 23	E	4	82	82		0	
			2		o2 75	test		1
70 71	24	D		72			0	0
71	24	D	3	82	86	test	0	1
72	24	D	4	74	82	placebo	1	0

GLM(HR ~ SEQUENCE + PATIENT %in% SEQUENCE + VISIT + DRUG + RESIDS + RESIDT, p403)

\$ANOVA

Response : HR

Df Sum Sq Mean Sq F value Pr(>F)

```
MODEL
               29 6408.7 220.99
                                  3.912 3.127e-05 ***
RESIDUALS
               42 2372.6
                           56.49
CORRECTED TOTAL 71 8781.3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE HR Mean Coef Var R-square Adj R-sq
7.515988 80.80556 9.301326 0.7298134 0.543256
$`Type I`
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
                 5 508.9 101.79 1.8019 0.133346
SEQUENCE
SEQUENCE: PATIENT 18 4692.3 260.69 4.6147 2.21e-05 ***
                          73.39 1.2991 0.283499
VISIT
                 2 146.8
DRUG
                 2 668.8 334.39 5.9194 0.005435 **
RESIDS
                 1 391.0 391.02 6.9219 0.011854 *
RESIDT
                 1
                      0.8
                            0.84 0.0149 0.903511
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$`Type II`
                Df Sum Sq Mean Sq F value Pr(>F)
SEQUENCE
                 5 701.2 140.237 2.4825 0.04665 *
SEQUENCE: PATIENT 18 4692.3 260.685 4.6147 2.21e-05 ***
VISIT
                 2 146.8 73.389 1.2991 0.28350
DRUG
                 2 344.0 171.975 3.0443 0.05826 .
                 1 309.2 309.174 5.4731 0.02414 *
RESIDS
RESIDT
                      0.8
                           0.840 0.0149 0.90351
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
                 5 701.2 140.237 2.4825 0.04665 *
SEQUENCE
SEQUENCE: PATIENT 18 4692.3 260.685 4.6147 2.21e-05 ***
                 2 146.8 73.389 1.2991 0.28350
VISIT
DRUG
                 2 344.0 171.975 3.0443 0.05826 .
RESIDS
                 1 309.2 309.174 5.4731 0.02414 *
                            0.840 0.0149 0.90351
RESTDT
                 1
                      0.8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(HR ~ SEQUENCE + PATIENT %in% SEQUENCE + VISIT + DRUG + RESIDS + RESIDT,
        p403), type=3, singular.ok=TRUE) # NOT OK
```

Note: model has aliased coefficients

sums of squares computed by model comparison

Anova Table (Type III tests)

```
Response: HR
```

-									
	Sum Sq	Df F	'values	Pr(>F)					
SEQUENCE	0.0	0							
VISIT	146.8	2	1.2991	0.28350					
DRUG	343.9	2	3.0443	0.05826	•				
RESIDS	309.2	1	5.4731	0.02414	*				
RESIDT	0.8	1	0.0149	0.90351					
SEQUENCE: PATIENT	4692.3	18	4.6147	2.21e-05	***				
Residuals	2372.6	42							
Cignif codog: (1 14441	0 00	1	0 01 141 0) OE 1	1 (∩ 1	,	1

Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1

4.2 p417

(4) MODEL

```
p417 = read.table("http://r.acr.kr/sas4lm/p417.txt", header=TRUE)
p417 = af(p417, c("TRT", "POT", "PLANT"))
p417
```

```
Obs TRT POT PLANT Y
1
     1
         1
             1
                    1 15
2
     2
         1
             1
                    2 13
3
     3
                    3 16
         1
             1
             2
4
     4
                    1 17
         1
5
     5
             2
                   2 19
         1
6
     6
         1
             3
                   1 12
7
     7
         2
             1
                   1 20
8
     8
         2
                   2 21
             1
9
             2
                   1 20
     9
         2
10
   10
         2
             2
                   2 23
             2
                   3 19
11
    11
12
   12
         2
             2
                   4 19
13 13
         3
             1
                   1 12
14 14
         3
             1
                   2 13
15 15
         3
                   3 14
             1
             2
16 16
         3
                   1 11
17 17
         3
             3
                   1 12
18 18
             3
                   2 13
             3
                   3 15
19 19
         3
20 20
             3
                   4 11
         3
21 21
         3
             3
                   5 9
```

GLM(Y ~ TRT + POT %in% TRT, p417) # p418 Output 11.28

```
$ANOVA
Response : Y
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
                7 267.226 38.175 12.433 7.522e-05 ***
MODEL
RESIDUALS
               13 39.917
                           3.071
CORRECTED TOTAL 20 307.143
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE
           Y Mean Coef Var R-square Adj R-sq
 1.752288 15.42857 11.35742 0.8700388 0.8000596
$`Type I`
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
        2 236.921 118.460 38.580 3.412e-06 ***
TRT
TRT:POT 5 30.306
                   6.061
                          1.974
                                    0.1499
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
       2 236.921 118.460 38.580 3.412e-06 ***
TRT
TRT:POT 5 30.306 6.061
                           1.974
                                    0.1499
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$`Type III`
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
        2 200.111 100.055 32.586 8.626e-06 ***
TRT
TRT:POT 5 30.306
                    6.061
                          1.974
                                    0.1499
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y ~ TRT + POT %in% TRT, p417), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
         Sum Sq Df F values Pr(>F)
```

```
TRT 22.310 1 7.266 0.01835 *

TRT:POT 30.306 5 1.974 0.14991

Residuals 39.917 13
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4.3 p431

(5) MODEL

```
p431 = read.table("http://r.acr.kr/sas4lm/p431.txt", header=TRUE)
p431 = af(p431, c("line", "sire", "agedam", "steerno"))
p431
```

	0bs	line	sire	agedam	steerno	age	${\tt intlwt}$	avdlygn
1	1	1	1	3	1	192	390	2.24
2	2	1	1	3	2	154	403	2.65
3	3	1	1	4	3	185	432	2.41
4	4	1	1	4	4	193	457	2.25
5	5	1	1	5	5	186	483	2.58
6	6	1	1	5	6	177	469	2.67
7	7	1	1	5	7	177	428	2.71
8	8	1	1	5	8	163	439	2.47
9	9	1	2	4	9	188	439	2.29
10	10	1	2	4	10	178	407	2.26
11	11	1	2	5	11	198	498	1.97
12	12	1	2	5	12	193	459	2.14
13	13	1	2	5	13	186	459	2.44
14	14	1	2	5	14	175	375	2.52
15	15	1	2	5	15	171	382	1.72
16	16	1	2	5	16	168	417	2.75
17	17	1	3	3	17	154	389	2.38
18	18	1	3	4	18	184	414	2.46
19	19	1	3	5	19	174	483	2.29
20	20	1	3	5	20	170	430	2.30
21	21	1	3	5	21	169	443	2.94
22	22	2	4	3	22	158	381	2.50
23	23	2	4	3	23	158	365	2.44
24	24	2	4	4	24	169	386	2.44
25	25	2	4	4	25	144	339	2.15
26	26	2	4	5	26	159	419	2.54
27	27	2	4	5	27	152	469	2.74
28	28	2	4	5	28	149	379	2.50
29	29	2	4	5	29	149	375	2.54
30	30	2	5	3	30	189	395	2.65
31	31	2	5	4	31	187	447	2.52

```
32 165
                                                 2.67
32
    32
          2
                5
                       4
                                          430
33 33
          2
                5
                       5
                               33 181
                                          453
                                                 2.79
34 34
                5
                       5
                               34 177
                                          385
                                                 2.33
          2
35 35
          2
                5
                       5
                               35 151
                                          414
                                                 2.67
                       5
                                                 2.69
36 36
          2
                5
                               36 147
                                          353
37
    37
          3
                6
                       4
                               37 184
                                          411
                                                 3.00
38 38
          3
                6
                       4
                               38 184
                                          420
                                                 2.49
                                                 2.25
39
    39
          3
                6
                       5
                               39 187
                                          427
40 40
          3
                6
                       5
                               40 184
                                          409
                                                 2.49
41 41
                       5
                               41 183
                                          337
                                                 2.02
          3
                6
42 42
          3
                6
                       5
                               42 177
                                          352
                                                 2.31
43 43
          3
                7
                       3
                               43 205
                                          472
                                                 2.57
          3
                7
                       3
                               44 193
                                          340
                                                 2.37
44 44
                7
45
    45
          3
                       4
                               45 162
                                          375
                                                 2.64
46
    46
          3
                7
                       5
                               46 206
                                          451
                                                 2.37
                       5
                               47 205
47
    47
          3
                7
                                          472
                                                 2.22
48 48
          3
                7
                       5
                               48 187
                                          402
                                                 1.90
49 49
                7
                       5
                               49 178
                                          464
                                                 2.61
          3
50 50
          3
                7
                       5
                               50 175
                                          414
                                                 2.13
                               51 200
51 51
          3
                8
                       3
                                          466
                                                 2.16
                       3
52 52
          3
                8
                               52 184
                                          356
                                                 2.33
53 53
          3
                8
                       3
                               53 175
                                          449
                                                 2.52
54 54
          3
                8
                       4
                               54 178
                                          360
                                                 2.45
55 55
          3
                8
                       5
                               55 189
                                          385
                                                 1.44
56 56
          3
                8
                       5
                               56 184
                                          431
                                                 1.72
57 57
          3
                8
                       5
                               57 183
                                          401
                                                 2.17
                               58 166
                                          404
                                                 2.68
58 58
          3
                9
                       3
59 59
          3
                9
                               59 187
                                          482
                                                 2.43
                        4
                               60 186
                                          350
                                                 2.36
60 60
          3
                9
                       4
61 61
          3
                9
                       4
                               61 184
                                          483
                                                 2.44
62 62
          3
                9
                       5
                               62 180
                                          425
                                                 2.66
63 63
          3
                9
                       5
                               63 177
                                          420
                                                 2.46
64 64
                       5
                               64 175
                                          440
                                                 2.52
          3
                9
65 65
          3
                9
                       5
                               65 164
                                          405
                                                 2.42
```

GLM(avdlygn ~ line + line:sire + agedam + line:agedam + age + intlwt, p431)

\$ANOVA

MODEL

Response : avdlygn

Df Sum Sq Mean Sq F value Pr(>F) 16 2.5275 0.157966 3.1437 0.001091 **

RESIDUALS 48 2.4119 0.050248

CORRECTED TOTAL 64 4.9394

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\$Fitness

```
Root MSE avdlygn Mean Coef Var R-square Adj R-sq
              2.411385 9.295956 0.511696 0.348928
0.2241612
$`Type I`
           Df Sum Sq Mean Sq F value Pr(>F)
            2 0.38009 0.190046 3.7821 0.02983 *
line
line:sire
            6 0.92634 0.154391 3.0726 0.01260 *
agedam
            2 0.11894 0.059471 1.1835 0.31497
line:agedam 4 0.64889 0.162222 3.2284 0.02000 *
age
            1 0.18349 0.183487 3.6516 0.06200 .
            1 0.26970 0.269704 5.3674 0.02483 *
intlwt
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type II`
           Df Sum Sq Mean Sq F value
                                        Pr(>F)
line
            2 0.05526 0.02763 0.5498 0.580636
line:sire
            6 0.97389 0.16231 3.2303 0.009543 **
agedam
            2 0.33106 0.16553 3.2943 0.045640 *
line:agedam 4 0.45343 0.11336 2.2560 0.076821 .
            1 0.38128 0.38128 7.5878 0.008277 **
            1 0.26970 0.26970 5.3674 0.024830 *
intlwt
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
           Df Sum Sq Mean Sq F value
                                        Pr(>F)
line
            2 0.13620 0.06810 1.3553 0.267560
            6 0.97389 0.16231 3.2303 0.009543 **
line:sire
agedam
            2 0.13011 0.06505 1.2946 0.283392
line:agedam 4 0.45343 0.11336 2.2560 0.076821 .
            1 0.38128 0.38128 7.5878 0.008277 **
age
            1 0.26970 0.26970 5.3674 0.024830 *
intlwt
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# p433 Output 11.40
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(avdlygn ~ line + line:sire + agedam + line:agedam + age + intlwt, p431),
     type=3, singular.ok=TRUE) # NOT OK for line
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
```

```
Response: avdlygn
```

Sum Sq Df F values Pr(>F)

line 0.00000 0

agedam 0.13011 2 1.2946 0.283392 age 0.38128 1 7.5878 0.008277 ** intlwt 0.26970 1 5.3674 0.024830 * line:sire 0.97389 6 3.2303 0.009543 ** line:agedam 0.45343 4 2.2560 0.076821 .

Residuals 2.41192 48

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5 Sahai - Unbalanced

Reference

• Sahai H, Ojeda MM. Analysis of Variance for Random Models Volume 2 Unbalanced Data. 2005.

5.1 Table 15.3

(6) MODEL

```
T15.3 = read.table("http://r.acr.kr/sahai/T15.3.txt")
colnames(T15.3) = c("Dam", "Sire", "pH")
T15.3 = af(T15.3, c("Dam", "Sire"))
T15.3
```

```
Dam Sire
               pН
1
      1
           1 7.48
2
           1 7.48
      1
3
           1 7.52
      1
4
           1 7.54
      1
5
     6
          1 7.54
6
     6
          1 7.36
7
     6
          1 7.36
8
     6
          1 7.40
9
          1 7.52
     11
          1 7.54
10
     11
          1 7.52
11
     11
12
     11
          1 7.56
          1 7.53
13
     11
14
     1
          2 7.48
15
      1
           2 7.53
16
      1
           2 7.43
17
     1
          2 7.39
           2 7.44
18
     6
           2 7.47
19
     6
20
     6
          2 7.48
21
     6
          2 7.48
22
           2 7.56
     11
23
     11
           2 7.39
24
          2 7.52
     11
25
     11
           2 7.49
26
     11
           2 7.48
          1 7.45
27
     2
28
     2 1 7.43
29
     2
          1 7.49
30
     2
          1 7.40
```

31	2	1 7.40
32	6	3 7.43
33	6	3 7.52
34	6	3 7.50
35	6	3 7.46
36	6	3 7.39
37	12	1 7.50
38	12	1 7.45
39	12	1 7.43
40	12	1 7.44
41	12	1 7.49
42	2	2 7.50
	_	
43	2	2 7.45
44	2	2 7.43
4 -		
45	2	2 7.36
46	7	1 7.41
	7 7	
47	1	
48	7	1 7.36
49	7	1 7.47
49		
50	12	2 7.52
51	12	2 7.43
31		
52	12	2 7.38
53	12	2 7.33
54	3	1 7.40
55	3	1 7.45
56	3	1 7.42
57	3	1 7.48
58	7	2 7.47
59	7	2 7.36
60	7	2 7.43
61	3 7 7 7 7	2 7.38
62		2 7.41
63	13	1 7.39
64	13	1 7.37
65	13	1 7.33
66	13	1 7.43
67	13	1 7.42
68	3	2 7.45
69	3	2 7.33
70	3	2 7.40
71	3	2 7.46
72	7	3 7.53
73	7	3 7.40
74	7	3 7.44
75	7	3 7.40
76	7	3 7.45
77	13	2 7.43
78	13	2 7.38

79	13	2 7.44
80	3	3 7.40
81	3	3 7.47
	3	
82		
83	3	3 7.47
84	3	3 7.47
85	8	1 7.52
86	8	1 7.53
87	8	1 7.48
88	13	3 7.46
89	13	3 7.44
90	13	3 7.37
91	13	3 7.54
92	4	1 7.38
93	4	1 7.48
	4	1 7.46
94		
95	8	2 7.40
96	8	2 7.48
97	8	2 7.50
98	8	2 7.40
99	8	2 7.51
100	14	1 7.50
101	14	1 7.53
102	14	1 7.51
103	14	1 7.43
104	4	2 7.37
105	4	2 7.31
106	4	2 7.45
107		
	4	2 7.41
108	9	1 7.40
109	9	1 7.34
110	9	1 7.37
111	9	1 7.45
112	14	2 7.44
113	14	2 7.45
114	14	2 7.39
115	14	2 7.52
116	5	1 7.44
117	5	1 7.51
118	5	1 7.49
119	5	1 7.51
120	5	1 7.52
121	9	
122	9	2 7.37
123	9	2 7.46
124	9	2 7.40
125	14	3 7.42
126	14	3 7.48

```
3 7.45
127
    14
128
    14
           3 7.51
          3 7.48
129
    14
130
     5
           2 7.49
           2 7.49
131
132
     5
           2 7.49
          2 7.50
133
     5
           1 7.39
134
    10
135 10
          1 7.31
136
    10
          1 7.30
           1 7.41
137
    10
138
    10
           1 7.48
139
    15
           1 7.47
140
    15
          1 7.49
141
    15
           1 7.45
142 15
          1 7.43
143
    15
          1 7.42
144
     5
          3 7.48
145
     5
           3 7.59
           3 7.59
146
     5
147
          2 7.50
    10
148
    10
           2 7.44
149
          2 7.40
    10
          2 7.45
150
    10
151 15
          2 7.45
           2 7.42
152 15
153 15
           2 7.52
154
    15
          2 7.51
155 15
           2 7.32
156 15
           3 7.51
157
    15
          3 7.51
158 15
          3 7.53
159 15
           3 7.45
160 15
           3 7.51
```

GLM(pH ~ Dam/Sire, T15.3) # p301

```
$ANOVA
Response : pH

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 36 0.25804 0.0071678 2.8977 7.2e-06 ***

RESIDUALS 123 0.30425 0.0024736

CORRECTED TOTAL 159 0.56229

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

\$Fitness

```
Root MSE pH Mean Coef Var R-square Adj R-sq
 0.04973534 7.449813 0.6676053 0.4589074 0.3005388
$`Type I`
        Df
             Sum Sq Mean Sq F value
                                        Pr(>F)
        14 0.178017 0.0127155 5.1405 1.563e-07 ***
Dam:Sire 22 0.080024 0.0036374 1.4705
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
        Df
             Sum Sq Mean Sq F value
                                        Pr(>F)
        14 0.178017 0.0127155 5.1405 1.563e-07 ***
Dam
Dam:Sire 22 0.080024 0.0036374 1.4705
                                       0.09662 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
        Df
             Sum Sq
                      Mean Sq F value
                                        Pr(>F)
        14 0.179405 0.0128146 5.1805 1.347e-07 ***
Dam:Sire 22 0.080024 0.0036374 1.4705
                                       0.09662 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c("contr.sum", "contr.poly"))
Anova(lm(pH ~ Dam/Sire, T15.3), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: pH
           Sum Sq Df F values
                                 Pr(>F)
         0.081011
                  6 5.4584 4.898e-05 ***
Dam
Dam:Sire 0.080024 22
                        1.4705
                                0.09662 .
Residuals 0.304253 123
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

5.2 Table 16.3

(7) MODEL

```
T16.3 = read.csv("http://r.acr.kr/sahai/T16.3.csv")
colnames(T16.3) = c("Plot", "Sample", "Subsample", "Residue")
T16.3 = af(T16.3, c("Plot", "Sample", "Subsample"))
T16.3
```

		_	Subsample	
1	1	1	1	0.52
2	1	1	1	0.43
3	1	1	2	0.40
4	1	1	2	0.52
5	1	2	1	0.26
6	1	2	2	0.54
7	1	3	1	0.52
8	2	1	1	0.50
9	2	1	1	0.59
10	2	1	2	0.47
11	2	1	2	0.50
12	2	2	1	0.04
13	2	2	2	0.43
14	2	3	1	1.08
15	3	1	1	0.34
16	3	1	1	0.26
17	3	1	2	0.32
18	3	1	2	0.45
19	3	2	1	0.25
20	3	2	2	0.38
21	3	3	1	0.29
22	4	1	1	0.18
23	4	1	1	0.24
24	4	1	2	0.31
25	4	1	2	0.29
26	4	2	1	0.13
27	4	2	2	0.25
28	4	3	1	0.10
29	5	1	1	1.05
30	5	1	1	0.66
31	5	1	2	0.60
32	5	1	2	0.51
33	5	2	1	0.95
34	5	2	2	0.84
35	5	3	1	0.92
36	6	1	1	0.52
37	6	1	1	0.66
38	6	1	2	0.55
39	6	1	2	0.40
40	6	2	1	0.33
41	6	2	2	0.26
41	O	2	2	0.20

```
42
                               0.41
      6
              3
                         1
43
      7
              1
                         1
                               0.77
44
      7
                               0.56
              1
                         1
45
      7
              1
                         2
                               0.51
      7
                         2
                               0.60
46
              1
47
      7
              2
                         1
                               0.44
      7
              2
                         2
48
                               0.50
49
      7
              3
                               0.44
                         1
50
      8
              1
                         1
                               0.89
51
      8
              1
                               0.92
                         1
52
                         2
                               0.75
      8
              1
53
      8
              1
                         2
                               0.58
54
              2
      8
                         1
                               0.64
55
      8
              2
                         2
                               0.54
56
      8
              3
                         1
                               0.36
57
                               0.50
      9
              1
                         1
58
      9
              1
                         1
                               0.67
59
      9
              1
                         2
                               0.60
60
      9
              1
                         2
                               0.53
61
              2
                               0.60
      9
                         1
62
      9
              2
                         2
                               0.71
63
      9
              3
                         1
                               0.92
64
     10
              1
                               0.58
                         1
65
     10
              1
                         1
                               0.52
66
     10
              1
                         2
                               0.56
67
                               0.44
     10
              1
                         2
68
              2
                               0.46
     10
                         1
              2
                         2
69
     10
                               0.52
70
              3
     10
                               0.52
                         1
71
     11
              1
                         1
                               0.24
72
                               0.36
     11
              1
                         1
73
     11
              1
                         2
                               0.48
74
     11
              1
                         2
                               0.30
75
     11
              2
                         1
                               0.53
76
     11
              2
                         2
                               0.50
77
                               0.39
     11
              3
                         1
```

GLM(Residue ~ Plot/Sample/Subsample, T16.3) # p344

\$ANOVA

Response : Residue

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 54 3.1897 0.059069 5.8842 1.476e-05 ***

RESIDUALS 22 0.2208 0.010039

CORRECTED TOTAL 76 3.4106

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
$Fitness
Root MSE Residue Mean Coef Var R-square Adj R-sq
0.100193
            0.5023377 19.94535 0.9352456 0.776303
$`Type I`
                     Df Sum Sq Mean Sq F value
                     10 1.84041 0.184041 18.3332 1.929e-08 ***
Plot
                     22 0.99175 0.045079 4.4906 0.0004209 ***
Plot:Sample
Plot:Sample:Subsample 22 0.35757 0.016253 1.6191 0.1330632
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
                     Df Sum Sq Mean Sq F value
Plot
                     10 1.84041 0.184041 18.3332 1.929e-08 ***
Plot:Sample
                     22 0.99175 0.045079 4.4906 0.0004209 ***
Plot:Sample:Subsample 22 0.35757 0.016253 1.6191 0.1330632
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$`Type III`
                     Df Sum Sq Mean Sq F value
Plot
                     10 1.78686 0.178686 17.7998 2.547e-08 ***
Plot:Sample
                     22 0.99175 0.045079 4.4906 0.0004209 ***
Plot:Sample:Subsample 22 0.35757 0.016253 1.6191 0.1330632
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts = c("contr.sum", "contr.poly"))
Anova(lm(Residue ~ Plot/Sample/Subsample, T16.3), type=3, singular.ok=TRUE)
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Residue
                      Sum Sq Df F values Pr(>F)
Plot
                     0.00000 0
Plot:Sample
                     0.36613 11
                                  3.3156 0.00805 **
Plot:Sample:Subsample 0.35758 22
                                  1.6191 0.13306
Residuals
                     0.22085 22
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

6 Federer - Variations

Reference

 Federer WT, King F. Variations on Split Plot and Split Block Experiment Designs. John Wiley & Sons Inc. 2007.

6.1 Example 2.2

(8) MODEL

```
ex2.2 = read.table("http://r.acr.kr/split/sbex2_2.txt", header=TRUE)
ex2.2 = af(ex2.2, c("Row", "Column", "R", "S"))
ex2.2
```

```
Row Column R S
                         Y
1
      1
             1 1 1 1027.85
2
      1
             1 1 2 982.74
3
             1 1 3 1007.24
      1
4
             1 1 4 1008.47
      1
5
      1
             2 2 1 1004.33
6
             2 2 2 977.86
      1
7
      1
            2 2 3 999.15
8
            2 2 4 990.86
      1
9
             3 3 1 992.57
      1
             3 3 2 993.71
10
      1
11
             3 3 3 1012.57
      1
12
      1
             3 3 4 968.25
13
             4 4 1 994.60
      1
14
      1
            4 4 2 1021.81
15
      1
            4 4 3 995.03
16
             4 4 4 1002.17
      1
17
             5 5 1 1019.89
      1
            5 5 2 1017.48
18
19
      1
             5 5 3 987.82
20
             5 5 4 995.63
      1
21
      2
            4 1 1 996.18
            4 1 2 981.96
22
      2
23
      2
            4 1 3 985.63
            4 1 4 965.80
24
      2
25
      2
            5 2 1 996.61
26
      2
             5 2 2 1011.94
27
             5 2 3 972.76
      2
28
      2
            5 2 4 1011.99
29
      2
             2 3 1 1021.61
30
      2
             2 3 2 1014.46
```

```
31
      2
              2 3 3 980.03
32
      2
              2 3 4 1014.80
33
      2
              3 4 1 1028.78
34
      2
              3 4 2 1006.01
              3 4 3 1015.04
35
      2
36
      2
              3 4 4 1000.72
              1 5 1 994.91
37
      2
              1 5 2 999.91
38
      2
39
      2
              1 5 3 1010.29
40
      2
              1 5 4 1018.49
41
      3
              5 1 1 985.72
42
      3
              5 1 2 1012.60
43
      3
              5 1 3
                    984.62
44
      3
              5 1 4 973.47
45
      3
              1 2 1 1013.52
46
              1 2 2 1017.40
      3
47
      3
              1 2 3
                    996.63
48
      3
              1 2 4 989.91
49
      3
              4 3 1 1003.92
              4 3 2
                    999.33
50
      3
51
              4 3 3
                     995.70
      3
52
      3
              4 3 4 988.14
              2 4 1 1010.08
53
      3
54
      3
              2 4 2 997.66
55
      3
             2 4 3 1012.12
56
      3
             2 4 4 1019.53
57
              3 5 1 1004.83
      3
              3 5 2 983.86
58
      3
59
              3 5 3 1018.60
      3
60
      3
              3 5 4 1020.95
              2 1 1 991.79
61
      4
62
      4
              2 1 2 979.47
63
      4
              2 1 3 1004.70
64
      4
              2 1 4 1032.75
65
              3 2 1 1004.52
      4
              3 2 2 996.53
66
      4
              3 2 3 1016.95
67
      4
68
      4
              3 2 4
                    983.79
              1 3 1
                    990.17
69
      4
70
              1 3 2 972.21
      4
71
              1 3 3 1002.17
      4
72
      4
              1 3 4 1017.56
73
      4
              5 4 1 1006.13
74
              5 4 2 1005.57
      4
75
              5 4 3 1003.18
      4
76
              5 4 4 992.21
      4
77
      4
             4 5 1 1011.02
78
      4
             4 5 2 982.79
```

```
79
             4 5 3 1018.23
80
             4 5 4 976.68
81
             3 1 1 993.54
      5
82
      5
             3 1 2 1006.80
             3 1 3 1001.24
83
      5
84
      5
             3 1 4 1010.73
             4 2 1 985.04
85
      5
             4 2 2 987.54
86
      5
87
      5
             4 2 3 990.53
88
      5
             4 2 4 982.68
89
      5
             5 3 1 1012.14
             5 3 2 999.32
90
      5
91
      5
             5 3 3 1005.51
92
             5 3 4 998.86
      5
93
      5
             1 4 1 985.12
      5
94
             1 4 2 984.14
95
      5
             1 4 3 1010.74
96
      5
             1 4 4 1004.63
97
      5
             2 5 1 967.39
             2 5 2 1009.78
98
      5
99
             2 5 3 1027.49
      5
100
      5
             2 5 4 1001.61
GLM(Y \sim Row + R + S + R:S + Row:R + Column:S + Column:R:S, ex2.2)
$ANOVA
Response: Y
                Df Sum Sq Mean Sq F value Pr(>F)
MODEL
                99 22310 225.36
RESIDUALS
                 0
                        0
CORRECTED TOTAL 99 22310
$Fitness
Root MSE
            Y Mean Coef Var R-square
       NA 1000.098
                         NΑ
$`Type I`
           Df Sum Sq Mean Sq F value Pr(>F)
                        36.86
                147.4
            4
Row
R
            4 1159.8 289.94
                351.9 117.29
S
            3
                826.0
R:S
           12
                       68.83
Row:R
           16 3979.8 248.74
S:Column
           12 3863.3 321.94
R:S:Column 48 11982.3 249.63
```

\$`Type II`

```
Sum Sq Mean Sq F value Pr(>F)
           Df
Row
           0
           4 1159.8 289.94
R
S
            3
                351.9 117.29
R:S
                826.0
                        68.83
           12
Row:R
            0
S:Column
           12 3863.3 321.94
R:S:Column 48 11982.3 249.63
$`Type III`
CAUTION: Singularity Exists!
           Df
               Sum Sq Mean Sq F value Pr(>F)
Row
R
            4
              1159.8 289.94
S
            3
                351.9 117.29
           12
R:S
                826.0
                        68.83
Row:R
            0
           12 3863.3 321.94
S:Column
R:S:Column 48 11982.3 249.63
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y ~ Row + R + S + R:S + Row:R + Column:S + Column:R:S, ex2.2), type=3,
      singular.ok=TRUE) # NOT WORKING
```

6.2 Example 3.1

(9) MODEL

```
ex3.1a = read.table("http://r.acr.kr/split/Ex3.1-example.txt", header=TRUE)
ex3.1a = af(ex3.1a, c("row", "P", "column", "R", "S"))
ex3.1a
```

```
row P column R S height
      1 1
                1 3 4
                          103
1
2
      1 1
                1 3 2
                           98
3
      1 1
                1 3 3
                          101
4
      1 1
                1 3 1
                         101
5
                2 4 2
      1 1
                         100
6
      1 1
                2 4 3
                           98
7
                2 4 1
      1 1
                          100
                2 4 4
8
      1 1
                           99
9
                3 5 3
      1 1
                           99
                3 5 1
10
      1 1
                           99
11
      1 1
                3 5 2
                          100
12
      1 1
                3 5 4
                           97
13
      1 1
                4 2 2
                           99
```

14	1 1	4 2 1	102
15	1 1	4 2 3	99
16	1 1	4 2 4	100
17	1 1	5 1 1	102
18	1 1	5 1 2	107
19	1 1	5 1 3	98
20	1 1	5 1 4	99
21	1 2	1 3 4	101
22	1 2	1 3 2	101
23	1 2	1 3 3	99
24	1 2	1 3 1	100
25	1 2	2 4 2	97
26	1 2	2 4 3	85
27	1 2	2 4 1	99
28	1 2	2 4 4	97
29			98
30	1 2	3 5 1	96
31	1 2	3 5 2	88
32	1 2	3 5 4	98
33	1 2	4 2 2	95
34	1 2	4 2 1	90
35	1 2	4 2 3	99
36	1 2	4 2 4	87
37		5 1 1	
			98
38	1 2	5 1 2	98
39	1 2	5 1 3	99
40	1 2	5 1 4	89
41	2 1	1 2 4	99
42	2 1	1 2 2	97
43	2 1	1 2 3	98
44	2 1	1 2 1	95
45			99
		2 3 2	
46	2 1	2 3 3	98
47	2 1	2 3 1	96
48	2 1	2 3 4	93
49	2 1	3 1 3	97
50	2 1	3 1 1	99
51	2 1	3 1 2	95
52	2 1	3 1 4	98
53			97
	2 1		
54	2 1	4 4 1	95
55	2 1	4 4 3	99
56	2 1	4 4 4	94
57	2 1	5 5 1	98
58	2 1	5 5 2	93
59	2 1	5 5 3	98
60	2 1	5 5 4	96
61	2 2	1 2 4	99

62	2 2	1 2 2	89
63	2 2	1 2 3	98
64	2 2	1 2 1	94
65	2 2	2 3 2	98
66	2 2	2 3 3	91
67	2 2	2 3 1	97
68	2 2	2 3 4	96
69	2 2	3 1 3	94
70	2 2	3 1 1	97
71	2 2	3 1 2	98
72	2 2	3 1 4	96
72		4 4 2	99
73		4 4 2	
74 75 76			89
70	2 2	4 4 3	97
76	2 2	4 4 4	98
77	2 2	5 5 1	99
78	2 2	5 5 2	96
79	2 2	5 5 3	93
80	2 2	5 5 4	98
81	3 1	1 4 4	99
82	3 1	1 4 2	88
83	3 1	1 4 3	98
84	3 1	1 4 1	96
85	3 1	2 5 2	98
86	3 1	2 5 3	99
87	3 1	2 5 1	92
88	3 1	2 5 4	88
89	3 1	3 2 3	98
90	3 1	3 2 1	85
91	3 1	3 2 2	88
92	3 1	3 2 4	95
93	3 1	4 1 2	97
94	3 1	4 1 1	87
95	3 1	4 1 3	96
96	3 1	4 1 4	88
97	3 1	5 3 1	88
98	3 1	5 3 2	85
99	3 1	5 3 3	78
100	3 1	5 3 4	78
101	3 2	1 4 4	88
101		1 4 4	85
103	3 2		78
104	3 2	1 4 1	80
105	3 2	2 5 2	80
106	3 2	2 5 3	79
107	3 2	2 5 1	77
108	3 2	2 5 4	78
109	3 2	3 2 3	90

110	3 2	3 2 1	91
111	3 2	3 2 2	92
112	3 2	3 2 4	93
113	3 2	4 1 2	99
114	3 2	4 1 1	97
115	3 2	4 1 3	98
116	3 2	4 1 4	99
117	3 2	5 3 1	80
118	3 2	5 3 2	81
119	3 2	5 3 3	82
120	3 2	5 3 4	83
121	4 1	1 1 4	80
122	4 1	1 1 2	81
123	4 1	1 1 3	84
124	4 1	1 1 1	80
125	4 1	2 2 2	90
126	4 1	2 2 3	90
127	4 1	2 2 1	90
128	4 1	2 2 4	90
129	4 1	3 3 3	99
130	4 1	3 3 1	98
131	4 1	3 3 2	97
132	4 1	3 3 4	99
133	4 1	4 5 2	95
134	4 1	4 5 1	95
135	4 1	4 5 3	95
136	4 1	4 5 4	96
137	4 1	5 4 1	99
138	4 1	5 4 2	95
139	4 1	5 4 3	98
140	4 1	5 4 4	98
141	4 2	1 1 4	98
142	4 2	1 1 2	99
143	4 2	1 1 3	97
144	4 2	1 1 1	99
145	4 2	2 2 2	88
146	4 2	2 2 3	87
147	4 2	2 2 1	88
148	4 2	2 2 4	86
149	4 2	3 3 3	99
150	4 2	3 3 1	97
151	4 2	3 3 2	96
152	4 2	3 3 4	95
153	4 2	4 5 2	89
154	4 2	4 5 1	88
155	4 2	4 5 3	87
156	4 2	4 5 4	85
157	4 2	5 4 1	90

```
4 2
                5 4 2
158
                          90
159
      4 2
                5 4 3
                          90
160
      4 2
                5 4 4
                          97
161
      5 1
                1 5 4
                          98
      5 1
                1 5 2
162
                          98
163
      5 1
                1 5 3
                          99
      5 1
                1 5 1
164
                          97
      5 1
                2 1 2
165
                          98
166
      5 1
                2 1 3
                          97
167
      5 1
                2 1 1
                          98
168
      5 1
                2 1 4
                          89
169
      5 1
                3 4 3
                          88
170
      5 1
                3 4 1
                          87
      5 1
                3 4 2
171
                          88
172
      5 1
                3 4 4
                          88
      5 1
                4 3 2
173
                          98
174
      5 1
                4 3 1
                          95
175
      5 1
                4 3 3
                          97
176
      5 1
                4 3 4
                          99
                5 2 1
177
      5 1
                          98
178
      5 1
                5 2 2
                          98
                5 2 3
179
      5 1
                          95
      5 1
                5 2 4
                          99
180
      5 2
181
                1 5 4
                          88
182
      5 2
                1 5 2
                          87
      5 2
                1 5 3
183
                          99
184
      5 2
                1 5 1
                          98
      5 2
185
                2 1 2
                          99
      5 2
                2 1 3
                          95
186
187
      5 2
                2 1 1
                          99
      5 2
                2 1 4
188
                          90
      5 2
189
                3 4 3
                          98
190
      5 2
                3 4 1
                          99
191
      5 2
                3 4 2
                          99
192
      5 2
                3 4 4
                          92
      5 2
193
                4 3 2
                          88
      5 2
                4 3 1
194
                          86
195
      5 2
                4 3 3
                          87
      5 2
                4 3 4
196
                          83
197
      5 2
                5 2 1
                          99
198
      5 2
                5 2 2
                          96
199
      5 2
                5 2 3
                          98
200
      5 2
                5 2 4
                          99
```

```
GLM(height \sim row + R + P + S + S:R + row:P + R:P + row:R:P + S:P + S:P:row + S:R:P + R:S:P:row, ex3.1a)
```

\$ANOVA

```
Response : height
```

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 199 7534.8 37.863

RESIDUALS 0 0.0 CORRECTED TOTAL 199 7534.8

\$Fitness

Root MSE height Mean Coef Var R-square
NA 93.965 NA 1

\$`Type I`

Df Sum Sq Mean Sq F value Pr(>F) 4 2017.03 504.26 row 4 90.63 22.66 R Ρ 1 253.12 253.12 S 3 16.38 5.46 R:S 12 195.05 16.25 4 167.25 row:P 41.81 R:P 4 504.95 126.24 row:R:P 32 2933.52 91.67 P:S 3 14.29 4.76 24 234.68 9.78 row:P:S R:P:S 12 100.33 8.36 row:R:P:S 96 1007.52 10.49

\$`Type II`

Df Sum Sq Mean Sq F value Pr(>F) 4 2017.03 504.26 row 4 90.63 R 22.66 Ρ 1 253.12 253.12 S 3 16.38 5.46 R:S 12 195.05 16.25 4 167.25 row:P 41.81 R:P 4 504.95 126.24 row:R:P 32 2933.52 91.67 P:S 14.29 4.76 3 row:P:S 24 234.68 9.78 R:P:S 12 100.33 8.36 row:R:P:S 96 1007.52 10.49

\$`Type III`

Df Sum Sq Mean Sq F value Pr(>F) 4 2017.03 504.26 row 4 90.63 22.66 R Ρ 1 253.13 253.13 S 3 16.38 5.46 R:S 12 195.05 16.25 row:P 4 167.25 41.81

```
4 504.95 126.24
R:P
row:R:P
         32 2933.52
                     91.67
             14.30
                       4.77
P:S
          3
row:P:S
         24 234.68
                       9.78
R:P:S
         12 100.33
                       8.36
row:R:P:S 96 1007.52
                      10.49
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(height \sim row + R + P + S + S:R + row:P + R:P + row:R:P + S:P +
        S:P:row + S:R:P + R:S:P:row, ex3.1a), type=3, singular.ok=TRUE)
         # NOT WORKING
alias(height ~ row + R + P + S + S:R + row:P + R:P + row:R:P + S:P + S:P:row +
   S:R:P + R:S:P:row, ex3.1a) # NO ALIAS
Model :
height \sim row + R + P + S + S:R + row:P + R:P + row:R:P + S:P +
   S:P:row + S:R:P + R:S:P:row
(10) MODEL
  • p94 Appendix 3.1
ex3.1b = read.table("http://r.acr.kr/split/spexvar3.txt", header=TRUE)
ex3.1b = af(ex3.1b, c("rep", "var", "nit", "row", "col"))
ex3.1b
  row col rep var nit set reps yield
1
                3
                    3
                                 156
    1
        1
            1
                        1
2
     1
        2
            1
                3
                    2
                        1
                             1
                                 118
                        2
3
    1
        3
            4
                3
                    2
                             1
                                 109
4
     1
        4
            4
                3
                    3
                        2
                             1
                                 99
5
    2
        1
            1
                3
                   1
                        1
                             1
                                140
    2
        2
                3
                                 105
6
            1
                    4
                        1
                             1
7
     2
        3
                3
                        2
            4
                    4
                                63
8
    2
        4
            4
                3
                    1
                        2
                                 70
                             1
9
    3
                    4
        1
            1
                1
                        1
                             1
                                111
10
    3
        2
            1
                1
                    1
                        1
                             1
                                 130
    3
        3
            4
                2
                    4
                        2
                                 80
11
                             1
       4
            4
                2
                    2
                        2
12
    3
                             1
                                 94
13
    4
        1
            1
                1
                    3
                        1
                             1
                                174
                   2
14
    4
       2
            1
               1
                       1
                             1
                                157
15
    4
                2
                   3
                       2
                                 126
16
    4 4
           4 2 1
                        2
                             1
                                 82
```

4 1

19	5	3	4	1	1	2	1	90
20	5	4	4	1	2	2	1	100
21	6	1	1	2	2	1	1	161
22	6	2	1	2	3	1	1	141
23	6	3	4	1	3	2	1	116
24	6	4	4	1	4	2	1	62
25	7	1	2	3	2	1	2	104
26	7	2	2	3	4	1	2	70
27	7	3	5	2	3	2	2	96
28	7	4	5	2	4	2	2	60
29	8	1	2	3	1	1	2	89
30	8	2	2	3	3	1	2	117
31	8	3	5	2	2	2	2	89
32	8	4	5	2	1	2	2	102
33	9	1	2	1	3	1	2	122
34	9	2	2	1	4	1	2	74
35	9	3	5	1	2	2	2	112
36	9	4	5	1	3	2	2	86
37	10	1	2	1	1	1	2	89
38	10	2	2	1	2	1	2	81
39	10	3	5	1	4	2	2	68
40	10	4	5	1	1	2	2	64
41	11	1	2	2	1	1	2	103
42	11	2	2	2	4	1	2	64
43	11	3	5	3	2	2	2	132
44	11	4	5	3	3	2	2	124
45	12	1	2	2	2	1	2	132
46	12	2	2	2	3	1	2	133
47	12	3	5	3	1	2	2	129
48	12	4	5	3	4	2	2	89
49	13	1	3	2	1	1	3	108
50	13	2	3	2	2	1	3	126
51	13	3	6	1	2	2	3	118
52	13	4	6	1	4	2	3	53
53	14	1	3	2	3	1	3	149
54	14	2	3	2	4	1	3	70
55	14	3	6	1	3	2	3	113
56	14	4	6	1	1	2	3	74
57	15	1	3	3	3	1	3	144
58	15	2	3	3	1	1	3	124
59	15	3	6	2	3	2	3	104
60	15	4	6	2	2	2	3	86
61	16	1	3	3	2	1	3	121
62	16	2	3	3	4	1	3	96
63 64	16 16	3 4	6 6	2 2	4 1	2 2	3 3	89
65	16 17	1		1	4	2 1	3	82 61
66	17 17		3 3	1	3		3	61
00	17	2	3	T	3	1	3	100

```
67 17
        3
            6
               3
                   4
                       2
                            3
                                 97
68 17
            6
               3 1
                       2
                            3
                                 99
69 18
            3
              1 1 1
                            3
                                 91
        1
70 18
        2
            3 1 2 1
                            3
                                97
                   2 2
            6
              3
                            3
71 18
        3
                                119
72 18
            6
               3
                   3
                       2
                            3
                                121
        4
GLM(yield ~ rep + var + rep:var + nit + var:nit + row + col, ex3.1b)
$ANOVA
Response : yield
               Df Sum Sq Mean Sq F value
                                          Pr(>F)
MODEL
               37 48090 1299.7 11.341 6.734e-11 ***
RESIDUALS
               34
                   3896
                          114.6
CORRECTED TOTAL 71 51986
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE yield Mean Coef Var R-square Adj R-sq
          103.9722 10.29615 0.9250491 0.8434848
$`Type I`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        5 15875.3 3175.1 27.7056 4.391e-11 ***
rep
        2 1786.4
                  893.2 7.7939 0.0016359 **
var
rep:var 10 6013.3
                  601.3 5.2472 0.0001207 ***
        3 20020.5 6673.5 58.2331 1.754e-13 ***
nit
var:nit 6
            321.7
                    53.6 0.4679 0.8271333
                   100.1 0.8734 0.5575581
        9
            900.9
row
        2 3171.5 1585.7 13.8373 4.012e-05 ***
col
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        2 5942.5 2971.3 25.9273 1.449e-07 ***
rep
        2 2799.8 1399.9 12.2155 0.0001005 ***
rep:var 4
            997.8
                  249.4 2.1767 0.0926008 .
        3 12559.3 4186.4 36.5308 9.683e-11 ***
nit
            477.8
                    79.6 0.6949 0.6553307
var:nit 6
row
        9
            945.0
                  105.0 0.9162 0.5230151
        2 3171.5 1585.7 13.8373 4.012e-05 ***
col
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
```

```
CAUTION: Singularity Exists!
       Df Sum Sq Mean Sq F value
                                    Pr(>F)
        2 5942.5 2971.3 25.9273 1.449e-07 ***
rep
        2 2799.8 1399.9 12.2155 0.0001005 ***
var
            997.8 249.4 2.1767 0.0926008 .
rep:var 4
        3 11977.9 3992.6 34.8397 1.775e-10 ***
var:nit 6 477.8
                    79.6 0.6949 0.6553307
            945.0 105.0 0.9162 0.5230151
row
        2 3171.5 1585.7 13.8373 4.012e-05 ***
col
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(yield ~ rep + var + rep:var + nit + var:nit + row + col, ex3.1b),
     type=3, singular.ok=TRUE) # NOT OK for var
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: yield
          Sum Sq Df F values
                               Pr(>F)
          5942.5 2 25.9273 1.449e-07 ***
rep
var
             0.0 0
         11977.9 3 34.8397 1.775e-10 ***
nit
row
           945.0 9 0.9162
                               0.5230
          3171.5 2 13.8373 4.012e-05 ***
col
          997.8 4 2.1767
                               0.0926 .
rep:var
          477.8 6 0.6949
                               0.6553
var:nit
Residuals 3896.4 34
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
6.3 Example 5.1
(11) MODEL
ex5.1 = read.table("http://r.acr.kr/split/sbsp.txt", header=TRUE)
ex5.1 = af(ex5.1, c("R", "A", "C", "B", "Tx"))
ex5.1
  R A C B Tx Y
1 1 1 1 2 1 2
```

2 1 1 1 1 2 5

```
3 1 1 2 2 4 6
4 1 1 2 1 3 9
5 1 1 3 1 6 8
6 1 1 3 2 5 5
7 1 2 1 2 4 9
8 1 2 1 1 3 7
9 1 2 2 2 6 8
10 1 2 2 1 5 4
11 1 2 3 1 1 3
12 1 2 3 2 2 5
13 2 2 1 2 6 8
14 2 2 1 1 5 5
15 2 2 2 2 1 3
16 2 2 2 1 2 5
17 2 2 3 1 4 9
18 2 2 3 2 3 7
19 2 1 1 2 3 3
20 2 1 1 1 6 4
21 2 1 2 2 5 3
22 2 1 2 1 1 0
23 2 1 3 1 2 1
24 2 1 3 2 4 2
25 3 1 1 2 5 5
26 3 1 1 1 1 5
27 3 1 2 2 2 5
28 3 1 2 1 4 9
29 3 1 3 1 3 7
30 3 1 3 2 6 8
31 3 2 1 2 2 6
32 3 2 1 1 4 8
33 3 2 2 2 3 7
34 3 2 2 1 6 8
35 3 2 3 1 5 6
36 3 2 3 2 1 3
GLM(Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx, ex5.1)
$ANOVA
Response : Y
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
               24 196.238 8.1766 7.0476 0.0008758 ***
MODEL
RESIDUALS
               11 12.762 1.1602
```

\$Fitness

CORRECTED TOTAL 35 209.000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
Root MSE Y Mean Coef Var R-square Adj R-sq
            5.5 19.58405 0.9389372 0.8057093
1.077122
$`Type I`
    Df Sum Sq Mean Sq F value
                                Pr(>F)
     2 33.500 16.7500 14.4373 0.0008391 ***
     1 16.000 16.0000 13.7908 0.0034197 **
     2 32.167 16.0833 13.8626 0.0009856 ***
         0.500 0.2500 0.2155 0.8094766
         1.778 1.7778 1.5323 0.2415358
В
C:B
         0.389 0.1944 0.1676 0.8478141
     2
Tx
     5 103.333 20.6667 17.8131 6.055e-05 ***
         6.521 1.3042 1.1241 0.4027183
A:Tx 5
B:Tx 4
         2.050 0.5126 0.4418 0.7761730
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
    Df Sum Sq Mean Sq F value
                                Pr(>F)
     2 23.116 11.5581 9.9622 0.003396 **
R
Α
     1 12.375 12.3751 10.6664 0.007519 **
     2 27.426 13.7132 11.8197
R:A
                              0.001820 **
C
         0.970 0.4850 0.4180 0.668392
В
         1.757 1.7574 1.5148 0.244080
C:B
     2
         0.085 0.0424 0.0366 0.964202
     5 103.333 20.6667 17.8131 6.055e-05 ***
Tx
A:Tx 4
         2.655 0.6636 0.5720 0.688652
B:Tx 4
         2.050 0.5126 0.4418 0.776173
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
CAUTION: Singularity Exists!
    Df Sum Sq Mean Sq F value
                                Pr(>F)
     2 22.186 11.0928 9.5611 0.003924 **
R
Α
     1 15.185 15.1853 13.0886 0.004042 **
     2 27.426 13.7132 11.8197 0.001820 **
R:A
         1.010 0.5049 0.4352 0.657839
В
         1.792 1.7922 1.5448 0.239751
     1
C:B
         0.085 0.0424 0.0366 0.964202
Tx
     5 103.333 20.6667 17.8131 6.055e-05 ***
A:Tx 4
         2.655 0.6636 0.5720 0.688652
B:Tx 4
         2.050 0.5126 0.4418 0.776173
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
alias(Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx, ex5.1)
Model:
Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx
Complete :
       (Intercept) R1 R2 A1 C1 C2 B1
                                               Tx1 Tx2 Tx3 Tx4 Tx5 R1:A1
                     0
                          0 -1/5
                                 0
                                        0 -1/5
                                                  0
                                                       0
                                                            0
                                                                 0
      R2:A1 C1:B1 C2:B1 A1:Tx1 A1:Tx2 A1:Tx3 A1:Tx4 A1:Tx5 B1:Tx1 B1:Tx2 B1:Tx3
                         1/5
                               1/5
                                      1/5
                                             1/5
                                                     -1
                                                           1/5
                                                                  1/5
B1:Tx5
               0
      B1:Tx4
B1:Tx5 1/5
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + A + A:R + C + B + B:C + Tx + A:Tx + B:Tx, ex5.1),
     type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
          Sum Sq Df F values
                               Pr(>F)
          22.186 2
                     9.5611 0.003924 **
R
           0.000 0
Α
C
           1.010 2 0.4352 0.657839
В
           0.000 0
Tx
         103.333 5 17.8131 6.055e-05 ***
R:A
          27.426 2 11.8197 0.001820 **
C:B
           0.085 2 0.0366 0.964202
A:Tx
           2.655 4 0.5720 0.688652
B:Tx
           2.050 4 0.4418 0.776173
Residuals 12.762 11
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(12) MODEL
GLM(Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx, ex5.1)
$ANOVA
Response : Y
```

Pr(>F)

Df Sum Sq Mean Sq F value

28 204.2 7.2929 10.635 0.001719 **

MODEL

```
RESIDUALS
           7
                    4.8 0.6857
CORRECTED TOTAL 35 209.0
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
 Root MSE Y Mean Coef Var R-square Adj R-sq
            5.5 15.05598 0.9770335 0.8851675
$`Type I`
      Df Sum Sq Mean Sq F value
                                  Pr(>F)
       2 33.500 16.7500 24.4271 0.0006969 ***
R
       1 16.000 16.0000 23.3333 0.0018985 **
Α
R:A
       2 32.167 16.0833 23.4549 0.0007889 ***
       2 0.500 0.2500 0.3646 0.7069339
С
В
       1 1.778 1.7778 2.5926 0.1513998
C:B
       2 0.389 0.1944 0.2836 0.7613494
Tx
       5 103.333 20.6667 30.1389 0.0001357 ***
A:Tx
       5 6.521 1.3042 1.9019 0.2123307
B:Tx
       4 2.050 0.5126 0.7475 0.5896365
A:B:Tx 4 7.962 1.9905 2.9029 0.1038803
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
      Df Sum Sq Mean Sq F value
                                  Pr(>F)
       2 31.838 15.9191 23.2153 0.0008139 ***
R
       1 12.375 12.3751 18.0470 0.0038017 **
Α
R:A
       1 2.017 2.0174 2.9420 0.1300172
C
       2 0.500 0.2500 0.3645 0.7069558
       1 1.757 1.7574 2.5629 0.1534298
В
C:B
       1 0.644 0.6445 0.9399 0.3646045
Tx
       5 103.333 20.6667 30.1389 0.0001357 ***
A:Tx
       4 2.655 0.6636 0.9678 0.4812226
B:Tx
       4 2.050 0.5126 0.7475 0.5896365
          7.962 1.9905 2.9029 0.1038803
A:B:Tx 4
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
CAUTION: Singularity Exists!
      Df Sum Sq Mean Sq F value
                                  Pr(>F)
R
       2 28.112 14.0562 20.4986 0.0011846 **
       1 14.655 14.6551 21.3720 0.0024176 **
Α
R:A
       1
         2.017 2.0174 2.9420 0.1300172
С
       2 0.471 0.2356 0.3436 0.7205632
В
       1 1.769 1.7694 2.5804 0.1522328
```

1 0.644 0.6445 0.9399 0.3646045

C:B

```
5 103.815 20.7630 30.2793 0.0001336 ***
Tx
           2.951 0.7378 1.0760 0.4358837
A:Tx
B:Tx
           3.553 0.8882 1.2954 0.3579988
A:B:Tx 4
           7.962 1.9905 2.9029 0.1038803
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
alias(Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx, ex5.1)
Model:
Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx
Complete:
          (Intercept) R1
                          R2 A1 C1
                                         C2 B1
                                                   Tx1 Tx2 Tx3 Tx4 Tx5
                                            0 -1/5
B1:Tx5
                        0
                             0 -1/5
                                       0
                                                      0
                                                           0
                                                                0
                                                                     0
A1:B1:Tx5 -1/6
                        0
                             0
                                  0
                                            0
                                                 0 1/6 1/6 1/6 1/6 -5/6
                                       0
A1:B1:Tx6
                      2/3
                             0 4/45 2/3 -2/3 4/45 -1/3 1/3 -1/3
         R1:A1 R2:A1 C1:B1 C2:B1 A1:Tx1 A1:Tx2 A1:Tx3 A1:Tx4 A1:Tx5 B1:Tx1
B1:Tx5
                  0
                        0
                              0
                                  1/5
                                         1/5
                                                1/5
                                                       1/5
                                                               -1
                                                                     1/5
A1:B1:Tx5
                  0
                        0
                              0
                                    0
                                           0
                                                  0
                                                         0
                                                                0
                                                                       0
A1:B1:Tx6 -2/9
                4/9 -2/9 -2/9 -1/5
                                        -1/5
                                               -1/5
                                                       4/5
         B1:Tx2 B1:Tx3 B1:Tx4 A1:B1:Tx1 A1:B1:Tx2 A1:B1:Tx3 A1:B1:Tx4
B1:Tx5
          1/5
                 1/5
                        1/5
                                 0
                                           0
A1:B1:Tx5
                   0
                          0
                                 0
                                           0
                                                     0
                                                               0
            0
A1:B1:Tx6 -1/5
                -1/5
                        4/5
                                 1
                                          -1
                                                     1
                                                               0
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + A + A:R + C + B + C:B + Tx + A:Tx + B:Tx + A:B:Tx, ex5.1),
     type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
```

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

```
Response: Y
         Sum Sq Df F values
                             Pr(>F)
R
         11.643 1 16.9793 0.004456 **
          0.000 0
Α
С
          0.002 1
                    0.0025 0.961483
В
          0.000 0
         89.178 3 43.3503 6.87e-05 ***
Tx
R:A
          2.017 1 2.9420 0.130017
C:B
          0.644 1 0.9399 0.364604
A:Tx
          0.543 3 0.2640 0.849381
B:Tx
          3.384 3 1.6451 0.264128
```

```
A:B:Tx 7.962 4 2.9029 0.103880

Residuals 4.800 7
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

6.4 Example 7.1

(13) MODEL

```
ex7.1 = read.table("http://r.acr.kr/split/asped.txt", header=TRUE)
ex7.1 = af(ex7.1, c("R", "G", "F"))
ex7.1
```

```
Y R G F
   2 1 25 1
1
2
   4 1 25 2
3
  6 1 25 3
  1 1 26 1
4
5
  3 1 26 2
6
  5 1 26 3
7
  9 1 27 1
  9 1 27 2
8
9
   8 1 27 3
10 9 1 28 1
11 9 1 28 2
12 7 1 28 3
13 2 1 1 1
14 5 1 1 2
15 7 1 1 3
16 3 1 2 1
17 6 1 2 2
18 5 1 2 3
19 4 1 3 1
20 7 1 3 2
21 6 1 3 3
22 5 1 4 1
23 8 1 4 2
24 4 1 4 3
25 6 1 5 1
26 8 1 5 2
27 8 1 5 3
28 7 1 6 1
29 8 1 6 2
30 7 1 6 3
31 3 2 25 1
32 3 2 25 2
33 7 2 25 3
```

- 34 2 2 26 1
- 35 2 2 26 2
- 36 4 2 26 3
- 37 8 2 27 1
- 38 8 2 27 2
- 8 2 27 3 39
- 7 2 28 1 40
- 41 8 2 28 2
- 42 9 2 28 3
- 43 1 2 7 1
- 44 2 2 7 2
- 45 3 2 7 3
- 2 2 46 8 1
- 47 3 2 8 2
- 48 5 2 8 3
- 49 3 2 9 1
- 50 4 2 9 2
- 51 4 2 9 3
- 4 2 10 1 52
- 4 2 10 2 53
- 54 5 2 10 3
- 55 8 2 11 1
- 56 8 2 11 2
- 8 2 11 3
- 57
- 58 3 2 12 1 5 2 12 2 59
- 60 7 2 12 3
- 4 3 25 1 61
- 6 3 25 2 62
- 63 8 3 25 3
- 2 3 26 1 64
- 65 5 3 26 2
- 66 7 3 26 3
- 67 8 3 27 1
- 68 7 3 27 2
- 9 3 27 3 69
- 7 3 28 1 70
- 71 7 3 28 2
- 72 9 3 28 3
- 73 7 3 13 1
- 74 7 3 13 2
- 75 9 3 13 3
- 76 5 3 14 1
- 77 6 3 14 2
- 78 8 3 14 3
- 79 3 3 15 1
- 80 5 3 15 2
- 81 6 3 15 3

```
82 7 3 16 1
83 7 3 16 2
84 9 3 16 3
85 6 3 17 1
86 8 3 17 2
87 8 3 17 3
88 5 3 18 1
89 7 3 18 2
90 8 3 18 3
91 4 4 25 1
92 5 4 25 2
93 6 4 25 3
94 5 4 26 1
95 2 4 26 2
96 5 4 26 3
97 9 4 27 1
98 9 4 27 2
99 9 4 27 3
100 9 4 28 1
101 8 4 28 2
102 7 4 28 3
103 5 4 19 1
104 8 4 19 2
105 9 4 19 3
106 6 4 20 1
107 6 4 20 2
108 8 4 20 3
109 7 4 21 1
110 4 4 21 2
111 8 4 21 3
112 8 4 22 1
113 7 4 22 2
114 9 4 22 3
115 9 4 23 1
116 8 4 23 2
117 9 4 23 3
118 9 4 24 1
119 8 4 24 2
120 9 4 24 3
GLM(Y \sim R + G + R:G + F + F:G, ex7.1)
```

\$ANOVA

Response : Y

Df Sum Sq Mean Sq F value Pr(>F)

MODEL 95 577.82 6.0824 5.3082 1.068e-05 ***

RESIDUALS 24 27.50 1.1458

```
CORRECTED TOTAL 119 605.32
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE Y Mean Coef Var R-square Adj R-sq
1.070436 6.175
                  17.335 0.9545699 0.7747422
$`Type I`
   Df Sum Sq Mean Sq F value
                               Pr(>F)
    3 84.76 28.2528 24.6570 1.655e-07 ***
   27 343.48 12.7216 11.1025 4.286e-08 ***
R:G 9 11.75 1.3056 1.1394
                               0.3749
    2 59.85 29.9250 26.1164 9.481e-07 ***
G:F 54 77.98 1.4441 1.2603
                               0.2718
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
   Df Sum Sq Mean Sq F value
                               Pr(>F)
    3 5.75 1.9167 1.6727
                               0.1994
   27 343.48 12.7216 11.1025 4.286e-08 ***
R:G 9 11.75 1.3056 1.1394
    2 59.85 29.9250 26.1164 9.481e-07 ***
G:F 54 77.98 1.4441 1.2603
                               0.2718
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
   Df Sum Sq Mean Sq F value
                               Pr(>F)
       5.75 1.9167 1.6727
                               0.1994
R.
   27 343.48 12.7216 11.1025 4.286e-08 ***
R:G 9 11.75 1.3056 1.1394
                               0.3749
    2 50.50 25.2525 22.0385 3.686e-06 ***
G:F 54 77.98 1.4441 1.2603
                               0.2718
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + G + R:G + F + F:G, ex7.1), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
```

Response: Y

Anova Table (Type III tests)

```
Sum Sq Df F values
                               Pr(>F)
R
           0.000 0
G
         202.417 3 58.8848 3.258e-11 ***
F
          50.505 2 22.0385 3.686e-06 ***
                     1.1394
R:G
          11.750 9
                                0.3749
G:F
          77.983 54
                      1.2603
                                0.2718
Residuals 27.500 24
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

6.5 Example 7.3

(14) MODEL

```
ex7.3 = read.table("http://r.acr.kr/split/assped.txt", header=TRUE)
ex7.3 = af(ex7.3, c("R", "T", "G", "F"))
ex7.3
```

```
YRT GF
   2 1 1 1 1
   4 1 1 1 2
3
   6 1 1 1 3
4
   3 1 1 2 1
  5 1 1 2 2
5
6
   7 1 1 2 3
7
   7 1 1 3 1
   7 1 1 3 2
8
   9 1 1 3 3
9
10 8 1 1 4 1
11 8 1 1 4 2
12 9 1 1 4 3
13 8 1 1 5 1
14 8 1 1 5 2
15 9 1 1 5 3
16 2 1 1 21 1
17 5 1 1 21 2
18 7 1 1 21 3
19 4 1 1 22 1
20 6 1 1 22 2
21 7 1 1 22 3
22 6 1 1 23 1
23 7 1 1 23 2
24 8 1 1 23 3
25 3 1 2 1 1
26 4 1 2 1 2
27 5 1 2 1 3
28 4 1 2 2 1
```

76 6 2 2

7 1

- 125 8 3 2 12 2
- 126 9 3 2 12 3
- 127 7 3 2 13 1
- 128 7 3 2 13 2
- 129 9 3 2 13 3
- 130 7 3 2 14 1
- 131 8 3 2 14 2
- 132 8 3 2 14 3
- 133 4 3 2 15 1
- 134 5 3 2 15 2
- 135 7 3 2 15 3
- 136 3 3 2 21 1
- 137 6 3 2 21 2
- 138 6 3 2 21 3
- 139 7 3 2 22 1
- 140 7 3 2 22 2
- 141 9 3 2 22 3
- 142 7 3 2 23 1
- 143 8 3 2 23 2
- 144 9 3 2 23 3
- 145 1 4 1 16 1
- 146 3 4 1 16 2
- 147 5 4 1 16 3
- 148 2 4 1 17 1
- 149 4 4 1 17 2
- 150 5 4 1 17 3
- 151 3 4 1 18 1
- 152 4 4 1 18 2
- 153 6 4 1 18 3
- 154 4 4 1 19 1
- 155 5 4 1 19 2
- 156 7 4 1 19 3
- 157 5 4 1 20 1
- 158 5 4 1 20 2
- 159 7 4 1 20 3
- 160 5 4 1 21 1
- 161 6 4 1 21 2
- 162 8 4 1 21 3
- 163 5 4 1 22 1
- 164 7 4 1 22 2
- 165 7 4 1 22 3
- 166 6 4 1 23 1
- 167 8 4 1 23 2
- 168 9 4 1 23 3
- 169 2 4 2 16 1
- 170 2 4 2 16 2
- 171 4 4 2 16 3
- 172 3 4 2 17 1

```
173 5 4 2 17 2
174 6 4 2 17 3
175 4 4 2 18 1
176 6 4 2 18 2
177 7 4 2 18 3
178 5 4 2 19 1
179 7 4 2 19 2
180 7 4 2 19 3
181 6 4 2 20 1
182 7 4 2 20 2
183 8 4 2 20 3
184 4 4 2 21 1
185 6 4 2 21 2
186 7 4 2 21 3
187 7 4 2 22 1
188 8 4 2 22 2
189 8 4 2 22 3
190 7 4 2 23 1
191 8 4 2 23 2
192 9 4 2 23 3
GLM(Y \sim R + T + R:T + G + G:T + R:T:G + F + F:T + F:G + F:G:T, ex7.3)
$ANOVA
Response: Y
                Df Sum Sq Mean Sq F value
                155 656.12 4.2330 13.446 3.997e-14 ***
MODEL
RESIDUALS
                36 11.33 0.3148
CORRECTED TOTAL 191 667.45
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
  Root MSE
            Y Mean Coef Var R-square Adj R-sq
 0.5610836 6.265625 8.95495 0.98302 0.9099118
$`Type I`
      Df Sum Sq Mean Sq F value
                                   Pr(>F)
         27.06
                 9.019 28.6489 1.203e-09 ***
R
Τ
         10.55 10.547 33.5018 1.334e-06 ***
R:T
           2.97
                 0.991
                        3.1489 0.036705 *
G
      22 389.01 17.682 56.1668 < 2.2e-16 ***
T:G
      22 18.42
                 0.837
                         2.6601 0.004445 **
R:T:G 12
          8.78
                0.731
                         2.3235 0.025315 *
F
       2 164.28 82.141 260.9173 < 2.2e-16 ***
T:F
      2
          0.84
                 0.422
                         1.3401 0.274574
G:F
      44 23.47
                 0.533
                         1.6943 0.053191 .
```

```
T:G:F 44 10.74 0.244 0.7753 0.790640
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type II`
     Df Sum Sq Mean Sq F value
                                  Pr(>F)
      3 12.49
               4.162 13.2206 5.655e-06 ***
      1 10.55 10.547 33.5018 1.334e-06 ***
R:T
          1.15
               0.384
                       1.2206 0.316281
      3
     22 389.01 17.682 56.1668 < 2.2e-16 ***
G
T:G
     22 18.42
                       2.6601 0.004445 **
               0.837
R:T:G 12
          8.78
               0.731
                        2.3235 0.025315 *
      2 164.28 82.141 260.9173 < 2.2e-16 ***
T:F
          0.84 0.422 1.3401 0.274574
      2
     44 23.47
G:F
                0.533
                        1.6943 0.053191 .
T:G:F 44 10.74 0.244 0.7753 0.790640
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
     Df Sum Sq Mean Sq F value
                                  Pr(>F)
      3 12.49
                4.162 13.2206 5.655e-06 ***
R
      1 11.16 11.158 35.4430 8.021e-07 ***
R:T
          1.15
               0.384
                       1.2206 0.316281
G
     22 389.01 17.682 56.1668 < 2.2e-16 ***
T:G
     22 18.42 0.837 2.6601 0.004445 **
R:T:G 12
          8.78 0.731 2.3235 0.025315 *
F
      2 120.56 60.282 191.4828 < 2.2e-16 ***
T:F
         0.82
                0.411
                       1.3060 0.283432
G:F
     44 23.47
                0.533
                       1.6943 0.053191 .
T:G:F 44 10.74 0.244
                       0.7753 0.790640
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + T + R:T + G + G:T + R:T:G + F + F:T + F:G + F:G:T, ex7.3),
     type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: Y
          Sum Sq Df F values
                               Pr(>F)
R
           0.000 0
Τ
           0.000 0
```

```
G
          73.444 2 116.6471 < 2.2e-16 ***
F
         120.563 2 191.4828 < 2.2e-16 ***
           0.000 0
R:T
T:G
           5.778 2
                     9.1765 0.0006018 ***
T:F
           0.822 2 1.3060 0.2834316
G:F
          23.469 44
                     1.6943 0.0531910 .
R:T:G
           8.778 12
                    2.3235 0.0253153 *
          10.740 44 0.7753 0.7906401
T:G:F
Residuals 11.333 36
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

6.6 Example 8.1

(15) MODEL

```
ex8.1 = read.table("http://r.acr.kr/split/asbed.txt", header=TRUE)
ex8.1 = af(ex8.1, c("R", "A", "B"))
ex8.1
```

```
Y R A B
1
    9 1 1 1
2
    2 1 1 2
    8 1 1 7
3
4
    7 1 1 8
5
    5 1 1 9
6
    9 1 2 1
    7 1 2 2
7
8
    3 1 2 7
9
    5 1 2 8
10
    4 1 2 9
    9 1 3 1
11
12
    2 1 3 2
    8 1 3 7
13
    7 1 3 8
14
    5 1 3 9
15
16
    9 1 10 1
17
    1 1 10 2
    9 1 10 7
18
19
    7 1 10 8
20
    5 1 10 9
21
    9 1 11 1
    7 1 11 2
22
    3 1 11 7
23
24
    5 1 11 8
25
    4 1 11 9
26
    9 1 12 1
```

```
76 19 3
         8 5
77 12 3
         8 6
78 18 3
         8 7
79 17 3 8 8
80 45 3
         8 9
81 19 3
         9 5
82 17 3
         9 6
83 13 3 9 7
84 25 3 9 8
85 34 3 9 9
86 15 3 10 5
    9 3 10 6
87
88 11 3 10 7
89 10 3 10 8
90 10 3 10 9
91
    9 3 11 5
92 17 3 11 6
93 13 3 11 7
94 15 3 11 8
95 14 3 11 9
96
    9 3 12 5
97 12 3 12 6
    8 3 12 7
98
99 17 3 12 8
100 15 3 12 9
101 9 3 13 5
102 17 3 13 6
103 13 3 13 7
104 15 3 13 8
105 14 3 13 9
GLM(Y \sim R + A + R:A + B + B:R + A:B + A:B:R, ex8.1)
$ANOVA
Response : Y
                Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               104 3951.8 37.999
RESIDUALS
                 0
                      0.0
CORRECTED TOTAL 104 3951.8
$Fitness
Root MSE Y Mean Coef Var R-square
      NA 10.0381
                       NA
                                 1
```

75 14 3 7 9

\$`Type I`

Sum Sq Mean Sq F value Pr(>F)

```
2 1787.68 893.84
R
Α
     12 601.24
                50.10
         24.93
                  4.16
R:A
      6
В
      8 156.87 19.61
R:B
      4 319.87
                 79.97
A:B
     60 1012.26
                 16.87
R:A:B 12 49.00
                 4.08
$`Type II`
     Df Sum Sq Mean Sq F value Pr(>F)
R
      2 372.22 186.111
Α
     12 601.24 50.103
R:A
         50.00
                8.333
      6
В
      8 156.87 19.609
R:B
      4
         87.44 21.861
A:B
     60 1012.26 16.871
R:A:B 12
         49.00 4.083
$`Type III`
     Df Sum Sq Mean Sq F value Pr(>F)
      2 372.22 186.111
R
Α
     12 572.31 47.692
         50.00 8.333
R:A
      6
В
      8 185.85 23.231
R:B
      4
         87.44 21.861
A:B
     60 1012.26 16.871
         49.00 4.083
R:A:B 12
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(Y \sim R + A + R:A + B + B:R + A:B + A:B:R, ex8.1), type="III",
     singular.ok=TRUE) # NOT WORKING
```

6.7 Example 9.2

(16) MODEL

```
ex9.2 = read.table("http://r.acr.kr/split/Ex9.2-sbex.txt", header=TRUE)
ex9.2 = af(ex9.2, c("rep", "hyb", "gen"))
ex9.2
```

```
yield rep hyb gen
1
     48
        1
            3
                1
2
     46
        1
             3
                3
3
     43
        1 3
                2
4
     46
        1 8
                1
5
     45
             8
                3
         1
```

6	42	1	8	2
7	46	1	2	1
8	44	1	2	3
9	42	1	2	2
10	42	1	1	1
11	46 44 43	1	1	1 3
12	44	1	1	2
13	43	1	6	1
14	45	1	6	2 1 3
15	44	1	6	2
16	45 44 47 49	1	7	1
17	49	1	7 7 7 0	3 2 1
18	47	1	7	2
19 20	48 45	1	0	1
20	45	1	0	3
21	45	1	0	2
22	46	1	9	2 1
23	48	1	9	3
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	46 48 47 46 48 47 49	1	9	3 2 1 3
25	46	1	4	1
26	48	1	4	3
27	47	1	4	2
28	49	1	5	1
29	49	1	4 5 5	3
30	48 46 48	1	5	2 1 3 2
31	46	2	4	2
32	48	2	4	
33	42	2 2 2	4	3 1
34	42 45 44 42 46	2	4 3	2
35	44	2	3	3
36	42	2 2 2	3	3 1 2
37	46	2	3 9	2
38	46	2	9	3
39	44	2	9	1
40	45	2	5	2
41	45	2	5	3
42	43	2	5	1
43	43	2	1	2
44	50	2	1	3
45	44	2	1	1
46	48	2	7	2
47	51	2	7	3
48	48	2	7	1
49	44	2	2	2
50	48	2	2	3
51	47	2	2	1
52	44	2	8	2
53	46	2	8	3

```
54
     46 2 8
                 1
55
          2 6
                 2
     47
56
     48
          2 6
                 3
57
     44
          2
              6
                 1
GLM(yield ~ rep + hyb + rep:hyb + gen + gen:rep + gen:hyb, ex9.2)
$ANOVA
Response : yield
               Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               40 247.813 6.1953 4.4606 0.001119 **
RESIDUALS
               16 22.222 1.3889
CORRECTED TOTAL 56 270.035
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE yield Mean Coef Var R-square Adj R-sq
1.178511 45.77193 2.574747 0.9177062 0.7119716
$`Type I`
       Df Sum Sq Mean Sq F value
        1 0.239 0.2388 0.1719 0.6839085
rep
        9 66.796 7.4218 5.3437 0.0018370 **
hyb
rep:hyb 8 67.000 8.3750 6.0300 0.0011569 **
        2 36.351 18.1754 13.0863 0.0004293 ***
rep:gen 2 16.923 8.4616 6.0924 0.0107858 *
hyb:gen 18 60.504 3.3613 2.4201 0.0408545 *
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
       Df Sum Sq Mean Sq F value
                                  Pr(>F)
        1 0.167 0.1667 0.1200 0.7335481
rep
        9 66.796 7.4218 5.3437 0.0018370 **
hyb
rep:hyb 8 67.000 8.3750 6.0300 0.0011569 **
        2 36.351 18.1754 13.0863 0.0004293 ***
rep:gen 2 12.111 6.0556 4.3600 0.0308015 *
hyb:gen 18 60.504 3.3613 2.4201 0.0408545 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
       Df Sum Sq Mean Sq F value
                                   Pr(>F)
        1 0.167 0.1667 0.1200 0.7335481
rep
        9 66.796 7.4218 5.3437 0.0018370 **
hyb
rep:hyb 8 67.000 8.3750 6.0300 0.0011569 **
```

```
gen 2 30.671 15.3356 11.0416 0.0009707 ***

rep:gen 2 12.111 6.0556 4.3600 0.0308015 *

hyb:gen 18 60.504 3.3613 2.4201 0.0408545 *

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

options(contrasts=c("contr.sum", "contr.poly"))

Anova(lm(yield ~ rep + hyb + rep:hyb + gen + gen:rep + gen:hyb, ex9.2), type=3, singular.ok=TRUE) # NOT OK

Note: model has aliased coefficients

sums of squares computed by model comparison

Anova Table (Type III tests)
```

Response: yield

Sum Sq Df F values Pr(>F)
rep 0.000 0
hyb 66.704 8 6.0033 0.0011847 **
gen 30.671 2 11.0416 0.0009707 ***
rep:hyb 67.000 8 6.0300 0.0011569 **
rep:gen 12.111 2 4.3600 0.0308015 *
hyb:gen 60.504 18 2.4201 0.0408545 *

Residuals 22.222 16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.8 Example 10.1

(17) MODEL

```
ex10.1 = read.table("http://r.acr.kr/split/Ex10.1-New.txt", header=TRUE)
ex10.1 = af(ex10.1, c("Site", "Block", "A", "B", "C"))
ex10.1
```

```
Obs Site Block A B C Yield
              R1 A1 B1 C1 6979
1
     1
     2
2
          1
              R1 A1 B1 C2 7272
3
     3
          1
              R1 A1 B1 C3 7565
4
     4
          1
              R1 A1 B1 C4 7827
5
     5
          1
              R1 A1 B2 C1 8113
6
     6
          1
              R1 A1 B2 C2 7025
7
     7
          1
              R1 A1 B2 C3 7340
             R1 A1 B2 C4 7637
8
     8 1
9
     9
              R1 A2 B1 C1 7910
```

10	10	1	R1	A2	В1	C2	8250
11	11	1	R1	A2	В1	СЗ	8611
12	12	1	R1	A2	В1	C4	8865
13	13	1	R1	A2	В2	C1	9090
14	14	1	R1	A2	В2	C2	9453
15	15	1	R1	A2	В2	СЗ	9762
16	16	1	R1	A2	В2	C4	8440
17	17	1	R1	АЗ	В1	C1	8785
18	18	1	R1	АЗ	В1	C2	8963
19	19	1	R1	АЗ	В1	СЗ	9278
20	20	1	R1	АЗ	В1	C4	11100
21	21	1	R1	АЗ	В2	C1	10800
22	22	1	R1	АЗ	В2	C2	10600
23	23	1	R1	АЗ	В2	СЗ	10200
24	24	1	R1	АЗ	В2	C4	10100
25	25	1	R1	A 4	В1	C1	9834
26	26	1	R1	A4	В1	C2	10200
27	27	1	R1	A4	В1	СЗ	10400
28	28	1	R1	A4	В1	C4	10900
29	29	1	R1	A4	В2	C1	11000
30	30	1	R1	A4	В2	C2	12600
31	31	1	R1	A 4	В2	СЗ	12400
32	32	1	R1	A4	В2	C4	12100
33	33	1	R1	A5	В1	C1	11900
34	34	1	R1	A 5	В1	C2	11500
35	35	1	R1	A5	В1	СЗ	11800
36	36	1	R1	A 5	В1	C4	12100
37	37	1	R1	A5	В2	C1	12400
38	38	1	R1	A5	В2	C2	12700
39	39	1	R1	A5	В2	СЗ	12800
40	40	1	R1	A5	В2	C4	13300
41	41	1	R2	A1	В1	C1	7132
42	42	1	R2	A1	В1	C2	7412
43	43	1	R2	A1	В1	СЗ	7659
44	44	1	R2	A1	B1	C4	7947
45	45	1	R2	A1	В2	C1	8241
46	46	1	R2	A1	В2	C2	7273
47	47	1	R2	A1	В2	СЗ	7493
48	48	1	R2	A1	В2	C4	7837
49	49	1	R2	A2	В1	C1	8050
50	50	1	R2	A2	В1	C2	8398
51	51	1	R2	A2	В1	СЗ	8700
52	52	1	R2	A2	B1	C4	8954
53	53	1	R2	A2	B2	C1	9380
54	54	1	R2	A2	B2	C2	9478
55	55	1	R2	A2	B2	C3	10000
56	56	1	R2	A2	B2	C4	8498
57	57	1	R2	A3	B1	C1	8944
- •		-					

58	58	1	R2	АЗ	В1	C2	9070
59	59	1	R2	АЗ	В1	СЗ	9388
60	60	1	R2	АЗ	В1	C4	11300
61	61	1	R2	АЗ	В2	C1	10900
62	62	1	R2	АЗ	В2	C2	10600
63	63	1	R2	АЗ	В2	СЗ	10400
64	64	1	R2	АЗ	В2	C4	10100
65	65	1	R2	A 4	В1	C1	10100
66	66	1	R2	A 4	В1	C2	10300
67	67	1	R2	A 4	В1	СЗ	10500
68	68	1	R2	A 4	В1	C4	10900
69	69	1	R2	A4	B2	C1	11200
70	70	1	R2	A4	B2	C2	12800
71	71	1	R2	A4	B2	C3	12600
72	72	1	R2	A4	B2	C4	12300
73	73	1	R2	A5	B1	C1	11900
74	74	1	R2	A5	B1	C2	11700
75	75	1	R2	A5	B1	C3	11800
76	76	1	R2	A5	B1	C4	12200
77	77	1	R2	A5	B2	C1	12500
78	78	1	R2	A5	B2	C2	12800
79	79	1	R2	A5	B2	C3	12900
80	80	1	R2	A5	B2	C4	13500
81	81	1	R3	A1	B1	C1	6794
82	82	1	R3	A1	B1	C2	7055
83	83	1	R3	A1	B1	C3	7368
84	84	1	R3	A1	B1	C4	7664
85	85	1	R3	A1	B2	C1	7918
86	86	1	R3	A1	B2	C2	6842
87	87	1	R3	A1	B2	C3	7215
88	88	1	R3	A1	B2	C4	7454
89	89	1	R3	A2	B1	C1	7768
90	90	1	R3	A2	B1	C2	7976
91	91	1	R3	A2	B1	C3	8356
92	92	1	R3	A2	B1	C4	8555
93	93	1	R3	A2	B2	C1	8885
93 94	94	1	R3	A2	B2	C2	9164
95	95	1	R3	A2	B2	C3	9592
96	96	1	R3	A2	B2	C4	8204
97	97	1	R3	A3	B1	C1	8464
98	98	1	R3	A3	B1	C2	8901
99		1	R3	A3	B1	C3	9021
	99 100	1					
100			R3	A3	B1	C4	11000
101	101	1	R3	A3	B2	C1	10700
102	102	1	R3	A3	B2	C2	10400
103	103	1	R3	A3	B2	C3	10200
104	104	1	R3	A3	B2	C4	9949
105	105	1	RЗ	A4	B1	C1	9642

106	106	1	R3	A 4	В1	C2	9990
107	107	1	R3	A 4	В1	СЗ	10300
108	108	1	R3	A 4	B1	C4	10500
109	109	1	R3	A 4	В2	C1	10900
110	110	1	R3	A 4	В2	C2	12400
111	111	1	R3	A 4	В2	СЗ	12200
112	112	1	R3	A 4	В2	C4	11900
113	113	1	R3	A5	В1	C1	11600
114	114	1	R3	A5	В1	C2	11400
115	115	1	R3	A5	В1	СЗ	11600
116	116	1	R3	A 5	В1	C4	11800
117	117	1	R3	A 5	В2	C1	12200
118	118	1	R3	A 5	В2	C2	12400
119	119	1	R3	A5	B2	C3	12700
120	120	1	R3	A5	B2	C4	13200
121	121	2	R1	A1	B1	C1	6940
122	122	2	R1	A1	B1	C2	7267
123	123	2	R1	A1	B1	C3	7475
124	124	2	R1	A1	B1	C4	7868
125	125	2	R1	A1	B2	C1	8077
126	126	2	R1	A1	B2	C2	7078
127	127	2	R1	A1	B2	C3	7299
128	128	2	R1	A1	B2	C4	7643
129	129	2	R1	A2	B1	C1	7916
130	130	2	R1	A2	B1	C2	8193
					B1	C3	
131	131	2	R1	A2			8653
132	132	2	R1	A2	B1	C4	8873
133	133	2	R1	A2	B2	C1	9036
134	134	2	R1	A2	B2	C2	9449
135	135	2	R1	A2	B2	C3	9770
136	136	2	R1	A2	B2	C4	8316
137	137	2	R1	A3	B1	C1	8793
138	138	2	R1	A3	B1	C2	8943
139	139	2	R1	A3	B1	C3	9291
140	140	2	R1	A3	B1	C4	11100
141	141	2	R1	A3	B2	C1	10900
142	142	2	R1	A3	B2	C2	10600
143	143	2	R1	A3	B2	СЗ	10200
144	144	2	R1	АЗ	B2	C4	9879
145	145	2	R1	A 4	В1	C1	9861
146	146	2	R1	A 4	B1	C2	10200
147	147	2	R1	A4	В1	СЗ	10300
148	148	2	R1	A 4	В1	C4	10800
149	149	2	R1	A4	B2	C1	10900
150	150	2	R1	A4	B2	C2	12600
151	151	2	R1	A4	B2	СЗ	12400
152	152	2	R1	A4	B2	C4	12100
153	153	2	R1	A 5	B1	C1	11800

154	154	2	R1	A5	B1	C2	11500
155	155	2	R1	A 5	B1	СЗ	11600
156	156	2	R1	A5	В1	C4	12100
157	157	2	R1	A5	В2	C1	12400
158	158	2	R1	A5	В2	C2	12600
159	159	2	R1	A5	В2	СЗ	12800
160	160	2	R1	A5	В2	C4	13300
161	161	2	R2	A1	В1	C1	6819
162	162	2	R2	A1	В1	C2	7137
163	163	2	R2	A1	B1	C3	7398
164	164	2	R2	A1	B1	C4	7680
165	165	2	R2	A1	B2	C1	7903
166	166	2	R2	A1	B2	C2	6968
167	167	2	R2	A1	B2	C3	7172
168	168	2	R2	A1	B2	C4	7494
169	169	2	R2	A2	B1	C1	7811
170	170	2	R2	A2	B1	C2	8000
171		2		A2	В1		8350
	171		R2			C3	
172	172	2	R2	A2	B1	C4	8730
173	173	2	R2	A2	B2	C1	8956
174	174	2	R2	A2	B2	C2	9195
175	175	2	R2	A2	B2	C3	9547
176	176	2	R2	A2	B2	C4	8183
177	177	2	R2	АЗ	B1	C1	8484
178	178	2	R2	АЗ	B1	C2	8865
179	179	2	R2	АЗ	B1	СЗ	9115
180	180	2	R2	АЗ	B1	C4	11100
181	181	2	R2	АЗ	B2	C1	10700
182	182	2	R2	АЗ	B2	C2	10400
183	183	2	R2	АЗ	B2	СЗ	10000
184	184	2	R2	АЗ	B2	C4	9830
185	185	2	R2	A4	B1	C1	9789
186	186	2	R2	A4	B1	C2	9977
187	187	2	R2	A 4	В1	СЗ	10200
188	188	2	R2	A4	В1	C4	10500
189	189	2	R2	A4	В2	C1	10900
190	190	2	R2	A4	В2	C2	12500
191	191	2	R2	A4	В2	СЗ	12300
192	192	2	R2	A4	В2	C4	11800
193	193	2	R2	A5	B1	C1	11600
194	194	2	R2	A5	B1	C2	11300
195	195	2	R2	A5	B1	C3	11500
196	196	2	R2	A5	B1	C4	12000
197	197	2	R2	A5	B2	C1	12100
198	198	2	R2	A5	B2	C2	12600
199	199	2		A5	в2 В2	C2	
			R2				12700
200	200	2	R2	A5	B2	C4	13100
201	201	2	R3	A1	B1	C1	7189

202	202	2	R3	A1	В1	C2	7371
203	203	2	R3	A1	В1	СЗ	7700
204	204	2	R3	A1	В1	C4	8047
205	205	2	R3	A1	В2	C1	8337
206	206	2	R3	A1	В2	C2	7327
207	207	2	R3	A1	В2	СЗ	7595
208	208	2	R3	A1	В2	C4	7867
209	209	2	R3	A2	В1	C1	8105
210	210	2	R3	A2	В1	C2	8396
211	211	2	R3	A2	B1	C3	8807
212	212	2	R3	A2	B1	C4	8953
213	213	2	R3	A2	B2	C1	9390
214	214	2	R3	A2	B2	C2	9733
215	215	2	R3	A2	B2	C3	9858
216	216	2	R3	A2	B2	C4	8640
217	217	2	R3	A3	B1	C1	9035
218	218	2	R3	A3	B1	C2	9194
219	219	2	R3	A3	B1	C3	9442
220	220	2	R3	A3	B1	C4	11400
221	221	2	R3	A3	B2	C1	11000
222	222	2	R3	A3	B2	C2	10800
223	223	2	R3	A3	B2	C3	10600
		2				C4	10200
224	224		R3	A3	B2		
225	225	2	R3	A4	B1	C1	9976
226	226	2	R3	A4	B1	C2	10300
227	227	2	R3	A4	B1	C3	10600
228	228	2	R3	A4	B1	C4	11000
229	229	2	R3	A4	B2	C1	11200
230	230	2	R3	A4	B2	C2	12800
231	231	2	R3	A4	B2	C3	12600
232	232	2	R3	A4	B2	C4	12200
233	233	2	R3	A5	B1	C1	11900
234	234	2	R3	A5	B1	C2	11700
235	235	2	R3	A5	В1	C3	11800
236	236	2	R3	A5	В1	C4	12300
237	237	2	R3	A5	B2	C1	12600
238	238	2	RЗ	A5	B2	C2	12900
239	239	2	RЗ	A5	B2	C3	13000
240	240	2	R3	A5	B2	C4	13500
241	241	3	R1	A1	B1	C1	7035
242	242	3	R1	A1	B1	C2	7161
243	243	3	R1	A1	В1	СЗ	7590
244	244	3	R1	A1	B1	C4	7909
245	245	3	R1	A1	B2	C1	8123
246	246	3	R1	A 1	B2	C2	7088
247	247	3	R1	A1	В2	СЗ	7270
248	248	3	R1	A1	В2	C4	7705
249	249	3	R1	A2	B1	C1	7992

250	250	3	R1	A2	В1	C2	8293
251	251	3	R1	A2	В1	СЗ	8574
252	252	3	R1	A2	В1	C4	8872
253	253	3	R1	A2	В2	C1	9159
254	254	3	R1	A2	В2	C2	9451
255	255	3	R1	A2	В2	СЗ	9779
256	256	3	R1	A2	В2	C4	8399
257	257	3	R1	АЗ	В1	C1	8683
258	258	3	R1	АЗ	В1	C2	8991
259	259	3	R1	АЗ	В1	СЗ	9314
260	260	3	R1	АЗ	В1	C4	11300
261	261	3	R1	A3	B2	C1	10800
262	262	3	R1	A3	B2	C2	10600
263	263	3	R1	АЗ	В2	СЗ	10400
264	264	3	R1	АЗ	В2	C4	10100
265	265	3	R1	A 4	В1	C1	9803
266	266	3	R1	A 4	В1	C2	10100
267	267	3	R1	A 4	В1	СЗ	10500
268	268	3	R1	A 4	В1	C4	10700
269	269	3	R1	A4	B2	C1	11100
270	270	3	R1	A4	B2	C2	12600
271	271	3	R1	A4	B2	C3	12500
272	272	3	R1	A4	B2	C4	12100
273	273	3	R1	A 5	В1	C1	11900
274	274	3	R1	A 5	В1	C2	11600
275	275	3	R1	A 5	В1	СЗ	11700
276	276	3	R1	A 5	В1	C4	12000
277	277	3	R1	A 5	В2	C1	12400
278	278	3	R1	A 5	В2	C2	12600
279	279	3	R1	A5	B2	C3	12900
280	280	3	R1	A5	B2	C4	13400
281	281	3	R2	A1	B1	C1	7007
282	282	3	R2	A1	B1	C2	7311
283	283	3	R2	A1	В1	СЗ	7557
284	284	3	R2	A1	B1	C4	7935
285	285	3	R2	A1	В2	C1	8209
286	286	3	R2	A1	В2	C2	7048
287	287	3	R2	A1	В2	СЗ	7322
288	288	3	R2	A1	В2	C4	7783
289	289	3	R2	A2	В1	C1	8055
290	290	3	R2	A2	В1	C2	8247
291	291	3	R2	A2	В1	СЗ	8590
292	292	3	R2	A2	В1	C4	8901
293	293	3	R2	A2	В2	C1	9210
294	294	3	R2	A2	B2	C2	9521
295	295	3	R2	A2	B2	C3	9746
296	296	3	R2	A2	B2	C4	8480
297	297	3	R2	A3	B1	C1	8766

298	298	3	R2	АЗ	В1	C2	9014
299	299	3	R2	АЗ	В1	СЗ	9370
300	300	3	R2	АЗ	В1	C4	11200
301	301	3	R2	АЗ	В2	C1	11000
302	302	3	R2	АЗ	В2	C2	10700
303	303	3	R2	АЗ	В2	СЗ	10300
304	304	3	R2	АЗ	В2	C4	10100
305	305	3	R2	A 4	В1	C1	9872
306	306	3	R2	A 4	В1	C2	10100
307	307	3	R2	A 4	В1	СЗ	10400
308	308	3	R2	A 4	В1	C4	10800
309	309	3	R2	A4	B2	C1	11100
310	310	3	R2	A4	B2	C2	12600
311	311	3	R2	A4	B2	C3	12500
312	312	3	R2	A4	B2	C4	12200
313	313	3	R2	A5	B1	C1	11900
314	314	3	R2	A5	B1	C2	11600
315	315	3	R2	A5	B1	C3	11700
316	316	3	R2	A5	B1	C4	12100
317	317	3	R2	A5	B2	C1	12400
318	318	3	R2	A5	B2	C2	12700
319	319	3	R2	A5	в2 В2	C2	12900
						C4	13400
320	320	3	R2	A5	B2		
321	321	3	R3	A1	B1	C1	7108
322	322	3	R3	A1	B1	C2	7295
323	323	3	R3	A1	B1	C3	7675
324	324	3	R3	A1	B1	C4	7948
325	325	3	R3	A1	B2	C1	8220
326	326	3	R3	A1	B2	C2	7142
327	327	3	R3	A1	B2	C3	7413
328	328	3	R3	A1	B2	C4	7826
329	329	3	R3	A2	B1	C1	8038
330	330	3	RЗ	A2	В1	C2	8358
331	331	3	R3	A2	B1	СЗ	8718
332	332	3	RЗ	A2	B1	C4	9000
333	333	3	RЗ	A2	B2	C1	9410
334	334	3	RЗ	A2	B2	C2	9520
335	335	3	RЗ	A2	B2	C3	9812
336	336	3	RЗ	A2	B2	C4	8452
337	337	3	RЗ	АЗ	В1	C1	8894
338	338	3	RЗ	АЗ	B1	C2	9137
339	339	3	RЗ	АЗ	В1	СЗ	9409
340	340	3	RЗ	АЗ	В1	C4	11300
341	341	3	RЗ	АЗ	B2	C1	10900
342	342	3	RЗ	АЗ	B2	C2	10700
343	343	3	RЗ	АЗ	B2	СЗ	10400
344	344	3	RЗ	АЗ	B2	C4	10100
345	345	3	RЗ	A 4	В1	C1	9975

346	346	3	R3	A4	В1	C2	10200
347	347	3	RЗ	A4	B1	СЗ	10500
348	348	3	RЗ	A4	В1	C4	10900
349	349	3	RЗ	A4	B2	C1	11200
350	350	3	R3	A 4	B2	C2	12700
351	351	3	RЗ	A 4	B2	СЗ	12500
352	352	3	R3	A 4	B2	C4	12200
353	353	3	R3	A 5	B1	C1	11900
354	354	3	RЗ	A5	В1	C2	11600
355	355	3	RЗ	A5	В1	СЗ	11800
356	356	3	RЗ	A5	В1	C4	12300
357	357	3	R3	A5	В2	C1	12500
358	358	3	R3	A5	В2	C2	12800
359	359	3	R3	A5	В2	СЗ	12900
360	360	3	R3	A5	В2	C4	13500
361	361	4	R1	A1	В1	C1	6995
362	362	4	R1	A1	В1	C2	7287
363	363	4	R1	A1	В1	СЗ	7580
364	364	4	R1	A1	В1	C4	7774
365	365	4	R1	A1	B2	C1	8150
366	366	4	R1	A1	B2	C2	7026
367	367	4	R1	A1	B2	C3	7322
368	368	4	R1	A1	B2	C4	7698
369	369	4	R1	A2	B1	C1	7970
370	370	4	R1	A2	B1	C2	8243
371	371	4	R1	A2	B1	C3	8520
372	372	4	R1	A2	B1	C4	8812
373	373	4	R1	A2	B2	C1	9088
374	374	4	R1	A2	B2	C2	9508
375	375	4	R1	A2	B2	C3	9718
376	376	4	R1	A2	B2	C4	8326
377	377	4	R1	A3	B1	C1	8744
378	378	4		A3	B1	C2	9061
379	379	4	R1	A3	B1	C3	9310
380	380	4	R1	A3	B1	C4	11300
381	381	4	R1	A3	B2	C1	10900
382	382	4	R1	A3	B2	C2	10600
	383	4	R1	A3	в2 В2	C3	10200
383					в2 В2	C4	9971
384	384	4	R1	A3			
385	385	4	R1	A4	B1	C1	9832
386	386	4	R1	A4	B1	C2	10200
387	387	4	R1	A4	B1	C3	10500
388	388	4	R1	A4	B1	C4	10700
389	389	4	R1	A4	B2	C1	11000
390	390	4	R1	A4	B2	C2	12600
391	391	4	R1	A4	B2	C3	12500
392	392	4	R1	A4	B2	C4	
393	393	4	R1	A 5	В1	C1	11800

394	394	4	R1	A 5	В1	C2	11600
395	395	4	R1	A 5	В1	СЗ	11800
396	396	4	R1	A 5	В1	C4	12100
397	397	4	R1	A 5	B2	C1	12300
398	398	4	R1	A 5	B2	C2	12600
399	399	4	R1	A 5	B2	СЗ	12900
400	400	4	R1	A 5	В2	C4	13300
401	401	4	R2	A1	В1	C1	6796
402	402	4	R2	A1	В1	C2	7122
403	403	4	R2	A1	В1	СЗ	7489
404	404	4	R2	A1	В1	C4	7695
405	405	4	R2	A1	В2	C1	8050
406	406	4	R2	A1	В2	C2	7010
407	407	4	R2	A1	В2	СЗ	7324
408	408	4	R2	A1	В2	C4	7540
409	409	4	R2	A2	В1	C1	7933
410	410	4	R2	A2	В1	C2	8130
411	411	4	R2	A2	В1	СЗ	8423
412	412	4	R2	A2	В1	C4	8674
413	413	4	R2	A2	В2	C1	9138
414	414	4	R2	A2	В2	C2	9380
415	415	4	R2	A2	В2	СЗ	9704
416	416	4	R2	A2	В2	C4	8313
417	417	4	R2	АЗ	В1	C1	8584
418	418	4	R2	АЗ	В1	C2	8890
419	419	4	R2	АЗ	В1	СЗ	9246
420	420	4	R2	АЗ	В1	C4	11100
421	421	4	R2	АЗ	В2	C1	10700
422	422	4	R2	АЗ	В2	C2	10500
423	423	4	R2	АЗ	В2	СЗ	10200
424	424	4	R2	АЗ	В2	C4	9882
425	425	4	R2	A 4	В1	C1	9785
426	426	4	R2	A 4	В1	C2	10100
427	427	4	R2	A 4	В1	СЗ	10300
428	428	4	R2	A 4	В1	C4	10800
429	429	4	R2	A 4	В2	C1	11000
430	430	4	R2	A 4	В2	C2	12500
431	431	4	R2	A 4	В2	СЗ	12400
432	432	4	R2	A 4	В2	C4	12100
433	433	4	R2	A 5	В1	C1	11700
434	434	4	R2	A 5	В1	C2	11500
435	435	4	R2	A5	В1	СЗ	11700
436	436	4	R2	A 5	В1	C4	12100
437	437	4	R2	A 5	B2	C1	12300
438	438	4	R2	A 5	В2	C2	12600
439	439	4	R2	A 5	В2	СЗ	12800
440	440	4	R2	A 5	В2	C4	13300
441	441	4	RЗ	A1	В1	C1	7125

```
442 442
                 R3 A1 B1 C2
                              7505
443 443
                 R3 A1 B1 C3
                              7752
444 444
           4
                 R3 A1 B1 C4
                              8099
445 445
                R3 A1 B2 C1
                              8409
           4
                 R3 A1 B2 C2
446 446
           4
                              7332
447 447
                 R3 A1 B2 C3
                              7512
448 448
           4
                R3 A1 B2 C4
                              7917
449 449
           4
                R3 A2 B1 C1
                              8176
450 450
                R3 A2 B1 C2
                              8382
           4
451 451
           4
                R3 A2 B1 C3
                              8861
452 452
                R3 A2 B1 C4
           4
                              9056
453 453
           4
                 R3 A2 B2 C1
                              9419
                 R3 A2 B2 C2
454 454
           4
                              9700
                R3 A2 B2 C3 10000
455 455
                 R3 A2 B2 C4
456 456
           4
                              8573
457 457
                 R3 A3 B1 C1
                              8953
458 458
           4
                 R3 A3 B1 C2
                              9278
459 459
           4
                R3 A3 B1 C3 9538
460 460
           4
                R3 A3 B1 C4 11400
461 461
           4
                 R3 A3 B2 C1 11100
462 462
           4
                R3 A3 B2 C2 10800
463 463
                R3 A3 B2 C3 10600
464 464
           4
                R3 A3 B2 C4 10300
465 465
                R3 A4 B1 C1 10000
           4
466 466
           4
                R3 A4 B1 C2 10400
           4
                 R3 A4 B1 C3 10700
467 467
                 R3 A4 B1 C4 11000
468 468
           4
                 R3 A4 B2 C1 11200
469 469
           4
470 470
           4
                 R3 A4 B2 C2 12900
471 471
                 R3 A4 B2 C3 12600
472 472
           4
                 R3 A4 B2 C4 12400
473 473
           4
                R3 A5 B1 C1 12000
474 474
           4
                R3 A5 B1 C2 11700
475 475
           4
                R3 A5 B1 C3 12000
                R3 A5 B1 C4 12300
476 476
           4
477 477
           4
                R3 A5 B2 C1 12500
                R3 A5 B2 C2 12900
478 478
479 479
           4
                 R3 A5 B2 C3 13000
480 480
                 R3 A5 B2 C4 13700
```

\$ANOVA

Response : Yield

Df Sum Sq Mean Sq F value Pr(>F)

```
MODEL
                239 1639561484 6860090
                                           2162 < 2.2e-16 ***
                240
RESIDUALS
                        761522
                                  3173
CORRECTED TOTAL 479 1640323006
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE Yield Mean Coef Var R-square Adj R-sq
            9967.354 0.5651396 0.9995357 0.9990734
56.32947
$`Type I`
                                           F value Pr(>F)
               Df
                      Sum Sq
                               Mean Sq
Site
                3
                      552717
                                184239 5.8064e+01 < 2e-16 ***
                     7062320
                                882790 2.7822e+02 < 2e-16 ***
Site:Block
                8
                4 1387680917 346920229 1.0933e+05 < 2e-16 ***
               12
                       34068
                                  2839 8.9470e-01 0.55301
Site:A
В
                1
                   100939695 100939695 3.1812e+04 < 2e-16 ***
Site:B
                3
                                   539 1.6990e-01 0.91662
                        1618
A:B
                4
                    31444008
                               7861002 2.4775e+03 < 2e-16 ***
Site:A:B
               12
                       33737
                                  2811 8.8600e-01 0.56185
                                  2596 8.1810e-01 0.84155
Site:Block:A:B 72
                      186911
С
                               6452088 2.0334e+03 < 2e-16 ***
                3
                    19356264
A:C
               12
                    26075792
                               2172983 6.8483e+02 < 2e-16 ***
                    23901388
                               7967129 2.5109e+03 < 2e-16 ***
B:C
                3
A:B:C
               12
                    41996729
                               3499727 1.1030e+03 < 2e-16 ***
                9
                                  5292 1.6677e+00 0.09747 .
Site:C
                       47625
Site:A:C
                                  2892 9.1140e-01 0.61768
               36
                      104110
Site:B:C
                9
                       61111
                                  6790 2.1400e+00 0.02701 *
                                  2291 7.2200e-01 0.87941
Site:A:B:C
               36
                       82475
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
                                           F value Pr(>F)
               Df
                      Sum Sq
                               Mean Sq
                                184239 5.8064e+01 < 2e-16 ***
                3
                      552717
Site
                                882790 2.7822e+02 < 2e-16 ***
Site:Block
                     7062320
                4 1387680917 346920229 1.0933e+05 < 2e-16 ***
Α
Site:A
               12
                       34068
                                  2839 8.9470e-01 0.55301
                   100939695 100939695 3.1812e+04 < 2e-16 ***
                1
                                   539 1.6990e-01 0.91662
Site:B
                3
                        1618
A:B
                4
                    31444008
                               7861002 2.4775e+03 < 2e-16 ***
                                  2811 8.8600e-01 0.56185
Site:A:B
               12
                       33737
Site:Block:A:B 72
                      186911
                                  2596 8.1810e-01 0.84155
                               6452088 2.0334e+03 < 2e-16 ***
C
                3
                    19356264
A:C
               12
                    26075792
                               2172983 6.8483e+02 < 2e-16 ***
B:C
                3
                    23901388
                               7967129 2.5109e+03 < 2e-16 ***
A:B:C
               12
                    41996729
                               3499727 1.1030e+03 < 2e-16 ***
Site:C
                9
                       47625
                                  5292 1.6677e+00 0.09747 .
```

```
Site:A:C
               36
                      104110
                                  2892 9.1140e-01 0.61768
                                  6790 2.1400e+00 0.02701 *
Site:B:C
               9
                       61111
Site:A:B:C
               36
                       82475
                                 2291 7.2200e-01 0.87941
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type III`
               Df
                      Sum Sq
                               Mean Sq
                                          F value Pr(>F)
                      552717
                                184239 5.8064e+01 < 2e-16 ***
Site
                3
Site:Block
                                882790 2.7822e+02 < 2e-16 ***
                8
                     7062320
                4 1387680917 346920229 1.0933e+05 < 2e-16 ***
Α
                                  2839 8.9470e-01 0.55301
Site:A
               12
                       34068
                  100939695 100939695 3.1812e+04 < 2e-16 ***
                1
                                   539 1.6990e-01 0.91662
Site:B
                3
                        1618
A:B
                4
                    31444008
                               7861002 2.4775e+03 < 2e-16 ***
Site:A:B
               12
                       33737
                                  2811 8.8600e-01 0.56185
Site:Block:A:B 72
                      186911
                                  2596 8.1810e-01 0.84155
C
               3
                    19356264
                               6452088 2.0334e+03 < 2e-16 ***
A:C
               12
                    26075792
                               2172983 6.8483e+02 < 2e-16 ***
B:C
                3
                    23901387
                               7967129 2.5109e+03 < 2e-16 ***
                               3499727 1.1030e+03 < 2e-16 ***
A:B:C
               12
                    41996729
                                 5292 1.6677e+00 0.09747 .
Site:C
               9
                       47625
Site:A:C
               36
                     104110
                                 2892 9.1140e-01 0.61768
Site:B:C
                                 6790 2.1400e+00 0.02701 *
               9
                      61111
Site: A:B:C
               36
                      82475
                                 2291 7.2200e-01 0.87941
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(f10.1, ex10.1), type=3, singular.ok=TRUE) # NOT OK for Site:Block
```

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

Response: Yield

```
Sum Sq Df
                                F values Pr(>F)
Site
                   552717
                            3 5.8064e+01 < 2e-16 ***
                            4 1.0933e+05 < 2e-16 ***
               1387680917
Α
                            1 3.1812e+04 < 2e-16 ***
В
                100939695
C
                 19356264
                            3 2.0334e+03 < 2e-16 ***
                            0
Site:Block
                        0
Site:A
                    34068 12 8.9470e-01 0.55301
Site:B
                     1618
                            3 1.6990e-01 0.91662
A:B
                 31444008
                            4 2.4775e+03 < 2e-16 ***
A:C
                 26075792 12 6.8483e+02 < 2e-16 ***
```

```
B:C
              Site:C
                 47625 9 1.6677e+00 0.09747 .
Site:A:B
                 33737 12 8.8600e-01 0.56185
A:B:C
              41996729 12 1.1030e+03 < 2e-16 ***
                104110 36 9.1140e-01 0.61768
Site:A:C
                61111 9 2.1400e+00 0.02701 *
Site:B:C
                186911 72 8.1810e-01 0.84155
Site:Block:A:B
Site:A:B:C
                82475 36 7.2200e-01 0.87941
Residuals
                761522 240
```

7 Hinkelmann & Kempthorne - Volume 1

Reference

• Hinkelmann K, Kempthorne O. Design and Analysis of Experiments Volume 1 Introduction to Experimental Design. 2e. John Wiley & Sons Inc. 2008.

7.1 p410

(18) MODEL

```
v1p410 = read.table("http://r.acr.kr/kemp/v1p410.txt", head=TRUE)
v1p410$carry = ifelse(v1p410$carry == 0, 3, v1p410$carry)
v1p410 = af(v1p410,c("period", "sequence", "steer", "trt", "carry"))
v1p410
```

	period	sequence	steer	trt	carry	у
1	1	1	1	1	3	50
2	2	1	1	2	1	61
3	3	1	1	3	2	53
4	1	1	2	1	3	55
5	2	1	2	2	1	63
6	3	1	2	3	2	57
7	1	2	3	2	3	44
8	2	2	3	3	2	42
9	3	2	3	1	3	57
10	1	2	4	2	3	51
11	2	2	4	3	2	46
12	3	2	4	1	3	59
13	1	3	5	3	3	35
14	2	3	5	1	3	55
15	3	3	5	2	1	47
16	1	3	6	3	3	41
17	2	3	6	1	3	56
18	3	3	6	2	1	50
19	1	4	7	1	3	54
20	2	4	7	3	1	48
21	3	4	7	2	3	51
22	1	4	8	1	3	58
23	2	4	8	3	1	51
24	3	4	8	2	3	54
25	1	5	9	2	3	50
26	2	5	9	1	2	57
27	3	5	9	3	1	51
28	1	5	10	2	3	55
29	2	5	10	1	2	59

```
31
                                 3 41
       1
                 6
                      11
                          3
32
       2
                 6
                      11
                          2
                                 3 56
33
       3
                 6
                      11
                                2 58
                          1
                 6
                      12
                                3 46
34
       1
                          3
35
       2
                 6
                      12
                          2
                                3 58
36
       3
                 6
                      12
                                 2 61
GLM(y ~ period + sequence + steer:sequence + trt + carry, v1p410) # OK
$ANOVA
Response : y
               Df Sum Sq Mean Sq F value
                                             Pr(>F)
MODEL
               17 1302.51 76.618 8.7402 1.572e-05 ***
                            8.766
RESIDUALS
               18 157.79
CORRECTED TOTAL 35 1460.31
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
Root MSE
           y Mean Coef Var R-square Adj R-sq
2.960778 52.36111 5.654535 0.8919461 0.7898953
$`Type I`
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
               2 292.06 146.028 16.6580 8.038e-05 ***
period
               5 326.47 65.294 7.4484 0.0006072 ***
sequence
sequence:steer 6 118.50 19.750 2.2530 0.0849122 .
trt
               2 549.06 274.528 31.3166 1.377e-06 ***
carry
               2 16.43
                          8.215 0.9372 0.4100385
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type II`
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
               2 172.31 86.154 9.8279 0.0013030 **
period
               5 318.69 63.738 7.2709 0.0006954 ***
sequence
sequence:steer 6 118.50 19.750 2.2530 0.0849122 .
               2 440.61 220.304 25.1311 6.164e-06 ***
trt
               2 16.43
                          8.215 0.9372 0.4100385
carry
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$`Type III`
              Df Sum Sq Mean Sq F value
               2 172.31 86.154 9.8279 0.0013030 **
period
```

30

sequence

3

5

10

3

1 55

5 318.69 63.738 7.2709 0.0006954 ***

```
sequence:steer 6 118.50 19.750 2.2530 0.0849122 .
               2 440.61 220.304 25.1311 6.164e-06 ***
trt
               2 16.43 8.215 0.9372 0.4100385
carry
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(y ~ period + sequence + steer:sequence + trt + carry, v1p410), type=3,
      singular.ok=TRUE) # NOT OK for sequence
Note: model has aliased coefficients
```

sums of squares computed by model comparison

Anova Table (Type III tests)

Response: y

Sum Sq Df F values Pr(>F) 172.31 2 9.8279 0.001303 ** period sequence 0.00 0 trt 440.61 2 25.1311 6.164e-06 *** carry 16.43 2 0.9372 0.410038 sequence:steer 118.50 6 2.2530 0.084912 . Residuals 157.79 18

8 Searle - Linear Models 2e

Reference

• Searle SR, Gruber MHJ. Linear Models 2e, Kindle Edition. John Wiley & Sons Inc. 2016.

weight = c(8,13,9,12,7,11,6,12,12,14,9,7,14,16,10,14,11,13)

8.1 7.2 (p390, 59%)

(19) MODEL

\$`Type III`

```
"tc", "tc", "tc", "tc")
variety = c("va","va","va","vd","vd","vd","va","vb","vb","vb","vb","vc",
           "vc", "vd", "vd", "vd")
d1 = data.frame(weight, treatment, variety)
GLM(weight ~ treatment*variety, d1)
$ANOVA
Response : weight
               Df Sum Sq Mean Sq F value Pr(>F)
                      82 11.714 2.0918
MODEL
                7
                                          0.14
RESIDUALS
               10
                      56
                          5.600
CORRECTED TOTAL 17
                     138
$Fitness
Root MSE weight Mean Coef Var R-square Adj R-sq
2.366432
                  11 21.51302 0.5942029 0.3101449
$`Type I`
                 Df Sum Sq Mean Sq F value Pr(>F)
                  2 10.500
                            5.250 0.9375 0.42348
treatment
                  3 36.786 12.262 2.1896 0.15232
variety
treatment:variety 2 34.714 17.357 3.0995 0.08965 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
                 Df Sum Sq Mean Sq F value Pr(>F)
                  2 9.486 4.7429 0.8469 0.45731
treatment
                  3 36.786 12.2619 2.1896 0.15232
variety
treatment:variety 2 34.714 17.3571 3.0995 0.08965 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Df Sum Sq Mean Sq F value Pr(>F)
                  2 12.471 6.2353 1.1134 0.36595
treatment
                  3 34.872 11.6240 2.0757 0.16719
variety
treatment:variety 2 34.714 17.3571 3.0995 0.08965 .
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
options(contrasts = c("contr.sum", "contr.poly"))
Anova(lm(weight ~ treatment*variety, d1), type=3, singular.ok=TRUE) # NOT OK
Note: model has aliased coefficients
     sums of squares computed by model comparison
Anova Table (Type III tests)
Response: weight
                 Sum Sq Df F values Pr(>F)
                  0.000 0
treatment
variety
                  0.000 0
                             3.0995 0.08965 .
treatment:variety 34.714 2
Residuals
                 56.000 10
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
8.2 7.2 (p393, 60%)
(20) MODEL
percent = c(31,33,44,36,38,26,37,59,42,42,34,42,28,39,36,32,38,42,36,22,42,46,
           26.37.43)
refinery = c(rep("g",9),rep("n",8),rep("s",8))
process = as.factor(c(1,1,1,1,1,1,2,2,2,1,1,1,1,2,2,2,2,1,1,1,2,2,2,2,2))
source0 = c("t","t","t","t","o","m","t","o","m","i","i","i","i","t","o","m","m",
            "t", "o", "i", "o", "o", "m", "i", "i")
d2 = data.frame(percent, refinery, process, source=source0)
GLM(percent ~ refinery*source, d2)
$ANOVA
Response : percent
               Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               10 442.56 44.256 0.6361 0.7616
RESIDUALS
               14 974.00 69.571
CORRECTED TOTAL 24 1416.56
```

\$Fitness

```
Root MSE percent Mean Coef Var R-square
                                           Adj R-sq
 8.340949
                37.24 22.39782 0.3124188 -0.1787106
$`Type I`
               Df Sum Sq Mean Sq F value Pr(>F)
                2 20.963 10.481 0.1507 0.8615
refinery
source
                3 266.124 88.708 1.2751 0.3212
refinery:source 5 155.474 31.095 0.4469 0.8086
$`Type II`
               Df Sum Sq Mean Sq F value Pr(>F)
                2 25.535 12.767 0.1835 0.8343
refinery
                3 266.124 88.708 1.2751 0.3212
source
refinery:source 5 155.474 31.095 0.4469 0.8086
$`Type III`
               Df Sum Sq Mean Sq F value Pr(>F)
                           5.383 0.0774 0.9259
                2 10.766
refinery
source
                3 282.633 94.211 1.3542 0.2972
refinery:source 5 155.474 31.095 0.4469 0.8086
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(percent ~ refinery*source, d2), type=3, singular.ok=TRUE) # NOT OK
```

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

Response: percent

Sum Sq Df F values Pr(>F)
refinery 2.52 1 0.0362 0.8518
source 268.19 2 1.9275 0.1822
refinery:source 155.47 5 0.4469 0.8086
Residuals 974.00 14

9 Web site examples

9.1 https://github.com/djnavarro/psyr

(21) MODEL

```
d21 = read.csv("http://r.acr.kr/psyr/coffee.csv")
GLM(babble ~ sugar*milk - 1, d21)
$ANOVA
Response : babble
                 Df Sum Sq Mean Sq F value Pr(>F)
MODEL
                  6 472.54 78.756 298.84 2.39e-12 ***
RESIDUALS
                 12
                      3.16
                            0.264
UNCORRECTED TOTAL 18 475.70
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$Fitness
 Root MSE babble Mean Coef Var R-square Adj R-sq
0.5133631
             5.066667 10.13217 0.9933519 0.9900279
$`Type I`
          Df Sum Sq Mean Sq F value
           3 465.64 155.213 588.9486 2.756e-13 ***
sugar
milk
               0.96
                    0.956
                             3.6279 0.081061 .
           1
sugar:milk 2
               5.94
                    2.972 11.2769 0.001754 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
          Df Sum Sq Mean Sq F value
           2 3.0696 1.53482 5.8238 0.017075 *
sugar
milk
           1 0.9561 0.95611 3.6279 0.081061 .
sugar:milk 2 5.9439 2.97193 11.2769 0.001754 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
$`Type III`
CAUTION: Singularity Exists!
          Df Sum Sq Mean Sq F value
                                     Pr(>F)
           2 2.1318 1.0659 4.0446 0.045426 *
sugar
           1 1.0041 1.0041 3.8102 0.074672 .
milk
sugar:milk 2 5.9439 2.9719 11.2769 0.001754 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
options(contrasts=c("contr.sum", "contr.poly"))
r21 = lm(babble ~ sugar*milk - 1, d21)
anova(r21) # Type I SS OK
Analysis of Variance Table
Response: babble
          Df Sum Sq Mean Sq F value
                                       Pr(>F)
           3 465.64 155.213 588.9486 2.756e-13 ***
sugar
milk
               0.96
                     0.956
                             3.6279 0.081061 .
sugar:milk 2
               5.94
                      2.972 11.2769 0.001754 **
Residuals 12
               3.16
                      0.264
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(r21, type=2) # NOT OK
Anova Table (Type II tests)
Response: babble
          Sum Sq Df F value
                               Pr(>F)
          453.76 3 573.9233 3.214e-13 ***
sugar
            0.96 1
                      3.6279 0.081061 .
milk
            5.94 2 11.2769 0.001754 **
sugar:milk
Residuals
            3.16 12
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(r21, type=3) # NOT OK
Anova Table (Type III tests)
Response: babble
          Sum Sq Df F value
                               Pr(>F)
sugar
          454.77 3 575.1970 3.172e-13 ***
milk
            1.00 1
                      3.8102 0.074672 .
            5.94 2 11.2769 0.001754 **
sugar:milk
Residuals
            3.16 12
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

10 Bioequivalence (BE) data example

(22) MODEL

```
GLM(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata) # a BE dataset in sasLM package
$ANOVA
Response : log(CMAX)
               Df Sum Sq Mean Sq F value Pr(>F)
MODEL
               48 23.1924 0.48317 5.6278 4.395e-08 ***
RESIDUALS
               42 3.6059 0.08585
CORRECTED TOTAL 90 26.7983
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$Fitness
 Root MSE log(CMAX) Mean Coef Var R-square Adj R-sq
               6.071036 4.826355 0.8654428 0.7116631
$`Type I`
        Df Sum Sq Mean Sq F value
                                    Pr(>F)
         1 0.6454 0.64544 7.5178 0.008938 **
SEQ
SEQ:SUBJ 45 22.4395 0.49866 5.8081 3.359e-08 ***
         1 0.0969 0.09686 1.1281 0.294242
PRD
         1 0.0106 0.01057 0.1231 0.727410
TRT
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
$`Type II`
        Df Sum Sq Mean Sq F value
                                    Pr(>F)
         1 0.6440 0.64395 7.5005 0.009011 **
SEQ
SEQ:SUBJ 45 22.5232 0.50052 5.8298 3.173e-08 ***
        1 0.0996 0.09958 1.1599 0.287632
PRD
TRT
         1 0.0106 0.01057 0.1231 0.727410
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
$`Type III`
        Df Sum Sq Mean Sq F value
                                    Pr(>F)
         1 0.3368 0.33679 3.9228
                                    0.05421 .
SEQ:SUBJ 45 22.5232 0.50052 5.8298 3.173e-08 ***
         1 0.0996 0.09958 1.1599 0.28763
PRD
TRT
         1 0.0106 0.01057 0.1231 0.72741
```

```
options(contrasts=c("contr.sum", "contr.poly"))
Anova(lm(log(CMAX) ~ SEQ/SUBJ + PRD + TRT, BEdata), type=3, singular.ok=TRUE)
```

Note: model has aliased coefficients sums of squares computed by model comparison

Anova Table (Type III tests)

Response: log(CMAX)

Sum Sq Df F values Pr(>F)

SEQ 0.0000 0

PRD 0.0996 1 1.1599 0.2876
TRT 0.0106 1 0.1231 0.7274

SEQ:SUBJ 22.5232 45 5.8298 3.173e-08 ***

Residuals 3.6059 42

11 Sesssion Information

[13] htmltools_0.5.4 knitr_1.42

```
R version 4.2.3 (2023-03-15 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
Matrix products: default
locale:
[1] LC_COLLATE=Korean_Korea.utf8 LC_CTYPE=Korean_Korea.utf8
[3] LC_MONETARY=Korean_Korea.utf8 LC_NUMERIC=C
[5] LC_TIME=Korean_Korea.utf8
attached base packages:
             graphics grDevices utils datasets methods
[1] stats
                                                               base
other attached packages:
[1] car_3.1-1
                  carData_3.0-5 sasLM_0.9.8 mvtnorm_1.1-3 rmarkdown_2.20
loaded via a namespace (and not attached):
 [1] digest_0.6.31
                    MASS_7.3-58.3
                                    evaluate_0.20
                                                    rlang_1.1.0
 [5] cli_3.6.0
                    tools_4.2.3
                                    tinytex_0.44
                                                    xfun_0.37
 [9] yaml_2.3.7
                    abind_1.4-5
                                    fastmap_1.1.1
                                                    compiler_4.2.3
```