# Introduction to Algorithms Lecture 6 Greedy Method

Xue Chen
xuechen1989@ustc.edu.cn
2025 spring in



## **Outline**

- Introduction
- 2 Revisit Interval Scheduling
- Max Interval Sum
- 4 Huffman Codes
- Set Cover
- 6 Scheduling

#### Overview

Greedy method — a powerful algorithm design technique

- Very efficient
- Simple to implement
- Widely used in practice

## Overview

Greedy method — a powerful algorithm design technique

- Very efficient
- 2 Simple to implement
- Widely used in practice

# Two ways to understand it



#### Short Intro

For optimization problems, a greedy algorithm makes the choice that is the best at this moment — called local optimal

#### Short Intro

For optimization problems, a greedy algorithm makes the choice that is the best at this moment — called local optimal

- For many problems, locally optimal choices lead to a globally optimal solution
- ② For more problems, it does not but one could show the solution is not bad

#### Short Intro

For optimization problems, a greedy algorithm makes the choice that is the best at this moment — called local optimal

- For many problems, locally optimal choices lead to a globally optimal solution
- ② For more problems, it does not but one could show the solution is not bad

#### Main Focus

Proving the correctness of greedy algorithms is highly non-trivial.

## **Outline**

- Introduction
- 2 Revisit Interval Scheduling
- Max Interval Sum
- 4 Huffman Codes
- Set Cover
- 6 Scheduling

# Interval Scheduling Problem

Recall: DP solves weighted scheduling

## Description

- ① *n* jobs in [0, *T*]
- ② Job j starts from s(j) and finishes at f(j) with weight  $w_j$
- Two jobs are compatible if they don't overlap.
- Goal: find a max-weight subset with compatible jobs.



# Special Case: Unit Weights

#### What if all weights are 1?



# Special Case: Unit Weights

#### What if all weights are 1?



#### Questions

While DP still works, faster or simpler algorithms?

## Intuition

#### Let us try greedy choices.



#### Intuition

Let us try greedy choices.



What if we pick the job with the earliest starting time?

#### Intuition

Let us try greedy choices.



- What if we pick the job with the earliest starting time?
- What if we pick the job with the earliest finish time?

#### Idea

Intuition: When there are multiple jobs, picking the one with the earliest finish time leaves the most space for future jobs.



## Formal Proof

#### Theorem 16.1 in CLRS

For any problem S of job scheduling, let  $a_1$  be the job with the earliest finish time. Then  $a_1$  is included in some max-size compatible subset OPT of S.

## Formal Proof

#### Theorem 16.1 in CLRS

For any problem S of job scheduling, let  $a_1$  be the job with the earliest finish time. Then  $a_1$  is included in some max-size compatible subset OPT of S.

- ① Moreover,  $OPT \setminus \{a_1\}$  is optimal for  $[0, T] \setminus [0, f(a_1)]$ .
- ② The solution of subproblem  $OPT' \cup \{a_1\}$  is optimal for S by dynamic programming
- Guarantee that we will reach a global OPT solution by making local OPT choice.

# Algorithm

- ① Recall s[j] and f[j] are the start and finish time separately
- ② Sort all jobs according to the finish time f[j].

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

# Algorithm

- ① Recall s[j] and f[j] are the start and finish time separately
- ② Sort all jobs according to the finish time f[j].

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A = \{a_1\}

3 k = 1

4 for m = 2 to n

5 if s[m] \ge f[k]

6 A = A \cup \{a_m\}

7 k = m

8 return A
```

## **Analysis**

Correctness follows from Theorem 16.1 Running time:  $O(n \log n)$ .

#### Discussion

While the running time is the same, greedy algorithm is arguably simpler than DP.

- Easy to implement
- A However, it takes more effort to prove its correctness



## **Outline**

- Introduction
- 2 Revisit Interval Scheduling
- Max Interval Sum
- 4 Huffman Codes
- Set Cover
- 6 Scheduling

#### **Problem**

Given a sequence  $a_1, \ldots, a_n$  of integers, find the largest sum of a consecutive interval, i.e.,  $\max_{k < \ell} \left\{ \sum_{i=k}^{\ell} a_i \right\}$ .

#### **Problem**

Given a sequence  $a_1, \ldots, a_n$  of integers, find the largest sum of a consecutive interval, i.e.,  $\max_{k < \ell} \{ \sum_{i=k}^{\ell} a_i \}$ .

#### First idea

Enumerate all pairs k and  $\ell - O(n^2)$ 

# 1st Algorithm

```
function MAX-SUM(a) ans = 0 for k = 1, ..., n do sum = 0 for \ell = k, ..., n do sum = sum + a[\ell] ans = \max\{ans, sum\} Return ans
```

#### Question

Can we design faster algorithms?

#### 2nd Idea:

One standard trick: let s[0] = 0 and  $s[i] = a_1 + a_2 + \cdots + a_i$  s.t. sum  $\sum_{i=k}^{\ell} a_i = s[\ell] - s[k-1]$ .

Problem becomes  $\max_{k \leq \ell} \{s[\ell] - s[k-1]\}.$ 

## 2nd Idea:

One standard trick: let 
$$s[0] = 0$$
 and  $s[i] = a_1 + a_2 + \cdots + a_i$  s.t. sum  $\sum_{i=k}^{\ell} a_i = s[\ell] - s[k-1]$ .

Problem becomes  $\max_{k \leqslant \ell} \left\{ s[\ell] - s[k-1] \right\}$ .

## **Dynamic Programming**

Let  $f[\ell]$  denote the max-sum whose endpoint is  $\ell$ :

$$f[\ell] = s[\ell] - \min_{k \leqslant \ell} s[k-1]$$

$$ans = \max \left\{ f[1], \dots, f[n] \right\}$$

## 2nd Idea:

One standard trick: let 
$$s[0] = 0$$
 and  $s[i] = a_1 + a_2 + \cdots + a_i$  s.t. sum  $\sum_{i=k}^{\ell} a_i = s[\ell] - s[k-1]$ .

Problem becomes  $\max_{k \leqslant \ell} \left\{ s[\ell] - s[k-1] \right\}$ .

## **Dynamic Programming**

Let  $f[\ell]$  denote the max-sum whose endpoint is  $\ell$ :

$$f[\ell] = s[\ell] - \min_{k \leqslant \ell} s[k-1]$$

$$ans = \max \left\{ f[1], \dots, f[n] \right\}$$

Time  $O(n \log n)$ : Use a data structure (e.g., heap or BST) to find  $\min_{k \le \ell} \{s[k-1]\}$  for every  $\ell$  in time  $O(\log n)$ .

# Improve DP via greedy method

Back to 
$$f[\ell]=s[\ell]-\min_{k<\ell}s[k-1]$$
, consider  $\ell$  and  $\ell+1$ : 
$$f[\ell]=s[\ell]-\min_{k\leqslant\ell}s[k-1],$$

$$f[\ell+1] = s[\ell+1] - \min_{k \leq \ell+1} s[k-1]$$

# Improve DP via greedy method

Back to 
$$f[\ell] = s[\ell] - \min_{k < \ell} s[k-1]$$
, consider  $\ell$  and  $\ell + 1$ :

$$f[\ell] = s[\ell] - \min_{k \le \ell} s[k-1],$$
  
 $f[\ell+1] = s[\ell+1] - \min_{k \le \ell+1} s[k-1]$ 

## OBS on mink

$$\min_{k \leqslant \ell+1} s[k-1] = \min \left( \min_{k \leqslant \ell} s[k-1], s[\ell] \right)$$

# Improve DP via greedy method

Back to 
$$f[\ell] = s[\ell] - \min_{k < \ell} s[k-1]$$
, consider  $\ell$  and  $\ell + 1$ :

$$f[\ell] = s[\ell] - \min_{k \leqslant \ell} s[k-1],$$
  
$$f[\ell+1] = s[\ell+1] - \min_{k \leqslant \ell+1} s[k-1]$$

#### OBS on mink

$$\min_{k \leqslant \ell+1} s[k-1] = \min \left( \min_{k \leqslant \ell} s[k-1], s[\ell] \right)$$

# function MAX-SUM(a) ans = 0, k = 0Compute $s[1], \ldots, s[n]$ for $\ell = 1, \ldots, n$ do $k = \arg\min\left\{s[k], s[\ell - 1]\right\}$ $ans = \max\{ans, s[\ell] - s[k]\}$ Return ans

# **Greedy Algorithm**

Actually, it is a greedy algorithm while it looks like a DP.

#### An alternate implementation

Let  $sum_{\ell}$  denote the largest sum whose endpoint is  $\ell$  s.t.  $sum_{\ell} = \max\{a_{\ell}, sum_{\ell-1} + a_{\ell}\}.$ 

```
function MAX-SUM(a)

ans = 0, sum = 0

for \ell = 1, ..., n do

sum = \max\{0, sum\} + a_{\ell}

ans = \max\{ans, sum\}

Return ans
```

# Summary

- Greedy algorithms are elegant and fast
- Need more analysis and proofs (compare to DP and divide& conquer)

# Summary

- Greedy algorithms are elegant and fast
- Need more analysis and proofs (compare to DP and divide& conquer)
- So far, view it as a way to improve DP
- Next, greedy algorithms solve many problems where DP can't help with

# Summary

- Greedy algorithms are elegant and fast
- Need more analysis and proofs (compare to DP and divide& conquer)
- So far, view it as a way to improve DP
- Wext, greedy algorithms solve many problems where DP can't help with

Strongly recommend: Read 15.3 and 16.2 to understand DP and greedy algorithms better

## **Outline**

- Introduction
- 2 Revisit Interval Scheduling
- Max Interval Sum
- 4 Huffman Codes
- Set Cover
- 6 Scheduling

#### Introduction

A classical problem in data compression

— solved by Huffman at 1952 in MIT

- ① Consider a data set with alphabet say  $\{a, b, c, ..., z\}$ , where each character appears  $f_a, ..., f_z$  times
- ② Find a binary encoding of  $\{a, b, c, ..., z\}$ , called codewords, to minimize the total length.

| a × 85                                | b×50 | C× 60                                    |
|---------------------------------------|------|------------------------------------------|
| encode a o<br>b oo<br>c 1<br>invalid! |      | CL 00<br>b 01<br>c 1<br>0+2×85+2×50+1×60 |

A classical problem in data compression

— solved by Huffman at 1952 in MIT

- ① Consider a data set with alphabet say  $\{a, b, c, ..., z\}$ , where each character appears  $f_a, ..., f_z$  times
- 2 Find a binary encoding of  $\{a, b, c, ..., z\}$ , called codewords, to minimize the total length.
- Stra requirement prefix codes: no codeword is a prefix of some other codewords.

| a * 85             | รี      | b×50 (                                      | C× 60                                     |
|--------------------|---------|---------------------------------------------|-------------------------------------------|
| encook a<br>b<br>C | 00<br>1 | 01 0<br>b 10<br>c 11<br>(ength 1x85+2×50+2* | CL 00<br>b 01<br>c 1<br>60 2×85+2×00+1×60 |
| invalidi           |         | LENGTH 1297 YOUR                            | W 2"86126011.00                           |

# Idea: Encode them as a tree

- Each leaf contains a character, whose codeword is the {0, 1}-path from the root
- The number on each node denotes the sum of frequencies of all leaves in its subtree



# Idea: Encode them as a tree

- Each leaf contains a character, whose codeword is the {0, 1}-path from the root
- 2 The number on each node denotes the sum of frequencies of all leaves in its subtree



#### **OBS**

- It satisfies the prefix codes requirement.
- 2 The total length is the sum of frequencies on nodes.

# **Greedy Algorithm**

New goal: Construct a tree minimize the sum of weights

- ① Let C be the set of n characters
- 2 For each  $c \in C$ , c.freq is its frequency



# **Greedy Algorithm**

New goal: Construct a tree minimize the sum of weights

- ① Let C be the set of n characters
- ② For each  $c \in C$ , c.freq is its frequency
- 3 Reduce to subproblem: Merge two nodes with the lowest frequencies into one



# **Greedy Algorithm**

New goal: Construct a tree minimize the sum of weights

- 1 Let C be the set of n characters
- ② For each  $c \in C$ , c. freq is its frequency
- 3 Reduce to subproblem: Merge two nodes with the lowest frequencies into one



# **Algorithm Description**

## Implement it via a min-heap

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = \text{EXTRACT-MIN}(Q)

6 z.right = y = \text{EXTRACT-MIN}(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree
```

# **Algorithm Description**

## Implement it via a min-heap

```
HUFFMAN(C)

1 n = |C|

2 Q = C

3 for i = 1 to n - 1

4 allocate a new node z

5 z.left = x = \text{EXTRACT-MIN}(Q)

6 z.right = y = \text{EXTRACT-MIN}(Q)

7 z.freq = x.freq + y.freq

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q) // return the root of the tree
```

# Analysis

① Running Time:  $O(n \log n)$  by heap

2 Correctness: Next 2 slides

## Correctness

- 2 Steps: Consider one merge operation
  - ①  $\exists$  a optimal solution T with the merged pattern
  - ② For the subproblem after merging, its optimal solution  $T' \Rightarrow$  an optimal solution T of original problem

## Correctness

- 2 Steps: Consider one merge operation

  - ② For the subproblem after merging, its optimal solution  $T' \Rightarrow$  an optimal solution T of original problem

# Step 1: Lemma 16.2 in CLRS

Let  $C = \{c_1, \ldots, c_n\}$  where  $c_1.freq \ge c_2.freq \ge \cdots \ge c_n.freq$ . Then  $\exists$  an optimal prefix code whose binary tree T has a node with children  $c_{n-1}$  and  $c_n$  as two of the deepest leaves.

## Correctness cont.

# Step 2: Lemma 16.3 in CLRS

Let  $C' = \{c_0, c_1, \dots, c_{n-2}\}$  where  $c_0$ . freq  $= c_{n-1}$ . freq  $+ c_n$ . freq. Let T' denote the binary tree of any optimal encoding of C'. Then the binary tree T of C, obtained by splitting the leaf  $c_0$  into  $c_{n-1}$  and  $c_n$ , is optimal.

# Correctness cont.

# Step 2: Lemma 16.3 in CLRS

Let  $C' = \{c_0, c_1, \dots, c_{n-2}\}$  where  $c_0$  freq  $= c_{n-1}$  freq  $+ c_n$  freq. Let T' denote the binary tree of any optimal encoding of C'. Then the binary tree T of C, obtained by splitting the leaf  $c_0$  into  $c_{n-1}$  and  $c_n$ , is optimal.

- ① Lemma 16.2 says it is OK to combine  $c_{n-1}$  and  $c_n$  since there exists an optimal solution doing that
- 2 Lemma 16.3 says any optimal solution of the subproblem is good

# **Summary**

- Greedy algorithms are elegant and fast
- Proving Correctness is involved

# Summary

- Greedy algorithms are elegant and fast
- Proving Correctness is involved
- For many problems, greedy algorithms improves the running time of dynamic programming
- Greedy algorithms provide efficient solutions for many problems where DP can not help with like Huffman code — more examples from computational hard problems

# Summary

- Greedy algorithms are elegant and fast
- Proving Correctness is involved
- For many problems, greedy algorithms improves the running time of dynamic programming
- Greedy algorithms provide efficient solutions for many problems where DP can not help with like Huffman code — more examples from computational hard problems



# **Outline**

- Introduction
- 2 Revisit Interval Scheduling
- Max Interval Sum
- 4 Huffman Codes
- Set Cover
- 6 Scheduling

# **Approximation Algorithms**

- Hard or slow to find optimal solutions in many problems slow means a large polynomial time or super-polynomial time
- ② Computer Science is happy with an efficient algorithm if its output is not bad
- ③ Formally, it means approximately good say the minimum is OPT, its answer is at most  $\alpha \cdot OPT$  for some  $\alpha > 1$
- $\bullet$   $\alpha := approximation ratio$
- ⑤ Finding approximation solutions is a central idea in CS streaming algorithms (heavy hitters), big data algorithms, machine learning algorithms, privacy, cryptography, . . .

# **Set Cover**

Given a ground set  $[n] := \{1, 2, ..., n\}$  and m subsets  $S_1, ..., S_m$ , find the smallest selection of subsets  $S_i$  whose union is [n].

# **Set Cover**

Given a ground set  $[n] := \{1, 2, ..., n\}$  and m subsets  $S_1, ..., S_m$ , find the smallest selection of subsets  $S_i$  whose union is [n].

# **Greedy Algorithm**

Repeat until [n] is covered:

Pick  $S_i$  with the largest uncovered elements.

# **Set Cover**

Given a ground set  $[n] := \{1, 2, ..., n\}$  and m subsets  $S_1, ..., S_m$ , find the smallest selection of subsets  $S_i$  whose union is [n].

# **Greedy Algorithm**

Repeat until [n] is covered:

Pick  $S_i$  with the largest uncovered elements.

- Simple and easy to implement
- ② Can not guarantee that the answer is optimal

# Main Results

#### **Theorem**

If the optimal solution uses k subsets, the greedy algorithm uses at most  $k \ln n$  subsets.

## Main Results

#### Theorem

If the optimal solution uses k subsets, the greedy algorithm uses at most  $k \ln n$  subsets.

- $lue{1}$  Greedy algorithm is not too bad  $lue{1}$  approximation ratio is In n
- ② Can we find optimal solution efficiently?

## Main Results

#### Theorem

If the optimal solution uses k subsets, the greedy algorithm uses at most  $k \ln n$  subsets.

- **①** Greedy algorithm is not too bad  $\odot$  approximation ratio is  $\ln n$
- 2 Can we find optimal solution efficiently?
- **3** PCP theorem: No poly time algorithm outputs  $\leq 0.999 \cdot k \ln n$  subsets unless P = NP

# Interactive Proof Systems Most "famous" work in complexity theory over past decade. Prover claims a statement and verifier interrogates prover using randomly generated questions.

4 Believed that  $2^{n^{1-o(1)}}$ -time is necessary to find the optimal

# **Proof**

- Let n<sub>t</sub> be # elements still not covered after t iterations of the greedy
- ② The optimal solution uses k-subsets  $\Rightarrow \exists$  a subset covers  $n_t/k$  remaining elements

# **Proof**

- 1 Let n<sub>t</sub> be # elements still not covered after t iterations of the greedy
- ② The optimal solution uses k-subsets  $\Rightarrow \exists$  a subset covers  $n_t/k$  remaining elements
- 3  $n_{t+1} \le n_t n_t/k = n_t(1 1/k)$ . So

$$n_t \leqslant n_0 (1 - 1/k)^t < n_0 e^{-t/k} = n \cdot e^{-t/k},$$

where RHS is equal to 1 for  $t = k \ln n$ .

# **Proof**

- Let n<sub>t</sub> be # elements still not covered after t iterations of the greedy
- ② The optimal solution uses k-subsets ⇒ ∃ a subset covers n<sub>t</sub>/k remaining elements
- 3  $n_{t+1} \leqslant n_t n_t/k = n_t(1 1/k)$ . So

$$n_t \leqslant n_0 (1 - 1/k)^t < n_0 e^{-t/k} = n \cdot e^{-t/k},$$

where RHS is equal to 1 for  $t = k \ln n$ .

#### Discussion

For many computational hard problems, greedy algorithms provide the best solution in poly time.

# **Outline**

- Introduction
- 2 Revisit Interval Scheduling
- Max Interval Sum
- 4 Huffman Codes
- Set Cover
- 6 Scheduling

## **Problem Description**

Given n jobs with processing load  $t_1, \ldots, t_n$ , schedule them into m identical machines to minimize the *makespan* (defined as the max load over all machines)

# **Problem Description**

Given n jobs with processing load  $t_1, \ldots, t_n$ , schedule them into m identical machines to minimize the *makespan* (defined as the max load over all machines)

- Let OPT be the optimal answer
- It is NP-hard to find OPT even for 2 machines

# **Problem Description**

Given n jobs with processing load  $t_1, \ldots, t_n$ , schedule them into m identical machines to minimize the *makespan* (defined as the max load over all machines)

- 1 Let OPT be the optimal answer
- It is NP-hard to find OPT even for 2 machines
- ③ Our plan: Consider a simple greedy algorithm and prove its output  $\leqslant 1.5 \cdot \text{OPT}$
- 4 How to design a greedy algorithm?

# A Greedy Algorithm

```
procedure MINMAKESPAN(t_1, \ldots, t_n, m)
Resort all jobs s.t. t_1 \geqslant \cdots \geqslant t_m
Initialize A_j = \emptyset as the load of machine j \in [m]
for i = 1, \ldots, n do
Find the least load A_j
A_j = A_j \cup \{t_i\}
```

# A Greedy Algorithm

```
procedure MINMAKESPAN(t_1, \ldots, t_n, m)
Resort all jobs s.t. t_1 \geqslant \cdots \geqslant t_m
Initialize A_j = \emptyset as the load of machine j \in [m]
for i = 1, \ldots, n do
Find the least load A_j
A_j = A_j \cup \{t_i\}
```

#### Correctness

- ① Running Time:  $O(n \log n + n \log m)$  by heap
- ② Correctness: max-load ≤ 1.5 · OPT

**①** OBS 1: OPT  $\ge t_1$ 

② OBS 2: OPT  $\geqslant \sum_{i=1}^{n} t_i/m$ 

- **①** OBS 1: OPT  $\geq t_1$
- ② OBS 2: OPT  $\geqslant \sum_{i=1}^{n} t_i/m$
- ③ Fact: Solution  $\leq \sum_{i=1}^{n} t_i/m + t_1$  is a 2-approx. How to refine it?

- **1** OBS 1: OPT  $\ge t_1$
- ② OBS 2: OPT  $\geqslant \sum_{i=1}^{n} t_i/m$
- ③ Fact: Solution  $\leq \sum_{i=1}^{n} t_i/m + t_1$  is a 2-approx. How to refine it?
- ④ Suppose the last job  $t_{\ell}$  of machine  $A_1$  has  $\ell > m$  (otherwise  $A_1$  just has 1 job)
- **5** Load of  $A_1$  is  $\leq \sum_{i=1}^n t_i/m + t_\ell$

- **1** OBS 1: OPT  $\geqslant t_1$
- 2 OBS 2: OPT  $\geqslant \sum_{i=1}^{n} t_i/m$
- ③ Fact: Solution  $\leq \sum_{i=1}^{n} t_i/m + t_1$  is a 2-approx. How to refine it?
- ④ Suppose the last job  $t_{\ell}$  of machine  $A_1$  has  $\ell > m$  (otherwise  $A_1$  just has 1 job)
- **5** Load of  $A_1$  is  $\leq \sum_{i=1}^n t_i/m + t_\ell$
- **⑥** But OPT  $\geqslant 2t_{\ell}$  since  $\ell > m$
- ② One could further refine it to 4/3 by assuming  $t_n$  is the last finished job

# Questions?