Cryptographie et Sécurité - TD3

guillaume.postic@universite-paris-saclay.fr

Exercice 1: chiffrement RSA

On rappelle le principe du chiffrement RSA vu en cours.

Étant donné la clé publique $k_{pub} = (n, e)$ et le texte x en clair, (x < n), le chiffré est obtenu avec $y = E_{kpub}(x) \equiv x^e \mod n$.

Étant donné la clé privée $k_{pr} = d$ et le chiffré y, le texte clair est obtenu avec $x = D_{kpr}(y) \equiv y^d \mod n$.

On rappelle que n=pq, avec p et q deux nombres premiers tq $\varphi(n)=(p-1)(q-1)$, $e \in \{1, 2, \ldots \varphi(n)-1\}$ tel que $\operatorname{pgcd}(e, \varphi(n))=1$ et on a $de \equiv 1 \mod \varphi(n)$.

- 1. On considère l'exemple suivant : p=11, q=17 et e=27. À quoi sont égaux la clé publique k_{pub} et la clé privée k_{pr} ?
- 2. Alice veut chiffrer le message x = 10. Quel est le chiffré $y = E_{kpub}(x)$ qu'elle envoie à Bob ?
- 3. À la réception de y, Bob va le déchiffrer. Vérifier que l'on a $D_{kpr}(y) = 10$ et que Bob récupère bien le message envoyé par Alice.

Exercice 2 : Diffie-Hellman

- 1. Trouvez la valeur du secret partagé par Alice et Bob, à partir des paramètres suivants : module p=23 ; générateur g=5 ; clé privée d'Alice a=6 ; clé privée de Bob b=15.
- 2. Bob reçoit de la part d'Alice un message C=18 chiffré avec l'algorithme ElGamal. Quelle est la valeur du message clair M que Bob déchiffre ?

Exercice 3 : courbes elliptiques

On considère la courbe elliptique suivante : $y^2 \equiv x^3 + 3x + 3 \mod 5$

- 1. Déterminez tous les points faisant partie de cette courbe.
- 2. Quels sont les éléments générateurs ? Formulez votre réponse sous la forme : $(x_g,y_g) \to (x_{2g},y_{2g}) \to ... \to 0$

Exercice 4 : théorème des restes chinois

Trouvez la valeur de x qui résout le système de congruence suivant :

 $x \equiv 3 \pmod{5}$

 $x \equiv 1 \pmod{7}$

 $x \equiv 6 \pmod{8}$