IT入門

受講者のみ利用可

目次

- 第1章コンピューター
- 第2章ハードウェア

のみ利用可

孙

瓣

汉

- 第3章オペレーティングシステム/ミドルウェア
- 第4章 アプリケーション
- 第5章 コンピューター システム

受講者のみ利用可

第 1 章 コンピューター

受講者のみ利用可

1.1 コンピューターの基本

コンピューターとは (1/2)

情報(デジタル データ)を受け取り、情報を処理(計算)し、結果を出力することができる装置

講者のみ利用可

区区

コンピューターとは (2/2)

コンピューターは、計算機 (電子計算機) とも呼ばれ、 情報を受け取り、処理した結果を出力します。また、複 雑な処理をおこなう場合は、複数のコンピューターを 組み合わせて利用することもあります。

者のみ利用可

뾆

汉

5 大基本装置 (1/2)

入力装置

講者のみ利用可

X

演算装置

記憶装置

制御装置

出力装置

5 大基本装置 (1/2)

装置	機能	人間に例えると
入力装置	コンピューターに処理させるためのデータやプログラムを	目、耳
	入力する装置	
演算装置	記憶されているデータの計算や判断などをプログラムの	脳(思考)
	指示にしたがって行う装置	
記憶装置	入力されたデータやプログラムを記憶するための装置	脳(記憶)
制御装置	入力装置・記憶装置・演算装置・出力装置をコントロール	中枢神経
	する装置	
出力装置	コンピューターで処理した結果を人間にわかる形で出力	手、口
	する装置	

受講者のみ利用可

コンピューターが扱うデータ (1/4)

受講者のみ利用可

アナログ データ

コンピューターが扱うデータ (2/4)

 デジタル データは、情報を数値化して利用します。 何えば、デジタル カメラで記録した写真はデジタル データといえます。カメラで撮影された被写体は、内 部でデジタル データとして保存されます。

み利用

6

艸

뾆

赵

コンピューターが扱うデータ (3/4)

回

み利用

6

쨎

뾆

汉

• アナログ データ アナログデータは、情報を数値化しません。例えば、 フィルムを使用するカメラで記録した写真はアナロ グデータといえます。カメラで撮影された被写体は、 フィルムに縮小された形で記録されます。現在のコ ンピューターはデジタル データを利用するため、ア ナログデータをコンピューターが直接利用すること はできません。コンピューターがアナログデータを 利用するためには、アナログ データをデジタル デー タに変換して利用します。

コンピューターが扱うデータ (4/4)

- デジタル化の例(音声の場合)
 - 標本化(サンプリング)
 - 一定の間隔で区切り、値を決める
 - -量子化

講者のみ利用可

区

• 標本化で決めた値を 2 進数に変換する

基数 (1/3)

講者のみ利用可 X

0, 1, 2, 3, 4 5, 6, 7, 8, 9

10 進数

0,1

2 進数

基数 (2/3)

コンピューターが利用するデジタル データは 0 と 1 に数値化されます。このコンピューターが扱う数を 2 進数といいます。また、人間が日常的に利用している数は 10 進数といいます。

のみ利用

艸

뾆

汉

- 10 進数
 0、1、2、3、4、5、6、7、8、9 の 10 種類の数字を使用して情報を表現します。
- 2進数0、1の2種類の数字を使用して情報を表現します。

基数 (3/3)

10 進数と2 進数は次のように桁が上がります。

講者のみ利用可

区

10 進数	2 進数	10 進数	2 進数
1	1	6	110
2	10	7	111
3	11	8	1000
4	100	9	1001
5	101	10	1010

基数変換

• 2 進数を 10 進数に変換

1110

講者のみ利用可

区

14

• 10 進数を 2 進数に変換

14

1110

情報量の単位

受講者のみ利用可

補助単位

記号	読み方	1 バイトの何倍か	指数表記	概算值
K	キロ	1,024倍	2 ¹⁰	10 ³
M	メガ	1,024×1,024倍 =1,048,576倍	2 ²⁰	10 ⁶
G	ギガ	1,024×1,024×1,024倍 =1,073,741,824倍	2 ³⁰	10 ⁹
Т	テラ	1,024×1,024×1,024×1,024倍 =1,099,511,627,776倍	2 ⁴⁰	10 ¹²
Р	ペタ	1,024×1,024×1,024×1,024×1,024倍 =1,125,899,906,842,624倍	2 ⁵⁰	10 ¹⁵

講者のみ利用可

区

文字コード

- コンピューターが文字や記号を扱うためのコード
- 1 バイト文字
 - 最大 256 文字を表現
- 2 バイト文字

講者のみ利用可

汉

- 最大 65536 文字を表現

演習

- 基数変換の方法を調べて(もしくは復習して)次の問題に答えてください。
- 1. 10 進数の「10」を 2 進数に変換

のみ利用

艸

撫

区

- 2. 10 進数の「70」を 2 進数に変換
- 3. 10 進数の「421」を 2 進数に変換
- 4. 2 進数の「1101」を 10 進数に変換
- 5. 2 進数の「101011」を 10 進数に変換
- 6. 2 進数の「11010101」を 10 進数に変換

演習の解答

- 1. 10 進数の「10」を 2 進数に変換 →1010
- 2. 10 進数の「70」を 2 進数に変換 →1000110
- 3. 10 進数の「421」を 2 進数に変換 →110100101
- 4. 2 進数の「1101」を 10 進数に変換 →13

のみ利用可

州

撫

汉

- 5. 2 進数の「101011」を 10 進数に変換 →43
- 6. 2 進数の「11010101」を 10 進数に変換 →213

【復習問題】5 大基本装置

装置	機能	人間に例えると
装置	コンピューターに処理させるためのデータやプログラムを	目、耳
	入力する装置	
装置	記憶されているデータの計算や判断などをプログラムの	脳(思考)
	指示にしたがって行う装置	
装置	入力されたデータやプログラムを記憶するための装置	脳(記憶)
装置	入力装置・記憶装置・演算装置・出力装置をコントロール	中枢神経
	する装置	
装置	コンピューターで処理した結果を人間にわかる形で出力	手、口
	する装置	

講者のみ利用可

区

【復習問題】情報量の単位

受講者のみ利用可

【復習問題】補助単位

記号	読み方	1 バイトの何倍か	指数表記	概算值
K		1,024倍	2 ¹⁰	10 ³
		1,024×1,024倍 =1,048,576倍	2 ²⁰	10 ⁶
		1,024×1,024×1,024倍 =1,073,741,824倍	2 ³⁰	10 ⁹
		1,024×1,024×1,024×1,024倍 =1,099,511,627,776倍	2 ⁴⁰	10 ¹²
Р		1,024×1,024×1,024×1,024倍 =1,125,899,906,842,624倍	2 ⁵⁰	10 ¹⁵

講者のみ利用可

区

【復習問題】コンピューターが扱うデータ

- A データは、情報を数値化して利用します。
- _____B データは、情報を数値化しません。

者のみ利用可

뾆

汉

受講者のみ利用可

第 2 章 ハードウェア

受講者のみ利用可

2.1 マザーボード / BIOS

マザーボードとは

- CPU やメモリを接続する基盤
- 主な構成要素
 - チップ セット
 - BIOS

講者のみ利用可

区区

- CPU ソケット
- メモリ スロット
- バッテリ
- 拡張スロット
- 電源コネクタ
- 1/0 ポート

マザーボードの規格

LPX

- -ATX
- Micro ATX
- LPX

講者のみ利用可

区区

ATX

BIOS とは

Basic Input/Output System

者のみ利用可

区区

- ハードウェアを制御するプログラム
- PC の電源投入と同時に実行される

CMOS バッテリ

• マザーボードに内蔵されている電池

者のみ利用可

뾆

汉

- BIOS プログラムの設定値を保存するために電源を 供給する
- CMOS バッテリの容量が低下すると、日時がリセットされるなどエラーが発生する恐れがある

受講者のみ利用可

受講者のみ利用可

2.2 電源装置

電源装置とは

• PC の動作に必要な電気をマザーボードや様々な 部品に供給する装置

のみ利用

业

뾆

汉

- コンピューターの出力容量とフォームファクターを考慮して適切な電源装置を取り付ける
- コンピューターの仕様に合っていない場合、部品の 故障や発煙、発火の恐れもある。

受講者のみ利用可

受講者のみ利用可

2.3 CPU

CPU とは

• Central Processing Unit (中央演算処理装置)

者のみ利用可

区区

各装置の処理 (演算) やコントロール (制御) をおこなう

シングル コアとマルチ コア

受講者のみ利用可

マルチ コア

32 ビット CPU と 64 ビット CPU

主な違い

講者のみ利用可

区区

- パフォーマンス
- 利用可能メモリ空間

	32 ビット CPU	64 ビット CPU
32 ビット OS	メモリ 4GB まで	メモリ 4GB まで
64 ビット OS	動作不可	メモリ 16EB まで

CPU クーラー

- CPU の温度上昇を抑える装置
- 種類

講者のみ利用可

区

- 空冷ファン
- 水冷
- サーマル コンパウンド

講者のみ利用可 区

2.4 メモリ

メモリとは

- 半導体による記憶装置
- 処理の流れ

講者のみ利用可

区区

受講者のみ利用可

2.5 記憶装置

記憶装置とは

- データを保存する装置
- 主な記憶装置
 - HDD
 - SSD

講者のみ利用可

区区

- CD/DVD
- フラッシュ メモリ

RAID とは

- Redundant Arrays of Independent Disks
- 複数のディスクを 1 つのディスクとして利用する
- 主な RAID 構成
 - RAID 0

者のみ利用可

X

- RAID 1
- RAID 5

RAID 0

• ストライピング

講者のみ利用可

区区

• 並列でデータを書き込む

ディスク2

RAID 1

• ミラーリング

講者のみ利用可

区

• 同じ内容を書き込む

RAID 5

パリティ情報を書き込み 1 台のディスク障害が起き てもデータを復旧することができる

講者のみ利用可

X

受講者のみ利用可

2.6 入出力装置

入出力装置とは

- 情報を入力する装置
- 処理結果を出力する装置
- 主な入出力装置

者のみ利用可

뾆

区

- キーボード (入力)
- マウス (入力)
- マイク (入力)
- ディスプレイ (出力)
- スピーカー (出力)

【復習問題】 CMOS バッテリ

• に内蔵されている電池

者のみ利用可

撫

汉

- BIOS プログラムの設定値を保存するために電源を 供給する
- CMOS バッテリの容量が低下すると、日時がリセットされるなどエラーが発生する恐れがある

者のみ利用可

区区

- ストライピング
- 並列でデータを書き込む

ディスク2

- ミラーリング
- 同じ内容を書き込む

受講者のみ利用可

講者のみ利用可

X

パリティ情報を書き込み 1 台のディスク障害が起き てもデータを復旧することができる

第3章 オペレーティング システム / ミドルウェア

3.1 OS の基本

講者のみ利用可

区

オペレーティング システムとは

- OS (Operating System)
- 基本ソフトウェアとも呼ばれ、機器 (コンピューター)
 の基本的な機能を実装するソフトウェア
- 代表的な OS

者のみ利用可

赵

- Windows
- UNIX / Linux
- Mac OS

オペレーティングシステムのインストール種類

者のみ利用

区区

新規インストール

アップグレード インストール

者のみ利用可

オペレーティング システムのインストール方法

受講者のみ利用可

無人インストール

イメージ インストール

OS の基本操作

講者のみ利用可

区

58

デバイスドライバー

講者のみ利用可

区

ユーザーとグループ

講者のみ利用可 区 ユーザー

Windows OS で使用するユーザーとグループ

ユーザー

み利用

6

赵

- Administrator
 - Windows コンピューターに対して管理者権限で操作、管理することができるユーザー
- グループ
 - Administrators
 - Windows コンピューターに対して管理者権限で操作、管理することができるグループ。このグループに所属することによって、管理者権限を利用することができる
 - Users
 - Windows コンピューターに対して標準権限で操作ができる。管理 者権限が必要なコンピューターの設定変更はできない。

受講者のみ利用可

3.2 ミドルウェアの基本

ミドルウェアとは

アプリケーション

者のみ利用可

汉

ミドルウェア

オペレーティング システム

代表的なミドルウェア製品

- データベース管理システム
 - Microsoft SQL Server
 - Oracle Database
 - MySQL

者のみ利用可

汉

- Web サーバー
 - Internet Information Services
 - Apache HTTP Server

【復習問題】OS の基本操作

講者のみ利用可

区

65

講者のみ利用可 区

アプリケーション

講者のみ利用可

区

オペレーティング システム

受講者のみ利用可

第 4 章 アプリケーション

4.1 アプリケーションの基本

アプリケーションとは

者のみ利用可

汉

アプリケーション

オペレーティング システム

ハードウェア

有償ライセンス

講者のみ利用可

区

ノードロック

ネットワーク

CPU

第 5 章 コンピューター システム

受講者のみ利用可

5.1 コンピューター システムの基本

コンピューター システムとは

2層 C/S システム (1/2)

受講者のみ利用可

2 層 C/S システム (2/2)

回

汉

3層システム

サーバー側ビジネスロジックを実行 ビジネスロジックの変更 → サーバーサイドで対応 大量のアクセス → サーバー環境で、データベースへのアクセスを最適化

システムの処理形態

集中処理

のみ利用

叫

뾆

汉

- 1台のコンピューターで処理をおこなう形式のシステム
- 分散処理
 - 複数のコンピューターで処理をおこなう形式のシステム
 - 水平機能分散型
 - 複数のコンピューターに同等の機能が実装されていて、データを共 有しつつ機能を分散する処理形式
 - 垂直機能分散型
 - 複数のコンピューターに従属関係が存在し、処理を依頼する側と受ける側で機能を分散する処理形式

システムの利用形態

• 対話型処理

のみ利用

艸

뾆

汉

- システム(コンピューター)に対する命令(処理)の依頼を 逐一おこない、システム(コンピューター)と対話している ように処理を進める形式
- リアル タイム処理
 - 状況の変化に即時に対応する形式
- バッチ処理
 - 蓄積されたデータを一定の間隔で処理していく形式

システムの経済性

- 総保有コスト (TCO)
- 初期コスト

講者のみ利用可

区区

• 運用 (ランニング) コスト

ネットワークとは

- 複数のコンピューターを接続する仕組み
- IP アドレスを指定して通信をおこなう

者のみ利用可

뾆

データベース システムとは

データを管理するシステム

者のみ利用可

뾆

区

• データをアプリケーション サーバーに提供する

バックアップとは

コンピューターのデータを別の領域に保存すること

バックアップ方法

者のみ利用可

뾆

区

- ・フルバックアップ
- ・ 増分バックアップ
- ・ 差分バックアップ

バックアップ領域

- ・テープ
- ・オンライン

コンピューター

セキュリティとは

- コンピューターが利用するデータやシステムなどを 保護する仕組み
- 主なセキュリティ機能
 - パスワード認証
 - アクセス制御
 - 暗号化

講者のみ利用可

X

- デジタル署名

パッケージとシステム開発

	パッケージ	システム開発
システムの特徴	汎用的なシステムを開発し、不 特定多数の顧客にパッケージ (システム)を販売する	特定の顧客の要件定義をおこない、その要件に基づいてシステム開発をおこなう
システムの仕様	システムの仕様は開発会社が決 定する	システムの仕様は顧客が決定する(要件定義)
システムの利用	決められた仕様に従ってユー ザー(利用者)がシステムを利用 する	自社専用にカスタマイズされた システムをユーザー(利用者)が 利用する
システムの価格	システム開発に比べて安価	パッケージに比べて高価
導入期間	一般的に導入期間は短い	一般的に導入に時間がかかる

講者のみ利用可

【復習問題】システムの処理形態

- 集中処理
 - 1台のコンピューターで処理をおこなう形式のシステム
- 分散処理

者のみ利用可

뾆

区

- 複数のコンピューターで処理をおこなう形式のシステム
 - 水平機能分散型

• 垂直機能分散型

【復習問題】システムの利用形態

• 対話型処理

- リアル タイム処理
 - 状況の変化に即時に対応する形式
- バッチ処理

講者のみ利用可

-	2
---	---

【復習問題】システムの経済性

- 総保有コスト (TCO)
- 初期コスト

者のみ利用可

뾆

区区

• 運用 (ランニング) コスト

【復習問題】バックアップ

- つぎのバックアップ方法を図を用いて説明してください。
 - フルバックアップ
 - 増分バックアップ
 - 差分バックアップ

講者のみ利用可

【復習問題】 バックアップ 解答例

講者のみ利用可

X