Overfitting을 막는 방법

데이터를 많이 모은다

피쳐를 줄인다

정규화

Regularization

W가 커지면 전체 값이 작아지도록 하는 Regularization Term을 붙인다.

Performance evaluation

학습된 파라미터(W, b)를 사용한다.

학습과정에 사용되지 않은 데이터를 사용한다.

왜?

모델이 학습할 때 사용한 training set에만 맞는 외운 답으로 100의 정확도를 내버린다. 일반화가 안됨.

Validation set: 학습 과정에서 성능 평가를 하기 위한 데이터.

Perceptron : 인간의 신경 세포의 형태를 모사

Activation Function 활성함수 : Output을 결정하는데 사용되는 함수

MLP : 여러 개의 Perceptron을 쌓아서 만든다.

MLP 머신.

근데 이제 사람이 training을 직접 한...

컴퓨터에 기본적으로 필요한 논리 연산은 AND, OR, XOR이다.

Simple AND/OR Problem : linear separable 얘네는 선형으로 쉽게 할 수 있다.

근데! XOR은 안돼~ Perceptron 모델로 못풀어요.. (1969년)

근데 이런 난제가 풀렸다. (1974, 1982 by Paul Werbos, 1986 by Hinton)

Backpropagation : 역방향으로 오차를 전파시키면서 각 layer의 가중치를 업데이트 하고 최적의 학습결과를 찾아가는 방법

Convolutional Neural Networks:

고양이의 이미지 인식 뇌 전극 실험으로 이미지를 인식할 때 뇌는 이미지 조각의 집합으로 Feature을 기술함을 알아 냄.

근데 다시 난관에 봉착..

은닉층을 많이 쌓다 보니 학습이 잘 안되더라 (Gradient vanishing). 그러다가 SVM과 Random Forest 같은 방법론들이 나오면서 NN을 뛰어넘었다.

Breakthrough Hinton, Bengio, Lecun: 딥러닝 3대 거장

2006년 : W, b의 초기화를 잘 해보자

2007년 : Dropout

ImageNet 분류 문제에서 CNN이 엄청난 성능을 보이면서 각광받기 시작

XOR 문제를 어떻게 해결했을까??

Perceptron은 왜 XOR을 못 풀었을까요? -> 선형 분류가 안돼서.

X1	X2	XOR	
0	0	0	-
0	1	1	+
1	0	1	+
1	1	0	-

MLP로는 가능!

- Multiple logistic regression units can separate XOR
- · But! "No one on earth had found a viable way to train"

*Marvin Minsky

2 layer perceptron으로 해결.

자 더 깊게 쌓은 Deep Neural Network (DNN)을 통한 어려운 문제에 도전.

그런데 Gradient Vanishing 문제가 발생했다. Backpropagation이 앞으로 갈수록 희미 해져 학습이 안된다.

Geoffrey Hinton 선생님의 이에 대한 원인 분석

- 잘못된 비선형 함수를(Activation Function) 사용했다.
- Weight 초기화를 멍청하게 해왔다.
- Labeled된 데이터가 너무 적었다.
- 컴퓨터가 너무 느렸다.

Activation Function

활성함수는 신경학적으로 볼 때 뉴런 발사(Firing of a Neuron)의 과정에 해당함

최종 출력 신호를 다음 뉴런으로 보내줄지 말지 결정함

뉴런이 다음 뉴런으로 신호를 보낼 때 입력신호가 일정 기준 이상이면 보내고 기준에 달하지 못 하면 보내지 않을 수 있다.

많은 종류의 활성화 함수가 있고, Activation의 결정이 결과에 크게 영향을 미침

1. Step func

- A. 입력이 양수 일 때는 1, 음수 일 때는 0의 신호를 보내는 이진 함수
- B. 미분이 불가능한 함수로 모델 Optim 과정에 사용이 어려워 신경망에서는 안 쓰임

2. Sigmoid func

- A. 단일 퍼셉트론에서 사용했던 활성함수
- B. 입력을 (0,1)사이로 정규화함
- C. 역전파 단계에서 NN layer 을 거칠 때 마다 작은 미분 값이 곱해져, Gradient Vanishing 을 야기함.
- D. 3개 이상의 layer에서 사용을 권장하지 않음

미분 값이 작아요.

3. Tanh func

- A. Sigmoid 를 보완하고자 제안됐음
- B. 입력을 (-1,1)사이의 값으로 정규화
- C. 기울기 값이 급격하긴 한데 그래도 Gradient Vanishing 발생

4. ReLU (Rectified Linear Unit)

- A. 현재 가장 인기있음
- B. 양수에서 Linear function 과 같으며 음수는 0을 출력하는 함수
- C. 미분값을 0 또는 1로 가지기 때문에 Gradient Vanishing 이 발생하지 않는다.
- D. 함수도 단순해서 sigmid 나 tanhq 다 6 배 정도 학습이 빠르다

Relu(x)=max(0,x)

5. Leaky ReLU

- A. 0 미만으로는 싹 0 인 dying ReLU 현상을 해결하기 위해 제시된 함수
- B. 0 미만에서 작은 기울기를 부여함. 보통 0.01
- C. Leaky ReLU 로 성능이 향상 되었다는 보고가 있으나 항상 그렇진 않다.

6. ELU (Exponential Linear Unit)

- A. ReLU 의 threshold 를 -1 로 낮춘 함수를 exp 를 통해 근사한 것
- B. Dying ReLU 문제 해결
- C. 출력 값이 거의 zero_centerd 에 가까움
- D. 하지만 exp()를 계산해야 하는 비용이 듦

7. Maxout

- A. ReLU 와 LeakyReLU 를 일반화 한 것.
- B. ReLU의 장점을 모두 가지며, dying ReLU 문제도 해결
- C. 한 뉴런에 대해 파라미터가 두 배이기 때문에 전체 파라미터가 증가하는 단점

그럼 어떤 Activation Function 을 사용해야 하는가?

- 1. 가장 먼저 ReLU를 사용해본다
- 2. 다음으로 Leaky ReLU, Maxout, ELU 를 시도해본다

The compatibility of activation functions and initialization. Dataset: CIFAR-10

Init method	maxout	ReLU	tanh	Sigmoid
LSUV	93.94	92.11	89.28	n/c
OrthoNorm	93.78	91.74	89.48	n/c
OrthoNorm-MSRA scaled	_	91.93	-	n/c
Xavier	91.75	90.63	89.82	n/c
MSRA	n/c†	90.91	89.54	n/c

n/c symbol stands for "failed to converge, Architecture FitNets-17

Maxout > ELU, Leaky ReLU >= ReLU > tanh > sigmoid

CIFAR-10

- 32x32픽셀의 60000개 이미지
- 각 이미지는 10개의 클래스로 라벨링

Weight Initialization

같은 ReLU 인데 Random Seed 에 따라 이렇게 차이가 난다!

지금까지 선형 회귀나 Softmax 같은 알고리즘 에서는 -1~1의 난수를 Weight로 사용
Neural Network 에서는 W가 0이 되면 절대 안된다. 왜? Gradient Vanishing 되니까.
그럼 어떻게 초기화 할까

초기의 RBM 은 복잡도가 너무 높다.

2010년: Xavier initialization

2015 년 : He's initialization

= 노드의 입출력 수에 비례에서 초기화를 결정짓는 방법

지금도 다양한 방법론이 제시되고 있다.

Dropout and Ensemble

overfitting 을 피하자.

이를 피하는 방법들:

More Training data

Reduce the number of features

Regularization (DROPOUT)

학습시에 신경망에서 일부 유닛을 임시로 제외

테스트 시에는 모든 유닛을 사용한다.

torch.nn.Dropout(p=0.5(default), inplace)

왜 성능이 향상될까?

Dropout 을 통해 Ensemble model 학습과 같은 효과가 있기 때문이다.

Summary

- DNN 모델 학습을 위한 팁
 - 활성 함수를 잘 선택한다.
 - ReLU가 가장 널리 사용된다.
 - 가중치 초기화 방법을 잘 선택한다.
 - Xavier가 가장 널리 사용된다
 - 드랍 아웃을 잘 적용한다.
 - "NN-ReLU-Dropout"을 하나의 <u>블락으로</u> 쌓는다.

Optimizer: 발전 방향

