Lab #5 Physical Optics:Interference and Diffraction

A. Complete this:						
Your Name Neil Sawhney	Slot					
Partner's Name N/A						
Please check the circle next to your lab sec	CTION:					
○ A, Prof Yecko, Mon 1–3 PM	○ B, Prof Webb-Mack, Tue 2–4 PM					
C, Prof Yecko, Wed 10 AM-12	O, Prof Corn-Agostini, Thu 9 AM-11 AM					
E, Prof Webb-Mack, Tue 9–11 AM	○ F, Prof Yecko, Fri 1 PM–3 PM					
B. Read and sign Academic Integrity Stateme	ent:					
I hereby attest that I have not given or receive	ed any unauthorized assistance on this assignment.					
Neil Sawhney						
Sign here						

C. Grading rubric:

CATEGORY AND VERY BRIEF GRADING COMMENTS	Pts Available	Pts earned
Purpose	1	
Data	2	
Explanation of Errors	3	
Calculations	3	
Results & Analysis	3	
Conclusion + Questions	1+2	
Total	15	

Lab #5: Diffraction & Interference

Neil Sawhney

December 2021

Contents

1	Purpose	2
2	Data	3
3	Sources of uncertainty	4
4	Calculations4.1 Wavelength Calculations4.2 Hair Thickness Calculations	5 5
5	Results	11
6	Conclusions	12
7	Answered Questions 7.1 Question	13 13

1. Purpose

The purpose of this lab is to determine the wavelength of a red laser pointer and the thickness of a human hair by using the interference pattern created due to the wave like nature of light.

2. Data

Grating Slits (lines/mm)	D, Distance from Grating To Screen (cm)	x+1 (mm)	x-1 (mm)	
500	36.8	131.05	128.55	
x,D Instrumental Error	0.71			
X1 Range Uncertainty	1.25			

Table 2.1: Diffraction Grating

a, Slit Width (mm)	D, Distance from Slit To Screen (cm)	x+1 (mm)	x-1 (mm)	x+2 (mm)	x-2 (mm)
0.2	79	4.1	3.52	7.5	9.95
0.3	79.3	2.39	2.77	5.19	5.35
0.4	82	2.5	1.58	4.51	4.5
a Instrumental Error	0.02				
x,D Instrumental Error	0.71				
X1 Range Uncertainty	0.19				
X2 Range Uncertainty	0.43				

Table 2.2: Single Slit

D, Distance from Hair to Screen (cm)	x+1 (mm)	x-1 (mm)	x+2 (mm)	x-2 (mm)	x+3 (mm)	x-3 (mm)
59.6	6.1	5.4	11.43	10.89	17	16.95
x,D Instrumental Error	0.71					
X1 Range Uncertainty	0.35					
X2 Range Uncertainty	0.27					
X3 Range Uncertainty			0.	03		

Table 2.3: Hair Reverse Slit

3. Sources of uncertainty

- center of dots were roughly estimated, since the edges were fuzzy and the circles were large
- center of lines were roughly estimated, since the edges were fuzzy and the lines were long
- center of lines were roughly estimated, since the edges were fuzzy and the lines were long

4. Calculations

4.1 Wavelength Calculations

Part A

Value

$$I(\delta) = I_0 \left[\frac{\sin\left(\frac{N\delta}{2}\right)}{\sin\left(\frac{\delta}{2}\right)} \right]^2 \text{ where } \delta \equiv \frac{2\pi}{\lambda} d \sin \theta$$
 (4.1)

Question

$$\sin\theta = \frac{m\lambda}{d} \quad m = 0, \pm 1, \pm 2, \dots$$

$$\tan\theta = \frac{\text{Average of } x_m}{D}$$

$$\theta = \arctan\left(\frac{\text{Average of } x_m}{D}\right)$$

$$\lambda = \frac{d}{m}\sin\left(\arctan\left(\frac{\text{Average of } x_m}{D}\right)\right)$$

$$d = \frac{1}{500}\frac{mm}{lines} * 1 \ lines = 0.002mm$$

$$\lambda = 0.002 * 10^{-3}\sin\left(\arctan\left(\frac{(131.05 * 10^{-3} + 128.55 * 10^{-3})/2}{36.8 * 10^{-2}}\right)\right) \quad \text{where } m = \pm 1$$

$$\lambda = 0.002 * 10^{-3}\sin\left(\arctan\left(\frac{(131.05 * 10^{-3} + 128.55 * 10^{-3})/2}{36.8 * 10^{-2}}\right)\right)$$

$$\lambda = 6.6526 * 10^{-7} \text{ m} = 665.26 \text{ nm}$$

Error

$$\lambda = \frac{d}{m} \sin \left(\arctan \left(\frac{(x_{+1} + x_{-1})/2}{D} \right) \right)$$

$$\delta \lambda = \left| \frac{\partial \lambda}{\partial D} * \delta D \right| + \left| \frac{\partial \lambda}{\partial x_{+1}} * \delta x_{+1} \right| + \left| \frac{\partial \lambda}{\partial x_{-1}} * \delta x_{-1} \right|$$

$$\delta \lambda = \left| -\frac{4dD (x_{+1} + x_{-1})}{m \left((x_{+1} + x_{-1})^2 + 4D^2 \right) \sqrt{4D^2 + (x_{+1} + x_{-1})^2}} * \delta D \right| + \frac{4dD^2}{m \left((x_{+1} + x_{-1})^2 + 4D^2 \right) \sqrt{4D^2 + (x_{+1} + x_{-1})^2}} * \delta x_{+1} \right| + \frac{4dD^2}{m \left((x_{-1} + x_{+1})^2 + 4D^2 \right) \sqrt{4D^2 + (x_{+1} + x_{-1})^2}} * \delta x_{-1}$$

$$\delta \lambda = \left| -\frac{(0.008)(0.368) (131.05 + 128.55)}{\left((131.05 + 128.55)^2 + 4(0.368)^2 \right) \sqrt{4(0.368)^2 + (131.05 + 128.55)^2}} * 0.71 \right| + \frac{(0.008)(0.368)^2}{\left((131.05 + 128.55)^2 + 4(0.368)^2 \right) \sqrt{4(0.368)^2 + (131.05 + 128.55)^2}} * 1.25 \right| + \frac{(0.008)(0.368)^2}{\left((128.55 + 131.05)^2 + 4(0.368)^2 \right) \sqrt{4(0.368)^2 + (131.05 + 128.55)^2}} * 1.25$$

$$\delta \lambda = \frac{1065107 \sqrt{263252741}}{554416045152104648} = \pm 3.1170 * 10^{-8} \text{ m} = \pm 30 \text{ nm}$$

Part B

Value

$$I(\beta) = I_0 \left(\frac{\sin\beta}{\beta}\right)^2 \quad \text{where } \beta \equiv \frac{\pi}{\lambda} a \sin\theta$$

$$\sin\theta = \frac{p\lambda}{a} \quad p = \pm 1, \pm 2, \dots$$

$$\sin\theta = \frac{p\lambda}{a}$$

$$\lambda_n = \frac{\sin\left(\theta\right) a}{p}$$

$$\lambda_n = \frac{\sin\left(\arctan\left(\frac{\text{Average of } x_p}{D}\right)\right) a}{p}$$

$$\lambda_1 = \frac{\sin\left(\arctan\left(\frac{(4.1(10^{-3}) + 3.52(10^{-3}))/2}{79(10^{-2})}\right)\right) 0.2(10^{-3})}{1} 9.6454(10^{-7}) \text{ m} = 964.54 \text{ nm}$$

$$\lambda = \frac{1}{6} \sum_{n=1}^{n=6} \lambda_n$$

$$\lambda = \frac{1}{6} (964.54 + 1104.36 + 976.04 + 996.83 + 995.12 + 1098.76) = 1022.608 \text{ nm}$$

Error

$$\lambda_{n} = \frac{\sin\left(\arctan\left(\frac{(x_{+p}+x_{-p})/2}{D}\right)\right)a}{P}$$

$$\delta\lambda = \left|\frac{\partial\lambda}{\partial D} * \delta D\right| + \left|\frac{\partial\lambda}{\partial x_{+p}} * \delta x_{+p}\right| + \left|\frac{\partial\lambda}{\partial x_{-p}} * \delta x_{-p}\right| + \left|\frac{\partial\lambda}{\partial a} * \delta a\right|$$

$$\delta\lambda = \left|-\frac{4aD\left(x_{+p}+x_{-p}\right)}{P\left((x_{+p}+x_{-p})^{2}+4D^{2}\right)\sqrt{4D^{2}+(x_{+p}+x_{-p})^{2}}} * \delta D\right| + \left|\frac{4aD^{2}}{P\left((x_{+p}+x_{-p})^{2}+4D^{2}\right)\sqrt{4D^{2}+(x_{+p}+x_{-p})^{2}}} * \delta x_{+p}\right| + \left|\frac{4aD^{2}}{P\left((x_{-p}+x_{+p})^{2}+4D^{2}\right)\sqrt{4D^{2}+(x_{+p}+x_{-p})^{2}}} * \delta x_{-p}\right| + \left|\frac{x_{+p}+x_{-p}}{P\sqrt{4D^{2}+(x_{+p}+x_{-p})^{2}}} * \delta a\right|$$

$$\delta\lambda = \left|-\frac{4(0.2)(790)\left(4.1+3.52\right)}{1\left((4.1+3.52)^{2}+4(790)^{2}\right)\sqrt{4(790)^{2}+(4.1+3.52)^{2}}} * 0.71\right| + \left|\frac{4(0.2)(790)^{2}}{1\left((3.52+4.1)^{2}+4(790)^{2}\right)\sqrt{4(790)^{2}+(4.1+3.52)^{2}}} * 0.71\right| + \left|\frac{4(1+3.52)}{1\sqrt{4(790)^{2}+(4.1+3.52)^{2}}} * 0.71\right| + \left|\frac{4(1+3.52)}{1\sqrt{4(79$$

4.2 Hair Thickness Calculations

Value

$$\lambda_n = \frac{\sin\left(\arctan\left(\frac{(x_{+p}+x_{-p})/2}{D}\right)\right)a}{P}$$

$$a_1 = \frac{\lambda_n P}{\sin\left(\arctan\left(\frac{(x_{+p}+x_{-p})/2}{D}\right)\right)}$$

$$a_1 = \frac{(660*10^{-9})(1)}{\sin\left(\arctan\left(\frac{(6.1*10^{-3}+5.4*10^{-3})/2}{59.6*10^{-2}}\right)\right)}$$

$$= 6.84*10-5 \text{ m} = 68.4 \text{ } \mu\text{m}$$

$$a_2 = \frac{(660*10^{-9})(2)}{\sin\left(\arctan\left(\frac{(11.43*10^{-3}+10.89*10^{-3})/2}{59.6*10^{-2}}\right)\right)} = 7.050*10^{-5} \text{ m} = 70.5 \text{ } \mu\text{m}$$

$$a_3 = \frac{(660*10^{-9})(2)}{\sin\left(\arctan\left(\frac{(17*10^{-3}+16.95*10^{-3})/2}{59.6*10^{-2}}\right)\right)} = 4.636*10^{-5} \text{ m} = 46.4 \text{ } \mu\text{m}$$

$$a = (a_1 + a_2 + a_3)/3 = (68.4 + 70.5 + 46.4)/3 = 61.76$$

Error

$$a = \frac{\lambda_n P}{\sin\left(\arctan\left(\frac{(x_{+p}+x_{-p})/2}{D}\right)\right)}$$

$$\delta a = \left|\frac{\partial a}{\partial D} * \delta D\right| + \left|\frac{\partial a}{\partial x_{+p}} * \delta x_{+p}\right| + \left|\frac{\partial a}{\partial x_{-p}} * \delta x_{-p}\right| + \left|\frac{\partial a}{\partial \lambda} * \delta \lambda\right|$$

$$\delta a = \left|\frac{4\lambda PD}{(x_1 + x_2)\sqrt{4D^2 + (x_1 + x_2)^2}} * \delta D\right| + \left|\frac{4\lambda PD^2}{(x_1 + x_2)^2\sqrt{4D^2 + (x_1 + x_2)^2}} * \delta x_{+p}\right| + \left|\frac{4\lambda PD^2}{(x_1 + x_2)^2\sqrt{4D^2 + (x_1 + x_2)^2}} * \delta x_{-p}\right| + \left|\frac{P\sqrt{4D^2 + (x_1 + x_2)^2}}{x_1 + x_2} * \delta \lambda\right|$$

$$\delta a = \left|\frac{4(660 * 10^{-9})1(59.6 * 10^{-2})}{(6.1 + 5.4)\sqrt{4(59.6 * 10^{-2})^2 + (6.1 + 5.4)^2}} * (0.71)\right| + \left|-\frac{4(660 * 10^{-9})1(59.6 * 10^{-2})^2}{(6.1 + 5.4)^2\sqrt{4(59.6 * 10^{-2})^2 + (6.1 + 5.4)^2}} * (0.71)\right| + \left|-\frac{4(660 * 10^{-9})1(59.6 * 10^{-2})^2}{(6.1 + 5.4)^2\sqrt{4(59.6 * 10^{-2})^2 + (6.1 + 5.4)^2}} * (0.71)\right| + \left|\frac{1\sqrt{4(59.6 * 10^{-2})^2 + (6.1 + 5.4)^2}}{6.1 + 5.4} * (30 * 10^{-9})\right|$$

$$= 3.94338174505277 * 10^{-8} m = .04 \mu m$$

5. Results

Wavelength

Part A

Calculated Wavelength = $660\pm30~\mathrm{nm}$

Part B

Calculated Wavelength = $1000 \pm 300 \ \mathrm{nm}$

Hair Thickness

Calculated Hair Thickness = $61.76 \pm 0.04~\mu\mathrm{m}$

6. Conclusions

By using the interference and wave like nature of light, the diffraction pattern created by a laser hitting a hair was used to determine the thickness of the hair. The error bounds of the calculated value agrees with literature values.

7. Answered Questions

Click the question to be brought to the location where the question is answered.

7.1 Question

Derivation for Principal Maxima