Classification of Lego bricks

February 11, 2024

1 Classification of Lego bricks: classificazione di blocchi Lego in diverse posizioni

Laure magistrale in ingegneria e scienze informatiche ### Progetto di Fondamenti di Machine learning ### Docente: Marco Cristiani ### Anno accademico: 2023-2024 ##### Autore: Lorenzo Genghini ##### Matricola: VR463396

Indice del notebook:

- 1. Introduzione
 - Librerie utilizzate
- 2. Dataset
 - Ridimensionamento e conversione in scala di grigi
 - Caricamento del dataset di Training e Testing
- 3. Linear discriminant analysis (LDA)
 - Estrazione delle features
 - Riduzione della dimensionalità
- 4. Classificazione
 - KNN (K-Nearest Neighbor)
 - SVM (Support vector machines)
- 5. Conclusioni
 - Blocchi Lego classificati meglio e peggio
 - Progetti futuri

1 Introduzione

In questo progetto si eseguirà la classificazione d i d ifferenti bl occhi Le go an dando da pr ima ad estrarre le features e ridurre la dimensionalità dei dati di training e poi in seguito ad eseguire la classificazione d ei c ampioni d i t esting u tilizzando l'algoritmo K-Nearest N eighbor (KNN) con differenti valori per K (3, 5 e 7) e l'algoritmo Support vector machines (SVM) con differenti tipi di kernel (lineare, polinomiale e Radial Basis Function (RBF)).

Come risultato, vorrei capire se questi due algoritmi selezionati per la classificazione sono adatti a identificare i diversi blocchi Lego e se possono essere impiegati in ambito lavorativo.

1.1 Librerie utilizzate Le librerie utilizzate all'interno di questo progetto sono le seguenti: * os, utile per trovare le directory * numpy, utile per fare calcoli matematici e creare array * Image, utile per lavorare con le immagini * matplotlib.pyplot, utile per creare grafici * s klearn, u tile per implementare gli algoritmi LDA, KNN e SVM e stampare i risultati ottenuti con la classificazione.

```
[1]: # Importo le librerie utilizzate per il caricamento dei campioni import os import numpy as np from PIL import Image

# Importo le librerie utilizzate per eseguire LDA e stampare i dati ottenuti from sklearn.discriminant_analysis import LinearDiscriminantAnalysis import matplotlib.pyplot as plt

# Importo le librerie utilizzata per stampare i dati ottenuti con lauclassificazione
from sklearn.metrics import classification_report, confusion_matrix

# Importo la libreria utilizzata per eseguire KNN
from sklearn.neighbors import KNeighborsClassifier

# Importo la libreria utilizzata per eseguire SVM
from sklearn import svm
```

2 Dataset

Il dataset utilizzato per la realizzazione di questo progetto si chiama "Images of LEGO Bricks" ed è stato preso dal sito web Kaggle. Esso, è formato da diversi blocchi Lego fotografati in differenti posizioni.

Di seguito vado a verificare che n ella cartella del dataset siano p
 resenti le sottocartelle di train e test

```
[2]: # Definisco il percorso del dataset
root_path = "Lego_Bricks_Dataset"

# Verifico che il dataset sia suddiviso in train e test
subdirs = os.listdir(root_path)

# Stampo le cartelle trovate nella directory
print("Sottocartelle:")
print(subdirs)

# Elimino gli oggetti non più necessari
del subdirs
```

```
Sottocartelle:
['Test', 'Train']
```

2.1 Ridimensionamento e conversione in scala di grigi Per prima cosa creo la funzione che conta il numero delle immagini presenti nel dataset

```
[3]: def image_counter(dirpath):
    n_images = 0

# Conto tutte le immagini presenti nella directory selezionata
for _, _, filenames in os.walk(root_path + os.path.sep + dirpath):
    n_images += len(filenames)

return n_images
```

Dopo di che creo la funzione che carica i dati di ogni partizione del dataset in due vettori: * il samples_vector che contiene le immagini e ha una dimensione uguale al numero delle features per il numero dei campioni * il labels_vector che contiene le classi delle immagini e ha una dimensione uguale al numero dei campioni.

In oltre, tutte le immagini vengono ridimensionate alla dimensione image_shape per renderle uniformi e i pixel sono convertiti in scala di grigi nel range 0..1, così da avere una riduzione della dimensionalità per questioni di performance e rendere la classificazione indipendente dal colore.

Tabella delle labels |Valore|Classe| |:--:|:--| |0|blocco 1x1| |1|blocco 1x2| |2|blocco 2x2| |3|blocco con frizione e asse incrociato 2m| |4|blocco ad angolo 1x2x2| |5|blocco piatto liscio 1x2| |6|blocco a piolo 2m| |7|blocco piatto 1x1| |8|blocco piatto 1x2| |9|blocco piatto 2x2| |10|blocco piatto con pomello 1X2| |11|blocco tetto tegola 1x2| |12|blocco tecnico leva 3m|

```
[4]: def image_loader(dirpath, image_shape):
    # Identifico il numero di immagini nella directory selezionata
    n_images = image_counter(dirpath)

# Vettore che conterrà i campioni
    samples_vector = np.zeros((image_shape[0] * image_shape[1], n_images),
    dtype="float32")

# Vettore che conterrà la classe dei campioni
    labels_vector = np.zeros(n_images, dtype="uint8")

# Variabile che tiene il conteggio della colonna a cui si è arrivati
    column_index = 0

for subdirpath, _, filenames in os.walk(root_path + os.path.sep + dirpath):
    # Prelevo i nomi delle cartelle presenti in "dirpath"
    label_string = subdirpath.split(os.path.sep)[-1]

# Assegno una label a ciascuna classe nel mio dataset
    if label_string == "brick_1x1":
```

```
label = 0
       elif label_string == "brick_1x2":
           label = 1
       elif label_string == "brick_2x2":
           label = 2
       elif label_string == "brick_bush_friction_with_cross_axle_2m":
           label = 3
       elif label_string == "brick_corner_1x2x2":
           label = 4
       elif label_string == "brick_flat_tile_1x2":
           label = 5
       elif label_string == "brick_peg_2m":
           label = 6
       elif label_string == "brick_plate_1x1":
           label = 7
       elif label_string == "brick_plate_1x2":
           label = 8
       elif label_string == "brick_plate_2x2":
           label = 9
       elif label_string == "brick_plate_knob_1X2":
           label = 10
       elif label_string == "brick_roof_tile_1x2":
           label = 11
       elif label_string == "brick_technic_lever_3m":
           label = 12
       # Controllo che la label non corrisponda al dirpath
       if label_string != dirpath:
           for file in filenames:
               # Apro un immagine
               img = Image.open(subdirpath + os.path.sep + file)
               # Ridimensiono l'immagine e la converto in scala di grigi au
⇔8-bit [0..255]
               img = img.resize(im_shape).convert('L')
               # Converto l'immagine in un vettore colonna e scalo i dati in_{\!\!\!\perp}
→un range compreso tra 0..1
               sample = (np.array(img).reshape(-1) / 255.0).astype("float32")
               # Chiudo l'immagine aperta in precedenza
               img.close()
               # Salvo il novo sample ottenuto dall'immagine scalata
               samples_vector[:, column_index] += sample
               # Salvo il label del sample ottenuto
               labels_vector[column_index] += label
```

```
# Aggiorno l'indice della colonna
column_index += 1

# Restituisco i samples ottenuti e i relativi labels
return samples_vector, labels_vector
```

2.2 Caricamento del dataset di Training e Testing A questo punto, carico i dataset di training e testing che conterranno al loro interno tredici classi rappresentanti i diversi pezzi Lego

```
[5]: # Definisco la risoluzione che dovranno avere le immagini
im_shape = (100, 100)

# Calcolo il vettore dei samples e dei labels
train_samples, train_labels = image_loader("Train", im_shape)
test_samples, test_labels = image_loader("Test", im_shape)
```

3 Linear discriminant analysis (LDA)

La Linear Discriminant Analysis (o Fisher Discriminant Analysis) è una procedura di estrazione delle features che esegue proiezioni lineari e fornisce un grado di informazione maggiore sulle classi degli oggetti.

3.1 Estrazione delle features In questa prima sezione si andrà ad eseguire il fit del modello, cioè ad estrarre le features. L'estrazione delle features avviene utilizzando il vettore di training contenente i campioni e il vettore delle etichette.

```
[6]: # Inizializzo LDA
lda = LinearDiscriminantAnalysis()

# Eseguo LDA inserendo i samples e i labels ricavati in precedenza
fit_samples = lda.fit(train_samples.T, train_labels)
```

3.2 Riduzione della dimensionalità A questo punto, dopo aver eseguito l'estrazione delle features, si prosegue con la proiezione dei dati su di un unico asse, così da massimizzare la distanza tra le classi (cioè la distanza tra le medie) e minimizzare la varianza di ciascuna classe (cioè avere delle classi compatte).

```
[7]: # Eseguo la proiezione dei dati per massimizzare la separazione tra le classi transformed_samples = fit_samples.transform(train_samples.T)
```

In fine, verifico graficamente la disposizione dei dati ottenuti.

```
[8]: # Setto la dimensione dell'immagine
fig = plt.figure(figsize=(15,6))
ax = plt.subplot()

# Separo i dati di ogni classe
```

```
transformed_brick_1x1_samples = np.squeeze(transformed_samples[train_labels ==__
 →0])
transformed_brick_1x2_samples = np.squeeze(transformed_samples[train_labels ==_u
transformed brick 2x2 samples = np.squeeze(transformed_samples[train_labels ==__
 →21)
transformed_brick_bush_friction_with_cross_axle_2m_samples = np.
 ⇒squeeze(transformed_samples[train_labels == 3])
transformed_brick_corner_1x2x2_samples = np.
 squeeze(transformed_samples[train_labels == 4])
transformed brick flat tile 1x2 samples = np.
 ⇒squeeze(transformed_samples[train_labels == 5])
transformed brick peg 2m samples = np.squeeze(transformed samples[train labels]
 →== 6])
transformed_brick_plate_1x1_samples = np.
 squeeze(transformed_samples[train_labels == 7])
transformed brick plate 1x2 samples = np.
 ⇒squeeze(transformed_samples[train_labels == 8])
transformed_brick_plate_2x2_samples = np.
 ⇒squeeze(transformed_samples[train_labels == 9])
transformed brick plate knob 1X2 samples = np.
 ⇒squeeze(transformed samples[train labels == 10])
transformed_brick_roof_tile_1x2_samples = np.
 squeeze(transformed_samples[train_labels == 11])
transformed_brick_technic_lever_3m_samples = np.
 ⇒squeeze(transformed samples[train labels == 12])
# Stampo i dati di ogni classe per vederne la disposizione
ax.scatter(transformed_brick_1x1_samples, np.full(transformed_brick_1x1_samples.
 ⇒size, 0), marker=".", label='brick 1x1', c='red')
ax.scatter(transformed brick 1x2 samples, np.full(transformed brick 1x2 samples.
 ⇔size, -1), marker=".", label='brick 1x2', c='green')
ax.scatter(transformed_brick_2x2_samples, np.full(transformed_brick_2x2_samples.
 ⇔size, -2), marker=".", label='brick 2x2', c='blue')
ax.scatter(transformed_brick_bush_friction_with_cross_axle_2m_samples, np.
 ofull(transformed_brick_bush_friction_with_cross_axle_2m_samples.size, -3), ∪
marker=".", label='brick bush friction with cross axle 2m', c='gold')
ax.scatter(transformed_brick_corner_1x2x2_samples, np.
 ofull(transformed_brick_corner_1x2x2_samples.size, -4), marker=".",u
 ⇔label='brick corner 1x2x2', c='pink')
ax.scatter(transformed brick flat tile 1x2 samples, np.
 ⇔full(transformed_brick_flat_tile_1x2_samples.size, -5), marker=".", _
 ⇔label='brick flat tile 1x2', c='black')
ax.scatter(transformed_brick_peg_2m_samples, np.
 ofull(transformed_brick_peg_2m_samples.size, -6), marker=".", label='brick_
 →peg 2m', c='orange')
```

```
ax.scatter(transformed_brick_plate_1x1_samples, np.
 ofull(transformed brick plate 1x1 samples.size, -7), marker=".", label='brick
 ⇒plate 1x1', c='purple')
ax.scatter(transformed_brick_plate_1x2_samples, np.
 full(transformed_brick_plate_1x2_samples.size, -8), marker=".", label='brick_u
 ⇒plate 1x2', c='lime')
ax.scatter(transformed_brick_plate_2x2_samples, np.
 ofull(transformed_brick_plate_2x2 samples.size, -9), marker=".", label='brick_
 ⇒plate 2x2', c='brown')
ax.scatter(transformed_brick_plate_knob_1X2_samples, np.
 full(transformed_brick_plate_knob_1X2_samples.size, -10), marker=".",_
 →label='brick plate knob 1X2', c='gray')
ax.scatter(transformed_brick_roof_tile_1x2_samples, np.
 ofull(transformed_brick_roof_tile_1x2_samples.size, -11), marker=".",u
 ⇔label='brick roof tile 1x2', c='cyan')
ax.scatter(transformed_brick_technic_lever_3m_samples, np.
 ofull(transformed_brick_technic_lever_3m_samples.size, -12), marker=".", __
 →label='brick technic lever 3m', c='magenta')
# Inserisco la leggenda nell'immagine
plt.legend(loc='lower right')
# Mostro l'immagine
plt.show()
```


 $Come \ si \ pu\`o \ osservare \ dall'immagine \ soprastante, \ sono \ presenti \ diversi \ outliers \ per \ ciascuna \ classe.$

Di seguito vado a mostrare gli outliers più significativi.

```
[9]: # Stampo gli outliers più significativi # Brick bush friction with cross axle 2m
```

```
fake_bbfwca_2m = np.nonzero((train_labels.size) * np.
 ⇒squeeze(transformed_samples < -7))[0]
# Brick flat tile 1x2
fake_bft_1x2 = np.nonzero((train_labels.size) * np.squeeze(transformed_samples_
 →> 5.5))[0]
# Brick peg 2m
fake_bp_2m = np.nonzero((train_labels.size) * np.squeeze(transformed_samples >__
# Setto le immagini che stamperò in scala di grigi
plt.set_cmap("gray")
# Setto la dimensione dell'immagine
plt.figure(figsize=(12,6))
# Inizializzo la variabile che mi indica i subplot totali
subplot index = 0
# Inizializzo l'array che conterrà qli indici degli ouliers
outliers = []
# Trovo gli outliers per i brick bush friction with cross axle 2m
for i in range(1, fake_bbfwca_2m.size + 1):
    image_index = fake_bbfwca_2m[i-1]
    if train_labels[image_index] == 3:
        outliers.append(image_index)
# Trovo qli outliers per i brick flat tile 1x2
for i in range(1, fake_bft_1x2.size + 1):
    image_index = fake_bft_1x2[i-1]
    if train_labels[image_index] == 5:
        outliers.append(image_index)
       break
# Trovo gli outliers per i brick peg 2m
for i in range(1, fake_bp_2m.size + 1):
    image_index = fake_bp_2m[i-1]
   if train_labels[image_index] == 6:
        outliers.append(image_index)
# Mostro gli outliers trovati e i relativi indici
for i in range(1, len(outliers) + 1):
   plt.subplot(1, len(outliers), i)
   plt.title(f"id: {outliers[i-1]}")
   plt.imshow(train_samples[:, outliers[i-1]].reshape(im_shape))
```

<Figure size 640x480 with 0 Axes>

Gli outliers visualizzati qui sopra, come possiamo vedere, rappresentano immagini ambigue anche per l'occhio umano.

4 Classificazione

La classificazione sarà eseguita con gli algoritmi K-Nearest Neighbors e Support Vector Machine.

Essa si comporrà di due fasi: * Nella prima, verrà eseguito l'addestramento del classificatore utilizzando i dati precedentemente ridotti di dimensionalità con LDA * Nella seconda, si andrà a classificare il dataset di test.

Di seguito viene riportata la funzione che stamperà i risultati ottenuti con la classificazione.

```
[10]: def print_report(report):
          # Stampo l'accuracy
          print("Accuracy: " + f"{report['accuracy']:0,.2f}")
          # Stampo i valori di precision, recall e support
          print("\n
                        Precision
                                     Recall
                                               Support\n")
          for n in range(0, 13):
              if n < 10:
                   print(f" {n}" + f"
                                            {report[str(n)]['precision']:0,.2f}" + f" \( \)
             {report[str(n)]['recall']:0,.2f}" + f"
                                                            {report[str(n)]['support']:
       \hookrightarrow 0,.0f")
              else:
                  print(f"{n}" + f"
                                           {report[str(n)]['precision']:0,.2f}" + f"
            {report[str(n)]['recall']:0,.2f}" + f"
                                                          {report[str(n)]['support']:
       \hookrightarrow 0,.0f")
          # Stampo la matrice di confusione
          print("\nMatrice di confusione:")
          print(confusion_matrix(test_labels, predict_labels))
```

```
print()
print("-----")
print()
```

4.1 KNN (K-Nearest Neighbor) Il K-Nearest Neighbor (KNN) è un algoritmo che parte dall'idea che oggetti simili saranno vicini anche nello spazio delle features. Il problema di questo approccio sta nel determinare opportunamente K.

Di seguito, implemento l'algoritmo e setto tre diversi valori per K, così da poter confrontare i risultati ottenuti e definire quale valore da il miglior risultato in fase di classificazione.

```
[11]: # Assegno un nome più significativo ai campioni di train
      transformed_samples_train = transformed_samples
      # Esequo la proiezione dei campioni di test
      transformed_samples_test = lda.transform(test_samples.T)
      # Setto i valori che può assumere K
      k_values = [3, 5, 7]
      # Eseguo la classificazione con KNN
      for k in k_values:
          # Inizializzo KNN
          KNN = KNeighborsClassifier(n_neighbors=k)
          # Esequo KNN
          classifier_KNN = KNN.fit(transformed_samples_train, train_labels)
          # Esequo la predizione sui campioni di test
          predict_labels = classifier_KNN.predict(transformed_samples_test)
          # Stampo il valore di K con cui ho esequito la classificazione
          print(f''K = \{k\}'')
          # Transformo il report di classificazione in un dizionario per formattare i_{\sqcup}
       ⇔dati a mio piacimento
          print_report(classification_report(test_labels, predict_labels,__
       →output_dict=True))
```

K = 3
Accuracy: 0.19

	Precision	Recall	Support
0	0.04	0.04	400
1	0.08	0.07	400
2	0.22	0.85	400
3	0.92	0.95	400
4	0.12	0.27	400
5	0.02	0.01	400
6	0.03	0.01	400

7	0.48	0.10	400
8	0.01	0.00	400
9	0.03	0.04	400
10	0.06	0.01	400
11	0.08	0.07	400
12	0.05	0.04	400

Matrice di confusione:

14	110	15	4	24	15	5	0	21	82	15	93	2]
14	30	156	5	95	3	11	3	5	31	3	16	28]
1	4	342	0	30	0	7	0	1	15	0	0	0]
0	0	0	381	0	1	16	0	0	0	2	0	0]
8	18	216	0	106	1	6	0	0	32	3	3	7]
15	23	103	3	102	2	5	3	1	64	1	38	40]
6	37	30	4	28	60	3	30	18	56	16	33	79]
240	20	0	7	1	10	0	39	15	1	17	44	6]
16	42	84	5	74	3	4	4	1	93	1	28	45]
25	38	191	0	100	0	11	0	2	15	0	7	11]
22	45	71	1	88	3	5	2	2	88	4	31	38]
5	25	143	4	97	3	6	1	3	64	5	26	18]
0	3	204	0	134	0	14	0	3	1	0	27	14]]
	14 1 0 8 15 6 240 16 25 22 5	14 30 1 4 0 0 8 18 15 23 6 37 240 20 16 42 25 38 22 45 5 25	14 30 156 1 4 342 0 0 0 8 18 216 15 23 103 6 37 30 240 20 0 16 42 84 25 38 191 22 45 71 5 25 143	14 30 156 5 1 4 342 0 0 0 0 381 8 18 216 0 15 23 103 3 6 37 30 4 240 20 0 7 16 42 84 5 25 38 191 0 22 45 71 1 5 25 143 4	14 30 156 5 95 1 4 342 0 30 0 0 0 381 0 8 18 216 0 106 15 23 103 3 102 6 37 30 4 28 240 20 0 7 1 16 42 84 5 74 25 38 191 0 100 22 45 71 1 88 5 25 143 4 97	14 30 156 5 95 3 1 4 342 0 30 0 0 0 0 381 0 1 8 18 216 0 106 1 15 23 103 3 102 2 6 37 30 4 28 60 240 20 0 7 1 10 16 42 84 5 74 3 25 38 191 0 100 0 22 45 71 1 88 3 5 25 143 4 97 3	14 30 156 5 95 3 11 1 4 342 0 30 0 7 0 0 0 381 0 1 16 8 18 216 0 106 1 6 15 23 103 3 102 2 5 6 37 30 4 28 60 3 240 20 0 7 1 10 0 16 42 84 5 74 3 4 25 38 191 0 100 0 11 22 45 71 1 88 3 5 5 25 143 4 97 3 6	14 30 156 5 95 3 11 3 1 4 342 0 30 0 7 0 0 0 0 381 0 1 16 0 8 18 216 0 106 1 6 0 15 23 103 3 102 2 5 3 6 37 30 4 28 60 3 30 240 20 0 7 1 10 0 39 16 42 84 5 74 3 4 4 25 38 191 0 100 0 11 0 22 45 71 1 88 3 5 2 5 25 143 4 97 3 6 1	14 30 156 5 95 3 11 3 5 1 4 342 0 30 0 7 0 1 0 0 0 381 0 1 16 0 0 8 18 216 0 106 1 6 0 0 15 23 103 3 102 2 5 3 1 6 37 30 4 28 60 3 30 18 240 20 0 7 1 10 0 39 15 16 42 84 5 74 3 4 4 1 25 38 191 0 100 0 11 0 2 22 45 71 1 88 3 5 2 2 5 25 143 4 97 3 6 1 3	14 30 156 5 95 3 11 3 5 31 1 4 342 0 30 0 7 0 1 15 0 0 0 381 0 1 16 0 0 0 8 18 216 0 106 1 6 0 0 32 15 23 103 3 102 2 5 3 1 64 6 37 30 4 28 60 3 30 18 56 240 20 0 7 1 10 0 39 15 1 16 42 84 5 74 3 4 4 1 93 25 38 191 0 100 0 11 0 2 15 22 45 71 1 88 3 5 2 2 88 5 25 143 4	14 30 156 5 95 3 11 3 5 31 3 1 4 342 0 30 0 7 0 1 15 0 0 0 0 381 0 1 16 0 0 0 2 8 18 216 0 106 1 6 0 0 32 3 15 23 103 3 102 2 5 3 1 64 1 6 37 30 4 28 60 3 30 18 56 16 240 20 0 7 1 10 0 39 15 1 17 16 42 84 5 74 3 4 4 1 93 1 25 38 191 0 100 0 11 0 2 15 0 22 45 71 1 88 3	14 30 156 5 95 3 11 3 5 31 3 16 1 4 342 0 30 0 7 0 1 15 0 0 0 0 0 381 0 1 16 0 0 0 2 0 8 18 216 0 106 1 6 0 0 32 3 3 15 23 103 3 102 2 5 3 1 64 1 38 6 37 30 4 28 60 3 30 18 56 16 33 240 20 0 7 1 10 0 39 15 1 17 44 16 42 84 5 74 3 4 4 1 93 1 28 25 38 191 0 100 0 11 0 2 15 0

K = 5
Accuracy: 0.19

	Precision	Recall	Support
0	0.05	0.04	400
1	0.06	0.06	400
2	0.22	0.85	400
3	0.92	0.94	400
4	0.12	0.26	400
5	0.03	0.01	400
6	0.03	0.01	400
7	0.46	0.10	400
8	0.02	0.00	400
9	0.03	0.04	400
10	0.05	0.01	400
11	0.07	0.06	400
12	0.06	0.04	400

Matrice di confusione:

[[17	111	15	4	25	15	7	0	19	77	15	92	3]
[12	25	153	4	94	6	13	4	4	35	4	16	30]
[0	4	340	0	30	0	8	0	0	16	0	0	2]
[0	0	0	374	0	1	24	0	0	0	1	0	0]

```
[ 8 19 216
         [ 14 26 99
         4 104 3 5 2
                    1 64 1 39 38]
[ 5 38 29
         2 28 64 3 30 17 57 15 34 78]
[241 20 0
         8 0 11 0 38 14 1 17 45 5]
[ 14 38 87
        5 74 3 4 5 1 92 1 27 49]
[ 26 35 193
        0 97 0 12 0
                    2 18 0 6 11]
[ 22 44 68
        0 89 4 6 1
                    2 91 3 33 37]
[ 5 22 140
              6 7 2 3 65 4 24 17]
         5 100
        [ 0 3 205
                          0 27 17]]
```

K = 7
Accuracy: 0.19

	Precision	Recall	Support
0	0.04	0.04	400
1	0.06	0.06	400
2	0.22	0.85	400
3	0.92	0.94	400
4	0.12	0.26	400
5	0.03	0.01	400
6	0.02	0.01	400
7	0.48	0.10	400
8	0.01	0.00	400
9	0.04	0.05	400
10	0.05	0.01	400
11	0.07	0.06	400
12	0.05	0.04	400

Matrice di confusione:

]]	15	119	14	3	22	16	5	0	18	78	16	89	5]
[11	24	155	5	94	3	13	5	5	34	2	17	32]
[0	2	342	0	30	0	8	0	0	16	0	0	2]
	0	0	0	374	0	1	25	0	0	0	0	0	0]
[7	20	217	0	104	1	6	1	0	31	2	3	8]
	13	26	99	4	100	3	5	3	1	66	2	37	41]
[3	37	29	3	27	59	2	28	21	56	14	36	85]
[2	239	21	0	8	0	12	0	40	13	2	16	44	5]
[14	34	84	5	74	5	5	4	1	93	1	31	49]
[26	32	192	0	96	0	11	0	2	20	0	9	12]
	22	39	71	0	91	4	5	1	2	91	3	32	39]
	7	24	141	4	94	5	13	2	4	64	4	23	15]
[0	2	205	0	128	0	18	0	1	2	0	27	17]]

Da come si può osservare dai risultati qui sopra riportati, per tutti e tre i valori di K si ha un accuratezza nella classificazione pari a 0,19. D'altra parte però, confrontando i dati della precision, recall e matrice di confusione si può osservare che solamente per K uguale a 3 la classificazione dei campioni di test è leggermente più ottimale.

4.2 SVM (Support vector machines) Le Support Vector Machines (SVM) sono dei modelli di apprendimento supervisionato con l'obbiettivo di trovare un iperpiano che separa i dati di una classe da quelli di un'altra.

Di seguito, implemento l'algoritmo e setto tre diversi kernel, così da poter confrontare i risultati ottenuti e definire quale kernel da il miglior risultato in fase di classificazione.

I Kernel utilizzati per la classificazione sono i seguenti: * Lineare * Polinomiale, che ha il grado del polinomio impostato a 3 di default * Radial Basis Function (RBF), che ha la larghezza del kernel impostata a 'scale' di default (1 / (numero delle features * varianza dei campioni)).

```
[12]: # Assegno un nome più significativo ai campioni di train
      transformed_samples_train = transformed_samples
      # Esequo la proiezione dei campioni di test
      transformed_samples_test = lda.transform(test_samples.T)
      # Setto i kernel che utilizzerò per esequire la classificazione
      kernel_svm = ['linear', 'poly', 'rbf']
      # Esequo la classificazione con SVM
      for k in kernel_svm:
          # Inizializzo SVM
          SVM = svm.SVC(kernel=k)
          # Esequo SVM
          classifier_SVM = SVM.fit(transformed_samples_train, train_labels)
          # Esequo la predizione sui campioni di test
          predict_labels = classifier_SVM.predict(transformed_samples_test)
          # Stampo il kernel che sto usando per esequire la classificazione
          print(f"Kernel = {k}")
          # Transformo il report di classificazione in un dizionario per formattare i_{\sqcup}
       →dati a mio piacimento
          print_report(classification_report(test_labels, predict_labels,__
       →output dict=True))
```

Kernel = linear
Accuracy: 0.17

	Precision	Recall	Support
0	0.02	0.02	400
1	0.08	0.10	400
2	0.22	0.83	400
3	0.82	0.90	400

4	0.12	0.17	400
5	0.04	0.01	400
6	0.02	0.01	400
7	0.16	0.08	400
8	0.09	0.01	400
9	0.03	0.04	400
10	0.06	0.01	400
11	0.04	0.02	400
12	0.06	0.04	400

Matrice di confusione:

]	9	121	27	6	31	14	11	0	17	75	13	71	5]
[22	38	138	16	51	6	47	29	3	20	5	12	13]
	2	4	334	9	5	0	17	1	0	16	0	0	12]
	0	0	0	359	0	1	32	0	0	0	8	0	0]
	9	32	212	2	66	2	42	14	1	9	2	5	4]
	20	39	105	1	77	5	13	21	2	64	4	25	24]
	8	33	31	5	21	61	6	46	19	46	11	24	89]
[2	223	44	0	7	0	9	0	32	12	1	18	49	5]
	26	50	75	11	60	5	6	13	6	81	8	24	35]
	24	49	177	6	66	3	34	3	3	16	3	7	9]
	37	50	72	2	64	5	9	11	3	93	5	21	28]
	14	27	138	11	68	6	32	15	2	60	4	9	14]
	2	3	202	4	53	0	101	10	1	6	4	0	14]]

Kernel = poly
Accuracy: 0.17

	Precision	Recall	Support
0	0.03	0.03	400
1	0.06	0.07	400
2	0.23	0.66	400
3	0.90	0.89	400
4	0.12	0.27	400
5	0.03	0.01	400
6	0.03	0.01	400
7	0.25	0.07	400
8	0.02	0.00	400
9	0.08	0.13	400
10	0.01	0.00	400
11	0.08	0.07	400
12	0.04	0.02	400

Matrice di confusione:

[[12 119 23 2 37 18 9 0 12 78 10 77 3]

```
[ 27 29 100 4 81 5 32 18
                         4 57 7 20 16]
           1 30
[ 2 57 264
                 0 21
                     0
                          0 23
                                 0 2]
                               0
[ 0
    0 0 355 0
                 2 32
                         0 0 11 0 0]
                     0
[ 21 52 142
           1 107
                 0 16
                      7
                         0 45
                               2
                                  4 3]
[ 15 31 88
           4 103
                 4 12 9
                                2 37 19]
                          2 74
[ 3 34 26
           5 30
                64
                   6 35 12 57 12 30 86]
[240 31
      0
           7 2
                10
                  0 28
                         10 2 18 46 6]
                         1 90
[ 33 46 64
           6 86
                               1 25 25]
                5 12 6
[ 37 55 126
          1 89
                 3 18 2
                        3 53
                               0 7 6]
[ 30 40 54
          3 99
                 6 9 4 2 98
                              1 33 21]
[ 17 26 102
           4 94
                 6 18 4 5 78
                               4 27 15]
[ 10 0 147
           0 121
                 5 40 0 1 21 1 46 8]]
```

Kernel = rbf
Accuracy: 0.16

	Precision	Recall	Support
0	0.02	0.01	400
1	0.09	1.00	400
2	0.00	0.00	400
3	1.00	0.89	400
4	0.64	0.05	400
5	0.00	0.00	400
6	0.21	0.03	400
7	0.80	0.03	400
8	0.00	0.00	400
9	0.00	0.00	400
10	0.00	0.00	400
11	0.00	0.00	400
12	0.00	0.00	400

Matrice di confusione:

[[5	306	19	0	7	4	11	0	1	10	1	35	1]
[0	400	0	0	0	0	0	0	0	0	0	0	0]
[0	400	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	357	0	2	32	0	0	0	9	0	0]
[0	379	0	0	21	0	0	0	0	0	0	0	0]
[0	397	1	0	1	0	0	0	0	0	0	1	0]
[3	298	3	0	2	35	13	3	4	2	4	16	17]
[2	01	89	0	1	0	18	3	12	10	1	10	52	3]
[0	397	2	0	1	0	0	0	0	0	0	0	0]
[0	400	0	0	0	0	0	0	0	0	0	0	0]
[0	396	1	0	1	0	2	0	0	0	0	0	0]
[0	397	2	0	0	0	0	0	0	1	0	0	0]
[0	400	0	0	0	0	0	0	0	0	0	0	0]]

Da come si può osservare dai risultati qui sopra riportati, utilizzando il kernel lineare e polinomiale si ha un'accuratezza migliore in fase di classificazione pari a 0 ,17. D'altra parte però, confrontando i dati della precision, recall e matrice di confusione si può osservare che solamente il kernel lineare garantisce una classificazione dei campioni di test leggermente più ottimale.

5 Conclusioni

Come si può osservare dal progetto svolto, la classificazione dei blocchi Lego avviene in maniera più ottimale sfruttando l'algoritmo K-Nearest Neighbor (KNN) con un valore per K uguale a 3. Invece, per quanto riguarda l'algoritmo Support vector machines (SVM), si è visto che la classificazione con esso non è molto ottimale e peggiora utilizzando un kernel Radial Basis Function (RBF).

5.1 Blocchi Lego classificati meglio e p eggio Il blocco Lego classificato meglio in fase di test da entrambi gli algoritmi è stato: * il "blocco con frizione e asse incrociato 2m".

Invece, i blocchi Lego classificati peggio per K NN sono s tati: * il "blocco p iatto 1 x2" che è stato identificato più volte come "blocco p iatto 2x2"

e per SVM: * il "blocco piatto liscio 1x2" che è stato identificato più volte come "blocco 2x2" * il "blocco piatto con pomello 1X2" che è stato identificato più volte come "blocco piatto 2x2".

5.2 Progetti futuri In conclusione, sarebbe opportuno cercare un algoritmo di classificazione più ottimale per i blocchi Lego, così da ottenere un miglior riconoscimento di questi ultimi e ridurre al minimo la possibilità di errore in fase di classificazione. I noltre, questa ottimizzazione potrebbe tornare utile in ambito lavorativo per riconoscere i diversi tipi di blocchi Lego e separarli correttamente gli uni dagli altri.