Introduction to Machine Learning

Nonlinear Support Vector Machines Reproducing Kernel Hilbert Space and Representer Theorem

Learning goals

- Know that for every kernel there is an associated feature map and space (Mercer's Theorem)
- Know that this feature map is not unique, and the reproducing kernel Hilbert space (RKHS) is a reference space
- Know the representation of the solution of a SVM is given by the representer theorem

KERNELS: MERCER'S THEOREM

- Kernels are symmetric, positive definite functions $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.
- A kernel can be thought of as a shortcut computation for a two-step procedure: the feature map and the inner product.

Mercer's theorem says that for every kernel there exists an associated (well-behaved) feature space where the kernel acts as a dot-product.

- There exists a Hilbert space Φ of continuous functions $\mathcal{X} \to \mathbb{R}$ (think of it as a vector space with inner product where all operations are meaningful, including taking limits of sequences; this is non-trivial in the infinite-dimensional case)
- ullet and a continuous "feature map" $\phi: \mathcal{X} \to \Phi$,
- so that the kernel computes the inner product of the features:

$$k(\mathbf{x}, \tilde{\mathbf{x}}) = \langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle$$
.

REPRODUCING KERNEL HILBERT SPACE

- There are many possible Hilbert spaces and feature maps for the same kernel, but they are all "equivalent" (isomorphic).
- It is often helpful to have a reference space for a kernel $k(\cdot, \cdot)$, called the **reproducing kernel Hilbert space (RKHS)**.
- The feature map of this space is

$$\phi: \mathcal{X} \to \mathcal{C}(\mathcal{X}); \quad \mathbf{x} \mapsto k(\mathbf{x}, \cdot)$$
,

where $\mathcal{C}(\mathcal{X})$ is the space of continuous functions $\mathcal{X} \to \mathbb{R}$. The "features" of the RKHS are the kernel functions evaluated at an \mathbf{x} .

• The Hilbert space is the completion of the span of the features:

$$\Phi = \overline{\operatorname{span}\{\phi(\mathbf{x}) \,|\, \mathbf{x} \in \mathcal{X}\}} \subset \mathcal{C}(\mathcal{X}) \ .$$

• The so-called reproducing property states:

$$\langle k(\mathbf{x},\cdot), k(\tilde{\mathbf{x}},\cdot) \rangle = \langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle = k(\mathbf{x}, \tilde{\mathbf{x}}).$$

REPRESENTER THEOREM

The **representer theorem** tells us that the solution of a support vector machine problem

$$\begin{aligned} & \min_{\boldsymbol{\theta}, \theta_0, \zeta^{(i)}} & & \frac{1}{2} \boldsymbol{\theta}^\top \boldsymbol{\theta} + C \sum_{i=1}^n \zeta^{(i)} \\ & \text{s.t.} & & y^{(i)} \left(\left\langle \boldsymbol{\theta}, \phi \left(\mathbf{x}^{(i)} \right) \right\rangle + \theta_0 \right) \geq 1 - \zeta^{(i)} & \forall \, i \in \{1, \dots, n\}, \\ & \text{and} & & \zeta^{(i)} \geq 0 & \forall \, i \in \{1, \dots, n\} \end{aligned}$$

can be written as

$$\boldsymbol{\theta} = \sum_{j=1}^{n} \beta_{j} \phi \left(\mathbf{x}^{(j)} \right)$$

for $\beta_i \in \mathbb{R}$.

REPRESENTER THEOREM

Theorem (Representer Theorem):

The solution θ , θ_0 of the support vector machine optimization problem fulfills $\theta \in V = \text{span} \left\{ \phi \left(\mathbf{x}^{(1)} \right), \dots, \phi \left(\mathbf{x}^{(n)} \right) \right\}$.

Proof: Let V^{\perp} denote the space orthogonal to V, so that $\Phi = V \oplus V^{\perp}$. The vector θ has a unique decomposition into components $\mathbf{v} \in V$ and $\mathbf{v}^{\perp} \in V^{\perp}$, so that $\mathbf{v} + \mathbf{v}^{\perp} = \theta$.

The regularizer becomes $\|\boldsymbol{\theta}\|^2 = \|\boldsymbol{v}\|^2 + \|\boldsymbol{v}^\perp\|^2$. The constraints $y^{(i)}\left(\left\langle \boldsymbol{\theta}, \phi\left(\mathbf{x}^{(i)}\right) \right\rangle + \theta_0\right) \geq 1 - \zeta^{(i)}$ do not depend on \boldsymbol{v}^\perp at all:

$$\left\langle \boldsymbol{\theta}, \phi\left(\mathbf{x}^{(i)}\right) \right\rangle = \left\langle \boldsymbol{v}, \phi\left(\mathbf{x}^{(i)}\right) \right\rangle + \underbrace{\left\langle \boldsymbol{v}^{\perp}, \phi\left(\mathbf{x}^{(i)}\right) \right\rangle}_{=0} \quad \forall i \in \{1, 2, ..., n\}.$$

Thus, we have two independent optimization problems, namely the standard SVM problem for v and the unconstrained minimization problem of $\|v^{\perp}\|^2$ for v^{\perp} , with obvious solution $v^{\perp}=0$. Thus, $\theta=v\in V$.

