Math 443/543, HW #2; due Friday, Oct. 12

- 1.) a.) Clearly state under what conditions the range and null space of a linear transformation T are the same set.
 - b.) Prove your assertion.
 - c.) Give an example.
- 2.) Let V and W be finite dimensional vector spaces, and suppose that U is a vector subspace of V. Prove that there exists a surjective linear transformation from V to W whose nullspace is U if and only if $\dim U = \dim V \dim W$.
- 3.) (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $U: \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations. What is the rank of the composition, UT? (That is, list all possibilities, and prove that your list is complete and correct.)
 - (b) (543) Generalize this.
- 4.) Given $T: V \to V$ a linear transformation and W a subspace of V, we say that W is T-invariant if $Tw \in W$ for all $w \in W$.
- a.) Prove that the range, R_T , and the nullspace, N_T , are T-invariant.
- b.) Suppose that W is a k-dimensional T-invariant subspace of V. Show that there is a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ has the form $\begin{pmatrix} A & B \\ O & D \end{pmatrix}$, where $A \in \mathcal{M}_{k,k}(\mathbb{F})$ and O is the $(n-k) \times k$ zero matrix.