0.1 Série à termes de signe non fixé

Définition 0.1. (Convergence absolue)

Soit
$$\left(\sum_{n=0}^{+\infty} u_n\right)$$
 une série.

On dit qu'elle converge **absolument** si la série $\left(\sum_{n=0}^{+\infty} |u_n|\right)$ converge.

Proposition 0.1

Soit $\left(\sum_{n=0}^{+\infty} u_n\right)$ une série qui converge absolument, alors elle converge.

Démonstration 0.1.

Soit $S_n = \sum_{k=0}^n u_k$ et $S'_n = \sum_{k=0}^n |u_k|$. Comme $\sum_{n=0}^{+\infty} |u_n|$ converge, la suite $(S'_n)_{n\in\mathbb{N}}$ est de Cauchy. Donc, pour tout $\epsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tous $m, n \geq N$, on a

$$|S'_n - S'_m| = \sum_{k=m+1}^n |u_k| < \epsilon.$$

Or, par inégalité triangulaire, on a

$$|S_n - S_m| = \left| \sum_{k=m+1}^n u_k \right| \le \sum_{k=m+1}^n |u_k| = |S'_n - S'_m|.$$

Donc, pour tous $m, n \geq N$, on a

$$|S_n - S_m| < \epsilon.$$

Ainsi, la suite $(S_n)_{n\in\mathbb{N}}$ est de Cauchy et donc converge. Par conséquent, la série $\sum_{n=0}^{+\infty} u_n$ converge.

À vérifier

On dit qu'une série $\left(\sum_{n=0}^{+\infty} u_n\right)$ est alternée si

$$\exists N \in \mathbb{N}, \forall n \geq N, u_n u_{n+1} \leq 0$$

Théorème 0.1: Critère de Leibniz

Soit $\left(\sum_{n=0}^{+\infty} u_n\right)$ une série alternée telle que $\bullet \ u_n \to 0$ $\bullet \ |u_n| \ \text{décroissante}$

Alors la série $\left(\sum_{n=0}^{+\infty} u_n\right)$ converge et si S est sa somme, on a

$$|S - S_n| \le |u_{n+1}|$$

Démonstration 0.2.

Soit S_n la suite des sommes partielles. On va démontrer que (S_{2n}, S_{2n+1}) sont adjacentes.

Sans perte de généralité la série $\sum_{n=0}^{+\infty} (-1)^n a_n$ avec $a_n \ge 0$ et $u_n = (-1)^n a_n$. Pour tout $n \in \mathbb{N}$ on a

$$S_{2n+1} - S_{2n} = a_{2n+1} \to 0$$

$$S_{2n+2} - S_{2n} = a_{2n+1} - a_{2n+2} \ge 0$$

$$S_{2n+3} - S_{2n+1} = a_{2n+2} - a_{2n+3} \ge 0$$

Ce qui démontre que les deux suites sont effectivement adjacentes. Donc la suite des sommes partielles converge, et la série converge.

On a alors
$$S_{2n+1} \leq S \leq S_{2n}$$
 et donc $|S - S_n| \leq a_{n+1} = |u_{n+1}|$.

 \grave{A} vérifier

Exemple 0.1. Étudier la convergence de la série $\left(\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}\right)$.

• La série est alternée et $|u_n| = \frac{1}{\sqrt{n}} \to 0$

•
$$|u_n|' = -\frac{1}{2n^{3/2}} < 0$$
 donc $|u_n|$ est décroissante pour $n \ge 1$

Donc la série converge.