

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T \mathcal{Y} \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Решение жесткой системы дифференциальных уравнений

Студент	ФН2-61Б		В. Г. Пиневич
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			А.В. Котович
			А. Б. Котович
		(Подпись, дата)	(И. О. Фамилия)

Оглавление 2

Оглавление

В	ведение	3					
1.	Постановка задачи	3					
	1.1. Жесткая система	3					
\mathbf{M}	етод	3					
	1.2. Описание метода	3					
	1.3. Аппроксимация	3					
	1.4. Устойчивость	3					
За	аключение	4					
Сі	Список использованных источников						

Введение 3

Введение

Проблема решения задачи жестких систем дифференциальных уравнений возникает во многих сферах науки и техники. Существует большое количество различных методов решения таких задач. В данной работе будет рассмотрено решение задачи методом <метод>.

1. Постановка задачи

Задача данной работы — найти решение модели химических реакций Робертсона.

$$\begin{cases} y_1 = -0.04y_1 + 10^4 y_2 y_3, \\ y_2 = 0.04y_1 - 10^4 y_2 y_3 - 3 * 10^7 y_2^2, \\ y_3 = 3 * 10^7 y_2^2. \end{cases}$$
 (1)

Кроме того, требуется построить фазовые траектории для данной задачи.

1.1. Жесткая система

Пусть есть система дифференциальных уравнений

$$y_t = f(t, y), 0 \le t \le T, y(0) = y_0.$$
 (2)

Система называется жесткой, если для всех t, y (т. е. на решениях (2)), собственные значения матрицы A удовлетворяют условиям [1].

$$\begin{cases}
\frac{\max|Re\lambda_{j}|}{\min|Re\lambda_{j}|} >> 1, Re\lambda_{j} < 0, \\
\max|Im\lambda_{j}| << \max|Re\lambda_{j}|, j, k = 1, ..., J.
\end{cases}$$
(3)

Схема называется абсолютно устойчивой, если $|q(\sigma)| <= 1$ выполняется при всех значениях.

Схема называется А-устойчивой, если кривая $|q(\sigma)|=1$ лежит в правой полуплоскости σ .

Метод

- 1.2. Описание метода
- 1.3. Аппроксимация
 - 1.4. Устойчивость

Заключение 4

Заключение

Список использованных источников

1. metoda