Let's go cisco live! #CiscoLive

SRv6 Fundamentals

Jakub Horn
Principal Technical Marketing Engineer
BRKMPL-2203

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKMPS-2203

- Introduction
- SRv6 Dataplane
- SRv6 Control Plane
- Addressing for SRv6
- SRv6 Migration
- Conclusion

Understanding Today's Service Creation

SR-MPLS: SDN ready "Network as a Fabric" for Service Creation

SRv6: SDN, NfV, 5G ready "Network as an API" for Service Creation

SRv6 IPv6 Segment Routing Header (SRH)

Destination IP address

- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....

- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....
 - IPv4, IPv6

- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....
 - IPv4, IPv6, L2

- IPv6 Header
- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....
 - IPv4, IPv6, L2
 - Hop by Hop, Dest. Options, Fragmentation, Authentication Header ...

cisco live!

SRv6

- IPv6 Header
- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....
 - IPv4, IPv6, L2
 - Hop by Hop, Dest. Options, Fragmentation, Authentication Header ...
 - Routing Header
 - O Source Route (deprecated)
 - 1 Nimrod (deprecated)
 - 2 Type 2 (RFC 6275)
 - 3 RPL (RFC 6554)

flow label

tc

ver

SR_V6

- IPv6 Header
- Destination IP address
- Next header field:
 - TCP, UDP, ICMP....
 - IPv4, IPv6, L2
 - Hop by Hop, Dest. Options, Fragmentation, Authentication Header ...

 - O Source Route (deprecated)

SRH

- Segment Routing Header
- First Segment
 - Pointer to very first SID

SRH

- Segment Routing Header
- First Segment
 - Pointer to very first SID
- Segments left
 - Pointer to Active SID
 - Active SID always in destination addr

SID Structure -Locator

128 Bits Like IPv6 address but different semantics

1111:2222:3333:4444:5555:6666:7777:8888

Locator Function

SRv6 Full SID

BGP:2001:db8:0:4:eeee::

```
SA:2001::1
DA:2001:db8:0:1:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:3
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

```
SA:2001::1
DA:2001:db8:0:2:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:2
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

```
SA:2001::1
DA:2001:db8:0:3:48::
NH:RH

Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:48::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```

SA:2001::1 DA:2001:db8:0:4:eeee:: NH:IPv4

SID Structure

128 Bits Like IPv6 address but different semantics

SRv6 uSID

SRv6 uSID format

: 0100 : =SRV6 uSID

16 bits here, but can be anything

SRV6 uSID Container

2001 :0db8 : 0100 : 0200 : 0300 : 0400 : 0500 : 0000

SRv6 uSID uSID uSID uSID uSID uSID EoC Block 1 2 3 4 5 6

32 bits here, but can be anything

SRV6 Encapsulation

SA:2001::1 DA:2001:db8:0:4:1:0:0:0 NH:RH

Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]: 2001:db8:0:5:45:0:0:0
[1]: 2001:db8:0:4:1:0:0:0

[2]: 2001:db8:0:3:48:0:0:0 [3]: 2001:db8:0:2:1:0:0:0 [4]: 2001:db8:0:1:42:0:0:0

SA:7.5.4.3 DA:11.6.19.71 Port:UDP

UDP Header/Data

SRV6 uSID Encapsulation

SA:2001::1 DA:2001:db8:100:200:300:400:500:: NH:IPv4

SA:7.5.4.3 DA:11.6.19.71 Port:UDP

UDP Header/Data

SRv6 uSID F3216

BGP:2001:db8:4:eeee::

```
SA:2001::1
DA:2001:db8:1:2:3:e000:4:eeee
NH:IPV4
```

```
SA:2001::1
DA:2001:db8:2:3:e000:4:eeee::
NH:IPV4
```

```
SA:2001::1
DA:2001:db8:3:e000:4:eeee::
NH:IPV4
```

SA:2001::1 DA:2001:db8:4:eeee:: NH:IPV4

SRv6 uSID More Than 6 SIDs?

100->200->300->400->500->600->700->800->900->a00->b00

Carrier 1 2001 : 0db8 : 0100 : 0200 : 0300 : 0400 : 0500 : 0600

Carrier 2 2001 : 0db8 : 0700 : 0800 : 0900 : 0a00 : 0b00 : 0000

SA:2001::1

DA:2001:db8:\$00:\$00:\$00:\$00:500:600

NH: 1244

Type: 4 (SRH)
NH: IPv4 | SL: 0

Segment List:

[0]: 2001:db8:700:800:900:a00:b00::

SA:7.5.4.3

DA:11.6.19.71

Port:UDP

UDP Header/Data

cisco life!

Shift & Forward
END of Carrier
-> is there SRH?
Decrement SL
Copy New SID (Carrier)
PSP

BRKMPI - 2203

Sets, Global ID Block (GIB), Local ID Block (LIB)

- Within a Block, SIDs are allocated: FCBB:BB00:SSII::/48
- SID can be:
 - Global: shortest path to a node globally unique
 - Local: a local function not globally unique
- 256 Sets in a Block, identified by "SS"
- Global Sets (GIB): first "S" values 0 to D
 - 224 global Sets → 224 * 256 = 56k global IDs
- Local Sets (LIB): first "S" values E to F
 - 32 local Sets → 32 * 256 = 8k local IDs

SRv6 uSID Configuration

```
Name to reference
segment-routing
                                            uSID
srv6
  locators
   locator MAIN
    micro-segment behavior unode psp-usd
    prefix fcbb:bb00:1::/48
                                            ocator Prefix
```


SRv6 Network Programming

END- Default endpoint (Node SID)

- Decrement SL
- Copy Active SID
- Forward

```
SA:2001::1
DA:2001:db8:0:1:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:3
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:e000::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```



```
SA:2001::1
DA:2001:db8:0:2:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:2
Segment List:
[0]:2001:db8:0:4:eeee::
[1]:2001:db8:0:3:e000::
[2]:2001:db8:0:2:1::
[3]:2001:db8:0:1:1::
```


- Different Flavors:
 - End
 - End with PSP
 - End with USP
 - End with PSP & USP
 - End with USD
 - End with PSP & USD
 - End with USP & USD
 - End with PSP, USP & USD

- End with NEXT-ONLY-CSID
- End with NEXT-CSID
- End with NEXT-CSID & PSP
- End with NEXT-CSID & USP
- End with NEXT-CSID, PSP & USP
- End with NEXT-CSID & USD
- End with NEXT-CSID, PSP & USD
- End with NEXT-CSID, USP & USD
- End with NEXT-CSID, PSP, USP & USD

uN=END with Next - Default endpoint (Node SID)

- Decrement SL
- Copy Active SID
- Forward

```
SA:2001::1
DA:2001:db8:0:1::
NH:RH

Type:4(SRH)
NH:IPv4|SL:3
Segment List:
[0]:2001:db8:4:eeee::
[1]:2001:db8:3:e000::
[2]:2001:db8:2::
[3]:2001:db8:1::
```



```
SA:2001::1
DA:2001:db8:2::
NH:RH

Type:4(SRH)
NH:IPv4|SL:2
Segment List:
[0]:2001:db8:4:eeee::
[1]:2001:db8:3:e000::
[2]:2001:db8:2::
[3]:2001:db8:1::
```


Better way:

Shift & Forward

```
SA:2001::1
DA:2001:db8:1:2:3:e000:4:eeee
NH:IPV4
```



```
SA:2001::1
DA:2001:db8:2:3:e000:4:eeee
NH:IPV4
```


uA=END.X with Next - (Adjacency SID)

Shift & Forward to SPECIFIC INTERFACE

uDT4=END.DT4, uDT6=END.DT6 Endpoint with Decapsulation and Table Lookup

- Decapsulate and Table Lookup (VRF)
- Same as Per VRF Label Allocation (aggregate label)
- Must be last function in SID list

```
SA:2001::1
DA:2001:db8:4:eeee::
NH:IPV4
IPv4 Packet
```


SRv6 functions: Steering and Services

Codename		Behavior	
End	uN	Endpoint	[Node SID]
End.X	uA	Endpoint with Layer-3 cross-connect	[Adj SID]
End.B6.Insert	uB6.Insert	Endpoint bound to an SRv6 policy	[BSID]
End.B6.Encap	uB6.Encaps	Endpoint bound to an SRv6 encapsulation policy	[BSID]
End.DX6	uDX6	Endpoint with decapsulation and IPv6 cross-connect	[L3VPN Per-CE]
End.DX4	uDX4	Endpoint with decapsulation and IPv4 cross-connect	[L3VPN Per-CE]
End.DT6	uDT6	Endpoint with decapsulation and specific IPv6 table lookup	[L3VPN Per-VRF]
End.DT4	uDT4	Endpoint with decapsulation and specific IPv4 table lookup	[L3VPN Per-VRF]
End.DX2	uDX2	Endpoint with decapsulation and L2 cross-connect	[E-LINE]
End.DT2U/M	uDT2U/M	Endpoint with decapsulation and L2 unicast lookup / flooding	[E-LAN]
End.DTM	uDTM	Endpoint with decapsulation and MPLS table lookup	[Interworking]
H.Insert / H.Encaps		Headend with Insertion / Encapsulation of / into an SRv6 policy	[TiLFA]
H. Encaps.L2		H.Encaps Applied to Received L2 Frames	[L2 Port Mode]
H.Encaps.M		H.Encaps Applied to MPLS Label Stack	[Interworking]

BRKMPL-2203 33

ISIS Extensions

Functions might be signaled differently

Signalling	IGP	BGP-LS	BGP- IP/VPN
End, uN	Yes	Yes	
End.X, uA	Yes	Yes	
End.T	Yes	Yes	
End.DX4,uDX4		Yes	Yes
End.DX6,uDX6	Yes	Yes	Yes
End.DX2,uDX2		Yes	Yes
END.DT4,uDT4		Yes	Yes
End.DT6,uDT6	Yes	Yes	Yes
End.B		Yes	

Signalling	IGP	BGP- LS	BGP- IP/VPN
T.insert		Yes	
T.Encap		Yes	

Locator - routing table

ISIS for SRv6

LSP (Link State Packet):

TLVs:

Hostname: r2

Interfaces: Hu0/0/0/0 uA:fcbb:0:2:e001::

Structure: BL=32;NL=16;FL=16;AL=0

Hu0/0/0/1 uA:fcbb:0:2:e002::

Structure: BL=32;NL=16;FL=16;AL=0

Lo0

Neighbors: r1

r3

IP addresses: fcbb:0:2::1/128

2001:12::2/64

Locator: fcbb:0:2::/48

uN:fcbb:0:2::

Structure: BL=32;NL=16;FL=0,AL=80

Capabilities: Algorithms

SIDs can insert SIDs can decap

.....

SRv6 ISIS Configuration

```
router isis 1
address-family ipv6 unicast
segment-routing srv6
locator MAIN  Name of the Locator
```

This will result in:

- Locator is advertised
- uN function is advertised
- uA for each ISIS interface is allocated and advertised

BGP for Overlay

BGP

L3 VPN Dataplane

SRv6 L3 VPN Configuration

```
router bgp 1
 address-family vpnv4 unicast
 vrf BestEffort
  rd 1:1
                                           Name of the Locator
  address-family ipv4 unicast
   segment-routing srv6
    locator MAIN⁴
                                           Single DT function is allocated
    alloc mode per-vrf +
                                           per VRF and AF
```

This will result in:

- uDT4 function is allocated
- All prefixes are advertised with uDT4 function

BRKMPI -2203

SRv6 Addressing

Separation between SIDs and addresses

- Infrastructure addressing and SRv6 SID allocation belong to two different planes and are different
 - Infrastructure IP addresses (e.g., link interfaces, loopbacks) are allocated on the management plane
 - SRv6 SIDs are allocated on the service plane
- SRv6 SIDs are assigned to a node independently from the IP addressing of that node
- Even if they are both represented as IPv6 addresses, infrastructure addresses and SIDs cannot be merged and should be allocated off different blocks.

An existing IPv6 address plan is not a constraint for a future SRv6 SID allocation plan.

Terminology – uSID F3216

uSID F3216: uSID format with

uSID Block size: 32 bits

ID size: 16 bits

uSID F3216 structure:

SRv6 Space allocation recommendation

• Private range allocation

- Recommended allocation
- Use /24 sub-range from ULA FC00::/8 space
- FCBB:BB00::/24, with B indicating a nibble value picked by operator
- Public range allocation
- \wedge
- Supported, not advised
- From allocated public GUA range

uSID Block per slice (Flex Algo) if possible

256 Blocks are available in the SRv6 Space:

```
FCBB:BBTT::/32, With TT = Slice ID
```

- Multiple Blocks can be concurrently used on a node
- 63 Blocks available on DNX1 platforms (TT = 00 to 3E)
- We assume 2 slices (Blocks), e.g.:
 - FCBB:BB00::/32 Low-cost slice (algo 0)
 - FCBB:BB01::/32 Low-delay slice (algo 128)

← focus, other Blocks are similar

Set Allocation Example

Block: FCBB; BB00::/32

Region 1

600 nodes
↓
3 Sets

FCBB:BB00:0200::/40 FCBB:BB00:0300::/40 FCBB:BB00:0400::/40

Core Region

200 nodes
↓
1 Set

FCBB:BB00:0100::/40

Region 2

400 nodes
↓
2 Sets

FCBB:BB00:0500::/40 FCBB:BB00:0600::/40

If a region outgrows its allocated Sets, then allocate more Sets to this region

uSID Allocation Example

Block: FCBB: BB00::/32

Region 1

600 nodes 3 Sets (02, 03, 04)

- FCBB:BB00:0301::/48
- FCBB:BB00:0406::/48

Core Region

200 nodes 1 Set (01)

FCBB:BB00:0207::/48 7 FCBB:BB00:0107::/48

Region 2

400 nodes 2 Sets (05, 06)

- FCBB:BB00:0507::/48
- FCBB:BB00:0601::/48

Remaining unallocated uSIDs in Sets are for future growth

Summarization

Block: FCBB; BB00::/32

Region 1

600 nodes 3 Sets (02, 03, 04)

Core Region

200 nodes 1 Set (01)

Region 2

400 nodes 2 Sets (05, 06)

summarize

FCBB:BB00:0200::/40 FCBB:BB00:0300::/40 FCBB:BB00:0400::/40

summarize

FCBB:BB00:0500::/40 FCBB:BB00:0600::/40

Summarization gain:

× 256

SRv6 Migration

Dual Connected PE

MPLS PE

DUAL Connected PE

SRv6 PE


```
SRv6 Dual PE Configuration
                                                 Via RPL we set specific BGP
router bap 1
                                                 attributes to to prefixes
 neighbor A::4
                                                 ie Local Preference
  address-family vpnv4 unicast
                                                 towards RRv6 and RRv4
   encapsulation-type srv6
   route-policy RRv6 out ←
                                   Policy towards v6 RR
 neighbor 4.4.4.4
  address-family vpnv4 unicast
   route-policy RRv4 out ← Policy towards v4 RR
vrf 1
  address-family ipv4 unicast
                                      Allocates Labels for all prefixes in VRF
   mpls alloc enable
   segment-routing srv6
                                      Allocates SIDs for all prefixes in VRF
    locator MAIN
                                      from Locator MAIN
    alloc mode per-vrf
```

SRv6 uSID Conclusion

Simplicity Always Prevails

LDP

RSVP-TE

BGP 3108

MPLS

UDP/VxLAN

NSH

Furthermore, with more scale

and functionality

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- Open the Cisco Events App.
- Click on 'Cisco Live Challenge' in the side menu.
- Click on View Your Badges at the top.
- Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive