# OPTIMISATION NUMÉRIQUE

Département de Mathématiques Master Mathématiques

<ロ > → □ > → □ > → □ > → □ ● → ○ ○ ○ ○

Optimisation Numérique

Algorithme Dual du Simplexe

### PROGRAMMATION LINÉAIRE I

ALGORITHME DUAL DU SIMPLEXE

On considère le programme ( $\mathcal{L}$ )

$$(\mathcal{L}) \qquad \left\{ \begin{array}{l} \min z = c^{\top} x \\ Ax = b, \\ x \ge 0. \end{array} \right.$$

et son dual  $(\mathcal{D})$ 

$$(\mathcal{D}) \qquad \left\{ \begin{array}{l} \max w = b^{\top} y \\ A^{\top} y \leq c, \end{array} \right.$$

#### SOMMAIRE

ALGORITHME DUAL DU SIMPLEXE

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

Algorithme Dual du Simplexe

## PROGRAMMATION LINÉAIRE II

ALGORITHME DUAL DU SIMPLEXE

#### REMARQUE

Soit *B* une base de  $(\mathcal{L})$ ,  $\pi = c_B^\top B^{-1}$  et  $\bar{c}_N = c_N^\top - \pi N$ . On a

$$\bar{c}_N \geq 0 \iff \pi A \leq c^{\top} \qquad (A^{\top} \pi^{\top} \leq c).$$

Optimisation Numérique

Si B est réalisable alors elle est optimale pour  $(\mathcal{L})$  si et seulement si  $\pi^{\top}$ , le vecteur des multiplicateurs du simplexe, qui lui est associé est réalisable pour le dual  $(\mathcal{D})$ .

Dans l'algorithme dual du simplexe on part d'une base B non réalisable ( $B^{-1}b \ge 0$ ) telle que  $\bar{c}_N \ge 0$  puis on fait des changements de base jusqu'à avoir ( $B^{-1}b \ge 0$ ).

# PROGRAMMATION LINÉAIRE III

ALGORITHME DUAL DU SIMPLEXE

#### **ALGORITHME**

- Pour choisir une colonne r qui quitte la base on doit choisir une composante  $\bar{b}_r < 0$  de  $\bar{b} = B^{-1}b$ .
- Pour choisir une colonne s à introduire dans la base on doit déterminer

$$rac{ar{c}_{s}}{ar{a}_{rs}} = \max\Big\{rac{ar{c}_{k}}{ar{a}_{rk}} \; \Big| \; ar{a}_{rk} < 0, \; k \; ext{indice hors-base}\Big\}.$$

On effectue des pivotages sur  $\bar{a}_{rs}$  jusqu'à ce que :

- $\bar{b} \ge 0$ , et dans ce cas B est optimale,
- ② il existe un indice r tel que  $\bar{b}_r < 0$  et  $\bar{a}_{rs} \ge 0$ , et dans ce cas le dual n'as pas de solution optimale finie.

Optimisation Numérique

5/9

Algorithme Dual du Simplexe

### PROGRAMMATION LINÉAIRE V

ALGORITHME DUAL DU SIMPLEXE

| 2  | 0  | 1         | 0 | 0 | 0  |
|----|----|-----------|---|---|----|
| -1 | -1 | 1         | 1 | 0 | -5 |
| -1 | 2  | <b>-4</b> | 0 | 1 | -8 |

La base  $B=(a_4,a_5)$  n'est pas réalisable,  $\bar{c}_N=\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$  et  $\bar{b}=\begin{pmatrix} -5 & -8 \end{pmatrix}^{\top}$  (r=2).

$$\frac{\bar{c}_s}{\bar{a}_{rs}} = \max \Big\{ \frac{\bar{c}_k}{\bar{a}_{rk}} \ \Big| \ \bar{a}_{rk} < 0, \ k \neq 4, \ k \neq 5 \Big\} = \max \Big\{ \frac{2}{-1}, \frac{1}{-4} \Big\} = \frac{\bar{c}_3}{\bar{a}_{23}}.$$

### PROGRAMMATION LINÉAIRE IV

ALGORITHME DUAL DU SIMPLEXE

#### **EXEMPLE**

$$(\mathcal{L}) \qquad \begin{cases} \min z = 2x_1 + x_3 \\ x_1 + x_2 - x_3 \ge 5 \\ x_1 - 2x_2 + 4x_3 \ge 8 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

◆□▶◆@▶◆差▶◆差▶ 差 少Q

Algorithme Dual du Simplexe

### PROGRAMMATION LINÉAIRE VI

ALGORITHME DUAL DU SIMPLEXE

| 7/4  | 1/2  | 0 | 0 | 1/4  | -2 | $L0+\frac{1}{4}L2$                       |
|------|------|---|---|------|----|------------------------------------------|
| -5/4 | -1/2 | 0 | 1 | 1/4  | -7 | $L1 + \frac{1}{4}L2$                     |
| 1/4  | -1/2 | 1 | 0 | -1/4 | 2  | $L1 + \frac{1}{4}L2$<br>$\frac{-1}{4}L2$ |

Optimisation Numérique

La base  $B = (a_4, a_3)$  n'est pas réalisable,  $\bar{c}_N = \begin{pmatrix} 7/4 & 1/2 & 1/4 \end{pmatrix}$  et  $\bar{b} = \begin{pmatrix} -7 & 2 \end{pmatrix}^\top (r = 1)$ .

$$\frac{\bar{c}_s}{\bar{a}_{rs}} = \max \Big\{ \frac{\bar{c}_k}{\bar{a}_{rk}} \ \Big| \ \bar{a}_{rk} < 0, \ k \neq 3, \ k \neq 4 \Big\} = \max \Big\{ \frac{7/4}{-5/4}, \frac{1/2}{-1/2} \Big\} = \frac{\bar{c}_2}{\bar{a}_{12}}.$$

#### Algorithme Dual du Simplexe

# PROGRAMMATION LINÉAIRE VII

ALGORITHME DUAL DU SIMPLEXE

| 1/2 | 0 | 0 | 1  | 1/2  | -9 | L0+L1 |
|-----|---|---|----|------|----|-------|
| 5/2 | 1 | 0 | -2 | -1/2 | 14 | -2L1  |
| 3/2 | 0 | 1 | -1 | -1/2 | 9  | L2-L1 |

 $\bar{b} \ge 0$ , donc le tableau est optimal.  $x_1^* = 0$ ,  $x_2^* = 14$ ,  $x_3^* = 9$ ,  $z^* = 9$ .

$$x_1^* = 0, x_2^* = 14, x_3^* = 9, z^* = 9.$$



Optimisation Numérique