2 מבוא מורחב למדעי־המחשב \sim תרגיל בית

שחר פרץ	
2024 ביוני 2024	
1	
יף ב'	סע

c=2,3 להלן זמני הריצה עבור

c-value	2	3
time (s)	$8.4658 \cdot 10^{-5}$	0.00566

נתבקשנו לכתוב, מה קורה בעבור 5 = c. למרבה הצער, המחשב שלי לא יכול להריץ את הקוד במימוש הנוכחי כדי למצוא זאת, ככל הנראה בגלל העובדה שלפי ויקיפדיה זהו מספר בן 8 ספרות, כלומר נצטרך לעבור עליו וכל המספרים שלפניו כדי להבין שהוא מספר משוכלל.

סעיף ד׳

נייצג הפלט של abundant_density עבור מספר ערכים:

n	50	500	2500	5000	7500	10000
output	0.18	0.242	0.2468	0.2478	0.2490666	0.2488

כלומר, נראה שכן בשאיפה עבור ערכים גדולים יותר ויותר הערכים קרבים לחסמים, אם כי באופן מוזר תחילה הם מתחתיהם ואז הם מעליהם.

המשך בעמוד הבא

|--|

'סעיף ג'

נקבל את התוצאות הבאות:

```
1 >>> monty_hall(True, 10000)
2 0.6647
3 >>> monty_hall(False, 10000)
4 0.3217
```

 $\frac{1}{3}$ לכן, **האסטרטגיה של לבחור להחליף את הדלת עדיפה** – היא תביא ניצחון בבערך $\frac{2}{3}$ מהמקרים, בעוד לא להחליף דלת יביא לניצחון ב־ממקרים.

'סעיף ה

: נציב את התוצאות בטבלה: .st = "abc" בעבור הקלט בעבור בסעיף ד', נריץ בעבור בטבלה נכונות הפונקציה שמומשה בסעיף בעיר בעבור 10^4

word	1663	1675	1667	1705	1636	1654
count	abc	bac	cab	acb	cba	bca

נטען, ש**הפונקציה תקינה** כי נצפה בממוצע לקבל $\frac{2}{6} = \frac{1000}{6} = \frac{1000}{6}$ בעבור כל אחד מהם (תחת ההנחה שהפרמוטציות מתחלקות באופן שווה), ואכן אלו המספרים שנקבל (תחת שגיאת המדידה).

המשך בעמוד הבא

'סעיף ה

. תווים. $[d_b \cdot \log_c b]$ ספרות ידרוש לכל היותר היותר c מספר בבסיס שביל בעל היותר ניהי בסיס בייט מרצה להוכיח כי ייצוג ווים. באמצעות מספר בבסיס בעל היותר ויהי בסיס בייט מרצה להוכיח כי ייצוג ווים.

הוכחה. טענת עזר: ידוע שעבור מספר כלשהו x בבסיס b' עם b' ספרות יתקיים $x < b'^{d'}$ ולכן $x < b'^{d'}$. נשתמש בחסם זה. נחזור להוכחה. יתקיים a' לפי חסמים מההרצאה. אזי, כמות הספרות לייצוג a' בבסיס, נסמנה a', לפי החסם לעיל, תקיים:

$$d_c \le \lceil \log_c N \rceil \le \lceil \log_c b^{d_b} \rceil = \lceil d_b \cdot \log_c b \rceil$$

מטרנזיטיביות יחס הסדר על הטבעיים, נקבל את הדרוש.

המשך בעמוד הבא

:הסבר

- 1. ב־1 breakpoint, נייצר את המשתנים ונשלח פוינטרים למיקום המתאים בזכרון. לאחר שנפנה את השם y לערך החדש שלו, 20, הערך הישן שלו "cs" ישאר המרחב הזכרון ולא ימחק, אם כי לא יפנה אליו שום אובייקט.
- 2. ב־3 breakpoint, עליה נדבר לפני 2 breakpoint כי 2 מבוצע לאחר 3, תתווסף פונקציה לזכרון (שבפיאצה נאמר שלא צריך לציין אותה breakpoint 3. ב־3 breakpoint ו־1st2 ו־1st2, ואל התוצאה יפנה השם 1st1תוך מחיקת ההפניה הקודמת.
- 3. ב־2 breakpoint, הפונקציה () את תפתח הלוקאלי x השנייך ערך אטוייך ערך אווצר. ראוי לציין שלמשתנה הלוקאלי x השנייך עתח הפניה של משוב התאם לחישוב x הפניה לוקאלית לאותה הפניה של 1st1 הגלובאלי) שיפנה לאותה הרשימה שקיבל ככקלט, ישנה הערך הראשון בו ל־"ו" שם חדש בזכרון. לבסוף מתבצעת השמה לשם 1st2לרשימה חדשה בזכרון, שגם מוחזרת.
- 4. לבסוף, ב־4 breakpoint מרחב השמות הלוקאלי של hat של של what לא רלוונטי יותר כי יצאנו מה־breakpoint מרחב השמות הלוקאלי של 1st3 לשם 1st3, כלומר הוא יפנה אליו.

ציור:

