

Lecture 8 – Redox resistive memories

Outline

- Physical description of functionality
 - Electro-chemical metallization
 - Valence-change
- ReRAM as storage
- Multibit operation
- ReRAM synapse devices

Redox reactions

- Reaction in which the oxidation number of atoms is changing
 - Typically by transfer of electrons between atoms
- Oxidation: losing an electron
- Reduction: obtaining extra electron
- In memories two common types:
 - Electrochemical Metallization (ECM)
 - Metal ions diffuse
 - Valence change (VCM)
 - Oxygen ions/vacancies diffuse

Reactive metal (Cu, Ag)

Insulator (SiO₂,...)

Inert metal (Pt, W, Ir)

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$

Reactive metal (Cu, Ag)

Insulator (SiO₂,...)

Inert metal (Pt, W, Ir)

$$XO_2 \rightarrow XO^+ + O^-$$

Operation in brief

Reactive metal (Cu, Ag)

Insulator (SiO₂,...)

Inert metal (Pt, W, Ir)

Ionic conduction in Redox memories

• Formation of the conducting path depends on movement of ions

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

- Mott-Gurney equation of ion hopping:
- $J_{hop} = 2ACfexp\left(-\frac{\Delta E_{hop}}{kT}\right) \sinh\left(\frac{A}{2kT}\mathcal{E}\right)$
 - Linear for $\mathcal{E} < \mathcal{E}_c = \frac{2kT}{A}$
 - Exponential for $\varepsilon > \varepsilon_c$
- Results in highly <u>non-linear</u> switching (SET ←→ RESET) behaviour for ReRAM

Electronic Conduction in Redox Memories

- (1) Thermionic emission
- (2) Electron tunnelling to conduction band
- (3) Direct tunnelling through stack
- (4) Electron injection into trap states
- (5) Thermionic emission from trap
- (6) Tunnelling from trap to conduction band
- (7) Electron hopping
- (8) Tunnelling from trap to anode

Generic switching properties

Electrochemical metallization memory (ECM)

- Also called Conductive-Bridge RAM (CBRAM)
- Electric field ionizes cations (Ag, Cu) on reactive contact
- Ions diffuse towards negative (inert) electrode
 → Reduce again to form filament
- Conductive Filament bridge gap → set LRS
- Reverse bias → reverses process <u>reset</u> to HRS

Forming in ECM

- First filament $\underline{\text{formation}}$ is hard (needs high voltage, $V_{\text{SET, form}}$)
 - Filament growth limits process
 - Formation thickness dependent!
 - Need critical field

SET in ECM

- LRS decided by compliance level!
- Once formed, an ion channel "template" facilitates filament growth
 - $-V_{SET} << V_{SET,form}$
 - NOT thickness dependent!

RESET in ECM

Valence change memory (VCM)

- Conductive filament by charged oxygen vacancies in the dielectric layer.
- Typically: Oxide sandwiched between <u>one passive</u> and <u>one reactive</u> electrode
- Two models! Either mobile oxygen interstitials/fixed vacancies or mobile vacancies

mobile oxygen model

mobile vacancies

SET/RESET in VCM

Scalability of Redox Memory

- ECM demonstrated with only a few atoms involved (ref 29)
 - Quantized conductance
- VCM down to 10 nm demonstrated

Retention in Redox memories

$$J_{hop} = 2ACfexp\left(-\frac{\Delta E_{hop}}{kT}\right)\sinh\left(\frac{A}{2kT}\mathcal{E}\right)$$

How to estimate

- Measure until failure at elevated temperatures (at least 3 temperatures)
- Extrapolate in time to get time to failure at RT or 85C (standard operating T)
- > 10 years at 85 °C observed for both VCM and ECM

Endurance in ReRAM

- Typically in the range 10⁶-10⁷ cycles before device breakdown.
- Best result 10¹² cycles using TaO_x devices!^[1]
- Breakdown depends on SET/RESET pulse time t_p
 - AND the stop voltage during RESET.
 - \rightarrow Arrhenius type process (Joule heating over energy barrier) $N_C \sim \exp\left(-\frac{E_A}{kT}\right)$

Write energy and speed

- Down to < 5 ns
 - No switch limit found (yet).
 - Q: Why could that be?
- Write energy <u>limited by current</u> needed to SET/RESET filament
 - 0.1-1 pJ/switch event
 - Different memory types require different current levels
 - Energy barriers, oxide thickness etc..

Multilevel storage

- Choosing the SET current allows for setting the LRS "arbitrarily"
- 3 bit storage has been shown to be feasible in WO_x-based VCM

Stability of operation

Reactivity is needed for operation, but can lead to variations

Bilayer ReRAM for stability

- Ultra-stable switching needed for multibit devices.
- Cycle-to-cycle drift not acceptable
- Introduction of barrier layers can improve stability
- Tested many barrier materials
 - Al₂O₃ gives best results

Pulsed SET enables even more levels

- State definition: "Sufficiently stable over time" (hours)
 - + after 50 read pulses: new state separated to previous state by 3σ
- Device yield: 97% > 4 bits, 33% > 6 bits

ReRAM as storage memory

	DRAM	3DNAND	RRAM
Nonvolatile	No	Yes	Yes
Speed (ns)	10	104	>5 ns
Energy use (pJ/write)	0.1	1	0.1-1
Endurance (cycles)	10 ¹⁶	10 ⁵	10 ⁶ -10 ⁷
Multilevel?	No	Yes	3-6 bit
Scalability	6-8F ²	3D!	3D!
Other	Destructive Read	High Voltage	Abrupt SET

ReRAM as synaptic device in SNN

- SET is an abrupt event
 - E-field → O_{Va} diffusion towards BE
 "Stops" when filament forms
- RESET is more gradual
 - O_{Va} diffuse back from BE leaving growing tunnel junction behind

22

Moon et al. Faraday Disc. 2019

Mattias Borg | EITP25 VT20 – Lecture 8

Controlling potentiation

- Maximum current is fixed by V_q on Transistor
- SET is probability controlled
- Can affect probability by time/bias
- → Variable LRS state

Control potentiation by V_G

- V_G on transistor essentially sets the maximum current → "compliance level"
- Variable V_G → Additional burden to peripheral circuit design

Double pulse for gradual potentiation

Example of SNN implementation with ReRAM

- 20 pre-neurons, 20 RRAM synapses, 1 Si post-neuron
- Coincidence detection
- Learning by STDP

Presioso et al. Nat. Comm. 2018 Mattias Borg | EITP25 VT20 – Lecture 8 26

Coincidence detection

• Synapses learn pattern even with large induced noise, and noise on other channels.

Relearn pattern

- First learned pattern can be forgotten
- New pattern learned.

