UNIDAD III LÍMITES Y CONTINUIDAD

- Tema 1: Definición y propiedades de límite
- Tema 2:
 Indeterminaciones y
 casos principales
 de levantamiento
 de
 indeterminaciones
- Tema 3:
 Continuidad

DEFINICIÓN DE LÍMITE

El límite de una función real de variable real se escribe de la siguiente manera:

$$\lim_{x \to a} f(x) = L$$

Se lee como: el límite de la función $f_{(x)}$ cuando "x" tiende hacia "a" es igual a L.

 $\lim_{x \to a} f_{(x)} = L$, si y sólo si para todo número $\varepsilon > 0$ existe otro número $\delta > 0$ tal que, para todo $x \in D_{(f)} \land 0 < |x - a| < \delta$ entonces $|f_{(x)} - L| < \varepsilon$.

INTERPRETACIÓN GRÁFICA DE LÍMITE

Se desarrollan las desigualdades en Valor Absoluto, de manera que se aprecie los intervalos que determinan:

$$|f_{(x)} - L| < \varepsilon$$

$$-\varepsilon < f_{(x)} - L < \varepsilon$$

$$L - \varepsilon < f_{(x)} < L + \varepsilon$$

$$|x - a| < \delta$$

$$-\delta < x - a < \delta$$

$$a - \delta < x < a + \delta$$

La curva de la gráfica corresponde a una función cualquiera $f_{(x)}$

En el intervalo sobre el eje Y se observa que $f_{(x)}$ se halla entre $L - \varepsilon$ y $L + \varepsilon$.

Como consecuencia, se tiene otro intervalo sobre el eje X donde se observa que x se halla entre $a-\delta$ y $a+\delta$.

Cuando más cerca de a se encuentre x; a su vez, más cerca estará $f_{(x)}$ de L.

LÍMITE DE UNA FUNCIÓN EN EL INFINITO

Si en la función $y = f_{(x)}$ la variable "x" toma valores cada vez más grandes, se dice que tiende a más infinito (o simplemente infinito) y se escribe así: $x \to \infty$.

Si los valores de la variable "x" son cada vez más pequeños, se dice que tiende a menos infinito y se escribe así: $x \to -\infty$.

En estas dos situaciones, los valores de |x| van haciéndose más y más grandes. En el primer caso, "x" es positivo y crece; en el segundo caso, "x" es negativo y decrece.

LÍMITE FINITO DE VALORES QUE TIENDEN AL INFINITO

Para la función $f_{(x)} = \frac{1}{x}$ vemos que cuanto mayor es el valor de "x" más cercano a 0 es $f_{(x)}$. Entonces: $\lim_{x \to +\infty} \frac{1}{x} = 0$.

El límite finito cuando $x \to +\infty$, es el valor "L" si la diferencia $\left|f_{(x)}-L\right|$ se puede hacer tan pequeña como se quiera haciendo "x" suficientemente grande. Se escribe $\lim_{x\to +\infty} f_{(x)}=L$.

Para la función $f_{(x)} = \frac{1}{x}$ vemos que cuanto menor es el valor de "x" más cercano a 0 es $f_{(x)}$. Entonces: $\lim_{x \to -\infty} \frac{1}{x} = 0$.

El límite finito cuando $x \to -\infty$, es el valor "L" si la diferencia $\left|f_{(x)}-L\right|$ se puede hacer tan pequeña como se quiera haciendo "x" suficientemente pequeño. Se escribe $\lim_{x\to -\infty}f_{(x)}=L$.

LÍMITE INFINITO DE VALORES QUE TIENDEN AL INFINITO

Consideremos la función lineal $f_{(x)} = x + 1$. A medida que "x" aumenta, "x + 1" crece. A medida que "x" decrece (aumentando su valor absoluto), "x + 1" también decrece, entonces:

$$\lim_{x \to +\infty} x + 1 = +\infty \qquad \qquad \lim_{x \to -\infty} x + 1 = -\infty$$

La gráfica de la función $f_{(x)}=x^2$ es una parábola. Es claro que la función tiende a infinito, ya sea que "x" tienda a más infinito o menos infinito, entonces:

$$\lim_{x \to +\infty} x^2 = +\infty \qquad \lim_{x \to -\infty} x^2 = +\infty$$

Veamos la gráfica de la función $f_{(x)} = x^3$. Crece cuando "x" crece y decrece de la misma manera cuando "x", entonces:

$$\lim_{x \to +\infty} x^3 = +\infty \qquad \lim_{x \to -\infty} x^3 = -\infty$$

PROPIEDADES DE LOS LÍMITES

Límite de	Expresión
Una constante	$\lim_{x \to c} k = k$
La función identidad	$\lim_{x \to c} x = c$
El producto de una función y una constante	$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$
Una suma	$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
Una resta	$\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$
Un producto	$\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$
Un cociente	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \text{ si } \lim_{x \to c} g(x) \neq 0,$
Una potencia	$\lim_{x \to c} f(x)^{g(x)} = \lim_{x \to c} f(x)^{\lim_{x \to c} g(x)} \text{ si } f(x) > 0$
Un logaritmo	$\lim_{x \to c} \log f(x) = \log \lim_{x \to c} f(x)$
El número e	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$

OPERACIONES CON INFINITO

$\infty \pm k = \infty$	$(+\infty) + (+\infty) = +\infty$
$\infty \cdot k = \infty (\text{si } k \neq 0)$	$\infty \cdot \infty = \infty$
$\frac{0}{k} = 0$	$\frac{0}{\infty} = 0$
$\frac{k}{0} = \infty$	$\frac{k}{\infty} = 0$
$\frac{\infty}{k} = \infty$	$\frac{\infty}{0} = \infty$
$0^k = \begin{cases} 0 & \text{si } k > 0 \\ \infty & \text{si } k < 0 \end{cases}$	$0^{+\infty} = 0$
$k^0 = 1$	$k^{+\infty} = \left\{ \begin{array}{ll} \infty & \text{si } k > 1 \\ 0 & \text{si } 0 < k < 1 \end{array} \right.$
	$(+\infty)^{+\infty} = +\infty$

EJEMPLOS

Resuelve los siguientes límites aplicando las propiedades:

$$\lim_{x \to +\infty} \left(3 + \frac{1}{x^2} \right)$$

$$\lim_{x \to +\infty} \frac{3 - \frac{1}{x^2}}{5 + \frac{1}{x}}$$

$$\lim_{x \to +\infty} \left(\frac{1}{2x} + \sqrt{\frac{9x^2}{x^2}} \right)$$

PRÁCTICA #1

Resuelve los siguientes límites aplicando las propiedades:

1)
$$\lim_{x \to +\infty} \left[\left(3 + \frac{1}{x^2} \right) \left(2 + \frac{1}{x^5} \right) \right]$$

2)
$$\lim_{x \to +\infty} \left(2 - \frac{3}{x^2 + x} \right)$$