Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70301

Мустафаев Шамиль

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

Пос		2
1.1	Задание 1	2
Teo	рия	2
2.1	Распределения	2
2.2	Выборочные числовые характеристики	3
	2.2.1 Характеристики положения	3
	2.2.2 Характеристики рассеяния	3
Pea	лизация	4
Рез	ультаты	4
4.1	Характеристики положения и рассеяния	4
Обо	уждение	5
При	ложения	6
пис	сок таблиц	
1	Нормальное распределение	4
2		4
3		
4		5
5	Равномерное распределение	5
	1.1 Теот 2.1 2.2 Реал 4.1 Обс При	Теория 2.1 Распределения 2.2 Выборочные числовые характеристики 2.2.1 Характеристики положения 2.2.2 Характеристики рассеяния Реализация Результаты 4.1 Характеристики положения и рассеяния Обсуждение Приложения 1 Нормальное распределение 2 Распределение Коши 3 Распределение Лапласа 4 Распределение Пуассона

1 Постановка задачи

Для 5 распределений:

- 1. N(x, 0, 1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x, -\sqrt{3}, \sqrt{3})$ равномерное распределение

1.1 Задание 1

Сгенерировать выборки размером 10, 50 и 1000 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных: \bar{x} , med x, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(x) = \bar{x} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(x) = \bar{x^2} - \bar{x}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

1. Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{3}$$

2. Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

3. Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{5}$$

4. Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

5. Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины X^* , принимающей выборочные значения $x_1, x_2...x_n$.

2.2.1 Характеристики положения

1. Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

2. Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} \text{ при } n = 2l + 1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} \text{ при } n = 2l \end{cases}$$
 (9)

3. Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(2)}}{2} \tag{10}$$

4. Полусумма квартилей Выборочная квартиль

$$z_p$$

порядка р определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} \text{ при пр дробном} \\ x_{(np)} \text{ при пр целом} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{x_{1/4} + x_{3/4}}{2} \tag{12}$$

5. Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.2.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{14}$$

3 Реализация

Лабораторная работа выполнена с помощью языка программирования Python в среде Jupiter Notebook. Использованы библиотеки numpy для генерации выборки и tabulate для удобного представления табличных данных. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Характеристики положения и рассеяния

Для каждого распределения представлена таблица с характеристиками положения и рассеяния при разном количестве элементов в каждой выборке.

Cauchy	\bar{x}	med x	z_R	z_Q	\mathbf{z}_{tr}
E(z),n=10	0	0	0	0.3	0.1
D(z),n=10	0.094537	0.133112	0.181154	0.11743	0.079022
E(z),n=100	0	0	0	0.01	0.01
D(z),n=100	0.011231	0.018018	0.092773	0.013636	0.013287
E(z),n=1000	-0.0009	-0.002	0	0.001	0
D(z),n=1000	0.000938	0.00157	0.05556	0.001153	0.00118

Для нормального распределения: $\bar{x} < z_{tr} < z_Q < \mathrm{med} \ \mathrm{x} < z_R$

Таблица 1: Нормальное распределение

Cauchy	\bar{x}	med x	z_R	z_Q	\mathbf{z}_{tr}
E(z),n=10	0	0	0	0	0.2
D(z),n=10	784.482	0.322676	14563.4	485.343	0.404917
E(z),n=100	0	0	0	0.03	0.02
D(z),n=100	3903.19	0.024277	9.71206e+06	0.048961	0.023695
E(z),n=1000	0	-0.001	-772	0.001	0
D(z),n=1000	1422.39	0.002499	3.52249e+08	0.004882	0.002476

Для распределения Коши: med х $< z_{tr} < z_Q < ar{x} < z_R$

Таблица 2: Распределение Коши

Laplace	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z),n=10	0	0	0	0.3	0.08
D(z),n=10	0.088932	0.062536	0.381445	0.105404	0.043903
E(z),n=100	-0.001	-0.001	0	0.009	0.006
D(z),n=100	0.009773	0.005835	0.387634	0.009193	0.005764
E(z),n=1000	-0.001	-0.0004	0	-0.0005	-0.0002
D(z),n=1000	0.001013	0.000536	0.40227	0.000985	0.000622

Для распределения Лапласа: med х $< z_{tr} < z_Q < \bar{x} < z_R$

Таблица 3: Распределение Лапласа

Poisson	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z),n=10	10	10	10	10	8.5
D(z),n=10	1.02999	1.34857	1.9144	1.46928	0.857953
E(z),n=100	10	9.8	11	10	9.7
D(z),n=100	0.100813	0.198975	0.910594	0.16504	0.118478
E(z),n=1000	10	9.991	11.6	10	9.843
D(z),n=1000	0.009404	0.001996	0.643078	0.002964	0.010479

Для распределения Пуассона: $z_Q < \mathrm{med} \ \mathrm{x} < \bar{x} < z_{tr} < z_R$

Таблица 4: Распределение Пуассона

Uniform	\bar{x}	med x	z_R	z_Q	z_{tr}
E(z),n=10	0	0	0	0.3	0.1
D(z),n=10	0.099623	0.231289	0.046129	0.129937	0.122544
E(z),n=100	0	0	0.0002	0.01	0.02
D(z),n=100	0.010681	0.030646	0.000599	0.015151	0.020279
E(z),n=1000	0	0	-0.0001	0.003	0.002
D(z),n=1000	0.001012	0.003105	6e-06	0.00155	0.002023

Для равномерного распределения: $z_R < \bar{x} < z_Q < z_{tr} < \mathrm{med}$ х

Таблица 5: Равномерное распределение

5 Обсуждение

Для распределения Коши D(z) быстро возрастает с ростом размера выборки, по которой берется z_R или \bar{x} , что отличает его от других типов распределений, для которых дисперсия убывает с увеличением размера выборки.

Также для распределения Коши в качестве характеристики положения не стоит брать среднее или полусумму экстремалей.

6 Приложения

 ${
m Kog}$ программы на ${
m GitHub},\ {
m URL}$: https://github.com/shmustafaev/MathStat

Список литературы

[1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д.