Advanced Calculus - Polar Coordinates

GR Phaijoo, PhD

Department of Mathematics
School of Science, Kathmandu University
Kavre, Dhulikhel

August 15, 2023

Relating Polar and Cartesian Coordinates

- 1. Convert to Cartesian coordinates: i. $(\sqrt{2}, \pi/4)$, ii. $(5, \tan^{-1} 4/3)$.
- 2. Convert to polar coordinates: i. (3,4) ii. (-2,0).

Relation

$$x = r \cos \theta$$
, $y = r \sin \theta$ (Polar - Cartesian)
 $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$ (Cartesian - Polar)

Write equivalent Cartesian equations.

a.
$$r \sin \theta = 2$$

b.
$$r = -3 \sec \theta$$

c.
$$r^2 \sin 2\theta = 2$$
 d. $r = 1 - \cos \theta$

$$d. r = 1 - \cos \theta$$

e.
$$r = 1 + 2r\cos\theta$$
 f. $r = 2\cos\theta - \sin\theta$

$$\mathbf{f.} \ \ r = 2\cos\theta - \sin\theta$$

g.
$$r \sin \left(\theta + \frac{\pi}{6}\right) = 2$$
 h. $r \sin \theta = \ln r + \ln \cos \theta$

$$\mathbf{h.} \ r \sin \theta = \ln r + \ln \cos \theta$$

Write equivalent Polar equations.

a.
$$x = 1$$

b.
$$x^2 + v^2 = 4$$

a.
$$x = 1$$
 b. $x^2 + y^2 = 4$ **c.** $x^2 + xy + y^2 = 1$

Deceptive Coordinates

Does the point $(2, \pi/2)$ lie on the curve $r = 2 \cos 2\theta$?

At $(2, \pi/2)$, $r = 2\cos 2\theta$ becomes $2 = 2\cos \pi$ i.e., 2 = -2 (False)

Note: $(2, \pi/2)$ and $(-2, -\pi/2)$ label the same point.

At
$$(-2, -\pi/2)$$
, $r = 2\cos 2\theta$ becomes $-2 = 2\cos(-\pi)$ i.e., $-2 = -2$ (True)

Ganga Ram Phaijoo MATH 104 August 15, 2023 3 / 8

Graphing in Polar Coordinates

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, then the point $(r, -\theta)$ or $(-r, \pi \theta)$ lies on the graph
- **2.** Symmetry about the y-axis: If the point (r, θ) lies on the graph, then the point $(r, \pi \theta)$ or $(-r, -\theta)$ lies on the graph
- 3. Symmetry about the origin: If the point (r, θ) lies on the graph, then the point $(-r, \theta)$ or $(r, \theta + \pi)$ lies on the graph

Slope of a curve $r = f(\theta)$

$$x = r \cos \theta = f(\theta) \cos \theta, \qquad y = r \sin \theta = f(\theta) \sin \theta.$$

If f is a differentiable function of θ , then so are x and y and, when $dx/d\theta \neq 0$, we can calculate dy/dx from the parametric formula

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\frac{d}{d\theta}(f(\theta) \cdot \sin \theta)}{\frac{d}{d\theta}(f(\theta) \cdot \cos \theta)} = \frac{\frac{df}{d\theta}\sin \theta + f(\theta)\cos \theta}{\frac{df}{d\theta}\cos \theta - f(\theta)\sin \theta}$$

Therefore we see that dy/dx is not the same as $df/d\theta$.

Slope of the Curve $r = f(\theta)$

$$\left. \frac{dy}{dx} \right|_{(r,\,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta},$$

provided $dx/d\theta \neq 0$ at (r, θ) .

If the curve $r = f(\theta)$ passes through the origin at $\theta = \theta_0$, then $f(\theta_0) = 0$, and the slope equation gives

$$\frac{dy}{dx}\bigg|_{(0,\,\theta_0)} = \frac{f'(\theta_0)\sin\theta_0}{f'(\theta_0)\cos\theta_0} = \tan\theta_0.$$

Slope of a curve $r = f(\theta)$ (contd.)

Note: If $r = 0 \implies \theta = \theta_0$, then $\theta = \theta_0$ represents the equation of tangent to the curve at the pole???????

Problems: Find the slopes of the given curves at the given points

1.
$$r = -1 + \cos \theta$$
, $\theta = \pm \pi/2$.

Ans; -1, 1.

2.
$$r = \sin 2\theta$$
, $\theta = \pm \pi/4$

Ans: -1, 1

Graph the polar curve $r = 1 + \cos \theta$.

1. symmetry: (r, θ) on the graph

$$\implies r = 1 + \cos \theta$$

$$\implies r = 1 + \cos(-\theta)$$

$$\implies (r, -\theta) \text{ on the graph.}$$

The curve is symmetrical about x - axis.

2. At origin
$$(r = 0)$$
, $1 + \cos \theta = 0 \implies \theta = \pi$.

 $\theta=\pi$ is tangent to the curve at pole.

Also, the slope of the curve $\tan \theta_0 = \tan \pi = 0$.

3. $r - \theta$ table.

• • • • • • • • • • • • • • • • • • • •	
θ	$r=1+\cos\theta$
0	2
$\pi/6$	1.87
$\pi/4$	1.71
$\pi/3$	1.5
$\pi/2$	1
$2\pi/3$	0.50
$3\pi/4$	0.29
$5\pi/6$	0.13
π	0

7 / 8

Polar Curves

Graph the polar curve $r = 1 + \cos \theta$.

Figure: Graph of $r = 1 + \cos\theta$ (Cardiod)

r - θ table.

θ	$r=1+\cos\theta$
0	2
$\pi/6$	1.87
$\pi/4$	1.71
$\pi/3$	1.5
$\pi/2$	1
$2\pi/3$	0.50
$3\pi/4$	0.29
$5\pi/6$	0.13
π	0