STUDENT:	
MASTER:	

 $\mathbf{Ex.}\ \mathbf{1}$ — What are the main differences between PAC learning and Agnostic PAC learning?

STUDENT: _	
MASTER: _	

 $\mathbf{Ex.}\ \mathbf{1}$ — Why is the learning framework called "probably approximately correct?"

STUDENT:	
MASTER:	

Ex. 1 — Consider an input set \mathcal{X} and the class of all binary functions over \mathcal{X} , that is $H = \{h \text{ such that } h : \mathcal{X} \to \{0,1\}\}$. When is this class PAC-learnable and why?

STUDENT:	

 $\mathbf{Ex.}\ \mathbf{1}$ — What is the bias-complexity tradeoff? Why is it interesting for machine learning?

STUDENT: _	

Ex. 1 — What is a convex optimization problem and why is of interest for machine learning?

STUDENT:	
~ - ~	

Ex. 1 — Mention at least one technique for solving the ERM problem for half-spaces with a zero-one loss function. How does such a technique work?

STUDENT:	
~ - ~	

Ex. 1 — Mention at least one technique for solving the ERM problem for half-spaces with a squared-loss function. How does such a technique work?

STUDENT:

 $\mathbf{Ex.}\ \mathbf{1}$ — Why the ERM associated to the logistic regression is said to be a maximum likelihood estimator?

STUDENT:	

 ${f Ex.~1}$ — How does boosting deal with the bias-complexity tradeoff?

STUDENT:	

 $\mathbf{Ex.}\ \mathbf{1}$ — What is the fitting-stability tradeoff? How does the regularization parameter of Regularized Loss Minimization affect this tradeoff?