LifLF— Théorie des langages formels Sylvain Brandel 2016 – 2017 sylvain.brandel@univ-lyon1.fr

CM 10

ALGÉBRICITÉ

Propriétés des langages algébriques

- Pour montrer qu'un langage est algébrique, on peut :
 - soit définir une grammaire algébrique qui engendre ce langage,
 - soit définir un automate à pile qui l'accepte.
- Il est également possible d'utiliser les propriétés de stabilité de la classe des langages algébriques

Propriétés des langages algébriques Propriétés de stabilité

• Théorème

La classe des langages algébriques est <u>stable</u> par les opérations d'union, de concaténation et d'étoile de Kleene.

Preuve

Soient deux grammaires $G_1 = (V_1, \sum_1, R_1, S_1)$ et $G_2 = (V_2, \sum_2, R_2, S_2)$, avec $V_1 \cap V_2 = \emptyset$. (On renomme éventuellement les non-terminaux.) La preuve (constructive) consiste à :

- construire une grammaire G à partir de G₁ et G₂ validant les propriétés de stabilité,
- montrer que $L(G) = L(G_1)$ op $L(G_2)$ (op $\in \{ \cup, . \} \}$) et $L(G) = L(G_1)^*$.

Propriétés des langages algébriques Propriétés de stabilité

Preuve

(a) Union

Soit G = (V, Σ, R, S) avec :

- $V = V_1 \cup V_2 \cup \{S\}$ où $S \notin V_1 \cup V_2$ (renommage éventuel)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}$

(b) Concaténation

Soit G = (V, Σ, R, S) avec :

- $V = V_1 \cup V_2 \cup \{S\}$ où $S \notin V_1 \cup V_2$ (renommage éventuel)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$

(c) Opération étoile

Soit G = (V, Σ, R, S) avec :

- $V = V_1 \cup \{S\}$ où $S \notin V_1$ (renommage éventuel)
- $\sum = \sum_{1}$
- $R = R_1 \cup \{S \rightarrow S_1S \mid e\}$

Propriétés des langages algébriques Propriétés de stabilité

Remarque

Contrairement à la classe des langages rationnels, la classe des langages algébriques n'est pas stable par intersection et complémentation.

Théorème

L'intersection d'un langage rationnel et d'un langage algébrique est algébrique

Théorème (lemme de la double étoile)

Soit L un langage algébrique.

Il existe un nombre k, dépendant de L, tel que tout mot $z \in L$, $|z| \ge k$, peut être décomposé en z = uvwxy avec :

- (i) $|VWX| \le K$
- (ii) |v| + |x| > 0 (ie. $v \ne e$ ou $x \ne e$)
- (iii) $uv^nwx^ny \in L$, $\forall n \ge 0$ (d'où l'appellation de double étoile : v^n et $x^n = v^*$ et x^*)

Pour le montrer on utilise la forme normale de Chomsky.

Définition

Une grammaire algébrique $G = (V, \sum, R, S)$ est sous forme normale de Chomsky si chaque règle est de la forme :

```
A \to BC \text{ avec } B, \ C \in V - \{S\} ou A \to \sigma \qquad \text{avec } \sigma \in \Sigma ou A \to e
```

Théorème

Pour toute grammaire algébrique, il existe une grammaire sous forme normale de Chomsky équivalente.

Lemme

Soit G = (V, \sum, R, S) une grammaire algébrique sous forme normale de Chomsky.

Soit $S \Rightarrow_G^* w$ une dérivation de $w \in \Sigma^*$ dont l'arbre de dérivation est noté T.

Si la hauteur de T est n alors $|w| \le 2^{n-1}$.

Corollaire

Soit G = (V, \sum, R, S) une grammaire algébrique sous forme normale de Chomsky.

Soit $S \Rightarrow_{G}^{*} w$ une dérivation de $w \in L(G)$.

Si |w| ≥ 2ⁿ alors l'arbre de dérivation est de hauteur ≥ n+1.

Exemple

Montrons que L = { $a^ib^ic^i$ | $i \ge 0$ } est non algébrique.

Supposons que L est algébrique.

D'après le lemme de la double étoile, il existe une constante k, dépendant de L, telle que :

 $\forall z \in L, |z| \ge k, z$ peut être décomposé en z = uvwxy avec :

- (i) $|VWX| \le k$
- (ii) |v| + |x| > 0
- (iii) $uv^nwx^ny \in L, \forall n \ge 0$

Exemple

Considérons la chaîne particulière $z_0 = a^k b^k c^k$.

On a bien $z_0 \in L$ et $|z_0| = 3k \ge k$.

Les décompositions de z_0 =uvwxy satisfaisant |vwx| \leq k et |v| + |x| > 0 sont telles que :

- soit l'une des sous-chaînes v ou x contient plus d'un type de symbole, c-à-d de la forme a+b+ ou b+c+.
 - \rightarrow uvⁿwxⁿy avec n > 1 contient un a après un b ou un b après un c.

(par exemple $uv^2wx^2y = u$ aabb aabb w x x y, si v = aabb)

donc la chaîne uv^nwx^ny n'est plus de la forme $a^pb^pc^p$ avec $p \ge 0$, donc $uv^nwx^ny \notin L$ pour n > 1.

soit v et x sont des sous-chaînes de a^k ou de b^k ou de c^k.

Comme au plus une des chaînes v ou x est vide, toute chaîne de la forme uv^nwx^ny avec n > 1 est caractérisée par une augmentation de un (v = e ou x = e) ou deux ($v \ne e$ et $x \ne e$) des trois types de terminaux.

donc pour n > 1, la chaîne uv^nwx^ny est de la forme $a^pb^qc^r$ mais avec $p \neq q$ ou $q \neq r$.

donc $uv^nwx^ny \notin L$ pour n > 1.

Pour toutes les décompositions possibles de la chaîne z_0 il y a une contradiction. Donc l'hypothèse est fausse.

⇒ L non algébrique.

Preuve de non algébricité

Pour montrer qu'un langage est non algébrique, on peut utiliser :

- le lemme de la double étoile,
- les propriétés de stabilité de la classe des langages algébriques,
- le théorème qui dit que l'intersection d'un langage algébrique et d'un langage rationnel est algébrique.

Problèmes indécidables pour les langages algébriques

Notion de problème indécidable

Une question est <u>décidable</u> s'il existe un <u>algorithme</u> (c'est-à-dire un processus <u>déterministe</u>) qui s'arrête avec une réponse (oui ou non) pour <u>chaque</u> entrée.

Une question est indécidable si un tel algorithme n'existe pas.

Problèmes indécidables pour les langages algébriques

Théorème

Les questions suivantes sont <u>décidables</u> :

- Étant donnés une grammaire algébrique G et un mot w, est-ce que w ∈ L(G) ?
- Étant donnée une grammaire algébrique G, est-ce que L(G) = ∅ ?

Les questions suivantes sont indécidables :

- Soit G une grammaire algébrique. Est-ce que $L(G) = \sum^*$?
- Soient G_1 et G_2 deux grammaires algébriques. Est-ce que $L(G_1) = L(G_2)$?
- Soient M_1 et M_2 deux automates à pile. Est-ce que $L(M_1) = L(M_2)$?
- Soit M un automate à pile. Trouver un automate à pile équivalent minimal en nombre d'états.

À suivre ...