5.5 $(x + \sin y) dx + (x \cos y - 2y) dy = 0$ $\frac{x^2}{2} + x \sin y$ $x \sin y - y^2$ $f = \left[\frac{x^2}{2} + x \sin y - y^2\right] = C$

Do lots of these type till you can do them quickly.

I'm going to solve of 5,21 y = 2xy -x dy = (2xy-x)dx $\left(-\left(2xy-x\right)\right)dx+dy=0$ My-Nx multiply by F $\left(-e^{x^2} + e^{x^2} + e^{x^2}\right) dx + e^{x^2} dy = 0$ Se-x2xy+exxdx Toget solution = + (+e y - 1 e u

(This of out like # 5,21) 6.4 y'-2xy=xrewrite in differential $\left(-x-\lambda xydx+dy=0\right)^2$ Nx=0 -2x-0e J-2xdx = e-x2 = F $\left(-xe^{-x^2}-2xye^{-x^2}\right)dx+e^{x^2}dy=$ $\int dx dx = \int dy = \int dy$ use of tubus V $=\frac{1}{2}e^{-x^{2}}+ye^{-x^{2}}$ Sam Je-x2-x2 $y = e^{x^2(c)} - \frac{1}{2}$

7.4
$$y = ky$$
 (grow @ nate prop to itself)

or $N(t) = kN$ Cusing book relation).

 $\frac{dN'}{s} = kdt$
 $\frac{dN'$

7.10
$$A=30$$
 $T(10)=0^{\circ}$
 $T(20)=15^{\circ}$
 $T=30+ce^{10k}$
 $T=30+ce^{10k}$
 $T=30+ce^{10k}$
 $T=30+ce^{10k}$
 $T=30-60e^{(2k+3)k}$
 $T=30-60e^{(2k+3)k}$
 $T=30-60e^{(2k+3)k}$
 $T=30-60e^{(2k+3)k}$

7.17

3.50 e/min 16/30 e

Q = Quentry of solt

Q' =
$$(3\frac{24}{3min})(1\frac{1}{3m}) - (3\frac{387}{387}min)$$

Q' = $(3\frac{24}{3min})(1\frac{1}{3m}) - (3\frac{387}{387}min)$

Q' = $(3\frac{24}{3min})(1\frac{1}{3m}) - (3\frac{387}{387}min)$

Albertuntial farm

Q = $3 - \frac{3}{100}$

Q = $3\frac{3}{100}$

Nt = 0

Nt = 0

 $100 - 0$

Multiply by F.

 $(3\frac{2}{100}e^{3/60}tQ - 3e^{3/60}t)dt + e^{3/60}tdl = 0$

The graph $e^{3/60}tQ - 3e^{3/60}tdl = 0$

Solution is $e^{3/60}tQ - 100e^{3/60}t = C$ or $e^{3/60}tQ$
 $e^{3/60}tQ - 100e^{3/60}t = C$ or $e^{3/60}tQ$

The proof of $e^{3/60}tQ$
 $e^{3/60}tQ - 100e^{3/60}t = C$ or $e^{3/60}tQ$
 $e^{3/60}tQ - 100e^{3/60}t = C$ or $e^{3/60}tQ$

The proof of $e^{3/60}tQ$
 $e^{3/60}tQ$

b) to get t when Q = 2 we have. $2 = -99e^{-3/100} t_{+100}$ or $e^{-3/100t} = \frac{98}{100} - \frac{3}{100}t = \ln\left(\frac{98}{100}\right)$ $t = -\frac{100}{3}\ln\left(\frac{98}{100}\right)$

Hill selve
$$y' = \frac{y+x}{x}$$

Note that of flage replace $x + y$ with $tx + ty$,

then $ty + tx = y + x$

we let $u = \frac{y}{x}$,

 $x = \frac{y}{x} = \frac{y}{x} = \frac{y}{x}$

So $\frac{dy}{dx} = \frac{du}{dx} \cdot x + u \cdot \frac{dx}{dx} = u'x + u$

This is $(u+1)$

So $(u+1) = u'x + u$.

 $x = u'$
 $x =$

Bennoulli n=2. let $u=y^{1-2}=y^{-1}$. y + xy = xy2 or y= L $y' = -\frac{1}{u^2} \frac{du}{dx} = -\frac{1}{u^2} u'$ Replace. y' and y's maltiply by u? $\left(-\frac{1}{u^2}u\right) + \chi \frac{1}{u} = \chi \frac{1}{1u^2}$ now differential farm -u' + xu = X(xu-x)dx - du = 0 $M_u=x$ $N_x=0$ x-0=-x $e^{-x^2/2}$ $e^{-x^2/2}$ $\left(xe^{-x^{2}/2} u - xe^{-x^{2}/2} \right) dx - \left(e^{-x^{2}/2} \right) du = 0$ $\int dx - e^{-x^{2}/2} u + e^{-x^{2}/2} \frac{1}{2} - e^{-x^{2}/2} u$ Solution: $\int \frac{-x^2}{e^{-x^2/2}} = C \qquad u = ce^{-x^2/2} + 1$

(2)
$$L^{-1}(\frac{1}{5-8}) = e^{8x}$$
 (reall $L(e^{8x}) = \frac{1}{5-8}$)

$$\frac{3}{s^2+6} = \cos(\sqrt{6}x)$$

$$\frac{5}{s^2+6} = \cos(\sqrt{6}x)$$

$$L(\cos(\alpha x)) = \frac{5}{s^2+a^2}$$

$$\alpha = \sqrt{6}$$

$$cos(\sqrt{6}x)$$

$$L(\cos(\alpha x)) = \frac{5}{s^2+a^2}$$

$$so to undo it.$$

24.1

$$y'-5y=0$$
 $y(0)=2$.

Laplace from both sides

 $SL(y)-y(0) > -5L(y)=0$ (we coll $L(y)=Y$)

 $SY-2-5Y=0$
 $Y(S-5)=2$
 $Y=\frac{2}{S-S}$

The verse transform

 $L^{-1}(Y)=2e^{Sx}$

Laplace from both sides

Notice we did not have be use fintegration at all.

24,14 $\frac{dN}{dt} = .05N$ N(0) = 20,000haplace both sides 5 NG- N(0) = 05 NG) 5N - 20000 = .05NN(s-.05) = 20,000Now invert L-1(N(s)) = N(t) = 20,000 C

Fast

7,7 log Btic equation. Pop Max = SOO N(t) = # infected. N(0) = 5. dN = R (N) (500-N) number in Rected
rate of change) number in Rected
proportial In going to use a Bernoulli. The book uses a partial Fraction approach. Both are valid Try both Count it as 2 HW problems). $N' = kN.500 - kN^{2}$ n=2 let $u = N'^{-2} = N^{-1} - \sqrt{N}$ $N = \frac{1}{u}$ $N' = \frac{1}{u^{2}}u^{4}$ mult by u2 -11 = ~~~ -u'= 500ku-k or 0 = (500ku-k) +u'. 50 (600 ku-k) dt + du = 0 Mu = 500 k $N_t = 0$ (Sooke sookt u - ke sookt) dt + e sookt du = 0

Sookt = C + inner hy S

-sookt times by soo, divide bye 500 u = Ce - 500 kt + 1 500 \frac{1}{9} = Ce^{-\$00kt} + 1. Now N(0)=5, 50 $N = y = \frac{500}{\text{Ce}^{-500\text{ht}} + 1}$ $5 = \frac{500}{C+1}$ $=\frac{500}{990^{-500} \text{ kt} + 1}$ Toget N(t)=250, I need. 250 = 500 or 99e +1