Obor BPC-MET

Bakalářský studijní program, 2. ročník

Elektrotechnické materiály a výrobní procesy 1

Příklady z částí dielektrických materiálů a polovodičů

A. Vybrané konstanty

\boldsymbol{c}	$2,998.10^{8}$	m s ⁻¹	rychlost světla		
h	6,626 .10 ⁻³⁴	$\mathbf{J}\mathbf{s}$	Planckova konstanta		
\boldsymbol{k}	1,38 .10 ⁻²³	J K ⁻¹	J K ⁻¹ Boltzmannova konstanta		
$m_{\rm a}$	9,109 .10 ⁻³¹	kg hmotnost elektronu			
$m_{ m p}$	1,672 .10 ⁻²⁷	kg	hmotnost protonu		
$N_{\mathbf{A}}$	$6,023.10^{23}$	mol ⁻¹ Avogadrova konstanta			
$n_{\rm L}$	$2,688.10^{25}$	m ⁻³	Loschmidtovo číslo		
\boldsymbol{q}	-1,602 .10 ⁻¹⁹	C	náboj elektronu		
& 0	8,854 .10 ⁻¹²	F m ⁻¹	permitivita vakua		
μ_0	$4\pi . 10^{-7}$	H m ⁻¹	permeabilita vakua		

B. Polovodičové materiály

Vybrané vlastnosti polovodičových materiálů při T = 300 K

značka (jednotka)	křemík	germánium	vlastnost
$n_{\rm i}~({\rm m}^{-3})$	1,45 · 10 ¹⁶	2,29 .1019	koncentrace nosičů proudu (elektronů a děr) ve vlastním polovodiči
W_{g} (eV)	1,11	0,67	šířka zakázaného pásu
$\mu_{\rm n}({ m m}^2~{ m V}^{\text{-}1}~{ m s}^{\text{-}1})$	0,135	0,39	pohyblivost elektronů
$\mu_{\rm p}({ m m}^2~{ m V}^{\text{-}1}~{ m s}^{\text{-}1})$	0,048	0,19	pohyblivost děr
$N_{\rm c}({ m m}^{-3})$	$2,8.10^{25}$	$1,04 \cdot 10^{25}$	efektivní hustota stavů ve vodivostním pásu
$N_{\rm v}({ m m}^{-3})$	$1,04 \cdot 10^{25}$	$6,0.10^{24}$	efektivní hustota stavů ve valenčním pásu

1) Tři vzorky příměsového polovodiče křemíku N typu jsou dotovány postupně 10^{20} , 10^{22} a 10^{24} atomy fosforu v $1m^3$ polovodiče. Stanovte koncentrace elektronů a děr a konduktivitu těchto polovodičových materiálů při teplotě 20 °C (stav plné ionizace příměsí). Vypočtěte polohu Fermiho energetické hladiny v jednotlivých vzorcích polovodičů. Polohy Fermiho hladiny v závislosti na měnící se koncentraci donorů graficky znázorněte v pásovém modelu příměsového polovodiče pro T = 300 K.

Šířka zakázaného pásu u křemíku je $W_g = 1,11 \text{ eV}$; efektivní hustota stavů v pásu vodivostním je $N_c = 2,8 \cdot 10^{25} \text{ m}^{-3}$, efektivní hustota stavů v pásu valenčním je $N_v = 1,04 \cdot 10^{25} \text{ m}^{-3}$. Pohyblivost elektronů v křemíku je $\mu_n = 0,135 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$

a pohyblivost děr $\mu_{\rm p} = 0.048 \, {\rm m}^2 \, {\rm V}^{-1} \, {\rm s}^{-1}$. Rovnovážná koncentrace elektronů a děr v křemíku je $n_{\rm i} = 1.45 \, . \, 10^{16} \, {\rm m}^{-3}$.

Příklad řešte pro případ příměsového polovodiče křemíku P typu dotovaného postupně 10^{19} , 10^{21} a 10^{23} atomy bóru v $1m^3$ polovodiče.

- 2) Monokrystal křemíku je dotován atomy fosforu o koncentraci 10^{22} m⁻³ a atomy boru o koncentraci 10^{21} m⁻³ (kompenzovaný polovodič). Vypočítejte koncentraci elektronů a děr v polovodiči a jeho konduktivitu při T = 300 K. Uvažujte, že při této teplotě jsou všechny příměsi ionizovány. Rovnovážná koncentrace elektronů a děr v křemíku při této teplotě je $n_i = 1,45 \cdot 10^{16}$ m⁻³. Pohyblivost elektronů v křemíku je $\mu_n = 0,135$ m² V⁻¹ s⁻¹ a pohyblivost děr $\mu_0 = 0,048$ m² V⁻¹ s⁻¹.
 - Stanovte polohu Fermiho úrovně v tomto polovodiči při teplotě 300 K. Šířka zakázaného pásu u křemíku je 1,11 eV; efektivní hustota stavů v pásu vodivostním je $N_c = 2.8 \cdot 10^{25}$ m⁻³, efektivní hustota stavů v pásu valenčním je $N_v = 1,04 \cdot 10^{25}$ m⁻³.
- 3) Stanovte potenciální rozdíl na PN přechodu křemíkové diody za předpokladu, že oblast přechodu je v tepelné rovnováze; koncentrace donorových příměsí je 3,5 . 10²³ m⁻³, koncentrace akceptorových příměsí je 1,5 . 10¹⁸ m⁻³. Při výpočtu uvažujte teplotu 300 K.
- 4) Přechod mezi oblastí vodivosti typu P a N v křemíkové diodě má tvar kruhové plošky o poloměru 0,15 mm. Vypočtěte celkový proud procházející přechodem při teplotě 300 K, působí-li na přechodu v přímém směru vnější stejnosměrné napětí 0,1 V. Koncentrace donorových příměsí nechť je 5 · 10¹⁸ m⁻³, koncentrace akceptorových příměsí 3 · 10²⁰ m⁻³. Předpokládejte, že pohyblivost elektronů je 0,135 m² V⁻¹ s⁻¹, pohyblivost děr je 0,048 m² V⁻¹ s⁻¹ a doba života je 100 μs pro oba druhy nosičů.

Uvažujte, že vnější napětí působí na **PN** přechodu v závěrném směru. Jaký bude v tomto případě celkový proud procházející přechodem?

5) Stanovte šířku **PN** přechodu v křemíku, je-li koncentrace donorových příměsí **1,5** . 10^{20} m⁻³ a koncentrace akceptorových příměsí **3,5** . 10^{17} m⁻³. Relativní permitivita křemíku je **11,7**. Jak se změní šířka uvedeného přechodu, působí-li na něj současně vnější stejnosměrné napětí **0,2** V - a) v přímém směru, b) v závěrném směru? Úlohu řešte pro T = 300 K.

Popsaný přechod nechť má tvar kruhové plošky o poloměru **3 mm**. Stanovte kapacitu daného přechodu v nezatíženém stavu i v případě, kdy na přechodu působí v přímém nebo v závěrném směru stejnosměrné napětí o hodnotě **0,2 V**.

- 6) Vyjděte z Einsteinova universálního vztahu vyjadřujícího závislost mezi pohyblivostí nosičů nábojů a difúzním koeficientem a odvoďte rozměr difúzního koeficientu.
- 7) Stanovte číselnou hodnotu difúzního koeficientu elektronů a děr v monokrystalu křemíku při teplotě 300 K, je-li při téže teplotě pohyblivost elektronů μ_n rovna 0,135 m² V⁻¹ s⁻¹ a pohyblivost děr μ_p rovna 0,048 m² V⁻¹ s⁻¹.
- 8) Z prvního Fickova zákona lze pro hustotu proudu J_{dif} podmíněného difusí nosičů nábojů psát rovnici

$$J_{\text{dif}} = \pm q \ D \ \text{grad } n \tag{B-1}$$

v níž n označuje koncentraci nosičů o náboji q a D je difúzní koeficient. Jaký je rozměr veličiny D?

C. Dielektrické materiály a izolanty

- 1) Elektronová polarizovatelnost α_e atomu argonu je **1,43.** 10^{-40} F m^2 . Určete relativní permitivitu argonu při normálních fyzikálních podmínkách.
- 2) Relativní permitivita ε_{rs} dielektrika složeného ze dvou vzájemně nereagujících látek o permitivitách ε_{r1} a ε_{r2} se často určuje Lichteneckerovým mocninovým vztahem

$$\varepsilon_{rs}^{k} = v_1 \varepsilon_{r1}^{k} + v_2 \varepsilon_{r2}^{k}, \qquad (C-1)$$

v němž v_1 a v_2 jsou poměrné objemové podíly obou látek a k je empirická konstanta. Hodnota konstanty k se mění v rozsahu < -1; +1 > podle tvaru a rozložení částic obou látek; při chaotickém uspořádání částic $k \to 0$. Ukažte, že v tomto případě přechází mocninový vztah ve vztah logaritmický:

$$\log \varepsilon_{rs} = v_1 \log \varepsilon_{r1} + v_2 \log \varepsilon_{r2}. \tag{C-2}$$

- 3) Mezi elektrodami deskového kondenzátoru o rozměrech **7 x 12 cm** a vzdálenosti elektrod **5 mm** je vložena destička z polystyrenu o tloušťce **3 mm**. Zbytek prostoru mezi elektrodami je vyplněn vzduchem za normálních atmosférických podmínek. Vypočtěte kapacitu tohoto kondenzátoru, je-li relativní permitivita polystyrenu při teplotě **20 °C** rovna **2,3**. Jak se změní kapacita kondenzátoru, je-li celý prostor mezi elektrodami vyplněn pěnovým polystyrenem, v němž je objemový podíl polystyrenu a vzduchu stejný jako v prvém případě?
- 4) Rezistivitu elektroizolačních kapalin ρ_v lze v závislosti na teplotě vyjádřit vztahem

$$\rho = A \cdot e^{\frac{B}{T}} \tag{C-3}$$

v němž A (Ω m) a B (K) jsou materiálové konstanty; teplota T je udána v K. Kabelový impregnant složený z minerálního oleje s přídavkem 25 % (hmotnostních) rafinované kalafuny má při teplotě 20 °C rezistivitu 2 . 10^{10} Ω m. Stanovte rezistivitu tohoto impregnantu při teplotách 50 °C a 80 °C, je-li součinitel B roven 7 . 10^3 K.

5) Měřením dynamické viskozity transformátorového oleje BTS 2 na Höpplerově viskozimetru byly při několika teplotách zjištěny údaje uvedené v tabulce. Stanovte rezistivitu tohoto oleje při teplotách 50 °C a 85 °C, je-li hodnota rezistivity při teplotě 20 °C rovna 3 . 10¹¹ Ω m. Při výpočtu předpokládejte, že při změně teploty se nemění koncentrace volných iontů v oleji.

Tabulka

v (°C)	20	40	60	80	100
η (N s m ⁻²)	4,35 . 10-2	1,21 . 10-2	3,95 . 10 ⁻³	1,46 . 10-3	6,01 . 10-4

- 6) V obvodu střídavého elektrického proudu je zapojen kondenzátor, jehož dielektrikum vykazuje ztráty. Chování tohoto kondenzátoru lze za předpokladu, že pochody v dielektriku jsou lineární, vyšetřit sledováním ekvivalentního dvouprvkového náhradního zapojení kondenzátoru s ideálním, bezztrátovým dielektrikem a odporu představujícího ztráty. Uvažujte, že kondenzátor s ideálním dielektrikem o kapacitě C_p a odpor R_p jsou v náhradním zapojení spojeny paralelně a že je na uvedenou soustavu připojeno napětí U. Nakreslete pro tento případ fázorový diagram napětí a proudů soustavy a určete ztrátový činitel, celkovou impedanci a celkové ztráty energie v soustavě.
- 7) Ve smyslu zadání úlohy č. C-7 uvažujte sériové zapojení odporu R_s a kondenzátoru s ideálním dielektrikem C_s . K soustavě obou prvků nechť je přiloženo napětí U. Nakreslete fázorový diagram napětí a proudů soustavy, určete ztrátový činitel, celkovou impedanci a celkové ztráty energie v soustavě.
- 8) Určete ztrátový činitel vzduchu za normálních fyzikálních podmínek a při kmitočtu 50 Hz, má-li rozhodující vliv na velikost ztrát elektrická vodivost vzduchu. Relativní permitivita vzduchu je za normálních fyzikálních podmínek rovna 1,000584, rezistivita je za stejných podmínek 10¹⁶ Ω m.
- 9) Komplexní permitivita $\boldsymbol{\varepsilon}^*$ dielektrika je definována vztahem $\boldsymbol{\varepsilon}^* = \boldsymbol{\varepsilon}' \boldsymbol{j}\boldsymbol{\varepsilon}''$. V závislosti na kmitočtu lze podle Debyeho vyjádřit komplexní permitivitu rovnicí

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i\omega\tau} , \qquad (C-4)$$

v níž ε s značí relativní (statickou) permitivitu dielektrika určenou při kmitočtu $f \to 0$, ε s relativní (optickou) permitivitu určenou při velmi vysokých kmitočtech; τ je relaxační doba, která je mimo jiné i funkcí teploty. **Vyjděte z obou uvedených vztahů a určete reálnou část** ε a imaginární část ε komplexní permitivity.