Math 357 Long quiz 04C

2024–04–10 (W)

Let \mathbf{Q} denote the field of rational numbers; given a prime $\mathfrak{p} \in \mathbf{Z}_{>0}$, let $\mathbf{F}_{\mathfrak{p}} \cong \mathbf{Z}/(\mathfrak{p})$, a finite field with \mathfrak{p} elements; and let t be an indeterminate. For each of the quotient rings below, characterize its algebraic structure as "field", "integral domain but not field", or "ring but not integral domain". Justify your characterization.

$$\begin{aligned} R_1 &= F_5[t]/(t^3 + 2) \\ R_2 &= \mathbf{Q}[t]/(t^4 - 8t^2 + 20) \\ R_3 &= \mathbf{Q}[t]/(t^3 - 11t^2 + 57t + 12) \end{aligned}$$

Solution: We analyze each ring in turn.

 R_1 : Ring but not integral domain. t=2 is a zero of f_1 , as a function $F_5 \to F_5$. Equivalently, t-2 is a factor of t^3-2 in $F_5[t]$.

 R_2 : Field. View f_2 as a function $\mathbf{R} \to \mathbf{R}$. We compute

$$f_2' = 4t^3 - 16t = 4t(t+2)(t-2)$$

Because $\lim_{t\to\pm\infty} f_2(t)=+\infty$, the values of f_2 at the "outer" horizontal tangents, at $t=\pm 2$, are the candidate global minima of f_2 . We compute

$$f_2(\pm 2) = 16 - 32 + 20 = 4 > 0$$

We conclude that f_2 has no zeros in \mathbf{R} , and hence in \mathbf{Q} . Therefore f_2 is irreducible in $\mathbf{Q}[t]$, so the principal ideal (f_2) is maximal, so $R_2 = \mathbf{Q}[t]/(f_2)$ is a field.

 R_3 : We present two approaches.

Approach 1: Consider f_3 as a function $\mathbf{R} \to \mathbf{R}$. We compute

$$f_3'(t) = 3t^2 - 22t + 57$$

which has discriminant

$$(-22)^2 - 4(3)(57) = 484 - 684 = -200 < 0$$

It follows that the function f_3' has no zeros in \mathbf{R} , and therefore $f_3'(t) > 0$ for all $t \in \mathbf{R}$. That is, the function f_3 is monotonically increasing, and therefore has exactly one zero in \mathbf{R} . We compute

$$f_3(-1) = -57 < 0$$
 $f_3(0) = 12 > 0$

so by the intermediate value theorem, this unique real zero lies in the interval (-1,0). The rational zeros test applied to the polynomial f_3 implies that any rational zero of f_3 is an integer. There are no integers in the (open) interval (-1,0), so we conclude that f_3 has no zero in \mathbf{Q} . Because f_3 is degree 3, this is equivalent to f_3 being irreducible in $\mathbf{Q}[t]$.

Approach 2: Consider $f_3(t+2)$:

$$f_3(t+2) = t^3 - 5t^2 + 25t + 90$$

This is irreducible in $\mathbf{Z}[t]$ by the Eisenstein–Schönemann criterion, and therefore irreducible in $\mathbf{Q}[t]$ by Gauß's lemma. Irreducibility of $f_3(t+2)$ in $\mathbf{Q}[t]$ is equivalent to irreducibility of $f_3(t)$ in $\mathbf{Q}[t]$. Thus f_3 is irreducible in $\mathbf{Q}[t]$

Because f_3 is irreducible in $\mathbf{Q}[t]$, the principal ideal (f_3) is maximal in $\mathbf{Q}[t]$, so $R_3 = \mathbf{Q}[t]/(f_3)$ is a field.