Provas e Exercícios

Ref. H. D. Ebbnghaus Primavera 2022

Contents

1 Sintaxe de Linguagens de Primeira Ordem

1

2 Semântica de Linguagens de Primeira Ordem

4

1 Sintaxe de Linguagens de Primeira Ordem

Lema 1. Se $A \leq \aleph_0$ então $A^* \approx \aleph_0$.

Proof. Seja p_n o n-ésimo primo, se $\mathcal{A}^* = \{a_0, a_1, \dots\}$ existe $\alpha : \mathcal{A}^* \to \mathbb{N}$ tq:

$$\alpha(\Box) = 1;$$

$$\alpha(a_{i_0},\ldots,a_{i_r}) := p_0^{i_0+1} \cdot \cdots \cdot p_r^{i_r+1}.$$

Claramente α é injetiva, portanto $\mathcal{A}^* \leq \aleph_0$ e como $\mathcal{A}^* \geq \aleph_0$, visto que contém todas as strings possíveis, pelo teorema de Schröder-Bernstein $\mathcal{A}^* \approx \aleph_0$.

Exercício 1. Utilize o fato de que se $M_0, M_1, \dots \leq \aleph_0$ então

$$\bigcup_{n\in\mathbb{N}} M_n \le \aleph_0$$

Para provar o Lema 1.

Proof. Definindo $M_n := \mathcal{A}^n$, então $\forall i (M_i \leq \aleph_0)$, visto que $\kappa \cdot \mu = \max\{\kappa, \mu\}$ e $n \in \mathbb{N}$, com isso

$$\bigcup_{n\in\mathbb{N}} M_n = \mathcal{A}^* \le \aleph_0.$$

Como $\mathcal{A}^* \geq \aleph_0$ novamente pelo teorema de Schröder-Bernstein $\mathcal{A}^* \approx \aleph_0$.

Lema 2. Se $S \leq \aleph_0$ então $\mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}} \approx \aleph_0$.

Proof. Se $S \leq \aleph_0$ então também $\mathcal{A}_{\mathcal{S}}$ e, pelo **Lema 1** $\mathcal{A}_{\mathcal{S}}^*$ também. Como $\mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}} \subseteq \mathcal{A}_{\mathcal{S}}^* \leq \aleph_0$ e $\mathcal{T}^{\mathcal{S}}$ contém todas as variáveis assim como $\mathcal{L}^{\mathcal{S}}$ todas as fórmulas da forma $v \equiv v$ então $\mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}} \geq \aleph_0$, novamente pelo teorema de Schröder-Bernstein $\mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}} \approx \aleph_0$.

Lema 3. (a) $\forall t, t' \in \mathcal{T}^{\mathcal{S}}$, t não é um segmento inicial próprio de t' (i.e. $\neg \exists \zeta \neq \Box$ tq $t\zeta = t'$); (b) $\forall \varphi, \varphi' \in \mathcal{L}^{\mathcal{S}}$, φ não é um segmento inicial próprio de φ' .

Proof. (a) Seja $P(\eta) := \forall t \in \mathcal{T}^{\mathcal{S}} t$ não é um segmento inicial próprio de η . Usando indução em termos:

- (i) t=x: Se t' é um termo arbitrário, como $\mathsf{len}(t)=1$ precisaríamos que $t'=\square$ para este ser um termo inicial próprio, mas \square não é um termo, visto que ambos (variáveis e constantes) tem $\mathsf{len}>0$, assim como termos da forma $ft_1\ldots t_n$.
- (ii) t = c: A prova é análoga.
- (iii) $t = ft_1 \dots t_n$ com $P(t_1), \dots, P(t_n)$: Suponha t' um segmento inicial próprio de t, então $\exists \zeta \neq \Box$ tq $t = t'\zeta$. Como t' inicia com f então pra ser um termo tem de ser da forma $ft'_1 \dots t'_n$, com isso

$$ft_1 \dots t_n = ft'_1 \dots t'_n \zeta,$$

Cancelando f temos que t_1' é um segmento inicial de t_1 , mas como t_1 goza de P, então $t_1 = t_1'$, continuando o processo temos que $t_i = t_i', 1 \le i \le n$, portanto $\zeta = \square$, o que contradiz a hipótese, i.e. t' não é um segmento inicial próprio de t.

- (b) Seja $P(\Psi) := \forall \varphi \in \mathcal{L}^{\mathcal{S}} \varphi$ não é um segmento inicial próprio de Ψ . Usando indução em fórmulas assumimos que φ' é um segmento inicial próprio de φ , i.e. $\exists \zeta \neq \Box$ tq $\varphi = \varphi' \zeta$.
- (i) $\varphi = t_1 \equiv t_2$: $\varphi = \varphi' \zeta$ sse φ' é da forma $t_1' \equiv t_2'$, portanto

$$t_1 \equiv t_2 = t_1' \equiv t_2' \zeta.$$

mas t_1' é um segmento inicial próprio de t_1 , por (a) temos $t_1 = t_1'$, repetindo para t_2 chegamos em $\zeta = \Box$, contradição.

- (ii) $\varphi = Rt_1 \dots t_n$: $\varphi = \varphi' \zeta$ sse φ' for da forma $Rt'_1 \dots t'_n$, cancelando R e aplicando (a) em todos $t_i, 1 \leq i \leq n$ chegamos em $\zeta = \square$, contradição.
- (iii) $\varphi = \neg \psi$ com $* = \land, \lor, \rightarrow, \leftrightarrow, \psi \in \mathcal{L}^{\mathcal{S}}$ e $P(\psi)$: $\varphi = \varphi' \zeta$ sse φ' for da forma $\neg \chi, \chi \in \mathcal{L}^{\mathcal{S}}$. Assim $\psi = \chi \zeta$, portanto χ é um segmento inicial próprio de ψ , o que contrareia a hipótese, então $\psi = \chi$, dessa forma $\zeta = \Box$, contradição.
- (iv) $\varphi = (\psi * \chi)$ com $\psi, \chi \in \mathcal{L}^{\mathcal{S}}$ e $P(\psi), P(\chi)$: $\varphi = \varphi' \zeta$ sse φ' é da forma $(\psi' *' \chi')$

$$(\psi * \chi) = (\psi' *' \chi')\zeta.$$

Por hipótese concluímos que $\psi = \psi'$ e, se * = *', visto que, por hipótese, φ' é segmento inicial próprio de φ . Assim, também por hipótese, $\chi = \chi'$, portanto $\zeta = \square$, contradição.

(v) $\varphi = Qx\psi$ com $Q = \forall, \exists, \psi \in \mathcal{L}^{\mathcal{S}}$ e $P(\psi)$: $\varphi = \varphi'\zeta$ sse φ' é da forma $Qx'\psi'$, então

$$Qx\psi = Qx'\psi'\zeta.$$

Por (a) temos que x=x' e, por hipótese, concluímos que $\psi=\psi'$, portanto $\zeta=\Box$, contradição. \Box

Lema 4. (a) Se $t_1, \ldots, t_n, t'_1, \ldots, t'_m \in \mathcal{T}^{\mathcal{S}}$ e $t_1 \ldots t_n = t'_1 \ldots t'_m$ então m = n e $t_i = t'_i, 1 \leq i \leq n$. (b) Se $\varphi_1, \ldots, \varphi_n, \varphi'_1, \ldots, \varphi'_m \in \mathcal{L}^{\mathcal{S}}$ e $\varphi_1 \ldots \varphi'_n = \varphi'_1 \ldots \varphi'_m$ então m = n e $\varphi_i = \varphi'_i, 1 \leq i \leq n$.

Proof. (a) Se $t_1 ldots t_n = t_1' ldots t_m'$ então t_1' é segmento inicial próprio de t_1 , do **Lema 3.(a)** concluímos que $t_1 = t_1'$, fazendo o mesmo temos que $t_i = t_i'$, $1 \le i \le n$. Como ambos os termos são iguais temos

que $len(t_1 \dots t_n) = len(t'_1 \dots t'_m)$ i.e. n = m.

(b) Se $\varphi_1 \dots \varphi_n' = \varphi_1' \dots \varphi_m'$ então φ_1' é segmento inicial próprio de φ_1 , do **Lema 3.(b)** concluímos que $\varphi_1 = \varphi_1'$, fazendo o mesmo temos que $\varphi_i = \varphi_i', 1 \le i \le n$. Como ambos os termos são iguais temos que $\text{len}(\varphi_1 \dots \varphi_n) = \text{len}(\varphi_1' \dots \varphi_m')$ i.e. n = m.

Exercício 2. (a) Seja \mathfrak{C}_v o cálculo consistindo das seguintes regras:

$$\frac{y}{x}$$
; $\frac{y}{y}$ $\frac{t_i}{ft_1...t_n}$ se $f \in \mathcal{S}$ é n-ária e $i \in \{1,...,n\}$.

Mostre que para toda variável x e S-termo t, x t é derivável em \mathfrak{C}_v sse $x \in \mathsf{var}(t)$.

(b) Dê um resultado para SF análogo ao resultado para var em (a).

Proof. (a)

- (i) Se $x \in \mathsf{var}(t)$ então x t é derivável em \mathfrak{C}_v : Se t = x então $x \in \mathsf{var}(t)$ e pela $1^{\underline{a}}$ regra x t é derivável. Se $t = t_i$ e $x \in \mathsf{var}(t_i)$ então, seguindo a definição, $x \in f(t_1 \dots t_n)$.
- (ii) Se x t é derivável em \mathfrak{C}_v então $x \in \mathsf{var}(t)$: Se t = x a primeira regra garante que $x \in \mathsf{var}(t)$. Se $t = ft_1 \dots t_n$ então existe um x t_i em \mathfrak{C}_v , como todos termos dessa forma que existem partem de uma regra sem premissa (regra 1) então $x \in \mathsf{var}(t_i)$ logo $x \in \mathsf{var}(ft_1 \dots t_n)$.
- (b) Seja o cálculo \mathfrak{C}_a definido pelas regras:

$$\frac{\varphi}{t_m \equiv t_n} ; \quad \frac{\varphi}{\varphi} \frac{\psi}{\neg \psi} ; \quad \frac{\varphi}{\varphi} \frac{\psi}{(\varphi * \psi)} * = \land, \lor, \rightarrow, \leftrightarrow; \quad \frac{\varphi}{\varphi} \frac{\psi}{Qx\psi} Q = \forall, \exists.$$

Para todo termo t_m, t_n e toda variável $x. \varphi \psi$ é derivável em \mathfrak{C}_a sse $\varphi \in \mathsf{SF}(\psi)$.

Exercício 3. Mostre que o cálculo \mathfrak{C}_{nf} permite derivar precisamente aquelas strings da forma $x \varphi$ no qual $\varphi \in \mathcal{L}^{\mathcal{S}}$ tq $x \notin \mathsf{free}(\varphi)$:

$$\overline{x \quad t_1 \equiv t_2} \text{ Se } t_1, t_2 \in \mathcal{T}^{\mathcal{S}} \text{ e } x \notin \mathsf{var}(t_1) \cup \mathsf{var}(t_2);$$

$$\overline{x - Rt_1 \dots t_n}$$
 Se $R \in \mathcal{S}$ é n-ária, $t_1, \dots, t_n \in \mathcal{T}^{\mathcal{S}}$ e $x \notin \bigcup_{n \in \mathbb{N}} \mathsf{var}(t_n)$;

$$\frac{x \quad \varphi}{x \quad \neg \varphi} \ ; \qquad \frac{(x \quad \varphi) \quad (x \quad \psi)}{x \quad (\varphi * \psi)} \ * = \land, \lor, \rightarrow, \leftrightarrow; \qquad \frac{x \quad \varphi}{x \quad Qx\varphi} \ ; \qquad \frac{x \quad \varphi}{x \quad Qx\varphi} \ Q = \forall, \exists;$$

Proof. (⇒) Fazendo indução em cada regra:

 $\varphi = t_1 \equiv t_2$: por definição $x \notin free(\varphi)$;

 $\varphi = Rt_1 \dots t_n$: Também por definição $x \notin free(\varphi)$;

 $\varphi = Qx\psi \text{ nesse caso } x \notin \mathsf{free}(\varphi) = \mathsf{free}(\psi) \setminus \{x\};$

- (*) Portanto todas as fórmulas φ deriváveis com premissa livre não tem uma ocorrência livre de x. $\varphi = \neg \psi$: Se $\neg \psi$ é derivável, então ψ também é, mas se ψ é derivável em \mathfrak{C}_{nf} então, por (*), $x \notin \mathsf{free}(\psi) \to x \notin \mathsf{free}(\neg \psi)$;
- $\varphi = (\psi * \chi)$: O argumento é análogo ao de cima, ambos ψ, χ tem de ser derivável e, por (*), não há ocorrência livre neles, o que implica que não há em $(\psi * \chi)$.
- (\Leftarrow) Agora assumindo $x \notin \mathsf{free}(\varphi)$:

 $\varphi = t_1 \equiv t_2$: então ela é derivável pela regra 1;

 $\varphi = Rt_1 \dots t_n$: então ela é derivável pela $2^{\underline{a}}$ regra;

 $\varphi = Qx\psi$: a última e penúltima regra garantem que é derivável;

 $\varphi = \neg \psi$: então $x \notin \text{free}(\varphi)$, portanto a $3^{\underline{a}}$ regra garante que é derivável;

 $\varphi = (\psi * \chi)$: Se x não ocorre livre em φ então ela não ocorre livre em ambos, portanto a $5^{\underline{a}}$ regra garante sua derivação.

2 Semântica de Linguagens de Primeira Ordem

Exercício 4. Seja $A \neq \emptyset$ e $A, \mathcal{S} < \aleph_0$ um conjunto de símbolos. Mostre que há uma quantidade finita de \mathcal{S} -estruturas com domínio A.

Proof. Seja $S = ((c_i)_{0 \le i \le n_1}, (R_i)_{0 \le i \le n_2}, (f_i)_{0 \le i \le n_3})$ e |A| = m, a quantidade total de associações possíveis pra cada elemento é:

$$\alpha_{R_i} := \{ Z \mid Z \subseteq A^n \}, \quad |\alpha_{R_i}| = \mathcal{P}(\alpha_{R_i}) = 2^m$$

$$\alpha_{f_i} := A^{(A^n)}, \quad |\alpha_{f_i}| = |A|^{|A^n|} = m^{(m^n)}$$

$$\alpha_{c_i} := (A^n)^{A^n}, \quad |\alpha_{c_i}| = |(A^n)|^{|A^n|} = (m^{n \cdot m^n})$$

Dessa forma, como todos são finitos e a união finita de conjuntos finitos é finita então o total de estruturas \mathcal{H} :

$$\mathcal{H} := \bigcup \left\{ \bigcup_{0 \leq i \leq n_1} \alpha_{R_i}, \bigcup_{0 \leq i \leq n_2} \alpha_{f_i}, \bigcup_{0 \leq i \leq n_3} \alpha_{c_i} \right\} < \aleph_0.$$

Exercício 5. Para S-estruturas $\mathfrak{A} = (A, \mathfrak{a})$ e $\mathfrak{B} = (B, \mathfrak{b})$ seja $\mathfrak{A} \times \mathfrak{B}$ a S-estrutura com domínio $A \times B$ satisfazendo:

Para $R \in \mathcal{S}$ n-ária e $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$:

$$R^{\mathfrak{A} \times \mathfrak{B}}(a_1, b_1) \dots (a_n, b_n) \leftrightarrow R^{\mathfrak{A}}a_1 \dots a_n \wedge R^{\mathfrak{B}}b_1 \dots b_n;$$

Para $f \in \mathcal{S}$ n-ária e $(a_1, b_1), \dots, (a_n, b_n) \in A \times B$:

$$f^{\mathfrak{A} \times \mathfrak{B}}((a_1, b_1), \dots, (a_n, b_n)) := (f^{\mathfrak{A}}(a_1, \dots, a_n), f^{\mathfrak{B}}(b_1, \dots, b_n));$$

Para $c \in \mathcal{S}$:

$$c^{\mathfrak{A}\times\mathfrak{B}}:=(c^{\mathfrak{A}},c^{\mathfrak{B}});$$

Mostre que:

- (a) Se as \mathcal{S}_{gr} -estruturas \mathfrak{A} e \mathfrak{B} são grupos então $\mathfrak{A} \times \mathfrak{B}$ também é.
- (b) Se $\mathfrak{A}, \mathfrak{B}$ são estruturas satisfazendo os axiomas de equivalência então $\mathfrak{A} \times \mathfrak{B}$ também satisfaz.
- (c) Se as $\mathcal{S}_{\mathsf{ar}}$ -estruturas $\mathfrak{A}, \mathfrak{B}$ são corpos, então $\mathfrak{A} \times \mathfrak{B}$ também é.

Proof. (a) Sejam $\mathfrak{A}=(A,\circ,e);\mathfrak{B}=(B,*,\varepsilon)$ e $\mathfrak{A}\times\mathfrak{B}=(A\times B,\circledast,\epsilon)$. Se $a,b,c\in\mathfrak{A};x,y,z\in\mathfrak{B}$ e $u,v,w\in\mathfrak{A}\times\mathfrak{B}$:

(i) $\forall u, v, w((u \circledast v) \circledast w = u \circledast (v \circledast w))$:

$$(\overbrace{(x,a)}^{v} \circledast \overbrace{(y,b)}^{v}) \circledast \overbrace{(z,c)}^{w} = (x \circ y, a * b) \circledast (z,c)$$

$$= (x \circ y \circ z, a * b * c)$$

$$= (x,a) \circledast (y \circ z, b * c)$$

$$= (x,a) \circledast ((y,b) \circledast (z,c))$$

$$(u \circledast v) \circledast w = u \circledast (v \circledast w).$$

(ii) $\forall u \exists v (u \circledast v) = \epsilon$:

$$(\overbrace{(x,a)}^{v} \circledast \overbrace{(y,b)}^{v}) = \overbrace{(e,\varepsilon)}^{\epsilon}$$

$$(x \circ y, a * b) = (e,\varepsilon)$$

$$\forall x \exists y (x \circ y = e) \land \forall a \exists b (a * b = \varepsilon).$$

(iii) $\exists \epsilon \forall u (u \circledast \epsilon = u)$:

$$(\overbrace{(x,a) \circledast (e,\varepsilon)}^{\epsilon}) = \overbrace{(x,a)}^{u}$$
$$(x \circ e, a \circ \varepsilon) = (x,a)$$
$$\exists e \forall x (x \circ e = x) \land \exists \varepsilon \forall a (a * \varepsilon = a).$$

- (b) Sejam $\mathfrak{A} = (A, R); \mathfrak{B} = (B, \mathcal{R}), \mathfrak{A} \times \mathfrak{B} = (A \times B, \mathcal{R}) \text{ com } x, y, z \in \mathfrak{A}; a, b, c \in \mathfrak{B}; u, v, w \in \mathfrak{A} \times \mathfrak{B}$:
- (i) $\forall u(u \mathcal{R} u)$:

$$\underbrace{(x,a)}^{u} \, \mathscr{R} \, \underbrace{(x,a)}^{u} \leftrightarrow xRx \wedge a\mathcal{R}a$$
$$\forall x(xRx) \wedge \forall a(a\mathcal{R}a).$$

(ii) $\forall u, v(u\Re v \leftrightarrow v\Re u)$:

$$(x,a) \mathscr{R} (y,b) \leftrightarrow (y,b) \mathscr{R} (x,a)$$

$$xRy \wedge a\mathcal{R}b \leftrightarrow yRx \wedge b\mathcal{R}a$$

$$\forall x, y(xRy \leftrightarrow yRx) \wedge \forall a, b(a\mathcal{R}b \leftrightarrow b\mathcal{R}a)$$

(iii) $\forall u, v, w(u\Re v \wedge v\Re w \to u\Re w)$:

$$(x,a) \mathscr{R}(y,b) \wedge (y,b) \mathscr{R}(z,c) \to (x,a) \mathscr{R}(z,c)$$

$$(xRy \wedge a\mathcal{R}b) \wedge (yRz \wedge b\mathcal{R}c) \to xRz \wedge a\mathcal{R}c$$

$$(xRy \wedge yRz) \wedge (a\mathcal{R}b \wedge b\mathcal{R}c) \to xRz \wedge a\mathcal{R}c$$

$$\forall x, y, z(xRy \wedge yRz \to xRz) \wedge \forall a, b, c(a\mathcal{R}b \wedge b\mathcal{R}c \to a\mathcal{R}c)$$

(c) Sejam $\mathfrak{A}=(A,+,\cdot,0,1); \mathfrak{B}=(B,*,\times,\overline{0},\overline{1})$ e $\mathfrak{A}\times\mathfrak{B}=(A\times B,\oplus,\odot,\mathbf{0},\mathbf{1})$ com $x,y\in\mathfrak{A};a,b\in\mathfrak{B}$ e $u,v\in\mathfrak{A}\times\mathfrak{B}$:

Um dos axiomas é $\forall (u \neq \mathbf{0}) \exists v (u \oplus v = \mathbf{1})$:

$$(x, a) \oplus (y, b) = (1, \overline{1})$$

 $(x \cdot y, a * b) = (1, \overline{1})$

Se isso é verdade então, em particular, para ou x=0 ou $a=\overline{0}$ temos que $(0,b),(x,\overline{0})\neq \mathbf{0}$, logo ambos $0,\overline{0}$ possuiriam invreso, o que é falso.

Lema 5. Para todo Φ e φ

$$\Phi \models \varphi$$
 sse não é o caso que $\mathsf{Sat}(\Phi \cup \{\neg \varphi\})$.

Em particular, φ é válida sse $\neg \varphi$ não é satisfatível.

Proof. $\Phi \models \varphi$

sse toda interpretação que é modelo de Φ também é de φ

sse não há uma interpretação que é modelo de Φ , mas não de φ

sse não há uma interpretação que é modelo de $\Phi \cup \{\neg \varphi\}$

sse não é o caso que $Sat(\Phi \cup \{\neg \varphi\})$.

Lema 6. Lema da Coincidência. Seja $\mathfrak{I}_1=(\mathfrak{A}_1,\beta_1)$ uma \mathcal{S}_1 -interpretação e $\mathfrak{I}_2=(\mathfrak{A}_2,\beta_2)$ uma \mathcal{S}_2 -interpretação tq $\mathsf{Dom}(\mathfrak{A}_1)=\mathsf{Dom}(\mathfrak{A}_2)$, seja $\mathcal{S}:=\mathcal{S}_1\cap\mathcal{S}_2$:

- (a) Seja t um S-termo. Se \mathfrak{I}_1 e \mathfrak{I}_2 concordam nos S-símbolos, i.e. $\kappa^{\mathfrak{A}_1} = \kappa^{\mathfrak{A}_2}$, e variáveis, i.e. $\beta_1(x) = \beta_2(x)$, que ocorrem em t, então $\mathfrak{I}_1(t) = \mathfrak{I}_2(t)$;
- (b) Seja φ uma \mathcal{S} -fórmula. Se \mathfrak{I}_1 e \mathfrak{I}_2 concordam nos \mathcal{S} -símbolos e nas variáveis que ocorrem livre em φ , então $\mathfrak{I}_1 \models \varphi$ e $\mathfrak{I}_2 \models \varphi$.

Proof. (a) Por indução nos S-termos.

t=x: Por hipótese $\beta_1=\beta_2$ portanto $\mathfrak{I}_1(t)=\beta_1(t)=\beta_2(t)=\mathfrak{I}_2(t);$

t=c: Também por hipótese $\mathfrak{I}_2(t)=c^{\mathfrak{A}_1}=c^{\mathfrak{A}_2}=\mathfrak{I}_2(t)$.

 $t = ft_1 \dots t_n$:

$$\mathfrak{I}_{1}(ft_{1}\dots t_{n}) = f^{\mathfrak{A}_{1}}(\mathfrak{I}_{1}(t_{1}), \dots, \mathfrak{I}_{1}(t_{n}))$$
$$= f^{\mathfrak{A}_{2}}(\mathfrak{I}_{2}(t_{1}), \dots, \mathfrak{I}_{2}(t_{n}))$$
$$= \mathfrak{I}_{2}(ft_{1}\dots t_{n}).$$

(b) Por indução nas S-fórmulas.

 $\varphi = Rt_1 \dots t_n$:

$$\mathfrak{I}_1(Rt_1 \dots t_n) = R^{\mathfrak{A}_1} \mathfrak{I}_1(t_1) \dots \mathfrak{I}_1(t_n)$$

$$= R^{\mathfrak{A}_2} \mathfrak{I}_2(t_1) \dots \mathfrak{I}_2(t_n)$$

$$= \mathfrak{I}_2(Rt_1 \dots t_n).$$

 $\varphi = t_1 \equiv t_2$: O argumento é análogo. $\varphi = \neg \psi$:

$$\mathfrak{I}_1 \models \neg \psi$$
 sse não vale $\mathfrak{I}_1 \models \psi$
sse não vale $\mathfrak{I}_2 \models \psi$
sse $\mathfrak{I}_2 \models \neg \psi$.

 $\varphi = (\psi \lor \chi)$: O argumento é análogo. $\varphi = \exists x \psi$:

$$\mathfrak{I}_1 \models \exists x \varphi$$
 sse existe um $a \in A$ tq $\mathfrak{I}_1 \frac{a}{x} \models \psi$
sse existe um $a \in A$ tq $\mathfrak{I}_2 \frac{a}{x} \models \psi$
sse $\mathfrak{I}_2 \models \exists x \varphi$.

Corolário 1. Φ é satisfatível com respeito a \mathcal{S} sse também é com respeito a \mathcal{S}' .

Proof. (⇒) Seja $\mathfrak{I}' = (\mathfrak{A}', \beta')$ uma \mathcal{S}' -interpretação tq $\mathfrak{I}' \models \Phi$, pelo **Lema da Coincidência** a \mathcal{S} -interpretação ($\mathfrak{A}' \mid_{\mathcal{S}}, \beta'$) é um modelo de Φ .

(\Leftarrow) Se $\mathfrak{I} = (\mathfrak{A}, \beta)$ é uma \mathcal{S} -interpretação tq $\mathfrak{I} \models \Phi$, então escolhemos \mathfrak{A}' uma \mathcal{S}' -estrutura tq $\mathfrak{A}' \mid_{\mathcal{S}} = \mathfrak{A}$. Pelo **Lema da Coincidência** a \mathcal{S}' -interpretação (\mathfrak{A}', β) é modelo de Φ . □

Exercício 6. Para fórmulas arbitrárias φ, ψ, χ prove que:

$$\models (\varphi \rightarrow \psi) \text{ sse } \varphi \models \psi.$$

Proof.

$$\varphi \vDash \psi$$
 sse para todo \Im se $\Im \vDash \varphi$ então $\Im \vDash \psi$ sse para todo $\Im \vDash (\varphi \to \psi)$ sse $\vDash (\varphi \to \psi)$.

Exercício 7. Mostre que:

- (a) $\exists x \forall y \varphi \models \forall y \exists x \varphi$;
- (b) $\forall y \exists x Rxy \not\models \exists x \forall y Rxy$.

Proof. (a) $\mathfrak{I} \models \exists x \forall y \varphi$ sse existe um $a \in A$ tq $\mathfrak{I}^{\underline{a}}_{\underline{x}} \models \forall y \varphi$, então em particular existe um $a \in A$ tq $\mathfrak{I}^{\underline{a}}_{\underline{x}} \stackrel{t}{\underline{y}} \models \varphi$ sendo $t \in A$ um termo genérico qualquer. Assim, devido a escolha arbitrária, concluímos que para todo $t \in A$ existe um $a \in A$ tq $\mathfrak{I}^{\underline{a}}_{\underline{x}} \stackrel{t}{\underline{y}} \models \varphi \stackrel{t}{\underline{y}}$, i.e., $\mathfrak{I} \models \forall y \exists x \varphi$.

(b) $\mathfrak{I} \models \forall y \exists x Rxy$ sse para todo $a \in A$ existe um $t \in A$ tq $\mathfrak{I} \models Rta$, mas isso não necessariamente implica que exista um t tq Rta valha para todo a.

Exercício 8. Sejam φ, ψ fórmulas tais que $\varphi \models \exists \psi$. Seja χ' obtido de χ substituindo todas as subfórmulas da forma φ por ψ . Mostre que para todo $\chi, \chi \models \exists \chi'$.

Proof. Provaremos por indução em fórmulas:

Se $\chi = \varphi$ é atômica então $\mathfrak{I} \models \varphi$ sse, por hipótese, $\mathfrak{I} \models \chi' = \psi$.

Se $\chi = \neg \varphi$ então $\mathfrak{I} \models \chi$ sse não vale $\mathfrak{I} \models \varphi$ sse, por hipótese, não vale $\mathfrak{I} \models \psi$ sse $\mathfrak{I} \models \chi' = \neg \psi$.

Se $\chi = \xi \lor \varphi$ então $\mathfrak{I} \models \chi$ sse $\mathfrak{I} \models \xi$ ou $\mathfrak{I} \models \varphi$ sse, por hipótese, $\mathfrak{I} \models \xi$ ou $\mathfrak{I} \models \psi$ sse $\mathfrak{I} \models \chi' = \xi \lor \psi$.

Se $\chi = \exists x \varphi$ então $\mathfrak{I} \models \chi$ s
se existe um $a \in A$ tq $\mathfrak{I} \frac{a}{x} \models \varphi$ s
se, por hipótese, existe um $a \in A$ tq $\mathfrak{I}^{\underline{a}}_{\underline{x}} \models \psi \text{ sse } \mathfrak{I} \models \chi' = \exists x \psi.$

Portanto
$$\chi \models \exists \chi'$$
.

Exercício 9. $\Phi \models \varphi \text{ em } S \text{ sse } \Phi \models \varphi \text{ em } S'.$

Proof. $\Phi \models \varphi$ sse existe uma S-interpretação \mathfrak{I} tq sempre que $\mathfrak{I} \models \Phi$ temos que $\mathfrak{I} \models \varphi$. Entretanto, pelo Corolário 2. $\mathfrak{I} \models \Phi$ sse para \mathfrak{I}' , uma \mathcal{S}' -interpretação, $\mathfrak{I}' \models \Phi$ e, por hipótese, $\mathfrak{I}' \models \varphi$.

Exercício 10. Um conjunto Φ de sentenças é dito *independente* se não há um $\varphi \in \Phi$ tq $\Phi \setminus \{\varphi\} \models \varphi$. Mostre que os conjuntos Φ_{gr} e Φ_{eq} de axiomas dos grupos e relações de equivalência são independentes.

Proof. (a)
$$\Phi_{gr} = \{ \underbrace{\forall u, v, w((u \circ v) \circ w = u \circ (v \circ w))}_{\varphi_1}, \underbrace{\forall u \exists v(u \circ v = e)}_{\varphi_2}, \underbrace{\exists c \forall u(u \circ c = u)}_{\varphi_3} \}$$
(i) Assuma $\Phi_{gr} \setminus \{\varphi_3\} \models \varphi_3$, como φ_3 dita a existência de um elemento neutro basta tomarmos por

- exemplo $(\mathbb{Z},+)$, mas interpretar c em φ_3 como um $n \neq 0$. Assim $\mathfrak{I} \models \Phi_{\mathrm{gr}} \setminus \{\varphi_3\}$, mas $\mathfrak{I} \not\models \varphi_3$.
- (ii) Assuma $\Phi_{\rm gr} \setminus \{\varphi_2\} \models \varphi_2$, como φ_2 garante a existência de um inverso, basta tomarmos a estrutura $(\mathbb{N}, +)$ em \mathfrak{I} que vale $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_2\}$, mas $\mathfrak{I} \not\models \varphi_2$.
- (iii) Assuma $\Phi_{\rm gr} \setminus \{\varphi_1\} \models \varphi_1$, como φ_1 garante associatividade tomamos o operador \circ como não associativo, por exemplo a estrutura $(\mathbb{Z}, -)$ em \mathfrak{I} garante que $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_1\}$, mas $\mathfrak{I} \not\models \varphi_1$.

(b)
$$\Phi_{\text{eq}} = \{ \underbrace{\forall a(aRa)}_{(c)}, \underbrace{\forall a, b(aRb \leftrightarrow bRa)}_{(c)}, \underbrace{\forall a, b, c(aRb \land bRc \rightarrow aRc)}_{(c)} \}$$

- (b) $\Phi_{\text{eq}} = \{ \underbrace{\forall a(aRa)}_{\varphi_1}, \underbrace{\forall a, b(aRb \leftrightarrow bRa)}_{\varphi_2}, \underbrace{\forall a, b, c(aRb \land bRc \rightarrow aRc)}_{\varphi_3} \}$ (i) Para $\Phi_{\text{eq}} \setminus \{\varphi_3\}$ basta tomar (\mathbb{Z}, \cdot, R) tq aRb sse $a \cdot b \geqslant 0$. Assim ambos φ_1, φ_2 são satisfeitos, mas escolhendo b=0 em φ_3 tal relação não é sempre verdade.
- (ii) Para $\Phi_{eq} \setminus \{\varphi_2\}$ basta tomar (\mathbb{N}, \geq) , tal qual não é simétrica.

(iii) Para
$$\Phi_{eq} \setminus \{\varphi_1\}$$
 basta tomar $A = \{a\}$ e (A, R) tq $\forall a \in A(a \not R a)$.

Lema 7. Lema do Isomorfismo. Para S-estruturas isomórficas $\mathfrak A$ e $\mathfrak B$ e toda S-sentença φ :

$$\mathfrak{A} \models \varphi \text{ sse } \mathfrak{B} \models \varphi.$$

Proof. Para toda assinatura β em $\mathfrak A$ associamos a assinatura $\beta^{\pi} := \pi \circ \beta$ em $\mathfrak B$, e para as interpretações correspondentes $\mathfrak{I}=(\mathfrak{A},\beta)$ e $\mathfrak{I}^{\pi}=(\mathfrak{B},\beta^{\pi})$ mostraremos:

- (i) Para todo S-termo t: $\pi(\Im(t)) = \Im^{\pi}(t)$.
- (ii) Para toda S-fórmula φ : $\mathfrak{I} \models \varphi$ sse $\mathfrak{I}^{\pi} \models \varphi$.

Ambos os (i) e (ii) são fáceis de se provar por indução em termos e fórmulas, respectivamente.

Trataremos dos casos mais simples apenas:

$$\mathfrak{I} \vDash t_1 \equiv t_2 \text{ sse } \mathfrak{I}(t_1) = \mathfrak{I}(t_2);$$

$$\text{sse } \pi(\mathfrak{I}(t_1)) = \pi(\mathfrak{I}(t_2)) \text{ já que } \pi \text{ é injetiva};$$

$$\text{sse } \mathfrak{I}^\pi(t_1) = \mathfrak{I}^\pi(t_2);$$

$$\text{sse } \mathfrak{I}^\pi \vDash t_1 \equiv t_2.$$

$$\mathfrak{I} \vDash Rt_1 \dots t_n \text{ sse } R^{\mathfrak{A}}\mathfrak{I}(t_1) \dots \mathfrak{I}(t_n);$$

$$\text{sse } R^{\mathfrak{B}}\mathfrak{I}(\mathfrak{I}(t_1)) \dots \pi(\mathfrak{I}(t_n));$$

$$\text{sse } R^{\mathfrak{B}}\mathfrak{I}^\pi(t_1) \dots \mathfrak{I}^\pi(t_n);$$

$$\text{sse } R^{\mathfrak{B}}\mathfrak{I}^\pi(t_1) \dots \mathfrak{I}^\pi(t_n);$$

$$\text{sse } \mathfrak{I}^\pi \vDash Rt_1 \dots t_n.$$

$$\mathfrak{I} \vDash \neg \psi \text{ sse não vale } \mathfrak{I} \vDash \psi;$$

$$\text{sse não vale } \mathfrak{I}^\pi \vDash \psi;$$

$$\text{sse existe um } a \in \mathsf{Dom}(\mathfrak{A}) \text{ tq } \mathfrak{I}^{\frac{a}{x}} \vDash \psi;$$

$$\text{sse existe um } a \in \mathsf{Dom}(\mathfrak{A}) \text{ tq } (\mathfrak{I}^{\frac{a}{x}})^\pi \vDash \psi;$$

$$\text{sse existe um } a \in \mathsf{Dom}(\mathfrak{A}) \text{ tq } \mathfrak{I}^{\frac{\pi}{x}} \vDash \psi;$$

$$\text{sse existe um } a \in \mathsf{Dom}(\mathfrak{A}) \text{ tq } \mathfrak{I}^{\frac{\pi}{x}} \vDash \psi;$$

$$\text{sse existe um } a \in \mathsf{Dom}(\mathfrak{A}) \text{ tq } \mathfrak{I}^{\frac{\pi}{x}} \vDash \psi;$$

$$\text{sse existe um } b \in \mathsf{Dom}(\mathfrak{A}) \text{ tq } \mathfrak{I}^{\frac{\pi}{x}} \vDash \psi \text{ já que } \pi \text{ é sobrejetivo};$$

$$\text{sse } \mathfrak{I}^\pi \vDash \exists x \psi.$$

Exercício 11. Mostre que: (a) A relação < é elementarmente definível em $(\mathbb{R}, +, \cdot, 0)$, i.e., existe uma fórmula $\varphi \in \mathcal{L}_2^{\{+, \cdot, 0\}}$ tq $\forall a, b \in \mathbb{R}$:

$$(\mathbb{R}, +, \cdot, 0) \models \varphi[a, b] \text{ sse } a < b.$$

(b) A relação < não é elementarmente definível em $(\mathbb{R}, +, 0)$.

Proof. (a) Tome $\varphi = \exists c (\neg(c=0) \land (b=a+c^2))$, dessa forma $(\mathbb{R}, +, \cdot, 0) \models \varphi[a, b]$ sse a < b.

- (b) Seja $\pi: \mathfrak{A} \cong \mathfrak{A}$ um automorfismo em $\mathfrak{A} = (\mathbb{R}, +, \cdot, 0)$ tq $\pi(a) = -a$ que é o $c \in \mathbb{R}$ tq a + c = 0. Para provar que π é um automorfismo precisamos:
- (i) π é uma bijeção;
- (ii) $\pi(a+b) = \pi(a) + \pi(b)$;
- (iii) $\pi(0) = 0$.

Como todos são verficados isso garante que é um automorfismo. Agora vejamos que se existe um $\varphi[a,b]$ tq $\mathfrak{A} \models \varphi[a,b]$ sse a < b então como π é estritamente decrescente, $\mathfrak{A} \models \varphi[\pi(a),\pi(b)]$ sse a > b. Sabemos, também, pelo **Lema do Isomorfismo** que $\mathfrak{A} \models \varphi[a,b]$ sse $\mathfrak{A} \models \varphi[\pi(a),\pi(b)]$, i.e., a < b sse b < a, o que é uma contradição, portanto não existe tal $\varphi[a,b]$ e, com isso, < não é elementarmente definível.