4-08-2018 Research Notes

- Preliminaries
 - Definition: n connectivity
 - Definition: Weak Homotopy Equivalence
 - Definition: Cellular Map
 - Theorem: Cellular Approximation
 - Theorem: CW Approximation
 - Theorem: Whitehead
 - Theorem: Uniqueness of E-M Spaces
 - Theorem: Hurewicz
 - Theorem: Freudenthal Suspension
 - Theorem: Homotopy LES for a Fibration
 - Theorem: Existence of Postnikov Tower
 - Theorem: Spectral sequence of a Fibration
 - Theorem: Existence of Whitehead Tower
- Main Stuff

4-08-2018 Research Notes

Preliminaries

Definition: n connectivity

A space X is said to be n-connected if $\pi_i X = 0$ for $1 \leq i \leq n$.

Definition: Weak Homotopy Equivalence

A map f:X o Y is called a *weak homotopy equivalence* if the induced maps $f_i^*:\pi_i(X,x_0) o\pi_i(Y,f(x_0))$ are isomorphisms for every $i\ge 0$.

This is a strictly weaker notion than homotopy equivalence - for example, let L be the long line. Then $\pi_i(L)=0$ for all i, but L is not contractible, and thus $L\sim\{\mathrm{pt}\}$. However, the inclusion $\{\mathrm{pt}\}\hookrightarrow L$ is a weak homotopy equivalence, which can not be a homotopy equivalence.

Any weak homotopy equivalence induces isomorphisms on all integral co/homology groups, and thus co/homology groups with any coefficients by the UCT.

Definition: Cellular Map

If a map $X\stackrel{f}{ o} Y$ satisfies $f(X^{(n)})\subseteq Y^{(n)}$, then f is said to be a *cellular map*.

Theorem: Cellular Approximation

Any map $X \overset{f}{ o} Y$ between CW complexes is homotopic to a cellular map.

Theorem: CW Approximation

For every topological space X, there exists a CW complex Y and a weak homotopy equivalence $f:X\to Y$. Moreover, if X is n-dimensional, Y may be chosen to be n-connected and is obtained from X by attaching cells of dimension greater than n.

Theorem: Whitehead

Abbreviated statement: if X,Y are CW complexes, then any map $f:X\to Y$ is a weak homotopy equivalence if and only if it is a homotopy equivalence.

(Note: f must induce maps on all homotopy groups simultaneously.)

Full Statement: If $(X,x_0)\stackrel{f}{
ightarrow}(Y,f(x_0))$ such that the induced maps

$$f_*:\pi_*(X,x_0) o\pi_*(Y,y_0)\ [g]\mapsto [f\circ g]$$

are all isomorphisms and Y is connected, then f is a homotopy equivalence.

Theorem: Uniqueness of E-M Spaces

If X is a space with one nontrivial homology group G in degree k, so that X satisfies

$$\pi_i(X) = \left\{ egin{aligned} G, \ i = k \ 0, \ ext{otherwise} \end{aligned}
ight.$$

Then $X \simeq K(G, k)$.

(Note: two spaces with isomorphic homotopy groups may *not* be homotopy-equivalent in general - this is one exception.)

Theorem: Hurewicz

Given a space X, define a family of maps

$$h_k:\pi_kX o H_kX \ [f]\mapsto f_*(\mu_k)$$

where $H_k X = \langle \mu_k \rangle$.

If X is n-1 connected where $n\geq 2$, then h_k is an isomorphism for all $k\leq n$.

In particular, $\pi_n X \cong H_n X$ as groups.

Theorem: Freudenthal Suspension

If X is an n- connected CW complex, then there are maps $\pi_i X \to \pi_{i+1} \Sigma X$ which is an isomorphism for $i \leq 2n$ and a surjection for i = 2n+1.

Theorem: Homotopy LES for a Fibration

Theorem: Existence of Postnikov Tower

Theorem: Spectral sequence of a Fibration

Theorem: Existence of Whitehead Tower

Main Stuff

- Theorem: $\pi_1 S^1 = \mathbb{Z}$
 - o Proof: Covering space theory
- Theorem: $\pi_{1+k}S^1 = 0$ for all $0 < k < \infty$
 - \circ *Proof*: Use universal cover by $\mathbb R$
 - \circ Theorem: \mathbb{R}^n is contractible
 - \circ Theorem: R covers S^1
 - \circ Theorem: Covering spaces induce $\pi_i X \cong \pi_i ilde{X}, i \geq 2$
- Theorem: $\pi_1 S^n = 0$ for $n \geq 2$.
 - $\circ \ S^n$ is simply connected.
- Theorem: $\pi_n S^n = \mathbb{Z}$
 - Proof: The degree map is an isomorphism. [G&M 4.1]
 - Alternatively:
 - ullet LES of Hopf fibration gives $\pi_1 S^1 \cong \pi_2 S^2$
 - ullet Freudenthal suspension: $\pi_k S^k \cong \pi_{k+1} S^{k+1}, k \geq 2$
- ullet Theorem: $\pi_k S^n = 0$ for all 1 < k < n

- \circ *Proof*: By cellular approximation: For k < n,
 - $\qquad \text{Approximate } S^k \overset{f}{\to} S^n \text{ by } \tilde{f}$
 - ullet $ilde{f}$ maps the k-skeleton to a point,
 - $\bullet \ \ \hbox{Which forces } \pi_k S^n = 0?$
- o Alternatively: Hurewicz
- ullet Theorem: $\pi_k S^2 = \pi_k S^3$ for all k>2
- ullet Theorem: $\pi_k S^2
 eq 0$ for any $2 < k < \infty$
 - $\circ~$ Corollary: $\pi_k S^3
 eq 0$ for any $2 < k < \infty$
- ullet Theorem: $\pi_k S^2 = \pi_k S^3$
 - Proof: LES of Hopf fibration
- ullet Theorem: $\pi_3 S^2 = \mathbb{Z}$
 - o Proof: Method of killing homotopy
- ullet Theorem: $\pi_4 S^2 = \mathbb{Z}_2$
 - o Proof: Continued method of killing homotopy
- Theorem: $\pi_{n+1}S^n=\mathbb{Z}$ for $n\geq 2$?
 - o Proof: Freudenthal suspension in stable range?
- Theorem: $\pi_{n+2}S^n=\mathbb{Z}_2$ for $n\geq 2$?
 - o Proof: Freudenthal suspension in stable range?