Soutenance de thèse Approximations cellulaires d'applications diagonales de polytopes opéradiques

Guillaume LAPLANTE-ANFOSSI

Sous la direction de Eric HOFFBECK et Bruno VALLETTE Laboratoire Analyse, Géométrie et Applications, Institut Galilée Université Sorbonne Paris Nord

Lundi 27 juin 2022

Qu'est-ce que la topologie algébrique?

Henri Poincaré (1854-1912)

 But : comprendre la forme des objets à l'aide des nombres et leurs opérations

• Étude des formes avec une certaine flexibilité

Qu'est-ce que la topologie algébrique?

Comment distinguer la surface d'un ballon de celle d'un beignet?

- Compter leurs trous!
- Attention : ces nombres sont en général insuffisants, il faut considérer des *ensembles* de nombres **et** *leurs opérations* (multiplier, élever au carré, etc.)

Qu'est-ce que la topologie algébrique?

 Rêve de Poincaré : décrire entièrement la forme des objets à l'aide de nombres et leurs opérations

Théorème (Mandell, 2006)

Deux objets ont la même forme si et seulement si on peut leur associer la même structure d'algèbre E_{∞} .

COCHAINS AND HOMOTOPY TYPE

by Michael A. MANDELL

ABSTRACT

Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E_{∞} algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E_{∞} algebras is faithful but not full.

 Prix à payer : extension considérable de l'algèbre (nombres et opérations), qui intègre la "flexibilité" des formes; c'est l'algèbre homotopique

Buts de cette thèse

• Étude de ces nouvelles structures algébriques compliquées, à l'aide de formes simples

- À partir de cas particuliers, développer une théorie générale.
- Problème : la diagonale...

Buts de cette thèse

Cela exige de considérer des formes un peu moins simples...

 Résultats : des formules explicites nouvelles, qui pourront servir à de nouveaux calculs en topologie algébrique

$$\rho_t \coloneqq \sum_{\substack{N,N' \in \mathcal{N}(t) \\ |\mathcal{N}| + |\mathcal{N}'| = |V(t)| \\ \forall (I,J) \in D(|E(t)|), \exists N \in \mathcal{N}, |N \cap I| > |N \cap J| \\ \sigma \cap \exists N' \in \mathcal{N}', |N' \cap I| < |N' \cap J|}} (-1)^{|Ad(\mathcal{N}) \cap Ad(\mathcal{N}')|} \operatorname{sgn}(\sigma_{\mathcal{N}\mathcal{N}'}) \ \mathcal{N}(\mu_t) \otimes \mathcal{N}'(\nu_t) \ \sigma_t$$

Algèbres associatives à homotopie près

Définition

Une algèbre A_{∞} est un espace vectoriel gradué A muni d'applications $m_n: A^{\otimes n} \to A, n \geq 1$ de degré $|m_n| = n - 2$, vérifiant les relations

$$\sum_{p+q+r=n} (-1)^{p+qr} m_{p+1+r} (\operatorname{id}^{\otimes p} \otimes m_q \otimes \operatorname{id}^{\otimes r}) = 0 \; .$$

C'est une algèbre où on a relâché la relation d'associativité à homotopie près :

- m₁ est une différentielle
- m₂ est un produit
- m_3 est une homotopie entre $m_2(m_2 \otimes id)$ et $m_2(id \otimes m_2)$
- m_4 est une homotopie entre les homotopies...

Produit tensoriel universel d'algèbres A_{∞}

Le produit tensoriel $A \otimes B$ de deux algèbres associatives peut être muni d'une structure d'algèbre associative en posant

$$m_1^{A \otimes B} := m_1^A \otimes \mathrm{id} + \mathrm{id} \otimes m_1^B$$

 $m_2^{A \otimes B} := m_2^A \otimes m_2^B$

Problème

- Comment munir le produit tensoriel de deux algèbres A_{∞} d'une structure d'algèbre A_{∞} qui généralise le produit tensoriel des algèbres associatives ?
- Comment trouver une formule *universelle*, i.e. qui s'applique à toute paire d'algèbres A_{∞} ?

Réponse : en étudiant la géométrie discrète (!) ...

Le problème de la diagonale

Soit P un polytope dans \mathbb{R}^n . L'application diagonale

$$\Delta : P \rightarrow P \times P$$
$$x \mapsto (x, x)$$

n'est pas cellulaire.

On lui cherche une *approximation cellulaire*, c'est-à-dire une application cellulaire homotope à Δ , et qui coincide avec Δ sur les sommets de P.

Associaèdres

Définition

Un associaèdre de dimension $n \ge 0$ est un polytope K_{n+2} dont le treillis des faces est isomorphe au treillis des arbres planaires à n+2 feuilles, munis de la contraction des arêtes internes.

Il existe plusieurs réalisations de l'associaèdre.

Diagonale opéradique

Proposition

L'opérade A_{∞} est isomorphe aux chaînes cellulaires des associaèdres

$$C^{\operatorname{cell}}_{ullet}(K_n)\cong A_{\infty}(n)$$

Proposition

Supposons que l'on sache définir, pour une famille de réalisations de l'associaèdre $\{K_n\}_{n\geq 1}$,

- Une approximation cellulaire de la diagonale $\Delta_n: K_n \to K_n \times K_n$,
- Une structure d'opérade topologique cellulaire compatible.

Alors, on a un produit tensoriel universel d'algèbres A_{∞} .

Démonstration.

Le foncteur $C_{ullet}^{\mathrm{cell}}$ étant monoidal fort, on obtient une diagonale opéradique $A_{\infty} \to A_{\infty} \otimes A_{\infty}$.

Buts de cette thèse

Étude de deux généralisations :

- Opérades à homotopie près
- Morphismes infinis d'algèbres A_∞

Dans chaque cas, on va définir

- Des approximations cellulaires des polytopes en question
- Une structure opéradique (topologique, cellulaire) compatible

Ceci mènera, via le foncteur des chaînes cellulaires, à la définition de **produits tensoriels universels** dans chaque cas.

En fait, on développe une **théorie générale** des approximations cellulaires, applicable à de nouveaux cas.

Plan de la présentation

- État de l'art
 - Le travail de Masuda-Tonks-Thomas-Vallette
 - Point de départ de la thèse
- Résultats
 - Théorie générale des approximations cellulaires de la diagonale d'un polytope
 - La diagonale des opéraèdres
 - La diagonale des multiplièdres
- Perspectives
 - Polytopes d'épines
 - Construction de Steenrod
 - Homologie des espaces fibrés

Une nouvelle méthode

Définition (Billera-Sturmfels, 1992)

Le *polytope de fibre* d'une projection $\pi: P \to Q$ est le polytope

$$\Sigma(\textit{P},\textit{Q}) := \left\{ rac{1}{\mathrm{vol}(\textit{Q})} \int_{\textit{Q}} \gamma \ : \ \gamma \ \mathsf{est} \ \mathsf{une} \ \mathsf{section} \ \mathsf{de} \ \pi
ight\} \ .$$

- Son treillis des faces encode les subdivisions cohérentes de Q, induites par la projection π .
- À chaque sommet correspond une unique section $\gamma: Q \to P$ dont l'image est une union de faces de dimension $\dim Q$

Une nouvelle méthode

Proposition (Masuda–Tonks–Thomas–Vallette, 2021)

Chaque sommet du *polytope des diagonales* $D_P := \Sigma(P \times P, P)$ associé à la projection $(x, y) \mapsto (x + y)/2$ définit une approximation cellulaire de la diagonale de P.

Le choix d'un sommet de D_P revient à un choix de vecteur en position générique pour P lui-même.

Vecteur d'orientation

Définition

Un vecteur \vec{v} oriente P s'il n'est perpendiculaire à aucune arête de P.

- Existe toujours ; condition de généricité.
- Induit une orientation de toutes les arêtes.
- Toute face F de P comporte alors un unique minimum $\operatorname{bot}_{\vec{v}}(F)$ et un unique maximum $\operatorname{top}_{\vec{v}}(F)$ par rapport au produit scalaire $\langle -, \vec{v} \rangle$.

Formule explicite pour la diagonale

Définition

Un vecteur \vec{v} oriente positivement P s'il n'est perpendiculaire à aucune arête de $P \cap \rho_z P$ pour tout $z \in P$, où $\rho_z P := 2z - P$.

Proposition (MTTV, 2021)

Si (P, \vec{v}) est positivement orienté, la diagonale est donnée par

$$\Delta_{(P,\vec{v})}: P \rightarrow P \times P$$
 $z \mapsto (bot(P \cap \rho_z P), top(P \cap \rho_z P)).$

Le travail de Masuda-Tonks-Thomas-Vallette

 Choix de vecteurs d'orientations pour les réalisations de Loday des associaèdres, qui définissent des diagonales

$$\Delta_n := \Delta_{(K_n, \vec{v})} : K_n \to K_n \times K_n$$

- Structure d'opérade topologique compatible : unique!
- Preuve de la "formule magique" de Markl-Shnider

$$\operatorname{Im} \Delta_n = \bigcup_{\operatorname{top} F \leq \operatorname{bot} G} F \times G .$$

Une généralisation

On s'intéresse à un cas plus général : les opérades à homotopie près.

Définition

Une opérade non-symérique non-unitaire à homotopie près est une famille d'espace vectoriels $\mathcal{P} = \{\mathcal{P}(n)\}_{n\geq 1}$ munie d'opérations

$$\mu_t: \mathcal{P}(n_1) \otimes \cdots \otimes \mathcal{P}(n_k) \to \mathcal{P}(n_1 + \cdots + n_k - k + 1)$$

de degré k-2 pour chaque arbre t à $k \ge 1$ sommets, où n_1, \ldots, n_k sont les nombres de feuilles entrantes à chaque sommet de t, satisfaisant les relations

$$\sum_{t'\circ_i t''=t} \pm \mu_{t'}\circ_i \mu_{t''} = \mathbf{0},$$

où la somme en faite sur tous les sous-arbres t'' de t.

Opéraèdres

Définition

Un *opéraèdre* de dimension $k \ge 0$ est un polytope P_t dont le treillis des faces est isomorphe au treillis des nichages d'un arbre planaire t à k+2 sommets.

Les opéraèdres généralisent les associaèdres et encodent de manière analogue la notion d'opérade à homotopie près.

Point de départ de la thèse

Problème

Trouver une formule universelle pour le produit tensoriel de deux opérades non-symétriques à homotopie près.

On peut reprendre la méthode de MTTV, cependant

- Plusieurs choix de diagonales respectent l'ordre de type Tamari sur les arêtes; compatibilité avec la structure opéradique?
- La formule magique ne tient plus!
- La technique de preuve utilisée pour la formule magique ne se généralise pas.

---> Solution : développer une théorie générale.

Retour au plan

- État de l'art
 - Le travail de Masuda-Tonks-Thomas-Vallette
 - Point de départ de la thèse
- Résultats
 - Théorie générale des approximations cellulaires de la diagonale d'un polytope
 - La diagonale des opéraèdres
 - La diagonale des multiplièdres
- Perspectives
 - Polytopes d'épines
 - Construction de Steenrod
 - Homologie des espaces fibrés

Éventail normal

Définition

Le *cône normal* $\mathcal{N}_P(F)$ d'une face $F \in \mathcal{L}(P)$, est défini par

$$\mathcal{N}_P(F) := \left\{ c \in (\mathbb{R}^n)^* \mid \forall x \in F , cx = \max_{y \in P} cy \right\}.$$

Définition

L'éventail normal \mathcal{N}_P de P est l'ensemble de tous les cônes normaux des faces de P, c'est-à-dire que $\mathcal{N}_P := \{\mathcal{N}_P(F) \mid F \in \mathcal{L}(P) \setminus \emptyset\}$.

Résultats

Proposition (L.-A.)

Pour un polyope positivement orienté (P, \vec{v}) , on a

$$(F,G) \in \operatorname{Im} \triangle_{(P,\vec{v})} \iff \vec{v} \in \mathcal{N}_{P \cap \rho_z P}(G \cap \rho_z F)$$

pour tout $z \in (\mathring{F} + \mathring{G})/2$.

Ainsi, l'image cellulaire de la diagonale ne dépend que de l'éventail normal de *P*.

Proposition (L.-A.)

Pour un polyope positivement orienté (P, \vec{v}) , on a

$$(F,G) \in \operatorname{Im} \triangle_{(P,\vec{V})} \implies \operatorname{top} F \leq \operatorname{bot} G$$
.

Ainsi, la formule magique est la formule "minimale".

Arrangement d'hyperplans fondamental

Définition

L'arrangement d'hyperplans fondamental \mathcal{H}_P d'un polytope $P \subset \mathbb{R}^n$ est l'ensemble des hyperplans perpendiculaires aux directions des arêtes de $P \cap (2z - P)$, pour tout $z \in P$.

- Il raffine l'éventail normal de P.
- Chaque chambre définit une diagonale de P.

Formule universelle

Théorème (L.-A.)

Soit P un polytope positivement orienté par \vec{v} . Pour chaque $H \in \mathcal{H}_P$, on choisit un vecteur normal \vec{d}_H tel que $\langle \vec{d}_H, \vec{v} \rangle > 0$. Alors, on a

$$(F,G)\in \operatorname{Im}\triangle_{(P,\vec{v})}$$

$$\iff \forall H \in \mathcal{H}_P, \ \exists i, \ \langle \vec{F}_i, \vec{d}_H \rangle < 0 \ ou \ \exists j, \ \langle \vec{G}_j, \vec{d}_H \rangle > 0 \ .$$

Ici, les \vec{F}_i et les \vec{G}_j sont des vecteurs qui définissent les cônes normaux de F et G.

Idée de démonstration.

On a vu que $(F,G) \in \operatorname{Im} \triangle_{(P,\vec{v})} \iff \vec{v} \in \mathcal{N}_{P \cap \rho_z P}(G \cap \rho_z F)$. La chambre de \mathcal{H}_P choisie par \vec{v} est chaque fois d'un côté où de l'autre de chaque hyperplan H, et elle ne peut être contenue dans $\mathcal{N}_{P \cap \rho_z P}(G \cap \rho_z F)$ que si ce cône est lui-même "du bon côté" de chaque H.

Invariance par dé-raffinement de l'éventail

- Cette formule nous permet d'obtenir une description combinatoire de l'image cellulaire de la diagonale pour tout polytope
- Elle est en fait valide pour tout polytope *Q* dont l'éventail normal est raffiné par celui de *P*.

Proposition (L.-A.)

Soit P un polytope positivement orienté par \vec{v} , et soit Q un polytope dont l'éventail normal est raffiné par celui de P. Alors, on a

$$(F,G) \in \operatorname{Im} \triangle_{(Q,\vec{v})}$$

$$\iff \forall H \in \mathcal{H}_P, \ \exists i, \ \langle \vec{F}_i, \vec{d}_H \rangle < 0 \ \text{ou} \ \exists j, \ \langle \vec{G}_j, \vec{d}_H \rangle > 0 \ .$$

Permutoèdre

Définition

Le *permutoèdre* de dimension n-1 dans \mathbb{R}^n est l'enveloppe convexe des points $\sum_{i=0}^n ie_{\sigma(i)} \in \mathbb{R}^n$ pour toutes les permutations $\sigma \in \mathbb{S}_n$.

Permutoèdre généralisé

Définition

Un *permutoèdre généralisé* est un polytope dont l'éventail normal est raffiné par celui du permutoèdre.

Les opéraèdres sont tous des permutoèdres généralisés; on est donc ramenés à l'étude du permutoèdre.

L'arrangement fondamental du permutoèdre

Théorème (L.-A.)

L'arrangement d'hyperplans fondamental du permutoèdre de dimension n-1 dans \mathbb{R}^n est l'ensemble d'hyperplans

$$\sum_{i\in I} x_i = \sum_{j\in J} x_j \quad \text{pour tous } (I,J) \in D(n) ,$$

$$o\grave{u}\; \textit{D}(\textit{n}) := \{(\textit{I},\textit{J}) \mid \textit{I},\textit{J} \subset \{1,\ldots,\textit{n}\}, |\textit{I}| = |\textit{J}|,\textit{I} \cap \textit{J} = \emptyset, \min(\textit{I} \cup \textit{J}) \in \textit{I}\}.$$

Cet arrangement raffine l'éventail de tresses.

La diagonale des opéraèdres

Définition

Un vecteur $\vec{v} \in \mathbb{R}^n$ est dit d'orientation principale si ses coordonnées satisfont les équations $\sum_{i \in I} v_i > \sum_{i \in J} v_i$ pour tous $(I, J) \in D(n)$.

Théorème (L.-A.)

- À chaque arbre planaire t on associe une réalisation de Loday de l'opéraèdre P_t
- Le choix d'un vecteur d'orientation principal \vec{v} , pour chacun de ces polytopes, définit une famille de diagonales $\triangle_{(P_t,\vec{v})}: P_t \to P_t \times P_t$
- Ce choix force une structure d'opérade colorée topologique cellulaire compatible sur la famille { *P*_t}.
- (!) Choix des vecteurs cohérent avec la structure
- (!) La formule magique ne tient plus!

Produit tensoriel universel

On obtient ainsi, en appliquant le foncteur des chaînes cellulaires, une formule universelle pour le produit tensoriel d'opérades à homotopie près.

Proposition (L.-A.)

Le produit tensoriel $\mathcal{P} \otimes \mathcal{Q}$ de deux opérades non-symétriques non-unitaires à homotopie près $(\mathcal{P}, \{\mu_t\})$, $(\mathcal{Q}, \{\nu_t\})$ est donné par les opérations

$$\rho_t := \sum_{\substack{\mathcal{N}, \mathcal{N}' \in \mathcal{N}(t) \\ |\mathcal{N}| + |\mathcal{N}'| = |V(t)| \\ \forall (I,J) \in D(|E(t)|), \exists N \in \mathcal{N}, |N \cap I| > |N \cap J| \\ \text{or } \exists N' \in \mathcal{N}', |N' \cap J| < |N' \cap J|}} \pm \mathcal{N}(\mu_t) \otimes \mathcal{N}'(\nu_t) \sigma_t ,$$

où $\mathcal{N}(\mu_t)$ and $\mathcal{N}'(\nu_t)$ représentent la composition des opérations associées aux nids de \mathcal{N} et \mathcal{N}' et où σ_t est un isomorphisme permutant les facteurs.

Une formule nouvelle

Cette formule, facile à implémenter dans l'ordinateur, présente une combinatoire nouvelle qui reste largement inexplorée.

```
\triangle_{(P,\vec{v})}(12) = 1|2 \times 12 \cup 12 \times 2|1
                      = 1|2|3 \times 123 \cup 123 \times 3|2|1 \cup 12|3 \times 2|13 \cup 13|2 \times 3|12
  \triangle_{(P,\vec{v})}(123)
                       \cup 2|13 × 23|1 \cup 1|23 × 13|2 \cup 12|3 × 23|1 \cup 1|23 × 3|12
\triangle_{(P,\vec{v})}(1234)
                   = 1|2|3|4 \times 1234 \quad \cup \quad 1234 \times 4|3|2|1
                                                                           \cup 12|3|4 × 2|134 \cup 134|2 × 4|3|12
                    \cup 12|3|4 × 23|14 \cup 14|23 × 4|3|12 \cup
                                                                                 2|13|4 \times 23|14 \cup 14|23 \times 4|13|2
                         13|2|4 \times 3|124 \cup 124|3 \times 4|2|13 \cup 1|23|4 \times 3|124 \cup 124|3 \times 4|23|1
                    \cup \quad 1|2|34 \times 124|3 \quad \cup \quad 3|124 \times 34|2|1 \quad \cup \quad 1|3|24 \times 134|2 \quad \cup \quad
                                                                                                            2|134 \times 24|3|1
                         1|23|4 \times 134|2 \cup 2|134 \times 4|23|1 \cup
                                                                                 2|3|14 \times 234|1 \quad \cup
                                                                                                            1|234 \times 14|3|2
                    \cup \quad 2|13|4 \times 234|1 \quad \cup \quad \mathbf{1}|\mathbf{234} \times \mathbf{4}|\mathbf{13}|\mathbf{2} \quad \cup \quad 12|3|4 \times 234|1 \quad \cup \quad \mathbf{1}|\mathbf{234} \times \mathbf{4}|\mathbf{3}|\mathbf{12}
                         1|24|3 \times 14|23 \cup 23|14 \times 3|24|1 \cup 1|2|34 \times 14|23 \cup
                                                                                                            23|14 \times 34|2|1
                         1|23|4 	imes 13|24
                                              \cup 24|13 × 4|23|1
                                                                          \cup 14|2|3 	imes 4|123 \cup
                                                                                                            123|4 \times 3|2|14
                        1|24|3 \times 4|123 \cup 123|4 \times 3|24|1
                                                                         \cup 1|2|34 × 4|123 \cup 123|4 × 34|2|1
                         3|14|2 	imes 34|12
                                              \cup 12|34 × 2|14|3 \cup 1|3|24 × 34|12 \cup 12|34 × 24|3|1
                                                                           \cup 1|23|4 × 34|12
                                                                                                            12|34 \times 4|23|1
                    \cup 13|4|2 × 34|12 \cup 12|34 × 2|4|13
                    \cup 2|14|3 × 24|13
                                              \cup 13|24 × 3|14|2
                                                                                                             13|24 \times 3|4|12
                                                                               12|4|3 \times 24|13 \cup
                          1|2|34 \times 24|13
                                                     13|24 \times 34|2|1
```

Perspectives

Maintenant que l'on a établit la théorie nécessaire et la formule pour le permutoèdre en particulier, on peut envisager des applications à plusieurs autres familles de polytopes opéradiques.

- Permutoèdres généralisés
 - Multiplièdres (Morphismes infinis entre algèbres A_{∞})
 - Multiplopéraèdres (Morphismes d'opérades à homotopie près)
 - Opéraèdres modulaires (Opérades modulaires à homotopie près)
- Autres familles
 - 2-associaèdres (Topologie symplectique)
 - Freehedra (Théorie homotopique des représentations)
 - Assocoipièdres (Topologie des cordes)

Pour la première catégorie, on peut se servir directement du calcul de l'arrangement d'hyperplans fondamental du permutoèdre.

Les multiplièdres

Définition

Un multiplièdre de dimension $n \ge 0$ est un polytope J_n dont le treillis des faces est isomorphe au treillis des arbres bicolorés à n + 1 feuilles.

Les multiplièdres encodent la notion de morphisme infini entre algèbres A_{∞} .

La diagonale des multiplièdres

Définition

Un vecteur $\vec{v} \in \mathbb{R}^n$ est dit de bonne orientation si ses coordonnées satisfont les équations $v_i \ge 2v_{i+1}$, $1 \le i \le n-1$, et $v_n > 0$.

Théorème (L.-A.-Mazuir)

- Les réalisations de Forcey–Loday {J_n} des multiplièdres sont orientées positivement par les bons vecteurs d'orientation
- Ces choix définissent une famille de diagonales

$$\triangle_{(J_n,\vec{\mathbf{v}})}:J_n\to J_n\times J_n$$

- Qui à leur tour forcent une structure de ($\{K_n\},\{K_n\}$)-bimodule opéradique topologique cellulaire compatible sur la famille $\{J_n\}$.
- (!) Choix des vecteurs cohérent avec la structure
- (!) La formule magique ne tient plus!

La diagonale des multiplièdres

Une subtilité : les réalisations de Forcey-Loday ne sont pas des permutoèdres généralisés, mais sont obtenus de réalisations qui le sont par projection.

Loday associahedron		Ardila–Doker multiplihedron	Forcey–Loday multiplihedron			
K_{ω}	\hookrightarrow	$\mathrm{K}_{oldsymbol{\omega}}\left(rac{1}{2} ight)$	$\overset{\pi(2\cdot)}{\twoheadrightarrow}$	J_{ω}		
\mathbb{R}^n	\hookrightarrow	\mathbb{R}^{n+1}	->	\mathbb{R}^n		
Gen. permutahedron		Gen. permutahedron		Not a gen. permutahedror		

- Cette projection préserve l'orthogonalité des bons vecteurs d'orientation avec les vecteurs directeurs de H_P, pour P le permutoèdre, et commute avec les diagonales.
- On peut donc appliquer directement les calculs précédents.

Une formule nouvelle

- On obtient ainsi, en appliquant le foncteur des chaînes cellulaires, une formule universelle pour le produit tensoriel de morphismes infinis entre algèbres A_{∞} .
- Cette formule, facile à implémenter dans l'ordinateur, présente une combinatoire nouvelle.

Pairs $(F,G) \in \operatorname{Im} \triangle_{(P,\vec{v})}$	$_{P,ec{v})}$ Polytopes		1	2	3	4	5	6	[OEI22]
	Associahedra	1	2	6	22	91	408	1938	A000139
$\dim F + \dim G = \dim P$	Multiplihedra	1	2	8	42	254	1678	11790	to appear
	Permutahedra	1	2	8	50	432	4802	65536	A007334
	Associahedra	1	3	13	68	399	2530	16965	A000260
$\dim F = \dim G = 0$	Multiplihedra	1	3	17	122	992	8721	80920	to appear
	Permutahedra	1	3	17	149	1809	28399	550297	A213507

Applications en topologie symplectique

Cette formule explicite pourrait être utilisée pour des calculs en topologie symplectique

- Homologie de Heegaard–Floer des variétés de dimension 3 et 4 (Lipshitz–Oszvàth–Thurston)
- Correspondances Lagrangiennes entre catégories de Fukaya associées à deux variétés symplectiques et leur produit (Fukaya, Amorim)

La catégorie des algèbres A_{∞}

La catégorie (∞ - A_{∞} -alg, \otimes) est-elle monoïdale?

Proposition (L.-A.-Mazuir)

Il n'existe pas de diagonale sur le (A_{∞}, A_{∞}) -bimodule opéradique M_{∞} qui soit compatible avec la composition des morphismes infinis.

Démonstration.

Calcul direct : tentative de construire par réccurence une diagonale vérifiant la propriété désirée ; contradiction dès l'arité 2.

- Analogue d'un résultat de Markl–Shnider selon lequel il n'existe pas de diagonale coassociative pour l'opérade A_{∞} .
- On montre facilement que ces propriétés tiennent à homotopie près. Quelle est la structure homotopique sous-jacente?

Retour au plan

- Problématique
 - Motivation : produit tensoriel universel d'algèbres A_{∞}
 - Produit tensoriel universel d'opérades à homotopie près
- Résultats
 - Théorie générale des approximations cellulaires de la diagonale d'un polytope
 - La diagonale des opéraèdres
 - La diagonale des multiplièdres
- Perspectives
 - Polytopes d'épines
 - Construction de Steenrod
 - Homologie des espaces fibrés

Polytopes d'épines

- Les réalisations de Loday des opéraèdres étaient déjà dans une prépublication de V. Pilaud datant de 2013
- Font partie d'une famille plus grande de polytopes, les polytopes d'épine
- La structure d'opérade se généralise en une structure de diopérade sur ces polytopes, et donne naissance à une structure algébrique nouvelle.

Définition (L.-A.-Pilaud)

Une *opérade supérieure* est une famille d'espaces vectoriels $\mathcal{P} = \{\mathcal{P}(n)\}$ munis de compositions partielles supérieures

$$\circ_i^k : \mathcal{P}(n_1) \otimes \cdots \otimes \mathcal{P}(n_k) \to \mathcal{P}(n_1 + \cdots + n_k - 1)$$

vérifiant des axiomes de composition parallèle et séquentielle.

Construction de Steenrod

- L'approximation cellulaire de la diagonale des simplexes n'est pas invariante par l'action de $\mathbb{S}_2: x \otimes y \mapsto y \otimes x$
- Steenrod corrige homotopiquement ce défaut de symétrie en construisant ses fameux coproduits cup-i

$$\triangle_i: C^{\operatorname{cell}}_{\bullet}(\varDelta^n) \to C^{\operatorname{cell}}_{\bullet}(\varDelta^n) \otimes C^{\operatorname{cell}}_{\bullet}(\varDelta^n)$$

• En utilisant le polytope des diagonales D_P , on peut étendre cette construction au niveau topologique cellulaire, à tout polytope.

Théorème (L.-A.-Medina-Mardones)

Une base orthonormale générique $\{v_i\}$ définit une construction cellulaire des coproduits cup-i $S^{\infty} \times P \to P \times P$, pour tout polytope P.

Homologie des espaces fibrés

Soit *C* une cogèbre coassociative et *A* une algèbre associative.

- Un Maurer–Cartan $\alpha \in \operatorname{Hom}(\mathcal{C},\mathcal{A})$ définit une différentielle tordue sur $\mathcal{C} \otimes \mathcal{A}$
- Celle-ci permet (Brown, 1958) de calculer l'homologie d'un espace fibré $F \to X \to B$ en terme de l'homologie du produit tensoriel tordu $C_{\bullet}(F) \otimes C_{\bullet}(B)$
- Peut-on calculer l'homologie de X en fonction des homologies de F et de B?

Homologie des espaces fibrés

Soit C une cogèbre A_{∞} et A une algèbre A_{∞} .

Proposition (L.-A.—Mazuir)

Une diagonale sur A_{∞} permet de définir l'algèbre A_{∞} de convolution $\operatorname{Hom}(C,A)$.

- Un Maurer–Cartan $\alpha \in \operatorname{Hom}(\mathcal{C}, \mathcal{A})$ définit une différentielle tordue sur $\mathcal{C} \otimes \mathcal{A}$
- Celle-ci permet (Kadeishvili, 1980; Prouté, 1986) de calculer l'homologie d'un fibré principal $F \to X \to B$ en terme de l'homologie du produit tensoriel tordu $H_{\bullet}(F) \otimes H_{\bullet}(B)$

Proposition (L.-A.—Mazuir)

Une diagonale sur M_{∞} permet d'associer à deux morphismes infinis $A \rightsquigarrow A', C' \rightsquigarrow C$ un morphisme infini $\operatorname{Hom}(C, A) \rightsquigarrow \operatorname{Hom}(C', A')$.

Homologie des espaces fibrés

On peut maintenant envisager calculer explicitement, via le théorème de transfer homotopique et les formules obtenues dans cette thèse, le Maurer–Cartan définissant le produit tensoriel tordu $H_{\bullet}(F) \otimes H_{\bullet}(B)$...

$$C_{\bullet}(F) \otimes C_{\bullet}(B)$$

$$\downarrow \downarrow \downarrow p \qquad \downarrow \downarrow \downarrow p$$

$$H_{\bullet}(F) \otimes H_{\bullet}(B)$$

...et poursuivre le programme initié dans la thèse de A. Prouté en 1986, qui se concluait ainsi :

Le calcul précédent de la structure de Kadeishvili comultiplicative de $H_{\bullet}(K(\mathbb{Z}/p,n);\mathbb{Z}/p)$ pour p premier impair s'arrête ici pour les raisons expliquées dans l'introduction. Il faudrait en effet pour continuer être capable d'effectuer [...] un produit tensoriel (d'ailleurs infini) de cogèbres A_{∞} .

Merci de votre attention!

