IDL commands in numerical Python

Copyright ©2006 Vidar Bronken Gundersen

Permission is granted to copy, distribute and/or modify this document as long as the above attribution is kept and the resulting work is distributed under a license identical to this one.

Contributor: Gary Ruben

The idea of this document (and the corresponding XML instance) is to provide a quick reference for switching from IDL to an open-source environment, such as GDL, Python, R or Octave and Gnuplot for numeric processing and data visualisation.

Time-stamp: 2007-11-09T16:46:36 vidar

Help

IDL	Python	MATLAB/Octave
?	help()	doc
	•	Octave: help -i % browse with Info
?help	help	help help or doc doc
?plot or man, 'plot	help(plot) or ?plot	help plot
	help(pylab)	help splines or doc splines
demo		demo
	<pre>? ?help ?plot or man,'plot</pre>	<pre>? help() ?help help ?plot or man, 'plot help(plot) or ?plot help(pylab)</pre>

Searching available documentation

Desc.	IDL	Python	MATLAB/Octave
Search help files			lookfor plot
List available packages		help(); modules [Numeric]	help
Locate functions		help(plot)	which plot
1.2 Using interactively	1		

Using interactively

Desc.	IDL	Python	MATLAB/Octave
Start session	idlde	ipython -pylab	Octave: octave -q
Auto completion		TAB	Octave: TAB or M-?
Run code from file	@"foo.idlbatch" or .run 'foo.pro'	execfile('foo.py') or run foo.py	foo(.m)
Command history	help,/rec	hist -n	Octave: history
Save command history	journal, 'IDLhistory'		diary on [] diary off
End session	exit or CTRL-D	CTRL-D	exit or quit
		CTRL-Z # windows	
		svs.exit()	

Operators

Desc.	IDL	Python	MATLAB/Octave
Help on operator syntax			help -

¹References: Hankin, Robin. R for Octave users (2001), available from http://cran.r-project.org/doc/contrib/R-and-octave-2.txt (accessed 2005.07.24); Martelli, Alex. Python in a Nutshell (O'Reilly, 2003); Oliphant, Travis. Guide to NumPy (Trelgol, 2006); Hunter, John. The Matplotlib User's Guide (2005), available from http://matplotlib.sf.net/ (accessed 2005.07.31); Langtangen, Hans Petter. Python Scripting for Computational Science (Springer, 2004); Ascher et al.: Numeric Python manual (2001), available from http://numeric.scipy.org/numpy.pdf (accessed 2005.06.25); Moler, Cleve. Numerical Computing with MATLAB (MathWorks, 2004), available from http://www.mathworks.com/moler/(accessed 2005.03.10); Eaton, John W. Octave Quick Reference (1996); Merrit, Ethan. Demo scripts for gnuplot version 4.0 (2004), available from http://gnuplot.sourceforge.net/demo/ (accessed 2005.07.24); Woo, Alex. Gnuplot Quick Reference (2004), available from http://www.gnuplot.info/docs/gpcard.pdf (accessed 2005.07.14); Venables & Smith: An Introduction to R (2005), available from http://cran.r-project.org/doc/manuals/R-intro.pdf (accessed 2005.07.25); Short, Tom. R reference card (2005), available from http://www.rpad.org/Rpad/R-refcard.pdf (accessed 2005.07.24); Greenfield, Jedrzejewski & Laidler. Using Python for Interactive Data Analysis (2005), pp.125-134, available from http://stsdas.stsci.edu/perry/pydatatut.pdf (accessed 2005.07.29); Brisson, Eric. Using IDL to Manipulate and Visualize Scientific Data, available from http://scv.bu.edu/Tutorials/IDL/ (accessed 2005.07.31).

2.1 Arithmetic operators

Desc.	IDL	Python	MATLAB/Octave
Assignment; defining a number	a=1 & b=1	a=1; b=1	a=1; b=2;
Addition	a + b	a + b or add(a,b)	a + b
Subtraction	a - b	a - b or subtract(a,b)	a - b
Multiplication	a * b	a * b or multiply(a,b)	a * b
Division	a / b	a / b or divide(a,b)	a / b
Power, a^b	a ^ b	a ** b	a .^ b
Remainder	a MOD b	<pre>power(a,b) pow(a,b) a % b remainder(a,b) fmod(a,b)</pre>	rem(a,b)
Increment, return new value	++a or a+=1		Octave: ++a
Increment, return old value	a++		Octave: a++
In place operation to save array creation overhead	a+=1	a+=b or add(a,b,a)	Octave: a+=1
Factorial, $n!$			<pre>factorial(a)</pre>

2.2 Relational operators

Desc.	IDL	Python	MATLAB/Octave
Equal	a eq b	a == b or equal(a,b)	a == b
Less than	a lt b	a < b or less(a,b)	a < b
Greater than	a gt b	a > b or greater(a,b)	a > b
Less than or equal	a le b	a <= b or less_equal(a,b)	a <= b
Greater than or equal	a ge b	a >= b or greater_equal(a,b)	a >= b
Not Equal	a ne b	a != b or not_equal(a,b)	a ~= b

2.3 Logical operators

Desc.	IDL	Python	MATLAB/Octave
Short-circuit logical AND		a and b	a && b
Short-circuit logical OR		a or b	a b
Element-wise logical AND	a and b	logical_and(a,b) or a and b	a & b or and(a,b)
Element-wise logical OR	a or b	logical_or(a,b) or a or b	$a \mid b \text{ or } or(a,b)$
Logical EXCLUSIVE OR	a xor b	logical_xor(a,b)	xor(a, b)
Logical NOT	not a	logical_not(a) or not a	~a or not(a)
			Octave: "a or !a
True if any element is nonzero			any(a)
True if all elements are nonzero			all(a)

2.4 root and logarithm

Desc.	IDL	Python	MATLAB/Octave	
Square root	sqrt(a)	math.sqrt(a)	sqrt(a)	\sqrt{a}
Logarithm, base e (natural)	alog(a)	math.log(a)	log(a)	$\ln a = \log_e a$
Logarithm, base 10	alog10(a)	math.log10(a)	log10(a)	$\log_{10} a$
Logarithm, base 2 (binary)		math.log(a, 2)	log2(a)	$\log_2 a$
Exponential function	exp(a)	math.exp(a)	exp(a)	e^a

2.5 Round off

Desc. IDLPython MATLAB/Octave around(a) or math.round(a) round(a) Round round(a) Round up ceil(a) ceil(a) ceil(a) Round down floor(a) floor(a) floor(a) Round towards zero fix(a) fix(a)

2.6 Mathematical constants

Desc. IDL Python MATLAB/Octave $\pi=3.141592$!pi math.pi pi e=2.718281 exp(1) math.e or math.exp(1) exp(1)

2.6.1 Missing values; IEEE-754 floating point status flags

Desc. IDL Python MATLAB/Octave Not a Number NaN nan inf Infinity, ∞ Inf Infinity, $+\infty$ plus_inf Infinity, $-\infty$ minus_inf Plus zero, +0plus_zero Minus zero, -0minus_zero

2.7 Complex numbers

 IDL Python MATLAB/Octave Desc. $i = \sqrt{-1}$ Imaginary unit complex(0,1)z = 1ji A complex number, 3 + 4iz = complex(3,4)z = 3+4j or z = complex(3,4)z = 3+4iAbsolute value (modulus) abs(z) abs(3+4j) abs(z)Real part real_part(z) z.real real(z) Imaginary part imaginary(z) imag(z)z.imag Argument arg(z) Complex conjugate conj(z) z.conj(); z.conjugate() conj(z)

2.8 Trigonometry

Desc. IDL Python MATLAB/Octave Arctangent, $\operatorname{arctan}(b/a)$ atan2(b,a) atan2(b,a) atan(a,b) $\sqrt{x^2 + y^2}$ Hypotenus; Euclidean distance

2.9 Generate random numbers

Desc. IDLPython MATLAB/Octave Uniform distribution randomu(seed, 10) random.random((10,)) rand(1,10) random.uniform((10,)) Uniform: Numbers between 2 and 7 2+5*randomu(seed, 10) random.uniform(2,7,(10,))2+5*rand(1,10) Uniform: 6,6 array randomu(seed, [6,6]) random.uniform(0,1,(6,6))rand(6) Normal distribution randomn(seed, 10) random.standard normal((10.)) randn(1.10)

3 Vectors

Desc. IDL Python MATLAB/Octave Row vector, $1 \times n$ -matrix a = [2, 3, 4, 5] a=array([2,3,4,5]) a=[2,3,4,5]; Column vector, $m \times 1$ -matrix transpose([2,3,4,5]) array([2,3,4,5]) : array([2,3,

3.1 Sequences

IDLPython MATLAB/Octave Desc. indgen(10)+1arange(1,11, dtype=Float) 1:10 1,2,3, ... ,10 range(1,11) dindgen(10)+1 dindgen(10) arange(10.) $0.0, 1.0, 2.0, \dots, 9.0$ 0:9 indgen(4)*3+1 arange(1,11,3) 1:3:10 1,4,7,10 10,9,8, ... ,1 arange(10,0,-1) 10:-1:1 arange(10,0,-3) 10:-3:1 10,7,4,1Linearly spaced vector of n=7 points linspace(1,10,7) linspace(1,10,7) reverse(a) Reverse reverse(a) a[::-1] or Set all values to same scalar value a.fill(3), a[:] = 3a(:) = 3

3.2 Concatenation (vectors)

Desc. IDL Python MATLAB/Octave Concatenate two vectors [a,a] or rebin(a,2,size(a)) concatenate((a,a)) [a a] [indgen(3)+1,a] concatenate((range(1,5),a), axis=1) [1:4 a]

3.3 Repeating

Desc. IDL Python MATLAB/Octave
1 2 3, 1 2 3 concatenate((a,a)) [a a]
1 1 1, 2 2 2, 3 3 3 arepeat(3) or
1, 2 2, 3 3 3 arepeat(a) or

3.4 Miss those elements out

 Desc.
 IDL
 Python
 MATLAB/Octave

 miss the first element
 a[1:]
 a(2:end)

 miss the tenth element
 a[1:9]
 a([1:9])

 last element
 a[-1]
 a(end)

 last two elements
 a[-2:]
 a(end-1:end)

3.5 Maximum and minimum

Desc. IDL Python MATLAB/Octave pairwise max max of all values in two vectors Python max(a,b) max(a,b) max of all values in two vectors concatenate((a,b)).max() max([a b]) v,i = a.max(0),a.argmax(0) [v,i] = max(a)

3.6 Vector multiplication

Desc. IDL Python MATLAB/Octave Multiply two vectors a*a a.*a a.*a a.*a vector cross product, $u \times v$ crossp(u,v) dot(u,v) dot(u,v)

4 Matrices

Desc. IDL Python MATLAB/Octave

Define a matrix a = [[2,3],[4,5]] a = array([[2,3],[4,5]]) a = [2 3;4 5] $\begin{bmatrix} 2\\4 \end{bmatrix}$

4.1 Concatenation (matrices); rbind and cbind

IDLDesc. Python MATLAB/Octave Bind rows [a ; b] concatenate((a,b), axis=0) vstack((a,b)) Bind columns [a , b] concatenate((a,b), axis=1) hstack((a,b)) Bind slices (three-way arrays) concatenate((a,b), axis=2) dstack((a,b)) Concatenate matrices into one vector concatenate((a,b), axis=None) [a(:), b(:)] Bind rows (from vectors) concatenate((r_[1:5],r_[1:5])).reshape[2:,41;) 1:4] vstack((r_[1:5],r_[1:5])) Bind columns (from vectors) [1:4; 1:4],

4.2 Array creation

Desc.	IDL	Python	MATLAB/Octave	г о				
o filled array	dblarr(3,5)	zeros((3,5),Float)	zeros(3,5)	0	0	0	0	0
o filled array of integers	intarr(3,5)	zeros((3,5))		[0	0	0	0	0
1 filled array	dblarr(3,5)+1	ones((3,5),Float)	ones(3,5)	$\begin{array}{ c c } 1\\ 1\\ 1\end{array}$	1 1 1	1 1 1	1 1 1	1 1 1
Any number filled array	intarr(3,5)+9		ones(3,5)*9	9 9	9 9 9	9 9 9	9 9 9	9 9 9
Identity matrix	identity(3)	identity(3)	eye(3)	1 0 0	0 1 0	0 0 1		
Diagonal	diag_matrix([4,5,6])	diag((4,5,6))	diag([4 5 6])	4 0 0	0 5 0	0 0 6		
Magic squares; Lo Shu			magic(3)	8 3 4	1 5 9	6 7 2		
Empty array		a = empty((3,3))		L 4	9	2	J	

4.3 Reshape and flatten matrices

Desc.	IDL	Python	MATLAB/Octave						
Reshaping (rows first)	reform(a,2,3)	arange(1,7).reshape(2,-1) a.setshape(2,3)	reshape(1:6,3,2)';		2 5				
Reshaping (columns first)		arange(1,7).reshape(-1,2).transpose() reshape(1:6,2,3);	ı	$\frac{3}{4}$				
Flatten to vector (by rows, like comics)		a.flatten() or	a'(:)	1	2	3	4	5	6
Flatten to vector (by columns)		a.flatten(1)	a(:)	1	4	2	5	3	6
Flatten upper triangle (by columns)			vech(a)	-					_

4.4 Shared data (slicing)

Desc.	IDL	Python	MATLAB/Octave
Copy of a		b = a.copy()	b = a

4.5 Indexing and accessing elements (Python: slicing)

Desc.	IDL	Python	MATLAB/Octave				
Input is a 3,4 array	a = [[11, 12, 13, 14], \$ [21, 22, 23, 24], \$ [31, 32, 33, 34]]	a = array([[11, 12, 13, 14],	a = [11 12 13 14 21 22 23 24 31 32 33 34]	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$	$a_{12} \\ a_{22} \\ a_{32}$	$a_{13} \\ a_{23} \\ a_{33}$	$\begin{bmatrix} a_{14} \\ a_{24} \\ a_{34} \end{bmatrix}$
Element 2,3 (row,col)	a(2,1)	a[1,2]	a(2,3)	a_{23}			
First row	a(*,0)	a[0,]	a(1,:)	a_{11}	a_{12}	a_{13}	a_{14}
First column	a(0,*)	a[:,0]	a(:,1)	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$		_	J
Array as indices		a.take([0,2]).take([0,3], axis=1)	a([1 3],[1 4]);	$\begin{bmatrix} a_{11} \\ a_{31} \end{bmatrix}$	$a_{14} \\ a_{34}$		
All, except first row	a(*,1:*)	a[1:,]	a(2:end,:)	$\begin{bmatrix} a_{21} \\ a_{31} \end{bmatrix}$	$a_{22} \\ a_{32}$	$a_{23} \\ a_{33}$	$\begin{bmatrix} a_{24} \\ a_{34} \end{bmatrix}$
Last two rows		a[-2:,]	a(end-1:end,:)	$a_{21} \\ a_{31}$	$a_{22} \\ a_{32}$	$a_{23} \\ a_{33}$	$a_{24} \\ a_{34}$
Strides: Every other row		a[::2,:]	a(1:2:end,:)	a_{11}	a_{12}	a_{13}	a_{14}
Third in last dimension (axis)		a[,2]		[a ₃₁	a_{32}	a_{33}	a_{34}
Remove one column		a.take([0,2,3],axis=1)	a(:,[1 3 4])	$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$	$a_{13} \\ a_{23} \\ a_{33}$	$a_{14} \\ a_{24} \\ a_{34}$	
Diagonal		a.diagonal(offset=0)		$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{22}	a_{33}	a_{44}

4.6 Assignment

Desc.	IDL	Python	MATLAB/Octave
		a[:,0] = 99	a(:,1) = 99
Clipping: Replace all elements over 90	a>90	a[:,0] = array([99,98,97]) (a>90).choose(a,90)	a(:,1) = [99 98 97]; a(a>90) = 90;
		a.clip(min=None, max=90)	
Clip upper and lower values	a < 2 > 5	a.clip(min=2, max=5)	

4.7 Transpose and inverse

Desc. Transpose	IDL transpose(a)	Python a.conj().transpose()	MATLAB/Octave a'
Non-conjugate transpose Determinant Inverse Pseudo-inverse Norms Eigenvalues	<pre>determ(a) invert(a) hqr(elmhes(a))</pre>	a.transpose() linalg.det(a) or linalg.inv(a) or linalg.pinv(a) norm(a) linalg.eig(a)[0]	a.' or transpose(a) det(a) inv(a) pinv(a) norm(a) eig(a)
Singular values	svdc,A,w,U,V	linalg.svd(a)	svd(a)
Cholesky factorization Eigenvectors		<pre>linalg.cholesky(a) linalg.eig(a)[i]</pre>	chol(a) [v,1] = eig(a)
Rank		rank(a)	rank(a)

4.8 Sum

Desc.	IDL	Python	MATLAB/Octave
Sum of each column	total(a,2)	a.sum(axis=0)	sum(a)
Sum of each row	total(a,1)	a.sum(axis=1)	<pre>sum(a')</pre>
Sum of all elements	total(a)	a.sum()	<pre>sum(sum(a))</pre>
Sum along diagonal		a.trace(offset=0)	
Cumulative sum (columns)		a.cumsum(axis=0)	cumsum(a)

4.9 Sorting

•							
Desc.	IDL	Python	MATLAB/Octave				
Example data		a = array([[4,3,2],[2,8,6],[1,4,7]])	a = [4 3 2 ; 2 8 6 ; 1 4 7]	$\begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$	3 8	2 6	
Flat and sorted		a.ravel().sort() or	sort(a(:))	1 3 6	$\frac{4}{2}$ $\frac{4}{7}$	2 4 8	
Sort each column	sort(a)	a.sort(axis=0) or msort(a)	sort(a)	1 2 4	3 4 8	2 6 7	
Sort each row		a.sort(axis=1)	sort(a')'	2 2 1	3 6 4	4 8 7	
Sort rows (by first row)		a[a[:,0].argsort(),]	sortrows(a,1)	$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$	4 8 3	7 6 2	
Sort, return indices Sort each column, return indices Sort each row, return indices		<pre>a.ravel().argsort() a.argsort(axis=0) a.argsort(axis=1)</pre>		L 4	3		I

4.10 Maximum and minimum

Desc. IDL Python MATLAB/Octave max in each column max(a,DIMENSION=2) a.max(0) or amax(a [,axis=0]) max(a) max in each row max(a,DIMENSION=1) a.max(1) or amax(a, axis=1) max(a') max in array max(a) a.max() or max(max(a)) [v i] = max(a)return indices, i max(b,c) pairwise max maximum(b,c) cummax(a) max-to-min range a.ptp(); a.ptp(0)

4.11 Matrix manipulation

Desc. IDLPython MATLAB/Octave Flip left-right reverse(a) fliplr(a) or a[:,::-1] fliplr(a) Flip up-down reverse(a,2) flipud(a) or a[::-1,] flipud(a) Rotate oo degrees rotate(a,1) rot90(a) rot90(a) Repeat matrix: [aaa;aaa] kron(ones((2,3)),a) repmat(a,2,3)Octave: kron(ones(2,3),a) Triangular, upper triu(a) triu(a) Triangular, lower tril(a) tril(a)

4.12 Equivalents to "size"

Desc. IDLPython MATLAB/Octave Matrix dimensions size(a) a.shape or a.getshape() size(a) Number of columns s=size(a) & s[1] a.shape[1] or size(a, axis=1) size(a,2) or length(a) Number of elements n_elements(a) a.size or size(a[, axis=None]) length(a(:)) Number of dimensions ndims(a) Number of bytes used in memory a.nbytes

4.13 Matrix- and elementwise- multiplication

Desc.	IDL	Python	MATLAB/Octave	_
Elementwise operations		a * b or multiply(a,b)	a .* b	$\left[\begin{array}{cc} 1 & 5 \\ 9 & 16 \end{array}\right]_{-}$
Matrix product (dot product)	a # b or b ## a	matrixmultiply(a,b)	a * b	$\left[\begin{array}{cc} 7 & 10 \\ 15 & 22 \end{array}\right]$
Inner matrix vector multiplication $a \cdot b'$	transpose(a) # b	inner(a,b) or		$\left[\begin{array}{cc} 5 & 11 \\ 11 & 25 \end{array}\right]$
Outer product	a # b	outer(a,b) or		$ \left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{array}\right] $
Kronecker product		kron(a,b)	kron(a,b)	$\left[\begin{array}{ccccc} 1 & 2 & 2 & 4 \\ 3 & 4 & 6 & 8 \\ 3 & 6 & 4 & 8 \\ 9 & 12 & 12 & 16 \end{array}\right]$
Matrix division, $b \cdot a^{-1}$ Left matrix division, $b^{-1} \cdot a$ (solve linear equations) Vector dot product Cross product	cramer(a,b)	<pre>linalg.solve(a,b) vdot(a,b) cross(a,b)</pre>	a / b a \ b	Ax = b

4.14 Find; conditional indexing

Desc. Non-zero elements, indices	IDL	Python a.ravel().nonzero()	MATLAB/Octave find(a)
Non-zero elements, array indices	where(a NE 0)	(i,j) = a.nonzero() (i,j) = where(a!=0)	[i j] = find(a)
Vector of non-zero values	a(where(a NE 0))	<pre>v = a.compress((a!=0).flat) v = extract(a!=0,a)</pre>	[i j v] = find(a)
Condition, indices	where(a GE 5.5)	(a>5.5).nonzero()	find(a>5.5)
Return values	a(where(a GE 5.5))	a.compress((a>5.5).flat)	
Zero out elements above 5.5 Replace values		where(a>5.5,0,a) or a * (a>5.5) a.put(2,indices)	a .* (a>5.5)

5 Multi-way arrays

Desc. IDL Python MATLAB/Octave
Define a 3-way array array a = array([[[1,2],[1,2]], [[3,4],[3,4]]) cat(3, [1 2; 1 2],[3 4; 3 4]);
a[0,...] a(1,:,:)

6 File input and output

Desc.	IDL	Python	MATLAB/Octave
Reading from a file (2d)	read()	<pre>f = fromfile("data.txt")</pre>	f = load('data.txt')
		f = load("data.txt")	
Reading from a file (2d)	read()	f = load("data.txt")	<pre>f = load('data.txt')</pre>
Reading fram a CSV file (2d)	<pre>x = read_ascii(data_start=1,delimit</pre>	er=f';=')load('data.csv', delimiter=';')	<pre>x = dlmread('data.csv', ';')</pre>
Writing to a file (2d)		save('data.csv', f, fmt='%.6f', del:	imistævær;:;as)cii data.txt f
Writing to a file (1d)		f.tofile(file='data.csv', format='%	.6f', sep=';')
Reading from a file (1d)		f = fromfile(file='data.csv', sep='	;')

7 Plotting

7.1 Basic x-y plots

Desc. IDLPython MATLAB/Octave 1d line plot plot, a plot(a) plot(a) 2d scatter plot plot, x(1,*), x(2,*)plot(x[:,0],x[:,1],'o') plot(x(:,1),x(:,2),'o') Two graphs in one plot plot(x1,y1,'bo', x2,y2,'go') plot(x1,y1, x2,y2) Overplotting: Add new plots to current plot, x1, y1 plot(x1,y1,'o') plot(x1,y1) oplot, x2, y2 plot(x2,y2,'o') hold on show() # as normal plot(x2,y2) !p.multi(0,2,1) subplot(211) subplot(211) Plotting symbols and color plot, x,y, line=1, psym=-1 plot(x,y,'ro-') plot(x,y,'ro-') Axes and titles 7.1.1 Desc. IDL Python MATLAB/Octave Turn on grid lines grid() grid on 1:1 aspect ratio figure(figsize=(6,6)) axis equal Octave: axis('equal') replot axis([0 10 0 5]) Set axes manually plot, x(1,*), x(2,*), axis([0, 10, 0, 5]) xran=[0,10], yran=[0,5] Axis labels and titles plot, x,y, title='title', title('title') xtitle='x-axis', ytitle='y-axis' xlabel('x-axis') ylabel('y-axis') Insert text xyouts, 2,25, 'hello' text(2,25,'hello')

7.1.2 Log plots

Desc. IDLPython MATLAB/Octave logarithmic y-axis plot, x,y, /YLOG or plot_io, x,y semilogy(a) semilogy(a) logarithmic x-axis plot, x,y, /XLOG or plot_oi, x,y semilogx(a) semilogx(a) logarithmic x and y axes loglog(a) loglog(a) plot_oo, x,y

Filled plots and bar plots

IDLDesc. Python MATLAB/Octave

Filled plot fill(t,s,'b', t,c,'g', alpha=0.2) fill(t,s,'b', t,c,'g') Octave: % fill has a bug?

7.1.4 **Functions**

Desc. IDLPython MATLAB/Octave $f(x) = \sin\left(\frac{x}{3}\right) - \cos\left(\frac{x}{5}\right)$ Defining functions f = inline('sin(x/3) - cos(x/5)')

Plot a function for given range x = arrayrange(0,40,.5)ezplot(f,[0,40]) $y = \sin(x/3) - \cos(x/5)$ fplot('sin(x/3) - cos(x/5)', [0,40])plot(x,y, 'o') Octave: % no ezplot

Polar plots

IDLMATLAB/Octave Desc. Python theta = arange(0,2*pi,0.001)theta = 0:.001:2*pi; $\rho(\theta) = \sin(2\theta)$

 $r = \sin(2*theta)$

polar(theta, rho) polar(theta, rho)

r = sin(2*theta);

7.3 Histogram plots

Desc. IDLPython MATLAB/Octave plot, histogram(randomn(5,1000)) hist(randn(1000,1)) hist(randn(1000,1), -4:4) plot(sort(a))

3d data

7.4.1 Contour and image plots

IDLDesc. Python MATLAB/Octave

Contour plot contour, z levels, colls = contour(Z, V, contour(z) origin='lower', extent=(-3,3,-3,3)) clabel(colls, levels, inline=1,

fmt='%1.1f', fontsize=10)

quiver()

Filled contour plot contour, z, nlevels=7, /fill contourf(Z, V, contourf(z); colormap(gray)

contour, z, nlevels=7, /overplot, /downhildmap=cm.gray, origin='lower', extent=(-3,3,-3,3))

Plot image data tv, z im = imshow(Z,image(z) loadct,0 interpolation='bilinear', colormap(gray) origin='lower', extent=(-3,3,-3,3))

Image with contours # imshow() and contour() as above Direction field vectors quiver()

7.4.2 Perspective plots of surfaces over the x-y plane

Desc. IDLPython MATLAB/Octave n=arrayrange(-2,2,.1)
[x,y] = meshgrid(n,n)
z = x*power(math.e,-x**2-y**2) n=-2:.1:2; [x,y] = meshgrid(n,n); z=x.*exp(-x.^2-y.^2);

 $f(x,y) = xe^{-x^2 - y^2}$

Mesh plot surface, z mesh(z)

surf(x,y,z) or surfl(x,y,z)
Octave:% no surfl() Surface plot shade_surf, z loadct,3

7.4.3 Scatter (cloud) plots

Desc. IDLPython MATLAB/Octave

3d scatter plot plot3(x,y,z,'k+')

7.5 Save plot to a graphics file

Desc. IDL
PostScript set_plot,'PS'
device, file='foo.eps', /land

plot x,y
device,/close & set_plot,'win'

Python MATLAB/Octave savefig('foo.eps') plot(1:10)

print -depsc2 foo.eps
Octave:

gset output "foo.eps"
gset terminal postscript eps

plot(1:10)

PDF savefig('foo.pdf')
SVG (vector graphics for www) savefig('foo.svg')
PNG (raster graphics) savefig('foo.png')

print -dpng foo.png

8 Data analysis

8.1 Set membership operators

Desc. Create sets	IDL	Python a = array([1,2,2,5,2]) b = array([2,3,4]) a = set([1,2,2,5,2]) b = set([2,3,4])	MATLAB/Octave a = [1 2 2 5 2]; b = [2 3 4];	
Set unique		unique1d(a) unique(a) set(a)	unique(a)	
Set union		union1d(a,b)	union(a,b)	
		a.union(b)		
Set intersection		<pre>intersect1d(a) a.intersection(b)</pre>	<pre>intersect(a,b)</pre>	
Set difference		setdiff1d(a,b) a.difference(b)	setdiff(a,b)	
Set exclusion		<pre>setxor1d(a,b) a.symmetric_difference(b)</pre>	setxor(a,b)	
True for set member		2 in a setmember1d(2,a)	ismember(2,a)	

contains(a,2)

8.2 Statistics

Desc. IDLAverage mean(a) Median median(a) Standard deviation stddev(a) Variance variance(a) Correlation coefficient correlate(x,y) Covariance

a.mean(axis=0) mean(a) mean(a [,axis=0]) median(a) or median(a [,axis=0]) median(a) a.std(axis=0) or std(a [,axis=0]) std(a) a.var(axis=0) or var(a) var(a) correlate(x,y) or corrcoef(x,y) corr(x,y) cov(x,y) cov(x,y)

MATLAB/Octave

MATLAB/Octave

z = polyval(polyfit(x,y,1),x)

plot(x,y,'o', x,z ,'-')

Python

Python

(a,b) = polyfit(x,y,1)

plot(x,y,'o', x,a*x+b,'-')

Interpolation and regression

Desc. Straight line fit poly_fit(x,y,1) Linear least squares y = ax + b

linalg.lstsq(x,y) a = x ypolyfit(x,y,3) polyfit(x,y,3)

Polynomial fit

Non-linear methods

Polynomials, root finding

Desc. Polynomial Find zeros of polynomial

Find a zero near x = 1Solve symbolic equations Evaluate polynomial

IDL

IDL

Python MATLAB/Octave poly()

roots() roots([1 -1 -1]) f = inline('1/x - (x-1)')fzero(f,1) solve('1/x = x-1')

polyval(array([1,2,1,2]),arange(1,11))polyval([1 2 1 2],1:10)

 $f(x) = \frac{1}{x} - (x - 1)$ $\frac{1}{x} = x - 1$

 $x^2 - x - 1 = 0$

Differential equations 8.4.2

Desc. Discrete difference function and approximate derivative Solve differential equations

Python MATLAB/Octave diff(a) diff(x, n=1, axis=0)

Fourier analysis

Desc. IDLFast fourier transform fft(a) fft(a),/inverse Inverse fourier transform Linear convolution convol()

MATLAB/Octave Python fft(a) or fft(a) ifft(a) or ifft(a) convolve(x,v)

Symbolic algebra; calculus

Desc. IDLFactorization

Python MATLAB/Octave factor()

10 Programming

IDLPython MATLAB/Octave Script file extension .idlbatch .m .ру Comment symbol (rest of line) Octave: % or # Import library functions from pylab import * % must be in MATLABPATH Octave: % must be in LOADPATH Eval string="a=234" string='a=234'; eval(string) eval(string)

10.1 Loops

Desc. IDLPython MATLAB/Octave for k=1,5 do print,k for i in range(1,6): print(i) for i=1:5; disp(i); end for-statement Multiline for statements for k=1,5 do begin \$ for i in range(1,6): for i=1:5 print, i &\$ print(i) disp(i) print, i*2 &\$ print(i*2) disp(i*2) end

10.2 Conditionals

Desc. IDL Python MATLAB/Octave if-statement if 1 gt 0 then a=100 else a=0 if 1>0: a=100 if 1>0 a=100; end if 1>0 a=100; else a=0; end Ternary operator (if?true:false) a>0?a:0 a>0?a:0

10.3 Debugging

Desc. Desc. Python MATLAB/Octave Most recent evaluated expression Eist variables loaded into memory help whos or who Clear variable x from memory Print print, a print a print a MATLAB/Octave MATLAB/Octave ans Clear (all)

10.4 Working directory and OS

Desc. IDLPython MATLAB/Octave List files in directory dir os.listdir(".") dir or 1s List script files in directory grep.grep("*.py") what os.getcwd() Displays the current working directory sd pwd Change working directory cd, 'foo or sd, 'foo os.chdir('foo') cd foo Invoke a System Command os.system('notepad') spawn, 'notepad' !notepad os.popen('notepad') Octave: system("notepad")

²This document is still draft quality. Most shown 2d plots are made using Matplotlib, and 3d plots using R and Gnuplot, provided as examples only.

³Version numbers and download URL for software used: Python 2.4.2, http://www.python.org/; NumPy 0.9.5, http://numeric.scipy.org/; Matplotlib 0.87, http://matplotlib.sf.net/; IPython 0.7.1, http://ipython.scipy.org/; Octave 2.1.50, http://www.octave.org/; Gnuplot 4.0, http://www.gnuplot.info/.

⁴For referencing: Gundersen, Vidar Bronken. MATLAB commands in numerical Python (Oslo/Norway, 2005), available from: http://mathesaurus.sf.net/

⁵Contributions are appreciated: The best way to do this is to edit the XML and submit patches to our tracker or forums.