Ejemplo sencillo de Uso para la Interfaz con M_AXI_LITE y M_AXI

Introducción

Esta guía proporciona instrucciones detalladas sobre cómo interactuar con las interfaces M_AXI_LITE y M_AXI utilizando el código C proporcionado. El diagrama de bloques de Vivado incluido ilustra la arquitectura del sistema, que incluye la configuración y las conexiones de varios componentes como los controladores AXI BRAM, los generadores de memoria y el subsistema DMA/Bridge para PCI Express.

Prerrequisitos

- Asegúrese de que el dispositivo esté conectado y que los controladores necesarios estén instalados.
- El código asume que los archivos de dispositivo /dev/xdma0_h2c_0 y /dev/xdma0_c2h_0 están disponibles para la comunicación.

Descripción de las Constantes y Macros

- Direcciones Base y Tamaños de BRAM:
 - o BRAMO BASE ADDR define la dirección base de BRAMO.
 - o BRAM1 BASE ADDR define la dirección base de BRAM1.
 - o BRAM2 BASE ADDR define la dirección base de BRAM2.
 - o BRAMO_SIZE, BRAM1_SIZE y BRAM2_SIZE definen los tamaños de cada BRAM en bytes.

Funciones para Operaciones con BRAM

Escritura en BRAM

Para escribir datos en una BRAM específica, se utiliza la función write_to_bram. Esta función requiere el descriptor de archivo del dispositivo, la dirección base de la BRAM, los datos a escribir y el tamaño de los datos.

Lectura de BRAM

Para leer datos de una BRAM específica, se utiliza la función read_from_bram. Esta función requiere el descriptor de archivo del dispositivo, la dirección base de la BRAM, un buffer para almacenar los datos leídos y el tamaño de los datos a leer.

Ejecución del Código Principal

1. Apertura de Archivos de Dispositivo:

Se abren los archivos de dispositivo /dev/xdma0_h2c_0 y /dev/xdma0_c2h_0 para la comunicación host-to-card (h2c) y card-to-host (c2h), respectivamente.

2. Preparación de Datos:

 Se preparan los datos que se escribirán en cada BRAM, llenándolos con valores consecutivos en hexadecimal.

3. Medición del Tiempo de Escritura:

 Se mide el tiempo que tarda en escribir los datos en cada BRAM y se calcula la velocidad de escritura en Gb/s.

4. Medición del Tiempo de Lectura:

 Se mide el tiempo que tarda en leer los datos de cada BRAM y se calcula la velocidad de lectura en Gb/s.

5. Visualización de Resultados:

 Se muestran los tiempos y las velocidades de escritura y lectura para cada BRAM.

Uso de la Interfaz M_AXI_LITE

Para utilizar la interfaz M_AXI_LITE, se pueden enviar datos directamente mapeando el recurso. Esta interfaz es sencilla y no requiere un controlador complejo.

Hay que tener en cuenta que hay que seleccionar en vivado los rangos de direcciones de memoria para que empiecen desde 0 y que se desperdicien en numero menor de direcciones de memoria entre todos los componentes ya que estos luego estarán mapeados en la memoria del PC.

Uso de la Interfaz M_AXI

Para utilizar la interfaz M_AXI, se necesita un controlador de Xilinx ya que hace uso del DMA y los datos se envían en modo burst. Este controlador facilita la transferencia eficiente de grandes bloques de datos.

Ejemplo de Mapeo de Recursos PCIe

El código incluye un ejemplo de cómo mapear un recurso PCIe y leer/escribir valores. Este ejemplo muestra cómo abrir el dispositivo PCIe, mapear el recurso a la memoria del usuario, escribir un valor y leerlo de vuelta para verificar la operación.