Lecture 17: Wrap-up

Modern Methods in Applied Statistics STAT 34800 (Spring 2023)

Overview

- Part I: Foundations + building blocks
 - Decision theory
 - loss / likelihood / prior
 - risk minimization
 - Probabilistic reasoning
 - prior, likelihood, posterior, kernel, marginal, predictive distributions
 - interpretations of probability
 - Exponential families
 - conjugacy
 - Information theory
 - entropy (i.e., "uncertainty")
 - KL, mutual info
 - Graphical models
 - semantics (conditional indep.)
 - directed vs undirected

- Part II: Inference + algorithms
 - Exact inference:
 - conjugate updating
 - variable elimination
 - Point estimation (MLE / MAP):
 - empirical Bayes
 - EM
 - Approximate inference:
 - MCMC / Gibbs (samples)
 - CAVI (approximate density)

Inference + algorithms

Algorithm	Target	Property	Model type
Conjugate updating	Posterior	Exact (analytically)	Conjugate
Empirical Bayes (Type II MLE)	MLE / MAP	Exact (analytically)	Conjugate
Variable elimination	Posterior	Exact (algorithmically)	Discrete graphical model
Belief prop. / sum-product	Posterior	Exact (algorithmically)	Discrete tree
Forwards-backwards	Posterior	Exact (algorithmically)	HMM
Expectation-maximization (EM)	MLE / MAP	Exact (computationally)	Conditionally conjugate
Gibbs sampling	Posterior	Approximate (Monte Carlo)	Conditionally conjugate
Variational inference (CAVI)	Posterior	Approximate (density)	Conditionally conjugate

Motivations for Bayes

- Decision theoretic motivation
 - Necessity of prior odds
 - Lady drinking tea vs. drunk friend
- Frequentist motivations
 - "Optimality" of Bayes for risk minimization
 - Admissibility of shrinkage estimators
- Supervised learning motivation
 - Regularization to avoid overfitting
 - Regularizers \approx inductive biases \approx priors
- Orthodox motivations
 - De Finetti (exchangeability → prior-likelihood)
 - Dutch book argument (coherent beliefs → probabilities)
- Practical motivation
 - Unified/coherent language for latent variables and uncertainty
 - Modularity: few algorithms for many models

Thank you for your service

The final voyage of the USS Scorpion

Part III...∞

Gaussian models

- HMMs → LDS / Kalman filters
- VE → Gaussian VE
- MF → factor analysis, PCA

More complex canonical models

- Hierarchical & nested models
- Tensor factorization & multi-view models

Stochastic process models

- Point process and continuous-time models (stochastic processes as likelihoods)
- Infinite mixtures & Bayesian nonparametrics (stochastic processes as priors)

Advanced / scalable inference

- Augmentation schemes
- Gradient-based stochastic inference
 - Langevin diffusion (SG-MCMC)
 - Gradient descent on the ELBO (VI)
 - Variational autoencoders (VAEs)

Model-checking

- Marginal likelihood
- Posterior predictive checks

Causality

- Causal graphical models
- Synthetic controls