ANALYSIS OF THE INFLUENCE OF TRAINING DATA ON ROAD USER DETECTION

Carlos Guindel, David Martín, José María Armingol, and Christoph Stiller

20th IEEE International Conference on Vehicular Electronics and Safety Madrid · 12 September 2018

Agenda

- Motivation and goals
- Experimental setup
- Analysis
- Conclusion

Motivation

Motivation

Object detection

450 000+ images 200 categories

200 000+ images 80 categories

The KITTI Vision Benchmark Suite A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago

7 481 images 9 categories

Data

Motivation

Object detection

Deep Learning

Different labels

The KITTI Vision Benchmark Suite A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago

7 481 images 9 categories

2 975 images 10 categories

Goals

Research is often narrow-focused on the development of new architectures and models.

R-FCN, SSD; ResNet, Inception, MobileNet,...

Instead, we investigate:

The improvement provided by introducing additional samples into the training process.

The possibility of using heterogeneous labels in a multi-task learning method.

Faster R-CNN
State-of-the-art object
detection meta-architecture

Datasets

The KITTI Vision Benchmark Suite A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago

Training

3,712 images

Validation

3,769 images

X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler, and R. Urtasun, "3D Object Proposals for Accurate Object Class Detection," in Advances in Neural Information Processing Systems (NIPS), 2015, pp. 424–432.

Training

2,975 images

category		KITTI	Cityscapes	
	train	val	total	total
Car Pedestrian Cyclist	10 753 2 104 594	10 963 2 172 600	21 716 4 276 1 194	21 637 15 788 1 481

Instantiable objects

Minimum enclosing box

Categories:

- Person → Pedestrian
- Rider + Bicycle → Cyclist

Occlusion & truncation

Occlusion

Cityscapes labels contain foregroundbackground ordering

Degree of occlusion = intersection background

Truncation

Whenever any of the sides of the b. box coincides with the image boundaries

3 Resolution/FOV

4 Difficulty levels

We ignore samples not meeting the KITTI's *Hard* level requirements:

- Larger than 25 pixels
- Max occlusion: "Difficult to see": level 2 (KITTI) or 75% (Cityscapes)
- Maximum truncation: 50% (KITTI) or no truncation (Cityscapes)

Object detection method

C. Guindel, D. Martin, and J. M. Armingol, "Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding," accepted for publication in: Intelligent Transportation Systems Magazine.

Object detection method

C. Guindel, D. Martin, and J. M. Armingol, "Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding," accepted for publication in: Intelligent Transportation Systems Magazine.

Multi-task loss

C. Guindel, D. Martin, and J. M. Armingol, "Fast Joint Object Detection and Viewpoint Estimation for Traffic Scene Understanding," accepted for publication in: Intelligent Transportation Systems Magazine.

Multi-task loss

Assessment method

Evaluation metrics

Average precision (AP)

Assess object detection

Average orientation similarity (AOS)

Assess object detection AND orientation

$$AOS = \frac{1}{N} \sum_{r} \tilde{s}(r)$$
 $\tilde{s}(r) = \max_{\tilde{r}: \tilde{r} > r} \tilde{s}(\tilde{r})$ Cosine Recall similarity

Common Testbed

The KITTI Vision
Benchmark Suite
A project of Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago

Validation set

3,769 images

Training Parameters

- 1- image batch
- SGD, initial lr = 0.001
- Step decay schedule
 0.1× every 50k iterations
- 80k iterations

Experiment 1: Combined datasets

Add training samples

Adapted

Training

3,712 images

Training

2,975 images

- In each training iteration, an image (single batch) is randomly chosen from a mix of both datasets.
- Tests without (a) and with (b) viewpoint estimation branch

Experiment 1: Combined datasets (a)

category	tr. data C	Easy	Mod.	Hard	
Com	KITTI	90.05 81.37	79.32 63.66	70.04 53.47	
Car	Cityscapes KITTI + CS	90.31	84.94	70.33	+5.62 AP
Pedestrian	KITTI Cityscapes KITTI + CS	75.80 72.00 77.77	67.17 63.92 68.72	58.58 55.33 60.05	+1.55 AP
Cyclist	KITTI Cityscapes KITTI + CS	77.47 63.09 82.90	56.96 50.14 62.50	54.64 46.85 58.05	+5.54 AP

Experiment 1: Combined datasets (b)

Two alternative strategies:

- 1 Pick images from a **KITTI+Cityscapes** mix Viewpoint = 0 when a Cityscapes sample is chosen
- 2 Pre-train with **Cityscapes**, fine-tune with **KITTI**

Train without viewpoint branch and transfer weights to the complete model

Experiment 1: Combined datasets (b)

Orientation

- 1 Pick images from a **KITTI+Cityscapes** mix
- 2 Pre-train with Cityscapes, fine-tune with KITTI

category	tr. data	Detection (AP)		AP)	Orientation (AOS)			•
	C	Easy	Mod.	Hard	Easy	Mod.	Hard	-
Car	KITTI 1 KITTI + CS 2 KITTI (w. CS pret.)	90.01 90.39 90.33	79.03 84.59 86.16	69.67 70.21 70.58	88.26 88.68 88.63	77.35 82.79 84.43	67.97 68.57 69.01	+5.6 AP +1.6 AOS
Pedestria	KITTI n 1 KITTI + CS 2 KITTI (w. CS pret.)	71.19 76.32 74.54	64.05 67.98 66.01	55.75 59.11 57.68	65.31 67.83 67.33	57.62 59.65 59.01	50.01 51.69 51.52	+3.9 AP +2 AOS
Cyclist	KITTI (1) KITTI + CS (2) KITTI (w. CS pret.)	77.33 86.11 83.18	54.87 68.49 60.37	52.89 63.46 57.35	69.73 77.66 75.55	48.79 61.23 54.36	47.06 56.83 51.74	+13.6 AP +12.4 AOS

Experiment 2: Can we get rid of ImageNet?

The KITTI Vision
Benchmark Suite
A project of Karlsruhe Institute of Technology

Pre-training with ImageNet (generalist dataset) generates good initial weights

The KITTI Vision
Benchmark Suite

A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago

init.	tr. data	Det	ection (m	AP)	Orientation (mAOS)			
		Easy	Mod.	Hard	Easy	Mod.	Hard	
Yes	KITTI	79.51	65.98	59.44	74.43	61.25	55.02	
No	K. + CS	53.80	42.99	37.25	47.93	39.13	33.00	

-22.99 mAP

-22.12 mAOS

Initialization with a large dataset is still an essential requierement to achieve a proper generalization ability

Experiment 3: Overfitting

Performance on the validation set vs # of iterations

No symptoms of overfitting

Dropout?

$$p = 0.5$$

dropout	Det	ection (m	AP)	Orientation (mAOS)			
	Easy	Mod. Hard		Easy	Easy Mod.		
No	79.51	65.98	59.44	74.43	61.25	55.02	
Yes	79.20	65.34	58.43	73.77	60.73	54.16	

-0.64 mAP

-0.52 mAOS

No apparent benefit

Experiment 4: Missing labels

Observation angle annotations

No observation angle annotations

Detection + Orientation

+6.64 mAOS

Orientation

?

Additional measure

Mean precision in pose estimation (MPPE)

- Discrete viewpoint estimation is a classification problem
- MPPE is the mean of the elements on the main diagonal of the confusion matrix (correctly predicted viewpoint bins)

R. J. López-Sastre, T. Tuytelaars, and S. Savarese, "Deformable part models revisited: A performance evaluation for object category pose estimation," in Proc. IEEE International Conference on Computer Vision (ICCV), 2011, pp. 1052–1059.

Experiment 4: Missing labels

Observation angle annotations

No observation angle annotations

Detection + Orientation

Orientation

+6.64 mAOS

+1,52 MPPE

category	tr. data	Easy	Mod.	Hard
Car	KITTI KITTI + CS	92.24 92.13	80.93 83.40	69.29 71.72
Pedestrian	KITTI KITTI + CS	59.03 57.74	51.02 51.35	43.71 44.41
Cyclist	KITTI KITTI + CS	70.71 64.95	49.84 51.60	49.00 49.11

+2.47 MPPE

+0.33 MPPE

+1.76 MPPE

Missing labels does not hurt orientation estimation performance

Experiment 5: Mixed labels

Including all categories

Car, Truck, Pedestrian, Cyclist, Train, Traffic Sign

Experiment 6: Data augmentation

Horizontal flip + <u>texture augmentations</u>

https://github.com/aleju/imgaug

Choose a random subset of them, between 0 and 4

Add

[-40, 40]

Multiplication

[0.5, 1.5]

Gaussian noise

 $\mathcal{N}(0, 5.1^2)$

Saturation

[-20, 20] (H, S)

Experiment 6: Data augmentation

Two separated experiments

1 Only **KITTI**

To assess the overall effect of the augmentation techniques

2 Cityscapes + KITTI

Augmentation could help mitigate the difference between both sets of images

	tr. data	aug.	Detection (mAP)		Orientation (mAOS)					
			Easy	Mod.	Hard	Easy	Mod.	Hard	-	
1	K.	No Yes	79.51 80.39	65.98 65.87	59.44 58.96	74.43 74.56	61.25 61.00	55.02 54.38	×	No apparent benefit
2	K. + CS	No Yes	84.27 83.96	73.69 74.14	64.26 65.16	78.06 77.95	67.89 68.09	59.03 59.59	~	Limited benefit

Comparison

Analysis of the Influence of Training Data on Road User Detection

C. Guindel, D. Martín, J. M. Armingol and C. Stiller

Conclusion

Modestly enhancing the training data can lead to notable improvements on the results obtained by a CNN object detector

The variability introduced by Cityscapes samples can achieve a nonnegligible improvement, even when evaluated on the KITTI dataset

Results pave the way for future works taking advantage of multiple data sources

THANK YOU

20th IEEE International Conference on Vehicular Electronics and Safety Madrid · 12 September 2018