IDW Cross-validation Report

$$\hat{z}(x_0) = \frac{\sum\limits_{j=1}^k w_j z_j}{\sum\limits_{j=1}^k w_j}$$
, where $w_j = \frac{1}{d(x_0, x_j)^p}$

 x_0 : location to interpolate x_i : known data point location

 z_i : known value at x_i

 $d(x_0, x_i)$: distance between x_0 and x_i

 w_i : weight of z_i

p: power parameter (controls weight decay)
k: number of nearest neighbors

k	рΕ	RMSE	MAE	R²
5	1.00	0.00386	0.00185	0.023
5	1.20	0.00386	0.00186	0.022
5	1.50	0.00386	0.00187	0.022
5	2.00	0.00386	0.00189	0.020
6	1.00	0.00381	0.00190	0.047
6	1.20	0.00381	0.00191	0.046
6	1.50	0.00382	0.00191	0.044
6	2.00	0.00382	0.00192	0.040
7	1.00	0.00380	0.00188	0.053
7	1.20	0.00380	0.00189	0.052
7	1.50	0.00380	0.00190	0.050
7	2.00	0.00381	0.00191	0.046
9	1.00	0.00384	0.00189	0.034
9	1.20	0.00383	0.00190	0.035
9	1.50	0.00383	0.00191	0.035
9	2 00	0.00384	0.00193	0.033