2017-2018 学年第 2 学期力学、电磁学试卷 (A) 参考答案及评分标准

一、选择题(每题3分,共30分)

1. [C] 2. [D] 3. [D] 4. [B] 5. [D]

6. [D] 7. [B] 8. [B] 9. [D] 10. [C]

二、填空题(每题3分,共30分)

1	$v = 2\sqrt{x^2 + x + 1}$			6	0.5	
2	18		6	7	$\frac{\lambda l}{4\pi\varepsilon_0 a(l+\mathrm{a})}$	水平向右
3	$\sqrt{\frac{3g\sin t}{l}}$	$\overline{\theta}$	$\frac{3g\cos\theta}{2l}$	8	0	$-\mu_0 \mathrm{I}$
4	$\omega = \frac{J\omega_0}{J + mR^2}$			9	正	负
5	0.04	π	$\frac{\pi}{2}$	10	2vBR	

三、判断题(正确划√,错误划×,每题2分,共10分)

1 (1)	1 (2)	2 (1)	2 (2)	2 (3)
√	×	×	√	×

四(1)、计算题(10分)

作示力图,设两重物加速度大小为 a,设滑轮的角加

速度为
$$\beta$$
,则 $\int m_1g - T_1 = m_1a$

$$\begin{cases} m_{1}g - T_{1} = m_{1}a & (1 \%) \\ T_{2} - m_{2}g_{1} = m_{2}a & (1 \%) \\ TR - TR = IB & (2 \%) \end{cases}$$

$$a = R\beta, J = MR^2/2$$
 (2分) 得

(1)
$$m_1$$
 (m_2) 的加速度
$$a = \frac{(m_1 - m_2)g}{m_1 + m_2 + M/2}$$
 (2分)

(2) 滑轮两端绳子的拉力分别为:

$$T_1 = m_1 g - m_1 \frac{(m_1 - m_2)g}{m_1 + m_2 + M/2}$$
 (1 $\frac{f}{f}$), $T_2 = m_2 g + m_2 \frac{(m_1 - m_2)g}{m_1 + m_2 + M/2}$ (1 $\frac{f}{f}$)

四(2)、计算题(10分)

 \mathbf{M} : (1) 球体内电场分布: 在球内作一半径为r1 的高斯球面, 按高斯定理有

$$4\pi r_1^2 E_1 = \frac{q_{\text{pl}}}{\varepsilon_0}, \quad 其中q_{\text{pl}} = \frac{Q}{\frac{4}{3}\pi R^3} \cdot \frac{4}{3}\pi r_1^3 = \frac{Qr_1^3}{R^3}$$
 (4分)

则
$$E_1 = \frac{Qr_1}{4\pi\varepsilon_0 R^3}$$
 $(r_1 \leq R)$, \bar{E}_1 方向沿半径向外. (2分

(2) 球体外电场分布: 在球体外作半径为 r₂ 的高斯球面, 按高斯定理有

$$4\pi r_2^2 E_2 = \frac{\mathbf{q}_{\text{sh}}}{\varepsilon_0}, \quad 其中\mathbf{q}_{\text{sh}} = Q, \tag{2分}$$

则
$$E_2 = \frac{Q}{4\pi\varepsilon_0 r_2^2}$$
 $(r_2 > R)$, \vec{E}_2 方向沿半径向外. (2分)

五、证明题(10分)

证明: 如图, 取顺时针方向为回路 L 的正方向, 取坐标及面 积元 dS = adx,

$$\phi = \int \mathbf{B} \cdot d\mathbf{S} = \int_{d}^{d+b} \frac{\mu_0 I}{2\pi x} a dx = \frac{\mu_0 a I_0 \sin \omega t}{2\pi} \ln \frac{d+b}{d} (5 \%)$$

$$\varepsilon = -\frac{\mathrm{d}\phi}{dt} = -\cos\omega t \frac{\mu_0 a I_0 \omega}{2\pi} \ln \frac{d+b}{d} \quad (4 \, \%)$$

方向: 当 $\varepsilon > 0$ 时沿顺时针; 当 $\varepsilon < 0$ 时沿逆时针。(1分)

