

#### ARM ARCHITECTURE AND INSTRUCTION SET

EL-GY 6483 Real Time Embedded Systems

### MAIN FEATURES

- 32-bit instructions
- Most executed in single cycle
- Most can be conditionally executed
- Load/store

Also has a compressed 16-bit instruction set (Thumb)

### DATAFLOW





#### PROCESSOR MODES

Six+ operating modes, each with own registers

- Most tasks run in user mode
- FIQ entered on high-priority interrupt
- IRQ entered on a normal interrupt
- Supervisor (reset), Abort (memory access violations), Undef (undefined instructions)
- System mode added in ARMv4, gives privileged access to same registers as user mode

## REGISTERS

### APM\_37 registers, each 32 bits long

- Each mode can access:
  - A specific set of r0-r12 registers
  - A specific r13 (SP) and r14 (LR)
  - R15 (PC)
  - CPSR
- Privileged modes can also access a SPSR
- Banked registers?

## **Thumb**

- Thumb is a 16-bit instruction set
  - Optimized for code density from C code
  - Improved performance form narrow memory
  - Subset of the functionality of the ARM instruction set
- Core has two execution states –ARM and Thumb
  - Switch between them using BX instruction
- Thumb has characteristic features:
  - Most Thumb instruction are executed unconditionally
  - Many Thumb data process instruction use a 2-address format
  - Thumb instruction formats are less regular than ARM instruction formats, as a result of the dense encoding.

## REGISTERS



Note: System mode uses the User mode register set



## Processor Modes

- The ARM has six operating modes:
  - User (unprivileged mode under which most tasks run)
  - FIQ (entered when a high priority (fast) interrupt is raised)
  - IRQ (entered when a low priority (normal) interrupt is raised)
  - Supervisor (entered on reset and when a Software Interrupt instruction is executed)
  - Abort (used to handle memory access violations)
  - Undef (used to handle undefined instructions)
- ARM Architecture Version 4 adds a seventh mode:
  - System (privileged mode using the same registers as user mode)

### Accessing Registers using ARM Instructions

- All instructions can access r0-r14 directly.
- Most instructions also allow use of the PC. rys
- Specific instructions to allow access to CPSR and SPSR.

 Note: When in a privileged mode, it is also possible to load-store the (banked out) user mode registers to or from memory



# The Program Counter (R15)

- When the processor is executing in ARM state:
  - All instructions are 32 bits in length
  - All instructions must be word aligned
  - Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to zero (as instruction cannot be halfword or byte aligned).
- R14 is used as the subroutine link register (LR) and stores the return address when Branch with Link operations are performed, calculated from the PC.
- Thus to return from a linked branch:

```
MOV r15, r14
or
MOV pc, lr
```

## The Program Status Registers (CPSR and SPSR)



#### Condition Code Flags

N = **N**egative result from ALU flag

Z = Zero Result from ALU flag

C = ALU operation Carried out

V = ALU operation o**V**erflowed

#### Interrupt Disable Bits

I = 1, disables the IRQ

**F** = 1, disables the FIQ

#### Mode Bits

M[4:0] define the processor mode.

#### T bit (Architecture v4T only)

T = 0, Processor in ARM state

T = 1, Processor in Thumb state

# Condition Flags

|                     | Logical Instruction                              | Arithmetic Instruction                                                                            |
|---------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <u>Flag</u>         |                                                  |                                                                                                   |
| Negative<br>(N='1') | No meaning                                       | Bit 31 of the result has been set<br>Indicates a negative number in<br>signed operations          |
| Zero<br>(Z='1')     | Result is all zeroes                             | Result of operation was zero                                                                      |
| Carry<br>(C='1')    | After Shift operation '1' was left in carry flag | Result was greater than 32 hits                                                                   |
| oVerflow<br>(V='1') | No meaning                                       | Result was greater than 31 bits Indicates a possible corruption of the sign bit in signed numbers |

Updated by explicit comparison instructions (eg. CMP) and those that use the optional S to specify if the condition code flags must be updated (e.g. ADDS).

# **ARM Pipeline**

- The ARM uses a pipeline in order to increase the speed of the flow of instructions to the processor.
  - Allows several operations to be undertaken simultaneously, rather than serially.



Rather than pointing to the instruction being executed, the PC points to the instruction being fetched.

### INSTRUCTION SYNTAX

<operation> cond flags Rd,Rn,Operand2

Basic syntax followed by many instructions. From left to right:

- A three-letter mnemonic, e.g. MOV or ADD.
- An optional two-letter condition code, e.g. EQ or CS.
- An optional additional flag
- The destination register
- First operand register
- Second (more flexible) operand register

## **ARM Instruction Set Format**

| 3 3 2 2<br>1 0 9 8 | 2<br>7 | 2<br>6 | 2<br>5 | 2<br>4 | 2<br>3     | 2    | 2<br>1     | 2  | 1<br>9          | 1 :   | 1 1<br>7 6 | 1<br>5             | 1<br>4        | 1<br>3 | 1 2    | 1<br>1     | 1<br>0          | 9                      | 8                   | 7      | 6 | 5 | 4  | 3 2 1 0       | Instruction Type          |
|--------------------|--------|--------|--------|--------|------------|------|------------|----|-----------------|-------|------------|--------------------|---------------|--------|--------|------------|-----------------|------------------------|---------------------|--------|---|---|----|---------------|---------------------------|
| Condition          | 0      | 0      | 1      | - 1    | OPC        | ODI  |            | 5  | Rn Rs OPERAND-2 |       |            |                    |               |        |        |            | Data processing |                        |                     |        |   |   |    |               |                           |
| Condition          | 0      | 0      | 0      | 0      | 0          | 0    | A          | S  |                 | Rd    |            | Rn                 |               |        | Rs 1 0 |            |                 |                        |                     | 0      | 0 | 1 | Rm | Multiply      |                           |
| Condition          | 0      | 0      | 0      | 0      | 1.         | U    | A          | S  | R               | d HIC | SH         | Rd LOW             |               |        |        | Rs 1 0 0 1 |                 |                        |                     |        |   | 1 | Rm | Long Multiply |                           |
| Condition          | 0      | 0      | 0      | 1      | 0          | В    | 0          | 0  |                 | Rn    |            |                    | F             | d      |        | 0          | 0               | 0                      | 0                   | 1      | 0 | 0 | 1  | Rm            | Swap                      |
| Condition          | 0      | 1      | 1      | P      | U          | В    | w          | L. |                 | Rn    |            | Rd OFFSET          |               |        |        |            |                 | Load/Store - Byte/Word |                     |        |   |   |    |               |                           |
| Condition          | 1      | 0      | 0      | P      | U          | В    | w          | L. |                 | Rn    |            |                    | REGISTER LIST |        |        |            |                 |                        | Load/Store Multiple |        |   |   |    |               |                           |
| Condition          | 0      | 0      | 0      | P      | U          | 1    | w          | L. |                 | Rn    |            |                    | R             | d      |        | O          | )FF:            | SET :                  | 1.                  | 1      | 5 | н | 1  | OFFSET 2      | Halfword Transfer Imm Off |
| Condition          | 0      | 0      | 0      | P      | U          | 0    | w          | L. |                 | Rn    |            |                    | F             | td     |        | 0          | 0               | 0                      | 0                   | 1      | 5 | н | 1  | Rm            | Halfword Transfer Reg Off |
| Condition          | 1      | 0      | 1      | L      |            |      |            |    |                 |       |            |                    | BRANCH OFFSET |        |        |            |                 | Branch                 |                     |        |   |   |    |               |                           |
| Condition          | 0      | 0      | 0      | 1      | 0          | 0    | 1          | 0  | 1               | 1 1   | 1 1        | 1                  | 1             | 1      | 1      | 1          | 1               | 1                      | 1                   | 0      | 0 | 0 | 1  | Rn            | Branch Exchange           |
| Condition          | 1      | 1      | 0      | P      | U          | N    | w          | L. |                 | Rn    |            | CRd                |               |        |        | - (        | CPP             | lum                    |                     | OFFSET |   |   |    |               | COPROCESSOR DATA XFER     |
| Condition          | 1      | 1      | 1      | 0      |            | Op   | <b>)-1</b> |    |                 | CRn   |            |                    | C             | Rd     |        | CPNum      |                 |                        |                     | OP-2   |   |   | 0  | CRm           | COPROCESSOR DATA OP       |
| Condition          |        |        |        |        | (          | OP-: | 1.         | L. |                 | CRn   | ı          | Rd                 |               |        |        | CPNum      |                 |                        |                     | OP-2   |   |   | 1  | CRm           | COPROCESSOR REG XFER      |
| Condition          | 1      | 1      | 1      | 1      | SWI NUMBER |      |            |    |                 |       |            | Software Interrupt |               |        |        |            |                 |                        |                     |        |   |   |    |               |                           |

N 当用两个补码表示的带符号数进行运算时,N=1表示运算的结果为负数; N=0表示运算的结果为正数或零.
7 7=1表示运算的结果为零. 7=0表示运算的结果非零.

C 可以有4种方法设置C的

加法运算(包括CMN): 当运算结果产生了进位时(无符号数溢出), C=1, 否则C=0。

减法运算(包括CMP):当运算时产生了借位时(无符号数溢出),C=0,否则C=1。

对于包含移位操作的非加/减运算指令, C为移出值的最后一位。

对于其它的非加/减运算指令,C的值通常不会改变。

V 可以有2种方法设置V的值:

对于加减法运算指令,当操作数和运算结果为二进制的补码表示的带符号数时,V=1表示符号位溢出 对于其它的非加减运算指令,V的值通常不会改变。

0000 = EQ - Z set (equal, 相等)

0001 = NE - Z clear (not equal, 不相等)

0010 = CS - C set (unsigned higher or same, 无符号大于或等于)

0011 = CC - C clear (unsigned lower, 无符号小于)

0100 = MI - N set (negative, 负数)

0101 = PL - N clear (positive or zero, 正数或零)

U101 = PL - N clear (positive or zero, 止致取

0110 = VS - V set (overflow, 溢出)

0111 = VC - V clear (no overflow, 未溢出)

1000 = HI - C set and Z clear (unsigned higher, 无符号大于)

1001 = LS - C clear or Z set (unsigned lower or same, 无符号小于或等于)

1010 = GE - N set and V set, or N clear and V clear (greater or equal,带符号大于或等于)

1011 = LT - N set and V clear, or N clear and V set (less than,带符号小于)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than,带符号大于)

1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal,带符号小于或等于)

1110 = AL - always

1111 = NV - never

## RM Instruction Set Format

#### ARM Condition Codes

| Opcode<br>[31:28] | Mnemonic extension | Interpretation                      | Status flag state for execution |
|-------------------|--------------------|-------------------------------------|---------------------------------|
| 0000              | EQ                 | Equal / equals zero                 | Zset                            |
| 0001              | NE                 | Not equal                           | Zclear                          |
| 0010              | CS/HS              | Carry set / unsigned higher or same | C set                           |
| 0011              | CC/LO              | Carry clear / unsigned lower        | C clear                         |
| 0100              | MI                 | Minus / negative                    | N set                           |
| 0101              | PL                 | Plus / positive or zero             | N clear                         |
| 0110              | VS                 | Overflow                            | V set                           |
| 0111              | VC                 | No overflow                         | V clear                         |
| 1000              | HI                 | Unsignedhigher                      | C set and Z clear               |
| 1001              | LS                 | Unsigned lower or same              | C clear or Z set                |
| 1010              | GE                 | Si gned greater than or equal       | N equal s V                     |
| 1011              | LT                 | Signedless than                     | N is not equal to V             |
| 1100              | GT                 | Si gned greater than                | Z clear and N equals V          |
| 1101              | LE                 | Signed less than or equal           | Zset or N is not equal to V     |
| 1110              | AL                 | Always                              | any                             |
| 1111              | NV                 | Never (do not use!)                 | none                            |

## **ARM Instruction Set Format**



### **COMMON OPERATIONS**

- Load and store instructions: LDR, STR, etc.
- Move instructions: MOV, etc.
- Branch (jump) instructions: B, BL, BX, BLX, etc.
- Stack push and pop instructions: PUSH, POP, etc.
- Arithmetic operations: ADD, SUB, MUL, SDIV, UDIV, etc.
- No operation (null operation): NOP

### MOVE OPERATIONS

MOV, MVN: "Move" and "Move NOT"; move not does a bitwise logical NOT operation before copying the value to the destination register.

- MOV R0, R1; copy the contents of R1 to R0
- MOV RO, #10; set RO to 10

  OXFFFF FFFF R.
- MVN R0, R1; set R0 to bitwise NOT of contents of R1
- MVN R0, #1; set R0 to 0xFFFFFFFE (bitwise NOT of x1)

## Load and Store Word or Byte: Base Register

The memory location to be accessed is held in a base register ; Store contents of r0 to location pointed to 编作中的表示。 STR r0, [r1] ; by contents of r1. ; Load r2 with contents of memory location LDR r2, [r1] ; pointed to by contents of r1. 将指挥地址为外的智数据该人等格器工中 Memory r0 Source 0x5 Register for STR r1 r2 Destination Base Register 0x5 Register for LDR

## Load/Store: Offsets from the Base Register

- Accessing a location offset from the base register pointer.
- Either:
  - An unsigned 12bit immediate value (ie 0 -4095 bytes).
  - A register, optionally shifted by an immediate value
- This can be either <u>added</u> or <u>subtracted</u> from the base register:
  - Prefix the offset value or register with '±' (default) or '-'.
- This offset can be applied:
  - before the transfer is made: Pre-indexed addressing
    - optionally auto-incrementing the base register, by postfixing the instruction with an '!'.
  - after the transfer is made: Post-indexed addressing
     causing the base register to be auto-incremented.

## Example: Load/Store: Pre-indexed Addressing

Example: STR r0, [r1,#12]



#### **Example: Load and Store: Post-indexed Addressing**

Example: STR r0, [r1], #12



- To auto-increment the base register to location 0x1f4 instead use:
  - STR r0, [r1], <u>#-</u>12
- If r2 contains 3, auto-increment base register to 0x20c by multiplying this by 4:
  - STR r0, [r1], r2, LSL #2

Write increment number outside LJ

### LOAD AND STORE INSTRUCTIONS

- LDR R1, [R0]; load into R1 the content of the memory location whose
   address is in R0
- STR R1, [R0]; store the contents of R1 into memory location whose address is in R0 & stores the address.
- LDR R1, [R0, #4]; #4 specifies an offset value, load into R1 the content of the memory location whose address is given by the value R0 + 4
- LDR R1, [R0, #4]!; #4 specifies an offset value, increment R0 by 4, load into R1 the content of the memory location whose address is given by the new contents of R0 auto increment
- What about: STR R1, [R0],#4

Register names can be in upper case or lower case. Anything after; is a comment.

## The Barrel Shifter

- The ARM doesn't have actual shift instructions.
- Instead it has a barrel shifter which provides a mechanism to carry out shifts as part of other instructions.
- So what operations does the barrel shifter support?

## **Barrel Shifter - Left Shift**

 Shifts left by the specified amount (multiplies by powers of two)

e.g.

LSL #5 => multiply by 32

#### Logical Shift Left (LSL)



# LSR, ASR

#### Logical Shift Right (LSR)

Shifts right by the specified amount (divides by powers of two) e.g.

LSR #5 = divide by 32

程符号 191

Logical Shift Right
...0 → Destination CF
zero shifted in

#### **Arithmetic Shift Right (ASR)**

Shifts right (divides by powers of two) and preserves the sign bit, for 2's

complement operations. e.g.

Consider the Sign

Arithmetic Shift Right



Sign bit shifted in

ASR #5 = divide by 32

### Rotations

#### Rotate Right (ROR)

Similar to an ASR but the bits wrap around as they leave the LSB and appear as the MSB.

e.g. ROR #5

Note the last bit rotated is also used as the Carry Out.

Rotate Right Extended (RRX)

This operation uses the CPSR C flag as a 33rd bit.



MOVE TO, To, ROR#16.
32 bit. Swap the halftop with halfbotton

#### Rotate Right through Carry



## Using the Barrel Shifter: The Second Operand



Register, optionally with shift operation applied.

Shift value can be either be: 5 bit unsigned integer Specified in bottom byte of another register.

\*\*Immediate value

8 bit number

Can be rotated right through an even number of positions.

Assembler will calculate rotate for you from constant.

- 1、BL 和 BLX 指令可将下一个指令的地址复制到Ir (r14, 链接寄存器) 中。
- 2、BX 和 BLX 指令可将处理器的状态从 ARM 更改为 Thumb,或从 Thumb 更改为ARM。
- 3、BLX label 无论何种情况,始终会更改处理器的状态。
- 4、BX Rm 和 BLX Rm 可从 Rm 的位 [0]推算出目标状态

#### BRANCH OPERATIO (5, 如果 Rm 的位 [0] 为 0, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则处理器的状态会更改为 (或保持在) ARM 状态。如果 Rm 的位 [0] 为 1, 则 2 是 Rm 的位 [0

- B and BL are branch with "immediate" arguments (e.g. jumping to a label/function); the symbol . Is a synonym for the surrent program location
- BX and BLX are branch with "register" arguments (i.e. jump to an address stored in a register)
- BL and BLX store a bookmark to the current place in the program by writing the address of the next instruction in the link register (LR).
  - B labelA; branch to the label labelA
  - BL labelA; update LR and branch to the label labelA branch with link
  - BX LR; branch to the location whose address is in LR, e.g. return from a function call
  - BLX RO; update LR and branch to the location whose address is in RO
  - B.; branch to the current program location (infinite loop)

## PUSH AND POP OPERATIONS (STACK)

PUSH {R1}; push the contents of R1 onto the stack

PUSH {R0,R1}; push the contents of R0 and R1 onto the stack

PUSH {R0,R2-R4}; push the contents of R0, R2, R3, R4 onto the stack

PUSH {R0,LR}; push the contents of R0, LR onto the stack

POP {R0,R1}; pop the top two 32-bit values from the stack into R0 and R1

PUSH and POP operations update the SP.

### ADDITION AND SUBTRACTION

ADD, SUB: Add and subtract

ADC, SBC: "Add with carry" and "Subtract with carry"

The carry instructions also utilize the carry flag (set by previous instructions – the carry flag is stored as a bit in the application program status register)

- ADD R1, R0, R1; set R1 to the sum of the contents of R0 and R1
- SUB R2, R0, R1; set R2 to the difference of the contents of R0 and R1
- ADD R2, R0, #10; R2 = R0 + 10

RSB: reverse subtract (i.e., subtract the contents of the second operand from the third operand), e.g.,

RSB R2, R0, R1; set R2 to the difference of the contents of R1 and R0  $R \leftarrow R - R_0$ Sub  $R_2$ ,  $R_0$ ,  $R_1$ ; set R2 to the difference of the contents of R1 and R0  $R \leftarrow R_0 - R_0$ 

Signed and unsigned variants: SADD16, etc.

#### MULTIPLICATION AND DIVISION

MUL, MLA, and MLS: "Multiply", "Multiply with accumulate", and "Multiply with subtract"

- MUL R2, R0, R1; R2 = R0\*R1
- MLA R3, R0, R1, R2; R3 = R0\*R1 + R2 /W/L + ADD
- MLS R3, R0, R1, R2; R3 = R0\*R1 − R2 MTL + SUB

Signed and unsigned variants: SMLA, etc. SDIV, UDIV: "Signed division" and "Unsigned division"

- SDIV R2, R0, R1; signed divide, R2 = R0/R1
- UDIV R2, R0, R1; unsigned divide, R2 = R0/R1

#### FLOATING POINT INSTRUCTIONS

Floating point instructions are available if there is a <u>floating point</u> unit (FPU) in the system and is enabled (the FPU is generally enabled as part of the start-up sequence on ARM Cortex-M4F).

- VADD, VSUB, etc. : floating point addition and subtraction
- VMUL, VDIV, etc.: floating point multiplication and division
- VABS: floating point absolute value

#### BITWISE OPERATIONS

AND, ORR (logical OR), etc.; exclusive OR is EOR

LSL, LSR: "logical shift left" and "logical shift right"

ROR: rotate right

- AND R2, R0, R1; R2 = R0 & R1
- OR R2, R0, R1; R2 = R0 | R1
- AND R2, R0, #0x10; R2 = R0 & 0x10
- OR R2, R0, #0x10; R2 = R0 | 0x10
- LSL R2, R0, #2; R2 = R0 << 2</li>

#### CONDITIONAL EXECUTION OF INSTRUCTIONS

Many instructions support optional suffixes denoting various conditions to specify that the instruction must be executed only if the specified condition is true.

- Some examples of condition suffixes:
  - EQ for equal (i.e., Z = 1), NE for not equal (i.e., Z = 0)
  - GT for "greater than" and LT for "less than"; these conditions are evaluated using combinations of flags Z, N, and V. For example, GT is equivalent to "Z= 0 and N = V", LT is equivalent to "N!= V"
  - GE and LE for "greater than or equal" and "less than or equal"
- Example: ADDEQ will do an addition only if the "equal" condition is currently active (i.e., a previous instruction caused the Z flag to become 1); BNE will do a branch (jump) only if the "equal" condition is not currently active.

# Software Interrupt (SWI)



- In effect, a SWI is a user-defined instruction.
- It causes an exception trap to the SWI hardware vector (thus causing a change to supervisor mode, plus the associated state saving), thus causing the SWI exception handler to be called.
- The handler can then examine the comment field of the instruction to decide what operation has been requested.
- By making use of the SWI mechanism, an operating system can implement a set of privileged operations which applications running in user mode can request.
- See Exception Handling Module for further details.

# Assembler: Pseudo-ops

- AREA -> chunks of data (\$data) or code (\$code)
- ADR -> load address into a register
- ADR RO, BUFFER
- ALIGN -> adjust location counter to word boundary usually after a storage directive
- END -> no more to assemble

# Assembler: Pseudo-ops

Example:

```
AREA cacheable, CODE, ALIGN=3
rout1 ; code ; aligned on 8-byte boundary
; code
MOV pc,lr ; aligned only on 4-byte boundary
ALIGN 8 ; now aligned on 8-byte boundary
rout2 ; code
```

# Assembler: Pseudo-ops

- IMPORT -> name of routine to import for use in this routine
- IMPORT \_printf; C print routine
- EXPORT -> name of routine to export for use in other routines
- EXPORT add2; add2 routine
- EQU -> symbol replacement
- loopcnt EQU 5

# **Assembly Line Format**

- label<whitespace> instruction<whitespace> ; comment
- label: created by programmer, alphanumeric
- whitespace: space(s) or tab character(s)
- *instruction*: op-code mnemonic or pseudo-op with required fields
- comment: preceded by ; ignored by assembler but useful
- to the programmer for documentation
- NOTE: All fields are optional.

#### REFERENCES

- Sloss, Andrew, Dominic Symes, and Chris Wright. "ARM system developer's guide: designing and optimizing system software."
   Morgan Kaufmann, 2004.
- ARM University Program. "ARM Processors and Architectures Comprehensive Overiew." http://arm.com, 2012.