EMSE 4765: DATA ANALYSIS

For Engineers and Scientists

Session 13: One-Way Analysis of Variance (ANOVA)

Version: 4/12/2021

Lecture Notes by: J. René van Dorp¹

www.seas.gwu.edu/~dorpjr

Department of Engineering Management and Systems Egineering, School of Engineering and Applied Science, The George Washington University, 800 22nd Street, N.W., Suite 800, Washington D.C. 20052. E-mail: dorpjr@gwu.edu.

• Univariate T-test: $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$. (Scalar μ_0 is specified)

• Two Sample Univariate T-test: $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$.

• Hotelling T^2 -test: $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$. (Vector μ_0 is specified)

Two-Sample Hotelling T^2 -test: $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$. Independence between Observations $\overline{X_1}$ X₁₂ X_{1n} X₁₁ Sample 1 **Dependence** Samples Between $\overline{X_2}$ X_{21} X_{22} X_{2n} Sample 2 $\overline{X_p}$ X_{p1} X_{p2} X_{pn} Sample p Independence between Observations Compare \overline{y}_1 Sample 1 y₁₂ y_{1n} y₁₁ Dependence Samples Between \overline{y}_2 y₂₁ y₂₂ y_{2n} Sample 2 $\overline{y_p}$ y_{p2} y_{p1} y_{pn} Sample p

• Objective of Analysis of Variance (ANOVA):

Tensile Strength Example: The tensile strength of synthetic fiber used to make cloth for men's shirts is of interest to a manufacturer. It is suspected that the strength is affected by the percentage of cotton in the fiber. Five levels of cotton percentages are of interest, 15%, 20%, 25%, 30%, and 35%. Five observations are to be taken at each level of cotton percentage, and the 25 total observations are to be run in random order:

Total number of paired comparisons:
$$\binom{5}{2} = 10$$

• It seems that this problem can be solved by performing 10 two-sample t tests on all possible pairs. However, this solution could lead to a considerable distortion in the type I error.

Tensile Strength Example:

We have 10 possible pairs. If the probability of failing to reject the null hypothesis (i.e. there is no difference between a pair) for all 10 tests is $1 - \alpha = 0.95$, then the probability of <u>correctly</u> failing to reject the null hypothesis for all 10 tests (i.e. there is no difference between the 10 samples) equals:

 $Pr("no differences between pairs" | no difference between pairs) = 0.95 \Rightarrow$ $Pr("no differences between 10 pairs" | no difference between 10 pairs) = (0.95)^{10} \approx 0.60$

If the tests are independent (which is questionable).

Pr("A difference in at least one of the 10 pairs" | no difference between 10 pairs) $= 1 - (0.95)^{10} \approx 0.40$

Thus we observe a substantial increase of Type I error from 5% to 40%.

A more appropriate procedure for testing equality of several means in the setting above is through an **ANALYSIS OF VARIANCE**, by assuming that the variance within each sample is the same in the **ANOVA** model. In ANOVA samples are referred to as "treatments". Hence, we have:

$$X_{ij} = \mu + \tau_i + \epsilon_{ij}, \ \begin{cases} i = 1, \dots, p \\ j = 1, \dots, n \end{cases}$$

 μ : a parameter common to all treatments called *the overall mean*

 au_i : a parameter unique to the *i*-th treatment called *the treatment effect*,

 ϵ_{ij} : a random error component, $\epsilon_{ij} \sim N(0, \sigma)$ for all i, j and i.i.d.

• Thus the mean of treatment *i* equals the sum of the overall mean + the *i*-th treatment effect:

$$E[X_{ij}] = \mu + \tau_i, i = 1, ..., p, \Rightarrow \text{ one can choose } \mu \text{ such that: } \sum_{i=1}^p \tau_i \equiv 0.$$

- We are interested in testing the equality of the p treatment means as follows: $H_0: \mu_1 = \mu_2 = \dots = \mu_p, H_1: \mu_i \neq \mu_j$, for a least one i, j
- If H_0 is true, all treatments have common mean μ . An equivalent way to write the hypothesis test is in terms of the treatment effects τ_i is as follows: $H_0: \tau_1 = \tau_2 = \ldots = \tau_p = 0, H_1: \tau_i \neq 0$, for a least one i

Notation:

$$x_{i\bullet} = \sum_{j=1}^{n} x_{ij}, \ \overline{x}_{i\bullet} = \frac{1}{n} x_{i\bullet}, \text{ assuming } n = \text{equal } \# \text{ observations in each treatment}$$

$$x_{\bullet \bullet} = \sum_{j=1}^{p} \sum_{j=1}^{n} x_{ij}, \quad \overline{x}_{\bullet \bullet} = \frac{1}{N} x_{\bullet \bullet}, \ N = np \ (\equiv \text{ total number of observations})$$

• ANALYSIS OF VARIANCE (ANOVA) TABLE:

Source	Sum of	Degrees of	Mean	F_0
	Squares	Freedom	Square	
Between	$SS_{Treatments}$	p-1	$MS_{Treatment}$	$\frac{MS_{Treatments}}{MS_{E}}$
treatments				
Error	SS_E	N-p	MS_E	
(within treatments)				
Total	SS_T	N-1		

$$SS_{T} = \sum_{i=1}^{p} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{\cdot \cdot})^{2}, \ SS_{E} = \sum_{i=1}^{p} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{i \cdot})^{2}$$

$$SS_{Treatments} = \sum_{i=1}^{p} \sum_{j=1}^{n} (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot})^{2} = n \times \sum_{i=1}^{p} (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot})^{2},$$

$$SS_{T} = SS_{E} + SS_{Treatments}$$

Tensile Strength Example: The tensile strength of synthetic fiber used to make cloth for men's shirts is of interest to a manufacturer. It is suspected that the strength is affected by the percentage of cotton in the fiber. Five levels of cotton percentage are of interest, 15%, 20%, 25%, 30%, and 35%. Five observations are to be taken at each level of cotton percentage, and the 25 total observations are to be run in random order.

Table: Tensile Strength of Synthetic Fiber (lb/in.²)

Percentage of _	Observations					
Cotton	1	2	3	4	5	X _{i•}
15%	7	7	15	11	9	49
20%	12	17	12	18	18	77
25%	14	18	18	19	19	88
30%	19	25	22	19	23	108
35%	7	10	11	15	11	54
				_	Х••	376

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F ₀	p-value
SS _{Treatments}	475.76	4	118.94	14.76	9.13E-06
SS_E	161.2	20	8.06		
SS _T	636.96	24			

• p-value $< \alpha$ for $\alpha \in \{1\%, 5\%, 10\%\} \Rightarrow \text{Reject } H_0 \text{ for all these } \alpha' \text{s}$

Conclusion: At least one of the treatment means differs!

• Estimation of parameters can be done using the least squares approach (similar to linear regression analysis). Recall: $X_{ij} = \mu + \tau_i + \epsilon_{ij}$

$$\widehat{\mu} = \overline{X}_{\bullet}, \ \widehat{\tau}_i = \overline{X}_{i\bullet} - \overline{X}_{\bullet}, \ i = 1, \dots, p,$$

$$\widehat{\mu}_i = \widehat{\mu} + \widehat{\tau}_i = \overline{X}_{i\bullet}, \ \widehat{\sigma}^2 = MS_E = SS_E/(N-p)$$

• $100(1-\alpha)\%$ confidence intervals treatment means μ_i :

$$\overline{X}_{i\bullet} \pm t_{\alpha/2,N-p} \sqrt{MS_E/n}$$

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Treatment	4	475.8	118.940	14.76	0.000
Error	20	161.2	8.060		
Total	24	637.0			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
2.83901	74.69%	69.63%	60.46%

Means

Treatment	Ν	Mean	StDev	95% CI
1	5	9.80	3.35	(7.15, 12.45)
2	5	15.40	3.13	(12.75, 18.05)
3	5	17.600	2.074	(14.952, 20.248)
4	5	21.60	2.61	(18.95, 24.25)
5	5	10.80	2.86	(8.15, 13.45)

MINITAB Plot of 95% Confidence Intervals

• $100(1-\alpha)\%$ confidence intervals difference treatment means $\mu_i - \mu_k$: $\overline{X}_{i\bullet} - \overline{X}_{k\bullet} \pm t_{\alpha/2,N-p} \sqrt{2MS_E/n}$

Comparison of μ_3 to other treatment means.

Conclusion: We only fail to reject the null-Hypothesis that $\mu_3 = \mu_2 !!!$

- It was assumed in the model that the error terms ϵ_{ij} are normal distributed with a mean 0 and a variance σ^2 .
- The normality assumptions of the residuals ϵ_{ij} can be checked via a normal probability plot.
- It is important to recognize that we are testing the equality of treatment means by testing for the equality of variances.
- The required assumption that allows us to do this is that the variance of the error terms ϵ_{ij} is constant across treatments i = 1, ..., p.
- The assumption of equality of variance may be visually verified by plotting the residuals of each treatment against one another.
- Alternatively, we may also use Bartlett's test, to test for equality of variance across treatment.

Bartlett's Test for Equality of Variance across treatments

$$H_0: \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_p^2, H_1:$$
 Not true for at least one σ_i^2

Test Statistic:

$$\chi_0^2 = \frac{q}{c} \sim \chi_{p-1}^2$$

$$q = (N - p) \times Ln(S_{pooled}^2) - (n - 1) \sum_{i=1}^{p} Ln S_i^2, N = n \times p$$

$$S_{pooled}^2 = \frac{1}{p} \sum_{i=1}^p S_i^2, \ c = 1 + \frac{1}{3(p-1)} \left[\frac{p}{(n-1)} - \frac{1}{(N-p)} \right]$$

Tensile Strength Example:

$$N=25,~p=5, S_{pooled}^2\approx 8.06, q\approx 1.03, c\approx 1.10, \chi_0^2\approx 0.93, \\ p-value\approx 0.92.$$
 Conclusion: Fail to Reject the null-Hypothesis

Same Analysis in "Tensile_Strength_Analysis.R"

• $100(1-\alpha)\%$ confidence intervals difference treatment means $\mu_i - \mu_k$: $\overline{X}_{i\bullet} - \overline{X}_{k\bullet} \pm t_{\alpha/2,N-p} \sqrt{2MS_E/n}$

Comparison of μ_3 to other treatment means.

Conclusion: We only fail to reject the null-Hypothesis that $\mu_3 = \mu_2 !!!$

• Using the $100(1-\alpha)\%$ confidence intervals for differences of treatment means of $\mu_3 - \mu_k$, k = 1, 2, 4 and 5 we tested the hypotheses:

$$H_0: \mu_3 = \mu_k, H_1: \mu_3 \neq \mu_k, k = 1, 2, 4 \text{ and } 5$$

• Hypothesis test could be tested by investigating an appropriate linear combination of treatment totals, for example:

Is
$$X_{3\bullet} - X_{k\bullet} = 0$$
? (since *n* is same for each treatment).

If we suspect that the combined average of cotton percentages 1 and 3 did not differ from the combined average of cotton percentages 4 and 5, then the hypothesis to be tested is:

$$H_0: \mu_1 + \mu_3 = \mu_4 + \mu_5; H_1: \mu_1 + \mu_3 \neq \mu_4 + \mu_5$$

which implies the following linear combination of treatment totals:

$$X_{1\bullet} + X_{3\bullet} = X_{4\bullet} + X_{5\bullet}? \Leftrightarrow X_{1\bullet} + X_{3\bullet} - X_{4\bullet} - X_{5\bullet} = 0?$$

• A linear combination of treatments totals $C = \sum_{i=1}^{p} c_i X_i$ such that $\sum_{i=1}^{p} c_i = 0$ is called a **contrast or a contrast sum.**

The sum of squares for any contrast sum equals:

$$SS_C = \left(\sum_{i=1}^p c_i X_{i\bullet}\right)^2 / \left(n \times \sum_{i=1}^p c_i^2\right),$$

where n is the number of observations in Treatment i and the contrast SS_C has a single degree of freedom and hence $MS_C = SS_C/1 = SS_C$.

• Therefore,

$$\frac{MS_C}{MS_E} = \frac{SS_C}{SS_E/N - p} \sim F_{1,N-p}$$

- Conclusion: Many important comparisons regarding treatment means, or their combinations, can be conducted using these contrast sums.
- In addition, two contrasts $\{c_i\}$ and $\{d_i\}$ are orthogonal when $\sum_{i=1}^p c_i d_i = 0$

- For p treatments, a set of (p-1) orthogonal contrasts partitions the sum of squares due to treatments into (p-1) independent single degree-of-freedom contrast sum of square components.
- **Due to orthogonalility of contrasts,** the contrast tests are independent. Hence, if the Type 1 error of each individual contrast test is $(1 - \alpha)$, the Type 1 error of the (p - 1) orthogonal contrast tests equals $(1 - \alpha)^{p-1}$.
- Without orthogonality of these contrasts, we cannot say anything about the combined Type 1 error probability.
- There are many ways to choose orthogonal contrast coefficient for a given set of treatments. For example, if there are p=3 treatments, with Treatment 1 being a control and Treatments 2 and 3 change levels of the factor of interest, then appropriate orthogonal contrast might be as follows

	Treatment 1(Control)	Treatment 2(Level 1)	Treatment 3(Level2)
c_i	-2	1	1
d_i	0	-1	1

• Contrast coefficients must be chosen prior to running the experiment and prior to examining the data.

Tensile Strength Example:

$$H_0: \mu_4 = \mu_5$$
 $C_1 = -X_{4\bullet} + X_{5\bullet}$ (Compares the average of Treatment 4 and with that of Treatment 5)

$$H_0: \mu_1 + \mu_3 = \mu_4 + \mu_5$$
 $C_2 = X_{1\bullet} + X_{3\bullet} - X_{4\bullet} - X_{5\bullet}$ (Compares the averages of Treatments 1 and 3 with that of Treatments 4 and 5)

$$H_0: \mu_1 = \mu_3$$
 $C_3 = X_{1 \bullet} - X_{3 \bullet}$ (Compares the average of Treatment 1 and with that of Treatment 3)

$$H_0: 4\mu_2 = \mu_1 + \mu_3 + \mu_4 + \mu_5$$
 $C_4 = -X_{1\bullet} + 4X_{2\bullet} - X_{3\bullet} - X_{4\bullet} - X_{5\bullet}$ (Compares the average of Treatments 2 with that of Treatments 1, 3, 4 and 5)

Notice that the contrast coefficients are orthogonal!

Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	F_0	p-value
C1	291.6	1	291.6	36.18	7.01E-06
C2	31.25	1	31.25	3.88	6.30%
C3	152.1	1	152.1	18.87	3.15E-04
C4	0.81	1	0.81	0.10	75.5%
SS _{Treatments}	475.76	4	118.94	14.76	9.13E-06
SS_E	161.2	20	8.06		
SS _T	636.96	24			

Conclusion at a 5% Significance Level:

- There are differences between the treatment means.
- Furthermore, differences are observed between Treatment 4 and Treatment 5 (C1), and differences of Treatment 1 and Treatment 3 (C3).
- No difference is observed between the average sum of Treatmens 1 and 3 and the average sun of Treatments 4 and 5 combined (C2).
- No difference is observed between the average of Treatment 2 and the average sum of Treatments 1, 3, 4 and 5 (C4)

Same Analysis in "Tensile_Strength_Analysis.R"

SOURCE	SS	df	MS	F	p-value
C1	291.60	1	291.60	36.18	0.00 %
C2	31.25	1	31.25	3.88	6.30 %
C3	152.10	1	152.10	18.87	0.03 %
C4	0.81	1	0.81	0.10	75.45 %
Treatments	475.76	4	118.94	14.76	0.00 %
Error	161.20	20	8.06		
Total	636.96	24			

Total sum of squares:

$$SS_{T} = \sum_{i=1}^{p} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{\cdot \cdot})^{2} = \sum_{i=1}^{p} \sum_{j=1}^{n} \left[(x_{ij} - \overline{x}_{i \cdot}) + (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot}) \right]^{2}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n} \left[(x_{ij} - \overline{x}_{i \cdot})^{2} + 2(x_{ij} - \overline{x}_{i \cdot})(\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot}) + (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot})^{2} \right]$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{i \cdot})^{2} + 2\sum_{i=1}^{p} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{i \cdot})(\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot}) + \sum_{i=1}^{p} \sum_{j=1}^{n} (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot})^{2}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{i \cdot})^{2} + 2\sum_{i=1}^{p} (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot}) \sum_{i=1}^{n} (x_{ij} - \overline{x}_{i \cdot}) + n \sum_{i=1}^{p} (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot})^{2}$$

Cross product term equals zero, because:

$$\sum_{i=1}^{n} (\boldsymbol{x_{ij}} - \overline{\boldsymbol{x}_{i^{\bullet}}}) = \sum_{i=1}^{n} x_{ij} - n \, \overline{x}_{i^{\bullet}} = n \, \overline{x}_{i^{\bullet}} - n \, \overline{x}_{i^{\bullet}} = 0$$

Total sum of squares:

$$SS_T = \sum_{i=1}^p \sum_{j=1}^n (x_{ij} - \overline{x}_{\cdot \cdot})^2 = \sum_{i=1}^p \sum_{j=1}^n (x_{ij} - \overline{x}_{i \cdot})^2 + n \sum_{i=1}^p (\overline{x}_{i \cdot} - \overline{x}_{\cdot \cdot})^2$$

or

$$SS_T = SS_E + SS_{Treatments}$$

where;

$$SS_E = \sum_{i=1}^p \sum_{j=1}^n (\boldsymbol{x_{ij}} - \overline{\boldsymbol{x}_{i^{\bullet}}})^2$$

The sum of squares within an treatment i, summed over all treatments

$$SS_{Treatments} = n \sum_{i=1}^{p} (\overline{\boldsymbol{x}_{i\bullet}} - \overline{\boldsymbol{x}_{\bullet \bullet}})^2$$

The sum of squares of treatment means $\overline{x}_{i\bullet}$ against the overall mean $\overline{x}_{\bullet\bullet}$

• The sample variance in the i-th treatment equals:

$$S_i^2 = \frac{1}{n-1} \sum_{j=1}^n (\boldsymbol{x_{ij}} - \overline{\boldsymbol{x}_{i\bullet}})^2 \Leftrightarrow (n-1)S_i^2 = \sum_{j=1}^n (\boldsymbol{x_{ij}} - \overline{\boldsymbol{x}_{i\bullet}})^2$$

• These S_i^2 's can be combined to get an estimate of pooled variance as follows

$$\frac{1}{p} \sum_{i=1}^{p} S_i^2 = \frac{(n-1) \sum_{i=1}^{p} S_i^2}{(n-1)p} = \frac{(n-1)S_1^2 + \dots + (n-1)S_p^2}{np-p} = \frac{\sum_{i=1}^{p} \left[\sum_{j=1}^{n} (\boldsymbol{x}_{ij} - \overline{\boldsymbol{x}}_{i\bullet})^2 \right]}{N-p} = \frac{SS_E}{N-p}$$

• Recalling $\epsilon_{ij} \sim N(0, \sigma)$ and denoting :

$$MS_E = \frac{SS_E}{N-p} \Rightarrow E[MS_E] = E\left[\frac{1}{p}\sum_{i=1}^{p}S_i^2\right] = \frac{1}{p}\sum_{i=1}^{p}\sigma^2 = \sigma^2$$

Mechanics: Optional

• Recalling $\epsilon_{ij} \sim N(0, \sigma)$, observe that the estimators of the *i*-th treatment means

$$\overline{X}_{i\bullet} = \frac{1}{n} \sum_{j=1}^{n} X_{ij}$$

are all random variables $i=1,\ldots,p$ with common variance $V[\overline{X}_{i\bullet}]=\sigma^2/n$.

• If the treatments means are all equal, then $E[\overline{X}_{i\bullet}] = \mu$, we have that

$$\overline{X}_{\cdot \cdot \cdot} = \frac{1}{np} \sum_{i=1}^{p} \sum_{j=1}^{n} X_{ij} = \frac{1}{p} \sum_{i=1}^{p} \left[\frac{1}{n} \sum_{j=1}^{n} X_{ij} \right] = \frac{1}{p} \sum_{i=1}^{p} \overline{X}_{i \cdot \cdot} \Rightarrow E[\overline{X}_{\cdot \cdot \cdot}] = \mu$$

and thus $\overline{X}_{\bullet \bullet}$ is an unbiased estimate of the **common** treatment mean μ .

Hence, if the treatments means are all equal,

$$E\left[\frac{1}{p-1}\sum_{i=1}^{p}\left(\overline{X}_{i\bullet}-\overline{X}_{\bullet\bullet}\right)^{2}\right] = \frac{\sigma^{2}}{n} \Leftrightarrow E\left[\frac{n}{p-1}\sum_{i=1}^{p}\left(\overline{X}_{i\bullet}-\overline{X}_{\bullet\bullet}\right)^{2}\right] = \sigma^{2}$$

• Denoting:

$$MS_{Treatments} = \frac{n}{p-1} \sum_{i=1}^{p} (\overline{X}_{i \cdot} - \overline{X}_{\cdot \cdot})^2 = \frac{n \sum_{i=1}^{p} (\overline{X}_{i \cdot} - \overline{X}_{\cdot \cdot})^2}{p-1} = \frac{SS_{Treatment}}{p-1}$$

we have, when all the treatments means are equal,

$$E[MS_{Treatments}] = \sigma^2.$$

• It can be shown that if the treatment means are not necessarily equal,

$$E[MS_{Treatments}] = \sigma^2 + \frac{n}{p-1} \sum_{i=1}^{p} \tau_i^2.$$

We have shown that (regardless of the value of the treatment means):

$$E[MS_E] = E\left[\frac{SS_E}{N-p}\right] = \sigma^2.$$

- Conclusion: If the value of $MS_{Treatments}$ is close to that of MS_{E} this can be seen as an indication that the treatment means are equal. Moreover, if the treatment means are different it follows that $MS_{Treatments}$ is larger than MS_{E} .
- But how large does $MS_{Treatments}$ have to be, before we decide that the treatment means are different?

$$\frac{MS_{Treatments}}{MS_E} = \frac{SS_{Treatments}/(p-1)}{SS_E/(N-p)} \sim F_{p-1,N-p}$$

• Hence, when

$$F_0 = \frac{MS_{Treatments}}{MS_E} > F_{p-1,N-p}, 1 - \alpha$$

we reject the null-hypothesis of no differences between the treatment means.

• p-value of this hypothesis test equals: $Pr(F_{p-1,N-p} > MS_{Treatments}/MS_E)$