MIDWESTERN STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

CMPS 4103- Introduction to Operating Systems Fall semester 2022

Student name:	Ethan Coyle
---------------	-------------

Assignment #3 – Memory Management - due date 10/27

Problem 1 A computer has four page frames. The time of loading, time of last access, and the R and M bits for each page are shown below (the times are in clock ticks)

Page	Loaded	Last ref.	R	M
9	230	280	1	1
1	126	275	1	0
7	270	282	0	1
3	140	266	1	0

a) Which page will NRU replace?

it will replace page 7

b) Which page will FIFO replace?

it will replace page 1

c) Which page will LRU replace?

it will replace page 6

d) Which page will second chance replace?

it will replace page 7

Problem 2 Consider a program with two segments: instructions in segment 0 and read/write data in segment 1. Segment 0 has read/execution protection and 1 has read/write protection. The system uses paged virtual memory, virtual addresses with a one-bit segment number, 3-bit page number and 8 bit offset. The page table is shown below (all values are decimal):

Segment 0		Segment 1		
Read/Execute		Read/Write		
Virtual Page #	Page Frame #	Virtual Page #	Page Frame #	
0	2	0	On Disk	
1	On Disk	1	14	
2	1	2	9	
3	5	3	6	
4	On Disk	4	On Disk	
5	On Disk	5	7	
6	4	6	8	
7	3	7	12	

Identify the physical address (or page fault or access violation) in hexadecimal for the following cases.

(a) Fetch address 61A₁₆

(c) Fetch from address 1F2₁₆ results in a page fault

41A

(b) Store into address 36B₁₆

(d) Store into address 935₁₆

this is a access violation

E35