

FCC CFR47 PART 15 SUBPART E CLASS II PERMISSIVE CHANGE TEST REPORT

FOR

MC85 MINI CARD 11b/g/a/n RADIO CARD

MODEL NUMBER: MC85

FCC ID: UAY-MMC85M

REPORT NUMBER: 06U10699-1

ISSUE DATE: APRIL 25, 2007

Prepared for

MARVELL SEMICONDUCTOR, INC.
5488 MARVELL LANE
SANTA CLARA
CALIFORNIA, 95054, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA

> TEL: (408) 463-0885 FAX: (408) 463-0888

DATE: APRIL 25, 2007 FCC ID: UAY-MMC85M

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	4/25/07	Initial Issue	M. Heckrotte

TABLE OF CONTENTS

1. ATT	ESTATION OF TEST RESULTS	5
2. TES	T METHODOLOGY	6
3. FAC	ILITIES AND ACCREDITATION	6
4. CAL	IBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. EQU	IPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	7
5.3.	MAXIMUM OUTPUT POWER	<i>7</i>
	DESCRIPTION OF AVAILABLE ANTENNAS	
5.5.	SOFTWARE AND FIRMWARE	8
	WORST-CASE CONFIGURATION AND MODE	
	MODIFICATIONS	
	DESCRIPTION OF TEST SETUP	
6. TES	Γ AND MEASUREMENT EQUIPMENT	11
7. LIM	ITS AND RESULTS	12
7.1.	CHANNEL TESTS FOR THE 5470 TO 5725 MHz BAND	12
7.1.1		
7.1.2		
7.1.3 7.1.4		
7.1.4		
7.1.6		
7.1.7		
7.2.	RADIATED EMISSIONS	183
7.2.1		
7.2.2		
7.2.3		
7.2.4		
	DYNAMIC FREQUENCY SELECTION	
7.3.1		
7.3.2		
7.3.3 7.3.4	· · · · · · · · · · · · · · · · · · ·	
1.5.4	DESCRIPTION OF LOT	207

	7.3.5.	SETUP OF EUT	. 269
7.	.4. DF	S RESULTS FOR 20 MHz BANDWIDTH	. 270
	7.4.1.	PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC	
	7.4.2.	TEST CHANNEL AND METHOD	
	7.4.3.	CHANNEL AVAILABILITY CHECK TIME	. 277
	7.4.4.	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	. 282
	7.4.5.	NON-OCCUPANCY PERIOD.	. 288
	7.4.6.	DETECTION BANDWIDTH.	. 289
	7.4.7.	IN-SERVICE MONITORING	. 291
	7.4.8.	SLAVE DEVICE CONFIGURATION - CHANNEL MOVE TIME AND CHANNEL	
	CLOSI	NG TRANSMISSION TIME	. 310
7.	.5. DF	S RESULTS FOR 40 MHz BANDWIDTH	. 315
	7.5.1.	PLOTS OF RADAR WAVEFORM, AND WLAN TRAFFIC	. 315
	7.5.2.	TEST CHANNEL AND METHOD	
	7.5.3.	CHANNEL AVAILABILITY CHECK TIME	
	7.5.4.	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	. 327
	7.5.5.	NON-OCCUPANCY PERIOD.	. 333
	7.5.6.	DETECTION BANDWIDTH	. 334
	7.5.7.	IN-SERVICE MONITORING	.336
	7.5.8.	SLAVE DEVICE CONFIGURATION - CHANNEL MOVE TIME AND CHANNEL	
	CLOSI	NG TRANSMISSION TIME	. 351
2	SETUP	PHOTOS	356

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MARVELL SEMICONDUCTOR, INC.

5488 MARVELL LANE

SANTA CLARA, CA, 95054, USA

EUT DESCRIPTION: MC85 MINI CARD 802.11b/g/a/n RADIO CARD

MODEL: MC85

SERIAL NUMBER: 01779

DATE TESTED: NOVEMBER 2, 2006 – APRIL 5, 2007

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART E NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By: Tested By:

MICHAEL HECKROTTE ENGINEERING MANAGER

MH

COMPLIANCE CERTIFICATION SERVICES

THANH NGUYEN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

Mankonguym

DATE: APRIL 25, 2007

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15 and and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: APRIL 25, 2007

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n transceiver.

The radio module is manufactured by Marvell Semiconductor

5.2. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The purpose of this Permissive Change is adding the 5470-5725 MHz band from the previous project.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

5470 to 5725 MHz Authorized Band

Frequency Band	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5500 - 5700	802.11a	14.60	28.84
5500 - 5700	802.11n HT20	16.09	40.64
5510 - 5670	802.11a 40MHz	15.36	34.36
5510 - 5670	802.11n HT40	16.19	41.59

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes two antennas for diversity:

- 1) Foxconn Model 820-2032 with a maximum gain of 6 dBi @ 5.5GHz band.
- 2) Mega Chip Model QRANTDPLWPS008, Dipole, with a maximum gain of 5.30 dBi @ 5.5 GHz.

DATE: APRIL 25, 2007 FCC ID: UAY-MMC85M

SOFTWARE AND FIRMWARE 5.5.

The firmware installed in the EUT during testing was PCI rev. 1.0.0.0.2, MFG 2.1.0.36

The EUT driver software installed in the Laptop during testing was Marvell Semiconductor, Inc. Labtools rev. 1.0.3.p3.

The board revision of the EUT tested is 1.8.

The test utility software used during testing was PCI.exe.

WORST-CASE CONFIGURATION AND MODE 5.6.

The 2x3 configuration was used for all testing in this report.

In our opinion the worst- case data rates are determined to be as follows for each mode based on investigation by measuring the average power, peak power and PPSD across all data rates, bandwidths, and modulations.

In our opinion the worst-case data rates for the 2GHz bands are: 11 Mbps for 802.11b; 54Mbps for 802.11g; MCS11 for 802.11n HT20; MCS15 for 802.11n HT40. These are based on baseline testing with this chipset.

In our opinion the worst-case data rates for the 5GHz bands are: 9 Mbps for 802.11a 20MHz and 802.11a 40MHz; MCS0 for 802.11n HT20 and 802.11n HT40. These are based on baseline testing with this chipset.

All emissions tests were made with the worst-case data rates.

5.7. **MODIFICATIONS**

There were no modifications made to the revision EUT during the testing.

DATE: APRIL 25, 2007

5.8. **DESCRIPTION OF TEST SETUP**

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
Laptop	IBM	ThinkPad T60	L3-M5371	DoC			
Extend PCB	Marvell	N/A	02V20806	N/A			

TEST SETUP

The EUT is installed in a host laptop computer via an extension board during the tests. Test software exercised the radio card.

DATE: APRIL 25, 2007

SETUP DIAGRAM FOR TESTS

Page 10 of 362

DATE: APRIL 25, 2007

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report, excluding DFS tests; all tests utilizing this equipment were completed on or before November 20, 2006:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	Cal Due		
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	2/4/2007		
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/07		
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	8/30/07		
Power Meter	Agilent / HP	438A	3513U04320	1/12/07		
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29310	4/22/07		
Power Sensor 10MHz - 18GHz	Agilent / HP	8481A	3318A95392	1/11/07		
7.6 GHz Highpass Filter	Micro-Tronics	HPM13195	1	CNR		
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/3/07		

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent / HP	E4446A	US42070220	7/26/2007	
Vector Signal Generator 250kHz-					
20GHz	Agilent / HP	E8267C	US43320336	11/2/2007	
	National				
High Speed Digital I/O Card	Instruments	PCI-6534	HA1612845	1/16/2008	

DATE: APRIL 25, 2007

7. LIMITS AND RESULTS

7.1. CHANNEL TESTS FOR THE 5470 TO 5725 MHz BAND

7.1.1. EMISSION BANDWIDTH

LIMIT

§15.403 (i) Emission bandwidth. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

RESULTS

No non-compliance noted:

DATE: APRIL 25, 2007

Mode	Frequency	26 dB	26 dB	Worst
Channel		BW	BW	Case
		Chain 0	Chain 1	10 Log B
	(MHz)	(MHz)	(MHz)	(dB)

802.11a Mode

Low	5500	20.484	20.391	13.11
Middle	5600	20.434	20.346	13.10
High	5700	20.475	20.230	13.11

802.11n HT20 Mode

Low	5500	20.629	20.462	13.14
Mid	5600	20.516	20.504	13.12
High	5700	20.553	20.65	13.15

802.11a 40 Mode

Low	5510	41.382	41.354	16.17
Mid	5590	41.945	41.476	16.23
High	5670	41.599	41.526	16.19

802.11n HT40 Mode

Low	5510	40.142	40.386	16.06
Mid	5590	42.784	40.629	16.31
High	5670	40.653	40.632	16.09

26 dB EMISSION BANDWIDTH (802.11a MODE)

26 dB EMISSION BANDWIDTH (802.11a MODE)

Channel B

DATE: APRIL 25, 2007 FCC ID: UAY-MMC85M

26 dB EMISSION BANDWIDTH (HT20 MODE)

26 dB EMISSION BANDWIDTH (HT20 MODE)

Channel B

26 dB EMISSION BANDWIDTH (11a 40 MODE)

26 dB EMISSION BANDWIDTH (11a 40 MODE)

Channel B

26 dB EMISSION BANDWIDTH (HT40 MODE)

26 dB EMISSION BANDWIDTH (HT 40 MODE)

Channel B

7.1.2. MAXIMUM POWER

LIMIT

§15.407 (a) (2) For the 5.47–5.725 GHz band, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

Each chain is measured separately and the total power is calculated using:

Total Power = $10 \log (10^{\circ} (Chain 0 Power / 10) + 10^{\circ} (Chain 2 Power / 10))$

DATE: APRIL 25, 2007

FCC ID: UAY-MMC85M

This report shall not be reproduced except in full, without the written approval of CCS.

LIMITS AND RESULTS

No non-compliance noted:

Mode	Freq	10LogB	11+10LogB	Limit	Chain	Chain	Total	Margin
Chan			Limit		0	2	Power	
					Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)

802.11a Mode

Low	5500	13.11	24.11	20.99	12.02	11.04	14.57	-6.42
Mid	5600	13.10	24.10	20.99	11.94	11.20	14.60	-6.39
High	5700	13.11	24.11	20.99	11.03	10.32	13.70	-7.29

802.11n HT20 Mode

Low	5500	13.14	24.14	24.00	12.95	12.17	15.59	-8.41
Mid	5600	13.12	24.12	24.00	11.91	14.00	16.09	-7.91
High	5700	13.15	24.15	24.00	11.11	14.19	15.93	-8.07

802.11a 40 Mode

Low	5510	16.17	27.17	24.00	12.38	12.31	15.36	-8.64
Mid	5590	16.23	27.23	24.00	11.79	11.97	14.89	-9.11
High	5670	16.19	27.19	24.00	12.06	11.57	14.83	-9.17

802.11n HT40 Mode

Low	5510	16.06	27.06	24.00	12.09	10.91	14.55	-9.45
Mid	5590	16.31	27.31	24.00	13.55	12.77	16.19	-7.81
High	5670	16.09	27.09	24.00	12.06	11.96	15.02	-8.98

DATE: APRIL 25, 2007

PEAK POWER (802.11a 20 MODE)

Channel A

PEAK POWER (802.11a 20 MODE)

Channel B

FCC ID: UAY-MMC85M

DATE: APRIL 25, 2007

PEAK POWER (HT 20 MODE)

Channel A:

PEAK POWER (HT 20 MODE)

Channel B:

PEAK POWER (802.11a 40 MODE)

Channel A:

PEAK POWER (802.11a 40 MODE)

Channel B:

PEAK POWER (HT 40 MODE):

Channel A

PEAK POWER (HT 40 MODE):

Channel B

7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

DATE: APRIL 25, 2007

FCC ID: UAY-MMC85M

This report shall not be reproduced except in full, without the written approval of CCS.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)/d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P(mW) = 10 ^ (P(dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

DATE: APRIL 25, 2007

LIMITS

From $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm 2

RESULTS

No non-compliance noted: (MPE distance equals 20 cm)

Mode	MPE	Output	Antenna	Power
	Distance	Power	Gain	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)
802.11a 20	20.0	14.60	6.00	0.02
802.11a 40	20.0	16.09	6.00	0.03
802.HT 20	20.0	15.36	6.00	0.03
802.HT 40	20.0	16.19	6.00	0.03

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

DATE: APRIL 25, 2007

7.1.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

Each chain is measured separately and the total power is calculated using:

Total Power = $10 \log (10^{\circ} (\text{Chain 0 Power } / 10) + 10^{\circ} (\text{Chain 2 Power } / 10))$

DATE: APRIL 25, 2007

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Mode	Engguenav	Awaraga Dawar	Awaraga Dawar	A vionaga Davvan
	Frequency	Average Power	Ü	Average Power
Channel		Chain 0	Chain 2	Total
	(MHz)	(dBm)	(dBm)	(dBm)
802.11a Mode				
Low	5500	12.10	11.45	14.8
Middle	5600	11.76	11.57	14.7
High	5700	11.40	10.72	14.1
		_		
802.11n HT20 N	Mode			
Low	5500	12.19	11.63	14.9
Middle	5600	11.58	13.36	15.6
High	5700	10.33	13.46	15.2
802.11n 11a 40N	MHz Mode			
Low	5510	12.15	11.39	14.8
Middle	5590	12.66	11.58	15.2
High	5670	12.70	12.40	15.6
802.11n HT40 N	Mode			
Low	5510	11.43	10.50	14.0
Middle	5590	11.76	11.57	14.7
High	5670	11.40	10.72	14.1

DATE: APRIL 25, 2007

7.1.5. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.407 (a) (2) For the 5.47–5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Each chain is measured separately and the total PPSD is calculated using:

Total PPSD = $10 \log (10^{\circ} (\text{Chain } 0 \text{ PPSD } / 10) + 10^{\circ} (\text{Chain } 2 \text{ PPSD } / 10))$

DATE: APRIL 25, 2007

RESULTS

No non-compliance noted:

Antenna Gain (dBi)	6
10 Log (# Tx Chains)	3.01
Effective Legacy Gain	9.01

5600

5700

Mode	Frequency	PPSD	PPSD	PPSD	Limit	Margin
Channel		Chain A	Chain B	Total		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
802.11a Mode						
Low	5500	1.74	1.04	4.41	7.99	-3.58

0.39

-1.20

4.01

2.51

7.99

7.99

1.53

0.10

Ω	11n	HT20	Mode

Middle

High

Low	5500	0.76	0.99	3.89	11.00	-7.11
Middle	5600	-0.20	2.78	4.55	11.00	-6.45
High	5700	-0.10	3.00	4.73	11.00	-6.27

802.1	1a 40	Mode

Low	5510	-0.74	-1.73	1.80	11.00	-9.20
Middle	5590	-1.47	-1.69	1.43	11.00	-9.57
High	5670	-1.88	-2.93	0.64	11.00	-10.36

802.11n HT40 Mode

Low	5510	-2.63	-2.98	0.21	11.00	-10.79
Middle	5590	-0.74	-1.57	1.87	11.00	-9.13
High	5670	-1.04	-1.90	1.56	11.00	-9.44

DATE: APRIL 25, 2007

RESULTS WITH COMBINER

No non-compliance noted:

Antenna Gain (dBi)	6
10 Log (# Tx Chains)	3.01
Effective Legacy Gain	9.01

Mode	Frequency	PPSD	Limit	Margin
Channel		With Combiner		
	(MHz)	(dBm)	(dBm)	(dB)
802.11a Mod	e			
Low	5500	7.26	11.00	-3.74
Middle	5600	7.52	11.00	-3.49
High	5700	7.22	11.00	-3.78
802.11n HT2 Low	0 Mode 5500	6.52	11.00	-4.49
Middle	5600	8.85	11.00	-2.15
High	5700	7.77	11.00	-3.23
802.11a 40 M	lode			
Low	5510	3.46	11.00	-7.54
Middle	5590	5.50	11.00	-5.50
High	5670	5.59	11.00	-5.41
802.11n HT4	0 Mode			
Low	5510	3.70	11.00	-7.30
Middle	5590	5.02	11.00	-5.99

3.99

5670

High

11.00

-7.01

DATE: APRIL 25, 2007

PEAK POWER SPECTRAL DENSITY (802.11a 20 MODE)

Chain A:

PEAK POWER SPECTRAL DENSITY (802.11a 20 MODE) Chain B:

PEAK POWER SPECTRAL DENSITY (802.11a 40 MODE)

Chain A:

PEAK POWER SPECTRAL DENSITY (802.11a 40 MODE)

Chain B:

LOW CH (802.11n HT20 mode chain B) Agilent BW/Avg Res BW Ch Freq 5.5 GHz 1.00000000 MHz Trig Free Man Auto **Channel Power** Video BW 3.00000000 MHz Auto Man Mkr1 5.504 20 GHz Ref 20 dBm #Atten 20 dB 0.990 dBm VBW/RBW #Samp 1.00000 Ŷ. Log 10 Average dB/ 100 Offst <u>On</u> Off 11.5 Avg/VBW Type Pwr (RMS) • Center 5.500 00 GHz Span 31.5 MHz Auto #Res BW 1 MHz #VBW 3 MHz Sweep 1 ms (601 pts) Channel Power Power Spectral Density 11.87 dBm /21.0000 MHz -61.35 dBm/Hz Span/RBW 106 Man Copyright 2000-2003 Agilent Technologies

PEAK POWER SPECTRAL DENSITY (802.11 HT40 MODE CHAIN A)

PEAK POWER SPECTRAL DENSITY (802.11 HT40 MODE CHAIN B)

LOW CH (802.11a mode Combiner) Agilent BW/Avg Res BW 5.5 GHz Ch Freq 1.00000000 MHz Trig Free Man Auto **Channel Power** Video BW 3.00000000 MHz Auto Man Mkr1 5.494 70 GHz Ref 20 dBm 7.257 dBm Atten 20 dB VBW/RBW #Samp 1.00000 Log ø 10 Average dB/ 100 Offst <u>On</u> Off 18.5 dΒ Avg/VBW Type Pwr (RMS) DI 11.0 Auto dBm #PAvg 100 W1 S2 Span/RBW Center 5.500 00 GHz Span 31.5 MHz 106 #Res BW 1 MHz Man #VBW 3 MHz Sweep 1 ms (601 pts) Copyright 2000-2003 Agilent Technologies

PEAK POWER SPECTRAL DENSITY (802.11a 40 MODE COMBINER)

PEAK POWER SPECTRAL DENSITY (802.11n HT20 MODE COMBINER)

PEAK POWER SPECTRAL DENSITY (802.11 HT40 MODE COMBINER)

7.1.6. PEAK EXCURSION

LIMIT

§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

DATE: APRIL 25, 2007

FCC ID: UAY-MMC85M

RESULTS

No non-compliance noted:

Mode	Frequency	Peak	Peak	Limit	Worst
Channel		Excursion	Excursion		Case
		Chain A	Chain B		Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
802.11a Mode					
Low	5500	8.710	10.930	13	-2.070
Middle	5600	7.780	10.970	13	-2.030
High	5700	9.070	11.080	13	-1.920
802.11n HT20	Mode				
Low	5500	7.095	7.050	13	-5.905
Middle	5600	6.261	6.901	13	-6.099
High	5700	7.046	7.046	13	-5.954
802.11a 40 Mode					
Low	5510	7.580	8.040	13	-4.960
Middle	5600	8.440	8.070	13	-4.560
High	5690	8.570	8.100	13	-4.430
802.11n HT40 Mode					
Low	5510	7.769	7.252	13	-5.231
Middle	5600	7.272	7.152	13	-5.728
High	5690	7.704	8.673	13	-4.327

DATE: APRIL 25, 2007

FCC ID: UAY-MMC85M

PEAK EXCURSION (802.11a MODE CHAIN A)

PEAK EXCURSION (802.11a MODE CHAIN B)

PEAK EXCURSION (802.11n HT20 MODE CHAIN A)

PEAK EXCURSION (802.11 HT20 MODE CHAIN B)

PEAK EXCURSION (802.11a 40 MODE CHAIN A)

PEAK EXCURSION (802.11 a 40 MODE CHAIN B)

PEAK EXCURSION (802.11 HT40 MODE CHAIN A)

PEAK EXCURSION (802.11 HT40 MODE CHAIN B)

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.407 (b) (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47– 5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

RESULTS

No non-compliance noted:

SPURIOUS EMISSIONS (802.11a MODE CHAIN A)

SPURIOUS EMISSIONS (802.11a MODE CHAIN B)

DATE: APRIL 25, 2007 FCC ID: UAY-MMC85M

SPURIOUS EMISSIONS (802.11n HT20 MODE CHAIN A)

SPURIOUS EMISSIONS (802.11 HT20 MODE CHAIN B)

SPURIOUS EMISSIONS (802.11 a 40 MODE CHAIN A)

DATE: APRIL 25, 2007 FCC ID: UAY-MMC85M

LOW CH SPURIOUS (802.11a 40 mode chain B) 🔆 Agilent Marker Mkr1 11.02 GHz Select Marker Atten 10 dB Ref 10 dBm 47.35 dBm 2 3 #Peak Log Normal dB/ Offst 11.5 Delta DI -33.0 Delta Pair dBm (Tracking Ref) LgAv V1 S2 Span Pair S3 FC Span Center AA Film Off Swp More Start 30 MHz Stop 40.00 GHz 1 of 2 #Res BW 1 MHz VBW 1 MHz Sweep 99.96 ms (601 pts)

DATE: APRIL 25, 2007 FCC ID: UAY-MMC85M