Extrapolation

```
goal: evaluate h\mapsto f(h) at h=0 procedure: given n+1 data pairs (h_i,f(h_i)),\ i=0,\ldots,n: find the interpolating polynomial p\in\mathcal{P}_n and approximate f(0)\approx p(0).
```


- Slides

Numerical differentiation with one-sided difference quotients

$$D(h) = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$h \mid m = 0 \quad m = 1 \quad m = 2 \quad m = 3$$

$$h_0 \mid D(h_0) = D_{00} \quad D_{01} \quad D_{02} \quad D_{03}$$

$$h_1 \mid D(h_1) = D_{10} \quad D_{11} \quad D_{12} \quad D_{13}$$

$$h_2 \mid D(h_2) = D_{20} \quad D_{21} \quad D_{22} \quad D_{23}$$

$$h_3 \mid D(h_3) = D_{30} \quad D_{31} \quad D_{32} \quad D_{33}$$

$$D_{i0} = D(h_i) \quad h_4 \mid D(h_4) = D_{40} \quad D_{41} \quad D_{42} \quad \vdots$$

$$D_{ij} = D_{(i+1)(j-1)} \quad h_5 \mid D(h_5) = D_{50} \quad D_{51} \quad \vdots$$

$$\vdots \quad \vdots \quad \vdots$$

$$\vdots \quad \vdots$$

2 – Slides

Example

$$f(x) = e^x$$
 and $x_0 = 0$ with one-sided difference quotients

Neville scheme:

h	m = 0	m = 1	m = 2	m = 3	
1	1.71828182845905	0.87660325434147	1.00747997135508	0.99982039920503	
2^{-1}	1.29744254140026	0.97476079210167	1.00077784572378	0.99999046433634	
2^{-2}	1.13610166675097	0.99427358231826	1.00008888700977	0.99999944973780	
2^{-3}	1.06518762453461	0.99863506083689	1.00001062939680	0.99999996693993	
2^{-4}	1.03191134268575	0.99966673725682	1.00000129974704	0.99999999797395	
2^{-5}	1.01578903997129	0.99991765912448	1.00000016069559	0.99999999987449	
2^{-6}	1.00785334954789	0.99997953530281	1.00000001997713		
2^{-7}	1.00391644242535	0.99999489880855			
2^{-8}	1.00195567061695				

- Slides

Example (cont.)

error $(f'(0) - D_{jm})$ and reduction factor (quotient of subsequent errors):

h	m = 0	ho	m=1	ho	m=2	ho	m = 3	ho
1	7.18_{-1}	_	-1.23_{-1}	_	7.48_{-3}	_	-1.78_{-4}	
2^{-1}	2.97_{-1}	0.41	-2.52_{-2}	0.20	7.78_{-4}	0.10	-9.54_{-6}	0.053
2^{-2}	1.36_{-1}	0.46	-5.73_{-3}	0.23	8.89_{-5}	0.11	-5.50_{-7}	0.058
2^{-3}	6.52_{-2}	0.48	-1.37_{-3}	0.24	1.06_{-5}	0.12	-3.31_{-8}	0.060
2^{-4}	3.19_{-2}	0.49	-3.33_{-4}	0.24	1.30_{-6}	0.12	-2.03_{-9}	0.061
2^{-5}	1.58_{-2}	0.49	-8.23_{-5}	0.25	1.61_{-7}	0.12	-1.26_{-10}	0.062
2^{-6}	7.85_{-3}	0.50	-2.05_{-5}	0.25	1.99_{-8}	0.12		
2^{-7}	3.92_{-3}	0.50	-5.10_{-6}	0.25				
2^{-8}	1.96_{-3}	0.50						
expected:	O(h)		$O(h^2)$		$O(h^3)$		$O(h^4)$	
		0.5		0.25		0.125		0.0625

- Slides

Numerical differentiation of $f(x) = |x|^{3/2}$ at x = 0

extrapolation error for one-sided difference quotients

h	m=0	m=1	m=2	m=3	m=4	m=5	m=6	m=7
2^{0}	1.00_{0}	4.14_{-1}	2.52_{-1}	1.68_{-1}	1.15_{-1}	8.06_{-2}	5.66_{-2}	3.99_{-2}
2^{-1}	7.07_{-1}	2.93_{-1}	1.79_{-1}	1.19_{-1}	8.17_{-2}	5.70_{-2}	4.00_{-2}	2.82_{-2}
2^{-2}	5.00_{-1}	2.07_{-1}	1.26_{-1}	8.40_{-2}	5.77_{-2}	4.03_{-2}	2.83_{-2}	
2^{-3}	3.54_{-1}	1.46_{-1}	8.93_{-2}	5.94_{-2}	4.08_{-2}	2.85_{-2}		
2^{-4}	2.50_{-1}	1.04_{-1}	6.31_{-2}	4.20_{-2}	2.89_{-2}			
2^{-5}	1.77_{-1}	7.32_{-2}	4.46_{-2}	2.97_{-2}				
2^{-6}	1.25_{-1}	5.18_{-2}	3.16_{-2}					
2^{-7}	8.84_{-2}	3.66_{-2}						
2^{-8}	6.25_{-2}							
error	\sqrt{h}	\sqrt{h}	\sqrt{h}	\sqrt{h}	\sqrt{h}	\sqrt{h}		

reason for "failure" of extrapolation: The function $D(h)=h^{-1}(|h|^{3/2}-0)=\sqrt{|h|}$ is not "smooth" at h=0.

- 5 - Slides