Coordination dans les SMA Problématique et Approches

AMAL EL FALLAH SEGHROUCHNI Amal.Elfallah@lip6.fr

Rappel

RÉSUMÉ DU COURS 1

Pourquoi les SMA?

Efficacité

- Décomposition et répartition des connaissances et des traitements (Unité de base : agent)
- Aptitude à traiter des problèmes simultanés et potentiellement corrélés avec des optimisations éventuelles

Souplesse

- Adaptabilité et possibilité d'apprentissage des agents
- Résistance à des environnements évolutifs ou instables

Paradigme de conception

- Adéquation à des applications distribuées et coopératives
- Systèmes ouverts et intégration d'opérateurs humains
- Modularité, réutilisabilité, interopérabilité, etc.

Apports des SMA

- Conception de systèmes complexes
 - Hétérogénéité des agents
 - Distribution géographique ou des traitements
 - Grande quantité d'information
 - Pas de solution algorithmique simple
 - Problème de nature heuristique
 - Approche basée sur l'interaction (faire communiquer plusieurs systèmes intelligents)
- Modélisation de systèmes hybrides, ouverts ...
 - Agents coopératifs et/ou compétitifs
 - Agents cognitifs et/ou réactifs

Positionnement des SMA

- Le domaine SMA vient de l'IA
 - → Domaine relativement général
 - → Fédère plusieurs domaines techniques de l'IA (planification, coordination, négociation, décision, apprentissage)
- Recoupe l'informatique distribuée
- Rejoint le génie logiciel
- Le domaine SMA porte son attention sur les systèmes :
 - Hétérogènes
 - Ouverts
 - Mixtes (machines et humains)

Espace SMA cognitifs

Cognition

Modèles Cognitifs Multi-Agents

- Raisonnement et représentations symboliques
- Apprentissage Multi-Agents
- o Décision collective, négociation, formation de coalitions, etc..
- Planification distribuée

SMA

Interaction

Concurrence

Protocoles d'interaction

- o Sémantique des interactions
- o Modélisation cognitive des interactions
- o Ingénierie des protocoles d'interaction

Formalismes et techniques

- o Variantes des Réseaux de Petri
- Algèbres de processus
- o Automates, temporisés, hybrides, etc.
- Algorithmique répartie
- Observation répartie

SMA: 3 classes de problèmes scientifiques

[Action Spécifique du CNRS: SMA, 2004-2005]

Approche cognitive (ex. multi-experts)

Approche réactive (ex : eco-systèmes)

Intelligence Artificielle distribuée

Plan

- 1. Problématique de la coordination
- 2. Approches de coordination
- 3. Coordination par planification distribuée
- 4. Coordination par formation de coalitions
- 5. Conclusion

Pourquoi la coordination?

Hypothèses

- Agents logiciels, autonomes, hétérogènes, coopératifs ou concurrents, distribués et communicants
- Environnement partagé et dynamique
- Ressources limitées

Problèmes

- Génériques
 - Exécutions concurrentes => Blocage, famine, etc.
 - Communications asynchrones => Absence d'état global

Spécifiques

- Définition des communications dans un système ouvert
- Gestion des informations incomplètes, vision partielle des agents
- Conciliation entre autonomie et exécution globale

Problématique de la coordination

- Différentes perspectives
 - Problème de prise de décision distribuée sous incertitude
 - Problème relatif à la connaissance et l'action
 - Problème de conception tel que la coordination de "frameworks" pour des organisations Homme-Machine
 - Etc.
- Processus qui contrôle et/ou guide le comportement des agents
 - Atteindre ou maintenir un état global où les états locaux des agents sont compatibles (résolution d'interactions négatives)
 - Favoriser la synergie des agents (résolution d'interactions positives)

- Rationalité économique
 - Objectifs propres
 - Égoïsme
 - Pas de tendance à la coopération (sauf si bénéfique)
- Forte autonomie
 - Interventions humaines potentielles
 - Possibilité de triche (anonymat)
- Hétérogénéité
 - Conception décentralisée
 - Conception diffuse dans le temps
- Exemple de compagnies aériennes

Modèles de coordination (1/2)

Modèles orientés tâches

- Issus de la résolution distribuée de problèmes
 - Existence d'un agent « central »
 - Affectation des tâches et coordination souvent centralisées
 - Existence d'un but global
 - Agents généralement coopératifs
 - Optimisation de l'efficacité globale

- Scénario « Transport de marchandises »
 - Agents Convoyeurs/Marchants coopératifs
 - Rôles répartis et tâches pré-spécifiées

Modèles de coordination (2/2)

Modèles orientés agents

- Absence de but global
- Absence d'agent « central »
- Coordination distribuée (ex. négociation, consensus, etc.)
- Agents généralement compétitifs
 - Exemple: optimisation d'une fonction d'utilité individuelle

- Scénario du «Commerce électronique»
 - Agents égoïstes : maximisation du profit individuel
 - Coordination basée sur l'atteinte de consensus
 - Stratégies individuelles inconnues a priori

Principales phases d'un mécanisme de coordination

Principales approches

- Coordination orientée résolution distribuée de problèmes
 - Distributions spatiales, fonctionnelles, temporelles
 - Ex. DVMT (PGP et GPGP)
- Coordination basée sur les structures organisationnelles
 - Organisations statiques versus dynamiques
 - Exemple : systèmes normatifs, systèmes de règles, etc.
- Coordination basée sur les protocoles de coopération
 - Coopération par interaction
 - Exemple : enchères, CNP, etc.
- Négociation et prise de décision distribuée
 - Théorie des jeux, théorie d'aide à la décision, etc.
- Coordination par planification multi-agent ou distribuée
- Coordination fondée sur la formation de coalitions

Coordination par planification distribuée

Plan: Abstraction du comportement d'un agent

Coordination des plans

Un plan?

• Un plan est un ensemble d'actions ordonné totalement ou partiellement ; il permet à partir d'un état initial, d'atteindre un état satisfaisant le but du plan.

Planification multi-agents

Scénario: réseau de trafic maritime

- 2 classes d'agents : convoyeurs et marchands
 - Convoyeur transporte la marchandise
 - In Hang : Dépot de marchandise
 - Out_Hang : Retrait de marchandise
 - Boat de volume limité
 - Marchand distribue la marchandise
 - Ne peut déposer que dans In_Hang d'un convoyeur
 - Ne peut retirer que d'un Out_Hang d'un convoyeur
- Agents situés sur des nœuds distincts du réseau
- Déplacement entre les nœuds via des liens dynamiques
 - Nœuds reliés par des canaux
 - Canaux peuvent être encombrés, momentanément fermés, etc.

Coordination par planification distribuée

- Principes du modèle proposé
 - Plan, abstraction du comportement de l'agent
 - Rôles des agents connus a priori (classes d'agents)
 - Coordination par échange et fusion de plans
 - Réaction à l'environnement par dynamicité d'exécution de plans
- Mécanismes d'exécution
 - Allocation dynamique des tâches
 - Actions abstraites et raffinement dynamique
 - Évaluation multi-critères des plans
 - Résolution des interactions par coordination de plans

Modèle récursif de planification

Modèle formel de planification

- Relations hiérarchiques entre plans
- Relations entre actions (choix, concurrence, ordre, ..)
- Raffinement dynamique (hiérarchie, récursivité)
- Contraintes d'exécution d'action (pré- et post-conditions)
- Autonomie, généricité mais, contrôle à l'exécution

Théorie de coordination de plans

- Ordonnancement consistant et allocation de ressources
- Caractérisation, reconnaissance automatique et gestion des situations d'interactions : négatives et positives
- Définition des méthodes de transformation des plans

Quel modèle de planification distribuée ?

- Modèle basé sur les Réseaux de Petri récursifs (RdPR)
 - Orienté buts (déclaratif)
 - Unifie la résolution des interactions positives (synergie) et négatives (conflits)
 - Structure hiérarchique de plans (actions abstraites)
 - Dynamicité (raffinement)
 - Modèle théorique et interprété
- Algorithmes de coordination de plans
 - Opérations sur les plans (fusion, séquentialisation, parallélisation)
 - Vérification de la consistance de plans (graphe d'accessibilité)

Qu'est-ce qu'un RdPR?

- Extension stricte des RdP introduisant la dynamicité dans la structure par le typage des transitions
 - Le franchissement d'une transition abstraite la déplie en un sousréseau
 - Le franchissement d'une transition de fin replie le réseau déplié
 - L'état courant d'un RdPR est un arbre de réseaux marqués

Modèle interprété

- Modèle théorique enrichi
 - Objets : modèle du monde
 - Méthodes : actions sur le monde
 - Variables du plan
 - Conditions sémantiques portant sur les objets du monde pour contrôler l'exécution (pré- et post-conditions d'actions)
- Un plan P est un RdPR interprété
 - P = <R, Met, Var>
 - R: squelette du plan
 - Met : ensemble de méthodes associées aux transitions abstraites ou élémentaires
 - Var : ensemble de variables.

Raffinement dynamique : planification conditionnelle

Exemple de Méthode

Method		Ag.Aller_A(Dest)	
Туре		Abstract	
Variables		Conditions	
Name	Class	Pre-	Post-
Ag	Convoyeur	none	Ag.Cur_Loc =Dest
Dest	Location	none	none

Une Méthode:

un label, le type de la méthode un ensemble de RdPR initialisés dans le cas d'une transition abstraite.

Plan du Convoyeur

Dynamicité et Raffinements

- Plusieurs raffinements associés à une même transition abstraite
 - un raffinement est une méthode d'exécution possible
 - une méthode possible est un RdPR initialisé
 - Méthode = $< R, M_0, B_0 > où$:
 - R: < P, T, W-, W+, Var, Call>
 - M₀: marquage initial de R
 - B₀: fonction qui lie totalement ou partiellement les variables (Var) aux objets du domaine.

Raffinement dynamique : planification conditionnelle

Etat d'un RdPR: arbre de réseaux marqués

- ◆ Tr = < S, A>
 - $Tr_0 = (R_0, M_0, B_0)$
 - pour tout arc a = (s, s') / trans(a) = t
 - si t est une transition élémentaire :
 - mise à jour du marquage
 - si t est une transition abstraite :
 - on crée un nouveau sommet s dans Tr labellé par t
 - si t est une transition de fin :
 - Tr est élagué à partir du nœud courant et
 - le marquage est mis à jour dans l'arbre d'exécution

Sémantique du RdPR

- Condition de franchissabilité
 - Une transition t est franchissable à partir du nœud si et seulement si : $M(s) \ge W^-(., t)$
- Transition élémentaire
 - Soit t ∈ Telem d'un RdPR associé à un nœud s de Tr, le franchissement de t à partir de s produit l'arbre Tr' tel que :
 - Tr' = (STr', ATr') avec :
 - STr = STr' tel que \forall s' ≠ s, MTr'(s') = MTr(s') (inchangé pour tout s' ≠ s),
 - \blacksquare ATr = ATr'
 - $MTr'(s) = MTr(s) + W^+(., t) W^-(., t)$

Sémantique des RdPR

- Transition abstraite
 - Soit t ∈ Tabs d'un RdPR associé à un nœud s de Tr, le franchissement de t à partir de s produit l'arbre Tr' tel que :
 - Tr' = (STr', ATr') avec :
 - STr' = STr \cup {s_n} où le RdPR associé au nouveau sommet s_n est l'un des réseaux implantant meth(t) et MTr'(s_n) = M₀ (marquage initial d'appel associé à ce RdPR),
 - ATr'= ATr \cup {a} où a = $\langle s, s_n \rangle$ et transTr (a) = t,
 - $MTr'(s) = MTr(s) W^{-}(., t)$.

Sémantique des RdPR

- Transition de fin
 - Soit t ∈ Tfin d'un RdPR associé à un nœud s de Tr, le franchissement de t à partir de s produit l'arbre Tr' tel que :
 - Tr' = PRUNE(Tr, s) Soit s' le père de s dans l'arbre Tr et a = <s', s> l'arc étiqueté par t, alors :

```
\forall a \in ATr', trans Tr'(a) = transTr(a),

\forall s'' \in (STr' \ {s'}), MTr'(s") = MTr(s"),
```

MTr'(s') = MTr(s') + W⁺(., transTr(a)).

$$S_0 = (R_0, M_0, B_0), M_0 = (0,1,0)$$

Mécanismes de coordination

Situations de coordination

- Interactions positives entre plans
 - actions redondantes
 - détection statique : séquentialisation
 - actions favorables
 - détection dynamique : incorporation
- Interactions négatives entre plans
 - actions défavorables
 - actions exclusives
 - actions incompatibles

Algorithmes de coordination

- Fusion pour traitement d'interactions positives
 - Synchronisation par unification des transitions
- Fusion pour traitement d'interactions négatives
 - Ajout des places de synchronisation (séquentialisation)
 - Algorithme de parallélisation
- Vérification de la consistance du plan fusionné

Traitement d'une interaction positive

Contexte:

Agent incapable d'exécuter une action de son plan (initial ou raffiné)

- Initiation de la coordination
 - Recherche d'un agent à partir de
 - ✓ liste d'accointances
 - ✓ les attributs de la variable non instanciée (Source, Type Agent, etc.)
 - émission du plan pour coordination

Traitement d'une interaction positive

- L'agent récepteur
 - Reconnaissance et unification
 - Unification et instanciation des variables
 - Fusion structurelle par transition commune
 - Développement de l'arbre d'accessibilité
 - Calcul des Pré- et Post-Conditions
 - Algorithme PPCC [ICMAS'96]
- Résultats
 - Le récepteur contrôle l'exécution
 - Exécutions parallèles Récepteur/Emetteur
 - Synchronisation via la transition commune

Synchronisation par unification des transitions communes

Validation de plan

 Validation du plan : Adéquation du modèle interprété au modèle non interprété, i.e.

toute séquence de franchissement valide dans le modèle non interprété est une séquence d'actions exécutable dans le modèle interprété

- Vérification de la consistance du plan
 - Développement du graphe d'accessibilité
 - Génération de toutes les séquences de franchissement possibles (toutes les exécutions potentielles du plan)
 - Optimisation de l'arbre d'accessibilité par des techniques de réduction
 - Calcul des pré- et post-conditions d'actions
 - Appliqué au graphe d'accessibilité
 - Tient compte du contexte courant d'exécution (via les conditions sémantiques i.e. les Pré- et Post-Conditions d'actions)

Exemple de construction du G.A.

Vérification de la consistance du plan

```
Function Est Faisable(in s: node; in c: context): Boolean;
           {contexte représente les valeurs des paramètres des méthodes}
 begin
       for all arcs (s, s') in A do
           {A est retourné par l'algorithme de construction de l'arbre d'accessibilté}
         if Evaluate((s, s').Trans.Method.Pre, c) then
              {si les Pré-conditions du Contexte courant sont satisfaites}
            if not (Est_Faisable(s, Apply((s, s').Trans.Method.Post, c))) then
            return(false)
                           {il existe un sous-arbre non faisable
            endif
                               i.e. the post-conditions non satisfaites}
          else return(false)
         endif
       endfor
 return(true)
 end {Est_Faisable}.
```

Traitement des interactions négatives

Cas de conflit de ressources impliquant un convoyeur et deux marchands

Traitement des interactions négatives

Contexte:

- Agent en train d'exécuter une instance de plan et reçoit une nouvelle requête concernant le même raffinement
- Interaction négative si les deux raffinements partagent des objets (ou attributs d'objets) source de conflit
- Génération du second raffinement
 même principe que le cas d'interaction positive
- Test de conflit par rapport aux objets

Fusion pour traitement d'interaction négative

Émetteur : Marchand M₂

Récepteur : Convoyeur C₁

Séquentialisation-Parallélisation

Discussion du modèle et quelques problèmes de mise en oeuvre (implémentabilité)

Problème lié au raffinement (1)

 Le raffinement impose des contraintes sur les plans raffinant les transitions abstraites

- Notion d'héritage
 - objectif: s'assurer qu'il y a isomorphisme entre les post-conditions d'une transition abstraite ta et celles de tout plan la raffinant
 - indispensable au calcul de consistance

Problème lié au raffinement (2)

Condition

- Dans tout ordre total qui étend le RdPR, les post-conditions initiales apparaissent une fois et une seule et dans le même ordre que la transition abstraite.
- Sous cette condition, nous montrons que
 - Si l'algorithme PPCC retourne vrai, alors le plan distribué est faisable.

Dépendances entre agents

- Dépendance de savoir-faire
 - Un agent est « incapable » d'exécuter une action
 - Gestion assurée par les mécanismes précédents
- Dépendance de ressources
 - Un agent « sait faire » mais manque de ressources
 - Nécessite l'accès aux ressources des autres.

Gestion distribuée de ressources partagées

- Objectifs
 - Assurer la cohérence d'accès concurrents aux ressources partagées
 - Garantir l'équité d'attribution des ressources
- Hypothèses : chaque agent
 - dispose de ressources propres (objets locaux)
 - dispose de ressources partagées avec les autres agents regroupées en un pool
 - est responsable de la gestion de son pool de ressources

Ressources partagées

- Variables du plan : paramètres des Pré- et Post-Conditions associées à une méthode
- Exécution d'une méthode : accès en lecture aux paramètres (Pré-) et /ou en écriture (Post-)
- On parle de ressources dans le cas d'objets potentiellement partagés (sinon données)

Principe de gestion de ressources

- Projection de plan sur des pools de ressources
- Détection des dépendances
- Requêtes envoyées aux agents détenant les ressources requises
- Accès basé sur le protocole de diffusion atomique

Phase 1 : Détection d'une dépendance de ressources

- Un agent A₁ raffine une transition abstraite et :
 - génère son plan Π_1
 - ullet instancie les variables de Π_1
 - constitue V_r : ensemble des ressources requises pour exécuter Π_1
 - partitionne V_r en sous-ensembles d'objets O_j relatifs aux agents A_j

Phase 2-3 : Projection de plan et émission de requêtes

- Phase 2 : projection de plan
 - Pour chaque O_i , A_1 génère une projection $\Pi_{1,i}$
 - Une projection est un sous ensemble de transitions de Π_1 avec leurs places et arcs entrants et sortants et faisant appel à des objets de O_i .
- Phase 3 : Requêtes de demande de ressources
 - A₁ envoie une requête à chaque A_i dont il dépend
 - Une requête est de la forme : (Em1, Rec $_{\rm j}$, $\Pi_{\rm 1,j}$)

Protocole de diffusion atomique

[Chang et Maxemenchuc, 1984]

- L'agent A1 envoie ses requêtes en respectant le protocole de diffusion atomique et se met en attente des réponses.
- Ce protocole impose que :
 - si A_i envoie des requêtes à A_j et A_k alors, toutes les requêtes envoyées à A_j et A_k arriveront nécessairement dans le même ordre (j < k).
- Ce protocole garantit l'absence d'interblocage entre agents demandeurs.

Protocole en 3-Phases

- Etape 1 : diffusion de la requête par l'émetteur (e.g. A_i) dans un certain ordre,
- Etape 2 : chaque récepteur (e.g. A_j et A_k) répond (notification d'acceptation ou de rejet)
- Etape 3 : l'émetteur doit également informer les récepteurs du maintien ou non de son plan ainsi qu'en cas de libération des ressources.

Intérêt des 3-Phases : phase 1?

Cas trivial d'interblocage

D'autres cas de disfonctionnement ...

- Phase 2 non achevée
 - les émetteurs en attente infinie
- Phase 3 non achevée
 - un agent reçoit un OK et un KO et n'abandonne pas son plan...
 - La ressource accordée sera indéfiniment détenue
 - un agent ne libère pas les ressources après avoir exécuté son plan
 - les ressources détenues ne seront jamais restituées

A la réception d'un plan projection

Le récepteur :

- séquentialisation/parallélisation de son plan courant avec la projection reçue
- si plan parallélisé faisable (CCPP)
 - il accepte la requête et retourne la notification OK
 - il renvoie la projection instanciée et augmentée des places de synchronisation et des nouveaux arcs.
- Sinon
 - renvoie une notification de rejet

A la réception de plusieurs projections

- si les projections ont des intersections non vides
 - si demande d'accès en lecture => aucune gestion particulière (simple instanciation des variables)
 - si demande en lecture/écriture => à nouveau séquentialisation/parallélisation, etc.

Extensions du modèle récursif

- Étude d'aspects théoriques des RdPR
 - Résultats sur la décidabilité du problème d'accessibilité et d'autres propriétés des RdPR (S. Haddad et D. Poitrenaud)
- Développement du prototype « RAPID » dans le cadre d'une CTI-CNET « Surveillance et diagnostic du réseau téléphonique ».

Conclusion

- Modèle de planification proposé
 - repose sur la planification distribuée et la gestion distribuée des ressources unifiées à travers un même modèle
 - permet de caractériser finement différentes situations d'interaction positives et négatives
 - traite dynamiquement ces situations tout en garantissant des accès concurrents aux ressources qui soient équitables et cohérents
 - offre un cadre formel pour la planification distribuée qui peut être interprété et contrôlé.
 - en tant que modèle RdP théorique : une extension stricte qui préserve les bonnes propriétés.
 - a été implanté : prototype RAPID dans le cadre d'une CTI-CNET
 - a forcément des limites ... e.g. suppose les communications fiables.

Quelques Références

- Planification Distribuée
 - Algorithme de coordination de n agents (C.O.A.)
 - MAAMAW'96
 - Modèle théorique des RdPR
 - ICMAS '96
 - Gestion distribuée des ressources
 - MAAMAW'97
 - Aspects implémentation et application
 - RIA: numéro spécial sur les SMA. Janvier 98.

Conclusion

- Modèle de planification proposé
 - repose sur la planification distribuée et la gestion distribuée des ressources unifiées à travers un même modèle
 - permet de caractériser finement différentes situations d'interaction positives et négatives et de les traiter dynamiquement
 - offre un cadre formel pour la planification distribuée qui peut être interprété et contrôlé.
 - en tant que modèle RdP théorique : une extension stricte qui préserve les bonnes propriétés.
 - a été implanté : prototype RAPID dans le cadre d'une CTI-CNET
 - a été étendu pour une gestion distribuée des ressources garantissant des accès concurrents équitables et cohérents

Plan

- 1. Problématique de la coordination
- 2. Approches de coordination
- 3. Coordination par planification distribuée
- 4. Coordination par formation de coalitions
- 5. Conclusion

Coordination par formation de coalitions

Thèse de Guillaume Vauvert

Exemple de répartition de tâches

- Union de compagnies aériennes -
 - Le système reçoit un ensemble de tâches
 - ensemble de vols
 - Tâches divisées en sous-tâches
 - Un vol : suite d'étapes
 - Une sous-tâche : compétences + gain

Application : compagnies aériennes

Objectifs

- Système unifié de réservation
- Répartition satisfaisante des étapes
- Gestion de la concurrence et de la rationalité économique

Exemple

- Agents
 - {EUAL, AMAL, WOAL, USAL, AFAL, FRAL, BUAL}
- Tâches
 - Sous-tâches = {New York Madrid (via Paris et Lyon), Los Angeles Moscou (via New York et Paris), Berlin Johannesburg (via Paris)}
 - + gains associés

Compétences

{autorisation de survol d'un pays, capacité en passagers, rayon d'action}

Contexte

- Agents du SMA
 - Cognitifs et spécialisés (compétences spécifiques et limitées)
 - Compétitifs (contexte économique)
 - Hétérogènes (stratégies variables)
- Tâches du SMA
 - Tâches décomposables en sous-tâches
 - Réalisation d'une tâche requiert plus d'un agent
- But du SMA
 - Atteinte de consensus pour la répartition des tâches

Comportement des agents cognitifs

- Chaque agent possède
 - Une rationalité économique
 - Implémentée sous forme de stratégies
 - Une stratégie se traduit par des préférences variables
 - Un ensemble de compétences
 - Liées aux sous-tâches
 - Ne couvrent pas entièrement une tâche

Le comportement d'un agent résulte de sa rationalité et de ses compétences

Formation de coalitions

- Coalition
 - Organisation dynamique
 - Environnements ouverts et dynamiques
 - Engagements ponctuels et contextuel
 - Réactions opportunistes et dynamiques
 - Formation / Dissolution
 - Contexte-dépendante
- Coalitions appliquées à la répartition de tâches
 - Organisation pour coordonner les comportements des agents
 - Coalition : ensemble d'agents coopérant pour résoudre une tâche divisée en sous-tâches
 - Synergie des compétences
 - Groupement par intérêt

Problème de formation de coalitions

- Un PFC est défini comme un 5-uplet <A, T, S, C, P> où :
 - A : Agents candidats pour exécuter des sous-tâches
 - T: tâches à accomplir
 - S : Sous-tâches à accomplir
 - C : Compétences
 - P : Profit (gain associé à une sous-tâche)
- Solution: affectation de toutes les sous-tâches
 - application σ : S \rightarrow A, prenant en compte les compétences
- But : atteinte de consensus concerant une solution

Quel protocole de coordination?

- Hétérogénéité : Problème des interactions
 - Soit standardisation (à la FIPA) : permet argumentation
 - Soit simplification (échange de préférences)
- Rationalité économique
 - Incitation à la coopération (bénéfique pour les agents)
 - Prévoir de contraindre si nécessaire
 - Indépendant des stratégies (universel)
 - Ne pas favoriser d'agent (égalitaire)
- Forte autonomie
 - Prévenir la fraude (vérification + sanction)
 - Comportement éventuellement complexe (rationalité limitée, calcul sur le long / court terme ...)
 - Aucune hypothèse sur le comportement des agents

Protocole de formation de coalitions

- Objectif: Parvenir à une répartition des sous-tâches entre les agents par atteinte d'un consensus
- Algorithme distribué basé sur la négociation
 - Échange de préférences
 - Contrôle du respect du protocole
 - Garantie de l'impartialité
 - Favorisation de l'atteinte d'un consensus par la formation d'alliance
 - Etablissement d'une règle qui garantit l'atteinte d'un consensus

Principes du protocole

- Calcul des préférences
- Echange de préférences
- Formation d'alliances en cas de blocage

Représentation des préférences

- Préférences :
 - « distances » entre solutions
 - Pas de messages complexes (hétérogénéité)
 - Exemple :

X préfère largement σ_1 à σ_2 $\Leftrightarrow \delta (\sigma_1, \sigma_2) = .9$

Matrice antisymetrique :

Calcul des préférences

Préférences initiales

$$\delta_a^0(\sigma_1,\sigma_2) = \frac{income(\sigma_1) - income(\sigma_2)}{Sup_{\sigma}income(\sigma)}$$

Préférences dépendantes

$$\mathcal{S}'_{a}(\sigma_{1},\sigma_{2}) = \omega \times \mathcal{S}'_{a}(\sigma_{1},\sigma_{2}) + (1-\omega)^{b \in A \setminus \{a\}}$$

$$|A| - 1$$

Fléxible: $\omega \rightarrow 0$; Rigide: $\omega \rightarrow 1$

Diffusion parallèle

Algorithme - Diffusion parallèle

- For all α∈ A do
 - θ * ← Encrypt(θ , key)
 - broadcast(θ*)
 - { diffuser l'information cryptée }
 - receiptAll($\theta*$, $A\setminus \alpha$)
 - { attendre toutes les réceptions }
 - broadcast(« Ack »)
 - receiptAll(« Ack », A\α)
 - broadcast(key, $A \setminus \alpha$)
 - { diffuser la clé }

Echange de préférences

Formation d'alliances

Algorithme - Les préférences

- IndPref ← IPC {Calcul des préférences initiales}
- h → DiffParallèle(IndPref) {Diffusion et mise à jour}
- ◆ While (¬ consensus) do
 - If RSPC(h) Then sendAll(«Mode déblocage ?»)
 - If receive(«Mode déblocage ?») Then
 - If RSAC Then sendAll(«accepte déblocage»)
 - If receiveAll(«accepte déblocage»)
 - Then call mode_déblocage
 - DepPref ← IPC {Calcul des préférences dépendantes}
 - h → DiffParallèle(DepPref)

Algorithme - Mode déblocage

- Broadcast(«propose formation alliance», AFPC(h))
 - { AFPC : ensemble des agents à qui proposer une alliance }
- For each a / receive(«propose alliance»,α) do
 - If $\alpha \in AFAC(h)$ Then send(«j'accepte», α) { AFAC : décide si la proposition de α est acceptable }
 - If (pas d'alliance formée) Then
 - B←SMA.nearestAgents()
 - SMA.nearestAgents(): fonction commune connue au début du processus }
 - Les membres de B doivent former une alliance

Terminaison

- Définition : une histoire contient une boucle si une situation se présente deux fois.
- Théorème : si un CFP détecte les boucles, alors le processus termine.
- Preuve :
 - nombre fini de solutions
 - consensus si tout le monde a la même préférence

Résultats de la simulation

- Nombre d'agents
 - Incidence sur la vitesse de convergence
- Stratégie
 - Incidence sur les gains des agents
 - Incidence sur la vitesse de convergence
- Compétition
 - Incidence sur les gains des agents
 - Incidence sur la vitesse de convergence

Nombre d'agents

Nombre de tours / Nombre d'agents

Gain d'un agent face à une population uniforme

Gain d'un agent face à une population uniforme

Vitesse de convergence dans le cas d'une population uniforme

Gain d'un agent / Nombre de sous-tâches par agent

Nombre de tours / Nombre de sous-tâches par agent

Conclusion

- Quel Modèle de coordination pour quel SMA ?
 - Systèmes orientés tâches
 - Systèmes orientés agents
 - Agents coopératifs
 - Agents compétitifs
- Critères d'évaluation
 - Efficacité,
 - Qualité de la solution
 - Tolérance aux pannes
 - Adaptabilité
 - Réactivité

