

第一章 命题逻辑

课程QQ号: 819392514

金耀 数字媒体技术系

fool1025@163.com

13857104418

如何学好(离散)数学

- ◆多思考:如概念、定义、定理、公式等用途是什么? 与学过的知识有什么联系?其直观意义是什么?
- ❖ 多做题: 熟悉、巩固、内化数学知识。
- ◇多应用:深化数学知识,训练数学思维,学提数学方法。

"学习数学最好的方式就是使用它,使用它越多,你就觉得它越有用,越有趣,学得就越好,也越快,越扎实。"

知识点回顾

- ❖命题的定义 (2个要点)
- ◆命题的分类 (2大类)
- ❖命题的符号化 (5个联结词)

常见问题

- ❖命题变项 (p,q,r) 是命题吗?
- ❖ 为什么命题前件为假,整个命题为真?
- ❖ 充分条件与必要条件 (如果天晴, 我就去打球。)

例:命题翻译

❖你可以在寝室使用网络, 仅当你成绩达标或者你不是大一新生。

$$(p \rightarrow (q \lor \neg r))$$

❖如果你身高不足1米,那么你不能乘坐过山车,除非你已年满16周岁。

$$(p \land \neg r) \rightarrow \neg q \qquad q \rightarrow (\neg p \lor r)$$

第一章命题逻辑

- 1.1 命题及符号化基本概念
- 1.2 命题等值演算
- 1.3 范式
- 1.4 逻辑电路

§ 2 命题等值演算

本讲主要内容

- ●等值式
- ■基本等值式
- 等值演算与置换规则
- 应用实例

命题公式与代数公式

- ❖常元与变元
- ◇赋值
- ❖运算符(优先级)
- ❖定义域与值域 (离散 v.s. 连续)
- ❖运算律 (等值律)

例: 判断下列公式类型

$$(q \rightarrow p) \land q \rightarrow p \quad \neg (\neg p \lor q) \land q$$

运用真值表验证:

p q	$(q \rightarrow p) \land q \rightarrow p$	$\neg(\neg p \lor q) \land q$
0 0	1	0
0 1	1	0
1 0	1	0
1 1	1	0

1. 等值式

 \diamondsuit 定义 若等价式 $A \leftrightarrow B$ 是重言式,则称A = B等值,记作 $A \Leftrightarrow B$. 并称 $A \Leftrightarrow B$ 是等值式.

◇第一种方法:用真值表可验证两个公式是否等值.

请验证:
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$$
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \rightarrow q) \rightarrow r$$

关系符号与运算符号

◆⇒是关系符号,表示两个命题公式之间的(等价)关系(具有自反性、对称性、传递性);

❖¬∨∧→↔等连接词是运算符号, 其特点是具有运算结果。

2. 基本等值式

双重否定律: ¬¬A⇔A

等幂律: $A \lor A \Leftrightarrow A, A \land A \Leftrightarrow A$

交換律: $A \lor B \Leftrightarrow B \lor A, A \land B \Leftrightarrow B \land A$

结合律: $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

 $(A \land B) \land C \Leftrightarrow A \land (B \land C)$

分配律: $A\lor(B\land C)\Leftrightarrow(A\lor B)\land(A\lor C)$

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

基本等值式(续)

$$!(x>=a \parallel y>=b) \Leftrightarrow (x$$

德·摩根律: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

吸收律: $A \lor (A \land B) \Leftrightarrow A$, $A \land (A \lor B) \Leftrightarrow A$

零律: $A\lor1\Leftrightarrow1$, $A\land0\Leftrightarrow0$

同一律: $A \lor 0 \Leftrightarrow A$, $A \land 1 \Leftrightarrow A$

排中律: $A \lor \neg A \Leftrightarrow 1$

矛盾律: $A \land \neg A \Leftrightarrow 0$

德·摩根 De Morgan

英国数学家 (1806-1871)

基本等值式(续)

蕴涵等值式: $A \rightarrow B \Leftrightarrow \neg A \lor B$

假言易位: $A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$

等价等值式: $A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A)$

等价否定等值式: $A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$

归谬论: $(A \rightarrow B) \land (A \rightarrow \neg B) \Leftrightarrow \neg A$

注意:

A,B,C代表任意的命题公式

牢记这些等值式是继续学习的基础

\boldsymbol{A}	В	$A \rightarrow B$	$\neg A \lor B$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

$$A \rightarrow B \Leftrightarrow \neg A \lor B$$
$$\Leftrightarrow B \lor \neg A$$
$$\Leftrightarrow \neg B \rightarrow \neg A$$

$$(A \rightarrow B) \land (A \rightarrow \neg B)$$

$$\Leftrightarrow (\neg A \lor B) \land (\neg A \lor \neg B)$$

$$\Leftrightarrow (\neg A \land (B \lor \neg B))$$

$$\Leftrightarrow \neg A \wedge 1$$

$$\Leftrightarrow \neg A$$

3. 等值演算与置换规则

等值演算:

由已知的等值式推演出新的等值式的过程

置換规则: 若 $A \Leftrightarrow B$, 则 $\Phi(B) \Leftrightarrow \Phi(A)$

等值演算的基础:

- (1) 等值关系的性质: 自反、对称、传递
- (2) 基本的等值式
- (3) 置换规则

代入规则

❖设A是重言式,对其所有相同的命题变项都用同一命题公式进行代换,则所得结果仍是重言式,即重言式的值不依赖于命题变项值的变化。

$$\begin{array}{l} p \lor (p \land q) \Leftrightarrow p \\ (s \rightarrow t) \lor ((s \rightarrow t) \land q) \Leftrightarrow (s \rightarrow t) \end{array}$$

4. 应用举例——证明两个公式等值

课堂练习**1**: 证明 $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$

证
$$p \rightarrow (q \rightarrow r)$$

$$\Leftrightarrow \neg p \lor (\neg q \lor r) \qquad (蕴涵等值式,置换规则)$$

$$\Leftrightarrow (\neg p \lor \neg q) \lor r \qquad (结合律,置换规则)$$

 $\Leftrightarrow \neg (p \land q) \lor r$ (徳·摩根律,置換规则)

 $\Leftrightarrow (p \land q) \rightarrow r$ (蕴涵等值式, 置換规则)

4. 应用举例——证明两个公式不等值

课堂讨论:

证明:
$$p \rightarrow (q \rightarrow r) \iff (p \rightarrow q) \rightarrow r$$

方法一 真值表法 (自己证)

方法二 观察赋值法. 容易看出000, 010等是左边的成真赋值, 是右边的成假赋值.

方法三 用等值演算先化简两个公式, 再观察.

4. 应用举例——判断公式类型

课堂练习2:

用等值演算法判断下列公式的类型

4. 应用举例——判断公式类型

课堂练习3:

$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

解 $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
 $\Leftrightarrow (\neg p \lor q) \leftrightarrow (q \lor \neg p)$ (결涵等値式)

 $\Leftrightarrow (\neg p \lor q) \leftrightarrow (\neg p \lor q)$ (交換律)

 $\Leftrightarrow 1$

次式为重言式.

4. 应用举例——判断公式类型

课堂练习4:

$$((p \land q) \lor (p \land \neg q)) \land r)$$
解 $((p \land q) \lor (p \land \neg q)) \land r$

$$\Leftrightarrow (p \land (q \lor \neg q)) \land r \qquad (多配律)$$

$$\Leftrightarrow p \land 1 \land r \qquad (排中律)$$

$$\Leftrightarrow p \land r \qquad (同一律)$$

该式为可满足式.

总结: A为矛盾式当且仅当 $A \Leftrightarrow 0$

A为重言式当且仅当 $A \Leftrightarrow 1$

说明:演算步骤不唯一,应尽量

使演算短些

第一章命题逻辑

- 1.1 命题及符号化基本概念
- 1.2 命题等值演算
- 1.3 范式
- 1.4 逻辑电路

§ 3 范式

本讲主要内容

- ■析取范式与合取范式
- ■主析取范式与主合取范式
- ■主析取范式的用途

引子: 二次曲线类型的判定

给定二次曲线的一般形式, 判断其类型:

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

转化为二次曲线的标准型:

$$rac{X^2}{A'} + rac{Y^2}{B'} = 1$$
 (椭圆/双曲线)

$$Y = A'X^2$$
 (她物线)

- ❖文字:命题变项及其否定的总称.
- ❖简单析取式:有限个文字构成的析取式.

如
$$p$$
, $\neg q$, $p \lor \neg q$, $p \lor q \lor r$, ...

- 析取范式:由有限个简单合取式组成的析取式 $A_1 \lor A_2 \lor ... \lor A_r$, 其中 $A_1, A_2, ..., A_r$ 是简单合取式.
- ❖公式A的析取范式:与A等值的析取范式

❖简单合取式:有限个文字构成的合取式

❖合取范式:由有限个简单析取式组成的合取式

 $A_1 \wedge A_2 \wedge \ldots \wedge A_r$, 其中 A_1, A_2, \ldots, A_r 是简单析取式

❖公式A的合取范式:与A等值的合取范式

说明:

单个文字既是简单析取式,又是简单合取式

 $p \land \neg q \land r, \neg p \lor q \lor \neg r$ 既是析取范式,又是合取范式

(为什么?)

定理 任何命题公式都存在着与之等值的析取范式.

求公式A的范式的步骤:

- (1) 消去A中的 \rightarrow , \leftrightarrow (若存在)
- (2) 否定联结词一的内移或消去
- (3) 使用分配律

△对▽分配(析取范式)

∨对∧分配 (合取范式)

公式的范式存在, 但不唯一。

例求下列公式的析取范式与合取范式

$$(1) A = (p \rightarrow \neg q) \lor \neg r$$

解
$$(p\rightarrow \neg q)\lor \neg r$$

$$\Leftrightarrow (\neg p \lor \neg q) \lor \neg r$$
 (消去→)

$$\Leftrightarrow \neg p \lor \neg q \lor \neg r \qquad (结合律)$$

这既是A的析取范式 (由3个简单合取式组成的析取式), 又是A的合取范式 (由一个简单析取式组成的合取式)

课堂练习1:

$$B=(p\rightarrow \neg q)\rightarrow r$$

解 $(p\rightarrow \neg q)\rightarrow r$
 $\Leftrightarrow (\neg p\vee \neg q)\rightarrow r$ (消去第一个 \rightarrow)
 $\Leftrightarrow \neg (\neg p\vee \neg q)\vee r$ (消去第二个 \rightarrow)
 $\Leftrightarrow (p\wedge q)\vee r$ (否定号内移 $--$ 德·摩根律)
这一步已为析取范式 (两个简单合取式构成)
继续: $(p\wedge q)\vee r$
 $\Leftrightarrow (p\vee r)\wedge (q\vee r)$ (\vee 对 \wedge 分配律)

这一步得到合取范式 (由两个简单析取式构成)

1. 主析取范式与主合取范式

定义 在含有n个命题变项的简单合取式(简单析取式)中, 若每个命题变项均以文字的形式出现且仅出现一次, 称这样的简单合取式(简单析取式)为极小项(极大项).

议文字的集合为
$$\{p, q, r, ..., \neg p', \neg q', \neg r'...\}$$
,则该集合的极小值为:

$$p \wedge q \wedge r \wedge ... \wedge \neg p' \wedge \neg q' \wedge \neg r' \wedge ...,$$
 该条合的极大值为:

$$p \lor q \lor r \lor \dots \lor \neg p \lor \neg q \lor \neg r \lor \lor \dots$$

1. 主析取范式与主合取范式

说明:

- ❖ n个命题变项产生2ⁿ个极小项和2ⁿ个极大项
- ❖ 2ⁿ个极小项(极大项)均互不等值
- ❖ 在极小项和极大项中文字均按下标或字母顺序排列
- * 用 m_i 表示第i个极小项,其中i是该极小项成真赋值的十进制表示。 用 M_i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, $m_i(M_i)$ 称为极小项(极大项)的名称.
- $riangle m_i$ 与 M_i 的关系: $\neg m_i \Leftrightarrow M_i$, $\neg M_i \Leftrightarrow m_i$

由p,q两个命题变项形成的极小项与极大项

极小项			极大项		
公式	成真赋值	名称	公式	成假赋值	名称
$\neg p \wedge \neg q$	0 0	m_0	$p \lor q$	0 0	M_0
$\neg p \wedge q$	0 1	m_1	$p \vee \neg q$	0 1	M_1
$p \land \neg q$	1 0	$m_2^{}$	$\neg p \lor q$	1 0	M_2
$p \wedge q$	1 1	m_3	$\neg p \lor \neg q$	1 1	M_3

课堂讨论-由p,q,r三个命题变项形成的极小项与极大项

极小项			极大项		
公式	成真赋值	名称	公式	成假赋值	名称
$\neg p \land \neg q \land \neg r$	0 0 0	m_0	$p \lor q \lor r$	0 0 0	M_0
$\neg p \land \neg q \land r$	001	m_1	$p \lor q \lor \neg r$	001	M_1
$\neg p \land q \land \neg r$	010	m_2	$p \vee \neg q \vee r$	010	M_2
$\neg p \land q \land r$	011	m_3	$p \vee \neg q \vee \neg r$	011	M_3
$p \land \neg q \land \neg r$	100	m_4	$\neg p \lor q \lor r$	100	M_4
$p \land \neg q \land r$	101	m_5	$\neg p \lor q \lor \neg r$	101	M_5
$p \land q \land \neg r$	110	m_6	$\neg p \vee \neg q \vee r$	110	M_6
$p \land q \land r$	111	m_7	$ \neg p \vee \neg q \vee \neg r $	111	M_7

1. 析取范式与主析取范式

- ❖ n个命题变项产生2ⁿ个极小项和2ⁿ个极大项
- ❖ 2ⁿ个极小项 (极大项) 均互不等值
- ❖ 在极小项和极大项中文字均按下标或字母顺序排列
- $* m_i$ 与 M_i 的关系: $\neg m_i \Leftrightarrow M_i, \neg M_i \Leftrightarrow m_i$

1. 析取范式与主析取范式

主析取范式: 由极小项构成的析取范式

主合取范式: 由极大项构成的合取范式

例如, n=3, 命题变项为p,q,r时,

 $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \Leftrightarrow m_1 \lor m_3$ 是主析取范式 $(p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \Leftrightarrow M_1 \land M_5$ 是主合取范式

A的主析取范式: 与A等值的主析取范式

A的主合取范式:与A等值的主合取范式.

定理 任何命题公式都存在着与之等值的主析取范式和主合 取范式,并且是唯一的.

用等值演算法求公式的主范式的步骤:

- (1) 失求析取范式 (合取范式).
- (2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.
- (3) 极小项(极大项)用名称 m_i (M_i)表示,并按角标从小到大顺序排序。

例
$$1$$
 求一 $(p
ightarrow q)$ V一 r 的主析取范式与主合取范式解 (1) 一 $(p
ightarrow q)$ V一 r 会 $(p
ightarrow -q)$ V一 r 是一个 $(p
ightarrow -q)$ P 是一个 $(p
ightarro$

快速求法——"查漏补缺"

设公式含有n个命题变项,则长度为k的简单合取式可展开成 2^{n-k} 个极小项的析取。

例如 公式含
$$p, q, r$$

$$q \Leftrightarrow (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_2 \lor m_3 \lor m_6 \lor m_7$$

长度为k的简单析取式可展开成 2^{n-k} 个极大项的合取

例如
$$p\lor\neg r\Leftrightarrow (p\lor q\lor\neg r)\land (p\lor\neg q\lor\neg r)$$
 $\Leftrightarrow M_1\land M_3$

例2(1) 求 $A \Leftrightarrow (\neg p \land q) \lor (\neg p \land \neg q \land r) \lor r$ 的主析取范式

解用快速求法

(1)
$$\neg p \land q \Leftrightarrow$$

$$\neg p \land \neg q \land r \Leftrightarrow$$

$$r \Leftrightarrow$$

(1) 求公式的成真赋值和成假赋值

设公式A含n个命题变项,A的主析取范式有s个极小项,则A有s个成真赋值,它们是极小项下标的二进制表示,其余 2^n-s 个赋值都是成假赋值.

例如 $\neg (p \rightarrow q) \lor \neg r \Leftrightarrow m_0 \lor m_2 \lor m_4 \lor m_5 \lor m_6$

成真赋值:

000, 010, 100, 101, 110;

成假赋值:

001, 011, 111

(2) 判断公式的类型

设A含n个命题变项,

则A为重言式当且仅当A的主析取范式含 2^n 个极小项,A为矛盾式当且仅当A的主析取范式不含任何极小项,记作0。

A为可满尺式当且仅当A的主析取范式中至少含一个 极小项

例3 用主析取范式判断公式的类型:

$$(1) A \Leftrightarrow \neg (p \rightarrow q) \land q \quad (2) B \Leftrightarrow p \rightarrow (p \lor q) \quad (3) C \Leftrightarrow (p \lor q) \rightarrow r$$

$$(2) \ B \Leftrightarrow \neg p \lor (p \lor q) \Leftrightarrow 1 \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3 \qquad$$
 重言式

$$(3) \ C \Leftrightarrow \neg (p \lor q) \lor r \Leftrightarrow (\neg p \land \neg q) \lor r$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r)$$

$$\lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_0 \lor m_1 \lor m_3 \lor m_5 \lor m_7$$
 非重言式的可满足式

(3) 判断两个公式是否等值

例4 用主析取范式判断下面2组公式是否等值:

(1)
$$p = (\neg p \lor q) \rightarrow (p \land q)$$

$$(2) (p \land q) \lor r \iff p \land (q \lor r)$$

$$\mathbf{#}: (p \land q) \lor r \Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r)$$

$$\lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m1 \lor m3 \lor m5 \lor m6 \lor m7$$

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

$$\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m5 \lor m6 \lor m7$$

$$\mathbf{t} \qquad (p \land q) \lor r \Leftrightarrow p \land (q \lor r)$$

课堂讨论

(4) 应用主析取范式分析和解决实际问题 (4) 核中位要从A,B,C三人选派若干人出国考察,需满足下述条件:

- (1) 若A去,则C必须去; $p \rightarrow r$,
- (2) 若B去,则C不能去; $q \rightarrow \neg r$,
- (3) 若C不去,则A或B可以去。 $\neg r \rightarrow (p \lor q)$

问有几种可能的选派方案?

解 记p:派A去, q:派B去, r:派C去

求下式的成真赋值

$$A = (p \rightarrow r) \land (q \rightarrow \neg r) \land (\neg r \rightarrow (p \lor q))$$

课堂讨论

求A的主析取范式

$$A = (p \rightarrow r) \land (q \rightarrow \neg r) \land (r \lor p \lor q)$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land r)$$

 $\Leftrightarrow m_1 \vee m_2 \vee m_5$

成真赋值:001,010,101

结论:方案1 派C去,方案2 派B去

方案3 C去, 而A,B都不去

思考

- A中含n个命题变项,其主析取范式含S个极小项,则A有多少个成 真赋值和成假赋值?其主合取范式有多少个极大项?
- ❖n个命题变项可产生多少个不同的主析取范式?
- ❖如何根据公式的主析取范式求其主合取范式?

命题逻辑应用:逻辑谜题

一个岛上居住着两类人——骑士和无赖。骑士说的都是真话, 无赖只会说假话。你碰到两个人A和B。如果A说"B是骑士", B说"我们是两类人",判断A和B分别是那类人。

设p:A是骑士;q:B是骑士。

a: q**为真**。

 $b: (p \land \neg q) \lor (\neg p \land q)$ 为真。

则有如下两种情况:

- 1) 若p真,则q,a,b都为真,但b为假,则矛盾;
- 2) 若p假,则q,a,b都为假,成立,则A与B都是无赖。

命题逻辑应用:数独游戏

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
6 5								
7			3					5
	1			9				
							6	

$$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)$$

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i, j, n)$$

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n)$$

$$p(i,j,n) \rightarrow p(i,j,n') \qquad n \neq n'$$

1.4组合电路

- ◇组合电路
- ◇逻辑门

与门, 或门, 非门, 与非门, 或非门

❖奎因-莫可拉斯基方法

组合电路

逻辑门: 实现逻辑运算的电子元件.

与门, 或门, 非门.

组合电路:实现命题公式的由电子元件组成的电路.

$$x$$
 $x \land y$ $x \land y$

组合电路的例子

$(x \lor y) \land \neg x$ 的组合电路

第一种画法

第二种画法

例

楼梯的灯由上下2个开关控制, 要求按动任何一个 开关都能打开或关闭灯, 试设计一个这样的线路,

解 x, y: 开关的状态, F: 灯的状态, 打开为1, 关闭为0.

不妨设当2个开关都为()时灯是打开的.

$$F=m_0 \land m_3 = (\neg x \land \neg y) \lor (x \land y)$$

x	y	F(x,y)
0	0	1
0	1	0
1	0	0
1	1	1

例(续)

设计组合电路

- 步骤: 1.构造输入输出表(问题的真值函数),
 - 2. 写出主析取范式,
 - 3. 化简.

最简展开式:包含最少运算的公式

奎因-莫可拉斯基方法(*)

- 1. 合并简单合取式生成所有可能出现在最简展开式中的项.
- 2. 确定最简展开式中的项.

例 求下述公式的最简展开式:

$$F = (\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land x_2 \land x_3 \land x_4) \lor (x_1 \land \neg x_2 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land x_3 \land x_4) \lor (x_1 \land x_2 \land x_3 \land \neg x_4)$$

例子(续)

解

编号	极小项	角码	标记	
1	$x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4$	1110	*	
2	$x_1 \wedge \neg x_2 \wedge x_3 \wedge x_4$	1011	*	
3	$\neg x_1 \land x_2 \land x_3 \land x_4$	0111	*	
4	$x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4$	1010	*	
5	$\neg x_1 \land x_2 \land \neg x_3 \land x_4$	0101	*	
6	$\neg x_1 \land \neg x_2 \land x_3 \land x_4$	0011	*	
7	$ \neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 $	0001	*	

例子(续)

	第一批	第二批				
合并项	项	表示串	标记	合并项	项	表示串
(1,4)	$x_1 \wedge x_3 \wedge \neg x_4$	1–10		(3,5,6,7)	$\neg x_1 \land x_4$	01
(2,4)	$x_1 \wedge \neg x_2 \wedge x_3$	101-				
(2,6)	$-x_2 \wedge x_3 \wedge x_4$	-011				
(3,5)	$ \neg x_1 \wedge x_2 \wedge x_4 $	01–1	*			
(3,6)	$ -x_1 \wedge x_3 \wedge x_4 $	0–11	*			
(5,7)	$ \neg x_1 \wedge \neg x_3 \wedge x_4 $	0-01	*			
(6,7)	$ \neg x_1 \wedge \neg x_2 \wedge x_4 $	00-1	*			

标记*表示该项已被合并

例子(续)

项	覆盖	运算符数
$x_1 \wedge x_3 \wedge \neg x_4$	(1,4)	3
$x_1 \wedge \neg x_2 \wedge x_3$	(2,4)	3
$\neg x_2 \land x_3 \land x_4$	(2,6)	3
$\neg x_1 \land x_4$	(3,5,6,7)	2

选择(1,4), (2,4)和(3,5,6,7), 或者(1,4), (2,6)和(3,5,6,7).

最简展开式为

$$F \Leftrightarrow (x_1 \land x_3 \land \neg x_4) \lor (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_4)$$

或

$$F \Leftrightarrow (x_1 \land x_3 \land \neg x_4) \lor (\neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_4)$$

实例

画出下面程序语言的流程图并进行化简。

If A then if B then X else Y else if B then X else Y

解: 执行X的条件为:

 $(A \wedge B) \vee (\neg A \wedge B)$

执行Y的条件为:

 $(A \land \neg B) \lor (\neg A \land \neg B)$

实例 (续)

执行X的条件可化简为:

$$(A \land B) \lor (\neg A \land B)$$

$$= B \wedge (A \vee \neg A) = B$$

执行Y的条件可化简为:

$$(A \land \neg B) \lor (\neg A \land \neg B)$$

$$= \neg B \land (A \lor \neg A) = \neg B$$

程序可简化为: If B then X else Y

课外习题

- ❖ 课后习题: 9、11、15、20
- ❖ 答题派题目:如截图

- 1.1.8 用等值演算法证明下列等值式。
- (1) $(p \land q) \lor (p \land \neg q) \Leftrightarrow p$
- (2) $((p
 ightarrow q) \land (p
 ightarrow r)) \Leftrightarrow (p
 ightarrow (q \land r))$
- $(3) \neg (p \leftrightarrow q) \Leftrightarrow ((p \lor q) \land \neg (p \land q))$
- 2.1.12 求下列命题公式的主析取范式、主合取范式、成真赋值、成假赋值。
- (1) $(p \lor (q \land r)) o (p \land q \land r)$
- (2) $(\neg p \rightarrow q) \rightarrow (\neg q \lor p)$
- (3) $\neg (p \rightarrow q) \land q \land r$
- 3.1.15 某勘测队有3名队员。有一天取得一块矿样,3人的判断如下。

(20

甲说:这不是铁,也不是铜。

乙说:这不是铁,是锡。 丙说:这不是锡,是铁。

经实验室鉴定后发现,其中一人两个判断都正确,一人判断对一半,另一个人判断全错了。根据

以上情况判断矿样的种类并指出谁的判断全对?谁的判断对一半?谁的判断全错?

4. 1.17 输入输出的关系如表1-2和表1-3所示,试写出实现它们的组合电路的合式公式,并用奎⁽²⁰⁾因-莫可拉斯基方法化简。

=	1 2
70	- Z

x	У	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

表 1-3

x_1	x_2	x_3	x_4	F	x_1	x_2	x_3	x_4	F
0	0 .	0	0	1	1	0	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	1	0	0	1	0	1	0	1
0	0	1	1	0	1	0	1	1	1
0	1	0	0	1	1	1	0	0	1
0	1	0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	0