This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

- 1 1. A method for extinguishing a fire occurring in a
- 2 petroleum or petroleum-based product and caused by vapors
- 3 released by said product, comprising applying to said
- 4 fire and said product a composition comprising:
- 5 (a) a nonionic primary surfactant comprising an
- 6 ethoxylated sorbitol oleate;
- 7 (b) a nonionic secondary surfactant selected from
- 8 the group consisting of linear ethoxylated secondary
- 9 alcohols, polyoxyethylene ethers, ethoxylated sorbitan
- 10 monolaurates, ethoxylated fatty acid amides and
- 11 ethoxylated fatty acids and containing about 7 moles to
- 12 about 26 moles of ethylene oxide and comprising from
- about 20 to about 36 weight percent of said composition,
- 14 and wherein said nonionic secondary surfactant is capable
- of stabilizing and solubilizing said nonionic primary
- 16 surfactant such that said composition has a
- 17 hydrophilic/lipophilic balance between about 12.0 and
- 18 about 13.5; and
- 19 (c) water;
- 20 wherein said composition arrests said vapors released by
- 21 the product, thereby extinguishing the fire.

- 22 2. A method according to claim 1, wherein the product
- 23 is spilled petroleum oil and/or fuel.
- 1 3. A method according to claim 1, wherein the primary
- 2 surfactant is ethoxylated sorbitol septaoleate.
- 1 4. A method according to claim 1, wherein the secondary
- 2 surfactant has a hydrophilic/lipophilic balance of from
- 3 about 10 to about 17.
- 1 5. A method according to claim 1, wherein the
- 2 composition further comprises an emulsion-stabilizing
- 3 agent.
- 1 6. A method according to claim 1, wherein the
- 2 composition further comprises a polyethylene glycol
- 3 component having a molecular weight of from about 200 to
- 4 about 400.
- 1 7. A method for cleaning a surface contaminated with
- petroleum and/or petroleum-based product, comprising
- 3 applying to said surface a composition comprising:
- 4 (a) a nonionic primary surfactant comprising an
- 5 ethoxylated sorbitol oleate;
- 6 (b) a nonionic secondary surfactant selected from the
- 7 group consisting of linear ethoxylated secondary
- 8 alcohols, polyoxyethylene ethers, ethoxylated sorbitan
- 9 monolaurates, ethoxylated fatty acid amides and

- 10 ethoxylated fatty acids and containing about 7 moles to
- 11 about 26 moles of ethylene oxide and comprising from
- 12 about 20 to about 36 weight percent of said composition,
- 13 and wherein said nonionic secondary surfactant is capable
- 14 of stabilizing and solubilizing said nonionic primary
- 15 surfactant such that said composition has a
- 16 hydrophilic/lipophilic balance between about 12.0 and
- 17 about 13.5; and
- 18 (c) water.
- 1 8. A method according to claim 7, wherein the primary
- 2 surfactant is ethoxylated sorbitol septaoleate.
- 1 9. A method according to claim 7, wherein the secondary
- 2 surfactant has a hydrophilic/lipophilic balance of from
- about 10 to about 17.
- 1 10. A method according to claim 7, wherein the
- 2 composition further comprises an emulsion-stabilizing
- 3 agent.
- 1 11. A method according to claim 7, wherein the
- 2 composition further comprises a polyethylene glycol
- 3 component having a molecular weight of from about 200 to
- 4 about 400.
- 1 12. A method according to claim 7, wherein the surface
- 2 is selected from the group consisting of airport runways,

Doc. 663902 35

- 3 rail cars, tanker trucks, sea-going tankers, storage
- 4 tanks, automobile fuel tanks, machine tool parts, track
- 5 beds, railway system switches, and meat packing and
- 6 poultry processing plants.
- 1 13. A method according to claim 7, wherein the surface
- 2 is a body surface of a wildlife member.
- 1 14. A method according to claim 13, wherein the wildlife
- 2 member is a bird.
- 1 15. A method for accelerating biodegradation rate of a
- 2 petroleum or petroleum-based product, comprising applying
- 3 to said product a composition comprising:
- 4 (a) a nonionic primary surfactant comprising an
- 5 ethoxylated sorbitol oleate;
- 6 (b) a nonionic secondary surfactant selected from
- 7 the group consisting of linear ethoxylated secondary
- 8 alcohols, polyoxyethylene ethers, ethoxylated sorbitan
- 9 monolaurates, ethoxylated fatty acid amides, and
- 10 ethoxylated fatty acids and containing about 7 moles to
- about 26 moles of ethylene oxide and comprising from
- 12 about 20 to about 36 weight percent of said composition,
- 13 and wherein said nonionic secondary surfactant is capable
- 14 of stabilizing and solubilizing said nonionic primary
- 15 surfactant such that said composition has a

- 16 hydrophilic/lipophilic balance between about 12.0 and
- 17 about 13.5; and
- (c) water.
- 1 16. A method according to claim 15, wherein said
- 2 petroleum or petroleum-based product is disposed in a
- 3 sewage system.
- 1 17. A method according to claim 15, wherein the primary
- 2 surfactant is ethoxylated sorbitol septaoleate.
- 1 18. A method according to claim 15, wherein the
- 2 secondary surfactant has a hydrophilic/lipophilic balance
- of from about 10 to about 17.
- 1 19. A method according to claim 15, wherein the
- 2 composition further comprises an emulsion-stabilizing
- 3 agent.
- 1 20. A method according to claim 15, wherein the
- 2 composition further comprises a polyethylene glycol
- 3 component having a molecular weight of from about 200 to
- 4 about 400.
- 1 21. A method for suppressing production of methane
- 2 and/or ammonia vapors by a petroleum or petroleum-based
- 3 product or other material undergoing degradation or decay
- and releasing methane and/or ammonia vapors, comprising

- 5 applying to said product or material a composition
- 6 comprising:
- 7 (a) a nonionic primary surfactant comprising an
- 8 ethoxylated sorbitol oleate;
- (b) a nonionic secondary surfactant selected from
- 10 the group consisting of linear ethoxylated secondary
- 11 alcohols, polyoxyethylene ethers, ethoxylated sorbitan
- 12 monolaurates, ethoxylated fatty acid amides and
- 13 ethoxylated fatty acids and containing about 7 moles to
- 14 about 26 moles of ethylene oxide and comprising from
- 15 about 20 to about 36 weight percent of said composition,
- 16 and wherein said nonionic secondary surfactant is capable
- of stabilizing and solubilizing said nonionic primary
- 18 surfactant such that said composition has a
- 19 hydrophilic/lipophilic balance between about 12.0 and
- 20 about 13.5; and
- 21 (c) water.
 - 1 22. A method according to claim 21, wherein the product
- or material is a spilled petroleum or petroleum-based
- 3 product.
- 1 23. A method according to claim 21, wherein the material
- 2 is compost.

- 1 24. A method according to claim 21, wherein the product
- or material is disposed in a landfill.
- 1 25. A method according to claim 21, wherein the primary
- 2 surfactant is ethoxylated sorbitol septaoleate.
- 1 26. A method according to claim 21, wherein the
- 2 secondary surfactant has a hydrophilic/lipophilic balance
- of from about 10 to about 17.
- 1 27. A method according to claim 21, wherein the
- 2 composition further comprises an emulsion-stabilizing
- 3 agent.
- 1 28. A method according to claim 21, wherein the
- 2 composition further comprises a polyethylene glycol
- 3 component having a molecular weight of from about 200 to
- 4 about 400.