Test #3

Ilya Yaroshevskiy

November 25, 2020

Contents

1	Test	$t \; \#3 \; ($ Случайные графы $)$
	1.1	Метод 1 момента
		Метод 2 момента
	1.3	Распределение степеней вершин
	1.4	Теорема Эрдём Рейли
	1.5	Теорема об изолированных вершинах
	1.6	Заметки

1 Test #3 (Случайные графы)

Модель G(n,p), размер вероятностного пространства $2^{\binom{n}{2}}$ Вероятность графа из m ребер $p^mq^{\binom{n}{2}-m}$ Пороговая вероятность свойства A графа G(n,p) - t(n)

- p(n) = o(t(n)) A а.п.н не выполнятеся
- $p(n) = \omega(t(n))$ A а.п.н выполнятеся

1.1 Метод 1 момента

$$A = \{G \mid x \in G\}$$

x - например треугольники

X - колтчество x в графе G

Если $EX \to 0$, то A а.п.н не выполнено

1.2 Метод 2 момента

$$P(|X - EX| \ge EX) \le \frac{DX}{(EX)^2}$$

Если $EX \to \infty$, хотим чтобы $\frac{DX}{(EX)^2} \to 0$, если выполнено то A а.п.н выполнено

$$DX = E(X^{2}) - (EX)^{2}$$

$$\frac{DX}{(EX)^{2}} = \frac{E(X^{2}) - (EX)^{2}}{(EX)^{2}} = \frac{E(X^{2})}{(EX)^{2}} - 1$$

$$E(X^{2}) = (EX)^{2}(1 + \underbrace{o(1)}_{\to 0})$$

1.3 Распределение степеней вершин

Граница Чернова Пример нечестной монеты: 1 с вероятностью p, 0 с вероятностью q pn - мат. ожидание количества единиц

$$P(|\xi - np| \ge \alpha \sqrt{np}) \le 3e^{-\frac{\alpha^2}{8}}$$

, где
$$\xi = \sum_{i=1}^n \xi_i, \; \xi_i = \begin{cases} 1, p \\ 0, q \end{cases}$$
 $p = const, \; u$ - вершина, $\deg u = \xi$ $p = \frac{1}{n} \; G(n,p) \; P(\exists u : \deg u \geq \frac{\ln n}{\ln \ln n}) \geq c > 0$ $c = 1 - e^{-\frac{1}{e}}$

1.4 Теорема Эрдём Рейли

$$p = c \frac{\ln n}{n} + \frac{d}{n}$$

- 1. $c < 1 \Rightarrow G$ а.п.н не связен
- 2. $c>1\Rightarrow G$ а.п.н связен
- 3. $c=1\Rightarrow G$ связен ассимпотически с вероятностью $e^{-e^{-d}}$

1.5 Теорема об изолированных вершинах

$$p = c \frac{\ln n}{n}$$

- 1. c < 1 а.п.н $\exists v : \deg v = 0$
- 2. c > 1 а.п.н $\forall v : \deg v > 0$

1.6 Заметки

- Дисперсия $D\xi = E(\xi^2) (E\xi)^2$
- Неравенство Маркова $P(\xi > cE\xi) \leq \frac{1}{c}$
- Неравенство Чернова $P(|\xi E\xi| \ge c) \le \frac{D\xi}{c^2}$
- Треугольники $P(T_{n,p} = 0) \leq P(|T_{n,p} ET_{n,p}| \geq |ET_{n,p}|)$
- Предел $(1\pm\frac{1}{n})^n \to e^{\pm 1}$