Fast Bi-Level and Incremental Stochastic Approximation of the EM Algorithm

Anonymous Author(s)

Affiliation Address email

Abstract

T.B.C

2 1 Introduction

We formulate the following empirical risk minimization as:

$$\min_{\boldsymbol{\theta} \in \Theta} \ \overline{\mathcal{L}}(\boldsymbol{\theta}) := \mathbf{R}(\boldsymbol{\theta}) + \mathcal{L}(\boldsymbol{\theta}) \ \text{ with } \ \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \left\{ -\log g(y_i; \boldsymbol{\theta}) \right\}, \quad (1)$$

where $\{y_i\}_{i=1}^n$ are the observations, Θ is a convex subset of \mathbb{R}^d for the parameters, $R:\Theta\to\mathbb{R}$ is a smooth convex regularization function and for each $\theta\in\Theta$, $g(y;\theta)$ is the (incomplete) likelihood of each individual observation. The objective function $\overline{\mathcal{L}}(\theta)$ is possibly non-convex and is assumed to be lower bounded $\overline{\mathcal{L}}(\theta) > -\infty$ for all $\theta\in\Theta$. In the latent variable model, $g(y_i;\theta)$, is the marginal of the complete data likelihood defined as $f(z_i,y_i;\theta)$, i.e. $g(y_i;\theta) = \int_{\mathbb{Z}} f(z_i,y_i;\theta)\mu(\mathrm{d}z_i)$, where $\{z_i\}_{i=1}^n$ are the (unobserved) latent variables. We make the assumption of a complete model belonging to the curved exponential family, *i.e.*,

$$f(z_i, y_i; \boldsymbol{\theta}) = h(z_i, y_i) \exp\left(\langle S(z_i, y_i) | \phi(\boldsymbol{\theta}) \rangle - \psi(\boldsymbol{\theta})\right), \tag{2}$$

where $\psi(\theta)$, $h(z_i, y_i)$ are scalar functions, $\phi(\theta) \in \mathbb{R}^k$ is a vector function, and $S(z_i, y_i) \in \mathbb{R}^k$ is the complete data sufficient statistics.

Prior Work Cite Kuhn (for ISAEM) and incremental EM like papers .As well as Optim papers
 (Variance reduction, SAGA etc.)

15 **2 Expectation Maximization Methods**

The basic "batch" EM (bEM) method iteratively computes a sequence of estimates $\{\boldsymbol{\theta}^k, k \in \mathbb{N}\}$ with an initial parameter $\boldsymbol{\theta}^0$. Each iteration of bEM is composed of two steps. In the E-step, a surrogate function is computed as $\boldsymbol{\theta} \mapsto Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{k-1}) = \sum_{i=1}^n Q_i(\boldsymbol{\theta}, \boldsymbol{\theta}^{k-1})$ where $Q_i(\boldsymbol{\theta}, \boldsymbol{\theta}') := -\int_{\mathbb{Z}} \log f(z_i, y_i; \boldsymbol{\theta}) p(z_i|y_i; \boldsymbol{\theta}') \mu(\mathrm{d}z_i)$ such that $p(z_i|y_i; \boldsymbol{\theta}) := f(z_i, y_i; \boldsymbol{\theta})/g(y_i, \boldsymbol{\theta})$ is the conditional probability density of the latent variables z_i given the observations y_i . When $f(z_i, y_i; \boldsymbol{\theta})$ is a curved exponential family model, the E-step amounts to computing the conditional expectation of the complete data sufficient statistics,

$$\bar{\mathbf{s}}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \bar{\mathbf{s}}_{i}(\boldsymbol{\theta}) \quad \text{where} \quad \bar{\mathbf{s}}_{i}(\boldsymbol{\theta}) = \int_{\mathsf{Z}} S(z_{i}, y_{i}) p(z_{i} | y_{i}; \boldsymbol{\theta}) \mu(\mathrm{d}z_{i}). \tag{3}$$

In the M-step, the surrogate function is minimized producing a new fit of the parameter $\theta^k = \arg\max_{\theta \in \Theta} Q(\theta, \theta^{k-1})$.

Monte Carlo Integration and Stochastic Approximation

Incremental and Bi-Level Inexact EM MEthods 26

We first describe the stochastic EM methods to be analyzed under a unified framework. The kth 27 iteration of a generic stochastic EM method is composed of two sub-steps -28

$$\mathsf{sE-step}: \ \hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} - \gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}), \tag{4}$$

which is a stochastic version of the E-step in (3). Note $\{\gamma_k\}_{k=1}^{\infty} \in [0,1]$ is a sequence of step sizes, $\mathcal{S}^{(k+1)}$ is a proxy for $\bar{\mathbf{s}}(\hat{\boldsymbol{\theta}}^{(k)})$, and $\bar{\mathbf{s}}$ is defined in (3). The M-step is given by

$$\mathsf{M\text{-step: }} \hat{\boldsymbol{\theta}}^{(k+1)} = \overline{\boldsymbol{\theta}}(\hat{\boldsymbol{s}}^{(k+1)}) \coloneqq \underset{\boldsymbol{\theta} \in \Theta}{\arg\min} \ \big\{ \, \mathrm{R}(\boldsymbol{\theta}) + \psi(\boldsymbol{\theta}) - \big\langle \hat{\boldsymbol{s}}^{(k+1)} \, | \, \phi(\boldsymbol{\theta}) \big\rangle \big\}, \tag{5}$$

which is controlled by the sufficient statistics determined by the sE-step. The stochastic EM methods differ in the way that $S^{(k+1)}$ is computed. Existing methods employ stochastic approximation or variance reduction without the need to fully compute $\bar{\mathbf{s}}(\hat{\boldsymbol{\theta}}^{(k)})$. To simplify notations, we define

$$\overline{\mathbf{s}}_i^{(k)} := \overline{\mathbf{s}}_i(\hat{\boldsymbol{\theta}}^{(k)}) = \int_{\mathbf{Z}} S(z_i, y_i) p(z_i | y_i; \hat{\boldsymbol{\theta}}^{(k)}) \mu(\mathrm{d}z_i) \quad \text{and} \quad \overline{\mathbf{s}}^{(\ell)} := \overline{\mathbf{s}}(\hat{\boldsymbol{\theta}}^{(\ell)}) = \frac{1}{n} \sum_{i=1}^n \overline{\mathbf{s}}_i^{(\ell)}. \tag{6}$$

Note that if $\mathcal{S}^{(k+1)} = \overline{\mathbf{s}}^{(k)}$ and $\gamma_{k+1} = 1$, eq. (4) reduces to the E-step in the classical bEM method. To describe the stochastic EM methods, let $i_k \in [\![1,n]\!]$ be a random index drawn at iteration k and $\tau_i^k = \max\{k': i_{k'} = i, k' < k\}$ be the iteration index where $i \in [1, n]$ is last drawn prior to iteration k, we have:

(iEM [Neal and Hinton, 1998])
$$S^{(k+1)} = S^{(k)} + \frac{1}{n} \left(\bar{\mathbf{s}}_{i_k}^{(k)} - \bar{\mathbf{s}}_{i_k}^{(\tau_{i_k}^k)} \right)$$
 (7)

(sEM [Cappé and Moulines, 2009])
$$\mathbf{S}^{(k+1)} = \overline{\mathbf{s}}_{i_k}^{(k)}$$
 (8)

(sEM-VR [Chen et al., 2018])
$$\mathbf{S}^{(k+1)} = \overline{\mathbf{s}}^{(\ell(k))} + (\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(\ell(k))})$$
(9)

(sEM-VR [Chen et al., 2018]) $\mathcal{S}^{(k+1)} = \overline{\mathbf{s}}^{(\ell(k))} + (\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(\ell(k))})$ (9) The stepsize is set to $\gamma_{k+1} = 1$ for the iEM method; $\gamma_{k+1} = \gamma$ is constant for the sEM-VR method. In the original version of the sEM method of the semi-value of the semi-val

In the original version of the sEM method, the sequence of step γ_{k+1} is a diminishing step size. Moreover, for iEM we initialize with $\mathbf{S}^{(0)} = \overline{\mathbf{s}}^{(0)}$; for sEM-VR, we set an epoch size of m and

40 define $\ell(k) := m |k/m|$ as the first iteration number in the epoch that iteration \bar{k} is in. 41

42 **fiEM** Our analysis framework can handle a new, yet natural application of a popular variance 43 reduction technique to the EM method. The new method, called fiEM, is developed from the SAGA method [Defazio et al., 2014] in a similar vein as in sEM-VR. 44

For iteration $k \geq 0$, the fiEM method draws two indices independently and uniformly as $i_k, j_k \in [\![1,n]\!]$. In addition to τ_i^k which was defined w.r.t. i_k , we define $t_j^k = \{k': j_{k'} = j, k' < k\}$ to be the iteration index where the sample $j \in [\![1,n]\!]$ is last drawn as j_k prior to iteration k. With the 45 47 initialization $\overline{\mathcal{S}}^{(0)}=\overline{\mathbf{s}}^{(0)},$ we use a slightly different update rule from SAGA inspired by [Reddi et al., 2016], as described by the following recursive updates

$$\mathbf{S}^{(k+1)} = \overline{\mathbf{S}}^{(k)} + \left(\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\right), \ \overline{\mathbf{S}}^{(k+1)} = \overline{\mathbf{S}}^{(k)} + n^{-1} \left(\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\right). \tag{10}$$

Algorithm 1 Stochastic EM methods.

- 1: **Input:** initializations $\hat{\boldsymbol{\theta}}^{(0)} \leftarrow 0$, $\hat{\mathbf{s}}^{(0)} \leftarrow \overline{\mathbf{s}}^{(0)}$, $K_{\mathsf{max}} \leftarrow \mathsf{max}$. iteration number.
- 2: Set the terminating iteration number, $K \in \{0, \dots, K_{\mathsf{max}} 1\}$, as a discrete r.v. with:

$$P(K=k) = \frac{\gamma_k}{\sum_{\ell=0}^{K_{\text{max}}-1} \gamma_\ell}.$$
(11)

- 3: **for** $k = 0, 1, 2, \dots, K$ **do**
- Draw index $i_k \in [\![1,n]\!]$ uniformly (and $j_k \in [\![1,n]\!]$ for fiEM). Compute the surrogate sufficient statistics $\boldsymbol{\mathcal{S}}^{(k+1)}$ using (8) or (7) or (9) or (10). 5:
- Compute $\hat{\mathbf{s}}^{(k+1)}$ via the sE-step (4).
- Compute $\hat{\theta}^{(k+1)}$ via the M-step (5).
- 8: end for
- 9: **Return**: $\hat{\boldsymbol{\theta}}^{(K)}$.

- where we set a constant step size as $\gamma_{k+1} = \gamma$.
- In the above, the update of $\mathcal{S}^{(k+1)}$ corresponds to an *unbiased estimate* of $\overline{\mathbf{s}}^{(k)}$, while the update for $\overline{\mathcal{S}}^{(k+1)}$ maintains the structure that $\overline{\mathcal{S}}^{(k)} = n^{-1} \sum_{i=1}^n \overline{\mathbf{s}}_i^{(t_i^k)}$ for any $k \geq 0$. The two updates of (10) are based on two different and independent indices i_k, j_k that are randomly drawn from [n]. This is used for our fast convergence analysis in Section 5.

- **Finite Time Analysis**
- **Numerical Examples**
- 7 Conclusion

References

- O. Cappé and E. Moulines. On-line expectation–maximization algorithm for latent data models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613, 2009.
- J. Chen, J. Zhu, Y. W. Teh, and T. Zhang. Stochastic expectation maximization with variance reduction. In *Advances in Neural Information Processing Systems*, pages 7978–7988, 2018.
- A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in neural information processing systems*, pages 1646–1654, 2014.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
 EM algorithm. *Journal of the royal statistical society. Series B (methodological)*, pages 1–38,
 1977.
- S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM Journal on Optimization*, 23(4):2341–2368, 2013.
- G. McLachlan and T. Krishnan. *The EM algorithm and extensions*, volume 382. John Wiley & Sons, 2007.
- R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In *Learning in graphical models*, pages 355–368. Springer, 1998.
- S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Fast incremental method for nonconvex optimization. arXiv preprint arXiv:1603.06159, 2016.

77 A Proof of Lemma