# An Empirical Analysis of Monero Cross-Chain Traceability

Abraham Hinteregger<sup>1,2</sup> Bernhard Haslhofer<sup>1</sup>

<sup>1</sup>Austrian Institute of Technology

<sup>2</sup>Vienna University of Technology

February 18, 2019

- Public nature of Bitcoin TX history prevents meaningful level of anonymity
- Monero (based on CryptoNote, [Van Saberhagen, 2013]) addresses this with the following methods:
  - Stealth Addresses (hide recipient addr.) → unlinkability

- Public nature of Bitcoin TX history prevents meaningful level of anonymity
- Monero (based on CryptoNote, [Van Saberhagen, 2013]) addresses this with the following methods:
  - Stealth Addresses (hide recipient addr.) → unlinkability
  - lacktriangle Ring Signatures (obfuscate spent TXO) ightarrow untraceability

- Public nature of Bitcoin TX history prevents meaningful level of anonymity
- Monero (based on CryptoNote, [Van Saberhagen, 2013]) addresses this with the following methods:
  - Stealth Addresses (hide recipient addr.) → unlinkability
  - Ring Signatures (obfuscate spent TXO) → untraceability
  - lacktriangle Confidential Transactions (hide amounts) o fungibility

- Public nature of Bitcoin TX history prevents meaningful level of anonymity
- Monero (based on CryptoNote, [Van Saberhagen, 2013]) addresses this with the following methods:
  - Stealth Addresses (hide recipient addr.) → unlinkability
  - Ring Signatures (obfuscate spent TXO) → untraceability
  - lacktriangle Confidential Transactions (hide amounts) o fungibility

■ Each TX input references:

- Each TX input references:
  - Bitcoin: Output from older TX (TXO)

- Each TX input references:
  - Bitcoin: Output from older TX (TXO)
  - Monero: Non-empty set of TXOs (a ring)

- Each TX input references:
  - Bitcoin: Output from older TX (TXO)
  - Monero: Non-empty set of TXOs (a ring)
- One ringmember is real, the others are decoys (mixins)



Source: https://cryptonote.org/inside/

- Each TX input references:
  - Bitcoin: Output from older TX (TXO)
  - Monero: Non-empty set of TXOs (a ring)
- One ringmember is real, the others are decoys (mixins)



Source: https://cryptonote.org/inside/

Decoys are sampled from set of eligible outputs

■ Zero Mixin Removal (ZMR)

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings
- Intersection removal (IR)

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings
- Intersection removal (IR)
  - generalized ZMR; "closed set attack"

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings
- Intersection removal (IR)
  - generalized ZMR; "closed set attack"
- Output Merging Heuristic (OMH)

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings
- Intersection removal (IR)
  - generalized ZMR; "closed set attack"
- Output Merging Heuristic (OMH)
  - outputs were split up into denominations; if two outputs from a single TX are redeemed in another TX, assume that those inputs are real

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings
- Intersection removal (IR)
  - generalized ZMR; "closed set attack"
- Output Merging Heuristic (OMH)
  - outputs were split up into denominations; if two outputs from a single TX are redeemed in another TX, assume that those inputs are real
- Guess Newest Heuristic (GNH)

- Zero Mixin Removal (ZMR)
  - remove known spent outputs from rings
- Intersection removal (IR)
  - generalized ZMR; "closed set attack"
- Output Merging Heuristic (OMH)
  - outputs were split up into denominations; if two outputs from a single TX are redeemed in another TX, assume that those inputs are real
- Guess Newest Heuristic (GNH)
  - temporal distribution of mixins and real spending behavior didn't match - most recent input often the real one

## Improvements to the protocol

- ZMR works like a chain reaction from an initial set of inputs without decoys.
  - Since 2016, the mandatory minimum ringsize has been increased
  - Minimum ringsizes + RingCT TX were effective
  - Ringsize  $\equiv 11$  since last update
- Mixin sampling has been improved with different approaches
  - Triangular distribution
  - Recent zone: Force 25-50% recent outputs
  - Gamma distribution: Distribution based on empirical analysis

#### Contribution of this work

- Reevaluation of existing methods
  - Previous studies published shortly after introduction of RingCT
  - Changes to mixin sampling and ringsize in 09/2017 and 04/2018.
- Quantification of impact due to recent (Spring 2018)
   Monero hardforks
  - Monero Original: Continuation of Monero v6 (ASIC compatible)
  - MoneroV: Fork with some changes to emission curve

# Currency hardforks

 A cryptocurrency can be forked, resulting in two currencies with a shared TX history



- Pre-fork funds can be spent on both chains
- Monero prevents double spends with key images (unique identifier derived from spent output)

## Currency hardforks

 A cryptocurrency can be forked, resulting in two currencies with a shared TX history



- Pre-fork funds can be spent on both chains
- Monero prevents double spends with key images (unique identifier derived from spent output)
- If two rings on separate branches share a key image, they spend the same output.

#### Dataset & Method

- Exported Monero (XMR), MoneroV (XMV) and Monero Original (XMO) blockchain up to Aug. 31<sup>th</sup>, 2018.
- Employed Zero Mixin Removal & Intersection Removal
- Added fork data and applied cross chain analysis (+ZMR/IR)
- 4 Applied heuristics from [Kumar et al., 2017] and [Möser et al., 2018]:
  - Guess Newest Heuristic
  - Output Merging Heuristic
- **5** Evaluated accuracy with ground truth (where possible) with results from steps 3 (OMH see paper).

# Traced Inputs



#### Guess Newest Heuristic



■ Nowadays, most Monero TXs are untraceable with known passive attack vectors

- Nowadays, most Monero TXs are untraceable with known passive attack vectors
- Guess Newest Heuristic does not work with current mixin sampling technique

- Nowadays, most Monero TXs are untraceable with known passive attack vectors
- Guess Newest Heuristic does not work with current mixin sampling technique
- Impact from Cross Chain Analysis not very large

- Nowadays, most Monero TXs are untraceable with known passive attack vectors
- Guess Newest Heuristic does not work with current mixin sampling technique
- Impact from Cross Chain Analysis not very large
  - 1 Forks so far didn't have a lot of traction (maybe disputes over ASICs change that)

- Nowadays, most Monero TXs are untraceable with known passive attack vectors
- Guess Newest Heuristic does not work with current mixin sampling technique
- Impact from Cross Chain Analysis not very large
  - I Forks so far didn't have a lot of traction (maybe disputes over ASICs change that)
  - 2 Mandatory ringsize of 7 enough to prevent chain reactions (11 is even better)

Data & source available:



#### References

- Kumar, A. et al. (2017).
   A traceability analysis of Monero's blockchain.
   In European Symposium on Research in Comp. Sec.
- Möser, M. et al. (2018). An Empirical Analysis of Traceability in the Monero Blockchain. PoPET, 2018(3):143–163, DOI:
  - 10.1515/popets-2018-0025.
- Van Saberhagen, N. (2013).
  Cryptonote v 2. 0.
  https://cryptonote.org/whitepaper.pdf.



Outputs O1-O4 are referenced in rings R1-R4



- Outputs O1-O4 are referenced in rings R1-R4
- lacksquare R1 only references O1  $\Longrightarrow$  must be the real input



- Outputs O1-O4 are referenced in rings R1-R4
- $\blacksquare$  R1 only references O1  $\Longrightarrow$  must be the real input
- $I = \{R3, R4\}$  reference  $O = \{O3, O4\}$  $|I| = |O| \implies O3 \& O4$  spent in R3 & R4



- Outputs O1-O4 are referenced in rings R1-R4
- $\blacksquare$  R1 only references O1  $\Longrightarrow$  must be the real input
- $I = \{R3, R4\}$  reference  $O = \{O3, O4\}$  $|I| = |O| \implies O3 \& O4$  spent in R3 & R4
- R2 only has one non-mixin reference remaining.



- Outputs O1-O4 are referenced in rings R1-R4
- R1 only references O1 ⇒ must be the real input
- $I = \{R3, R4\}$  reference  $O = \{O3, O4\}$  $|I| = |O| \implies O3 \& O4$  spent in R3 & R4
- R2 only has one non-mixin reference remaining.

# Output Merging Heuristic (OMH)

- Output merging mostly due to denomination splitting:
  - Initially, amounts were disclosed on blockchain
  - Ring signatures required multiple outputs with identical amounts
  - lacksquare Outputs were partitioned to facilitate this (7 o 5 + 2)

# Output Merging Heuristic (OMH)

- Output merging mostly due to denomination splitting:
  - Initially, amounts were disclosed on blockchain
  - Ring signatures required multiple outputs with identical amounts
  - Outputs were partitioned to facilitate this  $(7 \rightarrow 5 + 2)$





■ TX4 has two inputs which reference a TXO from TX2

# Output Merging Heuristic (OMH)

- Output merging mostly due to denomination splitting:
  - Initially, amounts were disclosed on blockchain
  - Ring signatures required multiple outputs with identical amounts
  - Outputs were partitioned to facilitate this  $(7 \rightarrow 5 + 2)$





- TX4 has two inputs which reference a TXO from TX2
- OMH assumes that these outputs are real

### Monero Activity







#### Output Merging Heuristic



# Inputs/Outputs (per TX)

