17. Goniometrické vzorce

Úloha 1. Aniž určíte hodnotu x, určete hodnoty zbývajících goniometrických funkcí z množiny $\{\sin,\cos,tg,\cot g\}$, víte-li, že

(a)
$$\cos x = \frac{4}{5}$$
 a $x \in \langle 0; \pi \rangle$

(d)
$$\sin x = \frac{12}{13} \text{ a } x \in \left\langle -\frac{\pi}{2}; \frac{\pi}{2} \right\rangle$$

(d)
$$\sin x = \frac{12}{13}$$
 a $x \in \left\langle -\frac{\pi}{2}; \frac{\pi}{2} \right\rangle$ (g) $\operatorname{tg} x = -\sqrt{7}$ a $x \in \left\langle \frac{\pi}{2}; \frac{3\pi}{2} \right\rangle$

(b)
$$\cos x = \frac{4}{5}$$
 a $x \in \langle -\pi; 0 \rangle$

(e)
$$\operatorname{tg} x = \frac{1}{2} \text{ a } x \in \langle 0; \pi \rangle$$

(h)
$$\cot g x = 10$$
 a $x \in \langle 0; \pi \rangle$

(c)
$$\sin x = -\frac{2}{7} \text{ a } x \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$$

$$(c) \quad \operatorname{tg} x = \frac{1}{2} \quad a \quad x \in (0, \pi)$$

(i)
$$\cot x = \frac{2}{3}$$
 a $x \in \langle \pi; 2\pi \rangle$

(c)
$$\sin x = -\frac{2}{7} \text{ a } x \in \langle \frac{\pi}{2}; \frac{3\pi}{2} \rangle$$

(f)
$$\operatorname{tg} x = \frac{1}{2} \text{ a } x \in \langle \pi; 2\pi \rangle$$

(i)
$$\cot x = \frac{2}{3}$$
 a $x \in \langle \pi; 2\pi \rangle$

Úloha 2. Určete přesně následující hodnoty: (a) $\cos \frac{5\pi}{12}$ (b) $\sin \frac{5\pi}{12}$ (c) $\operatorname{tg} \frac{5\pi}{12}$ (d) $\cos \frac{\pi}{12}$ (e) $\sin \frac{\pi}{12}$ (f) $\operatorname{tg} \frac{\pi}{12}$ (Nápověda: $\frac{5}{12} = \frac{1}{4} + \frac{1}{6}, \ \frac{1}{12} = \frac{1}{4} - \frac{1}{6}.$

Úloha 3. Ověřte pomocí součtových vzorců platnost následujících vzorců (jejichž platnost je ale "zřejmá" z pouhé úvahy o jednotkové kružnici): (a) $\sin(x+\pi) = -\sin x$ (b) $\sin(x+\frac{\pi}{2}) = \cos x$ (c) $\cos(\frac{\pi}{2}-x) = \sin x$ (d) $\sin(\frac{\pi}{2}-x) = \cos x$.

Úloha 4. Dokažte, že pro všechna $x \in \mathbb{R}$ platí

(a)
$$\sin x + \sin\left(x + \frac{2\pi}{3}\right) + \sin\left(x + \frac{4\pi}{3}\right) = 0$$
,

(b)
$$\cos x + \cos\left(x + \frac{2\pi}{3}\right) + \cos\left(x + \frac{4\pi}{3}\right) = 0.$$

⋆ Najdete geometrický důvod pro tyto rovnosti? (Nápověda: Uvažte tři body na jednotkové kružnici.)

Úloha 5. Dokažte následující "tabulkové" vzorce:

(a)
$$\sin 2x = 2 \sin x \cos x$$
 (Nápověda: Do součtových vzorců dosaďte x za y .)

(b)
$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

(c)
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
 (Nápověda: vyjádřete z (b))

(d)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

(e)
$$\left|\sin\frac{x}{2}\right| = \sqrt{\frac{1-\cos x}{2}}$$
 (Nápověda: dosaďte v (c) $\frac{x}{2}$ za x a odmocněte)

(f)
$$\left|\cos\frac{x}{2}\right| = \sqrt{\frac{1+\cos x}{2}}$$

(g) tg
$$\frac{x}{2} = \frac{\sin x}{1+\cos x} = \frac{1-\cos x}{\sin x}$$
; první rovnost platí pro $x \neq 2k\pi$, druhá pro $x \neq k\pi$ ($k \in \mathbb{Z}$) (Nápověda: Místo pro $\frac{x}{2}$ a x to raději dokazujte pro x a $2x$.)

Úloha 6. Pomocí vzorců (e) a (f) z Úlohy 5 spočtěte hodnotu $\cos \frac{\pi}{12}$ a $\sin \frac{\pi}{12}$. Je to ten samý výsledek jako v Úloze 2?

Úloha 7. Aniž určíte hodnotu x, určete hodnoty $\sin 2x$, $\cos 2x$, $\sin \frac{x}{2}$ a $\cos \frac{x}{2}$, jestliže platí níže uvedené. Jak se bude určovat znaménko u $\sin \frac{x}{2}$ a $\cos \frac{x}{2}$? (a) $\cos x = \frac{4}{5}$ a $x \in \langle 0; \pi \rangle$ (b) $\cos x = \frac{4}{5}$ a $x \in \langle -\pi; 0 \rangle$ (c) $\sin x = -\frac{2}{7}$ a $x \in \langle \frac{\pi}{2}; \frac{3\pi}{2} \rangle$ (d) $\sin x = -\frac{12}{13}$ a $x \in \left\langle -\frac{\pi}{2}; \frac{\pi}{2} \right\rangle$.

Úloha 8. Aniž určíte hodnoty x a y, vypočítejte $\sin(x+y)$ a $\cos(x-y)$, jestliže (a) $\cos x = \frac{5}{7}$, $\sin y = \frac{1}{5}$, $x \in \langle 0; \frac{\pi}{2} \rangle$ a $y \in \langle \frac{\pi}{2}; \pi \rangle$, (b) $\operatorname{tg} x = 3$, $\operatorname{cotg} y = -2$, $x \in \langle \pi; \frac{3\pi}{2} \rangle$ a $y \in \langle \frac{\pi}{2}; \pi \rangle$.

Úloha 9. Vyjádřete uvedený výraz ve tvaru $a\sin(x+b)$, kde a a b jsou nějaká vhodná reálná čísla.

(a)
$$\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x$$

(c)
$$\sin x + \cos x$$

(e)
$$\sin x + 2\cos x$$

(b)
$$\cos x - \sqrt{3}\sin x$$

(d)
$$\sin x + \sin\left(x + \frac{\pi}{3}\right)$$

(f)
$$3\sin x - 4\cos x$$

1. (a) $\sin x = \frac{3}{5}$, $\operatorname{tg} x = \frac{3}{4}$, $\cot g x = \frac{4}{3}$ (b) $\sin x = -\frac{3}{5}$, $\operatorname{tg} x = -\frac{3}{4}$, $\cot g x = -\frac{4}{3}$ (c) $\cos x = -\frac{3\sqrt{5}}{7}$, $\operatorname{tg} x = \frac{2\sqrt{5}}{15}$, $\cot g x = \frac{3\sqrt{5}}{2}$ (d) $\cos x = \frac{5}{13}$, $\operatorname{tg} x = \frac{12}{5}$, $\cot g x = \frac{5}{12}$ (e) $\cot g x = 2$, $\sin x = \frac{\sqrt{5}}{5}$, $\cos x = \frac{2\sqrt{5}}{5}$ (f) $\cot g x = 2$, $\sin x = -\frac{\sqrt{5}}{5}$, $\cos x = -\frac{2\sqrt{5}}{5}$ (g) $\cot g x = -\frac{\sqrt{7}}{7}$, $\sin x = \frac{\sqrt{14}}{4}$, $\cos x = -\frac{\sqrt{2}}{4}$ (h) $\operatorname{tg} x = \frac{1}{10}$, $\sin x = \frac{\sqrt{101}}{101}$, $\cos x = \frac{10\sqrt{101}}{101}$ (i) $\operatorname{tg} x = \frac{3}{2}$, $\sin x = -\frac{3\sqrt{13}}{13}$, $\cos x = -\frac{2\sqrt{13}}{13}$

2. (a) $\frac{\sqrt{2}}{4}(\sqrt{3}-1)$ (b) $\frac{\sqrt{2}}{4}(\sqrt{3}+1)$ (c) $\frac{\sqrt{3}+1}{\sqrt{3}-1}=\sqrt{3}+2$ (d) $\frac{\sqrt{2}}{4}(\sqrt{3}+1)$ (e) $\frac{\sqrt{2}}{4}(\sqrt{3}-1)$ (f) $\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3}$

4. (a) $\sin\left(x + \frac{2\pi}{3}\right) = \sin x \cos \frac{2\pi}{3} + \cos x \sin \frac{2\pi}{3} = -\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x$, dále

 $\sin\left(x + \frac{4\pi}{3}\right) = \sin x \cos\frac{4\pi}{3} + \cos x \sin\frac{4\pi}{3} = -\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x, \text{ všechno se to sečte na } 0.$

(b) $\cos(x + \frac{2\pi}{3}) = \cos x \cos \frac{2\pi}{3} - \sin x \sin \frac{2\pi}{3} = -\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x$, dále $\cos(x + \frac{4\pi}{3}) = \cos x \cos \frac{4\pi}{3} - \sin x \sin \frac{4\pi}{3} = -\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x$, všechno se to sečte na 0.

5. (a) $\sin 2x = \sin(x+x) = \sin x \cos x + \cos x \sin x = 2\sin x \cos x$

(b) $\cos 2x = \cos(x+x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x$, další dva vztahy pomocí $\sin^2 x + \cos^2 x = 1$

6. Vyjde $\cos \frac{\pi}{12} = \frac{1}{2}\sqrt{2+\sqrt{3}}$ a $\sin \frac{\pi}{12} = \frac{1}{2}\sqrt{2-\sqrt{3}}$; že to je stejný výsledek se ověří umocněním na druhou.

7. (a) $\sin 2x = \frac{24}{25}$, $\cos 2x = \frac{7}{25}$, $\sin \frac{x}{2} = \frac{\sqrt{10}}{10}$, $\cos \frac{x}{2} = \frac{3\sqrt{10}}{10}$ (b) $\sin 2x = -\frac{24}{25}$, $\cos 2x = \frac{7}{25}$, $\sin \frac{x}{2} = -\frac{\sqrt{10}}{10}$, $\cos \frac{x}{2} = \frac{3\sqrt{10}}{10}$ (c) $\sin 2x = \frac{12\sqrt{5}}{49}$, $\cos 2x = \frac{41}{49}$, $\sin \frac{x}{2} = \sqrt{\frac{7-3\sqrt{5}}{14}}$, $\cos \frac{x}{2} = -\sqrt{\frac{7+3\sqrt{5}}{14}}$ (d) $\sin 2x = -120\frac{169}{10}$, $\cos 2x = -\frac{119}{169}$, $\sin \frac{x}{2} = -\frac{2\sqrt{13}}{13}$, $\cos \frac{x}{2} = \frac{3\sqrt{13}}{13}$

8. (a) $\sin(x+y) = -\frac{19}{35}$, $\cos(x-y) = -\frac{8\sqrt{6}}{35}$ (b) $\sin(x+y) = \frac{\sqrt{2}}{2}$, $\cos(x-y) = -\frac{\sqrt{2}}{10}$

9. (a) $\sin(x-\frac{\pi}{3})$ (b) $2\sin(x+\frac{5\pi}{6})$ (c) $\sqrt{2}\sin(x+\frac{\pi}{4})$ (d) $\sqrt{3}\sin(x+\frac{\pi}{6})$ (e) $\sqrt{5}\sin(x+\arcsin\frac{2\sqrt{5}}{5})$

(f) $5\sin\left(x-\arcsin\frac{4}{5}\right)$