Date: 25/09/17

Ahsanullah University of Science and Technology

Department of Computer Science and Engineering Fourth Year, First Semester, Final Examination, Spring 2017

Course No: CSE 4129 Course Title: Formal Languages and Compilers

Full Marks: 70 Time: 3 hours

[There are 7 (seven) questions carrying 14 marks each. Answer any 5 (five) questions] [Marks allotted are indicated in the right margin]

Define Finite Automata and Formal Language with suitable examples. a)

Design Deterministic Finite Automata (DFA) for the following languages: b)

5

L = {set of all strings ending with abc} where $\Sigma = \{a,b,c\}$

L = {set of all stings with even number of 0's and even number of 1's} where, Σ = ii. $\{0,1\}$

Convert the following Non-Deterministic Finite Automata (NFA) to a Deterministic Finite Automata (DFA) by using subset construction method.

5

1	0	1
→P	{Q,S}	{Q}
Q7 4	{R}	{Q,R}
R 473	{S}	{P}
*S \	Φ	{P}

Briefly explain the concept of Equivalence and Equality of Regular Expressions with the help of following Regular Expressions R and S:

$$R = a a^* (b | c)$$

 $S = a^* a (c | b)$

b) Minimize the following Deterministic Finite Automata (DFA) by using Partition Method, where $\Sigma = \{a,b\}$ and $Q = \{0,1,2,3,4,5\}$

	A	В
→0	3	1
*1	4	1
*2	0	2
3	5	2
4	3	1
5	5	5

Convert the following epsilon-Non-Deterministic Finite Automata (ϵ -NFA) to its 5 corresponding Deterministic Finite Automata (DFA).

	E	a	b	С
→P	Φ	{P}	{Q}	{R}
Q	{P}	{Q}	{R}	ф
*R	{Q}	{R}	ф	{ P }

5

- a) What do you understand by concatenation and union of languages? Explain with suitable examples.
- b) Convert the following Regular Expression to Deterministic Finite Automata (DFA).
 - i. (0+1)*010(0+1), where $\Sigma = \{0,1\}$
 - ii. (c+a)*abca*, where $\Sigma = \{a,b,c\}$
 - c) Convert the following Deterministic Finite Automata (DFA) to Regular Expression using the state-elimination technique (show all intermediate steps):

£	7	of pile 1996			
		0		. 1	7
' [→P	P		S	7
:	Q	R		P	7
	R	R		Q	1
	*S	R	Laboratoria de la companya de la com	S	

- a) What are the requirements for compilation? Briefly describe the analysis-synthesis model for compilation.
- b) Why it is important to separate lexical analyzer and parser? Briefly describe the reasons.
- c) What do you understand by symbol table management? Write down the attributes for $\frac{5}{2}$ each token for the code statement $\mathbf{E} = \mathbf{MC^2}$.
- a) Check whether the following grammar is ambiguous or not. Justify your answer. $A \rightarrow A + A | A^*A | A | a$
- b) Find out the First and Follow set of all the non-terminals of the following grammar and also generate the LL(1) parsing table for the grammar:

$$A \rightarrow \underline{T}A'$$

$$A' \rightarrow rTA' \mid \epsilon$$

$$T \rightarrow \underline{F}T'$$

$$T' \rightarrow \underline{m}\underline{F}\underline{T'} \mid \epsilon$$

$$F \rightarrow (A) \mid p \mid 0$$

c) Consider the following grammar and the LL(1) parsing tables. Now parse the string 5 "((id*id)+id)*(id)" and build the final parse tree.

Given Grammar:
$E \rightarrow TE'$
$E' \rightarrow +TE' \mid \varepsilon$
$T \rightarrow FT'$
$T' \rightarrow *FT' \mid \varepsilon$
$F \rightarrow (E) \mid id$

Corresponding LL(1) Parser Table:

	•					
	id -	+	*),)	\$.
E	$E \rightarrow TE'$, , , , , , , , , , , , , , , , , , , ,	. 44	E→TE'		
E'		E'→+TE'			E'→ ε	E'→ε
T	T→ FT'			$T \rightarrow FT'$		
T'	aa	T'→ ε	T'→* FT'		T'→ ε	T'→ ε
F	F→ id			F→ (E)		

- 6,
- a) What are the advantages of using buffer pairs in a scanner? How sentinels can be used to further improve the performance of the buffer pairs?

5

b) Consider the following grammar

 $S \rightarrow SS + |SS^*| a$

Now perform the recursive descent parsing technique to generate a parse tree for the string aa+a* with the help of above grammar.

c) Construct LR(0) parser table for the following grammar:

5

- $A \rightarrow TB$
- $B \rightarrow rTB$
- $T \rightarrow FC$
- $C \rightarrow m FT$
- $F \rightarrow (A) | r$

- 7./
- a) Define annotated parse tree, synthesized attribute and inherited attribute with examples.

4

5

b) What do you understand by handle pruning in shift-reduce parser? Perform shift-reduce parser algorithm for the string ATRe with the help of following grammar and state the total number of shift and reduce operations.

Given grammar:

a TRe

- S → a T R e
- $T \rightarrow T b c \mid b$
- $R \rightarrow d$
- c) What is left sentential form and right sentential form? Apply Left Factoring on the following grammar:

5

 $A \rightarrow ad \mid a \mid ab \mid abc \mid b$