

AB-A184 954

PRC CONSULTANT TOWNSEND INC ST LOUIS MO

F/G 13/13

NATIONAL DAM SAFETY PROGRAM. STEPHENS LAKE DAM, (MO 11172), MIS-ETC(U)

DACW43-80-C-0094

NL

UNCLASSIFIED

1 OF 1
ADA
104-954

STEP
104-954

END
DATE
10-81
DTIC

LEVEL ✓

MISSOURI - KANSAS CITY RIVER BASIN

AD A 104954

STEPHENS LAKE DAM
BOONE COUNTY, MISSOURI
MO. 65172

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

United States Army
Corps of Engineers

... Serving the Army
... Serving the Nation

St. Louis District

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

"Original contains color
plates: All DTIC reproductions will be in black and white"

DECEMBER 1980

81 10 2 149

DTIC FILE COPY

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

~~READ INSTRUCTIONS
BEFORE COMPLETING FORM~~

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

412553 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

REPLY TO
ATTENTION OF

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 TUCKER BOULEVARD, NORTH
ST. LOUIS, MISSOURI 63101

SUBJECT: Stephens Lake Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Stephens Lake Dam (MO 11172).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

- a. Spillway will not pass 50 percent of the Probable Maximum Flood without overtopping the dam.
- b. Overtopping of the dam could result in failure of the dam.
- c. Dam failure significantly increases the hazard to loss of life downstream.

SUBMITTED BY:

SIGNED

Chief, Engineering Division

24 FEB 1981

Date

APPROVED BY:

SIGNED

Colonel, CE, District Engineer

25 FEB 1981

Date

Account No. 100	✓
Method 1	
Method 2	
Method 3	
Method 4	
Method 5	
Method 6	
Method 7	
Method 8	
Method 9	
Method 10	
Method 11	
Method 12	
Method 13	
Method 14	
Method 15	
Method 16	
Method 17	
Method 18	
Method 19	
Method 20	
Method 21	
Method 22	
Method 23	
Method 24	
Method 25	
Method 26	
Method 27	
Method 28	
Method 29	
Method 30	
Method 31	
Method 32	
Method 33	
Method 34	
Method 35	
Method 36	
Method 37	
Method 38	
Method 39	
Method 40	
Method 41	
Method 42	
Method 43	
Method 44	
Method 45	
Method 46	
Method 47	
Method 48	
Method 49	
Method 50	
Method 51	
Method 52	
Method 53	
Method 54	
Method 55	
Method 56	
Method 57	
Method 58	
Method 59	
Method 60	
Method 61	
Method 62	
Method 63	
Method 64	
Method 65	
Method 66	
Method 67	
Method 68	
Method 69	
Method 70	
Method 71	
Method 72	
Method 73	
Method 74	
Method 75	
Method 76	
Method 77	
Method 78	
Method 79	
Method 80	
Method 81	
Method 82	
Method 83	
Method 84	
Method 85	
Method 86	
Method 87	
Method 88	
Method 89	
Method 90	
Method 91	
Method 92	
Method 93	
Method 94	
Method 95	
Method 96	
Method 97	
Method 98	
Method 99	
Method 100	
Method 101	
Method 102	
Method 103	
Method 104	
Method 105	
Method 106	
Method 107	
Method 108	
Method 109	
Method 110	
Method 111	
Method 112	
Method 113	
Method 114	
Method 115	
Method 116	
Method 117	
Method 118	
Method 119	
Method 120	
Method 121	
Method 122	
Method 123	
Method 124	
Method 125	
Method 126	
Method 127	
Method 128	
Method 129	
Method 130	
Method 131	
Method 132	
Method 133	
Method 134	
Method 135	
Method 136	
Method 137	
Method 138	
Method 139	
Method 140	
Method 141	
Method 142	
Method 143	
Method 144	
Method 145	
Method 146	
Method 147	
Method 148	
Method 149	
Method 150	
Method 151	
Method 152	
Method 153	
Method 154	
Method 155	
Method 156	
Method 157	
Method 158	
Method 159	
Method 160	
Method 161	
Method 162	
Method 163	
Method 164	
Method 165	
Method 166	
Method 167	
Method 168	
Method 169	
Method 170	
Method 171	
Method 172	
Method 173	
Method 174	
Method 175	
Method 176	
Method 177	
Method 178	
Method 179	
Method 180	
Method 181	
Method 182	
Method 183	
Method 184	
Method 185	
Method 186	
Method 187	
Method 188	
Method 189	
Method 190	
Method 191	
Method 192	
Method 193	
Method 194	
Method 195	
Method 196	
Method 197	
Method 198	
Method 199	
Method 200	
Method 201	
Method 202	
Method 203	
Method 204	
Method 205	
Method 206	
Method 207	
Method 208	
Method 209	
Method 210	
Method 211	
Method 212	
Method 213	
Method 214	
Method 215	
Method 216	
Method 217	
Method 218	
Method 219	
Method 220	
Method 221	
Method 222	
Method 223	
Method 224	
Method 225	
Method 226	
Method 227	
Method 228	
Method 229	
Method 230	
Method 231	
Method 232	
Method 233	
Method 234	
Method 235	
Method 236	
Method 237	
Method 238	
Method 239	
Method 240	
Method 241	
Method 242	
Method 243	
Method 244	
Method 245	
Method 246	
Method 247	
Method 248	
Method 249	
Method 250	
Method 251	
Method 252	
Method 253	
Method 254	
Method 255	
Method 256	
Method 257	
Method 258	
Method 259	
Method 260	
Method 261	
Method 262	
Method 263	
Method 264	
Method 265	
Method 266	
Method 267	
Method 268	
Method 269	
Method 270	
Method 271	
Method 272	
Method 273	
Method 274	
Method 275	
Method 276	
Method 277	
Method 278	
Method 279	
Method 280	
Method 281	
Method 282	
Method 283	
Method 284	
Method 285	
Method 286	
Method 287	
Method 288	
Method 289	
Method 290	
Method 291	
Method 292	
Method 293	
Method 294	
Method 295	
Method 296	
Method 297	
Method 298	
Method 299	
Method 300	
Method 301	
Method 302	
Method 303	
Method 304	
Method 305	
Method 306	
Method 307	
Method 308	
Method 309	
Method 310	
Method 311	
Method 312	
Method 313	
Method 314	
Method 315	
Method 316	
Method 317	
Method 318	
Method 319	
Method 320	
Method 321	
Method 322	
Method 323	
Method 324	
Method 325	
Method 326	
Method 327	
Method 328	
Method 329	
Method 330	
Method 331	
Method 332	
Method 333	
Method 334	
Method 335	
Method 336	
Method 337	
Method 338	
Method 339	
Method 340	
Method 341	
Method 342	
Method 343	
Method 344	
Method 345	
Method 346	
Method 347	
Method 348	
Method 349	
Method 350	
Method 351	
Method 352	
Method 353	
Method 354	
Method 355	
Method 356	
Method 357	
Method 358	
Method 359	
Method 360	
Method 361	
Method 362	
Method 363	
Method 364	
Method 365	
Method 366	
Method 367	
Method 368	
Method 369	
Method 370	
Method 371	
Method 372	
Method 373	
Method 374	
Method 375	
Method 376	
Method 377	
Method 378	
Method 379	
Method 380	
Method 381	
Method 382	
Method 383	
Method 384	
Method 385	
Method 386	
Method 387	
Method 388	
Method 389	
Method 390	
Method 391	
Method 392	
Method 393	
Method 394	
Method 395	
Method 396	
Method 397	
Method 398	
Method 399	
Method 400	
Method 401	
Method 402	
Method 403	
Method 404	
Method 405	
Method 406	
Method 407	
Method 408	
Method 409	
Method 410	
Method 411	
Method 412	
Method 413	
Method 414	
Method 415	
Method 416	
Method 417	
Method 418	
Method 419	
Method 420	
Method 421	
Method 422	
Method 423	
Method 424	
Method 425	
Method 426	
Method 427	
Method 428	
Method 429	
Method 430	
Method 431	
Method 432	
Method 433	
Method 434	
Method 435	
Method 436	
Method 437	
Method 438	
Method 439	
Method 440	
Method 441	
Method 442	
Method 443	
Method 444	
Method 445	
Method 446	
Method 447	
Method 448	
Method 449	
Method 450	
Method 451	
Method 452	
Method 453	
Method 454	
Method 455	
Method 456	
Method 457	
Method 458	
Method 459	
Method 460	
Method 461	
Method 462	
Method 463	
Method 464	
Method 465	
Method 466	
Method 467	
Method 468	
Method 469	
Method 470	
Method 471	
Method 472	
Method 473	
Method 474	
Method 475	
Method 476	
Method 477	
Method 478	
Method 479	
Method 480	
Method 481	
Method 482	
Method 483	
Method 484	
Method 485	
Method 486	
Method 487	
Method 488	
Method 489	
Method 490	
Method 491	
Method 492	
Method 493	
Method 494	
Method 495	
Method 496	
Method 497	
Method 498	
Method 499	
Method 500	

A

STEPHENS LAKE DAM
BOONE COUNTY, MISSOURI

MISSOURI INVENTORY NO. 11172

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
CONSOER, TOWNSEND AND ASSOCIATES, LTD.
ST. LOUIS, MISSOURI
AND
PRC ENGINEERING CONSULTANTS, INC.
ENGLEWOOD, COLORADO
A JOINT VENTURE

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

DECEMBER 1980

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Stephens Lake Dam, Missouri Inv. No. 11172
State Located: Missouri
County Located: Boone
Stream: An unnamed tributary of Hinkson Creek
Date of Inspection: July 11, 1980

Assessment of General Condition

Stephens Lake Dam was inspected by the engineering firms of Consoer, Townsend and Associates, Ltd. and PRC Engineering Consultants, Inc. (A Joint Venture) of St. Louis, Missouri according to the U. S. Army Corps of Engineers' "Recommended Guidelines for Safety Inspection of Dams" and additional guidelines furnished by the St. Louis District of the Corps of Engineers. Based upon the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. Within the estimated damage zone of four miles downstream of the dam, there are thirteen dwellings, one shopping center, apartment houses, and a trailer court which may be subjected to flooding, with possible damage and/or destruction, and possible loss of life. Stephens Lake Dam is in the small size classification since it is 23 feet high, and impounds more than 50 acre-feet but less than 1,000 acre-feet of water.

The inspection and evaluation of the consultant's inspection team indicate that the spillway of Stephens Lake Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Stephens Lake Dam being a small size dam with a high hazard potential is required by the guidelines to pass from one-half of the Probable Maximum Flood to the Probable Maximum Flood without overtopping. Considering the large number of inhabited dwellings located downstream of the dam, the PMF is considered the appropriate spillway design flood for Stephens Lake Dam. The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region. It was determined that the reservoir/spillway system can accommodate approximately ~~50~~⁴⁵ percent of the Probable Maximum Flood without overtopping the dam. Our evaluation also indicates that the reservoir/spillway system can accommodate the one-percent chance flood (100-year flood) without overtopping.

Stephens Lake Dam and its appurtenant structures appear to be in fair condition due to what appears to be the possibility of past piping of the embankment material along the spillway pipe. This condition is considered to be a significant deficiency and has already caused some damage to the spillway and the dam embankment.

Other deficiencies noted by the inspection team were: the erosion due to wave action on the upstream slope, rodent holes in the embankment, the small shrubs growing in the wave eroded area, a need for periodic inspection by a qualified engineer and a lack of maintenance schedule. The lack of seepage and stability analyses on record is also a deficiency that should be corrected.

It is recommended that the owner take action to correct or control the deficiencies described above.

Walter G. Shifrin, P.E.

Overview of Stephens Lake Dam

NATIONAL DAM SAFETY PROGRAM

STEPHENS LAKE DAM, I.D. No. 11172

TABLE OF CONTENTS

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 1	PROJECT INFORMATION	1
1.1	General	1
1.2	Description of Project	2
1.3	Pertinent Data	7
SECTION 2	ENGINEERING DATA	10
2.1	Design	10
2.2	Construction	10
2.3	Operation	10
2.4	Evaluation	10
SECTION 3	VISUAL INSPECTION	12
3.1	Findings	12
3.2	Evaluation	18

TABLE OF CONTENTS

(Continued)

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 4	OPERATION PROCEDURES	20
	4.1 Procedures	20
	4.2 Maintenance of Dam	20
	4.3 Maintenance of Operating Facilities	20
	4.4 Description of Any Warning System in Effect	20
	4.5 Evaluation	21
SECTION 5	HYDRAULIC/HYDROLOGIC	22
	5.1 Evaluation of Features	22
SECTION 6	STRUCTURAL STABILITY.	24
	6.1 Evaluation of Structural Stability.	24
SECTION 7	ASSESSMENT/REMEDIAL MEASURES.	26
	7.1 Dam Assessment	26
	7.2 Remedial Measures.	28

TABLE OF CONTENTS

(Continued)

LIST OF PLATES

	<u>Plate No.</u>
LOCATION MAP	1
DRAINAGE BASIN AND DOWNSTREAM HAZARD ZONE	1A
PLAN, ELEVATION, MAXIMUM SECTION OF EMBANKMENT AND SPILLWAY PROFILE	2
GEOLOGIC MAPS	3-4

APPENDICES

APPENDIX A - PHOTOGRAPHS

APPENDIX B - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

STEPHENS LAKE DAM, Missouri Inv. No. 11172

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for Stephens Lake Dam was carried out under Contract DACW 43-80-C-0094 between the Department of the Army, St. Louis District, Corps of Engineers, and the engineering firms of Consoer, Townsend & Associates, Ltd., and PRC Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of Stephens Lake Dam was made on July 11, 1980. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

This report summarizes available pertinent data relating to the project, presents a summary of visual observations made during the field inspection, presents an assessment of hydrologic and hydraulic conditions at the site, and the structural adequacy of

the various project features and assesses the general condition of the dam with respect to safety.

Subsurface investigations, laboratory testing and detailed analyses were not within the scope of this study. No warranty as to the absolute safety of the project features is implied by the conclusions presented in this report.

It should be noted that in this report reference to left or right abutments is viewed as looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to the north abutment or side, and right abutment or right side to the southwest abutment or side.

d. Evaluation Criteria

The inspection and evaluation of the dam is performed in accordance with the U.S. Army Corps of Engineers' "Recommended Guidelines for Safety Inspection of Dams" and additional guidelines furnished by the St. Louis District office of the Corps of Engineers for Phase I Dam Inspection.

1.2 Description of the Project

a. Description of Dam and Appurtenances

The following description is based upon observations and measurements made during the visual inspection and from conversations with Mr. Marion Henley, Director of Buildings and Grounds for Stephens College. No design drawings were available for this dam or appurtenant structures.

The dam is a compacted earthfill structure between earth abutments. The measured top width is 14 feet and the length along the axis is 648 feet. A plan and elevation of the dam are shown on Plate 2 and Photos 1 through 3 show views of the dam. The alignment

of the dam is generally straight along the middle 400 feet of the embankment with an average curvature in the upstream direction of 15 degrees in the last 100 feet on each extreme of the dam. The top of dam has a minimum elevation of 691.3 feet above mean sea level (M.S.L.) which occurs at about the left 1/3 point and the maximum structural height of the embankment which occurs at approximately the right 1/3 point was measured to be 23 feet. At the location of the minimum top of dam elevation, the top of dam slopes upward to each abutment with a rise in elevation of 1 foot. The top of dam is used as an access road for light maintenance equipment.

The downstream slope of the embankment was measured to be 1V on 2.25H. It was not possible to accurately measure the upstream slope because of wave erosion on the face and a near horizontal, riprapped bench at the water surface. However, the measurements made over the short unaltered upstream slope indicated the upstream slope to be 1V to 1.5H. Except for the riprapped bench and wave eroded face of the upstream slope, the entire exposed embankment is protected by a dense short grass cover.

There is only one spillway at the damsite which consists of a concrete side channel connected to a vitrified clay pipe which passes through the embankment. The side channel structure consists of a rectangular shaped concrete box which is 10.6-feet long, 2.5-feet wide and 2.5-feet deep (see Photo 5). The control section of the channel is located on the south side of the box and has an assumed crest elevation of 689.0 feet above M.S.L., which places the crest 6 inches below the top of the rest of the structure. The clay pipe is 24 inches in diameter and about 37 feet long. The pipe is laid through the embankment on a 10 percent grade. A 6-inch high, wood framed structure with a wire screen was provided at the entrance to the side channel as a fish screen. The spillway is located approximatley 38 feet to the right of the left abutment/embankment contact.

A 4-inch diameter siphon pipe was provided at the damsite to drain the reservoir if needed. The siphon consists of a 4-inch steel pipe which is controlled by a 4-inch gate valve located on the upstream side of the system (see Photo 9). According to Mr. Henley, the siphon was last used in 1955 to lower the reservoir. The siphon is located about 150 feet to the right of the left abutment.

An electric powered, vertical submersible centrifugal turbine pump was installed at the damsite (see Photo 10). The purpose of the pump is to pump groundwater into the reservoir to help keep the reservoir at a desired level. The pumphouse is located on the right side of the reservoir.

b. Location

Stephens Lake Dam is located in Boone County in the State of Missouri, and crosses an unnamed tributary of Hinkson Creek. The dam is located on the east edge of the City of Columbia. The Stephens Lake Dam location on the 7.5 minute series of the U.S. Geological Survey maps is found in Section 7 of Township 48 North, Range 12 West, of the Columbia, Missouri Quadrangle Sheet.

c. Size Classification

The impoundment of Stephens Lake Dam is less than 1,000 acre-feet but more than 50-acre feet, and its height is 23 feet. Therefore, the size is determined to fall in the "small" category, according to the "Recommended Guidelines for Safety Inspection of Dams" by the U.S. Department of the Army, Office of the Chief Engineer.

d. Hazard Classification

The dam has been classified as having a "high" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. The findings of the consultant's inspection team concur with this classification. There are thirteen dwellings, apartment houses, a shopping center and a trailer court within the estimated damage zone, extending four miles downstream of the dam.

e. Ownership

Stephens Lake Dam is owned by Stephens College of Columbia, Missouri. All correspondence is directed to Mr. Marion Henley, Director of Buildings and Grounds, Stephens College. The mailing address is as follows: 1200 East Broadway, Columbia, Missouri, 65215.

f. Purpose of Dam

At present the Stephens Lake is used only for recreation. However, originally the lake was built for stock watering purposes. At that time, according to Mr. Henley, the impoundment was much smaller than the present impoundment.

g. Design and Construction History

The information on the design and construction of the dam, as described below, was given to the inspection team by Mr. Henley. The original dam was built around the turn of the century for stock watering purposes. The original dam and lake were much smaller than the present dam and lake. Stephens College purchased the property in the late 1920's and the lake was enlarged in 1939 by increasing the size of the dam. Since the watershed area was not

sufficient to support the enlarged lake, a deep well was also drilled at the same time and a pump installed to pump water into the reservoir to help keep the reservoir at a desired level. The lake and dam were probably constructed without any engineering design and supervision. The lake level was lowered in 1955 and a larger swimming area was blasted out of the bedrock on the south rim of the reservoir. The spillway was also constructed at this time.

h. Normal Operational Procedures

Normal procedures is to allow the reservoir to remain as full as possible with the water level being controlled by rainfall, runoff, evaporation, the elevation of the spillway crest, and periodic supply of groundwater from the well near the lake.

1.3 Pertinent Data

a. Drainage Area (acres): 38

b. Discharge at Damsite

Estimated experienced maximum flood (cfs): 4

Estimated ungated spillway capacity with
reservoir at top of dam elevation (cfs): 42

c. Elevation (Feet above MSL)

Top of dam (minimum):. 691.3

Spillway crest*: 689

Normal Pool: 689

Maximum Experienced Pool:. 689.25

Observed Pool: 688.3

d. Reservoir

Length of pool with water surface
at top of dam elevation (feet):.. 1100

e. Storage (Acre-Feet)

Top of dam (minimum):. 89

Spillway crest: 63

Normal Pool: 63

Maximum Experienced Pool:. 65.5

Observed Pool: 55

f. Reservoir Surfaces (Acres)

Top of dam (minimum):. 12

Spillway crest: 10

Normal Pool: 10

Maximum Experienced Pool:. 10.3

Observed Pool: 9.8

g. Dam

Type: Rolled, earthfill
Length: 648 feet
Structural Height: 23 feet
Hydraulic Height**: 23 feet
Top width: 14 feet
Side slopes:
 Downstream 1V on 2.25H
 Upstream 1V on 1.5H (Above the water surface)
Zoning: Unknown
Impervious core: Unknown
Cutoff: Unknown
Grout curtain: Unknown
Freeboard above
normal reservoir level: 2.3 feet (Minimum)
Volume: 23,700 cu. yds. (Estimated)

h. Diversion and Regulating Tunnel None

i. Spillway

Type: Side channel and culvert
combination
Length of crest: 10.6 feet
Crest Elevation (feet above MSL): . . . 689

j. Regulating Outlets

Type: 4-inch siphon (Inoperable)
Location: 150 feet to the right of the
left abutment
Length: Unknown
Closure: 4-inch gate valve
Maximum Capacity: Unknown

* The elevation of the spillway crest is assumed from the U.S.G.S.
Columbia, Missouri Quadrangle topographic map. The elevation of
other features of the dam are obtained by using this elevations and
field measurements.

** The hydraulic height of the dam is the vertical distance from the lowest point on the downstream toe to the top of dam or the maximum water surface, if below the top of dam.

SECTION 2: ENGINEERING DATA

2.1 Design

No design data are available for the dam and appurtenant structures. Mr. Henley of Stephens College did provide a one sheet survey plan showing contour lines and elevations which was drawn about 1930 by W. B. Cauthorn, a local engineer. He also made available a "Pump Installation Report" dated May 10, 1963 which lists the characteristics of the pump and well.

2.2 Construction

No construction records or data are available for Stephens Lake Dam.

2.3 Operation

No operational records are available for Stephens Lake Dam.

2.4 Evaluation

a. Availability

No design drawings, design computations, construction data, or operation data are available. Also, no pertinent data were available for review of hydrology, spillway capacity, flood routing through the reservoir, outlet capacity, slope stability, or foundation conditions. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

b. Adequacy

The lack of engineering data did not allow a definitive review and evaluation. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing and evaluating design, operation and construction data, but is based primarily on visual inspection, past performance history, and sound engineering judgment.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity

No valid engineering data relating to the design and construction of the dam are available for Stephens Lake Dam.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of the Stephens Lake Dam was made on July 11, 1980. The following persons were present during the inspection:

Name	Affiliation	Disciplines
Dr. M.A. Samad	PRC Engineering Consultants, Inc.	Project Engineer, Hydraulics and Hydrology
Mark Haynes, P.E.	PRC Engineering Consultants, Inc.	Civil and Mechanical
Razi Quraishi, R.P.G.	PRC Engineering Consultants, Inc.	Geology
Zoran Batchko	PRC Engineering Consultants, Inc.	Soils
Kevin J. Blume	Consoer, Townsend & Assoc., Ltd.	Civil and Structural
Joe Kellett	Corps of Engineers	
Randall Dreiling	Corps of Engineers	

David Busse Corps of Engineers

Wayne Richter Corps of Engineers

Mr. Marion Henley Stephens College

Specific observations are discussed below.

b. Dam

The top and the downstream slope of the dam have a well maintained grass cover which adequately protects the embankment material against surface erosion. Rodent holes less than 1-1/2 inches in diameter were observed on the downstream slope (see Photo 4). According to Mr. Henley, the dam has never been overtopped and no evidence indicating the contrary was observed.

The upstream slope has riprap protection extending from about 2.5 feet below the top of dam to below the water surface where sloughing of the riprap is prevented by batter boards (see Photo 1). The upstream slope has been eroded by wave action. The slope of the exposed riprapped portion of the upstream slope was measured to be 5° (nearly horizontal) while the scarp due to wave action is typically 45° (1V on 1H) or steeper. The exposed eroded face is generally on the order of 18 inches high and vegetated by small shrubs. The exposed embankment material is a dark gray, moderately plastic silty clay.

There is no evidence of seepage or leakage through or below the dam, except for two large voids in the downstream face immediately adjacent to the spillway pipe (see Photo 7). These voids appear to be due to leakage along the spillway pipe, as further described in Section 3.1.d.

No signs of past or present instability were seen on the embankment except for the wave eroded upstream slope near the crest.

Both abutments slope gently upward from the top of dam. No instabilities, seepage, or erosion were observed on either abutment.

c. Project Geology and Soils

(1) Project Geology

The damsite is located on an unnamed tributary of Hinkson Creek in the Dissected Till Plains Section of the central Lowland Physiographic Province. Loess-mantled Kansas Drift covers the surface of most of the Dissected Till Plains Section. This section is distinguished from the Young Drift Section to the north and from the Till Plains on the east by the stage it has reached in the post-glacial erosion cycle. Broadly generalized, this section is a nearly flat till plain submature to mature in its erosion cycle.

The topography at the damsite is rolling to hilly with gentle slopes. Elevations of the ground surface range from 690 feet above M.S.L. at the damsite to 750 feet above M.S.L. approximately 0.5 mile from the damsite. The reservoir slopes at the southern side of the reservoir are in the range of 15° to 26° from the horizontal, between 10° to 20° from the horizontal at the northern side, and in the range of 7° from horizontal at the western side. The reservoir slopes appear to be stable and free of any potential slide activity. The area near the damsite is covered with slope wash of glacial-fluvial deposits and loess.

The regional bedrock geology beneath the glacial outwash deposits in the damsite area as shown on the Geologic Map of Missouri (1979), (see Plate 3), consists of Pennsylvanian undifferentiated rocks, Pennsylvanian Marmaton-Cherokee Group (cyclic deposits of shale, limestone, and sandstone), Mississippian age Burlington

Limestone (cherty, grayish brown sandy limestone), Devonian age rocks of the Sulphur Springs Group (Glen Park Limestone and Grassy Creek Shale), and the Ordovician age rocks consisting of St. Peter Sandstone and Powell Dolomite. The predominant bedrock near the site underlying the glacial-fluvial deposits are the Marmaton-Cherokee Group rocks and the Burlington Limestone.

Outcroppings of Pennsylvanian Marmaton Group rocks consisting of slightly weathered to unweathered, whitish gray, fine to medium grained, hard limestone are exposed in a hill adjacent to the northeast rim of Stephens reservoir and at the swimming area (see Photo 11). These rocks are horizontally bedded with a rectangular jointing pattern. Inlet and outlet areas to the reservoir of the unnamed tributary of Hinkson Creek contain Quaternary alluvium.

No faults have been identified in the vicinity of the damsite. The closest trace of a fault to the damsite is the Fox Hollow fault nearly 15 miles southwest of the damsite. The Fox Hollow fault had its last movement in post-Mississippian time. Thus, the fault has no effect on the dam.

Stephens Lake, Dam consists of an earthfill embankment (dark gray to brown silty clay), with a side channel/clay pipe combination spillway located near the left abutment. Based on the available data, conversations with Mr. Marion Henley and the visual inspection, the embankment rests on the Pennsylvanian Marmaton Group rock consisting of unweathered whitish gray, fine to medium grained, hard limestone. The entire spillway system rests on the compacted embankment fill.

(2) Project Soils

According to the "Missouri General Soil Map and Soil Association Description" published by the Soil Conservation Service, the materials in the general area of the dam belong to the soil series of Sharpsburg-Pole-Sogn-Snead in the Deep Loess and Drift

family. The soils were basically formed from loess and the weathering of calcareous clay shale and limestone. The permeability of these soils ranges from moderate to slow.

Materials were removed from below the vegetative cover on the downstream and upstream embankment slopes. The material removed from the embankment near the left abutment and representative of the left most 20 feet of the embankment appeared to be a yellowish brown, low plasticity sandy clay. Based upon the Unified Soil Classification System, the soil would probably be classified as a CL. This soil type generally has the following characteristics: semipervious with a coefficient of permeability less than 500 feet per year, medium to high shear strength, and a low to intermediate resistance to piping. The materials removed from and representative of the remainder of the embankment appeared to be a dark gray silty clay with a trace of fine to coarse sand. Based upon the Unified Soil classification System, the soil would probably be classified as a CL. This soil type generally has the following characteristics: impervious with a coefficient of permeability less than 100 feet per year, medium to high shear strength and an intermediate resistance to piping.

d. Appurtenant Structures

(1) Spillway

The side channel structure appeared to be stable with no major problems apparent. However, some minor leaching and cracking of the concrete was observed. The stability of the clay pipe appeared to be in jeopardy. It appears that water from the upstream end has been flowing along the outside of the pipe and has carried embankment material along with it. Two large holes to the right of the outlet of the pipe (see Photo 7), a small depression on the downstream slope over the pipe and several cracks on the upstream slope over the pipe were observed which indicates the possibility that past piping of the embankment material along the pipe has

occurred. Mr. Henley believes that concrete was dumped near the inlet of the spillway to alleviate this problem (see Photo 5). The joints of the pipe were also misaligned which indicates that voids have possibly been created under the pipe allowing differential settlement of the sections of pipe to occur. At the outlet end of the pipe, a concrete apron was constructed which extends out from the end of the pipe a distance of 2 feet. At the end of the concrete apron, flows through the pipe will drop into what appears to be the top portion of a buried 5-foot diameter steel drum (see Photo 6). The steel drum appears to act as a stilling basin. Beyond the steel drum, the discharge channel for the spillway is riprapped for the short distance it travels before intersecting the downstream channel just downstream of the dam. The outlet end of the pipe does not appear to be undermined.

(2) Siphon

The siphon was inoperable on the day of inspection due to the fact that the downstream portion of the siphon was cut off at the top of dam making it impossible for the siphon to operate. It was also noted that hand wheel operator for the gate valve was missing. According to Mr. Henley, at one time the siphon pipe did extend down the downstream slope to the toe and that the downstream portion of the pipe was removed by maintenance personnel to help facilitate the mowing of the downstream slope. Mr. Henley stated that he has access to a portable pump which can be used to level the reservoir instead of using the siphon.

e. Reservoir Area

The reservoir water surface elevation at the time of inspection was 688.3 feet above M.S.L.

The surface area of the reservoir at normal water level is about 10 acres. The rim seems to be stable as no severely eroded areas were observed. The land around the reservoir slopes gently to the rim and is grass and/or tree covered. There are no homes built in close proximity to the reservoir.

f. Downstream Channel

The downstream channel, which carries flows from the spillway, is a narrow gulley which crosses a golf course immediately below the dam. The channel is approximately 3 feet wide, 2 feet deep and has nearly vertical side slopes. Some erosion was observed on the sides of the channel. Outside of the small channel the floodplain widens out considerably (see Photo 8).

3.2 Evaluation

The visual inspection revealed the following condition that was felt to pose a threat to the safety of the dam and the spillway and would warrant prompt attention.

It appears that piping of embankment material has occurred in the past along the spillway pipe. This is indicated by the two large voids near the outlet of the spillway, a small depression on the downstream slope of the spillway pipe, several cracks on the upstream slope over the spillway pipe, and the misalignment of the joints of the spillway pipe. The stability of the spillway pipe appears to be in jeopardy due to this condition and if the condition is allowed to progress, it can only be detrimental to the stability of the dam and the spillway.

The following items were observed that are not sufficiently significant to indicate a need for immediate remedial action; however, they could adversely affect the dam in the future.

1. The wave erosion on the upstream slope does not appear to affect the stability of the dam in its present condition. However, continual erosion of the slope can only be detrimental to the stability of the dam.
2. The small shrubs on the upstream face growing in the wave eroded area should be properly maintained. Large vegetation could hinder a comprehensive inspection of the dam and allow potential problems to go undetected.
3. The rodent holes observed on the embankment could jeopardize the safety of the dam. The holes created by the animals make avenues for possible piping.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

There are no specific operational procedures which are followed at Stephens Lake Dam. When dry periods occur, water is pumped from the nearby well to keep the lake at a desired level.

4.2 Maintenance of Dam

The dam is maintained by workmen from the Buildings and Grounds Dept. of Stephens College. Mr. Marion Henley, Director of Buildings and Grounds, oversees the operation and maintenance of the lake and dam. At the time of inspection, the maintenance personnel were in the process of trying to trap the rodents which have burrowed into the embankment on the downstream slope. The top of dam and the embankment slopes are mowed regularly.

4.3 Maintenance of Operating Facilities

There are two operating facilities at the damsite. They are the vertical centrifugal turbine pump located on the south side of the reservoir and the siphon. The pump is maintained by personnel from the Buildings and Grounds Department of Stephens College. The siphon is inoperable.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any warning system in use at the damsite.

4.5 Evaluation

The maintenance for this dam is somewhat lacking. The corrective measures listed in Section 7 should be undertaken to improve the condition of the dam.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1

Evaluation of Features

a. Design Data

No hydrologic and hydraulic design data are available for Stephens Lake Dam. The sizes of physical features utilized to develop the stage-outflow relation for the spillway and overtopping of the dam were prepared from field notes and sketches prepared during the field inspection. The reservoir elevation-area data were based on the U.S.G.S. Columbia, Missouri Quadrangle topographic maps (7.5 minute series). The spillway and overtop release rates and the reservoir elevation-area data are presented in Appendix B.

The hydrologic soil group of the watershed was determined from information available in the U.S.D.A. Soil Conservation Service publication "Missouri General Soil Map and Soil Association Descriptions", 1979. The Probable Maximum Precipitation (PMP) used to determine the Probable Maximum Flood (PMF) was determined by using the U.S. Weather Bureau publication, "Hydrometeorological Report No. 33" (April 1956). The 100-year flood was derived from 100-year rainfall of Jefferson City, Missouri, supplied by the St. Louis District of the Corps of Engineers.

b. Experience Data

It is believed that records of reservoir stage or spillway discharge are not maintained for this site. However, according to Mr. Henley, the maximum reservoir level was approximately 3-inches above the crest of the spillway.

c. Visual Observations

Observations made of the spillway during the visual inspection are discussed in Section 3.1d and evaluated in Section 3.2.

d. Overtopping Potential

Both the Probable Maximum Flood and the half Probable Maximum Flood when routed through the reservoir, resulted in overtopping of the dam. The peak inflows for the PMF and one-half of the PMF are 887 cfs and 444 cfs, respectively. The peak outflow discharges for the PMF and one-half of the PMF are 616 and 50 cfs, respectively. The maximum capacity of the spillway just before overtopping the dam is 42 cfs. The PMF and one-half of the PMF overtopped the dam by 0.92 foot and 0.06 foot respectively. The total duration of flow over the dam is 4.33 hour and 1.58 hour for the PMF and the one-half of the PMF, respectively. Since the overtopping depth is only 0.06 feet during the occurrence of one-half of the PMF, the reservoir/spillway system of Stephens Lake Dam is considered capable of accommodating a flood equal to approximately 50 percent of the PMF just before overtopping the dam. The reservoir/spillway system of Stephens Lake Dam will accommodate the one-percent chance flood without overtopping. The surface soils in the embankment appear to be silty clay. The dam may be susceptible to erosion during overtopping.

The failure of the dam could cause extensive damage to the property downstream of the dam and possible loss of life. The estimated damage zone extends approximately four miles downstream of the dam. There are thirteen dwellings, a trailer court, several apartment houses and commercial buildings within the damage zone.

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

There were no major signs of settlement or distress observed on the embankment or foundation during the visual inspection. The downstream slope of the embankment appears to be adequately protected from surface runoff erosion by a good grass cover. The erosion due to wave action on the upstream slope could affect the stability of the dam, if allowed to continue. There was no indication of past or present slope instability. In the absence of seepage and stability analyses, no quantitative evaluation of the structural stability can be made.

The stability of the spillway pipe appears to be questionable due to the misalignment of the joints, which appears to be due to the possible past piping of embankment material along the perimeter of the pipe, as described in Section 3.2. This condition, if allowed to worsen, will not only jeopardize the stability of the spillway further but will also jeopardize the stability of the dam.

b. Design and Construction Data

No design computations were uncovered during the report preparation phase. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available. No embankment or foundation soil parameters were available for carrying out a conventional stability analysis on the embankment. No construction data or specifications relating to the degree of embankment compaction were available for use in a stability analysis.

c. Operating Records

No operating records were available relating to the dam or appurtenant structures. The water level on the day of the visual inspection was approximately 8 inches below the spillway crest. The normal operating level is considered to be at the spillway crest. According to Mr. Henley, the highest water level in the lake was approximately 3 inches above the spillway crest.

d. Post Construction Changes

According to Mr. Henley, two post construction changes have been made to the embankment since the original construction. The height of the dam was increased in 1939 to increase the reservoir capacity, and the existing spillway structure was installed in 1955 along the left side of the dam. It is unknown what effect these post construction changes had on the stability of the dam, if any.

e. Seismic Stability

The dam is located in Seismic Zone 1, as defined in "Recommended Guidelines for Safety Inspection of Dams" prepared by the Corps of Engineers, and will not require a seismic stability analysis. An earthquake of the magnitude which would be expected in Seismic Zone 1 will not cause distress to a well designed and constructed earth dam. Available literature indicates that no active faults exist near the vicinity of the damsite.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspection. Detailed investigations, testing and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based upon observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends upon numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be assurance that an unsafe condition could be detected.

a. Safety

The dam appears to be in fair physical condition due to the evidence of past piping of embankment materials along the spillway pipe. Also, the spillway capacity of Stephens Lake Dam is found to be "Inadequate". The spillway/reservoir system will accommodate approximately ⁴⁶ 50 percent of the PMF without overtopping the dam. The surface soils in the embankment appears to be silty clay. The dam embankment has a good grass cover. The dam is overtopped by 0.92 feet during the occurrence of the PMF. The dam may be susceptible to erosion due to overtopping of the dam during the PMF.

A quantitative evaluation of the safety of the embankment could not be made in view of the absence of seepage and stability analyses. The present embankment and appurtenant structures, however, reportedly have performed satisfactorily since their construction; there have been no failures. Reportedly, the dam has never been overtopped and no evidence indicating the contrary was observed. The safety of the dam can be improved if the deficiencies described in Section 3.2 and 6.1a are properly corrected as described in Section 7.2.

b. Adequacy of Information

The conclusions presented in this report are based upon field measurement, past performance and the present condition of the dam. Information on the design hydrology and hydraulic design of the dam was not available. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. Urgency

The items recommended in paragraph 7.2a and the first item in paragraph 7.2b should be pursued on a high priority basis. The remaining remedial measures recommended in Paragraph 7.2 should be accomplished within a reasonable period of time.

d. Necessity for Phase II Inspection

Based upon results of the Phase I inspection, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives

One of the following mitigation measures should be undertaken under the guidance of an engineer experienced in the design and construction of earth dams to avoid severe consequences of dam failure from overtopping.

1. Increase the spillway capacity to pass the PMF without overtopping the dam.
2. Increase the height of the dam enough to pass the PMF without overtopping the dam; an investigation should also be done which includes studying the effects on the structural stability of the existing embankment. The overtopping depth during the occurrence of the PMF, stated in Section 5.1d, is not the required or recommended increase in the height of the dam.
3. A combination of 1 and 2 above.
4. Provide a highly reliable flood warning system (generally does not prevent damage but avoids loss of life).

b. O & M Procedures

1. Further investigation should be undertaken to determine if indeed past piping of the embankment material has occurred along the spillway pipe. Measures should then be undertaken to control the condition and proper repairs made to correct the damages that have already occurred to the dam and the spillway. The investigation should be carried out under the direction of a qualified professional engineer.

2. The erosion due to wave action on the upstream slope should be properly repaired and adequately protected from further damage.
3. The small shrubs which are growing on the eroded area should be cleared from the embankment and prevented from growing back.
4. Determine the extent of damage done to the embankment by burrowing animals, if any, and make corrective repairs as required. All burrowing animals should be eliminated from the embankment and their burrows properly backfilled and compacted.
5. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of earth dams.
6. The owner should initiate the following programs:
 - (a) Periodic inspection of the dam by a professional engineer experienced in the design and construction of earth dams.
 - (b) Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.

PLATES

PLATE 1

SCALE
1 0 1 2 3 4 MILES

POLYCONIC PROJECTION

LOCATION MAP - STEPHENS LAKE DAM

MO.11172

PLATE IA

STEPHENS LAKE DAM (MO. #172)
DRAINAGE BASIN AND
DOWNSTREAM HAZARD ZONE

PLATE 2

STEPHENS LAKE DAM (MO. 11172)
PLAN, ELEVATION &
MAXIMUM SECTION OF EMBANKMENT

PLATE 3

SCALE

10 0 10 20 30 40 Miles

LOCATION OF DAM

NOTE: LEGEND OF THIS DAM IS ON PLATE 4

REFERENCE:

GEOLOGIC MAP OF MISSOURI
DEPARTMENT OF NATURAL RESOURCES
MISSOURI GEOLOGICAL SURVEY
KENNETH H. ANDERSON, 1979

REGIONAL GEOLOGICAL MAP
OF
STEPHENS LAKE DAM

STEPHENS LAKE DAM

PLATE 4

LEGEND

<u>PERIOD</u>	<u>SYMBOL</u>	<u>DESCRIPTION</u>
QUATERNARY	Qal	ALLUVIUM: SAND, SILT, GRAVEL
PENNSYLVANIAN	Pu	PENNSYLVANIAN UNDIFFERENTIATED
	Pm	MARMATON GROUP: CYCLIC DEPOSITS OF SHALE, LIMESTONE AND SANDSTONE
	Pcc	CHEROKEE GROUP: CYCLIC DEPOSITS OF SHALE, LIMESTONE AND SANDSTONE
MISSISSIPPIAN	Mo	KEOKUK - BURLINGTON FORMATION: CHERTY GRAYISH BROWN SANDY LIMESTONE
	Mk	CHOUTEAU GROUP: NORTHVIEW AND BACHELOR FORMATION (LIMESTONE AND SHALE)
DEVONIAN	D	SULPHUR SPRING GROUP: GLEN PARK LIMESTONE AND GRASSY CREEK SHALE
ORDOVICIAN	Osp	ST PETER SANDSTONE
	Ojc.	SMITHVILLE FORMATION POWELL DOLOMITE

APPENDIX A

PHOTOGRAPHS

Stephens Lake Dam

Photographs

Photo 1 - View of the upstream slope showing vegetative cover and riprap. Note the batter boards holding the riprap in place.

Photo 2 - View of the top of dam.

Photo 3 - View of the downstream slope.

Photo 4 - View of a rodent hole on the downstream slope.

Photo 5 - View of the concrete side channel structure and the inlet to the clay pipe. Note the dumped concrete to the right of the side channel.

Photo 6 - View of the outlet of the clay pipe showing the concrete apron, the 5-foot diameter steel drum and the riprap in the discharge channel. Note the depression on the slope behind and to the left (in photo) of the outlet.

Photo 7 - Close-up view of the depression in Photo 6 showing erosion of the embankment material along the spillway outlet pipe.

Photo 8 - View of the downstream channel from the left abutment.

Photo 9 - View of the 4-inch siphon on the upstream slope.

Photo 10 - View of the vertical centrifugal turbine pump located on the right side of the reservoir rim.

Photo 11 - View of the limestone outcrop on the northeast side of the reservoir.

Photo 12 - View of the reservoir and rim.

Photo 13 - View of a dwelling downstream of the dam that appears to be in the downstream hazard zone.

Photo 14 - View of a dwelling downstream of the dam that appears to be in the downstream hazard zone.

Stephens Lake Dam

Photo 1

Photo 2

Stephens Lake Dam

Photo 3

Photo 4

Stephens Lake Dam

Photo 5

Photo 6

Stephens Lake Dam

Photo 7

Photo 8

Stephens Lake Dam

Photo 9

Photo 10

Stephens Lake Dam

Photo 11

Photo 12

Stephens Lake Dam

Photo 13

Photo 14

APPENDIX B
HYDROLOGIC AND HYDRAULIC COMPUTATIONS

STEPHENS LAKE DAM

HYDROLOGIC AND HYDRAULIC DATA, ASSUMPTIONS AND METHODOLOGY

1. SCS Unit Hydrograph and HEC-1DB are used to develop the inflow hydrographs, and the hydrologic inputs are as follows:
 - (a) Twenty-four hour probable maximum precipitation from Hydro-meteorological Report No. 33, and 100-year 24-hour rainfall of Jefferson City, Missouri.
 - (b) Drainage area = 38 acres.
 - (c) Lag time = 0.07 hour.
 - (d) Hydrologic Soil Group:
Soil Group "C"
 - (e) Runoff curve number:
CN = 80 for AMC II and CN = 91 for AMC III.
2. Spillway release rates are based on weir, orifice, and pressure flow depending on the stage of the reservoir. Flow rates over the dam are based on broad crested weir equation $Q = CLH^{3/2}$ and critical depth assumption.
3. Floods are routed through Stephens Lake to determine the capability of its spillway.

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980 SHEET NO. 1 OF 4
 STEPHENS LAKE DAM (MO. 11172) JOB NO. 1263
 SPILLWAY DISCHARGE COMPUTATIONS BY MAS DATE 8/27/80

Weir Flow:

$$Q = CLH^{1.5}, C = 3.0 \\ L = 10.6' \\ H = \text{W.S. EL} - 689$$

$$Q = 3.0(10.6)(H)^{1.5} \\ Q = 31.80(H)^{1.5}$$

Orifice Flow:

$$Q = CA\sqrt{2gH_x}, C = 0.84 \\ A = \pi \\ H_x = \text{W.S. EL} - 688$$

$$Q = 0.84(\pi)\sqrt{2gH_x} \\ Q = 21.18\sqrt{H_x}$$

Pressure Flow:

$$Q = A\sqrt{\frac{2g}{\Sigma K} H_t}, A = \pi$$

$\Sigma K = (K_{entrance} + K_{friction} + K_{exit})$, where

$$K_{entrance} = 0.5$$

$$K_{friction} = \frac{29.16 \frac{m^2 L}{(R_N)^{4/3}}}{(0.018)^2 (37')} = \frac{29.16 (0.018)^2 (37')}{(0.5)^{4/3}}, \quad 0.88$$

$$K_{exit} = 1.0$$

$$\Sigma K = 2.38$$

$$Q = \pi \sqrt{\frac{2g}{2.38} H_t} = 16.34 \sqrt{H_t}, \quad H_t = \text{W.S. EL} - 684.6$$

B-3

46 1621

244

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

STEPHENS LAKE DAM (No 11172)

OVERTOP RATING CURVE

SHEET NO. 3 OF 4

JOB NO. 1263

BY D.C. DATE 7/27/80
ALB

$H_1 = \frac{Y_1}{(1 + \frac{\Delta Y_1}{2})}$	$T_1 = A_1 Q \cdot \sqrt{\frac{A_1^3 g}{T_1}}$	$A_2 = C_2 \cdot \sqrt{\frac{A_2^3 g}{T_2}}$	C_3	$L_3 = H_3 \cdot C_3 \cdot C_{41} \cdot C_{42} \cdot C_{43} \cdot C_{44} \cdot C_{45}$	$WSEL$				
.3	.24	93.6	11.23	.24	48	5.74	1.32	33	691.6
.7	.56	218.4	6.115	133.67	.56	112	31.36	4.16	692.0
1.0	.80	312.0	1.248	47.89	.80	160	64	29.69	692.3
1.3	1.03	310	208.6	81.97	1.03	200	104.67	42.03	29.58
1.7	1.30	390	312.0	193.5	1.30	200	160	82.07	3.03
2.2	1.63	390	442.0	200.1	1.63	200	226.67	13.93	3.04
2.7	1.97	390	572.0	330.9	1.97	200	293.32	4.58	3.04
3.0	2.17	390	650.0	411.7	217	200	333.32	11.1	3.05
3.4	2.43	390	754.0	519.12	243	200	386.67	350.8	3.06
3.7	2.63	390	832.0	615.7	263	200	426.73	336.3	3.07

B-5

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI - 1980

SHEET NO. 4 OF 4

STEPHEN'S LAKE DAM (MO 11172)

JOB NO. 1263

SPILLWAY AND OVERTOP RATING CURVE

BY JFK DATE 9/2/80

W.S. ELEV.	Q SERVICE SPWY.	Φ OVERTOP	Φ COMBINED
689	0		0
690	31.8*		31.8
691	36.7**		36.7
691.3	42.3***	0	42.3
691.6	43.2	33	76
692	44.5	278	323
692.3	45.3	678	723
692.6	46.2	1332	1378
693	47.4	2498	2546
693.5	48.8	4271	4320
694	50.1	6338	6388
694.3	50.9	7703	7754
694.7	51.9	9660	9712
695	52.7	11221	11274

* Weir flow controls

** Orifice flow controls

*** Pressure flow controls at EL = 691.3 and above

ECI-4 PRC ENGINEERING CONSULTANTS , INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. _____ OF

DAM NAME: STEPHENS LAKE DAM / ID NO.: 11172

JOB NO.

RESERVOIR ELEVATION - AREA DATA

BY D.C.

K-3

DATE 7/8/80

ELEV. (M.S.L.) (Ft.)	RESERVOIR SURFACE AREA (Acres)	REMARKS
670.	0	Estimated ELEVATION
689	10	Spillway weir crest (Assumed)
690	11	Measured on USGS Map
691.3	12	Top of dam (minimum)
700	16.5	Measured on USGS Map
710	19.0	Measured on USGS Map

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION / MISSOURI

SHEET NO. 1 OF 1

DAM NAME: STEPHENS LAKE DAM (MO 11172)

JOB NO. 1263

UNIT HYDROGRAPH PARAMETERS

BY D.C. DATE 7/24/80

KLE

1) DRAINAGE AREA, $A = .059 \text{ sq. mi} = (38.0 \text{ acres})$ 2) LENGTH OF STREAM, $L = (.75 \text{ "} \times 2000 \text{ '} = 1500 \text{ '}) = .284 \text{ mi.}$

3) ELEVATION AT DRAINAGE DIVIDE ALONG THE LONGEST STREAM,

$$H_1 = 777'$$

4) ELEVATION OF RESERVOIR AT SPILLWAY CREST, $H_2 = 689'$ 5) ELEVATION OF CHANNEL BED AT $0.85L$, $E_{85} = 768'$ 6) ELEVATION OF CHANNEL BED AT $0.10L$, $E_{10} = 698'$ 7) AVERAGE SLOPE OF THE CHANNEL, $S_{AVG} = (E_{85} - E_{10}) / 0.75L = .062$

8) TIME OF CONCENTRATION:

A) BY KIRPICH'S EQUATION,

$$t_c = [(11.9 \times L^3) / (H_1 - H_2)]^{0.385} = \left[\frac{11.9 (.284)^3}{777-689} \right]^{0.385} = .11$$

B) BY VELOCITY ESTIMATE,

$$\text{SLOPE} = 6.2\% \Rightarrow \text{AVG. VELOCITY} = 5 \text{ fps}$$

$$t_c = L/v = 1500/5(3600) = .083$$

$$\text{USE } t_c = .11$$

9) LAG TIME, $t_l = 0.6 t_c = .066 \approx .07$ 10) UNIT DURATION, $D \leq t_c / 3 = .022 < 0.083 \text{ hr.}$

$$\text{USE } D = .083$$

11) TIME TO PEAK, $T_p = D/2 + t_c = .107$

12) PEAK DISCHARGE,

$$q_p = (484 \times A) / T_p = 266 \text{ cfs}$$

ECI-4 PRC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION

SHEET NO. _____ OF _____

STEPHENS LAKE DAM (MO 11172)

JOB NO. 1263

STARTING WSL FOR PMF ROUTING

BY DC DATE 7/30/80
HLD.

From 690.1 - 689.5

$$\Delta S = 74 - 68 = 6 \text{ acre ft}$$

$$Q_m = 22 \text{ cfs}$$

$$\Delta t = 6 \text{ acre ft} \times \frac{43560 \text{ ft}^2}{\text{acre}} \times \frac{1 \text{ s}}{22 \text{ ft}^3} \times \frac{1 \text{ day}}{86400 \text{ s}} = .1375$$

From 689.5 - 689

$$\Delta S = 68 - 63 = 5 \text{ acre ft}$$

$$Q_m = 7 \text{ cfs}$$

$$\Delta t = .36 \text{ days}$$

$$\text{total time} = .1375 + .36 = .5 \text{ days} < 3 \text{ days}$$

\therefore Start PMF routing at spillway crest

FLOOD HYDROGRAPH PACKAGE, INTRACOASTAL
WATERWAY, MILE 100, JULY 1971
LAST MODIFICATION, 126 FEB 7

DAM SAFETY INSPECTION MISSOURI
CYPHERSTEAK-DOH FRO (LIVY)

MONDAY 6
TUESDAY 5
WEDNESDAY 4
THURSDAY 3
FRIDAY 2
SATURDAY 1

THE PRACTICAL WORKER

SUB-AREA HUNGER COMPUTATION

INPUT PRECIPITATION, INFLUX RATIO, AND UNIT HYDROGRAPH PARAME

PRECIP DATA
 R122
 R12
 R24
 R48
 R72
 R96
 R120
 R144
 R168
 R192
 R216
 R240
 R252
 R264
 R276
 R288
 R300
 R312
 R324
 R336
 R348
 R360
 R372
 R384
 R396
 R408
 R420
 R432
 R444
 R456
 R468
 R480
 R492
 R504
 R516
 R528
 R540
 R552
 R564
 R576
 R588
 R592
 R600
 R612
 R624
 R636
 R648
 R660
 R672
 R684
 R696
 R708
 R720
 R732
 R744
 R756
 R768
 R780
 R792
 R804
 R816
 R828
 R840
 R852
 R864
 R876
 R888
 R892
 R904
 R916
 R928
 R940
 R952
 R964
 R976
 R988
 R992
 R1004
 R1016
 R1028
 R1040
 R1052
 R1064
 R1076
 R1088
 R1092
 R1104
 R1116
 R1128
 R1140
 R1152
 R1164
 R1176
 R1188
 R1192
 R1204
 R1216
 R1228
 R1240
 R1252
 R1264
 R1276
 R1288
 R1292
 R1304
 R1316
 R1328
 R1340
 R1352
 R1364
 R1376
 R1388
 R1392
 R1404
 R1416
 R1428
 R1440
 R1452
 R1464
 R1476
 R1488
 R1492
 R1504
 R1516
 R1528
 R1540
 R1552
 R1564
 R1576
 R1588
 R1592
 R1604
 R1616
 R1628
 R1640
 R1652
 R1664
 R1676
 R1688
 R1692
 R1704
 R1716
 R1728
 R1740
 R1752
 R1764
 R1776
 R1788
 R1792
 R1804
 R1816
 R1828
 R1840
 R1852
 R1864
 R1876
 R1888
 R1892
 R1904
 R1916
 R1928
 R1940
 R1952
 R1964
 R1976
 R1988
 R1992
 R2004
 R2016
 R2028
 R2040
 R2052
 R2064
 R2076
 R2088
 R2092
 R2104
 R2116
 R2128
 R2140
 R2152
 R2164
 R2176
 R2188
 R2192
 R2204
 R2216
 R2228
 R2240
 R2252
 R2264
 R2276
 R2288
 R2292
 R2304
 R2316
 R2328
 R2340
 R2352
 R2364
 R2376
 R2388
 R2392
 R2404
 R2416
 R2428
 R2440
 R2452
 R2464
 R2476
 R2488
 R2492
 R2504
 R2516
 R2528
 R2540
 R2552
 R2564
 R2576
 R2588
 R2592
 R2604
 R2616
 R2628
 R2640
 R2652
 R2664
 R2676
 R2688
 R2692
 R2704
 R2716
 R2728
 R2740
 R2752
 R2764
 R2776
 R2788
 R2792
 R2804
 R2816
 R2828
 R2840
 R2852
 R2864
 R2876
 R2888
 R2892
 R2904
 R2916
 R2928
 R2940
 R2952
 R2964
 R2976
 R2988
 R2992
 R3004
 R3016
 R3028
 R3040
 R3052
 R3064
 R3076
 R3088
 R3092
 R3104
 R3116
 R3128
 R3140
 R3152
 R3164
 R3176
 R3188
 R3192
 R3204
 R3216
 R3228
 R3240
 R3252
 R3264
 R3276
 R3288
 R3292
 R3304
 R3316
 R3328
 R3340
 R3352
 R3364
 R3376
 R3388
 R3392
 R3404
 R3416
 R3428
 R3440
 R3452
 R3464
 R3476
 R3488
 R3492
 R3504
 R3516
 R3528
 R3540
 R3552
 R3564
 R3576
 R3588
 R3592
 R3604
 R3616
 R3628
 R3640
 R3652
 R3664
 R3676
 R3688
 R3692
 R3704
 R3716
 R3728
 R3740
 R3752
 R3764
 R3776
 R3788
 R3792
 R3804
 R3816
 R3828
 R3840
 R3852
 R3864
 R3876
 R3888
 R3892
 R3904
 R3916
 R3928
 R3940
 R3952
 R3964
 R3976
 R3988
 R3992
 R4004
 R4016
 R4028
 R4040
 R4052
 R4064
 R4076
 R4088
 R4092
 R4104
 R4116
 R4128
 R4140
 R4152
 R4164
 R4176
 R4188
 R4192
 R4204
 R4216
 R4228
 R4240
 R4252
 R4264
 R4276
 R4288
 R4292
 R4304
 R4316
 R4328
 R4340
 R4352
 R4364
 R4376
 R4388
 R4392
 R4404
 R4416
 R4428
 R4440
 R4452
 R4464
 R4476
 R4488
 R4492
 R4504
 R4516
 R4528
 R4540
 R4552
 R4564
 R4576
 R4588
 R4592
 R4604
 R4616
 R4628
 R4640
 R4652
 R4664
 R4676
 R4688
 R4692
 R4704
 R4716
 R4728
 R4740
 R4752
 R4764
 R4776
 R4788
 R4792
 R4804
 R4816
 R4828
 R4840
 R4852
 R4864
 R4876
 R4888
 R4892
 R4904
 R4916
 R4928
 R4940
 R4952
 R4964
 R4976
 R4988
 R4992
 R5004
 R5016
 R5028
 R5040
 R5052
 R5064
 R5076
 R5088
 R5092
 R5104
 R5116
 R5128
 R5140
 R5152
 R5164
 R5176
 R5188
 R5192
 R5204
 R5216
 R5228
 R5240
 R5252
 R5264
 R5276
 R5288
 R5292
 R5304
 R5316
 R5328
 R5340
 R5352
 R5364
 R5376
 R5388
 R5392
 R5404
 R5416
 R5428
 R5440
 R5452
 R5464
 R5476
 R5488
 R5492
 R5504
 R5516
 R5528
 R5540
 R5552
 R5564
 R5576
 R5588
 R5592
 R5604
 R5616
 R5628
 R5640
 R5652
 R5664
 R5676
 R5688
 R5692
 R5704
 R5716
 R5728
 R5740
 R5752
 R5764
 R5776
 R5788
 R5792
 R5804
 R5816
 R5828
 R5840
 R5852
 R5864
 R5876
 R5888
 R5892
 R5904
 R5916
 R5928
 R5940
 R5952
 R5964
 R5976
 R5988
 R5992
 R6004
 R6016
 R6028
 R6040
 R6052
 R6064
 R6076
 R6088
 R6092
 R6104
 R6116
 R6128
 R6140
 R6152
 R6164
 R6176
 R6188
 R6192
 R6204
 R6216
 R6228
 R6240
 R6252
 R6264
 R6276
 R6288
 R6292
 R6304
 R6316
 R6328
 R6340
 R6352
 R6364
 R6376
 R6388
 R6392
 R6404
 R6416
 R6428
 R6440
 R6452
 R6464
 R6476
 R6488
 R6492
 R6504
 R6516
 R6528
 R6540
 R6552
 R6564
 R6576
 R6588
 R6592
 R6604
 R6616
 R6628
 R6640
 R6652
 R6664
 R6676
 R6688
 R6692
 R6704
 R6716
 R6728
 R6740
 R6752
 R6764
 R6776
 R6788
 R6792
 R6804
 R6816
 R6828
 R6840
 R6852
 R6864
 R6876
 R6888
 R6892
 R6904
 R6916
 R6928
 R6940
 R6952
 R6964
 R6976
 R6988
 R6992
 R7004
 R7016
 R7028
 R7040
 R7052
 R7064
 R7076
 R7088
 R7092
 R7104
 R7116
 R7128
 R7140
 R7152
 R7164
 R7176
 R7188
 R7192
 R7204
 R7216
 R7228
 R7240
 R7252
 R7264
 R7276
 R7288
 R7292
 R7304
 R7316
 R7328
 R7340
 R7352
 R7364
 R7376
 R7388
 R7392
 R7404
 R7416
 R7428
 R7440
 R7452
 R7464
 R7476
 R7488
 R7492
 R7504
 R7516
 R7528
 R7540
 R7552
 R7564
 R7576
 R7588
 R7592
 R7604
 R7616
 R7628
 R7640
 R7652
 R7664
 R7676
 R7688
 R7692
 R7704
 R7716
 R7728
 R7740
 R7752
 R7764
 R7776
 R7788
 R7792
 R7804
 R7816
 R7828
 R7840
 R7852
 R7864
 R7876
 R7888
 R7892
 R7904
 R7916
 R7928
 R7940
 R7952
 R7964
 R7976
 R7988
 R7992
 R8004
 R8016
 R8028
 R8040
 R8052
 R8064
 R8076
 R8088
 R8092
 R8104
 R8116
 R8128
 R8140
 R8152
 R8164
 R8176
 R8188
 R8192
 R8204
 R8216
 R8228
 R8240
 R8252
 R8264
 R8276
 R8288
 R8292
 R8304
 R8316
 R8328
 R8340
 R8352
 R8364
 R8376
 R8388
 R8392
 R8404
 R8416
 R8428
 R8440
 R8452
 R8464
 R8476
 R8488
 R8492
 R8504
 R8516
 R8528
 R8540
 R8552
 R8564
 R8576
 R8588
 R8592
 R8604
 R8616
 R8628
 R8640
 R8652
 R8664
 R8676
 R8688
 R8692
 R8704
 R8716
 R8728
 R8740
 R8752
 R8764
 R8776
 R8788
 R8792
 R8804
 R8816
 R8828
 R8840
 R8852
 R8864
 R8876
 R8888
 R8892
 R8904
 R8916
 R8928
 R8940
 R8952
 R8964
 R8976
 R8988
 R8992
 R9004
 R9016
 R9028
 R9040
 R9052
 R9064
 R9076
 R9088
 R9092
 R9104
 R9116
 R9128
 R9140
 R9152
 R9164
 R9176
 R9188
 R9192
 R9204
 R9216
 R9228
 R9240
 R9252
 R9264
 R9276
 R9288
 R9292
 R9304
 R9316
 R9328
 R9340
 R9352
 R9364
 R9376
 R9388
 R9392
 R9404
 R9416
 R9428
 R9440
 R9452
 R9464
 R9476
 R9488
 R9492
 R9504
 R9516
 R9528
 R9540
 R9552
 R9564
 R9576
 R9588
 R9592
 R9604
 R9616
 R9628
 R9640
 R9652
 R9664
 R9676
 R9688
 R9692
 R9704
 R9716
 R9728
 R9740
 R9752
 R9764
 R9776
 R9788
 R9792
 R9804
 R9816
 R9828
 R9840
 R9852
 R9864
 R9876
 R9888
 R9892
 R9904
 R9916
 R9928
 R9940
 R9952
 R9964
 R9976
 R9988
 R9992
 R10004
 R10016
 R10028
 R10040
 R10052
 R10064
 R10076
 R10088
 R10092
 R10104
 R10116
 R10128
 R10140
 R10152
 R10164
 R10176
 R10188
 R10192
 R10204
 R10216
 R10228
 R10240
 R10252
 R10264
 R10276
 R10288
 R10292
 R10304
 R10316
 R10328
 R10340
 R10352
 R10364
 R10376
 R10388
 R10392
 R10404
 R10416
 R10428
 R10440
 R10452
 R10464
 R10476
 R10488
 R10492
 R10504
 R10516
 R10528
 R10540
 R10552
 R10564
 R10576
 R10588
 R10592
 R10604
 R10616
 R10628
 R10640
 R10652
 R10664
 R10676
 R10688
 R10692
 R10704
 R10716
 R10728
 R10740
 R10752
 R10764
 R10776
 R10788
 R10792
 R10804
 R10816
 R10828
 R10840
 R10852
 R10864
 R10876
 R10888
 R10892
 R10904
 R10916
 R10928
 R10940
 R10952
 R10964
 R10976
 R10988
 R10992
 R11004
 R11016
 R11028
 R11040
 R11052
 R11064
 R11076
 R11088
 R11092
 R11104
 R11116
 R11128
 R11140
 R11152
 R11164
 R11176
 R11188
 R11192
 R11204
 R11216
 R11228
 R11240
 R11252
 R11264
 R11276
 R11288
 R11292
 R11304
 R11316
 R11328
 R11340
 R11352
 R11364
 R11376
 R11388
 R11392
 R11404
 R11416
 R11428
 R11440
 R11452
 R11464
 R11476
 R11488
 R11492
 R11504
 R11516
 R11528
 R11540
 R11552
 R11564
 R11576
 R11588
 R11592
 R11604
 R11616
 R11628
 R11640
 R11652
 R11664
 R11676
 R11688
 R11692
 R11704
 R11716
 R11728
 R11740
 R11752
 R11764
 R11776
 R11788
 R11792
 R11804
 R11816
 R11828
 R11840
 R11852
 R11864
 R11876
 R11888
 R11892
 R11904
 R11916
 R11928
 R11940
 R11952
 R11964
 R11976
 R11988
 R11992
 R12004
 R12016
 R12028
 R12040
 R12052
 R12064
 R12076
 R12088
 R12092
 R12104
 R12116
 R12128
 R12140
 R12152
 R12164
 R12176
 R12188
 R12192
 R12204
 R12216
 R12228
 R12240
 R12252
 R12264
 R12276
 R12288
 R12292
 R12304
 R12316
 R12328
 R12340
 R12352
 R12364
 R12376
 R12388
 R12392
 R12404
 R12416
 R12428
 R12440
 R12452
 R12464
 R12476
 R12488
 R12492
 R12504
 R12516
 R12528
 R12540
 R12552
 R12564
 R12576
 R12588
 R12592
 R12604
 R12616
 R12628
 R12640
 R12652
 R12664
 R12676
 R12688
 R12692
 R12704
 R12716
 R12728
 R12740
 R12752
 R12764
 R12776
 R12788
 R12792
 R12804
 R12816
 R12828
 R12840
 R12852
 R12864
 R12876
 R12888
 R12892
 R12904
 R12916
 R12928
 R12940
 R12952
 R12964
 R12976
 R12988
 R12992
 R13004
 R13016
 R13028
 R13040
 R13052
 R13064
 R13076
 R13088
 R13092
 R13104
 R13116
 R13128
 R13140
 R13152
 R13164
 R13176
 R13188
 R13192
 R13204
 R13216
 R13228
 R13240
 R13252
 R13264
 R13276
 R13288
 R13292
 R13304
 R13316
 R13328
 R13340
 R13352
 R13364
 R13376
 R13388
 R13392
 R13404
 R13416
 R13428
 R13440
 R13452
 R13464
 R13476
 R13488
 R13492
 R13504
 R13516
 R13528
 R13540
 R13552
 R13564
 R13576
 R13588
 R13592
 R13604
 R13616
 R13628
 R13640
 R13652
 R13664
 R13676
 R13688
 R13692
 R13704
 R13716
 R13728
 R13740
 R13752
 R13764
 R13776
 R13788
 R13792
 R13804
 R13816
 R13828
 R13840
 R13852
 R13864
 R13876
 R13888
 R13892
 R13904
 R13916
 R13928
 R13940
 R13952
 R13964
 R13976
 R13988
 R13992
 R14004
 R14016
 R14028
 R14040
 R14052
 R14064
 R14076
 R14088
 R14092
 R14104
 R14116
 R14128
 R14140
 R14152
 R14164
 R14176
 R14188
 R14192
 R14204
 R14216
 R14228
 R14240
 R14252
 R14264
 R14276
 R14288
 R14292
 R14304
 R14316
 R14328
 R14340
 R14352
 R14364
 R14376
 R14388
 R14392
 R14404
 R14416
 R14428
 R14440
 R14452
 R14464
 R14476
 R14488
 R14492
 R14504
 R14516
 R14528
 R14540
 R14552
 R14564
 R14576
 R14588
 R14592
 R14604
 R14616
 R14628
 R14640
 R14652
 R14664
 R14676
 R14688
 R14692
 R14704
 R14716
 R14728
 R14740
 R14752
 R14764
 R14776
 R14788
 R14792
 R14804
 R14816
 R14828
 R14840
 R14852
 R14864
 R14876
 R14888
 R14892
 R14904
 R14916
 R14928
 R14940
 R14952
 R14964
 R14976
 R14988
 R14992
 R15004
 R15016
 R15028
 R15040
 R15052
 R15064
 R15076
 R15088
 R15092
 R15104
 R15116
 R15128
 R15140
 R15152
 R15164
 R15176
 R15188
 R15192
 R15204
 R15216
 R15228
 R15240
 R15252
 R15264
 R15276
 R15288
 R15292
 R15304
 R15316
 R15328
 R15340
 R15352
 R15364
 R15376
 R15388
 R15392
 R15404
 R15416
 R15428
 R15440
 R15452
 R15464
 R15476
 R15488
 R15492
 R15504
 R15516
 R15528
 R15540
 R15552
 R15564
 R15576
 R15588
 R15592
 R15604
 R15616
 R15628
 R15640
 R15652
 R15664
 R15676
 R15688
 R15692
 R15704
 R15716
 R15728
 R15740
 R15752
 R15764
 R15776
 R15788
 R15792
 R15804
 R15816
 R15828
 R15840
 R15852
 R15864
 R15876
 R15888
 R15892
 R15904
 R15916
 R15928
 R15940
 R15952
 R15964
 R15976
 R15988
 R15992
 R16004
 R16016
 R16028
 R16040
 R16052
 R16064
 R16076
 R16088
 R16092
 R16104
 R16116
 R16128
 R16140
 R16152
 R16164
 R16176
 R16188
 R16192
 R16204
 R16216
 R16228
 R16240
 R16252
 R16264
 R16276
 R16288
 R16292
 R16304
 R16316
 R16328
 R16340
 R16352
 R16364
 R16376
 R16388
 R16392
 R16404
 R16416
 R16428
 R16440
 R16452
 R16464
 R16476
 R16488
 R16492
 R16504
 R16516
 R16528
 R16540
 R16552
 R16564
 R16576
 R16588

CURVE NO G 391.00 WINFSIG = -1.00 EFFECT CN = -1.00
UNIT HYDROGRAPH DATA
TCB: 0.00 LAGE: .07

TIME INCREMENT TOO LARGE--INFO IS BY LAG(2)
LINE 1 HYDROGRAPH & END OF PERIOD ORDINATES. TIME
LINE 1

卷之三

B-11

B-14

DETERMINED STREAMFLOW SUMMARY FOR UNITLESS PLAN-STATIC CONDUCTIONS
FLOWS IN CUBIC FEET PER SECOND (CFS) METER PER SECOND,
AREA IN SQUARE MILES (SQUARE KILOMETERS)

RATINGS APPLICABLE FLOWS
PER FLOW STATION AREA PLAN METER OF WATER

1.00 .50

MICROGRAPH AT	011172	.0036	1	497	.004
		.0150	1	25.1234	12.5604
ROUTE TO	011172	.05	1	615	.50
		.10	1	17.4514	1.0004

DISCUSSIONS AND CONCLUSIONS

MAXIMUM RESERVOIR LEVEL		MAXIMUM STORAGE AC-FT		MAXIMUM OUTLF.		MAXIMUM OVER TOP AC-FT		MAXIMUM TIME	
DEPTH OF WATER	DEPTHS OF WATER	DEPTH OF WATER	DEPTHS OF WATER	DEPTH OF WATER	DEPTHS OF WATER	DEPTH OF WATER	DEPTHS OF WATER	TIME	TIME
699.00	699.00	699.00	699.00	699.00	699.00	699.00	699.00	15.0	15.0
698.00	698.00	698.00	698.00	698.00	698.00	698.00	698.00	14.9	14.9
697.00	697.00	697.00	697.00	697.00	697.00	697.00	697.00	14.8	14.8
696.00	696.00	696.00	696.00	696.00	696.00	696.00	696.00	14.7	14.7
695.00	695.00	695.00	695.00	695.00	695.00	695.00	695.00	14.6	14.6
694.00	694.00	694.00	694.00	694.00	694.00	694.00	694.00	14.5	14.5
693.00	693.00	693.00	693.00	693.00	693.00	693.00	693.00	14.4	14.4
692.00	692.00	692.00	692.00	692.00	692.00	692.00	692.00	14.3	14.3
691.00	691.00	691.00	691.00	691.00	691.00	691.00	691.00	14.2	14.2

ITEM	TIME OF TEST	TIME OF FAILURE	MAX OUTFLW HOURS	FAILURE HOURS
S	15.15	2.00	0.00	0.00

B-18

HYDROGRAPH FOR 2 AND 4 STORAGES (END OF PERIOD) SUMMARY FROM MULTIPLE ECONOMIC COMPUTATIONS
FLOOD IN FEET PER SECOND (CUBIC FEET PER SECOND)
AREA IN SQUARE MILES (SQUARE MILLEFEET)

EFFICIENCY - AREA = PLAN RATIO = RATIO OF AREA .40 .45 .50

HYDROGRAPH NO.	STATION	TIME	RATIO	AREA	FLOOD	EFFICIENCY
1	011172	0	.06	1	355.	.399.
2	011172	6	.15	1	19.0530	11.3504

SUMMARY OF DAM BREAK ANALYSIS

ELEVATION	INITIAL VALUE	TOP OF DAM
689.00	689.00	691.30
6.3	6.3	6.9
OVERFLOW	OVERFLOW	OVERFLOW

RATIO	MATERIAL	MAXIMUM	MAXIMUM	DURATION
OF	INFILTRATION	DEPTH	OUTFLOW	TIME OF
P.H.	W.S.ELEV.	OVER DAM	CFS	OVER TOP
1.00	694.92	0.00	0.00	0.00
0.98	694.92	0.02	0.02	0.02
0.96	694.92	0.06	0.06	0.06
0.95	694.92	0.08	0.08	0.08

RATIO	MATERIAL	MAXIMUM	MAXIMUM	DURATION
OF	INFILTRATION	DEPTH	OUTFLOW	TIME OF
P.H.	W.S.ELEV.	OVER DAM	CFS	OVER TOP
1.00	694.92	0.00	0.00	0.00
0.98	694.92	0.02	0.02	0.02
0.96	694.92	0.06	0.06	0.06
0.95	694.92	0.08	0.08	0.08

RATIO	MATERIAL	MAXIMUM	MAXIMUM	DURATION
OF	INFILTRATION	DEPTH	OUTFLOW	TIME OF
P.H.	W.S.ELEV.	OVER DAM	CFS	OVER TOP
1.00	694.92	0.00	0.00	0.00
0.98	694.92	0.02	0.02	0.02
0.96	694.92	0.06	0.06	0.06
0.95	694.92	0.08	0.08	0.08