	Practice problems 9_ Solution
Problem	
(a)	$\chi = 1 + \ln(t) \qquad y = t^2 + 2 \qquad (1,3)$
	$\chi = 1 \Rightarrow 1 + \ln t = 1 \Rightarrow [t=1]$
with	out climinating parameter
Slope the tax	of $m = \frac{dy}{dx} = \frac{dy/dt}{dx} = \frac{2t}{t} = 2$ gent line $t = 1$
	$y = 3 = 2(x - 1) \implies y = 2x + 1$
Firs	+ eliminate the parameter => x=1+ Int => t= e
	$= t^{2} + 2 = (e^{\chi - 1})^{2} + 2 = e^{\chi - 1}$
	$\left[\beta = 6 + 2 \right]$
γ	$1 = y = 2 e^{2(x-1)} = 2 \Rightarrow (3-3-2(x-1))$
	n 2
()) x	$= a \cos^3 \theta y = a \sin^3 \theta \Rightarrow a \sin^3 \theta = a \cos^3 \theta o \leq \theta \leq \frac{\pi}{4}$
A=	Jydr = Jasin'30 (-3a Sin A Coo2A) dQ = -3a2 [(Sin 6-sin 0) d
dr.	= 3 a Sin & Cos2 a Use half angle formula to solve it

2)
$$x = t^2 - 2t$$
 $y = \sqrt{t}$ $y - axis$

The curve intersects the y-axis $(x = 0)$ when

 $t^2 - 2t = 0 \implies t(t^2 - 2) = 0$
 $t =$

Problem 3

(1)
$$x = 1+3t^2$$
 $y = 4+2t^3$ $y = 4+2t^3$ $y = 5$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2)^2 dt$

(6) $(6t)^2 + (6t^2)^2 dt$

(7) $(6t)^2 + (6t^2)^2 dt$

(8) $(6t)^2 + (6t^2)^2 dt$

(9) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(1) $(6t)^2 + (6t^2)^2 dt$

(2) $(6t)^2 + (6t^2)^2 dt$

(3) $(6t)^2 + (6t^2)^2 dt$

(4) $(6t)^2 + (6t^2)^2 dt$

(5) $(6t)^2 + (6t^2$

Problem 4:

$$\int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{4t}} + \frac{(dy)^{2}}{3t^{2}} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(3t^{2})^{2}}{2}} + (2t)^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{4t}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(3t^{2})^{2}}{2}} + (2t)^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(3t^{2})^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(3t^{2})^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(3t^{2})^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt = \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

$$= \int_{2\pi J}^{2\pi J} \sqrt{\frac{(dx)^{2}}{2}} + 4t^{2} dt$$

3) $\chi = 3t^2$ $y_{5}2t^3$ oct ≤ 5 $y_{-9}(x_{1})$ $A = \int 2\pi \pi \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^2 2\pi (3t^2) \sqrt{(6t)^2 + (6t^2)^2} dt$