- 1. Consider the problem of determining whether a Turing machine does not use all $\gamma \in \Gamma$ on its tape when it is run on input w.
 - (a) ($_{-}$ /1 pt) Formulate this problem as a language.

(b) $(\underline{\hspace{0.2cm}}/2 \text{ pts})$ How would the proof that the language above is undecidable differ from the proof, on homework, of the undecidibility of

 $B = \{ \langle M, w \rangle \mid M \text{ 2-tape TM that writes } \gamma \neq \sqcup \text{ on 2nd tape given } w \} ?$

- T = "On input x: 1. Simulate M' on X
 - 2. If simulation shows that M'accepts, unite all VET on tope.

Where M' is M, except all VET arrapleced with &!

- 2. Let $R_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$. Consider, from homework, the proof that $R_{\rm TM}$ is undecidable, and answer the following.
 - (a) ($\underline{\hspace{0.2cm}}/2$ pts) M_2 is designed to first accept input x from the language _____ since, critically, that language is not ______
 - (b) ($_$ /2 pts) Consider $C_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is TM and } L(M) \text{ is not CFL} \}.$ How can you change this proof to instead show that C_{TM} is undecidable?

- 3. Let $Z_{CFG} = \{\langle G \rangle \mid G \text{ is CFG and } L(G) = \Sigma^* \}$. Consider, from homework, the proof of Theorem 5.13: Z_{CFG} is undecidable.
 - Thm 2.20 (pg. 117) (a) (__ /1 pt) (TRUE/FALSE: Every non-deterministic PDA can be converted to an equivalent CFG. You may need to check your textbook...

(b) (__ /2 pts) Can you change the "proof" so that it works using a deterministic PDA? Answer on the back of this page. NOTE: Can

chiefe start # C1 # C1 # C2 # C2 # C2 # ... # C2 # CR # Cl configuration deterministically

to visht.