2nd Half-13(10)-PKL-39

tolizlis S. E. Comp Scon-III CBQs

Digital Logic design and Analysis

GX-12152

Con. 8955-13.

Fan out.

		(3 Hours)	[Total Marks: 80
	N.	B.: (1) Question No. 1 is compulsory.	
		(2) Solve any three questions from the remaining.	
		(3) All questions carry equal marks—(20)	
		(4) Figures to the right indicate Marks.	
		(5) Assume suitable data if required.	
1.	(a)	State De-morgan's Theorems. Convert the following (761.514) ₈ hexadecimal	to binary and 5
	(b)	Subtract the following using method given below:	5
		(i) $(11)_{10} - (22)_{10}$ using 2's complement.	
		(ii) $(33)_{10}^{10} - (44)_{10}^{10}$ using one's complement.	
	(c)	Write short note on Ring Counter using 'D' FF.	- 5
	(d)	Compare FPGA and CPLD.	5
2.	(a)	Perform the following directly without converting to any other base.	5
		(i) $(63)_8 * (21)_8$	
		$(ii) (D9)_{H} - (80)_{H}$	
	(b)	(i) Simplify the Boolean expression	5
		$Y = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$	
		(ii) Express it is standard POS Form	
	<i>(</i>)	$Y = (A + B) (A + C) (B + \overline{C})$	_
	(c)	$f(A, B, C, D) = \sum m(4, 5, 6, 7, 8, 10, 12) + d(2, 9, 11)$	5
		Draw the logic diagram using NAND gates only.	
	(d)	Explain Astable multivibrator using op-amp with neat waveforms.	5
3.	(a)	Design a sequence generator to generate the sequence using 'D' FF	1101001 and 10
		repeat. Draw neat state diagram and ckt.diagram.	
	(b)	Implement the following logic function using all 4:1 multiplexers with as 'B', 'C', 'D', 'E' only	select inputs 10
		$F(A, B, C, D, E) = \sum m(0, 1, 2, 3, 6, 8, 9, 10, 13, 15, 17, 20, 24, 30)$	
4.	(a)	Explain 3 bit Bidirectional shift register using JK Flip Flop. Draw the ne	at waveforms. 10
	(b)	What is FPGA. Explain basic architecture. What are its advantages ov	rer CPLD. 10
5.	(a)	Design Full adder using 3:8 decoder with active low outputs and NAN	ND gates. 5
		Use Quine Mc-Cluskey method to simplify the logic function as give	
		$F(A, B, C, D, E) = \sum m(0, 1, 8, 10, 11, 12, 20, 21, 30) + d (14, 19)$	
		Realize the above function using NAND gates.	
6.	(a)	Design mod-10 synchronous counter using JK Flip Flops. Check for	
		condition. If so, how the lock-out condition can be avoided? Draw	tne neat state
	/4 \	diagram and circuit diagram with Flip Flops.	
	(b)	Explain the transfer characteristics of TTL NAND gate and hence defin	ne Fan-in and 5