Metadata File

										– vim sample-		
ample-i		e-sequenc		body-si		year		day		reported-anti		
q2:type			catego			numeric				categorical	numeric	C
	AGCTGACTAGTC	gut	2008	10	28	subject-		Yes	0			
	ACACACTATGGC	gut	2009	1	20	subject		No	84			
	ACTACGTGTGGT	gut	2009	2	17	subject-		No	112			
	AGTGCGATGCGT	gut	2009	3	17	subject.		No	140			
	ACGATGCGACCA	left pa		2009	1	20	subject-			84		
	AGCTATCCACGA	left pa		2009	2	17	subject-			112		
	ATGCAGCTCAGT	left pa		2009	3	17	subject-			140		
	CACGTGACATGT	left pa		2009		14	subject-			168		
	ACAGTTGCGCGA	right p		2008	10	28	subject-		Yes	0		
	CACGACAGGCTA	right p		2009	1	20	subject-			84		
	AGTGTCACGGTG	right p		2009	2	17	subject-			112		
	CAAGTGAGAGAG	right p		2009	3	17	subject-			140		
	CATCGTATCAAC	right p		2009	4	14	subject-			168		
	CAGTGTCAGGAC	tongue		10	28	subject-		Yes	0			
	ATCTTAGACTGC	tongue		1	20	subject.		No	84			
	CAGACATTGCGT	tongue	2009	2	17	subject.		No	112			
	CGATGCACCAGA	tongue	2009	3	17	subject-		No	140			
	CTAGAGACTCTT	tongue	2009	4	14	subject.		No	168			
	ATGGCAGCTCTA	gut	2008	10	28	subject.		Yes	0			
	CTGAGATACGCG	gut	2009	1	20	subject-		No	84			
	CCGACTGAGATG	gut	2009	3	17	subject.		No	140			
	CCTCTCGTGATC	gut	2009		14	subject.		No	168			
	CATATCGCAGTT	left pa		2008	10	28	subject-		Yes	0		
	CGTGCATTATCA	left pa		2009	1	20	subject-			84		
	CTAACGCAGTCA	left pa		2009	3	17	subject-			140		
	CTCAATGACTCA	left pa		2009		14	subject-			168		
	ATCGATCTGTGG	right p		2008	10	28	subject-		Yes	0		
	CTCGTGGAGTAG	right p		2009	1	20	subject-			84		
	GCGTTACACACA	right p		2009	3	17	subject-			140		
	GAACTGTATCTC	right p		2009		14	subject-			168		
	CTGGACTCATAG	tongue		10	28	subject-		Yes	0			
	GAGGCTCATCAT	tongue	2009	1	20	subject-	-2	No	84			
	GATACGTCCTGA	tongue	2009	3	17	subject-		No	140			
6S93	GATTAGCACTCT	tongue	2009		14	subject-	-2	No	168			

Figure 1: Metadata file containing sample information such as: sample ID, body site, and antibiotic usage.

Barcode File

Figure 2: This file contains the barcodes used during demultiplexing. Each barcode corresponds to a different sample

Citations: .qza File

Figure 3: Screenshot of a .qza file showing gut table information such as citation.

Provenance: .qza File

Figure 4: Screenshot of the provenance of gut-table.qza. It includes steps, commands, and metadata used.

Rep-seq File

Figure 5: Screenshot of Rep-seq file output representing the sequences as a fasta file. These sequences get denoised by DADA2.

Figure 6: Result summary of the demultiplexed raw sequences. It includes a histogram showing the distribution of forward read counts. No reverse reads, indicating a single-end sequence run.

Stats-data2 File

dime2vi	s Provenance Metadata					
sample-id #q2:types	input linumeric linumeric	filtered numeric J↑	percentage of input passed filter $$\downarrow\uparrow$$	denoised numeric 1	non-chimeric	percentage of input non-chimeric
_1S105	11340	8571	75.58	8499	7780	68.61
_1S140	9738	7677	78.84	7605	7163	73.56
_1S208	11337	9261	81.69	9152	8152	71.91
_1S257	8216	6705	81.61	6627	6388	77.75
_1S281	8907	7067	79.34	6976	6615	74.27
_1857	11752	9299	79.13	9260	8702	74.05
_1S76	10101	8395	83.11	8337	7867	77.88
_1S8	12388	7663	61.86	7624	7033	56.77
_2S155	9263	4112	44.39	3932	3932	42.45
_2S175	10692	4546	42.52	4386	4386	41.02
_2S204	7299	3379	46.29	3199	3158	43.27
_2S222	8386	3485	41.56	3187	3187	38
_2S240	11986	5183	43.24	5094	5061	42.22
_2S309	3836	1550	40.41	1419	1419	36.99
_28357	6254	2526	40.39	2373	2373	37.94
_2\$382	9301	4279	46.01	4202	4089	43.96
_3\$242	2055	970	47.2	951	897	43.65
_3S294	2318	1313	56.64	1225	1225	52.85
_3S313	1996	1191	59.67	1103	1103	55.26
_3S341	1854	1109	59.82	962	962	51.89

Figure 7: Stats-data2 file containing summary statistics of the DADA2 denoising step. It contains information on read input, filtered, merged, retained.

Table.qvz

Figure 8: Top figure shows interactive sample detail with adjusted refraction depth. Bottom figure shows figure detail and information of observed representatives per sample.

Beta Diversity - Unweighted Unifrac

Figure 9: 3D plot of unweighted unifrac (presence or absence) clustered by body-site

Beta Diversity - Weighted Unifrac

Figure 10: 3D plot of weighted unifrac (presence and relative abundance) clustered by body-site

Beta Diversity - Jaccard Distance

Figure 11: PCoA plot of jaccard distance (presence or absence) clustered by body-site.

Beta Diversity - Bray-Curtis

Figure 12: 3D plot representing Bray-Curtis distance clustered by body-site. It demonstrates abundant community dissimilarity.

Beta Diversity - Jaccard Distance

Figure 13: 3D plot of jaccard distance clustered by reported-antibiotic usage.

Figure 14: Boxplot showing significance of Faith PD (phylogenetic diversity) by body site. A Kruskal-Wallis test was performed to test if differences were statistically significant. A p-value of <0.01 was used to show whether diversity differs meaningfully across groups. Left palm had the greatest diversity compared to the other groups.

Figure 15: Boxplot representing alpha diversity using faith PD to show richness across samples. The group with no antibiotic usage had the greatest richness.

Figure 16: Boxplot representing alpha diversity by evenness, how even taxa is distributed by body site. Left and right palm had the greatest evenness from the rest of the group which indicates uniform distribution among that specific microbial taxa.

Figure 17: Alpha diversity microbial evenness by antibiotic usage. The group with no antibiotic usage had a greater microbial evenness distribution, this group dominates.

Taxonomic Analysis

Figure 18: Taxonomic barplot demonstrating microbial composition at genus level. Large green group represents the Bacteroides genus. Commonly found in the human gut microbiome.