The George Washington University Depart of Electrical and Computer Engineering

ECE 6213 Fall 2023 Dr. Matthew LaRue

Project 2: Mustang Tail Light Sequencer

Step 1: Create a project 2 directory with the same directory structure as project 1. Copy over all the scripts from the project 1 directory.

Hint: navigate to the ~/ece6213 directory, and then use the command "cp -rv project1 project2" to copy over the directories and scripts all at once

Step 2: Create a Verilog module for a Mustang tail light sequencer using the Verilog coding style presented in lecture 2.

Example tail light sequence video:

https://www.youtube.com/watch?v=7SyWdmnsMfQ

Note that the video has a slightly different light sequence, but I am providing it to show the concept, see functional requirements for actual sequences needed

Module Inputs:

clk 100 MHz clock signal

rst n active-low asynchronous reset

brake signal from brake pedal

turn_right signal from right turn indicator turn_left signal from left turn indicator

Module Outputs:

right_tail_light_control[2:0] signal to turn on right taillight bulbs left_tail_light_controll[2:0] signal to turn on left taillight bulbs

Output control signal bit mapping:

Functional requirements:

- When only turn_right is active, right_tail_light_control[2:0] must illuminate in a repeating {001} {011} {111} {000} sequence, with each state lasting five clock cycles
- 2. When only turn_left is active, left_tail_light_control[2:0] must illuminate in a repeating {001} {011} {111} {000} sequence, with each state lasting five clock cycles
- 3. When only brake is active, all tail light must illuminate
- 4. When turn_right and brake is active, all left_tail_light_control lights must illuminate and right_tail_light_control[2:0] must illuminate in a repeating {111} {110} {100} {000} sequence, with each state lasting five clock cycles
- 5. When turn_left and brake is active, all right_tail_light_control lights must illuminate and left_tail_light_control[2:0] must illuminate in a repeating {111} {110} {100} {000} sequence, with each state lasting five clock cycles

Step 3: Create a Verilog testbench and simulate your design to verify that it meets all of these requirements

Step 4: Create and submit a datasheet for the controller, an example datasheet is provided on blackboard. At a minimum, be sure to include:

- 1. Input/output signal names, description, polarity (active high/low)
- 2. Functional description of controller
- 3. Simulation waveforms demonstrating all functional requirements are met
 - a. Make sure the waveforms are legible
- 4. Controller Verilog code
- 5. Controller testbench Verilog code