Aufgabe 22

(a) Nach VL ist $G_4^a G_6^b$ mit 4a + 6b = 2k eine Modulform vom Gewicht 2k. Es gilt daher

$$0 \equiv \sum_{a,b \in \mathbb{N}_0} c_{a,b} G_4^a G_6^b = \sum_{k=1}^{\infty} \underbrace{\sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b}_{\text{Modulform your Gewicht } 2k}$$

Da Modulformen vom Gewicht 2k gerade die Forderungen von Aufgabe 21 erfüllen und Polynome höchstens endlich viele Koeffizienten $\neq 0$ besitzen, lässt sich aus

$$0 \equiv \sum_{k=1}^{\infty} \sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b$$

bereits $\forall k \geq 0$

$$0 \equiv \sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b$$

schließen. Für negatives k gilt sowieso $M_k=0$ und damit auch $\sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b \equiv 0 \quad \forall k \in \mathbb{Z}$.

(b) Es gilt $G_4(\rho) = 0$ und $G_6(i) = 0$. Nach VL sind beides einfache Nullstellen und auch die einzigen Nullstellen von G_4 bzw. G_6 bis auf Γ-Äquivalenz. Wir nehmen also an, es gibt eine Linearkombination $\sum_{4a+6b=2k} c_{a,b} G_4^a G_6^b$, wobei a als kleinsten Wert $a_1 \geq 0$ annehme. Betrachtet man nun die Laurententwicklung um den Punkt ρ , so erhält man

$$c_{a_1,2k-a_1}G_4^{a_1}(z)G_6^{2k-a_1}(z) = c_{a_1,2k-a_1}\alpha z^{a_1} + \mathcal{O}(z^{a_1+1})$$

für ein $\alpha \neq 0$. Alle anderen Koeffizienten enthalten nun G_4 mindestens zur Potenz $a_1 + 1$. Daher gilt

$$\sum_{4a+6b=2k} c_{a,b} G_4^a(z) G_6^b(z) = c_{a_1,2k-a_1} \alpha z^{a_1} + \mathcal{O}(z^{a_1+1}) \neq 0.$$

Das ist aber ein Widerspruch, also darf es keine solche Linearkombination geben und die Koeffizienten $c_{a,b}$ müssen alle 0 sein.

Aufgabe 23

- (a) In einem euklidischen Ring R liefert der euklidische Algorithmus für zwei $a, b \in R$ ein bis auf Assoziiertheit eindeutig bestimmtes Element g des Rings zurück mit (a) + (b) = (g), wobei (x) das von $x \in R$ erzeugte Ideal bezeichne (siehe LA2). Für $R = \mathbb{Z}$ ist dieses Element also eindeutig bestimmt bis auf Vorzeichen und es gilt $a\mathbb{Z} + b\mathbb{Z} = g\mathbb{Z}$.
- (b) Seien $a, b, c \in \mathbb{Z}$. Dann gilt $ggT(a, b, c)\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} + c\mathbb{Z} = ggT(a, b)\mathbb{Z} + c\mathbb{Z} = ggT(ggT(a, b), c)\mathbb{Z}$. Daraus folgt bereits die Behauptung

(c) Es gilt

$$\operatorname{ggT}(a,b) = 1 \implies \exists d, -c \in \mathbb{Z} \colon ad - bc = 1$$

$$\implies \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2\mathbb{Z})$$

$$\implies ad - bc = 1$$

$$\implies a\mathbb{Z} + b\mathbb{Z} = \mathbb{Z}$$

$$\implies \operatorname{ggT}(a,b) = 1$$