BILAG 3

Kravspecifikation

Indholdsfortegnelse

Kapitel	1	Indledning	2
Kapitel	2	Kravspecifikation	3
2.1	Ver	sionshistorik	3
2.2	Sys	tembeskrivelse	4
	2.2.	1 Aktør kontekstdiagram	4
	2.2.	2 Aktørbeskrivelse	5
2.3	Fun	ktionelle krav	6
	2.3.	1 Use Case diagram	6
	2.3.	2 Use Cases - fully dressed	6
2.4	Ikk	e-funktionelle krav	9
	2.4.	1 (F)URPS+	9
Litterat	ur		11
Figurer			12
Tabelle	r		13

Indledning

På baggrund af krav fra Hammel Neurocenter, er denne kravspecifikation blevet udarbejdet. Kravspecifikationen har til formål at specificere kravene til synkerefleksmonitor. Dette bacelor projekt tager udgangspunkt i en BI- og EMG-måler. Disse krav er blevet prioteret i MoSCoW analyse, hvor fra det er "must"krav som i første gang vil blive realiseret.

Kravspecifikationen består af en systembeskrivelse, som beskriver det samlet system og elementer. Dernæst en beskrivelse af projektets funktionelle krav. Beskrivelse af aktører, samt hvordan de intergerer. Derudover også beskrivelse af de relevante use-cases samt systemets undtagelser. Desuden er systemets ikke-funktionelle krav også beskrevet, dette gennem systembeskrivelsesmetoden "(F)URPS+".

Til denne kravspecifikation er der lavet en accepttest, som primært har til formål at teste de opstillede funktionelle- og ikke-funktionelle krav. Accepttesten beskrives efterfølgende kronologisk fra use case 1 til ikke-funktionelle krav, for at i sidste ende at kunne dokumentere synkerefleksmonitors funktionalitet. Accepttesten kan ses i bilag 9 - Accepttestspecifikation.

Kravspecifikation 2

2.1 Versionshistorik

Version	Dato	Ansvarlig	Beskrivelse
0.1	26-09-2017	MBA	Oprettelse og udfyldning af UC1 og Use case diagram
0.2	27-09-2017	MBA & MHM	Udfyldning af UC2 - UC4 og aktør kontekstdiagram tilføjet
0.3	28-09-2017	MBA & MHM	(F)URPS+ er tilføjet

 $Tabel\ 2.2:\ Versionshistorik$

2.2 Systembeskrivelse

Sundhedspersonalet foretager en BI- og EMG-måling ved at tilkoble elektroder fra hhv. BI- og EMG-måleren til et måleobjekt. Vha. en funktiongenerator sendes en konstant strøm til måleobjektet via. et print og elektroder. Herved måles spændingen over elektroderne. De målte spændinger omdannes til et digital signal vha. en A/D-konverter. Dette digital signal vises på en PC-skærm i form af en graf. Sundhedspersonalet har herved mulighed for at evaluere måleobjektets synkefrekvens. Sundhedspersonalet foretager også EMG-måling ved at tilkoble elektroder på måleobjektet. Dataindsamling fra måleobjektet omdannes ligeledes til et digital signal og vises på en PC-skærm.

2.2.1 Aktør kontekstdiagram

Figur 2.1: Aktør-kontext diagram

2.2. Systembeskrivelse

2.2.2 Aktørbeskrivelse

Akt ørnavn	Type	Beskrivelse
Sundhedspersonale	Primær	Sundhedspersonalet tilkobler BI- og EMG-måleren til måleobjektet vha. elektroder, samt starter og afslut- ter målingen. Yderligere interagerer sundhedsperso- nalet med en brugergrænseflade.
Bioimpedans måler	Sekundær	Bioimpedans måleren anvendes til at måle bioimpedans signaler fra måleobjektet
EMG måler	Sekundær	EMG-måleren anvendes til at måle EMG-signaler fra måleobjektet.
Måleobjekt	Sekundær	Måleobjektet er kilden hvorfra bioimpedans signalerne indhentes. Måleobjektet er tilkoblet til både BIog EMG-måleren.
${ m A/D} ext{-}{ m konverter}$	Sekundær	${\rm A/D}$ -konverterens funktion er at konvertere analog signaler fra hhv. BI-og EMG-måler til digital signaler.
PC	Sekundær	Denne brugergrænseflade bruges til at visualisere de målte signaler i graf form.

 $Tabel\ 2.3:\ Akt \'{o}rbeskrivelse$

2.3 Funktionelle krav

2.3.1 Use Case diagram

Figur 2.2: Use Case diagram

Diagrammet i figur 2.1 viser systemets fire Use Cases: Start BI-måling, Start EMG-måling, Beregn BI, Vis BI og EMG. Herunder følger en nærmere beskrivelse af de enkelte Use Cases, gennem et fully-dressed Use Case skema.

Systemet består af en softwaredel, en A/D-konverter, BI-måler, EMG-måler med tilhørende hardware. Systemet gør det muligt at foretage en BI- og EMG-måling på et måleobjekt. BI- og EMG-målingerne bliver sendt ind i systemet via A/D-konverter, hvor signalet vises i Matlab. I softwaren er det muligt at få simultane signaler på en graf og samtidig benyttes der algoritme for at vise synkefrekvensen. Denne algoritme undersøger signalet for, ved en omregning fra den kendte spænding og strøm, impedans og dens ændringer som der ligner et synk. Brugergrænsefladen er det som sundhedspersonalet initierer med, altså hvorfra systemet aktiveres.

2.3.2 Use Cases - fully dressed

Use Case 1

Scenarie	Hoved scenarie
Navn	Start BI-måling

2.3. Funktionelle krav

Mål		At få foretaget en BI-måling
Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær), Måleobjekt (sekundær)
Referencer		
Samtidige forekomster		En BI-måling pr. kørsel
Forudsætninger		Alle systemer er ledige og operationelle. Elektroder påsat måleobjekt og GUI-vindue er åbent
Resultat		BI-målingen er blevet foretaget efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Start BI-måling"
	2.	Systemet foretager målingen indtil der trykkes på knappen "Stop måling"
	3.	Systemet har gemt målingen i en fil
		[Undtagelse 3.a:] Systemet har ikke gemt målingen i en fil
Undtagelser	3.a.	Hovedscenarie 1 i Use Case 1 gentages

Tabel 2.4: Fully dressed Use Case 1

Use Case 2

Scenarie		Hovedscenarie
Navn		Start EMG-måling
Mål		At få foretaget en EMG-måling
Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær), Måleobjekt (sekundær)
Referencer		
Samtidige forekomster		En EMG-måling pr. kørsel
Forudsætninger		Alle systemer er ledige og operationelle. Elektroder påsat måleobjekt og GUI-vindue er åbent
Resultat		EMG-målingen er blevet foretaget efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Start EMG-måling"

2.3. Funktionelle krav

	2.	Systemet foretager målingen indtil der trykkes på knappen "Stop måling"
	3.	Systemet har gemt målingen i en fil
		[Undtagelse 3.a:] Systemet har ikke gemt målingen i en fil
$\overline{ ext{Undtagelser}}$	3.a.	Hovedscenarie 1 i Use Case 2 gentages

Tabel 2.5: Fully dressed Use Case 2

Use Case 3

Scenarie		Hovedscenarie
Navn		Beregn BI
Mål		At få beregnet BI
Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær)
Referencer		Use Case 1
Samtidige forekomster		En BI-beregning pr. kørsel
Forudsætninger		Use case 1 er foretaget
Resultat		BI-beregningen er foretaget efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Beregn-BI"
	2.	Systemet har gemt BI-beregningen i en fil
		$[\mathit{Undtagelse~2.a:}]$ Systemet har ikke gemt BI-beregningen i en fil
Undtagelser	2.a.	Hovedscenarie 1 i Use Case 3 gentages

Tabel 2.6: Fully dressed Use Case 3

Use Case 4

Scenarie	Hovedscenarie
Navn	Vis BI & EMG
Mål	At få vist BI- & EMG-måling over tid på en graf

2.4. Ikke-funktionelle krav

Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær)
Referencer		
Samtidige forekomster		En graf pr. kørsel
Forudsætninger		Use case 2 og 3 er foretaget
Resultat		Grafen er vist efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Vis BI & EMG"
	2.	Grafen vises i GUI-vinduet
Undtagelser		-

Tabel 2.7: Fully dressed Use Case 4

2.4 Ikke-funktionelle krav

nielsen [?]

2.4.1 (F)URPS+

Usability

- 1. Sundhedspersonalet skal kunne anvende synkerefleksmonitoren efter 10 minutters instruktion.
- 2. Sundhedspersonalet skal kunne efter endt introduktion til synkerefleksmonitoren foretage en måling uden fejl.
- 3. Sundhedspersonalet skal kunne efter en periode, på en uge væk fra synkerefleksmonitoren, foretage en måling uden fejl.
- 4. Sundhedspersonalet får mulighed for, at give karakter til GUI-designet på en skala fra 1-5, hvor 5 er yderst tilfredsstillende.
- 5. Sundhedspersonalet skal kunne aflæse graferne fra GUI'en på 2 meters afstand.

Reliability

- 6. Det skal maksimalt tage 5 timer at gendanne Synkerefleksmonitor (MTTR Mean Time To Restore).
- 7. Synkerefleksmonitor skal have en oppetid uden nedbrud på minimum 1 dag (24 timer) (MTBF Mean Time Between Failure).

- 2.4. Ikke-funktionelle krav
 - 8. Synkerefleksmonitor skal have en oppetid/køretid på:

$$Availability = \frac{MTBF}{MTBF + MTTR} \cdot 100 = \frac{24}{24 + 5} \cdot 100 = 82,76\%$$
 (2.1)

Performance

- 9. Synkerefleksmonitorens hardware skal kunne tændes indenfor 3 minutter.
- 10. Synkerefleksmonitorens GUI skal kunne vises indenfor 3 minutter.
- 11. GUI'ens responstid skal maksimum være 10 sekunder.

Supportability

- 12. Sundhedspersonalet skal kunne udskifte batterierne til hardwaren inden for 2 minutter.
- 13. Sundhedspersonalet skal kunne udskifte elektroderne inden for 2 minutter.
- 14. Softwaren skal opbygges med lav samhørlighed.

Litteratur

Figurer

2.1	Aktør-kontext diagram	4
2.2	Use Case diagram	(

Tabeller

2.2	Versionshistorik	3
2.3	Aktørbeskrivelse	5
2.4	Fully dressed Use Case 1	7
2.5	Fully dressed Use Case 2	8
2.6	Fully dressed Use Case 3	8
2.7	Fully dressed Use Case 4	9