

planetmath.org

Math for the people, by the people.

positive linear functional

Canonical name PositiveLinearFunctional

Date of creation 2013-03-22 17:45:05

Last modified on 2013-03-22 17:45:05

Owner asteroid (17536)

Last modified by asteroid (17536)

Numerical id 11

Author asteroid (17536)

Entry type Definition Classification msc 46L05

0.0.1 Definition

Let \mathcal{A} be a http://planetmath.org/CAlgebra C^* -algebra and ϕ a linear functional on \mathcal{A} .

We say that ϕ is a **positive linear functional** on \mathcal{A} if ϕ is such that $\phi(x) \geq 0$ for every $x \geq 0$, i.e. for every positive element $x \in \mathcal{A}$.

0.0.2 Properties

Let ϕ be a positive linear functional on \mathcal{A} . Then

- $\phi(x^*) = \overline{\phi(x)}$ for every $x \in \mathcal{A}$.
- $|\phi(x^*y)|^2 \le \phi(x^*x)\phi(y^*y)$ for every $x,y \in \mathcal{A}$. This is an analog of the Cauchy-Schwartz inequality

Let ϕ be a linear functional on a C^* -algebra \mathcal{A} with identity element e. Then

• ϕ is positive if and only if ϕ is http://planetmath.org/ContinuousLinearMappingbounded and $\|\phi\| = \phi(e)$.

0.0.3 Examples

• Let X be a locally compact Hausdorff space and $C_0(X)$ the C^* -algebra of continuous functions $X \longrightarrow \mathbb{C}$ that vanish at infinity. Let μ be a regular Radon measure on X. The linear functional ϕ defined by integration against μ ,

$$\phi(f) := \int_X f \, d\mu \,, \qquad f \in C_0(x)$$

is a positive linear functional on $C_0(X)$. In fact, by the http://planetmath.org/RieszRepre representation theorem, all positive linear functionals of $C_0(X)$ are of this form.