Análise Desempenho Algoritimo TSP Força Bruta x Heurísticas

Luiz marcio Faria de Aquino Viana, M.Sc.

DRE: 120048833

E-mail: Imarcio@cos.ufrj.br

E-mail alt.: luiz.marcio.viana@globo.com

Conteúdo

1. Introdução

1.1. Objetivo da Pesquisa

2. Visão Geral

- 2.1. Definição do Problema
- 2.2. Resolução do Problema por Força Bruta (FB)
- 2.3. Heurísticas Míopes Inserção Mais Próxima (H)

3. Análise dos Resultados

- 3.1. Força Bruta (FB)
- 3.2. Heurísticas Míopes Inserção Mais Próxima (H)

4. Conclusões

Objetivo da Pesquisa

- O objetivo desta pesquisa é analisar o Problema do Caixeiro Viajante (TSP), que é um problema que ocorre com frequência no nosso cotidiano, e que possui solução ótima avaliando todas as permutações de N nós (=!N possibilidades).
- Este problema possui complexidade $O(N^2 \times Log_2 N)$, e existem algoritimos que resolvem este problema com exatidão e com complexidade $O(N^3)$.
- Nesta pesquisa, analisamos este problema usando um algorítimo de Força Bruta (FB), com complexidade $O(N^3)$ que avalia todas as permutações e seleciona a de menor custo, e implementamos um algoritimo que utiliza uma Heurística Míope com complexidade $O(N^2)$.

Visão Geral: Definição do Problema

Seja G = (N, M), um grafo com no mínimo 3 nós, onde as cada arésta possui um custo C_{ii} associado.

O Problema Simétrico do Caxeiro Viajante (TSP) consiste em encontrar um percurso com custo mínimo que passe por todos os nós.

Visão Geral: Força Bruta

- Para encontrar a solução ótima por Força Bruta, precisamos avaliar a permutação de N nós (=!N possibilidades).
- Em nossa análise usamos um algorítimo de Força Bruta (FB), com complexidade O(N3) que avalia todas as permutações e seleciona a de menor custo.

Identificamos que a resolução por Força Bruta se torna inviável com o aumento no número de nós.

6 NÓS	120 Possibilidades
7 NÓS	720 Possibilidades
8 NÓS	5.040 Possibilidades
9 NÓS	40.320 Possibilidades
LO NÓS	362.880 Possibilidades

Conclusões

HEURÍSTICA:

- Para tornar computacionalmente viável o Problema do Caxeiro Viajante (TSP), implementamos também uma heurísticas que se aproximam do melhor resultado, denominado de Método da Inserção Mais Próxima (H), com complexidade O(N²).
- Esta heurística obteve uma REDUÇÃO de >400 vezes do tempo de execução do algoritimo de Força Bruta (FB).

Análise dos Resultados - Força Bruta

TEMPO DE EXECUÇÃO (ms)						
		SEQ MP2		MPI2		
DOMÍNIO	NUM_NÓS	SEQ_FB	MP2_FB	MPI2_FB		
5040	8	128	77	2		
40320	9	2673	1443	31		
362880	10	64603	37678	163		

Análise dos Resultados - Força Bruta

SPEEDUP						
DOMÍNIO	NUM_NÓS	SEQ_FB	MP2_FB	MPI2_FB		
5040	8	1	2	84		
40320	9	1	2	87		
362880	10	1	2	396		

Análise dos Resultados - Heurística

TEMPO DE EXECUÇÃO (ms)							
		SEQ		MP2		MPI2	
DOMÍNIO	NUM_NÓS	SEQ_FB	SEQ_H	MP2_FB	MP2_H	MPI2_FB	MPI2_H
120	6	1334	3	991	19	265	125
720	7	13802	3	5991	15	540	133
5040	8	127627	2	77320	12	1518	133
40320	9	2673422	3	1443098	15	30683	129
362880	10	64602790	3	37677955	16	163130	194
			SPEE	DUP			
DOMÍNIO	NUM NÓS	SEQ_FB	SEQ_H	MP2_FB	MP2_H	MPI2_FB	MPI2_H
720	6	1.0	444.7	1.3	0.2	5.0	0.02
5040	7	1.0	4600.7	2.3	0.2	25.6	0.02
40320	8	1.0	63813.5	1.7	0.2	84.1	0.02
362880	9	1.0	891140.7	1.9	0.2	87.1	0.02
3628800	10	1.0	21534263.3	1.7	0.2	396.0	0.02

Conclusões

- O Problema do Caixeiro Viajante (TSP) é um problema que ocorre com frequência no nosso cotidiano.
- Para encontrar a solução ótima avaliando todas as possibilidades, precisamos avaliar a permutação de N nós (=!N possibilidades).
- Este problema possui complexidade $O(N^2 \times Log_2 N)$, e existem algoritimos que resolvem este problema com exatidão e com complexidade $O(N^3)$.
- Para análise usamos um algorítimo de Força Bruta (FB), com complexidade O(N³) que avalia todas as permutações e seleciona a de menor custo, e mesmo com o acréscimo no número de nós de processamento o problema se torna computacionalmente inviável para grandes quantidades de nós.

HEURÍSTICA:

- Para tornar computacionalmente viável o Problema do Caxeiro Viajante (TSP), podemos usar heurísticas que se aproximam do melhor resultado.
- Nesta análise, foi implementado um algoritimo que utiliza uma Heurística Míope, denominada de Método da Inserção Mais Próxima (H), com complexidade O(N²).
- Usando está heurística, obtivemos uma REDUÇÃO de >400 vezes do tempo de execução do algoritimo de Força Bruta (FB), e com diferença crescente com o aumento no número de nós.

Dúvidas

