In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear\_model import LinearRegression,LogisticRegression,Lasso,Ridge,ElasticNet
from sklearn.model\_selection import train\_test\_split

In [2]: df=pd.read\_csv("C:/Users/user/Downloads/FP1\_air/csvs\_per\_year/csvs\_per\_year/madrid\_2001.csv
df

#### Out[2]:

| • |        |                            |       |      |      |       |      |           |            |      |           |            |      |    |
|---|--------|----------------------------|-------|------|------|-------|------|-----------|------------|------|-----------|------------|------|----|
|   |        | date                       | BEN   | со   | EBE  | MXY   | NMHC | NO_2      | NOx        | OXY  | O_3       | PM10       | PXY  |    |
|   | 0      | 2001-<br>08-01<br>01:00:00 | NaN   | 0.37 | NaN  | NaN   | NaN  | 58.400002 | 87.150002  | NaN  | 34.529999 | 105.000000 | NaN  | 6  |
|   | 1      | 2001-<br>08-01<br>01:00:00 | 1.50  | 0.34 | 1.49 | 4.10  | 0.07 | 56.250000 | 75.169998  | 2.11 | 42.160000 | 100.599998 | 1.73 | 8  |
|   | 2      | 2001-<br>08-01<br>01:00:00 | NaN   | 0.28 | NaN  | NaN   | NaN  | 50.660000 | 61.380001  | NaN  | 46.310001 | 100.099998 | NaN  | 7  |
|   | 3      | 2001-<br>08-01<br>01:00:00 | NaN   | 0.47 | NaN  | NaN   | NaN  | 69.790001 | 73.449997  | NaN  | 40.650002 | 69.779999  | NaN  | 6  |
|   | 4      | 2001-<br>08-01<br>01:00:00 | NaN   | 0.39 | NaN  | NaN   | NaN  | 22.830000 | 24.799999  | NaN  | 66.309998 | 75.180000  | NaN  | 8  |
|   |        |                            |       |      |      |       |      |           |            |      |           |            |      |    |
|   | 217867 | 2001-<br>04-01<br>00:00:00 | 10.45 | 1.81 | NaN  | NaN   | NaN  | 73.000000 | 264.399994 | NaN  | 5.200000  | 47.880001  | NaN  | 39 |
|   | 217868 | 2001-<br>04-01<br>00:00:00 | 5.20  | 0.69 | 4.56 | NaN   | 0.13 | 71.080002 | 129.300003 | NaN  | 13.460000 | 26.809999  | NaN  | 13 |
|   | 217869 | 2001-<br>04-01<br>00:00:00 | 0.49  | 1.09 | NaN  | 1.00  | 0.19 | 76.279999 | 128.399994 | 0.35 | 5.020000  | 40.770000  | 0.61 | 14 |
|   | 217870 | 2001-<br>04-01<br>00:00:00 | 5.62  | 1.01 | 5.04 | 11.38 | NaN  | 80.019997 | 197.000000 | 2.58 | 5.840000  | 37.889999  | 4.31 | 39 |
|   | 217871 | 2001-<br>04-01<br>00:00:00 | 8.09  | 1.62 | 6.66 | 13.04 | 0.18 | 76.809998 | 206.300003 | 5.20 | 8.340000  | 35.369999  | 4.95 | 27 |
|   |        |                            |       |      |      |       |      |           |            |      |           |            |      |    |

217872 rows × 16 columns

#### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217872 entries, 0 to 217871
Data columns (total 16 columns):
# Column Non-Null Count Dtype

| #      | Column    | Non-Null Count    | Dtype     |  |  |
|--------|-----------|-------------------|-----------|--|--|
|        |           |                   |           |  |  |
| 0      | date      | 217872 non-null   | object    |  |  |
| 1      | BEN       | 70389 non-null    | float64   |  |  |
| 2      | CO        | 216341 non-null   | float64   |  |  |
| 3      | EBE       | 57752 non-null    | float64   |  |  |
| 4      | MXY       | 42753 non-null    | float64   |  |  |
| 5      | NMHC      | 85719 non-null    | float64   |  |  |
| 6      | NO_2      | 216331 non-null   | float64   |  |  |
| 7      | NOx       | 216318 non-null   | float64   |  |  |
| 8      | OXY       | 42856 non-null    | float64   |  |  |
| 9      | 0_3       | 216514 non-null   | float64   |  |  |
| 10     | PM10      | 207776 non-null   | float64   |  |  |
| 11     | PXY       | 42845 non-null    | float64   |  |  |
| 12     | S0_2      | 216403 non-null   | float64   |  |  |
| 13 TCH |           | 85797 non-null    | float64   |  |  |
| 14 TOL |           | 70196 non-null    | float64   |  |  |
| 15     | station   | 217872 non-null   | int64     |  |  |
| dtyp   | es: float | 64(14), int64(1), | object(1) |  |  |

memory usage: 26.6+ MB

In [4]: df1=df.dropna()

Out[4]:

|         | date                       | BEN     | со   | EBE   | MXY       | NMHC | NO_2       | NOx        | OXY   | O_3       | PM10       | Р |
|---------|----------------------------|---------|------|-------|-----------|------|------------|------------|-------|-----------|------------|---|
| 1       | 2001-<br>08-01<br>01:00:00 | 1.50    | 0.34 | 1.49  | 4.100000  | 0.07 | 56.250000  | 75.169998  | 2.11  | 42.160000 | 100.599998 | 1 |
| 5       | 2001-<br>08-01<br>01:00:00 | 2.11    | 0.63 | 2.48  | 5.940000  | 0.05 | 66.260002  | 118.099998 | 3.15  | 33.500000 | 122.699997 | 2 |
| 21      | 2001-<br>08-01<br>01:00:00 | 0.80    | 0.43 | 0.71  | 1.200000  | 0.10 | 27.190001  | 29.700001  | 0.76  | 56.990002 | 114.300003 | 0 |
| 23      | 2001-<br>08-01<br>01:00:00 | 1.29    | 0.34 | 1.41  | 3.090000  | 0.07 | 40.750000  | 51.570000  | 1.70  | 51.580002 | 102.199997 | 1 |
| 25      | 2001-<br>08-01<br>02:00:00 | 0.87    | 0.06 | 0.88  | 2.410000  | 0.01 | 29.709999  | 31.440001  | 1.20  | 56.520000 | 56.290001  | 1 |
|         |                            |         |      |       |           |      |            |            |       |           |            |   |
| 217829  | 2001-<br>03-31<br>23:00:00 | 11.76   | 4.48 | 7.71  | 17.219999 | 0.89 | 103.900002 | 548.500000 | 7.62  | 9.680000  | 77.180000  | 6 |
| 217847  | 2001-<br>03-31<br>23:00:00 | 9.79    | 2.65 | 7.59  | 9.730000  | 0.46 | 91.320000  | 315.899994 | 3.75  | 6.660000  | 52.740002  | 3 |
| 217849  | 2001-<br>04-01<br>00:00:00 | 5.86    | 1.22 | 5.66  | 13.710000 | 0.25 | 64.370003  | 218.300003 | 6.46  | 7.480000  | 17.570000  | 5 |
| 217853  | 2001-<br>04-01<br>00:00:00 | 14.47   | 1.83 | 11.39 | 26.059999 | 0.33 | 84.230003  | 259.200012 | 11.39 | 5.440000  | 36.740002  | 9 |
| 217871  | 2001-<br>04-01<br>00:00:00 | 8.09    | 1.62 | 6.66  | 13.040000 | 0.18 | 76.809998  | 206.300003 | 5.20  | 8.340000  | 35.369999  | 4 |
| 20660 = | ows × 16 o                 | oolumn  | •    |       |           |      |            |            |       |           |            |   |
| 2900910 | JWS ^ 10 (                 | Julilli | 5    |       |           |      |            |            |       |           |            |   |

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

```
Out[6]: <AxesSubplot:>
```



```
In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x23d88ab14f0>]



```
In [8]: data=df[["EBE","PXY"]]
```

```
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
```

```
In [41]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

# Linear

```
In [11]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[11]: LinearRegression()

```
In [12]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x23d88b7d460>
```

```
60 - 50 - 40 - 30 - 20 - 30 - 40 - 50 - 60 - 70
```

```
In [13]: lis=li.score(x_test,y_test)
In [14]: |df1["TCH"].value_counts()
Out[14]: 1.28
                  988
         1.32
                  938
         1.33
                  908
         1.29
                  908
         1.27
                  905
         4.39
                    1
         3.57
                    1
         4.37
                    1
         3.59
                    1
         4.21
                    1
         Name: TCH, Length: 269, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 17204
         2.0
                 12465
         Name: TCH, dtype: int64
```

### Lasso

```
In [16]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[16]: Lasso(alpha=5)

```
In [17]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[17]: <matplotlib.collections.PathCollection at 0x23d88bec670>



```
In [18]: las=la.score(x_test,y_test)
```

# Ridge

```
In [19]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[19]: Ridge(alpha=1)

```
In [20]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[20]: <matplotlib.collections.PathCollection at 0x23d88ac8ee0>



In [21]: rrs=rr.score(x\_test,y\_test)

## **ElasticNet**

```
In [22]: en=ElasticNet()
  en.fit(x_train,y_train)
```

Out[22]: ElasticNet()

```
In [23]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[23]: <matplotlib.collections.PathCollection at 0x23d89e36cd0>



```
In [24]: ens=en.score(x_test,y_test)
```

```
In [25]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.7877953739336674

Out[25]: 0.759499092953202

## Logistic

```
Out[45]: LogisticRegression()
```

```
In [46]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[46]: <matplotlib.collections.PathCollection at 0x23d896d8490>



```
In [47]: los=lo.score(x_test,y_test)
```

### **Random Forest**

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]: RandomForestClassifier()
In [34]: parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
In [35]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid_search.fit(x_train,y_train)
Out[35]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
```

```
In [36]: rfcs=grid_search.best_score_
In [37]: rfc best=grid search.best estimator
In [38]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],filled=
          Text(1716.923076923077, 155.3142857142857, 'gini = 0.276\nsamples = 278\nvalue = [78,
         394\nclass = No'),
          Text(1793.2307692307693, 155.3142857142857, 'gini = 0.447\nsamples = 116\nvalue = [61,
         120]\nclass = No'),
          Text(2136.6153846153848, 1087.2, 'station <= 28079068.0\ngini = 0.293\nsamples = 2294

  | (13027, 658) | (13027, 658) |

          Text(1984.0, 776.5714285714287, 'NMHC <= 0.195\ngini = 0.178\nsamples = 1469\nvalue =
         [2129, 233]\nclass = Yes'),
          Text(1907.6923076923076, 465.9428571428573, 'NMHC <= 0.135\ngini = 0.141\nsamples = 13
         97\nvalue = [2075, 171]\nclass = Yes'),
          Text(1869.5384615384614, 155.3142857142857, 'gini = 0.089\nsamples = 1065\nvalue = [16
         29, 80]\nclass = Yes'),
          Text(1945.8461538461538, 155.3142857142857, 'gini = 0.281\nsamples = 332\nvalue = [44
         6, 91]\nclass = Yes'),
          Text(2060.3076923076924, 465.9428571428573, '0 3 <= 33.825\ngini = 0.498\nsamples = 72
         Text(2022.1538461538462, 155.3142857142857, 'gini = 0.284\nsamples = 22\nvalue = [6, 2
         9]\nclass = No'),
          Text(2098.4615384615386, 155.3142857142857, 'gini = 0.483\nsamples = 50\nvalue = [48,
         221\nclass - Voc!\
In [48]: print("Linear:",lis)
         print("Lasso:",las)
         print("Ridge:",rrs)
         print("ElasticNet:",ens)
         print("Logistic:",los)
         print("Random Forest:",rfcs)
         Linear: 0.7877914082809474
         Lasso: 0.6608359189741109
```

Linear: 0.7877914082809474 Lasso: 0.6608359189741109 Ridge: 0.7877953739336674 ElasticNet: 0.7744562684843173 Logistic: 0.5802718795640939 Random Forest: 0.9163617103235747

## **Best Model is Random Forest**

In [49]: df2=pd.read\_csv("C:/Users/user/Downloads/FP1\_air/csvs\_per\_year/csvs\_per\_year/madrid\_2002.cs
df2

#### Out[49]:

|        | date                       | BEN  | со   | EBE  | MXY   | NMHC | NO_2       | NOx        | ОХҮ  | O_3   | PM10      | PXY  | SO.     |
|--------|----------------------------|------|------|------|-------|------|------------|------------|------|-------|-----------|------|---------|
| 0      | 2002-<br>04-01<br>01:00:00 | NaN  | 1.39 | NaN  | NaN   | NaN  | 145.100006 | 352.100006 | NaN  | 6.54  | 41.990002 | NaN  | 21.3200 |
| 1      | 2002-<br>04-01<br>01:00:00 | 1.93 | 0.71 | 2.33 | 6.20  | 0.15 | 98.150002  | 153.399994 | 2.67 | 6.85  | 20.980000 | 2.53 | 11.6600 |
| 2      | 2002-<br>04-01<br>01:00:00 | NaN  | 0.80 | NaN  | NaN   | NaN  | 103.699997 | 134.000000 | NaN  | 13.01 | 28.440001 | NaN  | 13.6700 |
| 3      | 2002-<br>04-01<br>01:00:00 | NaN  | 1.61 | NaN  | NaN   | NaN  | 97.599998  | 268.000000 | NaN  | 5.12  | 42.180000 | NaN  | 16.9900 |
| 4      | 2002-<br>04-01<br>01:00:00 | NaN  | 1.90 | NaN  | NaN   | NaN  | 92.089996  | 237.199997 | NaN  | 7.28  | 76.330002 | NaN  | 15.2600 |
|        |                            |      |      |      |       |      |            |            |      |       |           |      |         |
| 217291 | 2002-<br>11-01<br>00:00:00 | 4.16 | 1.14 | NaN  | NaN   | NaN  | 81.080002  | 265.700012 | NaN  | 7.21  | 36.750000 | NaN  | 13.2100 |
| 217292 | 2002-<br>11-01<br>00:00:00 | 3.67 | 1.73 | 2.89 | NaN   | 0.38 | 113.900002 | 373.100006 | NaN  | 5.66  | 63.389999 | NaN  | 15.6400 |
| 217293 | 2002-<br>11-01<br>00:00:00 | 1.37 | 0.58 | 1.17 | 2.37  | 0.15 | 65.389999  | 107.699997 | 1.30 | 9.11  | 9.640000  | 0.94 | 5.6200  |
| 217294 | 2002-<br>11-01<br>00:00:00 | 4.51 | 0.91 | 4.83 | 10.99 | NaN  | 149.800003 | 202.199997 | 1.00 | 5.75  | NaN       | 5.52 | 24.2199 |
| 217295 | 2002-<br>11-01<br>00:00:00 | 3.11 | 1.17 | 3.00 | 7.77  | 0.26 | 80.110001  | 180.300003 | 2.25 | 7.38  | 29.240000 | 3.35 | 12.9100 |
|        |                            |      |      |      |       |      |            |            |      |       |           |      |         |

#### 217296 rows × 16 columns

localhost:8888/notebooks/madrid\_data(2001\_02.ipynb#

#### In [50]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217296 entries, 0 to 217295
Data columns (total 16 columns):
 # Column Non-Null Count Dtype
--- 0 date 217296 non-null object

1 BEN float64 66747 non-null 2 216637 non-null float64 CO 3 EBE 58547 non-null float64 4 MXY 41255 non-null float64 5 NMHC 87045 non-null float64 6 NO\_2 216439 non-null float64 7 NOx216439 non-null float64 8 0XY 41314 non-null float64 9 0\_3 216726 non-null float64 10 PM10 209113 non-null float64 11 PXY 41256 non-null float64 12 SO 2 216507 non-null float64 13 TCH 87115 non-null float64 14 TOL 66619 non-null float64 15 station 217296 non-null int64

dtypes: float64(14), int64(1), object(1)

memory usage: 26.5+ MB

In [51]: df3=df2.dropna()
df3

Out[51]:

|        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2       | NOx        | OXY  | 0_3   | PM10      | PXY  | SO_2  | T |
|--------|----------------------------|------|------|------|------|------|------------|------------|------|-------|-----------|------|-------|---|
| 1      | 2002-<br>04-01<br>01:00:00 | 1.93 | 0.71 | 2.33 | 6.20 | 0.15 | 98.150002  | 153.399994 | 2.67 | 6.85  | 20.980000 | 2.53 | 11.66 |   |
| 5      | 2002-<br>04-01<br>01:00:00 | 3.19 | 0.72 | 3.23 | 7.65 | 0.11 | 113.699997 | 187.000000 | 3.53 | 12.37 | 27.450001 | 2.98 | 14.78 |   |
| 22     | 2002-<br>04-01<br>01:00:00 | 2.02 | 0.80 | 1.57 | 3.66 | 0.15 | 93.860001  | 101.300003 | 1.77 | 6.99  | 33.000000 | 1.48 | 1.98  |   |
| 24     | 2002-<br>04-01<br>01:00:00 | 3.02 | 1.04 | 2.43 | 5.38 | 0.21 | 103.699997 | 195.399994 | 2.15 | 14.04 | 37.310001 | 2.18 | 15.91 |   |
| 26     | 2002-<br>04-01<br>02:00:00 | 2.02 | 0.53 | 2.24 | 5.97 | 0.12 | 91.599998  | 136.199997 | 2.55 | 6.76  | 19.980000 | 2.45 | 10.15 | 2 |
|        |                            |      |      |      |      |      |            |            |      |       |           |      |       |   |
| 217269 | 2002-<br>10-31<br>23:00:00 | 1.24 | 0.28 | 1.26 | 2.64 | 0.11 | 60.080002  | 64.160004  | 1.23 | 15.64 | 13.910000 | 0.94 | 4.31  | 1 |
| 217271 | 2002-<br>10-31<br>23:00:00 | 3.13 | 1.30 | 2.93 | 7.90 | 0.28 | 84.779999  | 184.000000 | 2.23 | 7.94  | 32.529999 | 3.40 | 13.66 | 1 |
| 217273 | 2002-<br>11-01<br>00:00:00 | 2.50 | 0.97 | 3.63 | 9.95 | 0.19 | 61.759998  | 132.100006 | 4.46 | 5.45  | 29.500000 | 3.60 | 11.00 | 1 |
| 217293 | 2002-<br>11-01<br>00:00:00 | 1.37 | 0.58 | 1.17 | 2.37 | 0.15 | 65.389999  | 107.699997 | 1.30 | 9.11  | 9.640000  | 0.94 | 5.62  | 1 |
| 217295 | 2002-<br>11-01<br>00:00:00 | 3.11 | 1.17 | 3.00 | 7.77 | 0.26 | 80.110001  | 180.300003 | 2.25 | 7.38  | 29.240000 | 3.35 | 12.91 | 1 |

In [52]: df3=df3.drop(["date"],axis=1)

```
In [53]: sns.heatmap(df3.corr())
```

#### Out[53]: <AxesSubplot:>



```
In [54]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

### Linear

```
In [55]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[55]: LinearRegression()

In [ ]:

In [56]: prediction=li.predict(x\_test)
plt.scatter(y\_test,prediction)

Out[56]: <matplotlib.collections.PathCollection at 0x23d89e9d4f0>



In [57]: lis=li.score(x\_test,y\_test)

```
In [58]: df3["TCH"].value_counts()
Out[58]: 1.29
                  1318
         1.30
                  1253
         1.27
                  1244
         1.28
                  1232
         1.31
                  1187
         2.51
                     1
         4.66
         2.63
                     1
         3.19
                     1
         3.34
         Name: TCH, Length: 232, dtype: int64
In [59]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[59]: 1.0
                 21925
         2.0
                 10456
         Name: TCH, dtype: int64
In [ ]:
```

#### Lasso



```
In [62]: las=la.score(x_test,y_test)
```

## Ridge

```
In [63]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[63]: Ridge(alpha=1)

```
In [64]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[64]: <matplotlib.collections.PathCollection at 0x23d89f59250>



In [65]: rrs=rr.score(x\_test,y\_test)

## **ElasticNet**

```
In [66]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[66]: ElasticNet()

In [67]: prediction2=rr.predict(x\_test)
plt.scatter(y\_test,prediction2)

Out[67]: <matplotlib.collections.PathCollection at 0x23d88c175b0>



## Logistic

```
In [75]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
         df3["TCH"].value_counts()
Out[75]: Low
                  21925
                 10456
         High
         Name: TCH, dtype: int64
In [76]: | x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [77]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out[77]: LogisticRegression()
In [78]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[78]: <matplotlib.collections.PathCollection at 0x23d89413ca0>
          Low
                                                       High
              Low
In [80]: los=lo.score(x_test,y_test)
```

## **Random Forest**

```
In [81]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [82]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(g1)
In [83]: | x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [84]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[84]: RandomForestClassifier()
In [85]: parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n estimators':[10,20,30,40,50]
In [86]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid_search.fit(x_train,y_train)
Out[86]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [87]: rfcs=grid_search.best_score_
In [88]: rfc_best=grid_search.best_estimator_
In [89]: from sklearn.tree import plot tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],filled=
         \nclass = No')]
```

```
In [90]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.7234015760409874 Lasso: 0.5477773816966718 Ridge: 0.7234772839066235 ElasticNet: 0.6100678624001161 Logistic: 0.687596500257334 Random Forest: 0.8931439159975294

## **Best model is Random Forest**

In [ ]: