Computerphysik Programmiertutorial 7

Prof. Dr. Matteo Rizzi und Dr. Markus Schmitt - Institut für Theoretische Physik, Universität zu Köln

ILIAS: https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_3862489.html

Github: https://github.com/markusschmitt/compphys2021

Inhalt dieses Notebooks: Rechnungen geschickt sortieren, Arithmetische Intensität

Rechnungen geschickt sortieren

Die Rechenzeit verschiedener mathematisch identischer Operationen kann sehr unterschiedlich sein. Ein Beispiel ist die Multiplikation von drei oder mehr Matrizen.

Sehen wir uns das Produkt der Matrizen A (Größe $p_1 \times p_2$), B (Größe $p_2 \times p_3$) und C (Größe $p_3 \times p_4$) an:

```
In [1]:
         using BenchmarkTools
         # Abschalten der automatischen Parallelisierung von Julia
         using LinearAlgebra
         BLAS.set num threads(1);
         p=[70,99,123,4]
         A=rand(p[1],p[2])
         B=rand(p[2],p[3])
         C=rand(p[3],p[4]);
```

Messe die Zeit um das Produkt $A \cdot B \cdot C$ zu berechnen:

In [2]: @belapsed A * B * C

Out[2]: 0.00010275

Da Matrixmultiplikation assoziativ ist, gilt mathematisch

 $A \cdot B \cdot C = A \cdot (B \cdot C)$

Timing von $A \cdot (B \cdot C)$:

In [3]: @belapsed A * (B * C)

Out[3]: 1.3833e-5

Timing von $(A \cdot B) \cdot C$:

@belapsed (A * B) * C

Out[4]: 0.000101125

• $(A \cdot B) \cdot C$ kostet $p_1p_2p_3 + p_1p_3p_4$ Rechenoperationen

Wie viele Rechenoperationen werden jeweils durchgeführt? Multiplizieren einer $p \times q$ -Matrix mit einer $q \times r$ -Matrix braucht pqr Rechenoperationen.

- $A \cdot (B \cdot C)$ kostet $p_2p_3p_4 + p_1p_2p_4$ Rechenoperationen
- In [5]: $cost_ab_c(p) = p[1]*p[2]*p[3] + p[1]*p[3]*p[4]$ $cost_abc(p) = p[2]*p[3]*p[4] + p[1]*p[2]*p[4]$

Out[5]: cost_a_bc (generic function with 1 method)

Anzahl Rechenoperationen für $(A \cdot B) \cdot C$:

cost_ab_c(p)

Out[6]: 886830

Anzahl Rechenoperationen für $A \cdot (B \cdot C)$:

cost_a_bc(p)

Out[7]: 76428 Ergebnis: Der Faktor 10 im Laufzeitunterschied entspricht in etwa dem Unterschied in der Zahl an Rechenoperationen

Arithmetische Intensität

Neben den eigentlichen Rechnungen können auch Speicherzugriffe die Operation sein, die den Preis einer Rechnung bestimmen. Das Lesen und Schreiben von Daten im Speicher ist generell

teuer. Diese Operationen sind $\emph{mindestens}~10 imes$ langsamer als eine Fließkommarechnung. Die Geschwindigkeit einer Rechnung kann also generell entweder durch die Frequenz elementarer Rechenoperationen (compute-bound) oder durch die maximale Geschwindigkeit von

arithmetische Intensität ist definiert als die Zahl der Rechenoperationen pro Menge der gelesenen/geschriebenen Daten: $I_A = \frac{\# \text{ Rechenoperationen}}{\# \text{ gelesene/geschriebene Daten}} [1/\text{Byte}]$

Speicherzugriffen (compute-bound) beschränkt sein. Welcher der beiden Fälle auf einen bestimmten Algorithmus zutrifft wird durch die arithmetische Intensität angezeigt. Die

- Eine niedrige arithmetische Intensität bedeutet, dass viele Speicherzugriffe pro Rechnung ausgeführt werden der Algorithmus ist daher memory-bound.
- Beispiel: Matrix-Matrix Multiplikation

Die Multiplikation einer $p \times p$ -Matrix mit einer $p \times q$ -Matrix kostet $2p^2q$ elementare Rechenoperationen. Gleichzeitig müssen beide Matrizen aus dem Speicher ausgelesen werden und das Ergebnis muss im Speicher abgelegt werden. Das ergibt p^2+2pq Speicherzugriffe. Die arithmetische Intensität ist also

 $qs = [2^j for j in 1:14]$

 $I_A \propto rac{p^2q}{p^2+2pq}$

Wir nehmen an, dass
$$p\gg 1$$
. Daraus ergeben sich zwei interessante Grenzfälle, abhängig von q :

 $I_A \propto \left\{ egin{array}{ll} q & ext{if } q \ll p \ p & ext{if } p pprox q \end{array}
ight.$

Wir haben also geringe arithmetische Intensität, falls
$$q$$
 klein ist, und große arithmetische Intensität, falls p und q ähnlich groß sind.

Im folgenden Experiment messen wir die Rechenzeit von Matrix-Matrix Multiplikationen in Abhängigkeit von q: p=2000

A=rand(p,p) times=[] for q in qs B=rand(p,q)time=@elapsed A*B push!(times, time) println("\$q \$time") end 2 0.006569875 4 0.008245458 8 0.006154458

16 0.009916 32 0.015993125 64 0.030677667 128 0.057198833 256 0.113905 512 0.222318958 1024 0.451536917 2048 0.902223292 4096 1.839224375 8192 3.491661792 16384 6.8440245 In [9]: using PyPlot

plot(qs, times) xlabel(L"\$q\$") ylabel("time [s]");

In [10]:

In [8]:

 $I = I_A.(p,qs);$ # Arithmetische Intensität

Ergebnis: Bei großer arithmetischer Intensität saturiert die Performance wegen der beschränkten Rechenkapazität des Computers und der Algorithmus ist compute-bound. Im Bereich geringer arithmetischer Intensität ist der Algorithmus memory-bound und kann deshalb nicht die theoretisch verfügbaren Rechenoperationen ausnutzen.