1 - Árvore Binária

Matéria	Estrutura de Dados II
Arquivo	

Árvore Binária

- Cada nó tem no máximo 2 filhos.
- E o filho a esquerda é menor que o pai,
- o enquanto que o filho a direito é maior que o pai.
- Isso é bom por que ajuda na hora de pesquisar um item dentro dessa árvore

Àrvore Binária

- Lógica de Inserção
 - o Começa na raiz, se for menor, vai pra esquerda, se for maior, vai pra direita.

1 - Árvore Binária

Lógica de Remoção

- 1. Nó Folha
 - a. Faça com que o seu pai aponte para null.
 - i. 9

2. Nó com um filho.

a. Atualizar o pai desse nó, para que ele aponte para o seu neto diretamente.

i. 8

3. Nó com 2 filhos.

- a. Ache o maior item da sub-árvore à esquerda.
 - i. Ou seja, seu predecessor.
- b. Ache o menor item da sub-árvore à direita.
 - a. Ou seja, seu sucessor.
- c. Seja lá qual a escolha, o próximo passo é fazer com que o valor do item a ser excluído seja igual ao valor do seu predecessor ou sucessor.
- d. Depois, exclua o valor do predecessor ou sucessor e mantenha o novo valor onde está

a. 6

Nó excluído com sucesso.

• Atravessar uma árvore.

• Em ordem

• Esquerda, Raiz, Direita recursivamente.

2, 6, 8, 13, 15, 22

• Esse tipo de passagem vai ordenar todos os elementos de uma árvore.

Pré-Ordem

Raiz, Esquerda, Direita

10, 6, 2, 8, 15, 13, 22

• Pós-Ordem

■ Esquerda, Direita, Raiz.

2, 8, 6, 13, 22, 15, 10