Titanic Dataset - Exploratory Data Analysis (EDA)

1. Loading Data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="darkgrid")

Start coding or generate with AI.

df = sns.load_dataset('titanic')

df.head()
```

→		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	em
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Sc
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Sc
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Sc
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Sc

Next steps: Generate code with df View recommended plots New interactive sheet

2. Handling Missing Values

```
print("Shape of the Dataset: ", df.shape)
df.info()
df.isnull().sum()
```

```
Titanic_EDA.ipynb - Colab
→ Shape of the Dataset: (891, 15)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 15 columns):
                    Non-Null Count Dtype
    # Column
                      -----
    ---
         -----
                     891 non-null
     0
         survived
                                      int64
     1
         pclass
                     891 non-null
                                      int64
                     891 non-null
     2
         sex
                                      object
     3
                     714 non-null
                                     float64
         age
     4
         sibsp
                     891 non-null
                                      int64
     5
         parch
                     891 non-null
                                      int64
     6
         fare
                     891 non-null
                                      float64
     7
         embarked
                     889 non-null
                                      object
     8
                     891 non-null
         class
                                      category
     9
         who
                     891 non-null
                                      object
     10 adult_male 891 non-null
                                      bool
     11
         deck
                      203 non-null
                                      category
     12 embark_town 889 non-null
                                      object
     13 alive
                      891 non-null
                                      object
     14 alone
                     891 non-null
                                      bool
    dtypes: bool(2), category(2), float64(2), int64(4), object(5)
    memory usage: 80.7+ KB
       survived
                    0
        pclass
                    0
                    0
         sex
                  177
         age
        sibsp
                    0
        parch
                    0
                    0
         fare
      embarked
                    2
         class
                    0
         who
                    0
      adult_male
                    0
         deck
                  688
     embark_town
                    2
         alive
                    0
                    0
        alone
```

dtype: int64

```
df.dropna(subset=['embarked', 'embark_town'], inplace=True)
df['age'].fillna(df['age'].median(), inplace=True)
df.isnull().sum()
```

/tmp/ipython-input-8-2241881087.py:2: FutureWarning: A value is trying to be set on a copy of a Data The behavior will change in pandas 3.0. This inplace method will never work because the intermediate

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, in

df['age'].fillna(df['age'].median(), inplace=True)

ut[age].T	TTTHA (UT)	age].median(), inprace=	111
	0				
survived	0				
pclass	0				
sex	0				
age	0				
sibsp	0				
parch	0				
fare	0				
embarked	0				
class	0				
who	0				
adult_male	0				
deck	688				
embark_town	0				
alive	0				
alone	0				

dtype: int64

3. Visualizing Survival by Gender/Class

```
sns.countplot(x='survived', data=df)
plt.title('Survival Count (0 = Died, 1 = Survived)')
plt.show()
```


sns.countplot(x='sex', hue='survived',data=df)
plt.title('Survival by Gender')
plt.show()

sns.countplot(x='pclass', hue='survived', data=df)
plt.title('Survival by Passenger Class')
plt.show()

plt.figure(figsize=(10, 5))
sns.histplot(data=df, x='age', bins=30, kde=True)
plt.title('Age Distribution of Passengers')
plt.show()


```
plt.figure(figsize=(10, 5))
sns.boxplot(x='survived', y='age', data=df)
plt.title('Survival by Age (Box Plot)')
plt.xlabel('Survived (0 = No, 1 = Yes)')
plt.ylabel('Age')
plt.show()
```


80

Survived (0 = No, 1 = Yes)

Survival by Age (Box Plot)

```
plt.figure(figsize=(10, 5))
sns.boxplot(x='survived', y='fare', data=df)
plt.title('Survival by Fare Paid')
plt.xlabel('Survived (0 = No, 1 = Yes)')
plt.ylabel('Fare')
plt.show()
```


Survival by Fare Paid

4. Correlation Heatmap and Pairplot

```
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


sns.pairplot(df[['age', 'fare', 'pclass', 'survived']], hue='survived') plt.suptitle('Pairplot of Key Features', y=1.02) plt.show()

→

Pairplot of Key Features

