

MINIMIZATION OF DFA

MINIMIZATION OF DFA

- Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible.
- Two states A and B are said to be equivalent if $\delta(A,x) \to F$ and $\delta(B,x) \to F$ or $\delta(A,x) \not\to F$ and $\delta(B,x) \not\to F$
 - Where x is any input string
- If IXI = 0, then A and B are said to be 0 equivalent
- If IXI = 1, then A and B are said to be 1 equivalent
- If IXI = 2, then A and B are said to be 2 equivalent
- If IXI = n, then A and B are said to be n equivalent

	0	1
\rightarrow A	В	С
В	В	D
С	В	С
D	В	Е
* E	В	С

0 EQUIVALENCE:

 ${A,B,C,D} {E}$

1 EQUIVALENCE:

 ${A,B,C} {D} {E}$

2 EQUIVALENCE:

 ${A,C} {B} {D} {E}$

3 EQUIVALENCE:

 ${A,C} {B} {D} {E}$

	0	1
\rightarrow AC	В	AC
В	В	D
D	В	E
* E	В	AC

EXAMPLE

1.)

MORE EXAMPLE

2.)

	а	b
→1	2	6
2	7	3
* 3	1	3
4	3	7
5	8	6
6	3	7
7	7	5
8	7	3

MORE EXAMPLE

3.) multiple final states

MORE EXAMPLE

4.) unreachable state

