

Indian Association for the Cultivation of Science (Deemed to be University under the de novo category)

Master's/Integrated Master's-PhD Program/Integrated Bachelor's-Master's Program/PhD Course

Mid-Semester Examination-Autumn 2023

Subject: Introductory Classical and Quantum Mechanics Full marks: 25 Subject Code(s): PHS1101 Time allotted: 2 hr

Answer all questions

1. (a) Show that for any vector field \vec{A}

$$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{A} \right) = 0 \ .$$

(3 marks)

(b) Show that,

$$\nabla^2 \left(\frac{1}{|\vec{r} - \vec{r'}|} \right) = 0 \ ,$$

for, $|\vec{r} - \vec{r}'| \neq 0$. (2 marks)

- 2. (a) Find the expression for radial and cross-radial acceleration for motion in a plane. (2 marks)
 - (b) For motion in a central inverse square force $\vec{F} = (k/r^2)\hat{r}$, show that (i) angular momentum is conserved, and (ii) the path of a point mass m is given by,

$$\frac{1}{r} = -\frac{k}{h^2} + A\cos\left(\theta - \theta_0\right) .$$

Here, \hat{r} is the unit vector along the radial direction, h is angular momentum per unit mass, and A, θ_0 are constants. (3 marks)

- 3. (a) A particle of mass m moving in one dimension x, experiences restoring force and damping force k_1x and $k_2(dx/dt)$ respectively. Find the conditions on k_1 and k_2 , when the motion will be (i) damped oscillation, (ii) critically damped. (4 marks)
 - (b) Plot x versus t for the above two cases.

(1 mark)

- 4. (a) Define centre of mass for a n-particle system with mass m_1, m_2, \dots, m_n with coordinates $\vec{r}_1, \vec{r}_2, \dots, \vec{r}_n$, with respect to a given origin 'O'. Show that the position of the centre of mass is independent of the choice of origin. (3 marks)
 - (b) If the above masses follows Newton's laws of motion and exert forces on each other, such that \vec{f}_{ij} is the force on the *i*th particle by the *j*th particle, then show that the centre of mass remains static, though the particles will move due to inter-particle forces. (No Fext on system) (2 marks)
- 5. (a) What is meant by the work done by a force \vec{F} on a mass m? If the work is path independent, then show that $\vec{\nabla} \times \vec{F} = 0$. (3 marks)
 - (b) From the above define the potential of a force.

(2 marks)