- 1. Diseñe el circuito para que el MOSFET opere en saturación con V<sub>D</sub> polarizado a 1V del límite con la región de triodo, I<sub>D</sub>=1mA y V<sub>D</sub>=3V, para cada uno de estos dispositivos:
- a. MOSFET A con  $V_t$ =-1V y  $k_p$ =0,5mA/ $v^2$ .
- b. MOSFET B con  $V_t$ =-2V y  $k_p$ =1,25mA/ $v^2$ .

Use una corriente de 10µA en las resistencias R<sub>1</sub> y R<sub>2</sub>.

En cada caso, especifique los valores de los voltajes en los terminales del MOSFET y los valores de las cuatro resistencias.



- 2. El MOSFET en este amplificador fuente común  $V_t$ =-0,7V y  $V_A$  muy alto. Usted ya cuenta con los valores de  $R_S$  y  $R_D$ , calculados tal que  $I_D$ =0,3MA,  $V_{OV}$ =0,3V y  $V_o/V_{sig}$ =-10.
- a. Suponga una señal de entrada  $v_{\text{sig}}$  sinusoidal y encuentre su máxima amplitud posible para mantener el transistor en modo saturación. Encuentre también la amplitud correspondiente de la señal de salida  $v_{\text{o}}$ .
- b. Si para obtener una operación en AC muy lineal (pequeña señal), la amplitud de la señal de entrada  $v_{sig}$  se limita a 50mV, encuentre el valor hasta el que puede aumentar  $R_D$  mientras se mantiene la operación en modo saturación y encuentre el nuevo valor de la ganancia de voltaje  $v_o/v_{sig}$  en este caso.



- 3. El MOSFET en el circuito tiene  $V_t=0.8V$ ,  $k_n=5mA/V^2$  y  $V_A=40V$ .
- a. Despreciando el efecto de  $V_A$  (efecto Early), encuentre los valores de RS, RD y RG tal que ID=0,4mA, usando el mayor valor posible de RD mientras se tiene una máxima excursión de señal en el drenaje de  $\pm 0.8V$  y la resistencia de entrada del amplificador es  $10M\Omega$ .
- b. Encuentre los valores de g<sub>m</sub> y r<sub>o</sub>.
- c. Conecte la terminal Y a tierra; encuentre la ganancia de voltaje desde el terminal X (entrada) hasta el terminal Z (salida) con este último en circuito abierto (sin carga); encuentre la resistencia de salida de esta configuración.
- d. Conecte al terminal X una fuente de señal de voltaje con resistencia asociada de  $1M\Omega$ , conecte a tierra la terminal Z y conecte una resistencia de carga de  $10K\Omega$  al terminal Y. Encuentre la ganancia de voltaje desde la fuente de señal hasta la carga.

