JOIN OVER PATHS

- Recall: Given a program as a LTS $\Gamma_c \equiv (V, L, l_0, l_e, T)$, the assertion map $\mu: L \to \mathbb{P}(State)$ associates a set of states with every location.
 - $\mu(l)$ is the set of states reachable at l during any execution.
 - μ is also called the Concrete Join Over Paths (JOP) or the collecting semantics.
- Instead of operating over concrete states, we can also consider JOP over abstract states.

ABSTRACT TRANSFER FUNCTION

- Given a Galois Connection ($\mathbb{P}(State), \subseteq) \stackrel{\alpha}{\rightleftharpoons} (D, \leq)$, for every program command p, we can define the abstract transfer function \hat{f}_p (previously called the abstract strongest post-condition operator)
 - $\hat{f}_p: D \to D$.
- We can define the concrete transfer function as follows: $f_p(\sigma) = \{\sigma' | (\sigma,p) \hookrightarrow (\sigma',skip)\}.$

$$f_p(c) = \bigcup_{\sigma \in c} f_p(\sigma)$$

- Then, the abstract transfer function must be a consistent abstraction of the concrete transfer function:
 - $\forall d \in D . f_p(\gamma(d)) \subseteq \gamma(\hat{f}_p(d))$
 - Equivalently, $\forall c \in \mathbb{P}(State) . \hat{f}_p(\alpha(c)) \leq \alpha(f(c))$

- Consider the sign abstract domain, and the program command p: x := x+1.
 - $\hat{f}_p(+) = ???$

- Consider the sign abstract domain, and the program command p: x := x+1.
 - $\hat{f}_p(+) = +$

- Consider the sign abstract domain, and the program command p: x := x+1.
 - $\hat{f}_p(+) = +$
 - $\hat{f}_p(-) = ???$

- · Consider the sign abstract domain, and the program command p : x := x+1.

 - $\hat{f}_p(+) = +$ $\hat{f}_p(-) = + -$

• Consider the sign abstract domain, and the program command p: x := x+1.

•
$$\hat{f}_p(+) = +$$

•
$$\hat{f}_p(-) = +-$$

•
$$\hat{f}_p(+-) = +-$$

•
$$\hat{f}_p(\perp) = \perp$$

• See whether the condition $\forall d \in D . f_p(\gamma(d)) \subseteq \gamma(\hat{f}_p(d))$ is satisfied.

ABSTRACT JOP

- Instead of executing the program with concrete states, we execute the program with abstract state, and the abstract transfer function for each program command.
- Collect all the abstract states at each location, for every possible execution
 - Their join is the abstract JOP map, $\hat{\mu}: L \to D$.

EXAMPLE

$$\begin{array}{c} \mathbf{i} := \mathbf{0}; \\ \text{while}(\mathbf{i} < \mathbf{n}) \text{ do} \\ \mathbf{i} := \mathbf{i} + \mathbf{1}; \\ \\ \mathbf{i} := \mathbf{0} \\ \\ \mathbf{i} := \mathbf{i} + \mathbf{1} \end{array}$$

EXAMPLE - COLLECTING SEMANTICS

EXAMPLE - COLLECTING SEMANTICS

EXAMPLE - ABSTRACT JOP

EXAMPLE - ABSTRACT JOP

SOUNDNESS OF ABSTRACT INTERPRETATION DEFINITION

- A given abstract interpretation (consisting of the abstract domain (D, \leq) , (α, γ) , and abstract transfer functions \hat{F}_D) is sound, if for all $d_0 \in D$, assuming that $\hat{\mu}(l_0) = d_0$, the γ image of the abstract JOP $\hat{\mu}$ at all locations over approximates the collecting semantics μ , assuming that $\mu(l_0) = \gamma(d_0)$.
 - For all locations l, $\gamma(\hat{\mu}(l)) \supseteq \mu(l)$.

SOUNDNESS OF ABSTRACT INTERPRETATION

SOUNDNESS OF ABSTRACT INTERPRETATION SUFFICIENT CONDITIONS

- An abstract interpretation $(D, \leq, \alpha, \gamma, \hat{F}_D)$ is sound if:
 - (D, \leq) is complete lattice.

•
$$(\mathbb{P}(State), \subseteq) \stackrel{\alpha}{\underset{\gamma}{\rightleftharpoons}} (D, \le)$$

- All abstract transfer functions in \hat{F}_D are monotonic.
- Every abstract transfer function in \hat{F}_D is a consistent abstraction of the corresponding concrete transfer function.