Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_șt-nat*

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați primul termen al progresiei aritmetice $(a_n)_{n>1}$, știind că $a_2=3$ și $a_3=5$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 1$. Determinați numărul natural n pentru care f(n) = 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 9} = x 1$.
- **5p 4.** Determinați numărul de submulțimi cu trei elemente ale mulțimii $\{1,2,3,4\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(1,1), N(3,3), P(4,3) și Q(1,a), unde a este număr real. Determinați numărul real a, pentru care patrulaterul MNPQ este trapez cu bazele MN și PQ.
- **5p 6.** Calculați lungimea ipotenuzei BC a triunghiului dreptunghic ABC, în care AB = 5 și $\cos B = \frac{1}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, unde a și b sunt numere reale.
- **5p** a) Arătați că det $(A \cdot A) = a^2b^2$, pentru orice numere reale a și b.
- **5p b)** Se consideră matricea $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât $A \cdot X = X \cdot A$. Demonstrați că, dacă a și b sunt numere reale distincte, atunci există numerele reale x și t astfel încât $X = \begin{pmatrix} x & 0 \\ 0 & t \end{pmatrix}$.
- **5p** c) Pentru a = 4 și b = 0, determinați matricele $Y \in \mathcal{M}_2(\mathbb{R})$ pentru care $Y \cdot Y = A$.
 - **2.** Pe mulțimea $M = [0, +\infty)$ se definește legea de compoziție $x * y = x\sqrt{y+1} + y\sqrt{x+1}$.
- **5p a)** Arătați că 3*3=12.
- **5p** | **b**) Demonstrați că x*0=0*x=x, pentru orice $x \in M$.
- **5p** c) Determinați $x \in M$ pentru care $(x^2 + 2x) * 3 = 7$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = x \ln(x+1)$.
- **5p** a) Arătați că $f'(x) = \ln(x+1) + \frac{x}{x+1}, x \in (-1, +\infty)$.
- **5p b**) Arătați că funcția f este convexă.
- **5p** c) Se consideră funcția $g:(-1,0] \to \mathbb{R}$, $g(x)=(x+1)^x$. Demonstrați că, dacă $x_1, x_2 \in (-1,0]$ astfel încât $x_1 \le x_2$, atunci $g(x_1) \ge g(x_2)$.
 - **2.** Se consideră funcția $f:[0,1] \to \mathbb{R}$, $f(x)=1-x^3$.
- **5p** a) Arătați că $\int_{0}^{1} f(x) dx = \frac{3}{4}$.
- **5p b)** Arătați că $\int_{0}^{1} x^{2} (f(x))^{3} dx = \frac{1}{12}$.
- **5p** c) Demonstrați că $\int_{0}^{1} (f(x))^{n+1} dx \le \int_{0}^{1} (f(x))^{n} dx$, pentru orice număr natural nenul n.