On the distribution of the largest connected component size in random graphs with fixed edges set size

Robin Petit

March-April 2017

Contents

L	Introduction	1
	1.1 Definitions and preliminary results	1
	1.2 Objectives	
_	Results	3
	2.1 Examples	:

1 Introduction

1.1 Definitions and preliminary results

Let's consider $V = \{v_1, \dots, v_{|V|}\}$ a set of vertices. We denote by |V| the cardinality of the set V. Let's define the function:

$$X: \mathbb{N} \to \mathbb{N}: n \mapsto \frac{n(n-1)}{2}.$$

Definition 1.1. An undirected graph Γ is denoted $\Gamma(V, E)$ for V its vertices set, and E its edges set, with $E = \{e_1, \dots, e_{|E|}\}$ and $\forall i \in [1, |E|]: e_i = \{v_{i1}, v_{i2}\}$ for $1 \le i_1, i_2 \le |V|$.

Remark. |E| is usually denoted as m, and |V| is sometimes denoted as n. Both these numbers are (non-strictly) positive integers.

Definition 1.2. The set of all the existing graphs having given vertices set V is denoted by $\Gamma(V,\cdot)$. We denote $\Gamma_m(V,\cdot)$ the subset of $\Gamma(V,\cdot)$ such that |E|=m. Remark. We observe that:

$$\Gamma(V,\cdot) = \bigsqcup_{m \in \mathbb{N}} \Gamma_m(V,\cdot).$$

Definition 1.3. For every $n \in \mathbb{N}$, we define \mathcal{K}_n as the *complete graph* of size n. **Lemma 1.4.** For a graph $\Gamma(V, E)$, we have $|E| \leq X(|V|)$.

Proof. We know that $\Gamma(V, E) \leq \mathcal{K}_{|V|}$, and $\mathcal{K}_{|V|}$ has exactly X(V|) edges (vertex v_i is connected to vertices v_{i+1} to $v_{|V|}$, so the number of edges is equal to $\sum_{i=1}^{|V|} (|V| - i) = \sum_{i=0}^{|V|-1} i = X(|V|)$.

Lemma 1.5. For given vertices set V and fixed number of edges $m \in \mathbb{N}$, we have:

$$\left|\Gamma_m(V,\cdot)\right| = \begin{cases} \binom{X(|V|)}{m} & \text{if } m \leq X(|V|) \\ 0 & \text{else} \end{cases}.$$

Corollary 1.6. For given vertices set V, we have $|\Gamma(V,\cdot)| = 2^{X(|V|)}$.

Proof. Since $\Gamma(V,\cdot)$ is given by a disjoint union over m, its cardinality is equal to the sum of the individual cardinalities:

$$\left|\Gamma(V,\cdot)\right| = \sum_{m\in\mathbb{N}} \left|\Gamma_m(V,\cdot)\right| = \sum_{k=0}^{X(|V|)} \left|\Gamma_m(V,\cdot)\right| = \sum_{k=0}^{X(|V|)} \binom{X(|V|)}{m} = 2^{X(|V|)}.$$

Definition 1.7. A graph $\Gamma(V, E)$ is said to be connected if for each $v, w \in V$, there exists a path between v and w. We denote by $\chi(V, \cdot)$ the set of all connected graphs having vertices set V. Again, for $m \in \mathbb{N}$, we denote by $\chi_m(V, \cdot) \subset \chi(V, \cdot)$ the set of connected graphs having m edges. Remark. $\chi(V, \cdot) \subset \Gamma(V, \cdot)$, and:

$$\chi(V,\cdot) = \bigsqcup_{m \in \mathbb{N}} \chi_m(V,\cdot).$$

Lemma 1.8. For m < |V| or m > X(|V|), we have $|\chi_m(V, \cdot)| = 0$.

Definition 1.9. For every $W \in \mathcal{P}(V)$, we define $\Delta_W : \Gamma(V, \cdot) \to \Gamma(W, \cdot) : \Gamma(V, E) \mapsto \Gamma'(W, E')$ such that:

$$E' = \{ \{v_i, v_j\} \in E \text{ s.t.} v_i, v_j \in W \}.$$

Definition 1.10. We define the connected component of vertex $v_i \in V$ in graph $\Gamma(V, E)$ by the biggest subset (in the sense of inclusion) W of V such that $\Delta_W(\Gamma(V, E)) \in \chi(W, \cdot)$.

We then define the largest connected component of the graph $\Gamma(V, E)$ as:

$$\mathrm{LCC}(\Gamma(V,E)) \coloneqq \underset{\substack{W \in \mathcal{P}(W) \\ \Delta_W(\Gamma(V,E) \in \chi(W,\cdot)}}{\arg\max} |W| = \underset{W \in \mathcal{P}(V)}{\arg\max} |W| \, \mathbb{I}_{\left[\Delta_W(\Gamma(V,E) \in \chi(W,\cdot)\right]}.$$

The set $\Lambda_k^m(V,\cdot)$ is then the set of all graphs $\Gamma(V,E) \in \Gamma(V,\cdot)$, such that |E| = m and $|LCC(\Gamma(V,E))| = k$. Remark. Since $\Lambda_k(V,\cdot) = \bigsqcup_{m=0}^{X(|V|)} \Lambda_k^m(V,\cdot)$ and:

$$\Gamma(V,\cdot) = \bigsqcup_{k=1}^{|V|} \bigsqcup_{m=0}^{X(|V|)} \Lambda_k^m(V,\cdot),$$

we want to know what is $|\Lambda_k^m(V,\cdot)|$ equal to.

Definition 1.11. Let's declare a new random variable $\mathcal{G}(V)$, a graph uniformly distributed in $\Gamma(V, \cdot)$, thus such that:

$$\forall \Gamma(V, E) \in \Gamma(V, \cdot) : \mathbb{P}[\mathscr{G}(V) = \Gamma(V, E)] = \frac{1}{\left|\Gamma(V, \cdot)\right|} = 2^{-X(|V|)}.$$

1.2 Objectives

The objective now is to find an expression for $|\Lambda_k(V,\cdot)|$ since we are looking for:

$$\mathbb{P}[LCC(\mathscr{G}(V)) = k] = \frac{\left|\Lambda_k(V, \cdot)\right|}{\left|\Gamma(V, \cdot)\right|} = \frac{1}{\left|\Gamma(V, E)\right|} \sum_{m=0}^{X(|V|)} \left|\Lambda_k^m(V, \cdot)\right|.$$

Let's denote this value $p_k \coloneqq \mathbb{P}\left[\left|\mathrm{LCC}(\mathscr{G}(V)\right| = k\right].$

2 Results

The general idea in order to determine $|\Lambda_k^m(V,\cdot)|$ is to insert a connected component of size k on vertices set V, and then to tally the configurations placing m-k vertices without making a bigger connected component than the first one.

2.1 Examples

It is trivial to tell $|\Lambda_1^m(V,\cdot)| = \delta_0^m$, i.e. equals one if m = 0 and equals zero if m > 0: a graph having at least one edge, cannot have a largest connected component of size 1.

Lemma 2.1 (Upper boundary of edges amount for k=2). For $m>\frac{|V|}{2}$, we have $\Lambda_2^m(V,\cdot)=\emptyset$.

Proof. To have a largest connected component of size 2, each vertex must have degree 0 or 1. Take $m \in \mathbb{N}$ such that $m > \frac{V}{2}$. Take $\Gamma(V, E)$ such that |E| = m, and take $V_1 := \{v \in V \text{ s.t. deg}(v) \leq 1\} \subset V$. The restriction $\Gamma'(V_1, E') = \Delta_{V_1}(\Gamma(V, E))$.

Since in a graph, the sum of the degree of each vertex is equal to twice the amount of edges, when applied on Γ' , it follows that:

$$2|E'| = \sum_{v \in \mathcal{V}_1} \deg(v) \le \sum_{v \in \mathcal{V}_1} 1 = |\mathcal{V}_1|.$$

We then deduce that $|E'| \leq \frac{|\mathcal{V}_1|}{2} \leq \frac{|V|}{2}$. Thus \mathcal{V}_1 must be *strictly* included in V, and then there must exist $v \in V$ such that $\deg(v) \geq 2$. Thus:

$$\forall m > \frac{|V|}{2} : \forall \Gamma(V, E) \in \Gamma_m(V, \cdot) : \Gamma(V, E) \notin \Lambda_2^m(V, \cdot).$$

Lemma 2.2. For $\Gamma(V, E) \in \Gamma(V, \cdot)$ a graph and $k \in [1, |V|]$, if there exists a vertex $v \in V$ such that $\deg(v) = k$, then $|\operatorname{LCC}(\Gamma(V, E))| \ge k + 1$.

Proof. Take $v \in V$ such that $\deg(v) = k$. There exist $\{v_{i_1}, \ldots, v_{i_k}\} \subset V$ such that:

$$\forall j \in [1, k] : \{v, v_{i_i}\} \in E.$$

Thus $\{v, v_{i_1}, v_{i_k}\}$ is a connected component of size k+1. Thus the largest connected component must have size at least that big.

Proposition 2.3 (Upper boundary of edges amount generalized). For $k \in [1,|V|]$, and $m > \frac{|V|(k-1)}{2}$, we have $\Lambda_k^m(V,\cdot) = \emptyset$.

Proof. Take $m > \frac{(k-1)|V|}{2}$, and $\Gamma(V, E) \in \Gamma_m(V, \cdot)$. Take $\mathcal{V}_k \coloneqq \{v \in V \text{ s.t. deg}(v) \le k-1\}$. Let $\Gamma'(\mathcal{V}_k, E')$ be defined by $\Delta_{\mathcal{V}_k}(\Gamma(V, E))$. We know that:

$$2|E'| = \sum_{v \in \mathcal{V}_k} \deg(v) \le (k-1)|\mathcal{V}_k| \le (k-1)|V|.$$

We deduce that $|E'| \le \frac{(k-1)|V|}{2} < m = |E|$. Thus $|E| \ge |E'|$, and this implies that there exists $v \in V$ such that $\deg(v) \ge k$. By previous lemma, largest connected component size must be at least k+1.