from google.colab import files

uploaded = files.upload()

Choose files TITANIC.csv

• TITANIC.csv(text/csv) - 29474 bytes, last modified: 11/08/2023 - 100% done Saving TITANIC.csv to TITANIC.csv

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os

for dirname, _, filenames in os.walk('TITANIC.csv'):
 for filename in filenames:
 print(os.path.join(dirname, filename))

Load the dataset

tt = pd.read_csv('TITANIC.csv')

tt.head()

₽		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fai
	0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.829
	1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.000
											•

tt.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	En
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	
				Saether								

tt.shape

(418, 12)

tt.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	1	th
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000		
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188		
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576		
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000		
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800		
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200		
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000		
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200		

Visualization libraries
import plotly.express as px

import seaborn as sns

 $\verb|sns.countplot(x='Survived',data=tt)|\\$

<Axes: xlabel='Survived', ylabel='count'>

sns.countplot(x='Survived',hue='Sex',data=tt,palette='RdBu_r')

 $\verb|sns.countplot(x='Survived', hue='Pclass', data=tt, palette='rainbow')|\\$

<Axes: xlabel='Survived', ylabel='count'>

tt['Age'].hist(bins=30,color='lightblue')

sns.heatmap(tt.isnull(),yticklabels=False)

px.box(tt,x='Pclass',y='Age',color='Pclass')


```
# in the box plot age is factor of Pclass so we fill null values with meadian
tt.loc[(tt['Pclass'] == 1) & (tt['Age'].isnull()), 'Age'] = 42
tt.loc[(tt['Pclass'] == 2) & (tt['Age'].isnull()), 'Age'] = 26
tt.loc[(tt['Pclass'] == 3) & (tt['Age'].isnull()), 'Age'] = 24

tt=tt.drop(columns='Cabin')
tt= tt.dropna()
```

tt.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	S

sns.heatmap(tt.isnull(),yticklabels=False,cmap='viridis')


```
tt['Age'] = tt['Age'].astype(int)
tt['Fare'] = tt['Fare'].astype(int)

# asign values to object using dictionary
tt['Embarked'] = tt['Embarked'].map({'Q': 0,'S':1,'C':2}).astype(int)
tt['Sex'] = tt['Sex'].map( {'female': 1,'male':0}).astype(int)

#drop columns for using dataset
ttn = tt.drop(['PassengerId','Name','Ticket'],axis = 1, inplace= True)
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

tt.head()
```

```
Survived Pclass Sex Ape SihSn Parch Fare Embarked 
x= tt.drop(['Survived'], axis=1)
y= tt['Survived']
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=40)
clf = DecisionTreeClassifier()
clf.fit(x_train,y_train)

v DecisionTreeClassifier
DecisionTreeClassifier()

from sklearn.metrics import accuracy_score
#prediction on test data
y_pred = clf.predict(x_test)
#calculation
acc = accuracy_score(y_test,y_pred)
print('Accuracy:', acc)

Accuracy: 1.0
```

Colab paid products - Cancel contracts here

√ 0s completed at 11:03 AM

• ×