Теоркод без хуйни. Гайд на J

1 Введение в теорию чисел

В декодере нам предстоит жить в поле Галуа $GF(2^m)$. С полем GF(2) вы скорее всего уже знакомы, там у нас просто есть два числа: 0, 1, сложение работает как xor, а умножение как and.

Здесь получается более общая ситуация: в поле $GF(2^m)$ есть 2^m примитивных элементов: $\alpha^0, \alpha^1, ..., \alpha^{2^m-1}$. Это те самые коэффициенты которые стоят в многочленах, т.е какой-то многочлен в поле $GF(2^3)$ мог бы выглядеть как $x^3 + \alpha^7 x^2 + \alpha^1 x + \alpha^5$. (Напоминаю что сложение и умножение тут это одно и то же).

Что же такое эти альфы? Они порождаются порождающим многочленом p, который прибит к конкретному m. Про него можно сказать много интересного, но нам он дан в условии чтобы мы его сами не считали. Вооружившись им можно найти эти альфы следующим образом:

$$\alpha^0 = 1$$

$$\alpha^i = (\alpha^{i-1} \cdot x) \bmod p$$

Вычисление по модулю работает как обычное деление столбиком в ${\rm GF}(2),$ больше можно прочитать тут:

https://en.wikipedia.org/wiki/Finite_field_arithmetic

Там же есть и пример кода который позволяет делать эти вычисления по модулю. Обратите внимание что х который используется при подсчете этих альф не то же самое что х который в многочлене. На (рис. 1) - пример построения поля $GF(2^4)$. По сути, для того чтобы складывать и умножать эти альфы, нужно складывать (ксорить) битовые векторы в 3 колонке и умножать (столбиком) по модулю порождающего многочлена (все есть на википедии).

Таблица	6.1.	Поле	$GF(2^{4}),$	порожденное	многочленом
n(x) = 1	+x+x	4			

Степень	Многочлен	Последовательность
$-\infty$	0	0000
0	1	0001
1	x	0010
2	x^2	0100
3	x^3	1000
4	1+x	0011
5	$x + x^2$	0110
6	$x^2 + x^3$	1100
7	$1 + x + x^3$	1011
8	$1 + x^2$	0101
9	$x + x^3$	1010
10	$1 + x + x^2$	0111
11	$x + x^2 + x^3$	1110
12	$1 + x + x^2 + x^3$	1111
13	$1 + x^2 + x^3$	1101
14	$1 + x^3$	1001

Рис. 1: Построение $GF(2^4)$

2 Кодирование

Теперь можно пойти кодировать. Первое что для этого нужно - найти порождающий многочлен. Все просто (нет). Ищется он по следующей формуле, но все по порядку:

Определение 6.1. Циклический код длины n над GF(q) называется кодом B 4X c конструктивным расстоянием d, если для некоторого $b \ge 0$ порождающий многочлен кода равен

$$g(x) = HOK\{M_i(x), i = b, b+1, \dots, b+d-2\}.$$
 (6.11)

Рис. 2: Порождающий многочлен

b можно брать любым, но удобно брать b=1, а d – конструктивное расстояние, нам дано. Осталось понять что такое $M_i(x)$, а это - минимальные многочлены. Искать их можно вот так:

$$M_i(x) = \prod_{j \in C_i} (x - \alpha^j)$$

 C_i здесь - i-ый циклотомический класс. Что же это такое? Строится оно примерно так: берем какое-то число от 0 до 2^m-2 , умножаем на 2 и берем по модулю 2^m-1 пока можем. Все числа разделятся на какие-то классы. Проще всего понять на примере (рис. 3):

Пример 6.2. Циклотомическими классами по модулю 15 являются множества

 $C_0 = \{0\};$ $C_1 = \{1, 2, 4, 8\};$ $C_3 = \{3, 6, 12, 9\};$ $C_5 = \{5, 10\};$ $C_7 = \{7, 14, 13, 11\}.$

Рис. 3: Циклотомические классы для m=4

Значит, чтобы найти і-ый минимальный многочлен, нужно вычислить произведение, написанное выше для всех элементов α^j принадлежащему i-ому циклотомическому классу. (Нумеровать классы будем по минимальному элементу в нем для удобства). Реализовывать это не очень приятно, нужно реализовать по сути раскрывание скобок и преведение подобных. (Помните что альфа это числа, к иксам они не имеют отношение, операции над ними определены как я рассказывал в секции 1, и как по той ссылке в википедии). Есть теорема, которая говорит что в минимальном многочлене коэффициенты у вас будут либо 0 либо 1 после всех этих махинаций.

Но вернемся к построению порождающиего многочлена (рис. 2). Очевидно, для элементов одного циклотомического класса минимальные многочлены одинаковые. Более того, существует теорема, которая говорит, что для разных циклотомических классов, минимальные многочлены взаимнопросты, а значит наш НОК превращается в перемножение минимальных многочленов для классов от 1 до d-1. (В примере выше с n=15 и d=5, мы бы перемножили M_1 и M_3).

Дело за малым - закодировать. Пусть c(x) - искомый закодированный вектор, а v(x) - то, что нас попросили закодировать, тогда:

$$c(x) = v(x) \cdot x^r + (v(x) \mod g(x))$$

Где r = n - k

3 Декодирование

По сути, весь алгоритм есть в учебнике и на скрине ниже: В этом алгоритме

```
Алгоритм 7.2. Алгоритм Берлекэмпа-Месси
 Вычисление коэффициентов многочлена локаторов ошибок
 по алгоритму Берлекэмпа-Месси
 \mathbf{Input}: Синдромный многочлен S(x)
 Output: Многочлен локаторов \Lambda(x)
 1. Инициализация
 L=0;\,% Текущая длина регистра
 \Lambda(x)=1; % Многочлен локаторов
 B(x) = 1; \, \% Многочлен компенсации невязки
 2. Основной цикл
 for r = 1 to d - 1 do
     \Delta = \sum_{j=0}^L \Lambda_j S_{r-j}; % Невязка
     B(x) = xB(x); % Сдвиг
     if \Delta \neq 0 then
        % ЛРОС модифицируется
        T(x) = \Lambda(x) - \Delta B(x); % Вспомогательный многочлен
        if 2L \leq r-1 then
           % Длина увеличивается
            B(x) = \Delta^{-1}\Lambda(x);
           L = r - L;
        end
        \Lambda(x) = T(x);
    \mathbf{end}
 end
 3. Формирование результата
 if deg \Lambda(x) == L then
  | Многочлен локаторов = \Lambda(x);
 end
 _{
m else}
     Число ошибок больше t;
 end
```

Рис. 4: Месси занялся чем-то не тем

нужно быть очень аккуратно с индексами и выходами за границы массивов, но в целом он рабочий. За ним стоит очень много теории, с ней вы можете попытаться ознакомиться в учебнике, но вы ничего не поймете.

Нужно понять как по входному вектору получить синдромный многочлен и как по многочлену локаторов получить индексы, в которых произошла ошибка.

Про синдромы: всего их d-1 (от 1 до d-1). Считаются они подстановкой соответствующей альфы во входной многочлен (рис. 5). Считать это можно (и нужно) схемой Горнера. Можно и быстрее, но вряд ли нужно, зайдет и так.

Про места ошибок: проверить что ошибка произошла в і-ом символе

• Вычисление синдрома

- $m{\circ}$ Схема Горнера: $S_i=y(lpha^{b+i})=y_0+lpha^{b+i}(y_1+lpha^{b+i}(y_2+lpha^{b+i}(y_3+\dots))), 0\leq i<\delta$ Сложность $O(n\delta)$ операций
- Метод Герцеля: $r_i(x) \equiv y(x) \mod M_{\alpha^i}(x); \quad S_i = r_i(\alpha^i), \alpha \in GF(p^m)$ $M_{\alpha^i}(x) \in GF(p)[x]$ минимальный многочлен α^i . Деление на него требует только сложений. Минимальные многочлены многих α^i совпадают

Рис. 5: Вычисление синдромов

очень просто, надо просто проверить условие:

$$\Lambda(\alpha^{-i}) = 0$$

4 Интересные факты

- В команаде $Simulate\,a\,b\,c,\,b$ и c как в витерби, а a вероятность с которой надо инвертировать бит в сгенерированном векторе.
- Говорят, можно словить ТЛ если каждый раз умножать альфы тем алгосом который я кидал выше. Избежать этого можно предподсчитав таблицу умножнния.