- **1.1.** Пусть X нормированное пространство. Докажите, что операции сложения $X \times X \to X$ и умножения на число $\mathbb{K} \times X \to X$ непрерывны.
- **1.2.** Пусть X нормированное пространство и $X_0 \subseteq X$ векторное подпространство. Докажите, что его замыкание $\overline{X_0}$ тоже векторное подпространство в X.
- **1.3.** Пусть $p, q \in (1, +\infty)$, и пусть $\frac{1}{p} + \frac{1}{q} = 1$.
- 1) Докажите неравенство Юнга:

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q} \qquad (a, b \geqslant 0).$$

2) Из неравенства Юнга выведите неравенство Гёльдера:

$$\sum_{i=1}^{n} |x_i y_i| \leqslant ||x||_p ||y||_q \qquad (x, y \in \mathbb{K}^n).$$

3) Из неравенства Гёльдера выведите неравенство Минковского:

$$||x + y||_p \le ||x||_p + ||y||_p \qquad (x, y \in \mathbb{K}^n).$$

- **1.4.** Нарисуйте единичный шар на плоскости \mathbb{R}^2 , снабженной нормой $\|\cdot\|_p$, для различных $p \in [1, +\infty]$. Обратите внимание на случаи $p = 1, p = 2, p = \infty$. Что происходит с единичным шаром с ростом p?
- **1.5.** Пусть $1 \leqslant p \leqslant q \leqslant +\infty$.
- 1) Докажите, что $\|\cdot\|_q \leqslant \|\cdot\|_p$ на \mathbb{K}^n .
- 2) Докажите, что существует такая константа $C = C_{n,p,q} > 0$, что $\|\cdot\|_p \leqslant C \|\cdot\|_q$ на пространстве \mathbb{K}^n .
- 3) Можно ли эту константу выбрать не зависящей от n?
- 4) Найдите наименьшую константу $C_{n,p,q}$ с указанным свойством. Интерпретируйте ответ как норму некоторого оператора.
- **1.6.** Пусть c_{00} пространство всех финитных последовательностей (т.е. числовых последовательностей $x=(x_n)$, для каждой из которых существует такое $N\in\mathbb{N}$, что $x_n=0$ для всех n>N). Эквивалентны ли нормы $\|\cdot\|_p$ и $\|\cdot\|_q$ на c_{00} при $p\neq q$?
- **1.7.** Докажите, что последовательность $(x^{(k)})$ в пространстве \mathbb{K}^n сходится к вектору $x \in \mathbb{K}^n$ по норме $\|\cdot\|_p$ (где $1 \leq p \leq +\infty$) тогда и только тогда, когда она сходится к x покоординатно.
- **1.8.** Докажите, что c_0 замкнуто в ℓ^{∞} . Чему равно замыкание ℓ^p в ℓ^{∞} ?
- **1.9.** Пусть $1\leqslant p\leqslant q\leqslant \infty$. Докажите, что $\ell^p\subset \ell^q$, но $\ell^p\neq \ell^q$ при $p\neq q$. Чему равна норма оператора вложения ℓ^p в ℓ^q ?
- **1.10.** Пусть X множество. Докажите, что последовательность (f_n) в $\ell^{\infty}(X)$ сходится к $f \in \ell^{\infty}(X)$ по норме $\|\cdot\|_{\infty}$ тогда и только тогда, когда она сходится к f равномерно.
- **1.11.** Пусть X полунормированное пространство, и пусть $N = \{x \in X : \|x\| = 0\}$. Покажите, что формула

$$||x + N||^{\wedge} = ||x|| \qquad (x \in X)$$

корректно определяет норму на X/N. (Корректность в данном случае означает, что правая часть этой формулы зависит лишь от класса $x+N\in X/N$, а не от самого элемента $x\in X$).

- **1.12.** Пусть (X, μ) пространство с мерой, и пусть $p, q \in (1, +\infty)$ таковы, что $\frac{1}{p} + \frac{1}{q} = 1$.
 - 1) Докажите, что если $f \in \mathcal{L}^p(X,\mu)$ и $g \in \mathcal{L}^q(X,\mu)$, то функция fg интегрируема и справедливо неравенство Гёльдера

$$\int_X |fg| \, d\mu \leqslant ||f||_p ||g||_q.$$

2) Из неравенства Гёльдера выведите, что $\mathscr{L}^p(X,\mu)$ — векторное пространство, и что справедливо неравенство Минковского

$$||f + g||_p \le ||f||_p + ||g||_p$$
 $(f, g \in \mathcal{L}^p(X, \mu)).$

- **1.13.** Пусть $1 \leqslant p \leqslant q \leqslant +\infty$.
- 1) Докажите, что существует такая константа $C = C_{a,b,p,q} > 0$, что $\|\cdot\|_p \leqslant C \|\cdot\|_q$ на пространстве C[a,b].
- 2) Найдите наименьшую константу $C_{a,b,p,q}$ с указанным свойством. Интерпретируйте ответ как норму некоторого оператора.
- 3) Эквивалентны ли нормы $\|\cdot\|_p$ и $\|\cdot\|_q$ на C[a,b] при $p \neq q$?
- **1.14.** Проверьте, что измеримая функция существенно ограничена тогда и только тогда, когда она эквивалентна некоторой измеримой ограниченной функции.
- **1.15.** Пусть (X, μ) пространство с мерой, и пусть f неотрицательная существенно ограниченная функция на X. Напомним (см. лекцию), что ее существенная верхняя грань определяется формулой

$$\operatorname{ess\,sup} f = \inf \big\{ \sup_{x \in E} f(x) : E \subset X, \ \mu(X \setminus E) = 0 \big\}.$$

Докажите, что inf в этой формуле достигается. Как следствие, $\operatorname{ess\,sup} f = 0$ тогда и только тогда, когда f = 0 п.в.

- **1.16.** Пусть $f \in C[a,b]$. Докажите, что ess sup $|f| = \sup_{x \in [a,b]} |f(x)|$.
- **1.17.** Докажите, что $\mathscr{L}^{\infty}(X,\mu)$ векторное пространство, и что формула

$$||f|| = \operatorname{ess\,sup}|f|$$

задает полунорму на $\mathscr{L}^{\infty}(X,\mu)$.

- **1.18.** Пусть $\mu(X) < \infty$. Докажите, что $L^q(X, \mu) \subset L^p(X, \mu)$ при $1 \leqslant p \leqslant q \leqslant \infty$. Чему равна норма оператора вложения $L^q(X, \mu)$ в $L^p(X, \mu)$?
- **1.19.** Докажите, что $L^p[a,b] \neq L^q[a,b]$ при $p \neq q$.
- **1.20.** Пусть $X=\mathbb{N}$, и пусть μ «считающая» мера на σ -алгебре всех подмножеств \mathbb{N} , заданная формулой $\mu(A)=|A|$ (число элементов в A). Убедитесь, что $L^p(\mathbb{N},\mu)=\ell^p$ для всех $1\leqslant p\leqslant\infty$. Сопоставьте это наблюдение с результатом задачи 1.9 и убедитесь, что результат задачи 1.18 не переносится на случай, когда $\mu(X)=\infty$.
- **1.21.** Покажите, что $L^p(\mathbb{R}) \not\subset L^q(\mathbb{R})$ при $p \neq q$. Полезно сравнить результат этой задачами 1.9 и 1.18.

- **2.1.** Пусть $\lambda \in \ell^{\infty}$, и пусть $X = \ell^{p}$ или c_{0} . Напомним, что диагональный оператор $M_{\lambda} \colon X \to X$ переводит вектор $x \in X$ в вектор $(\lambda_{n}x_{n})_{n \in \mathbb{N}} \in X$, и что $\|M_{\lambda}\| = \sup_{n} |\lambda_{n}|$ (см. лекцию). При каких условиях оператор M_{λ} достигает нормы?
- **2.2.** Зафиксируем точку $t_0 \in [a,b]$ и рассмотрим линейный функционал

$$F: (C[a, b], \|\cdot\|_p) \to \mathbb{K}, \quad F(x) = x(t_0).$$

- 1) При каких $p \in [1, +\infty]$ функционал F ограничен? 2) Найдите его норму. 3) Достигает ли он нормы?
- **2.3.** Пусть $X = (C[a,b], \|\cdot\|_p)$ $(1 \leqslant p \leqslant +\infty)$, и пусть $f \in C[a,b]$. Оператор умножения $M_f \colon X \to X$ действует по правилу

$$M_f(g) = fg \qquad (f \in X).$$

- 1) Докажите, что M_f ограничен. 2) Вычислите его норму. 3) При каких условиях оператор M_f достигает нормы?
- **2.4.** Пусть (X, μ) пространство с мерой, и пусть $f: X \to \mathbb{K}$ существенно ограниченная измеримая функция. Зафиксируем $p \in [1, +\infty]$. Оператор умножения $M_f: L^p(X, \mu) \to L^p(X, \mu)$ действует по правилу

$$M_f(g) = fg$$
 $(f \in L^p(X, \mu)).$

- 1) Докажите, что M_f ограничен. 2) Вычислите его норму. 3) При каких условиях оператор M_f достигает нормы?
- **2.5.** Пусть $X = L^p[0,1]$ $(1 \le p \le +\infty)$. Оператор неопределенного интегрирования $T \colon X \to X$ действует по формуле

$$(Tf)(x) = \int_0^x f(t) dt \qquad (f \in X).$$

1) Докажите, что T ограничен. 2) Для p=1 и $p=\infty$ вычислите его норму. 3) Для тех же p выясните, достигает ли он нормы.

Анонс: для p=2 норма этого оператора равна $2/\pi$. В свое время мы это сможем доказать.

2.6. Пусть I = [a, b], и пусть $K \in C(I \times I)$. Интегральный оператор $T \colon C(I) \to C(I)$ задается формулой

$$(Tf)(x) = \int_a^b K(x, y) f(y) \, dy.$$

Докажите, что T действительно отображает C(I) в C(I), что он ограничен, и что $||T|| \leqslant ||K||_{\infty}$.

2.7. Пусть (X, μ) — пространство с мерой, и пусть $K \in L^2(X \times X, \mu \times \mu)$. Интегральный оператор Гильберта-Шмидта $T \colon L^2(X, \mu) \to L^2(X, \mu)$ задается формулой

$$(Tf)(x) = \int_X K(x, y) f(y) d\mu(y).$$

Докажите, что T действительно отображает $L^2(X,\mu)$ в $L^2(X,\mu)$, что он ограничен, и что $||T|| \le ||K||_2$.

2.8. Линейный функционал F на $(C[0,1],\|\cdot\|_{\infty})$ задан формулой

$$F(f) = 2f(0) - 3f(1) + \int_0^1 f(t) dt.$$

1) Докажите, что F ограничен. 2) Вычислите ||F||. 3) Достигает ли F нормы?

- **2.9.** Пусть X, Y нормированные пространства, причем X конечномерно. Докажите, что любой линейный оператор $T \colon X \to Y$ ограничен и достигает нормы.
- **2.10.** Пусть X, Y нормированные пространства. Напомним, что линейный оператор $T \colon X \to Y$ называется *коизометрией*, если он отображает открытый единичный шар пространства X на открытый единичный шар пространства Y.
- 1) Докажите, что если T отображает замкнутый единичный шар пространства X на замкнутый единичный шар пространства Y, то T коизометрия.
- 2) Верно ли обратное утверждение?
- **3)** Докажите, что инъективная коизометрия это то же самое, что изометрический изоморфизм.
- **2.11.** Пусть $\lambda \in \ell^{\infty}$, и пусть $X = \ell^{p}$ или c_{0} . При каких условиях на λ диагональный оператор $M_{\lambda} \colon X \to X$ 1) топологически инъективен; 2) открыт; 3) изометричен; 4) коизометричен?
- 2.12. Ответьте на те же четыре вопроса для оператора умножения из задачи 2.4.
- **2.13.** Постройте линейные изометрические вложения **1)** \mathbb{K}_p^n в $(C[a,b], \|\cdot\|_p)$, **2)** ℓ^{∞} в $C_b(\mathbb{R})$, **3)** c_0 в $(C[a,b], \|\cdot\|_{\infty})$.
- **2.14.** Докажите, что нормированное пространство сепарабельно тогда и только тогда, когда в нем есть плотное подпространство не более чем счетной размерности.
- **2.15.** Докажите, что пространства c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ при $p < \infty$ сепарабельны, а ℓ^∞ , $C_b(\mathbb{R})$, $L^\infty[a,b]$ и $L^\infty(\mathbb{R})$ несепарабельны.

В этом и последующих листках задачи, после номера которых стоит буква "b", являются бонусными. Это означает, что они не являются обязательными и не будут учитываться при выведении оценки за листки, а будут оцениваться отдельно в качестве дополнительных баллов.

- **3.1.** Пусть X нормированное пространство и $X_0 \subset X$ векторное подпространство. Докажите, что
- 1) факторполунорма на X/X_0 действительно является полунормой;
- **2)** топология на X/X_0 , порожденная факторполунормой, является фактортопологией топологии на X (т.е. множество $U \subset X/X_0$ открыто тогда и только тогда, когда его прообраз при факторотображении $Q: X \to X/X_0$ открыт в X).
- **3.2.** Пусть X нормированное пространство и $X_0 \subset X$ замкнутое векторное подпространство. Верно ли, что у любого вектора из X/X_0 есть представитель в X, имеющий ту же норму? Указание. Эта задача эквивалентна одной из задач листка 2 (какой?).
- **3.3.** Пусть (X, μ) пространство с мерой и B(X) пространство всех ограниченных измеримых функций на X, снабженное равномерной нормой. Постройте изометрический изоморфизм между $L^{\infty}(X, \mu)$ и некоторым факторпространством пространства B(X).
- **3.4.** Докажите, что нормированное пространство сепарабельно тогда и только тогда, когда в нем есть плотное векторное подпространство не более чем счетной размерности.
- **3.5.** Докажите, что пространства c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ при $p < \infty$ сепарабельны, а ℓ^∞ , $C_b(\mathbb{R})$, $L^\infty[a,b]$ и $L^\infty(\mathbb{R})$ несепарабельны.
- **3.6.** Докажите, что если фундаментальная последовательность в метрическом пространстве имеет сходящуюся подпоследовательность, то она сходится.
- **Определение 3.1.** Пусть X нормированное пространство. Говорят, что ряд $\sum_{n=1}^{\infty} x_n$ векторов из X абсолютно сходится, если сходится числовой ряд $\sum_{n=1}^{\infty} \|x_n\|$.
- **3.7.** Докажите, что нормированное пространство X полно тогда и только тогда, когда в нем каждый абсолютно сходящийся ряд сходится.
- **3.8.** Пусть $\{X_i : i \in I\}$ семейство нормированных пространств, и пусть X их ℓ^p -сумма (где $1 \leq p \leq \infty$). Докажите, что X полно тогда и только тогда, когда полны все пространства X_i .
- **3.9. 1)** Докажите, что пространство $(c_{00}, \|\cdot\|_p)$ неполно для любого $p \in [1, +\infty]$ и что пространство $(\ell^p, \|\cdot\|_q)$ неполно при q > p. **2)** Опишите пополнения этих пространств.
- **3.10. 1)** При $p < \infty$ предъявите фундаментальную последовательность в нормированном пространстве $(C[a,b],\|\cdot\|_p)$, не имеющую предела.
- 2) Опишите пополнение этого пространства.
- **3.11. 1)** Докажите полноту пространства $C^n[a,b]$ относительно нормы $||f|| = \max_{0 \le k \le n} ||f^{(k)}||_{\infty}$.
- 2) Полно ли это пространство относительно равномерной нормы? Если нет, то опишите его пополнение.
- **3.12.** Пусть (X, μ) пространство с мерой. Докажите, что пространство $L^{\infty}(X, \mu)$ полно.
- **3.13.** Докажите, что в банаховом пространстве любая убывающая последовательность $B_1 \supset B_2 \supset B_3 \supset \dots$ замкнутых шаров имеет непустое пересечение (даже если радиусы шаров не стремятся к нулю).

В дальнейшем через Norm обозначается категория, объекты которой — нормированные пространства, а морфизмы — ограниченные линейные операторы. Через $Norm_1$ будет обозначаться категория с теми же объектами, что и в Norm, морфизмы которой — линейные Cooldongleright (т.е. линейные операторы нормы ≤ 1). Полная подкатегория в Norm (соответственно, $Norm_1$), состоящая из банаховых пространств, будет обозначаться через Cooldongleright (соответственно, Cooldongleright).

- **3.14-b. 1)** Докажите, что в *Norm* и $\mathcal{B}an$ любой конечный набор объектов обладает произведением и копроизведением.
- **2)** Докажите, что в $\mathcal{N}orm_1$ и $\mathcal{B}an_1$ любой набор объектов обладает произведением и копроизведением.
- **3)** Верно ли предыдущее утверждение для категорий *Norm* и/или *Ban*?
- **3.15-b.** Пусть X нормированное пространство и $X_0 \subset X$ замкнутое векторное подпространство. Докажите, что факторпространство X/X_0 вместе с факторотображением $Q\colon X\to X/X_0$ это коядро вложения $X_0\hookrightarrow X$ (в $\mathscr{N}orm$ и в $\mathscr{N}orm_1$, а в случае полного X в $\mathscr{B}an$ и $\mathscr{B}an_1$).
- **3.16-b.** Пусть X,Y нормированные пространства. Докажите, что морфизм $T\colon X\to Y$ является
- 1) изоморфизмом в Norm (или Ban) \iff он топологический изоморфизм;
- **2)** изоморфизмом в $Norm_1$ (или $\mathcal{B}an_1$) \iff он изометрический изоморфизм;
- 3) мономорфизмом в Norm, $Norm_1$, Ban или $Ban_1 \iff$ он инъективен;
- **4)** эпиморфизмом в $Norm_1$, San или $San_1 \iff$ он имеет плотный образ;
- **5)** ядром в Norm или $Ban \iff$ он топологически инъективен и (в случае категории Norm) имеет замкнутый образ;
- **6)** ядром в $Norm_1$ или $\mathcal{B}an_1 \iff$ он изометричен и (в случае категории $Norm_1$) имеет замкнутый образ;
- 7) коядром в Norm или $Ban \iff$ он открыт;
- 8) коядром в $\mathcal{N}orm_1$ или $\mathcal{B}an_1 \iff$ он коизометричен.

4.1. Пусть f — полуторалинейная форма на векторном пространстве H. Зафиксируем произвольное $n \in \mathbb{N}, \ n \geqslant 3$, и пусть $\zeta \in \mathbb{C}$ — корень из 1 степени $n, \ \zeta \neq \pm 1$. Докажите mosedecmeo nonspusayuu:

$$f(x,y) = \frac{1}{n} \sum_{k=0}^{n-1} \zeta^k f(x + \zeta^k y, x + \zeta^k y).$$

- **4.2.** Пусть H предгильбертово пространство. Докажите, что скалярное произведение непрерывно как функция на $H \times H$.
- **4.3.** Докажите, что в любом предгильбертовом пространстве справедливо moж decm so napanne nor panne nor panne

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

- **4.4.** Покажите, что норма на пространствах $(\mathbb{C}^n, \|\cdot\|_p)$, ℓ^p , $(C[a,b], \|\cdot\|_p)$, $L^p(X,\mu)$ (где (X,μ) пространство с мерой, содержащее хотя бы два непустых измеримых подмножества) при $p \neq 2$ и n > 1 не порождается никаким скалярным произведением.
- **4.5.** Придумайте обобщение тождества параллелограмма на случай n векторов.
- **4.6.** Покажите, что норма на пространствах ℓ^p , $(C[a,b], \|\cdot\|_p)$, $L^p(X,\mu)$ (где (X,μ) пространство с мерой, содержащее бесконечно много измеримых подмножеств) при $p \neq 2$ не эквивалентна никакой норме, порожденной скалярным произведением.
- **4.7-b** (*теорема фон Нойманна-Йордана*). Пусть H нормированное пространство, в котором выполняется тождество параллелограмма. Покажите, что формула

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2} \qquad (x, y \in H)$$

задает скалярное произведение на H, и что норма, порожденная этим скалярным произведением, совпадает с исходной.

- **4.8. 1)** Постройте пример предгильбертова пространства H и замкнутого векторного подпространства $H_0 \subset H$, для которых $H_0 \oplus H_0^{\perp} \neq H$.
- **2)** Покажите, что такое подпространство H_0 есть в любом неполном предгильбертовом пространстве.
- **4.9.** Постройте унитарный изоморфизм гильбертовых пространств $L^2[a,b]$ и $L^2[0,1]$.
- **4.10.** Докажите, что пополнение предгильбертова пространства является гильбертовым пространством.
- 4.11. Докажите, что факторпространство (пред)гильбертова пространства по замкнутому векторному подпространству само является (пред)гильбертовым пространством.
- **4.12.** Система Уолша это система функций на [0,1], полученная из системы Радемахера $\{r_n\}_{n\in\mathbb{N}}$ добавлением функции $r_0\equiv 1$ и всевозможных произведений вида $r_{i_1}\cdots r_{i_n}$, где $i_1<\ldots< i_n$. Докажите, что система Уолша ортонормированный базис в $L^2[0,1]$.

4.13. $Cucmema\ Xaapa$ — это система функций на [0,1], задаваемых формулами

$$\chi_k^{(i)}(t) = \begin{cases} 2^{k/2} & \text{при } \frac{2i-2}{2^{k+1}} \leqslant t < \frac{2i-1}{2^{k+1}}, \\ -2^{k/2} & \text{при } \frac{2i-1}{2^{k+1}} \leqslant t < \frac{2i}{2^{k+1}}, \\ 0 & \text{иначе} \end{cases}$$

 $(k=0,1,\ldots;\ i=1,\ldots,2^k).$ Докажите, что система Хаара — ортонормированный базис в $L^2[0,1].$

- **4.14.** Докажите, что ортонормированная система в сепарабельном предгильбертовом пространстве не более чем счетна.
- **4.15.** Докажите, что пространство $C_c^{\infty}(a,b)$ гладких функций на интервале (a,b) с компактным носителем плотно в $L^p[a,b]$ для всех $1 \leqslant p < \infty$.

Определение 4.1. Пусть $f \in L^2[a,b]$. Функция $f' \in L^2[a,b]$ называется обобщенной производной функции $f \in L^2[a,b]$, если

$$\int_{a}^{b} f'\varphi \, dt = -\int_{a}^{b} f\varphi' dt$$

для всех $\varphi \in C_c^{\infty}(a,b)$.

- **4.16.** Докажите, что если $f \in L^2[a,b]$ обладает обобщенной производной f', то f' единственна (как элемент пространства $L^2[a,b]$).
- **4.17.** Пространство Соболева $W^{1,2}(a,b)$ определяется как множество всех $f \in L^2[a,b]$, обладающих обобщенной производной $f' \in L^2[a,b]$. Докажите, что $W^{1,2}(a,b)$ гильбертово пространство относительно скалярного произведения

$$\langle f, g \rangle = \int_a^b (f\bar{g} + f'\bar{g}') dt.$$

- **4.18. 1)** Пусть (e_n) стандартный ортонормированный базис в пространстве ℓ^2 . Положим $x = \sum_n n^{-1} e_n$ и $H_0 = \mathrm{span}\{x, e_2, e_3, \ldots\}$. Покажите, что (e_2, e_3, \ldots) максимальная ортонормированная система в H_0 , не являющаяся тотальной.
- 2) Докажите, что в любом неполном сепарабельном предгильбертовом пространстве существует максимальная ортонормированная система, не являющаяся тотальной.
- **4.19.** Докажите, что ортонормированная система (e_i) в предгильбертовом пространстве H тотальна тогда и только тогда, когда для каждого $x \in H$ выполнено равенство Парсеваля $||x||^2 = \sum_i |\langle x, e_i \rangle|^2$.
- **4.20-b. 1)** Постройте пример предгильбертова пространства, чья гильбертова размерность строго меньше, чем у его пополнения.
- 2) Постройте пример предгильбертова пространства, в котором нет ортонормированного базиса.

- **5.1.** Напомним (см. лекцию), что если $1 < p, q < +\infty$ и 1/p + 1/q = 1, то существует изометрический изоморфизм $\ell^q \xrightarrow{\sim} (\ell^p)^*$. Следуя той же схеме, постройте изометрические изоморфизмы 1) $\ell^\infty \xrightarrow{\sim} (\ell^1)^*$; 2) $\ell^1 \xrightarrow{\sim} (c_0)^*$.
- **5.2.** Обозначим любой из трех изоморфизмов, упомянутых в предыдущей задаче, через α . Когда функционал $F_a = \alpha(a)$ достигает нормы?
- **5.3.** Можно ли тем же способом, что и в задаче 5.1, построить изометрический изоморфизм $\ell^1 \cong (\ell^\infty)^*$?
- 5.4. Опишите сопряженные к следующим операторам:
- 1) диагональный оператор в ℓ^p (где $1 \leq p < \infty$) или в c_0 ;
- **2)** оператор правого сдвига в ℓ^p (где $1 \leq p < \infty$) или в c_0 ;
- **3)** оператор двустороннего сдвига в $\ell^p(\mathbb{Z})$ (где $1 \leq p < \infty$) или в $c_0(\mathbb{Z})$;
- 4) оператор неопределенного интегрирования в $L^2[0,1]$ (см. задачу 2.5);
- **5)** интегральный оператор Гильберта–Шмидта в $L^2(X,\mu)$ (см. задачу 2.7).
- **5.5. 1)** Докажите, что линейный функционал на нормированном пространстве ограничен тогда и только тогда, когда его ядро замкнуто. **2)** Верно ли аналогичное утверждение для линейных операторов?
- **5.6.** Докажите, что на любом бесконечномерном нормированном пространстве существует разрывный линейный функционал.

Указание: воспользуйтесь тем, что в любом векторном пространстве есть алгебраический базис (т.е. максимальное линейно независимое подмножество).

- **5.7.** Пусть $X = \mathbb{R}_p^2$ плоскость, снабженная нормой $\|\cdot\|_p$, и пусть $X_0 = \{(x,0) : x \in \mathbb{R}\} \subset X$ «ось абсцисс». Зададим функционал $f_0 \colon X_0 \to \mathbb{R}$ формулой $f_0(x,0) = x$. Ясно, что $\|f_0\| = 1$. Сколько существует линейных функционалов на X, продолжающих f_0 и имеющих норму 1? (Рассмотрите всевозможные $p \in [1, +\infty]$.)
- **5.8.** Пусть X нормированное пространство.
- 1) Докажите, что если X^* сепарабельно, то и X сепарабельно.
- 2) Верно ли обратное?
- 3) Покажите, что не существует топологического изоморфизма между $(\ell^{\infty})^*$ и ℓ^1 .
- **5.9-b.** Докажите, что c_0 не изоморфно сопряженному ни к какому нормированному пространству.
- **5.10-b.** Пусть (X, μ) пространство с мерой и $1 < p, q < \infty, 1/p + 1/q = 1$.
- 1) Постройте изометрический изоморфизм $L^p(X,\mu)^* \cong L^q(X,\mu)$.
- **2)** В предположении, что μ σ -конечна, постройте изометрический изоморфизм $L^1(X,\mu)^* \cong L^\infty(X,\mu)$.

Указание. Отображение $L^q(X,\mu) \to L^p(X,\mu)^*$ строится так же, как в случае $X = \mathbb{N}$ (см. лекцию). Для доказательства его сюръективности воспользуйтесь теоремой Радона–Никодима.