Markov Decision Processes, Reinforcement Learning and Policy Reuse

Manuela Veloso
Co-instructor: Pradeep Ravikumar
Thanks to past instructors

Machine Learning April 23-25, 2018

Readings:

- Reinforcement Learning: An Introduction, R. Sutton and A. Barto
- Probabilistic policy reuse in a reinforcement learning agent, Fernando Fernandez and Manuela Veloso. In *Proceedings of AAMAS'06.* (Thanks to Fernando Fernandez)

Markov Models

	Passive	Controlled
Fully Observable	Markov Systems with Rewards	MDP
Hidden State	НММ	POMDP
Time Dependent	Semi-Markov	SMDP

Example – Markov System with Reward

- States
- Rewards in states
- Probabilistic transitions between states
- Markov: transitions only depend on current state

Markov Systems with Rewards

- Finite set of n states, s_i
- Probabilistic state matrix, P, p_{ij}
- "Goal achievement" Reward for each state, r_i
- Discount factor γ
- Process/observation:
 - Assume start state s_i
 - Receive immediate reward r_i
 - Move, or observe a move, randomly to a new state according to the probability transition matrix
 - Future rewards (of next state) are discounted by γ

Solving a Markov System with Rewards

• $V^*(s_i)$ - expected discounted sum of future rewards starting in state s_i

•
$$V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$$

Value Iteration to Solve a Markov System with Rewards

- $V^1(s_i)$ expected discounted sum of future rewards starting in state s_i for one step.
- $V^2(s_i)$ expected discounted sum of future rewards starting in state s_i for two steps.

• ...

- $V^k(s_i)$ expected discounted sum of future rewards starting in state s_i for k steps.
- As $k \to \infty V^k(s_i) \to V^*(s_i)$
- Stop when difference of k + 1 and k values is smaller than some \in .

3-State Example

3-State Example: Values $\gamma = 0.5$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.0	-1.0	-10.0
3	5.0	-1.25	-10.75
4	4.9375	-1.4375	-11.0
5	4.875	-1.515625	-11.109375
6	4.8398437	-1.5585937	-11.15625
7	4.8203125	-1.5791016	-11.178711
8	4.8103027	-1.5895996	-11.189453
9	4.805176	-1.5947876	-11.194763
10	4.802597	-1.5973969	-11.197388
11	4.8013	-1.5986977	-11.198696
12	4.8006506	-1.599349	-11.199348
13	4.8003254	-1.5996745	-11.199675
14	4.800163	-1.5998373	-11.199837
15	4.8000813	-1.5999185	-11.199919

3-State Example: Values $\gamma = 0.9$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.8	-1.8	-11.6
3	5.8	-2.6100001	-14.030001
4	5.4355	-3.7035	-15.488001
5	4.7794	-4.5236254	-16.636175
6	4.1150985	-5.335549	-17.521912
7	3.4507973	-6.0330653	-18.285858
8	2.8379793	-6.6757774	-18.943516
9	2.272991	-7.247492	-19.528683
50	-2.8152928	-12.345073	-24.633476
51	-2.8221645	-12.351946	-24.640347
52	-2.8283496	-12.3581295	-24.646532
86	-2.882461	-12.412242	-24.700644
87	-2.882616	-12.412397	-24.700798
88	-2.8827558	-12.412536	-24.70094

3-State Example: Values $\gamma = 0.2$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	4.4	-0.4	-8.8
3	4.4	-0.44000003	-8.92
4	4.396	-0.452	-8.936
5	4.3944	-0.454	-8.9388
6	4.39404	-0.45443997	-8.93928
7	4.39396	-0.45452395	-8.939372
8	4.393944	-0.4545412	-8.939389
9	4.3939404	-0.45454454	-8.939393
10	4.3939395	-0.45454526	-8.939394
11	4.3939395	-0.45454547	-8.939394
12	4.3939395	-0.45454547	-8.939394

Markov Decision Processes

- Finite set of states, $S_1, ..., S_n$
- Finite set of actions, a_1, \dots, a_m
- Probabilistic state, action transitions:

$$p_{ij}^{k} = \text{prob} \left(\text{next} = s_{j} \mid \text{current} = s_{i} \text{ and take action } a_{k} \right)$$

- Markov assumption: State transition function only dependent on current state, not on the "history" of how the state was reached.
- Reward for each state, r₁,..., r_n
- Process:
 - Start in state s_i
 - Receive immediate reward r_i
 - Choose action $a_k \in A$
 - Change to state s_j with probability p_{ij}^k .
 - Discount future réwards

Nondeterministic Example

Reward and discount factor to be decided. Note the need to have a finite set of states and actions. Note the need to have all transition probabilties.

Solving an MDP

- Find an action to apply to each state.
- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Value Iteration

- $V^*(s_i)$ expected discounted future rewards, if we start from state s_i and we follow the optimal policy.
- Compute V* with value iteration:
 - $-V^k(s_i)$ = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_i) = \max_{k} \{r_i + \gamma \sum_{j=1}^{N} p_{ij}^k V^n(s_j)\}$$

Dynamic programming

Policy Iteration

- Start with some policy $\pi_0(s_i)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to the current policy.
- Update policy:

$$\pi_{k+1}(s_i) = \operatorname{arg\,max}_a \{r_i + \gamma \sum_i p_{ij}^a V^{\pi_k}(s_j)\}$$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Nondeterministic Example

Nondeterministic Example

 $\pi^*(s) = D$, for any s = S1, S2, S3, and S4, $\gamma = 0.9$.

```
V^*(S2) = r(S2, D) + 0.9 (1.0 V^*(S2))
V*(S2) = 100 + 0.9 V*(S2)
V*(S2) = 1000.
V^*(S1) = r(S1, D) + 0.9 (1.0 V^*(S2))
V*(S1) = 0 + 0.9 \times 1000
V*(S1) = 900.
V*(S3) = r(S3, D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3))
V*(S3) = 0 + 0.9 (0.9 \times 1000 + 0.1 V*(S3))
V*(S3) = 81000/91.
V^*(S4) = r(S4, D) + 0.9 (0.9 V^*(S2) + 0.1 V^*(S4))
V^*(S4) = 40 + 0.9 (0.9 \times 1000 + 0.1 V^*(S4))
V*(S4) = 85000/91.
```

Markov Models

	Passive	Controlled
Fully Observable	Markov Systems with Rewards	MDP
Hidden State	НММ	POMDP
Time Dependent	Semi-Markov	SMDP

Tradeoffs

MDPs

- + Tractable to solve
- + Relatively easy to specify
- Assumes perfect knowledge of state

POMDPs

- + Treats all sources of uncertainty uniformly
- + Allows for taking actions that gain information
- Difficult to specify all the conditional probabilities
- Hugely intractable to solve optimally

SMDPs

- + General distributions for action durations
- Few good solution algorithms

Learning

- Learning from experience
- Supervised learning
 - Labeled examples
- Reward/reinforcement
 - Something good/bad (positive/negative reward) happens
 - An agent gets reward as part of the "input" percept, but it is "programmed" to understand it as reward.
 - Reinforcement extensively studied by animal psychologists.

Reinforcement Learning

- The problem of getting an agent to act in the world so as to maximize its rewards.
- Teaching a dog a new trick:
 - you cannot tell it what to do,
 - but you can reward/punish it if it does the right/wrong thing.
 - Learning: to figure out what it did that made it get the reward/ punishment: the credit assignment problem.
- RL: a similar method to train computers to do many tasks.

Reinforcement Learning Task

- Assume the world is a Markov Decision Process
 - States and actions known
 - Transitions and rewards unknown
 - Full observability
- Objective
 - Learn action policy $\pi: S \to A$
 - Maximize expected reward

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$$

from any starting state in S.

• $0 \le \gamma < 1$, discount factor for future rewards

Reinforcement Learning Problem

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Agent sees the state, selects and action, and gets reward

Goal: Learn to choose actions that maximize

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$

Online Learning Approaches

- Capabilities
 - Execute actions in world
 - Observe state of world

- Two Learning Approaches
 - Model-based
 - Model-free

Model-Based Reinforcement Learning

- Approach
 - Learn the MDP
 - Solve the MDP to determine optimal policy
- Appropriate when model is unknown, but small enough to solve feasibly

Learning the MDP

- Estimate the rewards and transition distributions
 - Try every action some number of times
 - Keep counts (frequentist approach)
 - $R(s,a) = R_s^a/N_s^a$
 - $T(s',a,s) = N_{s,s'}^a/N_s^a$
 - Solve using value or policy iteration
- Iterative Learning and Action
 - Maintain statistics incrementally
 - Solve the model periodically

Model-Free Reinforcement Learning

- Learn policy mapping *directly*
- Appropriate when model is too large to store, solve, or learn
 - Do not need to try every state/action in order to get good policy
 - Converges to optimal policy

Value Function

• For each possible policy π , define an *evaluation* function over states

$$V^{\pi}(s) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where $r_t, r_{t+1},...$ are generated by following policy π starting at state s $\pi^* \equiv \underset{\pi}{\operatorname{argmax}} V^{\pi}(s), (\forall s)$

• Learning task: Learn OPTIMAL policy

Learn Value Function

- Learn the evaluation function $V^{\pi*}$ (i.e. V^*)
- Select the optimal action from any state s, i.e., have an optimal policy, by using V* with one step lookahead:

$$\pi^*(s) = \underset{a}{\operatorname{arg\,max}} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

But reward and transition functions are unknown

Q Function

• Define new function very similar to V^*

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

Learn *Q* function – *Q*-learning

• If agent learns Q, it can choose optimal action even without knowing δ or r

$$\pi^*(s) = \underset{a}{\operatorname{arg\,max}} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

$$\pi^*(s) = \operatorname{arg\,max} Q(s, a)$$

Q-Learning

Q and V^* :

$$V^*(s) = \max_{a'} Q(s, a')$$

We can write *Q* recursively:

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^* (\delta(s_t, a_t))$$

$$= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

Q-learning actively generates examples. It "processes" examples by updating its Q values. While learning, Q values are approximations.

Training Rule to Learn Q (Deterministic Example)

Let Q denote current approximation to Q.

Then Q-learning uses the following training rule:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is the state resulting from applying action a in state s, and r is the reward that is returned.

Deterministic Case – Example

Deterministic Case – Example

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

$$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$$

$$\leftarrow 90$$

Q Learning Iterations

Start at top left corner with fixed policy – clockwise Initially Q(s,a) = 0; $\gamma = 0.8$

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

Q (s1, E)

Q (s2, E)

Q (s3, S)

Q(s4, W)

Q Learning Iterations

Starts at top left corner with fixed policy – clockwise Initially Q(s,a) = 0; $\gamma = 0.8$

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

Q(s1,E)	Q(\$2,E)	Q(s3,S)	Q(s4,W)
0	0	0	$r + \gamma \max{Q(s5,loop)} =$
			10 + 0.8 . 0 = 10
0	0	$r + \gamma \max{Q(s4,W),Q(s4,N)} =$	
		0 + 0.8 max{ 10,0}= 8	10
0	$r + \gamma \max{Q(s3,W),Q(s3,S)} =$		
	$0 + 0.8 \max\{0.8\} = 6.4$	8	10

Nondeterministic Case

- Q learning in nondeterministic worlds
 - Redefine V, Q by taking expected values:

$$V^{\pi}(s) \equiv E\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots\right]$$
$$\equiv E\left[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}\right]$$

$$Q(s,a) = E[r(s,a) + \gamma V^*(\delta(s,a))]$$

Nondeterministic Case

• Q learning training rule:

$$\hat{Q}_{n}(s,a) \leftarrow (1-\alpha_{n})\hat{Q}_{n-1}(s,a) +$$

$$\alpha_{n} \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a') \right],$$

where
$$\alpha_n = \frac{1}{1 + visits_n(s,a)}$$
, and $s' = \delta(s,a)$.

 \hat{Q} still converges to Q^* (Watkins and Dayan, 1992)

Exploration vs Exploitation

- Tension between learning optimal strategy and using what you know, so far, to maximize expected reward
 - Convergence theorem depends on visiting each state sufficient number of times
 - Typically use reinforcement learning while performing tasks

Exploration policy

- Wacky approach: act randomly in hopes of eventually exploring entire environment
- Greedy approach: act to maximize utility using current estimate
- Balanced approach: act "more" wacky when agent has not much knowledge of environment and "more" greedy when the agent has acted in the environment longer
- One-armed bandit problems

Exploration Strategies

- ε-greedy
 - Exploit with probability 1-ε
 - Choose remaining actions uniformly
 - Adjust ε as learning continues
- Boltzman
 - Choose action with probability

$$p = \frac{e^{Q(s,a)/t}}{\sum_{a'} e^{Q(s,a')/t}}$$

- where t "cools" over time (simulated annealing)

All methods sensitive to parameter choices and changes

Policy Reuse

- Impact of change of reward function
 - Does not want to learn from scratch
- Transfer learning
 - Learn macros of the MPD options
 - Value function transfer
 - Exploration bias
- Reuse complete policies

Episodes

- MDP with absorbing goal states
 - Transition probability from a goal state to the same goal state is 1 (therefore to any other state is 0)
- Episode:
 - Start in random state, end in absorbing state
- Reward per episode (K episodes, H steps each):

$$W = \frac{1}{K} \sum_{k=0}^{K} \sum_{h=0}^{H} \gamma^h r_{k,h}$$
 (1)

where γ (0 $\leq \gamma \leq 1$) reduces the importance of future rewards, and $r_{k,h}$ defines the immediate reward obtained in the step h of the episode k, in a total of K episodes.

Domains and Tasks

A **domain** \mathcal{D} is defined as a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T} \rangle$, where \mathcal{S} is the set of all possible states; \mathcal{A} is the set of all possible actions; and \mathcal{T} is a state transition function, $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \Re$

A **task** Ω is defined as a tuple $<\mathcal{D},\mathcal{R}_{\Omega}>$, where \mathcal{D} is a domain; and \mathcal{R}_{Ω} is the reward function, $\mathcal{R}:\mathcal{S}\times\mathcal{A}\to\Re$

An action policy Π_{Ω} to solve a task Ω is a function $\Pi_{\Omega}: \mathcal{S} \to \mathcal{A}$.

Policy Library and Reuse

Policy Reuse:

- \star We need to solve the task Ω , i.e. learn Π_{Ω}
- * We have previously solved the set of tasks $\{\Omega_1, \ldots, \Omega_n\}$ so we have a Policy Library composed of the n policies that solve them respectively, say $L = \{\Pi_1, \ldots, \Pi_n\}$
- \star How can we use the policy library, L, to learn the new policy, Π_{Ω} ?

π-Reuse Exploration

Need to solve a task Ω , i.e. learn Π_{new} .

Have a Policy Library, say $L = \{\Pi_1, \dots, \Pi_n\}$

Let's assume that there is a supervisor who, given Ω , tells us which is the most similar policy, say Π_{past} , to Π_{new} . Thus, we know that the policy to reuse is Π_{past} .

Integrate the past policy as a probabilistic bias in the exploration strategy of the new learning process

Define probabilities for exploiting the past policy, perform random exploration, or exploit the ongoing policy

* Select
$$a = \begin{cases} \Pi_{past}(s) & \text{w/prob. } \psi \\ \Pi_{new}(s)) & \text{w/prob. } (1 - \psi)\epsilon \\ Random & \text{w/prob. } (1 - \psi)(1 - \epsilon) \end{cases}$$

π-Reuse Policy Learning

```
\pi-reuse (\Pi_{past}, K, H, \psi, v, \gamma, \alpha).
Initialize Q^{\Pi new}(s,a)=0, \forall s\in\mathcal{S}, a\in\mathcal{A}
For k=1 to K
     Set the initial state, s, randomly.
     Set \psi_1 \leftarrow \psi
     for h=1 to H
          With a probability of \psi_h, a = \Pi_{past}(s)
          With a probability of 1 - \psi_h, a = \epsilon-greedy(\Pi_{new}(s))
          Receive current state s', and reward, r_{k,h}
          Update Q^{\Pi_{new}}(s, a), and therefore, \Pi_{new}, using the Q-Learning update function:
                  Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a')]
          Set \psi_{h+1} \leftarrow \psi_h v
          Set s \leftarrow s'
W=rac{1}{K}\sum_{k=0}^K\sum_{h=0}^H\gamma^hr_{k,h} Return W , Q^{\Pi_{new}}(s,a) and \Pi_{new}
```

Experimental Results

Results

Policy Reuse in Q-Learning

- Interestingly, the pi-reuse strategy also contributes a similarity metric between policies
 - The gain Wi obtained while executing the pi-reuse exploration strategy, reusing the past policy i.
- Wi is an estimation of how similar the policy i is to the new one!
- The set of Wi values for each of the policies in the library is unknown a priori, but it can be estimated on-line while the new policy is computed in the different episodes.

PRQ-Learning (Ω, L, K, H)

- Given:
- (1) A new task Ω we want to solve.
- (2) A Policy Library $L = \{\Pi_1, \ldots, \Pi_n\}$.
- (3) A maximum number of episodes to execute, K.
- (4) A maximum number of steps per episode, H.
- Initialize:
- $(1) Q_{\Omega}(s, a) = 0, \forall s \in \mathcal{S}, a \in \mathcal{A}.$
- (2) $W_{\Omega} = W_i = 0$, for i = 1, ..., n.
- \bullet For k = 1 to K do
- Choose an action policy, Π_k , assigning to each policy the probability of being selected computed by the following equation:

$$P(\Pi_j) = \frac{e^{\tau W_j}}{\sum_{p=0}^n e^{\tau W_p}}$$

where W_0 is set to W_{Ω} .

- Execute the learning episode k.

If $\Pi_k = \Pi_{\Omega}$, execute a Q-Learning episode following a fully greedy strategy.

Otherwise, call π -reuse (Π_k , 1, H, ψ , υ).

In any case, receive the reward obtained in that episode, say R, and the updated Q function, $Q_{\Omega}(s, a)$.

- Recompute W_k using R.
- Return the policy derived from $Q_{\Omega}(s, a)$.

Learning to Use a Policy Library

- Similarity between policies can be learned
- Gain of using each policy
- Explore different policies
- Learn domain structure: "eigen" policies

Summary

- Reinforcement learning
 - Q-learning
- Policy Reuse
- Next class:
 - Other reinforcement learning algorithms
 - (There are many…)