DOI:10.16635/j.cnki.1003-5311.2018.02.013

基于 OpenMV 的 3D 定位识别系统*

梅妍玭1,傅 荣2

(1. 扬州市职业大学 电子工程学院,江苏 扬州 225009;2. 中国船舶重工集团公司第七二三研究所,江苏 扬州 225001)

摘 要:基于 OpenMV 微型机器视觉模块,采用 Micro Python 语言进行编程,通过摄像头采取实时 图像,识别 AprilTag 标记,读取 3D 数据,精确定位目标。通过实验和研究,进一步分析了使用 AprilTag 标记的适用范围。

关键词:机器视觉;目标识别;OpenMV;Micro Python

中图分类号: TP391.4 文献标志码: A

Research on the 3D Identification System Based on OpenMV

MEI Yanpin¹, FU Rong²

Department of Electronic Engineering, Yangzhou Vocational University, Yangzhou 225009, China;
 The 723 Institute of CSIC, Yangzhou 225001, China)

Abstract: The identification system utilizes micro-machine vision module based on OpenMV, with Micro Python programming, acquiring real-time images, processing 3D datas by identifing AprilTag to locate target precisely. Through experimental study, the factors influencing on measurement accuracy of the identification system are further analyzed.

Key words: machine vision, target recognition, OpenMV, Micro Python

1 系统开发环境

1.1 Micro Python 语言

Python 是一款比较容易上手的脚本语言,而且有强大的社区支持,一些非计算机专业领域的人都选择它作为入门语言。遗憾的是,它不能实现一些非常底层的操控,所以在硬件领域并不起眼。 Micro Python 是一个 Python 3 的精简和高效的实现编程语言,它包含了 Python 标准库的一个小子集,同时优化了在微控制器和受限环境中的运行。 借助 Micro Python,用户完全可以通过 Python 脚本语言实现硬件底层的访问和控制,如控制 LED 灯泡、LCD显示器、读取电压、控制电动机和访问 SD 卡等。

1.2 OpenMV 模块

OpenMV 是一个基于 STM32F765VI ARM Cortex M7 处理器的单片机和 OV2640 图像传感器的开源型微型机器视觉模块。OpenMV 模块上搭载了一个 Micro Python 解释器,使用 Python 脚本语言编程来实现一系列功能,包括 IO 端口的控制、读取文件系统等基础功能,也可以实现人脸检测及跟踪、关键点提取和颜色跟踪等功能[1]。

2 AprilTag 标记跟踪

2.1 AprilTag 标记简介

AprilTag 是一个视觉基准系统,可用于各种任务,包括 AR、机器人和相机校准。Tag 图表可以直

接用打印机打印出来,而 AprilTag 检测程序可以计算相对于相机的精确 3D 位置、方向和 ID。 Tag 标记如图 1 所示,从左到右分别是 Tag36h11、 Tag25h9 和 $Tag16h5^{[2]}$ 。简单来说,只要把这个 Tag 标记贴到目标上,就可以在 OpenMV 模块上识别出该标签的 3D 位置和 ID。

图 1 Tag 标记

2.2 AprilTag 的种类

AprilTag 的种类叫家族(family),包括如下几种:Tag16H5中的 $0\sim29$ 号、Tag25H7中的 $0\sim241$ 号、Tag25H9中的 $0\sim34$ 号、Tag36H10中的 $0\sim2319$ 号、Tag36h11中的 $0\sim586$ 号和 ARTOOL-KIT中的 $0\sim511$ 号。每个家族的标记都有对应的ID,如 TAG16H5家族有30个标记,每一个都有对应的ID,从 $0\sim29$ 号。而不同家族之间的区别,如TAG16H5的有效区域是 4×4 个方块,它比TAG36H11(有效区域为 6×6 个方块)看得更远;但是 TAG16H5 的错误率比 TAG36H11高很多,因为 TAG36H11 的校验信息多。通常情况下,我们一般使用 TAG36H11。

2.3 AprilTag 标记的 3D 定位功能

AprilTag 标记具有 3D 定位功能,通过摄像头

《新技术新工艺》试验与研究

读取 AprilTag 标记可以得知,Tag 的空间位置一共有 6 个自由度,包括 3 个位置和 3 个角度。在串口输出为 6 个变量, T_x , T_y , T_z 为空间的 3 个位置量, R_x , R_y , R_z 为 3 个旋转量,如图 2 所示[3]。

图 2 AprilTag 标记得到的 3D 数值

2.4 AprilTag 标记的制作

AprilTag 标记可以在网络上下载,也可以直接从 OpenMV 模块的 IDE 里生成(见图 3)。具体步骤如下:首先,在菜单的"工具→Machine Vision→AprilTag Generate"中选择 family,推荐使用TAG36H11;然后,填写需要生成的个数,比如需要10个,就生成 ID为 $0\sim9$ 的图片(见图 4);再选择图片存放的文件夹,就会在该文件夹中生成 AprilTag标记图片;最后,把这个图片用打印机打印出来,若直接使用屏幕,则会反光影响判断的准确度。

图 3 AprilTag 标记的制作

图 4 生成 AprilTag 标记

3 基于 Python 语言软件程序编写[4]

Python 语言编写的软件程序流程图如图 5 所示,首先初始化摄像头的感光元件,设置从摄像头获取的图片格式为 RGB565(彩色图像,每个像素 16 bit),设置图像的大小为 QQVGA 格式(160×120), 跳过 10 张图像,等待感光元件变稳定,读取图像中的 AprilTag 标记,得到 X,Y,Z 轴的距离以及与 X、

$Y \setminus Z$ 轴的夹角^[5]。

图 5 程序流程图

4 测试结果

4.1 AprilTAG 标记获取数据

这里输出的姿态的单位是弧度,可以转换成角度,但是位置的单位是和图片的大小有关,需要等比例换算,读到的 X 轴距离 f_x 是 X 轴的像素为单位的焦距。对于标准的 OpenMV,应该等于 2.8/3. 984×656 ,这个值是用毫米为单位的焦距除以 X 方向的感光元件的长度,乘以 X 方向的感光元件的像素(以 OV7725 为例)。读到的 Y 轴距离 f_y 是 Y 轴的像素为单位的焦距。对于标准的 OpenMV,应该等于 2.8/2. 952×488 ,这个值是用毫米为单位的焦距除以 Y 方向的感光元件的长度,乘以 Y 方向的感光元件的长度,乘以 Y 方向的感光元件的像素(以 OV7725 为例)。

摄像头检测到 AprilTag 标记如图 6 所示,检测到的数据结果如图 7 所示。由图 7 可以看到,能够识别出 ID(25),位置 T_x , T_y , T_z ,旋转的角度 R_z , R_y , R_z 。

图 6 摄像头检测到 AprilTag 标记

《新技术新工艺》试验与研究

```
Serial Tensial #3

25

Tx: -0.111431, Ty -0.733891, Tz -7.085776, Rx 183.492507, Ry 359.455323, Rz -4.47412

25

Tx: -0.110288, Ty -0.877490, Tz -7.190399, Rx 183.592844, Ry 0.523525, Rz -4.137697

25

Tx: -0.029797, Ty -0.991262, Tz -7.166730, Rx 186.440572, Ry 0.539411, Rz -3.691803

25

Tx: -0.010289, Ty -1.134288, Tz -7.222401, Rx 186.165561, Ry 1.472162, Rz -3.556774

25

Tx: -0.270944, Ty -1.520838, Tz -7.469684, Rx 185.631752, Ry 359.658646, Rz -3.73221
```

图 7 3D 数据

4.2 试验数据

用一个 $2 \text{ cm} \times 2 \text{ cm}$ 的 AprilTag 标记检测, T_z 轴得到的数据见表 1。

表 1 2 cm×2 cm AprilTag 标记试验检测数据

	测得距离/cm
3	-3.678
5	-5.513
7.5	-7.634
10	-7.634
12.5	-11.798
15	-14.658

4.3 试验结果分析

 $2 \text{ cm} \times 2 \text{ cm}$ 的 AprilTag 标记测距在 $7.5 \sim 10 \text{ cm}$ 处检测最为精确,精确度极高,只是受摄像头像素限制,需要整个标记进入摄像头的镜头方能正确识别,在不同的机器视觉测距场合需要选择合适的 AprilTag 标记尺寸。

参考文献

- [1] 潘丽静,张虹波,周婷婷.全自动模拟目标搜救系统的设计与实现[J].电脑知识与技术,2016,12(28):178-180.
- [2] 段建民, 石慧, 战宇辰. 基于机器视觉筛选 GPS 卫星信号的无人驾驶汽车组合导航方法[J]. 电子技术应用, 2016, 42(1):111-114.
- [3] 周艳聪,董永峰,王安娜,等. 新的室内移动机器人自定位方法[J]. 计算机应用,2015,35(2):585-589.
- [4] Magnus Lie Hetland, Python 基础教程[M]. 2版. 司维,曾军崴,谭颖华,译.北京:人民邮电出版社,2014.
- [5] Wei W, Li Y, Wang M, et al. Research on number-plate recognition based on neural networks [C]// Proceedings of Neural Networks for Signal Processing XI,2001. Piscataway: IEEE Press, 2001.
- * 2016 年江苏省大学生创新项目(201611462011Y) 江苏省高职院校青年教师企业实践培训资助项目 (2017QYSJ103)

2017 江苏省终身教育研究会资助项目(17SZJB016)

作者简介:梅妍玭(1984-),女,硕士,讲师,主要从事电子通 信等方面的研究。

收稿日期:2017-11-06

责任编辑 彭光宇

新年伊始,中国兵器科学研究院打造的中国兵器军民融合平台——"兵科云"正式上线试运行,该平台的建成并投入运行,将进一步促进国防行业军民信息交流共享和军民用技术高效转移,成为中国兵器工业集团有限公司军民融合发展的重要窗口。

"兵科云"定位为中国军民融合产业领先的综合服务平台,致力于推动国防科技工业军民融合发展,以军队、政府、企业、科研机构以及大专院校为服务对象,为用户提供一个集供需信息发布、技术产品展示、技术合作对接、科研成果转化、企业品牌展示的服务平台。平台采用全新模式进行架构设计,以需求信息、专业服务、合作专区、军民商城、品牌汇等五大板块为核心,为有需求的客户提供高效、便捷的线上线下服务。

"兵科云"提供五大特色服务。一是军民资源共享:平台倾力为客户提供军民需求、技术、商品信息服务,促进军民技术、资本、人才、设备的合作共享,帮助客户在一个平台解决所有问题。二是无限商机订阅:平台提供商品服务供需信息、技术合作融资、国家项目申报、军民融合咨询及相关会议论坛等商机订阅,全年 365 × 24 小时实时推送,让客户第一时间抓住商机。三是大数据客户服务:平台采用大数据挖掘技术,从平台海量的需求信息、服务信息、商品信息和交易信息中挖掘企业所需,为客户提供增值服务。四是个性化企业展示:平台为入驻企业提供展示窗口,企业可以进行个性化定制,全方位集中展示企业商品、技术、服务和能力,"秀品牌、亮肌肉"。五是全方位安全保证:平台入驻企业均需通过实名认证,保证信息的真实有效;采取第三方资金交易托管,构建网络、应用、数据分布式立体安全体系,保证客户资金和信息安全。

"一花独放不是春,百花齐放春满园",兵科云作为国防行业军民融合发展的排头兵,将以"海纳百川、有容乃大"的精神,顺应市场潮流,把握时代脉搏,在上级机关的正确领导与大力支持下,在众多企业的合作下,以国家军民融合发展战略、创新驱动战略为指导,积极吸纳行业内外优秀企业入驻,打造"开放、多元、合作、共赢"的军民融合生态圈,立志发展成为国内军民融合领域的"阿里巴巴"。

来源:中国兵器工业集团有限公司网站

《新技术新工艺》试验与研究