Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Computer Science Department

1

1

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Computer Science Department

Grid World Actions

3

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - » Probability that a from s leads to s', i.e., Pr(s'| s, a) 2
 - » Also called the model or the dynamics
 - A reward function R(s, a, s') » Sometimes just R(s) or R(s')

 - A start state
 - Possibly one or more terminal states
 - Possibly a discount factor γ (gamma)
- MDP's are non-deterministic search problems
 - One way to solve is with expectimax search

CAL POLY

[Demo – gridworld manual intro (L8D1)]

Computer Science Department

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$=$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

Computer Science Department

5

5

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π^* : S \rightarrow A
 - A policy π gives an action for each
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Computer Science Department

Optimal Policies for different R's

CAL POLY

Computer Science Department

7

7

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

CAL POLY

Computer Science Department

8

Racing Search Tree

9

MDP Search Trees

Utilities of Sequences

What preferences should an agent have over reward sequences?

- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Computer Science Department

11

11

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Computer Science Department

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Reward now is better than later
 - Can also think of it as a 1-gamma chance of ending the process at every step
 - Also helps our algorithms converge

$$-$$
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

- U([1,2,3]) < U([3,2,1])

Computer Science Department

13

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Reward now is better than later
 - Can also think of it as a 1-gamma chance of ending the process at every step
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Computer Science Department

Stationary Preferences - rational behavior Not always?

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utilit $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Computer Science Department

15

15

Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For γ = 0.1, what is the optimal policy?
- Quiz 3: For which γ are West and East equally good when in state d?

10 - - 1

 $1\gamma=10 \gamma^3$

CAL POLY

Computer Science Department

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - » Terminate episodes after a fixed T steps (e.g. life)
 - » Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- » Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Computer Science Department

17

17

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Computer Science Department

Break? How to solve

Computer Science Department

19

19

Solving MDPs

Computer Science Department

20

Recall: Racing MDP

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
 Going faster gets double reward

 1.0

 Fast
 O.5

 Varm

 Fast
 O.5 +2

 Overheated

CAL POLY

Computer Science Department

21

21

Racing Search Tree

CAL POLY
SAN LUIS OBISPO

Computer Science Department

22

Optimal Quantities

• The value (utility) of a state s:

V*(**s**) = **expected utility** starting in s and acting optimally

• The value (utility) of a q-state (s,a):

Q*(**s**,**a**) = **expected utility** starting out having taken action a from state s and (thereafter) acting optimally

• The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Computer Science Department

23

23

Gridworld V* Values

Noise = 0.2 Discount = 0.9 Living reward = 0

Computer Science Department

Gridworld Q* Values

Noise = 0.2 Discount = 0.9 Living reward = 0

Computer Science Department

25

25

Optimal Quantities

- The value (utility) of a state s:
 - **V***(**s**) = **expected utility** starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Computer Science Department

26

Values of States: Bellman Equations (Dynamic Programming)

Recursive definition of optimal value:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Bellman Equations: 1 step ahead equations define optimality

$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$$

Computer Science Department

27

27

Racing Search Tree

Computer Science Department

28

Racing Search Tree

Computer Science Department

29

29

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Computer Science Department

30

Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

[Demo - time-limited values (L8D4)]

Computer Science Department

31

31

k=0

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

33

33

k=2

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

34

Noise = 0.2 Discount = 0.9 Living reward = 0

Computer Science Department

35

35

k=4

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

37

37

k=6

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

38

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

39

39

k=8

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

40

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

41

41

k=10

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

42

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

43

43

k=12

Noise = 0.2 Discount = 0.9 Living reward = 0

CAL POLY

Computer Science Department

44

Noise = 0.2 Discount = 0.9 Living reward = 0

Computer Science Department

45

45

Computing Time-Limited Values

Value Iteration

Computer Science Department

47

47

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Computer Science Department

48

Example: Value Iteration

CAL POLY

Computer Science Department

49

49

Example: Value Iteration

CAL POLY
SAN LUIS OBISPO

Computer Science Department

50

Example: Value Iteration

CAL POLY

Computer Science Department

51

51

Example: Value Iteration

CAL POLY
SAN LUIS OBISPO

Computer Science Department

52

Example: Value Iteration

CAL POLY

Computer Science Department

53

53

Convergence*

- How do we know the V_k vectors are going to converge? (assuming 0 < γ < 1)
- Proof Sketch:
 - For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - $\;$ So V_k and V_{k+1} are at most γ^k max|R| different
 - So as k increases, the values converge

Computer Science Department

Next Lecture: Policy-Based Methods

Computer Science Department

55