Fisika Matematika I

Mukhtar Effendi Sugito

Pertemuan 01

Pengantar (Perkenalan dan Orientasi) Silabus (Deret, Bilangan Kompleks) Kontrak Belajar (Jadwal, Nilai, dll)

Pertemuan 02

Deret Tak Hingga (Infinite series)

Pengertian: ...

Deret takhingga adalah pernyataan penjumlahan bilangan yang takhingga banyaknya berbentuk :

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

dengan suku ke-n, a_n, sebuah fungsi dari bilangan bulat n,

$$a_n = f(n)$$
 $n = 1, 2, 3,$

• Tuliskan bentuk umum suku ke-n deret berikut:

(1)
$$1+16+81+....+a_n+...$$

(2)
$$\frac{1}{3} + \frac{2}{9} + \frac{3}{27} + \dots + a_n + \dots$$

(3)
$$1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots + a_n + \dots$$

• Tuliskan bentuk umum suku ke-n deret berikut:

(1)
$$1^4 + 2^4 + 3^4 + \dots + a_n + \dots$$

(2)
$$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + a_n + \dots$$

(3)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + a_n + \dots$$

• Bentuk umum suku ke-n deret di atas adalah:

(1)
$$a_n = n^4$$

(2) $a_n = \frac{n}{3^n}$
(3) $a_n = (-1)^n \frac{x^{2n}}{(2n)!}$

• Deret (1) dan (2) dinamakan **Deret Bilangan**, dan deret (3) adalah **Deret Variabel**.

Penulisan dan Notasi Deret

 Penulisan Deret Takhingga pada umumnya diringkas dengan Notasi jumlah, yaitu :

$$\sum_{n=1}^{\infty}$$

(dibaca "Sigma n = 1 sampai dengan takhingga") diikuti dengan bentuk umum suku a_n . Secara Umum Deret Takhingga dtuliskan sebagai :

 $a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$

Tuliskan dalam bentuk Notasi Jumlah deret berikut :

(1)
$$1^4 + 2^4 + 3^4 + \dots + a_n + \dots = \sum_{n=1}^{\infty} n^4$$

(2)
$$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + a_n + \dots = \sum_{n=1}^{\infty} \frac{n}{3^4}$$

(3)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + a_n + \dots = \sum_{n=0}^{\infty} (-1)^n \left(\frac{x^{2n}}{(2n)!} \right)$$

KONERGENSI DAN DIVERGENSI DERET

- Untuk Deret Takhingga masalah utamanya adalah jumlahnya berhingga atau tidak, bukan jumlah nilai dari deret tersebut, karena kadang tidak mudah untuk memperoleh jumlah nilai dari deret itu.
- Jumlah suku-suku Deret Takhingga adalah :

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
.....
 $S_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$

KONERGENSI DAN DIVERGENSI DERET

- Besaran S_n dinamakan Jumlah per bagian Deret Takhingga.
- Himpunan S_n , yang diurutkan dinamakan Barisan Takhingga (*Infinite Sequence*).

$$\{S_1, S_2, S_3, \dots, S_n, \dots\}$$

• Penulisan secara ringkas Barisan dalam bentuk:

$$\{S_n\}_{n=1}^{\infty}$$

• S_n adalah suku ke-n Barisan dan mempunyai bentuk umum $S_n = f(n)$

Ada deret hingga dan deret tak-hingga Ada deret positif dan deret negatif Ada deret bilangan dan deret variabel Ada deret konvergen dan deret divergen

Ada deret konvergen dan deret divergen Uji konvergensi deret Uji awal (Preleminary test)

- 1. Bila $\lim_{n\to\infty} a_n \neq 0$, maka deret bersifat divergen.
- 2. Bila $\lim_{n\to\infty} a_n = 0$, maka deret belum tentu apakah

konvergen atau divergen. Jadi harus diuji dengan test lain (akan di bahas selanjutnya). Ujilah deret $\sum_{n=0}^{\infty} \frac{2n^2 - n + 1}{3n^2 - 2n + 4}$, konvergen atau divergen ?

$$\lim_{n\to\infty} \frac{2n^2 - n + 1}{3n^2 - 2n + 4} = \frac{2}{3} > 0$$

Maka deret $\sum_{n=0}^{\infty} \frac{2n^2 - n + 1}{3n^2 - 2n + 4}$ adalah divergen.

Ujilah deret $\sum_{n=1}^{\infty} \frac{1}{n}$ konvergen atau divergen?

$$\lim_{n\to\infty}\frac{1}{n}=0$$
 belum pasti, (dengan uji lanjut ternyata

divergen)

Ujilah deret $\sum \frac{1}{n^2}$ konvergen atau divergen ?

$$\lim_{n\to\infty}\frac{1}{n^2}=0$$
 belum pasti (dengan uji lanjut ternyata

konvergen).

Uji Lanjut:

- ✓ Uji Perbandingan
- ✓ Uji Integral
- ✓ Uji ratio
- ✓ Uji perbandingan khusus

Uji Perbandingan

dibandingkan dengan deret konvergen atau dibandingkan dengan deret divergen

Uji Perbandingan dibandingkan dengan deret konvergen

$$\sum_{n=1}^{\infty} k_n = k_1 + k_2 + \dots + k_n$$

- ✓ Jika $|a_n| \le k_n$, maka deret Σa_n adalah konvergen.
- ✓ Jika $|a_n| > k_n$ maka deret Σa_n belum dapat dipastikan apakah konvergen atau divergen, jadi perlu uji yang lain.

Uji Perbandingan dibandingkan dengan deret divergen

$$\sum d_n = d_1 + d_2 + d_3 + \cdots$$

- ✓ Jika $|a_n| \ge d_n$ maka deret $\sum a_n$ adalah divergen.
- ✓ Jika $|a_n| < d_n$ maka deret Σa_n belum dapat dipastikan apakah divergen atau konvergen, perlu uji yang lain.

Dapat dilihat dalam uji ini bahwa jika ditemukan $|a_n|>k_n$ ataupun $|a_n|< d_n$ maka deret Σa_n tidak dapat disimpulkan.

Diketahui bahwa deret $\sum_{n=1}^{\infty} \frac{1}{3^n}$ adalah deret yang konvergen. Tentukan

apakah deret $\sum_{n=1}^{\infty} \frac{1}{n!}$ konvergen atau divergen?

$$\sum k_n = \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \frac{1}{729} + \frac{1}{2183} + \frac{1}{6549} + \dots$$

$$\sum a_n = \sum_{n=1}^{\infty} \frac{1}{n!} = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} + \frac{1}{40320} + \cdots$$

$$\sum k_n = \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \frac{1}{729} + \frac{1}{2183} + \frac{1}{6549} + \dots$$

$$\sum a_n = \sum_{n=1}^{\infty} \frac{1}{n!} = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \frac{1}{5040} + \frac{1}{40320} + \cdots$$

Terlihat bahwa mulai dari suku ke-7, $|a_n| < k_n$. Jadi dapat disimpulkan

bahwa $\sum_{n=1}^{\infty} \frac{1}{n!}$ adalah deret konvergen.

Gunakan uji awal untuk menyelidiki konvergensi deret-deret berikut :

1.
$$\sum_{n=1}^{\infty} \frac{n+3}{3^2+10n}$$

$$2. \sum_{n=1}^{\infty} \frac{n!}{n!+1}$$

3.
$$\sum_{n=1}^{\infty} \frac{3^n}{2^n + 3^n}$$