Problem Solving – State-Space Search and Control Strategies

Chapter 2 (a)

Problem Characteristics

- Heuristic search is a very general method applicable to a large class of problem.
- In order to choose the most appropriate method (or combination of methods) for a particular problem it is necessary to analyze the problem along several key dimensions.
 - Is the problem decomposable into a set of independent smaller sub problems?

- Decomposable problems can be solved by the divide-and-conquer technique.
 - Each sub-problem is simpler to solve.
 - Each sub-problem can be handed over to a different processor. Thus can be solved in parallel processing environment.
- Is problem non decomposable? Need different strategies
 - For example, Block world problem is non decomposable.

Initial State (State0) Goal State

Start: ON(C, A)

Goal: $ON(B, C) \Lambda ON(A, B)$

- Can solution steps be ignored or at least undone if they prove to be unwise?
 - In real life, there are three types of problems:
 - Ignorable,
 - Recoverable and
 - Irrecoverable.

Example - Ignorable

- (Ignorable): In theorem proving -(solution steps can be ignored)
 - Suppose we have proved some lemma in order to prove a theorem and eventually realized that lemma is no help at all, then ignore it and prove another lemma.
 - Can be solved by using simple control strategy?

Example - Recoverable

- 8 puzzle game (solution steps can be undone)
 - Objective of 8 puzzle game is to rearrange a given initial configuration of eight numbered tiles on 3 X 3 board (one place is empty) into a given final configuration (goal state).
 - Rearrangement is done by sliding one of the tiles into empty square.
 - Steps can be undone if they are not leading to solution.
 - Solved by backtracking, so control strategy must be implemented using a push down stack.

Example - Irrecoverable

- Chess (solution steps cannot be undone)
 - A stupid move cannot be undone.
 - Can be solved by planning process.

What is the Role of knowledge?

- In Chess game, knowledge is important to constrain the search
- Newspapers scanning to decide some facts, a lot of knowledge is required even to be able to recognize a solution.

Is the knowledge Base consistent?

Should not have contradiction

Is a good solution Absolute or Relative ?

- In water jug problem there are two ways to solve a problem.
 - If we follow one path successfully to the solution, there is no reason to go back and see if some other path might also lead to a solution.
 - Here a solution is absolute.
- In travelling salesman problem, our goal is to find the shortest route/path. Unless all routes are known, the shortest is difficult to know.
 - This is a best-path problem whereas water jug is any-path problem.

- Any path problem can often be solved in reasonable amount of time using heuristics that suggest good paths to explore.
- Best path problems are in general computationally harder than any-path.

Problem Solving

- Al programs have a clean separation of
 - computational components of data,
 - operations & control.
- Search forms the core of many intelligent processes.
- It is useful to structure Al programs in a way that facilitates describing the search process.

Production System - PS

- PS is a formation for structuring AI programs which facilitates describing search process.
- It consists of
 - Initial or start state of the problem
 - Final or goal state of the problem
 - It consists of one or more databases containing information appropriate for the particular task.
- The information in databases may be structured
 - using knowledge representation schemes.

Production Rules

- PS contains set of production rules,
 - each consisting of a left side that determines the applicability of the rule and
 - a right side that describes the action to be performed if the rule is applied.
 - These rules operate on the databases.
 - Application of rules change the database.
- A control strategy that specifies the order in which the rules will be applied when several rules match at once.
- One of the examples of Production Systems is an Expert System.

Advantages of PS

- In addition to its usefulness as a way to describe search, the production model has other advantages as a formalism in AI.
 - It is a good way to model the strong state driven nature of intelligent action.
 - As new inputs enter the database, the behavior of the system changes.
 - New rules can easily be added to account for new situations without disturbing the rest of the system, which is quite important in real-time environment.

Example: Water Jug Problem

Problem statement:

 Given two jugs, a 4-gallon and 3-gallon having no measuring markers on them. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into 4-gallon jug.

Solution:

- State for this problem can be described as the set of ordered pairs of integers (X, Y) such that
 - X represents the number of gallons of water in 4-gallon jug and
 - Y for 3-gallon jug.
- Start state is (0,0)
- Goal state is (2, N) for any value of N.

Production Rules

Following are the production rules for this problem.

```
R1:(X, Y | X < 4)  \Box  (4, Y)
{Fill 4-gallon jug}
R2:(X, Y | Y < 3) \Box (X, 3)
{Fill 3-gallon jug}
R3:(X, Y | X > 0) \Box (0, Y)
{Empty 4-gallon jug}
R4:(X, Y | Y > 0) \Box (X, 0)
{Empty 3-gallon jug}
R5:(X, Y | X+Y >= 4 \land Y > 0) \Box (4, Y - (4 - X))
                    {Pour water from 3- gallon
jug into 4-gallon jug until
                                            4-gallon jug is full}
```

```
R6: (X, Y | X+Y >= 3 \land X > 0) \square (X - (3 - Y), 3)
                { Pour water from 4-gallon jug into 3-
   gallon jug until 3-gallon jug is full}
R7: (X, Y | X+Y \le 4 \land Y > 0) (X+Y, 0)
               { Pour all water from 3-gallon jug
                                                                    into
   4-gallon jug }
R8: (X, Y | X+Y \le 3 \land X > 0) \square (0, X+Y)
              { Pour all water from 4-gallon jug
                                                                    into
   3-gallon jug }
Superficial Rules: {May not be used in this problem}
R9: (X, Y \mid X > 0) \qquad \Box \quad (X - D, Y)
            { Pour some water D out from 4-gallon jug}
R10: (X, Y | Y > 0) \Box (X, Y - D)
            { Pour some water D out from 3- gallon jug}
```

Trace of steps involved in solving the water jug problem - First solution

Nu	mber Rules applied	<i>4-g</i>	3 - g
of	Steps jug jug		
1	Initial State 0 ()	
2	R2 {Fill 3-g jug} 0 3	3	
3	R7{Pour all water from 3 to 4-g jug	} 3	0
4	R2 {Fill 3-g jug} 3 3	3	
5	R5 {Pour from 3 to 4-g jug until it is	s full}	4 2
6	R3 {Empty 4-gallon jug}) 2	
7	R7 {Pour all water from 3 to 4-g jug	g) 2	0 Goal State

Trace of steps involved in solving the water jug problem - Second solution

Note that there may be more than one solutions.

Nu	mber Rules applied	4	1-g 3	- g	
ofs	steps	jug jug			
1	Initial State	0 ()		
2	R1 {Fill 4-gallon jug}	4	0		
3	R6 {Pour from 4 to 3-g}	jug until it i	s full	} 1	3
4	R4 {Empty 3-gallon jug}	. 1	0		
5	R8 {Pour all water from	4 to 3-gallo	n jug}	0	1
6	R1 (Fill 4-gallon jug)	4	1		
7	R6 {Pour from 4 to 3-g}	jug until it i	s full)	} 2	3
8	R4 (Empty 3-gallon jug)	. 2	2 0	Goa	l State

Important Points

For each problem

- there is an initial description of the problem.
- final description of the problem.
- more than one ways of solving the problem.
- a path between various solution paths based on some criteria of goodness or on some heuristic function is chosen.
- there are set of rules that describe the actions called production rules.
 - Left side of the rules is current state and right side describes new state that results from applying the rule.

- Summary: In order to provide a formal description of a problem, it is necessary to do the following things:
 - Define a state space that contains all the possible configurations of the relevant objects.
 - Specify one or more states within that space that describe possible situations from which the problem solving process may start. These states are called **initial states**.
 - Specify one or more states that would be acceptable as solutions to the problem called goal states.
 - Specify a set of rules that describe the actions. Order of application of the rules is called control strategy.
 - Control strategy should cause motion towards a solution.

Control Strategies

- Control Strategy decides which rule to apply next during the process of searching for a solution to a problem.
- Requirements for a good Control Strategy
 - It should cause motion
 - In water jug problem, if we apply a simple control strategy of starting each time from the top of rule list and choose the first applicable one, then we will never move towards solution.
 - If we choose another control strategy, say, choose a rule randomly from the applicable rules then definitely it causes motion and eventually will lead to a solution. But one may arrive to same state several times. This is because control strategy is not systematic.

Systematic Control Strategies (Blind searches)

- Blind searches are exhaustive in nature.
- These are uninformed searches.
- If the problem is simple then
 - any control strategy that causes motion and is systematic will lead to an answer.
- But in order to solve some real world problems,
 - we must use a control strategy that is efficient.
- Let us discuss these strategies using water jug problem.
- These may be applied to any search problem.

Breadth First Search - BFS: Water Jug Problem

BFS

- Construct a tree with the initial state of the problem as its root.
- Generate all the offspring of the root by applying each of the applicable rules to the initial state.
- For each leaf node, generate all its successors by applying all the rules that are appropriate.
- Repeat this process till we find a solution, if it exists.

Depth First Search - DFS

- Here we pursue a single branch of the tree until it yields a solution or some pre-specified depth has reached.
- If solution is not found then
 - go back to immediate previous node and
 - explore other branches in DF fashion.
- Let us see the tree formation for water jug problem using DFS

$$(0,0) \qquad \text{Start State}$$

$$(4,0) \qquad (0,0) \qquad (1,3)$$

$$(0,3) \qquad (4,0) \qquad (4,0)$$

$$\times (4,3) \times (0,0) \qquad (3,0)$$

$$(3,3) \qquad (0,0) \qquad (0,3)$$

$$\times (3,0) \times (0,3) \qquad (4,2)$$

$$(0,2) \qquad (3,3) \qquad (4,0)$$

 \times (4, 2) \times (0, 0). (2, 0) Goal state

Traveling Salesman Problem

- Consider 5 cities.
 - A salesman is supposed to visit each of 5 cities.
 - All cities are pair wise connected by roads.
 - There is one start city.
 - The problem is to find the shortest route for the salesman who has to
 - visit each city only once and
 - returns to back to start city.

Traveling Salesman Problem (Example) – Start city is C1

D(C1,C2) = 7; D(C1,C3) = 11; D(C1,C4) = 12; D(C1,C5) = 15; D(C2,C3) = 20;

D(C2,C4) = 10; D(C2,C5) = 12; D(C3,C4) = 13; D(C3,C5) = 17; D(C4,C5) = 5;

- A simple motion causing and systematic control structure could, in principle solve this problem.
- Explore the search tree of all possible paths and return the shortest path.
- This will require 4! paths to be examined.
- If number of cities grow, say 25 cities, then the time required to wait a salesman to get the information about the shortest path is of 0(24!) which is not a practical situation.

- This phenomenon is called combinatorial explosion.
- We can improve the above strategy as follows:
 - Begin generating complete paths, keeping track of the shortest path found so far.
 - Give up exploring any path as soon as its partial length becomes greater than the shortest path found so far.

Paths explored. Assume C1 to be the start city			Distance
1.	$C1 \rightarrow C2 \rightarrow C3 \rightarrow C4 \rightarrow C5 \rightarrow C1$ 7 20 13 5 15 27 40 45 60	current best path	60 √ ×
2.	$C1 \rightarrow C2 \rightarrow C3 \rightarrow C5 \rightarrow C4 \rightarrow C1$ 7 20 17 5 12 27 44 49 61		61 ×
3.	$C1 \rightarrow C2 \rightarrow C4 \rightarrow C3 \rightarrow C5 \rightarrow C1$ 7 10 13 17 15 17 40 57 72		72 ×
4.	$C1 \rightarrow C2 \rightarrow C4 \rightarrow C5 \rightarrow C3 \rightarrow C1$ 7 10 5 17 11 17 22 39 50	current best path, cross path at S.No 1.	50 √ ×
5.	$C1 \rightarrow C2 \rightarrow C5 \rightarrow C3 \rightarrow C4 \rightarrow C1$ 7 12 17 13 12 19 36 49 61		61 ×
6.	$C1 \rightarrow C2 \rightarrow C5 \rightarrow C4 \rightarrow C3 \rightarrow C1$ 7 12 5 13 11 19 24 37 48	current best path, cross path at S.No. 4.	48 √
7.	$C1 \rightarrow C3 \rightarrow C2 \rightarrow C4 \rightarrow C5 \rightarrow C1$ 11 20 10 5 15 31 41 46 63		63 ×

Paths explored. Assume C1 to be the start city		Distance
8. $C1 \rightarrow C3 \rightarrow C2 \rightarrow C5 \rightarrow C4$ 11 20 12 5 37 49 54	(not to be expanded further)	54 ×
9. $C1 \rightarrow C3 \rightarrow C4 \rightarrow C2 \rightarrow C5 \rightarrow C1$ 11 13 10 12 15 24 34 46 61		61 ×
10. $C1 \rightarrow C3 \rightarrow C4 \rightarrow C5 \rightarrow C2 \rightarrow C1$ 11 13 5 12 7 24 29 41 48	same as current best path at S. No. 6.	48 √
11. $C1 \rightarrow C3 \rightarrow C5 \rightarrow C2$ 11 17 12 38 50	(not to be expanded further)	50 ×
12. $C1 \rightarrow C3 \rightarrow C5 \rightarrow C4 \rightarrow C2$ 11 17 5 10 38 43 53	(not to be expanded further)	53 ×
13. $C1 \rightarrow C4 \rightarrow C2 \rightarrow C3 \rightarrow C5$ 12 10 20 17 22 42 55	(not to be expanded further)	59 ×
Continue like this		

Missionaries and Cannibals

Problem Statement: Three missionaries and three cannibals want to cross a river. There is a boat on their side of the river that can be used by either one or two persons.

Constraint:

- At any point in time, cannibals should not be more than missionaries.
 - If the cannibals ever outnumber the missionaries (on either bank) then the missionaries will be eaten.

- PS for this problem can be described as the set of ordered pairs of left and right bank of the river as (L, R) where each bank is represented as a list [nM, mC, B]
 - n is the number of missionaries M, m is the number of cannibals C, and B represents boat.
- Start state: ([3M, 3C, 1B], [0M, 0C, 0B]),
 - 1B means that boat is present and 0B means it is not there on the bank of river.
- Goal state: ([0M, 0C, 0B], [3M, 3C, 1B])

- Any state: ($[n_1M, m_1C, 1B], [n_2M, m_2C, 0B]$), with constraints/conditions as $n_1 \neq 0$) ≥ m_1 ; $n_2 \neq 0$) ≥ m_2 ; $n_1 + n_2 = 3$, $m_1 + m_2 = 3$
 - By no means, this representation is unique.
 - In fact one may have number of different representations for the same problem.
 - The table on the next slide consists of production rules based on the chosen representation.

Set of Production Rules Applied keeping constrains in mind

RN	Left side of rule	\rightarrow	Right side of rule		
	Rules for boat going from left bank to right bank of the river				
L1	$([n_1M, m_1C, 1B], [n_2M, m_2C, 0B])$	\rightarrow	$([(n_1-2)M, m_1C, 0B], [(n_2+2)M, m_2C, 1B])$		
L2	$([n_1M, m_1C, 1B], [n_2M, m_2C, 0B])$	\rightarrow	$([(n_1-1)M,(m_1-1)C,0B],[(n_2+1)M,(m_2+1)C,1B])$		
L3	$([n_1M, m_1C, 1B], [n_2M, m_2C, 0B])$	\rightarrow	$([n_1M, (m_1-2)C, 0B], [n_2M, (m_2+2)C, 1B])$		
L4	$([n_1M, m_1C, 1B], [n_2M, m_2C, 0B])$	\rightarrow	$([(n_1-1)M, m_1C,0B],[(n_2+1)M, m_2C, 1B])$		
L5	$([n_1M, m_1C, 1B], [n_2M, m_2C, 0B])$	\rightarrow	$([n_1M, (m_1-1)C, 0B], [n_2M, (m_2+1)C, 1B])$		
	Rules for boat coming from right bank to left bank of the river				
R1	$([n_1M, m_1C, 0B], [n_2M, m_2C, 1B])$	\rightarrow	$([(n_1+2)M, m_1C, 1B], [(n_2-2)M, m_2C, 0B])$		
R2	$([n_1M, m_1C, 0B], [n_2M, m_2C, 1B])$	\rightarrow	$([(n_1+1)M,(m_1+1)C,1B],[(n_2-1)M,(m_2-1)C,0B])$		
R3	$([n_1M, m_1C, 0B], [n_2M, m_2C, 1B])$	\rightarrow	$([n_1M, (m_1+2)C, 1B], [n_2M, (m_2-2)C, 0B])$		
R4	$([n_1M, m_1C, 0B], [n_2M, m_2C, 1B])$	\rightarrow	$([(n_1+1)M, m_1C,1B],[(n_2-1)M, m_2C, 0B])$		
R5_	$([n_1M, m_1C, 0B], [n_2M, m_2C, 1B])$	\rightarrow	$([n_1M, (m_1+1)C, 1B], [n_2M, (m_2-1)C, 0B])$		
	;				

One of the possible paths

Start →	([3M, 3C, 1B], [0M, 0C, 0B]]	
L2:	([2M, 2C, 0B], [1M, 1C, 1B])	1M,1C →
R4:	([3M, 2C, 1B], [0M, 1C, 0B])	1M ←
L3:	([3M, 0C, 0B], [0M, 3C, 1B])	2C →
R4:	([3M, 1C, 1B], [0M, 2C, 0B])	1C ←
L1:	([1M, 1C, 0B], [2M, 2C, 1B])	2M →
R2:	([2M, 2C, 1B], [1M, 1C, 0B])	1M,1C ←
L1:	([0M, 2C, 0B], [3M, 1C, 1B])	2M →
R5:	([0M, 3C, 1B], [3M, 0C, 0B])	1C ←
L3:	([0M, 1C, 0B], [3M, 2C, 1B])	2C →
R5:	([0M, 2C, 1B], [3M, 1C, 0B])	1C ←
L3:	([0M, 0C, 0B], [3M, 3C, 1B])	2C → Goal state