Session 3 Quantitative Analysis of Financial Markets Simple Linear Regression

Christopher Ting

http://www.mysmu.edu/faculty/christophert/

a: 6828 0364 **G:** LKCSB 5036

Christopher Ting QF 603 October 22, 2018 1/51

Broad Lesson Plan

- 1 Introduction
- 2 Simple OLS
- **3 OLS in Matrix**
- 4 Hypothesis Tests
- 5 Asymptotic Limits
- 6 Forecasting
- 7 Case Study
- 8 Takeaways

Christopher Ting QF 603 October 22, 2018

Learning Outcomes

- classical conditions (assumptions) of simple linear regression
- FOC (first-order condition)
- solutions of two FOC's (OLS estimators)
- weights of simple OLS
- distribution of OLS estimators
- properties of residuals
- hypothesis testing (significance test) of OLS estimates
- ▼ Define BLUE (best linear unbiased estimator).
- Gain deeper insights into asymptotic properties, consistent properties, and coefficient of determination of simple OLS.
- ▼ Describe how OLS estimates can be applied to forecasting.
- Develop a working knowledge of OLS regression by applying the theory to hedging an equity portfolio with stock index futures.

Christopher Ting QF 603 October 22, 2018 3/51

Motivation

What about two sets of data X and Y?

Example: Annual Returns of 30 Hedge Funds

The population consists of 30 hedge funds that follow the same strategy, but of different length of the lockup period (minimum number of years an investor must keep funds invested).

Lockup (years)	Return (% per year)					Average Return		
5	10	14	14	15	12	13		
6	17	12	15	16	10	14		
7	16	19	19	13	13	16		
8	15	20	19	15	16	17		
9	21	20	16	20	18	19		
10	20	17	21	23	19	20		

4/51

Christopher Tina OF 603 October 22, 2018 Introduction Simple OLS OLS in Matrix Hypothesis Tests Asymptotic Limits Forecasting Case Study Takeaways

Scatter Plot

The scatter plot indicates that there is a positive relationship between the hedge fund returns and the lockup period.

Christopher Ting QF 603 October 22, 2018 5/51

6/51

Classical Conditions

- ightharpoonup Model 0 is $Y_i = a + e_i$.
- \rightarrow But given n pairs of observations on explanatory variable X_i and dependent variable Y_i , we can have Model 1 by postulating that

$$Y_i = a + bX_i + e_i$$
, $i = 1, 2, ..., n$,

where e_i is the noise.

- Assumptions:
 - (A1) $\mathbb{E}(e_i) = 0$ for every i
 - (A2) $\mathbb{E}(e_i^2) = \sigma_e^2$
 - (A3) $\mathbb{E}(e_i e_i) = 0$ for every i, j
 - (A4) X_i, e_i are independent for each i, j
 - (A5) $e_i \stackrel{d}{\sim} N(0, \sigma_s^2)$

First-Order Conditions of Least Squares

A Least Squares: Minimizing the sum of squared errors:

$$\min_{\widehat{a},\widehat{b}} \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \widehat{a} - \widehat{b}X_i)^2$$

$$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial \widehat{a}} = -2 \sum_{i=1}^{n} (Y_i - \widehat{a} - \widehat{b}X_i) = 0$$

$$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial \widehat{b}} = -2 \sum_{i=1}^{n} X_i (Y_i - \widehat{a} - \widehat{b}X_i) = 0$$

A These least squares minimization conditions are "ordinary".

Christopher Ting QF 603 October 22, 2018

Ordinary Least Squares Solutions

♦ Solution of first FOC

$$\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \widehat{a} + \sum_{i=1}^{n} \widehat{b} X_i$$

$$\implies n\overline{Y} = n\widehat{a} + n\widehat{b} \overline{X}$$

$$\implies \overline{Y} = \widehat{a} + \widehat{b}\overline{X}$$

$$\implies \widehat{a} = \overline{Y} - \widehat{b}\overline{X}$$

♦ Solution of second FOC

$$\sum_{i=1}^{n} X_i Y_i = \sum_{i=1}^{n} X_i \widehat{a} + \sum_{i=1}^{n} \widehat{b} X_i^2$$

$$\implies \sum_{i=1}^{n} X_i Y_i = \sum_{i=1}^{n} X_i \widehat{a} + \widehat{b} \sum_{i=1}^{n} X_i^2$$

$$\implies \sum_{i=1}^{n} X_i Y_i = \sum_{i=1}^{n} X_i (\overline{Y} - \widehat{b} \overline{X}) + \widehat{b} \sum_{i=1}^{n} X_i^2$$

$$\implies \sum_{i=1}^{n} X_i (Y_i - \overline{Y}) = \widehat{b} \sum_{i=1}^{n} X_i (X_i - \overline{X})$$

$$\implies \widehat{b} = \frac{\sum_{i=1}^{n} X_i (Y_i - \overline{Y})}{\sum_{i=1}^{n} X_i (X_i - \overline{X})}$$

Christopher Ting QF 603 October 22, 2018 8/

OLS with Centered Regressor

▶ More convenient to start with the centralized linear model

$$Y_i = a^* + b(X_i - \overline{X}) + e_i, \quad a^* = a + b\overline{X}$$

▶ OLS

$$\min_{\widehat{a^*}, \widehat{b}} \sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left(Y_i - \widehat{a^*} - \widehat{b} \left(X_i - \overline{X} \right) \right)^2$$

► FOC

$$\sum_{i=1}^{n} \left(Y_i - \widehat{a^*} - \widehat{b} \left(X_i - \overline{X} \right) \right) = 0$$

$$\sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \widehat{a^*} - \widehat{b} \left(X_i - \overline{X} \right) \right) = 0$$

Christopher Ting QF 603 October 22, 2018

Residual is the Vertical Length

Linear Estimators

$$\widehat{a}^* = \overline{Y}$$

$$\widehat{b} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X})}$$

□ Define the weights

$$v_i := \frac{1}{n} - \frac{\left(X_i - \overline{X}\right)\overline{X}}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}; \qquad w_i := \frac{\left(X_i - \overline{X}\right)}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}$$

$$\widehat{a} = \sum_{i=1}^{n} v_i Y_i; \qquad \widehat{b} = \sum_{i=1}^{n} w_i Y_i$$

⊲ Remark:

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = (n-1)\widehat{\sigma}_X^2$$

11/51

Christopher Ting QF 603 October 22, 2018

Properties of Weights and OLS Estimators

 \supset Properties of v_i

$$\sum_{i=1}^{n} v_i = 1, \quad \sum_{i=1}^{n} v_i^2 = \frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}, \quad \sum_{i=1}^{n} v_i X_i = 0$$

 \supset Properties of w_i

$$\sum_{i=1}^{n} w_i = 0, \qquad \sum_{i=1}^{n} w_i^2 = \frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2}, \qquad \sum_{i=1}^{n} w_i X_i = 1$$

∋ Finite sample properties of OLS estimators: Unbiasedness

$$\widehat{a} = \sum_{i=1}^{n} v_i (a + bX_i + e_i) = a + \sum_{i=1}^{n} v_i e_i \qquad \Longrightarrow \mathbb{E}(\widehat{a}) = a$$

$$\widehat{b} = \sum_{i=1}^{n} w_i (a + bX_i + e_i) = b + \sum_{i=1}^{n} w_i e_i \qquad \Longrightarrow \mathbb{E}(\widehat{b}) = b$$

12/51

Christopher Ting QF 603 October 22, 2018

Variance and Covariance of OLS Estimators

$$\mathbb{V}(\widehat{a}) = \mathbb{E}\left(\left(\widehat{a} - a\right)^{2}\right) = \mathbb{E}\left(\left(\sum_{i=1}^{n} v_{i} e_{i}\right)^{2}\right) = \sum_{i=1}^{n} \mathbb{E}(v_{i}^{2}) \,\mathbb{E}(e_{i}^{2})$$

$$= \sigma_{e}^{2} \left(\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}\right)$$

$$\mathbb{V}(\widehat{b}) = \mathbb{E}\left(\left(\widehat{b} - b\right)^{2}\right) = \mathbb{E}\left(\left(\sum_{i=1}^{n} w_{i} e_{i}\right)^{2}\right) = \sum_{i=1}^{n} \mathbb{E}(w_{i}^{2}) \mathbb{E}(e_{i}^{2})$$

$$= \sigma_{e}^{2} \left(\frac{1}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}\right)$$

$$\mathbb{C}(\widehat{a}, \widehat{b}) = \mathbb{E}\left(\left(\widehat{a} - a\right)(\widehat{b} - b)\right) = \mathbb{E}\left(\left(\sum_{i=1}^{n} v_{i} e_{i}\right)\left(\sum_{j=1}^{n} w_{j} e_{j}\right)\right) = \sigma_{e}^{2} \sum_{i=1}^{n} v_{i} w_{i}$$

$$= -\sigma_{e}^{2} \left(\frac{\overline{X}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}\right)$$

Christopher Ting QF 603 October 22, 2018 13/51

Distribution of OLS Estimators

→ Slope estimator

$$\widehat{b} = \frac{\sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}; \qquad \widehat{b} \stackrel{d}{\sim} N \left(b, \sigma_e^2 \left(\frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2} \right) \right)$$

$$\widehat{a} = \overline{Y} - \widehat{b}\,\overline{X};$$

$$\widehat{a} \stackrel{d}{\sim} N\left(a, \sigma_e^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right)\right)$$

Christopher Ting QF 603 October 22, 2018

15/51

Effect of the Variance of X

What happens if $\sum (X_i - \overline{X})^2 = n \widehat{\sigma}_X^2$ is big or small?

The larger the sample size, n, the smaller will be the coefficient variances.

Christopher Ting OF 603 October 22, 2018

Accuracy of Intercept Estimate

Care needs to be exercised when considering the intercept estimate, particularly if there are no or few observations close to the *y*-axis:

Christopher Ting QF 603 October 22, 2018 16/51

Distribution of OLS Estimators in Matrix Form

→ To incorporate

$$\mathbb{C}\left(\widehat{a}\,,\,\widehat{b}\,\right) = -\sigma_e^2\left(\frac{\overline{X}}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}\right).$$

→ Normal distribution

$$\begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} \stackrel{d}{\sim} N \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} \sigma_e^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right) & -\sigma_e^2 \left(\frac{\overline{X}}{\sum_{i=1}^n (X_i - \overline{X})^2} \right) \\ -\sigma_e^2 \left(\frac{\overline{X}}{\sum_{i=1}^n (X_i - \overline{X})^2} \right) & \sigma_e^2 \left(\frac{1}{\sum_{i=1}^n (X_i - \overline{X})^2} \right) \end{pmatrix}$$

17/51

Christopher Ting QF 603 October 22, 2018

Gauss-Markov Theorem

- estimators, the OLS estimators \hat{a} and \hat{b} have the minimum variances, i.e., $\mathbb{V}(\widehat{a})$ and $\mathbb{V}(\widehat{b})$ are the smallest possible and thus the OLS estimators are efficient (estimation efficiency).
- Linear Unbiased Estimators for the linear regression model:

$$Y_i = a + bX_i + e_i$$
, $i = 1, 2, ..., n$,

which can be written in the vector-matrix form:

$$m{y} = m{X}m{eta} + m{e}, \ m{Y} := egin{pmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{pmatrix}, \ m{X} := egin{pmatrix} 1 & X_1 \ 1 & X_2 \ dots & dots \ 1 & X_n \end{pmatrix}, \ m{eta} := egin{pmatrix} a \ b \ \end{pmatrix}, \ m{e} := egin{pmatrix} e_1 \ e_2 \ dots \ e_n \ \end{pmatrix}$$

Christopher Tina October 22, 2018

Simple OLS Estimators in Vector-Matrix Form

 $\widehat{f M}$ Multiply from the left the matrix m X' to both sides of m y = m Xm eta + m e to obtain

$$X'y = X'X\widehat{\beta} + X'e.$$

- Ω By the classical assumption (A4), X'e = 0.
- Ω Suppose $(X'X)^{-1}$ exists.
- $\widehat{\Lambda}$ Multiply $(X'X)^{-1}$ to both sides of $X'Y = X'X\widehat{\beta}$ to obtain

$$(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X})\widehat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},$$

which is

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}.$$

Christopher Ting QF 603 October 22, 2018 19/51

Tutorial

Proposition 1

Given the data matrix X, the estimator $\hat{\beta}$ is unbiased.

Proof:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e})$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{e}$$

$$= \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{e}$$
(1)

It follows that

$$\mathbb{E}_{\mathbf{X}}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \, \mathbb{E}_{\mathbf{X}}(\boldsymbol{e})$$

= $\boldsymbol{\beta}$

Christopher Tina OF 603 October 22, 2018 20/51

Conditional Variance of y

Proposition 2

Given the data matrix X, the variance of y is the variance of the error σ_e^2 .

♠ Proof:

$$V_{\mathbf{X}}(\mathbf{y}) = V_{\mathbf{X}}(\mathbf{X}\boldsymbol{\beta} + \mathbf{e})$$

$$= V_{\mathbf{X}}(\mathbf{X}\boldsymbol{\beta}) + V_{\mathbf{X}}(\mathbf{e}) + 2 C_{\mathbf{X}}(\mathbf{X}\boldsymbol{\beta}, \mathbf{e})$$

$$= 0 + \sigma_e^2 + 0$$

$$= \sigma_e^2.$$

Christopher Ting QF 603 October 22, 2018 21/51

$$\mathbb{V}_{\mathbf{X}}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}\mathbf{X}')^{-1}.$$

Proof: First we note from (1) that $\hat{\beta} - \beta = (X'X)^{-1}X'e$. Then

$$\begin{split} \mathbb{V}_{\boldsymbol{X}}\!\!\left(\widehat{\boldsymbol{\beta}}\right) &= \mathbb{E}_{\boldsymbol{X}}\!\!\left(\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)\!\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right)'\right) \\ &= \mathbb{E}_{\boldsymbol{X}}\!\!\left(\left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{e}\right)\!\left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{e}\right)'\right) \\ &= \mathbb{E}_{\boldsymbol{X}}\!\!\left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{e}\boldsymbol{e}'\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\right) \\ &= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\,\mathbb{E}_{\boldsymbol{X}}\!\!\left(\boldsymbol{e}\boldsymbol{e}'\right)\!\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1} = \sigma_e^2(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1} \\ &= \sigma_e^2(\boldsymbol{X}'\boldsymbol{X})^{-1} \end{split}$$

Christopher Ting QF 603 October 22, 2018 22/51

Proof of Gauss-Markov Theorem

 $\widehat{\beta}$ Note that $\widehat{\beta} = (X'X)^{-1}X'y$ is a linear combination of y.

 Ω Let $ilde{eta} = Cy$ be another linear estimator of eta with

$$\boldsymbol{C} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + \boldsymbol{D},$$

where D is a $2 \times n$ non-zero matrix.

$$\mathbb{E}_{\boldsymbol{X}}\left(\widetilde{\boldsymbol{\beta}}\right) = \mathbb{E}_{\boldsymbol{X}}(\boldsymbol{C}\boldsymbol{y})$$

$$= \mathbb{E}_{\boldsymbol{X}}\left(\left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + \boldsymbol{D}\right)\left(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}\right)\right)$$

$$= \left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + \boldsymbol{D}\right)\boldsymbol{X}\boldsymbol{\beta} + \left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + \boldsymbol{D}\right)\mathbb{E}_{\boldsymbol{X}}(\boldsymbol{e})$$

$$= \left((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' + \boldsymbol{D}\right)\boldsymbol{X}\boldsymbol{\beta} \qquad :: \mathbb{E}_{\boldsymbol{X}}(\boldsymbol{e}) = \boldsymbol{0}$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{D}\boldsymbol{X}\boldsymbol{\beta}$$

$$= \boldsymbol{\beta} + \boldsymbol{D}\boldsymbol{X}\boldsymbol{\beta}.$$

Christopher Ting OF 603 October 22, 2018 23/51

Proof of Gauss-Markov Theorem (cont'd)

Therefore, $\hat{\beta}$ is unbiased if and only if DX = 0. Then

 Ω Since DD' is a positive semidefinite matrix, $\mathbb{V}_X(\widetilde{\beta})$ exceeds $\mathbb{V}_X(\widehat{\beta})$.

Christopher Ting QF 603 October 22, 2018 24/51

Properties of Residuals

Once the estimates \hat{a} and \hat{b} are obtained, we can compute the residuals:

$$\widehat{e}_i = Y_i - \widehat{a} - \widehat{b} X_i.$$

The variance of residual \hat{e}_i , i = 1, 2, ..., n is estimated as

$$\widehat{\sigma_e}^2 = \frac{1}{n-2} \sum_{i=1}^n \widehat{e}_i^2.$$

Mean and variance of \hat{e}_i conditional on X_i

$$\mathbb{E}_{X_i}(\widehat{e}_i) = \mathbb{E}_{X_i}(Y_i) - \widehat{a} - \widehat{b} X_i;$$

$$\mathbb{V}_{X_i}(\widehat{e}_i) = \sigma_e^2 \left(1 - \frac{1}{n} - \frac{(X_i - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right).$$

Christopher Tina OF 603 October 22, 2018 25/51

Hypothesis Testing

→ Series of residuals

$$\widehat{e}_i = Y_i - \widehat{a} - \widehat{b} X_i, \quad i = 1, 2, \dots, n$$

Unbiased estimator of residual variance

$$\widehat{\sigma}_e^2 = \frac{1}{n-2} \sum_{i=1}^n \widehat{e}_i^2$$

 \rightarrow Testing null hypothesis $H_0: b = \beta$ (e.g. $\beta = 0$)

$$t_{n-2} = \frac{\widehat{b} - \beta}{\widehat{\sigma}_e \sqrt{\frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2}}}$$

Testing null hypothesis $H_0: a = \alpha$ (e.g. $\alpha = 0$)

$$t_{n-2} = \frac{\widehat{a} - \alpha}{\widehat{\sigma}_e \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}}$$

Christopher Tina OF 603 October 22, 2018 26/51

Lockup and Hedge Fund Return

Does the number of lockup years "explain" hedge fund return?

L	ockup	Return (%))			
	X	Y	$X - \overline{X}$	$Y - \overline{Y}$	$\widehat{\sigma}_{XY}$	$\widehat{\sigma}_X^2$
	5	10	-2.5	-6	15	6.25
	6	12	-1.5	-4	6	2.25
	7	19	-0.5	3	-1.5	0.25
	8	16	0.5	0	0	0.25
	9	18	1.5	2	3	2.25
	10	21	2.5	5	12.5	6.25
Sum	45	96	0	0	35	17.5
Average	7.5	16				

$$\Box$$
 The OLS estimates are $\widehat{b} = \frac{35}{17.5} = 2$, and $\widehat{a} = 16 - 2 \times 7.5 = 1$.

Christopher Tina OF 603 October 22, 2018 27/51

Standard Errors

- \Box First, compute the fitted value: $\widehat{Y}_i = \widehat{a} + \widehat{b}X_i$
 - $\hat{Y}_i: 11, 13, 15, 17, 19, 21$
- Next compute the residuals: $\hat{e}_i = Y_i \hat{Y}_i$ $\hat{e}_i : -1, -1, 4, -1, -1, 0$
- $\ \, \Box \ \, \text{Sum of squared residuals: } \sum_{i=0}^{6} \widehat{e}_i^2 = 20 \implies \widehat{\sigma}_e^2 = 20/(6-2) = 5.$
- $\stackrel{i=1}{\Box}$ Compute the standard error of \widehat{b} :

$$\mathsf{SE}(\widehat{b}) := \widehat{\sigma}_e \sqrt{\frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2}} = \sqrt{\frac{5}{17.5}} = 0.5345.$$

Compute the standard error of \widehat{a} :

$$\mathsf{SE}(\widehat{a}) := \widehat{\sigma}_e \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} = \sqrt{\frac{5}{6} + \frac{5 \times 7.5^2}{17.5}} = 4.1115.$$

Christopher Ting QF 603 October 22, 2018 28/51

t Statistics

 \Box To test the null hypothesis $H_0: b=0$,

$$t_4(\widehat{b}) = \frac{\widehat{b} - 0}{\mathsf{SE}(\widehat{b})} = \frac{2}{0.5345} = 3.74$$

 \Box To test the null hypothesis $H_0: a=0$,

$$t_4(\widehat{a}) = \frac{\widehat{a} - 0}{\mathsf{SE}(\widehat{a})} = \frac{1}{4.1115} = 0.24.$$

 Introduction Simple OLS OLS in Matrix Hypothesis Tests Asymptotic Limits Forecasting Case Study Takeaways

What Does the *t*-Distribution Look Like?

Christopher Ting QF 603 October 22, 2018

Connection between t and Normal Distributions

- Arr A *t*-distribution with an infinite number of degrees of freedom is a standard normal, i.e. $t_{\infty} \stackrel{d}{\sim} N(0,1)$.
- Examples

Significance level	t_{∞}	t_{40}	t_4
50%	0	0	0
5%	1.64	1.68	2.13
2.5%	1.96	2.02	2.78
0.5%	2.57	2.70	4.60

The reason for using the *t*-distribution rather than the standard normal is that we need to estimate σ_e^2 , the variance of the disturbances (aka noise or errors).

Christopher Ting QF 603 October 22, 2018

Rejection Regions for Two-Tailed Test

Rejection Region for One-Sided Lower Tail Test

Christopher Ting OF 603 October 22, 2018

Rejection Region for One-Sided Upper Tail Test

Christopher Ting QF 603 October 22, 2018

Another Example: Estimates

Let
$$X_i^* := X_i - \overline{X}$$
, and $Y_i^* := Y_i - \overline{Y}$.

Observation	X_i	Y_i	X_i^*	Y_i^*	X_i^{*2}	Y_i^{*2}	$X_i X_i^*$	$X_iY_i^*$	$X_i^*Y_i^*$	
1	10	11	2	1.4	4	1.96	20	14	2.8	
2	7	10	-1	0.4	1	0.16	-7	2.8	-0.4	
3	10	12	2	2.4	4	5.76	20	24	4.8	
4	5	6	-3	-3.6	9	12.96	-15	-18	10.8	
5	8	10	0	0.4	0	0.16	0	3.2	0	
6	8	7	0	-2.6	0	6.76	0	-20.8	0	
7	6	9	-2	-0.6	4	0.36	-12	-3.6	1.2	
8	7	10	-1	0.4	1	0.16	-7	2.8	-0.4	
9	9	11	1	1.4	1	1.96	9	12.6	1.4	
10	10	10	2	0.4	4	0.16	20	4	0.8	
Average	8	9.6	0	0	28	30.4	28	21	21	Total

$$\hat{b} = \frac{21}{28} = 0.75$$
, $\hat{a} = 9.6 - 0.75 \times 8 = 3.6$

$$Y_i = 3.6 + 0.75X_i$$

 Christopher Ting
 QF 603
 October 22, 2018
 35/51

Regression Result

- ☐ For *a* estimate, the standard error is .
- For *b* estimate, the standard error is _____

Christopher Ting QF 603 October 22, 2018

Estimation with Asymptotically Large Sample

$$\lim_{n \to \infty} \overline{X}_n = \mu_X \,, \qquad \lim_{n \to \infty} \overline{Y}_n = \mu_Y$$

When n is asymptotically large, the biased second-order estimators approach the population variances σ_X^2 , σ_Y^2 , and covariance σ_{XY} .

$$S_X^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2, \quad S_Y^2 := \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2.$$

$$S_{XY} := \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y}).$$

When n is asymptotically large, OLS slope estimator is expressed as

$$\widehat{b} = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)}{\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2} = \frac{S_{XY}}{S_X^2}.$$
 (2)

Consistent Properties of OLS

 \bowtie Covariance between X_i and Y_i when $Y_i = a + bX_i + e_i$ is

$$\mathbb{C}(X_i, Y_i) = \mathbb{C}(X_i, a + bX_i + e_i)$$

$$= b \mathbb{V}(X_i) + \mathbb{C}(e_i, X_i)$$

$$= b \mathbb{V}(X_i)$$

$$\implies b = \frac{\mathbb{C}(X_i, Y_i)}{\mathbb{V}(X_i)}$$

$$\bowtie$$
 Hence from (2), $\lim_{n\to\infty} \hat{b} = b$.

⋈ Implications:

- \bigcup OLS \widehat{b} estimator is consistent: $\lim_{n\to\infty}\widehat{b}=b$
- I OLS \widehat{a} estimator is consistent: Since $\widehat{a}=\overline{Y}-\widehat{b}\,\overline{X}$,

$$\lim_{n \to \infty} \widehat{a} = \mu_Y - b \, \mu_X = a$$

Christopher Ting QF 603 October 22, 2018 38/51

Decomposition

⊞ Consider

$$\widehat{Y}_{i} = \widehat{a} + \widehat{b} X_{i}
\widehat{e}_{i} = Y_{i} - \widehat{a} - \widehat{b} X_{i} = Y_{i} - \widehat{Y}_{i}$$

H TSS = ESS + RSS

$$\sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2} = \sum_{i=1}^{n} \left(\widehat{Y}_{i} - \overline{Y}\right)^{2} + \sum_{i=1}^{n} \widehat{e}_{i}^{2}$$
Total Sum of Squares Explained Sum of Squares Residual Sum of Squares

⊞ ESS can be expressed as

$$\mathsf{ESS} = \sum_{i=1}^n \left(\widehat{a} + \widehat{b} \, X_i - \widehat{a} - \widehat{b} \, \overline{X} \right)^2 = \widehat{b}^{\, 2} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2.$$

Christopher Tina OF 603 39/51

Coefficient of Determination

 \blacksquare The population correlation coefficient is $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{XY}\sigma_{Y}}$. The sample estimate r_{XY} is

$$r_{XY} = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(X_i - \overline{X} \right)}{\sqrt{\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}} = \frac{S_{XY}}{S_X S_Y}.$$

The OLS slope estimator is then

$$\widehat{b} = \frac{S_{XY}}{S_Y^2} = \frac{r_{XY}S_XS_Y}{S_X^2} = r_{XY}\frac{S_Y}{S_X}.$$

- \blacksquare Consequently, ESS := $r_{XY}^2 \frac{S_Y^2}{S_Y^2} \times nS_X^2 = r_{XY}^2 nS_Y^2$.

$$R^2 := \frac{\mathsf{ESS}}{\mathsf{TSS}} = \frac{r_{XY}^2 n S_Y^2}{n S_Y^2} = r_{XY}^2.$$

Christopher Tina OF 603 October 22, 2018 40/51

Illustrative Example: Goodness of Fit

- From Slides 35 and 46, we can compute the following quantities
- Sample correlation coefficient: ______
- U TSS: _____
- ESS: ______
- RSS: _____
- $\bigcup R^2$: _____

Christopher Ting QF 603 October 22, 2018 41/51

Forecasting: Point Estimate

 \bigcirc The OLS forecast of Y_{n+1} given X_{n+1} is

$$\widehat{Y}_{n+1} = \widehat{a} + \widehat{b} X_{n+1} = (\overline{Y} - \widehat{b} \overline{X}) + \widehat{b} X_{n+1} = \overline{Y} + \widehat{b} (X_{n+1} - \overline{X}).$$

 \bigcirc Now, by summing up and then dividing by n, we obtain

$$\overline{Y} = a + b \overline{X} + \frac{1}{n} \sum_{i=1}^{n} e_i.$$

• The point forecast is thus given by

$$\widehat{Y}_{n+1} = a + b\overline{X} + \frac{1}{n}\sum_{i=1}^{n} e_i + \widehat{b}(X_{n+1} - \overline{X}).$$

Christopher Ting QF 603 October 22, 2018 42/51

Forecasting Error

§ The true Y_{n+1} is $a + bX_{n+1} + e_{n+1}$, so the forecast error is

$$Y_{n+1} - \widehat{Y}_{n+1} = b(X_{n+1} - \overline{X}) - \widehat{b}(X_{n+1} - \overline{X}) + e_{n+1} - \frac{1}{n} \sum_{i=1}^{n} e_i$$
$$= -(\widehat{b} - b)(X_{n+1} - \overline{X}) + e_{n+1} - \frac{1}{n} \sum_{i=1}^{n} e_i.$$

- § The forecast error conditional on X_{n+1} is normally distributed.
- § The OLS forecast is unbiased:

$$\mathbb{E}(Y_{n+1} - \widehat{Y}_{n+1} | X_{n+1}) = 0.$$

Christopher Tina OF 603 October 22, 2018 43/51

Properties of the OLS Forecast

> Variance of the OLS Forecast

$$\mathbb{V}(Y_{n+1} - \widehat{Y}_{n+1} | X_{n+1}) = (X_{n+1} - \overline{X})^{2} \mathbb{V}(\widehat{b}) + \sigma_{e}^{2} + \frac{1}{n} \sigma_{e}^{2}$$
$$= \sigma_{e}^{2} \left(1 + \frac{1}{n} + \frac{(X_{n+1} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \right)$$

> The *t*-statistic of the forecast

$$t_{n-2} = \frac{Y_{n+1} - \hat{Y}_{n+1}}{\hat{\sigma}_e \sqrt{1 + \frac{1}{n} + \frac{(X_{n+1} - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}}$$

Christopher Ting QF 603 October 22, 2018 44/51

Point Forecast and Confidence Interval

♦ The point forecast is

$$\widehat{Y}_{n+1} = \widehat{a} + \widehat{b} X_{n+1} \tag{3}$$

- Since the forecast is a random variable, it has a confidence Interval associated with it.
- With 95% probability, the forecast value falls within the confidence interval bounded by

$$\widehat{Y}_{n+1} \pm t_{n-2,97.5\%} \times \widehat{\sigma}_e \sqrt{1 + \frac{1}{n} + \frac{(X_{n+1} - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}.$$

Christopher Ting QF 603 October 22, 2018 45/51

Illustrative Example: Forecast

Continuing from Slides 35 and 46, suppose $X_{11} = 2$.

- \Diamond The forecast \widehat{Y}_{11} : ______
- \Diamond The forecast standard error: \widehat{Y}_{11} : ______
- \diamondsuit At the 95% confidence level, the forecast lower bound:

At the 95% confidence level, the forecast upper bound:

Application: Hedging with Futures

- 4 An institutional investor holds a portfolio of Japanese stocks that has returns following closely those of the Nikkei 225 stock index returns $\Delta S_t/S_{t-1}$.
- 4 Contract size of Nikkei 225 futures traded on SGX is ¥500.

$$\Delta P_t = f \times \Delta S_t - h \times 500 \times \Delta F_t$$
.

47/51

- $\ ^{\ }$ f is a constant **proportional factor** that equates the unhedged value of the portfolio to S_t .
- $^{\mbox{"}}_{h}$ is the number of contracts, and F_{t} is the futures price.

Christopher Ting QF 603 October 22, 2018

Application: Hedging with Futures (cont'd)

- H How many contracts h should the investor short?
- In effect, the investor wants to minimize the risk or variance of ΔP_t :

$$\mathbb{V}(\Delta P_t) = f^2 \times \mathbb{V}(\Delta S_t) + h^2 \times (500)^2 \times \mathbb{V}(\Delta F_t)$$
$$-2 \times f \times h \times 500 \times \mathbb{C}(\Delta S_t, \Delta F_t)$$

Solution to Hedging

 \odot The FOC for minimizing $\mathbb{V}(\Delta P_t)$ with respect to h yields

$$2h \times (500)^2 \times \mathbb{V}(\Delta F_t) - 2 \times (500f) \times \mathbb{C}(\Delta S_t, \Delta F_t) = 0.$$

⊙ The risk-minimizing "optimal" hedge is to short

$$h^* = \frac{f \times \mathbb{C}(\Delta S_t, \Delta F_t)}{500 \times \mathbb{V}(\Delta F_t)}.$$

$$\Delta S_t = a + b\Delta F_t + e_t.$$

 \odot Since $b = \frac{\mathbb{C}(\Delta S_t, \Delta F_t)}{\mathbb{V}(\Delta F_t)}$, the number of contracts to short is

$$h^* = \widehat{b} \times \frac{f}{500}.$$

Tutorial

On January 19, 2018, the value of the portfolio is \S 78 billion, the Nikkei 225 index is 23,808.06, and the OLS estimate for b is 0.71575. How many contracts should the fund manager short?

Christopher Ting QF 603 October 22, 2018 50/51

Takeaways

- \diamondsuit Scatter plot gives an intuitive view of whether X could explain Y.
- Parameter estimates are obtained by minimizing the sum of squared errors.
- Each residual is the vertical distance from the data point to the OLS fitted line.
- OLS estimators are BLUE.
- Covariance divided by variance of explanatory variable = slope of OLS line.
- ❖ Variance decomposition: TSS = ESS + RSS
- R^2 of simple OLS regression = square of correlation coefficient.
- t statistic's degrees of freedom = n-2.
- Many many applications!

51/51