(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-55509

(43)公開日 平成11年(1999)2月26日

(51) Int.Cl.ª		微別記号	FΙ				
H04N	1/401		H 0 4 N	1/40	101	A	
	1/19			5/335	P		
	5/335			1/04	103	E	
			农储查審	未請求	請求項の数 6	OL (全 7 頁)	
(21)出願番号		特願平9-203195	(71) 出願人		000002369		
				セイコー	ーエプソン株式会	会社	
(22)出顧日		平成9年(1997)7月29日		東京都新宿区西新宿2丁目4番1号			
			(72)発明者	金坂	婷則		
				長野県部	取訪市大和 3 丁目	33番5号 セイコ	
				ーエプ	ノン株式会社内		
			(74)代理人	弁理士	鈴木 喜三郎	(外2名)	
¥							

(54) 【発明の名称】 画像説み取り装置

(57) 【要約】

【課題】 読み捨てサイクルを入れることなく、S/N の低下を最小限としてホワイトバランスを調整することができる画像読み取り装置を提供する。

【解決手段】 ステップ102で各チャンネルの1ラインのデータの最大値を $V_{\rm F}$ 、 $V_{\rm g}$ 、 $V_{\rm b}$ とし、ステップ103では、大きい順に $V_{\rm I}$ 、 $V_{\rm 2}$ 、 $V_{\rm 3}$ とする。ステップ104では、最も出力の大きかったチャンネル10出力が所定値($V_{\rm 0}$)になるようにシフトバルス間隔 $T_{\rm SH}$ を調整して、蓄積時間を変更する。ここでは、シフトパルス間隔 $T_{\rm SH}$ = $T_{\rm 0}$ × $V_{\rm 0}$ / $V_{\rm I}$ と計算する。ステップ202では、設定されたシフトバルス間隔で白悲禅を説み取り、チャンネル230 の増幅器からの出力を $V_{\rm 2}$ 、 $V_{\rm 3}$ とする。ステップ205で、チャンネル2300 の増幅器からの出力信号レベルが $V_{\rm 0}$ になるように、増幅率を $V_{\rm 2}$ 0 の $V_{\rm 2}$ 0 の $V_{\rm 3}$ 0 と計算する。

【特許請求の範囲】

【請求項1】 光源により原稿を照射して原稿からの光 を電気信号に変換する画像読み取り装置において、

前配原稿からの光を電気信号に変換する複数のチャンネルを有する光センサと、

白色基準を定める白基準と、

前記光センサの複数のチャンネルのそれぞれの出力を増 幅し、チャンネル毎に増幅率を変更することのできる複 数の増幅器と、

前記光センサで前紀白基準を読み取ったときの前記複数 10 のチャンネルの出力を比較し、最も出力信号レベルが大きいチャンネルの出力信号が所定の信号レベルになるように蓄積時間を変更する蓄積時間変更手段と、

前記蓄積時間において、他のチャンネルの増幅器からの 出力信号が所定値になるように増幅器の増幅率を変更す る増幅率変更手段と、を備えることを特徴とする画像説 み取り装置。

【請求項2】 前記光源は白色光源であり、前記光センサの複数のチャンネルは、赤、緑および青の光の強度を読み取る3つのチャンネルであることを特徴とする請求 20 項1に記載の画像読み取り装置。

【請求項3】 前記光センサは、複数の光電変換素子を配列したラインセンサであることを特徴とする請求項1 または2のいずれか一項に記載の画像読み取り装置。

【請求項4】 前紀光センサで前配白基準を読み取ったときの前記複数のチャンネルの出力を比較するときは、前記ラインセンサの複数の素子から出力された出力の最大値を用いることを特徴とする請求項3に記載の画像読み取り装置。

【請求項5】 前記蓄積時間変更手段は、前記最も出力 30 信号レベルが大きいチャンネルの出力値と所定値との差が所定範囲外であるときは蓄積時間を再設定することを特徴とする請求項1~4のいずれか一項に記載の画像説み取り装置。

【 間求項 6 】 前紀増幅率変更手段は、前紀最も出力信号レベルが大きいチャンネル以外の増幅器からの出力値と所定値との差が所定範囲外であるときは該チャンネルの増幅率を再設定することを特徴とする間求項 1 ~ 5 のいずれか一項に配載の画像説み取り装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、原稿の画像を電気 信号に変換する画像読み取り装置に関するものである。 【0002】

【従来の技術】白色光源と3ラインカラーCCDを用いた画像説み取り装置は、光源の発光分光特性及びCCDの感度分光特性の違いによりCCD出力信号が色毎に違いが生じており、いわゆるホワイトバランスが崩れていることがある。そこで、画像取り込みに先立って自悲準板を読み取り、その信号に基づいてホワイトバランス調50

整を行っている。すなわち、白基準板を読み取ったとき に、各色のCCDからの出力が等しくなるように調整す る。従来の方法として、下記の2通りの方法がある。

【0003】(1) 各色毎に増幅率を調整可能な増幅器が設けられ、その増幅率を調整することにより3色のCC D出力信号レベルのバランスをとる。CCDの蓄積時間は所定値に固定されている。

【0004】(2) 各色毎にCCDのシフトバルス間隔を調整して審積時間を調整することで、3色のCCD出力信号レベルのバランスをとる。各色の増幅器の増幅率は共通にする。

[0005]

【発明が解決しようとする課題】しかしながら、上記の 従来のCCDの出力調整方法には以下のような問題点が なる

【0006】(1) 蓄積時間を固定とし、増幅器の増幅率を調整する方法であるため、固体差により増幅器の増幅率の大きいものや小さいものができてくる。増幅率の大きいものは、信号対ノイズ比(以下S/Nと記す。)が小さくなる。また、長時間使用していると光源の劣化が進み、増幅器の増幅率が大きくなるためS/Nが小さくなる。S/Nが小さくなると、画質が低下する。

【0007】(2)シフトバルス間隔が色毎に異なるため、例えば図5に示すように1ラインの画像データ取り込みの後にシフトバルス間隔の違いを補正するための読み捨てサイクルを入れる必要がある。読み捨てサイクルにおいても、CCDシフトレジスタの全データを出力しなければ次のラインの画像データを取り込むことができないので、例えば500の画素からなるCCDのデータを1M~5M画素/sの割合で転送している場合は、各ライン間のシフトバルス間隔の差がどれだけ小さい場合でも、各ライン毎に最低1ms~5msの時間が余分にかかる。このため、読み取りにかかる時間が長くなる。

【0008】本発明は上記の問題点を解決するためになされたものであり、その目的は、読み捨てサイクルを入れることなく、S/Nの低下を最小限としてホワイトバランスを調整することができる画像読み取り装置を提供することにある。

40 [0009]

【課題を解決するための手段】本発明の間求項1 記載の 画像競み取り装置によれば、光センサの複数のチャンネ ルで自基準を競み取ったときの出力を比較し、最も出力 信号レベルが大きいチャンネルの出力信号が所定の信号 レベルになるように蓄積時間を変更する蓄積時間変更手 段を備えるため、光センサの感度の個体差、光源の光盤 のばらつき、光源の劣化による光量の経時変化などがあ っても、蓄積時間を変更することにより、増幅率を小さ くできるので、S/Nの低下を最小限とすることができ る。

【0010】また、光センサの複数のチャンネルのそれ ぞれの出力を増幅し、チャンネル毎に増幅率を変更する ことのできる複数の増幅器と、前記蓄積時間において、 他のチャンネルの光センサの出力信号が所定値になるよ うに増幅器の増幅率を変更する増幅率変更手段とを備え るため、光センサの感度の個体差や光源の光量のばらつ きによる信号化による光量の経時変化などがあっても、 増幅率を変更することにより、複数のチャンネルの増幅 器からの出力信号レベルを揃えることができ、読み捨て による時間のロスを防ぐことができる。

【0011】本発明の請求項2記載の画像読み取り装置 によれば、光センサの複数のチャンネルは、赤、緑およ び背の光の強度を読み取る3つのチャンネルであるた め、白色光源により照射した原稿からの光を3原色であ る赤、緑および青に分解し、それぞれの色の出力信号レ ベルを揃えることができる。

【0012】本発明の請求項3記載の画像読み取り装置 によれば、光センサは、複数の光電変換素子を並べたラ インセンサであるため、1ラインの複数の点の光の強度 を同時に読み取ることができる。

【0013】本発明の請求項4記載の画像読み取り装置 によれば、光センサの複数のチャンネルで自基準を読み 取ったときの出力を比較するときは、ラインセンサの複 数の素子から出力された出力の最大値を用いるため、蓄 積時間を変更したときにラインセンサに蓄積される電荷 が飽和することや、A/D変換部での変換可能範囲を越 えることを防ぐことができる。

【0014】本発明の請求項5記載の画像読み取り装置 によれば、蓄積時間変更手段は、最も出力信号レベルが 大きいチャンネルの出力信号値と所定値との差が所定範 30 **囲外であるときは蓄積時間を再設定するため、より適切** に蓄積時間を決定することができる。

【0015】本発明の請求項6記載の画像読み取り装置 によれば、増幅率変更手段は、最も出力信号レベルが大 きいチャンネル以外の増幅器からの出力信号値と所定値 との差が所定範囲外であるときは該チャンネルの増幅率 を再設定するため、より適切に増幅率を決定することが できる。

[0016]

【発明の実施の形態】以下、本発明の実施例を図面に基 40 づいて詳細に説明する。

【0017】本発明の一実施例のフラットペッド型の画 像読み取り装置の概略構造を図2に示す。

【0018】箱型の筺体2の上面に、ガラス等の透明板 からなる原稿台1が設けられている。 篦体2の内部に は、図示しない駆動装置により原稿台1に平行に移動す るキャリッジ3が設けられ、このキャリッジ3に光源4 と光センサ5とが搭載されている。光源4の照射光は原 稿台1上の原稿8表面で反射され、集光レンズ7により 光センサ5に集光されるようになっている。光センサ5 50 らの出力は色毎に異なり、いわゆるホワイトバランスが

には、例えばCCD等の電荷蓄積型光センサが多数並べ られたラインセンサが使用される。 原稿台1の上方に は、写真フィルム等の透過原稿を読み取る場合のため に、キャリッジ3の移動に伴って移動する第2の光源6 が設けられている。原稿台1の原稿面側には、白基準と して、高反射率均一反射面をもつ白基準板 9 が設けられ ている。

【0019】上記のように構成された画像読み取り装置 の信号処理装置の構成を表すプロック図を図3に示す。 【0020】光センサ5に蓄積された信号は、増幅器1 1を介してA/D変換部12へ送られ、アナログ信号か らデジタル信号に変換される。変換されたデジタル信号 はデジタル補正部13で、シェーディング補正、ガンマ 補正、色補正、エッジ強調及び領域拡大/縮小等の諸変 換が行われる。

【0021】制御装置14は、CPU、RAM及びRO M等からなるマイクロコンピュータにより構成され、画 像読み取り装置全体の制御を行い、インターフェイス 1 5を介して外部の画像処理装置、例えばパーソナルコン ピュータに接続される。

【0022】カラー画像を読み取る場合、光センサ5は 図4に示すように赤 (R:RED)、緑 (G:GREE N) 及び背(B:BLUE) のチャンネルを持つ。各チ ャンネルは、受光ダイオード、転送ゲート、CCDアナ ログシフトレジスタ(以下CCDと記す。)、電荷電圧 変換部、等から成る。R、G、Bの3原色のフィルタを もつ受光ダイオード列51、52、53に蓄積された電 荷は、転送ゲート57に加えられるシフトパルスで各色 毎にR-CCD54、G-CCD55及びB-CCD5 6へ転送される。従って、シフトパルス間隔T_{SII}を変更 することにより、各色の受光ダイオード51、52、5 3に電荷を蓄積する時間を変更することができる。各色 の受光ダイオード51、52、53の電荷蓄積時間は共 通であり、任意に変更することができる。CCDへの電 荷の転送は、金両素について同時に行われる。

【0023】CCD54、55、56に転送された各色 の電荷は、ここには図示しない転送クロックにより順 次、電荷電圧変換部58、59、60に転送され、電圧 に変換される。この電圧出力はそれぞれR - 増幅器 1 1 1、G-増幅器112、B-増幅器113へ送られ増幅 される。このときの増幅率 G_r 、 G_g 、 G_b はそれぞれ別 々に設定することができる。シフトパルス間隔すなわち 受光ダイオードの電荷蓄積時間や、各チャンネルの増幅 率は制御装置14に組み込まれたコンピュータプログラ ムによって制御することができる。

【0024】光源4、6としては、希ガス冷陰極管など の白色光源が用いられるが、光源4、6の分光特性は R、G、Bの色毎に強度に差がある。また、受光ダイオ ードの感度も色毎に違いがある。したがって、CCDか 崩れていることがある。

【0025】本発明実施例の画像読み取り装置では、ホワイトバランスの調整を行うため、各色のCCDからの出力信号レベルが所定値になるように以下の手順でシフトバルス間隔と増幅器の増幅率の調整を行う。ホワイトバランスの調整は、電源投入時、あるいは画像説み取りの前に必要に応じて制御装置14内に組み込まれたコンピュータプログラムが実行されることによって行われる。

【0026】図1は本発明実施例によりホワイトバラン 10 スを調整する手順を示すフローチャートである。

 $\{0\ 0\ 2\ 7\}$ まず、ステップ $1\ 0\ 1$ では初期設定を行う。シフトパルス間隔 $T_{SH}=T_0$ とし、R- 増幅器 $1\ 1$ 1 、G- 増幅器 $1\ 1\ 2$ 及びB- 増幅器 $1\ 1\ 3$ の増幅率 $G_{r}=G_{g}=G_{b}=G_{0}$ と設定する。ここで、 G_{0} はS / N が小さくならないように適切な値に設定する。 G_{0} が大きいとノイズも大きく増幅されるため、高画質で画像を読み取りたい場合は G_{0} は小さいほうがよい。

【0028】次に、ステップ102でキャリッジを白基 準読み取り位置に移動させ、R-受光ダイオード51、 20 G-受光ダイオード52及びB-受光ダイオード53で 白基準としての白基準板 9 からの反射光を読み取る。透 **過原稿の場合は、光源6からの光を原稿を通さずに読み** 取る。シフトパルス問隔TSHに等しい蓄積時間が経過す ると、各チャンネルの受光ダイオード51、52、53 の素子に蓄積された電荷はそれぞれCCD54、55、 56へ転送され、その出力はそれぞれのチャンネルの増 幅器111、112、113へ送られる。 増幅器からの 出力のうち各チャンネルの1ラインのデータの最大値を V_r 、 V_g 、 V_h とする。ここで最大値を用いるのは、後 30 の行程で蓄積時間を変更したときにCCDに蓄積される 電荷が飽和するのを防ぐため、またはA/D変換部12 での変換可能範囲を越えないためであるが、本発明とし ては、 V_r 、 V_g 、 V_b に 1 ラインのデータの平均値を用 いることや、ラインセンサの特定の素子、例えば中央の 素子からの出力を用いることもできる。また、本実施例 のステップ102では増幅器による増幅後の出力を比較 しているが、本発明としては増幅前の出力を用いて比較

【0029】ステップ103では、 V_r 、 V_g 、 V_b を比 40 較し、出力の大きいチャンネルから順にチャンネル1、2、3とし、その出力を V_1 、 V_2 、 V_3 とする。例えば、出力の大きさが V_b > V_r > V_g の順であるならば、チャンネル1はB、チャンネル2はR、チャンネル3はGであるため、 V_1 = V_b 、 V_2 = V_r 、 V_3 = V_g となる。【0030】ステップ104では、ステップ103で出力が最も大きかったチャンネル1からの出力信号レベルが所定値(V_0)になるようにシフトパルス間隔 T_{SH} を調整して、著積時間を変更する。ここでは、シフトパルス間隔 T_{SH} = T_0 × V_0 / V_1 と計算する。

【0031】ステップ105では、ステップ104で計算したシフトバルス間隔 T_{SH} で、ステップ103で出力が最も大きかったチャンネル1のCCDにより再び白基準を読み取り、増幅器からの出力を V_1 とする。ステップ102で V_r 、 V_g 、 V_b として平均値を用いた場合、ステップ105でも平均値を再度求める必要がある。ステップ105でも平均値を再度求める必要がある。ステップ105では同じ素子の出力値を用いた場合、ステップ105では同じ素子の出力値を用いる。ステップ105で最大値を用いた場合、再度最大値を選ぶことも、ステップ105で最大値であった素子の出力値を用いることもできる。

【0032】ステップ106で、 V_1 と V_0 が等しいと判定されれば、ステップ107で、そのときの T_{SH} を最終のシフトバルス間隔 T_1 と決定する。本実施例においては V_1 と V_0 との差が所定の範囲内、例えば ± 2 %以内であれば、等しいと判定する。 V_b と V_0 とが差が所定の範囲外であれば、ステップ104に戻り再び T_{SH} を設定しなおす。

【0033】以上の行程により、シフトパルス間隔が決定される。

【0034】次に、ステップ201では、シフトパルス間隔 T_{SH} をステップ107で決定した T_1 とし、ステップ 103 で最も出力が大きいとされた以外のチャンネル $2、3の増幅率を G_2 = G_3 = G_0$ と設定する。上述のステップ 103 での出力の大きさが $V_0 > V_r > V_g$ の順である例であれば、チャンネル 2 は R、チャンネル 3 は G である。

【0035】ステップ202では、設定されたシフトバルス間隔及び増幅率でチャンネル2及び3のCCDにより白基準を読み取り、増幅器からの出力を V_2 、 V_3 とする。ここでの V_2 、 V_3 の決定方法は、ステップ105での V_1 の決定方法と同様である。

【0036】ステップ203で、 V_2 と V_0 が等しく、かつ、 V_3 と V_0 が等しいと判定されると、ステップ204で、そのときの G_2 、 G_3 をチャンネル2、3の最終の増幅率と決定する。本実施例においては V_2 及び V_3 と V_0 との窓が所定の範囲内、例えば ± 2 %以内であれば、等しいと判定する。ステップ103での出力の大きさが V_1 ン V_2 の順である例の場合は、 G_b = G_0 、 G_r = G_2 、 G_g = G_3 と決定される。

【0037】ステップ203で、 V_2 及び V_3 と V_0 とが等しくないと判定された場合は、ステップ205で、チャンネル2及びチャンネル3の増幅器からの出力僧号レベルが V_0 になるように、 G_2 = G_0 × V_0 / V_2 、 G_3 = G_0 × V_0 / V_3 と計算し、ステップ202に戻る。

【0038】本実施例では、 V_2 と V_0 、及び V_3 と V_0 を 同時に比較して V_2 と V_3 を設定しているが、 V_2 と V_3 と を別々に設定することもできる。

【0039】上記のようにシフトパルス問隔および各チャンネルの増幅器の増幅率を設定することにより、白基

準を読み取ったときに最も出力が大きいチャンネルについての増幅率は G_0 と一定の値とすることができ、光顔やCCDのチャンネル毎のばらつき、光源の劣化などにより増幅率が増大することがないので、S/Nの低下を最小限とし、高両質で画像を読み取ることができる。

【0040】また、各チャンネル間の出力の差は増幅率を変更することにより調整するため、読み捨て時間などのロス時間も発生することがなく、高速に画像を読み取ることができる。

[0041] 本実施例はフラットベッド型スキャナで示 10 したが、シートフィードスキャナ、フィルムスキャナにおいても同様の方法で効果が得られる。また、光センサとしてCCDラインセンサを用いたが、審積型の光センサであれば同様の方法で効果が得られる。また、チャンネル毎に増幅率を変更する増幅率変更手段として、増幅器を用いたが、A/D変換器の基準電圧をチャンネル毎に変更しても全く同様の効果が得られる。

【図面の簡単な説明】

【図1】本発明の実施例における画像読み取り装置によりホワイトバランスを調整する手順を示すフローチャー 20トである。

【図2】本発明の実施例における画像読み取り装置の一 例の概略構造を示すブロック図である。

【図3】本発明の実施例における画像読み取り装置の信号処理装置の機能構成を示すブロック図である。

【図4】本発明の実施例における画像読み取り装置の光 センサおよび増幅器の構成を示すプロック図である。

【図5】従来の画像読み取り装置において読み捨てサイクルを入れたシフトバルス間隔の調整方法を示す図であ

る。

【符号の説明】

- 1 原稿台
- 2 館体
- 3 キャリッジ
- 4 光源
- 5 光センサ
- 51 R-受光ダイオード
- 52 G-受光ダイオード
- 53 B-受光ダイオード
- 54 R-アナログシフトレジスタ (R-CCD)
- 55 G-アナログシフトレジスタ (G-CCD)
- 56 B-アナログシフトレジスタ (B-CCD)
- 57 転送ゲート
- 58 電荷電圧変換部
- 59 電荷電圧変換部
- 60 電荷電圧変換部
- 6 光源
- 7 集光レンズ
- 8 原稿
- 1 1 増幅器
 - 111 R-增幅器
- 1 1 2 G 増幅器
- 113 B-增幅器
- 12 A/D変換部
- 13 デジタル補正部
- 14 制御装置
- 15 インターフェース

[図2]

[图4]

. . . .

[图1]

[図3]

【図5】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.