2017학년도 2학	학기 (기말고사)	학 과		감!	독교수확인
과 목 명	일반수학2	학 번			
출제교수 명	용	교수 명	분 반		
시 혐 일 시	2017년 12월 12일 (오전 10:00-11:40)	성		점 수	

 $ilde{x}$ 1-10번은 단답형 문제들로, 주어진 답란에 적힌 답으6. 벡터장 $extbf{\emph{F}}=\left\langle e^{xy},\cos(yz),-xz^{2}
ight
angle$ 의 컬과 발산을 구 로만 채점되고 부분점수는 없습니다.

1. 주면 $x^2 + y^2 = 2y$ 의 내부 중, xy평면의 위, 그리고 곡면 $z = x^2 + y^2$ 의 아래에 있는 입체의 부피를 구하여라.

하여라.

답:

7. 그린정리를 이용하여 곡선 $x^{2/3} + y^{2/3} = 1$ 로 둘러싸인 영역의 넓이를 구하여라.

답:

2. 다음 두 삼중적분이 같은 영역에서의 삼중적분일 때 A, B에 알맞은 식을 구하여라.

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{1-y} f \, dz \, dy \, dx = \int_{0}^{1} \int_{0}^{A} \int_{0}^{B} f \, dx \, dy \, dz$$

답:

3. 구면좌표 부등식

 $0 \leq \rho \leq \cos \phi, \ 0 \leq \phi \leq \frac{\pi}{4}, \ 0 \leq \theta \leq 2\pi$ 로 주어진 영역의 부피를 구하여라.

답:

8. 원추면 $z^2 = x^2 + y^2$ 중 두 평면 z = 1, z = 4 사이에 있는 부분을 S라 할 때, 다음 곡면적분을 구하여라.

$$\iint_{S} xyz \ dS$$

답:

분을 구하여라.

$$\int_C x^2 y \, ds$$

답:

4. 곡선 C가 원 $x^2+y^2=4$ 의 위쪽 반일 때, 다음 선적 9. 곡면 S가 반구 $x^2+y^2+z^2\leq 9$, $z\geq 0$ 의 경계이고 $m{n}$ 은 S의 외향단위법선벡터라 하자. 벡터장

> $\mathbf{F} = \langle x + 2y - z, -2x + 3y + 5z, x + 4y - 3z \rangle$ 의 곡면 *S*를 통한 유량을 구하여라.

답:

5. 부등식 $1 \leq x^2 + y^2 \leq 9,~0 \leq y \leq \sqrt{3}\,x$ 로 주어진 평면 $|_{\hbox{10.}}$ 곡면 $_{\hbox{S}}$ 와 $_{\hbox{n}}$, 그리고 벡터장 $_{\hbox{F}}$ 가 앞의 9번 문제와 영역 D의 경계를 반시계방향으로 도는 폐곡선 C에 대ય을 때, 다음 곡면적분을 구하여라. 하여 다음 선적분을 구하여라.

$$\oint_{C} -y^{3} dx + (x^{3} + \ln(1 + y^{2})) dy$$

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \ dS$$

답:

2017학년도 2호	학기 (기말고사)	학 과		감	독교수확인
과 목 명	일반수학2	학 번			
출제교수 명	양	교수 명	분 반		
시 험 일 시	2017년 12월 12일 (오전 10:00-11:40)	성 명		점 수	

	시	험	일	시		'년 12월 10:00-		성 명				점 수			
						10,00	111107								
*]	11-	15 է	컨은	서술형	문제들	로, 풀이	과정이	채점되므로	풀이 과정을	을 깨끗하고	자세하게	적으시기	바립	나다.	
11. 영역	세 위	점 에	(0,0 놓인)), (0,1 <u> </u> 곡면	(2,1) $z = x +$	을 꼭짓점 $\frac{1}{2}y^2$ 의 된	함으로 현 넓이를 -	하는 삼각형 구하여라.	12. 곡선 <i>(</i> (2,4)까지의 를 구하여리	$\int_C \frac{x^2}{x^2}$	$y = x^2$ 의 , 선적분 $\frac{x}{x^2} dx + \frac{1}{x^2}$			(1,1)	세서
									글 기 아쉬니	Γ.					

2017학년도 2학	학기 (기말고사)	학 과		감.	독교수확인
과 목 명	일반수학2	학 번			
출제교수 명	용	교수 명	분 반		
시 혐 일 시	2017년 12월 12일 (오전 10:00-11:40)	성 명		점 수	

(土色 10:00-11:40)		
10 ㅂ조거 베디카	14 고면 여기 사람이어어	_
13. 보존적 벡터장	14. 곡면 S 가 삼차원영역	
$\mathbf{F} = \langle e^x \cos y + yz, xz - e^x \sin y, xy + z \rangle$	$T = \{(x, y, z) 0 \le z \le 4 - x^2 - y^2 \}$	
의 퍼텐셜함수를 구하여라.	의 경계이고, n 이 S 의 외향단위법선벡터일 때, 벡터장	
	$F = \langle xz\sin(yz) + x^3, \cos(yz) + x^5z^3, 3y^2z - e^{x^5 + y^7} \rangle$	
	의 S 를 통한 유량을 구하여라.	

2017학년도 2학	학기 (기말고사)	학 과		감!	독교수확인
과 목 명	일반수학2	학 번			
출제교수 명	용	교수 명	분 반		
시 험 일 시	2017년 12월 12일 (오전 10:00-11:40)	성 명		점 수	

15. 곡면 S 는 포물면 $z = x^2 + 9y^2$ $(z \le 9)$ 이고 단위법선	
벡터 n 은 $n \cdot k \ge 0$ 이 성립하도록 선택했다고 하자. 벡	
터장 $m{F} = \left< 2xy, \ xz, \ xze^{y^2} \right>$ 에 대하여 다음 곡면적분을	
구하여라.	
$\iint_S \nabla imes F \cdot \mathbf{n} \ dS$	