(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年8 月25 日 (25.08.2005)

PCT

(10) 国際公開番号 WO 2005/077852 A1

(51) 国際特許分類7:

C03C 15/00,

G02B 1/00, G11B 5/73, 5/84

PCT/JP2005/001708

(21) 国際出願番号:(22) 国際出願日:

2005年2月4日(04.02.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-041285 2004 年2 月18 日 (18.02.2004) JP

(71) 出願人 (米国を除く全ての指定国について): 日本板 硝子株式会社 (NIPPON SHEET GLASS COMPANY, LIMITED) [JP/JP]; 〒1058552 東京都港区海岸二丁目 1番7号 Tokyo (JP). オリンパス株式会社 (OLYM-PUS CORPORATION) [JP/JP]; 〒1510072 東京都渋谷 区幡ヶ谷2丁目43番2号 Tokyo (JP). (72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 倉知淳史 (KU-RACHI, Junji) [JP/JP]; 〒1058552 東京都港区海岸二丁 目 1 番 7 号日本板硝子株式会社内 Tokyo (JP). 小山昭 浩 (KOYAMA, Akihiro) [JP/JP]; 〒1058552 東京都港区 海岸二丁目 1番 7号日本板硝子株式会社内 Tokyo (JP). 岡本慎也 (OKAMOTO, Shinya) [JP/JP]; 〒1058552 東 京都港区海岸二丁目1番7号日本板硝子株式会社 内 Tokyo (JP). 斉藤靖弘 (SAITO, Yasuhiro) [JP/JP]; 〒 1058552 東京都港区海岸二丁目 1 番 7 号日本板硝子株 式会社内 Tokyo (JP). 常友啓司 (TSUNETOMO, Keiji) [JP/JP]; 〒1058552 東京都港区海岸二丁目 1 番 7 号 日本板硝子株式会社内 Tokyo (JP). 小用広隆 (KOYO, Hirotaka) [JP/JP]; 〒1058552 東京都港区海岸二丁目 1番7号日本板硝子株式会社内 Tokyo (JP). 日▲高 ▼猛 (HIDAKA, Takeshi) [JP/JP]; 〒1920916 東京都八 王子市みなみ野 3-3 1-1 7-2 0 5 Tokyo (JP). 葛

/続葉有/

(54) Title: METHOD FOR PRODUCING GLASS SUBSTRATE HAVING CONCAVE AND CONVEX PORTIONS IN SURFACE THEREOF

(54) 発明の名称: 凹凸のある表面を有するガラス基材の製造方法

(57) Abstract: A method for producing a glass substrate having a surface having concave and convex portions, which comprises providing a glass substrate comprising at least one oxide selected from SiO₂, B₂O₃, P₂O₅, GeO₂, As₂O₅, ZrO₂, TiO₂, SnO₂, Al₂O₃, MgO and BeO, and has a composition in which the content of the at least one oxide is more than 90 mole %, applying a pressure to a prescribed region of the surface of the glass substrate and then etching a region including the prescribed region, to thereby form concave and convex portions on the above surface. Since the glass substrate having the above composition has a high ratio of a network forming oxide or an intermediate oxide, the glass is more susceptible to compression, which results in that efficient formation of projections is achieved without the utilization of the selective elution of the component being easy to elute into an etchant, which leads, in turn, to the easy achievement of the combination with good resistance to an acid. A glass substrate produced by the above method has a fine texture imparted on its surface with high efficiency of the formation of projections, and also is excellent in acid resistance.

(57) 要約: 本発明は、高い突起形成効率により、表面に微細なテクスチャーが付与され、かつ耐酸性に優れたガラス基材を提供する。本発明では、 SiO_2 , B_2O_3 , P_2O_5 , GeO_2 , As_2O_5 , ZrO_2 , TiO_2 , SnO_2 , Al_2O_3 , MgOおよびBeOから選ばれる少なくとも1種の酸化物を含み、この少なくとも1種の酸化物の含有率が90モル%を超える組成を有するガラス基材の表面の所定領域を押圧し、次いでこの所定領域を含む領域をエッチングすることにより上記表面に凹凸を形成する。このガラス基材の組成では、網目形成体または中間体の酸化物の比率が高くなるがは、ガラス基材が圧縮されやすくなる。このため、エッチをといた溶出しやすい成分の選択的溶出を利用しなくても高い突起形成効率を得ることができるようになり、耐酸性との両立も容易となる。

西広明 (KASAI, Hiroaki) [JP/JP]; 〒1960015 東京都昭島市昭和町 5-1 1-1 1-5 0 4 Tokyo (JP). 中村泰 (NAKAMURA, Yasushi) [JP/JP]; 〒4090126 山梨県北都留郡上野原町コモアしおつ 4-2 8-6 Yamanashi (JP).

- (74) 代理人: 鎌田耕一、外(KAMADA, Koichi et al.); 〒 5300047 大阪府大阪市北区西天満4丁目3番1号ト モエマリオンビル7階 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

- SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

凹凸のある表面を有するガラス基材の製造方法 技術分野

- [0001] 本発明は、凹凸のある表面を有するガラス基材を製造する方法に関する。 背景技術
- [0002] 磁気記録媒体用基板、光学素子等の用途では、ガラス基材の表面に形成した微小な凹凸を求められることがある。ガラス基材の表面に微細なテクスチャーを付与するには、典型的な脆性材料であるガラスに適した方法を用いる必要がある。
- [0003] ガラス基材の表面に密度差を与え、この密度差により生じるエッチングレートの相違を利用して表面に凹凸を形成する加工方法が提案されている(特許文献1、2)。この加工方法では、まず、ガラス基材の表面に、例えばダイヤモンド製の圧子を押し当てることにより部分的に圧縮層を形成し、次いでこの表面を、例えばフッ化水素酸(フッ酸)を用いてエッチングする。圧縮層ではエッチングレートが相対的に低下するため、エッチング後、圧縮層を形成した領域に凸部が形成される。
- [0004] 特開2002-160943号公報は、この加工方法にSiO $_2$ およびAl $_2$ O $_3$ を含むガラスが適していることを開示している。ガラス中のAl $_2$ O $_3$ は酸性のエッチャントに溶出しやすい。しかし、高密度化した部分ではSiO $_2$ の網目構造が緻密化されているため、Al $_2$ O $_3$ の溶出が抑制される。こうして生じるエッチングレートの相違により微小な凹凸が形成される。
- [0005] 特開2003-73145号公報は、上記加工方法にはSiO2の含有率とAl2Oの含有率との差(SiO2-Al2O3)が40~67モル%、特に47~57モル%であるガラスが適していることを開示している。この条件を満たすガラスを用いれば、突起形成効率が向上し、エッチング後に高い凸部を得ることができる。特開2003-73145号公報の図5によれば、突起形成効率は、ガラス組成における(SiO2-Al2O3)が47~57モル%の範囲でピークを示す。

発明の開示

[0006] 上記公報の記載に従い、突起形成効率が高くなる組成を有するガラスを用いると、

その結果得られるガラス基材の化学的耐久性、特に耐酸性は十分ではない。このように、従来の加工方法は、ガラス表面に微細なテクスチャーを付与するには適しているが、耐酸性の維持と高い突起形成効率との両立に困難があり、ここに改善の余地を残していた。

- [0007] 本発明では、押圧に伴うガラスの密度変化を大きくすることにより突起形成効率を向上させ、突起形成効率と耐酸性との両立を図ることとした。各種ガラス組成を用いた検討の結果、AlOの選択的溶出ではなく、ガラスの局所的な密度変化を大きくとることによっても突起形成効率が向上することが見出され、本発明はこの知見に基づいて完成された。
- [0008] 即ち、本発明は、ガラス基材の表面の所定領域を押圧し、押圧した所定領域を含む領域をエッチングすることにより上記表面に凹凸を形成する、凹凸のある表面を有するガラス基材の製造方法であって、前記ガラス基材が、SiO2, B2O3, P2O5, GeO2, As2O5, ZrO2, TiO2, SnO2, Al2O3, MgOおよびBeOから選ばれる少なくとも1種の酸化物を含み、上記少なくとも1種の酸化物の含有率が90モル%を超える組成を有する、ガラス基材の製造方法、さらにはこの製造方法により得た凹凸のある表面を有するガラス基材、を提供する。上記に列挙した酸化物を2種以上含む場合、酸化物の含有率の合計が90モル%を超えていればよい。
- [0009] 本発明によれば、部分的な押圧工程とエッチング工程とを含むガラス基材の加工 方法において、突起形成効率と耐酸性との両立を容易に実現できる。 図面の簡単な説明
- [0010] [図1]図1は、本発明の製造方法の一例における各工程を断面により示す工程図であり、図1(a)はガラス基材の表面の一部を押圧する圧子を、図1(b)は押圧によりガラス基材の表面に形成された圧縮層を、図1(c)は押圧後のエッチングにより形成された凸部を、図1(d)はエッチングにより形成された変質層を除去した後の状態を、それぞれ示す。

[図2]図2は、本発明の製造方法の別の一例における各工程を断面により示す工程図であり、図2(a)はガラス基材の表面の一部を押圧しながら移動する圧子を、図2(b)は押圧後のエッチングにより形成された凸部を、図2(c)はエッチングにより形成され

た変質層を除去した後の状態を、それぞれ示す。

[図3]図3は、突起形成効率とガラス組成との関係を示す図である。

[図4]図4は、エッチングレートとガラス組成との関係を示す図である。

[図5]図5は、突起形成効率の算出方法を説明するための図である。

発明を実施するための最良の形態

[0011] 以下、成分の含有率を示す%表示はすべてモル%である。

- [0012] 一般に、ガラスの構造は、不規則網目モデルにより説明されている。このモデルに従うと、酸化物ガラスでは、Si⁴⁺に代表される網目形成体が酸素(O²⁻)とともに不規則な網目構造(ガラス骨格)を形成し、この網目中にNa⁺に代表される網目修飾体が局色的な電気的中性を保持するように分布している。陽イオンの役割(網目形成体となるか網目修飾体となるか)は、当該陽イオンの酸素の配位数、酸素との結合の強さ等に依存する。網目形成体は酸素との単結合の強さが相対的に高く、網目修飾体はこの値が相対的に低い。網目形成体として機能する代表的な元素はSi, P, Ge, Asであり、典型的な網目修飾体はLi, Na, K, Ca, Sr, Baである。網目修飾体は、網目構造の隙間に入り込み、網目構造の圧縮を阻害する。
- [0013] ガラスの表面の一部に圧子等の部材が押し込まれると、ガラスの網目構造には高密度部分と低密度部分が生じる。高密度部分では、AlOの溶出が阻害されるためエッチングレートが遅くなる。また、エッチングレートの変化は、密度の変化量が大きいほど大きくなる。しかし、従来のガラスでは、密度の変化量が小さかったため、密度の変化に伴うエッチングレートの相違も小さい範囲にとどまっていた。これは、従来の加工方法に用いられていたガラスが、原料の熔融性等を改善するために、アルカリ金属酸化物およびアルカリ土類金属酸化物を相当量(少なくとも10%以上)含み、これら酸化物から供給される網目修飾体が網目構造の部分的な圧縮を阻害していたためである。このため、従来の突起形成機構は、僅かな密度変化で大きなエッチングレートの変化を引き起こすAlOの選択的溶出の補助を必要とするものとなり、ガラス組成においてもSiOの含有率とAlOの含有率との差が所定範囲にあることが重要とされてきた。
- [0014] しかし、上記に開示したように、 SiO_2 , B_2O_3 , P_2O_5 , GeO_2 , As_2O_5 , ZrO_2 , TiO_2 , SiO_3 , SiO_4 , SiO_5 ,

- nO₂, Al₂O₃, MgOおよびBeOの含有率の合計を90%を超える範囲として網目修飾体の含有率を制限すれば、ガラスは十分に圧縮されやすくなり、その結果、耐酸性の向上を図りつつ、高い突起形成効率を得ることが可能となる。
- [0015] 網目修飾体を供給する典型的な酸化物は、Li₂O, Na₂O, K₂O, CaO, SrO, BaO である。本発明では、これらの酸化物の合計量は10%未満に制限される。上記に列 挙した酸化物 (Li₂O-BaO)を構成する陽イオンとは異なり、 Mg^{2+} , Be²⁺は、2族に属 するが、おそらくはイオン半径がやや小さいために、突起形成効率を顕著には低下させない。 Mg^{2+} は、網目修飾体として分類されることもあるが、本明細書では、 Zr^{4+} , Ti $^{4+}$, Sn⁴⁺, Be²⁺等とともに、網目形成体と網目修飾体の中間の機能を有する中間体に 分類する。
- [0016] B^{3+} および Al^{3+} は、上記に列挙した酸化物($Li_2O \sim BaO$)の量以下の範囲では網目 形成体としてふるまう。この量を超える B^{3+} および Al^{3+} については、 Mg^{2+} 等と同様、イオン半径が小さいため、本明細書では中間体として分類する。
- [0017] 本発明では、ガラス基材の組成が、 SiO_2 を、好ましくはその含有率が74%以上となるように、必須成分として含有することが好ましい。また、網目修飾体の含有率が低い組成では、上記特許文献の教示とは逆に、 SiO_2 の含有率から Al_2O_3 の含有率を差し引いた値が70%以上であるほうが突起形成効率と耐酸性との両立を図りやすい。
- [0018] ガラス基材の組成は、SiO2等とともに、Al2O3およびB2Oから選ばれる少なくとも一方を必須成分としてさらに含むことが好ましい。これらの酸化物は、酸性エッチャントに選択的に溶解するため、突起形成効率の向上に寄与しうる。Al2O3およびB2Oから選ばれる少なくとも一方の含有率は5~20%、特に10~20%、が好ましい。これら成分の量が合計で20%を超えると、耐酸性が低下し、ガラスが分相しやすくなる。分相したガラスでは、相によってエッチングレートが異なるため、微小な凹凸を形成した平滑な表面を得ることが困難となる。
- [0019] B_{2}^{O} は、網目形成体を供給するとともにガラスを柔らかくする効果を奏する好ましい成分である。 B_{2}^{O} の好ましい添加量は、0%を超え20%以下、さらには5~20%、特に8~20%、である。
- [0020] ガラス網目構造の大きな圧縮が大きなエッチングレート差を生み出す。これを考慮

すると、網目形成体の酸化物の含有率は高いほうがよく、例えば SiO_2 の含有率と、 Al_2O_3 および B_2O_3 から選ばれる少なくとも一方の含有率の合計、即ち SiO_2 、 Al_2O_3 および B_2O_3 の含有率の合計、は90%以上が好ましい。

- [0021] 一方、多成分系のガラスにおいて、網目形成体の酸化物(網目形成酸化物)または中間体の酸化物(中間酸化物)の含有率の合計が高すぎると、ガラスの耐酸性は却って劣化することがある。このため、上記に列挙した酸化物(SiO2~BeO)の含有率の合計は、95%以下、例えば93~95%が好適である。
- [0022] ガラスの分相を防ぐためには、2価金属の酸化物およびK₂Oから選ばれる少なくとも一方を、0.1%以上添加するとよい。ここで、2価金属には、Mg, Ca, Sr, Ba, Zn 等が含まれる。同様の観点からLi₂Oを実質的に含まないガラスを用いることが好ましい。ここで、実質的に含まないとはその含有率が0.1%未満であることをいう。
- [0023] 本発明に適したSiO₂を主成分とする多成分系のガラス組成を以下に例示する。
- [0024] SiO₂:74~84%、特に80~84%、

Al₂O₃:0~5%、特に0.5~3%、

B2O3:5~20%、特に8~20%、

Al₂O₃+B₂O₃:5~20%、特に10~20%、

 $SiO_2 + Al_2O_3 + B_2O_3$:90~96%、特に93~95%、

Li₂O:0~0. 1%,

Na_.O:2%以上10%未満、特に4~6%、

K₂O:0~2%,

Na₂O+K₂O:4%以上10%未満、

CaO:0~3%

SrO:0~3%

BaO:0~3%,

Li₂O+Na₂O+K₂O+CaO+SrO+BaO:4%以上10%未満、

MgO:0~3%

[0025] この好ましいガラス組成は、さらに、 ZrO_2 、 TiO_2 、 SnO_2 およびZnOから選ばれる少なくとも1種を合計で5%を超えない範囲でさらに含んでいてもよい(ZrO_2 + TiO_2 + S_2

 nO_2 +ZnO:0~5%)。また、 Fe_2O_3 、MnO、NiO、 Cr_2O_3 、CoO等の着色成分を合計で1%を超えない範囲でさらに含んでいてもよい(Fe_2O_3 +MnO+NiO+ Cr_2O_3 +CoO:0~1%)。また、上記に列挙しない成分が不純物として1%を超えない範囲で混入していても構わない(その他成分:0~1%)。

- [0026] 本発明に適した別のガラスは石英ガラスである。SiO からなる石英ガラスは、熱膨 張係数が低く、化学的耐久性が高く、紫外線透過性にも優れている。上記特許文献 が開示する突起形成機構(AlOの選択的溶出)からは想定できないが、石英ガラスを用いることによっても突起形成効率と耐酸性の両立は可能である。石英ガラスをエッチングする際には、例えばフッ酸の濃度を上げ、AlO が選択的に溶出するガラス組成に適用するよりもガラスがエッチングされやすい条件を適用するとよい。エッチング条件を適切に調整すれば、石英ガラスからも十分に実用的な突起形成効率が得られる。このように、本発明は、実質的に網目形成体のみを含む(例えば網目形成酸化物が99%以上である)ガラス基材にも適用できる。
- [0027] ガラス表面の一部に設定された所定領域を押圧する工程、詳しくは所定領域を押圧してガラス表面に圧縮領域と非圧縮領域とを形成する工程、および上記所定領域を含む領域をエッチングすることにより、詳しくは圧縮領域と非圧縮領域とを含む領域においてガラス表面をエッチングすることにより、ガラス表面に凹凸を形成する工程は、それぞれ上記公報に開示されている方法に従って行えばよい。
- [0028] ガラス表面の密度差は、例えば、ガラス基材1よりも硬度が高い圧子2を、クラックが生じることなく圧縮層が形成される圧力でガラス表面に押し当てることにより導入できる(図1)。この圧力は、ダイヤモンド圧子の場合は0.3~4GPa程度、例えば0.3~2GPa、が好ましい。平坦な表面(図1(a))~の圧子2の押入により、ガラス基材1の表面には凹部3が形成され、凹部3の下にはガラスが高密度化した圧縮層4が生成する(図1(b))。凹部3とその周辺部を酸性エッチャントに接触させると、エッチングレートの相違により、圧縮層4が形成された領域が凸部5となる(図1(c))。酸性エッチャントとしては、フッ酸が好適である。非圧縮領域6ではガラス成分の選択的溶出が相対的に大きく進行するため、SiO2の比率が相対的に高くなった変質層(多孔質層)7が形成されることがある。この層7は、必要に応じ、アルカリ性エッチャントを用いて

除去すればよい(図1(d))。アルカリ性エッチャントとしては、例えば水酸化カリウム水溶液が好適である。

- [0029] 島状にではなく、尾根状(リッジ状)の凸部を形成するには、圧子8をガラス表面に押し当てながらこの表面に対して相対的に移動させればよい(図2)。ガラス基材1の表面に、圧子8の軌跡に沿って形成された圧縮層9(図2(a))は、非圧縮領域11よりも酸性エッチャントに対するエッチングレートが相対的に小さくなるため、エッチング後には凸部10が現れる(図2(b))。この形態でも、変質層12は、必要に応じてアルカリ性エッチャントにより適宜除去すればよい(図2(c))。
- [0030] ガラス表面に密度差を導入できる限り、圧子の形状、材質等に制限はない。例えば、走査型プローブ顕微鏡のプローブを圧子として用いれば、精密に凸部を形成できる。
- [0031] 押圧によりガラスに密度差を導入するのであれば圧子を用いなくてもよく、ガラス表面への微小粒子の吹きつけはその一例である。凸部を形成した金型を用いれば、ガラス表面に効率よく密度差を導入できる。形成すべき所定のパターンに対応する島状または線状の凸部をガラス表面に押圧する工程を導入すれば、同一パターンの微小凸部を形成したガラス基材を効率よく量産できる。
- [0032] 以下、本発明を実施例により、さらに詳細に説明する。
- [0033] 表1に示す組成となるように、サンプル2~17のバッチを、一般的なガラス原料(酸化珪素、酸化硼素、酸化アルミニウム、炭酸ナトリウム、炭酸カリウム、酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酸化ジルコニウム)を用いて調合した。これらのバッチは、1350℃に保持した電気炉中で熔融し、さらに1600℃に昇温して清澄し、鉄板上に流し出してガラスサンプルとした。各ガラスサンプルは、650℃の電気炉中で30分間保持し、電源を切って自然冷却することにより内部応力を緩和した。これらのガラスサンプルを板状に加工し、さらに表面を平滑に研磨した。
- [0034] サンプル1については、市販の石英基板を用いた。この基板は、表面を研磨した後に、1190℃に2時間保持した後に電気炉の電源を切って自然冷却して内部応力を 緩和した。
- [0035] 上記のように、内部応力の緩和のため、ガラス基材は熱により変形しない温度、例

えば徐冷点以下の温度で予め熱処理することが好ましい。この熱処理は、ガラスの徐 冷点よりも低い温度、例えば絶対温度で表示したガラスの歪点に0.7を乗じた温度 で行うことも可能である。

- [0036] 次いで、各ガラスサンプルの表面上で市販のステンレス製カッターナイフを掃引し、 200 μ m間隔で長さ10mmの2本の線状圧痕を形成した。触針式の表面凹凸計により測定したところ、圧痕の深さはサンプル1では約50nm、その他のガラスサンプルでは約100nmであった。
- [0037] 引き続き、ガラスサンプルの表面の一部を、市販のシリコンウェハ用マスク材を用いてマスキングした。さらに、この表面を、60℃に加熱した濃度0.2%のフッ酸に30分間浸漬した。ただし、サンプル1については、50℃に加熱した濃度1.0%のフッ酸に10分間浸漬した。エッチング後に形成された表面の微小凸部の高さを、表面凹凸計を用いて測定し、マスク部分と非マスク部分の段差から、エッチングレートを算出した。また、エッチング量e、初期の圧痕深さd、凸部の高さhから、突起形成効率((h+d)/e)を算出した(図5参照)。これらの結果を表1に併せて示す。

[0038] [表1]

								実施例								比較例		
		1	7	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17
	SiO ₂	100	83.2	82.7	81.2	81.8	81.1	81.9	0'9/	74.0	74.0	74.0	74.0	74.0	74.0	74.0	62.5	67.5
	Al ₂ O ₃	0	1.4	1.7	1.4	1,4	1.4	1.4	5.0	4.0	2.0	2.0	2.0	2.0	2.0	2.0	8.3	10.1
	B_2O_3	0	11.3	11.4	11.3	11.4	11.3	11.4	14.0	14.0	16.0	14.0	14.0	14.0	14.0	14.0	16.2	10.7
	MgO	0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0'0	0.0	0.0	1.0
	ZrO ₂	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0'0	0.0	0.0	0.0	0.0
組成	Li ₂ 0	0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0'0	0.0	0'0	0.0	0.0	0'0	0.0	0.0	0.0
[mom]	Na ₂ O	0	4.1	3.7	6.1	4.1	4.1	4.1	8.0	8.0	8.0	8.0	8.0	10.0	8.0	8.0	0.0	0'0
	K ₂ 0	0	0.0	0.5	0'0	1.3	0'0	0'0	0'0	0.0	0.0	0.0	0.0	0'0	2.0	0'0	0.0	0.0
	Ca0	0	0.0	0.0	0'0	0'0	2.2	0'0	0'0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	5.8
	SrO	0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0'0	0.0	0.0	0'0	0'0	2.0	0.3	2.1
	BaO	0	0.0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0'0	0.0	0.0	0.0	0.0	0.0	12.7	2.8
網目形成	網目形成酸化物+中間酸化物	100	95.9	92.8	93.9	94.6	2.86	94.7	92.0	92.0	92.0	92.0	92.0	0.06	0'06	90.0	87.0	89.3
網	網目修節酸化物	0	4.1	4.2	6.1	5.4	6.3	5.3	8.0	8.0	8.0	8.0	8.0	10.0	10.0	10.0	13.0	10.7
Τ΄	サンプル状態	$\mathbf{G}^{1)}$	5	В	9	5	5	g	១	5	5	В	១	5	9	5	១	ច
エッチン	エッチングレート(nm/min)	17^{2}	89	26	31	16	11	42	42	22	135	89	28	32	34	98	586	124
ΛI	突起形成効率	0.53	0.67	0.67	99'0	0.79	0.71	0.78	99.0	0.54	0.72	0.56	0.71	0.29	0.25	0.24	0.29	0.18

G=ガラス化, 1):石英ガラス基板を使用, 2)サンプル1のみエッチング条件が異なる

- [0039] 典型的な網目修飾酸化物 (Li_2O , Na_2O , K_2O , CaO, SrO, BaO)の合計量が10%未満であり、網目形成酸化物と中間酸化物の含有率の合計が90%を超えるサンプル1〜12では、突起形成効率が0.5以上となった。これに対し、サンプル13〜17では、突起形成効率は0.3未満であった。
- [0040] これらガラスサンプルについて、エッチングレートおよび突起形成効率と、ガラス組成における網目形成酸化物と中間酸化物の合計量との関係を、図3、図4に示す。この酸化物の合計量が90%を超えると、突起形成効率が急激に向上した(図3)。理由の詳細は明らかではないが、網目構造の圧縮を阻害する網目修飾体の比率が酸化物換算で10%を下回ると、網目構造の圧縮自体が突起形成効率に寄与する効果が顕著となる。一方、エッチングレートは、上記酸化物の合計量が93~95%で極小となっており(図4)、この範囲の組成でより高い耐酸性が得られることが確認できる。
- [0041] さらに、サンプル2,3の組成となるように、上記の方法により各2枚のガラスサンプルを作製した。内各1枚は、再び580℃に加熱し、毎分5℃の速度で降温する熱処理を行った。こうして得た各ガラスサンプルについて、上記と同様にして、微小凸部を形成した。ただし、エッチングは、70℃に加熱した1%のフッ酸に15分間浸漬することにより行った。熱処理により、サンプル2のエッチングレートは212nm/分から542nm/分へ、サンプル3のエッチングレートは172nm/分から312nm/分へと増加した。この増加はガラスの分相によるものである。ただし、突起形成効率はともに0.67であり、特にK20を含有するサンプル3では分相の程度は低かった。サンプル2~12の組成でも容易に分相は回避できる。しかし、分相の危険がある熱処理を伴う用途では、分相後のエッチングに伴う不規則な表面凹凸を防ぐために、K20を2%程度を超えない範囲(0%を超え2%以下の範囲)で添加することが好ましい。
- [0042] 上記と同様の実験から、上記に列挙した2価金属の酸化物を0.1%以上添加しても、分相は回避またはその程度が緩和できることが確認できた。ただし、2価金属の酸化物は、フッ酸に溶解した後に難溶性のフッ化物塩を形成し、基板表面に沈着することがある。この沈着物は均質なエッチングを妨げる。このため、2価金属の酸化物の含有率の合計は2%以下にとどめるとよい。

産業上の利用可能性

請求の範囲

[1] ガラス基材の表面の所定領域を押圧し、前記押圧した所定領域を含む領域をエッチングすることにより前記表面に凹凸を形成する、凹凸のある表面を有するガラス基材の製造方法であって、

前記ガラス基材が、 SiO_2 , B_2O_3 , P_2O_5 , GeO_2 , As_2O_5 , ZrO_2 , TiO_2 , SnO_2 , Al_2O_3 , MgOおよびBeOから選ばれる少なくとも1種の酸化物を含み、前記少なくとも1種の酸化物の含有率が90モル%を超える組成を有する、ガラス基材の製造方法。

- [2] 前記組成が、SiO₂を必須成分として含有する請求項1に記載のガラス基材の製造方法。
- [3] 前記組成において、SiO の含有率が74モル%以上である請求項2に記載のガラス 基材の製造方法。
- [4] 前記組成において、 SiO_2 の含有率から Al_2O_3 の含有率を差し引いた値が70モル%以上である請求項3に記載のガラス基材の製造方法。
- [5] 前記組成が、 Al_2O_3 および B_2O_3 から選ばれる少なくとも一方を必須成分として含有する請求項2に記載のガラス基材の製造方法。
- [6] 前記組成において、AloのおよびBのから選ばれる少なくとも一方の含有率が5〜20モル%である請求項5に記載のガラス基材の製造方法。
- [7] 前記組成において、 SiO_2 、 Al_2O_3 および B_2O_3 の含有率の合計が90モル%以上である請求項5に記載のガラス基材の製造方法。
- [8] 前記少なくとも1種の酸化物の含有率が93~95モル%である請求項1に記載のガラス基材の製造方法。
- [9] 前記組成が、2価金属の酸化物およびK₂Oから選ばれる少なくとも一方を0.1モル %以上含有する請求項1に記載のガラス基材の製造方法。
- [10] 前記組成が、Li₂Oを実質的に含まない請求項1に記載のガラス基材の製造方法。
- [11] 前記ガラス基材が石英ガラスである請求項2に記載のガラス基材の製造方法。
- [12] 請求項1に記載の製造方法により得た、凹凸のある表面を有するガラス基材。

WO 2005/077852 PCT/JP2005/001708

[図1]

[図2]

3/4

[図3]

[図4]

WO 2005/077852 PCT/JP2005/001708

[図5]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/001708

		FC1/UF2	2003/001/08		
	CATION OF SUBJECT MATTER CO3C15/00, G02B1/00, G11B5/73	3, 5/84			
According to Inte	ernational Patent Classification (IPC) or to both national	l classification and IPC			
B. FIELDS SE					
Minimum docum Int.Cl ⁷	nentation searched (classification system followed by cla C03C15/00, G02B1/00, G11B5/73	assification symbols) 3, 5/84			
Jitsuyo Kokai Ji	itsuyo Shinan Koho 1971-2005 To	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2005 1994-2005		
Electronic data b	ase consulted during the international search (name of d	lata base and, where practicable, search to	erms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
Y	JP 2002-160943 A (Nippon Shee Ltd.), 04 June, 2002 (04.06.02), Claims; Par. Nos. [0110] to [& US 2002/0058463 A1		1-12		
Y	JP 2002-201040 A (Asahi Glas: 16 July, 2002 (16.07.02), Claims; Par. No. [0001]; tabl (Family: none)		1-12		
У	JP 11-126324 A (Ibiden Co., 1 11 May, 1999 (11.05.99), Claims; examples (Family: none)	Ltd.),	1-12		
X Further do	cuments are listed in the continuation of Box C.	See patent family annex.			
"A" document do to be of part	gories of cited documents: efining the general state of the art which is not considered icular relevance cation or patent but published on or after the international	"T" later document published after the into date and not in conflict with the applic the principle or theory underlying the i"X" document of particular relevance; the or	ation but cited to understand nvention		
filing date	which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	lered to involve an inventive		
special reaso	iblish the publication date of another citation or other on (as specified) ferring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other such	step when the document is documents, such combination		
"P" document pu priority date	ablished prior to the international filing date but later than the claimed	being obvious to a person skilled in the "&" document member of the same patent if			
02 Marc	al completion of the international search ch, 2005 (02.03.05)	Date of mailing of the international sea 15 March, 2005 (15			
	ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/001708

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	JP 3-95726 A (Ibiden Co., Ltd.), 22 April, 1991 (22.04.91), Claims; examples (Family: none)	1-12

A. 発明の属する分野の分類 (国際特許分類 (IPC))				
Int. Cl. 7 C03C15/00, G02B1/00, G11B5/73, 5/84				
B. 調査を行った分野				
調査を行った最小限資料(国際特許分類(IPC))				
Int. C	1. ⁷ C03C15/00, G02B1/00, G11B5/73, 5/84			
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	トの資料で調査を行った分野に含まれるもの 本国実用新案公報 1922-1996年 本国公開実用新案公報 1971-2005年 本国実用新案登録公報 1996-2005年 本国登録実用新案公報 1994-2005年		·	
国際調査で使用	目した電子データベース(データベースの名称、	調査に使用した用語)		
C. 関連すると認められる文献				
り 引用文献の カテゴリー*		ときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Y	JP 2002-160943 A(12.06.04, 特許請求の範囲, 002/0058463 A1		$1-1\ 2$	
Y	JP 2002-201040 A (カ 07. 16, 特許請求の範囲, 【000		$1 - 1 \ 2$	
Y	JP 11-126324 A (イビラ 5.11, 特許請求の範囲, 【実施的	デン株式会社) 1999.0 列】 (ファミリーなし)	1-12	
☑ C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。				
もの 「E」国際出版 以後にな 「L」優先権 日若しく 文献(5 「O」口頭に。	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 順日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 里由を付す) よる開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ出願と矛盾するものではなく、の理解のために引用するもの 「X」特に関連のある文献であって、この新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、こ上の文献との、当業者にとってよって進歩性がないと考えられる「&」同一パテントファミリー文献	発明の原理又は理論 当該文献のみで発明 さられるもの 当該文献と他の1以 自明である組合せに	
国際調査を完了	了した日 02.03.2005	国際調査報告の発送日 15.3.	2005	
	D名称及びあて先 国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 前田 仁志	4G 9157	
3	第便番号100-8915 第千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3416	

C(続き).	関連すると認められる文献	BENJA 1
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 3-95726 A (イビデン株式会社) 1991. 04.	1-12
	22, 特許請求の範囲, 実施例(ファミリーなし)	
	•	
,		
,	·	
i i		
*		
	·	•
	*	
	•	
		. (8)
		- (4)
		_l