Datum: 16. Juli 2014 Zeit: 11:00 Ort: U213

Signalverarbeitung

Modulschlussprüfung Sommersemester 2014

Name:	Matrikel-Nummer:	Platz:
-------	------------------	--------

Zeit: 90 Minuten

Hilfsmittel: Cheat Sheet (1 Blatt = 2 Seiten)

Vorgehen:

- 1. Legen Sie Ihren Studierendenausweis auf den Tisch.
- 2. Schalten Sie Ihre Mobiltelefone aus!
- Tragen Sie Namen, Matrikelnummer sowie Platznummer jetzt gleich auf dem Deckblatt ein.
 Kontrollieren Sie, ob Sie alle Aufgabenblätter erhalten haben.
- 5. Schreiben Sie auf jedes abzugebende Zusatzblatt oben rechts Ihren Namen.
- 6. Streichen Sie ungültige Lösungsteile deutlich durch. Mehrfachlösungen sind falsch.
- 7. Geben Sie am Prüfungsende Ihre Lösung zusammen mit allen Unterlagen ab.
- 8. Vorzeitige Abgabe bis maximal 15 Minuten vor Prüfungsende.
- 9. Bleiben Sie am Prüfungsende sitzen, bis alle Prüfungen eingesammelt wurden!
- 10. Bitte lesen Sie die Aufgabenstellungen ganz genau durch!

Nr.	Aufgabe	max. Punkte	mögl. ZP	Punkte
1	Elementare Signale und Signaleigenschaften	16		
2	Faltung	8		
3	Korrelation	9	5	
4	LTI – Systeme	16		
5	Abtastung	16		
6	Fouriertransformation für Diskrete Zeit (DTFT)	12	4	
7	Diskrete Fouriertransformation (DFT)	15		
8	Z – Transformation	0	22	
	Gesamt	92		

1. Aufgabe: Elementare Signale und Signaleigenschaften (20 Punkte)

a) (2P) Ordnen Sie durch Ankreuzen die folgenden Signalbeispiele jeweils einer Signalkategorie zu. (Bewertungshinweis: richtige Zuordnung ½ P, falsche Zuordnung -½ P):

Signalhaignial	Signalkategorie				
Signalbeispiel	zeitkontinuierlich	zeitdiskret	digital		
Ausgangsspannung an einem Kondensatormikrofon					
Verlauf der monatlichen Niederschlagsmenge					
Kursverlauf eines börsennotierten Unternehmens					
Handy Klingelton					

b) (4P) Gegeben ist das folgende zeitdiskrete Signals x(n)

$$x(n) = -\frac{3}{2}u_R(n+1) + 2u(n+1) + 3u_R(n-2) + \frac{5}{2}\delta(n-2)$$

wobei $u_R(n)$ die Einheitsrampe, u(n) den Einheitssprung und $\delta(n)$ den Einheitsimpuls bezeichnet.

Zeichnen Sie x(n) in das nachfolgende Diagramm ein!

c) (7P) Gegeben ist das komplexe Signal $x(n) = 0.9^n e^{-j\frac{\pi}{4}n} u(n)$.

Das Signal ist (bitte ankreuzen, richtige Auswahl: 1P, falsche Auswahl: -1P):

- □ nicht periodisch
- □ ein Energiesignal
- □ absolut summierbar
- □ ein Leistungssignal

Stellen Sie das Signal für n = 0, 1, ... 9 dar:

d) (3P) Ergänzen Sie den folgenden MATLAB Code, so dass die Aufgabe c) (Darstellung des komplexen Signals $x(n) = 0.9^n e^{-j\frac{\pi}{4}n} u(n)$) gelöst wird.

```
n = 0:9;

plot (x);
axis(1.2*[-1 1 -1 1])
grid;
xlabel('Realteil(x)'); ylabel('Imaginaerteil(x)');
```

2. Aufgabe: Faltung

(8 Punkte)

Gegeben sind zwei zeitdiskrete Signale

$$h(n) = [1, \underline{2}, 1, -1] \text{ und } x(n) = [\underline{1}, 2, 3, 1]$$

(das <u>unterstrichene</u> Element entspricht jeweils dem Zeitindex n=0, alle nicht angegebenen Signalwerte sind 0.) Ermitteln Sie die folgenden Faltungssummen (markieren Sie das Element an der Stelle n=0 ebenfalls durch <u>Unterstreichen!</u>)

a) (5P) h(n) * x(n)

b) (2P) $h(n+1) \star x(n+1)$

c) (1P) $h(n+1) \star x(n-1)$

3. Aufgabe: Korrelation

(9+5 Punkte)

In einem Konzertsaal befindet sich eine Audioquelle, die ein Sendesignal x(n) aussendet. Stark vereinfacht, empfängt ein Zuhörer als Empfangssignal y(n) dieses Sendesignal x(n) und zusätzlich (überlagert) ein verzögertes, abgeschwächtes Echo $\alpha x(n-K_{echo})$:

$$y(n) = x(n) + \alpha x(n - K_{echo})$$

a) (4P) Von x(n) ist nur die Autokorrelationsfunktion $r_{x,x}(l)$ bekannt. Ermitteln Sie daraus die Kreuzkorrelationsfunktion $r_{y,x}(l)$ zwischen dem Empfangssignal y(n) und dem Sendesignal x(n).

b) (5P) [**Zusatzaufgabe**] Ermitteln Sie daraus ferner die Autokorrelationsfunktion $r_{y,y}(l)$ für das Empfangssignal y(n).

c) (5P) Gegeben sind zwei Signale

$$y(n) = [1, \underline{2}, 1, -1] \text{ und } x(n) = [1, 3, 2, \underline{1}]$$

Berechnen Sie die Kreuzkorrelationsfunktion $r_{y,x}(l)$.

4. Aufgabe: LTI – Systeme

(16 Punkte)

a) (5P) Die folgende Tabelle gibt Funktionen an, die einen Systemeingang x(n) in einen Systemausgang y(n) übersetzen. Kreuzen Sie an, ob eine solche Funktion ein LTI – System beschreibt oder nicht. (Bewertungshinweis: jede richtige Antwort → 1P, jede falsche Antwort → 1P Abzug)

Die Funktion	beschreibt ein LTI – System	beschreibt <u>nicht</u> ein LTI – System
$y(n) = 3 x^2(n)$		
y(n) = 2 x(n-2) + 5		
y(n) = x(n-1) + x(1-n)		
y(n) = a(n) x(n-2) + 0.9 x(n-3)		
y(n) = x(n) - n		

1 \	(11D)	α 1	• , •	TOT O	• .	1 C 1	1 D'CC	1 ' 1
h)	(IIP)	Liegeben	19f A1n	I I I - S	vstem mil	der tolge	nden I Jitter	enzengleichung:
σ_{I}	(I I I /	GCZCUCII	131 0111		y Stolli Illi	uci ioizo		Chizongicichung.

$$y(n-1) = 0.8x(n) + 0.2x(n-1) - y(n)$$

(3P) Zeichnen Sie das dazugehörige Systemblockschaltbild

(1P) Es handelt es sich hierbei um (kreuzen Sie an!) (richtige Antwort: 1P, falsche Antwort -1P)

- □ ein FIR System
- \Box ein IIR System

(3P) Ermitteln Sie die Impulsantwort h(n) für $n = -2 \dots 3$

n	-2	-1	0	1	2	3
h(n)						

(2P) Ist das System kausal? Begründen Sie Ihre Antwort.

(2P) Ist das System BIBO – stabil? Begründen Sie Ihre Antwort.

5. Aufgabe: Abtastung

(16 Punkte)

a) (6P) Ein zeitkontinuierliches Signal

$$x_a(t) = 2 + 2\cos(150\,\pi t) + 3\cos(110\,\pi t)$$

wird mit der Abtastrate $F_s = 100 \text{ samples/s}$ abgetastet.

(2P) Ermitteln Sie das zeitdiskrete Signal x(n), das als Ergebnis der Abtastung entsteht

$$x(n) =$$

(3P) Tritt Aliasing auf? Falls ja, welche zeitkontinuierliche(n) Frequenz(en) erscheinen fehlerhaft?

b) (6P) Ein zeitkontinuierliches Signal $x_a(t) = \sin(1000 \, \pi t)$ wird mit dem Abtastintervall ΔT abgetastet. Skizzieren Sie den Betragsverlauf $\left|X(e^{j\omega})\right|$ der Fouriertransformierten (DTFT) des zeitdiskreten Signals $x(n) = x_a(n \, \Delta T)$ für $\Delta T = 0.1 \, ms$, $\Delta T = 1 \, ms$, $\Delta T = 0.01 \, s$:

c) (4P) Digitale Speicherfolien für Röntgengeräte haben oft eine nutzbare Bitbreite von 12 *Bit*. Geben Sie das damit erzielbare bestmögliche Signal – Rausch – Verhältnis in dB an. (Rechenweg angeben!)

Angenommen, die Signalleistung sei $P_{Signal} = 1\mu W$. Wie groß ist dann die durch die Quantisierung eingeführte (Quantisierungs-) Rauschleistung? (Rechenweg angeben!)

6. Aufgabe: Fouriertransformation für Diskrete Zeit (DTFT) (12+4 Punkte)

Gegeben sei die Impulsantwort h(n) = A [u(n) - u(n - L)] eines LTI – Systems.

a) (3P) Ermitteln Sie hierzu die Übertragungsfunktion $H(e^{j\omega})$. (Rechenweg angeben!)

$$H(e^{j\omega}) =$$

b) (4P) Skizzieren Sie den Amplitudengang $|H(j\omega)|$ (Skizze:)

c) (2P) Um welchen Typ von Filter handelt es sich? Filtertyp:

d) (3P) Bewirkt dieses LTI – System für alle Eingangssignale eine einheitliche Verzögerung? (kreuzen Sie an!) (richtige Antwort: 1P, falsche Antwort -1P)

☐ ja, einheitliche Verzögerung für alle Eingangssignale

nein, verschiedene Eingangssignale können unterschiedlich verzögert werden

Begründen Sie Ihre Entscheidung! Falls es eine einheitliche Verzögerung gibt, geben Sie deren Wert an!

e) [**Zusatzaufgabe**] (4P) Gegeben ist die Fouriertransformierte $X(j\omega)$ eines Signals x(n). Im Folgenden ist der Realteil $Re\{X(j\omega)\}$ dargestellt. Der Imaginärteil $Im\{X(j\omega)\}$ ist überall $Im\{X(j\omega)\} = 0$:

Kreuzen Sie an, welche der folgenden Eigenschaften auf das Signal x(n) zutreffen (Bewertungshinweis: jede richtige Antwort +1P, jede falsche Antwort -1P):

 \Box x(n) ist rein reellwertig

 \Box x(n) ist gerade

 \Box x(n) ist ungerade

Geben Sie die Energie $E = \sum_{n=-\infty}^{\infty} |x(n)|^2$ des Signals x(n) an:

	Aufgabe: Diskrete Fourier – Transformation (DFT) (15 Punkte)
a)	(3P) Erklären Sie kurz den Unterschied zwischen der Fouriertransformation für diskrete Zeit (DTFT) und der Diskreten Fouriertransformation (DFT). Warum / unter welchen Bedingungen ist die DFT ein sinnvoller Ersatz für die DTFT?
b)	(2P) Erklären Sie den Unterschied zwischen der Diskreten Fourier – Transformation (DFT) und der Schnellen Fourier – Transformation (FFT)
c)	(4P) Berechnen Sie die DFT für das Signal $x(n) = [4, 1, -1, 1]$ (Rechenweg angeben!)
	X(k) =
d)	(2P) Berechnen Sie die DFT für das Signal $x(n) = [-1, 1, 4, 1]$

e)	(4P) Gegeben ist die DFT $X(k) = [5, -5j, -1, 5j]$. Berechnen Sie daraus das zugehörige Signa $\kappa(n)$.	ιl

x(n) =

8. Aufgabe: Z – Transformation

(22 Punkte)

Gegeben ist ein LTI – System mit folgender Systemfunktion:

$$H(z) = \frac{2 - \sqrt{3}z^{-1}}{1 - \sqrt{3}z^{-1} + z^{-2}}$$

a) (4P) Ermitteln Sie die Differenzengleichung für dieses System

$$y(n) =$$

a) (4P) Zeichnen Sie das Pol – Nullstellen – Diagram (PN-Plan) für dieses System

b) (2P) Ist dieses System BIBO – stabil? Begründen Sie Ihre Antwort!

c)	(3P) Ist dieses System invertierbar, d.h.: Ist das zu diesem System inverse System BIBO – stabil? Begründen Sie Ihre Antwort!			
d)	(9P) Ermitteln Sie die Impulsantwort $h(n)$ dieses Systems in geschlossener (analytischer) Form!			
	h(n) =			
	V-7			

Anhang:

Nützliche Winkelfunktionswerte:

ω	cos ω	sin ω	
0	1	0	
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2} \approx 0.8660$	$\frac{1}{2}$	
$\frac{\pi}{3}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2} \approx 0.8660$	
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.7071$	$\frac{\sqrt{2}}{2} \approx 0.7071$	
$\frac{\pi}{2}$	0	1	

Nützliche Beziehungen zwischen Winkelfunktionen:

$$\cos\left(\omega - \frac{\pi}{2}\right) = \sin\omega$$

$$\cos(\omega - \pi) = \cos(\omega + \pi) = -\cos\omega$$