L3.2 Adversarial Attacks

Zonghua Gu, Umeå University Nov. 2023

Outline

- Adversarial attacks via local search
- Physically-realizable attacks
- Training adversarially robust models

A Limitation of the (Supervised) ML Framework

- Distribution Shift: data distribution during inference may NOT be the same as the same as the training dataset
- May be naturally occurring, or may be due to adversarial attacks

Adversarial Examples

 Starting with an image of a panda, the attacker adds a small perturbation that has been calculated to make the image be recognized as a gibbon with high confidence

+.007 ×

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_{x}J(\theta, x, y))$ "gibbon"
99.3 % confidence

Adversarial Attacks w. Input Perturbation

- For a given input image x with correct label y, and a neural network $f_{\theta}(x)$ that maps from input to label, find a small perturbation δ s.t.
 - Untargeted attack: $f_{\theta}(x + \delta) \neq y$
 - Targeted attack: $f_{\theta}(x + \delta) = t \neq y$
- Which input perturbations δ are allowed? e.g., δ small w.r.t.
 - l_p norm (we focus on it in this lecture)
 - Rotation and/or translation
 - Other perturbations...

Vector Norms

- l_p norm of a k-dimensional vector $x \in \mathbb{R}^k$ is a solution $\|x\|_p = \left(\sum_{i=1}^k |x_i|^p\right)^{1/p}$. Suppose $x = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$
- l_1 norm: $||x||_1 = \sum_i |x_i|$ (Manhattan Distance)

$$\bullet = |3| + |4| = 7$$

• l_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$ (Euclidean norm)

$$\bullet = \sqrt{3^2 + 4^2} = 5$$

- l_{∞} norm: $||x||_{\infty} = \max_{i} |x_{i}|$
 - $\bullet = \max_{i}(3,4) = 4$

Vector Norm Balls

- The l_p norm ball $||x||_p \le \epsilon$ is the set of all vectors with p-norm less than or equal to ϵ : $B_p = \{x \in \mathbb{R}^k | ||x||_p \le \epsilon\}$
- l_2 norm ball $||x||_2 \le \epsilon$: a circle with radius ϵ centered at origin
- l_{∞} norm ball $||x||_{\infty} \le \epsilon$: a square with edge length 2ϵ centered at origin

l_2 vs. l_∞ Norm Balls

- Consider the original vector $x^0 = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$ and two disturbed vectors $x^1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$, $x^2 = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$
 - $\delta^1 = x^0 x^1 = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$, $\delta^2 = x^0 x^2 = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \begin{bmatrix} 0 \\ 10 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$
- Same l_2 distance:
 - $\|\delta^1\|_2 = \sqrt{7^2 + 7^2} \approx 9.9, \|\delta^2\|_2 = \sqrt{10^2 + 0^2} = 10$
- Different l_{∞} distances:
 - $\|\delta^1\|_{\infty} = \max(7,7) = 7$, $\|\delta^2\|_{\infty} = \max(10,0) = 10$
- l_{∞} distance cares about the one maximally-changed individual pixel, whereas l_2 distance cares about all pixels. An image with added random salt-and-pepper noise will have a large l_2 distance from the original image, but not a large l_{∞} distance.
- l_{∞} seems to be more aligned w. human perception
 - e.g., you can clearly see the color difference of the green pixel in the lower right figure with large $\,l_\infty$ distance

Maximization Problem for Finding Adversarial Examples

- $\max_{\delta \in \Delta} \text{Loss}(x + \delta, y; \theta)$
 - Loss() may be Cross-Entropy loss for multi-class classification
 - Solved by constructing adversarial examples via local search
- Attacks can be categorized w.r.t.
 - Allowable perturbation set Δ
 - Optimization procedure, e.g., by Gradient Descent

Model Training vs. Local Search for Adversarial Input Generation

- To solve $\min_{\theta} \mathbb{E}_{(x,y)\sim D} \mathrm{Loss}(x,y;\theta)$ for model training: gradient descent $\theta \leftarrow \theta \alpha \nabla_{\theta} \mathrm{Loss}(x,y;\theta)$
 - Update model params θ by following the gradient downhill, in order to decrease Loss $(x, y; \theta)$. (α is the Learning Rate)
- To solve $\max_{\substack{\delta \in \Delta \\ \text{adversarial input generation: gradient}} \text{Loss}(x + \delta, y; \theta)$ for adversarial input generation: gradient ascent $\delta \leftarrow \delta + \alpha \nabla_{\delta} \text{Loss}(x + \delta, y; \theta)$
 - Update input $x + \delta$ by following the gradient uphill, in order to increase $\text{Loss}(x + \delta, y; \theta)$, while ensuring $\delta \in \Delta$

Aside: Vector Derivative

• Consider a scalar (loss) function y = f(x) that takes as input a n-dim vector x and returns a scalar value y, then $\nabla_x f(x)$ is a n-dim vector:

•
$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_{n-1} \end{bmatrix}$$
, $\nabla_x f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_0} \\ \frac{\partial f}{\partial x_1} \\ \dots \\ \frac{\partial f}{\partial x_{n-1}} \end{bmatrix}$

• x, δ are vectors, e.g., a 128x128 pixel color image is a 128x128x3 tensor, encoded as a vector of size 128*128*3=49152

Projected Gradient Descent (PGD)

- Take a gradient step, and if you have stepped outside of the feasible set, project back into the feasible set: $\Delta: \delta \leftarrow \mathcal{P}_{\Delta}(\delta + \alpha \nabla_{\delta} \text{Loss}(x + \delta, y; \theta))$
 - Input image x is a constant; perturbation δ is the optimization variable. Hence we take derivative w.r.t. δ : ∇_{δ} Loss()

Fast Gradient Sign Method (FGSM)

- FGSM is an attack designed for l_{∞} norm bound by taking a single PGD (Projected Gradient Descent) step within $\|\delta\|_{\infty} \leq \epsilon$, not for other norm bounds
- Consider l_{∞} norm bound $\Delta = \{\delta : \|\delta\|_{\infty} \leq \epsilon\}$. Projection operator \mathcal{P}_{Δ} corresponds to clipping values of δ to lie within the range $[-\epsilon, \epsilon] : \mathcal{P}_{\Delta}(\delta) \coloneqq \mathrm{Clip}(\delta, [-\epsilon, \epsilon])$
- Starting from $\delta=0$, take a large step in the gradient direction by making the learning rate α very large. After clipping, we have: $\delta=\mathcal{P}_{\Delta}\big(0+\alpha\nabla_{\delta}\mathrm{Loss}(x+\delta,y;\theta)\big)=\epsilon\cdot\mathrm{sign}\big(\nabla_{\delta}\mathrm{Loss}(x+\delta,y;\theta)\big)$
- The specific values of α and gradient do not matter if they are large enough; only the gradient direction matters
 - Any gradient direction in the upper right quadrant of the l_∞ norm ball will result in the same δ at the upper right corner

Adversarial Examples by FGSM

• Two NNs for MNIST classification. l_{∞} norm bound $\|\delta\|_{\infty} \leq \epsilon = 0.1$

PGD w. Small Steps

- Recall FGSM takes one large step with size $\alpha = \epsilon$: $\delta = \mathcal{P}_{\Delta} (0 + \alpha \nabla_{\delta} \text{Loss}(x + \delta, y; \theta)) = \epsilon \cdot \text{sign}(\nabla_{\delta} \text{Loss}(x + \delta, y; \theta))$
- PGD takes many small steps (each with size α) to iteratively update δ :
 - Repeat: $\delta \leftarrow \mathcal{P}_{\Delta} \left(\delta + \alpha \cdot \text{sign} (\nabla_{\delta} \text{Loss}(x + \delta, y; \theta)) \right)$
 - Rule-of-thumb: choose α to be a small fraction of ϵ , and set the number of iterations to be a small multiple of ϵ/α
- Fig shows a sequence of gradient steps, with the last step going outside of the l_∞ ball Δ , but \mathcal{P}_Δ brings it back into Δ
 - Fig shows the final δ to end up at a corner of the l_{∞} ball, but it may not be true in general

PGD Examples

Review: Cross-Entropy Loss for Multi-Class Classification

• The SoftMax operator $\sigma: \mathbb{R}^k \to \mathbb{R}^k$ computes a vector of predicted probabilities $\sigma(z): \mathbb{R}^k$ from a vector of logits $z: \mathbb{R}^k$ in the last hidden layer (the penultimate layer), where k is the number of classes:

•
$$\sigma(z)_i = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)}$$

• The loss function is defined as the negative log likelihood of the predicted probability corresponding to the correct label y:

• Loss
$$(x, y; \theta) = -\log \sigma(h_{\theta}(x)_y) = -\log \left(\frac{\exp(h_{\theta}(x)_y)}{\sum_{j=1}^k \exp(h_{\theta}(x)_j)}\right) = \log\left(\sum_{j=1}^k \exp(h_{\theta}(x)_j)\right) - h_{\theta}(x)_y$$

• Minimizing Loss $(h_{\theta}(x), y)$ amounts to maximizing the logit $h_{\theta}(x)_y$ corresponding to the correct label y

Untargeted vs. Targeted Attacks

- Untargeted attack: maximize loss of the true class y:
 - $\max_{\delta \in \Delta} \text{Loss}(x + \delta, y; \theta)$
 - Since SoftMax is a monotonic function:
 - Loss $(x + \delta, y; \theta) = \log(\sum_{j=1}^{k} \exp(h_{\theta}(x + \delta)_j)) h_{\theta}(x + \delta)_y$
 - This is equivalent to minimizing logit of the true class y: Pred: 7
 - $\min_{\delta \in \Delta} h_{\theta}(x + \delta)_{y}$
- Targeted attack: maximize loss of the true class y and minimize loss of a particular target class y_{targ} , in order to change label to y_{targ} :
 - $\max_{\delta \in \Delta} (\text{Loss}(x + \delta, y; \theta) \text{Loss}(x + \delta, y_{targ}; \theta))$
 - This is equivalent to minimizing logit of the true class y while maximizing logit of the target class y_{targ} :
 - $\min_{\delta \in \Delta} (h_{\theta}(x+\delta)_y h_{\theta}(x+\delta)_{y_{targ}})$
 - Alternative formulation: minimizing logit of all the other classes y' while maximizing logit of the target class y_{targ} :
 - $\min_{\delta \in \Delta} \left(\sum_{y' \neq y_{targ}} h_{\theta}(x + \delta)_{y'} h_{\theta}(x + \delta)_{y_{targ}} \right)$

Outline

- Adversarial attacks via local search
- Physically-realizable attacks
- Training adversarially robust models

Physically-Realizable Attacks

- Instead of directly manipulating pixels, it is possible to modify physical objects and cause miss-classification
- [Evtimov et al 2017]: Physical Adversarial Examples Against Deep Neural Networks
 - https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

[Kurakin Goodfellow Bengio 2017]

[Athalye Engstrom Ilyas Kwok 2017]

An optimization approach to creating robust adversarial examples

- The following optimization problem for targeted attack aims to minimize the cost function for input $x+\delta$ and target label y_{targ} (λ is the Lagrange multiplier; the objective tries to minimize the perturbation $\|\delta\|_p$ instead of putting a hard bound on $\|\delta\|_p$)
 - $\operatorname{argmin}_{\delta} \lambda \|\delta\|_{p} + J(f_{\theta}(x+\delta), y_{targ})$
- To create a universal perturbation for robust adversarial examples, enhance the training dataset with multiple (k) variants of the input image at different viewing angles and lighting conditions
 - $\operatorname{argmin}_{\delta} \lambda \|\delta\|_{p} + \frac{1}{k} \sum_{i=1}^{k} J(f_{\theta}(x+\delta), y^{*})$

Optimizing Spatial Constraints

- To make the perturbation imperceptible to humans, we add a mask M_χ to localize the perturbation to specific areas of the Stop Sign to mimic vandalism:
 - $\operatorname{argmin}_{\delta} \lambda \| M_{x} \cdot \delta \|_{p} + \frac{1}{k} \sum_{i=1}^{k} J(f_{\theta}(x + M_{x} \cdot \delta), y^{*})$
 - Use l_1 norm in $\|M_x \cdot \delta\|_1$ to find the most vulnerable regions (since l_1 loss promotes sparsity), then generate perturbation δ within these regions
- Video demos:
 - "Bo Li Secure Learning in Adversarial Autonomous Driving Environments" https://www.youtube.com/watch?v=0VfBGWnFNuw&t=421s

Adversarial Traffic Signs

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP	STOP
5′ 15°	STOP		STOP	STOP	STOP
10' 0°	STOP		STOP	STOP	STOP
10′ 30°		23334	STOP	STOP	STOP
40' 0°					
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Blackbox Attacks

- We have been discussing Whitebox attacks, where we know the NN model parameters heta
- Black Box Attacks:
- If you have the training dataset of the target Blackbox model:
 - Train a proxy Whitebox model yourself
 - Generate attacked objects for the proxy model
- If you do not have the training dataset, you can obtain input-output data pairs from the target Blackbox model by invoking online cloud services

Blackbox Attack Example

• [Evtimov et al 2017]: Physical adversarial examples generated for the YOLO object detector (the proxy Whitebox model) are also be able to fool Faster-RCNN (the Blackbox model)

Phantom of the ADAS

- A phantom is a depthless presented/projected picture of a 3D object (e.g., pedestrian, traffic sign, car, truck, bicycle...), with the purpose of fooling ADAS to treat it as a real object and trigger an automatic reaction
- Phantom attacks by projecting a phantom via a drone equipped with a portable projector:
 - https://www.youtube.com/watch?v=1cSw4fXYqWI&t=85s
- or by presenting a phantom on a hacked roadside digital billboard:
 - https://www.youtube.com/watch?v=-E0t_s6bT_4

Algorithm for Disguising Phantoms

- 1. Extract key points as focus areas of human attention for every frame based on the SURF algorithm
- 2. Compute a local score for every block in a frame that represents how distant a block is from the focus areas, and embed phantoms into "dead areas" that viewers will not focus on
- 3. Display the phantom in at least t consecutive video frames (longer duration leads to higher success rate)

The part of the state of the decision of the d

Original frame

(in green)

-1.0
-0.8
-0.6
-0.4
-0.2

Constraints on Perturbations

- In Phantom of the ADAS attack, phantoms are embedded into "dead areas" that human viewers are not likely to focus on
- There is no $\delta \in \Delta$ norm constraint on the allowable perturbations, since it may not be well-aligned with human perception

Outline

- Adversarial attacks via local search
- Physically-realizable attacks
- Training adversarially robust models

Standard ML vs. Adversarial Robust ML

- Standard ML: Empirical Cost Minimization: $\min_{\theta} \mathbb{E}_{(x,y)\sim D} \text{Loss}(x,y;\theta)$
- Adversarial Input Generation (untargeted attack): $\max_{\delta \in \Delta} \operatorname{Loss}(x + \delta, y; \theta)$ (e.g., FGSM, PGD)
- Adversarial Robust ML: $\min_{\theta} \mathbb{E}_{(x,y)\sim D} \max_{\delta\in\Lambda} \operatorname{Loss}(x+\delta,y;\theta)$
 - Inner maximization problem: generating an adversarial input by adding a small perturbation δ (or ensuring one does not exist)
 - Outer minimization problem: training a robust classifier in the presence of adversarial examples
 - Higher network capacity enables more complex decision boundary and more robust classification

Danskin's Theorem

- How to compute the gradient of the objective with the max term inside?
- Danskin's Theorem:
 - $\nabla_y \max_x f(x, y) = \nabla_y f(x^*, y)$, where $x^* = \underset{x}{\operatorname{argmax}} f(x, y)$
 - (Only true when max is performed exactly)
- In our case:
 - $\nabla_{\theta} \max_{\delta \in \Delta} \operatorname{Loss}(x + \delta, y; \theta) = \nabla_{\theta} \operatorname{Loss}(x + \delta^*, y; \theta)$, where $\delta^* = \underset{\delta \in \Delta}{\operatorname{argmax}} \operatorname{Loss}(x + \delta, y; \theta)$
 - Optimize through the max operator by finding the δ^* that maximizes the loss function, then taking gradient at $x+\delta^*$

Adversarial Training [Goodfellow et al., 2014]

Repeat:

- 1. Select minibatch B, initialize gradient vector g := 0
- 2. For each (x, y) in B:
 - a. Find an attack perturbation δ^* by (approximately) optimizing

$$\delta^\star = rgmax \, \ell(h_ heta(x+\delta), y) \ \|\delta\| \le \epsilon$$

b. Add gradient at δ^*

$$g := g + \nabla_{\theta} \ell(h_{\theta}(x + \delta^{\star}), y)$$

3. Update parameters θ

$$\theta := \theta - \frac{\alpha}{|B|}g$$

• Adversarial training effectiveness is directly tied to how well we perform the inner maximization. The key issue is incorporate a strong attack into the inner maximization procedure $\min_{\theta} \mathbb{E}_{(x,y)\sim D} \max_{\delta\in\Delta} \mathrm{Loss}(x+\delta,y;\theta)$

What Makes the Models Robust?

 The robust model has a smoother loss surface, making it more difficult for an attacker to change the class label with small gradient steps

Loss surface: robust training

Loss Surfaces Examples

- Upper right fig shows a smooth loss surface with small gradients near the correct label and large distances to other labels, which makes attacks more difficult
- Lower right fig shows a less smooth loss surface and small distances to other labels, which makes attacks easier
- You can also think of them as 2 different directions on the same loss surface, and the attacker's goal is to find the optimal direction to change input x (e.g., by gradient ascent with FGSM or PGD)

