Accept any fraction that simplifies to $\frac{1}{48}$. You will see $\frac{12}{576}$ which is completely acceptable.

Question	Scheme	Marks
7(a)	$S = 5x^3 + (3x - 4)^2$	M1
	$\Rightarrow S = 5x^3 + 9x^2 - 24x + 16*$	A1
		cso
		[2]
(b)	$\frac{dS}{dx} = 15x^2 + 18x - 24 = 0$	M1
	$\Rightarrow (5x-4)(x+2) = 0 \Rightarrow x = \frac{4}{5}, -2$	M1A1
	$\frac{d^2S}{dx^2} = 30x + 18 = 30\left(\frac{4}{5}\right) + 18 \Rightarrow +\text{ve hence minimum}$	M1A1 [5]
(c)	$S = 5\left(\frac{4}{5}\right)^3 + 9\left(\frac{4}{5}\right)^2 - 24\left(\frac{4}{5}\right) + 16 = \frac{128}{25}$ or 5.12	M1A1 [2]
Total 9 marks		l 9 marks

Part	Mark	Notes
(a)		
		Substituting <i>x</i> will not yield the required expression.
	A1	For obtaining the given expression with no errors.
	cso	You must check every line of their working.
(b)	M1	For an attempt to differentiate the given expression for S wrt x ,
		Accept at least two terms fully correct with no power of x to increase.
	M1	Sets their differentiated expression = 0 and attempts to solve, provided it is a
		quadratic. See General Guidance for the definition of an attempt to solve a QE
	A1	For the correct two values of <i>x</i> .
	M1	Attempts to differentiate again.
		Minimally acceptable attempt is $\left(\frac{d^2S}{dx^2}\right) = Ax + B$
	A1	Conclusion:
		Concludes that the positive value of $x\left(\frac{4}{5}\right)$ will give a positive $\frac{d^2S}{dx^2}$ hence will
		be a minimum. For example, positive + positive = positive hence minimum. OR
		Substitutes either value of x , with the appropriate conclusion and correctly
		concludes that $x = \frac{4}{5}$ gives a minimum.