Московский государственный технический университет имени Н.Э. Баумана

ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

ЗАДАЧИ ДЛЯ ЗАЩИТЫ МОДУЛЯ 2 ПО КУРСУ ХИМИИ

Методические указания

Москва Издательство МГТУ им. Н.Э. Баумана 2013

Авторы:

Л.Е. Слынько, В.И. Ермолаева, О.И. Романко, М.Б. Степанов

Репензент Г.Н. Фадеев

Энергетика химических реакций. Задачи для защиты мо-Э65 дуля 2 по курсу химии : метод. указания / [Л.Е. Слынько и др.] — М. : Изд-во МГТУ им. Н. Э. Баумана, 2013. — 18, [6] с. : ил.

ISBN 978-5-7038-3661-3

Приведены типовые задачи по темам «Первый закон термодинамики», «Второй закон термодинамики», «Химическое равновесие», «Кинетика гомогенных и гетерогенных химических реакций», предназначенные для контроля знаний студентов по указанным темам модуля 2 курса химии в техническом университете.

Для студентов первого и второго курсов всех специальностей МГТУ им. Н.Э. Баумана, изучающих химию по программе бакалавриата.

Рекомендовано Учебно-методической комиссией Научно-учебного комплекса «Фундаментальные науки» МГТУ им. Н.Э. Баумана.

УДК 946.04 ББК 24.12

ПРЕДИСЛОВИЕ

В связи с переходом технических университетов на блочно-модульную организацию учебного процесса с рейтинговой системой оценки знаний усилилась роль текущего контроля, проводимого для выяснения степени усвоения студентами отдельных тем пройденного материала.

В семестре предусмотрено проведение двух-трех контрольных мероприятий, во время которых студент должен подтвердить свое умение решать расчетные и логические задачи.

Цель методических указаний — обеспечить единство требований преподавателя к студенту.

Достаточно большой набор вопросов и задач дает возможность преподавателю составить необходимое число вариантов с неповторяющимися задачами, что позволит объективно оценить уровень знаний студентов.

1. ЗАКОНЫ ТЕРМОДИНАМИКИ И ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Термодинамические данные, необходимые для решения задач этого раздела, приведены в приложении.

1.1. Первый закон термодинамики

В задачах 1–24 вычислите стандартный тепловой эффект реакции при следующих видах ее проведения:

а) изобарном — $\Delta_r H_{298}^0$; б) изохорном — $\Delta_r U_{298}^0$

Номер задачи	Уравнение реакции	Номер задачи	у равнение реакции
1	$H_2O_{(r)} + CO_{(r)} = CO_{2(r)} + H_{2(r)}$	13	$Fe_{(r)} + H_2O_{(r)} = FeO_{(\kappa)} + H_{2(r)}$
2	$CH_{4(r)} + H_2O_{(r)} = CO_{(r)} + 3H_{2(r)}$	14	$2CO_{2(r)} = 2CO_{(r)} + O_{2(r)}$
3	$Fe_2O_{3(\kappa)}+Mg_{(\kappa)}=2Fe_{(\kappa)}+MgO_{(\kappa)}$	15	$\operatorname{Fe_2O_{3(\kappa)}} + \operatorname{CO_{(\Gamma)}} = 2\operatorname{FeO_{(\kappa)}} + \operatorname{CO_{2(\Gamma)}}$
4	$MnO_{(\kappa)} + H_{2(\Gamma)} = Mn_{(\kappa)} + H_2O_{(\Gamma)}$	16	$PbO_{(\kappa)} + CO_{(\Gamma)} = Pb_{(\kappa)} + CO_{2(\Gamma)}$
6	$Fe_3O_{4(\kappa)} + 4H_{2(\Gamma)} = Fe_{(\kappa)} + 4H_2O_{(\Gamma)}$	18	$FeO_{(\kappa)} + Mn_{(\kappa)} = MnO_{(\kappa)} + Fe_{(\kappa)}$
7	$S_{(\kappa)} + 2N_2O_{(r)} = SO_{2(r)} + 2N_{2(r)}$	19	$2 \text{FeO}_{(\text{T})} + \text{Si}_{(\text{T})} = 2 \text{Fe}_{(\text{T})} + \text{SiO}_{2(\text{T})}$
8	$H_2S_{(r)} + Cl_{2(r)} = 2HCl_{(r)} + S_{(\kappa)}$	20	$FeO + C_{(rpa\phiur)} = Fe + CO$
9	$CO_{(r)} + H_2O_{(r)} = CO_{2(r)} + H_{2(r)}$	21	$3Fe_2O_{3(\kappa)} + H_{2(r)} = 2Fe_3O_{4(\kappa)} + H_2O_{(r)}$
10	$Fe_2O_{3(\kappa)} + 3CO_{(r)} = 2Fe_{(\kappa)} + 3CO_{2(r)}$	22	$GeO_{2(\kappa)} + 2Cl_{2(r)} + 2C_{(\kappa)} =$ = $GeCl_{4(r)} + 2CO_{(r)}$
11	$2PbS_{(\kappa)} + 3O_{2(r)} = 2PbO_{(\kappa)} + + 2SO_{2(r)}$	23	$CH_{4(r)} + H_2O_{(r)} = CO_{(r)} + 3H_{2(r)}$
12	$CaCO_{3(\kappa)} = CaO_{(\kappa)} + CO_{2(r)}$	24	$WO_{3(r)} + 3H_{2(r)} = W_{(\kappa)} + 3H_2O_{(r)}$

В задачах 25–34 по заданным термохимическим уравнениям рассчитайте стандартную энтальпию образования указанного вещества из простых веществ по уравнению

$$x \ni_1 + y \ni_2 = \ni_x \ni_y$$

Номер задачи	Термохимические уравнения реакций, $\Delta_r H^0_{298,i}$, кДж/моль	Вещество
25	(I) $4As_{(\kappa)} + 3O_{2(r)} = 2As_2O_{3(\kappa)}; \ \Delta_r H_1^0 = -1328;$ (II) $As_2O_{3(\kappa)} + O_{2(r)} = As_2O_{5(\kappa)}; \ \Delta_r H_{II}^0 = -261$	$\mathrm{As_2O}_{5(\kappa)}$
26	(I) $2As_{(\kappa)} + 3F_{2(r)} = 2AsF_{3(r)}; \ \Delta_r H_I^0 = -1842;$ (II) $AsF_{5(r)} = AsF_{3(r)} + F_{2(r)}; \ \Delta_r H_{II}^0 = +317$	$AsF_{5(\Gamma)}$
27	(I) $Zr_{(\kappa)} + ZrCl_{4(r)} = 2ZrCl_{2(r)}; \ \Delta_r H_1^0 = +215;$ (II) $Zr_{(\kappa)} + 2Cl_{2(r)} = ZrCl_{4(r)}; \ \Delta_r H_1^0 = +867$	ZrCl _{2(r)}
28	(I) $\operatorname{CuCl}_{2(\kappa)} + \operatorname{Cu}_{(\kappa)} = 2\operatorname{CuCl}_{(\kappa)}; \ \Delta_r H_1^0 = -56;$ (II) $\operatorname{Cu}_{(\kappa)} + \operatorname{Cl}_{2(\kappa)} = \operatorname{CuCl}_{2(\kappa)}; \ \Delta_r H_{11}^0 = -216$	$CuCl_{(\kappa)}$
29	(I) $\operatorname{Ir}_{(\kappa)} + 2S_{(r)} = \operatorname{Ir}S_{2(r)}; \ \Delta_r H_1^0 = -144;$ (II) $2\operatorname{Ir}S_{2(\kappa)} = \operatorname{Ir}_2 S_{3(\kappa)} + S_{(\kappa)}; \ \Delta_r H_{11}^0 = +43$	$Ir_2S_{3(\kappa)}$
30	(I) $2C_{(K)} + O_{2(\Gamma)} = 2CO_{(\Gamma)}; \ \Delta_r H_I^0 = -220;$ (II) $CO_{(\Gamma)} + F_{2(\Gamma)} = COF_{2(\Gamma)}; \ \Delta_r H_{II}^0 = -525$	COF ₂
31	(I) $2Cr_{(\kappa)} + 3F_{2(r)} = 2CrF_{3(\kappa)}; \ \Delta_r H_I^0 = -2224;$ (II) $2CrF_{3(\kappa)} + Cr_{(\kappa)} = 3CrF_{2(\kappa)}; \ \Delta_r H_{II}^0 = -38$	CrF _{2(к)}
32	(I) $2Pb_{(\kappa)} + O_{2(\Gamma)} = 2PbO_{(\kappa)}; \ \Delta_r H_1^0 = -438;$ (II) $2PbO_{2(\kappa)} = 2PbO_{(\kappa)} + O_{2(\Gamma)}; \ \Delta_r H_{II}^0 = +116$	PbO _{2(K)}
33	(I) $2P_{(\kappa)} + 3Cl_{2(r)} = 2PCl_{3(r)}; \ \Delta_r H_I^0 = -574;$ (II) $PCl_{5(r)} = PCl_{3(r)} + Cl_{2(r)}; \ \Delta_r H_{II}^0 = +88$	PCl ₅
34	(I) $2\text{ClF}_{5(r)} = \text{Cl}_2\text{F}_{6(r)} + 2\text{F}_{2(r)}; \ \Delta_r H_{\text{I}}^0 = +152;$ (II) $\text{Cl}_{2(r)} + 5\text{F}_{2(r)} = 2\text{ClF}_{5(r)}; \ \Delta_r H_{\text{II}}^0 = -478$	Cl ₂ F ₆

1.2. Второй закон термодинамики. Химическое равновесие

В задачах 35–45 рассчитайте стандартную энергию Гиббса $\Delta_r G_{298}^0$ при заданной температуре, укажите, в каком направлении (прямом или обратном) реакция протекает самопроизвольно. Оцените вклад энтальпийного и энтропийного факторов в значение $\Delta_r G_{298}^0$.

Номер задачи	Уравнение реакции	<i>T</i> , K
35	$2H_{2(\Gamma)} + CO_{(\Gamma)} \leftrightarrow CH_3OH_{(w)}$	400
36	$4HCl_{(\Gamma)} + O_{2(\Gamma)} \leftrightarrow 2H_2O_{(\Gamma)} + 2Cl_{2(\Gamma)}$	700
37	$2N_{2(r)} + 6H_2O_{(r)} \leftrightarrow 4NH_{3(r)} + 3O_{2(r)}$	1300
38	$4NO_{(r)} + 6H_2O_{(r)} \leftrightarrow 4NH_{3(r)} + 5O_{2(r)}$	1000
39	$2NO_{2(r)} \leftrightarrow 2NO_{(r)} + O_{2(r)}$	700
40	$N_2O_{4(r)} \leftrightarrow 2NO_{2(r)}$	400
41	$S_{2(\Gamma)} + 4H_2O_{(\Gamma)} \leftrightarrow 2SO_{2(\Gamma)} + 4H_{2(\Gamma)}$	1000
42	$S_{2(\Gamma)} + 4CO_{2(\Gamma)} \leftrightarrow 2SO_{2(\Gamma)} + 4CO_{(\Gamma)}$	900
43	$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$	700
44	$CO_{(r)} + 3H_{2(r)} \leftrightarrow CH_{4(r)} + H_2O_{(r)}$	1000
45	$4\text{CO}_{(r)} + 2\text{SO}_{2(r)} \leftrightarrow \text{S}_{2(r)} + 4\text{CO}_{2(r)}$	900

В задачах 46–56 определите температуру, при которой равновероятно как прямое, так и обратное протекание реакции. Объясните, как нужно изменить температуру и давление, чтобы реакция протекала преимущественно в прямом направлении.

Номер задачи	Уравнение реакции
46	$FeO_{(\kappa)} + CO_{(\Gamma)} \leftrightarrow Fe_{(\kappa)} + CO_{2(\Gamma)}$
47	$WO_{3(\kappa)} + 3H_{2(\Gamma)} \longleftrightarrow W_{(\kappa)} + 3H_2O_{(\Gamma)}$
48	$NH_4Cl_{(\kappa)} \leftrightarrow NH_{3(\Gamma)} + HCl_{(\Gamma)}$
49	$Mg(OH)_{2(\kappa)} \leftrightarrow MgO_{(\kappa)} + H_2O_{(r)}$

Номер задачи	Уравнение реакции
50	$H_2O_{(r)} + C_{(rpa\phiur)} \leftrightarrow CO_{(r)} + H_{2(r)}$
51	$PbO_{2(\kappa)} + C_{(\Gamma pa\varphi \mu T)} \longleftrightarrow Pb_{(\kappa)} + CO_{2(\Gamma)}$
52	$MnO_{2(\kappa)} + 2H_2 \leftrightarrow Mn_{(\kappa)} + 2H_2O_{(r)}$
53	$3Fe_{(\kappa)} + 4H_2O_{(\Gamma)} \leftrightarrow Fe_3O_{4(\kappa)} + 4H_{2(\Gamma)}$
54	$C_6H_{6(r)} + 3H_{2(r)} \leftrightarrow C_6H_{12(r)}$
55	$Ni(OH)_{2(\kappa)} \leftrightarrow NiO_{(\kappa)} + H_2O_{(\Gamma)}$
56	$2CrCl_{3(\kappa)} \leftrightarrow 2CrCl_{2(\kappa)} + Cl_{2(r)}$

В задачах 57–67 для газофазной реакции $A+B \leftrightarrow D+F$ рассчитайте константу равновесия K_p^0 при заданной температуре и равновесный состав системы при этой температуре, если известны значения $\Delta_r G_T^0$ и начальные концентрации реагирующих веществ C_0 .

Номер	$\Delta_r G_T^0$,	<i>T</i> , K	Начальные концентрации реагирующих веществ, моль/л			
задачи	кДж/моль	,	$C_{0,A}$	$C_{0,B}$	$C_{0,D}$	$C_{0,F}$
57	-20,8	1000	1,0	1,0	0,0	0,0
58	-12,5	500	1,0	1,0	0,02	0,02
59	-18,4	1300	2,0	1,0	0,0	0,0
60	-11,8	1250	2,0	2,0	0,05	0,05
61	-24,2	850	2,0	3,0	0,0	0,0
62	-19,5	970	1,8	2,0	0,0	0,0
63	-10,7	1500	2,5	3,0	0,04	0,04
64	-13,1	600	1,0	1,0	0,0	0,0
65	-21,2	1000	2,0	2,0	0,0	0,0
66	-8,9	800	1,0	1,0	0,01	0,01
67	-7,6	400	0,8	0,8	0,0	0,0

В задачах 68–91 рассчитайте стандартное изменение энергии Гиббса $\Delta_r G_T^0$ и константу равновесия K_p^0 при заданной температуре T. Укажите, в каком направлении протекает реакция при данной температуре, и обозначьте направление смещения равновесия при увеличении температуры. При обосновании выбора направления смещения равновесия используйте уравнение изобары химической реакции.

Номер задачи	Уравнение реакции	<i>T</i> , K
68	$4HCl_{(r)} + O_{2(r)} \rightarrow 2H_2O_{(r)} + 2Cl_{2(r)}$	750
69	$2N_{2(r)} + 6H_2O_{(r)} \rightarrow 4NH_{3(r)} + 3O_{2(r)}$	1300
70	$4NO_{(r)} + 6H_2O_{(r)} \rightarrow 4NH_{3(r)} + 5O_{2(r)}$	1000
71	$2NO_{2(r)} \rightarrow 2NO_{(r)} + O_{2(r)}$	700
72	$N_2O_{4(r)} \rightarrow 2NO_{2(r)}$	400
73	$S_{2(r)} + 4H_2O_{(r)} \rightarrow 2SO_2(r) + 4H_{2(r)}$	1000
74	$S_{2(r)} + 4CO_{2(r)} \rightarrow 2SO_{2(r)} + 4CO_{(r)}$	900
75	$2SO_{2(r)} + O_{2(r)} \rightarrow 2SO_{3(r)}$	700
76	$CO_{2(\Gamma)} + H_{2(\Gamma)} \rightarrow CO(\Gamma) + H_2O_{(\Gamma)}$	1200
77	$SO_{2(r)} + Cl_{2(r)} \rightarrow SO_2Cl_{2(r)}$	400
78	$CO_{(r)} + 3H_{2(r)} \rightarrow CH_{4(r)} + H_2O_{(r)}$	1000
79	$4\mathrm{CO}_{(\Gamma)} + \mathrm{SO}_{2(\Gamma)} \longrightarrow \mathrm{S}_{2(\Gamma)} + 4\mathrm{CO}_{2(\Gamma)}$	900
80	$C_2H_5OH_{(\Gamma)} \rightarrow C_2H_{4(\Gamma)} + H_2O_{(\Gamma)}$	400
81	$FeO_{(\kappa)} + CO_{(\Gamma)} \longrightarrow Fe_{(\kappa)} + CO_{2(\Gamma)}$	1000
82	$WO_{3(\kappa)} + 3H_{2(\Gamma)} \rightarrow W_{(\kappa)} + 2H_2O_{(\Gamma)}$	2000
83	$NH_4Cl_{(\kappa)} \rightarrow NH_3 + HCl$	500
84	$Mg(OH)_{2(\kappa)} \rightarrow MgO_{(\kappa)} + H_2O_{(\Gamma)}$	500
85	$\mathrm{H}_2\mathrm{O}_{(\Gamma)} + \mathrm{C}(\Gamma\mathrm{paфит}) \to \mathrm{CO}_{(\Gamma)} + \mathrm{H}_{2(\Gamma)}$	1000
86	$PbO_{2(\kappa)} + C(графит) \rightarrow Pb_{(\kappa)} + CO_{2(\Gamma)}$	1000
87	$MnO_{2(\kappa)} + 2H_2 \rightarrow Mn_{(\kappa)} + 2H_2O_{(\Gamma)}$	1000
88	$3Fe_{(\kappa)} + 4H_2O_{(\Gamma)} \rightarrow Fe_3O_{4(\kappa)} + 4H_{2(\Gamma)}$	1000
89	$C_6H_{6(r)} + 3H_{2(r)} \rightarrow C_6H_{12(r)}$	600
90	$Ni(OH)_{2(\kappa)} \rightarrow NiO_{(\kappa)} + H_2O_{(\Gamma)}$	500
91	$2CrCl_{3(\kappa)} \rightarrow 2CrCl_{2(\kappa)} + Cl_{2(r)}$	500

В задачах 92–115 определите, при какой температуре в системе устанавливается химическое равновесие, укажите, используя уравнение изобары химической реакции, в каком направлении протекает реакция при температуре, отличающейся от равновесной в большую или меньшую сторону.

Номер задачи	Уравнение реакции
92	$CH_{4(r)} + CO_{2(r)} \leftrightarrow CH_3COOH_{(x)}$
93	$2H_{2(r)} + CO_{2(r)} \longleftrightarrow HCOH_{(\mathfrak{m})} + H_2O_{(\mathfrak{m})}$
94	$CO_{2(r)} + H_{2(r)} \leftrightarrow HCOOH_{(x_i)}$
95	$2SO_{2(r)} + O_{2(r)} \leftrightarrow 2SO_{3(r)}$
96	$\mathrm{CO}_{(r)} + 2\mathrm{H}_{2(r)} \leftrightarrow \mathrm{CH}_3\mathrm{OH}_{(r)}$
97	$Ca(OH)_{2(\kappa)} \leftrightarrow CaO_{(\kappa)} + H_2O_{(r)}$
98	$CaCO_{3(\kappa)} \leftrightarrow CaO_{(\kappa)} + CO_{2(r)}$
99	$NH_4Cl_{(\kappa)} \longleftrightarrow NH_{3(\Gamma)} + HCl_{(\Gamma)}$
100	$H_{2(r)} + Cl_{2(r)} \longleftrightarrow 2HCl_{(r)}$
101	$O_{2(r)} \leftrightarrow 2O_{(r)}$
102	$CO_{2(r)} + H_{2(r)} \leftrightarrow CO_{(r)} + H_2O_{(r)}$
103	$2\mathrm{CO}_{(r)} + \mathrm{O}_{2(r)} \leftrightarrow 2\mathrm{CO}_{2(r)}$
104	$2H_{2(r)} + O_{2(r)} \leftrightarrow 2H_2O_{(r)}$
105	$N_{2(r)} \leftrightarrow 2N_{(r)}$
106	$2NO_{(r)} \longleftrightarrow N_{2(r)} + O_{2(r)}$
107	$CH_{4(\Gamma)} + H_2O_{(\Gamma)} \leftrightarrow CO_{(\Gamma)} + 3H_{2(\Gamma)}$
108	$\operatorname{CH}_{4(r)} + \operatorname{CO}_{2(r)} \longleftrightarrow 2\operatorname{CO}_{(r)} + 2\operatorname{H}_{2(r)}$
109	$2CH_{4(r)} \leftrightarrow C_2H_{2(r)} + 3H_{2(r)}$
110	$F_{2(r)} \leftrightarrow 2F_{(r)}$
111	$Cl_{2(r)} \leftrightarrow 2Cl_{(r)}$
112	$\mathrm{HCl}_{(r)} \longleftrightarrow \mathrm{H}_{(r)} + \mathrm{Cl}_{(r)}$
113	$\mathrm{HF}_{(r)} \longleftrightarrow \mathrm{H}_{(r)} + \mathrm{F}_{(r)}$
114	$2HCl_{(r)}+F_{2(r)} \longleftrightarrow 2HF_{(r)}+Cl_{2(r)}$
115	$C_2H_{6(r)} \leftrightarrow C_2H_{2(r)} + 2H_{2(r)}$

В задачах 116—135 для гомогенной реакции A+B=C+D рассчитайте константу равновесия при температуре T и равновесный состав системы при этой температуре, если известны значения энергии Гиббса $\Delta_r G_T^0$ и начальные концентрации исходных веществ C_0 (концентрация продуктов в начальный момент равна нулю).

Номер		$\Delta_r G_T^0$,	C_0 , моль/л	
задачи	<i>T</i> , <i>K</i>	кДж/моль	A	В
116	400	- 14,1	1	1
117	800	- 13,8	1	2
118	400	− 7 , 5	1	1
119	800	- 6,7	1	2
120	600	- 6,0	1	1
121	1000	-20,5	2	1
122	600	- 25,4	2	1
123	800	-28,5	3	1
124	700	-1,6	1	1
125	1000	-18,5	3	1
126	800	-8,5	2	2
127	600	-9,2	1	2
128	400	-10,1	1	1
129	1000	-5,7	1	1
130	800	-3,6	1	1
131	600	-1,6	1	1
132	900	-23,0	2	1
133	500	-7,0	1	2
134	1100	-16,9	2	2
135	400	-12,6	1	3

В задачах 136–155 для данной газофазной реакции $A+B \leftrightarrow C+D$ рассчитайте температуру, при которой наступает равновесие. Определите равновесный состав системы при этой температуре

при указанных начальных концентрациях исходных веществ C_0 (продукты реакции в начальный момент времени отсутствуют).

Номер	Уравнение реакции	С ₀ , м	оль/л
задачи	задачи		В
136	$2CH_{4(r)} = C_2H_{2(r)} + 3H_{2(r)}$	0,5	_
137	$2CO_{(r)} + O_{2(r)} = 2CO_{2(r)}$	1	0,5
138	$SO_{2(r)} + Cl_{2(r)} = SO_2Cl_{2(r)}$	0,5	0,5
139	$CH_{4(\Gamma)} + CO_{2(\Gamma)} = 2CO_{(\Gamma)} + 2H_{2(\Gamma)}$	1	1
140	$Cl_{2(r)} + 5F_{2(r)} = 2ClF_{5(r)}$	1	0,2
141	$CO_{(r)} + 2H_{2(r)} = CH_3OH_{(r)}$	0,5	1
142	$2H_2S_{(\Gamma)} + SO_{2(\Gamma)} = 3S_{(K)} + 2H_2O_{(\Gamma)}$	2	1
143	$C_2H_{2(r)} + N_{2(r)} = 2HCN_{(r)}$	1	1
144	$2ClF_{5(r)} = Cl_2F_{6(r)} + 2F_{2(r)}$	1	
145	$CO_{(\Gamma)} + NO_{(\Gamma)} = CO_{2(\Gamma)} + \frac{1}{2}N_{2(\Gamma)}$	0,5	0,5
146	$CH_{4(\Gamma)} + CH_3Cl_{(\Gamma)} = C_2H_{6(\Gamma)} + HCl_{(\Gamma)}$	1	1
147	$PCl_{5(\Gamma)} = PCl_{3(\Gamma)} + Cl_{2(\Gamma)}$	0,5	
148	$CO_{2(\Gamma)} + H_{2(\Gamma)} = HCOOH_{(\Gamma)}$	0,2	0,2
149	$2CF_2Cl_{2(\Gamma)} = C_2F_{4(\Gamma)} + 2Cl_{2(\Gamma)}$	1	
150	$CO_{(r)} + Cl_{2(r)} = COCl_{2(r)}$	1	1
151	$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$	1	0,5
152	$CO_{2(\Gamma)} = CO_{(\Gamma)} + \frac{1}{2}O_{2(\Gamma)}$	0,2	
153	$C_2H_{6(r)} = C_2H_{4(r)} + H_{2(r)}$	1	
154	$CCl_{4(r)} + H_2O_{(r)} = COCl_{2(r)} + 2HCl_{(r)}$	1	1
155	$2HCN_{(r)} = C_2H_{2(r)} + N_{2(r)}$	0,5	—

2. КИНЕТИКА ГОМОГЕННЫХ И ГЕТЕРОГЕННЫХ ХИМИЧЕСКИХ РЕАКЦИЙ

В задачах 1–10 для гомогенной химической реакции первого порядка $AB \to A + B$, протекающей при постоянной температуре, определите время, за которое прореагирует указанная доля α исходного вещества, если известны его начальная концентрация C_0 и время полупревращения $t_{0.5}$.

Номер задачи	C_0 , моль /л	$t_{0,5}$, мин	α, %
1	2,0	23,2	60
2	0,8	25,4	40
3	1,2	135,0	80
4	0,4	5,6	95
5	0,1	358,4	70
6	0,5	21,0	30
7	1,4	434,8	65
8	1,5	157,0	80
9	1,0	12,6	70
10	0,3	258,0	25

В задачах 11–20 для гомогенной химической реакции второго порядка, протекающей при постоянной температуре, рассчитайте концентрацию реагентов C_2 через некоторое время t_2 от начала реакции, если известно, что при одинаковой начальной концентрации реагентов C_0 за время t_1 от начала реакции их концентрация стала равной C_1 .

Номер задачи	C_1 , моль/л	t_1 , мин	C_2 , моль/л	<i>t</i> ₂ , мин
11	0,1	76,8	0,06	90
12	0,5	120	0,2	180
13	0,2	50	0,12	100
14	0,4	140	0,2	200
15	0,5	60	0,3	120
16	0,2	25	0,1	75
17	0,6	100	0,4	110
18	0,1	30	0,06	100
19	0,4	80	0,25	110
20	0,3	70	0,15	95

В задачах 21–35 для указанной гомогенной химической реакции определите время, за которое прореагирует определенная доля α исходного вещества, если известны порядок реакции n, начальные концентрации реагентов C_0 и период полупревращения $\tau_{\frac{1}{2}}$.

Номер задачи	Реакция	n	C_0 , моль/л	т₁⁄₂, мин	α, %
21	$A \rightarrow B + D$	1	0,2	76	40
22	$C_2H_6 \rightarrow C_2H_4 + H_2$	1	0,5	15	80
23	$A \rightarrow B + D$	1	0,5	210	30
24	$2NH_3 \rightarrow N_2 + 3H_2$	2	0,4	103	60
25	$A \rightarrow B + D$	1	0,3	12	10
26	$2HI \rightarrow H_2 + I_2$	2	0,4	179	60
27	$A + B \rightarrow D$	2	0,2	78	90
28	$RBr + OH \rightarrow ROH + Br$	2	0,2	25	50
29	$HCOOH \rightarrow CO_2 + H_2$	1	0,4	62	30
30	$2HI \rightarrow H_2 + I_2$	2	0,6	124	70
31	$H_2O_2 \to H_2O + \frac{1}{2}O_2$	1	0,2	16	80
32	$C_2H_5Cl \rightarrow C_2H_4 + HCl$	1	0,1	85	60
33	$C_2H_6 \rightarrow C_2H_4 + H_2$	1	0,5	218	50
34	$HBr + O_2 \rightarrow HO_2 + Br$	2	0,2	1	40
35	$2A \rightarrow B + D$	2	0,1	30	60

В задачах 36–45 рассчитайте, во сколько раз увеличится константа скорости какой-либо гомогенной химической реакции при повышении температуры от T_1 до T_2 , если известна ее энергия активации $E_{\rm a}$.

Номер задачи	T_1 , K	<i>T</i> ₂ , K	$E_{ m a}$, кДж/моль
36	300	400	56,3
37	400	600	123,6
38	500	600	209,5
39	300	500	120,7
40	350	650	275,6
41	500	700	87,5
42	450	500	64,8
43	300	600	118,6
44	500	650	204,3
45	450	550	54,8

В задачах 46–55 определите, во сколько раз увеличится константа скорости гомогенной химической реакции с участием катализатора, протекающая при постоянной температуре T, если введение катализатора понижает энергию активации реакции на указанное $\Delta E_{\rm a}$.

Номер задачи	<i>T</i> , K	ΔE_{a} , кДж/моль
46	300	30,0
47	400	35,0
48	400	120,0
49	600	30,0
50	300	60,0
51	500	40,0
52	600	150,0
53	400	80,0
54	300	45,0
55	500	110,0

В задачах 56–65 для реакции первого порядка рассчитайте константы скорости гомогенной химической реакции при температурах T_1 и T_2 , если известны предэкспоненциальный множитель в уравнении Аррениуса $k=k_0$ exp $(-E_a/RT)$ и энергия активации E_a данной реакции.

Номер задачи	k_0, c^{-1}	$E_{ m a}$, кДж/моль	<i>T</i> ₁ , K	T_2 , K
56	$4 \cdot 10^4$	247,5	400	500
57	$3 \cdot 10^{14}$	140,8	300	500
58	$2 \cdot 10^{10}$	170,5	600	700
59	$1,7 \cdot 10^7$	230,5	400	700
60	$2,5\cdot 10^{14}$	89,3	300	500
61	$1 \cdot 10^{13}$	280,7	500	700
62	$2 \cdot 10^4$	75,9	500	600
63	$3,7 \cdot 10^{10}$	100,5	300	500
64	4.10^{7}	195,8	400	600
65	$1,5\cdot 10^{12}$	170,0	400	500

В задачах 66–80 для гомогенной химической реакции n-го порядка рассчитайте концентрацию исходных веществ C_2 через некоторое время t_2 от начала реакции, если известно, что при начальных концентрациях реагентов C_0 при некоторой температуре за время t_1 концентрация исходного вещества стала равной C_1 .

Номер задачи	Реакция		C_0 , моль/л	t_1 , мин	C_1 , моль/л	<i>t</i> ₂ , мин
66	$2NOBr \rightarrow 2NO + Br_2$	2	0,1	5	0,03	10
67	$N_2O_4 \rightarrow 2NO_2$	1	0,3	16	0,15	160
68	$2NH_3 \rightarrow N_2 + 3H_2$	2	0,2	50	0,015	150
69	$2NO_2 \rightarrow 2NO + O_2$	2	0,15	20	0,05	80
70	$HCOOH \rightarrow CO_2 + H_2$	1	0,4	16	0,2	30
71	$2N_2O \rightarrow 2N_2 + O_2$	1	0,2	20	0,1	50
72	$CH_3 CHO \rightarrow CH_4 + CO$	1	0,25	15	0,1	45

Номер задачи	Реакция		C_0 , моль/л	t_1 , мин	C_1 , моль/л	<i>t</i> ₂ , мин
73	$C_2 H_5 Cl \rightarrow C_2 H_4 + HCl$	1	0,5	50	0,2	90
74	$2HI \rightarrow H_2 + I_2$	2	0,3	10	0,1	20
75	$SO_2 Cl_2 \rightarrow SO_2 + Cl_2$	1	0,2	12	0,1	60
76	$C_2H_6 \rightarrow C_2H_4 + H_2$	1	0,4	25	0,15	50
77	$H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$	1	0,2	3	0,06	8
78	$HBr + O_2 \rightarrow HO_2 + Br$	2	0,1	120	0,02	150
79	$2HI \rightarrow H_2 + I_2$	2	0,2	20	0,15	40
80	$RBr + OH^{-} \rightarrow ROH + Br$	2	2,0	1	0,5	5

В задачах 81–90 определите скорость указанной элементарной реакции по каждому компоненту, если известна скорость образования продукта r.

Номер задачи	Реакция	Продукт	r , моль/л \cdot с
81	$2A \rightarrow B + 2C$	C	$1,2\cdot 10^{-5}$
82	$A + B \rightarrow 2C$	C	$8,4\cdot10^{-6}$
83	$A \rightarrow 2B + C$	В	$2,0\cdot10^{2}$
84	$3A + B \rightarrow 2C$	C	$8,0\cdot 10^{-1}$
85	$A \rightarrow 2B$	В	$2,6\cdot 10^{-2}$
86	$2A \rightarrow B$	В	$2,4\cdot10^{-3}$
87	$3A \rightarrow B + C$	C	$1.8 \cdot 10^{0}$
88	$A \rightarrow 2B + C$	В	$3,1\cdot 10^{-2}$
89	$A + B \rightarrow 2C$	C	$4,0\cdot10^{0}$
90	$A + B \rightarrow C + 2D$	D	$6,0\cdot 10^{-4}$

В задачах 91–100 для данной элементарной реакции рассчитайте скорость реакции r_2 при указанной концентрации C_2 одного из компонентов, если известны начальные концентрации реагентов C_0 и скорость реакции r_1 при известной концентрации одного из компонентов C_1 . Определите, каким образом изменилась при этом скорость химической реакции.

Номер задачи	Реакция	C_0 , моль/л	C_{1} , моль/л	r_1 , моль/(л·с);	C_2 , моль/л
91	$A + B \rightarrow D$	$C_{0,A} = 5,0$ $C_{0,B} = 7,0$	$C_{1,A} = 3,0$	4,2	$C_{2,D} = 2,0$
92	$2A \rightarrow 2B + D$	$C_{0,A} = 4,0$	$C_{1,D} = 1,5$	$1,8 \cdot 10^{-4}$	$C_{2,A} = 1,5$
93	$A \rightarrow B + D$	$C_{0,A} = 10,0$	$C_{1,B} = 4,0$	$2,1\cdot 10^{-6}$	$C_{2,D} = 3,0$
94	$3A \rightarrow 2B + D$	$C_{0,A} = 6,0$	$C_{1,B} = 1,0$	$2,0\cdot10^{-3}$	$C_{2,D} = 1,0$
95	$A + 2B \rightarrow D$	$C_{0,A} = 0,4$ $C_{0,B} = 0,8$	$C_{1,A} = 0,1$	$1,4\cdot 10^{-8}$	$C_{2,B} = 0,1$
96	$2A + B \to D$	$C_{0,A} = 8.0$ $C_{0,B} = 6.0$	$C_{1,A}=6,0$	$6,8\cdot10^{-3}$	$C_{2,B} = 4.0$
97	$2A + B \to D$	$C_{0,A} = 1,6$ $C_{0,B} = 0,6$	$C_{1,B} = 0,4$	$6,3\cdot10^{-2}$	$C_{2,D} = 0,6$
98	$2A \rightarrow B$	$C_{0,A} = 4,0$	$C_{1,B} = 0.8$	2,8	$C_{2,A} = 2,0$
99	$2A \rightarrow B + D$	$C_{0,A} = 2,5$	$C_{1,D} = 1,0$	$4,1\cdot 10^{-1}$	$C_{2,A} = 0,1$
100	$A \rightarrow 2B$	$C_{0,A} = 1,5$	$C_{1,B} = 0,5$	$4,1\cdot 10^{-2}$	$C_{2,A} = 1,0$

В задачах 101–110 определите энергию активации гетерогенной химической реакции металла с раствором кислоты, если известен температурный коэффициент реакции Вант-Гоффа γ в заданном интервале температур.

Номер задачи	γ	T₁, °C	T₂, °C
101	3,4	50	80
102	2,7	30	50
103	3,7	25	55
104	3,3	27	77
105	2,4	60	90
106	2,6	40	70
107	3,8	5	27
108	2,9	15	34
108	3,7	23	61
110	2,1	38	88

В задачах 111–120 при известной энергии активации $E_{\rm a}$ некоторой гетерогенной химической реакции определите, во сколько раз возрастет ее скорость при повышении температуры от $T_{\rm 1}$ до $T_{\rm 2}$ и рассчитайте ее температурный коэффициент.

Номер задачи	T₁, °C	T₂, °C	$E_{ m a}$, кДж/моль
111	50	80	50,0
112	30	50	80,0
113	25	55	220,0
114	27	127	100,0
115	60	90	140,0
116	40	70	65,0
117	10	30	76,0
118	35	75	124,0
119	20	60	203,0
120	5	45	95,0

В задачах 121–130 определите, до какого значения нужно повысить температуру от заданного значения T_1 при указанном температурном коэффициенте гетерогенной химической реакции γ , чтобы скорость реакции увеличилась в z раз.

Номер задачи	T₁, °C	γ	Z
121	50	3,0	27
122	30	2,7	10
123	25	3,7	60
124	27	3,0	100
125	60	2,0	64
126	40	2,2	1200
127	20	3,2	150
128	10	2,5	40
129	150	3,5	16
130	24	2,6	8

Приложение

Термодинамические характеристики индивидуальных веществ

$\Delta_f G_{298}^0,$ кДж/моль	-619	-267	-604	168 –	-1128	0	0	0	-119	-356	-446	-711	-1708	106	0	-246	
$S^0_{298},$ Дж/(моль·К)	258	264	40	83	92	30	33	24	87	115	123	84	143	165	223	562	301
$\Delta_f H_{298}^0,$ кДж/моль	-635	-220	-635	-985	-1207	0	0	0	-136	-393	-516	-754	-1801	122	0	-326	-486
Вещество	$\mathrm{COF}_{2(\mathrm{r})}$	$COCl_{2(r)}$	$CaO_{(\kappa)}$	$Ca(OH)_{2(\kappa)}$	$CaCO_{3 (\kappa)}$	$Co_{(\kappa)}$	$Cu_{(\kappa)}$	$\operatorname{Cr}_{(\kappa)}$	$CuCl_{(\kappa)}$	$CrCl_{2(\kappa)}$	$CrCl_{3(\kappa)}$	$CrF_{2(\kappa)}$	$Ce_2O_{3(\kappa)}$	$\mathrm{Cl}_{(\mathrm{r})}$	$Cl_{2(r)}$	$\text{Cl}_2F_{6(r)}$	$\mathrm{CF_2Cl_{2(r)}}$
$\Delta_f G_{298}^0,$ кДж/моль	0			-588	-782	906-	-1181	0	0	0	0		-137		49	-61	
S^0_{298} , Π ж/(моль·K)	28,3	57	36	117	105	289	353	150,8	43	48	10	5,74	197	214	151	310	300
$\Delta_f H_{298}^0,$ кДж/моль	0	-1675	0	999-	-925	-921	-1238	0	0	0	0	0	-110	-393	88	-103	-659
Вещество	$\mathrm{Al}_{^{(\mathrm{K})}}$	$Al_2O_{3(\kappa)}$	$As_{(\kappa)}$	$As_2O_{3(\kappa)}$	$As_2O_{5(\kappa)}$	$AsF_{3(\Gamma)}$	$AsF_{5(\mathrm{r})}$	$Ar_{(r)}$	$Ag_{(\kappa)}$	$Au_{(\kappa)}$	$Be_{(\kappa)}$	С(графит)	CO _(r)	$CO_{2(r)}$	$CS_{2(\kappa)}$	CCI _{4(r)}	$C_2F_{4(r)}$

Продолжение таблицы

Вешество	$\Delta_f H_{298}^0,$	S_{298}^{0} ,	$\Delta_f G_{298}^0,$	Вешество		S_{298}^{0} ,	$\Delta_f G_{298}^0$,
	кДж/моль	Дж/(моль·К)	кДж/моль	CHICAGO	٩	Дж/(моль·К)	кДж/моль
$\mathrm{CF_3CI_{(\Gamma)}}$	-710	285		$He_{(\Gamma)}$		126	0
CF ₃ Cl _(r)	-711	285		${\rm Ir}_{(\kappa)}$	0	35	0
CH ₃ Cl _(r)	-82	233	1	$Ir_2S_{3(\kappa)}$	-245	26	-224
$\mathrm{Fe}_{(\kappa)}$	0	27	0	$Kr_{(r)}$	0	164	0
$\mathrm{FeO}_{(\kappa)}$	-264	59	-251	$\mathrm{Mn}_{^{(\mathrm{K})}}$	0	32	0
$\mathrm{Fe_2O_{3(K)}}$	-824	87	-742	$MnO_{(\kappa)}$	-385	09	-363
$\mathrm{Fe}_3\mathrm{O}_{4(\kappa)}$	-1117	151	-1012	$MnO_{2(\kappa)}$	-520	53	-465
$\mathbf{F}_{(r)}$	79	159	62	${ m MgO}_{^{({ m K})}}$	-601	27	-569
$F_{2(r)}$	0	203	0	${ m Mg(OH)}_{2(\kappa)}$	-925	63	-834
$Ge_{(\kappa)}$	0	42	0	$Mo_{(\kappa)}$	0	29	0
$GeO_{2(\kappa)}$	-580	40	-522	$MoO_{2(\kappa)}$	-585	46	-534
GeCl _{4(r)}	-495	348	-457	$Mo_2C_{(\kappa)}$	18	82	12
$H_{(r)}$	218	115	203	$N_{(r)}$	473	153	456
$H_{2(r)}$	0	131	0	$N_{2(r)}$	0	192	0
$H_2O_{(m)}$	-286	70	-238	$N_2O_{(r)}$	82	220	104
$H_2O_{(\Gamma)}$	-242	189	-228	NO _(r)	91	211	87
HCl _(r)	-92	187	-951	$NO_{2(r)}$	33	240	51
$H_2S_{(r)}$	-21	206	-34	$N_2O_{4(r)}$	6	304	86
HF _(r)	-271	174	-273	$NH_{3(r)}$	-46	192	-16
$Hg_2Br_{2(\kappa)}$	-207	218	-181	$\mathrm{NH_4Cl}_{(\kappa)}$	-315	95	-203

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
38		-371
80 —459 161 232 205 0 41 0 312 —268 364 —305 65 0 202 — 69 —183 72 —218 91 —99 42 0 229 0 32 0		0
161 232 205 0 41 0 312 -268 364 -305 65 0 202 -183 72 -218 91 -99 42 0 29 0 29 0 228 79		-805
205 0 41 0 312 -268 364 -305 65 0 202 -183 72 -218 91 -99 42 0 29 0 22 0		0
41 0 312 -268 364 -305 65 0 202 - 69 -183 72 -218 91 -99 42 0 29 0 32 0 228 79		0
312		0
364 -305 65 0 202 69 -183 72 -218 91 -99 42 0 29 0 32 0 228 79		-277
65 0 202 — 69 —183 72 —218 91 —99 42 0 29 0 32 0		-764
202 — — — — — — — — — — — — — — — — — —		0
69 –183 72 –218 91 –99 42 0 29 0 32 0	-326 308	-340
72 —218 91 —99 42 0 29 0 32 0		-51
91 —99 42 0 29 0 32 0 228 79		297
42 0 29 0 32 0 228 79		89
29 0 32 0 228 79		
32 0 228 79		
228 79		
-300	.,	

Окончание таблицы

							achimicani annina i care
Вешество	$\Delta_f H^0_{298},$	S_{298}^{0} ,		Вешество	$\Delta_f H^0_{298},$	S^0_{298} ,	$\Delta_f G_{298}^0,$
	кДж/моль	Дж/(моль·К)			кДж/моль	Дж/(моль·К)	кДж/моль
$\mathrm{CH}_2\mathrm{O}_{(\Gamma)}$	-116	219		$\mathrm{CH}_3\mathrm{COOH}_{(\infty)}$	-484	160	
$C_6H_5NO_{2(sc)}$	16	224		$C_2H_5OH_{(m)}$	-277	161	
$C_5H_5N_{(3K)}$	100	178		$C_6H_{6(\Gamma)}$	83	269	
$CH_4N_2O_{(K)}$	-333	105		$C_6H_{12(\Gamma)}$	-42	403	
$C_{10}H_{8(\kappa)}$	78	167		$\mathrm{HCOOH}_{(\mathfrak{K})}$	-426	91	
$\mathrm{CH}_4\mathrm{O}_{(\mathrm{xc})}$	-239	127		HCOOH _(r)	-377	252	
$\mathrm{C_3H_6O_{(r)}}$	-218	295		$ClF_{5(\Gamma)}$	-339	-85	
$\mathrm{C_4H_{10(r)}}$	-126	310					

ОГЛАВЛЕНИЕ

Предисловие	3
1. Законы термодинамики и химическое равновесие	4
1.1. Первый закон термодинамики	4
1.2. Второй закон термодинамики. Химическое равновесие	6
2. Кинетика гомогенных и гетерогенных химических реакций	12
Приложение. Термодинамические характеристики индивидуальных	
веществ	19

Учебное издание

Слынько Лариса Евгеньевна Ермолаева Виолетта Ивановна Романко Ольга Ильинична Степанов Михаил Борисович

ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

ЗАДАЧИ ДЛЯ ЗАЩИТЫ МОДУЛЯ 2 ПО КУРСУ ХИМИИ

Редактор *С.А. Серебрякова*Корректор *Р.В. Царева*Компьютерная верстка *И.А. Марковой*

Подписано в печать 08.05.2013. Формат 60×84/16. Усл. печ. л. 1,4. Изд. № 12. Тираж 500 экз. Заказ

Издательство МГТУ им. Н.Э. Баумана. Типография МГТУ им. Н.Э. Баумана. 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1.