ECE 417/598: Direct Linear Transform

Vikas Dhiman.

March 23, 2022

Implicit equation and parameteric representation of 3D plane

Implicit equation of 3D plane

$$\mathbf{p}^{\top}\underline{\mathbf{x}} = 0$$
 $\mathbf{p} \in \mathbb{P}^4, \underline{\mathbf{x}} \in \mathbb{P}^4$

Parameteric representation of 3D plane

$$\underline{\mathbf{x}} = \mathbf{v}_2 + t_1 \mathbf{v}_3 + t_2 \mathbf{v}_4$$

where $t_1, t_2 \in \mathbb{R}$ are the free parameters.

Implicit equation and parameteric representation of a 3D line

Parameter representation of a 3D line

$$\underline{\mathbf{x}} = \lambda \underline{\mathbf{d}} + \underline{\mathbf{x}}_0,$$

where $\lambda \in \mathbb{R}$ is the free parameter, $\underline{\mathbf{x}}_0 \in \mathbb{P}^3$ is a point on the line and $\underline{\mathbf{d}} \in \mathbb{P}^3$ is the direction of the line.

Implicit equation of a 3D line

$$\boldsymbol{p}_1^\top\underline{\boldsymbol{x}}=0,\ \boldsymbol{p}_2^\top\underline{\boldsymbol{x}}=0,\ (1)$$

where $\mathbf{p}_1, \mathbf{p}_2, \underline{\mathbf{x}} \in \mathbb{P}^3$.

$$\mathbf{\underline{x}}_1 = [100, 98, 45, 1]^{\top}$$
 $\mathbf{\underline{x}}_2 = [105, 95, 46, 1]^{\top}$
 $\mathbf{\underline{x}}_3 = [107, 90, 47, 1]^{\top}$
 $\mathbf{\underline{x}}_4 = [110, 85, 43, 1]^{\top}$

Find the 3D line such that it is the "closest line" passing through $x_1, \ldots, x_4 \in \mathbf{P}^3$.

Parameteric representation through Range space

Homography

Examples of Homography

Computing Homography

Find H such that $\underline{\mathbf{u}}' = H\underline{\mathbf{u}}$ for any point on one image to another image.

2D homography

Given a set of points $\underline{\mathbf{u}}_i \in \mathbb{P}^2$ and a corresponding set of points $\underline{\mathbf{u}}_i' \in \mathbb{P}^2$, compute the projective transformation that takes each $\underline{\mathbf{u}}_i$ to $\underline{\mathbf{u}}_i'$. In a practical situation, the points $\underline{\mathbf{u}}_i$ and $\underline{\mathbf{u}}_i'$ are points in two images (or the same image), each image being considered as a projective plane \mathbb{P}^2 .

Solving for Homography

3D to 2D camera projection matrix estimation

Given a set of points X_i in 3D space, and a set of corresponding points x_i in an image, find the 3D to 2D projective P mapping that maps X_i to $x_i = PX_i$.