<u>Noetherian</u> Rings

Let R be an Integral Domain. We will construct a field K containing R, such that $K = \{\frac{a}{b} \mid a, b \in R, b \neq 0\}$

 $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

Since b, $d \neq 0$ and R is an Integral Domain, $bd \neq 0$.

K is called the field of fractions of R. It is represented by 18(R)

 $\frac{a}{b} = \frac{c}{d}$ if ad = bc.

Let I be an ideal of a ring R. I is finitely generated if there exists finitely many $a_1, \dots, a_n \in I$ such that $I = (a_1, \dots, a_n)$. Any element of I can

Se written as $a = b, a, + \cdots + b_n a_n$, $b, \in \mathcal{I}$.

R is called a Northerian Ring if every
ideal of R is finitely generated.

Let R be a ring. An ascending chain of ideals in R, is the collection of ideals $I_1 \subseteq I_2 \subseteq \ldots$ The chain stabilizes if

there exists an n such that $I_n = I_{n+1} = \ldots$ (or $I_m = I_n + m \ge n$).

Any ring R is Northerian only if every

Any ring R is Northerian only if every ascending chain of ideals in R stabilizes.

Suppose R is a Northerian Ring.

 $\underline{I} = \underbrace{U}_{n \geq \perp} \underline{I}_{n} = \underline{I}_{1} \underbrace{U}_{2} \underbrace{U}_{1} \dots$

It is trivial that OEI.

Let $a, b \in I \Rightarrow a \in I_n$ and $b \in I_m$, where $n \leq m$.

 $\Rightarrow I_n \subseteq I_m \quad \text{fo } \alpha \in I_n \subseteq I_m$ $\delta \in I_m$

 \Rightarrow $(a+b) \in I_m \subseteq I$

(I, +) is thus a subgroup of R. And it is trivial that if $r \in R$ and $a \in I$, then $ra \in I$. I is thus an ideal in R

If $n \geq max(n_1, n_2, ..., n_i)$, then any $a_i \in I_n \subseteq I$.

> I = In

Thus the ascending chain of ideals stabilizes. Now, we will assume that any ascending chain of ideals stabilize and then try to prove the converse.

Let $I \subset R$ be an ideal of R. $I_1 = (x_1)$ where $x_1 \in I$. $I_2 = (x_1, x_2)$ where $x_2 \in I \setminus (x_1) = I \setminus I_1$ \vdots $I_n = (x_1, x_2, ..., x_n)$ where $x_n = I \setminus I_{n-1}$. $I_1 \subseteq I_2 \dots \subseteq I_n \subseteq I_{n+1} \dots$ $I = I_n = I_{n+1} = \dots$ and thus R is a Northerian R is a Northerian R is a

O Lit R be the ring of continuous junction no from R to R. Then R is not Northerian.

 $I_n = \begin{cases} f \in \mathbb{R} \mid f(x) = 0 + x \geq n \end{cases} \text{ where } n \geq 1.$ $I_1 \subseteq I_2 \subseteq \dots \text{ we need to show that}$ This chain doesn't stabilize. $\text{Suppose } f_n(x) = \begin{cases} x-n, & x \leq n \\ 0 & \text{otherwise.} \end{cases}$

 $\int_{n} (\mathbf{x}) \in I_{n}$ but $\notin I_{n-1} + n$.

- $\Rightarrow I_{n-1} \neq I \quad \forall n$
- => The ascending chain of ideals never stabilities
- PR is thus not Northerian.

 We can also deduce that a subring of a

 Northerian Ring is not always Northerian.
- $\ensuremath{\mathcal{Q}}$ Let I be an ideal of the Northerian $\ensuremath{\mathcal{R}}$ ing $\ensuremath{\mathcal{R}}$. Then $\ensuremath{\mathcal{R}}/_{\underline{I}}$ is also a Northerian $\ensuremath{\mathcal{R}}$ ring.