1. Дискретная математика

Билет №04 - Теорема Янова

Определение: F подмножество функций из P_k . Замыканием F называется множество функций, которые можно получить конечным применением операций суперпозиции из F.

Определение: Базисом в M, M $\subseteq P_k$, называется система функций, замыкание которой даёт всё M и никакое собственное подмножество этого базиса этим свойством уже не обладает.

Определение: Класс F замкнут, если [F] = F.

Формулировка (Теорема Янова): Для всякого $k \ (k \ge 3)$ существует в P_k замкнутый класс, не имеющий базиса.

Доказательство: Рассмотрим последовательность функций

$$f_0=0,$$

$$f_i(x_1,...,x_i)=\begin{cases} 1, & \text{при } x_1=...=x_i=2, i=1,2,3...,\\ 0, & \text{иначе} \end{cases}$$

Докажем, что множество $\{f_0, f_1, ...\}$ замкнуто. Это верно, потому что:

- 1) Операция отожденствления уменьшает индекс функции.
- 2) Операция переименования не меняет функцию.
- 3) Операция удаления фиктивной переменной не влияет на существенные переменные функции.
- 4) Операция добавления фиктивной переменной не влияет на существенные переменные функции.
- 5) Операция подстановки дает f_0 .

Предположим, что у множества $F = \{f_0, f_1, ...\}$ есть базис. Это возможно при двух случаях:

- 1) Базис содержит две функции f_{n_0} и f_{n_1} , причем $n_1 > n_0$. Так как f_{n_0} может быть получена из f_{n_1} путём отождествления переменных, то f_{n_0} выражается через f_{n_1} , что противоречит определению базиса.
- 2) Базис состоит из единственной функции f_{n_0} . В таком случае никакая функция f_n при $n>n_0$ не может быть получена из f_{n_0} . Вновь достигнуто противоречие.

Таким образом остаётся предположить, что M_k не имеет базиса. **Теорема доказана**.