Nom:

APPLICATIONS DES MATHEMATIQUES: contrôle nº 4

Durée:	1	heure	45
DULLEU.		meme	10

25 pts donnent la note 6
Cannan

Soit le programme linéaire:
$$\underline{\text{maximiser}} \ \mathbf{Z} = 2x_1 + 6x_2 + 6x_3 \text{ où } \mathbf{D} \colon \begin{cases} x_1 + 3x_2 + 3x_3 \le 72 \\ 4x_1 + 2x_2 + 6x_3 \le 60 \\ x_1 \ge 0; \ x_2 \ge 0; \ x_3 \ge 0 \end{cases}.$$

Dans la forme standard de ce PL, soient $s_1 \ge 0$ et $s_2 \ge 0$ les variables d'écart.

- 1.1. Donner le (premier) tableau du simplexe, correspondant à la solution de base réalisable: $(x_1=x_2=x_3=0\ , s_1=?,\ s_2=?)\ .$
- 1.2. L'introduction de la variable x3 dans la base conduit au tableau du simplexe (incomplet):

c _B	В	× ₁	x ₂	x ₃	s ₁	s ₂	Solution de base b	Quotients caractéristiques
0	s ₁	-1	2	0	1	-1/2	42	
6	х ₃	2/3	1/3	1	0	1/6	10	
$\Delta_{\rm j}$	\rightarrow						- Z=	← - z

Compléter le tableau précédent et indiquer s'il est optimal (justifier!).

Donner la solution de base réalisable correspondante?

- 1.3. Déterminer une autre solution de base réalisable adjacente à celle obtenue en 1.2 et qui permettrait d'améliorer la valeur de Z. Cette solution est-elle optimale (justifier!) ?
- 1.4. Il existe plusieurs solutions de base réalisables qui donnent la même valeur maximale de Z. En poursuivant les itérations du simplexe, de manière appropriée, déterminer les sommets du domaine admissible D qui leur correspondent.
- Décrire alors, dans l'espace des variables x₁, x₂, x₃, l'ensemble des solutions optimales.
 En donner une représentation paramétrique ainsi qu'une représentation cartésienne.
 8 pts

2. Soit le PL: Maximiser
$$\mathbf{Z} = (\frac{1}{2} + \lambda)x_1 + x_2$$
 où \mathbf{C} :
$$\begin{cases} x_1 + x_2 \le 3 \\ -x_1 + x_2 \le 1 \\ x_1 \le 2 \\ x_1 \ge 0 \ ; x_2 \ge 0 \end{cases}$$
 où $\lambda \ge 0$.

Résoudre graphiquement ce PL (en fonction de λ et <u>en illustrant très soigneusement</u>) .

6 pts

- 3. Soit F la famille des courbes Γ : $x^2 + (y a)^2 = a^2$ à un paramètre réel a.
- 3.1. Ecrire l'équation différentielle des courbes de la famille F.
- 3.2. Déterminer la famille F' des trajectoires orthogonales Γ' aux courbes Γ de F.
- 3.3. Déterminer la courbe Γ passant par le point I(1; 1) ainsi que la trajectoire orthogonale Γ' correspondante. Représenter graphiquement Γ et Γ'.

7 pts

- 4. On considère l'équation différentielle: $(1 x^2)y' xy = 1$.
- 4.1. Déterminer la solution générale de cette équation sur l'intervalle ouvert I =]-1, 1[.
- 4.2. Définir (en justifiant) <u>la solution unique</u> y sur l'intervalle fermé à gauche J=[-1, 1[. Indication. Il s'agit du problème de prolongement au point x = -1.

$$\underline{\textbf{Rappel}}. \ \ \text{Arccosx} = t \iff x = \cos t, \ o \ \dot{u} - 1 \le x \le 1 \ \text{et} \ 0 \le t \le \pi; \ \ (\texttt{Arccosx})' = -\frac{1}{\sqrt{1-x^2}} \ , \ -1 < x < 1.$$

6 pts