- Supplemental information for Parent material and climate interact to control soil C
- dynamics through the development of poorly crystalline minerals
- Jeffrey Beem-Miller¹, Craig Rasmussen², Alison M. Hoyt^{1,3}, Marion Schrumpf¹, Georg
- Guggenberger⁴, & Susan Trumbore¹
- ⁵ Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena,
- 6 Germany
- ² Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
- ³ Department of Earth System Science Science, Stanford University, Stanford, CA, USA
- ⁴ Institute of Soil Science, Leibniz University Hannover, Hannover, Germany

10 Abstract

Lorem ipsum...

Supplemental information for Parent material and climate interact to control soil C dynamics through the development of poorly crystalline minerals

Supplemental Information

5 Soil carbon

14

Figure 1. Change in soil C concentration over time. Points show replicate profiles (n = 3); lines show marginal mean estimates of linear trends in soil C concentration with time; ribbons show 95% CIs around trend estimates.

Radiocarbon depth profiles: 2001 data

Temporal trend contrast analysis

Figure 2. Depth profiles of $\Delta^{14}C_{\text{bulk}}$ and $\Delta^{14}C_{\text{respired}}$ for 2001 data. Top panels show bulk data, bottom panels respired data. Panels (a) and (d) show data from the warm climate sites, (b) and (e) from the cool climate sites, and (c) and (f) from the cold climate sites. Dotted vertical lines show $\Delta^{14}C$ of the atmosphere in the year of sampling. Points show the mean of three replicate profiles for bulk soil, and the mean of laboratory duplicates for respired CO_2 . Error bars show ± 1 SD for bulk soils and the minimum and maximum for respired CO_2 . Respired CO_2 from the cold granite site (panel c) was extremely depleted in $\Delta^{14}C$ and thus is excluded for display purposes.

Table 1 $\mbox{\it Change in Δ^{14}C}_{\rm bulk}, \ 2001\mbox{\it -2019}. \ \mbox{\it Degrees of freedom} = 44; \ \mbox{\it confidence level used} = 0.95.$

		0-10cm		10-20cm		20-30cm	
Climate	Parent material	Trend	SE	Trend	SE	Trend	SE
warm	andesite	-5.9	1.3	-2.1	1.2	1.2	1.2
	basalt	-1.9	1.3	-0.3	1.2	-1	1.2
	granite	-2.8	1.3	2.1	1.2	0.2	1.2
cool	andesite	0	1.3	0.4	1.2	0.3	1.2
	basalt	-2	1.3	-3.5	1.2	-6.2	1.2
	granite	-4.9	1.3	-3.7	1.2	-3.7	1.2
cold	andesite	-2.5	1.4	-1.2	1.3	0.1	1.3
	basalt	0.7	1.3	-0.5	1.2	1.5	1.2
	granite	-0.3	1.3	0.4	1.2	0.3	1.2

Table 2 $\label{eq:change} \textit{Change in Δ^{14}C}_{\text{respired}}, \ \textit{2001-2019}. \ \textit{Degrees of freedom} = \textit{44}; \ \textit{confidence level used} = \textit{0.95}.$

		0-10cm		10-20cm		20-30cm	
Climate	Parent material	Trend	SE	Trend	SE	Trend	SE
warm	andesite	-6.2	0.9	-2.2	0.9	1.3	1.7
	basalt	-2.3	0.9	-1.1	0.9	0.5	1.7
	granite	-4.9	0.9	1.4	0.9	2.8	1.7
cool	andesite	-1.4	0.9	-1	0.9	-1.5	1.7
	basalt	-3.7	0.9	-5.9	0.9	-7.8	1.7
	granite	-3.1	0.9	-4.3	0.9	0	1.7
cold	andesite	-2.9	0.9	-0.8	0.9	1.4	1.7
	basalt	-3.9	0.9	-3.9	0.9	-3.5	2.1
	granite	0.1	0.9	4.8	1.3	9.7	2.1

Trend analysis.

Table 3 ${\it Contrasts for bulk and respired Δ^{14}C temporal trends. P value adjustment: Tukey method for comparing a family of 3 estimates. }$

			Bulk			Respired		
Depth	Group	Contrast	Est.	SE	p	Est.	SE	p
0-10cm	warm	andesite - basalt	-4.0	1.8	0.075	-3.9	1.2	0.014
	cool	andesite - granite	4.9	1.8	0.025			
	cold	andesite - granite				-3.0	1.2	0.069
	cold	basalt - granite				-4.0	1.2	0.012
	andesite	warm - cool	-5.9	1.8	0.005	-4.8	1.2	0.003
	andesite	warm - cold				-3.3	1.2	0.04
	granite	warm - cold				-4.9	1.2	0.002
	granite	cool - cold	-4.6	1.8	0.038	-3.2	1.2	0.048
10-20cm	warm	andesite - granite	-4.2	1.7	0.04	-3.6	1.3	0.028
	cool	andesite - basalt	3.9	1.7	0.062	4.9	1.3	0.004
	cool	andesite - granite	4.1	1.7	0.05	3.3	1.3	0.05
	cold	andesite - basalt				3.1	1.3	0.061
	cold	andesite - granite				-5.6	1.5	0.006
	cold	basalt - granite				-8.7	1.5	< .001
	basalt	warm - cool				4.8	1.3	0.004
	basalt	warm - cold				2.9	1.3	0.092
	granite	warm - cool	5.8	1.7	0.003	5.7	1.3	< .001
	granite	cool - cold	-4.1	1.7	0.046	-9.1	1.5	< .001

Table 3 Contrasts for bulk and respired $\Delta^{14}C$ temporal trends. P value adjustment: Tukey method for comparing a family of 3 estimates. (continued)

			Bulk		Respired			
Depth	Group	Contrast	Est.	SE	p	Est.	SE	p
20-30cm	cool	andesite - basalt	6.5	1.7	< .001	6.3	2.5	0.054
	cool	andesite - granite	4.0	1.7	0.055			
	cool	basalt - granite				-7.8	2.5	0.016
	cold	andesite - granite				-8.2	2.8	0.023
	cold	basalt - granite				-13.2	3.0	0.001
	basalt	warm - cool	5.2	1.7	0.008	8.2	2.5	0.011
	basalt	cool - cold	-7.7	1.7	< .001			
	granite	warm - cool	3.9	1.7	0.063			
	granite	warm - cold				-6.9	2.8	0.06
	granite	cool - cold	-4.0	1.7	0.052	-9.6	2.8	0.008

19 Trend contrasts.

20 Mineral assemblages

Figure 3. Relationship of poorly crystalline and crystalline minerals to $\Delta^{14}C_{bulk}$. ^{a)} Poorly crystalline mineral content (oxalate-extractable aluminum + 1/2 oxalate-extractable iron), ^{b)} Crystalline mineral content (dithionite-extractable iron - oxalate-extractable iron). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{bulk}$ for 0-30cm profiles. Lines show linear model fits from Eq. 5.

Figure 4. Relationship of poorly crystalline and crystalline minerals to $\Delta^{14}C_{respired}$. ^{a)} Poorly crystalline mineral content (oxalate-extractable aluminum + 1/2 oxalate-extractable iron), ^{b)} Crystalline mineral content (dithionite-extractable iron - oxalate-extractable iron). Points show mass-weighted mineral concentrations and carbon-weighted values of $\Delta^{14}C_{respired}$ for 0-30cm profiles. Lines show linear model fits from Eq. 5.