	Name:					
	ID: Quiz section or time:					
	Stat 421, Test 3, Fall, Dec. 11, 2012; Marzban ONLY a half-size "cheat sheet" is allowed Multiple choice: Circle all the correct answers; there is wrong-answer penalty; do NOT explain					
Points 1	The rest: SHOW answer & work; NO CREDIT for correct answer without explanation 1. Consider a problem with a 2-level factor A, and a 6-level factor B. When one says "I will block the factor B, and test for the effect of A," then one is essentially performing which test? a) an unpaired t-test on the 2 levels of A b) a paired t-test on the 6 levels of B					
	a paired t-test on the 2 levels of A d) an unpaired t-test on the 6 levels of B e) None of					
1	2. A 2 ⁷ design in 4 blocks has been adopted. How many effects will be confounded with blocks? a) 1 b) 2 c) 3 energy ized e) 5 f) 6					
1	3. In a 2^{6-2} design, which of the following pair of generators is "best" in terms of assuring that low-order interactions are not aliased. a) $E = AB$, $F = CD$ b) $E = ABC$, $F = ABCDE$ c) $E = ABC$, $E = ABC$ d) $E = ABCD$ e) $E = ABCD$ e) $E = ABCD$					
1	 4. In a 3² design, the interaction term has df=4. Which of the following statements is NOT true. The interaction term can be decomposed into a) four single-df effects, if the 2 factors are quantitative. b) two 2-df effects, if the 2 factors are qualitative. c) four single-df effects, if the 2 factors are qualitative. d) two 2-df effects, if the 2 factors are quantitative. 					
1	5. An experiment is designed to study pigment dispersion in paint. Four different mixes of a particular pigment are studied. The procedure consists of preparing a particular mix and then applying that mix to a panel by each of the three commercial paint application methods possible (brushing, spraying, and rolling). Three days are required to run the experiment. What is the most appropriate design for this experiment? a) A completely randomized factorial design b) A randomized complete block factorial design c) A nested design d) A split-plot design 6. In the previous problem, which of the following model(s) is/are NOT appropriate? a) Mix and Method treated as fixed effects b) Mix and Method treated as random effects					
	d) Mix treated as a fixed effect, but Method treated as a random effect d) Mix treated as a random effect, but Method treated as a fixed effect					
2	7. A 2 ³ design in two blocks has been adopted. Block 1 contains the runs (1), ab, ac, bc, while the second block contains the runs a, b, c, abc. Which effect(s) is/are confounded with block? ABC ABC We note That ABC=-1 for Block 1					
a C a	and =+1 " " Z b ++- b ++- c+ c -++ c -++					

AB=1 => The only runs are (1) and ab.

15

1/15

2

B effect = ab - (1)

AB effect ~ [(Avg A effect | B=+) - (Avg A effect | B=-)] = Not estimable

b) Write the alias structure, and specify the estimable effect(s).

[Consistent with AB=1]

Alias structure: A=B [from AB=1] [Consistant with A, Babal

aЬ

Estimable effect: A+B

c) Repeat parts a and b, but with defining relation given by AB = -1.

4B=-1=> The only runs are a, b.

B effect = a-bAB effect ~ [(Avg A effect | B=+) - (Avg A effect | B=-)] = Not estimable

S Alias structure: A = -B [Consistent with A, B effects]
Estimable effect A-B

d) Suppose we "combine" the two results, while introducing a blocking factor C. Write the effects C and AB in terms of (1), a, b, c, ab, ..., if/when possible?

AB C= Block factor Ceffect = $\frac{abc+c}{2}$ $\frac{a+b}{2}$ $\frac{--+}{+++}$ | Block | Ab effect = $\frac{1}{2}$ [($\frac{abc-b}{2}$) -($\frac{a-c}{2}$)] $\frac{+--}{-+-}$ | Block 2

Note: AB = C Consistent with AB being conformed with C.

e) Write the defining relation AND the alias structure for the "combined" design, and specify the estimable effect(s).

The defining relation: ABC=+1

Alias structure: SA = BC B = AC C = AB

estimable effects A+BC, B+AC

a) Show that blocking according to $L = x_1 + 2x_2 \pmod{3}$ gives a different set of 3 blocks, but that blocking according to $L = 2x_1 + x_2 \pmod{3}$, reproduces the same blocks generated by one of the

2

2

previ	.ous 🗷 on	itrasts.		
1	XIX	XIT LXZ	2x1+x2	> Black 1: 00,21,12, Black2: [10,01,22], Black3: [20,11,0]
AB	mad3	mods	mod 3	_\
00	0	0	0	> Blake: 00, 11, 22 Block 2: (10, 21, 02), 131-123: 20,01,7
10	1 1		2	
20	Z	2	ī	
01	(2	i	G Block 1: (00, 11, 22), Block 2: (20, 01, 12), Block 3: (0, 21,0
L J	2	0	D	
21	6	١	2	The Top 2 yours are differ ARI Li
02	Z	1	2	The Top 2 vows are different Blockings.
12	0	2	1	But the 2nd and 3rd rows are The same Blockings.
22	1 1	D	0	The state of the s
1 \	1	1	1 1 1 1	

b) n = 1 replication has led to the following estimate of the interaction term. What is the value of SS corresponding to this interaction term (i.e., SSAB)?

$$\begin{pmatrix}
G_1 & G_2 & G_3 \\
G_2 & G_4 & G_{17}
\end{pmatrix} SSAB = \underbrace{S_1(AB)}_{i,j} = (+4+9+\cdots+100) = 240$$
Alternatively (long way): $SSAB = \frac{1}{3}(-12)^2 + (5^2 + (-3)^2) - \frac{0^2}{9} = 126$

$$\begin{cases}
Y_{1,1} = 1-7-6 = -12 \\
Y_{1,2} = 2+3+10=15
\end{cases} SSAB = \underbrace{SSAB}_{AB} + SSABL = \underbrace{240}_{AB} = 114$$

$$SSAB = SSAB + SSABL = \underbrace{240}_{AB} = 240$$
The the blocking equation to I and I and I are I and

c) If the blocking according to $L = x_1 + x_2 \pmod{3}$ has led to an SS of 7.0 for the AB component of the interaction term, what is the value of SS_{Blocks} ? Explain.

Consider a 2-factor random-effects model with interaction and with n replicates: $y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$, with i = 1 - a, j = 1 - b, k = 1 - n. Show that the estimate of σ_{α}^2 according to the analysis of variance method is unbiased.

$$\hat{\sigma}_{\alpha}^{2} = \frac{1}{bn} MS_{A} - MS_{AB}$$

$$E[\hat{\sigma}_{\alpha}^{2}] = \frac{1}{bn} (E(MS_{A}) - E[MS_{AB}])$$

$$= \frac{1}{bn} (\int_{E}^{2} + n\sigma_{\alpha}^{2} + bn\sigma_{\alpha}^{2} - \int_{e}^{2} - n\sigma_{\alpha}^{2})$$

$$E[\hat{\sigma}_{\alpha}^{2}] = \sigma_{\alpha}^{2}$$