# Traffic-related air pollution and ultrasound parameters of fetal growth in Eastern Massachusetts



Michael Leung<sup>1</sup>, Anna M. Modest<sup>2,3</sup>, Michele R. Hacker<sup>1-3</sup>, Blair J. Wylie<sup>2,3</sup>, Yaguang Wei<sup>1</sup>, Joel Schwartz<sup>1</sup>, Hari Iyer<sup>4</sup>, Jaime E. Hart<sup>1,3,5</sup>, Brent A. Coull<sup>1</sup>, Francine Laden<sup>1,3,5</sup>, Marc G. Weisskopf<sup>1</sup>, Stefania Papatheodorou<sup>1</sup>

<sup>1</sup>Harvard T.H. Chan School of Public Health, Boston, MA; <sup>2</sup>Beth Israel Deaconess Medical Center, Boston, MA; <sup>3</sup>Harvard Medical School, Boston, MA; <sup>4</sup>Dana-Farber Cancer Institute, Boston, MA; <sup>5</sup>Brigham and Women's Hospital, Boston, MA

## Background

- Previous studies have examined the association between prenatal nitrogen dioxide (NO<sub>2</sub>) —a gaseous pollutant derived from traffic combustion and fetal growth based on ultrasound measures
- Yet, most have used exposure assessment methods with low temporal resolution (e.g., land-use or land-cover regression), which limits the identification of critical exposure windows given that pregnancy occurs over a relatively short period
- Here, we used NO<sub>2</sub> data from a high-resolution spatiotemporal model to fit distributed lag models (DLMs) that estimated the association between weeklyresolved NO<sub>2</sub> and ultrasound parameters of fetal growth

#### Methods

- Study population consisted of 9,446 deliveries from Beth Israel Deaconess Medical Center, Boston, Massachusetts, 2011-2016
- Ultrasound parameters were standardized using the INTERGROWTH-21<sup>st</sup> standards and include biparietal diameter, head circumference, femur length, and abdominal circumference
- NO<sub>2</sub> data were derived from a well-validated ensemble model that estimates daily NO<sub>2</sub> concentration for each 1-km grid in the US (R<sup>2</sup>=0.79)
- We fitted DLMs to estimate the time-varying association between ultrasound parameters of fetal growth and NO<sub>2</sub> exposure in each gestational week up until the ultrasound measurement
- To compare our DLMs to more common approaches, we also fitted trimester-average-exposure models
- All models were adjusted for sociodemographic characteristics, time trends, and temperature

Fig 1. Ultrasound parameters of fetal growth



#### Results

Fig 2. DLM estimates of the time-varying association between weekly NO<sub>2</sub> and ultrasound parameters of fetal growth (negative is smaller measure)



### \* Critical window identified by trimester-average-exposure models

## Conclusion

- DLM analyses identified critical windows that differed depending on the parameter and when the outcome was assessed.
- Trimester-average-exposure models identified critical windows when they aligned with trimester boundaries
- Our findings indicate that reducing traffic emissions is one potential avenue to improving fetal and offspring health

## References

Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. *Environ Res.* 2012;117:100-111. 2. Simoncic V, Enaux C, Deguen S, Kihal-Talantikite W. Adverse Birth Outcomes Related to NO2 and PM Exposure: European Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020;17(21):1-70.

Funding: NIEHS P30 ES000002 and USEPA RD-835872 Contact: Michael Leung (mleung@hsph.harvard.edu)