

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ)

Институт:	Новых материалов	и технологий

КУРСОВАЯ РАБОТА

Разработка программного модуля на примере расчёта по теме: и построения подшипника качения

Руководитель:

Котел Наталья Сергеевна

Русинов Егор Константинович

Группа: HMTB-123902

Студент:

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б. Н. Ельцина» (УрФУ)

Задание на курсовую работу

Студент Русинов Егор Константинович
группа_НМТВ-123902
специальность/направление подготовки 09.03.02 Информационные системы и технологии
1. Тема курсовой работы
Разработка программного модуля на примере расчёта и построения подшипника качения
2. Содержание работы, в том числе состав графических работ и расчётов
1. Разработать программный модуль на примере расчёта и построения подшипника качения
2. По исходным данным задачи №1 построить 3D-модель подшипника качения в системе
KOMПAC 3D
3. Оформить пояснительную записку к курсовой работе и выложить её на LMS-платформе
«Курсовое проектирование» для студентов УрФУ
3. Дополнительные сведения

4. План выполнения курсовой работы

Наименование элементов курсовой работы	Сроки	Примечания	Отметка о выполнении
Разработка программного модуля на примере расчёта и построения подшипника качения	04.03.23- 25.03.23	HCm2	
Построение 3D-модели подшипника качения в CAD-системе КОМПАС 3D	01.04.23- 22.04.23	HCome	
Оформление пояснительной записки и размещение её в сервисе «Курсовое проектирование»	29.04.23- 20.05.23	HCm2	
Защита курсовой работы	22.05.23- 11.06.23	HCm2	

Руководитель <u>Н. С. Котел</u> / И. О. Фамилия /

СОДЕРЖАНИЕ

введение	4
ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАСЧЕТА ПОДШИПНИКА НА	
ДОЛГОВЕЧНОСТЬ	6
АЛГОРИТМ ПРОГРАМНОГО МОДУЛЯ	9
КОД ПРОГРАМНОГО МОДУЛЯ	12
ПОСТРОЕНИЕ 3D-МОДЕЛИ ПОДШИПНИКА В КОМПАС 3D	28
ТЕСТ ПРОГРАМНОГО МОДУЛЯ	32
ЗАКЛЮЧЕНИЕ	34
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ИСТОЧНИКОВ	35
ПРИЛОЖЕНИЯ	36

ВВЕДЕНИЕ

Разработка программных модулей для автоматических расчетов и построения 3D моделей различных инженерных объектов является актуальной темой в современной инженерной практике. Такие программные модули имеют широкий диапазон применения, включая автомобильную, авиационную, судостроительную, нефтегазовую, металлургическую промышленность и многие другие отрасли, где используются подшипники качения.

Подшипник качения – это важный элемент механизмов, обеспечивающий высокую надежность и долговечность их работы. В свою очередь, правильный расчет параметров подшипника качения является ключевым в проектировании сложных механизмов.

Основными целями данной работы являются:

- 1. Изучение ГОСТа 831-75 Подшипники шариковые радиально-упорные однорядные.
- 2. Закрепление навыков программирования на языке Python, создание приложения с графическим интерфейсом для расчета и черчения подшипника качения.
- 3. Изучение техник и возможностей системы моделирования КОМПАС 3D, закрепление навыков на практике создания 3D-модели подшипника качения.
- 4. Разработка программного модуля с графическим интерфейсом для расчета основных технических параметров подшипника качения, таких как долговечность, а также динамической отрисовки чертежа подшипника/

Руthon (версия 3.10) — это язык программирования, который широко используется в интернет-приложениях, разработке программного обеспечения с графическим интерфейсом, науке о данных и машинном обучении (ML). Разработчики используют Руthon, потому что он эффективен, прост в изучении и работает на разных платформах. Программы на языке Руthon можно скачать бесплатно, они совместимы со всеми типами систем и повышают скорость разработки. Для создания приложений с графическим интерфейсом используется библиотека tkinter, предоставляющая широкие возможности для его развития.

КОМПАС-3D – это один из самых популярных и многофункциональных инструментов трехмерного моделирования. Это программное обеспечение является продуктом русской компании АСКОН и позволяет полностью автоматизировать процесс создания проектной документации согласно всем требованиям Единой Системы Конструкторской Документации или ЕСКД.

Использование компьютерных технологий в проектировании механизмов позволяет сократить время и затраты на разработку продукции и повышает качество и надежность механизма. Разработка программного модуля на языке Python позволит закрепить и отточить навыки программирования, работа с библиотекой tkinter поможет наработать опыт создания и

наполнения визуально красивых и удобных программ, моделирование.

Основная задача модуля – определение параметров подшипника, соответствующих условиям задачи. Модуль базируется на методах математического расчета, используя данные о геометрии детали, силах, трениях, режимах работы и других факторах, оказывающих влияние на работу подшипника качения. Данные из задачи используются для построения трехмерной модели подшипника, а также для расчета его рабочих характеристик.

В данной работе будут рассмотрены методы разработки программного продукта на языке Python в среде разработки PyCharm, с использованием стандартной библиотеки tkinter, а также использование программы Компас-3D для создания трехмерной модели подшипника. Будут описаны алгоритмы решения расчетных задач, отображающие ход выполнения программных операций и результаты работы.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАСЧЕТА ПОДШИПНИКА НА ДОЛГОВЕЧНОСТЬ

Расчёт подшипников на долговечность производится исходя из их динамической грузоподъёмности.

Динамической грузоподъёмностью радиальных и радиально-упорных подшипников называется постоянная радиальная нагрузка, которую группа идентичных подшипников с неподвижным наружным кольцом сможет выдержать в течение расчетного срока службы, исчисляемого в часах.

Долговечность подшипника определяется как срок службы до появления признаков контактной усталости металла на любом из колец или тел качения.

Под расчётным сроком службы понимают срок службы партии подшипников, в которых не менее 90% одинаковых подшипников, при одной и той же нагрузке и частоте вращения должны обработать без появления на рабочих поверхностях раковин и отслаивания.

Зависимость между номинальной долговечностью (расчётным сроком службы), динамической грузоподъёмностью и действующей на подшипник нагрузкой определяется формулой

$$L = \left(\frac{C}{P}\right)^p$$

где: L- номинальная долговечность, млн. оборотов;

С- динамическая грузоподъёмность;

Р – эквивалентная динамическая нагрузка;

p — показатель степени в формуле долговечности (для шариковых подшипников p=3, для роликовых p= 10/3 или 3,33).

Эквивалентной динамической нагрузкой для радиальных шариковых и радиально — упорных подшипников называется постоянная радиальная нагрузка, которая при приложении её к подшипнику с вращающимся внутренним кольцом и неподвижным наружным обеспечивает такой же расчётный срок службы, как при действительных условиях нагружения и вращения. Для этих типов подшипников эквивалентная динамическая нагрузка определяется по формуле:

$$P = (X * V * F_r + Y * F_a) * K_{\delta} * K_T$$

где: Fr – постоянная по величине и направлению радиальная нагрузка, H;

Fa- постоянная по величине и направлению осевая нагрузка, H;

Х - коэффициент радиальной нагрузки;

Ү - коэффициент осевой нагрузки;

V – коэффициент вращения (V=1);

Кб – коэффициент безопасности;

КТ – температурный коэффициент.

Эквивалентная динамическая нагрузка для подшипников, не обладающих осевой или радиальной нагрузкой может быть определена по формулам ниже:

$$P = X * V * F_r * K_{\delta} * K_T$$

$$P = Y * F_{\sigma} * K_{\delta} * K_T$$

Согласно моему варианту (№2), в модуле будет рассчитываться и чертиться подшипник шариковый радиально-упорный легкой серии № 36204 (ГОСТ 831-75) по следующей схеме:

d – диаметр отверстия внутреннего кольца радиального и радиально-упорного подшипника и «тугого» кольца одинарного упорного подшипника;

d1– диаметр отверстия свободного кольца упорного подшипника;

D – внешний диаметр наружного кольца радиального и радиально-упорного подшипника и свободного кольца упорного подшипника;

B – ширина колец радиальных и радиально-упорных подшипников или ширина внутреннего кольца, если ширины колец не одинаковы;

Размеры тел качения для основных типов подшипников можно определить по следующим формулам:

Для шарикоподшипников:

S – толщина кольца S = 0.15*(D - d),

d1 – ось шарика d1 = 0.5*(D+d), Dw – диаметр шарика Dw = 0.32*(D-d).

Данные для расчета и построения шарикового радиально-упорного подшипника легкой серии № 36204 (ГОСТ 831-75) приведены в Приложении.

АЛГОРИТМ ПРОГРАМНОГО МОДУЛЯ

Структура программного модуля

Для разделения логики работы программы и дальнейшего повторного использования кода, было принято решение разбить ее на структуру следующего вида:

main.py

bearing (подшипник)

- 1. __init__.py
- 2. calculate.py
- 3. core.py

где: main.py — главный исполняемый файл, который можно запускать из командной строки с помощью команды python main.py. В нем определены главные переменные с данными из Приложения (постоянная по величине и направлению радиальная нагрузка, постоянная по величине и направлению осевая нагрузка, коэффициент радиальной нагрузки, коэффициент осевой нагрузки, коэффициент вращения, коэффициент безопасности, температурный коэффициент — для расчета долговечности подшипника; диаметр отверстия внутреннего кольца радиального и радиально-упорного подшипника и «тугого» кольца одинарного упорного подшипника, диаметр отверстия свободного кольца упорного подшипника, внешний диаметр наружного кольца радиального и радиально-упорного подшипника и свободного кольца упорного подшипника, ширина колец радиальных и радиально-упорных подшипников или ширина внутреннего кольца, если ширины колец не одинаковы — для построения чертежа подшипника).

bearing – программный пакет для расчета и отрисовки рабочего окна приложения, включающий в себя следующие модули:

__init__.py – инициализатор пакета. В него импортируются и в нем определяются все необходимые классы и функции для расчета и построения подшипника. Также в данном модуле реализуется функция для наполнения главного окна программы необходимыми полями.

calculate.py – модуль, в котором определены все основные функции, формулы и классы для необходимых вычислений и построения расчетов. Основные классы: CalcData – для расчета параметров эквивалентной динамической нагрузки и номинальной долговечности, и DrawCoords – для расчета координат точек, необходимых для построения 2D-чертежа подшипника.

соге.ру – модуль, в котором определены все необходимые классы для кастомизации,

наполнения и осуществления черчения на основном окне. Использование определенных в этом модуле классов планируется в соответствии с паттерном проектирования "Mixins". Основные функции и классы наследуются или переопределяют функции библиотеки tkinter.

Мета-алгоритм программного модуля:

- 1. Создание главного окна.
 - 1.1. Создать главное окно размером 1200 на 600 пикселей.
 - 1.2. Изменить название главного окна на «Расчет подшипника на долговечность».
 - 1.3. Изменить иконку главного окна на подшипник.
- 2. Наполнить главное окно полями для ввода данных.
 - 2.1. Добавить на главное окно поле «Начертить подшипник».
 - 2.2. Добавить на главное окно поля для ввода данных подшипника. Осуществить привязку добавленных полей к внутренним переменным для отслеживания изменения значений.
 - 2.3. Добавить на главное окно кнопки «Значения по умолчанию» и «Начертить подшипник» с привязкой к внутренним функциям для наполнения и считывания данных из вышестоящих полей.
 - 2.4. Добавить на главное окно поле «Рассчитать подшипник».
 - Добавить на главное окно поля для ввода данных подшипника.
 Осуществить привязку добавленных полей к внутренним переменным для отслеживания изменения значений.
 - 2.6. Добавить на главное окно кнопки «Значения по умолчанию» и «Рассчитать подшипник» с привязкой к внутренним функциям для наполнения и считывания данных из вышестоящих полей.
 - 2.7. Добавить на главное окно поля для вывода параметров эквивалентной динамической нагрузки и номинальной долговечности подшипника.
- 3. Наполнить главное окно полями для черчения.
 - 3.1. Добавить на главное окно поле для создания чертежа
 - 3.2. Добавить на созданное в п. 3.1. поле два прямоугольника с помощью методов классов и модуля core.py.
 - 3.3. Привязать первый прямоугольник к кнопке «Начертить подшипник»
 - 3.4. Привязать второй прямоугольник к изображению 3D-модели подшипника

Работа программного модуля:

- 1. При нажатии на кнопку «Значения по умолчанию» в полях соответствующего столбца, выше нажатой кнопки появляются значения из переменной, определенной в главном исполняемом файле main.py. Данные по умолчанию взяты из таблиц в Приложении.
- 2. При нажатии на кнопку «Рассчитать подшипник» в полях соответствующего столбца, ниже нажатой кнопки появляются вычисленные значения эквивалентной динамической нагрузки и номинальной долговечности соответственно по формулам, приведенным в разделе Теоретические основы расчета подшипника на долговечность. При изменении исходных данных для внесения корректировок в ответ необходимо повторно нажать данную кнопку.
- 3. При нажатии на кнопку «Начертить подшипник» в центральном прямоугольнике появляется чертеж подшипника с проведенными осями, заштрихованными поверхностями и соответствующими пропорциями. В правом прямоугольнике появляется изображение 3D-модели подшипника по ГОСТ 831-75. При изменении исходных данных для внесения корректировок в построенный чертеж необходимо повторно нажать данную кнопку. Изображение 3D-модели подшипника при этом не меняется.

КОД ПРОГРАМНОГО МОДУЛЯ

Код таіп.ру

```
from bearing import *
defaults calc = {'C': 15.7,
defaults draw = {'d': 20,
```

Код __init__.py

```
from .core import *
from .calculate import *
```

```
def inner():
   out fig = coords.get outer polygon()
```

```
up in fill = coords.fill up stator()
coords['d1'],
```

```
center[0] + 0.5 * coords['Dw'] + 10, center[1] + 0.5
def get window(win, data: DrawData, im):
   win.customize('Расчет подшипника на долговечность', (1200, 600))
```

Код calculate.py

```
__all__ = ['DrawData', 'DrawCoords', 'CalcData']

class DrawData:

"""Класс для рассчета недостающих параметров подшипника"""
```

```
(self, data: dict) -> None:
def get P(self):
def get L(self):
```

```
def get big cilinder(self):
def get outer polygon(self):
```

```
x1 = cent[0] - 0.5 * self['B']
def get_upcircle_params(self):
```

```
def get downcircle params(self):
        ans.append((x1, y1, x2, y2))
```

```
right up x = cent[0] + 0.5 * self['B']
   ans.append((x1, y1, x2, y2))
```

```
ans.append((x1, y1, x2, y2))
```

Код core.py

```
__all__ = ['CustomWin', 'LabelWin', 'ButtonWin', 'DrawWin', 'get_image']

import tkinter as tk
```

```
position: tuple, dx: int) -> None:
position: tuple, dx: int) -> None:
```

```
entry = tk.Entry(self.main win, width=6)
position: tuple, dx: int) -> None:
size)).place(x=position[0], y=position[1])
```

```
self.entries draw[i].insert(-1, value)
```

```
self.canvas.create_oval(*args, width=size, fill='white')

def clear_place(self, *args, size=1):
    """Метод для удаления чертежа"""
    self.canvas.create_rectangle(*args, width=size, fill='white')

def draw_polygon(self, *args, size=3, fill=True):
    """Метод для рисования окружности толшины size по координатам args"""
    self.canvas.create_polygon(*args, width=size, fill='white')

def draw_3d(self, x, y, image):
    self.canvas.create_image(x, y, anchor='nw', image=image)

def draw_punctir(self, *args, size=1) -> None:
    """Метод для рисования пунктирной линии толшины size по координатам args"""
    self.canvas.create_line(*args, width=size, dash=5)

def get_image(path):
    return tk.PhotoImage(file=path, height=590, width=390)
```

ПОСТРОЕНИЕ 3D-МОДЕЛИ ПОДШИПНИКА В КОМПАС 3D

Построение фрагмента подшипника

На основе данных из Приложения рассчитаем и построим вспомогательные отрезки и вспомогательные оси:

$$B = 14$$

$$r = 1,5$$

$$D = 47$$

$$d = 20$$

$$S = 0.15*(D - d) = 0.15*(47 - 20) = 4.05$$

$$d1 = 0.5*(D + d) = 0.5*(47 + 20) = 33.5$$

$$Dw = 0.32*(D - d) = 0.32*(47 - 20) = 8.64$$

Вертикальные вспомогательные:

1.
$$d/2 = 10$$

2.
$$d/2 + r = 11,5$$

3.
$$d/2 + S = 14,05$$

4.
$$d1/2 = 16,75$$

5.
$$D/2 - S = 19,45$$

6.
$$D/2 - S/2 = 21,475$$

7.
$$D/2-r=22$$

8.
$$D/2 = 23.5$$

Горизонтальные вспомогательные:

1.
$$r = 1.5$$

2.
$$B/2=7$$

3.
$$0.65*B = 9.1$$

4.
$$B - r = 12.5$$

5.
$$B = 14$$

Уберем вспомогательные линии и отрезки:

Построение деталей подшипника

Разобьем полученный фрагмент на 3 части (внешняя внутренняя, шарик) и построим на их основе детали с помощью элемента вращения ::

Внешняя часть

Внутренняя часть

Шарики подшипника построим с помощью элемента вращения и массива по концентрической сетке ^{Массив по} :

Объединение деталей в сборку

Соберем из всех деталей итоговую модель (сборку) подшипника, зафиксируем изображение и добавим в програмный модуль:

ТЕСТ ПРОГРАМНОГО МОДУЛЯ

Главное меню

Подстановка значений по умолчанию

Расчет долговечности подшипника

Чертеж подшипника

ЗАКЛЮЧЕНИЕ

Данная курсовая работа была разработана на языке Python в интерактивной среде разработки PyCharm с использованием стандартной библиотеки tkinter, а также с помощью системы трехмерного проектирования КОМПАС 3D. Благодаря легко читаемому синтаксису языка и простому, но мощному функционалу всех инструментов курсовая работа разработана на высоком уровне и в короткие сроки.

В ходе курсовой работы были достигнуты следующие результаты:

Были освоены навыки построения 3D-моделей в системе КОМПАС 3D, отточены умения программирования на языке Python, а также был разработан программный модуль, который позволяет производить автоматизированный расчет на долговечность и построение подшипника качения.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ИСТОЧНИКОВ

- 1. ГОСТ 831-75 Подшипники шариковые радиально-упорные однорядные. Типы и основные размеры (с Изменением N 1) // Электронный фонд правовых и нормативно-технических документов URL: https://docs.cntd.ru/document/1200012724 (дата обращения: 16.05.2023).
- 2. Лутц М. Изучаем Python. 5-е изд. Диалектика, 2019. 832 с.
- 3. Д. Бейдер Чистый Руthon. Тонкости программирования для профи. СПб.: Питер, 2019. 288 с.
- 4. tkinter Python interface to Tcl/Tk // Python Documetation URL: https://docs.python.org/3/library/tkinter.html (дата обращения: 16.05.2023).
- 5. Герасимов А.А. Самоучитель КОМПАС-3D v19. СПб.: БХВ-Петербург, 2021. 624 с.
- 6. Чагина А. В., Большаков В. П. 3D-моделирование в КОМПАС-3D версий v17 и выше. Учебное пособие для вузов. - СПб.: Питер, 2021. - 256 с.
- 7. Ознакомление и построение подшипника качения в программе Компас 3D v18 // YouTube URL: https://www.youtube.com/watch?v=o5ha4DnIYO4 (дата обращения: 16.05.2023).

приложения

 Таблица 1

 Исходные данные для расчёта подшипников на долговечность

Тип, серия подшипника	Радиально-упорный шариковый однорядный легкой серии № 36204
Частота вращения вала, об/мин, n	1444,5
Коэффициент безопасности, Кб	1,3
Температура подшипникового узла, град.	100
Температурный коэффициент, КТ	1
Режим работы	Средний равновероятный
Коэффициент эквивалентности,	0,25
Радиальная нагрузка кН, Fr	2,08
Осевая нагрузка, кН, Fa	3,142
Динамическая грузоподъемность, кН, С	15,7
Статическая грузоподъемность, кН, С0	8,31
Параметр осевого нагружения, е	0,21
Коэффициент радиальной нагрузки, X	0,46
Коэффициент осевой нагрузки, Ү	1,421

 Таблица 2

 Подшипники шариковые радиально-упорные однорядные легкой серии (ГОСТ 831-75)

Обозначение	36204
d	20
D	47
В	14
r	1,5
С	15,7
C0	8,31