1

Equilibrio químico en fase gas

♦ PROBLEMAS

Con datos do equilibrio

- 1. Nun recipiente pechado e baleiro de 10 L de capacidade introdúcense 0,04 moles de monóxido carbono e igual cantidade de cloro gas. Cando a 525 °C alcánzase o equilibrio, obsérvase que reaccionou o 37,5 % do cloro inicial, segundo a reacción: $CO(g) + Cl(g) \rightleftharpoons COCl_2(g)$. Calcula:
 - a) O valor de K_p e de K_c .
 - b) A cantidade, en gramos, de monóxido de carbono existente cando se alcanza o equilibrio.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. set. 16)

Rta.: $K_c = 240$; $K_p = 3,66$; b) m = 0,700 g CO.

- 2. Nun matraz dun litro de capacidade introdúcense 0,387 moles de nitróxeno e 0,642 moles de hidróxeno, quéntase a 800 K e establécese o equilibrio: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ atopándose que se formaron 0.061 moles de amoníaco. Calcula:
 - a) A composición de mestúraa gasosa en equilibrio.
 - b) K_c e K_p a dita temperatura.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. xuño 16)

Rta.: a) $n(N_2) = 0.356 \text{ mol}$; $n(H_2) = 0.550 \text{ mol}$; b) $K_c = 0.0623$; $K_p = 1.45 \cdot 10^{-5}$.

3. Nun recipiente de 2,0 dm³ introdúcense 0,043 moles de NOCl(g) e 0,010 moles de Cl₂(g). Péchase, quéntase ata unha temperatura de 30 ℃ e déixase que alcance o equilibrio:

 $NOCl(g) \rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$. Calcula:

- a) O valor de K_c sabendo que no equilibrio atópanse 0,031 moles de NOCl(g).
- b) A presión total e as presións parciais de cada gas no equilibrio.

Dato: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. xuño 15)

Rta.: a) $K_c = 0.035$; b) p = 74 kPa; p(NOCl) = 39 kPa; $p(Cl_2) = 20$ kPa; p(NO) = 15 kPa.

4. Considera a seguinte reacción: $Br_2(g) \rightleftharpoons 2 Br(g)$. Cando 1,05 moles de Br_2 colócanse nun matraz de 0,980 dm³ a unha temperatura de 1873 K se disocia o 1,20 % de Br_2 . Calcula a constante de equilibrio K_c da reacción.

(P.A.U. xuño 14)

Rta.: a) $K_c = 6.25 \cdot 10^{-4}$.

- 5. Introdúcese PCI₅ nun recipiente pechado de 1 dm³ de capacidade e quéntase a 493 K ata descompoñerse termicamente segundo a reacción: PCI₅(g)

 PCI₃(g) + CI₂(g). Unha vez alcanzado o equilibrio, a presión total é de 1 atm (101,3 kPa) e o grao de disociación 0,32. Calcula:
 - a) As concentracións das especies presentes no equilibrio e as súas presións parciais
 - b) O valor de K_c e K_p .

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. set. 13)

Rta.: a) $[PCl_5]_e = 0.0127 \text{ mol/dm}^3$; $[Cl_2]_e = [PCl_3]_e = 0.0060 \text{ mol/dm}^3$; b) $p(PCl_5) = 0.515 \text{ atm} = 52.2 \text{ kPa}$; $p(PCl_3) = p(Cl_2) = 0.243 \text{ atm} = 24.6 \text{ kPa}$; b) $K_c = 2.82 \cdot 10^{-3}$; $K_p = 0.114 \text{ [$p$ en atm]}$.

- 6. Nun matraz de 5 dm³ introdúcese unha mestura de 0,92 moles de N_2 e 0,51 moles de O_2 e quéntase ata 2200 K, establecéndose o equilibrio: $N_2(g) + O_2(g) \rightleftharpoons 2$ NO(g). Tendo en conta que nestas condicións reacciona o 1,09 % do nitróxeno inicial:
 - a) Calcula a concentración molar de todos os gases no equilibrio a 2200 K.
 - b) Calcula o valor das constantes K_c e K_p a esa temperatura.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. set. 12)

Rta.: a) $[N_2] = 0.182 \text{ mol/dm}^3$; $[O_2] = 0.100 \text{ mol/dm}^3$; $[NO] = 0.0040 \text{ mol/dm}^3$; b) $K_c = K_p = 8.84 \cdot 10^{-4}$.

7. O CO_2 reacciona co H_2S a altas temperaturas segundo: $CO_2(g) + H_2S(g) \rightleftharpoons COS(g) + H_2O(g)$. Introdúcense 4,4 g de CO_2 nun recipiente de 2,55 dm³ a 337 °C, e unha cantidade suficiente de H_2S para

que, unha vez alcanzado o equilibrio, a presión total sexa de 10 atm (1013,1 kPa). Se na mestura en equilibrio hai 0,01 moles de auga, calcula:

- a) O número de moles de cada unha das especies no equilibrio.
- b) O valor de K_c e K_p a esa temperatura.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. xuño 12)

Rta.: a) $n_e(CO_2) = 0.090 \text{ mol}$; $n_e(H_2S) = 0.409 \text{ mol}$; $n_e(COS) = 0.0100 \text{ mol}$; b) $K_p = K_c = 2.8 \cdot 10^{-3}$.

- 8. Nun recipiente de 2 dm³ de capacidade disponse unha certa cantidade de $N_2O_4(g)$ e quéntase o sistema ata 298,15 K. A reacción que ten lugar é: $N_2O_4(g) \rightleftharpoons 2$ $NO_2(g)$. Sabendo que se alcanza o equilibrio químico cando a presión total dentro do recipiente é 1,0 atm (101,3 kPa) e a presión parcial do N_2O_4 é 0,70 atm (70,9 kPa), calcula:
 - a) O valor de K_p a 298,15 K.
 - b) O número de moles de cada un dos gases no equilibrio.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. set. 11)

Rta.: a) $K_p = 0.13$; b) $n_1 = 0.025$ mol NO₂; $n_2 = 0.057$ mol N₂O₄.

9. A 670 K, un recipiente de 2 dm³ contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e 0,024 moles de ioduro de hidróxeno, segundo a reacción:

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$. Nestas condicións, calcula:

- a) O valor de K_c e K_p .
- b) A presión total no recipiente e as presións parciais dos gases na mestura.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa

(P.A.U. set. 10)

Rta.: a) $K_p = K_c = 64$; b) $p_t = 83.5$ kPa; $p(H_2) = p(I_2) = 8.4$ kPa; p(HI) = 66.8 kPa.

- 10. Un recipiente pechado de 1 dm³, no que se fixo previamente o baleiro, contén 1,998 g de iodo (sólido). Seguidamente, quéntase ata alcanzar a temperatura de 1200 °C. A presión no interior do recipiente é de 1,33 atm. Nestas condicións, todo o iodo áchase en estado gasoso e parcialmente disociado en átomos: I₂(g) ⇌ 2 I(g)
 - a) Calcula o grao de disociación do iodo molecular.
 - b) Calcula as constantes de equilibrio K_c e K_p para a devandita reacción a 1200 °C.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. set. 09)

Rta.: a) $\alpha = 39.8 \%$ b) $K_c = 8.26 \cdot 10^{-3}$; $K_p = 0.999$.

- 11. Nun recipiente de 5 dm³ introdúcense 1,0 mol de SO_2 e 1,0 mol de O_2 e quéntase a 727 °C, producíndose a seguinte reacción: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$. Unha vez alcanzado o equilibrio, analízase a mestura atopando que hai 0,15 moles de SO_2 . Calcula:
 - a) Os gramos de SO₃ que se forman.
 - b) O valor da constante de equilibrio K_c .

(P.A.U. set. 08)

Rta.: a) $m(SO_3) = 68 \text{ g; b}$ $K_c = 280$.

- 12. Nun recipiente de 10,0 dm³ introdúcense 0,61 moles de CO_2 e 0,39 moles de H_2 quentando ata 1250 °C. Unha vez alcanzado o equilibrio segundo a reacción: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ analízase a mestura de gases, atopándose 0,35 moles de CO_2 .
 - a) Calcula os moles dos demais gases no equilibrio.
 - b) Calcula o valor de K_c a esa temperatura.

(P.A.U. xuño 08)

Rta.: a) $n_e(CO_2) = 0.35 \text{ mol}$; $n_e(H_2) = 0.13 \text{ mol}$; $n_e(CO) = n_e(H_2O) = 0.26 \text{ mol}$; b) $K_c = 1.5$.

- 13. Á temperatura de 35 °C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gasosa que contén 1,660 g de N₂O₄ en equilibrio con 0,385 g de NO₂.
 - a) Calcula a K_c da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C.
 - b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?

Dato: R = 0.082 atm·dm³/(K·mol).

(P.A.U. xuño 07)

Rta.: a) $K_c = 0.0125$; b) $V = 1.25 \text{ dm}^3$.

- 14. O COCl₂ gasoso disóciase a unha temperatura de 1000 K, segundo a seguinte reacción: COCl₂(g)

 CO(g) + Cl₂(g). Cando a presión de equilibrio é de 1 atm a porcentaxe de disociación de COCl₂ é do 49,2 %. Calcula:
 - a) O valor de K_p
 - b) A porcentaxe de disociación de $COCl_2$ cando a presión de equilibrio sexa 5 atm a 1000 K Dato: R = 0.082 atm·dm³·K⁻¹·mol⁻¹ = 8,31 J·K⁻¹·mol⁻¹. (P.A.U. xuño 05)

Rta.: a) $K_p = 0.32$; b) $\alpha' = 24.5 \%$.

• Coa constante como dato

1. Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concentracións en equilibrio das especies son:

 $[CO_2] = 0.086 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$ e $[H_2O] = 0.040 \text{ mol/dm}^3$.

- a) Calcula K_c para a reacción a 686 °C.
- b) Se se engadise CO₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concentracións de todos os gases unha vez restablecido o equilibrio?

(P.A.U. set. 14)

Rta.: a) $K_c = 0.517$; b) $[CO_2] = 0.47$; $[H_2] = 0.020$; [CO] = 0.075 e $[H_2O] = 0.065$ mol/dm³.

- 2. A reacción $I_2(g) + H_2(g) \rightleftharpoons 2 HI(g)$ ten, a 448 °C, un valor da constante de equilibrio K_c igual a 50. A esa temperatura un recipiente pechado de 1 dm³ contén inicialmente 1,0 mol de I_2 e 1,0 mol de I_2 .
 - a) Calcula os moles de HI(g) presentes no equilibrio.
 - b) Calcula a presión parcial de cada gas no equilibrio.

Dato: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(P.A.U. xuño 11)

Rta.: a) $n_e(HI) = 1,56 \text{ mol HI}$; b) $p(I_2) = p(H_2) = 1,3 \text{ MPa}$; p(HI) = 9,3 MPa.

♦ CUESTIÓNS

- 1. Para o equilibrio: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g) \Delta H < 0$; explica razoadamente:
 - a) Cara a que lado se desprazará o equilibrio se se aumenta a temperatura?
 - b) Como afectará á cantidade de produto obtido un aumento da concentración de osíxeno?

(P.A.U. set. 16)

- 2. Para a seguinte reacción en equilibrio: 2 BaO₂(s) \rightleftharpoons 2 BaO(s) + O₂(g) $\triangle H^{\circ} > 0$
 - a) Escribe a expresión para as constantes de equilibrio K_c e K_p , así como a relación entre ambas.
 - b) Razoa como afecta o equilibrio un aumento de presión a temperatura constante.

(P.A.U. set. 15)

3. a) Para o seguinte sistema en equilibrio: $A(g) \rightleftharpoons 2 B(g)$ $\Delta H^{\circ} = +20.0 \text{ kJ}$, xustifica que cambio experimentaría K_c se se elevase a temperatura da reacción.

(P.A.U. set. 14)

4. Considera o seguinte proceso en equilibrio: $N_2F_4(g) \rightleftharpoons 2 NF_2(g)$ $\Delta H^\circ = 38,5$ kJ. Razoa que lle ocorre ao equilibrio se se diminúe a presión da mestura de reacción a temperatura constante.

(P.A.U. xuño 14)

- 5. Explica razoadamente o efecto sobre o equilibrio: $2 C(s) + O_2(g) \rightleftharpoons 2 CO(g)$ $\Delta H^\circ = -221 \text{ kJ/mol}$
 - a) Se se engade CO.
 - b) Se se engade C.
 - c) Se se eleva a temperatura.
 - d) Se aumenta a presión.

(P.A.U. set. 13)

- 6. Para a seguinte reacción: 2 NaHCO₃(s) \rightleftharpoons 2 Na₂CO₃(s) + CO₂(g) + H₂O(g) $\Delta H < 0$:
 - a) Escribe a expresión para a constante de equilibrio K_p en función das presións parciais.

b) Razoa como afecta ao equilibrio un aumento de temperatura.

(P.A.U. xuño 13)

- 7. Considerando a reacción: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$, razoa se as afirmacións son verdadeiras ou falsas.
 - a) Un aumento da presión conduce a unha maior produción de SO₃.
 - b) Unha vez alcanzado o equilibrio, deixan de reaccionar as moléculas de SO₂ e O₂ entre si.
 - c) O valor de K_p é superior ao de K_c á mesma temperatura.
 - d) A expresión da constante de equilibrio K_p é: $K_p = \frac{p^2(SO_2) \cdot p(O_2)}{p^2(SO_3)}$.

(P.A.U. set. 11)

8. a) Escribe a expresión de K_c e K_p para cada un dos seguintes equilibrios:

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

2 $SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$

$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$$

 $CO_2(g) + C(s) \rightleftharpoons 2 CO(g)$

b) Indica, de maneira razoada, en que casos K_c coincide con K_p .

(P.A.U. xuño 11)

- 9. Considera o equilibrio: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ $\Delta H = -46 \text{ kJ·mol}^{-1}$. Razoa que lle ocorre ao equilibrio se:
 - a) Se engade hidróxeno.
 - b) Se aumenta a temperatura.
 - c) Se aumenta a presión diminuíndo o volume.
 - d) Se extrae nitróxeno.

(P.A.U. set. 10)

- 10. Se consideramos a disociación do PCI_5 dada pola ecuación: $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ $\Delta H < 0$ Indica razoadamente que lle ocorre ao equilibrio:
 - a) Ao aumentar a presión sobre o sistema sen variar a temperatura.
 - b) Ao diminuír a temperatura.
 - c) Ao engadir cloro.

(P.A.U. xuño 09)

- 11. Dado o seguinte equilibrio $H_2S(g) \rightleftharpoons H_2(g) + S(s)$, indica se a concentración de sulfuro de hidróxeno aumentará, diminuirá ou non se modificará se:
 - a) Se engade H₂(g)
 - b) Diminúe o volume do recipiente.

(P.A.U. set. 07)

12. Para o sistema gasoso en equilibrio $N_2O_3(g) \rightleftharpoons NO(g) + NO_2(g)$, como afectaría a adición de NO(g) ao sistema en equilibrio? Razoa a resposta.

(P.A.U. xuño 06)

- 13. Escribe a expresión da constante de equilibrio (axustando antes as reaccións) para os seguintes casos:
 - a) $Fe(s) + H_2O(g) \rightleftharpoons Fe_3O_4(s) + H_2(g)$
 - b) $N_2(g) + H_2(g) \rightleftharpoons NH_3(g)$
 - c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$
 - d) $S(s) + H_2(g) \rightleftharpoons H_2S(s)$

(P.A.U. set. 04)

- 14. Nunha reacción A + B \rightleftharpoons AB, en fase gasosa, a constante K_p vale 4,3 á temperatura de 250 °C e ten un valor de 1,8 a 275 °C.
 - a) Enuncia o principio de Le Chatelier.
 - b) Razoa se a devandita reacción é exotérmica ou endotérmica.
 - c) En que sentido desprazarase o equilibrio ao aumentar a temperatura.

(P.A.U. xuño 04)

Cuestións e problemas das <u>probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.