the science behind

Netflix recommendations

agenda

- 1. an introduction to recommendation engines (three types!)
- 2. how does Netflix make recommendations?
- 3. how can we code a recommendation engine?

// part 1: an introduction to recommendation engines

types of recommendation engines, and why????

- why do we need recommendation engines + what are some examples?
- three main types of recommendation engines:
 - a. non-personalized
 - b. content-based
 - c. collaborative filtering

non-personalized recommendation engines

content-based recommendation engines

- makes recommendations based on an item's **features**

movies	Genre	Actor	Director	Year	IMDB	Rotten Tomatoes	
1							
2							
3							
4							
5							

content-based recommendation engines

- what are some pros and some pitfalls of content-based recommendations?

Chinese Money Plant Pass It On Plant - UFO
Plant - Pilea
peperomioides -4" Pot
☆☆☆☆☆ 184
\$8.61

Dolphin Plant - Senecio Peregrinus - Extremely Rare - Live Plant Rooted in 2.5X 3.5 inch Pot - Dolphin Necklace 会会会会 1 \$55.00

8 Hardy Succulent Variety Pack | 2" | Hens & Chicks | Chick Charms | Fairy Garden | Live Plants 1 offer from \$15.99

Chinese Money Plant -Pass It On Plant -Pilea peperomioides-3" Clay Pot/Saucer 会会会会 10 \$9.99

Shop Succulents Crassula Ovata 'Jade' 2In Plant Kit ☆☆☆☆☆ 2 \$14.99 ✓prime

Succulent 3-Pack/2.0" Pot/Live Home and Garden Plants/Free Care Guide 会會會會 1 \$9.99

collaborative filtering

- recommends items based on ratings of other users
- different ways to do collaborative filtering:
 - model-based: Singular Value Decomposition (SVD)

collaborative filtering -- the utility matrix

- a utility matrix shows user ratings of different items

- the idea is to fill in the blanks

	Movie 1	Movie 2	Movie	Movie N
User 1	1	BLANK	BLANK	3
User 2	BLANK	5	BLANK	3
User 3	BLANK	BLANK	1	BLANK
User 4	2	3	BLANK	BLANK
User 5	BLANK	BLANK	1	BLANK
User 6	4	BLANK	5	BLANK
User 7	BLANK	4	BLANK	BLANK
User	BLANK	3	BLANK	BLANK
User m	BLANK	BLANK	BLANK	4

	Movie 1	Movie 2	Movie	Movie N
User 1	1	4	2	3
User 2	1	5	3	3
User 3	2.5	2.8	1	3.5
User 4	2	3	2	3.5
User 5	2.5	2.8	1	3.1
User 6	4	1.2	5	1.4
User 7	1	4	2.5	3
User	2	3	2	3
User m	1	4	2	4

modified SVD for filling in utility matrices

	U1	U2	U3	U4
l1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

I1	×	×
12	×	×
13	×	×
14	×	×

U1	U2	U3	U4
×	×	×	×
×	×	×	×

initiating our component matrices with 1s

1	1
1	1
1	1
1	1
	1

U1	U2	U3	U4
1	1	1	1
1	1	1	1

	U1	U2	U3	U4
I1	2	2	2	2
12	2	2	2	2
13	2	2	2	2
14	2	2	2	2

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

RMSE = 1.75

gradient descent by reducing elementwise RMSE

l1	×	1
12	1	1
13	1	1
14	1	1

U1	U2	U3	U4
1	1	1	1
1	1	1	1

	U1	U2	U3	U4
l1	x+1	x+1	x+1	x+1
12	2	2	2	2
13	2	2	2	2
14	2	2	2	2

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

Finding **x** to minimize:

$$(4-(x+1))^2 + (2-(x+1))^2 + (3-(x+1))^2 + (5-(x+1))^2$$

setting d/dx = 0, x = 2.5

gradient descent by Alternating Least Squares

l1	2.5	1
12	1	1
13	1	1
14	1	1

U1	U2	U3	U4
1	1	1	1
1	1	1	1

	U1	U2	U3	U4
I1	3.5	3.5	3.5	3.5
12	2	2	2	2
13	2	2	2	2
14	2	2	2	2

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

RMSE = 1.58!!

~~~ machine learning ~~~

l1	?	?
12	?	?
13	?	?
14	?	?

U1	U2	U3	U4
?	?	?	?
?	?	?	?

	U1	U2	U3	U4
l1	3.55	2.91	3.68	3.85
12	3.25	2.66	3.37	3.08
13	3.7	3.42	4	3.85
14	3.32	2.86	3.6	3.49

OG	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

RMSE = 1.15

collaborative filtering -- pros and cons

- personalized for each user!
- computationally heavy
- popularity bias
- the **cold start** problem

// part 2: how does Netflix make recommendations?

the Netflix algorithm

- Netflix uses a hybrid of content-based and collaborative filtering
- content based: tagging
- collaborative filtering: user patterns, user similarities

the Netflix algorithm

Documentaries

Suspenseful TV Shows

Crime TV Shows

Because you watched Russian Doll

// part 3: coding our own recommendation engine!

stuff we've learned

recommendation engines!!!

- 1. non-personalized
- 2. content-based
- 3. model-based collaborative filtering with SVD

code-along: https://github.com/yishuen/meetup-movie-recommender