АЗ. Быстрее Штрассена!

Демченко Георгий Павлович, БПИ-235

Под "асимптотически более эффективный", будет пониматься верхняя оценка, т.е $\mathrm{O}(\mathrm{f}(\mathrm{n}))$

1. O(f(n)) Штрассена

$$T_{sht}(n) = 7 \cdot T_{sht}(\frac{n}{2}) + \Theta(n^2) = 7 \cdot T_{sht}(\frac{n}{2}) + O(n^2)$$

Тогда, согласно мастер-теореме

$$log_a(b) = log_2(7) > 2 = k$$

$$\Rightarrow T_{sht}(n) = O(n^{log_2(7)})$$

$$f_{sht}(n) = n^{log_2(7)}$$

2. $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ алгоримта MULT

$$T_{mult}(n) = a \cdot T_{mult}(\frac{n}{4}) + \Theta(n^2) = a \cdot T_{mult}(\frac{n}{4}) + O(n^2)$$

Так как под a подразумевается "количество решаемых подзадач — количество блоков-подматриц размерности $\frac{n}{4} \times \frac{n}{4}$.", то будем считать, что $a \in \mathbb{N}$,кол-во блоков-подматриц и решаемых подзадач (рекурсивных умножений) не может быть нецелое количество

Тогда, согласно мастер-теореме

3. $k = 2 < \log_4 a$

$$\log_b(a) = \log_4 a$$
 $k = 2$

1. $k = 2 > \log_4 a$
 $a \in [1, 15]$
 $\Rightarrow T_{mult}(n) = O(n^2)$
 $\Rightarrow f_{mult}(n) = n^2 < n^{\log_2(7)} = f_{sht}(n)$ $\forall \mathbb{N} > 1$ (опустим константы)
 $a \in [1, 15] - \mathsf{Подходит}$
2. $k = 2 = \log_4 a$
 $a = 16$
 $\Rightarrow T_{mult}(n) = O(n^2 \cdot \log_2(n))$
 $\Rightarrow f_{mult}(n) = n^2 \cdot \log_2(n) < n^{\log_2(7)} = f_{sht}(n)$ $\forall \mathbb{N} > 1$ (опустим константы)
 $a = 16 - \mathsf{Подходит}$

A3.MD 2024-10-10

$$a \geq 17$$

$$\Rightarrow$$
 T_{mult}(n) = O(n^{log₄(a)})

$$f_{mult}(n) = n^{\log_4(a)} \ n^{\log_2(7)} = f_{sht}(n)</math (опустим константы)$$

$$\log_4(a) \le \log_2(7)$$

$$\frac{1}{2} \cdot \log_2(a) \le \log_2(7)$$

$$\log_2(a) < 2 \cdot \log_2(7)$$

$$\log_2(a) \le \log_2(49)$$

a < 49 (не ограничиваем $a \le 32$ т.к количество произведенных рекурсивных умножений может быть в теории больше чем количество возможных подматриц подобного размера (максимум 32))

$$a \in [17, 48]$$
 - Подходит

Ответ
$$a \in \mathbb{N}$$
 л $a \in [1,48]$