Digital Image Processing Part 3: Affine Transformations

By D.J. Lopez, CCpE, M.Sc.

Overview

- Review of Digital Image Structure
- Linear Transformations and Geometric Transforms
- Noise and Interpolation

Review

A Grayscale Picture

Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9 Melvin Wevers, Thomas Smits, The visual digital turn: Using neural networks to study historical images, *Digital Scholarship in the Humanities*, Volume 35, Issue 1, April 2020, Pages 194–207, https://doi.org/10.1093/llc/fqy085

Two-dimensional signal

Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9 Melvin Wevers, Thomas Smits, The visual digital turn: Using neural networks to study historical images, *Digital Scholarship in the Humanities*, Volume 35, Issue 1, April 2020, Pages 194–207, https://doi.org/10.1093/llc/fqv085

Two-dimensional vector: A Matrix

Shape: (rows, columns) = (22,16)

Shape: (rows, columns) = (16,12)

Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9 Melvin Wevers, Thomas Smits, The visual digital turn: Using neural networks to study historical images, *Digital Scholarship in the Humanities*, Volume 35, Issue 1, April 2020, Pages 194–207, https://doi.org/10.1093/llc/fqy085

168 150 152 129 151 172 161 156 156

Into the Matrix Channels

Three-dimensional vector: A Tensor

© 2024 D.J. Lopez | Digital Image Processing

Linear Transformations

Splicing or Cropping

Cropping is a n-dimensional signal splicing technique. The resulting cropped image is always a subset of an original image.

Scaling

Spatial scaling or expansion is the equivalent of upsampling or downsampling of an image not amplification or attenuation. Other terms for image scaling is zooming in most software applications.

Scaling is also subjected by sampling errors which are evident with image artifacts

Shifting

Shifting or spatial translation preserves the orientation of the image while shifting all pixels in the same direction and order.

Rotating

Rotation, similar to the rotation linear operator, rotates an image by a certain angle. In OpenCV, the image is rotated while preserving areas not included in the image.

Affine Transformation (Image Warping)

Affine transformations are generalized linear operators which may include shifts, rotations, or scales. The affine transform requires three reference points to determine the entire spatial transformation

Noise and Interpolation

Why interpolate?

Interpolation. A technique determining values in between two points or samples.

Spatial expansion (e.g., elongation, zooming, shifting, and rotating) induces spaces between pixels.

We make use of interpolation to determine the values of the values between the expanded placement of pixels.

	?		?		?
?	?	?	?	?	?
	?		?		?
?	?	?	?	?	?
	?		?		?
?	?	?	?	?	?

- 1. Nearest-Neighbor Interpolation
- 2. Bilinear Interpolation
- 3. Bicubic Interpolation

1. Nearest-Neighbor Interpolation

The nearest-neighbor interpolation or point-sampling takes the $n \times n$ neighbors of a point/pixel to adapt (copy) its value.

0	64	127
64	89	172
127	172	175

0	?	64	?	127	?
?	?	?	?	?	?
64	?	89	?	172	?
?	?	?	?	?	?
127	?	172	?	175	?
?	?	?	?	?	?

0	0	64	64	127	127
0	0	64	64	127	127
64	64	89	89	172	172
64	64	89	89	172	172
127	127	172	172	175	
127	127	172	172	175	175

1. Nearest-Neighbor Interpolation

The nearest-neighbor interpolation or point-sampling takes the $n \times n$ neighbors of a point/pixel to adapt (copy) its value.

2. Bilinear Interpolation

For vertical and horizontal interpolation, we just use simple linear interpolation. We base the weights of the values based on the distance of one pixel to the next

$$f(p) = \left(1 - \frac{1}{N-1}\right)f(P_1) + \left(\frac{1}{N-1}\right)f(P_2)$$

2. Bilinear Interpolation

For diagonal interpolation, we now consider the values of neighboring x and y pixels

$$f(p) = \frac{(x_1 - p_x)(y_2 - p_y)}{(x_2 - x_1)(y_2 - y_1)} P_1 + \frac{(p_x - x_1)(y_2 - p_y)}{(x_2 - x_1)(y_2 - y_1)} P_2 + \frac{(x_1 - p_x)(p_y - y_1)}{(x_2 - x_1)(y_2 - y_1)} P_3 + \frac{(p_x - x_1)(y_1 - p_y)}{(x_2 - x_1)(y_2 - y_1)} P_4$$

P₁
Value: 32
Position
(2,0)

p1 Value: ? Position (2.2,0)

P₂
Value: 198
Position
(3,0)

p2 Value: ? Position (2.4,0) p3 Value: ? Position (2.6,0) p4 Value: ? Position (2.8,0)

P₃
Value: 128
Position
(2,1)

p4 Value: ? Position (2.8,0) *P*₄
Value: 172
Position
___(3,1)

$$x_1 = 2$$
 $x_2 = 3$
 $y_1 = 0$
 $y_2 = 1$

2. Bilinear Interpolation

For diagonal interpolation, we now consider the values of neighboring x and y pixels

$$f(p) = \frac{(x_1 - p_x)(y_2 - p_y)}{(x_2 - x_1)(y_2 - y_1)} P_1 + \frac{(p_x - x_1)(y_2 - p_y)}{(x_2 - x_1)(y_2 - y_1)} P_2 + \frac{(x_1 - p_x)(p_y - y_1)}{(x_2 - x_1)(y_2 - y_1)} P_3 + \frac{(p_x - x_1)(y_1 - p_y)}{(x_2 - x_1)(y_2 - y_1)} P_4$$

P₁
Value: 32
Position
(2,0)

p1 Value: 114 Position (2.2,0)

P₂
Value: 198
Position
(3,0)

p2 Value: 79 Position (2.4,0)

p3 Value: 132 Position (2.6,0) p4 Value: 185 Position (2.8,0)

P₃
Value: 128
Position
(2,1)

p4 Value: 150 Position (2.8,0) P_4 Value: 172 Position (3,1)

$$x_1 = 2$$

 $x_2 = 3$
 $y_1 = 0$
 $y_2 = 1$

3. Bicubic Interpolation

Bicubic interpolation is significantly slower compared to nearest neighbor and bilinear interpolation but produces less artifacts compared to the latter techniques. The interpolation algorithm per pixel can be expressed as:

$$p(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

Where x and y are the coordinates of the pixels and p is the color value the coefficient a_{ij} corresponds to the interpolation coefficient of the cubic interpolation.

Resampling Artifacts

Noise from zooming stems from sampling errors. Spatial expansion of images would leave spaces in between

- Aliasing
- Blurring
- Halo

Zooming Noises

Normal Magnification

100% Magnification (Optical Zoom)

200% Magnification (Optical Zoom)

Zooming Noises

Normal Magnification

100% Magnification (Geometric Zoom)

200% Magnification (Geometric Zoom)

Spot the Difference

Optical Zoom

Geometric Zoom

Advanced Solutions

- Adaptive Interpolation.
 Applying different interpolation techniques depending on region contents.
- Filters. Filters can remove artifacts using either highpass or low-pass filtering

With Antialiasing

Thank you