Q5. Can a simple graph exist with 15 vertices each of degree 5?

Theorem 2: An undirected graph has an even number of vertices of odd degree.

Directed Graph

• When (u, v) is an edge of the directed graph G, u is said to be adjacent to v and v is said to be incident from u.

• In a graph with directed edges, the in-degree of a vertex denoted by $deg^-(v)$, is the number of edges with v as their terminal vertex. The out-degree of a vertex denoted by $deg^+(v)$, is the number of edges with v as their initial vertex.

Loop is counted once ous deg and once as deg t

Q6. Determine the number of vertices and edges and find the in-degree and out-degree of each vertex for given directed multigraph.

no of vertices = 5 no of edges = 13		
Vertex	deg	degt
a	6	A
Ь	4	5
C	ä	5
d	4	a)
e	Ö	🦁

Theorem 3: Let G = (V, E) be a graph with directed edges, then

$$|E| = \sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v)$$

Q7. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree.

Let G has n vertices. Insume mot no two vertices have some degree. deg 211 is not bossible as one vertex at max can be associated with other Cn-i) vertices O, 1, 2, 3, · · · (n-1) are possible n différent Not possible simultaneously. Can we have a simple graph with degrees as No-et odd degrees

2, 3, 0, 1, 1 > No should ieven (B) 2,3,0,1,4 → No Simple

Special Simple Graph

1. Complete Graph: It is a simple graph that contains exactly one edge between each pair of distinct vertices. It is denoted by K_n .

Each vertex is connected with other (n-1) vertices.

0

Each vertex is connected with other (T-1) vertices.

A simple graph for which there is at least one pair of distinct vertex not connected by an edge is called **noncomplete**.

2. Cycle: It consists of $n, n \ge 3$, vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}$. It is denoted by C_n .

3. Wheel: When we add an additional vertex to a cycle C_n , $n \ge 3$, and connect this new vertex to each of the n vertices in C_n . It is denoted as W_n .

W_n: No d vertices = n+1

No d edges = 2n

deg (vi)= (3, other than odd honal.

no d edges = 2n

vertex

4. Regular Graph: A simple graph in which every vertex has the same degree. A regular graph is called a regular if every vertex has degree n.

4. Regular Graph: A simple graph in which every vertex has the same degree. A regular graph is called n regular if every vertex has degree n.

5. n - cubes: A n - dimensional hypercube is a graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent if and only if the bit strings that they differ in exactly one bit position. It is denoted as Q_n .

Q8. Draw the graphs (a) K_7

- (b) C_7
- (c) W_7