Übungen zur Vorlesung "Logik" 1. Übungsblatt

H 1-1. Mengenlehre

- a) Sei $M = \{a, b, c\}$. Welche der folgenden Aussagen sind wahr, welche nicht? Ohne Begründung. (3 Pkt.)
- b) Beweisen Sie nachfolgende Aussage. Für beliebige Mengen S und T gilt: (2 Pkt.)

$$S \cup T = S$$
 gdw. $T \subseteq S$

H 1-2. Vollständige Induktion

(5 Pkt.)

Zeigen Sie per vollständiger Induktion, dass für alle Zahlen $n \in \mathbb{N}$ gilt:

$$n^3 - n$$
 ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 3 teilbar $n \in \mathbb{N}$ git:

 $n^3 - n$ ist durch 4 te

- ${f H}$ 1-3. Syntaktische Eigenschaften
 - a) Definieren Sie rekursiv die Funktion $j: \mathcal{F} \to \mathbb{N}$, die die Anzahl der Junktoren einer Formel zählt. Beispielsweise sollte $j((\neg A_1 \land (A_2 \land A_3))) = 3$ ergeben. (2 Pkt.)
 - **b)** Sei $\varphi = \neg (A_1 \vee \neg (\neg A_2 \wedge A_3))$. Bestimmen Sie: (3 Pkt.)
 - i) den Rang $r(\varphi)$,
 - ii) die Menge der Teilformeln $t(\varphi)$,
 - iii) den Syntaxbaum $b(\varphi)$.
- H 1-4. Induktion über den Formelaufbau

(5 Pkt.)

Zeigen Sie per Induktion über den Formelaufbau, dass für alle Formel
n $\varphi \in \mathcal{F}$ gilt:

$$|t(\varphi)| \le 2^{r(\varphi)+1} - 1.$$

Termine:

- Abgabe der Aufgaben bis spätestens 20.04.2025 via moodle.
- Besprechung der Aufgaben ab Dienstag, dem 22.04.2025 (A-Woche). 21.04. ist Feiertag.

Zeigen Sie per vollständiger Induktion, dass für alle Zahlen $n \in \mathbb{N}$ gilt:

 $n^3 - n$ ist durch 3 teilbar 2 es gid Sur h $\frac{7}{5}$ 5.4.14 Sur n+1

H 1-3. Syntaktische Eigenschaften

7 A: h=0
3 | (h² -h)
3 | (o³ - o)

75: 1-10 75: 1-10

 $\frac{3}{3} \left(\frac{1}{(h+1)^{3} - (h+1)} \right)$ $\frac{3}{3} \left(\frac{3}{h^{3} + 3h^{2} + 3h + 1} - h - 1 \right)$

$$\frac{3}{3} \left(\frac{3}{h^{3} - h} + \frac{3}{3} \frac{1}{h^{2} + 3} h + \frac{1}{3} \right)$$

$$\frac{3}{3} \left(\frac{3}{h^{2} + h^{2}} + \frac{3}{3} \cdot \left(\frac{1}{h^{2} + h^{2}} \right) \right)$$

 $\frac{3}{3}\left(\frac{3}{3}-\frac{3}{3}+\frac{3}{3}\right)\left(\frac{3}{3}\left(\frac{1}{3}+\frac{3}{3}\right)\right)$

 $(6+1)^{3} - (6+1) \cdot (6+1) \cdot (6+1)$ $= (6+2n+1) \cdot (6+1)$ $= 6^{3} + 6^{2} + 2n + 6+1$ $= 6^{3} + 3n^{2} + 3n + 7$

(3 Pkt.)

- a) Definieren Sie rekursiv die Funktion $j: \mathcal{F} \to \mathbb{N}$, die die Anzahl der Junktoren einer Formel zählt. Beispielsweise sollte $j((\neg A_1 \land (A_2 \land A_3))) = 3$ ergeben. (2 Pkt.)
- **b)** Sei $\varphi = \neg (A_1 \vee \neg (\neg A_2 \wedge A_3))$. Bestimmen Sie:
 - i) den Rang $r(\varphi)$,
 - ii) die Menge der Teilformeln $t(\varphi)$,
 - iii) den Syntaxbaum $b(\varphi)$.

$$\begin{array}{l}
\beta((\neg A_1 \land (A_2 \land A_3))) = \\
= \beta(\neg A_1) + \beta((A_2 \land A_3)) + 1 \\
= \beta(A_1) + 1 + \beta(A_2) + \beta(A_3) + 1 + 1 \\
= 0 + 1 + 0 + 0 + 1 + 1
\end{array}$$

Rang
$$r((7 \nmid 1 \vee 7 (7 \land 2 \land A_3))))$$

 $= r((\land 1 \vee 7 (7 \land 2 \land A_3))) + 1$
 $= max \{ r(\land 1), r(7 (7 \land 2 \land A_3)) \} + 1$
 $= max \{ 0, r(7 \land 2), r(\land 3) \} + 1 + 1$
 $= max \{ 0, max \{ r(7 \land 2), r(\land 3) \} + 1 + 1 \} + 1$
 $= max \{ 0, max \{ r(\land 2) + 1, 0 \} + 1 + 1 \} + 1$
 $= max \{ 0, max \{ 0 + 1, 0 \} + 1 + 1 \} + 1$
 $= max \{ 0, 1 + 1 + 1 \} + 1$
 $= max \{ 0, 1 + 1 + 1 \} + 1$

$$\begin{aligned} & | i |) + (+ (A_1 \vee \neg (\neg A_2 \wedge A_3))) \\ & + (A_1 \vee \neg (\neg A_2 \wedge A_3))) \vee = (A_1 \vee \neg (A_2 \wedge A_3)) \\ & = + (A_1) \vee + (\neg (\neg A_2 \wedge A_3)) \vee = (A_1 \vee \neg (\neg A_2 \wedge A_3)) \vee = (A_1 \vee \neg (\neg A_2 \wedge A_3)) \vee = (A_2 \wedge A_3) \vee = ($$

b) Beweisen Sie nachfolgende Aussage. Für beliebige Mengen S und T gilt: (2 Pkt.)

$$S \cup T = S$$
 gdw. $T \subseteq S$

Menge A = MengeB ist definient als

ACB und BEA

=> T<u>c</u> ς