1. True

f(n) = O(g(n)) -> there are positive constants c and n0, such that $0 \le f(n) \le cg(n)$ for all $n \ge n0$.

Proof:

$$n^13 = O(n^10)$$

=> $n^13 \le c(n^10)$
=> $n^3 \le c$

c must be a constant for it to satisfy Big-O therefore for n^13 to be $O(n^10)$, c must e greater than n^3 since c depends on n, we can confirm that the statement is in fact true.

2. Yes, T(n) has a Big-theta estimation

given, $T(n) = a(k)*n^k + a(k-1)*n^k + a(1)*n + a(1)*n + a(1)$ in order to prove this claim, we must find the upper and lower bounds.

Upper Bound:

Let's say that:

$$T(n) <= \max(a(k), a(k-1), \dots, a(0)) * n^k + \max(a(k), a(k-1), \dots, a(0)$$

Then:

$$T(n) \le n * max(a(k), a(k-1), ..., a(0)) * (n^k)$$

Thus, we can assign a constant 'c' as follows:

$$c = max(a(k), a(k-1), ..., a(0))$$

Therefore:

$$T(n) \le c * n^{(k+1)}$$

Lower Bound:

Let's say that:

$$T(n) >= \min(a(k), a(k-1), ..., a(0)) * (n/2)^k + \min(a(k),$$

ioi some n

Then:

$$T(n) \ge n * min(a(k),a(k-1), ..., a(0)) * (n^k)/(2^k)$$

Thus, we can assign a constant 'c' as follows:

$$c = min(a(k), a(k-1), ..., a(0))$$

Therefore:

$$T(n) >= c * n^{(k+1)}$$

Since we have proven both the upper and lower bound, we can conclude that: $T(n) = \text{theta}(n^{k+1})$

3. Given, h(x) is O(g(x))

Thus, there exists a real number 'n' and a positive real number 'p', such that:

for
$$x > n$$
, $|h(x)| \le p * |g(x)|$

Given,
$$g(x)$$
 is $O(f(x))$

Thus, there exists a real number 'm' and a positive real number 'c', such that:

for
$$x > m$$
, $|g(x)| \le c * |f(x)|$

Therefore, if x > 2 = max(n, m)

$$|h(x)| \le p * |g(x)|$$
 and $|g(x)| \le c * |f(x)|$

Then:

for all
$$x > 2$$
, $|h(x)| \le p * |g(x)| \le c * |f(x)|$

Based on the data above, we can conclude that h(x) is O(f(x))