Amostragem Aleatória

Distribuições por Amostragem

jlborges@fe.up.pt

Estatística

Aleatoriedade faz parte do dia a dia sendo importante saber tomar decisões na presença de incerteza

Estatística Descritiva

Sintetizar e representar a informação contida num conjunto de dados

- •tabelas
- •gráficos
- •medidas de localização e dispersão

Variáveis aleatórias

Organizar resultados de experiências aleatórias

- •Função Probabilidade, Função Distribuição
- •Tabelas, Gráficos, Parâmetros

Variáveis aleatórias Discretas

Binomial

Binomial Negativa

Hipergeométrica

Poisson

Teoria da Probabilidade

Estudar fenómenos aleatórios Calcular probabilidade dos diferentes resultados possíveis Espaço amostral e acontecimentos

Variáveis aleatórias Contínuas

Uniforme

Exponencial Negativa

Normal

t-student

Qui-quadrado

Amostragem

Populações grandes demais para serem analisadas pelo que recorremos à amostragem para caracterizar populações Precisamos analisar como as estatísticas (de localização e dispersão) variam de amostra para amostra

Parâmetros das Distribuições

Os parâmetros desempenham em relação às distribuições populacionais um papel idêntico ao que as estatísticas desempenham em relação às distribuições amostrais

Recorremos à amostragem porque o mundo é demasiado vasto para que seja possível analisar populações

Por exemplo:

Qual é a distribuição da altura dos portugueses?

Qual é a duração média em km de um pneu de uma determinada marca?

Qual a dimensão da amostra a recolher para que as conclusões sejam credíveis?

população (ou universo) o conjunto de todos os objetos sobre os quais a análise incide

Uma amostra corresponde a um subconjunto da população

A QUALIDADE da amostra é tão importante como o seu tamanho

(exemplo da eleição do Roosevelt)

É necessário que as amostras sejam selecionadas de acordo com processos probabilísticos

Amostragem Aleatória: Todos os elementos da população têm a mesma probabilidade de ser incluídos na amostra

Seja Y a variável aleatória (discreta) que traduz uma característica de um elemento da população (finita) selecionado ao acaso

para uma amostra de N elementos

Y1	Y2 Y3			YN
----	-------	--	--	----

esta é aleatória se

$$\forall y: p_{Y_1}(y) = p_{Y_2}(y) = \cdots = p_{Y_N}(y) = p_Y(y)$$

todos os elementos da população tem igual probabilidade de ser selecionados e de ser o 1º, o 2º ou o último

Exemplo, ao lançar 6 vezes um dado

A probabilidade de P(Y1=4) é igual à de P(Y2=4) ou à de P(Y6=4)

Cada elemento da amostra é selecionado de acordo com uma função de probabilidade (distribuição)

Que valores pode tomar, por exemplo, Y6?

Uma amostra é aleatória

se todos os elementos da população tem igual probabilidade de serem escolhidos

Uma amostra é aleatória simples

se a seleção de um elemento não influencia a probabilidade de seleção do elemento seguinte (independentes)

(Com reposição ou população infinita)

$$\forall y_1, y_2, \dots, y_N : p_{Y_1Y_2\dots Y_N}(y_1, y_2, \dots, y_N) = p_Y(y_1) \cdot p_Y(y_2) \cdot \dots \cdot p_Y(y_N)$$

Enquanto que os

parâmetros de uma variável definida sobre uma dada população são fixos,

as **estatísticas variam** de uma amostra para outra

Interessa definir as distribuições das estatísticas - distribuições por amostragem

Questão central:

- a média da população é desconhecida!
- recolho uma amostra e calculo a sua média (que vai ser diferente da média da população!)
- como posso usar essa média da amostra para caracterizar a média da população?
- para isso é preciso saber que valores a média da amostra pode tomar, isto é, caraterizar a distribuição da média da amostra.

Exemplo: (caracterizar a distribuição da média amostral)

Considere-se a seguinte população com 4 elementos

У	p _Y (y)
2	1/4
4	1/4
6	1/2

Média e variância da população (variável original)

$$\mu_y = 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 6 \cdot \frac{1}{2} = 4.5$$

$$\mu_{y} = 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 6 \cdot \frac{1}{2} = 4.5$$

$$\sigma_{y}^{2} = 2.5^{2} \cdot \frac{1}{4} + 0.5^{2} \cdot \frac{1}{4} + 1.5^{2} \cdot \frac{1}{2} = 2.75$$

Exemplo (cont.)

Vamos definir a **distribuição da média amostral** para amostras de dimensão 2 obtidas por um processo aleatório <u>sem reposição</u>

	Amostra	\overline{y}	Prob. de ocorrência
	2,4	3	1/4 · 1/3 = 1/12
Todas as	2,6	4	1/4 · 2/3 = 2/12
amostras de	4,2	3	1/4 · 1/3 = 1/12
N=2 que se podem extrair	4,6	5	1/4 · 2/3 = 2/12
de	6,2	4	2/4 · 1/3 = 2/12
{2,4,6,6}	6,4	5	2/4 · 1/3 = 2/12
	6,6	6	2/4 · 1/3 = 2/12
)

média de cada amostra

Exemplo (cont.)

Cálculo da respetiva média e variância da variável '**média amostral**'

\overline{y}	$p_{\overline{y}}(\overline{y})$
3	1/12 + 1/12 = 1/6
4	2/12 + 2/12 = 1/3
5	2/12 + 2/12 = 1/3
6	2/12 = 1/6

Probabilidade uma amostra de n=2 retirada da população {2,4,6,6} ter média = 3

Todas as amostras

Ams	\bar{y}	Prob.
2,4	3	1/4 · 1/3 = 1/12
2,6	4	1/4 · 2/3 = 2/12
4,2	3	1/4 · 1/3 = 1/12
4,6	5	1/4 · 2/3 = 2/12
6,2	4	2/4 · 1/3 = 2/12
6,4	5	2/4 · 1/3 = 2/12
6,6	6	2/4 · 1/3 = 2/12

A variável <u>média amostral</u> representa os valores (e as respetivas probabilidades) que podemos obter para a média das amostras de n=2.

Exemplo (cont.)

Cálculo da respetiva média e variância da variável '**média amostral**'

\overline{y}	$p_{\overline{y}}(\overline{y})$
3	1/6
4	1/3
5	1/3
6	1/6

$$\mu_{\overline{y}} = 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} + 6 \cdot \frac{1}{6} = 4.5$$

$$\sigma_{\overline{y}}^2 = 1.5^2 \cdot \frac{1}{6} + 0.5^2 \cdot \frac{1}{3} + 0.5^2 \cdot \frac{1}{3} + 1.5^2 \cdot \frac{1}{6} = 0.917$$

<u>Nota</u>: o desvio padrão da distribuição por amostragem de uma estatística é designado por **erro padrão**

Exemplo (...) E para amostras **COM** reposição?

У	p _Y (y)
2	1/4
4	1/4
6	1/2

$$\mu_y = 4.5$$
 $\sigma_y^2 = 2.75$

Todas as amostras possíveis

Y1	Y2	Prob da amostra	Média
2	2	1/4 x 1/4	2,0
2	4	1/4 x 1/4	3,0
2	6	1/4 x 1/2	4,0
4	2	1/4 x 1/4	3,0
4	4	1/4 x 1/4	4,0
4	6	1/4 x 1/2	5,0
6	2	1/2 x 1/4	4,0
6	4	1/2 x 1/4	5,0
6	6	1/2 x 1/2	6,0

Distribuição da média amostral

Y=(Y1+Y2)/2	P(Y)
2	1/16
3	2/16
4	5/16
5	4/16
6	4/16

$$\mu_{\overline{y}} = 2 \cdot \frac{1}{16} + 3 \cdot \frac{2}{16} + \dots + 6 \cdot \frac{4}{16} = 4.5$$

$$\sigma_{\overline{y}}^2 = (2 - 4.5)^2 \cdot \frac{1}{16} + \dots + (6 - 4.5)^2 \cdot \frac{4}{16} = 1.375$$

A média amostral é uma variável!

(a média obtida varia de de amostra para amostra)

Vamos agora, para o caso geral, caraterizar essa variável:

Média Variância Forma da distribuição

Valor esperado da média amostral

Definição de média:

$$\overline{X} = \frac{1}{N} \cdot \sum_{n=1}^{N} X_n$$

$$E(\overline{X}) = E\left(\frac{1}{N} \cdot \sum X_n\right) = \frac{1}{N} \cdot E\left(\sum X_n\right) = \frac{1}{N} \cdot \sum E(X_n) = \frac{1}{N} \cdot \sum E(X) = \frac{1}{N} \cdot N \cdot E(X) = E(X)$$

Valor esperado da média amostral:

$$E(\overline{X}) = \mu_{\overline{X}} = \mu_{X}$$

Interpretação:

Os valores das médias das amostras variam em torno de μ

Exemplo

Variável Original

У	p _Y (y)
2	1/4
4	1/4
6	1/2

$$\mu_y = 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} + 6 \cdot \frac{1}{2} = 4.5$$

Média de amostras de N=2 (sem reposição)

y	$p(\overline{y})$
3	1/12+ 1/12=1/6
4	2/12+ 2/12=1/3
5	2/12+ 2/12=1/3
6	2/12=1/6

$$\mu_{\overline{y}} = 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{3} + 5 \cdot \frac{1}{3} + 6 \cdot \frac{1}{6}$$
4.5

Variância da média amostral

Amostras aleatórias simples (população infinita ou com reposição)

$$Var(\overline{X}) = Var\left(\frac{1}{N} \cdot \sum X_n\right) = \frac{1}{N^2} \cdot Var\left(\sum X_n\right) = \frac{1}{N^2} \cdot \sum Var\left(X_n\right) = \frac{1}{N^2} \cdot \sum Var\left(X\right) = \frac{N}{N^2} \cdot Var\left(X\right) = \frac{Var\left(X\right)}{N}$$

Variância da média amostral:

$$\sigma_{\overline{X}}^2 = \frac{1}{N} \cdot \sigma_X^2$$

Interpretação:

A variação dos valores das médias das amostras diminui com a dimensão da amostra

Exemplo (...)

Amostras **COM** reposição de N=2 que se podem extrair de { 2 , 4, 6 , 6 }

У	p _Y (y)
2	1/4
4	1/4
6	1/2

$$\mu_y = 4.5$$

$$\sigma_y^2 = 2.75$$

$$\sigma_{\overline{Y}}^2 = \frac{1}{N} \cdot \sigma_{\overline{Y}}^2 = \frac{1}{2} \cdot 2.75 = 1.375$$

Y=(Y1+Y2)/2	P(Y)	
2	1/16	
3	2/16	
4	5/16	
5	4/16	
6	4/16	

$$\mu_{\overline{y}} = 2 \cdot \frac{1}{16} + 3 \cdot \frac{2}{16} + \dots + 6 \cdot \frac{4}{16} = 4.5$$

$$\sigma_{\overline{y}}^{2} = (2 - 4.5)^{2} \cdot \frac{1}{16} + \dots + (6 - 4.5)^{2} \cdot \frac{4}{16} = 1.375$$

Comparação da distribuição da média amostral entre amostras de n=1 e amostras de n=10

Variância da média amostral

Amostras aleatórias sem serem simples (população finita sem reposição)

$$\sigma_{\overline{X}}^2 = \left(\frac{M - N}{M - 1}\right) \cdot \frac{1}{N} \cdot \sigma_X^2$$
 M - dimensão da população N - dimensão da amostra

Fator de correção para populações finitas

$$\left(\frac{M-N}{M-1}\right) \quad \text{(com } N \leq M\text{)}$$

Casos particulares:

Exemplo

Variável Original

У	p(y)
2	1/4
4	1/4
6	1/2

$$\sigma_y^2 = 2.5^2 \cdot \frac{1}{4} + 0.5^2 \cdot \frac{1}{4} + 1.5^2 \cdot \frac{1}{2} = 2.75$$

$$\sigma_{\overline{Y}}^{2} = \left(\frac{M-N}{M-1}\right) \cdot \frac{1}{N} \cdot \sigma_{Y}^{2} = \left(\frac{4-2}{4-1}\right) \cdot \frac{1}{2} \cdot 2.75 = 0.917$$

Média de amostras de N=2

y	$p(\overline{y})$	
3	1/12+ 1/12=1/6	
4	2/12+ 2/12=1/3	
5	2/12+ 2/12=1/3	σ^2 –
6	2/12=1/6	∪ _y –

$$\sigma_{\overline{y}}^2 = 1.5^2 \cdot \frac{1}{6} + 0.5^2 \cdot \frac{1}{3} + 0.5^2 \cdot \frac{1}{3} + 1.5^2 \cdot \frac{1}{6} = 0.917$$

A média amostral é uma variável!

Características da variável:

Média

$$E(\overline{X}) = \mu_{\overline{X}} = \mu_X$$

Variância
$$\sigma_{\bar{\chi}}^2 = \frac{1}{N} \cdot \sigma_{\chi}^2$$

Forma da distribuição ????

Interpretação:

Os valores das médias das amostras variam em torno de μ e a sua variação diminui com a dimensão da amostra

demo:

experimente com a <u>distribuição</u> <u>normal</u> e para diferentes valores de n

http://onlinestatbook.com/stat_sim/sampling_dist/index.html

Forma da distribuição

Quando a variável em estudo segue uma distribuição Normal:

A média surge como uma combinação linear de variáveis aleatórias Normais independentes e, portanto, é ela própria uma variável aleatória Normal.

$$\overline{X} \rightarrow N\left(\mu_X, \frac{1}{n} \cdot \sigma_X^2\right)$$

A distribuição da **média amostral** de uma variável Normal é também uma variável **Normal**!!!

Para variáveis normais a média amostral é uma combinação linear de variáveis aleatórias Normais

E se a variável em estudo NÃO FOR NORMAL?

E para outras estatísticas, mais complexas do que a média?

Teorema do Limite Central

Sejam X_1 , X_2 , ..., X_N variáveis aleatórias <u>independentes com a</u> <u>mesma distribuição</u> (com variância finita)

Se **N** for <u>suficientemente grande</u>, a variável aleatória **soma** segue aproximadamente uma **Distribuição Normal** com

$$\mu_{S} = N \cdot \mu_{X}$$
 com $S = \sum_{n=1}^{N} X_{n}$

$$\sigma_{S}^{2} = N \cdot \sigma_{X}^{2}$$

Teorema do Limite Central

Teorema do Limite Central

Para uma qualquer população com variância finita, a distribuição da média amostral, calculada com base numa amostra aleatória simples, tende para uma distribuição Normal

$$\overline{X} \rightarrow N\left(\mu_X, \frac{1}{n} \cdot \sigma_X^2\right)$$

demo:

experimente com uma distribuição <u>não simétrica</u> e para vários valores para n

http://onlinestatbook.com/stat_sim/sampling_dist/index.html

Teorema do limite central - condições de aplicação

N "suficientemente grande"

Distribuição simétrica $N \ge 10$ Distribuição muito assimétrica $N \ge 50$

- X₁, X₂, ..., X_N podem ter distribuições distintas, desde que a contribuição da variância de cada uma delas para a variância da soma seja pequena
- X₁, X₂, ..., X_N podem <u>não ser independentes</u>, desde que as correlações entre elas sejam fracas

Distribuições amostrais para variáveis (a) Normal, (b) assimétrica, e (c) uniforme

Técnica de monte Carlo

Utilizada quando não é possível obter pela via teórica a forma da distribuição de certa estatística

- Populações infinitas e não-normais
- Amostras de pequena dimensão
- Estatísticas complexas (não-lineares)

Serve para gerar artificialmente amostras, calculando a partir delas valores para a estatística em causa, o que permite fazer suposições quanto à forma da distribuição respetiva

Exemplo

População infinita caracterizada por uma V.A. \mathbf{X} , que segue uma distribuição exponencial negativa com λ = 10

Qual a distribuição do coeficiente de assimetria amostral para amostras de dimensão n = 5 ?

$$g_1 = \frac{k_3}{s^3} = \frac{N^2}{(N-1)\cdot(N-2)} \cdot \frac{m_3}{s^3}$$

Procedimento experimental

- Gerar uma amostra aleatória constituída por 5 observações de X (recorrendo à técnica de monte Carlo)
- Calcular o valor de g₁ para a amostra gerada
- Repetir os passos anteriores K vezes
- Caracterizar experimentalmente a distribuição de g₁
 (histograma, média, variância, etc.)

Geração de amostras provenientes de uma População com uma distribuição <u>U(0,1)</u>

- Considerar uma urna contendo 10 bolas, numeradas de 0 a 9
- (i) retirar uma bola ao acaso
- (ii) registar o seu número e repô-la na urna
- (iii) repetir sucessivamente os passos anteriores (obtém-se uma série de números equiprováveis e independentes)
- (iv) conforme a precisão desejada, constituir sequencialmente números com 1, 2, 3 ... algarismos e multiplicá-los por 10^{-1} , 10^{-2} , 10^{-3} , ...

Exemplo

ou

- <u>Tabelas</u> de números aleatórios publicadas
- <u>Processos numéricos</u> incluídos em rotinas standard disponíveis em qualquer linguagem de programação
 - Números pseudo-aleatórios, uma vez que a série obtida depende da semente utilizada
 - Retendo a semente pode voltar a obter-se a mesma sequência
 - A sequência gerada não deve entrar rapidamente em ciclo
 - As proporções de cada algarismo ao longo de um ciclo devem ser aproximadamente iguais
 - A ordem pela qual os algarismos são gerados deve ser independentes

População com uma distribuição qualquer

- (i) geração de números aleatórios seguindo uma distribuição U(0,1)
- (ii) transformação desses números noutros, igualmente aleatórios, seguindo a distribuição pretendida

Exemplo - população discreta

Admita-se que nos veículos ligeiros que circulam numa certa rua entre as 8.30 e as 9.30 dos dias úteis, o nº de passageiros por veículo, y,

segue a distribuição representada

Exemplo

Pretende-se gerar uma amostra aleatória com 6 observações

 Gerar 6 números aleatórios com 2 casas decimais, seguindo uma distribuição U(0,1)

0.97 0.15 0.38 0.12 0.53 0.13

• Transformá-los em nº de passageiros do seguinte modo

$$Y_n = 1$$
, se $0.00 \le u_n \le 0.27$

$$y_n = 4$$
, se $0.82 \le u_n \le 0.92$

$$Y_n = 2$$
, se $0.28 \le u_n \le 0.60$

$$y_n = 5$$
, se $0.93 \le u_n \le 0.97$

$$Y_n = 3$$
, se $0.61 \le u_n \le 0.81$

$$y_n = 6$$
, se $0.98 \le u_n \le 0.99$

5 1 2 1 2 1

Populações contínuas. Exemplos.

Exponencial Negativa

$$Z \rightarrow U(0,1)$$
 então $x_n = \frac{\ln[1/(1-z_n)]}{\lambda} \rightarrow EN(\lambda)$

Normal

$$Z_1 \in Z_2 \rightarrow U(0,1)$$
 então
 $x_1 = \sqrt{-2 \cdot \ln Z_1} \cdot \cos 2\pi Z_2 \mapsto N(0,1)$
 $x_2 = \sqrt{-2 \cdot \ln Z_1} \cdot \sin 2\pi Z_2 \mapsto N(0,1)$
sendo $x_1 \in x_2$ independentes

11/0.4	ENI/2)
U(0,1)	EN(2)
0.598102	0.455778
0.425642	0.277251
0.551042	0.400413
0.199896	0.111507
0.130741	0.070057
0.348003	0.213857
0.240364	0.137458
0.70983	0.618644
0.025483	0.012907
0.915525	1.235648
0.206549	0.115682
0.533799	0.381569
0.200323	0.111774
0.007385	0.003706
0.411817	0.265358

Exemplo slide 42

Para gerar números aleatórios $X \rightarrow EN(10)$ tenho que gerar números

 $W \rightarrow U(0,1)$ e converter na primeira com a expressão

 $X = \frac{\ln[1/(1-W)]}{10}$

		número de acordo com U(0,1)						números convertidos para E(10)						
	W1	W2	W3	W4	W5		X1	X2	Х3	X4	X5		C. A. da amostra	
amostra 1	0,167793	0,167661	0,95816	0,166137	0,146654		0,018367	0,018351	0,317389	0,018169	0,015859		2,235718718	
amostra 2	0,370983	0,433211	0,247873	0,413395	0,709287		0,04636	0,056777	0,028485	0,05334	0,123542		1,709993874	
amostra 3	0,544704	0,991418	0,159375	0,262646	0,450998		0,078681	0,475812	0,017361	0,030469	0,059965		2,15013905	
amostra 4	0,351012	0,306457	0,957844	0,55638	0,525305		0,043234	0,036594	0,316638	0,081279	0,074508		2,085335949	
amostra 5	0,543065	0,31054	0,644967	0,594205	0,482455		0,078321	0,037185	0,103554	0,090191	0,065866		-0,721110039	
amostra 6	0,304321	0,502469	0,524293	0,596334	0,965553		0,036287	0,06981	0,074295	0,090717	0,336833		2,086048821	
60 +							3	0,110426	0,012158	0,069715	0,018538		1,965881736	
			_				2	0,000374	0,091253	0,097538	0,029756		0,117401205	
50							9	0,082986	0,151652	0,03498	0,155175		-0,02583377	
							5	0,081433	0,049401	0,076441	0,081487		-1,21165952	
40							.7	0,011092	0,050857	0,041851	0,134316		1,077004323	
							7	0,034476	0,042889	0,080887	0,047392		0,822319248	
30				_	╟╫╫╫		6	0,220038	0,35383	0,11956	0,077691		-0,041546505	
							2	0,097146	0,330649	0,02917	0,113984		1,800252832	
20							5	0,034972	0,025732	0,227549	0,101785		1,008258785	
							.3	0,049066	0,747848	0,147887	0,028753		2,11317366	
10		i i i					3	0,02061	0,115866	0,294771	0,032282		0,306633012	
							.8	0,019966	0,108202	0,131156	0,163208		-0,443874249	
0 4	0 4 8 9	4 0 0 0	4 4 10 00	4 0 4 0	0 0 0 0	4	<u></u> 2	0,230184	0,308687	0,012609	0,019736		0,296678164	
1.6	-1.2 -1.8 -0.8	4.0- 2.0- 0.0	4.0 6.0 8.0	1.2	1.8	2.4	2.8	0,321637	0,108414	0,007701	0,123304		1,23781171	

Resultados de Aprendizagem

- Saber explicar porque é que a média amostral é uma variável
- Saber caracterizar a distribuição da variável aleatória 'média amostral'
- Saber gerar números aleatórios de acordo com qualquer distribuição discreta
- Saber gerar números aleatórios de acordo com uma distribuição Normal e de acordo com uma distribuição Exponencial Negativa

Visualização interativa

http://www.nytimes.com/interactive/2010/02/02/us/politics/20100201-budget-porcupine-graphic.html

Published: February 2, 2010

Budget Forecasts, Compared With Reality

Just two years ago, surpluses were predicted by 2012. How accurate have past White House budget forecasts been?

Latest forecast

Today, with a better understanding of the severity of the economic downturn, the deficit situation is much more dire.

■ RECOMMEND

TWITTER

in LINKEDIN

SIGN IN TO E-MAIL

+ SHARE

By AMANDA COX | Send Feedback

Source: Office of Management and Budget

http://www.nytimes.com/interactive/2009/07/31/business/20080801-metrics-graphic.html

Everyone Sleeping, eating, working and watching television take up about two-thirds Everyone Employed White Age 15-24 H.S. grads No children of the average day. Men Unemployed Black Age 25-64 Bachelor's One child Women Not in lab.. Hispanic Age 65+ Advanced Two+ children Eating . 80% Household activities At 6:20 a.m., 4% of all Americans are doing household activities. Click to isolate this category 60% Household activities Sleeping TV and movies 40% 20% Socializing Midnight 6 a.m. 9 a.m. 6 p.m. 3 a.m. Noon 3 p.m. 9 p.m. By SHAN CARTER, AMANDA COX, KEVIN QUEALY and AMY SCHOENFELD Send Feedback THE EAST in LINKEDIN TWITTER SIGN IN TO E-MAIL + SHARE WATCH TRAILER

http://www.babynamewizard.com/voyager#

Hans Rosling
TED talk: Hans Rosling: The good news of the decade?

http://www.ted.com/talks/hans rosling the good news of the decade.html

Gapminder World