Économétrie — TD 7

Test de normalité (Jarque-Bera) — Application sur sous-échantillons

Pierre Beaucoral

library(knitr)
knit_hooks\$set(optipng = hook_optipng)

Rappel — Normalité des résidus

- En MCO on suppose souvent que les résidus (ε) suivent une loi normale ($N(0, \sigma^2)$).
- Utile pour la validité (en petits échantillons) des **tests** t/F et de certains **tests de sphéricité**.
- Si la normalité est violée : MCO reste sans biais, mais les tests usuels peuvent être mal calibrés.

Test de Jarque-Bera (JB)

Statistique : $JB = N\left(\frac{\eta^2}{6} + \frac{(\nu-3)^2}{24}\right) ~\sim~ \chi^2(2)$

- η : skewness (asymétrie, doit être 0 sous normalité)
- ν : **kurtosis** (aplatissement, doit être 3 sous normalité)

Hypothèses:

- H_0 : distribution normale des résidus

Décision : rejeter H_0 si $JB > \chi^2_{2;5\%} \approx 6$.

Dans EViews (rappel)

 $\label{eq:View of Residual Diagnostics of Histogram - Normality Test} \rightarrow \text{lire la statistique } \mathbf{Jarque} - \mathbf{Bera} \text{ et la } \mathbf{p\text{-value}} \text{ (affichées dans la boîte)}.$

Énoncé du module (données Bera)

Variables pour **99 pays** (1989):

TUO89 (taux d'urbanisation), PNBH (PNB/tête), SUPER (superficie, milliers km²), TEP (termes de l'échange, 1987=100), TXPNBH (taux de croissance du PNBH 65–69), JEUNE (part des < 14 ans).

Modèle à estimer (3 cas)

 $\text{TUO89} = c + a, \text{PNBH} + b, \log(\text{SUPER}) + d, \text{TEP} + e, \text{TXPNBH} + f, \text{JEUNE} + \varepsilon$

À estimer par MCO:1) Sous-échantillon (PNBH <1290)

- 2) Sous-échantillon (PNBH ≥ 1290)
- 3) Échantillon total

Puis, pour chaque estimation, appliquer le test de normalité JB.

Figure 1: Carte JB (,) avec points de 'fausses régressions' : vert = normalité non rejetée (5%), rouge = rejet.

Plan de travail (EViews) — pas à pas

- 1. Charger le workfile Bera (menu File → Open → Workfile).
- 2. Créer la variable log(SUPER) : series lsuper = @log(SUPER)
- 3. Définir les sous-échantillons :
 - Bas revenu : smpl if PNBH < 1290
 - Haut revenu : smpl if PNBH >= 1290
 - Total :smpl @all
- 4. Estimer l'équation (Quick \rightarrow Estimate Equation) : TU089 c PNBH lsuper TEP TXPNBH JEUNE
- 5. Tester JB: View → Residual Diagnostics → Histogram Normality Test.

Lecture & interprétation

- Comparer les coefficients (signes, magnitudes) entre bas et haut PNBH.
- Normalité : comparer les JB/p-values des trois cas.
 - Si non-normalité: envisager transformations (ex. log de TUO89 si pertinent),
 points influents, ou erreurs robustes (pour tests t/F plus fiables).
- Penser aux **spécifications** alternatives (interactions avec l'indicateur de revenu, variables manquantes potentielles, etc.).