社区发现算法实现与比较

【实验内容】

- > 实现 spectral clustering 等几个社区发现算法(共5种)
- ▶ 比较实验结果
- ▶ 评估算法
- ▶ 社区结果可视化

【实验环境】

编程语言: Matlab

编程环境、运行环境、使用工具: Windows 10 Matlab R2015b dephi

【实验步骤及方法】

- 1、各个函数实现:(基本参考老师的 pdf 再调用函数接口即可实现)
- Jaccard:

$$Jaccard(\mathbf{v}_i, \mathbf{v}_j) = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}$$

pdist2(A, A, 'jaccard'); % 生成 Jaccard 距离

linkage(Y, 'average'); % 按平均距离 linkage

cluster(Z,k); % 聚类计算

dendrogram(Z);

% 生成图像

最后一段代码可以生成图像,示例效果如下: (football.mat)

Radiio Cut:

$$RatioCut(A, \overline{A}) = cut(A, \overline{A})(\frac{1}{|A|} + \frac{1}{|\overline{A}|})$$

这是标准的迹最小化问题,其解为L的的前k个特征向量所构成的矩阵。最后采用k-means方法对该矩阵的行进行聚类,就可以实现对该数据集的k聚类。

Normalized Cut:

$$Ncut(A, B) = cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$

该问题的解为广义特征值问题 $Lh=\lambda$ Dh 的前 k 个特征向量所构成的矩阵。最后采用 k-means 方法对该矩阵的行进行聚类,就可以实现对该数据集的 k 聚类。

D=diag(sum(A, 2));

L=D-A;

 $LL=D^{(-1/2)}*L*D^{(-1/2)};$

[X, ~]=eig(LL);

kmeans (X(:,1:k),k);

> Modularity:

$$B = A - \mathbf{dd}^{\mathsf{T}}/2m$$

[row, ~]=size(A);

d=sum(A, 2);

m=nnz(A); %因为是无向图, 所以 m=edge*2

B=A-d*d'/m;

 $[X, ^]=eig(B);$

kmeans (X(:, row-k+1:row), k);

> Girvan-Newman:

这个算法跑得非常非常地慢……

关键的代码是用BFS算出 betweenness, 然后移除 betweenness 最高的 edge, 直到生成 k 个联通片为止。

代码中用 betweenness ()调用 BFS 求得结果。

具体参考了 Matlab BGL 库函数写法和 Girvan-Newman 的 C 语言书写方法。

function clustering=girvannewman(A, k)

function [X, path, Y, index] = bfs(A, u, adj_index, n_size)

function calcutBT = betweenness(A)

2 Main.m

简单粗暴地实现了各个聚类算法的运行和 Gephi 输入文件的构建。

3、Gephi 可视化

就是把构建好的输入文件输入, 即可达到可视化的结果。

各个可视化图在文件中 image 文件夹下。

- 4、比较 NMI 和 ACC
- 5、 无监督学习评价指标
- 6、附加讨论

【实验结果说明及演示】

- 1、代码运行结果, 可见 txt 文件
- 2、NMI和ACC

	Polbooks		Football	
	NM I	ACC	NM I	ACC
Alink-jaccard	0. 3645	0. 7333	0. 2646	0. 1739
Rout	0. 4851	0.8000	0. 2633	0. 1478
Ncut	0. 4267	0. 7619	0. 2605	0. 2174
Modularity	0. 1276	0. 5333	0. 2534	0. 1391
Girvan-Newman	0. 4388	0. 7810	0. 2637	0. 1478

NMI 评价标准是基于信息熵的评价方法, Accuracy 里可以包含了 precision, recall, f-measure. 从结果来看:

横向比较的话,Polbooks 的 NMI 和 ACC 值较高一些,而 football 结果差很多。我认为是因为 Polbooks 的聚类特征明显一些,而 Football 的聚类特征不那么明显,因此 Football 的结果较为差一些;或者这几种聚类算法没有捕捉到 Football 的聚类特征,因此聚类的结果稍微差许多;或者是由于评价标准的偏向性导致没有专对应于聚类特征的评价;

纵向比较的话, Polbooks 的 NMI、ACC 的 Modularity 值尤其地低, 这说明对

于这个数据集 Modularity 的聚类方法很不合适,以此思路可以将 Modularity 的聚类方法使用范围拓展到类似于 Polbooks 的样本中,都不适合。相比之下 Rcut 的两个评价标准都表现非常好,以此思路可以将 Rcut 评价方法适用于类似于 Polbooks 的样本中。而 Football 中两个评价标准表现出来的值都比较低,这个评价结果说明得对聚类算法的选择、评价标准的选择做进一步的思考。

3、可视化

可视化的结果在文件夹 image 中。

以下拿取几个例子:

以下是一个 DBLP 的 Molulary 结果的可视化:

Football 的 rcut 可视化:

Polbooks 的 rcut 可视化:

Egonet 的 rcut 可视化:

4、Egonet 的 k 选择

我调研到了几种方法:

- A. K-means 聚类数确定 http://www.docin.com/p-1044725223.html
 - a) 经验法
 - b) 密度法
 - c) 逐个归类法
 - d) 爬山法
- B. Modularity Maximization

如果数据能转化成用网络(network)来表示,那么用 community detection 的技术便可以把所有节点(node)聚类。主要是因为它们采用了 greedy heuristic 的算法,其中很多方法都不需要提前指定 community 数目,而且也不需要程序自己指定 community 数目。

C. Canopy 算法

可以用于大至估算聚类数,但需事先给定阈值 T1, T2(两个半径),因此实际是将聚类数量的确定转化为阈值的确定。

我的想法是采用一个不需要 k 值最后靠其它约束参数求出聚类的算法, 算出实际分了几个聚类, 再使用这个结果用于作为 K。

我还没有明白其中的数学原理,只大概懂了点意思。然后找了个实际的 paper 和算法 http://sites.stat.psu.edu/~jiali/hmac/ 来进行测试和模拟,下面是它的一个 demo 跑出来 11 个聚类:

我用 Egonet 的数据集, 然后, 有时候是很大的聚类个数, 有上千个左右, 有时 候只有一个, 我一直调整它的参数, 调出个 18 个数据聚类的结果。然后我就用

刚开始想的就是大部分都是 K-means 算法, 找一个算法可以估计 K-means 的 k 值 就好, 但是看得很多后发现这个算法据说很厉害, 然后就认真在调它的参数了, 至于结果效果如何,不一定保证用这五个聚类算法就好,我也想强调,这五个聚 类算法不一定适合这个数据集。

但是从测试的结果和可视化结果来看,有一些点集和其它点集关系密切但是被分 成了两类, 可见我觉得还是有点大的, 不过我还是使用了 18, 因为全跑一遍算法 真的很耗时。。。以至于 GN 算法的数据集已经跑了 12h 了并没有跑出结果来:

Cor	mmand W	lindow
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
x		
	Busy	

这是结果为8个联通片时耗时12h

5、 无监督学习评价 DBLP 和 Egonet

在 google scholar 中找到一篇 Understanding of Internal Clustering Validation Measures, 但是没有校园网,下载不下来看, Experiment results show that S_Dbw is the only internal validation measure which performs well in all five aspects, while other measures have certain limitations in different application scenarios.

6、附加讨论

从算法实现上看,这其中三个聚类算法都是依靠 K-means 来求得结果的, K-means 的缺点是显而易见的:

- 1、在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果,这也成为 K-means 算法的一个主要问题。对于该问题的解决,许多算法采用遗传算法 (GA),以内部聚类准则作为评价指标。Canopy 算法可以改进这点。
- 2、聚类结果是圆形状,对条状和线状支持不好
- 3、K-means 算法中 k 是事先给定的,这个 k 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是 K-means 算法的一个不足。有的算法是通过类的自动合并和分裂,得到较为合理的类型数目 k, 例如 ISODATA 算法。关于 K-means 算法中聚类数目 k 值的确定,有些文献中,是根据方差分析理论,应用混合 F 统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性,它使用了一种结合全协方差矩阵的RPCL 算法,并逐步删除那些只包含少量训练数据的类,这是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。
- 4、从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。所以需要对算法的时间复杂度进行分析、改进,提高算法应用范围,例如,可以从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的侯选集。在有些文献中,使用的 K-means 算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。
- 5、K-means 算法对异常数据很敏感。在计算质心的过程中,如果某个数据很异常,在计算均值的时候,会对结果影响非常大

【参考文档】

▶ Matlab 矩阵运算

http://yajunok.blog.163.com/blog/static/65657620089179480257/

▶ 谱聚类算法详解

http://blog.csdn.net/jteng/article/details/49590069

- ▶ Matlab 中 pdist 函数详解(各种距离的生成) http://bulo.hujiang.com/u/6216467/diary/211759/
- 聚类有效性的组合评价方法
- ➤ Matlab BGL 库
- ➤ 怎样评价聚类结果好坏? http://www.cnblogs.com/lifegoesonitself/p/3318643.html
- Mutual information and Normalized Mutual information 互信息和标准 化互信息

http://www.cnblogs.com/ziqiao/archive/2011/12/13/2286273.html

- https://en.wikipedia.org/wiki/Mutual_information
- ➤ GAUSSIAN MIXTURE MODELS TUTORIAL

 https://chrisjmccormick.wordpress.com/2014/08/04/gaussian-mixture-models-tutorial-and-matlab-code/
- > Clustering by fast search and find of density peak. Alex Rodriguez, Alessandro Laio
- http://sites.stat.psu.edu/~jiali/hmac/
- https://www.zhihu.com/question/20977382
- https://www.zhihu.com/question/19772767
- > Understanding of Internal Clustering Validation Measures