$$\int \sqrt{5-x^2} \, dx$$

Solution

Because of seeing $\sqrt{a^2-x^2}$ in the integral with $a=\sqrt{5}$, we apply trig substitution with $x=\sqrt{5}\sin\theta$, for $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$.

So, $dx = \sqrt{5}\cos\theta \,d\theta$ and we use $\sin\theta = \frac{x}{\sqrt{5}}$ to draw a right triangle with x as the opposite side at $\sqrt{5}$ as the hypotenuse.

The remaining side is found using the Pythagorean Theorem, and we have

So our integral becomes

$$\int \sqrt{5 - x^2} \, dx = \int \sqrt{5 - x^2} \, \sqrt{5} \cos \theta \, d\theta$$

We still need to replace $\sqrt{5-x^2}$, so we look to the side of the triangle with that quantity (it is adjacent to θ) and the number side (which is the hypotenuse). Since $\cos\theta = \frac{\sqrt{5-x^2}}{\sqrt{5}}$, we have $\sqrt{5-x^2} = \sqrt{5}\cos\theta$. So, our integral becomes

$$\int \sqrt{5}\cos\theta \sqrt{5}\cos\theta \,d\theta = 5\int \cos^2\theta \,d\theta$$

$$= \frac{5}{2}\int 1 + \cos 2\theta \,d\theta$$

$$= \frac{5}{2}\theta + \frac{5}{2}\cdot\sin 2\theta + C$$

$$= \frac{5}{2}\theta + \frac{5}{2}\cdot2\sin\theta\cos\theta + C$$

$$= \frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}} + 5\cdot\frac{x}{\sqrt{5}}\cdot\frac{\sqrt{5-x^2}}{\sqrt{5}} + C.$$