COMP 3500: A Study Guide for Midterm

This is a guide of topics that may be included in the midterm exam 1. Note that questions pertaining to any of these topics may appear on the midterm exam.

- 1. OS Overview (Ch 1.1-1.6 and Ch 2.1-2.7)
 - 1.1 What is an operating system? Resource manager. It hides details of how underlying machinery operates.
 - 1.2 System view of the OS
 - Computer and Software
 - Resource allocation: CPU, memory, disk, and the like
 - Control programs
 - Resource sharing
 - 1.3 Goals of an OS
 - Convenience for user
 - Efficient operation of computer systems
 - 1.4 Operating System Strategies
 - Batch systems
 - Multiprogrammed batch systems
 - Time-shairing systems
 - 1.5 Monilithic kernel vs. Microkernel
- 2. Processes (Ch 3.1-3.4)
 - 3.1 Concept
 - Process vs. program
 - Process states
 - Process Control Block (PCB)
 - 3.2 Process Control
 - Creation
 - Termination
 - Process state transitions
 - 3.3 Process states
 - Two-state process model
 - Creation and termination
 - Five-state model
 - Suspended processes
- 3. Synchronization (Ch 5.1-5.8)
 - 3.1 Motivation: an example
 - The critical-section problem
 - 3.2 Synchronization hardware:
 - TestAndSet
 - Swap instruction

- 3.3 Semaphores: synchronization tool
 - Three operations
 - Definition of semaphore primitives
 - Mutual exclusion using semaphores
 - Solving synchronization problems using semaphores
- 3.4 Monitors: Concept
- 3.5 A case study: Cats-Mice Problem
- 4. Projects: OS/161
 - 4.1 Thread questions
 - What happens to a thread when it exits (i.e., calls thread exit())? What about when it sleeps?
 - What function(s) handle(s) a context switch?
 - How many thread states are there? What are they?
 - What does it mean to turn interrupts off? How is this accomplished? Why is it important to turn off interrupts in the thread subsystem code?
 - What happens when a thread wakes up another thread? How does a sleeping thread get to run again?
 - 4.2 Scheduler questions
 - How does that function pick the next thread?
 - What role does the hardware timer play in scheduling?
 - 4.3 Synchronization Questions
 - What is the purpose of the argument passed to thread sleep()?
 - Why does the lock API in OS/161 provide lock_do_i_hold(), but not lock get holder()?