Topological Structure of Asynchronous Computing II

Maruth Goyal

UT Austin

Spring 2021

Table of Contents

1 Combining Topology and Computation

2 Applications of Asynchronous Computability Theorem

3 Proof Ideas of Asynchronous Computability Theorem

Theorem (Asynchronous Computability Theorem)

A decision task $\langle \mathcal{F}, \mathfrak{G}, \Delta \rangle$ has a wait-free protocol using read-write memory if and only if there exists a chromatic subdivision σ of $\mathcal F$ and a color-preserving simplicial map

$$\mu:\sigma(\mathcal{F})\to \mathbb{G}$$

such that for each simplex S in $\sigma(\mathcal{F})$, $\mu(S) \in \Delta(\operatorname{carrier}(S,\mathcal{F}))$.

• We have all these topological constructions, but how do we embed our decision task to work with these constructions?

Theorem (Asynchronous Computability Theorem)

A decision task $\langle \mathcal{F}, \mathfrak{G}, \Delta \rangle$ has a wait-free protocol using read-write memory if and only if there exists a chromatic subdivision σ of $\mathcal F$ and a color-preserving simplicial map

$$\mu:\sigma(\mathcal{F})\to \mathbb{G}$$

such that for each simplex S in $\sigma(\mathcal{F})$, $\mu(S) \in \Delta(\operatorname{carrier}(S,\mathcal{F}))$.

- We have all these topological constructions, but how do we embed our decision task to work with these constructions?
- Need to (1) Represent the Input/Output sets \mathcal{F} and \mathfrak{G} using complexes, and (2) lift Δ to a topological specification.

- We first need to introduce a generalization of the geometric simplices from earlier in order to embed our tasks.
- However, conveniently there is provably a correspondence between this generalization and a geometric representation.

- We first need to introduce a generalization of the geometric simplices from earlier in order to embed our tasks.
- However, conveniently there is provably a correspondence between this generalization and a geometric representation.

Definition

An abstract simplex is simply a non-empty set.

Definition

An abstract complex $\mathcal K$ is a collection of abstract simplices closed under containment. i.e., if $S\in\mathcal K$ then so is any face of S.

Definition

Let $\vec{I} \in I$ be an input vector. The *input simplex* corresponding to \vec{I} , denoted $\Im(I)$, is the abstract colored simplex whose vertices $\langle P_i, v_i \rangle$ correspond to the participating entries in \vec{I} , for which $\vec{I}[i] = v_i \neq \bot$. Output simplices defined similarly.

Definition

Let $\vec{I} \in I$ be an input vector. The *input simplex* corresponding to \vec{I} , denoted $\Im(I)$, is the abstract colored simplex whose vertices $\langle P_i, v_i \rangle$ correspond to the participating entries in \vec{I} , for which $\vec{I}[i] = v_i \neq \bot$. Output simplices defined similarly.

Definition

The *input complex* corresponding to I, dneoted by $\mathcal F$ is the collection of input simplices $\mathfrak T(I)$ corresponding to the input vectors of I. Output complex $\mathbb G$ defined similarly.

Fig. 8. Some output complexes for the renaming task.

Definition

The topological task specification corresponding to the task specification Δ , denoted $\Delta\subseteq\mathcal{G}\times\mathcal{G}$, is defined to contain all pairs $(\mathcal{I}(\vec{I}),\mathcal{T}(\vec{O}))$ where (\vec{I},\vec{O}) is in the task specification Δ .

Putting it all Together I

Theorem (Asynchronous Computability Theorem)

A decision task $\langle \mathfrak{F}, \mathfrak{G}, \Delta \rangle$ has a wait-free protocol using read-write memory if and only if there exists a chromatic subdivision σ of \mathfrak{F} and a color-preserving simplicial map

$$\mu:\sigma(\mathfrak{F})\to\mathfrak{G}$$

such that for each simplex S in $\sigma(\mathcal{F})$, $\mu(S) \in \Delta(\operatorname{carrier}(S,\mathcal{F}))$.

My intuition:

- Last condition $\mu(S) \in \Delta(\operatorname{carrier}(S,\mathcal{F}))$ enforces that μ is mapping to valid output simplexes (i.e., protocol actually solves the task)
- The coloring enforces some notion of "independence" among tasks as desired in a wait-free protocol

Putting it all Together II

 The subdivision allows considering more fine-grained / intermediate states of processors, and the color-preserving map says that these states can be mapped to a valid output state which still preserves that independence.

• To make the notion of subdivisions more concrete, it is helpful to introduce the notion of a "protocol complex", \mathfrak{P} .

- To make the notion of subdivisions more concrete, it is helpful to introduce the notion of a "protocol complex", \mathfrak{P} .
- In particular, Consider the input complex \mathcal{F} , but now with additional vertices corresponding to the local states of different processors after execution of the protocol, before it finally outputs something.

- To make the notion of subdivisions more concrete, it is helpful to introduce the notion of a "protocol complex", \mathfrak{P} .
- In particular, Consider the input complex \mathcal{F} , but now with additional vertices corresponding to the local states of different processors after execution of the protocol, before it finally outputs something.
- This subdivision is called the "protocol complex" \mathfrak{P} .

- To make the notion of subdivisions more concrete, it is helpful to introduce the notion of a "protocol complex", ₱.
- In particular, Consider the input complex \mathcal{F} , but now with additional vertices corresponding to the local states of different processors after execution of the protocol, before it finally outputs something.
- This subdivision is called the "protocol complex" \mathfrak{P} .
- There is then a "decision map" $\delta: \mathfrak{P} \to \mathfrak{G}$ which maps vertices of this protocol complex to vertices in the output complex.

- To make the notion of subdivisions more concrete, it is helpful to introduce the notion of a "protocol complex", \mathfrak{P} .
- In particular, Consider the input complex \mathcal{F} , but now with additional vertices corresponding to the local states of different processors after execution of the protocol, before it finally outputs something.
- This subdivision is called the "protocol complex" \mathfrak{P} .
- There is then a "decision map" $\delta: \mathfrak{P} \to \mathfrak{G}$ which maps vertices of this protocol complex to vertices in the output complex.
- Intuitively, a process uses its local state to decide upon its output.

- To make the notion of subdivisions more concrete, it is helpful to introduce the notion of a "protocol complex", \mathfrak{P} .
- In particular, Consider the input complex \mathcal{F} , but now with additional vertices corresponding to the local states of different processors after execution of the protocol, before it finally outputs something.
- This subdivision is called the "protocol complex" \mathfrak{P} .
- There is then a "decision map" $\delta: \mathfrak{P} \to \mathfrak{G}$ which maps vertices of this protocol complex to vertices in the output complex.
- Intuitively, a process uses its local state to decide upon its output.
- Moreover, based on how we defined the decision task Δ and output complex $\mathbb G$, it is also necessary that the simplex corresponding to the processor states in $\mathbb P$ be mapped to an appropriate simplex in $\mathbb G$, thus δ is simplicial.

- ullet Consider protocol where P and Q write their private values p,q resp. ,and then read the entire array.
- The initial state of the array is (\bot, \bot)

Fig. 14. Simplicial representation of a one-round execution.

Table of Contents

Combining Topology and Computation

2 Applications of Asynchronous Computability Theorem

3 Proof Ideas of Asynchronous Computability Theorem

Applications of Asynchronous Computability Theorem

- We will look at 2 examples of applying the main theorem, specifically to
 - Binary consensus
 - k-set agreement (generalized consensus)

• Suppose we have n+1 processors, each assigned a binary value.

- Suppose we have n+1 processors, each assigned a binary value.
- The task is for all processors to decide on and output the same binary value, such that this value is necessarily the input of at least one processor.

$ec{I}$	$\Delta(ec{I})$
$(0,\perp)$	$(0,\perp)$
$(1, \perp)$	$(1, \perp)$
(0,0)	(0,0)
(0, 1)	(0,0), (1,1)

- ullet Suppose we have n+1 processors, each assigned a binary value.
- The task is for all processors to decide on and output the same binary value, such that this value is necessarily the input of at least one processor.
- This results in an input complex where every vertex has 2^n neighbors, corresponding to different binary assignments. Moreover, this complex is connected. This is called the Binary n-sphere, \mathfrak{B}^n .

\vec{I}	$\Delta(ec{I})$
$(0,\perp)$	$(0,\perp)$
$(1, \perp)$	$(1, \perp)$
(0,0)	(0,0)
(0, 1)	(0,0), (1,1)

- ullet Suppose we have n+1 processors, each assigned a binary value.
- The task is for all processors to decide on and output the same binary value, such that this value is necessarily the input of at least one processor.
- This results in an input complex where every vertex has 2^n neighbors, corresponding to different binary assignments. Moreover, this complex is connected. This is called the Binary n-sphere, \mathfrak{B}^n .
- The output complex is disconnected, containing just 2 lines corresponding to the choice made by all processors.

\vec{I}	$\Delta(ec{I})$
$(0,\perp)$	$(0,\perp)$
$(1, \perp)$	$(1, \perp)$
(0,0)	(0,0)
(0, 1)	(0,0), (1,1)

Fig. 17. Simplicial complexes for 2-process consensus.

Theorem (Asynchronous Computability Theorem)

A decision task $\langle \mathcal{F}, \mathfrak{G}, \Delta \rangle$ has a wait-free protocol using read-write memory if and only if there exists a chromatic subdivision σ of $\mathcal F$ and a color-preserving simplicial map

$$\mu: \sigma(\mathcal{F}) \to \mathbb{G}$$

such that for each simplex S in $\sigma(\mathcal{F})$, $\mu(S) \in \Delta(\operatorname{carrier}(S,\mathcal{F}))$.

- It is sufficient to show that there can be no simplicial map from the input complex to the output complex for the task.
- We will exploit the property that input complex is connected

Claim

There is no wait-free protocol for binary consensus.

Proof.

① We know $\mathcal F$ is connected, and hence so is any subdivision $\sigma(\mathcal F)$.

Claim

There is no wait-free protocol for binary consensus.

- **①** We know \mathcal{F} is connected, and hence so is any subdivision $\sigma(\mathcal{F})$.
- ② Now, consider the decision map $\mu : \sigma(\mathcal{F}) \to \mathbb{G}$. Let I_1 denote the simplex where all processors receive 1.

Claim

There is no wait-free protocol for binary consensus.

- **①** We know \mathcal{F} is connected, and hence so is any subdivision $\sigma(\mathcal{F})$.
- **②** Now, consider the decision map $\mu : \sigma(\mathcal{F}) \to \mathfrak{G}$. Let I_1 denote the simplex where all processors receive 1.
- **③** Then, $\Delta(I_1) = O_1$. Thus, if P_1 denotes the vertex in $\sigma(\mathcal{F})$ corresponding to processor P receiving 1, it must be the case that $\mu(P_1) = P_1$.

Claim

There is no wait-free protocol for binary consensus.

- **①** We know \mathcal{F} is connected, and hence so is any subdivision $\sigma(\mathcal{F})$.
- **②** Now, consider the decision map $\mu : \sigma(\mathcal{F}) \to \mathbb{G}$. Let I_1 denote the simplex where all processors receive 1.
- **3** Then, $\Delta(I_1) = O_1$. Thus, if P_1 denotes the vertex in $\sigma(\mathcal{I})$ corresponding to processor P receiving 1, it must be the case that $\mu(P_1) = P_1$.
- ① By identical reasoning, for another processor Q, it must be the case that $\mu(Q_0)=Q_0.$

Claim

There is no wait-free protocol for binary consensus.

- **1** We know \mathcal{F} is connected, and hence so is any subdivision $\sigma(\mathcal{F})$.
- **②** Now, consider the decision map $\mu : \sigma(\mathcal{F}) \to \mathbb{G}$. Let I_1 denote the simplex where all processors receive 1.
- **3** Then, $\Delta(I_1) = O_1$. Thus, if P_1 denotes the vertex in $\sigma(\mathcal{I})$ corresponding to processor P receiving 1, it must be the case that $\mu(P_1) = P_1$.
- ① By identical reasoning, for another processor Q, it must be the case that $\mu(Q_0)=Q_0.$
- **1** However, Q_0 and P_1 are connected in \mathcal{F} , but not in \mathfrak{G} .

Claim

There is no wait-free protocol for binary consensus.

- **1** We know \mathcal{F} is connected, and hence so is any subdivision $\sigma(\mathcal{F})$.
- ② Now, consider the decision map $\mu : \sigma(\mathcal{F}) \to \mathbb{G}$. Let I_1 denote the simplex where all processors receive 1.
- **3** Then, $\Delta(I_1) = O_1$. Thus, if P_1 denotes the vertex in $\sigma(\mathcal{I})$ corresponding to processor P receiving 1, it must be the case that $\mu(P_1) = P_1$.
- ① By identical reasoning, for another processor Q, it must be the case that $\mu(Q_0)=Q_0$.
- **5** However, Q_0 and P_1 are connected in \mathcal{F} , but not in \mathfrak{G} .
- \bullet Since simplicial maps must preserve connectivity, this means μ cannot be simplicial! Thus by the theorem, no wait-free protocol!

k-set Agreement Setup

- This problem is a generalization of the consensus problem.
- Every processor has an assigned input value. At the end the processors must output a value, such that the following is satisfied:
 - Every processor's output is the input of some processor
 - ② There are at most k distinct outputs among all the processors.

k-set Agreement Proof

Fig. 22. Output complex for (3,2)-set agreement.

k-set Agreement Proof

Lemma (Sperner's Lemma)

Let $\sigma(T)$ be a subdivision of an n-simplex T. If $F:\sigma(T)\to T$ is a map sending each vertex of $\sigma(T)$ to a vertex in its carrier, then there is at least one n-simplex $S=(\vec{s_0},\ldots,\vec{s_n})$ in $\sigma(T)$ such that $F(\vec{s_i})$ are distinct.

• Proof Idea: If the subdivision induced by every protocol solving k-set agreement fits this lemma, then some n-simplex S in $\sigma(T)$ is mapped to an output simplex with n distinct outputs.

Lemma (Sperner's Lemma)

Let $\sigma(T)$ be a subdivision of an n-simplex T. If $F:\sigma(T)\to T$ is a map sending each vertex of $\sigma(T)$ to a vertex in its carrier, then there is at least one n-simplex $S=(\vec{s_0},\ldots,\vec{s_n})$ in $\sigma(T)$ such that $F(\vec{s_i})$ are distinct.

- Proof Idea: If the subdivision induced by every protocol solving k-set agreement fits this lemma, then some n-simplex S in $\sigma(T)$ is mapped to an output simplex with n distinct outputs.
- **But**, by definition, the output complex © contains no such simplex! Thus, no such protocol can exist.
 - This desired simplex corresponds to the "hole" in the output complex.

Fig. 23. Part of the set agreement input complex.

- Author's claim: If you observe simplex T, then any vertex in $\sigma(P0,R2)$ must be mapped to a value in $\{0,2\}$, and similarly $\sigma(P0,Q1)$ in $\{0,1\}$, and $\sigma(R2,Q1)$ in $\{1,2\}$.
- Since the values being mapped to are a subset of the carrier's (edge's) set of values, the map satisfies the pre-conditions of Sperner's lemma.

Fig. 23. Part of the set agreement input complex.

- Author's claim: If you observe simplex T, then any vertex in $\sigma(P0,R2)$ must be mapped to a value in $\{0,2\}$, and similarly $\sigma(P0,Q1)$ in $\{0,1\}$, and $\sigma(R2,Q1)$ in $\{1,2\}$.
- Since the values being mapped to are a subset of the carrier's (edge's) set of values, the map satisfies the pre-conditions of Sperner's lemma. ???

Claim

k-set Agreement has no wait-free read/write protocol for $k \le n$ where there are (n+1) processors.

Proof.

• It suffices to show there's no protocol for k=n. Assume for contradiction there is one, call it \mathfrak{P} .

Claim

k-set Agreement has no wait-free read/write protocol for $k \le n$ where there are (n+1) processors.

- It suffices to show there's no protocol for k = n. Assume for contradiction there is one, call it \mathfrak{P} .
- \bullet Pick the $n\text{-simplex }T^n\subset \mathcal{F}^n$ such that all n+1 processors have distinct inputs.

Claim

k-set Agreement has no wait-free read/write protocol for $k \le n$ where there are (n+1) processors.

- It suffices to show there's no protocol for k = n. Assume for contradiction there is one, call it \mathfrak{P} .
- \bullet Pick the $n\text{-simplex }T^n\subset \mathcal{F}^n$ such that all n+1 processors have distinct inputs.
- Consider any proper face $T^m \subset T^n$.

Claim

k-set Agreement has no wait-free read/write protocol for $k \le n$ where there are (n+1) processors.

- It suffices to show there's no protocol for k = n. Assume for contradiction there is one, call it \mathfrak{P} .
- Pick the n-simplex $T^n\subset \mathcal{F}^n$ such that all n+1 processors have distinct inputs.
- Consider any proper face $T^m \subset T^n$.
- There must be an n-simplex $S^n \subset \mathcal{S}^n$ such that $T^m \subset S^n$, $vals(T^m) = vals(S^n)$.

Proof.

• By the Asynchronous Computability Theorem, there exists a color-preserving simplicial map $\mu: \sigma(\mathcal{F}^n) \to \mathbb{G}$. By definition $\mu(\sigma(T^m))$ must be consistent with $\mu(S^n)$.

- I think more precision is needed to make the highlighted statement
- In particular, perhaps the proof works if you identify all vertices in the input and output complexes with identical value etc.

- By the Asynchronous Computability Theorem, there exists a color-preserving simplicial map $\mu: \sigma(\mathcal{F}^n) \to \mathbb{G}$. By definition $\mu(\sigma(T^m))$ must be consistent with $\mu(S^n)$.
- By task specification $\operatorname{vals}(\Delta(S^n)) \subset \operatorname{vals}(S^n)$, and thus μ carries every vertex of $\sigma(T^m)$ to one in its carrier.

- I think more precision is needed to make the highlighted statement
- In particular, perhaps the proof works if you identify all vertices in the input and output complexes with identical value etc.

- By the Asynchronous Computability Theorem, there exists a color-preserving simplicial map $\mu: \sigma(\mathcal{F}^n) \to \mathbb{G}$. By definition $\mu(\sigma(T^m))$ must be consistent with $\mu(S^n)$.
- By task specification $\mathrm{vals}(\Delta(S^n)) \subset \mathrm{vals}(S^n)$, and thus μ carries every vertex of $\sigma(T^m)$ to one in its carrier.
- Conclude by applying Sperner's lemma to T^n .

- I think more precision is needed to make the highlighted statement
- In particular, perhaps the proof works if you identify all vertices in the input and output complexes with identical value etc.

Table of Contents

Combining Topology and Computation

2 Applications of Asynchronous Computability Theorem

3 Proof Ideas of Asynchronous Computability Theorem

Definition

A span for a protocol complex $\mathfrak{P}(\mathcal{F})$ is a subdivision $\sigma(\mathcal{F})$ and a color-preserving simplicial map $\phi:\sigma(\mathcal{F})\to\mathfrak{P}(\mathcal{F})$ such that for every simplex $S\in\sigma(\mathcal{F})$

$$\phi(S) \in \mathcal{P}(\operatorname{carrier}(S, \sigma(\mathcal{F})))$$

Lemma

Every protocol complex has a span.

- \bullet The required subdivision in the original theorem σ is the chromatic subdivision of ${\mathcal F}$ induced by the span
- The color-preserving simplicial map μ is $\delta \circ \phi$ where δ is the decision map acting on $\mathfrak{P}(\mathcal{F})$.
- Use topological property of connectivity to inductively construct span
 - Construct for k-skeleton (i.e., all simplexes of dimension at most k), and then use connectivity to show that ϕ can be lifted to k+1-skeleton without collapsing dimension (color-preservation).

References I

Questions?

Thank You!