Министерство образования Республики Беларусь Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет компьютерных систем и сетей кафедра Информатики

Дисциплина: Методы численного анализа

ОТЧЕТ

к лабораторной работе

на тему:

"Интерполяционные многочлены" БГУИР КП 1-40 04 01

> Выполнил: студент гр. 953505 Красовский В.Ю.

Проверил: доцент кафедры информатики Анисимов В.Я

Минск 2021

Вариант 9

Цели работы:

Изучить интерполяцию функций с помощью интерполяционных многочленов Лагранжа и Ньютона.

Краткие теоретические сведения

Пусть f(x) - функция, непрерывная на отрезке [a,b]. Выберем на этом отрезке точки, называемые узлами интерполяции:

$$a \le x_0 < x_1 < ... < x_n \le b$$

Предположим, что известны значения функции в узлах интерполяции:

$$f(x_k) = y_k, \quad k = 0,1,...,n$$
.

Ставится задача найти многочлен Рп(х) такой, что

$$P_n(x_k) = y_k, \quad \forall k = 0,1,...n.$$

Такой многочлен Pn(x) называется интерполяционным многочленом, а задача его нахождения — задачей интерполяции.

Можно показать, Что задача интерполяции всегда имеет решение. причем единственное.

Обозначим

$$R_n(x) = f(x) - P_n(x)$$
 . Пусть $f(x) \in C^{n+1}[a,b]$.

Погрешность интерполяции оценивается по формуле

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)|, \quad \text{где} \quad M_{n+1} = \max_{a \le x \le b} |f^{(n+1)}(x)|.$$

1) Интерполяционный многочлен Лагранжа

Пусть
$$\omega(x) = (x - x_0)(x - x_1) \cdot ... \cdot (x - x_n)$$
,

$$\omega_{j}(x) = (x - x_{0}) \cdot ... \cdot (x - x_{j-1})(x - x_{j+1}) \cdot ... \cdot (x - x_{n})$$
.

Положим

$$l_j(x) = \frac{\omega_j(x)}{\omega_j(x_j)},$$

T. e.
$$l_{j}(x) = \frac{(x - x_{0}) \cdot \dots \cdot (x - x_{j-1})(x - x_{j+1}) \cdot \dots \cdot (x - x_{n})}{(x_{j} - x_{0}) \cdot \dots \cdot (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \cdot \dots \cdot (x_{j} - x_{n})}.$$

$$l_{j}(x_{i}) = \begin{cases} 0, & npu \ i \neq j \\ 1, & npu \ i = j. \end{cases}$$

Построим многочлен

$$L_n(x) = \sum_{j=0}^n l_j(x) y_j.$$

Такой многочлен называют интерполяционным многочленом Лагранжа.

2) Интерполяционный многочлен Ньютона

Пусть x0, x1, ..., xn - набор узлов интерполирования, y0, y1, ..., yn значения функции f(x) в узлах.

Величину $\Delta y_k = y_{k+1} - y_k$ называют конечной разностью первого порядка в k-ом узле.

Аналогично определяются конечные разности высших порядков.

$$\Delta^2 y_k = \Delta y_{k+1} - \Delta y_k = y_{k+2} - y_{k+1} - (y_{k+1} - y_k) = y_{k+2} - 2y_{k+1} + y_k$$

$$\Delta^{i} y_{k} = \Delta^{i-1} y_{k+1} - \Delta^{i-1} y_{k} = \sum_{i=0}^{n} (-1)^{n-i} C_{n}^{i} y_{k+i} \Delta^{i} y_{k} = \Delta^{i-1} y_{k+1} - \Delta^{i-1} y_{k} = \sum_{i=0}^{n} (-1)^{n-i} C_{n}^{i} y_{k+i}.$$

Конечные разности обычно считают по схеме:

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
x_0	У0	$\Delta y_0 = y_1 - y_0$		
x_I	y_I	$\Delta y_1 = y_2 - y_1$	$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$	$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$
x_2	<i>y</i> ₂		$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	_ 70 _ 71 _ 70
x_3	<i>y</i> ₃	$\Delta y_2 = y_3 - y_2$		

Разделенной разностью первого порядка называется выражение

$$f_1(x_k, x_{k+1}) = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{\Delta y_k}{\Delta x_k}.$$

Разделенной разностью второго порядка называется выражение

$$f_2(x_k, x_{k+1}, x_{k+2}) = \frac{f_1(x_{k+1}, x_{k+2}) - f_1(x_k, x_{k+1})}{x_{k+2} - x_k}$$
 и т. д.

Пусть х — любая точка отрезка, не совпадающая с узлами. Тогда

$$f_1(x,x_0) = \frac{y_0 - f(x)}{x_0 - x},$$

Откуда

$$f(x) = y_0 + f_1(x, x_0)(x - x_0)$$
.

Далее

$$f_2(x, x_0, x_1) = \frac{f_1(x_0, x_1) - f_1(x, x_0)}{x_1 - x},$$

Откуда

$$f_1(x, x_0) = f_1(x_0, x_1) + f_2(x, x_0, x_1)(x - x_1)$$
.

$$f(x) = y_0 + f_1(x_0, x_1)(x - x_0) + f_2(x, x_0, x_1)(x - x_0)(x - x_1).$$

$$f_3(x, x_0, x_1, x_2) = \frac{f_2(x_0, x_1, x_2) - f_2(x, x_0, x_1)}{x_2 - x}$$

$$f_2(x, x_0, x_1) = f_2(x_0, x_1, x_2) + f_3(x, x_0, x_1, x_2)(x - x_2).$$

$$f(x) = y_0 + f_1(x_0, x_1)(x - x_0) + f_2(x, x_0, x_2)(x - x_0)(x - x_1) + f_3(x, x_0, x_1, x_2)(x - x_0)(x - x_1)(x - x_2).$$

$$f(x) = N_n(x) + f_{n+1}(x,x_0,...,x_n)(x-x_0)...(x-x_n),$$

Где

$$N_n(x) = y_0 + f_1(x_0, x_1)(x - x_0) + ... + f_n(x_0, ..., x_n)(x - x_0)...(x - x_{n-1}).$$

Очевидно при

$$x = x_i$$
, $\forall i = \overline{0, n}$, $f(x_i) = N_n(x_i)$, $i = \overline{0, n}$,

т. е. Nn(x) - интерполяционный многочлен. Его называют интерполяционным многочленом Ньютона.

Исходные даннные:

Задание. Построить интерполяционные многочлены в форме Лагранжа и Ньютона, используя номер варианта k, соответствующие значения параметров m и p; и значения x,y из таблиц:

Xi	0	0.	1	0.2	0.3	(0.4	0.5	0.	6	0.7	0.8	0.9	1.0
pi	0.0	0.4	41	0.79	1.1	3	1.46	1.76	2.	04	2.3	2.55	2.79	3.01
	$y_i=p_i$	+(-1)	^{k}m											
	y _i =p _i	+(-1)) ^k m											
	$y_i = p_i$	+(-1)) ^k m	4	5	6	7	8	9	10	11	12	13	14

Оценить погрешность. Вычислить значение ф-ии в точке 0.47 с помощью интерполяционного многочлена и многочлена наилучшего приближения. Сравнить значения.

Результаты выполнения программы:

```
Многочлен Лагранжа
3279 x - 1.682e+04 x + 3.714e+04 x - 4.611e+04 x + 3.532e+04 x
                                                                                     -1.5
 - 1.719e+04 x + 5268 x - 966.3 x + 92.75 x + 0.6282 x - 4.5
                                                                                     -2.0
Многочлен Ньютона
3279 x - 1.682e+04 x + 3.714e+04 x - 4.611e+04 x + 3.532e+04 x
                                                                                     -2.5
- 1.719e+04 x + 5268 x - 966.3 x + 92.75 x + 0.6282 x - 4.5
                                                                                     -3.0
Многочлен наилучшего приближения
       - 1.682e+04 x + 3.714e+04 x - 4.611e+04 x + 3.532e+04 x
                                                                                     -3.5
 - 1.719e+04 x + 5268 x - 966.3 x + 92.75 x + 0.6282 x - 4.5
                                                                                     -4.0
Значение в точке 0.47(многочлен Ньютона):
-2.8273479203688323
Значение в точке 0.47(многочлен Лагранжа):
                                                                                     -4.5
-2.827347920291286
Вначение в точке 0.47(многочлен наилучшего приближения):
                                                                                         0.0
                                                                                                  0.2
                                                                                                                                   1.0
 2.8273479202920253
```

```
Теst 1
Многочлен Лагранжа
3
4.835 x - 1.477 x
Многочлен Ньютона
3
4.835 x - 1.477 x + 1.776е-15
Многочлен наилучшего приближения
3
2
4.835 x + 1.354е-16 x - 1.477 x - 3.221е-17
Значение в точке 0.47(многочлен Ньютона):
-0.19244429266804944
Значение в точке 0.47(многочлен Лагранжа):
-0.19244429266804608
Значение в точке 0.47(многочлен наилучшего приближения):
-0.19244429266804988
```



```
Test 2
Иногочлен Лагранжа
        + 863.2 x
                   - 8473 x + 5.166e+04 x - 2.192e+05 x
                                             12
 + 6.874e+05 x - 1.651e+0<u>6</u> x
                               + 3.108e+06 x
                                               - 4.649e+06 x
                                            8
                -5.374e+06 x + 4.169e+06 x - 2.591e+06 x + 1.28e+06 x
 + 5.573e+06 x
 -4.96e+05 \times +1.48e+05 \times -3.304e+04 \times +5290 \times -567.4 \times +35.98
Многочлен Ньютона
      19
 41.1 x + 863.2 x - 8473 x + 5.166e+04 x - 2.192e+05 x
                                             12
 + 6.874e+05 x - 1.651e+06 x
                               + 3.108e+06 x
                                               - 4.649e+06 x
              10
                  5.374e+06 x + 4.169e+06 x - 2.591e+06 x + 1.28e+06 x
 + 5.573e+06 x
 - 4.96e+05 x + 1.48e+05 x - 3.304e+04 x + 5290 x - 567.4 x + 35.98
Значение в точке 0.47(многочлен Ньютона):
2.1276493720959877
Значение в точке 0.47(многочлен Лагранжа):
2.1276492024096356
```


0.6847656817713228

Вывод

Была написана программа на языке python с использованием библиотеки numpy для нахождения интерполяционных многочленов Лагранжа и Ньютона. Были построены функции и найдены их значения в точке 0.47