Solution to Exercise 3

Simon A. Broda

- 1. (a) We clearly see that unless $|\phi_1|$ approaches 1, the process is stationary; the time series plot looks mean-reverting, and the sample autocorrelations decay exponentially as they should. We also see that \bar{y} is close to $\mathbb{E}[Y_t] = \alpha/(1-\phi_1)$, and that s_y^2 is close to $\text{var}[Y_t] = \sigma^2/(1-\phi_1^2)$.
 - (b) If $\phi_1 = 1$, we have a random walk, and α becomes the drift: $\mathbb{E}[Y_t] = Y_0 + \alpha \cdot t$.
 - (c) The correlograms of the AR(1), MA(1), and ARMA(1, 1) look respectively as follows.

Date: 11/10/22 Time: 18:49 Sample: 1 1000 Included observations: 1000

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.684	0.684	469.49	0.000
ı	(t	2	0.454	-0.026	676.61	0.000
ı	•	3	0.285	-0.030	758.29	0.000
ı =	l ip	4	0.217	0.075	805.59	0.000
 	1	5	0.172	0.014	835.50	0.000
ı İ D	l di	6	0.107	-0.054	847.09	0.000
ıþ	(1	7	0.055	-0.013	850.13	0.000
ı ı	l di	8	-0.007	-0.058	850.18	0.000
Q i	•	9	-0.051	-0.036	852.83	0.000
qi	•	10	-0.088	-0.040	860.62	0.000
q٠	l di	11	-0.127	-0.063	877.09	0.000
q٠	1)	12	-0.113	0.040	889.93	0.000
q٠	•	13	-0.115	-0.039	903.34	0.000
qı	l iþ	14	-0.079	0.044	909.72	0.000
Q i		15	-0.059	0.003	913.28	0.000
1	ן ו	16	-0.013	0.058	913.45	0.000
1	(1	17	-0.013	-0.046	913.62	0.000
10		18	-0.012	0.001	913.76	0.000
ı ı		19	-0.005	0.004	913.78	0.000
ψ	•)	20	0.021	0.030	914.25	0.000

Sample: 1 1000 Included observations: 1000 Partial Correlation Autocorrelation AC PAC Q-Stat Prob 0.499 0.499 249.45 2 0.062 -0.249 253.29 0.000 1 3 0.053 0.000 0.197 256.13 d. 4 0.041 -0.103 257.81 0.000 -0.001 0.041 257.81 0.000 6 -0.017 -0.040 258.11 0.000 0.034 0.086 259 26 0.000 8 0.073 0.010 264.61 0.000 9 0.065 0.037 268.89 0.000 10 0.040 -0.009 270.51 0.000 11 0.049 0.050 272.96 0.000 12 0.066 0.018 277 42 0.000 13 0.039 -0.002278.95 0.000 14 0.015 0.008 279.20 0.000 -0.006 279.31 15 0.011 0.000 16 -0 020 -0 041 279 71 0.000 17 -0.042 -0.014 281.53 0.000 -0.031 -0.009 282.54 0.000 19 -0.040 -0.043 284.16 0.000 20 -0.066 -0.040 288.59 0.000 Date: 11/10/22 Time: 18:51 Sample: 1 1000 Included observations: 1000 Autocorrelation Partial Correlation AC PAC Q-Stat Prob 0.833 0.833 695.61 0.000 0.555 -0.452 10048 0.000 2 3 0.361 0.272 1135.7 0.000 4 0.242 -0.140 1194.8 0.000 ь 0.181 0.146 1227.9 0.000 0.142 -0.1071248.3 0.000 1259.0 0.103 0.050 0.000 8 0.071 -0.0271264.1 0.000 9 0.049 0.018 1266.5 0.000 10 0.039 0.012 1268.0 0.000 11 0.039 0.009 1269.5 0.000 1271.5 12 0.045 0.024 0.000 13 0.061 0.046 12753 0.000 14 0.077 -0.0081281.3 0.000 15 0.079 0.000 1287.6 0.000 16 0.071 0.003 1292.8 0.000 0.056 -0.017 1295.9 0.000 17 18 0.039 0.005 1297.5 0.000 19 0.029 0.001 1298.3 0.000 20 0.027 0.018 1299.1 0.000

Date: 11/10/22 Time: 18:50

For the AR(1), we see that the SACF decays geometrically, while the SPACF drops to zero (more or less) after 1 lag. For the MA(1), we see that the picture is reversed (the fact that the sign of the SPACF alternates does not play a role, as long as its absolute value decays geometrically). For the ARMA(1, 1), both SACF and SPACF decay geometrically, so it's impossible to determine the order of an ARMA(p, q) process (here, p=1 and q=1) from the correlogram.

2. (a) The correlogram looks as shown below.

Date: 11/10/22 Time: 17:06 Sample (adjusted): 1981Q1 2022Q2 Included observations: 166 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.695	0.695	81.608	0.000
1	II	2	0.446	-0.072	115.39	0.000
ı 🗀	□ □	3	0.228	-0.105	124.27	0.000
1 (1	I	4	-0.048	-0.286	124.66	0.000
1 [] 1	<u> </u>	5	-0.051	0.284	125.11	0.000
1 [] 1	10 1	6	-0.068	-0.077	125.91	0.000
('	-	7	-0.120	-0.122	128.45	0.000
<u> </u>	<u> </u>	8	-0.160	-0.206	132.96	0.000
□ '	<u> </u>	9	-0.149	0.220	136.91	0.000
(-	101	10	-0.135	-0.048	140.19	0.000
(i	11	-0.124	-0.102	142.96	0.000
· [] ·	–	12	-0.100	-0.136	144.76	0.000
ı ⊑ ı	<u> </u>	13	-0.097	0.135	146.48	0.000
1 [1	 	14	-0.070	0.030	147.38	0.000
1 (1	□ □ □	15	-0.045	-0.092	147.76	0.000
1 (1	□ '	16	-0.035	-0.120	147.99	0.000
1 (1)	<u> </u>	17	-0.031	0.072	148.17	0.000
1 d 1	1 1	18	-0.052	-0.003	148.68	0.000
ι α ι	<u> </u>	19	-0.094	-0.161	150.34	0.000
d :	- □	20	-0.126	-0.127	153.37	0.000

Geometrically decaying ACF, PACF drops to zero after one lag, even though some later values are significant. Still, a simple AR(1) might suffice. We can estimate it by entering $gdp_growth \ c \ ar(1)$ under $Quick \rightarrow Estimate \ Equation...$ The result is

Dependent Variable: GDP_GROWTH

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 11/10/22 Time: 17:10 Sample: 1981Q1 2022Q2 Included observations: 166

Convergence achieved after 18 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) SIGMASQ	0.017264 0.691619 0.000206	0.003884 0.042082 8.10E-06	4.444747 16.43513 25.38758	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.483435 0.477096 0.014469 0.034126 468.7748 76.27284 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	0.017256 0.020010 -5.611745 -5.555504 -5.588916 1.892005
Inverted AR Roots	.69			

Everything is significant, and the estimated model is stationary (AR coefficient is less than 1 in absolute value). The residual correlogram (under $View \rightarrow Residual$ Diagnostics... looks like this:

Date: 11/10/22 Time: 17:13 Sample (adjusted): 1981Q1 2022Q2 Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- I bı		1	0.052	0.052	0.4549	
ı b ı		2	0.042	0.039	0.7559	0.385
ı b ı		3	0.119	0.115	3.1750	0.204
-	<u> </u>	4	-0.378	-0.398	27.779	0.000
1 1	<u> </u> -	5	0.021	0.078	27.854	0.000
1 j) 1	<u> </u>	6	0.034	0.052	28.053	0.000
10 1	<u> </u>	7	-0.042	0.052	28.357	0.000
' [] '	 	8	-0.091	-0.318	29.819	0.000
1 ()	וון ו	9	-0.043	0.035	30.151	0.000
1 1	יומוי	10	-0.023	0.047	30.249	0.000
1 4 1	' '	11	-0.040	0.023	30.543	0.001
1)1	 	12	0.012	-0.210	30.569	0.001
ι[ι	'['	13	-0.051	-0.036	31.051	0.002
1 1	יוםי ו	14	-0.011	0.073	31.073	0.003
1)1	וון ו	15	0.011	0.039	31.097	0.005
1 1	q '	16	0.001	-0.137	31.097	0.009
וון ו	' '	17	0.030	-0.030	31.266	0.012
1 1 1	' P'	18	0.019	0.094	31.336	0.018
1 [1	' '	19	-0.029	-0.012	31.490	0.025
<u>"[</u> "		20	-0.075	-0.215	32.563	0.027

The ACF and PACF at lag 4 are both significant. It's not obvious which model to use for this. One idea is to use an ARMA(1, 4), which we can estimate by entering $gdp_growth \ c \ ar(1) \ ma(1 \ to \ 4)$ in the estimation output and residual correlogram below.

Dependent Variable: GDP_GROWTH

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 11/10/22 Time: 17:17 Sample: 1981Q1 2022Q2 Included observations: 166

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.017535	0.000617	28.43690	0.0000
AR(1)	0.886003	0.051325	17.26249	0.0000
MA(1)	-0.064953	10.31694	-0.006296	0.9950
MA(2)	0.072189	24.96029	0.002892	0.9977
MA(3)	-0.079997	9.575807	-0.008354	0.9933
MA(4)	-0.927237	416.0201	-0.002229	0.9982
SIGMASQ	0.000122	0.003757	0.032452	0.9742
R-squared	0.693653	Mean depend	dent var	0.017256
Adjusted R-squared	0.682093	S.D. depende	entvar	0.020010
S.E. of regression	0.011282	Akaike info cr	iterion	-6.019585
Sum squared resid	0.020238	Schwarz crite	rion	-5.888356
Log likelihood	506.6255	Hannan-Quin	ın criter.	-5.966318
F-statistic	60.00317	Durbin-Watso	on stat	2.049757
Prob(F-statistic)	0.000000			
Inverted AR Roots	.89			
Inverted MA Roots	1.00	00-1.00i ·	00+1.00i	93

Date: 11/10/22 Time: 17:21 Sample (adjusted): 1981Q1 2022Q2 Q-statistic probabilities adjusted for 5 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 (1		1	-0.026	-0.026	0.1172	
1 (1		2	-0.035	-0.036	0.3237	
ı 🖭		3	0.105	0.104	2.2167	
ı j ı		4	0.038	0.043	2.4661	
1 1	1 1	5	-0.016	-0.007	2.5086	
1 j j 1	<u> </u>	6	0.052	0.044	2.9845	0.084
1 j) 1		7	0.025	0.019	3.0950	0.213
Ι Φ Ι	'[['	8	-0.066	-0.063	3.8743	0.275
1 [] 1	'[['	9	-0.056	-0.069	4.4363	0.350
1 j) 1	1 1 1	10	0.027	0.011	4.5672	0.471
1 1	1 1	11	-0.016	-0.006	4.6112	0.595
1 1	1 1 1	12	0.005	0.022	4.6154	0.707
' [] '	'[['	13	-0.067	-0.070	5.4282	0.711
1 1		14	0.006	0.009	5.4353	0.795
1 1	1 1	15	0.003	0.007	5.4367	0.860
1 1	1 1	16	-0.011	-0.001	5.4595	0.907
1 1	1 1	17	-0.001	-0.005	5.4596	0.941
1 1	1 1	18	-0.014	-0.020	5.4985	0.963
1 1		19	-0.019	-0.012	5.5697	0.976
- 111	1 1	20	-0.044	-0.044	5.9329	0.981

The residual correlogram looks fine now, but note that all the MA coefficients are insignificant. Maybe we can get away with dropping the first 3, leading to the *subset AR model*

$$Y_t = \alpha + \phi_1 Y_{t-1} + U_t + \theta_4 U_{t-4}.$$

This can be estimated by entering $gdp_growth \ c \ ar(1) \ ma(4)$ in the estimation window. The results are shown below.

Dependent Variable: GDP_GROWTH

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 11/10/22 Time: 17:26 Sample: 1981Q1 2022Q2 Included observations: 166

Convergence achieved after 32 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.017502	0.001291	13.55181	0.0000
AR(1)	0.867376	0.024798	34.97700	0.0000
MA(4)	-0.846949	0.054300	-15.59769	0.0000
SIGMASQ	0.000132	5.58E-06	23.64866	0.0000
R-squared	0.668602	Mean depen	dent var	0.017256
Adjusted R-squared	0.662465	S.D. depende	ent var	0.020010
S.E. of regression	0.011625	Akaike info ci	riterion	-6.016511
Sum squared resid	0.021893	Schwarz crite	rion	-5.941524
Log likelihood	503.3704	Hannan-Quir	nn criter.	-5.986073
F-statistic	108.9462	Durbin-Wats	on stat	2.106125
Prob(F-statistic)	0.000000			
Inverted AR Roots	.87			
Inverted MA Roots	.96	.0096i	.00+.96i	96

Date: 11/10/22 Time: 17:27 Sample (adjusted): 1981Q1 2022Q2

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
101		1	-0.054	-0.054	0.4897	
ı j ı		2	0.044	0.041	0.8149	
ı j ı	<u> </u>	3	0.060	0.065	1.4274	0.232
ı j ı		4	0.043	0.048	1.7454	0.418
1 🕻 1		5	-0.039	-0.040	2.0137	0.570
ı b ı		6	0.114	0.103	4.2740	0.370
1 (1		7	-0.023	-0.014	4.3679	0.498
10 1	III	8	-0.058	-0.068	4.9624	0.549
ι α ι	'E '	9	-0.081	-0.098	6.1174	0.526
1 j) 1		10	0.057	0.047	6.7027	0.569
1 🕻 1		11	-0.043	-0.012	7.0308	0.634
1 1		12	0.008	0.004	7.0429	0.721
ι વ ι	'E '	13	-0.092	-0.092	8.5734	0.661
1 j) 1		14	0.029	0.029	8.7322	0.726
1 (1		15	-0.020	0.013	8.8080	0.787
1 (1	' '	16	-0.010	-0.022	8.8249	0.842
1 (1	'[['	17	-0.024	-0.029	8.9355	0.881
1 1		18	0.007	-0.003	8.9435	0.916
1 🕻 1		19	-0.038	-0.006	9.2194	0.933
	' '	20	-0.045	-0.062	9.5998	0.944

The correlogram still looks fine, and all coefficients are now significant. The subset model has a smaller BIC (-5.94 vs. -5.89), so is preferred (better tradeoff between fit and parsimony). The AIC seems to prefer the larger model; this is typical.

Instead of the above manual procedure, we can automate the procedure of finding the model by using autoarma: just paste

```
freeze(armatable) gdp_growth.autoarma(diff=0
, select=sic, maxar=4, maxma=4, atable) forec c
```

into the estimation window (all on one line). This produces the table below.

Model Selection Criteria Table Dependent Variable: GDP_GROWTH Date: 11/10/22 Time: 17:43

Sample: 1980Q1 2022Q2 Included observations: 166

Model	LogL	AIC	BIC*	HQ
(0,3)(0,0)	502.567881	-5.994794	-5.901059	-5.956746
(1,4)(0,0)	506.625533	-6.019585	-5.888356	-5.966318
(1,3)(0,0)	503.415183	-5.992954	-5.880473	-5.947297
(2,3)(0,0)	504.232016	-5.990747	-5.859519	-5.937481
(2,4)(0,0)	506.761916	-6.009180	-5.859204	-5.948304
(3,3)(0,0)	504.562277	-5.982678	-5.832703	-5.921802
(0,4)(0,0)	497.181159	-5.917845	-5.805364	-5.872188
(4,3)(0,0)	504.564472	-5.970656	-5.801934	-5.902171
(3,4)(0,0)	504.231623	-5.966646	-5.797924	-5.898161
(4,4)(0,0)	500.953990	-5.915108	-5.727639	-5.839013
(3,2)(0,0)	489.173962	-5.809325	-5.678096	-5.756058
(2,2)(0,0)	484.459400	-5.764571	-5.652090	-5.718914
(4,1)(0,0)	486.270962	-5.774349	-5.643121	-5.721082
(2,1)(0,0)	476.307048	-5.678398	-5.584664	-5.640351
(4,2)(0,0)	482.783828	-5.720287	-5.570312	-5.659411
(4,0)(0,0)	477.086618	-5.675742	-5.563261	-5.630085
(1,2)(0,0)	474.444937	-5.655963	-5.562229	-5.617916
(1,0)(0,0)	468.774819	-5.611745	-5.555504	-5.588916
(2,0)(0,0)	469.185600	-5.604646	-5.529658	-5.574208
(1,1)(0,0)	469.105705	-5.603683	-5.528696	-5.573245
(3,1)(0,0)	474.139810	-5.640239	-5.527757	-5.594582
(3,0)(0,0)	470.120246	-5.603858	-5.510124	-5.565811
(0,1)(0,0)	460.483380	-5.511848	-5.455607	-5.489019
(0,2)(0,0)	460.901021	-5.504832	-5.429844	-5.474394
(0,0)(0,0)	414.274265	-4.967160	-4.929666	-4.951941

We see that the BIC selects a MA(3) model¹, but it has a higher BIC than our subset model, because autoarma doesn't consider subset models. Estimating this model via

gdp_growth c ma(1 to 3)

results in the output below.

¹The AIC selects an ARMA(1, 4)

Dependent Variable: GDP_GROWTH

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 11/10/22 Time: 17:47 Sample: 1981Q1 2022Q2 Included observations: 166

Convergence achieved after 106 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.017386	0.004378	3.971259	0.0001
MA(1)	0.887055	0.033045	26.84407	0.0000
MA(2)	0.897620	0.063248	14.19207	0.0000
MA(3)	0.857028	0.038752	22.11553	0.0000
SIGMASQ	0.000134	5.66E-06	23.57846	0.0000
R-squared	0.664468	Mean dependent var		0.017256
Adjusted R-squared	0.656132	S.D. depende	nt var	0.020010
S.E. of regression	0.011734	Akaike info cri	terion	-5.994794
Sum squared resid	0.022166	Schwarz crite	rion	-5.901059
Log likelihood	502.5679	Hannan-Quin	n criter.	-5.956746
F-statistic	79.70872	Durbin-Watso	n stat	2.075441
Prob(F-statistic)	0.000000			
Inverted MA Roots	.0296i	.02+.96i	92	

Date: 11/10/22 Time: 17:49 Sample (adjusted): 1981Q1 2022Q2

Q-statistic probabilities adjusted for 3 ARMA terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
141	141	1 -0.0	38 -0.038	0.2491	
1 [] 1	'[['	2 -0.0	60 -0.062	0.8630	
1 þ 1		3 0.0	26 0.021	0.9778	
141	'(()	4 -0.0	32 -0.034	1.1579	0.282
1 1	1 1	5 0.0	0.000	1.1579	0.560
1 j i 1		6 0.0	47 0.042	1.5389	0.673
10 1	'(()	7 -0.0	34 -0.029	1.7367	0.784
i	' '	8 -0.1	07 -0.106	3.7447	0.587
10 1	'[['	9 -0.0	63 -0.079	4.4586	0.615
1)1		10 0.0	24 0.010	4.5637	0.713
11(1	'(('	11 -0.0	33 -0.038	4.7629	0.783
- 1 1	1 1	12 -0.0	13 -0.021	4.7950	0.852
1 0 1	'['	13 -0.0	70 -0.080	5.6764	0.842
1 1		14 0.0	0.009	5.6875	0.893
1 1	1 1	15 0.0	00 -0.012	5.6875	0.931
1 1		16 -0.0	15 -0.032	5.7301	0.955
1 1	1 1	17 0.0	09 -0.012	5.7438	0.973
1 1	1 1/1	18 -0.0	05 -0.011	5.7486	0.984
1 1	1 1/1	19 -0.0	16 -0.018	5.7945	0.990
ı (İ.)		20 -0.0	44 -0.067	6.1640	0.992

This looks fine too. I prefer to stick with our subset model, because it has a lower BIC.

(b) The estimated parameter c in EViews corresponds to $c=\mathbb{E}[Y_t]=\alpha/(1-\phi_1)$, so we have $\hat{\alpha}=\hat{c}(1-\hat{\phi}_1)=0.017502\cdot(1-0.867376)=0.002321$. Thus, our final model is

$$Y_t = 0.002321 + 0.867376Y_{t-1} + U_t - 0.846949U_{t-4}.$$

The manual forecast for 2022Q3 is therefore

$$\hat{y}_{t+1} = 0.002321 + 0.867376 \cdot 0.024037 - 0.846949 \cdot 0.001429$$

= 0.021960.

The value for y_{2022Q2} , 0.024037, can be obtained from the spreadsheet view. The value 0.001429 corresponds to \hat{u}_{2021Q3} . To find it, go to the estimation output, click on Proc \rightarrow Make Residual Series..., and open the resulting series in spreadsheet view.

The manual forecast for 2022Q4 can be constructed analogously. It requires y_{2022Q3} , which we replace with our forecast from the previous question. Hence

$$\hat{y}_{t+2} = 0.002321 + 0.867376 \cdot 0.021960 - 0.846949 \cdot (-0.003883)$$

= 0.024657.

where $-0.003883 = \hat{u}_{2021Q4}$. The same forecasts can be obtained using EViews. First, inside the workfile pane on the left, go to $\texttt{Proc} \rightarrow \texttt{Structure}$ / Resize Current Page..., and resize the file so that it includes 2022Q3 and 2022Q4. Next, in the pane with the estimation output, click on Forecast. Keep the default of a dynamic forecast, and set the forecast sample to 2022Q3:2022Q4. Your forecast will be saved as a new series gdp_growthf You can open it in spreadsheet view and confirm that the forecasts are the same as those obtained above,

3. (a) By repeatedly plugging in,

$$Y_t = \alpha + Y_{t-1} + U_t$$

$$= \alpha + (\alpha + Y_{t-2} + U_{t-1}) + U_t$$

$$\vdots$$

$$= Y_0 + \alpha \cdot t + \sum_{s=1}^t U_s,$$

so that

$$\mathbb{E}[Y_t] = Y_0 + \alpha \cdot t,$$

because white noise has expectation zero. The derivation of the variance is the same as for the case without drift from last week and thus omitted here.

- (b) The previous question shows that the random walk with drift is not stationary, because its mean and variance change over time. For it to be I(1), its first difference ΔY_t should be stationary. We immediately se that $\Delta Y_t = Y_t Y_{t-1} = (\alpha + Y_{t-1} + U_t) Y_{t-1} = \alpha + U_t$. This is just white noise plus a constant, which is stationary.
- (c) Since $\{U_t\}$ is white noise, U_t is uncorrelated with Y_{t-1} , so

$$var(Y_t) = var(\alpha + \phi_1 Y_{t-1} + U_t)$$

= $\phi_1^2 var(Y_{t-1}) + var(U_t) + 2\phi_1 cov(Y_{t-1}, U_t) = \phi_1^2 var(Y_t) + \sigma^2$,

where the final equality holds because Y_t is stationary, which implies that $var(Y_t) = var(Y_{t-1})$. Thus, if and only if $|\phi_1| < 1$,

$$var(Y_t) = \frac{\sigma^2}{1 - \phi_1^2}.$$

Note that $var(Y_t) > var(Y_{t-1})$ if $|\phi_1| \ge 1$, i.e., the variance grows without bounds in that case.

(d) For the MA(1) process

$$Y_t = \alpha + U_t + \theta_1 U_{t-1},$$

we have that

$$\mathbb{E}[Y_t] = \mathbb{E}[\alpha + U_t + \theta_1 U_{t-1}]$$

$$= \alpha + \mathbb{E}[U_t] + \theta_1 \mathbb{E}[U_{t-1}]$$

$$= \alpha.$$

For the variance,

$$\gamma_0 = \text{var}(Y_t) = \text{var}(\alpha + U_t + \theta_1 U_{t-1})
= \text{var}(U_t + \theta_1 U_{t-1})
= \text{var}(U_t) + \theta_1^2 \text{var}(U_{t-1}) + 2\theta_1 \text{cov}(U_t, U_{t-1})
= \sigma^2 + \theta_1^2 \sigma^2 + 0
= \sigma^2 (1 + \theta_1^2).$$

For the first autocovariance,

$$\gamma_{1} = cov(Y_{t}, Y_{t-1})
= cov(\alpha + U_{t} + \theta_{1}U_{t-1}, \alpha + U_{t-1} + \theta_{1}U_{t-2})
= cov(\theta_{1}U_{t-1}, U_{t-1})$$
(†)

because white noise is uncorrelated. Hence

$$\gamma_1 = \theta_1 \operatorname{cov}(U_{t-1}, U_{t-1})$$
$$= \theta_1 \operatorname{var}(U_{t-1})$$
$$= \theta_1 \sigma^2.$$

Higher order autocorrelations will be zero, because there will no common U_t terms in (†). Plugging these into the definition of the ACF, we have

$$\tau_1 = \frac{\gamma_1}{\gamma_0} = \frac{\theta_1 \sigma^2}{\sigma^2 (1 + \theta_1^2)} = \frac{\theta_1}{1 + \theta_1^2}.$$

(e) **Optional**: The ACF is obtained by repeatedly substituting $Y_{t-i} = \phi_1 Y_{t-i-1} + \alpha + U_{t-i}$:

$$Y_{t} = \phi_{1}Y_{t-1} + \alpha + U_{t}$$

$$= \phi_{1}^{2}Y_{t-2} + \phi_{1}(\alpha + U_{t-1}) + \alpha + U_{t}$$

$$= \phi_{1}^{3}Y_{t-3} + \phi_{1}^{2}(\alpha + U_{t-2}) + \phi_{1}(\alpha + U_{t-1}) + \alpha + U_{t}$$

$$\vdots$$

$$= \phi_{1}^{k}Y_{t-k} + \sum_{i=0}^{k-1} \phi_{1}^{i}\alpha + \sum_{i=0}^{k-1} \phi_{1}^{i}U_{t-i}.$$
(1)

Therefore,

$$\gamma_k = \text{cov}(Y_t, Y_{t-k}) = \phi_1^k \text{cov}(Y_{t-k}, Y_{t-k}) + \sum_{i=0}^{k-1} \phi_1^i \text{cov}(U_{t-i}, Y_{t-k})$$
$$= \phi_1^k \text{var}(Y_{t-k}),$$

so that

$$\tau_k = \frac{\gamma_k}{\gamma_0} = \phi_1^k.$$