Dos Números Congruentes às Curvas Elípticas

Wodson Mendson

UFMG

Outubro - 2015

Orientador: Israel Vainsencher

Dada uma curva X irredutível descrita por um polinômio não constante $p(x,y) \in \mathbb{Z}[x,y]$ um problema interessante consiste em estudar a existencia de pontos \mathbb{Q} - racionais em X. Algumas perguntas interessantes:

▶ Existe um ponto $(x, y) \in \mathbb{Q}^2$ em X?

- ▶ Existe um ponto $(x, y) \in \mathbb{Q}^2$ em X?
- ► Se existir, existem mais?

- ▶ Existe um ponto $(x, y) \in \mathbb{Q}^2$ em X?
- Se existir, existem mais?
- ▶ Podemos construir todos os pontos $(x, y) \in \mathbb{Q}^2$ de X?

- ▶ Existe um ponto $(x, y) \in \mathbb{Q}^2$ em X?
- ► Se existir, existem mais?
- ▶ Podemos construir todos os pontos $(x, y) \in \mathbb{Q}^2$ de X?

Casos

▶ (grau 1): problema trivial!.

Casos

- ▶ (grau 1): problema trivial!.
- ▶ (grau 2): Mais interessante. A resposta para a primeira pergunta nem sempre é positiva. Mas, se existir ponto \mathbb{Q} racional podemos construir todos os outros, exceto possivelmente um número finito de pontos. Alguns exemplos: $C_1: x^2 + y^2 = 3$ e $C_2: x^2 2y^2 = 1$.

Casos

- ▶ (grau 1): problema trivial!.
- ▶ (grau 2): Mais interessante. A resposta para a primeira pergunta nem sempre é positiva. Mas, se existir ponto \mathbb{Q} racional podemos construir todos os outros, exceto possivelmente um número finito de pontos. Alguns exemplos: $C_1: x^2 + y^2 = 3$ e $C_2: x^2 2y^2 = 1$.
- ▶ (grau 3): Mais elegante. No caso não singular, mostra-se que existe um conjunto *S* finito de pontos ℚ-racionais da cúbica tal que todo ponto racional pode ser obtido de *S* via um operação bem definida na cúbica.

Seja $n \in \mathbb{Z} > 0$. Dizemos que n é congruente se n ocorre como área de algum triangulo retangulo racional (x,y,z). Aqui, consideramos x,y catetos e z hipotenusa.

Seja $n \in \mathbb{Z} > 0$. Dizemos que n é congruente se n ocorre como área de algum triangulo retangulo racional (x,y,z). Aqui, consideramos x,y catetos e z hipotenusa.

Exemplo

n=5,6,7 são congruentes. Já, n=1,2 e n=3 não são inteiros congruentes, resultado devido à Fermat.

Podemos determinar uma infinidade de inteiros congruentes.

Podemos determinar uma infinidade de inteiros congruentes. De fato, de $x^2 + y^2 = z^2$ obtemos $u = \frac{x}{z}$ e $v = \frac{y}{z}$ um ponto no circulo unitário $u^2 + v^2 = 1$.

Podemos determinar uma infinidade de inteiros congruentes. De fato, de $x^2+y^2=z^2$ obtemos $u=\frac{x}{z}$ e $v=\frac{y}{z}$ um ponto no circulo unitário $u^2+v^2=1$. A parametrização racional do circulo $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$ permite escrever $x=a^2-b^2$, y=2ab e $z=a^2+b^2$, com a>b inteiros.

Podemos determinar uma infinidade de inteiros congruentes. De fato, de $x^2+y^2=z^2$ obtemos $u=\frac{x}{z}$ e $v=\frac{y}{z}$ um ponto no circulo unitário $u^2+v^2=1$. A parametrização racional do circulo $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$ permite escrever $x=a^2-b^2$, y=2ab e $z=a^2+b^2$, com a>b inteiros.

O problema mais dificil consiste em determinar se um dado inteiro $n \in \mathbb{Z}$ é congruente. O seguinte resultado permite caracterizar um inteiro (livre de quadrados) de diferentes formas:

O problema mais dificil consiste em determinar se um dado inteiro $n \in \mathbb{Z}$ é congruente. O seguinte resultado permite caracterizar um inteiro (livre de quadrados) de diferentes formas:

Teorema

Seja $n \in \mathbb{Z} > 0$ livre de quadrados. Os seguintes são equivalentes:

► (a) n é congruente;

O problema mais dificil consiste em determinar se um dado inteiro $n \in \mathbb{Z}$ é congruente. O seguinte resultado permite caracterizar um inteiro (livre de quadrados) de diferentes formas:

Teorema

Seja $n \in \mathbb{Z} > 0$ livre de quadrados. Os seguintes são equivalentes:

- ► (a) n é congruente;
- ▶ (b) $\exists x$ quadrado em \mathbb{Q} , tal que x n, x, x + n são quadrados;

O problema mais dificil consiste em determinar se um dado inteiro $n \in \mathbb{Z}$ é congruente. O seguinte resultado permite caracterizar um inteiro (livre de quadrados) de diferentes formas:

Teorema

Seja $n \in \mathbb{Z} > 0$ livre de quadrados. Os seguintes são equivalentes:

- ▶ (a) n é congruente;
- ▶ (b) $\exists x$ quadrado em \mathbb{Q} , tal que x n, x, x + n são quadrados;
- ▶ (c) \exists ponto (x, y) \mathbb{Q} -racional na cúbica $C_n : y^2 = x^3 n^2x$ com $y \neq 0$;

O problema mais dificil consiste em determinar se um dado inteiro $n \in \mathbb{Z}$ é congruente. O seguinte resultado permite caracterizar um inteiro (livre de quadrados) de diferentes formas:

Teorema

Seja $n \in \mathbb{Z} > 0$ livre de quadrados. Os seguintes são equivalentes:

- ► (a) n é congruente;
- ▶ (b) $\exists x \text{ quadrado em } \mathbb{Q}, \text{ tal que } x n, x, x + n \text{ são quadrados;}$
- ▶ (c) \exists ponto (x, y) \mathbb{Q} -racional na cúbica $C_n : y^2 = x^3 n^2x$ com $y \neq 0$;

Assumindo o item 3 (e de alguns resultados) podemos concluir que existe infinidade de pontos \mathbb{Q} -racionais na cúbica. Assim, estudar o problema do número congruente equivale a estudar quando uma determinada curva de grau 3 admite uma infinidade de pontos \mathbb{Q} -racionais.

(a) \Longrightarrow (b). Seja n inteiro congruente. Então, $\exists (a,b,c)$ triangulo racional tal que $a^2+b^2=c^2$ e $n=\frac{ab}{2}$. Defina $x=(\frac{c}{2})^2$. Nesse caso, $x-n=(\frac{a-b}{2})^2$ e $x+n=(\frac{a+b}{2})^2$ satisfaz (b).

(a) \Longrightarrow (b). Seja *n* inteiro congruente. Então, $\exists (a, b, c)$ triangulo racional tal que $a^2 + b^2 = c^2$ e $n = \frac{ab}{2}$. Defina $x = (\frac{c}{2})^2$. Nesse caso, $x - n = (\frac{a-b}{2})^2$ e $x + n = (\frac{a+b}{2})^2$ satisfaz (b).

(b) \Longrightarrow (a) Sejam x - n, x, x + n quadrados em \mathbb{Q} . Definamos (a, b, c) pondo

$$a = (x + n)^{\frac{1}{2}} - (x - n)^{\frac{1}{2}}$$
$$b = (x + n)^{\frac{1}{2}} + (x - n)^{\frac{1}{2}}$$
$$c = 2x^{\frac{1}{2}}$$

 $(b) \Longrightarrow (c)$ Suponhamos x - n, x, x + n quadrados. Nesse caso, temos (x - n)x(x + n) quadrado em \mathbb{Q} e assim, obtemos $(x, y) \in C_n$ com $y \neq 0$.

 $(b)\Longrightarrow (c)$ Suponhamos x-n,x,x+n quadrados. Nesse caso, temos (x-n)x(x+n) quadrado em $\mathbb Q$ e assim, obtemos $(x,y)\in C_n$ com $y\neq 0$.

A demonstração de $(c) \Longrightarrow b$ é mais interessante. De fato, seguirá de um critério para divisibilidade, em um certo sentido, na cúbica C_n . Antes de mostrar a implicação $(c) \Longrightarrow b$ precisamos estudar curvas que ocorrem no problema acima.

Plano $\mathbb{P}^2_{\mathbb{K}}$

Seja $\mathbb K$ um corpo. O plano projetivo $\mathbb P^2$ associado a $\mathbb K^3$ consiste no seguinte conjunto

$$\mathbb{P}^2_{\mathbb{K}} := \{ v \in \mathbb{K}^3; \quad v \neq 0 \} / \equiv$$

onde $v \equiv w \iff \exists \alpha \in \mathbb{K}^* \text{ tal que } v = \alpha w.$

Um elemento de $\mathbb{P}^2_{\mathbb{K}}$ é identificado, em \mathbb{K}^3 , como um subespaço de dimensão 1 (reta pela origem).

Plano $\mathbb{P}^2_{\mathbb{K}}$

Seja $\mathbb K$ um corpo. O plano projetivo $\mathbb P^2$ associado a $\mathbb K^3$ consiste no seguinte conjunto

$$\mathbb{P}^2_{\mathbb{K}} := \{ v \in \mathbb{K}^3; \quad v \neq 0 \} / \equiv$$

onde $v \equiv w \iff \exists \alpha \in \mathbb{K}^* \text{ tal que } v = \alpha w.$

Um elemento de $\mathbb{P}^2_{\mathbb{K}}$ é identificado, em \mathbb{K}^3 , como um subespaço de dimensão 1 (reta pela origem).Dado um ponto $(x,y,z)\in\mathbb{K}^3$ denotamos sua classe em \mathbb{P}^2 por [x:y:z].

Plano $\mathbb{P}^2_{\mathbb{K}}$

Seja $\mathbb K$ um corpo. O plano projetivo $\mathbb P^2$ associado a $\mathbb K^3$ consiste no seguinte conjunto

$$\mathbb{P}^2_{\mathbb{K}} := \{ v \in \mathbb{K}^3; \quad v \neq 0 \} / \equiv$$

onde $v \equiv w \iff \exists \alpha \in \mathbb{K}^* \text{ tal que } v = \alpha w.$

Um elemento de $\mathbb{P}^2_{\mathbb{K}}$ é identificado, em \mathbb{K}^3 , como um subespaço de dimensão 1 (reta pela origem). Dado um ponto $(x,y,z) \in \mathbb{K}^3$ denotamos sua classe em \mathbb{P}^2 por [x:y:z].

Curvas projetivas X em \mathbb{P}^2 são curvas descritas por polinômios homogêneos. Os pontos da forma [x:y:0] são chamados de pontos no infinito.

$$\bar{C}: y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3$$
 $a_i \in \mathbb{K}$

$$\bar{C}: y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3$$
 $a_i \in \mathbb{K}$

Por meio de uma mudança de variáveis podemos reduzir curvas do tipo \bar{C} a curvas do tipo:

$$C: y^2z = x^3 + Axz^2 + Bz^3$$
 $4A^3 + 27B^2 \neq 0$ $A, B \in \mathbb{K}$

$$\bar{C}: y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3$$
 $a_i \in \mathbb{K}$

Por meio de uma mudança de variáveis podemos reduzir curvas do tipo \bar{C} a curvas do tipo:

$$C: y^2z = x^3 + Axz^2 + Bz^3$$
 $4A^3 + 27B^2 \neq 0$ $A, B \in \mathbb{K}$

Notemos que [0:1:0] é o único ponto no infinito da cúbica.

$$\bar{C}: y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3$$
 $a_i \in \mathbb{K}$

Por meio de uma mudança de variáveis podemos reduzir curvas do tipo \bar{C} a curvas do tipo:

$$C: y^2z = x^3 + Axz^2 + Bz^3$$
 $4A^3 + 27B^2 \neq 0$ $A, B \in \mathbb{K}$

Notemos que [0:1:0] é o único ponto no infinito da cúbica. Assim, podemos identificar o conjunto dos pontos $\mathbb K$ - racionais da cúbica projetiva com o conjunto:

$$C(\mathbb{K}) := \{(x,y) \in \mathbb{K}^2; \quad y^2 = x^3 + Ax + B, 4A^3 + 27B^2 \neq 0\} \cup \{O\}$$

Exemplos

Figure: $C_1: y^2 = x^3 - 36x e C_2: y^2 = x^3 - x$

Mais adiante, veremos que $\#C_1(\mathbb{Q})$ é infinito e $\#C_2(\mathbb{Q}) = 4$.

Lei de Grupo

Seja O um ponto fixo de $C(\mathbb{K})$ e P,Q pontos \mathbb{K} - racionais. Definamos um operação * que associa P,Q ao ponto P*Q= terceiro ponto de interseção da reta PQ com a cúbica.

Usando O fixo, definamos outra operação pondo $P \oplus Q := O * (P * Q)$.

Lei de Grupo

Teorema

Seja C curva eliptica definida sobre \mathbb{K} e considere o conjunto $C(\mathbb{K})$ munido da operação \oplus definida acima. Então $(C(\mathbb{K}), \oplus)$ é um grupo abeliano, com o ponto O desempenhando o elemento neutro. Dado $P \in C(\mathbb{K})$ temos -P = (O*O)*P.

Mostra-se que a lei de grupo independe da escolha para o elemento neutro.

No que segue estaremos interessados no caso em que $\mathbb{K}=\mathbb{Q}$. Sendo $char(\mathbb{Q})=0$ podemos nesse caso trabalhar com a forma mais simples $y^2=x^3+Ax+B$ com $A,B\in\mathbb{Z}$ e $\triangle=4A^3+27B^2\neq 0$.

Curvas elipticas sobre $\mathbb Q$

Aqui tomaremos O o ponto no infinito da cúbica $C: y^2 = x^3 + Ax + B$ para desempenhar o elemento neutro. Nesse caso, fórmulas para a soma são simplificadas. O inverso de P = (x, y), por exemplo, é -P = (x, -y).

Denotamos o subgrupo dos pontos de ordem dividindo n por C[n].

Curvas elipticas sobre $\mathbb Q$

Teorema (Mordell, 1922) $C(\mathbb{Q})$ é finitamente gerado.

Teorema (Mordell, 1922)

 $C(\mathbb{Q})$ é finitamente gerado.

Assim, pelo teorema da estrutura para grupos abelianos finitamente gerados, temos

$$C(\mathbb{Q}) \simeq \mathbb{Z}^r \times C(\mathbb{Q})_{tor}$$

Teorema (Mordell, 1922)

 $C(\mathbb{Q})$ é finitamente gerado.

Assim, pelo teorema da estrutura para grupos abelianos finitamente gerados, temos

$$C(\mathbb{Q}) \simeq \mathbb{Z}^r \times C(\mathbb{Q})_{tor}$$

O teorema garante que $\exists \{P_1,...,P_r\}$ pontos de ordem infinita, independentes, e $\{Q_1,...,Q_k\}$ pontos de ordem finita, tais que $\forall P \in C(\mathbb{Q})$ se escreve como:

$$P = n_1 P_1 + ... + n_r P_r + m_1 Q_1 + ... + m_k Q_k$$

com inteiros n_i, m_j

O inteiro r é chamado o posto de $C(\mathbb{Q})$ e determiná-lo é um problema dificil. Não se sabe o quanto pode ser grande. Em 2006, Elkies exibiu uma curva eliptica com $r \geq 28$ e esse é o maior exemplo conhecido.

O inteiro r é chamado o posto de $C(\mathbb{Q})$ e determiná-lo é um problema dificil. Não se sabe o quanto pode ser grande. Em 2006, Elkies exibiu uma curva eliptica com $r \geq 28$ e esse é o maior exemplo conhecido.

Por outro lado, a parte de torção é bem conhecida e de fato computável:

O inteiro r é chamado o posto de $C(\mathbb{Q})$ e determiná-lo é um problema dificil. Não se sabe o quanto pode ser grande. Em 2006, Elkies exibiu uma curva eliptica com $r \geq 28$ e esse é o maior exemplo conhecido.

Por outro lado, a parte de torção é bem conhecida e de fato computável:

Teorema (Nagell-Lutz)

Seja C :
$$y^2 = x^3 + Ax + B$$
 curva eliptica e $\triangle = 4A^3 + 27B^2$

(I) Se
$$P = (x, y) \in C(\mathbb{Q})_{tor} \Longrightarrow x, y \in \mathbb{Z} \text{ e } y = 0 \text{ ou } y^2 | \triangle;$$

O inteiro r é chamado o posto de $C(\mathbb{Q})$ e determiná-lo é um problema dificil. Não se sabe o quanto pode ser grande. Em 2006, Elkies exibiu uma curva eliptica com $r \geq 28$ e esse é o maior exemplo conhecido.

Por outro lado, a parte de torção é bem conhecida e de fato computável:

Teorema (Nagell-Lutz)

Seja C :
$$y^2 = x^3 + Ax + B$$
 curva eliptica e $\triangle = 4A^3 + 27B^2$

(I) Se
$$P = (x, y) \in C(\mathbb{Q})_{tor} \Longrightarrow x, y \in \mathbb{Z} \text{ e } y = 0 \text{ ou } y^2 | \triangle;$$

(II) Se $p \in \mathbb{Z} > 2$ é um primo tal que $p \nmid \triangle$ então o mapa:

$$C(\mathbb{Q})_{tor} \stackrel{\pi}{\longrightarrow} C(\mathbb{F}_p)$$

que associa $(x,y) \longmapsto (\bar{x},\bar{y})$ e $O \longmapsto \bar{O}$ é homomorfismo injetivo;

Dada $C_n: y^2 = x^3 - n^2x$ mostraremos que $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Mas antes precisamos do seguinte

Dada $C_n: y^2 = x^3 - n^2x$ mostraremos que $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Mas antes precisamos do seguinte

Lema

Seja
$$C: y^2 = x^3 + bx$$
, com b inteiro $e \triangle = 4b^3$. Então, $\#C(\mathbb{F}_p) = p+1 \quad \forall p \equiv 3 < 4 >, \quad p \nmid \triangle$, p primo.

Dada $C_n: y^2 = x^3 - n^2x$ mostraremos que $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Mas antes precisamos do seguinte

Lema

Seja
$$C: y^2 = x^3 + bx$$
, com b inteiro $e \triangle = 4b^3$. Então, $\#C(\mathbb{F}_p) = p+1 \quad \forall p \equiv 3 < 4 >, \quad p \nmid \triangle$, p primo.

Prova

Ora, fixemos
$$p \equiv 3 < 4 >$$
. Nesse caso $-1 \notin \mathbb{F}_p^{*^2}$ e dado $x \in \mathbb{F}_p^*$ temos $x \in \mathbb{F}_p^{*^2} \iff -x \notin \mathbb{F}_p^{*^2}$.

Dada $C_n: y^2 = x^3 - n^2x$ mostraremos que $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Mas antes precisamos do seguinte

Lema

Seja
$$C: y^2 = x^3 + bx$$
, com b inteiro $e \triangle = 4b^3$. Então, $\#C(\mathbb{F}_p) = p+1 \quad \forall p \equiv 3 < 4 >, \quad p \nmid \triangle, p \text{ primo}.$

Prova

Ora, fixemos $p \equiv 3 < 4 >$. Nesse caso $-1 \notin \mathbb{F}_p^{*^2}$ e dado $x \in \mathbb{F}_p^*$ temos $x \in \mathbb{F}_p^{*^2} \iff -x \notin \mathbb{F}_p^{*^2}$. Além disso, a função $f(x) = x^3 + bx$ é impar e assim, também temos $f(x) \in \mathbb{F}_p^{*^2} \iff -f(x) = f(-x) \notin \mathbb{F}_p^{*^2}$.

Dada $C_n: y^2 = x^3 - n^2x$ mostraremos que $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Mas antes precisamos do seguinte

Lema

Seja
$$C: y^2 = x^3 + bx$$
, com b inteiro $e \triangle = 4b^3$. Então, $\#C(\mathbb{F}_p) = p+1 \quad \forall p \equiv 3 < 4 >, \quad p \nmid \triangle$, p primo.

Prova

Ora, fixemos $p \equiv 3 < 4 >$. Nesse caso $-1 \notin \mathbb{F}_p^{*^2}$ e dado $x \in \mathbb{F}_p^*$ temos $x \in \mathbb{F}_p^{*^2} \iff -x \notin \mathbb{F}_p^{*^2}$. Além disso, a função $f(x) = x^3 + bx$ é impar e assim, também temos $f(x) \in \mathbb{F}_p^{*^2} \iff -f(x) = f(-x) \notin \mathbb{F}_p^{*^2}$.

Percorrendo o grupo \mathbb{F}_p^* obtemos $\frac{p-1}{2}$ possibilidades para coordenadas x (valores para os quais f(x) é quadrado). Mas para cada contribuição de x obtemos 2 valores para y.

Dada $C_n: y^2 = x^3 - n^2x$ mostraremos que $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Mas antes precisamos do seguinte

Lema

Seja
$$C: y^2 = x^3 + bx$$
, com b inteiro $e \triangle = 4b^3$. Então, $\#C(\mathbb{F}_p) = p+1 \quad \forall p \equiv 3 < 4 >, \quad p \nmid \triangle$, p primo.

Prova

Ora, fixemos $p \equiv 3 < 4 >$. Nesse caso $-1 \notin \mathbb{F}_p^{*^2}$ e dado $x \in \mathbb{F}_p^*$ temos $x \in \mathbb{F}_p^{*^2} \iff -x \notin \mathbb{F}_p^{*^2}$. Além disso, a função $f(x) = x^3 + bx$ é impar e assim, também temos $f(x) \in \mathbb{F}_p^{*^2} \iff -f(x) = f(-x) \notin \mathbb{F}_p^{*^2}$.

Percorrendo o grupo \mathbb{F}_p^* obtemos $\frac{p-1}{2}$ possibilidades para coordenadas x (valores para os quais f(x) é quadrado). Mas para cada contribuição de x obtemos 2 valores para y.Dai, temos p-1 pontos. Considerando (0,0) e O obtemos p+1 pontos no grupo $C(\mathbb{F}_p)$.

Proposição

Seja $C_n: y^2 = x^3 - n^2x$ a cúbica associada ao problema do inteiro congruente. Então $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proposição

Seja $C_n: y^2=x^3-n^2x$ a cúbica associada ao problema do inteiro congruente. Então $C_n(\mathbb{Q})_{tor}=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$.

Prova

Como $C[2] = \{O, (0,0), (n,0), (-n,0)\} \subset C(\mathbb{Q})_{tor}$ é suficiente mostrarmos que $\#C(\mathbb{Q})_{tor}|4$.

Proposição

Seja $C_n: y^2 = x^3 - n^2x$ a cúbica associada ao problema do inteiro congruente. Então $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Prova

Como $C[2] = \{O, (0,0), (n,0), (-n,0)\} \subset C(\mathbb{Q})_{tor}$ é suficiente mostrarmos que $\#C(\mathbb{Q})_{tor}|4$. Para esse fim, vamos usar o teorema de primos em progressão de Dirichlet: \exists infinidade de primos da forma $p \equiv a < b > com a e b coprimos$.

Proposição

Seja $C_n: y^2 = x^3 - n^2x$ a cúbica associada ao problema do inteiro congruente. Então $C_n(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Prova

Como $C[2] = \{O, (0,0), (n,0), (-n,0)\} \subset C(\mathbb{Q})_{tor}$ é suficiente mostrarmos que $\#C(\mathbb{Q})_{tor} | 4.P$ ara esse fim, vamos usar o teorema de primos em progressão de Dirichlet: \exists infinidade de primos da forma $p \equiv a < b > com a$ e b coprimos.Mostremos os seguintes fatos:

- \blacktriangleright (i) 8 $\nmid \#C(\mathbb{Q})_{tor}$;
- \blacktriangleright (ii) $3 \nmid \#C(\mathbb{Q})_{tor}$;
- (iii) $q \nmid \#C(\mathbb{Q})_{tor} \quad \forall q > 3 \text{ primo};$

(i) Se $8 \mid \#C(\mathbb{Q})_{tor}$, podemos encontrar $p \equiv 3 < 8 > e \ p \nmid \triangle$ tal que $8 \mid \#C(\mathbb{F}_p) = p+1$. Mas daí, $p+1 \equiv 0 < 8 > \Longrightarrow p \equiv 7 < 8 >$, contradição.

- (i) Se 8 | $\#C(\mathbb{Q})_{tor}$, podemos encontrar $p \equiv 3 < 8 > e p \nmid \triangle$ tal que $8 \mid \#C(\mathbb{F}_p) = p+1$. Mas daí, $p+1 \equiv 0 < 8 > \Longrightarrow p \equiv 7 < 8 >$, contradição.
- (ii) Se $3 \mid \#C(\mathbb{Q})_{tor}$ temos $3 \mid p+1$ por algum $p \equiv 7 < 12 > e p \nmid \triangle$. Daí, $p+1 \equiv 0 < 3 > \Longrightarrow p \equiv -1 < 3 >$ uma contradição, já que a escolha de p implica $p \equiv 1 < 3 >$.

- (i) Se 8 | $\#C(\mathbb{Q})_{tor}$, podemos encontrar $p \equiv 3 < 8 > e \ p \nmid \triangle$ tal que $8 \mid \#C(\mathbb{F}_p) = p+1$. Mas daí, $p+1 \equiv 0 < 8 > \Longrightarrow p \equiv 7 < 8 >$, contradição.
- (ii) Se $3\mid\#\mathcal{C}(\mathbb{Q})_{tor}$ temos $3\mid p+1$ por algum $p\equiv 7<12>$ e $p\nmid\triangle$. Daí, $p+1\equiv 0<3>\Longrightarrow p\equiv -1<3>$ uma contradição, já que a escolha de p implica $p\equiv 1<3>$.
- (iii)Se q>3 é tal que $q\mid\#C(\mathbb{Q})_{tor}$ tomemos p primo com $p\equiv 3<4q>$ e $p\nmid\triangle$. Temos $q\mid\#C(\mathbb{Q})_{tor}\Longrightarrow q\mid\#C(\mathbb{F}_p)=p+1\Longrightarrow p\equiv -1< q>$, o que contradiz a escoha de p já que $p\equiv 3<4q>\Longrightarrow p\equiv 3< q>$.

Dos possíveis divisores de $\#C(\mathbb{Q})_{tor}$ temos $C[2] = C(\mathbb{Q})_{tor}$.

- (i) Se $8 \mid \#C(\mathbb{Q})_{tor}$, podemos encontrar $p \equiv 3 < 8 > e \ p \nmid \triangle$ tal que $8 \mid \#C(\mathbb{F}_p) = p+1$. Mas daí, $p+1 \equiv 0 < 8 > \Longrightarrow p \equiv 7 < 8 >$, contradição.
- (ii) Se $3 \mid \#C(\mathbb{Q})_{tor}$ temos $3 \mid p+1$ por algum $p \equiv 7 < 12 > e p \nmid \triangle$. Daí, $p+1 \equiv 0 < 3 > \Longrightarrow p \equiv -1 < 3 >$ uma contradição, já que a escolha de p implica $p \equiv 1 < 3 >$.
- (iii)Se q>3 é tal que $q\mid\#C(\mathbb{Q})_{tor}$ tomemos p primo com $p\equiv 3<4q> e$ $p\nmid\triangle$. Temos $q\mid\#C(\mathbb{Q})_{tor}\Longrightarrow q\mid\#C(\mathbb{F}_p)=p+1\Longrightarrow p\equiv -1< q>$, o que contradiz a escoha de p já que $p\equiv 3<4q>\Longrightarrow p\equiv 3< q>$.

Dos possíveis divisores de $\#C(\mathbb{Q})_{tor}$ temos $C[2] = C(\mathbb{Q})_{tor}$.

Corolário

 $rank(C_n(\mathbb{Q})) = 0 \iff n \text{ não \'e congruente.}$

Seguirá de dois resultados:

- ▶ $C(\mathbb{Q})/2C(\mathbb{Q})$ é finito;
- ▶ O grupo $C(\mathbb{Q})$ é normado

Seguirá de dois resultados:

- ▶ $C(\mathbb{Q})/2C(\mathbb{Q})$ é finito;
- ▶ O grupo $C(\mathbb{Q})$ é normado, no seguinte sentido:

 \exists uma função $\hat{h}:C(\mathbb{Q})\longrightarrow\mathbb{R}\geq0$ satisfazendo as seguintes propriedades:

$$\hat{h}(2P) = 4\hat{h}(P) \quad \forall P \in C(\mathbb{Q});$$

Seguirá de dois resultados:

- ▶ $C(\mathbb{Q})/2C(\mathbb{Q})$ é finito;
- ▶ O grupo $C(\mathbb{Q})$ é normado, no seguinte sentido:

 \exists uma função $\hat{h}: C(\mathbb{Q}) \longrightarrow \mathbb{R} \ge 0$ satisfazendo as seguintes propriedades:

- $\hat{h}(2P) = 4\hat{h}(P) \quad \forall P \in C(\mathbb{Q});$
- $\hat{h}(P+Q)+\hat{h}(P-Q)=2\hat{h}(P)+2\hat{h}(Q) \quad \forall P,Q\in C(\mathbb{Q})$ (Lei do paralelogramo)

Seguirá de dois resultados:

- ▶ $C(\mathbb{Q})/2C(\mathbb{Q})$ é finito;
- ▶ O grupo $C(\mathbb{Q})$ é normado, no seguinte sentido:

 \exists uma função $\hat{h}:C(\mathbb{Q})\longrightarrow\mathbb{R}\geq0$ satisfazendo as seguintes propriedades:

- $\hat{h}(2P) = 4\hat{h}(P) \quad \forall P \in C(\mathbb{Q});$
- $\hat{h}(P+Q)+\hat{h}(P-Q)=2\hat{h}(P)+2\hat{h}(Q) \quad \forall P,Q\in C(\mathbb{Q})$ (Lei do paralelogramo)
- ▶ Dado $c \in \mathbb{R} \ge 0$ conjunto $S_c := \{P \in C(\mathbb{Q}); \quad \hat{h}(P) \le c\}$ é finito;

Assumindo os resultados acima, o seguinte teorema garante a finitude:

Teorema

Seja G um grupo abeliano tal que G/mG é finito por algum $m \in \mathbb{Z}$ e seja $\hat{h}: G \longrightarrow \mathbb{R} \geq 0$ uma função satisfazendo as propriedades acima. Então G é finitamente gerado.

Assumindo os resultados acima, o seguinte teorema garante a finitude:

Teorema

Seja G um grupo abeliano tal que G/mG é finito por algum $m \in \mathbb{Z}$ e seja $\hat{h}: G \longrightarrow \mathbb{R} \geq 0$ uma função satisfazendo as propriedades acima. Então G é finitamente gerado.

No caso $G = C(\mathbb{Q})$, a finitude do índice seguirá de um critério para divisibilidade por 2 no grupo $C(\mathbb{Q})$. Aqui, assumimos $C: y^2 = (x - \alpha)(x - \beta)(x - \gamma)$ com $\alpha, \beta \in \gamma \in \mathbb{Z}$.

$$[C(\mathbb{Q}):2C(\mathbb{Q})]<\infty$$

Teorema

Seja C curva eliptica acima e (x_1, y_1) um ponto \mathbb{Q} -racional. Existe $(x_2, y_2) \in C(\mathbb{Q})$ tal que $2(x_2, y_2) = (x_1, y_1) \iff x_1 - \alpha, x_1 - \beta, x_1 - \gamma$ são quadrados em \mathbb{Q} .

$$[C(\mathbb{Q}):2C(\mathbb{Q})]<\infty$$

Teorema

Seja C curva eliptica acima e (x_1, y_1) um ponto \mathbb{Q} -racional. Existe $(x_2, y_2) \in C(\mathbb{Q})$ tal que $2(x_2, y_2) = (x_1, y_1) \iff x_1 - \alpha, x_1 - \beta, x_1 - \gamma$ são quadrados em \mathbb{Q} .

O teorema acima pode ser usado para completar as formulações equivalentes de um inteiro congruente.

$[C(\mathbb{Q}):2C(\mathbb{Q})]<\infty$

Teorema

Seja C curva eliptica acima e (x_1, y_1) um ponto \mathbb{Q} -racional. Existe $(x_2, y_2) \in C(\mathbb{Q})$ tal que $2(x_2, y_2) = (x_1, y_1) \iff x_1 - \alpha, x_1 - \beta, x_1 - \gamma$ são quadrados em \mathbb{Q} .

O teorema acima pode ser usado para completar as formulações equivalentes de um inteiro congruente. De fato, suponhamos (x,y) ponto da cúbica $y^2 = x^3 - n^2x$ com $y \neq 0$. Como os pontos de ordem 2 são $\{O, (n,0), (-n,0), (0,0)\}$ segue que P = (x,y) não possui ordem 2.

$[C(\mathbb{Q}):2C(\mathbb{Q})]<\infty$

Teorema

Seja C curva eliptica acima e (x_1, y_1) um ponto \mathbb{Q} -racional. Existe $(x_2, y_2) \in C(\mathbb{Q})$ tal que $2(x_2, y_2) = (x_1, y_1) \iff x_1 - \alpha, x_1 - \beta, x_1 - \gamma$ são quadrados em \mathbb{Q} .

O teorema acima pode ser usado para completar as formulações equivalentes de um inteiro congruente. De fato, suponhamos (x,y) ponto da cúbica $y^2 = x^3 - n^2x$ com $y \neq 0$. Como os pontos de ordem 2 são $\{O, (n,0), (-n,0), (0,0)\}$ segue que P = (x,y) não possui ordem 2. Assim, duplicando P, obtemos outro ponto (x_1,y_1) . Pelo critério acima, vemos que $x_1 - n$, x_1 , $x_1 - n$ são quadrados e daí, segue a implicação $(c) \Longrightarrow (b)$.

Usando o critério de divisibilidade, pode-se mostrar que a seguinte sequência

$$0 \longrightarrow 2C(\mathbb{Q}) \xrightarrow{i} C(\mathbb{Q}) \xrightarrow{\Phi_{\alpha} \times \Phi_{\beta}} (\mathbb{Q}^*/\mathbb{Q}^{*^2})^2$$

é exata

Usando o critério de divisibilidade, pode-se mostrar que a seguinte sequência

$$0 \longrightarrow 2C(\mathbb{Q}) \xrightarrow{i} C(\mathbb{Q}) \xrightarrow{\Phi_{\alpha} \times \Phi_{\beta}} (\mathbb{Q}^*/\mathbb{Q}^{*^2})^2$$

é exata , onde

 $\Phi_{\alpha}: C(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/\mathbb{Q}^{*^2}$ é definido por:

$$\Phi_{\alpha}(x,y) = \begin{cases} (x-\alpha)\mathbb{Q}^{*^2} & \text{se} \quad P \notin \{(\alpha,0),O\}; \\ (\alpha-\beta)(\alpha-\gamma)\mathbb{Q}^{*^2} & \text{se} \quad P = (\alpha,0); \\ 1.\mathbb{Q}^{*^2} & \text{se} \quad P = O; \end{cases}$$

 Φ_{β} é definido de maneira similar.

Usando o critério de divisibilidade, pode-se mostrar que a seguinte sequência

$$0 \longrightarrow 2C(\mathbb{Q}) \xrightarrow{i} C(\mathbb{Q}) \xrightarrow{\Phi_{\alpha} \times \Phi_{\beta}} (\mathbb{Q}^*/\mathbb{Q}^{*^2})^2$$

é exata , onde

 $\Phi_{\alpha}: \mathit{C}(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/\mathbb{Q}^{*^2}$ é definido por:

$$\Phi_{\alpha}(x,y) = \begin{cases} (x-\alpha)\mathbb{Q}^{*^2} & \text{se } P \notin \{(\alpha,0),O\}; \\ (\alpha-\beta)(\alpha-\gamma)\mathbb{Q}^{*^2} & \text{se } P = (\alpha,0); \\ 1.\mathbb{Q}^{*^2} & \text{se } P = O; \end{cases}$$

 Φ_{β} é definido de maneira similar. E

$$Im(\Phi_{\alpha} \times \Phi_{\beta}) \subset \{((-1)^{\alpha_0} p_1^{\alpha_1} ... p_k^{\alpha_k}, (-1)^{\beta_0} p_1^{\beta_1} ... p_k^{\beta_k}); \quad p_j \mid \triangle \in \alpha_i, \beta_i \in \{0, 1\}\}$$

O problema do Posto

O seguinte resultado permite determinar uma cota superior para o posto de curvas elipticas da forma: $C: y^2 = (x - \alpha)(x - \beta)(x - \gamma)$, com $\alpha, \beta, \gamma \in \mathbb{Z}$ e $\triangle = (\alpha - \beta)^2(\alpha - \gamma)^2(\beta - \gamma)^2$.

Proposição

$$r \leq 2\#\{p \text{ primo}; p \mid \triangle\}$$

A cota acima pode ser refinada. Um primo p se diz **mau** se p divide exatamente um dos fatores $(\alpha - \beta), (\alpha - \gamma), (\beta - \gamma)$ de \triangle . Se diz, **muito mau** se p divide todos os fatores.

O problema do Posto

O seguinte resultado permite determinar uma cota superior para o posto de curvas elipticas da forma: $C: y^2 = (x - \alpha)(x - \beta)(x - \gamma)$, com $\alpha, \beta, \gamma \in \mathbb{Z}$ e $\triangle = (\alpha - \beta)^2(\alpha - \gamma)^2(\beta - \gamma)^2$.

Proposição

$$r \leq 2\#\{p \text{ primo}; p \mid \triangle\}$$

A cota acima pode ser refinada. Um primo p se diz **mau** se p divide exatamente um dos fatores $(\alpha - \beta), (\alpha - \gamma), (\beta - \gamma)$ de \triangle . Se diz, **muito mau** se p divide todos os fatores.

Proposição

$$r \le t_1 + 2t_2 - 1$$
 onde $t_1 = \{p \text{ primo}; p \mid \triangle \text{ \'e mau}\} \text{ e } t_2 = \{p \text{ primo}; p \mid \triangle \text{ \'e muito mau}\}$

Exemplos

▶ $C_1: y^2 = x^3 - x = (x - 1)x(x + 1)$ tem posto 0. Aqui $\triangle = (1 - 0)^2(-1 - 0)^2(1 + 1)^2 = 4$. Assim, $t_1 = 1$ e $t_2 = 0$. Pela cota do posto acima, temos $r \le t_1 + 2t_2 - 1 = 0$;

Exemplos

- ▶ $C_1: y^2 = x^3 x = (x 1)x(x + 1)$ tem posto 0. Aqui $\triangle = (1 0)^2(-1 0)^2(1 + 1)^2 = 4$. Assim, $t_1 = 1$ e $t_2 = 0$. Pela cota do posto acima, temos $r \le t_1 + 2t_2 1 = 0$;
- ▶ Vimos anteriormente que 5,6 e 7 são congruentes. Assim, as curvas $y^2 = x^3 25x$, $y^2 = x^3 36x$ e $y^2 = x^3 49x$ admitem infinidade de pontos \mathbb{Q} -racionais;

Exemplos

- ▶ $C_1: y^2 = x^3 x = (x 1)x(x + 1)$ tem posto 0. Aqui $\triangle = (1 0)^2(-1 0)^2(1 + 1)^2 = 4$. Assim, $t_1 = 1$ e $t_2 = 0$. Pela cota do posto acima, temos $r \le t_1 + 2t_2 1 = 0$;
- ▶ Vimos anteriormente que 5,6 e 7 são congruentes. Assim, as curvas $y^2 = x^3 25x$, $y^2 = x^3 36x$ e $y^2 = x^3 49x$ admitem infinidade de pontos \mathbb{Q} -racionais;
- ▶ Considere $y^2 = x^3 + 8$, com $\triangle = 27.8^2$. Aplicando redução mod p para p = 5, 13 obtemos: $\#C(\mathbb{F}_5) = 6$ e $\#C(\mathbb{F}_{13}) = 16$. Do teorema de Nagell-Lutz, temos $\#C(\mathbb{Q})_{tor} \mid 2.3, 2^4 \Longrightarrow \#C(\mathbb{Q})_{tor} = 1, 2$. Como $\{O, (-2, 0)\} \subset C(\mathbb{Q})_{tor}$ temos que $C(\mathbb{Q})_{tor} = \mathbb{Z}/2\mathbb{Z}$. Note que $(1, \pm 3) \in C(\mathbb{Q}) \Longrightarrow rank(C) \ge 1$.

Mordell Geral

O caso geral, i.é, para cúbicas do tipo $y^2 = p(x)$ com $p(x) \in \mathbb{Z}[x]$ de grau 3 seguirá de algumas considerações sobre números algébricos. O problema consiste em mostrar que $[C(\mathbb{K}): 2C(\mathbb{K})]$ é finito, onde \mathbb{K} é o corpo de decomposição do polinômio p(x).

Mordell Geral

O caso geral, i.é, para cúbicas do tipo $y^2 = p(x)$ com $p(x) \in \mathbb{Z}[x]$ de grau 3 seguirá de algumas considerações sobre números algébricos. O problema consiste em mostrar que $[C(\mathbb{K}): 2C(\mathbb{K})]$ é finito, onde \mathbb{K} é o corpo de decomposição do polinômio p(x).

▶ $[C(\mathbb{K}): 2C(\mathbb{K})]$ finito mostra o teorema de Mordell para cúbicas sobre \mathbb{K} , e precisamos de informações sobre \mathbb{Q} .

Mordell Geral

O caso geral, i.é, para cúbicas do tipo $y^2 = p(x)$ com $p(x) \in \mathbb{Z}[x]$ de grau 3 seguirá de algumas considerações sobre números algébricos. O problema consiste em mostrar que $[C(\mathbb{K}): 2C(\mathbb{K})]$ é finito, onde \mathbb{K} é o corpo de decomposição do polinômio p(x).

- ▶ $[C(\mathbb{K}): 2C(\mathbb{K})]$ finito mostra o teorema de Mordell para cúbicas sobre \mathbb{K} , e precisamos de informações sobre \mathbb{Q} .
- ► A demonstração do caso sobre Q está relacionada algumas propriedades do anel de inteiros de Q tais como como fatoração única e a finitude do grupo de unidades.

Fatoração única não vale em geral para o anel de inteiros de uma extensão finita \mathbb{K}/\mathbb{Q} . Tome, por exemplo, $(1-\sqrt{-5})(1+\sqrt{-5})=2.3$ em $\mathbb{Z}[\sqrt{-5}]$.

Referências

- [1] Silverman, Joseph H., and John Tate. Rational Points on Elliptic Curves. Springer Science Business Media, 1992;
- [2] Knapp, Anthony W. Elliptic curves. Vol. 40. Princeton University Press, 1992;
- [3] Husemöller, Dale. "Elliptic curves, volume 111 of Graduate Texts in Mathematics." (2004);
- [4] Conrad, Keith. "The congruent number problem." The Harvard College Mathematics Review 2 (2008): 58-74;

Pontos Racionais Números Congruentes Curvas Elipticas Teorema de Mordell Exemplos

Obrigado!!!