

Case No.: 56530US002

AMMENDMENTS TO THE CLAIMS

The following Listing of Claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

- (Previously Presented) An ink comprising an aqueous vehicle and dispersed particles of a silyl-terminated sulfopoly(ester-urethane), wherein said ink is an ink jet ink.
- 2. (Previously Presented) The ink of claim 1, wherein the silyl-terminated sulfopoly(ester-urethane) is described by the formula:

wherein

R represents a trivalent C_6 - C_{12} aryl group or a trivalent C_1 - C_{20} aliphatic group wherein M is II^+ , an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each RD independently represents:

 at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\left(\begin{array}{c} -O-C-\\ \end{array}\right)$$

2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a

Case No.: 56530US002

cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or

3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_p\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R^1 independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X1 independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of at most 15 carbon atoms;

each X2 independently represents

ЗМ

Application No.: 10/000284

Case No.: 56530US002

wherein each R^A independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R¹-Y;

each RH independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

$$R^{5}$$
 $-R^{3}$
 $SiO_{\bar{g}}$
 R^{3}
 R^{5}
 R^{5}

divalent organic groups having the structure

$$-R^{3}-N-R^{3} -R^{3}-R^{3} -R^{3} -R^{3}-$$

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $-R^{3}-$

or quaternary salts thereof, wherein

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents H, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\mathrm{Si}(\mathrm{OR}^8)_2(\mathrm{R}^4)_{\mathrm{w}}$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

Case No.: 56530US002

$$-\operatorname{Si}(\operatorname{OR}^8)_{2}(\operatorname{R}^4)_{\mathbf{W}_{2}}$$

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300;

each X³ independently represents a covalent bond, a carbonyl group,

or a divalent amido group

$$\begin{pmatrix} O \\ II \\ C-NH \end{pmatrix}$$
:

each R⁶ independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

cach R_f independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.

- 3. (Previously Presented) The ink of claim 1, wherein the ink is free of organic solvents.
- 4. (Previously Presented) The ink of claim 1, further comprising a colorant, wherein the colorant is a pigment.
- 5. (Previously Presented) The ink of claim 1, further comprising a colorant, wherein the colorant is a dye.

Case No.: 56530US002

- 6. (Previously Presented) The ink of claim 1, further comprising an additional dispersed polymer.
- 7. (Previously Presented) The ink of claim 6, wherein the additional dispersed polymer is present in an amount of from about 0.1 to about 3 times the weight of the silyl-terminated sulfopoly(ester-urethane) polymer.
- 8. (Previously Presented) The ink of claim 7, wherein the additional dispersed polymer is an acrylic polymer.
 - 9. (Previously Presented) The ink of claim 1, further comprising a humectant.
- 10. (Previously Presented) The ink of claim 1, wherein the ink has a solids content of at least 20 weight percent of the total ink composition.
- 11. (Previously Presented) The ink of claim 1, wherein the ink has a solids content of at least 30 weight percent of the total ink composition.
- 12. (Previously Presented) The ink of claim 1, wherein the ink has a solids content of at least 50 weight percent of the total ink composition.
- 13. (Previously Presented) The ink of claim 1, wherein the ink has a viscosity of less than about 20 mPa·s at 20 °C and at a shear rate of 1000 s⁻¹.
- 14. (Previously Presented) The ink of claim 1, wherein the ink has a viscosity of less than about 5 mPa·s at 20 °C and at a shear rate of 1000 s⁻¹.
 - 15. (Previously Presented) The ink of claim 2, wherein

Case No.: 56530US002

is:

and wherein each R^9 independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, an arylene group having 6 to 10 carbon atoms, or may also comprise an oligomeric segment.

- 16. (Previously Presented) The ink of claim 15, wherein the ink is contained within an ink jet printer cartridge.
- 17. (Previously Presented) A blendable ink set comprising at least three blendable inks, wherein each ink in the ink set comprises the ink of claim 1.
- 18. (Previously Presented) The ink set of claim 17, wherein the blendable inks comprise yellow, magenta, and cyan inks.
- 19. (Previously Presented) The ink set of claim 17, further comprising a fourth blendable ink.

Case No.: 56530US002

- 20. (Previously Presented) The ink set of claim 19, wherein the fourth blendable ink is a black ink.
- 21. (Previously Presented) The ink set of claim 19, further comprising a fifth blendable ink.
- 22. (Previously Presented) The ink set of claim 21, wherein the fifth blendable ink is a white ink.
- 23. (Previously Presented) The ink of claim 1, wherein the ink is contained within an ink jet printer cartridge.
- 24. (Previously Presented) A method of imaging a substrate, said method comprising ink jet printing an aqueous composition onto a substrate, wherein the aqueous composition comprises an aqueous vehicle and a silyl-terminated sulfopoly(ester-urethane) having the formula:

$$\left. \begin{array}{l}
 R \longrightarrow \left\{ \begin{array}{l}
 O \\
 II \\
 C \longrightarrow O \longrightarrow R^D \longrightarrow (X^I - R^2)_m \longrightarrow (X^I - R^H)_n \longrightarrow (X^I - R^3)_s \longrightarrow X^2 \longrightarrow R^3 \longrightarrow Y \\
 SO_3M \longrightarrow \left\{ \begin{array}{l}
 O \\
 C \longrightarrow O \longrightarrow R^D \longrightarrow (X^I - R^2)_m \longrightarrow (X^I - R^H)_n \longrightarrow (X^I - R^3)_s \longrightarrow X^2 \longrightarrow R^3 \longrightarrow Y \\
 SO_3M \longrightarrow \left\{ \begin{array}{l}
 O \\
 C \longrightarrow O \longrightarrow R^D \longrightarrow (X^I - R^2)_m \longrightarrow (X^I - R^H)_n \longrightarrow (X^I - R^3)_s \longrightarrow X^2 \longrightarrow R^3 \longrightarrow Y \\
 SO_3M \longrightarrow \left\{ \begin{array}{l}
 O \\
 C \longrightarrow O \longrightarrow R^D \longrightarrow (X^I - R^2)_m \longrightarrow (X^I - R^H)_n \longrightarrow (X^I$$

wherein

R represents a trivalent C_6 - C_{12} aryl group or a trivalent C_1 - C_{20} aliphatic group wherein M is H^+ , an alkali metal cation, an alkaline earth metal cation, or a primary, secondary, tertiary, or quaternary ammonium cation;

each m independently represents 0 or 1, each n independently represents 0 or 1, each s independently represents 0 or 1, with the proviso that, at least one of m or n must be equal to 1;

each RD independently represents:

Case No.: 56530US002

1) at least one of a divalent linear or branched organic group of 20 to 150 carbon atoms in units of 2 to 12 methylene groups and arylene groups of 6 to 10 carbon atoms separated by at least one of 1 to 50 catenary oxygen atoms and by 1 to 30 oxycarbonyl groups,

$$\left(\begin{array}{c} -O-C \\ -O \end{array}\right)$$

- 2) an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group, the organic group optionally being substituted by up to four lower alkyl groups having 1 to 4 carbon atoms and a total of up to 15 carbon atoms, which organic group can be chain extended by a transesterification reaction between a diol terminated ester precursor and a lower aliphatic diester of an aliphatic diacid having from 2 to 12 carbons or an aromatic diacid having from 8 to 12 carbons or reaction between a diol terminated ester precursor and an aliphatic lactone of 4 to 6 carbons, or
- 3) the structure $\{-R^1(X^1-R^2-X^1-R^1)_p^-\}$ where p is an integer from 1 to 5, produced by the reaction of a polyol with an isocyanate having the structure OCN-R²-NCO to produce a segment having a molecular weight of from 500 to 4,000;

each R¹ independently represents a linear or branched alkylene group having 2 to 12 carbon atoms, or an arylene group having 6 to 10 carbon atoms;

each X1 independently represents

each R² independently represents an organic group selected from the group consisting of a linear or branched alkylene group having 2 to 12 carbon atoms, a cyclopentamethylene group, a cyclohexamethylene group, a 5- or 6-membered azacyclic group, a phenylene group, a naphthalene group, a phenylenemethylenephenylene group,

Case No.: 56530US002

the organic group optionally being substituted by up to four lower alkyl groups having I to 4 carbon atoms and a total of at most 15 carbon atoms;

each X2 independently represents

wherein each RA independently represents hydrogen, lower alkyl having 1 to 4 carbon atoms, or R¹-Y;

each RII independently represents a divalent hydrophobic group selected from divalent oligomeric siloxanes having the structure

$$-R^{\frac{3}{1}} \xrightarrow{\stackrel{R}{\text{(SiO)}_{\overline{g}}}} R^{\frac{3}{2}}$$
,

divalent organic groups having the structure

$$-R^3-N-R^3 X^3$$
 X^6
 X^6

or divalent organic groups having one of the structures

$$-R^{3}-N-R^{3}-$$
, $-R^{3}-N-R^{3}-$, $-R^{3}-$

or quaternary salts thereof, wherein

Caso No.: 56530US002

each R³ independently represents a divalent linear or branched alkylene group having 2 to 12 carbon atoms, or a divalent arylene or alkarylene group having 6 to 20 carbon atoms;

each Y independently represents II, an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 10 carbon atoms, or

$$-\mathrm{Si}(\mathrm{OR}^8)_{\mathrm{z}}(\mathrm{R}^4)_{\mathrm{w}}$$

wherein each R^4 independently represents a monovalent lower alkyl group having from 1 to 4 carbon atoms, each R^8 is H or a monovalent lower alkyl group having from 1 to 4 carbon atoms, each z is independently 2 or 3, each w is independently 0 or 1, and wherein z + w = 3, with the proviso that at least one Y has the formula

$$-\mathrm{Si}(\mathrm{OR}^8)_{z}(\mathrm{R}^4)_{w}$$

each R⁵ independently represents a monovalent group selected from the group consisting of alkyl groups of 1 to 12 carbon atoms, aryl having 6 to 10 carbon atoms, or aralkyl groups having 6 to 10 carbon atoms, with at least 70 percent of R⁴ being methyl;

each g independently represents an integer of from 10 to 300;

each X3 independently represents a covalent bond, a carbonyl group,

or a divalent amido group

$$\begin{pmatrix} O \\ \parallel \\ -C-NH \end{pmatrix}$$
:

each R⁶ independently represents a monovalent group selected from the group consisting of alkyl groups of about 4 to about 60 carbon atoms;

each R⁷ independently represents a divalent group selected from the group consisting of alkylene groups of 2 to about 12 carbon atoms; and

each Rf independently represents a monovalent saturated fluoroaliphatic group having 6 to 12 carbon atoms, at least four of which are fully-fluorinated carbon atoms.

Case No.: 56530US002

- 25. (Previously Presented) The method of claim 24, wherein the composition further comprises a colorant.
- 26. (Previously Presented) The method of claim 24, wherein the composition further comprises an additional dispersed polymer.
- 27. (Previously Presented) The method of claim 24, wherein the composition further comprises a humectant.
- 28. (Previously Presented) The method of claim 24, wherein the ink jet printing step comprises piezo ink jet printing.
- 29. (Previously Presented) The method of claim 24, wherein the substrate is a fabric.
- 30. (Previously Presented) The method of claim 29, wherein the fabric is a textile.
- 31. (Previously Presented) The method of claim 24, wherein the substrate is glass.
- 32. (Previously Presented) The method of claim 24, wherein the substrate is a polymer film.
- 33. (Previously Presented) The method of claim 32, wherein the polymer film is a laminate.
- 34. (Previously Presented) The method of claim 24, wherein the substrate is paper.

ЗМ

Case No.: 56530US002

35. (Previously Presented) An article comprising a substrate imaged according to the method of claim 24.

36-52. (Cancelled)