Матанализ 1 семестр ПИ, Лекция, 10/06/21

Собрано 6 октября 2021 г. в 18:37

Содержание

. Пределы функций	1
1.1. ε -окрестности]
1.2. Предед функции	1

1.1. ε -окрестности

Def. 1.1.1. ε -окрестность точки $a - V_{\varepsilon}(a) : (a - \varepsilon, a + \varepsilon)$ проколотая ε -окрестность $a - \dot{V}_{\varepsilon} : (a - \varepsilon, a) \cup (a + \varepsilon)$

Def. 1.1.2. $D \subset \mathbb{R}, a \in \mathbb{R}$. Точка а называется точкой сгущения D, если в любой окрестности а найдется точка из D, отличная от a

$$\forall \dot{V}(a) \; \exists x \in D : x \in \dot{V}(a) \land x \neq a$$

Пример 1.1.3. D = [1, 2). Точки сгущения: [1, 2]

Замечание 1.1.4. Точка сгущения может принадлежать множеству, а может и не принадлежать.

Замечание 1.1.5. Если a — точка сгущения, тогда в $\forall \dot{V}(a)$ бесконечно много точек из D.

Замечание 1.1.6. Точки сгущения называют предельными точками множества.

a – точка сгущения $\Leftrightarrow \exists \{x_n\} : x_n \in D, x_n \neq a, x_n \to a$

Доказательство. " \Rightarrow ". $\varepsilon = \frac{1}{k} \Rightarrow |x_k - a| < \frac{1}{k} \Rightarrow 0 \leqslant \lim |x_k - a| < 0 \Rightarrow \exists \lim x_k = 0$ " \Leftarrow ". В $\forall V(a)$ лежит бесконечно много точек $\{x_n\}, x_n \neq a \Rightarrow a$ – точка сгущения.

Def. 1.1.7. $a \in D$, но a – не предельная точка. Тогда а называется изолированной точкой множества D

Замечание $1.1.8. + \infty$ может быть предельной точкой множества

$$\dot{V}(+\infty) = (E, +\infty)$$

1.2. Предел функции

Def. 1.2.1. $f: D \to \mathbb{R}, D \subset \mathbb{R}a \in \mathbb{R}$ – предельная точка D. Число $A \in \mathbb{R}$ называется пределом f в точке a

$$\lim_{x \to a} f(x) = A \text{ unu } f(x) \xrightarrow[x \to a]{} A$$

если выполняется одно из следующих условий:

- 1. $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in D \setminus \{a\} : |x-a| < \delta \to |f(x)-A| < \varepsilon \; (Определение по Коши, определение на языке <math>\delta, \varepsilon$)
- 2. $\forall V(A) \; \exists V(a) : f(\dot{V}(a) \cap D) \subset V(A)$ (Определение на языке окрестностей)
- 3. $\forall \{x_n\}: x_n \in D, x_n \neq a, x_n \to a \Rightarrow f(x_n) \to A$ (Определение по Гейне, на языке последовательностей)

<u>Теорема</u> **1.2.2** (Эквивалентность определения по Коши и по Гейне). Определения 1) и 3) эквивалентны.

Доказательство. 1) \Rightarrow 3). Рассмотрим какую-то $\{x_n\}: x_n \neq a, x_n \in D, x_n \to a$ (она существует по доказанному). Нужно доказать, что $f(x_n) \to A$. Пусть $x_n \to a$, то

$$\forall \delta > 0 \exists N : \forall n \geqslant N \rightarrow |x_n - a| < \delta \Rightarrow |f(x_n) - A| < \varepsilon$$

3) \Rightarrow 1). Пусть это не так, т.е. 1) не выполнено

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x \in D, x \neq a, |x - a| < \delta : |f(x) - A| \geqslant \varepsilon$$

Возьмем последовательность $\delta_n = \frac{1}{n}$.

$$|x_n - a| < \frac{1}{n} \Rightarrow x_n \to a \Rightarrow f(x_n) \to A, \text{ Ho } |f(x) = A| \geqslant \varepsilon$$

3амечание 1.2.3. в $\overline{\mathbb{R}}$

1.

$$\lim_{x \to 5} f(x) = \infty \Leftrightarrow \forall E \ \exists \delta > 0 : \forall x \in D \setminus \{5\}, |x - 5| < \delta \to f(x) > E$$

2.

$$\lim_{x \to -\infty} f(x) = 2 \Leftrightarrow \forall E > 0 \ \exists \Delta : \forall x \in D, x < \Delta \to |f(x) - 2| < E$$

Замечание 1.2.4. В определении по Гейне есть " $\forall \{x_n\}$ ". Если x_n и y_n подходят под условия, то $\lim f(x_n) = \lim f(y_n)$

Доказательство. Возьмем $z_n: z_1=x_1, z_2=y_1, z_3=x_2, z_4=y_2$ и т.д. $\{z_n\}$ подходит под определение $\Rightarrow \exists \lim f(z_n)$

Замечание 1.2.5. В определении предела функции не участвует значения функции в точке а. Замечание 1.2.6. Последовательность — частный случай функции.