

网工考前速记知识点

1、原码、反码、补码的取值范围

•	₽	定点整数。	定点小数₽
•	原码₽	$-(2^{n-1}-1)-2^{n-1}-1$	-1< <i>X</i> <10
•	反码₽	$-(2^{n-1}-1)-2^{n-1}-1$	-1< <i>X</i> <10
•	补码₽	$-2^{n-1}-2^{n-1}-1$	-1≤X<1₽

N 位原码、反码可取值的个数为: $2^{n-1}-1-(-(2^{n-1}-1))+1=2^{n}-1$ 。

N位补码可取值的个数为: $2^{n-1}-1-(-(2^{n-1}))+1=2^n$ 。

2、计算机总线

有数据总线、地址总线、控制总线。

计算机数据总线的宽度是指一次所能传递的二进制位数。

地址总线宽度:能体现可直接访问的主存地址空间,如地址总线宽度为32,则最多允许直接访问主存储器2的32次方的物理空间。

数据总线宽度:能体现 CPU 一次读取的二进制的位数。

3、SSD 固态硬盘

SSD 固态硬盘的存储介质分为两种,一种是采用闪存(FLASH 芯片)作为存储介质,这种是主流。另外一种是采用 DRAM 作为存储介质。

4、设备管理

程序中断方式: 在外设做好数据传输准备时向 CPU 发出中断请求信号, CPU 暂停当前执行的程序来响应外设的中断请求。CPU 参与外设的数据传输过程,传输完成后,再返回执行之前被中断的程序。

DMA 方式: 数据传输过程没有 CPU 的参与,由 DMA 控制器 (DMAC) 接口直接与存储器进行高速传输。

5、PERT 图关键路径

在 PERT 图中完成工程的最少时间是从开始顶点到结束顶点的最长路径长度, 称从开始顶点到结束顶点的最长(工作时间之和最大)路径为关键路径(临界路径),关键路径上的活动为关键活动。

6、差错控制一海明校验

 $m+k+1 \le 2^k$,m 表示数据位的位数,k 表示校验位的位数,题目中会给出 m 值,让求 k 值。校验位是放在 2 的幂次方位上,也就是第 1、2、4、8、16……位上。 海明码是纠错码,不仅可以纠错,还可以检错。

7、根据距离选择传输介质

双绞线的传输范围在 100m 内, STP 屏蔽双绞线比 UTP 非屏蔽双绞线更可靠,价格更贵。 多模光纤,传输距离最大为 550m。

只要传输距离大于 550m, 传输介质就选单模。

8、以太网帧结构

以太网帧的格式包含目的地址(6B)、源地址(6B)、长度/类型(2B)、数据(46-1500B)及帧校验序列(4B)等。这些字段中除了数据字段是变长以外,其余字段的长度都是固定的。

以太网中, 帧的最小长度是64字节, 最大长度是1518字节。

以太网中,数据部分的 MTU 值是 1500 字节, MTU 即最大传输单元,即帧中数据字段的最大的值。

9、生成树协议

生成树协议 STP 的标准是 802.1d。

RSTP 快速生成树协议: IEEE802.1w, 后续又并入了 IEEE 802.1D-2004。

MSTP 多生成树协议在 IEEE 802.1S 标准中定义。

网桥优先级的范围是 0-65535, 默认值是 32768, 修改网桥优先级要以 4096 的倍数增长。

10、无线局域网

标准为 IEEE802.11, MAC 层使用 CSMA/CA 协议。

无线局域网工作模式:基础设施网络模式(有 AP 设备)和无访问点模式(Ad Hoc 网络),无线 AP 往往通过交换机 POE 模块对其供电。

IEEE802.11b 和 11g 运行在 2.4GHz 的频段,802.11a 运行在 5GHz 的频段,802.11n 运行在 2.4GHz 和 5GHz 频段。

无线局域网中的加密技术有 WEP、WPA 和 WPA2,安全性依次增加

11、子网划分

向主机位借位生成网络位来划分子网。

若向主机位借了 N 位,则可生成 2^N 个子网。

原主机位借了 N 后,还剩 M 位,则每个子网中有效的 IP 地址数是 $2^{M}-2$ 个。

主机位取全0为网络地址,主机位取全1为广播地址。

子网掩码定义为:网络位取 1,主机位取 0,可直接用子网掩码长度表示。

12、CIDR 汇聚

路由汇聚的好处:可解决路由表的内容冗余问题,使用路由聚合能够缩小路由表的规模,减少路由表的内存。提高路由器数据转发的效率。

汇聚规则:选择连续的网络地址相同的位进行汇聚,不同则划至主机位,从而实现将多个网段汇聚成一个新的超网网段。

路由匹配时应当从匹配结果中选择具有最长网络前缀的路由。这叫作最长前缀匹配,因为网络前缀越长,其地址块就越小,路由就越具体。

13、ARP 协议

ARP 地址解析协议,通过广播发送 ARP 请求,询问 IP 地址对应的 mac 地址。

Arp -a 查看 arp 缓存的命令

arp -s 添加静态 arp 条目的命令

arp -d 清除 arp 缓存的命令

14、IPV6 地址前缀

地址类型	地址前缀	IPv6 前缀标识	
链路本地地址	1111111010	FE80::/10	
站点本地地址	1111111011	FEC0::/10	
全球单播地址	全球路由选择前缀(48bit),前3位固定为001		
组播地址	1111 1111		

15、常见熟知端口如下

端口号	关键字	描述	端口号	关键字	描述
20	FTP-DATA	FTP 的数据	53	DNS	域名
21	FTP	FTP 的控制	69	TFTP	简单 FTP
22	SSH	SSH 登录	80	HTTP	Web 访问
23	TELNET	远程登录	110	POP3	邮件接收
25	SMTP	简单邮件传输	143	IMAP	邮件访问协议
67	DHCP	DHCP 服务器	68	DHCP	DHCP 客户端
161	SNMP	轮询端口	162	SNMP	陷阱端口
3389	远程桌面	远程桌面的服务端口			

16、DNS 服务器资源记录

- (1) SOA 记录: 指出权威域名服务器。
- (2) NS 记录: 指出区域内的所有 DNS 服务器。
- (3) A 记录: 也叫主机记录,是域名到 IPv4 地址的映射,用于正向解析。
- (4) PTR 记录: IP 地址到 DNS 名称的映射,用于反向解析。
- (6) MX 记录: 邮件交换记录, 用于定位邮件服务器。
- (7) CNAME 记录:别名记录,它实现将多个域名映射到同一台计算机。

17、服务质量 QOS

OoS 的模型包括以下三种:

尽力而为服务模型:网络尽最大的努力来发送报文。(缺省服务模型)

综合服务模型:通过资源预留协议 RSVP 实现,RSVP 具有单向性、由接收者向发送方的方向发起对中途的路由器资源预留的请求,并维护资源预留信息。

区分服务模型:根据服务要求对不同业务的数据进行分类,对报文按类进行优先级标记,然后有差别地提供服务。

18、Windows 的 ipconfig 命令

ipconfig/all:显示网卡的完整配置信息,包括 IP、MAC、网关等。

ipconfig /renew: 使网卡重新由 DHCP 服务获得 IP 地址。

ipconfig/release: 使网卡释放之前由 DHCP 服务器获得的 IP 地址。

ipconfig /displaydns:显示本机上的 DNS 的缓存内容。ipconfig /flushdns:刷新(或清除)本机上的 DNS 缓存。

19、RAID 技术

RAID0,磁盘利用率 100%,没有冗余,可靠性最差。

RAID1,磁盘利用率 50%,可靠性高。

RAID3,磁盘利用率(n-1)/n,有特定的奇偶校验盘,可靠性较高。

RAID5,磁盘利用率(n-1)/n,没有特定校验盘,校验数据分散存放在各个盘上。可靠性较高。

RAID10: RAID1 和 RAID0 的结合,先镜像再条带化。

RAID01: RAID0 和 RAID1 的结合, 先条带化再进行镜像。

20、存储区域网络

默认指 FC SAN,提供块级数据存储。需要部署光纤网络,还需要购买光纤交换机,因此组网部署稍显复杂,且其成本和管理难度是很多中小型企业无法达到的。

后来实现更为经济的 IP SAN,基于全以太网架构,组网部署较为简单,成本较低,但性能和 FC-SAN 相比较差,网络可靠性一般,适用于中小规模的非关键性存储业务。

21、常见的计算机病毒

常见病毒前缀有 trojan(木马病毒)、worm(蠕虫病毒)、macro(宏病毒)、script(脚本病毒)、Hack(黑客病毒)、win32(系统病毒)。

22、VPN 的类型

根据实现互联的层次,主要的 VPN 技术分为: 数据链路层 VPN: L2TP VPN、PPTP VPN 网络层 VPN: IPSEC VPN、GRE VPN

应用层 VPN: SSL VPN

23、Linux 服务器配置

DHCP 服务器主配置文件为: /etc/dhcp/dhcpd.conf

DNS 服务器主配置文件为: /etc/ named.conf

Samba 主要用于不同操作平台间文件和打印机共享。其主要配置文件是: /etc/samba/smb.conf FTP 服务器主配置文件为: /etc/vsftpd/vsftpd.conf

Apache 服务器实现 Linux 系统下配置 WWW 服务,其主配置文件为:/etc/httpd/conf/httpd.conf

24、距离矢量路由协议 RIP

版本: RIPv1、RIPv2

RIPv1: 仅支持有类路由,广播发送路由消息。

RIPv2: 支持路由聚合和 CIDR; 支持以组播方式(组播地址使用 224.0.0.9)发送更新报文而非 RIPv1中使用的广播,减少资源消耗。

路由更新周期: 30S,向邻居路由器发送自己的整个路由表。

以跳数作为唯一度量值,且最大为15跳,16跳即为不可达,因而只支持小型网络。

25、链路状态路由协议 OSPF

OSPF(开放式最短路径优先)是一种链路状态路由协议,使用 SPF 算法(Dijkstra 算法)计算路由,保证没有路由环路,使用带宽作为度量值,能选择出真正最佳路由,路由更新效率高,网络收敛快,适合于大中型网络。

OSPF 必须要有一个骨干区域 area0, 其他区域都与骨干区域直接连接。

IS-IS(中间系统到中间系统)协议类似 OSPF, 也是 AS 内动态路由协议。

26、访问控制列表 ACL 的分类

分类	编号范围	规则描述
基本	2000~2999	使用报文的源 IP 地址来定义规则
ACL		
高级	3000~3999	使用报文的源 IP 地址、目的 IP 地址、协议类型、TCP/UDP 源/目端口号等
ACL		来定义规则

27、网络地址转换 NAT

有三种:静态网络地址转换、动态地址转换和基于端口的网络地址转换(PAT、NAPT)。 静态网络地址转换:实现一对一映射(一个私有地址固定转换为某个公有地址),因此要维护一个公网的 地址池。

动态地址转换:实现一对一的转换,但不固定映射关系。

NAPT: 基于端口,实现"多对一的转换"。通常内网主机采用这种。

希赛官网: https://www.educity.cn/

冲刺班课程链接: https://www.educity.cn/zhibo/v20417499.html

■1\ 冲刺班服务内容 //■

直播冲刺课程

从考点考法出发,聚焦超高频考点(直播+回放)

冲刺班讲义

希赛版权冲刺班培训讲义 (纸质版)

智能题库

希赛智能题库做题权限(包括真题、模拟题、高频考点、 高频错题、章节练习、知识点练习等)

高频考点手册

集中归纳高频的考点和文字, 随身携带随时背记 (电子档)

终极点题

临门一脚, 展现精华考点

05

考前在线答疑指导

06

论文范文、论文指导和批改

论文范文、论文指导和批改

07

学员交流群

社群督学在线交流

08

扫码咨询 拿证快人一步 😭

