Analog Integrated Circuits Designs Single Ended Two Stage Miller Compensated OTA

Design No. 1							
Av	≥ 66 dB	PM	≥ 60°				
UGF	≥ 50 MHz	CL	1 pF				
Power Consumption	≤ 1mW	Reference Current	10 uA				

01 | Since no constrains on CMIR → Choose PMOS input devices as they gives better matching

02 | General considerations

- $\begin{array}{ll} \bullet & C_L = \alpha \times C_C \to \text{Choose} \ \alpha = 2 \\ \bullet & C_C = \beta \times C_{GS6} \to \text{Choose} \ \beta = 5 \\ \bullet & \omega_{p2}/\omega_u = \gamma \to \text{Choose} \ \gamma = 4 \to \text{Fastest Settling time without peaking} \end{array}$

$$\overline{03 \mid \omega_{\mathrm{u}}} = \omega_{\mathrm{p2}} / \gamma \approx \left({^{g_{\mathrm{m6}}} / _{2\pi \times C_L}} \right) \left({^{1} / \gamma} \right) = \left({^{g_{\mathrm{m6}}} / _{2\pi \times C_{GS6}}} \right) \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) = f_{T6} \left({^{1} / _{\alpha \times \beta \times \gamma}} \right) =$$

 $04 \mid \text{Bias M}_6 \text{ @MI} \rightarrow \text{$^{g_{m6}}$}/I_D = 16 \rightarrow L_6 = 420 \text{ nm} \rightarrow I_{D6} = 105.7 \text{ uA} \rightarrow W_6 = 25.4 \text{ um}, g_{m6} = 1.688 \text{ mS}, r_{o6} = 39 \text{ k}\Omega$

Sizing of Current Mirror M5

 $05 \mid$ Since no spec on CMRR \rightarrow Assume relatively long $L_5=2$ um and bias it in SI $^{g_{m5}}/_{I_D}$ 10 to get better mirroring

06 |
$$:A_{V2} = g_{m6} \times r_{o6} \parallel r_{o5} = 50 \rightarrow A_{V1} = {^A_V}/_{A_{V2}} = 40$$

Sizing of M3, M4

07 | :
$$^{\omega_{\rm p2}}/_{\omega_{\rm u}}$$
 = 4 \rightarrow $^{g_{\rm m6}}/_{g_{\rm m1}}$ = 8 \rightarrow $g_{\rm m1}$ = 210 uS

08~|~ Baising it in WI $~^{g_{m1}}\!/_{I_D}=19$ to maximize efficiency \rightarrow $I_{D1}=11~uA$ \rightarrow $I_{B1}=22~uA$

 $09 \mid \text{Set L}_{3,4} = \text{L}_6 = 420 \text{ nm} \rightarrow \frac{g_{\text{m}3,4}}{I_D} = \frac{g_{\text{m}6}}{I_D} \rightarrow \text{Cancel systematic offset} \rightarrow W_{3,4} = 2.7 \text{ um} \rightarrow r_{o3,4} = 310 \text{ k}\Omega$

$$10 \ | \ A_{V1} = g_{m1} \times r_{o1,2} \parallel r_{o3,4} = 40 \rightarrow r_{o1,2} = 495 \ \mathrm{k\Omega} \rightarrow {}^{g_{m1}} / _{g_{ds}} = 105$$

Sizing of M1, M2

$$11 \mid \because {}^{g_{m1}}/I_D = 19 \text{ and } {}^{g_{m1}}/g_{ds} = 105 \rightarrow L_{1,2} = 1.3 \text{ um} \rightarrow W_{1,2} = 57.5 \text{ um}, V_{SG1,2} = 315.5 \text{ mV}$$

Sizing of Current Mirror M7

Sizing Summary

	M1	M2	M3	M4	M5	M6	M7
L	1.3 um	1.3 um	420 nm	420 nm	2 um	420 nm	2 um
W	57.5 um	57.5 um	2.7 um	2.7 um	112.2 um	25.4 um	23.61 um
gmoverID	19	19	16	16	10	16	10

Test Bench and Results

01 | Test Bench

02 | DC Operating Points

03 | CM Input Range

04 | AC Open loop

05 | Common Mood Rejection Ratio

06 | AC Closed Loop

$\underline{\text{Results Summary}}$

Spec	Required	Achieved
Av	≥ 66 dB	66 dB
UGF	≥ 50 MHz	58 MHz
Power Consumption	≤ 1mW	150 uW
PM	≥ 60°	62.5°