

Unit 3.1

Introduction to combinational circuits. Boolean Algebra

- Boolean Algebra
- Logical Operations: OR, AND, XOR and NOT
- Boolean Algebra

Postulates

Theorems

- Logical functions. Canonical forms.
- Truth tables
- Universality of NAND and NOR gates

Departamento de Automática Universidad de Alcalá Fundamentals of Computer Technology

Boolean Algebra. Definition

- Boolean Algebra (after G. Boole 1779-1848): Algebra in which:
 - the logical variables can take just two values: (0 and 1).
 - Three **logical operations** are defined:
 - Logical negation, NOT
 - Logical addition. OR, +
 - Logical multiplication, AND. *
- It is the algebra that computers use

Logical operations

- OR

a	b	a OR b
0	0	0
0	1	1
1	0	1
1	1	1

- NOT

а	NOT a
0	1
1	0

- AND

а	b	a AND b
0	0	0
0	1	0
1	0	0
1	1	1

XOR

а	b	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Fundamentals of Computer Technology

Logical gates (I)

а	b	a OR b
0	0	0
0	1	1
1	0	1
1	1	1

а	b	a AND b
0	0	0
0	1	0
1	0	0
1	1	1

Represented as: a + b

Represented as: a · b

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Logical gates(II)

а	b	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

а	NOT a	
0	1	
1	0	

Represented as:

a **⊕** b

Represented as:

a

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Fundamentals of Computer Technology

Boolean Algebra Postulates

- 1. Commutative law.
 - a + b = b + a a * b = b * a
- 2. Distributive law
 - a*(b+c) = a*b + a*c
 - a+(b*c) = (a+b) * (a+c)
- 3. Identity element
 - a + 0 = a a * 1 = a
- 4. Complement
 - $a + \bar{a} = 1$ $a * \bar{a} = 0$

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Boolean Algebra Theorems

The following theorems can be proved out of the previous postulates

- 1. Idempotence:
 - a+a = a a*a = a
- 2. Commutativity:
 - $a + \overline{b} = b + a$ $a + \overline{b} = b + a$
- 3. Associativity:
 - a+(b+c) = (a+)b+c a*(b*c) = (a*b)*c
- 4. Distributivity:
 - $a^*(b+c) = a^*b + a^*c$ $a+(b^*c) = (a+b)^*(a+c)$

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Fundamentals of Computer Technology

Boolean Algebra Theorems

- 6. Absorption:
 - (a*b)+a = a (a+b)*a = a
- 8. Annihilator:
 - a+1 = 1 a*0 = 0
- 9. Double negation
 - $\bar{a} = a$
- 10. De Morgan's laws:
 - $\overline{a+b} = \overline{a} * \overline{b}$ $\overline{a*b} = \overline{a} + \overline{b}$

They make possible to shift from logical sums to logical products and viceversa

Boolean Algebra Logical functions. Canonical forms

 Logical functions: mathematical expression in terms of Boolean variables related by logical operations. Example:

$$f_1(c,b,a) = a + c \cdot b + c \cdot b \cdot a$$

- Canonical term: term in the function (product or sum) in which all variables (or their complement) appear.
- Canonical Function: Function in which all terms are canonical
- Minterm (Sum of Products, POS): canonical term in form of sum of products of variables (ej.: c·b·a).
 - Conversion: Multiply each non canonical term by the sum of missing variables (both natural and complemented).
- Maxterm (Product of Sum, POS): canonical term in form of product of sums of variables (ej.: c+b+a).
 - Conversion: Add to each non canonical term a product formed by the missing variables (both natural and complemented).

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Fundamentals of Computer Technology

Truth table

Way to represent a logical function in which the value of all combinations of variables appears. The canonical form can be easily obtained from it. Example:

$$f(c,b,a) = c \cdot b + c \cdot a$$

Truth table:

	с	b	a	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Universality of NAND and NOR (I)

NAND y NOR gates are universal: any logical function can be expressed just with NAND gates or just with NOR gates.

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

Fundamentals of Computer Technology

Universality of NAND and NOR (II)

- To build any circuit with NAND or NOR gates, double negation and De Morgan laws are used.
- Example:

 $f_1 = bc + d + \overline{e}$

With NAND

Switch to sums of products

with NOR

Switch to products of sums

Área de Arquitectura y Tecnología de Computadores Departamento de Automática Universidad de Alcalá

