Data-Driven Safety Quantification using Robust Optimization

Jared Miller, Mario Sznaier CSCL (ASU) October 18, 2023

Safety Example

Safety Example (Barrier/Density Function)

Safety Example (Distance Estimate)

Safety Example (Distance Estimate)

Safety Example (Crash Control Effort)

Motivation: Epidemic

Image credit to Mayo Clinic News Network

Problems Covered

Flow of Presentation

Review peak estimation problem and SOS methods

Observe common pattern (peak, distance, crash):

- Input-affine dynamics
- Semidefinite-representable uncertainty

Use structure to simplify Lie derivative constraint

Apply method data-driven systems analysis

Peak and Sum-of-Squares

Background

Peak Estimation Problem

Find maximum value of p(x) along trajectories

$$P^* = \sup_{t, x_0 \in X_0} p(x(t))$$

$$\dot{x}(t) = f(t, x(t)) \qquad t \in [0, T]$$

$$x(0) = x_0 \in X_0$$

Peak Function Program

Infinite dimensional linear program (Cho, Stockbridge, 2002)

Uses auxiliary function v(t,x)

$$d^* = \inf_{\gamma \in \mathbb{R}} \quad \gamma$$
 (1a)

$$\gamma \ge \nu(0, x) \qquad \forall x \in X_0 \tag{1b}$$

$$\mathcal{L}_f v(t, x) \le 0$$
 $\forall (t, x) \in [0, T] \times X$ (1c)

$$v(t,x) \ge p(x)$$
 $\forall (t,x) \in [0,T] \times X$ (1d)

$$v \in C^1([0,T] \times X) \tag{1e}$$

Lie Derivative $\mathcal{L}_f v(t,x) = \partial_t v + f(t,x) \cdot \nabla_x v$

 $P^* = d^*$ holds if $[0, T] \times X$ is compact, f Lipschitz

Auxiliary Evaluation along Optimal Trajectory

Optimal v(t,x) should be constant until peak is achieved

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS)

Box region X = [-2.5, 2.5], time $t \in [0, 5]$

Max. PSD size: $\binom{(n+1)+(d+\lfloor \deg f/2 \rfloor)}{n+1}$ (Fantuzzi, Goluskin, 2020)

Peak Estimation with Uncertainty

Dynamics
$$\dot{x} = f(t, x(t), w(t))$$

Uncertain process $w(t) \in W, \ \forall t \in [0, T]$

Time-dependent $w(\cdot)$ with no continuity assumptions

$$\mathcal{L}_{f(t,x,w)}v(t,x) \leq 0 \qquad \forall (t,x,w) \in \forall [0,T] \times X \times W$$

System with Uncertainty Example

$$\dot{x}(t) = [x_2(t), -x_1 w(t) - x_2(t) + x_1(t)^3/3]$$

 $w(t) \in [0.5, 1.5]$, no continuity

(Miller, Henrion, Sznaier, Korda, 2021)

Other types of Uncertainty Structures

- Switching Uncertainty
- Polytoptic Restriction
- Slew-Rate Bounded
- Discrete-Time
- Stochastic

Discrete dynamics with switching and time-dependent uncertainty

Robust Counterparts

Assumptions

Set $[0, T] \times X$ is compact

Uncertainty W is compact and convex

Dynamics f(t, x, w) are Lipschitz in $[0, T] \times X$

Input-affine
$$f(t, x, w) = f_0(t, x) + \sum_{\ell=1}^{L} w_\ell f_\ell(t, x)$$

Robust Counterpart Example: Box

(Ben-Tal, Nemirovskii, "Robust Optimization" 2009)

Original β -feasible problem with unknown $\|w\|_{\infty} \leq 1$

$$\forall w: a_0^T \beta + \sum_{\ell=1}^L w_\ell a_\ell^T \beta \le b_0 + \sum_{\ell=1}^L w_\ell b_\ell$$
 (2)

Equivalent program with w eliminated:

$$\max_{\|\mathbf{w}\|_{\infty} \le 1} \left(\sum_{\ell=1}^{L} w_{\ell} [\mathbf{a}_{\ell}^{\mathsf{T}} \beta - b] \right) \le b_0 - \mathbf{a}_0^{\mathsf{T}} \beta$$
 (3a)

$$\sum_{\ell=1}^{L} |a_{\ell}^{\mathsf{T}} \beta - b| \le b_0 - a_0^{\mathsf{T}} \beta \tag{3b}$$

Semidefinite-Representable (SDR) Set

Build up uncertainty set W using

$$\mathcal{K}_s$$
 Cone λ_s Lifting variable (A_s, G_s, e_s) Constraint description

Form the intersection

$$W = \cap_s \{ \exists \lambda_s \in \mathbb{R}^{q_s} : A_s w + G_s \lambda_s + e_s \in K_s \}$$

SDR: All $K_s \subseteq PSD$ cone (projections of spectahedra)

Robust Counterparts (General)

Original problem with SDR uncertainty

$$\forall w \in W: \qquad a_0^T \beta + \sum_{\ell=1}^L w_\ell a_\ell^T \beta \leq b_0 + \sum_{\ell=1}^L w_\ell b_\ell$$

Robust counterpart (sufficient condition)

$$\sum_{s=1}^{N_s} e_s^T \zeta_s + a_0^T \beta \le b_0$$

$$G_s^T \zeta_s = 0 \qquad \forall s = 1..N_s$$

$$\sum_{s=1}^{N_s} (A_s^T \zeta_s)_{\ell} + a_{\ell}^T \beta = b_{\ell} \qquad \forall \ell = 1..L$$

$$\zeta_s \in \mathcal{K}_s^* \qquad \forall s = 1..N_s.$$

Nonconservative if (K convex, pointed, non-polyhedral Slater)

Robust Counterparts (Parameter-Varying)

 $(A_s, G_s, e_s, a_0, a_\ell, b_0, b_\ell)$ now depends on parameter y

Strict robust inequality (with $\zeta(y)$ parameter-dependent):

$$\forall w \in W(y): \quad a_0^T(y)\beta + \sum_{\ell=1}^L w_\ell a_\ell(y)^T \beta < b_0(y) + \sum_{\ell=1}^L w_\ell b_\ell(y)$$

Sufficient conditions for nonconservatism (ζ l.s.c in y):

- 1. K_s convex, pointed, non-polyhedral Slater
- 2. *Y* is compact
- 3. (A_s, G_s, e_s) and $(a_0, a_\ell, b_0, b_\ell, e_s)$ continuous in y
- 4. Exists $\zeta(y) > 0$ such that $[A^T; G^T]\zeta(y) = 0$ for all y

Robust Counterparts for Lie Constraint

Original strict constraint

$$\mathcal{L}_f v(t, x, w) < 0$$
 $\forall (t, x, w) \in [0, T] \times X \times W$

Specific with $a_0, a_\ell = 0, \ b_0 = \mathcal{L}_{f_0} v, \ b_\ell = f_\ell \cdot \nabla_{\scriptscriptstyle X} v$

Robust counterpart with multipliers ζ

$$\mathcal{L}_{f_0} v(t, x) + \sum_{s=1}^{N_s} e_s^T \zeta_s(t, x) < 0 \qquad \forall [0, T] \times X$$

$$G_s^T \zeta_s(t, x) = 0 \qquad \forall s = 1..N_s$$

$$\sum_{s=1}^{N_s} (A_s^T \zeta_s(t, x))_{\ell} + f_{\ell}(t, x) \cdot \nabla_x v(t, x) = 0 \quad \forall \ell = 1..L$$

$$\zeta_s(t, x) \in \mathcal{K}_s^* \qquad \forall s = 1..N_s$$

Conditions for Nonconservatism

Strict robust Lie constraint nonconservative if:

- 1. K_s convex, pointed, non-polyhedral Slater
- 2. $[0, T] \times X$ is compact
- 3. $(A_s, G_s, f_0, f_\ell, e_s)$ continuous in (t, x)

If f_0, f_ℓ polynomial, then $\zeta(t, x)$ can be polynomial

Peak Decomposed Program

Example: Polytopic uncertainty $W = \{w \mid Aw \leq b\}$

Only the Lie Derivative constraint changes

$$d^* = \min_{\gamma \in \mathbb{R}} \gamma$$
 $\gamma \geq v(0, x)$ $\forall x \in X_0$
 $\mathcal{L}_{f_0} v(t, x) + b^T \zeta(t, x) \leq 0$ $\forall (t, x) \in [0, T] \times X$
 $(A^T)_{\ell} \zeta(t, x) = (f_{\ell} \cdot \nabla_x) v(t, x)$ $\forall \ell = 1..L$
 $v(t, x) \geq p(x)$ $\forall (t, x) \in [0, T] \times X$
 $v(t, x) \in C^1([0, T] \times X)$
 $\zeta_k(t, x) \in C_+([0, T] \times X)$ $\forall k = 1..m$

Applicable to any SDR W

Complexity and Input-Affine Structure

Assume input-affine $f(t, x, w) = f_0(t, x) + \sum_{\ell=1}^{L} w_{\ell} f_{\ell}(t, x)$ Size of largest PSD matrix in degree-d SDP:

Original
$$\binom{1+n+L+d+\lceil \deg(f)/2\rceil-1}{1+n+L} = \binom{18}{13} = 8568$$

Decomposed
$$\binom{1+n+d+\lceil \deg(f)/2\rceil-1}{1+N_x} = \binom{8}{3} = 56$$

Values with d = 4, L = 10, n = 2

W polytope with 33 faces, 7534 vertices

Data-Driven Analysis

Sampling: Flow System

Data $\mathcal{D} = \{(t_j, x_j, \dot{x}_j)\}_j$ under mixed L_{∞} -bounded noise

Dynamics Model

Given data \mathcal{D} , budget ϵ , system model $\{f_0, f_\ell\}$

Parameterize ground truth F by functions in dictionary

$$\dot{x}(t) = f(t, x, w) = f_0(t, x) + \sum_{\ell=1}^{L} w_{\ell} f_{\ell}(t, x)$$

Ground truth satisfies corruption $J(w^*) \leq \epsilon$

 L_{∞} example: $J(w) = \mathsf{max}_j \| f(t_j, x_j, w) - \dot{x}_j \|_{\infty} o w$ -polytope

Peak Estimation Examples

Elliptope Constraint on Input

$$W = \left\{ w \in \mathbb{R}^3 : egin{bmatrix} 1 & w_1 & w_2 \ w_1 & 1 & w_3 \ w_2 & w_3 & 1 \end{bmatrix} \succeq 0
ight\}.$$

Image credit: Dattoro

Peak Estimation Example (Flow-Elliptope)

$$f(t,x,w) = \begin{bmatrix} x_2 \\ -x_1 - x_2 + x_1^3/3 + w_1x_1 + w_2x_1x_2 + w_3x_3 \end{bmatrix}$$

Uses polynomial matrix inequalies of size 3×3

Peak Estimation Example (Flow)

Peak Estimation Example (Flow)

$$L=1, m=80$$
 (2 nonredundant)

Peak Estimation Example (Flow)

$$L=10, m=80$$
 (33 nonredundant)

Distance Estimation

Unsafe set X_u , point-set distance $c(x; X_u) = \inf_{y \in X_u} c(x, y)$

$$P^* = \sup_{t, x_0 \in X_0, w} -c(x(t \mid x_0); X_u)$$
$$\dot{x}(t) = f(t, x(t), w(t)) \qquad \forall t \in [0, T], \quad x(0) = x_0$$

Polynomial-expressible constraints with $\phi(x)$

$$v(t,x) \ge \phi(x)$$
 $\forall (t,x) \in [0,T] \times X$
 $\phi(x) \ge -c(x,y)$ $\forall (x,y) \in X \times X_u$

No change to Lie derivative $\mathcal{L}_f v(t, x, w) \leq 0$

Distance Estimation Example (Flow)

$$L = 10, m = 80$$
 (33 nonredundant)

Dynamics model:

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

100 Noisy Observations with ϵ =0.5

$$m = 2N_sN_x = 600$$
 constraints

Unknown A, Known B

$$L = 9$$
, $m = 600$ (34 nonredundant)

Known A, Unknown B

$$L=9, m=600 (30 \text{ nonredundant})$$

Reachable Set Estimation Example (Twist)

Unknown A, Known B

$$L = 9$$
, $m = 600$ (34 nonredundant)

Crash-Safety

Crash-Safety

Corruption in L_{∞} -bounded setting

$$J(w) = \max_{k} \|f_0(t_k, x_k) + \sum_{\ell=1}^{L} w_\ell f_\ell(t_k, x_k) - y_k\|_{\infty}$$
$$= \max(h - \Gamma w) \quad \text{for some polytope } (\Gamma, h)$$

How much data corruption is needed to crash?

$$Q^* = \inf_{t, x_0, w} \sup_{t' \in [0, t]} J(w(t'))$$

$$\dot{x}(t') = f(t', x(t'), w(t')) \qquad \forall t' \in [0, T]$$

$$x(t \mid x_0, w(\cdot)) \in X_u$$

$$w(\cdot) \in W, \ t \in [0, T], \ x_0 \in X_0$$

Example Crash-Bounds

Two trajectories have same distance, different crash-bounds

Green-Top $Q^* = 0.316$, Yellow-Bottom $Q^* = 0.622$

Peak Minimizing Control

Find minimum bound on the maximum p value

Crash-safety is Peak Minimizing Control

Peak-Minimizing Control

Add state $\dot{z} = 0$ (Molina, Rapaport, Ramírez 2022)

$$Q_{z}^{*} = \inf_{t, x_{0}, z, w} z$$

$$\dot{x}(t') = f(t', x(t'), w(t')) \qquad \forall t' \in [0, T]$$

$$\dot{z}(t') = 0 \qquad \forall t' \in [0, T]$$

$$J(w(t')) \leq z \qquad \forall t' \in [0, T]$$

$$x(t \mid x_{0}, w(\cdot)) \in X_{u}$$

$$w(\cdot) \in W, \ t \in [0, T]$$

$$x_{0} \in X_{0}, z \in [0, J_{max}]$$

Drive down the z-upper-bound on J(w)

Crash-Bound Program

Consistency sets

$$Z = [0, J_{\text{max}}]$$
 $\Omega = \{(w, z) \in W \times Z : J(w) \leq z\}.$

Optimal Control Problem with auxiliary $v(t, x, z) \in C^1$

$$d^* = \sup_{\gamma \in \mathbb{R}, \ v} \gamma$$

$$v(0, x, z) \ge \gamma \qquad \forall (x, z) \in X_0 \times Z$$

$$v(t, x, z) \le z \qquad \forall (t, x, z) \in [0, T] \times X_u \times Z$$

$$\mathcal{L}_f v(t, x, z, w) \ge 0 \quad \forall (t, x, z, w) \in [0, T] \times X \times \Omega$$

Crash Lie-decomposition

Exploit affine structure of $J(w) = \max_{j} (h - \Gamma w)_{j}$

Nonconservatively robustified Lie constraint

$$d^* = \sup_{\gamma \in \mathbb{R}, \ v} \gamma$$

$$v(0, x, z) \ge \gamma \qquad \forall (x, z) \in X_0 \times Z$$

$$v(t, x, z) \le z \qquad \forall (t, x, z) \in [0, T] \times X_u \times Z$$

$$\mathcal{L}_{f_0} v - (z\mathbf{1} + h)^T \zeta \ge 0 \qquad \forall (t, x, z) \in [0, T] \times X \times [0, J_{\text{max}}]$$

$$(\Gamma^T)_{\ell} \zeta + f_{\ell} \cdot \nabla_x v = 0 \qquad \forall \ell = 1..L$$

$$\zeta_j \in C_+([0, T] \times X \times Z) \quad \forall j = 1..2nT$$

Data-Driven Flow Crash-Bound

CasADi trajectory matches SOS crash bound

Degree-4 crash bound also 0.5499

True $\epsilon = 0.5$, distance ≈ 0.2014

Flow Crash-Subvalue

Lower bound q(x) for corruption needed to crash $(Q_{\sf max} < \infty)$

$$J^* = \sup \int_X q(x) dx$$

$$v(0, x, z) \ge q(x) \qquad \forall (x, z) \in X \times [0, Z_{\text{max}}]$$

$$q(x) \le Q_{\text{max}} \qquad \forall x \in X$$

$$z \ge v(t, x, z) \qquad \forall (t, x, z) \in [0, T] \times X_u \times Z$$

$$\mathcal{L}_f v(t, x, z, w) \ge 0 \qquad \forall (t, x, z, w) \in [0, T] \times X \times \Omega$$

$$v \in C^1([0, T] \times X \times Z)$$

$$q \in C(X)$$

Based on Joint+Marginal optimization (Lasserre, 2010)

Flow Crash-Subvalue

Piecewise-polynomial subvalue

$$q_{1:d}(x) = \max(-I_u(x), \max_{d' \in 1...d} q_{d'}(x))$$

Bound of 0.3399 \leq 0.5499, but valid everywhere in X

Take-aways

Conclusion

Tractable safety quantification problems

More SOS constraints in fewer variables

Data-driven estimates given semidefinite-bounded noise

Other applications

- Barrier Functions
- Maximum controlled invariant sets
- Hybrid systems
- Set-set (shape) distance estimation
- Distance-maximizing control
- Reachable set estimation

Safety is Important

Quantify using Peak Estimation

Extra Material

Preprocessing: Centering

Chebyshev center c: center of sphere with largest radius in W

Find through linear programming

$$\max r$$

$$A_k c + r ||A_k||_2 \le b_k \qquad \forall k$$

$$r \geq 0, c \in \mathbb{R}^L$$

Shifted dynamics $f_0 \leftarrow f_0 + \sum_{\ell=1}^L c_\ell f_\ell$

Preprocessing: Redundancy

Majority of $m = 2N_x N_s$ constraints are often redundant

Convex hull of dual polytope: Time: $\Omega(m \log m + m^{\lfloor L/2 \rfloor})$

Linear program per constraint: Time: $m \times \tilde{O}(mL + L^3)$ (Jan van den Brand *et. al.* 2020)

Polynomial Matrix Inequalities

```
SOS method (scalar): q(x) \ge 0
```

Extend to matrices
$$Q(x) \in \mathbb{S}^s_{++}$$

SOS matrix:
$$Q(x) = R(x)^T R(x) \in \Sigma^s[x]$$
 for matrix $R(x)$

Gram matrix (PSD) constraint of size $s\binom{n+d}{d}$

Scherer Psatz: nonnegativity over constraint sets