

Preliminary

+3 Volt, Parallel-Input, Dual, 12-/10-Bit DACs

AD7396/AD7397

FEATURES

Micro Power - 100μA/DAC 0.1μA Typical Power Shutdown Single-Supply +2.7 to +5.5 Volt Operation Compact 1.1mm Height TSSOP-24 Package AD7396 – 12-bit Resolution AD7397 – 10-bit Resolution 0.9 LSB Differential Nonlinearity Error

APPLICATIONS

Automotive 0.5 to 4.5V Output Span Voltage Portable Communications Digitally Controlled Calibration PC Peripherals

GENERAL DESCRIPTION

The AD7396/97 family of dual, 12 & 10-bit voltage-output digital-to-analog converters are designed to operate from a single +3 volt supply. Built using a CBCMOS process, these monolithic DACs offer the user low cost, and ease-of-use in single-supply +3 volt systems. Operation is guaranteed over the supply voltage range of +2.7 to +5.5V making this device ideal for battery operated applications.

A 12-bit wide data latch loads with a 45ns write time allowing interface to fast processors without wait states. The doublebuffered input structure allows the user to load the input registers one at a time, then a single load strobe tied to both LDA+LDB inputs will update both DAC outputs simultaneously. LDA and LDB can also be activated independently to immediately update their respective DAC registers. An address input (A/B) decodes DACA or DACB when the chip select CS input is strobed. Additionally, an asynchronous RS input sets the output to zero-scale at power on or upon user demand. Power shutdown to sub microamp levels is directly controlled by the active low SHDN pin. While in the power shutdown state register data can still be changed even though the output buffer is in an open circuit state. Upon return to the normal operating state the latest data loaded in the DAC register will establish the output voltage.

Both parts are offered in the same pin out to allow users to select the amount of resolution appropriate for their applications without circuit card changes.

The AD7396/97 are specified for operation over the extended industrial (-40°C to +85°C) temperature range. The AD7397AR is specified for the -40°C to +125°C automotive temperature range. AD7396/97's are available in plastic DIP, and 24-lead SOIC packages. The AD7397ARU is available for ultra-compact applications in a thin 1.1mm height TSSOP-24 package.

FUNCTIONAL DIAGRAM

REV. 0.14

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.

Tel: 617/329-4700 Fax:617/326-8703 Twx:710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

AD7396 Rev 0.14 1 6/23/97

AD7396 12-Bit ELECTRICAL CHARACTERISTICS at V_{REF} in = 2.5V, -40°C < T_A < +85°C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	3V±10%	5V±10%	UNITS
STATIC PERFORMANCE					
Resolution ¹	N		12	12	Bits
Relative Accuracy ²	INL	$T_A = 25^{\circ}C$	±1.8	±1.8	LSB max
Relative Accuracy ²	INL	$T_A = -40^{\circ}C, +85^{\circ}C$	±3.0	±3.0	LSB max
Differential Nonlinearity ²	DNL	$T_A = 25$ °C, Monotonic	±0.9	±0.9	LSB max
Differential Nonlinearity ²	DNL	Monotonic	±1	±l	LSB max
Zero-Scale Error	V_{ZSE}	Data = 000_{H} , $T_{\text{A}} = 25^{\circ}\text{C}$, 85°C	4.0	4.0	mV max
Zero-Scale Error	V_{ZSE}	Data = 000_{H} , $T_A = -40^{\circ}C$	8.0	8.0	mV max
Full-Scale Voltage Error	$V_{ m FSE}$	$T_A = 25$ °C, 85 °C, Data = FFF_H	±8	±8	mV max
Full-Scale Voltage Error	V_{FSE}	$T_A = -40$ °C, Data = FFF _H	±20	±20	mVmax
Full-Scale Tempco ³	TCV_{FS}		28	28	ppm/°C typ
REFERENCE INPUT					
V _{REF} in Range	$V_{ m REF}$		$0/V_{ m DD}$	0/V _{DD}	V min/max
Input Resistance	R_{REF}		2.5	2.5	$M\Omega$ typ ⁴
Input Capacitance ³	C_{REF}		5	5	pF typ
ANALOG OUTPUT					
Output Current (source)	I_{OUT}	Data = 800_{H} , $\Delta V_{\text{OUT}} = 5 \text{LSB}$	1	1	mA typ
Output Current (sink)	I_{OUT}	Data = 800_H , $\Delta V_{OUT} = 5LSB$	3	3	mA typ
Capacitive Load ³	$C_{ m L}$	No Oscillation	100	100	pF typ
LOGIC INPUTS	_				
Logic Input Low Voltage	$ m V_{IL}$		0.5	0.8	V max
Logic Input High Voltage	$ m V_{IH}$		V_{DD} -0.6	V _{DD} -0.6	V min
Input Leakage Current	${ m I}_{ m IL}$		10	10	μA max
Input Capacitance ³	C_{IL}		10	10	pF max
INTERFACE TIMING ^{3,5}					
Chip Select Write Width	t_{CS}		45	45	ns min
DAC Select Setup	t_{AS}		30	30	ns min
DAC Select Hold	t_{AH}		0	0	ns min
Data Setup	t_{DS}		30	15	ns min
Data Hold	t_{DH}		20	5	ns min
Load Setup	t_{LS}		20	20	ns min
Load Hold	t _{LH}		10	10	ns min
Load Pulse Width Reset Pulse Width	t _{LDW}		30 40	30 30	ns min ns min
AC CHARACTERISTICS	t_{RS}		40	30	118 111111
Output Slew Rate	SR	Data = $000_{\rm H}$ to $FFF_{\rm H}$ to $000_{\rm H}$	0.05	0.05	V/μs typ
Settling Time ⁶		To ±0.1% of Full Scale	70	60	μs typ
Shutdown Recovery Time	t _S	20 20.170 Of 1 art beare	'0	80	μs typ μs typ
DAC Glitch	t _{SDR} Q	Code 7FF _H to 800 _H to 7FF _H	65	65	nVs typ
Digital Feedthrough	Q	COGC TITH GOODH GO TITH	15	15	nVs typ
Feedthrough		$V_{REF} = 1.5V_{DC} + 1V_{P-P}$, Data = 000_{H} , f= $100KHz$	-63	-63	dB typ
SUPPLY CHARACTERIST		^^			
Power Supply Range	V _{DD RANGE}	DNL<±1LSB	2.7/5.5	2.7/5.5	V min/max
Positive Supply Current	I_{DD}	$V_{IL} = 0V$, No Load	/200	/200	μΑ typ/max
Shutdown Supply Current	I_{DD_SD}	SHDN=0, $V_{IL} = 0V$, No Load	0.1/1.5	0.1/1.5	μA typ/max
Power Dissipation	P_{DISS}	$V_{IL} = 0V$, No Load	600	1000	μW max
Power Supply Sensitivity	PSS	$\Delta V_{DD} = \pm 5\%$	0.003	0.006	%/% max
NOTES:		22			

NOTES:

- 1. One LSB = $V_{REF}/4096V$ for the 12-bit AD7396.
- 2. The first two codes (000 $_{\mbox{\scriptsize H}}$, 001 $_{\mbox{\scriptsize H}}$) are excluded from the linearity error measurement.
- 3. These parameters are guaranteed by design and not subject to production testing.
- Typicals represent average readings measured at 25°C.
- 5. All input control signals are specified with $t_R = t_F = 2 \text{ns} (10\% \text{ to } 90\% \text{ of } +3\text{V})$ and timed from a voltage level of 1.6V.
- 6. The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.

AD7397 10-Bit ELECTRICAL CHARACTERISTICS at V_{REF} in = 2.5V, -40°C < T_A < +85°C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	3V±10%	5V±10%	UNITS	
STATIC PERFORMANCE						
Resolution ¹	N		10	10	Bits	
Relative Accuracy ²	INL	$T_A = 25^{\circ}C$	±1.5	±1.5	LSB max	
Relative Accuracy ²	INL	$T_A = -40^{\circ}C, 85^{\circ}C, 125^{\circ}C$	±2.0	±2.0	LSB max	
Differential Nonlinearity ²	DNL	Monotonic	±0.8	±0.8	LSB max	
Zero-Scale Error	V_{ZSE}	$Data = 000_{H}$	9.0	9.0	mV max	
Full-Scale Voltage Error	$V_{ m FSE}$	$T_A = 25$ °C, 85°C, 125°C, Data = 3FF _H	±32	±32	mV max	
Full-Scale Voltage Error	V_{FSE}	$T_A = -40$ °C, Data = $3FF_H$	±42	±42	mV max	
Full-Scale Tempco ⁴	TCV_{FS}		28	28	ppm/°C typ	
REFERENCE INPUT						
V _{REF} in Range	$V_{ m REF}$		$0/V_{ m DD}$	0/V _{DD}	V min/max	
Input Resistance	R_{REF}		2.5	2.5	MΩ typ ⁴	
Input Capacitance ³	C_{REF}		5	5	pF typ	
ANALOG OUTPUT						
Output Current (source)	I_{OUT}	Data = 200_{H} , $\Delta V_{\text{OUT}} = 5L\text{SB}$	1	1	mA typ	
Output Current (sink)	I_{OUT}	Data = 200_{H} , $\Delta V_{\text{OUT}} = 5 \text{LSB}$	3	3	mA typ	
Capacitive Load ³	C_{L}	No Oscillation	100	100	pF typ	
LOGIC INPUTS						
Logic Input Low Voltage	$V_{ m IL}$		0.5	0.8	V min	
Logic Input High Voltage	V_{IH}		V_{DD} -0.6	V_{DD} -0.6	V max	
Input Leakage Current	$\mathbf{I}_{\mathbf{IL}}$		10	10	μA max	
Input Capacitance ³	C_{IL}		10	10	pF max	
INTERFACE TIMING ^{3,5}						
Chip Select Write Width	t_{CS}		45	45	ns min	
DAC Select Setup	t_{AS}		30	30	ns min	
DAC Select Hold	t_{AH}		0	0	ns min	
Data Setup	t_{DS}		30	15	ns min	
Data Hold	t_{DH}		20	5	ns min	
Load Setup	t_{LS}		20	20	ns min	
Load Hold Load Pulse Width	t _{LH}		10 30	10 30	ns min ns min	
Reset Pulse Width	t _{LDW} t _{RS}		40	30	ns min	
AC CHARACTERISTICS	-KS		10	50	110 11111	
Output Slew Rate	SR	Data = $000_{\rm H}$ to $3FF_{\rm H}$ to $000_{\rm H}$	0.05	0.05	V/μs typ	
Settling Time ⁶	t_S	To ±0.1% of Full Scale	70	60	μs typ	
Shutdown Recovery Time	t _{SDR}		'	80	μs typ	
DAC Glitch	Q	Code 7FF _H to 800 _H to 7FF _H	65	65	nVs typ	
Digital Feedthrough	Q		15	15	nVs typ	
Feedthrough	V _{OUT} /V _{REF}	$V_{REF} = 1.5V_{DC} + 1V_{P-P}$, Data = 000 _H , f=100KHz	-63	-63	dB typ	
SUPPLY CHARACTERISTICS						
Power Supply Range	$V_{ m DDRANGE}$	DNL<±1LSB	2.7/5.5	2.7/5.5	V min/max	
Positive Supply Current	I_{DD}	$V_{IL} = 0V$, No Load	/200	/200	μΑ typ/max	
Shutdown Supply Current	$I_{\mathrm{DD_SD}}$	$SHDN=0$, $V_{IL}=0V$, No Load	0.1/1.5	0.1/1.5	μA max	
Power Dissipation	P_{DISS}	$V_{IL} = 0V$, No Load	600	1000	μW max	
Power Supply Sensitivity	PSS	$\Delta V_{DD} = \pm 5\%$	0.003	0.006	%/% max	

NOTES:

- 1. One LSB = $V_{REF}/1024V$ for the 10-bit AD7397.
- 2. The first two codes $(000_{\mbox{H}}, 001_{\mbox{H}})$ are excluded from the linearity error measurement.
- 3. These parameters are guaranteed by design and not subject to production testing.
- Typicals represent average readings measured at 25°C.
- 5. All input control signals are specified with $t_R = t_F = 2 \text{ns} (10\% \text{ to } 90\% \text{ of } +3\text{V})$ and timed from a voltage level of 1.6V.
- 6. The settling time specification does not apply for negative going transitions within the last 3 LSBs of ground.

ABSOLUTE MAXIMUM RATINGS

V_{DD} to GND0.3V, +8V
VREF to GND0.3V, V_{DD}
Logic Inputs to GND0.3V, +8V
V_{OUT} to GND0.3V, V_{DD} + 0.3V
AGND to DGND0.3V, +2V
I _{OUT} Short Circuit to GND50mA
Package Power Dissipation $(T_J \text{ MAX} - T_A)/\theta_{JA}$
Thermal Resistance θ_{JA}
24-Pin Plastic D1P Package (N-24)63°C/W
24-Lead SOIC Package (R-24)70°C/W
24-Lead Thin-Shrink Surface Mount (RU-24)143°C/W
Maximum Junction Temperature (T _J MAX) 150°C
Operating Temperature Range40°C to +85°C
AD7397AR only—40°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature:
N-24 (Soldering, 10 secs)+300°C
R-24 (Vapor Phase, 60 secs)+215°C
RU-24 (Infrared, 15 secs)+224°C

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN DESCRIPTION

		FIN DESCRIPTION
<u>#</u>	<u>Name</u>	<u>Function</u>
1	V_{OUTA}	DAC A voltage output.
2	AGND	Analog ground.
3	DGND	Digital ground.
4	LDA	Load DAC A register strobes. Transfers input
		register data to the DAC A register. Active low
		inputs, Level sensitive latch. May be connected
		together with LDB to double-buffer load both
		DAC registers simultaneously.
5	SHDN	Power Shutdown active low input. DAC register
		contents are saved as long as power stays on the
		$ m V_{DD}$ pin.
6	RS	Resets DAC register to zero condition.
		Asynchronous active low input.
7-1	8 D0-D11	12 parallel input data bits. D11=MSB pin 18,
		D0=LSB pin 7, AD7396.
,	N/C	No connect pins 7 & 8 on the AD7397 only.
9-1	8 D0-D9	10 parallel input data bits. D9=MSB.pin 18,
		D0=LSB pin 9, AD7397 only.
19	CS	Chip Select latch enable, active low.
20	A/B	DAC register Address Select DACA=0 or
		DACB=1
21	LDB	Load DAC B register strobes. Transfers input
		register data to the DAC B register. Active low
		inputs, Level sensitive latch. May be connected
		together with LDA to double-buffer load both
22	* 7	DAC registers simultaneously.
22	$V_{ m DD}$	Positive power supply input. Specified range of
22	* 7	operation +2.7 to +5.5V.
23	V_{REFIN}	DAC reference input pin. Establishes DAC full-
		scale voltage.

DAC B voltage output.

 V_{OUTB}

PIN CONFIGURATION

AD7	396	AD7397	
VOUTA 1 AGND 2 DGND 3 LDA 4 SHDN 5 RS 6 D0 7 D1 8 D2 9 D3 10	24 VOUTB 23 VREFin 22 VDD 21 LDB 20 A/B 19 CS 18 D11 17 D10 15 D9 15 D9	VOUTA 1 AGND 2 DGND 3 LDA 4 SHDN 5 RS 6 N/C 7 N/C 8 D0 9 D1 10	24 VOUTB 23 VREF in 22 VDD 21 LDB 20 A/B 19 CS 18 D9 17 D9 16 D7 15 D6
D4 11 D5 12	14 D7 13 D6	D2 11 D3 12	14 D5 13 D4

ORDERING GUIDE:

MODEL	RES (LSB)	TEMP	Package Description	Package Option
AD7396AN	12		24-pin P-DIP	N-24
AD7396AR	12		24-lead SOIC	R-24
AD7397AN	10	-40/+125°C	24-pin P-DIP	N-24
AD7397AR	10		24-lead SOIC	R-24
AD7397ARU	10		TSSOP-24	TSSOP-24

The AD7396/97 contains xxx transistors. The die size measures 90 mil X 107 mil = 9630 sq mil.

Figure 3. Timing Diagram

Figure 4. Digital Control Logic

Control Logic Truth Table

	Control Logic Trath Table						
						Input	DAC
CS	A/B	LDA	LDB	RS	SHDN	Register	Register
L	L	Н	Н	Н	Χ	Write to A	Latched
L	Н	Н	Н	Н	Χ	Write to B	Latched
L	L	L	Н	Н	Χ	Write to A	A Transparent
L	Н	Н	L	Н	Χ	Write to B	B Transparent
Н	Χ	L	L	Н	Χ	Latched	A & B Transparent
Н	Χ	٨	٨	Н	Χ	Latched	Latched
Χ	Χ	Χ	Χ	L	Χ	Reset to Zero Scale	Reset to Zero Scale
Н	Χ	Χ	Χ	٨	Χ	Latch Reset Value	Latch Reset Value

[^] Denotes positive edge. The SHDN pin has no effect on the digital interface data loading; however, while in the SHDN state (SHDN=0) the output amplifiers V_{OUTA} & V_{OUTB} exhibit an open circuit conditon.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7396/AD7397 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Mechanical Outline Dimensions

Dimensions shown in inches and (mm).

24-Pin SOIC Package (SOL-24)

24-Pin Narrow Body Plastic DIP Package (N-24)

24-Lead Thin Surface Mount TSSOP Package (RU-24)

