Chapter 7 Calculs algébriques

7.1 Le symbole somme \sum

Exercice 7.1

Comparer les cinq sommes suivantes

$$S_{1} = \sum_{k=1}^{4} k^{3}$$

$$S_{2} = \sum_{n=1}^{4} n^{3}$$

$$S_{3} = \sum_{k=0}^{4} k^{3}$$

$$S_{4} = \sum_{k=2}^{5} (k-1)^{3}$$

$$S_{5} = \sum_{k=1}^{4} (5-k)^{3}$$

Exercice 7.2

1. Montrer par récurrence

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

2. Calculer le nombre de carrés que l'on peut dessiner sur un échiquier 8×8 (les côtés sont parallèles aux bords de l'échiquier et les sommets sont des sommets des cases de l'échiquier). Généraliser avec un échiquier $n \times n$.

Exercice 7.3

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_0 = 1$$
 et $u_{n+1} = \sum_{k=0}^{n} u_k$.

Montrer par récurrence (avec prédécesseurs) que pour tout $n \ge 1$, on a $u_n = 2^{n-1}$.

Exercice 7.4

Compléter les égalités suivantes.

1.
$$\sum_{k=1}^{10} k^2 = \sum_{k=1}^{9} k^2 + \cdots$$

$$2. \sum_{k=0}^{10} 2^k = \sum_{k=1}^{10} 2^k + \cdots$$

3.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{\dots} \frac{1}{l-2}.$$

4.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{k=5}^{7} \frac{1}{\dots}.$$

5.
$$\sum_{k=1}^{7} \frac{k+1}{2^k} = \sum_{k=\cdots}^{\cdots} \frac{k+3}{2^{k+2}}.$$

6.
$$\sum_{k=1}^{5} (-1)^k \frac{k}{(k-1)!} = \sum_{k=\cdots}^{\cdots} (-1)^{k+1} \frac{k+1}{k!}.$$

7.
$$\sum_{k=1}^{3} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{k=0}^{2} \cdots$$

8.
$$\sum_{k=\cdots}^{\infty} (-1)^k \frac{2k}{k+1} = \sum_{k=2}^{5} (-1)^{\cdots} \frac{\cdots}{k}$$
.

Exercice 7.5

Simplifier, pour $n \in \mathbb{N}^*$, les sommes suivantes.

1.
$$\sum_{k=1}^{n+1} k - \sum_{l=0}^{n} l;$$

3.
$$\sum_{k=1}^{n} k(k-1)$$
;

2.
$$\sum_{k=0}^{n} (2k+1);$$

3.
$$\sum_{k=1}^{n} k(k-1)$$
;
4. $\sum_{k=1}^{n} k(k+1)(k+2)$.

En remarquant que l'on peut écrire

$$\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1},$$

où a, b sont des constantes à déterminer, simplifier la somme

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Exercice 7.7

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre complexes et $4\leq p\leq q$ deux entiers naturels. Simplifier la somme

$$\sum_{k=p-3}^{q-1}(u_{k+1}-u_{k-1})$$

Exercice 7.8

Calculer

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right).$$

Exercice 7.9

1. Montrer

$$\forall n \in \mathbb{N}^{\star}, \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}.$$

2. En déduire la partie entière de

$$\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{10000}}\right).$$

Exercice 7.10

1. Établir que pour tout $k \in \mathbb{N}^*$,

$$\arctan\left(\frac{1}{k^2+k+1}\right) = \arctan\frac{1}{k} - \arctan\frac{1}{k+1}.$$

2. Soit $n \in \mathbb{N}$. Calculer la valeur de la somme

$$S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right).$$

3. En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

7.2 Sommes usuelles

Exercice 7.11

Calculer

1.
$$\sum_{k=1}^{n} k$$
.

4.
$$\sum_{k=1}^{n} n$$
.

7.
$$\prod_{k=1}^{n} i$$
.

2.
$$\sum_{i=1}^{n} k$$
.

$$5. \prod_{k=1}^{n} k$$

8.
$$\prod_{l=1}^{n} n$$

3.
$$\sum_{k=1}^{n} i$$
.

$$6. \prod_{i=1}^{n} k.$$

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

- 1. Montrer que $1 e^x = -2e^{x/2} \sinh \frac{x}{2}$.
- 2. Simplifier

$$\sum_{k=0}^{n} \operatorname{ch}(kx).$$

On exprimera le résultat avec les fonctions ch et sh.

Exercice 7.13

Développer.

1.
$$(a+b)^7$$
.

2.
$$(1-3x)^5$$
.

Exercice 7.14

Calculer le coefficient de x^3 dans le développement de

$$\left(2x-\frac{1}{4x^2}\right)^{12}.$$

Exercice 7.15

Calculer.

- 1. Le terme en x^5 du développement de $(x-2)^8$.
- **2.** Le terme en x^{20} du développement de $(x^2 y^2)^{14}$.
- 3. Le terme en x^6 du développement de $(3 4x^2)^5$.
- **4.** Le terme en x^4 et le terme en x^6 du développement de $\left(x^2 + \frac{1}{x}\right)^{14}$.

Exercice 7.16

Déterminer a afin que le coefficient du terme en x^4 , dans le développement de

$$\left(x + \frac{a}{x^2}\right)^7$$

soit égal à 14.

Exercice 7.17

En utilisant la formule du binôme de Newton, calculer 1 000 003⁵.

Exercice 7.18

Soit $n \in \mathbb{N}$. Simplifier les sommes suivantes.

$$1. \sum_{k=0}^{n} \frac{1}{3^k} \binom{n}{k}.$$

2.
$$\sum_{k=0}^{n} {n \choose k} \frac{(-1)^{k+1}}{2^k}$$
. 3. $\sum_{k=0}^{n} {n \choose k} 3^{2k+1}$.

3.
$$\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1}$$

Soit une suite arithmétique (u_n) , on note $s_n = u_0 + u_1 + ... + u_n$. Déterminer les éléments caractéristiques (premier terme u_0 et raison r) de la suite (u_n) à partir des données suivantes.

1.
$$u_0 = 6$$
 et $u_5 = 0$;

4.
$$u_9 = 96$$
 et $s_9 = 780$;
5. $u_5 = 90$ et $u_8 = 80$;
6. $s_3 = 40$ et $s_5 = 72$.

2.
$$u_0 = 3$$
 et $s_3 = 36$;

5.
$$u_5 = 90$$
 et $u_8 = 80$;

3.
$$r = 6$$
 et $s_5 = 36$;

6.
$$s_3 = 40$$
 et $s_5 = 72$

Exercice 7.20

Pour $p \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$, on pose

$$S_n(n) = 1^p + 2^p + \dots + n^p.$$

- 1. Rappeler sans démonstration les expressions de $S_1(n)$, $S_2(n)$ et $S_3(n)$.
- 2. Soit $(p,n) \in \mathbb{N}^2$. En calculant de deux manières la somme télescopique $\sum_{k=0}^{n} ((k+1)^{p+1} k^{p+1})$, montrer

$$\sum_{i=1}^{p} \binom{p+1}{i} S_i(n) = (n+1)^{p+1} - (n+1). \tag{7.1}$$

3. En déduire que, pour tout $n \in \mathbb{N}^{\star}$,

$$1^4 + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}.$$
 (7.2)

Généralisation de la notation \sum 7.3

Exercice 7.21

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, calculer

$$V_n = \sum_{i=1}^n \sum_{j=1}^n x^{i+j}.$$

Exercice 7.22

Calculer, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{1 \le i \le j \le n} ij.$$

Exercice 7.23

Soit $n \in \mathbb{N}^*$.

- 1. Calculer la somme $S_1 = \sum_{1 \le i, j \le n} i + j$.
- 2. Calculer la somme

$$S_2 = \sum_{1 \le i, j \le n} \min(i, j).$$

On pourra scinder cette somme en deux.

3. En déduire l'expression de la somme $S_3 = \sum_{1 \le i,j \le n} \max(i,j)$.

$$\min(i,j) = \begin{cases} i & \text{si } i \leq j \\ j & \text{si } i > j \end{cases} \quad \text{et} \quad \max(i,j) = \begin{cases} j & \text{si } i \leq j \\ i & \text{si } i > j \end{cases}.$$

Simplifier les sommes suivantes.

1.
$$\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}.$$

2.
$$\sum_{i=0}^{n} i(i-1)$$
.

3.
$$\sum_{j=1}^{n} (2j-1)$$
.

4.
$$\sum_{1 \le i < j \le n} (i+j).$$

$$5. \sum_{0 \le i, j \le n} x^{i+j}.$$

$$6. \sum_{1 \le i \le j \le n} \frac{i}{j+1}.$$

$$7. \sum_{1 \le i \le j \le n} (j-i).$$

8.
$$\sum_{1 \le i, j \le n} (i+j)^2$$
.

9.
$$\sum_{1 \le i \le j \le n} \frac{i^2}{j}$$
.

7.4 Le symbole produit \prod

Exercice 7.25

Soit $n \in \mathbb{N}^*$. Exprimer à l'aide de factorielles

1.
$$2 \times 4 \times \cdots \times (2n)$$
;

2.
$$1 \times 3 \times \cdots \times (2n-1)$$
;

3. le terme général de la suite (u_n) donnée par la relation de récurrence

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2n+1}{n+1}u_n$.

Soit $n \in \mathbb{N}^{*}$. Calculer $A_n = \sum_{k=0}^{n} k \binom{n}{k}$ de deux manières différentes.

- **1.** En dérivant de deux façons la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto (1+x)^n$.
- **2.** En utilisant la relation $k \binom{n}{k} = n \binom{n-1}{k-1}$ valable pour $n, k \in \mathbb{N}^*$.

Exercice 7.27

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
 . Déterminer les dérivées successives de f . $x\mapsto xe^{-x}$

Exercice 7.28

Soit
$$n \in \mathbb{N}^*$$
. Calculer la dérivée n -ième de la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$. $x \mapsto x^{n-1} \ln(x)$

Exercice 7.29 Banque CCINP 2023 Exercice 3 analyse

- 1. On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$. Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définitions respectifs.
- 2. On pose $f(x) = \frac{e^{2x}}{1+x}$. En utilisant la formule de Leibniz concernant la dérivée $n^{\text{ième}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.
- 3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.