Chapter 3

Arithmetic for Computers

Dr. Michael Y Choi
Illinois Institute of Technology

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Numbers in computer

- Bits are just bits (no inherent meaning)
 conventions define relationship between bits and numbers
- Binary numbers (base 2)
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
 decimal: 0...2ⁿ-1
- Of course it gets more complicated:
 numbers are finite (overflow)
 fractions and real numbers
 negative numbers
 e.g., no MIPS subi instruction; addi can add a
 negative number

Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding operands with different signs, no overflow
 - Adding two + (positive) operands
 - Overflow if result sign is 1
 - Adding two (negative) operands
 - Overflow if result sign is 0

Subtraction

Add negation of second operand

```
Example 7 - 6 = 7 + (-6), 77
+7: 0000 0000 ... 0000 01111
-6: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001
```

- Overflow if result out of range
 - Subtracting two + (positive) or two (negative) operands, no overflow
 - Subtracting + from operand
 - Overflow if result sign is 0
 - Subtracting from + operand
 - Overflow if result sign is 1

Binary calculation

Just like in grade school (carry/borrow 1s)

```
0111 0111 0110
+ 0110 - 0110 - 0101
```

- Two's complement operations easy
 - subtraction using addition of gative numbers

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception (interrupt) handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video
 - Turning volume knob does not silent after the highest sound level

Multiplication

- Multiplicand first operand
- Multiplier second operand
- Product is a result of multiplication
- Suppose n-bit multiplicand and m-bit multiplier
- Product is n+m bits long

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Division Hardware

Why restore by +Div multiple times?
Because negative remainder means the remainder is still not enough value to subtract divisor → to make enough digits

Iteration	Step	Quotient	Divisor	der
0	Initial values	0000	0010 0000	00 0111
1	1: Rem = Rem - Div	0000	0010 0000	1110 0111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	1111 0111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	1111111
	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	0000 0011
	2a: Rem $\geq 0 \implies$ sII Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	0000 0001
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Division - review

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division)
 generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Move from hi, move from low

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Example of real numbers:

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point

- Scientific notation single digit to the left of the decimal point
- Normalized number a scientific notation with no leading zero
- Non-normalized number vice versa

```
\sim 1.0 \times 10^9 Normalized
```

$$0.1 \times 10^{-4}$$
 Non-normalized

$$\sim 10.0 \times 10^9$$
 Non-normalized

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit) e.g. float
 - Double precision (64-bit) e.g. double

IEEE Floating-Point Format

```
single: 8 bits ---- single: 23-bits --+ 31 bits double: 11 bits --- double: 52-bits --+ 63 bits
```

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $= \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110⇒ actual exponent = 254 - 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Single-Precision Range

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{\frac{(Exponent-Bias)}{2}}$$

- - \Rightarrow actual exponent = 1 127 = -126
- Fraction: $000...00 \Rightarrow significand = 1.0$
- $= \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Single-Precision Range

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{\frac{(Exponent-Bias)}{2}}$$

- - \Rightarrow actual exponent = 254 127 = 127
- Fraction: 111...11⇒ significand ≈ 2.0
- $= \pm 2.0 \times 2^{127} \approx \pm 3.4 \times 10^{38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Double-Precision Range

- Fraction: $000...00 \Rightarrow significand = 1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

Represent –0.75

$$-0.75 = (-1)^{1} \times 1.1_{2} \times 2^{-1}$$

$$S = 1$$

$$= 1.5_{10}$$

- Fraction = $1000...00_2$
- Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Floating-Point Example

A decimal value 0.75,

$$0.75 = 1.0 \times 0 + 0.5 + 0.25$$
$$= 1 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 0.11_{2}$$

Convert to scientific notation: 0.11₂ x 2⁰

$$= 1.1_2 \times 2^{-1}$$

Binary non whole number

- In decimal, 3.75 and 3 . and 3 ⁷⁵/₁₀₀ all represent the same number
- When using a decimal point, positions to the right of the decimal point indicate increasingly negative powers of 10: 10⁻¹, 10⁻²,
- Example: $3.75 = 3 \cdot 10^{0} + 7 \cdot 10^{-1} + 5 \cdot 10^{-2}$
- Dividing by 10n shifts the decimal point n digits to the left.
- Example: 0.75 = 75 / 100, so $3.75 = 3^{75}/_{100} = 3^{3/4}$

Binary non whole number

- In binary, the positions to the right of the binary point indicate negative powers of 2.
- Example : $1.011_2 = 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}$
- = 1 + 1/₄ + 1/₈ = 1 3/₈ = 1.375₁₀
- Dividing by 2n shifts the binary point n bits left; multiplying by 2n shifts right.
- Example: $1.011_2 = (1011/1000)_2 = (11/8)_{10} = 13/8$

Binary non whole number

Example:

■
$$1.375 = 1 + 0.375 = 1 + 0 - 0.5 + 0.375$$

= $1 + 0 - 0.5 + 1 - .25 + 1 - 0.125$
= 1.011_2

- Bias selection uses: 2^{k-1} 1
- With 8 bit number format, k = 3, so bias = 3
- IEEE 32bit number format, k = 8, so bias = 127
- Example 1: Convert 2.625 to 8 bit FP format

(Do it now...)

Example 1: Convert 2.625 to 8 bit FP format (Approach 1)

Example 1: Convert 2.625 to 8 bit FP format

Example 2: Convert -4.75 to 8 bit FP format

(Do it now...)

Example 2: Convert -4.75 to 8 bit FP format

Example 3: Convert 12.0 to 8 bit FP format

(Do it now...)

Example 3: Convert 12.0 to 8 bit FP format

Example 4: Convert 1.7 to 8 bit FP format

(Do it now...)

Example 4: Convert 1.7 to 8 bit FP format

Ex 4. continue

- Or an alternative verification...
- $2^{-1} = \frac{1}{2} = 0.5$
- $2^{-2} = \frac{1}{4} = 0.25$
- $2^{-3} = 1/8 = 0.125$
- $2^{-4} = 1/16 = 0.0625$
- $2^{-5} = 1/32 = 0.03125$
- $2^{-6} = 1/64 = 0.015625$
- $2^{-7} = 1/128 = 0.0078125$

So
$$0.7 = 0.5 + 0.125 + 0.0625 + 0.0078125 + ...$$

Why endless? 0.7 = 7/10 so it repeats fraction like 1/3.

Ex 4. continue

Example 4: Convert 1.7 to 8 bit FP format

$$1 = 1_2$$

 0.7×2 = 1.4 ← Generate 1 and continue with rest
 0.4×2 = 0.8 ← Generate 0 and continue with rest
 0.8×2 = 1.6 ← Generate 1 and continue with rest
 0.6×2 = 1.2 ← Generate 1 and continue with rest

Choose only proper bits for fraction.

Fraction: 1011 Normalized: 1.1011₂ x 2⁰

Exponent: K - 3 = 0, so $K = 3 = 011_2$

Sign: 0

The result is 00111011 and Chapter 3 — Arithmetic for Computers — 54

Floating-Point Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $\mathbf{9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1}$
- 3. Normalize result & check for over/underflow
 - \blacksquare 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

```
-0.111_2 = 1.000_2 + 1_2
= 1.001_2
1.000_2
+ 1.001_2
= 40.001_2 = 0.001_2
```

FP Adder Hardware

- Much more complex that Skip teger adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Chapter 3 — Arithmetic for Computers — 60

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 x 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
  lwc2  $f18, const9($gp)
  div.s  $f16, $f16, $f18
  lwc1  $f18, const32($gp)
  sub.s  $f18, $f12, $f18
  mul.s  $f0, $f16, $f18
  jr  $ra
```

FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32
                    # $t1 = 32 (row size/loop end)
   li $s0, 0
                    # i = 0; initialize 1st for loop
L1: li $s1, 0
                    # j = 0; restart 2nd for loop
L2: 1i $s2, 0 # k = 0; restart 3rd for loop
   sll t2, s0, t2 # t2 = i * 32 (size of row of x)
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(f2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

•••

FP Example: Array Multiplication

\$11 \$t0, \$s0, 5 # \$t0 = i*32 (size of row of y)addu \$t0, \$t0, \$s2 # \$t0 = i*size(row) + k sll \$t0, \$t0, 3 # \$t0 = byte offset of [i][k] addu t0, a1, t0 # t0 = byte address of y[i][k]1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]addiu \$s2, \$s2, 1 # \$k k + 1 bne \$s2, \$t1, L3 # if (k != 32) go to L3 s.d f4, 0(t2) # x[i][j] = f4addiu \$s1, \$s1, 1 # \$j = j + 1bne \$s1, \$t1, L2 # if (j != 32) go to L2 #\$i = i + 1 addiu \$s0, \$s0, 1 bne \$s0, \$t1, L1 # if (i != 32) go to L1

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 x 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent