TRANSISTOR TRUÒNG

(Field Effect Transistor - FET)

NỘI DUNG

- ❖ CÁC PHƯƠNG PHÁP PHÂN CỰC CHO FET
 - Nguồn cố định
 - Tự phân cực
 - Phân áp
 - Hồi tiếp điện áp
- ❖ SƠ ĐỒ TƯƠNG ĐƯƠNG TRONG CHẾ ĐỘ TÍN HIỆU NHỎ, TẦN SỐ THẤP.

1. CÁC KHÁI NIỆM: Với mạch phân cực mắc S chung:

- ightharpoonup Điểm làm việc tĩnh Q (I_{DQ} , V_{GSQ} , V_{DSQ})
- Dường tải tĩnh:

$$I_D = a.V_{DS} + b$$

Dường phân cực:

$$I_D = c \cdot V_{GS} + d$$

- ❖ Q là giao điểm của:
 - Dường tải tĩnh với đặc tuyến ra
 - Đường phân cực với đặc tuyến truyền đạt

2. CÁC PHƯƠNG TRÌNH

- 1. $I_G = 0, I_D = I_S$
- 2. Phương trình truyền đạt của JFET và MOSFET liên tục:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{p}} \right)^{2} \quad (1a)$$

3. Phương trình truyền đạt của MOSFET gián đoạn:

$$I_{D} = k \left(V_{GS} - V_{GS(Th)} \right)^{2} \quad (1b)$$

$$k = \frac{I_{D(on)}}{\left(V_{GS(on)} - V_{GS(Th)}\right)^{2}} \left(A / V^{2}; mA / V^{2}\right)$$
(1c)

Đặc tuyến, đồ thị và điểm làm việc Q

3. NHIỆM VỤ PHÂN TÍCH MỘT CHIỀU

- 1. Tính các thông số của điểm làm việc tĩnh Q
- 2. Tính điện áp trên/giữa các cực của FET
- 3. Viết phương trình và vẽ đồ thị đường tải tĩnh
- 4. Viết phương trình và vẽ đồ thị đường phân cực
- 5. Biểu diễn điểm Q lên các đồ thị.

CÁC BƯỚC TÍNH TOÁN CƠ BẢN

Tìm điểm làm việc tĩnh Q

- Xét vòng mạch G S: viết phương trình $I_D = f(V_{GS})$ theo định luật Kirrchoff 2 (2).
- Giải hệ phương trình (1a, 2) hoặc (1b, 2) \rightarrow 2 nghiệm V_{GS} hoặc 2 nghiệm I_D.
- Chọn nghiệm: dựa trên đồ thị đặc tuyến truyền đạt.
- Thay giá trị V_{GS} hoặc I_D vừa tìm được vào (2) để tính đại lượng còn lại.
- **Tính** V_{DS} dựa vào vòng mạch D S.
- Viết phương trình đường phân cực: suy ra từ phương trình (2). Viết phương trình đường tải tĩnh: Sử dụng vòng mạch D - S.

4.1. PHƯƠNG PHÁP NGUỒN CỐ ĐỊNH

Áp dụng cho JFET và MOSFET liên tục theo kết cấu mạch như sơ đồ dưới đây:

Mạch tương đương 1 chiều

* Tìm điểm Q cho JFET và MOSFET liên tục:

 Xét vòng mạch G – S: Lập pt theo định luật Kirchhoff 2, ta tính được:

$$V_{GS} = -V_{GG} = const$$
 (2)

$$\rightarrow$$
 $V_{GSQ} = - V_{GG} = const$

$$(1a) \xrightarrow{(2)} I_{DQ} = I_{DSS} \left(1 + \frac{V_{GG}}{V_{p}} \right)^{2}$$

• Xét vòng mạch D – S: Lập pt theo định luật Kirchhoff 2:

$$V_{DD} = I_{D}R_{D} + V_{DS}$$

$$\Rightarrow V_{DSQ} = V_{DD} - I_{DQ}R_{D}$$

❖ Đường tải tĩnh:

$$\mathbf{V}_{\mathrm{DD}} = \mathbf{I}_{\mathrm{D}} \mathbf{R}_{\mathrm{D}} + \mathbf{V}_{\mathrm{DS}} \Longrightarrow \mathbf{I}_{\mathrm{D}} = \frac{\mathbf{V}_{\mathrm{DD}} - \mathbf{V}_{\mathrm{DS}}}{\mathbf{R}_{\mathrm{D}}}$$

* Đường phân cực: Xét vòng G-S:

$$V_{GS} = -V_{GG} = const$$
 (2)

* Đồ thị

Ví dụ: V_{DD} =15V; V_P =-4V; I_{DSS} = 8mA; V_{GG} =+2V; R_G = 1 $M\Omega$; R_D = 1 $K\Omega$. Xác định tọa độ điểm Q?

4.1. PHƯƠNG PHÁP NGUỒN CỐ ĐỊNH

Ap dụng cho MOSFET gián đoạn theo sơ đổ sau:

* Xây dựng công thức tính thông số của điểm Q?

Phương trình đường tải tĩnh?

Phương trình đường phân cực?

4.1. PHƯƠNG PHÁP NGUỒN CỐ ĐỊNH

Ví dụ: Cho $V_{DD} = 15V$; $V_{GS(Th)} = 1V$; $I_{D(on)} = 4mA$; $V_{GS(on)} = 3V$;

 $R_D = 200\Omega$; $R_G = 1M\Omega$. Tim Q?

4.2. PHƯƠNG PHÁP TỰ CẤP (TỰ PHÂN CỰC)

❖ Phương pháp này áp dụng được cho *JFET và MOSFET liên tục* theo sơ đồ sau:

4.2. PHƯƠNG PHÁP TỰ CẤP (TỰ PHÂN CỰC)

Hình 2: Mạch tương đương một chiều của mạch phân cực tự cấp với những nhánh có tụ điện được hở mạch.

❖ Vòng mạch G – S:

$$V_{GS} = -I_{D}R_{S} \quad (2)$$

• Tính V_{GSQ} và I_{DQ}

$$\xrightarrow{(2)} I_{D} = I_{DSS} \left(1 + \frac{I_{D}R_{S}}{V_{p}} \right)^{2}$$

$$\Rightarrow \left(\frac{\mathbf{R}_{\mathrm{S}}}{\mathbf{V}_{\mathrm{P}}}\right)^{2} \mathbf{I}_{\mathrm{D}}^{2} + \left(\frac{2\mathbf{R}_{\mathrm{S}}}{\mathbf{V}_{\mathrm{P}}} - \frac{1}{\mathbf{I}_{\mathrm{DSS}}}\right) \mathbf{I}_{\mathrm{D}} + \mathbf{1} = \mathbf{0}$$

$$\Rightarrow \begin{bmatrix} I_{_{D1}} & _{_{CS}} & \\ I_{_{D2}} & & \\ \end{bmatrix}_{_{V_{GS}=-I_{D}R_{S}}} \begin{bmatrix} V_{_{GS1}} \\ V_{_{GS2}} \end{bmatrix}$$

Chọn nghiệm: Dựa vào đặc tuyến truyền đạt

Với JFET, nghiệm phải thỏa mãn:

$$V_{_{D}} < V_{_{G\,S}} < 0 \quad v\grave{a} \quad 0 < I_{_{D}} < I_{_{D\,S\,S}}$$

Q: Điều kiện chọn nghiệm của MOSFET liên tục?

Vòng mạch D - S: Tính V_{DSQ}:

$$V_{DD} = I_D R_D + V_{DS} + I_D R_S$$

$$V_{DSQ} = V_{DD} - I_{DQ}(R_D + R_S)$$

❖ Điện áp trên các cực của JFET:

$$\mathbf{V}_{S} = \mathbf{I}_{D} \mathbf{R}_{S}$$

$$\mathbf{V}_{G} = \mathbf{0}$$

$$\mathbf{V}_{D} = \mathbf{V}_{DD} - \mathbf{I}_{D} \mathbf{R}_{D} = \mathbf{V}_{DS} + \mathbf{V}_{S}$$

* Vòng mạch D - S:

* Đường tải tĩnh (tự vẽ đồ thị):

$$I_{D} = \frac{-V_{DS}}{R_{D} + R_{S}} + \frac{V_{DD}}{R_{D} + R_{S}}$$

Dường phân cực: Từ phương trình (2), suy ra đường phân cực là:

$$I_{D} = \frac{-1}{R_{S}}.V_{GS}$$

Ví dụ:

- a. Tìm điểm làm việc tĩnh Q (hình 3)?
- b. Tính các điện áp V_G , V_D , V_S ?

c. Vẽ đường phân cực và biểu diễn điểm

Q lên đồ thị?

4. 3. PHƯƠNG PHÁP PHÂN ÁP

❖ Áp dụng cho cả JFET và MOSFET.

4. 3. PHƯƠNG PHÁP PHÂN ÁP

Hình 6: Mạch tương đương một chiều

$$V_{GS} = V_G - I_D.R_S \quad (2)$$

$$V_{G} = \frac{V_{DD}.R_{2}}{R_{1} + R_{2}}$$

$$V_{DS} = V_{DD} - I_{D}.(R_{S} + R_{D})$$

* Tính điểm Q (JFET):

❖ Vòng mạch G - S:

$$\mathbf{V}_{\mathrm{GS}} = \mathbf{V}_{\mathrm{G}} - \mathbf{R}_{\mathrm{S}} \mathbf{I}_{\mathrm{D}} \quad (2)$$

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{p}}} \right)^{2} (1\mathbf{a})$$

$$\rightarrow \left(\frac{1}{V_{P}}\right)^{2} V_{GS}^{2} + \left(\frac{1}{R_{S} I_{DSS}} - \frac{2}{V_{P}}\right) V_{GS} + 1 - \frac{V_{G}}{R_{S} I_{DSS}} = 0$$

ightharpoonup Nghiệm V_{GS} phải thỏa mãn:

$$V_p < V_{GSQ} < 0 \xrightarrow{(2)} I_{DQ}$$

* Tính điểm Q (JFET):

* Các điện áp:

$$\mathbf{V}_{\mathrm{DSQ}} = \mathbf{V}_{\mathrm{DD}} - \mathbf{I}_{\mathrm{DQ}} (\mathbf{R}_{\mathrm{D}} + \mathbf{R}_{\mathrm{S}})$$

$$\mathbf{V}_{\mathbf{S}} = \mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}$$

$$\mathbf{V}_{\mathbf{G}} = \mathbf{0}$$

$$\mathbf{V}_{\mathbf{D}} = \mathbf{V}_{\mathbf{DD}} - \mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{D}} = \mathbf{V}_{\mathbf{DS}} + \mathbf{V}_{\mathbf{S}}$$

Vòng mạch D - S

* Đường tải tĩnh:

Dường phân cực:

$$I_{D} = \frac{V_{DD} - V_{DS}}{R_{D} + R_{S}}$$

$$(2) \iff I_{D} = \frac{V_{G} - V_{GS}}{R_{S}}$$

Đường phân cực và đặc tuyến truyền đạt của JFET kênh n

Đường phân cực và ảnh hưởng của R_S

$$(2) \iff I_{_{D}} = \frac{V_{_{G}} - V_{_{GS}}}{R_{_{S}}}$$

Ví dụ:

- a. Tîm Q?
- b. Vẽ đường phân cực, đường tải tĩnh, biểu diễn điểm Q lên đồ thị?

Ví dụ:

- a. Tìm tọa độ điểm làm việc tĩnh Q của JFET trong mạch phân cực như hình dưới?
- b. Vẽ đường phân cực, đường tải tĩnh, biểu diễn điểm Q lên 2 đồ thị?

Q: Lập phương trình tính V_{GS}/I_D cho MOSFET liên tục/gián đoạn? Viết phương trình và vẽ đồ thị đường tải tĩnh? Biểu diễn điểm Q lên đồ thị?

Q: Chọn nghiệm cho EMOSFET?

4.4. PHƯƠNG PHÁP HỘI TIẾP ĐIỆN ÁP

- Phương pháp này <u>chỉ áp dụng cho MOSFET gián đoạn</u> theo sơ đồ sau:
- * Tính các thông số của điểm Q:

$$\begin{cases} V_{\text{GS}} = V_{\text{DD}} - I_{\text{D}} R_{\text{D}} & (2) \\ I_{\text{D}} = k \left(V_{\text{GS}} - V_{\text{GS(Th)}} \right)^2 \Rightarrow V_{\text{GSQ}} \xrightarrow{(2)} I_{\text{DQ}} \\ \left| V_{\text{GS(Th)}} \right| < \left| V_{\text{GS}} \right| \end{cases}$$

$$V_{DD} = I_{D}R_{D} + V_{DS}$$

$$\Rightarrow V_{DSQ} = V_{DD} - I_{DQ}R_{D}$$

Dường tải tĩnh:

$$I_{D} = \frac{V_{DD} - V_{DS}}{R_{D}}$$

Q: Vẽ đồ thị đường tải tĩnh trên cùng hệ tọa độ với đặc tuyến ra và biểu diễn điểm Q lên đồ thị?

* Đường phân cực:

$$(2) \iff I_{_{D}} = \frac{V_{_{DD}} - V_{_{GS}}}{R_{_{D}}}$$

Ví dụ:

$$V_{DD}=-16V;\ R_D=2k\Omega\;;\ R_G=1M\Omega\;;$$

$$I_{D(on)} = 4 \, mA; \, V_{GS(on)} = -7 \, V; \, \, V_{GS(Th)} = -3 \, V$$

Hãy xác định: V_{GS_Q} ; I_{D_Q} ; V_{DS_Q} .

Ví dụ:

$$V_{DD}=22V;\ R_D=1,2k\Omega\;;R_G=1M\Omega\;;$$

$$I_{D(on)} = 5 \, mA; \, V_{GS(on)} = 7 \, V; \, V_{GS(Th)} = 4 \, V; \, \circ$$

 $R_s = 510\Omega$. Hãy xác định:

$$\mathbf{a}) V_{\mathit{GS}_{\varrho}} \, ; \, I_{\mathit{D}_{\varrho}} \, ; \, V_{\mathit{DS}_{\varrho}} \, .$$

b) V_D ; V_S .

BÀI TẬP VỀ NHÀ

- 2. Tính giá trị điện trở R_S , điện áp V_{DS} (hình 9), biết V_{GSQ} = -2V?
- 3. Tính I_{DQ} , V_{GSQ} của JFET được phân cực theo phương pháp tự

cấp như hình 10? o16 V ∘12 V

Hình 9

Hình 10

MẠCH KẾT HỢP BJT VÀ FET

SƠ ĐỒ TƯƠNG ĐƯƠNG CỦA FET TRONG CHẾ ĐỘ TÍN HIỆU XOAY CHIỀU NHỎ, TẦN SỐ THẤP

SƠ ĐỔ TƯƠNG ĐƯƠNG CỦA JFET/DMOSFET

Mắc S/D chung

JFET ac equivalent circuit.

$$r_d = \frac{1}{y_{os}(\mu S)}$$

$$g_m = g_{fs} = y_{fs}$$

SO ĐỒ TƯƠNG ĐƯƠNG CỦA EMOSFET Mắc S/D chung

Cực G và kênh được cách ly \rightarrow hở mạch

$$g_m = g_{fs} = y_{fs}$$

HÕ DẪN g_m

❖ Định nghĩa:

$$g_{\rm m} = \frac{\Delta I_{\rm D}}{\Delta V_{\rm GS}} = \frac{dI_{\rm D}}{dV_{\rm GS}}$$

• JFET và DMOSFET (MOSFET liên tục):

$$g_m = \frac{2I_{DSS}}{\left|V_P\right|} \cdot \left(1 - \frac{V_{GS}}{V_P}\right); (A/V)$$

$$g_{m0} = \frac{2I_{DSS}}{|V_P|}$$

• EMOSFET (MOSFET gián đoạn):

$$g_m = 2k \cdot \left(V_{GS} - V_{GS(Th)}\right); \left(A / V\right)$$

- Attribute (n): Thuộc tính
- With respect to something (phase verb): về khía cạnh, đối với
- Pulsating: đập mạch (very interesting and exciting)