

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11095208 A

(43) Date of publication of application: 09 . 04 . 99

(51) Int. CI

G02F 1/1335 G02B 5/30

(21) Application number: 09259780

(22) Date of filing: 25 . 09 . 97

(71) Applicant:

SUMITOMO CHEM CO LTD

(72) Inventor:

AZUMA KOJI SHIMIZU AKIKO

(54) LIQUID CRYSTAL DISPLAY DEVICE AND FILM FOR VISUAL FIELD ANGLE COMPENSATION USED FOR THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To make it possible to obtain a TFT-VAN-LCD having an excellent visual field angle characteristic by paralleling or orthogonally intersecting the delay phase axis within the film plane of specific phase difference films with the absorption axis of adjacent polarizing films.

SOLUTION: The phase difference film for visual field angle compensation comprising one or two sheets of the phase difference films is disposed between a liquid crystal cell and at least one the polarizing films. The

retardation (R) value within the film plane expressed by the equation I; R=(n_x-n_y)×d of the phase difference film of this liquid crystal display device exceeds 0 nm and below 100 nm and the retardation (R') value of the film thickness direction expressed by equation II; R'=[(n_x+n_y)/2-n_z]×d is ${}_{\cong}$ 100 nm and the delay phase axis within the film parallels or intersects orthogonally with the absorption axis of the adjacent polarizing films. In the equations I, II, n_x is the refractive index in the delay phase axis direction within the film plane, n_y is the refractive index in the direction perpendicular to the delay phase axis direction within the film plane, n_z is the refractive index in the thickness direction of the film, and d is the thickness of the film.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-95208

(43)公開日 平成11年(1999) 4月9日

(51) Int.Cl.6

識別記号

G02F 1/1335

G 0 2 B 5/30

5 1 0

.

 $\mathbf{F} \mathbf{I}$

G 0 2 F 1/1335

510

G

G 0 2 B 5/30

審査請求 未請求 請求項の数15 OL (全 7 頁)

(21)出願番号	特願平9-259780	(71)出願人	000002093
			住友化学工業株式会社
(22)出顧日	平成9年(1997)9月25日		大阪府大阪市中央区北浜4丁目5番33号
		(72)発明者	東浩二
			大阪府高槻市塚原2丁目10番1号 住友化
			学工業株式会社内
1.00		(72)発明者	清水 朗子
			大阪府高槻市塚原2丁目10番1号 住友化
			学工業株式会社内
		(74)代理人	
		•	

(54) 【発明の名称】 液晶表示装置およびこれに用いる視野角補償用フィルム

(57)【要約】

【課題】 少ない枚数の位相差フィルムで視野角特性が 改良された垂直配向ネマチック型液晶表示装置を提供す る。

【解決手段】 液晶セルと、該液晶セルの上下に相互の吸収軸が直交するように配置された一対の偏光フィルムと、該液晶セルと該偏光フィルムとの少なくとも一方の間に1枚または2枚の位相差フィルムから構成される視野角補償用位相差フィルムが配置されてなる垂直配向ネマチック型液晶表示装置であって、視野角補償用位相差フィルムが、フィルム面内のレターデーション(R)値が0nmを越え100nm以下であり、かつフィルム厚み方向のレターデーション(Rⁿ)値が100nm以上である位相差フィルムであって、フィルム面内の遅相軸が隣接する偏光フィルムの吸収軸に対して平行または直交していることを特徴とする液晶表示装置。

【特許請求の範囲】

【請求項1】透明基板上に透明電極が形成され、該透明 電極上に垂直配向膜が設けられた一対の透明基板が、該 透明電極が向かい合うように一定の距離をおいて配置さ れ、この間隙に負の誘電率異方性を有するネマチック液 晶が挟持されており、電圧を印加しない状態で液晶分子 長軸が透明基板に略垂直な方向に配向した構造を有する 液晶セルと、該液晶セルの上下に相互の吸収軸が直交す るように配置された一対の偏光フィルムと、該液晶セル と該偏光フィルムとの少なくとも一方の間に1枚または*10

$$R = (n_x - n_y) \times d$$

$$R' = [(n_x + n_y) / 2 - n_z] \times d$$
(1)

nx: フィルム面内の遅相軸方向の屈折率

ny:フィルム面内でnxと垂直方向の屈折率

n7:フィルムの厚み方向の屈折率-

d :フィルムの厚み

【請求項2】視野角補償用位相差フィルムが、フィルム 面内のレターデーション (R) 値が30nm~80nm であり、かつフィルム厚み方向のレターデーション

(R')値が150nm~250nmであることを特徴 とする請求項1に記載の液晶表示装置。

【請求項3】フィルム面内のレターデーション(R)値 とフィルム厚み方向のレターデーション(R')値との 比R'/Rが2~6であることを特徴とする請求項1ま たは請求項2に記載の液晶表示装置。

【請求項4】視野角補償用位相差フィルムが、正の屈折 率異方性を有する高分子からなる位相差フィルムを少な くとも1枚用いたものであることを特徴とする請求項1 に記載の液晶表示装置。

【請求項5】位相差フィルムが、正の屈折率異方性を有 する高分子を溶剤キャスト法により製膜した後に一軸方 向に延伸して得られる位相差フィルムを少なくとも1枚 用いたものであることを特徴とする請求項4に記載の液 晶表示装置。

【請求項6】正の屈折率異方性を有する高分子が、ポリ カーボネート系高分子、ポリアリレート系高分子、ポリ エステル系高分子またはポリサルフォンのいずれかであ ることを特徴とする請求項4に記載の液晶表示装置。

【請求項7】正の屈折率異方性を有する高分子が光弾性 係数の絶対値が10×10⁻¹³c m²/d y n e 以下であ る高分子であることを特徴とする請求項4に記載の液晶 表示装置。

【請求項8】光弾性係数の絶対値が10×10⁻¹³c m² /dyne以下である髙分子が、環状オレフィン系髙分 子であることを特徴とする請求項7に記載の液晶表示装

【請求項9】視野角補償用位相差フィルムが、環状オレ フィン系高分子からなりR値がOnmを越え100nm 以下である一軸延伸フィルム1枚と、R値が10nm以 下であり光学軸が略フィルム法線方向にある負の一軸性※50

* 2枚の位相差フィルムから構成される視野角補償用位相 差フィルムが配置されてなる垂直配向ネマチック型液晶 表示装置であって、視野角補償用位相差フィルムが、式

- (1) で示されるフィルム面内のレターデーション
- (R) 値が 0 n mを越え 1 0 0 n m以下であり、かつ式
- (2) で示されるフィルム厚み方向のレターデーション
- (R')値が100nm以上である位相差フィルムであ。 って、フィルム面内の遅相軸が隣接する偏光フィルムの 吸収軸に対して平行または直交していることを特徴とす る液晶表示装置。

(1)

(2)

※位相差フィルム1枚とを積層したものであって、積層し た状態でのR値が30nm~80nmであり、R'値の 合計が-1-5-0-n-m~-2-5-0-n-mであり、かつ-R[・]/-R-が-2~6であることを特徴とする請求項8に記載の液晶表

【請求項10】 R値が0nmを越え100nm以下であ り、かつR'値が100nm以上である垂直配向ネマチ ック型液晶表示装置視野角補償用位相差フィルム。

【請求項11】位相差フィルム1枚からなることを特徴 とする請求項10に記載の垂直配向ネマチック型液晶表 示装置視野角補償用位相差フィルム。

【請求項12】ポリカーボネート系高分子、ポリアリレ ート系高分子、ポリエステル系高分子またはポリサルフ オンのいずれかからなる高分子フィルムを一軸延伸して 得られる請求項10に記載の垂直配向ネマチック型液晶 表示装置視野角補償用位相差フィルム。

【請求項13】R'/Rが2~6であることを特徴とす る請求項10に記載の垂直配向ネマチック型液晶表示装 置視野角補償用位相差フィルム。

【請求項14】環状オレフィン系高分子フィルムからな りR値が100mm以下である一軸延伸フィルム1枚 と、R値が10nm以下であり光学軸が略フィルム法線 方向にある負の一軸性位相差フィルム1枚とを積層した・ ものであって、積層した状態でのR値が30nm~80 nmであり、R'値の合計が150nm~250nmで あり、かつR'/Rが2~6であることを特徴とする垂 直配向ネマチック型液晶表示装置視野角補償用位相差フ イルム。

【請求項15】 R値が10nm以下であり光学軸が略フ ィルム法線方向にある負の一軸性位相差フィルムが膨潤 性粘土鉱物を用いた位相差フィルムであることを特徴と する請求項14に記載の垂直配向ネマチック型液晶表示 装置視野角補償用位相差フィルム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示装置に関 するものであり、中でも視野角特性の優れた垂直配向ネ マチック型液晶表示装置に関するものである。

.

[0002]

【従来の技術および発明が解決しようとする課題】液晶 表示装置(以下、「LCD」と称する。)は、時計、電 卓に用いられる小型のものから大表示容量を必要とする ラップトップ型ワープロ、パソコン等に用いられるもの まで、平面表示装置として広く用いられるようになっ た。この様なLCDの中でも、高い表示品位が必要な用 途については、正の誘電率異方性を有するネマチック液 晶分子を用い、薄膜トタンジスタにより駆動する90度 ねじれネマチック型液晶表示装置(以下、「TFT-T N-LCD」と称する。)が主に用いられている。しか しながら、TFT-TN-LCDは正面から見た場合に は優れた表示特性を有するものの、斜め方向から見た場 合にコントラストが低下したり、階調表示で明るさが逆 転する階調反転等が起こることにより表示特性が悪くな るという視野角特性を有しており、この改良が強く要望 されている。

【0003】近年この視野角特性を改良するLCDの方式として、負の誘電率異方性を有するネマチック液晶分子を用い、電圧を印加しない状態で液晶分子の長軸を基2板に略垂直な方向に配向させ、これを薄膜トランジスタにより駆動する垂直配向ネマチック型液晶表示装置(以下、「TFT-VAN-LCD」と称する。)が提案されている(特開平2-176625号公報)。このTFT-VAN-LCDは、正面から見た場合の表示特性がTFT-TN-LCDと同様に優れているのみならず、視野角補償用位相差フィルムを適用することで広い視野角特性を発現する。TFT-VAN-LCDは、SID

97 DIGEST 845頁~848頁に記載されている様に、フィルム面に垂直な方向に光学軸を有する負の一軸性位相差フィルムを2枚液晶セルの上下に用いることでより広い視野角特性を得ることができ、このLCDに更に面内のレターデーション値が50nmである正の屈折率異方性を有する一軸配向性位相差フィルムを用いることで更により広い視野角を特性を実現できるこ*

$$R = (n_x - n_y) \times d$$

$$R' = [(n_x + n_y) / 2 - n_z] \times d$$

nx:フィルム面内の遅相軸方向の屈折率

ny:フィルム面内でnyと垂直方向の屈折率

nz:フィルムの厚み方向の屈折率

d :フィルムの厚み

【0007】本発明に用いられるTFT-VAN-LC D用の液晶セルは、透明基板上に透明電極が形成され、この透明電極上に垂直配向膜が設けられた一対の透明基板が、透明電極が向かい合うように一定の距離をおいて配置されており、この間隙に負の誘電率異方性を有するネマチック液晶が挟持され、電圧を印加しない状態で液晶分子長軸が透明基板に略垂直な方向に配向した構造を有するものである。

【0008】液晶セルにおけるネマチック液晶の屈折率 50

*とも知られている。

【0004】しかしながら、SID 97 DIGES T 845頁~848頁に記載されているように3枚の位相差フィルムを用いることは生産コストの上昇を伴うだけでなく、多数のフィルムを張り合わせるために歩留まりの低下を引き起こすなどの問題がある。

【0005】本発明者らは、上記問題を解決するために 鋭意検討した結果、1枚または2枚の位相差フィルムか らなり必要な光学特性を満足する視野角補償用位相差フィルムを用いることで視野角特性に優れるTFT-VA N-LCDを得ることができること、およびこれらの視 野角補償用位相差フィルムの特性を見い出し、本発明を 完成するに至った。

[0006]

【課題を解決するための手段】すなわち、本発明は、透 明基板上に透明電極が形成され、該透明電極上に垂直配 向膜が設けられた一対の透明基板が、該透明電極が向か い合うように一定の距離をおいて配置され、この間隙に 負の誘電率異方性を有するネマチック液晶が挟持されて おり、電圧を印加しない状態で液晶分子長軸が透明基板 に略垂直な方向に配向した構造を有する液晶セルと、該 液晶セルの上下に相互の吸収軸が直交するように配置さ れた一対の偏光フィルムと、該液晶セルと該偏光フィル ムとの少なくとも一方の間に1枚または2枚の位相差フ ィルムから構成される視野角補償用位相差フィルムが配 置されてなる垂直配向ネマチック型液晶表示装置であっ て、視野角補償用位相差フィルムが、式(1)で示され るフィルム面内のレターデーション (R) 値が 0 n mを 越え100nm以下であり、かつ式(2)で示されるフ ィルム厚み方向のレターデーション(R')値が100 nm以上である位相差フィルムであって、フィルム面内 の遅相軸が隣接する偏光フィルムの吸収軸に対して平行 または直交していることを特徴とする液晶表示装置を提 供するものである。

> (1) (2)

異方性(以下、「Δnιc」と称する。)とガラス基板間の距離(以下、「dιc」と称する。)との積(Δnιc・40 dιc)は通常0.2μm~0.4μm程度となるように設定される。このような液晶セルとしては透明電極の一方に各画素を駆動するための薄膜トランジスタからなる駆動素子が形成された液晶セル(特開平2-176625号公報)の他、各画素の周囲に高分子からなる隔壁を設けた構造(SID 96 DIGEST 630頁~633頁)に垂直配向したネマチック液晶を挟持した液晶セル、駆動方法として囲い電極電界制御法〔第19回液晶討論会予稿集308頁~309頁(1993年)〕やプラズマアドレス方式(日経マイクロデバイス199505年8月号163頁~166頁)を用いて垂直配向した

ネマチック液晶を駆動する方式の液晶セルなども例示される。

【0009】また、垂直配向膜は、電圧を印加した時に 液晶の複屈折により光が効率良く透過するように液晶が 傾いて配向するようにできるものでのあれば特に制限は、 なく、ポリイミドからなる配向膜をラビング処理して電 圧印加時に液晶分子が一方向にそろって傾くようにした ものや、ポリビニルシンナメイト等の光反応性高分子に 偏光紫外線を照射して電圧印加時に液晶分子が一方向に そろって傾くかまたは複数の制御された方向に傾くよう にしたものなどが例示される。このような液晶セルの上 下に一対の偏光フィルムが相互の吸収軸が直交するよう に、かつ液晶セルに対して吸収軸方向が電圧印加時に光 が効率的に透過するような角度となるように配置されて いる。例えば、配向膜が電圧印加時に液晶分子が一方向 にそろって傾くようにしたポリイミドをラビング処理し たものの場合、偏光フィルムの吸収軸は液晶分子の傾斜 方向に対して通常45度となるように設定される。

【0010】さらに、液晶セルと偏光フィルムの間の少 なくとも一方には視野角補償用位相差フィルムが配置さ れている。視野角補償用位相差フィルムのR値はOnm を越え100nm以下であり、好ましくは30nm~8 Onmである。また、R'値は100nm以上であり、 好ましくは用いる液晶セルのΔnιc・dιcと略同じ値で あるが、実際のTFT-VAN-LCDでは液晶セルの Δn₁c・d₁cより約100nm小さい100nm~30 0 nmに設定することが好ましく、より好ましくは15 0nm~250nmである。実際のTFT-VAN-L CDでは、上下に配置される一対の偏光フィルムとして 最も一般的に用いられる偏光フィルムは、その保護膜で あるトリアセチルセルロース(以下「TAC」と称す る。) のフィルムが若干面内配向しており、TACフィ ルム1枚でR,値として約50nm、液晶セルの上下に 2枚用いる偏光フィルムのR'値の合計として約100 nmに相当する特性を有しているためである。また、位 相差フィルムのR値とR'値とのバランスとしては、 R'/Rが2以上6以下であることが好ましい。かかる 位相差フィルムは、TFT-VAN-LCDの視覚特性 を特に有効に向上するものであって、TFT-VAN-LCD用の視覚補償用フィルムとして最適であり、これ を用いることによって、本発明のTFT-VAN-LC Dは優れた視覚特性を有することが可能となる。

【0011】この様な視野角補償用位相差フィルムは、例えば熱可塑性高分子からなるフィルムを一軸延伸等の方法により二軸配向させることで得ることができる。二軸配向性を得るための原反フィルムは、熱可塑性高分子を適当な溶剤に溶解し、この溶液をステンレス製のベルト、ドラムまたは離型PET上に流延して、乾燥後ベルト、ドラムまたは離型PETから剥離する溶剤キャスト法により製膜することが、均一性に優れたフィルムを得

ることができるため好ましい。

【0012】用いる高分子としては、均一な二軸配向が達成でき、正の屈折率異方性を有する高分子であれば特に制限はないが、本発明で規定するR、値が得やすい点からポリカーボネート系高分子、ポリアリレート系高分子、ポリエステル系高分子、ポリサルフォン等の芳香族系高分子が例示される。これらの芳香族系高分子は屈折率異方性が発現しやすいため、溶剤キャスト法での製膜時に高分子鎖がフィルム面に平行にかつフィルム面内ではランダムに配向する面配向性により、Rが概ね0nmであるのに対して容易にR、を100nm以上とすることができる。

【0013】このような溶剤キャストフィルムを一軸延 伸して面配向性を打ち消して一軸配向性とした場合には R'_が概ねR-/-2-となり目的とする光学特性を得ること ができない。R'が100nm以上を保ったまま延伸し て特定のR値を得るには、この面配向性を保持したまま 一軸延伸して二軸配向性とすることが必要である。一軸 延伸して二軸配向性を得る方法としてはテンターを用い た横延伸法が知られているが、これらの高分子は延伸に よりR値が発現しやすいため、テンター横延伸法でRを 100 n m以下とするには、均一性を得る最適な条件よ りも低倍率での延伸や高温での延伸が必要となる。しか し、このような延伸条件においてはR値およびR'値の 均一性やフィルム面内の遅相軸の方向の均一性を確保す ることが難しい。このため、溶剤キャスト法における製 膜時にベルト、ドラムまたは離型PETから剥離する時 に若干の応力を加えてフィルム流れ方向に一軸延伸する 方法が好ましく用いられる。

【0014】ポリカーボネート系高分子、ポリアリレート系高分子、ポリエステル系高分子、ポリサルフォン等の芳香族系高分子は屈折率異方性が発現しやすいために上記のように好ましい点もあるが、一方で光弾性係数が大きいために応力に対するレターデーション値の変化が大きく、粘着剤を用いて液晶セルと偏光フィルムの間に貼合配置された状態で高温に曝された場合に熱のために発生する応力によりレターデーション値がズレたり、透過型液晶表示装置の場合にはバックライトの熱のために発生する応力のムラによりレターデーション値のムラが発生したりして、コントラストの低下や表示のムラを引き起こすこともある。

【0015】このような応力がかかる使用条件下で用いられる場合には、レターデーション値の均一性の低下が発生しないように、光弾性係数の絶対値が小さな高分子を用いることもできる。具体的には光弾性係数の絶対値が10×10⁻¹³c m²/d y n e 以下である高分子が好ましい。なお、ビスフェノールAからのポリカーボネートは光弾性係数の絶対値が約100×10⁻¹³c m²/d y n e である。このような光弾性係数の絶対値が小さな高分子としては、例えばアクリル系の高分子や環状オレ

フィン系の高分子などが挙げられるが、正の屈折異方性 を有し、かつ耐熱性に優れる環状オレフィン系高分子が 好ましく用いられる。環状オレフィン系高分子として は、ノルボルネン系高分子が耐熱性に優れるため好まし* *く用いられる。

(CH₂CH₂) c-

【0016】 ノルボルネン系高分子の例としては一般式(1)

(式中、aは0または正の整数を示し、bおよびcはそれぞれ正の整数を示し、R¹、R²、R³、R⁴はそれぞれ独立に水素原子、炭化水素残基、フェニル基または極性基を示す。)で示される構成単位を有する高分子を挙げることができる。ここで、極性基としてはニトリル基などが例示される。

【0017】ノルボルネン系高分子を位相差フィルムに適用することは、特開平6-59121号公報に記載されている。特開平6-59121号公報では超ねじれネマチック液晶表示装置用の位相差フィルムに適した高分子構造を開示しているが、aが大きくなると負の屈折率異方性を発現するようになる。このため、TFT-VAN-LCD用の視野角改良用位相差フィルムに用いる高分子としては、正の屈折率異方性を発現するように、一般式(I)におけるaが0または1であることが好ましい

【0018】また、環状オレフィン系の高分子は、屈折率異方性の発現性が芳香族系の高分子よりも小さいため、本発明で規定するR値が0nmを越え100nm以下であり、かつR'値が100nm以上である位相差フィルムを溶剤キャスト法による製膜時の一軸延伸で得ることが難しいこともある。この場合には溶剤キャスト法により製膜したフィルムをテンター横延伸法などにより一軸延伸することで目的の位相差フィルムを得ることができる。環状オレフィン系高分子の場合は、芳香族系高分子と異なりR値が発現しにくいため、延伸倍率を小さくしたり延伸温度を高くしたりせずに均一な光学特性を確保できる条件で延伸することができる。

【0019】しかしながら、テンター横一軸延伸法において均一な光学特性を得る条件範囲ではR'値が小さく、R値が0nmを越え100nm以下であり、R'値が100nm以上であり、かつR'/Rが2~6である位相差フィルムを得ることができない場合もある。このようにR'値が小さく二軸配向性が不十分な場合、あるいは通常の一軸配向性の位相差フィルムを用いる場合に

は、R値をほとんど変化させずにR'値を増加させて必要な特性範囲とするために、R値が10nm以下であり R'が特定の値である光学軸が略フィルム法線方向にある負の一軸性位相差フィルム1枚を、遅相軸が平行かまたは直交するように積層する。これにより、積層した状態でR値が0nmを越え100nm以下であり、R'値が100nm以上であり、かつR'/Rが $2\sim6$ である光学特性を実現することもできる。ここで積層した状態でのR値は、2枚のフィルムの遅相軸が平行の場合にはそれぞれのR値の差となる。また、R'値は平行、直交いずれの場合にもそれぞれのR'値の和である。

【0020】R値が10nm以下でありかつR²値が100nm以上である光学軸が略フィルム法線方向にある負の一軸性位相差フィルムとしては、ポリイミドの面配向フィルム(POLYMER 第7巻 23号 5321頁)、無機層状化合物を用いた位相差フィルム(特開平5-196819号公報)などを例示することができる

【0021】無機層状化合物を用いた位相差フィルムとしては、生産性や耐久性の点から、例えば膨潤性粘度鉱物を用いた位相差フィルム、具体的には有機粘土複合体と疎水性樹脂とからなる層を少なくとも1層有する位相差フィルムを用いることもできる。有機粘土複合体としては、例えば層状構造を有する粘土鉱物と有機化合物を複合化した化合物などが挙げられる。

【0022】層状構造を有する粘土鉱物としては、例えばスメクタイト族や膨潤性雲母などが挙げられる。スメクタイト族に属するものとしてはヘクトライト、モンモリロナイト、ベントナイトなどや、これらの置換体、誘導体および混合物などが例示できる。これらの中でも、化学合成されたスメクタイト族が不純物が少なく透明性に優れるなどの点から位相差フィルムに好ましく用いられる。特に粒径を小さく制御した合成ヘクトライトを用いることもできる。

50

【0023】有機化合物としては、例えば粘土鉱物の酸 素原子や水酸基と反応できる化合物、粘度鉱物に含まれ る交換性陽イオン、例えばNa*、K*などのアルカリ金 属イオン、Ca²、Mg²などのアルカリ土類金属イオ ン、Al"などの金属イオンと交換可能なイオン性の化 合物などが用いられ、例えばアミン化合物などが挙げら れる。アミン化合物としては、例えば4級アンモニウム 化合物、尿素、ヒドラジン、ドジテルピリジニウムなど が挙げられるが、交換性陽イオンとの交換が容易である ことなどから4級アンモニウム化合物が好ましく用いら 10 れる。4級アンモニウム化合物は通常、陽イオンとして 導入され、このような陽イオンとしては、ジメチル・ジ オクタデシル・アンモニウムイオン、ジメチル・ベンジ **. ル・オクタデシル・アンモニウムイオン、トリオクチル** メチル・アンモニウムイオンなどのようにアルキル基 やベンジル基を有したものや、メチル・ジエチル・ポリ オキシプロピレン(重合度:25)・アンモニウムイオ ンなどのように長鎖の置換基を有したものなどが例示さ れる。これらの有機化合物は、粘土鉱物の陽イオン交換 容量に対して当量用いることが望ましいが、製造に際し 20 ては陽イオン交換容量に対して0.5~1.5倍量の範 囲で添加しても構わない。

【0024】かかる有機粘土複合体は、用いる有機化合 物を適当に選択することによりベンゼン、トルエン、キ シレンなどの低極性の芳香族炭化水素類、アセトン、メ チルエチルケトン、メチルイソブチルケトンなどのケト ン類、メタノール、エタノール、プロパノールなどの低 級アルコール類、四塩化炭素、クロロホルム、ジクロロ メタン、ジクロロエタンなどのハロゲン化炭化水素類な どの高極性の溶媒など各種有機溶媒に容易に分散可能と することができる。このようにして得られた有機溶剤に 分散可能な有機粘土複合体は通常、疎水性であり、有機 溶媒中で分散するとコロイド状を呈するまで単位結晶層 を膨潤させることができるので、これを適当な疎水性樹 脂と混合し、適当な基板上に塗布して乾燥させて製膜す ることで有機粘土複合体の単位結晶層を配向させること ができて、位相差フィルムとして用いることができるよ うになる。

【0025】疎水性樹脂としては、例えばポリビニルブ チラールポリビニルホルマールなどのポリビニルアセタ ール樹脂、セルロースアセテートブチレートなどのセル ロース系樹脂などが挙げられる。

$$R = (n_x - n_y) \times d$$

 $(n_1 + n_2 + n_2) / 3 = n_0$

 $R' = [(n_x + n_y) / 2 - n_z] \times d$

 $R_{40} = (n_x - n_x') \times d / c \circ s (\phi)$

(6)

ここで、φおよびny'はそれぞれ以下の式(7)、 ※ ※ (8) で示される。

 $= s i n^{-1} [s i n (40^{\circ}) / n_0]$

(7)

 $n_{y}' = n_{y} \times n_{z} / [n_{y}^{2} \times s i n^{2} (\phi) + n_{z}^{2} \times c o s^{2} (\phi)]^{1/2} (8)$

【0030】実施例1

*【0026】有機粘土複合体と疎水性樹脂とからなる層 を基板上に製膜する際の分散液中の有機粘土複合体の濃 度は、なるべく高い方が層の厚みを大きくできるため好 ましいが、高濃度になりすぎるとゲル化などが発生し製 膜性が悪くなるため、通常は有機粘土複合体と疎水性樹 脂の組成比が重量比で1:2~10:1の範囲で、合計 の固形分濃度が3~15重量%の範囲で用いられる。更 に、これらの有機粘土複合体の複数を混合して用いるこ ともできる。位相差フィルムとしては、製膜した基板か ら剥離して単独のフィルムとして用いることができる。 が、透明基板を用いて透明基板上に製膜した状態のまま で用いることもできる。製膜する基板が平板状の場合、 有機粘土複合体の単位結晶層はその層状構造を平板面に 平行にかつ面内の向きはランダムに配向する。したがっ て、フィルム面内の屈折率がフィルム厚み方向の屈折率 よりも大きい屈折率構造を示すようになる。この屈折率 異方性により、R値が10nm以下でありかつR'値が 100nm以上である光学軸が略フィルム法線方向にあ る負の一軸性位相差フィルムとして用いることができ

【0027】上記のような2枚の位相差フィルムをTF T-VAN-LCDに用いる場合には、2枚を積層して 上下いずれかの偏光フィルムと液晶セルの間に配置して もよく、または2枚を上下の偏光フィルムと液晶セルの 間にそれぞれ配置してもよい。

[0028]

【発明の効果】本発明のTFT-VAN-LCDは、視 野角特性に優れている。

[0029]

【実施例】以下、実施例により本発明を詳細に説明する が、本発明はこれに限定されるものではない。なお、評 価は以下の方法により実施した。

(1) フィルム面内のレターデーション(R)値 測定器:偏光顕微鏡 [(株)ニコン製、オプチフォトー ポル]波長546 nmの単色光で常法により測定した。

(2) フィルム厚み方向のレターデーション(R')値 R、R。(遅相軸を傾斜軸として40度傾斜して測定し たレターデーション値)、d(位相差フィルムの厚み) および位相差フィルムの平均屈折率(n。)を用いて、 以下の式(3)~(6)からコンピュータ数値計算によ りnx、nx、nxを求め、次いで式(4)によりR'を 計算した。

(3)

(4)

(5)

50 ビスフェノールAからなるポリカーボネート (平均屈折

率 n_0 =1.59、ポリスチレン換算での数平均分子量が約70000〕の塩化メチレン23%溶液を800mm巾で約24m長のステンレスベルト上に流延して乾燥し、残留溶剤が約20%の状態でベルトからの引き剥がし応力を小さくしてフィルムの流れ方向に一軸延伸しながら剥離し、さらに残留溶剤を低減するために乾燥炉を通過させて残留溶剤が1%以下である幅700mmのTFT-VAN-LCD用の視野角補償用位相差フィルム(厚み140 μ m)を得た。このフィルムの光学特性は幅方向に200mm間隔で採取した3点の平均で、R=55.5nmであり、R $_0$ =90.2nmであった。これらの値からの計算値としてR $^\prime$ =193nmであり、

R'/R=3.5あった。 【0031】実施例2

ステンレスベルトからの引き剥がし応力を実施例1の場合よりも小さくしてフィルム流れ方向に一軸延伸した以外は実施例1と同様にしてTFT-VAN-LCD用の視野角補償用位相差フィルムを得た。このフィルムの光学特性は幅方向に200mm間隔で採取した3点の平均で、R=42.9 nmであり、 $R_{10}=71$.2 nmであった。これらの値からの計算値としてR'=158 nmであり、R'/R=3.7であった。

【0032】実施例3

平均屈折率 n₀=1.51であり、厚み100 μ mであ り、光弾性率の絶対値が 4. 1×10⁻¹³ c m²/d y n e であるノルボルネン系高分子の溶剤キャストフィルム [ARTONフィルム 日本合成ゴム(株)製]は、R =6.3 nm obs obs $\text{ R}_{10} = 13.6 \text{ nm}$ obs obs obsれらの値からの計算値としてR'=36nmであった。 このフィルムを200℃で1.2倍に一軸延伸して位相 差フィルムを得た。このフィルムは、厚み95μmであ り、R=51.5nmであり、R40=56.4nmであ った。これらの値からの計算値としてR'=23nmで あった。疎水性樹脂(商品名 デンカブチラール#30 00-K 電気化学工業(株)製)を1.75重量%、 有機粘土複合体1 [商品名 ルーセンタイトSTN コ ープケミカル(株)製)を3.94重量%および有機粘 土複合体 2 [商品名 ルーセンタイトSPN コープケ ミカル (株) 製] を1. 31 重量%、トルエンを65. 1重量%、塩化メチレンを18.6重量%、アセトンを 9. 3 重量%含む有機溶剤分散液を、厚み80 μ mのト* 12

*リアセチルセルロースフィルム [商品名フジタックSH-80 富士写真フィルム (株) 製]の上にコンマコーターを用いて塗布し、85℃次いで105℃で乾燥してフィルムを得た。このフィルムの厚みは3.7 μ m、有効幅は400mmであった。このフィルムは、その光学軸が略フィルム法線方向にある負の一軸性位相差フィルムであった。この位相差フィルムは、R=6.4 nmであり、R $_{10}$ =24.8 nmであった。平均屈折率 $_{10}$ =1.50として、これらの値からの計算値として $_{10}$ =1090nmであった。これら2枚の位相差フィルムを遅相軸が直交するように粘着剤を用いて積層して、 $_{10}$ =45.1 nmであり、合計の $_{10}$ =113 nmであり、R $_{10}$ /=2.5 であるTFT-VAN-LCD用の視野角補償用位相差フィルムを得た。

-【-0-0-3-3-】-実施例-4-

実施例3で用いたものと同じノルボルネン系高分子の溶 剤キャストフィルム [ARTONフィルム] を190℃ で1. 2倍に一軸延伸した位相差フィルムは、厚み93 μ m \vec{c} \vec{b} \vec{b} \vec{c} \vec nmであった。これらの値からの計算値としてR'=4 7 n m であった。また、実施例3と同様にして有機粘土 複合体と疎水性樹脂からなる塗布層の膜厚が14.6μ mとなるようにして有効幅が約400mmである光学軸 が略フィルム法線方向にある負の一軸性位相差フィルム を得た。この位相差フィルムは、R=5.5nmであ り、 $R_{10}=49$ n m であった。 平均屈折率 $n_0=1$. 5 0として、これらの値からの計算値としてR'=213 nmであった。これら2枚の位相差フィルムを遅相軸が 直交するように粘着剤を用いて積層することで、R=7 4. 5 n m であり、合計の R' = 260 n m であり、 R'/R=3.5であるTFT-VAN-LCD用の視 野角補償用位相差フィルムを得た。

【0034】実施例5

TFT-VAN-LCDにおいて、負の誘電率異方性を有する液晶の屈折率異方性(Δ n_{ic})とガラス基板間の距離(d_{ic})との積が、 Δ n_{ic}・ d_{ic} がの、3 μ m程度とした液晶セルと該直線偏光フィルムとの少なくとも一方の間に実施例1~4のTFT-VAN-LCD用の視野角補償用位相差フィルムを1枚配置したTFT-VAN-LCDは、より広い視野角特性を示す。