- 1. Odredite sve kvadratne ostatke modulo 29.
- 2. Ako je p neparan prost broj, dokažite da je

$$\sum_{k=1}^{p-1} \left(\frac{k}{p}\right) = 0.$$

3. Izračunajte Legendreove simbole (a) $\left(\frac{-35}{97}\right)$ (b) $\left(\frac{111}{991}\right)$ (c) $\left(\frac{160}{163}\right)$ (d) $\left(\frac{164}{167}\right)$ (e) $\left(\frac{435}{683}\right)$.

(a)
$$\left(\frac{-35}{97}\right)$$

(b)
$$\left(\frac{111}{991}\right)$$

(c)
$$\left(\frac{160}{163}\right)$$

(d)
$$\left(\frac{164}{167}\right)$$

(e)
$$\left(\frac{435}{683}\right)$$

- 4. Izračunajte Jacobijeve simbole $\left(\frac{40}{403}\right)$ i $\left(\frac{907}{1455}\right)$.
- 5. (a) Izračunajte Jacobijeve simbole $\left(\frac{-60}{377}\right)$ i $\left(\frac{-60}{323}\right)$.
 - (b) Je li −60 kvadratni ostatak modulo 377? Detaljno obrazložite odgovor!
 - (c) Je li −60 kvadratni ostatak modulo 323? Detaljno obrazložite odgovor!
- 6. Odredite sve neparne proste brojeve \boldsymbol{p} takve da je:

(a)
$$\left(\frac{6}{p}\right) = 1$$

(a)
$$\left(\frac{6}{p}\right) = 1$$
, (b) $\left(\frac{-60}{p}\right) = -1$, (c) $\left(\frac{40}{p}\right) = -1$.

(c)
$$\left(\frac{40}{p}\right) = -1$$
.

- 7. (a) Odredite sve neparne proste brojeve p takve da je $\left(\frac{-3}{n}\right) = 1$.
 - (b) Dokažite da postoji beskonačno mnogo prostih brojeva oblika 6k + 1.
- 8. Izračunaite

(a)
$$\left(\frac{17}{p}\right)$$
, (b) $\left(\frac{19}{p}\right)$ za sve neparne proste brojeve p .

- 9. Odredite sve neparne proste brojeve p takve da kongruencija $x^2 + 45 \equiv 0 \pmod{p}$ ima rješenja.
- 10. Neka je p neparan prost broj s primitivnim korijenom q te neka je a cijeli broj takav da je nzd(a, p) = 1. Dokažite da je a kvadratni ostatak modulo p ako i samo ako je indeks $\operatorname{ind}_{a}a$ paran.
- 11. Neka je q prost broj oblika $q=p^2+4a^2$ gdje je p neparan prost broj te a cijeli broj. Dokažite da je $\left(\frac{p}{q}\right)=1.$ Uputa: Koristite Gaussov zakon reciprociteta.

- 12. Neka je a neparan prost broj te neka je b cijeli broj takav da je $p = a^2 + 5b^2$ prost. Dokažite da je a kvadratni ostatak modulo p ako i samo ako je $p \equiv 1 \pmod{5}$.
- 13. Riješite sustav kongruencija

$$x^2 \equiv 21 \pmod{67}$$

$$x^2 \equiv 44 \pmod{83}.$$

Uputa: Uočite da je $67 \equiv 83 \equiv 3 \pmod{4}$.