

Dr Tomasz Kurowski t.j.kurowski@cranfield.ac.uk

13 February 2025

www.cranfield.ac.uk

- Complex systems are better described as networks of interacting components
- The topology of a network characterises the underlying complex system (global topology parameters) and its individual components (local topology parameters)
- Network topology parameters are easily compared
- Useful for discovering patterns in large data sets
- Allow the integration of multiple data types

Networks in biology

Two main types of networks in biology:

- Interaction networks (protein-protein PPI, protein-ligand, protein-transcript...) - molecular interactions between proteins, or between proteins and chemicals e.g. MINT, Intact
- Pathways (regulatory, signaling, metabolic...) Sequence of enzymatic or other reactions by which one biological material is converted to another e.g. Biocarta, Reactome, Biopax

Also:

- Association networks genes and proteins often associated in the literature or in expression studies
- Author networks who works with whom!

Networks as graphs

Formal **graph definition**: A graph G is a pair of two sets V (nodes) and E (edges): G = (V, E)

Neighbors are two nodes n₁ and n₂ connected by an edge

Neighborhood is the set of all neighbors of node n

Connectivity k_n is the size of the neighborhood of n

Degree k is the number of edges incident on n

Node degree and shortest path

A **hub** is a node with an exceptionally high degree, larger than the average node degree (see red nodes).

A **shortest path** between the nodes n and m is a path between n and m of minimal length.

The shortest path length, or **distance**, between n and m is the length of a shortest path between n and m.

The **characteristic path length** is the average shortest path length, the expected distance between two connected nodes.

Random networks vs. scale-free networks

Random networks are homogeneous, most nodes have the same number of links:

- not robust to arbitrary node failure

Scale-free networks have a number of highly connected nodes:

- robust to random failure
- very sensitive to hub failures

Cytoscape

Open source software for visualising, integrating, and analysing biological data.

Main interface:

Data importing and visualisation

Advanced parsing allowing the association of data from many different formats

Complex layout customisation and automation options

Ideker and Lauffenburger, Trends in Biotech. (2003) -Cited from UCSD presentation 18th January

More advanced: Apps

Clustering
Enrichment analysis
Gene expression analysis
Gene function prediction
Network evolution

• • •

Consortium

Unilever

Nodes and edges can have additional data associated with them and stored in tables.

- Annotation
- Gene ontology
- Mass spectrometry data
- Gene expression data
- Identifiers from different databases

Filters allow you to search for nodes or edges based on that data.

It is also available to analysis apps.

Data import

Layouts

Layouts

Layouts

Apps

https://apps.cytoscape.org

Submit an App ▼

Search the App Store

Sign In

All Apps

Categories

collections data visualization network generation graph analysis network analysis online data import integrated analysis clustering systems biology utility

enrichment analysis data integration visualization automation layout core app nathway datahasa

Newest Releases

Omnipath

OmniPath: literature curated human signaling pathways

PathLinker

Reconstructs signaling pathways from protein interaction networks

WikiPathways

WikiPathways web service client and GPML file format importer

stringApp

Import and augment Cytoscape networks from STRING

ModuLand 2.0

Modularization method family offering modular hierarchies and

ClueGO

Creates and visualizes a functionally grouped network of

more newest releases »

Top Downloaded Apps

Cytoscape community

Identify important subnetworks

Human interactome

Apply network analysis tools to identify significant subnetworks associated with condition if interest

Molecular Interaction and Network Resources for Cytoscape

- Import from web-services (NDEx, Pathway Commons)
- Sources:Mint, Reactome, IntAct, HPRD, Biogrid, SBCNY, MSKCC, BioGRID
- Pathway or Molecular interactions.
- Upload a network file (tab delimited, MITAB, SIF, CX).
- Build your own network!

Enter pathway name or gene names

e.g. cell cycle, pcna xrcc2 xrcc3 rad50 rad51, P12004

Nature 437, 1173-1178 (20 October 2005) | doi:10.1038/nature04209; Received 21 July 2005; Accepted 8 September 2005; Published online 28 September 2005

Towards a proteome-scale map of the human protein—protein interaction network

Jean-François Rual^{1,8}, Kavitha Venkatesan^{1,8}, Tong Hao¹, Tomoko Hirozane-Kishikawa¹, Amélie Dricot¹, Ning Li¹, Gabriel F. Berriz², Francis D. Gibbons², Matija Dreze^{1,3}, Nono Ayivi-Guedehoussou¹, Niels Klitgord¹, Christophe Simon¹, Mike Boxem¹, Stuart Milstein¹, Jennifer Rosenberg¹, Debra S. Goldberg², Lan V. Zhang², Sharyl L. Wong², Giovanni Franklin², Siming Li^{1,7}, Joanna S. Albala^{1,7}, Janghoo Lim⁴, Carlene Fraughton¹, Estelle Llamosas¹, Sebiha Cevik¹, Camille Bex¹, Philippe Lamesch^{1,3}, Robert S. Sikorski², Jean Vandenhaute³, Huda Y. Zoghbi⁴, Alex Smolyar¹, Stephanie Bosak⁶, Reynaldo Sequerra⁶, Lynn Doucette-Stamm⁶, Michael E. Cusick¹, David E. Hill¹, Frederick P. Roth² & Marc Vidal¹

- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, Massachusetts 02115, USA
- Unité de Recherche en Biologie Moléculaire, Facultés Notre-Dame de la Paix, 61 Rue de Bruxelles, 5000 Namur, Belgium
- Howard Hughes Medical Institute, and Departments of Pediatrics, Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Arcbay, Inc., 6 Whittier Place, Suite 7J, Boston, Massachusetts 01915, USA
- Agencourt Bioscience Corporation, 500 Cummings Center, Suite 2450, Beverly, Massachusetts 01915, USA
- †Present addresses: ArQule, Inc., 19 Presidential Way, Woburn, Massachusetts 01081, USA (S.L.);
 Departments of Cancer Biology, and Otolaryngology, Head and Neck Surgery, University of California Davis, 2521 Stockton Blvd, Suite 7200, Sacramento, California 95817, USA (J.S.A.)
- 8. *These authors contributed equally to this work

Correspondence to: David E. Hill¹Frederick P. Roth²Marc Vidal¹ Correspondence and requests for materials should be addressed to M.V. (Email: marc vidal@dfci.harvard.edu), F.P.R. (Email: fritz roth@hms.harvard.edu) or D.E.H. (Email: david hill@dfci.harvard.edu).

Systematic mapping of protein–protein interactions, or 'interactome' mapping, was ted in model organisms, starting with defined biological processes 1, 2 and then nding to the scale of the proteome 3, 4, 5, 6, 7. Although far from complete, such

Literature mining

NCBI / PubMed API

Cytoscape API

Cytoscape 3.6.0 API

All Classes

Packages

org.cytoscape.app org.cytoscape.app.event org.cytoscape.app.swing org.cytoscape.application

All Classes

AboutToRemoveEdgesEvent AboutToRemoveEdgesListener AboutToRemoveEdgeViewsEvent AboutToRemoveEdgeViewsListener AboutToRemoveNodesEvent AboutToRemoveNodesListener AboutToRemoveNodeViewsEvent AboutToRemoveNodeViewsListener AbstractBounded AbstractCellEditor AbstractConfigDirPropsReader AbstractCyAction AbstractCyActivator AbstractCyApp AbstractCyEdit AbstractCyEvent AbstractCy|ob AbstractCyNetworkReader AbstractCyPayloadEvent AbstractCySwingApp AbstractEdgeViewTask AbstractEdgeViewTaskFactory AbstractFunction

OVERVIEW PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

FRAMES NO FRAMES

Cytoscape 3.6.0 API

Cytoscape Swing App API (swing-app-api) 3.6.0 API

This document represents the API specification for Cytoscape 3.0 using a Java Swing front-end.

See: Description

PREV NEXT

Packages

Package	Description
org.cytoscape.app	This is the Cytoscape App API, which supports development of Cytoscape 3.X apps in a manner similar to apps developed in Cytoscape 2.X.
org.cytoscape.app.event	
org.cytoscape.app.swing	This is the Cytoscape Swing App API, which supports development of Cytoscape 3.X apps in a manner similar to apps developed in Cytoscape 2.X and provides full access to the Swing specific services of the Cytoscape API in addition to all other services provided in Cytoscape App API.
org.cytoscape.application	This package provides Cytoscape version number, application-wide setting, basic access to current network, selected networks, views and rendering engines.
org.cytoscape.application.events	This package provides application events/listeners, including Cytoscape startup/shutdown, $setCurrentNetwork/setCurrentNetworkView/setSelectedNetwork$.
org.cytoscape.application.swing	This package defines the various interfaces, abstract classes, and enums that represent the Cytoscape Swing Application API.
org.cytoscape.application.swing.events	This package defines the various events fired by the Cytoscape Swing Application API.
org cytoscape application swing search	

23

Cytoscape.js: a graph theory library for visualisation and analysis

Max Franz; Christian T. Lopes; Gerardo Huck; Yue Dong; Onur Sumer; Gary D. Bader ■

Bioinformatics (2015) 32 (2): 309-311.

DOI: https://doi.org/10.1093/bioinformatics/btv557

Published: 28 September 2015 Article history ▼

₩ Views ▼ PDF 66 Cite < Share ▼ < Tools ▼

Abstract

Summary: Cytoscape.js is an open-source JavaScript-based graph library. Its most common use case is as a visualization software component, so it can be used to render interactive graphs in a web browser. It also can be used in a headless manner, useful for graph operations on a server, such as Node.js.

Availability and implementation: Cytoscape.js is implemented in

JavaScript library for network visualization. Extendable with *Extensions* (not compatible with *Apps*).

Long-term goal of closer integration between Cytoscape and Cytoscape.js.

You can export Cytoscape networks into Cytoscape.js and vice-versa.

http://js.cytoscape.org/

Originally an app, now fully integrated with core Cytoscape (running on localhost port 1234).

You can use the desktop Cytoscape app through a REST API, from R, Python, Jupyter notebooks, and other languages (it is a REST API after all...)

Ono, Keiichiro, et al. "CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API." F1000Research 4 (2015).

