Grafos – Implementação Computacional

Teoria dos Grafos - 2020

Prof. Roberto C. de Araujo

1. Representação Computacional de Grafo

Representação por lista de adjacência:

Representação por matriz de adjacência:

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

Representação de grafos orientados:

Representação por lista de adjacência e por matriz de adjacência:

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	1 0 0 0 1	0	1

2. Exercício

1. Consulte, no livro do Bondy & Murty, a representação de grafos por matriz de incidência.

1.3 THE INCIDENCE AND ADJACENCY MATRICES

To any graph G there corresponds a $\nu \times \varepsilon$ matrix called the incidence matrix of G. Let us denote the vertices of G by $v_1, v_2, \ldots, v_{\nu}$ and the edges by $e_1, e_2, \ldots, e_{\varepsilon}$. Then the incidence matrix of G is the matrix $\mathbf{M}(G) = [m_{ij}]$, where m_{ij} is the number of times (0, 1 or 2) that v_i and e_j are incident. The incidence matrix of a graph is just a different way of specifying the graph.

Another matrix associated with G is the adjacency matrix; this is the $\nu \times \nu$ matrix $\mathbf{A}(G) = [a_{ij}]$, in which a_{ij} is the number of edges joining v_i and v_j . A graph, its incidence matrix, and its adjacency matrix are shown in figure 1.5.

						e_6			v_1	v_2	v_3	
1	1	1	0	0	1	0 0 0 2	1	v ₁ v ₂ v ₃ v ₄	0	2	1	
	1	1	1	0	0	0	0	v_2	2	0	1	
١	0	0	1	1	0	0	1	v_3	1	1	0	
	0	0	0	1	1	2	0	v4	1	0.	1	
			M	(G)					8	A(G)	

- **2.** Elabore um algoritmo para calcular o grau de um vértice de um grafo.
- 3. Dado um grafo H, elabore um algoritmo para calcular $\delta(H)$.
- **4.** Dado um grafo H, elabore um algoritmo para calcular $\Delta(H)$.
- **5.** Dado um grafo H, elabore um algoritmo para decidir se H é regular ou não.
- **6.** Elabore um algoritmo para decidir seu um grafo é conexo ou não.
- 7. Dado um grafo H, elabore um algoritmo para calcular c(H).
- **8.** Elabore um algoritmo para calcular a distância entre dois vértices de um grafo.