whenever there exists a fixed vector which is a quasi-interior point of E₊. Indeed, if k is the order of the pole at s(A) = 0 then we have $0 \neq A^{k-1}p = \lim_{\lambda \to 0} \lambda^k R(\lambda,A)$. Thus $A^{k-1}p$ is a positive operator. Assuming k > 1 and denoting the quasi-interior fixed vector by u we have Au = 0 hence $A^{k-1}pu = PA^{k-1}u = 0$. Since $A^{k-1}p$ is positive it vanishes on the principal ideal generated by u. Since this ideal is dense we obtain $A^{k-1}p = 0$ which is a contradiction.

- (d) If $T=(T(t))_{t\geq 0}$ is an irreducible semigroup with s(A)=0, then quasi-compactness implies boundedness of T (This follows from (c) and C-III,Prop.3.5). Moreover, in this case the projection P has the form $P=\phi \otimes h$ where u is a quasi-interior point of E_+ and ϕ is a strictly positive linear form on E. This also is a consequence of C-III,Prop.3.5.
- (e) If $T=(T(t))_{t\geq 0}$ is irreducible and eventually compact then the rescaled semigroup $(\exp(-\omega(T)t)T(t))$ satisfies the assumptions of Thm.2.1. Indeed, by C-III,Thm.3.7 we know that $\omega(T) > -\infty$, while $\omega_{\text{ess}}(T) = -\infty$. It follows that the rescaled semigroup is quasi-compact hence (d) is applicable.

The following example has a biological background, and the semigroup considered describes the time evolution of an age-structured population. For more details we refer to Greiner (1984a) or Webb (1984).

Example 2.3. On the Banach lattice $E = L^{1}([0,\infty))$ we consider the operator A defined by

Af := -f' -
$$\mu$$
f with domain
 (2.2) D(A) := {f \in E : f absolutely continuous, f' \in E ,
$$f(0) = \int_0^\infty \beta(a) \, f(a) \, da \, \} \quad .$$

Here we assume that μ and β are positive , measurable, bounded functions on $[0,\infty)$. One can show that A generates a strongly continuous semigroup T of positive operators. Assuming that $\mu\left(\infty\right) := \lim_{a \to \infty} \mu\left(a\right) \text{ exists we obtain } \omega_{\text{ess}}\left(T\right) = -\mu\left(\infty\right) \text{ . We suppose in addition that } \beta \text{ and } \mu \text{ satisfy}$

(2.3)
$$\int_0^\infty \beta(a) (\exp(-\int_0^a \mu(x) dx)) da = 1$$
 and $\mu(\infty) > 0$.

The function h with $h(a):=\exp\left(-\int_0^a\mu(s)\ ds\right)$ is differentiable, $h\in E$ and $h'=-\mu h$. Moreover, (2.3) implies $\int_0^\infty\beta(a)h(a)\ da=1=h(0)$. Thus $h\in D(A)$ and Ah=0. It follows that s(A)=0. Indeed, since s(A) is a pole of the resolvent there exists a positive eigenvector w of A' corresponding to s(A). Since h is