UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

MATA 49 – PROGRAMAÇÃO DE SOFTWARE BÁSICO

PROFESSOR: LEANDRO ANDRADE

TRABALHO PRÁTICO 2013.2 (19/12/2013)

Informações Gerais

- O trabalho deve ser feito em dupla
- A data de entrega será no dia **20 de janeiro de 2014** em sala de aula (das 17:00 às 19:00) e cada dupla terá cerca de 5 minutos para explicar sua solução e entregar o código fonte
 - É indispensável que cada aluno apresente conhecimento sobre o código desenvolvido, pois isso também será considerado como critério de avaliação
- A identificação de plágio resultará na anulação da nota da avaliação de todos os envolvidos
- As entradas e saídas devem seguir rigorosamente a especificação. Então leia atentamente as informações abaixo

Descrição do Geral

Vira! é um jogo individual que se inicia com 5 peças igualmente espaçadas em uma linha. Cada peça do Vira! possui dois lados, sendo um branco e um preto; assim, ao virar uma peça, alterna-se a cor que está sendo mostrada entre branco e preto (a peça que está imediatamente ao lado, caso ela não tenha sido removida antes). A figura abaixo ilustra um possível arranjo com 5 peças, duas mostrando o lado branco e três mostrando o lado preto.

Um movimento consiste em retirar uma peça preta criando um espaço e inverter as peças vizinhas à retirada (caso existam). Sendo assim, dependendo do número de peças vizinhas à retirada, um movimento pode inverter duas, uma, ou mesmo nenhuma peça (se não houver peças vizinhas à que está sendo retirada). Você vence o jogo quando consegue remover todas as peças. A figura abaixo exemplifica uma sequência de movimentos que resolvem uma instância do problema com 5 peças, em que as peças são retiradas na ordem 5-2-1-3-4.

1	2	3	4	5	Descrição do movimento
0		0	lacktriangle	lacktriangle	Configuração inicial
0	lacktriangle	0	0	×	Removemos a peça da posição 5
	×	•	0	×	Removemos a peça da posição 2
×	×	lacktriangle	0	×	Removemos a peça da posição 1
×	×	×	lacktriangle	×	Removemos a peça da posição 3
×	×	×	×	×	Removemos a peça da posição 4
					Fim do jogo.

Para uma determinada disposição inicial das peças, podem existir várias soluções diferentes. Por exemplo, poderíamos retirar as peças na ordem 5-2-3-4-1 e ainda assim conseguir retirar todas as peças.

Sua tarefa, neste problema, consiste em contar o número de soluções diferentes para uma dada disposição inicial das peças.

Entrada

A deve ter uma única linha, que contém 5 letras separadas por espaço representando o arranjo inicial das peças. Uma peça branca é indicada pela letra B na entrada, e uma peça preta é indicada pela letra P.

Saída

Seu programa deve imprimir uma linha contendo o número de soluções distintas que resolvem o jogo.

Exemplos

Entrada	Saída
BPBPP	11

A figura abaixo apresenta a árvore de possibilidades para esta entrada. Note que nem todos os casos resultam em soluções vitoriosas.

Mais exemplos:

Entrada	Saída
PBBBB	1
BBBBB	0
PPPP	16
BBPBB	6
PPBPP	0