

Unsupervised text segmentation

Predict 1 Evaluate Eye fixations during reading

Jinbiao Yang^{1,2} Stefan L. Frank² Antal van den Bosch³

- ¹⁾ MPI for Psycholinguistics
- ²⁾ CLS, Radboud University
- 3) KNAW Meertens Institute

What are the "cognitive units" in our daily

An example of cognitive segmentation of language: "I am |a |paleo|anthropolog|ist|."

The cognitive units of language:

- 1. diverse forms;
- 2. implict boundaries.

An unsupervised computational exploration of cognitive units

Backgroud -- The principle of least effort:

"Each individual will adopt a course of action that will involve the expenditure of the probably least average of his work." (Zipf, 1949)

Linking hypothesis:

We assumes cognitive units are the units that minimize different cognitive loads.

Segmentation:

Update:

Model outputs:

	English	Dutch
Input		was ik nog aan het overleggen wat ik zou gaan doen
Output	i was trying to make up my mind what to do	was ik nog aan het over leggen wat ik zou gaan doen

Computational advantages (Yang et al., 2020):

- 1. Minimal description length;
- 2. Minimal Bits-per-character scores on tiny language models;
- 3. Can be used for Chinese word segmentation.

An emprical exploration of cognitive units

Backgroud -- Eye fixations during reading Some words are skipped, and some words are re-fixated.

Linking hypothesis:

We assumes that reading is cognitive-unit-wise rather than word-wise, therefore:

Eye fixations = Centers of cognitive units.

A demo: i was | trying to | make | up | my mind | what | to do

Experiment

- 1. **Train** the Less-is-Better model on the Ghent Eye-Tracking Corpus (GECO) corpus;
- 2. **Segment** the corpus by the model;
- 3. Predict the locations of eye fixations based on segmentation;
- 4. Compare:
 - a. the predicted number of fixations on each word,
 - b. the observed number of fixations on each word.

Results (Yang et al., 2022)

Model	English	Dutch
Less-is-better	53.06	51.87
Adaptor Grammar (collocation)	53.35	51.45
Chunk-Based Learner	52.20	50.04
Fixation counts determined by word length	50.82	50.57
Word-by-Word reading	38.32	38.68
Adaptor Grammar (word)	30.10	28.95

The weighted F1 scores between different models and the ground truth.

Take-home message

- Cognitive units of language are :
- (×) words/morphemes/phrases.
- $(\sqrt{\ })$ the units that can minimize the cognitive load.

- Reading is cognitive-unit-by-cognitive-unit.
- Unsupervised model can learn cognitive units.

