

## 1A L.D.O 电压调整器

LM1117

#### 特点

- 输出电流高达 1A
- 低压差电压(输出电流为 1A 时为 1.2V)
- 三端可调(ADJ)或固定 1.2V、1.5V、1.8V、2.5V 、3.3V、5.0V
- 线路调节典型值为 0.1% typ.
- 负载调节通常为 0.2% typ.
- 内部电流和端子保护
- 最大输入电压 20V
- 表面贴装封装 SOT-223、TO-252、SOT-89
- 100% 热极限预烧
- 湿气敏感度3级



## 申请

- 有源 SCSI 终结器
- 便携式/平板电脑/笔记本电脑
- 高效线性稳压器
- SMPS 后置稳压器
- 母 B/D 时钟用品
- 磁盘驱动器
- 电池充电器

#### 订购信息

| 设备            | 包装         |
|---------------|------------|
| LM1117S-ADJ   |            |
| LM1117S-X.X   | SOT-223 3L |
| LM1117GS-ADJ  | SO1-223 3L |
| LM1117GS-X.X  |            |
| LM1117RS-ADJ  |            |
| LM1117RS-X.X  | TO-252 3I  |
| LM1117GRS-ADJ | 10-252 3L  |
| LM1117GRS-X.X |            |
| LM1117F-ADJ   |            |
| LM1117F-X.X   | SOT-89 3I  |
| LM1117GF-ADJ  | 301-893L   |
| LM1117GF-X.X  |            |

X.X = 输出电压 = 1.2V、1.5V、1.8V、2.5V、3.3V、5.0V

#### 说明

LM1117 是一款低功耗正压稳压器,输出电流为 1A。该器件是电池供电应用、SCSI 总线有源端接器和便携式电脑的绝佳选择。LM1117 具有极低的静态电流和极低的压降(满载时为 1.2V,输出电流减小时更低)。LM1117 提供

# 1A L.D.O 电压调整器

可调或固定的 1.2V、1.5V、1.8V、2.5V 和 3.3V、

和 5.0V 输出电压。LM1117 采用 3 引脚表面贴装封装 SOT-223、TO-252 和 SOT-89。与大多数其他稳压器电路一样,LM1117 的输出稳定性需要  $10\mu$ F 或更大的输出电容器。

## 绝对最大额定值

| 特征     | 符号   | MIN. | MAX. | 单元 |
|--------|------|------|------|----|
| 输入电源电压 | VIN  | -    | 20   | V  |
| 铅温度    | TSOL | -    | 260  | °C |
| 存储温度范围 | TSTG | -65  | 150  | °C |
| 工作结温范围 | TOPR | -40  | 125  | °C |

# 订购信息

| VOUT | 包装      | 订购号           | 包装标记         | 作为 | 现状   |
|------|---------|---------------|--------------|----|------|
|      | SOT-223 | LM1117S-ADJ   | 1117C ADJ    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-ADJ  | 1117GC ADJ   | 卷轴 | 活跃   |
| ADJ  | TO-252  | LM1117RS-ADJ  | LM1117C ADJ  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-ADJ | LM1117GC ADJ | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-ADJ   | 1117C ADJ    | 卷轴 | 活跃   |
|      | SOT-89  | LM1117GF-ADJ  | 1117GC ADJ   | 卷轴 | 活跃   |
|      | SOT-223 | LM1117S-1.2   | 1117C 1.2    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-1.2  | 1117GC 1.2   | 卷轴 | 活跃   |
| 1.2V | TO-252  | LM1117RS-1.2  | LM1117C 1.2  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-1.2 | LM1117GC 1.2 | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-1.2   | 1117C 1.2    | 卷轴 | 活跃   |
|      | SOT-89  | LM1117GF-1.2  | 1117GC 1.2   | 卷轴 | 活跃   |
|      | SOT-223 | LM1117S-1.5   | 1117C 1.5    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-1.5  | 1117GC 1.5   | 卷轴 | 联系我们 |
| 1.5V | TO-252  | LM1117RS-1.5  | LM1117C 1.5  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-1.5 | LM1117GC 1.5 | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-1.5   | 1117C 1.5    | 卷轴 | 活跃   |
|      | SOT-89  | LM1117GF-1.5  | 1117GC 1.5   | 卷轴 | 活跃   |
|      | SOT-223 | LM1117S-1.8   | 1117C 1.8    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-1.8  | 1117GC 1.8   | 卷轴 | 活跃   |
| 1.8V | TO-252  | LM1117RS-1.8  | LM1117C 1.8  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-1.8 | LM1117GC 1.8 | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-1.8   | 1117C 1.8    | 卷轴 | 活跃   |
|      | SOT-89  | LM1117GF-1.8  | 1117GC 1.8   | 卷轴 | 活跃   |
|      | SOT-223 | LM1117S-2.5   | 1117C 2.5    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-2.5  | 1117GC 2.5   | 卷轴 | 联系我们 |
| 2.5V | TO-252  | LM1117RS-2.5  | LM1117C 2.5  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-2.5 | LM1117GC 2.5 | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-2.5   | 1117C 2.5    | 卷轴 | 活跃   |

# 1A L.D.O 电压调整器 LM1117

|      | SOT-89  | LM1117GF-2.5  | 1117GC 2.5   | 卷轴 | 活跃   |
|------|---------|---------------|--------------|----|------|
|      | SOT-223 | LM1117S-3.3   | 1117C 3.3    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-3.3  | 1117GC 3.3   | 卷轴 | 活跃   |
| 3.3V | TO-252  | LM1117RS-3.3  | LM1117C 3.3  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-3.3 | LM1117GC 3.3 | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-3.3   | 1117C 3.3    | 卷轴 | 活跃   |
|      | SOT-89  | LM1117GF-3.3  | 1117GC 3.3   | 卷轴 | 活跃   |

| VOUT | 包装      | 订购号           | 包装标记         | 作为 | 现状   |
|------|---------|---------------|--------------|----|------|
|      | SOT-223 | LM1117S-5.0   | 1117C 5.0    | 卷轴 | 活跃   |
|      | SOT-223 | LM1117GS-5.0  | 1117GC 5.0   | 卷轴 | 活跃   |
| 5.0V | TO-252  | LM1117RS-5.0  | LM1117C 5.0  | 卷轴 | 活跃   |
|      | TO-252  | LM1117GRS-5.0 | LM1117GC 5.0 | 卷轴 | 联系我们 |
|      | SOT-89  | LM1117F-5.0   | 1117C 5.0    | 卷轴 | 活跃   |
|      | SOT-89  | LM1117GF-5.0  | 1117GC 5.0   | 卷轴 | 活跃   |



## 引脚配置







## 引脚说明

| 针脚编号 | SOT-223 / TO-252 / SOT-89 |       |  |  |
|------|---------------------------|-------|--|--|
|      | 名称                        | 功能    |  |  |
| 1    | ADJ/GND                   | 可调/接地 |  |  |
| 2    | VOUT                      | 输出电压  |  |  |
| 3    | VIN                       | 输入电压  |  |  |

## 典型电路







## 电气特性

**用于 ADJ 输出电压** (除非另有说明,否则 TJ=25℃, <sub>COUT</sub> = 10uF)

| 用丁 ADJ              | J <sub>.</sub> 输出电压   | (除非另有说明,否则 TJ=25°C, cout = 10uF)                                                 |                       |                          |                         |    |
|---------------------|-----------------------|----------------------------------------------------------------------------------|-----------------------|--------------------------|-------------------------|----|
| 符号                  | 参数                    | 条件                                                                               | Min.                  | 类型                       | 最大                      | 单位 |
| VREF                | 参考电压                  | <sub>VIN</sub> = 5V, <sub>IO</sub> = 10mA                                        | 1.238                 | 1.250                    | 1.262                   | V  |
| VREF                | 参考电压                  | IO = 10mA 至 1A, <sub>VIN</sub> - <sub>VREF</sub> = 1.5V 至 13.75 伏(tj = 0~125℃)   | 1.219                 |                          | 1.281                   | V  |
| ΔVLINE              | 线路调节                  | <sub>IO</sub> = 10mA , <sub>VIN</sub> - <sub>VREF</sub> = 1.5V 至 12V             |                       | 0.1                      | 0.2                     | %  |
| ΔVLOAD              | 负载调节                  | <sub>IO</sub> = 10mA 至 1A, <sub>VIN</sub> - <sub>VREF</sub> = 2V                 |                       | 0.2                      | 0.4                     | %  |
| VIN                 | 工作输入电压                |                                                                                  |                       |                          | 12                      | ٧  |
| IADJ                | 调节引脚 电流               | <sub>VIN</sub> - <sub>VREF</sub> = 1.5V 至 12V, <sub>IO</sub> = 100mA             |                       | 50                       | 120                     | uA |
| ΔIADJ               | 调节引脚 电流变化             | <sub>VIN</sub> - <sub>VREF</sub> = 1.5V 至 12V,<br><sub>IO</sub> = 100mA 至 1A     |                       | 0.5                      | 5                       | uA |
| IO <sub>(MIN)</sub> | 最小负载电流                | <sub>VIN</sub> = 5V, <sub>VREF</sub> = 0V                                        |                       | 5                        | 10                      | 毫安 |
| Ю                   | 电流限制                  | <sub>VIN</sub> - <sub>VREF</sub> = 5V                                            | 1000                  |                          |                         | 毫安 |
| EN                  | 输出噪声(% <sub>VO)</sub> | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                                            |                       | 0.003                    |                         | %  |
| SVR                 | 电源电压抑制                | <sub>IO</sub> = 1A, f = 120Hz、                                                   | 60                    | 75                       |                         | 分贝 |
| <del>适用于 1</del> .  |                       | vin - vref = 3V,vripple = 1vpp (除非兄                                              | <br><del> 有说明,否</del> | <br><del>则 TJ=25°C</del> | , <sub>соит</sub> = 10u | F) |
| 符号                  | 参数                    | 条件                                                                               | Min.                  | 类型                       | 最大                      | 单位 |
| VO                  | 输出电压                  | <sub>VIN</sub> = 2.7V, <sub>IO</sub> = 10mA                                      | 1.176                 | 1.200                    | 1.224                   | V  |
| VO                  | 输出电压                  | VIN = 2.7V 至 12V,IO = 0mA 至 1A<br>(tj = 0 ~ 125℃)                                | 1.152                 |                          | 1.248                   | V  |
| ΔVLINE              | 线路调节                  | <sub>IO</sub> = 10mA , <sub>VIN</sub> = 2.7V 至 12V                               |                       | 0.1                      | 0.2                     | %  |
| ΔVLOAD              | 负载调节                  | <sub>IO</sub> = 10mA 至 1A, <sub>VIN</sub> = 3.2V                                 |                       | 0.2                      | 0.4                     | %  |
| VIN                 | 工作输入电压                |                                                                                  |                       |                          | 12                      | V  |
| 身份证                 | 静态电流                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                              |                       | 5                        | 10                      | mA |
| Ю                   | 电流限制                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                              | 1000                  |                          |                         | mA |
| EN                  | 输出噪声(% <sub>VO)</sub> | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                                            |                       | 0.003                    |                         | %  |
| SVR                 | 电源电压抑制                | $_{10}$ = 1A, f = 120Hz,<br>$_{vin}$ = $_{vin}$ = 1.5V, $_{vrinole}$ = $_{1vin}$ | 60                    | 75                       |                         | 分贝 |

**适用于 1.5V 输出电压** (除非另有说明,否则 TJ=25℃, couт = 10uF)

|        | O 4 400 E4 - C/EE      | (13-11-21-13-13-13-13-13-13-13-13-13-13-13-13-13               |       |     |       |    |
|--------|------------------------|----------------------------------------------------------------|-------|-----|-------|----|
| 符号     | 参数                     | 条件                                                             | Min.  | 类型  | 最大    | 单位 |
| VO     | 输出电压                   | <sub>VIN</sub> = 3.0V , <sub>IO</sub> = 10mA                   | 1.485 | 1.5 | 1.515 | V  |
| VO     | 输出电压                   | VIN = 3.0V 至 12V, <sub>IO</sub> = 0mA 至 1A<br>(tj = 0 ~ 125°C) | 1.470 |     | 1.530 | V  |
| ΔVLINE | 线路调节                   | <sub>IO</sub> = 10mA , <sub>VIN</sub> = 3.0V 至 12V             |       | 0.1 | 0.2   | %  |
| ΔVLOAD | 负载调节                   | <sub>IO</sub> = 10mA 至 1A, <sub>VIN</sub> = 3.5V               |       | 0.2 | 0.4   | %  |
| VIN    | 工作输入电压                 |                                                                |       |     | 12    | ٧  |
| 身份证    | 静态电流                   | <sub>VIN</sub> - <sub>VO</sub> = 5V                            |       | 5   | 10    | 毫安 |
| Ю      | 电流限制                   | <sub>VIN</sub> - <sub>VO</sub> = 5V                            | 1000  |     |       | 毫安 |
| EN     | 输出噪声 (% <sub>VO)</sub> | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                          |       | 100 |       | uV |
| SVR    | 电源电压抑制                 | IO = 1A, f = 120Hz, vin - vo = 3v, vripple = 1vpp              | 60    | 75  |       | 分贝 |

**适用于 1.8V 输出电压** (除非另有说明,否则 TJ=25℃, <sub>COUT</sub> = 10uF)

| 符号     | 参数                    | 条件                                                                                               | Min.  | 类型  | 最大    | 单位 |
|--------|-----------------------|--------------------------------------------------------------------------------------------------|-------|-----|-------|----|
| VO     | 输出电压                  | <sub>VIN</sub> = 3.3V, <sub>IO</sub> = 10mA                                                      | 1.782 | 1.8 | 1.818 | V  |
| VO     | 输出电压                  | <sub>VIN</sub> = 3.3V 至 12V, <sub>IO</sub> = 0mA 至 1A<br><sub>(tj</sub> = 0 ~ 125℃)              | 1.764 |     | 1.836 | V  |
| ΔVLINE | 线路调节                  | <sub>IO</sub> = 10mA , <sub>VIN</sub> = 3.3V 至 12V                                               |       | 0.1 | 0.2   | %  |
| ΔVLOAD | 负载调节                  | <sub>IO</sub> = 10mA 至 1A, <sub>VIN</sub> = 3.8V                                                 |       | 0.2 | 0.4   | %  |
| VIN    | 工作输入电压                |                                                                                                  |       |     | 12    | V  |
| 身份证    | 静态电流                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                                              |       | 5   | 10    | 毫安 |
| Ю      | 电流限制                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                                              | 1000  |     |       | 毫安 |
| EN     | 输出噪声(% <sub>VO)</sub> | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                                                            |       | 100 |       | uV |
| SVR    | 电源电压抑制                | <sub>IO</sub> = 1A, f = 120Hz,<br><sub>vin - vo</sub> = 3v, <sub>vripple</sub> = <sub>1vpp</sub> | 60    | 75  |       | 分贝 |

\_ 适用于 2.5V 输出电压

(除非另有说明,否则 TJ=25°С, соит = **10u**F)

| 符号     | 参数                    | 条件                                                                                   | Min.  | 类型  | 最大    | 单位 |
|--------|-----------------------|--------------------------------------------------------------------------------------|-------|-----|-------|----|
| VO     | 输出电压                  | <sub>VIN</sub> = 4.0V, <sub>IO</sub> = 10mA                                          | 2.475 | 2.5 | 2.525 | V  |
| VO     | 输出电压                  | <sub>VIN</sub> = 4.0V 至 12V, <sub>IO</sub> = 0mA 至 1A<br><sub>(tj</sub> = 0 ~ 125°C) | 2.450 |     | 2.550 | V  |
| ΔVLINE | 线路调节                  | <sub>IO</sub> = 10mA , <sub>VIN</sub> = 4.0V 至 12V                                   |       | 0.1 | 0.2   | %  |
| ΔVLOAD | 负载调节                  | <sub>IO</sub> = 10mA 至 1A, <sub>VIN</sub> = 4.5V                                     |       | 0.2 | 0.4   | %  |
| VIN    | 工作输入电压                |                                                                                      |       |     | 12    | V  |
| 身份证    | 静态电流                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                                  |       | 5   | 10    | 毫安 |
| Ю      | 电流限制                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                                  | 1000  |     |       | 毫安 |
| EN     | 输出噪声(% <sub>VO)</sub> | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                                                |       | 100 |       | uV |
| SVR    | 电源电压抑制                | 10 = 1A, f = 120Hz,                                                                  | 60    | 75  |       | 分贝 |
|        |                       | $v_{in} - v_{o} = 3v$ , $v_{ripple} = 1v_{pp}$                                       |       |     |       |    |

用于 3.3V 输出电压

(除非另有说明,否则 TJ=25°C, cout = 10uF)

| 符号     | 参数                    | 条件                                                                                               | Min.  | 类型  | 最大    | 单位 |
|--------|-----------------------|--------------------------------------------------------------------------------------------------|-------|-----|-------|----|
| VO     | 输出电压                  | <sub>VIN</sub> = 4.8V, <sub>IO</sub> = 10mA                                                      | 3.267 | 3.3 | 3.333 | V  |
| VO     | 输出电压                  | VIN = 4.8V 至 12V, <sub>IO</sub> = 0mA 至 1A<br><sub>(tj</sub> = 0 ~ 125℃)                         | 3.234 |     | 3.366 | V  |
| ΔVLINE | 线路调节                  | <sub>IO</sub> = 10mA , <sub>VIN</sub> = 4.8V 至 12V                                               |       | 0.1 | 0.2   | %  |
| ΔVLOAD | 负载调节                  | <sub>IO</sub> = 10mA 至 1A, <sub>VIN</sub> = 5.3V                                                 |       | 0.2 | 0.4   | %  |
| VIN    | 工作输入电压                |                                                                                                  |       |     | 12    | V  |
| 身份证    | 静态电流                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                                              |       | 5   | 10    | 毫安 |
| Ю      | 电流限制                  | <sub>VIN</sub> - <sub>VO</sub> = 5V                                                              | 1000  |     |       | 毫安 |
| EN     | 输出噪声(% <sub>VO)</sub> | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                                                            |       | 100 |       | uV |
| SVR    | 电源电压抑制                | <sub>IO</sub> = 1A, f = 120Hz,<br><sub>vin - vo</sub> = 3v, <sub>vripple</sub> = <sub>1vpp</sub> | 60    | 75  |       | 分贝 |

**对于 5.0V 输出电压** (除非另有说明,否则 TJ=25℃, cout = 10uF)

|        |           | (1.5.11.5.5                                                    |       | <u> </u> | , 000. |    |
|--------|-----------|----------------------------------------------------------------|-------|----------|--------|----|
| 符号     | 参数        | 条件                                                             | Min.  | 类型       | 最大     | 单位 |
| VO     | 输出电压      | <sub>VIN</sub> = 6.5V, <sub>IO</sub> = 10mA                    | 4.950 | 5.0      | 5.050  | V  |
| VO     | 输出电压      | VIN = 6.5V 至 15V, <sub>IO</sub> = 0mA 至 1A<br>(tj = 0 ~ 125°C) | 4.900 |          | 5.100  | V  |
| ΔVLINE | 线路调节      | <sub>IO</sub> = 10mA , <sub>VIN</sub> = 6.5V 至 15V             |       | 0.1      | 0.2    | %  |
| ΔVLOAD | 负载调节      | <sub>IO</sub> =10mA 至 1A, <sub>VIN</sub> =7.0V                 |       | 0.2      | 0.4    | %  |
| VIN    | 工作输入电压    |                                                                |       |          | 15     | V  |
| 身份证    | 静态电流      | <sub>VIN</sub> - <sub>VO</sub> = 5V                            |       | 5        | 10     | 毫安 |
| Ю      | 电流限制      | vin - vo = 5V                                                  | 1000  |          |        | 毫安 |
| EN     | 输出噪声(%vo) | B = 10Hz 至 10kHz, <sub>TJ</sub> = 25℃                          |       | 100      |        | uV |
| SVR    | 电源电压抑制    | IO = 1A, f = 120Hz, vin - vo = 3v, vripple = 1vpp              | 60    | 75       |        | 分贝 |

**适用于所有输出电压** (除非另有说明,否则 TJ=25℃, couт = 10uF)

| 符号 | 参数    | 条件                            | Min. | 类型    | 最大  | 单位  |
|----|-------|-------------------------------|------|-------|-----|-----|
| VD | 压差电压  | <sub>IO</sub> = 100mA         |      | 1.0   | 1.1 | V   |
|    |       | <sub>IO</sub> = 500mA         |      | 1.1   | 1.2 | V   |
|    |       | <sub>10</sub> = 1A            |      | 1.2   | 1.3 | V   |
|    | 温度稳定性 |                               |      | 0.5   |     | %   |
|    | 长期稳定性 | 1000 小时, <sub>TJ</sub> = 125℃ |      | 0.3   |     | %   |
|    | 热调节   | <sub>TA</sub> = 25°C 30ms 脉冲  |      | 0.003 |     | %/W |

#### 典型应用电路



图 1 1A 电流输出



图 2 典型的可调稳压器



图 3 负电源



图 4 SCSI-2BUS 有源端接器



图 5 带基准的稳压器



图 6 备用电池稳压电源

## 典型运行特性





输出电压变化与温度







调整引脚电流与温度的关系

静态电流变化与温度的关系

#### 申请信息

#### 最大输出电流能力

LM1117 可在整个工作结温范围内提供 1A 的连续电流。不过,输出电流受到功率耗散限制的限制,功率耗散因封装而异。根据最大功率耗散和应用的最高环境温度,可能需要散热器。对于所应用的封装,由于 LM1117 功率耗散的限制,1A 的最大输出电流可能仍然无法达到。在所有可能的条件下,结温必须在工作条件下指定的范围内。器件上的温度由以下公式给出:

$$TC = TA + PD \times \theta CA / TJ = TC + PD \times \theta JC / TJ = TA + PD \times \theta JA$$

其中,тл 为结点温度,тс 为外壳温度,та 为环境温度,PD 为器件的总功率耗散,θса 为外壳到环境的热阻,θлс 为结点 到外壳的热阻,θла 为结点到环境的热阻。器件的总功率耗散为

$$pd = pin - pout = (vin X iin) - (vout X iout)$$

$$= (vin X (iout+ignd)) - (vout X iout) = (vin - vout) X iout + (vin X ignd)$$

其中,IGND 是器件的工作接地电流,在电气特性中有所规定。最大允许温升 (TRmax) 取决于应用的最高环境温度 (TAmax) 和最大允许结温 (TJmax):

TRmax = TJmax - TAmax

结-环境热阻的最大允许值 eJA 可用公式计算:

$$\theta JA = TRmax / PD = (TJmax - TAmax) / PD$$

LM1117 采用 SOT223、TO252 和 SOT89 封装。热阻取决于铜面积或散热片的大小以及空气流量。如果上面计算的最大允许值<sub>6</sub>JA 对于 SOT-223 封装超过 137°C/W,对于 TO252 封装超过 105°C/W,对于 SOT-89 封装超过 315°C/W,则不需要散热器,因为封装可以散出足够的热量来满足这些要求。如果允许的 <sub>6JA</sub> 值接近或低于这些限制,则需要散热器或适当面积的铜面。总之,热阻的绝对最大额定值如下:

#### 热阻绝对最大额定值

| 特征               | 符号          | 评级  | 单位   |
|------------------|-------------|-----|------|
| 结对环境热阻 / SOT-223 | θJA-SOT-223 | 137 | °C/W |

2019年7月- - 14- **宏达** R1.23 1A L.D.O 电压调整器

LM1117

| 结对环境热阻 / TO-252 | θЈА-ТО-252 | 105 | °C/W |
|-----------------|------------|-----|------|
| 结对环境热阻 / SOT-89 | 6JA-SOT-89 | 315 | °C/W |

无散热器 / 无气流 / 无邻近热源 / T =25° $C_A$ 

# 修订通知

本数据表中的描述如有更改,恕不另行通知,以便正确描述其电气特性。