电路原理

第1章电路基本元件和电路基本定律

- 实际电路
 - 。 分布参数电路
 - 。 集总参数电路
- 参考方向
 - 。 关联参考方向
 - 。 非关联参考方向

功率: "非发关吸".

• 三种理想无源电路元件 (另见频域与复频域)

元件	电阻 R	电感 L	电容 C
单位	欧姆 Ω	亨利 H	法拉F
杂项关系	电导 $G=rac{1}{R}$	磁链 $\psi_L = Li$	电荷 $q=Cu$
杂项单位	西门子 (S)	韦伯 Wb	库仑C
伏安关系	u=iR	$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$	$u = L rac{\mathrm{d}i}{\mathrm{d}t}$
功率	p=ui	$p = Curac{\mathrm{d}u}{\mathrm{d}t}$	$p = Li rac{\mathrm{d}i}{\mathrm{d}t}$
储能	$W_R\equiv 0$	$W_C(t)=rac{Cu^2(t)}{2}$	$W_L(t)=rac{Li^2(t)}{2}$

- 注
 - 。 上表中 "杂项" 二行仅为方便、节省空间而设.
 - 磁链 与 磁通 的关系: $\psi = n\varphi$.
- 电源
 - 。 独立电源
 - 分类
 - 独立电压源
 - 独立电流源
 - 注意
 - 电源既能发出功率,也能吸收功率.
 - 独立源符号内同压异源.
 - 。 受控电源
 - 电压控制的电压源 (VCVS), $u_2 = \mu u_1$.
 - 电压控制的电流源 (VCCS), $i_2 = gu_1$.
 - 电流控制的电压源 (CCVS), $u_2 = ri_1$.
 - 电流控制的电流源 (CCCS), $i_2 = \beta i_1$.
- 基尔霍夫定律
 - o 概念
 - 支路: 流过相同电流的一段电路.

- **节点**: 三条或三条以上支路的连接点乘坐节点.
- 回路: 任一闭路径称为回路.
- 网孔: 内部不含支路的回路称为网孔.
- 。 两类约束
 - **自身约束**: 元件本身特性对电压与电流形成的约束.
 - 级联约束 (拓扑约束, 互连约束): 须满足基尔霍夫定律.
- 。 基尔霍夫电流定律 (KCL)
 - 应用对象
 - 单节点.
 - 闭合面.
 - 思维方式
 - 电流代数和为零.
 - 流入等于流出.
- 。 基尔霍夫电压定律 (KVL)
 - 应用对象
 - 一个回路
 - 一段电路
 - 思维方式
 - 回路电压代数和为零.
 - 无源降 = 有源升.
 - 两点间电压在不同路径下相同.

第2章直流电路分析方法

- 等效变换
 - 电阻
 - 串联电路 $R_s = R_1 + R_2 + \cdots + R_n$.
 - 并联电路 $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$
 - 星角变换: Y → △

$$\begin{cases} R_{23} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_1} = R_2 + R_3 + \frac{R_2R_3}{R_1} \\ R_{31} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_2} = R_1 + R_3 + \frac{R_1R_3}{R_2} \\ R_{12} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_3} = R_1 + R_2 + \frac{R_1R_2}{R_3} \end{cases}$$

■ 角星变换: △ → Y

$$\begin{cases} R_1 = \frac{R_{12}R_{13}}{R_{12} + R_{23} + R_{31}}, & \frac{1}{R_1} = \frac{1}{R_{12}} + \frac{1}{R_{13}} + \frac{R_{23}}{R_{12}R_{13}} \\ R_2 = \frac{R_{21}R_{23}}{R_{12} + R_{23} + R_{31}}, & \frac{1}{R_2} = \frac{1}{R_{21}} + \frac{1}{R_{23}} + \frac{R_{13}}{R_{21}R_{23}} \\ R_3 = \frac{R_{31}R_{32}}{R_{12} + R_{23} + R_{31}}, & \frac{1}{R_3} = \frac{1}{R_{31}} + \frac{1}{R_{32}} + \frac{R_{12}}{R_{31}R_{32}} \end{cases}$$

- 类比 (图像 & 公式)
 - 串联电路 ↔ 星形联结
 - 并联电路 ↔ 角形联结

实际上, 前者均为后者的特例。

- 。 **电导**: 串并联公式对应电阻的并串联公式, 星角变换和角星变换对应电阻的角星变换和星角变换.
- 电感: 与电阻完全相同.
- 电容: 与电导完全相同.
- 电源
 - 串联并联
 - \blacksquare 电压源串联 $u_{\scriptscriptstyle \mathrm{S}}=u_{\scriptscriptstyle \mathrm{S}1}+u_{\scriptscriptstyle \mathrm{S}2}+\cdots+u_{\scriptscriptstyle \mathrm{S}k}.$
 - \blacksquare 电流源并联 $i_{\mathrm{S}}=i_{\mathrm{S}_1}+i_{\mathrm{S}_2}+\cdots+i_{\mathrm{S}_k}$.
 - 实际电源

 - 实际电压源 $U=U_{\rm s}-R_{\rm s}I.$ 实际电流源 $I=I_{\rm s}-\frac{U}{R}=I_{\rm s}-GU.$
 - 等效变换
 - 流 \rightarrow 压: $R_s = R$, $U_s = RI_s$.
 - 压→流: $R = R_{\rm s}, I_{\rm s} = \frac{U_{\rm s}}{R_{\rm s}}$.
 - 对外电路无影响的元件
 - 与电流源串联的元件
 - 与电压源并联的元件
- 支路电流法
 - 。 无源电路
 - KCL: 看节点, 共 (n-1) 个方程.
 - KVL: 看网孔, 共 (b-n+1) 个方程
 - 。 含独立源
 - 法一: 选取独立回路时不经过恒流源, 以减少变量.
 - 法二: 设恒流源的电压为 U_x , 恒压源的电流为 I_y .
 - 。 含受控源
 - 视为独立源同上处理,补写控制量方程即可.
- 回路电流法
 - 。 无源或含有电压源
 - 1. 选取独立回路, 确定回路电流的方向.
 - 2. 列写回路电流方程 (考虑 自电阻 和 互电阻).
 - 3. 求解回路电流, 从而得出支路电流.

注意

- 整体电路选取不同的回路, 所得相同位置的回路电流可能不同, 但支路电流是唯一的.
- 自电阻总为正, 互电阻可正可负.
- 。 含有电流源
 - 法一: 选取独立回路, 令电流源只通过一个回路电流.
 - 法二: 随意选取回路, 设电流源的电压为 U_x , 并<u>补写 KCL 方程</u>.
- o 含有受控源
 - 视为独立源同上处理,补写控制量方程即可.
- 节点电压法
 - 。 无源或含有电流源
 - 1. 选定参考节点 (电位为零), 其余节点作为独立节点.
 - 2. 对独立节点列节点电压方程 (考虑 自电导和 互电导).
 - 3. 求解方程, 从而求出其它待求量.

注意

■ 与电流源串联的电阻对外不起作用,不可列入方程中.

■ 自电导总为正, 互电导总为负

注: 当只有两个节点时为 弥尔曼定理.

$$U_{ab} = rac{\displaystyle\sumrac{E}{R} + \displaystyle\sum I_S}{\displaystyle\sumrac{1}{R}}.$$

- 含有电压源(且电压源所在支路无其它元件)
 - 法一: 取电压源支路的一段作为参考节点.
 - 法二: 设电压源的电流为 I_x , 并<u>补写 KVL 方程</u>.
- 。 含有受控源
 - 视为独立源同上处理,补写控制量方程即可.

方法比较	KCL 方程数	KVL 方程数	总数
支路电流法	n-1	b-n+1	b
回路电流法	0	b-n+1	b-n+1
节点电压法	n-1	0	n-1

第3章电路定理

- 齐性定理
 - 。 适用范围: 线性含源电路.
 - \circ 内容: 所有激励都增大为 K 倍时, 响应也增大为 K 倍.
- 叠加定理
 - 。 适用范围: 线性电路.
 - 内容: 任意支路的电流或电压都是各个独立电源单独作用而其它独立电源不作用时, 在该支路中产生的各电流分量或电压分量的代数和.
 - 。 备注
 - 叠加时, 电压源短路, 电流源开路,
 - 叠加定理不能计算功率.
 - 只有独立源可以单独作用.
- 替代定理
- 戴维南等效定理: 线性含源二端网络等效为电压源串联电阻.
 - 。 等效电压源
 - 法一: 使用等效变换.
 - 法二: 计算开路电压.
 - 。 等效电阻
 - 法一: 无受控源时电阻等效变换 (独立源置零)
 - 法二:网络内独立电源置零,端口处施加电压 u(或电流 i),求出端口的电流 i(或电压 u),则 等效电阻为 $R_i = \frac{u}{i}$.
 - $lacksymbol{^{\circ}}$ 法三:分别求出开路电压 u_k 和短路电流 i_d ,则 $R_i=rac{u_k}{i_d}$.
 - 。 使用情况
 - 求一条支路的电压或电流.

- 分析变动参数元件(如求最大功率,此时内外电阻相等).
- 分析含有非线性元件的电路
- 给出的条件不便于列写方程.
- 诺顿等效定理: 线性含源二端网络, 等效为电流源并联电阻
- 最大功率传输定理: $P_{\mathrm{Lmax}} = \frac{u_S^2}{4R}$.
- 特勒根定理
 - 。 特勒根第一定理 (即功率守恒) : $\sum_{k=1}^b u_k i_k = 0$.
 - 。 特勒根第二定理(两电路拓扑结构相同时): $\sum_{k=1}^b u_k \hat{i}_k = \sum_{k=1}^b \hat{u}_k i_k = 0.$
- 互易定理
 - o 适用范围: 线性无源电阻网络.
 - 形式一: 激励为电压源, 响应为电流. (短路)

$$I_1U_{S1} = I_2U_{S2}$$
.

○ 形式二: 激励为电流源, 响应为电压. (开路)

$$I_{S1}U_1 = I_{S2}U_2$$
.

。 形式三: 激励为电流源, 响应为电流. (或电压源和电压)

$$I_{\mathrm{S1}}U_{1}=I_{2}U_{\mathrm{S2}}.$$

第 4 章 线性动态电路暂态过程的时域分析

4.1 暂态过程与初始条件

电源、电阻、电感、电容串联:

$$egin{align} RCrac{\mathrm{d}u_{_\mathrm{C}}}{\mathrm{d}t} + LCrac{\mathrm{d}^2u_{_\mathrm{C}}}{\mathrm{d}t^2} + u_{_\mathrm{C}} = u_{_\mathrm{S}}. \ u_{_\mathrm{C}}(t) = u_{_\mathrm{Cp}}(t) + u_{_\mathrm{Ch}}(t). \ \end{array}$$

其中 $u_{\rm Cp}(t)$ 为稳态解, $u_{\rm Ch}(t)$ 为暂态解.

暂态过程也称为过渡(动态)过程,此时的电路称为动态电路(网络).

时域分析法(经典法), 换路定律:

$$egin{aligned} q = Cu, & q(0_+) = q(0_-) \ \psi = Li, & \psi(0_+) = \psi(0_-) \end{aligned}$$

4.2 一阶电路的零输入响应

RC 电路与 LC 电路

$$egin{aligned} RCrac{\mathrm{d}u_{_\mathrm{C}}}{\mathrm{d}t} + u_{_\mathrm{C}} &= 0 \quad \Rightarrow \quad u_{_\mathrm{C}}(t) = U_0\mathrm{e}^{-rac{t}{RC}} \quad \Rightarrow \quad i_{_\mathrm{C}}(t) = -Crac{\mathrm{d}u_{_\mathrm{C}}}{\mathrm{d}t} = rac{U_0}{R}\mathrm{e}^{-rac{t}{RC}} \\ Lrac{\mathrm{d}i_{_\mathrm{L}}}{\mathrm{d}t} + Ri_{_\mathrm{L}} &= 0 \quad \Rightarrow \quad i_{_\mathrm{L}}(t) = I_0\mathrm{e}^{-rac{Rt}{L}} \quad \Rightarrow \quad u_{_\mathrm{L}}(t) = Lrac{\mathrm{d}i_{_\mathrm{L}}}{\mathrm{d}t} = -I_0R\mathrm{e}^{-rac{Rt}{L}} \end{aligned}$$

- 弛豫时间 $au=RC=rac{L}{R}.$
- 电路固有频率 $p=-rac{1}{ au}$.
- 动态曲线上任意点切线与横轴的交点与切点的横坐标之差为 au. 即对于 $y=r\mathrm{e}^{-\frac{x}{ au}}$,切线 $y=-\frac{r}{ au}\mathrm{e}^{-\frac{x}{ au}}(x-x_0)+r\mathrm{e}^{-\frac{x}{ au}}$ 与横轴交点为 $x_t=x_0+ au$.
- 3τ 时衰减至系数为 0.049787, 5τ 时衰减至系数为 0.006738, 此时一般认为已经达到稳态.
- 实验时注意操作步骤,否则小电源小电阻和电感也可能烧坏电表. 可以采用**预防措施**:并联二极管或小电阻,即泄放二极管(电阻)或续流二极管(电阻)

4.3 一阶电路的零状态响应

RC 电路和 RL 电路

$$\begin{split} RC\frac{\mathrm{d}u_{_{\mathrm{C}}}}{\mathrm{d}t} + u_{_{\mathrm{C}}} &= RI_{_{\mathrm{S}}} \quad \Rightarrow \quad u_{_{\mathrm{C}}} = RI_{_{\mathrm{S}}} \left(1 - \mathrm{e}^{-\frac{t}{RC}}\right) \quad \Rightarrow \quad i_{_{\mathrm{C}}}(t) = -C\frac{\mathrm{d}u_{_{\mathrm{C}}}}{\mathrm{d}t} = I_{_{\mathrm{S}}}\mathrm{e}^{-\frac{t}{RC}} \\ L\frac{\mathrm{d}i_{_{\mathrm{L}}}}{\mathrm{d}t} + Ri_{_{\mathrm{L}}} &= U_{_{\mathrm{S}}} \quad \Rightarrow \quad i_{_{\mathrm{L}}} = \frac{U_{_{\mathrm{S}}}}{R} \left(1 - \mathrm{e}^{-\frac{Rt}{L}}\right) \quad \Rightarrow \quad u_{_{\mathrm{L}}} = L\frac{\mathrm{d}i_{_{\mathrm{L}}}}{\mathrm{d}t} = U_{_{\mathrm{S}}}\mathrm{e}^{-\frac{Rt}{L}} \end{split}$$

- 稳态响应仅与外加激励有关,故又称**强制响应**.
- 暂态响应还与固有频率有关, 故又称 **固有响应**.

4.4 全响应和三要素方法

对于一般的一阶电路微分方程:

$$rac{\mathrm{d}f(t)}{\mathrm{d}t} + rac{1}{ au}f(t) = v(t).$$

若求出初始值、稳态值和弛豫时间,则可直接得到:

$$f(t) = f(\infty) + [f(0_+) - f(\infty)|_{t=0_+}] e^{-\frac{t}{\tau}} \qquad (一般的激励)$$

$$= \underbrace{f(\infty)}_{\text{稳态响应}} + \underbrace{[f(0_+) - f(\infty)] e^{-\frac{t}{\tau}}}_{\text{智态响应}} \qquad (直流电源的激励)$$

$$= \underbrace{f(0_+) e^{-\frac{t}{\tau}}}_{\text{突给分响应}} + \underbrace{f(\infty)(1 - e^{-\frac{t}{\tau}})}_{\text{突状态响应}} \qquad (叠加原理的形式)$$

4.5 一阶电路的阶跃响应

单位阶跃函数与延迟阶跃函数

$$1(t) = egin{cases} 0, & t < 0, \ 1, & t > 0. \end{cases} \qquad 1(t-t_0) = egin{cases} 0, & t < t_0, \ 1, & t > t_0. \end{cases}$$

4.6 一阶电路的冲激响应

4.6.1 冲激响应

单位脉冲函数

$$f(t) = rac{1}{a}[1(t) - 1(t-a)] = egin{cases} 0, & t < 0, \ rac{1}{a}, & 0 < t < a \ 0, & t > a \end{cases}$$

单位冲激函数

$$\delta(t) = \lim_{a o 0+} f(t)$$
 $\int_{-\infty}^t \delta(\xi) \, \mathrm{d} \xi = 1(t)$

筛选性 (采样性质)

$$g(t)\delta(t)=g(0)\delta(t) \ \int_{-\infty}^{+\infty}g(t)\delta(t-t_0)\,\mathrm{d}t=g(t_0)$$

单位冲激响应

$$h(t) = \lim_{a o 0+}rac{1}{a}[s(t)-s(t-a)] = rac{\mathrm{d}s(t)}{\mathrm{d}t} \ \int_0^t h(\xi)\,\mathrm{d}\xi = s(t)$$

单位阶跃响应的导数就是单位冲激响应.

函数	符号	函数	符号	函数	符号
单位阶跃函数	1(t)	单位脉冲函数	f(t)	单位冲激函数	$\delta(t) = rac{\mathrm{d} 1(t)}{\mathrm{d} t}$
单位阶跃响应	s(t)			单位冲激响应	$h(t) = \frac{\mathrm{d}s(t)}{\mathrm{d}t}$

对于一般的冲激函数 $K\delta(t)$, $h_K(t)=Kh(t)$.

4.6.2 电容电压和电感电压的跃变

若换路时电容和电感均为零状态,则

电容: $i = CU_S \delta(t)$.

电感: $u_{\scriptscriptstyle \rm L}=LI_{\rm S}\,\delta(t)$.

加入并联电容: (电荷守恒)

$$egin{align} u_{{}_{C1}}(0_+) &= u_{{}_{C2}}(0_+) = rac{C_1}{C_1 + C_2} U_{\mathrm{S}} \ i_{{}_{C1}}(0) &= -rac{C_1 C_2}{C_1 + C_2} U_{\mathrm{S}} \, \delta(t) = -i_{{}_{C2}}(0) \ \end{array}$$

加入串联电感: (磁链守恒)

$$egin{align} i_1(0_+) &= i_2(0_+) = rac{L_1 U_{\mathrm{S}}}{(L_1 + L_2) R_1} \ u_{{}_{L1}(0)} &= -rac{L_1 L_2}{L_1 + L_2} rac{U_{\mathrm{S}}}{R_1} \delta(t) = -u_{{}_{L2}}(0) \ \end{array}$$

电容串联:
$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}$$
.

电容并联: $C_p = C_1 + C_2 + \cdots + C_n$.

电感串联: $L_s = L_1 + L_2 + \cdots + L_n$.

电感并联: $rac{1}{L_p}=rac{1}{L_1}+rac{1}{L_2}+\cdots+rac{1}{L_n}.$

4.7 线性动态网络对任意激励的响应

卷积分析法

将激励 e(t) 用一系列矩形窄脉冲表示, 则

$$egin{aligned} r(t) &= \int_0^t e(\lambda) h(t-\lambda) \, \mathrm{d}\lambda = e(t) * h(\lambda) \ &= \int_0^t e(t-\lambda) h(\lambda) \, \mathrm{d}\lambda = h(t) * e(\lambda) \end{aligned}$$

第5章正弦稳态电路的分析

5.1 正弦稳态响应

正弦激励电路的微分方程

$$LCrac{\mathrm{d}^2 u_{_\mathrm{C}}}{\mathrm{d}t^2} + RCrac{\mathrm{d}u_{_\mathrm{C}}}{\mathrm{d}t} + u_{_\mathrm{C}} = U_{\mathrm{Sm}}\sin(\omega t + \psi_{\mathrm{S}})$$

通解为

$$u_{ ext{ iny C}}(t) = \underbrace{u_{ ext{ iny Cm}}\sin(\omega t + \psi)}_{u_{ ext{ iny Cp}}(t)} + \underbrace{K_1\mathrm{e}^{s_1t} + K_2\mathrm{e}^{s_2t}}_{u_{ ext{ iny Ch}}(t)}.$$

正弦稳态 (交流) 电路, 正弦稳态 (交流) 响应.

5.2 正弦的相量表示

我国电网的正弦交流电流频率为50 Hz, 称为工频. 西方国家为60 Hz.

正交, 反相, 超前 (落后). 其中正交不是几何意义上的, 而是积分意义上的.

$$i = I_{
m m} \sin(\omega t + arphi_i) = \sqrt{2} I \sin(\omega t + arphi_i).$$

旋转因子: $e^{i\theta}$.

用相量表示正弦量

$$egin{aligned} u &= U_{
m m} \sin(\omega t + arphi_u) = {
m Im}[U_{
m m} {
m e}^{{
m j}(\omega t + arphi_i)}] \ &= {
m Im}[\dot{U}_{
m m} {
m e}^{{
m j}\omega t}] = {
m Im}[\sqrt{2} \dot{U} {
m e}^{{
m j}\omega t}]. \end{aligned}$$

 $\dot{U}_{
m m}=U_{
m m}{
m e}^{{
m j}arphi_u}=U_{
m m}nglearphi_u$ 称为振幅相量

 $\dot{U} = U e^{j\varphi_u} = U \angle \varphi_u$ 称为有效值相量.

并且有
$$\dot{U}_{
m m}=\sqrt{2}\dot{U},\,U_{
m m}=\sqrt{2}U.$$

$$egin{aligned} i &= i_1 + i_2 = \sqrt{2}I_1\sin(\omega t + \psi_1) + \sqrt{2}I_2\sin(\omega t + \psi_2) \ &= \operatorname{Im}[\sqrt{2}(\dot{I}_1 + \dot{I}_2)\mathrm{e}^{\mathrm{j}\omega t}] = \sqrt{2}I\sin(\omega t + \psi). \end{aligned}$$

其中 $\dot{I} = \dot{I}_1 + \dot{I}_2$, $I = \operatorname{Im}(\dot{I}_1 + \dot{I}_2)$.

5.3 电阻、电感、电容元件的伏安关系的相量形式

另见时域与复频域.

元件	电阻	电感	电容
时域	u=Ri	$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$	$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$
有效值	U=RI	$U=\omega LI$	$I=\omega CU$
相位	$arphi_u=arphi_i$	$\varphi_u=\varphi_i+\frac{\pi}{2}$	$arphi_i = arphi_u + rac{\pi}{2}$
频域	$\dot{U}=R\dot{I}$	$\dot{U}=\mathrm{j}\omega L\dot{I}$	$\dot{I}=\mathrm{j}\omega C\dot{U}$
阻抗	电阻 (抗) R	感抗 $X_L = \omega L$	容抗 $X_C = rac{1}{\omega C}$
导纳	电导 (纳) $G=rac{1}{R}$	感纳 $B_L=rac{1}{\omega L}$	容纳 $B_C=\omega C$
瞬时功率 p	$p = UI(1-\cos 2\omega t)$	$p=UI\sin2\omega t$	$p=-UI\sin2\omega t$
平均功率 P 或 无功功率 Q	$P = I^2 R$ = U^2/R	$egin{aligned} Q_L &= I^2 X_L \ &= U^2 / X_L \end{aligned}$	$Q_C = -I^2 X_C$ $= -U^2 / X_C$

无功功率: 单位为 Var 乏.

5.4 基尔霍夫定律的相量形式及电路的相量模型

$$\sum i = 0, \quad \sum \dot{I} = 0, \ \sum u = 0, \quad \sum \dot{U} = 0.$$

5.5 复阻抗与复导纳及其等效变化

阻抗串联	导纳并联
$\dot{U}=\dot{U}_R+\dot{U}_L+\dot{U}_C$	$\dot{I}=\dot{I}_R+\dot{I}_L+\dot{I}_C$
$=\left[R+\mathrm{j}\left(\omega L-rac{1}{\omega C} ight) ight]\!\dot{I}$	$=\left[G+\mathrm{j}\left(\omega C-rac{1}{\omega L} ight) ight]\dot{U}$
$=[R+\mathrm{j}(X_L-X_C)]\dot{I}$	$=[G+\mathrm{j}(B_C-B_L)]\dot{U}$
$=[R+\mathrm{j}X]\dot{I}=Z\dot{I}$	$=[G+\mathrm{j}B]\dot{U}=Y\dot{U}$
$=U_R+\mathrm{j}U_X$	$=I_R+\mathrm{j}I_B$
$Z = \dot{U}/\dot{I} = z \angle arphi$ $z = U/I = \sqrt{R^2 + (X_L - X_C)^2}$ $arphi = arphi_z = arphi_u - arphi_i$ $= \arctan rac{X_L - X_C}{R}$	$Y = \dot{I}/\dot{U} = y\angle\theta = -y\angle\varphi$ $y = I/U = \sqrt{G^2 + (B_C - B_L)^2}$ $\theta = \varphi_i - \varphi_u = -\varphi$ $= \arctan \frac{B_C - B_L}{G}$
$U=zI=\sqrt{R^2+X^2}I$	$I=yU=\sqrt{R^2+B^2}U$
$=\sqrt{U_R^2+U_X^2}$	$=\sqrt{U_R^2+U_B^2}$

复阻抗与复导纳的等效变换:

$$\begin{cases} Z = R + jX = \frac{1}{Y} = \frac{G - jB}{G^2 + B^2} \\ Y = G + jB = \frac{1}{Z} = \frac{R - jX}{R^2 + X^2} \end{cases}$$

电抗	阻抗角	电纳	性质
$X = X_L - X_C > 0$	$arphi = arphi_u - arphi_i > 0$	$B = B_C - B_L < 0$	感性
$X = X_L - X_C < 0$	$arphi=arphi_u-arphi_i<0$	$B = B_L - B_C > 0$	容性
$X = X_L - X_C = 0$	$arphi=arphi_i-arphi_i=0$	$B = B_L - B_C = 0$	阻性

- 感性、容性和阻性与电容和电感有关,与频率也有关.
- $\cos \varphi$ 称为 **功率因数**.

5.6 正弦交流电路的功率

无源二端网络的功率

对于 Z = R + jX,

$$p = ui = U_{\rm m}I_{\rm m}\sin(\omega t + \varphi)\sin(\omega t)$$
 $= 2UI \left[\sin^2(\omega t)\cos\varphi + \sin(\omega t)\cos(\omega t)\cos\varphi\right]$
 $= UI\cos\varphi - UI\cos(2\omega t + \varphi)$ (瞬时功率)
 $= UI\cos\varphi(1-\cos2\omega t) + UI\sin\varphi\sin2\omega t$ (另一形式)
 $P = \frac{1}{T}\int_0^T p\,\mathrm{d}t = UI\cos\varphi$ (平均功率)
 $= I^2z\cos\varphi = I^2R = U^2\cos^2\varphi/R$ (另一形式)
 $\begin{cases} S = \sqrt{P^2 + Q^2} \\ \varphi = \arctan\frac{Q}{P} \end{cases}$ (功率三角形)
 $\tilde{S} = \dot{U}\dot{I}^* = UI\mathrm{e}^{\mathrm{j}(\varphi_u - \varphi_i)} = UI\mathrm{e}^{\mathrm{j}\varphi}$ (复功率)
 $= UI\cos\varphi + \mathrm{j}UI\sin\varphi = P + \mathrm{j}Q$

平均功率 $P = UI\cos\varphi = I^2R$.

功率因数 $\lambda := \cos \varphi$.

视在功率 S:=UI, 单位为伏安 (VA) 或千伏安 (kVA).

无功功率 $Q:=UI\sin\varphi$, 单位为 **乏** (var) 或干乏 (kvar).

特殊情况

功率因数的提高

欠补偿,全补偿,过补偿.

功率因数 $\cos \varphi \to \cos \varphi'$:

1. 感性负载

1. 并联电容:
$$C=rac{P}{U^2\omega}(anarphi- anarphi').$$
 2. 串联电容: $C=rac{P}{U^2\omega}rac{1+ an^2arphi}{ anarphi- anarphi'}.$

2. 容性负载

1. 并联电感:
$$L=rac{U^2}{P\omega}rac{1}{ anarphi- anarphi'}.$$
2. 串联电感: $L=rac{P}{U^2\omega}rac{ anarphi- anarphi'}{\cos^2arphi}.$

常用的方法是在感性负载两端并联电容,一方面是并联不会影响到原电路,另一方面是电容的参数容易调整,

最大传输功率

$$P = I^2 R = rac{U_{
m S}^2 R}{(R_{
m i} + R)^2 + (X_{
m i} + X)^2} \leq rac{U_{
m S}^2 R}{(R_{
m i} + R)^2} \leq rac{U_{
m S}^2}{4 R_{
m i}}.$$

当且仅当为共轭复数 $Z=Z_i^*$ 时取等.

5.7 正弦稳态电路的计算

5.8 谐振电路

一般调整电容使电路达到谐振.

5.8.1 RLC 串联谐振电路

LC 串联电路发生 **串联谐振**.

阻抗
$$Z=R+\mathrm{j}\left(\omega L-rac{1}{\omega C}
ight)$$
.

谐振角频率 (固有角频率)
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
.

谐振频率 (固有频率)
$$f_0=rac{1}{2\pi\sqrt{LC}}.$$

发生谐振时阻抗 Z=R 最小, 电流 $\dot{I}_0=rac{\dot{U}}{R}$ 最大.

串联谐振电路的 品质因数 为

$$Q = \frac{X_L}{R} = \frac{X_C}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
$$= \frac{Q_L}{P} = \frac{Q_C}{P} = \frac{U_C}{U} = \frac{U_L}{C}$$

$$egin{aligned} \dot{U}_R &= R\dot{I} = \dot{U} \ \dot{U}_L &= \mathrm{j}\omega_0 L\dot{I} = \mathrm{j}Q\dot{U} \ \dot{U}_C &= rac{\dot{I}}{\mathrm{j}\omega_0 C} = -\mathrm{j}Q\dot{U} \end{aligned}$$

电容和电感的电压抵消, 故又称 电压谐振

- 电力工程: 避免谐振.
- 电信工程: 利用谐振

串联谐振对频率具有选择性(滤波性质), 当电源频率偏离电路的谐振频率是, 电容电压和电感电压都会显著下降.

$$I = \frac{U}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{I_0}{\sqrt{1 + Q^2 \left(\eta - \frac{1}{\eta}\right)^2}} \le I_0 \qquad \left(\eta := \frac{\omega}{\omega_0}\right)$$

$$U_L = \omega L I = \frac{QU}{\sqrt{\frac{1}{\eta^2} + Q^2 \left(1 - \frac{1}{\eta^2}\right)^2}} \le \frac{QU}{\sqrt{1 - \frac{1}{4Q^2}}} > QU \qquad \left(\omega = \omega_0 \sqrt{\frac{2Q^2 - 1}{2Q^2}} < \omega_0\right)$$

$$U_C = \frac{I}{\omega C} = \frac{QU}{\sqrt{\eta^2 + Q^2 (\eta^2 - 1)^2}} \le \frac{QU}{\sqrt{1 - \frac{1}{4Q^2}}} > QU \qquad \left(\omega = \omega_0 \sqrt{\frac{2Q^2 - 1}{2Q^2 - 1}} > \omega_0\right)$$

串联谐振电路的**通用谐振曲线**(Q越大,电路的选择性越好)

点击查看 Geogebra 图像

或直接打开网页链接

5.8.2 RLC 并联谐振电路

LC 并联电路发生 **并联谐振**.

导纳
$$Y = G + \mathrm{j}\left(\omega C - \frac{1}{\omega L}\right)$$
.

谐振 (角) 频率 或 固有 (角) 频率 与串联谐振电路相同, 即 $\omega_0=rac{1}{\sqrt{LC}},\,f_0=rac{1}{2\pi\sqrt{LC}}.$

发生谐振时导纳 Y=G 最小,电压 $U_0=rac{I_S}{G}$ 最大.

并联谐振电路的 品质因数 为串联谐振电路的品质因数的倒数,即为

$$Q = \frac{B_L}{G} = \frac{B_C}{G} = R\sqrt{\frac{C}{L}}$$
$$= \frac{P}{Q_L} = \frac{P}{Q_C} = \frac{I_S}{I_L} = \frac{I_S}{I_C}$$

各元件电流为

$$egin{aligned} \dot{I}_R &= G\dot{U} = \dot{I}_S \ \dot{I}_L &= rac{\dot{U}_0}{\mathrm{j}\omega_0 L} = -\mathrm{j}Q\dot{I}_S \ \dot{I}_C &= \mathrm{j}\omega_0 C\dot{U}_0 = \mathrm{j}Q\dot{I}_S \end{aligned}$$

电容和电感的电流代数和为零,故并联谐振又称 电流谐振.

$$U = rac{I_S}{\sqrt{G^2 + \left(\omega C - rac{1}{\omega L}
ight)^2}} = rac{U_0}{\sqrt{1 + Q^2 \Big(\eta - rac{1}{\eta}\Big)^2}} \qquad \left(\eta := rac{\omega}{\omega_0}
ight)$$

5.8.3 实际并联谐振电路

即 RL 串联后与 C 并联.

复导纳
$$Y=rac{R}{R^2+(\omega L)^2}+\mathrm{j}\left[\omega C-rac{\omega L}{R^2+(\omega L)^2}
ight].$$

并联谐振的**条件**为 $C=rac{L}{R^2+(\omega L)^2}.$

谐振角频率
$$\omega_0 = \sqrt{rac{1}{LC} - rac{R^2}{L^2}}.$$

可以等效为 RLC 并联谐振电路, 此时等效参数值为

等效电导
$$G_e=rac{R}{R^2+(\omega L)^2}.$$

等效感纳
$$B_L=rac{1}{\omega L_e}=rac{\omega L}{R^2+(\omega L)^2}.$$

谐振阻抗
$$R_0=rac{1}{G_e}=rac{R^2+(\omega_0L)^2}{R}=rac{L}{RC}.$$

品质因数
$$Q=rac{B_L}{G_e}=rac{\omega_0 L}{R}=\omega_0 C R_0.$$

第6章耦合电感电路

6.1 互感现象与互感电压

线圈中变化的电流产生变化的磁通,并在自身线圈中产生 **自感电压**;若与其它线圈 **交链**,则会产生 **互感电压**. 互感又称 **耦合电**感.

自身线圈各匝中 **自感磁通** φ_{11} 之和称为 **自感磁链** ψ_{11} .

互感线圈各匝中 **互感磁通** $arphi_{21}$ 之和称为 **互感磁链** ψ_{21} . (2 由 1)

线性媒质 即线圈周围没有铁磁物质, 此时有 自感系数 $L_1=\pm rac{\psi_{11}}{i}$ 和 互感系数

$$M_{21}=\pmrac{\psi_{21}}{i_1}=\pmrac{\psi_{12}}{i_2}=M_{12}=M$$
, 单位为亨利 (H).

互感电压
$$u_{21}=\pm rac{\mathrm{d}\psi_{21}}{\mathrm{d}t}=\pm Mrac{\mathrm{d}i_1}{\mathrm{d}t}.$$

6.2 耦合电感电路的计算

同名端标记法

• 判断好同名端后, 还要注意电流参考方向.

互感消去法

• 耦合线圈串联

• 順接
$$u = (R_1 + R_2)i + (L_1 + L_2 + 2M)\frac{\mathrm{d}i}{\mathrm{d}t}$$
.

• **反接**
$$u = (R_1 + R_2)i + (L_1 + L_2 - 2M)\frac{di}{dt}$$
.

。 推论
$$W_L = rac{Li^2}{2} \geq 0 \quad \Rightarrow \quad M \leq rac{L_1 + L_2}{2}.$$

- 相量 $\dot{U} = [(R_1 + R_2) + \mathrm{j}\omega(L_1 + L_2 \pm 2M)]\dot{I}$.
- \circ 互感抗 j ωM .
- 耦合线圈并联
 - 同侧并联 与 异侧并联

$$egin{aligned} \dot{I} &= \dot{I}_1 + \dot{I}_2 \ \dot{U} &= (R_1 + \mathrm{j}\omega L_1)\dot{I}_1 \pm \mathrm{j}\omega M\dot{I}_2 = \left[R_1\dot{I}_1 + \mathrm{j}\omega (L_1 \mp M)
ight]\dot{I}_1 \pm \mathrm{j}\omega M\dot{I} \ &= (R_2 + \mathrm{j}\omega L_2)\dot{I}_2 \pm \mathrm{j}\omega M\dot{I}_1 = \left[R_2\dot{I}_2 + \mathrm{j}\omega (L_2 \mp M)
ight]\dot{I}_2 \pm \mathrm{j}\omega M\dot{I} \end{aligned}$$

注意: 耦合线圈的等效变换不能用于求解线圈两端电压, 只能用于求解它的电流.

$$\circ$$
 耦合系数 $K=rac{M}{\sqrt{L_1L_2}}\in [0,1].$ 注: $M=K\sqrt{L_1L_2}\leq \sqrt{L_1L_2}\leq rac{L_1+L_2}{2}.$

• 全耦合: 当 K=1 时, 即 $M=\sqrt{L_1L_2}$.

6.3 空心变压器

原线圈 (初级线圈), 副线圈 (次级线圈).

空心变压器: 线圈绕在非铁磁材料上.

设空心变压器原副线圈的电压电流方向为关联方向,

初级回路总阻抗为 Z_{11} , 负载阻抗为 Z, 次级回路总阻抗为 Z_{22} (包括负载, 不考虑互感).

以同名端为例

$$egin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + \mathrm{j}\omega M\dot{I}_2 \ 0 = \mathrm{j}\omega M\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

得到

$$egin{aligned} \dot{U}_1 &= \left(Z_{11} + rac{\omega^2 M^2}{Z_{22}}
ight) \dot{I}_1 &= (Z_{11} + Z_{1r}) \dot{I}_1 \ \dot{I}_2 &= -rac{\mathrm{j} \omega M rac{\dot{U}_1}{Z_{11}}}{Z_{22} + rac{\omega^2 M^2}{Z_{11}}} &= -rac{\mathrm{j} \omega M rac{\dot{U}_1}{Z_{11}}}{Z_{22} + Z_{2r}} \end{aligned}$$

其中

$$egin{aligned} Z_{1r} &= rac{\omega^2 M^2}{Z_{22}}, & (次级对初级的反射阻抗) \ Z_{2r} &= rac{\omega^2 M^2}{Z_{11}}, & (初级对次级的反射阻抗) \ U_e &= \mathrm{j} \omega M rac{\dot{U}_1}{Z_{11}}, & (初级对次级的互感电压) \end{aligned}$$

注意:

1. 如果以电源正极对应的同名端的电流流入方向为参考方向,则<mark>互感电压</mark>的正极和电源正极对应同名端<mark>同侧,</mark>与电流参考方向相反.

去互感效应法 即设出公共接地端后,使用耦合线圈并联的互感消去法.

6.4 理想变压器

理想变压器不耗能也不储能, 只变换信号、传输电能,

理想化条件

- 1. 变压器不消耗能量. (无铜损)
- 2. 是全耦合变压器. (无磁损)

1. 即
$$K = M/\sqrt{L_1L_2} = 1$$
.

2. 此时
$$\varphi_{21} = \varphi_{11}, \ \varphi_{12} = \varphi_{22}$$
.

3. 两个自感无穷大, 但比值为常数.

理想化措施

- 1. 用具有高磁导率的铁磁材料做铁心.
- 2. 增加初级次级线圈的匝数.
- 3. 使线圈紧密耦合.

$$\begin{split} \frac{L_1}{L_2} &= \frac{\frac{N_1 \varphi_{11}}{\dot{i}_1}}{\frac{N_2 \varphi_{22}}{\dot{i}_2}} = \frac{\frac{N_1}{N_2} M_{21}}{\frac{N_2}{N_1} M_{12}} = \frac{N_1^2}{N_2^2} = n^2 \\ \begin{cases} u_1 &= L_1 \frac{\mathrm{d} i_1}{\mathrm{d} t} + M \frac{\mathrm{d} i_2}{\mathrm{d} t} \\ u_2 &= M \frac{\mathrm{d} i_1}{\mathrm{d} t} + L_2 \frac{\mathrm{d} i_2}{\mathrm{d} t} \\ M &= \sqrt{L_1 L_2} \\ L_1, L_2 &\to +\infty \end{cases} \quad \Rightarrow \quad \begin{cases} \frac{\dot{U}_1}{\dot{U}_2} = \frac{u_1}{u_2} = n \\ \frac{\dot{I}_1}{\dot{I}_2} = \frac{\dot{i}_1}{\dot{i}_2} = -\frac{1}{n} \\ Z_{\mathrm{in}} &= \frac{\dot{U}_1}{\dot{I}_1} = n^2 Z_2 \end{cases} \end{split}$$

备注:

- 1. 等效的电压、电流、阻抗也可以由空心变压器的公式得到.
- 2. 电流方向相反.
- 3. 输入阻抗为并联在原来的电路上, 而不是取代初级线圈.

第7章三相电路

- 三相发电机: 转子、定子嵌有 3 个绕组 (线圈).
- 绕组电压称为 相电压.

$$\begin{cases} u_{_{\mathrm{A}}} = U_{\mathrm{m}} \sin(\omega t) \\ u_{_{\mathrm{B}}} = U_{\mathrm{m}} \sin(\omega t - 120^{\circ}) \\ u_{_{\mathrm{C}}} = U_{\mathrm{m}} \sin(\omega t + 120^{\circ}) \end{cases}$$

- 相序
 - 正序 (A-B-C-A).
 - o 负序 (A-C-B-A).
- 对称三相电路
 - 。 三相对称电源.
 - 。 三相对称负载.
 - 。 阻抗相同的三条输电线.
- 概念
 - 电源中点 (零点), 负载中点, 中性线.
 - o 端线 (火线)

变量

- \circ 相电流 $I_P = I_{AB}$, 相电压 $U_P = U_A = U_{AO}$.
- \circ 线电流 $I_l = I_A$, 线电压 $U_l = U_{AB}$.
- \circ 中性线电流 $\dot{I}_{\rm N}=\dot{I}_{{\rm O}'{\rm O}}$.

• 星形联结

- \circ 线电流等于相电流: $I_l=I_P$.
- \circ 线电压与相电压: $\dot{U}_l = \sqrt{3}\dot{U}_P\angle 30^\circ$.
- 中性线上: $\dot{U}_{O'O} = 0$, $\dot{I}_{O'O} = 0$.

• 角形联结

- \circ 线电压等于相电压: $U_l = U_P$.
- 线电流与相电流: $\dot{I}_l = \sqrt{3}\dot{I}_P \angle -30^\circ$.
- 星角变换 (△ → Y)
 - \circ 三角形联结电源: $\dot{U}_P=rac{\sqrt{3}}{3}\dot{U}_l\angle-30^\circ.$ \circ 三角形联结负载: $Z_L'=rac{1}{3}Z_L.$

对称三相电路的功率

- 平均功率
 - 当负载为星形联结时, $U_l = \sqrt{3}U_P$, $I_l = I_P$.
 - 。 当负载为角形联结时, $U_l=U_P,\,I_l=\sqrt{3}I_P.$

$$P = U_{PA}I_{PA}\cos\varphi_{_{\mathrm{A}}} + U_{PB}I_{PB}\cos\varphi_{_{\mathrm{B}}} + U_{PC}I_{PC}\cos\varphi_{_{\mathrm{C}}}$$

= $3U_{P}I_{P}\cos\varphi = \sqrt{3}U_{l}I_{l}\cos\varphi$ (星形联结或三角联结)

其中 φ 为相电压与相电流的相位差,即负载的阻抗角.

- 无功功率 $Q = 3U_P I_P \sin \varphi = \sqrt{3} U_l I_l \sin \varphi$.
- 视在功率 $S = \sqrt{P^2 + Q^2} = 3U_P I_P = \sqrt{3}U_l I_l$.
- 功率因数 $\lambda = \frac{P}{S} = \cos \varphi = \frac{P}{\sqrt{3}U_I I_I}$.
- 瞬时功率 $p(t) = 3U_P I_P \cos \varphi = P$.

功率的测量

- 三相四线制 (三只瓦特表)
- 三相三线制 (两只瓦特表)

以 C 为参考位点, A 接表 1, B 接表 2, 则

$$\left\{ egin{aligned} P_1 &= U_{
m AC}I_{
m A}\cos(arphi-30^\circ), \ P_2 &= U_{
m BC}I_{
m B}\cos(arphi+30^\circ). \end{aligned}
ight.$$

第8章非正弦周期激励作用下稳态电路的分析

- 周期性非正弦稳态电路
 - 。 非正弦周期激励.
 - 。 非线性元件.
- 傅里叶级数的公式
 - 注意数学中第一项一般为 $\frac{a_0}{2}$, 并且周期为 2T, 即 $T=\frac{\pi}{\omega}$

。 而这里为方便讨论,第一项设为 a_0 ,且周期即 $T=\dfrac{2\pi}{\omega}$.

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left(a_n \cos(n\omega t) + b_n \sin(n\omega t)
ight) \ = A_0 + \sum_{k=1}^{\infty} A_{k\mathrm{m}} \sin(k\omega t + \psi_k) \ \left\{ a_0 = rac{1}{T} \int_0^T f(t) \, \mathrm{d}t = A_0, \ a_k = rac{2}{T} \int_0^T f(t) \cos(k\omega t) \, \mathrm{d}t = A_{k\mathrm{m}} \sin \psi_k, \ b_k = rac{2}{T} \int_0^T f(t) \sin(k\omega t) \, \mathrm{d}t = A_{k\mathrm{m}} \cos \psi_k. \ \left\{ A_{k\mathrm{m}} = \sqrt{a_k^2 + b_k^2}, \ \tan \psi_k = rac{a_k}{b_k}.
ight.$$

- 傅里叶级数的时域表示
 - □定分量 (直流分量): A₀.
 - 一次谐波 (基波分量): $A_{1m}\sin(\omega t + \psi_1)$.
 - \circ k 次谐波 (三次及以上为称为高次谐波): $A_{km}\sin(k\omega t + \psi_k)$.
- 频谱图 (离散频谱)
 - 幅度频谱: 谱线的长度为该频率谐波分量的振幅
 - 相位频谱: 谱线的长度为各次谐波的初相位大小.
- 有效值(注意区分峰值与有效值)

$$egin{split} i(t) &= I_0 + \sum_{k=1}^\infty I_{k\mathrm{m}} \sin(k\omega t + \psi_k) \ &I = \sqrt{I_0^2 + rac{I_{1\mathrm{m}}^2}{2} + rac{I_{2\mathrm{m}}^2}{2} + \cdots} \ &= \sqrt{I_0^2 + I_1^2 + I_2^2 + I_3^2 + \cdots} \end{split}$$

• 平均功率 (注意区分峰值与有效值)

$$egin{aligned} u(t) &= U_0 + \sum_{k=1}^{\infty} U_{k ext{m}} \sin(k \omega t + \psi_{u k}) \ i(t) &= I_0 + \sum_{k=1}^{\infty} I_{k ext{m}} \sin(k \omega t + \psi_{i k}) \ P &= U_0 I_0 + \sum_{k=1}^{\infty} \frac{U_{k ext{m}} I_{k ext{m}}}{2} \cos(\psi_{u k} - \psi_{i k}) \ &= U_0 I_0 + \sum_{k=1}^{\infty} \frac{U_{k ext{m}} I_{k ext{m}}}{2} \cos arphi_k \ &= U_0 I_0 + \sum_{k=1}^{\infty} U_k I_k \cos \psi_k \end{aligned}$$

- 计算非正弦周期电流电路
 - 1. 展开傅里叶级数.
 - 2. 叠加定理
 - 1. 对恒定分量, 可用直流电路的求解方法.
 - 2. 对各次谐波, 可如正弦稳态电路一样用相量法求解.
- 滤波器

。 "区间滤波"

滤波器	接法	低频	中频	高频
低通滤波器	RC 取 C	+	_	_
高通滤波器	RC 取 R	_	_	+
带通滤波器	RLC 取 R	_	+	_
带阻滤波器	流串 RLC	+	_	+

。 "点滤波"

- 保留特定波长的信号分量
 - 取电流: 复阻抗为零, 复导纳无穷, 即串联谐振.
 - 取电压: 复阻抗无穷, 复导纳为零, 即并联谐振.
- 去除特定波长的信号分量
 - 取电流: 复阻抗无穷, 复导纳为零, 即并联谐振.
 - 取电压: 复阻抗为零, 复导纳无穷, 即串联谐振.
- 上述过程可以多次叠加.
- **注意**: 如果要去除 *n* 个特定波长的信号, 同样的电路最多有 *n*! 种参数选择.
- 非正弦周期激励下的对称三相电路
 - 。 对称三相电源

$$u_{\mathrm{A}} = f(t),\, u_{\mathrm{B}} = f\left(t - \frac{T}{3}\right)\!,\, u_{\mathrm{C}} = f\left(t - \frac{2T}{3}\right)\!.$$

对于上下半波对称的激励, 傅里叶级数中只有奇次谐波分量.

- 6k+1 次谐波大小相等, 相位互差 120° , 相序为 A B C, 称为 **正序谐波分**量.
- 6k+3 次谐波大小与相位相同, 称为 零**序谐波分**量.
- 6k+5 次谐波大小相等, 相位互差 120° , 相序为 A C B, 称为 **负序谐波分量**.
- 。 对称三相电路
 - 正序或负序谐波分量: 对称三相电源与电路计算方法同第七章.
 - 零序谐波分量
 - 对称 丫 丫 无中线
 - 对称 丫 丫 有中线
 - 对称电源星接 丫
 - 对称电源角接 △
- 常用傅里叶展开式

波形	图像或函数	傅里叶展开
方波		$\boxed{\frac{1}{2}-\frac{2}{\pi}\bigg(\sin x+\frac{\sin 3x}{3}+\frac{\sin 5x}{5}+\cdots+\frac{\sin (2k+1)x}{2k+1}+\cdots\bigg)}.$
锯齿波	$f(x) = egin{cases} -x, & -\pi \leq x < 0, \ x, & 0 \leq x < \pi. \end{cases}$	$\frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots + \frac{\cos (2k+1)x}{(2k+1)^2} + \dots \right).$
三角波	$f(x) = x (-\pi < x \le \pi)$	$2\left(\sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \dots + (-1)\right)^{n+1} \frac{\sin nx}{n} + \dots\right).$
半波整流	$f(t) = rac{A}{2}(\sin t + \sin t)$	$\left[rac{A}{\pi}+rac{A}{2}\sin x-rac{2A}{\pi}\sum_{k=1}^{\infty}rac{\cos 2kx}{4k^2-1}. ight.$
全波整流	$f(t) = A \left \sin t ight $	$rac{2A}{\pi}-rac{4A}{\pi}\sum_{k=1}^{\infty}rac{\cos2kx}{4k^2-1}.$

第9章线性动态网络复频域分析

本章主要有两种分析方法,即时域方程 Laplace 变换和复频域分析,并侧重后者的应用.

• (双边) Fourier 变换

• Fourier 变换
$$F(\omega) = \int_{-\infty}^{+\infty} f(t) \mathrm{e}^{-\mathrm{j}\omega t} \, \mathrm{d}t.$$

• Fourier 逆变换
$$f(t)=rac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)\mathrm{e}^{\mathrm{j}\omega t}\,\mathrm{d}\omega.$$

。 注: Fourier 变换要求满足 Dirichlet 条件, 且函数绝对可积, 即
$$\int_{-\infty}^{+\infty}|f(\omega)|\,\mathrm{d}t<+\infty.$$

• 单边 Fourier 变换
$$F(\omega) = \int_0^{+\infty} f(t) \mathrm{e}^{-\mathrm{j}\omega t} \,\mathrm{d}t.$$

• (单边) Laplace **变换**

。 若乘上收敛因子
$$\mathrm{e}^{-\sigma t}$$
,则 $\int_0^{+\infty} f(t) \mathrm{e}^{-\sigma t} \, \mathrm{d}t < +\infty$.

 \circ 故定义复频率 $s=\sigma+\mathrm{j}\omega$,

・ Laplace 变换
$$F(s)=\mathscr{L}[f(t)]=\int_0^{+\infty}f(t)\mathrm{e}^{-st}\,\mathrm{d}t.$$

。 Laplace 逆变换
$$f(t)=\mathscr{L}^{-1}[F(s)]=rac{1}{2\pi \mathrm{i}}\int_{\sigma=\mathrm{i} s}^{\sigma+\mathrm{j} \omega}F(s)\mathrm{e}^{st}\,\mathrm{d}s.$$

• 常用 Laplace 变换

备注:

- 高次正余弦及其乘积可以化为一次正余弦, 但变换后形式不简洁, 也没什么使用价值,
- \circ 无论什么原函数, 乘上 $e^{-\alpha t}$ 相当于平移, 乘上正余弦相当于平移后相加。
- 。 所以上述表格本质上只有两个公式:

1.
$$\mathscr{L}(D^r\delta(t))(s)=s^r,\,r\in\mathbb{R}.$$
2. $\mathscr{L}(\mathrm{e}^{-zt}f(t))(s)=F(s+z),\,z\in\mathbb{Z}$

说明

$$lacksymbol{\circ}$$
 eta 阶原函数: ${}_aD_x^{-eta}f:=rac{1}{\Gamma(eta)}\int_a^xf(t)(x-t)^{eta-1}\,\mathrm{d}t,\,eta>0.$

- $lacksymbol{\blacksquare}$ Riemann-Liouville 导数: ${}^{\mathrm{RL}}_a D_x^{eta} f := D^m \ {}_a D_x^{-(m-eta)} \ f$, 其中 $eta \geq 0, \ m = \lceil eta
 ceil.$
- 这里的微分算子是上述原函数 R-L 导数中微分算子的简写:

$$D^r := egin{cases} _0D_t^r, & r < 0, \ _0 ext{RL}D_t^r, & r \geq 0. \end{cases}$$

- Laplace 变换的性质
 - 。 线性性质

- $\mathscr{L}[af(t) + bg(t)] = a\mathscr{L}[f(t)] + b\mathscr{L}[g(t)]$
- 。 微分性质

■ 若
$$\mathscr{L}[f(t)] = F(s)$$
,则 $\mathscr{L}\left[\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right] = sF(s) - f(0_{-})$.

■ $\mathscr{L}[f^{(n)}(t)] = s^{n}F(s) - s^{n-1}f(0_{-}) - s^{n-2}f'(0_{-}) - \cdots - f^{(n-1)}(0_{-})$.

○ 积分性质

• 若
$$\mathscr{L}[f(t)] = F(s)$$
, 则 $\mathscr{L}\left[\int_{0-}^t f(\xi) \,\mathrm{d}\xi\right] = \frac{F(s)}{s}$.
• $\mathscr{L}\left[f^{(-n)}(t)\right] = \frac{F(s)}{s^n}$.

- 时域延迟性质
 - $\mathscr{L}[f(t-t_0)1(t-t_0)] = e^{-t_0s}\mathscr{L}[f(t)1(t)].$
- 。 复频域延迟性质
 - \blacksquare 若 $\mathscr{L}[f(t)] = F(s)$,则 $\mathscr{L}[e^{-\alpha t}f(t)] = F(s+\alpha)$.
- 用 Laplace 变换分析线性动态网络的暂态过程
 - 1. 对时域的微分方程或积分方程使用 Laplace 变换.
 - 2. 求解复频域的代数方程, 得出响应函数的象函数,
 - 3. 通过 Laplace 逆变换得到响应函数的时域函数.
- 部分分式展开法
 - \circ 若 F(s) 是真分式, 且分母无重根, 则

$$egin{aligned} F(s) &= rac{K_1}{s-s_1} + rac{K_2}{s-s_2} + \cdots + rac{K_n}{s-s_n} \ K_i &= \left[F(s)(s-s_i)
ight]_{s=s_i} \ &= \lim_{s o s_i} \left[rac{F_1(s)}{F_2(s)}(s-s_i)
ight] = rac{F_1(s_i)}{F_2'(s_i)} \ f(t) &= \mathscr{L}^{-1}[F(s)] = \sum_{i=1}^n K_i \mathrm{e}^{s_i t} 1(t) \end{aligned}$$

○ 进一步, 更一般的

$$egin{aligned} F(s) &= rac{F_1(s)}{F_2(s)} = rac{a_{n_1}s^{n_1} + a_{n_1-1}s^{n_1-1} + \cdots + a_0}{a_{n_2}s^{n_2} + b_{n_2-1}s^{n_2-1} + \cdots + b_0} \ &= K_0 + K_1s + K_2s^2 + \cdots + K_ps^p + \ &rac{K_{11}}{s - s_1} + rac{K_{12}}{(s - s_1)^2} + \cdots + rac{K_{1p_1}}{(s - s_1)^{p_1}} + \cdots + rac{K_{mp_m}}{s - s_m} + rac{K_{m2}}{(s - s_m)^2} + \cdots + rac{K_{mp_m}}{(s - s_m)^{p_m}} \ &K_{ij} = \left\{ rac{\mathrm{d}^{p_j - j}}{\mathrm{d}s^{p_j - j}} [F(s)(s - s_i)^n]
ight\}_{s = s_i} = n! rac{F_1(s_i)}{F_2^{(j)}(s_i)} \ &f(t) = \mathscr{L}^{-1}[F(s)] = \sum_{i=1}^m \sum_{k=1}^n rac{t^{k-1}\mathrm{e}^{s_i t}}{k!} 1(t) \end{aligned}$$

注意: 蓝色标出的第一式中, 求导是对有理分式整体, 而不是分别对分子和分母.

比较简便的思路:

■ 二次有理分式
$$F(s) = \frac{As + B}{s^2 + bs + c}$$

■ 当 △ > 0 时.

$$F(s) = \frac{As_1 + B}{s_1 - s_2} \frac{1}{s - s_1} + \frac{As_2 + B}{s_2 - s_1} \frac{1}{s - s_2},$$

$$f(t) = \frac{As_1 + B}{s_1 - s_2} e^{s_1 t} + \frac{As_2 + B}{s_2 - s_1} e^{s_2 t}.$$

■ 当 △ = 0 时,

$$F(s) = \frac{A}{s + \frac{b}{2}} + \frac{B - \frac{Ab}{2}}{\left(s + \frac{b}{2}\right)^2}.$$

$$f(t) = \left[1 + \left(B - \frac{Ab}{2}\right)t\right]e^{\frac{b}{2}t}.$$

当 ∆ < 0 时。

$$F(s) = \frac{A\left(s + \frac{b}{2}\right) + \left(B - \frac{Ab}{2}\right)}{\left(s + \frac{b}{2}\right)^2 + \frac{-\Delta}{4}}.$$

$$f(t) = \left[A\cos\frac{\sqrt{-\Delta}}{2}t + \frac{2B - Ab}{\sqrt{-\Delta}}\sin\frac{\sqrt{-\Delta}}{2}t\right]e^{-\frac{b}{2}t}.$$

- 备注:
 - 用哪种方法都是可以的,比如,
 - 第一种情况可以用第三种算法, 只不过要用到 $e^{it} = \cos t + i \sin t$;
 - 第三种情况也可以用第一种算法, 只不过要用到 $\sin it = i \sinh t$, $\cos it = i \cosh t$
 - 附: 三角与双曲三角及其反函数的转换
 - 对于含有一重共轭复根 $z=\alpha+\beta$ i 与 \bar{z} 的高次有理分式,设拆分后得到 $\frac{As+B}{(s-z)(s-\bar{z})},$ 则有

$$egin{align} Az+B&=F(s)(s-z)ig(s-ar{z}ig)igg|_{s=z\;ar{ar{z}}\,ar{ar{z}}}\ &=rac{F_1(z)}{F_2'(z)}2eta{
m i}=rac{F_z(ar{z})}{F_2'(ar{z})}(-2eta{
m i}) \end{split}$$

解之即得 A 与 B, 从而使用上述 $\Delta < 0$ 时的思路求解.

但该方法在求解正弦系数时常常不够简便, 故推荐使用下述方法:

■ 高次有理分式
$$f(t)=rac{F_1(t)}{F_3(t)(s-z)^k(s-ar{z})^k}$$

・ 记
$$z = \alpha + \beta \mathbf{j}$$
,且 $\frac{1}{(s-z)^k}$ 的系数为 $K = a + b \mathbf{j} = |K| \mathrm{e}^{\theta \mathbf{j}}$,则
$$1. \frac{1}{(s-\overline{z})^k}$$
 的系数为 $\overline{K} = a - b \mathbf{j} = |K| \mathrm{e}^{-\theta \mathbf{j}}$,且
$$2. \mathcal{L} \left[\frac{K}{(s-z)^k} + \frac{\overline{K}}{(s-\overline{z})^k} \right] = \frac{t^{k-1} \mathrm{e}^{-\alpha t}}{k!} \cdot 2 |K| \cos(\beta t + \theta).$$

- 备注:
 - 其中 $F_1(t)$ 与 $F_3(t)$ 可以含有或不含有 $(s-\alpha\pm\beta \mathbf{j})$ 的因式, 即 k 可以小于或者大于最高次幂, 对于后者有 K=0.
 - 实系数多项式的复根必与其共轭复数成对存在,并且实系数分式分母的任意重共轭复根对应的待定系数共轭.
 - 理论上还可以将任意有理分式拆分为一次或二次多项式的若干次幂倒数和,从而避免处理 复根,但这样做*并不简便*.
 - 手算 K 时, 可以利用<u>秦九韶算法</u>简化计算.
- 方法总结:
 - 一次有理分式: 直接得出结果.
 - 二次有理分式: 如上分类讨论:
 - 高次有理分式
 - 无复根: 拆成单根分式 (重根同理).
 - 有复根: 直接列写结果 (重根同理).
- 两类约束的复频域形式
 - 。 第一类约束: 元件自身特性

电阻

•
$$U(s) = \mathcal{L}[u(t)] = \mathcal{L}[Ri(t)] = RI(s).$$

$$lackbox{lackbox{}} U_L(s) = \mathscr{L}[Lrac{\mathrm{d}i_L(t)}{\mathrm{d}t}] = sLI_L(s) - Li_L(0_-).$$

$$I_L(s) = rac{U_L(s)}{sL} + rac{i_L(0_-)}{s}.$$
 sL 称为复频域感抗 (或运算感抗).

- $\frac{1}{sL}$ 称为复频域感纳 (或运算感纳).

 L $i_L(0_-)$ 称为附加电压源 (串联), 与参考方向相反, 起正向激励作用. $\frac{i_L(0_-)}{s}$ 称为附加电流源 (并联), 与参考方向相同, 起正向激励作用.

$$I_C(s) = \mathcal{L}[C\frac{\mathrm{d}u_C(t)}{\mathrm{d}t}] = sCU_C(s) - Cu_C(0_-).$$

$$U_C(s) = \frac{I_C(s)}{sC} + \frac{u_C(0_-)}{s}.$$

$$\frac{1}{sC}$$
 称为复频域容抗 (或运算容抗).

$$lacksquare U_C(s) = rac{I_C(s)}{sC} + rac{u_C(0_-)}{s}.$$

- *sC* 称为复频域容纳 (或运算容纳)
- \blacksquare $\frac{u_C(0_-)}{s}$ 是附加电压源 (串联), 与参考方向相同, 起反向抑制作用.
- $Cu_C(0_-)$ 是附加电流源 (并联), 与参考方向相反, 起反向抑制作用
- 注: 附加电源的产生来自于电容两端电压和电感流过电流都没有发生突变
- 耦合电感(以同侧为例)

$$egin{cases} u_1 = L_1 rac{\mathrm{d}i_1}{\mathrm{d}t} + M rac{\mathrm{d}i_2}{\mathrm{d}t}, \ u_2 = L_2 rac{\mathrm{d}i_2}{\mathrm{d}t} + M rac{\mathrm{d}i_1}{\mathrm{d}t}. \end{cases} egin{cases} \mathscr{L}\left(M rac{\mathrm{d}i_2}{\mathrm{d}t}
ight) = sMI_2(s) - Mi_2(0_-), \ \mathscr{L}\left(M rac{\mathrm{d}i_1}{\mathrm{d}t}
ight) = sMI_1(s) - Mi_1(0_-). \end{cases}$$

ullet sM 称为互感抗, $Mi_2(0_-)$ 和 $Mi_1(0_-)$ 称为附加电压源 (串联).

○ 第一类约束的复频域形式

另见时域与频域.

元件	电阻	电感	电容
复频域阻抗	R	sL	$\frac{1}{sC}$
复频域导纳	G	$\frac{1}{sL}$	sC
附加电压源	0	Li(0)	$\frac{u(0)}{s}$
附加电流源	0	$rac{i(0)}{s}$	Cu(0)

。 第二类约束: 基尔霍夫定律

$$\begin{cases} \sum i(t) = 0, & \mathcal{L} \\ \sum u(t) = 0. \end{cases} \Rightarrow \begin{cases} \sum I(s) = 0, \\ \sum U(s) = 0. \end{cases}$$

。 复频域欧姆定律

■ 复频域电路 → 运算电路.

注意: 电源和无源元件都需要求 Laplace 变换.

■ 以 RLC 串联电路为例

$$I(s) = rac{U(s) + Li_L(0_-) - rac{u_C(0_-)}{s}}{R + sL + rac{1}{sC}},$$

- 其中 $Z(s):=R+sL+rac{1}{sC}$ 称为复频域阻抗 (或运算阻抗).
- 対比 $Z(\mathrm{j}\omega)=R+\mathrm{j}\omega L+rac{\mathrm{j}\omega}{\mathrm{j}\omega C}.$
- 若电路是零状态,则 $I(s)=\dfrac{\widetilde{U(s)}}{Z(s)}=U(s)Y(s).$

• 复频域分析法

- 。 思路
 - 1. 计算 $u_C(0_-)$ 和 $i_L(0_-)$.
 - 2. 画出运算电路图.
 - 即对有源元件和无源元件的参数使用 Laplace 变换.
 - 即确定附加电源,并对激励取 Laplace 变换.
 - 3. 求解响应的象函数.
 - 4. 对象函数使用 Laplace 逆变换.
- 注: 只有一个电源和一个储能元件时, 利用三要素法求解一般比较简便.
- 网络函数的概念
 - \circ 响应象函数 R(s).
 - \circ 激励象函数 E(s).
 - 。 网络函数 $H(s) := \frac{R(s)}{H(s)}$.
 - 策动点函数 (激励和响应在同一端口)
 - 输入导纳 $Y_i(s) = \frac{I_1(s)}{U_S(s)}$.
 - $lacksymbol{\blacksquare}$ 输入阻抗 $Z_i(s) = rac{\widetilde{U_1(s)}}{I_S(s)}$
 - 转移函数 (激励和响应在不同端口)
 - $lacksymbol{\blacksquare}$ 电压转移函数: $K_u(s)=rac{U_2}{U_S(s)}.$
 - $lacksymbol{\bullet}$ 电流转移函数: $K_i(s)=rac{ ilde{I}_2}{I_S(s)}$.
 - $lacksymbol{\bullet}$ 转移导纳: $Y_t(s) = \dfrac{I_2(s)}{U_S(s)}$.
 - 转移阻抗: $Z_t(s) = \frac{U_2(s)}{I_S(s)}$
 - \circ 正弦稳态网络的网络函数: $H(j\omega)$
 - 。 网络动态特性的描述
 - 网络函数

线性时不变网络的网络函数是s的实系数有理分式。

■ 单位冲激响应

若网络的激励是 $\delta(t)$, 零状态响应 (单位冲激响应) 为 h(t), 则

$$H(s) = rac{R(s)}{E(s)} = rac{\mathscr{L}[h(t)]}{\mathscr{L}[\delta(t)]} = \mathscr{L}[h(t)] \quad \Rightarrow \quad h(t) = \mathscr{L}^{-1}[H(s)]$$

• 卷积定理

记网络冲激响应为 h(t), 则线性动态网络对任意激励 e(t) 所产生的零状态响应 r(t) 为

$$egin{aligned} r(t) &= \int_0^t e(\lambda) h(t-\lambda) \, \mathrm{d}\lambda = e(t) * h(t) = \mathscr{L}^{-1}[E(s)H(s)] \ R(s) &= \mathscr{L}[r(t)] = \mathscr{L}[e(t) * h(t)] = E(s)H(s) \end{aligned}$$

第 10 章 双口网路分析

- 概念
 - 单口网络 (二端网络): 两个端子.
 - 端口: 两个端子.
 - 端口条件: 端口的两个端子流入流出电流相等.
 - 参数表征: R 和 G.
 - 双口网络 (四端网络)
 - 参数表征: 从端口电压 u_1, u_2 和端口电流 i_1, i_2 中选两个, 有六种.
 - 可通过相量法或复频域法 (运算法) 分析.
 - 计算时注意电流与电压的方向.
- Y 参数和 Z 参数.
 - Y 参数
 - 双口网络的 Y 参数矩阵:

$$\begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix} = \begin{bmatrix} Y_{11}\dot{U}_1 + Y_{12}\dot{U}_2 \\ Y_{21}\dot{U}_1 + Y_{22}\dot{U}_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix} = \boldsymbol{Y} \begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix}$$

■ Y 参数又称为短路导纳参数:

$$\begin{cases} Y_{11} = \frac{\dot{I}_1}{\dot{U}_1} \bigg|_{\dot{U}_2 = 0} \\ Y_{21} = \frac{\dot{I}_2}{\dot{U}_1} \bigg|_{\dot{U}_2 = 0} \end{cases} \qquad \begin{cases} Y_{22} = \frac{\dot{I}_2}{\dot{U}_2} \bigg|_{\dot{U}_1 = 0} \\ Y_{21} = \frac{\dot{I}_1}{\dot{U}_2} \bigg|_{\dot{U}_1 = 0} \end{cases}$$

- 求解方法
 - 短路求导纳.
 - 基尔霍夫电流定律.
 - 节点电压法.
- Z参数
 - 双口网络的 Z 参数矩阵:

$$egin{bmatrix} egin{bmatrix} \dot{U}_1 \ \dot{U}_2 \end{bmatrix} = egin{bmatrix} Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \ Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{bmatrix} = egin{bmatrix} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \end{bmatrix} egin{bmatrix} \dot{I}_1 \ \dot{I}_2 \end{bmatrix} = oldsymbol{Z} egin{bmatrix} \dot{I}_1 \ \dot{I}_2 \end{bmatrix}$$

■ Z参数又称为开路阻抗参数:

$$egin{dcases} Z_{11} = rac{\dot{U}_1}{\dot{I}_1} igg|_{\dot{I}_2 = 0} \ Z_{21} = rac{\dot{U}_2}{\dot{U}_1} igg|_{\dot{I}_2 = 0} \end{cases} = egin{array}{c} Z_{22} = rac{\dot{U}_2}{\dot{I}_2} igg|_{\dot{I}_1 = 0} \ Z_{12} = rac{\dot{U}_1}{\dot{I}_2} igg|_{\dot{I}_1 = 0} \end{cases}$$

- 求解方法
 - 开路求阻抗.
 - 基尔霍夫电压定律.

- 回路电流法(注意将回路电流转为支路电流)
- 。 相互关系

$$egin{cases} oldsymbol{Z} & = oldsymbol{Y}^{-1} = rac{oldsymbol{Y}^*}{|oldsymbol{Y}|} = rac{1}{\Delta oldsymbol{Y}} egin{bmatrix} Y_{22} & -Y_{12} \ -Y_{21} & Y_{11} \end{bmatrix} \ oldsymbol{Y} & = oldsymbol{Z}^{-1} = rac{oldsymbol{Z}^*}{|oldsymbol{Z}|} = rac{1}{\Delta oldsymbol{Z}} egin{bmatrix} Z_{22} & -Z_{12} \ -Z_{21} & Z_{11} \end{bmatrix} \end{cases}$$

- 。 特殊情况
 - 若网络仅由线性电阻、电感和电容组成, 而不含受控源, 则满足互易定理, 网络称为 **互易网络**, 此时 Y 参数矩阵和 Z 参数矩阵均为对称阵.
 - 若互易网络的两个端口交换位置,外部特性没有发生变化,则称为对称双口网络,此时有

$$m{Y} = egin{bmatrix} Y_1 & Y_2 \ Y_2 & Y_1 \end{bmatrix}, \quad m{Z} = egin{bmatrix} Z_1 & Z_2 \ Z_2 & Z_1 \end{bmatrix}$$

- 若网络含受控源,那么由特勒根定理知互易定理不再成立.
- A 参数和 H 参数.
 - A 参数
 - 双口网络的 A 参数矩阵:

$$egin{bmatrix} egin{bmatrix} \dot{U}_1 \ \dot{I}_1 \end{bmatrix} = egin{bmatrix} A_{11}\dot{U}_2 - A_{12}\dot{I}_2 \ A_{21}\dot{U}_2 - A_{22}\dot{I}_2 \end{bmatrix} = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix} egin{bmatrix} \dot{U}_2 \ -\dot{I}_2 \end{bmatrix} = m{A} egin{bmatrix} \dot{U}_2 \ -\dot{I}_2 \end{bmatrix}$$

■ *A* 参数又称 **转移参数** 或 一般参数。

 A_{12} 称为转移阻抗, A_{21} 称为转移导纳

$$m{A} = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix} = egin{bmatrix} rac{\dot{U}_1}{\dot{U}_2}igg|_{\dot{I}_2=0} & rac{\dot{U}_1}{-\dot{I}_2}igg|_{\dot{U}_2=0} \ rac{\dot{I}_1}{\dot{U}_2}igg|_{\dot{I}_2=0} & rac{\dot{I}_1}{-\dot{I}_2}igg|_{\dot{U}_2=0} \end{bmatrix}$$

- 特殊情况
 - 互易网络: |A| = 1.
 - 对称网络: |A| = 1, A₁₁ = A₂₂.
- H参数
 - 双口网络的 H 参数矩阵:

$$egin{bmatrix} egin{bmatrix} \dot{U}_1 \ \dot{I}_2 \end{bmatrix} = egin{bmatrix} H_{11}\dot{I}_1 + H_{12}\dot{U}_2 \ H_{21}\dot{I}_1 + H_{22}\dot{U}_2 \end{bmatrix} = egin{bmatrix} H_{11} & H_{12} \ H_{21} & H_{22} \end{bmatrix} egin{bmatrix} \dot{I}_1 \ \dot{U}_2 \end{bmatrix} = m{H} egin{bmatrix} \dot{I}_1 \ \dot{U}_2 \end{bmatrix}$$

■ *H* 参数又称为 **混合参数**:

$$m{H} = egin{bmatrix} H_{11} & H_{12} \ H_{21} & H_{22} \end{bmatrix} = egin{bmatrix} rac{\dot{U}_1}{\dot{I}_1}igg|_{\dot{U}_2=0} & rac{\dot{U}_1}{\dot{U}_2}igg|_{\dot{I}_1=0} \ rac{\dot{I}_2}{\dot{I}_2}igg|_{\dot{U}_2=0} & rac{\dot{I}_2}{\dot{U}_2}igg|_{\dot{I}_1=0} \end{bmatrix}$$

- 特殊情况
 - 互易网络: $H_{12} = -H_{21}$.
 - 对称网络: $H_{12} = -H_{21}$, |H| = 1.
- 转移函数(略)

。 输出端开路:
$$rac{U_2(s)}{U_1(s)} = rac{Z_{21}(s)}{Z_{11}(s)} = -rac{Y_{21}(s)}{Y_{22}(s)}.$$

輸出端短路:
$$\dfrac{I_2(s)}{I_1(s)}=\dfrac{Y_{21}(s)}{Y_{11}(s)}=-\dfrac{Z_{21}(s)}{Z_{22}(s)}.$$
 考虑负载后: $\dfrac{I_2(s)}{U_1(s)}=\dfrac{Y_{21}(s)}{Z_LY_{22}(s)+1}.$
 内阻与负载: $\dfrac{U_2(s)}{U_S(s)}=-\dfrac{Z_{21}R_L}{(R_I+Z_{11})(R_2+Z_{22})-Z_{12}Z_{21}}.$

$$\circ$$
 内阻与负载: $rac{U_2(s)}{U_S(s)} = -rac{Z_{21}R_L}{(R_I+Z_{11})(R_2+Z_{22})-Z_{12}Z_{21}}$

阻抗

。 输入阻抗

$$Z_i = \frac{\dot{U}_1}{\dot{I}_1} = \frac{A_{11}\dot{U}_2 - A_{12}\dot{I}_2}{A_{21}\dot{U}_2 - A_{22}\dot{I}_2} = \frac{A_{11}Z_L + A_{12}}{A_{21}Z_L + A_{22}}.$$

$$Z_i = \frac{Z_{11}Z_L + \Delta_Z}{Z_L + Z_{22}} = \frac{Y_{22}Z_L + 1}{\Delta_Y Z_L + Y_{11}} = \frac{\Delta_H Z_L + H_{11}}{H_{22}Z_L + 1}.$$

。 输出阻抗

$$\begin{array}{l} \bullet \quad Z_o = \frac{\dot{U}_2}{\dot{I}_2} = \frac{A_{22}Z_S + A_{12}}{A_{21}Z_S + A_{11}}. \\ \bullet \quad Z_o = \frac{Z_{22}Z_S + \Delta_Z}{Z_S + Z_{11}} = \frac{Y_{11}Z_S + 1}{\Delta_Y Z_S + Y_{22}} = \frac{Z_L + H_{11}}{H_{22}Z_S + \Delta_H}. \end{array}$$

- 。 完全匹配
 - 输出端完全匹配 $Z_o = Z_L$.
 - \blacksquare 输入端完全匹配 $Z_i = Z_L$.
- 特性阻抗 (重复阻抗)
 - 一般网络.

$$Z_{C1} = \sqrt{\frac{A_{11}A_{12}}{A_{21}A_{22}}} = \sqrt{\frac{H_{11}}{H_{22}}\Delta_H} = \sqrt{\frac{Z_{11}}{Z_{22}}\Delta_Z} = \sqrt{\frac{Y_{22}}{Y_{11}}\frac{1}{\Delta_Y}}.$$

$$Z_{C2} = \sqrt{\frac{A_{22}A_{12}}{A_{21}A_{11}}} = \sqrt{\frac{H_{11}}{H_{22}}\frac{1}{\Delta_H}} = \sqrt{\frac{Z_{22}}{Z_{11}}\Delta_Z} = \sqrt{\frac{Y_{11}}{Y_{22}}\frac{1}{\Delta_Y}}.$$

$$lacksymbol{Z}_{C1} = Z_{C2} = Z_C = \sqrt{rac{A_{12}}{A_{21}}} = \sqrt{rac{H_{11}}{H_{22}}} = \sqrt{\Delta_Z} = \sqrt{\Delta_Y^{-1}}.$$

- - 终端开路: $Z_{\mathrm{io}}=rac{A_{11}}{A_{21}}~(Z_L
 ightarrow+\infty).$
 - 终端短路: $Z_{\rm is} = \frac{A_{12}^{21}}{A_{22}} \, (Z_L \to 0).$
 - $Z_{C1} = \sqrt{Z_{io}Z_{is}}, Z_{C2} = \sqrt{Z_{oo}Z_{os}}.$
- 等效电路
 - 。 互易网络
 - π 形电路 (其中 Y 为导纳)

■ T形电路

非互易网络:使用受控源电路.

• 双口网络的连接

- 级联: $\mathbf{A} = \mathbf{A}'\mathbf{A}''$.
- 串联: Z = Z' + Z".
- 并联: Y = Y' + Y''.

	用Z参数表示	表 10-1 双口网络的用 Y 参数表示		所以
	7.1. 2.7		用H参数表示	用A参数表示
2参数	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} \frac{Y_{22}}{\Delta_{\gamma}} & -\frac{Y_{12}}{\Delta_{\gamma}} \\ -\frac{Y_{21}}{\Delta_{\gamma}} & \frac{Y_{11}}{\Delta_{\gamma}} \end{array}$	$\frac{\Delta_{_{H}}}{H_{22}} = \frac{H_{12}}{H_{22}}$ $-\frac{H_{21}}{H_{22}} = \frac{1}{H_{22}}$	$ \begin{array}{cccc} A_{11} & \Delta_{A} \\ A_{21} & A_{21} \\ & \frac{1}{A_{21}} & \frac{A_{22}}{A_{21}} \end{array} $
Y参数	$ \frac{Z_{22}}{\Delta_z} - \frac{Z_{12}}{\Delta_z} $ $ -\frac{Z_{21}}{\Delta_z} \frac{Z_{11}}{\Delta_z} $	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} \frac{1}{H_{11}} & -\frac{H_{12}}{H_{11}} \\ \frac{H_{21}}{H_{11}} & \frac{\Delta_{H}}{H_{11}} \end{array}$	$\begin{array}{ccc} \frac{A_{22}}{A_{12}} & -\frac{\Delta_A}{A_{12}} \\ -\frac{1}{A_{12}} & \frac{A_{11}}{A_{12}} \end{array}$
· H参数	$\begin{array}{ccc} \frac{\Delta_z}{Z_{22}} & \frac{Z_{12}}{Z_{22}} \\ -\frac{Z_{21}}{Z_{22}} & \frac{1}{Z_{22}} \end{array}$	$\begin{array}{ccc} \frac{1}{Y_{11}} & -\frac{Y_{12}}{Y_{11}} \\ & \frac{Y_{21}}{Y_{11}} & \frac{\Delta_{\gamma}}{Y_{11}} \end{array}$	$egin{array}{cccc} H_{11} & H_{12} & & & & \\ H_{21} & H_{22} & & & & & \\ \end{array}$	$\begin{array}{ccc} \frac{A_{12}}{A_{22}} & \frac{\Delta_A}{A_{22}} \\ -\frac{1}{A_{22}} & \frac{A_{21}}{A_{22}} \end{array}$
A参数	$egin{array}{cccc} & Z_{11} & \Delta_{Z} \ & Z_{21} & Z_{21} \ & & & & \\ & \frac{1}{Z_{21}} & Z_{22} & & & \\ & & & & & \\ \hline \end{array}$	$-\frac{Y_{22}}{Y_{21}} - \frac{1}{Y_{21}}$ $-\frac{\Delta_{Y}}{Y_{21}} - \frac{Y_{11}}{Y_{21}}$	$-\frac{\Delta_{H}}{H_{21}} - \frac{H_{11}}{H_{21}}$ $-\frac{H_{22}}{H_{21}} - \frac{1}{H_{21}}$	$egin{array}{cccc} A_{11} & A_{12} & & & & & & & & & & & & \\ A_{21} & A_{22} & & & & & & & & & & & & & & & & & & $
互易双 口网络	$Z_{12} = Z_{21}$	$Y_{12} = Y_{21}$		$\Delta_{A} = 1$
对称双 口网络	$Z_{12} = Z_{21}$ $Z_{11} = Z_{22}$	$Y_{12} = Y_{21} Y_{11} = Y_{22}$	$H_{12} = -H_{21}$ $\Delta_H = 1$	$\Delta_A = 1$ $A_{11} = A_{22}$
表中	(2) _ \(\Delta \) _	$egin{aligned} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \Big , \Delta_{\gamma} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} H_{11} & H_{12} \ H_{21} & H_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ Z_{21} & Z_{22} \ \end{array} \right , \Delta_{\lambda} = \left \begin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ Z_{22} & Z_{22} \ Z_{21} & Z_{22} \ Z_{22} & Z_{22} & Z_{22} \ Z_{22} & Z_{22} & Z_{22} & Z_{22} & Z_{22} \ Z_{22} & Z_{22} & Z_{22} & Z_{22} & Z_{22} \ Z_{22} & Z_$	$egin{array}{c ccc} Y_{11} & Y_{12} & & & & & & & & & & & & & & & & & & &$	把它们代人(10-2) 解得

第 11 章 非线性电阻电路的分析

- 概念
 - 非线性时不变电阻
 - 分类
 - 流控型非线性电阻: u = f(i). (如充气二极管, 又称辉光管)
 - 压控型非线性电阻: i=f(u). (如隧道二极管)
 - 单调型非线性电阻 (如 P-N 结二极管).
 - 静态电阻: $R_{\mathrm{oQ}}=rac{U_{\mathrm{Q}}}{I_{\mathrm{Q}}}.$ (一般为正)
 - $lacksymbol{\blacksquare}$ 动态电阻: $R_{
 m dQ}=rac{{
 m d}u}{{
 m d}i}igg|_{i=I_{
 m Q}}$. (可正可负)
 - 非线性电容

- lack q=CU.
- 荷控型: u = f(q).
- 压控型: q = f(u).
- 非线性电感
 - $\quad \blacksquare \ \varPsi = Li.$
 - 链控型: $i=f(\Psi)$.
 - 流控型: $\Psi = f(i)$.
- 分析方法
 - 。 戴维南定理 + 联立方程
 - 图解法: 曲线相交法, 曲线相加法.
 - 。 小信号分析法: $u(t)=f[I+i_{\delta}(t)]pprox f(I)+f'(I)i_{\delta}(t)=U+Ri_{\delta}(t).$