

OPERATIONAL RISK MANAGEMENT

Advanced Training

Advanced Training

- * In-depth ORM Process
- * In-depth Hazard Analysis Too
- * Implementation Concepts
- * Implementation Suggestions & Examples
- * Aviation ORM Implementation Plan

Operational Risk Management Levels of Application

- 1. Time-critical On the run consideration of the 5 steps
- 2. Deliberate Application of the
- 3. Gampleten5-StemPracess-Step

Process With Detailed Analysis

ORM Process In-depth ORM

- 1. Identify Hazards
 - A. Operational Analysis
 - **B. Preliminary Hazard Analysis**
- 2. Assess Hazards
- 3. Make Risk Decisions
 - A. Control options
 - B. Risk vs. Benefit
 - C. Communicate
- 4. Implement Control
- 5. Supervise

ORM / TQL Comparison

ORM

- Team established till event is over or effective risk controls implemented
- Can be done alone
- Process not Program
- Detect Hazards
- Manage Risks
- Reduce Risk

TQL

- QMB established till process goes away
- Always uses Team concept
- Continuous process Improvement
- Detect defects
- Manage processes
- Reduce Variation

ORM / TQL Comparison

• ORM

- Control what we do
- EventImprovement
- Quantitative or Qualitative Analysis
- Indoc = 1 Hour

TQL

- Measure and improve what we do
- ProcessImprovement Cycle
- QuantitativeAnalysis usingstatistical approach
- Intro = 4 Days

ORM / TQL Summary

ORM

- Operational focus
- Deals specifically with Hazards and Risk Management
- Controls mitigate risk

TQL

- System focus
- Continuous
 improvement of
 all significant
 processes
 (Reduce variation)
- Changes improve the processes

In-depth Hazard Analysis

1. General

- 2. Complex Operations
- 3. Physical Movement/Position

In-depth Hazard Analysis Tools

1. General:

- a. Analysis of Data
- b. Cause and Effect Diagram
- c. Tree Diagrams
- d. Surveys

a. Analysis of Data

- Technique takes advantage of lessons learned or other historical data bases to ensure hazards which have been previously recorded are identified.
- Application: PHA & Hazard Assessment for any operation or process that has been previously accomplished and reported on.
- Method:
 - Obtain data on applicable steps
 - Review data for hazard information

b. Cause and Effect

- · Illustrates relationships between a given effect and its possible causes.
- Application: General PHA
- Method:
 - Identify problem (hazard/effect)
 - Define major categories of possible causes
 - Identify causes/root causes within each category

CAUSES

c. Tree Diagram

- Similar to "cause & effect" diagram, but less structured
- Applications: General PHA
 - Positive
 - Negative

- Event

Tree Diagram (Cont.)

- Method:
 - Positive or Negative tree
 - Identify event
 - Identify primary causes on first level
 - Identify sub-causes on subsequent levels
 - Event tree
 - Same procedure with outcomes or results rather than causes

Tree Diagram Fault Tree Analysis

 More rigorous application of positive or negative tree diagram using symbols to connect the causes

Tree Diagram Fault Tree Analysis (Cont.)

d. Surveys

- Technique which obtains hazard information from a cross-section of personnel who participate in or are knowledgeable about the operation/process being analyzed Assess
- Method:
 - Design to test knowledge or obtain perspective of person surveyed
 - Distribute to adequate sample

In-depth Hazard Analysis

1. General

- 2. Complex Operations
- 3. Physical Movement/Position

In-depth Hazard Analysis Tools

2. Complex Operations:

- a. Simultaneously Timed Events Plot
- b. Failure Mode & Effects Analysis
- c. Interface Analysis

a. STEP

b. Failure Mode & Effects Analysis

- Technique designed to focus on key elements of a system, their possible failures and effects on the rest of the system.
- Applications: PHA & Hazard Assessment
 - Equipment systems
 - Complex operations
- Methodology- for each key element:
 - How can it fail?
 - What will be the results of the failure?

Failure Mode and Effects Analysis

Component Failure Mode

Effects on Other Comp.

Effects on System or O

Finish 224-daySupport equipDelay in 616's insp on 612 bydown engine chg or the 5th 614's wire mod

Unscheduled to provide A/C maint requiredor Fallon Det insp item out of tolerance

Landing Gear Emergency Op Check problem Increased workload

614's wire mod Waiver request

Disrupts long-term schedule for wire mods on other A/C

c. Interface Analysis

- Technique to examine the potential adverse interaction between two or more activities.
- Applications: PHA & Hazard Assessment
 - Planning new facility or modification
 - Planning complex operation or one in new environment
- Methodology:
 - Identify activities which might interact
 - Evaluate consequences of potential interactions

Interface Analysis (Cont.)

Interface Characteristics to Consider

- Energy
- Personnel
- Equipment
- Material
- Information
- Bio-material

Interface Analysis with STEP

In-depth Hazard Analysis

- 1. General
- 2. Complex Operations
- 3. Physical Movement/Posi

In-depth Hazard Analysis Tools

3. Physical Position/Movement

- a. Mapping
- b. Energy Trace & Barrier Analys

c. Interface Analysis

a. Mapping

- Technique depicts hazards and key components in physical context on a map, chart or diagram.
- Applications: PHA for Physical movement/ position situation
- Method:
 - Depict components/activities in their physical context
 - Identify hazards and assess their impact using the relative location of

AC WASH RACK

Trace & Barrier

- Technique designed to detect hazards arising from "energy-sources" years.
- Applications: PHA & Hazard Assessment for physical movement/position situations
- Methodology:
 - Identify Energy sources
 - Trace Energy flow
 - Examine Barriers for potential failure modes
 - Note unplanned release sources or potential barrier failures as hazards.

Energy Trace & Barrier Ar

Types of energy to consider:

Electrical

Exhaust

Vibration

Mechanical

Noise

Radiation

Thermal

Chemical

Pressure/Volume

ETBA

c. Interface Analysis

- Technique to examine the potential adverse interaction between two or more activities.
- Applications: PHA & Hazard Assessment
 - Planning new facility or modification
 - Planning complex operation or one in new environment
- Methodology:
 - Identify activities which might interact
 - Evaluate consequences of potential interactions

SE

Interface Analysis

In-depth Hazard Analysis

1. General

- 2. Complex Operations
- 3. Physical Movement/Position

Risk Management Process In-Depth

- 1. Identify Hazards
- 2. Assess Hazards
- 3. Make Risk Decisions
- 4. Implement Controls
- 5. Supervise

Iraining Realism

- Technique used to identify and select optimum risk controls which do not unnecessarily inhibit training realism.
- Applications: Evaluate risk controls used in military training procedures.
- Methodology: for each risk control
 - Is it consistent with actual combat procedures?
 - If not, challenge and validate
 - Minimize undesired impact of valid non-combat controls and identify as "training only"

Training Realism Assess (Cont.)

Not Needed - remove

Needed - keep

No Impact Ignore Undesired Impact

Fix Can't Fix-Risk Decision

Training Realism Assess

Example - Air to

How we How we train

Artificial hard deck Challenge and Validate

Needed - yes

Undesired impact unable to train at low altitudes

Fix - Lower deck? Other controls?

Can't Fix-

Risk

Decision

Training Realism Assessment (cont.)

- Eliminate Unnecessary Training Restrictions
- Identify Necessary Differences Between Training and Combat Procedures and Reduce Their Impact
- ID Risk Controls That Apply to Combat and those which are "training only"

Class Exercises

- In-depth Tools Exercise
- In-depth Hazard Analysis Exerci
 - Specific Applications Exercise

Risk Management Comparison

ORM Process

- Identify Hazards
- Assess Hazards
- Make Risk Decisions
- Implement Controls
- Supervise

The Scientific Method

- Define the Problem
- Gather Data
- FormulateHypothesis
- Test Hypothesis
- Revise asNecessary

ORM

Process ...

NOT Progran

Organizational Culture "The way we do things here"

- * Fundamental building blocks
- * Group values and standards
- * Medium for growth
- * Shaped by leadership

Drives Key Decisions

Implementing ORM in Your Command

- Incorporate Risk Management in Decision Making at <u>All</u> <u>Levels</u>
- Operational Risk Management Makes <u>Everyone</u> a Risk Manager

Unit Implementation

- ORM Training at Indoc, GMT, professional training
- Command ORM Policy
- Regular use of Time-critical ORM during briefs, daily
- Regular use of Deliberate or In-depth ORM to review instructions, SOPs or problem areas
- Use of Deliberate or In-depth ORM when planning new or unusual operations
- ORM addressed at qualification boards

Staff Implementation

- Unit Implementation Plus:
- Use of Time-critical ORM during crisis action planni
- Use of Deliberate or In-depth ORM during exercise a operational planning
- Working group application of ORM during draft/revi force SOPs, instructions
- Commander requires risk assessment and controls a decision briefs
- Commander's intent includes level of acceptable rish

ORM in Action

Unit Level

HCS-4/5 - Mission RA

USS STOUT - Routine tasks

VF-143 - IRA Surveys HSL-44 - RAT

VX-1 - RDT&E

USS Eisenhower - Briefs

Staff Level

NAVSPECWARCOM -Mission Planning/Briefing Range Safety SOP

CPW-10 - Safety Stand down

MAG-13 - Automated Flight RA Program

CVWR-20 - Deployment Prep

GW Battle Group - Sister Ship Hazard ID

COMSECONDFLT - ORM at the JTF level

ORM in Action

Unit Level

HCS-4/5 - Mission RA

USS STOUT - Routine tasks

VF-143 - IRA Surveys HSL-44 - RAT

VX-1 - RDT&E

USS Eisenhower - Briefs

Staff Level

NAVSPECWARCOM -Mission Planning/Briefing Range Safety SOP

CPW-10 - Safety Stand down

MAG-13 - Automated Flight RA Program

CVWR-20 - Deployment Prep

GW Battle Group - Sister Ship Hazard ID

COMSECONDFLT - ORM at the JTF level

ORM in Action

Unit Level

HCS-4/5 - Mission RA

USS STOUT - Routine tasks

VF-143 - IRA Surveys HSL-44 - RAT

VX-1 - RDT&E

USS Eisenhower - Briefs

Staff Level CONT.

CTW-1/6 T-2 Flight Operations

NIMITZ Battle Group 72-Hour Continous Flight Operations

ORM Implementation Concept

- Naval Aviation Leads The Way!
- Leverage the Army's Investment in ORM
- PHASE I: JUMP START for Operational Units
- PHASE II: CNATRA/FRS/FWS Pipeline Training
- PHASE III: CNET Pipeline Training

ORM - Implementation Plan

- PHASE I: Jump Start for Operation
 - Naval Safety Center "Train the Trainer" Course
 - Senior Leader Training
 - Squadron Workshop Training

ORM - Implementation Plan

- PHASE II: Long Term CNATRA FRS Pipeline Training
 - VT/HT Flight Instructor (user/adv)
 - Student API (indoc) and VT/HT (user)
 - FRS (user)
 - FWS/Type Wing (adv)
 - PCO/PXO ASC course (leader)
 - Follow-on Train the Trainer School (adv/TtT)

ORM -Implementation Plan

- PHASE III: CNET Pipeline Training
 - Leadership Continuum (appropriate to seniorit
 - Aviation 'A' Schools (indoc)
 - NAMTRAGRU (user)
 - Aviation Safety Specialist Course (advanced)

Proposed ORM Training S

TRAINING EVELS

INDOC (E-1/3, O-1/2)

USER (E-4/7, O-2/3)

ADVANCED

(E-7/O-4 and above)

CNATRA (AI/AOCS/VT PRI) CNET (A School)

NAMTRAGRU

Unit (INDOC/GMT)

Leadership Continuum CNATRA (VT/HT INT)* **NSC Survey Teams** FRS* **UNIT***

Leadership Continuum FWS/Type Wing*

TYCOM Trainers*

ASO/ASC/AVN Safety Specialist

* Application specific

Operational Risk Management

- Improves Mission Effectivene
- Reduces Mishaps

Implementation depends or