Varying slopes

Statistical Modeling

Robin Elahi

Winter 2025

Hopkins Marine Station, Stanford University

Learning objectives

- Covarying intercepts and slopes
- How to code with ulam

Varying intercepts, varying slopes, and *covarying* intercepts and slopes

Pooling across parameters

- If slopes and intercepts covary, then learning about one of these features gives us info about the other feature
- e.g., higher intercepts are associated with positive slopes, and lower intercepts are associated with negative slopes (previous slide)

A robot walks into a cafe ...

- orders coffee, records wait time (W_i)
- visits in morning (A = 0) and afternoon (A = 1)

$$\mu_i = \alpha_{cafe[i]} + \beta_{cafe[i]} A_i$$

- μ : avg wait time for a given cafe
- α: avg morning wait
- β : avg difference for afternoon wait
- intercepts and slopes are related!

The model, in math

$$W_i \sim \mathsf{Normal}(\mu_i, \sigma)$$
 [likelihood]
$$\mu_i = \alpha_{\mathit{cafe}[i]} + \beta_{\mathit{cafe}[i]} A_i$$
 [linear model]

The model, in math

$$W_i \sim \mathsf{Normal}(\mu_i, \sigma)$$
 [likelihood]
$$\mu_i = \alpha_{\mathit{cafe}[i]} + \beta_{\mathit{cafe}[i]} A_i$$
 [linear model]

$$\begin{bmatrix} \alpha_{\mathsf{cafe}} \\ \beta_{\mathsf{cafe}} \end{bmatrix} \sim \mathsf{MVNormal} \left(\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \right) \quad [\mathsf{population \ of \ varying \ effects}]$$

The model, in math

$$W_i \sim \mathsf{Normal}(\mu_i, \sigma)$$
 [likelihood]
$$\mu_i = \alpha_{\mathit{cafe}[i]} + \beta_{\mathit{cafe}[i]} A_i$$
 [linear model]

$$\begin{bmatrix} \alpha_{\mathsf{cafe}} \\ \beta_{\mathsf{cafe}} \end{bmatrix} \sim \mathsf{MVNormal} \left(\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \right) \quad [\mathsf{population \ of \ varying \ effects}]$$

$$\mathbf{S} = egin{pmatrix} \sigma_{lpha} & \sigma_{lpha} \sigma_{eta}
ho \ \sigma_{lpha} \sigma_{eta}
ho & \sigma_{eta} \end{pmatrix} \quad ext{[covariance matrix]}$$

Decomposing S

$$\mathbf{S} = egin{pmatrix} \sigma_{lpha} & \sigma_{lpha} \sigma_{eta}
ho \ \sigma_{lpha} \sigma_{eta}
ho & \sigma_{eta} \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix} \mathbf{R} \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix}$$

Decomposing S

$$\mathbf{S} = egin{pmatrix} \sigma_{lpha} & \sigma_{lpha} \sigma_{eta}
ho \ \sigma_{lpha} \sigma_{eta}
ho & \sigma_{eta} \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix} \mathbf{R} \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix}$$

$$\mathbf{R} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

 $\rho =$ correlation coefficient

Priors

$\alpha \sim Normal(5,2)$	[prior for average intercept]
$eta \sim Normal(-1, 0.5)$	[prior for average slope]
$\sigma \sim Exponential(1)$	[prior sd within cafes]
$\sigma_{lpha} \sim Exponential(1)$	[prior sd among intercepts]
$\sigma_{\!eta} \sim Exponential(1)$	[prior sd among slopes]
$\textbf{R} \sim LKJcorr(2)$	[prior for correlation matrix]

LKJ correlation prior

The model, in code

```
m14.1 <- ulam(
    alist(
        wait ~ normal(mu, sigma),
        mu <- a_cafe[cafe] + b_cafe[cafe] *afternoon,</pre>
        c(a cafe,b cafe)[cafe] ~
          multi normal(c(a,b), Rho ,sigma cafe),
        a \sim normal(5,2),
        b ~ normal(-1,0.5),
        sigma_cafe ~ exponential(1),
        sigma ~ exponential(1),
        Rho ~ lkj corr(2)
    ), data = d, chains = 4, cores = 4)
```

Correlation, prior and posterior

Shrinkage in two dimensions

Exercise

- 1. Work through code in SR2 14.1
- 2. Start homework

References

McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with Examples in r and Stan. CRC Press.