Universidade Federal de Minas Gerais Instituto de Ciências Exatas - ICEx Departamento de Matemática

Álgebra A Trabalho Prático 3: RSA livro-texto

Nas próximas questões, você vai gerar um par de chaves e ser capaz de criptografar uma mensagem. Apesar de ser essencial para a segurança do RSA na vida real, não usaremos padding ao criptografar nossas mensagens (vide PDF de avisos).

Questão 1. Escreva uma função gera_chaves, que faz o seguinte:

- 1. Gera dois primos aleatórios p e q no intervalo $[2,2^{2048})$. Seja $n = p \cdot q$.
- 2. Acha o menor $e \ge 65537$ tal que (n, e) é uma chave pública válida.
- 3. Gera d tal que (n, d) seja a chave privada correspondente à chave pública (n,e).

Não há Valor de retorno void gera_chaves(mpz_t n, mpz_t e, mpz_t d, **Assinatura** gmp_randstate_t rnd)

	Nome	Tipo	Descrição
Saída	n	mpz_t	Um número da forma $n = p \cdot q$.
	е	mpz_t	Um número $e \geqslant 65537$ tal que (n, e) é
	d	mpz_t	uma chave pública válida. Um número d tal que (n, d) é a chave
E/S	rnd	gmp_randstate_t	privada correspondente a (n, e) . O estado do gerador aleatório.

Questão 2. Implemente uma função codifica, que recebe um texto com até 500 caracteres e retorna um número correspondente a ver esse texto como um número em base 256.

Mais precisamente, cada um dos caracteres do texto tem um código ASCII. Se o código ASCII do i-ésimo caractere da string é s_i e a string tem n bytes, você deve retornar o número

$$\sum_{i=0}^{n-1} s_i \cdot 256^i.$$

Valor de retorno Não há Assinatura

void codifica(mpz_t r, const char *str)

	Nome	Tipo	Descrição
Entrada	str	const char * mpz_t	O texto a ser codificado.
Saída	r		O resultado da fórmula acima.

Questão 3. Implemente uma função decodifica, que desfaz a função codifica, retornando um char *. A função deve alocar memória, e não é responsabilidade da função liberar tal memória. Você pode assumir que o resultado tem no máximo 500 caracteres.

Valor de retorno Uma string, o número n decodificado.
Assinatura char *decodifica(const mpz_t n)

	Nome	Tipo	Descrição
Entrada	n	mpz_t	O número a ser decodificado.

Como testar: Para qualquer string str de até 500 caracteres, tem que valer que decodifica(codifica(str)) == str.

As funções abaixo irão fazer a criptografia RSA em si.

Questão 4. Implemente uma função criptografa, que recebe números n, e e M e retorna C, a versão criptografada do número M.

Valor de retorno Não há
Assinatura void criptografa(mpz_t C,
const mpz_t M,
const mpz_t n,
const mpz_t e)

	Nome	Tipo	Descrição
Entrada	М	mpz_t	O número a ser criptografado.
	n	mpz_t	(n,e) é a chave pública.
	е	$\mathtt{mpz_t}$	
Saída	С	mpz_t	Versão criptografada de M.

Questão 5. Implemente uma função descriptografa, que recebe n, d e C e retorna M, a versão descriptografada do número C.

Valor de retorno Não há
Assinatura void descriptografa(mpz_t M,
const mpz_t C,
const mpz_t n,
const mpz_t d)

	Nome	Tipo	Descrição
Entrada	С	mpz_t	O número a ser descriptografado.
	n	$\mathtt{mpz_t}$	(n, d) é a chave privada.
	d	$\mathtt{mpz_t}$	
Saída	М	mpz_t	Versão descriptografada de C.