

On page 11, line 26, please insert the following paragraph:

"FIG. 3 shows one embodiment of a computer implemented method for calculating an importance rank for N linked nodes of a linked database. At a step 101, an initial N-dimensional vector p_0 is selected. An approximation p_n to a steady-state probability p_∞ in accordance with the equation $p_n = A^n p_0$ is computed at a step 103. Matrix A can be an NxN transition probability matrix having elements $A[i][j]$ representing a probability of moving from node i to node j. At a step 105, a rank $r[k]$ for node k from a k^{th} component of p_n is determined.".

In the Claims

For the Examiner's convenience, all claims pending are shown below. Claims that have not been amended herein are shown in small print.

Please cancel claims 8, 16-17 and 34-35 without prejudice and amend claims 18, 25-29, 31, 33, and 36 as follows.

1. (Allowed) A computer implemented method for calculating an importance rank for N linked nodes of a linked database, the method comprising the steps of:

(a) selecting an initial N-dimensional vector p_0 wherein each component of p_0 represents a probability that a user will arrive at a given node after a large number of forward links, wherein each node of the N linked nodes is a computer-readable document containing information;

(b) computing an approximation p_n to a steady-state probability p_∞ , wherein each component of p_∞ represents a probability that the user will randomly end up a given node after a large number of forward links, in accordance with the equation $p_n = A^n p_0$, where A is an NxN transition probability matrix having elements $A[i][j]$ representing a probability of moving from node i to node j; and

(c) determining a rank $r[k]$ for node k from a k^{th} component of p_n , wherein $r[k]$ represents an importance of the information contained in node k.

2. (Allowed) The method of claim 1 wherein the matrix A is chosen so that an importance rank of a node is calculated, in part, from a weighted sum of importance ranks of backlink nodes of the node.

3. (Allowed) The method of claim 2 wherein the importance ranks of each of the backlink nodes is weighted in dependence upon the total number of links in the backlink node.

4. (Allowed) The method of claim 1 wherein the matrix A is chosen so that an importance rank of a node is calculated, in part, from a constant α representing the probability that a surfer will randomly jump to the node.