Privately Solving Linear Programs

Hsu, Roth, Roughgarden, Ullman Discussed by Andy Haupt

MIT Hamsa Group

July 2020

Some (Re)View

 ${\mathcal M}$ is $({\varepsilon}, {\delta})$ -DP if for neighboring "Databases"

$$\mathbb{P}[\mathcal{M}(D) \in S] \leq e^{\varepsilon} \mathbb{P}[\mathcal{M}(D') \in S] + \delta.$$

Laplace Mechanism

Assume $|\mathcal{M}(D) - \mathcal{M}(D')| \leq \Delta$.

Then, $D \mapsto \mathcal{M}(D) + \nu$, $\nu \sim \mathsf{Laplace}(\frac{\varepsilon}{\Delta})$ is $\varepsilon\text{-DP}$.

Exponential Mechanism

Let $Q:(r,D)\to\mathbb{R}$ give loss of solution r with data D. Assume $|Q(r,D)-Q(r,D')|\leq \Delta$. Then \mathcal{M} with

$$\mathbb{P}[\mathcal{M}(D) = r] \propto e^{\frac{\varepsilon Q(r,D)}{2\Delta}}$$

is ε -DP and approximates loss-minimization in PAC sense.

Goals and Preregs

After this, you are able to...

- ...define and give an example of High- and Low-Sensitivity Differential Privacy (DP).
- ...identify DP-relevant parts in an algorithm.
- ...illustrate with an example why High-Sensitivity DP might be incompatible with accuracy.

Motivation

$$\max_{x \in \mathbb{R}^d_+} c(D)^{\mathsf{T}} x$$

s.t. $A(D)x \leq b(D)$

- ► How to get a private output of x?
 - ightharpoonup Laplace Mechanism does not like \mathbb{R}^d
 - Exponential Mechanism does not like exp. large search space
 - Perturbing the objective/output cannot recognize constraints
- When are the efficient, DP approximation algorithms
- (...which do not necessarily return feasible outputs)?

Differential Privacy for LPs

$$\max_{x \in \mathbb{R}^d_+} c(D)^{\mathsf{T}} x$$

s.t. $A(D)x \leq b(D)$

Definition (DP4LPs)

A randomized algorithm $\mathcal{M} \colon D \coloneqq (c, A, b) \mapsto x \in \mathbb{R}^d$ is (ε, δ) -DP if for any $S \in \mathbb{R}^d$ and D, D' neighboring LPs

$$\mathbb{P}[\mathcal{M}(D) \in S] \leq e^{\varepsilon} \mathbb{P}[\mathcal{M}(D') \in S] + \delta.$$

- ▶ high-sensitivity neighboring LPs: ≤ 1 entry in (c, A, b) differs
- ▶ low-sensitivity neighboring LPs: $||D D'|| \le \frac{1}{n}$ in some norm $|| \bullet ||$ (either $|| \bullet ||_1$ or $|| \bullet ||_{\infty}$)

Overview of Results

Location of change	High sensitivity	Low sensitivity
Objective c	No (Section 5)	Yes (Section 4.5)
Scalar b	No (Section 5)	Yes (Folklore, Section 4.2)
Row/All of A	Yes* (Section 3)	Yes (Section 4.4)
Column of A	No (Section 5)	Yes (Section 4.4)

- 1. High Sensitivity: DP and accuracy are incompatible
- 2. Low sensitivity: There are efficient algorithms
- 3. Constraint Matrix, High Sensitivity: There is an efficient algorithm, if we may violate small number of constraints
- I will givyou the case for DP in the right hand side of equations and for the constraint matrix.
 - Similar techniques apply to the other ones
 - Easiest impossibility result

DP and Non-Reconstructability

Theorem (Reconstruction)

Assume that there is a function $\mathcal{M}: \{0,1\}^n \to [0,1]^n$ that is (ε, δ) -DP and $\|\mathcal{M}(D) - D\|_1 < \alpha n$. Then

$$\alpha \geq \frac{1}{2} - \frac{e^{\varepsilon} + \delta}{2(1 + e^{\varepsilon})(1 - \beta)}.$$

Blackboard

Incompatibility

Databases are bit strings

find
$$x$$

s.t. $x_i = D_i$, $\forall i \in [m]$

Results 00000000

- Changes of one bit yield neighboring databases.
- ► Call x^* α -feasible if $Ax^* < b + \alpha \mathbb{1}$.
- \triangleright D, D' neighboring in high sensitivity regime for b if they differ in at most one entry.

Theorem

If \mathcal{M} is (ε, δ) -high sensitivity DP in b and finds an α -feasible distribution with probability at least $\frac{e^{\varepsilon} + \delta}{e^{\varepsilon} + 1}$, then $\alpha \geq \frac{1}{2}$.

Efficient Approximation Algorithms

- Assume only b depends on RHS and that D, D' are neighboring if $||b(D) - b(D')||_{\infty} \leq \Delta_{\infty}$
- Find ε -private (α, γ) -dual oracle/apx. strongest violation, i.e.
 - \triangleright Input: A, b, x
 - Output: $i \in [m]$ s.th. $A_i x \ge \max_i A_i x b_i \alpha$ w.p. $\ge 1 \gamma$.

Results 00000000

- (Reduce optimization to feasibility)
- Write down a generic (Multiplicative-Weights) Algorithm that uses a dual oracle
- Show existence of dual oracle
- Use composition to prove DP for complete algorithm
- Use a known performance bound for approximate dual oracles to prove performance in PAC sense.

Generic Multiplicative Weights

Algorithm 3 The Multiplicative Weights Algorithm, MW_n

Results 00000000

Let \widetilde{A}^1 be the uniform distribution on \mathcal{A}

For t = 1, 2, ..., T:

Receive loss vector ℓ^t (may depend on A^1, \ldots, A^t)

For each $a \in \mathcal{A}$:

Update $A_a^{t+1} = e^{-\eta \ell_a^t} \widetilde{A}_a^t$ for every $a \in \mathcal{A}$

Normalize $\widetilde{A}^{t+1} = A^{t+1}/|A_{t+1}|$

Feasibility Algorithm using (α, γ) -dual oracle

- Input: A, b
- Output: x
- Initialization: $\rho = \|A\|_{\infty}$, η , T parameters depending on d, T, ρ , α

```
For t = 1, ..., T:

Find p^t = Oracle(A, b, \tilde{x}^t)

Compute losses \ell_i^t := (1/\rho)A_{p^ti}

Update \tilde{x}^{t+1} from \tilde{x}^t and \ell^t via multiplicative weights.

Output \overline{x} = (1/T)\sum_{t=1}^T \tilde{x}^t
```


Results 00000000

And what is the Oracle?

- Use exponential mechanism on set [m]
- \triangleright $Q(i, D) = A_i x b_i$

Exponential Mechanism

Let $Q:(r,D)\to\mathbb{R}$ give loss of solution r with data D. Assume $|Q(r,D)-Q(r,D')| \leq \Delta$. Then \mathcal{M} with

$$\mathbb{P}[\mathcal{M}(D) = r] \propto e^{\frac{\varepsilon Q(r,D)}{2\Delta}}$$

and approximates loss-minimization in PAC sense.

- \triangleright \triangle needs to be controlled from A, b
- Approximate optimality via PAC bound.

What is different for High Sensitivity?

▶ If the distribution we get from MWU is too sparse, there might be higher sensitivity for changes in a few entries

Results 00000000

- We hence should densify the input
- This is done via Bregman projections
- The Bregman projections are not too bad if the LP has bounded width
- ... but we have to sacrifice that all constraints might be satisfied.

Discussion

- ▶ When is DP (and not joint DP) the correct approach?
- ▶ When is low sensitivity a fair assumption?
- ▶ How do fairness and DP interact in the light of these results?

