

Lecture 11: Mixture Models, EM, K-Means, Variational Bayes, LVQ & Information-theoretic Co-clustering

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

Spring 2021 April 23, 2021

Lecture Outline

- Mixture Models
- Expectation Maximization (EM)
- K-Means Algorithm
- Variational Bayes EM
- Variational Logistic Regression
- Information-Theoretic Co-clustering
- Learning Vector Quantization
- Summary

Why Gaussian Mixtures?

☐ Why Gaussian Mixtures?

- Parametric → fast but limited
- Non Parametric \rightarrow general but slow (require lot of data)

RBF

Mixture Models
 Conditional Density Estimation (function approx.)
 Mixture of experts models

$$p(\underline{x}) = \sum_{j=1}^{M} p(\underline{x} \mid j) P_{j}$$

$$\sum_{j=1}^{M} P_{j} = 1 \quad ; \quad 0 \leq P_{j} \leq 1$$

$$\sum_{j=1}^{M} \int_{\underline{x}} p(\underline{x} \mid j) P_{j} d\underline{x} = 1$$
Similar technique for $p(.) = p(\underline{x} \mid k)$

$$k = 1, 2, ..., C$$

GMM Learning Problem

$$p(\underline{x} | j) = N(\underline{\mu}_{j}, \Sigma_{j})$$

$$= N(\underline{\mu}_{j}, \sigma_{j}^{2} I) \text{ typically}$$

$$= \frac{1}{(2\pi\sigma_{j}^{2})^{p/2}} e^{\left(\frac{-\|(\underline{x} - \underline{\mu}_{j})\|_{2}^{2}}{2\sigma_{j}^{2}}\right)}$$

Problem: Given data,

$$D = \left\{ \underline{x}^{1} \ \underline{x}^{2} \dots \underline{x}^{N} \right\}, \text{ find the ML estimates of } \left\{ P_{j}, \underline{\mu}_{j}, \sigma_{j} \right\}_{j=1}^{M}$$
Let $\underline{\theta} = \left\{ P_{j}, \underline{\mu}_{j}, \sigma_{j} \right\}$

$$L = \max_{\underline{\theta}} p(D|\underline{\theta}) \qquad \Rightarrow \max_{\underline{\theta}} l = \left[\ln p(D/\underline{\theta}) \right] \quad \Rightarrow \min_{\underline{\theta}} \left[-\ln p(D|\underline{\theta}) \right] = J$$

ML Estimation of GMM Parameters - 1

$$J = -\sum_{i=1}^{N} \ln p(\underline{x}^{i}, \underline{\theta}) = -\sum_{i=1}^{N} \ln \left(\sum_{j=1}^{M} p(\underline{x}^{i} \mid j) P_{j} \right) \qquad \text{min } J$$

$$s.t. \sum_{j=1}^{M} P_{j} = 1; \ 0 \le P_{j} \le 1$$

$$\frac{\partial J}{\partial \underline{\mu}_{j}} = -\sum_{i=1}^{N} \frac{1}{\sum_{k=1}^{M} p(\underline{x}^{i}/k) P_{k}} P_{j} \frac{\partial p(\underline{x}^{i}/j)}{\partial \underline{\mu}_{j}}$$

$$\frac{\partial p(\underline{x}^{i}/j)}{\partial \underline{\mu}_{i}} = -\frac{1}{(2\pi\sigma_{j}^{2})^{p/2}} e^{\left(\frac{-||(\underline{x}^{i}-\underline{\mu}_{j})||^{2}}{2\sigma_{j}^{2}}\right)} \underline{\underline{\mu}_{j} - \underline{x}^{i}}_{\sigma_{j}^{2}} = -p(\underline{x}^{i}/j) \underline{\underline{\mu}_{j} - \underline{x}^{i}}_{\sigma_{j}^{2}}$$

So,
$$\frac{\partial J}{\partial \underline{\mu}_{j}} = \sum_{i=1}^{N} P(j/\underline{x}^{i}) \frac{\underline{\mu}_{j} - \underline{x}^{i}}{\sigma_{j}^{2}}$$
(1) Note the Simplicity of Gradient

Lagrangian: $l = J + \lambda \sum_{j=1}^{M} P_j - \lambda$

ML Estimation of GMM Parameters - 2

$$\frac{\partial J}{\partial \underline{\sigma}_{j}} = -\sum_{i=1}^{N} \frac{1}{\sum_{k=1}^{M} p(\underline{x}^{i}/k) P_{k}} P_{j} \frac{\partial p(\underline{x}^{i}/j)}{\partial \sigma_{j}} \qquad \qquad \mathbf{Dimension of feature vector}$$

$$= \sum_{i=1}^{N} P(j/\underline{x}^{i}) \left\{ \frac{p}{\sigma_{j}} - \frac{//\underline{x}^{i} - \underline{\mu}_{j} ||^{2}}{\sigma_{j}^{3}} \right\} \qquad \qquad (2)$$

ML Estimation of GMM = Coupled Nonlinear Equations

From (1),
$$\frac{\hat{\mu}_{j} = \frac{\sum_{i=1}^{N} P(j \mid \underline{x}^{i})\underline{x}^{i}}{\sum_{i=1}^{N} P(j \mid \underline{x}^{i})}}{\sum_{i=1}^{N} P(j \mid \underline{x}^{i})}$$
 Necessary Conditions of Opti Set Gradients Equal to Zero

Necessary Conditions of Optimality:

$$\left| \underline{\hat{\sigma}_{j}}^{2} = \frac{1}{p} \frac{\sum_{i=1}^{N} P(j \mid \underline{x}^{i}) \parallel \underline{x}^{i} - \underline{\hat{\mu}}_{j} \parallel^{2}}{\sum_{i=1}^{N} P(j \mid \underline{x}^{i})} \right| \qquad \qquad \sum_{j=1}^{N} P(j \mid \underline{x}^{j}) (\underline{x}^{j} - \underline{\hat{\mu}}_{j})^{T} \sum_{j=1}^{N} P(j \mid \underline{x}^{j}) \left(\underline{x}^{j} - \underline{\hat{\mu}}_{j} \right)^{T}$$

General Case:

$$\Sigma_{j} = \frac{\sum_{i=1}^{N} P(j \mid \underline{x}^{i})(\underline{x}^{i} - \underline{\hat{\mu}}_{j})(\underline{x}^{i} - \underline{\hat{\mu}}_{j})^{T}}{\sum_{i=1}^{N} P(j \mid \underline{x}^{i})}$$

noting that, $\sum_{i=1}^{M} P(j \mid \underline{x}^{i}) = 1$ and $\sum_{j=1}^{M} P_{j} = 1$ we have $\lambda = N$ $\Rightarrow \hat{P}_{j} = \frac{1}{N} \sum_{i=1}^{N} P(j \mid \underline{x}^{i})$

$$\Rightarrow \hat{P}_j = \frac{1}{N} \sum_{i=1}^{N} P(j \mid \underline{x}^i)$$

These are coupled non-linear equations

Responsibility

Methods of Solution: NLP

☐ Nonlinear Programming (NLP) Techniques

$$\underline{\theta}_0 \to \underline{\theta}_1 \to \dots \underline{\theta}^*$$

$$\underline{\theta}_{k+1} \to \underline{\theta}_k - \eta H \nabla_{\theta} l$$

$$H = \begin{cases} I & \Rightarrow \text{SD or Gradient Method} \\ \left[\nabla^2 J\right]^{-1} & \Rightarrow \text{Newton's Method} \end{cases}$$

$$Extraction Best to compute Hessian using finite Difference method Differ$$

Various versions of Quasi-Newton Method

Various versions of Conjugate Gradient method

EM Algorithm

□ EM Algorithm

Gauss-Seidel view of EM

M-step
$$\hat{\mu}_{j}^{new} = \frac{\sum_{i=1}^{N} \hat{P}^{old}(j \mid \underline{x}^{i})\underline{x}^{i}}{\sum_{i=1}^{N} \hat{P}^{old}(j \mid \underline{x}^{i})}$$

How did we get these equations and Why?.... Later

- By setting gradient to zero (M-step)
- Evaluating posterior

Probabilities/Responsibilities (E-step)

$$\hat{\sigma}_{j}^{new^{2}} = \frac{1}{p} \frac{\sum_{i=1}^{N} \hat{P}^{old}(j | \underline{x}^{i}) \| \underline{x}^{i} - \underline{\hat{\mu}}_{j}^{new} \|^{2}}{\sum_{i=1}^{N} \hat{P}^{old}(j | \underline{x}^{i})}$$

$$\left| \hat{P}_{j}^{new} = \frac{1}{N} \sum_{i=1}^{N} \hat{P}^{old} (j \mid \underline{x}^{i}) \right|$$

$$\hat{P}^{new}(j \mid \underline{x}^{i}) = \frac{p(\underline{x}^{i} \mid j)\hat{P}_{j}^{new}}{\sum_{m=1}^{M} p(\underline{x}^{i} \mid m)\hat{P}_{m}^{new}}$$

Sequential Estimation -1

☐ Sequential Estimation ~ Stochastic Approximation

$$\underline{\hat{\mu}}_{j}^{n+1} = \frac{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i}) \underline{x}^{i}}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})}$$

$$= \frac{\sum_{i=1}^{n} P(j \mid \underline{x}^{i})}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \underline{\hat{\mu}}^{n} + \frac{P(j \mid \underline{x}^{n+1})}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \underline{x}^{n+1}$$

$$= \underline{\hat{\mu}}_{j}^{n} + \frac{P(j \mid \underline{x}^{n+1})}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \left[\underline{x}^{n+1} - \underline{\hat{\mu}}_{j}^{n}\right]$$

$$\eta_{j}^{n+1}$$

$$= \frac{\sum_{i=1}^{n} P(j | \underline{x}^{i})}{\sum_{i=1}^{n+1} P(j | \underline{x}^{i})} \underbrace{\frac{\hat{\mu}^{n}}{\sum_{j=1}^{n+1} P(j | \underline{x}^{n+1})}}_{i=1} \underbrace{\frac{1}{\eta_{j}^{n+1}}}_{j} = \frac{\sum_{i=1}^{n+1} P(j | \underline{x}^{i})}{P(j | \underline{x}^{n+1})} = 1 + \frac{\sum_{i=1}^{n} P(j | \underline{x}^{i})}{P(j | \underline{x}^{n+1})}$$

$$= \underbrace{\frac{\hat{\mu}^{n}}{j}}_{j} + \frac{P(j | \underline{x}^{n+1})}{\sum_{i=1}^{n+1} P(j | \underline{x}^{i})} \underbrace{\left[\underline{x}^{n+1} - \underline{\hat{\mu}}^{n}\right]}_{j}\right]}_{i=1}$$

$$= 1 + \frac{\sum_{i=1}^{n} P(j | \underline{x}^{i})}{P(j | \underline{x}^{n+1})} \cdot \underbrace{\frac{P(j | \underline{x}^{n})}{P(j | \underline{x}^{n})}}_{j}$$

$$= 1 + \frac{P(j | \underline{x}^{n})}{P(j | \underline{x}^{n+1})} \cdot \frac{1}{\eta_{j}^{n}}$$

Sequential Estimation ~ Stochastic Approximation -2

Sometimes replace, $\underline{\eta}_{j}^{n+1} = \frac{P(j | \underline{x}^{n+1})}{(n+1)\hat{P}_{j}^{n+1}}$ or, $\underline{\frac{1}{\underline{\eta}^{n+1}}} = \frac{P(j | \underline{x}^{n})}{P(j | \underline{x}^{n+1})} \frac{1}{\underline{\eta}^{n}} + 1$

Similarly,
$$\underline{\hat{\sigma}_{j}^{2^{n}}} = \frac{1}{p} \frac{\sum_{i=1}^{n} P(j \mid \underline{x}^{i}) \parallel \underline{x}^{i} - \underline{\hat{\mu}}_{j}^{n} \parallel^{2}}{\sum_{i=1}^{n} P(j \mid \underline{x}^{i})}$$
 $\underline{\underline{\eta}_{j}^{n+1}} = \frac{\underline{\eta}_{j}^{n} P(j \mid \underline{x}^{n+1})}{\underline{\underline{\eta}_{j}^{n} P(j \mid \underline{x}^{n+1}) + P(j \mid \underline{x}^{n})}}$

$$\underline{\underline{\eta}_{j}^{n+1}} = \underline{\underline{\underline{\eta}_{j}^{n}}P(j\mid\underline{x}^{n+1})} \\
\underline{\underline{\eta}_{j}^{n}P(j\mid\underline{x}^{n+1}) + P(j\mid\underline{x}^{n})}$$

$$\hat{\underline{\sigma}}_{j}^{2^{n+1}} = \frac{1}{p} \frac{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i}) \parallel \underline{x}^{i} - \hat{\underline{\mu}}_{j}^{n+1} \parallel^{2}}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} = \frac{1}{p} \frac{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i}) \parallel \underline{x}^{i} + \hat{\underline{\mu}}_{j}^{n} - \hat{\underline{\mu}}_{j}^{n} - \hat{\underline{\mu}}_{j}^{n+1} \parallel^{2}}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \\
= \frac{1}{p} \frac{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i}) \left\{ \parallel \underline{x}^{i} - \hat{\underline{\mu}}_{j}^{n} \parallel^{2} + 2 \left(\underline{x}^{i} - \hat{\underline{\mu}}_{j}^{n} \right)^{T} \left(\hat{\underline{\mu}}_{j}^{n} - \hat{\underline{\mu}}_{j}^{n+1} \right) + \parallel \hat{\underline{\mu}}_{j}^{n} - \hat{\underline{\mu}}_{j}^{n+1} \parallel^{2} \right\}}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \\
= \hat{\underline{\sigma}}_{j}^{2^{n}} \frac{\sum_{i=1}^{n} P(j \mid \underline{x}^{i})}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} + \frac{1}{p} \frac{P(j \mid \underline{x}^{n+1})}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \left(\parallel \underline{x}^{n+1} - \hat{\underline{\mu}}_{j}^{n} \parallel^{2} \right) - \frac{1}{p} \left(\parallel \hat{\underline{\mu}}_{j}^{n} - \hat{\underline{\mu}}_{j}^{n+1} \parallel^{2} \right)$$

Sequential Estimation ~ Stochastic Approximation -3

$$= \underline{\hat{\sigma}}_{j}^{2^{n}} + \frac{P(j \mid \underline{x}^{n+1})}{\sum_{i=1}^{n+1} P(j \mid \underline{x}^{i})} \left(\frac{\| \underline{x}^{n+1} - \underline{\hat{\mu}}_{j}^{n} \|^{2}}{p} - \underline{\hat{\sigma}}_{j}^{2^{n}} \right) - \frac{1}{p} \left(\| \underline{\hat{\mu}}_{j}^{n} - \underline{\hat{\mu}}_{j}^{n+1} \|^{2} \right)$$

$$\left| \underline{\hat{\sigma}_{j}^{2^{n+1}}} = \underline{\hat{\sigma}_{j}^{2^{n}}} + \eta_{j}^{n+1} \left[\frac{1}{p} \| \underline{x}^{n+1} - \underline{\hat{\mu}}_{j}^{n} \|^{2} - \underline{\hat{\sigma}}_{j}^{2^{n}} \right] - \frac{1}{p} \left(\| \underline{\hat{\mu}}_{j}^{n} - \underline{\hat{\mu}}_{j}^{n+1} \|^{2} \right) \right|$$

$$= \underline{\hat{\sigma}}_{j}^{2^{n}} + \eta_{j}^{n+1} \left[\frac{1}{p} \left(1 - \eta_{j}^{n+1} \right) \| \underline{x}^{n+1} - \underline{\hat{\mu}}_{j}^{n} \|^{2} - \underline{\hat{\sigma}}_{j}^{2^{n}} \right]$$

• Similarly,

Re call
$$\hat{\underline{\mu}}_{j}^{n+1} - \hat{\underline{\mu}}_{j}^{n} = \eta_{j}^{n+1} \left[\underline{x}^{n+1} - \hat{\underline{\mu}}_{j}^{n} \right]$$

$$\hat{P}_{j}^{n+1} = \hat{P}_{j}^{n} + \frac{1}{n+1} \left[P(j \mid \underline{x}^{n+1}) - \hat{P}_{j}^{n} \right]$$

Probabilistic Interpretation of EM

Key ideas of EM as applied to Gaussian Mixture Problem

$$J = -\sum_{i=1}^{N} \ln p(\underline{x}^{i}) = -\sum_{i=1}^{N} \ln \left(\sum_{j=1}^{M} p(\underline{x}^{i} \mid j) P_{j} \right) \frac{\text{Idea:}}{\underline{x} : data}$$

$$J^{new} - J^{old} = -\sum_{i=1}^{N} \ln \left[\frac{p^{new}(\underline{x}^{i})}{p^{old}(\underline{x}^{i})} \right]$$

$$= -\sum_{i=1}^{N} \ln \left[\frac{\sum_{j=1}^{M} P_{j}^{new} p^{new}(\underline{x}^{i}/j) \frac{P^{old}(j/\underline{x}^{i})}{P^{old}(j/\underline{x}^{i})}}{p^{old}(\underline{x}^{i})} + \underbrace{\sum_{j=1}^{N} P_{j}^{new} p^{new}(\underline{x}^{i}/j) \frac{P^{old}(j/\underline{x}^{i})}{P^{old}(j/\underline{x}^{i})}}_{p^{old}(\underline{x}^{i})} + \underbrace{\sum_{j=1}^{N} P_{j}^{new} p^{new}(\underline{x}^{i}/j) \frac{P^{old}(j/\underline{x}^{i})}{P^{old}(j/\underline{x}^{i})}}_{p^{old}(\underline{x}^{i})} + \underbrace{\sum_{j=1}^{N} P_{j}^{new} p^{new}(\underline{x}^{i}/j) \frac{P^{old}(j/\underline{x}^{i})}{P^{old}(j/\underline{x}^{i})}}_{p^{old}(\underline{x}^{i}/j)} + \underbrace{\sum_{j=1}^{N} P_{j}^{new} p^{new}(\underline{x}^{i}/j) \frac{P^{old}(j/\underline{x}^{i}/j)}_{p^{old}(\underline{x}^{i}/j)}}_{p^{old}(\underline{x}^{i}/j)} + \underbrace{\sum_{j=1}^{N} P_{j}^{new} p^{new}(\underline{x}^{i}/j) \frac{P^{old}(j/\underline{x}^{i}/j)}_{p^{old}(\underline{x}^{i}/j)}}_{p^{old}(\underline{x}^{i}/j)} + \underbrace{\sum_{j=1}^{N} P_{j}^{new} p^{new}(\underline{x}^{i}/j)}_{p^{old}(\underline{x}^{i}/j)}_{p^{old}(\underline{x}^{i}/j)}$$

z: hidden var iables (mixture)

 θ : parameters

 $q(z) = any \ arbitrary \ distribution$

$$-\ln p(\underline{x},\underline{z} \mid \underline{\theta}) = -\ln p(\underline{z} \mid \underline{x},\underline{\theta}) - \ln p(\underline{x} \mid \underline{\theta})$$

$$-\ln p(\underline{x} \mid \underline{\theta}) = -E_q[\ln \frac{p(\underline{x}, \underline{z} \mid \underline{\theta})}{q(\underline{z})}] + E_q[\ln \frac{p(\underline{z} \mid \underline{x}, \underline{\theta})}{q(\underline{z})}]$$

$$\Rightarrow J = -\ln L(q, \underline{\theta}) - KL(q(\underline{z}) \parallel p(\underline{z} \mid \underline{x}, \underline{\theta}))$$

$$J \le -\ln L(q,\theta) :: KL(q(\underline{z}) \parallel p(\underline{z} \mid x,\theta)) \ge 0$$

$$E$$
 – step: $q(z) = p(z \mid x, \theta^{old})$

$$\begin{aligned} M - step : \underline{\theta}^{new} &= \min_{\underline{\theta}} [-\ln L(q, \underline{\theta})] \\ &= \min_{\underline{\theta}} - E_q [\ln p(\underline{x}, \underline{z} \mid \underline{\theta})] \\ &= \min_{\underline{\theta}} \tilde{Q}(\underline{\theta}, \underline{\theta}^{old}) \end{aligned}$$

Note:
$$-\ln L(q,\underline{\theta}) = Q(\underline{\theta},\underline{\theta}^{old}) = \tilde{Q}(\underline{\theta},\underline{\theta}^{old}) - H_q(\underline{z},\underline{\theta}^{old})$$

EM Algorithm as a Minimization of a Bound on NLL

• For convex functions,

$$-\ln\left[\sum \lambda_i x_i\right] \le -\sum \lambda_i \ln x_i \quad \text{where } \sum \lambda_i = 1, \ \lambda_i \ge 0$$

$$\Rightarrow J^{new} - J^{old} \leq -\sum_{i=1}^{N} \sum_{j=1}^{M} P^{old}(j/\underline{x}^{i}) \ln \left[\frac{P_{j}^{new} p^{new}(\underline{x}^{i}/j)}{p^{old}(\underline{x}^{i}) P^{old}(j/\underline{x}^{i})} \right]$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{M} P^{old}(j/\underline{x}^{i}) \ln \left[\frac{p^{new}(\underline{x}^{i}, j)}{p^{old}(\underline{x}^{i}, j)} \right]$$

$$\Rightarrow J^{new} \leq -\sum_{i=1}^{N} \sum_{j=1}^{M} P^{old}(j/\underline{x}^{i}) \ln p^{new}(\underline{x}^{i}, j) = Q(\theta, \theta^{old}) = -\ln L(q, \theta)$$

$$q(\underline{z}, \theta^{old})$$

 \Rightarrow Minimizing l will lead to a decrease in $J(\theta)$

Note: at
$$\theta^{old}$$
, $J^{old}(\theta^{old}) = Q(\theta^{old}, \theta^{old}) \Rightarrow Force KL = 0$

$$J^{new}(\theta^{new}) \leq Q(\theta^{new}, \theta^{old}) \Rightarrow KL \geq 0$$

 $Q(\theta, \theta^{old})$ and $J(\theta)$ have the same gradient at θ^{old}

Lower Bound Optimization Problem (M-step)

Dropping terms that depend on old parameters, we get

$$Q = -\sum_{i=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid \underline{x}^{i}) \ln \left[P_{j}^{new} p^{new}(\underline{x}^{i} \mid j) \right] = -\sum_{i=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid \underline{x}^{i}) \ln \left[p^{new}(\underline{x}^{i}, j) \right]$$

For Gaussian conditional probability density functions

$$Q = -\sum_{i=1}^{N} \sum_{j=1}^{M} P^{old}(j | \underline{x}^{i}) \left\{ \ln P_{j}^{new} - p \ln \sigma_{j}^{new} - \frac{\|\underline{x}^{i} - \underline{\mu}_{j}^{new}\|^{2}}{2\sigma_{j}^{2new}} \right\}$$

- Optimization problem:
 - $-\min Q$

- s.t.
$$\sum_{i=1}^{M} P_{j}^{new} = 1;$$
 $P_{j}^{new} \ge 0;$ $j = 1, 2, \dots M$

Solution of the M-Step

$$\underline{\mu}_{j}^{new} = \frac{\sum_{i=1}^{N} P^{old}(j/\underline{x}^{i})\underline{x}^{i}}{\sum_{i=1}^{N} P^{old}(j/\underline{x}^{i})}$$

$$\sigma_{j}^{2new} = \frac{1}{p} \frac{\sum_{i=1}^{N} P^{old}(j \mid \underline{x}^{i}) \parallel \underline{x}^{i} - \underline{\mu}^{new} \parallel^{2}}{\sum_{i=1}^{N} P^{old}(j \mid \underline{x}^{i})} \begin{bmatrix} \text{General Case:} \\ \sum_{j=1}^{N} P^{old}(j \mid \underline{x}^{i}) (\underline{x}^{i} - \underline{\hat{\mu}}^{new}_{j}) (\underline{x}^{i} - \underline{\hat{\mu}}^{new}_{j})^{T} \\ \sum_{j=1}^{N} P^{old}(j \mid \underline{x}^{i}) \end{bmatrix}$$

General Case:

$$\Sigma_{j}^{new} = \frac{\sum_{i=1}^{N} P^{old}(j \mid \underline{x}^{i})(\underline{x}^{i} - \underline{\hat{\mu}}_{j}^{new})(\underline{x}^{i} - \underline{\hat{\mu}}_{j}^{new})^{T}}{\sum_{i=1}^{N} P^{old}(j \mid \underline{x}^{i})}$$

$$P_j^{new} = \frac{1}{N} \sum_{i=1}^{N} P^{old}(j \mid \underline{x}^i)$$

Graphical Illustration of E and M Steps

☐ E-step

Note: EM is a Maximum Likelihood Algorithm. Is there a Bayesian Version? Yes: If you assume priors on $(\{\mu_i, \sigma_i^2, P_j\})$ called *Variational Bayesian Inference*.

An Alternate View of EM for Gaussian Mixtures - 1

 \Box <u>z</u> is a M-dimensional binary random vector such that

$$z_{j} \in \{0,1\} \text{ and } \sum_{j=1}^{M} z_{j} = 1$$

$$P(z_j = 1) = P_j \Longrightarrow P(\underline{z}) = \prod_{j=1}^{M} P_j^{z_j}$$

 \square <u>x</u> is a p-dimensional random vector such that

$$p(\underline{x} \mid \underline{z}) = \prod_{j=1}^{M} [N(\underline{x}; \underline{\mu}_{j}, \Sigma_{j})]^{z_{j}}$$

$$\Rightarrow p(\underline{x}) = \sum_{\underline{z}} p(\underline{x}, \underline{z}) = \sum_{\underline{z}} P(\underline{z}) p(\underline{x} \mid \underline{z})$$

$$= \sum_{\underline{z}} \prod_{j=1}^{M} [P_{j} N(\underline{x}; \underline{\mu}_{j}, \Sigma_{j})]^{z_{j}} = \sum_{j=1}^{M} P_{j} N(\underline{x}; \underline{\mu}_{j}, \Sigma_{j})$$

pdf of <u>x</u> is a Gaussian Mixture

Hidden $\begin{array}{ccc}
& \text{Hidden} \\
\text{(Latent)} \\
& \text{Variables}
\end{array}$ Observation

only possible \underline{z} vectors: $\underline{z} \in \{\underline{e}_i : i = 1, 2, ..., M\}$ $\underline{e}_i = i^{th}$ unit vector

An Alternate View of EM for Gaussian Mixtures - 2

☐ If have several observations $\{\underline{x}^n: n=1,2,...,N\}$, each data point will have a corresponding latent vector \underline{z}_n .

Note the generality

Problem: Given incomplete (partial) data,

$$D = \left\{ \underline{x}^{1} \ \underline{x}^{2} \ \dots \underline{x}^{N} \right\}, \text{ find the ML estimates of } \left\{ P_{j}, \underline{\mu}_{j}, \Sigma_{j} \right\}_{j=1}^{M}$$

Let
$$\underline{\theta} = \left\{ P_j, \underline{\mu}_j, \Sigma_j \right\}_{j=1}^M$$

 $\min_{\theta} J$ where $J = -\ln p(D/\underline{\theta})$

Complete Data:

$$D_c = \left\{ (\underline{x}^1, \underline{z}^1), \ (\underline{x}^2, \underline{z}^2) \dots (\underline{x}^N, \underline{z}^N) \right\}$$

$$\Rightarrow -\ln p(D_c \mid \underline{\theta}) = \sum_{n=1}^{N} \sum_{j=1}^{M} z_j^n \{ -\ln P_j + \frac{p}{2} \ln 2\pi + \frac{1}{2} \ln |\Sigma_j| + \frac{1}{2} ||\underline{x}^n - \underline{\mu}_j||_{\Sigma_j^{-1}}^2 \}$$

An Alternate View of EM for Gaussian Mixtures - 3

- ☐ If had complete data, estimation is trivial. Similar to Gaussian case, except that we estimate with subsets of data that are assigned to each mixture component
- ☐ In EM, replace each latent variable by its expectation *with* respect to the posterior density during the **E-step**

$$z_j^n \to E(z_j^n \mid \underline{x}^n, \underline{\theta}) = P(z_j^n = 1 \mid \underline{x}^n, \underline{\theta}) = \gamma_j^n$$

$$P(z_{j}^{n} = 1 | \underline{x}^{n}, \underline{\theta}) = \frac{P_{j}N(\underline{x}^{n}; \underline{\mu}_{j}, \Sigma_{j})}{\sum_{k=1}^{M} P_{k}N(\underline{x}^{n}; \underline{\mu}_{k}, \Sigma_{k})} = \gamma_{j}^{n} \text{ Responsibilities}$$

☐ In EM, minimize the *expected value of the negative complete-data log likelihood* during the **M-step**

$$E_{\underline{Z}}\{-\ln p(D_c \mid \underline{\theta})\} = \sum_{n=1}^{N} \sum_{j=1}^{M} \gamma_j^n \{-\ln P_j + \frac{p}{2} \ln 2\pi + \frac{1}{2} \ln |\Sigma_j| + \frac{1}{2} ||\underline{x}^n - \underline{\mu}_j||_{\Sigma_j^{-1}}^2 \}$$

EM Algorithm for Gaussian Mixtures -4

1. Initialize the means $\{\underline{\mu}_i\}_{j=1}^M$, covariances $\{\Sigma_j\}_{j=1}^M$, and mixing coefficients $\{P_j\}_{j=1}^M$.

Evaluate
$$J = -\ln p(\underline{x} \mid \underline{\theta}) = -\sum_{n=1}^{N} \ln \{ \sum_{j=1}^{M} P_{j} N(\underline{x}^{n}; \underline{\mu}_{j}, \Sigma_{j}) \}$$

2. E-step: Evaluate the responsibilities using the current parameter values

$$\gamma_{j}^{n} = \frac{P_{j}N(\underline{x}^{n}; \underline{\mu}_{j}, \Sigma_{j})}{\sum_{k=1}^{M} P_{k}N(\underline{x}^{n}; \underline{\mu}_{k}, \Sigma_{k})}; j = 1, 2, ..., M; n = 1, 2, ..., N$$

$$N_{j} = \sum_{n=1}^{N} \gamma_{j}^{n}; j = 1, 2, ..., M$$

3. M-step: Re-estimate the parameters using the current responsibilities

$$\underline{\mu}_{j}^{new} = \frac{1}{N_{j}} \sum_{n=1}^{N} \gamma_{j}^{n} \underline{x}^{n}$$

$$\Sigma_{j}^{new} = \frac{1}{N_{j}} \sum_{n=1}^{N} \gamma_{j}^{n} (\underline{x}^{n} - \underline{\mu}_{j}^{new}) (\underline{x}^{n} - \underline{\mu}_{j}^{new})^{T}$$
For unbiased estimate of coverage
$$\underline{\Sigma}_{j}^{new} = \frac{1}{N_{j}} \sum_{n=1}^{N} \gamma_{j}^{n} (\underline{x}^{n} - \underline{\mu}_{j}^{new}) (\underline{x}^{n} - \underline{\mu}_{j}^{new})^{T}$$

$$P_{j}^{new} = \frac{N_{j}}{N_{j}}$$

For unbiased estimate of covariance,

Goes to $1/(N_i-1)$ for (0-1) case

4. Evaluate the negative log likelihood and check for convergence of parameters or the likelihood. If not converged, go to step 2.

Illustration of EM Algorithm for Gaussian Mixtures

Relation of Gaussian Mixtures to K - means

Suppose $\Sigma_{i} = \varepsilon I$ for j = 1, 2, ..., M

Then

$$\gamma_{j}^{n} = \frac{P_{j}N(\underline{x}^{n}; \underline{\mu}_{j}, \varepsilon I)}{\sum_{k=1}^{M} P_{k}N(\underline{x}^{n}; \underline{\mu}_{k}, \varepsilon I)}; j = 1, 2, ..., M; n = 1, 2, ..., N$$

$$\Rightarrow \qquad \gamma_j^n = \frac{P_j e^{-\|\underline{x}^n - \underline{\mu}_j\|^2 / 2\varepsilon}}{\sum_{k=1}^M P_k e^{-\|\underline{x}^n - \underline{\mu}_k\|^2 / 2\varepsilon}}$$

As $\varepsilon \to 0$

 $\gamma_j^n \to 1$ if $j = \arg\min_k ||\underline{x}^n - \underline{\mu}_k||$; the rest go to zero as long as none of the P_j is zero.

The expected value of negative log likelihood of complete-data is

$$E_{\underline{Z}}\{-\ln p(D_c \mid \underline{\theta})\} = \frac{1}{2\varepsilon} \sum_{n=1}^{N} \sum_{j=1}^{M} \gamma_j^n ||\underline{x}^n - \underline{\mu}_j||^2 + \text{constant}$$

So, K-means minimizes $\frac{1}{2} \sum_{n=1}^{N} \sum_{j=1}^{M} \gamma_j^n ||\underline{x}^n - \underline{\mu}_j||^2$

K-Means Algorithm

- K-means clustering to select K and the centers
 - a. Initialization
 - Choose initial center at random. Let n_1 be the data point.
 - For k = 2,...,K

For
$$n=1,2,..., N \& n \neq n_i$$
, $i=1,2,...,k-1$

$$D_n = \min_{1 \leq i \leq k-1} \left\| \underline{x}^n - \underline{\mu}_i \right\|_2^2$$

End

Select
$$\underline{\mu}_{k} = \underline{x}^{n_{k}}$$
 probabilistically $p(\underline{x}^{n_{k}}) = D(\underline{x}^{n_{k}})$
$$\sum_{\substack{n=1 \ n \neq n^{i}; i=1,2,..,k-1}}^{N} D(\underline{x}^{n})$$

b. For n=1, 2, ..., N

Assign *n* to cluster
$$C_j$$
 if $j = \arg\min_{1 \le k \le K} \left\| \underline{x}^n - \underline{\mu}_k \right\|_2$

End.

- c. Recompute means $\underline{\mu}_j = \frac{1}{N_j} \sum_{n \in C_j} \underline{x}^n$
- d. If centers have changed, go to b, else stop

Model Selection

BIC

$$BIC \triangleq -2 \ln p(D \mid K, \mu) + (Kp + 1) \ln N$$

Prediction Error

$$PE = \frac{2}{N} \sum_{j=1}^{K} \sum_{n \in C_{j}} \left\| \underline{x}^{n} - \underline{\mu}_{j} \right\|^{2} + \frac{2Kp}{N} \sigma^{2}$$

Excess Kurtosis-based Measure

$$K_{T} = \arg\min_{K} \left\{ \frac{1}{Kp} \sum_{j=1}^{K} \sum_{i=1}^{p} \left(\frac{1}{|C_{j}|} \sum_{n \in C_{j}} \left(\frac{x_{i}^{n} - \mu_{ji}}{\sigma_{ij}} \right)^{4} - 3 \right) \right\}$$

 Knee or kink in the squared reconstruction error on a test set

$$J(D, K) = \frac{1}{|D|} \sum_{i \in D} ||\underline{x}_i - \hat{\underline{x}}_i||_2^2$$

$$\hat{\underline{x}}_i = \underline{\mu}_k$$
, where $k = \arg\min_i ||\underline{x}_i - \underline{\mu}_i||_2^2$

Variational Bayesian Inference - 1

- \square <u>w</u> is a latent vector (continuous or discrete)
 - Mixture vector (discrete), <u>z</u>
 - Parameters ($\{\mu_i, \Sigma_i, P_i\}$)
- \square <u>x</u> is a p-dimensional random vector
- ☐ Recall

$$J = -\ln p(x) = -\ln L(q(w)) - KL(q(w) || p(w | x))$$

$$-\ln L(q(\underline{w})) = -\int q(\underline{w}) \ln \left\{ \frac{p(\underline{x}, \underline{w})}{q(\underline{w})} \right\} d\underline{w} = -E_{q(w)} \left(\ln p(\underline{x}, \underline{w}) \right) - H_q(\underline{w})$$

$$KL(q(\underline{w}) || p(\underline{w} | \underline{x})) = -\int q(\underline{w}) \ln \left\{ \frac{p(\underline{w} | \underline{x})}{q(\underline{w})} \right\} d\underline{w} = -E_{q(\underline{w})} \left(\ln p(\underline{w} | \underline{x}) \right) - H_q(\underline{w})$$

$$J = -\ln p(\underline{x}) \le -\ln L(q(\underline{w})) :: KL(q(\underline{w}) || p(\underline{w} | \underline{x})) \ge 0$$

 \square Variational inference typically assumes $q(\underline{w})$ to be factorized

$$q(\underline{w}) = \prod_{j=1}^{K} q_j(\underline{w}_j); \{\underline{w}_j\}$$
 are disjoint groups

Example: $q(\underline{w}) = q(\underline{z}) \ q(\{\underline{\mu}_i, \Sigma_j, P_j\})$

Hidden (Latent)
Variables

Observation

Variational Bayesian Inference - 2

☐ Minimize the upper bound $-\ln L(q(\underline{w}))$ with respect to $q_j(\underline{w}_j)$ while **keeping** $\{q_i(\underline{w}_i): i \neq j\}$ **constant** (a la Gauss-Seidel)

$$-\ln L(q(\underline{w})) = -\int q(\underline{w}) \ln \left\{ \frac{p(\underline{x}, \underline{w})}{q(\underline{w})} \right\} d\underline{w} = -\int \prod_{i=1}^{K} q_i(\underline{w}_i) \left\{ \ln p(\underline{x}, \underline{w}) \right\} d\underline{w} - \sum_{i=1}^{K} H_{q_i}(\underline{w}_i)$$

$$= -\int q_{j}(\underline{w}_{j}) \left\{ \ln p(\underline{x}, \underline{w}) \prod_{\substack{i=1\\i\neq j}}^{K} q_{i}(\underline{w}_{i}) d\underline{w}_{i} \right\} d\underline{w}_{j} - H_{q_{j}}(\underline{w}_{j}) - \sum_{\substack{i=1\\i\neq j}}^{K} H_{q_{i}}(\underline{w}_{i})$$

$$\frac{\partial [-\ln L(q(\underline{w}))]}{\partial q_i(\underline{w}_i)} = -E_{i\neq j}[\ln p(\underline{x},\underline{w})] + 1 + \ln [q_j(\underline{w}_j)] = 0$$

$$\ln \left[q_j(\underline{w}_j) \right] \propto E_{i \neq j} [\ln p(\underline{x}, \underline{w})]$$

$$\Rightarrow q_{j}(\underline{w}_{j}) = \frac{e^{E_{i\neq j}[\ln p(\underline{x},\underline{w})]}}{\int e^{E_{i\neq j}[\ln p(\underline{x},\underline{w})]} d\underline{w}_{j}}$$

Log of the optimal q_j is the expectation of the log of joint distribution with respect to all of the other factors $\{q_i(\underline{w}_i): i \neq j\}$. This idea is used in loopy belief propagation and expectation propagation also.

 \Box Iterative algorithm for finding the factors $\{q_i(\underline{w}_i)\}$

 \Box Here \underline{w} involves mixture variables and component parameters

$$q(\underline{w}) = q(\underline{z}) \ q(\{\underline{\mu}_{i}, \Sigma_{j}, P_{j}\}_{j=1}^{M})$$

 \underline{z} is a binary random vector of dimension M

☐ Model assumptions

Mixture Distribution:
$$p(\{\underline{z}^n\}_{n=1}^N | \{P_j\}_{j=1}^M) = \prod_{n=1}^N \prod_{j=1}^M P_j^{z_j^n}$$

Data Likelihood given latent variables:

$$p(\{\underline{x}^n\}_{n=1}^N | \{\underline{z}^n\}_{n=1}^N, \{\underline{\mu}_j, \Sigma_j\}_{j=1}^M) = \prod_{n=1}^N \prod_{j=1}^M [N(\underline{x}^n; \underline{\mu}_j, \Sigma_j)]^{z_j^n}$$

We also assume *priors* on $\{P_j, \underline{\mu}_i, \Sigma_j\}_{j=1}^M \Rightarrow$ Bayesian approach

$$p(\underline{P}) = Dirichlet(\underline{P} \mid \underline{\alpha}) = \frac{\Gamma(M\alpha_0)}{\left(\Gamma(\alpha_0)\right)^M} \prod_{j=1}^M P_j^{\alpha_0 - 1}; \text{ conjugate prior to multinomial}$$

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} dt; \Gamma(\alpha + 1) = \alpha \Gamma(\alpha); \Gamma(n) = (n - 1)! \text{ for integers}$$

☐ Variational Bayes M-step (VBM-step).... It is easier to see M-step first

$$\ln q(\{P_j, \underline{\mu}_j, \Sigma_j\}_{j=1}^M) = E_{q(\{\underline{z}^n\}_{n=1}^N)} \left(\ln p(\{\underline{x}^n\}_{n=1}^N, \{\underline{z}^n\}_{n=1}^N, \{P_j, \underline{\mu}_j, \Sigma_j\}_{j=1}^M) \right)$$

$$= E_{q(\{\underline{z}^n\}_{n=1}^N)} \left(\frac{\ln \prod_{n=1}^N \prod_{j=1}^M [P_j N(\underline{x}^n; \underline{\mu}_j, \Sigma_j)]^{z_j^n}}{\Gamma(M\alpha_0)} \left(\frac{\Gamma(M\alpha_0)}{\left(\Gamma(\alpha_0)\right)^M} \left(\prod_{j=1}^M P_j^{\alpha_0-1}.N(\underline{\mu}_j; \underline{m}_0, \frac{1}{\beta_0} \Sigma_j). \ \textit{Wishart}(\Sigma_j^{-1}; \nu_0, W_0) \right) \right) + const.$$

$$= \left\{ \sum_{J=1}^{M} \left[(\alpha_0 - 1) + \sum_{N=1}^{N} E\left[z_j^n\right] \right] \ln P_j \right\} + \sum_{j=1}^{M} \left\{ \ln N(\underline{\mu}_j; \underline{m}_0, \frac{1}{\beta_0} \Sigma_j) + \ln Wishart(\Sigma_j^{-1}; \nu_0, W_0) \right\}$$

$$+\sum_{n=1}^{N}\sum_{j=1}^{M}\underbrace{E\left[z_{j}^{n}\right]}\ln N(\underline{x}^{n};\underline{\mu}_{j},\Sigma_{j}) + cons \tan t \left[q(\{P_{j},\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M}) = q(\underline{P})q(\{\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M})\right]$$

$$q(\{P_{j}, \underline{\mu}_{j}, \Sigma_{j}\}_{j=1}^{M}) = q(\underline{P}) q(\{\underline{\mu}_{j}, \Sigma_{j}\}_{j=1}^{M})$$

$$q(\underline{P}) = Dirichlet(\underline{P}; \{\alpha_{0} + N_{j} = \alpha_{j}\}_{j=1}^{M})$$

$$q(\underline{\mu}_{j}, \Sigma_{j}) = Gaussian - Wishart$$

☐ Updated factorized distribution after M-step

$$q(\lbrace P_{j}, \underline{\mu}_{j}, \Sigma_{j} \rbrace_{j=1}^{M}) = q(\underline{P}) q(\lbrace \underline{\mu}_{j}, \Sigma_{j} \rbrace_{j=1}^{M})$$

$$q(\underline{P}) = Dirichlet(\underline{P}; \{\alpha_0 + N_j = \alpha_j\}_{j=1}^M) \Rightarrow E(P_j) = \frac{\alpha_j}{\sum_{k=1}^M \alpha_k} = \frac{\alpha_0 + N_j}{M\alpha_0 + N}$$

$$q(\underline{\mu}_{j}, \Sigma_{j}) = Gaussian - Wishart$$

$$=N(\underline{\mu}_{j};\underline{m}_{j},\frac{1}{\beta_{j}}\Sigma_{j}).Wishart(\Sigma_{j}^{-1};\nu_{j},W_{j})$$

$$\beta_{j} = \beta_{0} + N_{j}; N_{j} = \sum_{n=1}^{N} \gamma_{j}^{n}$$

$$\underline{m}_{j} = \frac{1}{\beta_{i}} \left(\beta_{0} \underline{m}_{0} + N_{j} \underline{x}_{j} \right); \overline{x}_{j} = \frac{1}{N_{i}} \sum_{n=1}^{N} \gamma_{j}^{n} \underline{x}^{n}$$

$$W_{j}^{-1} = W_{0}^{-1} + N_{j}S_{j} + \frac{\beta_{0}N_{j}}{\beta_{0} + N_{j}}(\overline{\underline{x}}_{j} - \underline{m}_{0})(\overline{\underline{x}}_{j} - \underline{m}_{0})^{T}$$

where
$$S_j = \frac{1}{N_i} \sum_{n=1}^{N} \gamma_j^n (\underline{x}^n - \overline{x}_j) (\underline{x}^n - \overline{x}_j)^T$$

$$\nu_j = \nu_0 + N_j$$

Updates for $\{N_j, \underline{x}_j, S_j\}$ are similar to ML

Sequential VBEM?

Variational Bayes E-step (VBE-step)
$$\ln q(\{\underline{z}^{n}\}_{n=1}^{N}) = E_{q(\{P_{j},\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M})} \left(\ln p(\{\underline{x}^{n}\}_{n=1}^{N},\{\underline{z}^{n}\}_{n=1}^{N},\{P_{j},\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M})\right)$$

$$= E_{q(\{P_{j},\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M})} \left(\ln \prod_{n=1}^{N} \prod_{j=1}^{M} [P_{j}N(\underline{x}^{n};\underline{\mu}_{j},\Sigma_{j})]^{z_{j}^{n}}\right) + cons \tan t$$

$$= E_{q(\{\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M})} \sum_{n=1}^{N} \sum_{j=1}^{M} z_{j}^{n} \left(\ln p(\{\underline{x}^{n}\}_{n=1}^{N} | \{\underline{z}^{n}\}_{n=1}^{N}, \{\underline{\mu}_{j},\Sigma_{j}\}_{j=1}^{M})\right) + \frac{1}{N(\underline{x}^{n};\underline{\mu}_{j},\Sigma_{j})}$$

$$E_{q\{\underline{P}\}}\left(\ln p(\{\underline{z}^n\}_{n=1}^N | \{P_j\}_{j=1}^M)\right) + cons \tan t$$

$$= \sum_{n=1}^{N} \sum_{j=1}^{M} z_j^n \ln \rho_j^n$$

where
$$\ln \rho_{j}^{n} = E_{P_{j}} \left[\ln P_{j} \right] + \frac{1}{2} E_{\Sigma_{j}^{-1}} \left[\ln |\Sigma_{j}^{-1}| \right] - \frac{p}{2} \ln (2\pi) - \frac{1}{2} E_{\underline{\mu}_{j}, \Sigma_{j}^{-1}} \left(||\underline{x}^{n} - \underline{\mu}_{j}||_{\Sigma_{j}^{-1}}^{2} \right) \right]$$

$$\Rightarrow q(\{\underline{z}^n\}_{n=1}^N) = \prod_{n=1}^N \prod_{j=1}^M [\gamma_j^n]^{z_j^n} \text{ where } \gamma_j^n = \frac{\rho_j^n}{\sum_{k=1}^M \rho_k^n} \dots \text{ responsibilities}$$

- ☐ Variational Bayes E-step (VBE-step) ... continued
 - Evaluation of responsibilities
 - Recall

$$\ln \rho_{j}^{n} = E_{P_{j}} \left[\ln P_{j} \right] + \frac{1}{2} E_{\Sigma_{j}^{-1}} \left[\ln |\Sigma_{j}^{-1}| \right] - \frac{p}{2} \ln (2\pi) - \frac{1}{2} E_{\underline{\mu}_{j}, \Sigma_{j}^{-1}} \left(||\underline{x}^{n} - \underline{\mu}_{j}||_{\Sigma_{j}^{-1}}^{2} \right) \right]$$

$$E_{P_j}\left[\ln P_j\right] = \psi(\alpha_j) - \psi(\sum_{k=1}^{M} \alpha_k); \psi(\alpha) = \frac{d}{d\alpha} \ln \Gamma(\alpha) \dots digamma \text{ function}$$

$$E_{\Sigma_{j}^{-1}}\left[\ln|\Sigma_{j}^{-1}|\right] = \sum_{i=1}^{p} \psi(\frac{v_{j}+1-i}{2}) + p\ln 2 + \ln|W_{j}|$$

See Bishop Chapter 10

$$E_{\underline{\mu}_{j},\Sigma_{j}^{-1}}\left(\left\|\underline{x}^{n}-\underline{\mu}_{j}\right\|_{\Sigma_{j}^{-1}}^{2}\right)=\frac{p}{\beta_{j}}+\nu_{j}(\underline{x}^{n}-\underline{m}_{j})^{T}W_{j}(\underline{x}^{n}-\underline{m}_{j})$$

Since $\gamma_j^n \propto \rho_j^n$

$$\gamma_j^n \propto |W_j| \exp\left(\psi(\alpha_j) + \frac{1}{2} \sum_{i=1}^p \psi(\frac{v_j + 1 - i}{2}) - \frac{p}{2\beta_j} - \frac{v_j}{2} (\underline{x}^n - \underline{m}_j)^T W_j (\underline{x}^n - \underline{m}_j)\right)$$

VB Approximation of Gaussian Gamma

- □ In VBEM start with large M and very small $\alpha_0 <<1$ (≈0.001)
- ☐ It automatically prunes clusters with very few members ("rich get richer")
- ☐ In this example, we start with 6 clusters, but only 2 remain at the end

mixGaussVbDemoFaithful from Murphy, Page 755

Variational Logistic Regression -1

Lower bound on sigmoid function

Consider
$$\ln g(x) = -\ln(1+e^{-x}) = -\ln[e^{-x/2}(e^{x/2}+e^{-x/2})] = \frac{x}{2} - \ln(e^{x/2}+e^{-x/2})$$

$$f(x) = -\ln(e^{x/2} + e^{-x/2})$$
 is convex in x^2 . Why?

Let
$$x = \sqrt{y} \Rightarrow f(y) = -\ln(e^{\sqrt{y}/2} + e^{-\sqrt{y}/2}); y \ge 0$$

$$\frac{df}{dy} = \frac{-1}{4\sqrt{y}} \tanh(\frac{\sqrt{y}}{2}) < 0; \frac{d^2f}{dy^2} = \frac{\frac{\sinh(\sqrt{y})}{y^{3/2}} - \frac{1}{y}}{8(\cosh(\sqrt{y}) + 1)} > 0 \,\forall y \ge 0$$

Recall for convex functions

$$f(y) \ge f(y_0) + \frac{df}{dy}|_{y=y_0} (y-y_0) \forall y_0 = x_0^2$$

So,
$$f(y) \ge -\ln(e^{\sqrt{y_0}/2} + e^{-\sqrt{y_0}/2}) - \frac{1}{4\sqrt{y_0}} \tanh(\frac{\sqrt{y_0}}{2})(y - y_0)$$

$$\Rightarrow f(x) \ge -\ln(e^{x_0/2} + e^{-x_0/2}) - \frac{1}{4x_0} \tanh(\frac{x_0}{2})(x^2 - x_0^2)$$

$$\ln g(x) \ge \frac{x - x_0}{2} + \frac{x_0}{2} - \ln(e^{x_0/2} + e^{-x_0/2}) - \lambda(x_0)(x^2 - x_0^2)$$

So,
$$g(x) \ge g(x_0) \exp\{\frac{x - x_0}{2} - \lambda(x_0)(x^2 - x_0^2)\}$$

Variational Logistic Regression - 2

• Binary (Two class) Case using local variational lower bound Posterior distribution of z for a given x

$$y = \underline{w}^T \underline{x} \ or \ y = \underline{w}^T \phi(\underline{x})$$

$$p(z \mid \underline{w}) = g(y)^{z} (1 - g(y))^{1-z} = \left(\frac{1}{1 + e^{-y}}\right)^{z} \left(\frac{e^{-y}}{1 + e^{-y}}\right)^{1-z}$$
$$= e^{yz} \left(\frac{e^{-y}}{1 + e^{-y}}\right) = e^{yz} \left(\frac{1}{1 + e^{y}}\right) = e^{yz} g(-y)$$

Re call $g(y) \ge g(y_0) \exp\{(y - y_0)/2 - \lambda(y_0)(y^2 - y_0^2)\}$

$$\lambda(y_0) = \frac{1}{4y_0} \tanh(\frac{y_0}{2}) = \frac{1}{4y_0} \left(\frac{1 - e^{-y_0}}{1 + e^{-y_0}} \right) = \frac{1}{2y_0} \left[\frac{1}{2} - g(-y_0) \right] = \frac{1}{2y_0} \left[g(y_0) - \frac{1}{2} \right]$$

$$g(-y) \ge g(y_0) \exp\{-(y+y_0)/2 - \lambda(y_0)(y^2-y_0^2)\} \forall y_0$$

$$p(z \mid \underline{w}) = e^{yz} g(-y) \ge e^{yz} g(y_0) \exp\{-(y + y_0)/2 - \lambda(y_0)(y^2 - y_0^2)\}$$

$$-\ln p(z \mid \underline{w}) \le -z\underline{w}^{T}\underline{x} - \ln g(y_0) + (\underline{w}^{T}\underline{x} + y_0)/2 + \lambda(y_0)[(\underline{w}^{T}\underline{x})^2 - y_0^2]$$

Given Data, $D = \{\underline{x}^n, z^n\}_{n=1}^N$ and prior $p(\underline{w}) = N(\underline{w}; \underline{w}_0, \Sigma_0)$

$$-\ln p(\underline{w}|D) \le -\ln p(\underline{w}) - \sum_{n=1}^{N} \left\{ \ln(g(y_{0n})) + z^n \underline{w}^T \underline{x}^n - (\underline{w}^T \underline{x}^n + y_{0n})/2 - \lambda(y_{0n}) [(\underline{w}^T \underline{x}^n)^2 - y_{0n}^2] \right\}$$

Quadratic function

in $\underline{w} \Rightarrow$ Gaussian

posterior

Variational EM for Logistic Regression

Variational EM for minimizing the upper bound on NLL

 $Variational\ E-step$:

$$q(\underline{w}) = p(\underline{w} | \{y_{0n}\}^{old}) = N(\underline{w}; \underline{w}_N, \Sigma_N)$$

$$(\Sigma_N)^{-1} = (\Sigma_0)^{-1} + 2\sum_{n=1}^N \lambda(y_{0n}^{old}) \underline{x}^n \underline{x}^{n^T} = (\Sigma_0)^{-1} + \sum_{n=1}^N \frac{1}{y_{0n}} [g(y_{0n}) - \frac{1}{2}] \underline{x}^n \underline{x}^{n^T}$$

$$\underline{w}_{N} = \sum_{N} \left(\left(\sum_{0}^{N} \right)^{-1} \underline{w}_{0} + \sum_{n=1}^{N} \left(z^{n} - 1/2 \right) \underline{x}^{n} \right)$$

Variational M – step: decouples for each y_{0n}

$$Q_{i}(y_{on}, y_{on}^{old}) = E\{\ln(g(y_{0n})) - y_{0n}/2 - \lambda(y_{0n})[(\underline{w}^{T}\underline{x}^{n})^{2} - y_{0n}^{2}]\}$$

$$\frac{dQ_{i}(y_{on}, y_{on}^{old})}{dy_{on}} = 0 \Rightarrow \frac{1}{g(y_{0n})} g(y_{0n}) [1 - g(y_{0n})] - \frac{1}{2} + 2y_{0n}\lambda(y_{0n}) - \frac{d\lambda(y_{0n})}{dy_{on}} [E(\underline{w}^{T}\underline{x}^{n})^{2} - y_{0n}^{2}]$$

$$= [\frac{1}{2} - g(y_{0n})] + [g(y_{0n}) - \frac{1}{2}] - \frac{d\lambda(y_{0n})}{dy_{on}} [E(\underline{w}^{T}\underline{x}^{n})^{2} - y_{0n}^{2}] = 0$$

$$\Rightarrow E(\underline{w}^T \underline{x}^n)^2 - y_{0n}^2 = 0 \Rightarrow (y_{0n}^{new})^2 = (\underline{x}^n)^T (\Sigma_N + \underline{w}_N \underline{w}_N^T) \underline{x}^n$$

This is still too much work! Are there simpler algorithms? Perceptrons and MLPs

Information Theoretic Co-clustering

- Most clustering algorithms seek to cluster one dimension of the matrix (e.g., documents or columns) based on similarities along the second dimension (e.g., word distribution of documents or rows).
- For sparse, noisy, and high-dimensional data, *simultaneous clustering* ("co-clustering", "bi-clustering") of both rows and columns is beneficial.
 - Example: given a term-document matrix, co-clustering in two dimensions simultaneously clusters terms and documents
 - Other Examples: Marketing, Dimensionality Reduction, Currency Exchange,.....
 - More robust to sparsity than traditional single dimensional (e.g., terms or documents) clustering.
 - Co-clustering can be used as a pre-processor for supervised classification or as a classifier in its own right

Key Idea of Co-clustering

Co-clustering Problem: Find maps

$$R(X):\{x_{1},x_{2},...,x_{m}\} \to \{\hat{x}_{1},\hat{x}_{2},...,\hat{x}_{k}\} \qquad C(Y):\{y_{1},y_{2},...,y_{n}\} \to \{\hat{y}_{1},\hat{y}_{2},...,\hat{y}_{l}\}$$
to minimize $\min_{\hat{X},Y} [I(X;Y) - I(\hat{X};\hat{Y})] \Rightarrow \max_{\hat{X},\hat{Y}} I(\hat{X};\hat{Y})$

• $\hat{X} = R(X)$ and $\hat{Y} = C(Y) \implies H(\hat{X} \mid X) = H(\hat{Y} \mid Y) = 0.$

$$\begin{split} I(X;Y) - I(\hat{X};\hat{Y}) &= [H(X) - H(\hat{X})] + [H(Y) - H(\hat{Y})] + [H(\hat{X},\hat{Y}) - H(X,Y)] \\ &= H(X \mid \hat{X}) + H(Y \mid \hat{Y}) + H(\hat{X},\hat{Y}) - H(X,Y) \\ &= E_{p(x,y)} [\log_2 \frac{p(x,y)}{p(x \mid \hat{x})p(\hat{x},\hat{y})p(y \mid \hat{y})}] = D(p(x,y) \parallel q(x,y)) \end{split}$$

$$q(x, y) = p(x | \hat{x}) p(\hat{x}, \hat{y}) p(y | \hat{y})$$
 where $x \in \hat{x}$, $y \in \hat{y}$.

Decomposition of pmf p(x,y) into a product of three matrices

Illustration of Co-clustering

$$\begin{bmatrix} .05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04 \end{bmatrix}$$

$$\begin{bmatrix} .5 & 0 & 0 \\ .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} .3 & 0 \\ 0 & .3 \\ .2 & .2 \end{bmatrix} \begin{bmatrix} .36 & .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & 0 & .28 & .36 & .36 \end{bmatrix} = \begin{bmatrix} .054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .036 & .028 & .028 & .036 & .036 \end{bmatrix}$$

$$p(x \mid \hat{x}) = \frac{p(x, \hat{x})}{p(\hat{x})} = \frac{p(x)}{p(\hat{x})}$$

$$q(x, y)$$

$$Note: q(x, y) = p(x \mid \hat{x}) p(\hat{x}, \hat{y}) p(y \mid \hat{y}) = p(x) \underbrace{p(\hat{y} \mid \hat{x}) p(y \mid \hat{y})}_{q(y \mid \hat{x})} = q(x) q(y \mid \hat{x}) = p(y) \underbrace{p(x \mid \hat{x}) p(\hat{x} \mid \hat{y})}_{q(x \mid \hat{y})} = q(y) q(x \mid \hat{y})$$

• #parameters that determine q are: (m-k)+(kl-1)+(n-l)

Co-clustering Algorithm

• Step 1: Set iteration i=1. Start with initial cluster maps (R_i, C_i) . Compute the pmfs $q^{(i,i)}(\hat{x}, \hat{y}), q^{(i,i)}(x | \hat{x}), q^{(i,i)}(y | \hat{y}), q^{(i,i)}(y | \hat{x})$

$$q^{(i,i)}(y \mid \hat{x}) = \sum_{\hat{y}} q^{(i,i)}(y \mid \hat{y}) q^{(i,i)}(\hat{y} \mid \hat{x}) = \sum_{\hat{y}} q^{(i,i)}(y \mid \hat{y}) \frac{q^{(i,i)}(\hat{x}, \hat{y})}{p(\hat{x})}$$

- Step 2: For every row x, assign it to the cluster that minimizes the K-L divergence $D(p(y|x)||q^{(i,i)}(y|\hat{x}))$. The result is (R_{i+1}, C_i)
- Step 3: Compute the pmfs $q^{(i+1,i)}(\hat{x},\hat{y}), q^{(i+1,i)}(x|\hat{x}), q^{(i+1,i)}(y|\hat{y}), q^{(i+1,i)}(x|\hat{y})$

$$q^{(i+1,i)}(x \mid \hat{y}) = \sum_{\hat{x}} q^{(i+1,i)}(x \mid \hat{x}) q^{(i+1,i)}(\hat{x} \mid \hat{y}) = \sum_{\hat{x}} q^{(i+1,i)}(x \mid \hat{x}) \frac{q^{(i+1,i)}(\hat{x}, \hat{y})}{p(\hat{y})}$$

- Step 4: For every column y, assign it to the cluster that minimizes the K-L divergence $D(p(x|y)||q^{(i+,i)}(x|\hat{y}))$. The result is (R_{i+1}, C_{i+1})
- **Step 5:** Compute the pmfs $q^{(i+1,i+1)}(\hat{x},\hat{y}),q^{(i+1,i+1)}(x|\hat{x}),q^{(i+1,i+1)}(y|\hat{y}),q^{(i+1,i+1)}(y|\hat{x})$ Set i=i+1. Iterate Steps 2-5 until the K-L divergence converges.

1-D versus 2-D Clustering

Confusion Matrix

Co-Clustering (0.9835)			1-D Clustering (0.821)		
992	4	8	847	142	44
40	1452	7	41	954	405
1	4	1387	275	86	1099

I. Dhillon, 2003: CLASSIC 3 dataset

ftp://ftp.cs.cornell.edu/pub/smart

Learning Vector Quantization

Learning Vector Quantization (Supervised Clustering)

- Each output unit represents a class.
- Several outputs may represent the same class.
- The weight vector for an output unit is called a *Code book vector*.
- Initial *Code book vector* from *K*-means or any other clustering algorithm.

LVQ Algorithm -1

 LVQ algorithm can download LVQ-PAK from Helsinki Univ. of Technology

Step1: Initialize codebook vectors
Initialize learning rate, $\eta(0) \approx 0.03 \ (< 0.1)$ t = 0

Step2: While stopping condition is false, do steps 3-7

Step3: For each training input vector \underline{x}^n , do steps 4-5

Step4: Find J so that $\|\underline{x}^n - \underline{w}_J\|$ is a minimum

LVQ Algorithm -2

Step 5: Update \underline{W}_J as follows:

If
$$z^n = C_J$$
, then $\left(z^n \text{ is the correct class of } \underline{x}^n\right)$

$$\underline{w}_{J}^{(new)} = \underline{w}_{J}^{(old)} + \eta(t) \left[\underline{x}^{n} - \underline{w}_{J}^{(old)} \right]$$

If $z^n \neq C_I$, then

$$\underline{w}_{J}^{(new)} = \underline{w}_{J}^{(old)} - \eta(t) \left[\underline{x}^{n} - \underline{w}_{J}^{(old)} \right]$$

Step6:
$$\eta(t+1) = \varepsilon \cdot \eta(t)$$
; $t = t+1$

$$\varepsilon^{30 \cdot \# of Codebooks} \approx e^{-38}$$

$$\Rightarrow \mathcal{E} = e^{-38/(30 \cdot \# \text{ of Codebooks })}$$

$$t = (30-200) \times \text{number of codebook vectors.}$$

or,
$$\eta < 10^{-38}$$

Works well in practice.

Summary

- Mixture Models
- Expectation Maximization (EM)
- K-Means Algorithm
- Variational Bayes EM
- Variational Logistic Regression
- Learning Vector Quantization
- Information-Theoretic Co-clustering