Semantic Analysis

The role of semantic analysis is to assign meaning

- "It smells fishy."
- Lexical analysis
 - > Tokenizes "It", "smells", "fishy", "."
 - Determines noun, verb, adjective, punctuation token types
- Syntax analysis
 - > Parses the grammatical structure of the sentence
- Semantic analysis

The role of semantic analysis is to assign meaning

- "It smells fishy."
- Lexical analysis
 - > Tokenizes "It", "smells", "fishy", "."
 - Determines noun, verb, adjective, punctuation token types
- Syntax analysis
 - > Parses the grammatical structure of the sentence
- Semantic analysis
 - > Assigns meaning to the words "It", "smells", "fishy"
 - > Flags error if the sentence does not make sense

Semantic Analysis = Binding + Type Checking

- "I don't wanna eat that sushi."
 - "It smells fishy."
 - > "It": the sushi
 - > "smells": feels to my nose
 - > "fishy": that the sushi has gone bad
- "The professor says that the exam is going to be easy."
 - "It smells fishy."
 - > "It": the situation
 - > "smells": feels to my sixth sense
 - > "fishy": that it is highly suspicious

Semantic Analysis = Binding + Type Checking

- "I don't wanna eat that sushi."
 - "It smells fishy."
 - > "It": the sushi
 - > "smells": feels to my nose
 - "fishy": that the sushi has gone bad
- "The professor says that the exam is going to be easy."
 - "It smells fishy."
 - "It": the situation
 - "smells": feels to my sixth sense
 - > "fishy": that it is highly suspicious
- Semantic analysis consists of two tasks
 - > Binding: associating a pronoun to an object
 - > Type checking: inferring meaning based on type of object

Semantic analysis cannot be done during parsing

- Context Free Grammars (CFGs) cannot recognize bindings
 - > Every use of a name needs to be bound to the declaration.
 - Name can refer to a variable, function, class, ...
 - Names are called symbols in semantic analysis
- To do bindings, a CFG must recognize this language:

$$\{\alpha \mathbf{c}\alpha | \alpha \in (\mathbf{a}|\mathbf{b})^*\}$$

The 1st α represents the declaration, The 2nd α represents a use.

Above language is a Context Sensitive Language

Why is $\{\alpha c\alpha | \alpha \in (a|b)^*\}$ not a CFG?

- We will base our proof on the pumping lemma for CFGs.
- Pumping lemma: a theorem about strings in a grammar
 - "lemma": a mathematical term for a theorem
 - "pumping": for a sufficiently long enough string, a substring exists within that string that can be "pumped" (repeated 0 or more times and still be in the language).
- For example, for the Regular Language 0(0|1)*0:
 - > A string longer than 2 will look like 000, 010, 0100, ...
 - ➤ Let's take "010". Here, substring "1" can be pumped.
 - > ("00", "010", "0110", "01110" are all in the language)
- Pumping Lemma applies to CFGs as well.

Pumping Lemma for CFGs

For a sufficiently long string s derived from a CFG, s can be written as s = uvwxy (u,v,w,x,y are substrings)

Where v and x can be pumped and |vx| > 1.

$\{\alpha \boldsymbol{c}\alpha | \alpha \in (\boldsymbol{a}|\boldsymbol{b})^*\}$ is not a CFG

- Let's say s = uvwxy is a sufficiently long string in language $\{\alpha c\alpha | \alpha \in (a|b)^*\},$
 - where v, x can be pumped and $|vx| \ge 1$.
 - 1. The substring vwx must bisect $\alpha c\alpha$.
 - If vwx is contained in 1st α (or mostly contained), if we pump v and x 0 times, 1st α gets shorter than 2nd α .
 - ightharpoonup string is no longer in $\{\alpha c\alpha | \alpha \in (a|b)^*\}$. Contradiction.
 - ightharpoonup The same applies to when vwx is contained in 2nd α .
- 2. Even when vwx bisects $\alpha c\alpha$, pumping fails.
 - Let string s' be the result of pumping v and x 0 times.
 - Let's say s' = $\alpha_1 c \alpha_2$, where α_1 and α_2 are shortened versions of the 1st and 2nd α s.
 - ightharpoonup While $|\alpha_1|=|\alpha_2|$, there exist α_1 and α_2 such that $\alpha_1!=\alpha_2$.
 - ightharpoonup E.g. s = abcab, and vwx = bca where v = b and x = a. Then, α_1 becomes "a" and α_2 becomes "b". Contradiction.

Semantic analysis does binding and type checking

- Semantic analysis performs binding
 - > Since CFGs cannot recognize bindings, as we just proved
 - Done by traversing parse tree produced by syntax analysis
 - Definitions are stored in data structure called symbol table
 - Uses are bound to entries in the symbol table
- Semantic analysis performs type checking
 - ightharpoonup Infer what "a + b" means:
 - If a and b are ints, integer add and return int
 - If a and b are floats, FP add and return float
 - If a and b are strings, concatenate and return string
 - ➤ Infer what "a.foo()" means:
 - If object a is an instance of class A, call A.foo()
 - If object a is an instance of class B, call B.foo()
 - \rightarrow Infer what "a[i][j]" means:
 - Offset from a calculated based on type and dimensions

Semantic analysis also performs semantic checks

All symbol uses have a corresponding declaration;

All operations are type legal;

Inheritance relationships are correct;

A class is defined only once;

A method in a class is defined only once;

Symbol Binding

What is symbol binding?

"Matching symbol declarations with uses"

If there are multiple declarations, which one is matched?

What is symbol binding?

"Matching symbol declarations with uses"

☐ If there are multiple declarations, which one is matched?

```
void foo()
{
    char x;
    ...
    {
        int x;
        ...
    }
    x = x + 1;
}
```

What is symbol binding?

"Matching symbol declarations with uses"

If there are multiple declarations, which one is matched?

```
void foo()
{
    char x;
    ...
    {
        int x;
}
    x = x + 1;
}
```

Scope

L	Binding: the association of a use of a symbol to the
	declaration of that symbol

- Which variable (or function) an identifier is referring to
- Scope: section of program where a declaration is valid
 - Uses in the scope of declaration are bound to it
- Some implications of scopes
 - A symbol may have different bindings in different scopes
 - Scopes for the same symbol never overlap
 - there is always exactly one binding per symbol use
- Two types: static scope and dynamic scope

Static Scope

Static scope depends on the program text, not run-time behavior (also known as lexical scoping)

```
C/C++, Java, Objective-C
```

Rule: Refer to the closest enclosing declaration

```
void foo()
   char x;
      int x;
      ...
   x = x + 1;
```

Static Scope

Static scope depends on the program text, not run-time behavior (also known as lexical scoping)

C/C++, Java, Objective-C

Rule: Refer to the closest enclosing declaration

```
void foo()
{
    char x;
...
    int x;
...
}
x = x + 1;
```

Dynamic Scope

- Dynamic scoping depends on bindings formed during the execution of the program
 - LISP, Scheme, Perl
- Rule: Refer to the closest binding in the current execution

```
void foo()
{
    (1) char x;
    (2) if (...) {
     (3) int x;
    (4) ...
    }
    (5) x = x + 1;
}
```

Dynamic Scope

- Dynamic scoping depends on bindings formed during the execution of the program
 - > LISP, Scheme, Perl
- Rule: Refer to the closest binding in the current execution

```
void foo()
{
    (1) char x;
    (2) if (...) {
     (3) int x;
    (4) ...
    }
    (5) x = x + 1;
}
```

- \square Which x's declaration is the closest?
 - > Execution (a): ...(1)...(2)...(5)
 - > Execution (b): ...(1)...(2)...(3)...(4)...(5)

Static vs. Dynamic Scoping

- Most languages that started with dynamic scoping (LISP, Scheme, Perl) added static scoping afterwards
- ☐ Why?
 - It is easier for human beings to understand
 - Bindings are visible in code without tracing execution
 - It is easier for compilers to understand
 - Compiler can determine bindings at compile time
 - Compiler can translate identifier to a single memory location
 - Results in generation of efficient code
 - With dynamic scoping...
 - There may be multiple possible bindings for a variable
 - Impossible to determine bindings at compile time
 - All bindings have to be done at execution time (Typically with the help of a hash table)

Symbol Table

Symbol Table

- Symbol Table: A compiler data structure that tracks information about all identifiers (symbols) in a program
 - Maps symbol uses to declarations given a scope
 - > Needs to provide bindings according to the current scope
- Usually discarded after generating the binary code
 - All symbols are mapped to memory locations already
 - > For debugging, symbols may be included in binary
 - To map memory locations back to symbols for debuggers
 - For GCC or Clang, add "-g" flag to include symbol tables

Maintaining Symbol Table

```
Basic idea:
```

```
int x; ... void foo() { int x; ... x=x+1; } ... x=x+1 ...
```

- ➤ In foo, add x to table, overriding any previous declarations
- After foo, remove x and restore old declaration if any

```
Operations
```

```
enter_scope() start a new nested scope
```

exit_scope() exit current scope

```
find_symbol(x) find declaration of x
```

add_symbol(x) add declaration of x to symbol table

Adding Scope Information to the Symbol Table

- ☐ To handle multiple scopes in a program,
 - > (Conceptually) need an individual table for each scope
 - Symbols added to the table may not be deleted just because you exited a scope

```
class X { ... void f1() {...} ... } class Y { ... void f2() {...} ... } X v; call v.f1();
```

Without deleting symbols, how are scoping rules enforced?
 Keep a list of all scopes in the entire program
 Keep a stack of active scopes at a given point

Symbol Table with Multiple Scopes

- For nested scopes,
 - Search from top of the active symbol table stack
 - Remove pointer to symbol table when exiting its scope

Symbol Table with Multiple Scopes

- For nested scopes,
 - Search from top of the active symbol table stack
 - > Remove pointer to symbol table when exiting its scope

Symbol Table with Multiple Scopes

- For nested scopes,
 - Search from top of the active symbol table stack
 - Remove pointer to symbol table when exiting its scope

What Information is Stored in the Symbol Table

Li Entry in Symbol Table:

string kind a	attributes

- String the name of identifier
- ➤ Kind variable, parameter, function, class, ...
- Attributes vary with the kind of symbol
 - ➤ variable → type, address in memory
 - → function → return type, parameter types, address
- Vary with the language
 - ➤ Fortran's array → type, dimension, dimension size real A(5) /* dimension required for static allocation */
 - C's array → type, dimension, optional dimension size char A[5]; /* statically sized array */ char A[]="hello"; /* dynamically sized to fit content */

Symbol Table Attribute List

struct

Type information might be arbitrarily complicated ➤ In C: struct { int a[10]; char b; float c; Store all relevant attributes in an attribute list 1st upper bound 2nd upper bound array id field₁ type field₂ | type id size size

Example application of Type to an operator: Array index operator

Addressing Array Elements

```
int A[0..high];
A[i] ++;
```


- > width width of element type
- ➤ base address of the first
- > high upper bound of subscript
- Addressing an array element:

Multi-dimensional Arrays

Layout n-dimension items in 1-dimension memory int A[N₁][N₂]; /* int A[0..high₁][0..high₂]; */ $A[i_1][i_2] ++;$ N_2 A[0,0] N_1 A[high₁,high₂]

Row Major

Row major — store row by row

Offset inclues all the "blue" items before A[i1,i2]

$$\begin{split} & \text{offset}(A[i_1,i_2]) = (i_1 \ ^*\ N_2 + i_2\)\ ^*\ width \\ & = i_1 \ ^*\ N_2\ ^*\ width + i_2\ ^*\ width \\ & = \text{offset}(A[i_1])\ ^*\ N_2 + i_2\ ^*\ width \end{split}$$

Column Major

Column major — store column by column

 \Box Offset inclues all the "blue" items before A[i₁,i₂]

offset(A[i₁,i₂]) =
$$(i_2 * N_1 + i_1)*$$
width
= $i_2 * N_1 *$ width + $i_1 *$ width
= $i_2 * N_1 *$ width + offset(A[i₁])

Generalized Row/Column Major

Let $A_k = \text{offset}(A[i_1, i_2, ..., i_k])$. Then,

Row major

1-dimension: $A_1 = i_1^*$ width

2-dimension: $A_2 = (i_1 * N_2 + i_2) * width = A_1 * N_2 + i_2 * width$

3-dimension: $A_3 = (i_1 * N_2 * N_3 + i_2 * N_3 + i_3) * width = A_2 * N_3 + i_3 * width$

k-dimension: $A_k = A_{k-1} N_k + i_k \text{width}$

Type needs to provide $N_2...N_k$ and width for offset

Column major

1-dimension: $A_1 = i_1^*$ width

2-dimension: $A_2 = (i_2 * N_1 + i_1) * width = i_2 * N_1 * width + A_1$

3-dimension: $A_3 = ((i_3 * N_2 + i_2) * N_1 + i_1) * width = i_3 * N_2 * N_1 * width + A_2$

k-dimension: $A_k = i_k^* N_{k-1}^* N_{k-2}^* ... N_1^* width + A_{k-1}$

Type needs to provide $N_1...N_{k-1}$ and width for offset

C's implementation

```
C uses row major
   int fun1(int p[ ][100])
   {
      ...
      int a[100][100];
      a[i<sub>1</sub>][i<sub>2</sub>] = p[i<sub>1</sub>][i<sub>2</sub>] + 1;
}
```

Why is p[][100] allowed?

Why is a[][100] not allowed?

C's implementation

C uses row major
 int fun1(int p[][100])
{
 ...
 int a[100][100];
 a[i₁][i₂] = p[i₁][i₂] + 1;
}

Why is p[][100] allowed?

- ➤ The info is enough to compute p[i₁][i₂]'s address
- \rightarrow A₂ = (i₁*N₂+i₂)*width (N₁ is not required)

Why is a[][100] not allowed?

The info is not enough to allocate space for the array

Type Checking

What, Why and When

- What is a type?

 Type = a set of values + a set of operations on these values
- What is type checking?
 Verifying and enforcing type consistency
 - Only legal values are assigned to a type
 - Only legal operations are performed on a type
- Why is compile-time type checking desirable?
 - Runtime errors may go unnoticed while testing
 - Dynamic type checking when static checking infeasible
 - E.g. Java array bounds checks
 - E.g. Type checks to verify C++/Java downcasting

Static vs. Dynamic Typing

- Statically typed: C/C++, Java
 Our discussion

 - > Types are explicitly declared or can be inferred from code
 - E.g. int x; /* type of x is int */
 - Efficient code since runtime type checks are not needed
- Dynamically typed: Python, JavaScript, PHP
 - > Type is a runtime property decided only during execution
 - E.g. var x; /* type of x is undecided */
 - Type of x changes depending on the type of value it holds
 - More memory since every variable now needs a "type tag"
 - Inefficient code due to runtime checks on type tags

Rules of Inference

- What are *rules of inference*?
 - ➤ Inference rules have the form if Precondition is true, then Conclusion is true
 - Below concise notation used to express above statement

Precondition Conclusion

- ➤ In the context of type checking: if expressions E1, E2 have certain types (Precondition), expression E3 is legal and has a certain type (Conclusion)
- Type checking via inference
 - Start from variable types and constant types
 - Repeatedly apply rules until entire program is inferred legal

Notation for Inference Rules

By tradition inference rules are written as

Precondition₁, ..., Precondition_n Conclusion

- The precondition/conclusion has the form "e:T"
- Meaning
 - If Precondition₁ and ... and Precondition_n are true, then Conclusion is true.
 - > "e:T" indicates "e is of type T"
 - > Example: rule-of-inference for add operation

```
e<sub>1</sub>: int
e<sub>2</sub>: int
e<sub>1</sub>+e<sub>2</sub>:int
```

Rule: If e_1 , e_2 are ints then e_1+e_2 is legal and is an int

Two Simple Rules

[Constant] i is an integer i: int [Add operation] $\begin{array}{c} e_1 \colon \text{int} \\ e_2 \colon \text{int} \\ \hline e_1 + e_2 \colon \text{int} \end{array}$

Example: given "10 is an integer" and "20 is an integer", is the expression "10+20" legal? Then, what is the type?

10 is an integer 20 is an integer 20: int 20: int

10+20:int

This type of reasoning can be applied to the entire program

More Rules

[New]

new T: T

[Not]

e: Boolean

not e: Boolean

However,

[Var?]

x is an identifier

x: ?

- > the expression itself insufficient to determine type
- > solution: provide context for this expression

Type Environment

- □ A type environment gives type info for free variables
 - > A variable is *free* if not declared inside the expression
 - ➤ It is a function mapping Symbols to Types
 - Set of declarations active at the current scope
 - Conceptual representation of a symbol table

Type Environment Notation

Let O be a function from Symbols to Types, the sentence O e:T

is read as "under the assumption of environment O, expression e has type T"

$$\begin{array}{c|c} i \text{ is an intger} & O \text{ e1: int} \\ \hline O \text{ is int} & O \text{ e2: int} \\ \hline O \text{ i: int} & O \text{ e1+e2: int} \\ \end{array}$$

- "if i is an integer, expression i is an int in any environment"
- "if e1 and e2 are ints in O, expression e1+e2 is int in O"
- "if variable x is mapped to int in O, expression x is int in O"

Declaration Rule

[Declaration w/o initialization]

O[T₀/x]
$$e_1$$
: T₁
O let x: T₀ in e_1 : T₁

 $O[T_0/x]$: environment O modified so that it return T_0 on argument x and behaves as O on all other arguments:

$$O[T_0/x](x) = T_0$$

 $O[T_0/x](y) = O(y)$ when $x \neq y$

Translation: "If expression e_1 is type T_1 when x is mapped to type T_0 in the current environment, expression e_1 is type T_1 when x is declared to be T_0 in the current environment"

Declaration Rule with Initialization

[Declaration with initialization (initial try)]

```
\begin{array}{c} \textbf{O} \ \textbf{e}_0 \colon \textbf{T}_0 \\ \hline \textbf{O}[\textbf{T}_0/\textbf{x}] \ \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \ \textbf{let} \ \textbf{x} \colon \textbf{T}_0 \leftarrow \textbf{e}_0 \ \textbf{in} \ \textbf{e}_1 \colon \textbf{T}_1 \end{array}
```

The rule is too strict (i.e. correct but not complete)

```
Example class C inherits P ... let x:P ← new C in ...
```

the above rule does not allow this code

Subtyping

- ☐ Subtyping is a relation ≤ on classes
 - > X ≤ X
 - ightharpoonup if X inherits from Y, then $X \leq Y$
 - ightharpoonup if $X \leq Y$ and $Y \leq Z$, then $X \leq Z$
- An improvement of our previous rule

[Declaration with initialization]

$$\begin{array}{c} \textbf{O} \; \textbf{e}_0 \colon \textbf{T} \\ \textbf{T} \leq \textbf{T}_0 \\ \textbf{O}[\textbf{T}_0/\textbf{x}] \; \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \; \textbf{let} \; \textbf{x} \colon \textbf{T}_0 \; \leftarrow \textbf{e}_0 \; \textbf{in} \; \textbf{e}_1 \colon \textbf{T}_1 \end{array}$$

- Both versions of declaration rules are correct
- > The improved version checks more programs

Assignment

A correct but too strict rule

```
[Assignment] \\ \textbf{O(id)} = \textbf{T}_0 \\ \textbf{O e}_1 : \textbf{T}_1 \\ \textbf{T}_1 \leq \textbf{T}_0 \\ \textbf{O id} \leftarrow \textbf{e}_1 : \textbf{T}_0
```

The rule does not allow the below code class C inherits P { only_in_C() { ... } } x ← y ← new C x.only in C()

Assignment

An improved rule

```
[Assignment] \\ \textbf{O(id)} = \textbf{T}_0 \\ \textbf{O e_1: T}_1 \\ \textbf{T}_1 \leq \textbf{T}_0 \\ \textbf{O id} \leftarrow \textbf{e_1: T}_1
```

The rule now does allow the below code class C inherits P { only_in_C() { ... } } $x \leftarrow y \leftarrow \text{new C}$ x.only in C()

If-then-else

- Consider
 - if e₀ then e₁ else e₂
 - The result can be either e₁ or e₂
 - The type is either e₁'s type or e₂'s type
 - The best that we can do (statically) is the super type larger than e₁'s type and e₂'s type
- Least upper bound (LUB)
 - Z = lub(X,Y) Z is defined as the least upper bound of X and Y iff
 - $X \le Z \land Y \le Z$; Z is an upper bound
 - $\bullet \ \ X{\le}W \land Y{\le}W \Longrightarrow Z{\le}W \ \ ; Z \ \text{is least among all upper bounds}$

If-then-else, case

```
[If-then-else]

O e_0: Bool
O e_1: T_1
O e_2: T_2

O if e_0 then e_1 else e_2 fi: lub(T_1,T_2)
```

The rule allows the below code let x:float, y:int, z:float in x ← if (...) then y else z /* Assuming lub(int, float) = float */

Error Recovery

- Just like other errors, we should recover from type errors
 - ➤ Too many errors? let y: int ← x+2 in y+3
 - if x is undefined —- reporting an error "x type undefined"
 - x+2 is undefined —- reporting an error "x+2 type undefined"
 - ...
- Introduce no-type for ill-typed expressions
 - > It is compatible with all types
 - > Report the place where no-type is generated
 - Reduce the number of error messages

Wrong Declaration Rule (case 1)

Consider a hypothetical let rule

[Wrong Declaration with initialization (case 1)]

```
\begin{array}{c} \textbf{O} \; \textbf{e}_0 \colon \textbf{T} \\ \textbf{T} \leq \textbf{T}_0 \\ \textbf{O} \; \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \; \textbf{let} \; \textbf{x} \colon \textbf{T}_0 \leftarrow \textbf{e}_0 \; \textbf{in} \; \textbf{e}_1 \colon \textbf{T}_1 \end{array}
```

- > How is it different from the the correct rule?
- ➤ The following good program does not pass check let x: int ← 0 in x+1

Wrong Declaration Rule (case 2)

Consider a hypothetical let rule

[Wrong Declaration with initialization (case 2)]

```
\label{eq:controller} \begin{array}{c} \textbf{O} \; \textbf{e}_0 \colon \textbf{T} \\ \textbf{T}_0 \leq \textbf{T} \\ \\ \textbf{O}[\textbf{T}_0/\textbf{x}] \; \textbf{e}_1 \colon \textbf{T}_1 \\ \textbf{O} \; \textbf{let} \; \textbf{x} \colon \textbf{T}_0 \leftarrow \textbf{e}_0 \; \textbf{in} \; \textbf{e}_1 \colon \textbf{T}_1 \end{array}
```

- > How is it different from the the correct rule?
- The following bad program passes the check class B inherits A { only_in_B() { ... } } let x: B ← new A in x.only_in_B()

Discussion

- Type rules have to be carefully constructed, or
 - ➤ The type system becomes unsound (bad programs are accepted as well typed)
 - The type system becomes unusable (good programs are rejected as badly typed)

Discussion

- Type rules have to be carefully constructed, or
 - The type system becomes unsound (bad programs are accepted as well typed)
 - The type system becomes unusable (good programs are rejected as badly typed)
- What is a "good" program anyway?
 - Good program: a program where all operations on all values are type consistent at runtime

Discussion

- Type rules have to be carefully constructed, or
 - The type system becomes unsound (bad programs are accepted as well typed)
 - The type system becomes unusable (good programs are rejected as badly typed)
- What is a "good" program anyway?
 - Good program: a program where all operations on all values are type consistent at runtime
- All runtime behavior not expressed in a static type system
 - At below is a good program rejected by the type system obj ← if (x > y) then new Child else new Parent if (x > y) then obj.only in Child()
 - LUB type makes a choice of soundness over usability

Designing a Good Type Checking System

- A good type system achieves two opposing goals:
 - Prevents false negative type errors, that is, runtime errors that are missed by type checking
 - Minimizes false positive type errors, that is, type errors that do not cause runtime errors
- A good type system should allow the following code:

```
class Parent {
    Parent clone() { return new this.getClass(); }
}
class Child inherits Parent { ... }
    void main() {
        // Error! Assignment of parent to child reference.
        Child c ← (new Child).clone();
    }
```

What Went Wrong?

- What is (new Child).clone()'s type?
 - Dynamic type Child
 - Static type Parent
 - > Type system is not able to express runtime types precisely
 - > This makes inheriting clone() not very useful
 - clone() needs redefinition to return correct type anyway
- A "SELF_TYPE" would be useful in these situations.

SELF_TYPE expresses runtime types precisely

- ☐ What is SELF_TYPE?
 - clone() returns "self" instead of "Parent" type
 - > Self can be Parent or any subclass of Parent
- SELF_TYPE is a static type
 - Type reflects precise runtime behavior for each class
 - > Type violations can still be detected at compile time
- In practice
 - > Python, Rust, Scala: language support for self types
 - C++: can emulate using C++ templates
 - Java: can emulate to a lesser degree using Java generics

Can Static Type Checking ever be Perfect?

- ☐ Many examples where "good" programs are disallowed
 - Reason for elaborate type systems like templates and generics
 - Why programmers are sometimes forced to typecast anyway
- Solution? Can't have your cake and eat it too.
 - Dynamic typing: values have types, variables do not
 - + Allows all runtime behaviors that are type consistent
 - Type errors occur at runtime rather than compile time
 - Best used for fast prototyping (scripting languages)
 - Static typing: variables have declared (or inferred) types
 - + Type errors can be caught at compile time
 - Effort needed to express "good" programs using type system
 - Best used when reliability is important

Implementing Type Checking on AST

Syntax Directed Definitions (SDDs)

SDD: Definitions of attributes and rules

- Syntax Directed Definitions (SDD):
 - Set of attributes attached to each grammar symbol
 - 2. Set of **semantic rules** attached to each production
 - Semantic rules define values of attributes
- Attribute Grammar:
 - An SDD where rules depend only on other attributes (i.e. An SDD that does not rely on any side-effects)
 - > Think of it as a "grammar" for semantic analysis
- Example: let's say we want to define type checking
 - > SDD can have semantic rules to access a symbol table
 - > Attribute grammar must transmit type info through attributes

Syntax Directed Definition (SDD)

Semantic rule:

SDD has rule of the form for each CFG production $b = f(c_1, c_2, ..., c_n)$

either

- If b is a synthesized attribute of A, c₁ (1≤i≤n) are attributes of grammar symbols of its Right Hand Side (RHS); or
- 2. If b is an inherited attribute of one of the symbols of RHS, c_i's are attribute of A and/or other symbols on the RHS

Two Types of Attributes

- Synthesized attributes: attributes are computed from attributes of children nodes
 - > P.synthesized_attr = f(C₁.attr, C₂.attr, C₃.attr)
- Inherited attributes: attributes are computed from attributes of sibling and parent nodes
 - $ightharpoonup C_3.inherited_attr = f(P_1.attr, C_1.attr, C_3.attr)$

Synthesized attribute

Inherited attribute

Synthesized Attribute Example

- Example
 - Each non-terminal symbol is associated with val attribute
 - > The val attribute is computed soley from children attributes

```
[Grammar Rules]
                                     [Semantic Rules]
\mathsf{I} \to \mathsf{F}
                                     print(E.val)
\mathsf{E} \to \mathsf{E_1} + \mathsf{T}
                                     E.val = E_1.val + T.val
\mathsf{F} \to \mathsf{T}
                                     E.val = T.val
T \to T_1 \ ^* \ F
                                     T.val = T_1.val * F.val
\mathsf{T} \to \mathsf{F}
                                     T.val = F.val
\mathsf{F} \to (\mathsf{E})
                                     F.val = F.val
F → digit
                                     F.val = digit.lexval
```

Is this an SDD or an attribute grammar?

Inherited Attribute Example

- Example:
 - T.type: synthesized attribute
 - L.in: inherited attribute

- Why is L.in an inherited attribute?
 - L.in is computed from a sibling T.type
 - ➤ L₁.in is computed from a parent L.in
- 🔲 Is this an SDD or an attribute grammar?

Attribute Parse Tree

- SDDs produce an attribute parse tree
 - > Attribute parse tree: Parse tree annotated with attributes

SDD Implementation

SDD Implementation using Parse Trees

- Assumes a previous parse stage
 - Input: a parse tree with no attribute annotations
 - Output: an attribute parse tree
- Goal: compute attribute values from leaf token values
 - > Traverse in some order, apply semantic rules at each node
 - > Traversal order must consider attribute dependencies

Dependency Graph

- ☐ Directed graph where edges are attribute dependencies
 - "To" attribute is computed base on "from" attribute
 - > Must be acyclic such that there exists "a" traversal order

Dependency Graph

- ☐ Directed graph where edges are attribute dependencies
 - > "To" attribute is computed base on "from" attribute
 - > Must be **acyclic** such that there exists "a" traversal order

SDD Implementation using SDT

- Syntax Directed Translation (SDT)
 - Applying semantic rules as part of syntax analysis (parsing)
 - Does NOT assume a pre-existing parse tree
 - Done through semantic actions embedded in grammar
- Semantic action:
 - Code between curly braces embedded into RHS
 - Executed "at that point" in the RHS
 - Top-down: Right after previous symbol has been consumed
 - Bottom-up: After previous symbol has been pushed to stack (when the 'dot' reaches the semantic action)
 - > Example of building a parse tree:
 - Program : Program IDNum ; Classes { \$\$=makeTree(ProgramOp, \$2, \$4); }
 - > \$2 and \$4 are indices into the parse stack
 - RHS is currently at top of stack waiting to be reduced
 - \$2 is attribute value for IDNum and \$4 is Classes

- Syntax Directed Translation Scheme (SDTS)
 - A "scheme" or plan to perform SDT
 - > A grammar specification embedded with semantic actions
 - Depends heavily on choice of top-down or bottom-up parser
- Example:

- Both inherited and synthesized attributes are used
 - T synthesized attribute T.val
 - R inherited attribute R.i synthesized attribute R.s
 - ➤ E synthesized attribute E.val

Evaluating attributes using SDTS

```
E \rightarrow T \{R.i=T.val\} R \{E.val=R.s\}
R \rightarrow + T \{R_1.i=R.i+T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow \text{-} \quad T \ \{R_1.i\text{=}R.i\text{-}T.val\} \ R_1 \ \{R.s\text{=}R_1.s\}
R \rightarrow \varepsilon \{R.s=R.i\}
T \rightarrow (E) \{T.val=E.val\}
T \rightarrow num \{T.val=num.val\}
                                              Ε
                 T.val=num
                                                  \rightarrow R_1.i=T.val
                                                                                                            R_2
        num
                     num
                                                                                                                         R_3
                                            num
                                                                         num
```

Evaluating attributes using SDTS

```
E \rightarrow T \{R.i=T.val\} R \{E.val=R.s\}
R \rightarrow + T \{R_1.i=R.i+T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow - T \{R_1.i=R.i-T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow \varepsilon \{R.s=R.i\}
T \rightarrow (E) \{T.val=E.val\}
T \rightarrow num \{T.val=num.val\}
                                           Ε
                                                 R<sub>1</sub>.i=T.val R<sub>1</sub>
                                                T.val = num \rightarrow R_2.i=R_1.i+T.val
                                                                                                    R_2
       num
                                                                                                                R_3
                                         num
                                                     num
                                                                    num
```

Evaluating attributes using SDTS

```
E \rightarrow T \{R.i=T.val\} R \{E.val=R.s\}
R \rightarrow + T \{R_1.i=R.i+T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow - T \{R_1.i=R.i-T.val\} R_1 \{R.s=R_1.s\}
R \rightarrow \varepsilon \{R.s=R.i\}
T \rightarrow (E) \{T.val=E.val\}
T \rightarrow num \{T.val=num.val\}
                                                    EE.val=R<sub>1</sub>.s
                                                            R<sub>1</sub>.i=T.val
                                                                                R<sub>1</sub>R<sub>1</sub>.s=R<sub>2</sub>.s
                                                                                      R_2.i=R_1.i+T.val
                                                                                                                         R<sub>2</sub> R<sub>2</sub>.s= R<sub>3</sub>.s
         num
                                                                                     T T.val = num \Rightarrow R<sub>3</sub>.i=R<sub>2</sub>.i+T.valR<sub>3</sub>R<sub>3</sub>.s= R<sub>3</sub>.i
                                                  num
                                                                                  num
                                                                                              num
```

What are the dependencies allowed in SDTS?

- Parse trees: dependencies only required to be acyclic
- What is required of dependencies for SDTS?
 - Different parsing schemes see nodes in different orders
 - Top-down parsing LL(k) parsing
 - Bottom-up parsing LR(k) parsing
 - What if dependency node has not been seen yet?
- For certain classes of SDDs, using SDTS is feasible
 - > If dependencies of SDD are amenable to parse order
 - > This class of SDDs are called L-Attributed Grammars

Left-Attributed Grammar

- An SDD is L-attributed if each of its attributes is either:
 - ightharpoonup a synthesized attribute of A in A \rightarrow X₁... X_n ,

or

- \rightarrow an inherited attribute of X_i in $A \rightarrow X_1...X_n$ that
 - depends on attributes of siblings to its left i.e. $X_1...X_{j-1}$
 - and/or depends on parent A

Left-Attributed Grammar

- An L-Attributed grammar
 - may have synthesized attributes
 - may have inherited attributes but only from left sibling attributes or inherited attributes of the parent
- Evaluation order
 - Left-to-right depth-first traversal of the parse tree
 - Order for both top-down and bottom-up parsers
 - Evaluate inherited attributes while going down the tree
 - > Evaluate synthesized attributes while going up the tree
- Can be evaluated using SDTS w/o parse tree

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

S _?	F	F.val=4	
S _?	+	-	
S _?	Е	E.val=6	
S _?	\$	-	
(state) (symbol) (attribute			

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

			_
S _?	Т	T.val=4	
S _?	+	-	
S _?	Е	E.val=6	
S _?	\$	-	
(state) (symbol) (attribute			oute

When using LR parsing (bottom-up parsing),

it is natural and easy to evaluate synthesized attributes

parsing stack:

(state) (symbol)

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

When using LR parsing (bottom-up parsing),

it is **not natural** to evaluate inherited attributes

parsing stack:

(symbol) (state) (attribute)

Evaluating Inherited Attributes using LR

- Recall
- Only applies to L-Attributed grammars
 - What is L-attributed grammar?
- Claim: the information is in the stack, we just do not know the exact location
- Solution: let us hack the stack to find the location

```
\begin{array}{ll} D \rightarrow T & L \\ T \rightarrow \text{int } \{\text{stack[top]=integer}\} \\ T \rightarrow \text{real } \{\text{stack[top]=real}\} \\ L \rightarrow L & , & \text{id } \{\text{addtype(stack[top],stack[top-3])}\} \\ L \rightarrow \text{id } \{\text{addtype(stack[top],stack[top-1])}\} \end{array}
```



```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow & \text{int } \{stack[top] = & \text{integer} \} \\ T \rightarrow & \text{real } \{stack[top] = & \text{real} \} \\ L \rightarrow L & , & \text{id } \{addtype(stack[top], stack[top-3])\} \\ L \rightarrow & \text{id } \{addtype(stack[top], stack[top-1])\} \end{array}
```


(state) (symbol) (attribute)

int , id id id

```
\begin{split} & D \to T \quad L \\ & T \to \text{int } \{\text{stack[top]=integer}\} \\ & T \to \text{real } \{\text{stack[top]=real}\} \\ & L \to L \quad , \quad \text{id } \{\text{addtype}(\text{stack[top],stack[top-3]})\} \\ & L \to \text{id } \{\text{addtype}(\text{stack[top],stack[top-1]})\} \end{split}
```



```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow int & \{stack[top]=integer\} \\ T \rightarrow real & \{stack[top]=real\} \\ L \rightarrow L & , & id & \{addtype(stack[top],stack[top-3])\} \\ L \rightarrow id & \{addtype(stack[top],stack[top-1])\} \end{array}
```



```
\begin{tabular}{lll} T.T.type=int \\ & & \uparrow \\ int & int & & , & id \\ & & & id & addtype(id,L_3.in) \\ \end{tabular}
```

```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow \text{int } \{stack[top] = \text{integer}\} \\ T \rightarrow \text{real } \{stack[top] = \text{real}\} \\ L \rightarrow L & , & \text{id } \{addtype(stack[top], stack[top-3])\} \\ L \rightarrow \text{id } \{addtype(stack[top], stack[top-1])\} \end{array}
```


S _?	id	id.type=stack[top-1]
S _?	Т	T.type=int
S _?	\$	-

(state) (symbol) (attribute)

```
D \rightarrow T L
T \rightarrow int \{stack[top]=integer\}
T \rightarrow real \{ stack[top] = real \}
L \rightarrow L, id {addtype(stack[top],stack[top-3])}
L \rightarrow id \{addtype(stack[top],stack[top-1])\}
```

S _?	id	id.type=stack[top-3]
S _?	,	
S _?	L ₃	L ₃ .in=int
S _?	Т	T.type=int
S _?	\$	-
(atata) (aalbal) (attillata)		


```
\begin{array}{lll} D \rightarrow T & L \\ T \rightarrow \text{int } \{\text{stack[top]=integer}\} \\ T \rightarrow \text{real } \{\text{stack[top]=real}\} \\ L \rightarrow L & , & \text{id } \{\text{addtype(stack[top],stack[top-3])}\} \\ L \rightarrow \text{id } \{\text{addtype(stack[top],stack[top-1])}\} \end{array}
```


S?	id	id.type=stack[top-3]
S _?	,	
S _?	L ₃	L ₃ .in=int
S _?	Т	T.type=int
S _?	\$	=

Marker

 \Box Given the following SDD, where $|\alpha| != |\beta|$

$$A \rightarrow X \alpha Y \mid X \beta Y$$

$$Y \rightarrow \gamma \{... = f(X.s)\}$$

- Problem: cannot generate stack location for X.s since X is at different relative stack locations from Y
- Solution: introduce *markers* M₁ and M₂ that are at the same relative stack locations from Y

$$\mathsf{A} \!\to \mathsf{X} \ \alpha \ \mathsf{M_1} \ \mathsf{Y} \ | \ \mathsf{X} \ \beta \ \mathsf{M_2} \ \mathsf{Y}$$

$$Y \rightarrow \gamma \{ \dots = f(M_{12}.s) \}$$

$$M_1 \rightarrow \varepsilon \{M_1.s = X.s\}$$

$$M_2 \rightarrow \varepsilon \{M_2.s = X.s\}$$

$$(M_{12} = \text{the stack location of } M_1 \text{ or } M_2, \text{ which are identical})$$

A marker intuitively marks a stack location that is equidistant from the reduced non-terminal

Example

How to add the marker?

```
Example 1:
        S \rightarrow a A \{ C.i = A.s \} C
        S \rightarrow b A B \{ C.i = A.s \} C
        C \rightarrow c \{ C.s = f(C.i) \}
Solution:
        S \rightarrow a A \{ C.i = A.s \} C
        S \rightarrow b A B \{ M.i=A.s \} M \{ C.i = M.s \} C
        C \rightarrow c \{ C.s = f(C.i) \}
        M \rightarrow \varepsilon \{ M.s = M.i \}
That is:
        S \rightarrow a A C
        S \to b \; A \; B \; M \; C
        C \rightarrow c \{ C.s = f(stack[top-1]) \}
        M \rightarrow \varepsilon \{ M.s = stack[top-2] \}
```

How to Add the Marker?

- 1. Identify the stack location(s) to find the desired attribute
- 2. Is there a conflict of location?
 - Yes, add a marker;
 - > No, no need to add.
- Add the marker in the place to remove location inconsistency

Example:

$$\begin{split} S &\rightarrow a \text{ A B C E D} \\ S &\rightarrow b \text{ A F B C F D} \\ C &\rightarrow c \text{ {/* C.s = f(A.s) */}} \\ D &\rightarrow d \text{ {/* D.s = f(B.s) */}} \end{split}$$

Answer

```
S \rightarrow a A B C E D

S \rightarrow b A D M B C F D

C \rightarrow c {/* C.s = f(stack[top-2]) */}

D \rightarrow d {/* D.s = f(stack[top-3]) */}

M \rightarrow \varepsilon {/* M.s = f(stack[top-2]) */}

Regarding C.s, from stack[top-2], and stack[top-3]

.... add a Marker

Regarding D.s, always from stack[top-2]

.... no need to add
```

How about Top-Down Parsing?

Translation Scheme for Top-Down Parsing

- Predictive Recursive Descent Parsers: Straightforward
 - Synthesized Attribute: Return value of function call for non-terminal is synthesized attribute
 - All function calls for children nodes would have completed by the time this function call returns
 - All dependent values would have been computed
 - Inherited Attribute: Pass as argument to function call for non-terminal inheriting attribute
 - L-Attributed grammar guarantees that dependent attributes come from left sibling attributes or parent inherited attributes
 - Left sibling function calls would have completed and parent inherited attribute would have been passed in as argument
 - All dependent values would have been computed
- Now let's focus on table-driven LL Parsers

When using LL parsing (top-down parsing),

it is natural to evaluate inherited attributes

When using LL parsing (top-down parsing),

it is natural to evaluate inherited attributes

D

parsing stack:

(symbol) (attribute)

When using LL parsing (top-down parsing),

it is natural to evaluate inherited attributes

parsing stack:

(symbol) (attribute)

When using LL parsing (top-down parsing),

it is natural to evaluate inherited attributes

parsing stack:

When using LL parsing (top-down parsing),

it is natural to evaluate inherited attributes

parsing stack:

(symbol) (attribute)

When using LL parsing (top-down parsing),

par

Translation Scheme for LL Parsing

When using LL parsing (top-down parsing),

it is **not natural** to evaluate synthesized attributes

Εı

sing stack:	
E ₁	
eymbol)	(attributa)

When using LL parsing (top-down parsing),

it is **not natural** to evaluate synthesized attributes

E₁ E.val=?

When using LL parsing (top-down parsing),

When using LL parsing (top-down parsing),

- - Always push a 'dummy' stack item below a non-terminal to hold intermediate values for attribute calculation
 - Update dummy item whenever a child node is popped with intermediate value
 - When all children nodes have been popped, compute synthesized attribute from stored values

When using LL parsing (top-down parsing),

it is **not natural** to evaluate synthesized attributes

E₁

Solution

- Always push a 'dummy' stack item below a non-terminal to hold intermediate values for attribute calculation
- Update dummy item whenever a child node is popped with intermediate value
- When all children nodes have been popped, compute synthesized attribute from stored values

When using LL parsing (top-down parsing),

- Always push a 'dummy' stack item below a non-terminal to hold intermediate values for attribute calculation
- Update dummy item whenever a child node is popped with intermediate value
- When all children nodes have been popped, compute synthesized attribute from stored values