Shell Sort

CSE 373 - Data Structures May 8, 2002

Readings and References

Reading

> Sections 7.4, Data Structures and Algorithm Analysis in C, Weiss

Other References

Swapping adjacent elements

- An "average" list will contain half the max number of inversions = $\frac{(n-1)(n)}{4}$
 - > So the average running time of Insertion sort is

• Any sorting algorithm that only swaps adjacent elements requires $\Omega(N^2)$ time because each swap removes only one inversion

The search for speed

- If we are going to do better than $O(N^2)$, we are going to have to fix more than one inversion at a time
- How can we fix more than one inversion?
 - > Move the elements further with each swap

Shellsort: Better than Quadratic

- Named after Donald Shell inventor of the first algorithm to achieve $o(N^2)$
 - > Running time is $O(N^x)$ where x = 3/2, 5/4, 4/3, ..., or 2 depending on "increment sequence"
- Shell sort uses repeated insertion sorts on selected subarrays of the larger array being sorted
- Multiple passes with changing subarrays

Subarrays (or subsequences)

• Remember that in the discussion of binary heaps I showed how we could sort a *path* through the tree

• Similarly, we can sort a *subarray* contained in a larger array

Subarrays: increment = 5

Subarrays: increment = 2

Shell Sort: diminishing increments

- Uses an *increment sequence* $h_1 < h_2 < ... < h_t$
 - > Start sorting with the largest increment h_t
 - > Sort all subarrays of elements that are h_k apart so that $A[i] \le A[i+h_k]$ for all $i \rightarrow k$ known as an h_k -sort
 - > Go to next smaller increment h_{k-1} and repeat
- Stop sorting after h₁ (=1)
- Choice of increments is important
 - > and hard to analyze

Shellsort

Note: the actual sorting is done by insertion sort: "copy down and insert the value in the right place" on each subarray in the innermost loop and A[j]=Tmp

Shellsort: Basic Insight

- Insertion sort runs fast on nearly sorted sequences
 - > immediate termination when proper spot is found
- do several passes of Insertion sort on different subsequences of elements
- note that the subsequences stay sorted from pass to pass

Example

- Sort 19, 5, 2, 1 with increment sequence 1,2
 - > Insertion sort on subsequences of elements spaced apart by 2: 1st and 3rd, 2nd and 4th

$$\Rightarrow$$
 19, 5, 2, 1 \rightarrow 2, 1, 19, 5

> Do Insertion sort on subsequence of elements spaced apart by 1:

```
\Rightarrow 2, 1, 19, 5 \rightarrow 1, 2, 19, 5 \rightarrow 1, 2, 19, 5 \rightarrow 1, 2, 5, 19
```

- Fewer shifts than plain Insertion sort
 - > 4 versus 6 for this example

Some increment sequences

- Some increments that have been studied
 - > Shell's increments

$$h_1 = \left\lfloor \frac{N}{2} \right\rfloor, h_k = \left\lfloor \frac{h_{k+1}}{2} \right\rfloor$$

- bad choice since the subarrays can coincide and so you end up re-sorting something that is already sorted, and not mixing other elements that need it
- > Hibbard's increments
 - relatively prime values: $1, 3, 7, 15, 2^k-1$
- > Sedgewick
 - $\{1, 5, 19, 41, 109, \ldots\} = 9 \cdot 4^{i} 9 \cdot 2^{i} + 1 \text{ or } 4^{i} 3 \cdot 2^{i} + 1$

Example using Shell's Increments

- Example: Shell's original sequence: $h_t = N/2$ and $h_k = h_{k+1}/2$
 - > Sort 21, 33, 7, 25 (N = 4, increment sequence = 2, 1)
 - > <u>7</u>, 25, <u>21</u>, 33 (after 2-sort)
 - > 7, 21, 25, 33 (after 1-sort)

Shellsort: Run time

Shellsort: Shell's Increments

- Algorithm is simple to code but hard to analyze
 - > depends on increment sequence
- Shell's increment sequence 1, 2, 4, ..., N/4, N/2
 - > What is the Upper bound?
 - > Shellsort does h_k insertion sorts with N/h_k elements for k = 1 to t
 - > Running time = $O(\Sigma_{k=1...t} h_k (N/h_k)^2) = O(N^2 \Sigma_{k=1...t} 1/h_k) = O(N^2)$

Shellsort: Shell's Increments

- What is the lower bound?
 - Worst case is: smallest elements in odd positions,
 largest in even positions
 - <u>2</u>, 11, <u>4</u>, 12, <u>6</u>, 13, <u>8</u>, 14
 - > None of the passes N/2, N/4, ..., 2 do anything!
 - Last pass (h₁ = 1) must shift N/2 smallest elements to first half and N/2 largest elements to second half
 - \rightarrow at least N² steps = $\Omega(N^2)$

Shell's

increments

Shell's Increments: $\Omega(N^2)$

- The reason we got $\Omega(N^2)$ was because of increment sequence
 - Adjacent increments have common factors (e.g. 8, 4, 2, 1)
 - > We keep comparing same elements over and over again
 - Need increments such that different elements are in different passes

Hibbard's Increments

• Hibbard's increment sequence:

$$\rightarrow 2^{k}-1, 2^{k-1}-1, ..., 7, 3, 1$$

- > Adjacent increments have no common factors
- > Worst case running time of Shellsort with Hibbard's increments = $\Theta(N^{1.5})$ (Theorem 7.4 in text)
- Average case running time for Hibbard's =
 O(N^{1.25}) in simulations but nobody has been able to prove it!

Hibbard's

increments

General performance

- Insertion sort good for small input sizes
 - → ~20
 - > often incorporated in other procedures where the list to be sorted is short and is likely to be sorted already
- Shellsort better for moderately large inputs
 - → ~10,000