НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6 Дисциплина "Информатика"

> Выполнил студент: Федоров Данил Максимович

Преподаватель: Болдырева Елена Александровна треугольника лежит на этой окружности. Найти угол при основании равнобедренного треугольника.

- **3**. Решить неравенство $3^{\sqrt{x}} > 2^a$.
- 4. Решить систему уравнений

$$\begin{cases} \sin x + \cos y = 0, \\ \sin^2 x + \cos^2 y = \frac{1}{2}. \end{cases}$$

Вариант 2

- 1. Сумма первых n членов арифметической прогрессии равна половине суммы следующих n членов этой прогрессии. Найти отношение суммы первых 3n членов прогрессии к сумме ее первых n членов.
- 2. В правильную треугольную усеченную пирамиду с двугранным углом α при основании вписан усеченный конус. Определить боковую поверхность конуса, если апофема боковой грани пирамиды равна сумме радиусов оснований конуса, а радиус меньшего основания конуса равен r.
 - 3. Решить неравенство

$$0.3^{\log_{1/3}\log_2\frac{3x+6}{3x^2+2}} > 1.$$

4. Решить систему уравнений

$$\begin{cases} \sin x \cdot \cos y = \frac{1}{4}, \\ 3 \operatorname{tg} x = \operatorname{tg} y. \end{cases}$$

Вариант 3

1. Если двухзначное число разделить на произведение его цифр, то в частном получится 3, а в остатке 9. Если же из квадрата суммы цифр этого числа вычесть произведе- ние его цифр, то получится данное число. Найти это число.

- 2. Куб с ребром а вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах, а четыре другие вершины на основании пирамиды. Боковые грани пирамиды наклонены к плоскости основания под углом α . Определить объем пирамиды.
 - 3. Решить уравнение

$$\log_{\sqrt{x}} a \cdot \log_{a^2} \left(\frac{a^2 - 4}{2a - x} \right) = 1.$$

4. Решить уравнение

$$\cos\left(x + \frac{\pi}{4}\right) + \cos\left(x - \frac{\pi}{4}\right) = \frac{2}{3}\cos 2x.$$

- 1. Сумма первых n членов арифметической прогрессии равна половине суммы следующих n членов этой прогрессии. Найти отношение суммы первых 3n членов прогрессии к сумме ее первых n членов.
- 2. В однородном магнитном поле расположен виток с сопротивлением R=0.5 ом и площадью S=100 см 2 . Нормаль к плоскости витка составляет угол $\alpha=60^\circ$ с вектором индукции ${\bf B}.$ За время $\tau=0.5$ сек индукция поля увеличилась с постоянной скоростью от $B_1=0.1$ мл до $B_2=0.6$ мл. Найти количество теплоты, которое выде- лилось в витке за это время.
- 3. При облучении некоторого металла светом сначала с длиной волны $\lambda=0.3~$ мкм, а затем с $\lambda=0.6~$ мкм обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в n=2~ раза. Найти работу выхода электрона с поверхности этого металла.

А. Диденко, А. Забоев, Г. Пантюхов, Н. Шолохов

Головоломки

Магическое домино

28 Из костей домино сложите прямоугольник 7х8 такой, что если не учитывать семи «пустых» образующих квадратов, последний столбец, то из 49 к клеток составлен «магический квадрат» (в котором суммируются очки половинок костей) - суммы очков по горизонталям, вертикалям и двум диагоналям одинаковы и равны 24.

Л. Мочалов

1976

Расставьте в этих клетках числа от 1 до 27 (четыре числа уже стоят) так, чтобы суммы чисел в каждом гори-

зонтальном ряду были равны друг другу и суммам каждых восьми чисел, стоящих вокруг чисел $1,\ 9,\ 7,\ 6.$

Я. Алексеев

3. Моисеева, А. Савин

XVIII Олимпиада по математике

XVIII Международная математическая олимпиада проходила в июле 1976 г. в г. Лиенце (Австрия). В ней принимали участие коман-

дах этого и прошлых лет, и был определен окончательный состав команды. В нее вошли: Юрий Буров (школа № 2 г. Москвы), Александр Гончаров (школа № 13 г. Никополя Днепропетровской обл.), Петр Гриневич (школа № 204 г. Москвы), Сергей Миронов (школа № 6 г. Сафоново Смоленской обл.), Никита Нецветаев, Борис Соломяк и Сергей Финашин (все — ФМШ № 45 г. Ленинграда), Татьяна Хованова (школа № 444 г.