操作系统第一次作业

20373068 周宇光

第一部分作业

概念理解练习题

1、假如没有操作系统,怎样控制硬件?

如果没有操作系统,将需要手动控制硬件的输入输出,设置好之后才能交给 CPU 执行。 比如讲义上的软盘 IO 操作,需要程序员对每个磁盘块地址、磁道的扇区数目、物理介质的 记录格式等等许多参数和硬件都要了如指掌,而且还要时刻注意软盘步进电机的开关状态。 这样会将程序员很大的精力都耗费在这些与硬件打交道的层面上,难以提升编程效率。

2、计算机系统中不同层次接口的作用?

直接与硬件相连接的接口是 ISA 指令集。通过 ISA,我们能用指令操控 CPU 硬件的执行过程。

ABI 是应用程序二进制接口,是操作系统所提供的,其定义了一组系统软件应用程序需要遵循的调用规则。

API 是我们最为常见的应用程序接口,是在操作系统之上,由应用程序所提供的接口。 譬如我们常用的 pytorch 库,就有很多 API 接口。

UI 是用户接口,是处于最顶层,提供给用户使用的。这一层已经是封装的非常完美了,用户能够非常简明地看懂这一层接口的含义。

3、 冯诺依曼计算机的主要特点是什么?

冯诺依曼结构的特点是以存储器为数据输入输出的核心, 无论是运算器还是控制器和 IO 设备, 都需要与存储器进行数据的交换。

第二部分作业

1. 设一计算机系统有输入机一台、打印机两台,现有二道程序同时投入运行,且程序 B 先 开始运行,程序 A 后运行。程序 A 的运行轨迹为:计算 50ms,打印信息 80ms,再计算 50ms,打印信息 100ms,结束。程序 B 运行的轨迹为:计算 50ms,输入数据 60ms,再计算 100ms,结束。要求:(1)用图画出这二道程序并发执行时的工作情况。(2)说明在二道程序运行时,CPU 有无空闲等待?若有,在哪段时间内等待?为什么会空闲等待?(3)程序 A、B运行时有无等待现象?在什么时候会发生等待现象?

(1)

- (2) 有空闲等待,在程序 A 打印信息,而程序 B 还在输入数据时,有 10ms 的等待。这个等待是因为输入设备和打印设备太慢,导致计算无法执行。
- (3) 有等待。程序 A 在程序 B 抢先占据计算资源时,会发生等待。

2. 在单 CPU 和两台 I/O 设备(I1,I2)的多道程序设计环境下,同时投入 3 个作业 J1,J2 和 J3 运行,其对 CPU 和 I/O 设备使用的顺序与时间如下:

```
J1:l2 (30ms) →CPU (10ms) →l1 (30ms) →CPU (10ms) →l2 (20ms) 
J2:l1 (20ms) →CPU (20ms) →l2 (40ms) 
J3:CPU (30ms) →l1 (20ms) →CPU (10ms) →l1 (10ms)
```

假定 CPU 和 I/O 设备能够并行, I1 和 I2 能够并行。作业优先级 J1<J2 —分别求出 3 个作业的周转时间。(作业的周转时间是指指一个作业从提交到处理结束所经历的时间)

绘制执行流程图,如下

- J1 周转时间为 120ms
- J2 周转时间为 90ms
- J3 周转时间为 100ms
 - -计算 CPU 的利用率 (计算时间/ (计算时间+空闲时间))。
- CPU 利用率为 80%。
 - --计算 I/O 设备的利用率(工作时间/(工作时间+空间时间))
- IO 设备 1 的利用率为 80%;
- IO设备2的利用率为75%。