Fitting Thompson Sampling to Behavior

Data

$$\mathbf{x} = \{x_1, x_2, \cdots, x_T\}$$
$$\mathbf{r} = \{r_1, r_2, \cdots, r_T\}$$

Initialize

$$\alpha^{(0)} = \{\alpha_1^{(0)}, \cdots, \alpha_K^{(0)}\}\$$

$$\beta^{(0)} = \{\beta_1^{(0)}, \cdots, \beta_K^{(0)}\}\$$

Environment + Hyperparameters

K := # of arms

N:=# of posterior samples

 $\gamma_{\alpha} := \alpha$ learning rate

 $\gamma_{\beta} := \beta$ learning rate

Model Fitting Procedure

Thompson Sampling

For $t \in [1, T]$:

- 1. Estimate $p(x_t|\alpha^{(t-1)},\beta^{(t-1)})$
 - (a) For $n \in [1, N]$:
 - i. For $k \in [1, K]$:

A. sample
$$b_k^{(n)} = \text{Beta}(\alpha_k^{(t-1)}, \beta_k^{(t-1)})$$

ii. $\hat{x}_t^{(n)} = \arg\max_{k \in [1,K]} b_k^{(n)}$

ii.
$$\hat{x}_t^{(n)} = \arg\max_{k \in [1, K]} b_k^{(n)}$$

(b)
$$p(x_t | \alpha^{(t-1)}, \beta^{(t-1)}) \approx \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(\hat{x}_t^{(n)} = x_t)$$

- 2. Append the loss $\mathcal{L}_t = -\log p(x_t | \alpha^{(t-1)}, \beta^{(t-1)})$
- 3. Update parameters of the beta distribution:

(a)
$$\alpha_{x_t}^{(t)} \leftarrow \alpha_{x_t}^{(t-1)} + \gamma_{\alpha} r_t$$

(b)
$$\beta_{x_t}^{(t)} \leftarrow \beta_{x_t}^{(t-1)} + \gamma_{\beta} (1 - r_t)$$