# مدخل إلى الكيمياء العضوية

الطان سنة ثانية ثانهي

2 As 2 M

الكفاءات المستهدفة: ـ القدرة على تسمية المركبات العضوية وفق نظام التسمية الدولي

- التعرف على بعض العائلات العضوية.

- التعرف على المواد المشتقة من البترول واستعمالاتها في الحياة وتأثيرها على المحيط والبيئة.

الفحوم الهيدروجينية: هي الأنواع الكيميائية العضوية التي تحتوي على عنصري الكربون C والهيدروجين H فقط ،

 $CH_3-CH_2-CH_3:$  وهي نوعان : فحوم هيدروجينية مشبعة : ذات سلاسل كربونية خطية بها روابط أحادية مثل :

 $.\,CH \equiv C - CH_3$  و  $CH_3 - CH = CH_2$  فحوم هيدروجينية غير مشبعة: تحتوي على روابط ثنائية أو ثلاثية مثل:

صيغتها العامة : من الشكل  $C_X H_Y$  ، حيث X هو عدد ذرات الكربون و Y عدد ذرات الهيدروجين.

## التسمية النظامية حسب IUPAC للفحوم الهيدروجينية المشبعة والغير مشبعة

هي فحوم هيدروجينية مشبعة (جميع روابطها بسيطة).

I- عائلة الألكانات:

 $\ldots$   $C_5H_{12}$  و  $C_3H_8:$ مثل مثل  $C_nH_{2n+2}$  من الشكل الشكل صيفتها العامة: من الشكل

تسميتها: تسمى بإضافة النهاية (أن) إلى الإسم اللاتيني الموافق لعدد ذرات الكربون.

| n = 6         | n=5           | n=4           | n = 3          | n=2      | n = 1  | عدد ذرات                  |
|---------------|---------------|---------------|----------------|----------|--------|---------------------------|
|               |               |               |                |          |        | الكربون                   |
| هڪس           | بنت           | بوت           | بروب           | إيث      | میث    | الاسماللاتيني             |
| $C_{6}H_{14}$ | $C_5H_{12}$   | $C_4H_{10}$   | $C_3H_8$       | $C_2H_6$ | $CH_4$ | الصيغة المجملة<br>للألكان |
| هڪسان         | بنتا <u>ن</u> | بوت <u>ان</u> | بروب <u>ان</u> | إيثان    | میثان  | إسم الألكان               |

 $-C_5H_{11}$  و  $-C_3H_7$  : مثا  $-C_nH_{2n+1}$  مثل المامة: من الشكل الجذور الألكيلية: صيفتها العامة: من الشكل

تسميتها: تسمى بإضافة النهاية (يل) إلى الإسم اللاتيني الموافق

أمثلة:  $-C_3H_7$  يسمى البروبيل و  $-C_5H_{11}$  بنتيل و  $-C_4H_9$  بوتيل...وهكذا

كيفية تسمية الألكانات التي تحتوي على جذور ألكيلية: نتبع الخطوات التالية:

- الأستاذ خالد سعيدي للعلوم الفيزيائية
- نختار أطول سلسلة كربونية نعتبرها السلسلة الرئيسية
- نقوم بترقيم ذرات الكربون لهذه السلسلة، نبدأ من الطرف الأقرب للجذر الألكيلي.
- نكتب رقم الكربون المتصل بها الجذر ثم اسم الجذرالألكيلي ثم اسم السلسلة الفحمية الرئيسية (الألكان)

$$CH_{14}$$
: الصيغة المجملة والمجملة : 2 - ميثيل بنتان..... الصيغة المجملة  $CH_{14}$  :  $CH_{14}$  -  $CH_{14}$  -  $CH_{15}$  -  $CH_{15}$  -  $CH_{15}$  -  $CH_{15}$  -  $CH_{15}$  -  $CH_{15}$  -  $CH_{15}$ 

$$CH_3 - CH - CH_2 - CH_3 - CH_3 - CH_2 - CH_3 - CH_2 - CH_3 - CH_3 - CH_2 - CH_3 - C$$

$$C_7H_{16}$$
: ثنائي ميثيل بنتان الصيغة المجملة (2.2) ثنائي ميثيل بنتان  $(2.2)$ 

$$CH_{3}$$
 $CH_{3}$ 
 $CH_{3} - C - CH_{2} - CH_{2} - CH_{3}$ 
 $CH_{3} - CH_{3} - CH_{3}$ 
 $CH_{3} - CH_{3} - CH_{3}$ 

سلطان

ملخصات الأستاذ خالد سعيدي للعلوم الفيزيائية

(C=C) هي مركبات عضوية غير مشبعة تحتوي سلاسلها الفحمية على رابطة ثنائية (C=C)

 $C_5H_{10}$  و  $C_3H_6$ : مثل  $n \ge 2$  حيث  $C_nH_{2n}$  و  $C_5H_{10}$  و  $C_3H_6$ 

تسميتها: تسمى بإضافة النهاية (ن) (ene) إلى اسم اللاتيني الموافق لعدد ذرات الكربون.

| n = 6         | n=5           | n=4      | n=3      | n=2      | عدد ذرات       |
|---------------|---------------|----------|----------|----------|----------------|
|               |               |          |          |          | الكريون        |
| هڪس           | بنت           | بوت      | بروب     | إيث      | الاسم اللاتيني |
| $C_{6}H_{12}$ | $C_{5}H_{10}$ | $C_4H_8$ | $C_3H_6$ | $C_2H_4$ | الصيغةالمجملة  |
| <u></u>       |               |          |          |          | للألكان        |
| هڪسن          | بنتن          | بوتن     | بروبن    | إيثن     | إسم الألكان    |

 $|C_5H_{10}|$ : بنت 3 ن ..... الصيغة المجملة:  $CH_3 - CH = CH - CH_2 - CH_3 : i$ 

$$\boxed{C_6H_{12}} : 1$$
 التسمية  $C_{12}H_{12} : C_{13}H_{12} : C_{14}H_{12} : C_{14}H_{12} : C_{15}H_{12} : C_{15$ 

$$\boxed{C_9H_{18} } :$$
 الصيغة المجملة: 3- إيثل 4- ميثيل هكس 2 ن الصيغة المجملة: 3- إيثل 4- ميثيل هكس 2 ن  $CH_3 - CH - CH_2 - CH = CH - CH_3 + C$ 

$$CH_3$$
 التسمية:  $(4.4)$  ثنائي ميثيل بنت 2ن .الصيغة المجملة:  $CH_3$   $CH_{14}$  :  $CH_{14}$  :  $CH_3 - C - CH_2 = CH_2 - CH_3$   $CH_3 - C - CH_2 = CH_2 - CH_3$   $CH_3 - C - CH_2 = CH_2 - CH_3$ 

 $(C \equiv C)$  هي مركبات عضوية غير مشبعة تحتوي سلاسلها الفحمية على رابطة ثلاثية

II- عائلة الألسينات:

 $\dots$   $C_5H_8$  و  $C_2H_2$  : مثل  $n \ge 2$  حيث  $n \ge 2$  حيث  $C_nH_{2n-2}$  و  $C_5H_8$ 

تسميتها: تسمى بإضافة النهاية (ين) (yne) إلى اسم اللاتيني الموافق لعدد ذرات الكربون.

| n = 6         | n = 5         | n = 4         | n=3      | n=2      | عدد ذرات       |
|---------------|---------------|---------------|----------|----------|----------------|
|               |               |               |          |          | الكريون        |
| هڪس           | بنت           | بوت           | بروب     | إيث      | الاسماللاتيني  |
| $C_{6}H_{10}$ | $C_5H_8$      | $C_4H_6$      | $C_3H_4$ | $C_2H_2$ | الصيغة المجملة |
|               |               |               |          |          | للألكان        |
| هڪسين         | بنت <u>ين</u> | بوت <u>ين</u> | بروبين   | إيثين    | إسم الألكان    |

 $|C_5H_8|$ : بنت 3 ين ..... الصيغة المجملة:  $CH_3 - CH \equiv CH - CH_2 - CH_3$ :

$$\boxed{C_6 H_{10}} :$$
التسمية  $CH_{10} : CH_3 - CH - CH_2 - CH = CH_2 - CH_3 - CH_3 - CH_3 - CH_3 + C$ 

$$CH_3 - CH - CH_2 - CH = CH - CH_3$$
 التسمية: 3ـ إيثل 4ـ ميثيل هكس2 ين ...الصيغة المجملة: 3 إلتسمية: 3ـ إيثل 4ـ ميثيل هكس2 ين ...الصيغة المجملة:  $CH_3 - CH_2 - CH = CH - CH_3$   $CH_3 - CH_3 - CH_3$ 

ملخصات الأستاذ خالد سعيدي للعلوم الفيزيائية

$$CH_3 \ | CH_{12}$$
التسمية :  $(4.4)$  ثنائي ميثيل بنت2ين .الصيغة المجملة : 
$$CH_3 - C - CH_2 \equiv CH_2 - CH_3 \ | CH_3 - C - CH_2 \equiv CH_2 - CH_3 \ | CH_3 - CH_3 - CH_3 - CH_3 - CH_3$$

#### عائلة الكحولات

 $\left(-OH
ight)$  هي مركبات عضوية أكسجينية تحتوي على  $\left(C,H,O
ight)$  وتتميز بوجود وظيفة كحولية مميزة هي

- . R-OH أي من الشكل  $C_nH_{2n+1}-OH$  أي من الشكل  $C_nH_{2n+2}O$  أي من الشكل  $\red$ 
  - التسمية: آلكانول أي بإضافة النهاية (ول) إلى اسم الألكان الموافق.

تنبيه: يبدأ ترقيم أطول سلسلة كربونية من الجهة الأقرب إلى ذرة الكربون الوظيفية (التي ترتبط بها الوظيفة الكحولية C - OH).

#### أصناف الكحولات

#### 



# كحول أولي H : نصيغته من الشكل: R - C - OHسلطان سلطان سلطان H : سلطان سلطان :

 $CH_3 - CH_2 - OH$  سلطان إيثانول (إيثان 1-ول) سلطان

## □الأحماض الكربوكسيلية:

- الأستاذ خالد سعيدى للعلوم الفيزيائية R-COOH أي من الشكل R-C-OH أي من الشكل R-COOH
  - التسمية: حمض آلكانويك أي بإضافة النهاية (ويك)الى اسم الألكان الموافق مسبوقة بكلمة حمض.
     CH

$$CH_3 = O$$
 $CH_3 = O$ 
 $CH_3 = O$ 

### الأسترات :

- تعريف :هي مركبات عضوية أكسيجينية ، يمكن اصطناعها من الكحولات والأحماض الكربوكسيلية
  - .  $n \ge 2$  حيث  $C_n H_{2n} O_2$  حيث  $\triangleright$
  - R = C C R' . RCOOR' أو R = C O R' . R = R C O R'
  - التسمية: ألكانوات الألكيل مثال:  $CH_3-CH_2-CH_2-COO-CH_3$  بوتانوات الميثيل  $\succ$

 $CH_3 - C - OH$ 

 $C_2H_5$ 

2ميثيل بوتان 2ول

ملاحظات: ينتج الأستر من تفاعل حمض كربوكسيلي مع كحول حسب المعادلة العامة التالية:



$$R - CO - OH + R' - OH = RCOOR' + H_2O$$

$$R - C - OH + R' - OH = R - C - O - R' + H_2O$$
ماء + أستر = ڪحول + حمض

اسم الأستر: إيثانوات 3 ميثيل البوتيل

### تمرين تطبيقي : أكمل الجدول التالي :

| اسم وصيغة الكحول        | اسم وصيغة الحمض           | صيغة الأسترالنصف مفصلة            | اسم الأستر       |
|-------------------------|---------------------------|-----------------------------------|------------------|
|                         | •••••                     | $CH_3 - COO - CH_3$               | •••••            |
|                         |                           |                                   | ميثانوات الإيثيل |
|                         |                           | $CH_3 - CH_2 - CH_2 - COO - CH_3$ | •••••            |
| میثانول                 | 2ـميثيل حمض بروبانويك<br> | Valuation.                        |                  |
| $CH_3 - CH - OH$ $CH_3$ | حمض الإيثانويك            |                                   | •••••            |

## الأستاذ خالد سعيدي للعلوم الفيزيائية

### عائلة الكيتونات (Ketone

 $R_1 = C - R_2$  حيث  $R_1 = R_1 - C - R_2$  حيث الكيليين  $R_1 = R_1 - C - R_2$  حيث الكيليين  $R_1 = R_1 - C - R_2$  بروبانون تسميتها: تسمى بإضافة النهاية (ون) إلى اسم الألكان الموافق مثال:  $CH_3 = CH - CH - CH - CH_3 - CH$  $CH_3$   $C_2H_5$ 

لزيد من الدروس المشروحة والملخصات والفروض والاختبارات التجريبية المحلولة زوروا الصفحات الرسمية

□ للاستاذ خالد سعيدي للعلوم الفيزيائية









#### عائلة الالدهيدات Aldhéhydes

هي فحوم هيدروجينية أكسجينية تتميز بوجود : المجموعة الوظيفية الكربونيلية ،وهي C=O تتصل هذه المجموعة بجذر ألكيلي (R-) وذرة هيدروجين (H-).

. 
$$RCHO$$
 و  $R-CH$  . و  $C_nH_{2n+1}-C-H$  و  $R-CH$  او  $R-CH$ 

تسميتها: تسمى بإضافة النهاية (آل) (Al) إلى اسم الألكان الموافق.





اطارم

#### عائلة الأمينات

(N,H,C) الأمين هو مركب عضوي أزوتي يحتوي على

صيغته العامة: من الشكل  $\begin{bmatrix} C_nH_{2n+3}N \end{bmatrix}$  أو  $\begin{bmatrix} C_nH_{2n+1}-NH_2 \end{bmatrix}$  عيث  $\begin{bmatrix} C_nH_{2n+3}N \end{bmatrix}$  الأمينية.

 $C_3H_7-NH_2$ 

بروبيل أمين

كيفية ترقيم أطول سلسلة: نبدأ من الكربون الطرفي الأقرب إلى الوظيفة الأمينية. التسمية: نقوم بإضافة كلمة أمين إلى إسم الجذر الالكيلي على شكل ـ أمين ألكيل.



الاستاذ خالد سعيدي للعلوم الفيزيائية





بلطان



| أصناف الأمينات        |                                                                   |                        |  |  |  |
|-----------------------|-------------------------------------------------------------------|------------------------|--|--|--|
| أمين ثالثي            | أمين ثانوي                                                        | أمين أولي              |  |  |  |
| صيغته من الشكل:       | صيغته من الشكل:                                                   | ،<br>مسيغته من الشكل : |  |  |  |
| $R_1 - N - R_3$ $R_2$ | $egin{array}{cccc} R_1-N-&H & & & & & & & & & & & & & & & & & & $ | Hلطان $H$ $R-N-H$      |  |  |  |

**الكتابة الطوبولوجية للمركبات العضوية:** هي تمثيل رمزي للهيكل الكربوني للجزيئ ، نمثل الروابط الكربونية

الطان فقط دون كتابة رمز الكربون.

وهي إصطلاحا عبارة عن خط متواصل منكسر ، مكون من قطع مستقيمة متساوية الطول ، حيث نهاية كل خط أو بدايته أو نقطة التقاء خطين او ثلاثة يوافق موقع ذرة كربون C .

مثال: مركب البوتان  $C_4H_{10}$  صيغته نصف مفصلة  $C_4H_{10}$   $C_4H_{10}$  يكتب طوبولوجيا