CNST V 2.0

问题

● 接口相关问题

#	作用	详情	是否必须	问题	方案
1	创建device	【sh (sh bridge service) 】 tinker在成功通过测试某一部件 时 创建一个游离 (未关联robot) 的 部件 (device)	否	cnst中是否需要提供该接口 1. cnst中是否需要存在游离的部件(cnst本身是否要对出生前部件本身进行任何形式的管理) 2. 存在游离部件是否会导致系统使用的复杂度 3. 如果提供单独的接口是否会需要考虑测试未通过相关情况	如果cnst需要关心出生前: 1.原cnst v1.0的方案不变 所有的成品机器人为一个asset 用户如果关心自己的robot 那么就去看asset。
2	关联测试报告	【sh (sh bridge service)】 tinker在成功通过测试某一部件时	否	cnst中是否需要提供该接口 同上	同上
3	创建机器人灵魂	联 【sh(sh bridge service)】tinker 在成功通过整机测试时 将所有相关联的(与tinker通 信)的部件信息收集 创建机器人	是		
4	创建机器人灵魂 并关 联相关部件时 同时创 建asset	灵魂 【sh(sh bridge service)】tinker 在成功通过整机测试时 创建了机器人灵魂并与部件相关 联后 创建asset并与之关联	否	cnst 中是否提供对外的关联asset接口 1. 是否需要自动关联asset 2. 提供了自动关联asset的能力是否需要提供手动关联asset的能力	
5	关联失败的测试报告	机器人因为某一部件出现问题 返 厂维修(此时并不能确定 是什 么的问题) 【sh(sh bridge service)】tinker 在测试返厂的机器人时	是	机器人的一部分生命周期是否需要在 cnst中维护 其零部件的生命周期是否需 要记录在cnst中	
		对有整机进行测试 产出一份失败的测试报告			

• cnst 是否保留手动创建 device asset 的能力;

保留的优点	保留的缺点	存在的矛盾点:	解决方法
保留cnst 的独立性 (即使没有sea horse依然可以通过手动创建设备来进行正常运转)	 由于操作不慎导致虚拟device 的数据污染 正常device的数据统计 (cnst统计机器人卖出/返修比等) 	TB中只有TENANT可以 创建asset以避免 上述提到的缺点	是否可以通过某些权限的设计来控制某些 Account可以创建新的device与asset
	 误将虚拟device分配给用户导致 无法得到正确的数据返回; 	目前在CNST中我们要对CUSTOMER的权限进行扩大 (white公司 是否需要创建一些 未经测试的ROBOT 或 者 一些自己的设备来进行租售的业务)	如果这么做需要具体权限的设计

• seahorse 的webprotal 需要实现哪些功能 ?