

UNIVERSIDAD DE GRANADA

Ejercicio 1 Tema 3

Métodos Numéricos II

Doble Grado en Ingeniería Informática y Matemáticas

FACULTAD DE CIENCIAS

Autor:

Quintín Mesa Romero

29 de mayo de 2023

Enunciado

1 Dado el problema de valores iniciales

$$\left\{ \begin{array}{l} x'(t) = f(t, x(t)) \\ x(a) = \mu \end{array} \right.$$

se pretende utilizar el siguiente método numérico para estimar el valor de x(b), con b > a:

$$x_{n+1} = x_n + h\left(\alpha f(t_n, x_n) + (1 - \alpha)f(t_{n+1}, x_{n+1})\right) \qquad \alpha \in [0, 1]$$
(1)

- a) ¿Podemos asegurar que el método es estable? Estudia su consistencia y su convergencia.
- b) Si sabemos que la función f es lipschitziana respecto a la segunda variable con constante de Lipschitz L ¿Cuánto debe valer h como máximo para que la ecuación (1) tenga solución para cualquier valor de n?
- c) Determina el valor de α para que el método tenga orden 2. ¿Cuál es en este caso el error de truncatura local? ¿De que orden es el error global de discretización?
- d) Para el valor obtenido en el apartado anterior, estudia si el método es A-estable. ¿Es el método A-estable para cualquier valor de α ?
- e) Aplica el método anterior al problema:

$$\begin{cases} x'(t) = -3x + t \\ x(0) = 0.3 \end{cases}$$

para estimar el valor de x(1). Realiza cuatro iteraciones del método con h = 0.25.

1. Apartado a)

Por el **Teorema de Caracterización de la estabilidad** el método es estable si y solo si el primer polinomio característico tiene todos sus ceros en el disco unidad, y los ceros de módulo 1 son simples.

Hallemos el polinomio característico:

$$p(\lambda) = \lambda - 1$$

Dicho polinomio tiene una única raíz simple, $(\lambda = 1)$ en el disco unidad, y de módulo 1. Luego, por el teorema anteriormente mencionado, el método es estable.

Veamos ahora que es consistente. Para ello, vamos a utilizar el **Teorema de Caracterización de la consistencia**, viendo si cumple las dos condiciones para que el método sea consistente:

- p(1) = 1 1 = 0
- $\phi(x(t_n), ..., x(t_n); t_n, 0) = p'(1)f(t_n, x(t_n)):$ $\phi(x(t_n), ..., x(t_n); t_n, 0) = \alpha f(t_n, x(t_n)) + (1 - \alpha)f(t_n, x(t_n)) = f(t_n, x(t_n)) = p'(1)f(t_n, x(t_n)) \iff$ $f(t_n, x(t_n)) = 1 \cdot f(t_n, x(t_n)) = f(t_n, x(t_n)).$ Luego, se verifica esta segunda condición.

Es por ello que, por el teorema de Caracterización de la consistencia, el método es consistente.

Por tanto, por el **Teorema de Caracterización de la convergencia**, como el método es estable y consistente, es convergente.

2. Apartado b)

Supongamos ahora que la función f es Lipschitziana respecto a la segunda variable $(x(t_n))$, con constante de Lipschitz L. Tenemos que encontrar un valor de h, máximo, para el que (1) tenga solución $\forall n \in \mathbb{N}$.

Para ello, vamos a aplicar un resultado para los métodos multipaso que dice que si f(t,x) es lipschitziana con constante de Lipschitz, L, y dado el método con $\beta_k \neq 0$, si $h < \frac{1}{|\beta_k|L}$ entonces, el MML

$$x_{n+k} = \sum_{j=0}^{k-1} \alpha_j x_{n+j} + h \sum_{j=0}^{k} \beta_j f_{n+j}$$

donde $f_i = f(t_i, x_i)$, admite solución.

Si observamos, el método que nos dan en el enunciado es de esa forma, donde $\beta_0 = \alpha$ y $\beta_1 = 1 - \alpha$. Aplicando el resultado anteriormente comentado, tenemos que

$$h \leq \frac{1}{|\beta_k|L} = \frac{1}{|1-\alpha|L} \stackrel{0 \leq \underline{\alpha} \leq 1}{=} \frac{1}{(1-\alpha)L}$$

Hemos encontrado por tanto la cota que hace que el método tenga solución para todo n.

3. Apartado c)

Para que el método tenga orden 2, el error local habrá de verificar que

$$R_{n+1} = O(h^3)$$

con
$$R_{n+1} = L(x(t_n); h) = C_0 x(t_n) + C_1 x'(t_n) h + C_2 x''(t_n) h^2 + C_3 x'''(t_n) h^3 + \dots$$

Imponiendo que $C_0 = C_1 = C_2 = 0$, nos sale entonces el siguiente sistema de ecuaciones, de donde obtendremos el valor de α que nos pide el ejercicio:

$$C_0 = 1 - 1 = 0$$

$$C_1 = 1 - (\alpha + 1 - \alpha) = 0$$

$$C_2 = \frac{1}{2} - (1 - \alpha) = 0$$

Luego, $\alpha = \frac{1}{2}$.

Es por ello que si $\alpha = \frac{1}{2}$, $R_{n+1} = O(h^3)$ y por consiguiente, el método es de orden 2.

A continuación, calculemos el error de truncatura local:

$$R_{n+1} = C_3 x'''(t_n)h^3 + O(h^4) = \frac{1}{3!} - \frac{1-\alpha}{2!} \stackrel{\alpha=\frac{1}{2}}{=} \frac{1}{6} - \frac{1}{4} = -\frac{1}{12}$$

Luego,

$$R_{n+1} = -\frac{1}{12}x^{"'}(t_n)h^3 + O(h^4)$$

Por último, teniendo en cuenta el **Teorema de acotación del error global**, que dice que si el método es de orden $p \ge 1$, entonces el error global es $O(h^p)$, concluimos que el error global es $O(h^2)$.

4. Apartado d)

Comprobemos ahora si, para el valor de α obtenido en c); $\alpha = \frac{1}{2}$, el método es A-estable.

Sabemos que un método es A-estable si al aplicarlo al problema de valores iniciales $x^{'} = \lambda x$, con $x(0) = \mu$ y $Re(\lambda) < 0$ se cumple:

$$\lim_{n\to\infty} x_n = 0 \forall h > 0$$

Veámoslo:

$$x_{n+1} = x_n + h(\alpha f(t_n, x_n) + (1 - \alpha)f(t_{n+1}, x_{n+1})) = x_n + h(\alpha x_n' + (1 - \alpha)x_{n+1}') =$$

$$= x_n + h(\alpha \lambda x_n + (1 - \alpha)\lambda x_{n+1}) = (1 + h\alpha\lambda)x_n + h(1 - \alpha)\lambda x_{n+1} \iff$$

$$(1 - h(1 - \alpha)\lambda)x_{n+1} = (1 + h\alpha\lambda)x_n \iff$$

$$x_{n+1} = \frac{1 + h\alpha\lambda}{1 - h(1 - \alpha)\lambda}x_n \Rightarrow x_{n+1} = \left(\frac{1 + h\alpha\lambda}{1 - h(1 - \alpha)\lambda}\right)^n x_0$$

Ahora, como $\alpha = \frac{1}{2}$,

$$x_{n+1} = \left(\frac{1 + \frac{h\lambda}{2}}{1 - \frac{h\lambda}{2}}\right)^n x_0 = \left(\frac{2 + h\lambda}{2 - h\lambda}\right)^n x_0$$

Por la definición de A-estabilidad, lo que queremos es que se verifique el límite

$$\lim_{n\to\infty} x_{n+1} = 0, \forall h > 0$$

así que para que se verifique dicho límite es necesario que

$$\left| \frac{2 + h\lambda}{2 - h\lambda} \right| < 1 \Longleftrightarrow |2 + h\lambda| < |2 - h\lambda|, \forall h > 0$$

lo cual es cierto porque h>0 y la parte real de λ es negativa entonces siempre la distancia entre 2 y $h\lambda$ siempre va a ser mayor que la de -2 y $h\lambda$.

Es por ello que el método es A-estable, para el valor de alpha, $\alpha = \frac{1}{2}$.

Pasemos ahora a comprobar si el método es A-estable para cualquier $\alpha \in [0,1]$. Para ello, se ha de cumplir, por el mismo razonamiento de antes, que

$$\frac{1 + h\alpha\lambda}{1 - h(1 - \alpha)\lambda} < 1$$

$$\iff |1 + h\alpha\lambda| < |1 - h(1 - \alpha)\lambda|$$

Si tomamos $\alpha=1\Rightarrow |1+h\lambda|<1$. Esta desigualdad no siempre se cumple. Basta tomar h>0 y λ con $Re(\lambda)<0$ que hagan incierta la desigualdad: para h>0 y λ con $Re(\lambda)<0$ tales que $|h\lambda|>1$, no se cumple la desigualdad.

Por consiguiente, concluimos que el método no es A-estable para todo $\alpha \in [0,1]$.

5. Apartado e)

Para $h=0.25, \alpha=\frac{1}{2}$, el método se presenta del problema se presenta de la siguiente forma:

$$x_{n+1} = x_n + \frac{1}{8}(-3x_n + t_n - 3x_{n+1} + t_{n+1})$$

Teniendo en cuenta que la semilla inicial es $x(0) = 0.3(t_0 = 0, x(t_0) = 0.3)$, realizemos 4 iteraciones del método:

■ Para $t_1 = \frac{1}{4}$:

$$x_1 = x_0 + \frac{1}{8}(-3x_0 + t_0 - 3x_1 + t_1) \iff$$

$$x_1 = 0.3 + \frac{1}{8}(-3 \cdot 0.3 + 0 - 3x_1 + 0.25 \iff x_1 = 0.15909090$$

■ Para $t_2 = \frac{1}{2}$:

$$x_2 = x_1 + \frac{1}{8}(-3x_1 + t_1 - 3x_2 + t_2) \iff$$

$$x_2 = 0.15909090 + \frac{1}{8}(-3 \cdot 0.15909090 + 0.25 - 3x_2 + 0.5 \iff x_2 = 0.1404959$$

■ Para $t_3 = \frac{3}{4}$:

$$x_3 = x_2 + \frac{1}{8}(-3x_2 + t_2 - 3x_3 + t_3) \iff$$

$$x_3 = 0.1404959 + \frac{1}{8}(-3 \cdot 0.1404959 + 0.5 - 3x_3 + 0.75 \iff x_3 = 0.1774981364$$

■ Para $t_4 = 1$:

$$x_4 = x_3 + \frac{1}{8}(-3x_3 + t_3 - 3x_4 + t_4) \iff$$

$$x_4 = 0.1774981364 + \frac{1}{8}(-3 \cdot 0.1774981364 + 0.75 - 3x_4 + 1 \iff x_4 = 0.2397719$$