

Image segmentation

Sang Yup Lee

Image segmentation

- What is it?
 - 이미지를 픽셀 단위로 구분하여 분할하는 것
 - Image segmentation with deep learning is about using a model to assign a class to each pixel in an image, thus segmenting the image into different zones (such as "background" and "foreground," or "road," "car," and "sidewalk").
- 주요 종류
 - Semantic segmentation
 - 픽셀을 class 단위로 구분
 - Instance segmentation
 - 동일 클래스의 다른 instance 도 구분 (다음 슬라이드 참고)
 - 둘을 합쳐서 Panoptic segmentation 이라고도 함

Detection vs. Segmentation

Object detection

Instance segmentation

Semantic segmentation

- What is it?
 - Semantic segmentation is the task of assigning a class to every pixel in a given image
 - a.k.a., dense prediction
 - Note that we're not separating instances of the same class
- 주요 모형
 - CNN-based
 - FCN, U-Net, Deeplab series, InternImage
 - Transformer-based
 - TransUNet, SegFormer
 - Multi-modal approach
 - ONE-PEACE

The goal is to take either a RGB color image (height×width×3) or a grayscale image (height×width×1) and output a segmentation map where each pixel contains a class label represented as an integer (height×width×1).


```
segmented

1: Person
2: Purse
3: Plants/Grass
4: Sidewalk
```

Input Semantic Labels

- 정답 데이터
 - 정답 정보를 one-hot encoding 형태로 표현 가능
 - 하나의 클래스마다 하나의 채널 존재

Simple approach

■ 하지만 문제 존재

CNN 구조

- Semantic segmentation model 구조
 - Encoder-decoder 구조
 - Encoder: downsampling => 클래스간 차이를 학습 (혹은 정보 추출)
 - Decoder: upsampling the feature representations into a full-resolution segmentation map

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

- Loss function
 - Cross entropy

- 이는 소프트맥스 함수를 이용해서 계산
 - 각 채널은 각 픽셀이 특정 클래스에 속할 확률값을 지님

- Upsampling (feature map의 크기 확대) 방법들
 - Transposed convolution (a.k.a., deconvolution)

- 목표 크기: 3x3
- Stride = 1

- 예제 코드
 - Tranposed_convolution.ipynb

Transposed convolution

<Source: https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967>

12/4/23 Segmentation

13

- Upsampling 방법들
 - Upsampling

- Interpolation
 - Linear interpolation
 - 직선 위의 한 점의 값을 다른 두 값을 이용해서 계산

$$A\frac{D2}{D1+D2} + B\frac{D1}{D1+D2}$$

- Interpolation
 - Bilinear interpolation
 - 2차원에서의 interpolation

<이미지의 경우>

$$X = \left(A\frac{H2}{H1 + H2} + B\frac{H1}{H1 + H2}\right)\frac{W2}{W1 + W2} + \left(D\frac{H2}{H1 + H2} + C\frac{H1}{H1 + H2}\right)\frac{W1}{W1 + W2}$$

- Python code
 - Semantic_seg_basic_example.ipynb
- Performance metrics
 - Pixel accuracy
 - 전체의 픽셀중에서 정답 클래스가 제대로 예측된 픽셀의 비중
 - 클래스 불균형에 취약
 - mean IoU
 - 각 클래스에 대한 IoU의 평균
 - Dice coefficient

FCN (Fully Convolutional Networks)

PASCAL VOC 데이터 20 + 1 (백그라운드) 클래스 원래 이미지 형태로 확대 => 그리고 픽셀별 예측 AlexNet 이용

- 모형의 구조
 - FCL를 convolutional layer로 대체

19

모형의 성능

	FCN-32s	FCN-16s	FCN-8s
IOU (Intersection over Union)	59.4(%)	62.4(%)	62.7(%)

U-Net

U-Net

▫ 구조

- Python code
 - UNet_Keras.ipynb

Instance Segmentation

- 모형의 구조
 - Faster RCNN + FCN

- 비용함수
 - $L = L_{cls} + L_{bbox} + L_{mask}$

RoI Align

RoI: RPN을 이용해서 출력

- Feature map에 RoI를 매핑한 이후 고정된 크기의 feature map (혹은 벡터)를 추출해야 한다.
 사용되는 방법: RoI Pooling, RoI Align
- 사용되는 방법: RoI Pooling, RoI Align
 Segmentation

- RoI Align
 - RoI pooling의 경우, 정보 손실 발생

RolPool의 경우 feature map에 맞추기 위해 반 올림 (예를 들어, 아래 그림의 빨간 색과 같이 수행)

그리고 그 다음 특정한 크기의 feature map (위 와는 다른 feature map임)을 추출하기 위해 Rol 를 동일한 비중으로 분할하지 못함

RoI Align

3x3의 결과를 얻고자 하는 경우

- 4개의 포인트 지정
- 각 포인트 값을 bilinear interpolation 방법을 사용해서 계산 ⇒ 인접한 4개의 셀의 값을 이용해서 bilinear 보간법 사용

여기서는 첫번째 샘플링 포인트 에 대한 값을 계산하는 중

RoI Align

1x1 = MAX(0.14, 0.21, 0.51, 0.43) = 0.51

3x3 RolAlign

0.51

- RoI Align
 - 이를 모든 레이어에 대해 수행

3x3 RolAlign

Q & A