2D Nonlinear Systems - Predator/Prey Model

Predator Prey Model

```
Consider the system given by \dot{x} = f(x, y) where f(x, y) = rx - axy \dot{y} = g(x, y) where g(x, y) = bxy - ky
```

We would like to (1) conduct local analysis, and (2) graph the phase plane to validate our local analysis conclusions.

Local Analysis

Comparing the Local Analysis with the Phase Plane for specific parameter values

Let's first pick some specific parameter values so that we can plot the solution.

parameterVals =
$$\left\{b \rightarrow 1, r \rightarrow \frac{2}{3}, k \rightarrow 1, a \rightarrow 1\right\}$$

Now, let's create a loop that iterates over each of the equilibrium points. We will plot the eigenvectors

```
In[ • ]:=
For [j = 1, j \le Length[eqPts], j++,
   esys = Eigensystem[DF[x, y] /. eqPts[j]]];
  evPlots<sub>j</sub> = ParametricPlot[
     esys[2] * s + Table[{x, y} /. eqPts[j] /. parameterVals, {k, 1, 2}], {s, -1, 1},
     PlotStyle \rightarrow {Red, Thickness \rightarrow .015},
     RegionFunction \rightarrow Function [{u, v, vx, vy, n}, (((u - x)<sup>2</sup> + (v - y)<sup>2</sup>) /. eqPts[j]) < .1]]];
EVPlot = Show[Table[evPlots;, {j, 1, Length[eqPts]}]];
eqPtsPlot = ListPlot[{x, y} /. eqPts /. parameterVals,
    PlotMarkers → {Automatic, Scaled[.04]},
    PlotStyle → Black];
pplanePlot = StreamPlot[\{f[x, y], g[x, y]\} /. parameterVals, \{x, -.5, 3\}, \{y, -.5, 2\},
    FrameLabel → {"x", "y"},
    PlotLabel → "Phase Plane"];
Show[pplanePlot, EVPlot, eqPtsPlot]
```