1	$\frac{5}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$ $= \frac{5(2+\sqrt{3})}{4-3}$	MI		Multiply top and bottom by $\pm (2 + \sqrt{3})$ $(2 + \sqrt{3})(2 - \sqrt{3}) = 1 \text{ (may be implied)}$
	$= \frac{4-3}{4-3}$ $= 10 + 5\sqrt{3}$	A1 A1	3	$(2+\sqrt{3})(2-\sqrt{3}) = 1$ (may be implied) $10+5\sqrt{3}$
	; ; ;			
2(i)	1	BI	1	
(ii)	$\frac{1}{2} \times 2^4$	Mi		$2^{-1} = \frac{1}{2} \ \underline{\mathbf{or}} \ 32^{\frac{1}{5}} = 2 \ \underline{\mathbf{or}} \ 2^{5} = 32 \ \text{soi}$
		ΜI		$32^{\frac{4}{5}} = 2^4 \text{ or } 16 \text{ seen or implied}$
	= 8	Ai	3 4	8
3(i)	$3x - 15 \le 24$ $3x \le 39$	MI		Attempt to simplify expression by multiplying out brackets
	$x \le 13$	Αl	2	<i>x</i> ≤ 13
	or $x-5 \le 8$ M1 $x \le 13$ A1			Attempt to simplify expression by dividing through by 3
(ii)	$5x^2 < 80$ $x^2 < 16$	Μl		Attempt to rearrange inequality or equation to combine the constant terms $x \cdot 4$
	x - 4 or $x = -4$	BI Al	3	fully correct, not wrapped, not 'and'
		AI	,	
				SR B1 for $x \ge 4$, $x \le -4$
			5	
		<u> </u>		

4	Let $y = x^{\frac{1}{3}}$ $y^2 + 3y - 10 = 0$ (y - 2)(y + 5) = 0 y = 2, y = -5 $x = 2^3, x = (-5)^3$ x = 8, x = -125	*M1 DM1 A1 DM1 A1ft 5	Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket Correct attempt to solve quadratic Both values correct Attempt cube Both answers correctly followed through SR B2 $x = 8$ from T & I
5 (i)		MI	Reflection in either axis
		A1 2	Correct reflection in x axis
(ii)	(1.3)	B1 B1 2	•
(iii)	Translation 2 units in negative x direction	B1 B1 2	SR B1 for (3, 1)
6 (i)	$2(x^{2} - 12x + 40)$ $= 2[(x - 6)^{2} - 36 + 40]$ $= 2[(x - 6)^{2} + 4]$ $= 2(x - 6)^{2} + 8$	BI BI MI AI 4	$a = 2$ $b = 6$ $80 - 2b^{2} \text{ or } 40 + b^{2} \text{ or } 80 - b^{2} \text{ or } 40 - 2b^{2}$ (their b) $c = 8$
(ii)	<i>x</i> = 6	Blftl	
(iii)	<i>y</i> = 8	B1 ft 1	

			Y		
7(i)	$\frac{dy}{dx} = 5$	B1 1			
(ii)	$y = 2x^{-2}$	B1	x^{-2} soi		
	$\frac{dy}{dx} = -4x^{-3}$	ВІ	$-4x^{\epsilon}$		
: :	dx	B1 3	kx ⁻³		
(111)	$y = 10x^2 - 14x + 5x - 7$	MI	Expand the brackets to give an expression		
	$y = 10x^2 - 9x - 7$	Al	of form $ax^2 + bx + c$ $(a \neq 0, b \neq 0, c \neq 0)$ Completely correct (allow 2 x-terms)		
	dv	BIft	I term correctly differentiated		
	$\frac{dy}{dx} = 20x - 9$	Blft 4	Completely correct (2 terms)		
		8			
8 (i)	$\frac{dy}{dx} = 9 - 6x - 3x^2$	*M1	Attempt to differentiate y or -y (at least one correct term)		
	dx	Al	3 correct terms		
	At stationary points, $9 - 6x - 3x^2 = 0$	MI	Use of $\frac{dy}{dx} = 0$ (for y or $-y$)		
	3(3+x)(1-x) = 0 x = -3 or x = 1	DM1 A1	Correct method to solve 3 term quadratic $x \approx -3$, 1		
	y = 0, 32	Alft 6	y = 0. 32 (1 correct pair www A1 A0)		
(ii)	$\frac{d^2y}{dx^2} = -6x - 6$	MI	Looks at sign of $\frac{d^2y}{dx^2}$, derived correctly		
			from $k \frac{dy}{dx}$, or other correct method		
	When $x = -3$. $\frac{d^2y}{dx^2} > 0$	A1	x = -3 minimum		
	When $x = 1$. $\frac{d^2y}{dx^2} < 0$	A1 3	x = 1 maximum		
(m)	-3 × x × 1	MI	Uses the x values of both turning points in inequality/inequalities		
		A1 2	Correct inequality or inequalities. Allow		
		11			

9 (i)	Gradient = 4	В1	Gradient of 4 soi
	y-7=4(x-2)	Мі	Attempts equation of straight line through (2, 7) with any gradient
	y=4x-1	A1 3	
(ii)	$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $= \sqrt{(2 - 1)^2 + (7 - 2)^2}$	MI	Use of correct formula for d or d^2 (3 values correctly substituted)
	$=\sqrt{3^2+9^2}$	Al	$\sqrt{3^2+9^2}$
	$= \sqrt{90}$ $= 3\sqrt{10}$	A1 3	Correct simplified surd
(iii)	Gradient of AB = 3	В1	
	Gradient of perpendicular line = $-\frac{1}{3}$	B1 ft	SR Allow B1 for $-\frac{1}{4}$
	Midpoint of AB = $\left(\frac{1}{2}, \frac{5}{2}\right)$	BI	
	$y - \frac{5}{2} = -\frac{1}{3}\left(x - \frac{1}{2}\right)$	MI	Attempts equation of straight line through their midpoint with any non-zero gradient
100	x+3y-8=0	Al	$y - \frac{5}{2} = \frac{-1}{3} (x - \frac{1}{2})$
		A1 6	$\mathbf{x} + 3\mathbf{y} + 8 = 0$
		12	1

10 (i)	Centre (-1, 2) $(x \pm 1)^2 - 1 + (y - 2)^2 - 4 - 8 = 0$	B1 M1		Correct centre Attempt at completing the squ	ıare
	$(x+1)^2 + (y-2)^2 = 13$ Radius $\sqrt{13}$	Al	3	Correct radius	
	Radius VI3	711	,		
		-		Alternative method: Centre $(-g, -f)$ is $(-1, 2)$	B1
				$g^2 + f^2 - c$	M1
				Radius = v13	A1
(ii)	$(2)^{2} + (k + 2)^{2} = 13$ $(k - 2)^{2} = 9$	MI		Attempt to substitute x = -3 in equation	ito circle
	$k-2=\pm 3$	MI		Correct method to solve quad	
	k = -1	Al	3	k = -1 (negative value chosen	1)
(iii)	EITHER	MI		Attempt to solve equations sit	multaneously
	y = 6 - x $(x + 1)^2 - (6 - x - 2)^2 = 13$	M1		Substitute into their circle equ	
	$(x+1)^2 - (4-x)^2 = 13$			or attempt to get an equation	in I variable
	$x^{2} + 2x + 1 = 16 - 8x + x^{2} = 13$ $2x^{2} - 6x + 4 = 0$	A1		only Obtain correct 3 term quadrat	ic
	2(x-1)(x-2) = 0	MI		Correct method to solve quad $ax^2 + bx + c = 0 (b \neq 0)$	
	$x = 1 \cdot 2$ $\therefore y = 5 \cdot 4$	A1	6	Both x values correct	
	·) · · · · · · · · · · · · · · · · ·	. VI	U	Both y values correct or	
				one correct pair of values ww	
	OR			second correct pair of values	Bi
	x = 6 - y				
	$(6-y+1)^2+(y-2)^2=13$				
	$(7-y)^2 + (y-2)^2 = 13$ 49 - 14y + y ² + y ² - 4y + 4 = 13				
	$2\nu^2 - 18\nu + 40 = 0$				
	2(y-4)(y-5)=0			SR	
	y = 4, 5 $\therefore x = 2$, 1			T&I M1 A1 One correct a	(or v) value
				A1 Correct associated	·
			12		