Caractérisation des singularités de type ${\mathfrak J}$

Félix Larose-Gervais Mai 2023

Contents

L	Introduction		
	1.1	Notations	
	1.2	Définitions	
	1.3	Rappels d'arithmétique	
		1.3.1 Algorithme d'Euclide et PGCD	
		1.3.2 Théorème des restes chinois	
	1.4	Résultats connus	
2	\mathbf{Pro}	positions	
3	Cor	njectures	

1 Introduction

1.1 Notations

Soit $m, n \in \mathbb{N}$, X un ensemble, notons

- Sym(X) le groupe de bijections de X dans lui-même
- Sym(m) le groupe de bijections $Sym(\{1, ..., m\})$
- \mathbb{Z}_n l'anneau des entiers modulo n $(\mathbb{Z}/n\mathbb{Z})$
- \mathbb{Z}_n^{\times} son groupe d'inversibles $(\{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\})$
- X^m les m-uplets de X $(\underbrace{X \times \cdots \times X}_{mfois})$

On notera aussi S_n^m les m
-uplets d'inversibles modulo n $(\mathbb{Z}_n^{\times m})$

1.2 Définitions

Définition 1. Une singularité est un $[a] = ([a_1], \ldots, [a_m]) \in S_n^m$, on appelle

- n la **racine** de la singularité
- $[a_1], \ldots, [a_m]$ les **poids** de la singularité

Définition 2. Un éclatement $a \in \mathbb{Z}^m$ d'une singularité $[a] \in S_n^m$ (noté $a \in [a]$) est un choix de représentant $a = (a_1, \ldots, a_m)$ tel que

$$\forall i \neq j : \gcd(a_i, a_j) = 1$$

On note E_a l'ensemble des singularités associées à l'éclatement a comme suit:

$$E_{a} = \{ [a^{i}] \in S_{a_{i}}^{m} \mid \forall i = 1..m, \ a_{i} > 1 \}$$

$$[a^{i}] = ([a_{1}^{i}], \dots, [a_{m}^{i}])$$

$$[a_{j}^{i}] \equiv \begin{cases} -n & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}} \quad \forall j = 1..m$$

On appelle $a = (a_1, ..., a_m)$ l'éclatement naturel de [a] si les $a_1, ..., a_m$ sont les plus petits représentant positifs de leurs classes

Définition 3. Un éclatement $a \in [a]$ est dit lisse si $E_a = \emptyset$

Définition 4. La singularité [a] est dite de **type** \mathfrak{J} (noté $[a] \in \mathfrak{J}$) ssi

$$\exists a \in [a] : \forall [a^i] \in E_a : [a^i] \in \mathfrak{J}$$

1.3 Rappels d'arithmétique

1.3.1 Algorithme d'Euclide et PGCD

Soit $a, b \in \mathbb{Z}$, on calcule le PGCD comme suit

$$\gcd(a,b) := \begin{cases} a & \text{si } b = 0\\ \gcd(b, a \mod b) & \text{sinon} \end{cases}$$

Avec $k \in \mathbb{Z}$, on a les propriétés suivantes:

$$\gcd(a,1) = 1\tag{1}$$

$$\gcd(a,b) = \gcd(b,a) \tag{2}$$

$$\gcd(a,b) = \gcd(a+kb,b) \tag{3}$$

De la dernière on déduit directement, pour $n \in \mathbb{N}$

$$a \equiv b \pmod{n}$$
$$\implies \gcd(a, n) = \gcd(b, n)$$

1.3.2 Théorème des restes chinois

Soit $m, n_1, \ldots, n_m \in \mathbb{N}$ et $a_1, \ldots, a_m \in \mathbb{Z}$, notons le produit $n = n_1 \cdots n_m$ Si $\forall i \neq j : \gcd(n_i, n_j) = 1$ Alors $\exists! x \in \mathbb{Z}_n$ tel que

$$x \equiv a_1 \pmod{n_1}$$

 \vdots
 $x \equiv a_m \pmod{n_m}$

1.4 Résultats connus

Résultats utiles, dûs à Habib Jaber.

Proposition 1. Soit $a_1, a_2 \in \mathbb{Z}$, $gcd(a_1, a_2) = 1$, alors

$$[(a_1, a_2)]_{a_1 + a_2} \in \mathfrak{J}$$

Exemple 1. $gcd(2,1) = 1 \implies [(2,1)]_3 \in \mathfrak{J}$

Proposition 2.

$$[(a_1,a_2)]_n \in \mathfrak{J} \iff \forall k \in \mathbb{Z} : [(a_1,a_2)]_{n+ka_1a_2} \in \mathfrak{J}$$

Exemple 2. $[(2,1)]_3 \in \mathfrak{J} \implies [(2,1)]_5 \in \mathfrak{J}, [(2,1)]_7 \in \mathfrak{J}, \dots$

2 Propositions

Soit $\sigma \in Sym(m)$, et ces permutations associées $\pi_{\sigma} \in Sym(S_n^m)$

Proposition 3. L'ordre des poids d'une singularité n'affecte pas le type \mathfrak{J}

$$[a] \in \mathfrak{J} \implies \pi_{\sigma}([a]) \in \mathfrak{J}$$

Proof. Pour $a = (a_1, \ldots, a_m) \in [a]$ tel que $\forall [a^i] \in E_a : [a^i] \in \mathfrak{J}$, on a

1. Cas de base: $E_a = \emptyset$

On a donc a = (1, ..., 1)

Ainsi
$$[a] = ([1], \dots, [1]) = \pi_{\sigma}([a]) \in \mathfrak{J}$$

2. Induction structurelle

Supposons $\forall [a^i] \in E_a : [a^i] \in \mathfrak{J} \implies \pi_{\sigma}([a^i]) \in \mathfrak{J}$

$$E_{a} = \{ [a^{i}] \in S_{a_{i}}^{m} \mid \forall i = 1..m, \ a_{i} > 1 \}$$

$$[a^{i}] = ([a_{1}^{i}], \dots, [a_{m}^{i}])$$

$$[a_{j}^{i}] \equiv \begin{cases} -n & \text{si } i = j \\ a_{j} & \text{sinon} \end{cases} \pmod{a_{i}} \quad \forall j = 1..m$$

Considérons, pour $b = (b_1, \ldots, b_m) = (a_{\sigma(1)}, \ldots, a_{\sigma(m)}) \in \pi_{\sigma}([a])$

$$E_b = \{[b^i] \in S_{b_i}^m \mid \forall i = 1..m, \ b_i > 1\}$$

$$[b^i] = ([b^i_1], \dots, [b^i_m])$$

$$[b^i_j] \equiv \begin{cases} -n & \text{si } i = j \\ b_j & \text{sinon} \end{cases} \pmod{b_i} \quad \forall j = 1..m$$

$$\equiv \begin{cases} -n & \text{si } \sigma(i) = \sigma(j) \\ a_{\sigma(j)} & \text{sinon} \end{cases} \pmod{a_{\sigma(i)}}$$

$$\equiv [a^{\sigma(i)}_{\sigma(j)}]$$

$$[b^i] = ([a^{\sigma(i)}_{\sigma(1)}], \dots, [a^{\sigma(i)}_{\sigma(m)}])$$

$$= \pi_{\sigma}([a^{\sigma(i)}]) \in \mathfrak{J}$$

Ainsi $\pi_{\sigma}([a]) \in \mathfrak{J}$

Exemple 3. Sachant $[(3,2)]_5 \in \mathfrak{J}$, on en déduit $[(2,3)]_5 \in \mathfrak{J}$

Proposition 4. (strict, rework) Soit $a = (a_0, a_1, a_2)$, alors

$$a \in \mathfrak{J} \implies a_0 \ge a_1 + a_2$$

Proof. Supposons $a_0 < a_1 + a_2$

Si $a_1 = a_2$, alors $\neg \mathfrak{J}(a)$

Sinon, $a_1 \neq a_2$, supposons sans perdre de généralité que $a_1 > a_2$ Considérons l'éclatement $a^1 = (a_1, -a_0 \mod a_1, a_2 \mod a_1) \in E_a$

$$a_1 > a_2 \implies 2a_1 > a_1 + a_2$$

$$\implies (-a_0 \mod a_1) = 2a_1 - a_0$$

$$a_1 > a_2 \implies (a_2 \mod a_1) = a_2$$

On a donc $a^1 = (a_1, 2a_1 - a_0, a_2)$

Puisque $a_0 < a_1 + a_2$, on a $a_1 < 2a_1 - a_0 + a_2$

Donc a^1 vérifie la condition initiale, on répète le raisonnement avec a^1

Exemple 4. $(5,4,3) \notin \mathfrak{J} \ car \ 5 < 7$

Proposition 5. Toute singularité admet un éclatement

Proof. Soit $[a] = ([a_1], \dots, [a_m]) \in S_n^m$

Prenons $(a_1, \ldots, a_m) \in [a]$ son représentant naturel

On cherche $(b_1, \ldots, b_m) \in [a]$ tels que $\forall i \neq j : \gcd(b_i, b_j) = 1$

Il suffit de prendre $b_1 = a_1$ et $\forall i = 2..m$, un b_i vérifiant

$$b_i \equiv a_i \pmod{n}$$
$$b_i \equiv 1 \pmod{b_1}$$

 $b_i \equiv 1 \pmod{b_{i-1}}$

De tels b_i existent par le théorème des restes chinois On vérifie la coprimalité sachant, étant donné $a, b \in \mathbb{Z}$ et $c \in \mathbb{N}$

$$\gcd(a,1) = 1$$
 et $a \equiv b \pmod{c} \implies \gcd(a,c) = \gcd(b,c)$

On a donc

$$\forall i : \gcd(b_i, n) = 1$$

$$\forall i \neq j : \gcd(b_i, b_i) = 1$$

3 Conjectures

Conjecture 1. Soit $a = (a_0, a_1, a_2)$ un éclatement d'une singularité [a] Posons $s = a_1 + a_2 + \gcd(a_0 - a_1, a_0 - a_2)$ Supposons $a_0 < s$ Alors [a] est de type $\mathfrak{J} \implies s = a_0 + 1$

On constate que la réciproque n'est pas vraie, par exemple prenons (13,7,4), on a s=14, vérifiant donc $a_0 < 14$ et $a_0 + 1 = 14$, or elle n'est pas de type \mathfrak{J} .

Conjecture 2. Soit $a = (a_0, a_1, a_2)$ un éclatement d'une singularité [a] Alors [a] est de type $\mathfrak{J} \Longrightarrow \exists p, q: a_0 = p*a_1 + q*a_2$

Conjecture 3. (strict) Soit $[a] = ([a_1], \dots, [a_m]) \in \mathfrak{J}, m \geq 2$ Alors $|\{a_i \in [a] \mid a_i == 1\} \geq m-2$

Conjecture 4. Si $[a] \in \mathfrak{J}$, alors son représentant naturel $a \in [a]$ offre une suite d'éclatement montrant $[a] \in \mathfrak{J}$