

Peuplement et ressources

- Nutrition carbonée d'un peuplement végétal
- Alimentation hydrique d'un peuplement
- Peuplement végétal cultivé et nutrition minérale
- Le partage des ressources au sein d'un peuplement

Peuplement et ressources

- Nutrition carbonée d'un peuplement végétal
- Alimentation hydrique d'un peuplement
 - L'eau dans le complexe sol-plante-atmosphère
 - Les régulations des transferts d'eau
 - Évaluer la contrainte hydrique d'un peuplement
 - Gérer la contrainte hydrique de la culture
- Peuplement végétal cultivé et nutrition minérale
- Le partage des ressources au sein d'un peuplement

L'eau dans le continuum sol-plante-atmosphère

Principales fonctions de l'eau?

120

Source: Cruiziat 1997

Etat de l'eau dans le continuum S-P-A

Schéma des phénomènes hydriques dans le CSPA. Sol humide, évaporation faible (1), évaporation forte (2). Sol sec, évaporation faible (3), évaporation forte (4) (d'après Guyot, 1997).

Variation de volume au cours de la journée

- transpiration
- absorption

123

Source: Cruiziat 1997

Cas d'un couvert :

- Racines puisent de l'eau → vers feuilles : contact avec atmosphère et vaporisation via les stomates
- Régulation de l'eau par ouverture et fermeture des stomates :
 - Ouverture : plante comme une nappe d'eau
 - Fermeture : 0 transpiration

DONC : relation eau-sol-atmosphère est gouvernée par des considérations énergétiques

Alimentation hydrique Alimentation hydrique

Notions clés

- ETP EvapoTranspiration Potentielle (formule de Penman)
 - Prise en compte des régulations des végétaux => couvert idéal
 - Dépend de conditions météorologiques (rayonnement, vitesse du vent, humidité de l'air et température de l'air) = demande climatique
- ETM EvapoTranspiration Maximum (eau non limitante)
 - Dépend culture considérée, stade phénologique (degré de croissance et de développement du couvert), conditions météorologiques
 - => couvert en conditions réelles mais sans limitation en eau
- ETR EvapoTranspiration Réelle
 - Dépend de ETM + capacité du sol à fournir l'eau nécessaire
 - => couvert en conditions réelles avec limitation en eau
 - → Niveau de satisfaction des besoins en eau = ETR/ETM
- Q max Débit maximum dépend morphologie, âge, racines et eau dans le sol

Importance du positionnement du cycle

Notion d'eau transpirable par la plante

- TTSW: Total Transpirable Soil Water
 - Elle dépend de : texture, porosité, propriétés hydrodynamiques du sol, profondeur d'enracinement
 - Et des densités racinaires pour chaque horizon!

Stock d'eau transpirable par la plante

Les régulations des transferts d'eau

Régulation des transferts d'eau

Stress hydrique et croissance

Variation relative de la photosynthèse et de la transpiration

Influence de l'offre sur la croissance

Régulation des transferts d'eau

La demande climatique varie

Fermeture des stomates

Travail actif, stomates ouverts

134

Source: Duthil, 1973

Régulation des transferts d'eau

Régulation stomatique de transpiration

Potentiel hydrique du sol MPa

> Conductance stomatique µmol m⁻² s⁻¹

Concentration en ABA du xylème mol m⁻³

Potentiel hydrique foliaire et teneur en eau relative. de la feuille MPa

L'assèchement du sol induit une diminution du potentiel du sol

La régulation stomatique est rapidement mise en place

L'ABA est le premier signal de stress

L'assèchement de la feuille est évité autant que possible

Source: Tardieu, 1996

Régulation des transferts d'eau

Fonction de stress

Régulation des transferts d'eau

Valorisation de l'eau

Régulation des transferts d'eau

Plantes iso et aniso-hydriques

Source: de Parcevaux et Huber 2007

Régulation des transferts d'eau

Les étapes de la régulation

Intensité du stress hydrique	-> Seuil pour les stomates
Diminution du développement du couvert	
Augmentation de la croissance des racines par rapport au système aérien	
Ajustement osmotique -	
Fermeture stomatique	
Flétrissement ou enroulement de la feuille	
Sénescence de la feuille	
Mort de la feuille par dessication	
Début du stress	→ Mo

Evaluer la contrainte hydrique

Différents indicateurs

- Indicateurs directs d'état hydrique de la plante :
 - Teneur en eau des feuilles (peu pratique)
 - Potentiel hydrique foliaire (de base, de tige...)
- Indicateurs indirects d'état hydrique de la plante :
 - Conductance/résistance stomatique
 - Température foliaire (radiothermométrie)
 - Diamètre de tronc
 - Transpiration réelle (flux de sève, lysimètre...)
- Indicateurs des conditions d'alimentation de la plante
 - Bilan hydrique du sol
 - Potentiel hydrique du sol (tensiomètres)
 - **.**..

Evaluer la contrainte hydrique

Mesure des émissions IR par satellite

Evaluer la contrainte hydrique

- Gestion de l'irrigation se fait souvent grâce à :
 - Un suivi tensiométrique (watermarks...)
 - Un bilan hydrique

Gérer la contrainte hydrique

Optimiser l'efficience d'utilisation de l'eau

- Efficience d'utilisation de l'eau (WUE) : masse d'eau consommée par les plantes (ETR) / matière sèche produite
 - Dépend (un peu) des caractéristiques de l'espèce (résistance aux transferts de CO2)
 - Dépend du stade de développement de la culture (évaporation)
 - Dépend surtout des conditions de milieu

Gérer la contrainte hydrique

Optimiser le rapport entre offre et demande

- Augmenter l'offre (Qmax) :
 - Améliorer l'enracinement (travail du sol, implantation, drainage)
 - Irriguer (attention à ne pas aller contre l'enracinement !)

Gérer la contrainte hydrique

Gérer la contrainte hydrique

Optimiser le rapport entre offre et demande

- Augmenter l'offre (Qmax) :
 - Améliorer l'enracinement (travail du sol, implantation, drainage)
 - Irriguer (attention à ne pas aller contre l'enracinement !)
 - Limiter l'évaporation du sol (mulch, travail superficiel)
- Optimiser la demande :
 - Décaler le cycle de croissance
 - Réduire le rayonnement incident en milieu de journée
 - Réduire le vent (haies)
 - Diminuer la surface foliaire

Travail actif, stomates ouverts

Alimentation hydrique

Gérer la contrainte hydrique

Source : de Parcevaux et Huber 2007

Optimiser le rapport entre offre et demande

Gérer la contrainte hydrique

Stratégies naturelles d'adaptation

- L'esquive :
 - Réalisation du cycle en dehors des périodes arides
 - Cycles plus courts
- L'évitement (de la déshydratation) :
 - **Éviter les pertes d'eau** (épines, sénescence et abscission précoce des feuilles, renforcement cuticule, métabolisme CAM…)
 - Augmenter l'absorption (croissance racinaire augmentée, ramification, amélioration de la conductance stomatique, évitement cavitation...)
- La tolérance (à la déshydratation) :
 - Ajustement osmotique
 - Dormance...

Gérer la contrainte hydrique

Optimiser le rapport entre offre et demande

- Améliorer la résistance à la sécheresse :
 - Choix des cultures
 - Sélection variétale
 - OGM?

Peuplement et ressources

- Nutrition carbonée d'un peuplement végétal
- Alimentation hydrique d'un peuplement
- Peuplement végétal cultivé et nutrition minérale
- Le partage des ressources au sein d'un peuplement

Peuplement et ressources

- Nutrition carbonée d'un peuplement végétal
- Alimentation hydrique d'un peuplement
- Peuplement végétal cultivé et nutrition minérale
 - Les éléments minéraux dans le peuplement
 - Les transferts sol-plante
 - Gérer la fertilisation de la culture
- Le partage des ressources au sein d'un peuplement

Les éléments minéraux

Rôle des éléments minéraux

- Constituants de base des tissus (C, O, H, N, P) :
 - Éléments constituants de la matière sèche
 - Rq : d'autres éléments jouent également ce rôle
- lons pour le maintien d'un équilibre du milieu interne (Ca, Mg, K, Na) :
 - Maintien de la pression osmotique
 - Maintien de l'équilibre électrique
- Rôle de catalyseurs à certaines réactions (oligo-éléments)

Les éléments minéraux

Absorption des minéraux par le peuplement

Deux voies d'absorption :

- La voie aérienne :
 - Carbone, oxygène (photosynthèse)
 - Autres éléments sous forme gazeuse (ex. SO2)
- La voie racinaire :
 - Voie principale d'absorption minérale
 - Généralement sous forme dissoute dans la solution de sol (liée à l'alimentation hydrique !)

Composition de la plante

- La composition de la plante varie fortement en fonction de :
 - L'espèce
 - L'âge et la nature de l'organe
 - La conduite de la culture (notamment la fertilisation)

Lien entre composition et production

Un peu de vocabulaire

- Quelques notions liées à la nutrition minérale du peuplement :
 - Carence vraie : faible présence de l'élément dans le milieu
 - Carence induite : défaut de nutrition qui n'est pas lié à une faible présence de l'élément (déséquilibres chimiques, pH, anoxie, éléments antagonistes)
 - Déficience ou sub-carence : pas de symptômes visibles
 - Consommation de luxe : augmentation des prélèvements sans augmentation de croissance (peut jouer sur qualité)
 - Toxicité : excès d'éléments dans la plante qui s'intoxique (trop forte biodisponibilité dans le milieu)

Antagonisme entre éléments

Fertilisation K	K	Ca	Mg	Total	
1	26	102	67	195	
2	98	64	30	192	
3	131	56	22	209	

Kg/ha

Besoins et prélèvements

Besoins et prélèvements

Kg/ha

Besoins totaux

$$N = 227$$

$$P = 88$$

$$K = 350$$

$$Ca = 174$$

$$Mg = 87$$

$$S = 215$$

Exportations

$$N = 105$$
 $S = 72$

$$P = 47$$
 $Ca = 17$

$$K = 35$$
 $Mg = 14$

Restitutions

$$P = 41$$
 Ca = 157

$$K = 315$$
 $Mg = 73$

Construction d'une courbe de dilution

La courbe est construite à partir des points critiques déduits d'essais teneur – rendement

Construction d'une courbe de dilution

Construction d'une courbe de dilution

165

Source: Justes et al 1995

Construction d'une courbe de dilution

166

Source: Andrieu et al 2006

Construction d'une courbe de dilution

 La courbe de dilution ou courbe de teneur en azote critique est de la forme :

$$Nc = a(W)^{1-b}$$

Avec:

- Nc : la teneur en azote critique
- W : la matière sèche produite par le peuplement
- a et b : des paramètres dépendant de l'espèce

Construction d'une courbe de dilution

Espèce	10a	b	Sources		
Graminées C3	48	0,32	Lemaire et salette, 1984		
Luzerne C3	48	0,33	Lemaire et al., 1986		
Pois C3	51	0,32	Ney et al., 1997		
Blé C3	53	0,44	Justes et al., 1994		
Colza C3	45	0,25	Colnenne et al., 1998		
Tomate C3	45	0,33	Tei et al., 2002		
Maïs C4	34	0,37	Plénet et Lemaire, 2000		
Sorgho C4	39	0,39	Plénet et Cruz, 1997		

L'offre potentielle du sol

Source: Fabre 1985

Absorption des éléments minéraux

171

Source: Walbot 1995

La mobilité des ions dans le sol

- Les éléments se déplacent dans le sol et viennent au contact des racines :
 - Par diffusion
 - Par le mouvement de l'eau
- Ces mouvements sont faibles!

- Un bon enracinement sera donc utile :
 - À l'ancrage de la plante
 - À la nutrition (offre du sol)

Offre de la solution du sol – Mass flow

Transport passif

	N	P_2O_5	K ₂ O	CaO	MgO
Concentration de la solution (mg/l)	20-200	0.45	12	280	42
Éléments contenus dans 300mm d'eau (3000 tonnes) (kg/ha)	60-600	1.4	36	840	125
Besoins pour un blé de 70qtx/ha (kg/ha)	210	84	182	56	28
Rapport apports/besoins	2,86	0,017	0,20	15,00	4,46

173

Source: Gachon 1975

Une absorption racinaire en deux temps

- Deux phases possibles dans l'absorption des éléments nutritifs par le système racinaire :
 - Une phase passive
 - Une absorption liée à l'activité métabolique (besoin énergie !)

Conditions de l'activité racinaire

- Etat du peuplement :
 - Stade de développement du peuplement

Conditions de l'activité racinaire

Stade de développement du peuplement

Conditions de l'activité racinaire

- Etat du peuplement :
 - Stade de développement du peuplement
 - Sous la dépendance du fonctionnement des parties aériennes (besoins + matériaux)

Conditions de l'activité racinaire

Dépendance aux parties aériennes

179

Source : Maertens 1971

Conditions de l'activité racinaire

- Etat du peuplement :
 - Stade de développement du peuplement
 - Sous la dépendance du fonctionnement des parties aériennes (besoins + matériaux)
- Conditions du milieu :
 - Températures
 - Humidité (plasticité du sol)
 - Aération et mouvement des gaz dans la rhizosphère (anoxie)
 - Structure du sol (compacité) et obstacles physiques
 - Obstacles chimiques (toxicité aluminique, salinité, résidus phytosanitaires)

Capacité d'extraction de la plante

La capacité d'extraction du peuplement va être affectée :

- Par la structure du système racinaire :
 - Système pivotant plus sensible à des carences qu'un système fasciculé

Capacité variable à coloniser le sol

Coton

Capacité variable à coloniser le sol

Vigne

Capacité variable à coloniser le sol

Fétuque élevée

Ray-grass

Le système racinaire est favorisé

Capacité d'extraction de la plante

La capacité d'extraction du peuplement va être affectée :

- Par la structure du système racinaire :
 - Système pivotant plus sensible à des carences qu'un système fasciculé
- Par la dynamique des besoins :
 - Croissance rapide → besoins instantanés plus importants
- La plante modifie le milieu par les excrétions racinaires et la consommation d'éléments minéraux :
 - Modification du pH de la rhizosphère
 - Excrétion d'enzymes
 - Cortèges mycorhiziens et bactéries

La plante agit sur et réagit à son milieu

187

Source: Jaillard 2002

Acidification/Alcalinisation du milieu

Cristaux de citrate de calcium précipités dans la rhizosphère de racines protéoïdes de lupin blanc cultivé en sol calcaire pauvre en P

Capacité d'échange cationique

Compétition sol-peuplement végétal

La compétition entre ces deux CEC pour les éléments minéraux du sol va varier avec :

- La nature et la concentration des minéraux :
 - Dépend de la charge des ions
 - Dépend de sa mobilité
- Le pouvoir fixateur du sol :
 - Fort pouvoir fixateur → moins d'ions en solution

Compétition sol-peuplement

Importance du pouvoir fixateur du sol

Compétition sol-peuplement végétal

La compétition entre ces deux CEC pour les éléments minéraux du sol va varier avec :

- La nature et la concentration des minéraux :
 - Dépend de la charge des ions
 - Dépend de sa mobilité
- Le pouvoir fixateur du sol :
 - Fort pouvoir fixateur → moins d'ions en solution
- La nature du peuplement :
 - Capacité d'extraction
 - Dynamique de prélèvements
- Les conditions du milieu :
 - Compacité, humidité, etc.

Favoriser le peuplement cultivé

Il faut favoriser le peuplement dans sa compétition avec le sol pour les minéraux :

- Bonnes conditions de croissance racinaire pour une prospection maximale du sol
 - Travail du sol, implantation des cultures et irrigation
- Optimisation de la disponibilité des éléments :
 - Travail du sol et irrigation
- Favoriser la croissance du peuplement :
 - Implantation, irrigation, protection...

Favoriser la prospection racinaire

195

Source : Manichon et Capillon

Améliorer la biodisponibilité des éléments

Utiliser les bons indicateurs

Les éléments minéraux

Evaluation de l'état de nutrition azotée

Tableau de synthèse

	Forte of	demande	Faible demande		
	Racines faibles	Racines fortes	Racines faibles	Racines fortes	
Réponse à l'apport	Réponse forte	Réponse faible	Réponse nulle à faible	Réponse nulle	
Elément non retenu N, S, Oligo-éléments	Apports = besoins - fournitures du sol, fractionnement		Apports minimum selon sensibilité de la plante voire nuls		
Elément retenu, P, K, Ca	Apports ≥ exportations	Apports = exportations Apports = exportations			

199

Source: Fabre 2008

Peuplement et ressources

- Nutrition carbonée d'un peuplement végétal
- Alimentation hydrique d'un peuplement
- Peuplement végétal cultivé et nutrition minérale
- Le partage des ressources au sein d'un peuplement

Peuplement et ressources

- Nutrition carbonée d'un peuplement végétal
- Alimentation hydrique d'un peuplement
- Peuplement végétal cultivé et nutrition minérale
- Le partage des ressources au sein d'un peuplement
 - Compétition au sein du peuplement
 - Répartition des ressources entre puits

Effet de la densité

Sélection des plus forts

Variations des critères mesurés en février ou avril selon le devenir des pieds

Date des relevés Critères mesurés		4 février 1975			24 février 1976		12 avril 76
		Diamètre au collet (en mm) Nombre de feuilles vertes	Somme des largeurs de feuilles (cm)	Diamètre au collet (en mm)	Nombre de feuilles vertes	Hauteur en cm	
Catégories de pieds	Pieds disparais- sant entre février et mars - avril	1,59 a	3.82 a	27.50 _a	1.83 _a	4.75 _a	-
	Pieds disparais- sant entre mars- avril et juillet	2,19 _b	5,37 _b	65,19 _b	1.98 _a	4.72 a	15,50 _a
	Pieds présents à la récolte et non producteurs	2,08 _b	5.15 _b	54,46 _b	3.40 _b	6.52 b	32,70 b
	Pieds présents à la récolte et producteurs	2,92 c	6.04 _c	94,33 _c	4,15 c	6,99 b	43,78 c

a, b, c : On indexe de la même lettre les résultats de catégories de pieds qui ne sont pas différents à p = 0.05 pour un caractère. 204

Source: Fabre

Compétition pour la lumière

Transmittance dans un couvert de légumineuses fouragères

Compétition pour la lumière

'Courtot' entre 2 'Courtot'

'Choisy' entre 2 'Courtot'

'Courtot' entre 2 'Choisy'

'Choisy' entre 2 'Choisy'

Compétition pour les ressources souterraines

Compétition pour l'eau

Growing Degree Day (°C)

Equilibre sources/puits

Activité des sources de carbone

211

Source: Laloux 1973

Importance des réserves

Contribution de l'azote issu des réserves azotées et de l'azote exogène (fixation ou absorption) à l'azote total des parties aériennes au cours d'une repousse.

% de l'azote total au moment de la récolte

Affectation des assimilats et minéraux

O = Offre (Sources)

