CS685: Data Mining What is (not) Data Mining

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2021-22 Mon 1030-1200 (online)

What is data mining?

- Extracting or mining knowledge from large amounts of data
- Knowledge discovery from data (KDD)
- We are in a data rich but information poor scenario

What is data mining?

- Extracting or mining knowledge from large amounts of data
- Knowledge discovery from data (KDD)
- We are in a data rich but information poor scenario
- Data mining is supported by three major technologies
 - Massive data collection
 - 2 Data mining algorithms
 - Opening a property of the p

What is data mining?

- Extracting or mining knowledge from large amounts of data
- Knowledge discovery from data (KDD)
- We are in a data rich but information poor scenario
- Data mining is supported by three major technologies
 - Massive data collection
 - 2 Data mining algorithms
 - Opening a property of the p
- It is in the confluence of
 - Machine learning
 - Statistics
 - Databases
 - Information retrieval
 - Visualization techniques

Data Mining Challenges I

- Scalability : τ8, ⁶⁶
- High dimensionality: no of features in data { Exponentially hardes?
- Heterogeneous and complex data
 - Web
 - Unstructured text
 - Graph
- Distributed data
- Data ownership and privacy
 - How to access knowledge without violating privacy
- Classification
 - Predicting the class of a data object
- Clustering
 - Finding groups in data
- Association
 - Finding co-occurring and related itemsets

Data Mining Challenges II

- Visualization termous are good at visualizing data
 Facilitating human discovery of patterns (Finding patterns)

- Summarization
 - Succinctly describing a group
- outrier detection Anomaly detection
 - Identifying abnormal behavior
- Estimation
 - Predicting values of a data object
- Link analysis
 - Finding relationships among data objects

 Rhine, a para-psychologist, proceeded to show that people experience extra-sensory perception (ESP)

- Rhine, a para-psychologist, proceeded to show that people experience extra-sensory perception (ESP)
- Asked many people to correctly guess a sequence of 10 red or blue cards
- About 1 in every 1000 was right
- Rhine declared that they had ESP
- Called them for further investigation

- Rhine, a para-psychologist, proceeded to show that people experience extra-sensory perception (ESP)
- Asked many people to correctly guess a sequence of 10 red or blue cards
- About 1 in every 1000 was right
- Rhine declared that they had ESP
- Called them for further investigation
- They lost ESP

- Rhine, a para-psychologist, proceeded to show that people experience extra-sensory perception (ESP)
- Asked many people to correctly guess a sequence of 10 red or blue cards
- About 1 in every 1000 was right
- Rhine declared that they had ESP
- Called them for further investigation
- They lost ESP
- Conclusion was one should not inform people that they have ESP

• A lady claimed that she can sense if tea or milk was mixed later

- A lady claimed that she can sense if tea or milk was mixed later
- Fisher tested with 8 cups, with 4 having tea mixed later
- Only 1 chance of being correct out of $\binom{8}{4} = 70$ possibilities

- A lady claimed that she can sense if tea or milk was mixed later
- Fisher tested with 8 cups, with 4 having tea mixed later
- Only 1 chance of being correct out of $\binom{8}{4} = 70$ possibilities
- Lady was wrong

- A lady claimed that she can sense if tea or milk was mixed later
- Fisher tested with 8 cups, with 4 having tea mixed later
- Only 1 chance of being correct out of $\binom{8}{4} = 70$ possibilities
- Lady was wrong
- She claimed that she is mostly correct

- A lady claimed that she can sense if tea or milk was mixed later
- Fisher tested with 8 cups, with 4 having tea mixed later
- Only 1 chance of being correct out of $\binom{8}{4} = 70$ possibilities
- Lady was wrong
- She claimed that she is mostly correct
- Multiple tests

Terrorism

- Is it sensible to try and detect possible terror links among people?
- Setting: assume terrorists meet at least twice in a hotel to plot something sinister
- Government method: they will scan hotel logs to identify such occurrences

Terrorism

- Is it sensible to try and detect possible terror links among people?
- Setting: assume terrorists meet at least twice in a hotel to plot something sinister
- Government method: they will scan hotel logs to identify such occurrences
- Data assumptions
 - Number of people: 10^9
 - Tracked over 10³ days (about 3 years)
 - ullet A person stays in a hotel with a probability of 1%
 - Each hotel hosts 10² people at a time
 - Total number of hotels is 10^5

Terrorism

- Is it sensible to try and detect possible terror links among people?
- Setting: assume terrorists meet at least twice in a hotel to plot something sinister
- Government method: they will scan hotel logs to identify such occurrences
- Data assumptions
 - Number of people: 109
 - Tracked over 10³ days (about 3 years)
 - ullet A person stays in a hotel with a probability of 1%
 - Each hotel hosts 10² people at a time
 - Total number of hotels is 10⁵
- Deductions
 - A person stays in hotel for 10 days
 - Each day, 10^7 people stay in a hotel

• In a day, probability that person A and B stays in the same hotel is 10^{-9}

- In a day, probability that person A and B stays in the same hotel is 10^{-9}
 - Probability that A stays in a hotel that day is 10^{-2}
 - Probability that B stays in a hotel that day is 10^{-2}
 - ullet Probability that B chooses A's hotel is 10^{-5}

- In a day, probability that person A and B stays in the same hotel is 10^{-9}
 - Probability that A stays in a hotel that day is 10^{-2}
 - Probability that B stays in a hotel that day is 10^{-2}
 - Probability that B chooses A's hotel is 10^{-5}
- Probability that A and B meet twice is 10^{-18}
 - \bullet Two independent events: $10^{-9}\times 10^{-9}$

- In a day, probability that person A and B stays in the same hotel is 10^{-9}
 - Probability that A stays in a hotel that day is 10^{-2}
 - Probability that B stays in a hotel that day is 10^{-2}
 - Probability that B chooses A's hotel is 10^{-5}
- Probability that A and B meet twice is 10^{-18}
 - Two independent events: $10^{-9} \times 10^{-9}$
- Total pairs of days is (roughly) 5×10^5
 - Any 2 out of 10^3 : $\binom{10^3}{2}$

- In a day, probability that person A and B stays in the same hotel is 10^{-9}
 - Probability that A stays in a hotel that day is 10^{-2}
 - Probability that B stays in a hotel that day is 10^{-2}
 - Probability that B chooses A's hotel is 10^{-5}
- Probability that A and B meet twice is 10^{-18}
 - Two independent events: $10^{-9} \times 10^{-9}$
- \bullet Total pairs of days is (roughly) 5×10^5
 - Any 2 out of 10^3 : $\binom{10^3}{2}$
- ullet Probability that A and B meet twice in some pair of days is (roughly) $5 imes 10^{-13}$
 - $10^{-18} \times 5 \times 10^5$

- In a day, probability that person A and B stays in the same hotel is 10^{-9}
 - Probability that A stays in a hotel that day is 10^{-2}
 - Probability that B stays in a hotel that day is 10^{-2}
 - Probability that B chooses A's hotel is 10^{-5}
- Probability that A and B meet twice is 10^{-18}
 - Two independent events: $10^{-9} \times 10^{-9}$
- \bullet Total pairs of days is (roughly) 5×10^5
 - Any 2 out of 10^3 : $\binom{10^3}{2}$
- ullet Probability that A and B meet twice in some pair of days is (roughly) $5 imes 10^{-13}$
 - $10^{-18} \times 5 \times 10^5$
- Total pairs of people is (roughly) 5×10^{17}
 - Any 2 out of 10^9 : $\binom{10^9}{2}$

- In a day, probability that person A and B stays in the same hotel is 10^{-9}
 - Probability that A stays in a hotel that day is 10^{-2}
 - Probability that B stays in a hotel that day is 10^{-2}
 - Probability that B chooses A's hotel is 10^{-5}
- Probability that A and B meet twice is 10^{-18}
 - Two independent events: $10^{-9} \times 10^{-9}$
- ullet Total pairs of days is (roughly) $5 imes 10^5$
 - Any 2 out of 10^3 : $\binom{10^3}{2}$
- Probability that A and B meet twice in some pair of days is (roughly) 5×10^{-13}
 - $10^{-18} \times 5 \times 10^5$
- ullet Total pairs of people is (roughly) $5 imes 10^{17}$
 - Any 2 out of 10^9 : $\binom{10^9}{2}$
- Expected number of suspicions, i.e., probability that any pair of people meet twice on any pair of days is 2.5×10^5
 - $5 \times 10^{-13} \times 5 \times 10^{17}$

- A man goes to an ice-cream parlor every night after dinner
- He observes that only on days he orders vanilla flavor, his car stalls
- When any other flavor is ordered, the car does not stall

- A man goes to an ice-cream parlor every night after dinner
- He observes that only on days he orders vanilla flavor, his car stalls
- When any other flavor is ordered, the car does not stall
- He observes it over an extended period of time
- He tries changing other attributes such as shirt color, boot type, person accompanying him, etc.
- No other attribute has any consistent effect

- A man goes to an ice-cream parlor every night after dinner
- He observes that only on days he orders vanilla flavor, his car stalls
- When any other flavor is ordered, the car does not stall
- He observes it over an extended period of time
- He tries changing other attributes such as shirt color, boot type, person accompanying him, etc.
- No other attribute has any consistent effect
- A data mining researcher comes

- A man goes to an ice-cream parlor every night after dinner
- He observes that only on days he orders vanilla flavor, his car stalls
- When any other flavor is ordered, the car does not stall
- He observes it over an extended period of time
- He tries changing other attributes such as shirt color, boot type, person accompanying him, etc.
- No other attribute has any consistent effect
- A data mining researcher comes
- She finds out that since vanilla is the most popular favor, ordering vanilla induces a significantly longer waiting time
- Car stalls when the man waits longer and not otherwise

- Rhine paradox
 - ESP story (extra-sensory perception)

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)
- Just doing it once may not prove or disprove anything
 - Tea taster story

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)
- Just doing it once may not prove or disprove anything
 - Tea taster story
- Moral: Multiple random tests are needed

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)
- Just doing it once may not prove or disprove anything
 - Tea taster story
- Moral: Multiple random tests are needed
- Bonferroni's principle: if you look in more places for interesting patterns than your amount of data supports, you are bound to "find" something "interesting" (most likely spurious)
 - Terrorism story

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)
- Just doing it once may not prove or disprove anything
 - Tea taster story
- Moral: Multiple random tests are needed
- Bonferroni's principle: if you look in more places for interesting patterns than your amount of data supports, you are bound to "find" something "interesting" (most likely spurious)
 - Terrorism story
- Moral: When checking a particular rule or property, if there are many possibilities, then it will happen

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)
- Just doing it once may not prove or disprove anything
 - Tea taster story
- Moral: Multiple random tests are needed
- Bonferroni's principle: if you look in more places for interesting patterns than your amount of data supports, you are bound to "find" something "interesting" (most likely spurious)
 - Terrorism story
- Moral: When checking a particular rule or property, if there are many possibilities, then it will happen
- Obvious rules may not always make sense
 - Ice-cream story

- Rhine paradox
 - ESP story (extra-sensory perception)
- Moral: Knowing what data mining is and is not will help you look smarter (than others not taking this course)
- Just doing it once may not prove or disprove anything
 - Tea taster story
- Moral: Multiple random tests are needed
- Bonferroni's principle: if you look in more places for interesting patterns than your amount of data supports, you are bound to "find" something "interesting" (most likely spurious)
 - Terrorism story
- Moral: When checking a particular rule or property, if there are many possibilities, then it will happen
- Obvious rules may not always make sense
 - Ice-cream story
- Moral: When deducting rules, look at correct attributes, i.e., those that explain the phenomenon