II - Dénombrement

Définition 1 - Ensembles disjoints

E et F sont des ensembles disjoints si $E \cap F = \emptyset$.

Définition 2 - Complémentaire

Si E est un ensemble et F est une partie de E, le complémentaire de F, noté cF ou \overline{F} , est l'ensemble des éléments de E qui ne sont pas dans $F: {}^cF = E \backslash F = \{x \in E \; ; \; x \notin F\}$.

E désigne un ensemble de cardinal p au sens des définitions suivantes.

I - Ensembles finis

I.1 - Définitions

Définition 3 - Ensemble fini

L'ensemble E est un ensemble fini si $E = \emptyset$ ou s'il existe un entier $n \in \mathbb{N}^*$ et une application bijective $f : [1, n] \to E$. Sinon, E est un ensemble infini.

Exercice 1.

- 1. Donner des exemples d'ensembles finis.
- **2.** Montrer que si E est un ensemble fini et F est en bijection avec E, alors F est un ensemble fini.

Lemme 1

Soit $p, q \in \mathbb{N}^*$. Il existe une bijection de [1, p] dans [1, q] si et seulement si p = q.

Définition 4 - Cardinal

Soit E un ensemble non vide et $p, q \in \mathbb{N}^*$. On suppose que E est en bijection avec $[\![1,p]\!]$ et $[\![1,q]\!]$. Alors, p=q. Cette valeur commune est le *cardinal* de E et est notée $|E|=\sharp E$. Par convention, $|\emptyset|=0$.

Exemple 1

- On peut associer à chaque lettre de l'alphabet latin $\mathscr{A} = \{a, b, \ldots, z\}$ son rang dans l'alphabet. Ainsi, $|\mathscr{A}| = 26$.
- Soit $n, m \in \mathbb{N}^*$ tels que n < m. Alors, l'application $\varphi : x \mapsto x n + 1$ réalise une bijection de [n, m] dans [1, m n + 1]. Ainsi, |[n, m]| = m n + 1.

Exercice 2. Montrer que tout ensemble en bijection avec un ensemble fini de cardinal n est fini et de cardinal n.

I.2 - Sous-ensembles et cardinaux

Lemme 2

Si $x \in E$, alors $E \setminus \{x\}$ est un ensemble fini et $|E \setminus \{x\}| = |E| - 1$.

Exemple 2

Si $\mathscr{A}=\{a,\ldots,z\}$ est l'ensemble des lettres de l'alphabet, alors $|\mathscr{A}\setminus\{z\}|=25.$

Théorème 1 - Sous-ensemble

Si $F \subset E$, alors F est un ensemble fini et $|F| \leq |E|$. De plus, |F| = |E| si et seulement si F = E.

Exercice 3. Montrer que $\mathbb N$ n'est pas un ensemble de cardinal fini.

II - Dénombrement

II.1 - Produits cartésiens

Proposition 1 - Produit cartésien

 $E \times F$ est un ensemble fini et $|E \times F| = |E| \cdot |F|$. Plus généralement, si E_1, \ldots, E_n sont des ensembles finis, alors

$$|E_1 \times \cdots \times E_n| = |E_1| \times \cdots \times |E_n|$$
.

Exemple 3

On souhaite dénombrer l'ensemble \mathcal{M} des mots de 4 lettres construits avec les 26 lettres de l'alphabet latin.

Un mot de 4 lettres est un élément de l'ensemble $\mathscr{A} \times \mathscr{A} \times \mathscr{A} \times \mathscr{A}$. Ainsi, le nombre de mots de 4 lettres est égal à $|\mathscr{M}| = 26^4$. **Exercice 4.** Soit U une urne contenant des boules numérotées de 1 à n. On tire, avec remise, deux boules dans l'urne et on note successivement les numéros obtenus. Combien de résultats peut-on ainsi obtenir?

II.2 - Réunions

Proposition 2 - Union disjointe

Si E et F sont deux ensembles disjoints, alors $E \cup F$ est fini et $|E \cup F| = |E| + |F|$.

Corollaire 2 - Cardinal du complémentaire

Si A est une partie de E, alors $|{}^{c}A| = |E| - |A|$.

Exemple 4

On souhaite dénombrer l'ensemble $\mathcal{M}_{q,z}$ des mots de 4 lettres construits avec les 26 lettres de l'alphabet latin et qui contiennent une des lettres q ou z.

On s'intéresse au complémentaire ${}^{c}\mathcal{M}_{q,z}$ de cet ensemble qui est constitué des mots contenants les lettres q ou z.

En notant $\mathcal{B} = \mathcal{A} \setminus \{q, z\}$, alors ${}^{c}\mathcal{M}_{q,z} = \hat{\mathcal{B}}^{4}$. Ainsi, $|{}^{c}\mathcal{M}_{q,z}| = 24^{4}$. Finalement, $|\mathcal{M}_{q,z}| = 26^{4} - 24^{4}$.

Définition 5 - Partition

Soit $n \in \mathbb{N}^*$ et $(A_k)_{k \in [\![1,n]\!]}$ une famille d'ensembles de E. La famille $(A_k)_{k \in [\![1,n]\!]}$ est une partition de E si

- $\bullet \bigcup_{k=1}^{n} A_k = E,$
- $\forall 1 \leqslant i \neq j \leqslant n, A_i \cap A_j = \emptyset.$

Proposition 3

Soit $n \in \mathbb{N}^*$ et $(A_k)_{k \in [1,n]}$ des ensembles deux à deux disjoints. Alors, $\left| \bigcup_{k=1}^n A_k \right| = \sum_{k=1}^n |A_k|$.

Exemple 5

On note \mathcal{R} l'ensemble des mots de \mathcal{M} qui contiennent exactement une fois la lettre a. Notons \mathcal{R}_i l'ensemble des mots de \mathcal{R} où le aest en i^e position. Alors, $(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_4)$ forme une partition de \mathcal{R}

De plus, $\mathscr{R}_1 = \{a\} \times (\mathscr{A} \setminus \{a\})^3$. Ainsi, $|\mathscr{R}_1| = 25^3$. On calcule de même $|\mathscr{R}_2| = |\mathscr{R}_3| = |\mathscr{R}_4| = 25^3$. Finalement, $|\mathscr{R}| = 4 \times 25^3$.

On peut également utiliser une méthode plus descriptive.

- Soit la lettre a est située en première position. Il y a 1×25^3 tels mots.
- Soit la lettre a est située en deuxième position. Il y a $25 \times 1 \times 25^2$ tels mots.
- Soit la lettre a est située troisième position. Il y a $25^2 \times 1 \times 25$ tels mots.
- Soit la lettre a est située en quatrième position. Il y a $25^3 \times 1$ tels mots.

Finalement, l'ensemble des mots recherché est égal à 4×25^3 .

Proposition 4 - Réunion

Soit $A, B \subset E$. Alors, $A \cup B$ est un ensemble fini et $|A \cup B| = |A| + |B| - |A \cap B|$.

Exemple 6

On souhaite dénombrer l'ensemble \mathcal{M}_a des mots de 2 lettres contenant la lettre a.

On note A_1 l'ensemble des mots contenant la lettre a en première position et A_2 l'ensemble des mots contenant la lettre a en seconde position.

Alors,
$$A_1 \cap A_2 = \{aa\}$$
. Ainsi,
$$|\mathcal{M}_a| = |A_1 \cup A_2|$$
$$= |A_1| + |A_2| - |A_1 \cap A_2|$$
$$= 1 \times 26 + 26 \times 1 - 1$$
$$= 51.$$

Exercice 5. (Formule du crible / de Poincaré) Soit $n \in \mathbb{N}^*$ et $(A_i)_{i \in [\![1,n]\!]}$ une famille de parties de E. Généraliser la formule précédente pour calculer $|A_1 \cup A_2 \cup A_3|$ puis $|A_1 \cup A_2 \cup A_3 \cup A_4|$.

Plus généralement, on peut montrer que

$$\left| \bigcup_{k=1}^{n} A_k \right| = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} \left| \bigcap_{j=1}^{k} A_{i_j} \right|.$$

II.3 - Compter les applications

Proposition 5 - Applications

L'ensemble des applications de E dans F est un ensemble fini de cardinal $|F|^{|E|}$.

Exemple 7 - Tirage avec remise

Soit U une urne contenant des boules numérotées de 1 à n. On tire, avec remise, p boules dans l'urne et on note successivement les numéros obtenus. Combien de résultats peut-on ainsi obtenir?

- Au premier tirage, on associe le numéro n_1 de la première boule tirée.
- Au deuxième tirage, on associe le numéro n_2 de la deuxième boule tirée.
- . .
- Au p^e tirage, on associe le numéro n_p de la p^e boule tirée. Ainsi, un tirage correspond à une application de [1, p] dans [1, n]

et il y a donc p^n tirages possibles.

Exercice 6. Soit $n \in \mathbb{N}^*$. Déterminer le nombre d'applications de [1, n] dans [1, n].

Corollaire 3

Le nombre de parties de E est un ensemble fini de cardinal $2^{|E|}$.

II.4 - Arrangements

Définition 6 - Arrangements

Un arrangement de longueur p d'éléments de E est une liste de longueur p constituée d'éléments de E deux à deux distincts. On note A_n^p le nombre d'arrangements de E de longueur p.

Proposition 6

Pour tous $n, p \in \mathbb{N}$,

$$A_n^p = \begin{cases} \frac{n!}{(n-p)!} & \text{si } p \leqslant n \\ 0 & \text{sinon.} \end{cases}$$

Exemple 8 - Tirage sans remise

Soit U une urne contenant des boules numérotées de 1 à n. On tire, sans remise, p boules dans l'urne et on note successivement les numéros obtenus. Combien de résultats peut-on ainsi obtenir? Si p > n, comme les tirages s'effectuent sans remise, on ne peut pas tirer successivement p boules et il y a donc 0 résultat. Si $p \leq n$.

- Au premier tirage, on obtient un numéro $n_1 \in [1, n]$,
- au deuxième tirage, on obtient un numéro $n_2 \in [1, n] \setminus \{n_1\},$
- · · · ,

• Au p^{e} tirage, on associe un numéro $n_{p} \in [1, n] \setminus \{n_{1}, \dots, n_{p-1}\}.$

Comme les tirages s'effectuent sans remise, les numéros n_1, \ldots, n_p sont deux à deux distincts. Ainsi, à chaque résultat, on associe un p-arrangement (n_1, \ldots, n_p) .

Le nombre de résultats possibles est donc égal à $n(n-1) \dots (n-p+1)$.

Théorème 4 - Arrangements & Injections

Soit E un ensemble de cardinal p et F un ensemble de cardinal p

- (i). Il y a A_n^p injections de E dans F.
- (ii). Si p = n, il y a n! bijections de E dans F. Les bijections de E sont appelées des permutations.

Exemple 9 - Anagrammes

Un anagramme est un mot obtenu en permuttant les lettres d'un mot de départ. Ainsi, le nombre d'anagrammes de MATHS est égal à 5!.

II.5 - Combinaisons

Théorème 5 - Lemme des bergers

Soit p un entier naturel non nul, E et F deux ensembles finis et $f: E \to F$. On suppose que pour tout $y \in F$, $|f^{-1}(\{y\})| = p$. Alors, |E| = p|F|.

Définition 7 - Combinaisons

Soit E un ensemble fini de cardinal n et p un entier naturel. Une combinaison de p éléments de E est une partie de E de cardinal p. On note $\binom{n}{n}$ le nombre de combinaisons de p éléments de E.

Proposition 7

Pour tous $n, p \in \mathbb{N}, \binom{n}{p} = \frac{A_n^p}{p!}$.

Exemple 10 - Tirage simultané, Anagrammes

• Soit U une urne contenant des boules numérotées de 1 à n. On tire simultanément p boules dans l'urne et on note les numéros obtenus. Combien de résultats peut-on ainsi obtenir?

Tout tirage contient au plus n boules. Ainsi, si p > n, le nombre de résultats possible est 0.

Si $p \leq n$, un tirage revient à obtenir une partie $\{n_1, \ldots, n_p\}$ à p éléments de l'ensemble [1, n] des numéros des boules. Ainsi, il y a $\binom{n}{p}$ résultats possibles.

• Déterminer le nombre d'anagrammes du mot BISON-RAVI.

Le mot BISONRAVI contient 9 lettres. On constate que les lettres sont deux à deux distinctes, à l'exception du I qui est présent 2 fois. On choisit :

- * la position des 2 lettres $I:\binom{9}{2}$ choix,
- \star la position de la lettre B:7 choix,
- \star la position de la lettre S:6 choix,
- \star la position de la lettre O:5 choix,
- \star la position de la lettre N:4 choix,
- \star la position de la lettre R:3 choix,
- \star la position de la lettre A: 2 choix,
- \star la position de la lettre V:1 choix.

Finalement, il y $\binom{9}{2}$ $7! = \frac{9!}{2}$ anagrammes possibles.

Théorème 6 - Relations sur les coefficients binomiaux

- (i). $\forall n, p \in \mathbb{N}, \binom{n}{n} = \binom{n}{n-n}$.
- (ii). Formule du capitaine. $\forall n, p \in \mathbb{N}^{\star}, p \binom{n}{p} = n \binom{n-1}{p-1}$
- (iii). $\forall p \in \mathbb{N}^*, n \in \mathbb{N}, p\binom{n}{p} = (n-p+1)\binom{n}{n-1}.$

 $(iv). \ \forall \ n \in \mathbb{N}, \ \sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$

- (v). Triangle de Pascal. $\forall n, p \in \mathbb{N}^*, \binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$.
- (vi). Binôme de Newton. $\forall x, y \in \mathbb{R}, n \in \mathbb{N}^*, (x+y)^n = \sum_{p=0}^n \binom{n}{p} x^p y^{n-p}$.