

Background & Goals

Question-Answer driven SRL (QA-SRL; He et. al., 2015) a natural, easily attainable SRL flavor for verbs.

Research Goals:

- 1. Extend QA-SRL to deverbal nominalizations Analogous to NomBank complementing PropBank
- 2. Collect high-quality annotations via crowdsourcing
- 3. Measure extrinsic utility

Our Proposal – QANom

Nominal Predicate criteria – "verbal noun" iff

- Lexically, the noun has a verbal counterpart (proposal-propose, organization-organize)
- In context, the noun denotes a verb-related event = it is natural to ask verbal questions about it

"Health care organization"

What is being organized?

"the **organization** of conferences and seminars..."

What is being organized?

What is being organized?

Role questions - leverage QA-SRL question format, centered by the corresponding verb

- ✓ Intuitive and natural representation
- ✓ Easily crowdsourcable
- ✓ Unified annotation scheme for verbs & nominal

QANom: Extending QA-SRL for Nominalizations

Ayal Klein¹, Jonathan Mamou², Valentina Pyatkin¹, Daniela Stepanov¹, Hangfeng He³, Dan Roth³, Luke Zettlemoyer^{4,5} and Ido Dagan¹ ²Intel Labs, Israel ³University of Pennsylvania ⁵Facebook Inc. ¹Bar-Ilan University ⁴University of Washington

Crowd Annotation Methodology

- Adapted from previous QA-SRL works (FitzGeralds et. al., 2018; Roit et. al., 2020)
- Added a predicate detection question, for lexically—filtered candidates Interface

Controlled Crowdsourcing

- Crowd workers are screened and trained with guidelines and feedbacks
 - 2 Generators ask questions and highlight answer spans
 - A Consolidator removes redundancies or erroneous questions (roles), and modifies argument spans
- Inter-Annotator Agreement:

	Generation	Consolidated
UA (F1)	67.2	77.1
Role (F1)	72.3	80.5
Is Verbal (Acc.)	81.8	85.6

Comparison to NomBank

Predicate Detection:

NomBank targets a different scope of noun predicates.

Nominalizations Nominalizations with no overt (proposal, proof, ...) Partitive (set) arguments

Manually controlling for intended scope, QANom annotations reach P=.97, R=.81 against NomBank

Argument Detection:

Many formalism mismatches (implicit arguments or syntactic markers);

Manually controlled evaluation: P=.86, R=.93 against NomBank

Baseline parser

	Gold		Predicted		
	UA	LA	UA	LA	
P	45.1	29.6	47.2	31.6	
R	61.5	40.4	49.7	33.3	
F1	52.0	34.2	48.4	32.4	

Performance of QA-SRL parser on QANom given either gold or predicted predicates.

Extrinsic Evaluations

As pre-training - QuASE (He et. al., 2020):

- Pre-training on QANom improves BERT for semantic tasks – SDP, PropBank, NomBank, Ontonotes, ACE
- Results are similar to pre-training on QA-SRL and QAMR

For Zero-Shot **Event Extraction (ACE):**

Better than NomBank

	Train Set	Predicate Detection			Argument Detection		
		P	R	F1	P	R	F1
5	NomBank	21.3	77.1	33.4	20.0	25.3	22.3
	QANom	24.9	74.9	37.4	24.8	29.7	27.0
	ACE	73.2	82.9	77.7	51.3	65.6	57.5