

CONVERSORES DE FREQUÊNCIA ABB PARA MAQUINARIA GERAL

Conversores de frequência ACS380

Guia rápido de instalação e arranque

Instruções de segurança

AVISO! Respeite estas instruções. Se ignorar as mesmas, podem ocorrer ferimentos ou morte, ou danos no equipamento. Se não é um profissional de eletricidade qualificado, não realize trabalhos de instalação ou de manutenção elétrica.

- Nunca trabalhe no conversor de frequência, cabo do motor, motor ou cabos de controlo com o conversor de frequência ligado à alimentação de entrada. Antes de iniciar o trabalho, isole o conversor de frequência de todas as fontes de tensão perigosas e certifique-se de que é seguro iniciar o trabalho. Aguarde sempre 5 minutos depois de desligar a alimentação de entrada para deixar os condensadores do circuito intermédio descarregar.
- Não trabalhe no conversor de frequência quando um motor de iman permanente rotativo estiver ligado ao mesmo. Um motor de ímanes permanentes em rotação energiza o conversor de frequência, incluindo os seus terminais de entrada e de saída

1. Desembalar a entrega

Mantenha o conversor de frequência na sua embalagem até ser instalado. Depois de o desembalar, proteja o conversor de frequência contra poeira, resíduos e humidade.

Confirme se estes itens estão incluídos:

- Conversor de frequência opções, se encomendado com um código opcional
- hardware, etc.)
- acessórios de instalação (braçadeiras de cabo, abraçadeiras de cabo,
- modelo de montagem (apenas chassis R3 e R4)
- instruções de segurança
- folha autocolante de aviso multilingue (aviso de tensão residual)
- guia da interface do utilizador (por baixo da tampa frontal do conversor de frequência)
- Guia rápido de instalação e arranque
- manuais de hardware e de firmware, se encomendados com um código opcional.

Confirme se os itens não apresentam sinais de danos.

2. Beneficiação de condensadores

Se o conversor de frequência não estiver ligado há um ano ou mais, deve beneficiar os condensadores do link DC. A data de fabrico encontra-se na etiqueta de designação de tipo. Consulte Capacitor reforming instructions (3BFE640)

3. Selecionar cabos e fusíveis

- Selecionar os cabos de potência. Cumpra os regulamentos locais.
- Cabo de entrada de potência: Para o melhor desempenho EMC, a ABB recomenda o uso de cabo blindado simétrico (cabo VFD).
- Cabo do motor: Para o melhor desempenho EMC, use cabo blindado simétrico (cabo VFD). O cabo simétrico blindado também reduz as correntes nas chumaceiras, o desgaste e o stress no isolamento do motor. **Tipos de cabos de potência**: Em instalações IEC, use cabos de cobre ou de
- alumínio (se permitido). Em instalações UL, use apenas cabos de cobre.
- Corrente nominal: corrente de carga máxima.
- Tensão nominal: min. 600 V CA.
- Temperatura nominal: Em instalações IEC, selecione um cabo dimensionado para, pelo menos, 70 °C de temperatura (158 °F) máxima permitida do condutor em uso contínuo. Em instalações UL, selecione . um cabo dimensionado para, pelo menos, 75 °C (167
- **Tamanho:** Consulte Fusíveis e tamanhos típicos de cabo de potênciasobre os tamanhos de cabo comuns e Dados do terminal para os cabos de potência sobre os tamanhos máximos de cabo.
- Seleção dos cabos de controlo. Use um cabo f entrançado de blindagem ola para os sinais analógicos. Use cabo de blindagem dupla ou blindagem única para os sinais digitais, de relé e de E/S. Não passe sinais de 24 V e 115/230 V no mesmo cabo.
- Proteja o conversor de frequência e o cabo de alimentação de entrada com os fusíveis corretos. Consulte Fusíveis e tamanhos típicos de cabo de potência.

4. Examinar a área de instalação

O conversor de frequência destina-se à instalação em armário e tem um grau de proteção de IP20 / UL tipo aberto, como padrão.

Verifique o local onde pretende instalar o conversor de frequência. Certifique-se que: O local de instalação é suficientemente ventilado e o ar quente não recircula.

- Existe espaço livre suficiente em volta do conversor de frequência para refrigeração, manutenção e operação. Sobre os requisitos mínimos de espaço livre, consulte Requisitos de espaço livre
- As condições ambiente de cumprem os requisitos. Consulte Condições
- A superfície de instalação é o mais vertical possível, os seus materiais não são inflamáveis e é resistente o suficiente para suportar o peso do conversor de frequência. Consulte Dimensões e pesos.
- A superfície de instalação, o chão e os materiais na proximidade do conversor de frequência não são inflamáveis.
- Não existem fontes de campos magnéticos fortes, como condutores de núcleo único de corrente elevada ou bobinas de contactor próximo do conversor de frequência. Um campo magnético forte pode causar interferência ou imprecisão no funcionamento do conversor de frequência.

5. Instalar o conversor de frequência

Pode instalar o conversor de frequência com parafusos, ou com uma calha DIN (tipo chapéu, largura \times altura = 35 mm \times 7,5 mm [1,4 in \times 0,3 in]). Instale os conversores de frequência RO verticalmente. Os conversores de

- frequência RO não têm uma ventoinha de refrigeração. Pode instalar unidades com tamanho de chassis R1...R4 inclinadas a um
- máximo de 90 graus, desde a orientação vertical até à totalmente horizontal.
- Não instalar o conversor de frequência invertido. É possível instalar vários conversores de frequência lado a lado.

Para instalar o conversor de frequência com parafusos Faça marcas na superfície para os

- furos de montagem. Consulte Dimensões e pesos. Use o modelo de montagem incluído para os chassis
- Faça os furos para os parafusos de montagem. Se necessário, instale fichas ou âncoras adequadas nos Instale os parafusos de montagem
- nos orifícios. Deixe um intervalo entre a cabeça do parafuso e a superfície de Instalação.
- Coloque o conversor de frequência nos parafusos de montagem.
- Aperte os parafusos de montagem.

Para instalar o conversor de frequência numa calha DIN

- Deslogue a parte de bloqueio para a esquerda. Se necessário, use uma chave de parafusos de cabeça plana.
- Mantenha pressionado o botão de bloqueio.
- Coloque as abas superiores do conversor de frequência no rebordo superior da calha DIN.
- Coloque o conversor de frequência no rebordo inferior da calha DIN.
- Liberte o botão de bloqueio
- Desloque a parte de bloqueio para a
- Certifique-se de que o conversor de frequência está corretamente

Para remover o conversor de frequência, abra a peça de bloqueio e levante o conversor de frequência da calha DIN.

6. Medir a resistência de isolamento

Conversor de frequência: Não realizar testes de tolerância de tensão ou de resistência de isolamento no conversor de frequência, porque isto pode causar danos no mesmo.

Cabo de entrada de potência: Antes de ligar o cabo de alimentação de entrada, meça o isolamento do cabo de alimentação de entrada. Cumpra os regulamentos locais

Motor e cabo do motor:

Confirme se o cabo do motor está ligado ao motor e desligado dos terminais de saída do conversor de frequência T1/U, T2/V e T3/W. Use uma tensão de 1000 V CC para medir a

resistência de isolamento entre cada condutor de fase e o condutor de proteção à terra. A resistência de isolamento de um motor ABB deve exceder os 100 Mohm (a 25°C [77 °F]). Para a resistência do isolamento de outros motores, consulte a documentação A presenca de humidade no motor diminui a

existe humidade no motor, seque o motor e efetue a medição novamente.

7. Certifique-se de que o conversor de frequência é compatível com o sistema de ligação à terra

É possível ligar todos os tipos de conversores de frequência a um sistema TN-S ligado à terra simetricamente (junção em Y com ligação à terra no centro). O conversor de frequência é entregue com os parafusos EMC e VAR instalados. O material dos parafusos (plástico ou metal) depende da variante do produto. A tabela mostra quando remover o parafuso EMC metálico (desligar o filtro EMC interno) ou o parafuso VAR metálico (desligar o circuito do varístor).

Eti-	Material do	Sistemas de ligação à terra						
queta de para- fuso	parafuso por defeito de fábrica	Sistemas TN-S ligados à terra simetricamente (junção em Y com ligação à terra no centro)	Sistemas de redes flutuantes e delta de ponto médio e sistemas TT	Sistemas IT (não ligados à terra ou ligados à terra a alta resistência				
EMC	Metal	Não remover	Remover	Remover				
	Plástico 1)	Não remover ²⁾	Não remover	Não remover				
VAR	Metal	Não remover	Não remover	Remover				
	Plástico	Não remover	Não remover	Não remover				

1) Os conversores de frequência vendidos na América do Norte têm um parafuso EMC de

. 2) Pode instalar o parafuso metálico (incluído na entrega do conversor de frequência) para

8. Ligar os cabos de potência

Diagrama de ligação (cabos blindados)

- Dispositivo de corte.
- Dois condutores de terra de proteção (ligação à terra). A norma de segurança do conversor de frequência IEC/EN 61800-5-1 requer dois condutores PE, se a área da secção transversal do condutor PE for inferior a 10 mm² Cu ou 16 mm² Al. Por exemplo, pode usar a blindagem de cabo adicionalmente ao quarto condutor.
- Use um cabo de ligação à terra separado ou um cabo com um condutor PE separado para o lado da linha, se a condutividade do quarto condutor ou da blindagem não cumprir os requisitos para o condutor PE.
- Use um cabo de ligação à terra separado para o lado do motor, se a condutividade da blindagem não for suficiente, ou se não houver um condutor PE simetricamente construído no cabo. A ligação à terra a 360 graus da blindagem do cabo é necessária para o cabo do motor e o cabo da resistência de travagem (se usado). Também é
- recomendado para o cabo de alimentação de entrada. Resistência de travagem e cabo da resistência (opcional)

Sobre os binários de aperto, consulte Dados do terminal para os cabos de

- Remova o parafuso na tampa frontal do conversor de frequência, depois remova a tampa frontal.
- Cole o autocolante de aviso de tensão residual no idioma local no conversor de frequência.
- Descarne o cabo do motor
- Lique à terra a blindagem cabo do motor por baixo do grampo de ligação à terra.
- Torça a blindagem do cabo do motor numa espiral, marque-o e ligue-o ao terminal de ligação à terra
- Ligue os condutores de fase do motor cabo aos terminais T1/U, T2/V e T3/W.
- Se usar uma resistência de travagem, ligue o cabo da resistência de travagem aos terminais R- e UDC+. Use um cabo blindado e lique a blindagem à terra por baixo do grampo de ligação à terra.
- Certifique-se de que os parafusos dos terminais R- e UDC+ estão apertados. Realize este passo também se não ligar os cabos aos terminais.
- Descarne o cabo de entrada de potência.
- Se o cabo de alimentação de entrada tiver uma blindagem, ligue à terra a blindagem por baixo da braçadeira de ligação à terra. Depois, torça a blindagem do cabo do motor numa espiral, marque-o e ligue-o ao terminal de ligação à terra.

- Ligue o condutor PE do cabo de entrada e do motor aos terminais de ligação à terra. Se necessário, use um segundo condutor PE.
- Em conversores de frequência trifásicos, ligue os condutores de fase do cabo de entrada de potência aos terminais L1, L2 e L3. Em conversores de frequência monofásicos, ligue os condutores de fase e neutros aos terminais L1 e L2.
- 13. Fixe mecanicamente os cabos no exterior do conversor de frequência

9. Ligar os cabos de controlo

Execute as ligações de acordo com as ligações de controlo padrão da macro de aplicação que selecionar. Mantenha os pares dos cabos de sinal torcidos o mais próximo possível dos terminais para prevenir acoplamento indutivo. O binário de aperto para as ligações terminais é de 0,5 ... 0,6 N-m (4,4 ... 5,3 lbf-in).

- Descarne uma parte da blindagem exterior do cabo de controlo para ligação à terra.
- Use uma ligação do cabo para ligar à terra a blindagem exterior ao separador de ligação à terra. Use braçadeiras de cabo metálicas
- para ligação à terra a 360 graus. Descarne os condutores do cabo de
- controlo. Ligue os condutores aos terminais de controlo corretos.
- Ligue os escudos dos pares torcidos e os fios de ligação à terra ao terminal SCR. Fixe mecanicamente os cabos de controlo no exterior do conversor de
- Ligações de E/S por defeito (macro ABB standard)

A macro ABB standard é a macro por defeito. O diagrama de ligação para a macro ABB standard é apresentado abaixo. Se tiver uma variante do conversor de frequência que não tenha o módulo BMIO-01, ligue apenas os terminais que

1) x = na unidade base, vazio = no módulo BMIO-01.

Ligação de fieldbus integrada

Pode ligar o conversor de frequência a uma ligação de comunicação em série EIA-485 através da interface de fieldbus integrada no módulo BMIO-01 de E/S. A interface de fieldbus embutida suporta o protocolo Modbus RTU.

Para configurar a comunicação Modbus RTU com o fieldbus embutido:

- 1. Lique os cabos de fieldbus e os sinais de E/S necessários.
- 2. Use os jumpers para definir as configurações de terminação e de bias.
- Ligue o conversor de frequência e ajuste os parâmetros necessários. É apresentado abaixo um exemplo de ligação

- Os dispositivos em ambas as extremidades no fieldbus devem ter a terminação ON (ligada). Todos os outros dispositivos devem ter a terminação OFF (desligada).
- 2) Um dispositivo deve ter a bias ON (ligada). Recomenda-se que este dispositivo se encontre na extremidade do fieldbus
- 3) Fixar as blindagens dos cabos em conjunto em cada conversor de frequência, mas não os ligar ao mesmo. Ligar as blindagens apenas ao terminal de ligação à terra no controlador
- 4) Lique o condutor de terra do sinal (BGND) ao terminal de referência de terra do sinal no controlador de automação. Se o controlador de automação não tiver um terminal de referência do sinal de terra, pode ligar a terra do sinal às blindagens do cabo através de uma resistência de 100 ohm, de preferência próximo do controlador.

10. Arrancar o conversor de frequência

AVISO! Antes do arranque do conversor de frequência, certifique-se de que a instalação está concluída. Certifique-se de que é seguro arrancar o motor. Desligue o motor de outras máquinas, se existir risco de danos ou de ferimentos.

(3)

Scalar

50.0Hz

0.75kW____1.90A

1460rpm 50.0Nm

 $\text{UVW} \bigcirc \text{Cos} \varphi \\ 0.00$

5.0s 5.0s

1500rpn **8** 3.40A

(9)

Max

1́ ♦ 2 ኳ

1\$\times 2\$\tag{1}\$ 3 + 4 −

Modbus

RTU

400.0V

kW,°0

Max

Orpm

10 20

12 26

PID

Para informação sobre a interface do utilizador, consulte ACS380 User interface guide (3AXD50000022224 [English]), entregue com o conversor de frequência.

- Lique o conversor de frequência. O software do conversor de frequência identifica automaticamente o adaptador ligado (módulo BMIO-01 ou alguns
- dos módulos de fieldbus) e define os parâmetros aplicáveis. Selecione as unidades (internacionais ou US). Na vista Dados do motor, selecione o tipo de motor:

AsynM: Motor assíncrono. **PMSM**: Motor síncrono de ímanes permanentes SynRM: Motor síncrono de relutância

Defina o modo de controlo do motor: Vetor: Referência de velocidade. Apropriado para a

maioria dos casos. Escalar: Ref. de frequência. Não use este modo para motores síncronos de ímanes permanentes. Use este modo quando:

- O número de motores pode alterar. A corrente nominal do motor for inferior a 20%
- da corrente nominal do conversor de frequência. Defina os valores nominais do motor.
- Ligue o motor e verifique o sentido de rotação. Se o sentido de rotação estiver incorreto, pode: alterar o ajuste da Ordem de fases, ou

alterar a ordem das fases do cabo do motor. **Nota:** No modo de controlo vetorial, o conversor de frequência faz um ID Run Imobilizado no primeiro

- Na vista de Controlo do motor, defina o modo de arranque e paragem.
- Ajuste dos tempos de aceleração e desaceleração. Defina as velocidades máxima e mínima
- Na vista Macros de controlo, selecione a macro aplicável. Para configurar as comunicações por fieldbus, consulte Comunicação de fieldbus.
- Ajuste os parâmetros do conversor de frequência para a aplicação. Também pode usar uma consola de programação assistente (ACS-AP-...) ou a ferramenta Drive Composer PC

AVISO! Se ativar as funções de rearme automático de falhas ou de arranque automático do programa de controlo do conversor de frequência, certifique-se de que não poderão ocorrer quaisquer situações de perigo. Estas funções restauram o conversor de frequência automaticamente e continuam a operação depois de uma avaria ou de uma falha de alimentação. Se estas funções estiverem ativadas, a instalação deve ser claramente marcada como definido na IEC/EN 61800-5-1, subcláusula 6.5.3., por exemplo, "ESTA MÁQUINA ARRANCA AUTOMATICAMENTE".

Comunicação de fieldbus

Comunicação de fieldbus com o módulo BMIO-01 E/S

- Selecione **Modbus RTU** na vista Macros de controlo. O conversor de frequência altera automaticamente alguns valores de parâmetros.
- Configure a comunicação por fieldbus a partir da lista de parâmetros. Conjunto mínimo de parâmetros para a configuração da UTR Modbus:

Nr.	Nome	Valor
20.01	Comandos Ext1	Fieldbus integrado
22.11	Ext1 veloc ref1 (vetor)	EFB ref1
28.11	Ext1 frequência ref1 (escalar)	EFB ref1
31.11	Seleção rearme falha	ED1
58.01	Ativar protocolo	Modbus RTU
58.03	Endereço nó	1 (defeito)
58.04	Taxa transmissão	19,2 kbps (defeito)
58.05	Paridade	8 EVEN 1 (defeito)

Comunicação de fieldbus através de um módulo adaptador de fieldbus

O conversor de frequência identifica automaticamente o adaptador ligado e seleciona a macro de controlo de fieldbus correta. Se necessário, configure as definições específicas do adaptador. Consulte a documentação aplicável do

Avisos e falhas

Aviso	Falha	Descrição
A2A1	2281	Aviso: A calibração da corrente é realizada no arranque seguinte. Falha: Falha na medição da corrente de fase de saída.
A2B1	2310	Sobrecorrente: A corrente de saída é superior ao limite interno. Isto pode ser provocado por uma falha de terra ou perda de fase.
A2B3	2330	Fuga à terra: Um desequilíbrio de carga que normalmente é causado por uma falha de terra no motor ou no cabo do motor.
A2B4	2340	Curto-circuito: Um curto circuito no motor ou no cabo do motor.
-	3130	Perda fase de entrada: A tensão do circuito intermédio CC oscila.
-	3181	Ligação cruzada: As ligações dos cabos de entrada e do motor estão incorretas.
A3A1	3210	Sobretensão ligação CC: Tensão do circuito CC intermediário muito alta.
A3A2	3220	Subtensão ligação CC: Tensão do circuito CC intermediário muito baixa.
-	3381	Perda da fase de saída: Todas as três fases não estão ligadas ao motor.
A5A0	5091	Binário seguro off: A função Binário seguro off (STO) está ativa.
-	6681	Perda de comunicação EFB: Uma perda na comunicação fieldbus integrado.
-	7510	Perdas comunicação FBA A: Uma perda nas comunicações entre o conversor de frequência e o adaptador de fieldbus.
AFF6	-	Volta de identificação: O ID Run motor ocorre no arranque seguinte.
-	FA81	Binário seguro off 1: Circuito de Binário seguro off 1 interrompido.
-	FA82	Binário seguro off 2: Circuito de Binário seguro off 2 interrompido.

Gamas

ACS380	Gam	as de				Gama	as de sa	ıída				
-04xx-	enti	rada	Cor-	Uso no	ominal	U	so ligei	ro	Uso pesado			
	Sem bobina	Com bobina	rente max									
	1 1	4	I _{max}	I _N	P _N	/ Ld	P	Ld	4 Hd	P	Hd	
	Α	Α	Α	Α	kW	Α	kW	hp	Α	kW	hp	
Monofási	co <i>U</i> _N = 2	30 V										
02A4-1	5,5	4,2	3,2	2,4	0,37	2,3	0,37	0,5	1,8	0,25	0,33	
03A7-1	7,4	6,4	4,3	3,7	0,55	3,5	0,55	0,75	2,4	0,37	0,5	
04A8-1	9,1	8,3	6,7	4,8	0,75	4,6	0,75	1,0	3,7	0,55	0,75	
06A9-1	12,6	11,9	8,6	6,9	1,1	6,6	1,1	1,5	4,8	0,75	1,0	
07A8-1	14,9	13,5	12,4	7,8	1,5	7,4	1,5	2,0	6,9	1,1	1,5	
09A8-1	21,0	17,0	14,0	9,8	2,2	9,3	2,2	3,0	7,8	1,5	2,0	
12A2-1	25,6	21,1	17,6	12,2	3,0	11,6	3,0	3,0	9,8	2,2	3,0	
Trifásico	<i>U</i> _N = 230	V										
02A4-2	3,5	2,4	3,2	2,4	0,37	2,3	0,37	0,5	1,8	0,25	0,33	
03A7-2	4,8	3,7	4,3	3,7	0,55	3,2	0,55	0,75	2,4	0,37	0,5	
04A8-2	5,8	4,8	6,7	4,8	0,75	4,6	0,75	1,0	3,7	0,55	0,75	
06A9-2	8,4	6,9	8,6	6,9	1,1	6,6	1,1	1,5	4,8	0,75	1,0	
07A8-2	9,4	7,8	12,4	7,8	1,5	7,5	1,5	2,0	6,9	1,1	1,5	
09A8-2	12,8	9,8	14,0	9,8	2,2	9,3	2,2	2,0	7,8	1,5	2,0	
12A2-2	16,0	12,2	17,6	12,2	3,0	11,6	3,0	3,0	9,8	2,2	3,0	
17A5-2	21,0	17,5	22,0	17,5	4,0	16,7	4,0	5,0	12,2	3,0	3,0	

Documentos relacionados

Lista de manuais

Vídeos online

Informação de conceção ecológica (EU 2019/1781) Declaração de

Conformidade RoHS II da China

Tradução das instruções originais

ACS380	Gam	as de	Gamas de saída									
-04xx-	enti	rada	Cor-	Cor- Uso nominal Uso ligeiro					Uso pesado			
	Sem bobina	Com bobina	rente max									
	<i>I</i> ₁	4	I _{max}	I _N	P _N	<i>I</i> Ld	P	Ld	/ _{Hd}	P	Hd	
	A	Ā	Α	A	kW	A	kW	hp	Α	kW	hp	
25A0-2	30,5	25,0	31,5	25,0	5,5	24,2	5,5	7,5	17,5	4,0	5,0	
033A-2	37,5	32,0	45,0	32,0	7,5	30,8	7,5	10,0	25,0	5,5	7,5	
032A-2	37,4	32,0	45,0	32,0	7,5	30,8	7,5	10,0	25,0	5,5	7,5	
048A-2	53,2	48,0	57,6	48,0	11,0	46,2	11,0	15,0	32,0	7,5	10,0	
055A-2	60,0	55,0	86,4	55,0	15,0	52,8	15,0	15,0	48,0	11,0	15,0	
Trifásico	U _N = 400	V										
01A8-4	2,8	1,8	2,2	1,8	0,55	1,7	0,55	-	1,2	0,37	-	
02A6-4	3,5	2,6	3,2	2,6	0,75	2,5	0,75	-	1,8	0,55	-	
03A3-4	4,8	3,3	4,7	3,3	1,1	3,1	1,1	-	2,6	0,75	-	
04A0-4	6,1	4,0	5,9	4,0	1,5	3,8	1,5	-	3,3	1,1	-	
05A6-4	8,5	5,6	7,2	5,6	2,2	5,3	2,2	-	4,0	1,5	-	
07A2-4	10,1	7,2	10,1	7,2	3,0	6,8	3,0	-	5,6	2,2	-	
09A4-4	12,9	9,4	13,0	9,4	4,0	8,9	4,0	-	7,2	3,0	-	
12A6-4	16,5	12,6	16,9	12,6	5,5	12,0	5,5	-	9,4	4,0	-	
17A0-4	23,4	17,0	22,7	17,0	7,5	16,2	7,5	-	12,6	5,5	-	
25A0-4	31,8	25,0	30,6	25,0	11,0	23,8	11,0	-	17,0	7,5	-	
033A-4	40,9	32,0	45,0	32,0	15,0	30,5	15,0	-	25,0	11,0	-	
032A-4	40,7	32,0	45,0	32,0	15,0	30,5	15,0	-	25,0	11,0	-	
038A-4	49,0	38,0	57,6	38,0	18,5	36,0	18,5	-	32,0	15,0	-	
045A-4	55,7	45,0	68,4	45,0	22,0	42,8	22,0	-	38,0	18,5	-	
050A-4	55,7	50,0	81,0	50,0	22,0	48,0	22,0	-	45,0	22,0	-	
Trifásico	<i>U</i> _N = 480	V										
01A8-4	2,2	1,6	2,2	-	-	1,6	-	0,75	1,1	-	0,5	
02A6-4	2,7	2,1	3,2	-	-	2,1	-	1,0	1,6	-	0,75	
03A3-4	3,9	3,0	4,7	-	-	3,0	-	1,5	2,1	-	1,0	
04A0-4	4,5	3,4	5,9	-	-	3,4	-	2,0	3,0	-	1,5	
05A6-4	6,6	4,8	7,2	-	-	4,8	-	3,0	3,5	-	2,0	
07A2-4	6,2	6,0	10,1	-	-	6,0	-	3,0	4,8	-	3,0	
09A4-4	9,8	7,6	13,0	-	-	7,6	-	5,0	6,0	-	3,0	
12A6-4	13,9	11,0	16,9	-	-	11,0	-	7,5	7,6	-	5,0	
17A0-4	18,8	14,0	22,7	-	-	14,0	-	10,0	11,0	-	7,5	
25A0-4	26,6	21,0	30,6	-	-	21,0	-	15,0	14,0	-	10,0	
033A-4	33,9	27,0	45,0	-	-	27,0	-	20,0	21,0	-	15,0	
032A-4	33,7	27,0	45,0	-	-	27,0	-	20,0	21,0	-	15,0	
038A-4	41,3	34,0	57,6	-	-	34,0	-	25,0	27,0	-	20,0	
045A-4	46,9	40,0	68,4	-	-	40,0	-	30,0	34,0	-	25,0	

Corrente de entrada para 230 V e 400 V com potência do motor P_N (kW), e para 480 V com potência do motor P_{Ld} (hp).

- 42,0 - 30,0 40,0 - 30,0

- Corrente máxima de saída. Disponível durante 2 segundos a cada 10 minutos quando a frequência saída é inferior a 9 Hz.
- Corrente nominal de saída. Corrente contínua de saída eficaz máxima (sem sobrecarga) Corrente contínua de saída eficaz. Permite 10% de sobrecarga durante 1 minuto a
- Corrente contínua de saída eficaz. Permite 50% de sobrecarga durante 1 minuto a cada 10 minutos.
- Potência típica do motor em uso nominal (150% de sobrecarga)

050A-4 46,9 42,0 81,0 -

- Potência típica do motor em uso ligeiro (10% de sobrecarga)
- Potência típica do motor em uso pesado (50% de sobrecarga)
- Os valores de potência em quilowatts aplicam-se à maioria dos motores de 4 polos IEC. Os valores de potência em cavalos aplicam-se à maioria dos motores NEMA de 4 polos

ACS380 -04xx-		Fusíveis		Tamanhos condutor de	Tama-	
	gG	gR	UL Classe T 1) 2) 3) 4)	(Cu)	cabo	nho de chassis
	Tipo ABB	Tipo	Tipo	mm ²	AWG	1
	-	Bussmann	Bussmann/ Edison			
Monofási	co <i>U</i> _N = 230 V					
02A4-1	OFAF000H10	170M2695	JJN/TJN10	3×1,5 + 1,5	14	RO
03A7-1	OFAF000H10	170M2695	JJN/TJN10	3×1,5 + 1,5	14	RO
04A8-1	OFAF000H16	170M2696	JJN/TJN20	3×1,5 + 1,5	14	R1
06A9-1	OFAF000H20	170M2697	JJN/TJN20	3×1,5 + 1,5	14	R1
07A8-1	OFAF000H25	170M2698	JJN/TJN25	3×1,5 + 1,5	14	R1
09A8-1	OFAF000H32	170M2698	JJN/TJN25	3×2,5 + 2,5	14	R2
12A2-1	OFAF000H35	170M2698	JJN/TJN35	3×2,5 + 2,5	14	R2
Trifásico	<i>U</i> _N = 230 V					
02A4-2	OFAF000H6	170M2694	JJS/TJS6	3×1,5 + 1,5	14	R1
03A7-2	OFAF000H10	170M2695	JJS/TJS10	3×1,5 + 1,5	14	R1
04A8-2	OFAF000H10	170M2695	JJS/TJS10	3×1,5 + 1,5	14	R1
06A9-2	OFAF000H16	170M2696	JJS/TJS15	3×1,5 + 1,5	14	R1
07A8-2	OFAF000H16	170M2696	JJS/TJS15	3×1,5 + 1,5	14	R1
09A8-2	OFAF000H16	170M2696	JJS/TJS15	3×2,5 + 2,5	14	R1
12A2-2	OFAF000H25	170M2697	JJS/TJS20	3×2,5 + 2,5	14	R2
17A5-2	OFAF000H32	170M2698	JJS/TJS30	3×6 + 6	10	R3
25A0-2	OFAF000H50	170M2699	JJS/TJS40	3×6 + 6	10	R3
033A-2	OFAF000H63	170M2700	JJS/TJS50	3×10 + 10	8	R3
032A-2	OFAF000H63	170M2700	JJS/TJS50	3×10 + 10	8	R4
048A-2	OFAF000H100	170M2702	JJS/TJS70	3×25 + 16	4	R4
055A-2	OFAF000H100	170M2702	JJS/TJS70	3×25 + 16	4	R4
Trifásico	<i>U</i> _N = 400 V ou 480		, , , , , ,			
01A8-4	OFAF000H4	170M2694	JJS/TJS3	3×1,5 + 1,5	14	RO
02A6-4	OFAF000H6	170M2694	JJS/TJS6	3×1,5 + 1,5	14	R1
03A3-4	OFAF000H6	170M2694	JJS/TJS6	3×1,5 + 1,5	14	R1
04A0-4	OFAF000H10	170M2695	JJS/TJS6	3×1,5 + 1,5	14	R1
05A6-4	OFAF000H10	170M2695	JJS/TJS10	3×1,5 + 1,5	14	R1
07A2-4	OFAF000H16	170M2696	JJS/TJS10	3×1,5 + 1,5	14	R1
09A4-4	OFAF000H16	170M2696	JJS/TJS15	3×2,5 + 2,5	14	R1
12A6-4	OFAF000H25	170M2697	JJS/TJS20	3×2,5 + 2,5	14	R2
17AO-4	OFAF000H32	170M2698	JJS/TJS25	3×6 + 6	10	R3
25A0-4	OFAF000H50	170M2699	JJS/TJS35	3×6 + 6	10	R3
033A-4	OFAF000H63	170M2700	JJS/TJS45	3×10 + 10	8	R3
032A-4	OFAF000H63	170M2700	JJS/TJS45	3×10 + 10	8	R4
038A-4	OFAF000H80	170M2701	JJS/TJS60	3×16 + 16	6	R4
045A-4	OFAF000H100	170M2702	JJS/TJS60	3×25 + 16	4	R4
050A-4	OFAF000H100	170M2702	JJS/TJS60	3×25 + 16	4	R4

1) Os fusíveis de proteção de ramal recomendados devem ser usados para manter a lista

2) O conversor de frequência á apropriado para uso num circuito capaz de fornecer não mais do que 100000 de amperes simétricos (rms) ao máximo de 480 V (conversores 480 V) ou 240 V (conversores 240 V) quando protegido pelos fusíveis apresentados nesta tabela. 3) Como alternativa aos fusíveis de Classe T, é possível utilizar fusíveis de Classe J ou Classe CF com a mesma tensão e corrente nominal para proteção de circuitos de derivação de unidades trifásicas.

4) Consulte Alternate Fuses, MMPs and Circuit Breakers for ABB Drives (3AXD50000645015 [English]) para fusíveis UL adicionais e disjuntores que podem ser usados como proteção do

Dados do terminal para os cabos de potência

Tama-	L1, L2, I	L3, T1/	U, T2/V, T	PE						
nho do chassis	do ca (sólic	do cabo do cabo (sólido/ (sólido/ trançado) entrançado)		do cabo (sólido/ entrançado)		Binário de aperto				
	mm ²	AWG	mm ²	AWG	N⋅m	lbf∙in	mm ²	AWG	N⋅m	lbf∙in
RO	0,5/0,5	18	4/2,5	10	0,50,6	5	6/4	10	1,2	11
R1	0,5/0,5	18	4/2,5	10	0,50,6	5	6/4	10	1,2	11
R2	0,5/0,5	18	4/2,5	10	0,50,6	5	6/4	10	1,2	11
R3	0,5/0,5	18	10/6	6	1,21,5	1113	6/4	10	1,2	11
R4	0,5/0,5	18	25/16	2	2,53,7	2232	25/16	4	2,9	26

- O tamanho mínimo de cabo especificado não tem necessariamente capacidade de transporte de corrente suficiente à carga máxima.
- Os terminais não aceitam um condutor com um tamanho superior ao do tamanho máximo de cabo especificado.
- O número máximo de condutores por terminal é 1.

Requisitos de espaço livre

	.0	Po		-	Ludos		
do chassis	mm	pol	mm	pol	mm	pol	
R0R4	75	3	75	3	0	0	
4) 11 ~ ~ ~			• • • • • • • • • • • • • • • • • • • •		(0.0 :-)		

1) Uma opção montada lateralmente requer aproximadamente 20 mm (0,8 in) de espaço no lado direito do conversor de frequência.

Lados 1

Requisitos	Durante a operação (instalado para uso estacionário)
Altitude do local da	Conversores de frequência a 230 V:
instalação	0 2000 m (0 6562 ft) acima do nível do mar.
	Conversores de frequência 400/ 480 V:
	0 4000 m (0 13123 ft) acima do nível do mar.
	Em altitudes acima de 2000 m (6562 ft):
	 são permitidos apenas sistemas de ligação à terra TN-S e TT a tensão máxima permitida para a saída do relé SR1 diminui. A 4000 m (13123 ft), é 30 V.
	Desclassificação:
	A corrente de saída deve ser desclassificada 1% por cada 100 m
	(328 ft) acima de 1000 m (3281 ft).
Temperatura do ar	Chassis RO:
circundante	-10 +50 °C (14 122 °F). Não é permitida congelação.
	Chassis R1R4:
	-10 +60 °C (14 140 °F). Não é permitida congelação. A corrente de saída deve ser desclassificada a temperaturas acima de +50 °C (122 °F) como se segue:
	• Tipos 055A-2, 038A-4 e 050A-4: 2% por cada 1 °C (1,8 °F) adicional
	 Outros tipos: 1% por cada 1 °C (1,8 °F) adicional.
Humidade relativa	5 95%. Não é permitida condensação. A humidade relativa
	máxima licença é de 60% na presença de gases corrosivos.
Níveis de contaminação	Não é permitido pó condutor.
Choque ou queda livre	Não permitido

Dimensões e pesos

Ø 5 [.21]

R2 205 8,1 223 8,8 170 6,7 95 3,7 176 6,9 75 3,0 191 7,5 2,0 4,4 R3 205 8,1 223 8,8 170 6,7 169 6,7 176 6,9 148 5,8 191 7,5 3,3 7,3

R4 205 8,1 240 9,5 170 6,7 260 10,2 181 7,1 234 9,2 191 7,5 5,3 11,7

KC

EIP

WEEE

TÜV Nord

D1

Marcações

As marcações aplicáveis são mostradas na etiqueta de tipo do produto.

Binário seguro off (STO)

O conversor de frequência tem uma função de Binário seguro off (STO) em conformidade com a IEC/EN -5-2. Pode ser usada, por exemplo, como dispositivo atuador final dos circuitos de segurança que param o conversor de frequência em caso de perigo (como um circuito de paragem de emergência). Quando ativada, a função de STO desativa a tensão de controlo dos semicondutores de potência da fase de saída do conversor de frequência, evitando assim que o conversor de frequência gere o binário necessário para rodar o motor. O programa de controlo gera uma indicação como definido pelo parâmetro 31.22. Se o motor estiver a funcionar quando o Binário seguro off é ativado, é parado por inércia. Fechar o interruptor de ativação desativa STO.

Quaisquer falhas geradas devem ser restauradas antes de reiniciar A função STO tem uma arquitetura redundante, ou seja, ambos os canais devem ser usados na implementação da função de segurança. Os dados de segurança são calculados para uso redundante e não se aplicam se ambos os canais não

AVISO! A função STO não desliga a tensão dos circuitos principal e auxiliares do conversor de frequência.

- Se a paragem por inércia não for aceitável, deve parar o conversor de frequência e a maquinaria usando o modo de paragem apropriado antes de usar STO.
- A função STO sobrepõe todas as outras funções do conversor de frequência

Cablagem

Validação

Os contactos de segurança devem abrir/fechar a 200 ms um do outro. Para a ligação, é recomendado cabo de par entrançado de blindagem dupla. O comprimento máximo da cablagem entre o interruptor e a unidade de controlo do conversor de frequência é 300 m (1000 ft). Ligue à terra a blindagem do cabo apenas na unidade de controlo.

Para assegurar a operação segura de uma função de segurança, é requerido um teste de validação. O teste deve ser realizado por uma pessoa habilitada com os conhecimentos adequados da função de segurança. Os procedimentos de teste e relatório devem ser documentados e assinados por esse profissional. As instruções de validação da função STO podem ser encontradas no manual de hardware do conversor de frequência.

Dados técnicos

- Tensão mínima a IN1 e IN2 a ser interpretada como "1": 13 V CC Tempo de reação STO (intervalo detetável mais curto): 1 ms
- Tempo de resposta STO: 2 ms (típico), 5 ms (máximo)
- Tempo de detecão de falha: Canais em diferentes estados durante mais de
- Tempo de reação de falha: Tempo de deteção de falha + 10 ms Atraso de indicação de falha STO (parâmetro 31.22): < 500 ms
- Atraso de indicação de aviso STO (parâmetro 31.22): < 1000 ms
- Nível de integridade de segurança (EN 62061) SIL 3 Nível de desempenho (EN ISO 13849-1): PL e

O STO do conversor de frequência é um componente de segurança de tipo A, como definido na IEC 61508-2.

Sobre os dados de segurança completos, taxas de falha exatas e modos de falha da função STO, consulte o manual de hardware do conversor de frequência

Declarações de conformidade

