## Pre-test - Fisica Sperimentale I -08/09/2020

Per completare il test, è necessario rispondere a tutte le domade. Se non si vuole dare una risposta, selezionare "Non rispondo a questa domanda"

Punteggi per ogni quesito:

Risposta esatta: 3 punti Risposta sbagliata: -1 punto "Non rispondo": 0 punti

Alla fine del test, puoi controllare le tue risposte. Riceverai inoltre un messaggio con il tuo punteggio.

Per passare il test è necessario totalizzare 18 punti

Punti: 4/10



- 1. L'inestensibilità di una fune che collega due corpi comporta: \* (0/1 punti)
  - Che le accelerazioni vettoriali dei corpi connessi sono equali
  - Che le accelerazioni dei due corpi sono diverse in modulo
  - Che la tensione della fune in modulo, direzione e verso è necessariamente la stessa in qualsiasi punto della fune
  - Che i moduli delle velocità dei corpi connessi sono eguali 🗸
  - Non rispondo a questa domanda



| 2. Un corpo di massa M = 1 kg è appoggiato su una bilancia, all'inte | rno di una |
|----------------------------------------------------------------------|------------|
| ascensore. Sul display della bilancia si legge che la massa è 1.5 kg | •          |

Quale fra queste può essere la ragione? \* (0/1 punti) L'ascensore si sta muovendo verso l'alto con velocità costante pari a 4.9 m/s L'ascensore sta accelerando verso l'alto con accelerazione 0.5 m/s<sup>2</sup> L'ascensore sta accelerando verso il basso con accelerazione 0.5 m/s < sup > 2 < / sup > L'ascensore sta accelerando verso l'alto con accelerazione 4.9 m/s<sup>2</sup>



3. Un carrello di massa 500 g si muove con velocità costante pari a 8 m/s su di un piano orizzontale con attrito trascurabile. Alla fine del piano è posizionata un molla con costante elastica pari a 100 N/m che frena il carrello sino a fermarlo per poi respingerlo in senso opposto.

Calcolare la massima compressione raggiunta dalla molla. \* (0/1 punti)

- 56.6 cm 🗸
- 56.6 m
- 5.66 cm
- 5.66 m
- Non rispondo a questa domanda

Non rispondo a questa domanda

4. Un corpo si muove di moto armonico, descritto da questa legge oraria:

A 
$$d < sup > 2 < / sup > x / dt < sup > 2 < / sup > = -B x$$

$$[A = 9s < sup > 2 < /sup >; B = 576]$$

Quale è la frequenza della oscillazione? \* (1/1 punti)

- 3.82 Hz
- 8 Hz
- 1.27 Hz ✓
- 24 Hz
- Non rispondo a questa domanda
- 5. Un sasso viene lanciato verso l'alto con velocità v=25 m/s. Dopo quanto tempo approssimativamente inizia a ricadere verso il basso? \* (1/1 punti)
  - 5.1 s
  - ② 2.55 s ✓
  - 2 s
  - 1.25 s
  - Non rispondo a questa domanda

X

6. Un calorimetro di capacità termica 80 J/K alla temperatura di 20°C contiene 200 cm<sup>3</sup> d'acqua alla stessa temperatura. Si versano ora 300 g d'acqua alla temperatura di 70°C.

Se non ci sono dispersioni di calore, qual è la temperatura raggiunta all'equilibrio? \* (0/1 punti)

|    | 48.9°C ✓                                                                                                                                                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 31.6°C                                                                                                                                                                                                                         |
|    | 58.9°C                                                                                                                                                                                                                         |
|    | 61.3°C                                                                                                                                                                                                                         |
|    | Non rispondo a questa domanda                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                |
|    | X                                                                                                                                                                                                                              |
| 7. | . Si consideri il primo principio della termodinamica Q=ΔU+W, dove ΔU è la<br>variazione dell'energia interna di un corpo, Q è il calore scambiato e W il lavoro<br>fatto dal corpo.                                           |
|    | Quali delle seguenti affermazioni relative all'applicazione dell'equazione ad un gas perfetto sono VERE?                                                                                                                       |
|    | <ul> <li>(A) Se ΔU è positiva, allora la temperatura del gas aumenta.</li> <li>(B) Se Q è positivo, allora W è positivo.</li> <li>(C) Se Q è positivo, allora la temperatura del gas cresce. *</li> <li>(0/1 punti)</li> </ul> |
|    | Tutte e tre                                                                                                                                                                                                                    |
|    | Solo la (A) e la (B)                                                                                                                                                                                                           |
|    | Solo la (A) 🗸                                                                                                                                                                                                                  |
|    | Solo la (B) e la (C)                                                                                                                                                                                                           |
|    | Non rispondo a questa domanda                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                |
| 8. | . Viene fornita la stessa quantità di calore a due blocchi di ugual massa, uno di<br>rame e l'altro di alluminio, posti inizialmente alla stessa temperatura.                                                                  |
|    | Quale dei due blocchi avrà la minor variazione di temperatura? [calori specifici: Cu = 0.093 cal/g °C; Al = 0.217 cal/g °C] * (1/1 punti)                                                                                      |
|    | Il blocco di rame                                                                                                                                                                                                              |
|    | Stessa variazione                                                                                                                                                                                                              |

|    | ■ Il blocco di alluminio                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Dipende dal volume dei blocchi                                                                                                                                                                                                                                  |
|    | Non rispondo a questa domanda                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                                                 |
| 9  | . In un moto con legge oraria del tipo s(t) = S <sub>0</sub> $\sin(\omega t)$ , $\omega$ rappresenta: * (1/1 punti)                                                                                                                                             |
|    | La velocità angolare                                                                                                                                                                                                                                            |
|    | La fase                                                                                                                                                                                                                                                         |
|    | L'angolo al variare del tempo                                                                                                                                                                                                                                   |
|    | ■ La pulsazione ✓                                                                                                                                                                                                                                               |
|    | Non rispondo a questa domanda                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                                                 |
|    | X                                                                                                                                                                                                                                                               |
| 10 | L'area del piano di un tavolo è 1m <sup>2</sup> .  La forza che agisce sulla superficie superiore del tavolo a causa della pressione atmosferica è dello stesso ordine di grandezza di quella che si avrebbe appoggiando al tavolo una massa di: *  (0/1 punti) |
|    | meno di 0.1 kg                                                                                                                                                                                                                                                  |
|    | ① 1 kg                                                                                                                                                                                                                                                          |
|    | 100 kg                                                                                                                                                                                                                                                          |
|    | ○ 10000 kg ✓                                                                                                                                                                                                                                                    |
|    | Non rispondo a questa domanda                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                                                 |

Questo contenuto è creato dal proprietario del modulo. I dati inoltrati verranno inviati al proprietario del modulo. Microsoft non è responsabile per la privacy o le procedure di sicurezza dei propri clienti, incluse quelle del proprietario di questo modulo. Non fornire mai la password.

Con tecnologia Microsoft Forms | Privacy e cookie (https://go.microsoft.com/fwlink/p/?linkid=857875) | Condizioni per l'utilizzo (http://go.microsoft.com/fwlink/p/?LinkId=2083423)