Eviews で計量経済学

1. 構造変化の検定

以下のマクロ輸入関数のモデルの推定を行う。

$$IMR = \alpha + \beta GDPR + \gamma P$$
$$+ \lambda D + \delta D \times GDPR + \phi D \times P,$$
(1)

• ダミー変数 D は 1984 年まで 0 として、1985 年以後を 1 とする。推定を行い H_0 : $\lambda = 0$, $\delta = 0$, $\delta = 0$ であるか否かを検定する。

Eviews での操作

- ① http://www.econ.kyoto-u.ac.jp/~morimune/basic-ECONOMETRICS-Tables//ALL-TABLES.xls のデータをダウンロードして表 4-3 のデータを利用する。まず、データの期間 1956 年-2001 年となっていることを確認する。
- ② Eviews の画面で: file>new>workfile。
- ③ 年次データとなっているため、Workfile structure type を Dated regular frequency と する。Frequency を annual とする。データ期間は 1956年-2001年となっているため、 Start date と end data にそれぞれ 1956 と 2001 と入力する。 OK。
- ④ ALL-TABLES から表 4.3 のデータを取り出して新しい Excel のファイルに貼り付けってデータファイルを作成する。最初の列に名前 Year という名前を入れる。import.xls の名前で保存する。

Year	IMR	IM	GDP	GDPR
1956	1857.5	915.3	8597.8	47939.3
1957	2494.4	1321.1	9647.7	51194.8
1958	2697.3	1393.3	11064.1	55364.6
1959	2485.5	1117.2	11845.1	59010.2
1960	3182.6	1442.0	13897.0	65628.3
1961	3827.9	1706.2	16680.6	73504.1
1962	4760.6	2160.8	20170.8	82124.9

- ⑤ File>import>import from file。import.xls を見つけて、開く>完了。
- ⑥ ダミー変数 D を作成し、変数名を dummy とする:まず前半のデータを作る、Workfile のツールバーにある Genr をクリックし、Enter equation の欄に dummy=0,sample の欄に 1956 1984 と入力する、OK。後半のデータを作る、Workfile のツールバーにある Genr をクリックし、Enter equation の欄に dummy=1、sample の欄に 1985 2001 と入力する、OK。
- ⑦ 変数 P を作成する。テキストの定義より作成する。Workfile のツールバーにある Genr をクリックし、Enter equation の欄に p=im-imr-(gdp-gdpr)と入力する。OK。
- ⑧ 推定を行う。Quick>Estimate Equation。Equation Estimation の欄に

imr c gdpr p dummy dummy*gdpr dummy*pと入力する。OK。以下の推定結果が表示される。Nameをクリックしてname to identify objectの空欄に名前入力しOKをクリックし、Equationを保存する。

Dependent Variable: IMR Method: Least Squares

Date: 07/15/11 Time: 15:34

Sample: 1956 2001

Included observations: 46

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3571.813	1362.478	-2.621557	0.0123
GDPR	0.092352	0.004390	21.03915	0.0000
Р	0.010003	0.017507	0.571404	0.5709
DUMMY	-100248.5	10731.43	-9.341580	0.0000
DUMMY*GDPR	0.254010	0.026056	9.748805	0.0000
DUMMY*P	0.296230	0.061347	4.828762	0.0000
R-squared	0.988204	Mean dependent var		24316.99
Adjusted R-squared	0.986729	S.D. dependent var		17849.55
S.E. of regression	2056.252	Akaike info criterion		18.21627
Sum squared resid	1.69E+08	Schwarz criterion		18.45478
Log likelihood	-412.9741	Hannan-Quinn criter.		18.30562
F-statistic	670.1787	Durbin-Watson stat		0.993537
Prob(F-statistic)	0.000000			

検定を行う。 $H_0: \lambda=0, \delta=0, \emptyset=0$ であるか否かを検定する。F検定や χ^2 検定になる。Equationの画面でView>Coefficient diagnostic>Wald test。c(4)=0, c(5)=0, c(6)=0と入力する。OK。以下の結果が得られる。

Wald Test:

Equation: Untitled

Test Statistic	Value	df	Probability
F-statistic	52.70915	(3, 40)	0.0000
Chi-square	158.1275	3	0.0000

Null Hypothesis: C(4)=0,C(5)=0,C(6)=0

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
C(4)	-100248.5	10731.43	
C(5)	0.254010	0.026056	
C(6)	0.296230	0.061347	

Restrictions are linear in coefficients.

P値が限りなく 0 に近いため。F検定と χ^2 検定両方とも帰無仮説を棄却する。構造変化がありとなる。

⑨workfile を保存。File<saveas をクリックし名前を入力し保存する。

2. 二項選択モデル

①表 6.1 のデータを以下のように作り直す。Bi.xls の名前で保存する。

No	Y	income	car	bus	difference
1	0	517	82	22	60
2	0	361	39	27	12
3	0	481	2	-3	5
4	0	259	46	15	31
5	1	650	54	16	37
6	1	564	17	38	-20
7	0	207	37	2	35
8	1	389	7	17	-9
9	0	30	26	20	6
10	0	95	36	24	12
11	1	233	20	14	5
12	1	474	20	33	-13
13	0	448	37	16	21
14	0	598	29	4	25
15	0	453	28	16	13
16	1	377	36	5	31
17	1	260	2	26	-24

②データを読み込む。

Workfile structure type を unstructed/undated、observation に 30 と入力する。 前の例と同じように Bi.xls のファイルからデータを読み込む ③推定する。

④Quick>Estimate Equation。 Equation Estimation の欄に

y c income differenceと入力する。Methodの欄をBinaryに変える。Binary estimation methodの選択肢をProbitとする。OK。以下はプロビットモデル推定結果となる。Nameを 付けて保存する。Workfileも保存する。

Dependent Variable: Y

Method: ML - Binary Probit (Quadratic hill climbing)

Date: 07/15/11 Time: 16:06

Sample: 1 30

Included observations: 30

Convergence achieved after 3 iterations

Covariance matrix computed using second derivatives

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.756736	0.639148	-1.183977	0.2364
INCOME	0.002342	0.001538	1.523408	0.1277
DIFFERENCE	-0.028161	0.014321	-1.966430	0.0492
McFadden				
R-squared	0.151920	Mean dependent var		0.433333
S.D. dependent var	0.504007	S.E. of regression		0.473579
Akaike info criterion	1.360567	Sum squared resid		6.055487
Schwarz criterion	1.500686	Log likelihood		-17.40850
Hannan-Quinn criter.	1.405392	Deviance		34.81700
Restr. deviance	41.05391	Restr. log likelihood		-20.52695
LR statistic	6.236907	Avg. log likelihood		-0.580283
Prob(LR statistic)	0.044226			
Obs with Dep=0	17	Total obs		30
Obs with Dep=1	13			

⑤Binary estimation methodの選択肢をlogitに改めて再推定するとロジットモデルの推定結果が表示される。

課題 1: 一番目の例の 1998 年までのデータを利用する。ただし、1998 年の IMR のデータ に各自の学籍番号下三桁を 100 で割った結果を足してください。資料の最初にある(1)式を推定し、仮説 H_0 : $\delta=0$, $\emptyset=0$ を検定しなさい。推定と検定結果の出力に加えて推定式と 検定結果の説明を記入し研究室 530 の前にあるボックスに提出してください。(締め切り 7月 26日)

課題 2 (今回は提出課題としません): income だけ説明変数として、ロジットモデルとプロビットモデルを推定しなさい。推定式を記入し提出してください。