

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15060044403

FCC REPORT (WIFI)

Applicant: Light Repute International Limited

Address of Applicant:

Room 101, No. 91, Avenue 3288 Yanggao South Road, Pudong New Area, Shanghai, People's Rep. of China

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: Z5

Trade mark: Smart mobile

FCC ID: 2ADVCZ5

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Jun., 2015

Date of Test: 09 Jun., to 16 Jul., 2015

Date of report issued: 16 Jul., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	16 Jul., 2015	Original

Sera Ximy Report Clerk Prepared by: Date: 16 Jul., 2015

Reviewed by: Date: 16 Jul., 2015

Project Engineer

3 Contents

		Page
CO	VER PAGE	1
VEF	RSION	2
GEI	NERAL INFORMATION	5
5 1	CLIENT INFORMATION	5
5.2		
5.3	TEST ENVIRONMENT AND MODE	
5.4	LABORATORY FACILITY	8
5.5	LABORATORY LOCATION	
5.6	TEST INSTRUMENTS LIST	9
TES	ST RESULTS AND MEASUREMENT DATA	10
6.1	ANTENNA REQUIREMENT:	10
6.2	CONDUCTED EMISSION	11
6.3	CONDUCTED OUTPUT POWER	14
6.4	OCCUPY BANDWIDTH	
6.5		
0.0		
0.0.		
0		
• • • • • • • • • • • • • • • • • • • •		
		
TES	ST SETUP PHOTO	58
EU	T CONSTRUCTIONAL DETAILS	59
	VEI CO TES GE 5.1 5.2 5.3 5.4 5.5 5.6 TES 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.6 6.7 6.7 6.7 7	5.2 GENERAL DESCRIPTION OF E.U.T. 5.3 TEST ENVIRONMENT AND MODE. 5.4 LABORATORY FACILITY 5.5 LABORATORY LOCATION 5.6 TEST INSTRUMENTS LIST TEST RESULTS AND MEASUREMENT DATA 6.1 ANTENNA REQUIREMENT: 6.2 CONDUCTED EMISSION 6.3 CONDUCTED OUTPUT POWER 6.4 OCCUPY BANDWIDTH 6.5 POWER SPECTRAL DENSITY

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Light Repute International Limited
Address of Applicant:	Room 101, No. 91, Avenue 3288 Yanggao South Road, Pudong New Area, Shanghai, People's Rep. of China
Manufacturer:	Light Repute International Limited
Address of Manufacturer:	Room 101, No. 91, Avenue 3288 Yanggao South Road, Pudong New Area, Shanghai, People's Rep. of China

5.2 General Description of E.U.T.

•	
Product Name:	mobile phone
Model No.:	Z5
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1 dBi
AC adapter:	Model :A1265 Input:100-240V AC,50/60Hz 0.15A
, to adapto	Output:5V DC MAX 1A
Power supply:	Rechargeable Li-ion Battery DC3.7V-2200mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency						
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2 2417MHz 5 2432MHz 8 2447MHz 11 2462MHz						
3							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCIS15060044403

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15060044403

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Francisco de (MILE)	Limit (c	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46		
	* Decreases with the logarithm	60	50		
Test procedure	 a line impedance stabilize 500hm/50uH coupling im The peripheral devices at through a LISN that provi with 500hm termination. (test setup and photograp Both sides of A.C. line are interference. In order to fi positions of equipment ar 	 through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted 			
Test setup:	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

EUT : Mobile Phone lest Mode : Wifi mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Colin
Remark

NCMAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu∀	dBu∀	₫B	
1	0.154	28.02	0.25	10.78	39.05		-26.73	
2	0.206	24.18	0.25	10.76	35.19	63.36	-28.17	QP
3	0.277	10.49	0.26	10.74	21.49	50.90	-29.41	Average
4	0.634	6.08	0.21	10.77	17.06	46.00	-28.94	Average
5	0.697	18.77	0.18	10.77	29.72	56.00	-26.28	QP
1 2 3 4 5 6 7 8 9	1.628	3.53	0.27	10.93	14.73	46.00	-31.27	Average
7	1.762	14.59	0.28	10.94	25.81	56.00	-30.19	QP
8	2.765	4.07	0.29	10.93	15.29	46.00	-30.71	Average
9	4.027	14.01	0.29	10.89	25.19	56.00	-30.81	QP
10	5.305	3.36	0.28	10.84	14.48	50.00	-35.52	Average
11	7.566	12.93	0.26	10.83	24.02	60.00	-35.98	QP
12	11.807	-1.16	0.25	10.92	10.01	50.00	-39.99	Average

Line:

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

: Mobile Phone EUT Model 25

Test Mode : Wifi mode

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Colin

vemark.	•							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∇	<u>d</u> B	
1	0.154	27.31	0.27	10.78	38.36	65.78	-27.42	QP
2	0.299	20.68	0.26	10.74	31.68	60.28	-28.60	QP
3	0.299	10.76	0.26	10.74	21.76	50.28	-28.52	Average
4	0.686	18.27	0.22	10.77	29.26	56.00	-26.74	QP
5	0.686	6.17	0.22	10.77	17.16	46.00	-28.84	Average
6	1.345	14.71	0.25	10.91	25.87	56.00	-30.13	QP
1 2 3 4 5 6 7 8 9	1.345	1.21	0.25	10.91	12.37	46.00	-33.63	Average
8	3.759	2.96	0.28	10.90	14.14	46.00	-31.86	Average
9	5.362	14.02	0.30	10.84	25.16	60.00	-34.84	QP
10	6.988	-1.73	0.32	10.80	9.39	50.00	-40.61	Average
11	12.988	12.25	0.32	10.91	23.48	60.00	-36.52	QP
12	13.768	-1.92	0.32	10.91	9.31			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 9.2.2						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

T	Maximum		_		
Test CH	802.11b	802.11g	802.11n(H20)	Limit(dBm)	Result
Lowest	6.40	5.36	1.93		
Middle	8.57	7.47	3.73	30.00	Pass
Highest	10.78	9.06	5.69		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

4 MHz/

20 MHz

Power
Highest channel

Center 2.462 GHz

Tx Channel

Project No.: CCIS150600444RF

Span 40 MHz

9.06 dBm

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

	6dB				
Test CH	802.11b	Limit(kHz)	Result		
Lowest	9.68	15.28	16.08		
Middle	9.68 15.28		16.32	>500	Pass
Highest	9.20	15.28	16.32		

T (01)	99%	1	Result		
Test CH	802.11b	Limit(kHz)			
Lowest	13.12	16.32	17.52		
Middle	12.80	16.24	17.52	N/A	N/A
Highest	12.88	16.32	17.52		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 9.JUL.2015 20:34:02

Lowest channel

Date: 9..TIT..2015 20:31:53

Middle channel

Date: 9.JUL.2015 20:30:08

Highest channel

Test mode: 802.11g

Date: 9.JUL.2015 20:36:04

Lowest channel

Date: 9.JUL.2015 20:37:36

Middle channel

Date: 9..TIII..2015 20:39:37

Highest channel

Test mode: 802.11n(H20)

Date: 9.JUL.2015 20:45:31

Lowest channel

Date: 9.JUL.2015 20:43:21

Middle channel

Date: 9..TII..2015 20:43:21

Highest channel

99% OBW

Test mode: 802.11b

Date: 9.JUL.2015 20:34:27

Lowest channel

Date: 9..TIIT..2015 20:31:05

Middle channel

Date: 9.JUL.2015 20:30:34

Highest channel

Test mode: 802.11g

Date: 9.JUL.2015 20:35:06

Lowest channel

Date: 9.JUL.2015 20:37:56

Middle channel

Date: 9..TII..2015 20:38:18

Highest channel

Date: 9.JUL.2015 20:44:27

Lowest channel

Date: 9.JUL.2015 20:42:28

Middle channel

Date: 9..HIL.2015 20:42:03

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 10.2					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

T O	Pow	er Spectral Density (d		5		
Test CH	802.11b 802.11g 802.11n(H20)		Limit(dBm)	Result		
Lowest	-3.92	-13.01	-16.81			
Middle	-2.68	-11.00	-14.80	8.00	Pass	
Highest	-0.54	-8.92	-12.66			

Test plot as follows:

Date: 9.JUL.2015 20:08:30

Lowest channel

Date: 9.JUL.2015 20:10:24

Middle channel

Date: 9..TUT..2015 20:12:07

Highest channel

Date: 9.JUL.2015 20:13:46

Lowest channel

Date: 9.JUL.2015 20:14:57

Middle channel

Date: 9..TUT..2015 20:16:06

Highest channel

Test mode: 802.11n(H20)

Date: 9.JUL.2015 20:17:38

Lowest channel

Date: 9.JUL.2015 20:19:10

Middle channel

Date: 9..TIIT..2015 20:20:39

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

802.11b

Date: 9.JUL.2015 20:26:51

Lowest channel

Date: 9.JUL.2015 20:27:44

Highest channel

Date: 9..TII..2015 20:25:06

Lowest channel

Date: 9.JUL.2015 20:23:54

Highest channel

802.11n(H20)

Date: 9.JUL.2015 20:26:02

Lowest channel

Date: 9.JUL.2015 20:23:01

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement D	Measurement Distance: 3m						
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
I incite		Peak	1MHz	10Hz	Average Value			
Limit:	Freque	encv	Limit (dBuV/	/m @3m)	Remark			
		•	54.0		Average Value			
	Above 1		74.0	0	Peak Value			
	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test setup:	AE SOCIM	urntable) Groun Test Receiver	Horn Ant	Controller	ower W			
Test Instruments:	Refer to section	5.6 for details						
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile phone

Model : Z5

Test mode : wifi-B-L Power Rating : AC 120V/60Hz

Environment : Temp: 25.5 C Huni: 55%

Test Engineer: Colin

REMARK

Freq	ReadAntenna C Freq Level Factor							
MHz	dBu₹		<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile phone

: L5
Test mode : wifi-B-L
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%
Test Engineer: Colin
REMARK :

Elikan	20000		Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	dB	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000				0.00 0.00				

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone

Model : Z5

Test mode : wifi-B-H Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin REMARK :

WIG	n .	_			_					
	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	—dBu∇	$\overline{-dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500					47070 5000			ELECTRON TO THE COLUMN TO THE	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile phone EUT

: Z5 Model Test mode : wifi-B-H Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin REMARK :

C)	MA :									
		Read	ReadAntenna		Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹			<u>ab</u>	dBu√/m	dBu√/m	<u>ab</u>		
	2483.500	20.42	27.52	6.85	0.00	54.79	74.00	-19.21	Peak	
	2483.500	8.64	27.52	6.85	0.00	43.01	54.00	-10.99	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site 3m chamber

Condition FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile phone

Model : Z5

Test mode : wifi-G-L Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Colin REMARK :

	Freq					Limit Over Level Line Limit Reman		
ė.	MHz	dBu₹		 <u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000				54.23 42.19			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile phone

Test mode : wifi-G-L
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Colin
REMARK :

ראוונים	к .	Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						
	MHz	—dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1	2390.000	21.16	27.58	6.63	0.00	55.37	74.00	-18.63	Peak
2	2390.000	8.05	27.58	6.63	0.00	42.26	54.00	-11.74	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone

: Z5 Model

: wifi-G-H Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin REMARK :

MIN									
	-		dAntenna Cabi 1 Factor Lo:				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
-	MHz	dBu∜	dB/π	₫B	₫B	dBuV/m	dBuV/m	dB	
i	2483.500 2483.500	The state of the s			0.00				Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile phone

Model : Z5

Test mode : wifi-G-H Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Colin REMARK :

 30950		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	 -
2483,500 2483,500	The state of the s	200 Maria 1981 Colores						

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone

: Z5 Model

Test mode : wifi-N20-L Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Colin

REMARK

	Freq		Antenna Factor						
	MHz	—dBu∜	dB/m	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000					53.78 41.72			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile phone EUT

Model : Z5

Test mode : wifi-N20-L Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin REMARK :

N.A.								
	Read	Ant enna	Cable	Preamp		Limit	Over	
Fre	q Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MH	z dBuV			<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	0 19.59 0 7.65							Peak Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile phone

Model : Z5

: wifi-N20-H Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Colin REMARK:

LYAM.	:								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/m	<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	19.50	27.52	6.85	0.00	53.87	74.00	-20.13	Peak
2	2483.500	7.95	27.52	6.85	0.00	42.32	54.00	-11.68	Average
3	2485.695	22.22	27.52	6.85	0.00	56.59		-17.41	
4	2485.695	8.01	27.52	6.85	0.00	42.38			Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile phone Condition

EUT Model : Z5

Test mode : wifi-N20-H
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin

REMARK

יזונטזוי	n .	Road	Ant enna	Cabla	Dreamn		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	dB	
1	2483.500	19.86	27.52	6.85	0.00	54.23	74.00	-19.77	Peak
2	2483 500	7 99	27 52	6 85	0.00	42 36	54 00	-11 64	Amerage

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer							
	E.U.T							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Test mode: 802.11b

Lowest channel

Date: 9.JUL.2015 20:09:17

30MHz~25GHz

Middle channel

Date: 9.JUT..2015 20:11:01

30MHz~25GHz

Highest channel

Date: 9.JUL.2015 20:12:46

30MHz~25GHz

Test mode: 802.11g

Date: 9.JUT..2015 20:14:13

30MHz~25GHz

Middle channel

Date: 9.JUL.2015 20:15:24

30MHz~25GHz

Highest channel

Date: 9.JUT..2015 20:16:43

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 9.JUL.2015 20:18:24

30MHz~25GHz

Middle channel

Date: 9.JUL.2015 20:20:05

30MHz~25GHz

Highest channel

Date: 9.JUT. 2015 20:21:18

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20)13						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
	Frequency Detector RBW VBW Remark							
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	710000 10112	Peak	1MHz	10Hz	Average Value			
Limit:								
	Freque		Limit (dBuV		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	TGHZ	54.0 54.0		Quasi-peak Value			
	Above 1	GHz	74.0 74.0		Average Value Peak Value			
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the material Europe in the second to find the material Europe in the second to determine the material Europe in the Europe in	at a 3 meter of the position was set 3 meter which was mount to determine to the and vertical an	the top of a reamber. The transfer of the highests away from the don the transfer on the maximum cal polarization, the EU awas turned was turned was set to P Maximum He EUT in peasesting could borted. Otherwas te re-tested	otating table able was ro at radiation. the interfer op of a variate meter to for value of the ons of the art to heights from 0 degreeak Detect old Mode. It was arranged to the extended was the stopped arise the emit one by one	e 0.8 meters above tated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to a from 1 meter to 4 the ees to 360 degrees			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Mobile phone

Model : Z5 : WIFI Test mode

Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Colin REMARK :

	Freq		Antenna Factor					Over Limit	Remark
_	MHz	dBu∀	<u>d</u> B/m	<u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	167.824	51.92	8.90	1.34	29.07	33.09	43.50	-10.41	QP
2	177.509	50.77	9.49	1.36	28.99	32.63	43.50	-10.87	QP
2	265.676	47.79	12.26	1.67	28.51	33.21	46.00	-12.79	QP
4	383.932	46.08	14.68	2.06	28.71	34.11	46.00	-11.89	QP
5	576.644	42.35	18.03	2.58	29.01	33.95	46.00	-12.05	QP
4 5 6	768.748	40.65	19.68	3.09	28.37	35.05	46.00	-10.95	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT Mobile phone

: Z5 : WIFI Model Test mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Colin

REMARK

	Freq		Antenna Factor					Over Limit	
_	MHz	dBu∇	<u>d</u> B/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	119.856	50.23	10.48	1.12	29.39	32.44	43.50	-11.06	QP
2	167.824	48.85	8.90	1.34	29.07	30.02	43.50	-13.48	QP
2	511.835	43.45	16.84	2.43	28.99	33.73	46.00	-12.27	QP
4	528.246	42.09	17.15	2.48	29.04	32.68	46.00	-13.32	QP
5	552.883	42.87	17.62	2.54	29.09	33.94	46.00	-12.06	QP
6	576.644	42.60	18.03	2.58	29.01	34.20	46.00	-11.80	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3619.18	65.26	29.18	8.99	40.35	63.08	74.00	-10.92	Vertical
4824.00	49.27	31.53	8.90	40.24	49.46	74.00	-24.54	Vertical
3619.18	60.42	29.18	8.99	40.35	58.24	74.00	-15.76	Horizontal
4824.00	50.95	31.53	8.90	40.24	51.14	74.00	-22.86	Horizontal
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3619.18	55.85	29.18	8.99	40.35	53.67	54.00	-0.33	Vertical
4824.00	40.26	31.53	8.90	40.24	40.45	54.00	-13.55	Vertical
102 1.00	1							
3619.18	52.48	29.18	8.99	40.35	50.30	54.00	-3.70	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3647.46	65.64	29.21	9.04	40.39	63.50	74.00	-10.50	Vertical
4874.00	48.08	31.58	8.98	40.15	48.49	74.00	-25.51	Vertical
3647.46	61.46	29.21	9.04	40.39	59.32	74.00	-14.68	Horizontal
4874.00	51.61	31.58	8.98	40.15	52.02	74.00	-21.98	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3647.46	56.03	29.21	9.04	40.39	53.89	54.00	-0.11	Vertical
4874.00	39.25	31.58	8.98	40.15	39.66	54.00	-14.34	Vertical
3647.46	53.31	29.21	9.04	40.39	51.17	54.00	-2.83	Horizontal
4874.00	42.27	31.58	8.98	40.15	42.68	54.00	-11.32	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest	Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
3697.48	65.63	29.26	9.12	40.46	63.55	74.00	-10.45	Vertical		
4924.00	48.64	31.69	9.08	40.03	49.38	74.00	-24.62	Vertical		
3697.48	61.73	29.26	9.12	40.46	59.65	74.00	-14.35	Horizontal		
4924.00	52.14	31.69	9.08	40.03	52.88	74.00	-21.12	Horizontal		
Test mode: 80	02.11b		Test channel: Highest			Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
3697.48	55.59	29.26	9.12	40.46	53.51	54.00	-0.49	Vertical		
4924.00	38.25	31.69	9.08	40.03	38.99	54.00	-15.01	Vertical		
3697.48	52.11	29.26	9.12	40.46	50.03	54.00	-3.97	Horizontal		
4924.00	49.28	31.69	9.08	40.03	50.02	54.00	-3.98	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3619.18	64.24	29.18	8.99	40.35	62.06	74.00	-11.94	Vertical
4824.00	47.84	31.53	8.90	40.24	48.03	74.00	-25.97	Vertical
3619.18	59.12	29.18	8.99	40.35	56.94	74.00	-17.06	Horizontal
4824.00	49.24	31.53	8.90	40.24	49.43	74.00	-24.57	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3619.18	53.24	29.18	8.99	40.35	51.06	54.00	-2.94	Vertical
4824.00	38.62	31.53	8.90	40.24	38.81	54.00	-15.19	Vertical
3619.18	51.24	29.18	8.99	40.35	49.06	54.00	-4.94	Horizontal
4824.00	39.61	31.53	8.90	40.24	39.80	54.00	-14.20	Horizontal

Test mode: 80)2.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3647.46	63.12	29.21	9.04	40.39	60.98	74.00	-13.02	Vertical
4874.00	48.24	31.58	8.98	40.15	48.65	74.00	-25.35	Vertical
3647.46	62.13	29.21	9.04	40.39	59.99	74.00	-14.01	Horizontal
4874.00	49.72	31.58	8.98	40.15	50.13	74.00	-23.87	Horizontal
Test mode: 80)2.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3647.46	54.12	29.21	9.04	40.39	51.98	54.00	-2.02	Vertical
4874.00	38.11	31.58	8.98	40.15	38.52	54.00	-15.48	Vertical
3647.46	52.01	29.21	9.04	40.39	49.87	54.00	-4.13	Horizontal
4874.00	39.23	31.58	8.98	40.15	39.64	54.00	-14.36	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
3697.48	65.20	29.26	9.12	40.46	63.12	74.00	-10.88	Vertical	
4924.00	48.77	31.69	9.08	40.03	49.51	74.00	-24.49	Vertical	
3697.48	60.27	29.26	9.12	40.46	58.19	74.00	-15.81	Horizontal	
4924.00	50.27	31.69	9.08	40.03	51.01	74.00	-22.99	Horizontal	
Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
3697.48	53.27	29.26	9.12	40.46	51.19	54.00	-2.81	Vertical	
4924.00	39.16	31.69	9.08	40.03	39.90	54.00	-14.10	Vertical	
3697.48	50.12	29.26	9.12	40.46	48.04	54.00	-5.96	Horizontal	
4924.00	40.21	31.69	9.08	40.03	40.95	54.00	-13.05	Horizontal	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	st mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
3619.18	63.12	29.18	8.99	40.35	60.94	74.00	-13.06	Vertical	
4824.00	47.12	31.53	8.90	40.24	47.31	74.00	-26.69	Vertical	
3619.18	58.79	29.18	8.99	40.35	56.61	74.00	-17.39	Horizontal	
4824.00	48.37	31.53	8.90	40.24	48.56	74.00	-25.44	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
3619.18	54.25	29.18	8.99	40.35	52.07	54.00	-1.93	Vertical	
4824.00	38.22	31.53	8.90	40.24	38.41	54.00	-15.59	Vertical	
	50.00	20.40	8.99	40.35	48.48	54.00	-5.52	Horizontal	
3619.18	50.66	29.18	0.99	40.55	70.70	04.00	5.52	Honzontal	

Test mode: 8	02.11n(H20)	1	Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3647.46	62.06	29.21	9.04	40.39	59.92	74.00	-14.08	Vertical
4874.00	48.13	31.58	8.98	40.15	48.54	74.00	-25.46	Vertical
3647.46	60.00	29.21	9.04	40.39	57.86	74.00	-16.14	Horizontal
4874.00	48.51	31.58	8.98	40.15	48.92	74.00	-25.08	Horizontal
Test mode: 8	02.11n(H20)		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3647.46	52.48	29.21	9.04	40.39	50.34	54.00	-3.66	Vertical
4874.00	38.09	31.58	8.98	40.15	38.50	54.00	-15.50	Vertical
3647.46	52.07	29.21	9.04	40.39	49.93	54.00	-4.07	Horizontal
4874.00	38.14	31.58	8.98	40.15	38.55	54.00	-15.45	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3697.48	64.24	29.26	9.12	40.46	62.16	74.00	-11.84	Vertical
4924.00	47.33	31.69	9.08	40.03	48.07	74.00	-25.93	Vertical
3697.48	62.13	29.26	9.12	40.46	60.05	74.00	-13.95	Horizontal
4924.00	50.33	31.69	9.08	40.03	51.07	74.00	-22.93	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
3697.48	51.16	29.26	9.12	40.46	49.08	54.00	-4.92	Vertical
4924.00	38.10	31.69	9.08	40.03	38.84	54.00	-15.16	Vertical
3697.48	48.25	29.26	9.12	40.46	46.17	54.00	-7.83	Horizontal
4924.00	40.48	31.69	9.08	40.03	41.22	54.00	-12.78	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366