

RADAR METEOROLOGICO EEA INTA ANGUIL

25 de Junio de 2019

Lic. Yanina Bellini Saibene Mg. Data Mining

Ing. Agr. Laura Belmonte Mg. Cs. Agrarias

Red de radares meteorológicos de INTA

coordinador

CONVENIO ESPECIFICO DE COOP. TECNICA INTA-SMN

- Contempla el desarrollo y operación de la red de radares meteorológicos. Miembros del
- La calibración de los mismos.
- El intercambio y la validación de datos e información climática.
- La elaboración y ejecución de proyectos de investigación y desarrollo tecnológico conjunto.

SINARAME

Sistema Nacional de Radares Meteorológicos (SiNaRaMe, www.sinarame.gob.ar) en Argentina: un proyecto hidrometeorológico nacional, fundado en 2009, centrado en la integración, desarrollo y calibración de una red de radares meteorológicos.

> Instituciones integrantes del SINARAME SSRH INA SMN INVAP INTA UNC UBA CONICET SHN

Funcionamiento del RADAR

Granizo

Características radar EEA Anguil

Banda C

	5,6 GHz
Características principales de radares meteorológicos e	en ban-
da s, c v x	

Banda	Rango de frecuencias	Características principales
s	2.7 GHz ~ 2.9 GHz	Apropiado para la lluvia pesada a gran distancia (más de 300 km). Baja atenuación, pero requiere mucha potencia. Requiere antena y pedestal más grande, por lo que se elevan los requerimientos de infraestructura (mayor peso, mayores costos).
С	5.2 GHz ~ 5.7 GHz	Buena sensibilidad para el rango de observación (hasta 240 km) a un costo más bajo que el de banda S. Antenas y transmisores más pequeñas. Infraestructura más liviana. Decorrelación más rápida permite una mejor resolución en tiempo. Más propensos a la atenuación por lluvia que banda S. Hidrometeoros grandes entren en el régimen de resonancia.
x	9.3 GHz ~ 9.5 GHz	Su excelente sensibilidad y reducido tamaño permite tanto implementaciones fijas como móviles. Da un mejor detalle de partículas pequeñas. Alta absorción que limita su utilidad a 80 km de rango.

Dual Pol

Copo de niev

Gota de Iluvia

~ 1 mm a 2 cm

~ 10 cm

Radios de acción

Diagrama de altura y distancia del radar para diferentes ángulos de elevación

Configuración

Patrón de barrido del radar

165.888.000 de datos diarios

Configuración de barrido 10 minutos - 144 adquisiciones/día El escaneo volumétrico de RM, fue configurado con giros a 360° horizontal, iniciando con elevación a 0,5° hasta 15,1° en un total de 12 ángulos.

Reflectividad

$$Z = \sum_{i=1}^{N} D_i^6$$

Z= Reflectividad

 $Z (dBZ) = \log z (mm^6/m^3)$

Productos

HIDROLOGICOS:

- SRI
- PAC
- ZHAIL

LA PAZ

AMALA

VILAGIAN

GUNEZA

INTA

Intensidad de lluvia (mm/h) en el radar de Paraná

SRI

Precipitación acumulada (mm/dia) radar Anguil

PAC

https://radar.inta.gob.ar/
https://www.smn.gob.ar/radar_new

Información aportada por radar meteo

Avisos de tormenta.

Mejora en la capacidad de pronóstico de corto plazo y diagnóstico del tiempo en cuanto a la previsión de lluvias

Aumento de la capacidad de generar alertas tempranas de tormentas severas.

Mejora en la estimación de la precipitación y su distribución espacial.

Identificación de áreas afectadas por granizo.

Mejora en el conocimiento de la evolución del balance hídrico.

Vinculaciones

Tesis de posgrado

Estimación de ocurrencia de granizo en superficie y daño en cultivos mediante datos del radar meteorológico utilizando técnicas de DataMining

Estimación de precipitación a partir de radar meteorológico: Evaluación y desarrollo de productos para la toma de Decisiones en planificación agropecuaria

Estimación de precipitación mediante datos del radar meteorológico y técnicas de Aprendizaje supervisado (co-dirección MDM UBA)

Trabajos presentados

Actividades por los 10 años del RADAR de la EEA Anguil

Curso "Radar Meteorológico: uso e interpretación de su información y productos"

Docentes: Romina Mezher (Instituto de Clima y Agua INTA), Yanina Bellini Saibene (INTA Anguil) y Laura Belmonte (INTA Anguil)

Lugar:

Temario:

- Tipos de nubes, ¿Cómo se forma una tormenta? ¿Cualquier nube puede generar granizo?
- El RADAR Meteorológico y la red de radares de INTA.
- ¿Qué mide un radar? Variables registradas, su interpretación. Fuentes de error.
- Productos generados por el radar, su interpretación.
- Donde consultar la información.
- Ejemplos y práctica

Actividades por los 10 años del RADAR de la EEA Anguil

Jornada "El RADAR Meteorologico y su uso con fines agropecuarios"

Jornada abierta y gratuita

Lugar: EEA Anguil

Posible cronograma:

Presentación autoridades. (20 minutos)

Presentación "El Radar Meteorológico". Romina Mezher (45 minutos)

Presentación "El Radar aplicado a problemáticas agropecuarias" Yanina Bellini y Laura Belmonte. 45 minutos (boletín técnico sobre el RADAR)

Presentación "Catalogo de datos del RADAR de la EEA Anguil" (Yanina y/o alguien de Fundacion Sadosky) 30 minutos

Panel "Seguros agrícolas"

Paraná Seguros 30 minutos

La Segunda 30 minutos

Sancor Seguros 30 minutos

Sura 30 minutos

Cierre de la jornada

Fecha tentativa: segunda semana de Agosto

El curso se realizaría el día anterior a la jornada

¡Muchas Gracias!

RED DE RADARES METEOROLÓGICOS
Instituto Nacional de Tecnología Agropecuaria

https://radar.inta.gob.ar/