

### Chapter 12 Graphs

数据科学与计算机学院

黄方军



data\_structures@163.com



东校区实验中心B502

### 12.1.1 Definitions and Examples



- Terms: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree;
- Three types of graphs: undirected, directed, weighted;
- Common graph representations: adjacency matrix, adjacency lists.

### 12.1.1 Definitions and Examples







Benzene molecule

Selected South Pacific air routes



Message transmission in a network

### Graphs

- G = (V,E)
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).



## Graphs

• Undirected edge has no orientation (u,v).

• Undirected graph => no oriented edge.

• Directed graph=>every edge has an orientation.



Disconnected Tree

### 12.1.3 Directed Graphs





There is a directed path from any vertex to any other vertex.

Directed cycle



7

### Applications—Communication Network



• Vertex = city, edge = communication link.

### Driving Distance/Time Map



• Vertex = city, edge weight = driving distance/time.

## Street Map



• Some streets are one way.

## Complete Undirected Graph

Has all possible edges.



### Number Of Edges—Undirected Graph

- Each edge is of the form (u, v), u = v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u, v) is the same as edge (v, u), the number of edges in a complete undirected graph is n(n-1)/2.
- Number of edges in an undirected graph is  $\langle = n(n-1)/2$ .

### Number Of Edges--Directed Graph

- Each edge is of the form (u,v), u = v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is not the same as edge (v,u), the number of edges in a complete directed graph is n(n-1).
- Number of edges in a directed graph is  $\leq n(n-1)$ .

### Vertex Degree



Number of edges incident to vertex.

degree(2) = 2, degree(5) = 3, degree(3) = 1

### Sum Of Vertex Degrees



Sum of degrees = 2e (e is number of edges)

### In-Degree Of A Vertex



in-degree is number of incoming edges

indegree(2) = 1, indegree(8) = 0

### Out-Degree Of A Vertex



out-degree is number of outbound edges

outdegree(2) = 1, outdegree(8) = 2

## Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex

sum of in-degrees = sum of out-degrees = e, where e is the number of edges in the digraph

### 12.2 Computer Representation



- Adjacency Tables (or Matrixes)
- Adjacency Lists
  - Linked Adjacency Lists
  - Array Adjacency Lists

### 12.2.1 The Set Representation







#### Adjacency sets

| vertex | Set         |  |  |
|--------|-------------|--|--|
| 0      | { 1, 2 }    |  |  |
| 1      | { 2, 3 }    |  |  |
| 2      | Ø           |  |  |
| 3      | { 0, 1, 2 } |  |  |

#### Adjacency table

|                  | 0      | 1 | 2 | 3 |
|------------------|--------|---|---|---|
| 0                | F<br>F | Т | Т | F |
| 0<br>1<br>2<br>3 | F      | F | Т | Т |
| 2                | F      | F | F | F |
| 3                | Т      | Т | Т | F |

Figure 12.4. Adjacency set and an adjacency table

## Adjacency Matrix

- $0/1 n \times n$  matrix, where n = # of vertices
- A(i, j) = 1 iff (i, j) is an edge



|   | 1 | 2                     | 3 | 4 | 5 |
|---|---|-----------------------|---|---|---|
| 1 | 0 | 1<br>0<br>0<br>0<br>1 | 0 | 1 | 0 |
| 2 | 1 | 0                     | 0 | 0 | 1 |
| 3 | 0 | 0                     | 0 | 0 | 1 |
| 4 | 1 | 0                     | 0 | 0 | 1 |
| 5 | 0 | 1                     | 1 | 1 | 0 |

## Adjacency Matrix Properties



- •Diagonal entries are zero.
- •Adjacency matrix of an undirected graph is symmetric.
  - -A(i, j) = A(j, i) for all i and j.

## Adjacency Matrix (Digraph)



- •Diagonal entries are zero.
- •Adjacency matrix of a digraph need not be symmetric.

## Adjacency Matrix

- $n^2$  bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
  - (n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex.

### 12.2.2 Adjacency Lists





count = 4

vertex

adjacency list

count = 4

first\_edge





(b) Contiguous lists (c) Mixed

6

## Adjacency Lists

- Adjacency list for vertex *i* is a linear list of vertices adjacent from vertex *i*.
- An array of *n* adjacency lists.



$$aList[1] = (2,4)$$

$$aList[2] = (1,5)$$

$$aList[3] = (5)$$

$$aList[4] = (5,1)$$

$$aList[5] = (2,4,3)$$

# Array Adjacency Lists

• Each adjacency list is an array list.



Array Length = n

# of list elements = 2e (undirected graph)

# of list elements = e (digraph)

### Linked Adjacency Lists

• Each adjacency list is a chain.



Array Length = n

# of chain nodes = 2e (undirected graph)

# of chain nodes = e (digraph)

### 12.3 Graph Traversal

A vertex u is reachable from vertex v iff there is a path from v to u.



29

### Graph Search Methods

• A search method starts at a given vertex v and visits/labels/marks every vertex that is reachable from v.



### Graph Search Methods

- Many graph problems solved using a search method.
  - Path from one vertex to another.
  - Is the graph connected?
  - Find a spanning tree.
  - etc.
- Commonly used search methods:
  - Breadth-first search.
  - Depth-first search.

### Breadth-First Search

- Visit start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.



Start search at vertex 1.



Visit/mark/label start vertex and put in a FIFO queue.



Remove 1 from Q; visit adjacent unvisited vertices; put in Q.



Remove 1 from Q; visit adjacent unvisited vertices; put in Q.



Remove 2 from Q; visit adjacent unvisited vertices; put in Q.



Remove 2 from Q; visit adjacent unvisited vertices; put in Q.



Remove 4 from Q; visit adjacent unvisited vertices; put in Q.



Remove 4 from Q; visit adjacent unvisited vertices; put in Q.



Remove 5 from Q; visit adjacent unvisited vertices; put in Q.



Remove 5 from Q; visit adjacent unvisited vertices; put in Q.



Remove 3 from Q; visit adjacent unvisited vertices; put in Q.



Remove 3 from Q; visit adjacent unvisited vertices; put in Q.



Remove 6 from Q; visit adjacent unvisited vertices; put in Q.



Remove 6 from Q; visit adjacent unvisited vertices; put in Q.



Remove 9 from Q; visit adjacent unvisited vertices; put in Q.



Remove 9 from Q; visit adjacent unvisited vertices; put in Q.



Remove 7 from Q; visit adjacent unvisited vertices; put in Q.



Remove 7 from Q; visit adjacent unvisited vertices; put in Q.



Remove 8 from Q; visit adjacent unvisited vertices; put in Q.



Queue is empty. Search terminates.

### **Breadth-First Search Property**

• All vertices reachable from the start vertex (including the start vertex) are visited.

# Time Complexity



- Each visited vertex is put on (and so removed from) the queue exactly once.
- When a vertex is removed from the queue, we examine its adjacent vertices.
  - O(n) if adjacency matrix used
  - O(vertex degree) if adjacency lists used
- Total time
  - ullet  $\Theta(sn)$ , where s is number of vertices in the component that is searched (adjacency matrix)
  - $\Theta(\sum_{i} d_{i}^{out})$  (adjacency lists)

### Depth-First Search

```
depthFirstSearch(v)
 Label vertex v as reached.
 for (each unreached vertex u
                      adjacenct from v)
   depthFirstSearch(u);
```



- Start search at vertex 1.
- Label vertex 1 and do a depth first search from either 2 or 4.
- Suppose that vertex 2 is selected.



Label vertex 2 and do a depth first search from either 3, 5, or 6.

Suppose that vertex 5 is selected.



Label vertex 5 and do a depth first search from either 3, 7, or 9.

Suppose that vertex 9 is selected.



Label vertex 9 and do a depth first search from either 6 or 8.

Suppose that vertex 8 is selected.



Label vertex 8 and return to vertex 9.

From vertex 9 do a dfs(6).



Label vertex 6 and do a depth first search from either 4 or 7.

Suppose that vertex 4 is selected.



Label vertex 4 and return to 6.

From vertex 6 do a dfs(7).



Label vertex 7 and return to 6.

Return to 9.







Label 3 and return to 5.

Return to 2.



Return to 1.



Return to invoking method.

### Depth-First Search Properties

- Same complexity as BFS.
- Same properties with respect to path finding, connected components, and spanning trees.
- Edges used to reach unlabeled vertices define a depth-first spanning tree when the graph is connected.
- There are problems for which BFS is better than DFS and vice versa.

### Comparisons





图12-21 产生最好和最坏空间复杂性的图例

a) DepthFirstSearch(1) 的最坏情况;BreadthFirst Search(1) 的最好情况

b) DepthFirstSearch(1) 的最好情况; BreadthFirst Search(1) 的最坏情况

#### 12.4 Topological Sorting





Directed graph with no directed cycles

#### 12.4.2 Depth-First Algorithm





Depth-first ordering

#### 12.4.2 Depth-First Algorithm



```
template <int graph_size>
void Digraph<graph_size>::depth_sort(List<Vertex> &topological_order)
/* Post: The vertices of the Digraph are placed into List topological_order with a
        depth-first traversal of those vertices that do not belong to a cycle.
  Uses: Methods of class List, and function recursive_depth_sort to perform depth-
        first traversal. */
  bool visited[graph_size];
  Vertex v;
  for (v = 0; v < count; v++) visited [v] = false;
  topological_order.clear();
  for (v = 0; v < count; v++)
                             // Add v and its successors into topological order.
    if (!visited[v])
      recursive_depth_sort(v, visited, topological_order);
```

73

#### 12.4.2 Depth-First Algorithm

```
template <int graph_size>
void Digraph<graph_size>::recursive_depth_sort(Vertex v, bool *visited,
                            List<Vertex> &topological_order)
/* Pre: Vertex v of the Digraph does not belong to the partially completed List
        topological_order.
  Post: All the successors of v and finally v itself are added to topological_order
        with a depth-first search.
  Uses: Methods of class List and the function recursive_depth_sort. */
  visited[v] = true;
  int degree = neighbors[v].size();
  for (int i = 0; i < degree; i++) {
    Vertex w;
                             // A (neighboring) successor of v
    neighbors[v].retrieve(i, w);
    if (!visited[w])
                     II Order the successors of w.
      recursive_depth_sort(w, visited, topological_order);
  topological_order.insert(0, v); // Put v into topological_order.
```

#### 12.4.3 Breadth-First Algorithm





Breadth-first ordering

Figure 12.7. Topological orderings of a directed graph

#### 12.4.3 Breadth-First Algorithm

#### 一、无前趋的顶点优先的拓扑排序方法

该方法的每一步总是输出当前无前趋(即入度为零)的顶点,其抽象算法可描述为:

```
NonPreFirstTopSort(G){//优先输出无前趋的顶点 while(G中有入度为0的顶点)do{ 从G中选择一个入度为0的顶点v且输出之; 从G中删去v及其所有出边; } if(输出的顶点数目<|V(G)|) Error("G中存在有向环,排序失败!"); }
```

|V(G)|为图中所有顶点数目,如输出顶点个数小于|V(G)|,表明有有向环存在。

#### 12.4.3 Breadth-First Algorithm

#### 二、无后继的顶点优先拓扑排序方法

#### 1、思想方法

该方法的每一步均是输出当前无后继(即出度为0)的顶点。对于一个有向图,按此方法输出的序列是**逆拓扑次序**。因此设置一个栈(或向量)T来保存输出的顶点序列,即可得到拓扑序列。若T是栈,则每当输出顶点时,只需做入栈操作,排序完成时将栈中顶点依次出栈即可得拓扑序列。若T是向量,则将输出的顶点从T[n-1]开始依次从后往前存放,即可保证T中存储的顶点是拓扑序列。

#### 2、抽象算法描述

算法的抽象描述为:

```
NonSuccFirstTopSort(G){//优先输出无后继的顶点while(G中有出度为0的顶点)do { 从G中选一出度为0的顶点v且输出v; 从G中删去v及v的所有人边 } if(输出的顶点数目<|V(G)|) Error("G中存在有向环,排序失败!"); }
```

### 12.5 A Greedy Algorithm: Shortest Paths



- Directed weighted graph.
- Path length is sum of weights of edges on path.
- The vertex at which the path begins is the source vertex.
- The vertex at which the path ends is the destination vertex.

# Example



A path from 1 to 7. Path length is 14.

# Example



Another path from 1 to 7. Path length is 11.

#### Shortest Path Problems

- Single source single destination.
- Single source all destinations.
- All pairs (every vertex is a source and destination).

# Single Source Single Destination

#### Possible greedy algorithm:

- Leave source vertex using cheapest/shortest edge.
- Leave new vertex using cheapest edge subject to the constraint that a new vertex is reached.
- Continue until destination is reached.

# Greedy Shortest 1 To 7 Path



Path length is 12.

Not shortest path. Algorithm doesn't work!

# Single Source All Destinations

Need to generate up to *n* (*n* is number of vertices) paths (including path from source to itself).

#### Greedy method:

- Construct these up to *n* paths in order of increasing length.
- Assume edge costs (lengths) are  $\geq 0$ .
- So, no path has length < 0.</p>
- First shortest path is from the source vertex to itself. The length of this path is 0.





- Each path (other than first) is a one edge extension of a previous path.
- •Next shortest path is the shortest one edge extension of an already generated shortest path.

- Let d(i) (distanceFromSource(i)) be the length of a shortest one edge extension of an already generated shortest path, the one edge extension ends at vertex i.
- The next shortest path is to an as yet unreached vertex for which the d() value is least.
- Let p(i) (predecessor(i)) be the vertex just before vertex i on the shortest one edge extension to i.















# Data Structures For Dijkstra's Algorithm

- The greedy single source all destinations algorithm is known as Dijkstra's algorithm.
- Implement d() and p() as 1D arrays.
- Keep a linear list L of reachable vertices to which shortest path is yet to be generated.
- Select and remove vertex v in L that has smallest d() value.
- Update d() and p() values of vertices adjacent to
   v.

# Complexity



- O(n) to select next destination vertex.
- O(out-degree) to update d() and p() values when adjacency lists are used.
- O(n) to update d() and p() values when adjacency matrix is used.
- Selection and update done once for each vertex to which a shortest path is found.
- Total time is  $O(n^2 + e) = O(n^2)$ .

#### 12.6 Minimum-Cost Spanning Tree



- weighted connected undirected graph
- spanning tree
- cost of spanning tree is sum of edge costs
- find spanning tree that has minimum cost

# Example



- Network has 10 edges.
- Spanning tree has only n 1 = 7 edges.
- Need to either select 7 edges or discard 3.

# Edge Selection Greedy Strategies

- Start with an n-vertex 0-edge forest. Consider edges in ascending order of cost. Select edge if it does not form a cycle together with already selected edges.
  - Kruskal's method.
- Start with a 1-vertex tree and grow it into an n-vertex tree by repeatedly adding a vertex and an edge. When there is a choice, add a least cost edge.
  - Prim's method.

# Edge Selection Greedy Strategies

- Start with an *n*-vertex forest. Each component/tree selects a least cost edge to connect to another component/tree. Eliminate duplicate selections and possible cycles. Repeat until only 1 component/tree is left.
  - Sollin's method.



- Start with a forest that has no edges.
- Consider edges in ascending order of cost.
- Edge (1,2) is considered first and added to the forest.



- Edge (7,8) is considered next and added.
- Edge (3,4) is considered next and added.
- Edge (5,6) is considered next and added.
- Edge (2,3) is considered next and added.
- Edge (1,3) is considered next and rejected because it creates a cycle.



- Edge (2,4) is considered next and rejected because it creates a cycle.
- Edge (3,5) is considered next and added.
- Edge (3,6) is considered next and rejected.
- Edge (5,7) is considered next and added.



- *n* 1 edges have been selected and no cycle formed.
- So we must have a spanning tree.
- Cost is 46.
- Min-cost spanning tree is unique when all edge costs are different.

104

#### Prim's Method



- Start with any single vertex tree.
- Get a 2-vertex tree by adding a cheapest edge.
- Get a 3-vertex tree by adding a cheapest edge.
- Grow the tree one edge at a time until the tree has n 1 edges (and hence has all n vertices).

#### Sollin's Method



- Start with a forest that has no edges.
- Each component selects a least cost edge with which to connect to another component.
- Duplicate selections are eliminated.
- Cycles are possible when the graph has some edges that have the same cost.

#### Sollin's Method



- Each component that remains selects a least cost edge with which to connect to another component.
- Beware of duplicate selections and cycles.

#### Pseudocode For Kruskal's Method

```
Start with an empty set T of edges.
while (E is not empty && |T| != n-1)
   Let (u,v) be a least-cost edge in E.
   E = E - \{(u,v)\}. // delete edge from E
   if ((u,v) does not create a cycle in T)
     Add edge (u,v) to T.
if (|T| == n-1) T is a min-cost spanning tree.
else Network has no spanning tree.
```

# Minimum Cost Spanning Tree



• Tree cost is sum of edge weights/costs.

# A Spanning Tree



Spanning tree cost = 51.

# Minimum Cost Spanning Tree



Spanning tree cost = 41.

# 课后练习

(1) 写出该图的邻接矩阵及邻接表;



(2) 按所写的邻接表求出从顶点 D开始的深度和广度优先搜索遍历序列。

