### **HUMORAL IMMUNE RESPONSE**

Dr. Lakmini Wijesooriya, MBBS, Dip Micro, MD (Med Micro), M. Phil
Consultant Microbiologist & Senior Lecturer
Head / Department of Medical Microbiology
Faculty of Medicine
Ragama

#### **ENTRY OF PATHOGEN**

First line of defense - Innate Immunity

Second line of defense - Adaptive Immunity

# TYPES OF ADAPTIVE IMMUNITY

| Humoral                                 | Cell Mediated                  |  |  |  |
|-----------------------------------------|--------------------------------|--|--|--|
| By antibodies produced by B lymphocytes | By Activated T<br>lymphocytes  |  |  |  |
| Against extracellular microbes / toxins | Against intracellular microbes |  |  |  |

# **Humoral immune response**

- Mediated by antibodies
- Antibodies are produced by plasma cells derived from B lymphocytes
- Principal defense mechanism against extracellular microbes and their toxins

# **Antibody Structure**



- Variable region binds to a different antigens
- Constant regions fall into five classes

#### Classes of antibodies

Class depends on

type of antigen

portal of entry

antibody function needed

Five different classes of antibodies present

#### **Classes of Antibodies**





#### **Neutralization**

- To enter cells, viruses and intracellular bacteria bind to specific molecules on the target cell surface
- Antibodies that bind to the pathogen can prevent this and are said to neutralize the pathogen
- Neutralization by antibodies is also important in preventing bacterial toxins from entering cells.

### Neutralization









#### **Opsonization**

 Coating the surface of a pathogen to enhance phagocytosis is called opsonization

• Antibodies protect against bacteria that multiply outside cells, by facilitating uptake of the pathogen by phagocytes.

#### **Opsonization**

Antibodies bound to the pathogen are recognized by phagocytic cells by Fc receptors that bind to the antibody constant region (C region).



#### **Activate the complement system**

- By the classical pathway
- Complement components opsonize the pathogen by binding complement receptors on phagocytes.
- Other complement components recruit phagocytic cells to the site of infection
- Terminal components of complement lyse
   microorganisms directly by forming pores in their
   membranes





IgG molecules bind to antigens on





Binding of C1q to Ig activates C1r, which cleaves and activates the serine protease C1s

#### Phases of humoral immune response

- Antigen recognition
- Activation of B lymphocytes
- Communication
- Battle (effector functions)
- Memory

### **Antigen recognition**

B cells express two classes of antibodies,
 IgM and IgD that function as the receptor
 for antigens (B cell Receptor / BCR)

# B cell receptor (BCR)

- One B cell possessesmultiple copies of sameBCR
- Variable region antigen-binding site





### B cell receptor (BCR)

#### **BCR** has two crucial functions

- Signal transduction, involving changes in receptor oligomerization.
- Mediate internalization of antigen for subsequent processing of the antigen and presentation of peptides to helper T cells

# Activation of humoral Immune Response

- HIR is initiated when B cells that bind antigen are signaled by helper T cells or by certain microbial antigens alone.
- Two types
  - T-dependent humoral immunity
  - T-independent humoral immunity





Fig. 10.2 A second signal is required for B-cell activation by either thymusdependent or thymus-independent antigens. The first signal (indicated as 1

### T-dependent humoral immunity

- Antibody responses to protein antigens require antigenspecific T-cell help.
- To receive T-cell help, the B cell must be displaying antigen on its surface in a form a T cell can recognize.
- Helper T cells that recognize the peptide: MHC II complex

### T-dependent humoral immunity

The effector T cells make cytokines that cause the B cell to proliferate and its progeny to differentiate into antibody-secreting cells and into memory B cells





#### **Activation of B lymphocytes**

- Activation of B lymphocytes proliferation of antigen-specific cells (Clonal expansion)
- B cells differentiate into effector cells (plasma cells)
   that actively secrete antibodies
- Some B cells undergo class switching or affinity maturation
- Some B cells become memory cells

#### T-independent humoral immunity

Some microbial antigens (eg: polysaccharides, LPS)
 can activate B cells directly in the absence of T-cell
 help

 Ability of B cells to respond directly to these antigens provides a rapid response to many important pathogens.

Response is not strong, especially in young children



#### Plasma Cells

Secretes only antibody moleculescomplementary to the specific antigenic

Short-lived

determinant

Die within a few days of activation



# **Memory B Cells**

- Produced by B cell proliferation
- Long-lived cells
- Divide only a few times and then persist in lymphoid tissue
- Do not secrete antibodies
- Have BCRs complementary to the antigenic determinant
- Initiate antibody production if antigen is encountered again



### **Class switching**

The process of making B cells to produce different heavy chain class.

$$\begin{array}{c|c} & INF-\gamma \\ & \downarrow & - \\ & IgM & & & IgE \\ & \uparrow & + \\ & & IL-4 & & \end{array}$$

#### Role of cytokines in regulating expression of antibody classes

| Cytokines | IgM      | IgG3     | lgG1     | lgG2b   | IgG2a    | lgE      | lgA                 |
|-----------|----------|----------|----------|---------|----------|----------|---------------------|
| IL-4      | Inhibits | Inhibits | Induces  |         | Inhibits | Induces  |                     |
| IL-5      |          |          |          |         |          |          | Augments production |
| IFN-γ     | Inhibits | Induces  | Inhibits |         | Induces  | Inhibits |                     |
| TGF-β     | Inhibits | Inhibits |          | Induces |          |          | Induces             |

### Different classes of antibodies

| Distribution                            | IgM | IgD  | lgG1 | IgG2 | IgG3 | IgG4 | IgA             | IgE                |
|-----------------------------------------|-----|------|------|------|------|------|-----------------|--------------------|
| Transport across epithelium             | +   | _    | -    | _    | -    | _    | +++<br>(dimer)  | -                  |
| Transport across placenta               | _   | _    | +++  | +    | ++   | +/-  | _               | -                  |
| Diffusion into extravascular sites      | +/- | _    | +++  | +++  | +++  | +++  | ++<br>(monomer) | +                  |
| Mean serum level (mg ml <sup>-1</sup> ) | 1.5 | 0.04 | 9    | 3    | 1    | 0.5  | 2.1             | 3×10 <sup>-5</sup> |



Immunoglobulin classes are selectively distributed in the body.

IgG and IgM predominate in blood

IgG and monomeric IgA are the major antibodies in extracellular fluid within the body.

Dimeric IgA predominates in secretions across epithelia, including breast milk.

The fetus receives IgG from the mother by transplacental transport. IgE is found mainly associated with mast cells just beneath epithelial surfaces

The brain is normally devoid of immunoglobulin.

| Functional activity                      | IgM | IgD | IgG1 | lgG2 | IgG3 | IgG4 | IgA | IgE |
|------------------------------------------|-----|-----|------|------|------|------|-----|-----|
| Neutralization                           | +   | _   | ++   | ++   | ++   | ++   | ++  | -   |
| Opsonization                             | +   | _   | +++  | *    | ++   | +    | +   | ı   |
| Sensitization for<br>killing by NK cells |     | _   | ++   | _    | ++   | -    | _   | _   |
| Sensitization of mast cells              |     | _   | +    | _    | +    | ı    |     | +++ |
| Activates complement system              | +++ | _   | ++   | +    | +++  | ı    | +   | _   |



| Antibody isotype | Isotype specific effector functions                                                                                                |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| IgG              | Neutralization of microbes and toxins                                                                                              |  |  |  |  |  |
|                  | Opsonization of antigens for phagocytosis by macrophages and neutrophils                                                           |  |  |  |  |  |
|                  | Activation of the classical pathway of complement                                                                                  |  |  |  |  |  |
|                  | Antibody-dependent cellular cytotoxicity mediated by NK cells                                                                      |  |  |  |  |  |
|                  | Neonatal immunity: transfer of maternal antibody across placenta and gut                                                           |  |  |  |  |  |
|                  | Feedback inhibition of B cell activation                                                                                           |  |  |  |  |  |
| IgM              | Activation of the classical pathway of complement                                                                                  |  |  |  |  |  |
| IgA              | Mucosal immunity: secretion of IgA into lumens of gastrointestina and respiratory tracts, neutralization of microbes and toxins    |  |  |  |  |  |
| IgE              | Antibody-dependent cellular cytotoxicity mediated by eosinophils<br>Mast cell degranulation (immediate hypersensitivity reactions) |  |  |  |  |  |





Resting mast cell contains granules containing histamine and other inflammatory mediators



Multivalent antigen cross-links bound IgE antibody, causing release of granule contents

### **Affinity maturation**

 Affinity: strength with which the epitope binds to an individual paratope (antigen-binding site) on the antibody.

 Affinity maturation: The process that leads to increased affinity of antibodies for a protein antigen during the course of an immune response



### **Affinity maturation**

- The fine tuning of antibody responses to increase the affinity of the antibody for the antigen and the switching to most immunoglobulin classes other than IgM depend on the interaction of antigenstimulated B cells with helper T cells and other cells in the peripheral lymphoid organs.
- Thus, antibodies induced by microbial antigens alone tend to have lower affinity and to be less functionally versatile than those induced with T-cell help.

### Types of immune response

- Primary (first exposure)
  - Mainly IgM
  - IgG is present
- Secondary (subsequent exposure)
  - Mainly IgG





Activation of Antigen B lymphocytes recognition Effector cells: antibody secreting cells **U** IgM Helper T cells, other stimuli Antibody secretion Clonal Naive expansion IgM+, IgD+ ifferentiation **IgG** IgG-B cell expressing B cell Class switching Activated B cell **Affinity** Microbe aturation High-affinity Ig-expressing High-B cell affinity IgG Memory B cell

# HUMORAL IMMUNE RESPONSE Activation Phase