********************** PEAK ANALYSIS REPORT ************************

Detector Name: MIT1

Sample Title: Sample title.

Peak Analysis Performed on: 2/15/2019 11:21:45 AM

Peak Analysis From Channel: 1
Peak Analysis To Channel: 8192

F	Peak No.		ROI end	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
M	1	10-	56	24.74	6.21	1.88	6.20E+004	299.54	6.66E+003
m	2	10-	56	33.75	8.46	1.89	6.67E+004	311.84	1.40E+004
m	3	10-	56	45.91	11.50	1.90	7.89E+004	318.57	2.31E+004
	4	182- 208-	195 220	187.16 215.19	46.79 53.80	0.73 0.88	9.91E+002 2.78E+002	170.53 157.91	1.02E+004 9.36E+003
	5 6	243-	259	254.01	63.50	0.88	1.87E+003	210.30	1.35E+003
M	7	293-	314	300.86	75.20	0.62	5.05E+002	74.54	7.44E+003
m	8	293-	314	309.29	77.31	0.62	4.80E+002	74.91	8.44E+003
	9	334-	344	338.70	84.66	0.43	2.76E+002	164.44	1.12E+004
	LO	363-	404	371.39	92.83	1.16	4.24E+003	131.53	1.59E+004
m 1		363-	404	396.42	99.08	1.17	3.25E+002	96.67	1.61E+004
	L2 L3	568- 736-	583 755	576.38 744.04	144.05 185.95	0.87 1.03	5.34E+002 2.85E+003	231.45 255.08	1.76E+004 1.77E+004
	L 3	834-	847	838.45	209.54	0.87	2.16E+002	175.52	1.11E+004
	15	949-	961	955.46	238.78	0.96	2.04E+003	160.77	9.03E+003
		1171-	1190	1181.90	295.36	1.17	1.21E+003	183.84	9.31E+003
		1308-	1320	1313.06	328.14	0.84	2.64E+002	119.35	5.30E+003
			1360	1353.72	338.30	1.07	4.46E+002	125.23	5.53E+003
		1396- 1848-	1415	1408.62 1853.31	352.01 463.14	1.15 0.61	1.83E+003 1.29E+002	164.88 118.65	7.24E+003 4.28E+003
	20 21	2032-	2057	2044.56	510.93	2.22	6.91E+003	176.54	5.71E+003
	22	2204-	2216	2209.23	552.07	0.75	1.73E+001	78.64	2.34E+003
	23	2321-		2333.53	583.14	1.27	1.84E+003	140.56	4.22E+003
	24	2427-		2438.20	609.29	1.26	2.28E+003	115.66	3.17E+003
	25	2903-		2910.33	727.27	1.23	4.38E+002	82.01	2.00E+003
		3069-	3082	3074.85	768.38	1.01	7.38E+001	68.84	1.69E+003
M 2	2 / 28	3167- 3167-		3181.29 3212.93	794.98 802.88	2.19 2.19	4.89E+002 1.93E+002	50.55 42.65	2.51E+003 2.15E+003
	29	3436-		3443.09	860.40	1.01	3.77E+002	83.92	1.83E+003
М 3		3612-		3618.97	904.34	1.55	1.05E+002	32.51	1.38E+003
m 3	31	3612-	3659	3646.40	911.20	1.56	1.76E+003	55.60	1.49E+003
	32	3732-		3739.33	934.42	1.15	7.91E+001	72.37	1.52E+003
М 3		3855-		3861.13	964.86	1.55	2.59E+002	35.52	1.38E+003
m 3		3855- 3995-		3877.84 4008.67	969.03 1001.72	1.55 1.34	9.78E+002 2.45E+002	47.29 82.70	1.55E+003 1.65E+003
		4469-		4483.87	1120.47	1.76	9.65E+002	96.12	1.79E+003
		4687-		4695.36	1173.32	1.10	2.85E+002	75.06	1.38E+003
		4946-		4956.32	1238.52	1.59	3.83E+002	65.09	1.14E+003
М 3		5507-		5514.95	1378.12	1.46	2.25E+002	27.02	5.62E+002
m 4		5507-		5546.78	1386.07	1.46	8.37E+001	20.98	4.90E+002
M 4		5601-		5610.29	1401.94	1.85	1.32E+002	23.65	5.60E+002
m 4	±∠	5601-	2043	5634.71	1408.04	1.85	1.47E+002	25.62	6.31E+002

No. start end centroid (keV) (keV)	Area	Uncert.	Counts
44 6035- 6053 6042.10 1509.84 0.62 45 6117- 6128 6122.46 1529.93 0.37 46 6243- 6256 6249.36 1561.64 0.28 M 47 6345- 6389 6358.08 1588.80 2.27 m 48 6345- 6389 6375.67 1593.20 2.27 49 6482- 6502 6489.36 1621.61 1.38 50 6515- 6537 6528.09 1631.29 1.05 51 6645- 6658 6651.41 1662.10 0.42 52 6910- 6936 6924.78 1730.41 1.56 53 7054- 7080 7064.74 1765.38 1.78 54 7174- 7189 7182.74 1794.87 0.25 -	1.17E+004 1.54E+002 5.41E+001 1.77E+001 2.49E+002 4.12E+002 1.30E+002 1.52E+002 7.95E+001 1.71E+002 1.11E+003 7.10E+000 2.22E+002	123.69 38.27 24.22 28.00 23.91 28.19 38.23 40.73 25.66 44.07 54.21 25.22 37.81	7.62E+002 3.82E+002 2.12E+002 2.78E+002 4.66E+002 4.95E+002 3.66E+002 3.88E+002 2.07E+002 4.05E+002 4.08E+002 2.14E+002 3.01E+002

M = First peak in a multiplet region

m = Other peak in a multiplet region
F = Fitted singlet

Errors quoted at 1.000 sigma