4.7.2. Inverses

Normal arithmetic has the *Cancellation Law for Multiplication* (T7 of Appendix A (Epp)):

For integers a, b, c with $a \neq 0$, if

(1)
$$ab = ac$$

then b = c.

This is not true in modulo arithmetic:

$$ab \equiv ac \pmod{n}$$
 does **not** imply $b \equiv c \pmod{n}$

Example:

Clearly,
$$3 \times 1 \equiv 3 \times 5 \pmod{6}$$
.
But, $1 \not\equiv 5 \pmod{6}$.

When "cancelling" a on both sides of Equation (1), we are really multiplying with the multiplicative inverse of a. By definition, the multiplicative inverse is a number b such that ab=1. Thus we need a suitable inverse that works with modulo arithmetic.

Definition 4.7.2 (Multiplicative inverse modulo n)

For any integers a, n with n > 1, if an integer s is such that $as \equiv 1 \pmod{n}$, then s is called the multiplicative inverse of a modulo n. We may write the inverse as a^{-1} .

Because the commutative law still applies in modulo arithmetic, we also have $a^{-1}a \equiv 1 \pmod{n}$.

Note that multiplicative inverses are not unique, since if s is such an inverse, then so is (s + kn) for any integer k (Why?)

Example:

Consider a=5 and n=9: By inspection, $5 \cdot 2 \equiv 1 \pmod{9}$, so $5^{-1}=2 \pmod{9}$.

Other multiplicative inverses include: 2+9=11, 2-9=-7, 2+900=902.

Given any integer a, its multiplicative inverse a^{-1} may not exist. This next theorem tells us exactly when it exists.

Theorem 4.7.3 (Existence of multiplicative inverse)

For any integer a, its multiplicative inverse modulo n (where n > 1), a^{-1} , exists if, and only if, a and n are coprime.

Recall that two numbers are coprime, or relatively prime, iff their gcd is 1.

Corollary 4.7.4 (Special case: *n* is prime)

If n = p is a prime number, then all integers a in the range 0 < a < p have multiplicative inverses modulo p.

Proof: (Forward direction)

- 1. For any integers a, n with n > 1:
- 2. If a^{-1} exists:
- 3. Then $a^{-1}a \equiv 1 \pmod{n}$, by definition of multiplicative inverse.
- 4. Then $a^{-1}a = 1 + kn$, for some integer k, by Theorem 8.4.1 (Epp).
- 5. Re-write: $aa^{-1} nk = 1$, by basic algebra.
- 6. (Claim: all common divisors of a and n are ± 1 .)
- 7. Take any common divisor, d, of a and n.
- 8. $d \mid a$ and $d \mid n$ by definition of common divisor.
- 9. So $d \mid 1$ by Line 5 and Theorem 4.1.1.
- 10. Thus, d = 1 or d = -1 by Theorem 4.3.2 (Epp).
- 11. Hence gcd(a, n) = 1.

Proof: (Backward direction)

- 1. For any integers a, n with n > 1:
- 2. If gcd(a, n) = 1:
- 3. Then by Bézout's Identity, there exist integers s, t such that as + nt = 1.
- 4. Thus as = 1 tn, by basic algebra.
- 5. Then by Theorem 8.4.1 (Epp), $as \equiv 1 \pmod{n}$.

Note that the above tells us how to find a multiplicative inverse for a modulo n: simply run the Extended Euclidean Algorithm!

Example:

Find 3^{-1} (mod 40).

- 1. Since 3 is prime, and $40 = 2^3 \cdot 5$, it is easy to see that gcd(3, 40) = 1.
- 2. Also, note that 40 = 3(13) + 1.
- 3. Re-write: 3(-13) = 1 40.
- 4. Thus by Theorem 8.4.1 (Epp), $3(-13) \equiv 1 \pmod{40}$.
- 5. Thus $3^{-1} = -13 \pmod{40}$.

But this is ugly. We prefer a positive inverse. This can be corrected simply by adding a multiple of 40, eg. -13 + 40 = 27. Hence $3^{-1} = 27 \pmod{40}$.

Example:

Find $2^{-1} \; (\text{mod } 4)$.

Note that gcd(2,4) = 2, so 2 and 4 are not coprime. Thus, by Theorem 4.7.3, 2^{-1} does not exist.

Indeed, we can check this:

$$\begin{aligned} 2\cdot 1 &\equiv 2 \pmod{4}, \\ 2\cdot 2 &\equiv 0 \pmod{4}, \\ 2\cdot 3 &\equiv 2 \pmod{4}. \end{aligned}$$

By Theorem 8.4.3 (Epp), these calculations suffice to conclude that 2^{-1} does not exist.

The use of multiplicative inverses leads us to a Cancellation Law for modulo arithmetic:

Theorem 8.4.9 (Epp)

For all integers a, b, c, n, with n > 1 and a and n are coprime, if $ab \equiv ac \pmod{n}$, then $b \equiv c \pmod{n}$.

Proof sketch

Since a and n are coprime, Theorem 4.7.3 guarantees the existence of a multiplicative inverse a^{-1} .

Multiply both sides of $ab \equiv ac \pmod{n}$ with a^{-1} gives the desired answer.

Quiz: In T7 of Appendix A (Epp) (Cancellation Law for integers), it is explicitly stated that $a \neq 0$. Yet the above theorem doesn't seem to require this. Why not?

Example:

Solve the equation 5x + 13y = 75 for integers x, y.

- 1. Re-write: 5x = 75 13y.
- 2. Then $5x \equiv 75 \pmod{13}$, by Theorem 8.4.1 (Epp).
- 3. Re-write: $5x \equiv 5 \cdot 15 \pmod{13}$.
- 4. Note that 5 and 13 are coprime.
- 5. Thus, $x \equiv 15 \pmod{13}$, by Theorem 8.4.9 (Epp).
- 6. Thus, $x \equiv 2 \pmod{13}$, because 15 mod 13 = 2.
- 7. So x = 2 is a solution.
- 8. Substituting back into the equation: 5(2) + 13y = 75.
- 9. And thus y = 5.

Other solutions include: (x, y) = (15, 0), (-11, 10), (28, -5).

4.8. Summary

- 1. We have learned many things in Number Theory:
 - (a) Divisibility
 - (b) Primes and prime factorization
 - (c) Well ordering principle
 - (d) Quotient-Remainder Theorem
 - (e) Number bases
 - (f) Greatest common divisor
 - (g) Modulo arithmetic
- 2. Yet we have merely scratched the surface of a deep and fascinating field that has many applications.
- Many Open Questions remain in Number Theory. Now and then someone will announce a breakthrough in one of these Questions. It is fun to follow their development, even if we don't fully understand their esoteric proofs.