

A Microservice Architecture for the Intranet of Things and Energy in Smart Buildings

The first International Workshop on Mashups of Things and APIs (MOTA 2016)

Kaibin Bao, Ingo Mauser, Sebastian Kochanneck, Huiwen Xu, Hartmut Schmeck

Outline

USE CASE	Energy Smart Home Lab
----------	-----------------------

THE I ADI CHARLES AND REQUIREMENTS	THE PAST	Challenges and Requirements
------------------------------------	----------	-----------------------------

Other Architectures for IoT, DSM, HA

TRANSITION Selection of a Message Bus Protocol

THE PRESENT Our Microservice Architecture

Conclusion

Energy Smart Home Lab (ESHL)Research Lab for Demand Side Management

"cargo containers" may sound uncomfortable, but it is actually quite cozy

- electric load shaping
 - consume electricity when RES availability is high
 - produce own electricity when energy prices are high
 - reschedule time and intensity of home appliance activation

Organic Smart Home: Simplified Architecture

www.organicsmarthome.org

More about Organic Smart Home architecture and optimization:

Mauser, I.; Müller, J.; Allerding, F. & Schmeck, H.: "Adaptive Building Energy Management with Multiple Commodities and Flexible Evolutionary Optimization", Renewable Energy, Elsevier, 2015

Organic Smart Home: Simplified Architecture

www.organicsmarthome.org

More about Organic Smart Home architecture and optimization:

Mauser, I.; Müller, J.; Allerding, F. & Schmeck, H.: "Adaptive Building Energy Management with Multiple Commodities and Flexible Evolutionary Optimization", Renewable Energy, Elsevier, 2015

Organic Smart Home: Simplified Architecture

www.organicsmarthome.org

More about Organic Smart Home architecture and optimization:

Mauser, I.; Müller, J.; Allerding, F. & Schmeck, H.: "Adaptive Building Energy Management with Multiple Commodities and Flexible Evolutionary Optimization", Renewable Energy, Elsevier, 2015

- electric load shaping
 - consume electricity when RES availability is high
 - produce own electricity when energy prices are high
 - reschedule time and intensity of home appliance activation
- home automation
 - comfort, safety and to safe energy
 - remote control / user interface for the smart home
 - presence and activity detection
- energy consumption visualization
 - consumption awareness and saving potential identification

- elecí
 - Challenge "Evolution of Applications and Abstractions":

 There are always new ideas your framework design might miss
 - h
 - reschedule time and intensity of home appliance activation
- hom

Challenge "Loose Coupling of Components": Decompose properly for better maintainability

- Comment, carety and to care oriensy
- remote control / user interface for the smart home
- Challenge "Learning Curve and Language Independence":

 Students needed at least 4 months to get familiar

 with the OSH framework
- energy consumption visualization
 - consumption awareness and saving potential identification

- elecí
 - Requirement "Abstract Evolution":
 - Components should be allowed to add new interfaces without changing the framework
 - reschedule time and intensity of nome appliance activation
- hom

Requirement "Decentralized Components":

Components have to communicate over network sockets

- remote control / user interface for the smart home
- Challanga "Lagraina Curva and Languaga Indonandanaa"

Requirement "Lightweight Runtime Environment": The smaller the runtime, the easier to understand.

Also avoids runtime lock-in

consumption awareness and saving potential identification

energy

Comparison of Energy Management / Home Automation Frameworks

System	Means of Modularity	Locality of Abstractions	Weight of Runtime	Compo sability
Alljoyn	Decentral Processes	Extensible Standard	Light	✓
BOSS / sMAP	Decentral Processes	Core Interfaces	Heavy	×
EEBus	Processes	Extensible Standard	Light	√
EF-PI	Java OSGi	Core Interfaces	Heavy	×
ESH / OpenHAB	Java OSGi	Core Interfaces	Heavy	✓
FHEM	Perl Interfaces	Core Interfaces	Heavy	✓
OGEMA	Java OSGi	Core Interfaces	Heavy	*
OSH	Java Interfaces	Core Interfaces	Heavy	✓
ESHL	Decentral Processes	Defined by Components	Light	√

Comparison of Energy Management / Home Automation Frameworks

System	Means of Modularity	Locality of Abstractions	Weight of Runtime	Compo sability
Alljoyn	Decentral Processes	Extensible Standard	Light	✓
BOSS / sMAP	Decentral Processes	Core Interfaces	Heavy	×
FFBus	Processes	Extensible	Light	√

Why not use a message-oriented middleware?

ESH / OpenHAB	Java OSGi	Core Interfaces	Heavy	✓
FHEM	Perl Interfaces	Core Interfaces	Heavy	✓
OGEMA	Java OSGi	Core Interfaces	Heavy	×
OSH	Java Interfaces	Core Interfaces	Heavy	✓
ESHL	Decentral Processes	Defined by Components	Light	✓

Communication Schemes

Module 2

- Message Passing
- Remote Procedure Call (RPC)
 - Routed RPC
- Publish / Subscribe
 - Bulletin Board
 - Message Queuing
 - Notification
- Reduction

Module 1

Eugster et al. The many faces of publish/subscribe. ACM Comp. Surv. 2003.

Comparison of Message Bus Protocols

Facture	AMOD	CoAD	CTOMP	MOTT	VAVABAD	VMDD
Feature	AMQP	CoAP	STOMP	MQTT	WAMP	XMPP
Architecture	Central router	Peer-to-peer	Central router	Central router	Central router	Federal routers
RPC	X	✓	X	Χ	✓	✓
Routed RPC	X	X	X	X	✓	X
Publish / Subscribe	✓	X	✓	✓	✓	✓
Bulletin Board	√	X	X	✓	✓ (Event History)	✓
Notification	X	✓	X	Χ	Х	X
Message Queuing	✓	X	✓	X	X	✓
Guaranteed Delivery	✓	✓	✓	✓	Х	Х
Session Persistence	✓	Not necessary	X	X	Х	✓
Transport	TCP	UPD, HTTP	TCP, WebSocket	TCP, WebSocket	WebSocket, HTTP	TCP, HTTP, WebSocket
Standardization	OASIS	IETF	-	OASIS	IETF Internet Draft	IETF
No. of Extensions	Low	Low	Low	Low	Low	High
Supported Languages	C, J, Py	C, J, bJS, Py	C, J, bJS, Py	C, J, bJS, Py	C, J, bJS, Py	C, J, bJS, Py

Comparison of Message Bus Protocols

Feature	AMQP	CoAP	STOMP	MQTT	WAMP	XMPP
Architecture	Central router	Peer-to-peer	Central router	Central router	Central router	Federal routers
RPC	X	✓	X	X	✓	✓
Routed RPC	X	X	X	X	✓	X
Publish / Subscribe	✓	X	✓	✓	✓	✓
Bulletin Board	✓	X	X	√	✓ (Event History)	✓
Notification	X	✓	X	Χ	X	X
Message Queuing	✓	X	✓	X	X	✓
Guaranteed Delivery	✓	✓	✓	✓	• X	Х
Session Persistence	✓	Not necessary	X	X	Х	✓
Transport	WAMP Advanced					TCP, HTTP, WebSocket
Standardization	I Tollie is targetting this					IETF
No. of Extensions	missing features Low					High
Supported Languages	C, J, Py C, J, bJS, Py C, J, bJS, Py					C, J, bJS, Py

Intranet of Things and Energy

Modular system of self-contained protocol adaptors and services

Example Messages

Topic eshl.wago.v2.readout.wiz.494

```
"Clamp01": {
  "01": 233.89999389648438,
  "03": 232.44998168945312,
  "02": -12.949999809265137,
  "S3": 562.5,
  "S2": 379.1500244140625,
  "S1": 528.8499755859375,
 "U1": 220.00999450683594,
  "U3": 219.989990234375,
  "U2": 219.58999633789062,
 "PF1": -0.8599995470047,
  "PF3": -0.87999995231628,
  "PF2": -0.729999959468842,
  "I1": 2.403499841690064,
  "I3": 2.54449987411499,
  "I2": 1.718999862670898,
  "CosPhi1": -0.889999985694885,
  "CosPhi3": -0.909999966621399,
  "CosPhi2": -0.989999949932098,
 "P2": -277.1999816894531,
  "P3": -494.9499816894531,
 "P1": -459.3999938964844,
  "AED1": 1094396083.2,
  "TimestampPFC": "1463737407881",
  "TimestampSYS": "1463737401002",
 [\ldots]
```

Convention:
Version your topics /
interfaces and never
drop support for old
versions

Example Messages

Topic eshl.miele.v1.homebus

```
"-1609555510": {
  "name": "Dishwasher",
 "room": "",
  "stateName": "On",
  "state": 2,
  "additionalName": "",
  "deviceDetails": {
    "stateName": "On",
    "applianceTypeName": "Dishwasher"
  "type": "??????????????,
  "class": 22017,
  "uid": -1609555510
"-1609555628": {
  "name": "Tumble Dryer",
  "room": "",
  "stateName": "On",
  "state": 2,
  "additionalName": "",
  "deviceDetails": {
    "stateName": "On",
    "applianceTypeName": "Tumble Dryer"
  "type": "T8687C
  "class": 22018,
  "uid": -1609555628
[\ldots]
```

Intranet of Things and Energy

Modular system of self-contained protocol adaptors and services

Management

- Version your interfaces
 - And never drop support for old versions
- Keep a list of topics, procedures, module names and module locations
- To control your modules, you can use any process supervisor, e.g.
 - supervisord for one machine
 - fleetctl for a distributed system

What we gained

- Stability
 - To add new services, you don't have to restart the framework
 - It's much harder to interfere with other modules
- System seems to be much less complex
 - Motivated students / developers
 - Easier to compose new services from existing ones
- You can use your favorite programming language
- Developers need to synchronize much less often
 - Enables parallel development

What is to be improved

- Security
 - Currently purely based on perimeter isolation
- Architecture is not recommended for production systems
 - You know your use cases in production
 - Take advantage of type-safety

Conclusion

- To drive our Smart Home, we applied SOA, MOM, Microservice / Unix philosophy
- Avoid to re-implementing the wheel
 - Do your (literature) research
 - Respect the stuff other people do
- Keeping things simple => More people understand => More support
- Use Cases evolve, so consider evolving abstractions
- Source Code: https://github.com/aifb/eshl-iot-bus