Statistical Learning Theory: Recap and Example

David Rosenberg

New York University

November 1, 2015

Statistical Learning Theory Framework

The Spaces

• \mathfrak{X} : input space

• y: output space

A: action space

Decision Function

A **decision function** produces an action $a \in \mathcal{A}$ for any input $x \in \mathcal{X}$:

$$f: \mathcal{X} \rightarrow \mathcal{A}$$
 $x \mapsto f(x)$

Loss Function

A **loss function** evaluates an action in the context of the output y.

$$\ell: \mathcal{A} \times \mathcal{Y} \to \mathbb{R}^{\geqslant 0}$$

 $(a, y) \mapsto \ell(a, y)$

The Gold Standard: Bayes Decision Function

Definition

The **expected loss** or "risk" of a decision function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}\ell(f(X), Y),$$

where the expectation taken is over $(X, Y) \sim P_{X \times Y}$.

Definition

A Bayes decision function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$R(f^*) = \inf_{f} \mathbb{E}\ell(f(X), Y).$$

• But Risk function cannot be computed because we don't know $P_{X \times Y}!$

Empirical Risk Minimization

• Let $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be drawn i.i.d. from $\mathcal{P}_{\mathcal{X} \times \mathcal{Y}}$.

Definition

The **empirical risk** of $f: \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i).$$

Minimizing empirical risk is a good idea, but overfits!

Constrained Empirical Risk Minimization

- Hypothesis space $\mathfrak{F} \subset \mathcal{A}^{\mathfrak{X}}$, a set of functions mapping $\mathfrak{X} \to \mathcal{A}$
- Empirical risk minimizer (ERM) in \mathcal{F} is $\hat{f} \in \mathcal{F}$, where

$$\hat{R}(\hat{f}) = \inf_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i).$$

Error Decomposition

$$f^* = \underset{f}{\operatorname{arg\,min}} \mathbb{E}\ell(f(X), Y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathbb{E}\ell(f(X), Y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Optimization Error

- There's still the algorithmic problem of finding ERM $\hat{f}_n \in \mathcal{F}$.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

Error Decomposition

Definition

The excess risk of f is the amount by which the risk of f exceeds the Bayes risk.

Excess Risk
$$(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f^*_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f^*_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

Excess Risk Decomposition, Nested Space, and Trees

$$\mathcal{Y} = \{\text{blue}, \text{orange}\}\$$

$$P_{\mathcal{X}} = \text{Uniform}([0, 1]^2)$$

$$\mathbb{P}(\text{orange} \mid x_1 > x_2) = .9$$

$$\mathbb{P}(\text{orange} \mid x_1 < x_2) = .1$$

Bayes Error Rate = 0.1

Regression Trees

• Partition space on one variable at a time

Classification Trees

- Classification Tree
- 4,0 in the leaf node means 4 successes, 0 failures

• Depth of the tree is one measure of complexity

Hypothesis Space: Decision Tree

- ullet $\mathcal{F}=\left\{ \mathsf{all} \ \mathsf{decision} \ \mathsf{tree} \ \mathsf{classifiers} \ \mathsf{on} \ \left[0,1\right]^2 \right\}$
- $\mathcal{F}_d = \left\{ \mathsf{all} \; \mathsf{decision} \; \mathsf{tree} \; \mathsf{classifiers} \; \mathsf{on} \; [0,1]^2 \; \mathsf{with} \; \mathsf{DEPTH} \leqslant d \right\}$
- We'll consider

$$\mathfrak{F}_2\subset \mathfrak{F}_3\subset \mathfrak{F}_4\cdots\subset \mathfrak{F}_{15}$$

• Bayes error rate = 0.1

Theoretical Best in \mathcal{F}_2

- Risk Minimizer (e.g. assuming infinite training data)
- Risk = P(error) = 0.2
- Approximation Error = 0.2 0.1 = 0.1

Theoretical Best in \mathcal{F}_3

- Risk Minimizer (e.g. assuming infinite training data)
- Risk = P(error) = 0.15
- Approximation Error = 0.15 0.1 = 0.05

Theoretical Best in \mathcal{F}_4

- Risk Minimizer (e.g. assuming infinite training data)
- Risk = P(error) = 0.125
- Approximation Error = 0.125 0.1 = 0.025

Decision Tree in \mathcal{F}_3 Estimated From Sample (n = 1024)

Decision Tree in \mathcal{F}_4 Estimated From Sample (n = 1024)

Decision Tree in \mathcal{F}_6 Estimated From Sample (n = 1024)

Decision Tree in \mathcal{F}_8 Estimated From Sample (n = 1024)

Estimation Error+Optimization Error =
$$\underbrace{0.162 \pm .009}_{R(\hat{f})}$$
 - $\underbrace{0.102}_{\min_{f \in \mathcal{F}_8} R(f)}$ = $.061 + .009$

Decision Tree in \mathcal{F}_8 Estimated From Sample (n = 2048)

Decision Tree in \mathcal{F}_8 Estimated From Sample (n = 8192)

Risk Summary

Excess Risk Decomposition

