CS 303 Logic and Digital System Design HW2

Q1)

a) (10 pt) Do the following conversions. Show your work clearly.

Decimal	Binary	Hexadecimal
546		
128		
27.375		

Decimal	Signed 8-bit binary in 2's complement form
-6.375	

Signed 8-bit binary in 2's complement form	Decimal
00000011.1101	
111111111111	
10100110.0111	

b) (10 pt) Calculate the binary equivalent of 127/64. If we use only 4 bits in the fraction, what is the error in the binary representation? How many bits are needed to fully represent 127/64 in signed 2's complement binary number system? Show your work clearly.

Q2)

Assume a 5-bit, 2's complement scheme to represent signed integers.

- a) (3 pt) Show the range of integers that can be represented.
- b) (12 pt) Do the following arithmetic operations and detect overflows. Show your work clearly.

$$14 + (-9)$$

$$(-7) + (-10)$$

Q3)

a) (5 pt) Express the following function as a sum of minterms.

$$F(x,y,z,t) = (x \oplus y)(z+t)$$

Hint: Example minterm: $m_{12} = xyz't'$ (12 = 1100₂ in binary)

- b) (10 pt) Optimize F using Karnaugh map.
- c) (5 pt) Assume we guarantee that xyzt₂ will never be larger than 12. Add necessary don't care conditions and optimize F further using K-map.

Q4) (20 pt)

Multiplexer is a logical unit that selects between several input signals.

For a 2-to-1 multiplexer, if the sel input is 0, out output is equal to I_0 . If the sel input is 1, out output is equal to I_1 . Design this 2-to-1 multiplexer and draw its circuit.

Q5) (25 pt)

You are asked to design a 2-bit comparator circuit. Operation of this circuit is defined as follows:

Inputs: A=(A1,A0)₂ and B=(B1,B0)₂, 2-bit signed numbers in 2's complement form

Outputs: EQ, G, L

if (A==B)	if (A <b)< th=""><th>if (A>B)</th></b)<>	if (A>B)
EQ=1	L=1	G=1
else	else	else
EQ=0	L=0	G=0

Design circuit for this comparator, however you would like to design it and draw its circuit. You can use deductions as we used in class. For example, if you have a circuit for EQ output, and a circuit for L output, you can use those two outputs to derive G output. Show your work clearly.