W\$3 - Bajesian hypothesis companism

$$H_o: V = C$$
 : $f_V = f_c$

$$P(H,ID) = \frac{P(D|H,) \cdot P(H,)}{P(D)}$$

$$P(H_2|D) = \frac{P(D|H_2). P(H_2)}{P(D)}$$

5. t

$$\frac{P(H_{1}(D))}{P(H_{2}(D))} = \frac{P(D1H_{1}) \cdot P(H_{1})}{P(D1H_{2}) \cdot P(H_{2})}$$

if
$$P(H_1) = P(H_2)$$
 prion

H, (>) Ho -) compare the evidences of D under the two hypotheses

P(DIH) - integrate to all value of the parameters that define 4.

P(DIH) = \int_{fe} \int_{V} \text{P(D) for fe) . P(fe fo) defe defo for for for fe

b(DIH") = ? b(DIt=f=) b(tt) qt

P(DIHi)

Soldfe Soldfy fy (1-fy) fe (1-fe)

None

P(01H2) = \[\int_{0} \frac{1}{1-f} \frac{

 $N_{c}=10$ $n_{c}=3$ $=\frac{0.003}{0.001} \approx 3$ 1:1 $N_{v}=30$ 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

-> 90 lo code

Occamis azon

If several models can explain the observations, always go with the simpler model.

who simplicity

Restletes

awid over fitting

types tells us so

Consider two nesked hypotheses

Hy #param H1 > #param H2.

M2 H2CH,

(4:13:) H1: Y: = W. + W4 X.

H2: Y: = Wo

VIF AL fit of pannelors b dad.

Hi will always be more favore 56

* If hejesian compaison of HicHz?

$$\frac{P(H_{1}|D)}{P(H_{2}|D)} = \frac{P(D|H_{1})}{P(D|H_{2})}$$

$$P(D|H_{1}) = \int_{P_{1}} P(D|P_{1}) P(P_{1}) dP_{1}$$

$$P(D|H_{2}) = \int_{P_{2}} P(D|P_{1}) P(P_{2}) dP_{2}$$

$$\log P(D|P_{1}) \simeq \log P(D|P_{1}^{n}) + \frac{1}{2} \frac{\delta \log P(D|P_{1})}{\delta P_{1}} \frac{(P_{1} - P_{1}^{n})}{P_{1} = P_{1}^{n}}$$

$$= \log P(D|P_{1}^{n}) - \frac{(P_{1} - P_{1}^{n})^{2}}{2 \sigma_{1}^{n} 2}$$

$$\frac{\sigma_{1}^{n}}{\delta P(D|P_{1}^{n})} = \frac{1}{\delta P_{1}^{n}} \frac{P(D|P_{1}^{n})}{P_{1}^{n} = P_{1}^{n}}$$

$$P(D|P_{1}) \simeq P(D|P_{1}^{n}) \approx \frac{1}{\delta P_{1}^{n}} \frac{P(P_{1} - P_{1}^{n})^{2}}{P_{1}^{n} = P_{1}^{n}}$$

$$P(D|P_{1}) = P(D|P_{1}^{n}) \int_{P_{1}^{n}} \frac{P(P_{1} - P_{1}^{n})^{2}}{P_{1}^{n} = P_{1}^{n}}$$

$$P(D|P_{1}^{n}) = P(D|P_{1}^{n}) \int_{P_{1}^{n}} \frac{P(P_{1} - P_{1}^{n})^{2}}{P_{1}^{n} = P_{1}^{n}}$$

$$P(D|P_{1}^{n}) \int_{P_{1}^{n}} \frac{P(P_{1}^{n})}{P_{1}^{n}} \frac{P(P_{1}^{n})^{2}}{P_{1}^{n}}$$

$$P(D|P_{1}^{n}) \int_{P_{1}^{n}} \frac{P(P_{1}^{n})}{P_{1}^{n}} \frac{P(P_{1}^{n})^{2}}{P_{1}^{n}}$$

$$P(D|P_{1}^{n}) \int_{P_{1}^{n}} \frac{P(P_{1}^{n})}{P_{1}^{n}} \frac{P(P_{1}^{n})^{2}}{P_{1}^{n}}$$

$$P(D|P_{1}^{n}) \int_{P_{1}^{n}} \frac{P(P_{1}^{n})}{P_{1}^{n}} \frac{P(P_{1}^{n})^{2}}{P_{1}^{n}}$$

HIDHZ P(DIR") > P(DIR")

depends on 01/12 if 01262" H2 has chance 6 win

Example
one or two different bactural colonies?