Examen Analyse deuxième session PEIP C

Juin 2021

On prêtera une attention particulière à la rédaction. Les calculatrices sont interdites. Tout résultat sans justification sera pénalisé. Des schémas illustrant vos démonstrations sont encouragés.

Exercice 1 : calculs et question de cours

- (1) Rappeler l'énoncé du théorème des accroissements finis.
- (2) Rappeler la définition à l'aide de quantificateurs d'une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers $l\in\mathbb{R}$.
- (3) Calculer les sommes suivantes $(n \in \mathbb{N})$:

(a)
$$S_n = \sum_{k=1}^n q^{2k+1}$$
, avec $q \in \mathbb{R}$, (b) $R_n = \sum_{k=0}^{n-1} \binom{n}{k} 3^k$.

(4) Calculer la limite des suites suivantes :

(a)
$$u_n = \frac{2^n}{n!}$$
, (b) $v_n = \frac{n\sin(n!)}{n^2 + 1}$.

(5) Calculer les limites suivantes :

(a)
$$\lim_{x \to 0} \frac{e^x - 1}{x}, \qquad \qquad (b) \qquad \lim_{x \to \infty} \frac{(x - \sin x)(x + \cos(x))}{x^2}.$$

Exercice 2 : suites récurrentes

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et $u_{n+1}=\exp(u_n)$.

- (1) Soit $f(x) = e^x$
 - (a) Montrer que $[0, \infty[$ est stable par f.
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, $u_n \ge 0$.
- (2) Montrer que $\forall n \in \mathbb{N}, u_{n+1} u_n \ge 1$. On pourra considérer $g(x) = e^x x$ pour $x \in [0, \infty[$.
- (3) En déduire par récurrence que $\forall n \in \mathbb{N}, u_n \geq n$.
- (4) La suite $(u_n)_{n\in\mathbb{N}}$ converge-t-elle? (Justifier) Si oui, donner la valeur de cette limite.

Exercice 3 : prolongement par continuité

Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie pour $x \neq 0$ par $f(x) = \exp(-1/x^2)$.

- (1) Calculer les limites à droite et à gauche en 0 de la fonction f.
- (2) Montrer que f se prolonge par continuité en x=0. On notera $f: \mathbb{R} \to \mathbb{R}$ ce prolongement continu.
- (3) Montrer que la fonction \tilde{f} est dérivable en zéro à droite et à gauche.
- (4) La fonction \tilde{f} est-elle dérivable en x=0? (Justifier) Si oui, donner la valeur de cette dérivée.