# Modele 5

## Katarzyna Stasińska

#### 2024-01

## Zadanie 1

**a**)

```
Polecenia wbudowane:
```

```
## Y= 1.053245 + -0.005860509 X1 + 0.001928049 X2 + 0.03014774 X3
```

## Współczynnik R^2 0.5415482

Wzory teoretyczne:

```
X = as.matrix(dane[,1:3])
nowa_kolumna = rep(1, nrow(X))
X = cbind(nowa_kolumna, X)
Y = as.matrix(dane[,4])
Bety = solve(t(X) %*% X) %*% (t(X)) %*% Y
cat("Y=", Bety[1],"+",Bety[2], "X1 +", Bety[3],"X2 +", Bety[4],"X3")
```

```
## Y= 1.053245 + -0.005860509 X1 + 0.001928049 X2 + 0.03014774 X3

SSM = sum((predict(model) - mean(Y))^2)

SST = sum((Y - mean(Y))^2)

R2 = SSM/SST
cat("Współczynnik R^2", R2)
```

## Współczynnik R^2 0.5415482

### b)

Rozważmy hipotezę  $H_0: \beta_1 = \beta_2 = \beta_3 = 0$  przeciwko  $H_1: \beta_1 \neq 0 \lor \beta_2 \neq 0 \lor \beta_3 \neq 0$ .

F - Statystyka testowa z rozkładu Fishera-Snedecora z 3 i 46 - 4 = 42 stopniami swobody.

Przyjmijmy, że  $\alpha = 0.05$ .

Wzory teoretyczne:

```
dfM = 3
dfE = 42
SSE = SST - SSM
MSE = SSE/dfE
MSM = SSM/dfM
F = MSM/MSE
pval = 1 - pf(F,3,42)
cat("statystyka testowa:", F, "pvalue:",pval)
```

## statystyka testowa: 16.53756 pvalue: 3.04311e-07

Polecenia wbudowane

```
##
## Call:
## lm(formula = dane[, 4] ~ ., data = dane[, 1:3])
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -0.33589 -0.13333 -0.03347 0.12599 0.52022
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.053245 0.613791
                                 1.716 0.09354 .
             -0.005861
                        0.003089 -1.897 0.06468
## wiek
## ciężkość
             0.030148
                        0.009257
                                 3.257 0.00223 **
## niepokój
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2098 on 42 degrees of freedom
## Multiple R-squared: 0.5415, Adjusted R-squared: 0.5088
## F-statistic: 16.54 on 3 and 42 DF, p-value: 3.043e-07
```

P-wartość jest mniejsza od poziomu istotności, zatem możemy odrzucić hipotezę zerową.

#### c) Wiek

Rozważmy hipotezę  $H_0: \beta_1 = 0$  przeciwko  $H_1: \beta_1 \neq 0$ .

F - Statystyka testowa z rozkładu Fishera-Snedecora z 1 i 42 stopniami swobody.

Przyjmijmy, że  $\alpha = 0.05$ .

Wzory teoretyczne:

```
modelR = lm(dane[,4] ~., dane[,2:3])

SSM_R = sum((predict(modelR) - mean(Y))^2)
SSE_R = SST - SSM_R

F = (SSE_R - SSE)/MSE
pval = 1 - pf(F,1,42)
cat("statystyka testowa:", F, "pvalue:",pval)
```

## statystyka testowa: 3.599735 pvalue: 0.06467813

Polecenia wbudowane

```
## Analysis of Variance Table
##
## Model 1: dane[, 4] ~ ciężkość + niepokój
## Model 2: dane[, 4] ~ wiek + ciężkość + niepokój
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 43 2.0070
## 2 42 1.8486 1 0.15844 3.5997 0.06468 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

P-wartość jest większa od poziomu istotności, zatem nie możemy odrzucić hipotezy zerowej.

## c) ciężkość

```
Rozważmy hipotezę H_0: \beta_2 = 0 przeciwko H_1: \beta_2 \neq 0.
```

F - Statystyka testowa z rozkładu Fishera-Snedecora z 1 i 42 stopniami swobody.

Przyjmijmy, że  $\alpha = 0.05$ .

Wzory teoretyczne:

```
modelR = lm(dane[,4] ~ dane[,1] + dane[,3])

SSM_R = sum((predict(modelR) - mean(Y))^2)
SSE_R = SST - SSM_R

F = (SSE_R - SSE)/MSE
pval = 1 - pf(F,1,42)
cat("statystyka testowa:", F, "pvalue:",pval)

## statystyka testowa: 0.111014 pvalue: 0.7406503
```

Polecenia wbudowane

```
## Analysis of Variance Table
##
## Model 1: dane[, 4] ~ dane[, 1] + dane[, 3]
## Model 2: dane[, 4] ~ wiek + ciężkość + niepokój
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 43 1.8534
## 2 42 1.8486 1 0.0048861 0.111 0.7407
```

P-wartość jest większa od poziomu istotności, zatem nie możemy odrzucić hipotezy zerowej.

#### c) Niepokój

Rozważmy hipotezę  $H_0: \beta_3 = 0$  przeciwko  $H_1: \beta_3 \neq 0$ .

F - Statystyka testowa z rozkładu Fishera-Snedecora z 1 i 42 stopniami swobody.

Przyjmijmy, że  $\alpha = 0.05$ .

Wzory teoretyczne:

```
modelR = lm(dane[,4] ~., dane[,1:2])

SSM_R = sum((predict(modelR) - mean(Y))^2)

SSE_R = SST - SSM_R

F = (SSE_R - SSE)/MSE
pval = 1 - pf(F,1,42)
cat("statystyka testowa:", F, "pvalue:",pval)
```

```
## statystyka testowa: 10.60735 pvalue: 0.002232272
```

Polecenia wbudowane

```
## Analysis of Variance Table
##
## Model 1: dane[, 4] ~ wiek + ciężkość
## Model 2: dane[, 4] ~ wiek + ciężkość + niepokój
## Res.Df RSS Df Sum of Sq F Pr(>F)
```

```
## 1    43 2.3154
## 2    42 1.8486 1    0.46686 10.607 0.002232 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

P-wartość jest mniejsza od poziomu istotności, zatem możemy odrzucić hipotezę zerową.

# d)

```
## Przedział ufności dla [ -0.01209411 , 0.0003730895 ]
## Przedział ufności dla [ -0.00974994 , 0.01360604 ]
## Przedział ufności dla [ 0.01146717 , 0.04882831 ]
```

Możemy zwrócić uwagę, że jedynie trzeci przedział ufności nie zawiera 0. I jedynie w przypadku trzecim odrzuciliśmy hipotezę zerową.

# Zadanie 2









Wraz ze wzrostem niepokoju, wartości residuów maleją.

# Zadanie 3

```
##
## Shapiro-Wilk normality test
##
## data: residua
## W = 0.96286, p-value = 0.1481
```

# Normal Q-Q Plot



Rozkład residuów może być w przybliżeniu normalny, test Shapiro-Wilka nie pozwala nam odrzucić hipotezy zerowej mówiącej o normalności tego rozkładu. Patrząc na wykres qqnorm możemy zauważyć, że ogony z obu stron odstają.

# Zadanie 4

## 2

218 106.82 2

```
a)
## Różnica w SSE = 0.9313136
Rozważmy hipotezę H_0:\beta_4=\beta_5=0 przeciwko H_1:\beta_4\neq 0 \vee \beta_5\neq 0.
F - Statystyka testowa z rozkładu Fishera-Snedecora z 2 i 224-6 = 218 stopniami swobody.
Przyjmijmy, że \alpha = 0.05.
## Statystyka testowa F wynosi = 0.9503276
b)
## Analysis of Variance Table
##
## Model 1: dane[, 2] ~ HSM + HSS + HSE
## Model 2: dane[, 2] ~ HSM + HSS + HSE + SATM + SATV
                 RSS Df Sum of Sq
##
     Res.Df
                                          F Pr(>F)
## 1
         220 107.75
```

0.93131 0.9503 0.3882

Korzystając z funkcji anova mamy F=0,9503 z 2 i 218 stopniami swobody,  $p_{wartość}=0.3882$ .  $p_{wartość}>\alpha$  zatem nie możemy odrzucić hipotezy zerowej.

#### Zadanie 5

```
a)
## Ładowanie wymaganego pakietu: carData
## Sumy kwadratów typu I
## 8.582934 0.0009054942 17.72647 1.891193 0.4421433
## Sumy kwadratów typu II
## 0.9279988 0.2326519 6.772431 0.956804 0.4421433
```

Jeśli znamy wartości sum typu I, to znamy też sumę kwaratów pełnego modelu, jest to ich suma. Sumy kwadratów typu II są używane do testowania hipotez, które badają istotność parametru  $\beta$ .

```
b)
## Suma kwaratów typu I dla HSM = 17.72647
## SSM modelu1 - SSM modelu2 = 17.72647
c)
```

Tak, sumy kwadratów typu I i II są takie same dla ostatniego predykatora. Sumy kwadratów typu I definiujemy jako wpływ i-tej zmiennej po uwzględnieniu i-1 poprzednich zmiennych. Zatem dla ostatniego predykatora suma kwadratów typu I opisuje wpływ ostatniego predykatora po uwzględnieniu wszystkich poprzednich. Z kolei sumy kwadratów typu II zefiniowane są jako wpływ i-tej zmiennej po uwzględniniu wszystkich pozostałych w tym modelu.

## Zadanie 6

```
## Call:
## lm(formula = dane2[, 2] ~ dane2[, 6] + dane2[, 7] + dane2[, 9])
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
  -2.59483 -0.37920 0.08263
                               0.55730
                                        1.39931
##
## Coefficients: (1 not defined because of singularities)
##
                 Estimate Std. Error t value Pr(>|t|)
                1.289e+00
                          3.760e-01
                                       3.427 0.000728 ***
## (Intercept)
## dane2[, 6]
                2.283e-03
                           6.629e-04
                                       3.444 0.000687 ***
                           6.185e-04
## dane2[, 7]
               -2.456e-05
                                      -0.040 0.968357
## dane2[, 9]
                       NA
                                  NA
                                          NA
                                                   NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7577 on 221 degrees of freedom
## Multiple R-squared: 0.06337,
                                    Adjusted R-squared:
## F-statistic: 7.476 on 2 and 221 DF, p-value: 0.0007218
```

Zauważmy, że tak skonstruowany model nie definiuje nam współczynnika przy zmiennej SAT, bo jest ona kombinacją liniową pozostałych zmiennych.

# Zadanie 7



Partial regression plot przedstawia efekt dodania kolejnej zmiennej do modelu, który zawiera już jedną lub więcej zmiennych niezależnych. Nachylenie niebieskiej linii jest równe wartości estymatora danej zmiennej objaśniającej w modelu regresji wielorakiej. Im mniejsza wartość bezwzgledna nachylenia niebieskiej prostej, tym mniejsza informacja wniesiona do modelu przez daną zmienną. Wszystkie niebieskie wykresy są liniowe, więc nie jest wymagana transformacja danych.





W residuach studentyzowanych wewnętrznie korzystamy z klasycznego modelu (wykorzystującego wszystkie obserwacje). O zewnętrznej studentyzacji residuów mówimy, kiedy korzystamy z takiego samego modelu, ale z pominięciem i-tej obserwacji, do wyznaczenia wartości i-tego residuum. Zaletą wewnętrznie studentyzowanych residuów jest to, że określają one, jak duże są reszty w jednostkach odchylenia standardowego, a zatem można je łatwo wykorzystać do identyfikacji wartości odstających. Dlatego powinniśmy lepiej się przyjrzeć tym residuuom, których bezwględne wartości są najwyższe.

**c**)



DFFITS dla i–tej obserwacji jest standaryzowaną różnicą pomiędzy predykcjami wartości  $Y_i$  uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, pełnych i bez obserwacji  $Y_i$ . Spodziewamy się, że obie predykcje będą przyjmowały podobne wartości, wtedy DFFITS przyjmuje małe wartości. Powinniśmy się lepiej przyjrzeć tym obserwacjom, dla których  $|DFFITS_i| > 2\sqrt{p/n} = 2 * \sqrt{5/224} = 0.2988072$ 

d)



Odległość Cook'a  $(D_i)$  dla i–tej obserwacji również jest standaryzowaną różnicą pomiędzy predykcjami wektora Y uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, pełnych i bez obserwacji  $Y_i$ . Analogicznie jak w przypadku wyżej, im mniejsza odległość cook'a tym lepiej. Powinniśmy lepiej przyjrzeć się obserwacjom, dla których  $|D_i| > 1$ .

**e**)

## Ładowanie wymaganego pakietu: lattice



Miara DFBETAS służy do badania wpływu  $Y_i$  na estymację parametru  $\beta_k$ . Dla k–tego parametru jest różnicą pomiędzy dwoma estymatorami parametru  $\beta_k$  uzyskanymi na podstawie dwóch modeli skonstruowanych na danych, pełnych i bez obserwacji  $Y_i$  podzielonymi przez estymator odchylenia standardowego estymatora uzyskanego na podstawie niepełnego modelu. Analogicznie jak wyżej, im mniejsza miara  $|DFBETA_k|$  tym lepiej. Powinniśmy lepiej przyjrzeć się obserwacjom, dla których  $|DFBETA_k| > 2/\sqrt{n} = 0.1336306$ .

# f)

Tolerance jest odwrotnością Variance Inflation Factor (VIF). VIF bada, dla k-tej zmiennej, w jakim stopniu zmienna  $X_k$  jest objaśniana przez wszystkie pozostałe zmienne objaśniające. Gdy Tolarance < 0.1 to ma miejsce problem z multikolinearnością.

Możemy zauważyć, że w modelu z zadania 7 nie występuje problem z multikolinearnościa.

#### ## Tolerance 0.5188628 0.5088203 0.5429546 0.5745498 0.7310535 0.7742519

Natomiast w modelu z zadania 6 występuje ten problem, dlatego spodziewam się tolerancji < 0.1. Wbudowane funkcje zwracają błąd przy próbie liczenia dokładnej wartości tolerancji, bo model składa sie z liniowozależnych zmiennych.

## $\mathbf{g}$

Kryteria AIC oraz BIC są modyfikacjami metody największej wiarogodności i są skonstruowane w taki sposób, by znaleźć balans pomiędzy dopasowaniem modelu do danych i nadmierną złożonością modelu. Statystyka Cp Mallowsa opisuje łączne zachowanie obciążeń.

| ## | (Intercept) | HSM   | HSS   | HSE   | SATM  | SATV  |
|----|-------------|-------|-------|-------|-------|-------|
| ## | TRUE.       | TRUE. | FALSE | FALSE | FALSE | FALSE |

```
## SEX
## FALSE
```

Najlepszy model według Cp:

| ## | (Intercept) | HSM  | HSS   | HSE  | SATM  | SATV  |
|----|-------------|------|-------|------|-------|-------|
| ## | TRUE        | TRUE | FALSE | TRUE | FALSE | FALSE |
| ## | SEX         |      |       |      |       |       |
| ## | FALSE       |      |       |      |       |       |

Najlepszy model według adj R squared:

| ## | (Intercept) | HSM  | HSS   | HSE   | SATM  | SATV  |
|----|-------------|------|-------|-------|-------|-------|
| ## | TRUE        | TRUE | FALSE | FALSE | FALSE | FALSE |
| ## | SEX         |      |       |       |       |       |
| ## | FALSE       |      |       |       |       |       |

# Zadania teoretyczne

# Zadanie 1

**a**)

$$Y = 1 + 4 * 2 + 3 * 6 = 27$$

b)

$$s^{2}(pred) = s^{2}(\hat{\mu}_{h}) + s^{2} = 4 + 9 = 13$$

**c**)

Przedział ufności wyznacza  $b_1 \pm t_c s(b_1)$ , gdzie  $t_c$  to kwantyl rzędu  $1 - \alpha/2 = 0.975$  z n - 2 = 18 stopniami swobody z rozkładu studenta.  $t_c = 2.100922$ . Zatem przedział ufności to [1.899078, 6.100922]

# Zadanie 2

Niech  $\alpha = 0.05$ 

a)

Suma kwadratów typu I dla  $X_3$  ma postać  $SSM(X_3|X_1,X_2)$ , dokładnie taką samą jak suma kwadratów typu II. Zatem suma kwadratów typu II dla  $X_3=20$ .

b)

Rozważmy hipotezę  $H_0: \beta_1 = 0$  przeciwko  $H_1: \beta_1 \neq 0$ 

Wiemy, że SSM = 360, SST = 760 i SSE = 400 stąd MSE = SSE/dfE = 400/20 = 20.

$$F = \frac{SSM(X_1|X_2, X_3)}{MSE(F)} = \frac{30}{20} = 1.5$$

 $F^*(1-\alpha=0.95,1,20)=4.351244$ . Zatem nie możemy odrzucić hipotezy zerowej, bo F<4.351244.

**c**)

Rozważmy hipotezę  $H_0: \beta_2 = \beta_3 = 0$  przeciwko  $H_1: \beta_2 \neq 0 \vee \beta_3 \neq 0$ .

Wiemy, że  $SSM = SSM(X_2, X_3|X_1) + SSM(X_1)$ . Zatem  $SSM(X_2, X_3|X_1) = 360 - 300 = 60$ . Wiemy też, że  $SSM(X_2, X_3|X_1) = SSE(X_2, X_3|X_1)$ . Zatem

$$F = \frac{SSE(X_2, X_3|X_1)/2}{20} = 1.5$$

 $F^*(1-\alpha=0.95,2,20)=3.492828$ . Zatem nie możemy odrzucić hipotezy zerowej, bo F<3.492828.

d)

Rozważmy hipotezę  $H_0: \beta_1=\beta_2=\beta_3=0$  przeciwko  $H_1: \beta_1\neq \vee \beta_2\neq 0 \vee \beta_3\neq 0.$ 

$$MSM = SSM/dfM = 360/3 = 120$$

$$F = \frac{MSM}{MSE} = \frac{120}{20} = 6$$

 $F^*(1-\alpha=0.95,3,20)=3.098391.$  Zatem odrzucamy hipotezę zerową, boF>3.098391.

**e**)

Rozważmy hipotezę  $H_0: \beta_1 = 0$  przeciwko  $H_1: \beta_1 \neq 0$ . W nowym modelu SST = 760, SSM = 300, SSE = 760 - 300 = 460, <math>MSE = 460/22, MSM = 300/1.

$$F = \frac{MSM}{MSE} = \frac{300}{460/22} = 30 * 22/46 = 14.34783$$

 $F^*(1-\alpha=0.95,1,22)=4.30095$ . Zatem odrzucamy hipotezę zerową, bo F>4.30095.

f)

Próbkowy współczynnik korelacji między Y a  $X_1=\sqrt{R^2}=\sqrt{\frac{SSM}{SST}}=\sqrt{\frac{300}{760}}=0.6282809$