# Kaggle Competition Advanced Machine Learning

Team Toxic
Todd Zhang & Lexie Sun

#### Data & EDA

- Time series data
- Categorical features: patient\_id, key, gender, x1, x2, x3, x4, x5, x6
- Target variable distribution:



# log(y\_mean\_MAP)



### Feature Engineering

- Log transformed y\_mean\_MAP
- Created new features: take the 'xx1, xx2, xx3, xx4, xx5' of the last 5 records of each 'key', add them to every records of the 'key'
- Randomly sampled the data on the 'key' level, keep at most 4 keys per patient
- 80/20 Train-test split with shuffling

## Modeling: y\_mean\_hr

| Model             | Parameters                                                                                        | R^2    |
|-------------------|---------------------------------------------------------------------------------------------------|--------|
| Linear Regression | normalize=True                                                                                    | 0.9398 |
| Random Forest     | n_estimators=200,<br>min_sample_leaf=2500,<br>max_depth=20,<br>bootstrap=True,<br>criterion='mse' | 0.9410 |

For linear regression model, the most important feature is 'xx5'.

# Modeling: y\_mean\_MAP

| Model          | Parameters                                                                                                               | R^2    |
|----------------|--------------------------------------------------------------------------------------------------------------------------|--------|
| Random Forest  | n_estimators=200,<br>min_samples_leaf=2500,<br>max_depth=25,<br>criterion='mse',<br>bootstrap=True                       | 0.9069 |
| Neural Network | hidden_layer_sizes=(6, 5, 1),<br>activation='tanh',<br>solver='adam',<br>max_iter=30,<br>alpha=1e-05,<br>warm_start=True | 0.8317 |
| XGBoost        | eta=0.05, max_depth=25                                                                                                   | 0.8989 |

#### Takeaway

- Taking a log transformation is helpful when dealing with skewed distributions
- Creating new columns for existing columns that contain important information is helpful
- Using more complex machine learning models does not always result in higher accuracy
- Aggregating over-represented data is helpful in improving generalizability of the model

### **Thank You!**