FRANCISCO CASTILLO

APM 505 HOMEWORK 6

Contents

- · Initialization of the code
- Function to create the matrix A
- Function for the Power Method Iteration
- · Run different cases of study
- Create the matrix A
- Power Method Iteration
- Results

end

Initialization of the code

```
clear all % Clear workspace
clc % Clear command window
format long

tol=1e-12; % Tolerance
```

Function to create the matrix A

```
type DominantEigenvalueMatrix.m
function [A,P,D]=DominantEigenvalueMatrix(N,f)
% This function gives a NxN matrix A, an orthogonal matrix P and a diagonal
% matrix D such that A=A=P*D*P'. Needs the dimension N and a factor f.
% The matrix A will have an dominant eigenvalue if f>>1 and will have the two
% larger eigenvalues very similar if f is close to unity.
  P = orth(rand(N));
  lambdaV = randi([1,100],N,1);
  k=randi([1,N],1);
  j=find(lambdaV==max(lambdaV));
  while k==i
     k=randi([1,N],1);
  end
  lambdaV(k)=f^*max(lambdaV);
  D = diag(lambdaV);
  A = P*D*P';
```

Function for the Power Method Iteration

type powermethod.m

```
function [lambda,k,q]=powermethod(A,tol)
% This function uses the powermethod to, given the matrix A and a tolerance,
% obtain the eigenvalue with larger absolute value and its eigenvector.
% It will also provide the number of iterations needed to meet the tolerance.
  N=size(A,1);
  lambdaprev=1;
                    % Initialize lambdaprev
                    % Initialize lambda
  lambda=0;
  k=0;
                    % Start the counter of iterations
  q=rand(N,1);
                    % The first guess of q is a random vector as the problem specifies
  while norm(lambdaprev-lambda)>tol % This is the power method algorithm to
obtain the dominant eigenvalue
    k=k+1:
    lambdaprev=lambda;
    z=A*q;
    q=z/norm(z);
    lambda=q'*A*q;
  end
```

Run different cases of study

end

```
for i=1:4
  switch i
    case 1
       N=3: % Dimension of the matrix A
             % The factor f large means that the matrix A is going to have one
dominant eigenvalue
    case 2
       N=3;
       f=1.0001; % The factor f close to unity means that the matrix A is not going to
have any dominant eigenvalue
    case 3
       N=9;
       f=30;
    case 4
       N=9;
       f=1.0001;
  end
```

Create the matrix A

[A,P,D]=DominantEigenvalueMatrix(N,f);

Power Method Iteration

[lambda,k,q]=powermethod(A,tol);

Results

1500

0

0

0

19

0

0

0

50

```
fprintf('>>Case %d\n',i)
  Α
  Ρ
  D
  lambda
  k
  v=P'*q
>>Case 1
A =
 1.0e+02*
 4.244400126989851 4.430312881081557 4.593522529237088
 4.430312881081557 5.734330623065364 5.491528954683146
 4.593522529237088 5.491528954683145 5.711269249944783
P =
 -0.510247581094400 \quad 0.314757900790437 \quad 0.800359213027070
 -0.605782215577903 \quad 0.529042718064529 \quad -0.594257275725272
  -0.610471386124559 \ -0.788061714812293 \ -0.079268028676552 
D =
```

```
lambda =

1.5000000000000000000e+03
k =

6
```

0.510247580467174 0.605782216043702 0.610471386186589

v =

- -1.000000000000000 0.0000000000000120 -0.0000000000783727
- "In this case we have a 3x3 matrix A which has a dominant eigenvalue as we see from its diagonal form D. The powermethod function obtains the value of that eigenvalue in 6 iterations and gives us the eigenvector q which coincides with some small error with the first column (because the dominant eigenvalue is on the first column of D) of the matrix P. This is better seen in the basis where A is diagonal. In that basis we have that the eigenvector is v, which has a 1 in the first component and a little bit of error in the third. This indicates that the larger eigenvalue is on the first column of D as we knew and that the second larger eigenvalue is in the third column of D, as we can check."

A =

 $65.778181610333306 \quad 18.745394160193712 \quad 8.551846981232508 \\ 18.745394160193712 \quad 88.427661887601872 \quad -4.830455561442018 \\ 8.551846981232506 \quad -4.830455561442013 \quad 96.804056502064824$

P =

 $-0.588100223262788 \ -0.218788441015685 \ \ 0.778633254797267$

D =

lambda =

99.009899994823670

k =

82002

q =

-0.143747650799676

-0.610249768257143

0.779058298994162

v =

-0.000723087215910

0.000000000000000

0.999999738572405

"In this case we have a 3x3 matrix A which does not have a dominant eigenvalue as we see from its diagonal form D. The powermethod function obtains the value of the larger eigenvalue in 82002 iterations against the 6 iterations needed when the matrix has a dominant eigenvalue. The function gives us the eigenvector q as well, it coincides with the third column with some small error, bigger than in the previous case, of the matrix P. This is again better seen in the basis where A is diagonal. In that basis we have that the eigenvector is v, which has a value close to 1 in the third component and a appreciable error in the first. This indicates that the larger eigenvalue is on the third column of D as we knew and that the second larger eigenvalue is in the first column of D, as we can check. In this case the error is bigger because the two larger eigenvalues are very similar. In the previous case this error was much smaller since the eigenvalue dominance was much bigger."

The discussion for the next two cases is the same but with higher dimensions.

A =

1.0e+03 *

Columns 1 through 3

0.159770893583506	0.129147730794881	0.150935223484620
0.129147730794881	0.234830266896458	0.200203618167385
0.150935223484620	0.200203618167385	0.265293940959512
0.124747996371854	0.150799243836747	0.176540141835334
0.029414017268002	0.046168250897279	0.039248263262767
-0.420646058435207	-0.563412650681473	-0.614279905030066
-0.071125839802573	$\hbox{-}0.060507505115308$	-0.074629657681418
-0.020714999695953	-0.050021355680658	-0.052325921189849
-0.069777838377471	-0.080653658655024	-0.083097583574760

Columns 4 through 6

0.124747996371854	0.029414017268002	-0.420646058435207
0.150799243836747	0.046168250897279	-0.563412650681473
0.176540141835334	0.039248263262767	-0.614279905030066
0.179742887017126	0.034324468889425	-0.489371728994714
0.034324468889425	0.034888190396923	-0.099581103562088
-0.489371728994714	-0.099581103562088	1.882393375403074
-0.045304164642929	0.002181395586064	0.220328899811667
-0.054765311417360	-0.000882844519325	0.167133737648765
-0.052294972798042	-0.010119390186758	0.260322210676756

$Columns \ 7 \ through \ 9$

-0.071125	839802573	-0.0207149	99695953	-0.06977783	38377471
-0.060507	505115308	-0.0500213	55680658	-0.08065365	88655024
-0.074629	657681418	-0.0523259	21189849	-0.08309758	3574761
-0.045304	164642929	-0.0547653	11417360	-0.05229497	2798042
0.002181	395586064	-0.0008828	44519325	-0.01011939	0186758
0.220328	899811667	0.16713373	37648765	0.26032221	0676756
0.062685	172897367	0.0244615	61836225	0.03862833	1298822
0.024461	561836225	0.0726045	72408457	0.02330591	7365969
0.038628	331298822	0.0233059	17365969	0.08579070	0437577

Columns 1 through 3

Columns 4 through 6

Columns 7 through 9

D =

85	0	0	0	0	0
0	56	0	0	0	0
0	0	86	0	0	0
0	0	0	35	0	0
0	0	0	0	45	0
0	0	0	0	0	6
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Columns 7 through 9

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
18	0	0
0	67	0
0	0	2580

lambda =

2.579999999999999e+03

k =

7

q =

- 0.199250774126381
- 0.263812762025903
- 0.288885453685193
- 0.228409864109691
- 0.048290094244377
- -0.849833852303685
- -0.101568312344931
- -0.076693809044853
- -0.119701763090340

- -0.000000000315992
- 0.000000000002025
- -0.00000000102896
- -0.000000000000091
- -0.000000000000439
- -0.000000000000000
- 0.0000000000000001
- 0.00000000010423
- 1.0000000000000000

A =

Columns 1 through 3

Columns 4 through 6

Columns 7 through 9

Columns 1 through 3

Columns 4 through 6

-0.750489958029435	0.310686273566923	$\hbox{-}0.092072827902104$
-0.067210975491183	-0.188252067485142	0.316313577798320
0.006014128784260	-0.185580712688828	-0.766632300401704
-0.111803762871185	-0.573604976734461	0.348250893693428
0.164333643027203	0.596548614255719	0.241990250928247
0.382646587232888	0.110413806769151	-0.307784549591089
0.400935869240347	0.173918287104744	0.161308899060668
-0.157934597394937	-0.132035054995190	-0.056150702754186
0.246159280312420	-0.298043694808881	0.000687777432975

Columns 7 through 9

0.226140716082581	-0.174154178134955	-0.079517173362222
-0.251519988950244	-0.255968530502155	-0.583792076284771
-0.422780793293976	-0.076633249453554	0.055618720962315
-0.187138142737550	0.424194978205097	0.159662357182294
-0.096975514297966	0.348197318566442	0.128728286060159
0.278320259641229	0.420125157842243	-0.367133232914957
-0.238361456954258	-0.557720043680917	0.334555690186820
0.204197872794342	0.112507827472001	0.600803110113495
0.697462841538800	-0.311255875285476	-0.005352670745087

D =

Columns 1 through 3

0	0	14.0000000000000000
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
Columns 4 through 6		
0	0	0
0	0	0
0	0	0

0

Columns 7 through 9

lambda =

95.009499994725957

k =

95221

- 0.226420794633503
- -0.251226377942537
- -0.422557753429854
- -0.186883312262444
- -0.096701521280747
- 0.278580784785018
- -0.238113298662035
- 0.204395775064336
- 0.697642092812802

v =

- -0.000745091325438
- -0.00000000000000
- 0.000000000000000
- -0.00000000000000
- 0.000000000000000
- 0.000000000000000
- 0.999999722419420
- -0.00000000000000
- 0.0000000000000001

end