

Local Index Theory over Foliation Groupoids

Alexander Gorokhovsky ^{a,1} and John Lott ^{b,*2}

^a*Department of Mathematics, UCB 395, University of Colorado, Boulder,
CO 80309-0395, USA*

^b*Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043,
USA*

Abstract

We give a local proof of an index theorem for a Dirac-type operator that is invariant with respect to the action of a foliation groupoid G . If M denotes the space of units of G then the input is a G -equivariant fiber bundle $P \rightarrow M$ along with a G -invariant fiberwise Dirac-type operator D on P . The index theorem is a formula for the pairing of the index of D , as an element of a certain K-theory group, with a closed graded trace on a certain noncommutative de Rham algebra $\Omega^* \mathcal{B}$ associated to G . The proof is by means of superconnections in the framework of noncommutative geometry.

1 Introduction

It has been clear for some time, especially since the work of Connes [9] and Renault [27], that many interesting spaces in noncommutative geometry arise from groupoids. For background information, we refer to Connes' book [11, Chapter II]. In particular, to a smooth groupoid G one can assign its convolution algebra $C_c^\infty(G)$, which represents a class of smooth functions on the noncommutative space specified by G .

An important motivation for noncommutative geometry comes from index theory. The notion of groupoid allows one to unify various index theorems that arise in the literature, such as the Atiyah-Singer families index theorem [2], the Connes-Skandalis foliation index

* Corresponding author.

Email addresses: gorokhov@euclid.colorado.edu (Alexander Gorokhovsky),
lott@umich.edu (John Lott).

¹ The research was supported in part by NSF grants DMS-0242780 and DMS-0400342.

² The research was supported in part by NSF grant DMS-0306242.

theorem [13] and the Connes-Moscovici covering space index theorem [12]. All of these theorems can be placed in the setting of a proper cocompact action of a smooth groupoid G on a manifold P . Given a G -invariant Dirac-type operator D on P , the construction of [12] allows one to form its analytic index Ind_a as an element of the K-theory of the algebra $C_c^\infty(G) \otimes \mathcal{R}$, where \mathcal{R} is an algebra of infinite matrices whose entries decay rapidly [11, Sections III.4, III.7.γ]. When composed with the trace on \mathcal{R} , the Chern character $\text{ch}(\text{Ind}_a)$ lies in the periodic cyclic homology group $\text{PHC}_*(C_c^\infty(G))$. The index theorem, at the level of Chern characters, equates $\text{ch}(\text{Ind}_a)$ with a topological expression $\text{ch}(\text{Ind}_t)$.

We remark that in the literature, one often sees the analytic index defined as an element of K-theory of the groupoid C^* -algebra $C_r^*(G)$. The index in $K_*(C_c^\infty(G) \otimes \mathcal{R})$ is a more refined object. However, to obtain geometric and topological consequences from the index theorem, it appears that one has to pass to $C_r^*(G)$; we refer to [11, Chapter III] for discussion. In this paper we will work with $C_c^\infty(G)$.

We prove a local index theorem for a Dirac-type operator that is invariant with respect to the action of a foliation groupoid. In the terminology of Crainic-Moerdijk [15], a foliation groupoid is a smooth groupoid G with discrete isotropy groups, or equivalently, which is Morita equivalent to a smooth étale groupoid.

A motivation for our work comes from the Connes-Skandalis index theorem for a compact foliated manifold (M, \mathcal{F}) with a longitudinal Dirac-type operator [13]. To a foliated manifold (M, \mathcal{F}) one can associate its holonomy groupoid G_{hol} , which is an example of a foliation groupoid. The general foliation index theorem equates Ind_a with a topological index Ind_t . For details, we refer to [11, Sections I.5, II.8-9, III.6-7].

We now state the index theorem that we prove. Let M be the space of units of a foliation groupoid G . It carries a foliation \mathcal{F} . Let ρ be a closed holonomy-invariant transverse current on M . There is a corresponding universal class $\omega_\rho \in H^*(BG; o)$, where o is a certain orientation character on the classifying space BG . Suppose that G acts freely, properly and cocompactly on a manifold P . In particular, there is a submersion $\pi : P \rightarrow M$. There is an induced foliation $\pi^*\mathcal{F}$ of P with the same codimension as \mathcal{F} , satisfying $T\pi^*\mathcal{F} = (d\pi)^{-1}T\mathcal{F}$. Let g^{TZ} be a smooth G -invariant vertical Riemannian metric on P . Suppose that the vertical tangent bundle TZ is even-dimensional and has a G -invariant spin structure. Let S^Z be the corresponding vertical spinor bundle. Let \tilde{V} be an auxiliary G -invariant Hermitian vector bundle on P with a G -invariant Hermitian connection. Put $E = S^Z \hat{\otimes} \tilde{V}$, a G -invariant \mathbb{Z}_2 -graded Clifford bundle on P which has a G -invariant connection. The Dirac-type operator Q acts fiberwise on sections of E . Let D be its restriction to the sections of positive parity. (The case of general G -invariant Clifford bundles E is completely analogous.) Let $\mu : P \rightarrow P/G$ be the quotient map. Then P/G is a smooth compact manifold with a foliation $F = (\pi^*\mathcal{F})/G$ satisfying $(d\mu)^{-1}TF = T\pi^*\mathcal{F}$. Put $V = \tilde{V}/G$, a Hermitian vector bundle on P/G with a Hermitian connection ∇^V . The G -action on P is classified by a map $\nu : P/G \rightarrow BG$, defined up to homotopy.

The main point of this paper is to give a local proof of the following theorem.

Theorem 1

$$\langle \text{ch}(\text{Ind } D), \rho \rangle = \int_{P/G} \widehat{A}(TF) \text{ ch}(V) \nu^* \omega_\rho. \quad (1)$$

Here $\text{Ind } D$ lies in $\text{K}_*(C_c^\infty(G) \otimes \mathcal{R})$. If M is a compact foliated manifold and one takes $P = G = G_{hol}$ then one recovers the result of pairing the Connes-Skandalis theorem with ρ ; see also Nistor [24].

In saying that we give a local proof of Theorem 1, the word “local” is in the sense of Bismut’s proof of the Atiyah-Singer family index theorem [6]. In our previous paper [16] we gave a local proof of such a theorem in the étale case. One can reduce Theorem 1 to the étale case by choosing a complete transversal T , i.e. a submanifold of M , possibly disconnected, with $\dim(T) = \text{codim}(\mathcal{F})$ and which intersects each leaf of the foliation. Using T , one can reduce the holonomy groupoid G to a Morita-equivalent étale groupoid G_{et} . We gave a local proof of Connes’ index theorem concerning an étale groupoid G_{et} acting freely, properly and cocompactly on a manifold P , preserving a fiberwise Dirac-type operator Q on P . Our local proof has since been used by Leichtnam and Piazza to prove an index theorem for foliated manifolds-with-boundary [21].

In the present paper we give a local proof of Theorem 1 working directly with foliation groupoids. In particular, the new proof avoids the noncanonical choice of a complete transversal T .

The overall method of proof is by means of superconnections in the context of noncommutative geometry, as in [16]. However, there are conceptual differences with respect to [16]. As in [16], we first establish an appropriate differential calculus on the noncommutative space determined by a foliation groupoid G . The notion of “smooth functions” on the noncommutative space is clear, and is given by the elements of the convolution algebra $\mathcal{B} = C_c^\infty(G)$. We define a certain graded algebra $\Omega^* \mathcal{B}$ which plays the role of the differential forms on the noncommutative space. The algebra $\Omega^* \mathcal{B}$ is equipped with a degree-1 derivation d , which is the analog of the de Rham differential. Unlike in the étale case, it turns out that in general, $d^2 \neq 0$. The reason for this is that to define d , we must choose a horizontal distribution $T^H M$ on M , where “horizontal” means transverse to \mathcal{F} . In general $T^H M$ is not integrable, which leads to the nonvanishing of d^2 . This issue does not arise in the étale case.

As we wish to deal with superconnections in such a context, we must first understand how to do Chern-Weil theory when $d^2 \neq 0$. If d^2 is given by commutation with a 2-form then a trick of Connes [11, Chapter III.3, Lemma 9] allows one to construct a new complex with $d^2 = 0$, thereby reducing to the usual case. We give a somewhat more general formalism that may be useful in other contexts. It assumes that for the relevant \mathcal{B} -module \mathcal{E} and connection $\nabla : \mathcal{E} \rightarrow \Omega^1 \mathcal{B} \otimes_{\mathcal{B}} \mathcal{E}$, there is a linear map $l : \mathcal{E} \rightarrow \Omega^2 \mathcal{B} \otimes_{\mathcal{B}} \mathcal{E}$ such that

$$l(b\xi) - b l(\xi) = d^2(b) \xi \quad (2)$$

and

$$l(\nabla \xi) = \nabla l(\xi) \quad (3)$$

for $b \in \mathcal{B}$, $\xi \in \mathcal{E}$. With this additional structure, we show in Section 2 how to do Chern-Weil theory, both for connections and superconnections on a \mathcal{B} -module \mathcal{E} . In the case when d^2 is a commutator, one recovers Connes' construction of Chern classes.

Next, we consider certain “homology classes” of the noncommutative space. A graded trace on $\Omega^* \mathcal{B}$ is said to be closed if it annihilates $\text{Im}(d)$. A closed holonomy-invariant transverse current ρ on the space of units M gives a closed graded trace on $\Omega^* \mathcal{B}$.

The action of G on P gives rise to a left \mathcal{B} -module \mathcal{E} , which essentially consists of compactly-supported sections of E coupled to a vertical density. We extend \mathcal{E} to a left- $\Omega^* \mathcal{B}$ module $\Omega^* \mathcal{E}$ of “ \mathcal{E} -valued differential forms”. There is a natural linear map $l : \mathcal{E} \rightarrow \Omega^2 \mathcal{E}$ satisfying (2) and (3).

We then consider the Bismut superconnection A_s on \mathcal{E} . The formal expression for its Chern character involves $e^{-A_s^2 + l}$. The latter is well-defined in $\text{Hom}^\omega(\mathcal{E}, \Omega^* \mathcal{E})$, an algebra consisting of rapid-decay kernels. We construct a graded trace $\tau : \text{Hom}^\omega(\mathcal{E}, \Omega^* \mathcal{E}) \rightarrow \Omega^* \mathcal{B}$. This allows us to define the Chern character of the superconnection by

$$\text{ch}(A_s) = \mathcal{R}(\tau e^{-A_s^2 + l}). \quad (4)$$

Here \mathcal{R} is the rescaling operator which, for p even, multiplies a p -form by $(2\pi i)^{-\frac{p}{2}}$.

Now let ρ be a closed holonomy-invariant transverse current on M as above. Then $\rho(\text{ch}(A_s))$ is defined and we compute its limit when $s \rightarrow 0$, to obtain a differential form version of the right-hand-side of (1). (In the case when $P = G = G_{\text{hol}}$ an analogous computation was done by Heitsch [18, Theorem 2.1].)

Next, we use the argument of [16, Section 5] to show that for all $s > 0$, $\langle \text{ch}(\text{Ind } D), \rho \rangle = \rho(\text{ch}(A_s))$. (In the case when $P = G = G_{\text{hol}}$, this was shown under some further restrictions by Heitsch [18, Theorem 4.6] and Heitsch-Lazarov [19, Theorem 5].) This proves Theorem 1.

We note that our extension of [16] from étale groupoids to foliation groupoids is only partial. The local index theorem of [16] allows for pairing with more general objects than transverse currents, such as the Godbillon-Vey class. The paper [16] used a bicomplex $\Omega^{*,*} \mathcal{B}$ of forms, in which the second component consists of forms in the “noncommutative” direction. There was also a connection ∇ on \mathcal{E} which involved a differentiation in the noncommutative direction. In the setting of a foliation groupoid, one again has a bicomplex $\Omega^{*,*} \mathcal{B}$ and a connection ∇ . However, (3) is not satisfied. Because of this we work instead with the smaller complex of forms $\Omega^{*,0} \mathcal{B}$, where this problem does not arise.

The paper is organized as follows. In Section 2 we discuss Chern-Weil theory in the context of a graded algebra with derivation whose square is nonzero. In Section 3 we describe the differential algebra $\Omega^* \mathcal{B}$ associated to a foliation groupoid G . In Section 4 we add a manifold P on which G acts properly. We define a certain left- \mathcal{B} module \mathcal{E} and superconnection A_s on

\mathcal{E} . We compute the $s \rightarrow 0$ limit of $\rho(\text{ch}(A_s))$. In Section 5 we explain the relation between the superconnection computations and the K-theoretic index, construct the cohomology class $\omega_\rho \in H^*(BG; o)$ and prove Theorem 1. We show that Theorem 1 implies some well-known index theorems.

In an appendix to this paper we give a technical improvement to our previous paper [16]. The index theorem in [16] assumed that the closed graded trace η on $\Omega^*(B, \mathbb{C}\Gamma)$ extended to an algebra of rapidly decaying forms $\Omega^*(B, \mathcal{B}^\omega)$. The appearance of $\Omega^*(B, \mathcal{B}^\omega)$ was due to the noncompact support of the heat kernel, which affects the trace of the superconnection Chern character. In the appendix we show how to replace $\Omega^*(B, \mathcal{B}^\omega)$ by $\Omega^*(B, \mathbb{C}\Gamma)$, by using finite propagation speed methods. Let $f \in C_c^\infty(\mathbb{R})$ be a smooth even function with support in $[-\epsilon, \epsilon]$. Let \hat{f} be its Fourier transform. We can define $\hat{f}(A_s)$ and show that $\eta(\mathcal{R}\tau\hat{f}(A_s))$ is defined for graded traces η on $\Omega^*(B, \mathbb{C}\Gamma)$. We prove the corresponding analog of [16, Theorem 3], with the Gaussian function in the definition of the Chern character replaced by an appropriate function \hat{f} . This then implies the result stated in [16, Theorem 3] without the condition of η being extendible to $\Omega^*(B, \mathcal{B}^\omega)$. We remark that this issue of replacing $\Omega^*(B, \mathcal{B}^\omega)$ by $\Omega^*(B, \mathbb{C}\Gamma)$ does not arise in the present paper.

More detailed summaries are given at the beginnings of the sections.

We thank the referee for useful comments.

2 The Chern Character

In this section we collect some algebraic facts needed to define the Chern character of a superconnection in our setting. We consider an algebra \mathcal{B} and a graded algebra Ω^* with $\Omega^0 = \mathcal{B}$. We assume that Ω^* is equipped with a degree-1 derivation d whose square may be nonzero. If \mathcal{E} is a left \mathcal{B} -module then the notion of a connection ∇ on \mathcal{E} is the usual one from noncommutative geometry; see Connes [11, Section III.3, Definition 5] and Karoubi [20, Chapitre 1]. We assume the additional structure of a map l satisfying (2) and (3). We show that $\nabla^2 - l$ is then the right notion of curvature. If \mathcal{E} is a finitely-generated projective \mathcal{B} -module then we carry out Chern-Weil theory for the connection ∇ , and show how it extends to the case of a superconnection A . Many of the lemmas in this section are standard in the case when $d^2 = 0$ and $l = 0$, but we present them in detail in order to make clear what goes through to the case when $d^2 \neq 0$. In the case when d^2 is given by a commutator, the Chern character turns out to be the same as what one would get using Connes' X -trick [11, Section III.3, Lemma 9].

Let \mathcal{B} be an algebra over \mathbb{C} , possibly nonunital. Let $\Omega = \bigoplus_{i=1}^\infty \Omega^i$ be a graded algebra with $\Omega^0 = \mathcal{B}$. Let $d : \Omega^* \rightarrow \Omega^{*+1}$ be a graded derivation of Ω^* . Define $\alpha : \Omega^* \rightarrow \Omega^{*+2}$ by $\alpha = d^2$;

then for all $\omega, \omega' \in \Omega^*$,

$$\alpha(d\omega) = d\alpha(\omega), \quad \alpha(\omega\omega') = \alpha(\omega)\omega' + \omega\alpha(\omega'). \quad (5)$$

By a graded trace, we will mean a linear functional $\eta : \Omega^* \rightarrow \mathbb{C}$ such that

$$\eta(\alpha(\omega)) = 0, \quad \eta([\omega, \omega']) = 0 \quad (6)$$

for all $\omega, \omega' \in \Omega^*$. Define $d^t\eta$ by $(d^t\eta)(\omega) = \eta(d\omega)$. Then the graded traces on Ω^* form a complex with differential d^t . A graded trace η will be said to be closed if $d^t\eta = 0$, i.e. for all $\omega \in \Omega^*$, $\eta(d\omega) = 0$.

Example 1 : Let E be a complex vector bundle over a smooth manifold M . Let ∇^E be a connection on E , with curvature $\theta^E \in \Omega^2(M; \text{End}(E))$. Put $\mathcal{B} = C^\infty(M; \text{End}(E))$ and $\Omega^* = \Omega^*(M; \text{End}(E))$. Let d be the extension of the connection ∇^E to $\Omega^*(M; \text{End}(E))$. Then $\alpha(\omega) = \theta^E \omega - \omega \theta^E$. If c is a closed current on M then we obtain a closed graded trace η on Ω^* by $\eta(\omega) = \int_c \text{tr}(\omega)$.

Let \mathcal{E} be a left \mathcal{B} -module. We assume that there is a \mathbb{C} -linear map $l : \mathcal{E} \rightarrow \Omega^2 \otimes_{\mathcal{B}} \mathcal{E}$ such that for all $b \in \mathcal{B}$ and $\xi \in \mathcal{E}$,

$$l(b\xi) = \alpha(b)\xi + b l(\xi). \quad (7)$$

Example 2 : Suppose that for some $\theta \in \Omega^2$, $\alpha(\omega) = \theta\omega - \omega\theta$. Then we can take $l(\xi) = \theta\xi$.

Lemma 1 *There is an extension of l to a linear map $l : \Omega^* \otimes_{\mathcal{B}} \mathcal{E} \rightarrow \Omega^{*+2} \otimes_{\mathcal{B}} \mathcal{E}$ so that for $\omega \in \Omega^*$ and $\mu \in \Omega^* \otimes_{\mathcal{B}} \mathcal{E}$,*

$$l(\omega\mu) = \alpha(\omega)\mu + \omega l(\mu). \quad (8)$$

PROOF. We define $l : \Omega^* \otimes_{\mathbb{C}} \mathcal{E} \rightarrow \Omega^{*+2} \otimes_{\mathcal{B}} \mathcal{E}$ by

$$l(\omega \otimes \xi) = \alpha(\omega)\xi + \omega l(\xi). \quad (9)$$

Then for $b \in \mathcal{B}$,

$$\begin{aligned} l(\omega b \otimes \xi) &= \alpha(\omega b)\xi + \omega b l(\xi) = \alpha(\omega)b\xi + \omega\alpha(b)\xi + \omega b l(\xi) \\ &= \alpha(\omega)b\xi + \omega l(b\xi) = l(\omega \otimes b\xi). \end{aligned} \quad (10)$$

Thus l is defined on $\Omega^* \otimes_{\mathcal{B}} \mathcal{E}$. Next, for $\omega, \omega' \in \Omega^*$ and $\xi \in \mathcal{E}$,

$$\begin{aligned} l(\omega(\omega'\xi)) &= \alpha(\omega\omega')\xi + \omega\omega' l(\xi) = \alpha(\omega)\omega'\xi + \omega\alpha(\omega')\xi + \omega\omega' l(\xi) \\ &= \alpha(\omega)\omega'\xi + \omega l(\omega'\xi). \end{aligned} \quad (11)$$

This proves the lemma.

Let $\nabla : \mathcal{E} \rightarrow \Omega^1 \otimes_{\mathcal{B}} \mathcal{E}$ be a connection, i.e. a \mathbb{C} -linear map satisfying

$$\nabla(b\xi) = db \otimes \xi + b\nabla\xi \quad (12)$$

for all $b \in \mathcal{B}$, $\xi \in \mathcal{E}$. Extend ∇ to a \mathbb{C} -linear map $\nabla : \Omega^* \otimes_{\mathcal{B}} \mathcal{E} \rightarrow \Omega^{*+1} \otimes_{\mathcal{B}} \mathcal{E}$ so that for all $\omega \in \Omega^*$ and $\xi \in \mathcal{E}$,

$$\nabla(\omega\xi) = d\omega \otimes \xi + (-1)^{|\omega|} \omega \nabla \xi. \quad (13)$$

We assume that for all $\xi \in \mathcal{E}$,

$$l(\nabla\xi) = \nabla l(\xi). \quad (14)$$

Lemma 2 $\nabla^2 - l : \mathcal{E} \rightarrow \Omega^2 \otimes_{\mathcal{B}} \mathcal{E}$ is left- \mathcal{B} -linear.

PROOF. For $b \in \mathcal{B}$ and $\xi \in \mathcal{E}$,

$$\begin{aligned} (\nabla^2 - l)(b\xi) &= \nabla(db \otimes \xi + b\nabla\xi) - l(b\xi) = d^2b \otimes \xi + b\nabla^2\xi - l(b\xi) \\ &= \alpha(b)\xi + b\nabla^2\xi - l(b\xi) = b(\nabla^2 - l)(\xi). \end{aligned} \quad (15)$$

This proves the lemma.

Put $\Omega_{ab}^* = \Omega^*/[\Omega^*, \Omega^*]$, the quotient by the graded commutator, with the induced d . For simplicity, in the rest of this section we assume that \mathcal{B} is unital and \mathcal{E} is a finitely-generated projective left \mathcal{B} -module. Consider the graded algebra $\text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^* \otimes_{\mathcal{B}} \mathcal{E}) \cong \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$. There is a graded trace on $\text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^* \otimes_{\mathcal{B}} \mathcal{E})$, with value in Ω_{ab}^* , defined as follows. Write \mathcal{E} as $\mathcal{B}^N e$ for some idempotent $e \in M_N(\mathcal{B})$. Then any $T \in \text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^* \otimes_{\mathcal{B}} \mathcal{E})$ can be represented as right-multiplication on $\mathcal{B}^N e$ by a matrix $T \in M_N(\Omega^*)$ satisfying $T = eT = Te$. By definition $\text{tr}(T) = \sum_{i=1}^N T_{ii} \pmod{[\Omega^*, \Omega^*]}$. It is independent of the representation of \mathcal{E} as $\mathcal{B}^N e$.

Given $T_1, T_2 \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$, define their (graded) commutator by

$$[T_1, T_2] = T_1 \circ T_2 - (-1)^{|T_1||T_2|} T_2 \circ T_1. \quad (16)$$

For $T \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$, define $[\nabla, T] \in \text{End}_{\mathbb{C}}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$ by

$$[\nabla, T](\mu) = (-1)^{|\mu|} (\nabla(T(\mu)) - T(\nabla\mu)) \quad (17)$$

for $\mu \in \Omega^* \otimes_{\mathcal{B}} \mathcal{E}$.

Lemma 3 $[\nabla, T] \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$.

PROOF. Given $\omega \in \Omega^*$ and $\mu \in \Omega^* \otimes_{\mathcal{B}} \mathcal{E}$,

$$\begin{aligned} [\nabla, T](\omega\mu) &= (-1)^{|\omega|+|\mu|} (\nabla(T(\omega\mu)) - T(\nabla(\omega\mu))) \\ &= (-1)^{|\omega|+|\mu|} (\nabla(\omega T(\mu)) - T((d\omega)\mu + (-1)^\omega \omega \nabla \mu)) \\ &= (-1)^{|\omega|+|\mu|} ((d\omega)T(\mu) + (-1)^\omega \omega \nabla(T(\mu)) - (d\omega)T(\mu) - (-1)^\omega \omega T(\nabla \mu)) \\ &= \omega [\nabla, T](\mu). \end{aligned} \quad (18)$$

This proves the lemma.

Lemma 4 *Given $T_1, T_2 \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$,*

$$[\nabla, T_1 \circ T_2] = T_1 \circ [\nabla, T_2] + (-1)^{|T_2|} [\nabla, T_1] \circ T_2. \quad (19)$$

PROOF. Given $\mu \in \Omega^* \otimes_{\mathcal{B}} \mathcal{E}$,

$$[\nabla, T_1 \circ T_2](\mu) = (-1)^{|\mu|} \{ \nabla(T_1(T_2(\mu))) - T_1(T_2(\nabla(\mu))) \}, \quad (20)$$

$$(T_1 \circ [\nabla, T_2])(\mu) = (-1)^{|\mu|} T_1 (\nabla(T_2(\mu)) - T_2(\nabla(\mu))) \quad (21)$$

and

$$([\nabla, T_1] \circ T_2)(\mu) = [\nabla, T_1](T_2(\mu)) = (-1)^{|T_2(\mu)|} \{ \nabla(T_1(T_2(\mu))) - T_1(\nabla(T_2(\mu))) \}. \quad (22)$$

The lemma follows.

Lemma 5 *Given $T_1, T_2 \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$,*

$$[\nabla, [T_1, T_2]] = [T_1, [\nabla, T_2]] + (-1)^{|T_2|} [[\nabla, T_1], T_2]. \quad (23)$$

PROOF. This follows from (16) and (19). We omit the details.

Lemma 6 *For $T \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$,*

$$\text{tr}([\nabla, T]) = d \text{tr}(T) \in \Omega_{ab}^*. \quad (24)$$

PROOF. Let us write $\mathcal{E} = \mathcal{B}^N e$ for an idempotent $e \in M_N(\mathcal{B})$. Given $A \in \text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^1 \otimes_{\mathcal{B}} \mathcal{E})$, it acts on $\mathcal{B}^N e$ on the right by a matrix $A \in M_N(\Omega^1)$ with $A = eA = Ae$. Then there is some $A \in \text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^1 \otimes_{\mathcal{B}} \mathcal{E})$ so that for $\mu \in \Omega^* \otimes_{\mathcal{B}} \mathcal{E} = (\Omega^*)^N e$,

$$\nabla(\mu) = (d\mu) e + (-1)^{|\mu|} \mu A; \quad (25)$$

in fact, this equation defines A .

An element $T \in \text{End}_{\Omega^*}(\Omega^* \otimes_{\mathcal{B}} \mathcal{E})$ acts by right multiplication on $\Omega^* \otimes_{\mathcal{B}} \mathcal{E} = (\Omega^*)^N e$ by a matrix $T \in M_N(\Omega^*)$ satisfying $T = eT = Te$. Then for $\xi \in \mathcal{E} = \mathcal{B}^N e$,

$$\begin{aligned} [\nabla, T](\xi) &= \nabla(\xi T) - (\nabla(\xi))T = \{d(\xi T) e + (-1)^{|T|} \xi T A\} - \{(d\xi) e + \xi A\} T \quad (26) \\ &= \xi \left((dT) e + (-1)^{|T|} TA - AT \right) \end{aligned}$$

Thus $[\nabla, T]$ acts as right multiplication by the matrix

$$e(dT)e + (-1)^{|T|} TA - AT, \quad (27)$$

and so $\text{tr}([\nabla, T]) \equiv \text{tr}(e(dT)e)$. On the other hand, using the identity $e(de)e = 0$ and taking the trace of $N \times N$ matrices, we obtain

$$\begin{aligned} d \text{tr}(T) &= d \text{tr}(eTe) = \text{tr} \left((de)Te + e(dT)e + (-1)^{|T|} eT(de) \right) \quad (28) \\ &= \text{tr} \left((de)eTe + e(dT)e + (-1)^{|T|} eTe(de) \right) \\ &\equiv \text{tr} \left(e(de)eT + e(dT)e + (-1)^{|T|} Te(de)e \right) = \text{tr}(e(dT)e). \end{aligned}$$

This proves the lemma.

Lemma 7 $[\nabla, \nabla^2 - l] = 0$.

PROOF. This follows from (14).

Definition 1 *The Chern character form of ∇ is*

$$\text{ch}(\nabla) = \text{tr} \left(e^{-\frac{\nabla^2 - l}{2\pi i}} \right) \in \Omega_{ab}^*. \quad (29)$$

Lemma 8 *Given \mathcal{E} , if η is a closed graded trace on Ω^* then $\eta(\text{ch}(\nabla))$ is independent of the choice of ∇ . If η_1 and η_2 are homologous closed graded traces then $\eta_1(\text{ch}(\nabla)) = \eta_2(\text{ch}(\nabla))$.*

PROOF. Let ∇_1 and ∇_2 be two connections on \mathcal{E} . For $t \in [0, 1]$, define a connection by $\nabla(t) = t\nabla_2 + (1-t)\nabla_1$. Then $\frac{d\nabla}{dt} = \nabla_2 - \nabla_1 \in \text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^1 \otimes_{\mathcal{B}} \mathcal{E})$. We claim that $\eta(\text{ch}(\nabla(t)))$ is independent of t . As $\frac{d(\nabla^2 - l)}{dt} = \nabla \frac{d\nabla}{dt} + \frac{d\nabla}{dt} \nabla$, we have

$$\begin{aligned} \frac{d \text{ch}(\nabla)}{dt} &= -\frac{1}{2\pi i} \text{tr} \left(\left(\nabla \frac{d\nabla}{dt} + \frac{d\nabla}{dt} \nabla \right) e^{-\frac{\nabla^2 - l}{2\pi i}} \right) = -\frac{1}{2\pi i} \text{tr} \left(\left[\nabla, \frac{d\nabla}{dt} e^{-\frac{\nabla^2 - l}{2\pi i}} \right] \right) \quad (30) \\ &= -\frac{1}{2\pi i} d \text{tr} \left(\frac{d\nabla}{dt} e^{-\frac{\nabla^2 - l}{2\pi i}} \right). \end{aligned}$$

Then

$$\text{ch}(\nabla_2) - \text{ch}(\nabla_1) = -\frac{1}{2\pi i} d \int_0^1 \text{tr} \left((\nabla_2 - \nabla_1) e^{-\frac{\nabla(t)^2 - l}{2\pi i}} \right) dt, \quad (31)$$

from which the claim follows. We note after expanding the exponential in (31), the integral gives an expression that is purely algebraic in ∇_1 and ∇_2 .

If η_1 and η_2 are homologous then there is a graded trace η' such that $\eta_1 - \eta_2 = d^t \eta'$. Thus

$$\eta_1(\text{ch}(\nabla)) - \eta_2(\text{ch}(\nabla)) = \eta'(d \text{ch}(\nabla)). \quad (32)$$

However,

$$d \text{ch}(\nabla) = d \text{tr} \left(e^{-\frac{\nabla^2-l}{2\pi i}} \right) = \text{tr} \left(\left[\nabla, e^{-\frac{\nabla^2-l}{2\pi i}} \right] \right) = 0. \quad (33)$$

This proves the lemma.

Example 3 : With the notation of Example 1, let F be another complex vector bundle on M , with connection ∇^F . Put $\mathcal{E} = C^\infty(M; E \otimes F)$, with $l(\xi) = (\theta^E \otimes I)\xi$ for $\xi \in \mathcal{E}$. Let ∇ be the tensor product of ∇^E and ∇^F . Then one finds that $\eta(\text{ch}(\nabla)) = \int_c \text{ch}(\nabla^F)$.

If \mathcal{E} is \mathbb{Z}_2 -graded, let $A : \mathcal{E} \rightarrow \Omega^* \otimes_{\mathcal{B}} \mathcal{E}$ be a superconnection. Then there are obvious extensions of the results of this section. In particular, let \mathcal{R} be the rescaling operator on Ω_{ab}^{even} which multiplies an element of Ω_{ab}^{2k} by $(2\pi i)^{-k}$.

Definition 2 *The Chern character form of A is*

$$\text{ch}(A) = \mathcal{R} \text{ tr}_s \left(e^{-(A^2-l)} \right) \in \Omega_{ab}^*. \quad (34)$$

We have the following analog of Lemma 8.

Lemma 9 *Given \mathcal{E} , if η is a closed graded trace on Ω^* then $\eta(\text{ch}(A))$ is independent of the choice of A . If η_1 and η_2 are homologous closed graded traces then $\eta_1(\text{ch}(A)) = \eta_2(\text{ch}(A))$.*

3 Differential Calculus for Foliation Groupoids

In this section, given a foliation groupoid G , we construct a graded algebra $\Omega^* \mathcal{B}$ whose degree-0 component \mathcal{B} is the convolution algebra of G . We then construct a degree-1 derivation $d = d^H$ of $\Omega^* \mathcal{B}$. Finally, we compute d^2 .

3.1 The differential forms

Let G be a groupoid. We use the groupoid notation of [11, Section II.5]. The units of G are denoted $G^{(0)}$ and the range and source maps are denoted $r, s : G \rightarrow G^{(0)}$. To construct the

product of $g_0, g_1 \in G$, we must have $s(g_0) = r(g_1)$. Then $r(g_0g_1) = r(g_0)$ and $s(g_0g_1) = s(g_1)$. Given $m \in G^{(0)}$, put $G^m = r^{-1}(m)$, $G_m = s^{-1}(m)$ and $G_m^m = G^m \cap G_m$.

We assume that G is a Lie groupoid, meaning that G and $G^{(0)}$ are smooth manifolds, and r and s are smooth submersions. For simplicity we will assume that G is Hausdorff. The results of the paper extend to the nonHausdorff case, using the notion of differential forms on a nonHausdorff manifold given by Crainic and Moerdijk [14, Section 2.2.5]. (The paper [14] is an extension of work by Brylinski and Nistor [8].)

The Lie algebroid \mathfrak{g} of G is a vector bundle over $G^{(0)}$ with fibers $\mathfrak{g}_m = T_m G^m = \text{Ker}(dr_m : T_m G \rightarrow T_m G^{(0)})$. The anchor map $\mathfrak{g} \rightarrow TG^{(0)}$, a map of vector bundles, is the restriction of $ds_m : T_m G \rightarrow T_m G^{(0)}$ to \mathfrak{g}_m . In general, the image of the anchor map need not be of constant rank.

We now assume that G is a foliation groupoid in the sense of [15], i.e. that G satisfies one of the three following equivalent conditions [15, Theorem 1] :

1. G is Morita equivalent to a smooth étale groupoid.
2. The anchor map of G is injective.
3. All isotropy Lie groups G_m^m of G are discrete.

Example 4 : If G is an smooth étale groupoid then G is a foliation groupoid. If (M, \mathcal{F}) is a smooth foliated manifold then its holonomy groupoid (see Connes [11, Section II.8.a]) and its monodromy (= homotopy) groupoid (see Baum-Connes [3] and Phillips [26]) are foliation groupoids. In this case, the anchor map is the inclusion map $T\mathcal{F} \rightarrow TM$. If a Lie group L acts smoothly on a manifold M and the isotropy groups $L_m = \{l \in L : ml = m\}$ are discrete then the cross-product groupoid $M \rtimes L$ is a foliation groupoid.

Put $M = G^{(0)}$. It inherits a foliation \mathcal{F} , with the leafwise tangent bundle $T\mathcal{F}$ being the image of the anchor map.

Note that the foliated manifold (M, \mathcal{F}) has a holonomy groupoid Hol which is itself a foliation groupoid. However, Hol may not be the same as G . If G is a foliation groupoid with the property that G_m is connected for all m then G lies between the holonomy groupoid of \mathcal{F} and the monodromy groupoid of \mathcal{F} ; see [15, Proposition 1] for further discussion. The reader may just want to keep in mind the case when G is actually the holonomy groupoid of a foliated manifold (M, \mathcal{F}) .

Let $\tau = TM/T\mathcal{F}$ be the normal bundle to the foliation. Given $g \in G$, let $U \subset M$ be a sufficiently small neighborhood of $s(g)$ and let $c : U \rightarrow G$ be a smooth map such that $c(s(g)) = g$ and $s \circ c = \text{Id}_U$. Then $d(r \circ c)_{s(g)} : T_{s(g)}M \rightarrow T_{r(g)}M$ sends $T_{s(g)}\mathcal{F}$ to $T_{r(g)}\mathcal{F}$. The induced map from $\tau_{s(g)}$ to $\tau_{r(g)}$ has an inverse $g_* : \tau_{r(g)} \rightarrow \tau_{s(g)}$ called the holonomy of the element $g \in G$. It is independent of the choices of U and c .

Let \mathcal{D} denote the real line bundle on M formed by leafwise densities. We define a graded

algebra $\Omega^* \mathcal{B}$ whose components, as vector spaces, are given by

$$\Omega^n \mathcal{B} = C_c^\infty(G; \Lambda^n(r^*\tau^*) \otimes s^*\mathcal{D}) \quad (35)$$

In particular,

$$\mathcal{B} = \Omega^0 \mathcal{B} = C_c^\infty(G; s^*\mathcal{D}) \quad (36)$$

is the groupoid algebra. (Instead of using half-densities, we have placed a full density at the source.) The product of $\phi_1 \in \Omega^{n_1} \mathcal{B}$ and $\phi_2 \in \Omega^{n_2} \mathcal{B}$ is given by

$$(\phi_1 \phi_2)(g) = \int_{g'g''=g} \phi_1(g') \wedge \phi_2(g''). \quad (37)$$

In forming the wedge product, the holonomy of g' is used to identify conormal spaces.

Let $T^H M$ be a horizontal distribution on M , i.e. a splitting of the short exact sequence $0 \rightarrow T\mathcal{F} \rightarrow TM \rightarrow \tau \rightarrow 0$. Then there is a horizontal differentiation $d^H : \Omega^n \mathcal{B} \rightarrow \Omega^{n+1} \mathcal{B}$, which we now define. The definition will proceed by building up d^H from smaller pieces (compare [11, Section II.7.α, Proposition 3]).

First, the choice of horizontal distribution allows us to define a horizontal differential $d^H : \Omega^*(M) \rightarrow \Omega^{*+1}(M)$ as in Bismut-Lott [7, Definition 3.2] and Connes [11, Section III.7.α]. Using the local description of an element of $C^\infty(M; \mathcal{D})$ as a vertical $\dim(\mathcal{F})$ -form on M , we also obtain a horizontal differential $d^H : C^\infty(M; \mathcal{D}) \rightarrow C^\infty(M; \tau^* \otimes \mathcal{D})$ [11, Section III.7.α] and a horizontal differential $d^H : C^\infty(M; \Lambda^n \tau^*) \rightarrow C^\infty(M; \Lambda^{n+1} \tau^*)$.

Given $f \in C_c^\infty(G)$, we now define its horizontal differential $d^H f \in C_c^\infty(G; r^*\tau^*)$ by simultaneously differentiating f with respect to its arguments, in a horizontal direction. That is, consider a point $g \in G$ and a vector $X_0 \in \tau_{r(g)}$. Put $X_1 = g_*(X_0)$. Next, use the horizontal distribution $T^H M$ to construct the corresponding horizontal vectors \tilde{X}_0 and \tilde{X}_1 . We now have a vector $\tilde{X} = (\tilde{X}_0, \tilde{X}_1) \in T_{(r(g), s(g))}(M \times M)$. It is the image of a unique vector $X \in T_g G$ under the immersion

$$(r, s) : G \rightarrow M \times M. \quad (38)$$

We define $d^H f$ by putting $((d^H f)(X_0))(g) = Xf$.

Next, to horizontally differentiate an element of $C_c^\infty(G; \Lambda^n(r^*\tau^*) \otimes s^*\mathcal{D})$, we write it as a finite sum of terms of the form $f r^*(\omega) s^*(\beta)$, with $f \in C_c^\infty(G)$, $\omega \in C^\infty(M; \Lambda^n \tau^*)$, and $\beta \in C^\infty(M; \mathcal{D})$. For an element of this form, put

$$d^H(f r^*(\omega) s^*(\beta)) = (d^H f) r^*(\omega) s^*(\beta) + f r^*(d^H \omega) s^*(\beta) + (-1)^n f r^*(\omega) s^*(d^H \beta), \quad (39)$$

where the holonomy is used in defining products.

Lemma 10 *The operator d^H is a graded derivation of $\Omega^* \mathcal{B}$.*

PROOF. This follows from a straightforward computation, which we omit.

Put $d = d^H$. We now describe $\alpha = d^2$. Let $T \in \Omega^2(M; T\mathcal{F})$ be the curvature of the horizontal distribution $T^H M$ [7, (3.11)]. It is a horizontal 2-form on M with values in $T\mathcal{F}$, defined by $T(X_1, X_2) = -P^{vert}[X_1^H, X_2^H]$. One can define the Lie derivative $\mathcal{L}_T : \Omega^*(M) \rightarrow \Omega^{*+2}(M)$, an operation which increases the horizontal grading by two, as in [7, (3.14)]. Then one can define $\mathcal{L}_T : C^\infty(M; \mathcal{D}) \rightarrow C^\infty(M; \Lambda^2 \tau^* \otimes \mathcal{D})$ and $\mathcal{L}_T : C^\infty(M; \Lambda^n \tau^*) \rightarrow C^\infty(M; \Lambda^{n+2} \tau^*)$ in obvious ways.

Given $f \in C_c^\infty(G)$, we define its Lie derivative $\mathcal{L}_T f \in C_c^\infty(G; \Lambda^2(r^*\tau^*))$ by simultaneously differentiating f with respect to its arguments, in the vertical direction. That is, consider a point $g \in G$ and $X_0, Y_0 \in \tau_{r(g)}$. Put $X_1 = g_*(X_0)$ and $Y_1 = g_*(Y_0)$. Next, use the horizontal distribution $T^H M$ to construct the corresponding horizontal vectors $\tilde{X}_0, \tilde{X}_1, \tilde{Y}_0$ and \tilde{Y}_1 . Consider the vertical vectors $T(\tilde{X}_0, \tilde{Y}_0) \in T_{r(g)}\mathcal{F}$ and $T(\tilde{X}_1, \tilde{Y}_1) \in T_{s(g)}\mathcal{F}$. We now have a total vector $\tilde{V} = (T(\tilde{X}_0, \tilde{Y}_0), T(\tilde{X}_1, \tilde{Y}_1)) \in T_{(r(g), s(g))}(M \times M)$. It is the image of a unique vector $V \in T_g G$ under the immersion (38). We define $\mathcal{L}_T f$ by putting $((\mathcal{L}_T f)(X_0, Y_0))(g) = Vf$.

Now for $f r^*(\omega) s^*(\beta)$ as before, we put

$$\mathcal{L}_T(f r^*(\omega) s^*(\beta)) = (\mathcal{L}_T f) r^*(\omega) s^*(\beta) + f r^*(\mathcal{L}_T \omega) s^*(\beta) + f r^*(\omega) s^*(\mathcal{L}_T \alpha_1), \quad (40)$$

where the holonomy is used in defining products.

Lemma 11 *We have*

$$\alpha = -\mathcal{L}_T. \quad (41)$$

PROOF. This follows from the method of proof of [7, (3.13)] or [11, Section III.7.α].

Remark : One can consider α to be commutation with a (distributional) element of the multiplier algebra $C^{-\infty}(G; \Lambda^2(p_0^*\tau^*) \otimes p_1^*\mathcal{D})$, namely the one that implements the Lie differentiation [11, Section III.7.α, Lemma 4].

4 Superconnection and Chern character

In this section we consider a smooth manifold P on which G acts freely, properly and cocompactly, along with a G -invariant \mathbb{Z}_2 -graded vector bundle E on P . We construct a corresponding left- \mathcal{B} -module \mathcal{E} . Given a G -invariant Dirac-type operator which acts on sections of E , we consider the Bismut superconnections $\{A_s\}_{s>0}$. We compute the $s \rightarrow 0$ limit of the pairing between the Chern character of A_s and a closed graded trace on $\Omega^*\mathcal{B}$

that is concentrated on the units M . More detailed summaries appear at the beginnings of the subsections.

4.1 Module and Connection

In this subsection we consider a left \mathcal{B} -module \mathcal{E} consisting of sections of E , and its extension to a left $\Omega^*\mathcal{B}$ -module $\Omega^*\mathcal{E}$. We construct a map $l : \mathcal{E} \rightarrow \Omega^2\mathcal{E}$ satisfying (2). Given a lift $T^H P$ of $T^H M$, we construct a connection $\nabla^\mathcal{E}$ on \mathcal{E} .

Let P be a smooth G -manifold [11, Section II.10. α , Definition 1]. That is, first of all, there is a submersion $\pi : P \rightarrow M$. Given $m \in M$, we write $Z_m = \pi^{-1}(m)$. Putting

$$P \times_r G = \{(p, g) \in P \times G : p \in Z_{r(g)}\}, \quad (42)$$

we must also have a smooth map $P \times_r G \rightarrow P$, denoted $(p, g) \mapsto pg$, such that $pg \in Z_{s(g)}$ and $(pg_1)g_2 = p(g_1g_2)$ for all $(g_1, g_2) \in G^{(2)}$. It follows that for each $g \in G$, the map $p \mapsto pg$ gives a diffeomorphism from $Z_{r(g)}$ to $Z_{s(g)}$. Let \mathcal{D}_Z denote the real line bundle on P formed by the fiberwise densities.

Hereafter we assume that P is a proper G -manifold [11, Section II.10. α , Definition 2], i.e. that the map $P \times_r G \rightarrow P \times P$ given by $(p, g) \mapsto (p, pg)$ is proper. We also assume that G acts cocompactly on P , i.e. that the quotient of P by the equivalence relation $(p \sim p'$ if $p = p'g$ for some $g \in G$) is compact. And we assume that G acts freely on P , i.e. that $pg = p$ implies that $g \in M$. Then P/G is a smooth compact manifold.

Example 5 : Take $P = G$, with $\pi = s$. Then G acts properly, freely, and, if M is compact, cocompactly on P .

We will say that a covariant object (vector bundle, connection, metric, etc.) on P is G -invariant if it is the pullback of a similar object from P/G . Let E be a G -invariant \mathbb{Z}_2 -graded vector bundle on P , with supertrace tr_s on $\text{End}(E)$. Put $\mathcal{E} = C_c^\infty(P; E)$. It is a left- \mathcal{B} -module, with the action of $b \in \mathcal{B}$ on $\xi \in \mathcal{E}$ given by

$$(b\xi)(p) = \int_{G^{\pi(p)}} b(g) \xi(pg). \quad (43)$$

In writing (43), we have used the g -action to identify E_p and E_{pg} .

Put

$$\Omega^n \mathcal{E} = C_c^\infty(P; \Lambda^n(\pi^*\tau^*) \otimes E). \quad (44)$$

Then $\Omega^*\mathcal{E}$ is a left- $\Omega^*\mathcal{B}$ -module with the action of $\Omega^*\mathcal{B}$ on $\Omega^*\mathcal{E}$ given by

$$(\phi \omega)(p) = \int_{G^{\pi(p)}} \phi(g) \wedge \omega(pg). \quad (45)$$

Let $\tilde{\mathcal{F}}$ be the foliation on P whose leaf through $p \in P$ consists of the elements pg where g runs through the connected component of $G^{\pi(p)}$ that contains the unit $\pi(p)$. Note that $\dim(\tilde{\mathcal{F}}) = \dim(\mathcal{F})$. Given $p \in P$ and $X, Y \in \tau_{\pi(p)}$, let $\tilde{T}(X, Y) \in T_p \tilde{\mathcal{F}}$ be the lift of $T(X, Y) \in T_{\pi(p)} \mathcal{F}$. Define $l : \mathcal{E} \rightarrow \Omega^2 \mathcal{E}$ by saying that for $X, Y \in \tau_{\pi(p)}$ and $\xi \in \mathcal{E}$,

$$(l(\xi)(X, Y))(p) = -\tilde{T}(X, Y)\xi. \quad (46)$$

Here we have used the G -invariance of E to define the action of $\tilde{T}(X, Y)$ on ξ .

Lemma 12 *For all $X, Y \in \tau_{\pi(p)}$, $b \in \mathcal{B}$ and $\xi \in \mathcal{E}$,*

$$l(b\xi) = \alpha(b)\xi + b l(\xi). \quad (47)$$

PROOF. We have

$$(l(b\xi)(X, Y))(p) = -\tilde{T}(X, Y) \int_{G^{\pi(p)}} b(g) \xi(pg) = - \int_{G^{\pi(p)}} T(X, Y)b(g) \xi(pg), \quad (48)$$

$$(\alpha(b)(X, Y)\xi)(p) = - \int_{G^{\pi(p)}} (T(X, Y)b + T(g_* X, g_* Y)b)(g) \xi(pg) \quad (49)$$

and

$$(bl(\xi)(X, Y))(p) = - \int_{G^{\pi(p)}} b(g) \tilde{T}(g_* X, g_* Y)\xi(pg). \quad (50)$$

Then

$$\begin{aligned} (l(b\xi)(X, Y))(p) - (\alpha(b)(X, Y)\xi)(p) - (bl(\xi)(X, Y))(p) &= \\ \int_{G^{\pi(p)}} (T(g_* X, g_* Y)b(g) \xi(pg) + b(g) \tilde{T}(g_* X, g_* Y)\xi(pg)). \end{aligned} \quad (51)$$

We can write (51) more succinctly as

$$l(b\xi) - \alpha(b)\xi - bl(\xi) = \int_{G^{\pi(p)}} \mathcal{L}_{\tilde{T}}(b(g)\xi(pg)), \quad (52)$$

where the Lie differentiation is at pg . The right-hand-side of (52) vanishes, being the integral of a Lie derivative of a compactly-supported density.

We extend l to a linear map $l : \Omega^n \mathcal{E} \rightarrow \Omega^{n+2} \mathcal{E}$ as Lie differentiation in the \tilde{T} -direction with respect to P .

Lemma 13 *For all $\omega \in \Omega^* \mathcal{B}$ and $\mu \in \Omega^* \mathcal{E}$,*

$$l(\omega\mu) = \alpha(\omega)\mu + \omega l(\mu). \quad (53)$$

PROOF. The proof is similar to that of Lemma 12. We omit the details.

There is a pullback foliation $\pi^*\mathcal{F}$ on P with the same codimension as \mathcal{F} , satisfying $T\pi^*\mathcal{F} = (d\pi)^{-1}T\mathcal{F}$. Let $\mu : P \rightarrow P/G$ be the quotient map. Then P/G is a smooth compact manifold with a foliation $F = (\pi^*\mathcal{F})/G$ satisfying $(d\mu)^{-1}TF = T\pi^*\mathcal{F}$. We note that the normal bundle NF to F satisfies $\mu^*NF = \pi^*\tau$.

Let $T^H(P/G)$ be a horizontal distribution on P/G , transverse to F . Then $(d\mu)^{-1}(T^H(P/G))$ is a G -invariant distribution on P that is transverse to the vertical tangent bundle TZ . Put $T^H P = (d\mu)^{-1}(T^H(P/G)) \cap (d\pi)^{-1}(T^H M)$, a distribution on P that is transverse to $\pi^*\mathcal{F}$ and that projects isomorphically under π to $T^H M$.

Let $\nabla^\mathcal{E} : \mathcal{E} \rightarrow \Omega^1 \mathcal{E}$ be covariant differentiation on $\mathcal{E} = C_c^\infty(P; E)$ with respect to $T^H P$.

Lemma 14 $\nabla^\mathcal{E}$ is a connection.

PROOF. We wish to show that

$$\nabla^\mathcal{E}(b\xi) = b\nabla^\mathcal{E}\xi + (d^H b)\xi. \quad (54)$$

As the claim of the lemma is local on P , consider first the case when $T^H(P/G)$ is integrable. Let $T^H P_1$ and $\nabla_1^\mathcal{E}$ denote the corresponding objects on P . Then one is geometrically in a product situation and one can reduce to the case $P = M$, where one can check that (54) holds. If $T^H(P/G)$ is not integrable then $T^H P - T^H P_1 \in \text{Hom}(\pi^*\tau, TZ)$ is the pullback under μ of an element of $\text{Hom}(NF, TF)$. Hence $T^H P - T^H P_1$ is G -invariant and it follows that $\nabla^\mathcal{E} - \nabla_1^\mathcal{E}$ commutes with \mathcal{B} , which proves the lemma.

We extend $\nabla^\mathcal{E}$ to act on $\Omega^*\mathcal{E}$ so as to satisfy Leibnitz' rule.

Lemma 15 For all $\xi \in \mathcal{E}$,

$$l(\nabla^\mathcal{E}\xi) = \nabla^\mathcal{E}l(\xi). \quad (55)$$

PROOF. As d^H commutes with $(d^H)^2$, it follows that d^H commutes with \mathcal{L}_T . As the claim of the lemma is local on P , consider first the case when $T^H(P/G)$ is integrable. Let $T^H P_1$ and $\nabla_1^\mathcal{E}$ denote the corresponding objects on P . Then one is in a local product situation and the lemma follows from the fact that d^H commutes with \mathcal{L}_T . If $T^H(P/G)$ is not integrable then $\nabla^\mathcal{E} - \nabla_1^\mathcal{E}$ is given by covariant differentiation in the TZ direction, with respect to $T^H P - T^H P_1 \in \text{Hom}(\pi^*\tau, TZ)$. As \tilde{T} pulls back from M , $\nabla^\mathcal{E} - \nabla_1^\mathcal{E}$ commutes with l . The lemma follows.

4.2 Supertraces

In this subsection we consider a certain algebra $\text{End}_{\mathcal{B}}^\infty(\mathcal{E})$ of operators with smooth kernel on P . We show that a trace on \mathcal{B} , concentrated on the units M , gives a supertrace on $\text{End}_{\mathcal{B}}^\infty(\mathcal{E})$. We then consider an algebra $\text{Hom}_{\mathcal{B}}^\infty(\mathcal{E}, \Omega^*\mathcal{E})$ of form-valued operators. We show that a closed graded trace on $\Omega^*\mathcal{B}$, concentrated on M , gives rise to a closed graded trace on $\text{Hom}_{\mathcal{B}}^\infty(\mathcal{E}, \Omega^*\mathcal{E})$.

An operator $K \in \text{End}_{\mathcal{B}}(\mathcal{E})$ has a Schwartz kernel $K(p'|p)$ so that

$$(K\xi)(p) = \int_{Z_{\pi(p)}} \xi(p') K(p'|p). \quad (56)$$

Define $q', q : P \times_M P \rightarrow P$ by $q'(p', p) = p'$ and $q(p', p) = p$. Let $\text{End}_{\mathcal{B}}^\infty(\mathcal{E})$ denote the subalgebra of $\text{End}_{\mathcal{B}}(\mathcal{E})$ consisting of operators whose Schwartz kernel lies in $C_c^\infty(P \times_M P; (q')^* \mathcal{D}_Z \otimes \text{Hom}((q')^* E, q^* E))$.

Choose $\Phi \in C_c^\infty(P; \pi^* \mathcal{D})$ so that

$$\int_{G^\pi(p)} \Phi(pg) = 1 \quad (57)$$

for all $p \in P$; that such a Φ exists was shown by Tu [30, Proposition 6.11]. Define $\tau K \in C_c^\infty(M; \mathcal{D})$ by

$$(\tau K)(m) = \int_{Z_m} \Phi(p) \text{tr}_s K(p|p). \quad (58)$$

Proposition 1 *Let ρ be a linear functional on $C_c^\infty(M; \mathcal{D})$. Suppose that the linear functional η on \mathcal{B} , defined by*

$$\eta(b) = \rho(b|_M), \quad (59)$$

is a trace on \mathcal{B} . Then $\rho \circ \tau$ is a supertrace on $\text{End}_{\mathcal{B}}^\infty(\mathcal{E})$.

PROOF. Consider the algebra $\text{End}_{C_c^\infty(M)}(\mathcal{E})$. An operator $K \in \text{End}_{C_c^\infty(M)}(\mathcal{E})$ has a Schwartz kernel $K(p|p')$ so that

$$(K\xi)(p) = \int_{Z_{\pi(p)}} K(p|p') \xi(p'). \quad (60)$$

(Note the difference in ordering as compared to (56).) For this proof, define $q, q' : P \times_M P \rightarrow P$ by $q(p, p') = p$ and $q'(p, p') = p'$. Let $\text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})$ denote the subalgebra of $\text{End}_{C_c^\infty(M)}(\mathcal{E})$ consisting of operators whose Schwartz kernel lies in $C_c^\infty(P \times_M P; q^* \mathcal{D}_Z \otimes \text{Hom}((q')^* E, q^* E))$. The product in $\text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})$ is given by

$$(KK')(p|p') = \int_{p''} K(p|p'') K'(p''|p'). \quad (61)$$

Note that an element of $\text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})$ is not necessarily G -invariant. Note also that there is an injective homomorphism $\text{End}_\mathcal{B}^\infty(\mathcal{E}) \rightarrow \text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})^{op}$, where op denotes the opposite algebra, i.e. with the transpose multiplication. There is a fiberwise G -invariant supertrace $Tr_s : \text{End}_{C_c^\infty(M)}^\infty(\mathcal{E}) \rightarrow C_c^\infty(M)$ given by

$$(Tr_s K)(m) = \int_{Z_m} \text{tr}_s K(p|p). \quad (62)$$

Consider the algebra $\mathcal{B} \otimes_{C_c^\infty(M)} \text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})$. The product in the algebra takes into account the action of \mathcal{B} on $\text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})$, which derives from the G -action on P . An element of the algebra has a kernel $K(g, p|p')$, where $p, p' \in Z_{s(g)}$. The product is given by

$$(K_1 K_2)(g, p|p') = \int_{g' g'' = g} \int_{p'' \in Z_{s(g')}} K_1(g', p(g'')^{-1}|p'') K_2(g'', p'' g''|p'). \quad (63)$$

The supertrace (62) induces a map $Tr_s : \mathcal{B} \otimes_{C_c^\infty(M)} \text{End}_{C_c^\infty(M)}^\infty(\mathcal{E}) \rightarrow \mathcal{B}$ by

$$(Tr_s K)(g) = \int_{Z_{s(g)}} \text{tr}_s K(g, p|p). \quad (64)$$

Lemma 16 $\eta \circ Tr_s$ is a supertrace on $\mathcal{B} \otimes_{C_c^\infty(M)} \text{End}_{C_c^\infty(M)}^\infty(\mathcal{E})$.

PROOF. We can formally write

$$(\eta \circ Tr_s)(K) = \int_M \rho(m) \int_{Z_m} \text{tr}_s K(m, p|p), \quad (65)$$

keeping in mind that ρ is actually distributional. Then

$$\begin{aligned} (\eta \circ Tr_s)(K_1 K_2) &= \int_{g' \in G} \int_{p \in Z_{r(g')}} \int_{p'' \in Z_{s(g')}} \rho(r(g')) \text{tr}_s \left(K_1(g', p g' | p'') K_2((g')^{-1}, p''(g')^{-1} | p) \right) \\ &= \int_{g' \in G} \int_{p \in Z_{r(g')}} \int_{p'' \in Z_{s(g')}} \rho(r(g')) \text{tr}_s \left(K_2((g')^{-1}, p''(g')^{-1} | p) K_1(g', p g' | p'') \right) \\ &= \int_{g' \in G} \int_{p'' \in Z_{r(g')}} \int_{p \in Z_{s(g')}} \rho(s(g')) \text{tr}_s \left(K_2(g', p'' g' | p) K_1((g')^{-1}, p(g')^{-1} | p'') \right). \end{aligned} \quad (66)$$

However, the fact that η is a trace on \mathcal{B} translates into the fact that

$$\int_{g \in G} \rho(s(g)) f(g) = \int_{g \in G} \rho(r(g)) f(g) \quad (67)$$

for all $f \in C_c^\infty(G)$, from which the lemma follows.

We define a map $i : \text{End}_{\mathcal{B}}^{\infty}(\mathcal{E}) \rightarrow (\mathcal{B} \otimes_{C_c^{\infty}(M)} \text{End}_{C_c^{\infty}(M)}^{\infty}(\mathcal{E}))^{op}$ by

$$(i(K))(g, p|p') = \Phi(pg^{-1})K(p|p'). \quad (68)$$

Lemma 17 *The map i is a homomorphism.*

PROOF. Given $K_1, K_2 \in \text{End}_{\mathcal{B}}^{\infty}(\mathcal{E})$, we have

$$\begin{aligned} (i(K_1) i(K_2))(g, p|p') &= \int_{g'g''=g} \int_{Z_{s(g')}} i(K_1)(g', p(g'')^{-1}|p'') i(K_2)(g'', p''g''|p') \\ &= \int_{g'g''=g} \int_{Z_{s(g')}} \Phi(pg^{-1}) K_1(p(g'')^{-1}|p'') \Phi(p'') K_2(p''g''|p') \\ &= \int_{g'g''=g} \int_{Z_{s(g')}} \Phi(pg^{-1}) K_1(p|p''g'') \Phi(p'') K_2(p''g''|p') \\ &= \int_{g'g''=g} \int_{Z_{s(g'')}} \Phi(pg^{-1}) K_1(p|p'') \Phi(p''(g'')^{-1}) K_2(p''|p') \\ &= \Phi(pg^{-1}) \int_{Z_{s(g)}} K_1(p|p'') K_2(p''|p') \\ &= (i(K_2 K_1))(g, p|p'). \end{aligned} \quad (69)$$

Thus i gives a homomorphism from $\text{End}_{\mathcal{B}}^{\infty}(\mathcal{E})^{op}$ to $\mathcal{B} \otimes_{C_c^{\infty}(M)} \text{End}_{C_c^{\infty}(M)}^{\infty}(\mathcal{E})$, from which the lemma follows.

Lemma 18 *We have $\eta \circ Tr_s \circ i = \rho \circ \tau$.*

PROOF. Given $K \in \text{End}_{\mathcal{B}}^{\infty}(\mathcal{E})$, we have

$$\begin{aligned} (\eta \circ Tr_s \circ i)(K) &= \int_M \rho(m) \int_{Z_m} \text{tr}_s(i(K))(m, p|p) \\ &= \int_M \rho(m) \int_{Z_m} \Phi(p) \text{tr}_s K(p|p) = (\rho \circ \tau)(K). \end{aligned} \quad (70)$$

This proves the lemma.

Proposition 1 now follows from Lemmas 16-18.

Example 6 : Let μ be a holonomy-invariant transverse measure for \mathcal{F} . Let $\{U_i\}_{i=1}^N$ be an open covering of M by flowboxes, with $U_i = V_i \times W_i$, $V_i \subset \mathbb{R}^{codim(\mathcal{F})}$ and $W_i \subset \mathbb{R}^{dim(\mathcal{F})}$. Let μ_i be the measure on V_i which is the restriction of μ . Let $\{\phi_i\}_{i=1}^N$ be a partition of unity that is subordinate to $\{U_i\}_{i=1}^N$. For $f \in C_c^{\infty}(M; \mathcal{D})$, put $\rho(f) = \sum_{i=1}^N \int_{V_i} \left(\int_{W_i} \phi_i f \right) d\mu_i$. Then ρ

satisfies the hypotheses of Proposition 1.

An operator $K \in \text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^* \mathcal{E})$ has a Schwartz kernel $K(p'|p)$ so that

$$(K\xi)(p) = \int_{Z_{\pi(p)}} \xi(p') K(p'|p). \quad (71)$$

Let $\text{Hom}_{\mathcal{B}}^\infty(\mathcal{E}, \Omega^n \mathcal{E})$ denote the subspace of $\text{Hom}_{\mathcal{B}}(\mathcal{E}, \Omega^n \mathcal{E})$ consisting of operators whose Schwartz kernel lies in

$$C_c^\infty(P \times_M P; \Lambda^n((\pi \circ q)^* \tau^*) \otimes (q')^* \mathcal{D}_Z \otimes \text{Hom}((q')^* E, q^* E)). \quad (72)$$

Define $\tau K \in C_c^\infty(M; \Lambda^n \tau^* \otimes \mathcal{D})$ by

$$(\tau K)(m) = \int_{Z_m} \Phi(p) \text{tr}_s K(p|p). \quad (73)$$

Proposition 2 Let ρ be a linear functional on $C_c^\infty(M; \Lambda^n \tau^* \otimes \mathcal{D})$. Suppose that the linear functional η on $\Omega^n \mathcal{B}$, defined by

$$\eta(\phi) = \rho(\phi|_M), \quad (74)$$

is a graded trace on $\Omega^* \mathcal{B}$. Then $\rho \circ \tau$ is a graded trace on $\text{Hom}_{\mathcal{B}}^\infty(\mathcal{E}, \Omega^* \mathcal{E})$.

PROOF. The proof is similar to that of Proposition 1. We omit the details.

Proposition 3 Let ρ be a linear functional on $C_c^\infty(M; \Lambda^n \tau^* \otimes \mathcal{D})$. Suppose that the linear functional η on $\Omega^n \mathcal{B}$, defined by

$$\eta(\phi) = \rho(\phi|_M), \quad (75)$$

is a closed graded trace on $\Omega^* \mathcal{B}$. Then $\rho \circ \tau$ annihilates $[\nabla, K]$ for all $K \in \text{Hom}_{\mathcal{B}}^\infty(\mathcal{E}, \Omega^{n-1} \mathcal{E})$.

PROOF. It suffices to show that

$$(\rho \circ \tau)([\nabla^{\mathcal{E}}, K]) = \eta(d^H(\tau(K))). \quad (76)$$

Let $\nabla^{\mathcal{E}_0} : C_c^\infty(P) \rightarrow C_c^\infty(P; \pi^* \tau^*)$ be differentiation in the $T^H P$ -direction. It follows from (73) that

$$\begin{aligned} (d^H(\tau K))(m) &= \int_{Z_m} \Phi(p) \text{tr}_s [\nabla^{\mathcal{E}}, K](p|p) + \\ &\quad \int_{Z_m} \nabla^{\mathcal{E}_0} \Phi(p) \wedge \text{tr}_s K(p|p). \end{aligned} \quad (77)$$

Now $\eta \left(\int_{Z_m} \nabla^{\mathcal{E}_0} \Phi(p) \wedge \text{tr}_s K(p|p) \right)$ can be written as $\int_P \nabla^{\mathcal{E}_0} \Phi \wedge \mathcal{O}$ for some G -invariant \mathcal{O} . From (57), $\int_{G^\pi(p)} \nabla^{\mathcal{E}_0} \Phi(pg) = 0$. Then decomposing the measure on P with respect to $P \rightarrow P/G$ gives that $\int_P \nabla^{\mathcal{E}_0} \Phi \wedge \mathcal{O} = 0$. Equation (76) follows.

Example 7 : Following the notation of Example 6, let c be a closed holonomy-invariant transverse n -current for \mathcal{F} . Let c_i be the n -current on V_i which is the restriction of c . Let $\{\phi_i\}_{i=1}^N$ be a partition of unity that is subordinate to $\{U_i\}_{i=1}^N$. For $\omega \in C_c^\infty(M; \Lambda^n \tau^* \otimes \mathcal{D})$, put $\rho(\omega) = \sum_{i=1}^N \langle \left(\int_{W_i} \phi_i \omega \right), c_i \rangle$. Then ρ satisfies the hypotheses of Proposition 3.

4.3 The $s \rightarrow 0$ limit of the superconnection Chern character

In this subsection we extend $\text{End}^\infty(\mathcal{E})$ to an rapid-decay algebra $\text{End}^\omega(\mathcal{E})$. Given a G -invariant Dirac-type operator acting on sections of E , we consider the Bismut superconnections $\{A_s\}_{s>0}$ on \mathcal{E} . We compute the $s \rightarrow 0$ limit of the pairing between the Chern character of A_s and a closed graded trace on $\Omega^* \mathcal{B}$ that is concentrated on the units M .

We now choose a G -invariant vertical Riemannian metric g^{TZ} on the submersion $\pi : P \rightarrow M$ and a G -invariant horizontal distribution $T^H P$. Given $m \in M$, let d_m denote the corresponding metric on Z_m . We note that $\{Z_m\}_{m \in M}$ has uniformly bounded geometry.

Let $\text{End}_\mathcal{B}^\omega(\mathcal{E})$ be the algebra formed by G -invariant operators K as in (56) whose integral kernels $K(p'|p) \in C^\infty(P \times_M P; (q')^* \mathcal{D}_Z \otimes \text{Hom}((q')^* E, q^* E))$ are such that for all $q \in \mathbb{Z}^+$,

$$\sup_{(p',p) \in P \times_M P} e^{q d(p',p)} |K(p'|p)| < \infty, \quad (78)$$

along with the analogous property for the covariant derivatives of K .

Proposition 4 *Let ρ be a linear functional on $C_c^\infty(M; \mathcal{D})$. Suppose that the linear functional η on \mathcal{B} , defined by*

$$\eta(b) = \rho(b|_M), \quad (79)$$

is a trace on \mathcal{B} . Then $\rho \circ \tau$ is a supertrace on $\text{End}_\mathcal{B}^\omega(\mathcal{E})$.

PROOF. The proof is formally the same as that of Proposition 1. We omit the details

Let $\text{Hom}_\mathcal{B}^\omega(\mathcal{E}, \Omega^* \mathcal{E})$ be the algebra formed by G -invariant operators K as in (71) whose integral kernels

$$K(p'|p) \in C_c^\infty(P \times_M P; \Lambda^*((\pi \circ q)^* \tau^*) \otimes (q')^* \mathcal{D}_Z \otimes \text{Hom}((q')^* E, q^* E)) \quad (80)$$

are such that for all $q \in \mathbb{Z}^+$,

$$\sup_{(p',p) \in P \times_M P} e^{q d(p',p)} |K(p'|p)| < \infty, \quad (81)$$

along with the analogous property for the covariant derivatives of K .

Proposition 5 *Let ρ be a linear functional on $C_c^\infty(M; \Lambda^n \tau^* \otimes \mathcal{D})$. Suppose that the linear functional η on $\Omega^n \mathcal{B}$, defined by*

$$\eta(\phi) = \rho(\phi|_M), \quad (82)$$

is a graded trace on $\Omega^ \mathcal{B}$. Then $\rho \circ \tau$ is a graded trace on $\text{Hom}_{\mathcal{B}}^\omega(\mathcal{E}, \Omega^* \mathcal{E})$.*

PROOF. The proof is formally the same as that of Proposition 2. We omit the details.

Proposition 6 *Let ρ be a linear functional on $C_c^\infty(M; \Lambda^n \tau^* \otimes \mathcal{D})$. Suppose that the linear functional η on $\Omega^n \mathcal{B}$, defined by*

$$\eta(\phi) = \rho(\phi|_M), \quad (83)$$

is a closed graded trace on $\Omega^ \mathcal{B}$. Then $\rho \circ \tau$ annihilates $[\nabla, K]$ for all $K \in \text{Hom}_{\mathcal{B}}^\omega(\mathcal{E}, \Omega^{n-1} \mathcal{E})$.*

PROOF. The proof is formally the same as that of Proposition 3. We omit the details.

Suppose that Z is even-dimensional. Let E be a G -invariant Clifford bundle on P which is equipped with a G -invariant connection. For simplicity of notation, we assume that $E = S^Z \hat{\otimes} \tilde{V}$, where S^Z is a vertical spinor bundle and \tilde{V} is an auxiliary vector bundle on P . More precisely, suppose that the vertical tangent bundle TZ has a G -invariant spin structure. Let S^Z be the vertical spinor bundle, a G -invariant \mathbb{Z}_2 -graded Hermitian vector bundle on P . Let \tilde{V} be another G -invariant \mathbb{Z}_2 -graded Hermitian vector bundle on P which is equipped with a G -invariant Hermitian connection. That is, \tilde{V} is the pullback of a Hermitian vector bundle G on P/G with a Hermitian connection ∇^V . Then we put $E = S^Z \hat{\otimes} \tilde{V}$. The case of general G -invariant Clifford bundles E can be treated in a way completely analogous to what follows.

Let ∇^{TZ} be the Bismut connection on TZ , as constructed using the horizontal distribution $(d\mu)^{-1}(T^H(P/G))$ on P ; see, for example, Berline-Getzler-Vergne [5, Proposition 10.2]. The G -invariance of ∇^{TZ} and $\nabla^{\tilde{V}}$ implies that $\widehat{A}(\nabla^{TZ}) \text{ ch}(\nabla^{\tilde{V}})$ lies in $C^\infty(P; \Lambda^*(TZ)^* \otimes \Lambda^*(\pi^* \tau^*))$.

Let $Q \in \text{End}_{\mathcal{B}}(\mathcal{E})$ denote the vertical Dirac-type operator. From finite-propagation-speed estimates as in Lott [22, Proof. of Prop 8], along with the bounded geometry of $\{Z_m\}_{m \in M}$, for any $s > 0$ we have

$$e^{-s^2 Q^2} \in \text{End}_{\mathcal{B}}^\omega(\mathcal{E}). \quad (84)$$

Let $A_s : \mathcal{E} \rightarrow \Omega^* \mathcal{E}$ be the superconnection

$$A_s = s Q + \nabla^\mathcal{E} - \frac{1}{4s} c(T^P). \quad (85)$$

Here $c(T^P)$ is Clifford multiplication by the curvature 2-form T^P of $(d\mu)^{-1}(T^H(P/G))$, restricted to the horizontal vectors $T^H P$. We note that the analogous connection term of the Bismut superconnection [5, Proposition 10.15] has an additional term to make it Hermitian, but in our setting this term is incorporated into the horizontal differentiation of the vertical density. One can use finite-propagation-speed estimates, along with the bounded geometry of $\{Z_m\}_{m \in M}$ and the Duhamel expansion as in [5, Theorem 9.48], to show that we obtain a well-defined element $e^{-(A_s)^2 - \mathcal{L}_{\tilde{T}}}$ of $\text{Hom}_B^\omega(\mathcal{E}, \Omega^* \mathcal{E})$; see [18, Theorem 3.1] for an analogous statement when $P = G = G_{hol}$.

Let \mathcal{R} be the rescaling operator which, for p even, multiplies a p -form by $(2\pi i)^{-\frac{p}{2}}$. Put

$$\text{ch}(A_s) = \mathcal{R} \left(\tau e^{-A_s^2 - \mathcal{L}_{\tilde{T}}} \right) \in C_c^\infty(M; \Lambda^* \tau^* \otimes \mathcal{D}). \quad (86)$$

Theorem 2 *Given a linear functional ρ which satisfies the hypotheses of Proposition 6,*

$$\lim_{s \rightarrow 0} \rho(\text{ch}(A_s)) = \rho \left(\int_Z \Phi \hat{A}(\nabla^{TZ}) \text{ch}(\nabla^{\tilde{V}}) \right). \quad (87)$$

PROOF. Using Lemmas 13 and 14, $A_s^2 + \mathcal{L}_{\tilde{T}}$ is G -invariant. Let A'_s be the corresponding Bismut superconnection on the foliated manifold P/G , a locally-defined differential operator constructed using the horizontal distribution $T^H(P/G)$. By construction, $A_s^2 + \mathcal{L}_{\tilde{T}}$ is the pullback under μ of $(A'_s)^2$, where we use the identification $\Lambda^*(\pi^* \tau^*) = \mu^* \Lambda^*(NF)^*$. From [5, Theorem 10.23], the $s \rightarrow 0$ limit of the supertrace of the kernel of $e^{-(A'_s)^2}$, when restricted to the diagonal of $(P/G) \times (P/G)$, is $\hat{A}(\nabla^{TF}) \text{ch}(\nabla^V)$. Then the $s \rightarrow 0$ limit of the supertrace of the kernel of $e^{-A_s^2 - \mathcal{L}_{\tilde{T}}}$, when restricted to the diagonal of $P \times P$, is the pullback under μ of $\hat{A}(\nabla^{TF}) \text{ch}(\nabla^V)$, i.e. $\hat{A}(\nabla^{TZ}) \text{ch}(\nabla^{\tilde{V}})$. The theorem follows.

Remark : If $P = G = G_{hol}$ then an analogue of Theorem 2 appears in [18, Theorem 2.1].

If we put

$$G' = \{(p_1, p_2) \in P \times P : \pi(p_1) = \pi(p_2)\}/G. \quad (88)$$

then G' has the structure of a foliation groupoid, with units $G'^{(0)} = P/G$. In this way we could reduce from the case of G acting on P to the case of the foliation groupoid G' acting on itself. However, doing so would not really simplify any of the constructions.

5 Index Theorem

In this section we prove the main result of the paper, Theorem 5.

5.1 The index class

In this subsection we construct the index class $\text{Ind}(D) \in K_0(\mathfrak{A})$. We describe its pairing with a closed graded trace on \mathcal{B} . We prove that the pairing of $\text{Ind}(D)$ with the closed graded trace equals the pairing of $\text{ch}(A_s)$ with the closed graded trace.

Consider the algebra $\mathfrak{A} = \text{End}_{\mathcal{B}}^\infty(\mathcal{E})$. Let $D : \mathcal{E}^+ \rightarrow \mathcal{E}^-$ be the restriction of Q to the positive subspace \mathcal{E}^+ of \mathcal{E} . We construct an index projection following Connes-Moscovici [12] and Moscovici-Wu [23]. Let $u \in C^\infty(\mathbb{R})$ be an even function such that $w(x) = 1 - x^2 u(x)$ is a Schwartz function and the Fourier transforms of u and w have compact support [23, Lemma 2.1]. Define $\bar{u} \in C^\infty([0, \infty))$ by $\bar{u}(x) = u(x^2)$. Put $\mathcal{P} = \bar{u}(D^* D) D^*$, which we will think of as a parametrix for D , and put $S_+ = I - \mathcal{P} D$, $S_- = I - D \mathcal{P}$. Consider the operator

$$L = \begin{pmatrix} S_+ - (I + S_+) \mathcal{P} \\ D & S_- \end{pmatrix}, \quad (89)$$

with inverse

$$L^{-1} = \begin{pmatrix} S_+ & \mathcal{P}(I + S_-) \\ -D & S_- \end{pmatrix}. \quad (90)$$

The index projection is defined by

$$p = L \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} L^{-1} = \begin{pmatrix} S_+^2 & S_+(I + S_+) \mathcal{P} \\ S_- D & I - S_-^2 \end{pmatrix}. \quad (91)$$

Put

$$p_0 = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}. \quad (92)$$

By definition, the index of D is

$$\text{Ind}(D) = [p - p_0] \in K_0(\mathfrak{A}). \quad (93)$$

As Q is G -invariant, the operator l of (46) commutes with p , and (47) holds for $\xi \in \text{Im}(p)$. If ρ is a linear functional which satisfies the hypotheses of Proposition 3, define the pairing

of ρ with $\text{Ind}(D)$ by

$$\begin{aligned} \langle \text{ch}(\text{Ind}(D)), \rho \rangle &= (2\pi i)^{-\deg(\rho)/2} \\ &\quad \rho \left(\tau \left(p e^{-(p \circ \nabla^\varepsilon \circ p)^2 - \mathcal{L}_{\tilde{T}} p} - p_0 e^{-(p_0 \circ \nabla^\varepsilon \circ p_0)^2 - \mathcal{L}_{\tilde{T}} p_0} \right) \right), \end{aligned} \quad (94)$$

where we have extended the ungraded trace τ in the obvious way to act on (2×2) -matrices. (See [16, Section 5] for the justification of the definition.)

Theorem 3 *For all $s > 0$,*

$$\langle \text{ch}(\text{Ind}(D)), \rho \rangle = \rho(\text{ch}(A_s)). \quad (95)$$

PROOF. The proof follows the lines of the proof of [16, Proposition 4 and Theorem 3], to which we refer for details. We only present the main idea. Put

$$\nabla' = \left(\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} L^{-1} \circ \nabla^\varepsilon \circ L \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \right) + \left(\begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \nabla^\varepsilon \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \right). \quad (96)$$

Then one can show algebraically that

$$\langle \text{ch}(\text{Ind}(D)), \rho \rangle = \rho \left(\mathcal{R} \tau e^{-(\nabla')^2 - \mathcal{L}_{\tilde{T}}} \right), \quad (97)$$

where the τ on the right-hand-side is now a graded trace. Next, one shows that

$$\rho \left(\mathcal{R} \tau e^{-(\nabla')^2 - \mathcal{L}_{\tilde{T}}} \right) = \rho(\text{ch}(A_s)) \quad (98)$$

by performing a homotopy from ∇' to A_s , from which the theorem follows.

5.2 Construction of ω_ρ

In this subsection we construct the universal class $\omega_\rho \in H^*(BG; o)$. We express $\rho(\text{ch}(A_s))$ as an integral involving the pullback of ω_ρ .

Put $V = \tilde{V}/G$, a Hermitian vector bundle on P/G with a compatible connection ∇^V .

Let $o(\tau)$ be the orientation bundle of τ , a flat real line bundle on M . Let ρ satisfy the hypotheses of Proposition 3. By duality, ρ corresponds to a closed distributional form $*\rho \in \Omega^{\dim(M)-n}(M; o(\tau))$.

Let EG denote the bar construction of a universal space on which G acts freely. That is, put

$$G^{(n)} = \{(g_1, \dots, g_n) : s(g_1) = r(g_2), \dots, s(g_{n-1}) = r(g_n)\}. \quad (99)$$

Then EG is the geometric realization of a simplicial manifold given by $E_n G = G^{(n+1)}$, with face maps

$$d_i(g_0, \dots, g_n) = \begin{cases} (g_1, \dots, g_n) & \text{if } i = 0, \\ (g_0, \dots, g_{i-1}g_i, \dots, g_n) & \text{if } 1 \leq i \leq n \end{cases} \quad (100)$$

and degeneracy maps

$$s_i(g_0, \dots, g_n) = (g_0, \dots, g_i, 1, g_{i+1}, \dots, g_n), \quad 0 \leq i \leq n. \quad (101)$$

Here 1 denotes a unit. The action of G on EG is induced from the action on $E_n G$ given by $(g_0, \dots, g_n) \cdot g = (g_0, \dots, g_n g)$. Let BG be the quotient space. Define $\pi' : EG \rightarrow M$ as the extension of $(g_0, \dots, g_n) \mapsto s(g_n)$. Put $\Omega^{n_1, n_2}(EG) = \Omega^{n_1}(G^{(n_2+1)})$ and $\Omega^{n_1, n_2}(BG) = (\Omega^{n_1, n_2}(EG))^G$. Let $\Omega^*(BG)$ be the total complex of $\Omega^{*,*}(BG)$. Here the forms on $G^{(n_2+1)}$ can be either smooth or distributional, depending on the context. We will speak correspondingly of smooth or distributional elements of $\Omega^*(BG)$. In either case, the cohomology of $\Omega^*(BG)$ equals $H^*(BG; \mathbb{R})$. There is a similar discussion for twistings by a local system.

The action of G on P is classified by a continuous G -equivariant map $\hat{\nu} : P \rightarrow EG$. Let $\nu : P/G \rightarrow BG$ be the G -quotient of $\hat{\nu}$. There are commutative diagrams

$$\begin{array}{ccc} P & \xrightarrow{\hat{\nu}} & EG \\ \pi \downarrow & & \downarrow \pi' \\ M & \xrightarrow{\text{Id.}} & M \end{array} \quad (102)$$

and

$$\begin{array}{ccc} P & \xrightarrow{\hat{\nu}} & EG \\ \downarrow & & \downarrow \\ P/G & \xrightarrow{\nu} & BG. \end{array} \quad (103)$$

As P/G is compact, we may assume that ν is Lipschitz.

Consider $(\pi')^*(\rho) \in \Omega^*(EG; (\pi')^*o(\tau))$, a closed distributional form on EG . Let o be the G -quotient of $(\pi')^*o(\tau)$, a flat real line bundle on BG . Then $(\pi')^*(\rho)$ pulls back from a closed distributional form in $\Omega^*(BG; o)$, which represents a class in $H^*(BG; o)$. Let $\omega_\rho \in \Omega^*(BG; o)$ be a closed smooth form representing the same cohomology class. Let $\hat{\omega}_\rho \in \Omega^*(EG; (\pi')^*o(\tau))$ be its pullback to EG . As ν is Lipschitz, $\nu^*\omega_\rho$ is an L^∞ -form on P/G .

Theorem 4

$$\rho \left(\int_Z \Phi \hat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right) = \int_{P/G} \hat{A}(TF) \operatorname{ch}(V) \nu^* \omega_\rho. \quad (104)$$

PROOF. Let $* \left(\Phi \hat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right)$ be the dual of $\Phi \hat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}})$. We will think of

$*(\Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}))$ as a cycle on P and $(\pi')^*(\rho)$ as a cocycle on EG . Then

$$\begin{aligned}
\rho \left(\int_Z \Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right) &= \langle \pi_* \left(* \left(\Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right) \right), \rho \rangle_M \\
&= \langle * \left(\Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right), \pi^*(\rho) \rangle_P \\
&= \langle \widehat{\nu}_* \left(* \left(\Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right) \right), (\pi')^*(\rho) \rangle_{EG} \\
&= \langle \widehat{\nu}_* \left(* \left(\Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right) \right), \widehat{\omega}_\rho \rangle_{EG} \\
&= \langle * \left(\Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \right), \widehat{\nu}^* \widehat{\omega}_\rho \rangle_P \\
&= \int_P \Phi \widehat{A}(\nabla^{TZ}) \operatorname{ch}(\nabla^{\tilde{V}}) \widehat{\nu}^* \widehat{\omega}_\rho \\
&= \int_{P/G} \widehat{A}(TF) \operatorname{ch}(V) \nu^* \omega_\rho.
\end{aligned} \tag{105}$$

Remark : If one were willing to work with orbifolds P/G instead of manifolds then one could extend Theorem 4 to general proper cocompact actions, with $\omega_\rho \in H^*(\underline{BG}; o)$ being a cohomology class on the classifying space for proper G -actions.

5.3 Proof of index theorem

Theorem 5 *If G acts freely, properly discontinuously and cocompactly on P and ρ satisfies the hypotheses of Proposition 6 then*

$$\langle \operatorname{ch}(\operatorname{Ind} D), \rho \rangle = \int_{P/G} \widehat{A}(TF) \operatorname{ch}(V) \nu^* \omega_\rho. \tag{106}$$

PROOF. If Z is even-dimensional then the claim follows from Theorems 2, 3 and 4. If Z is odd-dimensional then one can reduce to the even-dimensional case by a standard trick involving taking the product with a circle.

Example 8 : Suppose that (M, \mathcal{F}) is a closed foliated manifold. Take $P = G = G_{hol}$. Let μ be a holonomy-invariant transverse measure for \mathcal{F} . Take ρ as in Example 6. Then Theorem 5 reduces to Connes' L^2 -foliation index theorem [11, Section I.5.γ, Theorem 7]

$$\langle \operatorname{Ind} D, \rho \rangle = \langle \widehat{A}(TF) \operatorname{ch}(V), RS_\mu \rangle, \tag{107}$$

where RS_μ is the Ruelle-Sullivan current associated to μ [11, Section I.5.β].

Example 9 : Let (M, \mathcal{F}) be a closed manifold equipped with a codimension- q foliation.

Take $P = G = G_{hol}$. Let $H^*(\text{Tr } \mathcal{F})$ denote the Haefliger cohomology of (M, \mathcal{F}) [17]. Recall that there is a linear map $\int_{\mathcal{F}} : H^*(M) \rightarrow H^{*-n+q}(\text{Tr } \mathcal{F})$. Let c be a closed holonomy-invariant transverse current for \mathcal{F} . Take ρ as in Example 7. Then Theorem 5 becomes

$$\langle \text{ch}(\text{Ind } D), \rho \rangle = \left\langle \int_{\mathcal{F}} \widehat{A}(TF) \text{ ch}(V), c \right\rangle. \quad (108)$$

This is a consequence of the Connes-Skandalis foliation index theorem, along with the result of Connes that ρ gives a higher trace on the reduced foliation C^* -algebra; see [4,10,13].

Example 10 : Let M be a closed oriented n -dimensional manifold. Let $G = M$ be the groupoid that just consists of units. Let P be a closed manifold that is the total space of an oriented fiber bundle $\pi : P \rightarrow M$ with fiber Z . Let c be a closed current on M with homology class $[c] \in H_*(M; \mathbb{C})$. With $* : H_*(M; \mathbb{C}) \rightarrow H^{n-*}(M; \mathbb{C})$ being the Poincaré isomorphism, Theorem 5 becomes

$$\langle \text{ch}(\text{Ind } D), c \rangle = \int_P \widehat{A}(TZ) \text{ ch}(V) \pi^*(*[c]). \quad (109)$$

This is a consequence of the Atiyah-Singer families index theorem [2], as the right-hand-side equals $\langle \int_Z \widehat{A}(TZ) \text{ ch}(V), c \rangle$.

Example 11 : Let G be a discrete group that acts freely, properly discontinuously and cocompactly on a manifold P . As its space of units M is a point, let ρ be the identity map $C^\infty(M) \rightarrow \mathbb{C}$. Then Theorem 5 reduces to Atiyah's L^2 -index theorem [1]

$$\langle \text{Ind } D, \rho \rangle = \int_{P/G} \widehat{A}(TP/G) \text{ ch}(V). \quad (110)$$

A Appendix

This is an addendum to [16], in which we use finite propagation speed methods to improve [16, Theorem 3]. In the improved version we allow η to be a closed graded trace on $\Omega^*(B, \mathbb{C}\Gamma)$, as opposed to $\Omega^*(B, \mathcal{B}^\omega)$. There is a similar improvement of [16, Theorem 6].

We will follow the notation of [16].

A.1 Finite propagation speed

Let $f \in C_c^\infty(\mathbb{R})$ be a smooth even function with support in $[-\epsilon, \epsilon]$. Put

$$\widehat{f}(y) = \int_{\mathbb{R}} f(x) \cos(xy) dx, \quad (\text{A.1})$$

a smooth even function. With A_s as in [16, (4.7)], put

$$\hat{f}(A_s) = \int_{\mathbb{R}} f(x) \cos(x A_s) dx. \quad (\text{A.2})$$

Let us describe $\cos(x A_s)$ explicitly, using the fact that it satisfies

$$(\partial_x^2 + A_s^2) \cos(x A_s) = 0. \quad (\text{A.3})$$

Write $A_s^2 = s^2 Q^2 + X$. We first consider a solution $u(\cdot, x)$ of the inhomogeneous wave equation

$$(\partial_x^2 + s^2 Q^2) u = f \quad (\text{A.4})$$

with initial conditions $u(\cdot, 0) = u_0(\cdot)$ and $u_x(\cdot, 0) = 0$. Then $u(\cdot, x)$ is given by

$$u(x) = \cos(xsQ)u_0 + \int_0^x \frac{\sin((x-v)sQ)}{sQ} f(v) dv. \quad (\text{A.5})$$

Putting $f = -Xu$ and iterating, we obtain an expansion of $\cos(x A_s)$ of the form

$$\cos(x A_s) = \cos(xsQ) - \int_0^x \frac{\sin((x-v)sQ)}{sQ} X \cos(vsQ) dv + \dots \quad (\text{A.6})$$

Because X has positive form degree, there is no problem with the convergence of the series.

From finite propagation speed results, we know that $\cos(xsQ)$ has a Schwartz kernel $\cos(xsQ)(p'|p)$ with support on $\{(p', p) : d(p', p) \leq xs\}$, and similarly for $\frac{\sin(xsQ)}{sQ}$; see Taylor [29, Chapter 4.4]. Using the compactness of h , it follows that the (m, n) -component $\hat{f}(A_s)_{(m, n)}$ lies in $\text{Hom}_{C_c^\infty(B) \rtimes \Gamma}^\infty(C_c^\infty(\widehat{M}; \widehat{E}), \Omega^{m, n}(B, \mathbb{C}\Gamma) \otimes_{C_c^\infty(B) \rtimes \Gamma} C_c^\infty(\widehat{M}; \widehat{E}))$.

Finally, define $\text{ch}_{\hat{f}}(A_s) \in \Omega^*(B, \mathbb{C}\Gamma)_{ab}$ by

$$\text{ch}_{\hat{f}}(A_s) = \mathcal{R} \text{Tr}_{s, (e)} \hat{f}(A_s). \quad (\text{A.7})$$

A.2 Index Pairing

In this subsection we show that for all $s > 0$ and all closed graded traces η on $\Omega^*(B, \mathbb{C}\Gamma)$, $\langle \text{ch}_{\hat{f}}(A_s), \eta \rangle = \langle \hat{f}(\text{Ind}(D)), \eta \rangle$. The method of proof is essentially the same as that of [16, Section 5], which in turn was inspired by Nistor [25].

In analogy to [16, Section 5.3], put $\mathcal{E} = C_c^\infty(\widehat{M}; \widehat{E})$ and $\tilde{\mathfrak{A}} = \text{End}_{C_c^\infty(B) \rtimes \Gamma}^\infty(C_c^\infty(\widehat{M}; \widehat{E}))$. Let $D : \mathcal{E}^+ \rightarrow \mathcal{E}^-$ be the restriction of Q to the positive subspace \mathcal{E}^+ of \mathcal{E} . We construct an index projection following [12] and [23]. Let $u \in C^\infty(\mathbb{R})$ be an even function such that $w(x) = 1 - x^2 u(x)$ is a Schwartz function and the Fourier transforms of u and w have compact

support [23, Lemma 2.1]. Define $\bar{u} \in C^\infty([0, \infty))$ by $\bar{u}(x) = u(x^2)$. Put $\mathcal{P} = \bar{u}(D^*D)D^*$, which we will think of as a parametrix for D , and put $S_+ = I - \mathcal{P}D$, $S_- = I - D\mathcal{P}$. Consider the operator

$$L = \begin{pmatrix} S_+ - (I + S_+)\mathcal{P} \\ D & S_- \end{pmatrix}, \quad (\text{A.8})$$

with inverse

$$L^{-1} = \begin{pmatrix} S_+ & \mathcal{P}(I + S_-) \\ -D & S_- \end{pmatrix}. \quad (\text{A.9})$$

The index projection is defined by

$$p = L \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} L^{-1} = \begin{pmatrix} S_+^2 & S_+(I + S_+)\mathcal{P} \\ S_-D & I - S_-^2 \end{pmatrix}. \quad (\text{A.10})$$

Put

$$p_0 = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}. \quad (\text{A.11})$$

By definition, the index of D is

$$\text{Ind}(D) = [p - p_0] \in K_0(\tilde{\mathfrak{A}}). \quad (\text{A.12})$$

Put $\tilde{\Omega}^* = \text{Hom}_{C_c^\infty(B) \rtimes \Gamma}^\infty(C_c^\infty(\widehat{M}; \widehat{E}), \Omega^*(B, \mathbb{C}\Gamma) \otimes_{C_c^\infty(B) \rtimes \Gamma} C_c^\infty(\widehat{M}; \widehat{E}))$, a graded algebra with derivation $\nabla = \nabla^{(1,0)} + \nabla^{(0,1)}$. If η is a closed graded trace on $\Omega^*(B, \mathbb{C}\Gamma)$, define the pairing of η with $\text{Ind}(D)$ by

$$\langle \widehat{f}(\text{Ind}(D)), \eta \rangle = (2\pi i)^{-\deg(\eta)/2} \langle \text{Tr}_{\langle e \rangle} (\widehat{f}(p \circ \nabla \circ p) - \widehat{f}(p_0 \circ \nabla \circ p_0)), \eta \rangle. \quad (\text{A.13})$$

(See [16, Section 5] for the justification of the definition.)

Theorem 6 *For all $s > 0$,*

$$\langle \text{ch}_{\widehat{f}}(A_s), \eta \rangle = \langle \widehat{f}(\text{Ind}(D)), \eta \rangle. \quad (\text{A.14})$$

PROOF. The proof follows the lines of the proof of [16, Proposition 4 and Theorem 3], to which we refer for details. We only present the main idea. Put

$$\nabla' = \left(\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} L^{-1} \circ \nabla \circ L \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \right) + \left(\begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \nabla \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \right). \quad (\text{A.15})$$

Then one can show algebraically that

$$\langle \widehat{f}(\text{Ind}(D)), \eta \rangle = \langle \mathcal{R} \text{ Tr}_{s,\langle e \rangle} \widehat{f}(\nabla'), \eta \rangle. \quad (\text{A.16})$$

Next, one shows that

$$\langle \mathcal{R} \text{ Tr}_{s,\langle e \rangle} \widehat{f}(\nabla'), \eta \rangle = \langle \text{ch}_{\widehat{f}}(A_s), \eta \rangle \quad (\text{A.17})$$

by performing a homotopy from ∇' to A_s , from which the theorem follows. The argument is the same as in the proof of [16, Proposition 4]. We refer to [16], and will only indicate the necessary modifications of the equations in [16, Section 5.2].

As in [16, (5.20)], for $t \in [0, 1]$ put

$$A(t) = \begin{pmatrix} (\nabla')^+ & t D^* \\ t D & (\nabla')^- \end{pmatrix}. \quad (\text{A.18})$$

The analog of [16, (5.26)] is

$$\cos(x A(t)) \equiv \begin{pmatrix} \cos(x \sqrt{((\nabla')^+)^2 + t^2 D^* D}) & \mathcal{Z} \\ 0 & D \cos(x \sqrt{((\nabla')^+)^2 + t^2 D^* D}) \mathcal{P} \end{pmatrix}, \quad (\text{A.19})$$

where

$$\begin{aligned} \mathcal{Z} = - \int_0^x \frac{\sin((x-v)\sqrt{((\nabla')^+)^2 + t^2 D^* D})}{\sqrt{((\nabla')^+)^2 + t^2 D^* D}} \\ \left(t [(\nabla')^-, D^*] + t((\nabla')^+ - (\nabla')^-) D^* \right) \cos(v \sqrt{(\nabla^-)^2 + t^2 D D^*}) dv \end{aligned} \quad (\text{A.20})$$

and the left-hand-side of (A.19) is to be multiplied by f and then integrated. As in [16, (5.30)],

$$\frac{dA}{dt} = \begin{pmatrix} 0 & D^* \\ D & 0 \end{pmatrix} \quad (\text{A.21})$$

The analog of [16, (5.31)] is

$$\begin{aligned} & \text{Tr}_s \left(\frac{dA}{dt} \begin{pmatrix} \cos(x\sqrt{((\nabla')^+)^2 + t^2 D^* D}) & \mathcal{Z} \\ 0 & D \cos(x\sqrt{((\nabla')^+)^2 + t^2 D^* D}) \mathcal{P} \end{pmatrix} \right) \quad (\text{A.22}) \\ &= - \text{Tr}(D \mathcal{Z}) = \\ & t \text{ Tr} \left(D \int_0^x \frac{\sin((x-v)\sqrt{((\nabla')^+)^2 + t^2 D^* D})}{\sqrt{((\nabla')^+)^2 + t^2 D^* D}} \left([(\nabla')^-, D^*] + ((\nabla')^+ - (\nabla')^-) D^* \right) \right. \\ & \left. \cos(v\sqrt{(\nabla^-)^2 + t^2 DD^*}) \right) dv. \end{aligned}$$

The analog of [16, (5.32)] is

$$\begin{aligned} & D \int_0^x \frac{\sin((x-v)\sqrt{((\nabla')^+)^2 + t^2 D^* D})}{\sqrt{((\nabla')^+)^2 + t^2 D^* D}} \left([(\nabla')^-, D^*] + ((\nabla')^+ - (\nabla')^-) D^* \right) \quad (\text{A.23}) \\ & \cos(v\sqrt{(\nabla^-)^2 + t^2 DD^*}) dv \equiv \\ & \int_0^x \frac{\sin((x-v)\sqrt{(\nabla^-)^2 + t^2 DD^*})}{\sqrt{(\nabla^-)^2 + t^2 DD^*}} D \left([(\nabla')^-, D^*] + ((\nabla')^+ - (\nabla')^-) D^* \right) \\ & \cos(v\sqrt{(\nabla^-)^2 + t^2 DD^*}) dv \equiv \\ & \int_0^x \frac{\sin((x-v)\sqrt{(\nabla^-)^2 + t^2 DD^*})}{\sqrt{(\nabla^-)^2 + t^2 DD^*}} [\nabla^-, DD^*] \\ & \cos(v\sqrt{(\nabla^-)^2 + t^2 DD^*}) dv. \end{aligned}$$

The analog of [16, (5.33)] is

$$\begin{aligned} & \text{Tr} \left(\int_0^x \frac{\sin((x-v)\sqrt{(\nabla^-)^2 + t^2 DD^*})}{\sqrt{(\nabla^-)^2 + t^2 DD^*}} [\nabla^-, DD^*] \right. \quad (\text{A.24}) \\ & \left. \cos(v\sqrt{(\nabla^-)^2 + t^2 DD^*}) dv \right) = \\ & - t^{-2} d \text{ Tr} \left(\cos(x\sqrt{(\nabla^-)^2 + t^2 DD^*}) \right). \end{aligned}$$

The rest of the proof is as in [16, Proof of Proposition 4].

We define $\langle \text{ch}(\text{Ind}(D)), \eta \rangle$ by formally taking $\hat{f}(z) = e^{-z^2}$ in (A.13). This makes perfect sense, given that η acts on elements of a fixed degree.

Corollary 1 a. The left-hand-side of (A.14) only depends on f through the derivative $\widehat{f}^{(\deg(\eta))}(0)$.

b. If $\widehat{f}^{(\deg(\eta))}(0) = \frac{d^{\deg(\eta)} e^{-z^2}}{d^{\deg(\eta)} z} \Big|_{z=0}$ then

$$\langle \text{ch}(\text{Ind}(D)), \eta \rangle = \langle \text{ch}_{\widehat{f}}(A_s), \eta \rangle. \quad (\text{A.25})$$

PROOF. a. From (A.13), the right-hand-side of (A.14) only depends on f through the derivative $\widehat{f}^{(\deg(\eta))}(0)$. From Theorem 6, the same must be true of the left-hand-side.

b. If $\widehat{f}^{(\deg(\eta))}(0) = \frac{d^{\deg(\eta)} e^{-z^2}}{d^{\deg(\eta)} z} \Big|_{z=0}$ then \widehat{f} has the same relevant term in its Taylor expansion as the function $z \rightarrow e^{-z^2}$, from which the corollary follows.

A.3 Pairing of the Chern character of the index with general closed graded traces

In this subsection we prove a formula for the pairing of the Chern character of the index with a closed graded trace η on $\Omega^*(B, \mathbb{C}\Gamma)$. The idea is to approximate the Gaussian function, which was previously used in forming the superconnection Chern character, by an appropriate function \widehat{f} .

Theorem 7 Given a closed graded trace η on $\Omega^*(B, \mathbb{C}\Gamma)$,

$$\langle \text{ch}(\text{Ind}(D)), \eta \rangle = \langle \int_Z \Phi \widehat{A}(\nabla^T Z) \text{ ch}(\nabla^{\widetilde{V}}) e^{-\frac{\nabla_{can}^2}{2\pi i}}, \eta \rangle. \quad (\text{A.26})$$

PROOF. Choose an even function $f \in C_c^\infty(\mathbb{R})$ so that \widehat{f} satisfies the hypothesis of Corollary 1.b. By Corollary 1, it suffices to compute

$$\lim_{s \rightarrow 0} \langle \text{ch}_{\widehat{f}}(A_s), \eta \rangle. \quad (\text{A.27})$$

With reference to (A.2), the local supertrace $\text{tr}_s \cos(x A_s)(p, p)$ exists as a distribution in x . The singularities near $x = 0$ of the distribution have coefficients that are the same, up to constants, as the leading terms in the x -expansion of $\text{tr}_s e^{-x^2 A_s^2}(p, p)$; see, for example, Sandoval [28] for the analogous statement for $\cos(xsQ)$. As in [5, Lemma 10.22], these are the terms that enter into the local index computation. Now $\cos(x A_s)$ satisfies (A.3), in analogy to the fact that $e^{-t A_s^2}$ satisfies the heat equation

$$(\partial_t + A_s^2) e^{-t A_s^2} = 0. \quad (\text{A.28})$$

We can perform a Getzler rescaling as in the proof of [16, Theorem 2], to see that for the purposes of computing the local index, we can effectively replace the A_s^2 -term in the differential operator of (A.3) by [16, (4.12)]. Thus we are reduced to considering the wave

operator of the harmonic oscillator Hamiltonian. The rest of the proof of the theorem can in principle be carried out in a way similar to that of [16, Theorem 2]. However, we can shortcut the calculations by noting that Corollary 1, along with the choice of f , implies that the result of the local calculation must be the same as $\lim_{s \rightarrow 0} \langle \text{ch}(A_s), \eta \rangle$, which was already calculated in [16, Theorem 2].

References

- [1] M. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, in Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), Astérisque 32-33, Soc. Math. France, Paris, 1976, pp. 43-72.
- [2] M. Atiyah and I. M. Singer, The index of elliptic operators IV, Ann. of Math. 93 (1971), 119-138.
- [3] P. Baum and A. Connes, Leafwise homotopy equivalence and rational Pontrjagin classes, in Foliations (Tokyo, 1983), Adv. Stud. Pure Math. 5, North-Holland, Amsterdam, 1985, pp. 1-14.
- [4] M. Benameur and J. Heitsch, Index theory and non-commutative geometry I : higher families index theory, to appear in K-Theory.
- [5] N. Berline, E. Getzler and M. Vergne, Heat Kernels and the Dirac Operator, Grundlehren der Math. Wiss. 298, Springer, Berlin-Heidelberg-New York, 1992.
- [6] J.-M. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1985), 91-151.
- [7] J. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), 291-363.
- [8] J.-L. Brylinski and V. Nistor, Cyclic cohomology of étale groupoids, K-Theory 8 (1994), 341-365.
- [9] A. Connes, A survey of foliations and operator algebras, in Operator Algebras and Applications, Proc. Sympos. Pure Math., 38, Part I, Amer. Math. Soc., Providence, 1982, pp. 521-628.
- [10] A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation, in Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser. 123, Longman Sci. Tech., Harlow, 1986, pp. 52-144.
- [11] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
- [12] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), 345-388.
- [13] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984), 1139-1183.
- [14] M. Crainic, Cyclic cohomology of étale groupoids: the general case, K-Theory 17 (1999), 319-362.

- [15] M. Crainic and I. Moerdijk, Foliation groupoids and their cyclic homology, *Adv. Math.* 157 (2001), 177-197.
- [16] A. Gorokhovsky and J. Lott, Local index theory over étale groupoids, *J. Reine und Angew. Math.* 560 (2003), 151-198.
- [17] A. Haefliger, Some remarks on foliations with minimal leaves, *J. Diff. Geom.* 15 (1980), 269-284.
- [18] J. Heitsch, Bismut superconnections and the Chern character for Dirac operators on foliated manifolds, *K-Theory* 9 (1995), 507-528.
- [19] J. Heitsch and C. Lazarov, A general families index theorem, *K-Theory* 18 (1999), 181-202.
- [20] M. Karoubi, Homologie Cyclique et K-Théorie, *Astérisque* 149, 1987.
- [21] E. Leichtnam and P. Piazza, Étale groupoids, eta invariants and index theory, to appear in *J. Reine Angew. Math.*
- [22] J. Lott, Superconnections and higher index theory, *Geom. Funct. Anal.* 2 (1992), 421-454.
- [23] H. Moscovici and F. Wu, Localization of topological Pontryagin classes via finite propagation speed, *Geom. Funct. Anal.* 4 (1994), 52-92.
- [24] V. Nistor, The index of operators on foliated bundles, *J. Funct. Anal.* 141 (1996), 421-434.
- [25] V. Nistor, Super-connections and noncommutative geometry, in *Cyclic Cohomology and Noncommutative Geometry*, Fields Inst. Commun. 17, Amer. Math. Soc., Providence, 1997, pp. 115-136.
- [26] J. Phillips, The holonomic imperative and the homotopy groupoid of a foliated manifold, *Rocky Mountain J. Math.* 17 (1987), 151-165.
- [27] J. Renault, A Groupoid Approach to C^* -Algebras, Lecture Notes in Mathematics 793, Springer, Berlin, 1980.
- [28] M. Sandoval, Wave-trace asymptotics for operators of Dirac type, *Comm. Partial Diff. Eq.* 24 (1999), 1903-1944.
- [29] M. Taylor, Pseudodifferential Operators, Princeton Mathematical Series 34, Princeton University Press, Princeton, 1981.
- [30] J.-L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, *K-Theory* 16 (1999), 129-184.