GEL-4100/7063 COMMANDE INDUSTRIELLE

Examen #2 15 décembre 2014, 8h30 à 11h20

Document permis: une feuille manuscrite recto verso (8.5" x 11")

Justifiez vos calculs et raisonnements

Éric Poulin, Département de génie électrique et de génie informatique

QUESTION 1 (18 points)

Soit le procédé dont la fonction de transfert est :

$$G_p(s) = \frac{0.5e^{-8s}}{12s+1}$$

- a) (6 points) Concevez, dans le domaine continu, un régulateur PI permettant d'obtenir une marge de phase de 58 degrés;
- b) (4 points) Dans le but d'implanter le régulateur sous forme numérique, sélectionnez la période d'échantillonnage de façon à ce que le bloqueur d'ordre zéro réduise la marge de phase de 1 degré;
- c) (4 points) Déterminez la fonction de transfert du filtre anti-repliement de premier ordre entraînant une réduction de la marge de phase de 5 degrés (assumez que le filtre ne modifie pas ω_0 , c.-à-d. la fréquence à laquelle l'amplitude de la fonction de transfert en boucle ouverte est de 0 dB);
- d) (4 points) Calculez l'atténuation en dB du filtre anti-repliement à la fréquence de Nyquist.

QUESTION 2 (16 points)

Un procédé est caractérisé par la fonction de transfert suivante :

$$G_p(s) = \frac{e^{-3s}}{6s+1}$$

En procédant par synthèse directe, concevez un régulateur discret pour que le système en boucle fermée réponde à un échelon de consigne :

- sans erreur statique;
- et selon une dynamique de premier ordre avec un pôle z = 0.7.

Utilisez une période d'échantillonnage de 1 seconde et assumez la présence d'un bloqueur d'ordre zéro pour la discrétisation de la fonction de transfert du procédé.

QUESTION 3 (18 points)

La fonction de transfert discrète d'un procédé, en considérant un bloqueur d'ordre zéro et une période d'échantillonnage de 2 secondes, est :

$$\overline{G_{BOZ}G_p}(z) = \frac{(-1.2z+1.5)z}{z^2-1.4z+0.49}z^{-5}$$

Concevez un régulateur à modèle interne permettant d'obtenir, en poursuite et en régulation, une dynamique de second ordre avec des constantes de temps identiques à celles du procédé en boucle ouverte. Tracez le schéma de votre système asservi et identifiez chacun des signaux.

QUESTION 4 (18 points)

Soit le système ci-dessous pour lequel $n(t) = 3\cos(30t)$ et la période d'échantillonnage est de 0.2 seconde.

Calculez la fréquence et l'amplitude du signal de commande $u^*(t)$ en régime permanent sachant que les fonctions de transfert du système sont les suivantes :

$$G_c(z) = 1$$
 , $G_{BOZ}(s) = \frac{1 - e^{-Ts}}{s}$, $G_p(s) = \frac{1}{0.9s + 1}$

L'identité $e^{j\theta} = \cos \theta + j \sin \theta$ peut vous être utile.

QUESTION 5 (14 points)

Un régulateur PI a été conçu pour un procédé dont le gain K_p change en fonction du point d'opération. La figure ci-après montre la valeur de la variable de procédé en fonction de la variable manipulée en régime permanent, c.-à-d. $Y_{RP} = f(U_{RP})$. Le système fonctionne à trois points d'opération qui sont spécifiquement identifiés (A, B et C). La fonction de transfert du procédé et celle du régulateur sont respectivement :

$$G_p(s) = \frac{K_p e^{-8s}}{20s+1}$$
, $G_e(s) = \frac{0.9(20s+1)}{20s}$

a) (6 points) Calculez la marge de gain du système continu au point d'opération C (en dB);

b) (8 points) Dans le but d'implanter l'asservissement sous forme numérique, donnez l'équation récurrente du régulateur en utilisant la méthode de discrétisation Tustin et une période d'échantillonnage T=2 secondes.

QUESTION 6 (16 points)

Un système discret a pour fonction de transfert :

$$G(z) = \frac{Y(z)}{U(z)} = \frac{0.4}{(z-1)(z-0.9)}$$

Le système est initialement au repos et une impulsion unitaire est appliquée à son entrée à l'instant t = 0. Donnez la valeur de y(t) à l'instant t = 24 secondes sachant que la période d'échantillonnage est de 1 seconde.

Transformées de Laplace et en z, et leurs pôles

Transformees de Laplace et en z, et leurs poles					
$f(t), t \ge 0$	F(s)	Pôles de $F(s)$	F(z)	Pôles de $F(z)$	
$\delta(t)$	1	-	1	-	
1	$\frac{1}{s}$	0	$\frac{z}{z-1}$	1	
t	$\frac{1}{s^2}$	0 (double)	$\frac{Tz}{(z-1)^2}$	1 (double)	
e^{-at}	$\frac{1}{s+a}$	-a	$\frac{z}{z - e^{-aT}}$	e^{-aT}	
$\left \begin{array}{c} \alpha^{t/T} \\ \left(= e^{-at} \Big _{a = \frac{-\ln \alpha}{T}} \right) \end{array} \right $	$\frac{1}{s + \frac{-\ln \alpha}{T}}$	$\frac{\ln \alpha}{T}$	$\frac{z}{z-\alpha}$	$\alpha \qquad \qquad (\alpha = e^{-aT} > 0)$	
te^{-at}	$\frac{1}{(s+a)^2}$	-a (double)	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$	e^{-aT} (double)	
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	0, -a	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$	$1, e^{-aT}$	
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	$\pm j\omega$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	$e^{\pm j\omega T}$	
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\pm j\omega$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	$e^{\pm j\omega T}$	
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2 + \omega^2}$	$-a\pm j\omega$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{(-a\pm j\omega)T}$	
$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$-a\pm j\omega$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{(-a\pm j\omega)T}$	

Tableau I. Identification et réglage PI ou PI+Filtre

Dánanga à lláshalan	Modèle	Dana \\	Réglage			
Réponse à l'échelon	Modèle	Paramètres	K_c	T_i	T_f	T_{sp}
$\begin{array}{c} & & & & \Delta y \\ & & & & \Delta u \end{array}$	$\frac{K_p}{1+T_1s}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$	$\frac{1}{K_p}$	T_1	0	0
$\begin{array}{c c} \bullet & & \Delta y \\ \hline & \downarrow & & \Delta t \\ \hline & \downarrow & & \\ \hline & \downarrow & \\ \hline & \downarrow & \downarrow &$	$\frac{K_p e^{-\theta s}}{1 + T_1 s}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = t_{63\%}$	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$	T_1	0	0
$\begin{array}{c c} & & & \Delta y \\ \hline & & & \Delta u \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$	$\frac{K_p}{\left(1+T_1s\right)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$	$\frac{1}{K_p}$	1.5 <i>T</i> ₁	0	0
$\begin{array}{ c c }\hline \\ \theta \\ \hline \\ \hline \\ t_{73\%} \\ \end{array} \begin{array}{ c c c }\hline \Delta y \\ \hline \\ \Delta u \\ \hline \end{array}$	$\frac{K_p e^{-\theta s}}{\left(1 + T_1 s\right)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ $T_1 = \frac{t_{73\%}}{2.6}$	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$	1.5 <i>T</i> ₁	0	0
$\begin{array}{c c} & \Delta y \\ \hline & \Delta y \\ \hline & \Delta y_{min} \\ \hline & t_{min} \end{array}$	$\frac{K_{p}(1-T_{0t}s)}{\left(1+T_{1}s\right)^{2}}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau II	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + T_{0i}}$	1.5 <i>T</i> ₁	0	0
$ \begin{array}{c} $	$\frac{K_{p}(1-T_{0,r}s)e^{-\theta s}}{(1+T_{1}s)^{2}}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau II	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta + T_{0i}}$	$1.5T_{1}$	0	0
$ \begin{array}{c c} & \Delta y_{max} & \Delta u & \Delta y \\ & \longleftrightarrow & t_{max} \end{array} $	$\frac{K_p(1+T_{0s}s)}{(1+T_1s)^2}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau III	$\frac{1}{K_p}$	$1.5T_{1}$	T_{0s}	0
$ \begin{array}{c c} & \Delta y_{max} & \Delta u & \Delta y \\ & \longleftrightarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & $	$\frac{K_{p}(1+T_{0s}s)e^{-\theta s}}{(1+T_{1}s)^{2}}$	$K_p = \frac{\Delta y}{\Delta u}$ Tableau III	$\frac{1}{K_p} \cdot \frac{T_1}{T_1 + \theta}$	1.5 <i>T</i> ₁	T_{0s}	0
Δy Δt Δu	$\frac{K_p}{s}$	$K_p = \frac{\Delta y}{\Delta t \Delta u}$	$\frac{2}{K_p T_H}$	$2T_H$	0	$2T_H$

Tableau II. Calcul de T_1 et T_{0i} pour un procédé de deuxième ordre avec un zéro instable

$-\Delta y_{min}/\Delta y$	t_{min}/T_1	T_{0i} / T_1
0.01	0.14	0.16
0.02	0.19	0.23
0.03	0.22	0.29
0.04	0.25	0.34
0.05	0.28	0.39
0.06	0.31	0.44
0.07	0.32	0.48
0.08	0.34	0.52
0.09	0.36	0.56
0.10	0.38	0.60
0.20	0.49	0.96
0.30	0.56	1.28
0.40	0.61	1.58
0.50	0.65	1.88
0.60	0.68	2.17
0.70	0.71	2.46
0.80	0.73	2.75
0.90	0.75	3.03
1.00	0.77	3.32
1.10	0.78	3.60
1.20	0.79	3.87
1.30	0.81	4.15
1.40	0.82	4.43
1.50	0.82	4.70
1.60	0.83	4.98
1.70	0.84	5.26
1.80	0.85	5.53
1.90	0.85	5.81
2.00	0.86	6.09
2.20	0.87	6.63
2.40	0.88	7.18
2.60	0.89	7.72
2.80	0.89	8.27
3.00	0.90	8.82
3.20	0.90	9.37
3.40	0.91	9.91
3.60	0.91	10.46
3.80	0.92	11.28
4.00	0.92	11.56
4.50	0.93	12.91
5.00	0.93	14.28

Tableau III. Calcul de T_1 et T_{0s} pour un procédé de deuxième ordre avec un zéro stable

$\Delta y_{max} / \Delta y$	t_{max} / T_1	T_{0s} / T_1
1.02	3.13	1.47
1.04	2.69	1.59
1.06	2.45	1.69
1.08	2.28	1.78
1.10	2.16	1.86
1.15	1.95	2.05
1.20	1.81	2.23
1.25	1.72	2.39
1.30	1.65	2.55
1.35	1.58	2.71
1.40	1.54	2.86
1.45	1.50	3.01
1.50	1.46	3.16
1.55	1.43	3.31
1.60	1.41	3.45
1.65	1.38	3.60
1.70	1.36	3.74
1.75	1.35	3.88
1.80	1.33	4.03
1.85	1.32	4.17
1.90	1.30	4.31
1.95	1.29	4.45
2.00	1.28	4.60
2.10	1.26	4.87
2.20	1.24	5.16
2.30	1.23	5.43
2.40	1.21	5.71
2.50	1.20	5.98
2.60	1.19	6.26
2.70	1.18	6.54
2.80	1.17	6.81
2.90	1.16	7.09
3.00	1.16	7.36
3.50	1.13	8.73
4.00	1.11	10.10
4.50	1.10	11.47
5.00	1.08	12.84
6.00	1.07	15.56
7.00	1.06	18.28
8.00	1.05	21.00
9.00	1.04	23.72
10.00	1.04	26.44