

COMP3430 / 8430 Data wrangling

Lecture 11: Schema mapping and matching (Lecturer: Peter Christen)

Based on slides by Prof Erhard Rahm (University of Leipzig and ScaDS, Germany)

Lecture outline

- The schema matching problem
- Examples of schema matching applications
- Schema matching techniques

Note: The terms schema *matching* and *mapping* are often used interchangeably

The schema matching problem

 The problem of generating correspondences between elements of two database schemas

Basic input to matching techniques

 Schema structures; element (attribute) names; and constraints such as data types and keys

Other inputs to basic schema matching

Synonyms

Code = Id = Num = No Zip = Postal [code]

Acronyms

PO = Purchase Order UOM = Unit of Measure SS# = Social Security Number

• **Data instances** (attribute values)
Key insight: *Elements match if they have similar instances or value distributions*

Many applications need correspondences

Data translation

- Object-to-relational mapping
- XML message translation (for example between different applications)
- Data warehouse loading (ETL)

Data integration

- ER (entity relationship) design tools
- Schema evolution (temporal changes)
- Record linkage (next lecture)

Example: matching product catalogues

 Mapping is useful for improving query results, for example to find a specific product across Web sites, or merging catalogues

Example: matching life science ontologies

• There are many large biomedical ontologies, used to annotate or enrich objects (genes, proteins, etc.) or documents (publications, electronic health records, etc.)

Taxonomy of automatic match techniques

 Matcher combinations are either hybrid matches (that consider for example name and type similarity), or composite matches

E. Rahm and P.A. Bernstein: A Survey of Approaches to Automatic Schema Matching. VLDB Journal 10(4), 2001

Match techniques

Linguistic matchers

- (String) similarity of concept/element names
- Based on dictionaries or thesauri, such as WordNet / UMLS

Structure-based matchers

- Consider similarity of ancestors/descendants
- Graph-based matching such as *Similarity Flooding* (Melnik et al., ICDE 2002)

Instance-based matchers

- Concepts with similar instances/annotated objects should match
- Consider all instances of a concept as a document and utilise document similarity (such as TF-IDF) to find matching concepts

Instance based ontology matching

- Concepts with most similar instances should match (requires shared / similar instances for most concepts)
- Mutual treatment of entity resolution (instance matching) and ontology matching
- Promising for link discovery in the Linked Open Web of Data

Schema matching is a multi-step process

General workflow

Matcher sub-workflow

Sequential matchers

Parallel (independent)
matchers

Mixed strategy

Large-scale matching

- Very large ontologies / schemas (>10,000 elements)
 - Quadratic complexity of evaluating the Cartesian product (match efficiency)
 - Difficult to find all right correspondences (match quality)
 - Support for user interaction
- Many (>>2) ontologies/schemas
 - Holistic ontology/schema matching
 - Clustering of equivalent concepts/elements or linking to some hubs

Self-tuning match workflows (1)

- Semi-automatic configuration
 - Selection and ordering of matchers
 - Combination of match results
 - Selection of correspondences (top-k, threshold, ...)
- Prototype tuning frameworks (Apfel, eTuner, YAM)
 - Use of supervised machine learning
 - Need previously solved match problems for training
 - Difficult to support large schemas

Self-tuning match workflows (2)

- Heuristic approaches
 - Use linguistic and structural similarity of input schemas to select matchers and their weights
 - Favour matchers that give higher similarity values in the combination of matcher results
- Rule-based approach
 - Comprehensive rule set to determine and tune match workflow
 - Use of schema features and intermediate match results

Re-use oriented matching

- Many similar match tasks, therefore reuse previous matches
 - Can improve both efficiency and match quality
- Repository of match tasks is needed
 - Store previously matched schemas / ontologies and obtained mappings
 - Identify and apply reusable correspondences
- First proposals for reuse at three mapping granularities
 - 1) Reuse individual element correspondences, such as synonyms
 - 2) Reuse complete mappings, for example after schema/ontology evolution
 - 3) Reuse *mappings between schema/ontology fragments* (such as common data elements)

Research match prototypes

NOMSCM OLA2 WiseLOM iMAP
CMS CODI AOAS ClioAPFEL SKAT Heliosautoms
OMEN CIDER Hovy X-som Dumas SEMINT
SBI-NB SAMBO ONION DLP-OM GOMMAPORSCHE
BLOOMSS-MatchRiMOM Dublin20Automatch Autoplex
kosimapCMCPrompt Asematch ODD-Linker
ProtoPlasmQOMOntoDNA AgreementMakerIF-Map
QuickmigH-Match Falcon-AO BayesOWL SF
TaxoMapctxMatch2 SpicySmartMatcher Harmony
Lily OntoMergesPLMapOMAObjectCoref MapPSOGmo
ASMOVPlasma CAIMANMapOnto TransScmYAM
NBJLM aflood oMap COMA++ArtemisCtxMatch
ednaDSSimCOMA AMC XClustHCONECupid Ef2Match
T-tree ASCO MDSM DELTATOMAS AROMA
Tess DIKE MOA

Commercial oriented matching tools

- Many GUI-based mapping editors to manually specify correspondences and mappings
- Initial support for automatic matching, in particular linguistic matching
 - Altova MapForce
 - MS BizTalk Server
 - SAP Netweaver
 - IBM Infosphere
- Many further improvements possible
 - Structural / instance-based matching
 - Advanced techniques for large schemas

Example tool: Biztalk mapper

Example tool: Altova MapForce

