Universität Heidelberg

Institut für Angewandte Mathematik

PD Dr. habil. Malte Braack

INF 293 (URZ), Zi. 217, Tel.: 06221 / 54-5448

malte.braack@iwr.uni-heidelberg.de

2. Übung zur Mathematik für Biologen 1 (WS 2005/06)

Aufgabe 2.1: Lösen Sie die quadratischen Gleichungen:

(i)
$$3x^2 - \frac{1}{2}x - \frac{1}{2} = 0$$

(ii)
$$5x^2 + 16x - 32 = 0$$

Aufgabe 2.2: Geben Sie kleineste obere bzw. größte untere Schranken an für die Funktionen:

(i)
$$f(x) = 2x^2 - x + 5$$
 für $D = \mathbb{R}$

(ii)
$$f(x) = 1 + \frac{\sqrt{x^2 + x}}{4}$$
 für $D = \mathbb{R}^*$

Aufgabe 2.3: Eine Aterie mit dem Radius $R_1=1.1\,\mathrm{cm}$ verzweige sich in zwei kleinere mit jeweils dem gleichen Radius $R_2=0.6\,\mathrm{cm}$. In dem größerem Blutgefäß herrsche auf einer Länge $L=5\,\mathrm{cm}$ ein Druckabfall von $\Delta P=900\,\mathrm{Pa}$. Angenommen sei stets eine laminare Poiseuille Strömung und eine Viskosität von $\mu=2.7\cdot10^{-3}\,\mathrm{Pa}\,\mathrm{s}$.

- (i) Wie groß ist die maximale Strömungsgeschwindigkeit in dem größeren Gefäß?
- (ii) Um welchen Faktor steigt dieser Wert in den beiden kleineren Gefäßen?

Aufgabe 2.4: Man untersuche folgende Reihen auf Konvergenz:

(i)
$$\sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(n+1)^{n-1}}{(-n)^n}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{n+4}{n^2 - 3n + 1}$$

Aufgabe 2.5: Untersuchen Sie folgende Funktionen $f:D\to Z$ auf Injektivität, Surjektivität und Bijektivität:

(i)
$$f(x) = x^2 + 2$$
 für $D = \mathbb{R}, Z = \{x \ge 2\}$

(ii)
$$f(x) = \frac{\sqrt{x^2 + x}}{2}$$
 für $D = \mathbb{R}^+, Z = \mathbb{R}^+$

Abgabe: Di., den 8. November 2005, vor der Vorlesung.