Feuille d'exercice n° 14 : Polynômes

Exercice 1 Résoudre les équations suivantes :

- 1. $Q^2 = XP^2$ d'inconnues $P, Q \in \mathbb{K}[X]$
- 2. $P \circ P = P$ d'inconnue $P \in \mathbb{K}[X]$.

Résoudre l'équation $P(X^2) = (X^2 + 1)P(X)$ où $P \in \mathbb{C}[X]$. Exercice 2

Exercice 3 (\mathcal{D}) Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X-1)^2$.

Exercice 4 (%)

Soient $a, b \in \mathbb{K}, a \neq b$.

Exprimer le reste de la division euclidienne de $P \in \mathbb{K}[X]$ par (X-a)(X-b) en fonction de P(a) et P(b).

Exercice 5 ($^{\bigcirc}$) Déterminer le pgcd des polynômes suivants : $X^5 + 3X^4 + X^3 + X^2 + 3X + 1$ et $X^4 + 2X^3 + X + 2$,

$$X^{5} + 3X^{4} + X^{3} + X^{2} + 3X + 1$$
 et $X^{4} + 2X^{3} + X + 2$

$$X^4 + X^3 - 3X^2 - 4X - 1$$
 et $X^3 + X^2 - X - 1$,

$$X^{5} + 5X^{4} + 9X^{3} + 7X^{2} + 5X + 3$$
 et $X^{4} + 2X^{3} + 2X^{2} + X + 1$.

Exercice 6 () Calculer un couple de Bézout des couples de polynômes suivants :

1.
$$X^5 - X^4 + 2X^3 - X^2 + X - 2$$
 et $X^4 - 2X^3 - X + 2$

2.
$$X^4 + 2X^3 - X - 2$$
 et $X^5 + X^4 - 3X^3 + X^2 + 4X - 4$

Exercice 7 (\bigcirc) Dans $\mathbb{C}[X]$, effectuer les divisions euclidiennes de

$$X^2 - 3iX - 5(1+i)$$
 par $X - 1 + i$,

$$4X^3 + X^2$$
 par $X + 1 + i$.

Exercice 8 (\bigcirc) Soient P, Q deux polynômes premiers entre eux.

- 1. Montrer qu'alors P^n et Q^m sont premiers entre eux où n, m sont deux entiers positifs.
- 2. Montrer de même que P + Q et PQ sont premiers entre eux.

Soit P un polynôme de $\mathbb{C}[X]$. Exercice 9

- 1. Montrer que quels que soient les entiers positifs b et q, $P^b 1$ divise $P^{bq} 1$.
- 2. En déduire que le reste de la division de $P^a 1$ par $P^b 1$ est $P^r 1$ où r est le reste de la division dans \mathbb{N} de a par b.
- 3. En utilisant l'algorithme d'Euclide, déterminer le pgcd de $P^a 1$ et $P^b 1$.
- 4. Retrouver ce résultat en utilisant le théorème de Bézout dans \mathbb{Z} et dans $\mathbb{C}[X]$.
- 5. Application: trouver le pgcd de $X^{5400} 1$ et $X^{1920} 1$.

Exercice 10

Déterminer une CNS sur $n \in \mathbb{N}$ pour que $X^2 + X + 1|X^{2n} + X^n + 1$.

Exercice 11 () Décomposer dans $\mathbb{R}[X]$ le polynôme $P = X^4 + 1$ en produit de facteurs irréductibles.

1

Exercice 12 Trouver le(s) polynôme(s) A de degré 4 tel(s) que : $X^2 + 1|A$ et $X^3 + 1|A - 1$.

Exercice 13 (\circlearrowleft) Montrer que si $P \in \mathbb{R}[X] \setminus \{0\}$ vérifie $P(X^2) = P(X)P(X+1)$ ses racines sont parmi $0, 1, -j, -j^2$. En déduire tous les polynômes solutions.

Exercice 14 Montrer que les polynômes complexes $P = X^{1998} + X + 1$ et $Q = X^5 + X + 1$ sont premiers entre eux.

Exercice 15 ($\stackrel{\triangleright}{\simeq}$) Montrer qu'il existe deux polynômes : U, V, vérifiant : $(\star) (1-X)^n U + X^n V = 1$. Déterminer U_1 et V_1 de degré strictement inférieur à n, satisfaisant cette égalité. En déduire tous les polynômes U, V vérifiant (\star) .

Exercice 16 Déterminer les polynômes $P \in \mathbb{R}[X]$ et $Q \in \mathbb{R}[X]$, premiers entre eux, et à coefficients entiers, tels que $P^2 + Q^2 = (X^2 + 1)^2$. En déduire que l'équation $x^2 + y^2 = z^2$ a une infinité de solutions (non proportionnelles) dans \mathbb{Z} .

Exercice 17 Soit P un polynôme de $\mathbb{R}[X]$ tel que $P(x) \geq 0$ pour tout $x \in \mathbb{R}$.

Montrer qu'il existe $S,T\in\mathbb{R}[X]$ tels que $P=S^2+T^2$ (on utilisera la factorisation dans $\mathbb{C}[X]$). Indications:

- 1. Montrer que les racines réelles de P sont de multiplicité paire.
- 2. Pour $\alpha \in \mathbb{C}$, écrire $(X \alpha)(X \bar{\alpha})$ comme somme de deux carrés de polynômes.

Exercice 18 Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} à racines simples.

- 1. Montrer qu'il en est de même de P'.
- 2. Montrer que le polynôme $P^2 + 1$ n'a que des racines simples dans \mathbb{C} .

Exercice 19 Résoudre les équations suivantes :

- 1. $P'^2 = 4P$ d'inconnue $P \in \mathbb{K}[X]$.
- 2. $(X^2 + 1)P'' 6P = 0$ d'inconnue $P \in \mathbb{K}[X]$.

Exercice 20

Résoudre
$$\begin{cases} a^2 + b^2 + c^2 &= 14\\ a + b + c &= 2\\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} &= \frac{5}{6} \end{cases}.$$

