Math 535 - General Topology Fall 2012 Homework 8 Solutions

Problem 1. (Willard Exercise 19B.1) Show that the one-point compactification of \mathbb{R}^n is homeomorphic to the *n*-dimensional sphere S^n .

Solution. Note that S^n is compact, and a punctured sphere $S^n \setminus \{p\}$ is dense in S^n , with complement consisting of a single point $\{p\}$. Therefore it suffices to show that \mathbb{R}^n is homeomorphic to $S^n \setminus \{p\}$.

Consider $\mathbb{R}^n \cong \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ as the hyperplane $x_{n+1} = 0$ inside \mathbb{R}^{n+1} . Take the "North pole" $p = (0, \dots, 0, 1) \in S^n \subset \mathbb{R}^{n+1}$. We will produce a homeomorphism $f : \mathbb{R}^n \to S^n \setminus \{p\}$ using "stereographic projection". Define the maps

$$f: \mathbb{R}^n \to S^n \setminus \{p\}$$

where f(x) is the unique point of $S^n \setminus \{p\}$ which lies on the straight line through x and p and

$$g \colon S^n \setminus \{p\} \to \mathbb{R}^n$$

where g(y) is the unique point of \mathbb{R}^n which lies on the straight line through y and p.

For all $x \in \mathbb{R}^n$, g(f(x)) is the unique point of \mathbb{R}^n which lies on the straight line through f(x) and p. By definition of f, x is a point of \mathbb{R}^n which lies on the straight line through f(x) and p. This proves g(f(x)) = x.

For all $y \in S^n \setminus \{p\}$, f(g(y)) is the unique point of $S^n \setminus \{p\}$ which lies on the straight line through g(y) and p. By definition of g, y is a point of $S^n \setminus \{p\}$ which lies on the straight line through g(y) and p. This proves f(g(y)) = y.

It remains to show that f and g are both continuous.

A straightforward calculation yields

$$f(x) = \frac{1}{\|x\|^2 + 1} \left[2x + (\|x\|^2 - 1)p \right]$$

which is a continuous function of x. Indeed, the norm ||x|| is continuous in x, and the denominator satisfies $||x||^2 + 1 > 0$ for all $x \in \mathbb{R}^n$.

Another straightforward calculation yields

$$g(y) = \frac{1}{1 - y_{n+1}} [y - y_{n+1}p]$$

which is a continuous function of y. Indeed, the projection $\mathbb{R}^{n+1} \to \mathbb{R}$ onto each coordinate is continuous (so that y_{n+1} is a continuous function of y), and the denominator satisfies $1-y_{n+1}>0$ for all $y \in S^n \setminus \{p\}$.

Problem 2. (Munkres Exercise 38.4) Let X be any topological space and $f: X \hookrightarrow Y$ a compactification of X, where moreover Y is Hausdorff. Show that there is a unique continuous closed surjective map $g: \beta X \to Y$ that extends f, meaning $g \circ e = f$, where $e: X \to \beta X$ is the canonical evaluation map:

$$\begin{array}{ccc} X & \stackrel{e}{\longrightarrow} & \beta X \\ & & \downarrow & \downarrow & g \\ f & & & \forall & Y. \end{array}$$

Hint: You do not need anything about a specific construction of βX , only its universal property.

Solution. Since Y is compact Hausdorff, there is a unique continuous map $g: \beta X \to Y$ satisfying $g \circ e = f$ (by the universal property of the Stone-Čech compactification).

Since βX is compact and Y is Hausdorff, the continuous map $g: \beta X \to Y$ is closed.

Note that g has dense image in Y:

$$\overline{g(\beta X)} \supseteq \overline{g(e(X))} = \overline{f(X)} = Y.$$

However, g is closed and thus its image is closed:

$$g(\beta X) = \overline{g(\beta X)} = Y$$

which proves that g is surjective.

Remark. If X admits a Hausdorff compactification, we know that X must be Tychonoff (a.k.a. $T_{3\frac{1}{2}}$), so that $e\colon X\to \beta X$ is in fact an embedding and βX is therefore a compactification of X. Problem 2 shows in particular that any Hausdorff compactification of X is a quotient of the Stone-Čech compactification βX .

Problem 3. Let $f: X \to Y$ be a continuous map between topological spaces. Show that f is closed if and only if for all $y \in Y$ and any open subset $U \subseteq X$ satisfying $f^{-1}(y) \subseteq U$, there is an open neighborhood V of y satisfying $f^{-1}(V) \subseteq U$.

Solution. Consider the equivalent statements:

f is closed, i.e. for all $C \subseteq X$ closed, f(C) is closed in Y.

- \Leftrightarrow For all $C\subseteq X$ closed and $y\notin f(C)$, there is an open neighborhood V of y satisfying $V\cap f(C)=\emptyset$.
- \Leftrightarrow For all $C \subseteq X$ closed and $y \in Y$ satisfying $f^{-1}(y) \cap C = \emptyset$, there is an open neighborhood V of y satisfying $f^{-1}(V) \cap C = \emptyset$.
- \Leftrightarrow (Taking $U := X \setminus C$) For all $U \subseteq X$ open and $y \in Y$ satisfying $f^{-1}(y) \subseteq U$, there is an open neighborhood V of y satisfying $f^{-1}(V) \subseteq U$.

Problem 4. Let $f: X \to Y$ be a continuous map between topological spaces.

a. Assume that $f: X \to Y$ is proper. Let $V \subseteq Y$ be an open subset. Show that the restriction $f|_{f^{-1}(V)}: f^{-1}(V) \to V$ is proper.

Solution. Let $K \subseteq V$ be a compact subspace. Then the preimage

$$(f|_{f^{-1}(V)})^{-1}(K) = f^{-1}(K) \subseteq f^{-1}(V) \subseteq X$$

is compact since $f: X \to Y$ is proper.

b. Assume that Y is Hausdorff, and that for all $y \in Y$, there is an open neighborhood V of y such that the restriction $f|_{f^{-1}(V)}: f^{-1}(V) \to V$ is proper. Show that $f: X \to Y$ is proper.

Solution.

Lemma. Let K be a compact Hausdorff space and $\{V_{\alpha}\}_{{\alpha}\in A}$ an open cover of K. Then there are compact subspaces $K_1, \ldots, K_n \subseteq K$ satisfying $K = K_1 \cup \ldots \cup K_n$ and each K_i is included in some V_{α_i} .

Proof. Since K is compact, there is a finite subcover $\{V_{\alpha_1}, \dots V_{\alpha_n}\}$. Thus it suffices to show the result for any finite open cover $\{V_1, \dots V_n\}$ of K.

Writing K as the union of two open subsets

$$K = V_1 \cup \ldots \cup V_n = V_1 \cup (V_2 \cup \ldots \cup V_n),$$

it suffices to show the result for an open cover consisting for two open subsets, and then apply the argument n-1 times.

Let $\{V_1, V_2\}$ be an open cover of K. Since K is compact Hausdorff, it is normal. The equality $K = V_1 \cup V_2$ implies $V_2^c \subseteq V_1$, and note that V_2^c is closed and V_1 is open. By normality, there is an open subset $U \subseteq X$ satisfying

$$V_2^c \subseteq U \subseteq \overline{U} \subseteq V_1$$
.

Take $K_1 := \overline{U} \subseteq V_1$ and $K_2 := U^c \subseteq (V_2^c)^c = V_2$. Both K_1 and K_2 are closed in K, hence compact, and they cover K:

$$K_1 \cup K_2 = \overline{U} \cup U^c \supseteq U \cup U^c = K.$$

Now we solve the problem. Let $K \subseteq Y$ be compact. By assumption, there exists an open cover $\{V_{\alpha}\}_{{\alpha}\in A}$ of Y such that the restrictions

$$f|_{f^{-1}(V_{\alpha})} \colon f^{-1}(V_{\alpha}) \to V_{\alpha}$$

are proper.

By the lemma, K can be written as a finite union

$$K = K_1 \cup \ldots \cup K_n$$

where each K_i is compact and satisfies $K_i \subseteq V_{\alpha_i} \cap K \subseteq V_{\alpha_i}$. This implies that the preimage

$$f^{-1}(K_i) = (f|_{f^{-1}(V_{\alpha_i})})^{-1}(K_i) \subseteq f^{-1}(V_{\alpha_i}) \subseteq X$$

is compact because $f|_{f^{-1}(V_{\alpha_i})}$ is proper. The preimage

$$f^{-1}(K) = f^{-1}(K_1 \cup \ldots \cup K_n)$$
$$= f^{-1}(K_1) \cup \ldots \cup f^{-1}(K_n)$$

is a finite union of compact spaces, hence compact.

Alternate solution. For each point $y \in K$, let V_y be a neighborhood of y such that the restriction $f|_{f^{-1}(V_y)}$ is proper. Note that $V_y \cap K$ is a K-neighborhood of y.

Since K is compact Hausdorff (in particular locally compact Hausdorff), for each $y \in K$ there is a compact K-neighborhood K_y of y inside $V_y \cap K$.

The cover $\{K_y\}_{y\in K}$ of K can be refined to an open cover of K. Hence, by compactness of K, there is a finite subcover

$$K = K_{y_1} \cup \ldots \cup K_{y_n}$$

where each of these satisfies $K_{y_i} \subseteq V_{y_i} \cap K \subseteq V_{y_i}$.

Conclude as above. \Box

Recall that a **totally ordered set** is a partially ordered set (X, \leq) where any two elements are comparable: for all $x, y \in X$, either $x \leq y$ or $y \leq x$.

Problem 5. Let (X, \leq) be a totally ordered set. The **order topology** on X is the topology generated by "open rays"

$$(a, \infty) := \{x \in X \mid x > a\}$$
$$(-\infty, a) := \{x \in X \mid x < a\}$$

for any $a \in X$.

a. Show that the order topology on a totally ordered set is always T_1 .

Solution. Because X is a totally ordered set, given any $a \in X$, every element $x \in X$ satisfies exactly one of the three conditions

$$\begin{cases} x < a \\ x = a \\ x > a \end{cases}$$

so that the "closed rays"

$$[a, \infty) := \{x \in X \mid x \ge a\} = X \setminus (-\infty, a)$$
$$(-\infty, a] := \{x \in X \mid x \le a\} = X \setminus (a, \infty)$$

are indeed closed in X. Their intersection

$$(-\infty, a] \cap [a, \infty) = \{x \in X \mid x \le a \text{ and } x \ge a\} = \{a\}$$

is therefore closed in X, so that all singletons of X are closed.

Alternate solution. Let $x, y \in X$ be distinct points of X. Since X is totally ordered, x and y are (strictly) comparable, WLOG x < y. Then the open ray $(-\infty, y)$ contains x but not y, while the open ray (x, ∞) contains y but not x.

b. Show that the order topology on \mathbb{R} with its usual order \leq is the standard (metric) topology on \mathbb{R} .

Solution. $(\mathcal{T}_{ord} \leq \mathcal{T}_{met})$ For any $a \in \mathbb{R}$, the "open rays" (a, ∞) and $(-\infty, a)$ are metrically open.

 $(\mathcal{T}_{\text{met}} \leq \mathcal{T}_{\text{ord}})$ The metric topology on \mathbb{R} is generated by intervals (a, b) for any a < b. But these are order-open since they are the finite intersection

$$(a,b) = (-\infty,b) \cap (a,\infty)$$

of "open rays". \Box

c. An **interval** in a partially ordered set (X, \leq) is a subset $I \subseteq X$ such that for all $x, y \in I$, the condition $x \leq z \leq y$ implies $z \in I$.

Let (X, \leq) be a totally ordered set endowed with the order topology. Show that every connected subspace $A \subseteq X$ is an interval in X.

Solution. We will show the contrapositive: Any subset $A \subseteq X$ which is not an interval is not connected.

The fact that A is not an interval means that there are elements $x, y \in A$ and an element $z \in X$ satisfying $x \le z \le y$ but $z \notin A$. This implies

$$A \subseteq X \setminus \{z\}$$

= $(-\infty, z) \sqcup (z, \infty)$ since X is totally ordered

so that A can be written as the disjoint union

$$A = (A \cap (-\infty, z)) \sqcup (A \cap (z, \infty))$$

of subsets that are both open in A. Both subsets are non-empty, by the conditions $x \in A \cap (-\infty, z)$ and $y \in A \cap (z, \infty)$. Therefore A is not connected.

d. Find an example of totally ordered set (X, \leq) , endowed with the order topology, and an interval $A \subseteq X$ which is not a connected subspace.

Solution. Consider $X = \{0, 1\}$, and the subset $X \subseteq X$, which is trivially an interval in X. Since X is finite and T_1 (by part a), it is discrete. Since X contains at least two elements, it is not connected.

Alternate solution. Consider \mathbb{N} with its usual order \leq . Then \mathbb{N} is discrete, because every singleton

$$\{n\}=(-\infty,n+1)\cap(n-1,\infty)$$

is open. Since $\mathbb N$ is discrete and contains at least two elements, it is not connected.

Problem 6. (Munkres Exercise 23.5) A space is **totally disconnected** if its only connected subspaces are singletons $\{x\}$.

a. Show that every discrete space is totally disconnected.

Solution. Every subspace $A \subseteq X$ of a discrete space X is itself discrete. If A contains at least two points, it is therefore not connected.

b. Find an example of totally disconnected space which is not discrete.

Solution. Take $X = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ viewed as a subspace of \mathbb{R} . Then X is not discrete, since the singleton $\{0\}$ is not open in X. Indeed, any open ball around 0 contains infinitely many points of the form $\frac{1}{n}$.

However, X is totally disconnected. If $A \subseteq X$ contains at least two points $x, y \in A$, then at least one of them (WLOG y) is of the form $y = \frac{1}{n} \neq 0$. We can write A as the disjoint union

$$A = \{y\} \sqcup (A \setminus \{y\})$$

of two subsets that are open in A, and non-empty since $x \in A \setminus \{y\}$. Therefore A is not connected.