BEVFormer looking back and looking forward

李志琦 南京大学

Outline

BEV研究现状

• BEVFormer及相关改进

· 基于BEVFormer的端到端自动驾驶

BEV检测研究现状

相比DD3D(单目方法),基于BEV的方法获得了超过20个点的提升这些提升来源于:

- 1、时序信息的使用 (短时序, 长时序)
 - BEVFormer
 - SOIOFusion
- 2、更好的基础网络 (backbone)
 StreamPETR-Large引入预训练ViT
- 3 Dense BEV->Sparse BEV StreamPETR, SparseBEV, Sparse4D
- 4、更好的深度估计 BEVDepth, BEVNeXt
- 5、未来帧的使用? BEVFormerv2, Sparse4D-v3-Off
- 6、跨模态蒸馏 VCD, BEVDistll

75
70
65
60
56.9
63.1

DER 20
BEWE 1

BEWE 1

BEWE 2016 High School Stream ER. Schoo

nuScenes 部分代表性方法的NDS

...

BEV检测研究现状

	Method					Metrics									
	Date	Name	Modalities	Map data	External data	mAP	mATE (m)	mASE (1-IOU)	mAOE (rad)	mAVE (m/s)	mAAE (1-acc)	NDS	PKL*	FPS (Hz)	Stats
		_	Camera +	All ▼	All ≠										
>	2023-10-13	Sparse4D-v3-offlin€	Camera	no	yes	0.668	0.346	0.234	0.279	0.142	0.145	0.719	0.686	n/a	âđ
>	2024-05-09	HENet_Sp	Camera	no	no	0.645	0.402	0.235	0.237	0.155	0.129	0.707	0.704	n/a	âđ
>	2023-10-16	Sparse4D-v3	Camera	no	yes	0.630	0.379	0.235	0.281	0.184	0.127	0.694	0.751	n/a	âđ
>	2024-02-01	HaomoAl Perceptic	Camera	no	no	0.624	0.405	0.238	0.288	0.188	0.119	0.688	0.808	n/a	âđ
>	2023-08-01	Far3D	Camera	no	no	0.635	0.432	0.237	0.278	0.227	0.130	0.687	0.757	n/a	ad
>	2024-03-13	RayDN	Camera	no	no	0.631	0.437	0.235	0.283	0.220	0.120	0.686	0.793	n/a	âđ
>	2023-04-05	НоР	Camera	no	no	0.624	0.367	0.249	0.353	0.171	0.131	0.685	0.875	n/a	âď
>	2023-08-29	Li	Camera	no	yes	0.623	0.433	0.238	0.287	0.221	0.129	0.681	0.788	n/a	âđ
>	2023-05-03	StreamPETR-Large	Camera	no	no	0.620	0.470	0.241	0.258	0.236	0.134	0.676	0.880	n/a	âđ
>	2023-08-17	SparseBEV	Camera	no	no	0.603	0.425	0.239	0.311	0.172	0.116	0.675	0.789	n/a	âđ

前10名有~8个基于Sparse BEV的方法, 2024年新提交的方法仅有三个,均为基于去年方法的改进

BEV的优越性

BEV Perception is the future has now come to pass of vision-centric perception[1]:

- Fuse multi-camera features in early stage.
- Straightforward to combine with other modalities.
 - e.g. BEVFusion
- Readily consumable by downstream such as prediction and planning.
 - e.g. BEVFormer->UniAD, VAD

bird's-eye-view (BEV)[3]

View Transformation

Geometry-Base

- From 3D to 2D (issue: Multiple 3D points will hit the same 2D pixel.)
- From 2D to 3D (issue: Depth is unknown)

Learning-Base

• Attention is all you need (issue: Not as efficient as geometry-based methods)

No matter what, the transformation is ill-posed

2D-3D: 以LSS为例

Using categorical distribution over depth instead of depth estimates.

- Strength:
 - Generate representation as all possible depths for each pixel.
- Weakness:
 - The generated BEV is discontinuous and sparse.
 - The fusion process is inefficient.

Following works:

- CADDN[2]
- FIERY[3]
- BEVDet[4]

^[1] Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D

^[2] Categorical Depth Distribution Network for Monocular 3D Object Detection

^[3] FIERY: Future Instance Prediction in Bird's-Eye View From Surround Monocular Cameras

^[4] BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-View

3D-2D: 以OFT为例

OFT(left)[1], M2BEV(right)[2]

DETR3D[3]

Obtain image features that corresponds to predefined 3D anchors.

- Strength:
 - Dense or Sparse BEV feature maps.
 - Efficient compared to 2D to 3D.
- Weakness:
 - False positive BEV features.

Related works:

- ImVoxelNet[5]
- DETR3D[3]
- BEVFormer[4]

^[1] Orthographic Feature Transform for Monocular 3D Object Detection

^[2] M2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Bird's-Eye View

^[3] DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries

^[4] BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers

^[5] ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

Learning-Base: 以StreamPETR为例

除了2D-3D, 3D-2D的显式转换方法外,还有一些方法借助attention隐式完成视角转换但是根据现有方法来看,显式转换具有效果更好,速度更快,显存消耗更低等优势。

Deformable Attention 这一在BEVFormer, RepDETR3D等方法中广泛使用的稀疏注意力机制

- 1. 总体时间占head的比例并不显著
- 2. 提速~2x的Deformable Attention OP即将发布
- 3. Flash Attn 在长序列上相比Deformable Attention并不占优势

Model	Setting	Pretrain	Lr Schd	Training Time	NDS	mAP	FPS- pytorch	Config	Download
StreamPETR	V2-99 - 900q	FCOS3D	24ep	13 hours	57.1	48.2	12.5	config	model/log
RepDETR3D	V2-99 - 900q	FCOS3D	24ep	13 hours	58.4	50.1	13.1	config	model/log

Outline

BEV研究现状

• BEVFormer及相关改进

• 基于BEVFormer的端到端自动驾驶

Sum-up: BEVFormer

Key Points

- 1. Using *learnable queries* to represent real world from BEV view.
- 2. Lookup spatial features in images and temporal features in previous BEV map

Overall Architecture: BEVFormer

Spatial Cross-Attention

Lookup and aggregate the spatial information

$$ext{SCA}(Q_p, F_t) = rac{1}{|\mathcal{V}_{ ext{hit}}|} \sum_{i \in \mathcal{V}_{ ext{hit}}} \sum_{j=1}^{N_{ ext{ref}}} ext{DeformAttn}(Q_p, \mathcal{P}(p, i, j), F_t^i)$$

Key Steps:

- 1. Lift each BEV query to be a *pillar*
- 2. Project the *3D points* in pillar to *2D points* in views
- 3. Sample features from *Rols in hit views*
- 4. Fuse by weight

Sparse Attention, e.g., Deformable Attention [1]

[1] Zhu, Xizhou, et al. "Deformable detr: Deformable transformers for end-to-end object detection." ICLR (2020).

Temporal Self-Attention

Lookup and Aggregate the Temporal information

$$TSA(Q_p, \{Q, B'_{t-1}\}) = \sum_{V \in \{Q, B'_{t-1}\}} DeformAttn(Q_p, p, V),$$

Key Steps:

- 1. *Align two BEV maps* according to the ego motion.
- 2. Sample features from **both past and current**.
- 3. Weighted summation of sampled features from past and current BEV maps.
- 4. Use *RNN-style* to literately collect history BEV features

3Dfy DETR Detector

Temporal clues matters

With temporal clues, we obtain:

- Higher recall, especially for low-visible objects
- More accurate *location* estimation
- Very accurate estimation of velocity

FB-BEV: Forward-Backward Projection

Forward Projection

- Weakness: Blank Grid
- Solution: fill the blank grid with the backward projection

Backward Projection

- Weakness: Unable to utilize depth information
- Solution: Propose Depth-aware Backward Projection

Neither Forward Projection or Backward Projection is perfect, but they are basically **complementary**.

FB-BEV: Depth-Aware Backward Projection

Backward projection can also model more accurate projection relationship based on depth distribution.

FB-BEV

- **1** Forward Projection provides initial sparse BEV features
- ② FRPN extract foreground BEV features
- 3 Depth-aware Backward Projection optimizes the foreground features

FB-BEV->FB-OCC

Joint Voxel and BEV representation

Joint Forward and Backward Projection

Sparse BEV vs Dense BEV

	Dense BEV	Sparse BEV
计算效率	特定优化,可以与Sparse BEV方法比较	高
感知范围	计算量正比于Dense BEV感知范围 的平方	适合远距离
多任务支持	友好	不适合OCC等密集预测任务
感知性能	可以逼近Sparse BEV的性能	高
算子	Deformable/BEV poolv2/Conv	Vanilla Attn/Deformable

Dense BEV和Sparse BEV, 各有优劣,难以说那种方式更优

Outline

BEV研究现状

• BEVFormer及相关改进

• 基于BEVFormer的端到端自动驾驶

Open Loop End-to-End Autonomous Driving: UniAD

UniAD validates open-loop end-to-end autonomous driving on nuScenes

NuScenes is an imbalance dataset for planning task

Figure 2. (a) The ego car trajectory heatmap on nuScenes dataset. (b) The majority of the scenes within the nuScenes dataset consist of straightforward driving situations.

NuScenes trajectory distribution is unbalanced, and most straight scenes are too simple.

DEMO

(b) Commonly Used Pipeline of End-to-End Autonomous Driving Model

The effect of "Perception+Ego Status is approximately equal to Ego Status, So what is the role of Perception?

Camera Sensor provides minor valid info

(b) Commonly Used Pipeline of End-to-End Autonomous Driving Model

Ego Status Dominates the Plannning

(b) Commonly Used Pipeline of End-to-End Autonomous Driving Model

Adding noise to the input velocity will significantly affect the predicted trajectory

BEV-Planner

(b) Commonly Used Pipeline of End-to-End Autonomous Driving Model

(c) Pipeline of Our BEV-Planner

We proposed a very simple BEV-Planner to verify different settings

- Only use one L2 loss
- No using depth, detection, tracking, HD map info.

The Next-Step in Open Loop End2End AD

- 在现有框架上继续追求更好的指标没有意义
- 需要更适合的数据集 (更多样, 更复杂) 和更全面的评测指标
- 从开环走向闭环: 基于神经渲染的模拟器, 世界模型

Thanks