МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

Лабораторная работа №1 по курсу «Методы машинного обучения»

ИСПОЛНИТЕЛЬНИЦА:		Абросимова Н.Г. ИУ5-24М				
			подпись			
	"_	_"_		2021 г.		
ПРЕПОДАВАТЕЛЬ:						
, ,			ФИО			
			подпись			
	"	"		2021 г		

Задание

- Выбрать набор данных (датасет).
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитерноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.

Текст программы и экранные формы

Набор данных – датасет с характеристиками экзопланет.

3130113141101.
Идентификатор
PlanetIdentifier
PlanetaryMassJpt
RadiusJpt
PeriodDays
SemiMajorAxisAU
SurfaceTempK
DiscoveryYear
DistFromSunParsec
HostStarMassSlrMass
HostStarRadiusSlrRad
HostStarTempK
semimajoraxis

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data=pd.read_csv('oec.csv', sep=",")
data.head()
```

Out[3]:

: [PlanetIdentifier	TypeFlag	PlanetaryMassJpt	RadiusJpt	PeriodDays	SemiMajorAxisAU	Eccentricity	PeriastronDeg	LongitudeDeg	AscendingNodeDeg
	0	HD 143761 b	0	1.0450	NaN	39.845800	0.2196	0.037	270.6	NaN	NaN
	1	HD 143761 c	0	0.0790	NaN	102.540000	0.4123	0.050	190.0	NaN	NaN
	2	KOI-1843.03	0	0.0014	0.054	0.176891	0.0048	NaN	NaN	NaN	NaN
	3	KOI-1843.01	0	NaN	0.114	4.194525	0.0390	NaN	NaN	NaN	NaN
	4	KOI-1843.02	0	NaN	0.071	6.356006	0.0520	NaN	NaN	NaN	NaN

5 rows × 25 columns

#размер датасета

data.shape

(3584, 25)

data.dtypes

Out[5]:

PlanetIdentifier	object
TypeFlag	int64
PlanetaryMassJpt	float64
RadiusJpt	float64
PeriodDays	float64
SemiMajorAxisAU	float64
Eccentricity	float64
PeriastronDeg	float64
LongitudeDeg	float64
AscendingNodeDeg	float64
InclinationDeg	float64
SurfaceTempK	float64
AgeGyr	float64
DiscoveryMethod	object
DiscoveryYear	float64
LastUpdated	object
RightAscension	object
Declination	object
DistFromSunParsec	float64
HostStarMassSlrMass	float64
HostStarRadiusSlrRad	float64
HostStarMetallicity	float64
HostStarTempK	float64
HostStarAgeGyr	float64
ListsPlanetIsOn	object
dtype: object	

dtype: object

In [6]:

data.isnull().sum()

Out[6]:

PlanetIdentifier	0
TypeFlag	0
PlanetaryMassJpt	2271
RadiusJpt	810
PeriodDays	99
SemiMajorAxisAU	2178
Eccentricity	2476
PeriastronDeg	3256
LongitudeDeg	3541

```
AscendingNodeDeg
                    3538
InclinationDeg
                    2919
SurfaceTempK
                    2843
AgeGyr
                    3582
DiscoveryMethod
                      63
DiscoveryYear
                      10
LastUpdated
                       8
RightAscension
                      10
Declination
                      10
DistFromSunParsec
                   1451
HostStarMassSlrMass
                    168
HostStarRadiusSlrRad
                     321
HostStarMetallicity 1075
HostStarTempK
                     129
HostStarAgeGyr
                    3067
ListsPlanetIsOn
dtype: int64
```

In [7]:

Основные статистические характеристки набора данных

data.describe()

Out[7]:

	TypeFlag	PlanetaryMassJpt	RadiusJpt	PeriodDays	SemiMajorAxisAU	Eccentricity	PeriastronDeg	LongitudeDeg	AscendingNodeDeg	Inc
count	3584.000000	1313.000000	2774.000000	3485.000000	1406.000000	1108.000000	328.000000	43.000000	46.000000	665
mean	0.097656	2.890944	0.371190	537.248317	2.000170	0.166910	150.363823	144.200847	90.624476	82.5
std	0.424554	10.204485	0.416871	7509.660676	19.352699	0.189760	117.859945	127.865952	93.047968	21.4
min	0.000000	0.000008	0.002300	0.090706	0.004420	0.000000	-233.000000	-174.640000	-5.112604	-0.C
25%	0.000000	0.150000	0.141062	4.757940	0.053000	0.020000	66.750000	37.167396	1.509500	85.0
50%	0.000000	0.940000	0.209600	13.071630	0.169500	0.100000	139.700000	162.280000	69.821251	87.
75%	0.000000	2.500000	0.321518	49.514000	1.250000	0.247282	243.000000	252.625834	169.175000	89.
max	3.000000	263.000000	6.000000	320000.000000	662.000000	0.956000	791.000000	339.300000	320.800000	305
<						•	•		•	>

```
In [8]:
```

```
data=data.drop(['AgeGyr','LongitudeDeg','LongitudeDeg', 'PeriastronDeg', 'Asc
endingNodeDeg', 'HostStarAgeGyr'], axis='columns')
In [9]:
plt.figure(figsize=(15,10))
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```


На основе полученной таблицы можно сделать вывод, что наиболее связанными являются пары показателей SurfaceTempK и PlanetaryMassJpt, HostStarMassSlrMass и PlanetaryMassJpt, HostStarRadiusSlrRad и PlanetaryMassJpt, SurfaceTempK и RadiusJpt, HostStarRadiusSlrRad и RadiusJpt, SurfaceTempK и DistFromSunParsec, SurfaceTempK и HostStarTempK, DistFromSunParsec и HostStarTempK, HostStarMassSlrMass и HostStarRadiusSlrRad. То есть, можно отметить, что наибольшая связь наблюдается между температурными и размерными характеристиками экзопланет и их звёзд.

```
plt.figure(figsize=(15,10))
sns.countplot(x="DiscoveryMethod", data=data)
Out[10]: <AxesSubplot:xlabel='DiscoveryMethod', ylabel='count'>
```


По этому графику можно понять, что самым распространённым методом обнаружения планет является транзитный метод (наблюдение за прохождением планеты на фоне

звезды). Следующим по распространённости является метод радиальных скоростей.

```
plt.figure(figsize=(10,10)) plt.stem(data['DiscoveryYear'],
data['DistFromSunParsec'])
Out[11]: <StemContainer object of 3 artists>
```


Связь между расстоянием от солнечной системы и годом обнаружения. В основном, более далёкие планеты были обнаружены позже, но не всегда.

```
x=data['SurfaceTempK']
y = data['HostStarTempK']
plt.stem(x, y)
```

Out[13]: <StemContainer object of 3 artists>

Попытка визуализировать зависимость температур

```
fig, axs=plt.subplots(1,2) n=len(data) axs[0].hist(data['HostStarTempK'],
bins=n) axs[0].set_title('HostStarTempK')
axs[1].hist(data['SurfaceTempK'], bins=n) axs[1].set_title('SurfaceTempK')
```


На гистограмме показаны распределения значений температуры звезды и температуры поверхности

plot=sns.jointplot(x=data['HostStarTempK'], y=data['SurfaceTempK'])
plt.show

Out[15]: <function matplotlib.pyplot.show(close=None, block=None)>

Теперь взаимосвязь температур отображается более наглядно - прямая зависимость. plot=sns.jointplot(x=data['SemiMajorAxisAU'], y=data['PeriodDays']) plt.show

Зависимость между периодом и большой полуосью планеты - чем больше расстояние от звезды, чем дольше период

plot=sns.jointplot(x=data['DiscoveryYear'], y=data['DistFromSunParsec'])
plt.show

Out[17]: <function matplotlib.pyplot.show(close=None, block=None)>


```
plt.figure(figsize=(10,5))
x=data['DiscoveryMethod']

y=data['DiscoveryYear']

sns.violinplot(x, y)
Out[18]: <AxesSubplot:xlabel='DiscoveryMethod', ylabel='DiscoveryYear'>
```


Зависимость методов исследований и года открытия Итоги

Были выделены наиболее связанные между собой характеристики — наиболее связанными оказались температуры поверхности планеты и звезды, а также размерные характеристики планет и звёзд, а также подтвердилось предположение, что время обнаружения планеты и дальность их от солнца также связаны; рассмотрена связь между методами исследования и годами.

Знание и изучение закономерностей между характеристиками планет может помочь в случаях если нужны предположения о тех данных исследования, которые пока являются неполными.