10.3.1 Exercices : étude qualitative de fonctions

■ Exemple 10.7

	Vrai	Faux	
1/f est strictement croissante			
sur [-1;1]			
$2/\ f$ est strictement décroissante			
sur [4;5]			
$3/\ f$ est strictement décroissante			
sur[-5; -4]			
4/f est monotone sur $[3;5]$			
5/f est monotone sur $[1;3]$			-6 -5 -4 -
6 / Le maximum de f sur $[-5; 2]$			
est atteint en $x = 6$			
7/ Le minimum de f sur $[-5; 5]$			\mathscr{C}_f
est atteint en $x = -4$			

1) Compléter en donnant le meilleur encadrement possible :

a)	Si	-3 <	x <	1	alors	
~ /	~ -	9 .		_	CULCIE	

$$< f(x) <$$
 , car f est sur

b) Si
$$3 < x < 5$$
 alors

c) Si
$$-5 < x < -4$$
 alors $< f(x) <$, car f est sur

d) Si
$$2 < a < b < 4$$
 alors $f(a) \dots f(b) \dots$, car f est sur

$$\dots f(a)$$

e) Si
$$-5 < a < b < -4$$
 alors ... $f(a) \dots f(b) \dots$, car f est ... sur

f) Si
$$-5 < a < -1$$
 alors $< f(a) <$.

g) Si
$$-5 \leqslant a \leqslant -1$$
 alors $< f(a) <$

- t	(α)	
∖ .I	(a)	_

2) Dressons le tableau de variation et de signe :

x	 	 • • •	x	 	
			signe		
f(x)			de		
			f(x)		

3) Un tableau de variations enrichi:

x	 	
f(x)		

Exercice 1

Associer chaque courbe au tableau de variation qui lui correspond.

Exercice 2

- 1) Quelle représentation graphique correspond à la fonction f dont le tableau de variation est donné ci-dessous?
- 2) Complétez les tableaux de variations des fonctions restantes

<i>2)</i> Con	2) Completez les tableaux de variations des fonctions restantes.						
x	-2.5 1 2.5	x		x			
f(x)	$\begin{array}{ c c c c c }\hline & 1,8 & \\ \hline & & -1 & \\ \hline \end{array}$						
x		x		x			

Exercice 3 Soit le tableau de variation d'une fonction f.

x	-5	-3	-1	2	4
f(x)	4 ~	_2_	-2	_1-	→ 4

- 1) Préciser le domaine de définition de f
- 2) Compléter les pointillés : f(...) = 2; f(2) = ...
- 3) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 4) Donner un encadrement de f(x) pour $x \in [-5, -1]$.
- 5) Même question pour $x \in [2; 4]$.
- 6) Comparer les valeurs suivantes.

Préciser si l'on ne peut pas conclure à partir du tableau de variation.

- 7) Quel est le minimum de la fonction f sur [-5; 4]? En valeur de x est-il atteint?
- 8) Quel est le nombre de solution de l'équation f(x) = 1? Donner un encadrement le plus précis possible de chaque solution.

Exercice 4 Soit le tableau de variation d'une fonction f.

- 1) Préciser le domaine de définition de f
- 2) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3) Sur chaque intervalle ou f est monotone, donner un encadrement de f(x).
- 4) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.
 - a) $f(-3) \dots f(-2)$ | c) $f(0) \dots f(0,2)$ | e) $f(0) \dots f(2)$ | g) $f(0) \dots f(3,25)$ | b) $f(3) \dots f(3,25)$ | d) $f(2) \dots f(1,8)$ | f) $f(-3) \dots f(0)$ | h) $f(-3) \dots f(2)$
- 5) Quel est le maximum de la fonction f sur [-4; 3,5]?
- 6) Donner le nombre de solution de l'équation f(x) = -4 et un encadrement le plus précis possible de chacune.

^{1.} Il est sous-entendu en seconde, qu'en l'absence d'indications supplémentaires, les fonctions sont strictement monotones et continues. Par exemple, si x varie de -3 à -1, alors f(x) prend toutes les valeurs entre -2 et 2 (une seule fois). La justification est abordée en terminale.

Exercice 5 Soit le tableau de variation d'une fonction f.

- 1) Préciser le domaine de définition de f
- 2) Décrire le sens de variation de la fonction f en précisant les intervalles ou f est monotone.
- 3) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.

- a) $f(-2) \dots 1$ | b) $f(1) \dots 0$ | c) $f(3) \dots 0$ | d) $f(-2) \dots f(4,5)$
- 4) Quel est le nombre de solution de l'équation f(x) = 0? Donner un encadrement possible.

Exercice 6 Soit le tableau de variation d'une fonction f.

- 1) Donner le domaine de la fonction.
- 2) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.

a)
$$f(4,5) \dots f(5,5)$$

b)
$$f(-1) \dots f(0)$$

- 3) Quel est le nombre de solutions de l'équation f(x) = -1?
- 4) Dresser le tableau de signe de la fonction f.

Exercice 7 Soit le tableau de variation d'une fonction f.

x	-10	-5	1	3	5	10
f(x)	-3	_5	_0_	, 2 <u> </u>	_0_	-1

- 1) Donner le domaine de la fonction.
- 2) Comparer les valeurs suivantes. Préciser si l'on ne peut pas conclure.

a)
$$f(-1) \dots f(-\frac{2}{3})$$
 | b) $f(2) \dots f(4)$

b)
$$f(2) \dots f(4)$$

$$| c) f(-1) \dots f(4)$$

- 3) Quel est le nombre de solutions de l'équation f(x) = -0.5. Donner un encadrement de chacune, le plus précis possible.
- 4) Dresser le tableau de signe de la fonction f.

Exercice 8 Construire le tableau de variations de la fonction f sachant que :

- f est définie sur [-1; 6]
- l'image de 3 par f est 1
- f(-1) = 3
- 2 est un antécédent de -1 par f.

- 6 est un antécédent de 5 par f.
- f est décroissante sur [-1; 2]
- f est croissante sur [2; 6]

x	
f(x)	

Exercice 9

Les points E, F, G et H sont placés respectivement sur les segments [AB], [BC] et [CD] et [AD] de façon à ce que AE = AH = CF = CG = x. On désigne par A(x) l'aire du parallélogramme EFGH.

- 1) À quel intervalle appartient x?
- 2) Justifier que $A(x) = 10x 2x^2$.
- 3) Quel est le domaine de définition de la fonction A?
- 4) À l'aide du menu fonction de la pythonette compléter le tableau de valeurs ci-dessous à l'aide de la calculatrice. Donner les résultats à 10^{-2} près.

x	0.5	1	2	3	3.5	4
A(x)						

5) À l'aide du menu fonction de la pythonette dresser le tableau de variation de A.

	1 0
x	
A(x)	

- 6) a) Déterminer graphiquement la valeur de x pour laquelle aire est égale à $4 \,\mathrm{cm}^2$.
 - b) Résoudre graphiquement l'équation A(x) = 8 d'inconnue x.
- 7) a) Résoudre graphiquement l'inéquation $A(x) \ge 12$.
 - b) Pour quelles valeurs de x, l'aire est elle inférieure à $4 \,\mathrm{cm}^2$.
 - c) Pour quelle valeur de x l'aire est elle maximale?