Neural Networks - Assignment 1

Bastian Lang

October 9, 2015

1 OUTLINE CHAPTER I

- What is a neural network?
 - Motivated by human brain
 - complex, nonlinear, parallel
 - Benefits of neural networks
 - * Nonlinearity
 - * Input-output mapping
 - * Adaptivity
 - * Evidential Response
 - * Contextual information
 - * Fault tolerance
 - * VLSI implementability
 - * Uniformity of analysis and design
 - * Neurobiological analogy
- Human brain
 - about 10 billion neurons
 - about 60 trillion synapses/connections
 - energetic efficient

- chemical synapses: electrical signal -> chemical signal -> electrical signal
- plasticity via new connections and modification of existing ones
- structural level of organization
- · Models of a neuron
 - Neuron: Information-processing unit
 - Three basic elements:
 - * Set of synapses
 - * Adder
 - * Activation function/squashing function
 - Types of activation function
 - * Threshold function (McCulloch-Pitts model)
 - * Piecewise-linear function
 - * Sigmoid function
 - Stochastic model of a neuron
- · Neural Networks viewed as directed graphs
 - Block diagram: functional description
 - Signal-flow graph: signal flow
 - * Rule1: Signal flows in direction defined by arrow
 - * Rule2: Node signal equals sum of entering signals
 - * Rule3: Signal of node is transmitted to each outgoing link
 - Architectural graph: network layout
- Feedback
 - Feedback: Output influences input
 - Recurrent networks
 - closed-loop operator: $\frac{A}{1-AB}$
 - open-loop operator: AB
- · Network architectures
 - Single-layer feedforward networks
 - * No hidden layer
 - Multi-layer feedforward networks
 - * Contains hidden layer
 - Recurrent Networks

- * At least one feedback loop
- Knowledge representation
 - Training via input-output pairs
 - Learning: applying algorithm on a training set
 - Generalization: test learned model on test set
 - Rule1: Similar input from similar classes should be classified into the same category
 - Rule2: Items of different classes should be given different representations in the network.
 - Rule3: The more important a feature, the more neurons to represent it
 - Rule4: Prior information should be built into the network beforehand
 - How to build prior information into neural network design
 - * No well-defined rules
 - * receptive fields
 - * weight-sharing
 - How to build invariances into neural network design
 - * Invariance by structure
 - * Invariance by training
 - * Invariant feature space
- Artificial intelligence and neural networks
 - Representation
 - Reasoning
 - Learning
 - Level of explanation
 - Processing style
 - Representational structure
- Historical notes
- 2 FROM HAYKIN'S BOOK, CHAPTER 1 PROBLEMS "MODELS OF A NEURON", SOLVE ANY 2 OUT OF 11 (1.1 TO 1.11).

2.1 Exercise 1.6

Consider the pseudolinear activation function $\phi(v)$ shown in figure P1.6. (a) Formulate $\phi(v)$ as a function of v.

(b) What happens to $\phi(v)$ if α is allowed to approach zero?

(a)

$$\phi(v) = \begin{cases} 0 & \text{if } v < -0.5\alpha \\ b & \text{if } v > 0.5\alpha \\ \frac{b}{\alpha}v + 0.5b & \text{else} \end{cases}$$

(b)

The function will not be defined for $\alpha = 0$. The function becomes more and more similar to a step function with value 0 for $\nu < 0$ and value b for $\nu > 0$.

2.2 Exercise 1.7

Repeat Problem 1.6 for the pseudolinear activation function $\phi(v)$ shown in Fig. P1.7.

(a)

$$\phi(v) = \begin{cases} -b & \text{if } v < -\alpha \\ b & \text{if } v > \alpha \\ \frac{b}{\alpha}v & \text{else} \end{cases}$$

(b)

The function will not be defined for $\alpha = 0$. The function becomes more and more similar to a step function with value -b for $\nu < 0$ and value b for $\nu > 0$.

- 3 From Haykin's book, Chapter 1 problems "Network architectures", solve any 2 out of 7 (1.12 to 1.19) including 1.13.
 - 3.1 Exercise 1.12
 - 3.2 EXERCISE 1.16

Figure 3.1: Fully recurrent network with five neurons, no self-feedback

Figure 3.2: Fully connected 10-4-3-1 feedforward network