6.1 Weighted Interval Scheduling

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

 ${\color{blue} \textit{Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.} \\$

Weighted Interval Scheduling

Weighted interval scheduling problem.

- \blacksquare Job j starts at $s_j,$ finishes at $f_j,$ and has weight or value \boldsymbol{v}_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le \ldots \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex:
$$p(8) = 5$$
, $p(7) = 3$, $p(2) = 0$.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - collect profit v_j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $\,p(j)\,$
- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $\,$ j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s<sub>1</sub>,...,s<sub>n</sub>, f<sub>1</sub>,...,f<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>

Sort jobs by finish times so that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)
      return 0
   else
      return max(v<sub>j</sub> + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s<sub>1</sub>,...,s<sub>n</sub>, f<sub>1</sub>,...,f<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>

Sort jobs by finish times so that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.

Compute p(1), p(2), ..., p(n)

for j = 1 to n
    M[j] = empty
    M[j] = empty
    M[o] = 0

M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(v<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n).
- Computing $p(\cdot)$: O(n log n) via sorting by start time.
- \blacksquare M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry M[j] and makes two recursive calls
- \blacksquare Progress measure Φ = # nonempty entries of M[].
 - initially Φ = 0, throughout $\Phi \leq$ n.
 - (ii) increases Φ by 1 $\,\Rightarrow\,$ at most 2n recursive calls.
- Overall running time of M-Compute-Opt (n) is O(n). ■

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n

Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = \max(v_j + M[p(j)], M[j-1])
}
```

Weighted Interval Scheduling: Finding a Solution

- ${\bf Q}.$ Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

■ # of recursive calls \leq n \Rightarrow O(n).

6.3 Segmented Least Squares

15