Лабораторная работа 2.1.6. "Эффект Джоуля — Томсона" Радькин Кирилл Б01 — 005

Эффектом Джоуля — Томсона называется изменение температуры газа, медленно протекающего из области высокого давления в область низкого давления в условиях хорошей тепловой изоляции. В разряженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура не изменяется. Эффект Джоуля — Томсона демонстрирует отличие исследуемого газа от реального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1 V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2 V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right) \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{\mu \left(v_2^2 - v_1^2\right)}{2}$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

$$\mu = \frac{\Delta T}{\Delta P} \approx \frac{2a/RT - b}{C_n} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля-Томсона для не очень плотного газа зависит от соотношения величин а и b, которые оказывают противоположное влияние на знак эффекта. Если

силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий а, и

$$\frac{\Delta T}{\Delta P} > 0$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые \mathfrak{a}):

$$\frac{\Delta T}{\Delta P} < 0$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа —возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.При температуре T_i коэффициент μ обращается в нуль. Используя связь между коэффициентами α и β и критической температурой:

$$T_{i} = \frac{27}{4} T_{k} \tag{4}$$

При температуре T_i эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu > 0$, газ охлаждается), выше T_i эффект отрицателен ($\mu < 0$, газ нагревается).

Температура инверсии у всех газов лежит значительно выше критической. Для большинства газов $\frac{T_i}{T_k}=5-8$. Например, для гелия $T_i=46$ K, $T_k=5,2$ K; для водорода $T_i=205$ K, $T_k=33$ K; для азота $T_i=604$ K, $T_k=126$ K; для воздуха $T_i=650$ K, $T_k=132,6$ K; для углекислого газа $T_i=2050$ K, $T_k=304$ K. Температура инверсии у гелия и водорода значительно ниже комнатной, поэтому при обычных температурах эти газы при расширении нагреваются. Температура инверсии остальных газов выше комнатной, и при нормальных условиях температура при расширении газа падает.

Сравнивая приведенные значения Т инв и Т кр, можно убедиться в том, что предсказания, следующие из формулы Ван-дер-Ваальса, у реальных газов выполняются не очень хорошо. Правильно передавая качественную картину поведения реальных газов, формула Ван-дер-Ваальса не претендует на хорошее количественное описание этой картины.

Экспериментальная установка:

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

В работе исследуется изменение температуры углекислого газа при медленно его стекании по трубке с пористой перегородкой.

Ход работы:

- 1) Настроим вольтметр и термостат.
- 2) Измерим показания вольметра при $\Delta P=0$. Используем это значение для дальнейшей корректировки показаний: $E=U(\Delta P)-U(0)$.
- 3) Откроем регулирующий вентиль настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм.
- 4) Через 10-15 минут (когда установятся все переходные процессы), запишем показания вольтметра.
- 5) При помощи вентиля уменьшим давление на 0.5 атм. Через 5 минут, когда установятся давление и разность температур, снова запишем показания вольтметра.
- 6) Проведем измерения для нескольких значений давления , $T=20^{\circ}C.$

7) T =
$$30^{\circ}$$
C

8) T =
$$50^{\circ}$$
C

9) Чтобы из показаний вольметра получить разность температур, необходимо разделить их на

чувствительность термопары: 40.7 мкВ/°С для температуры $T=20^{\circ}C$, 41.6 мкВ/°С для $T=30^{\circ}C$, 43.3 мкВ/°С для $T=50^{\circ}C$

10) Построим график зависимости ΔT от ΔP для различных T:

Коэффициенты Джоуля-Томсона:

- T = 20° C: $\mu = (97.3 \pm 3.1) \cdot 10^{-7}$ K/ Πa
- T = $30^{\circ}C$: $\mu = (91.3 \pm 0.7) \cdot 10^{-7} \text{ K/Ha}$
- $T = 50^{\circ} \text{C}$: $\mu = (73.4 \pm 2.3) \cdot 10^{-7} \text{ K/}\Pi\text{a}$

11) Используя формулу $\frac{\Delta T}{\Delta P} = \frac{(2\alpha/RT-b)}{C_p}$ и экспериментальные данные, определим постоянные α и b для двух пар температур: $T=20^{\circ}C$ и $T=30^{\circ}C$ и $T=30^{\circ}C$ и $T=50^{\circ}C$:

- Для $T = 20^{\circ}$ С и $T = 30^{\circ}$ С: $\alpha = 0.9$ Н * м⁴/моль, $b = 34 \cdot 10^{-5}$ м³/моль.
- ullet Для $T=30^{\circ}C$ и $T=50^{\circ}C$: a=1.5 H * $m^4/$ моль, $b=81\cdot 10^{-5}$ $m^3/$ моль.

Табличные a и b:

- a = 0.37 H * м⁴/моль
- $b = 4.5 \cdot 10^{-5} \text{ м}^3/\text{моль}$
- 12) Используя найденные постоянные, посчитаем $T_{inv} = \frac{2a}{Rb}$:
 - ullet Для $T=20^{\circ}C$ и $T=30^{\circ}C$: $T_{inv}=636\pm25K$
 - Для $T=30^{\circ}C$ и $T=50^{\circ}C$: $T_{inv}=442\pm17K$

Вывод: настоящая $T_{\rm inv}=2050 K$ (для углекислого газа) и коэффициенты α и b не совпадает с полученными нами значениеми, что говорит о неточности и неприменимости уравнения Ван-дер-Вальса для идеального газа.