COMP90042 Web Search & Text Analysis

Workshop Week 5

Zenan Zhai April 9, 2019

University of Melbourne

Warm up

Fig from workshop slides 2018 by Yuan Li
http://vlearn.fed.cuhk.edu.hk/meaningrelations/
srex_meronyms/

1

Outline

- Lexical Semantics
 - · Wu & Palmer Similarity
 - Lin Similarity
 - Word Sense Disambiguation (WSD)
- · Distributional Semantics
 - Vector Space Model (VSM)
 - · Point-wise Mutual Information (PMI)
 - · Neural Word Embeddings
- · Excercise Notebook

Wu & Palmer Similarity

$$Simwup = \frac{2 \times depth(LCS(w_1, w_2))}{depth(w_1) + depth(w_2)}$$

- · Lowest Common Subsummer (LCS)
 - Deepest shared parent of 2 words.
- · Use depth instead of path length.
- · Exercise information and retrieval

Lin Similarity

Information Content

$$IC(w) = -logP(w)$$

· rare words are more informative

Lin Similarity

$$Simlin(w_1, w_2) = \frac{2 \times IC(LCS(w_1, w_2))}{IC(w_1) + IC(w_2)}$$

- · penalize frequent LCS
- penalize similarity between rare words

/ı

Word Sense Disambiguation

Definition

 Automatically determining which sense (usually, Wordnet synset) of a word is intended for given token instance with a document.

Supervised Methods

Trained classifier for choosing the correct sense

Less supervised Methods

- Lesk match WordNet dict gloss to context
- Yarowsky Bootstrap adding confident prediction to training set

Outline

- · Lexical Semantics
 - · Wu & Palmer Similarity
 - Lin Similarity
 - Word Sense Disambiguation (WSD)
- Distributional Semantics
 - Singular Vector Decomposition (SVD)
 - · Point-wise Mutual Information (PMI)
 - · Neural Word Embeddings
- · Excercise Notebook

PMI - Concept

$$PMI(a,b) = log_2 \frac{P(a,b)}{P(a) \times P(b)}$$

Numerator: Actual joint prob. observed in corpus.

· More weight for words appears in pairs.

Denominator: Expect prob. under independent assumption.

· Penalize frequent words (e.g. the, a)

Weakness

- When P(a,b) = 0, $PMI(a,b) = -\infty$
- Bias for co-occurrence of 2 rare words.

7

PMI - Excercise

	apple	pear	banana	peach	\sum
fruit	3	0	4	1	8
delicious	0	3	0	0	3
bad	0	0	4	4	8
company	1	2	0	0	3
\sum	4	5	8	5	22

$$P(fruit) = \frac{8}{22}$$

$$P(apple) = \frac{4}{22}$$

$$P(fruit, apple) = \frac{3}{22}$$

$$PMI(fruit, apple) = \frac{P(fruit, apple)}{P(fruit) \times P(apple)}$$

PMI - Exercise

	cup	(not) cup
world	55	225
(not) world	315	1405

- PMI(world, cup) ?
- How to get word vectors from PMI?

Neural Word Embeddings

- · What is Softmax?
- What is Negative Sampling?
- Where does the word embeddings come from?
- What is the difference between CBOW and skip-gram?