Computer Architecture Final Project Report

B10901166 許蘊琰 B10901006 鄒昀樺

1. Execution Cycle Number

```
Success!
The test result is ....PASS :)

Warning-[STASKW_EMFW20] Exceeds maximum field width of 20 ../00 TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20. Resetting field width to 20. Please use field width not greater than 20 in format specification is result is ....PASS :)

Warning-[STASKW_EMFW20] Exceeds maximum field width of 20 ../00 TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20. Resetting field width to 20. Please use field width not greater than 20 in format specifier is '32' which exceeds width of 20 ../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 ../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width not greater than 20 in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format specifier is '32' which exceeds width of 20 .../00_TB/tb.v, 744

Field width given in format
```

Instruction Set	Execution Cycle
10	142
I1	721
I2	646
I3	2619

2. Synthesizable Check: all flip-flops

														_				
Register Name	Туре	١	Width	I	Bus	١	MB	I	AR	I	AS	I	SR	1	SS	I	ST	I
PC_reg PC_reg state_reg	Flip-flop Flip-flop Flip-flop	i	31 1 2		Y N Y		N N N		Y N Y		N Y N		N N N		N N N		N N N	
Register Name	======== Type		===== Width		==== Bus		MB		AR		AS		=== SR		SS		ST	==
mem_reg mem_reg	Flip-flop Flip-flop		995 29		Y Y		N N		Y N		N Y		N N		N N		N N	
======================================	======================================		====== Width	<u>-</u>	Bus		MB		AR		AS		SR	<u>=</u>	SS		ST	
Register Name instruc_delay_reg	Type Type Flip-flop		====== Width ======= 32	 	Bus Y	 	MB N		AR N		AS N		SR N		SS N		ST N	
=======================================			======											 				== == ==
=======================================		= =	======		Y		N	<u> </u>	N	 	N	 	N	 		 	N	==

3. Design Description

- Instruction fetch and handle single cycle instructions
- Access data memory
- Wait for data memory access finished
- MUL calculations

CPU Submodules

- ImmGen: Generate different immediate values for various instructions.
- Controller: Generate control signals (e.g. ALUSrc, Branch...) and ALUOp according to different instructions.
- ALUControl: Assign ALU control input depending on ALUOp and funct3, 7.
- ALU: Implement arithmetic operations according to ALU control input
- MULDIV unit: Handle multiplications
- Reg file

Special Instructions

- Jal
 - ♦ Decode opcode and use ImmGen to generate imm
 - \Rightarrow PC branch = PC + imm
 - \Leftrightarrow Write PC + 4 into reg
- Jalr
 - ♦ Decode opcode and use ImmGen to generate imm
 - \Rightarrow Jalr = 1, PC nxt = rd1 + imm
 - \Rightarrow Write PC + 4 into reg
- Auipc
 - ♦ Decode opcode and use ImmGen to generate imm
 - ♦ Use Auipc (pulled to high) signal to determine MUX value
 - \Rightarrow MUX = 1, ALUresult = PC + imm
 - \Rightarrow MUX = 0, ALUresult = rd1 + imm

 \diamondsuit

Handling Multi-cycle Instructions

Once the CPU receives **mul** instruction, it will jump to multi-cycle state. During the calculations, use a counter to count how many cycles has passed. As soon as the counter reaches 32, pull up alu_done (which means the calculations is done) and the FSM will change to the next state.

4. Work distribution Table

Work Name	鄒昀樺	許蘊琰
ImmGen	70%	30%
Control	60%	40%
ALU related	30%	70%
MULDIV	40%	60%
Report	50%	50%