Projective Geometery

Tejaswi

Contents

1	Conics		1
	1.1	Dandelin Spheres	1
		Group Laws on Conics	

Chapter 1

Conics

1.1 Dandelin Spheres

Germinal Pierre Dendelin, a 19th century French-Belgian Professor, discovered this beautiful proof to demonstrate that any plane that cuts through a right circular cone produces a quadratic curve.

Theorem 1. When a plane intersects a right circular cone, the curve produced will either be an ellipse, a parabola or a hyperbola.

Proof. Place a sphere tangent to the intersecting plane π and the cone such that it touches the plane at F, and the cone in a circle C with centre O that lies on a horizontal plane ϵ^{-1} .

Take an aribtrary point P on the curve Q, and extend the line VP from the vertex V of the cone to meet C at point L. Let D be the point on the intersection on the planes π and ϵ such that PD is perpendicular to the line of intersection.(If the planes do not intersect, Q will be a circle)

Drop a perpendicular PM on OL such that $\triangle PML$ and $\triangle PMD$ are both right angled. Denote $\angle PLM$ as α , and $\angle PDM$ as β . From the triangles $\triangle PML$ and $\triangle PMD$

$$\sin \alpha = \frac{PM}{PD}$$
and
$$\sin \beta = \frac{PM}{PL}$$
i.e.
$$\frac{PL}{PD} = \frac{\sin \alpha}{\sin \beta}$$

¹Assuming that there exists at least one such sphere

Figure 1.1: When $0 < \alpha < \beta < \frac{\pi}{2}$

Since PL and PF are both tangents from P to the sphere, PF = PL. Therfore,

$$\frac{PF}{PD} = \frac{\sin \alpha}{\sin \beta}$$

i.e. $PF = e \cdot PD$, where $e = \sin \alpha / \sin \beta$

It follows from the focus - directrix definition that Q will be an ellipse if $\alpha < \beta$, a parabola if $\alpha = \beta$, or a hyperbola if $\alpha > \beta$.

1.2 Group Laws on Conics