Problema 1.

Problema 2. Los formantes son dos frecuencias a las que el tracto vocal ofrece una ganancia especialmente alta. Se situan entre los $200\,\mathrm{Hz}$ y los $2\,\mathrm{kHz}$ y su combinación determina el tipo de fonema que se percibe.

Si representamos la combinación de los dos formantes en un plano, y anotamos las posiciones de las vocales, veremos que tienen una disposición similar a un triángulo. Esto se llama *triángulo vocálico* y sucede en el español y en la mayoría de idiomas, si bien la forma puede ser algo distinta.

Problema 3. Los bins de la DFT correspondientes a las formantes son $n_1 \simeq 62$ y $n_2 \simeq 135$. Segun f = n/N f_s con $f_s = 8$ kHz y N = 1000, tenemos que los dos formantes son:

$$f_1 \simeq 496 \, \mathrm{Hz}$$
 $f_2 \simeq 1080 \, \mathrm{Hz}$

Según la figura 2, esto corresponde a una vocal «o».

Problema 4.

Apartado A. Respecto al pitch, la distancia entre los «deltas» (harmónicos) que se obserban en la DFT es de unos 41 bins y por tanto 200 Hz sería la frecuencia fundamental.

Apartado B. Siguiendo el mismo procedimiento que en el problema 2, la envolvente alcanza valores altos en aproximadamente $n_1 \simeq 110; n_2 \simeq 360$ que corresponden a las frecuencias $f_1 \simeq 537\,\mathrm{Hz}; f_2 \simeq 1758\,\mathrm{Hz}.$

Apartado C. En base a los dos formantes, la vocal parece ser una «e». La distancia es más grande de lo habitual.

Problema 5.

Apartado A. Sí, porque podemos apreciar múltiples sincs (armónicos) y separarlas con suficiente claridad.

Apartado B. Si la vocal es una «u», los formantes deben ser aproximadamente $380\,\mathrm{Hz}$ y $900\,\mathrm{Hz}$, y dado que N=500 y corresponden a los bins 18 y 63, la frecuencia de muestreo que más cuadra es $8\,\mathrm{kHz}$.

Apartado C. La frecuencia fundamental es de 9 bins y por tanto 144 Hz. Es muy arriesgado decir si corresponde a un hombre o a una mujer, aunque es ligeramente más probable lo primero.

Problema 6.

Apartado A. La frecuencia fundamental 100 Hz se situa en el bin 206, y N=2048, con lo cual aislamos f_s de f=n/N f_s y nos queda $f_s=f^N/n\simeq 994$ Hz.

Apartado C. La amplitud de la sinusoide debería coincidir con la amplitud de la sinc que apreciamos en la DFT dividida por el numero de muestras de la DFT, con lo cual $\frac{1000}{2048} = 0.488$.