Nelson
Categories
Fork and Join
Operacoes Numericas
Examples
Generalizing Automatic Differentiation
Scaling Up
Related Work and conjusion

...Machine Learning...

Artur Ezequiel Nelson

Universidade do Minho

26 de Abril

Indice

- Nelson
- Categories
- Fork and Join
- Operacoes Numericas
- 5 Examples
- Generalizing Automatic Differentiation
- Scaling Up
- Related Work and confusion

titulo

Uma curta introdução

- Queremos calcular \mathcal{D}^+ .
- Problema: \mathcal{D} não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Uma curta introdução

- Queremos calcular \mathcal{D}^+ .
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Uma curta introdução

- Queremos calcular \mathcal{D}^+ .
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Uma curta introdução

Corolário 1.1

NOTA: adicionar definição do corolário 1.1 aqui

Corolário 2.1

NOTA: adicionar definição do corolário 2.1 aqui

Corolário 3.1

NOTA: adicionar definição do corolário 3.1 aqui

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos), tendo definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

• (C.1) —
$$id \circ f = id \circ f = f$$

• (C.2) — $f \circ (g \circ h) = (f \circ g) \circ h$

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funções

class *Category k* where id :: (a'k'a)

instance *Category* (
$$\rightarrow$$
) where id = λ a \rightarrow a

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos), tendo definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

• (C.1) —
$$id \circ f = id \circ f = f$$

• (C.2) —
$$f \circ (g \circ h) = (f \circ g) \circ h$$

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funções

class *Category k* where id :: (a'k'a)

instance *Category* (
$$\rightarrow$$
) where id = $\lambda a \rightarrow a$

Functores clássicos

Um functor F entre categorias \mathcal{U} e \mathcal{V} é tal que:

- para qualquer objeto $t \in \mathcal{U}$ temos que F $t \in \mathcal{V}$
- para qualquer morfismo m :: a \rightarrow b \in $\mathcal U$ temos que F m :: F a \rightarrow F b \in $\mathcal V$
- F id $(\in \mathcal{U}) = id (\in \mathcal{V})$
- $F(f \circ g) = F f \circ F g$

Nota

Devido à definição de categoria deste papel(objetos são tipos de dados) os functores mapeiam tipos neles próprios.

Objetivo

Começamos por definir um novo tipo de dados:

newtype
$$\mathcal{D}$$
 a b = $\mathcal{D}(a \rightarrow b \times (a \multimap b))$

Depois adaptamos \mathcal{D}^+ para usar este tipo de dados:

Definição adaptada

$$\hat{\mathcal{D}}$$
 :: $(a \rightarrow b) \rightarrow \mathcal{D}$ a b $\hat{\mathcal{D}}$ f = $\mathcal{D}(\mathcal{D}^+$ f)

O nosso objetivo é a dedução de uma instância de categoria para $\mathcal D$ onde $\hat{\mathcal D}$ seja functor.

Dedução da instância

Recordando os corolários 3.1 e 1.1 deduzimos que

• (DP.1) —
$$\mathcal{D}^+id = \lambda a \rightarrow (id \ a,id)$$

• (DP.2) —-
$$\mathcal{D}^+(g \circ f) = \lambda a \rightarrow let\{(b, f') = \mathcal{D}^+ \text{ f a}; (c, g') = \mathcal{D}^+ \text{ g b}\} \text{ in } (c, g' \circ f')$$

 $\hat{\mathcal{D}}$ ser functor é equivalente a dizer que, para todas as funções f e g de tipos apropriados:

• id =
$$\hat{\mathcal{D}}$$
 id = $\mathcal{D}(\mathcal{D}^+id)$

•
$$\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D}(\mathcal{D}^+(g \circ f))$$

Dedução da instância

Com base em (DP.1) e (DP.2) podemos reescrever como sendo:

- id = $\mathcal{D}(\lambda a \rightarrow (id \ a,id))$
- $\hat{\mathcal{D}}$ g \circ $\hat{\mathcal{D}}$ f = \mathcal{D} ($\lambda a \rightarrow let\{(b, f') = \mathcal{D}^+$ f a; $(c, g') = \mathcal{D}^+$ g b } in $(c, g' \circ f')$)

Resolver a primeira equação é trivial(definir id da instância como sendo $\mathcal{D}(\lambda a \to (\text{id a,id})))$.

A segunda equação será resolvida resolvendo uma condição mais geral: $\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \to let\{(b,f') = f \ a; \ (c,g') = g \ b \ \}$ in $(c,g' \circ f')$, cuja solução é igualmente trivial.

Nelson
Categories
Fork and Join

Fork and Join

Operacoes Numericas

Examples
Generalizing Automatic Differentiation

Scaling Up

Dedução da instância

Definição de $\hat{\mathcal{D}}$ para funções lineares

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b linearD f = $\mathcal{D}(\lambda a \rightarrow (f a, f))$

Instância da categoria que deduzimos

instance Category \mathcal{D} where

$$\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \rightarrow let\{(b,f') = f a; (c,g') = g b \} in (c,g' \circ f'))$$

Prova da instância

Antes de continuarmos devemos verificar se esta instância obedece às leis (C.1) e (C.2).

Se considerarmos apenas morfismos $\hat{f}::\mathcal{D}$ a b tal que $\hat{f}=\mathcal{D}^+$ f para $f::a\to b$ (o que podemos garantir se transformarmos \mathcal{D} a b em tipo abstrato) podemos garantir que \mathcal{D}^+ é functor.

Prova de (C.1)

 $\mathsf{id} \circ \hat{\mathcal{D}}$

 $=\hat{\mathcal{D}}id\circ\hat{\mathcal{D}}$ f -lei functor de id (especificação de $\hat{\mathcal{D}}$)

= $\hat{\mathcal{D}}$ (id \circ f) - lei functor para (\circ)

= $\hat{\mathcal{D}}$ f - lei de categoria

Nelson Categories

Fork and Join
Operacoes Numericas

Examples

Generalizing Automatic Differentiation

Scaling Up

Related Work and confusion

Prova da instância

Prova de (C.2)

 $\hat{\mathcal{D}} h \circ (\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f)$

 $=\hat{\mathcal{D}} \ \mathsf{h} \circ \hat{\mathcal{D}} \ (\mathsf{g} \circ \mathsf{f}) - \mathsf{lei} \ \mathsf{functor} \ \mathsf{para} \ (\circ)$

= $\hat{\mathcal{D}}$ (h \circ (g \circ f)) - lei functor para (\circ)

= $\hat{\mathcal{D}}$ ((h \circ g) \circ f) - lei de categoria

= $\hat{\mathcal{D}}$ (h \circ g) \circ $\hat{\mathcal{D}}$ f - lei functor para (\circ)

= $(\hat{\mathcal{D}} \ \mathsf{h} \circ \hat{\mathcal{D}} \ \mathsf{g}) \circ \hat{\mathcal{D}} \ \mathsf{f}$ - lei functor para (\circ)

Nota

Estas provas não requerem nada de \mathcal{D} e $\hat{\mathcal{D}}$ para além das leis do functor, logo nas próximas instâncias deduzidas de um

-realizar estas proves

Categorias e functores monoidais

A versão generalizada da composição paralela será definida através de uma categoria monoidal:

class Category
$$k \Rightarrow Monoidal\ k$$
 where instance $Monoidal\ (\rightarrow)$ where $(\times)::(a'k'c)\rightarrow (b'k'd)\rightarrow ((a\times b)'k'(c\times d))$ instance $f\times g=\lambda(a,b)\rightarrow (f\ a,g\ b)$

Definição de functor monoidal

Um functor F monoidal entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor clássico
- $F(f \times g) = F f \times F g$

200

Dedução da instância

A partir do corolário 2.1 deduzimos que:

$$\mathcal{D}^+$$
 (f \times g) = $\lambda(a,b)$ \rightarrow let{(c,f')= \mathcal{D}^+ f a; (d,g') = \mathcal{D}^+ g b } in ((c,d),f'×g')

Se definirmos o functor F a partir de $\hat{\mathcal{D}}$ chegamos à seguinte condição:

$$\mathcal{D}(\mathcal{D}^+ \mathsf{f}) \times \mathcal{D}(\mathcal{D}^+ \mathsf{g}) = \mathcal{D}(\mathcal{D}^+ \mathsf{(f} \times \mathsf{g}))$$

Substituindo e fortalecendo-a obtemos:

$$\mathcal{D} f \times \mathcal{D} g = \mathcal{D}(\lambda(a,b) \rightarrow let\{(c,f') = f a; (d,g') = g b \} in ((c,d),f'\times g'))$$

e esta condição é suficiente para obtermos a nossa instância.

Nelson Categories Fork and Join

Operacoes Numericas

Examples

Generalizing Automatic Differentiation

Scaling Up

Dedução da instância

Instância da categoria que deduzimos

instance *Monoidal* \mathcal{D} where

$$\mathcal{D} \ f \times \mathcal{D} \ g = \mathcal{D}(\lambda(a,b) \to \text{let}\{(c,f') = f \ a; \ (d,g') = g \ b \ \}$$
 in $((c,d),f'\times g'))$

Categorias e funtores cartesianas

class *Monoidal* $k \Rightarrow Cartesean$ instance $Cartesean \ (\rightarrow)$ k where exl :: $(a \times b)$ 'k'a exl = $\lambda(a,b) \rightarrow a$

 $\begin{array}{lll} \text{exl} :: (a \times b)\text{'k'a} & \text{exl} = \lambda(a,b) \to a \\ \text{exr} :: (a \times b)\text{'k'b} & \text{exr} = \lambda(a,b) \to b \\ \text{dup} :: a\text{'k'}(a \times a) & \text{dup} = \lambda a \to (a,a) \end{array}$

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor monoidal
- F exl = exl
- $F \exp = \exp$
- F dup = dup

Nelson

Categories

Fork and Join

Operacoes Numericas

Examples

Scaling Up

Generalizing Automatic Differentiation

Related Work and confusion

Dedução da instância

Pelo corolário 3.1 e pelo facto que exl, exr e dup são linerares deduzimos que:

$$\mathcal{D}^+$$
 exl $\lambda p \rightarrow$ (exp p, exl)

$$\mathcal{D}^+$$
 exr $\lambda p \rightarrow$ (exr p, exr)

$$\mathcal{D}^+$$
 dup $\lambda a \rightarrow$ (dup a, dup)

Após esta dedução podemos continuar a determinar a instância:

$$exl = \mathcal{D}(\mathcal{D}^+ exl)$$

$$exr = \mathcal{D}(\mathcal{D}^+ exr)$$

$$\mathsf{dup} = \mathcal{D}(\mathcal{D}^+ \, \mathsf{dup})$$

Dedução da instância

Substituindo e usando a definição de linearD obtemos:

exl = linearD exl

exr = linearD exr

dup = linearD dup

E podemos converter a dedução acima diretamente em instância:

Instância da categoria que deduzimos

instance Cartesian \mathcal{D} where

exl = linearD exl

exr = linearD exr

dup = linearD dup

Categorias cocartesianas

São o dual das categorias cartesianas.

Nota

Neste papel os coprodutos correspondem aos produtos das categorias, i.e., categorias de biprodutos.

```
class Category k \Rightarrow Cocartesian k where:
```

```
inl :: a'k'(a \times b)
inlr:: b'k'(a \times b)
jam :: (a \times a)'k'a
```


Functores cocartesianos

Definição de functor cocartesiano

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor
- F inl = inl
- F inr = inr
- F jam = jam

Fork and Join

- Δ :: Cartesian $k \Rightarrow (a' k' c) \rightarrow (a' k' d) \rightarrow (a' k' (c \times d))$
- ∇ :: Cartesian $k \Rightarrow (c' k' a) \rightarrow (d' k' a) \rightarrow ((c \times d)' k' a)$

Instance of \rightarrow^+

newtype
$$a \rightarrow^+ b = AddFun (a \rightarrow b)$$

instance $Category (\rightarrow^+)$ where
type $Obj (\rightarrow^+) = Additive$
 $id = AddFun id$
 $AddFun g \circ AddFun f = AddFun (g \circ f)$
instance $Monoidal (\rightarrow^+)$ where
 $AddFun f \times AddFun g = AddFun (f \times g)$
instance $Cartesian (\rightarrow^+)$ where
 $exl = AddFun exl$
 $exr = AddFun exr$
 $dup = AddFun dup$

Instance of \rightarrow^+

```
instance Cocartesian (\rightarrow^+) where
   inl = AddFun inlF
   inr = AddFun inrF
   iam = AddFun jamF
in F · Additive b \Rightarrow a \rightarrow a \times b
inrF :: Additive a \Rightarrow b \rightarrow a \times b
jamF :: Additive \ a \Rightarrow a \times a \rightarrow a
inlF = \lambda a \rightarrow (a, 0)
inrF = \lambda b \rightarrow (0, b)
iamF = \lambda(a,b) \rightarrow a+b
```

NumCat definition

```
class NumCat k a where

negateC :: a ' k ' a

addC :: (a \times a) ' k ' a

mulC :: (a \times a) ' k ' a

...

instance Num a \Rightarrow NumCat (\rightarrow) a where

negateC = negate

addC = uncurry (+)

mulC = uncurry (*)
```

$$\mathcal{D}$$
 (negate u) = negate (\mathcal{D} u)
 \mathcal{D} ($u + v$) = \mathcal{D} $u + \mathcal{D}$ v
 \mathcal{D} ($u * v$) = $u * \mathcal{D}$ $v + v * \mathcal{D}$ u

- Imprecise on the nature of u and v.
- A precise and simpler definition would be to differentiate the operations themselves.

Related Work and confusion

```
class Scalable k a where
  scale :: a \rightarrow (a' k' a)
instance Num a \Rightarrow Scalable (\rightarrow^+) a where
   scale a = AddFun (\lambda da \rightarrow a * da)
instance NumCat D where
  negateC = linearD negateC
  addC = linearD addC
  mulC = D(\lambda(a,b) \rightarrow (a*b, scale b \nabla scale a))
instance FloatingCat D where
   sinC = D (\lambda a \rightarrow (sin a, scale (cos a)))
  cosC = D (\lambda a \rightarrow (cos \ a. scale (-sin \ a)))
   expC = D (\lambda a \rightarrow let \ e = exp \ a \ in (e, scale \ e))
```

Related Work and confusion

Examples

 $sqr :: Num \ a \Rightarrow a \rightarrow a$ $sqr \ a = a * a$

magSqr :: Num $a \Rightarrow a \times a \rightarrow a$ magSqr (a, b) = sqr a + sqr b

cosSinProd :: Floating $a \Rightarrow a \times a \rightarrow a \times a$

Artur, Ezeguiel, Nelson

cosSinProd(x, y) = (cos z, sin z) where z = x * y

With a compiler plugin we can obtain

 $sqr = mulC \circ (id \Delta id)$ $magSqr = addC \circ (mulC \circ (exl \Delta exl) \Delta mulC \circ (exr \Delta exr))$ $cosSinProd = (cosC \Delta sinC) \circ mulC$

...Machine Learning...

200

Generalizing Automatic Differentiation

```
newtype D_k ab = D(a \rightarrow b \times (a'k'b))
linearD :: (a \rightarrow b) \rightarrow (a' k' b) \rightarrow D_k a b
linearD f f' = D (\lambda a \rightarrow (f a, f'))
instance Category k \Rightarrow Category D_k where
  type Obj D_k = Additive \wedge Obj k ...
instance Monoidal k \Rightarrow Monoidal D_k where ...
instance Cartesian k \Rightarrow Cartesian D_k where ...
instance Cocartesian k \Rightarrow Cocartesian D_k where
  inl = linearD inlF inl
  inr = linearD inrF inr
   <u>iam = linearD iam</u>F iam
```

instance Scalable $k \ s \Rightarrow NumCat \ D_k \ s$ where $negateC = linearD \ negateC \ negateC$ $addC = linearD \ addC \ addC$ $mulC = D \ (\lambda(a,b) \rightarrow (a*b, scale \ b \ \nabla \ scale \ a))$

- Practical applications often involves high-dimensional spaces.
- Binary products are a very inefficient and unwieldy way of encoding high-dimensional spaces.
- A practical alternative is to consider n-ary products as representable functors(?)

```
class Category k \Rightarrow Monoidall \ k \ h where crossl :: h (a \cdot k \cdot b) \rightarrow (h \ a \cdot k \cdot h \ b)
instance Zip \ h \Rightarrow Monoidall \ (\rightarrow) \ h where crossl = zipWith \ id
```



```
class Monoidall k \ h \Rightarrow Cartesianl \ k \ h where exl :: h \ (h \ a \ ' k \ ' a) repll :: a \ ' k \ ' h \ a class (Representable h, Zip \ h, Pointed \ h) \Rightarrow Cartesianl \ (\rightarrow) \ h where exl = tabulate \ (flip \ index) repll = point
```

 The following is not the class the author was thinking class Representable h where type Rep h :: *

tabulate :: (Rep $h \rightarrow a$) $\rightarrow h$ a

```
Nelson
Categories
Fork and Join
Operacoes Numericas
Examples
Generalizing Automatic Differentiation
Scaling Up
```

```
class Monoidall k h \Rightarrow Cocartesianl k h where
  inl :: h (a ' k ' h a)
  iaml :: h a ' k ' a
instance (Monoidall k h, Zip h) \Rightarrow Monoidall D_k h where
  crossI fs = D((id \times crossI) \circ unzip \circ crossI(fmap unD fs))
instance (Cocartesianl (\rightarrow) h, Cartesianl k h, Zip h) \Rightarrow
  Cartesianl Dk h where
  exl = linearD exl exl
  repll = zipWith linearD repll repll
```

instance (Cocartesianl k h, Zip h) \Rightarrow Cocartesianl D_k h where

4□ > 4回 > 4 = > 4 = > = 900

inl = zipWith linearD inlF inl jaml = linearD sum jaml Neison
Categories
Fork and Join
Operacoes Numericas
Examples
Generalizing Automatic Differentiation
Scaling Up
Belated Work and conjusion

ola

