FACULTE DES SCIENCES
Département de physique

UNIVERSITE IBN ZOHR Agadir

N° Exam :	NOM Prénom :	
CNE :		Filière :

27 juin 2016

EPREUVE D'OPTIQUE GEOMETRIQUE SMP2/SMC2 – SR – 1h30

Exercice

Soit un miroir sphérique dont le rayon de courbure est $R = \overline{SC} = 60 \, cm$. Un objet (AB) vertical et réel, de hauteur $h = \overline{AB} = 10 \, cm$, est placé sur l'axe optique à 30 cm du sommet du miroir. On supposera que les conditions de l'approximation de Gauss sont réalisées.

1 - Sans faire de calculs, quelle est la nature de ce miroir sphérique ? Justifier votre réponse.

Le miroir sphérique est divergent car il est convexe (ou bien $\overline{SC} > 0$)

2- Ecrire la relation de conjugaison, avec origine au sommet S, du miroir sphérique pour le couple de points conjugués (A , A').

$$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{\overline{SC}} = \frac{2}{R}$$

3- a) Déterminer la position de l'image (A'B') par rapport à S.

$$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{R} \implies \frac{1}{\overline{SA'}} = \frac{2\overline{SA} - R}{\overline{SA} \times R} \implies \overline{SA'} = \frac{\overline{SA} \times R}{2\overline{SA} - R} \qquad AN. \ \overline{SA'} = \frac{-30 \times 60}{2(-30) - 60} = 15 \ cm$$

b) Quelle est la nature de l'image (A'B') ? Justifier

L'image (A'B') est virtuelle car $\overline{SA'} > 0$ (située derrière le miroir)

c) Quels sont le sens et la hauteur h'= $\overline{A'B'}$ de l'image (A'B') ?

Le grandissement linéaire $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}} = -\frac{15}{-30} = \frac{1}{2} > 0 \implies image droite$. La hauteur de l'image est : $h' = \gamma h = 5$ cm

4- Montrer qu'un miroir sphérique convexe ne peut jamais donner une image réelle d'un objet réel.

 $\textbf{On } a: \overline{SA} \times \overline{SC} = \frac{\overline{SA} \times \overline{SC}}{2\overline{SA} - \overline{SC}} ; \quad \textbf{Objet r\'eel} \iff \overline{SA} < 0 \text{ et miroir convexe} \iff \overline{SC} > 0$ $\textbf{Donc}: \overline{SA} \times \overline{SC} < 0 \text{ et } 2\overline{SA} - \overline{SC} < 0 \text{ alors } \overline{SA'} > 0 ; \textbf{l'image} (A'B') \text{ est donc virtuelle}$

5- Sur la figure 1, retrouver géométriquement l'image (A'B'). (Echelle 1/10)

Problème

Le système optique à étudier est un cylindre plein en verre transparent, homogène et d'indice n. Les extrémités du cylindre sont limitées par deux surfaces sphériques formant deux dioptres sphériques $DS_1(S_1,C_1)$ et $DS_2(S_2,C_2)$. Le système optique centré ainsi formé est placé dans l'air d'indice 1 (Figure 2).

Les conditions de l'approximation de Gauss sont satisfaites.

On donne:
$$n = 3/2 = 1.5$$
, $\overline{S_1C_1} = \overline{S_2C_2} = R$ et $\overline{S_1S_2} = e = 3R$

Les résultats doivent être exprimés en fonction de R.

1 - Quelle est la concavité de chaque dioptre ? Justifier la réponse.

Le dioptre sphérique DS_1 est convexe car son rayon de courbure $\overline{S_1C_1}>0$. De même le dioptre sphérique DS_2 est convexe car $\overline{S_2C_2}>0$.

2- Quelle est la nature de chaque dioptre ? Justification.

 DS_1 est convergent car son centre C_1 est situé du côté du milieu le plus réfringent. DS_2 est divergent car son centre C_2 est situé du côté du milieu le moins réfringent. (On peut justifier par la différence des indices et le signe du rayon de courbure)

3- a) Donner la relation de conjugaison du dioptre DS₁ avec origine au sommet pour le couple de points conjugués (A , A₁).

$$\frac{n}{S_1 A_1} - \frac{1}{S_1 A} = \frac{n-1}{S_1 C_1} = \frac{n-1}{R} \quad ou \quad \frac{3}{2S_1 A_1} - \frac{1}{S_1 A} = \frac{1}{2R}$$

b) Quelles sont ses distances focales objet f_1 et image f'_1 ?

$$f_1 = -\frac{R}{n-1} = -2R$$
 ; $f_1' = \frac{nR}{n-1} = 3R$

c) Quelle est sa vergence V_1 ?

$$V_1 = \frac{n}{f_1'} = -\frac{1}{f_1} = \frac{1}{2R}$$

4- a) Donner la relation de conjugaison du dioptre DS_2 avec origine au sommet pour le couple de points conjugués (A_1, A') .

$$\frac{1}{\overline{S_2 A'}} - \frac{n}{\overline{S_2 A_1}} = \frac{1 - n}{\overline{S_2 C_2}} = \frac{1 - n}{R} \quad ou \quad \frac{3}{2\overline{S_2 A_1}} - \frac{1}{\overline{S_2 A'}} = \frac{1}{2R}$$

b) Quelles sont ses distances focales objet f_2 et image f'_2 ?

$$f_2 = \frac{nR}{n-1} = 3R$$
 ; $f_2' = \frac{R}{1-n} = -2R$

c) Quelle est sa vergence V_2 ?

$$V_2 = \frac{1}{f_2'} = -\frac{n}{f_2} = -\frac{1}{2R}$$

5- a) Déterminer la vergence *V* du système optique centré.

$$V = V_1 + V_2 - e \frac{V_1 V_2}{n}$$
 ou bien $V = -\frac{f_2 + e - f_1'}{f_1' f_2'}$; Soit: $V = \frac{1}{2R}$

b) Quelle est sa nature ? Justifier.

Le système est convergent car sa vergence V est positive

c) Quelles sont ses distances focales image f' et objet f?

$$f' = \frac{1}{V} = 2R$$
 ; $f = -f' = -2R$ (les milieux extrêmes sont identiques)

6- Déterminer la position du foyer principal objet F du système par rapport à F_1 .

$$F \xrightarrow{DS_1} F_2 \xrightarrow{DS_2} \infty$$
 Soit : $\overline{F_1F} \times \overline{F_1'F_2} = f_1f_1' \Rightarrow \overline{F_1F} = \frac{f_1f_1'}{f_2 + e - f_1'} = -2R$

7- Trouver la position du foyer image F' du système par rapport à F'_2 .

$$\infty \xrightarrow{DS_1} F_1' \xrightarrow{DS_2} F' \qquad Soit : \overline{F_2F_1'} \times \overline{F_2'F'} = f_2f_2' \implies \overline{F_2'F'} = -\frac{f_2f_2'}{f_2 + e - f_1'} = 2R$$

8- a) Sur la figure 3 à l'échelle unité, placer les points F_1 , F_1 , F_2 et F_2 pour R = 1cm. Ensuite tracer la marche, à travers le système, d'un rayon lumineux incident passant par F_1 .

b) En déduire les positions, en centimètres, des points nodaux N et N' ($\overline{S_1N}$ et $\overline{S_2N'}$) du système optique. Que peut - on dire du centre optique O de ce système ?

On remarque que les rayons incident et émergent sont parallèles, donc ils passent par les points nodaux N et N' du système. Alors : $N \equiv F_1$ et $N' \equiv F_2' \implies \overline{S_1 N} = \overline{S_2 N'} = -2$ cm.

Le centre optique O est l'image intermédiaire entre N et N'. Le rayon intérieur au système est parallèle à l'axe donc le centre optique O est projeté à l'infini.

c) Quelles sont alors les positions des points principaux H et H'?

Les points principaux H et H' sont confondus avec les points nodaux N et N' car les milieux extrêmes sont identiques.

9- Sur la figure 4, retrouver géométriquement la position du foyer F et celle du point principal H.

