HEP Simulations 0.1.0

Generated by Doxygen 1.8.17

1 Todo List	1
2 Namespace Index	3
2.1 Namespace List	3
3 Class Index	5
3.1 Class List	5
4 Namespace Documentation	7
4.1 HEP Namespace Reference	7
4.1.1 Detailed Description	8
4.2 HEP::Particles Namespace Reference	8
4.2.1 Detailed Description	10
4.2.2 Variable Documentation	10
4.2.2.1 Bc	10
4.2.2.2 phi_1020	10
4.3 HEP::Units Namespace Reference	11
4.3.1 Detailed Description	11
5 Class Documentation	13
5.1 HEP::Decay Class Reference	13
5.1.1 Detailed Description	13
5.2 HEP::DecayTable Class Reference	14
5.2.1 Detailed Description	14
5.3 HEP::LorentzVector Class Reference	15
5.3.1 Detailed Description	16
5.4 HEP::Particle Class Reference	16
5.4.1 Detailed Description	17
6 Example Documentation	19
6.1 KplusDecTable.hxx	19
Bibliography	21
Index	23

Todo List

Namespace HEP::Particles

Finish all particle definitions

Member HEP::Particles::Bc

Correct properties

Member HEP::Particles::phi_1020

Correct properties

Namespace HEP::Units

Finish all unit definitions

2 Todo List

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

HEP																							1
HEP::Particle	es																 						8
HEP::Units																	 					- 1	1

4 Namespace Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

HEP::Decay	
Decay Channel Class	13
HEP::DecayTable	
Decay Table Class	14
HEP::LorentzVector	
Lorentz Vector Class	15
HEP::Particle	
Particle Class	16

6 Class Index

Namespace Documentation

4.1 HEP Namespace Reference

Namespaces

- Particles
- Units

Classes

· class Decay

Decay Channel Class.

class DecayTable

Decay Table Class.

class LorentzVector

Lorentz Vector Class.

· class Particle

Particle Class.

Functions

std::ostream & operator<< (std::ostream &os, Decay &d)

Variables

- const DecayTable BcDecays = gen_BcDecays() $HEP::DecayTable \ of \ all \ decays \ of \ the \ B_c \ meson. \ The \ gen_BcDecays \ function \ generates \ all \ the \ relevant \ channels.$
- const DecayTable KplusDecays = gen_KplusDecays()

 DecayTable of all decays of the K^{\pm} meson. The gen_KplusDecay function generates all the relevant channels.

4.1.1 Detailed Description

The HEP namespace contains all currently accepted particles within the standard model and beyond. The masses and data are taken from the Particle Data Group listings [1].

Warning

It is recommend you do not use the namespace within the script as there is a high probability of accidental overwriting. Instead use the particles as HEP::Particles::particle

Author

K. Zarebski

Copyright

MIT License

Date

last modified 2019-08-26

4.2 HEP::Particles Namespace Reference

Variables

```
· const Particle gamma
     Photon, \gamma.
· const Particle g
     Gluon, g.
· const Particle W
     W Boson, W^+.
· const Particle Z
     Z Boson, Z^0.
· const Particle H
     Higgs Boson, H.

    const Particle e = HEP::Particle("e", "-", 0.5109989461*HEP::Units::MeV, 3E36*HEP::Units::sec)

     Electron, e^-.

    const Particle mu = HEP::Particle("mu", "-", 105.6583745*HEP::Units::MeV, 2.1969811E-6*HEP::Units::sec)

     Muon, \mu^-.
const Particle tau = HEP::Particle("tau", "-", 1776.82*HEP::Units::MeV, 2.90610E-13*HEP::Units::sec)
• const Particle nu_e = HEP::Particle("nu_e", "", 1E-6*HEP::Units::MeV, -1)
     Electron Neutrino, \nu_e.
const Particle nu_mu = HEP::Particle("nu_mu", "", 1E-6*HEP::Units::MeV, -1)
     Muon Neutrino, \nu_{\mu}.
• const Particle nu_tau = HEP::Particle("nu_tau", "", 1E-6*HEP::Units::MeV, -1)
      Tau Neutrino, \nu_{\tau}.
const Particle Kplus = HEP::Particle("K", "+", 493.677*HEP::Units::MeV, 1.2380E-8)
```

```
Charged Kaon, K^+.
• const Particle phi_1020 = HEP::Particle("phi", "", 999, 999)
     Phi 1020, \phi(1020).
· const Particle eta
     Eta meson, \eta.
• const Particle Piplus = HEP::Particle("pi", "+", 139.57061*HEP::Units::MeV, 2.6033E-8*HEP::Units::sec)
• const Particle Pi0 = HEP::Particle("pi", "0", 134.9770*HEP::Units::MeV, 8.52E-17*HEP::Units::sec)
     Neutral Pion, \pi^0.
· const Particle Dplus
     Charged D meson, D^+.

    const Particle D0

     Neutral D meson, D^0.
· const Particle Ds
     Neutral D strange meson, D_s.

    const Particle Bplus

     Charge B meson, B^+.
· const Particle B0
     Neutral B meson, B^0.

    const Particle Bs

     Neutral B strange meson, B_s.
• const Particle Bc = HEP::Particle("Bc", "+", 999, 999)
     Charmed B meson, B_c.
· const Particle p
     Proton, p.
· const Particle n
     Neutron, n.
• const Particle Lambda
     Lambda baryon, \Lambda.
· const Particle Lambdab0
     Lambda b baryon, \Lambda_b^0.
· const Particle Sigma
     Neutral Sigma baryon, \Sigma^0.
· const Particle Sigmaplus
     Charged Sigma baryon, \Sigma^+.
· const Particle Xi0
     Neutral Xi baryon, \Xi^0.
· const Particle Ximinus
     Charged Xi baryon, \Xi^+.
· const Particle Omega
     Omega baryon, \Omega.
· const Particle Lambdac
```

Lambda c baryon, Λ_c .

4.2.1 Detailed Description

Namespace containing all particles listed within the PDG

Todo Finish all particle definitions

Author

K. Zarebski

Copyright

MIT License

Date

last modified 2019-08-26

4.2.2 Variable Documentation

4.2.2.1 Bc

```
const HEP::Particle HEP::Particles::Bc = HEP::Particle("Bc", "+", 999, 999)
```

Charmed B meson, B_c .

Todo Correct properties

4.2.2.2 phi_1020

```
const HEP::Particle HEP::Particles::phi_1020 = HEP::Particle("phi", "", 999, 999)  
Phi 1020, \phi(1020).
```

Todo Correct properties

4.3 HEP::Units Namespace Reference

Variables

- const double $\mathbf{m} = 1$.
- const double mm = 1E-3*m
- const double **nm** = 1E-9*m
- const double **km** = 1E3*m
- const double cm = 1E-2*m
- const double angstrom = 1E-10*m
- const double **mile** = 1.609344E3*m
- const double yd = 0.9144*m
- const double **AU** = 1.495979E12*m
- const double kg = 1.
- const double t = 1E3*kg
- const double sec = 1.
- const double ms = 1E-3*sec
- const double **ns** = 1E-9*sec
- const double **ps** = 1E-12*sec
- const double $\mathbf{J} = 1$.
- const double eV = 1.6E-19*J
- const double **keV** = 1E3*eV
- const double MeV = 1E6*eV
- const double **GeV** = 1E9*eV
- const double TeV = 1E12*eV
- const double **b** = 1E-28*m*m
- const double **mb** = 1E-3*b
- const double $\mathbf{nb} = 1E-9*b$
- const double **pb** = 1E-12*b
- const double **fb** = 1E-15*b
- const double inv_pb = 1./pb
- const double inv_fb = 1./fb
- const double N = 1.
- const double kN = 1E3*N

4.3.1 Detailed Description

Namespace containing all units for easy conversion to SI units for calculations

Todo Finish all unit definitions

Author

K. Zarebski

Copyright

MIT License

Date

last modified 2019-08-26

Class Documentation

5.1 HEP::Decay Class Reference

Decay Channel Class.

#include <DecayTable.hxx>

Public Member Functions

• Decay ()

Blank decay object.

const std::string getDecStr () const

Get the decay description as a string.

• Decay (std::vector< Particle > daughters, double probability, Particle mother=Particle())

Construct a decay with a given mother, daughters and branching ratio.

• bool isValid (double threshold)

Used to check probability of decay occuring against a threshold.

• const double getBR () const

Returns the branching ratio.

const Particle getMother () const

Returns the mother object.

void setMother (Particle &Mother)

Sets the mother particle.

const std::vector< Particle > getDaughters () const

Returns a vector of the daughter particles.

5.1.1 Detailed Description

Decay Channel Class.

Class describing a single particle decay with information on the mother and daughter particles and branching ratio.

Version

0.1.0

14 Class Documentation

Author

Kristian Zarebski

Date

last modified 2019-08-25

Copyright

MIT License

The documentation for this class was generated from the following files:

- include/DecayTable.hxx
- src/DecayTable.cxx

5.2 HEP::DecayTable Class Reference

Decay Table Class.

```
#include <DecayTable.hxx>
```

Public Member Functions

DecayTable (const Particle &mother)

Construct a decay table for a given mother particle.

void addDecay (Decay &decay)

Add a new decay to the decay table.

• std::vector< Decay > getDecays ()

Get the decays in decay tablea as a vector.

const Decay getRandom () const

Get a decay at random based on the branching ratios.

• void Print ()

Print the decay table.

5.2.1 Detailed Description

Decay Table Class.

Class containing all decay channels for a given mother particle this is used to generate a decay at random

Version

0.1.0

Author

Kristian Zarebski

Date

last modified 2019-08-26

Copyright

MIT License

Examples

KplusDecTable.hxx.

The documentation for this class was generated from the following files:

- include/DecayTable.hxx
- src/DecayTable.cxx

5.3 HEP::LorentzVector Class Reference

Lorentz Vector Class.

#include <LorentzVector.hxx>

Public Member Functions

• LorentzVector ()

Create a blank LorentzVector with the default values of -9999.

• const double & operator[] (size_t i)

Specify a component of the Lorentz Vector by index [0, 3] for (x_0, x_1, x_2, x_3) .

double operator[] (size_t i) const

Specify a component of the Lorentz Vector by index [0, 3] for (x_0, x_1, x_2, x_3) .

• LorentzVector (double x0, double x1, double x2, double x3)

Create a new Lorentz Vector by giving the four values (x_0, x_1, x_2, x_3) .

· const double magnitude () const

Returns the magnitude of the vector as $r = \sqrt{x_0^2 - x_1^2 - x_2^2 - x_3^2}$.

Friends

• std::ostream & operator<< (std::ostream &os, const LorentzVector &Iv)

Output the components of the Lorentz Vector to the ostream when printing.

16 Class Documentation

5.3.1 Detailed Description

Lorentz Vector Class.

Class to represent Lorentz vectors of the form e.g. four momenta

Version

0.1.0

Author

Kristian Zarebski

Date

last modified 2019-08-26

Copyright

MIT License

The documentation for this class was generated from the following files:

- · include/LorentzVector.hxx
- src/LorentzVector.cxx

5.4 HEP::Particle Class Reference

Particle Class.

#include <Particle.hxx>

Public Member Functions

• Particle ()

Default constructor with properties set to -1.

• Particle (std::string, std::string, double, double)

Construct a particle with a given name, sign, mass and lifetime. The energy will be taken to be the rest mass.

• Particle (double, double, double, double)

Construct a particle giving only the four momentum components.

• const std::string getName () const

Returns as a string the particle name.

const Particle anti () const

Get the antiparticle partner of the current particle.

void Fire (double)

Fire the particle at a given energy.

const double M () const

Get the mass of the particle.

· const double phi () const

Get the azimuthal angle ϕ of the particle trajectory.

· const double y () const

Get the rapidity
$$y=rac{1}{2}\log\left(rac{E+p_z}{E-p_z}
ight)$$
 of the particle.

• const double eta () const

Get the pseudorapidity $\eta = -\log\left(\tan\frac{\theta}{2}\right)$ of the particle.

• const double theta () const

Get the angle θ of the particle trajectory in the x-z plane.

· const HEP::LorentzVector momentum () const

Get the Lorentz Vector of the given particle.

const double PT () const

Get the transverse momentum p_T of the particle.

· operator bool () const

Returns true if the particle has been initialised (does not have default blank values)

Friends

std::ostream & operator<< (std::ostream &, Particle &)
 Output the particle properties to the ostream.

5.4.1 Detailed Description

Particle Class.

Class representing a single particle with information on mass and lifetime

Version

0.1.0

Author

Kristian Zarebski

Date

last modified 2019-08-26

Copyright

MIT License

The documentation for this class was generated from the following files:

- · include/Particle.hxx
- · src/Particle.cxx

18 Class Documentation

Example Documentation

KplusDecTable.hxx 6.1

```
An example of the Decay Table class for K+
#ifndef __KPLUSDECTABLE_
#define __KPLUSDECTABLE_
#include "DecayTable.hxx"
#include "CommonParticles.hxx"
const HEP::DecayTable gen_KplusDecays();
namespace HEP
      extern const DecayTable KplusDecays;
#endif
```

Bibliography

[1] K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014. 8

22 BIBLIOGRAPHY

Index

```
Bc
HEP::Particles, 10

HEP, 7
HEP::Decay, 13
HEP::DecayTable, 14
HEP::LorentzVector, 15
HEP::Particle, 16
HEP::Particles, 8
Bc, 10
phi_1020, 10
HEP::Units, 11

phi_1020
HEP::Particles, 10
```