Deep Energy-Based NARX Models

Johannes N. Hendriks¹, Fredrik K. Gustafsson² **Antônio H. Ribeiro**², Adrian G. Wills¹, Thomas B. Schön²

²Uppsala University, Sweden

Workshop on Nonlinear System Identification Benchmarks 2021

Motivation

Common performance criteria such as **maximum-likelihood** or **prediction-error** criteria usually involve **assumptions** about uncertainty, be they *explicit* or *implicit*

Nonlinear ARX model (Gaussian noise)

Data model:

$$y_t = f_{\theta}(y_{t-1}, u_{t-1}) + e_t,$$

where $e_t \sim \mathcal{N}(0, \sigma)$.

Nonlinear ARX model (Gaussian noise)

▶ Data model:

$$y_t = f_{\theta}(y_{t-1}, u_{t-1}) + e_t,$$

where $e_t \sim \mathcal{N}(0, \sigma)$.

• $f_{\theta} \leadsto$ model structure.

Nonlinear ARX model (Gaussian noise)

Data model:

$$y_t = \mathit{f}_{ heta}(y_{t-1}, u_{t-1}) + e_t,$$
 where $e_t \sim \mathcal{N}(0, \sigma).$

- $f_{\theta} \leadsto$ model structure.
- Maximum likelihood estimator:

$$\hat{\theta} = \arg\min_{\theta} \sum_{t=1}^{T} \|y_t - f_{\theta}(y_{t-1}, u_{t-1})\|^2.$$

Energy-based NARX models

Arbitrary distributions:

$$y_t|(y_{t-1}, u_{t-1}) \sim p_{\theta}(y_t|y_{t-1}, u_{t-1}),$$

Energy-based NARX models

Arbitrary distributions:

$$y_t|(y_{t-1},u_{t-1}) \sim p_{\theta}(y_t|y_{t-1},u_{t-1}),$$

Energy-based model:

$$p_{\theta}(y_t|y_{t-1},u_{t-1}) = \frac{e^{g_{\theta}(y_t,y_{t-1},u_{t-1})}}{\int e^{g_{\theta}(\gamma,y_{t-1},u_{t-1})} \,\mathrm{d}\gamma},$$

Gustafsson, F.K., Danelljan, M., Bhat, G., and Schön, T.B. (2020). Energy-based models for deep probabilistic regression. In Proceedings of the European Conference on Computer Vision (ECCV)

Energy-based NARX models

Arbitrary distributions:

$$y_t|(y_{t-1},u_{t-1}) \sim p_{\theta}(y_t|y_{t-1},u_{t-1}),$$

Energy-based model:

$$p_{\theta}(y_t|y_{t-1},u_{t-1}) = \frac{e^{g_{\theta}(y_t,y_{t-1},u_{t-1})}}{\int e^{g_{\theta}(\gamma,y_{t-1},u_{t-1})} \,\mathrm{d}\gamma},$$

Gustafsson, F.K., Danelljan, M., Bhat, G., and Schön,T.B. (2020). Energy-based models for deep probabilistic regression. In Proceedings of the European Conference on Computer Vision (ECCV)

• $g_{\theta} \rightsquigarrow$ Highly flexible structure: in our case a neural network.

Model training

Maximum likelihood

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{T} -\log p_{\theta}(y_t \mid y_{t-1}, u_{t-1})$$

Model training

Maximum likelihood

$$\widehat{\theta} = \arg\max_{\theta} \sum_{i=1}^{T} -\log p_{\theta}(y_t \mid y_{t-1}, u_{t-1})$$

$$= \arg\min_{\theta} \sum_{t=1}^{T} \left(-g_{\theta}(y_t, x_t) + \ln \int e^{g_{\theta}(\gamma, x_t)} d\gamma \right)$$

Model training

Maximum likelihood

$$\begin{split} \widehat{\theta} &= \arg\max_{\theta} \sum_{i=1}^{T} -\log p_{\theta}(y_{t} \mid y_{t-1}, u_{t-1}) \\ &= \arg\min_{\theta} \sum_{t=1}^{T} \left(-g_{\theta}(y_{t}, x_{t}) + \ln \int e^{g_{\theta}(\gamma, x_{t})} \, \mathrm{d}\gamma \right) \end{split}$$

Noise contrastive estimation:

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 297–304

$$y_t = 0.95y_{t-1} + e_t.$$

Figure: Gaussian error et

$$y_t = 0.95y_{t-1} + e_t.$$

Figure: Gaussian mixture error et

$$y_t = 0.95y_{t-1} + e_t.$$

Figure: Cauchy error et

$$y_t = 0.95y_{t-1} + e_t.$$

Figure: Gaussian error e_t with conditional variance

$$y_t = 1.5y_{t-1} - 0.7y_{t-2} + u_{t-1} + 0.5u_{t-2} + e_t,$$

Figure: Estimates of $p_{\theta}(y_t|x_t)$ for a validation data.

Example 3: nonlinear model

Model:

$$y_t^* = \left(0.8 - 0.5e^{-y_{t-1}^{*2}}\right) y_{t-1}^* - \left(0.3 + 0.9e^{-y_{t-1}^{*2}}\right) y_{t-2}^*$$

$$+ u_{t-1} + 0.2u_{t-2} + 0.1u_{t-1}u_{t-2} + v_t,$$

$$y_t = y_t + w_t$$

Process and output error:

$$v_t \sim \mathcal{N}(0, \sigma_v^2)$$

 $w_t \sim \mathcal{N}(0, \sigma_v^2)$

Figure: System only with process noise. Input in blue and output in red.

Chen, S., Billings, S.A., and Grant, P.M. (1990). Non-Linear System Identification Using Neural Networks. International Journal of Control, 51(6), 1191–1214.

Example 3: nonlinear model

Table: Simulated nonlinear MSE on the validation set for the fully connected network (FCN) NARX model and EB-NARX model

	N = 100		N = 250		N = 500	
	FCN	EB-NARX	FCN	EB-NARX	FCN	EB-NARX
$ \begin{aligned} \sigma &= 0.1 \\ \sigma &= 0.3 \\ \sigma &= 0.5 \end{aligned} $	0.122	0.099	0.069	0.070		0.054
$\sigma = 0.3$	0.398	0.390 0.869	0.353	0.354	0.289	0.308
$\sigma = 0.5$	0.860	0.869	0.809	0.822	0.754	0.779

Example 3: nonlinear model

Figure: Estimates of $p_{\theta}(y_t|x_t)$ for a validation data.

Figure: Illustration of the CE8 coupled electric drives system

Wigren, T. and Schoukens, M. (2017). Coupled electric drives data set and reference models. Technical Report. Uppsala Universitet, 2017

Figure: $p_{\theta}(y_t|x_t)$ sequence

Figure: t = 40

Figure: t = 57

Figure: t = 60

Energy based NARX learns the full conditional distribution rather than the point estimate.

- Energy based NARX learns the full conditional distribution rather than the point estimate.
- The current paper only considers one-step-ahead predictions and not multi-step-ahead predictions.

- Energy based NARX learns the full conditional distribution rather than the point estimate.
- The current paper only considers one-step-ahead predictions and not multi-step-ahead predictions.
- Propagate MAP point estimates vs probabilities.

- Energy based NARX learns the full conditional distribution rather than the point estimate.
- The current paper only considers one-step-ahead predictions and not multi-step-ahead predictions.
- Propagate MAP point estimates vs probabilities.
- Studying energy-based models for nonlinear ARMAX, output error and other types of models that can handle more general noise types.

Thank you!

To appear in the 19th IFAC Symposium in System Identification.

Paper: https://arxiv.org/abs/2012.04136

Thank you!

To appear in the 19th IFAC Symposium in System Identification.

Paper: https://arxiv.org/abs/2012.04136

Code: https://github.com/jnh277/ebm_arx

Thank you!

To appear in the 19th IFAC Symposium in System Identification.

Paper: https://arxiv.org/abs/2012.04136

Code: https://github.com/jnh277/ebm_arx

Contact:

johannes.hendriks@newcastle.edu.au

fredrik.gustafsson@it.uu.se antonio.horta.ribeiro@it.uu.se adrian.wills@newcastle.edu.au thomas.schon@it.uu.se