SolidsPy: Teaching Computational Modeling with Python

Nicolás Guarín-Zapata – @nicoguaro

February 9, 2018

What am I sharing today?

Our teaching experience in computational modeling with Python using a finite element module/program.

Outline

- Introduction
- Finite Element Method
- SolidsPy
- Examples of use

Introduction

Teaching goals

- Computational modeling
- Computing with Python
- Numerical methods

Computational Modeling

- Second year, undergraduate course
- Use of computing to solve engineering problems
- Use SolidsPy building-blocks to perform mechanical simulations

Introduction to Finite Element Method

- First year, graduate-level course
- Mathematical details of the method
- Step-by-step construction of a Finite Element program

The Finite Element Method

What is the Finite Element Method?

A method for solving problems of engineering and mathematical physics that involve partial differential equations.

Let's see an example

The differential equation

$$\mu \nabla^2 \boldsymbol{u} + (\mu + \lambda) \nabla (\nabla \cdot \boldsymbol{u}) + \boldsymbol{F} = 0$$

And boundary conditions

The solution

Different steps involved

- Geometry discretization
- Interpolation
- Numerical integration
- Equations solution
- Post-processing / Visualization

Geometry discretization

Interpolation

Numerical integration

Using interpolation and numerical integration, the problem translates into solving a linear system.

Equations solution

SciPy has several solvers that can be used for the solution of the system.

Visualization

Once we have the solution, we visualize the results to check that it makes sense.

SolidsPy

Open-source ecosystem

Python libraries:

- Numpy
- Scipy
- SymPy
- Matplotlib
- meshio

External software:

- Gmsh
- ParaView

Open-source ecosystem

Simple input files

Let's consider this simple model.

Simple input files

nodes.txt

0 0.	00	0.00	0	-1
------	----	------	---	----

$$1 \quad 2.00 \quad 0.00 \quad 0 \quad -1$$

mater.txt

1.0 0.3

eles.txt

0	1	1	0	4	8	(

loads.txt

Gmsh for more complicated models

We use **Gmsh** for complicated geometries and then convert them to SolidsPy's format using **meshio**.

Paraview for complex visualizations

We can use meshio to export results to Paraview

Examples of use

SolidsPy as a standalone FE program

Just requires the path to input files to complete an analysis

Let's see an example

```
import matplotlib.pyplot as plt
from solidspy import solids_GUI
disp = solids_GUI()
plt.show()
```

SolidsPy as a standalone FE program

Several input files for different models in examples in the following repo:

https://github.com/AppliedMechanics-EAFIT/SolidsPy-meshes

Building-blocks for a Finite Element Analysis

- Mesh import/export
- Elements library
- Assembler
- Solver

Let's see an example

```
import solidspy as solids
# Reading the data
nodes, mats, elements, loads = solids.preprocesor.readin()
# Forming the system of equations
DME, IBC, neq = solids.assemutil.DME(nodes, elements)
KG = solids.assemutil.assembler(elements, mats, nodes, neq, DME)
RHSG = solids.assemutil.loadasem(loads, IBC, neg)
# System solution
UG = solids.solutil.static sol(KG, RHSG)
# Post-processing
UC = solids.postprocesor.complete_disp(IBC, nodes, UG)
E_nodes, S_nodes = solids.postprocesor.strain_nodes(nodes,
    elements, mats, UC)
solids.postprocesor.fields_plot(elements, nodes, UC,
    E nodes=E nodes, S nodes=S nodes)
```

Summary

SolidsPy is ...

- FEM code in an open-source ecosystem
- Easy to use
- Used to teach
 - Computational modeling for undergrads
 - Finite element method for grads

SolidsPy

https://github.com/AppliedMechanics-EAFIT/SolidsPy

