Matematyka obliczeniowa – wyznaczniki

Zadanie 1

- 1) Wczytaj macierze pomiarowe zawarte w pliku A. mat wykorzystując funkcję load ().
- 2) Oblicz wyznacznik podanych macierzy $n \times n$ za pomocą funkcji $\det()$, algorytmu Chio i algorytmu wykorzystującego przekształcenia elementarne. Określ czas obliczeń dla podanych rozmiarów macierzy. Do pomiaru czasu wykorzystaj polecenia \mathtt{tic} i \mathtt{toc} .

Rozmiar macierzy	Matlab (det)	algorytm Chio	przekształcenia elementarne
50 × 50	W =	W =	W =
	t =	t =	t =
100 × 100	W =	W =	W =
	t =	t =	t =
200 × 200	W =	W =	W =
	t =	t=	t =

Zadanie 2

- 1) Wyznacz czasy obliczeń wyznacznika macierzy o wymiarowości od 1 do 2000 z krokiem 10 za pomocą polecenia det (). Macierze utwórz za pomocą polecenia rand ().
- 2) Uzyskane wyniki przedstaw na wykresie.
- 3) Za pomocą poleceń polyfit i polyval znajdź najmniejszy rząd wielomianu, który dobrze aproksymuje otrzymane wyniki i na tej podstawie określ przybliżoną postać czasowej złożoności obliczeniowej.

Algorytm Chio:

$$det(A) = \frac{1}{a_{11}^{n-2}} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} \cdots \begin{vmatrix} a_{11} & a_{1n} \\ a_{21} & a_{2n} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} \cdots \begin{vmatrix} a_{11} & a_{1n} \\ a_{31} & a_{3n} \end{vmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{n1} & a_{n2} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{n1} & a_{n3} \end{vmatrix} \cdots \begin{vmatrix} a_{11} & a_{1n} \\ a_{n1} & a_{nn} \end{vmatrix}$$

$$Dla \text{ macierzy } A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \text{ wyznacznik wynosi:}$$

$$det(A) = \frac{1}{2^{3-2}} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 3 & -1 \\ 2 & 4 \end{vmatrix} = 7$$

Obliczanie wyznacznika macierzy z wykorzystaniem przekształceń elementarnych.

Wykorzystując własność: jeżeli macierz B powstaje z macierzy A przez pomnożenie wszystkich elementów pewnego wiersza (kolumny) przez liczbę α , to $det(B) = \alpha \cdot det(A)$,

Przykład

Dla macierzy
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 wyznacznik wynosi:

$$det(A) = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 1/2 & 3/2 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} \begin{vmatrix} (w_2 - w_1) \\ 0 & 1 & 2 \end{vmatrix} \cdot \begin{vmatrix} 1 & 1/2 & 3/2 \\ 0 & 3/2 & -1/2 \\ 0 & 1 & 2 \end{vmatrix} = 2 \cdot \frac{3}{2} \cdot \begin{vmatrix} 1 & 1/2 & 3/2 \\ 0 & 1 & -1/3 \\ 0 & 1 & 2 \end{vmatrix} = 3 \cdot (1 \cdot 1 \cdot \frac{7}{3}) = 7$$