Graph-Cut for Image Reconstruction and Segmentation

Dr. V. Masilamani
Dept. of Computer Science & Engg.
IIITDM Kancheepuram
Chennai-600127, Tamilnadu.

Outline of the Talk

- Flow Network
- Ford-Fulkerson Algorithm to Compute Max-Flow
- Max-Flow Min-Cut Theorem
- Graph Vs. Image
- Image Reconstruction using Max-Flow
- Image Segmentation using Min-Cut
- Summary

Flow Network

Definition of flow network

Flow network is a directed weighted graph G=(V,E,c) such that

- 1) Weight(capacity) $c(u,v) \ge 0$.
- 2) Two distinguished vertices exist in G namely:
 - Source (denoted by s): In-degree of this vertex is 0.
 - Sink (denoted by t) : Out-degree of this vertex is 0.

Flow

Definition of flow

Flow in a network is an integer-valued function f defined on the edges of G satisfying

- 1) $0 \le f(u,v) \le c(u,v)$, for every edge (u,v) in E.
- 2) Capacity Constraint : $\forall u,v \in V$, $f(u,v) \leq c(u,v)$
- 3) Skew Symmetry : $\forall u,v \in V$, f(u,v) = -f(v,u)
- 4) Flow Conservation : For each vertex v, inflow(v)=outflow(v)

Skew symmetry condition implies that f(u,u)=0.

Max-Flow

The value of a flow is given by :

$$| f | = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

- Definition of Max-flow
 - Given a graph G=(V, E) with capacities on edges, find flow f, such that |f| is maximum.

Max-Flow

Flow Network

Find any s-t path in G(x)

Residual Graph:

Find any s-t path

Determine the capacity Δ of the path.

Send ∆ units of flow in the path. Update residual capacities.

Find any s-t path

Determine the capacity Δ of the path.

Send ∆ units of flow in the path. Update residual capacities.

Find any s-t path

Determine the capacity △ of the

Send ∆ units of flow in the path. Update residual capacities.

There is no s-t path in the residual network. This flow is optimal

These are the nodes that are reachable from node s.

Here is the optimal flow

Max-Flow Min-Cut Theorem

Definition of s-t Cut

Set of edges is said to be a cut if they are removed from the graph, graph should be disconnected into two components, one with source and the other one with sink.

Max-Flow Min-Cut Theorem

Definition of s-t Cut

Set of edges is said to be a cut if they are removed from the graph, graph should be disconnected two components, one with source and the other one with sink.

Max-Flow Min-Cut Theorem

Definition of s-t Cut

Set of edges is said to be a cut if they are removed from the graph, graph should be disconnected two components, one with source and the other one with sink.

Graph Vs. Image

Image

Graph representation

Image Reconstruction using Max-Flow

Consider following image

				1
1	0	1	1	3
0	1	1	0	2
1	0	1	1	3
0	1	0	1	2
2	2	3	3	•

Given

Row sum=3, 2, 3, 2 Column sum=2, 2, 3, 3

Find a binary image A such that the row sum of A is 3, 2, 3, 2 and column sum is 2, 2, 3, 3

Image Reconstruction using Max-Flow

Solution:

Construct graph

Image Reconstruction using Max-Flow

Max-Flow

Row Sum= 3, 2, 3, 2 Column Sum=2, 3, 3, 2

Image Segmentation

Image Segmentation

- Each pixel = node
- Add two nodes F & B
- Labeling: link each pixel to either F or B

- Construct graph with data term
 - Put one edge between each pixel and F
 - Put one edge between each pixel and B
 - Weight of edge between i and F: $w_{iF} = -\lambda \log(P_B(i))$
 - Weight of edge between i and B: $w_{iB} = -\lambda \log(P_F(i))$

Add Smoothness term to the Graph

Add an edge between each neighbor pair (i,j)

• Weight of edge between i and j: $w_{ij} = \exp(-(I_i - I_j)^2 / I_j)^2$

 $2\sigma^2$)

Min-cut

Cut: Remove edges to disconnect F from B

Min Cut: Cut with sum of its edge weights is minimum

In order to be a cut:

For each pixel, either the F or G edge has to be cut

In order to be minimal

Only one edge to F or B per pixe

can be cut

Which edges are to be removed?

Edges with least cost

• Since $w_{if} = -\lambda \log(P_{B}(i))$, larger value of $P_{R}(i)$ will lead to smaller value of Wie

> Hence edge (i,F) will be removed, and edge (i,B) will stay

• Since $w_{iB} = -\lambda \log(P_F(i))$, larger value of $P_F(i)$ will lead to smaller value of w_{iB}

Hence edge (i,B) will be removed, and edge (i,F) will stay

- •Since for neighboring pixels (i,j), $w_{ij} = \exp(-(I_i I_j)^2 / 2\sigma^2)$, similar i and j, w_{ij} is very high.
 - Hence edge between similar pixels will stay after graph cut.

How to find min-cut

- Apply max-flow algorithm
- The output of max-flow algorithm will result in min-cut (max-flow min-cut theorem)

- How to find P_B (i) and P_F (i) for pixel I?
 - User will give some seed of the background and foreground
 - From seed points of background compute P_B(i)
 - From seed points of foreground compute P_F(i)

Summary

- Ford-Fulkerson algorithm to find max-flow is discussed
- Relationship between image and graph is discussed
- Graph-cut was computed using Ford-Fulkerson
- Couple of applications for graph-cut were illustrated
- As computation of graph-cut algorithm is polynomial, the applications discussed require only polynomial time.

???

Thank You...