```
In [3]: import numpy as np
import pandas as pd
```

cars = pd.read_csv('Bikes.csv') cars

```
In [19]: car = pd.read_csv('car.csv')
    bike = pd.read_csv('Bikes.csv')
    evbike = pd.read_csv('Electric bikes.csv')
    evcar = pd.read_csv('ELECTRIC CARS.csv')
    car.head()
```

Out[19]:

	MODEL	COMPANY	PRICE(LAKHS) EX- SHOWROOM	FUEL TYPE	MILAGE (Kmpl)	SAFTY(star)	TYPE	BOOTSPAC
() Baleno	suzuki	6.14	petrol	24.0	2.0	hatchback	339.
•	I Swift	suzuki	5.93	petrol	24.0	1.0	hatchback	268.
1	Vitara Brezza	suzuki	7.69	petrol	19.0	3.0	compact suv	328.
;	3 ertiga	suzuki	8.12	petrol	19.0	2.0	mpv	209.
4	ertiga	suzuki	9.87	cng	24.0	2.0	mpv	209

In [12]: car['TYPE'].value_counts()

Out[12]: sedan

55 41 suv 33 compact suv hatchback 28 mpv 25 25 sports off road 6 luxury 5 2 limousine 2 suv sports 1 Business 1 sports sedan hatchback sports 1 Name: TYPE, dtype: int64

Out[21]:

		MODEL	COMPANY	PRICE(LAKHS) EX- SHOWROOM	FUEL TYPE	MILAGE (Kmpl)	SAFTY(star)	TYPE	воот
	0	Baleno	suzuki	6.14	petrol	24.0	2.0	hatchback	
	1	Swift	suzuki	5.93	petrol	24.0	1.0	hatchback	
	2	Vitara Brezza	suzuki	7.69	petrol	19.0	3.0	compact suv	
	3	ertiga	suzuki	8.12	petrol	19.0	2.0	mpv	
	4	ertiga	suzuki	9.87	cng	24.0	2.0	mpv	
2	20	3 DOOR	MINI Cooper	39.00	petrol	17.0	3.0	hatchback	
2	21	countryman	MINI Cooper	41.00	petrol	14.0	4.0	compact suv	
2	22	DBX	Aston Martin	382.00	petrol	NaN	2.0	sports	
2	23	DB11	Aston Martin	380.00	petrol	NaN	2.0	sports	
2	24	Vantage	Aston Martin	300.00	petrol	NaN	2.0	sports	

225 rows × 9 columns

```
In [24]: car.isnull().sum()
```

Out[24]:

MODEL	0
COMPANY	0
PRICE(LAKHS) EX-SHOWROOM	0
FUEL TYPE	0
MILAGE (Kmpl)	0
SAFTY(star)	0
TYPE	0
B00TSPACE	0
ENGINE CC	0
dtype: int64	

In [23]: car.dropna(inplace=True)

/opt/anaconda3/lib/python3.9/site-packages/pandas/util/_decorators
.py:311: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

return func(*args, **kwargs)

In [25]: car.duplicated().sum()

Out[25]: 0

In [29]: car.iloc[0].TYPE

Out[29]: 'hatchback'

```
In [34]: car['COMPANY'] = car['COMPANY'].apply(lambda x:[x.replace(" ","")])
    car['TYPE'] = car['TYPE'].apply(lambda x:[x.replace(" ","")])
    car['MODEL'] = car['MODEL'].apply(lambda x:[x.replace(" ","")])
```

/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/30
40861267.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['COMPANY'] = car['COMPANY'].apply(lambda x:[x.replace(" ",""
)])

/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/30
40861267.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['TYPE'] = car['TYPE'].apply(lambda x:[x.replace(" ","")])
/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/30
40861267.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['MODEL'] = car['MODEL'].apply(lambda x:[x.replace(" ","")])

In [46]: car

Out[46]:

	MODEL	COMPANY	PRICE(LAKHS) EX- SHOWROOM	FUEL TYPE	MILAGE (Kmpl)	SAFTY(star)	TY
0	[Baleno]	[suzuki]	6.14	petrol	24.0	2.0	[hatchba
1	[Swift]	[suzuki]	5.93	petrol	24.0	1.0	[hatchba
2	[VitaraBrezza]	[suzuki]	7.69	petrol	19.0	3.0	[compacts
3	[ertiga]	[suzuki]	8.12	petrol	19.0	2.0	[m
4	[ertiga]	[suzuki]	9.87	cng	24.0	2.0	[m
	•••						
217	[aventador]	[lamborghini]	625.00	petrol	8.0	2.0	[spoi
218	[huracan]	[lamborghini]	321.00	petrol	7.0	2.0	[spoi
219	[convertible]	[MINICooper]	45.00	petrol	17.0	3.0	[hatchbackspoi
220	[3DOOR]	[MINICooper]	39.00	petrol	17.0	3.0	[hatchba
221	[countryman]	[MINICooper]	41.00	petrol	14.0	4.0	[compacts

215 rows × 9 columns

```
In [51]: car['MODEL'] = car['MODEL'].apply(lambda x:" ".join(x))
    car['COMPANY'] = car['COMPANY'].apply(lambda x:" ".join(x))
    car['TYPE'] = car['TYPE'].apply(lambda x:" ".join(x))
```

/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/25
60353549.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['MODEL'] = car['MODEL'].apply(lambda x:" ".join(x))
/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/25
60353549.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['COMPANY'] = car['COMPANY'].apply(lambda x:" ".join(x))
/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/25
60353549.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using <code>.loc[row_indexer,col_indexer] = value instead</code>

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['TYPE'] = car['TYPE'].apply(lambda x:" ".join(x))

In [52]: car

Out[52]:

	MODEL	COMPANY	PRICE(LAKHS) EX- SHOWROOM	FUEL TYPE	MILAGE (Kmpl)	SAFTY(star)	ТҮРЕ
0	Baleno	suzuki	6.14	petrol	24.0	2.0	hatchback
1	Swift	suzuki	5.93	petrol	24.0	1.0	hatchback
2	VitaraBrezza	suzuki	7.69	petrol	19.0	3.0	compactsuv
3	ertiga	suzuki	8.12	petrol	19.0	2.0	mpv
4	ertiga	suzuki	9.87	cng	24.0	2.0	mpv
217	aventador	lamborghini	625.00	petrol	8.0	2.0	sports
218	huracan	lamborghini	321.00	petrol	7.0	2.0	sports
219	convertible	MINICooper	45.00	petrol	17.0	3.0	hatchbacksports
220	3DOOR	MINICooper	39.00	petrol	17.0	3.0	hatchback
221	countryman	MINICooper	41.00	petrol	14.0	4.0	compactsuv

215 rows × 9 columns

```
In [53]: car['MODEL'] = car['MODEL'].apply(lambda x:x.lower())
    car['COMPANY'] = car['COMPANY'].apply(lambda x:x.lower())
    car['TYPE'] = car['TYPE'].apply(lambda x:x.lower())
```

/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/17
01459985.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['MODEL'] = car['MODEL'].apply(lambda x:x.lower())

/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/17
01459985.py:2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['COMPANY'] = car['COMPANY'].apply(lambda x:x.lower())
/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/17
01459985.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using <code>.loc[row_indexer,col_indexer] = value instead</code>

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['TYPE'] = car['TYPE'].apply(lambda x:x.lower())

In [54]: car

Out [54]:

	MODEL	COMPANY	PRICE(LAKHS) EX- SHOWROOM	FUEL TYPE	MILAGE (Kmpl)	SAFTY(star)	ТҮРЕ
0	baleno	suzuki	6.14	petrol	24.0	2.0	hatchback
1	swift	suzuki	5.93	petrol	24.0	1.0	hatchback
2	vitarabrezza	suzuki	7.69	petrol	19.0	3.0	compactsuv
3	ertiga	suzuki	8.12	petrol	19.0	2.0	mpv
4	ertiga	suzuki	9.87	cng	24.0	2.0	mpv
217	aventador	lamborghini	625.00	petrol	8.0	2.0	sports
218	huracan	lamborghini	321.00	petrol	7.0	2.0	sports
219	convertible	minicooper	45.00	petrol	17.0	3.0	hatchbacksports
220	3door	minicooper	39.00	petrol	17.0	3.0	hatchback
221	countryman	minicooper	41.00	petrol	14.0	4.0	compactsuv

215 rows × 9 columns

In [68]: car['tag1']=car['COMPANY']+' '+car['PRICE(LAKHS) EX-SHOWROOM'].astyr

/var/folders/m6/1wwylt1n7r76r56qf8wb_x_c0000gn/T/ipykernel_1345/31
68540506.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer.col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

car['tag1']=car['COMPANY']+' '+car['PRICE(LAKHS) EX-SHOWROOM'].a
stype(str)+' '+car['FUEL TYPE']+' '+car['MILAGE (Kmpl)'].astype(st
r)+' '+car['SAFTY(star)'].astype(str)+' '+car['TYPE']+' '+car['B00
TSPACE'].astype(str)+' '+car['ENGINE CC'].astype(str)

In [69]: car

Out[69]:

	MODEL	COMPANY	PRICE(LAKHS) EX- SHOWROOM	FUEL TYPE	MILAGE (Kmpl)	SAFTY(star)	ТҮРЕ
0	baleno	suzuki	6.14	petrol	24.0	2.0	hatchback
1	swift	suzuki	5.93	petrol	24.0	1.0	hatchback
2	vitarabrezza	suzuki	7.69	petrol	19.0	3.0	compactsuv
3	ertiga	suzuki	8.12	petrol	19.0	2.0	mpv
4	ertiga	suzuki	9.87	cng	24.0	2.0	mpv
						•••	
217	aventador	lamborghini	625.00	petrol	8.0	2.0	sports
218	huracan	lamborghini	321.00	petrol	7.0	2.0	sports
219	convertible	minicooper	45.00	petrol	17.0	3.0	hatchbacksports
220	3door	minicooper	39.00	petrol	17.0	3.0	hatchback
221	countryman	minicooper	41.00	petrol	14.0	4.0	compactsuv

215 rows × 10 columns

In [71]: car['tag1'][0]

Out[71]: 'suzuki 6.14 petrol 24.0 2.0 hatchback 339.0 1197'

```
In [73]: new_car = car[['MODEL','tag1']]
new_car
```

Out[73]:

DEL tag1	MODEL	
leno suzuki 6.14 petrol 24.0 2.0 hatchback 339.0 1197	baleno	0
swift suzuki 5.93 petrol 24.0 1.0 hatchback 268.0 1197	swift	1
ezza suzuki 7.69 petrol 19.0 3.0 compactsuv 328.0 1462	vitarabrezza	2
rtiga suzuki 8.12 petrol 19.0 2.0 mpv 209.0 1462	ertiga	3
rtiga suzuki 9.87 cng 24.0 2.0 mpv 209.0 1462	ertiga	4
ador lamborghini 625.0 petrol 8.0 2.0 sports 110.0	aventador	217
acan lamborghini 321.0 petrol 7.0 2.0 sports 70.0 5204	huracan	218
tible minicooper 45.0 petrol 17.0 3.0 hatchbacksport	convertible	219
door minicooper 39.0 petrol 17.0 3.0 hatchback 211	3door	220
man minicooper 41.0 petrol 14.0 4.0 compactsuv 450	countryman	221

215 rows × 2 columns

```
In [85]: cv.get_feature_names()
           '470'
           '472',
           '475',
           '48',
           '480'
           '482'
           '483',
           '484',
           '49',
           '492'
           '494',
           '4999',
           '50',
           '500',
           '505'
           '506',
           '507',
           '51',
           '510<sup>'</sup>,
In [86]: import nltk
          from nltk.stem.porter import PorterStemmer
          ps = PorterStemmer()
In [89]: def stem(text):
              y=[]
              for i in text.split():
                  y.append(ps.stem(i))
              return " ".join(y)
In [90]: from sklearn.metrics.pairwise import cosine_similarity
```

```
In [94]: | similarity = cosine_similarity(vectors)
         similarity
Out[94]: array([[1.
                            , 0.71428571, 0.28571429, ..., 0.14285714, 0.285
         71429,
                 0.28571429],
                 [0.71428571, 1.
                                        , 0.28571429, ..., 0.14285714, 0.285
         71429,
                 0.14285714],
                 [0.28571429, 0.28571429, 1.
                                                    , ..., 0.14285714, 0.142
         85714,
                 0.28571429],
                 [0.14285714, 0.14285714, 0.14285714, ..., 1.
                                                                      , 0.571
         42857,
                 0.42857143],
                 [0.28571429, 0.28571429, 0.14285714, ..., 0.57142857, 1.
                 0.42857143],
                 [0.28571429, 0.14285714, 0.28571429, ..., 0.42857143, 0.428
         57143,
                            ]])
                 1.
In [92]: cosine_similarity(vectors).shape
Out[92]: (215, 215)
```

In [100]: |similarity[0]

```
Out[100]: array([1.
                             0.71428571, 0.28571429, 0.28571429, 0.28571429,
                 0.57142857, 0.57142857, 0.42857143, 0.57142857, 0.42857143,
                 0.40089186, 0.28571429, 0.28571429, 0.42857143, 0.57142857,
                 0.28571429, 0.14285714, 0.13363062, 0.14285714, 0.14285714,
                 0.28571429, 0.13363062, 0.14285714, 0.
                                                                   0.13363062.
                                                    , 0.26726124, 0.
                             0.28571429, 0.
                                                                 , 0.28571429
                 0.42857143, 0.14285714, 0.14285714, 0.
                            , 0.14285714, 0.28571429, 0.14285714, 0.26726124,
                 0.13363062, 0.42857143, 0.14285714, 0.28571429, 0.14285714,
                 0.28571429, 0.13363062, 0.13363062, 0.
                                                                   0.
                 0.13363062, 0.13363062, 0.13363062, 0.13363062, 0.13363062,
                                                                 , 0.13363062,
                 0.13363062, 0.13363062, 0.13363062, 0.
                 0.11952286, 0.14285714, 0.13363062, 0.71428571, 0.14285714,
                 0.28571429, 0.13363062, 0.13363062, 0.14285714, 0.28571429,
                 0.28571429, 0.28571429, 0.13363062, 0.28571429, 0.14285714,
                                                    , 0.14285714, 0.
                 0.13363062, 0.14285714, 0.
                 0.42857143, 0.14285714, 0.14285714, 0.14285714, 0.13363062,
                 0.26726124, 0.13363062, 0.28571429, 0.
                              0.
                                          0.
                                                      0.14285714, 0.28571429,
                 0.15430335, 0.28571429, 0.28571429, 0.14285714, 0.26726124,
                              0.13363062, 0.
                                                                 , 0.28571429.
                                                      0.13363062, 0.14285714,
                 0.13363062, 0.13363062, 0.15430335, 0.26726124, 0.13363062,
                 0.26726124, 0.13363062, 0.15430335, 0.14285714, 0.
                                        , 0.14285714, 0.
                 0.14285714, 0.
                             0.14285714, 0.14285714, 0.14285714, 0.14285714,
                 0.14285714, 0.28571429, 0.28571429, 0.14285714, 0.15430335,
                 0.13363062, 0.14285714, 0.15430335, 0.14285714, 0.14285714,
                 0.14285714, 0.14285714, 0.
                                                      0.
                                                                 , 0.14285714.
                 0.
                                                                   0.
                                                      0.13363062, 0.28571429,
                              0.14285714,
                                          0.
                 0.13363062, 0.13363062, 0.13363062, 0.14285714, 0.15430335,
                 0.14285714, 0.15430335, 0.14285714, 0.14285714, 0.15430335,
                 0.14285714, 0.13363062, 0.14285714, 0.14285714, 0.14285714,
                 0.26726124, 0.13363062, 0.14285714, 0.28571429, 0.13363062,
                                                    , 0.13363062, 0.
                             0.13363062, 0.
                 0.13363062, 0.13363062, 0.14285714, 0.
                 0.14285714, 0.
                                          0.13363062, 0.12598816, 0.25197632,
                                        , 0.13363062, 0.14285714, 0.
                              0.
                 0.14285714, 0.14285714, 0.15430335, 0.14285714, 0.15430335,
                 0.15430335, 0.15430335, 0.15430335, 0.15430335, 0.15430335,
                 0.14285714, 0.14285714, 0.14285714, 0.
                                                                 , 0.15430335,
                 0.15430335, 0.15430335, 0.14285714, 0.28571429, 0.28571429]
          )
```

In [106]: |similarity[1]

```
, 0.28571429, 0.28571429, 0.28571429,
Out[106]: array([0.71428571, 1.
                 0.57142857, 0.57142857, 0.42857143, 0.57142857, 0.42857143,
                 0.26726124, 0.28571429, 0.28571429, 0.42857143, 0.57142857,
                 0.28571429, 0.14285714, 0.13363062, 0.14285714, 0.14285714,
                 0.28571429, 0.13363062, 0.14285714, 0.
                                                                   0.13363062.
                                                    , 0.13363062, 0.
                             0.28571429, 0.
                                                                 , 0.28571429.
                 0.42857143, 0.14285714, 0.14285714, 0.
                              0.14285714, 0.28571429, 0.14285714, 0.13363062,
                              0.42857143, 0.14285714, 0.28571429, 0.14285714,
                 0.28571429,
                              0.13363062, 0.13363062, 0.
                                                                   0.
                                        , 0.13363062, 0.13363062, 0.13363062,
                 0.13363062,
                                                                 , 0.13363062,
                             0.13363062, 0.13363062, 0.
                             0.14285714, 0.13363062, 0.57142857, 0.14285714,
                 0.28571429, 0.13363062, 0.13363062, 0.14285714, 0.28571429,
                                                    , 0.28571429, 0.14285714,
                 0.28571429, 0.28571429, 0.
                                                    , 0.14285714, 0.
                            , 0.14285714, 0.
                              0.14285714, 0.14285714, 0.14285714, 0.13363062,
                 0.42857143.
                 0.13363062, 0.
                                          0.28571429, 0.
                                          0.
                                                      0.14285714, 0.14285714,
                 0.15430335, 0.28571429, 0.28571429, 0.14285714, 0.13363062,
                              0.13363062, 0.
                                                                 , 0.14285714.
                                                      0.13363062, 0.14285714,
                 0.13363062, 0.13363062, 0.15430335, 0.13363062, 0.13363062,
                 0.13363062, 0.13363062, 0.15430335, 0.14285714, 0.
                 0.
                                          0.
                              0.14285714, 0.14285714, 0.14285714, 0.14285714,
                 0.14285714, 0.14285714, 0.14285714, 0.14285714, 0.15430335,
                 0.13363062, 0.14285714, 0.15430335, 0.14285714, 0.14285714,
                 0.14285714, 0.14285714, 0.
                                                      0.
                                                                   0.
                 0.
                                                      0.13363062, 0.14285714,
                 0.13363062, 0.13363062, 0.13363062, 0.14285714, 0.15430335,
                 0.14285714, 0.15430335, 0.14285714, 0.14285714, 0.15430335,
                 0.14285714, 0.13363062, 0.14285714, 0.14285714, 0.14285714,
                 0.13363062, 0.13363062, 0.14285714, 0.14285714, 0.13363062,
                              0.13363062, 0.
                                                      0.13363062, 0.
                 0.13363062, 0.
                                          0.14285714, 0.
                 0.14285714, 0.
                                          0.13363062, 0.12598816, 0.12598816,
                                        , 0.13363062, 0.14285714, 0.
                              0.
                 0.14285714, 0.14285714, 0.15430335, 0.14285714, 0.15430335,
                 0.15430335, 0.15430335, 0.15430335, 0.15430335, 0.15430335,
                 0.14285714, 0.14285714, 0.
                                                     , 0.
                                                                 , 0.15430335,
                 0.15430335, 0.15430335, 0.14285714, 0.28571429, 0.14285714]
          )
```

```
In [121]: def recommend(car):
              car_index = new_car[new_car['MODEL']==car].index[0]
              distances = similarity[car_index]
              car_list = sorted(list(enumerate(distances)), reverse=True, key=l
              for i in car_list:
                  print(new_car.iloc[i[0]].MODEL)
                  print(i[0])
In [126]: recommend('baleno')
          swift
          1
          glanza
          63
          dzire
          wagonr
          celerio
In [124]: new_car['MODEL'][63]
Out[124]: 'glanza'
  In [ ]:
```