Process Assignment, Scheduling and Load Balancing Study-Ready Notes

Compiled by Andrew Photinakis

October 2nd, 2025

Contents

1	Introduction to Process Assignment and Scheduling 1.1 Basic Concepts	4
	1.2 Programming Models	6
2	Critical Factors in Parallel Computing	2
	2.1 Granularity	4
	2.2 Overheads	•
	2.3 Scalability	•
3	Processor and System Characteristics	•
	3.1 Homogeneous vs Heterogeneous Systems	•
	3.2 Network Characteristics	•
	3.3 Cost Modeling	4
4	Problem and System Knowledge Requirements	4
	4.1 Problem Analysis	4
	4.2 System Analysis	4
5	Decomposition Strategies	ļ
	5.1 Domain Decomposition	Ę
	5.2 Functional Decomposition	ļ
6	Process Assignment and Scheduling Types	ļ
	6.1 Static Scheduling	ţ
	6.2 Dynamic Scheduling	ţ
7	Process Scheduling Approaches	(
	7.1 Centralized vs Decentralized	(
	7.2 Primary Issues: Problem Perspective	(
	7.3 Primary Issues: System Perspective	(

8	Opt		7
	8.1		7
	8.2		7
	8.3	Parallelization Decision	7
	8.4	Assumptions and Limitations	8
9	Clus	6	8
	9.1	Clustering Concept	8
	9.2	Clustering Strategies	8
10	Dyn	namic Load Balancing	8
	10.1	Basic Concepts	8
	10.2	Dynamic Scheduling Algorithms	9
	10.3	Dynamic System Challenges	9
11	Loa	d Balancing Methods and Challenges	9
	11.1	Approaches to Load Balancing	9
	11.2	Key Questions in Load Balancing	0
	11.3	Cost Considerations	0
12	Stat	ic vs Dynamic Load Balancing	0
	12.1	Static Load Sharing	0
	12.2	Dynamic Load Balancing	0
13	Pro	cess Migration 1	1
	13.1	Migration Process	1
	13.2	Migration Scenarios	1
14	Dist	cributed Scheduling Framework 1	1
	14.1	System Components	1
	14.2	Implementation Considerations	2

1 Introduction to Process Assignment and Scheduling

1.1 Basic Concepts

- Process Assignment: Mapping processes to processing elements (PEs)
 - Considers: Process characteristics, Hardware/Software characteristics
 - Answers the question: Where?
- Scheduling: Determining when to start executing each task
 - Types: Undirected, Directed
 - Answers the question: When?

[Summary] Process assignment determines where processes run, while scheduling determines when they execute. Both consider system and process characteristics for optimal performance.

1.2 Programming Models

- **Definition**: Abstractions of CPU hardware, memory, and communication architectures
- Types: SPMD (Single Program Multiple Data), MPMD (Multiple Program Multiple Data), Shared Memory, Message Passing
- Selection Criteria:
 - Application problem characteristics
 - Available parallel computer architecture
 - Knowledge of parallel algorithms and programming languages

[Summary] Programming models provide abstractions for parallel computing, with selection depending on application needs and available hardware.

2 Critical Factors in Parallel Computing

2.1 Granularity

- **Definition**: Ratio of computation to communication
- Coarse vs Fine Granularity:
 - Coarse: Large computational work between communication events
 - Fine: Frequent communication with smaller computation chunks
- Impact: Higher computation/communication ratio → better speedup and efficiency

2.2 Overheads

- Types:
 - Synchronization costs
 - Data communication costs
- Significance: Overheads reduce effective parallel speedup

2.3 Scalability

- **Definition**: Ability to maintain performance improvement with increasing processors
- Influencing Factors:
 - Memory-CPU bandwidth
 - Network communication capabilities
 - Application algorithm design
 - Programming language characteristics
 - Process assignment strategy

[Summary] Granularity, overheads, and scalability are critical factors affecting parallel performance, with granularity balancing computation and communication trade-offs.

3 Processor and System Characteristics

3.1 Homogeneous vs Heterogeneous Systems

- Homogeneous Processors:
 - All processors identical in type and capability
 - Uniform computing and communication costs
- Heterogeneous Processors:
 - Processors with varying capabilities (speed, resources, software)
 - Different computing and communication costs
 - May require specific processors for certain processes

3.2 Network Characteristics

- Homogeneous/Heterogeneous Networks:
 - Communication bandwidth may vary
 - Considerations: Mobility, disconnection issues

3.3 Cost Modeling

• Total Cost Formula:

Total Cost = Computing Costs + Communication Costs

- Example Calculation:
 - Given process costs on different processors
 - Communication cost between processors = 1 unit
 - Assignment: (B,C,D) \rightarrow P1; (A,E,F) \rightarrow P2
 - Total Cost = Sum of computation costs + communication costs

[Summary] System heterogeneity affects assignment decisions, with total cost being the sum of computation and communication expenses.

4 Problem and System Knowledge Requirements

4.1 Problem Analysis

- Focus Areas:
 - Parallelize most time-consuming processes
 - Avoid parallelizing trivial processes
 - Identify bottlenecks: I/O, data dependencies

4.2 System Analysis

- Processor Characteristics:
 - Speed, memory capacity
- Topology Types:
 - Mesh, Tree, Hypercube, 3-D Mesh
- Communication Patterns:
 - Processor-Processor
 - Processor-Memory
 - Memory-Memory

5 Decomposition Strategies

5.1 Domain Decomposition

- Approach: Divide data into discrete chunks
- Applications: Matrix operations, Image processing
- ullet Goal: Maintain high $\frac{\cos t \text{ of computing (R)}}{\cos t \text{ of communication (C)}}$ ratio
- Considerations: Match system (R,C) with application (r,c)

5.2 Functional Decomposition

- Approach: Assign different functions to different processors
- Applications: Signal processing (pipelined filter stages)
- **Key Principle**: Maintain matching R/C to r/c ratios for improved parallelism

[Summary] Domain decomposition partitions data, while functional decomposition partitions functions, both aiming to optimize computation-communication ratios.

6 Process Assignment and Scheduling Types

6.1 Static Scheduling

- Characteristics:
 - Problem and process complexities known a priori
 - Fixed assignments determined before execution
- Applications: Traditional parallel systems with predictable workloads

6.2 Dynamic Scheduling

- Characteristics:
 - Processor availability changes over time
 - Adapts to system state changes
 - Combined with process migration and load balancing

• Applications:

- Cloud systems (shared resources)
- Mobile systems (mobility, battery constraints)

[Summary] Static scheduling works with known parameters, while dynamic scheduling adapts to changing system conditions.

7 Process Scheduling Approaches

7.1 Centralized vs Decentralized

• Centralized Scheduling:

- Single controller makes all decisions
- Pros: Consistent, global view
- Cons: Single point of failure, scalability issues

• Decentralized Scheduling:

- Distributed decision making
- Pros: Scalable, fault-tolerant
- Cons: Coordination overhead, potential inconsistencies

7.2 Primary Issues: Problem Perspective

• Workload Distribution:

- Distributing jobs and metadata
- Queue length management

• Session State Management:

- Node stickiness (affinity)
- Cost of task reallocation
- Session state distribution

7.3 Primary Issues: System Perspective

Node Selection Policies:

- Random selection
- Round Robin
- Shortest queue
- Threshold-based (queue length ; threshold)

• Workload Metrics:

- Queue Length
- CPU Utilization
- Response Time, Capacity, Network latency
- Probe limit

8 Optimal Scheduling Analysis

8.1 Mathematical Formulation

• System Model:

- N tasks: $p_1, p_2, p_3, ..., p_N$

- 2 processors: A and B

- Assignment: A: $p_1, p_2, ..., p_k$; B: $p_{k+1}, p_{k+2}, ..., p_N$

• Cost Components:

- Computation cost for process $p_i = r_i$

- Communication cost between p_i and $p_j = c_{i,j}$ if on different processors

- Communication cost = 0 if on same processor

8.2 Cost Analysis

• Total Cost Formula:

Total Cost =
$$r \times \max(k, N - k) + c \times [k \times (N - k)]$$

• Special Cases:

- All processes on one processor (k = N):

$$Cost = r \times N$$

– Equal division (k = N/2):

$$Cost = \frac{r \times N}{2} + c \times \left(\frac{N}{2} \times \frac{N}{2}\right) = \frac{1}{2} \left(r \times N + \frac{c \times N^2}{2}\right)$$

8.3 Parallelization Decision

• Condition for Parallelization:

$$r \times N > \frac{1}{2} \left(r \times N + \frac{c \times N^2}{2} \right)$$

Simplifies to:

$$\frac{r}{c} > \frac{N}{2}$$

• Decision Rule:

- Equal distribution if $\frac{r}{c} > \frac{N}{2}$
- Use single processor if $\frac{r}{c} \leq \frac{N}{2}$
- Decision independent of number of processors

8.4 Assumptions and Limitations

- Key Assumptions:
 - Total communication among all processes
 - No overlap between computation and communication
 - All processes communicate with each other
- Real-world Considerations:
 - Subset of processes communicate
 - Computation and communication can often overlap

[Summary] Optimal scheduling depends on the computation-to-communication cost ratio, with parallelization beneficial only when r/c > N/2.

9 Clustering in Process Scheduling

9.1 Clustering Concept

- Objective: Group processes to minimize communication costs
- Computation Cost: $\sum_{i=1}^{n} r_i$
- Communication Cost: $\sum c_{in} + \sum c_{out}$

9.2 Clustering Strategies

- Input/Output Focus:
 - Consider incoming and outgoing communication costs
 - Balance computation and communication within clusters

10 Dynamic Load Balancing

10.1 Basic Concepts

- **Definition**: Equitable distribution of load among processors
- Goal: Minimize difference between most heavily and lightly loaded processors
- Key Principle: Adjust based on monitored system state

10.2 Dynamic Scheduling Algorithms

• Sender-Initiated Algorithms:

- Transfer policy: When queue length exceeds threshold
- Selection policy: Which process to transfer
- Location policy: Cost and distance considerations

• Receiver-Initiated Algorithms:

- Triggered when queue length falls below threshold

10.3 Dynamic System Challenges

• Sources of Dynamism:

- Uncertainty in task execution times
- Dynamic task arrival and departure
- Changing processor availability
- Network condition variations
- Task priority changes
- Processor and network faults

• Exacerbating Factors:

- Cloud systems (resource sharing)
- Mobile systems (mobility, energy constraints)

[Summary] Dynamic load balancing adapts to changing system conditions using sender or receiver initiated approaches to maintain equitable load distribution.

11 Load Balancing Methods and Challenges

11.1 Approaches to Load Balancing

• Centralized vs Decentralized:

- Centralized: Single controller, less scalable
- Decentralized: Distributed control, more scalable

• Information Collection:

- How to obtain processor state information
- Centralized vs decentralized collection
- Periodic vs event-driven updates
- Threshold-based monitoring

11.2 Key Questions in Load Balancing

- Transfer Policy: Whether to move processes
- Location Policy: Where to move processes
- Process Selection: Which processes to move
- Decision Architecture: Centralized or distributed control

11.3 Cost Considerations

- Processing Overhead:
 - Data collection for load monitoring
 - Decision making computations
- Network Overhead:
 - Distribution of load information
 - Process migration costs
 - Job redistribution

12 Static vs Dynamic Load Balancing

12.1 Static Load Sharing

- Characteristics:
 - Fixed policy, no adaptation to system state
 - Simple, low cost implementation
 - Handles session state easily
 - Cannot adjust to dynamic changes

12.2 Dynamic Load Balancing

- Advantages:
 - Adapts to changing system conditions
 - Better resource utilization
 - Handles unpredictable workloads
- Disadvantages:
 - Complex implementation
 - Significant overhead costs
 - Session state management challenges

13 Process Migration

13.1 Migration Process

• Steps:

- Migration request initiation
- Process suspension on source host
- State transfer to destination host
- Process resumption on destination
- File server coordination

13.2 Migration Scenarios

• Work Stealing:

- Idle processor seeks work from busy ones
- "No more work \rightarrow Find work elsewhere"

• Load Distribution:

- Balance load across multiple processors
- Handle processor saturation scenarios

14 Distributed Scheduling Framework

14.1 System Components

• Load Information Management:

- Collects local node load information
- Disseminates information to other nodes

• Distributed Scheduling:

- Makes migration decisions
- Determines when, where, and which processes to migrate

• Migration Mechanism:

- Executes the actual process transfer

14.2 Implementation Considerations

- Local Information Collection: Monitoring node status
- Information Dissemination: Sharing load data
- Migration Directives: Decision rules for process movement

Study Aids

Key Formulas

- Total Cost = Computing Costs + Communication Costs
- Optimal scheduling condition: $\frac{r}{c} > \frac{N}{2}$
- Clustering costs: Computation = $\sum r_i$, Communication = $\sum c_{in} + \sum c_{out}$

Important Concepts

- Granularity: Computation-to-communication ratio
- Homogeneous vs Heterogeneous systems
- Static vs Dynamic scheduling
- Centralized vs Decentralized control
- Sender vs Receiver initiated load balancing

 $[{\rm Mnemonic}]$ "GCD SL" - Granularity, Cost, Dynamism for Scheduling and Load balancing $[{\rm Concept~Map}]$

- Process Assignment \rightarrow Where (Mapping)
- Scheduling \rightarrow When (Timing)
- Load Balancing → How (Distribution)
- Static vs Dynamic approaches
- Centralized vs Decentralized control
- Homogeneous vs Heterogeneous systems