SFWR ENG 4E03

Kemal Ahmed Fall 2015

Note: material covered in Stats 3Y03 Summary will not be covered in this summary

Expected Value $[\mu]$: definition of expected (NOT RIGHT!!)

Poisson parameter $[\lambda]$:

Exponential distribution: not always for time

Probability Distribution Function (PDF): Cumulative Distribution Function (CDF):

Uniform Distribution: no memoryless property

Exponential Distribution:

- Memoryless
- Either CDF or PDF of original equation $F = 1 e^{-\lambda x}$

Think chemistry, i.e. cancelling units

Device [i]:

[k]: total number of devices

Service Time [S]: time to complete specific job

Visitation [V]: given or projected visits/jobs (closed system); cannot be calculated

[E(V)]: calculated visit/job ratio **Demand** [D]: total service demand

$$D_i = E[S_i] \cdot V_i$$

$$D = \sum_{i=0}^{k} D_i$$

Time in system [T]: expected time the job is in the system

Response Time [R]:

Total Jobs [N]:

$$E[T] = \frac{N}{X}$$

$$E[N] = \lambda E[T], \lambda = X$$

Think time [Z]: time it takes the user to put a request in and start, it's kinda like the frequency that users put in requests (seconds / request)

$$E[Z] = E[T] - E[R]$$

If
$$E[Z] = 0$$
, $R = N$

$$E[N] = \lambda E[R], \lambda = X$$

$$E[T] \ge \max(D, ND_{\max} - E[Z])$$

Throughput [X]: out-rate, jobs / hour of full system

$$X \le \min\left(\frac{1}{D_{\max}}, \frac{N}{D + E[Z]}\right)$$

Note: $\frac{1}{D_{\max}}$ and $\frac{N}{D+E\big[Z\big]}$ converge at their lowest point, so equate them

[X_i]: throughput of individual component

$$X_i = E[V_i]X$$

Utilization [p]: ratio that the time is busy

$$\rho_i = X_i E[S_i]$$

$$\rho_i = XD_i$$

Geometric Series: $\sum_{i=0}^{\infty} r^i = \frac{r}{1-r}$