Sampling: Cluster sampling

\$ echo "Data Science Institute"

Learning Outcomes

How might our study be impacted if we sample entire groups of individuals from our population based on shared characteristics? How do we effectively study a sample selected in this manner?

- Identify benefits of using cluster sampling
- Compute sample statistics for cluster samples
- Design a study using cluster sampling
- Distinguish between different types of cluster sampling, and between cluster sampling and stratified sampling

What is cluster sampling?

Cluster Sampling

- 1. Divide the whole population into non-overlapping subpopulations based on shared characteristics. These subpopulations are called clusters.
- 2. Randomly select a sample of clusters.
- 3. Survey every individual unit within each sampled cluster.

Sampling Units

- Primary sampling units (PSUs)
 - Groupings in the first iteration of sampling in this case, clusters
- Secondary sampling units (SSUs)
 - Individuals units who are selected and/or surveyed directly
 - Also known as the observational units
- Observational units are only included in the sample if they belong to the sampled PSU (cluster)

Why use cluster sampling?

- It may be difficult, expensive, or impossible to create a sampling frame of individual (non-clustered) sampling units
 - For example, all birds in a forest or all individuals in a city at a given time
- Population may occur in natural or pre-existing clusters
 - For example, households or schools
 - For geographically widespread populations, sampling by cluster reduces the chance of extensive travel to reach a single individual

Why not use cluster sampling?

- Decreased precision
 - SSUs in each cluster tend to share similar characteristics
 - More difficult to generalize to population-level estimates

Exercise: What are some trade-offs between cluster sampling and stratified sampling?

Cluster sampling versus stratified sampling

- Both are non-overlapping subpopulations for a given population
- Clusters are often defined for convenience, while strata may be defined to benefit particular types of analysis
- Sampling procedure is different
 - Stratified sampling: define strata → sample within each stratum → survey/observe units in the samples
 - Cluster sampling: define clusters → sample a subset of clusters → survey/observe all units in each sampled cluster

• Based on Lohr, 2019, Figure 5.1

One-Stage Cluster Sampling

One-Stage Cluster Sampling

- A random subset of PSUs (clusters) is sampled, and all SSUs within each sampled
 PSU are measured
- Used when the cost of measuring SSUs is small compared with the cost of sampling PSUs

Clusters of *Equal* Sizes: Notation

- Let N represent the total number of PSUs. Let n represent the number of sampled PSUs. Let t_i represent the total for all elements in PSU i.
- Let M represent the number of people in each cluster. In one stage cluster sampling with samples of equal size, $M=M_i=m_i$ for all i .
 - \circ Interpretation: The number of people in each cluster (M_i) is the same for all clusters, and all units from each sampled cluster are measured (m_i)

Clusters of Equal Sizes: PSU Total

• Let x_{ij} represent the measurements from SSU (observational unit) j within PSU (cluster) i. The total measurement within PSU i is,

$$t_i = \sum_{j=1}^M y_{ij}$$

The total across all PSUs can be estimated with,

$$\hat{t} = rac{N}{n} \sum_{i=1}^n t_i$$

• This is a weighted sum of the total measurements from each individual cluster.

Clusters of Equal Sizes: Sample Mean

• To estimate the average per SSU (observational unit), divide the estimated total by the total number of SSUs:

$$\hat{ar{y}} = rac{\hat{t}}{NM}$$

• $\hat{ar{y}}$ is an estimator for the sample mean $ar{y}$. Since the calculation involves the estimator for the population total, this is not a direct calculation of the sample mean.

Clusters of Equal Sizes: Sample Variance

The sample variance of the PSU totals is,

$$s_t^2 = rac{1}{n-1} \sum_{i=1}^N (t_i - rac{\hat{t}}{N})^2$$

• s_t^2 can then be used to compute the standard error of the estimated sample mean:

$$SE(\hat{\bar{y}}) = \sqrt{\frac{1}{M} \left(1 - \frac{n}{N}\right) \frac{s_t^2}{n}}$$

Clusters of Equal Sizes: Weights

 One-stage cluster sampling with clusters of equal sizes produces a self-weighting sample, with weights,

$$w_{ij} = rac{N}{n}$$

ullet These weights can be used to estimate the sample total and mean directly from SSU measurements x_{ij} :

$$\hat{t} = \sum_{i=1}^N \sum_{j=1}^M w_{ij} y_{ij}$$

$$\hat{ar{y}} = rac{\hat{t}}{NM} = rac{\sum_{i=1}^{N} \sum_{j=1}^{M} w_{ij} y_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{M} w_{ij}}$$

Clusters of *Unequal* Sizes: Notation

- The definitions for n, N, and t_i are the same as previously.
- Let M_i represent the number of people in PSU (cluster) i . For clusters of unequal sizes, it is now possible that $M_i \neq M_j$ for $i \neq j$.
- ullet One-stage sampling means that $m_i=M_i$ still (all SSUs in each cluster are sampled).

Clusters of *Unequal* Sizes: SSU Total

The total number of SSUs in the population is defined as,

$$M_0 = \sum_{i=1}^N M_i$$

ullet This can be computed directly when the size of every PSU is known. However, this is not always possible. M_0 can thus be estimated:

$$\hat{M}_0 = rac{N}{n} \sum_{i=1}^n M_i$$

Clusters of *Unequal* Sizes: PSU Total

• The total within each PSU can be estimated nearly the same way as for clusters of equal sizes, with the difference that M_i may be different for different clusters:

$$t_i = \sum_{j=1}^{M_i} y_{ij}$$

The total across all PSUs can be estimated with,

$$\hat{t} = rac{N}{n} \sum_{i=1}^n t_i$$

This is the same as for clusters of equal sizes.

Clusters of *Unequal* Sizes: Sample Mean

ullet The sample mean can be calculated using the estimates for t and M_0 :

$$\hat{ar{y}} = rac{\hat{t}}{\hat{M}_0} = rac{\sum_{i=1}^n t_i}{\sum_{i=1}^n M_i}$$

• This can also be calculated using weights, with the same weights and calculation as for clusters of equal sizes:

$$\hat{ar{y}} = rac{\hat{t}}{\hat{M}_0} = rac{\sum_{i=1}^{N} \sum_{j=1}^{M_i} w_{ij} y_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} w_{ij}}$$

Clusters of *Unequal* Sizes: Sample Mean Variance

The standard error for the sample mean can be estimated as follows,

$$SE(\hat{ar{y}}) = \sqrt{(1-rac{n}{N})rac{1}{nar{M}^2}rac{\sum_{i=1}^{N}M_i^2(ar{y}_i-\hat{ar{y}})^2}{n-1}}$$

• where \bar{y}_i represents the sample mean within PSU i and \bar{M} represents the mean number of SSUs in each PSU.

Two-Stage Cluster Sampling

Two-Stage Cluster Sampling

- A random subset of PSUs (clusters) is selected, and then a random sample of the SSUs (observational units) within each PSU is selected for observation.
- Two stage sampling might be used if:
 - The cost of sampling SSUs is relatively high compared with the cost of sampling PSUs
 - Elements in a cluster are very similar to each other

• Based on Lohr, 2019, Figure 5.2

Two-Stage Cluster Sampling: Selection Probability

• Since sampling is occurring at two different stages now, the selection probability of y_{ij} (the j^th SSU in PSU i) is a combination of the probability of PSU i being selected, and the probability of SSU j being selected within PSU i. Assuming an SRS is taken at both stages, we have:

$$\pi_{ij} = P(j^{th} ext{ SSU in } i^{th} ext{ PSU selected})$$
 $= P(i^{th} ext{ PSU selected}) \cdot P(j^{th} ext{ SSU selected} \mid i^{th} ext{ PSU selected})$ $= \frac{n}{N} \frac{m_i}{M_i} =$

Two-Stage Cluster Sampling: Weights

• As always, the weight of observational unit y_{ij} is the reciprocal of its selection probability.

$$w_{ij} = rac{1}{\pi_{ij}} = rac{NM_i}{nm_i}$$

• If m_i/M_i is approximately constant for all PSUs (i.e. a proportional sample from all clusters), this is considered a self-weighting sample.

Two-Stage Cluster Sampling: Population Total

• The population total can be estimated in the same was as one-stage cluster sampling.

$$\hat{t} = \sum_{i=1}^N \sum_{j=1}^{M_i} w_{ij} y_{ij}$$

Two-Stage Cluster Sampling: Sample Mean

• The sample mean can be calculated using the estimates for t and M_0 . This is much the same as in one-stage cluster sampling, except the totals for each PSU must now be estimated as well:

$$\hat{ar{y}} = rac{\hat{t}}{\hat{M}_0} = rac{\sum_{i=1}^n t_i}{\sum_{i=1}^n M_i}$$

• This can also be calculated using weights, with the same weights and calculation as for one-stage sampling:

$$\hat{ar{y}} = rac{\hat{t}}{\hat{M}_0} = rac{\sum_{i=1}^{N} \sum_{j=1}^{M_i} w_{ij} y_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} w_{ij}}$$

Two-Stage Cluster Sampling: Sample Variance

- With two-stage sampling, there are two types of variance: between PSUs, and within PSUs. Both calculations follow a familiar structure.
- The variance between PSUs can be calculated,

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (M_i ar{y}_i - M_i \hat{ar{y}})^2$$

The variance within PSU i can be calculated,

$$s_i^2 = rac{1}{m_i-1} \sum_{j=1}^{m_i} (y_{ij} - ar{y}_i)^2$$

Two-Stage Cluster Sampling: Estimator Variance

 The estimated variance of the sample mean is also comprised of variance within and between PSUs,

$$\hat{V}(\hat{ar{y}}) = rac{1}{ar{M}^2} (1 - rac{n}{N}) rac{s^2}{n} + rac{1}{nNar{M}^2} \sum_{i=1}^n M_i^2 (1 - rac{m_i}{M_i}) rac{s_i^2}{m_i}$$

• where s^2 and s^2_i are defined as previous, and $ar{M}$ is the average PSU size.

Designing a Cluster Sample

Choosing a PSU Size

- Often will come about naturally
 - There may be pre-existing groupings that can be used as clusters
 - Examples: classrooms, farms, stores
- Larger PSU size means larger variability within a PSU
- PSUs that are too large or too small may reduce cost saving benefits of cluster sampling

Choosing a Sub-Sample Size (mi)

- Considerations
 - Cost
 - Is measuring more SSUs marginally expensive or inexpensive?
 - Accessibility
 - Do you have access to all SSUs in a given PSU? How difficult is it to measure more SSUs?
 - Homogeneity
 - Are all the SSUs in a given PSU relatively similar? How much more information is gained by measuring more SSUs?
- In general, the same considerations as a general also SRS apply.

Choosing a Sample Size (n)

This process is similar to selecting sample sizes for SRS.

- 1. Determine precision needed.
- 2. Propose PSU and sub-sample sizes.
- 3. Calculate the variance that will be achieved.
- 4. Choose *n* to achieve desired precision.
- 5. Iterate until *n* is realistic given available resources.

Systematic Sampling (again)

Systematic Sampling

- Recall that systematic sampling involves obtaining a list of population units, selecting a sample size n, a selection interval k, and a starting point R, and then sampling elements R, R + k, R + 2k and so on.
- Within a population, the subpopulations $\{R, R+k, R+2k...\}$ form clusters for different values of R.
- By selecting a random R between 1 and n, we are sampling one cluster.
- Analysis of systematic samples is often similar to SRS. See 5.5: Simple probability samples for details.

Next

Non-response