LEnsE / Institut d'Optique Graduate School

Séance 1

SÉANCE 1 / BASES ET AMPLIFICATEUR LINÉAIRE

Pour ce TD, on pourra s'appuyer sur les fiches résumées : Fondamentaux et Ampli Linéaire Intégré.

Mission 1.1 - Abaisser une tension

Proposez un circuit permettant d'abaisser une tension d'un facteur k.

0 < k < 1

Pour réduire une tension, il est possible d'utiliser un **pont diviseur de tension**, basé sur l'utilisation de 2 résistances en série comme proposé dans le schéma suivant.

Pour le calcul, on peut s'intéresser au courant I en écrivant deux lois des mailles différentes :

1.
$$V_E - R_1 \cdot I - R_2 \cdot I = 0$$

$$2. V_S - R_2 \cdot I = 0$$

Cela suppose que l'on considère que le courant $I_S=0$.

En combinant les deux, on obtient la relation entre V_E et V_S suivante :

$$V_S = V_E \cdot \frac{R_2}{R_1 + R_2}$$

Si on suppose maintenant que le circuit précédent est chargé par une résistance R_L , on obtient alors le montage suivant :

Dans ce cas, le courant I_S n'est plus nul.

Le courant I traversant R_1 va alors se partager entre R_2 et R_L . On aura alors la seconde loi des mailles écrites précédemment qui ne sera plus valide.

On peut alors écrire les relations suivantes :

- 1. loi des mailles : $V_E R_1 \cdot I + V_S$
- 2. loi des mailles : $V_S R_L \cdot I_S = 0$
- 3. loi des noeuds : $I = I_S + I_2$
- 4. loi des mailles : $V_S R_2 \cdot I_2 = 0$

Après regroupement et simplification, on obtient la relation suivante :

$$V_S = V_E \cdot \frac{R_{eq}}{R_1 + R_{eq}}$$

avec $R_{eq} = \frac{R_2 \cdot R_L}{R_2 + R_L}$ (mise en parallèle de R_2 et R_L).

Mission 1.2 - Courants et tensions

Soit le circuit suivant :

- 1. Donnez l'expression de V_S en fonction de I_{PHD} .
- 2. Que devient cette expression si $R_e \longrightarrow +\infty$, $Z_e \longrightarrow +\infty$ et $Z_{PHD} \longrightarrow +\infty$?

On se place à présent en régime harmonique.

 Z_{PHD} est une capacité C_{PHD} et Z_e est une capacité C_e .

- 3. Que devient l'expression de V_S en fonction de I_{PHD} ?
- 4. A quoi peuvent correspondre l'ensemble des éléments du montage?

Question 1

Les 5 branches sont en parallèle et sont soumises à la même différence de potentiel V_S .

Le courant I_{PHD} se distribue dans les 4 autres branches : $I_{PHD} = \frac{V_S}{Z_{PHD}} + \frac{V_S}{R_{PHD}} + \frac{V_S}{Z_e} + \frac{V_S}{R_e}$ Ainsi :

$$V_S = \frac{I_{PHD}}{\frac{1}{Z_{PHD}} + \frac{1}{R_{PHD}} + \frac{1}{Z_e} + \frac{1}{R_e}}$$

Question 2

L'expression précédente devient : $V_S = R_{PHD} \cdot I_{PHD}$

Question 3

$$Z_{PHD} = \frac{1}{j \cdot C_{PHD} \cdot \omega}$$
 et $Z_e = \frac{1}{j \cdot C_e \cdot \omega}$

L'expression de la question 1 devient alors :

$$\frac{V_S}{I_{PHD}} = \frac{1}{\frac{1}{R_{PHD}} + j \cdot C_{PHD} \cdot \omega + \frac{1}{R_e} + j \cdot C_e \cdot \omega}$$

On pose : $R_k = \frac{R_e \cdot R_{PHD}}{R_e + R_{PHD}}$ et $C_k = C_{PHD} + C_e$

Après simplification:

$$\frac{V_S}{I_{PHD}} = R_k \cdot \frac{1}{1 + j \cdot R_k \cdot C_k \cdot \omega}$$

Question 4

Une **photodiode** peut être modélisée par une source de courant, dépendant du flux lumineux qu'elle reçoit, et d'une capacité parasite C_{PHD} .

De l'autre côté, il est possible de modéliser un oscilloscope, permettant de visualiser le signal électrique, par une résistance d'entrée R_e et le cable coaxial, qui permet d'amener le signal jusqu'à l'entrée de l'oscilloscope, par un condensateur de capacité C_e .

Enfin, la résistance R_{PHD} permet de transformer le courant résultant de la photodiode en une tension plus facilement visualisable à l'aide d'un oscilloscope.

Mission 1.3 - Amplificateur linéaire intégré

On fournit en annexe une partie de la documentation technique de l'amplificateur linéaire intégré (ALI) **TL081**.

- 1. Cherchez dans la documentation les valeurs des paramètres électriques suivants :
 - (a) Tension d'alimentation (Supply Voltage)
 - (b) Tension d'entrée différentielle maximale
 - (c) Amplification différentielle
 - (d) Gain unitaire ou produit gain-bande-passante
 - (e) Impédance d'entrée
 - (f) Slew Rate
- 2. Précisez à quoi corresponde chacun de ces paramètres.
- 3. Rappelez la relation entre les entrées V^+ , V^- et la sortie V_S d'un ALI.
- 4. Tracez la caractéristique $V_S = f(\varepsilon)$ où $\varepsilon = (V^+ V^-)$ pour cet ALI avec $V_{CC} = 15 \, \text{V}$.
- 5. Est-ce un bon amplificateur? Quelle est sa bande-passante?

Question 1

- Tension d'alimentation (Supply Voltage) = 18V
- Tension d'entrée différentielle maximale = 30V

- Amplification différentielle $A_{VD} = 200 \, \text{V/mV} = 2 \cdot 10^5$
- Gain unitaire ou produit gain-bande-passante $B_1 = 3 \,\mathrm{MHz}$
- Impédance d'entrée $r_i = 10^{12} \,\Omega = 10^6 \,\mathrm{M}\Omega = 1 \,\mathrm{T}\Omega$
- Slew Rate $SR = 13 \,\mathrm{V}/\mu\mathrm{s}$

Question 2

- Tension d'alimentation : les ALI sont des composants actifs, ils nécessitent une source d'énergie pour fonctionner. Ici il est nécessaire de réaliser une source de tension symétrique, c'est à dire une source positive $+V_{CC}$ et une source négative $-V_{CC}$, où $V_{CC} < 18 \text{ V}$
- Tension d'entrée différentielle maximale : c'est la différence de potentiel maximale admissible entre V^+ et V^- . On appelle tension d'entrée différentielle $\varepsilon = (V^+ V^-)$
- Amplification différentielle : c'est l'amplification du composant, le lien entre la tension de sortie (V_S) et la tension différentielle d'entrée (ε) .
- Gain unitaire ou produit gain-bande-passante : c'est une donnée essentielle qui permet de connaître la bande-passante du composant lorsque l'amplification du montage est de 1. Sur les montages amplificateurs (à base d'ALI), le produit amplification bande-passante est constant.
- Impédance d'entrée : c'est l'impédance vu par le montage en amont de l'ALI.
- Slew Rate : cette donnée caractérise la pente maximale que pourra avoir l'ALI en sortie.

Question 3

$$V_S = A_{VD} \cdot (V^+ - V^-)$$

avec $A_{VD} = 200 \, \mathrm{V/mV} = 2 \cdot 10^5$ (dans le cas du TL081).

Question 4

Courbe avec saturation à +/-15V (dans le cas d'une alimentation où $V_{CC} = 15$ V.

La saturation en sortie apparait pour une valeur de $\varepsilon = V_{CC}/A_{VD}$. Pour $V_{CC} = 15\,\mathrm{V}$, on a $\varepsilon_{MAX} = V_{CC}/A_{VD} = 75\,\mu\mathrm{V}$.

Question 5

L'amplication différentielle est souvent supérieure à 10⁵, c'est donc un très bon amplificateur.

Cependant, il a un produit amplification/bande-passante (GBW) qui est constant et « faible », ce qui le rend finalement peu efficace pour des fréquences élevées en boucle ouverte.

Par exemple, pour un $GBW = 3\,\mathrm{MHz}$ et une amplification différentielle $A_{VD} = 2\cdot 10^5$ (cas du TL081), on obtient une bande-passante en boucle ouverte (sans rebouclage) $f_c = GBW/A_{VD} = 15\,\mathrm{Hz}$.

Mission 1.4 - Amplificateur inverseur

On se propose d'étudier à présent le montage suivant :

- 1. Donnez la relation entre V_S et V_E du circuit précédent en utilisant la relation d'entrées-sortie de l'exercice 1.
- 2. Quelle hypothèse fait-on souvent lorsqu'on utilise des ALI avec une rétroaction négative?
- 3. Quelle relation trouve-t-on alors entre V_S et V_E en partant de cette hypothèse?
- 4. Cette hypothèse est-elle justifiée?

Question 1

On calcule d'abord les potentiels V^+ et V^- en entrée de l'ALI (théorème de Millman) :

$$V^{-} = \frac{\frac{V_S}{R_2} + \frac{V_E}{R_1}}{\frac{1}{R_2} + \frac{1}{R_1}} = \frac{V_S \cdot R_1}{R_1 + R_2} + \frac{V_E \cdot R_2}{R_1 + R_2}$$

$$V^{+} = 0$$

De plus, on sait que $V_S = A_{VD} \cdot (V^+ - V^-)$

On obtient alors:

$$V_S = -A_{VD} \cdot \frac{\frac{V_S}{R_2} + \frac{V_E}{R_1}}{\frac{1}{R_2} + \frac{1}{R_1}} = \frac{V_S \cdot R_1}{R_1 + R_2} + \frac{V_E \cdot R_2}{R_1 + R_2}$$

Ce qui donne:

$$T = \frac{V_S}{V_E} = -\frac{R_2}{R_1} \cdot \frac{A}{A + \frac{R_1 + R_2}{R_1}}$$

Question 2

$$V^+ = V^-$$

Lorsqu'on reboucle la sortie sur l'entrée négative sur un ALI, on change son régime de fonctionnement. Il s'agit d'un système bouclé (ou asservi). La sortie va chercher à suivre un signal de consigne appliqué sur l'entrée positive et ainsi l'erreur commise $(V^+ - V^-)$ va tendre vers 0.

Question 3

Les relations obtenues dans la question 1 pour V^+ et V^- restent vraies. Ainsi :

$$V^{-} = \frac{\frac{V_S}{R_2} + \frac{V_E}{R_1}}{\frac{1}{R_2} + \frac{1}{R_1}} = \frac{V_S \cdot R_1}{R_1 + R_2} + \frac{V_E \cdot R_2}{R_1 + R_2}$$

$$V^{+} = 0$$

De plus, en faisant l'hypothèse $V^+ = V^-$, on obtient :

$$T = \frac{V_S}{V_E} = -\frac{R_2}{R_1}$$

Question 4

On passe de l'expression obtenue à la question 1 à celle de la question 3 lorsqu'on suppose que $A_{VD} >> \frac{R_1 + R_2}{R_1}$.

Il est fréquent de prendre des valeurs de résistances telles que $R_2/R_1 \approx 10$. Cette hypothèse est avérée dans le majorité des cas.

Exemple

On souhaite montrer ici l'erreur commise sur la valeur de l'amplification entre la formule complète (incluant l'amplification différentielle) et l'approximation faite en régime linéaire, en fonction de l'amplification R_2/R_1 voulue pour le système.

Pour cela, on fixe $A_{VD} = 15 \cdot 10^3$ la valeur minimale que l'on trouve dans la documentation technique du TL081 (par exemple) et on fait varier le rapport R_2/R_1 de 2 à 10^3 .

Il est possible de faire réaliser ce calcul par le script Matlab suivant :

```
R2 = logspace(0, 3, 101); R1 = 1;
                                        A = 15e3;
  k = (R2 + R1) ./ R1;
  m = -R2./R1
  T = m * A ./ (A + k);
5
6
  erreur = (m - T) ./ m * 100;
  figure;
9
  subplot(2,1,1);
  semilogx(R2./R1, -R2./R1, R2./R1, T);
  legend('Amplification avec A', 'Amplification simplifiee');
  title('Amplificateur inverseur');
  ylabel('Amplification');
.5
  subplot(2,1,2);
  semilogx(R2./R1, erreur);
  ylabel('Erreur relative (\%)');
  xlabel('R2/R1');
```

On obtient alors la figure suivante :

TL081, TL081A, TL081B, TL082, TL082A TL082B, TL084, TL084A, TL084B

SLOS081I - FEBRUARY 1977 - REVISED MAY 2015

TL08xx JFET-Input Operational Amplifiers

Features

- Low Power Consumption: 1.4 mA/ch Typical
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias Current: 30 pA Typical
- Low Input Offset Current: 5 pA Typical
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion: 0.003% Typical
- High Input Impedance: JFET Input Stage
- Latch-Up-Free Operation
- High Slew Rate: 13 V/µs Typical
- Common-Mode Input Voltage Range Includes V_{CC+}

Applications

- **Tablets**
- White goods
- Personal electronics
- Computers

3 Description

The TL08xx JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias offset currents, and low offset-voltage temperature coefficient.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TL084xD	SOIC (14)	8.65 mm × 3.91 mm
TL08xxFK	LCCC (20)	8.89 mm × 8.89 mm
TL084xJ	CDIP (14)	19.56 mm × 6.92 mm
TL084xN	PDIP (14)	19.3 mm × 6.35 mm
TL084xNS	SO (14)	10.3 mm × 5.3 mm
TL084xPW	TSSOP (14)	5.0 mm × 4.4 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Symbol

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

					MIN	MAX	UNIT
V _{CC+}	2 1 (2)					18	.,
V _{CC} -	Supply voltage ⁽²⁾					-18	V
V _{ID}	Differential input voltage (3)					±30	V
VI	Input voltage (2)(4)						
	Duration of output short circuit (5)		Unlir	nited			
	Continuous total power dissipation		See Dissipatio				
			TL08_C TL08_AC TL08_BC		0	70	
T_A	Operating free-air temperature		TL08_I		-40	85	°C
			TL084Q		-40	125	
			TL08_M		- 55	125	
	Operating virtual junction temperat	ure				150	°C
T _C	Case temperature for 60 seconds	FK package	TL08_M			260	°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	J or JG package	TL08_M			300	°C
T _{stg}	Storage temperature				-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
- (3) Differential voltages are at IN+, with respect to IN-.
- (4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- (5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	1000	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC+}	Supply voltage		5	15	V
V _{CC} -	Supply voltage		- 5	-15	V
V_{CM}	Common-mode voltage		V _{CC} - + 4	V _{CC+} – 4	V
	Ambient temperature	TL08xM	- 55	125	
_		TL08xQ	-40	125	°C
T _A		TL08xl	-40	85	
		TL08xC	0	70	

Electrical Characteristics for TL08xC, TL08xxC, and TL08xI (continued)

 $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST TA(1)			C, TL08	32C,		C, TL08 L084AC			3C, TL08 L084BC			311, TL08 TL0841	321,	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120			120			120		dB

6.6 Electrical Characteristics for TL08xM and TL084x

 $V_{co.} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEGT CONDITIONS(1)	-	TLO	81M, TL082	:M	TL0	84Q, TL08	4M	UNIT
	PARAMETER	TEST CONDITIONS ⁽¹⁾	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	l	V 0. D 50.0	25°C		3	6		3	9	>/
V_{IO}	Input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range			9			15	mV
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range		18			18		μV/°C
	(2)	V 0	25°C		5	100		5	100	рА
I _{IO}	Input offset current ⁽²⁾	V _O = 0	125°C			20			20	nA
	(2)		25°C		30	200		30	200	pА
I _{IB}	Input bias current ⁽²⁾	V _O = 0	125°C			50			50	nA
V _{ICR}	Common-mode input voltage range		25°C	±11	-12 to 15		±11	-12 to 15		V
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5		
V_{OM}	Maximum peak output voltage swing	$R_L \ge 10 \text{ k}\Omega$	Full server	±12			±12			V
	output voltage swing	$R_L \ge 2 k\Omega$	Full range	±10	±12		±10	±12		
^	Large-signal differential	V .40 V B > 2 k0	25°C	25	200		25	200		V/mV
A_{VD}	voltage amplification	$V_O = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	Full range	15			15			V/IIIV
B ₁	Unity-gain bandwidth		25°C		3			3		MHz
ri	Input resistance		25°C		10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_O = 0, R_S = 50 \Omega$	25°C	80	86		80	86		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8	mA
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

6.7 Operating Characteristics

 $V_{CC+} = \pm 15 \text{ V}, T_{A} = 25^{\circ}\text{C}$ (unless otherwise noted)

- CC±	, <u>, , , , , , , , , , , , , , , , , , </u>	,				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ See Figure 19	8 ⁽¹⁾	13		
SR	Slew rate at unity gain	V_I = 10 V, R_L = 2 k Ω , C_L = 100 pF, T_A = - 55°C to 125°C, See Figure 19	5 ⁽¹⁾			V/µs

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

 ⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
 (2) Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 13. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as possible.

6.9 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. The Figure numbers referenced in the following graphs are located in *Parameter Measurement Information*.

Table 1. Table of Graphs

			Figure
V _{OM}	Maximum peak output voltage	versus Frequency versus Free-air temperature versus Load resistance versus Supply voltage	Figure 1, Figure 2, Figure 3 Figure 4 Figure 5 Figure 6
	Large-signal differential voltage amplification	versus Free-air temperature versus Load resistance	Figure 7 Figure 8
A _{VD}	Differential voltage amplification	versus Frequency with feed-forward compensation	Figure 9
P _D	Total power dissipation	versus Free-air temperature	Figure 10
I _{CC}	Supply current	versus Free-air temperature versus Supply voltage	Figure 11 Figure 12
I _{IB}	Input bias current	versus Free-air temperature	Figure 13
	Large-signal pulse response	versus Time	Figure 14
Vo	Output voltage	versus Elapsed time	Figure 15
CMRR	Common-mode rejection ratio	versus Free-air temperature	Figure 16
V _n	Equivalent input noise voltage	versus Frequency	Figure 17
THD	Total harmonic distortion	versus Frequency	Figure 18

Figure 2. Maximum Peak Output Voltage vs Frequency

Copyright © 1977–2015, Texas Instruments Incorporated

Submit Documentation Feedback