Pseudo Code for Repair Algorithm

Arthur Feng

April 1, 2019

1 Introduction

In this section, we define some important definitions and algorithms....

Definition 1.1. (Mixed Integer Programming)

In this report we consider a generic mixed-integer programming problem (MIP) in the following form

(MIP) min
$$c^T x$$

 $s.t.$ $Ax \ge b$
 $x_j \in \mathbb{Z} \quad \forall j \in \mathcal{I}$
 $x_j \in \mathbb{R} \quad \forall j \in \mathcal{N} \setminus \mathcal{I}$

where the vector $b \in \mathbb{R}^m$ and the vector $c \in \mathbb{R}^n$ are input vectors. A is a input matrix of size $m \times n$, the variable input set $\mathcal{I} \subseteq \mathcal{N} = \{1, 2, ..., n\}$. We denote \mathcal{P} for this problem, which called a mixed-integer programming problem (MIP) with minimize objective function $c^T x$ subject to the constraints $Ax \geq b$. Besides, some variables are restricted to integer values while the else of are restricted to real value. S is a set of feasible solution if S satisfy all the constraints in the problem. A vector s^* with $s^* \in S$ is called optimal solution when $c^T x_{s^*} \leq c^T x_s$ for $\forall s \in S$. When all of the variables are restricted to integer, the problem is called pure integer linear program (IP) for $\mathcal{I} = \mathcal{N}$. If there is no integrality constraint, the program is called linear program

(MIP)
$$\min c^T x$$

 $s.t.$ $Ax \ge b$
 $x_j \in \mathbb{R} \quad \forall j \in \mathcal{N}$

Definition 1.2. (LP-relaxation)

Lp relaxation is obtained by removing all integrity constraints $\mathcal{I} \leftarrow \emptyset$. LP-relaxation is the foundation of LP-based branch-and-bound technology. As the searching space is increase by removing integrity restrictions, the optimal solution in MIP problem could not better than LP-relaxation, which is $s_{MIP}^* \geq s_{LP}^*$. This means the optimal solution found in LP problem could provide a lower or prime bound for MIP problem.

2 Input

- A MIP problem \mathcal{P}^0 with n variables x, constraint set C^0 with an optimal solution s^0 , where s^0 is a n-vector.
- A MIP problem \mathcal{P}^1 with n variables x, constraint set C^1 , such that $C^0 \subseteq C^1$.

3 Output

• An optimal solution s^1 to \mathcal{P}^1 , where s^1 is a n-vector too.

4 Pseudo Code

Algorithm 1: Solving Problem with Reoptimization

```
Input: \mathcal{P}^1 where C^0 \subsetneq C^1 and s^0, k
Output: optimal solution s^* to \mathcal{P}^1
  1 begin
          if s^0 is feasible to \mathcal{P}^1 then
  2
                return s^0
  3
           else
  4
                 \alpha \longleftarrow k \times c^T s^0
                for j in \mathcal{I} do
  6
                     \mathcal{P}^2 \leftarrow create new variables y_j with objective value \alpha and add it to \mathcal{P}^2:
  7
                                                                                                                  // add new variables
                     \mathcal{P}^2 \longleftarrow add new constraints to \mathcal{P}^2: y_j \geq x_j - s_j^0 // add new constraints \mathcal{P}^2 \longleftarrow add new constraints to \mathcal{P}^2: y_j \geq s_j^0 - x_j
  8
  9
                end
10
                r \longleftarrow 1
11
                while \alpha > 0 do
12
                      \alpha \longleftarrow \alpha - \frac{\alpha}{k}
13
                      update the variable y_j coefficient
14
                      s^r \leftarrow solve \mathcal{P}_r^2 (r-th iteration) to optimal or stop criterion with reoptimization
15
16
                end
17
                 s^* \longleftarrow s^r
18
                return s^*
19
          end
20
21 end
```