Couche Réseau

Introduction au routage

Introduction aux Réseaux

Eric Ramat ramat@lisic.univ-littoral.fr Université du Littoral Cote d'Opale Licence Informatique 3ème année

Couche Réseau

Introduction au routage

Introduction aux Réseaux

Modèles OSI et Internet

Architecture Internet	Données	Architecture OSI
Applications	Message	Applications
Applications	Wisseage	Présentation
Transport	Segment	Session
Transport	Segment	Transport
Réseaux	Datagramme	Réseaux
Liaison	Trame	Liaison
Physique	Chaine de bits	Physique

Plan

Généralités

Services et fonction de la couche réseau Modèles de service avec/sans connexion

Introduction au routage

Principe du routage Classes d'algorithmes de routage

Algorithme par états de liens

Principe Exemple

Algorithme à vecteurs de distances Principe

Autres algorithmes de routage

Introduction

End system H1

Application

Transport

But de la couche réseau

 Assurer la transmission d'un paquet d'un nœud source à un nœud destination

 Déterminer le chemin à travers les différents routeurs

Services et fonctions

Physical

I'itinéraire à emprunter.

Fait par des algorithmes de routage

 Réexpédition : la transmission d'un paquet entrant vers une liaison sortante

Principe

Sur le nœud source

- la couche réseau récupère des messages de la couche transport,
- pour chaque message, elle construit un (ou plusieurs) paquet(s),
- la couche réseau envoie chaque paquet à la couche liaison.

Sur chaque nœud intermédiaire (routeur)

- la couche réseau récupère les paquets de la couche liaison,
- pour chacun d'entre eux, elle construit un nouveau paquet,
- la couche réseau envoie chaque paquet à la couche liaison.

Sur le nœud destination,

- · la couche réseau récupère des paquets de la couche liaison,
- elle extrait les données de chaque paquet et les envoie à la couche transport

Modèles de service

Au niveau de la couche réseau deux modes de communication « s'affrontent »

- Le modèle avec connexion
 - Plutôt le choix des opérateurs de réseaux
- Le modèle sans connexion
 - Plutôt le choix de la communauté internet

Modèle orienté connexion (circuit virtuel)

Une connexion (circuit virtuel)

- analogie avec les circuits physiques téléphoniques
- doit être établie avant tout envoi entre deux nœuds
- une « route » est calculée à chaque connexion
 - calculer une route au moment de la connexion
 - emprunter cette route pour transférer chaque paquet tant que dure la connexion
- chaque paquet comprend la référence du circuit virtuel
 - les routeurs font des commutations
 - à ne pas confondre avec les switchs

Modèles sans connexion (datagramme)

Principe

- les paquets sont transportés de façon indépendante
- sont appelés datagramme (par analogie au télégramme)
- comprend l'adresse de destination
- nécessite un service adressage

Un chemin est calculé pour chaque paquet

Avec ou sans connexion?

Commutation : efficacité

- temps : il n'est pas nécessaire de recalculer une route pour chaque paquet
- espace : une table de commutation à chaque nœud gère les références actives des circuits virtuels. Son encombrement est faible

Routage: souplesse

- chaque paquet peut emprunter un chemin différent
- en cas de congestion ou de panne, cela s'avère particulièrement intéressant

Plan

Généralités

Services et fonction de la couche réseau Modèles de service avec/sans connexion

Introduction au routage

Principe du routage Classes d'algorithmes de routage

Algorithme par états de liens

Principe Exemple

Algorithme à vecteurs de distances Principe

Autres algorithmes de routage

Principe du routage

Principe

- Le routage est utilisé en mode sans connexion.
- Il consiste à
 - calculer une route pour transférer chaque paquet
- Les équipements permettant le routage s'appellent des routeurs

Objectif

- Déterminer la route précise pour chaque paquet envoyé
- Une fonction du protocole de routage de la couche réseau 12

Routage

Deux fonctions distinctes

- décider au vue d'informations locales (table de routage) et de l'adresse de destination du paquet à qui envoyer le paquet et sur quel réseau le remettre
- construire la table de routage

Algorithme de routage

- principe : en présence d'un groupe de routeurs, reliés par des liens physiques, la mission de l'algorithme de routage consiste à trouver le « bon » parcours entre le routeur source est le routeur destination
 - construire la table de routage
- exécuté sur le routeur

Quel bon chemin?

Critère d'optimisation

- · Le chemin le moins onéreux.
- · Chaque lien entre les routeurs a un coût qui peut être lié à
 - sa longueur
 - son débit
 - son coût d'utilisation
 - etc ...

Exemple

- · Le chemin le moins onéreux entre U et W est U, X, Y, W
- Trouvez celui entre U et Z, comment avez-vous fait ?

Modèles de représentation

Objectif

- Choix de la structure de donnée pour appliquer les algorithmes de routage
- Modélisation sous forme de graphe
 - Chaque nœud du graphe est un routeur
 - Chaque lien est une liaison physique
 - A chaque liaison est associé son coût

Algorithmes de routage

Principe

- Algorithme de la couche réseau qui a la responsabilité de calculer le chemin qu'un paquet doit suivre
 - Planifier le chemin le moins onéreux de la source à la destination

Propriétés de algorithmes de routage

- Exactitude
- Simplicité
- Robustesse (capacité d'adaptation aux pannes et changement de topologie)
- Stabilité (convergence vers un état d'équilibre)
- Justice (vis à vis des usagers)
- Optimalité

Deux classes d'algorithmes de routage

Algorithmes de routage global

- Calculer en se basant sur une information globale
 - le graphe entier

Algorithmes de routage décentralisés

- Calculer en se basant sur des information locales
 - pas de connaissance globale du graphe
 - chaque nœud connaît les coûts vers ses voisins auxquels il est directement connecté
 - les nœuds s'échangent les information avec leurs voisins

Dans les deux cas, l'algorithme peut être

- Statique : les parcours changent très peu, les modifications proviennent souvent d'une intervention humaine
- Dynamique : les parcours s'adaptent automatiquement aux changements de topologie du réseau

Tables de routage

Définition

- une table par nœud
- associe à chaque autre nœud du graphe le coût minimal et le lien à suivre
 - à quel routeur voisin doit-on envoyer le datagramme ?

Exemples

Trouvez

Table de Z								
Destination	Coût	Port						
U	4	Y						
V	5	Υ						
W	3	Y						
X	3	Y						
Υ	2	Y						

Table de V								
Destination Coût Port								
U	2	U						
W	3	W						
X	?	?						
Υ	?	?						
Z	?	?						

Tables de routage

Définition

- une table par nœud
- associe à chaque autre nœud du graphe le coût minimal et le lien à suivre
 - à quel routeur voisin doit-on envoyer le datagramme ?

Exemples

Table de Z								
Destination Coût Poi								
U	4	Y						
V	5	Υ						
W	3	Y						
X	3	Y						
Y	2	Y						

Table de V								
Destination Coût Port								
U	2	U						
W	3	W						
X	2	X						
Υ	3	X						
Z	5	X						

Plan

Généralités

Services et fonction de la couche réseau Modèles de service avec/sans connexion

Introduction au routage

Principe du routage Classes d'algorithmes de routage

Algorithme par états de liens

Principe Exemple

Algorithme à vecteurs de distances Principe

Autres algorithmes de routage

Algorithme par états de lien (Dijkstra)

Classe

- Le graphe complet est connu de tous les nœuds
 - tous les nœuds ont la même information
 - accompli avec une diffusion de l'état des liens

Principe

- Algorithme de « Dijkstra »
- Calculer les chemins les moins coûteux de tous les nœuds à tous les autres
- Pour chaque nœud
 - génère la table de routage du nœud de manière itérative
 - après k itérations, on connaît le chemin le moins coûteux vers
 k destinations

Algorithme de Dijkstra

Notations

- c(i, j): coût du lien entre i et j
- D(v): coût courant du chemin de la source à v
- P(v): nœud précédant v dans le chemin de la source à v
- N : ensemble des nœuds dont on connaît le coût minimal
- Adj(i, j): vrai si i et j sont adjacents

Algorithme de Dijkstra

```
Dijkstra (entrée: nœud x , graphe G) sortie t(x)
 1 N = \{x\}
                                  //N ensemble de nœuds
 2 Pour tout (nœud y \in G)
 3 Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
 5
               P(y) = x
         Sinon D(y) = +\infty
     Fsi
 8 Fpour
 9 Répéter
10
      Trouver z \notin N tel que D(z) est minimal
11 \qquad N = N \cup \{z\}
                                        //Ajouter z à N
12
     pour tout (noeud y ∉ N et Adj (w, y) = vrai)
13
         D(y) = \min(D(y), D(z) + c(z,y))
14
        P(y) = z
15
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```

```
N = \{x\} / N ensemble de nœuds
 2 Pour tout (nœud y \in G)
      Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
                P(y) = x
         Sinon D(y) = +\infty
      Fsi
   Fpour
 8 Répéter
      Trouver z \notin N tel que D(z) est minimal
      N = N \cup \{z\} / A  jouter z \ge N
      Pour tout (nœud y \notin N et Adj(z,y) = vrai)
12
         D(y) = \min(D(y), D(z) + C(z, y))
13
         P(v) = z
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```


Étape	Z	N	У	D(v) , P(v)	D(w), P(w)	D(x) , P(x)	D (y), P (y)	D (z), P (z)
Init	-	{u}	-	2, u	∞, ?	1, u	∞, ?	∞, ?

```
N = \{x\} / / N ensemble de nœuds
 2 Pour tout (nœud y \in G)
      Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
                P(y) = x
         Sinon D(y) = +\infty
      Fsi
   Fpour
 8 Répéter
      Trouver z \notin N tel que D(z) est minimal
      N = N \cup \{z\} //Ajouter z à N
      Pour tout (nœud y \notin N et Adj(z,y) = vrai)
12
         D(y) = \min(D(y), D(z) + C(z, y))
13
         P(v) = z
14
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```



```
D(v) = min(2, 1+2)

D(W) = min(\infty, 1+3)

D(y) = min(\infty, 1+1)
```

Étape	Z	N	У	D(v) , P(v)	D (w), P (w)	D(x) , P(x)	D (y), P (y)	D (z), P (z)
Init	-	{u}	-	2, u	∞, ?	1, u	∞, ?	∞, ?
1	X	{u,x}	V, W, y		4, x		2, x	

```
N = \{x\} / / N ensemble de nœuds
 2 Pour tout (nœud y \in G)
      Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
                P(y) = x
         Sinon D(y) = +\infty
      Fsi
   Fpour
 8 Répéter
      Trouver z \notin N tel que D(z) est minimal
      N = N U \{z\} //Ajouter z à N
      Pour tout (nœud y \notin N et Adj(z,y) = vrai)
12
         D(y) = \min(D(y), D(z) + C(z, y))
13
         P(v) = z
14
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```


$$D(W) = min(4, 2+1)$$

 $D(z) = min(\infty, 2+2)$

Étape	Z	N	у	D(v) , P(v)	D(w) , P(w)	D (x), P (x)	D(y), P(y)	D(z) , P(z)
Init	-	{u}	-	2, u	∞, ?	1, u	∞, ?	∞, ?
1	X	{u,x}	v, w, y		4, x		2, x	
2	У	{u,x,y}	W, Z		3, y			4, y

```
N = \{x\} / N ensemble de nœuds
 2 Pour tout (nœud y \in G)
      Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
                P(y) = x
         Sinon D(y) = +\infty
      Fsi
   Fpour
 8 Répéter
      Trouver z \notin N tel que D(z) est minimal
      N = N \cup \{z\} //Ajouter z à N
      Pour tout (nœud y \notin N et Adj(z,y) = vrai)
12
         D(y) = \min(D(y), D(z) + c(z, y))
13
         P(v) = z
14
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```


$$D(W) = min(3, 2+3)$$

Étape	Z	N	у	D(v), P(v)	D(w) , P(w)	D(x), P(x)	D (y), P (y)	D (z), P (z)
Init	-	{u}	-	2 , u	∞, ?	1, u	∞, ?	∞, ?
1	Χ	{u,x}	v, w, y		4, x		2, x	
2	У	$\{u,x,y\}$	W, Z		3, y			4, y
3	V	$\{u,x,y,v\}$	W					

```
N = \{x\} / N ensemble de nœuds
 2 Pour tout (nœud y \in G)
      Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
                P(y) = x
          Sinon D(y) = +\infty
      Fsi
   Fpour
 8 Répéter
      Trouver z \notin N tel que D(z) est minimal
      N = N \cup \{z\} / A  jouter z \ge N
      Pour tout (nœud y \notin N et Adj(z,y) = vrai)
12
          D(y) = \min(D(y), D(z) + c(z, y))
13
          P(v) = z
14
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```


$$D(z) = min(4, 3+5)$$

Étape	Z	N	У	D(v) , P(v)	D(w) , P(w)	D (x), P (x)	D(y), P(y)	D(z) , P(z)
Init	-	{u}	-	2, u	∞, ?	1, u	∞, ?	∞, ?
1	Χ	{u,x}	v, w, y		4, x		2, x	
2	У	{u,x,y}	W, Z		3 , y			4, y
3	٧	$\{u,x,y,v\}$	W					
4	W	$\{u,x,y,v,w\}$	Z					

```
N = \{x\} / / N ensemble de nœuds
 2 Pour tout (nœud v \in G)
      Si Adj(x,y) = vrai
         Alors D(y) = c(x, y)
                P(y) = x
          Sinon D(y) = +\infty
      Fsi
   Fpour
 8 Répéter
      Trouver z \notin N tel que D(z) est minimal
      N = N \cup \{z\} / A  jouter z \ge N
      Pour tout (nœud y \notin N et Adj(z,y) = vrai)
12
          D(y) = \min(D(y), D(z) + c(z, y))
13
          P(v) = z
14
      fpour
15 Jusqu'à ce que tous les nœuds soient dans N
```


Étape	Z	N	у	D(v) , P(v)	D (w), P (w)	D (x), P (x)	D (y), P (y)	D(z) , P(z)
Init	-	{u}	-	2, u	∞, ?	1, u	∞, ?	∞, ?
1	Χ	{u,x}	v, w, y		4, X		2, x	
2	У	$\{u,x,y\}$	W, Z		3, y			4, y
3	V	$\{u,x,y,v\}$	W					
4	W	$\{u,x,y,v,w\}$	Z					
5	Z	$\{u,x,y,v,w,z\}$						

Calcul de la table de routage du nœud u

- Pour déduire la table, il suffit de suivre les P(*) à partir de la destination jusqu'à la source u,
 - Ex. pour **z** :

P(z)=y -> P(y)=x -> P(x)=u

- Le chemin est u,x,y,z
- Le lien est x
- Le coût est D(z)

dest	coût	lien
V	2	V
M	3	X
X	1	X
Y	2	X
Z	4	X

Étape	Z	N	у	D(v), P(v)	D (w), P (w)	D(x) , P(x)	D (y), P (y)	D(z) , P(z)
Init	-	{u}	-	2, u	∞, ?	1, u	∞, ?	∞, ?
1	X	{u,x}	v, w, y		4, x		2, x	
2	У	{u,x,y}	W, Z		3, y			4, y
3	V	$\{u,x,y,v\}$	W					
4	W	$\{u,x,y,v,w\}$	Z					
5	Z	$\{u,x,y,v,w,z\}$						

Plan

Généralités

Services et fonction de la couche réseau Modèles de service avec/sans connexion

Introduction au routage

Principe du routage Classes d'algorithmes de routage

Algorithme par états de liens

Principe Exemple

Algorithme à vecteurs de distances Principe

Autres algorithmes de routage

Algorithme à vecteur distance

Classe

- chaque routeur dispose d'une information locale
- précisant pour chaque destination connue le meilleur chemin

Principe

- les informations partielles sont échangées régulièrement entre les routeurs afin de mettre à jour leur connaissances
- échange de vecteur de distance

Vecteur distance

- associe à chaque destination connue son coût estimé
- équivalent à une table de routage sans les liens

Algorithme RIP

Routing information protocol

Échange d'information (diffusion)

- périodiquement (toutes les 30s) les routeurs envoient leur vecteur distance à leurs voisins directs
 - vecteur de (destination, coût)

A la réception

 chaque fois qu'un routeur reçoit un VD, il exécute l'algorithme RIP pour éventuellement mettre à jour sa table de routage

Algorithme RIP

```
Le vecteur v a été reçu du routeur R
RIP (in:vecteur v, in:routeur R, in/out:table T)
 1 pour chaque ligne (d,c) de v
 2
       si d ∉ T alors
 3
          ajouter à T (d, c+1, R)
       sinon //déjà dans T comme (d, c<sub>actuel</sub>, l<sub>actuel</sub>)
          si R = l<sub>actuel</sub> alors
 5
              mettre à jour T avec (d, c+1, R)
 6
                                                 I/I R \neq I_{actuel}
          sinon
 8
              si c+1 < c actual alors
 9
                 remplacer dans T avec (d, c+1, R)
10
              finsi
          finsi
       finsi
13 fpour
```

Remarque sur l'algorithme RIP

Nœuds terminaux

- seule la partie réception est effectuée
 - les stations de travail ne diffusent pas ; seules les routeurs le font

A l'initialisation des routeurs

- les tables de routage sont initialisées avec l'ensemble des adresses des réseaux auxquels le routeur est directement connecté
- le coût minimum (égal à 1) est alors associé à ces adresses destinations

Ne tient pas compte du coût réel

• utilise le nombre de sauts (coût de 1)

Plan

Généralités

Services et fonction de la couche réseau Modèles de service avec/sans connexion

Introduction au routage

Principe du routage Classes d'algorithmes de routage

Algorithme par états de liens

Principe Exemple

Algorithme à vecteurs de distances Principe

Autres algorithmes de routage

Routage hiérarchique

Internet contient plusieurs milliers de routeurs

- Échanger et mettre à jour les table de routage devient impossible
- On a recourt à un routage hiérarchique
 - Avec des « zones autonomes » reliées par des FAI de plus haut niveau

Autres algorithmes de routage

Autres classes d'algorithmes de routage

- algorithmes d'états de liens optimisés
 - utilisé dans les réseaux mobile ad-hoc
- algorithmes à vecteurs de chemins

OSPF (Open Shortest Path First)

une instance de Disjkstra

BGP (Border Gateway Protocol)

- · algorithme à vecteur de chemin
- pour le routage entre les zones autonomes

Et bien d'autres ...

Résumé

But de la couche réseau

Acheminer un paquet jusqu'à la destination

Le modèle sans connexion nécessite

- Un mécanisme d'adressage
- Un mécanisme de routage

Le routage = deux fonctions

- Le calcul des tables de routage
- L'acheminement des datagrammes au routeur suivant

Algorithme de routage

- Global / décentralisé / dynamique / adaptatif
- Ces algorithmes doivent être simples et efficaces