Algorithmique et Analyse d'Algorithmes

L3 Info

Cours 3 : preuve d'algorithmes

Benjamin Wack

2017- 2018

La dernière fois

- ► Écriture d'algorithmes récursifs
- ► Coût d'un algorithme récursif
- ► Complexité en moyenne
- ► Tri rapide

Aujourd'hui

- ► Spécification et correction d'un algorithme
- ► Terminaison d'un algorithme
- ► Drapeau Hollandais

Plan

Preuve de correction d'un algorithme Spécification formelle Formalisation du langage Annotations de programmes

Terminaison d'un algorithme

Drapeau Hollandais Le problème et l'algorithme Analyse de l'algorithme

Les besoins

 Quantité astronomique de code en circulation ou en développement (Google Chrome ou serveur World of Warcraft : 6 M lignes)
 (Windows 7 ou Microsoft Office 2013 : 40 M lignes)

http://www.informationisbeautiful.net

- ► Omniprésence dans des systèmes critiques : finance, transports, économie, santé...
- Il faut pouvoir prouver qu'un programme s'exécute correctement dans toutes les situations

Mais correct selon quels critères? Quelles situations à considérer?

- Spécification
 - des données acceptables
 - ► du résultat attendu (généralement en fonction des données)
- exprimée dans un langage formel, généralement une propriété logique des données et du résultat.
- ▶ ne décrit **pas comment** fonctionne le programme.

Les propriétés recherchées

Terminaison

L'exécution de l'algorithme produit-elle un résultat en temps fini quelles que soient les données fournies ?

Correction partielle

Lorsque l'algorithme s'arrête, le résultat calculé est-il la solution cherchée quelles que soient les données fournies?

Terminaison + correction partielle = correction totale

Quelles que soient les données fournies, l'algorithme s'arrête et donne une réponse correcte.

Pour certains problèmes il n'existe **que** des algorithmes **partiellement** corrects!

Une première écriture formelle

Soit un problème instancié par une donnée D et dont la réponse est fournie par un résultat R.

Une spécification peut être donnée sous la forme de :

- une propriété P(D) de la donnée (précondition);
- ▶ une propriété Q(D,R) de la donnée et du résultat (postcondition).

Un programme satisfait cette spécification si :

Pour toute donnée D qui vérifie la propriété P, l'exécution du programme donne un résultat R qui vérifie Q(D,R).

Le programme est alors dit correct par rapport à cette spécification.

Division euclidienne

Division par soustractions

```
DIV(a, b)
```

Données : Deux entiers a et b

Résultat : Le quotient q et le reste r de la division euclidienne de a par b

$$r := a$$

 $q := 0$
while $r \ge b$
 $r := r - b$
 $q := q + 1$

return q, r

Données acceptables

- $b \neq 0$ sinon le problème n'a pas de sens (et la boucle non plus)
- ▶ b > 0 (?)
- ▶ a > 0 (?)

Division euclidienne

Division par soustractions

```
DIV(a, b)
```

Spécification formelle

Données : Deux entiers a et b

Résultat : Le quotient q et le reste r de la division euclidienne de a par b

return q, r

Résultat attendu

- ightharpoonup $a = q \times b + r$
- ▶ $0 \le r < b$
- ► a et b inchangés

Le langage de programmation

Afin de pouvoir raisonner formellement, on fixe une syntaxe restreinte sur le langage de « programmation » utilisé :

expressions

$$E ::= variables \mid constantes \mid E + E \mid E * E \mid \dots$$

expressions booléennes

$$B = B$$
 and $B \mid B$ or $B \mid \cdots \mid E = E \mid E < E \mid \ldots$

- ▶ une instruction / peut être :
 - une affectation x := E
 - une séquence I_1 ; I_2
 - une conditionnelle if B then I_1 else I_2
 - ▶ une boucle while B do I

On peut alors raisonner **par cas** et **par induction** sur la forme du programme considéré.

- ► Pas de for (cf while)
- ► Pas de structures de données (mais possibilité d'étendre le langage)
- ► Pas d'appel de fonction (et donc pas de récursivité)

Le langage des propriétés

Les propriétés que nous exprimons à propos des données et des résultats sont généralement des **formules de logique du premier ordre** :

- ▶ connecteurs logiques ¬, ∧, ∨, ⇒
- ▶ quantificateurs ∀, ∃
- ▶ opérations et prédicats usuels sur les données (+, *, <, =...)

La plupart des variables sont partagées par le programme et les propriétés, certaines ne sont utilisées que dans les propriétés.

Attention

Une propriété des variables peut être vraie ou fausse à un point donné de l'exécution d'un programme, et selon les données initiales.

Ne pas confondre

expression booléenne évaluée dans une exécution du programme propriété utilisée dans la démonstration

Ne pas confondre

assertion utilisée dans le test de programme, évaluée systématiquement et qui lève une exception si elle est fausse

propriétés (parfois appelées assertions!) sans se prononcer *a priori* sur leur valeur de vérité

Notion d'invariant

Idée de la démonstration d'un algorithme

De proche en proche, établir que la postcondition est vraie à chaque fois que la précondition est vraie.

- ► Affectation, séquence, condition : pas de vrai problème si la spécification est correctement écrite.
- ► Problème : la boucle (peut recevoir ses données d'une itération précédente)

Invariant

Un invariant est une propriété P des variables en début de boucle telle que

si P est vérifiée à une itération, alors elle l'est à l'itération suivante.

Méthodologie

1. Choisir et exprimer un invariant judicieux

Pas de méthode systématique

- 2. **Démontrer** qu'il est vérifié avant d'entrer dans la boucle *Utiliser les préconditions*
- 3. **Démontrer** que s'il est vérifié au début d'une itération quelconque, il l'est aussi au début de l'itération suivante.

Utiliser le corps de la boucle On note x' la valeur de x en fin de boucle

4. **Instancier** l'invariant en sortie de boucle et en déduire une postcondition.

Utiliser (la négation de) la condition du while

Annotation de la division euclidienne

```
Division par soustractions
DIV(a, b)
Données: Deux entiers a et b
Résultat : Le quotient q et le reste r de la division euclidienne de a par b
Précondition : a > 0 et b > 0
r := a
q := 0
while r > b {invariant : a = b \times g + r}
   r := r - b
   q := q + 1
   \{b \times q' + r' = b \times (q+1) + (r-b) = b \times q + b - b + r = b \times q + r = a\}
return q, r
Postconditions: a = b \times q + r
                    0 < r < b
                    a et b inchangés
```

Exercice

Quel(s) programme(s) calcule(nt) la factorielle de n dans la variable F?

```
i := 1
i := 0
                                                  F := 1
F := 1
                                                  while i \le n
while i <= n

\begin{vmatrix}
F := F * i \\
i := i + 1
\end{vmatrix}

i := i + 1
F := F * i
В
i := 0
                                                  i := 0
F := 1
                                                   F := 1
while i < n
                                                   while i < n
 | i := i + 1
F := F * i
                                                    i := i + 1
```

Programme A

```
i := 0

F := 1 {F = 1 = 0! = i!}

while i <= n

{F = i!}

i := i + 1

F := F * i

{F' = F * i' = F * (i + 1) = i! * (i + 1) = (i + 1)! \text{ donc } F' = i'!}
```

Invariant

$$F = i!$$

Mais en sortie de boucle i = n + 1 d'où F = (n + 1)!

Programme B!

```
i := 0

F := 1 {F = 1 = 0! = i!}

while i < n

{F = i!}

i := i + 1

F := F * i {F' = F * i' = i! * (i + 1) = (i + 1)! \text{ donc } F' = i'!}
```

Invariant

$$F = i!$$

En sortie de boucle $\{i = n \text{ d'où } F = n!\}$

Programme C!

```
i := 1
F := 1 \{F = 1 = 0! = (1 - 1)! = (i - 1)!\}
while i <= n
\{F = (i - 1)!\}
F := F * i
i := i + 1 \{F' = F * i = (i - 1)! * i = i! \text{ donc}
F' = (i + 1 - 1)! = (i' - 1)!\}
```

Invariant

$$F = i! F = i!$$
 alors en fin d'itération $F' = F * i = i! * i \neq i'! : NON$

$$F=(i-1)!$$

En sortie de boucle i = n+1 d'où F = n!

Programme D

```
i := 0
F := 1
while i < n
F := F * i
i := i + 1
```

Invariant

```
F = (i-1)! F = (i-1)! correctement propagé par la boucle mais faux à l'entrée de la boucle : NON
```

En réalité on a toujours F = 0 après la 1è itération.

Correction partielle ou totale

Correction partielle

```
Pour toute donnée D qui vérifie la précondition P, si le programme se termine, alors son exécution donne un résultat R qui vérifie Q(D,R).
```

Correction totale

```
Pour toute donnée D qui vérifie la précondition P, l'exécution du programme se termine et donne un résultat R qui vérifie Q(D,R).
```

Correction partielle \land terminaison \Rightarrow Correction totale

D'où l'idée de prouver la terminaison **en même temps** que la correction partielle : on enrichit les annotations existantes.

Variant de boucle

Variant de boucle

Un variant de boucle est une expression :

- ▶ entière
- positive
- qui décroît strictement à chaque itération

Variants usuels

- ightharpoonup i pour une boucle du type **for** i = n **downto** 1
- ▶ n-i pour une boucle du type **for** i=1 **to** n
- ightharpoonup j-i pour deux variables i croissante et j décroissante
- **.** . . .
- mais pas de technique « systématique »

Variant de la division euclidienne

Division par soustractions

```
DIV(a, b)

Données: Deux entiers a et b

Résultat: Le quotient q et le reste r de la division euclidienne de a par b

Précondition: a \ge 0 et b > 0

r := a
q := 0

while r \ge b
q := r - b
q := q + 1 \{0 \le r < n\}

return q, r
```

- r est clairement un variant de boucle
- ► On peut le formuler dans les annotations existantes grâce à une nouvelle variable logique.

(n est quantifiée existentiellement de façon implicite)

► La preuve de r < n en fin de boucle repose sur la précondition b > 0 et sur la condition du while.

Les difficultés

Précondition et postcondition

- ▶ généralement faciles à écrire si le problème est correctement spécifié
- éventuellement nécessaire de renforcer la précondition si la preuve n'aboutit pas
- ▶ attention aux postconditions trop faibles

Invariants

- ▶ incluent souvent une généralisation de la postcondition
- ▶ demandent une compréhension fine de l'algorithme
- ▶ les trouver peut même précéder l'écriture de l'algorithme

Variants

- souvent immédiats, mais des cas particuliers très difficiles
- nécessitent parfois de s'appuyer sur les autres assertions

Le drapeau hollandais (1976)

E.W. Dijkstra (1930-2002)

- ▶ un des fondateurs de la science informatique
- ▶ algorithme de recherche de plus court chemin
- ▶ pile de récursivité pour ALGOL-60
- ► Turing Award 1972

Objectif : réorganiser le tableau pour que :

- ▶ les éléments bleus soient sur la partie gauche
- ▶ les éléments blancs au centre
- les rouges en fin de tableau

Contrainte : utiliser un minimum de mémoire supplémentaire (en place)

Les trois cas

Trois indices mémorisant où placer le prochain élément de chaque couleur

► Cas bleu Bleu Blanc Rouge Bleu Blanc Rouge ► Cas blanc Bleu Blanc Rouge Bleu Blanc Rouge Cas rouge Bleu Blanc Rouge Bleu Blanc Rouge

L'algorithme

```
DRAPEAU(T)
```

Données : Un tableau T de N éléments colorés (couleur C_1 , C_2 et C_3) **Résultat** : T contient les mêmes éléments rangés par couleur croissante

```
i_1 = 1
i_2 = N
                                // i_k est l'indice de la place du
i_3 = N
                               // prochain élément de couleur C_k
while i_1 < i_2
   switch Couleur (T[i_1]) do
       case C_1
          i_1 = i_1 + 1
                                         // l'élément est en place
       case C_2
          Échange (i_1, i_2) // on le place en bonne position
          i_2 = i_2 - 1
       case C_3
          Échange (i_1, i_2)
                                         // permutation circulaire
         Échange (i_2, i_3)
_ i_2 = i_2 - 1; i_3 = i_3 - 1
                                          // pour libérer une case
```

Complexité

► Nombre d'appels à la fonction Couleur = nombre d'itérations = N

$$Coût_{Couleur}(N) = N$$

On évalue la couleur de chaque élément une et une seule fois.

Nombre d'appels à la fonction Échange = somme du nombre d'échanges réalisés à chaque itération (0, 1 ou 2) :

$$0 \le \mathsf{Coût}_{\mathsf{\acute{E}change}}(N) \le 2N.$$

- ► Meilleur cas = tableau rempli d'éléments bleus
- ▶ Pire cas = tableau rempli d'éléments rouges

La complexité de l'algorithme en nombre d'échanges est donc au pire en $\mathcal{O}(N)$ et au mieux en $\mathcal{O}(1)$.

Et en moyenne? Ça dépend de la distribution des données!

Éléments de démonstration

```
i_1 = 1; i_2 = N; i_3 = N
while i_1 < i_2
    switch Couleur (T[i_1]) do
        case C_1
         |i_1| = i_1 + 1
        case C_2
            Échange (i_1, i_2)
           i_2 = i_2 - 1
        case C_3
          Échange (i_1, i_3)
         Échange (i_1, i_2)
         i_2 = i_2 - 1 ; i_3 = i_3 - 1
```

Terminaison : $i_2 - i_1$ est un variant acceptable

- \blacktriangleright À chaque itération i_1 augmente (cas 1) ou i_2 diminue (cas 2 et 3).
- ▶ La condition du **while** assure que $i_1 \le i_2$.

```
i_1 = 1 : i_2 = N : i_3 = N
while i_1 < i_2
    switch Couleur (T[i_1]) do
        case C_1
         |i_1| = i_1 + 1
        case C_2
            Échange (i_1, i_2)
            i_2 = i_2 - 1
        case C_3
            Échange (i_1, i_3)
           Échange (i_1, i_2)
         i_2 = i_2 - 1; i_3 = i_3 - 1
```

Invariant de boucle

- ► T contient une permutation des éléments du tableau initial.
- ▶ Les éléments de 1 à $i_1 1$ sont de couleur C_1 .
- ▶ Les éléments de $i_2 + 1$ à i_3 sont de couleur C_2 .
- ▶ Les éléments de $i_3 + 1$ à N sont de couleur C_3 .

Démonstration

Préservation des éléments du tableau

Garantie par l'utilisation exclusive de la procédure Échange.

(mais cette propriété doit faire partie de la spécification de Échange!)

Rangement des couleurs

- ▶ À l'entrée dans la boucle cette propriété ne concerne aucun élément.
- ► Au cours d'une itération :

```
cas 1 : un élément C_1 est placé, les autres sont inchangés cas 2 : un élément C_2 est placé, les autres sont inchangés cas 3 : un élément C_3 est placé, les éléments C_2 sont décalés, les autres sont inchangés
```

- ▶ En sortie de boucle $i_2 = i_1 1$ donc :
 - ▶ Les éléments de 1 à $i_1 1$ sont de couleur C_1 .
 - ▶ Les éléments de i_1 à i_3 sont de couleur C_2 .
 - ▶ Les éléments de $i_3 + 1$ à N sont de couleur C_3 .

Variantes

Même problème avec :

- ▶ 2 couleurs seulement (c'est **Partition** pour le tri rapide)
- ▶ plus de 3 couleurs (cf TD2)

Tri rapide avec plusieurs pivots :

- ► Remplacer Partition par le « drapeau » approprié
- Autant d'appels récursifs que de sous-tableaux formés
- ► Mais au final pas de gain (voire une perte) d'efficacité

En résumé

Aujourd'hui

- ► Un algorithme est démontré correct par rapport à une spécification
- ► Un invariant est une **propriété** préservée par une boucle, utile pour démontrer la correction de l'algorithme
- ► Un variant est une quantité qui décroît à chaque itération d'une boucle et assure sa terminaison
- ► Drapeau hollandais

La prochaine fois

- ► Logique de Hoare
- ► Annotation de programmes

Test ou preuve?

"Testing shows the presence, not the absence of bugs" E. W. Dijkstra, 1930-2002

Le test:

- valide une implantation plutôt qu'un algorithme
- permet des vérifications rapides
- ▶ peut être utilisé en cours de développement
- ▶ fait apparaître les limites du modèle

La preuve :

- ▶ fournit une garantie incontestable sur le fond de l'algorithme
- ▶ mais n'élimine pas (complètement) les erreurs de programmation
- ▶ nécessite des outils formels pour une utilisation à grande échelle