Математический анализ-1

Лектор: проф. Подольский Владимир Евгеньевич $7~{\rm январ }~2025~{\rm r}.$

Конспект: Кирилл Яковлев, 108 группа tg: @fourkenz

Содержание

1	Эле	менты теории множеств	4		
	1.1	Условности и обозначения	4		
	1.2	Операции над множествами	5		
	1.3	Декартово произведение множеств	5		
	1.4	Отображения	5		
	1.5	Правила де Моргана	6		
2	Вещественные числа 7				
	2.1	Натуральные числа. Аксиоматика Пеано	7		
	2.2	Отношение порядка и принцип наименьшего элемента	7		
	2.3	Арифметические операции	8		
	2.4	Целые числа	9		
	2.5	Рациональные числа	9		
	2.6	Упорядоченные и архимедовы поля	1 C		
	2.7	Действительные числа. Аксиома полноты	11		
	2.8	Модели действительных чисел	11		
	2.9	Принципы полноты	13		
	2.10	Отношение эквивалентности. Равномощные множества	16		
	2.11	Теорема Кантора и аксиома выбора	17		
3	Топ	ология вещественной прямой	20		
	3.1	Окрестность точки. Классификация точек относительно подмно-			
		жеств действительных чисел	20		
	3.2	Открытые и замкнутые множества	21		
	3.3	Компакты	23		
	3.4	Теорема Больцано-Вейерштрасса	24		
4	Чис	гловые последовательности	25		
	4.1	Предел последовательности	25		
	4.2	О-символика. Бесконечно малые и бесконечно большие последо-			
		вательности	26		
	4.3	Арифметические свойства сходящихся последовательностей 2	28		
	4.4		29		
	4.5		29		
	4 6		30		

	4.7	Сходимость последовательностей и частичные пределы	1		
5	Предел функции				
	5.1	Определение предела по Коши и по Гейне	3		
	5.2	Простейшие свойства предела функции	5		
	5.3	Предел по множеству. Односторонние пределы	5		
	5.4	О-символика	6		
	5.5	Арифметрические свойства пределов функций и предельные пе-			
		реходы в неравенствах	8		
	5.6	Монотонные функции	9		
	5.7	Критерий Коши	C		
6	Неп	рерывные функции 4	1		
	6.1	Локальные свойства непрерывных функций	1		
	6.2	Глобальные свойства непрерывных функций	1		
	6.3	Точки разрыва функции	3		
	6.4	Равномерная непрерывность	3		
	6.5	Элементарные функции	4		
	6.6	Замечательные пределы	6		
7	Дифференциальное исчисление функций одной переменной 48				
	7.1	Производная функции	8		
	7.2	Дифференцируемые функции	C		
	7.3	Производные элементарных функций	1		
	7.4	Касательная. Геометрический смысл первого дифференциала 5	2		
	7.5	Производные и дифференциалы старших порядков	3		
	7.6	Свойства дифференцируемых функций	4		
	7.7	Формула Лагранжа. Геометрический смысл и приложения 5			
	7.8	Правила Лопиталя	8		
	7.9	Формулы Тейлора	1		
	7.10	Экстремум функции	4		
	7.11	Выпуклые функции	,		

1 Элементы теории множеств

1.1 Условности и обозначения

Определение. Кванторами будем называть символы, заменяющие слова в выражениях.

Замечание. Пока что кванторы не подразумевают логические операции, мы будем использовать их только для более удобной и формальной записи.

- ∀ квантор всеобщности
- В квантор существования
- ! квантор единственности
- Запись $A \Rightarrow B$ обозначает, что из высказывания A, следует высказывание B.
- Запись $A \Leftrightarrow B$ обозначает, что высказывание A равносильно высказыванию B.
- Запись $a \in A$ означает, что a является элементом множества A, отрицанием такой записи будет $a \notin A$
- Если x объект, а P свойство, то запись $\{x:P(x)\}$ означает класс всех объектов обладающих свойством P.

Определение. Множество, не содержащее ни одного элемента, называется пустым и обозначается \varnothing .

Определение. Множество A' является подмножеством множества A, если $\forall a: a \in A' \Rightarrow a \in A$. Если A' - подмножество A, то пишут $A' \subset A$.

Определение. Для любого множества A выполнено:

- 1. $\varnothing \subset A$.
- $2. A \subset A.$

Определение. Если $A \subset B$ и $A \neq B$, то A называется собственным подмножеством множества B.

1.2 Операции над множествами

Определение. Множество $C = A \cup B$ называется объединением множеств A и B, если $\forall a : (a \in A \Rightarrow a \in C)$ и $\forall b : (b \in B \Rightarrow b \in C)$, а также $\forall c : c \in C \Rightarrow (c \in A)$ или $c \in B$.

Определение. Множество $C = A \cap B$ называется пересечением множеств A и B, если $\forall c : c \in C \Rightarrow (c \in A \text{ и } c \in B)$, а также $\forall c : (c \in A \text{ и } c \in B) \Rightarrow c \in C$.

Определение. Множество $C=A\setminus B$ называется разностью множеств A и B, если $\forall c:(c\in A$ и $c\not\in B)\Rightarrow c\in C$, а также $\forall c:c\in C\Rightarrow (c\in A$ и $c\not\in B)$

Утверждение. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Доказательство. $a \in (A \cup (B \cap C)) \Leftrightarrow a \in A$ или $a \in (B \cap C) \Leftrightarrow a \in A$ или $(a \in B \ u \ a \in C) \Leftrightarrow (a \in A \ uлu \ a \in B)$ и $(a \in A \ uлu \ a \in C)$.

Утверждение. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Доказательство. $a \in (A \cap (B \cup C)) \Leftrightarrow a \in A$ и $a \in (B \cap C) \Leftrightarrow a \in A$ и $(a \in B)$ или $a \in C) \Leftrightarrow (a \in A)$ и $a \in B$ или $a \in C$.

1.3 Декартово произведение множеств

Определение. Множество A называется одноэлементным, если $\exists \ a \in A$ такое, что $A \setminus \{a\} = \varnothing$.

Определение. Множество A называется двуэлементным, если $\exists \ a \in A$ такое, что $A \setminus \{a\}$ - одноэлементное.

Определение. Пусть $x \in X, y \in Y$. Упорядоченной парой называется двуэлементное множество $\{x, \{x, y\}\}$, упорядоченную пару обозначают (x, y).

Определение. Множество всех упорядоченных пар $X \times Y = \{(x,y)\}$, где $x \in X$ и $y \in Y$ называется декартовым произведением множеств X и Y.

1.4 Отображения

Определение. Пусть X,Y - множества. Подмножество $f \subset X \times Y$ такое, что $\forall (x_1,y_1), (x_2,y_2) \in f : (y_1 \neq y_2 \Rightarrow x_1 \neq x_2)$ называется отображением из X в Y, и обозначается $f: X \to Y$.

Замечание. Запись $(x,y) \in f$ часто заменяют на y = f(x).

Далее пусть $f: X \to Y$.

Определение. Множество $D_f := \{x : \exists (x,y) \in f\}$ называется областью определения функции f.

Определение. Множество $R_f := \{y : \exists (x,y) \in f\}$ называется областью значений функции f.

Определение. f - инъекция $\Leftrightarrow \forall (x_1, y_1), (x_2, y_2) \in f : (x_1 \neq x_2 \Rightarrow y_1 \neq y_2).$

Определение. f - сюръекция $\Leftrightarrow Y = R_f$

Замечание. Обычно используют определение f - сюръекция $\Leftrightarrow \forall y \in Y$ $\exists \ x \in X : y = f(x)$. Определения, очевидно, эквивалентны.

Определение. f - биекция $\Leftrightarrow f$ - инъекция и f - сюръекция.

Определение. Пусть $f: X \to Y, \ X_1 \subset X$. Множество $\{(x,y) \in f: x \in X_1\} = f|_{X_1}$ называется ограничением f на X_1 .

Определение. Пусть $f: X \to Y, \ X_1 \subset X$. Множество $f(X_1) = \{y \in Y: \exists \ x \in X_1: (x,y) \in f\}$ называют образом множества X_1 .

Определение. Пусть $f: X \to Y, Y_1 \subset Y$. Множество $f^{-1}(Y_1) = \{x \in X: \exists y \in Y_1: (x,y) \in f\}$ называют полным прообразом множества Y_1 .

Определение. Пусть $f: X \to Y$. Если $\forall y \in R_f: f^{-1}(y)$ - одноэлементное множество, то подмножество $f^{-1} \subset Y \times X = \{(y,x)\}$ является отображением и называется обратным отображением к f. Если у отображения f существует обратное отображение f^{-1} , то оно называется обратимым.

Утверждение. f - обратимое $\Leftrightarrow f$ - биекция.

Замечание. Иногда $f:X \to Y$ записывают в виде y_x и называют индексацией y элементами x.

1.5 Правила де Моргана

Утверждение. $\bigcup_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcap_{\alpha} A_{\alpha}).$

Доказательство. $a \in \bigcup_{\alpha} (A \setminus A_{\alpha}) \Leftrightarrow (a \in A \text{ и } a \notin A_{\alpha_{1}}) \text{ или } \dots \text{ или } (a \in A \text{ и } a \notin A_{\alpha_{n}}) \Leftrightarrow a \in A \text{ и } (a \notin A_{\alpha_{1}} \text{ и } \dots \text{ и } a \notin A_{\alpha_{n}}) \Leftrightarrow a \in A \setminus (\bigcap_{\alpha} A_{\alpha}).$

Утверждение. $\bigcap_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcup_{\alpha} A_{\alpha}).$

Доказательство. $a \in \bigcap_{\alpha} (A \setminus A_{\alpha}) \Leftrightarrow (a \in A \text{ и } a \notin A_{\alpha_{1}}) \text{ и ... и } (a \in A \text{ и } a \notin A_{\alpha_{n}}) \Leftrightarrow a \in A \text{ и } (a \notin A_{\alpha_{1}} \text{ или ... или } a \notin A_{\alpha_{n}}) \Leftrightarrow a \in A \setminus (\bigcup_{\alpha} A_{\alpha}).$

2 Вещественные числа

2.1 Натуральные числа. Аксиоматика Пеано

Определение. (Аксиоматика Пеано)

- 1. В множестве $\mathbb{N} \ \forall n \in \mathbb{N}$ существует единственный элемент, называемый следующим и обозначаемый как S(n).
- 2. В множестве $\mathbb{N} \ \forall n \in \mathbb{N}$ существует не более одного элемента, для которого n следующий.
- 3. В множестве № существует единственный элемент №, не являющийся следующим ни для какого элемента. Этот элемент обозначается 1 и называется единицей.
- 4. (Аксиома индукции) Пусть $M\subset \mathbb{N}$ такое, что $1\in M$ и $\forall m\in M$: $S(m)\in M$. Тогда $M=\mathbb{N}$.

Множество, удовлетворяющее этим аксиомам, называется множеством натуральных чисел и обозначается N.

Определение. Рассмотрим множество X. Если для некоторого $n \in \mathbb{N}$ существует биекция $\varphi: X \to \{1, \dots n\}$, то X называется n-элементным, или говорят, что количество элементов в X равно n. Тот факт, что множество X - n-элементное, обозначается как |X| = n или cardX = n.

Замечание. По определению считаем, что $card(\varnothing) = 0$.

Определение. Все множества, количество элементов которых равно какому-то натуральному числу или нулю, называются конечными. Все остальные множетсва называются бесконечными.

2.2 Отношение порядка и принцип наименьшего элемента

Определение. $R \subset X \times Y$ называется отношением между элементами X и Y. Обозначают xRy, если $(x,y) \in R$.

Определение. Отношение R называется отношением (линейного) порядка на множестве X, если $\forall x,y,z\in X$ выполнено:

1. xRy или yRx.

- 2. $(xRy \bowtie yRx) \Rightarrow x = y$.
- 3. $(xRy \text{ и } yRz) \Rightarrow xRz$.

Такое отношение обозначают \leq .

Теорема. Существует единственное отношение порядка на \mathbb{N} такое, что $\forall n \in \mathbb{N} : n \leq S(n)$.

Доказательство. Без доказательства.

Теорема. (Принцип наименьшего элемента)

 $M \subset \mathbb{N}, M \neq \emptyset$ имеет наименьший элемент, т.е. $\exists n_{min} \in M, \forall n \in M : n_{min} \leq n$.

Доказательство. Предположим, что в M нет минимального элемента.

База: если $1 \in M$, то $n_{min} = 1 \Rightarrow 1 \notin M \Rightarrow 1 \in \mathbb{N} \setminus M$.

Шаг: $\{1,2,\ldots,n\}\subset\mathbb{N}\setminus M\Rightarrow S(n)\in\mathbb{N}\setminus M$, тогда по аксиоме индукции $\mathbb{N}\setminus M=\mathbb{N}\Rightarrow M=\varnothing$ - противоречие. \square

2.3 Арифметические операции

Определение. Рассмотрим множества A и B, card(A) = n, card(B) = k, $n, k \in \mathbb{N}$. Пусть $A \cap B = \emptyset$. Тогда число $card(A \cup B)$ называется суммой n и k и обозначается $card(A \cup B) = n + k$.

Замечание. Естественно выполняется n + k = k + n (коммутативность) и (n + k) + m = n + (k + m) (ассоциативность).

Замечание. n+0=0+n=n, т.к. $cardA=card(A\cup\varnothing)$.

Замечание. По определению существуют биекции $A \leftrightarrow \{1, ..., n\}, B \leftrightarrow \{1, ..., k\}$. Возьмем $card(A \cup B) = \{1, ..., n\} \cup \{\underbrace{S(n), S(S(n)), ..., S(S(...(S(n))...)}_{.}\}$,

(где
$$\{1,\ldots,k\} \leftrightarrow \{\underbrace{S(n),S(S(n)),\ldots,S(S(\ldots(S(n))\ldots)}_{k}\}$$
)

Из тех же соображений получаем, что S(n) = n + 1.

Определение. $n, k \in \mathbb{N}$. Тогда $\sum_{i=1}^k n = nk$ называется произведением n на k.

Замечание. Выполнены:

- nk = kn (коммутативность)
- n(km) = (nk)m (ассоциативность)

- k(n+m) = kn + km (дистрибутивность)
- ullet Если $k \leq n$, то $k+m \leq n+m$ и если $k \leq m$, то $kn \leq mn$

Определение. Если n + k = m, то n = m - k называется разностью m и k, k = m - n называется разностью m и n.

Замечание. m-0=m, m+0=m, m-m=0.

Определение. $nk=m, \frac{m}{n}=k, \frac{m}{k}=n.$

2.4 Целые числа

Определение. Введем набор символов $-\mathbb{N} = \{\dots, -2, -1\}$. Множество символов $-\mathbb{N} \cup \{0\} \cup \mathbb{N}$ называется целыми числами и обозначаются \mathbb{Z} . В нем принимаем выполненными следующие свойства:

1.
$$k + (-n) = \begin{cases} k - n, \text{ если } k \ge n, \\ -(n - k), \text{ если } k < n. \end{cases}$$
 .
$$(-k) + (-n) = -(k + n)$$

2.
$$k \cdot 0 = (-k) \cdot 0 = 0$$
,
 $(-k) \cdot n = (-kn)$,
 $(-k)(-n) = kn$.

3.
$$(\pm k)((\pm n) + (\pm m)) = (\pm k)(\pm n) + (\pm k)(\pm m)$$
.

4.
$$\forall k : (-k) \leq 0,$$
 $(-k) \leq (-n), \text{ если } n \leq k.$

5.
$$\forall (\pm k), (\pm n), (\pm m) \in \mathbb{Z}$$
, если $(\pm k) \le (\pm n)$, то $(\pm k) + (\pm m) \le (\pm n) + (\pm m)$.

6.
$$\forall (\pm n), (\pm k) \in \mathbb{Z}, m \in \mathbb{N},$$
если $(\pm n) \leq (\pm k),$ то $(\pm n) m \leq (\pm k) m.$

Далее пишем -k вместо (-k). $\forall k, n \in \mathbb{Z} \ \exists (k-n) = k + (-n)$.

2.5 Рациональные числа

Определение. Множество $\mathbb{Q} = \{(m,n) \in \mathbb{Z} \times \mathbb{N}\}$, элементы которого обозначают $\frac{m}{n}$ называется множеством рациональных чисел, если введены следующие операции:

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + pn}{nq}$$

$$\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

а также введено отношение порядка:

$$\frac{m}{n} \le \frac{p}{q} \iff mq \le pn$$

Свойства операций $(a,b,c\in\mathbb{Q})$:

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$\exists ! \ 0 \in \mathbb{Q} : a + 0 = 0 + a = a$$

4.
$$\forall a \in \mathbb{Q} \exists ! (-a) \in \mathbb{Q} : a + (-a) = 0$$

5.
$$ab = ba$$

6.
$$a(bc) = (ab)c$$

7.
$$\exists ! \ 1 \in \mathbb{Q} \ \forall a : a \cdot 1 = 1 \cdot a = a$$

8.
$$\forall a \neq 0 \ \exists ! \ a^{-1} : aa^{-1} = a^{-1}a = 1$$

9.
$$a(b+c) = ab + ac$$

10.
$$\forall a, b \in \mathbb{Q}$$
 $a < b$ или $b < a$

11.
$$a \le b$$
 и $b \le a \Rightarrow a = b$

12.
$$a \le b$$
 и $b \le c \Rightarrow a \le c$

13.
$$\forall c \in \mathbb{Q} : a < b \Rightarrow a + c < b + c$$

14.
$$\forall c \in \mathbb{Q} : c > 0 : a \le b \Rightarrow ac \le bc$$

2.6 Упорядоченные и архимедовы поля

Определение. Множество X с операциями $(\cdot, +)$ и отношением порядка \leq называется упорядоченным полем.

Замечание. \mathbb{Q} - упорядоченное поле.

Определение. Упорядоченное поле X называется архимедовым, если 15. $\forall a \in X : \exists \ n \in \mathbb{N} : a \leq n$.

Замечание. $\mathbb Q$ - архимедово поле.

Замечание. $\frac{m}{n} = \frac{p}{q} \Leftrightarrow mq = pn$.

Замечание. $\forall m \in \mathbb{Z}$ число $\frac{m}{1} \in \mathbb{Q}$ можно отождествить с m.

2.7 Действительные числа. Аксиома полноты

Определение. Множество \mathbb{R} называется множеством действительных чисел, если $\mathbb{Q} \subset \mathbb{R}$, \mathbb{R} удовлетворяет (1)-(15) и дополнительно выполняется (16).

Аксиома. (Аксиома полноты)

16. $\forall A, B \subset \mathbb{R}$ таких, что $\forall a \in A, \ \forall b \in B : a \leq b \ \exists \ c \in \mathbb{R} : a \leq c \leq b$.

Пример. Аксиома полноты не выполняется в \mathbb{Q} .

$$A=\{a\leq 0$$
 или $a>0:a^2<2\},\ B=\{b>a:b^2>2\},$ но не существует $\frac{m}{n}$ такого, что $\frac{m^2}{n^2}=2$

2.8 Модели действительных чисел

Модель бесконечных десятичных дробей

Определение. Отображение $\{a_n\}: \mathbb{N} \to X$ называется последовательностью элементов X.

Определение. Выражение вида $\pm a_0, a_1, \ldots, a_n, \ldots$ называется бесконечной десятичной дробью, если $a_0 \in \mathbb{N}$ или $a_0 = 0$ и $\forall i \in \mathbb{N} : a_i \in \{0, 1, \ldots, 9\}$.

Определение. Введем отношение порядка ≤ на множестве всех бесконечных десятичных дробей следующим образом:

- 1. Если $a_0 \le 0, b_0 > 0$, то $a \le b$.
- 2. Если $a_0, b_0 \ge 0$, то $a \le b$
 - если $a_0 < b_0$ или $a_0 = b_0$, $a_1 < b_1$ или $a_0 = b_0$, $a_1 = b_1$, $a_2 < b_2$, или ... или $a_0 = b_0$, $a_1 = b_1$, $a_2 = b_2$, ..., $a_{n-1} = b_{n-1}$, $a_n < b_n$...
 - если $a_0 = b_0$, $a_1 = b_1, \ldots, a_{n-1} = b_{n-1}$, а также $a_n \neq 9, b_n = a_n + 1$. $a_{n+k} = 9$, $b_{n+k} = 0$, $\forall k \in \mathbb{N}$, т.е $a = \overline{a_0 a_1 \ldots a_n(9)}$, а $b = \overline{b_0 b_1 \ldots b_n(0)}$. (в числе a начиная с a_{n+1} все a_i равны 9, а в числе b начиная с b_{n+1} все b_i равны 0), то a = b.
- 3. Если $a_0, b_0 < 0$, то $a \le b$, если $-b \le -a$ (случай 3 сведен к случаю 2)

Теорема. Множество бесконечных десятичных дробей с введенным отношением порядка (\leq) удовлетворяет аксиоме полноты.

Доказательство. Пусть $A, B \subset \{$ множество бесконечных десятичных дробей $\}$ и $\forall a \in A, \forall b \in B : a \leq b.$

1. $a < 0, b \ge 0$, тогда c = 0.

2.
$$a \geq 0, b \geq 0$$
 Пусть
 $\overline{b_0} = \min\{b_0 : b_0b_1b_2 \cdots \in B\},$
 $\overline{b_1} = \min\{b_1 : \overline{b_0}b_1b_2 \cdots \in B\},$
 $\overline{b_2} = \min\{b_2 : \overline{b_0b_1}b_2 \cdots \in B\},$
 :
 Возьмем $\overline{b} = \overline{b_0b_1b_2 \ldots b_n \ldots} \in B$, тогда $\forall a \in A, \forall b \in B : a < \overline{b} < b$.

3. a < 0, b < 0 строим число по аналогии с пунктом 2.

Дедекиндовы сечения

Определение. Пусть $A,B\subset \mathbb{Q}:A\cap B=\varnothing,\ A\cup B=\mathbb{Q},\ \forall a\in A,\ \forall b\in B:$ $a\leq b$ и в B не существует минимального элемента, тогда (A,B) - пара сечений $\mathbb{Q}.$

Теорема. На множестве всех пар сечений $\{(A,B)\}$ можно ввести операции $(+),(\cdot)$ и отношение (\leq) , так что будут выполняться (1)-(16).

Доказательство. Без доказательства.

Геометрическая модель числовой прямой

Выбираем точку, называем ее 0

затем выбираем точку справа от него, называем е
е $1\,$

затем вводим сложение и получаем 2, 3, 4, и т.д. (натуральный ряд)

затем делаем также в другую сторону, получаем целые числа

Проведем через 0 под непрямым углом вспомогательную прямую на ней выберем точку, назовем ее 1' и аналогично первой прямой получаем на ней целые числа. Проведем прямую через n' и 1 тогда параллельная ей прямая проходящая через 1' проходит через $\frac{1}{n}$ (по теореме Фаллеса)

таким образом складывая m раз $\frac{1}{n}$, получим любое рациональное число $\frac{m}{n}$. Построим бесконечную десятичную дробь, например $0,37152\dots$ Разобьем отрезок:

0, 37152... находится между 0.2 и 0.4, теперь разобьем этот отрезок:

0,37152... находится между 0.36 и 0.4, теперь разобьем этот отрезок и т.д. Получаем последовательность вложенных отрезков, у которых длина стремится к нулю, значит у них есть единственная общая точка - наше число.

Таким образом, прямая - множество бесконечных десятичных дробей, а значит на ней выполняеются (1)-(16).

2.9 Принципы полноты

Определение.

- Элемент $a \in \mathbb{R}$ называется максимальным элементом множества A $(\max A \subset \mathbb{R}), A \neq \emptyset$, если $\forall a' \in A : a \geq a'$ и $a \in A$.
- Элемент $a \in \mathbb{R}$ называется минимальным элементом множества A (min $A \subset \mathbb{R}$), $A \neq \emptyset$, если $\forall a' \in A : a \leq a'$ и $a \in A$.

Определение.

- Элемент $m \in \mathbb{R}$ называется верхней гранью $A \subset \mathbb{R}, A \neq \emptyset$, если $\forall a \in A : a < m$.
- Элемент $m \in \mathbb{R}$ называется нижней гранью $A \subset \mathbb{R}, A \neq \emptyset$, если $\forall a \in A: a \geq m$.

Определение.

- Множество $A \subset \mathbb{R}, A \neq \varnothing$ называется ограниченным сверху, если у A существует верхняя грань.
- Множество $A \subset \mathbb{R}, A \neq \emptyset$ называется ограниченным снизу, если у A существует нижняя грань.
- Множество $A \subset \mathbb{R}$ называется ограниченным, если A ограничено и сверху и снизу.

Определение.

- Пусть множество $A \subset \mathbb{R}$ ограничено сверху, B множество верхних граней A. Элемент $c = \min B$ называется точной верхней гранью A и обозначается $\sup A$.
- Пусть множество $A \subset \mathbb{R}$ ограничено снизу, B множество нижних граней A. Элемент $c = \max B$ называется точной нижней гранью A и обозначается $\inf A$.

Теорема. (Принцип полноты Вейерштрасса)

Для каждого ограниченого сверху или снизу множества A существует $\sup A$ или $\inf A$ соответственно.

Доказательство. Докажем для верхней грани (аналогично для нижней) A - ограничено сверху, B - множество верхних граней. Значит $\forall a \in A$ и $\forall b \in B: a \leq b \Rightarrow$ по аксиоме полноты $\exists \ c \in \mathbb{R}: a \leq c \leq b \Rightarrow c = \sup A$.

Лемма. (Свойство точной грани)

Если у множества $A \subset \mathbb{R}$ существует $M = \sup A$ или $m = \inf A$, то $\forall \varepsilon > 0 \; \exists \; a \in A : a \in (M - \varepsilon, M)$ или $a \in (m, m + \varepsilon)$ соответственно.

Доказательство. Докажем для верхней грани. $M=\sup A\Rightarrow \forall a\in A: a\leq M.$ Поскольку M - минимальная из верхних граней, то $\forall \varepsilon>0: \widetilde{M}=M-\varepsilon$ - не является верхней гранью. Тогда $\exists \ a\in A: a>\widetilde{M}\Rightarrow a\in (M-\varepsilon,M).$

Определение. $\forall a, b \in \mathbb{R} : a < b$ рассмотрим следующие множетсва:

- $[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$ отрезок
- ullet $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ интервал
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ полуинтервал
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ полуинтервал

Такие множества называют промежутками.

Определение. $\forall a \in \mathbb{R}$ функция

$$|a| = \begin{cases} a, & a \ge 0, \\ -a, & a < 0. \end{cases}$$

называется модулем.

Определение. Для любого промежутка с концами $a,b \in \mathbb{R}$ длиной называется число |b-a|.

Определение. Рассмотрим последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$. Говорят, что $|b_n-a_n|\to 0$ при $n\to\infty$, если $\forall \varepsilon>0$ $\exists N\in\mathbb{N}: \forall n>N$ выполнено $|b_n-a_n|<\varepsilon$.

Теорема. (Принцип вложенных отрезков, принцип полноты Кантора) Пусть последовательность $\{[a_n,b_n]\}_{n=1}^{\infty}$ такова, что $\forall n:[a_{n+1},b_{n+1}]\subset [a_n,b_n]$. Тогда $\exists \ c\in\mathbb{R}: c\in[a_n,b_n], \forall n$. Если $|b_n-a_n|\to 0$ то c - единственная.

Доказательство. $\forall n, m \in \mathbb{N} : a_n \leq b_m$, т.к

- если n < m, то $a_n \le a_m \le b_m$.
- если n > m, то $a_n \le b_n \le b_m$.

Значит для $\forall m, n \in \mathbb{N}$: Рассмотрим множества $A = \{a_n\}$ и $B = \{b_n\}$. По аксиоме полноты $\exists \ c \in \mathbb{R} : a_n \le c \le b_m, \ \forall n, m \Rightarrow a_n \le c \le b_n, \ \forall n.$

Пусть $|b_n-a_n|\to 0$, предположим, что $\exists c_1$ и $c_2:c_1\neq c_2$ - различные общие точки, значит $|c_2-c_1|>0$. Получаем, что $0<|c_2-c_1|<|b_n-a_n|,\ \forall n$, значит $|c_2-c_1|\to 0$ получаем противоречие.

2.10 Отношение эквивалентности. Равномощные множества

Определение. Отношение \sim называется отношением эквивалентности, если оно удовлетворяет:

- 1. $x \sim x$ (Рефлексивность)
- 2. $x \sim y \Rightarrow y \sim x$ (Симметричность)
- 3. $x \sim y$ и $y \sim z \Rightarrow x \sim z$ (Транзитивность)

Определение. Множества называются равномощными, если между ними существует биекция.

Теорема. Равномощность множеств является отношением эквивалентности.

Доказательство. Пусть A,B,C - множества, $\varphi:A\to B,\psi:B\to C$ - биекции.

- 1. Рефлексивность очевидна, поскольку у любого множества существует биекция в себя.
- 2. Для любой биекции $\varphi:A\to B$ существует $\varphi^{-1}:B\to A.$
- 3. $\varphi: A \to B, \ \psi: B \to C, \text{ to } \psi \circ \varphi: A \to C.$

Замечание. Если A равномощно B то иногда пишут $A \sim B$ или |A| = |B|.

Теорема. Конечные множества равномощны \Leftrightarrow они содержат одинаковое количество элементов.

Доказательство.

- (\Leftarrow) Пусть $\varphi:A\to\{1,\ldots,n\},\ \psi:B\to\{1,\ldots,n\}$ $\Rightarrow\exists\ \psi^{-1}:\{1,\ldots,n\}\to B.$ Тогда $\varphi\circ\psi^{-1}:A\to B$ искомая биекция.
- (\Rightarrow) Пусть $\varphi:A\to B$ биекция, если $A=\varnothing$, то $B=\varnothing$. Индукция по количеству элементов. База: пусть $A=\{a\}$, тогда $\exists !\ b\in B: \varphi(a)=b$. Пусть утверждение верно для случая когда A это n-элементное множество. Теперь если A это n+1-элементное, то $\exists \varphi:A\to \{1,2,...,n+1\}$ биекция. Значит $\exists !\ a\in A$, что $\varphi(a)=n+1$. Тогда $A\setminus \{a\}$ n-элементное и $\exists !\ b\in B:b=\varphi(a)\Rightarrow B\setminus \{b\}$ n-элементное $\Rightarrow B$ n+1-элементное.

Определение. Множества, равномощные № называются счетными.

Определение. Множество называется не более чем счетным, если оно конечно или счетно.

Теорема. Объединение не более чем счетного числа счетных множеств счетно.

Доказательство. Предъявим проход по элементам, который задает биекцию:

$$a_{11}$$
 a_{12} a_{13} a_{14} \cdots a_{1n} a_{21} a_{22} a_{23} \cdots \cdots a_{2n} a_{31} a_{32} a_{33} \cdots \cdots a_{3n} \vdots

Следствие. Объединение не более чем счетного числа не более чем счетных множеств не более чем счетно.

Примеры.

- 1. Множество целых чисел \mathbb{Z} счетно.
- 2. Множество рациональных чисел ℚ счетно.
- 3. Множество многочленов с рациональными коэффициентами счетно.
- 4. Множество алгебраических чисел (чисел которые являются корнями многочлена с рациональными коэффициентами) счетно.

2.11 Теорема Кантора и аксиома выбора

Теорема. (Теорема Кантора)

Интервал (0,1) несчетен.

Доказательство. 1 Докажем от противного. Предположим, что у нас получилось перечислить все элементы интервала (0,1)

$$x_1 = 0, \ a_{11} \ a_{12} \ a_{13} \ \dots$$

 $x_2 = 0, \ a_{21} \ a_{22} \ a_{23} \ \dots$
 $x_3 = 0, \ a_{31} \ a_{32} \ a_{33} \ \dots$

 $^{^{1}{}m Moжet}$ немного отличаться от доказательства на лекциях

Теперь построим такую последовательность b, задающую число, которого нет в списке. Определим последовательность так: $b_0 = 0$ и на i-й позиции b_i отличается от a_{ii} , например зададим ее так:

$$b_i = egin{cases} 1, & ext{если}, & a_{ii}
eq 1, \ 2, & ext{если}, & a_{ii} = 1. \end{cases}$$

Таким образом, построенное число x = 0, $b_1 b_2 b_3 \dots$ отличается от каждого из $x_1, x_2, x_3 \dots$ на i позиции \Rightarrow оно не было пересчитано, получаем противоречие.

Следствие. Действительных чисел несчетно.

Доказательство. 2 Достаточно показать, что $\mathbb{R} \sim (0,1)$. Например функция $f:(0,1)\to\mathbb{R}$, такая что $f(x)=\frac{2x-1}{4x-4x^2}$ задает нужную биекцию.

Определение. Действительные числа не являющиеся алгебраическими называются трансцендентными.

Определение. Множества равномощные интервалу (0,1) называются множествами мощности континуума.

Теорема. У любого множетсва мощность множества всех подмножеств строго больше чем мощность самого множества.

Доказательство. Без доказательства.

Определение. Для множеств A и B обозначим $|A| \leq |B|$, если $\exists \ B' \subset B$ такое, что $A \sim B'$.

Теорема. Сравнение мощностей множеств $|A| \le |B|$ является отношением порядка.

- 1. $\forall A, B : |A| \le |B|$ или $|B| \le |A|$
- 2. $|A| \leq |B|$ и $|B| \leq |A| \Rightarrow |A| = |B|$ (Теорема Кантора-Бернштейна)
- 3. $|A| \le |B|$ и $|B| \le |C| \Rightarrow |A| \le |C|$

Доказательство. Без доказательства.

Аксиома. (Аксиома выбора)

Если существует семейство непустых множеств, то из каждого множества можно выбрать по одному элементу и составить из них другое множество.

²Не было на лекциях

Утверждение. Множество $2^{\mathbb{N}}$ всех подмножеств \mathbb{N} равномощно интервалу (0,1)(множеству $\{0,1\}^{\mathbb{N}}$ бесконечных последовательностей нулей и единиц). Доказательство. 3 Каждому $A\subset\mathbb{N}$ ставим в соответствие характеристическую последовательность, которая принимает значения: единицу, если элемент лежит в подмножестве и ноль иначе $\Rightarrow 2^{\mathbb{N}} \sim \{0,1\}^{\mathbb{N}}$. Поскольку каждое число из интервала (0,1) представляется как последовательность цифр $0, a_1, a_2, a_3, \ldots$ и каждую цифру можно представить в двоичной системе исчисления, то можно сделать вывод, что $2^{\mathbb{N}} \sim (0, 1)$. Теорема. У любого бесконечного множества существует счетное подмноже-CTBO. Доказательство. Выбираем элемент и сразу присваиваем ему номер. Продолжая это действие, построим счетное множество. **Теорема.** Пусть A - бесконечное, B - не более чем счетное $\Rightarrow A \sim A \cup B$ Доказательство. Выделим из A счетное подмножество A'. Тогда $A \sim (A \setminus A') \cup$ A', поскольку объединение не более чем счётного числа не более чем счётных множеств не более чем счётно, то $(A \setminus A') \cup A' \sim (A \setminus A') \cup (A' \cup B) \sim (A \cup B)$. \square

 $^{^{3}{}m Moжet}$ отличаться от доказательства на лекциях

3 Топология вещественной прямой

3.1 Окрестность точки. Классификация точек относительно подмножеств действительных чисел

Определение. $\forall x \in \mathbb{R}, \ \forall \varepsilon > 0 : B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$. Множество $B_{\varepsilon}(x)$ называется ε -окрестностью точки x.

Определение. $\forall x \in \mathbb{R}, \ \forall \varepsilon > 0 : \mathring{B}_{\varepsilon}(x) = (x - \varepsilon, x) \cup (x, x + \varepsilon)$. Множество $\mathring{B}_{\varepsilon}(x)$ называется проколотой ε -окрестностью точки x.

Определение. Точка $x \in A \subset \mathbb{R}$ называется внутренней точкой множества A, если $\exists B_{\varepsilon}(x) \subset A$. Множество всех внутренних точек $x \in A$ называется внутренностью множетсва A.

Определение. Точка $x \in \mathbb{R} \setminus A$ называется внешней точкой для множества $A \subset \mathbb{R}$, если x - внутренняя точка для $\mathbb{R} \setminus A$. Множество всех внешних точек $x \in A$ называется внешностью множетсва A.

Определение. Точка называется граничной для множества $A \subset \mathbb{R}$, если она не является ни внешней ни внутренней для A (в любой ее окрестности есть как точки из A так точки из $\mathbb{R} \setminus A$). Множество всех граничных точек называется границей множества A и обозначается ∂A .

Определение. Точка $x \in \mathbb{R}$ называется предельной точкой множества $A \subset \mathbb{R}$, если в любой проколотой окрестности точки x бесконечно много точек A, т.е $\forall \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) \neq \varnothing$. Множество всех предельных точек A обозначается A'

Определение. Точка $x \in A$ называется изолированной точкой $A \subset \mathbb{R}$, если $\exists \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) = \varnothing$.

Определение. Точка $x \in \mathbb{R}$ называется точкой прикосновения $A \subset \mathbb{R}$, если $\forall \ \varepsilon > 0 : A \cap B_{\varepsilon}(x) \neq \varnothing$.

Утверждение. Точки прикосновения множества *А* являются либо внутренними, либо граничными.

Доказательство. Точка прикосновения не может являться внешней точкой, поскольку в этом случае $\exists \ \varepsilon > 0 : B_{\varepsilon}(x) \in \mathbb{R} \setminus A$, что противоречит с условием $\forall \ \varepsilon > 0 : A \cap B_{\varepsilon}(x) \neq \varnothing \Rightarrow$ она либо внутренняя либо граничная.

Утверждение. Точки прикосновения являются либо предельными, либо изолированными.

 \mathcal{A} оказательство. Если $\forall \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) \neq \varnothing$, то x - предельная. Если $\exists \ \varepsilon > 0 : A \cap \mathring{B}_{\varepsilon}(x) = \varnothing$, но по определению $\forall \ \varepsilon > 0 : A \cap B_{\varepsilon}(x) \neq \varnothing$ $\Rightarrow x \in A \Rightarrow x$ - изолированная.

Определение. (Множество Кантора)

Разбиваем отрезок [0,1] на три части и выбрасываем середину, затем каждый из получившихся отрезков разбиваем на три части и выбрасываем середину, и т.д.

- Суммарная длина всех выброшенных интервалов равна 1.
- Концов отрезков счетное множество.
- Общее количество точек имеет мощность континуума.

3.2 Открытые и замкнутые множества

Определение. Множество называется открытым, если все его точки - внутренние.

Пример. Любой интервал - открытое множество

Определение. Множество $A \subset \mathbb{R}$ называется замкнутым, если его дополнение $\mathbb{R} \setminus A$ открыто.

Пример. Отрезок - замкнутое множество.

Замечание. По определению считаем, что \varnothing и $\mathbb R$ и открыты и замкнуты одновременно.

Теорема. (Критерии замкнутости множества)

Следующие условия эквивалентны:

- (0) $A \subset \mathbb{R}$ замкнуто.
- $(1) \ \partial A \subset A,$
- (2) Все точки прикосновения содержатся в A,
- (3) $A' \subset A$.

Доказательство. Докажем по цепочке $(0) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (0)$.

1. $(0) \Rightarrow (1) : A$ - замкнуто $\Rightarrow \mathbb{R} \setminus A$ - открыто $\Rightarrow \partial A \not\subset \mathbb{R} \setminus A \Rightarrow \partial A \subset A$.

- 2. (1) \Rightarrow (2) : Все точки прикосновения являются граничными или внутренними. Поскольку $\partial A \subset A$ то все точки прикосновения содержатся в A.
- 3. (2) \Rightarrow (3) : Если x предельная, то $x \in A$ или x точка прикосновения. Поскольку все точки прикосновения содержатся в A, то и все предельные точки содержатся в A.
- 4. (3) \Rightarrow (0) : $A' \subset A \Rightarrow \forall x \in \mathbb{R} \setminus A : x \notin A' \Rightarrow \forall x \in \mathbb{R} \setminus A \exists \mathring{B}_{\varepsilon} : \mathring{B}_{\varepsilon}(x) \cap A = \emptyset$ $\Rightarrow B_{\varepsilon}(x) \cap A = \emptyset$ (т.к $x \notin A$) $\Rightarrow x$ - внешняя точка $A, B_{\varepsilon}(x) \subset \mathbb{R} \setminus A$ $\Rightarrow \mathbb{R} \setminus A$ - открыто $\Rightarrow A$ - замкнуто.

Теорема. Пусть A - множество индексов. Пусть $\{U_{\alpha}\}_{\alpha \in A}$ - открытые, $\{X_{\alpha}\}_{\alpha \in A}$ - замкнутые. Тогда:

- 1. $\bigcup_{\alpha} U_{\alpha}$ открыто (объединение открытых множетсв открыто).
- 2. $\bigcap_{i=1}^{n} U_{\alpha_i}$ открыто (конечное пересечение открытых множеств открыто).
- 3. $\bigcup_{i=1}^{n} X_{\alpha_i}$ замкнуто (конечное объединение замкнутых множеств замкнуто).
- 4. $\bigcap_{\alpha} X_{\alpha}$ замкнуто (пересечение замкнутых множеств замкнуто).

Доказательство.

- 1. Пусть $u \in \bigcup_{\alpha} U_{\alpha} \Rightarrow \exists \alpha_0 : u \in U_{\alpha_0} \Rightarrow \exists B(u) \in U_{\alpha_0} \Rightarrow B(u) \in \bigcup_{\alpha} U_{\alpha}$ $\Rightarrow \bigcup_{\alpha} U_{\alpha}$ открыто.
- 2. Пусть $u \in \bigcap_{i=1}^{n} U_{\alpha_i} \Rightarrow \forall i \in \{1, \dots, n\} \exists \varepsilon_i : B_{\varepsilon_i}(u) \in U_{\alpha_i} \Rightarrow \exists \varepsilon_0 = \min\{\varepsilon_i\}$ $\Rightarrow B_{\varepsilon_0} \subset U_{\alpha_i} \ \forall i \Rightarrow B_{\varepsilon_0} \subset \bigcap_{i=1}^{n} U_{\alpha_i} \Rightarrow \bigcap_{i=1}^{n} U_{\alpha_i} \text{ - открыто.}$
- 3. Поскольку $\bigcap_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcup_{\alpha} A_{\alpha})$ (доказано ранее), то $\mathbb{R} \setminus \bigcup_{i=1}^{n} X_{\alpha_{i}} = \bigcap_{i=1}^{n} (\mathbb{R} \setminus X_{\alpha_{i}})$. Так как $X_{\alpha_{i}}$ замкнуто, то $\mathbb{R} \setminus X_{\alpha_{i}}$ открыто. Тогда по пункту 2 получаем: $\bigcap_{i=1}^{n} (\mathbb{R} \setminus X_{\alpha_{i}})$ открыто $\Rightarrow \mathbb{R} \setminus \bigcup_{i=1}^{n} X_{\alpha_{i}}$ открыто $\Rightarrow \bigcup_{i=1}^{n} X_{\alpha_{i}}$ замкнуто.

4. Поскольку $\bigcup_{\alpha} (A \setminus A_{\alpha}) = A \setminus (\bigcap_{\alpha} A_{\alpha})$ (доказано ранее), то $\mathbb{R} \setminus \bigcap_{\alpha} X_{\alpha} = \bigcup_{\alpha} (\mathbb{R} \setminus X_{\alpha})$. Так как X_{α} - замкнуто, то $\mathbb{R} \setminus X_{\alpha}$ - открыто. Тогда по пункту 1 получаем: $\bigcup_{\alpha} (\mathbb{R} \setminus X_{\alpha})$ - открыто $\Rightarrow \mathbb{R} \setminus \bigcap_{\alpha} X_{\alpha}$ - открыто $\Rightarrow \bigcap_{\alpha} X_{\alpha}$ - замкнуто.

Примеры.

1.
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) = [0, 1].$$

2.
$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0, 1).$$

Теорема. Если A - ограничено сверху или снизу и замкнуто, то существует $\max A$ или $\min A$ соответственно.

$$\forall \varepsilon > 0 \; \exists \; a \in (\alpha - \varepsilon, \alpha] \Rightarrow \alpha$$
 - точка прикосновения $\Rightarrow \alpha \in A \Rightarrow \alpha = \max A$. \square

3.3 Компакты

Определение. Говорят, что семейство $\{A\}_{\alpha}$ является покрытием множества B, если $B\subset\bigcup A_{\alpha}$

Определение. Рассмотрим $X \subset \mathbb{R}$. Если для любого покрытия X открытыми множествами $\{A\}_{\alpha}$ существует $\{\alpha_i\}_{i=1}^n$ - конечное подпокрытие такое, что $X \subset \bigcup_{i=1}^n A_{\alpha_i}$, то X называется компактным множеством или компактом.

Теорема. Любой отрезок является компактом.

Доказательство. Пусть $[a,b]\subset\bigcup_{\alpha}A_{\alpha},\ A_{\alpha}$ - открытые и нельзя выделить конечное подпокрытие. Тогда $[a,b]=[a_1,b_1]$ делим отрезок пополам и выбираем половину $[a_2,b_2]$, у которой нельзя выделить конечное подпокрытие и т.д. Получаем систему вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, у которых нельзя выделить конечное подпокрытие и длина стремится к нулю $\Rightarrow \exists !\ c\in [a_n,b_n]\ \forall n\Rightarrow \exists\ \alpha_0:c\in A_{\alpha_0}$. Поскольку A_{α_0} - открыто, то $\exists\ B_{\varepsilon}(c)\subset A_{\alpha_0}\Rightarrow\exists\ n_{\alpha_0}:[a_{n_{\alpha_0}},b_{n_{\alpha_0}}]\subset A_{\alpha_0}$ получаем противоречие.

Теорема. (Лемма Гейне-Бореля)⁴

A - компакт в $\mathbb{R} \Leftrightarrow A$ - замкнуто и ограничено.

Доказательство. Без доказательства.

 $^{^4}$ На самом деле, утверждение верно и для \mathbb{R}^n

3.4 Теорема Больцано-Вейерштрасса

Теорема. (Больцано-Вейерштрасса)

Если $A \subset \mathbb{R}$ - ограниченное и бесконечное множетсво, то в нем есть хотя бы одна предельная точка (т.е. $A' \neq \emptyset$).

Доказательство. т.к A - ограничено, то $\exists \sup A = b$, $\inf A = a$ $\Rightarrow A \subset [a_1,b_1] = [a,b]$. Поделим отрезок $[a_1,b_1]$ пополам и возьмем половину $[a_2,b_2]$ в которой бесконечно много элементов из множества A и т.д. Получаем систему вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, у которых длина стремится к нулю $\Rightarrow \exists !\ c \in [a_n,b_n]\ \forall n \Rightarrow \forall \varepsilon > 0\ \exists\ n_\varepsilon: [a_{n_\varepsilon},b_{n_\varepsilon}] \subset B_\varepsilon(c) \Rightarrow$ существует бесконечно много элементов в $\mathring{B}_\varepsilon(c) \Rightarrow c \in A'$.

4 Числовые последовательности

4.1 Предел последовательности

Определение. Отображение $\{a_n\}: \mathbb{N} \to \mathbb{R}$ называется последовательностью.

Замечание. Далее, в обозначении последовательности будем опускать скобки и писать a_n .

Определение. Говорят, что a_n ограничена сверху (снизу), если ее образ ограничен сверху (снизу).

Определение. Пусть последовательность номеров n_k - образ $\varphi: \mathbb{N} \to \mathbb{N}$ и $\forall k: n_{k+1} > n_k$. Тогда для любой последовательности a_n последовательность a_{n_k} называется подпоследовательностью a_n .

Определение. Рассмотрим последовательность a_n . Если $\exists a \in \mathbb{R}$, такое что

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \in \mathbb{N} : \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon$$

то говорят, что последовательность a_n сходится, а число a называется пределом последовательности a_n и обозначается

$$\lim_{n\to\infty} a_n = a$$

Теорема. Если a_n сходится, то ее предел единственный.

Доказательство. Пусть $\exists \ a,b \in \mathbb{R}: a \neq b$ - два предела последовательности a_n . Тогда

$$\exists \ N_1: \forall n > N_1: |a_n - a| < \frac{|a - b|}{3} \quad \text{if} \quad \exists \ N_2: \forall n > N_2: |a_n - b| < \frac{|a - b|}{3}$$

Тогда $\forall n > N = \max(N_1, N_2)$ получаем, что $a_n \in B_{\frac{|a-b|}{3}}(a)$ и $a_n \in B_{\frac{|a-b|}{3}}(b)$, но $B_{\frac{|a-b|}{3}}(a) \cap B_{\frac{|a-b|}{3}}(b) = \varnothing \Rightarrow$ получаем противоречие.

Теорема. Пусть $\exists \lim_{n\to\infty} a_n = a$, тогда $\forall a_{n_k} \exists \lim_{n\to\infty} a_{n_k} = a$.

Доказательство. $\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \; \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon \Rightarrow \forall n_k > N_{\varepsilon} : |a_{n_k} - a| < \varepsilon$

Замечание.

1. Если
$$\exists \lim_{n\to\infty} a_n = a$$
, то $\exists \lim_{n\to\infty} a_{n+k} = a$.

2. Если $\exists\lim_{n\to\infty}a_n=a$ и b_n отличается от a_n конечным числом членов, то $\exists\lim_{n\to\infty}b_n\overset{n\to\infty}{=}a.$

Теорема. (Теорема об отделимости)

Пусть
$$\exists \lim_{n \to \infty} a_n = a$$
 и $b \neq a$. Тогда $\exists \varepsilon > 0 \exists N_\varepsilon : B_\varepsilon(b) \cap \{a_n\}_{n=N_\varepsilon}^\infty = \varnothing$.

Доказательство. Предположим, что выполнено обратное: $\forall \varepsilon > 0 \ \forall \ N_{\varepsilon}$: $B_{\varepsilon}(b)\cap\{a_n\}_{n=N_{\varepsilon}}^{\infty}\neq\varnothing$. Возьмем $\varepsilon=\frac{|b-a|}{3}$, сразу получаем противоречие.

Замечание. Теорема об отделимости равносильна следующему утверждению: $\exists \ \varepsilon > 0 : \mathring{B}_{\varepsilon}(b) \cap \{a_n\}_{n=1}^{\infty} = \varnothing$, причем если $b \notin \{a_n\}_{n=1}^{\infty}$, то $B_{\varepsilon}(b) \cap \{a_n\}_{n=1}^{\infty} = \varnothing$.

4.2О-символика. Бесконечно малые и бесконечно большие последовательности

Определение. Рассмотрим пару последовательностей a_n и b_n . Если $\exists \lim_{n o \infty} rac{a_n}{b_n} = 0$, то говорят, что последовательность a_n - это о-малое от b_n , и обозначают $a_n = \bar{\bar{o}}(b_n)$, при $n \to \infty$.

Определение. Если $\exists~M>0: \left|\frac{a_n}{b_n}\right| \leq M~\forall n,$ то говорят, что последовательность a_n - это О-большое от b_n , и обозначают $a_n = O(b_n)$, при $n \to \infty$.

Примеры.

1.
$$\frac{\sin n}{n} \to 0 \Leftrightarrow \sin n = \bar{o}(n)$$

2.
$$\frac{\cos n}{n} \to 0 \Leftrightarrow \cos n = \bar{o}(n)$$

3.
$$\frac{\sqrt{n+1}}{n} \to 0 \Leftrightarrow \sqrt{n+1} = \bar{\bar{o}}(n)$$

Замечание. O(1) - обозначение класса ограниченных последовательностей.

Определение. Последовательность a_n называется бесконечно малой, если

$$a_n = \bar{\bar{o}}(1) \iff \lim_{n \to \infty} a_n = 0$$

Определение. Последовательность a_n называется бесконечно большой, если

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n > N_{\varepsilon} : |a_n| > \varepsilon$$

такие последовательности обозначаются $\lim_{n\to\infty} a_n = \infty$ (это всего лишь обозначение, конечно у последовательности a_n не существует предела)

Если в определении $a_n > \varepsilon$, то пишут $\lim_{n \to \infty} a_n = +\infty$. Если в определении $a_n < -\varepsilon$, то пишут $\lim_{n \to \infty} a_n = -\infty$.

Теорема. (Исчисление бесконечно малых)

Пусть $a_n = \bar{\bar{o}}(1), n \to \infty, \ b_n = \bar{\bar{o}}(1), n \to \infty$ и $c_n = O(1)$. Тогда $\forall c \in \mathbb{R}$:

1.
$$ca_n = \bar{o}(1)$$

2.
$$a_n + b_n = \bar{\bar{o}}(1)$$

3.
$$a_n b_n = \bar{o}(1)$$

4.
$$c_n a_n = \bar{o}(1)$$

Доказательство. $\forall \varepsilon > 0 \; \exists \; N_1, \; \forall n > N_1 : |a_n| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |b_n| < \varepsilon.$ Возьмем $n > \max\{N_1, N_2\}$. Также по определению $\exists \; M > 0 : |c_n| < M$. Тогда:

- 1. $|ca_n| = |c| |a_n| < |c| \varepsilon$. Поскольку ε принимает любое вещественное положительное значение, то величина $|c|\varepsilon$ тоже $\Rightarrow ca_n = \bar{o}(1)$.
- 2. $|a_n + b_n| \le |a_n| + |b_n| < \varepsilon + \varepsilon = 2\varepsilon$. Поскольку ε принимает любое вещественное положительное значение, то величина 2ε тоже $\Rightarrow a_n + b_n = \bar{o}(1)$.
- 3. $|a_n b_n| = |a_n| \ |b_n| < \varepsilon \cdot \varepsilon = \varepsilon^2$. Поскольку ε принимает любое вещественное положительное значение, то величина ε^2 тоже $\Rightarrow a_n b_n = \bar{o}(1)$.
- 4. $|c_n a_n| = |c_n| |a_n| < M \varepsilon$. Поскольку ε принимает любое вещественное положительное значение, то величина $M \varepsilon$ тоже $\Rightarrow c_n a_n = \bar{o}(1)$.

Теорема. Пусть a_n - бесконечно большая и $a_n \neq 0$, тогда $\frac{1}{a_n}$ - бесконечно малая.

Доказательство.
$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n > N_{\varepsilon} : |a_n| > \varepsilon \Rightarrow \frac{1}{|a_n|} < \frac{1}{\varepsilon} \Rightarrow \frac{1}{a_n} = \bar{o}(1)$$

Лемма.
$$\lim_{n\to\infty} a_n = a \Leftrightarrow a_n - a = \bar{o}(1)$$
 т.е $a_n = a + \bar{o}(1)$

Доказательство. Из определения предела для a_n получаем: $|a_n-a|<\varepsilon$, а это и означает что $a_n-a=\bar{o}(1)$.

4.3 Арифметические свойства сходящихся последовательностей

Теорема. Пусть $\exists \lim_{n\to\infty} a_n = a, \ \exists \lim_{n\to\infty} b_n = b,$ тогда

1.
$$\exists \lim_{n \to \infty} (a_n + b_n) = a + b$$

2.
$$\exists \lim_{n \to \infty} (ca_n) = ca$$

3.
$$\exists \lim_{n \to \infty} (a_n b_n) = ab$$

4. Если дополнительно
$$\forall n: b_n \neq 0$$
 и $b \neq 0$, то $\exists \lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}$

 \mathcal{A} оказательство. Пользуясь тем, что $a_n=a+ar{\bar{o}}(1),\ b_n=b+ar{\bar{o}}(1)$ и исчислением бесконечно малых, получаем:

1.
$$a_n + b_n = a + \bar{o}(1) + b + \bar{o}(1) = a + b + \bar{o}(1)$$
.

2.
$$ca_n = c(a + \bar{o}(1)) = ca + c\bar{o}(1) = ca + \bar{o}(1)$$
.

3.
$$a_n b_n = (a + \bar{o}(1))(b + \bar{o}(1)) = ab + a\bar{o}(1) + b\bar{o}(1) + \bar{o}(1)\bar{o}(1) = ab + \bar{o}(1)$$
.

4.
$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a_n b - ab_n}{bb_n} = \frac{b(a + \bar{o}(1)) - a(b + \bar{o}(1))}{b(b + \bar{o}(1))} = \frac{ab - ab + b\bar{o}(1) - a\bar{o}(1)}{b^2 + b\bar{o}(1)} = \frac{1}{b^2 + \bar{o}(1)} \bar{o}(1) = O(1)\bar{o}(1) = \bar{o}(1).$$

Теорема. Пусть $\exists \lim_{n\to\infty} a_n = a$ и $a_n \ge 0$, $\forall n$. Тогда $a \ge 0$.

Доказательство. Пусть a<0, тогда $\exists~N,~\forall n>N: |a-a_n|<\frac{|a|}{3} \Rightarrow$ начиная с N все члены a_n отрицательные \Rightarrow получаем противоречие.

Следствие. Пусть $\exists \lim_{n\to\infty} a_n = a, \ \exists \lim_{n\to\infty} b_n = b$ и пусть $\forall n: a_n \geq b_n$. Тогда $a \geq b$.

Доказательство. Рассмотрим последовательность $a_n - b_n \ge 0$.

$$a_n - b_n \to a - b \ge 0.$$

Теорема. (Теорема о двух милиционерах)

Пусть $\exists \lim_{n\to\infty} a_n = a$, $\exists \lim_{n\to\infty} b_n = a : a_n \leq b_n$ и пусть $a_n \leq c_n \leq b_n$, $\forall n$, тогда $\exists \lim_{n\to\infty} c_n = a$.

Доказательство. $\forall \varepsilon > 0 \; \exists \; N_1, \; \forall n > N_1 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; \forall n > N_2 : |a_n - a| < \varepsilon, \; \exists \; N_2, \; |a_n - a| < \varepsilon, \; |a_n - a| <$ $|b_n - a| < \varepsilon \Rightarrow \forall n > N = \max\{N_1, N_2\} : a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$ $\Rightarrow |c_n - a| < \varepsilon$.

4.4 Монотонные последовательности

Определение.

1. Если $\forall n : a_{n+1} > a_n$, то a_n (строго) возрастает.

2. Если $\forall n : a_{n+1} \ge a_n$, то a_n не убывает.

3. Если $\forall n : a_{n+1} < a_n$, то a_n (строго) убывает.

4. Если $\forall n: a_{n+1} \leq a_n$, то a_n не возрастает.

Такие последовательности называют монотонными.

Теорема. Если последовательность неубывает (невозраствает) и ограничена сверху (снизу), то у нее есть предел.

 \mathcal{A} оказательство. Докажем для неубывающей, ограниченной сверху. a_n - ограничена сверху $\Rightarrow \exists \ a = \sup a_n \Rightarrow \forall \varepsilon > 0 \ \exists \ a_{N_\varepsilon} : a - \varepsilon < a_{N_\varepsilon} < a, \ a_n$ - неубывает $\Rightarrow \forall n > N_\varepsilon : a_n > a - \varepsilon \Rightarrow a - a_n < \varepsilon$.

4.5 Неравенство Бернулли и Бином Ньютона

Теорема. (Неравенство Бернулли)

Пусть $x_k \in \mathbb{R}$ и $\forall k: x_k > 0$ или $\forall k: x_k \in (-1,0)$. Тогда

$$\prod_{k=1}^{n} (1 + x_k) \ge 1 + \sum_{k=1}^{n} x_k$$

Доказательство. Индукция по n. База: $n=1:1+x_1\geq 1+x_1$.

Шаг: пусть при n утверждение верно. Тогда

$$\prod_{k=1}^{n+1} (1+x_k) \ge (1+x_{n+1})(1+\sum_{k=1}^n x_k) = 1+\sum_{k=1}^{n+1} x_k + (\sum_{k=1}^n x_k) \cdot x_{n+1} > 1+\sum_{k=1}^{n+1} x_k$$

Определение. Число $\frac{n!}{k!(n-k)!}$ называется биномиальным коэффициентом и обозначается C_n^k .

Замечание. По определнию считается, что 0! = 1.

Теорема. (Бином Ньютона)

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Доказательство. Индукция по n. База: для n=1 верно. Пусть верно для n. Распишем выражение для n+1:

$$(a+b)^{n+1} = (a+b)\sum_{k=0}^{n} C_n^k a^k b^{n-k} = \sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_n^k a^k b^{n-k+1}$$

Сдвинем нумерацию в первой сумме:

$$\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} = \sum_{m=1}^{n+1} C_n^{m-1} a^m b^{n-m+1}$$

Получаем, что

$$\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^{n} C_n^k a^k b^{n-k+1} = \sum_{m=1}^{n+1} C_n^{m-1} a^m b^{n-m+1} + \sum_{m=0}^{n} C_n^m a^m b^{n-m+1} =$$

$$= C_n^n a^{n+1} b^0 + \sum_{m=1}^{n} (C_n^{m-1} + C_n^m) a^n b^{n-m+1} + C_n^0 a^0 b^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m a^m b^{n-m+1}$$

4.6 Число е

Лемма.

1. $a_n = (1 + \frac{1}{n})^n$ возрастает.

2.
$$b_n = (1 + \frac{1}{n})^{n+1}$$
 убывает.

Доказательство.

1.
$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \frac{(n+2)^{n+1} n^n}{(n+1)^{2n+1}} = \frac{(n^2 + 2n)^n (n+2)}{(n^2 + 2n + 1)^n (n+1)} =$$

$$= \left(1 - \frac{1}{(n+1)^2}\right)^n \left(\frac{n+2}{n+1}\right) \ge \left(1 - \frac{n}{(n+1)^2}\right) \cdot \frac{n+2}{n+1} =$$

$$= \frac{n^2 + n + 1}{n^2 + 2n + 1} \cdot \frac{n+2}{n+1} = \frac{n^3 + 3n^2 + 3n + 2}{n^3 + 3n^2 + 3n + 1} > 1$$

2.
$$\frac{b_n}{b_{n+1}} = \frac{(1+\frac{1}{n})^{n+1}}{(1+\frac{1}{n+1})^{n+2}} = \frac{(n+1)^{2n+3}}{n^{n+1}(n+2)^{n+2}} = \frac{(n^2+2n+1)^{n+1}(n+1)}{(n^2+2n)^{n+1}(n+2)} = \frac{(1+\frac{1}{n^2+2n})^{n+2}}{(n^2+2n)^{n+1}(n+2)} = \frac{(n^2+2n+1)^{n+1}(n+1)}{(n^2+2n)^{n+1}(n+2)} = \frac{(n^2+3n+1)^{n+1}(n+1)}{(n^2+2n)^{n+1}(n+2)} = \frac{(n^2+2n+1)^{n+1}(n+1)}{(n^2+2n)^{n+1}(n+2)} = \frac{(n^2+2n+1)^{n+1}(n+1)}{(n^2+2n)^{n+1}(n+1)} = \frac{(n^2+2n+1)^{n+1}($$

Теорема. $\exists \lim_{n\to\infty} (1+\frac{1}{n})^n$

Доказательство.
$$\forall n,\ a_n < b_n,\ \text{т.к.}\ b_n = a_n(1+\frac{1}{n}) \Rightarrow \forall n,m: a_n < b_m$$
 $\Rightarrow a_n$ - ограничена $\Rightarrow \exists \lim_{n \to \infty} a_n$

Определение. $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$

4.7 Сходимость последовательностей и частичные пределы

Теорема. Если a_n ограничена, то у нее существует сходящаяся подпоследовательность.

Доказательство.

- 1. Образ a_n бесконечен. Тогда $\exists a$ предельная точка образа. Тогда в проколотой окрестности a есть хотя бы одна точка, возьмем эту точку, назовем ее a_{n_1} , далее возьмем новую проколотую окрестность a так, чтобы a_{n_1} в нее не попадало, возьмем в ней a_{n_2} такую, что $n_2 > n_1$ и так далее. Получим подпоследовательность, сходящуюся к a.
- 2. Образ a_n конечен. Тогда $\exists a$ из образа, встречающаяся в последовательности бесконечно много раз. Тогда возьмем постоянную (стационарную) подпоследовательность.

Теорема. (Критерий Коши)

Последовательность a_n сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \in \mathbb{N}, \; \forall n, m > N_{\varepsilon} : |a_n - a_m| < \varepsilon$$

Доказательство.

- (\Rightarrow) $\exists \lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \; \exists \; N_{\varepsilon}, \; \forall n > N_{\varepsilon} : |a_n a| < \frac{\varepsilon}{2}.$ Тогда $\forall m, n > N_{\varepsilon} : |a_m a_n| = |(a_m a) + (a a_n)| \leq |a_m a| + |a a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$
- $(\Leftarrow)\ \forall \varepsilon > 0\ \exists\ N_{\varepsilon},\ \forall n,m>N_{\varepsilon}: |a_{n}-a_{m}|<\varepsilon.$ Фиксируем m, тогда $a_{m}-\varepsilon < a_{n}< a_{m}+\varepsilon \Rightarrow a_{n}$ ограничена $\Rightarrow\exists\ a_{n_{k}}\to a,\ k\to\infty.$ Поскольку $n_{k}\geq n>N$, то $|a_{n}-a_{n_{k}}|<\varepsilon.$ Тогда $|a_{n}-a|=|a_{n}-a_{n_{k}}+a_{n_{k}}-a|<<(|a_{n}-a_{n_{k}}|+|a_{n_{k}}-a|<2\varepsilon$ (2 ε пробегает все вещественные положительные числа)

Определение. Последовательность a_n , удовлетворяющая условию

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \in \mathbb{N}, \; \forall n, m > N_{\varepsilon} : |a_n - a_m| < \varepsilon$$

называется фундаментальной.

Пример.

$$a_n = \sum_{k=1}^n \frac{1}{k^2} - \text{сходится, поскольку:}$$

$$|a_n - a_m| = |\sum_{k=1}^n \frac{1}{k^2} - \sum_{k=1}^m \frac{1}{k^2}| = |\sum_{k=m+1}^n \frac{1}{k^2}| < |\sum_{k=m+1}^n (\frac{1}{k-1} - \frac{1}{k})| = \frac{1}{m} - \frac{1}{n} < \frac{1}{m} < \varepsilon$$

$$a_n = \sum_{k=1}^n \frac{1}{k} - \text{расходится, поскольку:}$$

$$|a_n - a_m| = |\sum_{k=n+1}^{2n} \frac{1}{k}| > \frac{1}{2n}n = \frac{1}{2}$$

Определение. Если у a_n есть сходящаяся подпоследовательность a_{n_k} , то $\lim_{k\to\infty}a_{n_k}=a$ называется частичным пределом последовательности a_n .

Теорема. Рассмотрим a_n , и пусть $A \subset \mathbb{R}$ - множество всех частичных пределов a_n . Тогда A замкнуто.

Доказательство.
$$\forall x \in \mathbb{R} \setminus A \Rightarrow x \notin A \Rightarrow \exists B_{\varepsilon}(x) : B_{\varepsilon}(x) \cap \{a_n\}_{n=1}^{\infty}$$
 - конечно. Тогда $\forall x' \in B_{\varepsilon}(x) \exists B_{\varepsilon'}(x')$, что $B_{\varepsilon'}(x') \cap \{a_n\}_{n=1}^{\infty}$ конечно $\Rightarrow \forall x' \notin A$ $\Rightarrow B_{\varepsilon}(x) \subset \mathbb{R} \setminus A \Rightarrow \mathbb{R} \setminus A$ - открыто.

Определение. Пусть a_n ограничена. Тогда $\exists \max A$ и $\min A$ частичные пределы, которые называют верхним пределом $\varlimsup_{n\to\infty} a_n$ и нижним пределом $\varliminf_{n\to\infty} a_n$ соответственно.

Теорема. Пусть a_n ограничена. Тогда

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \sup \{a_k\}_{k=n}^{\infty}, \ \underline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \inf \{a_k\}_{k=n}^{\infty}$$

Доказательство. Докажем для верхнего:

$$\sup\{a_k\}_{k=n+1}^{\infty} \le \sup\{a_k\}_{k=n}^{\infty}$$

 $\Rightarrow \sup\{a_k\}_{k=n}^\infty$ ограничена снизу и невозрастает $\Rightarrow \exists \lim_{n\to\infty} \sup\{a_k\}_{k=n}^\infty = \alpha$. Значит

$$\forall \varepsilon > 0 : (\alpha + \varepsilon, +\infty) \cap \{a_n\}_{n=1}^{\infty}$$

конечно. С другой стороны

$$\forall \varepsilon > 0 : (\alpha - \varepsilon, \alpha + \varepsilon) \cap \{a_n\}_{n=1}^{\infty}$$

бесконечно $\Rightarrow \alpha$ - частичный предел $\Rightarrow \alpha = \overline{\lim}_{n \to \infty} a_n$.

Теорема.
$$\exists \lim_{n \to \infty} a_n = a \Leftrightarrow \overline{\lim}_{n \to \infty} a_n = a$$
 и $\underline{\lim}_{n \to \infty} a_n = a$.

Доказательство.

 (\Rightarrow) Если последовательность сходится к a, то все частичные пределы сходятся к a.

 (\Leftarrow)

$$\inf\{a_k\}_{k=n}^{\infty} \le a_n \le \sup\{a_k\}_{k=n}^{\infty}$$

по лемме о двух милиционерах $a_n \to a$.

Определение. Если a_n имеет бесконечно большую подпоследовательность, то используют обозначения $\overline{\lim}_{n\to\infty} a_n = \infty \ (+\infty, \ -\infty)$ и $\underline{\lim}_{n\to\infty} a_n = \infty \ (+\infty, \ -\infty)$

5 Предел функции

5.1 Определение предела по Коши и по Гейне

В данном разделе будут рассматриваться функции $\mathbb{R} \to \mathbb{R}$.

Определение. Пусть f(x) определена в $\check{B}(x_0)$. Число a называется пределом f(x) в точке x_0 , по Коши, если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x) - a| < \varepsilon$$

Определение. Пусть f(x) определена в $\mathring{B}(x_0)$. Число a называется пределом f(x) в точке x_0 по Гейне, если

$$\forall x_n : x_n \to x_0, \ x_n \neq x_0 \ \forall n : \exists \lim_{n \to \infty} f(x_n) = a$$

Определение. Пусть f(x) определена на $(-\infty, x_0)$ и на $(x_0, +\infty)$. Тогда a - предел функции f при $x \to \infty$ $(x \to +\infty, x \to -\infty)$ если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \forall x : |x| > \delta_{\varepsilon} \; (x > \delta_{\varepsilon}, \; x < \delta_{\varepsilon}) : |f(x) - a| < \varepsilon$$

Теорема. Определения предела по Коши (1) и по Гейне (2) эквивалентны.

Доказательство.

1. $(1) \Rightarrow (2)$:

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x) - a| < \varepsilon$$

$$\forall x_{n} : x_{n} \to x_{0}, \; x_{n} \neq x_{0} \; \exists \; N_{\delta_{\varepsilon}} > 0 : 0 < |x_{0} - x_{n}| < \delta_{\varepsilon}$$

$$\Rightarrow \forall n > N_{\delta_{\varepsilon}}, \; x_{n} \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x_{n}) - a| < \varepsilon$$

T.e. $f(x_n) \to a$.

2. (2) \Rightarrow (1): Выведем из отрицания предела по Коши отрицание предела по Гейне:

$$\exists \ \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists \ x_\delta \in \mathring{B}_\delta(x_0) : |f(x_\delta) - a| \ge \varepsilon_0$$

Возьмем

$$x_{1} \in \mathring{B}_{1}(x_{0}) \Rightarrow |f(x_{1}) - a| \geq \varepsilon_{0}$$

$$x_{2} \in \mathring{B}_{\frac{|x_{1} - x_{0}|}{2}}(x_{0}) \Rightarrow |f(x_{2}) - a| \geq \varepsilon_{0}$$

$$x_{3} \in \mathring{B}_{\frac{|x_{2} - x_{0}|}{2}}(x_{0}) \Rightarrow |f(x_{3}) - a| \geq \varepsilon_{0}$$

:

Получили последовательность $x_n \to x_0, \ x_n \neq x_0$, но при этом $|f(x_n) - a| \ge \varepsilon_0$. Это и есть отрицание по Гейне.

Замечание. В доказательстве пользуемся тем, что для утверждений A и B верно: $(A\Rightarrow B)\Leftrightarrow (\neg B\Rightarrow \neg A)$

Замечание. при $x \to \infty \ (+\infty, \ -\infty)$ доказывается аналогично.

34

5.2 Простейшие свойства предела функции

Теорема. Если у функции существует предел в точке x_0 , то он единственный.

Доказательство. Получим противоречие с определением по Гейне, пусть

$$x_n: x_n \to x_0, \ x_n \neq x_0 \ \forall n: \lim_{n \to \infty} f(x_n) = a$$

Предположим, что $b \neq a$ - тоже предел. Тогда

$$\exists t_n : t_n \to x_0, \ t_n \neq x_0 \ \forall n : \lim_{n \to \infty} f(t_n) = b$$

Получаем, что последовательность $y_n = x_1, t_1, x_2, t_2, \dots : y_n \to x_0$, но при этом $f(y_n) = f(x_1), f(t_1), f(x_2), f(t_2) \dots$ - имеет два различных частичных предела - противоречие.

Теорема. Если $\exists \lim_{x \to x_0} f(x) = a$, то $\exists \delta > 0$ такое, что f(x) ограничена в $\mathring{B}_{\delta}(x_0)$.

Доказательство. Возьмем $\varepsilon = 1$. Тогда

$$\exists \ \delta > 0, \ \forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < 1$$

$$\Rightarrow a-1 < f(x) < a+1 \Rightarrow f(x)$$
 - ограничена.

Теорема. (Теорема об отделимости)

Пусть $\exists \lim_{x \to x_0} f(x) = a$. Тогда $\forall \ b \neq a \ \exists \ \delta > 0$ и $\exists \ \varepsilon > 0$, что $f(\mathring{B}_{\delta}(x_0)) \cap \mathring{B}_{\varepsilon}(b) = \varnothing$.

 \mathcal{A} оказательство. Возьмем $\varepsilon = \frac{|a-b|}{3}$. Тогда

$$\exists \ \delta > 0, \ \forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < \frac{|a - b|}{3} \Rightarrow f(\mathring{B}_{\delta}(x_0)) \cap \mathring{B}_{\frac{|a - b|}{3}}(b) = \varnothing$$

5.3 Предел по множеству. Односторонние пределы

Определение. Число a называется пределом f(x) в точке x_0 по множеству $X \subset \mathbb{R}$, если

$$x_0 \in X'$$
 и $\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta}(x_0) \cap X : |f(x) - a| < \varepsilon$

Обозначают

$$\lim_{x \to x \to x_0} f(x) = a$$

Утверждение. Если $\exists \lim_{X\ni x\to x_0} f(x) = a$ и $X_1\subset X,\ x_0\in X_1'$. Тогда $\exists \lim_{X_1\ni x\to x_0} f(x) = a$.

Доказательство. Очевидно.

Определение.

1. Если
$$X = (x_0, x_0 + \delta)$$
, то обозначают $\lim_{x \to x_0 + 0} f(x) = a$.

2. Если
$$X = (x_0 - \delta, x_0)$$
, то обозначают $\lim_{x \to x_0 - 0} f(x) = a$.

Такие пределы называются односторонними.

Теорема.
$$\exists \lim_{x \to x_0} f(x) = a \Leftrightarrow \exists \lim_{x \to x_0 + 0} f(x) = a$$
 и $\exists \lim_{x \to x_0 - 0} f(x) = a$.

 \mathcal{A} оказательство. 5

 (\Rightarrow) Поскольку

$$\forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < \varepsilon$$

ТО

$$\forall x \in (x, x + \delta) : |f(x) - a| < \varepsilon$$
 и $\forall x \in (x - \delta, x) : |f(x) - a| < \varepsilon$

 (\Leftarrow) Поскольку

$$\forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall x \in (x, x + \delta) : |f(x) - a| < \varepsilon$$

и поскольку

$$\forall x \in (x - \delta, x) : |f(x) - a| < \varepsilon$$

то выполнено и

$$\forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < \varepsilon$$

5.4 О-символика

Определение. Если $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, то $f(x) = \bar{o}(g(x))$ при $x \to x_0$.

Определение. Функция f(x) называется бесконечно малой, если $f(x) = \bar{o}(1)$ при $x \to x_0$.

Определение. Если $\exists~M>0$ такое, что $\forall x\in X\subset\mathbb{R}: |\frac{f(x)}{g(x)}|< M$, то f(x)=O(g(x)) на X

Определение. Для обозначения класса ограниченных функций используется запись f(x) = O(1).

 $^{^5}$ Дано в качестве очевидного

Определение. Пусть f(x) определена в $\mathring{B}(x_0)$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x)| > \varepsilon \; (f(x) > \varepsilon, \; f(x) < -\varepsilon)$$

то говорят, что f(x) - бесконечно большая, и пишут

$$\lim_{x \to x_0} f(x) = \infty, \ \left(\lim_{x \to x_0} f(x) = +\infty, \ \lim_{x \to x_0} f(x) = -\infty\right)$$

Теорема. (Исчисление бесконечно малых)

Пусть $\alpha(x) = \bar{o}(1)$ при $x \to x_0$, $\beta(x) = \bar{o}(1)$ при $x \to x_0$, $\gamma(x) = O(1)$ в $\mathring{B}(x_0), \ c \in \mathbb{R}$. Тогда:

1.
$$\alpha(x) + \beta(x) = \bar{o}(1), x \to x_0.$$

2.
$$c\alpha(x) = \bar{o}(1), x \to x_0.$$

3.
$$\alpha(x)\beta(x) = \bar{o}(1), x \to x_0.$$

4.
$$\alpha(x)\gamma(x) = \bar{o}(1), x \to x_0.$$

Доказательство. ⁶ Запишем определение по Гейне:

$$\lim_{x \to x_0} \alpha(x) = 0 \Leftrightarrow \forall x_n : x_n \to x_0, \ x_n \neq x_0, \ \forall n : \exists \lim_{n \to \infty} \alpha(x_n) = 0$$

$$\lim_{x \to x_0} \beta(x) = 0 \Leftrightarrow \forall x_n : x_n \to x_0, \ x_n \neq x_0, \ \forall n : \exists \lim_{n \to \infty} \beta(x_n) = 0$$

$$\gamma(x) = O(1) \Leftrightarrow \exists M > 0 : |\gamma(x)| < M$$

Теперь воспользуемся доказанным для последовательностей:

1.
$$\alpha(x_n) + \beta(x_n) = \bar{o}(1) + \bar{o}(1) = \bar{o}(1)$$
.

$$2. \ c\alpha(x_n) = c\bar{o}(1) = \bar{o}(1).$$

3.
$$\alpha(x_n)\beta(x_n) = \bar{o}(1)\bar{o}(1) = \bar{o}(1)$$
.

4.
$$\alpha(x)\gamma(x) = \bar{o}(1)M = \bar{o}(1)$$
.

Утверждение. $\exists \lim_{x \to x_0} f(x) = a \Leftrightarrow f(x) = a + \bar{o}(1), x \to x_0.$

 \mathcal{A} оказательство. 7

$$\forall \varepsilon > 0 \; \exists \; \delta > 0, \; \forall x \in \mathring{B}_{\delta}(x_0) : |f(x) - a| < \varepsilon \Leftrightarrow f(x) - a = \bar{o}(1)$$

⁶Дано в качестве очевидного

⁷Дано в качестве очевидного

Теорема. Если $\exists \lim_{x \to x_0} f(x) = a, \ a \neq 0, \text{ то } \frac{1}{f(x)} = O(1) \text{ в } \mathring{B}(x_0).$

Доказательство. По теореме об отделимости

$$\exists \ \mathring{B}(x_0)$$
 и $\exists \ \varepsilon > 0 : f(\mathring{B}(x_0)) \cap \mathring{B}_{\varepsilon}(0) \neq \varnothing$

Тогда

$$\forall x \in \mathring{B}(x_0) : |f(x)| \ge \varepsilon \Rightarrow \frac{1}{|f(x)|} \le \frac{1}{\varepsilon}$$

5.5 Арифметрические свойства пределов функций и предельные переходы в неравенствах

Теорема. Если $\exists \lim_{x \to x_0} f(x) = a, \ \exists \lim_{x \to x_0} g(x) = b, \ \text{то}$

1.
$$\forall \alpha, \beta \in \mathbb{R} \ \exists \ \lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha a + \beta b.$$

2.
$$\exists \lim_{x \to x_0} (f(x)g(x)) = ab.$$

3. Если
$$b \neq 0$$
, то $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$.

Доказательство. Эту теорему можно доказать используя тот факт, что $\lim_{x\to x_0} f(x) = a \Leftrightarrow f(x) = a + \bar{o}(1), \ \lim_{x\to x_0} g(x) = b \Leftrightarrow g(x) = b + \bar{o}(1), \ \text{а также исчисление бесконечно малых функций.}$

Пример.

1. $\forall \alpha, \beta \in \mathbb{R}$, если $\alpha > \beta$, то $x^{\alpha} = \bar{\bar{o}}(x^{\beta}), \ x \to 0$, так как

$$\lim_{x \to 0} \frac{x^{\alpha}}{x^{\beta}} = \lim_{x \to 0} x^{\alpha - \beta} = 0$$

Например: $x + \bar{o}(x) + x^2 + \bar{o}(x^2) = x + \bar{o}(x), x \to 0.$

2. $\sin x = x + \bar{o}(x), \ x \to 0$, так как $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Теорема. Пусть $\exists \lim_{x \to x_0} f(x) = a, \ \exists \lim_{x \to x_0} g(x) = b$ и пусть $\forall x \in \mathring{B}(x_0) : f(x) \ge g(x),$ тогда $a \ge b.$

Доказательство.

$$\forall x_n \to x_0, \ x_n \neq x_0, \ \forall n : \lim_{x \to x_0} f(x_n) = a \ \text{u} \ \lim_{x \to x_0} g(x_n) = b$$

по условию: $f(x_n) \geq g(x_n)$ значит, по доказанному для последовательностей $a \geq b$.

⁸Дано в качестве очевидного

Теорема. Пусть $\exists \lim_{x \to x_0} f(x) = a, \ \exists \lim_{x \to x_0} g(x) = b,$ и пусть a > b. Тогда $\exists \ \mathring{B}(x_0) : f(x) > g(x)$.

Доказательство. По теореме об отделимости.

Теорема. (Теорема о двух милиционерах)

Пусть
$$\exists \lim_{x \to x_0} f(x) = a$$
, $\exists \lim_{x \to x_0} g(x) = a$ и пусть в $\mathring{B}(x_0) : f(x) \le h(x) \le g(x)$. Тогда $\exists \lim_{x \to x_0} h(x) = a$.

Доказательство. по Гейне.

5.6 Монотонные функции

Определение. Если $\forall x_1, x_2 \in (\alpha, \beta) : x_1 < x_2$ выполнено, что

- 1. $f(x_1) \le f(x_2)$, то f(x) называют неубывающей.
- 2. $f(x_1) < f(x_2)$, то f(x) называют возрастающей.
- 3. $f(x_1) \ge f(x_2)$, то f(x) называют невозрастающей.
- 4. $f(x_1) > f(x_2)$, то f(x) называют убывающей.

такие функции называют монотонными.

Теорема. Пусть f(x) определена на $(a-\delta,a),\ f(x)$ - неубывающая (невозрастающая) и ограниченная сверху (снизу). Тогда $\exists \lim_{x\to a-0} f(x) = A$.

Доказательство. Докажем для неубывающей и ограниченой сверху. $\exists \sup f(x) = A$. Значит

$$\forall \varepsilon > 0 \; \exists \; x_{\varepsilon} \in (a - \delta, a) : f(x_{\varepsilon}) > A - \varepsilon$$

Тогда

$$\forall x \in (x_{\varepsilon}, a) : f(x) \ge f(x_{\varepsilon}) > A - \varepsilon$$

а значит

$$\forall x \in \mathring{B}(A) : |f(x) - A| < \varepsilon$$

5.7 Критерий Коши

Теорема. (Критерий Коши)

$$\exists \lim_{x \to x_0} f(x) = a \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0 : \forall x_1, x_2 \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство.

$$(\Rightarrow) \qquad \forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0 : \forall x \in \mathring{B}_{\delta_{\varepsilon}}(x_0) : |f(x) - a| < \varepsilon$$

Значит $\forall x_1, x_2 \in \mathring{B}_{\delta_{\varepsilon}}(x_0)$:

$$|f(x_1) - f(x_2)| = |f(x_1) - a + a - f(x_2)| \le |f(x_1) - a| + |f(x_2) - a| < 2\varepsilon$$

$$(\Leftarrow)$$

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0 : \forall x_{1}, x_{2} \in \mathring{B}_{\delta_{\varepsilon}}(x_{0}) : |f(x_{1}) - f(x_{2})| < \varepsilon$$

$$\forall x_{n} : x_{n} \to x_{0}, \; x_{n} \neq x_{0} \; \exists \; N_{\delta_{\varepsilon}} \in \mathbb{N}, \; \forall n > N_{\delta_{\varepsilon}} : |x_{n} - x_{0}| < \delta_{\varepsilon}$$

$$\Rightarrow \forall n, m > N_{\delta_{\varepsilon}} : |f(x_{n}) - f(x_{m})| < \varepsilon \Rightarrow \exists \lim_{n \to \infty} f(x_{n}) = a$$

 $t_n: t_n \to x_0, \ t_n \neq x_0, \ \exists \lim_{n \to \infty} f(t_n) = b.$ Рассмотрим последовательность $y_n: x_1, t_1, x_2, t_2, \ldots, \ y_n \to x_0$ если $a \neq b$ то последовательность $f(y_n)$ будет иметь два частичных предела $\Rightarrow a = b$.

6 Непрерывные функции

6.1 Локальные свойства непрерывных функций

Определение. Пусть D_f - область определения $f(x), x_0 \in D_f$. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x \in B_{\delta_{\varepsilon}}(x_0) \cap D_f : |f(x) - f(x_0)| < \varepsilon$$

то f(x) называется непрерывной в точке x_0 .

Замечание. Определение эквивалентно тому, что $\exists \lim_{x \to x_0} f(x) = f(x_0)$, если x_0 не изолированная точка.

Теорема. Пусть f(x), g(x) - непрерывны в точке x_0 . Тогда:

- 1. $\alpha f(x) + \beta g(x)$ непрерывна в точке x_0
- 2. f(x)g(x) непрерывна в точке x_0
- 3. если $g(x_0) \neq 0$, то $\frac{f(x)}{g(x)}$ непрерывна в точке x_0

 \mathcal{A} оказательство. Если x_0 - изолированная то очев. Если неизолированная, то по свойствам предела очевидно.

Теорема. (Непрерывность композиции непрерывных функций)

Пусть f(x) определена в $B_{\delta}(x_0)$ и f(x) непрерывна в точке x_0 , а также $f(B_{\delta}(x_0)) \subset B(y_0), \ f(x_0) = y_0$. И пусть g(y) определена в $B(y_0)$ и непрерывна в точке y_0 . Тогда g(f(x)) непрерывна в точке x_0 .

Доказательство. По Гейне:

$$\forall x_n \to x_0, \ f(x_n) \to f(x_0). \ \forall y_n \to y_0, \ g(y_n) \to g(y_0)$$
$$y_n = f(x_n), \ g(f(x_n)) \to g(f(x_0))$$

6.2 Глобальные свойства непрерывных функций

Определение. Пусть f(x) - определена на $X \subset \mathbb{R}$ и $\forall x \in X : f(x)$ - непрерывна в точке x. Тогда говорят, что f(x) непрерывна на X, и пишут $f(x) \in \mathcal{C}(X)$.

Теорема. (1-я теорема Вейерштрасса)

Если $f(x) \in \mathcal{C}[a,b]$, то f(x) - ограничена на [a,b].

Доказательство. Предположим, что f(x) неограничена, то есть

$$\forall M > 0 \; \exists \; x_M \in [a, b] : |f(x_M)| > M$$

Возьмем

$$|x_1:|f(x_1)|>1, |x_2:|f(x_2)|>2, \ldots |x_M:|f(x_M)|>M, \ldots$$

Получаем последовательность

$$x_n \subset [a,b] \Rightarrow \exists \ x_{n_k} : x_{n_k} \to x_0$$

f(x) непрерывна $\Rightarrow f(x_{n_k}) \to f(x_0)$, но $|f(x_{n_k})| \to \infty$ получаем противоречие.

Теорема. (2-я теорема Вейерштрасса)

Пусть $f(x) \in \mathcal{C}[a,b]$. Тогда f(x) имеет максимальное $\max f(x)$ и минимальное $\min f(x)$ значения на [a,b]

Доказательство. Пусть

$$\alpha = \sup_{x \in [a,b]} f(x)$$

Значит

$$\exists x_1 \in [a,b] : f(x_1) > \alpha - 1, \ \exists x_2 \in [a,b] : f(x_2) > \alpha - \frac{1}{2}, \dots$$

$$\exists x_n \in [a,b], \ f(x_n) > \alpha - \frac{1}{n}, \dots$$

$$\Rightarrow \exists \{x_{n_k}\}, x_{n_k} \to x'$$

$$f(x_{n_k}) \to f(x'), \ \alpha - \frac{1}{n_k} < f(x_{n_k}) \le \alpha \Rightarrow f(x_{n_k}) \to \alpha$$

Теорема. Пусть $f(x) \in \mathcal{C}[a,b]$. f(a) = A, f(b) = B и $A \leq B$. Тогда

$$\forall C: A \le C \le B \ \exists \ c \in [a, b], \ f(c) = C$$

Доказательство. Если A = B то очевидно, далее пусть A < B. Возьмем $x_1 = \frac{a+b}{2}$. Если $f(\frac{a+b}{2}) = C$, то все. Если $f(\frac{a+b}{2}) \neq C$, то $f(\frac{a+b}{2}) > C$ или $f(\frac{a+b}{2}) < C$. Возьмем половину отрезка $[a_1,b_1]:f(a_1) < C < f(b_1)$, снова делим пополам и т.д. Получаем $\{[a_n,b_n]\}$ последовательность вложенных отрезков $\Rightarrow \exists \ c \in [a_n,b_n], \forall n,\ a_n \to c,\ b_n \to c$. Тогда по непрерывности:

$$\lim_{n \to \infty} f(a_n) = f(c) \le C, \quad \lim_{n \to \infty} f(b_n) = f(c) \ge C$$

$$\Rightarrow f(c) = C.$$

6.3 Точки разрыва функции

Определение. Пусть f(x) определена в $B(x_0)$.

- 1. Если $\exists \lim_{x \to x_0 = 0} f(x) = \lim_{x \to x_0 + 0} f(x) \neq f(x_0)$, то точка x_0 называется точкой устранимого разрыва функции f(x).
- 2. Если $\exists \lim_{x \to x_0 = 0} f(x) = \alpha$, $\exists \lim_{x \to x_0 + 0} f(x) = \beta$, $\alpha \neq \beta$, то точка называется точкой разрыва 1 рода функции f(x).
- 3. Если не существует хотя бы одного из односторонних пределов, то x_0 называется точкой разрыва 2 рода функции f(x).

Теорема. Пусть f(x) определена на [a,b] и монотонна. Тогда у этой функции не может быть разрывов 2-го рода.

Доказательство. Пусть
$$f(x) \leq f(b)$$
 и f монотонно возрастает. Так как $f(a) \leq f(x) \leq f(b)$, то f - ограничена $\Rightarrow \forall x_0 \in [a,b] \exists \lim_{x \to x_0 = 0} f(x)$ и $\exists \lim_{x \to x_0 + 0} f(x)$. Значит у $f(x)$ не может быть разрывов 2-го рода.

Следствие. Утверждение теоремы верно и для монотонной функции f(x), определенной на интервале (a,b).

Доказательство.
$$\exists [a,b] \subset (a,b) : (a,b) = \bigcup_{n=1}^{\infty} [a_n,b_n]$$

Утверждение. У монотонной функции разрывов не более чем счетное множество.

Теорема. Пусть f(x) строго монотонна на [a,b] и $f(x) \in C[a,b]$, $f(a) = \alpha$, $f(b) = \beta$. Тогда $\exists f^{-1}(y) \in C[\alpha,\beta]$ и она строго монотонна.

Доказательство. Пусть строго возрастает. $\forall x_1, x_2, x_1 < x_2 : f(x_1) = y_1 < y_2 = f(x_2)$. Тогда f(x) - биекция между [a,b] и $[\alpha,\beta] \Rightarrow \exists f^{-1}$. Предположим, что она разрывная, но тогда нарушается биекция, и вообще нарушается условие того, что функция определена на всем отрезке [a,b].

6.4 Равномерная непрерывность

Определение. Пусть f(x) определена на [a,b]. Если

$$\forall \varepsilon > 0 \; \exists \; \delta_{\varepsilon} > 0, \; \forall x', x'' \in [a, b] : |x' - x''| < \delta_{\varepsilon} : |f(x') - f(x'')| < \varepsilon$$

то f(x) называется равномерно непрерывной на [a, b].

Теорема. (Теорема Кантора)

Если $f(x) \in \mathcal{C}[a,b]$, то f(x) равномерно непрерывна на [a,b].

Доказательство. Пусть

$$\exists \ \varepsilon_0 > 0, \ \forall \delta > 0 \ \exists \ x', x'' \in [a, b] : |x' - x''| < \delta : |f(x') - f(x'')| \ge \varepsilon_0$$

Возьмем последовательность

$$\delta_n = \frac{1}{n} : \exists x', x'' \in [a, b] : |x' - x''| < \frac{1}{n} : |f(x') - f(x'')| \ge \varepsilon_0$$

Тогда $\exists x'_{n_k} \to x_0, \ \exists x''_{n_k} \to x_0 \Rightarrow f(x'_{n_k}) \to f(x_0)$ и $f(x''_{n_k}) \to f(x_0)$ - противоречие.

6.5 Элементарные функции

- 1. Показательная функция Пусть a > 1
 - (i) Определим показательную функцию для натурального аргумента: $a^n:=\prod_{j=1}^n a,\ n\in\mathbb{N},$ из определения очевидно свойство: $a^{n+m}=a^na^m.$
 - (ii) Для целого аргумента n определим функцию так:

$$a^{n} := \begin{cases} a^{n}, & n \in \mathbb{N}, \\ \frac{1}{a^{k}}, & n = -k, k \in \mathbb{N}, \\ 1, & n = 0. \end{cases}$$

- (iii) Теперь доопределим функцию для рационального аргумента: Пусть $a^{\frac{1}{n}} = b$, где $b^n = a$, $a, b \in \mathbb{R}_{\geq 1}$. Пусть $A = \{x \in \mathbb{R}_{\geq 1} : x^n \leq a\}$, $B = \{x \in \mathbb{R}_{\geq 1} : x^n > a\}$, $A \cup B = \mathbb{R}_{\geq 1}$. По аксиоме полноты $\exists \ b : x_1 \leq b \leq x_2, \ \forall x_1 \in A, \ \forall x_2 \in B \ \text{и} \ b = a^{\frac{1}{n}}$. Далее $\forall \frac{m}{n} \in \mathbb{Q}, \ a^{\frac{m}{n}} := (a^{\frac{1}{n}})^m$.
- (iv) $\lim_{n\to\infty} a^{\frac{1}{n}} = 1$.

$$(1 + \frac{a}{n})^n > 1 + a > a \Rightarrow 1 + \frac{a}{n} > a^{\frac{1}{n}} > 1$$

по теореме о двух милиционерах $a^{\frac{1}{n}} \to 1$.

Пусть $\forall x_0 \in \mathbb{R}, \ r_n \to x_0 - 0, \ s_n \to x_0 + 0.$ Тогда

$$\exists \lim_{n \to \infty} a^{r_n} = \alpha, \ \exists \lim_{n \to \infty} a^{s_n} = \beta, \ \alpha \le \beta$$

Пусть $\alpha < \beta$, $a^{s_n} - a^{r_n} = a^{r_n}(a^{s_n - r_n} - 1) \to \beta - \alpha > 0$. Рассмотрим подпоследовательность $0 < s_{n_k} - r_{n_k} < \frac{1}{k}$. Тогда $1 < a^{s_{n_k} - r_{n_k}} < a^{\frac{1}{k}}$. По теореме о двух милиционерах

$$a^{s_{n_k}-r_{n_k}} \to 1 \Rightarrow a^{s_{n_k}} - a^{r_{n_k}} \to 0 \Rightarrow \alpha = \beta = a^{x_0}$$

Непрерывность и монотонность есть по построению.

(v) Доопределим функцию при 0 < a < 1:

$$a^x := \frac{1}{\left(\frac{1}{a}\right)^x}$$

2. Функция, обратная к $y = a^x$ называется логарифмом и обозначается

$$x = \log_a y$$

Далее пишем $y = \log_a x$. Известны следующие свойства:

$$\log_{a^{\alpha}} x^{\beta} = \frac{\beta}{\alpha} \log_a x, \ \log_a xy = \log_a x + \log_a y$$

Отдельно выделяют $\log_e x$, его называют натуральным логарифмом и обозначают $\ln x$.

3. Степенная функция.

 $\forall x > 0, \ \forall \alpha \in \mathbb{R}$ степенная функция определяется как

$$x^{\alpha} := e^{\alpha \cdot \ln x}$$

Распространяем: при $\alpha \geq 0$ доопределим x^{α} в точке x=0 по непрерывности (ищем предел и добавляем его как значение), при $\alpha \in \mathbb{Z}$ доопределяем x^{α} при x<0 четно, если α - четное и нечетное, если α - нечетное.

4. Тригонометрические функции:

 $y=\sin x$ определим так: возьмем окружность единичного радиуса, на $[0,2\pi]$ синус - ордината.

 $\forall x \in \mathbb{R} : |\sin x| \le |x|, \sin(x+\delta) - \sin x = |2\sin(\frac{\delta}{2})\cos(x+\frac{\delta}{2})| \le \delta.$ соя x определяем в соответствии с определением синуса.

$$tg x = \frac{\sin x}{\cos x}, \ ctg = \frac{\cos x}{\sin x}$$

5. Обратные тригонометрические функции:

 $y = \arcsin x$, обратную к $\sin x$ определяем на области, где будет биекция с $\sin x$ (обычно берут $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$). Аналогично определяются обратные к $\cos x$, $\operatorname{tg} x$ и $\operatorname{ctg} x$.

6. Гиперболические функции:

$$sh x = \frac{e^x - e^{-x}}{2}, \ ch x = \frac{e^x + e^{-x}}{2}, \ th x = \frac{sh x}{ch x}, \ cth x = \frac{ch x}{sh x}$$

Для этих функций можно получить формулы, аналогичные тем, что верны для тригонометрических функций.

6.6 Замечательные пределы

Теорема. (Первый замечательный предел)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. $\sin x < x < \operatorname{tg} x \Rightarrow \frac{\sin x}{x} < 1$ и $\frac{x}{\sin x} < \frac{1}{\cos x}$ $\Rightarrow \cos x < \frac{\sin x}{x} < 1$. По теореме о двух милиционерах $\frac{\sin x}{x} \to 1$.

Утверждение.

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

Доказательство. Воспользуемся определением по Гейне. Пусть $\alpha_n \to +\infty$:

$$(1 + \frac{1}{[\alpha_n] + 1})^{[\alpha_n]} \le (1 + \frac{1}{\alpha_n})^{\alpha_n} \le (1 + \frac{1}{[\alpha_n]})^{[\alpha_n] + 1}$$

 \Rightarrow по лемме о двух милиционерах $(1+\frac{1}{\alpha_n})^{\alpha_n} \to e$. Теперь пусть $\beta_n \to -\infty$:

$$(1 + \frac{1}{\beta_n})^{\beta_n} = (\frac{\beta_n + 1}{\beta_n})^{\beta_n} = (\frac{\beta_n}{\beta_n + 1})^{-\beta_n} = (1 - \frac{1}{\beta_n + 1})^{-\beta_n}$$

Следствие.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Утверждение.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Доказательство. В силу непрерывности натурального логарифма:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = 1$$

Теорема. (Второй замечательный предел)

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Доказательство. Пусть $t=e^x-1\Rightarrow e^x=1+t\Rightarrow x=\ln{(1+t)}$. Тогда

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(1 + t)} = 1$$

7 Дифференциальное исчисление функций одной переменной

7.1 Производная функции

В следующих определениях предполагается, что f(x) определена в $B(x_0)$.

Определение. Производной функции f(x) в точке x_0 называется (если он существует) предел

$$f'(x_0) := \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Определение. Производной функции f(x) в точке x_0 по множесту A называется (если он существует) предел

$$f'_A(x_0) := \lim_{A \ni \Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Если $A = (x_0 - \Delta x, x_0)$ или $(x_0, x_0 + \Delta x)$, то пишут $f'_-(x_0)$ или $f'_+(x_0)$.

Замечание. Если обозначить $\Delta x = x - x_0$, то

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Теорема. Если существует производная функции f(x) в точке x_0 , то f(x) непрерывна в точке x_0 .

Доказательство.

$$\exists f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow \frac{f(x) - f(x_0)}{x - x_0} = f'(x) + \bar{o}(1)$$

Так как $x-x_0=\bar{\bar{o}}(1)$ при $x\to x_0$, то это равенство можно записать в виде:

$$f(x) - f(x_0) = (f'(x) + \bar{o}(1))(x - x_0) = \bar{o}(1)$$

Значит

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Теорема. Если у функций f(x) и g(x) существуют производные в точке x_0 , то $\forall C \in \mathbb{R}$ выполнено:

1.
$$\exists (Cf(x_0))' = Cf'(x_0)$$
.

2.
$$\exists (f(x_0) \pm g(x_0))' = f'(x_0) \pm g'(x_0)$$
.

Теорема. Если $\exists f'(x_0)$ и $\exists g'(x_0)$, то $\exists (f(x_0)g(x_0))' = f'(x_0)g(x_0) + g'(x_0)f(x_0)$. Доказательство.

$$\lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))g(x)}{x - x_0} + \lim_{x \to x_0} \frac{(g(x) - g(x_0))f(x_0)}{x - x_0} =$$

$$= f'(x_0)g(x_0) + g'(x_0)f(x_0)$$

в последнем переходе используется непрерывность g(x) $(\exists g'(x_0) \Rightarrow g(x)$ непрерывна в точке $x_0)$.

Теорема. Если $\exists f'(x_0), \exists g'(x_0) \text{ и } g(x_0) \neq 0, \text{ то}$

$$\exists \left(\frac{f(x_0)}{g(x_0)}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Доказательство.

$$\lim_{x \to x_0} \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x_0) + f(x_0)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)} =$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))g(x_0) - (g(x) - g(x_0))f(x_0)}{g(x)g(x_0)(x - x_0)} =$$

$$= \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}$$

в последнем переходе используется непрерывность g(x).

Теорема. Пусть $y = f(x), \ y_0 = f(x_0), \ \exists \ f'(x_0), \ \exists \ g'(y_0).$ Тогда $\exists \ (g(f(x_0)))' = g'(f(x_0))f'(x_0)$

Доказательство. Пусть $x_n \to x_0, \ f(x_n) \to f(x_0)$ и $f(x_n) \neq f(x_0)$. Тогда

$$(g(f(x_0)))' = \lim_{x_n \to x_0} \frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0} =$$

$$= \lim_{x_n \to x_0} \frac{g(f(x_n)) - g(f(x_0))}{f(x_n) - f(x_0)} \cdot \frac{f(x_n) - f(x_0)}{x_n - x_0} = g'(f(x_0))f'(x_0)$$

Остался случай, когда в любой окрестности x_0 есть бесконечно много точек, в которых $f(x_n) = f(x_0)$. Тогда

$$f'(x_0) = \lim_{x_n \to x_0} \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$$

$$\Rightarrow g'(f(x_0))f'(x_0) = 0$$

Пример. $(f(g(h(a(x)))))' = f'(g(h(a(x)))) \cdot g'(h(a(x))) \cdot h'(a(x)) \cdot a'(x)$

7.2 Дифференцируемые функции

Определение. Разность $\Delta x = x - x_0$ называется приращением аргумента. Разность $f(x_0 + \Delta x) - f(x_0)$ называется полным приращением функции.

Определение. Пусть f(x) определена в $B(x_0)$. Если $\exists A \in \mathbb{R}$ такое, что

$$f(x_0 + \Delta x) - f(x_0) = A\Delta x + \bar{o}(\Delta x)$$

то f(x) называется дифференцируемой в точке x_0 , а главная линенйная часть приращения функции $A\Delta x$ называется (первым) дифференциалом f(x) в точке x_0 , его обозначают $df = A\Delta x$.

Если функция f(x) дифференцируема на $X \subset \mathbb{R}$, то пишут $f(x) \in \mathcal{D}(X)$

Теорема. $f(x) \in \mathcal{D}(x_0) \Leftrightarrow \exists f'(x_0)$.

Доказательство.

$$(\Rightarrow): f(x_0 + \Delta x) - f(x_0) = A\Delta x + \bar{o}(\Delta x), \text{ значит}$$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A + \bar{o}(1) \Rightarrow \exists f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A$$

 (\Leftarrow) : $\exists f'(x_0)$, значит

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \Rightarrow f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + \bar{o}(\Delta x)$$

Замечание.

1.
$$df = f'(x_0)\Delta x$$

2.
$$dx = x'\Delta x = \Delta x \Rightarrow df = f'(x)dx$$

Примеры.

1.
$$y = y(x) dy = y'(x) dx \Leftrightarrow dx = \frac{1}{y'(x)} dy$$

2.
$$x^{2} + y^{2} = 1 \Rightarrow y = \sqrt{1 - x^{2}}$$

 $2x \ dx + 2y \ dy = 0 \Leftrightarrow dy = -\frac{x}{y} \ dx = -\frac{x}{\sqrt{1 - x^{2}}} \ dx.$

3.
$$\begin{cases} x = x(t), \\ y = y(t). \end{cases} \begin{cases} dx = x'_t dt, \\ dy = y'_t dt. \end{cases} dy = \frac{y'_t}{x'_t} dx \end{cases} \begin{cases} y'_x = \frac{y'_t}{x'_t}, \\ x = x(t). \end{cases}$$

Теорема. (Теорема о производной обратной функции) Пусть $\exists y' = f'(x_0), \ f'(x_0) \neq 0.$ Тогда $\exists x = f^{-1}(y)$ и

$$(f^{-1}(y_0))' = \frac{1}{f'(x_0)}$$

Доказательство.

$$(f^{-1}(y_0))' = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$

7.3 Производные элементарных функций

1.
$$(e^x)' = e^x$$

$$\lim_{\Delta x \to 0} \frac{e^{x_0 + \Delta x} - e^{x_0}}{\Delta x} = e^{x_0} \cdot \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = e^{x_0}$$

2.
$$y' = (\ln x)' = \frac{1}{x}$$

$$(\ln x)' = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

$$3. (x^{\alpha})' = \alpha x^{\alpha - 1}$$

$$(x^{\alpha})' = (e^{\alpha \ln x})' = \frac{\alpha}{x} \cdot e^{\alpha \ln x} = \alpha x^{\alpha - 1}$$

 $4. (\sin x)' = \cos x.$

$$\lim_{\Delta x \to 0} \frac{\sin(x_0 + \Delta x) - \sin x_0}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos(x_0 + \frac{\Delta x}{2})}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \cos x_0 \cos\frac{\Delta x}{2} - \sin x_0 \sin\frac{\Delta x}{2} = \cos x_0$$

5.
$$y' = (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\cos (\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2 (\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}}$$

$$= \frac{1}{\sqrt{1 - x^2}}$$

7.4 Касательная. Геометрический смысл первого дифференциала

Определение. Луч l_0 с началом в точке (x_0, y_0) и углом $\alpha_0 \in [-\pi, \pi]$ к положительному направлению оси Ox, называется предельным положением семейства лучей l(t) с началом в точке (x_0, y_0) и углом $\alpha(t) \in [-\pi, \pi]$, если $\lim_{t \to t_0} \alpha(t) = \alpha_0$.

Определение. Пусть f(x) определена на $[x_0, x_0 + \delta)$. Если семейство лучей $l(x, x_0)$, проходящих через точки $(x_0, f(x_0))$ и (x, f(x)), где $x \in [x_0, x_0 + \delta)$ имеет предельное положение при $x \to x_0 + 0$, то это предельное положение называется правой полукасательной. Аналогично определяется левая полукасательная. У правой полукасательной $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, у левой $\alpha \in [-\pi, -\frac{\pi}{2}] \cup [\frac{\pi}{2}, \pi]$.

Определение. Если углы наклона у правой и левой полукасательной отличаются на π , то образованая этими лучами прямая называется касательной прямой.

Определение.

$$\operatorname{tg} \alpha_{+} = \lim_{x \to x_{0} + 0} \frac{f(x) - f(x_{0})}{x - x_{0}} = f'_{+}(x_{0})$$

$$\operatorname{tg} \alpha_{-} = \lim_{x \to x_{0} - 0} \frac{f(x) - f(x_{0})}{x - x_{0}} = f'_{-}(x_{0})$$

Утверждение. Уравнение касательной имеет вид:

$$y - y_0 = f'(x_0)(x - x_0)$$

$$df = f'(x)dx$$

Утверждение. (Инвариантность формы первого дифференциала) Пусть y = y(x). Если переменная x - независимая, то

$$dy = y'(x)dx$$

Если x=x(t), то дифференциал dy все равно вычисляется по той же формуле. Доказательство.

$$dy = y'(x)x'(t)dt = y'(x)dx$$

7.5 Производные и дифференциалы старших порядков

Определение. Пусть f(x) определена в $B(x_0)$, $f(x) \in \mathcal{D}(B(x_0))$. Если $\exists (f'(x_0))'$, то говорят, что у функции есть вторая производная в точке x_0 , и обозначают $f''(x_0)$. Аналогично определяется производная порядка $n \in \mathbb{N}$, обозначают $f^{(n)}(x)$.

Определение. Пусть $f(x) \in \mathcal{D}(B(x_0)), \ f'(x) \in \mathcal{D}(B(x_0))$. Возьмем первый дифференциал от первого дифференциала

$$\delta(f'(x)dx) = \delta(f'(x))dx = f''(x)\delta x dx \quad (*)$$

Выражение (*), взятое при $\delta x = dx$, называется вторым дифференциалом f(x), обозначается $d^2 f(x) = f''(x)(dx)^2$. Аналогично определяется дифференциал порядка $n \in \mathbb{N}$:

$$\delta(f^{(n-1)}(x)dx) = f^{(n)}(x)dx^{n-1}\delta x|_{\delta x = dx} = f^{(n)}dx^n = d^n f(x)$$

Пример. (Неинвариантность формы дифференциала старших порядков)

$$d^{2}y(x) = y''(x)dx^{2} \neq y''(x(t))x'(t)^{2}dt^{2}$$

$$d(dy(x(t))) = d(y'(x(t))x'(t)dt) = (y''(x(t))x'(t)^{2} + y'(x(t))x''(t))dt^{2}$$

Определение. Запись $f(x) \in \mathcal{C}^n[a,b]$ обозначает, что у функции f есть n производных и они все непрерывны на отрезке [a,b].

7.6 Свойства дифференцируемых функций

Определение. Пусть f(x) определена в $B(x_0)$. Если $\forall x \in \mathring{B}(x_0)$ и $f(x) > f(x_0)$, то x_0 - точка минимума. Если $f(x) < f(x_0)$, то x_0 - точка максимума. Такие точки называют точками экстремума.

Теорема. (Теорема Ферма)

Пусть f(x) определена в $B(x_0)$, пусть существуют левая и правая производные в точке x_0 . Тогда

- 1. x_0 точка максимума, если $f'_-(x_0) \ge 0$ и $f'_+(x_0) \le 0$.
- 2. x_0 точка минимума, если $f'_-(x_0) \le 0$ и $f'_+(x_0) \ge 0$.

Доказательство. (для точки максимума)

$$f'_{-}(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
 при $x \in (x_0 - \delta, x_0)$

$$f'_{+}(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \le 0$$
 при $x \in (x_0, x_0 + \delta)$

Следствие. Если f(x) имеет экстремум в точке x_0 и $\exists f'(x_0)$, то $f'(x_0) = 0$.

Теорема. (Необходимое условие существования локального экстремума) Если f(x) имеет в экстремум в точке x_0 , то либо $f'(x_0) = 0$, либо не существует производной в точке x_0 .

Теорема. (Теорема Ролля)

Пусть $f(x) \in \mathcal{C}[a,b], \ f(x) \in \mathcal{D}(a,b)$. Если $f(a) = f(b), \text{ то } \exists \ c \in (a,b) : f'(c) = 0.$

Доказательство. Если $\exists \ x_{\max}$ такой, что $\forall a : f(x_{\max}) > f(a) \Rightarrow f'(x_{\max}) = 0$. Если $\exists \ x_{\min}$ такой, что $\forall a : f(x_{\min}) < f(a) \ \forall a \Rightarrow f'(x_{\min}) = 0$. Если $\forall x \in (a,b) : f(x) = f(a) = f(b)$, то f'(x) = 0

Геометрически это означает, что при таких условиях найдется точка, в которой касательная параллельна оси абсцисс.

7.7 Формула Лагранжа. Геометрический смысл и приложения

Теорема. (Формула Лагранжа, формула дифференциального среднего) Пусть $f(x) \in \mathcal{C}[a,b], \ f(x) \in \mathcal{D}(a,b).$ Тогда $\exists \ c \in (a,b)$:

$$f(b) - f(a) = f'(c)(b - a)$$

 \mathcal{A} оказательство. Введем функцию $\varphi(x)$:

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a) \Rightarrow \varphi(a) = f(a), \ \varphi(b) = f(a)$$

Тогда по теореме Ролля $\exists c \in (a, b)$:

$$\varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

Следствие. (Важное следствие из формулы Лагранжа) Пусть $f(x) \in \mathcal{D}(a,b)$. Если $f'(x) \equiv 0$, то $f(x) = \mathrm{const.}$

Доказательство.
$$\forall x_1, x_2 \in (a,b) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1) = 0$$

Геометрически теорема Лагранжа означает, что в некоторой точке (c, f(c)), где $c \in (a, b)$, касательная к графику функции будет параллельна хорде, соединяющей точки (a, f(a)) и (b, f(b)).

$$f(b) - f(a) = f'(c)(b - a) \Leftrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$$

Отметим, что точек, удовлетворяющих формуле Лагранжа, может быть несколько.

Теорема. (Формула Коши)

Пусть $f(x),g(x)\in\mathcal{C}[a,b],\ f(x),g(x)\in\mathcal{D}(a,b),\ g'(x)\neq 0\ \forall x\in(a,b).$ Тогда $\exists\ c\in(a,b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Заметим, что $g(b) \neq g(a)$, так как иначе, по теореме Ролля существует $c \in (a,b): g'(c) = 0$. Введем функцию $\varphi(x):$

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)) \Rightarrow \varphi(b) = f(a), \ \varphi(a) = f(a)$$

Тогда по теореме Ролля $\exists c \in (a,b)$:

$$\varphi'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0$$

Теорема. (Связь монотонной функции и знака ее производной)

- 1. Пусть $f(x) \in \mathcal{D}(a,b)$.
 - Если f(x) неубывает на (a,b), то $\forall c \in (a,b): f'(c) \geq 0$.
 - Если f(x) невозрастает на (a,b), то $\forall c \in (a,b) : f'(c) \le 0$.
- 2. Пусть $f'(x) \ge 0$. Тогда f(x) неубывает.
 - Пусть $f'(x) \leq 0$. Тогда f(x) невозрастает.
- 3. Пусть f'(x) > 0. Тогда f(x) строго возрастает.
 - Пусть f'(x) < 0. Тогда f(x) строго убывает.

Доказательство. Воспользуемся формулой Лагранжа:

1. Докажем для неубывающей: $\forall x_1, x_2 \in (a, b), \ x_1 \leq x_2$:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0 \Rightarrow f'(x) \ge 0$$

2. Докажем для неубывающей: $\forall x_1, x_2 \in (a, b), \ x_1 \leq x_2$:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \Rightarrow f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0$$

3. Докажем для возрастающей: $\forall x_1, x_2 \in (a, b), \ x_1 < x_2$:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \Rightarrow f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$$

Теорема. Пусть $f(x) \in \mathcal{C}(B(x_0)), f(x) \in \mathcal{D}(\mathring{B}(x_0))$

1. Если $\exists \lim_{x \to x_0 = 0} f'(x_0) = f'(x_0 = 0)$, то $\exists f'_-(x_0)$ и $f'_-(x_0) = f'(x_0 = 0)$.

2. Если
$$\exists \lim_{x \to x_0 + 0} f'(x_0) = f'(x_0 + 0)$$
, то $\exists f'_+(x_0)$ и $f'_+(x_0) = f'(x_0 + 0)$.

Доказательство. Докажем для правой производной. По формуле Лагранжа $\exists c \in (x_0, x)$:

$$f'(c) = \frac{f(x) - f(x_0)}{x - x_0}, \ x \to x_0 + 0, \ c \to x_0 + 0$$

Тогда

$$f'(x_0 + 0) = \lim_{x \to x_0 + 0} f'(x) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'_+(x_0)$$

Следствие. Если $f(x) \in \mathcal{D}(a,b)$, то f'(x) может иметь разрывы только второго рода.

Доказательство. Покажем, что у такой функции не может быть устранимых разрывов и разрывов первого рода:

- 1. Если $f'_{-}(x_0) = f'_{+}(x_0)$, то $\exists f'(x_0) = f'_{-}(x_0) = f_{+}(x_0)$.
- 2. Если $f'_{-}(x_0) \neq f'_{+}(x_0)$, тогда $f'(x_0)$ не существует.

Таким образом, могут быть разрывы только второго рода.

Теорема. (Теорема Дарбу о промежуточных значениях производной) Пусть $f(x) \in \mathcal{D}[a,b], \ f'_+(a) = A, \ f'_-(b) = B, \ C$ - число между A и B. Тогда $\exists \ c \in [a,b]$ такая, что f'(c) = C.

1. Пусть $A < 0, \ B > 0, \ C = 0.$ Тогда

$$\frac{f(a + \Delta x) - f(a)}{\Delta x} < 0 \Rightarrow \exists \ \delta > 0, x \in [a, a + \delta) : f(x) < f(a)$$

$$\frac{f(b + \Delta x) - f(b)}{\Delta x} > 0 \Rightarrow \exists \ \delta > 0, x \in (b - \delta, b] : f(x) < f(b)$$

(при достаточно малых x) $\Rightarrow x_{\min} \in (a,b) \Rightarrow f'(x_{\min}) = 0, \ c = x_{\min}.$

- 2. Пусть $A>0,\ B<0,\ C=0.$ Тогда рассмотрим g(x)=-f(x), а для нее верен предыдущий случай.
- 3. Пусть $A \neq B$ любые, C между A и B любое. Рассмотрим функцию g(x) = f(x) Cx. Тогда g'(a) = A C, g'(b) = B C. Заметим, что g'(a) и g'(b) разных знаков $\Rightarrow \exists g'(c) = 0$ (свели к первому и второму случаю).

7.8 Правила Лопиталя

Теорема. Пусть $f(x),g(x)\in\mathcal{D}(B(x_0)),\ f(x_0)=g(x_0)=0,\ g(x)\neq 0$ в $\mathring{B}(x_0)$ и $g'(x)\neq 0$ в $B(x_0).$ Тогда

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}$$

Доказательство.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{g(x) - g(x_0)}{x - x_0}} = \frac{f'(x_0)}{g'(x_0)}$$

Теорема. Пусть $f(x), g(x) \in \mathcal{D}(\mathring{B}(x_0)), \lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} g(x) = 0$ и $g'(x) \neq 0$ $\forall x \in \mathring{B}(x_0).$ Тогда

$$\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A \implies \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = A$$

А также

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \infty \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

 $\ensuremath{\mathcal{A}okasamesecmeo}$. 9 Из существования предела отношения производных имеем:

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : \forall x \in \mathring{B}(x_0) : \; |\frac{f'(x)}{g'(x)} - A| < \varepsilon$$

Доопределим функции в точке x_0 : $f(x_0) := 0$, $g(x_0) := 0$. Тогда $f(x), g(x) \in \mathcal{C}(x_0)$ при этих всех условиях выполнена теорема Коши:

$$\left| \frac{f(x)}{g(x)} - A \right| = \left| \frac{f(x) - f(x_0)}{g(x) - g(x_0)} - A \right| = \left| \frac{f'(c)}{g'(c)} - A \right| < \varepsilon$$

Аналогично, условие

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : \forall x \in \mathring{B}(x_0) : \; |\frac{f'(x)}{g'(x)} - A| > \varepsilon$$

влечет выполнение

$$\left|\frac{f(x)}{g(x)} - A\right| = \left|\frac{f'(c)}{g'(c)} - A\right| > \varepsilon$$

П

где $x \in \mathring{B}(x_0)$, а c - точка между x и x_0 .

Теорема. Пусть $f(x), g(x) \in \mathcal{D}(a, +\infty), \ \exists \lim_{x \to +\infty} f(x) = 0, \ \exists \lim_{x \to +\infty} g(x) = 0,$ $g(x) \neq 0, \ g'(x) \neq 0.$ Тогда

$$\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = A \implies \exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = A$$

А также

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \infty \implies \exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \infty$$

Для $x \to -\infty$ верно аналогичное утверждение.

Доказательство. Сделав замену, сведем теорему к предыдущей.

⁹Доказательство модифицировано в соответсвии со старым конспектом лекций Подольского и курсом лекций Солодова на teach-in

Теорема. Пусть $f(x), g(x) \in \mathcal{D}(x_0 - \delta, x_0), f(x), g(x) \to \pm \infty, x \to x_0 - 0, g'(x) \neq 0 \ \forall x \in \mathring{B}(x_0).$ Тогда

$$\exists \lim_{x \to x_0 - 0} \frac{f'(x)}{g'(x)} = A \implies \exists \lim_{x \to x_0 - 0} \frac{f(x)}{g(x)} = A$$

А также

$$\lim_{x \to x_0 - 0} \frac{f'(x)}{g'(x)} = \pm \infty \implies \lim_{x \to x_0 - 0} \frac{f(x)}{g(x)} = \pm \infty$$

Для правой полуокрестности верно аналогичное утверждение.

Доказательство. ¹⁰ Пусть $x_2 < x_1 < x_0$. По формуле Коши $\exists c \in (x_2, x_1)$:

$$\frac{f(x_2) - f(x_1)}{g(x_1) - g(x_2)} = \frac{f'(c)}{g'(c)} \Rightarrow f(x_1) = f(x_2) + \frac{f'(c)}{g'(c)} \cdot g(x_1) - \frac{f'(c)}{g'(c)} \cdot g(x_2)$$

поделив это равенство на g(x), получим:

$$\frac{f(x)}{g(x)} = \frac{f(x_2)}{g(x_1)} + \frac{f'(c)}{g'(c)} - \frac{f'(c)}{g'(c)} \cdot \frac{g(x_2)}{g(x_1)}$$

По условию существования предела отношения производных выберем такой δ_1 , что $\forall \varepsilon > 0 \; \exists \; x_0 - x_1 > \delta_1 > 0, \; \forall x \in (a - \delta_1, a) : |\frac{f'(x)}{g'(x)} - A| < \varepsilon$, значит

$$\left|\frac{f'(x)}{g'(x)}\right| < |A| + \varepsilon$$

По неравенству треугольника:

$$\left| \frac{f(x_1)}{g(x_1)} - A \right| \le \left| \frac{f(x_2)}{g(x_1)} \right| + \left| \frac{f'(c)}{g'(c)} - A \right| + \left| \frac{f'(c)}{g'(c)} \right| \cdot \left| \frac{g(x_2)}{g(x_1)} \right|$$

Ввиду расположения точки с:

$$\left|\frac{f'(c)}{g'(c)} - A\right| < \varepsilon$$

Поскольку $\lim_{x\to a-0}\frac{1}{g(x)}=0$, то $\forall \varepsilon>0\ \exists\ \delta_2>0: \forall x\in (a-\delta_2,a): \frac{1}{g(x)}<\varepsilon$. Значит

$$\left|\frac{f(x_2)}{g(x_1)}\right| < \varepsilon \quad \text{и} \quad \left|\frac{g(x_2)}{g(x_1)}\right| < \frac{\varepsilon}{|A| + \varepsilon}$$

Значит, выбрав $\delta = \min\{\delta_1, \delta_2\}$, получим:

$$\left|\frac{f(x_1)}{g(x_1)} - A\right| < \varepsilon + \varepsilon + \frac{\varepsilon}{|A| + \varepsilon}(|A| + \varepsilon) = 3\varepsilon$$

Аналогично

$$\frac{f'(x)}{g'(x)} \to \pm \infty \quad \Rightarrow \quad \frac{f(x)}{g(x)} \to \pm \infty$$

 $^{^{10}}$ Доказательство модифицировано в соответсвии с курсом лекций Солодова на teach-in

7.9 Формулы Тейлора

Определение. Пусть $\exists f^{(n)}(x_0)$. Формула

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x, x_0)$$

называется формулой Тейлора с центорм в точке x_0 и остаточным членом $r_n(x,x_0)$.

Теорема. (Формула Тейлора с остаточным членом в форме Пеано) Пусть $\exists f^{(n)}(x_0)$. Тогда остаточный член $r_n(x,x_0) = \bar{\bar{o}}(x-x_0)^n, \ x \to x_0$.

Доказательство.

$$\lim_{x \to x_0} \frac{r_n(x, x_0)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^n} =$$

$$= \lim_{x \to x_0} \frac{f'(x) - \sum_{k=1}^n \frac{f^{(k)}(x_0)}{(k-1)!} (x - x_0)^{k-1}}{n(x - x_0)^{n-1}} = \dots =$$

$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0) - f^{(n)}(x_0)(x - x_0)}{n!(x - x_0)} =$$

$$= \frac{1}{n!} \cdot \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0} - f^{(n)}(x_0) = 0$$

Теорема. (Остаточный член в общей форме)

Пусть $f(t) \in \mathcal{C}^n[x_0,x], \ f^{(n)} \in \mathcal{D}(x_0,x), \ \varphi(t) \in \mathcal{C}[x_0,x], \ \varphi(t) \in \mathcal{D}(x_0,x),$ $\varphi'(t) \neq 0$. Тогда $\exists \ c \in (x_0,x)$ такая, что

$$r_n(x_0, x) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(c)} \cdot \frac{f^{(n+1)}(c)}{n!} (x - c)^n$$

Доказательство. Введем вспомогательную функцию

$$\psi(t) = \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x - t)^{k}$$

$$\psi(x_0) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^{k}, \ \psi(x) = f(x)$$

$$\frac{r_n(x,x_0)}{\varphi(x)-\varphi(x_0)} = \frac{\psi(x)-\psi(x_0)}{\varphi(x)-\varphi(x_0)} = \frac{\psi'(c)}{\varphi'(c)} =
= \frac{1}{\varphi'(c)} \left(\sum_{k=0}^n \frac{f^{(k+1)}(c)}{k!} (x-c)^k - \sum_{k=1}^n \frac{f^{(k)}(c)}{(k-1)!} (x-c)^{k-1}\right) =
= \frac{1}{\varphi'(c)} \cdot \frac{f^{(n+1)}(c)}{n!} (x-c)^n$$

Отсюда

$$r_n(x, x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(c)} \cdot \frac{f^{(n+1)}(c)}{n!} (x - c)^n$$

Следствие. (Остаточный член в форме Лагранжа)

Возьмем $\varphi(t)=(x-t)^{n+1}$. Тогда

$$r_n(x, x_0) = \frac{f^{(n+1)}(c)(x - x_0)^{n+1}}{(n+1)!}$$

Формулы Тейлора элементарных функций с центром в нуле

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \bar{o}(x^{n}), \ x \to 0$$

$$\sin x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} (-1)^{k} + \bar{o}(x^{2n+1})$$

$$\cos x = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} (-1)^{k} + \bar{o}(x^{2n})$$

$$\ln (1+x) = \sum_{k=1}^{n} \frac{x^{k}}{k} (-1)^{k+1} + \bar{o}(x^{n})$$

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} {\alpha \choose k} x^{k}, \ {\alpha \choose k} = \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}$$

Пример. Рассмотрим несколько первых членов ряда для синуса

7.10 Экстремум функции

Теорема. (Достаточное условие локального экстремума 1)

Пусть $f(x) \in \mathcal{C}(B(x_0)), f(x) \in \mathcal{D}(\mathring{B}(x_0)).$

Если при $x < x_0: f'(x) > 0$ или при $x > x_0: f'(x) < 0$, то x_0 - точка максимума. Если при $x < x_0: f'(x) < 0$ или при $x > x_0: f'(x) > 0$, то x_0 - точка минимума.

Доказательство. По формуле Лагранжа:
$$f(x) - f(x_0) = f'(c)(x - x_0)$$

Теорема. (Достаточное условие локального экстремума 2) Пусть $\exists f^{(n)}(x_0) \neq 0, f^{(k)}(x_0) = 0, k = 1, \dots, n-1.$

- 1. Если n = 2k + 1, то экстремум нет.
- 2. Если n = 2k, то
 - если $f^{(n)}(x_0) > 0$, то x_0 точка минимум
 - если $f^{(n)}(x_0) < 0$, то x_0 точка максимума.

Доказательство.

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \bar{o}(x - x_0)^n, \ x \to x_0$$
$$\Rightarrow f(x) - f(x_0) = (x - x_0)^n (\frac{f^{(n)}(x_0)}{n!} + \bar{o}(1))$$

Заметим, что знак $\frac{f^{(n)}(x_0)}{n!} + \bar{\bar{o}}(1)$ совпадает со знаком $f^{(n)}(x_0)$ в некоторой проколотой окрестности x_0 . Значит,

- 1. Если n = 2k + 1, то $(x x_0)^n$ меняет знак при переходе x через точку $x_0 \Rightarrow$ при этом переходе $f(x) f(x_0)$ тоже меняет свой знак $\Rightarrow x_0$ не экстремум.
- 2. Если n=2k, то $(x-x_0)^n$ не меняет знак при переходе x через точку $x_0\Rightarrow$ если $f^{(n)}(x_0)>0$, то $\forall x\in \mathring{B}(x_0): f(x)-f(x_0)>0\Rightarrow x_0$ точка минимума. Аналогично при $f^{(n)}(x_0)<0: x_0$ точка максимума.

Схема поиска глобального экстремума

- 1. Ищем точки интервала (a,b), где f'(x)=0 или где ее не существует.
- 2. Находим значение во всех этих точках и значения на концах открезка.
- 3. Сравниваем их между собой.

7.11 Выпуклые функции

Определение. Пусть $f(x) \in C(I)$. Если $\forall x_1, x_2 \in I$ и $\forall x : x_1 < x < x_2$:

$$f(x) \le \frac{f(x_2)(x - x_1) + f(x_1)(x_2 - x)}{x_2 - x_1}$$

то f(x) называется выпуклой вниз. Если выполнено обратное неравенство, то f(x) называется выпуклой вверх. Пример выпуклой вниз функции :

Теорема. (Достаточное условие выпуклости) Пусть $f'(x) \in \mathcal{D}(I)$.

- Если f''(x) > 0, то f(x) выпукла вниз.
- Если f''(x) < 0, то f(x) выпукла вверх.

Доказательство. Пусть

$$l_1(x) = \frac{f(x_2)(x - x_1) + f(x_1)(x_2 - x)}{x_2 - x_1}$$

$$f(x) - l_1(x) =$$

$$= f(x) \frac{(x - x_1) + (x_2 - x)}{x_2 - x_1} - \frac{f(x_2)(x - x_1) + f(x_1)(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{(f(x) - f(x_2))(x - x_1) + (f(x) - f(x_1))(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{-f'(\xi)(x_2 - x)(x - x_1) + f'(\eta)(x - x_1)(x_2 - x)}{x_2 - x_1} =$$

$$= \frac{-f''(\chi)(\xi - \eta)(x - x_1)(x_2 - x)}{x_2 - x_1}$$

Теорема. Пусть $f'(x) \in \mathcal{D}(I)$. Если f''(x) > 0 (f''(x) < 0), то $\forall x_0 \in I$:

$$f(x) - f(x_0) - f'(x_0)(x - x_0) \ge 0$$

Доказательство. Пусть $f(x_0) + f'(x_0)(x - x_0) = l_2(x)$

$$f(x) - l_2(x) = f'(\xi)(x - x_0) - f'(x_0)(x - x_0) = f''(\eta)(\xi - x_0)(x - x_0)$$

знаки скобок $(\xi-x_0)$ и $(x-x_0)$ одинаковы, значит $(\xi-x_0)(x-x_0)>0$

Определение. Если $f(x) - l_2(x)$ при проходе через точку x_0 меняет знак (разные знаки в левой и правой окрестности), то точка x_0 называется точкой перегиба.

Теорема. (Необходимое условие наличия точки перегиба)

Пусть $f''(x) \in \mathcal{C}(B(x_0))$. Если x_0 - точка перегиба, то $f''(x_0) = 0$.

Доказательство. Если $f''(x_0) > 0$, то в силу непрерывности f''(x) > 0 в $B(x_0)$, значит x_0 - не точка перегиба. Аналогично для $f''(x_0) < 0$.

Теорема. (Достаточное условие наличия точки перегиба)

Пусть $f''(x) \in \mathcal{C}(I)$. Если f''(x) меняется знак при проходе точки x_0 , то x_0 - точка перегиба.

Доказательство.
$$f(x) - l_2(x) = f''(\eta)(\xi - x_0)(x - x_0)$$

Теорема. Пусть $f''(x_0) = 0, \ f'''(x_0) \neq 0.$ Тогда x_0 - точка перегиба.

Доказательство.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f'''(x_0)}{6}(x - x_0)^3 + \bar{o}((x - x_0)^3)$$

Тогда

$$f(x) - l_2(x) = (x - x_0)^3 (\frac{f'''(x_0)}{6} + \bar{o}(1))$$

Определение. Если при $x \to a - 0$ $(x \to a + 0) : f(x) \to \pm \infty$, то прямая x = a называется вертикальной асимптотой.

Определение. Если при $x \to +\infty (x \to -\infty) : (f(x) - kx - b) \to 0$, то прямая y = kx + b называется наклонной асимптотой.

Теорема. Прямая y=kx+b является наклонной асимптотой графика функции $f(x) \Leftrightarrow \exists \lim_{x \to +\infty} \frac{f(x)}{x} = k, \ \exists \lim_{x \to +\infty} (f(x)-kx), \ аналогично \ \kappa \ -\infty.$

Теорема. (Неравенство Йенсена)

Пусть f(x) выпукла вверх (вниз) в каждой точке I. Пусть $\forall i: \alpha_i > 0, \ \sum_{i=1}^n \alpha_i = 1.$ Тогда $\forall x_i \subset I$:

$$f(\sum_{i=1}^{n} \alpha_i x_i) \ge \sum_{i=1}^{n} \alpha_i f(x_i)$$

Доказательство. Индукция по n. Если n=1 - очев. Для n=2 так как f(x) - выпукла вверх:

$$f(\alpha_1 x_1 + \alpha_2 x_2) \ge \alpha_1 f(x_1) + \alpha_2 f(x_2)$$

Пусть верно для n. Тогда пользуясь неравенством для n=1 и n=2 получим:

$$f(\sum_{i=1}^{n+1} \alpha_{i}x_{i}) = f(\alpha_{n+1}x_{n+1} + \sum_{i=1}^{n} \alpha_{i}x_{i}) =$$

$$= f(\alpha_{n+1}x_{n+1} + \sum_{i=1}^{n} \alpha_{i} \cdot \sum_{i=1}^{n} (\frac{\alpha_{i}}{\sum_{i=1}^{n} \alpha_{i}} \cdot x_{i})) \geq$$

$$\geq \alpha_{n+1}f(x_{n+1}) + \sum_{i=1}^{n} \alpha_{i} \cdot f(\sum_{i=1}^{n} \frac{\alpha_{i}}{\sum_{i=1}^{n} \alpha_{i}} x_{i}) \geq$$

$$\geq \alpha_{n+1}f(x_{n+1}) + \sum_{i=1}^{n} \alpha_{i}(\sum_{i=1}^{n} \frac{\alpha_{i}}{\sum_{i=1}^{n} \alpha_{i}} \cdot f(x_{i})) =$$

$$= \alpha_{n+1}f(x_{n+1}) + \sum_{i=1}^{n} \alpha_{i}f(x_{i}) = \sum_{i=1}^{n+1} \alpha_{i}f(x_{i})$$

Утверждение. (Неравенство между средним арифметическим и средим геометрическим)

$$\frac{1}{n} \sum_{k=1}^{n} x_k \ge \sqrt[n]{\prod_{k=1}^{n} x_k}$$

 \mathcal{A} оказательство. $f(x) = \ln x, \ f''(x) = -\frac{1}{x^2} < 0$ - выпукла вверх. Тогда

$$\ln(\sum_{k=1}^{n} \frac{1}{n}) \ge \frac{1}{n} \sum_{k=1}^{n} \ln x = \ln(\prod_{k=1}^{n} x_{k}^{\frac{1}{n}})$$

Взяв ехр от обеих частей, получим искомое неравенство.

Утверждение. (Неравенство Юнга)

 $\forall a,b < 0, \ \forall p,q > 1: \frac{1}{p} + \frac{1}{q} = 1.$ Тогда

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Доказательство. Воспользуемся неравенством Йенсена для логарифма:

$$\ln\left(\frac{1}{p} \cdot x_1 + \frac{1}{q} \cdot x_2\right) \ge \frac{1}{p} \cdot \ln x_1 + \frac{1}{q} \cdot \ln x_2$$

 $x_1 = a^p, \ x_2 = b^q$. Тогда

$$\ln \frac{a^p}{p} + \frac{b^q}{q} \ge \ln a + \ln b = \ln ab$$

Взяв ехр от обеих частей, получим искомое неравенство.