How flexible should my algorithms be?

Lecture 03

Review of Supervised Learning

Algorithm development and application pipeline

K-Nearest Neighbors

Classification and Regression

Step 1: Training

Every new data point is a model parameter

Step 2:

Place new (unseen) examples in the feature space

Feature認序

Step 3:

Classify the data by assigning the class of the k nearest neighbors

Score vs Decision:

For 5-NN, the confidence score that a sample belongs to a class could be: {0,1/5,2/5,3/5,4/5,1}

Feature 1

Decision Rule:

If the confidence score for a class > threshold, predict that class

K Nearest Neighbor Regression

K Nearest Neighbor Regression

$$\hat{y} = \frac{1}{k} \sum_{y_i \in \{k \text{ nearest}\}} y$$

KNN Pros and Cons

Pros

- Simple to implement and interpret
- Minimal training time
- Naturally handles multiclass data

Cons

- Computational expensive to find nearest neighbors
- Requires all of the training data to be stored in the model
- Suffers if classes are imbalanced
- Performance may suffer in high dimensions

How flexible should my model be?

the bias-variance tradeoff and learning to generalize

bias consistently incorrect prediction

error from poor model assumptions (high bias results in underfit)

variance inconsistent prediction

error from sensitivity to small changes in the training data

(high variance results in overfit)

noiselower bound on generalization error

irreducible error inherent to the problem

(e.g. you cannot predict the outcome of a flip of a fair coin any more than 50% of the time)

Bias-Variance Tradeoff

generalization error = bias² + variance + noise

Classification feature space

What's the best we can do for binary classification?

If we know the probability distribution of the data

The Bayes decision rule

Bayes' Rule

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$
Posterior
Evidence

X Features

C Class label i.e. $C \in \{c_0, c_1\}$ for the binary case

Bayes' Decision Rule:

choose the most probable class given the data

If
$$P(C_i=c_1|X_i)>P(C_i=c_0|X_i)$$
 then $\hat{y}=c_1$ otherwise $\hat{y}=c_0$

- If the distributions are correct, this decision rule is optimal
- Rarely do we have enough information to use this in practice

Classification feature space

Bayes Decision Boundary

Decision Boundary Examples

Bias Variance **Tradeoff**

Sample 2

higher variance overfit

How flexible should my algorithms be?

Bias Variance Tradeoff

$$\widehat{y}_i = \sum_{j=0}^N a_j x_i^j$$

$$\widehat{y}_i = \sum_{j=0}^N a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^N a_j x_i^j$$

$$\widehat{y}_i = \sum_{j=0}^N a_j x_i^j$$

$$\widehat{y}_i = \sum_{j=0}^N a_j x_i^j$$

$$\widehat{y}_i = \sum_{j=0}^N a_j x_i^j$$

Problem

Too much flexibility leads to overfit

Too little flexibility leads to underfit

Over/underfit hurts generalization performance

Solutions

- 1. Add more data for training
- 2. Constrain model flexibility through regularization