

FINe: Future (Inter)Net(works)

The day by day of the course:

What we did What we learned What we will do today

October 14, 2020 (i)

- ✓ What did we do last Tuesday (October 7)?
 - Second ítem of Chapter 2 (Lecturer: Prof. Jordí Perelló)
 - Introduced SDN ¹the Emerging technology for implementing the control plane of the future networks
 - Introduced the OpenFlow Architecture
 - Introduce dthe NFV² concept
 - Started the third item of Chapter 2 (Lecturer: Dr. Fernando Afgraz)
 - SDN on Optical Networks and Data Centers: Two case studies
 - · Launched the second panel session
 - On a Tutorial paper on ASON Automatically Switched Optical Networks
- 1) SDN: Software Defined Networking
- 2) NFV: Network Functions Virtualization

October 14, 2020 (ii)

- ✓ What did we learn/refresh/understood?
 - · About SDN and OpenFlow
 - SDN aims to counteract some limitations current networks operation
 - · Problematic vendor-specific configuration procedures
 - · Inconsistencies of distributed control protocols
 - •
 - SDN can be seen as an analogy of a computer OS, but operating over a network domain
 - OpenFlow is the most widely used standard protocol for communicate the SDN controller and the Network Devices
 - Initial OpenFlow main goal was to make Ethernet networks, which are native connectionless, able to operate in connection oriented mode.
 - · ... as MPLS do with IP networs

The computer operating system model can be drawn in three basic layers: hardware, operating system and applications

Applications to customize the system behavior for specific needs

The OS can be seen as a middleware permitting applications to access HW resources, based on policies

Similarly, the SDN model can also be split into 3 different layers:

Applications to customize the network behavior for specific needs

The SDN controller provides services to automatically manage network devices, as well as a programmable interface (API) to the network applications

October 14, 2020 (iii)

- ✓ What did we learn/refresh/understood?
 - · About NFV
 - NFV consists of replacing specialized network appliances (like firewalls, load balancers, routers, etc.) with software running on VMs
 - SDN and NFV complement each other:
 - VNFs running on VMs in different servers can be connected over an SDN network to build an end-to-end service chain
 - · Orchestrator is then required to coordinate both SDN and NFV
 - That the LIGHTNESS project was about designing a novel interconnection network architecture for intra data center network (DCN)
 - Based on both Optical Circuit Switching and Optical Packet Switching technology
 - Leveraging SDN and OpenFlow solution/specs

October 14, 2020 (iv)

- What will we do today?
 - Finishing the third item of Chapter 2 (Lecturer: Dr. Fernando Afgraz)
 - SDN on Optical Networks and Data Centers: Two case studies
 - · Run the second panel session
 - On a Tutorial paper on ASON Automatically Switched Optical Networks
 - Erlang B Calculator
 - · Launch the second set of questions
 - Devoted to Chapter 2
 - · Deadline for posting the questions in ATENEA: October 21 (11:00 am.)
 - · Evaluation period: From October 21 to October 28 (11:00 am.)
 - Technical reports assignment (tentative)

Packet Switching vs. Optical Packet Switching

Electronic to optical packet switching evolution:

- Optical Packet Switches main characteristics:
 - Both switching matrix and buffers are optical
 - Bit rate independent payload (transparent bit rate)
 - Headers still processed electronically

it bit rate)	Elec	Elec-Opt	Opt
Sw. Capacity	low	medium	high
Complexity	high	medium	low
Memory Dim.	high	high	low
Transparency	no	no	yes

Packet Switching vs. Optical Packet Switching

- Electronics are reacting to fill the opto-electronic capacity GAP:
 - > 1 Tbps throughput is reachable
- Photonic technology is also evolving fast
 - Solves the opto-electronic capacity GAP
 - Three dimensions: Space, Time, Wavelength

Dimensio	Space	Time			Wavelength	
Punction Punction	Switch	Mux	Syn/Asyn	Storage	Mux	Conv.
Electronic						
Optical				•		

Optical Packet Switching operation

13/10/2020

Optical Packet Switching operation

- Optical packets:
 - Electronic header
 - Optical transparent payload (time slot)

Optical buffers?