M0 Categories

Robin Adams

September 24, 2022

Contents

1	Categories	1
2	Terminal Objects	4
3	Initial Objects	4
4	Products	4
5	Sums	5
6	Distributive Categories	5
7	Equalizers	5
8	Map Objects	5
9	Pullbacks	7
10	Subobject Classifier	7
11	Toposes	7

1 Categories

Definition 1 (Category). A category consists of:

- ullet a collection of objects.
- for any objects A and B, a collection of maps from A to B. We write $f:A\to B$ iff f is a map from A to B.
- for any object A, an identity map $1_A:A\to A$
- for any maps $f:A\to B$ and $g:B\to C$, a map $g\circ f:A\to C$

such that:

Identity Laws For any map $f: A \to B$, we have $1_B \circ f = f \circ 1_A = f: A \to B$

Associative Law For any maps $f: A \to B$, $g: B \to C$ and $h: C \to D$, we hav $h \circ (g \circ f) = (h \circ g) \circ f: A \to D$

Definition 2. A map $f: A \to B$ is monic or a monomorphism, $f: A \to B$, iff, for every object T and morphisms $x_1, x_2: T \to B$, if $f \circ x_1 = f \circ x_2$ then $x_1 = x_2$.

Definition 3. A map $f: A \to B$ is *epi* or an *epimorphism*, $f: A \to B$, iff, for every object T and morphisms $x_1, x_2: B \to T$, if $x_1 \circ f = x_2 \circ f$ then $x_1 = x_2$.

Definition 4 (Retraction, Section). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction for s, and s is a section for r, iff $r \circ s = 1_B$.

The object A is a retract of B iff there exists a retraction $r: B \to A$, i.e. there exist maps $s: A \to B$ and $r: B \to A$ such that $r \circ s = 1_A$.

Proposition 5. If a map $f: A \to B$ has a section, then for any object T and any map $y: T \to B$, there exists a map $x: T \to A$ such that $f \circ x = y$.

PROOF: If $s: B \to A$ is a section of f, then we take $x = s \circ y$. We have $f \circ x = f \circ s \circ y = 1_B \circ y = y$. \square

Proposition 6. If a map $f: A \to B$ has a retraction, then for any object T and any map $g: A \to T$, there exists a map $t: B \to T$ such that $t \circ f = g$.

PROOF: If $r: B \to A$ is a section for f, then we take $t = g \circ r$. We have $t \circ f = g \circ r \circ f = g \circ 1_A = g$. \square

Proposition 7. Every section is monic.

PROOF: Let $r: B \to A$ be a retraction for f. Then, if $f \circ x_1 = f \circ x_2$, then $r \circ f \circ x_1 = r \circ f \circ x_2$

$$\therefore 1_A \circ x_1 = 1_A \circ x_2$$

$$\therefore x_1 = x_2$$

Proposition 8. Every retraction is epi.

PROOF: Let $s: B \to A$ be a section for $f: A \to B$. Let T be any set and $t_1, t_2: T \to B$. Suppose $t_1 \circ f = t_2 \circ f$. Then

$$t_1 \circ f \circ s = t_2 \circ f \circ s$$
$$\therefore t_1 \circ 1_B = t_2 \circ 1_B$$
$$\therefore t_1 = t_2$$

Proposition 9. For any object A, the identity map 1_A is a section and a retraction of itself.

PROOF: The Unit Laws give $1_A \circ 1_A = 1_A$. \square

Corollary 9.1. Every object is a retract of itself.

Proposition 10. If $r_1: B \to A$ is a retraction of $s_1: A \to B$ and $r_2: C \to B$ is a retraction of $s_2: B \to C$ then $r_1 \circ r_2$ is a retraction of $s_2 \circ s_1$.

Proof:

$$r_1 \circ r_2 \circ s_2 \circ s_1 = r_1 \circ 1_B \circ s_1$$

= $r_1 \circ s_1$
= 1_A

Corollary 10.1. If the object A is a retract of B and B is a retract of C then A is a retract of C.

Theorem 11. If r is a retraction of f and s is a section of f then r = s.

PROOF: Let $f: A \to B$ and $r, s: B \to A$. Then

$$r = r \circ 1_B$$

$$= r \circ f \circ s$$

$$= 1_A \circ s$$

$$= s$$

Definition 12 (Isomorphism). A map $f: A \to B$ is an *isomorphism* or *invertible*, $f: A \cong B$, iff there exists a map $f^{-1}: B \to A$, the *inverse* for f, such that $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$.

П

Two objects A and B are $isomorphic, A \cong B$, iff there exists an isomorphism between them.

Theorem 13. The inverse of an isomorphism is unique.

PROOF: From Theorem 11.

Theorem 14. For any object A, the identity map $1_A : A \cong A$ is an isomorphism with $1_A^{-1} = 1_A$.

PROOF: We have $1_A \circ 1_A = 1_A$ by the Identity Laws. \square

Theorem 15. If $f: A \cong B$ then $f^{-1}: B \cong A$ and $(f^{-1})^{-1} = f$.

PROOF: Since $f \circ f^{-1} = 1_B$ and $f^{-1} \circ f = 1_A$ by the definition of inverse. \square

Theorem 16. If $f: A \cong B$ and $g: B \cong C$ then $g \circ f: A \cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 10. \square

Proposition 17. Every monomorphic retraction is an isomorphism.

PROOF: Let $f:A \rightarrow B$ be a monomorphism with section $s:B \rightarrow A$. Then

$$f \circ s \circ f = f$$
$$\therefore s \circ f = 1_A$$

Thus s is also a retraction for f, hence an inverse. \square

Proposition 18. Every epimorphic section is an isomorphism.

Proof: Dual. \square

Definition 19 (Idempotent). A map $e: A \to A$ is idempotent iff $e \circ e = e$.

Definition 20 (Split Idempotent). Let $e: A \to A$ be idempotent. A *splitting* of e consists of an object B and maps $s: B \to A$, $r: A \to B$ such that $r \circ s = 1_B$ and $s \circ r = e$.

Definition 21 (Automorphism). An *automorphism* on an object A is an isomorphism $A \cong A$.

2 Terminal Objects

Definition 22 (Terminal Object). An object 1 is *terminal* iff, for every object X, there exists exactly one morphism $X \to 1$.

Theorem 23. If T_1 and T_2 are terminal objects, then the unique map $T_1 \to T_2$ is iso.

PROOF: Let $f: T_1 \to T_2$ be the unique such map, and $g: T_2 \to T_1$ the unique map in the other direction. The $g \circ f = 1_{T_1}$ since there is only one map $T_1 \to T_1$, and $f \circ g = 1_{T_2}$ since there is only one map $T_2 \to T_2$. \square

3 Initial Objects

Definition 24 (Initial Object). An object 0 is *initial* iff, for every object X, there exists exactly one morphism $0 \to X$.

4 Products

Definition 25 (Product). Let A and B be objects. A product of A and B consists of an object $A \times B$ and morphisms $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$, the projections, such that, for any object X and morphisms $f : X \to A$ and $g : X \to B$, there exists exactly one map $\langle f, g \rangle : X \to A \times B$ such that $\pi_1 \circ \langle f, g \rangle = f$ and $\pi_2 \circ \langle f, g \rangle = g$.

Theorem 26 (Lawvere Diagonal Theorem). Let $\mathcal C$ be a category with finite products.

Let Y and T be objects and $f: T \times T \to Y$. Suppose that, for every $g: T \to Y$, there exists a point $\overline{g}: 1 \to T$ such that $f \circ \langle 1_T, \overline{g} \circ ! \rangle = g$. Then, for every $\alpha: Y \to Y$, there exists $y: 1 \to Y$ such that $\alpha y = y$.

Proof:

- $\langle 1 \rangle 1$. Let: $\alpha: Y \to Y$
- $\langle 1 \rangle 2$. Let: $g = \alpha \circ f \circ \langle 1_T, 1_T \rangle$

```
\begin{split} \langle 1 \rangle 3. & \text{ Pick } t_0 : 1 \to T \text{ such that } f \circ \langle 1_T, t_0 \circ ! \rangle = \alpha \circ f \circ \langle 1_T, 1_T \rangle \\ \langle 1 \rangle 4. & \text{ Let: } y = f \circ \langle t_0, t_0 \rangle \\ \langle 1 \rangle 5. & \alpha y = y \\ & \text{ Proof: } \\ & \alpha y = \alpha f \langle t_0, t_0 \rangle \\ & = \alpha f \langle 1_T, 1_T \rangle t_0 \\ & = f \langle 1_T, t! \rangle t_0 \\ & = f \langle t_0, t_0 \rangle \\ & = y \end{split}
```

5 Sums

Definition 27 (Sum). Let A and B be objects. A sum of A and B consists of an object A+B and morphisms $\kappa_1:A\to A+B,\ \kappa_2:B\to A+B,$ the injections, such that, for any object X and morphisms $f:A\to X$ and $g:B\to X$, there exists exactly one map $[f,g]:A+B\to X$ such that $[f,g]\circ\kappa_1=f$ and $[f,g]\circ\kappa_2=g$.

6 Distributive Categories

Definition 28 (Distributive Category). Let \mathcal{C} be a category with binary products and binary coproducts. Then \mathcal{C} is *distributive* iff, for any objects A, B, C, the map

$$[1_A \times \kappa_1, 1_A \times \kappa_2] : (A \times B) + (A \times C) \rightarrow A \times (B + C)$$

is an isomorphism.

7 Equalizers

Definition 29 (Equalizer). Let $f, g: A \to B$. An equalizer of f and g consists of an object E and a morphism $e: E \to A$ such that $f \circ e = g \circ e$ and, for any object X and morphism $x: X \to A$ such that fx = gx, there exists a unique $\overline{x}: X \to E$ such that $x = e\overline{x}$.

8 Map Objects

Definition 30 (Map Objects). Let \mathcal{C} be a category with binary products. Let A and B be objects. A map object from A to B consists of an object B^A and a morphism $e: B^A \times A \to B$ such that, for any object X and morphism $f: X \times A \to B$, there exists a unique morphism $\lambda f: X \to B^A$ such that $e \circ (\lambda f \times 1_A) = f$. **Proposition 31.** Let C be a category with binary products and coproducts. Let T be an object such that, for every object A, the map object A^T exists. Then binary products with T distribute over binary coproducts.

```
Proof:
\langle 1 \rangle 1. Let: A, B \in \mathcal{C}
\langle 1 \rangle 2. Let: c = [\kappa_1 \times 1_T, \kappa_2 \times 1_T] : (A \times T) + (B \times T) \rightarrow (A + B) \times T
\langle 1 \rangle 3. \ \lambda \kappa_1 : A \to ((A \times T) + (B \times T))^T, \ \lambda \kappa_2 : B \to ((A \times T) + (B \times T))^T, \text{ and}
           they are unique such that e \circ (\lambda \kappa_1 \times 1_T) = \kappa_1 and e \circ (\lambda \kappa_2 \times 1_T) = \kappa_2
\langle 1 \rangle 4. [\lambda \kappa_1, \lambda \kappa_2] : A + B \rightarrow ((A \times T) + (B \times T))^T is unique such that e \circ
           ([\lambda \kappa_1, \lambda \kappa_2] \kappa_1 \times 1_T) = \kappa_1 \text{ and } e \circ ([\lambda \kappa_1, \lambda \kappa_2] \kappa_2 \times 1_T) = \kappa_2
(1)5. Let: c^{-1} = e \circ ([\lambda \kappa_1, \lambda \kappa_2] \times 1_T) : (A+B) \times T \to (A \times T) + (B \times T)
\langle 1 \rangle 6. \ cc^{-1} = 1_{(A+B)\times T}

\langle 2 \rangle 1. \ \pi_1 cc^{-1} = \pi_1 : (A+B) \times T \to A+B
         \langle 3 \rangle 1. \lambda(\pi_1 cc^{-1}) = \lambda \pi_1 : A + B \to (A + B)^T
              \langle 4 \rangle 1. \ \lambda(\pi_1 cc^{-1}) \kappa_1 = (\lambda \pi_1) \kappa_1 : A \to (A+B)^T
                  \langle 5 \rangle 1. \ e \circ (\lambda(\pi_1 cc^{-1})\kappa_1 \times 1_T) = e \circ ((\lambda \pi_1)\kappa_1 \times 1_T) : A \times T \to A + B
                         e \circ (\lambda(\pi_1 cc^{-1})\kappa_1 \times 1_T) = (e \circ (\lambda(\pi_1 cc^{-1}) \times 1_T)(\kappa_1 \times 1_T)
                                                                       =\pi_1 cc^{-1}(\kappa_1 \times 1_T)
                                                                       =\pi_1 c \kappa_1
                                                                                                                                              (\langle 1 \rangle 4)
                                                                        =\pi_1(\kappa_1\times 1_T)
                                                                        = \kappa_1 \pi_1
                                                                       =\pi_1(\kappa_1\times 1_T)
                                                                        = e(\lambda \pi_1 \times 1_T)(\kappa_1 \times 1_T)
                                                                       = e((\lambda \pi_1) \kappa_1 \times 1_T))
             \langle 4 \rangle 2. \lambda(\pi_1 cc^{-1})\kappa_2 = (\lambda \pi_1)\kappa_2 : B \to (A+B)^T
                 PROOF: Similar.
     \langle 2 \rangle 2. \pi_2 cc^{-1} = \pi_2
         Proof: Similar
\langle 1 \rangle 7. \ c^{-1}c = 1_{(A \times T) + (B \times T)}
     PROOF: c^{-1}c = [\kappa_1, \kappa_2] = 1
```

Definition 32 (Cartesian closed category). A Cartesian closed category is a category with finite products and map objects.

Theorem 33 (Cantor's Diagonal Argument). Let C be a Cartesian closed category. Let $T, Y \in C$ and $f: T \to Y^T$. Suppose that, for every map $g: T \to Y$, there exists $x: 1 \to T$ such that $\lambda g = fx$. Then every endomorphism on Y has a fixed point.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } \alpha: Y \to Y \\ \langle 1 \rangle 2. & \text{Let: } g = \alpha \circ e \circ \langle f, 1_T \rangle: T \to Y \end{array}
```

```
\begin{array}{ll} \langle 1 \rangle 3. \ \operatorname{Pick} \, x : 1 \to T \ \operatorname{such \ that} \, \lambda(g\pi_2) = fx \\ \langle 1 \rangle 4. \ \operatorname{Let:} \, y = e \circ \langle fx, x \rangle : 1 \to Y \\ \langle 1 \rangle 5. \ \alpha y = y \\ \operatorname{Proof:} & \alpha y = \alpha e \langle f, 1_T \rangle x \\ &= gx \\ &= g\pi_2 \langle 1_1, x \rangle \\ &= e(\lambda(g\pi_1) \times 1) \langle 1_1, x \rangle \\ &= e(fx \times 1) \langle 1_1, x \rangle \\ &= e \langle fx, x \rangle \\ &= y \end{array}
```

9 Pullbacks

Definition 34 (Pullback). The diagram below is a *pullback* iff fp = gq and, for any object X and morphisms $x: X \to B$ and $y: X \to C$ such that fx = gy, there exists a unique morphism $m: X \to A$ such that pm = x and qm = y.

$$\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow q & & \downarrow f \\
C & \xrightarrow{g} & D
\end{array}$$

10 Subobject Classifier

Definition 35 (Subobject Classifier). Let $\mathcal C$ be a category with a terminal object 1. A *subobject classifier* consists of an object Ω and morphism \top : $1 \to \Omega$ such that, for every monomorphism $m: A \rightarrowtail B$, there exists a unique morphism $\chi_m: B \to \Omega$, the *characterisetic morphism* of m, such that the following diagram is a pullback

$$A \xrightarrow{!} 1$$

$$m \downarrow \qquad \qquad \downarrow \uparrow$$

$$B \xrightarrow{\chi_m} \Omega$$

11 Toposes

Definition 36 (Topos). A *topos* is a Cartesian closed category \mathcal{C} with finite coproducts and a subobject classifier such that, for every object X, the slice category \mathcal{C}/X has finite products.