

Exploring Non-invasive Features for Continuous Glucose Monitoring: Master's Thesis Defense

By: Brian Bogue Jimenez

Advisor: Dr. Ana Doblas

What is Diabetes?

- Chronic condition that is characterized by abnormal levels of blood sugar [1].
- Diabetes has been estimated to effect 450 million worldwide [2]

Management requires tracking glycemia

Types of Diabetes

- Type 1: Insulin dependent (Juvenile)
- Type 2: Non-insulin dependent (Adult On-set)
- Gestational diabetes
- Impaired Glucose Intolerance
 - Includes up to 30 other disorders including prediabetes [1]
- All of these can result in long term complications

Complications caused by Diabetes

- Possible complications [1]
 - Ketosis
 - Cardiovascular Disease
 - Nerve Damage
 - Renal Failure
 - Skin Conditions

Figure: Cost of Complications [2]

[1] Diabetes Complications | ADA. Available: https://www.diabetes.org/diabetes/complications.

[2] W. Yang et al, Diabetes Care. 41(5), 917-928 (2017).

The Cost of Diabetes to the U.S. Economy

- Estimated ~24.7 million in the U.S. as of 2017 (9.7% of adults)
- \$9,601 per year per patient
- Costs the economy ~\$327 billion
 - \$237 billion from direct medical costs
 - \$90 billion in lost productivity
 - Medical costs are 2.3 times for those with Diabetes
- 26% increase from 2012 to 2017

Figure: Total direct cost of diabetes '07-'17 [1]

Diabetes Management via Glucometers

- Market Gold standard for accuracy
- Requires invasive samples
- Few measurements per day
- Single use disposable sensors

The Need for Non-invasive Continuous Glucose Monitoring (NICGM)?

- Current Methods are inconvenient [1]
 - Invasive
 - Painful
 - Costly
 - Discrete
- A Purpose:
 - The need for a NI-CGM System

Development of Continuous Glucose Monitoring through the last decade

Figure: Accuracy evolution of CGM from [1]

SMBG: Self monitoring Blood Glucose Devices MARD: Mean Absolute Relative Difference

[1] G. Cappon et al., Diabetes Metab. J. 43(4), 383–397 (2019).

- Principal based on: Glucoseoxidase-platinum-electrode needle
- Reads interstitial fluid
- Several commercial devices
- Minimally Invasive
- Sensor must be replaced

Leader in Market: Freestyle Libre II

- Can be used with data logger or app
- 14-day life cycle
- Rolling memory for up to 8 hours
- Sampling Frequency: 15/minute (or manual measurements up to every 1 minute)

Figure: Consensus Error Grid of Freestyle Libre II [1]

True NICGM based on Impedance Spectroscopy

- ☐ Principle based on:
 bioimpedance at different depths
 to estimate BGL
- ☐Simple equivalent circuit based on Cole Model
- **☑**Cost-effective
- ☑Completely Non-invasive and Continuous

Figure 1: (a) Cross section of skin (b) Cole model of electrode-skin impedance. [1]

Figure 2: NI-CGM device proposed by Caduff, et al. from [1]

PENDRA Commercial Prototype of Impedance Spectroscopy

- □PENDRA (2003)
- ☑Completely Non-invasive and Continuous
- Failed due to inaccuracy, and pulled off market [1]
- Struggles due to interference of bad sensor to skin attachment
- **☑**Currently no commercial devices implement this method

Figure: PENDRA device from [2]

True NICGM based on Metabolic Heat Confirmation

□Principal based on: multiwavelength spectroscopy to measure blood flow rate, hemoglobin and oxyhemoglobin

☐Array of electrical and optical sensors to measure ambient features and thermal properties of the skin

□ Applies regression methods to relate features to BGL

⊠System was not continuous and limited to finger

☒ Does not have commercial equivalent

Figure: MHC flowchart [1]

GlucoTrack Commercial Prototype of Combining Sensors

Figure 1: GlucoTrack device from [1].

- ☑Completely Non-Invasive (NI)
- □Combines 3 Different Methods
 - 1. Electromagnetic (i.e. Impedance Spectroscopy)
 - 2. Thermal (i.e. MHC)
 - 3. Ultrasound
- **⊠**Spot Check device for Ear
- **≥**Not Continuous

Figure 2: Clarke Error Grid of GlucoTrack[1].

Our Proposal for a multiarray sensor NICGM

- This thesis will explore multiple off-the-shelf wearable sensors that could be implemented in smartwatches and create a feature set sufficient for prediction.
- Hypothesis:
 - The following sensors will provide sufficient features to accurately predict blood glucose levels within healthy individuals
- Non-invasive Sensors combined with Machine Learning:
 - G-Skin Heat Flux, Empatica E4 wristband (EDA and Skin Temp.), Delfin MoistureMeterD, Viatom Checkme O2, Adafruit DHT11, Omron 3 Series Upper Arm Blood Pressure Monitor

Comparison of Management Methodology

<u>Traditional Glucometers</u>

- **☑**Accurate
- ☑ Painful and inconvenient
- **☑**Poor monitoring habits
- "Snapshot"
- **☑** Disposable sensors

Glucose Oxidase Needle

- **☑**Continuous
- ☑"full picture"
- **☑**Disposable sensors
- **☑**Minimally Invasive

Proposed

- **☑**Non-invasive
- ✓ More frequent measurements
- ☑"full picture"
- ☑No additional cost

Flowchart for our proposal

Preliminary investigation into non-invasive sensors to track BGL in Diabetics Patients Original Features

OhioT1DM Dataset

- 2 Subjects selected based on variance of target variable: 559 (70.35 mg/dL) and 563 (50.50 mg/dL)
- Original features
- Relevant features: Blood Glucose, Ambient Temperature, Galvanic Skin Response (GSR), Heartrate, Skin Temperature

		Time	test_glucose	test_ambTemp	test_gsr	test_heartrate	test_skinTemp
	0	07-Dec-2021 12:55:00	240	Basa	0.000087	103	84.92
	1	07-Dec-2021 13:00:00	229	84.38 BOLU	0.000101 S	68	87.98
	2	07-Dec-2021 13:05:00	223		0.000147	68	88.88
	3	07-Dec-2021 13:10:00	214	Mea	9 .000643	70	89.24
	4	07-Dec-2021 13:15:00	210		0.000133	71	89.78
				Slee	p		
1	2427	27-Jan-2022 17:10:00	1256	elf Reported	Stress	ors 77	83.30
1	2428	27-Jan-2022 17:15:00	125	83.53	0.000073	60	84.88
1	2429	27-Jan-2022 17:40:00	144	lllnes	S.000074	75	85.82

151

Glucose Level

12432 rows x 6 columns

12431 27-Jan-2022 17:50:00

27-Jan-2022 17:45:00

Figure: ExashipleTeerhipteeractbire dataset

Ambient Temperature

GSR

79.70 0.000071

Step count

118

86.36

80.96

Subject 559 - Description of Dataset

Value	Glucose	Ambient Temp	GSR	Heart Rate	Skin Temp	log(GSR)
Mean	167.23	84.28	0.40	73.89	87.66	-3.31
Std. Dev.	70.36	4.38	2.04	15.94	3.44	1.37
Min.	40.00	63.86	0.00	46.00	72.32	-4.17
25%	110.00	81.32	0.00	62.00	85.10	-4.11
50%	158.00	83.66	0.00	69.00	87.44	-3.99
75%	210.00	87.62	0.00	83.00	90.50	-3.25
Max	400.00	96.98	23.02	189.00	95.90	1.36
Count	12,432	12,432	12,432	12,432	12,432	12,432

Figure: Boxplot of GSR

Figure: Boxplot of log(GSR) 22

No linear relationship between these features and glucose in Ohio Dataset

Table: Correlation Coefficient Matrix for (a) Subject 559 and (b) Subject 563

Machine Learning Pipeline Diagram

Machine Learning Pipeline Diagram

Poor performance tracking glucose using Ohio dataset features

Figure: Predictions and True values vs the sample index

- Very poor performance
- Centers around mean and rarely predicts outside the one standard deviation of the true target data
- Features have no predictive power
- Best model: Bagged trees

	Subject
Metrics	559
RMSE	66.321
R^2	0.11
Mean of true	167.23
Std. Dev. of true	70.36

Clarke Error Grid Analysis (CEGA)

- Scatterplot of the reference values plotted against the true values to determine the accuracy of the prediction
- 5 regions denoted A, B, C, D, E:
 - A. Values fall within 20% of reference
 - B. Falls outside 20%, but would not lead to inappropriate action
 - C. Could cause the patient to make inappropriate actions.
 - D. Could lead to harmful action due to lack of detection of hyper- and hypoglycemia
 - E. Confuses hyperglycemic for hypoglycemia and vice-versa

Figure: Example Error Clarke Grid

Aim 1: Ohio Data – Subject 559 – Results

Figure: Error Clarke Grid for Subject 559

- Far too many predictions result in dangerous treatment
- R^2 value is to low to say the prediction represent the

data

Metric	Subject 559
Α	37.89%
В	49.02%
С	1.67%
D	10.80%
Е	0.62%
Total	12432
RMSE	66.32
R^2	0.11

Aim 1: Ohio Data – Subject 563 –MATLAB APP Results

Figure: Error Clarke Grid for Subject 563

- Not surprisingly we see the same happen for Subject 563
- Lower RMSE resulting from lower variance

Metric	Subject 563
Α	49.91%
В	43.83%
С	0.12%
D	6.03%
E	0.12%
Total	13008
RMSE	46.38
R^2	0.16

Can we monitor glucose in the healthy range?

Figure: Error Clarke Grid for Reduced range (a) Subject 559 and (b) Subject 563

- Features are not sufficient even for those with a healthy range of blood glucose levels
- Further highlights why predictions don't have value

Metrics	Subject 559	Subject 563
RMSE	37.168	32.756
R ²	0.06	0.13

Aim 2: UofM Dataset

- Significantly more features than Ohio dataset
- 3 Subjects
 - Subject ID: 1,2,3
- Up to 15 vs 4 features

	Target							Predic	ctors						
			Heart		Amb.	Amb.	Moisture(%):	: Moisture(%):	Heat Flux	Empatica :	: Empatica:	Empatica:	Empatica :		
Value	Glucose	SpO2(%)	rate	Motion	Humidity	Temp.	Ventral	Dorsal	(W/m)	BVP	IBI	TEMP	EDA	Systolic	Diastolic
Mean	<mark>87.30</mark>	96.72	75.05	2.32	49.40	21.52	41.56	40.93	622.63	-1.42	0.44	28.76	9.78	125.24	81.07
Std. Dev.	<mark>12.96</mark>	1.04	14.15	1.57	9.83	5.20	9.57	9.36	375.18	10.51	0.32	4.48	18.77	11.67	5.33
Min.	<mark>68.00</mark>	92.00	56.00	0.33	0.00	0.00	0.00	19.30	-438.21	-33.30	0.00	0.00	0.00	106.00	65.00
25%	78.00	96.31	64.67	1.27	48.35	20.63	39.20	35.80	325.07	-1.38	0.21	27.95	0.18	117.00	78.00
50%	83.00	96.97	71.43	1.97	50.10	21.00	43.20	39.70	615.68	-0.20	0.45	28.49	0.44	121.00	80.00
75%	96.00	97.28	83.32	2.83	52.75	21.70	46.55	46.35	819.54	0.69	0.65	29.36	6.97	130.25	83.63
Max	<mark>119.00</mark>	98.30	112.6 3	8.13	65.30	34.20	55.40	56.60	1248.14	57.16	1.33	39.34	80.99	163.00	94.00
Count	20.00		80.00		80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00	80.00

Subject 1 - Description of Dataset

			Heart		Amb.		Moisture(%): N		Heat Flux						
Features	Glucose	SpO2(%)	rate	Motion	Humidity	Тетр.	Ventral	Dorsal	(W/m)	BVP	IBI .	Skin Temp	EDA	Systolic D	iastolic
Glucose	1.00														
SpO2(%)	-0.02	1.00											$\prod_{i=1}^{n} 1$	8.0	
Heart rate	-0.32	-0.07	1.00											7.0	
Motion	-0.24	0.06	0.48	1.00										.4	
Ambient														·. 4	
Humidity	-0.08	0.18	0.02	-0.17	1.00										
Ambient	0.40	0.10	0.05	0.10	0.00	4 00							0		
Temp.	-0.10	0.13	-0.05	-0.18	0.86	1.00									
Moisture(%):														0.4	
Ventral	-0.24	0.05	0.22	-0.04	0.79	0.62	1.00						_	0.4	
Moisture(%):	0.40	0.40	0.40	0.44	0.40	0.24	0.46	4.00							
Dorsal	-0.19	-0.19	0.42	0.14	-0.10	-0.21	0.16	1.00						8.0	
Heat Flux (W/m)	-0.45	0.08	0.35	0.44	-0.10	-0.30	0.03	0.09	1.00					_	
(• • • • • • • • • • • • • • • • • • •	0.43	0.00	0.55	0.44	0.10	0.50	0.03	0.03	1.00					1	
Empatica: BVP	-0.04	-0.12	0.15	-0.02	-0.07	-0.05	-0.03	0.09	-0.02	1.00					
Empatica: IBI	0.05	-0.04	0.06	-0.07	-0.08	-0.23	0.06	0.27	0.06	0.09	1.00				
Empatica:															
TEMP	-0.05	0.23	-0.10	-0.30	0.16	0.25	0.10	0.04	-0.43	-0.01	-0.04	1.00			
Empatica: EDA	-0.45	-0.10	0.71	0.47	-0.04	-0.17	0.30	0.57	0.49	0.10	0.21	-0.05	1.00		
Systolic	-0.09	-0.02	0.71	0.46	-0.17	-0.38	0.12	0.49	0.32	0.10	0.24	-0.15	0.61	1.00	
Diastolic	-0.08	-0.09	0.39	0.14	-0.07	-0.27	0.10	0.42	0.30	-0.01	0.29	-0.12	0.48	0.47	45 1.00

Results of Trained Model on Unseen data (Subject 1)

Metric	Subject 1
Α	100.00%
В	0.00%
С	0.00%
D	0.00%
E	0.00%
Total	20
RMSE	8.39
R ²	0.71

Figure: CEGA for Subject 1

Figure: Plot of predictions for Subject 1

Model: Bagged Trees

Split data into testing and training sets

• Performance on completely unseen data

All values fall with the A

• Only 20 samples

Results of Subject 2

Metric	Subject 2
Α	90.00%
В	10.00%
С	0.00%
D	0.00%
E	0.00%
Total	20
RMSE	13.72
R^2	0.72

Figure: Plot of predictions, Subject 2

- Model: Gaussian process regression (Rational Quadratic)
- Performance on completely unseen data
- All within A and B

Figure: CEGA for Subject 2

Results from an Automated data collection

Metric	Subject 3
Α	77.46%
В	21.13%
С	0.00%
D	1.41%
E	0.00%
Total	71
RMSE	15.84
R^2	0.40

- Model: Gaussian process regression (Matern 5/2)
- Some features were removed
- More relaxed data collection procedure
- Scalability of the features chosen

Figure: CEGA for Subject 3

Conclusions

- Tested this hypothesis on 2 datasets
- Ohio had many samples but only 4 features
 - Not good enough for BGL predictions
 - Regardless of range
- Our dataset contains up to 15 features
- Features appear to increase predictive power when compared to the OhioT1DM dataset features
- Insufficient data to make any hard conclusions

Potential Pitfalls and Future Works

- Scalability of features
- Dataset is too small
- Curse of Dimensionality
- Variance of target data is too low
- Feature Extraction and Engineering
 - Heart Rate Variability and GSR
- Hyperparameter tuning
- More continuous target variable
- Add more output variables (e.g., blood pressure, blood iron)
- Explore generalization of Personal to Global Models (USAID)

Q & A