Universidad de San Andrés Práctica 9: Sucesiones y Series

1. Escribir los primeros 7 términos de las siguientes sucesiones.

(a)
$$a_n = \frac{n}{n+1}$$
.

(c)
$$a_n = \frac{(-1)^n}{n+1}$$
.

(e)
$$a_n = \frac{\cos(n\pi)}{n}$$
.

(b)
$$a_n = \frac{\sqrt{n}}{n+1}$$
.

(d)
$$a_n = \frac{1}{n!}$$
.

(f)
$$a_n = \frac{2^{n-1}}{(2n-1)^3}$$
.

2. Para cada una de las siguientes sucesiones, hallar el término general a_n y determinar cuales son convergentes, divergentes u oscilantes. En caso de ser posible, calcular $\lim_{n\to\infty} a_n$.

(a)
$$1, 2, 3, 4, \dots$$

(e)
$$-\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, -\frac{1}{16}, \dots$$

(b)
$$1, 3, 5, 7, 9, \dots$$

(c)
$$-1, -\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}, \dots$$

(f)
$$2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots$$

(d)
$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots$$

(g)
$$0, \frac{1}{2}, 0, \frac{1}{4}, \dots$$

3. Analizar la existencia de los siguientes límites de sucesiones. Si existen, calcular su valor.

(a)
$$\lim_{n \to \infty} \frac{n - 6n^4}{5n^4 + 2}$$
.

(d)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1}}{3n}.$$

(f)
$$\lim_{n \to \infty} n \sin(\frac{1}{n})$$
.

(b)
$$\lim_{n \to +\infty} \frac{5^{n+1} + 2}{5^n - 7}.$$

(g)
$$\lim_{n\to\infty} \sqrt[n]{4}$$
.

(c)
$$\lim_{n \to +\infty} \frac{2^{n-2} + 3}{6^n + 1}$$
.

(e)
$$\lim_{n\to\infty} \left(1+\frac{5}{n}\right)^{2n}$$
.

(h)
$$\lim_{n\to\infty} \sqrt[n]{3n+1}$$
.

4. Determinar si la siguientes series geométricas convergen o no. En caso de que converjan calcular la suma.

(a)
$$\sum_{n=1}^{\infty} 2^{n-2}$$
.

(d)
$$\sum_{n=1}^{\infty} \frac{3}{2^{n-1}}$$
.

(g)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 3^{n+1} - 4^{n+2}}{6^n}.$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n 3$$
.

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{n-1}}$$
.

(h)
$$\sum_{n=1}^{\infty} \frac{3 \cdot 4^{n+1} - 8^n}{4^{2n}}.$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^{n-1}.$$

(f)
$$\sum_{n=1}^{\infty} (-1)^{n-1} 2^{2-n}$$
.

- 5. Hallar, cuando sea posible, todos los valores de $a \in \mathbb{R}$ para los que se cumple:
 - (a) $\sum_{n=0}^{\infty} \frac{a^n}{9^n}$ es convergente.

(c) $\sum_{n=0}^{\infty} \frac{2 \cdot a^n}{9^n} = 1.$

(b) $\sum_{n=0}^{\infty} \frac{a^n}{9^n} = \frac{9}{4}$.

- $(d) \sum_{n=0}^{\infty} \frac{a^n}{9^n} = -1.$
- 6. Calcular todos los valores de $a \in \mathbb{R}$ para que $\sum_{n=1}^{\infty} \frac{1+2^n}{a^n} = \frac{35}{12}$.
- 7. A partir de la igualdad $\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$, para |x| < 1, deducir las siguientes fórmulas:
 - (a) $1 + x^2 + x^4 + \dots + x^{2n} + \dots = \frac{1}{1 x^2}$, para |x| < 1.
 - (b) $x + x^3 + x^5 + \dots + x^{2n+1} + \dots = \frac{x}{1-x^2}$, para |x| < 1.
 - (c) $1 + 2x + 4x^2 + 8x^3 + \dots + 2^n x^n + \dots = \frac{1}{1 2x}$, para $|x| < \frac{1}{2}$.
- 8. Hallar todos los valores de x para los que cada una de las siguientes series convergen y calcular la suma correspondiente al x_0 dado.

 - (a) $\sum_{n=0}^{\infty} 5\left(\frac{x}{7}\right)^n$. Dar la suma si $x_0 = 2$. (d) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{8^n}$. Dar la suma si $x_0 = 5$.
 - (b) $\sum_{n=1}^{\infty} (x-3)^n$. Dar la suma si $x_0 = \frac{5}{2}$. (e) $\sum_{n=1}^{\infty} \frac{4^{n+2}}{x^n}$. Dar la suma si $x_0 = 6$.
 - (c) $\sum_{n=0}^{\infty} (2x-1)^n$. Dar la suma si $x_0 = \frac{1}{4}$.
- 9. Para cada una de las series del Ejercicio 8 hallar la fórmula de la suma en términos de x. Usar la fórmula hallada para calcular la suma correspondiente al x_0 dado. Comparar los resultados y el esfuerzo de hacerlo de una y otra manera.
- 10. Utilizar el criterio de la integral para analizar si las siguientes series son convergentes o no.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

- (d) $\sum_{n=0}^{\infty} ne^{-n}$.
- (g) $\sum_{n=0}^{\infty} \frac{\ln(n)}{n}$.

- (b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$.
- (e) $\sum_{1}^{\infty} \frac{1}{\sqrt[4]{2n+1}}$.
- (c) $\sum_{n=0}^{\infty} \frac{1}{n(\ln(n))^3}.$
- (f) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln(n)}}.$
- 11. Utilizar el criterio de la integral para determinar para cuales $p \in \mathbb{R}_{\geq 0}$ la series $\sum \frac{1}{n^p}$ converge.