- 1. Los puntos de fusión y ebullición, a presión atmosférica normal, del alcohol etílico son -117 °C y 78.5 °C respectivamente. Convertir estas temperaturas a escala Fahrenheit y Kelvin.
- 2. El termómetro de mercurio de un médico está mal calibrado ya que indica erróneamente un valor de -2 °C para el punto de congelación del agua y 108 °C para el punto de ebullición del agua.
 - (a) ¿Cuál será la temperatura centígrada verdadera cuando este termómetro indica que un paciente tiene una fiebre de 40 °C?
 - (b) ¿Cuál será la única temperatura para la cual el termómetro indica un valor correcto?
- 3. ¿Qué cantidad de calor se desprende cuando 100 gr de vapor de agua a 150 °C se enfrían y congelan produciendo 100 gr de hielo a 0 °C. (Tomar para el calor específico del vapor el valor $2.01~\rm kJ/kg~K$)
- **4.** Una barra de hierro a 20 °C tiene una longitud inicial igual de 300 cm. El coeficiente de dilatación lineal del hierro vale 1.2×10^{-5} °C⁻¹. Determine el alargamiento de la barra a 120 °C.
- 5. Para evitar que se modifique el periodo del péndulo de un reloj no se debe modificar su longitud cuando la temperatura del mismo varia en un cierto rango. Para lograr esto se construye el péndulo uniendo dos barras de materiales diferentes cuyas dimensiones a una dada temperatura son L_{0A} y L_{0B} respectivamente. Estos materiales tienen la particularidad que el coeficiente de dilatación lineal del material A es positivo ($\alpha_A > 0$) y el coeficiente de dilatación lineal del material B es negativo ($\alpha_B < 0$). Determine la relación que debe existir entre L_{0A} y L_{0B} para que podamos lograr el objetivo.
- 6. Para asegurar un ajuste perfecto, los remaches de aluminio usados en los aviones se fabrican ligeramente más gruesos que los orificios y se los enfría con hielo seco (CO₂ sólido) antes de ser introducidos en los orificios. Si el diámetro de un orificio es de 20 mm. Cuál debe ser el diámetro del remache a 20 °C para que su diámetro sea igual al orificio cuando se enfría a -78 °C que es la temperatura del hielo seco. $\alpha_{Al} = 24 \times 10^{-6}$ °C⁻¹.
- 7. Calcular que cantidad de calor hay que entregarle a una Masa de 3 kg de agua para calentarla de 20 °C a 100 °C. Idem Para 3 kg de hierro. $C_{Fe}=0.1$ kcal/kg °C. $C_{H_2O}=1$ kcal/kg °C .
- 8. Una pared exterior de una casa se puede aproximar por una capa de 10.16 cm de ladrillo corriente (k=0.7 W/m °C), seguida de una capa de 3 .81 cm de yeso (k=0.48W/m °C) ¿Qué espesor de aislante de lana de roca (k=0.065 W/m °C) debería añadirse para reducir en un 80 % la perdida de calor (o la ganancia) a través de la pared?

9. Se necesita calcular el disipador que debe colocarse a un transistor 2N3055 que trabajará disipando una potencia de 30 W. Considerar la temperatura ambiente de trabajo igual a 40 °C. ¿Qué temperatura alcanzará el disipador? ¿Y la cápsula del transistor? Ayuda: toda la información que esta faltando buscarla en el data sheet del transistor.