CMSC631: Project Report

Shrey Patel, UID: 120210242

December 2024

Project Overview: Coq for Numerical Analysis

Goal: To study how Coq can be used for formal verification of numerical algorithms for solving differential equations.

Accomplished Goals

- Survey and understanding of real analysis libraries:
 - 1. Coq STL:
 - Set of real numbers R
 - Operators +, * with identities RO, R1
 - Axioms on real numbers: total_order, completeness, etc.
 - Lemmas for operators, orders, transcendental functions on reals (e.g. trigonometric, exponential, etc.)
 - 2. Coquelicot[2]:
 - Extension of Coq STL to support differential and integral calculus
 - Subsets defined as predicates on sets: T -> Prop
 - Neighbourhoods defined as filters: (T -> Prop) -> Prop
 - Limits defined as maps between neighbourhoods:

```
(T -> U) -> ((T -> Prop) -> Prop) -> ((U -> Prop) -> Prop)
```

- Derivatives as maps between functions: (T -> U) -> ((T -> Prop) -> Prop) -> (T -> U) -> Prop
- Lemmas for derivatives, integrals, Taylor Series, etc.
- Defined and proved various helper lemmas on real numbers (in code file Base.v):

```
Lemma Rplus_lt_r : forall r r' : R, (0 < r') \rightarrow (r < r + r').

Lemma Rplus_le_r : forall r r' : R, (0 <= r') \rightarrow (r <= r + r').

Lemma Rabs_scalar : forall x y : R, (0 < x) \rightarrow (\text{Rabs } (x * y) = x * \text{Rabs } y).
```

- Defined an ordinary differential equation for exponential decay (in code file ODE.v):
 - Differential Equation: $\frac{dy}{dt} = -\lambda y$, $y(t_0) = y_0$
 - Coq definition: As a relation of type $R \rightarrow (R \rightarrow R) \rightarrow Prop$:

```
forall (x: R) (n: nat),  \begin{split} &\text{ex\_derive\_n f n x.} \\ &\text{Definition exp\_ode (lambda: R) } (y:R\to R) := \\ &\text{(is\_differentiable y)} \land \\ &\text{(forall t: R, Derive\_n y 1 t} = - \text{(lambda*(y t)))}. \end{split}
```

Definition is_differentiable (f: $R \rightarrow R$): Prop :=

- Defined and proved a lemma for double derivative:

```
Lemma double_deriv : forall lambda zeta : R, forall y : R \rightarrow R, (forall t : R, Derive_n y 1 t = - (lambda * y t)) \rightarrow Derive_n y 2 zeta = lambda * lambda * y zeta.
```

- Implemented a numerical algorithm for solving the above differential equation (in code file NumericalMethod.v):
 - Forward Euler: $y_{n+1} = (1 \lambda \Delta t)y_n$
 - Coq definition:

- Proved a theorem on local error bound (in code file LocalError.v)
 - **Theorem:** Let the exact solution be y and the numerical solution be \hat{y} . Then, assuming that at time t_n , both the exact and the numerical solution agree (i.e. $y(t_n) = \hat{y}_n$), the error introduced by the numerical solution in one time step after t_n is bounded by the factor $\left| \left| \frac{y_0(\lambda \Delta t)^2}{2} \right| \right|$, where y_0 is the initial value of y, i.e. $y_0 = y(t_0)$. In short, $|y(t_n + \Delta t) \hat{y}_{n+1}| \le \left| \left| \frac{y_0(\lambda \Delta t)^2}{2} \right| \right|$
 - Coq definition:

```
Theorem local_error_bounded: forall y: R \rightarrow R, forall lambda t0 tn dt: R, 0 < \text{lambda} \rightarrow 0 < \text{dt} \rightarrow 0 < \text{tn} \rightarrow 0 < (\text{lambda} * \text{dt}) < 1 > 0 < (\text{lambda} * \text{dt}) < 1 > 0 < (\text{lambda} * \text{dt}) < 1 > 0 < (\text{lambda} * \text{dt}) > 0 < (\text{lambda} * \text{lambda} * \text{la
```

- Proved a theorem on global error bound (in code file GlobalError.v)
 - **Theorem:** Let the exact solution be y and the numerical solution be \hat{y} . Then, after starting from the same initial state y_0 at time t_0 , the error after n time steps (i.e. at time $t_n = t_0 + n \Delta t$) is bounded by the factor $\left| \left| \frac{ny_0(\lambda \Delta t)^2}{2} \right| \right|$, meaning that the error grows linearly in worst case for the chosen numerical algorithm. In short, $|y(t_0 + n \Delta t) \hat{y}_n| \le \left| \left| \frac{ny_0(\lambda \Delta t)^2}{2} \right| \right|$
 - Coq definition:

```
Theorem global_error_bounded: forall y: R \rightarrow R, forall lambda t0 dt: R, 0 < lambda \rightarrow 0 < dt \rightarrow 0 < (lambda * dt) < 1 \rightarrow exp_ode lambda y \rightarrow forall n: nat, (Rabs ((y (t0 + (INR n) * dt)) - (euler (y t0) lambda dt n))) <= INR n * (((lambda * dt)^2 * (Rabs (y t0))) / INR 2).
```

Unaccomplished Goal:

The proof for local error uses a lemma (defined in code file ODE.v) that any function of type R \rightarrow R which satisfies the differential equation exp_ode defined above for a given value of λ and initial value y_0 must be of the form exp_ode_exact defined below:

```
Definition exp_ode_exact (lambda y0 : R) := fun (t : R) \Rightarrow (y0 * (exp (- (lambda * t)))). (* Theorem to prove that the exact solution is the only solution of the given ODE *) Theorem exp_eqv : forall lambda t0 : R, forall y : R \rightarrow R, exp_ode lambda y \rightarrow y = exp_ode_exact lambda (y t0).
```

This lemma is crucial for expressing the local and global error bounds in terms of the initial value of the function y_0 . It is analytically provable using integration. Integration in Coquelicot library is implemented using Reimann sums, which I have not been able to understand properly, so I have not been able to complete the proof of this lemma.

References

- 1. Sylvie Boldo, Catherine Lelay, Guillaume Melquiond. Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives. 2012.
- 2. Sylvie Boldo, Catherine Lelay, Guillaume Melquiond. Coquelicot: A user-friendly library of real analysis for Coq. 2014.
- 3. Ariel Kellison and Andrew Appel. Verified Numerical Methods for Ordinary Differential Equations. 2022.