SYNTHESIZER/ FUNCTION GENERATOR

3325A

OPERATING AND SERVICE MANUAL

000782

MODEL 3325A SYNTHESIZER/FUNCTION GENERATOR

Serial Numbers: All

IMPORTANT NOTICE

This manual applies to all instruments. Earlier versions of the 3325A, however, may differ in design from the instruments this revision documents directly. Design and documentations changes are identified by a Δ symbol. The delta symbols refer servicing personnel to the backdating section (Section VII) where specific information regarding the change is presented.

WARNING

To prevent potential fire or shock hazard, do not expose equipment to rain or moisture.

Manual Part No. 03325-90002

Microfiche Part No. 03325-90052

© Copyright Hewlett-Packard Company 1978, 1981, 1984 P.O. Box 69, Marysville, Washington 98270

Printed: May 1984

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment [,except that in the case of certain components listed in Section I of this manual, the warranty shall be for the specified period]. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by -hp-. Buyer shall prepay shipping charges to -hp- and -hp- shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to -hp- from another country.

Hewlett-Packard warrants that its software and firmware designated by -hp- for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett-Packard does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

 $\overline{\sim}$

Alternating or direct current (power line).

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

NOTE:

The NOTE sign denotes important information. It calls attention to procedure, practice, condition or the like, which is essential to highlight.

Model 3325A Table of Contents

TABLE OF CONTENTS

Section	on	Page	Section	Page
I.	GENE	RAL INFORMATION1-1	3-24.	Entry Errors3-4
	1-1.	Introduction	3-26.	Function Selection3-4
	1-5.	Instrument Description1-1	3-28.	Frequency Entry3-4
	1-9.	Specifications	3-30.	Frequency Limits3-4
	1-11.	Supplemental Operating Information .1-1	3-32.	Frequency Display and Resolution .3-5
	1-13.	Remote Control1-1	3-34.	Auxiliary Output (Sine Function Only)3-5
	1-15.	Options	3-36.	Amplitude Entry 3-5
	1-17.	Accessories Supplied1-5	3-39.	Amplitude Calibration 3-5
	1-19.	Accessories Available 1-5	3-41.	High Voltage Output Option 0023-6
	1-21.	Instrument and Manual Identification 1-6	3-43.	DC Offset3-6
	1-24.	Safety Considerations1-6	3-46.	Phase Entry
	1-27.	Recommended Test Equipment1-6	3-49.	Frequency Sweep3-7
			3-55.	Sweep Marker3-9
Section	on	Page	3-58.	Sweep X Drive Output3-10
II.	INSTA	ALLATION2-1	3-60.	Sweep Z Blank Output3-10
	2-1.	Introduction	3-62.	Amplitude Modulation3-10
	2-3.	Initial Inspection	3-66.	Phase Modulation
	2-5.	Preparation For Use2-1	3-68.	Modify Keys
	2-6.	Power Requirements2-1	3-70.	Store and Recall3-11
	2-8.	Line Voltage Selection 2-1	3-72.	Operator's Checks3-11
	2-10.	Power Cable2-1	3-74.	Self Test
	2-12.	HP-IB Connections2-1	3-76.	Output Checks3-11
	2-15.	3325A Listen/Talk Address2-3	3-78.	Operator's Maintenance3-12
	2-17.	HP-IB Description2-4	3-81.	HP-IB Operation3-12
	2-19.	Connecting Oven Option 001 2-4	3-83.	General HP-IB Description 3-13
	2-21.	Operating Environment 2-4	3-88.	Definition of HP-IB Terms
	2-23.	Cooling System 2-4		and Concepts
	2-26.	Bench Operation 2-4	3-89.	Basic Device Communication
	2-28.	Rack Mounting2-4		Capability
	2-30.	Storage and Shipment2-4	3-91.	Message Definitions3-14
	2-31.	Environment2-4	3-93.	3325A Response to Messages3-14
	2-33.	Instrument Identification 2-6	3-95.	HP-IB Work Sheet3-14
	2-35.	Packaging	3-97.	HP-IB Addressing3-14
				3325A Remote Programming 3-14
Section	on	Page	3-101.	
III.	OPER	ATION3-1	3-103.	Developing an HP-IB Program3-15
	3-1.	Introduction	3-107.	Universal and Addressed Commands3-17
	3-3.	Panel Features	3-109.	Placing the 3325A in Remote 3-17
	3-5.	Power/Warm-Up3-3	3-111.	The 3325A Address3-17
	3-8.	Initial Conditions	3-113.	
	3-10.	Self Test	3-115.	
	3-12.	Front/Rear Signal Output3-3	3-118.	
	3-14.	Sync Output3-3	3-120.	
	3-16.	External Reference Input3-4	3-122.	Programming Waveform Function 3-21
	3-18.	10MHz Oven Option 0013-4	3-124.	
	3-20.	Manual Programming3-4	2 -2	Functions
	3-22.	Clear Display	3-126.	

Table of Contents

Model 3325A

TABLE OF CONTENTS (Cont'd)

	3-128.	Programming Execution Functions 3-22		4-47.	Ramp Retrace Time4-16
	3-130.	Programming Amplitude Units		4-49.	Sync Output Test4-16
		Conversion		4-51.	Square Wave Symmetry4-16
	3-132.	Programming Storage Registers 3-23		4-53.	Frequency Accuracy 4-17
	3-134.	Service Requests3-23		4-55.	Phase Increment Accuracy4-17
	3-136.	Serial Poll3-23		4-57.	Phase Modulation Linearity 4-19
	3-138.	Status Byte		4-59.	Amplitude Accuracy 4-20
	3-140.	Busy Flag		4-61.	DC Offset Accuracy (DC Only)4-23
	3-142.	Sweep Flag		4-63.	DC Offset Accuracy
	3-144.	Masking or Enabling Service			with AC Functions 4-25
	5 1111	Requests		4-65.	Triangle Linearity
	3-146.	Interrogating Program Errors3-24		4-67.	X Drive Linearity4-27
	3-148.	Interrogating Entry Parameters3-25		4-69.	Ramp Period Variation
	3-150.	Interrogating Function		4-71.	HP-IB Interface Test4-30
	3-150.	interrogating I unction		4-71.	TH -IB Interface Test4-30
	3-152.	Interrogating Miscellaneous	C4		Daga
		Parameters	Sect		Page
	3-154.	Using the Interrogate Capability 3-26	V.		JSTMENTS
	3-154.	3325A Programming Procedure 3-27		5-1.	
	J-150.	332371 Trogramming Trocedure 3 27		5-3.	Equipment Required5-2
	Annon	dix A. Meta Messages Block		5-5.	Adjustment Procedures5-2
		mmed		5-7.	Power Supply5-2
	Diagra	innedA-1		5-8.	D/A Converter Offset5-2
	A	dia D. Dagaramaina The Model 2225 A		5-9.	Voltage Controlled Oscillator
		dix B. Programming The Model 3325A			(VCO Frequency)5-2
	with th	ne 9825A CalculatorB-1		5-10.	Analog Phase Interpolation (API)5-2
				5-11.	30MHz Reference Oscillator 5-3
Sect	ion	Page		5-12.	Option 001 High Stability
١V.	PERF	ORMANCE TESTS4-1			Frequency Reference5-3
	4-1.	Introduction		5-13.	Sine Wave Amplitude Calibration 5-3
	4-3.	Calculator-Controlled Test4-1		5-14.	X Drive5-4
	4-5.	Operational Verification 4-1		5-15.	Amplifier Bias Adjustment 5-4
	4-8.	Required Test Equipment4-1		5-16.	Ramp Stability5-5
	4-10.	Self Test		5-17.	Amplitude Flatness 5-5
	4-12.	Sine Wave Verification4-1		5-18.	Mixer Spurious Signal 5-6
	4-14.	Square Wave Verification 4-2			
	4-16.	Triangle and Ramp Verification4-3			
	4-18.	Amplitude Flatness Check 4-3	Sect		Page
	4-20.	Sync Output Check4-4	VI.		LACEABLE PARTS6-1
	4-22.	Frequency Accuracy			Introduction
	4-24.	Output Level and Attenuator		6-4.	Ordering Information6-1
	7 27.	Check4-4		6-6.	Non-Listed Parts 6-1
	4-26.	Harmonic Distortion Test 4-5		6-8.	Proprietary Parts6-1
	4-28.	Close-In Spurious Signal Test4-6		6-10.	Printed Circuit Assemblies6-1
	4-20.	HP-IB Interface Test4-6			
	4-30. 4-32.	Performance Tests4-11			
			Sect		Dogo
	4-35.	Equipment Required			Page
	4-37.	Harmonic Distortion Test 4-12	V11.		UAL BACKDATING
	4-39.	Spurious Signal Tests		7-1.	Introduction
	4-41.	Integrated Phase Noise Test 4-15		7-3.	Format
	4-43.	Amplitude Modulation Envelope		7-5.	Change Sheets and Service Notes7-1
		Distortion Test4-15		7-8.	Backdating Information7-2
	4-45.	Square Wave Rise Time		7-9.	Service Group A - Keyboard and
		and Abberations4-16			Display (03325-66505) $\Delta 1 \dots$

Section	Page	Section	Page
7-12.	Service Group B - HP-IB Circuits	8-7.	Keyboard and Display
	$(P/O \ 03325-66506) \ \Delta 2 \ \dots 7-3$		(Service Group A)8-1
7-15.	Service Group C - Control Circuits	8-12.	HP-IB Circuits (Service Group B) 8-3
	(P/O 03325-66506) Δ2	8-18.	Control Circuits (Service Group C).8-5
7-18.	Service Group D - Voltage Controlled	8-24.	Frequency Synthesis 8-8
	Oscillator Shield (P/O 03325-66521)	8-43.	Reference Circuits
	Δ3		(Service Group G)8-12
7-21.	Service Group E - ÷ N.F. Counter	8-51.	Mixer (Service Group H)8-13
	(P/O 03325-66521) Δ37-7	8-53.	D/A Converter (Service Group I) .8-13
7-24.	Service Group F - Fractional N	8-59.	Function Circuits
	Analog Circuits (P/O 03325-66521)		(Service Group J)8-16
	Δ37-10	8-72.	Output Amplifier
7-27.	Service Groups D and G - VCO Buffer	o 7 2.	(Service Group K)8-19
	(P/O 03325-66503), 30MHz Reference	8-77.	Attenuator (Service Group L)8-19
	and Dividers (P/O 03325-66503)	8-80.	High Voltage Output Option 002
	Δ4	0 00.	(Service Group M)8-19
7-31.	Service Group H - Mixer	8-82.	Sweep Drive Circuits
7-31.	(P/O 03325-66503) $\Delta 4 \dots 7-14$	0-02.	(Service Group N)8-19
7-34.	Service Group I - D/A Converter and	8-89.	Crystal Oven Option 001
7-54.	Sample/Hold (P/O 03325-66514)	0-09.	(Service Group M)8-22
	Δ5	8-91.	Power Supplies (Service Group O) 8-22
7-37.	Service Group J - Function Circuits	8-98.	
7-37.	(P/O 03325-66514) Δ 57-17	8-99.	Sine Amplitude Control Path8-23/8-24
7-40.	Service Group K - Output Amplifier	8-102.	Amplitude Control Circuitry .8-23/8-24
7-40.		8-102.	Auto Calibration Disable
7-43.	(P/O 03325-66514) Δ57-20	0 104	(ACD)
7-43.	Service Group L - Attenuator		Servicing Information8-25
	(03325-66523) and Relay Drivers	8-105.	Power Line Voltage Selection 8-25
7.47	(P/O 03325-66514) $\Delta 5, \Delta 6 \dots 7-22$	8-107.	Fan Filter8-25
7-47.	Service Group M - Options: High Voltage	8-109.	Adapter Cable8-25
	Output (Opt. 002) (03325-66508) and	8-111.	Access to Reverse Side of A21, A3, A14,
	High Stability Reference (Opt. 001)	0.112	and A68-25
7.40	(03325-66509) $\Delta 7 \dots$	8-113.	A6, A14, A3, A21, A23 Connector
7-49.	Service Group N - Sweep Drive Circuits	0.115	Compatibility8-26
7.50	(P/O 03325-66514) Δ57-24		Troubleshooting Information 8-26
7-52.	Service Group O - Power Supplies	8-117.	Test Equipment Required8-26
	$(03325-66502) \Delta 8 \dots$	8-119.	Adjustments Required After
Section	Daga	0.121	Repair
	Page ICE	8-121.	Basic Troubleshooting Procedures . 8-28
8-1.	Introduction	8-124.	Orientation Of Components 8-28
8-3.	Basic Theory8-1	8-126.	Mnemonic Dictionary8-28
8-5.	Theory Of Operation8-1	8-128.	Logic Troubleshooting by Signature
0-3.	Theory of Operation		Analysis8-28
	LIST OF	TABLES	
Table	Page	Table	Page
1-1.	Specifications	3-1.	Operating Information
1-2.	Supplemental Information1-3	3-2.	Amplitude Limits of AC Function3-5
1-3.	HP-IB Interface Capability 1-6	3-3.	High Voltage Output Amplitudes
1-4.	HP-IB Response Times1-7		(Option 002)3-6
1-5.	Recommended Test Equipment1-8	3-4.	Maximum DC Offset
2-1.	HP-IB Addresses2-5		with any AC Function 3-7

Table of Contents Model 3325A

LIST OF TABLES (Cont'd)

Table			
1 aute	Page	Table	Page
3-5.	General Interface Management Lines 3-14	7-4.	A6 Board Revisions
3-6.	Definition of Meta Messages3-15	7-5.	A21(A1) Board Revisions7-6
3-7.	3325A Implementation of Messages .3-16	7-6.	A21(A1) Board Revisions7-8
3-8.	Interface Functions	7-7.	A21(A1) Board Revisions7-10
3-9.	Summary of 3325A Programming	7-8.	A3 Board Revisions7-12
	(ASCII)	7-9.	A3 Board Revisions7-14
3-10.	Programming Codes	7-10.	A14(A4) Board Revisions7-16
3-11.	SRQ Mask/Enable Data3-25	7-11.	A14(A4) Board Revisions7-17
4-1.	Test Equipment Required for	7-12.	A14(A4) Board Revisions7-21
	Operational Verification4-2	7-13.	A23(A7) Board Revisions7-22
4-2.	Test Equipment Required	7-14.	A14(A4) Board Revisions7-24
	for Performance Tests 4-11	7-15.	A2 Board Revisions
5-1.	Test Equipment Required For	8-1.	Attenuation and Voltage Ranges 8-20
	Adjustments	8-2.	Assembly/Cable Compatibility
5-2.	Padding Values 5-6		for Serial Numbers 1748A04250
6-1.	List of Abbreviations 6-2		and Below8-25
6-2.	List of Manufacturers6-2	8-3.	Test Equipment for Troubleshooting .8-26
6-3.	Replaceable Parts List6-3	8-4.	Adjustments Required After Repair 8-28
7-1.	3325A Circuit Board Revisions7-2	8-5.	Trouble Symptoms8-29
7-2.	A5 Board Revisions	8-6.	Mnemonic Dictionary8-30
7-3.	A6 Board Revisions7-3		
	LIST OF ILI	USTRATION	IS
Figure	Page	Figure	Page
2-1.			
2-1.	Line Voltage Selection	5-1.	Ramp Reset Waveform
2-1.	Line Voltage Selection	5-1. 5-2.	
			Ramp Reset Waveform5-5
2-2.	Power Cables	5-2.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1.	Power Cables	5-2. 5-3.	Ramp Reset Waveform
2-2. 2-3. 2-4.	Power Cables	5-2. 5-3. 6-1.	Ramp Reset Waveform 5-5 Amplitude Flatness Adjustment 5-6 Location of Adjustments
2-2. 2-3. 2-4. 3-1. 3-2.	Power Cables	5-2. 5-3. 6-1.	Ramp Reset Waveform 5-5 Amplitude Flatness Adjustment 5-6 Location of Adjustments 5-7 Location of Parts
2-2. 2-3. 2-4. 3-1.	Power Cables	5-2. 5-3. 6-1. 7-1.	Ramp Reset Waveform 5-5 Amplitude Flatness Adjustment 5-6 Location of Adjustments
2-2. 2-3. 2-4. 3-1. 3-2.	Power Cables	5-2. 5-3. 6-1. 7-1.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2.	Power Cables	5-2. 5-3. 6-1. 7-1.	Ramp Reset Waveform 5-5 Amplitude Flatness Adjustment 5-6 Location of Adjustments 5-7 Location of Parts 6-31/6-32 Processor Interrupt Circuitry (Serial Numbers 1748A00230 and Below) 7-4 Schematic and Board Location of R11 and R12 (Serial Numbers 1748A02600 and Below)
2-2. 2-3. 2-4. 3-1. 3-2. 3-3.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1.	Power Cables	5-2. 5-3. 6-1. 7-1.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4. 7-5.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4. 7-5. 7-6.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4. 7-5.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4. 7-5. 7-6.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4. 7-5. 7-6.	Ramp Reset Waveform
2-2. 2-3. 2-4. 3-1. 3-2. 3-3. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11.	Power Cables	5-2. 5-3. 6-1. 7-1. 7-2. 7-3. 7-4. 7-5. 7-6. 7-7.	Ramp Reset Waveform

TABLE OF CONTENTS (Cont'd)

Figure	Page	Figure	Page
7-10.	U14 Biasing Circuitry (Serial Numbers	8-22.	Simplified Illustration of Ramp
	1748A00620 and Below)7-12		Generation
7-11.	Sine Amplitude Control and Amplitude	8-23.	Marker and X Drive Start-Stop
	Modulation Circuitry (Serial Numbers		Flip-Flops
	1748A04675 and Below)7-13	8-24.	X Drive Ramp Output8-21
7-12.	Mixer Driver Circuitry (Serial Numbers		Power Supply Standby/On Circuit 8-22
	1748A04675 and Below)7-15	8-26.	Sine Amplitude Control Path 8-23/8-24
7-13.	DC Offset Control (Serial Numbers	8-27.	Adapter Cable8-27
	1748A01075 and Below)7-18). Access to Reverse Side of
7-14.	DC Offset Control (Serial Numbers	()	Assemblies
	1748A08790 to 1748A01076)7-18	8-28(b)). Basic Troubleshooting Procedure8-31
7-15.	Amplitude Control Circuitry (Serial		Signature Analysis Test 4 8-A-5
	Numbers 1748A05825 and Below) 7-19		Keyboard and Display, A58-A-7/8-A-8
7-16.	Amplitude Control Circuitry (Serial). Signature Analysis Test 38-B-5/8-B-6
	Numbers 1748A05826 to). Signature Analysis Test 38-B-7/8-B-8
	1748A08790)7-20). Signature Analysis Test 33 8-B-9
7-17.	Output Amplifier (Serial Numbers		HP-IB Circuits, A68-B-11
	1748A01900 and below)7-21). Signature Analysis Test 1 8-C-19/8-C-20
7-18.	Relay Drive Circuitry (Serial Numbers	, ,). Signature Analysis Test 1 8-C-21/8-C-22
	1748A01075 and Below)7-23). Signature Analysis Test 2 8-C-25/8-C-26
7-19.	Location Of F2 (Serial Numbers). Signature Analysis Test 2 8-C-27/8-C-28
	1748A05825 to 1748A01076)7-26). Signature Analysis Test 5 8-C-31/8-C-32
7-20.	±15V Regulator (Serial Numbers). Signature Analysis Test 5 8-C-33/8-C-34
	1748A01075 and Below)7-26). Signature Analysis Test 5 8-C-35
8-1.	Simplified Block Diagram8-2		Control Circuits, A68-C-37
8-2.	Basic Block Diagram, Logic Circuits .8-2		VCO, A21, and VCO Buffer,
8-3.	Keyboard and Display Block Diagram 8-3		A3 8-D-7/8-D-8
8-4.	HP-IB Data Input Path8-4	8-38.	÷ N.F. Counter, A218-E-3/8-E-4
8-5.	HP-IB Data Output Path8-4	3 5 5 5 6	TP9 and TP10 Waveforms8-F-4
8-6.	HP-IB Management and Handshake .8-5		Fractional N Analog, A218-F-5/8-F-6
8-7.	Basic Block Diagram of Control		Sine Amplitude Control Path8-G-2
0 /.	Circuits	8-40.	
8-8.	Phase Lock Loop8-7		A38-G-3/8-G-4
8-9.	Phase Detector8-8	8-H-1.	Sine Amplitude Control Path8-H-2
8-10.	Integrator Output8-9		Mixer, A38-H-3/8-H-4
8-11.	Addition of D/A Converter and		Sine Amplitude Control Path8-I-3
0 111	Pulse Remove Blocks 8-9		D/A Converter and Sample/Hold,
8-12.	Phase Accumulation 8-10		A148-I-5/8-I-6
8-13.	Divide By N Counter 8-11	8-J-1.	Sine Amplitude Control Path 8-J-4
8-14.	External Reference Phase Lock Loop	8-43.	
	Block Diagram8-12	8-K-1.	Sine Amplitude Control Path8-K-2
8-15.	Level Control and Amplitude	8-44.	Output Amplifier, A148-K-5/8-K-6
	Modulation	8-45.	Relay Drivers, A14, and Attenuator,
8-16.	Mixer Diagram8-14		A238-L-3/8-L-4
8-17.	Preset Counters 8-14	8-46.	High Voltage Output Option 002
8-18.	D/A Converter8-15		A88-M-3/8-M-4
8-19.	DAC Sample/Hold	8-47.	High Stability Reference Option 001,
8-20.	Enable Signals For Function		A98-M-5/8-M-6
	Switching8-17	8-48.	Sweep Drive Circuits, A148-N-3/8-N-4
8-21.	Simplified Illustration of Triangle		Power Supplies, A28-O-3/8-O-4
·	Generation 8-18		Function Block Diagram 8-P-1/8-P-2

SECTION I GENERAL INFORMATION

TABLE OF CONTENTS

Paragraph	Page
1-1. Introduction	. 1-1
1-5. Instrument Description	
1-9. Specifications	
1-11. Supplemental Operating Information	. 1-1
1-13. Remote Control	. 1-1
1-15. Options	. 1-1
1-17. Accessories Supplied	
1-19. Accessories Available	
1-21. Instrument and Manual Identification	
1-24. Safety Considerations	. 1-6
1-27. Recommended Test Equipment	.1-6
LIST OF TABLES	
Table	Page
1-1. Specifications	1-2
1-2. Supplemental Information	
1-3. HP-IB Interface Capability	
1-4. HP-IB Response Times	
1-5. Recommended Test Equipment	

Model 3325A General Information

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION.

- 1-2. The Operating and Service Manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 3325A Synthesizer/Function Generator. The Operating Manual supplement is a copy of the first three sections of the Operating and Service Manual, plus the Operational Verification procedures from Section IV. The supplement should be kept with the instrument for use by the operator. The part numbers of both the Operating and Service Manual and the Operating Manual supplement are shown on the title pages.
- 1-3. Also shown on the title page of this manual is a Microfiche part number. This number can be used to order 4×6 inch transparencies of the Operating and Service Manual. Each Microfiche contains up to 96 photo-duplicates of the manual pages. The Microfiche package includes the latest Manual Changes supplement as well as pertinent Service Notes.
- 1-4. Additional copies of the Operating and Service Manual, Operating Information Supplement, or Service Notes can be ordered through your nearest Hewlett-Packard Sales and Service Office. (A list of these offices is provided at the end of this manual.)

1.5. INSTRUMENT DESCRIPTION.

1-6. The Model 3325A Synthesizer/Function Generator produces the following signals at a minimum frequency of 1 μ Hz and maximum frequency of:

Sine wave	20 MHz
Square wave	10 MHz
Triangle	10 kHz
Positive slope ramp	10 kHz
Negative slope ramp	10 kHz

Frequency may be selected with up to eleven digits of resolution. Output amplitude is 1 mV to 10 V peak-to-peak. The output level may also be selected or displayed in V rms or in dBm (50 ohms). Any function may be do offset up to ± 4.5 V, or the output may be do only up to ± 5 V. An optional high voltage output produces up to 40 V p-p into ≥ 500 ohms load.

1-7. Frequency sweep of all functions is provided in linear or log sweep; at sweep times of 10 milliseconds to 99.99 seconds for linear sweep. Maximum time for log sweep is 99.99 seconds and minimum time is 2 seconds for single log sweep and 0.1 second for continuous log sweep. Single linear sweep may be up or down, while continuous sweep is up/down/up, etc., in the linear mode and up/up, etc., in log mode.

1-8. The Model 3325A is fully programmable through the rear panel Hewlett-Packard Interface Bus (HP-IB) connector. A device such as a programmable calculator is capable of remotely controlling the 3325A. Interface information is given in Section II of this manual, and programming information is in Section III.

1-9. SPECIFICATIONS.

1-10. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Any changes in specifications due to manufacturing, design or traceability to the U.S. National Bureau of Standards are included in Table 1-1 of this manual and/or the Manual Changes Supplement.

1-11. SUPPLEMENTAL OPERATING INFORMATION.

1-12. Table 1-2 contains information describing general operating characteristics of the 3325A. This information is supplemental operating information and is not to be considered as specifications.

1-13. REMOTE CONTROL.

1-14. Table 1-3 lists the HP-IB interface capabilities of the Model 3325A in conformity with IEEE Standard 488-1978, "Standard Digital Interface for Programmable Instrumentation". HP-IB response times are given in Table 1-4.

1-15. OPTIONS.

1-16. The following options extend the frequency stability and output amplitude capabilities of the Model 3325A:

Option 001	High Stability Frequency Reference
Option 002	High Voltage Output

The following options indicate the line voltage to which the instrument was set at the factory:

Option 100	Nominal 100 V ac
Option 120	Nominal 120 V ac
Option 220	Nominal 220 V ac
Option 240	Nominal 240 V ac

Table 1-1. Specifications.

FUNCTIONS AND FREQUENCIES

Sine Wave:

Signal Output (Front or Rear Panel): 0.000 001 Hz to 20 999 999.999 Hz

Auxiliary Output (Rear Panel): 21 000 000.000 Hz to 60 999 999.999 Hz Underrange to 19 000 000.001 Hz

Square Wave: 0.000 001 Hz to 10 999 999.999 Hz

Triangle: 0.000 001 Hz to 10 999.999 999 Hz

Positive and Negative Slope Ramp: 0.000 001 Hz to 10 999.999 999 Hz

FREQUENCY RESOLUTION

1 μ Hz for frequencies below 100 kHz 1 mHz for frequencies 100 kHz and higher

FREQUENCY ACCURACY (Standard Instrument)

 \pm 5 \times 10⁻⁶ of selected value (20° to 30°C)

FREQUENCY STABILITY (Standard Instrument)

 $\pm 5 \times 10^{-6}$ per year (20° to 30°C)

SIGNAL CHARACTERISTICS

Sine Wave:

Harmonic Distortion relative to the amplitude of the fundamental frequency at full output on each range

	Fundamental Frequency	No Harmonic Greater Than
-	0.1 Hz to 50 kHz 50 kHz to 200 kHz 200 kHz to 2 MHz 2 MHz to 15 MHz 15 MHz to 20 MHz	- 65 dB - 60 dB - 40 dB - 30 dB - 25 dB

Spurious: All non-harmonically related output signals will be more than 70dB below the carrier (-60dB with DC offset), or less than -90dBm, whichever is greater.

Phase Noise: \geq -60dB (Option 001 Only) for a 30kHz band centered on a 20MHz carrier (excluding \pm 1Hz about the carrier).

Square Wave:

Rise/Fall Time: \leq 20 nanoseconds, 10% to 90% at full output

Symmetry: \leq .02% of period + 3 nanoseconds

Overshoot: ≤ 5% of peak to peak amplitude at full output

Triangle:

Linearity, 10% to 90%, best fit straight line: ± 0.05% of full p-p output for each range

Ramps (Positive or Negative Slope):

Linearity, 10% to 90%, best fit straight line: \pm 0.05% of full p-p output for each range

Retrace Time: \leq 3 microseconds, 90% to 10% Ramp Period Variation: < \pm 1% of period, maximum

AMPLITUDE

Amplitude Accuracy with no Attenuation (Attenuator range 1) into 50 ohm Load. (No D.C. offset)

Function and frequency range

Tolerance relative to programmed amplitude

Sine Wave .001 Hz to 100 kHz	± 0.1 dB
Square Wave .001 Hz to 100 kHz	± 1.0%
Triangle .001 Hz to 2 kHz 2 kHz to 10 kHz	± 1.5% ± 5%
Ramps .001 Hz to 500 Hz 500 Hz to 10 kHz	± 1.5% ± 10%

Flatness with no attenuation (Attenuator Range 1) into a 50 Ohm load Tolerance relative to programmed amplitude at 1 kHz

Sine Wave 100 kHz to 20 MHz	± 0.3 dB
Square Wave 100 kHz to 10 MHz	± 10%

Amplitude accuracy with D.C. offset and no attenuation (Range 1) into a 50 ohm load.

Tolerance relative to programmed amplitude.

Sine Wave .001 Hz to 100 kHz	± 0.3 dB
Square .001 Hz to 100 kHz	± 3%
Triangle .001 Hz to 2 kHz 2 kHz to 10 kHz	± 4% ± 6%
Ramps .001 Hz to 500 Hz 500 Hz to 10 kHz	± 4% ± 11%

Attenuator Accuracy (these errors are additive with the amplitude accuracy errors)

Tolerance relative to programmed amplitude.

.001 Hz to 20 kHz Attenuator Range 1	No Error
.001 Hz to 100 kHz Attenuator ranges 2 through 8	± 0.1 dB
100 kHz to 10 MHz Attenuator ranges 2 through 8	± 0.2 dB
10 MHz to 20 MHz Attenuator ranges 2 through 4 Attenuator ranges 5 through 8	± 0.2 dB ± 0.5 dB

Accuracy of DC Offset (into 50 ohms):

DC Only (No AC Function): ± 0.4% of full peak output for each range*

*Except lowest attenuator range where accuracy is ±

DC + AC, \leq 1 MHz: \pm 1.2%, Ramps \pm 2.4%

DC + AC, > 1 MHz: $\pm 3\%$

AMPLITUDE MODULATION (of Sine Function only)

Modulation Envelope Distortion: - 30 dB to 80% modulation at 1 kHz, 0 V dc Offset

PHASE OFFSET

Range: ±719.9° with respect to arbitrary starting

phase, or assigned zero phase

Resolution: 0.1°

Stability: ± 1° phase/°C Increment Accuracy: ±0.2°

PHASE MODULATION

Linearity (Sine Function): ±0.5%, best fit straight line

SYNC OUTPUT

Output Levels into 50 ohms:

Square wave with $V_{high} \ge + 1.2V$, $V_{low} \le + 0.2V$

X DRIVE OUTPUT

Amplitude: 0 to +10 V dc linear ramp proportional to sweep frequency (sweep up only)

Linearity, 10% to 90%, best fit straight line: ±0.1% of final value. Specified for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time.

OPTION 001

HIGH STABILITY FREQUENCY REFERENCE

Ambient Stability: $\pm 5 \times 10^{-8}$ (0° to 55°C referenced to +30°C)

Aging Rate: $\pm 5 \times 10^{-8}$ per week (after 72 hours

continuous_operation)

 $\pm 1 \times 10^{-7}$ per month (after 15 days

continuous operation)

OPTION 002

HIGH VOLTAGE OUTPUT

Frequency Range:

Sine and Square Wave: 1 µHz to 1 MHz Triangle and Ramps: 1 µHz to 10 kHz

Amplitude:

Range: 4mVp-p to 40Vp-p ($\geq 500\Omega$, < 500pF load)

maximum output current, ± 40mA

Accuracy (at 2 kHz): ±2% of full output for each

range

Flatness: ± 10% of programmed amplitude

DC Offset:

Range: 4 times the range of the standard instrument

Accuracy: $\pm (1\% + 25 \text{ mV})$ of full output for each

range

Signal Characteristics:

Sine Wave Harmonic Distortion (relative to the fundamental frequency at full output into ≥ 500 ohms, < 500 pF)

Fundamental	No Harmonic
Frequency	Greater Than
10 Hz to 50 kHz	– 65 dB
50 kHz to 200 kHz	– 60 dB
200 kHz to 1 MHz	– 40 dB

Square Wave:

Rise/Fall Time: ≤ 125 nanoseconds, 10% to 90% at full output with ≥ 500 ohm, < 500pF load

Overshoot: <10% of peak amplitude with ≥500 ohm, < 500 pF load

299.9 mV to 100.0 mV

99.99 mV to 30.00 mV

29.99 mV to 10.00 mV

9.999 mV to 3.000 mV

2.999 mV to 1.000 mV

6

7

Table 1-2 Supplemental Information MAIN SIGNAL OUTPUT 30 5 100

BNC Connector, switchable to front or rear panel (not switchable with Option 002)

May be floated a maximum of ± 42 V peak (ac + dc) from chassis (earth) ground

Amplitude Ranges:

50 Ω Impedance

All AC Functions (with no dc offset):

Range No.	Attenuation Factor	Amplitude (Peak-to-Peak)
1	1	10.00 V to 3.000 V 2.999 V to 1.000 V
3	10	999.9 mV to 300.0 mV

8		3000	
DC	Offset	Only:	

300

1000

Range No.	Attenuation Factor	Amplitude (Peak-to-Peak)
1.	1	5.000 V to 1.500 V
2	3	1.499 V to 500.0 mV
3	10	499.9 mV to 150.0 mV
4	30	149.9 mV to 50.00 mV
5	100	49.99 mV to 15.00 mV
6	300	14.99 mV to 5.000 mV
7	1000	4.999 mV to 1.500 mV
8	3000	1.499 mV to 1.000 mV

Table 1-2. Supplemental Information (Cont'd).

AC Function with DC Offset:

Range No.	Attenuation Factor	AC Function Amplitude (p-p)	Maximum DC (+ or -)	Min. DC (+ or -)
1	1	9.998 V to 1.000 V	1.000 mV to 4.500 V	1.000 mV
2	3	999.9 mV to 333.4 mV	1.166 V to 1.499 V	0.100 mV
3	10	333.3 mV to 100.0 mV	333.3 mV to 450.0 mV	0.100 mV
4	30	99.99 mV to 33.34 mV	116.6 mV to 149.9 mV	0.010 mV
5	100	33.33 mV to 10.00 mV	33.33 mV to 45.00 mV	0.010 mV
6	300	9.999 mV to 3.334 mV	11.66 mV to 14.99 mV	0.001 mV
7	1000	3.333 mV to 1.000 mV	3.333 mV to 4.500 mV	0.001 mV

High Voltage Output Option 002:

Amplitude and Ranges: 4 times the standard instrument amplitudes

Output Impedance: < 2 Ω at DC to < 10 Ω at 1 MHz

Square Wave Settling Time: < 1 μ s to settle to within .05% of final value for frequencies of 10 Hz to 500 kHz, tested at full output with no load

FREQUENCY SWEEP

Sweep Time:

Linear Sweep: 0.01 second to 99.99 seconds (single or continuous)

Log Sweep:

Single Sweep: 2 seconds to 99.99 seconds Continuous Sweep: 0.1 second to 99.99 seconds

Maximum Sweep Width: 1 Hz to maximum frequency of the function selected

Minimum Sweep Width (Linear):

Minimum Sweep Width

	Function	Sweep Time 0.01 second	Sweep Time 99.99 seconds
-	Sine	0.1 mHz	999.9 mHz
	Square	0.05 mHz	499.5 mHz
	Triangle	0.005 mHz	49.95 mHz
	Ramps	0.01 mHz	99.99 mHz

Minimum Sweep Width (Log): 1 decade

Phase Continuity: Sweep is phase continuous over the full frequency range

WARMUP TIME

Standard Instrument: 20 minutes to within specified accuracy

Option 001 High Stability Frequency Reference: Reference will be within \pm 1 \times 10 $^{-7}$ of final value 15 minutes after turn-on at 25 °C for an off time of less than 24 hours

AUXILIARY INPUTS (May be floated a maximum of ± 42 V peak [ac + dc] from chassis [earth] ground)

Reference: For phase-locking the 3325A to an external frequency reference of 10 MHz or a subharmonic of 10 MHz down to 1 MHz. Level must be 0 dBm to +20 dBm into 50 ohms. Rear panel BNC connector.

Amplitude Modulation Input (Sine Function Only):

Modulation depth at full output for each range: 0 to 100%

Modulation frequency range: DC to 500 kHz (0 to

21 MHz carrier frequency)

Sensitivity: 5 V peak for 100% modulation

Input Impedance: 10 k Ω Connector: Rear panel BNC

Phase Modulation:

Modulation Frequency Range: DC to 5 kHz

Modulation Depth

Function	Depth (+ or -)
Sine	850°
Square	425°
Triangle	42.5°
Ramps	85°

Input Impedance: 20 k Ω

Connector: Rear panel BNC

AUXILIARY OUTPUTS (May be floated a maximum of ± 42 V peak [ac + dc] from chassis [earth] ground)

Auxiliary Frequency Output (ac coupled output):

Frequency Range: 21 MHz to 60.999 999 999 MHz, with underrange coverage to 19.000 000 001 MHz

Amplitude: 0 dBm

Output Impedance: 50 ohms

Connector: Rear panel BNC

1 MHz Reference Output (for phase-locking other instruments to 3325A):

Amplitude: 0 dBm

Output Impedance: 50 ohms

Connector: Rear panel BNC

Marker Output (Linear sweep only):

Levels: High to Low TTL compatible voltage transition at selected marker frequency, sweep up only.

Connector: Rear panel BNC

Table 1-2. Supplemental Information (Cont'd).

X Drive Output (Sweep up only):

Amplitude: 0 to + 10 V linear ramp proportional to

sweep frequency

Connector: Rear panel BNC

Z Blank Output:

Levels (TTL compatible voltage levels):

Linear Sweep:

Single: Low at start of sweep, High at stop. Re-

mains High until start of next sweep.

Continuous: Low during sweep up, High during sweep down.

Log Sweep:

Single: Low at start of sweep, High at stop. Remains High until start of next sweep.

Continuous: Low during sweep. Goes High

momentarily at stop frequency.

10 MHz Oven Reference Output, Option 001, for phase locking the 3325A to the optional high stability frequency reference:

Amplitude: 0 dBm, 50 ohms

Connector: Rear panel BNC. Must be connected to

the rear panel EXT REF IN connector.

REMOTE CONTROL

Hewlett-Packard Interface Bus (HP-IB) Control: (HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978). Time shown is in addition to programming Frequency Switching and Settling Time: *

< 10 ms to within 1 Hz of final value for 100 kHz span

< 25 ms to within 1 Hz of final value for 1 MHz span

< 70 ms to within 1 Hz of final value for 20 MHz span

Phase Switching and Settling Time: *

< 15 ms to within 90° of phase lock for 20 MHz frequency change

Amplitude Switching Time: *

< 30 ms to within amplitude specifications

*Times shown are in addition to programming time

GENERAL

Operating Environment:

Temperature: 0° to 55°C

Relative Humidity: <95%, 0° to 40°C

Altitude: $\leq 15,000$ ft.

Storage Temperature: -50° to +75°C

Storage Altitude: ≤50,000 ft.

Power Requirements:

100/120/220/240V + 5%, -10%, 48 to 66 Hz 60 VA, 100 VA with all options, 10 VA standby

Dimensions in millimeters and (inches):

132.6 (5%) high \times 425.5 (16%) wide \times 497.8 (19-5/8) deep

Weight in kilograms and (lbs):

Net weight: 9(20)

Shipping Weight: 14.5 (32)

The following accessory options are also available for the Model 3325A:

Front Handle Assembly
Rack Mount Flange Kit
Rack Mount Flange Kit/Front
Handle Assembly
Additional Operating and Service
Manual

1-17. ACCESSORIES SUPPLIED.

1-18. A special connector is supplied with the High Stability Frequency Reference Option 001 for connecting the rear panel Reference Output to the Reference Input. This connector is Part No. 1250-1499.

1-19. ACCESSORIES AVAILABLE.

1-20. The following accessories are available for use with the Model 3325A:

Number	Description	
11048C	50 ohm Feedthru Termination	
11356A	Ground Isolator	
03325-80001	Oven Board Assy. (Converts 3325A to Option 001)	
03325-80002	High Voltage Option (Converts 3325A to Option 002)	
5061-0077	Rack Mount Flange Kit (Option 908)	
5061-0083	Rack Mount Flange/Front Handle Kit (Option 909)	
5061-0089	Front Handle Kit (Option 907)	

General Information Model 3325A

1-21. INSTRUMENT AND MANUAL IDENTIFICATION.

1-22. The instrument serial number is located on the rear panel. Hewlett-Packard uses a two-section serial number consisting of a four-digit prefix and a five-digit suffix. A letter between the prefix and suffix identifies the country in which the instrument was manufactured (A = USA, G = West Germany, J = Japan, U = United Kingdom). All correspondence with Hewlett-Packard concerning this instrument should include the complete serial number.

1-23. The serial number prefix is the same for all identical instruments and changes only when a change is made to the instrument. The suffix is assigned sequentially and is different for each instrument. If the serial number of your instrument is lower than the serial number on the title page of this manual, refer to Section VII, MANUAL CHANGES, for the information that will adapt this manual to your instrument. This is especially important if the serial prefix of your instrument is different than the one shown on the title page of this manual. An instrument manufactured after the printing of this manual may differ in some respect from the information in this manual. In this case, a yellow Manual Changes supplement included with the manual explains how to adapt the manual to your instrument.

1-24. SAFETY CONSIDERATIONS.

1-25. To ensure safe operation and to retain the instrument in a safe condition, this Operating and Service Manual contains information, cautions and warnings which must be adhered to by the user or service personnel.

Table 1-3. HP-IB Interface Capability.

Code	Function
SH1	Source handshake capability
AH1	Acceptor handshake capability
Т6	Basic talker; Serial poll; Unaddressed to talk if addressed to listen
L3	Basic listener; Listen only; Unaddressed to listen if addressed to talk
SR1	Service Request capability
RL1	Remote/Local capability
PPØ	No parallel poll capability
DC1	Device Clear capability
DTØ	No device trigger capability
CØ	No controller capability
E1	Open collector bus drivers

1-26. The symbol \(\frac{1}{2} \) appearing on the front or rear panel of the 3325A is an international symbol meaning "refer to the Operating and Service Manual". The symbol identifies important instructions required to prevent damage to the instrument. To ensure the safety of the operating and maintenance personnel and retain the safe operating condition of the instrument, these instructions must be adhered to.

1-27. RECOMMENDED TEST EQUIPMENT.

1-28. Equipment required to maintain the Model 3325A is listed in Table 1-5. Other equipment can be substituted if it meets or exceeds the critical specifications listed in the table.

Model 3325A General Information

Table 1-4. HP-IB Response Times.

	Table 1-4.	HP-IR Kesponse I	imes.	
Function	Mnemonic	Input Data Transfer Time	Device Time	Output Data Transfer Time
Function (Waveform) 1 Digit	FU	450-500 μs 225-250 μs	1600 ms 2.8 ms	450-500 μs 225-250 μs
Frequency ≤ 11 Digits + Decimal Delimiters	FR HZ, KH, or MH	450–500 μs 225–250 μs each 450–500 μs	7.0 ms 2.8 ms each 12.5 ms	450–500 μs 225–250 μs each 450–500 μs
Amplitude ≤4 Digits + Decimal Delimiters	AM VO or MV VR or MR DB	450-500 μs 225-250 μs each 450-500 μs 450-500 μs 450-500 μs	6.8 ms 2.8 ms each 90 ms 130 ms 250 ms	450-500 μs 225-250 μs each 450-500 μs 450-500 μs 450-500 μs
DC Offset ≤ 4 Digits + Decimal Delimiters	OF VO or MV	450–500 μs 225–250 μs each 450–500 μs	6.8 ms 2.8 ms each 82 ms	450-500 μs 225-250 μs each 450-500 μs
Phase ≤4 Digits + Decimal Delimiter	PH DE	450–500 μs 225–250 μs each 450–500 μs	5 ms 2.8 ms each 28 ms	450-500 μs 225-250 μs each 450-500 μs
Sweep Start Frequency ≤ 11 Digits + Decimal Delimiters	ST HZ, KH, or MH	450–500 μs 225–250 μs each 450–500 μs	7.0 ms 2.8 ms each 10.3 ms	450–500 μs 225–250 μs each 450–500 μs
Sweep Stop Frequency ≤ 11 Digits + Decimal Delimiters	SP HZ, KH or MH	450–500 μs 225–250 μs each 450–500 μs	7.0 ms 2.8 ms each 10.3 ms	450-500 μs 225-250 μs each 450-500 μs
Sweep Marker Frequency ≤ 11 Digits + Decimal Delimiters	MF HZ, KH or MH	450-500 μs 225-250 μs each 450-500 μs	7.0 ms 2.8 ms each 10.3 ms	450-500 μs 225-250 μs each 450-500 μs
Sweep Time ≤ 4 Digits + Decimal Delimiter	T1 SE	450-500 μs 225-250 μs each 450-500 μs	5.5 ms 2.8 ms each 7.0 ms	450–500 μs 225–250 μs eacl 450–500 μs
Store	SR	450-500 μs	11 ms	
Recall	RE	450-500 μs	1700 ms	
Assign Zero Phase	AP	450-500 μs	5.2 ms	
Amptd Cal	AC	450-500 μs	1500 ms	
Start Single Sweep	SS	450-500 μs	300 ms	
Start Continuous Sweep	SC	450-500 μs	300 ms	
Interrogate (Add Parameter Mnemonic Time)	ı	225-250 μs	3 ms	
Mask Service Request	MS	450-500 μs	4.5 ms	
High Voltage Output	HV	450-500 μs	48 ms	
Rear/Front Output	RF	450-500 μs	44.5 ms	
Self Test	TE	450-500 μs	10,000 ms	
Sweep Mode	SM	450-500 μs	4.5 ms	
Data Transfer Mode	MD	450-500 μs	4.5 ms	
Interrogate Function	IFU	675-750 μs	1603 ms	
Interrogate Error	IER	675-750 μs	11.5 ms	
Universal Commands		\sim 225 μ s per byte		
Amplitude Modulation	MA	450-500 μs	7.0 ms	
Phase Modulation	MP	450-500 μs	7.0 ms	

Table 1-5. Recommended Test Equipment.

			F	Required For		
Instrument	Critical Specifications	Oper. Ver.	Perf. Tests	Adjust- ments	Trouble- shooting	Recommended Model
Oscilloscope	Vertical Bandwidth: dc to 100 MHz Deflection: 0.01 V to 10V/div Horizontal Sweep: 0.05 μs to 1 s/div x10 Magnification Delayed Sweep	×	х	х	х	-hp- 1740A
Electronic Counter	Frequency Measurement Frequency Range: to 20 MHz Resolution: 8 digits Accuracy: ±2 counts Time Interval Average A to B Resolution: 0.1 ns	X	X	X		-hp- 5328A with Opt 01 and 040 or 041
Digital Voltmeter	DC Function Ranges: .1 V, 1 V, 10 V, 100 V Accuracy: ±.2% Resolution: 4½ digits AC Function Ranges: 1 V, 10 V, 100 V Accuracy: ±.5% Resolution: 4 digits DC Function Ranges: .1 V, 1 V, 10 V, 100 V Accuracy: ±.05%	×	×	×	X	-hp- 3466A -hp- 3455A
	Resolution: 6 digits AC Function: True RMS Ranges: 1 V, 10 V, 100 V Accuracy: ± .2% Resolution: 6 digits Crest Factor: 4:1					
50-ohm Load	Accuracy: ±.2% Power Rating: 1 W	Х	Х	Х	×	-hp- 11048C
High Frequency Spectrum Analyzer	Frequency Range: 1 kHz to 100 MHz Amplitude Accuracy: ±.5 dB	Х	Х	×		-hp- 141T/8552B/8553B/ 8566A/8568A
Low Frequency Spectrum Analyzer	Frequency Range: 20Hz-50kHz Amplitude Accuracy: ±.5 dB Spurious Responses: 80 dB below reference	×	X	X		-hp- 3580A/3585A
Sine Wave Signal Source	Frequency: 1 kHz Amplitude: 1 V rams into 20 kΩ Frequency Range:		х	×		-hp- 204C -hp- 3335A 1 MHz-20 MHz Amplitude Range: to $+7.0$ dBm Output Impedance: 50Ω Phase Noise (Integrated): 9.9 MHz: < -63 dB 20 MHz: < -70 dB Spurious: >75 dB below fundamental
Double Balanced Mixer	Impedance: 50Ω Frequency: to 20 MHz		Х			-hp- 10534A or 10514A
1 MHz Low Pass Filter	Cut-off Frequency: 1 MHz Stopband Atten: 50 dB by 4 MHz Stopband Freq: 4 MHz-80 MHz		×			F882 1MHz Low Pass Filter, Impedance 50Ω, C Shape Factor, Metal Can, BNC's Allen Avionics, Inc. 224 E. Second St. Mineola, NY 11501
15 kHz Noise Equivalent Filter	Consisting of: Resistor: 10 k Ω ±1% Capacitor: 1600 pF ±5%		×			-hp- 0757-0340 -hp- 0160-2223

Model 3325A General Information

Table 1-5. Recommended Test Equipment (Cont'd).

			F			
Instrument	Critical Specifications	Oper. Ver.	Perf. Tests	Adjust- ments	Trouble- shooting	Recommended Model
AC Voltmeter	Ranges: 0.1 V to 1 V Frequency Range: 20 Hz-1 MHz Input Impedance: \geq 1 M Ω Meter: Log scale Acc (100 Hz to 10 kHz): \pm 1%		х			-hp- 400 FL
Resistor	$1 k\Omega \pm 5\%$			Х		-hp- 0683-1025
Oscilloscope Probe	Division Ratio: 10 to 1 Impedance: 1 MΩ, 12 pF			X	×	-hp- 10041A
DC Power Supply	Volts: 0-10 V Amps: 10 mA Floating output		X	×		-hp- 6214A
Frequency Standard (Required for Option 001 Only)	Frequency: 5 MHz Accuracy: 1 × 10 ⁻⁹			×		-hp- 105B
Calculator (Required for automatic testing)	HP-IB Control Capability	X	Х			-hp- 9825A with 98034A Interface, General I/O ROM, Extended I/O ROM
System Voltmeter	DC Voltage: 0 to ±10 V Sample/Hold Measurement External Trigger: Low True TTL Edge Trigger Trigger Delay: selectable, 10 µs to 140 µs		×			-hp- 3437A
BNC Tee Adapter BNC-to-Triax Adapter	Male-female-female BNC-to-dual banana plug Female BNC-to-Male Triax	×	X X X	X		-hp- 1250-0781 -hp- 1250-2277 -hp- 1250-0595
Signature Analyzer	Signature: 4-digit hexadecimal Characters:Othru 9,A,C,F,H,P,U Threshold Logic 1: +2.2 V Logic 0: +0.5 V Clock Frequency: ≥1.5 MHz				X	-hp- 5004A
Pulse Generator	Pulse Rate: 500 kHz Pulse Width: \leq 1 μ s DC Offset: 1 V				×	-hp- 3312A
Resistor	56.2Ω 1% 1/8W	Х	Х			-hp- 0757-0395
Thermal Converter	Input Impedance: $75~\Omega$ Input Voltage: $0.5~V$ rms Frequency: $2~kHz$ to $20~MHz$ Frequency Response: $\pm0.05~dB$ $2~kHz$ to $20~MHz$		Х	х		-hp- 11050A
Resistive Divider	Consisting of: Resistor: 36.5 Ω 1% $\%$ W Resistor: 13.7 Ω 1% $\%$ W		×			-hp- 0757-0996 -hp- 0698-4998
Resistive Divider	Consisting of: Resistor: 40.2 Ω 1% $\frac{1}{2}$ W Resistor: 10 Ω 1% $\frac{1}{2}$ W		Х			-hp- 0698-5022 -hp- 0757-0984
Resistive Divider	Consisting of: Resistor: 30 Ω 1% 1 4 W Resistor: 20 Ω 1% 1 4 W		х			-hp- 0698-7533 -hp- 0698-6296
Resistive Divider	Consisting of: Resistor: 100 kΩ 1% 1/8 W Resistor: 162 kΩ 1% 1/8 W		х			-hp- 0757-0465 -hp- 0757-0470
Termination	50 ohm Feedthrough 1%		×			-hp- 11048C
Thermal Converter	BNC Connectors		Х			-hp- 11050A

SECTION II INSTALLATION

TABLE OF CONTENTS

Paragra	ph		Page
2-1.	Introduction		2-1
2-3.	Initial Inspection		2-1
2-5.	Preparation For Use		2-1
2-6.	Power Requirements		2-1
2-8.	Line Voltage Selection		
2-10.	Power Cable		
2-12.	HP-IB Connections		2-1
2-15.	3325A Listen/Talk Address		2-3
2-17.	HP-IB Description		
2-19.	Connecting Oven Option 001		
	Operating Environment		
2-23.	Cooling System		
2-26.	Bench Operation		
2-28.	Rack Mounting		
	Storage and Shipment		
2-31.	Environment		
2-33.	Instrument Identification		
2-35.	Packaging		2-6
LIS	T OF ILLUSTRATIONS		LIST OF TABLES
Figure	Page	Table	Pag
	ltage Selection 2-2 Cables 2-3	2-1. HP-IB	Addresses2-
	Connector 2.3		

2-4. Rack Mount and Handle Kits2-6

SECTION II

2-1. INTRODUCTION.

2-2. This section contains instructions for installing and interfacing the Model 3325A Synthesizer/Function Generator. Included are initial inspection procedures, power and grounding requirements, line voltage selection, environmental requirements, installation instructions, HP—IB connection procedure, and instructions for repackaging for shipment.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. This instrument was carefully inspected both mechanically and electrically before shipment. It should be free of mars and scratches and in perfect electrical order upon receipt. Procedures for checking electrical performance are given in Section IV. If there is mechanical damage or defect or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard Sales and Service Office listed at the rear of this manual. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping material for the carrier's inspection. The warranty statement is located in the front of this manual.

2-5. PREPARATION FOR USE.

2-6. Power Requirements.

2-7. The Model 3325A requires a power source of 100, 120, 220, or 240 V ac, +5%, -10%, 48 to 66 Hz single phase. Power consumption is 100 VA maximum.

2-8. Line Voltage Selection.

Before connecting ac power to this instrument, make sure it is set to the line voltage of the power source. Also ensure that the common connection of the power outlet is connected to a protective earth contact.

WARNING

The line voltage selection switches are located inside the top cover of the instrument. Line voltage selection should be done by trained service personnel only. To avoid electrical shock, make sure the power cord is disconnected before removing the instrument cover.

2-9. The line voltage selection switches are set at the factory to correspond to the line voltage option ordered. This information may be found on the rear panel.

Option	Line Voltage Selected
100	100 V
120	120 V
220	220 V
240	240 V

If it is necessary to change the line voltage selection, access to the switches may be gained by removing the top cover of the 3325A. Make the desired voltage selection as shown in Figure 2-1. Be sure to observe the CAUTION in Figure 2-1.

2-10. Power Cable.

2-11. In accordance with international safety standards, this instrument is equipped with a three-wire cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the connector configuration and -hp- part numbers of the available power cables.

2-12. HP-IB Connections.

2-13. Interconnection data concerning the rear panel HP—IB connector is provided in Figure 2-3. This connector is compatible with the -hp-10631 (A, B, or C) HP—IB cables. The lengths of these cables are as follows:

10631A	1 meter
10631B	2 meters
10631C	4 meters

Figure 2-1. Line Voltage Selection.

Model 3325 A Section II

Figure 2-2. Power Cables.

Up to 15 instruments (including the controller) may be connected in an HP—IB system. The HP—IB cables have identical stacking connectors on both ends so that several cables can be connected to a single source. As a practical matter, avoid stacking more than three or four cables on any one connector. If the stack gets too large, the force on the stack can produce enough leverage to damage the connector mounting. Be sure that the connector screws are tightened firmly in place to keep it from working loose during use, and be sure to observe the

CAUTION of Figure 2-3.

2-14. Cable Length Restrictions. System components can be interconnected in virtually any configuration. However, to achieve reliable system performance, proper voltage levels and timing relationships must be maintained. If the system cable is too long, the lines cannot be driven properly and the system will fail to perform. The maximum length of cable that can be used to connect a group of instruments must not exceed 2 meters (6.5 ft.) times the number of instruments to be connected, or 20 meters (65.6 ft.), whichever is less.

2-15. 3325A Listen/Talk Address.

2-16. The 3325A is normally shipped from the factory with the listen address set to ASCII character 1; talk address Q. The 3325A address switches are located inside the top cover near the center of the instrument. The possible HP—IB addresses are shown in Table 2-1. Set the five switches (marked 1 through 5) to the correct positions corresponding to the ASCII code address chosen. The 3325A may be set to a "listen only" condition by setting the switch marked LON to the "1" position. Be sure to leave the ROM switch in the "1" position. This switch is used for troubleshooting only.

Figure 2-3. HP—IB Connector.

WARNING

Because the address switches are located inside the instrument, they should be set by trained service personnel only. To avoid electrical shock, make sure the power cord is disconnected before removing the instrument cover.

2-17. HP-IB Description.

2-18. A description of the HP-IB is provided in Section III of this manual. A study of this information is necessary if you are not familiar with the HP-IB Concept. Additional information concerning the design criteria and operation of the bus is available in IEEE Standard 488-1978 "IEEE Standard Digital Interface for Programmable Instrumentation."

2-19. Connecting Oven Option 001.

2-20. In order to use the Oven Option 001, an external connection must be made between the rear panel 10 MHz OVEN OUTPUT and the REF IN connectors. A special connector for this purpose, -hp- Part No. 1250-1499, is supplied with instruments having Option 001.

2-21. OPERATING ENVIRONMENT.

WARNING

To prevent potential electrical or fire hazard, do not expose equipment to rain or moisture.

2-22. In order for the 3325A to meet the specifications listed in Table 1-1, the operating environment must be within the following limits:

Temperature Relative Humidity Altitude 0 to +55° C 95% at 40° C 4600 meters (15,000 feet)

2-23. Cooling System.

- 2-24. The cooling fan intake and the exhaust vent are located in the rear panel. When operating the instrument, provide at least 75 mm (3 inches) of clearance at the rear, and at least 7 mm (¼ inch) on all sides of the instrument. Failure to allow adequate air circulation will result in excessive internal temperature, reducing instrument reliability.
- 2-25. It is imperative that the fan filter be inspected frequently and cleaned or replaced as necessary to permit the free flow of air through the instrument. To clean the

filter, remove the four nuts that secure the filter retainer. Remove the filter and flush with soapy water, rinse clean, and air dry.

2-26. Bench Operation.

2-27. The instrument has plastic feet attached to the bottom panel. The front feet contain foldaway tilt stands for convenience in bench operation. The tilt stand raises the front of the instrument for easier viewing of the control panel. The plastic feet are shaped to make full-width modular instruments self-align when they are stacked. A front handle kit, -hp- Part No. 5061-0089 (Option 907), can be installed for ease of handling the instrument on the bench (see Figure 2-4). The kit is shipped with the instrument if Option 907 is also ordered. Otherwise, the front handle kit is available separately by its -hp- part number.

2-28. Rack Mounting.

2-29. The 3325A can be rack mounted in a rack having an EIA standard width of 482.6 mm (19 inches). The instrument can be rack mounted with or without a handle kit by use of the following items:

- a. Rack mounting without handles; use Rack Mount Flange Kit -hp- Part No. 5061-0077 (Option 908).
- b. Rack mounting with handles; use the combination Rack Mount Flange/Front Handle Kit -hp- Part No. 5061-0083 (Option 909).

NOTE

The Rack Mount Flange Kit of item a will not provide the space requirement for rack mounting when used with the bench handle assembly (-hp- Part No. 5060-9899, Option 907). To rack mount with handles, the combination kit of item b (Option 909) must be used (see Figure 2-4). If either Option 908 or 909 is ordered, the corresponding kit is shipped with the instrument. Otherwise, both kits are available separately by their -hp- part numbers.

2-30. STORAGE AND SHIPMENT.

2-31. Environment.

2-32. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperature Relative Humidity Altitude -40° C to +75° C 95% at 40° C 15,300 meters (50,000 feet) Model 3325A Installation

Table 2-1. HP—IB Addresses.

. [ASCII Cha	aracters			dre				Equivalent (-Bit Binary	
	Listen Address	Talk Address	(B 5	Bina 4	ry (Code 2	e) 1	Octal	Decimal	Hexadecimal
	SP :: # \$	@ A B C D	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	00 01 02 03 04	00 01 02 03 04	00 01 02 03 04
	% &	E F G	0 0	0	1 1 1	0 1 1	1 0 1	05 06 07	05 06 07	05 06 07
	() * +	H - J K L M N O	0 0 0 0 0 0	1 1 1 1 1 1 1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	10 11 12 13 14 15 16	08 09 10 11 12 13 14	08 09 0A 0B 0C 0D 0E
Factory Selected Address	Ø 1 2 3 4 5 6 7	P Q R S T U V W	1 1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	20 21 22 23 24 25 26 27	16 17 18 19 20 21 22 23	10 11 12 13 14 15 16
	8 9 : ; < = >	X Y Z [\]	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	30 31 32 33 34 35 36	24 25 26 27 28 29 30	18 19 1A 1B 1C 1D

NOTE: The Equivalent Codes shown correspond only to the 5-bit binary switch code. These bits are the same for both listen and talk addresses, and the sixth and seventh bits determine whether the address is listen (01) or talk (10). Some controllers distinguish between listen and talk automatically, requiring only the 5-bit code equivalent to designate a device.

Installation Model 3325A

Figure 2-4. Rack Mount and Handle Kits.

2-33. Instrument Identification.

2-34. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. In any correspondence, refer to the instrument by model number and full serial number.

2-35. Packaging.

- 2-36. Original Packaging. If the original packaging has been retained, pack the instrument in the same manner as it was received. Be sure to seal the shipping container securely. Also, mark the container FRAGILE to assure careful handling.
- 2-37. Other Packaging. The following general instructions should be used for repackaging with commercially available materials.
- a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewelett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)
- b. Use a strong shipping container. A doublewall carton made of 250-pound test material is adequate.
- c. Use enough shock-absorbing material (3-to-4 inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
 - d. Seal the shipping container securely.
- e. Mark the shipping container FRAGILE to assure careful handling.

SECTION III OPERATION

TABLE OF CONTENTS

Paragraph	Page
3-1. Introduction	3-1
3-3. Panel Features	
3-5. Power/Warm-Up	
3-8. Initial Conditions	
3-10. Self Test	
3-12. Front/Rear Signal Output	
3-14. Sync Output	3-3
3-16. External Reference Input	3-4
3-18. 10MHz Oven Option 001	3-4
3-20. Manual Programming	3-4
3-22. Clear Display	3-4
3-24. Entry Errors	3-4
3-26. Function Selection	3-4
3-28. Frequency Entry	
3-30. Frequency Limits	
3-32. Frequency Display and Resolution	
3-34. Auxiliary Output (Sine Function Only)	
3-36. Amplitude Entry	
3-39. Amplitude Calibration	
3-41. High Voltage Output Option 002	3-6
3-43. DC Offset	
3-46. Phase Entry	
3-49. Frequency Sweep	
3-55. Sweep Marker	
3-58. Sweep X Drive Output	
3-60. Sweep Z Blank Output	
3-62. Amplitude Modulation	. 3-10
3-66. Phase Modulation	3-11
3-68. Modify Keys	
3-70. Store and Recall	
3-72. Operator's Checks	
3-74. Self Test	
3-76. Output Checks	
3-78. Operator's Maintenance	3-12
3-81. HP-IB Operation	
3-83. General HP-IB Description	
3-88. Definition of HP-IB Terms and Concepts	. 3-13
3-89. Basic Device Communication Capability	3-14
3-91. Message Definitions	3-14
3-93. 3325A Response to Messages	3-14
3-95. HP-IB Work Sheet	
3.07 UD ID Addressing	2 14

3-100.			3-14
3-101.	3325A HP-IB Capabilities		3-14
3-103.	Developing and HP-IB Program.		3-15
3-107.	Universal and Addressed Comman	nds	3-17
3-109.			3-17
3-111.	The 3325A Address		3-17
3-113.	3325A Data Message Formats		3-17
3-115.	Data Transfer Mode		3-20
3-118.	Programming Data Transfer Mod	le	3-21
3-120.			3-21
3-122.	Programming Waveform Function	1	3-21
3-124.	Programming Binary (On or Off)	Functio	ns3-22
3-126.	Programming Selection Functions		3-22
3-128.	Programming Execution Function	s	3-22
3-130.	Programming Amplitude Units Co	onversio	n3-23
3-132.			3-23
3-134.	Service Requests		3-23
3-136.			3-23
3-138.			3-24
3-140.			3-24
3-142.			3-24
3-144.			3-24
3-146.	Interrogating Program Errors		3-24
3-148.			3-25
3-150.			3-25
3-152.			3-26
3-154.			3-26
3-156.			3-27
Append			A-1
LIST	OF ILLUSTRATIONS		LIST OF TABLES
Figure	Page	Table	Page
3-1. Front and 1	Rear Panel Controls 3-2	3-1.	Operating Information3-1
3-2. Maximum 1	OC Offset		Amplitude Limits of AC Functions3-5
With AC F	unctions		High Voltage Output Amplitudes
3-3. Interface C	onnections		(Option 002)
and Bus Str	ructure3-13	3-4.	Maximum DC Offset
			with any AC Function3-7
		3-5.	General Interface Management Lines 3-14
			Definition of Meta Messages3-15
			3325A Implementation of Messages3-16
			Interface Functions3-16
			Summary of 3325A
			Programming (ASCII)3-18
		3-10.	Programming Codes3-19
			SRQ Mask/Enable Data3-25

Model 3325A Operation

SECTION III **OPERATION**

3-1. INTRODUCTION.

3-2. This section of the manual contains instructions for manual operation and HP-IB (Hewlett-Packard In-

terface Bus) programming. The HP-IB information includes the basic concepts of the interface bus operation, with which you may already be familiar. Use Table 3-1 to locate the information you need for your particular situation.

Table 3-1. Operating Information.

3.3	Paragraph	Content	Paragraph	Content
3-5	3-3	PANEL FEATURES (Figure 1-1)	3-100	3325A REMOTE PROGRAMMING
3-8	50 55	THE PLANT OF THE PARTY OF THE P		
3-10 SELF TEST		Annual Control of the	3-101	·
3-12 3-14 3-16 3-17 3-17 3-18 3-18 3-18 3-18 3-19 3-19 3-19 3-19 3-19 3-19 3-107 3-109 3-109 3-101 3-109 3-101 3-109 3-101 3-101 3-109 3-101 3-109 3-101 3-101 3-109 3-101 3-101 3-109 3-101 3-1	5.000 5.000	Section Control Contro	2 102	
3-14 SYNC OUTPUT 3-16 3-17 EXTERNAL REFERENCE INPUT 3-18 3-18 10 MHz OVEN OPTION 001 MANUAL PROGRAMMING 3-20 MANUAL PROGRAMMING 3-21 Entry Errors 3-22 Entry Errors 3-23 Entry Errors 3-28 Frequency Entry 3-3-28 Frequency Entry 3-3-30 Auxiliary Output (Sine Function Only) 3-3-31 Auxiliary Output (Sine Function Only) 3-3-36 Amplitude Entry 1	200 200			
3-16 3-18 3-18 3-18 3-18 3-19 3-10 MHZ OVEN OPTION 001 MANUAL PROGRAMMING 3-20 3-22 3-24 3-26 Fenquency Entry 3-26 3-28 Frequency Entry 3-30 Frequency Display and Resolution Auxiliary Output (Sine Function Only) Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration 3-41 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-3, High Voltage Output Amplitudes DC Offset 3-58 Sweep S Drive Output Sweep Marker 3-58 Sweep X Drive Output Sweep S Drive Output Sweep Store and Recall See Amplitude Modulation And Side Modify Keys Store and Recall OPERATOR'S CHECKS Structure Table 3-5, General Interface Management Lines Data Transfer Mode Programming Data Transfer Mode Programming Entry Parameters Frequency Amplitude Offset Table 3-12 Programming Binary (On or OFF) Function High Voltage Output Option OO2 Table Sale Data Messages Table 3-12 Table 3-13 Table 3-15 Table 3-16 Table 3-17	3-12	FRONT/REAR SIGNAL OUTPUT		Universal and Addressed Commands
3-18 3-20 MANUAL PROGRAMMING 3-22 Clear Display 3-24 Entry Errors 3-28 Function Selection 3-28 Frequency Entry 3-30 3-32 Frequency Limits Frequency Display and Resolution 3-32 Frequency Display and Resolution 3-34 Ascillary Output (Sine Function Only) Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration 3-43 DC Offset Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-55 Sweep Marker 3-55 Sweep Marker 3-56 Sweep X Drive Output 3-62 Amplitude Modulation 3-60 Sweep Z Blank Output Amplitude Modulation 3-62 Amplitude Modulation 3-63 And Modify Keys 3-70 Store and Recall OPERATOR'S CHECKS Self Test OPERATOR'S CHECKS Self Test OPERATOR'S MAINTENANCE HP-IB OPERATION 3-88 Basic Device Communication Capability Table 3-6, Berinition of Meta Messages Table 3-10 Table 3-113 AS21 Table 3-113 AS2113 AS210 Table 3-110, Programming Codes 3325A Data Message Formats Data Transfer Mode Programming Data Transfer Mode Programming Entry Parameters Frequency Amplitude Offset Phase Sweep Start Frequency Sweep Start Frequency Sweep Start Frequency Sweep Time Programming Binary (ON or OFF) Function Programming Binary (ON or OFF) Function Programming Binary (ON or OFF) Function Phase Modulation Phase M	3-14	SYNC OUTPUT	3-109	Placing the 3325A in Remote
3-20 MANUAL PROGRAMMING 3-22 3-24 Clear Display 3-26 Function Selection 5-28 Frequency Entry 3-30 Frequency Limits 3-30 Frequency Display and Resolution 3-30 Auxiliary Output (Sine Function Only) 3-34 Auxiliary Output (Sine Function Only) 3-35 Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-55 Sweep Marker 3-55 Sweep Marker 3-56 Sweep Marker 3-60 Amplitude Modulation 3-62 Amplitude Modulation 3-63 Amplitude Modulation 3-63 Amplitude Modulation 3-63 Amplitude Modulation 3-64 Amplitude Modulation 3-65 Store and Recall OPERATOR'S CHECKS 3-74 OUTPUT Checks OPERATOR'S CHECKS 3-78 OPERATOR'S CHECKS 3-88 Basic Device Communication Capability 3-89 Basic Device Communication Capability 3-91 Message Definition of MP-IB Terms and Concepts 3-10 Clear Display and Resolution 3-126 Signaphy Amplitude Messages 3-146 Mosking or Enabling Service Requests Table 3-6, Definition of Meta Messages 3-146 Mosking or Enabling Service Requests Table 3-6, Definition of Meta Messages 3-146 Mosking or Enabling Service Requests Table 3-1, SRC Maskinable Data	3-16	EXTERNAL REFERENCE INPUT	3-111	The 3325A Address
3-20 MANUAL PROGRAMMING 3-22 Secretary Clear Display 3-24 Entry Errors 3-28 Function Selection 3-28 Frequency Entry 3-30 Frequency Limits 3-30 Frequency Limits 3-31 Frequency Display and Resolution 3-34 Auxiliary Output (Sine Function Only) 3-36 Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-49 Phase Entry Frequency Sweep 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-60 Sweep Z Blank Output 3-62 Amplitude Modulation 3-63 Amplitude Modulation 3-63 Amplitude Modulation 3-60 Sweep Z Blank Output 3-60 OPERATOR'S CHECKS 3-74 OUTPUT Checks 3-76 OUTPUT Checks 3-78 OPERATOR'S CHECKS 3-78 OPERATOR'S MAINTENANCE HP-IB DEPRATION 3-88 Basic Device Communication Capability 3-91 Message Definition of MP-IB Terms and Concepts 3-91 Message Definition of Meta Messages 3-146 Intercapting Maximum Concepts 3-146 Intercapting Maximum Saturation 3-126 Application 3-127 Signe 3-128 Application Start Single Sweep 3-128 Signe 3-130 Signe 3-	3-18	10 MHz OVEN OPTION 001		Table 3-9, Summary of 3325A Programming.
3-22 Clear Display 3-24 Entry Errors 3-26 Function Selection 3-27 Frequency Entry 3-28 Frequency Limits 3-30 Frequency Limits 3-30 Auxiliary Output (Sine Function Only) 3-36 Amplitude Entry 3-37 Amplitude Calibration 3-41 Table 3-2, Amplitude Limits of AC Functions 3-43 DC Offset 3-43 DC Offset 3-40 Phase Entry 3-40 Phase Entry 3-55 Sweep Marker 3-55 Sweep Marker 3-60 Sweep Z Blank Output 3-60 Sweep Z Blank Output 3-60 Sweep Z Blank Output 3-70 OPERATOR'S CHECKS 3-74 OUTPUT Checks 3-75 OPERATOR'S CHECKS 3-76 OUTPUT Checks 3-76 OUTPUT Checks 3-77 OPERATOR'S MAINTENANCE 3-78 Basic Device Communication Capability 3-79 Basic Device Communication Capability 3-8 Basic Device Communication Capability 3-9 Message Definition of Meta Messages 3-14 Message Survive Dram Error Mode 3-10 Programming Codes 3-120 Data Transfer Mode 3-120 Programming Data Transfer Mode 9 Programming Binary (On or OFF) Function 1 Programming Binary (On or OFF) Function 1 Phase Modulation 1 Phase Modulation 1 Phase Modulation 1 Phase Modulation 2 Programming Binary (On or OFF) Function 1 Phase Modulation 2 Programming Binary (On or OFF) Function 1 Phase Modulation 2 Programming Selection Functions 2 Programming Selection Functions 2 Programming Execution Functions 2 Programming Execution Functions 2 Programming Execution Function 2 Programming	The second	AND		
3-24 Entry Errors 3-28 Function Selection 3-28 Frequency Entry 3-30 Frequency Limits 3-30 Frequency Units 3-31 Frequency Display and Resolution 3-32 Auxiliary Output (Sine Function Only) 3-34 Auxiliary Output (Sine Function Only) 3-35 Amplitude Entry Table 3-2, Amplitude Limits of AC Functions 3-39 Amplitude Calibration 3-43 DC Offset Table 3-3 High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Sweep Marker 3-49 Frequency Sweep 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-62 Amplitude Modulation 3-62 Amplitude Modulation 3-63 Sweep X Drive Output 3-62 Amplitude Modulation 3-70 Store and Recall 3-72 OPERATOR'S Maintenance 3-78 OUtput Checks 3-78 OPERATOR'S Maintenance 3-81 HP-IB OPERATION 3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure 1-7 Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability Message Definitions Table 3-6, Definition of Meta Messages 3-146 Interrogating Program ming Data Transfer Mode Programming Entry Parameters Frequency Amplitude Programming Entry Parameters Frequency Sweep Stor Frequency Sweep Stor Frequency Sweep Sweep Sweep Sweep Sweep Sweep Stor Frequency Sweep Store Programming Waveform Function Programming Waveform Function Programming Biotry Parameters Frequency Amplitude Offset Phase Sweep Stor Frequency Sweep Store Frequency Sweep Store Frequency Sweep Store Frequency Sweep Store Programming Biotry On or OFF1 Function Programming Biotry On or OFF1 Function Programming Biotry On or OFF1 Function Frequency Sweep Time Programming Biotry On or OFF1 Function Programming Biotry On or OFF1 Function Assign Zare Parameters Frequency Sweep Time Programming Biotry On or OFF1 Function Frequency Sweep Time Programming Biotry On or OFF1 Function Saction Freq				Control of the Contro
3-26 3-28 3-28 Frequency Entry 3-30 Frequency Limits 3-30 3-32 Frequency Display and Resolution 3-34 Auxiliary Output (Sine Function Only) Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-49 Frequency Sweep Sweep Marker 3-55 Sweep Marker 3-58 Sweep X Drive Output Sweep Marker 3-60 Amplitude Modulation Phase Modulation Programming Biary (DN or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Programming Binary (DN or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Programming Binary (DN or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Programming Binary (DN or OFF) Function Frogramming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Selection Functions Assign Zero Phase Reference Programming Selection Functions Start Single Sweep Start Continuous Sweep Perform Amplitude Units Conversion Programming Storage Registers Service Requests Service Requests Service Requests Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	40 C 1 C 10 C 10 C 10 C 10 C 10 C 10 C 1		2 1 1 2	
3-28 3-28 3-30 Frequency Limits Frequency Display and Resolution Auxiliary Output (Sine Function Only) Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Sweep Marker Sweep Marker Sweep X Drive Output Sweep X Drive Output Amplitude Modulation Phase Modulation Modify Keys Store and Recall OPERATOR'S CHECKS Self Test OPERATOR'S CHECKS Self Test OPERATOR'S AMINTENANCE Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines Definition of HP-IB Terms and Concepts Basic Device Communication Capability Message Definitions Table 3-6, Definition of Meta Messages 3-146 Programming Data Transfer Mode Programming Data Transfer	200 200 200	the same of the sa		, and the second
3-30 Frequency Limits Frequency Display and Resolution Auxiliary Output (Sine Function Only) Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration Table 3-3, High Voltage Output Option OO2 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-5 Sweep Marker Sweep Marker Sweep X Drive Output Sweep Marker Sweep X Drive Output Sweep Z Blank Output Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Amplitude Calibration Modify Keys Sweep X Drive Output Sweep Z Blank Output Amplitude Calibration Amplitude Calibration Auxiliary Output (Option OO2) A-122 Amplitude Calibration Programming Entry Parameters Frequency Amplitude Offset Phase Sweep Stop Frequency Sweep Stop Frequency Sweep Marker Frequency Sweep Marker Frequency Sweep Marker Frequency Sweep Marker Frequency Sweep Time Programming Waveform Function Programming Binary (ON or OFF) Function High Voltage Output (Option OO2) Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation Store and Recall OPERATOR'S CHECKS Self Test Output Checks OPERATOR'S CHECKS OPERATOR'S MAINTENANCE HP-IB OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines Definition of HP-IB Terms and Concepts Basic Device Communication Capability Message Definitions Table 3-6, Definition of Meta Messages 3-146 Interrogating Program Errors	3-26	Function Selection		
3-32 Frequency Display and Resolution Auxiliary Output (Sine Function Only) 3-36 Auxiliary Output (Sine Function Only) 3-36 Auxiliary Output (Sine Function Only) 3-36 Auxiliary Output (Sine Function Only) 3-37 Amplitude Limits of AC Functions 3-39 Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Phase Entry 3-49 Frequency Sweep 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-58 Sweep X Drive Output 3-60 Applitude Modulation 3-60 Applitude Modulation 3-60 Applitude Modulation 3-61 Applitude Modulation Phase Recall OPERATOR'S CHECKS 3-70 OPERATOR'S CHECKS 3-78 OPERATOR'S MAINTENANCE HP-IB OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines Definition of HP-IB Terms and Concepts Basic Device Communication Capability Message Definitions Table 3-6, Definition of Meta Messages 3-146 Interrogating Program Errors Frequency Amplitude Offset Phase Sweep Start Frequency Sweep Marker Frequency Sweep Start Frequency Sweep Start Frequency Sweep Marker Frequency Sweep Ime Programming Mercaution Programming Mercaution Programming Selection Function Assign Zero Phase Reference Perform Amplitude Lonits Conversion Programming Stecution Function Satisfactor Pr	3-28	Frequency Entry	3-118	Programming Data Transfer Mode
3-32 Auxiliary Output (Sine Function Only) 3-36 Auxiliary Output (Sine Function Only) 3-36 Auxiliary Output (Sine Function Only) 3-36 Auxiliary Output (Sine Function Only) 3-37 Amplitude Eintry Table 3-2, Amplitude Limits of AC Functions 3-39 Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Phase Entry Phase Entry Frequency Sweep 3-55 Sweep Marker 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-60 Sweep Z Blank Output 3-60 Amplitude Modulation 3-60 Asseep Z Blank Output 3-72 Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Store and Recall OPERATOR'S CHECKS 3-78 OPERATOR'S CHECKS 3-78 OPERATOR'S MAINTENANCE HP-IB OPERATION 3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability Message Definitions Table 3-6, Definition of Meta Messages Table 3-6, Definition of Meta Messages Table 3-6 Definitions Table 3-6, Definition of Meta Messages Term Amplitude Offset Phase Sweep Start Frequency Sweep Marker Frequency Sweep Start Frequency Sweep Marker Freq	3-30	Frequency Limits	3-120	Programming Entry Parameters
3-34 3-36 Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Phase Entry 3-49 3-55 Sweep Marker 3-58 Sweep X Drive Output Sweep X Drive Output 3-62 3-66 3-68 Modify Keys 3-70 3-72 3-74 3-76 3-78 3-81 3-83 Gerral HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-89 3-89 3-89 3-91 Message Definitions Table 3-6, Definition of Meta Messages Amplitude Offset Of	3-32	and the second of the second o		Frequency
3-36 Amplitude Entry Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-5 A maximum DC Offset Table 3-6, Maximum DC Offset Table 3-5, Maximum DC Offset Table 3-6, Maximum DC Offset Table 3-6 Neep Start Frequency Sweep Stop Frequency Sweep Time Programming Waveform Function Programming Binary (ON or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation Stop Phase Modulation Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Start Continuous Sweep Perform Self Test Output Checks Programming Execution Functions Assign Zero Phase Reference Perform Self Test Output Checks Programming Selection Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Output Checks Programming Storage Registers Structure Table 3-5, General Interface Management Lines Table 3-5, General Interface Management Lines Table 3-6, Definition of Meta Messages Table 3-6, Definition of Meta Messages Table 3-6, Definition of Meta Messages	CONT. TO STATE OF THE STATE OF	I a face for the I		
Table 3-2, Amplitude Limits of AC Functions Amplitude Calibration High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 3-46 3-47 3-48 3-55 3-58 3-58 3-60 3-60 3-60 3-62 3-60 3-68 3-70 3-72 3-72 3-72 3-72 3-72 3-74 3-74 3-74 3-75 3-78 3-78 3-78 3-78 3-78 3-78 3-78 3-78				
3-39 Amplitude Calibration 3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes 3-43 DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Phase Entry Frequency Sweep 3-55 Sweep Marker 3-56 Sweep X Drive Output 3-62 Amplitude Modulation 3-62 Amplitude Modulation 3-63 Afe 3-64 Modify Keys 3-70 Store and Recall 3-72 OPERATOR'S CHECKS 3-74 Self Test Output Checks 3-75 OPERATOR'S CHECKS 3-76 OFERATION 3-78 OPERATION 3-78 OPERATION 3-79 OPERATION 3-79 OPERATION 3-70 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-80 Definition of HP-IB Terms and Concepts 3-81 Definition of MP-IB Terms and Concepts 3-83 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages Structure Table 3-6, Definition of Meta Messages	3-30			
3-41 High Voltage Output Option 002 Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-124 Programming Waveform Function Programming Binary (ON or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Amplitude Modulation Sweep X Bank Output Seep X Definition of HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines Definition of Med Message Definitions Table 3-5, Optinition of Meta Messages Table 3-6, Definition of Meta Messages Assign Zero Programming Service Requests Table 3-1, SRQ Mask/Enable Data Interrogating Program Service Requests Table 3-1, SRQ Mask/Enable Data Interrogating Program Service Requests Table 3-1, SRQ Mask/Enable Data Interrogating Program Firors Program Program Service Requests Table 3-1, SRQ Mask/Enable Data Interrogating Program Firors Program Program Service Requests Table 3-1, SRQ Mask/Enable Data Interrogating Program Firors Program Program Program		I was to the control of the control		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 3-3, High Voltage Output Amplitudes DC Offset Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Phase Entry 3-49 Frequency Sweep 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-62 Amplitude Modulation Phase Modulation Phase Modulation Phase Modify Keys 3-70 Store and Recall OPERATOR'S CHECKS 3-78 OPERATOR'S MAINTENANCE 3-78 J-78 J-78 J-78 J-78 J-78 J-78 J-78 J	3-39	Amplitude Calibration		
Sweep Time Sweep Time Programming Waveform Function Programming Waveform Function High Voltage Output (Option 002) Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Programming Service Requests Status Byte Status B	3-41	High Voltage Output Option 002		Sweep Stop Frequency
Sweep Time Sweep Time Programming Waveform Function Programming Waveform Function High Voltage Output (Option 002) Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Data Transfer Mode Programming Execution Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Programming Service Requests Start Continuous Sweep Start Continuous Sweep Programming Amplitude Units Conversion Programming Service Requests Status Byte		Table 3-3, High Voltage Output Amplitudes		Sweep Marker Frequency
Table 3-4 and Figure 3-2, Maximum DC Offset 3-46 Phase Entry Frequency Sweep 3-55 Sweep Marker 3-60 Sweep Z Blank Output 3-62 3-68 Modify Keys 3-70 3-72 OPERATOR'S CHECKS 3-78 3-81 HP-IB OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 3-89 3-88 3-89 3-88 Definition of HP-IB Terms and Concepts 3-40 Siveep Marker 3-124 Programming Waveform Function Programming Binary (ON or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Phase Modulation Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Evecution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test 3-130 Service Requests Service Requests Service Requests Status Byte 3-140 Busy Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-43			
Offset 3-46 3-49 Phase Entry 3-49 Frequency Sweep 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-60 3-60 Amplitude Modulation 3-62 Amplitude Modulation 3-68 Amodify Keys 3-70 3-72 OPERATOR'S CHECKS 3-74 Self Test 3-76 Output Checks OPERATOR'S MAINTENANCE 3-81 3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-91 Message Definitions Marker 3-124 Programming Binary (ON or OFF) Function High Voltage Output (Option 002) Amplitude Modulation Phase Modulation As-126 Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Programming Manplitude Units Conversion Serial Poll Status Byte 3-140 Busy Flag Salus Masking or Enabling Service Requests Table 3-1, SRQ Mask/Enable Data Interrogating Program Errors	0 10	200.000.000.000.000.000.000.000.000.000	3-122	The state of the s
3-46 Phase Entry 3-49 Frequency Sweep 3-55 Sweep Marker 3-58 Sweep X Drive Output 3-60 Sweep Z Blank Output 3-62 Amplitude Modulation 3-68 Modify Keys 3-70 Store and Recall 3-72 OPERATOR'S CHECKS 3-74 Self Test 3-76 Output Checks 3-78 OPERATOR'S MAINTENANCE 3-81 HP-IB DEScription Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-58 Sweep X Drive Output Checks 3-79 Output Checks 3-80 Definition of Meta Messages 3-80 Age Definition of Meta Messages 3-146 High Voltage Output (Option 002) Amplitude Modulation Phase Modulation Phase Modulation Phase Modulation Phase Modulation 3-126 Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Programming Amplitude Units Conversion Phase Modulation Phase Modulation Phase Modulation Phase Modulation 3-126 Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Programming Storage Registers Service Requests Service Requests Structure 3-136 Status Byte 3-138 Status Byte 3-140 Busy Flag Sweep Flag Asking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors			201 DE COLOR DE	
3-49 3-55 3-58 Sweep Marker 3-58 Sweep X Drive Output 3-60 Sweep Z Blank Output 3-62 Amplitude Modulation Phase Modulation Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Output Checks 3-78 OPERATOR'S MAINTENANCE 3-81 HP-IB OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability Table 3-6, Definition of Meta Messages Amplitude Modulation Phase Modiput Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Serrice Requests Serial Poll Status Byte Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	0.40	AND CO. TO STATE OF THE STATE O	3-124	
Sweep Marker Sweep X Drive Output Seep Z Blank Output Amplitude Modulation Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Data Transfer Mode Programming Execution Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Self Test OPERATOR'S MAINTENANCE Perform Self Test Programming Amplitude Units Conversion Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines Definition of HP-IB Terms and Concepts Basic Device Communication Capability Message Definitions Table 3-6, Definition of Meta Messages Sweep X Drive Output Amplitude Modulation Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Selection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Serection Functions Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Serection Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Programming Storage Registers Service Requests Service Requests Status Byte Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors				
3-58 3-60 3-60 3-62 3-66 3-68 3-68 3-70 3-72 3-72 3-74 3-76 3-78 3-78 3-78 3-81 3-81 3-83 3-83 3-83 3-83 3-83 3-8	3-49	Frequency Sweep		Amplitude Modulation
3-60 Sweep Z Blank Output 3-62 Amplitude Modulation 3-68 Phase Modulation 3-68 Modify Keys 3-70 Store and Recall 3-72 OPERATOR'S CHECKS 3-74 Self Test 3-76 Output Checks 3-78 OPERATION 3-81 HP-IB OPERATION 3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-146 Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode Programming Execution Functions Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test Programming Amplitude Units Conversion 3-132 Programming Storage Registers Service Requests Service Requests Service Requests 3-136 Status Byte 3-140 Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-55	Sweep Marker		Phase Modulation
3-62 3-68 3-68 3-68 3-70 3-70 3-72 3-72 3-74 3-75 3-76 3-78 3-78 3-81 3-83 3-83 3-83 3-83 3-83 3-83 3-8	3-58	Sweep X Drive Output	3-126	Programming Selection Functions
3-62 3-68 3-68 3-68 3-70 3-70 3-72 3-72 3-74 3-76 3-78 3-81 3-83 3-83 3-83 3-83 3-83 3-83 3-8				
3-66 3-68 3-68 3-70 3-72 3-72 3-74 3-76 3-78 3-81 3-81 3-83 3-83 3-83 3-83 3-83 3-8				
3-68 3-70 3-72 3-72 3-74 3-75 3-76 3-78 3-78 3-81 3-81 3-83 3-81 3-83 3-81 3-83 3-81 3-83 3-83	00. 000.000	The state of the s		
3-70 3-72 3-74 3-76 3-78 3-78 3-78 3-81 3-81 3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 3-88 3-89 3-88 3-89 3-89 3-89 3-91 Message Definitions Table 3-6, Definition of Meta Messages Self Test Start Single Sweep Start Continuous Sweep Perform Self Test Programming Amplitude Units Conversion 3-130 Starts Single Sweep Start Continuous Sweep Perform Self Test Programming Amplitude Units Conversion 3-132 Service Requests Service Requests Serial Poll Status Byte Status Byte Susy Flag Sweep Flag Masking or Enabling Service Requests Table 3-6, Definition of Meta Messages 3-146 Interrogating Program Errors		78.00	0.400	
3-72 3-74 3-76 3-78 3-78 3-78 3-81 3-81 3-82 3-83 3-84 3-83 3-84 3-85 3-84 3-85 3-85 3-85 3-86 3-87 3-87 3-78 3-78 3-78 3-78 3-78 3-78			3-128	
3-74 3-76 3-78 3-78 3-78 3-81 3-81 3-81 3-82 3-83 3-83 3-84 3-83 3-84 3-85 3-85 3-85 3-86 3-86 3-87 3-87 3-88 3-88 3-88 3-88 3-88 3-88	3-70			
3-76 3-78 3-78 3-78 3-78 3-81 3-81 3-81 3-83 General HP-IB OPERATION 3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages Start Continuous Sweep Perform Self Test Programming Amplitude Units Conversion 3-132 Service Requests Service Requests 3-136 Serial Poll Status Byte 3-140 Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-72	OPERATOR'S CHECKS		Perform Amplitude Calibration
3-78 3-81 3-81 3-83 OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages Perform Self Test Programming Amplitude Units Conversion 3-132 Service Requests Serial Poll Status Byte Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-74	Self Test		Start Single Sweep
3-78 3-81 3-81 3-83 OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages Perform Self Test Programming Amplitude Units Conversion 3-132 Service Requests Serial Poll Status Byte Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-76	Output Checks		Start Continuous Sweep
3-81 HP-IB OPERATION General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-81 AP-IB OPERATION 3-130 Programming Amplitude Units Conversion 3-132 Service Requests 3-134 Service Requests 3-136 Service Requests 3-138 Service Requests 3-138 Service Requests 3-140 Busy Flag 3-142 Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	Sec. 13. St.			l ·
3-83 General HP-IB Description Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 Definition of HP-IB Terms and Concepts 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-132 3-134 Service Requests Serial Poll Status Byte Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors			2 120	
Figure 3-3, Interface Connections and Bus Structure Table 3-5, General Interface Management Lines 3-88 3-89 3-89 3-89 3-89 3-91 Message Definitions Table 3-6, Definition of Meta Messages Service Requests Serial Poll Status Byte Busy Flag 3-142 Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors		C. A.C. SERVICE SERVICE CONTROL CONTRO	100 0 000	
Structure Table 3-5, General Interface Management Lines 3-88 3-89 3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-136 3-138 Serial Poll Status Byte Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-83			
Table 3-5, General Interface Management Lines 3-88 3-89 3-89 3-91 Message Definitions Table 3-6, Definition of Meta Messages Table 3-5, General Interface Management 3-138 3-140 Busy Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors				A. A
Lines 3-88 3-89 3-89 3-91 Lines Definition of HP-IB Terms and Concepts Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-140 Sweep Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors		Structure	3-136	Serial Poll
Lines 3-88 3-89 3-89 3-91 Lines Definition of HP-IB Terms and Concepts Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-140 Sweep Flag Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors		Table 3-5, General Interface Management	3-138	Status Byte
3-88 3-89 3-89 3-91 Message Definition of HP-IB Terms and Concepts 3-142 Sweep Flag Masking or Enabling Service Requests Table 3-6, Definition of Meta Messages 3-146 Sweep Flag Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors			3-140	
3-89 Basic Device Communication Capability 3-91 Message Definitions Table 3-6, Definition of Meta Messages 3-144 Masking or Enabling Service Requests Table 3-11, SRQ Mask/Enable Data Interrogating Program Errors	3-88	and the second s	1000 TO 100 TO 1	
3-91 Message Definitions Table 3-11, SRQ Mask/Enable Data Table 3-6, Definition of Meta Messages 3-146 Interrogating Program Errors			1	, ,
Table 3-6, Definition of Meta Messages 3-146 Interrogating Program Errors	1000 000000		3-144	
	3-91		0.440	The state of the s
1 000 1 000EAD				
3-93 3325A Response to Messages 3-148 Interrogating Entry Parameters	3-93	3325A Response to Messages	3-148	Interrogating Entry Parameters
Table 3-7, Implementation of Messages 3-150 Interrogating Function (Waveform)				
3-95 HP-IB Work Sheet 3-152 Interrogating Miscellaneous Parameters	3-95	, ,		
3-97 HP-IB Addressing 3-154 Using the Interrogate Capability		and a state of the		
	3-37	Til 10 Addressing	140 00 000 100	
3-156 3325A Programming Procedure			3-150	5525A Frogramming Procedure
		A		
Appendices				
A-3 META MESSAGES BLOCK DIAGRAMMED			집에 무슨 보는 어떤 사람들이 되는 것이 없어?	
B-3 PROGRAMMING THE MODEL 3325A with the		B-3 PROGRAMMIN	G THE MODEL 332	25A with the
9825A CALCULATOR		9825A CALC	ULATOR	

3-1

- 1) POWER STBY/ON Key. In the STBY position, power is applied to the Oven (Option 001), the HP-IB interface circuits that are external to the isolation barrier, and the High Voltage Output circuits (Option 002), in addition to the power supply circuits.
- BLUE prefix key. This key must be pressed to select any of the key functions labeled in blue.
- (3) SWEEP key group. These are entry prefix keys for the sweep parameters, plus the sweep start keys. When preceded by the blue prefix key, the sweep parameter keys control sweep modification functions and linear/ log selection.

Figure 3-1. 3325A Front and Rear Panels.

- (4) LOCAL key. Returns 3325A from remote to front panel control unless Local Lockout has been programmed. When preceded by the blue prefix key, this key causes the 3325A HP-IB address to be displayed in decimal
- (5) STATUS annunciator group. These annunciators indicate the 3325A HP-IB status: Remote; Addressed to Talk; Addressed to Listen; Request Service (SRQ).
- (6) ENTRY group. Prefix keys for programming signal parameters.
- (1) ALPHANUMERIC display. Displays the value of the parameter selected, error codes, failure modes, HP-IB address, amplitude and phase modulation state.

- (8) DATA group. This group includes the numeric data keys, the data value suffix keys, the Store and Recall command keys, and the entry Clear key. When preceded by the blue prefix key, the keys in the left column control the modulation functions.
- (9) MODIFY group. The horizontal arrow keys select the digit to be modified (indicated by a bright digit), and the vertical arrow keys increment or decrement that digit.
- (10) UNITS annunciators. Display the units of volume represented by the numeric display. Entry annunciator indicates that an entry is in progress.
- (1) FUNCTION group. These keys select the output signal function or dc only (see Paragraph 3-26).
- (12) EXT REF annunciator is on if an external reference or the Option 001 internal 10 MHz oven reference is connected to the rear panel REF IN. Annunciator flashes if the 30 MHz internal reference is not phase locked to the external reference.
- (13) MODULATION annunciator is on if either AM or Phase modulation is programmed.
- (14) AMPTD CAL key. Automatically calibrates the amplitude and offset of the output signal (see Paragraph 3-39). When preceded by the blue prefix key, initiates a self test operation (see Paragraph 3-10).

The maximum peak voltage that can be safely applied between chassis and the outer conductor of any of the 3325A input or output signal connectors is ± 42 V.

- (15) SYNC OUT. A square wave sync signal is available at this connector and also at a rear panel connector, item 28. This signal is always in sync with the output signal crossover point. (Zero volts or dc offset voltage, see Paragraph 3-14.) J2.
- (16) AUX 21-60 MHz REAR annunciator. This annunciator is on when the rear panel AUX output is active (see Paragraph 3-34).
- (17) REAR ONLY key. In standard instruments, switches signal output from front to rear panel and vice versa. Rear panel output is active when the annunciator in the center of the key is on. In instruments with High Voltage Output Option 002, this key switches from normal to high voltage output, and the annunciator indicates when the high voltage output is on. The key is labeled "40 Vpp, 40 mA, 0-1 MHz" for Option 002. In Option 002 instruments, no rear panel signal output is pro-
- (18) SIGNAL output. Standard output impedance is 50 ohms. High Voltage Output Option 002 output impedance is nominally < 1 ohm at dc and < 10 ohms at 1 MHz. Load impedance must be at least 500 ohms. Standard and High Voltage amplifier outputs are fused.
- (19) 10 MHz OVEN OUTPUT. This signal is present only in instruments with Option 001. To make use of the Oven Output, it must be connected to the REF IN connector, Item 21. A special connector, -hp- Part No. 1250-1499, is supplied with Option 001 for this purpose. J3.

- (1) REF IN. An external reference may be used to phase lock the internal 30 MHz reference (see Paragraph
- (2) HP-IB connector. Remote control of the 3325A by means of an HP-IB system controller is accomplished through this connector. Part of W6.
- REF OUT. A 1 MHz signal from the 3325A reference circuits is available at this connector. J5.
- (24) SIGNAL. The output signal is switched to this connector by the front panel REAR ONLY key, Item 17, J6. (Instruments with Option 002 do not have rear panel signal output.)

NOTE

The rear panel signal output is inactive (no internal signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operating and Service Manual, Section VIII, Service Group M, for activating the rear panel signal output in one of two ways: 1) Placing the standard/high voltage output on the rear panel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.

If the standard instrument signal output is not terminated by an external 50-ohm load (a high impedance load, for example) undesirable distortion may result, particularly at higher frequencies. Similar conditions may result if the High Voltage Output (Option 002) is terminated by less than 500 ohms.

- (25) BLOWER, B1.
- (26) PHASE MOD. Input connector for a phase modulating signal of ±5 V maximum peak voltage (see Paragraph
- (17) AMPTD MOD. Input connector for an amplitude modulating signal of \pm 5 V maximum peak voltage (see Paragraph 3-62). J8.
- (38) SYNC OUT. This output is identical to the output at the front panel sync connector, Item 15. J10.
- (29) AUX 21-60 MHz. A signal is available at this output when the sine wave frequency is programmed above 21 MHz (see Paragraph 3-34). J9.
- (30) Z BLANK. A TTL compatible output is present during a sweep operation (see Paragraph 3-60). J11.
- (31) X DRIVE. This output progresses from 0 V to +10 V during a sweep-up operation (see Paragraph 3-58).
- (32) MARKER. This TTL compatible output goes low at the selected marker frequency during a sweep up, and high at completion of the sweep (see Paragraph 3-55). J13.
- (33) Power Transformer, T1.
- (34) Line Fuse, F1.

(20) AC POWER input connector. E1.

NOTE

The HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978.

3-3. PANEL FEATURES.

3-4. Figure 3-1 identifies and describes the functions of the front and rear panel controls, indicators, and connectors.

3-5. POWER/WARM-UP.

- 3-6. The Model 3325A requires a power source of 100, 120, 220, or 240 Vac, +5% -10%, 48 to 66 Hz single phase. The selection of line voltage and fuse is described in Paragraph 2-8 and Figure 2-1.
- 3-7. The 3325A POWER switch has two positions, STBY and ON. Power is applied to some circuits at any time the instrument is connected to the ac power source. If the instrument has the Oven Assembly Option 001 installed, it is important that it remain connected to the power source to maintain a constant oven temperature, eliminating the need for a long warm-up period. If an instrument with the Oven Assembly has been disconnected from ac power no longer than 24 hours, a 15-minute warmup period is sufficient to bring the reference frequency to within $\pm 1 \times 10^{-7}$ of final value.

3-8. INITIAL CONDITIONS.

3-9. After the POWER switch has been set to ON, the instrument status will be as follows:

Function Sine
Frequency1000 Hz
Amplitude1 mV p-p
Phase deg
DC Offset0 V
Front Signal Output
SweepLinear
Start Frequency 1 MHz
Stop Frequency10 MHz
Marker Frequency5 MHz
Time1 sec

NOTES

- 1. If the display reads OSC FAIL the frequency synthesis circuits are not operating properly.
- 2. If A-CAL FAIL appears in the display momentarily after turn-on, any one of the three AMPTD CAL tests could be incorrect. Perform a SELF TEST operation to identify the failure.
- 3. If either of the above conditions occurs, refer the instrument to qualified service personnel for repair.

3-10. SELF TEST.

3-11. The self test operation is initiated by pressing the blue prefix key, then the SELF TEST key (AMPTD CAL). This test uses the control, ROM, and control clock circuits to perform the following checks:

LED check: Turns on all LED's for about 2 seconds

Check 1: Tests AMPTD CAL of the sine wave Check 2: Tests AMPTD CAL of the square wave Check 3: Tests AMPTD CAL of the triangle wave

Following each check the display indicates either PASS or FAIL for approximately one second. If all tests pass, this indicates that approximately 60% of all circuits are operating properly.

3-12. FRONT/REAR SIGNAL OUTPUT.

The maximum peak voltage that can be safely applied between chassis and the outer conductor of any of the 3325A input or output signal connectors is $\pm 42 \ V$.

3-13. The standard Model 3325A provides selectable front or rear panel 50-ohm signal outputs. The rear panel signal output is selected by pressing the REAR ONLY key. The lighted indicator in the center of this key denotes that the signal output is at the rear panel.

NOTE

The rear panel SIGNAL output is not present on instruments equipped with the High Voltage Output Option 002.

3-14. SYNC OUTPUT.

3-15. A square wave sync output is provided at BNC connectors on both the front and rear panels. This sync signal is always in phase with the output signal, with the sync transition occurring at the signal zero crossing, or when the signal crosses the dc offset voltage. The output impedance of either front or rear panel sync output is approximately 50 ohms. When connected to a 50-ohm coaxial cable that is terminated by a 50 ohm resistive load, the sync signal levels are as follows:

Low Level = < 0.2 VHigh level = > 1.2 V

NOTE

If a sync output is connected to a 50-ohm coaxial cable that is terminated by a high impedance load (≥ 1 megohm) the voltage levels are approximately twice the values given above. However, the improper ter-

mination of the 50-ohm system will cause ringing at the positive and negative transitions of the sync signal.

3-16. EXTERNAL REFERENCE INPUT.

3-17. The 3325A may be operated with an external reference to control the standard 30 MHz internal reference oscillator frequency. The external reference level must be greater than 0 dBm (50 ohms), and the frequency must be within 10 PPM of 10 MHz or a submultiple thereof down to 1 MHz (10, 5, 3.33, 2.5, or 1 MHz). The front panel EXT REF annunciator will light to indicate that an external reference is being used. The internal reference oscillator is phase locked to the external reference, and a phase lock detector circuit causes the EXT REF light to flash if synchronization is lost.

3-18. 10 MHz OVEN OPTION 001.

3-19. Option 001 is a temperature stabilized 10 MHz oscillator which provides improved frequency stability (see specifications in Table 1-1). The output from this oscillator is at the rear panel 10 MHz OVEN OUTPUT connector. This output must be connected to the EXT REF input. A special connector, -hp- Part No. 1250-1499, is provided with Option 001 for this purpose.

3-20. MANUAL PROGRAMMING.

3-21. The following paragraphs describe the procedures for operating the 3325A from the front panel. Also included are the limits for each parameter.

3-22. Clear Display.

3-23. Pressing the CLEAR key (in the left column of the DATA group) clears the display to zero. This key is useful when an error is made while entering data.

3-24. Entry Errors.

3-25. The word "Error" will appear in the display for approximately one second when an error in programming occurs. The incorrect entry will not be accepted.

ASCII Numeric	Error
1	Entry parameter out of bounds (for example, Freq ≥ 61 MHz)
2	Invalid delimiter
3	Frequency too large for function (for example, Function = Triangle, Freq ≥ 11 kHz)
4	Sweep time too small or too large
5	Offset incompatible with amplitude, or amplitude incompatible with offset
6	Sweep frequency too large for function; Sweep bandwidth too small; Start frequency too small (log sweep); Start frequency greater than stop frequency (log sweep)
7	Unrecognizable mnemonic received
8	Unrecognizable data character received
9	Option does not exist (High Voltage or Rear/Front)

3-26. Function Selection.

3-27. Any of the five functions may be selected by pressing the appropriate FUNCTION key. A light in the center of the key indicates the present function. Pressing the same key the second time removes the ac signal, setting the output to zero unless a dc offset has been programmed (see Paragraph 3-43). When the ac signal is removed in this way, the instrument automatically displays dc offset, and the dc offset entry key light comes on. The ac signal can be restored by pressing the FUNCTION key again. The output signal for each function is centered about zero volts unless a dc offset has been programmed.

NOTE

The standard instrument signal output must be terminated by an external 50-ohm load or sine wave distortion and square wave overshoot may result, particularly at higher frequencies.

3-28. Frequency Entry.

NOTE

A lighted indicator in the center of any entry key denotes it as the active entry parameter. For example, if the FREQ entry key indicator is on, it is not necessary to press that key before entering data.

3-29. Enter frequency by first pressing the FREQ ENTRY key, then the numerical data, followed by the data suffix (delimiter) key (Hz, kHz, MHz). Numerical data must be entered most significant digit first, entering the decimal in the proper place. The frequency parameter is stored in the 3325A when the delimiter key is pressed.

3-30. Frequency Limits.

3-31. The minimum frequency for all functions is 1 μ Hz. The nominal maximum frequency for each function is shown below the function select key on the front

Model 3325A Operation

	Peak-to-Peak		rms		dBm (50 Ω)	
Function	Max.	Min.	Max.	Min.	Max.	Min.
Sine Square Triangle ± Ramp	10 V 10 V 10 V 10 V	1 mV 1 mV 1 mV 1 mV	3.536 V 5.000 V 2.888 V 2.888 V	0.354 mV 0.5 mV 0.289 mV 0.289 mV	+ 23.98 + 26.99 + 22.22 + 22.22	-56.02 -53.01 -57.78 -57.78

Table 3-2. Amplitude Limits of AC Functions.

panel. However, because of the overrange capability of the 3325A, the maximum frequency for each function is as shown below:

Sine wave	20 999 999.999 Hz
Square wave	10 999 999.999 Hz
Triangle	10 999.999 999 Hz
Positive slope ramp	10 999.999 999 Hz
Negative slope ramp	10 999.999 999 Hz

3-32. Frequency Display and Resolution.

3-33. Frequency is always displayed in Hz, even though the entry may have been made in kHz or MHz. For example, an entry of 1.2 MHz is displayed as 1 200 000.0 Hz. Non-significant zeroes to the right of the first digit following the decimal point are not displayed except during a "modify" condition (see Paragraph 3-68). The maximum resolution is 1 μ Hz for frequencies up to and including 99 999.999 999 Hz, and 1 mHz for frequencies of 100 000.000 Hz and higher.

3-34. Auxiliary Output (Sine Function Only).

3-35. A rear panel auxiliary output can be used for frequencies above 19 MHz to a maximum of 60 999 999.999 Hz. The output level is a nominal 0 dBm into 50 ohms. The output automatically switches to the AUX output when frequencies of 21 000 000.000 Hz or higher are programmed. For this reason, the AUX output is labeled "21–60 MHz". Frequencies between 19 MHz and 21 MHz can be obtained at the AUX output only by first entering 21 MHz or higher, then entering the desired frequency. For example, if the desired frequency is 19.5 MHz, first enter "FREQ 21 MHz", then "19.5 MHz". Then, if a front panel SIGNAL output of 19.5 MHz (or any frequency between 19 MHz and 21 MHz) is desired, enter any frequency 19 MHz or lower, then enter 19.5 MHz.

NOTE

Only one signal output is active at one time. A lighted "21-60 MHz Rear" annunciator indicates that the rear panel AUX, 0 dBm, 21-60 MHz output is active. A lighted "Signal, Rear Only" annunciator indicates that the rear panel signal output is active. Neither light on, indicates the front panel signal output is active.

3-36. Amplitude Entry.

- 3-37. Amplitude is entered and displayed with 4-digit resolution. Press the AMPTD ENTRY key, then the numerical data, followed by the V, mV, Vrms, mVrms, or dBm key. The V and mV keys enter peak-to-peak value of ac functions. Maximum and minimum amplitudes for each function are shown in Table 3-2.
- 3-38. The 3325A will convert an amplitude value between peak-to-peak, rms, or dBm for any function. For example, if a sine wave amplitude of 10 V p-p has been entered, press the Vrms or mVrms key to display the same amplitude as 3.536 Vrms, or press the dBm key to display the value as (+)23.98 dBm.

3-39. Amplitude Calibration.

3-40. The 3325A will calibrate the output signal when the AMPTD CAL key is pressed. The output goes to less than 4 mV p-p while the calibration is in process. An amplitude and offset calibration is performed automatically whenever the function is switched and at instrument turn-on.

NOTE

If A-CAL FAIL appears in the display momentarily after an AMPTD CAL operation, the instrument should be referred to qualified service personnel for repair. Operation Model 3325A

3-41. High Voltage Output Option 002.

3-42. The high voltage output is selected by pressing the key in the lower right corner of the front panel. This option provides a maximum output of 40 V p-p into a high impedance. The load resistance must be greater than 500 ohms or distortion will result, particularly at higher frequencies. To assure square wave overshoot <5% of peak-to-peak output, the total capacitance connected to the output should be <500 pF. The same entry procedures and display features apply as in the standard operation. Maximum and minimum amplitudes are shown in Table 3-3. Maximum frequency for sine and square wave functions is 1 MHz (10 kHz for triangle and ramps).

NOTE

The rear panel signal output is inactive (no internal signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operating and Service Manual, Section VIII, Service Group M, for activating the rear panel signal output in one of two ways: 1) Placing the standard/high voltage output on the rear panel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.

3-43. DC Offset.

Table 3-3. High Voltage Output Amplitudes (Option 002).

	Peak-to-Peak		rn	ns
Function	Max.	Min.	Max.	Min.
Sine Square Triangle ± Ramp	40 V 40 V 40 V 40 V	4 mV 4 mV 4 mV 4 mV	14.14 V 20.0 V 11.55 V 11.55 V	1.42 mV 2.0 mV 1.16 mV 1.16 mV

3-44. Offset Only, No AC Function. When no ac function is present, the dc voltage output may be programmed from 0 mV to $\pm 5 \text{V}$, with 4 digit resolution. When no ac function is present, the DC OFFSET entry prefix is automatically selected. It is necessary merely to enter the numerical data followed by the V or mV delimiter. The rms keys cannot be used to enter offset.

NOTE

When the High Voltage Output is selected (Option 002), minimum amplitude for dc only (no ac function) is 0.01 mV and maximum is 20.0 V.

3-45. Offset with AC Function. When dc offset is to be added to any ac function, there are minimum and maximum offset limits which must be observed. These limits are affected by the ac voltage and the resulting attenuator settings, which are shown in Table 3-4. Figure 3-2 is a set of graphs which show the approximate maximum dc offset permissible for a given ac peak-to-peak voltage. The following equation may be used to determine maximum offset voltage.

Maximum dc offset =
$$\frac{5}{A} - \frac{Amptd}{2}$$

Where A = Attenuator factor (from Table 3-4) Amptd = Amplitude in V p-p of the ac function

NOTES

- 1. If an attempt is made to enter a dc offset that is too great for the amplitude already programmed, "Error 5" will appear in the display momentarily, and the dc offset entry will not be accepted.
- 2. After a dc offset has been entered, if the amplitude (ac) is then increased beyond the level where the amplitude and offset are compatible, "Error 5" will appear in the display momentarily, and the ac amplitude entry will not be accepted.

3. The minimum and maximum permissible dc offset voltages when the High Voltage Output is selected (Option 002) may be determined by multiplying the amplitude and offset values in Table 3-4 by four. This also applies for Figure 3-2. Change the above equation (for determining maximum dc offset) to the following:

Maximum dc offset =
$$\frac{20}{A} - \frac{Amptd}{2}$$

4. Resolution of a dc offset entry (with ac function) is determined by the resolution of the ac amplitude.

3-46. Phase Entry.

3-47. The phase of the SIGNAL output can be shifted up to $\pm 719.9^{\circ}$ with respect to the 1 MHz REF OUT (rear panel). Phase shift entry resolution is 0.1° . To program phase shift, press the PHASE ENTRY key, enter

number of degrees of phase desired, then press the "deg" key. For a negative phase shift, press the "-" key before entering the numerical data. For square wave frequencies below 25 kHz, phase changes greater than 25° may result in a phase shift $\pm 180^{\circ}$ from the desired amount.

3-48. After entering a phase shift, the new phase may be assigned the zero phase position, and subsequent changes in phase referenced to that point. To assign zero phase, press the blue entry prefix key, then press ASGN ZERO Ø (PHASE) key.

3-49. Frequency Sweep.

3-50. Frequency sweep is phase continuous over the full frequency range; that is, there are no discontinuities in the output waveform. When the instrument is turned on, the sweep mode is set to linear, and the parameters are set as follows:

Start Frequency	. 1	000	0.000	Hz
Stop Frequency	1(000	0.000	Hz
Marker Frequency	. 5	000	0.000	Hz
Time			1.0	000

Table 3-4. Maximum DC Offset with any AC Function.

AC Amplitud Entry (peak-to-pea	M	aximum DC fset (+ or -)	Minimum DC Offset Entry	Range	Attenuation Factor
1.000 mV to 3.333 mV	with with	4.500 mV 3.333 mV	0.001 mV	7	A = 1000
3.334 mV to 9.999 mV	with with	14.99 mV 11.66 mV	0.001 mV	6	A = 300
10.00 mV to 33.33 mV	with with	45.00 mV 33.33 mV	0.010 mV	5	A = 100
33.34 mV to 99.99 mV	with with	149.9 mV 116.6 mV	0.010 mV	4	A = 30
100.0 mV to 333.3 mV	with with	450.0 mV 333.3 mV	0.100 mV	3	A = 10
333.4 mV to 999.9 mV	with with	1.499 V 1.166 V	0.100 mV	2	A = 3
1.000 V to 9.998 V	with with	4.500 V 0.001 V	1.000 mV	1	A = 1

Operation Model 3325A

Figure 3-2. Maximum DC Offset With AC Functions.

NOTE

The Marker Frequency must be lower than Stop Frequency by a sufficient amount to permit the Marker pulse width to be approximately 400 microseconds. See Paragraph 3-55.

To change any of the sweep parameters, press the appropriate SWEEP entry key, then enter the desired data. To select LOG sweep, press the blue prefix key and then the LOG (TIME) key. The log indicator should light. The sweep mode is linear unless this light is on.

3-51. Linear Sweep. In linear mode, either CONTINUOUS or SINGLE sweep may be used. Single sweep is from START to STOP frequency, and either START or STOP may be the higher frequency. To begin a single sweep:

Press "RESET/START" key to set output and display to the start frequency selected and reset the X Drive ramp.

Press "RESET/START" key again to start the sweep.

The output frequency sweeps to the STOP frequency selected and remains there. This frequency appears in the display. Continuous sweep is up-down-up, etc., and begins when the "START CONT" key is pressed. Continuous sweep may be stopped by pressing the "START CONT" key again, or by pressing "START SINGLE", "FREQ ENTRY", or "PHASE ENTRY". The display will indicate the frequency at which the sweep stopped. The sweep will stop while any other parameter is being changed, then will restart. Pressing "AMPTD CAL", "SELF TEST", "ASSIGN ZERO 0", or changing the function will also stop continuous sweep.

3-52. Log Sweep. In either single or continuous log sweep mode, the stop frequency must be higher than the start frequency, and sweep is up only. (Continuous sweep is start to stop, start to stop, etc.) The minimum bandwidth for log sweep is one decade. Single log sweep is a line-segmented log approximation in one-tenth decade seg-

ments, and continuous log sweep is a two-segment log approximation.

NOTE

Because of the computation time required by the control circuits in log sweep, the actual stop frequency (which is displayed at the end of a single sweep) will be higher than the selected stop frequency, but always within 0.25%. The error decreases as sweep time is increased.

3-53. Sweep Time. The maximum time per sweep (up or down) for all sweep modes is 99.99 seconds, with .01 second resolution for times ≥ 1 second, and .001 second resolution for times < 1 second. Minimum times are as follows:

NOTE

In single log sweep, the sweep time is increased by the processing time required between segments. The time increase (in seconds) is approximately equal to

.045
$$\left(\begin{array}{cc} 10 \log & \frac{stop\ frequency}{start\ frequency} \end{array}\right)$$

3-54. Sweep Bandwidth. The maximum sweep bandwidth is the full frequency range for the function selected, except that in log sweep, the minimum frequency is 1 Hz. The minimum bandwidth for log sweep is one decade. Minimum bandwidth for each function (linear sweep) is as follows:

For sweep bandwidths of less than 100 times the minimum, Bandwidth selected should be an integral multiple of the minimum. In linear sweep mode the sweep bandwidth may be multiplied or divided by two by pressing the blue prefix key and then " $\Delta fx2$ " or " $\Delta f \div 2$ ". These bandwidth modification keys do not operate in log sweep mode.

3-55. Sweep Marker.

3-56. The marker frequency may be set to any point within the sweep band up to within approximately 400 microseconds of the stop frequency. If the marker frequency is set beyond this point, the stop frequency will automatically be increased so that the marker pulse is

approximately 400 microseconds wide. The following equation may be used to determine the approximate maximum marker frequency:

Max. marker freq. = stop freq. - $\frac{.0004 \times \text{bandwidth}}{\text{sweep time}}$

The rear panel MARKER output is at TTL compatible voltage levels. It is High at the start of a sweep up, goes Low at the selected marker frequency, then High again at the stop frequency. No marker output is present during sweep down or during a log sweep. Set the marker frequency by pressing the "MKR FREQ" key and entering the numerical data and the frequency suffix.

3-57. The sweep band can be moved up or down to center on the marker frequency by pressing the blue prefix key and then the MKR \rightarrow CF(MKR FREQ) key. This does not change the sweep bandwidth unless either the new upper or lower limit would be beyond the frequency limit for the present function.

3-58. Sweep X Drive Output.

3-59. The rear panel X DRIVE output is as follows:

Linear sweep:

Single: 0 V at start, increasing linearly to > +10 V at stop, whether the sweep is up or down. Remains at essentially this voltage until reset prior to the start of another sweep. (Voltage will drift downward less than 10 mV/s.)

Continuous: Increases linearly from 0 V to > +10 V during sweep up, then goes to 0 V at beginning of sweep down and remains at 0 V during sweep down.

Log sweep: Starts at 0 V and increases to > +10 V with the sweep segments.

NOTE

The X DRIVE output has a nominal voltage of +10.5 V at the end of a sweep. This final voltage is specified to be greater than 10.0 V to ensure compatibility with oscilloscopes having a horizontal sensitivity of 10.0 V for full-screen deflection.

X DRIVE output voltage is linear with time in both linear and log sweep modes.

3-60. Sweep Z Blank Output.

3-61. The Z BLANK output voltages are TTL compatible, and the output logic levels are as follows:

Linear sweep:

Single: Goes LOW at start of sweep, HIGH at stop, whether the sweep is up or down. Remains until start of next sweep.

Continuous: LOW during sweep up, HIGH during sweep down.

Log sweep: Goes LOW at start frequency, HIGH at stop. In single sweep, remains HIGH until start of next sweep. In continuous sweep, is HIGH momentarily at stop frequency.

When the Z BLANK output is low, it is capable of sinking current through a relay or other device. The maximum ratings are:

Maximum current sink: 200 mA Allowable voltage range: 0 V to +45 V dc Maximum power (voltage at output x current): 1 W

3-62. Amplitude Modulation.

3-63. To program amplitude modulation, press the blue prefix key, then press the "AM ON" (STORE) key. To remove the modulation, press the blue key, then "AM OFF" (RECALL). The display shows "A ON" or "A OFF" momentarily to indicate the status of the amplitude modulation. The status of phase modulation (P ON or P OFF) is displayed at the same time. The modulation input must be connected to the rear panel AMPTD MOD input. The impedance of this input is $20 \text{ k}\Omega$ (10 k Ω when AM is OFF).

3-64. When amplitude modulation is programmed, the amplitude of the output signal (with no modulation) is halved; however, the display still indicates the programmed amplitude. Then, when the output (carrier) is modulated 100%, the maximum amplitude of the modulated output equals the programmed amplitude. A modulation input of approximately 5 V peak results in 100% modulation. Modulation frequency may be 0 to 50 kHz. If amplitude modulation is ON when 3325A functions other than sine wave are selected, the output may be gated, depending on the level of the modulation input. Amplitude modulation should be used only with the sine wave function, and the modulation input should not exceed $\pm\,10$ V peak.

3-65. A dc voltage may be applied to the AMPTD MOD input to control the 3325A output level, or a pulse may be used to gate the output. Approximately +5 V cuts off the output signal, while approximately -5 V doubles the output. (Maximum output is 10 V p-p.) DC or pulse inputs should not exceed ± 5 V peak.

3-66. Phase Modulation.

3-67. To program phase modulation, press the blue prefix key, the the "ØM ON" (CLEAR) key, and to remove phase modulation, press the blue key, then "ØM OFF" (-). The phase modulation signal at the rear panel PHASE MOD input may be up to ± 10 V peak. The input impedance is $10 \text{ k}\Omega$. The modulating signal frequency may be dc to 5 kHz. An input of ± 5 V results in the following approximate phase deviation ($\pm 170^{\circ}$ per volt for sine function):

3325A Function	Phase Deviation
Sine	$\pm850^{\circ}$
Square	$\pm425^{\circ}$
Triangle	$\pm42.5^{\circ}$
± Ramp	$\pm85^{\circ}$

3-68. Modify Keys.

3-69. The numerical data of any parameter may be changed by use of the MODIFY keys. First press the prefix key of the parameter to be modified, placing the

information in the display. Next, press the $\langle \neg \rangle$ or \Rightarrow

key to move the bright digit cursor to the digit you want

to increase or decrease the value of that digit by 1. If the modify key is held, the digit will continue to increment or decrement after a slight delay. As the modified digit passes 9 (incrementing) or 0 (decrementing) the digit to its left will increment or decrement.

3.70. Store and Recall.

3-71. An entire program may be stored in any one of 10 registers by pressing the "STORE 0-9" key, then the register number. This stores all the information that is in the current program memory. Other programs may then be entered. All stored information is lost when power is removed from these circuits by setting the POWER switch to STBY or disconnecting ac power from the instrument.

NOTE

Any phase information stored is invalid when recalled because the instrument performs an amplitude calibration on RECALL. Phase relationship between the output signal and the reference is not maintained when AMPTD CAL occurs.

3-72. OPERATOR'S CHECKS.

3-73. The following checks provide the operator with a means of determining whether the instrument is operational. They are not intended to verify any specifications. If the instrument fails any of these checks, it should be referred to qualified service personnel for repair.

3-74. Self Test.

3-75. Press the blue prefix key, then SELF TEST (AMPTD CAL). All the front panel display and annunciator LED's should light for approximately two seconds, then the instrument performs an automatic calibration of the sine, square, and triangle functions and the display indicates momentarily whether each test passed or failed. The dc offset is also checked in these tests.

NOTE

If the display reads OSC FAIL at any time, the frequency synthesis circuits are not functioning properly. Refer the instrument to qualified service personnel for repair.

3-76. Output Checks.

3-77. An oscilloscope (-hp- 1740A or equivalent) is required for these checks. Connect the 3325A output through a 50-ohm feedthru termination (-hp- 11048C) to the oscilloscope input (input dc coupled), or set the 1740A input switch to 50 ohms.

FUNCTIONS

a. Make the following 3325A keyboard selections:

FU	NCT	ION	Ι.,														Sin	e
FR	EQU	ENC	CY													2	kΗ	Z
AN	1PLI	TUL	ÞΕ			٠				٠]	()	V	p-	p

b. Set the oscilloscope controls as follows:

Vertical.														5	V/div
Horizon	tal											0	.5	,	ms/div
Trigger.															Auto

c. Adjust oscilloscope controls for a stable display, which should show a sine wave approximately two divisions peak-to-peak and one cycle per division.

d. Select square wave, triangle, positive slope ramp, and negative slope ramp and verify that each function indicates the same frequency and peak-to-peak amplitude.

AMPLITUDE AND DC OFFSET

e. Set the 3325A as follows:

FUNCTION							٠				. !	Sc	qu	ar	e
FREQUENCY												2	k	H	Z
AMPLITUDE											10	١ (V	p-t)

f. Set the oscilloscope controls as follows:

Vertica	l.														. 2	2	V/div
Horizo	nt	ta	ıl											0	.5		ms/div
Trigger																	. Auto

- g. Oscilloscope display should show one square wave per division, 5 divisions peak-to-peak vertical. This checks the output with no attenuation. Actual display will depend greatly upon the accuracy of the oscilloscope amplifiers and display.
- h. Change 3325A amplitude to 1 V p-p, and change oscilloscope vertical to .2 V/div. Oscilloscope display should again be 5 divisions peak-to-peak. This checks the \div 3 attenuator section.
- i. Change 3325A amplitude to 500 mV p-p, and change oscilloscope vertical to .1 V/div. Oscilloscope display should be 5 divisions peak-to-peak. This checks the \div 10 attenuator section.
- j. Change 3325A amplitude to 50 mV p-p, and change oscilloscope vertical to .01 V/div. The square wave display should be 5 divisions peak-to-peak. This checks the \div 100 attenuator section.
- k. Press the 3325A SQUARE WAVE FUNCTION key to remove the square wave output. The indicator in the DC OFFSET Entry key should light and the 3325A display should show 0.0 mV.
- 1. Set the oscilloscope vertical control to 2 V/div. Ground the input and set the trace to the center line. Set input to dc coupled.
- m. Enter 5 V offset in the 3325A. The oscilloscope trace should be 2.5 divisions above the center line. Enter –5 V offset in the 3325A. The oscilloscope trace should go to 2.5 divisions below the center line.
- n. Enter \emptyset V offset in the 3325A. Trace should be on the center line.

FREQUENCY

o. Set the 3325A as follows:

FUNCTION Sine
FREQUENCY100 Hz
AMPLITUDE10 V p-p

p. Set the oscilloscope controls as follows:

Vertical													2	V/div
Horizonta	١.							_		_		_	1	ms/div

- q. Oscilloscope display should show one cycle of sine wave, which should be free of any apparent irregularities.
- r. Enter 20 MHz in the 3325A. Change oscilloscope horizontal to .05 μ s/div. Oscilloscope should display one cycle of sine wave per division.

HIGH VOLTAGE OUTPUT (OPTION 002)

- s. Remove the 50-ohm feedthru termination between the 3325A output and the oscilloscope input. Press the key in the lower right corner of the 3325A front panel to select the High Voltage output.
 - t. Set the 3325A as follows:

FUNCTION.													Sin	ie
FREQUENCY												2	kH	Z
AMPLITUDE										4	0	V	/ p-	p

u. Set the oscilloscope controls as follows:

Vertical											10	V/div
Horizontal.										0	.5	ms/div

v. The oscilloscope display should show a sine wave four divisions peak-to-peak, one cycle per division. This checks the high voltage output amplifier.

3-78. OPERATOR'S MAINTENANCE.

3-79. Maintenance by the operator is limited to cleaning or replacing the rear panel fan filter, or replacing the ac line fuse on the rear panel. Generally, if the ac line fuse requires replacement there is a failure within the instrument, which should be referred to qualified service personnel. Disconnect the ac line cord before replacing the fuse. Be sure to use the correct replacement fuse:

Nominal Line Voltage	Fuse	-hp- Part No.
100/120 V	1 A	2110-0001
220/240 V	0.5 A	2110-0012

3-80. The fan filter should be inspected frequently and cleaned or replaced as necessary to allow free flow of air. To remove the filter, disconnect ac power from the instrument and remove the four nuts that secure the filter retainer. Remove the filter and wash thoroughly with soapy water, rinse clean, and air dry.

3-81. HP-IB OPERATION.

3-82. The Model 3325A is remotely controlled by means of the Hewlett-Packard Interface Bus (HP-IB).

Model 3325A Operation

The following information gives a general description of the HP-IB and defines: the terms, concepts, and messages used in an HP-IB system. It also lists the capabilities and requirements for programming the 3325A. Program examples using a specific Hewlett-Packard calculator as the system controller may be found in the Supplemental Programming Information, Appendix 3-A at the rear of this section.

NOTE

HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978, "Standard Digital Interface for Programmable Instrumentation.

3-83. General HP-IB Description.

3-84. The HP-IB is a parallel bus of 16 active signal lines grouped into three sets according to function, to interconnect up to 15 instruments. Figure 3-3 is a diagram of the interface connections and bus structure.

3-85. Eight signal lines form the first set and are termed "data" lines. The data lines carry coded messages which represent addresses, program data, measurements, and status bytes. The same data lines are used for input and

output messages in bit-parallel, byte-serial form. Normally, a seven-bit ASCII code represents each piece (byte) of data, leaving the eighth bit available for parity checking.

3-86. Data transfer is controlled by means of an interlocked "handshake" technique which permits data transfer (asynchronously) at the rate of the slowest device participating in that particular conversation. The three data byte transfer control lines which implement the handshake form the second set of lines.

3-87. The remaining five general interface management lines form the third set and are used in such ways as activating all the connected devices at once, clearing the interface, etc. Table 3-5 defines each of the management lines.

3-88. Definition of HP-IB Terms and Concepts.

Byte - A unit of information consisting of eight binary digits (bits).

Device - Any unit that is compatible with the IEEE Standard 488-1978.

Device Dependent - 1. An action a device performs in response to information sent on the HP-IB. The action is characteristic of an individual device and may vary from device to device. 2. The data required to communicate with a particular device.

Figure 3-3. Interface Connections and Bus Structure.

Table 3.5. General Interface Management Lines.

Name	Mnemonic	Description
Attention	ATN	Enables a device to interpret data on the bus as a controller command (command mode) or data transfer (Data Mode).
Interface Clear	IFC	Initializes the HP-IB system to an idle state (no activity on the bus.)
Service Request	SRQ	Alerts the controller to a need for communication.
Remote Enable	REN	Places instruments under re- mote program control.
End Or Identify	EOI	Indicates last data transmission during a data transfer sequence; used with ATN to poll devices for their status.

Operator - The person that operates either the system or any device in the system.

Address - The characters sent by a controller to specify which device will send information on the bus and which device(s) will receive information. A device may also have its address fixed so that it may only receive information (listen only) or only send information (talk only).

Polling - Polling is a means by which a controller can identify a device that needs interaction with it. The controller may poll devices for their operational condition one at a time, which is termed a serial poll, or as groups of devices simultaneously, which is termed a parallel poll.

3-89. Basic Device Communication Capability.

3-90. Devices which communicate along the interface bus fall into three basic categories.

Talkers - Devices which send information on the bus when they have been addressed.

Listeners - Devices /hich receive information sent on the bus when they have been addressed.

Controllers - Devices that can specify the talker and listener(s) for an information transfer. The controller can be an active controller or a system controller. The active controller is defined as the current controlling device on the bus. The system controller can take control of the bus even if it is not the active controller. Each system can have only one system controller, even if several controllers have system control capability.

3-91. Message Definitions.

3-92. Information is transferred on the HP-IB from one device to one or more other devices in quantities

called "messages". Some of the messages consist of two basic parts, the address portion and the information portion. Others are general messages to all devices. Messages can be classified into twelve types, which are referred to as "meta messages". These are defined in Table 3-6. A block diagram presentation of meta messages and their implementation will be found in Appendix A-3 at the rear of this section.

NOTE

The meta message in itself is not a program code or an HP-IB command. It is only intended as a tool to translate a program written as an algorithm into the controller's code.

3.93. 3325A Response to Messages.

3-94. The 3325A is capable of implementing only those messages indicated in Table 3-7. In order for those messages to be implemented, certain bus actions are required, which are shown in the Interface Functions column.

3.95. HP-IB Work Sheet.

3-96. A work sheet is provided at the end of this section for listing the address and message capabilities of each instrument in your HP-IB system. When this sheet is filled out, it will provide a summary of the system capabilities.

3-97. HP-IB Addressing.

3-98. Certain messages require that a specific talker and listener be designated. Each instrument on the bus has its own distinctive listen and/or talk address which distinguishes it from other devices. The 3325A receives programming instructions when addressed to listen. When addressed to talk, it will respond to the instructions it received prior to being addressed to talk, such as an interrogation or serial poll.

3-99. Addressing usually takes the form of "universal unlisten, device talk, device(s) listen". The universal unlisten command removes all listeners from the bus, allowing only the listener(s) designated by the device(s) listen parameter to receive information. The information is sent by the talker designated by the device talk parameter. The system controller may designate itself as either talker or listener.

3-100. 3325A REMOTE PROGRAMMING.

3-101. 3325A HP-IB Capabilities.

3-102. Table 3-8 lists the HP-IB capabilities of the 3325A, which are compatible with IEEE Standard 488-1978.

Table 3-6. Definition of Meta Messages.

essage	Definition	Message	Definition
Data	The actual information (binary bytes) which is sent from a talker to one or more listeners. The information or data can be in a numeric form or a string of characters.	Status Byte	A byte that represents the sta of a single device. One bit in cates whether the device so the required service mess and the remaining 7 bits in cate operational conditions fined by the device. This b
Trigger	The trigger message causes the listening device(s) to perform a device-dependent action.		is sent from the talking dev in response to a "Serial Po operation performed by a c
Clear	A clear message will cause a device(s) to return to a predefined device-dependent state.	Status Bit	troller. A byte that represents the operional conditions of a group
Remote	The remote message causes the listening device(s) to switch from local front panel control, to remote program control. This message remains in effect so that devices subsequently addressed to listen will go into remote programs.		devices on the bus. Each vice responds on a particular of the byte thus identifying device dependent condition. This is typically sent by device in response to a parallel poperation.
Local	remote operation. This message clears the remote message from the listening device(s) and returns the device(s) to local front panel control.		The status bit message can a be used by a controller to spe fy the particular bit and lo level that a device will respond with when a parallel poll op
Local Lockout	The local lockout message is implemented to prevent the device operator from manually in-		ation is performed. Thus, m than one device may respond the same bit.
Clear Lockout and Set Local	hibiting remote program control. This message causes all devices to be removed from the local lockout mode and revert to local.	Pass Control	This message transfers the languagement responsibility from the active controller another controller.
	It will also clear the remote message for all devices.	Abort	The system controller sends abort message to unconditi
Require Service	A device can send this mes- sage at any time to signify that it needs some type of inter- action with the controller. The message is cleared by the de- vice's status byte message if it no longer requires service.		from the active controller. message will terminate all communications but does implement the clear message

3-103. Developing an HP-IB Program.

3-104. Basically, the 3325A is programmed remotely in the same manner as it is programmed manually. The sequence in which the various parameters are programmed is not important. At the end of this section (III) there is a summary of the HP-IB Programming Codes. This chart may be removed from the manual and/or copied to be used as a programming reference.

NOTE

It may be necessary to refer to some paragraphs on manual operation for descriptions of certain signals and requirements.

3-105. Several steps are needed to develop an HP-IB program.

- a. Completely define the operation(s) the system is required to perform.
- b. Write the program in flowchart or algorithm form. (An algorithm may be defined as a fixed step-by-step procedure for finding a solution to a problem.) Use the key words for meta messages shown in Table 3-6 in developing the program. The twelve key words are repeated here for reference.

Data *Trigger

Clear

Remote

Local

Local Lockout

Clear Lockout and Set Local

Require Service

Table 3.7. 3325A Implementation of Messages.

		Interface Fur		
Message	Implementation*	Sender	Receiver	3325A Response
Data	SR	T, SH	L ⁿ , AH	Will send or receive as instructed
Trigger	NA			
Clear	. R	ID-LIST C, SH ALL C, SH	DC ⁿ , L, AH DC, AH	Device Clear sets 3325A to initial turn-on conditions. See Para. 3-8.
Remote	R	Remote Enable ID-LIST,C _s ,SH	RL ⁿ , L, AH RL, AH	Goes to Remote. Can be set to Local by LOCAL key.
Local	R	C _s , SH	RL ⁿ , AH	Goes to Local.
Local Lockout	R	C, SH	RL, AH	Goes to Remote. Cannot be set to Local by LOCAL key.
Clear Lockout and Set Local	R	C, SH C_{s}	RL	Goes to Local from Local Lockout.
Require Service	S		С	Sets SRQ True.
Status Byte	S	SR ⁿ	L ⁿ , AH	Sends byte which indicates if service required and reason.
Status Bit	NA			
Pass Control	NA			
Abort	R	C _s		Unaddress

^{*}S = Send Only

* *SH = Source Handshake

AH = Acceptor Handshake

T = Talker (includes TE = Extended Talker)

L = Listener (includes LE = Extended Listener)

SR = Service Request

RL = Remote/Local

PP = Parallel Poll DC = Device Clear

DT = Device Trigger

C = Any Controller

 $C_N = A$ specific controller (for example, C_A , C_B) $C_s = The$ System Controller

Xⁿ = Indicates replication n times

Status Byte

Abort

NOTE

The meta message in itself is not a program code or an HP-IB command. It is only intended as a tool to translate a program written as an algorithm into the controller's code.

Table 3-8. Interface Functions.

Code	Function
SH1	Source handshake capability
AH1	Acceptor handshake capability
Т6	Basic talker; Serial Poll; Unaddressed to talk if
	addressed to listen
L3	Basic listener; Listen Only; Unaddressed to
	listen if addressed to talk
SR1	Service Request capability
RL1	Remote/Local capability
PP0	No parallel poll capability
DC1	Device clear capability
DTD	No device trigger capability
CO	No controller capability
E1	Open collector bus drivers

R = Receive Only

SR = Send and Receive

NA = Not Applicable

^{*}Status Bit

^{*}Pass Control

^{*}Not implemented by the 3325A

- c. Define the operation in program codes that the instrument can use. Each instrument has its own set of program codes which are ASCII characters. The 3325A program codes are shown beginning with Paragraph 3-120 or Table 3-9.
- d. Convert the program into the controller's language. The conversion information is supplied with each controller. For example, the -hp- 9825A Calculator Extended I/O Manual provides a chart for program code conversion.

NOTE

Examples for controlling the 3325A with a specific Hewlett-Packard calculator are provided in the Supplemental Programming Information, Appendix B-3 at the rear of this section.

3-106. Block diagrams and explanations of the meta messages that apply to the 3325A are shown in Appendix A-3 at the rear of this section.

3-107. Universal and Addressed Commands.

3-108. The 3325A will respond to the following universal and addressed commands, which are sent in the command mode (ATN true).

Mnemonic	Command	ASCII Code
Universal: *DCL LLO MLA MTA SPD SPE UNL UNT	Device Clear Local Lockout My Listen Address My Talk Address Serial Poll Disable Serial Poll Enable Unlisten Untalk	DC4 DC1 (selectable) (selectable) EM CAN ?
Addressed: GTL *SDC	Go to Local Selected Device Clear	SOH EOT

*DCL and SDC commands set the 3325A to its initial turn-on conditions (see Paragraph 3-8) and cause an AMPTD CAL operation. Any data in the HP-IB input buffer is lost. The storage registers, SRQ masking, and the status byte are not affected.

3-109. Placing the 3325A in Remote.

3-110. The 3325A will go to Remote when ATN is true, REN is true, and it receives its listen address.

3-111. The 3325A Address.

3-112. The 3325A address is normally set at the factory to:

	ASCII Character	5-Bit Octal	(5-Bit Octal Equivalent) Decimal Hexadecimal				
Listen	1	21	17	11			
Talk	Q	21	17	11			

The 3325A can be made to display its address in decimal code by pressing the blue prefix key and the BUS ADRS (LOCAL) key.

NOTES

- 1. All programming is shown in ASCII code.
- 2. Table 3-9 is a summary of the 3325A program data messages and program times. Table 3-10 lists program codes in binary, octal, decimal, and hexadecimal. At the end of this section (III) there is also a summary of the HP-IB programming codes. This chart may be removed from the manual and/or copied to be used as a programming reference.
- 3. The following front panel key actions cannot be remotely programmed:

Modify group
Sweep bandwidth × 2
Sweep bandwidth ÷ 2
Set sweep center frequency to marker frequency
Display bus address
Clear display

4. The 3325A must be set to REMOTE and addressed to LISTEN before it will accept device dependent data messages.

3-113. 3325A Data Message Formats.

3-114. The following are valid programming strings (data messages) for the 3325A:

Mnemonic, Data, Delimiter, EOS Mnemonic, Data, EOS Mnemonic, EOS I. Mnemonic, EOS

Where I is the ASCII character I and EOS is the end-ofstring character, which is required for Data Transfer Mode 2 (see following paragraphs). Valid EOS characters are:

LF = Line Feed = 12 octal * = Asterisk = 52 octal

Table 3-9. Summary of 3325A Programming (ASCII Characters).**

Parameter or Operation	Mnemonics ASCII Code	Data	ASCII Code Delimiters	Approximate Programming Time*
Data Transfer Mode Data Mode 1 Data Mode 2	= MD = MD	1 2	NA	MD = 4.5 ms
Function	= FU	O = DC Only 1 = Sine 2 = Square 3 = Triangle 4 = Positive Ramp 5 = Negative Ramp	NA	FU = 1500 ms
Frequency	= FR	≤ 11 Digits and Decimal	HZ = Hertz KH = Kilohertz MH = Megahertz	FR = 7.0 ms Each digit or decimal = 2.8 ms HZ, KH, or MH = 12.5 ms
Amplitude	= AM	≤ 4 Digits and Decimal. Also – sign if negative dBm. + sign is val- id but not required.	VO = Volts (p-p) MV = Millivolts (p-p) VR = Volts rms MR = Millivolts rms DB = dBm	AM = 6.8 ms Each digit, decimal or decimal = 2.8 ms VO or MV = 90 ms VR or MR = 130 ms DB = 250 ms
DC Offset	= OF	≤ 4 Digits and Decimal. Also – sign if negative dc offset. + sign is valid but not required.	VO = Volts MV = Millivolts	OF = 6.8 ms Each digit, decimal, or - sign = 2.8 ms VO or MV = 82 ms
Phase	= PH	≤ 4 Digits – minus sign	DE = Degrees	PH = 5 ms; DE = 28 ms Each digit and - sign = 2.8 ms
Sweep Start Frequency Sweep Stop Frequency Sweep Marker Frequency	= ST = SP = MF	≤ 11 Digits and Decimal	HZ = Hertz KH = Kilohertz MH = Megahertz	ST, SP, or MF = 7.0 ms Each digit or decimal = 2.8 ms HZ, KH, or MH = 10.3 ms
Sweep Time	= TI	≤ 4 Digits and Decimal	SE = Seconds	TI = 5.5 ms; SE = 7.0 ms Each digit and decimal = 2.8 ms
Sweep Mode Linear Logarithmic	= SM	1 2	NA	SM = 4.5 ms
Rear or Front Panel Output Front Panel Rear Panel	= RF	1 2	NA	RF = 44.5 ms
Store Program Recall Program	= SR = RE	1 Digit, 0-9	NA	SR = 11 ms; RE = 1700 ms
Execution Functions Assign Zero Phase Perform Auto-Cal Start Single Sweep Start Continuous Sweep Perform Self-Test	= AP = AC = SS = SC = TE	NA NA	NA NA	AP = 5.2 ms AC = 1500 ms SS = 300 ms SC = 300 ms TE = 10,000 ms
Interrogate Program Error	= IER	NA	NA	IER = 11.5 ms
Interrogate Entry Parameters Frequency Amplitude Offset Phase Sweep Start Frequency Sweep Stop Frequency Sweep Marker Frequency Sweep Time	= IFR = IAM = IOF = IPH = IST = ISP = IMF = ITI	NA	NA	IFR = 10 ms IAM = 9.8 ms IOF = 9.8 ms IPH = 8 ms IST = 10 ms ISP = 10 ms IMF = 10 ms ITI = 8.5 ms
Interrogate Function	= IFU	NA	NA	IFU = 1603 ms
Mask Service Requests	= MS	See Para. 3-144	NA	MS = 4.5 ms
Binary (ON/OFF) Functions High Voltage Output Amplitude Modulation Phase Modulation	= HV = MA = MP	OFF = 0 ON = 1	NA _, '	HV = 48 ms MA = 7.0 ms MP = 7.0 ms

^{*}Program times are in addition to the data transfer time of 225 to 250 μs per byte. **See Note 2 following Paragraph 3-112.

Model 3325A Operation

Table 3-10. Programming Codes.

Instruction	ASCII Characters	Binary Code	Octal Code	Decimal Code	Hexadecimal Code
Entry					
Frequency	F	1000110	106	70	46
	R	1010010	122	82	52
Amplitude	Α	1000001	101	65	41
	M	1001101	115	77	4D
Offset	0	1001111	117	79	4F
Dhara	F	1000110	106	70	46
Phase	P H	1010000	120 110	80 72	50 48
Sweep	<u> </u>	1001000	110	12	40
Start Frequency	S	1010011	123	83	53
otare vioquono,	Ť	1010100	124	84	54
Stop Frequency	S	1010011	123	83	53
	Р	1010°00	12°	8°	5°
Marker Frequency	M	1001101	115	77	4D
	F	1000110	106	70	46
Time	T	1010100	124	84	54
Start Continuous	S	1001001	111	73	49
Start Continuous	C	1010011	123 103	83 67	53
Start Single (must be sent twice)	S	1010011	123	83	43 53
	S	1010011	123	83	53
Sweep Mode	S	1010011	123	83	53
	M	1001101	115	77	4D
Numerical Data					
0	0	0110000	060	48	30
1	1	0110001	061	49	31
2	2	0110010	062	50	32
3	3	0110011	063	51	33
4	4	0110100	064	52	34
5 6	5	0110101	065	53	35
7	6 7	0110110	066 067	54	36
8	8	0111000	070	55 56	37 38
9	9	0111001	071	57	39
.(decimal)		0101110	056	46	2E
- (minus)	_	0101101	055	45	2D
Data Suffix (Delimiter)					
Hertz	Н	1001000	110	72	48
	Z	1011010	132	90	5A
Kilohertz	K	1001011	113	75	4B
	Н	1001000	110	72	48
Megahertz	M	1001101	115	77	4D
Volts (p-p or dc)	H V	1001000	110	72	4A
voits (p-p or dc)	l v	1010110	126 117	86 79	56 4F
Millivolts (p-p or dc)	M	1001111	115	77	
Trimitate (p p or de)	V	1010110	126	86	4D 56
Volts rms	V	1010110	126	86	56
	R	1010010	122	82	52
Millivolts rms	М	1001101	115	77	4D
	R	1010010	122	82	52
dBm	D	1000100	104	68	44
	В	1000010	102	66	42
Degrees	D	1000100	104	68	44
Caranda	E	1000101	105	69	45
Seconds	S	1010011	123	83	53
Store	E	1000101	105	69	45
Store	S R	1010011	123	83	53
Recall	Ŕ	1010010	122 122	82 82	52 52

Instruction	ASCII Characters	Binary Code	Octal Code	Decimal Code	Hexadecima Code
High Voltage Output	H	1001000	110 126	72 86	48 56
Modulation-Amplitude	M A	1001101	115 101	77 65	4D 41
Modulation-Phase	M P	1001101	115 120	77 80	4D 50
Rear or Front Output	R F	1010010	122 106	82 70	52 46
Data Transfer Mode	M D	1001101	115 104	77 68	4D 44
Assign Zero Phase Reference	A P	1000001	101 120	65 80	41 50
Perform Auto Cal.	A C	1000001	101 103	65 67	41 43
Perform Self Test	T E	1010100	124 105	84 69	54 45
Mask SRQ	M S	1001101	115 123	77 83	4D 53
Interrogate (Parameter)		1001001	111	73	49
Interrogate Error	I E R	1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0	111 105 122	73 69 82	49 45 52
EOS (End of String) Line Feed Asterisk	LF *	0001010	12 52	10 42	A 2A

Table 3-10. Programming Codes (Cont'd).

All spaces (40 octal), carriage returns (15 octal), commas (54 octal), and all lower case alphabetics are ignored by the 3325A.

NOTE

A program string may program one parameter or all parameters. For example, the string "FU2FR10KHAM3V0" programs the following:

FU2 = Square wave function FR10KH = 10 kHzAM3V0 = 3 V p-p

The EOS character should follow the complete string, or a maximum of 48 characters (see Paragraphs 3-115 through 3-118).

3-115. Data Transfer Mode.

3-116. The 3325A accepts data from the HP-IB in either of two modes. If speed of communication is a critical factor on your HP-IB system, Mode 2 is preferrable. The characteristics of the two modes are:

Data Mode 1. The 3325A turns on in Data Mode 1. In this mode, each device dependent character (byte) is processed when received.

Line feeds and Asterisks (EOS characters) are ignored. No other device dependent data communications are permitted on the bus until the entire 3325A program string has been accepted and all but the last character processed.

Data Mode 2. Device dependent characters are accepted and stored in an internal buffer and not processed until the EOS character is received or the buffer is filled (48 bytes). Consequently, other communications on the bus are permitted after the program string has been accepted (at the rate of approximately 150 to 200 microseconds per character). If the program string contains 48 characters or more, the 3325A will hold up the bus while it processes the 48 characters before accepting and storing the rest of the string. Because the instrument turns on in Data Mode 1. Mode 2 must be programmed remotely. It will then remain in Mode 2 until Mode 1 is programmed or until the POWER switch is set to STBY.

3-117. While the 3325A is processing data it will accept and respond to universal commands. For this reason, when operating in Mode 2, the controller can send a program string (48 characters or less) to the 3325A, and

while this data is being processed the controller can unaddress the 3325A to listen and then communicate with another device. However, if the string is more than 48 characters, the bus will be held up until the first 48 characters have been processed and the remaining characters accepted. In order for the bus to be used during 3325A processing time for communication between other devices, a program string greater than 48 characters should be divided and an EOS character sent after (or at a convenient place before) the 48th byte. The remaining program can then constitute a second string. While the 3325A is processing input information, a "Busy" flag is set in the status byte (see Paragraph 3-136). This flag can be used to determine when the 3325A has finished processing.

NOTE

The 3325A will handshake bus communications even though the POWER switch is set to STBY. This will not interfere with the operation of the bus unless it was set to STBY while addressed to talk. Before it is set to STBY, make sure it is not addressed to talk, or else disconnect the HP-IB cable from the 3325A. The addressed to talk condition can be cleared by an IFC command, even when the 3325A is in Standby.

3-118. Programming Data Transfer Mode.

3-119. Instructions for programming Data Transfer Mode are included in Paragraph 3-126.

3-120. Programming Entry Parameters.

3-121. The 3325A entry parameters are:

Frequency Amplitude

Offset

Phase

Sweep Start Frequency

Sweep Stop Frequency

Sweep Marker Frequency

Sweep Time

The programming syntax for these parameters is:

Mnemonic, Data, Delimiter, EOS

NOTE

All program codes are shown in ASCII characters.

Valid mnemonics:

FR = FrequencyAM = Amplitude

OF = Offset

PH = Phase

ST = Sweep Start Frequency

SP = Sweep Stop Frequency

MF = Sweep Marker Frequency

TI = Sweep Time

Valid data:

0 thru 9 = ASCII numerics (if too many digits are sent, the extra digits will be ignored or rounded)

+ = ASCII plus sign (plus sign is accepted but not required)

- = ASCII minus sign (minus sign will be ignored if sent for parameters that cannot be negative)

= ASCII decimal (floating decimal entries not valid)

Valid delimiters:

HZ = Hertz

KH = Kilohertz

MH = Megahertz

VO = Volts (peak-to-peak or dc)

MV = Millivolts (peak-to-peak or dc)

VR = Volts rms

MR = Millivolts rms

DB = dBm

DE = Degrees

SE = Seconds

NOTE

When operating in Data Mode 1, an EOS character is not required. When in Mode 2, the EOS character should not be sent until the end of the program string (or after 48 bytes; see Paragraph 3-117).

3-122. Programming Waveform Function.

3-123. The selectable functions are:

DC only

Sine wave

Square wave

Triangle wave

Positive Slope Ramp

Negative Slope Ramp

The programming syntax for selecting function is:

Mnemonic, Data, EOS

Valid mnemonic:

FU = Function

Valid data:

 \emptyset = Function off (dc only)

1 = Sine

2 = Square

3 = Triangle

4 = Positive Slope Ramp

5 = Negative Slope Ramp

3-124. Programming Binary (On or Off) Functions.

3-125. The programmable binary functions are:

High Voltage Output (Option 002) Amplitude Modulation Phase Modulation

The programming syntax for binary functions is:

Mnemonic, Data, EOS

Valid mnemonics:

HV = High Voltage Output (If the 3325A receives the HV mnemonic but does not have the high voltage option, SRQ (if enabled) and an error code will be generated. See Paragraph 3-134.)

MA = Modulation - Amplitude MP = Modulation - Phase

Valid data:

 $\emptyset = Off$

1 = On

NOTE

The rear panel signal output is inactive (no internal signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operating and Service Manual, Section VIII, Service Group M, for activating the rear panel signal output in one of two ways: 1) Placing the standard/high voltage output on the rear panel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.

3-126. Programming Selection Functions.

NOTE

The selection functions are similar to binary functions, but instead of ON or OFF states, selection is made between two mutually exclusive operations.

3-127. The programmable selection functions are:

Rear Output/Front Output Linear Sweep/Logarithmic Sweep Data Transfer Mode

The programming syntax for the selection functions is:

Mnemonic, Data, EOS

Valid mnemonics:

RF = Rear or Front Output

SM = Sweep Mode

MD = Data Transfer Mode

Valid data for RF is:

1 = Select Rear Output

2 = Select Front Output (If the 3325A receives the RF mnemonic but does not have rear output capability (Option 002, for example) SRQ (if enabled) and an error code will be generated. See Paragraph 3-134.)

Valid data for SM is:

1 = Linear Sweep (The 3325A turns on in Linear Sweep function. This function need not be programmed except to change from Linear to Log Sweep or to return to Linear.)

2 = Logarithmic Sweep

Valid data for MD is:

1 = Data Mode 1 (The 3325A turns on in Data Mode 1. This function need not be programmed if it is desired to remain in Data Mode 1.)

2 = Data Mode 2

3-128. Programming Execution Functions.

3-129. The programmable execution functions are:

Assign Zero Phase Reference Perform Amplitude Calibration Start Single Sweep Start Continuous Sweep Perform Self Test

The programming syntax for execution functions is:

Mnemonic, EOS

Valid mnemonics:

AP = Assign Zero Phase Reference

AC = Perform Amplitude Calibration

SS = Start Single Sweep

SC = Start Continuous Sweep TE = Perform Self Test

NOTES

- 1. The Start Single mnemonic must be sent twice (SSSS). The first SS sets the output (and display) to the start frequency, and the second SS starts the sweep.
- 2. While the 3325A is in Continuous Sweep mode, if it receives the mnemonics SC, SS, FR, PH, AC, AP, or TE, it will stop sweeping. It must receive SC again in order to resume continuous sweeping; or if a single sweep is to be programmed, SSSS is required.
- 3. The "Busy" flag (bit 7 in the status byte, see Paragraph 3-138) will be "1" for the duration of a Self Test operation. After Self Test, the 3325A returns to the previously programmed conditions, except that if a sweep was in progress the sweep will remain stopped.

3-130. Programming Amplitude Units Conversion.

3-131. The programming syntax for converting amplitude units (Vp-p, Vrms, dBm) is:

Mnemonic, Delimiter, EOS

Mnemonic = AM = Amplitude

Delimiter = The units to which you want to convert:

VO = Vp-p

MV = mVp-p

VR = Vrms

MR = mVrms

DB = dBm

Example: If amplitude was programmed in Vp-p, it may be converted to dBm by programming "AMDB". If amplitude was the last parameter programmed and is shown in the display, only the delimiter "DB" needs to be programmed.

3-132. Programming Storage Registers.

3-133. The data that will be stored includes the current program of Entry Parameters, Function (Waveform), Binary Functions, and Selection Functions. The storage register functions are:

Store Data in Register N Recall Data from Register N The programming syntax for storage register functions is:

Mnemonic, Data, EOS

Valid mnemonics:

SR = Store

RE = Recall

Valid data:

Ø thru 9 = ASCII numerics specifying register number

NOTES

- 1. If no data has been stored in a register, the recall command for that register will be ignored.
- 2. An amplitude calibration is performed when a register is recalled.
- 3. The numeric value for the phase is stored, but the phase of the output is not changed when the register is recalled. (Phase may need to be reprogrammed.)
- 4. DCL (Device Clear) and SDC (Selected Device Clear) commands do not affect the storage registers.

3-134. Service Requests.

3-135. The 3325A will set the SRQ line true for any of the following reasons, if enabled by the SRQ mask (see Paragraph 3-144):

Program String Error
Sweep Started or Sweep Stopped
System Failure (Possible component problem)
Failed Self Test
Failed Amplitude Calibration
External Reference Unlocked
Main Oscillator Unlocked

3-136. Serial Poll.

3-137. When the system controller determines that the SRQ line is true, it may conduct either a Serial Poll or a Parallel Poll to determine which device(s) initiated the Service Request, and the reason(s) for the request. The 3325A responds to a Serial Poll, which is conducted in the following manner:

Controller places ATN true (command mode)
Controller sends Serial Poll Enable (SPE) on lines
DIO1-8 (ASCII CAN, binary code ×0011000)

Controller sends 3325A Talk address, controller Listen address

Controller places ATN false (data mode)

3325A responds by sending status byte on DIO1-8 Controller places ATN true (after each device has been polled)

Controller sends Serial Poll Disable (SPD) on DIO1-8 (ASCII EM, binary code ×0011001)

Serial Poll Disable clears the SRQ message originated by the 3325A, resetting bits \emptyset through 3 and bit 6 in the status byte.

NOTE

Some of the above Serial Poll operations are performed automatically by some controllers in response to certain programming statements. Refer to the programming instructions for your particular controller.

3-138. Status Byte.

3-139. A status byte consists of one 8-bit byte on the HP-IB data lines. A "1" in bit 6 indicates that the 3325A did request service (placed SRQ true), and a "0" in bit 6 indicates that it did not request service. The 3325A status byte contains the following information:

7 6 5 4 3 2 1 Ø Status byte bits (8 7 6 5 4 3 2 1 DIO lines) FRFxSSSS F = Flag; R = Request Service: S = Status· 1 = Program String Error 1 =Sweep Stopped 1 = Sweep Started 1 = System Failure (possible component failure), includes: Failed Self Test Failed Amptd Cal Ext Ref Unlocked Main Osc Unlocked Sweep Flag. 1 = Sweep in Progress. Does not cause SRQ. ROS Message. 1 = Service Request. Busy Flag. 1 = 3325A busy processing data. Does not cause SRQ.

3-140. Busy Flag.

3-141. The Busy Flag (status byte bit 7) is high (1) while the 3325A is processing data. This bit can be monitored

by the controller to determine when the 3325A is ready for more data.

3-142. Sweep Flag.

3-143. The Sweep Flag (bit 5 of the status byte) is high (1) while the 3325A is in the process of sweeping. This bit can be monitored by the controller to determine when the end of a sweep occurs.

3-144. Masking or Enabling Service Requests.

3-145. Bits 3 through 0 in the status byte can be masked so that the corresponding conditions will not cause a service request. However, a "1" will still appear in the status byte if the condition exists, and can be cleared only by a serial poll. At instrument turn-on all SRQ conditions are masked. The programming syntax for masking and enabling SRQ conditions is:

Mnemonic, Data, EOS

Mnemonic = MS

Valid Data is shown in Table 3-11.

3-146. Interrogating Program Errors.

3-147. The "Program Error" service request may result from the following Errors:

ASCII Numeric	Error
1	Entry parameter out of bounds (for example, Freq ≥ 61 MHz)
2	Invalid delimiter
3	Frequency too large for function (for example, Function = Triangle, Freq ≥ 11 kHz)
4	Sweep time too small or too large
5	Offset incompatible with amplitude, or amplitude incompatible with offset
6	Sweep frequency too large for function; Sweep bandwidth too small; Start fre- quency too small (log sweep); Start fre- quency greater than stop frequency (log sweep)
7	Unrecognizable mnemonic received
8	Unrecognizable data character received
9	Option does not exist (High Voltage or Rear/Front)

ASCII Character	Bits 3 thru 0	System Fail Bit 3	Sweep Start Bit 2	Sweep Stop Bit 1	Program Error Bit O
@ A B C	*0000	Mask	Mask	Mask	Mask
	0001	Mask	Mask	Mask	Enable
	0010	Mask	Mask	Enable	Mask
	0011	Mask	Mask	Enable	Enable
D	0100	Mask	Enable	Mask	Mask
E	0101	Mask	Enable	Mask	Enable
F	0110	Mask	Enable	Enable	Mask
G	0111	Mask	Enable	Enable	Enable
H	1000	Enable	Mask	Mask	Mask
J K	1001 1010 1011	Enable Enable Enable	Mask Mask Mask	Mask Enable Enable	Enable Mask Enable
L	1100	Enable	Enable	Mask	Mask

Enable

Enable

Enable

Enable

Enable

Enable

Table 3-11. SRQ Mask/Enable Data.

1101

1110

1111

M

N

The programming syntax for interrogating error is:

Mnemonic, EOS

Mnemonic = IER

After receiving IER, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, CR (ASCII carriage return), LF & EOI (ASCII line feed with EOI sent simultaneously)

Mnemonic = ER

Data = The ASCII numeric corresponding to the first error that occurred (see list above).

If no error occurred, the code returned is \emptyset . When more than one error has occurred, only the code for the first error will be returned. After interrogation, the error code is set to zero until the next error occurs.

3-148. Interrogating Entry Parameters.

3-149. Each entry parameter can be interrogated by the controller to determine its value. The programming syntax for interrogating entry parameters is:

I, Mnemonic, EOI

I = the ASCII character I and indicates interrogation desired.

Valid mnemonics (parameter to be interrogated):

FR = Frequency AM = Amplitude OF = Offset PH = Phase

ST = Sweep Start Frequency

SP = Sweep Stop Frequency

MF = Sweep Marker Frequency

Enable

Mask

Enable

TI = Sweep Time

Mask

Enable

Enable

After receiving a parameter interrogation, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, Delimiter, CR (ASCII Carriage Return), LF & EOI (ASCII Line Feed with EOI sent simultaneously)

Mnemonic = The mnemonic of the parameter being interrogated

Data = 11 digits of ASCII numerics equal to the value of the specified parameter plus decimal point. If the value is negative, the first digit is a minus sign.

Delimiter = The data suffix mnemonic denoting the parameter value (see Paragraph 3-120)

NOTE

Only one parameter can be interrogated by each interrogation message.

3-150. Interrogating Function (Waveform).

3-151. The 3325A may be interrogated by the controller to determine the current function programmed. The programming syntax for interrogating function is:

I, Mnemonic, EOS

I = The ASCII character I and indicates interrogation desired

^{*}Initial turn-on conditions

Operation Model 3325A

Mnemonic = FU = Function

After receiving IFU, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, CR (ASCII Carriage Return), LF & EOI (ASCII Line Feed with EOI sent simultaneously)

Mnemonic = FU

Data = One ASCII numeric indicating function as follows:

 $\emptyset = DC Only (Offset)$

1 = Sine

2 = Square

3 = Triangle

4 = Positive Slope Ramp

5 = Negative Slope Ramp

3-152. Interrogating Miscellaneous Parameters.

3-153. The other parameters shown below can be interrogated by the controller to determine their present state. The programming syntax is:

I, Mnemonic, EOS

I = The ASCII character I and indicates interrogation desired

Valid Mnemonics (parameter to be interrogated):

SM = Sweep Mode

RF = Rear or Front Output*

HV = High Voltage Output*

MA = Amplitude Modulation

MP = Phase Modulation

*Rear/Front output and High Voltage Output (Option 002) are mutually exclusive. If either RF or HV is interrogated, the mnemonic and data returned will indicate the actual capability of the instrument and its state. For example, if the High Voltage option is present and OFF, HVØ will be returned in response to either IRF or IHV.

After receiving an interrogation, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, CR (ASCII Carriage Return), LF & EOI (ASCII Line Feed with EOI sent simultaneously)

Mnemonic = The mnemonic of the parameter being interrogated

Data = 1 ASCII digit specifying the state of the parameter. This is the same digit that would be used to program the parameter to that state.

3-154. Using the Interrogate Capability.

3-155. When the 3325A is changed from local to remote operation or vice versa, it retains its currently programmed state until this program is changed by the operator or controller. This feature can be useful in setting up a program string for HP-IB programming. For example, using the 3325A in local, the operator can determine experimentally the parameters required to perform the operation or test desired. Then the 3325A can be placed in remote and its function and entry parameters interrogated. Each item can be stored by the controller and then combined to form the 3325A program string to be incorporated into the total HP-IB program.

Model 3325A Operation

3-156. 3325A Programming Procedure.

3-157. The following examples are given to illustrate the basic procedure for developing a program. Program examples are shown in Appendix B-3, using the -hp-Model 9825A Calculator as the system controller. Appendix A-3 diagrams the required messages.

Example 1:

Address controller to talk, 3325A to listen

Send Program Data

Example 2:

Address controller to talk, 3325A to listen

Send Program Data

Check for Require Service message

If yes, determine reason from 3325A Status Byte

Take corrective action if necessary

Model 3325A Appendix A

APPENDIX A SECTION III META MESSAGES BLOCK DIAGRAMMED

DATA MESSAGE — The Data message is the actual information that is sent from a talker to one or more listeners. This action requires the controller to first enter the command mode to set up the talker and listener(s) for the transfer of data. The information is then transferred in the data mode.

TRIGGER — The Trigger message causes all addressed instruments with this capability to execute some predefined function simultaneously.

The 3325A does not have Trigger capability.

REN MUST BE TRUE BEFORE EXE-CUTING THE TRIGGER MESSAGE.

CLEAR — The Clear message may be implemented for addressed devices or for all devices on the bus capable of responding. In both cases the controller places the bus in the command mode to execute the message.

REMOTE — Only the system controller can place the device into the Remote operating condition. To implement the Remote message, the controller must set the REN line true. The HP-IB is then in the Remote Enable mode. The controller then sends the listen addresses of those devices that are to be placed in the Remote operating condition. Some instruments have been designed to enter the Remote mode as soon as REN is true.

LOCAL — The Local message will remove addressed devices from the Remote operating mode to local (front panel) control. The controller must place the HP-IB into the command mode and address to listen all devices that are to be returned to local. The Local message does not remove the HP-IB from the Remote mode, only the listening devices.

Model 3325A Appendix A

LOCAL LOCKOUT — The Local Lockout message prevents the operator from placing the instrument into local control from the front panel. The controller must be in the command mode to send the Local Lockout message.

CLEAR LOCKOUT AND SET LOCAL — This message removes all devices from the Local Lockout mode and causes them to revert to local control. Because the REN line is set false, the HP-IB is in the local mode.

REQUIRE SERVICE — The Require Service message is implemented by a device setting the SRQ line true. The Require Service message and, therefore, the SRQ line is held true until a poll is conducted by the controller to determine the cause of the request for service, or until the device no longer needs service.

Appendix A Model 3325A

STATUS BYTE — The Status Byte message represents the operational status of a single instrument during a Serial Poll. A controller usually Serial Polls devices in response to a Require Service message. The controller requests device status from one device at a time. The status information byte (8 bits) sent by the device will tell whether that device needed service and why. A device will stop requesting service upon being Serial Polled, or if it no longer needs service. The controller initiates the message by placing the bus into the command mode, sending the Serial Poll Enable command, and addressing the specific devices to be polled, one at a time. The device then sends its Status Byte and clears the SRQ line provided the cause for the require Service message is no longer present. The controller then places the bus in the command mode to terminate the message with a Serial Poll Disable command.

STATUS BIT — The Status Bit message is sent by a device to the controller to indicate its operational status in response to a Parallel Poll. Parallel Polling consists of the controller requesting one bit of status from each device simultaneously. The Parallel Poll may consist of three types of operations: Configuring, Polling, and Unconfiguring. In Configuring, the controller assigns each device a logic level and bit (on the bus data lines) for a poll response. During polling, each device responds on its assigned data line with the appropriate logic level. In Unconfiguring, the controller negates the bit and level assignments for all or selected devices. Several devices may be assigned to the same bit and level, causing their response bits to be logically ORed or ANDed.

Model 3325A Appendix A

The 3325A does not respond to Parallel Poll.

Appendix A Model 3325A

PASS CONTROL — The Pass Control message transfers bus management responsibilities from the active controller to another controller. In order to pass control, the active controller must enter the command mode, send the talk address, and the HP-IB characters for talk control.

*THE RECEIVING CONTROLLER TAKES CONTROL AT THIS TIME.

The 3325A does not respond to the Pass Control message.

ABORT —The system Controller implements the Abort Message to regain control of the HP-IB from the active controller.

Model 3325A Appendix B

APPENDIX B SECTION III

PROGRAMMING THE MODEL 3325A with the MODEL 9825A CALCULATOR

The following basic examples are provided to assis the operator in developing programs for the Model 3325A in an HP-IB system which uses the -hp- Model 9825A Calculator as the system controller. The calculator must be equipped with a General I/O ROM and an HP-IB Interface set to select code 7. The calculator (controller) normally holds the REN line true, unless the "lcl 7" (local) command is sent. REN may be returned to the true state by the "rem 7" (remote) command.

Example 1: This is a basic program statement which accomplishes the following:

Address the controller to talk Address the 3325A to listen

Sent Program Data: Function: Sine

Frequency: 5 kHz Amplitude: 3 Vp-p Offset: +1.5 V

The last parameter programmed can be changed without sending the parameter mnemonic. For example, following the program string above, the offset (OF) may be changed to 1 V by sending "1VO".

Appendix B Model 3325A

Example: 2: This program sets up sweep parameters and initiates a single sweep.

Address the controller to talk Address the 3325A to listen Send Program Data:

Function: Sine Amplitude: 3 Vrms Start Frequency: 1 kHz Stop Frequency: 10 kHz Marker Frequency: 5 kHz Sweep Time: 2 seconds Start Single Sweep

NOTE

To start a single sweep the mnemonic "SS" must be sent twice. The first "SS" sets the 3325A to the Start frequency, and the second "SS" starts the sweep.

Model 3325A Appendix B

Example 3: This example checks the "Require Service" status of the 3325A and if it did request service, determines the reason.

- 1. Enables all service request conditions.
- 2. Program data contains an error. Stop frequency (SP15KH) is too large for triangle function (FU3).
- 3. Wait statement allows time for sweep to start before reading status.
- 4. Read status byte from the 3325A and place in the calculator variable "S".
- 5 If bit 6 of the status byte = 1, the 3325A did request service. Go to subroutine to determine the reason.
- 6. Programming continues at this point if the 3325A did not request service or upon returning from the subroutine.
- 7. If service request resulted from a program string error, interrogate the 3325A to determine the error code and place in the calculator variable "E".
- 8. Determine the nature of the program error.

Appendix B Model 3325A

```
15: if bit(1; S)=1; prt "Sweep Stopped"
16: if bit(2; S)=1; prt "Sweep Storted"
17: if bit(3; S)=1; prt "Syste M Failure"
18: if bit(5; S)=1; prt "Sweep ing"
19: if bit(7; S)=1; prt "Busy"
20: ret
```

Request Service Program Error (1) Sweep Parameter Error

Request Service Sweep Started (12) Sweeping

- 9. Determine other reason for service request and if "Sweeping" or "Busy" flags were true.
- 10. Return from subroutine.
- 11. Printer records the results of the serial poll.
- 12. If the program string were corrected to make all data valid, this printout would result from the above program.

Example 4: The 3325A can be set up manually to the optimum parameters needed for the test to be performed, then the calculator can interrogate the 3325A to determine and record these parameters. This example program interrogates:

Function: IFU Frequency: IFR Amplitude: IAM DC Offset: IOF

Line Ø Write statement interrogates Function; read statement addresses 3325A to talk, calculator to listen, and places data in variable W; "fxd 6" fixes six decimal places.

Line 1 Because only numerical data can be placed in the variables, print statements may include in quotes the parameter interrogated. Model 3325A Appendix B

```
2: wrt 717, "IFR"
; red 717, F
3: prt "Frequenc
y = ",F,"Hz"
4: wrt 717, "IAM"
; red 717, A
5: prt "Amplitud
e = ",A
6: wrt 717, "IOF"
; red 717, 0
7: prt "Offset
= ",0,"V"
```

Lines 2 – 7 Other parameters are interrogated. Amplitude data acquired by this program does not indicate the units programmed. Frequency is always returned in Hz and DC Offset in Volts.

```
Function = 1.000000
Frequency = 1000.000000
Hz
Amplitude = 22.310000
Offset = 0.001000
```

- This printout results from the above program.

If the calculator is equipped with a String Variable ROM, the interrogate program may be changed to the following. Because string variables accept both alpha and numeric characters, the resulting printout includes the mnemonics and delimiters (units).

```
0: dim W$[50],
F$[50],A$[50],
0 $ [50]
1: wrt 717,"IFU"
 ired 717, W$;
 prt U$
2: wrt 717, "IFR"
 ; red 717,F$;
 prt F$
3: wrt 717,"IAM"
 ired 717,A$;
 prt A$
4: wrt 717, "IOF"
 fred 717,0$5
 prt O$
FU1
```

FR00001000.000HZ AM00000022.310DB OF00000.001000VO

- 1. Dimension a string variable for each parameter you want to interrogate. The dimension number (in brackets) is the number of spaces assigned to the variable.
- 2. This printout results when string variables are used.

Appendix B Model 3325A

Example 5: The 3325A can be made to sweep amplitude (in steps) if a for/next statement is used in the calculator program. It is recommended that the upper and lower amplitude limits selected be on the same range because irregularities in the sweep will occur if the attenuator relays are switched.

```
0: wrt 717,"FU1F
R1KH0F0V0AM3V0"
1: for I=3 to
10 by .1;wrt
717,I,"V0"
2: next I
3: for I=10 to
3 by -.1;wrt
717,I,"V0"
4: next I
5: 9to 1
```

Line Ø DC Offset (OFØVO) is programmed to zero because any offset would be incompatible with the 10 V maximum amplitude of this sweep.

Line 1 The sweep limits (3 to 10) are on the same range. The sweep increment is in .1 V steps. Because amplitude was the last parameter programmed, the write statement does not require the "AM" mnemonic.

Line 2 The calculator returns to Line 1 until I=10, then proceeds to Line 3.

Line 3 The sweep decrement is also in .1 V steps.

Line 5 Return to Line 1 to continue sweeping.

The sweep speed is determined by calculator and 3325A data transfer and processing times. If a slower sweep time is desired, wait statements may be added before the "next I" statements.

MODEL 3325A SYNTHESIZER/FUNCTION GENERATOR HP-IB PROGRAMMING CODE (ASCII Characters)

<u>FU</u> nçtion DC only Sine Square	Ø 1 2	High Voltage Output On Off	1 Ø
Triangle	3	Amplitude Modulatio	n – MA
Positive Ramp Negative Ramp	4 5	On	1 1
Negative Kamp	3	Off	Ø
FRequency			
Hz	HZ	Phase Modulation -	MP
kHz	KH	On	_1
MHz	MH	Off	Ø
		Data	
<u>AM</u> plitude	***	Data Ø	Ø
Volts p-p	VO	1	1
mVp-p	MV	2	2
Vrms	VR	3	3
mVrms	MR	4	4
dBm	DB	5	5
D.C. O.F.C.		6	6
DC OFfset	VO	7	7
Volts	VO	8	8
mV	MV	9	9
Dilaga		=	_
PHase Degrees	DE	.(Decimal)	•
Sweep STart Frequence	cy	Interrogate Operation	
		Function	IFU
Sweep StoP Frequenc	y	Frequency Amplitude	IFR
		Offset	IAM IOF
Sweep Marker Freque	ency	Phase	IPH
		Swp Start Freq	IST
Sweep TIme	GE.	Swp Start Freq	ISP
Seconds	SE	Swp Mkr Freq	IMF
C M. I		Sweep Time	ITI
Sweep Mode	1	Sweep Mode	ISM
Linear	1	Rear/Front Out	IRF
Logarithmic	2	High Volt Out	IHV
StoDa Program		Error	IER
StoRe Program	Ø – 9	Program Mode	IMD
	$\mathbf{b} = \mathbf{b}$	Amptd Mode	IMA
REcall Program		Phase Mode	IMP
<u>KE</u> can Trogram	Ø - 9		
Rear or Front Panel		Error Codes (See Para	
Front	1	1. Entry parameter	out of bounds
Rear	2	2. Invalid delimiter	ran for function
Execution Functions	~	3. Frequency too la	
Assign Zero Phase		4. Sweep time too s	
	.1	5. Offset and ampli	
Perform Amptd Ca Start Single*		6. Sweep frequency	
Start Single Start Continuous		7. Unrecognizable r8. Unrecognizable c	
Perform Self TEst		9. Option does not	
Terrorin sen TEst		7. Option does not	CAIST

^{*}Start Single code must be sent twice "SSSS". The first "SS" resets the sweep to start conditions and the second "SS" starts the sweep.

DEVICE IDENTIF	FICATION									
ADDRESS	LISTEN									
ADDITECT	DECIMAL									
MESSAGE				Dŧ	EVICE	MPLEM	ENTATIO	ON*		
DATA			·							
TRIGGER										
CLEAR										
LOCAL										
REMOTE										
LOCAL LO	оскоит									
CLEAR LO										
REQUIRE	SERVICE									
STATUS E	ЗҮТЕ									
STATUS E	зіт									
PASS CO	NTROL									
ABORT						****				

*S=SEND ONLY R=RECEIVE ONLY SR=SEND AND RECEIVE

N=NOT IMPLEMENTED

SECTION IV PERFORMANCE TESTS

TABLE OF CONTENTS

Paragraph		Page
4-1. Inti	oduction	4-1
4-3. Cal	culator-Controlled Test	4-1
	erational Verification	
4-8.	Required Test Equipment	
4-10.	Self Test	
4-12.	Sine Wave Verification	4-1
4-14.	Square Wave Verification	
4-16.	Triangle and Ramp Verification	4-3
4-18.	Amplitude Flatness Check	4-3
4-20.	Sync Output Check	
4-22.	Frequency Accuracy	4-4
4-24.	Output Level and Attenuator Check	
4-26.	Harmonic Distortion Test	4-5
4-28.	Close-In Spurious Signal Test	
4-30.	HP-IB Interface Test	
4-32. Per	formance Tests	4-11
4-35.	Equipment Required	
4-37.	Harmonic Distortion Test	4-12
4-39.	Spurious Signal Tests	
4-41.	Integrated Phase Noise Test	
4-43.	Amplitude Modulation Envelope Distortion Test	
4-45.	Square Wave Rise Time and Abberations	
4-47.	Ramp Retrace Time	4-16
4-49.	Sync Output Test	
4-51.	Square Wave Symmetry	
4-53.	Frequency Accuracy	4-17
4-55.	Phase Increment Accuracy	
4-57.	Phase Modulation Linearity	4-19
4-59.	Amplitude Accuracy	4-20
4-61.	DC Offset Accuracy (DC Only)	
4-63.	DC Offset Accuracy with AC Functions	4-25
4-65.	Triangle Linearity	
4-67.	X Drive Linearity	
4-69.	Ramp Period Variation	
4-71.	HP-IB Interface Test	

LIST OF ILLUSTRATIONS

LIST OF TABLES

Page

....4-2

....4-11

Figure	Page	Table
4-1. Harmonic Distortion Verification (High Voltage Output)		4-1. Test Equipment Required for Operational Verification
4-2. Mixer Spurious Test	4-13	4-2. Test Equipment Required
4-3. Integrated Phase Noise Test	4-14	for Performance Tests
4-4. AM Envelope Distortion	4-15	
4-5. Square Wave Symmetry	4-17	
4-6. Frequency Accuracy	4-18	
4-7. Phase Increment Accuracy	4-18	
4-8. Phase Modulation Linearity	4-19	
4-9. Amplitude Accuracy and Flatness	4-24	
4-10. Triangle and Ramp Linearity Test.	4-26	
4-11. Triangle Linearity Test	4-27	
4-12. X Drive Linearity Test	4-29	
4-13. X Drive Linearity Test	4-30	
4-14. Ramp Reset Waveform	4-30	

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION.

- 4-2. This section contains tests which are in-cabinet procedures to determine whether the instrument is operating properly. In the Operating and Service Manual two sets of procedures are provided:
- a. Operational Verification procedures which are recommended for incoming inspection and general after-repair tests.
- b. Performance Tests which compare the instrument operation to the specifications listed in Table 1-1. The Operating Supplement contains only the Operational Verification Procedures.

4.3. CALCULATOR-CONTROLLED TEST.

4-4. The only calculator-controlled test in these procedures tests the HP-IB interface circuits for proper operation. All input and output lines are tested. The program used for this test is written specifically for the -hp- Model 9825A Calculator but may be adapted to other controllers. The calculator prints the test results. This test is recommended for both the Operational Verification Checks and the Performance Tests.

4-5. OPERATIONAL VERIFICATION.

- 4-6. The following procedures are recommended for incoming inspection and for testing the instrument after repair. Additional tests to be performed following repair of certain circuits are indicated in Section VIII. An Operational Verification Record is located at the end of this section. For ease of recording the test data at various times, copies of the blank Operational Verification Record may be made without written permission from Hewlett-Packard.
- 4-7. Operational Verification includes the following procedures:

Par. No.	Test
4-10	Self Test
4-12	Sine Wave Verification
4-14	Square Wave Verification
4-16	Triangle and Ramp Verification
4-18	Amplitude Flatness Check
4-20	Sync Output Check
4-22	Frequency Accuracy
4-24	Output Level and Attenuator Check
4-26	Harmonic Distortion Test
4-28	Close-in Spurious Signal Test
4-30	HP-IB Interface Test

4-8. Required Test Equipment.

4-9. A list of test equipment required for the Operational Verification procedures is given in Table 4-1. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

4-10. Self Test.

4-11. This test uses the control, ROM, and control clock circuits to verify operation of these and other circuits. The following front panel indications result from this test.

LED check: Turns on all LED's for about two seconds

The following messages are displayed for about one second:

OSC FAIL – displayed only if the VCO is not controlled (displayed continuously after test)

PASS or FAIL 1 - tests AMPTD CAL of sine wave

PASS or FAIL 2 - tests AMPTD CAL of square wave

PASS or FAIL 3 - tests AMPTD CAL of triangle

Press the blue entry prefix key, then press SELF TEST (AMPTD CAL) key. All LED's should light, and the display should not indicate any failures.

4-12. Sine Wave Verification.

4-13. This procedure visually checks the sine wave output for the correct frequency and any visible irregularities.

Equipment Required: Oscilloscope (-hp- Model 1740A)

- a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
 - b. Set the 3325A as follows:

High Voltage Output (Option 002)Off
Function Sine
Frequency
Amplitude 10 V p-p

Table 4-1. T	Test Equipment	Required for	Operational	Verification.
--------------	----------------	--------------	-------------	---------------

Instrument	Critical Specifications	Recommended Model
Oscilloscope	Vertical: Bandwidth: dc to 100 MHz Deflection: 1 V to 5 V/div Horizontal: Sweep: .05μs to 1 s/div External Sweep Input	-hp- 1740A
Electronic Counter	Frequency measurement to 20 MHz Accuracy: ±2 counts Resolution: 8 digits	-hp- 5328A with Opt. 040 or 041
DC Digital Voltmeter	Ranges: 0.1 V to 100 V Resolution: 6 digits Accuracy: ±0.1%	-hp- 3455A
50-ohm load	Accuracy: ±0.2% Power Rating: 1 W	-hp- 11048C
High Frequency Spectrum Analyzer	Frequency Range: 1 MHz to 80 MHz Amplitude Accuracy: ±0.5 dB Noise: >70 dB below reference	-hp- 141T/8552B/8553B/ 8566A/8568A
Low frequency Spectrum Analyzer	Frequency Range: 100 Hz to 50 kHz Amplitude Range: 2 m V to 20 V Noise: >80 dB below input reference or -140 dBv	-hp- 3580A/3585A
Resistor	56.2Ω 1/8W 1.0%	-hp- 0757-0395
Adapter	BNC female-to-dual banana plug	-hp- 1250-2277
Calculator	HP-IB Control Capability	-hp- 9825A with 98034A Interface, General I/O ROM, Extended I/O ROM
Resistor	470Ω 2W 5%	-hp- 0698-3634

- c. Set the oscilloscope vertical control to 2 V/div, horizontal to .05 μ s/div.
- d. The oscilloscope should display one cycle per division, approximately five divisions peak-to-peak.
 - e. Change 3325A frequency to 1 MHz.
- f. Change oscilloscope horizontal control to .1 μ s/div.
- g. The oscilloscope should display one sine wave having no visible irregularities.

High Voltage Output (Option 002)

- h. Set the oscilloscope vertical control to 5 V/div.
- i. Set the oscilloscope input switch to 1 M Ω dc coupled position (or disconnect external 50-ohm load).

- j. Press 3325A High Voltage Output key (lower right corner of front panel).
- k. Change 3325A amplitude to 40 V p-p. The oscilloscope should display one sine wave approximately eight divisions peak-to-peak having no visible irregularities.
- l. Press the High Voltage Output key again to turn the option off.

4-14. Square Wave Verification.

4-15. This procedure checks the square wave output for frequency, rise time, and abberrations.

Equipment Required: Oscilloscope (-hp- Model 1740A)

a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.

b. Set the 3325A as follows:

High Voltage Output (Option 002).	Off
Function	. Square
Frequency	.1 MHz
Amplitude	10 V p-p

- c. Set the oscilloscope vertical control to 2 V/div, horizontal to .2 μ s/div. The oscilloscope should display two square waves, approximately five divisions peak-to-peak.
- d. Switch the oscilloscope vertical control to 1 V/div. so that the abberrations (overshoot and ringing) can be measured. Aberration excursion should be less than 500 mV (½ div.).
 - e. Repeat Step d at 2 kHz and .1 ms/div.
- f. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 20 nanoseconds.

4-16. Triangle and Ramp Verification.

4-17. This procedure checks the triangle and ramp output signals for frequency, shape, and ramp retrace time.

Equipment Required: Oscilloscope (-hp- Model 1740A)

- a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
 - b. Set the 3325A as follows:

High Voltage Output (Option 002)) Off
Function	Triangle
Frequency	10 kHz
Amplitude	10 V p-p

- c. Set the oscilloscope vertical control to 2 V/div, horizontal to .1 ms/div. The oscilloscope should display one triangle wave per division, approximately five divisions peak-to-peak.
- d. Change the 3325A function to positive slope ramp. The display should be one ramp per division, approximately five divisions peak-to-peak.

- e. Change 3325A function to negative slope ramp. The display should be one ramp per division, approximately five divisions peak-to-peak.
- f. Change the oscilloscope horizontal and vertical controls so that the ramp retrace time from the 90% to 10% points can be measured. Retrace time should be less than 3 μ s.
- g. Change 3325A function to positive slope ramp and repeat Step f.
 - h. Change 3325A function to triangle.
- i. Set oscilloscope vertical control to 2 V/div, horizontal to 10 μ s/div. The oscilloscope should display one triangle wave with no visible irregularities in either slope.

4-18. Amplitude Flatness Check.

4-19. This procedure provides a visual check of the sine wave amplitude flatness.

Equipment Required: Oscilloscope (-hp- Model 1740A)

- a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
 - b. Set the 3325A as follows:

High Voltage Output (Option 002)Off
FunctionSine
Frequency 2 kHz
Amplitude
Sweep Start Freq
Sweep Stop Freq 20 MHz
Sweep Marker Freq 5 MHz
Sweep Time01 sec

- c. Connect the 3325A X-Drive output to the oscilloscope's channel B input. Connect the 3325A signal output to the oscilloscope's channel A input.
- * d. Set the oscilloscope as follows:

Display	s B
Channel A Sensitivity1V/	div
(uncal - adjust for full vertical deflection)	
Channel B Sensitivity	div
(uncal - adjust for full horizontal sweep)	

* Settings may vary from one oscilloscope to another. Note that whichever scope is used, it should be operated in a "X-Y" mode, with the 3325A X-Drive output driving the horizontal (X) sweep and the signal output driving the scope's vertical (Y) channel.

- e. Press the 3325A START CONT key.
- f. The oscilloscope display should show a sweep that is essentially flat, dropping no more than 3.5%. Any D.C. variations should be ignored, taking the peak-to-peak reading for flatness comparison.

4-20. Sync Output Check.

4-21. This test verifies the sync output signal levels.

Equipment Required: Oscilloscope (-hp- Model 1740A)

- a. Connect the 3325A sync output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
- b. Set the 3325A function to sine, frequency to 20 MHz.
- c. Adjust the oscilloscope controls to measure the high and low voltage levels of the sine square wave. The high level should be greater than +1.2 V and the low level should be less than +0.2 V.

4-22. Frequency Accuracy.

4-23. This test compares the accuracy of the 3325A output signal to the specification in Table 1-1: $\pm 5 \times 10^{-6}$ of selected frequency.

Equipment Required: Electronic Counter (-hp- Model 5328A, calibrated within three months or with an accurate 10 MHz external reference input)

- a. Connect the 3325A signal output to the electronic counter channel A input with a 50 Ω load. Allow 3325A and counter to warm up for 20 minutes.
 - b. Set the 3325A output as follows:

Function .					 	 	 	 							. 5	Sin	ıe
Frequency																	
Amplitude										. ().	9	9	V	1	P-	P
DC Offset																0	V

- c. Set the counter to count the frequency of the A input with 0.1Hz resolution, and adjust for stable triggering. Electronic counter should indicate 20 000 000.0Hz \pm 100Hz.
- d. Change 3325A function to square wave. Frequency automatically changes to 10 MHz. Electronic counter should indicate 10 000 000.0 Hz \pm 50 Hz.
- e. Change 3325A function to triangle. Frequency automatically changes to 10kHz. Move the counter input to

the sync output of the 3325A. Set the counter to average 1000 periods. Electronic counter should indicate 100 000.00ns ± 0.5 ns.

f. Change 3325A function to positive slope ramp. Electronic counter should indicate $100,000 \text{ ns} \pm .5 \text{ ns}$.

4-24. Output Level and Attenuator Check.

4-25. This procedure checks the output level and the attenuator by using the "dc only" function.

Equipment Required:

DC Digital Voltmeter (-hp- Model 3455A) 50-ohm Feedthru Termination (-hp- Model 11048C)

- a. Connect the 3325A signal output through a 50-ohm feedthru termination to a dc digital voltmeter input.
- b. If the instrument has High Voltage Output Option 002, make sure the High Voltage Output is Off (High Voltage indicator light in the center of the "SIGNAL" key in the lower right corner of the front panel if Off).
- c. Press whichever function key is presently active, indicated by a lighted indicator in the center of the key. This removes the ac output. The indicator in the center of the DC OFFSET key should light.
- d. Set the 3325A dc offset to -5 V, then press the AMPTD CAL key.
- e. The dc digital voltmeter reading should be -4.980V to -5.020V.
- f. Change 3325A dc offset to (+)5 V. Digital voltmeter reading should be +4.980 V to +5.020 V.
- g. Change 3325A dc offset to the following voltages. The voltmeter readings should be within the tolerances shown.

DC Offset	Tolerances
±1.499 V	±1.49300 to 1.50499 V
$\pm 499.9 \text{ mV}$	± 0.49790 to 0.50190 V
$\pm 149.9 \text{ mV}$	± 0.14930 to 0.15050 V
$\pm 49.99 \text{ mV}$	± 0.04979 to 0.05019 V
$\pm 14.99 \text{ mV}$	± 0.01493 to 0.01505 V
$\pm 4.999 \text{ mV}$	± 0.004979 to 0.005019 V
$\pm 1.499 \text{ mV}$	± 0.001479 to 0.001519 V

High Voltage Output Option 002 DC Offset

h. Remove the 50-ohm feedthru termination and connect the 3325A output directly to the digital voltmeter input.

- i. Press the "SIGNAL" key in the lower right corner of the 3325A front panel to select High Voltage Output (Option 002). Lighted indicator in the center of this key indicates High Voltage Output is on.
- j. Set 3325A dc offset to 20 V. Digital voltmeter reading should be +19.775 V to +20.225 V.
- k. Set 3325A dc offset to -20 V. Digital voltmeter reading should be -19.775 V to -20.225 V.

4-26. Harmonic Distortion Test.

4-27. This procedure tests the harmonic distortion of the 3325A sine wave output against the following specifications from Table 1-1.

Harmonic Distortion (relative to fundamental)

Fundamental Frequency	No Harmonic Greater Than
0.1 Hz to 50 kHz 50 kHz to 200 kHz	- 65 dB - 60 dB
200 kHz to 2 MHz	-40 dB
2 MHz to 15 MHz	-30 dB
15 MHz to 20 MHz	-25 dB

Equipment Required:

High Frequency Spectrum Analyzer (-hp- Model 141T/ 8552B/8553B/8566A/8568A)

Low Frequency Spectrum Analyzer (-hp- Model 3580A/ 3585A)

50-ohm Feedthru Termination (-hp- Model 11048C)

Resistor 470Ω 2W 5% (-hp- 0698-3634)

Resistor 56.2Ω 1/8W 1% (-hp- 0757-0395)

a. Set the 3325A output as follows:

High Voltage Output (Option 002) Off
FunctionSine
Frequency
Amplitude

- b. Connect the 3325A signal output to the high frequency spectrum analyzer's 50 ohm input.
- c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25dB below the fundamental.
- d. Set the 3325A to the following frequencies and verify that all harmonics are below the specified levels, relative to the fundamental.

15 MHz	$-30 \mathrm{dB}$
2 MHz	$-40 \mathrm{dB}$
200 kHz	$-60 \mathrm{dB}$

- e. Disconnect the 3325A from the high frequency spectrum analyzer and connect it to the low frequency spectrum analyzer's 50 ohm input.
- f. Set the 3325A frequency to 50kHz and the amplitude to 9.99mVp-p.
- g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (It may be necessary to decrease the analyzer's video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are at least 65dB below the fundamental.

Figure 4-1. Harmonic Distortion Verification (High Voltage Output).

h. Set the 3325A to the following frequencies and verify that all harmonics are 65dB below the fundamental.

10kHz

1kHz

100Hz

High Voltage Output (Option 2)

- i. Connect the 3325A signal output to the low frequency spectrum analyzer's 50Ω input. (See Figure 4-1.)
- j. Press the "high voltage output" key on the 3325A. Set the amplitude to 40Vp-p and the frequency to 100Hz.
- k. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65dB below the fundamental.
- 1. Set the 3325A to the following frequencies and verify that their harmonics are below the specified levels, relative to the fundamental.

10kHz -65dB

200kHz -60dB

1MHz -40dB

m. Press the high voltage output key to deactivate the high voltage output.

4-28. Close-In Spurious Signal Test.

4-29. This procedure tests the sine wave output for spurious signals which may be generated by the 3325A frequency synthesis circuits. The spurious signals must be more than 70 dB lower than the fundamental signal.

Equipment Required: Spectrum Analyzer (-hp-3585A/8566A/8568A)

a. Set the 3325A as follows:

High Volt	a	g	e	()	u	t	p	u	t	(0	p	t	i)1	n	0	0	2)			.0	ff
Function																								 . Sir	ıe

Frequency	 . 20.001MHz
Amplitude	 2.99dBm
DC Offset	 0 V

- b. Connect the 3325A signal output to the spectrum analyzer's 50 ohm input.
- c. Set the spectrum analyzer controls for a center frequency of 20.001MHz, a resolution bandwidth of 30Hz, a 100Hz/div frequency span, with the fundamental referenced to the top of the display graticule.
- d. Set the spectrum analyzer center frequency to 20.002, 20.003, and 20.004MHz, verifying in each case that all spurious signals are more than 70dB below the fundamental.

4-30. HP-IB Interface Test.

4-31. The following calculator program tests the operation of the 3325A HP-IB interface circuits. The program is written for an -hp- Model 9825A calculator but may be adapted for other controllers.

Equipment Required:

-hp- Model 9825A Calculator equipped with: 98034A HP-IB Interface (set to select code 7) Any combination of ROM's that includes a General I/O ROM and an Extended I/O ROM

- a. Connect the calculator interface cable to the 3325A rear panel HP-IB connector. It is recommended that no other equipment be connected to this HP-IB during this test.
 - b. Enter the program into the calculator.
- c. Press RUN. Tests 4 through 7 in this program require the operator to press CONTINUE if the test passes, or 1 CONTINUE if the test fails. If the Test 4 question (SRQ LIGHT ON?, 1 = NO) does not appear in the calculator display within 30 seconds after start of the program (RUN), the 3325A and calculator are not interfacing properly. The calculator may display an error indication that will identify the problem. If not, the 3325A HP-IB circuits are probably not operating correctly.

Instrument Returns To Known Conditions After Self Test

Test 1 - Did Frequency Go To 1000 Hz?

Test 2 - Interrogate Frequency

Test 3 - Interrogate Amplitude

Test 4 - Test SRQ Circuits

Test 5 - Test Talk Circuits

Test 6 - Test Listen Circuits

Test 7 - Test Remote Circuits


```
0: fmt jcsvj0+r1+r2+r3+r4+r5+r6+r7
1: prt "**************
2: prt "3325A"
3: prt "HP-IB TEST"
4: prt "***********
5: beep;ent "3325A BUS ADDRESS?,cont=717",A
9:
10: "TEST 1":

      10: "IESI 1":

      11: wrt A: "TE" Perform Self Test

      12: wrt A: "IFR" Perform Self Test

      13: red A: F Read 3325A Frequency

      14: if F#1000;1+r1 Compare Frequency to 1000 Hz

15:
16: "TEST 2:3 SETUP":
17: Wrt A; "FR1234.567890HZ AM50MV" — Set Freq to 1234.567890 Hz, Amptd to 50mV

18: Wrt A; "SR3" — Store Settings in Register 3

19: clr A — Clear the 3325A

20: Wrt A; "RE3" — Recall Settings in Register 3
21:
22: "TEST 2":
23: wrt A: "IFR" — Interrogate Frequency
Read Frequency
22: "TEST 2":
26:
27: "TEST3":
28: wrt A, "IAM"_____Interrogate Amplitude
29: red fight — Read Amplitude
30: if H#.05;1→r3———Compare to Amplitude Stored
31:
```

```
32: "TEST 4":
33: wrt A. "ST1KH SP10KH SM1 TI10SE MSF SSSS"-Lin Sweep 1-10kHz, Enable SRQ Mask
36:
37: "TEST 5":
43: "TEST6":
44: wrt Ailcl 7——————————————————————Write to the 3325A, Interface to Local 45: beepient "LISTEN LIGHT ON? 1=NO" r6—— Did 3325A respond to Listen Command?
47: "TEST 7":
47: "TEST 7": Remote Interface, Write to 3325A, 48: rem 7; wrt A; cli 7 — Clear Interface
49: beepjent "REMOTE LIGHT ON:, 1=NO", r7 — Did the 3325A Respond to Remote?
50:
52: prt "TEST RESULTS:"
53: spc ;1+I;fxd 0
54: if rI=0;prt "TEST",I,"
55: if rI=1;prt "TEST",I,"
56: if (I+1+I)<=7;jmp -2
                                                          -Print Results of Tests
                                      FAIL"
57: prt "******************
58: ent "Repeat test?,1=Yes",C;if C=1;9to 0 ----- Self Contained Program may be
59: end
                                                   Linked or Used as a Subroutine
*24386
```

Variables used in this Test Program:

- A Address of 3325A (defaults to 717)
- F Frequency read from 3325A in test #1
- G Frequency read from 3325A in test #2
- H Amplitude read from 3325A in test #3
- I Counter used to print test results
- r1-r7 Test results (0 = Pass, 1 = Fail)
 - S Status read from 3325A in test #5

Samples of Program Printouts:

************	************
3325A	3325A
HP-IB TEST	HP-IB TEST
*****	********
**********	***********
Test results:	Test results:
TEST 1	TEST 1
PASS TEST 2	PASS TEST 2 PASS
PASS TEST 3	TEST 3
PASS	PASS
TEST 4	TEST 4
FAIL	PASS
TEST 5	TEST 5
PASS	PASS
TEST 6	TEST 6
PASS	PASS
TEST 7	TEST 7
PASS	PASS ***********

4-32. PERFORMANCE TESTS.

4-33. The following procedures compare the instrument operation to its specifications, listed in Table 1-1. A Performance Test Record is located at the end of this section. This Test Record lists all of the tested specifications and the acceptable limits. For ease of recording data at various times, copies of the blank Performance Test Record may be made without written permission from Hewlett-Packard.

4-34. The Performance Tests include the following:

Par No.	Test
4-37	Harmonic Distortion
4-39	Spurious Signal Tests
4-41	Integrated Phase Noise

4-43	Amplitude	Modulation	Envelope	Distor
	tion			

- 4-45 Square Wave Rise Time and Aberrations
- 4-47 Ramp Retrace Time
- 4-49 Sync Output
- 4-51 Square Wave Symmetry
- 4-53 Frequency Accuracy
- 4-55 Phase Increment Accuracy4-57 Phase Modulation Linearit
- 4-57 Phase Modulation Linearity4-59 Amplitude Accuracy
- 4-61 DC Offset Accuracy (DC Only)
- 4-63 DC Offset Accuracy with AC Functions
- 4-65 Triangle Linearity
- 4-67 X Drive Linearity
- 4-69 Ramp Period Variation
- 4-71 HP-IB Interface Test

Table 4-2. Test Equipment Required For Performance Tests.

Instrument	Critical Specifications	Recommended Model						
High Frequency Spectrum Analyzer								
50-ohm Load	Accuracy: ±0.2% Power Rating: 1 W	-hp- Model 11048C						
Resistor	56.2Ω 1/8W 1.0%	-hp- 0757-0395						
Low Frequency Spectrum Analyzer	Frequency Range: 20Hz to 50kHz Amplitude Accuracy: ± 0.5dB Spurious Responses: 80dB below reference	-hp-3580A/3585A						
Sine Wave Signal Source	Frequency Range: 1 MHz to 21 MHz Amplitude Range: to + 13.01 dBm Output Impedance: 50Ω Phase Noise (Integrated): 9.9 MHz: < -63 dB 20 MHz: < -70 dB Spurious: > 75 dB below fundamental	-hp- 3335A						
Double Balanced Mixer	Impedance: 50 Ω Frequency Range: 1 MHz-20 MHz	-hp- 10534A						
AC/DC Digital Voltmeter	AC function (True RMS) Ranges: 1 V to 100 V Accuracy: ±0.2% Resolution: 6 digits Crest Factor: 4:1 DC Function Ranges: 0.1 V to 100 V Accuracy: ±0.05% Resolution: 6 digits	-hp- 3455A						
1 MHz Low Pass Filter	Cut-off Frequency: 1 MHz Stopband Atten: 50 dB by 4 MHz Stopband Freq: 4 MHz-80 MHz	F882 1MHz LPF Allen Avionics, Inc. 224 E Second St. Mineola, NY 11501						
15 kHz Filter	Consisting of: Resistor: 10 kΩ 1% Capacitor: 1600 pF 5%	-hp- 0757-0340 -hp- 0160-2223						
Resistor	470Ω 2W 5%	-hp- 0698-3634						
AC Voltmeter	Ranges: 0.1 V to 1 V Frequency Range: 2] Hz-1 MHz Input Impedance: \geq 1 M Ω Meter: Log scale Acc (100 Hz to 10 kHz): \pm 1%	-hp- 400FL						
Sine Wave Signal Source	Frequency: 10 kHz Amplitude: 1 V rms into 20 k Ω Distortion: -60 dB	-hp- 204C						

Table 4-2. Test Equipment Required For Performance Tests (Cont'd).

Instrument	Critical Specifications	Recommended Model				
Oscilloscope	Vertical: Bandwidth: dc to 100 MHz Deflection: 1 V to 5 V/div Horizontal: Sweep: 0.05 µs to 1 s/div x 10 magnification	-hp- 1740A				
Electronic Counter	Frequency measurement Frequency Range: to 20 MHz Resolution: 8 digits Accuracy: ± 2 counts Time Interval Average A to B Resolution: 0.01 ns	-hp- 5328A With Option 040 or 041				
DC Power Supply	Volts: 0 to ±5 V Amps: 10 mA Floating Output	-hp- 6214A				
Thermal Converter	Input Impedance: 50 Ω Input Voltage: 1 V rms Frequency: 2 kHz to 20 MHz Frequency Response: ±0.05 dB 2 kHz to 20 MHz	-hp- 11050A				
Resistive Divider	Consisting of: 2 Resistors: 61.11 Ω .1% 1/4 W 2 Resistors: 36.55 Ω .1% 1/8 W	-hp- 0699-0090 -hp- 0698-7169				
Resistive Divider	Capacitor: 300 pF 5% Consisting of: 3 Resistors: 1330 Ω .1% 1/4 W Resistor: 43Ω .1% 1/8 W	-hp- 0160-2207 -hp- 0698-7453 -hp- 0698-8264				
High-Speed DC Digital Voltmeter	DC Voltage: 0 to ± 10 V External Trigger: Low True TTL Edge Trigger Trigger Delay: Selectable 10 μs to 140 μs	-hp- 3437A				
BNC-to-Triax Adapter	50 ohm	-hp- 1250-0595 Adapter or 11172A RF Cable				
Resistive Divider ÷ 2.5	Consisting of: Resistor: 30 Ω 1% 1/4 W Resistor: 20 Ω 1% 1/4 W	-hp- 0698-7533 -hp- 0698-6296				
Resistive Divider ÷ 2.6	Consisting of: Resistor: 100 k Ω 1% 1/8 W Resistor: 162 k Ω 1% 1/8 W	-hp- 0757-0465 -hp- 0757-0470				
Calculator	HP-IB Control Capability	-hp- 9825A with 98034A Interface, General I/O ROM, Extended I/O ROM				
Adapter	Female BNC-to-Dual Banana Plug BNC Tee	-hp- 1250-2277 -hp- 1250-0781				
Step Attenuator	0-12dB; 1dB steps	-hp- 355C				
Ctop / ttoriagto.		1				

4-35. Equipment Required.

4-36. The test equipment required for the Performance Tests is listed in Table 4-2. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

4-37. Harmonic Distortion Test.

4-38. This procedure tests the harmonic distortion of the 3325A sine wave output against the following specifications from Table 1-1.

Harmonic Distortion (relative to fundamental)

Fundamental	No Harmonic
Frequency	Greater Than
0.1 Hz to 50 kHz	- 65 dB
50 kHz to 200 kHz	- 60 dB
200 kHz to 2 MHz	- 40 dB
2 MHz to 15 MHz	- 30 dB
15 MHz to 20 MHz	- 25 dB

Equipment Required:

High Frequency Spectrum Analyzer (-hp- Model 141T/8552B/8553B/8566A/8568A)

Low Frequency Spectrum Analyzer

(-hp- Model 3580A/3585A)

50-ohm Feedthru Termination (-hp- Model 11048C) Resistor 470 Ω 2W 5% (-hp- 0698-3634)

Resistor 56.2 Ω 1/8W 1% (-hp- 0757-0395)

a. Set the 3325A output as follows:

High Voltage Output (Option 002)Off
FunctionSine
Frequency
Amplitude

- b. Connect the 3325A signal output to the high frequency spectrum analyzer's 50 ohm input.
- c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25dB below the fundamental.
- d. Set the 3325A to the following frequencies and verify that all harmonics are below the specified levels, relative to the fundamental.

15 MHz - 30 dB 2 MHz - 40 dB 200 kHz - 60 dB

- e. Disconnect the 3325A from the high frequency spectrum analyzer and connect it to the low frequency spectrum analyzer's 50 ohm input.
- f. Set the 3325A frequency to 50kHz and the amplitude to 9.99mVp-p.
- g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (It may be necessary to decrease the analyzer's video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are a least 65dB below the fundamental.
 - h. Set the 3325A to the following frequencies and verify

that all harmonics are 65dB below the fundamental.

10kHz 1kHz 100Hz

High Voltage Output (Option 2)

- i. Connect the 3325A signal output to the low frequency spectrum analyzer's 50Ω input. (See Figure 4-1.)
- j. Press the "high voltage output" key on the 3325A. Set the amplitude to 40Vp-p and the frequency to 100Hz.
- k. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65dB below the fundamental.
- l. Set the 3325A to the following frequencies and verify that their harmonics are below the specified level, relative to the fundamental.

10kHz -65dB

200kHz -60dB

1MHz -40dB

m. Press the high voltage output key to deactivate the high voltage output.

4-39. Spurious Signal Tests.

4-40. This procedure tests the 3325A sine wave output for spurious signals. Circuits within the 3325A may generate repetitive frequencies that are not harmonically related to the fundamental output frequency. All spurious signals must be more than 70dB below the fundamental signal or less than -90dBm, whichever is greater.

Equipment Required:

Spectrum Analyzer (-hp- Model 3585A/8566A/8568A)

Figure 4-2. Mixer Spurious Test

Mixer Spurious Test

- a. Connect the 3325A signal output to the spectrum analyzer 50 ohm (RF) input and the 3325A EXT REF input to the analyzer's 10MHz reference output. (See Figure 4-2.)
 - b. Set the 3325A as follows:

Function.																	
Amplitude	•															-20d	Bm
Frequency			•			•		•		٠			. 2	2.	.(001M	Hz

c. Set the analyzer controls as follows:

Center Frequency	2.001MHz
Frequency Span	1kHz
Video BW	100Hz
Resolution BW	30Hz

- d. Adjust the spectrum analyzer to reference the fundamental to the top display graticule.
- e. Without changing the reference level, change the spectrum analyzer center frequency to 27.999MHz to display the 2:1 mixer spur. Verify that this spur is at least 70dB below the fundamental.
- f. Change the spectrum analyzer center frequency to 25.998MHz to display the 3:2 mixer spur. Verify that this spur is at least 70dB below the fundamental.
- g. In a similar manner, change the 3325A's frequency and the spectrum analyzer center frequency to the following frequencies. For each setting, verify that all spurious signals are 70dB below the fundamental.

	Spectrum	n Analyzer										
3325A Frequency	Center Frequency											
	2:1 Spur	3:2 Spur										
4.100MHz	25.9MHz	21.8MHz										
6.100MHz	23.9MHz	17.8 MHz										
8.100MHz	21.9MHz	13.8MHz										
10.100MHz	19.9MHz	9.8MHz										
12.100MHz	17.9MHz	5.8MHz										

14.100MHz	15.9MHz	1.8MHz
16.100MHz	13.9MHz	2.2MHz
18.100MHz	11.9MHz	6.2MHz
20.100MHz	9.9MHz	10.2MHz

Close-in Spurious Test (Fractional N Spurs)

- h. Set the 3325A frequency to 5.001MHz and the amplitude to -2.99dBm.
 - i. Set the spectrum analyzer controls as follows:

Center Frequency
Frequency Span
Video BW100Hz
Resolution BW30Hz

- j. Adjust the spectrum analyzer to reference the fundamental to the top display graticule.
- k. Without changing the reference level, change the spectrum analyzer center frequency to 5.002MHz to display the API 1 spur. It may be necessary to decrease the analyzer's video bandwidth to optimize the display resolution.
- 1. All spurious (non-harmonic) signals should be at least 70dB below the fundamental.
- m. Without changing the reference level, set the 3325A frequency and the spectrum analyzer center frequency to the frequencies listed below. For each setting, verify that all spurious signals are at least 70dB below the fundamental.

3325A Frequency	Spectrum Analyzer Center Frequency
5.0001MHz	5.0011MHz
5.00001MHz	5.00101MHz
5.000001MHz	5.001001MHz
20.001MHz	20.002MHz
20.001MHz	20.003MHz
20.001MHz	20.004MHz
20.001MHz	20.005MHz

Figure 4-3. Integrated Phase Noise Test

4-41. Integrated Phase Noise Test.

4-42. This test compares the integrated phase noise to the specification in Table 1-1, which is:

-60 dB for a 30 kHz band centered on a 20 MHz carrier (excluding ± 1 Hz about the carrier).

Equipment Required:

Sine wave signal source (-hp- Model 3335A) Mixer (-hp- Model 10534A) 50-ohm load (-hp- Model 11048C) DC digital voltmeter (-hp- Model 3455A) AC voltmeter (-hp- Model 400 FL) 15 kHz noise equivalent filter consisting of: Resistor: $10 \text{ k}\Omega \pm 1\%$ (-hp- Part No. 0757-0340) Capacitor: $1600 \text{ pF} \pm 5\%$ (-hp- Part No. 0160-2223) See Figure 4-3

1MHz Low Pass Filter (Model F882 - Allen Avionics)

- a. Connect the equipment as shown in Figure 4-3, connecting the 15kHz noise equivalent filter output to the ac voltmeter. Phase lock the 3325A and the signal generator together.
 - b. Set the 3325A as follows:

Function .																Si	ne	9
Frequency	ñ	 								1	9	9	0	1	N	ИI	H	Z
Amplitude	3													0) (dB	n	1

c. Set the sine wave signal source (reference) as follows:

Frequency										•		19.9 M	Hz
Amplitude			 	. ,	 		 		٠.		+	7.00 dl	3m

- d. Record the ac voltmeter reading (dB scale).
- e. Change 3325A frequency to 19.9 MHz.
- f. Connect the 15 kHz filter output to the dc digital voltmeter.

- g. Press the 3325A PHASE entry key. Using the MODIFY keys, adjust the 3325A output phase for a minimum reading on the digital voltmeter.
- h. Disconnect the 15 kHz filter output from the digital voltmeter and connect it to the ac voltmeter.
- i. Record the ac voltmeter reading (dB scale) and subtract it from the reading recorded in Step d. The difference should be -54 dB or greater. Add -6 dB to this number and enter on the performance test card. The 6 dB is a correction factor compensating for the folding action of the mixer.

NOTE

Frequencies used minimize the phase noise contribution of the 3335A.

4-43. Amplitude Modulation Envelope Distortion Test.

4-44. This procedure tests the 3325A against the amplitude modulation envelope distortion specification in Table 1-1:

-30 dB to 80% modulation at 10 kHz, 0 V dc offset

Equipment Required:

Sine wave signal source (-hp- Model 204C) Spectrum Analyzer (-hp- Model 141T/3585A/8552B/8553B/8566A)

- a. Connect the equipment as shown in Figure 4-4.
- b. Set the 3325A output as follows:

FunctionSine
Frequency 1 MHz
Amplitude 3 Vp-p
DC Offset 0 V
High Voltage Output (Option 002) Off
AM On

c. Set the modulating signal source frequency to 10 kHz and adjust the level to produce 80% modulation of the 3325A output. 80% modulation is indicated by

Figure 4-4. AM Envelope Distortion

modulation sidebands being 8.0 dB down from the carrier, as viewed on the 2 dB/div display of the spectrum analyzer.

d. Adjust the spectrum analyzer to display the fundamental frequency, the 10 kHz sideband frequency, and at least 4 harmonics of the sidebands. All harmonics should be at least 30 dB lower than the modulation sidebands.

4-45. Square Wave Rise Time and Abberations.

4-46. This procedure compares the 3325A square wave output to its rise/fall time and overshoot specifications in Table 1-1.

Rise and Fall Time: <20 ns, 10% to 90% at full output

Overshoot: <5% of p-p amplitude at full output

Equipment Required: Oscilloscope (-hp-Model 1740A)

- a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp-Model 11048C 50-ohm feedthru termination) at the input.
 - b. Set the 3325A as follows:

High Voltage Output (Option 002)Off
FunctionSquare
Frequency 1 MHz
Amplitude

- c. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 20 nanoseconds.
- d. Adjust the oscilloscope to measure the square wave fall time between the 90% and 10% points. Fall time should be less than 20 nanoseconds.
- e. Expand the oscilloscope vertical display and adjust controls so that the overshoot can be measured. Overshoot should be less than 500 mV at positive and negative peaks.

4-47. Ramp Retrace Time.

4-48. This test compares the retrace time of the positive and negative slope ramps to the specifications in Table 1-1:

 $< 3 \mu s 90\% to 10\%$

Equipment Required: Oscilloscope (-hp- Model 1740A)

a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-

Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm feedthru termination) at the input.

b. Set the 3325A as follows:

High Voltage Output (Option 002) Of	f
Function	p
Frequency 10 kHz	
Amplitude	p

- c. Adjust the oscilloscope vertical and horizontal controls so that the ramp retrace time from the 90% to 10% points can be measured. Retrace time should be less than 3 μ s.
- d. Change function to negative slope ramp and repeat Step c.

4-49. Sync Output Test.

4-50. This procedure checks the voltage levels of the sync output square wave:

$$V_{high} > +1.2V$$
; $V_{low} < +0.2V$ into 50 ohms

Equipment Required: Oscilloscope (-hp- Model 1740A)

- a. Connect the 3325A sync output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load at the input (-hp- Model 11048C 50-ohm Feedthru Termination).
- b. Set the 3325A function to sine, frequency to 20 MHz.
- c. Adjust the oscilloscope controls to measure the high and low levels of the sync square wave. The high level should be greater than +1.2 V and the low level should be less than +0.2 V.

4-51. Square Wave Symmetry.

4-52. This procedure checks the symmetry of the square wave signal output to the specification in Table 1-1:

0.02% of period + 3 nanoseconds

Equipment Required: Electronic counter (-hp- Model 5328A)

- a. Connect the 3325A signal output to both inputs of the electronic counter, using a BNC tee (see Figure 4-5).
 - b. Set the 3325A output as follows:

FunctionSquar	e
Frequency1 MH	Z
Amplitude 1 V rm	S
DC Offset0	V

- c. Adjust the electronic counter to measure time interval average A to B, with Slope A +, Slope B -. Note the reading.
- d. Change Slope A to -, Slope B to +. Reading should be equal to the reading in Step c \pm < 3.2 ns.

Figure 4-5. Square Wave Symmetry.

4-53. Frequency Accuracy.

4-54. This test compares the accuracy of the 3325A output signal to the specification in Table 1-1:

 $\pm 5 \times 10^{-6}$ of selected frequency

Equipment Required: Electronic Counter (-hp- Model 5328A, calibrated within three months or with an accurate 10 MHz external reference input)

- a. Connect the 3325A signal output to the electronic counter channel A input with a 50 Ω load. Allow 3325A and counter to warm up for 20 minutes.
 - b. Set the 3325A output as follows:

Function .															Si	ne
Frequency												2	0]	MF	Ιz
Amplitude											0		99	9	Vp.	-p
DC Offset															.0	V

- c. Set the counter to count the frequency of the A input with 0.1Hz resolution, and adjust for stable triggering. Electronic counter should indicate 20 000 000.0Hz \pm 100Hz.
- d. Change 3325A function to square wave. Frequency automatically changes to 10 MHz. Electronic counter should indicate 10 000 000.0 Hz \pm 50 Hz.
- e. Change the 3325A function to triangle. Frequency automatically changes to 10kHz. Move the counter input to the sync output of the 3325A. Set the counter to average 1000 periods. Electronic counter should indicate 100 000.00ns ± 0.5 ns.

f. Change 3325A function to positive slope ramp. Electronic counter should indicate $100,000 \text{ ns} \pm .5 \text{ ns}$.

4-55. Phase Increment Accuracy.

4-56. This test compares the phase increment accuracy of the 3325A to the specification in Table 1-1:

 $\pm 0.2^{\circ}$

Equipment Required:

Sine wave signal source (-hp- Model 3335A) Electronic Counter (-hp- Model 5328A)

- a. Connect the equipment as shown in Figure 4-7.
- b. Set the 3325A as follows:

High Voltage Output (Option 002)Off
FunctionSine
Frequency
Amplitude

c. Set the sine wave signal source (3335A) as follows:

Frequency											. (0.1	l	MHz	
Amplitude												. 1	3	dBm	

d. Set the electronic counter (5328A) as follows:

Function	I ime Interval Av	g. A to B
Frequency Res	olution, N	105
Inputs	50 Ω,	Separate
Slope A and B		. Positive
Sample Rate.		I aximum

Figure 4-6. Frequency Accuracy.

- e. Press the 3325A PHASE entry key to display phase. Using the Modify keys, adjust the phase until the counter reads approximately 200 nanoseconds. Press the 3325A blue entry prefix key, then ASGN ZERO PHASE.
- f. Set the electronic counter sample rate to HOLD. Press RESET. Record the counter reading (to 2 decimal places) on the Performance Test Record in the space for "Zero Phase Time Interval". This is the phase difference (in nanoseconds) between the 3325A output and the reference signal.
 - g. Set the 3325A phase to -1° .
- h. Press the electronic counter RESET. Record the counter reading (to 2 decimal places) in the space for "1° Increment Time Interval".

- i. Determine the time difference between the counter readings in Step h and Step f, and record in the "Time Difference" column. The difference should be from 22.22 ns to 33.34 ns.
 - i. Set the 3325A phase to -10° .
- k. Press the electronic counter RESET. Record the counter reading to the space for "10° Increment Time Interval".
- 1. Enter the time difference between the "Zero Phase Time Interval" and the reading in Step k in the "Time Difference" column. This should be from 272.22 ns to 283.34 ns.
 - m. Set the 3325A phase to -100° .

Figure 4-7. Phase Increment Accuracy.

Figure 4-8. Phase Modulation Linearity.

- n. Press the electronic counter RESET. Record the counter reading in the space for "100" Increment Time Interval".
- o. Enter the time difference between the "Zero Phase Time Interval" and the reading in Step n in the "Time Difference" column. It should be from 2722.22 ns to 2783.34 ns.

4-57. Phase Modulation Linearity.

4-58. This procedure tests the phase modulation linearity. The specification in Table 1-1 is:

 $\pm 0.5\%$, best fit straight line

Equipment Required:

Sine wave signal source (-hp- Model 3335A) Electronic counter (-hp- Model 5328A) DC power supply (-hp- Model 6214A) Digital voltmeter (-hp- Model 3455A)

- a. Connect the equipment as shown in Figure 4-8.
- b. Set the 3325A as follows:

High Voltage Output (Option 002)	Off
Function	Sine
requency1001	κHz
Amplitude	Bm
Phase Modulation	.On

c. Set the sine wave signal source (3335A) as follows:

Frequency												100kHz
Amplitude												13 dBm

d. Set the electronic counter (5328A) as follows:

- e. Using the digital voltmeter to monitor the dc power supply output, set the dc voltage as near -5.0000 V as possible.
- f. Press the 3325A PHASE entry key to display phase. Using the Modify keys, adjust the phase until the counter reads approximately 200 nanoseconds. Record the counter reading as a reference for the following steps.
- g. As soon as possible after recording the counter reading, note the digital voltmeter reading and record on the Performance Test Record in the "DVM Reading, x_1 " space.
- h. Press the 3325A blue prefix key, then ASGN ZERO PHASE.
 - i. Change the dc power supply output to -4.0000 V.
- j. Using the Modify keys, adjust the 3325A phase to return the counter reading to the value recorded in Step f.
- k. Record the digital voltmeter reading in the "DVM Reading, x_2 " space.
- 1. The 3325A display indicates the phase change resulting from the 1 V change in modulating voltage. Record the phase display in the "Phase Difference, 2" space (positive value).
- m. Press the 3325A blue prefix key, then ASGN ZERO PHASE.

n. Change the power supply output to the following voltages and repeat Steps j through m for each. Record the dvm readings and phase differences in the appropriate spaces on the Performance Test Record.

DC Voltage	DVM Reading	Phase Difference
-3.0000 V	$\mathbf{x_3}$	3
-2.0000 V	$\mathbf{x_4}^{J}$	4
-1.0000 V	x ₅	5
0.0000 V	\mathbf{x}_{6}^{3}	6
+1.0000 V	x ₇	7
+2.0000 V	x ₈	8
+3.0000 V	x _Q	9
+4.0000 V	x ₁₀	10
+5.0000 V	x ₁₁	11

- o. Enter the cumulative phase change in the "Cumulative Phase" column. That is, enter the "2" Phase Difference in the y_2 space, then add the " y_2 " and "3" values and enter in the y_3 space. Add the " y_3 " and "4" values and enter in y_4 , etc.
- p. On the Performance Test Record, multiply each x value by the corresponding y value and enter in the "x times y" column.
- q. Total the "DVM Reading" column and enter in the Σx space. Total the "Cumulative Phase" values and enter in the Σy space. Total the "x times y" values and enter in the Σxy space.
- r. Square each x value and enter in the " x^2 " column. Total this column and enter in the Σx^2 space.
 - s. Square the Σx value and enter in the $(\Sigma x)^2$ space.
- t. Multiply the Σx value by the Σy value and enter in the $\Sigma x \Sigma y$ space.
- u. The equation for determining the "best fit straight line" specification for each y value is:

$$y = a_1 x + a_0$$

Where: a_1x and a_0 are constants to be calculated from data taken previously

Where: x is the value of the modulating voltage, recorded as x_1 through x_{11}

v. First determine the value of a_1 using the following equation:

$$a_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - (\sum x)^2/n}$$

Where: Σx , Σy , Σxy , $\Sigma x\Sigma y$, Σx^2 , and $(\Sigma x)^2$ are the previously calculated values entered on the Performance Test Record

n = 11 (the number of points to be calculated)

w. Determine the value of a₀ using the equation:

$$a_0 = \frac{\sum y - a_1}{n} \frac{\sum x}{n}$$

- x. Calculate each value for y using the equation: $y = a_1x + a_0$. Enter each result on the Performance Test Record in the "Best Fit Straight Line Values" column, $(y_1 \text{ through } (y_{11}).$
- y. Determine the test limits for each y value by increasing and decreasing the calculated (y) values by 0.5% of the (y_{11}) value. Enter in the Maximum and Minimum columns.
- z. Transfer the y₁ through y₁₁ "Cumulative Phase" entries to the "Measured Cumulative Phase" column. Each value should be within the calculated limits.

4-59. Amplitude Accuracy.

4-60. This procedure tests the amplitude of the 3325A ac function output signals against the accuracy specifications in Table 1-1.

Equipment Required:

AC/DC digital voltmeter (-hp- Model 3455A, average converter opt. 001 preferred)

AC: Accuracy sufficient to verify a 1% specification to 100 kHz.

DC: Resolution, 1 microvolt.

High speed DC voltmeter (-hp- Model 3437A). At least $3\frac{1}{2}$ -digit resolution, $1\frac{1}{2}$ microsec. or faster settling time.

50-Ohm step attenuator (-hp- Model 355C)

50-Ohm feedthru termination (-hp- Model 11048C)

Thermal converter (-hp- Model 11050A)

Oscilloscope (-hp- Model 1740A) Must have delayed sweep of .05 microsec/div and delayed sweep gate output.

Components:

Resistor 36.55 ohm 0.1% 0.125W 2 ea 0698-7169 Resistor 61.11 ohm 0.1% 0.25W 2 ea 0699-0090 Resistor 43ohm* 0.1% 0.125W 1 ea 0698-8264 Resistor 1330ohm* 0.1% 0.25W 3 ea 0698-7453 Capacitor 300 pF* 5% 1 ea 0160-2207

*Used only to test High Voltage (option 002).

Amplitude Accuracy at Frequencies up to 100 kHz

a. Sine Wave Test. Connect the 3325A signal output through a 50 ohm feedthrough termination to the AC digital voltmeter input.

b. Set the 3325A as follows:

 $\begin{array}{ccc} \mbox{High Voltage Output (Option 002)} & \mbox{Off} \\ \mbox{Function} & \mbox{Sine} \\ \mbox{Frequency} & 100 \mbox{ Hz} \\ \mbox{Amplitude} & 3.536 \mbox{ V}_{RMS} (10 \mbox{ Vp-p)} \\ \mbox{DC Offset} & 0 \mbox{ V} \end{array}$

- c. Press AMPTD CAL key.
- d. Read AC Voltmeter. Change 3325A frequency to 1 kHz and 100 kHz and repeat. Verify that all three voltmeter readings are between 3.495 V_{RMS} and 3.577 V_{RMS} ($\pm\,0.1$ dB).
- e. Change 3325A amplitude to 1.061 V_{RMS} (3 Vp-p) and take ac voltage readings for 100 Hz, 1 kHz and 100 kHz as above. Verify that all three voltmeter readings are between 1.048 V_{RMS} and 1.073 V_{RMS} (\pm 0.1 dB).
- f. Change 3325A amplitude to .3536 V_{RMS} and set dc offset to 1 mV. Set 3325A frequency to (100 Hz, 1 kHz, and 100 kHz and read ac voltage. Verify that all three readings are between .3411 V_{RMS} and .3660 V_{RMS} (± 0.3 dB).
- g. Function Test. Connect 3325A sync output to external trigger input of oscilloscope. Connect 3325A signal output to the voltage divider of Figure 4-10(A). Connect the voltage divider output to oscilloscope vertical input and to high speed voltmeter input. Connect delayed sweep gate from oscilloscope to external trigger input of high speed voltmeter. See Figure 4-9 A.
 - h. Set the 3325A as follows:

High Voltage Output (Option 2)	OFF
DC Offset	0 V
Amplitude	10 Vp-p
Frequency	99.9 Hz
Function	Square

i. Set the oscilloscope as follows:

bet the obelinoscope as rono is.	
Display	A or B
Vertical Sensitivity	.5 volts/div
Trigger	Ext
Main Sweep	1 msec/div
Delayed Sweep	5 μsec/div
Delay	250

j. Set the 3437A voltmeter as follows:

Range	1.0 V
Trigger	Ext
Delay	0 sec
Coupling	DC $1M\Omega$

- k. One cycle of the square wave should fill the screen of the oscilloscope, and the sample time for the voltmeter should be seen as the intensified spot of the delayed sweep.
 - 1. Press AMPTD CAL on the 3325A.

- m. Read positive peak voltage of attenuated waveform on voltmeter. If the reading is not stable, press hold, then ext. alternatively to repeat readings. Change oscilloscope delay to 750 and read negative peak. Add the two readings to obtain volts peak to peak. Verify that sum is between 3.661 volts and 3.735 volts.
- n. Change 3325A function to Triangle. Change oscilloscope to:

Vertical Sensitivity	.2 volts/div
Vertical Position	9 o'clock
Main Sweep	.5 msec/div
Delay	500
Magnify	X10
Delayed Sweep	1 μsec/div

- o. Adjust oscilloscope delay to place the intensified spot on peak of triangle and read positive peak voltage on 3437A. Press neg trigger, move vertical position knob of CR0 to 3 o'clock and adjust intensified spot to read negative peak on the 3437A. Verify that sum of positive and negative peak voltages is between 3.643 and 3.754 volts.
- p. Change 3325A function to pos ramp. Change oscilloscope to:

Trigger pos Main Sweep 2 msec/div Place spot on positive peak, press hold, then ext, then hold a few times on the 3437A and record most positive reading.

- q. Move vertical position knob to 3 o'clock, adjust delay and read negative peak. Ramp jitter should be visible on all ramp readings (the 3437A will hold the readings). Verify that sum of pos and neg peaks is between 3.643 and 3.754 volts.
- r. Change 3325A function to neg ramp. Change CRO trigger to pos and take neg ramp reading as above.
- s. Change 3325A function to square and frequency to 1 kHz. Set CR0 as follows:

Main Sweep 50 μ sec/div Delayed Sweep .05 μ sec/div Read positive peak; push neg trigger and read negative peak. Verify that sum is between 3.661 and 3.735 volts.

- t. Change 3325A function to triangle and frequency to 2 kHz. Set CRO main sweep to 20 μ sec/div and delay to 610. Adjust delay and position and set pos and neg trigger to read peaks. Verify Vp-p to be between 3.643 and 3.754 volts.
- u. Change 3325 function to pos ramp and frequency to 500 Hz. Set main sweep of CRO to .2 msec/div and adjust sweep vernier to return peaks to center screen (trigger must be neg to see jitter at this point). Verify Vpp to be between 3.643 and 3.754 volts.

- v. Change 3325A function to neg ramp and CRO trigger to pos. Verify Vpp of 3.643 to 3.754 volts.
- w. Change 3325A frequency to 100 kHz and function to square. Return CRO sweep vernier to calibrate and set main sweep to .5 μ sec/div and magnify to off. Read pos and neg peak voltages in the center of the screen. By pressing pos/neg trigger. Verify Vpp of 3.661 to 3.735 volts.
- x. Change 3325A function to triangle (frequency will go to 10 kHz). Set CRO main sweep to 5 μ sec/div and press magnify. Verify Vpp of 3.513 to 3.883 volts.
- y. Change 3325A function to pos ramp. Set cro main sweep to 20 μ sec/div. Adjust delay to set end of intensified spot on highest peak. Verify Vpp of 3.328 to 3.996 volts
- z. Change 3325A function to neg ramp. Verify Vpp of 3.328 to 3.996 volts.
- aa. Change 3325A amplitude to 3Vp-p, and remove the voltage divider from the circuit. Reconnect the 3325A signal output to the oscilloscope and voltmeter through the 50 ohm feedthru termination. Set the 3325A frequency to 99.9Hz and the function to square.
- bb. Repeat tests i through z. New test limits are as follows:

Test	Frequency	Function	Minimum	Maximum
m	99.9 Hz	Square	2.970 V	3.030 V
0	99.9 Hz	Triangle	2.955 V	3.045 V
q	99.9 Hz	Pos Ramp	2.955 V	3.045 V
r	99.9 Hz	Neg Ramp	2.955 V	3.045 V
S	1 kHz	Square	2.970 V	3.030 V
t	2 kHz	Triangle	2.955 V	3.045 V
u	500 Hz	Pos Ramp	2.955 V	3.045 V
v	500 Hz	Neg Ramp	2.955 V	3.045 V
w	100 kHz	Square	2.970 V	3.030 V
X	10 kHz	Triangle	2.850 V	3.150 V
У	10 kHz	Pos Ramp	2.700 V	3.300 V
z	10 kHz	Neg Ramp	2.700 V	3.300 V

- cc. Change 3325A amplitude to 1 Vpp, and set dc offset to 1 mV. Set frequency to 99.9 Hz and function to square. Set CRO vertical sensitivity to .05 volts/div for all 1 Vpp tests.
- dd. Repeat tests i through z. New test limits are as follows:

Test	Frequency	Function	Minimum	Maximum
m	99.9 Hz	Square	.970	1.030
0	99.9 Hz	Triangle	.960	1.040
q	99.9 Hz	Pos Ramp	.960	1.040
r	99.9 Hz	Neg Ramp	.960	1.040
S	1 kHz	Square	.970	1.030
t	2 kHz	Triangle	.960	1.040
u	500 Hz	Pos Ramp	.960	1.040
v	500 Hz	Neg Ramp	.960	1.040
w	100 kHz	Square	.970	1.030
x	10 kHz	Triangle	.940	1.060
y	10 kHz	Pos Ramp	.890	1.110
Z	10 kHz	Neg Ramp	.890	1.110

High Voltage Output Amplitude Accuracy For Frequencies To 100 kHz

(For Instruments with High Voltage Option 002)

- ee. Sine Wave Test. Connect 3325A signal output to the AC voltmeter via a 6 ft. cable. Connect a 500 Ω , 300 pF load (at either end) in parallel with the line.
- ff. Press the 3325 high voltage key near the 3325A output connector. A LED in the key indicates that the high voltage output is on.
- gg. Set 3325A function to sine, frequency to 2 kHz, and amplitude to 14.14 V_{RMS} (40 Vpp). Press AMPTD CAL key. The AC voltmeter reading should be 13.86 to 14.42 V_{RMS} .
- hh. High Voltage Function Test. Connect 3325A signal output to CRO and voltage divider via a 6 ft. cable. Trigger CRO on 3325A sync output. Trigger high speed DC voltmeter on delayed sweep gate from CRO See Figure 4-9B.
- ii. The voltage divider shown in Figure 4-9B is built into a small metal box with 2 BNC connectors. Parts used are:
- R3, 443 ohm, consists of 3 parallel 1330 ohm resistors, each 0.1%, 0.25 watt, -hp- Part Number 0698-7453 R4, 43 ohm, 0.1%, 0.125 watt, -hp- Part No. 0698-8264 C1, 300 pF, 5%, -hp- Part Number 0160-2207 Connect the tap to the input of high speed DC voltmeter as shown in Figure 4-9B.
- jj. Set 3325A frequency to 2 kHz and amplitude to 40 Vpp. Set DC voltmeter to 1V range and ext trigger. Set oscilloscope as follows:

Vertical Sensitivity	2 volts/div
Vertical Position	8 o'clock
Trigger	Ext
Main Sweep	20 μsec/div
Delayed Sweep	.05 μsec/div
Delay	615
Magnify	X10

- kk. Set 3325A to square wave and read positive peak on DC voltmeter. Switch CRO to neg trigger, take vertical position to 4 o'clock, and read neg peak. Verify that peak to peak voltage is between 3.466 and 3.607 volts.
- ll. Change 3325A function to triangle, and read peak voltages. Vpp should be 3.466 to 3.607 volts.
- mm. Change 3325A to pos ramp. Change CRO main sweep to .1 msec/div and delay to 500. Verify Vpp of 3.466 to 3.607 volts. Repeat for neg ramp by changing CRO trigger to pos.

Amplitude Flatness: (Frequencies above 100 kHz)

nn. Set the 3325A as follows:

High Voltage Output (Option 2)	OFF
Function	Sine
Frequency	1 kHz
Amplitude	3 Vpp

- oo. Set the 50 Ω attenuator (-hp- Model 355C) to 3 dB and connect to signal output. Connect 1 V_{RMS} thermal converter (-hp- 11050A) to attenuator output. Connect DC digital voltmeter with microvolt resolution (-hp-3455A) to thermal converter output. See Figure 4-9C.
- pp. Press 3325A AMPTD CAL key. Record the voltmeter reading in the 3 V sine wave 1 kHz reference space on the performance test record.
- qq. Set the 3325A modify key to the 1MHz position and bump the frequency in 2MHz steps from 1kHz to 20.001MHz, recording the voltmeter reading at each frequency. In each case, allow the thermal converter several seconds to stabilize.
- rr. Verify that all flatness readings are within \pm 6.6% of the 1 kHz reference reading.
- ss. Change attenuator to 12 dB. Change 3325A amplitude to 10 Vpp. Repeat steps pp and qq for 10 Vpp. Verify that all readings are within 6.3% of the 1 kHz reference.
- tt. Disconnect the thermal converter from the 3325A output.
 - uu. Square wave flatness. Set the 3325A as follows:
 High Voltage Output (Option 2)
 Function
 Amplitude
 Frequency

 10 Vpp
 Frequency
 1 kHz
- vv. Connect the 3325A signal output to an oscilloscope (-hp- 1740A) with a 50Ω load. Set the oscilloscope as follows:

Vertical Sensitivity 2 volts/div Time/Div .1 msec

ww. Use the modify keys to bump the 3325A frequency from 1 kHz to 10.001 MHz in 2 MHz steps. Two lines will appear on the oscilloscope. Verify that they remain within ½ major division of 5 divisions apart for all 11 frequencies.

xx. High Voltage (Option 2) Amplitude Flatness above 100kHz.

yy. Connect the 3325A output to an oscilloscope (-hp- 1740A) with a 500 Ω , 500 pF load (load attached at either end). Cable capacitance (30pF/foot) must be included in the 500 pF. The HV divider (Figure 4-9B) may be used with 6 feet of cable.

zz. Set the oscilloscope as follows:

Vertical Sensitivity 10 volts/div Time/Div 1 msec

aaa. Set the 3325A to 40 Vpp sine wave (HV option on) and 1 kHz. Adjust oscilloscope intensity and focus for a sharp trace.

bbb. Use the modify keys to bump the 3325A frequency from 1 kHz to 1.001 MHz in 200 kHz steps. Verify that the width of the bright region of the screen is $4 \pm .4$ divisions for all 11 frequencies.

4-61. DC Offset Accuracy (DC Only).

4-62. This procedure tests the dc offset accuracy when no ac function output is present. The dc only specification in Table 1-1 is:

 $\pm 0.4\%$ of full range*

* Except lowest attenuator range where accuracy is $\pm 20 \mu V$

Equipment Required:

DC digital voltmeter with 5-digit resolution, capable of measuring >20 V for High Voltage Output Option 002 (-hp- Model 3455A)

50-ohm Feedthru termination (-hp- Model 11048C)

- a. Connect the 3325A signal output through the 50-ohm feedthru termination to the dc digital voltmeter input (see Figure 4-11(A)).
- b. Press whichever function key is presently active, indicated by a lighted indicator in the center of the key. This removes the ac output. The indicator in the center of the "DC OFFSET" entry key should light.
- c. Set the 3325A dc offset to 5 V, then press the "AMPTD CAL" key.
- d. The dc digital voltmeter reading should be ± 4.980 to ± 5.020 V.
- e. Change 3325A dc offset to -5 V. Digital voltmeter reading should be -4.980 to -5.020 V.

Attenuator Test

f. Set the dc offset to the positive and negative voltages shown below. The digital voltmeter reading should be within the tolerances shown for each voltage.

DC Offset	Tolerances
±1.499 V	±1.49300 to 1.50499 V
$\pm 499.9 \text{ mV}$	±0.49790 to 0.50190 V
$\pm 149.9 \text{ mV}$	± 0.14930 to 0.15050 V
$\pm 49.99 \text{ mV}$	± 0.04979 to 0.05019 V
$\pm 14.99 \text{ mV}$	± 0.01493 to 0.01505 V
±4.999 mV	±0.004979 to 0.005019 V
$\pm 1.499 \text{ mV}$	± 0.001479 to 0.001519 V

Figure 4-9. Amplitude Accuracy and Flatness.

High Voltage Output Option 002 DC Offset

- g. Remove the 50-ohm feedthru and connect the 3325A output directly to the digital voltmeter input.
- h. Press the "SIGNAL" key in the lower right corner of the 3325A front panel to select High Voltage Output (Option 002). Lighted indicator in the center of this key indicates High Voltage Output is on.
- i. Set 3325A dc offset to 20 V. Digital voltmeter reading should be +19.775 V to 20.225 V.
- j. Set 3325A dc offset to -20 V. Digital voltmeter reading should be -19.775 V to -20.225 V.

4-63. DC Offset Accuracy with AC Functions.

4-64. The specifications for DC Offset accuracy with AC Functions given in Table 1-1 are as follows:

DC + AC, ≤ 1 MHz: $\pm 1.2\%$, Ramps $\pm 2.4\%$ DC + AC, > 1 MHz: $\pm 3\%$

Equipment Required:

DC Digital voltmeter (-hp- Model 3455A) 50-ohm feedthru termination (-hp- Model 11048C)

- a. Connect the equipment as shown in Figure 4-10 A . Set the digital voltmeter to measure dc voltage.
 - b. Set the 3325A output as follows:

High Voltage Output (Option 002)Off
FunctionSine
Frequency20.999 999 999 MHz
Amplitude1 V p-p
DC Offset+4.5 V

- c. Press AMPTD CAL key. After amplitude calibration (approximately 2 seconds) the digital voltmeter reading should be +4.350 to +4.650 V dc.
- d. Change the dc offset to -4.5 V. Digital voltmeter reading should be -4.350 to -4.650 V dc.
- e. Change the 3325A frequency to 999.9 kHz. The digital voltmeter reading should be -4.440 to -4.560 V dc.
- f. Change the 3325A dc offset to (+) 4.5 V. The digital voltmeter reading should be +4.440 to +4.560 V dc.
- g. Set the 3325A function to Square. The digital voltmeter reading should be +4.440 to +4.560 V dc.
- h. Change the 3325A dc offset to -4.5V. The digital voltmeter reading should be -4.440 to -4.560 V dc.

- i. Change the 3325A frequency to 9.9999 MHz. The digital voltmeter reading should be -4.350 to -4.650 V.
- j. Set the 3325A function to Triangle, frequency to $9.9\,$ kHz. The digital voltmeter reading should be -4.440 to -4.560 V.
- k. Set the 3325A function to + Ramp. The digital voltmeter reading should be -4.380 to -4.620 V.

4-65. Triangle Linearity.

4-66. This procedure tests the linearity of the triangle wave output against the specification in Table 1-1:

 $\pm 0.05\%$ of full output, 10% to 90%, best fit straight line

Because the triangle and ramp outputs are generated by the same circuits, this procedure effectively tests the ramp linearity also.

Equipment Required:

High-speed dc digital voltmeter (This procedure is written to use the high speed and delay capabilities of the -hp- Model 3437A)

Resistive divider, $\div 2.5$, consisting of:

30 ohms $\pm 1\%$ 1/4 W (-hp- Part No. 0698-7533)

20 ohms $\pm 1\%$ ¼W (-hp- Part No. 0698-6296)

- BNC-to-Triax adapter (-hp- Part No. 1250-0595 or Model 11172A RF Cable)
- a. Connect the 3325A and the high-speed digital voltmeter through the divider as shown in Figure 4-10B.
 - b. Set the 3325A as follows:

High Voltage Output (Option 002)Off
Function Triangle
Frequency
Amplitude

c. Set the digital voltmeter as follows:

Range															•		1	١	/
Number	of	R	ea	(l	in	g	S												1
Trigger.																	E	X	t

NOTE

The Model 3437A triggers on the negativegoing edge of the 3325A sync square wave.

d. Set the digital voltmeter delay to .00003 (seconds). Record the digital voltmeter reading on the Performance Test Record under "Positive Slope Measurement, (10%) y₁". This is the 10% point on the positive slope of the triangle. See Figure 4-11.

Figure 4-10. Triangle and Ramp Linearity Test.

e. Measure the voltage at each 10% segment point by setting the digital voltmeter delay to the following. Enter on the Performance Test Record in the appropriate spaces under "Positive Slope Measurement."

Delay	Percent of Slope
.000035	20
.00004	30
.000045	40
.00005	50
.000055	60
.00006	70
.000065	80
.00007	90

f. Measure the voltage at each 10% segment point on the negative slope by setting the digital voltmeter delay to the following. Enter the readings on the Performance Test Record in the appropriate spaces under "Negative Slope Measurement."

Delay	Percent of Slope
.00008 .000085 .00009 .000095 .0001	90 80 70 60 50 40
.00011	20 10

- g. Algebraically add the voltages recorded in the "Positive Slope Measurement" column and enter the total in the " Σ y" space.
- h. Multiply Σy by 45 (which is Σx) and enter the result in the " $\Sigma x \Sigma y$ " space.
- i. Multiply each y value by the corresponding x value and enter in the "x times y" column. Total these values and enter in the " Σxy " space.

Figure 4-11. Triangle Linearity Test.

j. The equation for determining the "best fit straight line" specification for each y value is:

$$y = a_1 x + a_0$$

Where: a_1 and a_0 are constants to be calculated from data taken previously.

NOTE

Calculate the values of a_1 and a_0 to at least five decimal places.

k. First determine the value of a₁ using the following equation:

$$a_1 = \frac{\sum x \sum y}{n}$$

$$\sum x^2 - \frac{(\sum x)^2}{n}$$

Where: Σx , Σy , Σxy , $\Sigma x\Sigma y$, Σz^2 , and $(\Sigma x)^2$ are the previously calculated values entered on the Performance Test Record.

n = 9 (the number of points to be calculated)

1. Determine the value of a_0 using the equation:

$$a_0 = \frac{\Sigma y}{n} - a_1 \frac{\Sigma x}{n}$$

m. Calculate the "Best Fit Straight Line" value for each point (y₁ through y₉) using the equation:

$$y = a_1 x + a_0$$

Enter each result on the Performance Test Record in the "Best Fit Straight Line" column.

- n. Determine the minimum and maximum allowable voltages at each point by subtracting and adding 0.002 V to the voltages calculated in Step m ($10 \text{ V} \div 2.5 \times 0.05$ %). Enter these voltage limits on the Performance Test Record under "Minimum" and "Maximum". The voltages measured and recorded in the "Positive Slope Measurement" column should be within these calculated tolerances.
- o. Algebraically add the voltages recorded in the "Negative Slope Measurement" column and enter the total in the " Σy " space.
- p. Repeat Steps h through n to determine the "Best Fit Straight Line" values and tolerances for the negative slope. The voltages measured and recorded in the "Negative Slope Measurement" column should be within the calculated tolerances.

4-67. X Drive Linearity.

4-68. This procedure tests the linearity of the rear panel X Drive output to the specification in Table 1-1: for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time:

 $\pm 0.1\%$ of final value, 10% to 90%, best fit straight line.

Equipment Required:

High-speed dc digital voltmeter (This procedure is written to use the high speed and delay capabilities of the -hp- Model 3437A)

Resistive divider, $\div \sim 2.6$, consisting of:

100kΩ 1% 1/8W (-hp- Part No. 0757-0465)

162kΩ 1% 1/8W (-hp- Part No. 0757-0470)

DC power supply (-hp- MOdel 6214A)

BNC-to-Triax adapter (-hp- Part No. 1250-0595 Model 11172A RF Cable)

- a. Connect the equipment as shown in Figure 4-12.
- b. Set the 3325A as follows:

High Voltage Output (Option 002)Off
FunctionSine
Amplitude10 V p-p
Sweep Start Frequency 1 MHz
Sweep Stop Frequency 10 MHz
Sweep Marker Frequency4 MHz
Sweep Time 0.01 sec

- c. Press 3325A START CONT key.
- d. Set the digital voltmeter as follows:

Range									1	V
Number of Reading	s.	 								. 1
Trigger		 						÷	E	xt

NOTE

The model 3437A triggers on the negative going edge of the Z Blank signal, which occurs at the start of a sweep up.

- e. Set the digital voltmeter delay to .001 (seconds). Adjust the dc power supply for a digital voltmeter reading of -1.600 V. Record the digital voltmeter reading on the Performance Test Record under "X Drive Ramp Measurement, (10%), y_1 ." This is the 10% point on the X Drive ramp. See Figure 4-13.
- f. Measure the voltage at each 10% segment point by setting the digital voltmeter delay to the following. Enter on the Performance Test Record in the appropriate spaces under "X Drive Ramp Measurement".

Delay	Percent of Ramp
.002	20
.003	30
.004	40
.005	50
.006	60
.007	70
.008	80
.009	90

g. Algebraically add the voltages recorded in the "X Drive Ramp Measurement" column and enter the total in the " Σy " space.

h. Multiply Σy by 45 (which is Σx) and enter the result in the " $\Sigma x \Sigma y$ " space.

- i. Multiply each y value by the corresponding x value and enter in the "x times y" column. Total these values and enter in the " Σ xy" space.
- j. The equation for determining the "best fit straight line" specification for each y value is:

$$y = a_1 x + a_0$$

Where: a_1 and a_0 are constants to be calculated from data taken previously.

NOTE

Calculate the values of a_1 and a_0 to at least five decimal places.

k. First determine the value of a₁ using the following equation:

$$a_1 = \frac{\sum x \sum y}{n}$$

$$\sum x^2 - \frac{(\sum x)^2}{n}$$

Where: Σx , Σy , Σxy , $\Sigma x\Sigma y$, Σz^2 , and $(\Sigma x)^2$ are the previously calculated values entered on the Performance Test Record.

n = 9 (the number of points to be calculated)

1. Determine the value of a_0 using the equation:

$$a_0 = \frac{\sum y}{n} - a_1 \frac{\sum x}{n}$$

m. Calculate the "Best Fit Straight Line" value for each point (y₁ through y₉) using the equation:

$$y = a_1 x + a_0$$

Enter each result on the Performance Test Record in the "Best Fit Straight Line" column.

Figure 4-12. X Drive Linearity Test.

n. Determine the minimum and maximum allowable voltages at each point by subtracting and adding 0.004 V to the voltages calculated in Step m (10.5 V \div 2.6 x 0.1%). Enter these voltage limits on the Performance Test Record under "Minimum" and "Maximum". The voltages measured and recorded in the "X Drive Ramp Measurement" column should be within these calculated tolerances.

NOTE

The 3325A X Drive maximum voltage (100%) is set at the factory to +10.5 V..

4-69. Ramp Period Variation.

4-70. This procedure tests the variation between alternate cycles of the positive and negative slope ramps to the specification in Table 1-1: $<\pm 1\%$ of period, maximum.

Equipment Required: Oscilloscope, with delayed sweep (-hp- Model 1740A)

a. Connect 3325A signal output to the oscilloscope vertical input. (Do NOT use a 10:1 probe.) If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope doesnot have a 50-ohm input, use a 50-ohm load (-hp-Model 11048C 50-ohm Feedthru Termination) at the input.

b. Set the 3325A as follows:

Function	 .N	lega	tive S	Slope Rai	mp
Frequency	 			100	Hz
Amplitude	 			10 V	р-р

c. Set the oscilloscope as follows:

Vertical2 V/div
Main sweep
Delayed sweep
Trigger Positive

- d. With oscilloscope horizontal controls set to main sweep, adjust the intensified portion of the trace to the reset (positive going) portion of the ramp.
- e. Set the horizontal controls to delayed sweep and position the ramp reset portion near the center of the display.
- f. The reset portion should show more than one line, as in Figure 4-14. The lines should not be separated by more than ten divisions on the display.
- g. Change the 3325A function to positive slope ramp and set oscilloscope trigger to negative to verify the positive ramp.
- h. Bump the 3325A frequency to 99.999999 Hz to check the low frequency ramps. Verify that ramp period variations do not exceed ten divisions.

Figure 4-13. X Drive Linearity Test.

4-71. HP-IB Interface Test.

4-72. The following calculator program tests the operation of the 3325A HP-IB interface circuits. The program is written for an -hp- Model 9825A calculator but may be adapted for other controllers. The program is printed on a foldout page for your convenience.

Equipment Required:

-hp- Model 9825A Calculator equipped with: 98034A HP-IB Interface (set the select code 7) Any combination of ROM's that includes a General I/O ROM and an Extended I/O ROM

- a. Connect the calculator interface cable to the 3325A rear panel HP-IB connector. It is recommended that no other equipment be connected to this HP-IB during this test.
 - b. Enter the program into the calculator.

c. Press RUN. Tests 4 through 7 in this program require the operator to press CONTINUE if the test passes, or 1 CONTINUE if the test fails. If the Test 4 question (SRQ LIGHT ON?, 1 = NO) does not appear in the calculator display within 30 seconds after start of the program (RUN), the 3325A and calculator are not interfacing properly. The calculator may display an error indication that will identify the problem. If not, the 3325A HP-IB circuits are probably not operating correctly.

Figure 4-14. Ramp Reset Waveform.

Instrument Returns To Known Conditions After Self Test

Test 1 - Did Frequency Go To 1000 Hz?

Test 2 - Interrogate Frequency

Test 3 - Interrogate Amplitude

Test 4 - Test SRQ Circuits

Test 5 - Test Talk Circuits

Test 6 - Test Listen Circuits

Test 7 - Test Remote Circuits

PROGRAM FLOWCHART Enter 3325A Bus Address Perform Self Test NO Freq = 1000 Hz? ERROR Program: Freq = 1234.56789 Hz AMPTD = 50 mV Is Frequency Correct NO ERROR ls Amplitude Correct NO ERROR Program Sweep: 1 kHz to 10 kHz 10 sec, Enable Mask NO SRQ Light On ERROR NO Talk Light On ERROR NO Listen Light On ERROR NO ERROR Light On Print Results

End

```
0: fmt jcsvj0+r1+r2+r3+r4+r5+r6+r7
1: prt "************
2: prt "3325A"
3: prt "HP-IB TEST"
4: prt "***********
5: beepjent "3325A BUS ADDRESS?,cont=717",A
9:
10: "TEST 1":
               Perform Self Test
15:
16: "TEST 2,3 SETUP":
20: Wrt A: "RE3"-
                            Recall Settings in Register 3
21:
22: "TEST 2":
23: wrt A; "IFR" — Interrogate Frequency
24: red A; G — Read Frequency
25: if G#1234.56789; 1+r2 — Compare to Frequency Stored
26:
27: "TEST3":
31:
32: "TEST 4":
33: wrt A, "ST1KH SP10KH SM1 TI10SE MSF SSSS"-Lin Sweep 1-10kHz, Enable SRQ Mask
36:
37: "TEST 5":
42:
43: "TEST6":
44: wrt A; lcl 7 — Write to the 3325A, Interface to Local
45: beep; ent "LISTEN LIGHT ON?, 1=NO", r6 — Did 3325A respond to Listen Command?
45:
47: "TEST 7":
47: "TEST 7": Remote Interface, Write to 3325A, 18: rem 7; wrt A; cli 7 — Clear Interface
19: beepient "REMOTE LIGHT ON: 1=NO" 17 ------- Did the 3325A Respond to Remote?
ទីមីដ
```


Variables used in this Test Program:

- A Address of 3325A (defaults to 717)
- F Frequency read from 3325A in test #1
- G Frequency read from 3325A in test #2
- H Amplitude read from 3325A in test #3
- I Counter used to print test results
- r1-r7 Test results (0 = Pass, 1 = Fail)
 - S Status read from 3325A in test #5

Samples of Program Printouts:

**************************************	: *	************** 3325A HP-IB TEST ******
************* Test Results:		*********** Test Results:
TEST	1	TEST 1
PASS Test Book	2	PASS TEST 2
PASS TEST	3	PASS TEST 3
PASS TEST	4	PASS TEST 4
FAIL TEST	Ę	PASS TEST 5
PASS Test	6	PASS TEST 6
PASS Test	7	PASS TEST 7
PASS	* *	PASS *************

OPERATIONAL VERIFICATION RECORD

Hewlett-Packard		lested by		
Model 3325A Synthesizer/Function Generator		Date		
Serial No				
	Par. 4-10	Self Test	Passed	
	Par. 4-12	Sine Wave Verification		
	Step d	20 MHz: Frequency and Amplitude	Passed	
	Step g	Signal Purity	Passed	
		High Voltage Output (1 MHz)	Passed	
	Par. 4-14	Square Wave Verification		
	Step c	Frequency and Amplitude	Passed	
	Steps d & e	Abberations	Passed	
	Step f	Rise Time	Passed	
	Par. 4-16	Triangle and Ramp Verification		
	Step c	Triangle Freq. and Amptd.	Passed	
	Step d	+ Ramp Freq. and Amptd.	Passed	
	Step e	 Ramp Freq. and Amptd. 	Passed	
	Step f	 Ramp Retrace Time 	Passed	
	Step g	+ Ramp Retrace Time	Passed	
	Step i	Triangle Linearity	Passed	
	Par. 4-18	Amplitude Flatness	Passed —	
			Spec	
	Par. 4-20	Sync Output Check High	> + 1.2 V	
		Low	<0.2 V	
	Par. 4-22	Frequency Accuracy	Spec	
	Step c	Sine, 20 MHz	± 100 H	Z
	Step d	Square, 10 MHz	± 50 H	Z
	Step e	Triangle, 10 kHz (100,000 ns)	± .5 n	3

Step f Ramp, 10 kHz (100,000 ns)

Operational Verification

Par. 4-24	Output Level and Attenuator Check
	(DC Offset Only)

	Entry	Min.	Max.
	-5 V	-4.980 V	5.020 V
	(+)5 V	+4.980 V	+ 5.020 V
	* (±) 1.499V	(±) 1.49300V	(±) 1.50499V
	499.9 mV	+0.49790 V	+ 0.50190 V
	149.9 mV	+0.14930 V	+ 0.15050 V
	49.99 mV	+0.04979 V	+0.05019 V
	14.99 mV	+0.01493 V	+0.01505 V
	4.999 mV	+0.04979 V	+0.005019 V
	1.499 mV	+0.001479 V	+0.001519 V
	* All entries and li	imits are ±	
	High Voltage Out	tput (Option 002)	
	20 V	+ 19.775 V	+ 20.225 V
	-20 V	– 19.775 V	– 20.225 V
Par. 4-26	Harmonic Distort	ion	All Harmonics Below:
	20 MHz		25 dB
	15 MHz		-30 dB
	2 MHz		40 dB
	200 kHz		60 dB
	50 kHz		65 dB
	10 kHz		65 dB
	1 kHz		65 dB
	100 Hz		65 dB
	High Voltage Out	tput (Option 002)	
	100 Hz		65 dB
	10 kHz		65 dB
	200 kHz		60 dB
	1 MHz		40 dB
Par. 4-28	Close-In Spurious	s Signal Test	Passed
Par. 4-30	HP-IB Check		Passed

PERFORMANCE TEST RECORD

Hewlett-Packard		Tested	「ested By	
Model 3325A Synthesizer/Function Gener Serial No	rator	Date		
Par. 4-37	Harmonic Distortion			
	Fundamental Frequency			Specification
	20 MHz			25 dB
	15 MHz			30 dB
	2 MHz			40 dB
	200 kHz			60 dB
	50 kHz			65 dB
	10 kHz			65 dB
	1 kHz			65 dB
	100 Hz			65 dB
	High Voltage Output (Option 002))		
	100 Hz			65 dB
	10 kHz			65 dB
	200 kHz			60 dB
	1 MHz			40 dB
Par. 4-39	Spurious Signal Tests			
	Mixer Spurious Test (2:1 spur/3:2 s	pur)		70 dB
	2:1 spur 3 4.100MHz 6.100MHz 8.100MHz 10.100MHz 12.100MHz 14.100MHz 16.100MHz 18.100MHz 20.100MHz	:2 spur	 70dB 	
	Close-in Spurious Test			
	5.0001MHz 5.00001MHz 5.000001MHz 20.001MHz			- 70dB
Par. 4-41	Integrated Phase Noise			70dB
	19.901 MHz			60 dB
Par. 4-43	Amplitude Modulation Envelope Disto	rtion		30 dB
Par. 4-45	Square Wave			
	Rise Time			<20 ns

	Fall Time			4	<20 ns
	Overshoot, Positive Peak				< 500 mV
	Overshoot, Negative Peak				<500 mV
Par. 4-47	Ramp Retrace Time				
	+ Ramp				< 3 μs
	- Ramp				<3 μs
Par. 4-49	Sync Output				
	V_{high}				> + 1.2 V
	V_{low}				<+0.2 V
Par. 4-51	Square Wave Symmetry				>3.2 ns
Par. 4-53	Frequency Accuracy				
	Sine, 20 MHz				±100 Hz
	Square, 10 MHz				±50 Hz
	Triangle, 10 kHz (100,000 ns)				± .5 ns
	Ramp, 10 kHz (100,000 ns)				± .5 ns
Par. 4-55	Phase Increment Accuracy				
		Minimum	Time Difference	Maximum	
Zero Phase	Time Interval				
1° Incremen	t Time Interval	22.22 ns		33.34 ns	
10° Increme	nt Time Interval	272.22 ns		283.34 ns	
100° Increm	nent Time Interval	2772.22 ns		2783.34 ns	

Par. 4-57 Phase Modulation Linearity

DVM Reading	Phase Difference	Cumulative Phase	x times y	x ²
x ₁	1	y ₁ 0	0	
x ₂	2	У2		
x ₃	3	У3		
x ₄	4	У4		
× ₅	5	У ₅		
× ₆	6	у ₆		
× ₇	7	У7		
x ₈	8	у ₈		
x ₉	9	У9		
× ₁₀ ———	10	y ₁₀ ———		
x ₁₁	11	y ₁₁ ———		
Σx		Σγ	Σxy	Σx ²
(Σx) ²		ΣχΣγ		

Best Fit Straight Line Phase	Minimum Limit	Measured Cumulative Phase	Maximum Limit
(y ₁)		y ₁	
(y ₂)		У2	
(y ₃)		у ₃	
(y ₄)		У4	
(y ₅)		У ₅	
(y ₆)		у ₆	
(y ₇)		У ₇	
(y ₈)		У8	
(y ₉)		У9	
(y ₁₀)		y ₁₀	· ,
(y ₁₁)		y ₁₁	

Specification: $\pm 0.5\%$ of $(y_{11}) = \pm \underline{\hspace{1cm}}^{\circ}$

Day 4 EQ	A malituda	A
Par 4-59	Amplitude	Accuracy

Entry	Minimum	Measured	Maximum
Sine Wave Te	st		
Amplitude: 3.536 Vrms			
Sine, 100 Hz	3.495 V		3.577 V
Sine, 1 kHz	3.495 V		3.577 V
Sine, 100 kHz	3.495 V		3.577 V
Amplitude: 1.061 Vrms			*
Sine, 100 Hz	1.048 V		1.073 V
Sine, 1 kHz	1048 V		1.073 V
Sine, 100 kHz	1.048 V		1.073 V
Amplitude: 0.3536 Vrms			
DC, 1 mV			
Sine, 100 Hz	0.3411 V		0.3660 V
Sine, 1 kHz	0.3411 V		0.3660 V
Sine, 100 Hz	0.3411 V		0.3660 V
Function Tes	t		
Amplitude:10 Vpp			
Square, 99.9 Hz	3.661V		3.735V
Triangle, 99.9 Hz	3.643V		3.754V
Pos Ramp, 99.9 Hz	3.643V		3.754V
Neg Ramp, 99.9 Hz	3.643V		3.754V
Square, 1 kHz	3.661V		3.735V

Triangle, 2 kHz	3.643V		3.754V
Pos Ramp, 500 Hz	3.643V		3.754V
Neg Ramp, 500 Hz	3.643V		3.754V
Square, 100 kHz	3.661V		3.735V
Triangle, 10 kHz	3.513V		3.883V
Pos Ramp, 10 kHz	3.328V		3.996V
Neg Ramp, 10 kHz	3.328V		3.996V
Amplitude: 3 Vpp			
Square, 99.9 Hz	2.970 V		3.030 V
Triangle, 99.9 Hz	2.955 V		3.045 V
Pos Ramp, 99.9 Hz	2.955 V	:	3.045 V
Neg Ramp, 99.9 Hz	2.955 V	·	3.045 V
Square, 1 kHz	2.970 V		3.030 V
Triangle, 2 kHz	2.955 V		3.045 V
Pos Ramp, 500 Hz	2.955 V		3.045 V
Neg Ramp, 500 Hz	2.955 V		3.045 V
Square, 100 kHz	2.970 V		3.030 V
Triangle, 10 kHz	2.850 V		3.150 V
Pos Ramp, 10 kHz	2.700 V		3.300 V
Neg Ramp, 10 kHz	2.700 V	·	3.300 V
Amplitude: 1 Vpp DC: 1 mV			
Square, 99.9 Hz	0.970 V		1.030 V
Triangle, 99.9 Hz	0.960 V		1.040 V
Pos Ramp, 99.9 Hz	0.960 V		1.040 V
Neg Ramp, 99.9 Hz	0.960 V		1.040 V
Square, 1 kHz	0.970 V		1.030 V
Triangle, 2 kHz	0.960 V		1.040 V
Pos Ramp, 500 Hz	0.960 V		1.040 V
Neg Ramp, 500 Hz	0.960 V	· · · · · · · · · · · · · · · · · · ·	1.040 V
Square, 100 kHz	0.970 V		1.030 V
Triangle, 10 kHz	0.940 V		1.060 V
Pos Ramp, 10 kHz	0.890 V		1.110 V
Neg Ramp, 10 kHz	0.890 V		1.110 V
High Voltage (Option 00			
Amplitude: 14.14 Vrms			
Sine, 2 kHz	13.86 V		14.42 V

High Voltage (Option 002) Function Test		
Amplitude: 40 Vpp			
Square, 2 kHz	3.466V		3.607V
Triangle, 2 kHz	3.466V	()	3.607V
Pos Ramp, 2 kHz	3.466V		3.607V
Neg Ramp, 2 kHz	3.466V	-	3.607V
Amplitude Flat	ness		
Sine, 3 Vpp, 1 kHz (Reference)			= Y
Allowable tolerance (\pm 6.6%)	(0.934Y)		(1.066Y)
2.001 MHz			
4.001 MHz			
6.001 MHz			
8.001 MHz			
10.001 MHz			
12.001 MHz			
14.001 MHz			
16.001 MHz			
18.001 MHz			
20.001 MHz			
Sine, 10 Vpp, 1 kHz (Reference)			= Y
Allowable tolerance (\pm 6.3%)	(0.937Y)		(1.063Y)
2.001 MHz			
4.001 MHz			
6.001 MHz			
8.001 MHz			
10.001 MHz			
12.001 MHz			
14.001 MHz			
16.001 MHz			
18.001 MHz			
20.001 MHz			
Square, 10 Vpp,	Pass	(check one)	Fail
High Voltage (Option 00	2) Flatness		
Sine, 40 Vpp,	Pass	(check one)	Fail

Par. 4-61	DC Offset Accura	ov (DC Only)			
rai. 4-01	Entry	Minimur	m	Maximu	m
	** ***********************************			+ 5.020	
	– 5 V			+ 5.020 – 5.020	
	– 1.499 V				V
	1.499 V				V
	499.9 mV				V
	– 499.9 mV				V
	– 149.9 mV				V
	149.9 mV				V
	49.99 mV				V
	-49.9 mV				V
	– 14.99 mV				v
	14.99 mV				v
	4.999 mV			+ 0.005019	
	-4.999 mV			0.005019	
	– 1.499 mV			0.001519	
	1.499 mV	+0.001479	V	+ 0.001519	V
		+ 19.775		+20.225 20.225	
Par. 4-63	DC Offset Accuracy v		ns Minimum	Mavi	imum
	4.5 V	9 MINZ		+ 4.6	
	-4.5 V			4.6	
	-4.5 V		-4.550 V		30 V
	Sine 999.9 kHz				
	-4.5 V		-4.440 V	4.5	60 V
	4.5 V		+ 4.440 V	+ 4.5	60 V
	Square 999.9 kHz				
	4.5 V		+ 4.440 V	+4.5	60 V
	-4.5 V		-4.440 V	4.5	60 V

-4.350 V_____-4.650 V

Square 9.9999 MHz

-4.5 V

Par. 4-65. Triangle Linearity

x Values	Positive Slope Measurement	x times y	Calculated Best Fit Straight Line	rances Maximum
$x_1 = 1$	(10%) y ₁		(y ₁)	
$x_2 = 2$	(20%) y ₂		(y ₂)	
$x_3 = 3$	(30%) y ₃		(y ₃)	
$x_4 = 4$	(40%) y ₄		(y ₄)	
$x_5 = 5$	(50%) y ₅		(y ₅)	
$x_6 = 6$	(60%) y ₆		(y ₆)	
$x_7 = 7$	(70%) y ₇		(y ₇)	 _
x ₈ = 8	(80%) y ₈		(y ₈)	
$x_9 = 9$	(90%) y ₉		(y ₉)	
$\Sigma x = 45$	Σy	Σχу		
$(\Sigma x)^2 = 2025$	ΣxΣy			
$\Sigma x^2 = 285$				

Par. 4-65. Triangle Linearity (Con'd)

Par. 4-65. Triangle Linearity

			Calculated Best Fit	Tole	rances
x Values	Negative Slope Measurement	x times y	Straight Line	Minimum	Maximum
$x_9 = 9$	(90%) y ₉		(y ₉)		
$x_8 = 8$	(80%) y ₈		(y ₈)		
$x_7 = 7$	(70%) y ₇		(y ₇)		
$x_6 = 6$	(60%) y ₆ ————		(y ₆)		
$x_5 = 5$	(50%) y ₅		(y ₅)		
$x_4 = 4$	(40%) y ₄		(y ₄)		
$x_3 = 3$	(30%) y ₃		(y ₃)		
$x_2 = 2$	(20%) y ₂		(y ₂)		
$x_1 = 1$	(10%) y ₁		(y ₁)		
$\Sigma z = 45$	Σγ	Σxy			
$(\Sigma x)^2 = 2025$	ΣχΣγ				
$\Sigma x^2 = 285$					

Par. 4-67. x Drive Linearity

			Calculated Best Fit	Tole	rances
x Values	Positive Slope Measurement	x times y	Straight Line	Minimum	Maximum
$x_1 = 1$	(10%) y ₁		(y ₁)		
$x_2 = 2$	(20%) y ₂		(y ₂)		
$x_3 = 3$	(30%) y ₃		(y ₃)		
$x_4 = 4$	(40%) y ₄		(y ₄)		
$x_5 = 5$	(50%) y ₅		(y ₅)		
$x_6 = 6$	(60%) y ₆ ————		(y ₆)		
$x_7 = 7$	(70%) y ₇		(y ₇)		
x ₈ = 8	(80%) y ₈		(y ₈)		
$x_9 = 9$	(90%) y ₉		(y ₉)		
$\Sigma z = 45$	Σy	Σxy			
$(\Sigma x)^2 = 2025$	ΣχΣγ				
$\Sigma x^2 = 285$					

Dor	1 60	Dama	Dariad	Variation
Par.	4-09	naiiib	renou	variation

Par. 4-71. HP-IB Interface

WARNING

Maintenance described herein is performed with power supplied to the instrument, and protective covers removed. Such maintenance should be performed only by service-trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the power should be removed.

SECTION V ADJUSTMENTS

TABLE OF CONTENTS

Paragra	아내가 보고 있다면 하는 아니라 마다 마다 아니는 때 그리고 모든 하다 아니는 그의 이 사람들이 살아가고 있었다. 아이를 모두는 것을 다 했다.	Page
5-1.	Introduction	5-1
5-3.	Equipment Required	5-2
	Adjustment Procedures	
5-7.	Power Supply	5-2
5-8.	D/A Converter Offset	
5-9.	Voltage Controlled Oscillator (VCO Frequency)	
5-10.	Analog Phase Interpolation (API)	5-2
5-11.	30MHz Reference Oscillator	5-3
5-12.	Option 001 High Stability Frequency Reference	
5-13.	Sine Wave Amplitude Calibration	
5-14.	X Drive	
5-15.	Amplifier Bias Adjustment	
5-16.	Ramp Stability	
5-17.	Amplitude Flatness	
5-18.	Mixer Spurious Signal	5-6

LIST OF ILLUSTRATIONS

LIST OF TABLES

Figure Page	Table	Page
5-1. Ramp Reset Waveform		
5-2. Amplitude Flatness Adjustment5-6	Adjustments	5-1
5-3. Location of Adjustments5-7	5-2. Padding Values	

Model 3325A Adjustments

SECTION V ADJUSTMENTS

5-1. INTRODUC	on contains the procedures required to	5-10 5-11	Analog Phase Interpolation (API) 30 MHz Reference Oscillator
adjust the 3325	5A to meet its specifications in Table 1-1. ents should be used following repairs or if	5-12	Option 001 High Stability Frequency Reference
	ests indicate a deficiency.	5-13	Sinewave Amplitude Calibration
periormanee to	indicate a deficiency.	5-14	X Drive
Paragraph	Adjustment	5-15	Amplifier Bias
5-7	Power Supply	5-16	Ramp Stability
	and the state of t	5-17	Amplitude Flatness
5-8	D/A Converter Offset	5-18	Mixer Spurious Signal
5-9	Voltage Controlled Oscillator Frequency	2 10	

Table 5-1. Test Equipment Required for Adjustments

Equipment	Critical Specifications	Recommended Model
AC/DC Digital Voltmeter	AC Function: 1 V Range Accuracy: ±.5% Resolution: 4 digits DC Function: Ranges: .1 V, 1 V, 10 V, 100 V Accuracy: ±.2% Resolution: 4½ digits	-hp-3455A/3466A
Low Frequency Spectrum Analyzer	Frequency Range: 1 kHz – 50 kHz Amplitude Accuracy: ±0.5 dB Spurious Responses: 80 dB below ref.	-hp-3580A/3585A
Resistor	1 kΩ	-hp- Part No. 0683-1025
Electronic Counter	Frequency measurement: to 20 MHz Accuracy: ±2 counts Resolution: 8 digits	-hp-5328A with Opt. 040 or 041
Oscilloscope	Vertical: 2 channel Bandwidth: dc to 100 MHz Deflection: 5 mV to 10 V/div Horizontal: Main and Delayed Sweeps Main: 50 ns to 2 s/div Delayed: 50 ns to 20 ms/div	-hp-1740A
Frequency Standard (for Option 001 only)	Frequency: 5 MHz Accuracy: 1 × 10 ⁻⁹	-hp-105B
10:1 Oscilloscope Probe	Impedance: 1 M Ω , 12 pF	-hp-10041A
DC Power Supply	Volts: 0 - 10 V Amps: 10 mA	-hp-6214A
Oscillator	Frequency: 1 kHz Amplitude: 1 Vrms	-hp-204C
High Frequency Spectrum Analyzer	Frequency Range: 1 kHz - 80 MHz Amplitude Accuracy: ±.5 dB	-hp-141T/8552B/8553B 8566A/8568A
Thermal Converter	Input Impedance: 50Ω, Input Voltage: 1Vrms, Frequency: 1kHz to 20MHz, Frequency Response: ±0.05dB	-hp-11050A
Resistor	200Ω 1% 1/8W	-hp- 0757-0407
Resistor	50Ω 1% 0.5W	-hp- 0698-5965
Resistor	13Ω 1% 1/8W	-hp- 0757-0380
Resistor	25Ω 5% 1/4W	-hp- 0683-2505
Resistor	150Ω 1% 1/8W	-hp- 0757-0284

NOTE

Table 8-4 lists the adjustment procedures that must be performed after repair of certain circuits.

5-3. EQUIPMENT REQUIRED.

5-4. Each adjustment procedure lists the test equipment required to perform that adjustment. All test equipment required for adjustments is itemized in Table 5-1. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

5-5. ADJUSTMENT PROCEDURES.

5-6. The Power Supply and D/A Converter Offset adjustments must be performed before any of the others are made. It is recommended that all adjustments be performed in the order given. Location of all adjustments is shown on a foldout page, Figure 5-3, at the end of this section. Remove the top and bottom covers to gain access to all adjustments.

NOTE

The metal stiffener channel on the deck between the printed circuit boards may be used as circuit ground for all measurements.

NOTE

The following procedures apply to all board revisions (e.g. A2 Rev A - Rev F, A21(1) Rev A ..., A14(4) Rev A ..., etc.,) unless otherwise noted.

5-7. Power Supply.

Equipment Required: dc digital voltmeter (-hp- Model 3466A)

WARNING

AC power line voltage is exposed at the rear panel and on the power supply assembly.

- a. Connect a dc digital voltmeter between the -15 V test point on the power supply assembly, A2, and ground.
- b. Adjust the -15 V Adj (A2R22) for a voltmeter reading of -14.970 to -15.030 V.
- c. Measure the voltages at the +15V test point and +5V test point on A2. The readings should be +14.970V to +15.030V and +5.010V to +5.070V respectively. If not, readjust the -15V Adj control to bring all three voltages within tolerance. These voltages may be adjusted out of tolerance by paragraph 5-8, step h. This is not a cause for concern.

5-8. D/A Converter Offset.

Equipment Required: dc digital voltmeter (-hp- Model 3466A)

- a. Adjust DAC Offset Adj (A14R40) to mechanical center.
- b. Press the function select key for whichever function is presently active. This sets the output to DC Offset only. Enter \emptyset V DC Offset.
 - c. Press AMPTD CAL key.
- d. Connect a dc digital voltmeter to Amp Out test point on A14.
- e. Adjust DAC Offset Adj (A14R40) for a voltmeter reading of less than 5mV. Disconnect voltmeter from Amp Out test point.
 - f. Enter 5 V DC Offset. Press AMPTD CAL key.
- g. Connect digital voltmeter to 3325A Signal Output. Do not use a 50-ohm load.
- h. Adjust -15 V adj (A2R22) for voltmeter reading of +10.000 V. +5.000
- i. Enter -5 V DC Offset. Voltmeter reading should be 9.985 to -10.015 V. 4.98 + 5.02 V. J. Recheck Step S. and e.

5-9. Voltage Controlled Oscillator (VCO Frequency).

Equipment Required: dc digital voltmeter (-hp- Model 3466A)

- a. Connect a dc digital voltmeter to test point A21TP11.
 - b. Set the 3325A frequency to 60 MHz.
- c. Adjust VCO Adj (A21L162) through hole in metal cover with a non-conductive tool for a voltmeter reading of -2.990V to -3.010V.
- d. Set the frequency to 1kHz. Voltmeter reading should be between +9.5V and +10.5V.

5-10. Analog Phase Interpolation (API).

Equipment Required:

Low frequency spectrum analyzer (-hp- Model 3580A/3585A)

Resistor, 1 k Ω (-hp- Part No. 0683-1025)

a. Set 3325A as follows:

b. Connect the low frequency spectrum analyzer input through a $1k\Omega$ series resistor to A21TP11.

c. Set spectrum analyzer controls as follows:

Start Frequency Ø kHz
Bandwidth
Frequency Span 1 kHz/div
Display Smoothing
Sweep Time/Div200 sec
Input Sensitivity10 mV
Amplitude ReferenceNormal
Amplitude Mode
Sweep Mode

- d. Adjust the spectrum analyzer manual vernier control to place the display marker at the peak of the API spur which appears at 3 kHz (3 display divisions).
- e. Adjust the API 1 Adj (A21R76) to reduce the spur to a minimum.
 - f. Change 3325A frequency to 5 000 300 Hz.
- g. Adjust API 2 Adj (A21R74) to again reduce the spur on the spectrum analyzer display to a minimum.
 - h. Change 3325A frequency to 5 000 003 Hz.
- i. Adjust API 4 Adj (A21R88) to reduce the spur to a minimum.
- j. Set the 3325A to 5.003MHz and readjust API 1 (A21R76) to its minimum value. Also check the harmonic distortion performance test (paragraph 4-38, steps e through h).

5-11. 30 MHz Reference Oscillator.

Equipment Required: electronic counter (-hp- Model 5328A)

NOTE

The instrument must have been ON for at least 20 minutes before performing this adjustment.

- a. If the instrument has the Option 001 High Stability Frequency Reference installed, the rear panel connection from "10 MHz Oven Output" to "Ext Ref In" must be disconnected.
- b. Connect an electronic counter to the 3325A signal output, using 50-ohm input termination.
 - c. Set the 3325A as follows:

Function												. Sine
Frequency.											20	MHz
Amplitude.	 										10	Vp-p

- d. Adjust the counter to measure frequency (20 MHz).
- e. Adjust Ref (A3R30) for a counter display of 20.000 000 MHz.
- 5.12. Option 001 High Stability Frequency Reference.

Equipment Required:

Oscilloscope, 2 channel (-hp- Model 1740A)

Quartz Frequency Standard, 5 MHz (-hp- Model 105B)

NOTE

The rear panel "10 MHz Oven Output" must be connected to "Ext Ref In".

- a. This procedure is for instruments with the Option 001 High Stability Frequency Reference. The instrument must have been connected to ac power (either in STBY or ON) for at least 30 minutes before attempting this adjustment.
- b. Connect the frequency standard 5 MHz output to one vertical channel of the oscilloscope and trigger the sweep from this channel.
 - c. Set the 3325A as follows:

Function														. Sine
Frequency.													5	MHz
Amplitude.												1	0	Vp-p

- d. Connect the 3325A signal output to the second channel of the oscilloscope.
- e. Adjust the Fine Adj (A9R7) to stop the 3325A signal on the oscilloscope display. (The frequency standard signal must be stationary, and the 3325A signal as near stationary as possible.)
- f. If the Fine Adj (A9R7) does not have enough range, proceed with Step g.
 - g. Adjust the Fine Adj (A9R7) to mechanical center.
- h. Remove the screw from the Coarse Frequency adjustment in the end of the temperature controlled oven assembly (A9E1).
- i. Using a non-conductive tool, adjust the Coarse Adj. to stop the 3325A signal on the oscilloscope (as near stationary as possible).
- j. Replace the screw in the oven assembly and repeat Step e.

5-13. Sinewave Amplitude Calibration. $\Delta 4$

Equipment Required:

Oscilloscope (-hp- Model 1740A) 10:1 Oscilloscope Probe (-hp- Model 10041A) DC Power Supply (-hp- Model 6214A)

Oscillator (-hp- Model 204C)

AC digital voltmeter (-hp- Model 3466A)

a. Set the 3325A to STBY.

 $\Delta 4$ - see Section VII for alternate procedure

CAUTION

Do not allow disconnected cable connectors to contact the printed circuit board or components, or circuits may be damaged.

- b. Adjust the dc power supply output to +5 V and connect it between the AMPTD MOD input and ground.
 - c. Disconnect cable W23 at A3J23.
- d. Measure the oscillator (-hp- 204C) output with the ac digital voltmeter and adjust the output level to approximately 1 V rms at a frequency of 1 kHz. Connect the oscillator output between the center contact of A3J23 and ground.
- e. Set 3325A power switch to ON and set EXT MOD to AM ON.
- f. Connect the oscilloscope through a 10:1 probe to A3TP4. Set oscilloscope input to ac coupled, sweep to 1 ms/div.
- g. Adjust Y offset in (A3R60) to null out the sine wave signal on the display. (Change oscilloscope vertical gain as necessary to observe the signal.)
- h. Ground the oscilloscope input and zero the trace on the center line. Set the input to dc coupled.
- i. Adjust Offset Out (A3R68) to return the oscilloscope trace to the center line (Ø Vdc).
- j. Set the 3325A to STBY. Disconnect the dc power supply and the oscillator, and reconnect cable W23 to A3J23
 - k. Turn 3325A to ON.
- l. Connect an ac digital voltmeter to the 3325A signal output via a 50 ohm feedthru termination.
- m. Set the 3325A to 1 kHz, Sine, 1 Vp-p, and 1 mV DC OFFSET. Press AMPTD CAL key.
- n. Adjust Offset In (A3R33) for a voltmeter reading of .3536 Vrms \pm .0040 Vrms.
- o. Repeat Steps m and n until output voltage of .3536 Vrms does not change when AMPTD CAL key is pressed.
- p. Set the DC OFFSET to 0 V. The output voltage should remain at .3536 Vrms \pm .0040 Vrms.
- q. Set the output voltage to 10 Vp-p. The output voltage should be 3.536 Vrms \pm .040 Vrms.
- r. If necessary, the adjustment of R60 may be compromised slightly to bring these two voltages into tolerance.

5-14. X Drive.

Equipment Required: dc digital voltmeter (-hp- Model 3466A)

- a. Connect a dc digital voltmeter to 3325A rear panel X Drive output.
 - b. Set the 3325A as follows:

MO SON PAY
Function Sine
Amplitude10 Vp-p
Sweep Start Freq 1 MHz
Sweep Stop Freq
Sweep Marker Freq
Sweep Time

- c. Press RESET/START key to reset sweep to start conditions.
- d. Digital voltmeter reading should be less than $20\ mV$.
 - e. Adjust X Drive (A14R6) to mechanical center.
- f. Press RESET/START key once to initiate a single sweep. At the end of the sweep the digital voltmeter reading should be +10.450 to +10.550 V.
- g. If the reading is less than +10.450V, adjust X Drive (A14R6) slightly clockwise; and if reading is greater than +10.550V, adjust X Drive slightly counterclockwise.

NOTE

The voltmeter reading will not respond to adjustment of X Drive (A14R6). The effect of this adjustment can be observed only after another single sweep. Following the end of a sweep, the X Drive output voltage will drift downward at $\leq 1mV$ per second.

- h. Press RESET/START twice to initiate another sweep. If necessary, readjust X Drive (A14R6), turning clockwise to increase voltage and counterclockwise to decrease voltage.
- i. Repeat Steps g and h until proper voltage (+10.450 to +10.550 V) is measured immediately following the end of a sweep.

5-15. Amplifier Bias Adjustment. $\Delta 5$

Equipment Required: High frequency spectrum analyzer (-hp- Model 141T/8552B/8553B/8566A/8568A)

- a. With the 3325A in its turn-on condition, set the frequency to 10 MHz, function to square wave, and amplitude to .999 Vp-p.
- $\Delta 5$ see Section VII if necessary for alternate adjustment locations

b. Adjust the spectrum analyzer as follows:

Center Frequency50 MHz
Bandwidth300 kHz
Scan Width0-100 MHz
Input Attenuation40 dB
Video Filter10 kHz
Scan Time10 msec/div
Log Reference Level + 10dBm,10dBLOG
Vernier
Scan ModeINT
Scan TriggerAUTO

- c. Connect the 3325A signal output to the spectrum analyzer input. Do not use a 50 Ω feed through termination.
- d. The spectrum analyzer should display the high level odd harmonics and low level even harmonics of the 10 MHz square wave.
- e. Adjust the bias, A14R275 to minimize the 20MHz second harmonic. It should dip sharply to > 34dB below the fundamental.

5-16. Ramp Stability.

Equipment Required: Oscilloscope, with delayed sweep (-hp- Model 1740A)

- a. Connect 3325A signal output to the oscilloscope vertical input. (Do NOT use a 10:1 probe.) If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50-ohm position. If your oscilloscope does not have a 50-ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
 - b. Set the 3325A as follows:

Function	Positive Slope Ramp
Frequency	100 Hz
Amplitude	10 Vp-p

Remove the RMP test jumper

c. Set the oscilloscope as follows:

Vertical2V/div
Main Sweep
Delayed Sweep
Trigger Negative
Delay
Display A or B
(Do not use ALT or CHOP)

- d. Set the oscilloscope to delayed sweep. Adjust the delay to see the ramp reset jitter and read the positive ramp jitter in microseconds.
 - e. Press the Negative Ramp function on the 3325A.
- f. Change the trigger on the oscilloscope to positive and note the negative ramp jitter in microseconds.

- g. Bump the 3325A frequency to 99.999999Hz and read the ramp jitter in microseconds.
- h. If any of the above readings exceed 60μ s, adjust A14C110 to reduce the jitter.
- i. Repeat the ramp jitter measurements of steps d and f, adjusting A14C110 as necessary to reduce the jitter to $60\mu s$ or for the best compromise between the two.

NOTE

If ramp jitter cannot be adjusted satisfactorily, troubleshoot the ramp generating circuitry (Service Group J).

j. The RMP test jumper can be left off if it results in the best possible adjustment.

Figure 5-1. Ramp Reset Waveform.

5-17. Amplitude Flatness. $\Delta 5$

Equipment Required: $1 \text{Vrms}/50\Omega$ Thermal Converter (-hp- Model 11050A), Digital Voltmeter (-hp- Model 3455A/3466A), Resistor 200Ω 1% 1/8W 0757-0407, Resistor 50Ω 1% 0.5W 0698-5965, Resistor 13Ω 1% 1/8W 0757-0380, Resistor 25Ω 5% 1/4W 0683-2505, Resistor 150Ω 1% 1/8W 0757-0284

a. Set the 3325A as follows:

Function .				•											. 5	Si	ne	
Amplitude					 								1	0	V	p	-p)
Frequency															1 }	ίŀ	Iz	2

b. Connect the 3325A signal output (through the 10Vp-p pad and thermal converter) to the digital voltmeter (see Figure 5-2a).

CAUTION

Insure that the input voltage to the thermal converter does not exceed 1Vrms. Also for best results, allow the thermal converter time to settle and adjust to surrounding temperatures.

- c. Note and record the dc voltage reading on the voltmeter. This is the flatness reference voltage.
- d. Set the 3325A frequency to 20MHz. Using a non-conductive tool, adjust A14C217 to obtain the same reading as the reference recorded in step c.
- e. Set the 3325A to 10MHz. Adjust A14R142 to obtain the same reading as recorded in step c. Repeat step d, adjusting A14C217 as necessary.
- $\Delta 5$ see Section VII for alternate procedure

- f. Set the 3325A to 16MHz. The voltmeter reading should be within $\pm 0.15 \text{mV}$ of the reference recorded in step c. If not, decrease padding capacitor A14C101 using the capacitors shown in Table 5-2. Repeat steps d and e.
- g. Set the 3325A to 20MHz. Bump the frequency down to 1MHz in 1MHz steps. Note the dc voltage at each frequency and insure that it is within ± 0.15 mV of the reference recorded in step c.
- h. If the dc voltage measured in the 19-21MHz range is out of tolerance, increase or decrease the value of A14C103 as necessary, using the values shown in Table 5-2. If A14C103 is changed, repeat steps d and g.
 - i. Set the 3325A amplitude to 3.0Vp-p.
- j. Replace the 10Vp-p pad with the 3.0Vp-p pad (Figure 5-2b). Repeat steps d and g. If a voltage measured in step g is out of tolerance, repeat the amplitude flatness adjustment with the 3325A at both 10Vp-p and 3Vp-p until all voltages are within tolerance.

CAUTION

Insure that the input voltage to the thermal converter does not exceed 1Vrms.

5-18. Mixer Spurious Signal.

Equipment Required: high frequency spectrum analyzer (-hp- Model 141T/8552B/8553B/8566A/8568A)

a. Set the 3325A as follows:

Function																	Si	ne
Amplitud	e										. (0	.9	99	99	7	/p	-p
Frequency	y				 . ,	 								2	20	N	Λŀ	Ιz

b. Set the spectrum analyzer as follows:

Center Frequency10MHz
Bandwidth
Scan Width 2MHz/div
Input Attenuator10dB
Scan Time
Log Ref Level
Vernier – 10dB
Scale
Video Filter10kHz
Scan Mode
Scan TriggerAuto

- c. Connect the 3325A signal output to the spectrum analyzer's 50Ω input.
- d. The 2:1 mixer spur should occur at 10MHz. Using a non-conductive tool, adjust A3R115 (MXR ADJ) until the 2:1 spur is at a minimum. Check the VCO/2 spur at 5MHz.
- e. Using the modify keys, bump the frequency from 20MHz to 11MHz in 1MHz steps. Observe the spectrum analyzer for spurious responses. At 18MHz, check for the 3:2 spur at 6MHz. Note that in all cases, all spurious responses should be > 70dB below the desired signal.

Table 5-2. Padding Values.

A14C101	A14C103						
68pf -hp- p/n 0140-0192	130pf -hp- p/n 0140-0195						
75pf -hp- p/n 0160-2202	140pf*-hp- p/n 0140-0217						
82pf*-hp- p/n 0160-0145	150pf -hp- p/n 0140-0196						

Figure 5-3. Location of Adjustments. 5-7/5-8

Page

SECTION VI REPLACEABLE PARTS

TABLE OF CONTENTS

Paragraph

6-1. Introduction	6-1
	6-1
6-6. Non-Listed Parts	6-1
6-8. Proprietary Parts	6-1
6-10. Printed Circuit Assemblies	6-1
LIST OF ILLUSTRATIONS	LIST OF TABLES
Figure Page	Table Page
6-1. Location of Parts6-31/6-32	6-1. List of Abbreviations 6-2
31,032	6-2. List of Manufacturers6-2
	0-2 * List of Manufacturers 0-/

Model 3325A Replaceable Parts

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

- 6-2. This section contains information for ordering replacement parts. Table 6-3 lists parts in alphanumeric order of their reference designators and indicates the description, -hp- part number of each part, together with any applicable notes, and provides the following:
- a. Total quantity used in the instrument (Qty column). The total quantity of a part is given the first time the part number appears.
 - b. Description of the part. (See List of Abbreviations in Table 6-1.)
- c. Typical manufacturer of the part is a five-digit code. (See Table 6-2 for List of Manufacturers.)
 - d. Manufacturer's part number.
- 6-3. Miscellaneous parts are listed in Table 6-3 following their respective assemblies. General miscellaneous parts are listed at the conclusion of Table 6-3.

6-4. ORDERING INFORMATION.

6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See List of Office Locations at the end of this manual.) Identify parts by their Hewlett-Packard part numbers. Include instrument model and serial numbers.

6-6. NON-LISTED PARTS.

- 6-7. To obtain a part that is not listed, include:
 - a. Instrument model number.
 - b. Instrument serial number.
 - c. Description of the part.
 - d. Function and location of the part.

6-8. PROPRIETARY PARTS.

6-9. Items marked by a dagger (†) in the reference designator column are available only for repair and service of Hewlett-Packard instruments.

6-10. PRINTED CIRCUIT ASSEMBLIES.

6-11. Printed circuit assemblies are listed in Table 6-3. An itemized parts listing of each assembly is located in the service group associated with each printed circuit assembly.

Table 6-1. List of Abbreviations.

	ABBREV	IATIONS	
Agsilver	Hz hertz (cycle(s) per second)	NPO negative positive zero	sl slide
Alaluminum		(zero temperature coefficient)	SPDT single-pole double-throw
A ampere(s)	ID inside diameter	ns nanosecond(s) = 10 ⁻⁹ seconds	SPST single-pole single-throw
Au gold	impgimpregnated	nsr not separately replaceable	
	incdincandescent		Tatantalum
C capacitor	insinsulation(ed)	Ω	TC temperature coefficient
cer		obdorder by description	TiO ₂ titanium dioxide
coef coefficient	$k\Omega$ kilohm(s) = 10^{+3} ohms	ODoutside diameter	tog toggle
com	kHz kilohertz = 10 ⁺³ hertz		tol tolerance
comp		p	trim trimme
conn	L inductor	pA picoampere(s)	TSTR transisto
	lin linear taper	pc printed circuit	10111 transistor
dep deposited	log logarithmic taper	pF picofarad(s) 10-12 farads	V
DPDT double-pole double-throw		piv peak inverse voltage	vacw alternating current working voltage
DPST double-pole single-throw	mA milliampere(s) = 10 ⁻³ amperes	p/o part of	var
	MHz megahertz = 10 ⁺⁶ hertz	pos position(s)	vdcw direct current working voltage
elect electrolytic	$M\Omega$	poly polystyrene	voca
encapencapsulated	met flm metal film	pot potentiometer	W wattis
	mfr manufacturer	p-p peak-to-peak	w/ wit
F	ms millisecond	ppm parts per million	wiv working inverse voltage
FET field effect transistor	mtg mounting	prec precision (temperature coeffient,	w/o withou
fxd fixed	mV millivolt(s) = 10^{-3} volts	long term stability and/or tolerance)	ww wirewoun
	μF microfarad(s)	rong term stability and/or tolerance/	WWWirewould
GaAs gallium arsenide	μsmicrosecond(s)	R resistor	
GHz gigahertz = 10 ⁺⁹ hertz	μV microvolt(s) = 10^{-6} volts	Rh rhodium	
gd guard(ed)	my	rms. root-mean-square	·
Ge germanium	my	rotrotary	average value shown (part may be omitted
and around(ed)	nA nanoampere(s) = 10 ^{.9} amperes	Tot	no standard type number assigne
gro, ground(ed)	NC normally closed	Se selenium	selected or special typ
H henry(ies)	Ne neon	sect section(s)	accided of special typ
Hq mercury		Si selicon	(R) Dupont de Nemour
ng mercury			O Doponi de Nemodi
	DESIGN		
A assembly	FL filter	Q transistor	TS terminal stri
B motor	HR heater	QCR transistor-diode	U microcircu
BT battery	IC integrated circuit	R resistor	V vacuum tube, neon bulb,photocell, et
C capacitor	J	RT thermistor	Wcab
CR diode	K ,	S switch	Xsock
DL delay line	L inductor	T transformer	XDS lamphold
DS	M meter	TB terminal board	XF fusehold
E misc electronic part	MP mechanical part	TC thermocouple	Y cryst
F fuse	P plug	TP test point	Z networ

Table 6-2. List of Manufacturers.

Mfr. No.	Manufacturer Name	Address
S0545	Nippon Electric Co.	Tokyo, JP
00000	Any Satisfactory Supplier	
00494	Addressograph Multigraph Corp.	Cleveland, OH 44117
01121	Allen-Bradley Co.	Milwaukee, WI 53204
01295	Texas Instr Inc. Semicond Cmpnt Div.	Dallas, TX 75222
03888	KDI Pyrofilm Corp.	Whippany, NJ 07981
04713	Motorola Semiconductor Products	Phoenix, AZ 85008
06383	Panduit Corp.	Tinley Park, IL 60477
07263	Fairchild Semiconductor Div.	Mountain View, CA 94042
13606	Sprague Elect Co. Semiconductor Div.	Concord, NH 03301
18324	Signetics Corp.	Sunnyvale, CA 94086
19701	Mepco/Electra Corp.	Mineral Wells, TX 76067
24546	Corning Glass Works (Bradford)	Bradford, PA 16701
26654	Varadyne Inc.	Santa Monica, CA 94040
27014	National Semiconductor Corp.	Santa Clara, CA 95051
28480	Hewlett-Packard Co. Corporate Hq.	Palo Alto, CA 94304
3L585	RCA Corp. Solid State Div.	Somerville, NJ
32293	Intersil Inc.	Cupertino, CA 95014
32997	Bourns Inc. Trimpot Prod Div.	Riverside, CA 92507
34335	Advanced Micro Devices Inc.	Sunnyvale, CA 94086
51642	Centre Engineering Inc.	State College, PA 16801
52763	Stettner Electronics Inc.	Chattanooga, TN 13035
55576	Synertek	Santa Clara, CA 95051
56289	Sprague Electric Co.	North Adams, MA 01247
72136	Electro Motive Corp.	Florence, SC 06226
74970	Johnson E F Co.	Waseca, MN 56093
75042	TRW Inc. Philadelphia Div.	Philadelphia, PA 19108
75915	Littelfuse Inc.	Des Plaines, IL 60016
84411	TRW Capacitor Div.	Ogallala, NE 69153
91637	Dale Electronics Inc.	Columbus, NE 68601

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2	03325-66502	9	2	POWER SUPPLY ASSY	28480	03325-66502
A2C1 A2C2 A2C3 A2C4 A2C5	0160-3508 0160-3508 0160-3558 0160-3558 0180-2635	9 9 9 9 3	5 2 5 2	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +30-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1000UF+50-10% 35VDC AL	28480 28480 28480 28480 28480	0160-3508 0160-3508 0160-3558 0160-3558 0180-2635
A2C6 A2C7 A2C8 A2C9 A2C10	0160-3508 0180-0309 0180-2635 0180-4610 0160-3847	9 4 3 8 9	1 1 141	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 1000UF+50-10% 35VDC AL CAPACITOR-FXD 8000UF+50-10% 16VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 56289 28480 28480 28480	0160-3508 150D475X0010A2 0180-2635 0180-4610 0160-3847
A2C11 A2C12 A2C14 A2C15 A2C16	0160-3508 0160-4571 0180-1701 0160-3847 0180-2823	9 8 2 9	28 2 6	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 6.8UF+-20% 6VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470UF+50-10% 6.3VDC AL	28480 28480 55289 28480 28480	0160-3568 0160-4571 1500685X0 0160-3847 0180-2823
A2C17 A2C18 A2C19 A2C20	0180-0423 0180-0423 0180-3008 0180-2823	3 6 1	2	CAPACITOR-FXD 100UF+50-10% 25VDC AL CAPACITOR-FXD 100UF+50-10% 25VDC AL CAPACITOR-FXD 470UF+50-10% 35VDC AL CAPACITOR-FXD 470UF+50-10% 6.3VDC AL	28480 28480 28480 28480	0180-0423 0180-0423 0180-3008 0180-2823
A2CR1 A2CR2 A2CR3 A2CR4 A2CR5	1901-0662 1901-0662 1901-0662 1901-0662 1902-0025	33334	2	DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.06%	04713 04713 04713 04713 28480	MR 751 MR751 MR751 MR751 1902-0025
A2CR7 A2CR8 A2CR9 A2CR10 A2CR12	1902-3214 1901-0040 1902-0777 1884-0266 1901-0040	9 1 3 5	1 46 3 1	DIODE-ZNR 16.2V 2% DO-35 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N82S 6.2V 5% DO-7 PD=.4W THYRISTOR-SCR 2N&400 TO-220AB VRRM=50 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 04713 3L585 28480	1902-3214 1901-0040 1NB25 2N6400 1901-0040
A2CR13 A2CR14 A2CR15 A2CR16 A2CR17	1901-0040 1901-0040 1901-0518 1901-0040 1901-0535	1 1 8 1 9	13 9	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0518 1901-0540 1901-0535
A2CR18	1901-0518	8		DIODE-SM SIG SCHOTTKY	28480	1901-0518
A2K1	0490-0745	9	1	RELAY 1C 6VDC-COIL 1A 115VAC	28480	0490-0745
A2L1	9100-3807	4	1	INDUCTOR RF-CH-MLD 110NH 5% ,166DX.385LG	28480	9100-3807
A2P1 A2P3 A2P4 A2P4 A2P6 A2Q1 A2Q2 A2Q3 A2Q3 A2Q4 A2Q5	1251-4246 1251-3750 1251-3638 1251-4246 1251-3570 03325-66901 03325-66902 03325-66903 1854-0094 1853-0089	87087234 45	4 2 1 2 1 1 1 16	CONNECTOR 3-PIN M POST TYPE CONNECTOR 10-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 10-PIN M POST TYPE XSTR ASSEMBLY XSTR ASSEMBLY TRANSISTOR NPN SI PD=200MW FT=350MHZ TRANSISTOR PNP 2N4917 SI PD=200MW	28480 28480 28480 28480 28480 28480 28480 28480 28480 07263	1251-4246 1251-3750 1251-3638 1251-4246 1251-3570 03325-66901 03325-66902 03325-66903 1854-0094 2N4917
\$206 A207 A208 A209 A2010	1854-0215 1853-0089 1854-0215 1854-0071 1854-0692	1 5 1 7 8	3 3	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=15W FT=50MHZ	04713 07263 04713 28480 04713	2N3904 2N4917 2N3904 1854-0071 MJE223
A2Q11 A2Q12 A2Q13	1953-0087 1853-0450 1853-0066	5 4 8	2 4	TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR PNP SI TO-220AB PD=60W TRANSISTOR PNP SI TO-92 PD=625MW	07263 04713 28480	2N4917 MJE371K 1853-0066
A2R1 A2R2 A2R3 A2R4 A2R5	0757-0283 0757-0283 0683-2035 0811-2546 0683-3925	66342	10 3 1 1	RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W FC TC=-400/+800 RESISTOR .56 5% .5W PW TC=0+-300 RESISTOR 3.9K 5% .25W FC TC=-400/+700	24546 24546 01121 75042 01121	C4-1/8-T0-2001-F C4-1/8-T0-2001-F CB2035 RW-20-1/2-R56-J CB3925
A2R6 A2R7 A2R8 A2R9 A2R10	0757-0280 0757-0280 0683-2035 0683-1025 0811-0548	3 3 3 9 2	17 35 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W FC TC=-400/+800 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR .47 5% .5W PW TC=0+-300	24546 24546 01121 01121 75042	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C82035 CB1025 BW20-5/10-,47R-J
A2R11 A2R12 A2R13 A2R14 A2R15	0683-1025 0683-4715 0683-1525 0683-1015 0757-0404	9 0 4 7 3	7 4 23 1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 130 1% .125W F TC=0+-100	01121 01121 01121 01121 24546	CB1025 CB4715 CB1525 CB1015 C4-1/8-T0-131-F
A2R16 A2R17 A2R18 A2R19 A2R20	0757-0441 0757-0460 0683-5125 0683-2705 0698-6360	8 1 8 4 6	2 1 2 1 7	RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 61.9K 1% .125W F TC=0+-100 RESISTOR 5.1K 5% .25W FC TC=-400/+700 RESISTOR 75 5% .25W FC TC=-400/+500 RESISTOR 10K .1% .125W F TC=0+-25	24546 24546 01121 01121 28480	C4-1/8-T0-8251-F C4-1/8-T0-6192-F C85125 CB2705 0698-6360

Table 6-3. Replaceable Parts

Table b-3. Replaceable Parts											
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number					
A2R21 A2R22 A2R23 A2R24 A2R25	0683-1015 2100-3296 0698-6619 0698-6320 0683-1015	7 8 8 8 7	1 3 5	RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR-TRMR 1K 10% C TOP-ADJ 17-TRN RESISTOR 15K .1% .125W F TC=0+-25 RESISTOR 5K .1% .125W F TC=0+-25 RESISTOR 100 5% .25W FC TC=-400/+500	01121 28480 28480 03888 01121	CB1015 2100-3296 0698-6619 PMES5-1/8-T9-5001-B CB1015					
A2R26 A2R27 A2R28 A2R29 A2R30	0698-8191 0698-8060 0698-3512 0683-1015 0683-1035	5 7 4 7 1	1 1 1	RESISTOR 12.5K .1% .125W F TC=0+-25 RESISTOR 8.64K .1% .125W F TC=0+-25 RESISTOR 1.18K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 10K 5% .25W FC TC=-400/+700	19701 19701 24546 01121 01121	MF4C1/8-T9-1252-B MF4C1/8-T9-8641-B C4-1/8-T0-1181-F CB1015 CB1035					
A2R32 A2R33 A2R34 A2R35 A2R36	0683-4725 0698-6360 0683-1045 0683-2035 0686-5115	2 6 3 3 2	4 7 1	RESISTOR 4.7k 5% .25W FC TC=-400/+700 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 20K 5% .25W FC TC=-400/+800 RESISTOR 510 5% .5W CC TC=0+529	01121 28480 01121 01121 01121	C84725 0698-6360 CB1045 CB2035 EB5115					
A2R41 A2R42 A2R43	0683-1005 0683-1625 0683-3025	5 5 3	1 1 1	RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 1.6K 5% .25W FC TC=-400/+700 RESISTOR 3K 5% .25W FC TC=-400/+700	01121 01121 01121	CB1005 CB1625 CB3025					
A251 A252	3101-1162 3101-2042	6	1	SWITCH-SL SPDT MINTR .5A 125VAC/DC PC SWITCH-SL DPDT STD 2A 250VAC SLDR-LUG	28480 28480	3101-1162 3101-2042					
A2U1 A2U2 A2U3 A2U4	1906-0096 1826-0678 1826-0678 1826-0678	7 1 1 1 1	3 3	DIODE-FW BRDG 200V 2A IC OP AMP GP DUAL TO-99 PKG IC OP AMP GP DUAL TO-99 PKG IC OP AMP GP DUAL TO-99 PKG	04713 27014 27014 27014	MDA202 LM358H LM358H LM358H					
A2V1	0837-0120	0	1	VARISTOR-130VAC	28480	0837-0120					
	1251-0600 1400-0507 2200-0143 2260-0009 2360-0113	0 3 0 3 2	34 1 3 1 67	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CABLE TIE .062-2-DIA .095-UD NYL SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI NUT-HEX-W/LKWR 4-40-THD .094-IN-THK SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	28480 28480 28480 00000 00000	1251-0600 1400-0507 2200-0143 ORDER BY DESCRIPTION ORDER BY DESCRIPTION					
	3050-0440 7120-6712 7121-1234	2 6 9	3 2 9	WASHER-SHLDR NO. 4 .115-IN-ID .2-IN-OD LABEL-WARNING .5-IN-WD 1-IN-LG MYLAR LABEL-CAUTION 1.925-IN-WD 2.24-IN-LG	28480 28480 28480	3050-0440 7120-6712 7121-1234					
A3	03325-66503	0	2	SIGNAL SOURCE ASSY	28480	0332566503					
A3C1 A3C2 A3C3 A3C4 A3C6	0160-3558 0160-3847 0160-0362 0160-0362 0160-3847	9 9 7 7 9	2	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 510PF +-5% 300VDC MICA CAPACITOR-FXD 510PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3558 0160-3847 0160-0362 0160-0362 0160-3847					
A3C7 A3C8 A3C9 A3C11 A3C12	0160-2204 0180-0228 0160-3558 0160-0174 0140-0191	0 6 9 9 8	4 3 1 4	CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .47UF +90-20% 25VDC CER CAPACITOR-FXD 56PF +-5% 300VDC MICA	28480 56289 28480 28480 72136	0160-2204 150D226X9015B2 0160-3558 0160-0174 DM15E560J0300WV1CR					
A3C13 A3C14 A3C16 A3C17 A3C18	0140-0199 0160-2264 0160-3847 0160-3847 0140-0204	6 2 9 9	1 1	CAPACITOR-FXD 240PF +-5% 300VDC MICA CAPACITOR-FXD 20PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 47PF +-5% 500VDC MICA	72136 28480 28480 28480 28480 72136	DM15F241J0300WV1CR 0160-2264 0160-3847 0160-3847 DM15E470J0500WV1CR					
A3C19 A3C20 A3C21 A3C22 A3C23	0160-3847 0160-2252 0180-0197 0180-0197 0180-1746	98885	2 2 23	CAPACITOR-FXD .01UF +100-0% 50UDC CER CAPACITOR-FXD 6.2PF +25PF 500VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	28480 28480 56289 56289 56289	0160-3847 0160-2252 150D25X9020A2 150D225X9020A2 150D156X9020B2					
A3C24 A3C26 A3C27 A3C28 A3C29	0160-3558 0160-3847 0160-3847 0160-3847 0160-3847	9 9 9 9		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 23480 28480 28480	0160-3558 0160-3847 0160-3847 0160-3847 0160-3847					
A3C31 A3C32 A3C33 A3C34 A3C36	0180-0229 0180-1746 0180-1746 0160-3847 0160-3847	7 5 5 9	1	CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	56289 56289 56289 28480 28480	150D336X9010B2 150D156X9020B2 150D156X9020B2 0160-3847 0160-3847					
A3C37 A3C38 A3C39 A3C41 A3C42	0160-3847 0160-3847 0160-3847 0160-3847 0160-3520	9 9 9 9 5	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .75PF +-1% 100VDC MICA	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-38520					
A3C43 A3C44 A3C46 A3C47 A3C48	0160-2254 0160-2255 0160-3847 0160-3085 0160-2199	0 1 9 7 2	1 1 1 1	CAPACITOR-FXD 7.5PF +25PF 500VDC CER CAPACITOR-FXD 8.2PF +25PF 500VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 510PF +-1% 300VDC MICA CAPACITOR-FXD 30PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160-2254 0160-2255 0160-3847 0160-3085 0160-2199					

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts										
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number				
A3049 A3051 A3052 A3053 A3056	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	9 9 9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847				
A3C57 A3C58 A3C59 A3C61 A3C101	0160-2265 0160-2265 0160-3847 0160-3847 0160-3558	3 3 9 9	5	CAPACITOR-FXD 22PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 22PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-2265 0160-2265 0160-3847 0160-3847 0160-3558				
A30102 A30103 A30104 A30106 A30107	0160-3847 0160-3847 0180-1746 0160-2252 0160-2266	9 9 5 8 4	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 5.2FF +25FF 500VDC CER CAPACITOR-FXD 24PF +-5% 500VDC CER 0+-30	28480 28480 56289 28480 28480	0160-3847 0160-3847 1500156X9020B2 0160-2252 0160-2266				
A3C108 A3C109 A3C111 A3C112 A3C113	0180-1746 0160-2293 0160-2263 0160-2372 0160-2260	5 7 1 3 8	1 1 2 1	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 51.5PF +-1% 500VDC MICA CAPACITOR-FXD 18PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 47PF +-2% 300VDC MICA CAPACITOR-FXD 13PF +-5% 500VDC CER 0+-30	56289 28480 28480 28480 28480	150D156X9020B2 0160-2293 0160-2263 0160-2272 0160-2260				
A3C114 A3C116 A3C117 A3C118 A3C119	0160-2372 0180-1746 0160-3847 0160-3847 0160-3847	3 5 9 9		CAPACITOR-FXD 47PF +-2% 300VDC MICA CAPACITOR-FXD 15UF++10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 56289 28480 28480 28480	0160-2372 150D156X9020B2 0160-3847 0160-3847				
A3C120 A3C121 A3C122 A3C123 A3C124	0160-2244 0140-0190 0160-2251 0140-0190 0160-2244	8 7 7 8	5 4 2	CAPACITOR-FXD 3PF +25PF 500VDC CER CAPACITOR-FXD 3PFF +-5X 300VDC MICA CAPACITOR-FXD 5.6PF +25PF 500VDC CER CAPACITOR-FXD 3PFF +5X 300VDC MICA CAPACITOR-FXD 3PF +25PF 500VDC CER	28480 72136 28480 72136 28480	0160-2244 DM15E390J0300WV1CR 0160-2251 DM15E399J03300WV1CR 0160-2244				
A30126 A30127 A30128 A30129 A30151	0140-0190 0160-2251 0140-0190 0160-2244 0160-3847	7 7 7 8 9		CAPACITOR-FXD 39PF +-5% 300VDC MICA CAPACITOR-FXD 5.6PF +25PF 500VDC CER CAPACITOR-FXD 39PF +-5% 300VDC MICA CAPACITOR-FXD 3PF +25PF 500VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	72136 28480 72136 28480 28480	DM15E390J0300WV1CR 0160-2251 DM15E390J0330WV1CR 0160-2244 0160-3847				
A3C152 A3C153 A3C154 A3C156 A3C157	0160-3847 0160-3847 0160-3847 0160-3847 0180-1746	99995		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA	28480 28480 28480 28480 56289	0160-3847 0160-3847 0160-3847 0160-3847 150D156X9020B2				
A3C15B	0160-3847	9		CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480	0160-3847				
A3CR1 A3CR2 A3CR3 A3CR4 A3CR6	1901-0040 1901-0040 1901-0518 1901-0518 1902-3149	1 1 8 8 9	z	DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-ZNR 9.09V 5% DO-35 PD=.4W	28480 28480 28480 28480 28480	1901~0040 1901~0040 1901~0518 1901~0518 1902~3149				
A3CR7 A3CR8 A3CR10 A3CR11 A3CR12	1902-3030 0122-0089 1902-0025 1901-0518 1901-0518	7 5 4 8	3 3	DIODE-ZNR 3.01V 5% DO-7 PD=.4W TC=067% DIODE-VVC 29PF 10% C3/C25-MIN=5 BVR=30V DIODE-ZNR 10V 5% DD-35 PD=.4W TC=+.06% DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY	28480 04713 28480 28480 28480	1902-3030 MV109 1902-0025 1901-0518 1901-0518				
A3CR101 A3CR102 A3CR103	1906-0207 1901-0535 1901-0535	2 9	1	DIODE-MATCHED DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY	28480 28480 28480	1906-0207 1901-0535 1901-0535				
A3J1 A3J2 A3J3 A3J5 A3J6	1251-6567 1258-0141 1251-2969 1251-2969 1251-2969	8 8 8	6 2	CONNECTOR 21-PIN M POST TYPE JUMPER-REM CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480 28480 28480 28480	1251-6567 1258-0141 1251-2969 1251-2969 1251-2969				
A3J7 A3JB A3J9 A3J10 A3J11	1251-2969 1251-2969 1251-2969 1251-2969 1251-2969	8 8 8		CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480 28480 28480 28480	1251-2969 1251-2969 1251-2969 1251-2969 1251-2969				
A3J15 A3L1 A3L2 A3L3 A3L4 A3L5 A3L6	1251-2969 9100-3551 9100-1791 9140-0210 9140-0210 9170-0894 9140-0210	8 5 1 1 0 1	1 14 5	CONNECTOR-PHONO SINGLE PHONO JACK; DIP COIl-Mid 1uH 5% Q=50 INDUCTOR 290NH 20% .23DX.375LG INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG CORE-SHIELDING BEAD INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG	28480 28480 28480 28480 28480 28480 28480	1251-2969 9100-3551 9100-1791 9140-0210 9140-0210 9170-0894 9140-0210				
A3L7 A3L8 A3L9 A3L20 A3L20	9140-0210 9100-3560 9140-0253 9100-1629 9100-3551	1 6 2 4 5	1 1 1	INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 300NH 1% .166DX.385LG INDUCTOR RF-CH-MLD 47UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 1UH 5% .166DX.385LG	28480 28480 28480 28480 28480	9140-0210 9100-3560 9140-0253 9100-1629 9100-3551				

Table 6-3. Replaceable Parts

Table 0-3. Replaceable Parts											
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number					
A3L101 A3L102 A3L103 A3L104 A3L105	7100-1791 9100-1791 9140-0265 9100-3552 9140-0349	1 1 6 7	2 1 2	INDUCTOR 290NH 20% .23DX.375LG INDUCTOR 290NH 20% .23DX.375LG INDUCTOR RF-CH-MLD 1.6UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 1.5UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 1.1UH 5% .166DX.385LG	28480 28480 23480 28480 28480	9100-1791 9100-1791 9140-0265 9100-3552 9140-0349					
A3L106 A3L107 A3L108 A3L111 A3L112	9140-0265 9100-0539 9140-0142 9100-3315 9100-3315	6 3 8 9	4 1 2	INDUCTOR RF-CH-MLD 1.6UH 5% .166DX.385LG INDUCTOR (MISC ITEM) INDUCTOR RF-CH-MLD 2.2UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 820NH 5% .166DX.385LG INDUCTOR RF-CH-MLD 820NH 5% .166DX.385LG	28480 28480 28480 28480 28480	9140-0265 9100-0539 9140-0142 9100-3315 9100-3315					
A3L113 A3L114 A3L116 A3L117 A3L151	9100-3546 9100-3546 9100-3546 9100-3546 9100-1791	8 8 8 1	4	INDUCTOR RF-CH-MLD 1.3UH 5% .155DX.375LG INDUCTOR 290NH 20% .23DX.375LG	28480 28480 28480 28480 28480	9100-3546 9100-3546 9100-3546 9100-3546 9100-1791					
A3L152 A3L153	9100-0539 9140-0210	3		INDUCTOR (MISC ITEM) INDUCTOR RF-CH-MLD 100UH 5% ,166DX.385LG	28480 28480	9100-0539 9140-0210					
A3MP1 A3MP3 A3MP5 A3MP6	03325-20601 03325-20602 03325-04101 03325-04103	3 4 4 6	1 1	SHIELD, TOP SHIELD, BOTTOM COVER, 1 COVER, 3	28480 28480 28480 28480	03325-20601 03325-20602 03325-04101 03325-04103					
A3P2	1251-4822	6	3	CONNECTOR 3-PIN M POST TYPE	28480	1251-4822					
A3Q1 A3Q2 A3Q3 A3Q4 A3Q6	1853-0448 1855-0081 1853-0089 1854-0092 1854-0215	0 1 5 2	8 6 1	TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR NPN SI PD=200MW FT=600MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	04713 28480 07263 28480 04713	MPSH81 1855-0081 2N4917 1854-0092 2N3904					
A3Q101 A3Q102	18 5 3-0089 1853-0089	5		TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR PNP 2N4917 SI PD=200MW	0726 3 07263	2N4917 2N4917					
A3R1 A3R2 A3R3 A3R6 A3R7	0683-4705 0698-3432 0757-0398 0683-2225 0698-3439	B 7 4 3 4	37 2 3 22 2	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 26.1 1% .125W F TC=0+-100 RESISTOR 75 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 178 1% .125W F TC=0+-100	01121 03888 24546 01121 24546	CB4705 PME55-1/8-T0-26R1-F C4-1/8-T0-75R0-F CB2225 C4-1/8-T0-170R-F					
A3R8 A3R9 A3R10 A3R11 A3R12	0757-0397 0683-4715 0757-0401 0757-0397 0683-1245	3 0 0 3 5	5 12 1	RESISTOR 68.1 1% .125W F TC=0+-100 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 68.1 1% .125W F TC=0+-100 RESISTOR 120K 5% .25W FC TC=-800/+900	24546 01121 24546 24546 01121	C4-1/8-T0-68R1-F CB4715 C4-1/8-T0-101-F C4-1/8-T0-68R1-F CB1245					
A3R13 A3R14 A3R16 A3R17 A3R18	0683-4725 0683-1025 0683-1025 0683-2225 0757-0442	29939	13	RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 10K 1% .125W F TC=0+-100	01121 01121 01121 01121 01121 24546	CB4725 CB1025 CB1025 CB2225 C4-1/8-T0-1002-F					
A3R19 A3R21 A3R22 A3R23 A3R24	0683-1045 0683-1025 0757-0279 0757-0438 0683-2225	3 9 0 3 3	6 11	RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+700	01121 01121 24546 24546 01121	CB1045 CB1025 C4-1/8-T0-3161-F C4-1/8-T0-5111-F CB2225					
A3R26 A3R27 A3R28 A3R29 A3R30	0757-0283 0757-0442 0698-4490 0698-3154 2100-3789	6 9 9 0 4	1 2 2	RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 29.4K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR-TRMR 20K 10% C TOP-ADJ 17-TRN	24546 24546 24546 24546 28480	C4-1/8-T0-2001-F C4-1/8-T0-1002-F C4-1/8-T0-2942-F C4-1/8-T0-4221-F 2100-3789					
A3R32 A3R33 A3R34 A3R36 A3R37	0683-1025 2100-3789 0699-0191 0699-0189 0683-7535	9 4 1 7 8	1 1 1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR-TRNR 20K 10% C TOP-ADJ 17-TRN RESISTOR 1.688K .1% .125W F TC=0+-25 RESISTOR 259.6 .1% .125W F TC=0+-25 RESISTOR 75K 5% .25W FC TC=-400/+800	01121 28480 28480 28480 01121	CB1025 2100-3789 0699-0191 0699-0189 CB7535					
A3R38 A3R39 A3R41 A3R42 A3R43	0698-0084 0757-0274 0683-1025 0757-0407 0698-3155	9 5 9 6	2 1 2 3	RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 1.21K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100	24546 24546 01121 24546 24546	C4-1/8-T0-2151-F C4-1/8-T0-1211-F CB1025 C4-1/8-T0-201-F C4-1/8-T0-4641-F					
A3R44 A3R45 A3R46 A3R47 A3R48	0698-3155 0698-3156 0698-3156 0683-4705 0683-4715	1 2 2 8 0	6	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 470 5% .25W FC TC=-400/+600	24546 24546 24546 01121 01121	C4-1/8-T0-4641-F C4-1/8-T0-1472-F C4-1/8-T0-1472-F CB4705 CB4715					
A3R49 A3R54 A3R55 A3R56 A3R57	0683-1035 0757-0453 0698-3279 0683-1025 0698-3279	1 2 0 9	1 11	RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 30.1K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 4.99K 1% .125W F TC=0+-100	01121 24546 24546 01121 24546	CB1035 C4-1/8-T0-3012-F C4-1/8-T0-4991-F CB1025 C4-1/8-T0-4991-F					

Table 6-3. Replaceable Parts

lable b-3. Replaceable Parts											
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number					
A3R58 A3R59 A3R60 A3R61 A3R62	0699-0192 0683-1025 2100-3286 0683-4705 0757-0442	2 9 6 8 9	1	RESISTOR 3.894K .1% .125W F TC=0+-25 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR-TRNR 10K 10% C TOP-ADJ 17-TRN RESISTOR 47 5% .25W FC TC=-400/+560 RESISTOR 10K 1% .125W F TC=0+-100	28480 01121 32997 01121 24546	0699-0192 CB1025 3292W-1-103 CB4705 C4-1/8-T0-1002-F					
A3R63 A3R64 A3R66 A3R67 A3R68	0698-3156 0698-4437 0757-0436 0698-4478 2100-3207	2 4 1 3 1	1 1 1	RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 2.94K 1% .125W F TC=0+-100 RESISTOR 4.32K 1% .125W F TC=0+-100 RESISTOR 10.7K 1% .125W F TC=9+-100 RESISTOR-TRMR 5K 10% C SIDE-ADJ 1-TRN	24546 24546 24546 24546 28480	C4: 1/8-T0: 1472-F C4-1/8-T0-2941 F C4-1/8-T0-4321-F C4: 1/8-T0-1072-F 2100-3207					
A3R69 A3R70 A3R72 A3R73 A3R76	0698-3136 0698-3497 0683-4705 0698-3442 0683-4705	8 4 8 9 8	1 1	RESISTOR 17.8K 1% .125W F TC=0+-100 RESISTOR 6.04K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 237 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500	24546 24546 01121 24546 01121	C4·1/8-T0-1782-F C4-1/8-T0-604R-F C84705 C4-1/8-T0-237R-F C84705					
A3R77 A3R78 A3R79 A3R80 A3R81	0.698-4402 0.698-4402 0.698-3279 0.698-3581 0.698-3581	3 3 0 7 7	4 2	RESISTOR 97.6 1% .125W F TC=0+-100 RESISTOR 97.6 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 13.7K 1% .125W F TC=0+-100 RESISTOR 13.7K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-97R6-F C4-1/8-T0-97R6-F C4-1/8-T0-4991-F C4-1/8-T0-1372-F C4-1/8-T0-1372-F					
A3R82 A3R83 A3R84 A3R85 A3R86	0757-0273 0757-0273 0757-0273 0757-0273 0698-4402 0698-3157	4 4 3 3	7	RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 97.6 1% .125W F TC=0+-100 RESISTOR 19.6K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-3011 -F C4-1/8-T0-3011-F C4-1/8-T0-3011 -F C4-1/8-T0-9786-F C4-1/8-T0-1962 -F					
A3R87 A3R88 A3R90 A3R91 A3R92	0683-1025 0683-2225 0698-4402 0698-4467 0683-1025	9 3 3 0 9	1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 97.6 1% .125W F TC=0+-100 RESISTOR 1.05K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 24546 24546 01121	C81025 C82225 C4-178-T0-97R6-F C4-178-T0-1051-F CB1025					
A3R93 A3R101 A3R102 A3R103 A3R104	0683-4705 0683-4715 0757-0291 0683-3325 0757-0399	8 0 6 6 5	1 6 1	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 24.9 1% .125W F TC=0+-100 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 82.5 1% .125W F TC=0+-100	01121 01121 19701 01121 24546	CB4705 CB4715 MF461/8-T0-2492-F CB3325 C4-1/8-T0-82R5-F					
A3R106 A3R107 A3R108 A3R107 A3R111	0698-4435 0698-3156 0698-4037 0757-0279 0757-0279	0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	RESISTOR 2.49K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 46.4 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2491-F C4-1/8-T0-1472-F C4-1/8-T0-46R4-F C4-1/8-T0-3161-F C4-1/8-T0-3161-F					
A3R112 A3R113 A3R114 A3R115 A3R116	0757-0407 0698-3444 0698-3444 2100-0568 0757-0381	6 1 1 1 5	4 1 1	RESISTOR 200 1% .125W F TC≔0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR-TRNR 100 10% C TOP~ADJ 1-TRN RESISTOR 15 1% .125W F TC=0+-100	24546 24546 24546 28480 19701	C4-1/8-T0-201-F C4-1/8-T0-316R-F C4-1/8-T0-316R-F 2100-056B MF4C1/8-T0-15R0-F					
A3R117 A3R118 A3R119 A3R120 A3R121	0698-3444 0698-3444 0757-0275 0698-3440 0757-0397	1 6 7 3	2	RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 113 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 68.1 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-316R-F C4-1/8-T0-316R-F C4-1/8-T0-113R-F C4-1/8-T0-196R-F C4-1/8-T0-68R1-F					
A3R122 A3R123 A3R151 A3R153 A3R154	0757-0397 0757-0275 0757-0397 0683-1025 0683-1025	3 6 3 9 9		RESISTOR 68.1 1% .125W F TC=0+-100 RESISTOR 113 1% .125W F TC=0+-100 RESISTOR 68.1 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600	24546 24546 24546 01121 01121	C4-1/8-T0-68R1-F C4-1/8-T0-113R-F C4-1/8-T0-68R1-F CB1025 CB1025					
A3R 156 A3R 157 A3R 158 A3R 159 A3R 160	0683-1015 0683-4705 0698-3439 0683-2225 0757-0276	7 8 4 3 7	3	RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 178 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 61.9 1% .125W F TC=0+-100	01121 01121 24546 01121 24546	CB1015 CB4705 C4-178-T0-178R-F CB2225 C4-178-T0-6192-F					
A3R161	0757-0276	7		RESISTOR 61.9 1% .125W F TC=0+-100	24546	C4-1/8-T0-6192-F					
A3T1 A3T2	9100-4038 08552-6044	5	1	TRANSFORMER BEAD CORE; WITH CT PRI & SEC TRANS 6 TURNS	28480 28480	9100-4038 08552-6044					
A3U1 A3U2 A3U3 A3U4 A3U5	1820-1991 1820-0629 1820-0321 1820-1199 1820-0693	1 0 9 1 8	1 10 2 5 6	IC CNTR TTL LS DECD DUAL 4-BIT IC FF TTL S J-K NEG-EDGE-TRIG IC COMPARATOR GP TO-99 PKG IC INV TTL LS HEX 1-INP IC FF TTL S D-TYPE POS-EDGE-TRIG	01295 01295 01295 01295 01295	SN74LS390N SN745112N SN72710L SN74LS04N SN74S74N					
A3U6 A3U7 A3U8 A3U9 A3U10	1820-0683 1820-1924 1826-0043 1820-1568 1820-1195	6 0 4 8 7	3 1 2 3 4	IC INV TTL S HEX 1-INP IC INV TTL S HEX IC OP AMP GP TO-99 PKG IC BFR TTL LS BUS QUAD IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295 18324 3L585 01295 01295	SN74S04N NBT93N CA307T SN74LS125AN SN74LS175N					

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts											
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number					
A3U11 A3U12 A3U13 A3U14 A3U15	1826-0437 1826-0476 1826-0547 1858-0063 1858-0040	0 7 3 5 8	1 3 1 2	IC MULTIPLIER 14-DIP-C PKG IC SWITCH ANLG 8-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD DUAL 3-DIP-P TRANSISTOR ARRAY 14-PIN PLSTC DIP TRANSISTOR ARRAY 16-PIN PLSTC DIP	04713 01295 01295 3L505 3L505	MC1495L TL601CP TL072ACP CA3102E CA3127E					
A3U16 A3U17 A3U18 A3U19 A3U20	1858-0059 1820-0802 1820-1322 1820-0629 1820-0216	9 1 2 0 1	1 2 2	TRANSISTOR ARRAY 8-PIN PLSTC DIP IC GATE ECL NOR QUAD 2-INP IC GATE TTL S NOR QUAD 2-INP IC FF TTL S J-K NEG-EDGE-TRIG IC OP AMP GP 8-DIP-P PKG	28480 04713 01295 01295 28480	1858-0059 MC10102P SN74502N SN748512N 1820-0216					
A3Y1	0410-1115	1	1	CRYSTAL-QUARTZ 30.00000 MHZ	28480	0410-1115					
	0360~1715 1251~0600 3050~0080 7121-1234 8150~3375	0 0 6 9 5	1 4 1	TERMINAL-STUD SGL-PIN PRESS-MTG CONNECTOR-SGL CONT PIN 1.14-HM-BSC-SZ SQ WASHER-FL NM NO. 5 .13-IN-ID .25-IN-OD LABEL CAUTION 1.925-IN-WD 2.24-IN-LG RESISTOR-ZERO OHMS 22 AWG LEAD DIA	28480 28480 28480 28480 28480	0360-1715 1251-0600 3050-0080 7121-1234 8150-3375					
A5	03325-66505	2	2	KEY BOARD ASSEMBLY	28480	03325-66505					
A5C1 A5C2 A5C3 A5C4 A5C5	0160-3847 0160-3847 0160-3847 0180-0062 0160-3847	9 9 9 6 9	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .00UF+75-10% 6VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0180-0062 0160-3847					
A5C6 A5C7 A5C8 A5C9 A5C10	0160-3847 0160-3847 0160-3847 0150-0012 0150-0012	9 9 9 3 3	6	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +-20% 1KVDC CER CAPACITOR-FXD .01UF +-20% 1KVDC CER	28480 28480 28480 56289 56289	0160-3847 0160-3847 0160-3847 C0234102J103MS38 C023A102J103MS38					
A5CR1 A5CR2 A5CR3 A5CR5 A5CR6	1990-0533 1990-0533 1990-0533 1990-0665 1990-0665	4 4 3 3 3	14	LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4658 5082-4658 5082-4658 1990-0665 1990-0665					
A5CR7 A5CR8 A5CR9 A5CR10 A5CR11	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665	3 3 3 3 3		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	1770-0665 1790-0665 1790-0665 1790-0665 1790-0665					
A5CR12 A5CR13 A5CR14 A5CR15 A5CR16	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665	3 3 3 3 3		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665					
A5CR17 A5CR18 A5CR19 A5CR20 A5CR21	1990-0533 1990-0533 1990-0533 1990-0533 1990-0533	4 4 4 4		LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX	28480 28480 28480 28480 28480	5082-4658 5082-4658 5082-4658 5082-4658 5082-4658					
A5CR22 A5CR23 A5CR24 A5CR25 A5CR26	1990-0533 1990-0533 1990-0533 1990-0533 1990-0533	4 4 4 4		LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=15MCD IF=20MA-MAX	28480 28480 28480 28480 28480	5082-4658 5082-4658 5082-4658 5082-4658 5082-4658					
A5CR27 A5CR28 A5CR29 A5CR30 A5CR31	1990-0533 1990-0665 1990-0665 1990-0665 1990-0665	4 3 3 3 3 3		LED-LAMP LUM-INT=15MCD IF=20MA-MAX LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	5082-4658 1990-0665 1990-0665 1990-0665 1990-0665					
A5CR32 A5CR33 A5CR34 A5CR35 A5CR36	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665	3 3 3 3 3		LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V LED-LAMP LUM-INT=1MCD IF=20MA-MAX BVR=5V	28480 28480 28480 28480 28480	1990-0665 1990-0665 1990-0665 1990-0665 1990-0665					
A5J1	1200-0473	8	2	SOCKET-IC 16-CONT DIP DIP-SLDR	28480	1200-0473					
A5K S1 A5K S2 A5K S3 A5K S4 A5K S5	5041-0943 5041-0384 5041-0384 5041-0384 5041-0918	3 6 6 2	1 6	KEY CAP LOKAL KEYCAP-SHOKEPIPE KEYCAP-SHOKEPIPE KEYCAP-SHOKEPIPE KEYCAP-FREQ	28480 28480 28480 28480 28480	5041-0943 5041-0384 5041-0384 5041-0384 5041-0384					
A5KS6 A5KS7 A5KS8 A5KS9 A5KS10	5041-0919 5041-0384 5041-0384 5041-0384 5041-0920	3 6 6 6 6	1	KEY CAP-AMPTD KEYCAP-SMOKEPIPE KEYCAP-SMOKEPIPE KEYCAP-SMOKEPIPE KEY CAP-PHASE	28480 28480 28480 28480 28480	5041-0919 5041-0384 5041-0384 5041-0384 5041-0920					
			,								

Table 6-3. Replaceable Parts

	HP Part	c	Qty	Description	Mfr	Mfr Part Number
Designation	Number	D	City		Code	
A5KS11 A5KS12 A5KS13 A5KS14 A5KS15	5041-0921 5041-0451 5041-0987 5041-0817 5041-0818	7 8 5 0 1	1 1 1 1	KEY CAP-DCOFFSET KEYCAP-BLUEPIPE KEY CAP STORE KEY CAP-7 KEY CAP-8	28480 28480 28480 28480 28480	5041-0921 5041-0451 5041-0987 5041-0817 5041-0818
A5KS16 A5KS17 A5KS18 A5KS19 A5KS20	5041-0816 5041-0925 5041-0810 5041-0814 5041-0815	9 1 3 7 8	1 1 1 1	KEY CAP-6 KEY CAP-MHZ VOLT KEY CAP RECALL KEY CAP-4 KEY CAP-5	28480 28480 28480 28480 28480	5041-0816 5041-0925 5041-0810 5041-0814 5041-0815
A5K522 A5K523 A5K524 A5K525 A5K526	5041-0926 5041-0946 5041-0811 5041-0812 5041-0813	2 6 4 5 6	1 1 1 1	KEY CAP-KHZ MV KEY CAP CLEAR KEY CAP-1 KEY CAP-2 KEY CAP-3	28480 28480 28480 28480 28480	5041-0926 5041-0946 5041-0811 5041-0812 5041-0813
A5K 927 A5K 928 A5K 929 A5K 930 A5K 931	5041-0927 5041-0758 5041-0819 5041-0808 5041-0929	38295	1 1 1 1	KEY CAP-HZ VRMS KEY CAP-DASH KEY CAP-O KEY CAP PERIOD KEY CAP-SEC	28480 28480 28480 28480 28480	5041-0927 5041-0758 5041-0819 5041-0808 5041-0929
A5KS32 A5KS33 A5KS34 A5KS35 A5KS36	5041-0928 5041-0756 5041-0756 5041-0922 5041-0922	4 6 6 8 8	1 2 2	KEY CAP-DEG KEY ARROW KEY ARROW KEY CAP-LEFT ARO KEY CAP-LEFT ARO	28480 28480 28480 28480 28480	5041-0928 5041-0756 5041-0756 5041-0722 5041-0922
A5K 937 A5K 938 A5K 939 A5K 940 A5K 941	5041-0318 5041-0318 5041-0318 5041-0318 5041-0318	6 6 6	5	LK CAP PTY GRAY LK CAP PTY GRAY	28480 28480 28480 28480 28480	5041-0318 5041-0318 5041-0318 5041-0318 5041-0318
A5KS42 A5KS43 A5KS44	5041-0418 5041-0285 5041-0944	7 6 4	1 1 1	KEYCAP-EBONYPIPE KEYCAP-PEARLPIPE KEY CAP PWR	28480 28480 28480	5041-0418 5041-0285 5041-0944
A5L.1	9100-3334	2	2	INDUCTOR 25UH 10% .3D	28480	9100-3334
A5MP1 A5MP2 A5MP3	4040-1001 4040-1307 08505-40006	3 3	1 1 3	STRIP-PLASTIC .28-IN-WD .01-IN-THK REFLECTOR LED ANN GD	28480 28480 28480	4940-1001 4040-1307 08505-40006
A5Q1 A5Q2 A5Q3 A5Q4 A5Q5	1853-0016 1853-0016 1853-0016 1853-0016 1853-0016	8888	8	TRANSISTOR PNP SI TO-92 PD=300MW	28480 28480 28480 28480 28480	1853-0016 1853-0016 1853-0016 1853-0016 1853-0016
A5Q6 A5Q7 A5Q8	1853-0016 1853-0016 1853-0016	8 8		TRANSISTOR PNP SI TO-92 PD=300MW TRANSISTOR PNP SI TO-92 PD=300MW TRANSISTOR PNP SI TO-92 PD=300MW	28480 28480 28480	1853-0016 1853-0016 1853-0016
A5R1 A5R2 A5R3 A5R4 A5R5	0683-2205 0683-2205 0683-2205 0683-2205 0683-2205	9 9 9 9 9	18	RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 22 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB2205 CB2205 CB2205 CB2205 CB2205 CB2205
A5R6 A5R7 A5R8 A5R9 A5R10	0683-2205 0683-2205 0683-2205 0683-1325 0683-1325	9 9 2 2	8	RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 1.3K 5% .25W FC TC=-400/+700 RESISTOR 1.3K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB2205 CB2205 CB2205 CB1325 CB1325
A5R11 A5R12 A5R13 A5R14 A5R15	0683-1325 0683-1325 0683-1325 0683-1325 0683-1325	N N N N N		RESISTOR 1.3K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1325 CB1325 CB1325 CB1325 CB1325 CB1325
A5R16 A5R20 A5R21 A5R22 A5R23	0683-1325 1810-0135 1810-0164 1810-0164 1810-0055	22775	1 2 3	RESISTOR 1.3K 5% .25W FC TC=~400/⊁700 NETWORK-RES 6-STP10.0K OHM X 5 NETWORK-RES 9-SIP4.7K OHM X 8 NETWORK-RES 9-SIP4.7K OHM X 8 NETWORK-RES 9-SIP10.0K OHM X 8	01121 28480 91637 91637 28480	CB1325 1810-0135 CSP09C07-472J CSP09C07-472J 1810-0055
A591 A592 A593 A594 A595	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7 7	43	PUSHEUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436
A556 A557 A558 A559 A5510	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A5S11 A5S12 A5S13 A5S14 A5S15	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436			
A5S16 A5S17 A5S18 A5S19 A5S20	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	ファファフ		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436			
A5S21 A5S22 A5S23 A5S24 A5S25	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	ファファフ		PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MGUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436			
A5S26 A5S27 A5S28 A5S29 A5S30	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436			
A5S31 A5S32 A5S33 A5S34 A5S35	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436			
A5836 A5837 A5838 A5839 A5840	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436			
A5S41 A5S42 A5S43 A5S44	5060-9436 5060-9436 5060-9436 3101-2441	7 7 7 6	1	PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT SWITCH-PB DPDT ALTNG .5A 100VAC	28480 28480 28480 28480	5060-9436 5060-9436 5060-9436 3101-2441			
A5U1 A5U2 A5U3 A5U4 A5U5	1820-1200 1858-0047 1820-1433 1858-0047 1820-1200	១៦៤២២	2 4 3	IC INV TTL LS HEX TRANSISTOR ARRAY 16-PIN PLSTC DIP IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT TRANSISTOR ARRAY 16-PIN PLSTC DIP IC INV TTL LS HEX	01295 13606 01295 13606 01295	SN74LS05N ULN-2003A SN74LS164N ULN-2003A SN74LS05N			
A5U6 A5U7 A5U8 A5U9 A5U10	1820-1433 1858-0047 1820-1568 1820-1730 1990-0592	65865	6 11	IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT TRANSISTOR ARRAY 16-PIN PLSTC DIP IC BFR TTL LS BUS QUAD IC FF TTL LS D-TYPE POS-EDGE-TRIG COM DISPLAY-NUM-SEG 1-CHAR .43-H	01295 13606 01295 01295 28480	SN74LS164N ULN -2003A SN74LS125AN SN74LS273N 5082-7653			
A5U11 A5U12 A5U13 A5U14 A5U15	1990-0592 1990-0592 1990-0592 1990-0592 1990-0592	លាមានាមាន		DISPLAY-NUM-SEG 1-CHAR .43-H	28480 28480 28480 28480 28480	5082-7653 5082-7653 5082-7653 5082-7653 5082-7653			
A5U16 A5U17 A5U18 A5U19 A5U20	1990-0592 1990-0592 1990-0592 1990-0592 1990-0592	មាយមាយ		DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H DISPLAY-NUM-SEG 1-CHAR .43-H	28480 28480 28480 28480 28480	5082-7653 5082-7653 5082-7653 5082-7653 5082-7653			
A5XU10 A5XU11 A5XU12 A5XU13 A5XU14	1200-0638 1200-0638 1200-0638 1200-0638 1200-0638	7 7 7 7 7	11	SOCKET-IC 14-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480 28480	1200-0638 1200-0638 1200-0638 1200-0638 1200-0638			
A5XU15 A5XU16 A5XU17 A5XU18 A5XU19	1200-0638 1200-0638 1200-0638 1200-0638 1200-0638	7 7 7 7 7		SOCKET-IC 14-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0638 1200-0638 1200-0638 1200-0638 1200-0639			
A5XU20	1200-0638	7		SECKET-IC 14-CONT DIP DIP-SLDR	28480	1200-0638			
	0624-0227 0890-0164 1460-1336 7121-1234 JUMPER	7 4 4 9 0	1 0 1 24	SCREW-TPG 4-40 .25-IN-LG PAN-HD-POZI STL SLEEVING-FLEX .04-ID NEMA-3 .019-WALL WIREFORM CU BRT-TIN LABEL CAUTION 1.925-IN-WD 2.24-IN-LG CUT JUMPER	0 0 0 0 0 0 0 0 0 0 2848 0 2848 0 2848 0	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 1450-1335 7121-1234 JUMPER			
A6	03325 -66506	3	2	CONTROL ASSEMBLY	28490	03325-66506			
A6C1 A6C2 A6C3 A6C4 A6C5	0160-0978 0160-3847 0160-0337 0160-0337 0160-3847	1 9 6 6 9	1 2	CAPACITOR-FXD 1500PF +-1% 500VDC MICA CAPACITOR-FXD .31UF +103-0% 50VDC CER CAPACITOR-FXD 160PF +-1% 300VDC MICA CAPACITOR-FXD 160PF +-1% 300VDC MICA CAPACITOR-FXD 160PF +-1% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-0978 0160-3847 0160-0337 0160-0337 0160-3847			

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts									
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A6C6 A6C7 A6C20 A6C21 A6C22	0180-0228 0160-3847 0160-3847 0160-3847 0160-3847	6 9 9 9		CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .61UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	56289 28480 28480 28480 28480	150D226X9015B2 0160-3B47 0160-3B47 0160-3B47 0160-3B47			
A6C23 A6C24 A6C25 A6C26 A6C27	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	9 9 9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 23480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847			
A6C28 A6C29 A6C30 A6C31 A6C32	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	9 9 9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847			
A6C33 A6C34 A6C35 A6C36 A6C37	0160-3847 0160-3847 0160-3847 0180-2823 0180-2823	9 9 9 1		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470UF+50-10% 6.3VDC AL CAPACITOR-FXD 470UF+50-10% 6.3VDC AL	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0180-2823 0180-2823			
A6C38 A6C39 A6C40 A6C41 A6C52	0180-0692 0180-0692 0180-2823 0160-3847 0180-2823	8 1 9	3	CAPACITOR-FXD 220UF+50-10% 35VDC AL CAPACITOR-FXD 220UF+50-10% 35VDC AL CAPACITOR-FXD 470UF+50-10% 6.3VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470UF+50-10% 6.3VDC AL	00494 00494 28480 28480 23480	35VBSL220 35VBSL220 0180-2823 0160-3847 0180-2823			
A6053 A6054 A6055 A6056 A6057	0180-2826 0160-3558 0160-3558 0160-3847 0160-3847	4 9 9 9	1	CAPACITOR-FXD 1000UF+50-10% 16VDC AL CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0180-2826 0160-3558 0160-3558 0160-3847 0160-3847			
A6058 A6059 A6060 A6061 A6062	0160-3622 0160-3622 0160-3622 0160-2009 0160-2009	3 8 8 8	3	CAPACITOR-FXD .1UF 180-20% 100VDC CER CAPACITOR-FXD .1UF +80-20% 100VDC CER CAPACITOR-FXD .1UF :80-20% 100VDC CER CAPACITOR-FXD 820PF +-5% 300VDC MICA CAPACITOR-FXD 820PF +-5% 300VDC MICA	26654 26654 26654 28480 28480	2130Y5V100R104Z 2130Y5V100R104Z 2130Y5V100R104Z 0160-2009 0160-2009			
A6C63 A6C64	0160-3558 0160-3558	9		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	2848 0 28 4 80	0160-3558 0160-3558			
A6CR1 A6CR2 A6CR4 A6CR5	1902-3153 1901-0040 1901-0040 1901-0040	5 1 1	1	DIODE-ZNR 9.31V 2% DO-35 PD≔.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480	1902-3153 1901-0040 1901-0040 1901-0040			
A6J1 A6J2 A6J3 A6J4 A6J51	1200-0473 1251-6567 1251-6567 1251-6567 1200-0634	0 0 3	1	SOCKET-IC 16-CONT DIP DIP-SLDR CONNECTOR 21-PIN M POST TYPE CONNECTOR 21-PIN M POST TYPE CONNECTOR 21-PIN M POST TYPE SOCKET-IC 24-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0473 1251-6567 1251-6567 1251-6567 1200-0634			
A6L1 A6L2 A6L3	9100-2459 9100-1637 9100-3334	0 4 2	1	INDUCTOR RF-CH-MLD 121UH 1% .166DX.385LG INDUCTOR RF-CH-MLD 120UH 5% .166DX.385LG INDUCTOR 25UH 10% .3D	28480 28480 28480	9100-2459 9100-1637 9100-3334			
A6MP1 A6MP2 A6MP3	1205-0298 0340-0564 1258-0141	5 3 8	3 5	HEAT SINK PLSTC-PWR-CS INSULATOR-XSTR THRM-CNDCT Connector-Shorting	28480 28480 28480	1205-0298 0340-0564 1258-0141			
A6P5 A6P26 A6P52	1251-3750 1251-4822 1251-4245	7 6 7	1	CONNECTOR 10-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 2-PIN M POST TYPE	28480 28480 28480	1251-3750 1251-4822 1251-4245			
A6Q1 A6Q2	1854-0071 1854-0215	7		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	28480 04713	1854-0071 2N3904			
A6R1 A6R2 A6R3 A6R4 A6R5	0698-8344 0683-7525 0683-6815 0683-1035 0683-1035	0 6 5 1	1 1 4	RESISTOR 604K 1% .125W F TC=0+-100 RESISTOR 7.5K 5% .25W FC TC=-400/+700 RESISTOR 680 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	28480 01121 01121 01121 01121	0698-8344 CB7525 CB6815 CB1035 CB1035			
A6R6 A6R7 A6R8 A6R9 A6R10	1810-0055 0698-3279 0698-4020 1810-0076 0683-1825	5 0 1 0 7	1 1 2	NETWORK-RES 9-SIP10.0K OHM X 8 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 9.53K 1% .125W F TC=0+-100 NETWORK-RES 9-SIP1.8K OHM X 8 RESISTOR 1.8K 5% .25W FC TC=-400/+700	28480 24546 24546 28480 01121	1810-0055 C4-1/8-T0-4991-F C4-1/8-T0-9531-F 1810-0076 CR1825			
A6R13 A6R14 A6R15 A6R16 A6R17	1810-0140 0683-1035 0683-3625 0683-3625 1810-0229	9 1 9 9 5	1 2 1	NETWORK-RES 4-SIP22.0K OHM X 3 RESISTOR 10K 5X .25W FC TC=-400/+700 RESISTOR 3.6K 5X .25W FC TC=-400/+700 RESISTOR 3.6K 5X .25W FC TC=-400/+700 NETWORK-RES 8-SIP330.0 OHM X 7	91637 01121 01121 01121 01121	CSP 0 4C07-223J CB1 0 35 CB3625 CB3625 20 8A331			

Table 6-3. Replaceable Parts

Reference	HP Part	С		Table 0-3. Replaceable Parts	Mfr	
Designation	Number	D	Qty	Description	Code	Mfr Part Number
A6R18 A6R19 A6R20 A6R21 A6R22	1810-0055 0683-1515 0683-1035 0698-6619 0699-0107	52189	2	NETWORK-RES 9-SIP10.0K OHM X 8 RESISTOR 150 5% ,25W FC TC=-400/+600 RESISTOR 10K 5% ,25W FC TC=-400/+700 RESISTOR 15K .1% ,125W F TC=0+-25 RESISTOR 4.75K .1% ,125W F TC=0+-25	28480 01121 01121 28480 28480	1810-0055 CB1515 CB1035 CB1035 0698-6619 0679-0107
A6R23 A6R24 A6R25 A6R26 A6R51	0683-5115 0683-5115 0683-1035 0683-1835 1810-0136	6 6 1 9 3	2	RESISTOR 510 5% .25W FC TC=-400/+600 RESISTOR 510 5% .25W FC TC=-400/+603 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+800 NETWORK-RES 10-SIP MULTI-VALUE	01121 01121 01121 01121 28480	CB5115 CB5115 CB1035 CB1035 1810-0136
A6R52 A6R53 A6R54 A6R55	1810-0297 0683-1035 0683-5115 0683-5115	7 1 6 6	1	NETWORK-RES 8-SIP3.3K OHM X 7 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 510 5% .25W FC TC=-400/+600 RESISTOR 510 5% .25W FC TC=-400/+600	28480 01121 01121 01121	1810-0297 CB1035 CB5115 CB5115
A651	3101-1826	9	1	SWITCH-TGL DIP-RKR-ASSY 7-1A .1A 5VDC	28480	3101-1826
A6U1 A6U2 A6U3 A6U4 A6U5	1818-0702 1818-0703 1818-0704 1818-0705 1820-1197	5 6 7 8 9	1 1 1 9	IC NMOS 32768 (32K) ROM 450-NS 3-S IC GATE TTL LS NAND QUAD 2 INP	55576 55576 55576 55576 55576 01295	SYP2332 MASKED SYP2332 MASKED SYP2332 MASKED SYP2332 MASKED SN74LS00N
A6U6 A6U7 A6U8 A6U9 A6U1 0	1818-0438 1820-1195 1826-0180 1820-1691 1820-1759	4 7 0 8 9	1 1 1 6	IC NMOS 4076 (4K) STAT RAM 450-NS 3-S IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC TIMER TTL MOND/ASTBL IC MICPROC NMOS IC BFR TTL LS NON-INV OCTL	01275 01275 01275 21275 28480 27014	TMS2114-45NL SN74LS175N NE555P 1820-1691 DM81LS97N
A6U11 A6U12 A6U13 A6U14 A6U15	1818-0199 1818-0199 1820-1195 1820-1196 1820-0174	4 7 8 0	2 6 1	IC NMOS 1024 (1K) STAT RAM 500-NS IC NMOS 1024 (1K) STAT RAM 500-NS IC FF ITL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC INV TTL HEX	34335 34335 01295 01295 01295	AM9112APC AM9112APC SN74LS175N SN74LS174N SN7404N
A6U16 A6U17 A6U18 A6U19 A6U20	1820-1216 1820-1216 1820-9683 1820-1759 1820-1194	3 3 6 9 6	2	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP IC INV TTL S HEX 1-INP IC BFR TTL LS NON-TNV OCTL IC CNTR TTL LS BIN UP/DOWN SYNCHRO	01295 01295 01295 27014 01295	SN74LS138N SN74LS138N SN74S04N DM81LS97N SN74LS193N
A6U21 A6U22 A6U23 A6U24 A6U25	1820-1194 1820-1759 1820-1197 1820-1208 1820-1216	6 9 3 3	2	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC BFR TTL LS NON-INV OCTL IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS OF QUAD 2-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295 27014 01295 01295 01295	SN74LS193N DM81LS97N SN74LS00N SN74LS32N SN74LS138N
A6U26 A6U27 A6U28 A6U29 A6U30	1820-1759 1820-1730 1820-1759 1820-1433 1820-1197	9 6 9 6 9		IC BFR ITL LS NON-INV OCTL IC FF ITL LS D-TYPE POS-EDGE-TRIG COM IC BFR ITL LS NON-INV OCTL IC SHF-RGTR ITL LS R-S SERIAL-IN PRL-OUT IC GATE ITL LS NAND QUAD 2-INP	27014 01295 27014 01295 01295	DM81L597N SN74L9273N DM81L597N SN74L5164N SN74L510N
A6U31 A6U32 A6U33 A6U34 A6U35	1820-1208 1820-1195 1820-1197 1820-1112 1820-1568	3 7 9 8	8	IC GATE TTL LS OR QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC BFR TTL LS BUS QUAD	01295 01295 01295 01295 01295	SN74LS32N SN74LS175N SN74LS00N SN74LS74AN SN74LS125AN
A6U36 A6U37 A6U38 A6U39 A6U40	1820-0684 1820-1975+D 1820-1759 1820-1144 1820-1199	7 1 9 6 1	1 1 2	IC INV TTL S HEX 1-INP IC SN74L9165N IC BFR TTL LS NON-INV OCTL IC GATE TTL LS NOR QUAD 2-INP IC INV TTL LS HEX 1-INP	01295 28480 27014 01295 01295	SN74S05N 1820-1975+D DM81LS97N SN74LS02N SN74LS02N
A6U41 A6U42 A6U43 A6U44 A6U45	1820-1206 1820-1112 1820-1873 1820-0477 1820-1430	1 8 8 6 3	1 1 1	IC GATE TTL LS NOR TPL 3-INP IC FF TTL LS D-TYPE POS-EDEE-TRIG IC BFR TTL LS INV OCTL 2-INP IC OP AMP GP 8-DIP-P PKG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295 01295 27014 80545 01295	SN74LS27N SN74LS74AN DM31LS98N UPC301AC SN74LS161AN
A6U46 A6U51 A6U52 A6U53 A6U54	1820-1197 1990-0444 1990-3577 1990-0577 1990-0461	9 6 6 6 7	1 2 2	IC GATE TTL LS NAND QUAD 2-INP OPTO-ISOLATOR LED-PDIO/XSTR IF=25MA-MAX OPTO-ISOLATOR LED-PDIO/XSTR IF=50MA-MAX OPTO-ISOLATOR LED-PDIO/XSTR IF=50MA-MAX OPTO-ISOLATOR LED-DIO/XSTR IF=50MA-MAX	01275 28480 28480 28480 28480 28480	SN74LS00N 6N136 5082-4355 5082-4355 5082-4364
A6U55 A6U56 A6U57 A6U58 A6U59	1990-0461 1820-0621 1820-1300 1820-1300 1820-1300	72666	2	OPTO-ISOLATOR LED-IC GATE IF=10MA-MAX IC BFR TIL NAND QUAD 2-INP IC SHF-RGTR TTL LS R-S PRL-IN PRL-OUT IC SHF-RGTR TIL LS R-S PRL-IN PRL-OUT IC SHF-RGTR TTL LS R-S PRL-IN PRL-OUT	28480 01275 01275 01275 01275	5082-4364 SN7438N SN74LS195AN SN74LS195AN SN74LS195AN
A6U61 A6U61 A6U62 A6U63 A6U64	1820-1416 1820-1440 1820-1197 1820-1416 1820-1112	5 5 9 5 8	2	IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC LCH TTL LS QUAD IC GATE TTL LS NAND QUAD 2-INP IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC FF ITL LS D-TYPE POS-EDGE-TRIG	01295 01295 01295 01295 01295	SN74LS14N SN74LS279N SN74LS00N SN74LS14N SN74LS14N

Table 6-3. Replaceable Parts

		$\overline{}$	т	Table 0-3. Neplaceable Faits		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6U65 A6U66 A6U67 A6U68 A6U69	1826-0144 1820-1558 1820-1558 1820-1730 1820-0621	6 6 6 6 2	1 2	IC 7805 V RGLTR TO-220 IC UART TTL QUAD IC UART TTL QUAD IC FR TTL LS D-TYPE POS-EDGE-TRIG COM IC EFR TTL NAND QUAD 2-INP	04713 04713 04713 04713 01295 01295	MC7805CP MC3441AP MC3441AP SN74L5273N SN7438N
A6U70 A6U71 A6U72 A6U73 A6U74	1820-1197 1820-1204 1820-1197 1820-1281 1906-0096	9 9 9 2 7	1	IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND DUAL 4-INP IC GATE TTL LS NAND QUAD 2-INP IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP DIODE-FW BRDG 200V 2A	01295 01295 01295 01295 01295 04713	SN74LS00N SN74LS20N SN74LS00N SN74LS139N MDA202
A6U75	1820-1199	1		IC INV TTL LS HEX 1-INP	01295	SN74LS04N
A6V1	1970-0076	8	1	TUBE-ELECTRON SURGE V PTCTR	28480	1970-0076
	0360-1716 0624-0227 0757-0443 1251-4484 1460-1336	1 7 0 6 4	29 1 3	TERMINAL-STUD SGL-PIN PRESS-MTG SCREW-TPG 4-40 .25-IN-LG PAN-HD-POZI STL RESISTOR 11K 1Z .125W F IC=0+-100 CONNECTOR 4-PIN M POST TYPE WIREFORM CU BRT-TIN	28480 00000 24546 28480 28480	0360-1716 ORDER BY DESCRIPTION C4-1/8-T0-1102-F 1251-4484 1460-1336
	2190-0913 2200-0143 2260-0001 3050-0105 3050-0440	90562	2 2	WASHER-LK HLCL NO. 4 .115-IN-ID SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 4-40-THD .094-IN-THK WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-SHLDR NO. 4 .115-IN-ID .2-IN-OD	28480 28480 28480 28480 28480	2190-0913 2200-0143 2260-0001 3050-0105 3050-0440
	7120-6712 7121-1234	9		LABEL-WARNING .5-IN-WD 1-IN-LG MYLAR LABEL-CAUTION 1.925-IN-WD 2.24-IN-LG	28480 28480	7120-6712 7121-1234
AB	03325-66508	5	1	HIGH VOLTAGE DUTPUT ASSEMBLY (OPT 002)	28480	03325-66508
A8C1 A8C2 A8C3 A8C4 A8C5	0160-2055 0160-2055 0180-2803 0180-2803 0180-2822	9 9 7 7 0	3 2 2	CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 100UF+50-10% 50VDC AL CAPACITOR-FXD 100UF+50-10% 50VDC AL CAPACITOR-FXD 10UF+50-10% 50VDC AL	28480 28480 28480 28480 28480	0160-2055 0160-2055 0180-2803 0180-2803 0180-2822
A9C6 A8C7 A8C8 A9C11 A8C12	0180-2822 0160-2257 0160-2257 0160-3847 0160-2244	0 3 3 9 8	3	CAPACITOR-FXD 10UF+50-10% 50VDC AL CAPACITOR-FXD 10PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD 10PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 3PF +25PF 500VDC CER	28480 28480 28480 28480 28480	0180-2822 0160-2257 0160-2257 0160-3847 0160-2244
ABC13 ABC14 ABC15 ABC16 ABC17	0160-2244 0180-0210 0180-0210 0160-3558 0160-3558	86699	4	CAPACITOR-FXD 3PF +25PF 500VDC CER CAPACITOR-FXD 3.3UF+-20% 15VDC TA CAPACITOR-FXD 3.3UF+-20% 15VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 56289 56289 28480 28480	0160-2244 150D335X0015A2 150D335X0015A2 0160-3558 0160-3558
A8C18 A8C21 A8C22 A9C23 A8C24	0180-2825 0180-2825 0160-3558 0160-3558 0160-3558	3 3 9 9	2	CAPACITOR-FXD 22UF+50-10% 50VDC AL CAPACITOR-FXD 22UF+50-10% 50VDC AL CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0180-2825 0180-2825 0160-3558 0160-3558 0160-3558
A8C25	0160-3558	9		CAPACITOR-FXD .1UF +-20% 50VDC CER	28480	0160-3558
ABER1 ABER2 ABER3 ABER4 ABER5	1902-3205 1902-3205 1901-0040 1901-0040 1901-0040	8 1 1 1	3	DIODE-ZNR 15V 5% DO-35 PD=.4W TC=+.057% DIODE-ZNR 15V 5% DO-35 PD=.4W TC=+.057% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1902-3205 1902-3205 1901-0040 1901-0040 1901-0040
ABCR6 ABCR7 ABCR8 ABCR11 ABCR12	1902-3205 1902-0244 1901-0040 1901-0040 1901-0040	8 9 1 1	1	DIODE-ZNR 15V 5% DO-35 PD=,4W TC=+,057% DIODE-ZNR 33V 5% PD=1W IR=5UA DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1902-3205 1902-0244 1901-0040 1901-0040 1901-0040
ABER13 ABER14 ABER15 ABER16 ABER17	1901-0040 1901-0040 1901-0040 1901-0050 1901-0050	1 1 1 3 3	7	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1701-0040 1701-0040 1701-0040 1701-0050 1701-0050
A8F1	2110-0343	1	4	FUSE .25A 125V NTD .281X.093	28480	2110-0343
A8J20 A8J21	1251-2969 1251-2969	8		CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480	1251-2969 1251-2969
ABMP1 ABMP2 ABMP3	1205-0298 1205-0011 0340-0564	5 0 3		HEAT SINK PLSTC-PWR-CS HEAT SINK TO-5/TO-39-CS INSULATOR-XSTR THRM-CNDCT	28480 28480 28480	1205-0298 1205-0011 0340-0564
A8P1	1251-4246	8		CONNECTOR 3-PIN M POST TYPE	28480	1251-4246
	L	-				

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts								
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number			
ABQ1 ABQ2 ABQ3 ABQ4 ABQ5	1854-0475 1854-0215 1853-0036 1853-0042 1854-0215	5 1 2 0 1	1 2 2	TRANSISTOR DUAL NPN PD=750MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=200MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	28480 04713 28480 28480 04713	1854-0475 2N3904 1853-0036 1853-0042 2N3904			
A8Q5 A8Q7 A8Q8 A8Q11 A8Q12	1854-0215 1853-0020 1853-0020 1854-0215 1853-0042	1 4 4 1 0	4	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=200MHZ	04713 28480 28480 04713 28480	2N390 4 1853-0020 1853-0020 2N3904 1853-0042			
ABQ13 ABQ14 ABQ15	1854-0215 1854-0692 1853-0367	1 8 2	1	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=15W FT=50MHZ TRANSISTOR PNP SI PD=15W FT=50MHZ	04713 04713 04713	2N3904 MJE223 MJE233			
ABR 1 ABR 2 ABR 3 ABR 4 ABR 5	0698-3279 0757-0458 0757-0283 0757-0283 0683-4705	0 7 6 6 8	1	RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500	24546 24546 24546 24546 01121	C4-1/8-T0-4991-F C4-1/8-T0-5112-F C4-1/8-T0-2001-F C4-1/8-T0-2001-F CB4705			
ABR6 ABR7 ABR8 ABR11 ABR12	0683-4705 0698-3279 0698-3223 0698-4449 0698-6360	8 0 4 8 6	1	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 1.24K 1% .125W F TC=0+-100 RESISTOR 309 1% .125W F TC=0+-100 RESISTOR 10K .1% .125W F TC=0+-25	01121 24546 24546 24546 28480	CB4705 C4-1/8-T0-4991-F C4-1/8-T0-1241-F C4-1/8-T0-309R-F 0698-6360			
ABR 13 ABR 14 ABR 15 ABR 16 ABR 17	0 698-6360 0 698-4453 0 698-4453 0 683-1015 0 683-1015	6 4 7 7	3	RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 100 5% .25W FC TC=-400/+500	28480 24546 24546 01121 01121	0698-6360 C4-1/8-T0-402R-F C4-1/8-T0-402R-F CB1015 CD1015			
ABR18 ABR21 ABR22 ABR23 ABR24	0683-1045 0757-0273 0698-4498 0757-0273 0683-4705	3 4 7 4 8	1	RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 53.6K 1% .125W F TC=0+-103 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500	01121 24546 24546 24546 24546 01121	CB1045 C4-1/8-T0-3011-F C4-1/8-T0-5362-F C4-1/8-T0-3011-F CB4705			
A8R 25 A8R 26 A8R 27 A9R 28 A8R 31	0683-4705 0683-3305 0683-3305 0683-0365 0757-0283	922236	2	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 33 5% .25W FC TC=-400/+500 RESISTOR 33 5% .25W FC TC=-400/+500 RESISTOR 3.6 5% .25W FC TC=-400/+500 RESISTOR 2K 1% .125W F TC=-0+-100	01121 01121 01121 01121 01121 24546	CB4705 CB3305 CB3305 CB3665 C4-178-T0-2001-F			
ABR32 ABR33 AGR34 ABR35 ABR36	0757-0472 0757-0472 0757-0283 0683-0365 0683-0565	55680	2	RESISTOR 200K 1% .125W F TC=0+-100 RESISTOR 200K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 3.6 5% .25W FC TC=-400/+500 RESISTOR 5.6 5% .25W FC TC=-400/+500	24546 24546 24546 01121 01121	C4-1/8-T0-2003-F C4-1/8-T0-2003-F C4-1/8-T0-2001-F CB3665 CB5665			
ABR37 ABR38	0683-0565 0683-2205	0 9		RESISTOR 5.6 5% .25W FC TC≔-400/+500 RESISTOR 22 5% .25W FC TC≔-400/+500	01121 01121	CB54G5 CB2205			
A8U1 A8U2 A3U3	1906-0096 1826-0464 1826-0214	7 3 1	1	DIODE-FW BRDG 200V 2A IC V RGLTR TO-220 IC V RGLTR TO-220	04713 04713 04713	MDA202 MC78M15CP MC7915CT			
	1251-0600 2190-0004 2200-0147 2260-0002 2360-0113	0 9 4 6 2	1 1 1	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ WASHER-LK INTL T NO. 4 .115-IN-ID SCREW-MACH 4-40 .5-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 4-40-THD .062-IN-THK SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	28480 28480 28480 28480 00000	1251-0600 2190-0004 2200-0147 2260-0002 ORDER BY DESCRIPTION			
	3050-0716 7121-1234	5	28	WASHER-FL MTLC NO. 5 .128-IN-ID LABEL-CAUTION 1.925-IN-WD 2.24 IN-LG	28480 28480	3050-0716 7121-1234			
A9	03325-66509	6	1	CRYSTAL OVEN ASSEMBLY (OPTION 001)	28480	03325-66509			
A9C1 A9C2 A9C3 A9C4	0180-0692 0160-3847 0160-3847 0180-0693	8 9 9	1	CAPACITOR-FXD 220UF+50-10% 35VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1000UF+50-10% 25VDC AL	00494 28480 28480 00494	35VBSL220 0160-3847 0160-3847 25VBSL1000			
A9CR1 A9CR2 A9CR3	1901-0049 1901-0049 1902-0049	0 2	2	DIODE-PWR RECT 53V 750MA DO-29 DIODE-PWR RECT 50V 750MA DO-29 DIODE-ZNR 6.19V 5% DO-35 PD≖.4W	28480 28480 28480	1901-0049 1901-0049 1902-0049			
A9E1	0960-0465	7	1	OSCILLATOR 10MHZ	28480	0960-0465			
A9J19	1251-2969	8		CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480	1251-2769			
A9MP1 A9MP2	1205-0298 0340-0564	3		HEAT SINK PLSTC-PWR-CS INSULATOR-XSIR THRM CNDCT	28480 23 4 80	1205-0298 0340-0564			
A9P1	1251-4246	8		CONNECTOR 3-PIN M POST TYPE	28480	1251-4246			

Table 6-3. Replaceable Parts

	Defended III Deut 1									
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number				
A9Q1 A9Q2	1854-0053 1853-0450	5 4	1	TRANSISTOR NPN 2N2218 SI TO-5 PD=800MW TRANSISTOR PNP SI TO-220AB PD=60W	04713 04713	2N221B MJE371K				
A5R1 A9R2 A9R3 A9R4 A9R5	0683-1025 0683-1035 0683-3325 0757-0290 0698-3498	9 1 6 5 5	1 1	RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 8.66K 1% .125W F TC=0+-100	01121 01121 01121 19701 24546	CB1025 CB1035 CB3325 MF4C1/8-T0-6191-F C4-1/8-T0-866R-F				
A9R6 A9R7 A9R8 A9R9	0 678-3274 2100-3252 0 483-1 0 15 0 683-2025	5 6 7 1	1 1 2	RESISTOR 10K 1% .125₩ F TC=0+-25 RESISTOR-TRMR 5k 10% C TOP-AD RESISTOR 100 5% .25₩ FC TC=-400/+500 RESISTOR 2K 5% .25₩ FC TC=-400/+700	28480 28480 01121 01121	0698-3274 2100-3252 CB1015 CB2J25				
A9U1	1820-0216	1		IC OP AMP GP 8-DIP-P PKG	28480	1820-0216				
	03325-26509	2	1	PC BD-BLK(22212)	28480	03325-26509				
	2190-0913 2200-0103 2200-0143	9 2 0	10	WASHER-LK FLCL NO. 4 .115 IN-ID SCREW-MACH 4-40 .25 IN-LG PAN-HD-POZI SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI	28480 28480 28480	2190-0913 2200-0103 2200-0143				
	2260-0001 2360-0113 3050-0105 3050-0440 3050-0604	5 2 6 2 0	10	NUT-HEX-DBL-CHAM 4-40-THD .094-IN-THK SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI WASHER-FL MTLC NO. 4 .125-IN-ID WASHER-SHLDR NO. 4 .115-IN-ID .2-IN-OD WASHER-FL MTLC 7/16 IN .5-IN-ID	28480 00000 28480 28480 28480	2260~0001 ORDER BY DESCRIPTION 3050~0105 3050~0440 3050~0604				
	3050-0716 7121-1234	5		WASHER-FL MTLC NO. 5 .128-IN-ID LABEL-CAUTION 1.925-IN-WD 2.24-IN-LG	28480 28480	3050-0716 7121-1234				
A14	03325-66514	3	2	PC ASSY-FUNCTION	28480	03325-66514				
A14C1 A14C2 A14C3	0180-1701 0160-3560 0160-3847	2 3 9	i	CAPACITOR-FXD 6.8UF+-20% 6VDC TA CAPACITOR-FXD 1UF +-2% 100VDC MET-POLYC CAPACITOR-FXD .01UF +100-0% 50VDC CER	56289 28480 28480	150D605X0006A2 0160-3560 0160-3847				
A14C4	0160-4532	1	5	CAPACITOR-FXD 1000PF +-20% 50VDC CER	28480	0160-4532				
A1405 A1406 A14026 A14027 A14028	0180-1746 0180-1746 0160-3847 0160-3847 0160-3847	5 5 9 9 9		CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	56289 56289 28480 28480 28480	150D156X9020B2 150D156X9020B2 0160-3847 0160-3847				
A14C29 A14C31 A14C32 A14C33 A14C34	0160-4571 0160-3847 0160-3847 0160-3466 0160-4532	8 9 9 8 1	4	CAPACITOR-FXD .1UF +86-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-4571 0160-3847 0160-3847 0160-3846 0160-3466				
A14C35 A14C36 A14C37 A14C38 A14C39	0160-4571 0160-0162 0160-0162 0160-3847 0160-3847	85599	2	CAPACITOR-FXD .1UF +80-20% 53VDC CER CAPACITOR-FXD .022UF +-10% 200VDC POLYE CAPACITOR-FXD .022UF +-10% 200VDC POLYE CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	3160-4571 0160-0162 0160-0162 0160-3847 0160-3847				
A14C41 A14C42 A14C43 A14C44 A14C45	0160-4571 0160-4571 0160-4137 0160-0128 0160-0128	8 2 3 3	1 2	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +-1% 100VDC POLYSTY CAPACITOR-FXD 2.2UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF +-20% 50VDC CER	28480 28480 84411 28480 28480	0160-4571 0160-4571 863UW 0160-0128 0160-0128				
A14C46 A14C47 A14C48 A14C49 A14C50	0160-5335 0160-3847 0180-0210 0180-1746 0160-4571	4 9 6 5 8	3	CAPACITOR-FXD 1UF +-10% 100VDC MET-POLYE CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 3.3UF+-20% 15VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITUR-FXD .1UF +80-20% 50VDC CER	28 480 28480 56289 56289 28480	0160-5335 0160-3847 1500335X0015A2 1500156X9020B2 0160-4571				
A14C61 A14C62 A14C63 A14C65 A14C66	0160-5335 0160-5335 0160-5306 0160-5306 0160-5306	4 4 9 9 9	4	CAPACITOR-FXD 1UF +-10% 100VDC MET-POLYE CAPACITOR-FXD 1UF +-10% 100VDC MET-POLYE CAPACITOR-FXD .1UF +-10% 100VDC CAPACITOR-FXD .1UF +-10% 100VDC CAPACITOR-FXD .1UF +-10% 100VDC	28480 28480 28480 28480 28480	0160-5335 0160-5335 0160-5306 0160-5306 0160-5306				
A14C76 A14C77 A14C78 A14C101* A14C1032 A14C103* A14C103 + A14C105 A14C107 A14C107 A14C108 A14C109	0160-4571 0160-3847 0160-3847 0160-0145 0160-2201 0140-2217 0160-3084 0140-0196 0140-03847 0160-3847	8 9 9 4 7 9 6 3 3 9 9		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC MICA CAPACITOR-FXD 51PF +-5% 300VDC MICA CAPACITOR-FXD 50VF +-2% 500VDC MICA CAPACITOR-FXD .000F +-2% 500VDC MICA CAPACITOR-FXD .000F2% 300VDC MICA CAPACITOR-FXD .000F5% 300VDC CER CAPACITOR-FXD .000F +100-0% 50VDC CER	28480 28480 28480 28480 28480 28480 28480 28480 72136 28480 28480	0160-4571 0160-3847 0160-3847 0160-0145 0160-2201 0140-0217 0160-3084 0160-2306 DM15F151J0300WV1CR 0160-3847				
A14C110 A14C111 A14C112 A14C113 A14C114	0121-0105 0160-2250 0160-3847 0160-3847 0160-4532	4 6 9 9	4	CAPACITOR-V TRMR-CER 9-35PF 200V PC-MTG CAPACITOR-FXD 5.1PF +25PF 500VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER	52763 28480 28480 28480 28480	304324 9/35PF N650 0160-2250 0160-3847 0160-3847 0160-4532				

Table 6-3. Replaceable Parts

	Table 0-3. Replaceable Parts								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A14C116 A14C117 A14C118 A14C119 A14C121	0160-3847 0160-3847 0180-1746 0180-1746 0160-3847	99559		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 56289 54289 28480	0160-3847 0166-3847 150D156X9020B2 150D156X9020B2 0160-3847			
A14C122 A14C124 A14C126 A14C127 A14C128	0160-3847 0160-0299 0160-3847 0160-3847 0160-3847	9 9 9 9	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1300PF +-10% 200VDC PGLYE CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-0299 0160-3847 0160-3847 0160-3847			
A14C129 A14C130 A14C131 A14C132 A14C133	0160-3847 0160-2240 0160-3847 0160-3847 0160-2250	9 4 9 9 6	3	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2PF +25PF 500VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 5.1PF +25PF 500VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-2240 0160-3847 0160-3847 0160-2250			
A14C134 A14C135 A14C136 A14C137 A14C138	0160-3847 0160-2240 0160-3508 0160-4571 0160-4571	9 4 9 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2PF +25PF 503VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-2240 0160-3508 0160-4571 0160-4571			
A14C139 A14C141 A14C142 A14C143 A14C144	0160-3847 0160-4571 0160-0156 0160-0301 0160-2414	9 8 7 4	1 1 1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 3900PF +-10% 203VDC POLYE CAPACITOR-FXD .012UF +-10% 200VDC POLYE CAPACITOR-FXD .022UF +-5% 200VDC POLYE	28480 28480 28480 28480 28480 23480	0160-3847 0160-4571 0160-0156 0160-0301 0160-2414			
A14C203 A14C205 A14C208 A14C209 A14C211	0160-3847 0160-3466 0160-3847 0160-3847 0160-3847	9 8 9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3466 0160-3847 0160-3847 0160-3847			
A14C212 A14C213 A14C214 A14C217 A14C218	0160-3847 0160-4532 0160-4532 0121-0452 0160-4571	9 1 1 4 8	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER CAPACITOR-V TRMR-AIR 1.3-5.4PF 175V CAPACITOR-FXD .1UF +80-20% 50VDC CER	28480 28480 28480 74970 28480	0160-3847 0160-4532 0160-4532 187-0103-028 0160-4571			
A14C219 A14C220 A14C221 A14C222 A14C223	0180-1746 0160-4571 0160-3847 0160-2250 0160-3847	58969		CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 5.1PF +25PF 500VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	56289 28480 28480 28480 28480	150D156X9020B2 0160-4571 0160-3847 0160-2250 0160-3847			
A14C224 A14C225 A14C226 A14C227 A14C228	0160-3847 0160-3847 0160-2240 0160-3847 0160-3847	9 9 4 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2PF +25PF 500VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 8160-3947 0160-2240 0160-3847 0160-3847			
A14C229 A14C230 A14C231 A14C232 A14C233	0160-3847 0160-3847 0180-1746 0160-4571 0180-0210	9 9 5 8 6		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 3.3UF+-20% 15VDC TA	28480 28480 56289 28480 56289	0160-3847 0160-3847 150D156X9020B2 0160-4571 150D335X0015A2			
A14C234 A14C235 A14C236 A14C238 A14C239	0160-3847 0160-3847 0160-3466 0160-2055 0160-4571	9 9 8 9 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3466 0160-2055 0160-4571			
A14C240 A14C241 A14C242 A14C245 A14C246	0160-3466 0160-3847 0160-3847 0180-1746 0180-1746	8 9 9 5 5		CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	28480 28480 28480 56289 56289	0160-3466 0160-3847 0160-3847 1500156X9020B2 1500156X9020B2			
A14C260 A14C261 A14C262 A14C263 A14C264	0160-4571 0160-4571 0160-4571 0180-1746 0160-4571	88858	-	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER	28480 28480 28480 56289 28480	0160-4571 0160-4571 0160-4571 150D156X9020B2 0160-4571			
A14CR1 A14CR2 A14CR3 A14CR4 A14CR5	1902-0041 1901-0040 1901-0040 1901-0050 1902-3345	4 1 1 3 7	1	DIODE-ZNR 5.11V 5% DO-35 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 51.1V 5% DO-35 PD=.4W	28480 28480 29480 28480 28480	1902-0041 1901-0040 1901-0040 1901-0050 1902-3345			
A14CR6 A14CR7 A14CR76 A14CR101 A14CR102	1901-0050 1901-0050 1901-0040 1901-0040 1901-0040	3 1 1		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-33	28480 28480 28480 28480 28480	1701-0050 1701-0050 1701-0040 1701-0040 1701-0040			

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A14CR103 A14CR104 A14CR106 A14CR107 A14CR108	1901-0040 1901-0040 1901-0040 1901-0040 1901-0535	1 1 1 1 9		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0535			
A14CR109 A14CR110 A14CR111 A14CR205 A14CR208	1901-0535 1901-0040 1901-0040 1902-0631 1901-0040	9 1 1 8 1	2	DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N5351B 14V 5X PD=5W TC≈+75% DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 04713 28480	1901-0535 1901-0040 1901-0040 1N5351B 1901-0040			
A14CR209 A14CR210 A14CR211 A14CR212 A14CR213	1901-0040 1901-0040 1901-0050 1901-0050 1902-3149	1 1 3 3		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 9.09V 5% DO-35 PD=.4W	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0050 1901-0050 1902-3149			
A14CR214 A14CR215 A14CR217 A14CR219 A14CR220	1902-3030 1902-0631 1901-0040 1901-0040 1901-0040	7 8 1 1		DIODE-ZNR 3.01V 5% DO-7 PD=.4W TC=067% DIODE-ZNR 1N5351B 14V 5% PD=5W TC=+75% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 04713 28480 28480 28480	1902-3030 1N5351B 1901-0040 1901-0040 1901-0040			
A14CR221 A14CR222 A14CR223 A14CR224 A14CR225	1901-0040 1901-0535 1901-0535 1901-0535 1901-0535	1 9 9 9		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY	28480 28480 28480 28480 28480	1901-0040 1901-0535 1901-0535 1901-0535 1901-0535			
A14F1 A14F2 A14F3 A14F4	2110-0343 2110-0343 2110-0343 2110-0301	1 1 1 1	1	FUSE .25A 125V NTD .281X.093 FUSE .25A 125V NTD .281X.093 FUSE .25A 125V NTD .281X.093 FUSE .125A 125V .281X.093	28480 28480 28480 28480	2110-0343 2110-0343 2110-0343 2110-0301			
A14J1 A14J2 A14J4 A14J5 A14J6	8159-0005 1251-2969 1251-2969 1251-2969 1251-6567	0 8 8 0	1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR 21-PIN M POST TYPE	28480 28480 28480 28480 28480	8159-0005 1251-2969 1251-2969 1251-2969 1251-6567			
A14J9 A14J12 A14J13 A14J14 A14J23	1251-2969 1251-2969 1251-2969 1251-2969 1251-2969	8 8		CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480 28480 28480 28480	1251-2969 1251-2969 1251-2969 1251-2969 1251-2969			
A14J24 A14J25 A14J30 A14J31	1251-2969 1251-2969 1251-5064 1258-0141	8 8	2	CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR 14-PIN M POST TYPE JUMPER-REM	28480 28480 28480 28480	1251-2969 1251-2969 1251-5064 1258-0141			
A14L26 A14L27 A14L76 A14L77 A14L78	9100-1791 9100-1791 9100-1791 9100-1791 9100-1791	1 1 1 1		INDUCTOR 290NH 20% .23DX.375LG INDUCTOR 290NH 20% .23DX.375LG INDUCTOR 290NH 20% .23DX.375LG INDUCTOR 290NH 20% .23DX.375LG INDUCTOR 290NH 20% .23DX.375LG	28480 28480 28480 28480 28480	9100-1791 9100-1791 9100-1791 9100-1791 9100-1791			
A14L79 A14L80 A14L101 A14L102 A14L103	9100-1791 9100-0539 9140-0456 9140-0456 9100-2486	1 3 7 7 3	2	INDUCTOR 290NH 20% .23D%.375LG INDUCTOR (MISC ITEM) INDUCTOR RF-CH-MLD 470NH 2% .166D%.365LG INDUCTOR RF-CH-MLD 470NH 2% .166D%.385LG INDUCTOR RF-CH-MLD 330NH 5% .166D%.385LG	28480 28480 28480 28480 28480	9100-1791 9100-0539 9140-0456 9140-0456 9100-2486			
A14L104 A14L105 A14L201 A14L203 A14L204	9100-1622 9100-1628 9100-1791 9170-0894 9170-0894	7 3 1 0	3 1	INDUCTOR RF-CH-MLD 24UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 43UH 5% .166DX.385LG INDUCTOR 290NH 26% .23DX.375LG CORE-SHIELDING BEAD CORE-SHIELDING BEAD	28480 28480 28480 28480 28480	9100-1622 9100-1628 9100-1791 9170-0594 9170-0894			
A14Q1 A14Q2 A14Q3 A14Q4 A14Q25	1855-0092 1855-0406 1854-0692 1855-0406 1855-0410	4 4 8 4 0	1 2 1	TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR NPN SI PD=15W FT=53MHZ TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI	28480 32293 04713 32293 28480	1855-0092 IT110 MJE223 IT110 1855-0410			
A14Q26 A14Q27 A14Q28 A14Q40 A14Q50	1853-0020 1853-0046 1854-0215 1658-0063 1858-0047	4 8 1 5 5		TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR ARRAY 14-PIN PLSTC DIP TRANSISTOR ARRAY 16-PIN PLSTC DIP	28480 28480 04713 3L565 13606	1853-0020 1653-0066 2N3904 CA3102E ULN-2003A			
A14Q76 A14Q101 A14Q102 A14Q103 A14Q104	1854-0087 1854-0795 1853-0405 1853-0089 1854-0404	5 2 9 5 0	1 2 1	TRANSISTOR NPN SI PD=360MW FT=75MHZ TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI PD=300MW FT=9550MHZ TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR PNP 2N4917 SI PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW	28480 64713 04713 07263 28480	1854-0087 MPSH10 2N4239 2N4917 1854-0404			
A14Q105 A14Q106 A14Q107 A14Q108 A14Q109	1854-0215 1854-0560 1854-0215 1853-0083	1 9 1 9	3 2	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI DARL PD=313MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=603MW TRANSISTOR-DUAL PNP PD=603MW	04713 04713 04713 28480 28480	2N3904 MPS A12 2N3904 1953-0083 1853-0083			

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts								
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number			
A14Q112 A14Q113 A14Q114 A14Q116 A14Q117	1854-0314 1854-0560 1854-0215 1853-0066 1853-0066	1 9 1 8 8	1	TRANSISTOR NPN SI PD=310MW FT=200MHZ TRANSISTOR NPN SI DARL PD=310MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW	28480 04713 04713 28480 28480	1854-0314 MPS A12 2N3904 1853-0066 1853-0066			
A14Q118 A14Q119 A14Q201 A14Q203 A14Q204	1855-0081 1854-0560 1854-0215 1854-0233 1854-0795	1 9 1 3 2	2	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI DARL PD=310MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN 2N3866 SI TO-39 PD=1W TRANSISTOR NPN SI TO-92 PD=625MW	28480 04713 04713 3L585 04713	1855-0081 MPS A12 2N3904 2N3866 MPSH10			
A14Q206 A14Q207 A14Q208 A14Q209 A14Q210	1854-0215 1854-0233 1854-0215 1853-0440 1854-0357	1 3 1 2 2	3 1	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN 2N3866 SI TD-39 PD=1W TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI TD-39 PD=5W FT=506MHZ TRANSISTOR-PUAL NPN PD=360MW	04713 3L595 04713 04713 28480	2N3904 2N3866 2N3704 MM4018 1854-0357			
A14Q211 A14Q212 A14Q213 A14Q214 A14Q215	1853-0448 1853-0036 1853-0440 1853-0020 1854-0215	0 2 2 4 1		TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI PD=313MW FT=250MHZ TRANSISTOR PNP SI TO-39 PD=5W FT=500MHZ TRANSISTOR PNP SI PD=330MW FT=153MHZ TRANSISTOR NPN SI PD=350MW FT=360MHZ	04713 28480 04713 28480 04713	MPSH81 1853-0036 MM4018 1853-0020 2N3904			
A14Q216 A14Q219	1854-0784 1853-0440	9 2	1.	TRANSISTOR NPN 2N3866A SI TO-39 PD=5W TRANSISTOR PNP SI TO-39 PD=5W FT=500MHZ	04713 04713	2N3866A MM4018			
A14R3 A14R4 A14R5 A14R6 A14R7	0698-3155 0757-0439 0683-2225 2100-3253 0698-4817	1 4 3 7 4	5 1	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR-TRMR 50K 10% C TOP-ADJ 1-TRN RESISTOR 953K 1% .25W F TC=0+-100	24546 24546 01121 28480 28480	C4-1/8-T0-4641-F C4-1/8-T0-6811-F CB2225 2100-3253 3698-4817			
A14R8 A14R9 A14R11 A14R26 A14R27	0698-7850 0757-0410 0757-0410 0683-2225 0683-2225	1 1 3 3	1 2	RESISTOR 9.455K .1% .125W F TC=0+-25 RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC=-400/+700	19701 24546 24546 01121 01121	MF4C1/8-T9-9455R-B C4-1/8-T0-301R-F C4-1/8-T0-301R-F CB225 CB225			
A14R2B A14R29 A14R31 A14R32 A14R33	0683-2225 0683-2225 0683-1035 0683-1035 0683-1025	3 3 1 1 9		RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	CB2225 CB2225 CB1035 CB1035 CB1025			
A14R34 A14R36 A14R37 A14R38 A14R39	0 683-5635 0 683-2235 0 683-2225 0 757-0 289 0 757-0 442	55329	1 4 3	RESISTOR 56K 5% ,25W FC TC=-400/+800 RESISTOR 22K 5% ,25W FC TC=-400/+800 RESISTOR 2.2K 5% ,25W FC TC=-400/+700 RESISTOR 13.3K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100	01121 01121 01121 01121 19701 24546	CB5435 CB2235 CB2225 MF461/8-T0-1332-F C4-1/8-T0-1602-F			
A14R40 A14R41 A14R42 A14R43 A14R44	2100-3214 0757-0289 0699-0124 0757-0442 0757-0441	0 2 0 9 8	1	RESISTOR-TRMR 100K 10% C TOP-ADJ 1-TRN RESISTOR 13.3K 1%.125W F TC=0+-100 RESISTOR 10.2K.1%.125W F TC=0+-25 RESISTOR 10K 1%.125W F TC=0+-100 RESISTOR 8.25K 1%.125W F TC=0+-100	28480 19701 28480 24546 24546	2100-3214 MF4C1/8-T0-1332-F 0699-0124 C4-1/8-T0-1002-F C4-1/8-T0-8251-F			
A14R45 A14R46 A14R47 A14R48 A14R49	0683-4705 0683-1025 0683-2265 0683-4725 0757-0438	8 9 1 2 3	1	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 22M 5% .25W FC TC=-900/+1200 RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOR 5.11K 1% .125W F TC=0+-100	01121 01121 01121 01121 01121 24546	CB4705 CB1025 CB2265 CB4725 C4-1/9-T0-5111-F			
A14R50 A14R51 A14R52 A14R53 A14R54	0683-2225 0757-0279 0757-0438 0698-6347 0698-6936	3 0 3 9 2	1 1	RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1.5K 1% .125W F TC=0+-25 RESISTOR 156K .5% .125W F TC=0+-50	01121 24546 24546 28480 28480	CB2225 C4-1/8-T0-3161-F C4-1/8-T0-5111-F 0678-6347 0678-6936			
A14R55 A14R56 A14R57 A14R58 A14R60	0757-0280 0757-0449 0699-0121 0699-0122 0683-1015	3 6 7 8 7	3 1 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 2.05M 1% .125W F TC=0+-100 RESISTOR 4.6K .1% .125W F TC=0+-25 RESISTOR 100 5% .25W FC TC=-400/+500	24546 24546 28480 28480 01121	C4-1/8-T0-1061-F C4-1/8-T0-2002-F 0699-0121 0699-0122 CB1015			
A14R61 A14R62 A14R63 A14R64 A14R65	0683-1025 0683-1015 0683-1025 0683-1025 0683-1015	9 7 9 9		RESISTOR 1K 5% .25W FC TC= 400/+600 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 100 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB1025 CB1015 CB1025 CB1025 CB1015			
A14R67 A14R68 A14R69 A14R76 A14R77	0.683-1.025 0.683-1.025 0.683-1.015 0.683-1.035 0.683-2225	9 9 7 1 3		RESISTOR 1K 5% ,25W FC TC=-400/+600 RESISTOR 1K 5% ,25W FC TC=-400/+600 RESISTOR 100 5% ,25W FC TC=-400/+500 RESISTOR 10K 5% ,25W FC TC=-400/+700 RESISTOR .2.2K 5% ,25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1025 CB1025 CB1015 CB1035 CB2225			
A14R7B A14R001 A14R100 A14R101 A14R101	0683-1025 0683-2215 0683-2225 0683-2225 0683-4705	9 1 3 3 8	1	RESISTOR 1K 5% .25W FC TC== 400/+600 RESISTOR 220 5% .25W FC TC==400/+600 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB1025 CB2215 CB2225 CB2225 CB2225 CB4735			

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A14R103 A14R104 A14R135 A14R106 A14R107	0757-0273 0757-0283 0757-0398 0683-1515 0757-0400	4 6 4 2 9	1	RESISTOR 3.31K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 75 1% .125W F TC=0+-100 RESISTOR 150 5% .25W FC TC=-400/+600 RESISTOR 90.7 1% .125W F TC=0+-100	24546 24546 24546 01121 24546	C4-1/8-T0-3011-F C4-1/8-T0-2001-F C4-1/8-T0-75R0-F CB1515 C4-1/8-T0-93R9-F
A14R108 A14R107 A14R110 A14R111 A14R112	0698-4427 0757-0420 0683-2225 0683-2225 0683-7505	2 2 2 2	1 1	RESISTOR 1.65K 1% .125W F TC=0+-100 RESISTOR 753 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 75 5% .25W FC TC=-400/+500	24546 24546 01121 01121 01121	C4-1/8-T0-1451-F C4-1/8-T0-751-F CB2225 CB2225 CB7505
A14R113 A14R114 A14R116 A14R117 A14R118	0757 -0280 0698-6317 0698-6317 0698-4123 0698-4123	33355	3	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 500 .1% .125W F TC=0+-25 RESISTOR 500 .1% .125W F TC=0+-25 RESISTOR 499 1% .125W F TC=0+-100 RESISTOR 499 1% .125W F TC=0+-100	24546 03888 03888 24546 24546	C4·1/8-T0-1001-F PME55-1/8-T9-500R-B PME55-1/8-T9-500R-B C4-1/8-T0-499R-F C4-1/8-T0-499R-F
A14R119 A14R121 A14R122 A14R123 A14R124	0698-4435 0683-2225 0698-6360 0698-6320 0698-6320	2 3 6 8 8		RESISTOR 2.49K 1% .125W F TC=0+-100 RESISTOR 2.2K 5% .25W FC TC=-400/+200 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 5K .1% .125W F TC=0+-25 RESISTOR 5K .1% .125W F TC=0+-25	24546 01121 28480 03688 03888	C4-1/8-T0-2491-F C%2225 0698-6360 PME55-1/8-T9-5001-B PME55-1/8-T9-5001-B
A14R126 A14R127 A14R128 A14R129 A14R130	0698-6320 0698-6360 0698-6321 0698-3279 2100-3212	8 6 9 0 8	1	RESISTOR 5K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 9.5K .1% .125W F TC=0+-25 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR-1RMR 200 10% C TOP-ADJ 1-TRN	03888 28480 03888 24546 28480	PME55-1/8-T9-5001-B 0698-6360 PME55-1/8-T9-9901-B C4-1/8-T0-4991-F 2100-3212
A14R131 A14R132 A14R133 A14R134 A14R136	0757-0279 0698-3179 0683-4705 0757-0438 0698-3557	0 9 8 3 7	1	RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 2.55K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 806 1% .125W F TC=0+-100	24546 24546 01121 24546 24546	C4·1/8-T0-3161-F C4-1/8-T0-2551 CB4705 C4-1/8-T0-5111-F C4-1/8-T0-806R-F
A14R137 A14R138 A14R139 A14R141 A14R142	0757-0416 0757-0280 0757-0280 0698-4453 2100-3409	7 3 3 4 5	2	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 402 1% .125W F TC=0+-100 RESISTOR-TRMR 20 10% C TOP-ADJ 1-TRN	24546 24546 24546 24546 28480	C4-1/8-T0-511R-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-402R-F 2100-3409
A14R143 A14R144 A14R145 A14R146 A14R147	0698-4037 0698-3279 0683-4705 0698-3279 0757-0442	0 0 8 0 9		RESISTOR 46.4 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 01121 24546 24546	C4-1/8-T0-46R4-F C4-1/8-T0-4991-F CB4705 C4-1/8-T0-4991-F C4-1/8-T0-1002-F
A14R148 A14R149 A14R151 A14R152 A14R153	0698-6619 0698-6360 0698-8607 0699-0123 0683-1035	8 6 8 9	1 1	RESISTOR 15K .1% .125W F TC≈3+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 4.5K .1% .125W F TC=0+-25 RESISTOR 6.75K .1% .125W F TC=0+-25 RESISTOR 10K 5% .25W FC TC≈-400/+700	28480 28480 28480 28480 01121	0698-6619 0698-6360 0698-8607 0699-0123 CB1035
A14R154 A14R156 A14R157 A14R158 A14R159	0683-4705 0683-1035 0683-4705 0757-0449 0757-0449	8 1 8 6 6		RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100	01121 01121 01121 24546 24546	CB4705 CB1035 CB4705 C4-1/8-T0-2002-F C4-1/8-T0-2002-F
A14R160 A14R161 A14R162 A14R163 A14R164	0683-1055 0757-0273 0698-4475 0683-3935 0698-4382	5 4 0 4 8	1 1 1 1	RESISTOR 1M 5% ,25W FC TC=-800/+900 RESISTOR 3.61K 1% ,125W F TC=0+-100 RESISTOR 9.76K 1% ,125W F TC=0+-100 RESISTOR 39K 5% ,25W FC TC=-400/+800 RESISTOR 52.3 1% ,125W F TC=0+-100	01121 24546 03888 01121 24546	CB1055 C4-1/8-T0-3011-F PME55-1/8-T0-9761-F CB3935 C4-1/8-T0-52R3-F
A14R166 A14R168 A14R169 A14R208 A14R209	0757-0401 0683-6815 0683-1015 0757-0438 0757-0438	0 5 7 3 3		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 680 5% .25W FC TC=-400/+600 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 31121 01121 24546 24546	C4-1/8-T0-101-F CE6815 CB1015 C4-1/8-T0-5111-F C4-1/8-T0-5111-F
A14R211 A14R212 A14R214 A14R215 A14R216	0683-4735 0683-1025 0683-1025 0683-1035 0683-2235	4 9 9 1 5	3	RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 22K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB4735 CB1025 CB1025 CB1035 CB2235
A14R217 A14R218 A14R220 A14R221 A14R222	0683-2235 0683-2205 0757-0401 0698-6320 0683-4705	5 9 0 8 8		RESISTOR 22K 5% .25W FC TC=-400/+800 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 5K .1% .125W F TC=0+-25 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 24546 03888 01121	CB2235 CB2205 C4-1/8-T0-101-F PME55-1/8-T9-5001-B CB4705
A14R223 A14R224 A14R226 A14R228 A14R228	0683-4705 0757-0276 0757-0437 0757-0405 0683-2205	8 7 2 4 9	1 2	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 61.9 1% .125W F TC=0+-100 RESISTOR 4.75K 1% .125W F TC=0+-100 RESISTOR 162 1% .125W F TC=0+-100 RESISTOR 22 5% .25W FC TC=-400/+500	01121 24546 24546 24546 24546 01121	CB4705 C4-1/8-T0-6192-F C4-1/8-T0-4751-F C4-1/8-T0-162R-F CB2205

Table 6-3. Replaceable Parts

Table o-3. Replaceable Parts						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A14R231 A14R232 A14R233 A14R234 A14R236	0757-0277 0757-0317 0603-1205 0683-0395 0757-0438	8 7 7 4 3	2 4 2 2	RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 12 5% .25W FC TC=-400/+500 RESISTOR 3.9 5% .25W FC TC=-400/+500 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 24546 01121 01121 24546	C4-1/8-T0-4992-F C4-1/8-T0-1331-F CB1205 CB39C5 C4-1/8-T0-5111-F
A14R237 A14R238 A14R239 A14R241 A14R242	0757-0438 0683-1045 0683-4705 0683-4705 0687-4701	3 8 8 2	4	RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 100K 5% .25W FC TC=-400/+830 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+503 RESISTOR 47 10% .5W CC TC=0+412	24546 01121 01121 01121 01121	C4-1/8-T0-5111-F C31045 CB4705 CB4705 EB4701
A14R243 A14R244 A14R245 A14R245 A14R247	0687-4701 0757-0465 0683-2205 0757-0280 0757-0465	2 6 9 3 6	3	RESISTOR 47 10% .5W CC TC=0+412 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	01121 24546 01121 24546 24546	EB4701 C4-1/8-T0-1003-F C82205 C4-1/8-T0-1001-F C4-1/8-T0-1003-F
A14R248 A14R249 A14R250 A14R251 A14R252	0683-2205 0683-0275 0757-0442 0683-0275 0699-0064	9 9 9 9	2	RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 50 .1% .5W F TC=0+-25	01121 01121 24546 01121 28480	CB2205 CB2765 C4-1/8-T0-1002-F CB2765 0699-0064
A14R253 A14R254 A14R255 A14R256 A14R257	0687-4701 0757-0402 0757-0280 0757-0280 0757-0283	2 1 3 3 6	1	RESISTOR 47 10% .5W CC TC=0+412 RESISTOR 110 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	01121 24546 24546 24546 24546 24546	EB4701 C4-1/8-T6-111-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-2001-F
A14R258 A14R259 A14R260 A14R261 A14R262	0683-2205 0757-0442 0687-4701 0757-0442 0683-4705	99298		RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 13K 1% .125W F TC=0+-100 RESISTOR 47 10% .5W CC TC=0+412 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500	01121 24546 01121 24546 01121	CB2205 C4-1/8-T0-1002-F EB4701 C4-1/8-T0-1002-F CB4705
A14R263 A14R264 A14R265 A14R266 A14R268	0683-0685 0683-0685 0698-4388 0698-4450 0683-4705	5 5 4 1 8	2 1 1	RESISTOR 6.8 5% .25W FC TC=-400/+500 RESISTOR 6.8 5% .25W FC TC=-400/+500 RESISTOR 63.4 1% .125W F TC=0+-100 RESISTOR 324 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500	01121 01121 24546 24546 01121	CB68C5 CB68C5 C4-1/8-T0-63R4-F C4-1/8-T0-324R-F CB4705
A14R269 A14R270 A14R271 A14R272 A14R273	0757-0346 0698-3492 0757-0405 0683-2205 0757-0277	2 9 4 9 8	1 1	RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 2.67K 1% .125W F TC=0+-100 RESISTOR 162 1% .125W F TC=0+-100 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 49.9 1% .125W F TC=0+-100	24546 24546 24546 01121 24546	C4··1/8-T0-10R0-F C4-1/8-T0-2671-F C4-1/8-T0-162R-F CB2205 C4-1/8-T0-4992-F
A14R274 A14R275 A14R276 A14R277 A14R278	0757-0317 2100-3409 0683-0395 0683-1205 0757-0200	7 5 4 7	1	RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR-TRHR 20 10% C TOP-ADJ 1-TRN RESISTOR 3.9 5% .25W FC TC=-400/+500 RESISTOR 12 5% .25W FC TC=-400/+500 RESISTOR 5.62K 1% .125W F TC=0+-100	24546 28480 01121 01121 24546	C4-1/8-T0-1331-F 2100-3409 CB39C5 CB1205 C4-1/8-T0-5621-F
A14TP18	1251-4822	6		CONNECTOR 3-PIN M POST TYPE	28480	1251-4822
A14U1 A14U2 A14U3 A14U4 A14U5	1820-1196 1820-1197 1826-0476 1826-0476 1826-0304	8 9 7 7 0	3	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS NAND QUAD 2 INP IC SWITCH ANLG 8-DIP-P PKG IC SWITCH ANLG 8-DIP-P PKC IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG	01295 01295 01295 01295 27014	SN74LS174N SN74LS00N TL601CP TL601CP LF355H
A14U6 A14U7 A14U8 A14U9 A14U10	1820-1278 1820-1279 1820-1279 1820-1279 1820-1282	7 8 8 8	1 5	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC CNTR TTL LS DECD UP/DOWN SYNCHRO IC CNTR TTL LS DECD UP/DOWN SYNCHRO IC CNTR TTL LS DECD UP/DOWN SYNCHRO IC FF TTL LS J-K BAR POS-EDGE-TRIG	01295 01295 01295 01295 01295	SN74L5191N SN74L5190N SN74L5190N SN74L5190N SN74L5199AN
A14U11 A14U12 A14U13 A14U14 A14U15	1820-1112 1820-1112 1820-1423 1820-0693 1821-0001	8 8 4 8 4	. 5	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC MV TTL LS MONOSTBL RETRIG DUAL IC FF TTL S D-TYPE POS-EDGE-TRIG TRANSISTOR ARRAY 14-PIN PLSTC DIP	01295 01295 01295 01295 01295 3L585	SN74L374AN SN74L374AN SN74L5123N SN74S74N CA3046
A14U16 A14U17 A14U18 A14U19 A14U20	1826-0304 1826-0304 1826-0208 1826-0208 1826-0416	0 0 3 3 5	5	IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC OP AMP GP 8-DIP-P PKG IC OP AMP GP 8-DIP-P PKG IC SWITCH ANLG QUAD 16-DIP-C PKG	27014 27014 27014 27014 27014	LF355H LF355H LM310N LH310N LF13331D
A14U21 A14U23 A14U24 A14U25 A14U26	1826-0208 1826-0208 1826-0416 1826-0208 1820-1730	3 3 5 3 6	6	IC OP AMP GP 8-DIP-P PKG IC OP AMP GP 8-DIP-P PKG IC SWITCH ANLG QUAD 16-DIP-C PKG IC OP AMP GP 8-DIP-P PKG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	27014 27014 27014 27014 27014 01295	LM310N LM310N LF13331D LM310N SN74LS273N
A14U27 A14U28 A14U29 A14U30 A14U31	1820-1216 1820-1176 1820-1730 1820-1641 1820-1199	3 8 6 8 1	2	IC DCDR TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DRVR TTL LS BUS DRVR HEX 1-INP IC INV TTL LS HEX 1-INP	SN74LS138N SN74LS174N SN74LS273N SN74LS365AN SN74LS365AN	

Table 6-3. Replaceable Parts

	Table 0-3. Replaceable Faits					
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A14U32 A14U33 A14U34 A14U35 A14U36	1820-1442 1820-0693 1820-1112 1820-0693 1820-0694	7 8 8 8	1	IC CNTR TTL LS DECD ASYNCHRO IC FF TTL S D-TYPE POS-EDGE-TRIG IC FF TTL S D-TYPE POS-EDGE-TRIG IC FF TTL S D-TYPE POS-EDGE-TRIG IC GATE TTL S EXCL-UR QUAD 2-INP	01295 01295 01295 01295 01295	SN74LS290N SN74S74N SN74LS74AN SN74S74N SN74S86N
A14U37 A14U38 A14U39 A14U40 A14U41 A14U42 A14U44 A14U45 A14U47 A14U47 A14U48 A14U49 A14U50	1820-1202 1826-0111 1826-0879 1858-0063 1826-0111 1826-0026 1820-1112 1820-1423 1820-1321 1920-1730 1858-0047 0360-1716 1200-0796 1205-0018 1205-0018	77 4 5 7 3 8 4 9 1 6 5 1 8 0 7 6	1 3 1 1 1 1 1 2 2 6	IC GATE TTL LS NAND TPL 3-INP IC OP AMP GP DUAL TO-99 PKG IC-LINEAR XSTR-ARRAY 14-PIN PLSTC DIP IC OP AMP GP DUAL TO-99 PKG IC COMPARATOR PRCN TO-99 PKG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC MV TTL LS MONOSTBL RETRIG DUAL IC COMPARATOR CP IO-99 PKG IC INV TTL LS HEX 1-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM XSTR-ARRAY 16-PIN PLSTC DIP TERMINAL-STUD SGL-PIN PRESS-MTG SOCKET-IC 8-CONT DIP DIP-SLDR HEAT SINK TO-5/TO-39-CS HEAT SINK TO-5/TO-39-CS	01295 3L505 28480 0192B 3L585 01295 01295 01295 01295 01295 31295 31295 328480 28480 28480 28480 28480	SN74LS10N CA145BT 1826-0879 CA3102E CA145BT LM311L SN74LS123N SN74LS123N SN74LS123N SN74LS04N SN74LS04N SN74LS003A 0360-1716 1200-0796 1205-0011 1205-0018 1205-0033
	1251-0600 1460-1336 7121-1234	0 4 9		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ WIREFORM CU BRT-TIN LABEL CAUTION 1.925-IN-WD 2.24-IN-LG	28480 28480 28480	1251-0600 1460-1336 7121-1234
A21	03325-66521	2	2	PC ASSY-FFS D/A	28480	03325-66521
A2101 A2102 A2103 A2104 A2106	0140-0191 0160-3847 0180-1861 0180-1746 0140-0191	8 9 5 5 8	3	CAPACITOR-FXD 56PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 27UF+-10% 10VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 56PF +-5% 300VDC MICA	72136 28480 56289 56289 72136	DM15E560J0300WV1CR 0160-3847 150D276X9010B2 150D156X9020B2 DM15E560J0300WV1CR
A2107 A2108 A2109 A21010 A21011	0160-4571 0160-3847 0160-3847 0160-4571 0180-1861	89985		CAPACITOR-FXD .1UF +86-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITUR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 27UF+-10% 10VDC TA		0160-4571 0160-3847 0160-3847 0160-4571 1500276X901082
A21012 A21013 A21014 A21015 A21016	0160-3847 0160-2250 0160-3847 0160-2222 0160-3847	96929	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 5.1PF +25PF 500VDC CER CAPACITUR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1500PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER	28490 28480 28480 28480 28480	0160-3847 0160-2250 0160-3847 0160-3822 0160-3847
A21017 A21018 A21019 A21021 A21022	0160-4461 0160-2257 0180-1746 0180-1746 0160-5306	57559	1	CAPACITOR-FXD 150PF +-2.5% 160VDC POLYP CAPACITOR-FXD 10PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF +-10% 100VDC	28480 28480 56289 56289 28480	0160-4461 0160-2257 150D156X9020B2 150D156X9020B2 0160-5306
A21023 A21024 A21026 A21027 A21028	0160-3847 0140-0149 0160-3847 0160-2243 0160-2208	9 6 9 7 4	1 1 1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2.7PF +25PF 500VDC CER CAPACITOR-FXD 330PF +-5% 300VDC MICA		0160-3847 DM15F471J0300WY1CR 0160-3847 0160-2243 0160-2238
A21029 A21031 A21032 A21033 A210131	0160-3847 0160-3847 0160-4571 0160-3847 0140-0191	9 9 8 9 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-26% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .56PF +-5% 300VDC MICA	28480 28480 28480 28480 72136	0160-3847 0160-3047 0160-4571 0160-3847 DM15E560J0300WV1CR
A210132 A210133 A210134 A210135 A210136	0160-3847 0160-3847 0160-4571 0160-3847 0160-3847	9 8 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-4571 0160-3847 0160-3847
A210137 A210138 A210139 A210140 A210141	0160-3947 0140-0206 0160-3847 0160-3847 0180-1746	9 6 9 9 5	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 279PF +-5% 500VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA	28480 72136 28480 28480 56289	0160-3847 DM15F271J0500WV1CR 0160-3847 0160-3847 150D156X9020B2
A210142 A210143 A210144 A210145 A210162	0160-3847 0160-3847 0180-1861 0180-1746 0160-3879	9 9 5 5 7	2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 27UF+-10% 10VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 56289 56289 28480	0160-3847 0160-3847 1500276X9010B2 1500156X9020B2 0160-3879
A210163 A210164 A210167 A210168 A210169	0160-3847 0160-3847 0160-3847 0160-2204 0160-3847	9 9 9 0 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-6% 50VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-2204 0160-3847
		-				

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A21C171 A21C173 A21C174 A21C176 A21C177	0180-1746 0180-0228 0160-2204 0160-0571 0160-3879	5 6 0 7	1	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 100PF +-5% 30VDC MICA CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	56289 56289 28480 28480 28480	150D156X9020B2 150D226X9015D2 0160-2204 0160-0571 0160-3879
A210178 A210179 A210181 A210182 A210183	0160-3847 0160-4040 0160-2204 0160-4441 0160-0127	9 6 0 1 2	1 1 2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD .47UF +-10% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-4040 0160-2204 0160-4441 0160-0127
A21C184 A21C185 A21C186 A21C187 A21C188	0160-3847 0160-3847 0160-3847 0160-3847 0160-0127	9 9 9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	28480 28480 28480 28480 28480	0160-3847 0160-3847 0160-3847 0160-3847 3160-0127
A21C190 A21C195 A21C196 A21C197	0160-4571 0160-3876 0160-4283 0160-4283	8 4 9 9	1 2	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 47PF +-20% 200VDC CER CAPACITOR-FXD 180PF +-5% 200VDC CER CAPACITOR-FXD 100PF +-5% 200VDC CER	28480 28480 51642 51642	0160-4571 0160-3876 150-100-NPO-101J 150-100-NPO-101J
A21CR1 A21CR2 A21CR3 A21CR4 A21CR5	1901-0040 1901-0040 1901-0518 1901-0518 1901-0040	1 1 8 8		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28488	1901-0040 1901-0040 1901-0518 1901-0518 1901-0040
A21CR6 A21CR7 A21CR8 A21CR9 A21CR11	1902-0777 1902-0777 1901-0518 1901-0518 1901-0040	3 8 8 1		DIODE-ZNR 1N825 6.2V 5% DO-7 PD=.4W DIODE-ZNR 1N825 6.2V 5% DO-7 PD=.4W DIODE-SM SIG SCHOTTKY DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35	04713 04713 28480 28480 28480	1N825 1N825 1901-0518 1901-0518 1901-0040
A21CR12 A21CR13 A21CR16 A21CR17 A21CR18	1901-0040 1931-0040 1901-0040 1902-3054 1902-0064	1 1 5 1	1 2	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 3.65V 5% DO-35 PD=.4W DIODE-ZNR 7.5V 5% DO-35 PD=.4W TC=+.05%	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1902-3054 1902-0064
A21CR19 A21CR20 A21CR131 A21CR161 A21CR162	1902-0064 1901-0040 1902-3030 1901-0518 1901-0040	1 1 7 8 1		DIODE-ZNR 7.5V 5% DO-35 PD=,4W TC=+.05% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 3.01V 5% DO-7 PD=,4W TC=967% DIODE-SM SIG SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1902-0064 1901-0040 1902-3030 1901-0518 1901-0040
A21CR163 A21CR164 A21CR165 A21CR166	1901-0518 0122-0069 1901-0518 0122-0089	8585		DIODE-SM SIG SCHOTTKY DIODE-VVC 2PPF 10% C3/C25-MIN=5 BVR=30V DIODE-SM SIG SCHOTTKY DIODE-VVC 2PPF 10% C3/C25-MIN=5 BVR=30V	28490 04713 28480 04713	1961-0518 MV109 1901-0518 MV109
A21J1 A21J3 A21J8 A21J15 A21J16	1251-6567 1810-0294 1251-2969 1251-2969 1251-2969	0 4 8 8	1	CONNECTOR 21-PIN M POST TYPE NETWORK-RESISTOR 16 PIN DIP; RES CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480 28480 28480 28480	1251-6567 1810-0294 1251-2969 1251-2969 1251-2969
A21J17A A21J17B A21J18A A21J18B	1251-2969 1251-2969 1251-2969 1251-2969	8 8 8	33	CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PECNO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480 28480 28480	1251-2969 1251-2969 1251-2969 1251-2969
A21L1 A21L2 A21L3 A21L132 A21L133	9100-1622 9100-1622 9100-1791 9100-1791 9170-0894	7 7 1 1 0		INDUCTOR RF-CH-MLD 24UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 24UH 5% .166DX.385LG INDUCTOR 29OHH 20% .23DX.375LG INDUCTOR 29OHH 26% .23DX.375LG CORE-SHIELDING BEAD	28480 28480 28480 28480 28480	9100-1622 9100-1622 9100-1791 9100-1791 9170-0894
A21L161 A21L162 A21L163 A21L165	9100-1791 9140-0460 9100-0539 9140-0349	1 3 3 7	1	INDUCTOR 290NH 20% .23DX.375LG COIL-VAR 351NH-427NH Q=120 PC-MTG INDUCTOR (MISC ITEM) INDUCTOR RF-CH-MLD 1.1UH 5% .166DX.385LG	28480 28480 28480 28480	9100-1791 9140-0460 9100-0539 9140-0349
A21Q1 A21Q2 A21Q3 A21Q4 A21Q6	1853-0448 1853-0448 1854-0345 1853-0448 1853-0689	0 0 8 0 5	5	TRANSISTOR PNP SI TO-92 PD≔625MW TRANSISTOR PNP SI TO-92 PD≔625MW TRANSISTOR PNP 2N5179 SI TO-72 PD≔200MW TRANSISTOR PNP SI TO-92 PD≔625MW TRANSISTOR PNP 2N4917 SI PD≔200MW	04713 04713 04713 04713 04713	MPSH81 MPSH81 2N5179 MPSH81 2N4917
A21Q7 A21Q8 A21Q9 A21Q10 A21Q11	1853-0887 1853-0889 1854-0296 1853-0889 1854-0296	55858	2	TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR NPN SI TO-92 PD=310MW TRANSISTOR PNP 2N4917 SI PD=280MW TRANSISTOR PNP 2N4917 SI PD=280MW TRANSISTOR NPN SI TO-92 PD=310MW	07263 07263 28480 07263 28430	2N4917 2N4917 1854-0296 2N4917 1854-0296
A21Q12 A21Q13 A21Q14 A21Q16 A21Q17	1853-0089 1854-0296 1854-0296 1854-0296 1855-0308	58885	1	TRANSISTOR PNP 2N4917 SI PD≔200MW TRANSISTOR NPN SI TO-92 PD≔310MW TRANSISTOR NPN SI TO-92 PD≖310MW TRANSISTOR NPN SI TO-92 PD≔310MW TRANSISTOR-JFET DUAL N-CHAN D-MODE SI	07263 28480 28480 28480 28480	2N4917 1854-0296 1854-0296 1854-0296 1855-0308

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts					
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A21Q18 A21Q19 A21Q21 A21Q22 A21Q23	1855-0081 1855-0081 1855-0082 1854-0215 1854-J215	1 1 2 1 1	2	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	28480 28480 28480 04713 04713	1855-0081 1855-0081 1855-0082 2N3704 2N3904
A21 Q24 A21 Q25 A21 Q26 A21 Q27 A21 Q28	1854-0215 1853-0089 1854-0215 1855-0081 1854-0296	1 5 1 1		TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI TO-92 PD=310MW	04713 07263 04713 28480 28480	2N3984 2N4917 2N3984 1855-9381 1854-8296
A21Q29 A21Q31 A21Q32 A21Q33 A21Q37	1354-0296 1853-0089 1854-0830 1855-0082 1854-0215	8 5 6 2 1	1	TRANSISTOR NPN SI TO-92 PD=310MW TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR-DUAL NPN PD=500MW TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR NPN SI PD=356MW FT=300MMZ	28480 07263 27014 28480 04713	1854-0296 2N4917 LM374 1855-0082 2N3904
A21Q38 A21Q39 A21Q41 A21Q42 A21Q43	1853-0086 1855-0081 1854-0296 1854-0296 1853-0089	2 1 8 8 5	1	TRANSISTOR PNP SI PD≔310MW FT=40MHZ TRANSISTOR J·FET N-CHAN D-MODE SI TRANSISTOR NPN SI TO-92 PD=310MW TRANSISTOR NPN SI TO-92 PD≔310MW TRANSISTOR PNP 2N4917 SI PD≔200MW	27014 28480 28480 28480 07263	2N5087 1855-0081 1854-0296 1854-0296 2N4917
A21Q44 A21Q131 A21Q132 A21Q161 A21Q162	1853-0069 1853-0448 1854-0071 1853-0448 1854-0345	5 0 7 0 8		TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN SI PD=300MW FT=230MMZ TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW	07263 04713 28480 04713 04713	2N4917 MPSH81 1854-0071 MPSH81 2N5179
A21Q163 A21Q164 A21Q165 A21Q166	1854-0345 1854-0345 1854-0345 1853-0448	8 8		TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR PNP SI TO-92 PD=625MW	04713 04713 04713 04713	2N5179 2N5179 2N5179 MPSH81
A21R1 A21R2 A21R3 A21R4 A21R6	0757-0395 0757-0419 0757-0419 0683-4705 0757-0421	1 0 0 8 4	3	RESISTOR 56.2 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 825 1% .125W F TC=0+-100	24546 24546 24546 01121 24546	C4-1/8-T0-56R2-F C4-1/8-T0-681R-F C4-1/8-T0-681R-F C84705 C4-1/8-T0-825R-F
A21R7 A21R8 A21R9 A21R11 A21R12	0683-4715 0683-4705 0698-3440 0683-2205 0757-0438	0 8 7 9 3		RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 176 1% .125W F 1C=0+-100 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 5.11K 1% .125W F TC=0+-100	01121 01121 24546 01121 24546	CB4715 CB4705 C4-1/8-T0-196R-F CB2205 C4-1/8-T0-5111-F
A21R13 A21R14 A21R16 A21R17 A21R18	0757-0438 0757-0418 0757-0440 0698-3152 0757-0444	3 9 7 8 1	2 1 1 2	RESISTOR 5.11K 1% .125₩ F TC=0+-100 RESISTOR 619 1% .125₩ F TC=0+-100 RESISTOR 7.5K 1% .125₩ F TC=0+-100 RESISTOR 3.46K 1% .125₩ F TC=0+-100 RESISTOR 12.1K 1% .125₩ F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-619R-F C4-1/8-T0-7501-F C4-1/8-T0-3481-F C4-1/8-T0-1212-F
A21R19 A21R21 A21R22 A21R23 A21R24	0757-0278 0683-4705 0683-1525 0683-6815 0683-1825	9 8 4 5 7	1	RESISTUR 1.78K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 680 5% .25W FC TC=-400/+600 RESISTOR 1.8K 5% .25W FC TC=-400/+700	24546 01121 01121 01121 01121	C4-1/8-T0-1781-F CB4705 CB1525 CB6815 CB1825
A21R26 A21R27 A21R28 A21R29 A21R31	0757-0395 0757-0317 0757-0317 0683-4705 0683-3325	1 7 7 8 6		RESISTOR 56.2 1% ,125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 3.3K 5% .25W FC TC=-400/+700	24546 24546 24546 01121 01121	C4-1/B-T0-56R2-F C4-1/B-T0-1331-F C4-1/B-T0-1331-F CB4705 CB4705 CB3325
A21R32 A21R33 A21R34 A21R36 A21R37	0683-4715 0683-4705 0757-0438 0757-6280 0698-3153	0 8 3 3 9	3	RESISTOR 470 5% .25W FC TC=-400/+600 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100	01121 01121 24546 24546 24546	CB4715 CB4705 C4-1/8-T0-5111-F C4-1/8-T0-1001-F C4-1/8-T0-3831-F
A21R38 A21R39 A21R41 A21R42 A21R43	0698-0083 0757-0401 0683-6815 0698-3153 0698-3153	8 0 5 9	చ	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 680 5% .25W FC TC=-400/+600 RESISTOR 3.82% 1% .125W F TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100	24546 24546 01121 24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-101-F C86815 C4-1/8-T0-3831-F C4-1/8-T0-3831-F
A21R44 A21R46 A21R47 A21R48 A21R49	0678-0383 0683-1615 0683-3325 0683-1015 0698-3443	8 7 6 7 0	1	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 287 1% .125W F TC=0+-100	24546 01121 01121 01121 24546	C4-1/8-T0-1961-F CB1015 CB3325 CB1015 C4-1/8-T0-287R-F
A21R51 A21R52 A21R53 A21R54 A21R56	0757-0418 0757-0444 0757-0280 0757-0280 0698-0083	9 1 3 3 8		RESISTOR 619 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-619R-F C4-1/8-T0-1212-F C4-1/8-T0-1001-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts					
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A21R57 A21R58 A21R59 A21R61 A21R62	0683-5105 0683-4715 0683-1015 0683-1035 0683-1015	4 0 7 1 7	1	RESISTOR 51 5%, 25W FC TC=-400/4500 RESISTOR 470 5%, 25W FC TC=-400/+600 RESISTOR 100 5%, 25W FC TC=-400/+500 RESISTOR 10K 5%, 25W FC TC=-400/+700 RESISTOR 100 5%, 25W FC TC=-400/+500	01121 01121 01121 01121 01121	CB5105 CD4715 CB1015 CB1035 CB1315
A21R63 A21R64 A21R65 A21R66 A21R67	0757-0419 0698-0084 0757-0401 0683-4705 0698-0083	0 9 0 8		RESISTOR 681 1% .125₩ F TC=0+-100 RESISTOR 2.15K 1% .125₩ F TC=9+-100 RESISTOR 100 1% .125₩ F TC=0+-100 RESISTOR 47 5% .25₩ FC TC=-490/+500 RESISTOR 1.96K 1% .125₩ F TC=0+-100	24546 24546 24546 31121 24546	C4-1/8-T0-681R-F C4-1/8-T0-2151-F C4-1/8-T0-161-F C84705 C4-1/8-T0-1961-F
A21R68 A21R69 A21R70 A21R71 A21R72	0698-3156 0698-3156 0757-0401 0698-4207 0683-1025	2 0 6 9	1	RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 130 1% .125W F TC=0+-100 RESISTOR 44.2K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600	24546 24546 24546 24546 01121	C4-1/8-T0-1472-F C4-1/8-T0-1472-F C4-1/8-T0-101-F C4-1/8-T0-4422-F CB1025
A21R73 A21R74 A21R75 A21R76 A21R77	0683-4705 2100-3211 0757-0442 2100-3096 0683-1065	8 7 9 6 7	1 1 1	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR-TRMR 1K 10% C TOP-ADJ 1-TRN RESISTOR 1DK 1% .125W F TC=0+-100 RESISTOR-TRMR 50K 10% C TOP-ADJ 17-TRN RESISTOR 10M 5% .25W CC TC=-900/+1100	01121 28480 24546 32997 01121	CB4705 2100-3211 C4-1/8-T0-1002-F 3292W 1-503 CB1065
A21R78 A21R79 A21R81 A21R82 A21R83	0757-0488 0757-0401 0683-1035 0683-5625 0683-2025	3 0 1 3	1	RESISTOR 707K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 5.6K 5% .25W FC TC=-400/+700 RESISTOR 2K 5% .25W FC TC=-400/+700	28480 24546 01121 01121 01121	0757-0488 C4-1/8-T0-101-F C81035 C85625 C82025
A21R84 A21R86 A21R87 A21R88 A21R88	0757-0289 0757-0439 0683-4705 2100-3383 0683-4705	2 4 8 4 8	1	RESISTOR 13.3K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=3+-100 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR-1RMR 50 10% C TCP-ADJ 1-TRN RESISTOR 47 5% .25W FC TC=-400/+500	19701 24546 01121 28480 01121	MF4C1/8-T0-1332-F C4-1/8-T0-6811-F CB4705 2100-3383 CB4705
A21R91 A21R92 A21R93 A21R94 A21R96	0698-0083 0683-1025 0683-1015 0683-1015 0757-0421	8 9 7 7 4		RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 825 1% .125W F TC=0+-100	24546 01121 01121 01121 24546	C4-1/8-T0-1961-F CB1025 CB1015 CB1015 C4-1/8-T0-825R-F
A21R97 A21R98 A21R99 A21R101 A21R102	0683-2225 0683-2225 0698-3154 0683-1025 0683-2225	3 0 9 3		RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC=-400/+700 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 2.2K 5% .25W FC TC=-400/+700	01121 01121 24546 01121 01121	CB2225 CB2225 C4-1/8-T0-4221-F CB1025 CB2225
A21R103 A21R104 A21R106 A21R107 A21R108	0683-4705 0683-2235 0683-1035 2100-0567 0698-0083	8 5 1 0 8	1	RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 22K 5% ,25W FC TC=-400/+800 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR-TRMR 2K 10% C TO?-ADJ 1-TRN RESISTOR 1.96K 1% .125W F TC=0+-100	01121 01121 01121 28480 24546	CB4705 CB2235 CB1035 2100-0567 C4-1/8-TO-1961-F
A21R109 A21R111 A21R112 A21R113 A21R114	0683-1015 0683-1015 0757-0421 0757-0416 0757-0416	7 7 4 7 7		RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 100 5% .25W FC TC=-400/+500 RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	01121 01121 24546 24546 24546	CB1015 CB1015 C4-1/8-T6-825R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F
A21R116 A21R117 A21R118 A21R119 A21R121	0683-4705 0757-0439 0683-1025 0683-1835 0683-1025	8 4 9 9		RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 18K 5% .25W FC TC=-400/+800 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 24546 01121 01121 01121	CB4705 C4-1/8-T0-6811-F CB1025 CB1835 CB1025
A21R122 A21R123 A21R124 A21R126 A21R130	0698-3162 0757-0465 0683-1525 0683-1025 0683-2225	0 6 4 9 3	1	RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1.5K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 2.2K 5% .25W FC TC=-400/+700	24546 24546 01121 01121 01121	C4-1/8-T0-4642-F C4-1/8-T0-1003-F CB1525 CB1025 CB2225
A21R132 A21R133 A21R134 A21R135 A21R136	0757-0398 0698-3432 0683-1035 0683-2205 0683-1025	4 7 1 9		RESISTOR 75 1% .125W F TC=0+-100 RESISTOR 26.1 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 1K 5% .25W FC TC=-400/+600	24546 03888 01121 01121 01121	C4-1/8-T0-75R0-F PME55-1/8-T0-26R1-F C81035 CB2205 CB1025
A21R137 A21R138 A21R140 A21R141 A21R142	0683-1035 0698-4443 0683-1035 0698-4422 0683-1025	1 2 1 7 9	1	RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 4.53K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 1.27K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 24546 01121 24546 01121	CB1035 C4-1/8-T0-4531-F CB1035 C4-1/8-T0-1271-F CB1025
A21R143 A21R144 A21R145 A21R146 A21R147	0683-1015 0683-3325 0683-1025 0683-1035 0683-1035	7 6 9 1		RESISTUR 100 5% .25W FC TC=-400/+500 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1 015 CD3325 CB1 025 CB1 035 CB1 035

Table 6-3. Replaceable Parts

	$\overline{}$			Table 6-3. Heplaceable Parts					
HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number				
0683-7515 0683-1035 0683-3325 0683-1035 0683-1035	4 1 6 1 1	1	RESISTOR 750 5% .25W FC TC=-400/+600 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 3.3K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB7515 CB1035 CB3325 CB1035 CB1035				
0683-2415 0683-4705 0683-1045 0683-4735 0683-1045	3 8 3 4 3	1	RESISTOR 240 5% .25W FC TC=-400/+600 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 100K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB2415 CB4705 CB1045 CB4735 CB1045				
0683-4735 0683-4725 0683-1035 0698-3518 0683-2425	4 2 1 0 5	1 1	RESISTOR 47K 5% .25W FC TC=-400/+800 RESISTOR 4.7K 5% .25W FC TC=-406/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 7.32K 1% .125W F TC=0+-100 RESISTOR 2.4K 5% .25W FC TC=-400/+700	01121 01121 01121 24546 01121	CB4735 CB4725 CB1035 C4-1/B-T0-7321-F CB2425				
0757-1094 0683-1025 0683-1045 0683-5125 0683-4705	9 9 3 8	1	RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 100K 5% .25W FC TC=-400/+800 RESISTOR 5.1K 5% .25W FC TC=-400/+700 RESISTOR 47 5% .25W FC TC=-400/+500	24546 01121 01121 01121 01121	C4· 1/8-T0-1471-F CB1025 CB1045 CB5125 CB4705				
0757-0417 0757-0401 0683-3915 0683-3915 0683-1525	8 0 0 0 4	3	RESISTOR 562 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 370 5% .25W FC TC=-400/+600 RESISTOR 370 5% .25W FC TC=-400/+600 RESISTOR 1.5K 5% .25W FC TC=-400/+700	24546 24546 91121 01121 01121	C4-1/8-T0-562R-F C4-1/8-T0-101-F CB3915 CB3915 CB1525				
0683-1025 0757-0280 0757-0416 0698-4123 0757-0280	9 3 7 5 3		RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 499 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	01121 24546 24546 24546 24546	CB1025 C4-1/8-T0-1001-F C4-1/8-T0-511R-F C4-1/8-T0-499R-F C4-1/8-T0-1061-F				
0757-0401 0757-0280 0757-0442 0698-3279 0757-0401	0 3 9 0		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/B-T0-101 F C4-1/B-T0-1001-F C4-1/B-T0-1002-F C4-1/B-T0-4991-F C4-1/B-T0-101-F				
0757-0452 0698-3440 0698-4474 0757-0439 0757-0394	1 7 9 4 0	1 1 1	RESISTOR 27.4% 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 8.45% 1% .125W F TC=0+-100 RESISTOR 6.81% 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2742-F C4-1/8-T0-196R-F C4-1/8-T0-8451-F C4-1/8-T0-6811-F C4-1/8-T0-51R1-F				
0757-0280 0757-0401 0698-3279 0757-0442 0757-0283	3 0 0 9 6		RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-101-F C4-1/8-T0-4991-F C4-1/8-T0-1602-F C4-1/8-T0-2001-F				
0757-0280 0683-3315 0683-4325 0683-3915 0683-4705	3 4 8 0 8	1 1	RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 330 5% ,25W FC TC=-400/+600 RESISTOR 4.3K 5% ,25W FC TC=-400/+700 RESISTOR 390 5% ,25W FC TC=-400/+600 RESISTOR 47 5% ,25W FC TC=-400/+500	24546 01121 01121 01121 01121	C4-1/8-T0-1001-F CB3315 CB4325 CB3915 CE4705				
0757-0439 0757-0401 0757-0442 0693-2205 0757-0279	4 0 9 9		RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F 1C=0+-100 RESISTOR 22 5% .25W FC TC=-400/+500 RESISTOR 3.16K 1% .125W F TC=0+-100	24546 24546 24546 01121 24546	C4-1/8-T0-6311-F C4-1/8-T0-101-F C4-1/8-T0-1032-F CB2205 C4-1/8-T0-3161-F				
1820-0817 1821-0001 1820-1196 1820-1112 1826-0021	8 4 8 8 8	1	IC FF ECL D-M/S DUAL TRANSISTOR ARRAY 14-PIN PLSTC DIP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF ITL LS D-TYPE POS-EDGE-TRIG IC OP AMP GP TO-99 PKG	04713 3L585 01295 01295 27014	MC10131P CA3146 SN74LS174N SN74LS74AN LM310H				
1820-0629 1820-0697 1820-1279 1826-0043 1820-1279	9 2 8 4 8	1	IC FF TTL S J-K NEG-EDGE-TRIG IC DRVR TTL S NAND LINE DUAL 4-INP IC CNTR TTL LS DECD UP/DCWN SYNCHRO IC OP AMP GP TO-99 PKG IC CNTR TTL LS DECD UP/DGWN SYNCHRO	01275 01295 01295 31595 31595	SN74S112N SN74S140N SN74LS190N CA307T SN74LS190N				
1820-0681 1820-0629 1820-1196 1820-1196 1820-1322	4 0 8 8 2	3	IC GATE TIL S NAND QUAD 2-INP IC FF TIL S J-K NEG-EDEE-TRIG IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC FF ITL LS D-TYPE POS-EDGE-TRIG COM IC CATE TIL S NOR QUAD 2-INP	01295 01295 01295 01295 01295	SN74S00N SN74S112N SN74LS174N SN74LS174N SN74S02N				
1820-0629 1820-2004 1820-0683 1820-0681 1820-0681	9 6 4 4	1	IC FF TTL S J-K NEG-EDGE-TRIG IC MISC NMGS IC INV TTL S HEX 1-INP IC GATE TTL S NAND QUAD 2-INP IC GATE TTL S NAND QUAD 2-INP	01295 28480 01295 01295 01295	SN74S112N 1826-2004 SN74S04N SN74S00N SN74S00N				
	Number 10683-7515 10683-1035 10683-3325 10683-1035 10683-415 10683-4705 10683-4705 10683-4705 10683-4725 10683-1045 10683-4725 10683-1045 10683-4725 10683-1035 10683-1035 10698-3518 10683-1025 10683-1025 10683-1025 10683-1025 10683-1025 10683-1025 10683-1025 10683-1025 10757-0401 10757-0401 10757-0280 10757-0280 10757-0401 1080-0601 1080-0601 1080-0601 1080-0609	Number D 10683-7515	Number D Uty 10683-7515	Number D City Description	Number D				

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts					
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A21U24 A21U25 A21U26 A21U27 A21U28	1820-0629 1820-0693 1820-0693 1820-0629 1820-1641	8 8 0 8		IC FF TTL S J-K NEG-EDGE-TRIG IC FF TTL S D-TYPE POS-EDGE-TRIG IC FF TTL S D-TYPE POS-EDGE-TRIG IC FF TTL S J-K NEG-EDGE-TRIG IC DRVR TTL LS BUS DRVR HEX 1-INP	01295 01295 01295 01295 01295	SN74S112N SN74S74N SN74S74N SN74S112N SN74S112N SN74LS365AN
A21U29 A21U30 A21U31 A21U32 A21U33	1820-0629 1820-0629 1820-1144 1820-0629 1826-0111	0 0 6 0 7		IC FF TTL S J-K NEG-EDGE-TRIG IC FF TTL S J-K NEG-EDGE-TRIG IC GATE TTL LS NOR QUAD 2-INP IC FF TTL S J-K NEG-EDGE-TRIG IC OP AMP GP DUAL TO-99 PKG	01295 01295 01295 01295 3L595	SN745112N SN745112N SN74L502N SN745112N CA1458T
A21U34	1820-0802	1		IC GATE ECL NOR QUAD 2-INP	04713	MC10102P
	0360-1716 1460-1336 7121-1234	1 4 9		TERMINAL-STUD SGL-PIN PRESS-MTG WIREFORM CU BRT-TIN LABEL CAUTION 1.925 IN-WD 2.24-IN-LG	28480 28480 28480	0360-1716 1460-1336 7121-1234
A23	03325-66523	4	2	ATTENUATOR ASSEMBLY	28480	03325-66523
A23C1 A23C2 A23C3 A23C7 A23C8	0160-4571 0160-4571 0160-3558 0160-3558 0160-3558	8 9 9		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-4571 0160-4571 0160-3558 0160-3558 0160-3558
A2309 A23010 A23011 A23012 A23013	0160-3558 0160-3558 0160-3558 0160-3558 0160-3558	9 9 9 9		CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-3558 0160-3558 0160-3558 0160-3558 0160-3558
A23C14 A23C15 A23C16 A23C17	0160-3558 0160-4571 0160-4571 0160-4571	9 8 8		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	28480 28480 28480 28480	0160-3558 0160-4571 0160-4571 0160-4571
A23J30	1251-5064	0		CONNECTOR 14-PIN M POST TYPE	28480	1251-5064
A23J1 A23J2 A23J3 A23J4	1251-2969 1251-2969 1251-2969 1251-2969	8 8 8		CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP CONNECTOR-PHONO SINGLE PHONO JACK; DIP	28480 28480 28480 28480	1251-2969 1251-2969 1251-2969 1251-2969
A23K1 A23K2 A23K3 A23K4	0490-1141 0490-1141 0490-1141 0490-1141	1 1 1 1	4	RELAY 4C 12VC-COIL 12VDC RELAY 4C 12VC-COIL 12VDC RELAY 4C 12VC-COIL 12VDC RELAY 4C 12VC-COIL 12VDC	28480 28480 28480 28480	0490-1141 0490-1141 .0490-1141 0490-1141
A23R1 A23R2 A23R3 A23R4 A23R5	0699-0065 0699-0065 0699-0273 0699-0274 0698-8258	8 8 0 1 5	2 1 1 1	RESISTOR 51.01 .25% .5W F TC=0+-50 RESISTOR 51.01 .25% .5W F TC=0+-50 RESISTOR 2.15K .1% .125W F TC=0+-25 RESISTOR 350 .1% .125W F TC=0+-25 RESISTOR 247.5 .1% .25W F TC=0+-25	28480 28480 28480 28480 19701	0699-0065 0699-0065 0699-0273 0699-0274 MF52C1/4-T9-247R5-B
A23R6 A23R7 A23R8 A23R9 A23R10	0698-7984 0698-7984 0699-0066 0698-7448 0698-7448	2 2 9 3 3	2 1 2	RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 66.7 .25% .25W F TC=0+-50 RESISTOR 100 .1% .25W F TC=0+-25 RESISTOR 100 .1% .25W F TC=0+-25	28480 28480 28480 19701 19701	0698-7984 0698-7984 0699-0066 MF52C1/4-T9-100R-B MF52C1/4-T9-100R-B
	7121-1234	9		LABEL CAUTION 1.925 IN-WD 2.24-IN-LG	28480	7121-1234

Table 6-3. Replaceable Parts

Reference	HP Part	С	Qty	Description	Mfr	Mfr Part Number
Designation	Number	D	City	Description	Code	- Ture realison
	03325-20601 03325-20602 03325-04104	3 4 7	4 4 1	CHASSIS AND MISCELLANEOUS PARTS SHLD-TOP SHLD-BOTTOM COVER NO 2	28480 28480 28480	03325-20601 03325-20602 03325-04104
A2 A3 A5 A6 A14 A8 A21 A23 A9 C2 C3	3160-0209 03325-61612 03325-66502 03325-66505 03325-66506 03325-66514 03325-66508 03325-66509 0150-0012 0150-0012	4 4 9 0 2 3 3 3 2 4 3 3 3 3	1	FAN-TBAX 45-CFM 115V 50/60-Hz 1.5-THK (WITHOUT CABLE) FAN (WITH CABLE) PWR SPLY PC ASSY-SIG-SCE PC ASSY-CONTROL PC ASSY-FUNCTION PC ASSY-HI VOLT (OPT. 002) PC ASSY-HI VOLT (OPT. 001) CAPACITOR-FXD .81UF +-28X 1KVDC CER CAPACITOR-FXD .01UF +-28X 1KVDC CER CAPACITOR-FXD .01UF +-20X 1KVDC CER CAPACITOR-FXD .01UF +-20X 1KVDC CER	28480 28480 28480 28480 28480 28480 28480 28480 28480 56289 56289 56289	3160-0209 03325-64512 03325-64502 03325-64503 03325-64506 03325-64506 03325-64506 03325-64514 03325-64521 03325-64521 03325-64523 0325-66509 00234102J103M538 00234102J103M538
C5 F1	0150-0012 2110-0001	3	1	CAPACITOR-FXD .01UF +-20% 1KVDC CER FUSE 1A 250V NTD 1.25%.25 UL	56289 75915	C023A102J103MS38 312001
F1* J1 J2 J4 J5 J6	2110-0012 1250-1558 1250-1558 1250-1558 1250-1558 1250-1558	7 7 7 7 7 7	12	FUSE .3A 250V NTD 1.25X.25 UL ADAPTER-COAX STR F-BNC F-RCA-PHONO	28480 28480 28480 28480 28480 28480	2110-0012 1250-1558 1250-1558 1250-1558 1250-1558 1250-1558
J7 J8 J9 J10 J11	1253-1558 1250-1558 1250-1558 1250-1558 1250-1558	7 7 7 7 7		ADAPTER-COAX STR F-BNC F-RCA-PHONO	28480 28480 28480 28480 28480	1250-1558 1250-1558 1250-1558 1250-1558 1250-1558 1250-1558
J12 J13	1250-1558 1250-1558	7 7		ADAPTER-COAX STR F-BNC F-RCA-PHOND ADAPTER-COAX STR F-BNC F-RCA-PHONO	28480 28480	1250-1558 1250-1558
MP 1 MP 2 MP 3 MP 4 MP 5	03325-04301 5040-6928 03325-29301 03325-00201 5020-8863	6 4 8 7 6	1 1 1 1	PNL-DRESS DIVIDER STRIP WINDOW SUB PNL-FRT FRONT FRAME	28480 28480 28480 28480 28480	03325-04301 5040-6928 03325-29301 03325-00201 5020-8803
MP6 MP7 MP8 MP9 MP10	5040-7202 5020-8937 5060-9880 5040-7219 5060-9804	9 6 5 8 3	1 4 2 2 2	TRIM TOP CORNER STRUT SIDE COVER STRAP HDL CAP-FR STRAP HDL 181N	28480 28480 28480 28480 28480	5040-7202 5020-8837 5060-9880 5040-7219 5060-9804
MP11 MP12 MP13 MP14 MP15	5040-7220 5060-9835 03325-00202 5020-8804 03325-06602	1 0 8 7 4	2 1 1 1 1	STRAP HDL CAP-R TOP COVER PNL-REAR REAR-CASTING FRAME-MAIN	28480 28480 28480 28480 28480	5040-7220 5060-9835 03325-00202 5320-8804 03325-06602
MP17 MP18 MP19 MP20 MP21	5001-0439 5060-9847 5040-7201 1460-1345 03325-21101	8 4 8 5 0	1 1 1 2 1	SIDE TRIM BOTTOM COVER FOOT TILT STAND SST HEAT SINK	28480 28480 28480 28480 28480	5001-0439 5060-9847 5040-7201 1460-1345 03325-21101
MP 2-2 MP 2-3 MP 2-4 MP 2-5 MP 2-6 MP 2-7 MP 2-8 MP 2-9 MP 3-2 MP 3-3 MP 3-3 MP 3-4	3150-0228 3150-0227 3160-0201 1400-1229 5040-6898 00310-48801 3050-0604 0360-1089 0510-0153 0340-0564	65 68 70 0 17 31	1 1 1 5 3 20 4 12	FILTER SCREEN STEEL 3.44-WD 3.44-LG INSULATION-POLYE .25-THK FAN GRILLE CLAMP-CABLE .375-DIA 1-WD NYL LITE PIPE WASHER, SHOULDERED WASHER-FL MTLC 7/16 IN .5-IN-ID TERMINAL-SLDR LUG PL-MTG FDR-#1/2-SCR THREADED INSERT-NUT 6-32 .058-IN-LG SST INSULATOR-XSTR THRM-CNDCT SHIELD-RF	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	3150-0228 3150-0227 3160-0201 1400-1229 5040-6898 00310-48801 3050-0604 0360-1089 0510-0153 0340-0564 03325-00601
R1	0683-1015	7		RESISTOR 100 5% .25W FC TC=-400/+500	01121	CB1015
	9100-4099 03325-61602 03325-61617 P/O 03325-6160 8120-2585 P/O 03325-6160 8120-2585	1 6 4	1 1 8 5	TRANSFORMER-POWER 100/120/220/240 VAC CBL ASSY-SIGNAL CBL ASSY-SYNC CABLE ASSY - 20-60 REAR UNMARKED W3 CABLE ASSY - 0-20 REAR UNMARKED W4	28480 28480 28480 28480 28480 28480 28480	9100-4099 03325-61602 03325-61607 P/O 03325-61601 8120-2585 P/O 03325-61601 8120-2585

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
₩6	P/0 03325-61601 8120-2585 8120-2491 P/0 03325-61601 8120-2585	4	1	CABLE ASSY-REAR SYNC UNMARKED W5 CABLE ASSY 24AWG 24-CNDCT CABLE ASSY-AMPTD MOD UNMARKED W7	28480 28480 28480 28480 28480	P/0 03325-61601 8120-2505 8120-2491 P/0 03325-61601 0120-2585
W 9	P/O 03325-61601 8120-2585 P/O 03325-61601 8120-2587 P/O 03325-61601 8120-2587	4 6 6	2	CADLE ASSY - 100KHZ UNMARKED WB CABLE ASSY-2 MHZ UNMARKED W9 CABLE ASSY - 1MHZ UNMARKED W10	28480 28480 28480 28480 28480 28480	P/0 03325-61601 8120-2585 P/0 03325-61601 8120-2587 P/0 03325-61601 8120-2587
W11 W12 W13 W14	P/O 03325-61601 B120-2586 03325-61604 03325-61619 03325-61620	65292	1 1 1	CABLE ASSY-EXTREF UNMARKED W11 CBL ASSY-Z BLK CBL ASSY-MKR CBL ASSY-MKR	28480 28480 28480 28480 28480	P/O 03325-61601 8120-2586 03325-61604 03325-61619 03325-61620
W15 W16 W17 W18 W19	03325-61606 03325-61607 03325-61608 03325-61609 03325-61610	4 5 6 7 0	1 1 1 1	CBL ASSY-VTO CBL ASSY-0M CBL ASSY-PHASE DET CBL ASSY-SAH CABLE ASSY-OVEN	28480 28480 28480 28480 28480	03325-61606 03325-61607 03325-61608 03325-61609 03325-61610
W20 W21 W22 W23 W24	03325-61605 03325-61621 03325-61611 03325-61603 03325-61618	3 1 1 8	1 1 1 1	CABLE ASSY - HI V1 CABLE ASSY - HI V2 CBL ASSY-PWR CON CBL ASSY-ALC CBL ASSY-MXR	28480 28480 28480 28480 28480	03325-61605 03325-61621 03325-61611 03325-61603 03325-61618
W25 W26 W27 W28 W29 W30 W31	03325-61612 03325-61613 03325-61614 P/0 9100-4099 03325-61616 8120-3216 8120-3108	2 3 4 1 6 0 9	1 1 1 1 1 3	CBL ASSY-FAN CBL ASSY-HPTB CBL ASSY-KEYBD CABLE ASSY-HIGH AMP POWER (OP 002) CABLE ASSY-OVEN POWER (OP 031) FLAT RIBBON ASSY 28-AWG 14-COND FLAT RIBBON ASSY 28-AWG 21-COND 5-IN-LG	28480 28480 28480 28480 28480 28480 28480	03325-61612 03325-61613 03325-61614 P/O 9100-4099 03325-61616 8120-3216 8120-3108
W32 W33 W34 W35	8120-3108 8120-3108 8120-1348 93325-61601	9 9 5 9	1 1	FLAT RIBBON ASSY 28-AWG 21-COND 5-IN-LG FLAT RIBBON ASSY 28-AWG 21-COND 5-IN-LG CABLE ASSY 18AWG 3-CNDCT BLK-JKT CBL ASSY-COMPLETE INCLUDES W3, 4, 5, 7, 8, 9, 10, 11	28480 28480 28480 28480	8120-3108 8120-3108 8120-1348 03325-61601
W36 W37 W40	03325-61622 03325-61623 03325-61623	4 5 5	1 2	CABLE ASSY +15V CABLE ASSY +15V UNREG CBL ASSY-CUTPUT	28480 28480 28480	03325-61622 03325-61623 03325-61623
XCF1	2110-0545	5	1	FUSEHOLDER CAP BAYONET; 6.3A, 250V MAX	28480	2110-0545
XF1	2110-0543 00310-48801 03325-04105 03325-90002 03325-90013 0360-1610	3 0 8 5 8 4	1 1 1 1 2	FUSEHOLDER BODY EXTR PST; BAYONET; TND WASHER SHLDR COVER OP/SVC MANL-A OP MANL-A TERMINAL-SLDR LUG PL-MTG FOR-\$6-SCR	28480 28480 28480 28480 28480 28480	2110-0543 00310-48801 03325-04105 03325-90002 03325-90013 0360-1610
	0361-0011 0380-0111 0380-0644 0460-1336 0590-0167	9 0 4 3	2 48 2 1 4	RIVET-SEMI-TUBULAR STANDOFF-RVT-ON .25-IN-LG 6-32THD STANDOFF-HEX .327-IN-LG 6-32THD TAPE-INDL .5-IN-W .0035-IN-T POLYE-FLM NUT-THUMB 6-32-THD BRS	28480 00000 00000 28480 28480	0361-0011 ORDER BY DESCRIPTION ORDER BY DESCRIPTION 0460-1336 0590-0167
	0590-0343 0624-0208 0624-0227 0890-0012 0890-0870	5 4 7 1 9	18 9 1 1	THREADED INSERT-NUT 4-40 .062-IN-LG SCREW-TPG 6-32 .5-IN-LG PAN-HD-POZI STL SCREW-TPG 4-40 .25-IN-LG PAN-HD-POZI STL SLEEVING-FLEX .04-ID NEMA-3 .016-WALL TUBING-HS .093-D/.046-RCVD .02-WALL	28480 28480 00000 28480 00000	0590-0343 0624-0208 ORDER BY DESCRIPTION 0890-0012 ORDER BY DESCRIPTION
	1205-0356 1400-0249 1400-0719 2190-0020 2190-0034	6 0 9 9 5	1 8 1 12 2	HEAT SINK CABLE TIE .062625-DIA .091-WD NYL CABLE TIE .062-1.125-DIA .14-WD NYL WASHER-LK HLCL NO. 5 .128-IN-ID WASHER-LK HLCL NO. 10 .194-IN-ID	28480 06383 28480 28480 28480	1295-0356 PLT1M-8 1400-0719 2190-0020 2190-0034
	2190-0073 2190-0575 2190-0918 2200-0101 2200-0103	2 9 4 0 2	4 1 6 11	WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK INTL T 1/2 IN .64-IN-ID WASHER-LK HLCL NO. 6 .141-IN-ID SCREW-MACH 4-40 .188-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI	28480 28480 28480 00000 28480	2190-0073 2190-0575 2190-0518 ORDER BY DESCRIPTION 2200-0103
	2200-0123 2360-0113 2360-0114 2360-0114 2360-0115	62334	12 5 5	SCREW-MACH 4-40 1.25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG 82 DEG SCREW-MACH 6-32 .25-IN-LG 82 DEG SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI	00000 00000 00000 00000	ORDER BY DESCRIPTION
	2360-0125 2360-0201 2420-0002 2510-0192 2580-0004	6 9 6 6 6	4 1 4 16 4	SCREW-MACH 6-32 .75-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .5-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 6-32-THD .109-IN-THK SCREW-MACH 8-32 .25-IN-LG 100 DEG NUT-HEX-DBL-CHAM 8-32-THD .125-IN-THK	00000 00000 28480 00000 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2420-0002 ORDER BY DESCRIPTION ORDER BY DESCRIPTION

Table 6-3. Replaceable Parts

	Table 6-3. Replaceable Parts					
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	3050-0027 3050-0066 3050-0716 3050-0835 6960-0027	18593	4 2 1 1	WASHER-FL MTLC NO. 10 .203-IN-ID WASHER-FL MTLC NO. 6 .147-IN-ID WASHER-FL MTLC NO. 5 .128-IN-ID WASHER-FL NM 9/16 IN .63-IN-ID .75-IN-OD PLUG-HOLE .625	28480 28480 28480 28480 28480	3050-0027 3050-0066 3050-0716 3050-0835 6960-0027
	7120-6482 7120-8539 9211-2257 9282-0906 JUMPER	7 9 1 2 0	1 1 1 1	LABEL-INFORMATION .875-IN-WD 1.725-IN-LG LABEL-WARNING 1.3-IN-WD 1.6-IN-LG VINYL CARTON-CORR RSC 26.75-IN-LG 24.75-IN-WD CHANNEL W/ELASTIC GRIP .5-IN-WD CUT JUMPER	28480 28480 28480 28480 28480	7120-6482 7120-8539 9211-2257 9282-0906 JUMPER
	LUG-JUMPER	4		CUT JUMPER	28480	LUG-JUMPER

SECTION VII MANUAL BACKDATING

TABLE OF CONTENTS

	Paragra	ph		Page						
	7-1.	Introduction		7-1						
	7-3.	Format								
	7-5.	Change Sheets and Service Notes								
	7-8.	Backdating Information	7-2							
	7-9.	Service Group A - Keyboard and D	isplay (03325-66505) Δ17-2						
	7-12.	Service Group B - HP-IB Circuits (P/O 033	325-66506) Δ27-3						
	7-15.	Service Group C - Control Circuits	(P/O 03	3325-66506) Δ2						
	7-18.	Service Group D - Voltage Control								
		Δ3		7-5						
	7-21.			3325-66521) Δ37-7						
	7-24.			cuits (P/O 03325-66521) $\Delta 3 \dots 7-10$						
	7-27.	Service Groups D and G - VCO Bu								
				Δ4						
	7-31.) Δ47-14						
	7-34.	Service Group I - D/A Converter a								
	7.07			7-15						
	7-37.		3325-66514) Δ5							
	7-40.	(1, 0 00011) <u>mo</u> 111111111111								
	7-43.	Service Group L - Attenuator (0332								
	7-47.	Service Group M - Options: High V	Joltona (7-22						
	7-47.			Opt. 001) (03325-66509) $\Delta 7 7-24$						
	7-49.	Service Group N. Sween Drive Cir	cuite (D	O 03325-66514) Δ 57-24						
	7-52.			6502) $\Delta 8 \dots 7-25$						
	7 32.	service Group O - Fower Supplies	(03323-0	0302) \(\Delta\) (1-23						
	LIST	F OF ILLUSTRATIONS								
Figure		Page								
7-1.	Proces	ssor Interrupt Circuitry (Serial	7-5.	HINV Clocking Circuitry - Serial						
	Numb	ers 1748A00230 and		Numbers 1748A00230 and						
	Below)		Below	7-8					
7-2.	Schem	A21U8 Gating Circuitry - Serial								
	and R	12 (Serial Numbers		Numbers 1748A02475 and						
		.02600 and Below)		Below	7-9					
7-3.		Circuitry - Serial Numbers	7-7.	A21U8 Gating Circuitry - Serial	100					
		02475 and Below7-6	Numbers 1748A02476 to							
7-4.	VCO	Circuitry - Serial Numbers		1748A07390	7-9					

Figure 7-1.

1748A03226 to 1748A07390 7-7

7-8.	Integrator and Phase Modulation	7-19.	Location Of F2 (Serial Numbers
	Circuitry - Serial Numbers		1748A05825 to 1748A01076)7-26
	1748A02475 and Below7-10	7-20.	±15V Regulator (Serial Numbers
7-9.	Sample/Hold Circuitry (Serial		1748A01075 and Below)
	Numbers 1748A02475 and		
	Below)		
7-10.	U14 Biasing Circuitry (Serial Numbers		
	1748A00620 and Below)		LIST OF TABLES
7-11.	Sine Amplitude Control and	Table	P
	Amplitude Modulation Circuitry	Table	Page
	(Serial Numbers 1748A04675	7-1.	3325A Circuit Board Revisions 7-2
	and Below)7-13	7-2.	A5 Board Revisions7-2
7-12.	Mixer Driver Circuitry (Serial	7-3.	A6 Board Revisions7-3
	Numbers 1748A04675 and	7-4.	A6 Board Revisions7-3
	Below)7-15	7-5.	A21(A1) Board Revisions
7-13.	DC Offset Control (Serial Numbers	7-6.	A21(A1) Board Revisions
	1748A01075 and Below)	7-7.	A21(A1) Board Revisions
7-14.	DC Offset Control (Serial Numbers	7-8.	A3 Board Revisions7-12
	1748A08790 to 1748A01076) 7-18	7-9.	A3 Board Revisions7-14
7-15.		7-10.	A14(A4) Board Revisions
	(Serial Numbers 1748A05825 and	7-11.	A14(A4) Board Revisions
	Below)7-19	7-12.	A14(A4) Board Revisions
7-16.	Amplitude Control Circuitry (Serial	7-13.	A23(A7) Board Revisions
	Numbers 1748A05826 to	7-14.	A14(A4) Board Revisions
	1748A08790)	7-15.	A2 Board Revisions
7-17.	Output Amplifier (Serial Numbers		
	1748A01900 and below)7-21		
7-18.	Relay Drive Circuitry (Serial		
	Numbers 1748A01075 and		
	Below)		

SECTION VII MANUAL BACKDATING

7-1. Introduction.

7-2. The contents of this manual apply to all instruments. Earlier versions of this instrument, however, differ in design and appearance from those currently being produced. The information in this section documents the earlier instrument configurations and associated servicing procedures. Also included is information on recommended modifications for improvements to earlier instruments.

The following backdating information is organized by service group with all applicable information placed together for easy reference. Refer to Table 7-1 for a listing of the 3325A PC assemblies and their current (May 1984) revision.

7-3. Format.

7-4. Design, component, and documentation changes to this instrument are identified by a Δ symbol. The numbered delta in the text or on a schematic corresponds to the numbered delta shown in the heading that precedes the backdating information for that particular service group. When a delta symbol is encountered, the technician should first refer to the corresponding service group in this section. Once there, locate the page number where the delta symbol was found and determine if the change applies by checking the instrument's serial number against the range given.

7-5. Change Sheets and Service Notes.

- 7-6. As HP continues to improve the performance of the 3325A, corrections and modifications to the manual may be required. These changes are documented in a yellow "MANUAL CHANGES" supplement. In order to keep the manual up to date, one should periodically request the most recent supplement which is available from the nearest HP Sales and Service Office.
- 7-7. The instrument related service note is a publication directed toward qualified service personnel and is available to all HP Service Centers and customers. The service note conveys service-related information that is intended to increase the reliability, improve the performance, and extend the usefulness of your HP instrument. Copies of available service notes can be obtained from your nearest HP Sales and Service Office listed at the back of this manual.

Table 7-1. 3325A Circuit Boards Revisions.

Assembly	Reference Designator	Service Group(s)	Revision
03325-66502	A2	0	F
03325-66503	А3	D,G,H	С
03325-66505	A5	A	С
03325-66506	A6	В,С	С
03325-66508 *	A8	М	А
03325-66509 *	A9	М	А
03325-66514 **	A14	I,J,K,L,N	С
03325-66521 ***	A21	D,E,F	С
03325-66523 ****	A23	L	В

^{* 03325-66508} is the High Voltage Output Option (Opt. 002)

7-8. Backdating Information.

7-9. Service Group A - Keyboard and Display (03325-66505) Δ 1.

7-10. **A5 - Past to Present.** Table 7-2 briefly summarizes the engineering effort that has brought A5 to its current revision.

Table 7-2. A5 Board Revisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A5 - Rev A	1748A00101 - 1748A02911	_
- Rev B	1748A02912 - 1748A03725	went Rev B when board was modified to simplify manuf. proce- dure. No circuit or layout changes.
- Rev C	1748A03726 - Present	went Rev C when PC traces were moved. No circuit or comp. layout changes.
	* Note that all serial number ranges are appro	oximate.

^{* 03325-66509} is the High Stability Frequency Reference Option (Opt. 001)

^{**} In 3325A's with serial number 1748A01900 or below, the part number for this assembly was 03325-66504 (A4).

^{***} In 3325A's with serial number 1748A02475 or below, the part number for this assembly was 03325-66501 (A1).

^{****} In 3325A's with serial number 1748A00700 or below, the part number for this assembly was 03325-66507 (A7).

7-11. All A5 board revisions are identical in design and component layout.

7-12. Service Group B - HP-IB Circuits (P/O 03325-66506) Δ 2.

7-13. A6 - Past to Present. Table 7-3 briefly summarizes the engineering effort that has brought A6 to its current revision.

Table 7-3. A6 Board Revisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A6 - Rev A	1748A00101 - 1748A00130	_
- Rev B	1748A00131 - 1748A00230	went Rev B when test points were added.
- Rev C	1748A00231 - Present	went Rev C when design changes were made to improve μ P interrupt ckty. See Service Group C.
	* Note that all serial number ranges are appro	eximate.

^{7-14.} There have been no design or component layout changes to the HP-IB section of the A6 assembly.

If the A6 assembly (03325-66506) is replaced in instruments with serial number 1748A04250 or below, there may be a compatibility problem between the older cables used in the instrument and the connectors on the new board. Refer to paragraph 8-113 in Section VIII if replacement of A6 is necessary.

7-15. Service Group C - Control Circuits (P/O 03325-66506) Δ 2.

7-16. **A6 - Past to Present.** Table 7-4 briefly summarizes the engineering effort that has brought A6 to its current revision.

Table 7-4. A6 Board Revisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A6 - Rev A	1748A00101 - 1748A00130	-
- Rev B	1748A00131 - 1748A00230	went Rev B when test points were added.
- Rev C	1748A00231 - Present	went Rev C when design changes were made to improve μP interrupt ckty.
	* Note that all serial number ranges are appro	ximate.

^{7-17.} The following backdating information pertains to the Control Circuits portion of the A6 assembly.

Affected instruments: serial numbers 1748A00230 and below.

 $[\]Delta 2$ - Page 8-C-37, Figure 8-36.

The above range of instruments do not have R2 (7.5k Ω p/n 0683-7525), CR2 (p/n 1901-0040), or C7 (0.01 μ F p/n 0160-3847). These instruments also contain the following processor interrupt circuitry involving U42 and U34.

Figure 7-1. Processor Interrupt Circuitry (Serial Numbers 1748A00230 and Below*).

* All part numbers remain the same.

 Δ 2 Page 8-C-37, Figure 8-36.

Affected instruments: serial numbers 1748A02600 and below.

The above range of instruments contain resistors R11 and R12 (p/n 0683-1825). See Figure 7-2 for schematic and board location.

Figure 7-2. Schematic and Board Location of R11 and R12 (Serial Numbers 1748A02600 and below).

Δ2 - Page 8-B-11, 8-C-37, Figure 8-32, 8-36.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in the above range may have an A6 board which contains connectors J2, J3, J4, (p/n 1251-4494) for use with cables W31, W32, W33 (p/n 8120-2577). These older (black) connectors and (white) cables have been replaced on newer boards by more reliable connectors (orange - p/n 1251-6567) and cables (gray - 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A6 board in the above instruments is replaced, the connectors on the older destination assemblies (A3, A14(4), A21(1)) will have to be changed also. See paragraph 8-113 in Section VIII for more information.

Note also that on the older A6 boards used in the above instruments, cable W36 (p/n 03325-61622) was used to carry supply current to the A14(4) board in parallel with W33. With the newer cables on the newer boards, W36 is not needed. However, if one chooses to modify the newer board to use the older (1251-4494) connectors and cables (8120-2577), W36 is required.

 $\Delta 2$ - Page 8-C-37, Figure 8-36.

Affected instruments: All

Due to earlier fabrication processes, it was necessary to pad the value of A6R8 in order to set the nanoprocessor's (A6U9) backgate voltage (V_{BG}) to the voltage stamped on the processor. Briefly, processors stamped with the following voltages require the corresponding padded values for A6R8:

$V_{\rm BG}$	A6R8*	-hp- Part Number
-2.0V	34.8k	0757-0123
-2.5V	26.7k	0698-4488
-3.0V	21.5k	0757-0199
-3.5V	17.4k	0698-4482
-4.0V	14.7k	0698-3156
-4.5V	12.7k	0698-3359
-5.0V	9.53k	0698-4020

Note that the nanoprocessor's fabrication process has been controlled to the extent that V_{BG} on all processors is now -5.0V. Therefore, if A6U9 is replaced (p/n 1820-1691), insure that A6R8 is $9.53k\Omega$.

7-18. Service Group D · Voltage Controlled Oscillator Shield (P/O 03325-66521) $\triangle 3$.

7-19. **A21 - Past to Present.** Table 7-5 summarizes the engineering changes that have brought A21 to its current revision.

Table	7-5.	A21(A1) Roard	Revisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A1 - Rev A	1748A00101 - 1748A00230	-
- Rev B	1748A00231 - 1748A02475	went Rev B when U25 and assoc. ckty were added to reclock HINV to the Frac. N IC. See Svc. Grp. E.
A21 - Rev A	1748A02476 - 1748A02600	went A21 Rev A following redesign and layout of the VCO, plus mod. to the S/H ckty. See Svc. Grps. D, E, F.
- Rev B	1748A02601 - 1748A07390	Rev B boards are identical to Rev A, with the exception of PC trace location.
- Rev C	1748A07391 - Present	went Rev C following mod. to VCO ckty. See Svc. Grp. D.
* Note that all serial number ranges are approximate.		

7-20. The following backdating information pertains to the VCO portion of the A21(A1) assembly.

Δ3 - Page 8-D-7/8-D-8, Figure 8-37.

Affected instruments: serial numbers 1748A02475 and below.

The above range of instruments contain an 03325-66501 assembly with the VCO design and layout shown in Figure 7-3. Note that in instruments with serial numbers 1748A00231 to 1748A02475, A1C177 is tied to +5V.

Figure 7-3. VCO Circuitry · Serial Numbers 1748A02475 And Below.

Δ3 - Page 8-D-7/8-D-8, Figure 8-37.

Affected instruments: serial numbers 1748A02476 to 1748A03225.

The preceding range of instruments contain the VCO circuitry shown in Figure 7-4, but do not have R216.

 $\Delta 3$ - Page 8-D-7/8-D-8, Figure 8-37.

Affected instruments: serial numbers 1748A03226 to 1748A07390.

The preceding range of instruments contain the VCO circuitry shown in Figure 7-4.

Figure 7-4. VCO Circuitry - Serial Numbers 1748A03226 to 1748A07390.

For instruments with serial numbers 1748A02476 to 1748A04675, refer to Service Note 3325A-9 if necessary for a modification procedure to prevent oscillator failures.

Δ3 - Page 8-D-7/8-D-8, Figure 8-37.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in the preceding range may have an A21(A1) board which contains connector J1 (p/n 1251-4494) for use with cable W31 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A21(A1) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

7-21. Service Group E \cdot ÷ N.F Counter (P/O 03325-66521) \triangle 3.

7-22. **A21 Past To Present.** Table 7-6 summarizes the engineering changes that have brought A21 to its current revision.

Table	7.0	A 24/A	41 D		Revisions.
i abie	/·O.	AZIIA	1) B	oaro	Kevisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A1 - Rev A	1748A00101 - 1748A00230	_
- Rev B	1748A00231 - 1748A02475	went Rev B when U25 and assoc. ckty were added to reclock HINV to the Frac. N IC. See Svc. Grp. E.
A21 - Rev A	1748A02476 - 1748A02600	went A21 Rev A following redesign and layout of the VCO, plus mod. to the S/H ckty. See Svc. Grps. D, E, F.
- Rev B	1748A02601 - 1748A07390	Rev B boards are identical to Rev A, with the exception of PC trace location.
- Rev C	1748A07391 - Present	went Rev C following mod. to VCO ckty. See Svc. Grp. D.
*Note that all serial number ranges are approximate.		

7-23. The following backdating information pertains to the \div N.F Counter portion of the A21(A1) assembly.

 $\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.

Affected instruments: serial numbers 1748A0230 and below.

The above range of instruments contain the HINV clocking circuitry shown in Figure 7-5.

Note — the -hp- part number for U5 is 1820-1112.

Figure 7-5. HINV Clocking Circuitry - Serial Numbers 1748A00230 And Below.

 $\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.

Affected instruments: serial numbers 1748A01200 and below.

The preceding range of instruments do not have R146.

Δ3 - Page 8-E-3/8-E-4, Figure 8-38.

Affected instruments serial numbers 1748A02475 and below.

The preceding range of instruments contain the U8 gating circuitry shown in Figure 7-6.

Figure 7-6. A21U8 Gating Circuitry - Serial Numbers 1748A02475 and Below.

 $\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.

Affected instruments: serial numbers 1748A02476 to 1748A07390.

The above range of instruments contain the U8 gating circuitry shown in Figure 7-7.

Figure 7-7. A21U8 Gating Circuitry - Serial Numbers 1748A02476 to 1748A07390.

 $\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in the preceding range may have an A21(A1) board which contains connector J1 (p/n 1251-4494) for use with cable W31 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A21(A1) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

7-24. Service Group F · Fractional N Analog Circuits (P/O 03325-66521) $\Delta 3$.

7-25. **A21 Past To Present.** Table 7-7 summarizes the engineering changes that have brought A21 to its current revision.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A1 - Rev A	1748A00101 - 1748A00230	_
- Rev B	1748A00231 - 1748A02475	went Rev B when U25 and assoc. ckty were added to reclock HINV to the Frac. N IC. See Svc. Grp. E.
A21 - Rev A	1748A02476 - 1748A02600	went A21 Rev A following redesign and layout of the VCO, plus mod. to the S/H ckty. See Svc. Grps. D, E, F.
- Rev B	1748A02601 - 1748A07390	Rev B boards are identical to Rev A, with the exception of PC trace location.
- Rev C	1748A07391 - Present	went Rev C following mod. to VCO ckty. See Svc. Grp. D.

Table 7-7. A21(A1) Board Revisions.

7-26. The following backdating information pertains to the Fractional N Analog Circuits portion of the A21(A1) assembly.

* Note that all serial number ranges are approximate.

 $\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.

Affected instruments: serial numbers 1748A02475 and below.

This range of instruments contain the integrator and phase modulation circuitry shown in Figure 7-8.

Figure 7-8. Integrator and Phase Modulation Circuitry - Serial Numbers 1748A02475 and Below.

This same range of instruments contain the Sample/Hold circuitry shown in Figure 7-9.

Figure 7-9. Sample/Hold Circuitry (Serial Numbers 1748A02475 and Below).

E

In the Sample/Hold Circuitry of Figure 7-9, R107 may be one of the following padded values:

 750Ω 0757-0420 374Ω 0698-4452 1330Ω 0757-0317 2000Ω 0757-0283

 $\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.

Affected instruments: serial numbers 1748A02850 and Below.

These instruments do not have C33. C33 was added to reduce Fractional N spurs at 20MHz.

 $\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.

Affected instruments: serial numbers 1748A02476 to 1748A07390.

These instruments contain the Sample/Hold circuitry shown in Figure 8-39. These instruments do not, however, have CR20.

Δ3 - Page 8-F-5/8-F-6, Figure 8-39.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in this range may have an A21(A1) board which contains connector J1 (1251-4494) for use with cable W31 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A21(A1) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

7-27. Service Groups D and G · VCO Buffer (P/O 03325-66503), 30MHz Reference and Dividers (P/O 03325-66503) $\Delta 4$.

7-28. **A3 - Past to Present.** Table 7-8 briefly summarizes the engineering changes that have brought A3 to its current revision.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A3 - Rev A	1748A00101 - 1748A00470	_
- Rev B	1748A00471 - 1748A04675	went Rev B with modification to 20MHz LPF. See Svc. Grp. H.
- Rev C	1748A04676 - Present	went Rev C when modifications were made to the mixer driver and multiplier ckty.
* Note that all serial number ranges are approximate.		

Table 7-8. A3 Board Revisions.

- 7-29. There is no backdating information for the A3 VCO Buffer circuitry at this time.
- 7-30. The following backdating information pertains to the 30MHz reference and divider portion of the A3 assembly.
- $\Delta 4$ Page 8-G-3/8-G-4, Figure 8-40.

Affected instruments: serial numbers 1748A00620 and below.

The preceding range of instruments contain the biasing circuitry for U14 shown in Figure 7-10. Components unique to this design include:

A3R71 $10k\Omega$ p/n 0683-1035 A3R74 $10k\Omega$ p/n 0683-1035 A3R89 $4.7k\Omega$ p/n 0683-4725

Figure 7-10. U14 Biasing Circuitry (Serial Numbers 1748A00620 and Below).

 $\Delta 4$ - Page 8-G-3/8-G-4, Figure 8-40.

Affected instruments: serial numbers 1748A02600 and below.

The preceding instruments do not have C20.

Δ4 - Page 8-G-3/8-G-4, Figure 8-40.

Affected instruments: serial numbers 1748A04675 and below.

The preceding range of instruments contain the sine amplitude control and amplitude modulation circuitry shown in Figure 7-11. These instruments also do not have A3R85 or A3R90 (see Figure 8-40).

Figure 7-11. Sine Amplitude Control and Amplitude Modulation Circuitry (Serial Numbers 1748A04675 and Below).

 $\Delta 4$ - Page 5-3, paragraph 5-13.

Affected instruments: serial numbers 1748A04675 and below.

For these instruments, the following Amplitude Calibration adjustment procedure should be used.

Equipment Required:

Oscilloscope (-hp- Model 1740A) 10:1 Oscilloscope Probe (-hp- Model 10041A) DC Power Supply (-hp- Model 6214A) Oscillator (-hp- Model 204C) AC Digital Voltmeter (-hp- Model 3466A)

a. Set the 3325A as follows:

Function Sine
Frequency1kHz
Amplitude
DC Offset1mV
Amplitude ModulationOn

b. Disconnect cable W7 from A3J7.

CAUTION

Do not allow disconnected cable connectors to contact the printed circuit board or components, or circuits may be damaged.

- c. Adjust the dc power supply output to approximately +3V and connect between the center contact of A3J7 and ground.
- d. Disconnect cable W23 from A3J23.

- e. Measure the oscillator (-hp- 204C) output with the ac digital voltmeter and adjust the output level to approximately 1Vrms at a frequency of 1kHz. Connect the oscillator output between the center contact of A3J23 and ground.
- f. Connect the oscilloscope through a 10:1 probe to A3TP4. Set the oscilloscope input to ac coupled, sweep to 1ms/div.
- g. Adjust the dc power supply output voltage to null out the sine wave signal on the display. (Change the oscilloscope vertical gain as necessary to observe the signal.)
- h. Ground the oscilloscope input and zero the trace on the center line. Set the input to dc coupled.

- i. Adjust Offset Out (A3R68) to return the oscilloscope trace to the center line (0Vdc).
- j. Disconnect the dc power supply and the oscillator and reconnect cables W7 and W23.
- k. Set 3325A amplitude modulation off.
- l. Connect an ac digital voltmeter to the 3325A signal output.
- m. Press the AMPTD CAL key.
- n. Adjust Offset In (A3R33) for a voltmeter reading of 0.707Vrms.
- o. Repeat steps m and n until the output voltage of 0.707Vrms does not change when the AMPTD CAL key is pressed.

 $\Delta 4$ - Page 8-G-3/8-G-4, Figure 8-40.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in the preceding range may have an A3 assembly which contains connector J1 (p/n 1251-4494) for use with cable W33 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A3 assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

7-31. Service Group H - Mixer (P/O 03325-66503) Δ 4.

7-32. A3 - Past to Present. Table 7-9 briefly summarizes the engineering changes that have brought A3 to it current revision.

	Changes
1748A00101 - 1748A00470	-
1748A00471 - 1748A04675	went Rev B with modification to 20MHz LPF.
1748A04676 - Present	went Rev C when modifications were made to the mixer driver and multiplier ckty.
	1748A00471 - 1748A04675

Table 7-9. A3 Board Revisions.

7-33. The following backdating information pertains to the mixer portion of the A3 assembly.

 $\Delta 4$ - Page 8-H-3/8-H-4, Figure 8-41.

Affected instruments: serial numbers 1748A00470 and below.

Instruments in this range do not have A3R126 or A3C120.

 $\Delta 4$ - Page 8-H-3/8-H-4, Figure 8-41.

Affected instruments: serial numbers 1748A04675 and below.

These instruments contain the mixer driver circuitry shown in Figure 7-12. Note that the part number for A3U16 in this earlier design was 1858-0015.

Figure 7-12. Mixer Driver Circuitry (Serial Numbers 1748A04675 and Below).

If reliability problems with U16 are encountered in these earlier instruments, refer to Service Note 3325A-7. This service note describes a check of the mixer driver current and subsequent adjustment to reduce the current, thereby improving U16's reliability. Note that the performance test steps and adjustments referred to in this service note may not correspond directly with the steps currently found in Sections IV and V.

If status byte problems are encountered in instruments with serial number 1748A01300 and below, change C8 to a 22μ F capacitor (p/n 0180-0228).

7-34. Service Group I - D/A Converter And Sample/Hold (P/O 03325-66514) $\Delta 5$.

7-35. **A14 - Past To Present.** Table 7-10 briefly summarizes the engineering and manufacturing changes that have brought A14(A4) to its current revision.

Table 7-10. A14(A4) Board Revisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A4 - Rev B**	1748A00101 - 1748A00190	_
- Rev C	1748A00191 - 1748A00470	went Rev C following PC trace and manu. mods.
- Rev D	1748A00471 - 1748A01075	went Rev D following manu. changes and the addition of CR108, CR109, and R55.
- Rev E	1748A01076 - 1748A01900	went Rev E following mods. to the relay driver and dc offset control portion of A4.
A14 - Rev A	1748A01901 - 1748A08790	went A14 Rev A when output amp (Svc. Grp. K) was re- designed. R142 was also added.
- Rev B	1748A08791 - 1748A14537	went A14 Rev B with changes to dc offset and amptd. control circuitry.
- Rev C	1748A14538 - Present	went A14 Rev C following PC trace mod. to level comp. (U42) ckty.

^{*} Note that all serial number ranges are approximate.

7-36. The following backdating information pertains to the DAC and Sample/Hold portion of A14(A4).

 $\Delta 5$ - Page 8-I-5/8-I-6, Figure 8-42.

Affected instruments: serial numbers 1748A00150 and below.

These instruments do not have CR108.

Affected instruments: serial numbers 1748A00470 and below.

Instruments in this serial number range do not have CR109 or R55.

 $\Delta 5$ - Page 8-I-5/8-I-6, Figure 8-42.

Affected instruments: serial numbers 1748A01900 and below.

For instruments in this serial number range, R40 is $20k\Omega$ p/n 2100-0558.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in this range may contain an A14(A4) board which contains connector J1 (p/n 1251-4494) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A14(A4) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

^{**} No A4 Rev A boards were ever produced.

Note also that on the older A14(A4) boards, cable W36 was used to carry supply current from the A6 assembly to A14(A4). With the newer cables on the newer boards, W36 is not needed. However, if one chooses to modify a newer board to use the older (1251-4494) connectors and cables (8120-2577), W36 is required.

7-37. Service Group J - Function Circuits (P/O 03325-66514) $\Delta 5$.

7-38. **A14 - Past To Present.** Table 7-11 briefly summarizes the engineering and manufacturing changes that have brought A14(A4) to its current revision.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A4 - Rev B**	1748A00101 - 1748A00190	_
- Rev C	1748A00191 - 1748A00470	went Rev C following PC trace and manufacturing modifications.
- Rev D	1748A00471 - 1748A01075	went Rev D following manuf. changes and the addition of CR108, CR109, and R55.
- Rev E	1748A01076 - 1748A01900	went Rev E following mod. to the relay driver and dc offset control portion of A4.
A14 - Rev A	1748A01901 - 1748A08790	went A14 Rev A when output amp (Svc. Grp. K) was re- designed. R142 was also added.
- Rev B	1748A08791 - 1748A14537	went Rev B with changes to dc offset and amptd. control circuitry.
- Rev C	1748A14538 - Present	went Rev C following PC trace mod. to level comparator (U42) ckty.
* Note that all serial number ranges are approximate.		

Table 7-11. A14(A4) Board Revisions.

7-39. The following backdating information pertains to the function circuits portion of A14(4)

 $\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A00190 and below.

These instruments do not have R220. R220 was added to increase the usefulness of the Amp-In test point by providing a load for current sources feeding the output amplifier. Voltages can then be measured across this resistor.

 $\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A01075 and below.

These instruments contain the dc offset control circuitry shown in Figure 7-13.

^{**} No A4 Rev A boards were ever produced.

Figure 7-13. DC Offset Control (Serial Numbers 1748A01075 and Below).

Affected instruments: serial numbers 1748A08790 to 1748A01076.

These instruments contain the dc offset control circuitry shown in Figure 7-14.

Figure 7-14. DC Offset Control (Serial Numbers 1748A08790 to 1748A01076).

 $\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A02350 and below.

These instruments do not have CR110. See Service Note 3325A-5A for a modification procedure to improve square wave phase control in these instruments.

Δ5 - Page 8-J-7/8-J-8, Figure 8-43. Δ5 - Page 5-5, paragraph 5-17.

Affected instruments: serial numbers 1748A01900 and below.

These instruments do not have R142. When performing the Amplitude Flatness adjustment, use the following procedure:

Equipment Required:

High Frequency Spectrum Analyzer (-hp-Model 141T/8552B/8553B/8566A/8568A)

a. Set the 3325A as follows:

Function Sine
Amplitude0.999Vp-p
Start Freq
Stop Freq
Marker Freq5MHz
Sweep Time

- b. Connect the 3325A signal output to a high frequency spectrum analyzer (50Ω input).
- c. Press the START CONT key.
- d. Adjust the spectrum analyzer as follows:

Center Frequency10MHz
Bandwidth300kHz
Scan Width2MHz/div
Input Attenuation
Base Line Clipper 60dB
Video Filter Off
Scan Time

Log Ref Level+20dBm
10dB log
Vernier 8dB
Scan Mode Int
Scan Trigger Auto

- e. The spectrum analyzer should display the frequency sweep, at a level of approximately 10dB.
- f. Change the spectrum analyzer Log Ref Level to $2dB \log$.
- g. Adjust FLT (A4C217) slightly for the most uniform level across the entire sweep, using a non-conductive tool.
- h. Disconnect the spectrum analyzer from the 3325A output.

$\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A05825 and below.

These instruments contain the amplitude control circuitry shown in Figure 7-15.

Figure 7-15. Amplitude Control Circuitry (Serial Numbers 1748A05825 and below).

Affected instruments: serial numbers 1748A05826 to 1748A08790.

These instruments contain the amplitude control circuitry shown in Figure 7-16.

Figure 7-16. Amplitude Control Circuitry (Serial Numbers 1748A05826 to 1748A08790).

 $\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A08790 and below.

These instruments do not have U36. In these instruments, pin 8 or 9 of U34 is connected to R10i via a jumper wire.

 $\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A08790 and below.

Instruments in this serial number range do not have CR111 or R278.

 $\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.

Affected instruments: serial numbers 1748A04250 and below.

These instruments may have an A14(A4) board which contains connector J1 (p/n 1251-4494) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The new connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A14(A4) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

7-40. Service Group K - Output Amplifier (P/O 03325-66514) $\Delta 5$.

7-41. **A14 - Past To Present.** Table 7-12 briefly summarizes the engineering and manufacturing changes that have brought A14 to its current revision.

7-42. The following backdating information pertains to the Output Amplifier portion of A14(A4).

 $\Delta 5$ - Page 8-K-5/8-K-6, Figure 8-44.

Affected instruments: serial numbers 1748A01900 and below.

These instruments contain the output amplifier design shown in Figure 7-17.

Table 7-12. A14 (A4) Board Revisions.

Board Revision	Instruments Shipped With This Revision*	Board Changes
A4 - Rev B**	1748A00101 - 1748A00190	_
- Rev C	1748A00191 - 1748A00470	went Rev C following PC trace and manufacturing modifications.
- Rev D	1748A00471 - 1748A01075	went Rev D following manuf. changes and the addition of CR108, CR109, and R55.
- Rev E	1748A01076 - 1748A01900	went Rev E following mod. to the relay driver and dc offset control portion of A4.
A14 - Rev A	1748A01901 - 1748A08790	went A14 Rev A when output amp (Svc. Grp. K) was re- designed. R142 was also added.
- Rev B	1748A08791 - 1748A14537	went Rev B with changes to dc offset and amptd. control circuitry.
- Rev C	1748A14538 - Present	went Rev C following PC trace mod. to level comparator (U42) ckty.

^{*} Note that all serial number ranges are approximate.

^{**} No A4 Rev A boards were ever produced.

Figure 7-17. Output Amplifier (Serial Numbers 1748A01900 and below).

Affected instruments: serial numbers 1748A01900 to 1748A00190.

Refer to Figure 7-17. Instruments in this range contain diodes CR222 and CR223 connected between pins 4 and 1 of A4U46. Note that the anode end of CR223 is connected to pin 4 and the anode end of CR222 is connected to pin 1. Referring again to Figure 7-17, these instruments also contain diodes CR224 and CR225. CR224 (cathode) is connected from the base of Q211 to the collector of Q211. CR225 (anode) is connected from the base of Q204 to the collector of Q204. Modify Figure 7-17 as necessary to show these components.

 $\Delta 5$ - Page 8-K-5/8-K-6, Figure 8-44.

Affected instruments: serial numbers 1748A04250 and below.

Instruments in this range may contain an A14(A4) board which has connector J1 (p/n 1251-4494) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A14(A4) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

7-43. Service Group L - Attenuator (03325-66523) and Relay Drivers (P/O 03325-66514) Δ 5, Δ 6.

7-44. **A23 - Past to Present.** Table 7-13 briefly summarizes the engineering and manufacturing changes that have brought A23(A7) to its current revision. Refer to Tables 7-10, 7-11, 7-12, or 7-14 for revision information on A14(A4).

Board Revision	Instruments Shipped With This Revision*	Board Changes
A7 - Rev A	1748A00101 - 1748A00540	
A23 - Rev A	1748A00541 - 1748A00950	went A23 Rev A following design changes to improve the R/F perfor- mance of the atten.
- Rev B	1748A00951 - Present	went A23 Rev B following PC trace layout modification.
* Note that all serial number ranges are approximate.		

Table 7-13. A23(A7) Board Revisions.

7-45. The following backdating information pertains to the Attenuator assembly (03325-66523(07)).

 $\Delta 6$ - Page 8-L-3/8-L-4, Figure 8-45.

Affected instruments: serial numbers 1748A00540 and below.

Instruments in this serial number range do not have C15, C16, or C17.

 $\Delta 6$ - Page 8-L-3/8-L-4, Figure 8-45.

Affected instruments: serial numbers 1748A04400 and below.

Instruments in this serial number range have an A23(A7) assembly which contains connector J30 (p/n 1251-4390) for use with cable W30 (p/n 8120-2576). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-5064) and cable (gray - p/n 8120-3216). The newer connector is incompatible with the older cable as is the newer cable incompatible with the older connector. If the A23(A7) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII. Note that similar connector/cable changes have been made to other assemblies beginning with serial number 1748A04250.

7-46. The following backdating information pertains to the relay driver portion of A14(A4).

 $\Delta 5$ - Page 8-L-3/8-L-4, Figure 8-45.

Affected instruments: serial numbers 1748A01075 and below.

Instruments in this serial number range contain the relay drive circuitry shown in Figure 7-18. Note that serial numbers 1748A01075 to 1748A00231 have a capacitor (C265 10μ F p/n 0180-0374) shunting R80.

Figure 7-18. Relay Drive Circuitry (Serial Numbers 1748A01075 and Below).

Δ5 - Page 8-L-3/8-L-4, Figure 8-45.

Affected instruments: serial numbers 1748A04400 and below.

Instruments in this range may have an A14(A4) board which contains connectors J1 (p/n 1251-4494) and J30 (p/n 1251-4390) for use with cables W32 (p/n 8120-2577) and W30 (p/n 8120-2576). The older (black) connectors and (white) cables have been replaced on newer boards by more reliable connectors J1 (orange - p/n 1251-6567) and J30 (orange - p/n 1251-5064), and cables W32 (gray - p/n 8120-3108) and W30 (gray - p/n 8120-3216). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. Should replacement of the

A14(A4) assembly in one of the above instruments become necessary, refer to paragraph 8-113 in Section VIII for additional replacement information. Note that cable/connector changes for part numbers 1251-6567 and 8120-3108 occurred beginning with instrument serial number 1748A04250.

7-47. Service Group M - Options: High Voltage Output (Opt.002) (03325-66508) and High Stability Reference (Opt. 001) (03325-66509) Δ 7.

7-48. There have been no engineering or manufacturing changes to the 03325-66508 or 03325-66509 assemblies.

7-49. Service Group N - Sweep Drive Circuits (P/O 03325-66514) $\Delta 5$.

7-50. **A14 - Past to Present.** Table 7-14 briefly summarizes the engineering and manufacturing changes that have brought A14(A4) to its current revision.

Board Revision	Instruments Shipped With This Revision*	Board Changes			
A4 - Rev B**	1748A00101 - 1748A00190	_			
- Rev C	1748A00191 - 1748A00470	went Rev C following PC trace and manufacturing modifications.			
- Rev D	1748A00471 - 1748A01075	went Rev D following manuf. changes and the addition of CR108, CR109, and R55.			
- Rev E	1748A01076 - 1748A01900	went Rev E following mod. to the relay driver and dc offset control portion of A4.			
A14 - Rev A	1748A01901 - 1748A08790	went A14 Rev A when output amp (Svc. Grp. K) was re- designed. R142 was also added.			
- Rev B	1748A08791 - 1748A14537	went Rev B with changes to dc offset and amptd. control circuitry.			
- Rev C	1748A14538 - Present	went Rev C following PC trace mod. to level comparator (U42) ckty.			
	* Note that all serial number ranges are approximate.				
	** No A4 Rev A boards were ever produc	ed.			

Table 7-14. A14(A4) Board Revisions.

 Δ - Page 8-N-3/8-N-4, Figure 8-48.

Affected instruments: serial numbers 1748A00470 and below.

For instruments in this range, R6 is $20k\Omega$, part number 2100-0558. If U5 is replaced in any of these instruments, it may be necessary to replace R6 with part number 2100-3253 ($50k\Omega$) in order to perform the X-Drive adjustment.

 Δ - Page 8-N-3/8-N-4, Figure 8-48.

Affected instruments: serial numbers 1748A01900 and below.

Instruments in this serial number range do not have Q4.

^{7-51.} The following backdating information pertains to the sweep drive portion of A14(A4).

$\Delta 5$ - Page 8-N-3/8-N-4, Figure 8-48.

Affected instruments: serial numbers 1748A04250 and below.

These instruments may have an A14(A4) board which contains connector J1 (p/n 1251-4494) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A14(A4) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

7-52. Service Group 0 - Power Supplies (03325-66502) $\Delta 8$.

7-53. **A2 - Past to Present.** Table 7-15 briefly summarizes the engineering and manufacturing changes that have brought A2 to its current revision.

Board Revision	Instruments Shipped With This Revision*	Board Changes		
A2 - Rev A	1748A00101 - 1748A00150	_		
- Rev B	1748A00151 - 1748A01075	went Rev B when PC trace modifications were made.		
- Rev C	1748A01076 - 1748A05825	went Rev C with the addition of R34, R35, Q8, and F2.		
- Rev D	1748A05826 - 1748A07339	went Rev D when the relay cur- rent limiter circuitry of Q13 and Q12 were added.		
- Rev E	1748A07340 - 1748A15073	went Rev E following PC trace mod. to eliminate a potential shock hazard. See Service Note 3325A-11B-S.		
- Rev F	1748A15074 - Present	went Rev F following mods. to widen PC trace spacings.		
	* Note that all serial number ranges are approximate.			

Table 7-15. A2 Board Revisions.

Affected instruments: serial numbers 1748A05825 and below.

Instruments in this range contain the fuse F2 shown in Figure 7-19 in place of the circuitry shown in Figure 8-49. See Service Note 3325A-12 for details and procedures for improving the reliability of the over-voltage protection circuitry.

^{7-54.} The following backdating information pertains to the power supply assembly 03325-66502.

 $[\]Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.

Figure 7-19. Location Of F2 (Serial Numbers 1748A05825 to 1748A01076).

 $\Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.

Affected instruments: serial numbers 1748A01075 and below.

Instruments in this serial number range do not have R35, R34, Q8, or F2. (See Figure 7-20.)

Figure 7-20. $\pm 15V$ Regulator (Serial Numbers 1748A01075 and Below).

 $\Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.

Affected instruments: serial numbers 1748A01200 and below.

Instruments in this range do not have R36. See Service Note 3325A-1B for details and procedures for a recommended modification to the over-voltage protection circuitry.

Affected instruments: Serial numbers 1748A07260 and below. Instruments in this range do not have CR18.

 $\Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.

Affected instruments: serial numbers 1748A07339 and below.

Note that for instruments in this serial number range, there is a potential electrical shock hazard present with the A2 board. A trace on the underside of A2 could pass within 0.5mm of a folded edge of the instrument's floating sub-chassis. This trace carries one-half the line voltage in 220V/240V applications. For 100V/120V applications, this is a neutral trace. See Product Safety Service Note 3325A-11B-S for additional information and corrective procedures.

MANUAL CHANGE SHEETS

WARNING

These servicing instructions are for use by trained service personnel only. To avoid electrical shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

SECTION VIII SERVICE

TABLE OF CONTENTS

Paragrap	ph	Page
8-1.	Introduction	8-1
8-3.	Basic Theory	
8-5.	Theory Of Operation	8-1
8-7.	Keyboard and Display (Service Group A)	8-1
8-12.	HP-IB Circuits (Service Group B)	
8-18.	Control Circuits (Service Group C)	8-5
8-24.	Frequency Synthesis	8-8
8-43.	Reference Circuits (Service Group G)	8-12
8-51.	Mixer (Service Group H)	8-13
8-53.	D/A Converter (Service Group I)	8-13
8-59.	Function Circuits (Service Group J)	8-16
8-72.	Output Amplifier (Service Group K)	8-19
8-77.	Attenuator (Service Group L)	8-19
8-80.	High Voltage Output Option 002 (Service Group M)	
8-82.	Sweep Drive Circuits (Service Group N)	
8-89.	Crystal Oven Option 001 (Service Group M)	8-22
8-91.	Power Supplies (Service Group O)	
8-98.	Sine Amplitude Control Path8-2	3/8-24
8-99.	Amplitude Control Circuitry8-2	
8-102.		
8-104.		
8-105.		
8-107.		
8-109.		
8-111.	, , , , , , , , , , , , , , , , , , ,	
8-113.	,,, companion of patromety	
8-115.		
8-117.		
8-119.		8-28
8-121.		
8-124.		8-28
8-126.	,	8-28
8-128.	Logic Troubleshooting by Signature Analysis	8-28

LIST OF ILLUSTRATIONS

Figure	Page		
8-1.	Simplified Block Diagram8-2	8-34(a). Signature Analysis Test 2.8-C-25/8-C-26
8-2.	Basic Block Diagram, Logic Circuits 8-2	8-34(b). Signature Analysis Test 2.8-C-27/8-C-28
8-3.	Keyboard and Display Block Diagram 8-3). Signature Analysis Test 5.8-C-31/8-C-32
8-4.	HP-IB Data Input Path8-4	8-35(b). Signature Analysis Test 5.8-C-33/8-C-34
8-5.	HP-IB Data Output Path8-4). Signature Analysis Test 58-C-35
8-6.	HP-IB Management and Handshake 8-5	8-36.	
8-7.	Basic Block Diagram of Control	8-37.	VCO, A21, and VCO Buffer,
	Circuits8-6		A38-D-7/8-D-8
8-8.	Phase Lock Loop8-7	8-38.	÷ N.F. Counter, A21 8-E-3/8-E-4
8-9.	Phase Detector8-8		TP9 and TP10 Waveforms8-F-4
8-10.	Integrator Output8-9		Fractional N Analog, A218-F-5/8-F-6
8-11.	Addition of D/A Converter and Pulse		Sine Amplitude Control Path8-G-2
0.10	Remove Blocks	8-40.	30MHz Reference and Dividers,
8-12.	Phase Accumulation8-10	0 II 1	A3
8-13.	Divide By N Counter8-11	8-41.	Sine Amplitude Control Path 8-H-2 Mixer, A3
8-14.	External Reference Phase Lock Loop	8-I-1.	
8-15.	Block Diagram 8-12 Level Control and Amplitude	8-42.	Sine Amplitude Control Path8-I-3 D/A Converter and Sample/Hold,
6-15.	Modulation8-13	0-42.	A148-I-5/8-I-6
8-16.	Mixer Diagram8-14	8-I-1	Sine Amplitude Control Path8-J-4
8-17.	Preset Counters8-14	8-43.	Function Circuits, A14 8-J-7/8-J-8
8-18.	D/A Converter8-15		Sine Amplitude Control Path8-K-2
8-19.	DAC Sample/Hold8-15	8-44.	Output Amplifier, A14 8-K-5/8-K-6
8-20.	Enable Signals For Function	8-45.	Relay Drivers, A14, and Attenuator,
	Switching		A238-L-3/8-L-4
8-21.	Simplified Illustration of Triangle	8-46.	High Voltage Output Option 002,
	Generation8-18		A8 8-M-3/8-M-4
8-22.	Simplified Illustration of Ramp	8-47.	High Stability Reference Option 001,
	Generation8-18		A9 8-M-5/8-M-6
8-23.	Marker and X Drive Start-Stop	8-48.	Sweep Drive Circuits,
	Flip-Flops8-20		A148-N-3/8-N-4
8-24.	X Drive Ramp Output8-21	8-49.	Power Supplies, A28-O-3/8-O-4
8-25.	Power Supply Standby/On Circuit 8-22	8-50.	Function Block Diagram 8-P-1/8-P-2
8-26.	Sine Amplitude Control Path8-23/8-24		
8-27.	Adapter Cable8-27		
8-28(a). Access to Reverse Side of		
0.004	Assemblies		LIST OF TABLES
	b). Basic Troubleshooting Procedure 8-31	Table	Page
8-29.	Signature Analysis Test 48-A-5 Keyboard and Display, A58-A-7/8-A-8	8-1.	Attenuation and Voltage Ranges8-20
8-30.	a). Signature Analysis Test 3 8-B-5/8-B-6	8-2.	Assembly/Cable Compatibility for Serial
	b). Signature Analysis Test 3 8-B-7/8-B-8	0-2.	Numbers 1748A04250 and Below 8-25
	e). Signature Analysis Test 38-B-9	8-3.	Test Equipment for Troubleshooting .8-26
	HP-IB Circuits, A68-B-11	8-4.	Adjustments Required After Repair 8-28
	a). Signature Analysis Test 1.8-C-19/8-C-20	8-5.	Trouble Symptoms8-29
	b). Signature Analysis Test 1.8-C-21/8-C-22	8-6.	Mnemonic Dictionary 8-30
0 33(1	,, 5.5		

SECTION VIII SERVICE

8-1. INTRODUCTION.

8-2. This section contains information required to service the Model 3325A Synthesizer/Function Generator. This includes the theory of operation, block diagrams, troubleshooting procedures, and schematic diagrams. Most of the service information is divided into service groups, which are identified alphabetically. Each service group contains the schematic diagram, troubleshooting, and other pertinent information for a specific area of the instrument. A foldout functional block diagram follows Service Group O. The following circuits are included in the service groups:

Assembly	Circuit	Service Group
A21	Voltage Controlled Oscillator	D
A21	÷ N.F Counter	Е
A21	Fractional N Analog Circuits	F
A2	Power Supplies	0
A3	VCO Buffer	D
A3	30 MHz Reference and Dividers	G
A3	Mixer	Н
A14	D/A Converter and Sample/ Hold	I
A14	Function Circuits	J
A14	Output Amplifier and Level Comparator	K
A14	Relay Drivers	L
A14	Sweep Drive Circuits	N
A5	Keyboard and Display	A
A6	HP-IB Circuits	В
A6	Control Circuits	C
A23		
or	Attenuator	L
A 7		
A8	High Voltage Output Option 002	M
A9	High Stability Frequency Reference Option 001	M

Signature analysis information begins with paragraph 8-128.

8-3. BASIC THEORY.

8-4. A simplified block diagram of the 3325A circuits is shown in Figure 8-1. In response to programming inputs from the Keyboard or the HP-IB, the Control circuits set the frequency, signal level, and output attenuation. The Frequency Synthesis circuits generate a sine wave at a frequency determined by digital information from the Control circuits. This sine wave is applied to the Function circuits where both the output function and signal level are determined, again by digital control. The signal level from the Output Amplifier can be tested in the Level Comparator to determine if a level correction is needed, thus providing an automatic amplitude calibration. If am-

plitude problems are encountered, it is important to disable this auto calibration. See section 8-102. Attenuator range is selected by the Control circuits to provide (in conjunction with Level Control) the desired output signal amplitude. Program parameter data stored in Control is transferred to the display when that parameter entry prefix key is pressed or the parameter prefix mnemonic is programmed on the HP-IB.

8-5. THEORY OF OPERATION.

8-6. The following theory is a general description of each of the circuit blocks in the 3325A. A foldout functional block diagram of the 3325A follows Service Group O. Additional information on individual circuits may be found within the service groups. Figure 8-2 is a basic block diagram of the logic circuits, which interface with the processor (and with each other through the processor) to control the operation of the instrument. The Machine Data Bus, which consists of eight parallel lines labeled HMD0 through HMD7, is the principal means of data exchange between the control circuits and other parts of the instrument.

8-7. Keyboard and Display (Service Group A).

8-8. Keyboard Scan. Figure 8-3 is a block diagram of the Keyboard and Display circuits. To determine if a key has been pressed, a single high bit is shifted into the first position of the 16-bit register, and the four-line output of the keyboard matrix is read onto the machine data bus by the Read Keyboard clock signal. The high bit is then shifted one position in the register and the keyboard matrix output is read again. This process is repeated through the twelve input lines to the matrix. The high input bit is inverted by the keyboard buffers. A low level on one of the four matrix output lines indicates that a key has been pressed, and the control circuits initiate the proper action. After a low level has been detected, the control circuits look for a high level from the same key before the same action can be repeated. In other words, if the 5 key has been pressed, only one 5 will be processed even though the key is held through more than one keyboard scan cycle.

8-9. Numeric Display. The same high bit that is shifted through the 16-bit shift register to scan the keyboard enables one of the eleven numeric display digits in each of the first eleven positions of the register. When a digit is enabled, eight bits of data (parallel) from the Machine Data Bus are entered in the 8-bit latch by a Write Keyboard Display Data clock signal. Each low bit in this data enables one of the eight current sources, which supplies current to the proper segment (or decimal point) of the enabled digit.

Figure 8-1. Simplified Block Diagram.

Figure 8-2. Basic Block Diagram, Logic Circuits.

Figure 8-3. Keyboard and Display Block Diagram.

8-10. Annunciator Matrix. In each of the last five positions of the 16-bit shift register, the high bit that is being shifted through enables one of five sets of annunciators. Then another set of eight data bits is entered into the 8-bit latch. Each low bit in this data set also turns on one of the eight current sources, which supplies current to the proper annunciator.

8-11. Scan Cycle. Approximately 21 milliseconds are required for a complete scan of the Keyboard and Display. During each scan cycle, the events shown in Figure 8-3 happen concurrently.

8-12. HP—IB Circuits (Service Group B).

8-13. Data Input. Figure 8-4 is a block diagram of the data input path. The low true data from the HP—IB DIO lines is inverted to high true in the Bus Receivers. It is then loaded into the last eight positions of the 12-bit parallel-in/serial-out shift register when the Load Data Input signal is low. The data loaded into the first four bits of this register is information concerning the ATN, REN,

and IFC management lines. Data is then shifted serially across the isolation barrier into an 8-bit serial-in/parallel-out shift register. The first four bits (status) are shifted across, gated into the tri-state buffer by the Read Bus Data signal, and onto the Machine Data Bus. After the control circuits have accepted this information, the eight bits of HP—IB data are transferred in the same manner.

8-14. Data Output. The output data path, shown in Figure 8-5, is essentially the reverse of the input data path. Parallel data from the Machine Data Bus is loaded into a parallel-in/serial-out shift register by the Write Bus Data signal. It is then shifted serially across the isolation barrier and into the same 12-bit shift register used for input data. However, for output data it is used as a serial-in/parallel-out register. The data is then loaded into an 8-bit latch by the Load Data Out signal, where it is available to the Bus Drivers. When the Bus Drivers are enabled by the Data Out Enable signal, the data is inverted and placed on the HP—IB DIO lines. The eighth (most significant) data bit becomes the End or Identify

Figure 8-4. HP—IB Data Input Path.

Figure 8-5. HP—IB Data Output Path.

Figure 8-6. HP—IB Management and Handshake.

(EOI) signal to the bus if the 3325A is addressed to talk and ATN is false.

8-15. Acceptor Handshake. The Listen circuits (shown near the upper center of Figure 8-6) enable the Acceptor Handshake block to operate if the 3325A is addressed to listen or if ATN (Attention) is true. When it is not addressed to listen but ATN is true, it accepts data in order to detect its listen or talk address or the untalk command. After the 3325A has been addressed to listen it accepts programming data when ATN is false and looks for its talk address or the unlisten command when ATN is true. When the HP-IB DAV (Data Valid) signal indicates that data is ready on the bus, the Acceptor Handshake circuits output New Data Ready, which becomes a Bus Interrupt signal to the processor. The Acceptor circuits also set NRFD (Not Ready For Data) to indicate to the bus that the 3325A is in the process of accepting the data byte. After the byte has been accepted, the processor outputs a New Byte Accepted to the Acceptor circuits, which then resets the NDAC (Data Accepted) line to high.

8-16. Source Handshake. The Talk circuits enable the Source Handshake block only when the 3325A is addressed to talk and ATN is false. A New Byte Available signal from the processor tells Source Handshake to set DAV if NRFD is high indicating that all listeners are ready for data. After a byte of data has been accepted by

the listener(s), indicated by NDAC going high, the Acceptor circuits output a New Data Needed signal which becomes a Bus Interrupt to the processor.

8-17. Management Lines. The ATN (Attention), REN (Remote Enable), and IFC (Interface Clear) lines provide inputs to the 12-bit shift register and are used as HP—IB status information inputs to the control circuits. A direct control output from the processor provides a Service Request (SRQ) signal to the HP—IB system controller.

8-18. Control Circuits (Service Group C).

8-19. The Control circuits include all the blocks in Figure 8-2 labeled Service Group C, plus other circuits such as Read and Write Control and the 1.2 MHz control clock oscillator. Figure 8-7 is a basic block diagram of the Control circuits. A brief definition of some circuit components may be helpful.

Processor: Commonly known as a microprocessor. As the name implies, this device processes its input information and determines what data and/or instructions to issue.

ROM: A Read Only Memory issues a predetermined set of data in response to a given set of input data, called an address.

Figure 8-7. Basic Block Diagram of Control Circuits.

RAM: A Random Access Memory, or Read/Write Memory, accepts data (data can be written into it) which can then be read out at a later time. Data location is determined by the address input.

- **8-20.** Read Only Memory. The 3325A Read Only Memory (ROM) consists of four units, which are selected by signals from the ROM Control Register. Designed into the ROM are the fixed routines or responses required in the 3325A operation. One of these routines, for example, reads the present output frequency data from the RAM and places it in the display when the FREQ entry key is pressed. The keyboard and display scan routines and test routines are also a part of the ROM information. A character received on the HP—IB is compared to ROM data to determine its validity and the appropriate action to be taken if the character is valid.
- 8-21. Random Access Memory. Variable or temporary information is stored in the Random Access Memory (RAM). This includes all program information from either the front panel or the HP—IB. Data stored at any RAM address can be changed by programming new data for the same parameter, function, or operation. RAM

data can be read out without destroying the data. For example, when the FREQ entry key is pressed, the present frequency data is entered in the display and is also retained in the RAM memory location.

- **8-22.** Fractional N Control IC. The Fractional N Control IC (see Service Group E) performs several functions vital to control of the 3325A.
- a. It calculates the \cdot N and Pulse Remove data for the phase lock loop in the Frequency Synthesis circuits. (Explanation of the 3325A frequency synthesis begins with Paragraph 8-24). This information is updated every 10 microseconds.
- b. It increments or decrements the output frequency during a sweep function and outputs a Sweep Limit Flag when the start or stop frequency is reached. It also outputs a Sweep Limit Flag at the marker frequency during a sweep up.
- c. Under control of algorithms performed by the processor, it performs arithmetic functions—for example, the arithmetic for conversion of amplitude in V p-p to V rms or dBm.

Figure 8-8. Phase Lock Loop.

8-23. Processor. The Processor coordinates the operation of all the other control logic circuits. Device select outputs from the processor are decoded into read, write, and enable commands to various logic elements such as the RAM, control registers, and buffers. Direct Control input/output lines provide information to and from the HP—IB circuits. Interrupt capability allows the Processor to be interrupted by the HP—IB or by a Sweep Limit Flag.

8-24. Frequency Synthesis.

8-25. The Frequency Synthesis circuits are found in Service Group D, Voltage Controlled Oscillator; Service Group E, Fractional N Counter; and Service Group F, Fractional N Analog.

8-26. How does the 3325A generate a given frequency? Assume that the output desired is an even 10 MHz. A method for obtaining this frequency is illustrated in Figure 8-8. Basically, the 3325A uses this method.

8-27. The frequency of the VCO (Voltage Controlled Oscillator), in Figure 8-8, is controlled by the dc voltage out of the phase detector. This dc voltage reflects any phase change between the two detector input signals. Consequently, if the VCO frequency changes, the phase detector output changes to correct the VCO. This is known as a phase lock loop (PLL).

8-28. If we want to change the output from 10 MHz to 20 MHz, it is necessary merely to change the \div N number from 400 to 500. This obviously changes the divided VCO input to the phase detector to 80 kHz. The phase detector

then uses the phase difference between its two inputs to change the VCO frequency to 50 MHz. This returns the phase detector input to 100 kHz, and the loop is again phase locked. It takes the 3325A about 50 milliseconds to make this change. The \div N number is determined by control circuits in response to front panel or remote programming.

8-29. The 3325A sine wave frequency range is essentially from zero to 20 MHz; consequently, the VCO frequency range is normally 30 MHz to 50 MHz. This dictates that the \div N number be a 3-digit integer between 300 and 500 (\div N can be only three digits in the 3325A). For example, if \div N is 398, the VCO frequency is adjusted to 39.8 MHz (398 x 100 kHz) and the output is 9.8 MHz.

8-30. Now let us look at a more detailed diagram of the phase detector block (Figure 8-9). The control voltage to the VCO is the output of a Sample/Hold amplifier which samples the integrator output at the proper time and at regular intervals. Ideally, this voltage would be exactly the same at each sampling time and the VCO frequency would remain constant. Let us assume that this is true, and that the ÷ N number is 400. In this case, the output of the phase comparator would be a series of pulses of equal width. Each pulse turns on a current source which causes a given amount of charge to be placed on the integrator. At a specified time this voltage is stored on the Sample/Hold amplifier capacitor (Figure 8-9). The integrator output is illustrated in Figure 8-10. The charge slope is much greater than the discharge slope because the phase comparator current source has about ten times the magnitude of the bias current source.

Figure 8-9. Phase Detector.

Figure 8-10. Integrator Output.

8-31. Immediately after a sample, the bias current source is turned on to discharge the integrator capacitor to the level it held before the phase comparator current was allowed to charge it. If this were not done, the charge would continue to accumulate to the limit permitted by the power supplies and remain at that level (nullifying the entire PLL scheme). The bias current is controlled by a pulse from the fractional N control IC.

8-32. Up to this point, we have considered only the situation where ÷ N is a whole number consisting of three digits. Now suppose an output of 10.04 MHz is desired. This would require the VCO frequency to be 40.04 MHz and the ÷ N number to be 400.4. (The number 400.4 is referred to as ÷ N.F. The number 400 is represented by N, and the fraction .4 may be called F, or the fractional N.) Since the existing phase lock system will not allow ÷ N to be four digits, some additional circuits are needed to make the VCO operate at a frequency of 40.04 MHz, and at the same time provide a signal to the phase

comparator equal to 100 kHz. Two of these circuits are the Digital-to-Analog (D/A) converter and pulse remove blocks added in Figure 8-11.

8-33. If the VCO operated at 40.04 MHz and ÷ N were 400, then the divided VCO signal to the phase comparator would be 100.1 kHz and would be compared to the 100.0 kHz reference. This would result in an increasing phase comparator charge current to the integrator. To compensate for this increased charge, the discharge current from the bias source is adjusted by means of Analog Phase Interpolation (API) information from the fractional N control IC. The phase (frequency) difference between 40.04 MHz and 40.00 MHz is accumulated digitally in the control IC and applied through five lines to a digital-to-analog converter. The D/A output current is subtracted from the bias current to discharge the integrator to the proper level during each sampling period, effectively cancelling the increased charge from the phase comparator.

8-34. Only part of the problem is solved, however, because if the PLL were to continue operating in this manner, the phase comparator output would continue to increase beyond practical limits. To prevent this, a "pulse remove" technique is used. In effect, the accumulated phase difference (in the Control IC) causes the \div N counter to count one extra cycle (\div 401) each time the phase accumulator passes through unity. This has the effect of "removing" a cycle of VCO frequency, and the divided signal to the phase comparator is now an average of 100 kHz.

8-35. To accumulate the phase difference, the twelve least significant digits in a "frequency register" (contained in the Fractional N control IC) are added to

Figure 8-11. Addition of D/A Converter and Pulse Remove Blocks.

the twelve digits in the phase accumulator, and the sum is stored again in the accumulator. This addition takes place every 10 microseconds (once for each cycle of the 100 kHz reference). Figure 8-12 illustrates this process for the example we are using.

8-36. This example has used a fractional N of .4. If the output frequency were 10.004 MHz instead of 10.04 MHz, the fractional part would be .04, and both the phase comparator output and the phase accumulator content would increase at one-tenth the previous rate. As another example, if the output frequency were 10.09 MHz, the fractional N would be .9, and a pulse remove command would be required for 9 out of every 10 reference cycles.

8-37. Fractional N Counter. The \div N (Fractional N) counter consists basically of three presettable counters in series, shown in Figure 8-13. The counters for the two most significant digits (of the 3-digit N number) are decade counters. The least significant digit counter consists of a \div 5 counter and a \div 2 prescaler which can be made to divide by three as necessary. Presettable counters are used because \div N must be variable, as explained below.

8-38. The preset number that is loaded into the counter in BCD (binary coded decimal) form is the 9's complement of the N number. N is determined by the first three digits of the VCO frequency.

	Example 1	Example 2
Sine wave output Reference frequency	10 000 000.0 Hz 30 000 000.0 Hz	100 000.0 Hz 30 000 000.0 Hz
VCO frequency ÷ N	40 000 000.0 Hz 40 0	30 100 000.0 Hz 30 1

To determine the 9's complement, $\div N$ is subtracted from 999 in the fractional N control IC.

	999	999
÷N	400	301
9's complement	599	698

8-39. The ÷ N counter begins at the preset number (599 in example 1), counts to 999 and then reloads the same number unless a new frequency has been programmed. One output pulse occurs for each time the counters reach 999; consequently, if 400 VCO cycles (599 to 999) are counted for every output pulse, VCO has been divided by 400. The output pulse is derived from the bias pulse issued by the fractional N control IC. To provide the proper stable phase relationship to the VCO signal, this

Figure 8-12. Phase Accumulation.

Figure 8-13. Divide by N Counter.

pulse is clocked first by VCO \div 10, then VCO \div 2, and finally by VCO.

8-40. In example 2, \div N is 301, so the counter must count 301 VCO cycles during each reference period. Normally only an even number of cycles could be counted because the least significant digit \div 5 counter is counting VCO \div 2 from the prescaler. Therefore, in order to count an odd number, the prescaler is forced to count one additional pulse during each reference period. To accomplish this, the pulse remove circuits are enabled when the least significant (BCD) bit of the least significant digit of the preset number is even, as is the case in example 2 (decimal 8 = binary 1000). Then the negative-going pulse from the preload one-shot changes the prescaler to \div 3 for one cycle. The pulse remove action associated with fractional N is independent of and in addition to the odd number count.

8-41. The chip clock counter output (Figure 8-13) is the prescaler output divided by five. The \overline{Q} output from this counter goes to the fractional N control IC and is used to clock data in and out of the four shift registers within the IC. The counter Q output is used in the \div N.F counter output synchronization and to clock the cycle start flipflop.

8-42. The cycle start flip-flop is set by the \overline{Q} output from the preload flip-flop and is cleared by the next trailing edge of the chip clock signal. A cycle start pulse occurs at the time the \div N least significant digit is preloaded, which is once every reference period. Cycle start is used to initiate operations within the fractional N control IC. It is also used to set the pulse remove circuit when \div N is an odd number.

8-43. Reference Circuits (Service Group G).

8-44. Reference Oscillator. The Reference Oscillator is a 30 MHz crystal-controlled oscillator that can be

synchronized to an external reference signal of 10 MHz or subharmonic of 10 MHz (minimum 1 MHz).

8-45. External Reference Phase Lock Loop. Figure 8-14 is a block diagram of the External Reference Phase Lock Loop. The external reference input is sent thorugh a squaring circuit, amplified, and then differentiated to provide a narrow positive pulse to the gate of a FET switch. This turns the switch on momentarily, sampling the instantaneous voltage of the sine wave at the FET switch source. This voltage is stored on the capacitor at the input of a Sample/Hold amplifier. The resulting dc output voltage from the S/H amplifier is applied to a varactor in the 30 MHz oscillator circuit to adjust the oscillator frequency.

8-46. When the 30 MHz oscillator is in phase with the external reference, the FET switch will sample the sine wave at exactly the same point each time and the S/H amplifier output voltage will remain constant. But if there is a change in phase relationship, the amplifier output voltage will change, correcting the oscillator frequency and restoring phase lock.

8-47. External Reference Detector. Whenever an external reference input is present, a detector circuit provides a logical "1" signal to the control circuits. This causes the front panel EXT REF indicator to light.

8-48. Unlock Detector. When the external reference loop is phase locked, the Sample/Hold amplifier output is a steady dc voltage. However, if the loop is not locked, this voltage will vary. The unlock detector is triggered by this varying voltage to provide a logical "1" to the control circuits. During an "unlock" condition, the front panel EXT REF indicator will flash on and off.

8-49. 30 MHz Reference Amplitude. Sine wave output amplitude and amplitude modulation are controlled by varying the amplitude of the 30 MHz Reference. Figure

Figure 8-14. External Reference Phase Lock Loop Block Diagram.

Figure 8-15. Level Control and Amplitude Modulation.

8-15 is a simplified diagram of the level control and amplitude modulation circuits. The reference signal amplitude is varied by controlling the current available from the current source (Figure 8-15), which in turn is controlled by the Sine Amplitude signal and/or the Amplitude Modulation input signal. When the AM Control switch is OFF, the X input to the voltage multiplier is constant, and the output level is controlled by the Sine Amplitude only. When the AM switch is ON, however, both the X and Y inputs influence the output. The output of the multiplier (V₀) is normally equal to .1XY, but because the multiplier output is connected to an operational amplifier input, this voltage cannot be measured. Use of the voltage multiplier in this circuit makes it possible to change the 3325A output (carrier) amplitude without affecting the percent of modulation, or to change the percent of modulation without affecting the carrier level. The output of the Level Control and Amplitude Modulation circuit goes to the Mixer, covered in Service Group H.

8-50. Reference Dividers. The 30 MHz Reference frequency is reduced through a series of dividers to provide the following signals:

10 MHz to the External Reference PLL
2 MHz to the D/A Converter (Service Group I)
1 MHz rear panel reference output
100 kHz reference to the Fractional N Phase Comparator (Service Group F)

For phase stability, the 100 kHz output is clocked first by 10 MHz, then by the 30 MHz reference signal. The 100 kHz signal is then differentiated to provide a narrow pulse to the Fractional N Phase Comparator.

8-51. Mixer (Service Group H).

8-52. The Mixer circuits are diagrammed in Figure 8-16. The 30 MHz reference is passed through a low pass filter and mixed with the 30-50 MHz signal from the VCO in a diode mixing circuit. The mixing circuit output is applied to a low pass filter to remove all but the difference frequency, which is amplified by a current amplifier. This signal then goes to the Function circuits (Paragraph 8-59).

8-53. D/A Converter (Service Group I).

8-54. The Digital-to-Analog (D/A) Converter supplies the analog voltages which control signal amplitude, dc offset, level comparator reference voltage, sweep X drive output, and correct for dc offset error. In addition, it supplies an auto zero voltage to its own current sources.

8-55. Preset Counters. Each of the four Preset Counters is a BCD counter that can be pre-loaded with a 4-digit binary number and then enabled to count from that point. In this application, they are set to count down. The counters are connected in two pairs, as illustrated by the least significant pair in Figure 8-17. Both counters are loaded at the same time, then the Least Significant Digit (LSD) Counter is enabled by the Counter and Current Source Enable Flip-Flop; and at the same time, the LSD Current Source is enabled to supply current to the DAC Integrator (see Figure 8-18). When the LSD Counter reaches zero, its Ripple Clock output enables the 3rd Digit Counter to count one clock pulse. If the preset number in the 3rd Digit Counter was greater than one. the LSD Counter continues to count, supplying an enable pulse to the 3rd Digit Counter each time it reaches zero. When the 3rd Digit Counter reaches zero, its Ripple Clock output changes the state of the Counter and Current Source flip-flop, disabling the LSD Counter and the Current Source.

Figure 8-16. Mixer Diagram.

Figure 8-17. Preset Counters.

Figure 8-18. D/A Converter.

Figure 8-19. DAC Sample/Hold.

8-56. 4-Digit D/A Conversion. A simplified diagram of the D/A Converter is shown in Figure 8-18. The D/A Converter (DAC) Integrator output voltage is proportional to the four digits of BCD information that is loaded into the Preset Counters. The two current sources are enabled to supply constant current to the DAC Integrator for the length of time required for the Preset Counters to count down from the preset number to zero. The current resulting from the two most significant digits is proportionally 100 times that from the two least significant digits. For example, if the 4-digit preset number were 5555, the enable time would be the same for both current sources, but the current ratio would be 100 to 1.

8-57. DAC Sample/Hold Circuits. After the Preset Counters have finished counting and the current sources are disabled, the DAC Integrator output voltage must be transferred to the proper Sample/Hold Amplifier. Figure 8-19 is a simplified diagram of the DAC Sample/Hold circuits. The data that designates one of the six Sample/Hold Amplifiers is clocked into the latch by the S/H Strobe pulse. The S/H Strobe pulse also triggers a switch timing one-shot which enables the switches to close long enough to transfer the DAC Integrator voltage to the capacitor at the input to the S/H Amplifier.

8-58. DAC Reset. After the integrator output voltage has been transferred to the proper Sample/Hold Amplifier, the integrator is reset to zero by closing a FET switch across the integrator capacitor. The closing of this switch is timed by a one-shot which is triggered by the S/H Strobe pulse.

8-59. Function Circuits (Service Group J).

8-60. This section of the instrument provides the proper current to the operational output amplifier for each function. It includes a number of current sources, and the circuits which develop the square wave, triangle, and ramp functions from the sine wave. Function switching is accomplished by the enable signals shown in the block diagram, Figure 8-20.

8-61. Sine Wave. In sine function, the sine wave from the mixer passes through a current amplifier to the output amplifier. Sine wave amplitude is actually controlled in the level control circuit (see Paragraph 8-69), but the level control current is supplied from the amplitude control current source in this section.

8-62. Square Wave. The sine wave input is sent through a squaring circuit and then divided by two to produce the square wave output. Consequently, in the square wave function, the sine wave must be twice the output frequency, and the maximum output frequency is 10 MHz.

8-63. Triangle. To generate a triangle wave, the sine wave input is first put through the squaring circuit, then

divided by $20 \ (\div 10 \ \text{and} \div 2)$. The result is a square wave whose frequency is 1 MHz plus the programmed output frequency. This signal is phase compared to a 1 MHz reference in an exclusive OR gate. Because the output of the gate is high when one and only one input is high, the gate output is a series of pulses whose width varies in proportion to the phase difference between the two gate input signals. Figure 8-21 is a simplified illustration of this. The gate output drives a current amplifier (which inverts the signal) and the resulting current pulse signal is sent through a filter which shapes the triangle.

8-64. The triangle output frequency is the difference between the 1 MHz reference and the input frequency (from the mixer) divided by twenty. Consequently, the input frequency must be 20 MHz + (20 x output). To produce the maximum triangle output frequency of 10 kHz, for example, the input must be 20.2 MHz.

Output frequency	=	10 000 Hz
Reference	=	1 000 000 Hz
	×	1 010 000 Hz 20
Input frequency	=	20 200 000 Hz

8-65. Positive and Negative Ramp. A ramp output is generated in the same manner as the triangle, except that when the phase difference between the 1 MHz reference and the input ÷20 has advanced 180°, the reference is inverted by the ramp reset circuits (Figure 8-20). Figure 8-22 illustrates the ramp generation process. Because the phase difference is allowed to advance only 180° instead of 360° as in triangle generation, the frequency of the "input ÷20" signal to the phase comparison gate must be 1 MHz plus one-half the output frequency. For the maximum ramp output frequency of 10 kHz:

Output frequency = 10 000 Hz

$$\div 2$$
 = 5 000 Hz
Reference = 1 000 000 Hz
 \times 20
Input frequency = 20 100 000 Hz

8-66. Ramp reset may be initiated either by the phase detector output (Figure 8-20) or by a + or - ramp reset signal from peak detectors at the output amplifier. Each reset pulse causes the reference signal to be inverted at the output of the ramp reset gate.

Figure 8-20. Enable Signals for Function Switching

Figure 8-21. Simplified Illustration of Triangle Generation.

Figure 8-22. Simplified Illustration of Ramp Generation.

8-67. Ramp polarity is determined by the ramp polarity gate. If negative ramp is programmed, the reference signal is inverted by this gate.

8-68. Function Integrity Flag. If the ramp is being reset by the digital Phase Detector, the detector output sets the Function Integrity Flip-Flop, and the Function Integrity Flag (HMD2) to the processor is high. If the ramp is being reset by the analog Level Comparator at the amplifier output (see Paragraph 8-74), the analog reset signal prevents the Function Integrity Flip-Flop from being set. The controller may reset the Function Integrity Flip-Flop. The Function Integrity Flag tells the processor which ramp reset method (analog or digital) is being used. This information is used by the processor in setting the correct reference level for the output Level

8-18

Comparator. Ramps are reset by the digital Phase Detector at frequencies below 100 Hz, and by the analog output Level Comparator at frequencies of 100 Hz and higher.

8-69. Amplitude and Offset Control. The voltage output of the output amplifier is proportional to the current into its input summing junction. Consequently, signal amplitude can be controlled by varying the amount of current available from the current source which supplies the various functions. The amplitude control signal is a dc analog voltage from a D/A converter (see Paragraph 8-53) which receives its digital input from the controller.

8-70. Because the square wave, triangle, and ramp signals are generated by switching the unipolar amplitude

control current source on and off, the entire signal is above ground. These signals are centered about ground by a compensating current equal to one-half the signal amplitude. This current is shown as "amplitude \div 2 correction current" in Figure 8-20.

8-71. Positive or negative dc offset can be programmed either with or without an ac signal. The offset current source is also controlled by a dc analog voltage from the D/A converter. The dc offset correction current source is also controlled by the D/A converter. The offset correction voltage is calculated from the results of the AMPTD CAL routine (see Paragraph 8-74).

8-72. Output Amplifier (Service Group K).

8-73. The Output Amplifier is an inverting operational amplifier that is designed for wide frequency response and low distortion. Its output stage is protected against excessive current by a 0.125 A fuse and against excessive voltage by diodes connected to the + and - 15 V supplies. Output resistance is 50 ohms.

8-74. Level Comparator and AMPTD CAL. During the amplitude calibration process (AMPTD CAL), the Level Comparator is used to determine the offset and signal amplitude errors of the 3325A output. To do this, the processor sets the signal amplitude to zero and varies the voltage of the "Level" input to the comparator to determine the dc offset in the amplifier output. The processor computes the dc offset error and programs an offset correction. The processor then sets the signal amplitude to 8 V p-p (with full attenuation) and proceeds to determine both the positive and negative peak voltages in a similar manner. From this information it computes the gain error, which is used for subsequent amplitude calculations for any range selected. This error information is retained and used by the processor until the next amplitude calibration, which may occur because of the change in the function programmed, or because the operator or HP-IB system controller programmed AMPTD CAL.

8-75. The Level Comparator is also used to reset both the positive and negative-going ramps for frequencies of 100 Hz and higher. The "Level" voltage is set by the processor to the peak ramp voltage programmed. When the ramp and "Level" voltages are equal, a Ramp Reset pulse is generated by a one-shot and used to toggle a Ramp Reset flip-flop (see schematic in Service Group J). The ramp is then reset as explained in Paragraph 8-65. If the "Level" voltage is set incorrectly, the digital phase detector causes the ramp to be reset, and the Function Integrity Flag to the processor to be high (see Paragraph 8-68). The processor then adjusts the "Level" voltage until the Level Comparator output resets the Function Integrity Flag. indicating that the ramp is being reset by the Level Comparator. This ramp "loop level" process is disabled when the frequency is being swept or modulation is enabled.

8-76. Sync Comparator and Driver. The amplifier output waveform is one input to the Sync Comparator and the other input is the DC Offset voltage level. If no dc offset has been programmed, the DC Offset voltage is zero and the comparator output changes at zero volts. This results in a Sync square wave whose transition occurs at zero volts crossing of the output signal. It follows, then, that the Sync signal transition occurs whenever the output signal crosses the DC Offset voltage, when an offset has been programmed. The Sync signal is the passed through inverter circuits to both the front and rear panels.

8-77. Attenuator (Service Group L).

8-78. Relay Drivers. Refer to the schematic diagram in Service Group L. Relay selection data is provided by the lines labeled K0 through K7 and is stored in the D flipflops of A14U49. This information is obtained from the Machine Data Bus through A14U29 (see Service Group I). Seven of the relay driver circuits are contained in one integrated circuit package, and the eighth is a discrete transistor circuit. Current through the relay coils is limited by the Q77, Q78 circuit. Because latching relays are used, continuous current is not required. Therefore, after a relay has been switched, the driver can be turned off by the K0-K7 information. The D flip-flops are clocked at the proper time by a signal that is also decoded in A14U27 from the Machine Bus data.

8-79. Attenuator Relays and Pads. Relays K1, K2, and K3 control the output signal attenuation. Table 8-1 shows the voltage ranges, both with and without dc offset and the relays and attenuation factors involved. The output relay, K4, switches the output to the front or rear panel in a standard instrument and switches the High Voltage amplifier in or out in Option 002 instruments.

8-80. High Voltage Output Option 002 (Service Group M).

8-81. The High Voltage Output Amplifier is non-inverting and has a gain of two. It is designed for operation over a bandwidth of 0 to 1 MHz. The output is current-protected by a 0.25 A fuse, and voltage-protected by diodes to the + and - 30 V supplies. Output resistance is essentially zero. Plus and minus 30 V regulators which supply power for this amplifier are a part of the option. Input power for these supplies is provided from a separate winding on the instrument power transformer; consequently, these supplies are on at any time ac power is connected to the instrument.

8-82. Sweep Drive Circuits (Service Group N).

8-83. The Sweep Drive Circuits provide three output signals that can be used in oscilloscope, plotter, and similar applications: Z Blank, Marker, and X Drive.

8-84. Z Blank. The Z Blank output voltage levels are TTL compatible. This signal goes low at the start of a

Table 8-1. Attenuation and Voltage Ranges.

	Attenuation Relay		Amplitude (Peak-to-Peak, 50 Ω)		Maximum Offset	Minimum Offset	DC Only
Range	Factor	In	AC Only (No Offset)	AC (With Offset)	(+ or -)	(+ or -)	(+ or -)
1	1	None	10.00 V to 3.000 V	9.998 V to 1.000 V	0.001 V to 4.500 V	1.000 mV	4.500 V to 1.500 V
2	3	К3	2.999 V to 1.000 V	999.9 mV to 333.4 mV	1.166 V to 1.499 V	0.100 mV	1.499 V to 0.500 V
3	10	K2	999.9 mV to 300.0 mV	333.3 mV to 100.0 mV	333.3 mV to 450.0 mV	0.100 mV	499.9 mV to 150.0 mV
4	30	K2, K3	299.9 mV to 100.0 mV	99.99 mV to 33.34 mV	116.6 mV to 149.9 mV	0.010 mV	149.9 mV to 50.00 mV
5	100	K1	99.99 mV to 30.00 mV	33.33 mV to 10.00 mV	33.33 mV to 45.00 mV	0.010 mV	49.99 mV to 15.00 mV
6	300	K1, K3	29.99 mV to 10.00 mV	9.999 mV to 3.334 mV	11.66 mV to 14.99 mV	0.001 mV	14.99 mV to 5.000 mV
7	1000	K1, K2	9.999 mV to 3.000 mV	3.333 mV to 1.000 mV	3.333 mV to 4.500 mV	0.001 mV	4.999 mV to 1.500 mV
8	3000	K1,K2,K3	2.999 mV to 1.000 mV				1.499 mV to 0.001 mV

Figure 8-23. Marker and X Drive Start-Stop Flip-Flops.

linear or log single sweep, high at the end of the sweep, and remains high until the start of another sweep. For continuous sweep, Z Blank is low during sweep up and high during sweep down. The Z Blank output circuit is capable of sinking current through a relay or other device. The maximum ratings are:

Maximum current sink: 200 mA, fused at .25 A Allowable voltage range: 0 V to +45 V dc Maximum power (voltage at output x current): 1 W

8-85. Marker Output. A Marker output pulse occurs only during linear sweep up, either single or continuous sweep. The NAND gate flip-flop that produces this output is shown in Figure 8-23. The output is high at the start of a sweep up, then the Sweep Limit Flag input goes low at the Marker frequency, changing the flip-flop output to low. Immediately following a sweep up, the Marker Reset input goes low, resetting the flip-flop output to high.

8-86. X Drive. The output of the X Drive Start/Stop flip-flop (Figure 8-24) is set high by the low true Start signal and is returned to low by the Sweep Limit Flag pulse that occurs at the end of the sweep. The Start signal remains low until just before the end of sweep to prevent the Sweep Limit Flag pulse that sets the Marker flip-flop from also changing the X Drive flip-flop. The marker frequency and stop frequency points must be separated by approximately 400 microseconds to allow time

between the two Sweep Limit Flags for the control circuits and Fractional N IC to return the Start signal to high and process the information for the stop frequency.

8-87. The high output from the Start/Stop flip-flop is used to turn on one of two analog switches, depending upon which Range signal is high. Range 1 is high for sweep times of 0.01 second to 0.999 second, and Range 2 is high for times of 1 second to 99.99 seconds. As illustrated in Figure 8-24, each analog switch turns on a switch for the duration of the sweep, providing current to an integrator whose output is the X Drive ramp. The value of the current to the integrator depends upon the X Drive analog voltage and the resistance in the integrator input circuit. The resistances are fixed at 10 kilohms for Range 1 and 1 megohm for Range 2. The value of the X Drive voltage is supplied from the D/A Converter and Sample/Hold circuits (see Paragraph 8-53) and is calculated by the control circuits to provide the proper current to increase the X Drive Output Ramp from 0 V to +10 V during the sweep time selected.

8-88. Following a single sweep, the X Drive ramp remains essentially at $+10 \, \text{V}$ until reset prior to the start of another sweep. (This voltage will drift downward less than $10 \, \text{mV/sec.}$) During continuous sweep, the ramp is reset at the start of sweep down. The reset switch is a FET connected across the integrator capacitor. The Ramp Reset pulse is initiated at the proper time by the control circuits.

Figure 8-24. X Drive Ramp Output.

8-89. Crystal Oven Option 001 (Service Group M).

8-90. AC power for the Crystal Oven is supplied by a separate winding on the instrument power transformer. Consequently, power is supplied to this assembly at any time ac power is applied to the instrument. A +15 V regulator provides dc power to the Crystal Oven. The oven output frequency is 10 MHz. It is capacitively coupled to the rear panel output connector.

8-91. Power Supplies (Service Group O).

8-92. All three regulators, +5V, +15V, and -15V (shown in the schematic diagram in Service Group 0) are voltage and current controlled. Each regulator has a voltage sense connection. If the voltage at the load is too low, for example, this sense voltage feedback causes the regulator to adjust its output to the correct voltage. If the output current increases excessively (because of a short circuit, for example) the voltage drop across the current sensing resistance causes the active device in the current sensing circuit to limit the current through the series pass regulator.

8-93. When the front panel POWER switch is in the STBY (standby) position, the three main power supply regulators are disabled. However, power is still applied to the HP—IB input/output circuits, the Oven Assembly (Option 001), and the High Voltage Output Amplifier (Option 002). These circuits have their own regulators, which are active at any time ac power is connected to the instrument.

8-94. When the POWER switch is in the STBY position, as shown in the simplified schematic of Figure 8-25, a positive voltage is applied through K1 relay coil to the emitter of Q11, biasing this transistor into conduction. The current is limited by resistors R30 and R32 so that the relay is not activated. Q4 is biased on by the current through Q11 to the point where it behaves in the same manner as it would if there was excessive current through the sensing resistor, R4. This causes the series pass regulator, Q2, to be turned off, disabling the -15 V regulator. Because the +5 V and +15 V regulators are referenced to the -15 V supply, they are also disabled.

8-95. When the POWER switch is set to ON, the emitter of Q11 is grounded, turning this transistor off. Consequently it has no effect on the -15 V regulator circuits. Relay K1 is activated, turning on the blower.

8-96. An overvoltage protection circuit in the +5V supply prevents the voltage from becoming high enough to damage the TTL devices in the instrument. This circuit consists of an SCR (A2CR10) which is triggered if the voltage across A2R14 becomes too great. (Refer to the Power Supply schematic, Service Group O.) When the SCR is triggered, it becomes a short circuit between the unregulated +5V and ground. The result is that the +5V regulator is disabled and the power input fuse, F1, will be destroyed.

8-97. The only voltage adjustment is A2R22 in the -15 V regulator. This control adjusts the +5 V and +15 V outputs also because they are referenced to the -15 V supply.

Figure 8-25. Power Supply Standby/On Circuit.

8-98. SINE AMPLITUDE CONTROL PATH.

8-99. Amplitude Control Circuitry.

8-100. The control of sine output amplitude involves a large amount of circuitry. The circuitry used is shown in Figure 8-26. Each block in this figure indicates the circuit board and schematic appropriate to that function. The process begins with the processor loading a number into the preset counters. For the length of time that it takes for these counters to count to zero, a current source is on and is charging up an integrator in the DAC. When the current source turns off, the integrator voltage is sampled and held. This D.C. voltage goes through a gain stage and a multiplier chip and establishes the bias on the 30MHz switch. This controls the level of the 30MHz reference signal to the mixer. From the mixer, a 0-20MHz signal is supplied to the function circuits, the output amplifier, the attenuator, and on to the instrument output. Through all these stages the signal's amplitude is controlled by the D.C. voltage to the 30MHz switch.

8-101. As seen in Figure 8-26, there exists a feedback path through the processor. Using a peak detector, the processor is able to sample the D.C. offsets and amplitude of the signal at the output of the Output Amplifier and compensate for errors by loading adjusted numbers into the Preset Counters.

8-102. Auto Calibration Disable (ACD).

8-103. When servicing the amplitude control path, it is imperative that the feedback path be eliminated before troubleshooting begins. This is performed by tying the ACD test point (on A14) to ground. This breaks the loop by preventing the processor from performing subsequent Auto Calibrations. After tying ACD to ground, cycle power off, then on, to erase from RAM all previous Auto Cal information.

Figure 8-26. Sine Amplitude Control Path.

Section VIII Service & Troubleshooting Information

8-104. SERVICING INFORMATION.

8-105. Power Line Voltage Selection.

8-106. Instructions for setting your instrument to the proper power line voltage are contained in Paragraph 2-8 and Figure 2-1.

8-107. Fan Filter.

8-108. The fan filter must be inspected frequently and cleaned or replaced as necessary to permit the free flow of air through the instrument. To clean the filter, remove the four nuts that secure the filter retainer, remove the filter and flush with soapy water, rinse clean, and air dry.

8-109. Adapter Cable.

8-110. An adapter cable may be made as shown in Figure 8-27 that will aid in adjusting and troubleshooting the instrument. This cable has a phone plug at one end to connect to the phono jacks used as signal connectors on the printed circuit board. The BNC connector at the other end connects to the input of an oscilloscope or other test equipment.

8-111. Access to Reverse Side of A21, A3, A14, and A6.

8-112. The square slotted fasteners used to secure one edge of printed circuit assemblies A21, A3, A14, and A6 can be used to support the board in a vertical position,

Table 8-2. Assembly/Cable Compatibility for Serial Numbers 1748A04250 and Below.

Assembly To Be Replaced	Affected Destination Assembly(ies)	Cable/ Connector	Destination Assy Modification
A6 03325-66506	A3 * All Rev A and Rev B Boards	W33/A3J1	8120-3108 (Cbl)** 1251-6567 (Conn)
	A14 (A4) * All A4 Revisions and A14 Rev A	W32/A14J1	8120-3108 (Cbl)** 1251-6567 (Conn)
	A21 (A1) * All A1 Revisions and A21 Rev A	W31/A21J1	8120-3108 (Cbl)** 1251-6567 (Conn)
A14 (A4) Ó3325-66514(O4)	A6 * All Rev A, Rev B and some Rev C	W32/A6J2	8120-3108 (Cbl)** 1251-6567 (Conn)
	A23 (A7) * All A7 Revisions and A23 RevA/RevB	W30/A23J30	8120-3216 (Cbl)** 1251-5064 (Conn)
A3 03325-66503	A6 * All Rev A, Rev B and some Rev C	W33/A6J3	8120-3108 (Cbl)** 1251-6567 (Conn)
A21 (A1) 03325-66521(01)	A6 * All Rev A, Rev B and some Rev C	W31/A6J4	8120-3108 (Cbl)** 1251-6567 (Conn)
A23 (A7) 03325-66523(07)	A14 (A4) * All A4 Revisions and A14 Rev A	W30/A14J30	8120-3216 (Cbl)** 1251-5064 (Conn)

^{**} Assemblies ordered for replacement contain the new connectors, however, the newer (gray) cables are not included. They must be ordered separately along with the connectors for the destination assemblies.

Note - Because of the increased reliability, all cables and connectors should be changed regardless of the assembly and destination assemblies involved. Cable and connector replacement is recommended even if board replacement is not required.

Note - If necessary (although not recommended), a newer replacement assembly may be fitted with the older connectors (P/N 1251-4494, 21 pin/ 1251-4390, 14 pin) for use with the older (white) cables (P/N 8120-2577, 5in/8120-2576, 2.3in).

permitting access to both sides of the assembly for servicing. All cables may be left in place and the instrument may be operated with a board in the vertical position. After releasing the printed circuit board by removing all screws, screw the square fasteners back into their threaded standoffs, and insert the edge of the board into the slots in the fasteners, as shown in Figure 8-28(a). The -hp- part number of the fastener is 0570-0621. Newer 3325s may not have these standoffs installed.

ECAUTION

Make sure that the fasteners do not contact any circuitry other than the ground plane.

8-113. A6, A14, A3, A21, A23 Connector Compatibility.

8-114. 3325A's with serial number 1748A04250 or below* contain PC assemblies with certain cables and connectors which are not compatible with later revision boards. When replacing A6, A14, A3, A21, or A23 in a 3325A in the range identified above, the connector(s) on the older destination assembly must be changed in order to be compatible with the cables used with the newer boards.

For example, if the A6 Controller assembly is replaced in a 3325A containing the older boards and cables (white), connectors A14J1, A3J1, and A21J1 on the destination assemblies must be replaced also. The new connectors which can be mounted in the same holes as the old ones, were implemented because of their greater reliability.

Table 8-2 identifies the assemblies, cables, and connectors affected when board replacement is necessary.

8-115. TROUBLESHOOTING INFORMATION.

8-116. Service information is organized into service groups, which include schematic diagrams, block diagrams and troubleshooting information for specific areas of the instrument. Paragraph 8-2 contains an index of the circuits and the service groups in which they can be found.

8-117. Test Equipment Required.

8-118. Table 8-3 lists the test equipment needed to troubleshoot the 3325A. Any equipment that meets or exceeds the critical specifications may be substituted for the recommended model.

Table 8-3. Test Equipment for Troubleshooting.

Instrument	Critical Specifications	Recommended Model	Use
Signature Analyzer	Signature: 4-digit hexadecimal Characters: 0 thru 9,A,C,F,H,P,U Threshold: Logic 1: +2.2 V Logic 0: +0.5 V Clock Frequency: ≥1.5 MHz	-hp- 5004A	Logic Circuit Troubleshooting
Pulse Generator	Pulse Rate: 500 kHz Pulse Width: ≤ 1 μs DC Offset: 1 V	-hp- 3312A	Logic Circuit Troubleshooting
Digital Multimeter 4 Digit	DC Function Ranges: .1 to 100 V Accuracy: $\pm 0.2\%$ AC Function Ranges: .1 to 100 V Accuracy: $\pm 0.5\%$ Ohmmeter Ranges: 100Ω to $1 M\Omega$ Accuracy: $\pm 1\%$	-hp- 3466A	General Troubleshooting
Oscilloscope 2 channel	Vertical Bandwidth: dc to 100 MHz Deflection: 5 mV to 10 V/div Horzontal Main Sweep: 50 ns to 2 s/div Delayed Sweep: 50 ns to 20 ms/div	-hp- 1740A	General Troubleshooting
Electronic Counter	Frequency Measurement: to 20 MHz Accuracy: ± 2 counts Resolution: 8 digits	-hp- 5328A	÷ N Counter Troubleshooting

Figure 8-27. Adapter Cable.

Figure 8-28(a). Access to Reverse Side of Assemblies.

8-119. Adjustments Required After Repair.

8-120. Following repair of some circuits, certain adjustment procedures must be performed to assure proper operation of the instrument. These adjustments are shown in Table 8-4.

8-121. Basic Troubleshooting Procedures.

8-122. Make sure all cables and connectors are firmly seated and that the flat cables from A6 to A21, A3, and A14 are properly aligned in their connectors. Look for burned or loose components. Also make sure the microcircuit packages that are mounted in sockets are firmly seated.

8-123. The flowchart of Figure 8-28(b) may be used to help isolate the trouble. Some symptoms that are identifiable from the display, outputs, or response to inputs or entries are given in Table 8-5, along with suggested areas to begin troubleshooting.

8-124. Orientation Of Components.

8-125. A square pad is used on the printed circuit board to aid in orientation of certain components for replacement and in identification of connections.

Square Pad Identifies
Pin 1 Emitter Source Cathode Positive Connection

8-126. Mnemonic Dictionary.

8-127. Most of the logic and data signals in the 3325A are identified on the schematic diagrams by a mnemonic, which is essentially an abbreviation of the signal name. Table 8-6 is a dictionary of the mnemonics used in the 3325A.

8-128. Logic Troubleshooting by Signature Analysis.

8-129. Because of the increased complexity of the logic circuits used to control many instruments, malfunctions in these circuits are very difficult to locate. The concept of Signature Analysis is based on the fact that at a particular point in a circuit, the data pulses are predictable under specifically programmed conditions. An instrument such as the -hp- 5004A Signature Analyzer compresses the data at a given point during a controlled time span (window) and displays the resulting four-character signature. This signature indicates whether the correct data was present at the measurement point, and this information can be used to locate a defective component. The signature analysis method is used to troubleshoot the 3325A logic in Service Groups A, B, and C.

8-130. The flowchart of Figure 8-28(b) and the symptoms listed in Table 8-5 may direct you to a Signature Analysis Test in Service Group A, B, or C. Basically, the various tests apply to the following circuits:

Table 8-4. Adjustments Required After Repair.

Circuit Repaired	Service Group	Adjustments Required	Para. No.
Keyboard HP-IB	A B	None None	
Control	C	None	
Voltage Controlled Oscillator	D	VCO Frequency	5-9
VCO Buffer	D	None	
÷ N.F Counter	E	None	
Fractional N Analog	F	Analog Phase Interpolation	5-1-0
30 MHz Oscillator	G	30 MHz Reference Oscillator	5-11
Sine Amplitude & Amplitude Mod.	G	Amplitude Gain	5-13
Mixer	Н	Mixer Spurs	5-18
D/A Converter and Sample/Hold	1	D/A Converter Offset	5-8
Ramp Gating Circuits	J	Ramp Stability	5-16
Output Amplifier	K	Amplifier Bias	5-15
		Amplitude Flatness	5-17
Sweep Range Circuits	N.	X Drive	5-14
X Drive Integrator	N	X Drive	5-14
High Stability Reference	M	High Stability Reference	5-12
Power Supply	0	Power Supply	5-7
		D/A Converter Offset	5-8

Test	Service Page	Circuits Tested	3	8-B-1	Checks the HP-IB data path from the processor to the
ROM	8-C-2	ROM's (A6U1-4), Processor (A6U9), and Buffer (A6U10). Unless these circuits are operating properly, none of			HP-IB connector and back. It does not check the handshake circuits.
		the other tests will work.	4	8-A-2	Checks the ability of the processor to identify front panel
Ø	8-C-6	This test is a point-by-point signature analysis of all IC's on the A6 assembly.			switch closures. Also checks A5 LED drivers, current sources, and digital circuits.
1	8-C-15	Tests the ROM/RAM address registers and buffer circuits.	5	8-C-29	Checks the data path from the processor to the fractional N control IC (A21U19), and
2	8-C-23	Checks the ability of the RAM address register to count up and down. Checks RAM output data.			checks several operations of the fractional N control.

Table 8-5. Trouble Symptoms.

Symptoms	Troubleshooting Procedures		Symptoms	Troubleshooting Procedures
No front panel display or annunciators.	If power supply voltages are correct (see Service Group O) go to Service Group C; if not, troubleshoot power supply, Service Group O.		No AUX output or incorrect frequency (sine function 21–60 MHz); front panel output normal.	Service Group D
Abnormal display characters (partial characters or all segments stay on), no response to front panel	Service Group C		Amplitude Modulation does not respond properly.	Service Group G
entries.			Phase Modulation does not respond properly.	Service Group F
Display appears normal, but no response to front panel entries.	Service Group C		Display reads OSC FAIL.	Service Group D
Instrument accepts entries but has no signal or	Service Group K		Output amplitude incorrect for all functions.	Service Group L
sync outputs. No signal output; sync output correct.	Service Group L		Instrument accepts front panel entries but will not program from HP-IB. Fails HP-IB Performance Test.	Service Group B, Signature Analysis Test 3
Will not sweep frequency.	Service Group E		OSC. FAIL display indica- tion but oscillator circuits	Service Group C, Signature Analysis Test 5
X Drive, Z Blank, or Marker signals incorrect.	Service Group N		check good.	Signature Analysis Test 5
When External Reference or Option 001 is con-	Service Group G		Display or keyboard switch problems.	Service Group A, Signature Analysis Test 4
nected to rear panel REF IN, front panel EXT REF annunciator does not light or flashes on and off.			Control problems, or instrument "locks up" and will not accept entries.	Service Group C Signature Analysis Tests 1, 2
Output frequency incor-	Service Group G		Cannot perform Signature Analysis Tests 1, 2, or 3.	Service Group C ROM Signature Analysis Test
rect.			Above tests do not locate the defective component.	Service Group C Signature Analysis Test 0

Table 8-6. Mnemonic Dictionary.

Mnemonic	Definition	Mnemonic	Definition
HATL	Addressed to Listen	H MBLØ	
HATN	Attention	thru	Machine Bus Latch Q - 7
HATT	Addressed to Talk	H MBL7	
		нмс	Main Clock
H BBCL	Bus Clock on HP-IB side of isolation	H M D Ø	10 1 10 10 10 10 10 10 10 10 10 10 10 10
L BCL	Bus Clock to HP-IB	thru	Machine Data Bus Ø − 7
H BDCØ		HMD7	
thru	Direct Control Ø – 1 on HP – IB side of		
HBDC1	isolation	HNBAA	New Byte Accepted by Acceptor
HBDS1			Handshake
thru	HP-IB Data Serial 1-2	HNBAS	New Byte Available to Source Handshake
HBDS2		H NBMB	Enable Machine Bus Latch to
H BI	Bus Interrupt	LNDD	Machine Bus
H BIG	Bus Interrupt Gated Borrow (from RAR Low)	L NDR L NMBP	New Data Ready Enable Machine Bus to Processor Bus
L BOR H BPID1	Bollow (Holli RAR Low)	LNRAB	Enable RAM Address to Machine Bus
thru	HP-IB Parallel Input Data 1-8	HNRCA	Enable Reset Code A
H BPID8	TH -IBT araller input bata 1-0	LNRCB	Enable RCR to Machine Bus
H BPOD1		LNRD	Enable ROM Data
thru	HP-IB Parallel Output Data 1-8	LNSLF	Enable Sweep Limit Flag
H BPOD8	The librarance output bata is a	214021	Enable Owcep Elither lag
H BSID	HP-IB Serial Input Data	LODV	Output Data Valid
H BSOD	HP-IB Serial Output Data	2001	Satpat Bata Fand
		H PDØ	
LCAR	Carry (from RAR Low)	thru	Processor Data Bus Ø 7
HCDN	Count Down Enable	HPD7	
L CHK	Check	H PIDØ	
H CODA	Code A	thru	Parallel Input Data (from HP-IB,
H CODB	Code B	H PID7	Processor side of Isolation)
HCSØ	00 00 00 00 00 00 00 00 00 00 00 00 00	L PRS	Preset
thru	Chip Select Ø – 2	HPSG	Program Source Gate
HCS2			
HCSØD		HRAØ	
thru	Chip Select Ø – 2 Delayed	thru	ROM Address Ø – 11
HCS2D		HRA11	
HCS1DD		LRAD	Read Arithmetic Data (from N.F Chip)
thru	Chip Select 1 – 2 Doubly Delayed	LRAN	RAM A Enable
HCS2DD		L RBA	Read Bus Address
LCSR	Clock Shift Register (Keyboard & Display)	L RBD	Read HP-IB Data
LCSRZ	Clear Select ROM Zero	L RBN	RAM B Enable
H CUN	Count Up Enable	LRCA	Reset Code A
		L RCB	Reset Code B
LDAC	Data Accepted	LRCN	RAM C Enable
H DCØ		HREN	Remote Enable
thru	Direct Control Ø – 6	L RFD	Ready for Data
HDC6		L RFF	Read Function Flags
	D . O . F . I.	L RFND	Reset Fetch New Data
LDOE	Data Out Enable	LRIR	Read Interrupt Register
HDSØ	Device Select Ø – 3	L RKB H RMAØ	Read Keyboard Data
thru H DS3	Device Select W-3	Anna State State St	RAM ADDRESS Ø - 9
	External Clock (to N.F Chip)	thru H RMA9	HAIVI ADDRESS W-9
L EC H EOI	End or Identify	LROVD	Reset Output Data Valid
11 LO1	End of Identity	LRSS	Read Signal Source Data
H FND	Fetch New Data	LRWN	RAM Write Enable
HIAK	Interrupt Acknowledge	LSAR	Select RAM Address Register
HIBI	Inhibit Bus Interrupt	HSATL	Set Addressed to Listen
HIEN	Interrupt Enable	HSATT	Set Addressed to Talk
LIFC	Interface Clear	LSCA	Set Code A
LIFC*	Interface Clear Latched	LSCB	Set Code B
HII	Interrupt Inhibit	LSCR	Select ROM/RAM Control Register
LIMBP	Inhibit Machine Bus to Processor Bus	L SFND	Set Fetch New Data
LINV	Instruction Valid (to N.F Chip)	H SLC	Sweep limit Control
		H SLF	Sweep Limit Flag
HKCI	Kilohertz Clock Interrupt	H SLI	Sweep Limit Interrupt
		LSM	Select Monitor
LLCN	Load RCR Enable	LSMB	Select Machine Bus (from Decoder)
LLDI	Load Data In	LSMBL	Select Machine Bus Latch
LLDO	Load Data Out	LSOD	Serial Output Data to HP-IB, Processor
LLMBL	Load Machine Bus Latch		side of Isolation
HLNG	Listening	LSOVD	Set Output Data Valid
LLRAR	Load RAM Address Register	H SP	Spare
		HSRA	Select RAM A
LLRCR	Load RAM/ROM Control Register	H SRB	Select RAM B
LLRP	Load RAM Page Register (from Decoder)	H SRC	Select RAM C
		HSRM	Select RAM (from Decoue.)

Figure 8-28(b). Basic Troubleshooting Procedure.

GENERAL SCHEMATIC NOTES-

- 1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIG-NATION(S) OR BOTH FOR COMPLETE DESIGNATION.
- 2. COMPONENT VALUES ARE SHOWN AS FOLLOWS UN-LESS OTHERWISE NOTED.

RESISTANCE IN OHMS CAPACITANCE IN MICROFARADS INDUCTANCE IN MILLIHENRYS

- DENOTES EARTH GROUND. USED FOR TERMINALS WITH NO LESS THAN A NO. 18 GAUGE WIRE CONNECTED BETWEEN TERMINAL AND EARTH GROUND TERMINAL OR AC POWER RECEPTACLE.
- DENOTES FRAME GROUND. USED FOR TERMINALS WHICH ARE PERMA-NENTLY CONNECTED WITHIN APPROXIMATELY 0.1 OHM OF EARTH GROUND.
- DENOTES GROUND ON PRINTED CIRCUIT ASSEMBLY. (PERMANENTLY CONNECTED TO FRAME GROUND).
- DENOTES ASSEMBLY
- DENOTES MAIN SIGNAL PATH.
- DENOTES FEEDBACK
- DENOTES FRONT PANEL MARKING.
- DENOTES REAR PANEL MARKING.
- DENOTES SCREWDRIVER ADJUST.
- 13. * AVERAGE VALUE SHOWN, OPTIMUM VALUE SE-LECTED AT FACTORY. THE VALUE OF THESE COMPONENTS MAY VARY FROM ONE INSTRU-MENT TO ANOTHER. THE METHOD OF SELECTING THESE COMPONENTS IS DESCRIBED IN SECTION V OF THIS MANUAL.
- DENOTES SECOND APPEARANCE OF A CON-NECTOR PIN.
- 15. \924 / DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER IDEN-TIFIES BASE COLOR, SECOND NUMBER IDEN-TIFIES WIDER STRIP, THIRD NUMBER IDENTIFIES NARROWER STRIP. (e.g. \924) = WHITE, RED, YELLOW.)
- 17. ALL RELAYS ARE SHOWN DEENERGIZED.

ABCQ

LLHH

LHLH LHHH

HLLH

HLHH

HHLH

HHHL

REFERENCE DESIGNATIONS

SERVICE GROUP A KEYBOARD AND DISPLAY

SERVICE GROUP A - KEYBOARD AND DISPLAY.

Troubleshooting Information.

The most common problem with the A5 front panel assembly are stuck keys. A stuck key is often noticeable by its "lack of play". The following troubleshooting hints are intended to help determine whether a problem on the A5 assembly is due to a malfunctioning key or a component failure.

- 1. Check the 1kHz clock signal at TP1, TP2, and TP3. The 1kHz clock is the rate at which a logic "1", supplied by HMD4 of the machine data bus, is shifted through registers U6 and U3.
- 2. Check U3 pin 13 for a 5V pulse every 16ms. A 5V pulse on this pin at a 16ms rate indicates that shift registers U6 and U3 are functioning properly.
- 3. Using an oscilloscope, look at the inputs (D0-D3) to U8. A negative going pulse on one of these inputs occurs when a front panel key is pressed. A negative pulse that is present when no keys have been pressed indicates a stuck key.
- 4. Check the machine data bus lines at the input and output of U9 for logic level transitions. The same level present at the input and its corresponding output indicate a problem with U9.
- 5. Signature Analysis Test #4 can be used to determine if a key is stuck. This test also checks the LED drivers, current sources, and digital circuits.

Removal of Keyboard Printed Circuit Assembly A5.

Disconnect the flat gray cable to the keyboard assembly from A6, and disconnect the signal and sync output cables from the front panel.

Remove the plastic trim strip from the top of the front frame by prying up with a small screwdriver or similar tool in one of the slots near either end of the strip.

Remove the two screws from the top of the front frame (beneath the trim strip) and two corresponding screws from the bottom side of the front frame.

Push the printed circuit board and front panel assembly forward to remove from the front frame.

Remove the ten screws that hold the printed circuit board to the front panel assembly.

Replacement of Keyboard Switches.

The keyboard switches (except the power switch) may be removed by using a hot soldering iron to melt the plastic tabs on the back of the printed circuit board that hold the switch to the board.

The keycap is press-fitted to the switch and may be pulled off.

To install a new switch, make sure the switch is oriented properly, hold it firmly against the printed circuit board, and "rivet" the plastic tabs with a flat soldering iron tip. Be careful not to apply so much heat that the tabs are completely melted.

SIGNATURE ANALYSIS TEST 4.

This test checks the ability of the processor (A6U9) to identify front panel switch closures. It also checks the A5 LED drivers, current sources, and digital circuits.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical 1 (+5 V) for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Some signatures in this test are observed at IC's which are on the front panel printed circuit board, A5. Use the following procedure to gain access to the front of this board:

- a. Disconnect the internal cables from the Signal and Sync output connectors.
- b. Remove the plastic trim strip from the top of the front frame by prying up with a small screwdriver or similar tool in one of the slots near either end of the strip.
- c. Remove the two screws from the top of the front frame (beneath the trim strip) and two corresponding screws from the bottom side of the front frame.
- d. Push the printed circuit board and front panel assembly forward to remove from the front frame. Be careful not to put stress on the flat cable to the front panel assembly.
 - e. Remove the ten screws that hold the printed circuit board to the front panel assembly.

Use the following procedure for Signature Analysis Test 4:

- a. Set the 3325A POWER switch to STBY.
- b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.

c. Connect the signature analyzer as follows:

Clock	(U9)
Start and StopSA S/S (at right of A6U	J15)
Ground	und
(stiffener channel on deck between	A6
and A21 or any Ground test po	oint)

d. Set the signature analyzer controls as follows:

Line On
Start(in)
Stop ¬_(in)
Clock
Hold Off
Self TestOff

- e. Make sure the CSØ, CS1, & CS2 shorting connectors (near right front corner of A6) are in the center position.
 - f. Connect A6TP3 and A6TP6 to ground.
 - g. Set all bus address switches (A6S1) to the OFF position. See switch drawing below.

- h. Set 3325A POWER switch to ON.
- i. Disconnect ground from A6TP3, then A6TP6.
- j. Set bus address switch 4 to ON.
- k. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A6 is +5 V.
- 1. Follow the flow diagram from START. If no stable or valid signatures are obtained, the processor (A6U9) or the ROM's (A6U1-4) may be defective. Use the ROM Signature Analysis Test to check these components.

NOTE

After completion of the test, be sure to replace all cables, jumpers, and switches to the normal position.

Figure 8-29. Signature Analysis Test 4.

Service Model 3325A

8-A-6

*Revision A, Revision B, and Revision C 03325-66505 boards are identical regarding component layout and values. The revisions reflect manufacturing changes only.

Figure 8-30. Keyboard and Display, A5. 8-A-7/8-A-8

SERVICE GROUP B HP-IB CIRCUITS

SERVICE GROUP B - HP-IB CIRCUITS.

Troubleshooting Information.

The most common failure on the HP-IB portion of the A6 board are the optical isolators. The optical isolators are used because of the electrical isolation of the HP-IB circuitry from the rest of the assembly. The following hints suggest various procedures for troubleshooting this section of the assembly.

- 1. The HP-IB circuitry has its own +5V power supply (U65/U74). If HP-IB problems are suspected, the first step should be to determine if +5V is present.
- 2. Using an oscilloscope and a probe, check both sides of the optical isolators for legitimate TTL levels. The oscilloscope and probe can also be used to check the data path between the processor and the HP-IB connector.
- 3. The continuity of the data path from the processor to the HP-IB connector and back is also checked by running signature analysis test #3.
- 4. A check of the handshake circuitry is made by running signature analysis test #0 (Service Group C). This test writes signatures to every point on the A6 board*. When used in conjunction with the schematic, one can check the signatures at the output and input of the individual chips. If a chip has an incorrect output signature, one should then check the input signature. If the input signature is incorrect, then the output signature of the preceding chip should be checked. By troubleshooting in this manner (backwards), one can then identify the chip where the incorrect signature originated.
- * This test does not check those gates whose data comes directly from the HP-IB connector.

If the 03325-66506 assembly is to be replaced in a 3325A with serial number 1748A04250 or below, or in one that contains a revision A or revision B A6 assembly, see paragraph 8-113 in the Servicing/Troubleshooting Information section.

SIGNATURE ANALYSIS TEST 3.

This test checks the HP-IB data path from the processor (U9) to the HP-IB connector and back. It does not check the handshake circuits.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical 1 (+5 V) for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure:

- a. Set the 3325A POWER switch to STBY.
- b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
- c. Connect the signature analyzer as follows:

Clock	SA CLK (at left of A6U9)
Start and Stop	SA S/S (at right of A6U15)
Ground	3325A ground
(st	iffener channel on deck between A6
	and A21, or any Ground test point)

d. Set the signature analyzer controls as follows:

Line On
Start
Stop $\sqrt{(in)}$
Clock
Hold Off
Self TestOff

- e. Place CSØ, CS1 and CS2 shorting connectors (near right front corner of A6) in the O position to select ROM 1.
 - f. Set the ROM Disable switch (A6S1) to ON (1). Set all other switches on A6S1 to OFF(0).

- g. Connect A6TP3 (between U15 and U16) to ground.
- h. Set 3325A POWER to ON.
- i. Remove ground from A6TP3.
- j. Place the signature analyzer probe on +5V (logic 1). The large plated area near the center of A6 is +5V.

If the signature is not 5159, troubleshoot A6U9 processor, A6U10 (buffer), the processor data lines HPD0 through 7, and associated circuits. Refer to the ROM Signature Analysis Test.

k. Set bus address bit 3 switch to ON (1) (see drawing above). Note the signature obtained with the analyzer probe on +5V.

The correct +5V signature is 78CU.

Most of the signatures taken in this test are on the I/O side of the HP-IB isolators where the normal SA Clock is not available. In order to take these signatures, it is necessary to supply an external clock as follows:

- 1. Set 3325A POWER to STBY.
- m. Disconnect the signature analyzer from the SA CLK.
- n. Unsolder the end of the SA CLK jumper nearest the left edge of the board (away from U9).
- o. Apply a pulse train with the following characteristics to the SA CLK jumper:

FREQ	 	 	~400 kHz
Amplitude	 	 	4V p-p
DC Offset	 	 	$\dots \dots \dots + 2V$
Pulse Width .	 	 	≤1 <i>μ</i> s

Connect the pulse generator ground to A6 ground (jumper in right front corner of the board). The -hp- Model 3312A may be used as the pulse generator.

- p. Connect a clip lead across A6V1 (left rear corner of A6) to short the isolated ground to circuit ground.
- q. Connect the signature analyzer clock lead to the raised SA CLK jumper (along with the pulse generator).
 - r. Set 3325A POWER to ON.
- s. Adjust the pulse generator frequency until a stable, gated signature is obtained, indicating that the signature analyzer is triggering on the external clock signal. (The GATE indicator should be flashing and the UNSTABLE SIGNATURE indicator should be off.)
- t. The signature taken in Step k should be 78CU as indicated at the START of the flow diagram. If it is not 78CU, go to Figure 8-31(a) to the section of the diagram headed by the signature actually observed. If no stable signature or none of the signatures shown are observed, go to the ROM Signature Analysis Test. If Test 3 passes successfully, go to Signature Analysis Test 4. The tests associated with each signature heading are described as follows:

78CU - Data paths are good.

- a. With ATN grounded, signature 9P9H = ATN recognized.
- b. With REN grounded, signature 9HUH = REN recognized.
- c. With IFC grounded, signature indications are as follows:

A77U = IFC recognized, test passes P9HU = IFC recognized, IFC* not recognized 77U6 = IFC not recognized, IFC* recognized Other signatures = IFC not recognized

9P9H - Illegal ATN recognized

9HUH - Illegal REN recognized

A77U - Illegal IFC recognized

3HCC or - Data lost in shift register U45H

3102 - Data lost in I/O

NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.

Service Model 3325A

	Board		Board		Board		
Designator	Location	Designator	Location	Designator	Location	Designator	Location
C1	G	P52	Α	T/N	G	U43	С
C2	G			CS0	G	U44	C
C3	G	Q1	D	CS1	G	U45	Н
C4	F	Q2	D	CS2	G	U46	Н
C5	G					U51	C
C6	G	R1	G	U1	Н	U52	С
C7	G	R2	G	U2	Н	U53	C
0.	- C	R3	G	U3	Н	U54	C
C20	н	R4	G	U4	н	U55	C
C21	H	R5	F	U5	н	U56	C
C22	н	R6	G	U6	н	000	0
C23	H	R7	F	U7	H	U57	В
C24	G	R8	F	U8	G	U58	В
C25	G	R9	C	U9	G	U59	В
C26	F	R10	D	03	G	U60	В
C27	F	R13	G	U10	G	U61	В
			D		G		
C28	E	R14	C	U11		U62	В
C29	E	R15	C	U12	G	U63	В
C30	E	R16	C	U13	G	U64	В
C31	E	R17	C	U14	G	U65	В
C32	D	R18	В	U15	F	U66	Α
C33	D	R19	E	U16	F	U67	Α
C34	D	R20	D	U17	F	U68	Α
C35	C	R21	C	U18	F	U69	A
C36	Н	R22	C	U19	F	U70	Α
C37	Н	R23	C	U20	F	U71	Α
C38	C	R24	C	U21	F	U72	Α
C39	В	R25	C	U22	F	U73	A
C40	В	R26	F	U23	F	U74	Α
C41	G	R51	В	U24	F	U75	С
		R52	C	U25	E		
C52	C	R53	Α			V1	Α
C53	Α	R54	С	U26	E	W1	В
C54	Α	R55	С	U27	E		
C55	A			U28	E		
C56	A	S1	В	U29	E		
C57	A		-	U30	E		
C58	C	Test Points		U31	Ē		
C59	C	rest remits		U32	D		
C60	Č	1	G	U33	D		
C61	В	2	C	U34	D		
C62	В	3	F	U35	D		
002		4	Ċ	U36	D		
CR1	F	5	D	U37	D		
CR2	Н	7	C	U38	D		
CR4	C	51	A	U39	D		
		52			D		
CR5	С	53	A	U40 U41	D		
	-						
J1	F	54	A	U42	D		
J2	D	GND	D				
J3	D	GND	Н				
J4	D	0.4 50.11					
J51	Α	SA CLK	G				
		SA S/S	F				
L1	G	STBY	Α				
L2	F						
L3	F						

8-B-10

A6 03325-66506

Note: Should replacement of A6 become necessary, see paragraph 8-113.

Service Model 3325A

8-B-12

SERVICE GROUP C CONTROL CIRCUITS

SERVICE GROUP C - CONTROL CIRCUITS.

Troubleshooting Information.

The majority of problems which are isolated to the A6 board can be pinpointed through Signature Analysis. There are, however, a series of troubleshooting checks that can be made prior to running the SA tests. The checks, common failures, and brief descriptions of the SA tests are presented below.

- 1. Begin troubleshooting by checking the 1.2MHz oscillator circuitry for the correct frequency.
- 2. Should the instrument not turn on properly or respond to inputs, the problem could be with the processor. A check of the nanoprocessor (U9) can be made by disconnecting the A6 board from the A21 (A1) Frequency Synthesis board (W31, A6J4 A21J1). If "A CAL FAIL" and "OSC FAIL" are then displayed, a significant portion of the processor circuitry is working.
- 3. A further check of the nanoprocessor is to first disable the buffer (U10) by opening switch S1G. This enables a +5V level to be present on each of the lines in the data bus. When the processor samples each data line, the +5V is interpreted as a "no operation" instruction. The processor then increments the ROM address and the process repeats. Using an oscilloscope, monitor the ROM address lines. Note that the lines should be counting at one-half the frequency of the previous line.
- 4. Again, should the instrument not respond properly at turn on, check that the "turn on interrupt request" is coming from A6Q1 and U41 pin 6. This interrupt should also appear at U35 pin 2.
- 5. A6U18 and A6U19 because of marginal conditions, are a common cause of "OSC FAIL" and "A CAL FAIL".
- 6. Check the position of ROM select switches CS0-CS2. During normal operation (when SA is not being performed), the switches must be in their center position. Note also that the "Normal/Test" jumper used during SA sould be returned to the "Normal" position following the tests.
- 7. Jumper W1 is in place in standard instruments. W1 is clipped when the High Voltage option is installed. If the instrument is configured with the option but will not accept inputs greater than 10Vp-p, check that W1 was not resoldered.
- 8. The nanoprocessor U9, though often replaced, is not always at fault. Because U9 (1820-1691) is a MOS device, care should be taken when handling so as not to create punch-through damage due to static electricity. If U9 is replaced, insure that A6R8 is $9.53k\Omega$. $\Delta 2$
- 9. The 1ms one shot (U8) interrupts the processor at 1ms intervals to check the front panel for switch closures and to refresh the front panel display. Signatures from U8 may vary from one instrument to the next due to U8 being an analog device. Any signatures, therefore, should be disregarded.
- 10. The following SA tests are available for checking the A6 assembly. Note that when running the tests and using the bus address switch pack on the A6 board, use the logic levels and switch numbers printed on the PC assembly. Disregard the numbers printed on the pack itself.

ROM Test: Checks the ROMs, processor, and buffer.

- SA Test 1: Checks the data path from the processor to the machine data bus and back.
- SA Test 2: Checks the RAM address counter and the RAMs.
- SA Test 3: Checks the HP-IB path from the processor to the HP-IB connector and back. (See Service Group B.)

Service Model 3325A

SA Test 4: Checks the processor's ability to identify front panel switch closures and stuck switches. It also checks the A5 LED drivers, current sources, and digital circuits. (See Service Group A.)

SA Test 5: Checks the path from the processor to the Fractional-N chip. It also checks the interrupt lines, carry/sweep limit flag path, VCO lines, and the turn on circuit.

SA Test 0: Used after all other tests have failed to isolate the problem. During this test, the processor sends digital signals to all points on the A6 board so that signatures can be taken. This test should be used with the schematic so that bad signatures can be traced to their origin.

Signature analysis is not effective when trying to isolate a problem that is intermittent. If it can be determined that the intermittent symptom is originating from the A6 board, one should try to make the symptom a hard failure through heat, cold, vibration or mild shock. If the symptom remains intermittent and one is certain that it is tied to the A6 assembly, then the board should probably be replaced.

ROM SIGNATURE ANALYSIS TEST.

Use this test if Signature Analysis Tests 1, 2, and 3 cannot be entered. This test checks the ROM's (A6U1-4), the processor (A6U9), and the buffer (A6U10). If these components are not operating properly, the remaining Signature Analysis tests will not work.

Procedure.

- a. Set 3325A POWER switch to STBY.
- b. Set all five bus address switches (A6S1) to OFF (O).

- c. Set ROM Disable switch (A6S1) to OFF (O).
- d. Move N/T (Normal/Test) shorting connector (located between U7 and 13) to T position.
- e. CSØ through CS2 shorting connectors should be in the center position. (These are located near the right front corner of A6.)

f. Connect the signature analyzer as follows:

Clock	SA CLK (at left of A6U9)
Start and Stop	
	t next to CS2 shorting connector)
	- ,
	3325A ground
	(stiffener channel on deck between

A6 and A21 or any Ground test point)

g. Set signature analyzer controls as follows:

LineON
Start
Stop
Clock
Hold OFF
Self TestOFF

- h. Connect TP7 to ground.
- i. Set 3325A POWER switch to ON.
- j. Remove ground from TP7.

If the +5 V signature is 755U continue with Step k.

If the +5 V signature is not 755U go to Step m.

k. Place the signature analyzer probe on the following points on A6U1 and compare signatures to those below.

A6U1 Pin	Correct Signature	Data Line
9	6C1F	0
10	P326	1
11	5975	2
13	4533	3
14	5H79	4
15	83HU	5
16	U2FF	6
17	P2CC	7

If all of these signatures are correct, the ROM's have passed this test. Signature analysis tests \emptyset through 5 may now be performed.

If these signatures are not all correct, test each ROM individually as follows:

ROM 1 (U1) Test.

- 1. Move the CS1 and CS2 shorting connectors to the Ø position (toward edge of board).
- 2. Place the signature analyzer probe on the following points and compare the signatures.

1	Correct		
A6U1 Pin	Signature	Data Line	
9	63F2	0	
10	0U43	1	
11	F60P	2	
13	3854	3	
14	3FFH	4	
15	323F	5	
16	4P71	6	
17	9H43	7	
1		8	

ROM 2 (U2) Test.

- 1. Move CS 1 shorting connector to the 1 position and CS2 to the Ø position.
- 2. Place the signature analyzer probe on the following points and compare the signatures.

A6U2 Pin	Correct Signature	Data Line
9	4567	0
10	PCUC	1
11	PC2C	2
13	883F	3
14	6U72	4
15	H89H	5
16	02C6	6
17	9474	7

ROM 3 (U3) Test.

1. Move CS1 shorting connector to 0 and CS2 to 1.

2. Place the signature analyzer probe on the following points and compare the signatures.

A6U3 Pin	Correct Signature	Data Line
9	C3P4	0
10	P948	1
11	U145	2
13	C848	3
14	07UC	4
15	C602	5
16	05HF	6
17	23UP	7

ROM 4 (U4) Test.

- 1. Move CS1 and CS2 shorting connectors to 1.
- 2. Place the signature analyzer probe on the following points and compare the signatures.

Correct Signature	Data Line
2968	0
694H	1
HU38	2
0A4C	3
377C	4
22UP	5
8266	6
2CH2	7
	2968 694H HU38 0A4C 377C 22UP 8266

After completion of these tests, replace CS1 through CS2 shorting connectors to the center position.

Replace the N/T shorting connector to the N position. Set the ROM disable switch to 1.

- 1. If the signature in Step j is not 755U, check the voltage level of A6U42 pin 6 with the signature analyzer probe. It should be high. If not, momentarily ground U42 pin 3 to force pin 6 high. If it is still not high, troubleshoot A6U5, U14, and U42.
 - m. If the signature is still not 755U, examine the ROM address lines.
 - 1. Set 3325A POWER to STBY.
 - 2. Move signature analyzer Start and Stop leads to A6TP1 (in front of U9).

Service Model 3325A

- 3. Place signature analyzer probe on +5 V (logic 1).
- 4. Set 3325A POWER to ON.

If the signature is 826P, troubleshoot A6U14 (Chip Select Delay) and A6U15 (1.2 MHz Clock circuit).

If the signature is not 826P, examine the ROM address lines HRAØ through HRA10 at A6U1.

A6U1 Pin	Address Line
8	HRAØ
7	HRA1
6	HRA2
5	HRA3
4	HRA4
3	HRA5
2	HRA6
1	HRA7
23	HRA8
22	HRA9
19	HRA10

The frequency of the signal at HRA1 should be one-half that of HRAØ. HRA2 should be one-half of HRA1, etc., through HRA10. None of the address lines should be a constant level, and no two lines should be the same.

After completion of the test, replace the N/T shorting connector to the N position.

After completion of all signature analysis tests, make sure the ROM Disable switch (A6S1) is set to the ON (1) position.

SIGNATURE ANALYSIS TEST 0.

Use of this test is recommended after the ROM test or tests 1 through 5 have failed to isolate the faulty circuit. This test reads all the signatures on the A6 assembly, which are presented in tabular form. Close attention should be paid to the schematic diagrams in Service Groups B and C while using this test.

Procedure.

- a. Set 3325A POWER switch to STBY.
- b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays. Be sure to replace this cable carefully after completion of the test, making sure the cable is aligned properly in the connector.

c. Connect the signature analyzer as follows:

Clock	SA CLK (at left of A6U9)
Start and Stop	$\dots SAS/S$ (at right of A6U15)
Ground	3325A ground
	(stiffener channel on deck between
	A6 and A21, or any Ground test point)

d. Set the signature analyzer controls as follows:

Line	On
Start	(in)
Stop	(in)
Clock	(out)
Hold	Off
SelfTest	Off

- e. Place CSØ, CS1, and CS2 shorting connectors (near right front corner of A6) in the Ø position to select ROM 1.
 - f. Set the ROM Disable switch (A6S1) to ON (1). (See switch drawing below.)

- g. Connect A6TP3 (between U15 and U16) to ground. Do not disconnect this ground during this test.
 - h. Set 3325A POWER to ON.
- i. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A6 is +5 V.

If the signature is FF32, proceed to Step j.

If the signature is not FF32, troubleshoot A6U9 and U10, the processor data lines HPDØ-7 and associated circuits. Refer to the ROM Signature Analysis Test.

- j. Set all five Bus Address switches to OFF (O).
- k. Place the signature analyzer probe on the points indicated in the tables and compare the signatures. If no stable or valid signatures are obtained, the ROM's (A6U1-4) or the processor (A6U9) may be at fault. Refer to the ROM Signature Analyzer Test.

Integrated circuits with designators greater than U55 are on the I/O side of the HP-IB isolators where the normal SA Clock is not available. In order to take these signatures, it is necessary to supply an external clock. Use the following procedure:

- a. Set 3325A POWER to STBY.
- b. Disconnect the signature analyzer from the SA CLK.
- c. Unsolder the end of the SA CLK jumper nearest the left edge of the board (away from U9).
 - d. Apply 400 kHz square wave with the following characteristics to the SA CLK jumper:

Frequency~	400 kHz
Amplitude	. 4 V p-p
DC Offset	+2 V

Connect the pulse generator ground to A6 ground (jumper in right front corner of the board). The -hp- Model 3312A may be used as the pulse generator.

- e. Connect a clip lead across A6V1 to short the isolated ground to circuit ground.
- f. Make sure A6TP3 remains grounded.
- g. Connect the signature analyzer Clock lead to the raised SA CLK jumper (along with the pulse generator).
 - h. Set 3325A POWER to ON.
- i. Adjust the pulse generator frequency until a stable, gated signature is obtained, indicating that the signature analyzer is triggering on the external clock signal. (The GATE indicator should be flashing and the UNSTABLE SIGNATURE indicator should be off.)
- j. Place the signature analyzer probe on the points indicated in the table for IC's with designators U56 and greater. Compare the signatures to the correct signatures in the table.

NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.

Signature Analysis Test .

Pin	U1 through U4	U5	U6	U7	U8	U9
1 2 3 4 5	OHCO H52C 3HA4 2F5H 159U	FF32 88U7 44F5 0000 88U7	C475 66P6 F342 AH4F 9581	FF32 7515 C927 77F7 U237	0000 AF1P - FF32 FF32	68CC 2H70 FH4P 159U 2F5H
6 7 8 9 10	FH4P 2H7O 68CC 1C2P PC97	FF32 OOOO 44F5 FF32 88U7	2H79 7C10 71H5 0000 FA47	41PH 8HHU 0000 075A 3F37	FF32	3HA4 H52C OHCO FF32 FF32
11 12 13 14 15	68AF 0000 1C71 1P24 P4AH	0000 FF32 FF32 FF32	UPF8 P8F2 1UA2 U83F 8HHU	UOO5 7OUC 64U1 OOOO H62P		FF32 7U44 7A54 6CF2 UPUH
16 17 18 19 20	467P A12C OOOO FF32 OOOO (U1 and U3) FF32 (U2 and U4)		7515 P476 FF32	FF32		075A 0000 U83F 1UA2 P8F2
21 22 23 24 25	0000 FF32 FF32 FF32					UPF8 C67C 152U 7UC6 21P3
26 27 28 29 30						88U7 0000 FF32 0000
31 32 33 34 35						0000 FU06 4UFF 14UH
36 37 38 39 40						60PP U655 0000 FF32 FF32

Pin	U10	U11	U12	U13	U14	U15
1 2 3 4 5	44F5 1C2P U83F PC97 1UA2	AH4F 7C10 2H79 9581 66P6	AH4F 7C10 2H79 9581 66P6	FF32 AO29 6F1C C67C 152U	FF32 3P9A 2963 O1A6 2AU8	
6 7 8 9 10	68AF P8F2 1C71 UPF8 OOOO	C475 P476 OOOO U83F 1UA2	C475 P476 OOOO C67C 152U	593U 950H 0000 AC69 62FP	1104 22A9 0000 0000 3C7U	0000 FC68 075A 075A
11 12 13 14 15	C67C 1P24 152U P4AH 7UC6	P8F2 UPF8 UA22 FA47 F342	7UC6 21P3 46P4 FA47 F342	APUF 7UC6 21P3 95C2 5980	22A9 CU57 2AU8 3P9A 3566	FC68 FF32 OOOO FF32
16 17 18 19 20	467P 21P3 A12C 44F5 FF32	FF32	FF32	FF32	FF32	

Pin	U16	U17	U18	U19	U20	U21
1 2 3 4 5	UPUH 6CF2 7A54 7U44	UPUH 6CF2 7A54 0000		FF32 9581 77F7 2H79 U237	1UA2 2H79 9581 P7U2 UP89	152U 66P6 F342 4AF8 1CF8
6 7 8 9 10	075A 515P 0000 C982 1AU0	7U44 9A92 OOOO A42C 6F55	H6F2	7C10 7OUC AH4F 64U1 OOOO	7C10 AH4F 0000 UPF8 P8F2	C475 P476 OOOO 21P3 7UC6
11 12 13 14 15	973C 3P18 565H 7FA5 O9P9	4HAU H4FH FA47 H5P4 AC69	1AUO 5CO9 973C FF32	8375 F342 UUCU 66P6 3797	H5P4 1CF8 4AF8 0000 U83F	H5P4 2A9P FF32 0000 C67C
16 17 18 19 20	FF32	FF32		C475 783U P476 FF32 FF32	FF32	FF32

Pin	U22	U23	U24	U25	U26	U27
1 2 3 4 5	FF32 1104 77F7 01A6 U237	0675 5980 UP89 0675 62FP	075A AC69 FF32 075A H5P4	UPUH 6CF2 7A54 7U44	075A 77F7 U83F U237 1UA2	FF32 77F7 U83F 1UA2 U237
6 7 8 9 10	2963 70UC UP1P 64U1 0000	P7U2 0000 UA22 A029 0675	FF32 OOOO H5P4 FC68 H5P4	FC68 FF32 OOOO FF32 FF32	70UC P8F2 64U1 UPF8 0000	70UC P8F2 UPF8 64U1 0000
11 12 13 14 15	8375 A029 UUCU 950H 3797	FA47 O675 O75A FF32	AC69 FC68 AC69 FF32	FF32 FF32 O75A FF32 FF32	C67C 8375 152U UUCU 7UC6	H4FH 8375 C67C 152U UUCU
16 17 18 19 20	62FP 783U 5980 FF32 FF32			FF32	3797 21P3 783U 075A FF32	3797 7UC6 21P3 783U FF32

Pin	U28	U29	U30	U31	U32	U33
1 2 3 4 5	0000 77F7 77F7 U237 U237	14UH 14UH 4131 872A 36HC	H4FH 075A H397 950H 0675	A42C FF32 FF32 A42C 64U1	FF32 1FP9 HOHC 8375 UUCU	FF32 FF32 OOOO FC68 9A92
6 7 8 9 10	70UC 70UC 64U1 64U1 0000	PUP9 0000 F5HC FF32 H6UC	46P4 0000 0675 FA47 FF32	AF1P 0000 FF32 FF32 FF32	7916 C524 OOOO A42C 4319	075A 0000 FF32 A42C 0000
11 12 13 14 15	8375 8375 UUCU UUCU 3797	CFU7 CAH7 HO85 FF32	H4FH H397 O75A FF32	14UH 14UH 14UH FF32	8U2C 3797 FF32 OOOO FF32	0000 FF32 FF32 FF32
16 17 18 19 20	3797 783U 783U 0000 FF32				FF32	

Pin	U34	U35	U36	U37	U38	U39
1 2 3 4 5	FF32 0000 4HAU FF32 0000	FF32 0000 77F7 FF32 3300	HUC5 1387 FUO6 0334 F5HC	3P18 09P9 64U1 7OUC U237	FF32 HO85 77F7 CAH7 U237	HOHC 3300 H56C
6 7 8 9 10	FF32 OOOO P670 39A5 FF32	U237 0000 70UC FF32	09P9 0000 FF32 0000 3A67	77F7 HUC5 0000 1387 0000	CFU7 70UC H6UC 64U1 0000	8U2C 0000 0675 075A FC68
11 12 13 14 15	39A5 FF32 AF1P FF32	64U1 FF32 FF32	U655 AFHF 6OPP FF32	783U 3797 UUCU 8375 OOOO	8375 PUP9 UUCU 36HC 3797	H397 O75A OOOO FF32
16 17 18 19 20				FF32	872A 783U 4131 FF32 FF32	

Pin	U40	U41	U42	U43	U44	U45
1 2 3 4 5	8755 4C67 0000 FF32 09P9	3300 0000 0000 0000	FF32 FF32 FF32	FF32 FF32 77F7 FF32 U237	0000 0000 0000 0000	FF32 AC69 U83F 1UA2 P8F2
6 7 8 9 10	F5HC 0000 FF32	FF32 OOOO OOOO FF32 54U6	0000 98F4 54U6 AC69	FF32 70UC FF32 64U1 0000	0000 FF32 0000	UPF8 0000 0000 0000 0000
11 12 13 14 15	FF32 FF32 OOOO FF32	4967 FF32	0000 FF32 FF32	8375 FF32 UUCU FF32 3797		UP1P 2963 01A6 1104 0000
16 17 18 19 20				FF32 783U *FF32 FF32 FF32		FF32

^{*}FF32 W/O Jumper, 0000 W/Jumper

NOTE

For signatures on U51 and above, circuitry is HP-IB. Refer to test zero procedure.

Pin	U46	U51	U52	U53	U54	U55
1 2 3 4 5	FF32 OOOO FF32 O675 3F37	FF32 FF32 83UP 0000 0000	FF32 AFHF 3A67 FF32 OOOO	FF32 O334 FF32 FF32 OOOO	FF32 O9P9 1387 FF32 OOOO	FF32 14UH 5AUH FF32 0000
6 7 8 9 10	71H5 0000 FF32 0000 FF32	83UP 0000 FF32	3A67 AFHF FF32	FF32 O334 FF32	1387 09P9 FF32	14UH 5AUH FF32
11 12 13 14	0000 0000 0000 FF32					

Pin	U56	U57	U58	U59	U60	U61
1 2 3 4 5	0000 0000 FF32 0334 3A67	FF32 90HP 90HP 0000 FF32	FF32 1H01 1H01 6H03 0000	FF32 1387 1387 6HO3 4HF9	HOH5 1FP7 H3U3 1UF1 FF32	FF32 23F5 4P25 FF32 83UP
6 7 8 9 10	23F5 0000 5AUH 3U30 65FH	6HP0 FF32 OOOO C870 F5HC	20FA 6HO3 0000 C870 F5HC	20FA 20FA 0000 C870 F5HC	0000 0000 0000 FF32 0000	FF32 83UP 0000 6HP0 0000
11 12 13 14 15	14UH H8FU H8FU FF32	14UH H8FU 003C P63F F5CC	5FPF 90HP 3F19 1P82 U5A1	H133 1H01 1710 F955 CH13	FF32 83UP 4UFF FF32	4P25 23F5 PFF3 1UF1 2OU1
16	:1	FF32	FF32	FF32		FF32

Service Model 3325A

Pin	U62	U63	U64	U66	U67	U68
1 2 3 4 5	20U1 4UFF 1UF1 UO24 83UP	1UF1 H3U3 96FU 5AUH 1FP7	FF32 P63F 2PFC FF32 5AUH	0000 PFU8 20FA F129 6932	OOOO A131 6HO3 A961 8U58	FF32 A961 90HP 3F19 8U58
6 7 8 9 10	4UFF 0000 4UFF 83UP 5AUH	HOH5 0000 F5HC 09P9 FF32	96FU 0000 3F16 U024 FF32	20FA PFU8 0000 A131 6H03	20FA PFU8 0000 A131 6H03	4P71 1P82 U5A1 362P OOOO
11 12 13 14 15	83UP 4UFF 3U3O FF32	0000 FF32 0000 FF32	2PFC F5CC FF32 FF32	5861 96FU U707 4HF9 81UC	362P 96FU 4P71 0000 FF32	2PFC F129 1HO1 1710 6932
16 17 18 19 20				FF32	FF32	U707 F955 CH13 5861 FF32

No signatures for U65

Pin	U69	U70	U71	U72	U73	U75
1	20U1	2OU1	23F5	83UP	0000	AFHF
2	UO24	CFFP	PFF3	HOH5	U655	60PP
3	HOH5	PFF3	FF32	CFFP	60PP	U655
4	UO24	PFF3	UO24	H3U3	14AF	3A67
5	1UF1	83UP	1UF1	83UP	C870	FF32
6	H3U3	CFFP	20U1	FF32	2PFC	0000
7	OOOO	0000	0000	OOOO	4P25	0000
8	4UFF	20U1	3U30	96FU	0000	0334
9	83UP	0334	83UP	5AUH	20U1	FU06
10	83UP	1UF1	5AUH	FF32	FF32	FU06
11 12 13 14 15	7811 5AUH CH13 FF32	65FH 5AUH 3U3O FF32	FF32 CFFP 23F5 FF32	UO24 3F16 FF32 FF32	3U3O 1UF1 PFF3 1UF1 OOOO FF32	O334 U655 3A67 FF32

No Signatures for U74

SIGNATURE ANALYSIS TEST 1.

This test checks the data paths between the processor and machine data bus through A6U13, U20, U21, U26, U27, U28, and U45. It also checks the enable signals to these IC's.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical 1 (+5 V) for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure:

- a. Set the 3325A POWER switch to STBY.
- b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
- c. Connect the signature analyzer as follows:

Clock	SA CLK (at left of A6U9)
Start and Stop	SA S/S (at right of A6U15)
Ground	3325A ground
	(stiffener channel on deck between A6
	and A21, or any Ground test point)

d. Set the signature analyzer controls as follows:

Line On
Start (in)
Stop \setminus (in)
Clock
Hold Off
Self TestOff

e. Place CSØ through CS2 shorting connectors (near right front corner of A6) in the O position to select ROM 1.

f. Set the ROM Disable switch (A6S1) to ON (1). (See switch drawing below.)

- g. Connect A6TP3 (between U15 and U16) to ground.
- h. Set 3325A POWER to ON.
- i. Remove ground from A6TP3.
- j. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A6 is +5 V.

If the signature is 5159, proceed to Step k.

If the signature is not 5159, troubleshoot A6U9 (processor), A6U10 (buffer), the processor data lines HPDØ-7, and associated circuits. Refer to the ROM Signature Analysis Test.

- k. Set bus address bit 1 switch to ON(1), and set switches 2 through 5 to OFF.
- 1. The signature should be HCH5 as indicated at the START of the flow diagram. If it is not HCH5, go to the section of the diagram headed by the signature actually observed. If no stable signature or none of the signatures shown are observed, go to the ROM Signature Analysis Test. If Test 1 passes successfully, go to Signature Analysis Test 2. The tests associated with each signature heading are described as follows:
- HCH5 This test verifies that data can be successfully transmitted to and from the processor via the machine bus data latch (U27) and buffer (U28). It also tests U13 and U45.
- This signature indicates a failure of the machine data bus. A 1010 data signal is sent from the processor on the bus through U27, U28, and U26, and read back into the processor. This test checks data paths, clocks, and enabling signals.
- AHHC This test is identical to that for signature 6PCP except that a different data structure is used (0101). Since 6PCP was not displayed, the clocks and enabling signals are assumed to be correct.
- AU96 This test reads data through U20 and U21 to the address lines of U19. Data from U19 is then sent via U26 back to the processor, U9. This test also checks the enable signals to U20, U21, and U19. U26 is presumed to be good since it did not fail in previous tests.

HHCH - This test is identical to that for signature AU96 except that a different address (1010 as opposed to 0101) is sent to U19.

- This test sends data through U13 and U22 and tests the enable signals to these IC's.

760A - This test is identical to 3AHH except that it uses a different data stream.

PC76 and - These tests send data to U22 via U45. Enable signals should be good since they did not cause a 760A signature.

m. When incorrect signatures are encountered, troubleshoot the circuits indicated on the flow diagram.

n. Following a repair indicated by this test, repeat the test beginning at START to determine if there are any other problems that could be detected by this test.

NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.

NOTES

- 1. A constant interrupt (low) at TP5 may be circumvented by:
 - a. Set POWER to STBY.
 - b. Unsolder one end of TP5.
 - c. Set POWER to ON.
 - d. Momentarily short across TP5.
- 2. To isolate the control board (A6) from the other assemblies, disconnect the long flat cable going to the keyboard, and the three short flat cables to the other assemblies. The following conditions should then be observed:

U19 pin 1 should be high
U22 pin 1 should be high
U35 pin 1 should be high
U43 pin 1 – signature should be 5320

After completion of the test, be sure to replace the cables carefully, making sure that the contacts are aligned properly.

Figure 8-33(b). Signature Analysis Test 1. 8-C-21/8-C-22

SIGNATURE ANALYSIS TEST 2.

This test checks the ability of the RAM address register to count up and down, and checks the RAM output data.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical 1 (+5 V) for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure:

- a. Set the 3325A POWER switch to STBY.
- b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
- c. Connect the signature analyzer as follows:

Clock	SA CLK (at left of A6U9)
Start and Stop	SA S/S (at right of A6U15)
Ground	3325A ground
(stif	fener channel on deck between A6
	and A21, or any Ground test point)

d. Set the signature analyzer controls as follows:

Line On
Start
Stop _(in)
Clock
Hold Off
Self TestOff

e. Place CSØ through CS2 shorting connectors (near right front corner of A6) in the O position to select ROM 1.

f. Set the ROM Disable switch (A6S1) to ON (1). Set all other switches to OFF (0).

- g. Connect A6TP3 (between U15 and U16) to ground.
- h. Set 3325A POWER to ON.
- i. Remove ground from A6TP3.
- j. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A6 is +5 V.

If the signature is 5159, proceed to Step k.

If the signature is not 5159, troubleshoot A6U9 (processor), A6U10 (buffer), the processor data lines HPDØ-7, and associated circuits. Refer to the ROM Signature Analysis Test.

- k. Set bus address bit 2 switch to ON (1), and set switch 1 and switches 3 through 5 to OFF. (See switch drawing above.)
- 1. The signature should be 7C97 as indicated at the START of the flow diagram. If it is not 7C97, go to the section of the diagram headed by the signature actually observed. If no stable signature or none of the signatures shown are observed, go to the ROM Signature Analysis Test. If Test 2 passes successfully, go to Signature Analysis Test 3. The tests associated with each signature heading are described as follows:
- This signature implies that the three RAM's may be addressed and read from correctly. It also indicates that U20 and U21 count up and down correctly.
- FF7C This signature indicates that U20 and U21 do not count up correctly. The test also checks enable signals.
- 279A This signature indicates that U20 and U21 do not count down correctly.
- 709A This signature indicates that RAM A or its enable signals are not correct.
- F26C This signature indicates that RAM B or its enable signals are not correct.
- 57C9 This signature indicates that RAM C or its enable signals are not correct.

NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.

SIGNATURE ANALYSIS TEST 5.

This test checks the data path from the processor (A6U9) to the Fractional N Control IC (A21U19). It disables the processor interrupt and checks for signals on the various interrupt lines. This test also checks the 1ms timing one-shot (A6U8), the Carry/Sweep limit flag path, the VCO status lines, and the turn-on circuits.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical 1 (+5 V) for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure for Signature Analysis Test 4:

- a. Set the 3325A POWER switch to STBY.
- b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
- c. Connect the signature analyzer as follows:

Clock	SA CLK (at left of A6U9)
Start and Stop	SAS/S(at right of A6U15)
Ground	
(st	iffener channel on deck between A6
	and A21, or any Ground test point)

d. Set the signature analyzer controls as follows:

Line On
Start (in)
Stop $\overline{}$ (in)
Clock
Hold Off
SelfTestOff

- e. Make sure the CSØ through CS2 shorting connectors (near right front corner of A6) are in the center position.
 - f. Connect A6TP3 and A6TP6 to ground.

g. Set all bus address switches (A6S1) to the OFF position. See switch drawing below.

- h. Set 3325A POWER switch to ON.
- i. Disconnect ground from A6TP3 then A6TP6.
- j. Set bus address switch 5 to ON.
- k. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A6 is +5 V.
- l. Follow the flow diagram from START. If no stable or valid signatures are obtained, the processor (A6U9) or the ROM's (A6U1-4) may be defective. Use the ROM Signature Analysis Test to check these components.

NOTE

After completion of the test, be sure to replace all cables, jumpers, and switches to the normal position.

The signature taken in Step k should be FC6A as indicated at the START of the flow diagram. If it is not, go to the section of the diagram headed by the signature actually observed. The tests associated with each signature heading are described as follows:

F C 6 A - Test passes.

CAUH - Erroneous Turn-on signal.

PCU5 - Erroneous bus interrupt.

AUH6 - Erroneous sweep limit flag.

CU5C - Timer error.

4525

5307 - Fractional N IC Data lost.

7112

1123 - Invalid Sweep Limit Flag

1232 - No Sweep Limit Flag.

- 232C Processor receiving a VCO High signal.
- 8FAF Processor receiving a VCO Low signal.
- AFC6 Missed Sweep Limit Interrupt.
- C2HA Missed 1 ms Clock.

NOTE

Unless otherwise identified, all IC's in this test are on the A6 assembly.

Figure 8-35(a). Signature Analysis Test 5. 8-C-31/8-C-32

Figure 8-35(c). Signature Analysis Test 5.

Service Model 3325A

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Location
C1	G	P52	Α	T/N	G	U43	С
C2	G	1 32	^	CSO	G	U44	C
C3	G	01					C
		Q1	D	CS1	G	U45	Н
C4	F	Q2	D	CS2	G	U46	Н
C5	G					U51	C C C
C6	G	R1	G	U1	Н	U52	C
C7	G	R2	G	U2	H	U53	C
		R3	G	U3	H	U54	C
C20	Н	R4	G	U4	Н	U55	С
C21	Н	R5	F	U5	Н	U56	C
C22	Н	R6	G	U6	H	-	
C23	н	R7	F	U7	H	U57	В
C24	G	R8	F	U8	G	U58	В
C25			C				
	G	R9		U9	G	U59	В
C26	F	R10	D		-	U60	В
C27	F	R13	G	U10	G	U61	В
C28	E	R14	D	U11	G	U62	В
C29	E	R15	C	U12	G	U63	В
C30	E	R16	С	U13	G	U64	В
C31	E	R17	С	U14	G	U65	В
C32	D	R18	В	U15	F	U66	A
C33	D	R19	E	U16	F	U67	A
C34	D	R20	D	U17	F	U68	A
C35	C	R21	C	U18	F		
C36		R22	C			U69	A
	н		C	U19	F	U70	Α
C37	Н	R23	С	U20	F	U71	Α
C38	С	R24	С	U21	F	U72	Α
C39	В	R25	С	U22	F	U73	Α
C40	В	R26	F	U23	F	U74	Α
C41	G	R51	В	U24	F	U75	C
		R52	С	U25	E		
C52	С	R53	Α			V1	Α
C53	Α	R54	C	U26	E	W1	В
C54	A	R55	Č	U27	Ē	•••	
C55	Ä	1155	C	U28	Ē		
C56	Â	S1	В	U29	E		
C57		31	В				
	A			U30	E		
C58	С	Test Points		U31	E		
C59	С			U32	D		
C60	C	1	G	U33	D		
C61	В	2	C	U34	D		
C62	В	3	F	U35	D		
		4	C	U36	D		
CR1	F	5	D	U37	D		
CR2	Н	7	C	U38	D		
CR4	C	51	A	U39	D		
CR5	Č	52	A	U40	D		
CHS	C	53	Ä	U41	D		
14	-						
J1	F	54	A	U42	D		
J2	D	GND	D				
J3	D	GND	Н				
J4	D						
J51	Α	SA CLK	G				
		SA S/S	F				
L1	G	STBY	Α				
L2	F						
L3	F						
LO							

8-C-36

Note 1: Refer to paragraph 8-113 if board replacement is necessary.

Service Model 3325A

8-C-38

SERVICE GROUP D VCO

Service Group D VCO, A21(A1)

SERVICE GROUP D · VOLTAGE CONTROLLED OSCILLATOR SHIELD.

The VCO circuit is covered by a shield consisting of a flat cover and an extrusion. Always set the POWER switch to STBY before removing or replacing the shield. When replacing the shield, make sure the key on the bottom edge of the shield is aligned with the hole in the printed circuit board.

Voltage Controlled Oscillator Troubleshooting.

"OSC FAIL" Display Indication.

a. With an oscilloscope, check the reference pulse signal at A21U1 pin 11. This should be a very narrow pulse with an amplitude of approximately 2 V p-p at a frequency of 100 kHz.

If this signal is correct, go to Step b.

If this signal is not correct, go to Service Group G.

Do not allow disconnected cable connectors to contact the printed circuit boards or components, or circuits may be damaged.

b. Check the +5V, +15V, and -15V power supply voltages at the following points:

-15V ---- C26 (Service Group F)

Moreover, when the problem has been isolated to the functional block, the first step should be a check of the power supply voltage into the functional block.

- c. Make sure the VCO oscillates at the top and bottom of its frequency range. Disconnect the cable from A21J18A (cable marked 18 S-H). This is the VCO control voltage. Measure the frequency of the signal at A21U34 pin 14 and at A21Q161 collector. The frequency should be approximately 45MHz. If the frequency is not approximately 45MHz, check varicaps CR164 and CR166.
- d. Place an external dc voltage (-3V to +10V) at the VCO input and note the following frequencies at the collector of Q161 and at U34 pin 14.

DC Voltage	Frequency
-3V	60.9MHz
+ 5V	42.6MHz
+10V	30 MHz

If the VCO frequency is not correct, disconnect the external DC power supply and measure the DC voltages noted on the VCO schematic diagram. Voltages should be within $\pm 10\%$. (Voltages are measured with A21J18A still disconnected.)

If the VCO frequencies are correct, go to step e.

- e. Reconnect the cable to A21J18A. Measure the voltage levels at A21U33 pins 1 and 7. The voltage at one of these pins may be at approximately +13V, and the other at a negative voltage. (If the frequency synthesis circuits are operating correctly, both pins will be negative.
 - f. Connect an oscilloscope to A21TP9.

If pin 1 of A21U33 is positive, and the signal at TP9 is always positive, the trouble is probably in the Integrator, Bias, or Sample/Hold circuits. Go to Service Group F.

If pin 1 of A21U33 is positive and the signal at TP9 is mostly negative, the trouble is probably in the \div N.F Counter circuits, Service Group E, or the Phase Comparator, Service Group F.

If pin 7 of A21U33 is positive, and the signal at TP9 is always positive, the trouble is probably in the \div N.F Counter circuits, Service Group E, or the Phase Comparator, Service Group F.

If pin 7 of A21U33 is positive, and the signal at TP9 is mostly negative, the trouble is probably in the Integrator, Bias, or Sample/Hold circuits. Go to Service Group F.

No Rear Panel AUX Output, or Incorrect AUX Frequency (Either One-Half or Two Times the Programmed Frequency).

- a. Set function to sine, frequency to 10 MHz.
- b. Measure voltage level at A3U18 pin 9. Should be at a TTL high level ($\geq +2.4$ V). If not, go to Step g.
- c. Set frequency to 21 MHz. Voltage level at A3U18 pin 9 should be TTL low ($\leq +0.4$ V). Voltage at A3U18 pin 6 should be high. If either voltage is not correct go to Step g.
 - d. Set frequency to 29.999 999 999 MHz. Voltage levels should be the same as in Step c.
 - e. Set frequency to 30 MHz. Voltage at A3U18 pin 6 should be low, pin 9 should be low.
- f. If all of the above levels are correct, the trouble is probably in A3U18, U19, C152, or R158.
- g. If any of the above levels is incorrect, check input pins 12 and 13 of A3U10 for the presence of TTL level pulses.

If input pulses are present, A3U10 may be defective.

If input pulses are not present, go to Control Logic troubleshooting, Service Group C.

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	Α	CR11	В	Q161	F	R81	С	R176	G
C2	Α	CR12	С	Q162	G	R82	C	R177	G
C3	В	CR13	C	Q163	G	R83	C	R178	G
C4	В	CR15	С	Q164	G	R84	С	R179	G
C6	Α	CR16 CR17	C B	R1	Α	R86	С	R181	G
C7	ĉ	CR18	Č	R2	Â	R87	Č	R182	G
C8	Ä	CR19	Č	R3	A	R88	č	R183	G
C9	С			R4	Α	R89	Α	R184	G
C10	Α	CR131	D				-		
C11	С	CR161	G	R6 R7	A A	R91 R92	B B	R186	G
C12	C	CR162	G	R8	В	R93	В	R187 R188	G G
C13	Ä	CR163	Ğ	R9	В	R94	В	R189	G
C14	С	CR164	G						
C15	Α	CR166	G	R11	В	R96	В	R191	G
016		11		R12	В	R97	С	R192	G
C16 C17	A B	J1 J8	D A	R13 R14	B C	R98 R99	СВ	R193 R194	G G
C18	В	J15	Ĝ	11.14	C	1133	ь	N134	G
C19	Č	J16	Č	R16	C	R101	С	R196	G
				R17	С	R102	C	R197	G
C21	D	J17A	Α	R18	C	R103	С	R198	G
C22	A	J17B	В	R19	С	R104	Α	R199	G
C23 C24	A A	J18A J18B	A E	R21	С	R106	Α	R200 R201	G G
024	A	3100	_	R22	C	R107	Â	H201	G
C26	Α	L1	С	R23	Č	R108	Â	TP1	E
C27	Α	L2	D	R24	С	R109	В	TP2	D
C28	Α	L3	D					TP3	D
C29	С	1404	_	R26	A	R111	В	TD5	_
C31	С	L131 L132	F E	R27 R28	A A	R112 R113	B B	TP5 TP6	E F
C32	C	L132	E	R29	Ä	R114	В	TP7	Ď
002	Ü	2.00	_	1120			2	TP8	E
C131	E	L161	G	R31	Α	R116	В	TP9	В
C132	F	L162	G	R32	Α	R117	В	TP10	Α
C133	E	L163	G	R33	В	R118	С	TP11	Α
C134	F D	Q1	В	R34	В	R119	С	U1	^
C135	U	Q2	В	R36	С	R121	С	U2	A C
C136	F	Q3	В	R37	Č	R122	č	U3	В
C137	E	Q4	В	R38	C	R123	С	U4	С
C138	E			R39	С	R124	С	U5	D
C139	F	Q6	С	544	-	5400			
C141	D	Q7 Q8	C C	R41 R42	C	R126	С	U6 U7	A E
C141 C142	F	Q9	A	R43	C	R132	E	U8	F
C143	Ē	Q10	Â	R44	C	R133	Ē	U9	D
C144	E					R134	F	U10	С
C145	E	Q11	Α	R46	Α	R135	D	U11	E
	_	Q12	A	R47	A	2400	-	U12	F
C161 C162	F G	Q13 Q14	A B	R48 R49	A A	R136 R137	F F	U13 U14	F D
C163	G	014	В	N43	A	R138	D	U15	E
C164	G	Q16	В	R51	Α	11100		0.10	_
	_	Q17	В	R52	Α	R140	D	U17	F
C166	G	Q18	В	R53	С	R141	D	U18	F
C167	G	Q19	В	R54	С	R142	E	U19	D
C168	G	Q21	В	R56	С	R143	E D	U21	Е
C169	G	Q21	В	R57	A	R144	D	U22	F
C171	G	Q23	Č	R58	Â	R145	D	U23	F
C172	G	Q24	С	R59	Α	R146	E	U24	E
C173	G	Q25	Α	R61	Α	R147	E		
C174	G	000		R62	A	R148	E	U26	F
C176	G	Q26 Q27	C A	R63 R64	A A	R149	F	U27 U28	F D
C176 C177	G	Q28	В	R65	Ä	R151	F	U29	E
C178	Ğ	Q29	В	1100	2.2	R152	F	U30	F
C179	G			R66	Α				
	_	Q31	В	R67	A	R161	F	U31	F
C181	G	Q32	В	R68	В	R162	G	U32	F
C182	G	Q33	С	R69 R70	B A	R163 R164	F F	U33 U34	F G
C196 C197	D D	Q37	С	N/U	~	R165	F	034	G
5157	<u> </u>	Q38	c	R71	В	55		W1	Α
CR1	В	Q39	Ä	R72	В	R166	F	W2	В
CR2	В			R73	В	R167	F	W3	F
CR3	В	Q41	В	R74	С	R168	F		
CR4	В	Q42	В	R75	В	R169	F		
CR5	С	Q43 Q44	B C	R76	С	R170	G		
CR6	С	444	C	R77	C	R171	F		
CR7	Č	Q131	E	R78	Č	R172	F		
CR8	В	Q132	D	R79	С	R173	F		
CR9	В					R174	G		

A21 Component Locations

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	Α	C111	E	L106	E	R41	С	R121	F
C2	A	C112	E	L107	F	R42	С	R122	F
C3	A	C113	E	L108	F	R43	С	R123	F
C4	Α	C114	E	L109	F	R44	C	D1E1	0
C6	Α	C116	F	L111	F	R45	C	R151	G
C7	A	C117	F	L112	F	R46	С	R153	G
C8	Α	C118	F	L113	F	R47	Č	R154	Ğ
C9	Α	C119	F	L114	F	R48	С		
					name of the second	R49	С	R156	G
C11 C12	A B	C121 C122	F F	L116	F	DEG		R157	G
C12	В	C122	F	L117	F	R56 R57	D D	R158 R159	G G
C14	В	C124	F	L151	G	R58	D	H159	G
				L152	Ğ	R59	D	T1	F
C16	В	C126	F	L153	G			T2	F
C17	В	C127	F			R61	D		
C18	В	C128	F	P2	D	R62	D	TP1	В
C19	В	C129	F	Q1	Α	R63	D D	TP2	С
C21	В	C151	G	Q2	В	R64	Б	TP3 TP4	C D
C22	В	C152	Ğ	03	В	R66	D		В
C23	В	C153	G	Q4	С	R67	D	TP6	E
C24	С	C154	G	Q6	E	R68	D	TP7	E
C26	С	04.50	.2			R69	D		
C27 C28	СВ	C156 C157	G	Q101	E	R70	С	U1	Α
C29	В	C157	G G	Q102	Е	R71	D	U2	A
020		0130	ď	R1	Α	R72	C	U3 U4	A
C31	В	CR1	Α	R2	В	R73	Ď	U5	B
C32	С	CR2	Α	R3	Α	R74	D		_
C33	C	CR3	Α	Income.				U6	В
C34	В	CR4	Α	R6	A	R76	D	U7	В
C36	С	CR6	Α	R7 R8	A	R77	D	U8	В
C37	Č	CR7	B	R9	A A	R78 R79	D D	U9 U10	C
C38	Ċ	CR8	Č	R10	Â	1175	D	010	D
C39	С					R81	D	U11	D
		CR101	F	R11	Α	R82	D	U12	D
C41	С			R12	A	R83	D	U13	D
C42 C43	C C	J1 J2	C D	R13	A	R84	D	U14	D
C44	C	J3	G	R14	Α	R86	D	U15	E
0.1.	Ü	00	G	R16	Α	R87	D	U16	F
C46	С	J7	D	R17	В	R88	D	U17	Ġ
C47	С	J8	В	R18	В	R89	D	U18	G
C48	С	J9	Α	R19	В			U19	G
C49	D	J10	A	504	_	R91	D	200	10/2
C51	D	J11	Α	R21 R22	B B	R92	D D	Y1	С
C52	D	J15	G	R23	В	R93	D	Norm/Test	D
C53	D	J23	Č	R24	В	R101	E	North/Test	D
C54	D	J24	D			R102	E		
	_	2.0		R26	В	R103	E		
C56	D	L1	A	R27	В	R104	E		
C57 C58	D D	L2 L3	B B	R28 R29	B B	D100	-		
C59	E	L4	Č	R30	В	R106 R107	E E		
	_	L5	В	1100	ь	R108	E		
C61	E			R32	В	R109	Ē		
	-	L6	В	R33	С				
C101	E	L7	В	R34	С	R111	E		
C102 C103	E E	L8	С	DOC	0	R112	E		
C103	E	L9	С	R36 R37	C C	R113 R114	F F		
5.54	_	L101	E	R38	C	R114 R115	F		
C106	E	L102	Ē	R39	c	11113	10		
C107	E	L103	E	xx27506095	Sect.	R116	F		
C108	Ē	L104	Ē			R117	F		
C109	E	L105	E			R118	Ē		
						R119	F		

A3 Component Locations

Service Model 3325A

A3 03325-66503 Rev C

Figure 8-37, VCO, A21, and VCO Buffer, A3. 8-D-7/8-D-8

SERVICE GROUP E + N.F COUNTER

SERVICE GROUP E - + N.F COUNTER.

÷ N.F Counter Troubleshooting.

Do not allow disconnected cable connectors to contact the printed circuit boards or components, or circuits may be damaged.

a. To check the $\div N$ circuitry, program the front panel for a frequency of 10MHz and disconnect cable W18 at J18A.

b. Place an external DC voltage source at the input to the VCO (-3V to +10V), and monitor the waveform at U1 pin 6. The 2Vp-p narrow pulse should begin to approach a frequency of 100kHz as the external DC control voltage is varied.

If the frequency does not approach 100kHz, troubleshoot the $\div N$ circuitry (step c). Note that the frequency will approach 100kHz for every N number programmed into the 3325 and with the appropriate DC level at the VCO input.

If the frequency at U1 pin 6 approaches 100kHz and the problem appears to be digitally related, check that the API current sources are getting the correct signals and that the FETs are not leaking (see Service Group F).

- c. Disconnect the external power supply. Leave cable W18 disconnected at A21J18A.
- d. Measure and note the frequency of the VCO signal at jumper W3. This signal should be approximately 45MHz.
- e. Connect test points A21TP6 and A21TP8 to ground. This disables the \div N Shift Register and the Pulse Remove circuits.
- f. Measure the frequency at each of the following points in order, and determine the relationship to the VCO frequency at W3 (step d). Replace any defective components.

A21TP1 should be VCO ÷ 2. If not correct, check A21U32 and A21U27 for signal transitions at the input and output pins.

A21TP2 should be VCO ÷ 10. If not correct, check A21U13 and A21U18.

A21U21 pin 8 should be VCO ÷ 100. If not, check A21U9.

A21TP3 should be VCO ÷ 1000. If not correct, check A21U9, A21U11, A21U21, and A21U22.

A21TP4 should be VCO ÷ 1000. If not, check A21U12 and A21U22.

A21TP5 should be VCO ÷ 10. If not, check A21U24.

A21TP7 should be VCO ÷ 1000. If not, check A21U29.

A21Q131 collector should be VCO \div 1000 (very narrow pulse at approximately 2Vp-p). If not, check A21U26, A21U27, A21Q131, and A21C131.

A21U19 pins 2, 3, 4, 5, 6, 10, and 11 should be VCO \div 1000. If not, A21U19 is probably defective.

- g. If all of the above signals are correct, check for the presence of input pulses at A21U19, pins 20 through 23.
- h. Reconnect cable to A21J18A. Press the START CONT key and check for the presence of pulses at A21U19, pins 11, 13, 14, 15, 16, and 17.
- i. Disconnect ground from A21TP6 and A21TP8. While in continuous sweep mode, check for the presence of pulses at the input pins, output pins, and clock pins of A21U14 and A21U15. If pulses appear at the input pins and clock inputs and the level at the clear inputs (pin 1) is high, replace the defective latch IC. If pulses are also present at the outputs, the gates in the \div 5 Counter circuit (A21U12, A21U17, A21U23) may be defective.

Designator	Board Location								
C1	Α	C166	G	L1	С	Q131	E	R51	Α
C2	Α	C167	G	L2	D	Q132	D	R52	Α
C3	В	C168	Ğ	L3	D		_	R53	С
C4	В	C169	G			Q161	F	R54	Č
C4	ь	C109	G	1121	F	Q162	G	1104	C
			_	L131		Q163	G	DE0	
C6	Α	C171	G	L132	E			R56	C
C7	C	C172	G	L133	E	Q164	G	R57	Α
C8	Α	C173	G					R58	Α
C9	С	C174	G	L161	G	R1	Α	R59	Α
C10	Α			L162	G	R2	Α	R61	Α
		C176	G	L163	G	R3	Α	R62	Α
C11	С	C177	Ğ		=	R4	Α	R63	Α
C12	Č	C178	Ğ	Q1	В			R64	A
				02	В	R6	Α	R65	Â
C13	A	C179	G			R7	Ä	noo	A
C14	С			03	В			220	
C15	Α	C181	G	Q4	В	R8	В	R66	Α
		C182	G			R9	В	R67	Α
C16	Α	C196	D	Q6	С			R68	В
C17	В	C197	D	Q7	С	R11	В	R69	В
C18	В	- 1-1	_	08	C	R12	В	R70	Α
C19	Č	CR1	В	Q9	Ä	R13	В	1,10.0	
CIS	C	CR2	В	Q10	Ä	R14	C	R71	В
	_			010	A	****	Ü	R72	
C21	D	CR3	В			R16			В
C22	Α	CR4	В	Q11	Α		С	R73	В
C23	Α	CR5	С	Q12	Α	R17	C	R74	С
C24	Α			Q13	Α	R18	С	R75	В
		CR6	С	Q14	В	R19	С		
C26	Α	CR7	C					R76	С
C27	Ä	CR8	В	Q16	В	R21	С	R77	C
C28		CR9	В	Q17	В	R22	С	R78	C
	A	Cha	ь		В	R23	C	R79	č
C29	С	CR11	В	Q18		R24	č	n/9	C
				Q19	В	1124	C	R81	C
C31	C	CR12	С					R82	C C C
C32	С	CR13	C	Q21	В	R26	Α		C
		CR15	С	Q22	В	R27	Α	R83	C
C131	E	CR16	C	Q23	С	R28	Α	R84	С
C132	F	CR17	В	Q24	С	R29	Α		
C133	Ė	CR18	С	Q25	A			R86	С
		CR19	С	425	^	R31	Α	R87	C C
C134	F		-	000	•	R32	A	R88	С
C135	D	CR131	D	Q26	C	R33	В	R89	A
		Chisi	U	Q27	Α			1100	
C136	F		_	Q28	В	R34	В	DO1	В
C137	E	CR161	G	Q29	В			R91	D
C138	E	CR162	G			R36	С	R92	В
C139	F	CR163	G	Q31	В	R37	С	R93	В
		CR164	G	Q32	В	R38	С	R94	В
C141	D	CR166	G	Q33	Č	R39	С		
				433	C	1100		R96	В
C142	Ę	J1	D	027	0	R41	С	R97	C
C143	E			Q37	С		C	R98	Č
C144	E	J8	A	Q38	С	R42	C	R99	В
C145	E	J15	G	Q39	Α	R43	C	naa	ь
		J16	С			R44	С	2404	
C161	F			Q41	В			R101	C C
C162	Ġ	J17A	Α	Q42	В	R46	Α	R102	С
C163	Ğ	J17B	В	Q43	В	R47	Α	R103	С
	G	J18A	A	Q44	Č	R48	A	R104	Α
C164	G	J18B	Ē	444	C	R49	Ä		

Figure 8-38. ÷ N.F Counter, A21. 8-E-3/8-E-4

SERVICE GROUP F FRACTIONAL N ANALOG CIRCUITS

SERVICE GROUP F - FRACTIONAL N ANALOG CIRCUITS.

Fractional N Analog Troubleshooting.

If pin 1 of A21U33 is positive (in Service Group D Troubleshooting) and the signal at TP9 is always positive, or if pin 7 of A21U33 is positive and the signal at TP9 is mostly negative, the trouble is probably in the Integrator, Bias, or Sample/Hold circuits.

The following waveforms may be observed at the points indicated. If the Bias/API waveforms are correct, but the Integrator output is not correct, the trouble is probably in the Integrator, Current Sources, or the Sample/Hold circuit.

Set the frequency to 1 kHz, function to sine, or switch the power from STBY to ON, and observe the waveforms below.

a. If the Counter circuit and VCO are working correctly but the VCO is still not tuning properly, set the frequency to 1.1MHz and the amplitude to 10Vp-p and test for the correct signal at A21TP10 (see Figure 8-F-1). Make sure cable W18 is connected from the Sample and Hold output to the VCO input.

10 V OV OV # 3 V # 3 V # 3 V # 2 V

b. If the waveform at TP10 is rounded or slightly distorted, make sure the Sample/Hold FETs are not leaking.

c. If the waveform at TP10 is bad, test the integrator and Sample/Hold circuitry. Heat sink and remove A21CR4 and A21CR8 to open the phase locked loop at the integrator input. These diodes are a prime noise source especially when overheated. Install jumper W2. This jumper places a $1k\Omega$ resistor in parallel with C17, changing the integrator to a transconductance amplifier (Eout = -1000 x Iin). While monitoring the integrator output at TP10 and the Sample/Hold output at TP11, inject various currents from -12mA to +5mA into the integrator input. An easy way to accomplish this is to use a dc power supply with a $1k\Omega$ resistor in series with its output. Every volt from the power supply will inject 1mA into the integrator. The voltage at TP10 and TP11 should equal the power supply voltage only it will be opposite in polarity.

If the voltage at TP10 is correct but the voltage at TP11 is not, troubleshoot the Sample/Hold circuitry. Apply +5V to A21U6(3). The output voltage at TP11 should be +5V. If not, replace U6. If the voltage at TP11 is correct, momentarily short across A21C24, then apply the +5V at the junction of A21Q27 (drain) and A21Q39 (source). The voltage at TP11 should be +5V. If not, check for the presence of the Sample/Hold Control signal from the base of A21Q44 through to the gates of Q27 and Q39. This signal should be a 0.3 to $0.6\mu s$ TTL pulse at 100kHz. The pulse width is derived from the VCO frequency (VCO/10) and the repetition rate is derived from VCO/N.F.

- d. If the integrator and Sample/Hold circuitry appear to be operating properly, check the following circuits in the order given to isolate the faulty sub-block.
 - 1. Check the phase comparator output at A21TP9. The waveform should appear as shown in Figure 8-F-1 for the given conditions.
 - 2. Measure the voltage at the junction of R41 and R39. The voltage should be -8V.
 - 3. Check the outputs of U4 and U5 for the presence of the bias and API signals. These signals should be toggling while the 3325A is sweeping. If the signals are not present, check the operation of the Fractional N chip (U19) and check for the latch clock coming from U22 pin 6.
- e. If the above circuitry is good, then the fault probably lies in the integrator or the API 1/Bias sub-block.

API Troubleshooting.

Exercise care when troubleshooting the API/Bias circuitry. The signals are small currents that are difficult to detect. Note that if the VCO locks but there are large spurious signals present at the output, diodes A21CR3, CR4, CR8, and CR9 should be checked.

f. Connect cable W18 back to the sample/hold output at J18A if not already done so.

The following steps determine if the digital programming portion or the analog portion of the A21 board is at fault.

g. Enter a frequency on the 3325A front panel of 5 000 001Hz.

For this frequency, the fractional-N counter is trying to correct the phase detector error for the 1Hz offset. Hence, the programming pattern for API 1 will repeat at a 1.0s rate, API 2 will repeat at 0.1 second rate, API 3 at a 0.01s rate, API 4 at a 0.001s rate, and API 5 at a 0.0001s rate.

h. Using an oscilloscope, check for each programming pulse at the following outputs:

API 1	U5(9)
API 2	U4(15)
API 3	U4(12)
API 4	U4(10)
API 5	U4(7)

i. If these pulses are present, then the digital section is probably good, and the fault may lie in the analog current sources. If any of the pulses are not present, check the fractional-N chip (U19) for the proper signals.

Individual API Troubleshooting.

j. Connect a spectrum analyzer through a $1k\Omega$ series resistor to A21TP11.

- k. Select the sine function on the 3325A and set the frequency to 5 000 000Hz.
- 1. Set the spectrum analyzer as follows to measure the signal at TP11:

Start Frequency
Bandwidth30Hz
Frequency Span1kHz/div
Sweep Time/Div
Input Sensitivity
Sweep Mode
Vertical Scale

The analyzer should measure a level of < -70dB. If the signal at TP11 is < -70dB, the API current sources in their OFF mode are not interfering with the phase detector output and the digital portion of the board is probably good. If the signal is not < -70dB, either the API current sources may not have turned off sufficiently or the phase detector input and output signals may be bad.

- m. Set the 3325A frequency to 5 001 000Hz.
- n. The spectrum analyzer should read < -70dB at TP11. If this signal is incorrect, troubleshoot the API 1 sub-block and the U19 programming signals. If the signal is good, the problem is probably not in the API 1 sub-block. Proceed to step o.
 - o. Set the 3325A frequency to 5 000 100Hz.
- p. The spectrum analyzer should read < -70dB. This frequency tests the API 2 circuit. If the signal is incorrect, troubleshoot the API 2 sub-block and the U19 programming signals. If the signal is good, proceed to step q.
 - q. Set the 3325A frequency to 5 000 010Hz.
- r. The spectrum analyzer should read < -70dB. This frequency tests the API 3 circuit. If the signal is incorrect, troubleshoot the API 3 sub-block and the U19 programming signals. If the signal is good, proceed to step s.
 - s. Set the 3325A frequency to 5 000 001Hz.
- t. The spectrum analyzer should read < -70dB at TP11. This frequency tests the API 4 circuit. If the signal is incorrect, troubleshoot the API 4 sub-block and the U19 programming signals. If the signal is good, proceed to step u.
 - u. Set the 3325A frequency to 5 000 000.1Hz.
- v. The spectrum analyzer should read < -70dB. This frequency tests the API 5 circuitry. If the level is incorrect, troubleshoot the API 5 sub-block and the U19 programming signals.

Phase Modulation Troubleshooting

If the output does not respond properly to a phase modulation input, measure dc voltages within the Phase Modulation circuit (A1Q37 and Q38) with:

Phase Modulation	Off
Phase Modulation InputO	nen

Phase Modulation linearity problems can often be traced to A21CR18 and A21CR19.

Service

Figure 8-F-1. TP9 & TP10 Waveforms

nator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	
1 2 3	A A B	CR11 CR12 CR13	B C C	Q161 Q162 Q163	F G G	R81 R82 R83	C C	R176 R177 R178	G G	
4	В	CR15 CR16	C C	Q164	G	R84	С	R179	G	117A J8 CLIP 225
6	A C	CR17 CR18	B C	R1 R2	A A	R86 R87	C	R181 R182	G G	-R46 - R9 -R56 - C16 - C
8	Α	CR19	C	R3	A	R88	C	R183	G	-R1R26R47- 10 -R61-
9 10	C A	CR131	D	R4	А	R89	А	R184	G	-C1 -C6 - 010 011 8 H
1	С	CR161	G	R6 R7	A	R91	В	R186 R187	G	-R4R29- 012 C13 C24-
2	C	CR162	G	R8	A B	R92 R93	B B	R188	G G	- R49 R63- 027
3	A C	CR163 CR164	G G	R9	В	R94	В	R189	G	-R7R32R/URC7-
5	Α	CR166	G	R11 R12	ВВ	R96 R97	B C	R191 R192	G G	-R8R33R91- -R92-
6	А	J1	D	R13	В	R98	C	R193	G	01 02 014 016 -R68- -R89R34- -CR1CR2- 017 -R71R93- -CR4C17- 029
8	B B	J8 J15	A G	R14	С	R99	В	R194	G	-CR1CR2- 017 -R72- 1039 -CR4C17- 029
9	C	J16	C	R16	C C	R101	C	R196	G	03 TP9 04 -CR3C17- 029
21	D	J17A	А	R17 R18	C	R102 R103	C	R197 R198	G G	— C3 — 019 — CR11 — R73 — 032 — C18 — C18
22	A A	J17B J18A	B A	R19	С	R104	Α	R199 R200	G G	-R12- 022
24	А	J18B	Е	R21	С	R106	A	R201	G	R76 -R98-
26	А	L1	С	R22 R23	C	R107 R108	A A	TP1	E	-R14- 026 R87- NS
27 28	A A	L2 L3	D D	R24	С	R109	В	TP2 TP3	D D	-R16 C9- \(\times \) CR12 \(\times \) \(\times \) \(\times \) CR13 \(\times \) \(\times
9	С		F	R26	A	R111	В			-R19R37R41- 0024
31	С	L131 L132	E	R27 R28	A	R112 R113	B B	TP5 TP6	E F	08
32	С	L133	E	R29	А	R114	В	TP7 TP8	D E	-R21- 5 -R44R56R83R102-
31	E	L161	G	R31	A	R116	В	TP9	В	-R23- 1 -R24
32 33	E	L162 L163	G G	R32 R33	A B	R117 R118	B C	TP10 TP11	A A	-c12
34 35	F D	Q1	В	R34	В	R119	С	U1	А	U5 (F13)
36	_	Q2 Q3	B B	R36 R37	C	R121 R122	C	U2 U3	C B	-R138
37	E	Q4	В	R38	C	R123	C	U4	C	R:41- 0132
38 39	E F	Q6	С	R39	С	R124	С	U5	D	
41	D	Ω7 Ω8	C	R41 R42	C	R126	С	U6 U7	A E	TPZ US UI4
42	F	Ω9	A	R43	C	R132	E	U8	F	1778 IP3 LJ LJ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
43 44	E E	Q10	А	R44	С	R133 R134	E F	U9 U10	D C	
45	E	Q11 Q12	A A	R46 R47	A A	R135	D	U11 U12	E F	
61 62	F G	Q13 Q14	A B	R48 R49	A	R136 R137	F F	U13 U14	F D	O bis bis breiter bed in brei
63	G					R138	D	U15	E	-ni233
64	G	Q16 Q17	B B	R51 R52	A A	R140	D	U17	F	C131 = 184 - 8147 - 8147 - 8147
66 67	G G	Q18 Q19	B B	R53 R54	C	R141 R142	D E	U18 U19	F D	
86	G				_	R143	E		-	g ⁰⁷ urz urz uzz uze uzi ^{TP6}
69	G	Q21 Q22	B B	R56 R57	C A	R144	D	U21 U22	F	# L L L L L L L L L L L L L L L L L L L
71 72	G G	Q23 Q24	C	R58 R59	A	R145 R146	D E	U23 U24	F E	
73	G	Q25	A	R61	A	R147	E		F	(2)
74	G	Q26	С	R62 R63	A	R148 R149	E F	U26 U27	F	-M209-
76 77	G G	Q27 Q28	A B	R64 R65	A A	R151	F	U28 U29	D E	-R136 -R137 -C133 -C147 -R17
78 79	G G	Q29	В	R66		R152	F	U30	F	C 10166
		Q31	В	R67	A A	R161	F	U31	F	-R100 L161 -R100 R213- C177
31 32	G G	Q32 Q33	B C	R68 R69	B B	R162 R163	G F	U32 U33	F F	9161 — C171 — -8219- R191 \\ Z_1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
96 97	D D	Q37	С	R70	А	R164 R165	F	U34	G	1101 — (171 — -8215 — 813) 112 — (175 — 7 175
57		Q38	C	R71	В			W 1	А	To the his of his and his area
2	B B	Q39	А	R72 R73	B B	R166 R167	F	W2 W3	B F	#115 US4 C165 G165 G165 G166 G166 G166 G166 G166 G
3	B B	Q41 Q42	B B	R74 R75	C B	R168 R169	F F			-M185L163L165
5	C	Q43	В			R170	G			415 (Õ) A21
6	С	Q44	С	R76 R77	C	R171	F			03325-66521
7	C B	Q131 Q132	E D	R78 R79	C C	R172 R173	F			
0	D		_		-	D174				

A21 Component Locations

Figure 8-39. Fractional N Analog, A21. 8-F-5/8-F-6

SERVICE GROUP G 30MHz REFERENCE AND DIVIDERS

SERVICE GROUP G - 30MHz REFERENCE AND DIVIDERS.

30MHz Reference Troubleshooting.

"OSC FAIL" Display Indication.

Step a of the "OSC FAIL" troubleshooting in Service Group D should be performed before proceeding with the following.

a. Check frequencies at the following points in order. If the signal is incorrect at any point, troubleshoot the associated circuits.

A3TP3	30 MHz
A3U2 pins 5 and 6	10 MHz
A3U1 pin 3	1 MHz
A3U1 pin 6	2 MHz
A3J10	1 MHz
A3U1 pin 13	100 kHz
A3U5 pin 8	100 kHz
A3Q1 collector	100 kHz (narrow pulse)

If the 30MHz Oscillator is failing it could be due to heavy loading by the multiplier (A3U11). This can be checked by lifting A3R73. Oscillator failures have also been linked to A3Q6, A3Y1, and A3CR8.

Do not allow disconnected cable connectors to contact the printed circuit boards or components, or circuits may be damaged.

Amplitude Troubleshooting.

b. The most common cause of problems in the Sine Amplitude Control and Amplitude Modulation circuitry is the multiplier (A3U11). Problems with U11 are usually detected by incorrect voltages at A3TP4. The voltage at TP4 should be pure dc and on a working instrument (or a malfunctioning one with Auto Calibration Disabled* - ACD) will be the following levels:

* See Figure 8-44 (Service Group K) for ACD test point location.

Programmed	
Amplitude	TP4
3Vp-p	2Vdc
10Vp-p	6Vdc

Using the modify key to increase the programmed voltage by one volt at a time should cause the voltage at TP4 to increase linearily as well. Pulling cable W23 at either end should cause TP4 to reach approximately 6-8V.

c. If the voltage at TP4 is correct but the output amplitude is still incorrect, check the ac voltages on U14 pins 6 and 7. With 10Vp-p programmed, both voltage levels should be approximately 0.6Vp-p. If not and with W23 disconnected at A3J23, measure the voltage at the following points:

A3U11(9) 4.8Vdc

Note also that U14 is probably bad if the frequency difference between pins 6 and 7 is greater than 20% (the frequency should be approximately 30MHz on both pins).

- d. If after A3U11 and/or A3U14 have been replaced and incorrect voltages are measured at TP4, the amplitude problem may be isolated via Service Groups C, J, or I.
- e. If the voltages at TP4 are correct and the output amplitude is incorrect, troubleshoot the problem via Service Groups H or J.

Figure 8-G-1. Sine Amplitude Control Path.

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	А	C111	E	L106	Е	R41	С	R121	F
C2	Ā	C112	Ē	L107	F	R42	C	R122	F
C3	A	C113	E	L108	F	R43	C	R123	F
C4	Α	C114	E	L109	F	R44	C		
						R45	C	R151	G
C6	Α	C116	F	L111	F				
C7	A	C117	F	L112	F	R46	C	R153	G
C8	А	C118	F	L113	F	R47	С	R154	G
C9	A	C119	F	L114	F	R48	С	D156	6
611	^	C101	F	1116	F	R49	С	R156 R157	G G
C11 C12	A B	C121 C122	F	L116 L117	F	R56	D	R158	G
C12	В	C122	F	LITZ		R57	D	R159	G
C14	В	C124	F	L151	G	R58	D	1111 000	
0,1,		2 (2)		L152	G	R59	D	T1	F
C16	В	C126	F	L153	G			T2	F
C17	В	C127	F			R61	D		
C18	В	C128	F	P2	D	R62	D	TP1	В
C19	В	C129	F			R63	D	TP2	С
				Q1	A	R64	D	TP3	C
C21	В	C151	G	Q2	В			TP4	D
C22	В	C152	G	03	В	R66	D	TDC	-
C23	В	C153	G	Q4	C	R67	D	TP6 TP7	E
C24	С	C154	G	Q6	E	R68 R69	D D	177	Е
C26 C27	C	C156	G	Q101	E	R70	C	U1	А
C28	В	C157	G	Q102	Ē	1170	C	U2	A
C29	В	\ C158	G	0.102	-	R71	D	U3	A
020		0,00		R1	А	R72	C	U4	A
C31	В	CR1	A	R2	В	R73	D	U5	В
C32	C	CR2	A	R3	A	R74	D		
C33	C	CR3	Α					U6	В
C34	В	CR4	Α	R6	Α	R76	D	U7	В
				R7	A	R77	D	U8	В
C36	С	CR6	A	R8	A	R78	D	U9	С
C37	C	CR7 CR8	B C	R9 R10	A A	R79	D	U10	D
C38 C39	C	Cho	C	NIO	A	R81	D	U11	D
C33	C	CR101	F	R11	A	R82	D	U12	D
C41	С	CITIOT	(1)	R12	Ā	R83	D	U13	D
C42	C	J1	С	R13	A	R84	D	U14	D
C43	C	J2	D	R14	A			U15	E
C44	C	J3	G			R86	D		
				R16	A	R87	D	U16	F
C46	С	J7	D	R17	В	R88	D	U17	G
C47	C	J8	В	R18	В	R89	D	U18	G
C48	С	J9	A	R19	В	DO1	D.	U19	G
C49	D	J10 J11	A	R21	В	R91 R92	D D	Y1	С
C51	D	JII	Α	R22	В	R93	D	T. U	
C52	D	J15	G	R23	В	1100		Norm/Test	D
C53	D	J23	C	R24	В	R101	E		
C54	D	J24	D			R102	E		
				R26	В	R103	E		
C56	D	L1	Α	R27	В	R104	E		
C57	D	L2	В	R28	В				
C58	D	L3	В	R29	В	R106	E		
C59	Е	L4	С	R30	В	R107	E		
004	_	L5	В	D00		R108	E		
C61	E	16	D	R32	В	R109	E		
C101	Е	L6 L7	B B	R33 R34	C	R111	Е		
C102	E	L8	C	1134	C	R112	E		
C102	E	L9	C	R36	С	R113	F		
C104	E			R37	C	R114	F		
400 MAR S	5005	L101	E	R38	C	R115	F		
C106	E	L102	E	R39	C				
C107	E	L103	Ε			R116	F		
C108	E	L104	E			R117	F		
C109	E	L105	E			R118	F		
						R119	F		

A3 Component Locations

P A3 SIGNAL SOURCE 03325-64503 30MH & OSCILLATOR 1 07 02 13 07 012 30 VC0 +2 TOUIS(6), U19(11) 100µH

10 C120 -8120- -L105- C111 -L111- -L115--L112- -L117--L114- C125 C124- C127 C126 SINE AMPLITUDE W23
FROM A4J5 MULTIPLIER AMPTD MOD > W7 A3 03325-66503 Rev C

See paragraph 8-113 when replacing A3.

COPYRIGHT 1977 BY HEWLETT - PACKARD COMPANY

Figure 8-40. 30 MHz Reference and Dividers, A3. 8-G-3/8-G-4

WIO REFOUT IMHE OUBM

W8 100KH≥ REFERENCE TO ÷N.F. PHASE COMPARATOR

2Vdc Offset

0.616 1.27

1.92

2.57

3.23 3.88

These voltage levels are useful when troubleshooting amplitude problems (frequency 1kHz, TP ACD grounded, voltages p-p).

3.88

2.57 3.23 3.88

4.53 5.18 5.84 6.45

TOP VIEWS

U4, U6, U7

1Vp-p 2Vp-p 3Vp-p 4Vp-p 5Vp-p 6Vp-p 7Vp-p 8Vp-p 9Vp-p 10Vp-p

03,08,013

Δ4 - see Section VII

REFERENCE DIVIDERS

SERVICE GROUP H MIXER

SERVICE GROUP H - MIXER.

Mixer Shields.

The Mixer circuits are covered by two shields, each consisting of a flat cover and an extrusion. Always set the POWER switch to STBY before removing or replacing the shields. When replacing a shield, make sure the key on the bottom edge of the shield is aligned with the hole in the printed circuit board. Also, make sure the hole in the cover nearest the front of the instrument is over the mixer adjustment resistor.

Mixer Troubleshooting.

Failures on this portion of the A3 board are usually linked to A3CR101, A3U16, and sometimes A3U15. A3U16 often fails because of metalization.

- a. Ground the Auto Calibration Disable (ACD) test point (Service Group K Figure 8-44) and cycle power. When 10Vp-p is programmed, the voltage at A3TP6 should be 100mVp-p with no dc. If this voltage is not correct, make sure that ACD is disabled and check TP6 again. If the voltage is still incorrect, the fault lies prior to TP6.
- b. To check for a A3CR101 failure, turn the instrument off and measure the resistance from TP6 to ground. An ohmmeter with ≤ 1 mA of current (3455A for example) is needed. The resistance should range from 198 Ω to 202 Ω . If the resistance measures less than 198 Ω , one of the diodes in CR101 is leaky. CR101 can also be responsible for poor harmonic distortion and spurs.
- c. When replacing CR101, a good technique is to use four round toothpicks to position each of the four leads into place. This enables the new CR101 to be checked for satisfactory operation before it is soldered in place. Since the orientation of CR101 often affects harmonics and spurs, rotating it 90, 180, or 270 degrees can often improve these specifications. Use care when replacing CR101. Because of its small size, it is often damaged when being soldered.
- d. The waveform on the secondary windings of T1 (side closest to CR101 on schematic) can be observed on an oscilloscope. At turn-on, this waveform should be a 2Vp-p, 30MHz sine wave on both leads. Note that the waveform on T2 is not as easily observed.
- e. The voltage measured at A3TP7 should be the same as A3TP6 (step a). If this is the case, A3U15 is probably good.

Service Model 3325A

f. The mixer output signal leaves the A3 board and enters the A14 board as a current via cable W24. A check of this current is made as follows:

- 1. Connect the ACD test point (Service Group K) to ground and cycle instrument power.
- 2. Move the Norm/Test jumper on A3 (Service Group H) to the test position.
- 3. Program the front panel for a sine function at 10Vp-p.
- 4. Remove cable W24 from connector J24 on A3 (Service Group H).
- 5. Place an oscilloscope probe on J24's center connector. The signal should be close to 2.00Vp-p with 2.2Vdc.
- 6. Program an instrument sweep from 1kHz to 20MHz while monitoring the signal at the center connector of J24. Note that the voltages should remain the same. If they do not, check the multiplier (U11) and the differential amplifier (U14) in Service Group G.

Figure 8-H-1. Sine Amplitude Control Path.

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	Α	C111	E	L106	E	R41	С	R121	F
C2	A	C112	E	L107	F	R42	С	R122	F
C3	A	C113	E	L108	F	R43	C	R123	F
C4	A	C114	E	L109	F	R44	С		
						R45	С	R151	G
C6	Α	C116	F	L111	F		_		-
C7	Α	C117	F	L112	F	R46	С	R153	G
C8	Α	C118	F	L113	E	R47	С	R154	G
C9	Α	C119	F	L114	F	R48	С	2450	0
			_	1440	-	R49	С	R156	G
C11	A	C121	F	L116	F F	DEC	D	R157 R158	G G
C12	В	C122	F F	L117	r	R56 R57	D	R159	G
C13	В	C123 C124	F	L151	G	R58	D	H155	G
C14	В	C124	E.	L152	G	R59	D	T1	F
C16	В	C126	F	L153	G	1133		T2	F
C17	В	C127	F	2133	G	R61	D		•
C18	В	C127	F	P2	D	R62	D	TP1	В
C19	В	C129	F			R63	D	TP2	c
013	ь	0120		Q1	Α	R64	D	TP3	C
C21	В	C151	G	02	В		_	TP4	D
C22	В	C152	G	Q3	В	R66	D		
C23	В	C153	Ğ	Q4	C	R67	D	TP6	E
C24	Ċ.	C154	G	Q6	E	R68	D	TP7	E
C26	C					R69	D		
C27	C	C156	G	Q101	E	R70	C	U1	Α
C28	В	C157	G	Q102	E			U2	Α
C29	В	C158	G			R71	D	U3	Α
				R1	Α	R72	C	U4	Α
C31	В	CR1	Α	R2	В	R73	D	U5	В
C32	C	CR2	Α	R3	Α	R74	D		
C33	С	CR3	Α					U6	В
C34	В	CR4	Α	R6	Α	R76	D	U7	В
		200		R7	A	R77	D	U8	В
C36	С	CR6	A	R8	A	R78	D	U9	С
C37	С	CR7	В	R9	A	R79	D	U10	D
C38	С	CR8	С	R10	Α	D01		U11	D
C39	С	00404	-	D11	^	R81	D D	U12	D
044		CR101	F	R11 R12	A A	R82 R83	D	U13	D
C41	С	11	С	R13	Ä	R84	D	U14	D
C42 C43	C C	J1 J2	D	R14	Ä	1104	D	U15	E
C44	C	J3	G	1117	~	R86	D	0.10	-
C44	C	33	O.	R16	Α	R87	D	U16	F
C46	С	J7	D	R17	В	R88	D	U17	G
C47	č	J8	В	R18	В	R89	D	U18	G
C48	Č	J9	Ā	R19	В			U19	G
C49	Ď	J10	A			R91	D		
		J11	Α	R21	В	R92	D	Y1	C
C51	D			R22	В	R93	D		
C52	D	J15	G	R23	В			Norm/Test	D
C53	D	J23	С	R24	В	R101	E		
C54	D	J24	D			R102	E		
				R26	В	R103	E		
C56	D	L1	Α	R27	В	R104	E		
C57	D	L2	В	R28	В	000, 0000000			
C58	D	L3	В	R29	В	R106	E		
C59	E	L4	С	R30	В	R107	E		
		L5	В		-	R108	E		
C61	E		-	R32	В	R109	E		
100000000		L6	В	R33	С	D111	-		
C101	E	L7	В	R34	С	R111	E		
C102	E	L8	C	DOC	C	R112 R113	E F		
C103	E	L9	С	R36 R37	C	R114	F		
C104	E	1.101	-	R38	C C	R114 R115	F		
C100	-	L101 L102	E E	R39	C	n115	e.		
C106 C107	E E	L102	E	noə	C	R116	F		
C107	E	L103	E			R117	F		
C108	Ē	L105	Ē			R118	F.		
0103	-	2.00	-			R119	F		
						100 July 200			

A3 03325-66503 Rev C

Figure 8-41. Mixer, A3. 8-H-3/8-H-4

SERVICE GROUP I D/A CONVERTER AND SAMPLE/HOLD

Model 3325A Service

SERVICE GROUP I - D/A CONVERTER AND SAMPLE HOLD.

D/A and Sample/Hold Troubleshooting.

These circuits convert digital information (from the controller) to the analog voltages which control output level, dc offset, etc. If these control voltages appear to be incorrect (Service Groups J, K, or N) the trouble may be in the DAC counters, current source, or integrator, or in the Sample/Hold switches or amplifiers.

Observe the "DAC Integrator Out" pulse train shown below. The voltage level at each Sample/Hold output amplifier test point should be identical to the level of its corresponding pulse at the DAC test point. This pulse train occurs at instrument turn-on and with the ACD test point grounded (schematic K - Service Group K). Note that the levels have a tolerance of \pm 0.02Vdc. Verification of these levels is made by again grounding the ACD test point, externally triggering an oscilloscope on the positive slope of test point AZ, and connecting the scope's input to the DAC test point.

A ANALOG SWITCH ENABLE

B DAC INTEGRATOR OUT

1 = DAC Auto Zero

2 = Amplitude Calibration Level

3 = Output Amplitude

4 = DC Offset

5 = DC Offset Correction

6 = X Drive

(No TP) 0.0Vdc

(TP + LVL) -10.2Vdc

(TP AMPL) -4.0Vdc

(TP OS2) 0.0Vdc

(TP OS1) 0.0Vdc

(TP XDR) 0.0Vdc

If the level at each Sample/Hold test point is not the same as its corresponding pulse at the DAC test point, suspect problems with the analog switch, the op amp, or the Sample/Hold capacitor. The following information can also help one determine if the Sample/Hold output is good.

The DAC Auto Zero pulse is approximately 0V and the voltage out of A14U17 will vary slightly around -4.2V.

+LVL: This voltage is used during self-calibration (AMPTD CAL) at which time +LVL jumps to various levels for a period of about 1 second. At all other times, +LVL remains at approximately -10.2V.

AMPL: This voltage controls the amplitude of all functions. The normal amplitude range is -4.0V to +10V.

Programmed Sine Amplitude	TP AMPL
2.99Vp-p	+ 7V
3.00Vp-p	-4V
10.00Vp-p	+ 10V
Sine function off	-10V

OS2: This voltage controls the D.C. offset of the output waveform.

With Sine function off:

Programmed D.C. Offset	TP OS2
+5Vdc	+ 10V
- 5Vdc	-10V

OS1: This is the DC offset error correction voltage and is calculated during a self-calibration. This voltage should always be close to 0V.

XDR: X Drive is zero when not sweeping. It's -10V for a one second sweep and -0.1V for a 99 second sweep.

A common problem with this section of the A14 board is loading of the DAC test point by a bad analog switch, Op-Amp, or a Sample/Hold capacitor. To check for a loading problem, unsolder the lead nearest the DAC test point on the resistor (R55) between A14U16 pin 6 and the test point. Attach an oscilloscope probe to the unsoldered lead of the resistor and monitor the DAC pulse train. Continue to observe this pulse train while pressing the resistor lead down so that it makes contact with the point from which it was unsoldered. If any change in the levels of the pulse train is observed, the waveform is being loaded by a defective analog switch or Op-Amp.

Model 3325A Service

The Preset Counters and Data Latch are not easily checked, but fortunately they seldom fail. If the correct DAC pulse train is observed with Auto-Cal disabled, the counters are working correctly. Data pulses with TTL levels should be observable at all times at the inputs and outputs of A14U6-A14U9 and A14U29. If any of these are not TTL levels or are not changing, then the IC is suspect.

With the oscilloscope externally triggered at the AZ test point, the switch drive signals (from the Sample/Hold Latch, U26) can be observed at the latch outputs and the Analog Switch inputs (U20 and U24). Pulse timing can be compared to the DAC Integrator outputs. Pulses should be present at the inputs to U26 continually.

The charge time and consequently the output voltage of the DAC Integrator is determined by the width of the output pulses from U10. These pulses turn on the dual current source, and the total current charges the integrator capacitor. The U10 outputs are negative-going pulses.

Pulses should be present at the input and output pins of the various IC's. The Load LSD, Load MSD, and S/H Strobe pulses should occur at a 1 kHz rate. The 2 MHz Reference (at the 2 MHz test point) is divided by 2 in U14 to provide a clock signal to the DAC circuits.

Figure 8-I-1. Sine Amplitude Control Path.

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	A	C205	F	J30	Н	R31	B B	R136 R137	E E
C2 C3	B C	C208	F	J31 J32	D F	R32 R33	В	R138	E
C4	С	C209	F	1.00	В	R34	В	R139	E
C5 C6	C	C211	F	L26 L27	В	R36	В	R141	Е
		C212	F			R37	В		
C26 C27	A A	C213 C214	F F	L76 L77	E E	R38 R39	B B	R143 R144	E F
C28	Α			L78	E	R40	В	R145	F
C29	Α	C216 C217	G G	L79	F	R41	В	R146	F
C31	В	C218	G	L101	D	R42	В	R147	F
C32 C33	B B	C219	G	L102 L103	D D	R43 R44	B B	R148 R149	F F
C34	В	C221	G	L104	F	R45	С		_
C35	С	C222 C223	G G	L105 L201	F F	R46	В	R151 R152	F F
C36	В	C224	G			R47	В	R153	F
C37 C38	B B	C225	G	P31 P32	D F	R48 R49	B C	R154 R156	F F
C39	В	C226	G			R50	В	R157	F
C41	В	C227 C228	G G	Q1 Q2	B B	R51	С	R158 R159	F F
C42	В	C229	G	Q3	В	R52	С	R160	F
C43 C44	B B	C230 C231	H H	Q25	В	R53 R54	C	R161	F
C45	В			Q26	В	250		R162	F
C46	В	C233 C234	G G	Q27 Q28	C B	R56	С	R163 R164	F F
C47	С	C235	Н			R57	С	D100	F
C48 C49	C	C236 C237	H	Q76 Q77	H H	R58	С	R166	F
		C238	Н	Q78	G	R60	С	R168	F F
C61 C62	C C	C239	н	Q101	D	R61	С	R169	-
C63	C	C241	н	Q102	D	R62	С	R208	F
C65	С	C242 C245	H H	Q103 Q104	E	R63 R64	C C	R209	F
C66	c	C246	G	Q105	D	R65	С	R211	F
C76	С	CR1 CR2	A C	Q106	E	R67	С	R212	F
C77	D	CR3	С	Q107	E	R68	С	R214	F G
C78	G	CR4	В	Q108	Е	R69	С	R215	G
C101	D	CR5	В	Q109	E	R76	C D	R216	F F
C103	D	CR6 CR7	A A	Q112	F	R77 R78	Н	R217 R218	G
C104	D			Q113	F	R79	H	R219	G
C107	D	CR76	н	Q114	F	R80 R81	H H	R221	G
C108	D	CR101	D	Q116	F	R100	D	R222 R223	G G
C109 C110	D D	CR102 CR103	D E	Q117 Q118	F	R101	D	R224	G
	_	CR104	F	Q119	F	R102 R103	D D	R226 R227	G G
C111 C112	D D	CR106	F	Q201	F	R104	D	R228	G
C113	D	CR107	F	Q202 Q203	G G	R105	D	R229	G
C114	D	CR205	G	Q204	G	R106	D	R231	G
C116	D	CR208	G G	Q206	G	R107 R108	D D	R232 R233	G G
C117 C118	D E	CR209	G	Q207	G	R109	D	R234	Ğ
C119	Е	CR210	G	Q208 Q209	G G	R110	D	R236	G
C121	Е	CR211	G			R111	D	R237	G
C122 C123	E E	CR212 CR213	G G	Q211 Q212	H H	R112 R113	E E	R238 R239	G G
C124	Ē	CR214	G	Q213	Н	R114	E	R241	G
C126	Е	CR215	Н	Q214	Н	R116	E	R242 R243	F G
C127	E	CR216 CR217	G H	Q216	Н	R117	E	R244	G
C128 C129	E E	CR218	Н	Q217 Q218	G H	R118 R119	E E	R246	G
		CR219 CR220	H H	Q219	Н	R120	E	R247	H H
C131 C132	E E	CR221	Ĥ	R1	Α	R121	Ε	R248 R249	G
C132	E	F1	В			R122	E E	R250	Н
C134	E	F2	A G	R3 R4	A C	R123 R124	E	R251	G
C135	F	F3 F4	G	R5	В			R252 R253	H G
C136	F	J1	F	R6	В	R126 R127	E E	R254	н
C137	F	J2	G	R7	В	R128	E	R255	G
C138 C139	F F	J4 J5	H G	R8 R9	B C	R129	Е	R256	Н
			В			R131	E E	R257 R258	H H
C141 C142	F F	J9 J12	Α	R11	С	R132 R133	E	R259	Н
C143	F	J13	B C	R26	A	R134	E	R260	G
C144	F	J14		R27 R28	A A				
C203	F	J23 J24	F D	R29	Α				

Figure 8-42. D/A Converter and Sample/Hold, A14.

SERVICE GROUP J FUNCTION CIRCUITS

SERVICE GROUP J - FUNCTION CIRCUITS.

Function Circuits Troubleshooting.

The A14Q112 amplifier circuit supplies sine wave current to the output amplifier. Disconnect the cable (marked "23 ALC") from A14J23 to permit maximum signal amplitude at A14 test point SIN.

Do not allow disconnected cable connector to contact the printed circuit boards or components, or circuits may be damaged.

The sine wave signal at test point SIN should be approximately 200 mV p-p at the selected frequency.

If this signal is not correct, the trouble is ahead of the SIN test point. If the sine function is the only one not operating correctly, check the diode CR101 and the filter components in the Q112 emitter circuit.

If there is a signal at the SIN test point, check the Sine Enable voltage at U28 pin 10. This should be at a TTL high level. If not, check input and clock signals to U28 and U27. The inputs to U28 can be traced to U29, Service Group I.

Be sure to reconnect cable 23 to A14J23.

Square, Triangle, and Ramp Functions.

If the sine function is operating properly, but none of the other functions is correct, the trouble is probably in the Q101, Q102 circuits or U31 inverters. Also check for the correct enable signals from U28. The table next to U28 on the schematic relates the functions to the enable signal levels. The trouble may also be in the Offset and Amplitude Control circuits.

Square Function Only.

If the square wave function only is not operating properly, observe the signal at the SQR test point on A14. This should be a TTL level square wave at the selected frequency.

If this signal is not present, check the Square Enable voltage level at U33 pin 4, which should be TTL high. If correct, check the clock input at U33 pin 3, then the U31 inverter circuits and Q101, 102. If the signal at U31 pins 5 and 9 is correct but pins 6 and 8 are always low, it is possible that U32 could be defective.

If the signal at SQR is correct, troubleshoot the U40 circuits and the Amplitude Control circuits.

If Self Tests 1 and 3 pass and Self Test 2 fails, suspect problems with A14U42 in Service Group K.

Triangle and Ramp Functions.

If the sine and square functions are correct, but the triangle and ramp functions are not operating properly, use the following procedure.

a. Connect oscilloscope to the TRI test point (on A14). Set controls as follows:

Vertical	$0.2 \text{ V/div} (\div 10 \text{ probe})$
Sweep	0.1 μs/div
Trigger	Int/+ slope

b. Set the 3325A as follows:

Function	 ٠	 	•		•					•	 			•		•	•		 T	r	ia	nę	gle	
Frequency.																								
Amplitude.	 								 							 		٠	1	0	V	p	-p	

- c. The pulse width of the TRI signal should increase and decrease at a 1 Hz rate (TTL levels).
- d. Monitor pin 9 of U36 with the oscilloscope. This should be a TTL square wave, frequency 1 MHz (actually 1.000 001 MHz). If not, go to Step f.
- e. The signal at pin 10 of U36 should be a TTL square wave at 1 MHz. If not, go to the 2 MHz test point and trace the signal through to U36 pin 10. U14 divides the 2 MHz reference by two. If U14 is not operating, check for a TTL high Triangle Enable at U14 pin 10.
- f. If the proper signal is not present at U36 pin 9, trace the signal back through U32, which is $a \div 10$ counter. Also check for a TTL high Triangle Enable level at U33 pin 10.
- g. If the digital signals are all correct the trouble may be in U40 or the Triangle and Ramp Filter circuits. Observe the signal at the TRIFILT test point. It should be a triangle or ramp (selected function) approximately 200 mV p-p. If not, check U40 output at pin 13. Measure voltages in the Q114-Q118 circuits.

Ramp Functions Only.

If only the ramp functions are not operating properly, the trouble is probably in the ramp reset circuits.

a. Connect an oscilloscope to the TRI test point (on A14). Set the controls as follows:

Vertical	$\dots \dots 0.2 \text{ V/div } (\div 10 \text{ probe})$
Sweep	0.1 μs/div
Trigger	Int/+ slope

b. Set the 3325A as follows:

Function	+ Ramp
Frequency	. 1 Hz
Amplitude 1	0 V p-p

- c. The width of the positive pulse should decrease to zero, then reset and repeat at a 1 Hz rate (TTL levels).
- d. Change function to Ramp. The positive pulse at the TRI test point should increase to maximum, then reset to zero and repeat at a 1 Hz rate. If the signal is the same as the correct signal in Step d, the Ramp Polarity signal from U28 pin 5 may be incorrect. This level should be high for Ramp function and low for + Ramp.
- e. If the pulse width in Step c or d increases and decreases, the pulse reset circuits are not operating, and the 3325A output signal should be a triangle, at a 0.5 Hz rate.
- f. At frequencies below 100 Hz, the ramps are reset by the digital Phase Detector, U35. Check for negative-going pulses at U35 pin 6, positive-going pulses at U37 pin 8, and negative-going pulses at U37 pin 6. Each pulse should toggle the output of U34, pin 8. The Ramp Enable level at U34 pin 10 must be high.
- g. At frequencies of 100 Hz and higher, ramps are reset by the \pm Ramp Reset pulses generated by the Ramp Reset one-shots (U45, Service Group K) which are triggered by the Level Comparator output, U42 pin 7. These are also negative-going pulses, approximately $10 \,\mu s$ wide.

DC Offset and Amplitude Troubleshooting.

Problems in the Amplitude and Offset control circuits are most easily located by measuring dc voltages. The voltages shown on the schematic are measured with the instrument in the turn-on state (power switched from STBY to ON). Amplitude problems have in the past, been linked to U38, U39, and U40 failures. If the amplitude level from the DAC (see AMPL test point - Service Group I) is correct as well as the voltages at A3TP4 (Service Group G), then the amplitude control circuitry in this service group is suspect.

A dc offset in sine function only may be caused by a fault in the Q103, Q104 circuits.

If the square, triangle, and ramp functions are inoperative, or if the DC Offset (no ac function) is one-half the programmed level, the problem may be in Offset Control circuits U38B, Q106, U41B, or Q113.

The voltages at Q108 emitters should always be identical.

Service Model 3325A

Clipping of the positive or negative peaks on the output waveform is sometimes caused by a fault in the D.C. Offset Current circuitry. Too much or too little offset current causes the output amplifier to saturate on either the positive or negative peaks.

Figure 8-J-1. Sine Amplitude Control Path.

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	Α	C205	F	J30	н	R31	В	R136	E
C2	В		_	J31	D	R32	В	R137	E E
C3 C4	C C	C208 C209	F F	J32	F	R33 R34	B B	R138 R139	E
C5	С			L26	В				
C6	С	C211	F	L27	В	R36	В	R141	Е
C26	Α	C212 C213	F F	L76	E	R37 R38	B B	R143	Е
C27	Ä	C214	F	L77	E	R39	В	R144	F
C28	A	0010		L78	E	R40	В	R145	F
C29	Α	C216 C217	G G	L79	F	R41	В	R146	F
C31	В	C218	G	L101	D	R42	В	R147	F
C32	В	C219	G	L102	D D	R43 R44	B B	R148	F F
C33 C34	B B	C221	G	L103 L104	F	R45	Č	R149	r
C35	Č	C222	G	L105	F			R151	F
000		C223	G G	L201	F	R46 R47	B B	R152 R153	F F
C36 C37	B B	C224 C225	G	P31	D	R48	В	R154	F
C38	В			P32	F	R49	С	R156	F
C39	В	C226 C227	G G	Q1	В	R50	В	R157 R158	F F
C41	В	C228	G	Q2	В	R51	С	R159	F
C42	В	C229	G	Q3	В	R52	С	R160	F
C43 C44	B B	C230 C231	H H	Q25	В	R53 R54	C	R161	F
C45	В	0231		Q26	В	1134	C	R162	F
		C233	G	Q27	C	R56	С	R163	F
C46 C47	B C	C234 C235	G H	Q28	В	R57	С	R164	F
C48	c	C236	H	Q76	н	R58	č	R166	F
C49	С	C237	Н	Q77	Н	200		D100	-
C61	С	C238 C239	H H	Q78	G	R60	С	R168 R169	F F
C62	Č	0233		Q101	D	R61	С	11100	
C63	С	C241	Н	Q102	D	R62	С	R208	F
C65	С	C242 C245	H H	Q103 Q104	E E	R63 R64	C	R209	F
C66	Č	C246	G	Q105	D	R65	c	R211	F
676	6	CR1	A	0106	-	R67	С	R212	F
C76 C77	C D	CR2 CR3	C	Q106 Q107	E E	R68	C	R214	F
C78	G	CR4	В	Q108	Ē	R69	c	R215	G
0101		CR5		0100	E	D76	С	D016	F
C101	D	CR6	B A	Q109	E	R76 R77	D	R216 R217	F
C103	D	CR7	A	Q112	F	R78	Н	R218	G
C104	D	CD76	in .	Q113	F F	R79	H H	R219	G
C107	D	CR76	Н	Q114	F	R80 R81	H	R221	G
C108	D	CR101	D	Q116	F		-	R222	G
C109 C110	D D	CR102 CR103	D E	Q117 Q118	F	R100 R101	D D	R223 R224	G G
CITO	В	CR104	F	Q119	F	R102	D	R226	G
C111	D		_		_	R103	D	R227	G
C112 C113	D D	CR106 CR107	F F	Q201 Q202	F G	R104 R105	D D	R228 R229	G G
C114	D	0		Q203	G				
0110		CR205	G	Q204	G	R106	D	R231	G
C116 C117	D D	CR208 CR209	G G	Q206	G	R107 R108	D D	R232 R233	G G
C118	E			Q207	G	R109	D	R234	G
C119	E	CR210	G	Q208	G	R110	D	pase	G
C121	Е	CR211	G	Q209	G	R111	D	R236 R237	G
C122	E	CR212	G	Q211	Н	R112	E	R238	G
C123 C124	E E	CR213 CR214	G G	Q212 Q213	H	R113 R114	E E	R239 R241	G G
		CR214	Н	Q214	H			R242	F
C126	E					R116	E	R243	G
C127 C128	E E	CR216 CR217	G H	Q216 Q217	H G	R117 R118	E E	R244	G
C129	E	CR218	н	Q218	н	R119	E	R246	G
C131	Е	CR219 CR220	H H	Q219	Н	R120	E	R247 R248	H H
C132	E	CR221	Ĥ	R1	Α	R121	E	R249	G
C133	E					R122	E	R250	н
C134	E	F1 F2	B A	R3 R4	A C	R123 R124	E E	R251	G
C135	F	F3	Ĝ	R5	В	11124		R252	Ĥ
	=	F4	G	200	5	R126	E	R253	G
C136 C137	F F	J1	F	R6 R7	B B	R127 R128	E E	R254 R255	H G
C138	F	J2	G	R8	В	R129	Ē		
C139	F	J4	Н	R9	С	D401	-	R256	Н
C141	F	J5	G	R11	С	R131 R132	E E	R257 R258	H
C142	F	J9	В			R133	E	R259	Н
C143	F F	J12 J13	A	R26	A	R134	E	R260	G
C144	r	J13	B C	R27 R28	A A				
C203	F			R29	A				
		J23 J24	F D						
		02T	J						

R261	Н	+ 15V	В	U1	Α	U23	С
R262	Н	-15V	В	U2	Α	U24	C
R263	Н	+ 15V	G	U3	В	U25	C
R264	Н	-15V	G	U4	В		
R265	Н			U5	С	U26	С
		ACD	G	U6	С	U27	CCC
R266	Н	AMPL	С	U7	Α	U28	С
R267	Н	AMP OUT	G C G C	U8	Α	U29	D
R268	Н	AZ	С	U9	Α	U30	D G
R269	Н			U10	В		
R270	Н	DAC	C			U31	D
R271	Н	GND	C G	U11	В	U32	D
R272	Н	LVL	D	U12	В	U33	D
R273	Н	OS1	D	U13	В	U34	D
R274	Н	OS2	D C	U14	В	U35	D
R275	Н			U15	В		
		PK	F	U16	В	U36	E E E F
R276	Н	RMP	D	U17	В	U37	E
R277	Н	SINE	E	U18	С	U38	E
		SQR	E E	U19	С	U39	E
Test Points				U20	C	U40	
2MHz	Α	TRI	E			U41	F
+ 5V	A A	TRIFILT	E F	U21	C	U42	F
		XDR	D				
						U44	F
						U45	F
						U46	G
						U47	G
						U48	G
						U49	G G G
						U50	G

Note 1: These voltage levels are useful when troubleshooting amplitude problems. Levels shown occur with the 3325A's frequency set to 1kHz, and with Auto Calibration Disable (ACD) grounded.

Programmed		TP		TP
Amplitude (Vp-p)	AMP IN (C	V dc offset)	AMP IN (2	2V dc offset)
	Vp-p	DC Level	Vp-p	DC Leve
1	0.16	5.17	0.06	5.1
2	0.28	5.17	0.1	5.1
3	0.16	5.17	0.14	5.1
4	0.20	5.17	0.18	5.1
5	0.24	5.17	0.22	5.1
6	0.28	5.17	0.26	5.1
7	0.32	5.17		
8	0.38	5.17		
9	0.44	5.17		
10	0.48	5.17		

Figure 8-43. Function Circuits, A14. 8-J-7/8-J-8

SERVICE GROUP K OUTPUT AMPLIFIER AND LEVEL COMPARATOR

Model 3325A Service

SERVICE GROUP K - OUTPUT AMPLIFIER AND LEVEL COMPARATOR.

Output Amplifier and Level Comparator Troubleshooting.

If the instrument accepts and displays entries, but there is neither a signal nor sync output, the trouble may be in the Output Amplifier circuit. Note that when troubleshooting amplitude problems, the Auto Calibration Disable (ACD) test point must be grounded and the power cycled (Figure 8-44). This procedure breaks the amplitude loop and makes it possible to troubleshoot the amplitude control path (see Figure 8-K-1).

- a. Move the small shorting connector marked AMP IN (on A14) from the NORM to the opposite position.
 - b. Disconnect any external equipment from the signal output.
- c. Measure the dc voltage at the AMP OUT test point and at both ends of the fuse, F3. These voltages should be approximately +7.5 V.

If these voltages are all correct, the amplifier is probably operating correctly, and the problem may be in the Attenuator, Service Group L.

The fuse F3 can be opened when excessive voltage is applied to the 3325A's signal port. It, therefore, blows fairly often and should be replaced as necessary (0.25A, -hp- Part No. 2110-0343).

If the amplifier output voltage is not correct, troubleshoot the amplifier circuit by measuring dc voltages within the circuit as shown on the schematic (tolerance \pm 10%). These voltages are measured with the AMP IN shorting connector in the TEST position. While troubleshooting, note that the circuit from the node common to the bases of A14Q207 and A14Q213 to the AMP OUT test point is a voltage follower. Therefore, the waveform at the node and at the test point should be the same. When troubleshooting the circuit from A14Q210 to A14Q209, it is helpful to check the forward and backward resistance of each transistor.

Be sure to replace the shorting connector to the NORM position after troubleshooting.

If the 3325A does not meet accuracy specifications at 20MHz after repair of the output amplifier, and the flatness cannot be adjusted properly with the FLT adjustment (Section V, Amplitude Flatness Adjustment), it may be necessary to select a different value for A14C103 (Service Group J). Increasing the value increases the output amplitude at higher frequencies, and vice versa. Note that the 20MHz flatness adjustment (FLT) affects square wave overshoot.

Service Model 3325A

No Sync Output, Signal Output Normal.

If the signal output is normal but there is no sync output, check for a square wave at both ends of the fuse, F4. With no external equipment connected to the sync output, this should be a TTL level square wave.

If the signal is present at only one end of the fuse, replace the fuse (.125 A, -hp-Part No. 2110-0301).

If the fuse is good, trace the signal from U47 through U48. If any one of the five parallel inverters has failed with either the input or output at ground, the sync output will not be present.

If there is no signal at U47 output, move the small shorting connector marked AMP IN from the NORM position to the opposite position. The dc voltage at U47 pin 2 should then measure + 3.75 V (one-half the voltage at the AMP OUT test point).

Be sure to return the shorting connector to the NORM position after troubleshooting.

Level Comparator, Level Data, and Ramp Reset Troubleshooting.

The Level Comparator output level (at PK test point) changes each time the amplifier output equals the "Level" voltage at U42 pin 3. These changes should be easily observed when the AMPTD CAL key is pressed.

The Level Comparator outputs preset the Level Data Flip-Flops, which are reset as necessary by the controller.

The Ramp Reset one-shots are triggered by the Level Comparator outputs when the Ramp Enable signal is high. The level of the Ramp Polarity signal at U45 pins 2 and 9 determines whether the + Ramp or - Ramp reset one-shot is triggered.

Figure 8-K-1. Sine Amplitude Control Path.

Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location	Designator	Board Location
C1	Α	C205	F	J30	Н	R31	В	R136	E
C2	В	W 20 TO 10		J31	D	R32	В	R137	E
C3	С	C208	F	J32	F	R33	В	R138	E
C4 C5	C	C209	F	L26	В	R34	В	R139	Е
C6	Č	C211	F	L27	В	R36	В	R141	Е
		C212	F			R37	В		
C26	A	C213	<u>F</u>	L76	Ē	R38	В	R143	E
C27 C28	A	C214	F	L77	E E	R39	B B	R144	F F
C29	A A	C216	G	L78 L79	F	R40	В	R145	F
020		C217	Ğ	270	990	R41	В	R146	F
C31	В	C218	G	L101	D	R42	В	R147	F
C32	В	C219	G	L102	D	R43	В	R148	F F
C33 C34	B B	C221	G	L103 L104	D F	R44 R45	B C	R149	F
C35	Č	C222	Ğ	L105	F	1110	O	R151	F
		C223	G	L201	F	R46	В	R152	F
C36	В	C224	G	DO4	-	R47	В	R153	F
C37 C38	B B	C225	G	P31 P32	D F	R48 R49	B C	R154 R156	F F
C39	В	C226	G	1 32	×	R50	В	R157	F
		C227	G	Q1	В			R158	F
C41	В	C228	G	Q2	В	R51	С	R159	F
C42 C43	B B	C229 C230	G H	Q3	В	R52 R53	C C	R160	F
C43	В	C230	H	Q25	В	R54	c	R161	F
C45	В			Q26	В		-	R162	F
		C233	G	Q27	С	R56	С	R163	F
C46 C47	B C	C234 C235	G H	Q28	В	R57	С	R164	F
C48	C	C236	Н	Q76	н	R58	C	R166	F
C49	Č	C237	H	Q77	H	1100	Ü	11100	
		C238	Н	Q78	G	R60	С	R168	F
C61	С	C239	Н		_		_	R169	F
C62 C63	C	C241	н	Q101 Q102	D D	R61 R62	C C	R208	F
003	C	C242	н	Q103	E	R63	c	R209	F
C65	С	C245	Н	Q104	E	R64	C		
C66	С	C246	G	Q105	D	R65	С	R211	F
C76	С	CR1 CR2	A C	Q106	E	R67	С	R212	F
C77	D	CR3	c	Q107	E	R68	C	R214	F
C78	G	CR4	В	Q108	Ē	R69	Č	R215	Ġ
C101	D	CR5	В	Q109	E	R76	С	R216	F
C103	D	CR6 CR7	A A	Q112	F	R77 R78	D H	R217 R218	F G
C104	D	OII,		Q113	F	R79	H	R219	G
NAME OF THE OWNER O		CR76	Н	Q114	F	R80	н		
C107	D	CD101	5	0440	_	R81	н	R221	G
C108 C109	D D	CR101 CR102	D D	Q116 Q117	F F	R100	D	R222 R223	G G
C110	D	CR103	Ē	Q118	F	R101	D	R224	G
		CR104	F	Q119	F	R102	D	R226	G
C111	D	00400	_		_	R103	D	R227	G
C112 C113	D D	CR106 CR107	F F	Q201 Q202	F G	R104 R105	D D	R228 R229	G G
C114	D	CITTO	Y	Q203	G	11105	Ь	11229	G
		CR205	G	Q204	G	R106	D	R231	G
C116	D	CR208	G	0000		R107	D	R232	G
C117 C118	D E	CR209	G	Q206 Q207	G G	R108 R109	D D	R233 R234	G G
C119	Ē	CR210	G	Q208	G	R110	D	11234	d
				Q209	G			R236	G
C121	E	CR211	G	0011		R111	D	R237	G
C122 C123	E E	CR212 CR213	G G	Q211 Q212	H H	R112 R113	E E	R238 R239	G G
C124	Ē	CR214	G	Q212	Ĥ	R114	E	R241	G
		CR215	H	Q214	н			R242	F
C126	E	00010	-	0010		R116	E	R243	G
C127 C128	E E	CR216 CR217	G H	Q216 Q217	H G	R117 R118	E E	R244	G
C129	Ē	CR218	Ä	Q218	H	R119	Ē	R246	G
		CR219	н	Q219	н	R120	E	R247	Н
C131	E	CR220	H				_	R248	Н
C132 C133	E E	CR221	н	R1	Α	R121 R122	E E	R249 R250	G H
0100	-	F1	В	R3	Α	R123	E	H250	п
C134	E	F2	Α	R4	С	R124	E	R251	G
C135	F	F3	G	R5	В		_	R252	Н
C136	F	F4	G	R6	В	R126 R127	E E	R253	G
C137	F	J1	F	R7	В	R127	E	R254 R255	H G
C138	F	J2	G	R8	В	R129	Ē		
C139	F	J4	Н	R9	С			R256	Н
C141	F	J5	G	R11	С	R131 R132	E E	R257 R258	H
C141	F	J9	В	ni i	C	R133	E	R259	H H
C143	F	J12	Α	R26	Α	R134	Ē	R260	G
C144	F	J13	В	R27	A				
C203	F	J14	С	R28 R29	A A				
0200		J23	F	1123					
		J24	D						

R261	н	+ 15V	В	U1	Α	U26	С
R262	Н	-15V	В	U2	Α	U27	C
R263	Н	+ 15V	G	U3	В	U28	Č
R264	Н	-15V	G	U4	В	U29	D
R265	Н			U5	С	U30	G
		ACD	G	U6	C	•••	G
R266	Н	AMPL	С	U7	Ā	U31	D
R267	Н	AMP OUT	G	U8	Α	U32	D
R268	Н	AZ	Ċ	U9	A	U33	D
R269	Н			U10	В	U34	D
R270	Н	DAC	С		_	U35	D
R271	H	GND	Ğ	U11	В	000	
R272	Н	LVL	D	U12	В	U36	E
R273	Н	OS1	D	U13	В	U37	
R274	Н	OS2	C	U14	В	U38	E E
R275	Н			U15	В	U39	Ē
		PK	F	U16	В	U40	F
R276	H	RMP	D	U17	В	U41	F
R277	Н	SINE		U18	Č	U42	F
		SQR	E E	U19	C		
Test Points			1=	U20	C C	U44	F
2MHz	Α	TRI	E		_	U45	F
+ 5V	Α	TRIFILT	Ē	U21	С	U46	G
		XDR	D			U47	G
				U23	С	U48	G
				U24		U49	G
				U25	C	U50	G

Freq	Programmed Amplitude	TP Amp Out OVdc Offset	TP Amp Out 2Vdc Offset
1kHz	1	7.2Vp-p	2.4Vp-p
	2	14.4Vp-p	4.8Vp-p
	3	7.2Vp-p	7.2Vp-p
	4	9.6Vp-p	9.6Vp-p
	5	12.0Vp-p	12.0Vp-p
	6	14.4Vp-p	14.4Vp-p
	7	17.0Vp-p	_
	8	19.0Vp-p	-
	9	22.0Vp-p	_
	10	24.0Vp-p	_

A14 03325-66514 Rev C

Figure 8-44. Output Amplifier, A14. 8-K-5/8-K-6

SERVICE GROUP L ATTENUATOR

SERVICE GROUP L - ATTENUATOR.

Troubleshooting Attenuator Relays and Drivers.

Set output to:

Function	DC Offset only (no AC function)
	5 V

Press AMPTD CAL Key.

Measure the 3325A output voltage with a dc digital voltmeter. Do not use a 50-ohm load. The output level should be $+10.000 \text{ V} \pm 0.4\%$. If the output voltage is incorrect by a large amount (a factor of 3, 10, or 100 for example) one of the attenuator relays may be latched in the wrong position. With the DC Offset set to 5 V, none of the attenuator pads should be in.

	No Load Output voltage will be
If \div 100 pad (K1) is IN	0.100 V
If \div 10 pad (K2) is IN	1.000 V
If \div 3 pad (K3) is IN	3.333 V
If \div 100 and \div 10 pads are IN	$0.010\mathrm{V}$
If \div 100 and \div 3 pads are IN	0.033 V
If \div 10 and \div 3 pads are IN	0.333 V
If K4 is in the IN position	
Instrument with High Voltage	
Option 002	20.00 V
Instrument without Option 002	
(front panel output)	0 V
(rear panel output)	10.00 V

Operation of the latching relays may be checked by momentarily grounding each output of A4U50, and A4Q76 collector, as follows:

Pin No.		Relay
10	K4	Front output or H.V. OFF
16	K4	Rear output or H.V. ON
15	К3	OUT
14	K3	IN
13	К2	OUT
12	K2	IN
11	K1	OUT
Q76 Coll.	K1	IN
Q/0 Coll.	V.I	111

A small error in the output voltage may be caused by the output amplifier or by excessive contact resistance in the attenuator relays, particularly if the error is not evident on all ranges. The following table lists the eight ranges used in the DC Offset only mode, and the relays used for each range. Relay K4 is used for all ranges.

Range	DC Offset Only (No AC Function)	Attenuator Relay Pads In
1	5.000 to 1.500 V	None
2	1.499 to 0.500 V	K3
3	499.9 to 150.0 mV	K2
4	149.9 to 50.00 mV	K2, K3
5	49.99 to 15.00 mV	K1
6	14.99 to 5.000 mV	K1, K3
7	4.999 to 1.500 mV	K1, K2
8	1.499 to 1.000 mV	K1, K2, K3

Relay drive pulses at A14U49 outputs and A14U50 and A14Q76 occur only in conjunction with a range change. Changing the output level from 5V to 1mV results in pulses to K1, K2, and K3 which place them in the "pad in" position. Changing from 1mV to 5V causes all three relays to change to the "pad out" position. Pulses may be observed at the proper points by observing an oscilloscope set to a slow sweep speed while entering the above voltages. The clock pulse to U49 may also be observed during any range change. Pulses should appear at U49 inputs continually.

A23 Attenuator Relay Cleaning and Servicing.

Removal and Replacement

Use a small screwdriver or similar tool to pry the flat spring retainer away from the side of the relay and remove the retainer. The relay can then be lifted from the board (each relay should be marked on the case to insure that they will be returned to the same position). When replacing the relay, make sure the key tabs on the bottom of the relay case are properly aligned with the holes in the printed circuit board and that the contact pins also fit properly.

Relay and Board Cleaning

Before cleaning the relays and the printed circuit board, note the following precautions:

- do not clean the relays with solvents or fluorcarbons (e.g. Freon, "Dust-OFF" flux remover, or circuit cooler).
- avoid touching the contacts
- use only low pressure (10 psi max) dry gas. CO₂, N₂, or air are all acceptable. A squeeze bulb blower is good. Do not use your mouth.

Procedure:

- a. After the relays have been removed from the board as instructed above, blow clean the relay contacts and armature with low pressure dry gas (e.g., CO_2 , N_2 , or air). Do not blow with your mouth.
- b. Spray no-noise silicon lubricant (P/N 6030-0063) into the cavity area. Place the relay, contact side down, in a dust-free area and allow it to cure for 24 hours before using.
- c. Clean the printed circuit board where the relays sit with isopropyl alcohol ("2-Propanol" P/N 8500-0755). Apply the alcohol with a soft brush (P/N 8520-0007). Avoid circular brush strokes and maintain a minimum amount of application pressure. Avoid using anything else (such as erasers) on the board. Blow dry the board and store in a dust-free area until the relays are ready to be reattached.
- d. When the relays have cure dried, reattach them to the board. Check to insure that the relays are functioning properly by following the procedures described in the troubleshooting section.

A23 03325-66523 Rev B

A14 03325-66514 Rev C

Figure 8-45. Relay Drivers, A14, and Attenuator, A23. 8-L-3/8-L-4

SERVICE GROUP M OPTIONS

Service Group M Options: 002 A8 and 001, A9

SERVICE GROUP M - OPTIONS: HIGH VOLTAGE OUTPUT (OPT. 002) AND HIGH STABILITY REFERENCE (OPT. 001).

High Voltage Output Amplifier Troubleshooting.

Before servicing the A8 assembly, be sure that it is being used within its limits of operation:

Frequency Range: 0 - 1MHzOutput Load: 500Ω minimum

If the standard output is normal but there is no high voltage output, move the small shorting connector marked AMP IN (on A14) from the NORM position to the opposite position. Measure the dc voltage at A8TP5 and at both ends of A8F1. This voltage should be approximately $+15 \, \text{V}$.

If voltage is present at only one end of A8F1, replace the fuse (.25 A, -hp- Part No. 2110-0343).

If the fuse is good, return the shorting connector to the NORM position. Disconnect the cable (marked 20 HI V1) from A8J20. Measure dc voltages with the circuit as shown on the schematic. Voltages should be within $\pm 10\%$.

Check that jumper A6W1 is clipped or missing. The absence of this jumper indicates to the processor that the High Voltage option is installed and the processor will then allow voltages greater than 10Vp-p to be programmmed.

Note that the A8 assembly has its own +30V power supply.

Be sure to reconnect the cable to U8J20 after troubleshooting.

REAR PANEL OUTPUT WITH OPTION 002.

Normally, instruments having the High Voltage Output Option 002 are shipped from the factory with the signal output at the front panel. The signal output can be changed to the rear panel by reconnecting Cables 1 and 4.

- a. Disconnect Cable 1 (to the front panel signal output) from the attenuator assembly J1 OUT.
- b. Disconnect Cable 4 (to rear panel signal output) from the connector on A14 labeled "4 DUMMY", and connect it to J1 OUT on the attenuator assembly. It may be necessary to cut a cable tie to reach J1.
 - c. Connect Cable 1 to the "4 DUMMY" connector.
- d. The standard and high voltage outputs will now appear at the rear panel SIGNAL connector.

CHANGING OPTION 002 TO STANDARD (FRONT/REAR) OUTPUT.

Use the following procedure to change an instrument with High Voltage Output Option 002 to the standard instrument Front/Rear signal output configuration. The High Voltage output will then not be available at either the front or rear panel.

- a. Disconnect Cable 20 from the attenuator assembly connector labeled "AUX OUT 4/20".
 - b. Disconnect Cable 21 from the attenuator assembly connector labeled "HV IN".
- c. Disconnect Cable 4 from the connector on A6 labeled "4 DUMMY" and connect it to the attenuator assembly connector labeled "AUX OUT 4/20".
 - d. Connect Cable 20 to the "4 DUMMY" connector.
- e. Secure Cable 21 in a position that does not allow the connector to touch the printed circuit board or any component.
- f. Solder a small wire jumper in the position on A6 that is between A6U43 and A6S1. This jumper is marked W1 on the schematic diagram and the component location drawing in Service Group C. When this jumper is in place, the logic circuits recognize the standard (no high voltage output) configuration.
- g. Attach a tag or other identification to the front panel to indicate that the high voltage output has been disabled and that the standard signal output is available at the front or rear panel (switchable).

A8 03325-66508

Figure 8-46. High Voltage Output Option 002, A8. 8-M-3/8-M-4

A9 03325-66509 Rev A

COPYRIGHT 1977 BY HEWLETT- PACKARD COMPANY

SERVICE GROUP N SWEEP DRIVE CIRCUITS

SERVICE GROUP N - SWEEP DRIVE CIRCUITS.

Troubleshooting The Sweep Drive Circuits.

To determine whether only one or both X Drive ranges are bad, monitor the X Drive output with an oscilloscope.

- a. Set sweep time to .999 sec. Press START CONT key. X Drive output should go from 0 V to > +10 V during sweep up, and remain at 0 V during sweep down.
 - b. Set sweep time to 1 sec. The oscilloscope display should be as described in Step a.
- c. Check the voltage at the XDR test point (on A14). This voltage should change from -10.0 V to -0.1 V when the sweep time is changed from 1 sec to .999 sec.
- d. If neither output is correct in Steps a and b, first troubleshoot the X Drive Integrator circuit. The ramp reset pulse at the gate of A14Q1 should be as indicated on the schematic, with the negative-going edge of the pulse occurring at the end of a sweep up (in continuous sweep). Also check for the Ramp Reset pulse at A14U1 pin 12. If no pulse is present, go to the Logic troubleshooting, Service Group C.
- e. Setting the sweep time to .999 sec checks Range 1, while a time of 1 sec checks Range 2. If only one range is inoperative, compare the voltage at U4 pin 4 (Range 1) or U3 pin 6 (Range 2) to the voltage at the XDR test point.

$$.999 \text{ sec} = -0.1 \text{ V}$$

1 sec = -10.0 V

If these voltages are correct, the Sweep Range Switches are working, and the trouble is probably in the X Drive Integrator.

- f. If either of the voltages in Step e is not correct, check for the Range 1 level at U4 pin 2, or the Range 2 level at U3 pin 2 and 3. One of these should be TTL high and the other low, depending upon the range of the sweep time selected.
- g. The Start output from the X Drive Start/Stop Flip-Flop should be high during a sweep up and low during sweep down. The L Start level at U2 pin 2 and U1 pin 15 should go low at the beginning of a sweep up and high just before the end of sweep up.

Z Blank Output.

With the 3325A in continuous sweep (linear mode) the Z Blank output should be at a TTL low level during sweep up, high during sweep down. Check for this signal at both ends of A14F1. If the fuse is bad, replace with -hp- P/N 2110-0343, 0.25A. The signal should be inverted at the base of Q3.

Service Model 3325A

Marker Output.

The Marker output operates only during a linear sweep up. It is high at the start of a sweep up, goes low at the selected marker frequency, then high again at the stop frequency. Check for this signal at both ends of A14F2. If the fuse is bad, replace with -hp- Part No. 2110-0343, .25 A.

If the fuse is good, check for the presence of the Sweep Limit Flag at U2 pin 5, and the Marker Reset pulse at U2 pin 1. Both should be negative-going pulses. Sweep Limit Flag should occur at the selected marker frequency and at the end of sweep up. The Marker Reset pulse should occur immediately after the end of sweep up.

% AI4 FUNCTION ASSEMBLY Z BLANK TTL LMKR RESET MARKER TIL +150 2 R3 24.64K XDRIVE START/STOP FLIP-FLOP RAMP RESET C FROM % A6 J4 J2 L27 L78 RANGE 1=0.01s TO 0.999s RANGE 2=1s TO 99.99s L26 SEE PARAGRAPH 8-113 WHEN REPLACING AH(4) A5-SEE SECTION VII COPYRIGHT 1977 BY HEWLETT-PACKARD COMPANY 3325A-14A-3

IN PUTS ANALOG
RNC 2 START SWITCH
L X OPEN
X L OPEN
H H CLOSED

	-0.0				
START	UTS RNG1	ANALOG SI	SWITCH SZ	92	
L	×	OPEN	CLOSED	OFF	
×	L	OPEN	CLOSED	OFF	
H	H	CLOSED	OPEN	ON	

Figure 8-48. Sweep Drive Circuits, A4. 8-N-3/8-N-4

SERVICE GROUP O POWER SUPPLIES

Model 3325A Service

SERVICE GROUP O - POWER SUPPLIES.

Power Supply Troubleshooting.

ECAUTION 3

The Power Supply printed circuit board mounting screws must be tightened securely or the regulators will not operate properly. The line fuse may be destroyed.

To determine if the trouble is in the regulators or if some other circuit is pulling down a power supply voltage, disconnect the cable (W22) from A2P5. This breaks the connector to the power switch; ground A2P5 pin 10 to enable the power supplies.

The three power supply voltages (\pm 15V, + 5V) are routed from A2P5 through the cable W22 to A6P5, and from A6 are connected to the other assemblies through the flat cables at the side of A6 and the gray or blue cable to the keyboard assembly. In addition to the flat cables, \pm 15V are routed to A14 through either a 2-wire cable which has a connector at each end, or through individual wires connecting to square pins at either end. When replacing either the 2-wire cable or the individual wires, make sure the connection is correct. The red wire goes to \pm 15V and the black wire to \pm -15V.

If the power supply voltages are not within $\pm 1V$ of the correct value with the cable removed, troubleshoot the regulator circuits, using the dc voltages noted on the schematic. Note that all supplies are referenced to -15V. Therefore, if this supply is bad, the +5V and +15V supplies will be off as well.

If the power supply voltages are correct with the cable disconnected, disconnect all three of the flat cables and the cable to the keyboard assembly, and reconnect cable W22 to A2P5. Connect the STBY test point (on A6) to ground to enable the power supplies. If power supply voltages are again incorrect, the problem is on the A6 assembly (Service Groups B and C). If power supply voltages are correct with A6 connected and the other assemblies disconnected, replace the cables one at a time to locate the problem, then troubleshoot the appropriate assembly.

CAUTION

The flat cables must be removed and reinserted carefully to prevent damage. Make sure that the cable contacts are aligned properly with the connector contacts.

NOTES

- 1. When replacing Q1, Q2, or Q3, make sure the insulator is in place correctly. Use a heat transfer compound between the transistor, insulator, and heat sink. Be sure to use the proper length screw for replacement.
- 2. If the heat sink is removed from the side frame, be sure to use the proper length screws to replace it. If the screws are too long, or if the washer is omitted, the screws may short the transistors to the frame.

Designator	Board Location	Designator	Board Location	Designator	Board Location
C1 C2 C3 C4 C5	B B B B	L1 P1 P2 P3	E C D H	R17 R18 R19 R20	E F F
C6 C7 C8 C9 C10	C C C D	P4 P5 Q1 Q2 Q3	Н В А А	R21 R22 R23 R24 R25	F G G G
C11 C12 C14	F E G	Q4 Q5 Q6 Q7	A A B B	R26 R27 R28 R29 R30	G H H H B
C15 C16 C17 C18	G H H H	Q9 Q10 Q11	G F A	R32 R33 S1	A F
CR1 CR2 CR3 CR4 CR5	B B C C	R1 R2 R3 R4 R5	A A A A	S2 Test Points GND + 15 V	D E G G F
CR6 CR7 CR8 CR9 CR10	E F H C	R6 R7 R8 R9 R10	A A A A	+ 5 V - 15 V + 15 U + 5 U - 15 U	G F C A B
CR12 CR13 CR14 CR15 CR16	E E G E	R11 R12 R13 R14 R15	B E D C	U1 U2 U3 U4	B F G
K1	Н	R16	Е	V1	G

A2 03325-66502 Rev F

Figure 8-49. Power Supplies, A2. 8-O-3/8-O-4

FUNCTION BLOCK DIAGRAM

Arranged alphabetically by country

Product Line Sales/Support Key

Key Product Line

Analytical

CM Components

Computer Systems Sales only

Computer Systems Hardware Sales and Services

Computer Systems Software Sales and Services

Electronic Instruments & Measurement Systems

Medical Products

MP Medical Products Primary SRO

MS Medical Products Secondary SRO

Personal Computation Products

Sales only for specific product line

Support only for specific product line

IMPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.

HP distributors are printed in italics.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

NORTH/CENTRAL AFRICA

Hewlett-Packard S.A 7. Rue du Bois-du-Lan CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 12 12 Telex: 27835 hpse Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd. 6th Floor, Sun Hung Kai Centre 30 Harbour Rd. G.P.O. Box 795 HONG KONG Tel: 5-832 3211 After Jan. 1, 1984 47th Floor, China Resources Bldg. 26 Harbour Rd., Wanchai HONG KONG

Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG

CANADA

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Telex: 610-492-4246

EASTERN EUROPE Hewlett-Packard Ges.m.b.h.

Lieblgasse 1 P.O.Box 72 A-1222 VIENNA, Austria Tel: (222) 2365110 Telex: 1 3 4425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A. Uilenstede 475 P.O.Box 999 NL-1180 AZ AMSTELVEEN The Netherlands Tel: 20 437771

SOUTH EAST EUROPE

Hewlett-Packard S.A. 7, Rue du Bois-du-Lan CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 12 12 Telex: 27835 hpse Cable: HEWPACKSA Geneve

OTHER EUROPE

Hewlett-Packard S.A. P.O. Box 150, Rte du Nant-D'Avril CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 8111 Telex: 22486 hpsa Cable: HEWPACKSA Geneve

MEDITERRANEAN AND MIDDLE EAST

Hewlett-Packard S.A Mediterranean and Middle East Operations Atrina Centre 32 Kifissias Ave. Paradissos-Amarousion, ATHENS Greece Tel: 682 88 11 Telex: 21-6588 HPAT GR

Cable: HEWPACKSA Athens **EASTERN USA**

Hewlett-Packard Co. 4 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 258-2000

MIDWESTERN USA

Hewlett-Packard Co. 5201 Tollview Drive **ROLLING MEADOWS. IL 60008** Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co. 2000 South Park Place P.O. Box 105005 ATLANTA, GA 30348 Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co. 3939 Lankershim Blvd. P.O. Box 3919 LOS ANGELES, CA 91604 Tel: (213) 506-3700

OTHER INTERNATIONAL AREAS

Hewlett-Packard Co. Intercontinental Headquarters 3495 Deer Creek Road **PALO ALTO, CA 94304** Tel: (415) 857-1501 Telex: 034-8300 Cable: HEWPACK

ANGOLA

Telectra Empresa Técnica de Equipamentos R. Barbosa Rodrigues, 41-I DT. Caixa Postal 6487 LUANDA Tel: 355 15,355 16

ARGENTINA

Hewlett-Packard Argentina S.A. Avenida Santa Fe 2035 Martinez 1640 BUENOS AIRES Tel: 798-5735, 792-1293 Telex: 17595 BIONAR Cable: HEWPACKARG A,E,CH,CS,P Biotron S.A.C.I.M. e I.

Av Paseo Colon 221, Piso 9 1399 BUENOS AIRES Tel: 30-4846, 30-1851 Telex: 17595 BIONAR

AUSTRALIA

A*,CH,CM,,E,MS,P

Adelaide, South Australia Office

Hewlett-Packard Australia Ltd. 153 Greenhill Road PARKSIDE, S.A. 5063 Tel: 272-5911 Telex: 82536 Cable: HEWPARD Adelaide

Brisbane, Queensland Office Hewlett-Packard Australia Ltd.

10 Payne Road **THE GAP**, Queensland 4061 Tel: 30-4133 Telex: 42133 Cable: HEWPARD Brisbane A,CH,CM,E,M,P

Canberra, Australia **Capital Territory** Office

Hewlett-Packard Australia Ltd. 121 Wollongong Street FYSHWICK, A.C.T. 2609 Tel: 80 4244

Telex: 62650 Cable: HEWPARD Canberra

CH,CM,E,P

Melbourne, Victoria Office

Hewlett-Packard Australia Ltd. 31-41 Joseph Street BLACKBURN, Victoria 3130 Tel: 895-2895 Telex: 31-024

Cable: HEWPARD Melbourne A,CH,CM,CS,E,MS,P

Perth, Western Australia Office

Hewlett-Packard Australia Ltd. 261 Stirling Highway CLAREMONT, W.A. 6010 Tel: 383-2188 Telex: 93859 Cable: HEWPARD Perth A,CH,CM,E,MS,P

Sydney, New South Wales Office

Hewlett-Packard Australia Ltd. 17-23 Talavera Road P.O. Box 308 NORTH RYDE, N.S.W. 2113 Tel: 887-1611 Telex: 21561 Cable: HEWPARD Sydney A,CH,CM,CS,E,MS,P

AUSTRIA

Hewlett-Packard Ges.m.b.h. Grottenhofstrasse 94 A-8052 GRAZ Tel: (0316) 291 5 66 Telex: 32375 CH.E

Hewlett-Packard Ges.m.b.h. Lieblgasse 1 P.O. Box 72 A-1222 VIENNA Tel: (0222) 23 65 11-0 Telex: 134425 HEPA A A,CH,CM,CS,E,MS,P

BAHRAIN

Green Salon P.O. Box 557 Manama BAHRAIN Tel: 255503-255950 Telex: 84419

Wael Pharmacy P.O. Box 648 BAHRAIN Tel: 256 123 Telex: 8550 WAEL BN FCM

BELGIUM

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 BRUSSELS Tel: (02) 762-32-00 Telex: 23-494 paloben bru A,CH,CM,CS,E,MP,P

BRAZIL

Hewlett-Packard do Brasil I.e.C. Ltda. Alameda Rio Negro, 750 Alphaville 06400 BARUERI SP Tel: (011) 421.1311 Telex: (011) 33872 HPBR-BR Cable: HEWPACK Sao Paulo A,CH,CM,CS,E,M,P Hewlett-Packard do Brasil I.e.C. Ltda. Avenida Epitacio Pessoa, 4664 22471 RIO DE JANEIRO-RJ Tel: (02I) 286.0237 Telex: 021-21905 HPBR-BR Cable: HEWPACK Rio de Janeiro A,CH,CM,E,MS,P

ANAMED I.C.E.I. Ltda. Rua Bage, 103 04012 SAO PAULO Tel: (011) 570-5726 Telex: 021-21905 HPBR-BR

Arranged alphabetically by country

CANADA

Alberta

Hewlett-Packard (Canada) Ltd. 3030 3rd Avenue N.E. CALGARY, Alberta T2A 6T7 Tel: (403) 235-3100 A,CH,CM,E*,MS,P*

Hewlett-Packard (Canada) Ltd. 11120A-178th Street EDMONTON, Alberta T5S 1P2 Tel: (403) 486-6666 A,CH,CM,CS,E,MS,P

British Columbia

Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way RICHMOND. British Columbia V6X 2W7 Tel: (604) 270-2277 Telex: 610-922-5059 A,CH,CM,CS,E*,MS,P*

Manitoba

Hewlett-Packard (Canada) Ltd. 380-550 Century Street WINNIPEG, Manitoba R3H 0Y1 Tel: (204) 786-6701 A,CH,CM,E,MS,P*

Nova Scotia

Hewlett-Packard (Canada) Ltd. P.O. Box 931 900 Windmill Road DARTMOUTH, Nova Scotia B2Y 3Z6 Tel: (902) 469-7820 CH,CM,CS,E*,MS,P*

Ontario

Hewlett-Packard (Canada) Ltd. 3325 N. Service Rd., Unit 6 BURLINGTON, Ontario P3A 2A3 Tel: (416) 335-8644 CS,M*

Hewlett-Packard (Canada) Ltd. 552 Newbold Street LONDON, Ontario N6E 2S5 Tel: (519) 686-9181 A,CH,CM,E*,MS,P

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 A.CH.CM.CS.E.MP.P

Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr OTTAWA, Ontario K2B 8K1 Tel: (613) 820-6483 A.CH.CM.CS.E*.MS.P*

Hewlett-Packard (Canada) Ltd. 220 Yorkland Blvd., Unit #11 WILLOWDALE, Ontario M2J 1R5 Tel: (416) 499-9333

Quebec

Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway KIRKLAND, Quebec H9J 2M5 Tel: (514) 697-4232 A,CH,CM,CS,E,MP,P* Hewlett-Packard (Canada) Ltd. Les Galeries du Vallon 2323 Du Versont Nord STE. FOY, Quebec G1N 4C2 Tel: (418) 687-4570 CH

CH,CS,P

Jorge Calcagni y Cia. Ltda. Av. Italia 634 Santiago Casilla 16475 SANTIAGO 9 Tel: 222-0222 Telex: Public Booth 440001 A,CM,E,M Olympia (Chile) Ltda. Av. Rodrigo de Araya 1045 Casilla 256-V SANTIAGO 21 Tel: (02) 22 55 044 Telex: 240-565 OLYMP CL Cable: Olympiachile Santiagochile

CHINA, People's Republic of

China Hewlett-Packard Rep. Office P.O. Box 418 1A Lane 2, Luchang St. Beiwei Rd., Xuanwu District

Tel: 33-1947, 33-7426 Telex: 22601 CTSHP CN Cable: 1920 A,CH,CM,CS,E,P

COLOMBIA

Instrumentación H. A. Langebaek & Kier S.A. Carrera 4A No. 52A-26 Apartado Aereo 6287 BOGOTA 1. D.E. Tel: 212-1466 Telex: 44400 INST CO Cable: AARIS Bogota CM.E.M Casa Humboldt Ltda.

Carrera 14, No. 98-60 Apartado Aereo 51283 BOGOTA 1, D.E. Tel: 256-1686

Telex: 45403 CCAL CO.

COSTA RICA

Cientifica Costarricense S.A. Avenida 2, Calle 5 San Pedro de Montes de Oca Apartado 10159 SAN JOSÉ Tel: 24-38-20, 24-08-19

Telex: 2367 GALGUR CR CM.E.M

CYPRUS

Telerexa Ltd. P.O. Box 4809 14C Stassinos Avenue NICOSIA Tel: 62698 Telex: 2894 LEVIDO CY E.M.P

DENMARK

Hewlett-Packard A/S Datavej 52 DK-3460 BIRKEROD Tel: (02) 81-66-40 Telex: 37409 hpas dk A,CH,CM,CS,E,MS,P Hewlett-Packard A/S Rolighedsvej 32 DK-8240 RISSKOV, Aarhus Tel: (06) 17-60-00 Telex: 37409 hpas dk CH,E

DOMINICAN REPUBLIC

Microprog S.A. Juan Tomás Mejía y Cotes No. 60 Arroyo Hondo SANTO DOMINGO Tel: 565-6268

Telex: 4510 ARENTA DR (RCA) P

ECUADOR

CM.E.P

CYEDE Cia. Ltda. Avenida Eloy Alfaro 1749 Casilla 6423 CCI QUITO Tel: 450-975, 243-052 Telex: 2548 CYEDE ED

Hospitalar S.A. Robles 625 Casilla 3590 QUITO Tel: 545-250, 545-122 Telex: 2485 HOSPTL ED Cable: HOSPITALAR-Quito

International Engineering Associates 24 Hussein Hegazi Street Kasr-el-Aini CAIRO Tel: 23829, 21641 Telex: IEA UN 93830 CH,CS,E,M **EGYPOR** P.O.Box 2558 42 El Zahraa Street CAIRO, Egypt Tel: 65 00 21 Telex: 93 337

EL SALVADOR

IPESA de El Salvador S.A. 29 Avenida Norte 1216 SAN SALVADOR Tel: 26-6858, 26-6868 Telex: 20539 IPESASAL A,CH,CM,CS,E,P

FINLAND

Hewlett-Packard Oy Revontulentie 7 PL 24 SF-02101 ESP00 10 Tel: (90) 4550211 Telex: 121563 hewpa sf CH,CM,CS,P Hewlett-Packard Oy (Olarinluoma 7) PL 24 02101 ESPOO 10 Tel: (90) 4521022 A,E,MS Hewlett-Packard Oy

Aatoksenkatv 10-C SF-40720-72 JYVASKYLA Tel: (941) 216318 CH

Hewlett-Packard Oy Kainvuntie 1-C SF-90140-14 OULU Tel: (981) 338785 CH

FRANCE

Hewlett-Packard France Z.I. Mercure B Rue Berthelot F-13763 Les Milles Cedex AIX-EN-PROVENCE Tel: 16 (42) 59-41-02 Telex: 410770F A,CH,E,MS,P* Hewlett-Packard France 64, rue Marchand Saillant F-61000 ALENCON Tel: 16 (33) 29 04 42 Hewlett-Packard France

Boite Postale 503 F-25026 BESANCON 28 rue de la Republique F-25000 BESANCON Tel: 16 (81) 83-16-22 CH.M

Hewlett-Packard France 13, Place Napoleon III F-29000 BREST Tel: 16 (98) 03-38-35

Hewlett-Packard France Chemin des Mouilles Boite Postale 162

F-69130 ECULLY Cedex (Lyon) Tel: 16 (78) 833-81-25

Telex: 310617F A,CH,CS,E,MP Hewlett-Packard France Tour Lorraine

Boulevard de France F-91035 EVRY Cedex Tel: 16 6 077-96-60 Telex: 692315F

Hewlett-Packard France Parc d'Activite du Bois Briard Ave. du Lac F-91040 EVRY Cedex Tel: 16 6 077-8383

Telex: 692315F

Hewlett-Packard France 5, avenue Raymond Chanas F-38320 EYBENS (Grenoble) Tel: 16 (76) 25-81-41 Telex: 980124 HP GRENOB EYBE

Hewlett-Packard France Centre d'Affaire Paris-Nord Bâtiment Ampère 5 étage Rue de la Commune de Paris Boite Postale 300 F-93153 LE BLANC MESNIL Tel: 16 (1) 865-44-52 Telex: 211032F

CH.CS.E.MS Hewlett-Packard France Parc d'Activités Cadera Quartier Jean Mermoz Avenue du Président JF Kennedy F-33700 MERIGNAC (Bordeaux) Tel: 16 (56) 34-00-84

Telex: 550105F CH,E,MS

Hewlett-Packard France Immueble "Les 3 B" Nouveau Chemin de la Garde ZAC de Bois Briand F-44085 NANTES Cedex Tel: 16 (40) 50-32-22

Arranged alphabetically by country

FRANCE (Cont'd) Hewlett-Packard France

125, rue du Faubourg Bannier F-45000 ORLEANS

Tel: 16 (38) 68 01 63

Hewlett-Packard France Zone Industrielle de Courtaboeuf Avenue des Tropiques F-91947 Les Ulis Cedex ORSAY

Tel: (6) 907-78-25 Telex: 600048F

A,CH,CM,CS,E,MP,P Hewlett-Packard France Paris Porte-Maillot 15, Avenue de L'Amiral Bruix F-75782 PARIS CEDEX 16

Tel: 16 (1) 502-12-20 Telex: 613663F CH,MS,P

Hewlett-Packard France 124, Boulevard Tourasse

F-64000 PAU Tel: 16 (59) 80 38 02

Hewlett-Packard France 2 Allée de la Bourgonnette F-35100 RENNES

Tel: 16 (99) 51-42-44 Telex: 740912F CH,CM,E,MS,P*

Hewlett-Packard France 98 Avenue de Bretagne F-76100 ROUEN

Tel: 16 (35) 63-57-66 CH**,CS

Hewlett-Packard France 4 Rue Thomas Mann Boite Postale 56 F-67033 STRASBOURG Cedex Tel: 16 (88) 28-56-46

Telex: 890141F CH,E,MS,P

Hewlett-Packard France Le Péripole 20, Chemin du Pigeonnier de la

F-31083 TOULOUSE Cedex Tel: 16 (61) 40-11-12

Telex: 531639F A,CH,CS,E,P*

Hewlett-Packard France 9, rue Baudin F-26000 VALENCE

Tel: 16 (75) 42 76 16 Hewlett-Packard France Carolor

ZAC de Bois Briand F-57640 VIGY (Metz) Tel: 16 (8) 771 20 22

Hewlett-Packard France Immeuble Péricentre F-59658 VILLENEUVE D'ASCQ Cedex Tel: 16 (20) 91-41-25

Telex: 160124F CH,E,MS,P

GERMAN FEDERAL REPUBLIC

Hewlett-Packard GmbH Geschäftsstelle Keithstrasse 2-4 D-1000 BERLIN 30 Tel: (030) 24-90-86 Telex: 018 3405 hpbln d A,CH,E,M,P

Hewlett-Packard GmbH Geschäftsstelle Herrenberger Strasse 130 D-7030 BÖBLINGEN

Tel: (7031) 14-0

A.CH.CM.CS.E.MP.P Hewlett-Packard GmbH

Geschäftsstelle Emanuel-Leutze-Strasse 1 **D-4000 DUSSELDORF**

Tel: (0211) 5971-1 Telex: 085/86 533 hpdd d

A.CH.CS.E.MS.P

Hewlett-Packard GmbH Geschäftsstelle Schleefstr. 28a D-4600 DORTMUND-Aplerbeck

Tel: (0231) 45001 Hewlett-Packard GmbH

Vertriebszentrale Frankfurt Berner Strasse 117 Postfach 560 140 D-6000 FRANKFURT 56 Tel: (0611) 50-04-1 Telex: 04 13249 hpffm d A,CH,CM,CS,E,MP,P

Hewlett-Packard GmbH Geschäftsstelle Aussenstelle Bad Homburg Louisenstrasse 115 D-6380 BAD HOMBURG Tel: (06172) 109-0

Hewlett-Packard GmbH Geschäftsstelle Kapstadtring 5 D-2000 HAMBURG 60 Tel: (040) 63804-1 Telex: 021 63 032 hphh d A,CH,CS,E,MS,P

Hewlett-Packard GmbH Geschäftsstelle Heidering 37-39 D-3000 HANNOVER 61 Tel: (0511) 5706-0

Telex: 092 3259 A,CH,CM,E,MS,P

Hewlett-Packard GmbH Geschäftsstelle Rosslauer Weg 2-4 D-6800 MANNHEIM Tel: (0621) 70050 Telex: 0462105

A.C.E Hewlett-Packard GmbH Geschäftsstelle Messerschmittstrasse 7 D-7910 NEU ULM Tel: 0731-70241

Telex: 0712816 HP ULM-D A.C.E Hewlett-Packard GmbH Geschäftsstelle

Ehhericherstr. 13 D-8500 NÜRNBERG 10 Tel: (0911) 5205-0 Telex: 0623 860 CH,CM,E,MS,P Hewlett-Packard GmbH Geschäftsstelle

Eschenstrasse 5 **D-8028 TAUFKIRCHEN** Tel: (089) 6117-1 Telex: 0524985 A,CH,CM,E,MS,P

GREAT BRITAIN See United Kingdom

GREECE

Kostas Karaynnis S.A. 8 Omirou Street ATHENS 133 Tel: 32 30 303, 32 37 371 Telex: 215962 RKAR GR A,CH,CM,CS,E,M,P PLAISIO S.A. G. Gerardos 24 Stournara Street **ATHENS** Tel: 36-11-160 Telex: 221871

GUATEMALA

Avenida Reforma 3-48, Zona 9 **GUATEMALA CITY** Tel: 316627, 314786 Telex: 4192 TELTRO GU A, CH, CM, CS, E, M, P

HONG KONG

Hewlett-Packard Hong Kong, Ltd. G.P.O. Box 795 5th Floor, Sun Hung Kai Centre 30 Harbour Road

HONG KONG Tel: 5-8323211

Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG

E,CH,CS,P CET Ltd.

1402 Tung Wah Mansion 199-203 Hennessy Rd. Wanchia, HONG KONG Tel: 5-729376 Telex: 85148 CET HX

Schmidt & Co. (Hong Kong) Ltd. Wing On Centre, 28th Floor Connaught Road, C.

HONG KONG Tel: 5-455644

Telex: 74766 SCHMX HX

ICELAND

Elding Trading Company Inc. Hafnarnvoli-Tryggvagotu P.O. Box 895 IS-REYKJAVIK Tel: 1-58-20, 1-63-03

INDIA

Computer products are sold through Blue Star Ltd. All computer repairs and maintenance service is done through Computer Maintenance Corp.

Blue Star Ltd. Sabri Complex II Floor 24 Residency Rd. BANGALORE 560 025 Tel: 55660 Telex: 0845-430 Cable: BLUESTAR A,CH*,CM,CS*,E

Blue Star Ltd. Band Box House Prabhadevi BOMBAY 400 025 Tel: 422-3101 Telex: 011-3751

Cable: BLUESTAR A.M

Blue Star Ltd. Sahas 414/2 Vir Savarkar Marg

Prabhadevi

BOMBAY 400 025 Tel: 422-6155 Telex: 011-4093 Cable: FROSTBLUE A.CH*.CM.CS*.E.M

Blue Star Ltd. Kalyan, 19 Vishwas Colony Alkapuri, BORODA, 390 005

Tel: 65235 Cable: BLUE STAR

Blue Star Ltd. 7 Hare Street **CALCUTTA** 700 001 Tel: 12-01-31 Telex: 021-7655 Cable: BLUESTAR A.M

Blue Star Ltd. 133 Kodambakkam High Road

MADRAS 600 034 Tel: 82057 Telex: 041-379 Cable: BLUESTAR AM

Blue Star Ltd. Bhandari House, 7th/8th Floors

91 Nehru Place NEW DELHI 110 024 Tel: 682547 Telex: 031-2463 Cable: BLUESTAR A,CH*,CM,CS*,E,M Blue Star Ltd. 15/16:C Wellesley Rd. **PUNE** 411 011 Tel: 22775

Blue Star Ltd. 2-2-47/1108 Bolarum Rd. SECUNDERABAD 500 003

Cable: BLUE STAR

Tel: 72057 Telex: 0155-459 Cable: BLUEFROST A.E Blue Star Ltd.

T.C. 7/603 Poornima Maruthankuzhi TRIVANDRUM 695 013 Tel: 65799 Telex: 0884-259

Cable: BLUESTAR Computer Maintenance Corporation

Ltd. 115, Sarojini Devi Road SECUNDERABAD 500 003 Tel: 310-184, 345-774 Telex: 031-2960

Arranged alphabetically by country

INDONESIA

BERCA Indonesia P.T. P.O.Box 496/Jkt. Jl. Abdul Muis 62 JAKARTA Tel: 21-373009 Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA

BERCA Indonesia P.T. P.O.Box 2497/Jkt Antara Bldg., 17th Floor

J. Medan Merdeka Selatan 17 JAKARTA-PUSAT Tel: 21-344-181 Telex: BERSAL IA

A.CS.E.M BERCA Indonesia P.T. P.O. Box 174/SBY. JI. Kulei No. 11 SURABAYA Tel: 68172

Telex: 31146 BERSAL SB Cable: BERSAL-SURABAYA A*,E,M,P

IRAQ

Hewlett-Packard Trading S.A. Service Operation Al Mansoor City 9B/3/7 BAGHDAD Tel: 551-49-73

Tel: 551-49-73 Telex: 212-455 HEPAIRAQ IK CH,CS

IRELAND

Hewlett-Packard Ireland Ltd. 82/83 Lower Leeson Street DUBLIN 2
Tel: 0001 608800
Telex: 30439
A,CH,CM,CS,E,M,P
Cardiac Services Ltd. Kilmore Road
Artane
DUBLIN 5
Tel: (01) 351820

Tel: (01) 351820 Telex: 30439

ISRAEL

Eldan Electronic Instrument Ltd. P.O.Box 1270 JERUSALEM 91000 16, Ohaliav St. JERUSALEM 94467 Tel: 533 221, 553 242 Telex: 25231 AB/PAKRD IL A

Electronics Engineering Division Motorola Israel Ltd. 16 Kremenetski Street P.O. Box 25016 TEL-AVIV 67899 Tel: 3 88 388 Telex: 33569 Motil IL Cable: BASTEL Tel-Aviv CH,CM,CS.E.M.P

ITALY

Hewlett-Packard Italiana S.p.A Traversa 99C Via Giulio Petroni, 19 I-70124 BARI Tel: (080) 41-07-44 Hewlett-Packard Italiana S.p.A. Via Martin Luther King, 38/III I-40132 BOLOGNA Tel: (051) 402394 Telex: 511630 CH.E.MS

Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43G/C I-95126 CATANIA Tel: (095) 37-10-87 Telex: 970291

C,P Hewlett-Packard Italiana S.p.A. Via G. Di Vittorio 9 I-20063 **CERNUSCO SUL NAVIGLIO** (Milano) Tel: (02) 923691

Telex: 334632 A,CH,CM,CS,E,MP,P Hewlett-Packard Italiana S.p.A. Via C. Colombo 49

I-20090 TREZZANO SUL NAVIGLIO (Milano)

Tel: (02) 4459041 Telex: 322116 C.M

Hewlett-Packard Italiana S.p.A. Via Nuova San Rocco a Capodimonte, 62/A I-80131 NAPOLI Tel: (081) 7413544 Telex: 710698 A,CH,E

Hewlett-Packard Italiana S.p.A. Viale G. Modugno 33 I-16156 GENOVA PEGLI Tel: (010) 68-37-07 Telex: 215238 E,C

Hewlett-Packard Italiana S.p.A. Via Pelizzo 15
I-35128 PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,E,MS
Hewlett-Packard Italiana S.p.A. Viale C. Pavese 340
I-00144 ROMA EUR
Tel: (06) 54831
Telex: 610514
A,CH,CM,CS,E,MS,P*
Hewlett-Packard Italiana S.p.A. Via di Casellina 57/C

Via di Casellina 57/C I-50018 SCANDICCI-FIRENZE Tel: (055) 753863

Hewlett-Packard Italiana S.p.A. Corso Svizzera, 185 I-10144 **TORINO** Tel: (011) 74 4044 Telex: 221079

JAPAN

CHIBA, 280

E,CH,CS

Tel: 472 25 7701

Yokogawa-Hewlett-Packard Ltd. 152-1, Onna ATSUGI, Kanagawa, 243 Tel: (0462) 28-0451 CM,C*,E Yokogawa-Helwett-Packard Ltd. Meiji-Seimei Bldg. 6F 3-1 Hon Chiba-Cho

Yokogawa-Hewlett-Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11, Hon-dori, Naka-ku HIROSHIMA, 730 Tel: 82-241-0611 Yokogawa-Hewlett-Packard Ltd. Towa Building 2-3, Kaigan-dori, 2 Chome Chuo-ku KOBE, 650 Tel: (078) 392-4791 C.E

Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi 82 Bldg 3-4 Tsukuba KUMAGAYA, Saitama 360 Tel: (0485) 24-6563 CH,CM,E

Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldg. 4-7, Hanabata-cho KUMAMOTO,860 Tel: (0963) 54-7311 CH,E

Yokogawa-Hewlett-Packard Ltd. Shin-Kyoto Center Bldg. 614, Higashi-Shiokoji-cho Karasuma-Nishiiru Shiokoji-dori, Shimogyo-ku KYOTO, 600 Tel: 075-343-0921 CH.E

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Bldg 4-73, Sanno-maru, 1 Chome MITO, Ibaraki 310 Tel: (0292) 25-7470 CH,CM,E

Yokogawa-Hewlett-Packard Ltd. Sumitomo Seimei 14-9 Bldg. Meieki-Minami, 2 Chome Nakamura-ku NAGOYA, 450

NAGOYA, 450 Tel: (052) 571-5171 CH,CM,CS,E,MS

Yokogawa-Hewlett-Packard Ltd. Chuo Bldg., 4-20 Nishinakajima, 5 Chome Yodogawa-ku **OSAKA**, 532 Tel: (06) 304-6021 Telex: YHPOSA 523-3624 A,CH,CM,CS,E,MP,P*

Yokogawa-Hewlett-Packard Ltd. 27-15, Yabe, 1 Chome SAGAMHARA Kanagawa, 229 Tel: 0427 59-1311

Yokogawa-Hewlett-Packard Ltd. Daiichi Seimei Bldg. 7-1, Nishi Shinjuku, 2 Chome Shinjuku-ku, TOKYO 160 Tel: 03-348-4611 CH.E

Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome Suginami-ku **TOKYO** 168 Tel: (03) 331-611 Telex: 232-2024 YHPTOK A,CH,CM,CS,E,MP,P* Yokogawa-Hewlett-Packard Ltd. Daiich Son Building

Yokogawa-Hewlett-Packard Daiichi Asano Building 2-8, Odori, 5 Chome UTSUNOMIYA, Tochigi 320 Tel: (0286) 25-7155 CH,CS,E Yokogawa-Hewlett-Packard Ltd. Yasuda Seimei Nishiguchi Bldg. 30-4 Tsuruya-cho, 3 Chome YOKOHAMA 221 Tel: (045) 312-1252 CH,CM,E

JORDAN

Mouasher Cousins Company P.O. Box 1387 AMMAN Tel: 24907, 39907 Tel: 221456 SABCO JO CHEMP

KENYA ADCOM Ltd., Inc., Kenya P.O.Box 30070 NAIROBI Tel: 331955 Telex: 22639

KOREA

FM

Samsung Electronics HP Division 12 Fl. Kinam Bldg. San 75-31, Yeoksam-Dong Kangnam-Ku Yeongdong P.O. Box 72 SEOUL Tel: 555-7555, 555-5447 Telex: K27364 SAMSAN A.CH.CM.CS.E.M.P

KUWAIT

Al-Khaldiya Trading & Contracting P.O. Box 830 Safat KUWAIT
Tel: 42-4910, 41-1726
Telex: 22481 Areeg kt CH.E.M
Photo & Cine Equipment P.O. Box 270 Safat KUWAIT
Tel: 42-2846, 42-3801

LEBANON

Telex: 22247 Matin kt

G.M. Dolmadjian
Achrafieh
P.O. Box 165.167
BEIRUT
Tel: 290293
MP**
Computer Information Systems
P.O. Box 11-6274
BEIRUT
Tel: 89 40 73
Telex: 22259
C

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 **BRUSSELS** Tel: (02) 762-32-00 Telex: 23-494 paloben bru A,CH,CM,CS,E,MP,P

MALAYSIA

Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1st Floor, Bangunan British
American
Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M,P*

Arranged alphabetically by country

MAYLAYSIA (Cont'd)

Protel Engineering P.O.Box 1917 Lot 6624, Section 64 23/4 Pending Road Kuching, SARAWAK Tel: 36299 Telex: MA 70904 PROMAL Cable: PROTELENG

MALTA

Philip Toledo Ltd. Notabile Rd. MRIEHEL Tel: 447 47, 455 66 Telex: Media MW 649

MEXICO

Hewlett-Packard Mexicana, S.A. de C.V. Av. Periferico Sur No. 6501 Tepepan, Xochimilco 16020 MEXICO D.F. Tel: 6-76-46-00 Telex: 17-74-507 HEWPACK MEX A,CH,CS,E,MS,P Hewlett-Packard Mexicana, S.A. de C.V. Ave. Colonia del Valle 409 Col. del Valle Municipio de Garza Garcia MONTERREY, Nuevo Leon Tel: 78 42 41 Telex: 038 410 **ECISA** José Vasconcelos No. 218

Dolbeau

MEXICO D.F. 06140 Tel: 553-1206 Telex: 17-72755 ECE ME

Col. Condesa Deleg. Cuauhtémoc

MOROCCO

81 rue Karatchi CASABLANCA Tel: 3041-82, 3068-38 Telex: 23051, 22822

Gerep 2 rue d'Agadir Boite Postale 156 CASABLANCA Tel: 272093, 272095 Telex: 23 739

NETHERLANDS

A,CH,CS,E

Van Heuven Goedhartlaan 121 NL 1181KK AMSTELVEEN P.O. Box 667 NL1180 AR AMSTELVEEN Tel: (020) 47-20-21 Telex: 13 216 HEPA NL A,CH,CM,CS,E,MP,P Hewlett-Packard Nederland B.V. Bongerd 2 NL 2906VK CAPELLE A/D IJSSEL P.O. Box 41 NL 2900AA CAPELLE A/D IJSSEL Tel: (10) 51-64-44 Telex: 21261 HEPAC NL

Hewlett-Packard Nederland B.V.

Hewlett-Packard Nederland B.V. Pastoor Petersstraat 134-136 NL 5612 LV EINDHOVEN P.O. Box 2342 NL 5600 CH EINDHOVEN Tel: (040) 326911 Telex: 51484 hepae nl A,CH**,E,M

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd. 5 Owens Road P.O. Box 26-189 Epsom, AUCKLAND Tel: 687-159 Cable: HEWPACK Auckland CH,CM,E,P* Hewlett-Packard (N.Z.) Ltd.

4-12 Cruickshank Street Kilbirnie, WELLINGTON 3 P.O. Box 9443 Courtenay Place, WELLINGTON 3 Tel: 877-199 Cable: HEWPACK Wellington CH,CM,E,P

Northrop Instruments & Systems Ltd. 369 Khyber Pass Road P.O. Box 8602 **AUCKLAND** Tel: 794-091 Telex: 60605

Northrop Instruments & Systems Ltd. 110 Mandeville St. P.O. Box 8388 CHRISTCHURCH Tel: 486-928 Telex: 4203 A.M

Northrop Instruments & Systems Ltd. Sturdee House 85-87 Ghuznee Street P.O. Box 2406 WELLINGTON Tel: 850-091 Telex: NZ 3380

NORTHERN IRELAND See United Kingdom

NORWAY

Hewlett-Packard Norge A/S Folke Bernadottes vei 50 P.O. Box 3558 N-5033 FYLLINGSDALEN (Bergen) Tel: 0047/5/16 55 40 Telex: 16621 honas n CH,CS,E,MS Hewlett-Packard Norge A/S Österndalen 16-18 P.O. Box 34 N-1345 ÖSTERÅS Tel: 0047/2/17 11 80 Telex: 16621 hpnas n A,CH,CM,CS,E,M,P

OMAN

Khimjil Ramdas P.O. Box 19 MUSCAT Tel: 722225, 745601 Telex: 3289 BROKER MB MUSCAT Suhail & Saud Bahwan

P.O.Box 169 MUSCAT Tel: 734 201-3

Telex: 3274 BAHWAN MB

PAKISTAN

Mushko & Company Ltd. 1-B, Street 43 Sector F-8/1 ISLAMABAD Tel: 51071 Cable: FEMUS Rawalpindi

A, E, MMushko & Company Ltd. Oosman Chambers Abdullah Haroon Road KARACHI 0302

Tel: 524131, 524132 Telex: 2894 MUSKO PK Cable: COOPERATOR Karachi A.F.M.P.

PANAMA

Electrónico Balboa, S.A. Calle Samuel Lewis, Ed. Alfa Apartado 4929

PANAMA 5

Tel: 63-6613, 63-6748 Telex: 3483 ELECTRON PG

PERU

Cía Electro Médica S.A. Los Flamencos 145, San Isidro Casilla 1030 Tel: 41-4325, 41-3703 Telex: Pub. Booth 25306 CMFMP

PHILIPPINES

The Online Advanced Systems ation Rico House, Amorsolo Cor. Herrera Street Legaspi Village, Makati P.O. Box 1510 Metro MANILA Tel: 85-35-81, 85-34-91, 85-32-21 Telex: 3274 ONLINE A,CH,CS,E,M Electronic Specialists and Proponents

690-B Epifanio de los Santos Avenue Cubao, QUEZON CITY P.O. Box 2649 Manila Tel: 98-96-81, 98-96-82, 98-96-83 Telex: 40018, 42000 ITT GLOBE MACKAY BOOTH

PORTUGAL

Mundinter Intercambio Mundial de Comércio S.A.R.L. P.O. Box 2761 Av. Antonio Augusto de Aguiar 138 P-LISBON Tel: (19) 53-21-31, 53-21-37 Telex: 16691 munter L Soguimica

Av. da Liberdade, 220-2 1298 LISBOA Codex Tel: 56 21 81/2/3 Telex: 13316 SABASA

Telectra-Empresa Técnica de Equipmentos Eléctricos S.A.R.L. Rua Rodrigo da Fonseca 103 P.O. Box 2531 P-LISBON 1 Tel: (19) 68-60-72 Telex: 12598 CH.CS.E.P

PUERTO RICO

Hewlett-Packard Puerto Rico Ave. Muñoz Rivera #101 Esq. Calle Ochoa HATO REY, Puerto Rico 00918 Tel: (809) 754-7800 Hewlett-Packard Puerto Rico Calle 272 Edificio 203 Urb. Country Club RIO PIEDRAS, Puerto Rico P.O. Box 4407 CAROLINA, Puerto Rico 00628 Tel: (809) 762-7255

A,CH,CS QATAR

Computearbia P.O. Box 2750 DOHA Tel: 883555 Telex: 4806 CHPARB

Eastern Technical Services P.O.Box 4747 DOHA Tel: 329 993

Telex: 4156 EASTEC DH Nasser Trading & Contracting P.O.Box 1563 DOHA

Tel: 22170, 23539 Telex: 4439 NASSER DH

SAUDI ARABIA

Modern Electronic Establishment Hewlett-Packard Division P.O. Box 22015 Thuobah AL-KHOBAR

Modern Electronic Establishment

Tel: 895-1760, 895-1764 Telex: 671 106 HPMEEK SJ Cable: ELECTA AL-KHOBAR CH, CS, E, M

Hewlett-Packard Division P.O. Box 1228 Redec Plaza, 6th Floor JEDDAH Tel: 644 38 48 Telex: 4027 12 FARNAS SJ Cable: ELECTA JEDDAH CH.CS.E.M

Modern Electronic Establishment Hewlett-Packard Division P.O.Box 22015 RIYADH Tel: 491-97 15, 491-63 87 Telex: 202049 MEERYD SJ CH, CS, E, M Abdul Ghani El Ajou P.O. Box 78 RIYADH Tel: 40 41 717

SCOTLAND

See United Kingdom

Telex: 200 932 EL AJOU

SINGAPORE

Hewlett-Packard Singapore (Sales) Pte. Ltd. #08-00 Inchcape House 450-2 Alexandra Road P.O. Box 58 Alexandra Rd. Post Office SINGAPORE, 9115 Tel: 631788 Telex: HPSGSO RS 34209 Cable: HEWPACK, Singapore A,CH,CS,E,MS,P

Arranged alphabetically by country

SINGAPORE (Cont'd)

Dynamar International Ltd. Unit 05-11 Block 6 Kolam Ayer Industrial Estate SINGAPORE 1334 Tel: 747-6188 Telex: RS 26283

SOUTH AFRICA

Hewlett-Packard So Africa (Pty.) Ltd. P.O. Box 120 Howard Place CAPE PROVINCE 7450 Pine Park Center, Forest Drive, **Pinelands CAPE PROVINCE** 7405 Tel: 53-7954 Telex: 57-20006 A,CH,CM,E,MS,P Hewlett-Packard So Africa (Pty.) Ltd. P.O. Box 37099 92 Overport Drive **DURBAN** 4067 Tel: 28-4178, 28-4179, 28-4110 Telex: 6-22954

6 Linton Arcade 511 Cape Road Linton Grange **PORT ELIZABETH 6000** Tel: 041-302148

CH,CM

Hewlett-Packard So Africa (Pty.) Ltd. P.O.Box 33345 Glenstantia 0010 TRANSVAAL 1st Floor East Constantia Park Ridge Shopping

Hewlett-Packard So Africa (Pty.) Ltd.

Centre Constantia Park **PRETORIA**

Tel: 982043 Telex: 32163 CH.E

Hewlett-Packard So Africa (Pty.) Ltd. Private Bag Wendywood SANDTON 2144 Tel: 802-5111, 802-5125 Telex: 4-20877

Cable: HEWPACK Johannesburg A,CH,CM,CS,E,MS,P

SPAIN

Hewlett-Packard Española S.A. Calle Entenza, 321 E-BARCELONA 29 Tel: 322.24.51, 321.73.54 Telex: 52603 hpbee A,CH,CS,E,MS,P Hewlett-Packard Española S.A.

Calle San Vicente S/No Edificio Albia II E-BILBAO 1 Tel: 423.83.06 A.CH.E.MS

Hewlett-Packard Española S.A. Crta. de la Coruña, Km. 16, 400 Las Rozas

E-MADRID Tel: (1) 637.00.11

Hewlett-Packard Española S.A. Avda. S. Francisco Javier, S/no Planta 10. Edificio Sevilla 2,

E-SEVILLA 5 Tel: 64.44.54 Telex: 72933 A,CS,MS,P

Hewlett-Packard Española S.A. Calle Ramon Gordillo, 1 (Entlo.3) E-VALENCIA 10 Tel: 361-1354 CH,P

SWEDEN

Hewlett-Packard Sverige AB Sunnanvagen 14K S-22226 LUND Tel: (046) 13-69-79 Telex: (854) 17886 (via Spånga office) CH

Hewlett-Packard Sverige AB Östra Tullgatan 3 S-21128 MALMÖ Tel: (040) 70270 Telex: (854) 17886 (via Spånga office)

Hewlett-Packard Sverige AB Våstra Vintergatan 9 S-70344 ÖREBRO Tel: (19) 10-48-80 Telex: (854) 17886 (via Spånga office) CH

Hewlett-Packard Sverige AB Skalholtsgatan 9, Kista Box 19 S-16393 SPÅNGA Tel: (08) 750-2000 Telex: (854) 17886 Telefax: (08) 7527781

A,CH,CM,CS,E,MS,P Hewlett-Packard Sverige AB Frötallisgatan 30 S-42132 VÄSTRA-FRÖLUNDA Tel: (031) 49-09-50

Telex: (854) 17886 (via Spånga office) CH,E,P

SWITZERLAND

Hewlett-Packard (Schweiz) AG Clarastrasse 12 CH-4058 BASEL Tel: (61) 33-59-20

Hewlett-Packard (Schweiz) AG 7, rue du Bois-du-Lan Case Postale 365 CH-1217 MEYRIN 2 Tel: (0041) 22-83-11-11 Telex:27333 HPAG CH CH.CM.CS Hewlett-Packard (Schweiz) AG

Allmend 2 **CH-8967 WIDEN** Tel: (0041) 57 31 21 11 Telex: 53933 hpag ch Cable: HPAG CH A,CH,CM,CS,E,MS,P

SYRIA

General Electronic Inc. Nuri Basha Ahnaf Ebn Kays Street P.O. Box 5781 DAMASCUS Tel: 33-24-87 Telex: 411 215 Cable: ELECTROBOR DAMASCUS

Middle East Electronics P.O.Box 2308 Abu Rumnaneh DAMASCUS Tel: 33 4 5 92 Telex: 411 304

TAIWAN

Hewlett-Packard Far East Ltd. Kaohsiung Office 2/F 68-2, Chung Cheng 3rd Road KAOHSIUNG Tel: (07) 241-2318 CH,CS,E Hewlett-Packard Far East Ltd. Taiwan Branch 8th Floor 337 Fu Hsing North Road TAIPEL Tel: (02) 712-0404 Telex: 24439 HEWPACK Cable: HEWPACK Taipei A,CH,CM,CS,E,M,P Ing Lih Trading Co. 3rd Floor, 7 Jen-Ai Road, Sec. 2 TAIPEI 100 Tel: (02) 3948191 Cable: INGLIH TAIPEI

THAILAND

Unimesa 30 Patpong Ave., Suriwong BANGKOK 5 Tel: 235-5727 Telex: 84439 Simonco TH Cable: UNIMESA Bangkok A,CH,CS,E,M Bangkok Business Equipment Ltd. 5/5-6 Dejo Road BANGKOK

Tel: 234-8670, 234-8671 Telex: 87669-BEQUIPT TH Cable: BUSIQUIPT Bangkok

TRINIDAD & TOBAGO

Caribbean Telecoms Ltd. 50/A Jerningham Avenue P.O. Box 732 PORT-OF-SPAIN Tel: 62-44213, 62-44214 Telex: 235,272 HUGCO WG CM.E.M.P

TUNISIA

Tunisie Electronique 31 Avenue de la Liberte TUNIS Tel: 280-144 FP Corema 1 ter. Av. de Carthage **TUNIS** Tel: 253-821 Telex: 12319 CABAM TN

TURKEY

Teknim Company Ltd. Iran Caddesi No. 7 Kavaklidere ANKARA Tel: 275800 Telex: 42155 TKNM TR Medina Eldem Sokak No.41/6 Yuksel Caddesi ANKARA Tel: 175 622 Telex: 42 591

UNITED ARAB EMIRATES

Emitac Ltd. P.O. Box 2711 ABU DHABI Tel: 82 04 19-20 Cable: EMITAC ABUDHABI Fmitac I td P.O. Box 1641 SHARJAH Tel: 591 181 Telex: 68136 Emitac Sh CHCSEMP

UNITED KINGDOM

GREAT BRITAIN

Hewlett-Packard Ltd. Trafalgar House Navigation Road ALTRINCHAM Cheshire WA14 1NU Tel: 061 928 6422 Telex: 668068 A,CH,CS,E,M,MS,P Hewlett-Packard Ltd. Elstree House, Elstree Way BOREHAMWOOD, Herts WD6 1SG Tel: 01 207 5000 Telex: 8952716 E,CH,CS,P Hewlett-Packard Ltd. Oakfield House, Oakfield Grove Clifton BRISTOL, Avon BS8 2BN

Tel: 0272 736806 Telex: 444302 CH,CS,E,P Hewlett-Packard Ltd. Bridewell House Bridewell Place **LONDON EC4V 6BS** Tel: 01 583 6565 Telex: 298163 CH,CS,P

Hewlett-Packard Ltd. Fourier House 257-263 High Street LONDON COLNEY Herts. AL2 1HA, St. Albans Tel: 0727 24400 Telex: 1-8952716 CH,CS

Pontefract Road NORMANTON, West Yorkshire WF6 1RN Tel: 0924 895566 Telex: 557355

CH,CS,P Hewlett-Packard Ltd. The Quadrangle 106-118 Station Road REDHILL, Surrey RH1 1PS

Hewlett-Packard Ltd.

Tel: 0737 68655 Telex: 947234 CH,CS,E,P

Arranged alphabetically by country

GREAT BRITAIN (Cont'd)

Hewlett-Packard Ltd. **Avon House** 435 Stratford Road Shirley, SOLIHULL, West Midlands **B90 4BL** Tel: 021 745 8800 Telex: 339105 CH,CS,E,P

Hewlett-Packard Ltd. West End House 41 High Street, West End SOUTHAMPTON Hampshire S03 3DQ Tel: 04218 6767 Telex: 477138 CH,CS,P

Hewlett-Packard Ltd. Eskdale Rd. Winnersh, WOKINGHAM Berkshire RG11 5DZ Tel: 0734 696622 Telex: 848884

Hewlett-Packard Ltd. King Street Lane Winnersh, WOKINGHAM Berkshire RG11 5AR Tel: 0734 784774 Telex: 847178 A,CH,CS,E,M,MP,P Hewlett-Packard Ltd. Nine Mile Ride

Easthampstead, WOKINGHAM Berkshire, 3RG11 3LL Tel: 0344 773100 Telex: 848805 CH.CS.E.P

IRELAND

NORTHERN IRELAND

Hewlett-Packard Ltd. Cardiac Services Building 95A Finaghy Road South BELFAST BT10 0BY Tel: 0232 625-566 Jelex: 747626 CH.CS

SCOTLAND Hewlett-Packard Ltd. **SOUTH QUEENSFERRY**

West Lothian, EH30 9TG Tel: 031 331 1188 Telex: 72682 CH,CM,CS,E,M,P

UNITED STATES

Alabama

Hewlett-Packard Co. 700 Century Park South, Suite 128 BIRMINGHAM, AL 35226 Tel: (205) 822-6802 A,CH,M

Hewlett-Packard Co. 420 Wynn Drive HUNTSVILLE, AL 35805 P.O. Box 7700 HUNTSVILLE, AL 35807

Tel: (205) 830-2000 CH,CM,CS,E,M*

Arizona

Hewlett-Packard Co. 8080 Pointe Parkway West PHOENIX, AZ 85044 Tel: (602) 273-8000 A,CH,CM,CS,E,MS

Hewlett-Packard Co. 2424 East Aragon Road TUCSON, AZ 85706 Tel: (602) 889-4631 CH F MS

California Hewlett-Packard Co. 99 South Hill Dr.

BRISBANE, CA 94005 Tel: (415) 330-2500 CH.CS

Hewlett-Packard Co. P.O. Box 7830 (93747) 5060 E. Clinton Avenue, Suite 102 FRESNO, CA 93727 Tel: (209) 252-9652 CH,CS,MS

Hewlett-Packard Co. P.O. Box 4230 1430 East Orangethorpe FULLERTON, CA 92631 Tel: (714) 870-1000 CH.CM.CS.E.MP Hewlett-Packard Co. 320 S. Kellogg, Suite B

GOLETA, CA 93117 Tel: (805) 967-3405

Hewlett-Packard Co. 5400 W. Rosecrans Boulevard LAWNDALE, CA 90260 P.O. Box 92105 LOS ANGELES, CA 90009 Tel: (213) 970-7500 Telex: 910-325-6608 CH,CM,CS,MP

Hewlett-Packard Co. 3155 Porter Oaks Drive PALO ALTO, CA 94304 Tel: (415) 857-8000 CH,CS,E

Hewlett-Packard Co. 4244 So. Market Court, Suite A P.O. Box 15976 SACRAMENTO, CA 95852 Tel: (916) 929-7222 A*,CH,CS,E,MS Hewlett-Packard Co.

9606 Aero Drive P.O. Box 23333 **SAN DIEGO**, CA 92139 Tel: (619) 279-3200 CH,CM,CS,E,MP

Hewlett-Packard Co. 2305 Camino Ramon "C" SAN RAMON, CA 94583

Tel: (415) 838-5900 CH,CS

Hewlett-Packard Co. 3005 Scott Boulevard SANTA CLARA, CA 95050 Tel: (408) 988-7000

Telex: 910-338-0586 A,CH,CM,CS,E,MP Hewlett-Packard Co.

5703 Corsa Avenue WESTLAKE VILLAGE, CA 91362 Tel: (213) 706-6800 E*,CH*,CS

Colorado

Hewlett-Packard Co. 24 Inverness Place, East ENGLEWOOD, CO 80112 Tel: (303) 649-5000 A,CH,CM,CS,E,MS

Connecticut

Hewlett-Packard Co. 47 Barnes Industrial Road South P.O. Box 5007 WALLINGFORD, CT 06492 Tel: (203) 265-7801 A.CH.CM.CS.E.MS

Florida

Hewlett-Packard Co. 2901 N.W. 62nd Street P.O. Box 24210 FORT LAUDERDALE, FL 33307 Tel: (305) 973-2600 CH,CS,E,MP

Hewlett-Packard Co. 6177 Lake Ellenor Drive P.O. Box 13910 **ORLANDO, FL 32859** Tel: (305) 859-2900 A,CH,CM,CS,E,MS

Hewlett-Packard Co. 5750B N. Hoover Blvd., Suite 123 P.O. Box 15200 **TAMPA, FL 33614** Tel: (813) 884-3282 A*,CH,CM,CS,E*,M*

Georgia

Hewlett-Packard Co. 2000 South Park Place P.O. Box 105005 ATLANTA, GA 30348 Tel: (404) 955-1500 Telex: 810-766-4890 A,CH,CM,CS,E,MP

Hawaii

Hewlett-Packard Co. Kawaiahao Plaza, Suite 190 567 South King Street HONOLULU, HI 96813 Tel: (808) 526-1555 A,CH,E,MS

Illinois

Hewlett-Packard Co. 304 Eldorado Road P.O. Box 1607 **BLOOMINGTON, IL 61701** Tel: (309) 662-9411 CH,MS**

Hewlett-Packard Co. 1100 31st Street, Suite 100 **DOWNERS GROVE, IL 60515** Tel: (312) 960-5760 CH.CS

Hewlett-Packard Co. 5201 Tollview Drive **ROLLING MEADOWS. IL 60008** Tel: (312) 255-9800 Telex: 910-687-1066 A,CH,CM,CS,E,MP

Indiana

Hewlett-Packard Co. 7301 No. Shadeland Avenue P.O. Box 50807 INDIANAPOLIS, IN 46250 Tel: (317) 842-1000 A,CH,CM,CS,E,MS

Hewlett-Packard Co. 1776 22nd Street, Suite 1 WEST DES MOINES, IA 50265 Tel: (515) 224-1435 CH,MS*

Kansas

Hewlett-Packard Co. 7804 East Funston Road, #203 WICHITA, KS 67207 Tel: (316) 684-8491

Kentucky

Hewlett-Packard Co. 10300 Linn Station Road, #100 LOUISVILLE, KY 40223 Tel: (502) 426-0100 A.CH.CS.MS

Louisiana

Hewlett-Packard Co. 160 James Drive East ST. ROSE, LA 70087 P.O. Box 1449 **KENNER, LA 70063** Tel: (504) 467-4100 A,CH,CS,E,MS

Maryland

Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227 Tel: (301) 644-5800 Telex: 710-862-1943 A,CH,CM,CS,E,MS Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370

A,CH,CM,CS,E,MP Massachusetts

Hewlett-Packard Co. 1775 Minuteman Road ANDOVER, MA 01810 Tel: (617) 682-1500 A,C,CH,CS,CM,E,MP,P* Hewlett-Packard Co. 32 Hartwell Avenue LEXINGTON, MA 02173 Tel: (617) 861-8960

CH,CS,E Michigan

Hewlett-Packard Co. 4326 Cascade Road S.E. **GRAND RAPIDS, MI 49506** Tel: (616) 957-1970 CH.CS.MS

Hewlett-Packard Co. 1771 W. Big Beaver Road TROY, MI 48084 Tel: (313) 643-6474 CH,CS

Minnesota

Hewlett-Packard Co. 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100 A,CH,CM,CS,E,MP

Missouri

Hewlett-Packard Co. 11131 Colorado Avenue KANSAS CITY, MO 64137 Tel: (816) 763-8000 A,CH,CM,CS,E,MS Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 A,CH,CS,E,MP

Arranged alphabetically by country

UNITED STATES (Cont'd)

Nebraska Hewlett-Packard 10824 Old Mill Rd., Suite 3 OMAHA, NE 68154 Tel: (402) 334-1813 CM.MS

New Jersey Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07652 Tel: (201) 265-5000 A,CH,CM,CS,E,MP Hewlett-Packard Co.

Hewlett-Packard Co. 60 New England Av. West PISCATAWAY, NJ 08854 Tel: (201) 981-1199 A.CH.CM.CS.E

New Mexico

Hewlett-Packard Co. 11300 Lomas Blvd.,N.E. P.O. Box 11634 ALBUQUERQUE, NM 87112 Tel: (505) 292-1330 CH.CS.E.MS

New York Hewlett-Packard Co. 5 Computer Drive South ALBANY, NY 12205 Tel: (518) 458-1550 A,CH,E,MS

Hewlett-Packard Co. 9600 Main Street P.O. Box AC CLARENCE, NY 14031 Tel: (716) 759-8621 CH

Hewlett-Packard Co. 200 Cross Keys Office Park FAIRPORT, NY 14450 Tel: (716) 223-9950 CH,CM,CS,E,MS

Hewlett-Packard Co. 7641 Henry Clay Blvd. LIVERPOOL, NY 13088 Tel: (315) 451-1820 A.CH.CM.E.MS

Hewlett-Packard Co. No. 1 Pennsylvania Plaza 55th Floor 34th Street & 8th Avenue MANHATTAN NY 10119 Tel: (212) 971-0800

CH,CS,E*,M*
Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684-6100
CM,CH,CS,E

Hewlett-Packard Co. 3 Crossways Park West WOODBURY, NY 11797 Tel: (516) 921-0300 A.CH.CM.CS.E.MS

North Carolina Hewlett-Packard Co. 5605 Roanne Way P.O. Box 26500 GREENSBORO, NC 27420 Tel: (919) 852-1800 A,CH,CM,CS,E,MS Ohio

Hewlett-Packard Co. 9920 Carver Road CINCINNATI, OH 45242 Tel: (513) 891-9870 CH,CS,MS

CH,US,MS
Hewlett-Packard Co.
16500 Sprague Road
CLEYELAND, OH 44130
Tel: (216) 243-7300
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
Eff: Nov. 25, 1983
675 Brooksedge Blvd.
WESTERVILLE, OH 43081
CH,CM,CS,E*

Hewlett-Packard Co. 330 Progress Rd. DAYTON, OH 45449 Tel: (513) 859-8202 A,CH,CM,E*,MS

Oklahoma

Hewlett-Packard Co. 304 N. Meridian, Suite A P.O. Box 75609 OKLAHOMA CITY, OK 73147 Tel: (405) 946-9499 A*,CH,E*,MS Hewlett-Packard Co. 3840 S. 103rd E. Avenue, #100 P.O. Box 35747 TULSA, OK 74153

Oregon

A**,CH,CS,M*

Hewlett-Packard Co. 9255 S. W. Pioneer Court P.O. Box 328 WILSONVILLE, OR 97070 Tel: (503) 682-8000 A.CH.CS.E*.MS

Tel: (918) 665-3300

Pennsylvania

Hewlett-Packard Co. 111 Zeta Drive PITTSBURGH, PA 15238 Tel: (412) 782-0400 A,CH,CS,E,MP Hewlett-Packard Co.

2750 Monroe Boulevard P.O. Box 713 VALLEY FORGE, PA 19482 Tel: (215) 666-9000 A,CH,CM,E,M

South Carolina

Hewlett-Packard Co. Brookside Park, Suite 122 1 Harbison Way P.O. Box 21708 COLUMBIA, SC 29221 Tel: (803) 732-0400 CH,E,MS

Hewlett-Packard Co. Koger Executive Center Chesterfield Bidg., Suite 124 GREENVILLE, SC 29615 Tel: (803) 297-4120

Tennessee
Hewlett-Packard Co.
224 Peters Road, Suite 102
P.O. Box 22490
KNOXYILLE, TN 37922
Tel: (615) 691-2371
A*, CH, MS

Hewlett-Packard Co. 3070 Directors Row MEMPHIS, TN 38131 Tel: (901) 346-8370 A,CH,MS

Texas Hewlett-Packard Co. 4171 North Mesa Suite C-110 EL PASO, TX 79902 Tel: (915) 533-3555 CH,E*,MS**

Hewlett-Packard Co. 10535 Harwin Drive P.O. Box 42816 HOUSTON, TX 77042 Tel: (713) 776-6400 A,CH,CM,CS,E,MP

Hewlett-Packard Co. 930 E. Campbell Rd. P.O. Box 1270 RICHARDSON, TX 75080 Tel: (214) 231-6101 A,CH,CM,CS,E,MP

Hewlett-Packard Co. 1020 Central Parkway South P.O. Box 32993 SAN ANTONIO, TX 78216 Tel: (512) 494-9336 CH,CS,E,MS

Utah

Hewlett-Packard Co. 3530 W. 2100 South SALT LAKE CITY, UT 84119 Tel: (801) 974-1700 A,CH,CS,E,MS

Virginia

Hewlett-Packard Co. 4305 Cox Road GLEN ALLEN, VA 23060 P.O. Box 9669 RICHMOND, VA 23228 Tel: (804) 747-7750 A,CH,CS,E,MS

Washington

Hewlett-Packard Co. 15815 S.E. 37th Street BELLEVUE, WA 98006 Tel: (206) 643-4000 A,CH,CM,CS,E,MP Hewlett-Packard Co. Suite A 708 North Argonne Road SPOKANE, WA 99212 Tel: (509) 922-7000 CH,CS

West Virginia
Hewlett-Packard Co.
4604 MacCorkle Ave.
P.O. Box 4297
CHARLESTON, WV 25304
Tel: (304) 925-0492
A,MS

Wisconsin
Hewlett-Packard Co.
150 S. Sunny Slope Road
BROOKFIELD, WI 53005
Tel: (414) 784-8800
A,CH,CS,E*,MP

URUGUAY

Pablo Ferrando S.A.C. e I. Avenida Italia 2877 Casilla de Correo 370 MONTEVIDEO Tel: 80-2586 Telex: Public Booth 901 A.CM.E.M

VENEZUELA Hewlett-Packard de Venezuela C.A.

3RA Transversal Los Ruices Norte Edificio Segre 1, 2 & 3 Apartado 50933 CARACAS 1071 Tel: 239-4133 Telex: 251046 HEWPACK A,CH,CS,E,MS,P Hewlett-Packard de Venezuela C.A. Calle-72-Entre 3H y 3Y, No. 3H-40 Edificio Ada-Evelyn, Local B

Edificio Ada-Evelyn, Local B Apartado 2646 4001, MARACAIBO, Estado Zulia Tel: (061) 80.304 C,E*

Hewlett-Packard de Venezuela C.A. Calle Vargas Rondon Edificio Seguros Carabobo, Piso 10 VALENCIA Tel: (04.1) 5.1.295

Tel: (041) 51 385 CH,CS,P

Bioelectronica Medica C.A.
Calle Buen Pastor
Edif. Cota Mil-Piso 2 y Semi-Sotano 1
Boleita Norte
Apartado 50710 CARACAS 1050A
Tel: 239 84 41
Telex: 26518

ZIMBABWE

Field Technical Sales 45 Kelvin Road, North P.B. 3458 SALISBURY Tel: 705 231 Telex: 4-122 RH C.E.M.P

July 1983

5952-6900

Indicates main office

HP distributors are printed in italics.