

SÍLABO CIRCUITOS ELECTRÓNICOS III

ÁREA CURRICULAR: SISTEMAS ELÉCTRICOS Y ELECTRÓNICOS

CICLO VIII SEMESTRE ACADÉMICO 2017-II

I. CÓDIGO DEL CURSO : 09012808040

II. CRÉDITOS : 04

III. REQUISITOS : 09011107040 Circuitos Electrónicos II

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA:

El curso tiene carácter científico – aplicativo. Le permite al estudiante reconocer al Op-Amp como Cl multipropósito y aplicarlo en circuitos electrónicos, tanto en el dominio del tiempo como el dominio de la frecuencia. Diseña circuitos electrónicos con Op-Amp e implementa en circuitos filtro activo, osciladores y temporizadores; conversión ADC y DAC, así como en convertidores de señal VF. El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Amplificador Operacional (Opamp), características y configuraciones. II. Filtros activos con Opamp. III. Osciladores y Temporizadores. IV Conversión análogo-digital, digital-análogo y de voltaje-frecuencia, con Opamps.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Boylestad, R. (2003). Teoría de circuitos y dispositivos electrónicos. Pearson.
- Boylestad R. (2007): Electronic Devices & Circuit Theory, 11 /E, Prentice Hall.
- · Sedra, A. (2006). Circuitos Microelectrónicos. McGraw-Hill.
- · Sedra, A. (2010). Microelectronics. Oxford University Press.
- · Savant, C. (2000). Diseño Electrónico. Circuitos y Sistemas. Prentice-Hall.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: AMPLIFICADOR OPERACIONAL (OPAMP)

OBJETIVOS DE APRENDIZAJE:

- Reconocer las características técnicas del OPAMP
- Analizar y diseñar circuitos usando configuraciones básicas de OPAMP
- Analizar y diseñar circuito con OPAMP en el dominio del tiempo y la frecuencia

PRIMERA SEMANA

Primera sesión:

Concepto fundamental de Amplificador. Características técnicas. Simbología y distribución de pines. Configuraciones básicas: inversor, no inversor, sumador inversor y sumador no inversor **Segunda sesión:**

Configuraciones básicas (cont.): restador, derivador, integrador, seguidor de voltaje, comparador, entre otros.

SEGUNDA SEMANA

Primera sesión:

Análisis y diseño de circuitos con amplificador operacional en DC.

Segunda sesión:

Análisis y diseño de circuitos con amplificador operacional en AC.

Tercera sesión:

Laboratorio N° 1. Configuraciones básicas con Opamps

TERCERA SEMANA

Primera sesión:

Aplicaciones con circuitos con amplificador operacional.

Segunda sesión:

Clase práctica de diseño electrónico sujeta a determinadas condiciones en el dominio del tiempo.

CUARTA SEMANA

Primera sesión:

Función de transferencia (FT) con Opamps. Contribución de polos y ceros en el sistema.

Segunda sesión:

Práctica calificada 1

Tercera sesión:

Laboratorio N° 2. Evaluación de parámetros de un amplificador de audio con Opamp

QUINTA SEMANA

Primera sesión:

Diagramas de Bode. Diagrama de amplitud y de fase. Simulación básica

Segunda sesión:

Aplicaciones básicas con FT con Opamps.

UNIDAD II: FILTROS ACTIVOS

OBJETIVOS DE APRENDIZAJE:

- Comprender la operación de los filtros activos a partir de su función de transferencia
- Diseñar circuitos filtro bajo condiciones de operación en el dominio de la frecuencia

SEXTA SEMANA

Primera sesión:

Filtros Activos. Conceptos básicos. Expresiones características

Segunda sesión:

Tipos de filtros básicos: Pasa bajo, Pasa banda, Pasa alto y Supresor de Banda (Notch)

Tercera sesión:

Laboratorio N° 3. Evaluación de parámetros de filtros activos

SÉPTIMA SEMANA

Primera sesión:

Obtención y reconocimiento de la función de transferencia (FT) de filtros activos.

Segunda sesión:

Diseño de Filtros Método intuitivo por reconocimiento de polos y ceros de la FT.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión:

Diseño de filtros activos aplicando el criterio de escalamiento

Segunda sesión:

Clase integral de diseño de filtros.

DÉCIMA SEMANA

Primera sesión

Filtros activos Butterworth y Chebyshev. Polinomios de Generación y Funciones de Transferencia.

Segunda sesión:

Diseños de circuitos filtro Butterworth y Chebyshev.

Tercera sesión:

Laboratorio N° 4. Diseño de Filtros Activos. Evaluación del ancho de banda y ganancia.

UNIDAD III: OSCILADORES Y TEMPORIZADORES

OBJETIVOS DE APRENDIZAJE

- Analizar el principio de operación de los osciladores y reconoce los tipos de osciladores.
- Reconocer el principio de operación del CI 555.
- Construir un generador de señales bajo restricciones operativas

UNDÉCIMA SEMANA

Primera sesión

Análisis de circuitos con realimentación positiva. Criterio de Barkhausen. Criterio de ángulo y criterio de módulo en la determinación de las condiciones de oscilación.

Segunda sesión

Análisis de circuitos osciladores con Opamps.

DUODÉCIMA SEMANA

Primera sesión:

Aplicaciones de los osciladores. Puente de Wien, Colpitts, Hartley, Desplazamiento de fase.

Segunda sesión:

Diseños y simulaciones básicos.

Tercera sesión:

Laboratorio N° 5. Osciladores y Multivibradores astables con Opamp.

DECIMOTERCERA SEMANA

Primera sesión:

Análisis de los multivibradores biestables. Lazo de Histéresis.

Segunda sesión:

Práctica calificada 2

DECIMOCUARTA SEMANA

Primera sesión:

Análisis de los multivibradores astables y monoestables. Generador de Ondas cuadradas y triangulares con Opamps

Segunda sesión:

Análisis del CI 555 en sus modalidades astables y monoestables. Diseños de multivibradores **Tercera sesión:**

Laboratorio N° 6. Circuitos con timer 555.

UNIDAD IV: CONVERTIDORES DE SEÑAL: DAC / ADC / VF

OBJETIVOS DE APRENDIZAJE

Analizar el proceso de conversión de la señal análogo – digital y de voltaje – frecuencia

DECIMOQUINTA SEMANA

Primera sesión:

Aplicaciones de circuitos conversores ADC, DAC y VF con Opamp usando CI 555

Segunda sesión:

Ejemplos de diseño.

Proyecto del curso: Presentación de Proyecto de Diseño

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- **Método Expositivo Interactivo**. Comprende la exposición del docente y la interacción con el estudiante.
- **Método de Demostración ejecución**. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

Equipos: Módulo de pruebas, multímetro y osciloscopio digital. Generadores de señal. **Materiales**: Amplificadores operacionales LM471, UA741, TL081, TL082, Diodos, Transistores, LDR, resistencias, condensadores, timer 555, ADC0808

XI. EVALUACIÓN

El promedio final (**PF**) se obtiene del modo siguiente:

PF = (2*PE+EP+EF)/4 PE = ((P1+P2)/2 + W1 + PL) /3 PL= (Lb1+Lb2+Lb3+Lb4+Lb5-MN) / 4

Donde:

EP = Examen parcial escrito

EF = Examen final escrito

PE = Promedio de evaluaciones

P: Prácticas calificadas escritas

W1 = Proyecto final de laboratorio.

PL = Promedio laboratorios calificados

Lb = Notas de laboratorios calificados

Mn = Menor nota.

XII. APORTES AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del programa de ingeniería electrónica (Outcomes), se establece en la tabla siguiente:

K =	clave	R = relacio	nado R e	ecuadro vacio	= no aplica
(a)	Habilidad	para aplicar	conocimiento	s de matemática	ciencia e inger

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	
(b)	(b) Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	

(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d).	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio	
2	2	2	

b) Sesiones por semana: tres sesiones.c) Duración: 6 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Mg. Jorge Tejada Polo

XV. FECHA

La Molina, agosto de 2017