

Atmospheric neutrino oscillations at the Super-Kamiokande detector

Maria Kondzielska

Warsaw, June 5, 2024

Supervisor: Dr. Magdalena Posiadała-Zezula Division of Particles and Fundamental Interactions

Outline

Introduction

2 The Super-Kamiokande Detector

Atmospheric neutrino production

Atmospheric neutrinos - about Super-Kamiokande Physics

- Primary cosmic rays (p, He, ...) collide with nuclei in the upper atmosphere
- (mostly) pions and kaons are produced:

$$\pi^{+} \to \mu^{+} + \nu_{\mu}$$

$$K^{+} \to \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \to e^{+} + \overline{\nu_{\mu}} + \nu_{e}$$

- Expected ratio: $\nu_{\mu}/\nu_{e}\sim 2$
- ullet Neutrino energies: ~ 100 MeV-10 TeV

Atmospheric Neutrino Oscillations

Propagation paths of upward and downward going neutrinos. Atmospheric neutrinos - about Super-Kamiokande Physics

 θ - zenith angle

Isotropic neutrino flux

- ightarrownumbers of downward going u and upward going ν_e : agree with expectations
- \rightarrow number of upward going ν_{μ} : smaller than expectations
- →muon neutrino events show up/down asymmetry

- muon neutrino deficit
- atmospheric neutrino anomaly
- neutrino oscillations as an explanation

The Super-Kamiokande Detector

The Super-Kamiokande Detector

- → 50-kton ring-imaging water Cherenkov detector
- \rightarrow 39 m diameter
- $\rightarrow \sim 13~000~\text{PMTs}$ (light sensors)
- \rightarrow 27.2 kton fiducial volume
- → located 1000 m underground in Kamioka mine, Japan
- → inner and outer detector (veto)

NEUTRINOS FROM SUPER-COSMIC RADIATION KAMIOKANDE KAMIOKA, JAPAN COSMIC RADIATION PROTECTING 1 000 m Muon-neutrinos give signals in the water tank Muon-neutrinos arriving directly from the atmosphere Light detectors MUONmeasuring Cherenkov NEUTRINO radiation that have travelled through the Earth CHERENKOV

Johan Jarnestad, The Royal Swedish Academy of Sciences

RADIATION

Cherenkov effect

- → a charged particle moving with a speed greater than the speed of light in a medium emits Cherenkov radiation
- ightarrow the threshold: eta > 1/n
- \rightarrow in case of water n=4/3
- ightarrow the particle needs to move with 3/4c
- ightarrow the maximum cone angle of emission

for water at room temperature: 41°

Particle	Threshold total energy [Me
e^-/e^-	0.78
μ^+/μ^-	160
p	1400

Event display

http://dx.doi.org/10.2172/946806

$$\nu_{\mu} + n \to p + \mu^{-}$$

$$\overline{\nu_{\mu}} + p \to n + \mu^{+}$$

$$e$$
-like:

$$\nu_e + n \to p + e^-$$

 $\overline{\nu_e} + p \to n + e^+$

 μ -like:

- clear Cherenkov ring edge
- ullet only direct Cherenkov light from μ
- fuzzy Cherenkov ring edge
- Cherenkov light from electromagnetic showers
- ullet e^+ and e^- are heavily scattered

Backup

PMT - Photo Multiplier Tubes

How do PMTs detect Cherenkov light?

- photons strike photocathode
- electrons are generated (photoelectric effect)
- electrons are multiplied (secondary emission)
- current is proportional to light intensity

A 20-inch PMT installed in the Super-Kamiokande inner detector.

https://www.laserfocusworld.com/detectors-

→ high sensitivity for faint light detection imaging/article/14185918/photomultiplier-tubes-do-what-other-photon-counters-cant

Neutron Tagging

Antineutrino detection by signal coincidence:

- $e^+e^- \rightarrow \gamma\gamma$ annihilation
- neutron capture by Gd \rightarrow release of γ by excited Gd*

https://phys.org/news/2020-08-super-kamiokande-neutrinos-ancient-supernovae.html