BABI

PENDAHULUAN

1.1 Latar Belakang

Pati dan juga produk turunannya merupakan bahan yang multiguna dan banyak digunakan pada berbagai industri antara lain pada minuman, makanan yang diproses, kertas, makanan ternak, farmasi, dan bahan kimia serta industri nonpangan seperti tekstil, deterjen, kemasan, dan sebagainya. Dalam industri makanan sebagai pembentuk gel dan *encapsulating agent*. Dalam industri kertas digunakan sebagai zat aditif seperti *wet-end* untuk *surfactant size* dan *coating binder*, bahan perekat, dan *glass fiber sizing* (Chiu & Solarek, 2009).

Pada reaksi hidrolisa biasanya dilakukan dengan menggunakan katalisator asam seperti HCl (asam klorida). Bahan yang digunakan untuk proses hidrolisis adalah pati. Di Indonesia banyak dijumpai tanaman yang menghasilkan pati. Tanaman-tanaman itu seperti padi, jagung, ketela pohon, umbi-umbian, aren, dan sebagainya (Baskar & Muthukumaran, 2008). Pati dan produk turunannya banyak digunakan di berbagai jenis industri baik di industri pangan maupun industri nonpangan. Di dalam industri nonpangan, pati banyak digunakan dalam industri logam, tekstil, kosmetik dan farmasi, kertas, konstruksi dan pertambangan. Pada industri tekstil, pati digunakan sebagai bahan perekat. Selain itu, pati juga dapat digunakan sebagai bahan yang mengurangi kerutan pada pakaian. Pada sektor kimia, pati dan turunannya banyak diaplikasikan pada pembuatan plastik *biodegradable*, surfaktan, poliurethan, resin, senyawa kimia dan obat-obatan (Yetti et al., 2007).

Pada sektor lainnya, pati dan turunannya dimanfaatkan sebagai bahan deterjen yang bersifat nontoksik dan aman bagi kulit, pengikat, pelarut, biopestisida, pelumas, pewarna, dan flavor. Dalam industri pangan, pati banyak digunakan sebagai pengental, penstabil koloid, pembentuk gel, perekat dan agen penahan air. Khusus untuk industri makanan, pati sangat penting untuk pembuatan makanan bayi, kue, pudding, bahan pengental susu, permen *jelly*, dan pembuatan dekstrin (Hill, 1997).

1.2 Rumusan Masalah

Pati memiliki manfaat yang besar dalam kehidupan manusia. Akan tetapi, pati harus diberi perlakuan tepat sebelum diolah atau digunakan karena kandungannya yang cukup kompleks. Untuk itu, penting bagi seorang mahasiswa Teknik Kimia memahami cara memodifikasi kandungan pati sehingga dapat

digunakan secara maksimal untuk kehidupan manusia. Dalam percobaan ini, akan dipelajari tentang berbagai pengaruh suhu hidrolisis terhadap reaksi hidrolisa pati dan konstanta kecepatan reaksi.

1.3 Tujuan Praktikum

- 1. Mempelajari pengaruh variabel terhadap reaksi hidrolisa pati.
- 2. Menghitung konstanta kecepatan reaksi dan menganalisis pengaruh variabel terhadap konstanta kecepatan reaksi.
- 3. Membandingkan hasil perhitungan konstanta kecepatan reaksi dengan hasil literatur.

1.4 Manfaat Praktikum

- Mahasiswa dapat mengetahui pengaruh variabel terhadap reaksi hidrolisa
 pati.
- 2. Mahasiswa dapat menghitung konstanta kecepatan reaksi dan menganalisis pengaruh variabel terhadap konstanta kecepatan reaksi.
- 3. Mahasiswa dapat membandingkan hasil perhitungan konstanta kecepatan reaksi dengan hasil literatur.

Process

BABII

TINJAUAN PUSTAKA

2.1 Pati

Pati merupakan homopolimer glukosa yang tersusun atas unit-unit glukosa yang mengalami dehidrasi dan terhubung melalui ikatan glikosidik. Setiap unit glukosa terdehidrasi memiliki tiga gugus hidroksil pada posisi 2, 3, dan 6. Di antara ketiganya, gugus hidroksil primer pada karbon ke-6 memiliki reaktivitas tertinggi, diikuti oleh hidroksil sekunder pada karbon ke-2 dan ke-3. Pati terdiri dari dua fraksi utama: amilosa dan amilopektin. Derajat polimerisasi pati alami beriksar antara 160 hingga 6.000, dengan berat molekul relatif sekitar 25.000 hingga 1.000.000. Pati tidak larut dalam air dan memiliki kemampuan interaksi antarmakromolekul yang rendah. Selain itu, pati memiliki keterbatasan dalam hal kemudahan pengolahan, stabilitas dimensi, dan sifat mekanik dari produk akhirnya. Oleh karena itu, pati alami umumya tidak digunakan secara langsung (Ozkan et al., 2019).

2.2 Amilosa dan Amilopektin

Pati termasuk dalam polisakarida yang merupakan polimer glukosa, yang terdiri atas amilosa dan amilopektin. Amilosa merupakan sebuah molekul rantai panjang linier dengan ikatan glikosidik α –(1,4), berkontribusi terhadap matriks amorf. Amilopektin merupakan molekul bercabang dan berbentuk heliks ganda dengan percabangan α –(1,6) yang menjadikan struktur pati bersifat semi-kristalin. Amilopektin menyusun sekitar 70-85% dari total pati, dan memiliki ukuran molekul yang jauh lebih besar (10⁷-10⁹ Da), dibandingkan dengan amilosa (10⁵-10⁶ Da) (Compart *et al.*, 2023).

Gambar 2.1 Struktur amilosa

Gambar 2.2 Struktur amilopektin

2.3 Hidrolisis Pati

2.3.1 Kinetika Reaksi Hidrolisis Pati

Hidrolisis merupakan reaksi pengikatan gugus hidroksil (-OH) oleh suatu senyawa. Gugus OH dapat diperoleh dari senyawa air. Hidrolisis dapat digolongkan menjadi hidrolisis murni, hidrolisis katalis asam, hidrolisis katalis basa, hidrolisis gabungan alkali dengan air dan hidrolisis dengan katalis enzim. Sedangkan berdasarkan fase reaksi yang terjadi diklasifikasikan menjadi hidrolisis fase cair dan hidrolisis fase uap.

Hidrolisis pati merupakan proses pemecahan molekul amilum menjadi bagian-bagian penyusun amilum yang lebih sederhana seperti dekstrin, isomaltosa, maltosa, dan glukosa. Hidrolisis pati terjadi antara suatu reaktan pati dengan reaktan air. Reaksi ini adalah orde satu, karena reaktan air yang dibuat berlebih, sehingga perubahan reaktan dapat diabaikan. Reaksi yang terjadi pada hidrolisis pati adalah sebagai berikut:

$$(C_6H_{10}O_5)_X + H_2O \rightarrow x C_6H_{12}O_6$$

Berdasarkan teori kecepatan reaksi:

$$-r_A=k.C_{pati}.C_{air}$$
 (2.1)

Karena volume air cukup besar, maka dapat dianggap konsentrasi air selama perubahan reaksi sama dengan k', dengan besarnya k':

$$k'=k.C_{air}$$
 (2.2)

Sehingga persamaan 2.1 dapat ditulis sebagai berikut $-r_A = k. C_{Pati}$. Dari persamaan kecepatan reaksi ini, reaksi hidrolisis merupakan reaksi orde satu. Jika harga $-r_A = -\frac{dC_A}{dt}$ maka persamaan 2.2 menjadi:

$$\frac{-dC_A}{dt} = k'C_A \tag{2.3}$$

$$\frac{-dC_A}{C_A} = k'dt \tag{2.4}$$

Apabila $C_A = C_{A0}(1 - X_A)$ dan diselesaikan dengan integral dan batas kondisi $t_1 : C_{A0}$ dan $t_2 : C_A$ akan diperoleh persamaan:

$$-\int_{C_{A0}}^{C_{A}} \frac{dC_{A}}{C_{A}} = k' \int_{t_{2}}^{t_{1}} dt$$
 (2.5)

$$\ln \frac{c_{A0}}{c_A} = k'(t_2 - t_1) \tag{2.6}$$

$$\ln \frac{1}{(1-X_A)} = k'(t_2 - t_1) \tag{2.7}$$

Dimana X_A = konversi reaksi setelah satu detik.

Persamaan 2.7 dapat diselesaikan dengan menggunakan pendekatan regresi $y=mx+c, \ dengan \ y=ln\frac{1}{(1-X_A)} \ dan \ x=t_2.$

2.3.2 Metode Hidrolisis Pati

Proses penguraian pati disebut dengan hidrolisis pati. Proses hidrolisis pati dibagi menjadi 2 metode, yaitu hidrolisis asam dan hidrolisis enzimatis.

Hidrolisis Asam

Hidrolisis asam adalah hidrolisis dengan menggunakan asam yang dapat mengubah polisakarida (pati dan selulosa) menjadi gula. Hidrolisis ini dilakukan dengan menggunakan katalisator H⁺ yang dapat diambil dari asam seperti HCl, H₂SO₄, dan HNO₃ (Wang & Copeland, 2015). Metode hidrolisis secara asam lebih sederhana, tanpa harus melalui beberapa tahapan seperti pada hidrolisis secara enzimatis. Selain itu juga hidrolisis secara asam memerlukan waktu proses yang relatif lebih singkat, teknologi yang lebih sederhana, pengaturan kondisi proses yang lebih mudah, serta biaya yang lebih murah (Devitria & Sepriyani, 2018).

2. Hidrolisis Enzimatis

Hidrolisis enzimatis merupakan proses konversi selulosa dan hemiselulosa menjadi gula reduksi menggunakan enzim. Enzim yang digunakan untuk mengonversi hemiselulosa menjadi glukosa adalah enzim xylanase sedangkan enzim yang digunakan untuk mengonversi selulase menjadi glukosa menggunakan enzim selulase. Hidrolisis secara enzimatis dapat memutus ikatan glikosida secara spesifik dan tidak menyisakan residu (Salsabilla & Fahruroji, 2021).

2.4 Modifikasi Pati

Aplikasi pati alami sering kali terbatas akibat kelarutannya yang rendah, daya absorpsi air yang rendah, serta kekeruhan gel yang dihasilkan. Amilosa cenderung mengalami retrogradasi sehingga membentuk gel yang kaku, sedangkan amilopektin membentuk gel yang lebih lunak, yang berdampak pada rendahnya ketahanan termal dan meningkatnya laju dekomposisi termal. Selain itu, pati alami memiliki keterbatasan dalam stabilitas fungsional terhadap variasi pH dan suhu selama proses pengolahan. Beberapa granula pati bersifat inert, tidak larut dalam air pada suhu ruang, dan sangat resisten terhadap degradasi enzimatik, sehingga tidak dapat menjalankan fungsi aplikatifnya secara optimal (Mauro *et al.*, 2023).

Berbagai keterbatasan dalam pati alami dapat diatasi melalui modifikasi pati menggunakan metode konvensional seperti perlakuan termal, kimiawi, enzimatik, maupun metode non-termal terkini seperti tekanan tinggi, gelombang ultrasonik, plasma, dan aplikasi medan listrik. Pati umumnya dimodifikasi dengan tujuan untuk meningkatkan karakteristik sifat fisik dan kimia dari pati guna memperoleh sifat fungsional yang diinginkan. Sifat fisikokimia pati yang dapat dipengaruhi setelah proses modifikasi meliputi daya kelarutan, nilai transmisi cahaya, sifat reologi, sifat termal, serta struktur kristal dari granula pati (Hutabarat & Stevensen, 2023).

Process

2.5 Reagen Fehling dalam Analisis Gula Hasil Hidrolisis

2.5.1 Komposisi dan Fungsi Reagen Fehling

Reagen Fehling merupakan larutan kimia yang digunakan untuk mendeteksi keberadaan gula pereduksi seperti glukosa dalam suatu larutan. Reagen ini terdiri atas dua komponen, yaitu Fehling A dan Fehling B, yang dicampurkan sesaat sebelum digunakan agar kestabilan larutan tetap terjaga. Fehling A adalah larutan tembaga(II) sulfat (CuSO₄) yang berwarna biru dan menjadi sumber ion Cu²⁺. Fehling B adalah campuran natrium kalium tartrat (*Rochelle salt*) dan natrium hidroksida (NaOH) yang berfungsi sebagai basa sekaligus penstabil ion Cu²⁺ agar tetap larut dalam suasana alkalis (Aljamali *et al.*, 2025).

2.5.2 Mekanisme Reaksi

Metode Fehling bergantung pada reduksi tembaga(II) tartrat dalam medium basa kuat menggunakan indikator metilen biru. Titik akhir titrasi ditentukan ketika warna biru metilen berubah menjadi tidak berwarna. Dalam penggunaannya, Fehling A dan Fehling B dicampur dan akan membentuk endapan tembaga(II) hidroksida (Cu(OH)₂) yang berwarna biru muda. Endapan ini kemudian segera bereaksi dengan natrium kalium tartrat, membentuk kompleks tembaga tartrat berwarna biru tua.

Ketika larutan Fehling dan gula pereduksi dipanaskan, kompleks tembaga tartrat akan mengalami reduksi menjadi endapan merah bata tembaga(I) oksida (Cu₂O). Kompleks bistartratokuprat(II) mengoksidasi gugus aldehida menjadi ion karboksilat, sementara ion tembaga(II) dalam kompleks tersebut direduksi menjadi ion tembaga(I). Endapan Cu₂O merah bata yang terbentuk menunjukkan hasil positif bahwa gula pereduksi telah teroksidasi. Perubahan warna dari larutan biru menjadi merah bata menunjukkan bahwa titik akhir titrasi telah tercapai. Reaksi kimia yang terlibat adalah sebagai berikut (Zhang & Chen. 2020):

CuSO₄ + 2NaOH → Cu(OH)₂ ↓ (biru muda) + Na₂SO₄ CH₂OH(CHOH)₄CHO + 2Cu(OH)₂ → CH₂OH(CHOH)₄COOH + Cu₂O ↓ (merah bata) + H₂

2.6 Variabel yang Berpengaruh

Variabel-variabel yang berpengaruh dalam reaksi hidrolisis pati meliputi

Katalisator

Reaksi hidrolisis merupakan reaksi yang berlangsung sangat lama karena itu dibutuhkan katalisator untuk mempercepat reaksi. Katalisator yang dipakai dapat berupa asam atau enzim karena kinerjanya lebih cepat. Asam yang dipakai beraneka jenisnya mulai dari HCl, H₂SO₄ sampai HNO₃ (Nasution *et al.*, 2023). Yang mempengaruhi kecepatan reaksi adalah konsentrasi ion H+ bukan jenis asamnya. Meskipun demikian, didalam industri umumnya dipakai asam klorida (Zuhair Ds., 2022). Pemilihan ini didasarkan atas sifat garam yang terbentuk pada penetralan tidak menimbulkan gangguan apa-apa selain rasa asin jika konsentrasinya tinggi. Oleh karena itu, konsentrasi asam dalam air penghidrolisa ditekan sekecil mungkin. Umumnya dipergunakan larutan asam yang mempunyai konsentrasi asam yang lebih tinggi daripada pembuatan sirup. Hidrolisis pada tekanan 1 atm memerlukan asam yang jauh lebih pekat.

2. Suhu

Pengaruh suhu terhadap kecepatan reaksi mengikuti persamaan Arrhenius, dimana semakin tinggi suhu maka semakin cepat laju reaksinya. Suhu yang optimum pada reaksi hidrolisis akan menghasilkan energi aktivasi yang semakin kecil, hal tersebut memungkinkan hasil konversi hidrolisis yang lebih besar (Milek & Lamkiewicz, 2022). Untuk mencapai konversi tertentu, diperlukan waktu sekitar 48 menit untuk menghidrolisa pati ubi kayu pada suhu 100°C (Ardiansyah *et al.*, 2018). Sedangkan, hidrolisis pati gandum dan jagung dengan katalisator H₂SO₄ memerlukan suhu 160°C.

3. Pencampuran (Pengadukan)

Pencampuran diperlukan untuk meningkatkan kontak antara zat pereaksi dan mempercepat laju hidrolisis. Pada tahap awal, agitasi membantu mengurangi hambatan perpindahan massa, terutama pada sistem dengan konsentrasi padatan tinggi. Kecepata pengadukan yang sesuai dapat meningkatkan efisiensi reaksi, sedangkan pengadukan yang terlalu kuat justru menurunkan efisiensi akibat gaya geser yang berlebihan. Peningkatan kecepatan agitasi dari 0 hingga 150 rpm dapat meningkatkan hasil glukosa, tetapi kecepatan seperti 200 rpm justru menurunkan efisiensi hidrolisis (Guo *et al.*, 2015).

4. Perbandingan zat pereaksi

Jika salah satu zat pereaksi dibuat berlebihan jumlahnya maka keseimbangan dapat bergeser ke arah kanan dengan baik. Oleh karena itu, suspensi pati yang kadarnya rendah memberikan hasil yang lebih baik dibandingkan dengan yang kadarnya tinggi. Bila kadar suspensi pati diturunkan dari 40% menjadi 20% atau 1% maka konversi akan bertambah dari 80% menjadi 87% atau 99% (Groggins, 1958). Pada permukaan, kadar suspensi pati yang tinggi sehingga molekul-molekul zat pereaksi akan sulit bergerak. Untuk menghasilkan glukosa biasanya dipergunakan suspensi pati sekitar 20%.

Process

BAB III

METODE PRAKTIKUM

3.1 Rancangan Percobaan

3.1.1 Rancangan Praktikum

Menghitung densitas pati, HCl, dan membuat glukosa standar

Standarisasi larutan fehling

Penentuan kadar pati awal

Hidrolisa pati

Analisa data praktikum

Gambar 3.1 Skema rancangan praktikum

3.1.2 Penetapan Variabel

- a. Variabel tetap
- b. Variabel berubah

3.2 Bahan dan Alat yang Digunakan

3.2.1 Bahan

- 1. Glukosa anhidrit
- 2. Tepung maizena
- 3. NaOH
- 4. HCl
- 5. Indikator MB
 - 6. Fehling A
 - 7. Fehling B
 - 8. Aquadest

3.2.2 Alat

- 1. Gelas ukur
- 2. Termometer
- 3. Erlenmeyer

- 4. Statif dan klem
- 5. Buret
- 6. Labu leher tiga
- 7. Labu takar

3.3 Gambar Alat

Gambar 3.2 Rangkaian alat hidrolisis

Keterangan:

- 1. Labu leher tiga
- 2. Heating Mantle
- 3. Stirrer
- 4. Thermocouple
- 5. Pendingin balik
- 6. Klem
- 7. Statif

3.4 Prosedur Praktikum

1. Persiapan awal

Laboratory

a. Menghitung densitas pati

Ke dalam gelas ukur, 5 ml *aquadest* dimasukkan 1 gram pati, catat perubahan volume.

$$\rho \ pati = \frac{m \ pati}{\Delta V} \tag{3.1}$$

b. Menghitung densitas HCl

Timbang berat *picnometer* kosong (m₁), masukkan HCl ke dalam *picnometer* yang telah diketahui volumenya (v), timbang beratnya (m₂), hitung densitas HCl.

$$\rho \text{ pati} = \frac{m_2 - m_1}{\Delta V} \tag{3.2}$$

Membuat glukosa standar

Glukosa anhidrit sebanyak 2 gram dilarutkan dalam 1000 ml aquadest.

2. Penentuan kadar pati

a. Standarisasi larutan fehling

10 ml fehling A + 10 ml fehling B + 15 ml glukosa standar, dipanaskan sampai mendidih. Setelah mendidih ditambahkan 3 tetes MB, kemudian larutan dititrasi dengan glukosa standar hingga warna berubah menjadi merah bata. Catat volume titran (F) yang diperlukan, proses titrasi dilakukan dalam keadaan mendidih (di atas kompor).

b. Penentuan kadar pati awal

Sebanyak ... gram pati, ... ml katalis HCl/H₂SO₄ dan ... ml *aquadest* dimasukkan ke dalam labu leher tiga dan dipanaskan hingga suhu ... °C, selama 1 jam. Setelah itu larutan didinginkan, diencerkan dengan *aquadest* sampai 500 ml lalu diambil 20 ml dan dinetralkan dengan NaOH (pH = 7). Larutan diambil 5 ml diencerkan sampai 100 ml, diambil 10 ml. Ke dalam Erlenmeyer dimasukkan 10 ml larutan + 10 ml Fehling A + 10 ml fehling B + 15 ml glukosa standar, kemudian dipanaskan sampai suhu 60°C. Lalu ditambahkan 3 tetes indikator MB. Kemudian larutan dititrasi dengan glukosa standar sehingga berubah warna menjadi warna merah bata. Catat volume titran yang dibutuhkan (M). Yang perlu diperhatikan, proses titrasi dilakukan dalam keadaan mendidih diatas kompor. Lakukan hal yang sama untuk variabel lain.

c. Hidrolisa pati

Sebanyak ... gram pati, ... ml katalis HCl/H₂SO₄ dan ... ml *aquadest* dimasukkan ke dalam labu leher tiga dan dipanaskan hingga suhu ... °C. Lalu setelah 5 menit diambil sampel sebanyak 20 ml. Kemudian sampel dinetralkan dengan NaOH (pH = 7). Larutan diambil 5 ml diencerkan sampai 100 ml, diambil 10 ml. Ke dalam erlenmeyer dimasukkan 10 ml larutan + 10 ml Fehling A + 10 ml fehling B + 15 ml glukosa standar, kemudian dipanaskan sampai 60°C. Lalu ditambahkan 3 tetes indikator MB. Kemudian larutan dititrasi dengan glukosa standar sehingga berubah warna menjadi warna merah bata.

Catat V titran yang dibutuhkan (M). Yang perlu diperhatikan, proses titrasi dilakukan dalam keadaan mendidih diatas kompor. Pengambilan sampel dilakukan setiap selang waktu 5 menit sebanyak 5 kali 25 menit. (t₁ =menit ke-5, t₂ =menit ke-10, t₃ =menit ke-15, t₄ =menit ke-20, t₅ =menit ke-25). Lakukan hal yang sama untuk variabel 2.

Rumus penentuan kadar pati awal:

$$X_{P0} = \frac{(F-M) \times N \ glucose \times \frac{500}{basis} \times \frac{100}{5} \times 0.9}{W}$$
(3.3)

Dimana,

N = 0.002 gr/ml

W = berat pati

Perhitungan kebutuhan reagen:

a) Menghitung kebutuhan HCl

$$V_{HCl} = \frac{N \text{ HCl} \times MW \text{ HCl} \times V \text{ Solution}}{\rho \text{ HCl} \times \text{HCl} \text{ content} \times 1000 \times \text{greq}}$$
(3.4)

b) Menghitung kebutuhan pati

%suspensi =
$$\frac{X_p \times W \text{ pati}}{W \text{ pati} + W \text{ HCl} + W \text{ air}}$$
 (3.5)

Dimana,

$$W_{\text{pati}} = \rho_{\text{pati}} \times V_{\text{pati}} \tag{3.6}$$

$$W_{HC1} = \rho_{HC1} \times V_{HC1} \tag{3.7}$$

$$W_{air} = \rho_{air} \times (V_{larutan} - V_{pati} - V_{HCl})$$
(3.8)

$$X_{P0} = \frac{(F-M) \times N \ glucose \times \frac{500}{basis} \times \frac{100}{5} \times 0.9}{W}$$
(3.9)

Process

DAFTAR PUSTAKA

- Aljami, N. M., Jwad, S. M., Alfartosi, W. H. A., dan Ameerghafil, R. A. (2025). Review on Bio and Chemical Reagents (Methods of Preparation and Uses). *Journal of Water Pollution & Purification Research*, 12(2).
- Ardiansyah, A., Nurlansi, N., & Musta, R. (2018). Waktu Optimum Hidrolisis pati limbah Hasil Olahan Ubi Kayu (Manihot esculenta Crantz var. Lahumbu) Menjadi Gula Cair Menggunakan enzim α-Amilase Dan glukoamilase. Indo. *J. Chem. Res.*, *5*(2), 86–95. https://doi.org/10.30598//jjcr.2018.5-ard.
- Baskar, G., Muthukumaran, C., Renganathan, S., (2008). Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilize α-Amylase Using Response Surface Methodology. *International Jurnal of Natural Sciences and Engineering*, 1(3), 156-160.
- Chiu, C. W., & Solarek, D. (2009). *Modification of starch*. Starch: Chemistry and Technology, Third Edition ISBN: 978-0-12-746275-2.
- Compart, J., Singh, A., Fettke, J., dan Apriyanto, A. (2023). Customizing Starch Properties: A Review of Starch Modifications and Their Applications. *Polymers*, 15. https://doi.org/10.3390/polym15163491.
- Devitria, R. & Sepriyani, H. (2018). Optimalisasi Asam Klorida Pada Proses Hidrolisis Limbah Ampas Sagu (*Metroxylon, sp*) terhadap Kadar Glukosa. *Klinikal Sains: Jurnal Analis Kesehatan, 6*(2), 37-42.
- Groggins, P. H. (1958). *Unit Processes in Organic Synthesis*, 5th ed.775 777, McGraw– Hill Book Company. New York.
- Guo, H., Su, R., Huang, R., Qi, W., dan He, Z. (2015). Co-Optimization of Sugar Yield and Input Energy by The Stepwise Reduction of Agitation Rate During Lignocellulose Hydrolysis. *Food and Bioproducts Processing*, 95, 1-6.
- Hill, G. C. (1977). An Introduction to Chemical Engineering Kinetika and Reactor Design, 1nd ed. John Willey, New York.
- Hutabarat, D. J. C. & Stevensen, J. (2023). Physicochemical Properties of Enzymatically Modified Starch: A Review. *IOP Conference Series: Earth and Environmental Science*. https://doi.orf/10.1088/1755-1315/1169/1/012093.
- Miłek, J., & Lamkiewicz, J. (2022). The starch hydrolysis by α-amylase bacillus spp.: An estimation of the optimum temperaturs, the activation and deactivation energies. *Journal of Thermal Analysis and Calorimetry*, 147(24), 14459–14466. https://doi.org/10.1007/s10973-022-11738-1.
- Mauro, R. R., Vela, A. J., dan Ronda, F. (2023). Impact of Starch Concentration on the Pasting and Rheological Properties of Glutein-Free Gels. Effects of Amylose

- Content and Thermal and Hydration. *Foods*, 12. https://doi.org/10.3390/foods12122281.
- Nasution, S. F., Lubis, L. H., Haharap, S., & Siregar, A. U. (2023). Hidrolisis Pati Kacang Kedelai (Glycine max (L.) Merril) dengan Pengaruh Jenis Katalis Asam. *Journal of Pharmaceutical and Health Research*, 4(1), 141–146. https://doi.org/DOI 10.47065/jharma.v4i1.3187.
- Ozkan, C. K., Ozgunay, H., dan Akat, H. (2019). Possible Use of Corn Starch as Tanning Agent in Leather Industry: Controlled (Gradual) Degradation by H₂O₂. *International Journal of Biological Macromolecules*, 122, 610-618. https://doi.org/10.1016/j.ijbiomac.2018.10.217.
- Salsabila, A. L., & Fahruroji, I. (2021). Hidrolisis Pada Sintesis Gula Berbasis Pati Jagung. *Edufortech*, 6(1), 32-38.
- Wang, S., & Copeland, L. (2015). Effect of acid hydrolysis on starch structure and functionality: A review. Critical Reviews in Food Science and Nutrition, 55(8), 1081–1097. https://doi.org/10.1080/10408398.2012.684551.
- Yetti, M., Nazamid, B.S., Roselina, K. Dan Abdulkarin, S. M., (2007). Improvement of Glucose Production by Raw Starch Degrading Enzyme Utilizing Acid-Treated Sago Starch as Substrate. *ASEAN Food Journal*, 14(2), 83-90.
- Zhang, Y. dan Chen, Q. (2020). Improving Measurement of Reducing Sugar Content in Carbonated Beverages Using Fehling's Reagent. *Journal of Emerging Investigators*, 2.
- Zuhair Ds, N. (2022). Pengaruh Waktu Hidrolisis dan Konsentrasi Katalis Asam Klorida Terhadap Hidrolisis Kulit Gandum Pollard. *Journal of Industrial Process and Chemical Engineering (JOICHE)*, 2(1), 76-80.

IDENTIFIKASI BAHAYA DAN ANALISA RESIKO MATERI : HIDROLISIS PATI

	IDENTIFIKASI BAHAYA (IB)									
A	Mekanik		D	Lingkungan		E	Bahan kimia		G	Bahaya lainnya
A1	Penanganan manual		D1	Kebisingan	1	E1	Racun	1	G1	Gas terkompresi
A2	Bagian yang bergerak		D2	Getaran		E2	Iritan	1	G2	Radiasi pengion
A3	Bagian yang berputar		D3	Penerangan	X	E3	Korosif		G3	Radiasi UV
A4	Pemotongan		D4	Kelembaban	4	E4	Karsinogenik		G4	Kelelahan
В	Biologi		D5	Temperatur	V	E5	Mudah terbakar		G5	Ruang sempit
B1	Bakteri		D6	Bahaya perjalanan	1	E6	Mudah meledak		G6	Penuh sesak
B2	Virus		D7	Permukaan yang licin	1	E7	Cryogenics		G7	Termometer
В3	Jamur		D8	Limbah padat		F	Peralatan			
C	Listrik		D9	Kualitas udara		F1	Bejana tekan			
C1	Voltase tinggi	V	D10	Pekerjaan soliter		F2	Peralatan panas	1		
C2	Listrik statis		D11	Percikan/tetesan/banjir	V	F3	Laser			1

CHEMICA,											
C3	Kabel		N	D12	Tumpahan serbuk	٧	F4	Pembuluh kaca			
	DETAIL RISIKO										
	Res	siko (seto	elah tinda	akan							
IB	pengendalian)				Identifikasi resiko	Т	Tin <mark>d</mark> akan pengendalian untuk meminimalisir resiko			Tindakan pertolongan pertama	
	Tinggi	Sedang	Rendah	Minima							
1. PRI	EPARAS	I/TAHA	P AWAI	- ///	/	1					
D7,				V	Saat melakukan kalibrasi	В	erhati-h	ati dalam menggunal	kan	Jika tergelincir, periksa bagian yang	
D11					piknometer, dan pembuatan	a	quadest	, jika <i>aquadest</i> d <mark>i</mark> alirl	kan	cidera dan obati bagian yang cidera.	
					reagen-reagen, terdapat resiko	m	enuju te	empat yang r <mark>a</mark> wan ter	rjadi	Apabila cideranya besar atau	
					aquadest tumpah yang	tur	npah, g	unakan corong agar o	dapat	bertambah parah, bawa korban ke	
					menyebabkan permukaan	r	neminir	nalisir terjad <mark>in</mark> ya resi	iko	rumah sakit/klinik terdekat.	
					menjadi licin.	7		permukaan li <mark>c</mark> in			

			CHEN	11CA		
D12		V	Saat melakukan perhitungan	Hati-hati dalam memi	ndahkan	Bersihkan serbuk pati yang jatuh.
			densitas pati, terdapat resiko	bubuk pati		Apabila terhirup, sebisa mungkin
			dimana bubuk pati jat <mark>uh</mark> akan			keluarkan bubuk pati yang terhirup.
			mengotori ruangan dan			Apabila cidera bertambah parah, bawa
			menyumbat saluran pernafasan			korban ke rumah sakit/ klinik terdekat
			apabila terhirup.			
2. PER	COBAAN UTAN	IA			A STATE OF THE PARTY OF THE PAR	
C1,	\ \		Adanya kabel yang terlupas dan	Lakukan pemeriksaan	Cabut sur	nber listrik untuk menghentikan aliran
C3			dapat mengakibatkan arus	dan memastikanalat		listrik.
			pendek maupun tersengat listrik	secara baik.		

CHEMICA									
D5,	√			Adanya kontak dengan	Hati-hati dengan	Hentika	an proses pemanasan, dinginkan luka		
F2				kompor listrik atau alat yang	permukaan panas pada	bakar, da	nn diberikan obat anti nyeri. Jika masih		
				dipanaskan diatas kompor	saat melakukan proses	berlanjı	ut, dibawa ke klinik atau rumah sakit		
				listrik.	pemanasan dan		terdekat.		
					meletakkan rangkaian				
			1		alat ke tempat yang				
					lebih aman agar tidak				
			2	terjadi kontak					
	DETAILRISIKO								
ID	Resiko (s	etelah tindaka	an	V					
ID	IB pengendalian) Tinggi Sedang Rendah Minimal			A	Tindakan pengendalian untuk meminimalisir resiko		Tindakan pertolongan		
				Identifikasi resiko			pertama		

			CHEN	MCA.	
E1,	√		Penggunaan reagen asam dan	Menggunakan sarung tangan	Jika reagen terkena kulit, segera cuci
E2			basa pada praktikum ini	lateks selama praktikum dan	tangan dengan air mengalir hingga
			terdapat resiko kontak dengan	mengganti sarung tangan	bersih. Jika terkonsumsi, segera
			kulit yang menyeba <mark>b</mark> kan	apabila sobek dan bolong	minum air mineral dan cuci mulut
			iritasi dan apabila t <mark>i</mark> dak	serta berhati-hati dalam	agar bahaya reagen dapat
			sengaja terkonsumsi dapat	memindahkan reagen-reagen	diminimalisir. Apabila bertambah
			mengakibatkan	asam dan basa	parah, bawa korban ke rumah sakit/
			keracunan.		klinik terdekat
		20 00	3. ANALISA/T	TAHAP AKHIR	
D7,		1	Saat melakukan titrasi terdapat	Berhati-hati dalam menggunakan	Jika tergelincir, periksa bagian yang
D11			resiko larutan tumpah yang	<i>aquadest</i> , jika <i>aquad<mark>e</mark>st</i> dialirkan	cidera dan obati bagian yang cidera.
			menyebabkan permukaan	menuju tempat yang rawan terjadi	Apabila cideranya besar atau bertambah
			menjadi licin	tumpah, gunakan corong agar dapat	parah, bawa korban ke rumah sakit/klinik
				meminimalisir terjadinya resiko	terdekat
				permukaan licin	
				meminimalisir terjadinya resiko	
				permukaan licin.	
		Pr	ocess	Laborato	ry