

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 102368081LEX-002

Project Number: G102368081

Report Issue Date: 12/15/2015

Product Name: US60L LTE E-UTRA module

FCC Standards: Title 47 CFR Part 22 and 24, and 27

Industry Canada Standards: RSS-132 Issue 3, RSS-133 Issue 6,

RSS-130 Issue 1, and RSS-139 Issue 3

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client:
Sequans Communications
15-55 Boulevard Charles de Gaulle
Colombes France

Report prepared by

Bryan Taylor, Team Leader

Report reviewed by

Brian Daffin, Engineer

Intertek

Report Number: 102368081LEX-002 Issued: 12/15/2015

TABLE OF CONTENTS

1	Introduction and Conclusion	3
2	Test Summary	3
3	Description of Equipment Under Test	4
4	Conducted Output Power	6
5	Occupied Bandwidth	17
6	Conducted Spurious Emissions at Antenna Terminals	31
7	Radiated Output Power	63
8	Radiated Spurious Emissions (Transmitter)	65
9	Frequency Stability	71
10	Measurement Uncertainty	74
11	Revision History	75

1 Introduction and Conclusion

The tests indicated in Section 2 were performed on the product constructed as described in Section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

The INTERTEK-Lexington laboratory is located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under Registration Number 485103.

2 Test Summary

Page	Test full name	FCC Reference	Industry Canada	Result
6	Conducted Output Power	§ 22.913(a) § 24.232(c) § 27.50(c)(d)	RSS-132 (5.4), RSS-133 (6.4) RSS-130 (4.4) RSS-139 (6.5)	Pass
17	Occupied Bandwidth	§2.1049	RSS-GEN (4.6.1)	Pass
31	Conducted Spurious Emissions	§22.917(a)(b) § 24.238(a)(b) §27.53(g)(h)	RSS-132 (5.5) RSS-133 (6.5) RSS-130 (4.6) RSS-139 (6.6)	Pass
39	Radiated Output Power	§ 22.913(a) § 24.232(c) § 27.50(c)(d)	RSS-132 (5.4) RSS-133 (6.4) RSS-130 (4.4) RSS-139 (6.5)	Pass
65	Radiated Spurious Emissions (Transmitter)	§22.917(a)(b) §24.238(a)(b) §27.53(g)(h)	RSS-132 (5.5) RSS-133 (6.5) RSS-130 (4.6) RSS-139 (6.6)	Pass
71	Frequency Stability	§22.355 §24.235 §27.54	RSS-132 (5.3) RSS-133 (6.3) RSS-130 (4.3) RSS-139 (6.4)	Pass

3 Description of Equipment Under Test

Equipn	nent Under Test
Manufacturer	Sequans Communications
Model Number	US60L
Serial Number	G1QTF370003CJ01
Receive Date	11/4/2015
Test Start Date	11/4/2015
Test End Date	11/4/2015
Device Received Condition	Good
Test Sample Type	Production
Frequency Band	1850MHz – 1910MHz (Band 2)
	1710MHz – 1755MHz (Band 4)
	824MHz – 849MHz (Band 5)
	698MHz – 716MHz (Band 12)
Modulation Type	LTE
Transmission Control	Base Station Simulator
Maximum Output Power (Conducted)	23.61dBm (Band 2)
	24.35dBm (Band 4)
	23.18dBm (Band 5)
	23.71dBm (Band 12)
Antenna Type	External
Operating Voltage	Battery Powered by 3.3VDC

Description of Equipment Under Test
The US60L is a standalone wireless LTE module which operates in bands 2, 4, 5, and 12.

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmitting an LTE signal
2	Receive / idle mode

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

Block Diagram for Radiated Tests

Block Diagram for Conducted Tests at the Antenna Port

3.3 Cables:

Cables								
Description	Langth Chialding		Ferrites	Connection				
Description	Length	Shielding	remes	From	То			
USB Cable	5ft	Yes	None	Laptop	USB Input to Debug Board			

4 Conducted Output Power

4.1 Test Limits

§ 2.1046

For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8).

§ 22.913

(a)(2)The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

§ 24.232

- (c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications
- (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

§ 27.50

- (c)(10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.
- (d)(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

4.2 Test Procedure

The transmitter output was connected to a coaxial cable, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The EUT was placed into a call and the average power was measured. The power output at the transmitter antenna port was determined by adding the value of the cable insertion loss to the power reading. Tests were performed at three frequencies (low, middle, and high channels) and on the highest power levels, which can be setup on the transmitters.

The peak-to-average ratio (PAR) was measured using a spectrum analyzer with a RBW wider than the EBW of the measured signal. The delta between the peak and average trace was recorded.

4.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3917	Rohde & Schwarz	CMW500	9/19/2015	9/19/2016
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/18/2015	9/18/2016
Power Divider	E18106	Weinschell Engineering	1506A	Time of Use	Time of Use

4.4 Results:

The table below shows the conducted output power delivered to the radiating antenna. Plots are also provided showing that the peak to average ratio (crest in the attached plots) is below the 13dB limit.

Conducted Output Power Band 2

			eu Output Po			Avg.	Peak
						Power	Power
BW	Channel	Frequency	Modulation	No RB	RB Offset	(dBm)	(dBm)
				1	Low	23.13	28.03
			QPSK	11	High	23.32	28.27
	18625	1852.5 MHz		25	Low	22.33	28.44
	10023	1002.0 1011 12		1	Low	22.3	28.13
			16QAM	1	High	22.42	28.25
				25	Low	21.42	28.3
		1880MHz	QPSK	1	Low	23.4	28.35
	18900			11	High	23.31	28.17
5MHz				25	Low	22.46	28.48
OIVII IZ	10900		16QAM	1	Low	22.42	28.18
				1	High	22.99	28.41
				25	Low	21.61	28.32
				1	Low	22.94	27.44
			QPSK	11	High	23.09	27.35
	19175	1907.5MHz		25	Low	22.3	27.01
	13173	1007.01VII 12		1	Low	21.99	27.36
			16QAM	1	High	22.32	27.33
				25	Low	21.23	27.97

						Avg.	Peak
						Power	Power
BW	Channel	Frequency	Modulation	No RB	RB Offset	(dBm)	(dBm)
				1	Low	23.06	28.41
			QPSK	1	High	23.31	28.49
	18650	1855MHz		50	Low	22.46	28.55
	10030	1000ivii iz		11	Low	22.05	27.91
			16QAM	1	High	22.54	28.32
				50	Low	21.4	28.36
		1880MHz	QPSK	1	Low	23.61	28.12
	18900			1	High	23.25	28.25
10MHz				50	Low	22.58	28.62
TOWN 12			16QAM	11	Low	22.62	28.38
				11	High	22.48	28.39
				50	Low	21.63	28.57
				1	Low	22.93	27.89
			QPSK	1	High	23.12	28.24
	19150	1905MHz		50	Low	22.24	28.38
	19150	1 900ivii iz		1	Low	22.09	28.01
			16QAM	1	High	22.21	28.25
				50	Low	21.36	28.51

Conducted Output Power Band 2

						Avg.	Peak
		_				Power	Power
BW	Channel	Frequency	Modulation	No RB	RB Offset		(dBm)
				1	Low	23.09	28.21
			QPSK	1	High	23.59	28.44
	18675	1857.5MHz		75	Low	22.72	28.96
	10073	1007.5IVII IZ		1	Low	22.14	28.06
			16QAM	1	High	22.62	28.33
				75	Low	21.82	28.92
		1880MHz	QPSK	1	Low	22.92	27.9
	18900			1	High	23.12	28.39
15MHz				75	Low	22.52	28.79
1 SIVII IZ			16QAM	1	Low	22.31	28.01
				1	High	22.34	28.57
				75	Low	21.61	28.69
				1	Low	23.12	27.85
			QPSK	1	High	22.95	27.64
	19125	1902.5MHz		75	Low	22.65	28.54
	19120	1902.SIVIDZ		1	Low	22.23	27.64
			16QAM	1	High	22.24	27.57
				75	Low	21.69	28.54

						Avg.	Peak
						Power	Power
BW	Channel	Frequency	Modulation	No RB	RB Offset	(dBm)	(dBm)
				1	Low	24.05	28.87
			QPSK	1	High	24.14	28.72
	18700	1860MHz		100	Low	23.05	29.23
	10700	1000IVII IZ		1	Low	23.17	28.86
			16QAM	1	High	23.35	28.58
				100	Low	22.15	29.21
	-lz 18900 1880			1	Low	24.51	28.73
		1880MHz	QPSK 16QAM	1	High	23.97	28.47
20MHz				100	Low	23.06	29.11
ZUIVINZ				1	Low	23.53	28.41
				1	High	23.12	28.39
				100	Low	22.22	29.12
				1	Low	24.29	28.63
			QPSK	1	High	23.64	27.8
	19100	1900MHz		100	Low	22.71	28.88
	19100	I SUUIVINZ		1	Low	23.56	28.65
			16QAM	1	High	22.99	28.08
				100	Low	21.88	28.82

Conducted Output Power Band 4

						Max. Avg.	Peak
						Power	Power
BW	Channel	Frequency	Modulation	RB Size	RB Offset	(dBm)	(dBm)
				1	Low	24.34	28.88
			QPSK	1	High	24.35	29.05
	19975	1712.5MHz		25	Low	23.46	29.36
	19975	17 12.311112		1	Low	23.56	28.99
			16QAM	1	High	23.54	29.07
				25	Low	22.53	29.39
	20175 1732.5MHz		1	Low	23.38	28.59	
		1732.5MHz	QPSK	1	High	23.34	28.66
5MHz				25	Low	22.41	28.75
JIVII IZ			16QAM	1	Low	22.61	28.28
				1	High	22.47	28.14
				25	Low	21.55	28.41
				1	Low	23.96	28.77
			QPSK	1	High	23.92	28.74
	20375	1752.5		25	Low	23.11	29.29
	20373	1732.5		1	Low	23.07	29.19
			16QAM	1	High	23.09	29.03
				25	Low	22.26	29.16

			•			Max.	
						Avg.	Peak
DIA	01	F	No dedetien	DD 0:	DD 0(((Power	Power
BW	Channel	Frequency	Modulation	RB Size	RB Offset		(dBm)
				1	Low	23.96	29.14
			QPSK	1	High	23.74	28.98
	20000	1715.0MHz		50	Low	23.26	29.31
	20000	17 13.01011 12	16QAM	1	Low	23.19	28.9
				1	High	22.91	28.62
				50	Low	22.29	29.25
		1732.5MHz	QPSK 16QAM	1	Low	23.16	28.18
				1	High	22.95	27.82
10MHz	20175			50	Low	22.35	28.49
TOWN IZ	20173			1	Low	22.34	28.23
				1	High	22.12	27.97
				50	Low	21.42	28.29
				1	Low	23.71	28.82
			QPSK	1	High	23.47	28.62
	20350	1750.0MHz		50	Low	22.96	29.22
	20330			1	Low	23.17	28.81
			16QAM	1	High	22.81	28.87
				50	Low	22.07	29.39

Conducted Output Power Band 4

						Max.	
						Avg.	Peak
						Power	Power
BW	Channel	Frequency	Modulation	RB Size	RB Offset	(dBm)	(dBm)
				1	Low	23.69	28.86
			QPSK	1	High	23.44	28.67
	20025	1717.5MHz		75	Low	23.34	29.61
	20023	17 17 . SIVII IZ	16QAM	1	Low	22.89	28.61
				1	High	22.69	28.61
				75	Low	22.35	29.38
		175 1732.5MHz	QPSK MHz 16QAM	1	Low	23.47	28.59
				1	High	23.28	28.44
15MHz	20175			75	Low	22.89	29.08
1 JIVII IZ	20173			1	Low	22.67	28.52
				1	High	22.56	28.41
				75	Low	21.98	28.92
				1	Low	23.39	28.56
			QPSK	1	High	23.43	28.69
	20325	4747 ENALL		75	Low	23.47	29.71
	20323	1747.5MHz		1	Low	22.67	28.45
			16QAM	1	High	22.56	28.45
				75	Low	22.49	29.41

			•			Max. Avg. Power	Peak Power
BW	Channel	Frequency (MHz)	Modulation	RB Size	RB Offset	(dBm)	(dBm)
		1732.5MHz	QPSK 16QAM	1	Low	24.65	29.15
				1	High	24.26	28.86
20MHz	20175			100	Low	22.97	29.31
ZUIVIMZ	20173			1	Low	23.71	29.02
				1	High	23.51	28.97
				100	Low	22.09	29.26

Conducted Output Power Band 5

			ed Output Fo			Max. Avg.	Peak
						Power	Power
BW	Channel	Frequency	Modulation	RB Size	RB Offset	(dBm)	(dBm)
				1	Low	23.15	28.51
			QPSK	1	High	22.99	28.54
	20425	826.5MHz		25	Low	21.75	28.38
	20425	020.3IVII IZ	16QAM	1	Low	22.21	28.56
				1	High	22.06	28.61
				25	Low	20.77	28.24
		525 836.5MHz	QPSK 16QAM	1	Low	23.11	28.49
				1	High	23.18	28.41
5MHz	20525			25	Low	21.92	28.43
JIVII IZ	20020			1	Low	22.06	28.47
				1	High	21.97	28.19
				25	Low	20.96	28.23
				1	Low	22.67	28.82
			QPSK	1	High	22.92	28.56
	20625	0.4C EMILE		25	Low	21.72	28.54
	20023	846.5MHz		1	Low	22.01	28.71
			16QAM	1	High	22.16	28.71
				25	Low	20.66	28.62

			ea Output i O			Max.	
						Avg. Power	Peak Power
BW	Channel	Frequency	Modulation	RR Size	RB Offset		(dBm)
	Onamici	requeries	Wodalation	1	Low	22.87	28.49
			QPSK	1	High	22.86	28.69
				50	Low	21.68	28.41
	20450	829.0MHz		1	Low	21.81	28.11
			16QAM	1	High	21.91	28.31
				50	Low	20.67	28.44
		836.5MHz	QPSK 16QAM	1	Low	22.79	29.02
				1	High	22.37	28.51
10MHz	20525			50	Low	21.73	28.39
TOWN IZ	20323	030.3IVII IZ		1	Low	21.72	28.61
				1	High	21.39	28.35
				50	Low	20.76	28.51
				1	Low	22.45	28.11
			QPSK	1	High	22.63	28.21
	20600	844.0MHz		50	Low	21.54	28.52
	20000	O 44 .∪IVI⊓Z		1	Low	21.68	28.47
			16QAM	1	High	21.78	28.79
				50	Low	21.65	28.43

Conducted Output Power Band 12

		Jonado	ed Output Pov	TO BUILD	-	Max. Avg. Power	Peak Power
BW	Channel	Frequency	Modulation	RB Size	RB Offset		(dBm)
				1	Low	23.15	28.61
			QPSK	1	High	23.38	28.39
	23035	701.5MHz		25	Low	21.99	28.47
	23033	701.3IVIDZ	16QAM	1	Low	22.15	28.37
				1	High	22.65	28.34
				25	Low	20.84	28.25
			QPSK //Hz 16QAM	1	Low	23.71	28.49
				1	High	23.39	28.76
5MHz	23095	23095 707.5MHz		25	Low	22.42	28.81
OIVII IZ	20000			1	Low	22.89	28.36
				1	High	22.34	28.41
				25	Low	21.31	28.42
				1	Low	23.19	28.74
			QPSK	1	High	23.54	28.57
	23155	713.5MHz		25	Low	22.16	28.75
	20100	7 10.0IVII IZ		1	Low	22.05	28.41
			16QAM	1	High	22.42	28.19
				25	Low	21.31	28.88

						Max.	
						Avg.	Peak
DIM		_		DD 0'	DD 0" 1	Power	Power
BW	Channel	Frequency	Modulation	RB Size	RB Offset		(dBm)
			QPSK	1	Low	22.89	28.61
				1	High	23.03	28.42
	23060	704.0MHz		50	Low	22.03	28.37
	23000	704.0IVII IZ		1	Low	21.68	28.48
			16QAM	1	High	22.05	28.55
				50	Low	20.89	28.14
	23095	707.5MHz	QPSK 16QAM	1	Low	22.91	28.19
				1	High	22.67	28.69
10MHz				50	Low	22.14	28.46
TOWN IZ	23093			1	Low	22.27	28.68
				1	High	21.87	28.93
				50	Low	20.94	28.38
				1	Low	23.41	28.63
			QPSK	1	High	23.25	28.69
	22420	711.0MHz		50	Low	22.24	28.88
	23130			1	Low	22.61	28.63
			16QAM	1	High	22.12	28.28
				50	Low	21.19	28.82

Band 4, Channel 20175, 1732.5 MHz, 16-QAM

Band 5, Channel 20525, 836.5 MHz, 16-QAM

Band 12, Channel 3095, 707.5 MHz, QPSK

Band 12, Channel 3095, 707.5 MHz, 16-QAM

5 Occupied Bandwidth

5.1 Test Limits

§2.1049:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

5.2 Test Procedure

The EUT was connected to a spectrum analyzer using a coaxial cable and power divider. The EUT was placed into a call using base station simulator. The base station simulator was set to force the EUT to its maximum power setting. The occupied bandwidth function of the analyzer was used to automatically generate the occupied bandwidth plots. The ndB down function of the analyzer was used to automatically measure the 26dB emission bandwidth. A peak detector was used for this measurement.

5.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3917	Rohde & Schwarz	CMW500	9/19/2015	9/19/2016
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/18/2015	9/18/2016
Power Divider	E18106	Weinschell Engineering	1506A	Time of Use	Time of Use

5.4 Results:

The bandwidth measurements are shown in the table below and the plots that follow.

Occupied Bandwidth Data

Band	Frequency (MHz)	Channel	BW (MHz)	# RB	Mode	-26dBc Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)							
			5	25	QPSK	5.99	4.63							
			כ	25	16-QAM	6.09	4.61							
			10	50	QPSK	11.90	9.30							
B2	1880.0	18900	10	50	16-QAM	11.90	9.26							
DZ.	1000.0	10300	15	75	QPSK	16.53	13.58							
			13	73	16-QAM	16.71	13.35							
			20	100	QPSK	21.00	18.12							
				20	100	16-QAM	19.08	17.79						
			5	5	5	5	5	5	5	5	5 25	QPSK	5.97	5.61
		20175		23	16-QAM	6.19	4.63							
			10	50	QPSK	12.10	9.29							
B4	1732.5			30	16-QAM	12.30	9.29							
54	1732.3		20173	20173		20175	15	75	QPSK	16.65	13.65			
						13	, ,	16-QAM	16.11	13.52				
									20	20 100	QPSK	20.44	18.04	
			20	100	16-QAM	20.84	18.04							
			5	25	QPSK	6.09	4.61							
B5	836.5	20525	,	25	16-QAM	5.89	4.63							
55	030.3	20323	10	50	QPSK	11.90	9.26							
			10	30	16-QAM	11.91	9.26							
			5	25	QPSK	5.53	4.63							
B12	707.5	23095	5	23	16-QAM	5.91	4.59							
D12	, 0, .5	23095	10	50	QPSK	11.70	9.22							
				30	16-QAM	11.66	9.18							

99% Occupied Bandwidth, Band 2, BW=15MHz, 16-QAM Marker 1 [T1] RBW 300 kHz Ref Lvl 3.96 dBm VBW 1 MHz 26.9 dBm 1.88001002 GHz 5 ms Unit 6.9 dB Offse ▼1 [T1] .96 dB .62 dE ugportungenderen terrengen generalistische 11 dB And home have the second landaller tealer of a for the Span 30 MHz Center 1.88 GHz 3 MHz/ 17.NOV.2015 13:35:37

6 Conducted Spurious Emissions at Antenna Terminals

6.1 Test Limits

§ 2.1051

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 22.917

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 24.238

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 27.53

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.

6.2 Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The base station simulator was set to force the EUT to its maximum power setting. The resolution bandwidth of the spectrum analyzer was set at 100kHz or 1MHz depending on the transmit band and the detector was set to peak detection for general scans up to the 10th harmonic. Emissions scans near the fundamental were measured using an RMS detector. Sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

6.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3917	Rohde & Schwarz	CMW500	9/19/2015	9/19/2016
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/18/2015	9/18/2016
Spectrum Analyzer	3720	Rohde & Schwarz	FSEK30	9/19/2015	9/19/2016
Power Divider	E18106	Weinschell Engineering	1506A	Time of Use	Time of Use

6.4 Results:

The following plots show that all spurious emissions are attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. Plots for emissions within 1MHz of the transmit block edge as well as for emission outside of this range are shown.

Band 2, BW=5MHz, 1RB, Middle, QPSK and 16QAM

Band 2, BW=10MHz, 1RB, Middle, QPSK and 16QAM

Band 2, BW=15MHz, 1RB, Middle, QPSK and 16QAM

Band 4, BW=15MHz, 1RB, Middle, QPSK and 16QAM

Band 5, BW=5MHz, 1RB, Middle, QPSK and 16QAM

Band 5, BW=10MHz, 1RB, Middle, QPSK and 16QAM

Band 12, BW=5MHz, 1RB, Middle, QPSK and 16QAM

Band 12, BW=10MHz, 1RB, Middle, QPSK and 16QAM

Band 2, 5 MHz BW, QPSK

Channel 18625, 1852.5 MHz

Below 1850 MHz

Channel 19175, 1907.5 MHz

Above 1910 MHz

Band 2, 5 MHz BW, 16-QAM

Channel 18625, 1852.5 MHz

Below 1850 MHz

Channel 19175, 1907.5 MHz

Above 1910 MHz

Band 2, 10 MHz BW, QPSK

Channel 18650, 1855.0 MHz

Below 1850 MHz

Channel 19150, 1905.0 MHz

Above 1910 MHz

Band 2, 10 MHz BW, 16-QAM

Channel 18650, 1855.0 MHz

Below 1850 MHz

Channel 19150, 1905.0 MHz

Above 1910 MHz

Band 2, 15 MHz BW, QPSK

Channel 18675, 1857.2 MHz

Below 1850 MHz

Channel 1902.5, 19125 MHz

Above 1910 MHz

Band 2, 15 MHz BW, 16-QAM

Channel 18675, 1857.2 MHz

Below 1850 MHz

Channel 1902.5, 19125 MHz

Above 1910 MHz

Band 2, 20 MHz BW, QPSK

Channel 18700, 1860.0 MHz

Below 1850 MHz

Channel 19100, 1900.0 MHz

Above 1910 MHz

Band 2, 20 MHz BW, 16-QAM

Channel 18700, 1860.0 MHz

Below 1850 MHz

Channel 19100, 1900.0 MHz

Above 1910 MHz

Band 4, 5 MHz BW, QPSK

Channel 19975, 1712.5 MHz

Below 1710 MHz

Channel 20375, 1752.5 MHz

Above 1755 MHz

Band 4, 5 MHz BW, 16-QAM

Channel 19975, 1712.5 MHz

Below 1710 MHz

Channel 20375, 1752.5 MHz

Above 1755 MHz

Band 4, 10 MHz BW, QPSK

Channel 20000, 1715.0 MHz

Below 1710 MHz

Channel 20350, 1750.0 MHz

Above 1755 MHz

Band 4, 10 MHz BW, 16-QAM

Channel 20000, 1715.0 MHz

Below 1710 MHz

Channel 20350, 1750.0 MHz

Above 1755 MHz

Band 4, 15 MHz BW, QPSK

Channel 20025, 1717.5 MHz

Below 1710 MHz

Channel 20325, 1747.5 MHz

Above 1755 MHz

Band 4, 15 MHz BW, 16-QAM

Channel 20025, 1717.5 MHz

Below 1710 MHz

Channel 20325, 1747.5 MHz

Above 1755 MHz

Band 4, 20 MHz BW, QPSK

Channel 20050, 1720.0 MHz

Below 1710 MHz

Channel 20300, 1745.0 MHz

Above 1755 MHz

Band 4, 20 MHz BW, 16-QAM

Channel 20050, 1720.0 MHz

Below 1710 MHz

Channel 20300, 1745.0 MHz

Above 1755 MHz

Band 5, 5 MHz BW, QPSK

Channel 20425, 826.5 MHz

Below 824 MHz

Channel 20625, 846.5 MHz

Above 849 MHz

Band 5, 5 MHz BW, 16-QAM

Channel 20425, 826.5 MHz

Below 824 MHz

Channel 20625, 846.5 MHz

Above 849 MHz

Band 5, 10 MHz BW, QPSK

Channel 20450, 829.0 MHz

Below 824 MHz

Channel 20600, 844.0 MHz

Above 849 MHz

Band 5, 10 MHz BW, 16-QAM

Channel 20450, 829.0 MHz

Below 824 MHz

Channel 20600, 844.0 MHz

Above 849 MHz

Band 12, 5 MHz BW, QPSK

Channel 23025, 700.5 MHz

Below 698 MHz

Channel 23155, 713.5 MHz

Above 716 MHz

Band 12, 5 MHz BW, 16-QAM

Channel 23025, 700.5 MHz

Below 698 MHz

Channel 23155, 713.5 MHz

Above 716 MHz

Band 12, 10 MHz BW, QPSK

Channel 23050, 703.0 MHz

Below 698 MHz

Channel 23130, 711.0 MHz

Above 716 MHz

Band 12, 10 MHz BW, 16-QAM

Channel 23050, 703.0 MHz

Below 698 MHz

Channel 23130, 711.0 MHz

Above 716 MHz

7 Radiated Output Power

7.1 Test Limits

§ 22.913

(a) (2) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

§ 24.232

(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

§ 27.50

(c) (10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

§ 27.50

(d) (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

7.2 Test Procedure

The radiated output power was determined by adding the peak antenna gain to the highest measured conducted output power to determine the maximum radiated power. The peak antenna gain was calculated by taking into account the ERP / EIRP limits as well as the Maximum Permissible Exposure (MPE) limits at 20cm.

$$ERP = ConductedOutputPower(dBm) + AntennaGain(dBi) - 2.15$$

$$EIRP = ConductedOutputPower(dBm) + AntennaGain(dBi)$$

7.3 Results:

The US60L LTE E-UTRA module meets the radiated power requirements of FCC §22.91, §24.232, and §27.50. The ERP / EIRP results are shows as well as the MPE calculations used to determine the maximum allowable gain for each frequency band.

ERP / EIRP Results (QPSK)

Enti / Enti Nesalis (el Sit)									
Radiated Output Power (QPSK)									
		Max							
	Conducted	Antenna							
	Power	Gain	EIRP						
Band	(dBm)	(dBi)	(dBm)	ERP(dBm)					
Band 2	23.61	8.00	31.61	29.46					
Band 4	24.35	5.00	29.35	27.20					
Band 5	23.18	9.40	32.58	30.43					
Band 12	23.71	8.70	32.41	30.26					

ERP / EIRP Results (16QAM)

ERP / EIRP Results (TOWAIVI)									
Radiated Output Power (16QAM)									
Band	Conducted Antenna Power Gain EIRP Band (dBm) (dBi) (dBm)								
Band 2	23.56	8.00	31.56	29.41					
Band 4	23.71	5.00	28.71	26.56					
Band 5	22.21	9.40	31.61	29.46					
Band 12	22.89	8.70	31.59	29.44					

MPE Calculations for Maximum Antenna Gain

Band 5 (part 22.913)					Band 12 (part 27.50, c, 10)			
Frequency	826.5	MHz			Frequency	701.5	MHz		
MPE Limit	0.551	mW/cm^2			MPE Limit	0.468	mW/cm^2		
Distance	20	cm			Distance	20	cm		
Maximum Scaled Power	25	dBm			Maximum Scaled Power	25	dBm		
TX Ant Gain	9.4	dBi			TX Ant Gain	8.7	dBi		
EIRP	34.4		2754.229	mW	EIRP	33.7		2344.229	mW
ERP	32.25		1678.804	mW	ERP	31.55		1428.894	mW
Power Density	0.5479	mW/cm^2	at 20cm		Power Density	0.4664	mW/cm^2 at	20cm	
ERP Limit	7000mW				ERP Limit	3000mW			
Band 2 (24.232, c)					Band 4 (part 27.50, d, 4)				
Frequency	1852.5	MHz			Frequency	1732.5	MHz		
MPE Limit	1.000	mW/cm^2	2		MPE Limit	1.000	mW/cm^2		
Distance	20	cm			Distance	20	cm		
Maximum Scaled Power	25	dBm			Maximum Scaled Power	25	dBm		
TX Ant Gain	8	dBi			TX Ant Gain	5	dBi		
EIRP	33		1995.262	mW	EIRP	30		1000	mW
Power Density	0.3969	mW/cm^2	at 20cm		Power Density	0.1989	mW/cm^2 at	20cm	
EIRP Limit	2000mW				EIRP Limit	1000mW			

8 Radiated Spurious Emissions (Transmitter)

8.1 Test Limits

§ 2.1051

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 22.917

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 24.238

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

§ 27.53

- (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.
- (h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.

8.2 Test Procedure

The EUT was placed on a non-conductive turntable. The measurement antenna was placed at a distance of 3 meters from the EUT. The EUT was forced to transmit at its maximum output power setting. During the tests, the antenna height and EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic was investigated in order to identify the spurious emission. Once the spurious emissions were identified, the power of the emission was determined using the substitution method described in TIA-603-C. The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and at the spurious emissions frequency.

8.3 Test Equipment Used:

0.5 Test Equipi	ilielit Osea.				
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	1302.6005.40	Rohde&Schwarz	ESU40	9/20/2015	9/20/2016
Preamplifier	122005	Rohde&Schwarz	TS-PR18	11/19/2015	11/19/2016
Horn Antenna	00156319	ETS	3117	5/15/2015	5/15/2016
Horn Antenna	00154521	ETS	3117	11/3/2015	11/3/2016
Bilog Antenna	2362	ETS	3142B	1/16/2015	1/16/2016
Bilog Antenna	00051864	ETS	3142C	1/20/2015	1/20/2016
System Controller	121701-1	Sunol Sciences	SC99V	Time of Use	Time of Use
High Pass Filter	1	Wainwright	WHKX12- 2533.85-2710- 18000-40SS	Time of Use	Time of Use
High Pass Filter	25	Wainwright	WHKX12- 1028.5-1100- 1500-40SS	Time of Use	Time of Use
Base Station Simulator	3917	Rohde & Schwarz	CMW500	9/19/2015	9/19/2016
Signal Generator	3915	Rohde&Schwarz	SMB100A	9/18/2015	9/18/2016

8.4 Results:

All radiated spurious emissions were attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB which is equivalent to -13dBm. The emissions were measured using an RMS detector and the analyzer was gated so that the emission was only measured during the on-times of the transmitter.

Worst Case Spurious Measurements – Band 2 Radiated Spurious Emissions Measurement									
T F	D.: D. (f)	Radiate			leasurement		44/00/004=		
Test Engineer:			Start Date:				11/23/2015		
Temperature:			Humidity:			Pressure:	988.9mBar		
RBW:			VBW:						
Notes:	Results repre	esent the wo	orst case from	n 3 orthogona	al axis positio	ns.	T		
			Α	В	С	D	E	F	
Band/Channel	Spurious Frequency (MHz)	Polarity	Device Reading (dBm)	Signal Generator Level (dBm)	Cable Loss	Tx Antenna Gain (dBd)	Limit (dBm)	Radiated Spurious Emission Level (dBm)	
	3700	Н	-43.27	-32.71	4.85	8.26	-13	-29.30	
	3700	V	-40.54	-29.48	4.85	8.26	-13	-26.07	
	5550	Н	-60.26	-45.81	6.91	10.40	-13	-42.33	
	5550	V	-51.61	-36.95	6.91	10.40	-13	-33.47	
Band 2 Low Ch	7400	Н	-48.33	-29.76	7.75	11.84	-13	-25.67	
(1850MHz)	7400	V	-49.22	-31.81	7.75	11.84	-13	-27.72	
,	9250	H	-77.44	-56.74	9.21	13.19	-13	-52.76	
	9250	V	-76.85	-57.32	9.21	13.19	-13	-53.34	
	11100	Н	-75.75	-51.21	10.47	13.23	-13	-48.45	
	11100	V	-70.2	-47.26	10.47	13.23	-13	-44.50	
	3760	Н	-42.23	-31.2	5.20	8.26	-13	-28.14	
	3760	V	-36.24	-24.86	5.20	8.26	-13	-21.80	
	5640	Н	-64.41	-47.16	7.09	10.56	-13	-43.69	
	5640	V	-55.99	-40.04	7.09	10.56	-13	-36.57	
Band 2 Mid Ch	7520	Н	-57.33	-38.62	8.01	11.93	-13	-34.71	
(1880MHz)	7520	V	-53.91	-36.32	8.01	11.93	-13	-32.41	
	9400	Ι	-74.18	-52.65	9.15	13.12	-13	-48.69	
	9400	V	-73.24	-53.18	9.15	13.12	-13	-49.22	
	11280	Η	-75.58	-50.71	10.16	13.26	-13	-47.61	
	11280	V	-67.81	-44.64	10.16	13.26	-13	-41.54	
	3820	Η	-43.28	-32.35	5.00	8.25	-13	-29.10	
	3820	V	-37.7	-26.51	5.00	8.25	-13	-23.26	
	5730	Н	-66.1	-48.29	7.06	10.66	-13	-44.69	
	5730	V	-56.5	-39.75	7.06	10.66	-13	-36.15	
Band 2 High Ch	7640	Н	-51.74	-32.96	7.87	11.98	-13	-28.85	
(1910MHz)	7640	V	-55.06	-37.58	7.87	11.98	-13	-33.47	
	9550	H	-74.64	-52.65	8.60	13.09	-13	-48.17	
	9550	V	-79.81	-59.19	8.60	13.09	-13	-54.71	
	11460	H	-75.09	-49.96	9.51	13.25	-13	-46.22	
	11460	V	-69.11	-45.21	9.51	13.25	-13	-41.47	
								F=B-C+D	

					llents – Bai lleasurement			
Test Engineer:	Brian Daffin		Start Date:				11/23/2015	
Temperature:			Humidity:				988.9mBar	
RBW:			VBW:					
	Results repre	esent the wo			al axis positio	ns.		
110100.	rtoodilo ropro	700111 1110 1110	A	В	C	D	E	F
							_	Radiated
				Signal				Spurious
	Spurious		Device	Generator		Tx Antenna		Emission
Band/Channel	Frequency	Polarity	Reading	Level	Cable Loss	Gain	Limit	Level
	(MHz)	. Oldi ily	(dBm)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)
	3420	Н	-58.19	-48.68	4.60	7.83	-13	-45.45
	3420	V	-58.75	-48.22	4.60	7.83	-13	-44.99
	5130	H	-76.11	-62.01	6.06	10.12	-13	-57.95
	5130	V	-64.98	-51.52	6.06	10.12	-13	-47.46
Band 4 Low Ch (1710MHz)	6840	H	-62.48	-44.27	7.68	11.11	-13	-40.84
	6840	V	-62.07	-45.04	7.68	11.11	-13	-41.61
,	8550	Н	-79.42	-59.9	8.66	12.91	-13	-55.65
	8550	V	-80.05	-61.75	8.66	12.91	-13	-57.50
	10260	Н	-80.93	-57.92	10.42	13.06	-13	-55.29
	10260	V	-81.25	-59.84	10.42	13.06	-13	-57.21
	3465	Н	-64.15	-54.7	4.80	7.83	-13	-51.67
	3465	V	-60.17	-49.71	4.80	7.83	-13	-46.68
	5197.5	Н	-78.01	-63.4	6.18	10.12	-13	-59.46
	5197.5	٧	-67.81	-54.22	6.18	10.12	-13	-50.28
Band 4 Mid Ch	6930	Н	-64.75	-46.83	7.60	11.26	-13	-43.17
(1732.5MHz)	6930	V	-68.15	-51.88	7.60	11.26	-13	-48.22
	8662.5	Н	-79.21	-59.01	8.79	12.98	-13	-54.82
	8662.5	V	-80.44	-61.74	8.79	12.98	-13	-57.55
	10395	Н	-80.54	-56.74	11.05	13.08	-13	-54.71
	10395	V	-81.2	-58.55	11.05	13.08	-13	-56.52
	3510	Н	-65.27	-55.46	4.56	8.15	-13	-51.87
	3510	V	-59.11	-48.36	4.56	8.15	-13	-44.77
	5265	Н	-76.65	-62.87	6.27	10.27	-13	-58.87
D 14151 0	5265	V	-69.19	-56.25	6.27	10.27	-13	-52.25
Band 4 High Ch	7020	Н	-59.52	-41.13	7.73	11.36	-13	-37.50
(1755MHz)	7020	V	-60	-43.19	7.73	11.36	-13	-39.56
	8775	H	-80.39	-59.33	8.50	12.92	-13	-54.91
	8775	V	-80.22	-60.42	8.50	12.92	-13	-56.00
	10530	H	-80.82	-56.94	9.61	13.08	-13	-53.47
	10530	V	-80.68	-57.65	9.61	13.08	-13	-54.18
								F=B-C+D

	<u></u>				nents – Bai leasurement			
Test Engineer:	Brian Daffin		Start Date:				11/23/2015	
Temperature:			Humidity:	54.00%			988.9mBar	
RBW:			VBW:					
	Results repre	esent the wo			al axis positio	ns.		
	•		Α	В	C	D	E	F
								Radiated
				Signal				Spurious
	Spurious		Device	Generator		Tx Antenna		Emission
Band/Channel	Frequency	Polarity	Reading	Level	Cable Loss	Gain	Limit	Level
	(MHz)	· ·	(dBm)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)
	1648	Н	-66.84	-64.18	3.26	5.64	-13	-61.80
	1648	V	-61.99	-58.21	3.26	5.64	-13	-55.83
	2472	Н	-70.27	-64.03	4.17	5.87	-13	-62.33
	2472	V	-73.85	-65.85	4.17	5.87	-13	-64.15
Band 5 Low Ch	3296	Η	-76.13	-67.35	4.58	7.32	-13	-64.62
(824MHz)	3296	٧	-72.31	-62.92	4.58	7.32	-13	-60.19
	4120	Ι	-77.48	-66.97	5.33	8.91	-13	-63.39
	4120	٧	-77.59	-67.08	5.33	8.91	-13	-63.50
	4944	Н	-78.64	-65.17	5.82	9.90	-13	-61.09
	4944	V	-79.92	-67.76	5.82	9.90	-13	-63.68
	1673	Н	-70.31	-67.46	3.30	5.64	-13	-65.12
	1673	V	-68.07	-63.5	3.30	5.64	-13	-61.16
	2509.5	Н	-78.19	-71.87	3.97	5.65	-13	-70.19
	2509.5	V	-77.26	-69.29	3.97	5.65	-13	-67.61
Band 5 Mid Ch	3346	Н	-75.4	-66.86	4.63	7.67	-13	-63.82
(836.5Hz)	3346	V	-73.94	-64.12	4.63	7.67	-13	-61.08
	4182.5	Н	-77.49	-66.66	5.19	8.91	-13	-62.94
	4182.5	V	-77.65	-66.68	5.19	8.91	-13	-62.96
	5019	H	-78.65	-63.85	6.19	9.99	-13	-60.05
	5019	V	-79.79	-66.04	6.19	9.99	-13	-62.24
	1698	H	-66.87	-63.53	3.18	5.64	-13	-61.07
	1698	V	-62.63	-57.47	3.18	5.64	-13	-55.01
	2547	Н	-77.11	-70.9	4.09	5.65	-13	-69.34
D 15151 0	2547	V	-76.63	-69.08	4.09	5.65	-13	-67.52
Band 5 High Ch	3396	Н	-75.25	-65.9	4.84	7.67	-13	-63.07
(849MHz)	3396	V	-74.27	-63.95	4.84	7.67	-13	-61.12
	4245	H	-77.9	-67.21	5.00	9.01	-13	-63.20
	4245	V	-77.66	-67.12	5.00	9.01	-13	-63.11
	5094	H	-79.3	-65.17	6.25	9.99	-13	-61.43
	5094	V	-79.38	-66.2	6.25	9.99	-13	-62.46
								F=B-C+D

Report Number: 102368081LEX-002 Issued: 12/15/2015

			ed Spurious I					
Test Engineer:	Brian Daffin		Start Date:				11/23/2015	
Temperature:			Humidity:				988.9mBar	
RBW:			VBW:			i ressure.	300.3mBai	
	Results repre	sent the wr			l avic nocition	ne		
Notes.	results repre	Scrit tric w	A A	B	C	D.	Е	F
							_	Radiated
				Signal				Spurious
	Spurious		Device	Generator		Tx Antenna		Emission
Band/Channel	Frequency	Polarity	Reading	Level	Cable Loss	Gain	Limit	Level
Ballu/Clialillei	(MHz)	r Olai Ity	(dBm)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)
	1401	Н	-44.48	-41.83	3.06	4.28	-13	-40.61
	1401	V	-44.84	-41.85	3.06	4.28	-13	-40.63
	2101.5	H	-63.53	-58.51	3.65	4.89	-13	-57.27
	2101.5	V	-56.96	-50.79	3.65	4.89	-13	-49.55
Band 12 Low Ch	2802	H	-65.88	-58.89	4.16	6.89	-13	-56.16
(700.0MHz)	2802	V	-61.41	-53.2	4.16	6.89	-13	-50.47
(100.01411 12)	3502.5	H	-70.47	-61.41	4.56	8.15	-13	-57.82
	3502.5	V	-69.58	-59.76	4.56	8.15	-13	-56.17
	4203	H	-70.1	-59.64	4.98	9.01	-13	-55.61
	4203	V	-69.16	-58.25	4.98	9.01	-13	-54.22
	1415	H	-45.02	-42.2	2.80	4.28	-13	-40.72
	1415	V	-43.46	-40.75	2.80	4.28	-13	-39.27
	2122.5	Н	-64.28	-59.51	3.69	4.89	-13	-58.31
	2122.5	V	-59.91	-53.68	3.69	4.89	-13	-52.48
Band 12 Mid Ch	2830	Н	-63.79	-56.63	4.21	6.89	-13	-53.95
(707.5MHz)	2830	V	-57.36	-48.89	4.21	6.89	-13	-46.21
	3537.5	Н	-72.71	-63.42	4.60	8.15	-13	-59.87
	3537.5	V	-69.98	-59.76	4.60	8.15	-13	-56.21
	4245	Ι	-67.16	-56.54	5.00	9.01	-13	-52.53
	4245	V	-67.64	-56.73	5.00	9.01	-13	-52.72
	1432	Η	-43.3	-40.82	3.12	4.28	-13	-39.66
	1432	V	-41.78	-38.95	3.12	4.28	-13	-37.79
	2148	Н	-62.89	-57.98	3.85	4.89	-13	-56.94
	2148	V	-57.93	-51.45	3.85	4.89	-13	-50.41
Band 12 High Ch	2864	Н	-64.06	-56.6	4.26	6.89	-13	-53.97
(716MHz)	2864	V	-57.37	-48.88	4.26	6.89	-13	-46.25
	3580	Н	-68.17	-58.68	4.73	8.15	-13	-55.26
	3580	V	-61.8	2966.2	4.73	8.15	-13	2969.62
	4296	Н	-67.43	-56.62	5.22	9.01	-13	-52.83
	4296	V	-67.5	-56.69	5.22	9.01	-13	-52.90
								F=B-C+D

9 Frequency Stability

9.1 Test Limits

§ 2.1055, §22.355, §24.235, §27.54

The frequency stability of the transmitter was required to maintain a ± 2.5 ppm tolerance.

9.2 Test Procedure

The equipment under test was connected to a DC power source and the RF output was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for that purpose. After the temperature stabilized for approximately 30 minutes, the frequency error was read from the base station simulator. At 20C the input voltage was varied from 85% to 115% and the frequency stability vs input voltage was recorded.

9.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Base Station Simulator	3917	Rohde & Schwarz	CMW500	9/19/2015	9/19/2016
Environmental Chamber	32692	Thermotron	SM-8C	2/24/2015	2/24/2016
Multimeter	3550	Fluke	115	8/4/2015	8/4/2016
Power Supply	3513	Gwinstek	GPS1850	NCR	NCR

9.4 Results:

The tables below show the frequency stability data. In all cases the test sample met the ± 2.5 ppm limit.

Frequency Stability Band 2

Operating	Freqeuncy:	1,880,000,000	Hz		
Channel:		18900			
Reference	Voltage:	3.3	VDC		
Deviation Limit:		2.5	ppm		
Notes:	Frequency St	ability in Band 2			
Voltage	Voltage		Frequency	Deviation	Deviation
(%)	(DC)	Temp (℃)	Error (Hz)	(%)	(ppm)
100%	3.3	-30	2.4	0.0000003	0.0034
100%	3.3	-20	2.8	0.0000004	0.0040
100%	3.3	-10	-1.3	-0.0000002	-0.0018
100%	3.3	0	3.5	0.0000005	0.0049
100%	3.3	10	2.5	0.0000004	0.0035
100%	3.3	20	2.7	0.0000004	0.0038
100%	3.3	30	1.9	0.0000003	0.0027
100%	3.3	40	4.1	0.0000006	0.0058
100%	3.3	50	4.2	0.0000006	0.0059
100%	3.3	60	3.8	0.0000005	0.0054
115%	3.8	20	-3.2	-0.0000005	-0.0045
85%	2.8	20	1.6	0.0000002	0.0023

Frequency Stability Band 4

	Frequency Stability Band 4										
Operating	Freqeuncy:	1,732,500,000	Hz								
Channel:		20175									
Reference	Voltage:	3.3	VDC								
Deviation	Limit:	2.5	ppm								
Notes:	Frequency S	tability in Band 4	4								
Voltage	Voltage		Frequency	Deviation	Deviation						
(%)	(DC)	Temp (℃)	Error (Hz)	(%)	(ppm)						
100%	3.3	-30	2.1	0.0000003	0.0025						
100%	3.3	-20	2.7	0.0000003	0.0032						
100%	3.3	-10	-1.8	-0.0000002	-0.0022						
100%	3.3	0	-2.6	-0.000003	-0.0031						
100%	3.3	10	3.2	0.0000004	0.0038						
100%	3.3	20	-2.2	-0.0000003	-0.0026						
100%	3.3	30	4.2	0.0000005	0.0050						
100%	3.3	40	3.1	0.0000004	0.0037						
100%	3.3	50	1.8	0.0000002	0.0022						
100%	3.3	60	2.9	0.0000003	0.0035						
115%	3.8	20	-2.8	-0.000003	-0.0033						
85%	2.8	20	1.9	0.0000002	0.0023						

Report Number: 102368081LEX-002 Issued: 12/15/2015

Frequency Stability Band 5

Operating	Freqeuncy:	836,500,000	Hz		
Channel:		20525			
Reference	Voltage:	3.3	VDC		
Deviation	Limit:	2.5	ppm		
Notes:	Frequency S	tability in Band (5		
Voltage	Voltage		Frequency	Deviation	Deviation
(%)	(DC)	Temp (℃)	Error (Hz)	(%)	(ppm)
100%	3.3	-30	2.3	0.0000003	0.0027
100%	3.3	-20	-3.6	-0.0000004	-0.0043
100%	3.3	-10	-3.4	-0.0000004	-0.0041
100%	3.3	0	1.1	0.0000001	0.0013
100%	3.3	10	-2.8	-0.0000003	-0.0033
100%	3.3	20	-2.7	-0.0000003	-0.0032
100%	3.3	30	1.8	0.0000002	0.0022
100%	3.3	40	2.5	0.0000003	0.0030
100%	3.3	50	-3.6	-0.000004	-0.0043
100%	3.3	60	2.9	0.0000003	0.0035
115%	3.8	20	3.1	0.0000004	0.0037

20

-5.4

-0.0000006 -0.0065

85%

2.8

Frequency Stability Band 12								
Operating	Freqeuncy:	707,500,000	Hz					
Channel:		23095						
Reference Voltage:		3.3	VDC					
Deviation Limit:		2.5 ppm						
Notes:	Frequency Sta	ability in Band 12						
Voltage	Voltage		Frequency	Deviation	Deviation			
(%)	(DC)	Temp (℃)	Error (Hz)	(%)	(ppm)			
100%	3.3	-30	-1.6	-0.0000002	-0.0023			
100%	3.3	-20	1.9	0.0000003	0.0027			
100%	3.3	-10	1.2	0.0000002	0.0017			
100%	3.3	0	2.6	0.0000004	0.0037			
100%	3.3	10	-1.1	-0.0000002	-0.0016			
100%	3.3	20	3.3	0.0000005	0.0047			
100%	3.3	30	1.7	0.0000002	0.0024			
100%	3.3	40	2.8	0.0000004	0.0040			
100%	3.3	50	-1.4	-0.0000002	-0.0020			
100%	3.3	60	-3.5	-0.0000005	-0.0049			
115%	3.8	20	3.4	0.0000005	0.0048			
85%	2.8	20	4.1	0.0000006	0.0058			

Report Number: 102368081LEX-002 Issued: 12/15/2015

10 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30	+2.8dB	
MHz		

Report Number: 102368081LEX-002 Issued: 12/15/2015

11 Revision History

Revision Level	Date	Report Number	Notes
0	12/15/2015	102368081LEX-002	Original Issue