1)	
2)	
3)	
4)	

Nota: _____

2ª Prova de F-328 - Diurno 22/10/2008

Nome:	RA:	Turma:
-------	------------	--------

Questão 01

Um capacitor esférico é constituído de uma armadura interna de raio a, carregada com carga +Q, e uma armadura externa de raio b, carregada com carga -Q. O espaço entre as armaduras está preenchido com um material dielétrico de constante dielétrica K.

- a) determine o vetor \vec{E} dentro do dielétrico; (1,0 ponto)
- b) calcule a capacitância deste capacitor; (1,0 ponto)
- c) determine o valor da densidade superficial de carga σ' induzida na parede interna (r = a) do dielétrico. (0.5 ponto)

Questão 2

Um cilindro oco de raio interno r_a , raio externo r_b e comprimento L é feito de um material de resistividade ρ . Uma diferença de potencial V aplicada nos extremos do cilindro produz uma corrente paralela a seu eixo.

- a) ache a resistência do cilindro em termos de L, ρ , r_a e r_b ; (1,0 ponto)
- b) calcule a densidade de corrente no cilindro quando V é aplicada; (0,5 ponto)
- c) calcule o campo elétrico no interior do cilindro; (0,5 ponto)
- d) suponha agora que a *ddp* é aplicada entre as superfícies interna e externa, de modo que a corrente flui radialmente para fora. Calcule a nova resistência do cilindro. (0,5 ponto)

Questão 03

Na figura abaixo, a chave S ficou fechada por um tempo suficientemente longo para que o capacitor se tornasse completamente carregado.

- a) na situação acima, ache a corrente que atravessa cada resistor; (1,0 ponto)
- b) ache a carga final no capacitor; (1,0 ponto)
- c) abrindo-se a chave *S*, qual é a expressão da carga no capacitor em função do tempo? (0,5 ponto)

Questão 4

Uma bobina retangular tem 100 voltas justapostas e dimensões mostradas na figura. Seu plano faz um ângulo de 30° com o eixo x e ela pode girar em torno do eixo y.

- a) calcule a força sobre cada lado da espira exercida por um campo magnético $\vec{B} = 0.8 \text{ T } \hat{x}$ quando uma corrente I = 1.2 A flui na direção mostrada; (1.5 pontos)
- b) calcule o vetor torque que age sobre a espira; (0,5 ponto)
- c) em que sentido ela tende a girar? (0,5 ponto)

