

FIRST SEMESTER 2022-2023

Course Handout (Part-II)

Date:

29.08.2022

Course No: CHEM F212

Course Title: ORGANIC CHEMISTRY -I

Instructor-in-charge: Manab Chakravarty

1. Scope and objective of the course: To familiarize the students with basic mechanistic aspects of organic reactions including mechanistic types, thermodynamics and kinetics, the important intermediates involved in organic reactions, functional group chemistry.

2. Text Book: R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th edition. **(T1)**

Reference Books: J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed., 2000. **(R1)**

Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 4th ed., 1992.

(R2)

G Marc Loudon, Organic Chemistry, Oxford, 4th Edition, 2002.

Francis A Carey, Organic Chemistry, Tata McGrawHill, 7th edition, 2008.

3. Course Plan:

Lec.	Learning	Topics to be Covered	Learning Outcomes	Chapter in the Text Book
No.	objectives			
1-2	Basic	Homolytic, heterolytic	Understanding of	T1: Ch. 4, pg. 55-59
	terminology	fission of bonds, concept of	basic organic	R1: Ch. 5, pg. 116-131.
	and	electrophiles and	reactions	Lecture notes
	representation	nucleophiles; how to write	and drawing	
	of organic	organic reaction	reactions realistically	
	reactions	mechanisms; movement of	towards creative	
		arrows; curved and fish-	organic chemistry;	
		hook arrows; examples	Representing the	
			movement of	
			electrons in reactions	
			by curly arrows	
3-4	Reactive	Carbocations: Structure &	Detailed analysis on	T1: Ch. 4, pg. 64-69.
	intermediates:	stability, generation and	the generation,	Lecture notes

	T -	Ι .	T _	
	carbocations	reactions	character, type and role of the useful intermediate carbocation in organic reactions, application in organic synthesis with stereochemical outcome	
5	Reactive intermediates: carbanions	Carbanions: Structure & stability, generation and reactions	Idea about another intermediate and difference between cation and anion intermediates in terms of the synthesis, behavior etc. Use of such intermediate in organic reactions	T1: Ch. 4, pg. 69-72. Lecture notes
6-7	Reactive intermediates: free radicals	Free radicals: Structure & stability, generation and reactions	Intermediate with a free electron and their reactions follow different rules than ionic intermediates, Idea of polymerization.	T1: Ch. 4, pg. 81-86. Lecture notes
8-10	Reactive intermediates: others	Carbenes; nitrenes: generation, stability, and fate	Substrate Conditions to generate carbenes, Carbenes are neutral species with only six electrons, electrophilic nature, insertion reaction and application in organic synthesis and modern development; How different these are with the ionic intermediates. Same information related to nitrene is expected to be gained as nitrenes are the nitrogen analogue of carbenes.	T1: Ch. 4, pg. 72-78. Lecture notes
11- 13	Aromatic chemistry	Aromatic nucleophilic substitutions; Aromatic	Concept of aromaticity,	T1: Ch. 5C, pg. 262-283; Ch. 9, pg. 488-502.
		electrophilic substitutions; S _N Ar mechanism; benzyne	Understanding the ways to functionalize	R1: Ch. 23, pg. 589-604. Lecture notes

	T	Τ .	T	I
		mechanism;	the aromatic ring and its usefulness to generate medicines and functional materials	
14-17	Thermodynami cs and kinetics of reactions	Thermodynamic and kinetic control; Hammond postulate; methods to determine mechanisms (Hammett equation, kinetic isotopic effect); examples	Importance in proposing mechanism, how the thermodynamic and kinetic parameters help to determine the feasibility of reactions (the speed and energy), how a reaction rate can vary with different substitution.	T1: Ch. 4, pg. 97-102. R1: Ch. 13, pg.319-330. Ch. 22, pg. 554-556. Ch. 41, pg.1090-1101. R2: Ch. 6, pg. 208-215, 217-219, 226. Lecture notes
18- 21	Alkyl and aryl halides	Synthesis and reactions of alkyl and aryl halides	How this halides are related to our daily needs and the chemistry behind the fact	T1: Ch. 8, pg. 426-462. Ch. 9, pg. 482-485. Lecture notes
22- 25	Alcohols, phenol and ethers	Synthesis, reactivity; applications of Grignard reagents for synthesis; diols, acid/base catalysed ring opening	The chemistry involved in the naturally occurring functional groups that contain polar C-O bond, the distinct reactivity of these functional groups will be understood.	T1: Ch. 10, pg. 507-537. Ch. 11, pg. 545-562. Lecture notes (epoxides)
26- 28	Amines and nitro compounds	Synthesis, basicity and reactions	Many interesting natural products and widely used drugs are amines; hence such functional group chemistry will be learnt.	T1: Ch. 15, pg. 696-736. and Lecture Notes (Nitro compounds)
29- 37	Carbonyl compounds	Synthesis, reactivity, enolates, malonate and ethyl acetoacetate synthesis Aldol, Crossed Aldol and Claisen condensation; Conjugate addition reactions of α, β-unsaturated carbonyl compounds with special	Concept about the most important functional group because its electon-deficient carbons and easily broken π -bond . The important name reactions and their applications in	T1: Ch. 12, pg. 571-611. R1: Ch. 21, pg. 524-541. Lecture notes (malonate & ethyl acetoacetate)

		reference to Michael	organic synthesis to	
		addition, Mannich reaction,	synthesize medicinally	
		Wittig reaction	useful molecules.	
38-	Carboxylic acid	Synthesis, reactions,	Enrich with this	T1: Ch. 13, pg. 624-648;
40	& derivatives	conversion for acid to other	interesting functional	Ch. 14, Pg. 657-685.
		derivatives	groups in terms of	Lecture notes
			preparation, features	
			important products	
			such as aspirin	
41-	Carbohydrates	Introduction and their	Concept on the largest	T1: Ch. 26, pg. 1228-1236,
42		reactions	group of organic	1244-1253.
			molecules in nature,	Lecture notes
			the basic structures	
			and reactions of	
			carbohydrates	

4. Evaluation:

Component	Duration	Weightage (%)	Date and Time	Nature of	
_				Component	
Mid Sem test	90 min.	30	03/11 3.30 - 5.00PM	Closed Book	
Tutorial tests	continuous	20	Continuous	open	
Seminar/interaction/	continuous	10		open	
assignment					
Comprehensive Examination	180 min	40	26/12 FN	Closed book	

- 5. Make-up(s) will be granted only for genuine reasons.
- **6. Chamber consultation hours:** : To be announced
- **7. Notices:** All the notices pertaining to this course will be displayed on **Department of Chemistry Notice Board only**.
- 8. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge Organic Chemistry -

Ι