Section 1.8: Linear Transformations

Linear Transformations

- A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .
- The set \mathbb{R}^n is called domain of T, and \mathbb{R}^m is called the codomain of T.
- The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m .
- For **x** in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the image of **x** (under the action of T).
- The set of all images $T(\mathbf{x})$ is called the range of T.

FIGURE 2 Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$.

- For each **x** in \mathbb{R}^n , $T(\mathbf{x})$ is computed as $A\mathbf{x}$, where A is an $m \times n$ matrix.
- For simplicity, we denote such a matrix transformation by $x \mapsto Ax$.
- The domain of T is \mathbb{R}^n when A has n columns and the codomain of T is \mathbb{R}^m when each column of A has m entries.

- The range of T is the set of all linear combinations of the columns of A, because each image T(x) is of the form Ax.
 - Example: Let

$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix},$$

and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}.$$

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- **b.** Find an **x** in \mathbb{R}^2 whose image under T is **b**.
- **c.** Is there more than one **x** whose image under *T* is **b**?
- d. Determine if \mathbf{c} is in the range of the transformation T.

Solution:

a. Compute

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}.$$

b. Solve $T(\mathbf{x}) = \mathbf{b}$ for **x**. That is, solve $A\mathbf{x} = \mathbf{b}$, or

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}. \qquad ----(1)$$

Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -.5 \\ 0 & 0 & 0 \end{bmatrix}$$

- Hence $x_1 = 1.5, x_2 = -.5$, and $\mathbf{x} = \begin{bmatrix} 1.5 \\ -.5 \end{bmatrix}$.
- The image of this x under T is the given vector b.

- c. Any **x** whose image under *T* is **b** must satisfy equation (1).
 - From (2), it is clear that equation (1) has a unique solution.
 - So there is exactly one x whose image is b.
- d. The vector **c** is in the range of T if **c** is the image of some **x** in \mathbb{R}^2 , that is, if $\mathbf{c} = T(\mathbf{x})$ for some **x**.
 - This is another way of asking if the system Ax = c is consistent.

To find the answer, row reduce the augmented matrix.

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$

- The third equation, 0 = -35, shows that the system is inconsistent.
- So **c** is **not** in the range of *T*.

Linear Transformations

- **Definition:** A transformation (or mapping) *T* is **linear** if:
 - i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T;
 - ii. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.
- Linear transformations preserve the operations of vector addition and scalar multiplication.
- These two properties lead to the following useful facts.
- If T is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$