

Histopathologic cancer detection

Capybara Team

Andrea Lorenzon, Leonardo Stincone, Gabriele Sarti

Introduction

- Aim: Identify metastatic infiltration in lymph nodes.
- Data: ~220.000 images, 96x96 px RGB, from PatchCamelyon (PCam) dataset.
 - > 90 % used for training.
 - > 10 % used for testing.
- Problem: Supervised image classification.

A positive label denotes cancer presence in the central 32x32 square

Examples

Low resolution, high within-group variance, artifacts, random blur...

Approaches

Unsupervised Segmentation and Random Forest

Deep/Shallow Capsule Network with Keras

Segmentation and Random Forest

Classical approach to **nuclei segmentation**:

- Supervised, hand-made.
- Operator bias.
- Very time consuming.

Random forest suits well our problem:

- General purpose classification algorithm.
- Requires few optimizable parameters.
- Robust to correlation between features.

Step 3 Nuclei segmentation (local max clustering)

Step 4 Extract an array of attributes for each nucleus

- = [eccentricity, area, solidity,...]
- = [eccentricity, area, solidity,...]
 - = [eccentricity, area, solidity,...]
- = [eccentricity, area, solidity,...]
- = [eccentricity, area, solidity,...]
- = [eccentricity, area, solidity,...]
- = [eccentricity, area, solidity,...]

Step 5 Summarize attributes for each image with statistics

Step 6 **Build the Random Forest**

Random search for hyperparameter optimization

stats.csv

DenseNet

				t in the second	
Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112		7×7 cor	, stride 2	
Pooling	56 × 56		3 × 3 max p	ool, stride 2	
Dense Block	EC EC	[1 × 1 conv]	[1 × 1 conv]	[1 × 1 conv]	[1 × 1 conv]
(1)	56×56	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$
Transition Layer	56 × 56		1 × 1	conv	
(1)	28 × 28		2 × 2 average	pool, stride 2	
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12 \begin{bmatrix} 3 \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$
Transition Layer	28 × 28		1 × 1	conv	
(2)	14 × 14		2 × 2 average	pool, stride 2	
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 64 \end{bmatrix}$
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 64$
Transition Layer	14 × 14		1 × 1	conv	1 4/10
(3)	7 × 7		2 × 2 average	pool, stride 2	IIIIIIa
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	1 x 0
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$3 \times 3 \text{ conv}$	3 von
Classification	1 × 1		7 × 7 global	verage pool	
Layer			1000D fully-cor	nected, so that	VIII
					A.

1-Cycle Policy

- Hyper-parameters
 - Learning rate
 - > Momentum
 - Weight decay
- Learning in 2 steps
 - Freeze first layers and fit only last one.
 - Unfreeze and fit all parameters.

Data augmentation

Random augmentations to the same image

Augmentation performed:

- Flip
- Rotation
- **❖** Shift
- Brightness
- Contrast
- Cropping

Capsule Network

- Purpose: Preserve spatial relations and achieve equivariance.
 - Different POV, different activation, same label.
- Capsule layers have vectorial input/output that are squashed to normalize their length.
- Great for segmentation and crowded scenes, but slow training.

Dynamic Routing

- Routing by agreement: Information propagated to the most relevant capsule, hierarchical tree of capsules.
- Part/whole pairs of transformation matrices are learned to distinguish inputs.
- Cleaner signal, reconstructible part hierarchy and parsing scenes.

Primary Capsules

Decoder Network and Loss

- Decoder: 3 fully connected layers + 1 softmax
 - Reconstruct input and computes squared difference between original and reconstructed input (RecLoss).
- * Loss: Marginal loss + (α x RecLoss)
- Result: Low-level information is preserved to reconstruct the image up to the topmost layers.

Original Input

Reconstructed Input

Performance Assessment

- Method: Accuracy on test set.
- Test set taken from original training set
 - > 90 % used for training.
 - > 10 % used for testing.
- Stratified sampling for the test set to preserve the 60-40 label distribution.

Results

Solution	Test Accuracy	Training Duration
Segmentation + Random Forest Random search + CV-3	71 %	6 + 6 hours On Kaggle 4-core server and an i5-5440@3.1GHz
DenseNet Pretrained with LR tuning	96%	2.5 hours On a Nvidia K80 server with pre-trained weights
Capsule Network Shallow with 1 Conv2D	82 %	4.5 days On an Azure K80 server (~60\$)
Capsule Network Deep with 3 Conv2D	91 %	5.5 hours On an Azure K80 server

Discussion: Random Forest

Variable importance is supported by bibliography: higher cell dimension variance and dysmorphism are known to be correlated with cancer status, and commonly used by histopathologists as metrics.

- Limitations:
 - Higher interpretability, but less predictive.
- Advantages:
 - Justification of variable importance.

Discussion: DenseNet

DenseNet strengths:

- Shortcut connections prevent vanishing gradient issues.
- Pre-trained weights.
- Gradient-weighted Class Activation Mapping for model checking.

Most incorrect samples

Grad-CAM Predicted / Actual / Loss / Probability

Negative / Tumor / 6.90 / 0.00

Most correct samples

Discussion: Capsule Network

- Shallow net architecture was used for MNIST classification, not deep enough to grasp problem complexity.
- Depth and pretraining of DenseNet justify its superior performances with respect to the Capsule Networks.
- Potential to achieve even better scores for larger Capsule Networks.

Deep CapsNet Test Accuracy

Future Perspectives

- Use higher-resolution images for the training
- Segment nuclei from high res images and use the same pipeline to discriminate single cancer cells
- Analyze cancerous inputs reconstructed by a Capsule
 Network to retrieve insights about characters of interest.

Reproducibility

https://www.github.com/gsarti/cancer-detection

Bibliography (1)

Introduction

- > Challenge "<u>Histopathological Cancer Detection</u>", Kaggle.
- ➤ B.S. Veeling, <u>PatchCamelyon Dataset</u>, Github.
- B. S. Veeling et al. "Rotation Equivariant CNNs for Digital Pathology", ArXiv.
- Ehteshami Bejnordi et al. "<u>Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node</u>
 <u>Metastases in Women With Breast Cancer</u>". JAMA: The Journal of the American Medical Association, 2199–2210.

Unsupervised Segmentation and Random Forest

- J. Diamond, N. H. Anderson, P. H. Bartels, R. Montironi, and P. W. Hamilton, "<u>The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia</u>," Human Pathology
- S. Doyle, M. Hwang, K. Shah, A. Madabhushi, M. Feldman, and J. Tomaszeweski, "<u>Automated grading of prostate cancer using architectural and textural image features</u>," in Proceedings of the 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
- ➤ <u>HistomicsTK</u>, an unsupervised cell microscopy segmentation library for Python

Bibliography (2)

DenseNet

- G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, "<u>Densely Connected Convolutional Networks</u>", 2018.
- Leslie N. Smith, "A disciplined approach to neural network hyper-parameters", 2018.
- > Sylvain Gugger, "The 1 cycle policy", 2018.
- R. R. Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization", 2017.
- > Jeremy Howard, "Practical Deep Learning for Coders, v3", 2019.

Capsule Networks

- S. Sabour, N. Frosst, G. E. Hinton, "<u>Dynamic Routing Between Capsules</u>", In Proceedings of NeurIPS 2017.
- A. Géron, "Capsule Networks Tutorial", "How to Implement CapsNets in Tensorflow", Youtube, accessed June 20, 2019.
- M. Pechyonkin "<u>Understanding Hinton's Capsule Networks</u>", Medium series, accessed June 24th, 2019.
- T. Iesmantas et al., "Convolutional capsule network for classification of breast cancer histology images", ArXiv.
- V. Davydov, "GPU + Azure + Deep Learning with minimum pain", Medium post, accessed June 16th, 2019.
- "Keras Example: Capsule Network on CIFAR10", Github.