Cryptographie asymétrique

19 septembre 2023

1 Intro

L'asymétrique ne sert pas à chiffrer mais plutot aux echanges de clés, etc.. **Ansi** recommande

- Des clés de 80 à 100 bits pour un niveau moyen de sécu (données ne durant pas dans le temps \sim minutes)
- \bullet > 100 bits : forts

2 Arithmétique entiers

La complexité est calc en fonction de :

- La taille des données.
- ex : un entier n en représentation binaire est en $log_2(n) = log(n)$.

A regarder : table de soustraction binaire lol.

2.1 multiplication

$$11101 = a$$

 $\times 1101 = b$

multiplication naive:

- Taille(b) additions d'elts de taille a.
- Complexité : Taille(a)*Taille(b)
- Memoire : Taille(a*b)=Taille(a)+Taille(b)

Méthode de Karatsuba : $a,b\in\mathbb{N}$ et k=log(a)=log(b). $a=\alpha 2^{k/2}+\beta,$ $b=\gamma 2^{k/2}+\delta.$ On écrit :

$$ab = \alpha \gamma 2^{k} + (\alpha \gamma + \beta \delta - (\alpha - \beta)(\gamma - \delta))2^{k/2} + \beta \delta$$

On remarque que ya 3 multiplication d'élts de taille k/2 et 6 soustr/add de taille k/2.

• Complexité : T(k) est donnée par

$$3T(k/2) + 6O(k/2) = 3^{T}(k/4) + 6 * 3O(k/4) + 6O(k/2)$$

$$= 3^{log(k)} + 2ck \sum_{i=1}^{log(k)} (3/2)^{i}$$

$$= 3^{log(k)} + 2Ck \frac{(3/2)^{log(k)} - 1}{(3/2) - 1}$$

$$= \dots$$

$$= O(k^{log(3)})$$

2.2 division

Division naive (euclidienne):

- Taille(a)-Taille(b)+1 soustraction de taille Taille(b).
- Complexité : O((taille(a)taille(b)+1)taille(b)).
- Mémoire : Taille(a)-Taille(b)+1 + taille(b).

2.3 algorithme d'euclide normal/etendu

Lemme 2.3.1. Avec $a = r_0$, $b = r_1$, $r_i = q_{i+2}r_{i+1} + r_{i+2}$. On a $r_{i+2} < r_i/2$. Sauf pour les derniers i.

D'ou

- Au plus log(a) divisions : i.e. $\sum_{i=0}^{k-1} (log(r_i) log(r_{i+1}+1)log(r_i)) \le log(a)(k+log(a))$
- Complexité en $log(a)^2$

Euclide étendu : $u_0 = 1$, $u_1 = 0$ et $v_0 = 0$, $v_1 = 1$ et on écrit

$$u_{i+2} = u_i - q_i u_{i+1}$$

$$v_{i+2} = v_i - q_i v_{i+1}$$

Pour calculer le pgcd :

• Complexité : $O(log^2(a))$. (exo)

A montrer:

Lemme 2.3.2. n un entier, calcul de la racine carrée entière de n en

$$O(log^3n)$$

2.4 indicatrice d'euler/inversion

Proposition 2.4.1. $a^{-1} \mod n$ se calcule en

$$O(log^2(n))$$

grace a euclide

Definition 2.4.2. ϕ : $\mathbb{Z}/n\mathbb{Z} \to \#\{0 < i \leq n\}^*$

Proposition 2.4.3. On veut $\phi(1) = 1$ pour la récursion.

Proposition 2.4.4. $\sum_{d|n} \phi(d) = n$

Ca se prouve en posant $sum_{d|n}\phi(d)=f(n)$ alors :

$$f(mn) = \sum_{d|mn} \phi(d) = \sum_{d_1|n} \sum_{d_2|m} \phi(d_1d_2) = f(m)f(n)$$

. On écrit du coup $f(n)=f(\prod p_i^{\alpha_i})$ et $f(p^\alpha)=\sum_{k<\alpha}\phi(p^k)=\sum_k p^k-p^{k-1}=p^\alpha$

Proposition 2.4.5. $p \neq q$ deux nombres premiers et n = pq. On retrouve p, q en $O(\log^3(n))$ avec $n, \phi(n)$.

3 corps finis

$$q = p^d$$

Proposition 3.0.1. • Complexité de l'addition/soustraction dans \mathbb{F}_q : $O(\log(q))$

 \bullet Complexité de la mult/l'inverse dans \mathbb{F}_q : $O(\log^2(q))$

Pour la multiplication : 2d - 2 calculs des sommes $\sum a_i b_{j-i}$ et d mults a chaque fois puis d additions. A la fin $O(\log^2(q))$.

Proposition 3.0.2. d = gcd(n, q - 1) racines n-emes de l'unité dans \mathbb{F}_q . \mathbb{F}_q admet une racine primitive ssi $n \mid q - 1$.

Pour le deuxieme truc $(g^j)^n = 1$ ssi $q - 1 \mid nj$ d'ou $q - 1/d \mid j$ et on a d valeurs possibles pour j.

3.1 résidus quadratiques

On prend $p \neq 2$:

Proposition 3.1.1. $x \mapsto (x^{p-1/2})$ donne l'indice de \mathbb{F}_p^{*2} et deux non résidus sont des puissances impaires donc le produit est une puissance paire.

Proposition 3.1.2. C'est un morphisme de groupe.

Maintenant on remplace $x\mapsto x^{p-1/2}$ par l'unique caractère abélien dans $\{\pm\}$ (Jacobi).

3.2 Calcul de racine carrée, algo de shanks tonelli

On réduit ca à un calcul de racine 2^{α} -eme de l'unité!

- 1. On écrit $p-1=2^{\alpha}*s$, s impair.
- 2. $r = a^{(s+1)/2}$
- 3. on résoud $x^2a^{-1} \equiv 1 \mod p$
- 4. En gros : $1 \equiv a^{(p-1)/2} \equiv a^{2^{\alpha-1}s} \equiv (r^2a^{-1})^{2^{\alpha-1}} \mod p$
- 5. D'ou on cherche une racine de l'unité, z, alors $z^2 \equiv y$ avec $y = r^2 a^{-1}$.

6.
$$z^2y \equiv y^{2^{\alpha-1}} \mod p$$
 d'ou $(z^2y^{1-2^{\alpha-1}})^{2^{\alpha-1}} \equiv z^{2^{\alpha}}(y^{2^{\alpha-1}})^{1-2^{\alpha-1}} \equiv z^{2^{\alpha}} \equiv 1 \mod p$

7. D'ou il faut trouver une racine 2^{α} -eme de l'unité.

Determination de la racine 2^{α} -eme de l'unité :

1. Pour
$$\left(\frac{n}{p}\right) = -1$$
 on pose $b = n^s$

2. Alors $|b|^{2^{\alpha}}$.

On cherche ensuite le b^j tel que $b^{2j}r^2a^{-1}\equiv 1\ mod\ p,$ on écrit $j=j_0+2j_1+\ldots+2^{\alpha-1}j_{\alpha-1}$:

1.
$$b^{2j}r^2a^{-1} \equiv b^{2j_0+\dots+2^{\alpha}j_{\alpha-1}} \equiv b^{2j_0+\dots+2^{\alpha-1}j_{\alpha-2}} \mod p$$

2. On regarde
$$(b^{2j}r^2a^{-1})^{2^{\alpha-2}} \equiv (b^{2^{\alpha-1}})^{j_0}a^{2^{\alpha-2}s} \mod p$$

3. Comme
$$b^{2^{\alpha-1}} \equiv n^{(p-1)/2} \equiv -1 \mod p$$

4. Alors pour avoir
$$(b^{2j}r^2a^{-1})^{2^{\alpha-2}}\equiv 1$$
 il faut prendre $j_0=0$ ssi $(r^2a^{-1})^{2^{\alpha-1}}$

Maintenant pour les autres coeffs que j_0 , on suppose qu'on connait les $l < \alpha - 2$ premiers tq $((b^{j_0+\ldots+2^lj_l})r^2a^{-1})^{2^{\alpha-2-l}} \mod p$ on cherche j_{l+1} tq :

1.
$$((b^{j_0+\dots+2^lj_l})r^2a^{-1})^{2^{\alpha-2-l}} \mod p$$

2. On a
$$(b^j)^{2^{\alpha-2-l}}(r^2a^{-1})^{2^{\alpha-2-l-1}} \equiv b^{2^{\alpha-2-l}(j_0+2j_1+\ldots+2^lj_l)}b^{2\alpha-1j_{l+1}}b^{2^{\alpha}(\ldots)}\ldots \bmod p$$

3. A nouveau on a
$$b^{2^{\alpha-1}j_{l+1}} \equiv (-1)^{j_{l+1}}$$

4. Et donc on pose
$$j_{l+1}=0$$
 ssi $((b^{j_0+\ldots+2^lj_l})^2r^2a^{-1})^{2^{\alpha-2-l-1}}\equiv 1 \mod p$

4 Protocoles de cryptographie à clef publique

Basé sur le principe de Kerkhoff.

Crypto symétrique

Crypto asymétrique

+ rapide

+lent

1 clef partagée

2 clefs

×

Mise en reseau facile

Taille de clef petite

Taille de clé grande

Probleme de la crypto sym : nombre quadratique de clé par rapport au nb de personnes face a linéaire pour l'asym. (+ faut pouvoir échanger les clés)

Cryptographie asymétrique:

- 1. Authentification
- 2. Echange de clefs
- 3. Signature

Etant donné une fct de chiffrement asym f:

- $f(m, k_{pub}) = c$
- $f^{-1}(c, k_{priv}) = m$

Authentification par challenge :

- $\bullet \ f(challenge,k_{pub}) \to c$ un challenge est donné et doit être dechiffré
- $challenge = m \leftarrow f^{-1}(c, k_{priv})$

Echange de clefs:

- $\bullet\,$ k la clef de session qu'on veut partager
- $f(k, k_{pub}) \to c$
- $k = f^{-1}(c, k_{priv})$

Signature d'un message :

• $f^{-1}(m, k_{priv}) = sign$

• $f(sign, k_{pub}) = m$

Propriétés d'une signature :

- 1. Non-répudiable (irrévocable, on peut pas dire qu'on l'a pas signé)
- 2. Le message est non-modifiable : inaltérable
- 3. Authentique
- 4. Non-réutilisable
- 5. Infalsifiable

4.1 RSA

Décrit ici. On regarde des attaques sur RSA, les p, q doivent être tous achetés!

Definition 4.1.1. Attaque par module commun

Etant donné une communauté de k personnes ayant tous tes p * q = n. Chaque utilisateurs recoit $(N, e_i(publique), d_i(privee))$. Si on connait e_i, d_i alors on sait que $e_i d_i \equiv 1 \mod \phi(n)$ d'ou $e_i d_i = 1 + k\phi(n)$.

On pose $m = e_i d_i - 1 = k\phi(n)$ d'ou $\forall a \in (\mathbb{Z}/N\mathbb{Z})^{\times}$,

$$a^m \equiv 1 \mod \phi(n)$$

Or $4 \mid \phi(n) \text{ donc } 4 \mid m$.

Donc/etant donné

$$a^m \equiv 1 \bmod n$$

- . On a $a^{m/2}$ est une racine carrée de 1 mod n(y) en a 4). Si $a^{m/2} \equiv \alpha \neq \pm 1 \mod n$ alors $(\alpha 1)(\alpha + 1) \equiv 0 \mod N$ et $\gcd(\alpha 1, n) \neq 1$ et $\gcd(\alpha 1, n) = p$. Soit $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. On pose : $m = 2^t s$
 - On calc $a^s \mod n$, si = $\pm 1 \mod n$ on change a.
 - Sinon on calc successivement $a^{2^i s} \mod n$. Et on s'arrete des qu'on trouve 1.
 - Si a l'étape d'avant on change a.
 - sinon on a trouvé α .

Autre attaque : Si on chiffre m pour deux destinataire :

- $c_1 \equiv r^{e_1} \mod n$
- $c_2 \equiv r^{e_2} \mod n$

Si $gcd(e_1, e_2) = 1$ alors $\exists u, v \in \mathbb{Z}$ to $ue_1 + ve_2 = 1$. Donc $c_1^u * c_2^v = m \mod n$.

• Besoin d'une fonction de hachage pour la signature

Alice ne veut pas signer m, Marvin choisit $r \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ et calcule $m' = m * r^e \mod n$. Alice signe m', donc Marvin obtient $sign(m') \equiv m'^d \equiv (mr^e) \equiv m^d r$.

Nouvelle attaque

Definition 4.1.2. par exposant publique petit :

On propose que tout le monde utilise le même e petit pour accélerer le chiffre-

ment: m est chiffré par k utilisateurs differents: $\begin{cases} c_1 \equiv m^e \mod n_1 \\ \vdots \\ c_k \equiv m^e \mod n_k \end{cases}$ Soit les n_i sont $c_k \equiv m^e \mod n_k$

premiers entre eux et on fait un lemme chinois, si e < k, $m^e < \prod_i n_i$. Si pas premiers entre eux : gros pb.

Definition 4.1.3. Attaque par petit exposant privé, but : améliorer la vitesse de déchiffrement.

Théorème 4.1.4. Soit N = pq avec $q et <math>d = 1/3\sqrt[4]{n}$. Etant donné le couple (n, e) avec $ed \equiv 1 \mod \phi(n)$, on peut retrouver efficacement d.

Preuve: On pose $ed - k\phi(n) = 1$. D'ou $\frac{e}{\phi(n)} - \frac{k}{d} = \frac{1}{d\phi(n)}$. On approche $\phi(n)$ par n et en utilisant le fait $d < 1/3\sqrt[4]{n}$ on a :

$$|\frac{e}{n} - \frac{k}{d}| < \frac{1}{2d^2}$$

En passant par un dév en fractions continues à la bonne précision on retrouve k/d. \square RSA est pas indistinguable.(exponentiation binaire est rapide)

4.2 Probleme de log discret

Securité dépend du groupe dans lequel on travaille : Si on prend $G = (\mathbb{Z}/p\mathbb{Z}, +)$ et $h = gx \mod p$ alors $x = hg^{-1}$, une étape.

Definition 4.2.1. Problème de Diffie-Hellman(DHP): Etant donnés g, g^a, g^b peut-on trouver g^{ab} .

Definition 4.2.2. Signature d'El Gamal : k doit être secret et d'usage unique.

- \bullet k doit être secret : a faire
- k doit être d'usage unique : pareil

5 IGC(infrastucture de gestion de clefs)

Gère les distributions de certificats.

5.1 Création d'un certificat num

2 modes:

• Decentralisé: l'utilisateur crée son bi-clef

• Centralisé: L'autorité de confiance crée le bi-clef

5.2 Révocation d'un certificat num

• Fin de limite de validité

• Révoque avant la date limite(par exemple si oubli du mot de passe)

5.3 Types de certificats

• Signature

• Chiffrement et signature

5.4 Reste

L'IGC est composée de 4 entités obligatoires:

- Autorité de confiance: signe les certifs
- Autorité d'enregistrement: s'assure de l'identité du demandeur de certifs.
- Autorité de dépôt: stocke les certifs et liste de révocations
- Entité finale: celle qui demande le certif

Optionnellement: Autorité de sequestre, conserve les clefs privées

6 Attaque sur log discret

Dans un groupe cyclique $G = \langle g \rangle$. On cherche étant donnés $h := g^x$ à trouver x.

Théorème 6.0.1 (Shoup, 1997). Dans un groupe générique d'ordre p premier, le calcul d'un log discret est au minimum en $\mathcal{O}(\sqrt{p})$.

6.1 Baby step, Giant step!

Idée: Déterminer s et i tq x = st + i où t est choisi et $0 \le i < t$, i.e.

$$h * (g^{-t})^s = g^i$$

Pré-calcul:($\mathcal{O}(t)$ étapes) Calcul de tous les g^i pour $0 \le i \le t - 1$ et g^{-t} . (plus table de hashage des g^i)

Calcul: $(\mathcal{O}(p/t) \text{ étapes})$ Pour s allant de 0 à n/t, on calcule $h*(g^{-t})^s$ et on teste si $\exists i \text{ tq } h*(g^{-1})^s = g^i$.

On prend $t = \sqrt{p}$ et on a la borne de Shoup.

6.2 Algorithme Rho-Pollard

Idée: Balade aléatoire dans G en attendant une collision (d'ou la lettre ρ).

Il nous faut une fonction pseudo-aléatoire t
q si α_i et β_i sont tq

$$q_i = q^{\alpha_i} h^{\beta_i}$$

On puisse déterminer $\alpha_{i+1}, \beta_{i+1}$ to $F(g_i) = g_{i+1} = g^{\alpha_{i+1}} h^{\beta_{i+1}}$. Si on a une collision i.e. $g_i = g_j$ alors

$$g^{\alpha_i + x\beta_i} = g^{\alpha_j + x\beta_j}$$

D'ou $\alpha_i + x\beta_i \equiv \alpha_j + x\beta_j \mod n = |g|$. Donc si $pgcd((\beta_i - \beta_j), n) = 1$ alors

$$x \equiv (\alpha_j - \alpha_i)(\beta_i - \beta_j)^{-1} \mod n$$

Algorithme: On calcule la suite (α_i, β_i) avec F et a chaque étape on regarde si y'a une collision.

Complexité: Petite digression sur le

Paradoxe des Anniversaires.

On regarde un tirage aléatoire uniforme sur n boules avec remise. On cherche P(n,k) la probabilité qu'après k-tirages on ait tiré au moins deux fois une meme boule: On regarde

$$1 - P(n,k) = \frac{n(n-1)\dots(n-(k-1))}{n^k} = \prod_{i=1}^{k-1} 1 - i/n$$

Or pour tout x réel, $1 + x \le e^x$. D'ou

$$1 - P(n,k) \le \prod e^{-i/n} = e^{\sum (-i/n)} = e^{k(k-1)/2n}$$

On cherche quand $1 - P(n, k) \ge 1/2$:

$$e^{-(k(k-1))/2n} \le 1/2$$

Donne $k(k-1)/2n \ge \ln(2)$, d'ou $k \ge \sqrt{n}\sqrt{2\ln(2)}$. Donc si on prend ce k on a

$$P(n,k) \ge 1/2$$

(wow!).

Retour à la complexité: $\mathcal{O}(\sqrt{n})$ en temps mais $\mathcal{O}(\sqrt{n})$ -mémoire. Mais il existe une version sans mémoire de même complexité!

6.3 Réduction de Pohlig-Hellman

Idée: Au lieu de calculer un unique log discret dans un grand groupe on calcule plusieurs logs discrets dans des groupes plus petits. On suppose que $n = \prod p_i^{\alpha_i}$ est composé \rightarrow lemme chinois. Plusieurs paramètres:

On pose
$$n_i = \frac{n}{p_i^{\alpha_i}}, \ g_i = g^{n_i}$$
 alors:
$$|g_i| = p_i^{\alpha_i}$$
 Puis $h_i = h^{n_i} = (q^x)^{n_i} = q_i^x$

Et x est determiné $\mod p_i^{\alpha_i}$.

Algorithme mod p^{α} : On pose $x = \sum_{i=0}^{\alpha_i-1} x_i p^i$ et on le fait de proche en proche, $h^{p^{\alpha-1}} = (g^x)^{p^{\alpha-1}}$. Alors

Déterminer x_0 c'est déterminer le log discret de $h^{p^{\alpha-1}} \mod p$.

Maintenant étant donnés x_0, \ldots, x_{e-1} on calcule x_e , on fait comme pour shanks tonelli, i.e.

$$h_{e-1}^{p^{\alpha-(e+1)}} = (g^{p^{\alpha-1}})^{x_e}$$

Complexité totale (selon Shoup): O(rlog)

7 Tests de primalité

Plusieurs types:

- 1. test de composition
- 2. test de primalité
- 3. (Cribles)

On considère tjr un entier impair(obvious). Et le test naif ou on teste tout les entiers plus petits: $\mathcal{O}(\sqrt{n}\log^2(n))$

7.1 Tests probabilistes

Test de Fermat: On test si $a^{n-1} \equiv 1 \mod n$ pour pleins d'a.

Definition 7.1.1. On prend $b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Si $b^{n-1} \equiv 1 \mod n$ alors n est dit pseudo-premier en base b.

Proposition 7.1.2. eq

- (i) n est p.p en base b ssi |b| | n-1
- (ii) Sinest p.p en base b_1 et b_2 alors nest pp en base b_1b_2
- (iii) Si $\exists c \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ tq $c^{n-1} \neq 1 \mod n$, alors il ya au moins autant de bases pour lesquelles n n'est pas pp que de bases pour lesquelles il l'es.

Démo: (iii) Etant donné $B = \{b | b^{n-1} \equiv 1 \mod n\}$. Supposons qu'on a ce c, on pose C = cB. On a #C = #B. Mtn si $cb \in B$ alors par (ii) $c \in B$. Pas possible. \square

Algo: On itère k fois

- \bullet on tire aléatoirement b.
- On teste si b est premier à n.
- Si oui on teste si $b^{n-1} \equiv 1 \mod n$.

Non n est composé.

Oui On change de b.

Si après k tirages, l'algo n'indique que n est pas composé alors il est premier avec une proba $\geq 1 - \frac{1}{2^k}$ à la condition qu'il existe un c vérifiant (iii).

Complexité: $O(k \log^3 n)$.

Definition 7.1.3. Les entiers de Carmichael sont ceux qui vérifient Fermat en étant composé impairs.

Proposition 7.1.4. (eq)

- (i) Si n contient un facteur carré alors n n'est pas de Carmichael.
- (ii) Si n est sans facteurs carré, n est de Carmichael ssi $\forall p \mid n$

$$(p-1) | (n-1)$$

Proof: (i) Avec $\langle g \rangle = (\mathbb{Z}/p^2\mathbb{Z})^{\times}$ et

- $b \equiv g \mod p^r$
- $b \equiv 1 \mod n/p^r$

D'ou $p(p-1) \mid n-1$ et comme $n-1 \equiv 1 \mod p$.

Théorème 7.1.5 (Alford, Pomerance et Granville). Il y'a une infinité de nombres de Carmichael. (par exemple 561 = 3 * 11 * 17)

Test de Solovay-Strassen:

Proposition 7.1.6. Si $\forall b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, on a

$$\left(\frac{b}{n}\right) = b^{\frac{n-1}{2}}$$

Alors n est premier.

Lemme 7.1.7. Si n est composé impair, alors pour au moins la moitié des $b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$,

$$\left(\frac{b}{n}\right) \neq b^{\frac{n-1}{2}}$$

Démo: Même argument que pour Fermat. Y faut juste avoir un c comme dans l'énoncé. On le cherche

Cas ou $p^2 \mid n$: On pose $c = 1 + \frac{n}{p}$. On a $\left(\frac{c}{n}\right) = \left(\frac{c}{n}\right)^2 \times \left(\frac{c}{\frac{n}{p^2}}\right) = 1.1 = 1$. Puis $c^j = (1 + \frac{n}{p})^j = 1 + j \cdot \frac{n}{p} \mod n$ d'ou $c^j = 1 \mod n$ ssi $j \equiv 0 \mod p$. Maintenant $\frac{n-1}{2} \equiv 0 \mod p$ ssi $n-1 \equiv 0 \mod p$ qui est pas possible.

Cas ou $n = \prod p_i$: On prend c_0 un résidu non quadratique pour p_0 et $c_1 \equiv 1 \mod n/p_0$. On prend c tel que $c \equiv c_0 \mod p_0$ et $c \equiv c_1 \mod \frac{n}{p_0}$. Maintenant en utilisant $\left(\frac{c}{n}\right) = \left(\frac{c_0}{p_0}\right) \times \left(\frac{c_1}{n/p_0}\right)$ on prouve que le c est bien comme on veut.

Algo de Solovay-Strassen: On itère k fois.

- On tire aléatoirement $b \in [2, n-1]$
- ullet On teste si b et n sont premiers entre eux

Non n est composé

Oui On teste si $\left(\frac{b}{n}\right) = b^{\frac{n-1}{2}} \mod n$

Non n est composé.

Oui On change de b.

Après k passages avec succès, n est premier avec une proba $\geq 1 - \frac{1}{2^k}$.

Complexité: $O(k \log^3 n)$.

Test de Miller-Rabin: l'idée est que si $n \neq p^{\alpha}$ est composé alors n a plus de 2 racines carrées.

Definition 7.1.8. On pose $s = v_2(n-1)$ et $t = n/2^s$. Soit $b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Si $b^t \equiv 1 \mod n$ ou $\exists 0 \le r < n-1$ tq $(b^t)^{2^r} \equiv -1 \mod n$ alors on dit que n est pp fort en base b.

Lemme 7.1.9 (n un entier impair composé). Pour au plus 1/4 des élts de $(\mathbb{Z}/n\mathbb{Z})^{\times}$, n est pp fort.

Algo de Miller-Rabin: On itère k fois,

- On tire aléatoirement $n \in [2, n-2]$.
- On test si b est premier à n.

Non n est composé.

Oui On regarde si $b^t \equiv \pm 1 \mod n$.

Si oui: On change de b

Sinon: On calcule les $(b^t)^{2^r} \mod n$

Un -1: On change de n

Pas de -1: n est composé

Après k tirages avec succès, n est premier avec une proba $\geq 1 - \frac{1}{4^k}$. Complexité: $\mathcal{O}(k \log^3 n)$.

7.2 Test de primalité assurée

Test n-1 de Pocklington-Lehman: On considère n impair.

Proposition 7.2.1. Soit $p \mid n-1$. Si on a un $a \in \mathbb{Z}$ tq:

$$a^{n-1} \equiv 1 \mod n$$

et $(a^{\frac{n-1}{p}}-1)$ est premier à n-1. Alors pour tout diviseur d de n,

$$d \equiv 1 \mod p^{\alpha}$$

où $p^{\alpha} \mid n-1$.

Démo: Soit $d \mid n$ premier et a comme dans l'énoncé. On a $a^{n-1} \equiv 1 \mod f$. Et $a^{\frac{n-1}{p}} \neq 1 \mod d$. On note $e_d = |a| \mod d$. Donc $e_d \mid n-1$ et $e_d \nmid (n-1)/p$. Si $p^{\alpha} \mid n-1$ alors $p^{alpha} \mid e_d$. En plus $a^{d-1} \equiv 1 \mod d$ d'ou $e_d \mid d-1$. Puis $p^{\alpha} \mid e_d$ et $d \equiv 1 \mod p^{\alpha}$.qed

Corollaire 7.2.2. Soit n un entier $tq \ n-1=f.u$ avec $f \ge \sqrt{n}$, f complètement factorisé et f premier à u. Supposons que $\forall p \mid f$, $\exists a$ comme dans la prop précedente. Alors n est premier et inversement.

Démo: Supposons que $\forall p \mid f$, il existe un a comme dans l'énoncé. D'après la prop, $\forall p \mid f$, $\forall d \mid n$ on a $d \equiv 1 \mod p^{\alpha}$. D'ou par le lemme chinois $d \equiv 1 \mod f$. Supposons que $d = 1 + kf \neq 1$. Alors n n'a pas de diviseur $\neq 1 \leq \sqrt{n}$ donc n est premier. Inversement, si n est premier, on prend un générateur a de \mathbb{F}_n^* .

7.3 L'algorithme AKS

AKS pour Aggraval, Kayal et Sapena. Idée: n est premier ssi $(X+a)^n = X^n + a$ mod n. (On va regarder modulo un polynome)

Algo AKS: On évince le cas ou $n = m^b$ et $b \neq 1$.

- On pose r minimal tel que $\mathcal{O}_r(n) \geq 4\log^2 n$ avec $(\mathcal{O}_r(n)$ l'ordre de n dans $(\mathbb{Z}/r\mathbb{Z})^{\times})$
- Si $\exists 1 \leq a \leq r$ t
q $1 < a \land n < n$. Alors n est composé.
- Si $n \le r$, n est premier.
- Pour $1 \le a \le [2\sqrt{\phi(r)}\log n]$, on teste si $(X+a)^n \ne X^n + a \mod (n, X^r 1) \implies n$ est composé. Sinon n est premier.

Complexité: $\mathcal{O}(\log^{10.5}(n))$.

8 factorisation d'entiers

La méthode naive est en $\mathcal{O}(\sqrt{n}\log^2 n)$ comme d'hab.

8.1 Algo de Rho-Pollard

Idée: On fait une balade aléatoire dans $\mathbb{Z}/n\mathbb{Z}$ (on calcule une suite (x_i)) et pour tout x_j calcule ou teste si pour i < n $(x_j - x_i) \land n \neq 1, n$. On obtient un r tel que $x_j \equiv x_i \mod r$. (On prend $x_j - x_i$ Et pas x_j pour avoir un paradoxe des anniversaires (bcp plus de poss en ajoutant x_i)).

Proposition 8.1.1 (Rappel:). Une suite $f(x_i) = x_{i+1}$ de $S \to S$ (S fini), contient une collision en l étapes ou $l = 1 + [\sqrt{2\lambda r}]$. avec proba $\leq e^{\lambda}$.

Sans mémoire: Etant donné (i_0, j_0) deux premiers indices tq $(x_{j_0} - x_{i_0}) \wedge n = r \neq 1, n$. Soit $j \in \mathbb{N}$, on pose $h = [\log j]$ (ie $2^h \leq j < 2^{h+1}$). On pose $i = 2^n - 1$ On calcule (x_k) tq $f(x_k) = x_{k+1}$ et on teste si $(x_j - x_i) \wedge n \neq 1, n$ avec i déf comme précedemment. Si $x_{j_0} \equiv x_{i_0} \mod r$ alors

$$x_{j_0+m} \equiv f^m(x_{j_0}) \equiv f^m(x_{i_0}) \equiv x_{i_0+m} \mod r$$

Donc si $j - i = j_0 - i_0$ on a $x_j \equiv x_i \mod r$. On pose $h_0 = [\log j_0]$ et $i = 2^{h_0 + 1} - 1$ et $j = i + j_0 - u_0$. Par dèf de j, $x_j \equiv x_i \mod r$:

$$j = 2^{n_0+1} - 1 + j_0 - i_0$$

$$j_0 - i_0 \ge 1 \quad \text{donc} \quad j \ge 2^{k_0+1}$$

$$j_0 - i_0 \le j_0 < 2^{k_0+1}$$
 Donc $j < 2^{k_0+1} - 1 + 2^{k_0+1} = 2^{k_0+2} - 1 \text{ et } 2^{k_0+1} \le j < 2^{k_0+2} \text{ ([log } j] = h_0 + 1)}$

La fonction f est arbitraire faut bien la choisir

8.2 Méthode de Fermat et améliorations

Proposition 8.2.1. Il existe une bijection entre les ocupes (a, b) tq x = ab et les couples (t, s) tq $x = t^2 - s^2$.

Idée: On pose $t = [\sqrt{n}] + 1$ et on teste si $t^2 - n$ est un carré. Sinon on passe à $t + 1, t + 2, \dots$

Méthode de Dixon

Idée: Au lieu de travailler dans \mathbb{Z} , on travaille dans $\mathbb{Z}/n\mathbb{Z}$. On cherche $t^2 \equiv s^2 \mod n$. Si on a un couple, on calcule $(t-s) \wedge n$. Comme c'est dur de trouver ces couples on les construits.

Méthode:

On décide d'une base de facteurs $B \subseteq \mathbb{Z}$ pour laquelle on va chercher des t tq t^2 mod n soit B-friables i.e. $t^2 = \prod_{b_i \in B} b_i^{\alpha_i} \mod n$.

- On choisit $A \in \mathbb{Z}$ ou on va tester si $t \in A$ est tq $t^2 \mod n$ est B-friable.
- On teste si $\forall t \in A, t^2 \mod n$ est *B*-friable. On obtient ainsi $A' \subseteq A$ où pour tout $t \in A', t^2 \mod n$ est friable.
- Pour tout $t_j \in A'$, on associe

$$\epsilon_j = (\alpha_{1j} \mod 2, \alpha_{2j} \mod 2, \dots, \alpha_{bj} \mod 2)$$

• A partir de ces ϵ_j on cherche $\sum_i \epsilon_j = 0$

$$\prod_{i} t_{j}^{2} = \prod_{b_{i} \in B} b_{i}^{\alpha_{i,j}} = \prod_{b_{i} \in B} b_{i}^{\sum \alpha_{i,j'}} \mod n$$

Crible quadratique:

- $B = \{p | p < P \text{ et } \left(\frac{n}{p}\right) = 1\} \cup \{2\}, \text{ on pose } \#B = h.$
- $A = \left[\left[\sqrt{n} \right] + 1, \left[\sqrt{n} \right] + K \right]$ où $P < K < P^2$.

Dans ce crible on va tester si t^2-n est B-friable avec $t\in A$. Si $t^2-n \mod [n]=p_i^{\alpha_i}\prod_{i\neq 1}p_i^{\alpha_l}$ avec $\alpha_i\geq 1$. Alors $t^2-n\equiv 0\mod [p_i^{\alpha_i}]$ donc $t^2\equiv n\mod [p_i^{\alpha_i}]$. Si t est tq $t^2\equiv n\mod [p_i]$ alors $(t+kp_i)^2\equiv n\mod [p_i]$.

suite: Soit $2 \neq p \in B$. Par def $\left(\frac{n}{p}\right) = 1$. On calcule x_0 tq $x_0^2 \equiv n \mod [p]$. On cherche x_1 tq $(x_0 + x_1 p)^2 \equiv n \mod [p^2]$ puis

$$x_0^2 + 2x_0x_1p + x_1^2p^2 \equiv n \mod [p^2]$$

$$p(k_0 + 2x_0x_1) \equiv 0 \mod [p^2]$$

donc $k_0 + 2x_0x_1 \equiv 0 \mod [p]$. On relève la racine tant qu'il existe $t \in A$ tq $t^2 \equiv n \mod [p^{\alpha}]$

Complexité: $\mathcal{O}(e^{(1+\epsilon)\sqrt{\log n \log \log n}})$

8.3