Logica e Modelli Computazionali

Automi a Stati Finiti Non Deterministici

Marco Console

Ingegneria Informatica e Automatica, Sapienza Università di Roma

Macchine Deterministiche e Non-Deterministiche

- Gli ASFD sono caratterizzati dalla seguente proprietà: dato uno stato e un simbolo dell'input, c'è solo un possibile stato interno dell'automa risultante dalla computazione
 - Chiamiamo questa proprietà determinismo
- La proprietà di determinismo è cruciale nelle nostre definizioni dei linguaggi regolari
 - Deriva dal fatto che le transazioni sono definite da funzioni
 - Ci assicura che esiste una unica computazione possibile per ogni stringa di input
- Possiamo rilassare questa assunzione e definire modelli non deterministici?
 - Modelli computazionali il cui prossimo stato non è più determinato dall'input e lo stato corrente
 - Tale stato potrebbe essere uno qualunque di quelli presi da uno specifico insieme
- Le macchine reali sono intrinsecamente deterministiche
 - Dato un input e uno stato interno, possiamo sempre determinare il risultato della computazione

Computazioni Deterministiche e Non-Deterministiche

- Possiamo immaginare una computazione deterministica come una sequenza di configurazioni della macchina che stiamo esaminando
 - Nel caso degli automi, tali configurazioni sono rappresentate dagli stati interni della macchina

- Possiamo immaginare una computazione non-deterministica come una albero di configurazioni della macchina che stiamo esaminando
 - La prossima configurazione **non è determinata a priori** dallo stato corrente e il simbolo dell'input
 - Nel caso degli automi, tali configurazioni possono ancora essere rappresentate dagli stati ma ...
 - Una domanda importante rimane aperta: quando accettiamo?

Computazioni Non-Deterministiche: Intuizione

- Un modello non-deterministico potrebbe rappresentare macchine che
 - Eseguono computazioni in parallelo (una per ogni possibile ramo dell'albero di computazione) oppure
 - "Indovinano" alcune proprietà dell'input (alcuni problemi hanno una naturale soluzione in questi termini)
- Esempio: Riconoscere le stringhe S per cui |S| è multiplo di due oppure multiplo di tre
 - 1. Sotto l'assunzione che l'input non sia multiplo di tre
 - Esegui un ASFD che riconosce stringhe *S* per cui |*S*| è multiplo di due
 - 2. Sotto l'assunzione che l'input non sia multiplo di due
 - Esegui un ASFD che riconosce stringhe S per cui |S| è multiplo di tre
- Una modello computazionale in grado di eseguire una computazione non deterministica sembra contro-intuitivo se l'obbiettivo è definire il modello di una macchina reale.
 - Una domanda fondamentale è come passare da non-determinismo a determinismo ovvero
 - Possiamo costruire una macchina deterministica equivalente a una non-deterministica?
 - A che prezzo?

Automa a Stati Finiti Non-Deterministico – Definizione

Notazione aggiuntiva

- P(Q) denota l'insieme delle parti di Q cioè la famiglia di tutti i sottoinsiemi di Q
- Esempio. $Q = \{A, B, C\}; P(Q) = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}\}$
- Un automa a stati finiti non-deterministico (ASFND) è una quintupla $< \Sigma, Q, \delta, I, F >$
 - 1. $\Sigma = \{a_1, \dots, a_n\}$ è l'*alfabeto* di input;
 - 2. Q è un insieme finito detto insieme degli stati;
 - 3. $I \in Q$ è lo **stato iniziale**;
 - 4. $F \subseteq Q$ è un **insieme degli stati finali**;
 - 5. $\delta: Q \times \Sigma \to P(Q)$ è una funzione da $Q \times \Sigma$ in P(Q), chiamata **funzione di transizione**

ASFND – Intuizione

- Intuitivamente, le cinque componenti di un ASFND rappresentano
 - 1. L'insieme dei possibili simboli utilizzati nelle stringhe di input (*alfabeto* Σ)
 - 2. L'insieme dei possibili stati interni della macchina (*insieme degli stati* **Q**)
 - 3. Lo stato interno della macchina da cui parte la computazione (*stato iniziale I*)
 - 4. L'insieme degli stati in cui la macchina ritorna 1 (*insieme degli stati finali* F)
 - 5. La funzione che determina il passaggio di stato **non-deterministico** (*funzione di transizione* δ)
- L'unica differenza fra ASFND e ASFD è la funzione di transizione infatti
 - 1. Per un ASFND i possibili stati successivi sono un insieme e
 - 2. Potremmo non consumare alcun simbolo della stringa iniziale durante la transizione

Diagramma degli Stati

- Come per gli ASFD, possiamo rappresentare un ASFND tramite il diagramma degli stati (noto anche come grafo di transizione)
- I nodi rappresentano gli stati e gli archi le transizioni, che sono quindi etichettati con il carattere la cui lettura determina la transizione (più archi uscenti dal medesimo nodo etichettati con il medesimo carattere e potremmo avere ϵ). Lo stato iniziale è rappresentato tramite una freccia, mentre gli stati finali sono rappresentati con un doppio cerchio

INPUT

A B A B

STATO CORRENTE

 q_0

STATO CORRENTE

 q_0

Due scelte possibili per il prossimo stato! Scegliamo q_0

STATO CORRENTE

 q_0

STATO CORRENTE

 q_0

Due scelte possibili per il prossimo stato! Scegliamo q_0

STATO CORRENTE

 q_0

STATO CORRENTE

 q_0

Due scelte possibili per il prossimo stato! Scegliamo q₁

STATO CORRENTE

 q_1

Computazione Terminata in uno Stato Non Finale!

STATO CORRENTE

 q_0

Due scelte possibili per il prossimo stato! Scegliamo q_1

STATO CORRENTE

 q_1

Due scelte possibili per il prossimo stato! Scegliamo q₂

STATO CORRENTE

 q_2

STATO CORRENTE

 q_2

Computazione Terminata in uno Stato Non Finale!

STATO CORRENTE

 q_1

Due scelte possibili per il prossimo stato! Scegliamo q₃

STATO CORRENTE

 q_3

STATO CORRENTE

 q_3

Computazione Terminata in uno Stato Finale!

Esecuzioni di un ASFND

- Sia dato un ASFND $A=<\Sigma,Q,\delta,I,F>$ e una stringa $S="c_1c_2\dots c_n"\in\Sigma^*$ con |S|=n
- **Definizione**. Una **esecuzione di** A **su** S è una sequenza $(q_1, ..., q_{n+1}) \in Q^{n+1}$ di n+1 elementi di Q tale che
 - $q_1 = I$ (intuitivamente, il primo stato è quello iniziale)
 - $q_{i+1} \in \delta(q_i, c_i)$ per i = 1, ..., n (intuitivamente, ogni stato appartiene all'insieme definito dal precedente applicando δ al simbolo corrente)
- **Definizione**. Lo stato finale di una esecuzione $(q_0, ..., q_n)$ di A su S è q_n
 - L'ultimo della sequenza
- **Definizione**. Una esecuzione di $(q_0, ..., q_n)$ di A su S è **accettante** se il suo stato finale q_n è in F

Esecuzioni di un ASFND

- Proposizione. Dato una ASFD A e una stringa S sull'alfabeto di A, potrebbe esistere più di una esecuzione di A su S.
- Dimostrazione. L'esempio precedente.
- Un ASFND può eseguire diverse configurazioni per lo stesso input a differenza di ASFD
- Domanda. Quando dovremmo accettare?

Esempio di Esecuzione

INPUT

A B A B

ESECUZIONE ACCETTANTE

 q_0 q_0 q_1 q_3 q_3

Esempio di Esecuzione

INPUT

A B A B

ESECUZIONE NON ACCETTANTE

 q_0 q_0 q_0 q_1

Esempio di Esecuzione

INPUT

A B A B

Non è una esecuzione!

 q_1 q_3 q_3 q_3 q_3

Linguaggio Riconosciuto da un ASFD

- **Definizione**. Dato un **ASFND** $A = < \Sigma, Q, \delta, q_0, F >$ e una stringa $x \in \Sigma^*$
 - x è accettata da A se esiste almeno una esecuzione accettante di A su x
 - Altrimenti, x è rifiutata

• **Definizione**. Sia $A = < \Sigma, Q, \delta, q_0, F >$ un **ASFND**. **Il linguaggio riconosciuto da** A è il linguaggio L(A) sull'alfabeto Σ tale che

$$L(A) = \{x \in \Sigma^* \mid x \text{ è accettata da } A\}$$

- Definizione. Un linguaggio \mathcal{L} è detto regolare se esiste un ASFD A tale che $L(A) = \mathcal{L}$
- Domanda. È vero che ogni linguaggio riconosciuto da un ASFND è regolare?
 - Ovvero, possiamo sempre definire un ASFD equivalente a un ASFND?

Equivalenza tra ASFND e ASFD

ASFND e ASFD Sono Modelli Computazionali Equivalenti

- Dimostreremo ora che gli ASFND e gli ASFD hanno lo stesso potere espressivo, ovvero riconoscono esattamente gli stessi linguaggi
- In termini più precisi dimostreremo le seguenti due affermazioni

Teorema 1. Le seguenti due affermazioni sono vere.

- 1. Per ogni ASFD A esiste un ASFND A_N tale che $L(A) = L(A_N)$
 - Gli ASFND possono esprimere ogni ASFD
- **2.** Per ogni ASFND A_N esiste un ASFD A tale che $L(A_N) = L(A)$
 - Gli ASFD possono esprimere ogni ASFND

Gli ASFND Possono Esprimere gli ASFD (Punto 1)

- Questa affermazione è semplice da dimostrare.
- Dato un ASFD $A = \langle \Sigma, Q, \delta, q_0, F \rangle$, sia $A_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$ l'ASFND tale che $\delta_N(q, a) = \{\delta(q, a)\}$ per ogni coppia $(q, a) \in Q \times \Sigma$
- E' ovvio che $L(A) = L(A_N)$ inquanto, per ogni stringa $S \in \Sigma^*$ esiste una sola computazione di A_N su S che coincide proprio con A(S)

Gli ASFD Possono Esprimere gli ASFND (Punto 2)

- Questa affermazione è tutt'altro che semplice da dimostrare ©
- Intuizione 1. Dato un ASFND $A_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$, costruiamo un ASFD il cui insieme degli stati è P(Q) (insieme delle parti di Q)
 - Utilizzeremo questo (enorme) insieme di stati per simulare deterministicamente tutte le possibili computazioni dell'ASFND A_N
- Intuizione 2. Uno stato di A è finale se contiene almeno uno stato finale di A_N
 - Una esecuzione che termina in tale stato rappresenta un insieme di esecuzioni tra cui ce ne è una che termina proprio nello stato finale
- Intuizione 2. La funzione di transizione $\delta_A(q_A, x) = q_A'$ se l'insieme ottenuto applicando δ a (q, x) per ogni stato $q \in q_A$ definisce proprio q_A'
 - Ogni passaggio di stato rappresenta un insieme di possibili passaggi di stato nelle computazioni di A_N

Punto 2 – Costruzione

- Dato un ASFND $A_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$, sia $A' = \langle \Sigma, Q', \delta', q'_0, F' \rangle$ l'ASFD tale che:
 - -Q'=P(Q)
 - $q_0' = \{q_0\},\$
 - $F' = \{ X \in P(Q) \mid X \cap F \neq \emptyset \}$
 - $-\delta'(\{\},a)=\{\}, \text{ per ogni } a\in\Sigma$
 - $-\delta'\big(\{q_i^1,\ldots,q_i^k\},a\big)=\delta_N\big(q_i^1,a\big)\cup\cdots\cup\delta_N\big(q_i^k,a\big), \text{ per ogni } \{q_i^1,\ldots,q_i^k\}\in(P(Q)\setminus\emptyset) \text{ } e\text{ } a\in\Sigma$

Punto 2 - Costruzione - Esercizio

- Definire A' per l'ASFND seguente.
 - Nota: se un nodo ha un arco mancante assumiamo un cappio

$$- \Sigma = \{a, b\}$$

$$- Q = \{q_0, q_1\}$$

$$- I = q_0$$

$$- F = \{q_1\}$$

- δ definito dalla tabella sottostante

Stato q	Simbolo s	$\delta'(q,s)$
q_0	а	$\{q_0\}$
q_0	b	$\{q_0,q_1\}$
q_1	а	$\{q_1\}$
q_1	b	$\{q_1\}$

Punto 2 – Costruzione – Esercizio – Soluzione

• $A' = \langle \Sigma, Q', \delta', q'_0, F' \rangle$ definito come segue

$$-\Sigma = \{a, b\}$$

$$-Q' = \{\{\}, \{q_0\}, \{q_1\}, \{q_0, q_1\}\}$$

$$-q'_0 = \{\{q_0\}\}$$

$$-F' = \{\{q_1\}, \{q_0, q_1\}\}$$

Stato q	Simbolo s	$\delta'(q,s)$
{ }	а	{ }
{ }	b	{ }
$\{q_0\}$	а	$\{q_0\}$
$\{q_0\}$	b	$\{q_0,q_1\}$
$\{q_1\}$	а	$\{q_1\}$
$\{q_1\}$	b	$\{q_1\}$
$\{q_0,q_1\}$	а	$\{q_0, q_1\}$
$\{q_0,q_1\}$	b	$\{q_0,q_1\}$

Punto 2 – Costruzione – Esercizio 1 – Soluzione

Stato q	Simbolo s	$\delta'(q,s)$
{ }	а	{ }
{ }	b	{ }
$\{q_0\}$	а	$\{q_0\}$
$\{q_0\}$	b	$\{q_0,q_1\}$
$\{q_1\}$	а	$\{q_1\}$
$\{q_1\}$	b	$\{q_1\}$
$\{q_0,q_1\}$	а	$\{q_0,q_1\}$
$\{q_0,q_1\}$	b	$\{q_0,q_1\}$

Punto 2 – Costruzione – Esercizio 2

•
$$A' = \langle \Sigma, Q', \delta', q'_0, F' \rangle =$$

- $\Sigma = \{a, b\}$

- $Q' = \{\{\}, \{q_0\}, \{q_1\}, \{q_0, q_1\}\}\}$

- $q'_0 = \{\{q_0\}\}$

- $F' = \{\{q_1\}, \{q_0, q_1\}\}$
 q_0
 q_0

Stato q	Simbolo s	$\delta'(q,s)$
{ }	а	{ }
{ }	b	{ }
$\{q_0\}$	а	$\{q_0\}$
$\{q_0\}$	b	$\{q_0,q_1\}$
$\{q_1\}$	а	$\{q_1\}$
$\{q_1\}$	b	$\{q_1\}$
$\{q_0,q_1\}$	а	$\{q_0,q_1\}$
$\{q_0,q_1\}$	b	$\{q_0,q_1\}$

• Qual è il linguaggio accettato dai due automi?

Punto 2 – Costruzione – Esercizio 2 – Soluzione

•
$$A' = \langle \Sigma, Q', \delta', q'_0, F' \rangle =$$

- $\Sigma = \{a, b\}$

- $Q' = \{\{ \}, \{q_0\}, \{q_1\}, \{q_0, q_1\}\}$

- $q'_0 = \{\{q_0\}\}$

- $F' = \{\{q_1\}, \{q_0, q_1\}\}$
 q_0
 q_0

Stato q	Simbolo s	$\delta'(q,s)$
{ }	а	{ }
{ }	b	{ }
$\{q_0\}$	а	$\{q_0\}$
$\{q_0\}$	b	$\{q_0,q_1\}$
$\{q_1\}$	а	$\{q_1\}$
$\{q_1\}$	b	$\{q_1\}$
$\{q_0,q_1\}$	а	$\{q_0,q_1\}$
$\{q_0,q_1\}$	b	$\{q_0,q_1\}$

- Qual è il linguaggio accettato dai due automi?
 - Stringhe che contengono almeno una b

Punto 2 – Prova

- Dimostriamo che $s \in L(A_N)$ se e e solo se $s \in L(A')$.
- Per farlo, proveremo prima una proprietà più forte. Specificatamente, dimostreremo il seguente argomento.
- Lemma 1. Lo stato finale della computazione A'(s) di A' su s coincide con l'insieme degli stati finali di tutte le computazione di A_N su s.
- La prova è **per induzione** sulla lunghezza della stringa di input x
- **Passo base** (|x| = 0). Sia $s = \epsilon$. A_N ha un'unica computazione possibile su ϵ , cioè (q_0) ; e $A'(\epsilon) = (\{q_0\})$. La proposizione segue banalmente.

Punto 2 – Prova Lemma 1 (1/2)

- Passo induttivo (|x| > n). Assumiamo l'ipotesi induttiva, e cioè che la proposizione sia vera per ogni stringa di input con $|x| \le n$. In altre parole, assumiamo la seguente
- **Ipotesi Induttiva**. Per ogni stringa di input s di dimensione $|s| \le n$ vale la seguente proprietà (**Lemma 1**): lo stato finale della computazione A'(s) di A' su s coincide con l'insieme degli stati finali di tutte le computazione di A_N su s.
- **Dimostriamo** che lo stato finale della computazione A'(s) di A' su s **coincide con** l'insieme degli stati finali di tutte le computazione di A_N su s per ogni stringa x tale che |x| = n + 1

Punto 2 – Prova Lemma 1 (1/2)

- Consideriamo ora il caso |x| = n + 1 e assumiamo x = sa con |s| = n e $a \in \Sigma$.
- Una esecuzione di A' su x è una sequenza $A'(s) \circ (\delta'(Y, a))$
 - $A'(s) \circ (\delta'(Y,a))$ è la concatenazione di A'(s) e la sequenza $(\delta'(Y,a))$ formata dall' unico elemento $(\delta'(Y,a))$
- Lo stato finale della computazione di A' su $x \in \delta'(Y, a) = \delta_N(q_i^1, a) \cup \cdots \cup \delta_N(q_i^k, a)$
- **Dimostriamo** che $\delta'(Y, a)$ è lo stato desiderato utilizzando l'Ipotesi Induttiva
 - È l'insieme degli stati finali di tutte le computazioni di A_N sulla stringa di input s

Punto 2 – Prova Lemma 1 (2/2)

- Esaminiamo $\delta'(Y, a) = \delta_N(q_i^1, a) \cup \cdots \cup \delta_N(q_i^k, a)$
- Sia $T \in \delta'(Y, a)$ uno stato di A_N . Dimostriamo che esiste una computazione di A_N sul'input $x = s \circ a$ il cui stato finale è T
 - Se $T \in \delta'(Y, a)$ allora esiste $T' \in Y$ tale che $T \in \delta(T', a)$ (in A_N) (costruzione di A')
 - Per **Ipotesi Induttiva** lo **stato finale** Y di A'(s) è l'insieme degli stati finali di tutte le computazioni di A_N su s
 - Possiamo concludere che T è lo stato finale di una computazione di A_N su x
- Sia C una computazione di A_N sul'input $x = s \circ a$ il cui stato finale è T. Dimostriamo che $T \in \delta'(Y, a)$
 - Esiste una computazione C' di A_N su s con stato finale T' e $T \in \delta(T', a)$ (definizione di ASFND)
 - Per **Ipotesi Induttiva** lo **stato finale** Y di A'(s) è l'insieme degli stati finali di tutte le computazioni di A_N su s
 - Possiamo concludete che $T \in \delta'(Y, a)$

Punto 2 – Prova

- Lemma 2. $s \in L(A_N)$ se e e solo se $s \in L(A')$.
- Prova. Proviamo le due proposizioni separatamente
- Se $s \in L(A_N)$ allora esiste una esecuzione accettante di A_N su s. Sia X tale esecuzione e Y il suo stato finale. Allora $Y \in F$ e $Y \in A'(s)$ (Lemma 1) che, per costruzione, implica $A'(s) \in F'$ e quindi $s \in L(A')$.
- Se $s \in L(A')$ allora $A'(s) \in F'$ che, per costruzione, implica che esiste $Y \in A'(s)$ tale che $Y \in F$. Possiamo concludere che esiste una computazione di A_N su s il cui stato finale è proprio Y (Lemma 1) che $s \in L(A_N)$.