Übungsaufgaben Grundlagen FEC

Lösungen

1. Vergleich FEC/ARQ-Protokoll

- 1. Bestimmen Sie die theoretisch minimale Verzögerung eines optimalen ARQ-Protokolls bei Auftritt eines Paketverlustes, wenn die Ende-zu-Ende-Verzögerung der betrachteten Verbindung $T_{E-E} = 140$ ms beträgt und Übertragungsverzögerungen und Verarbeitungsverzögerungen vernachlässigt werden!
- 2. Nennen Sie Vorteile/Nachteile eines reinem FEC-Übertragungsverfahrens gegenüber einem ARQ-Verfahren.

Ergebnis:

- 1. minimale Verzögerung beträgt $3T_{E-E} = 420ms$
- 2. Vorteile: Geringere Verzögerung, Kein Rückkanal notwendig Nachteile: Begrenzte Korrekturfähigkeit, Bei guten Verbindungen wird eventuell zuviel Redundanz übertragen

2. FEC-Verfahren mittels Parity-Check-Code

Es ist eine Echtzeitübertragung mittels RTP-Protokoll geplant. Die Anwendung arbeitet mit 100 Paketen/s und 1000 Bit pro Paket. Die Paketverlustwahrscheinlichkeit wurde durch statistische Analyse über einen längeren Zeitraum mit 1% ermittelt und es wird von unabhängigen Paketverlusten auf der Übertragungsstrecke ausgegangen.

- 1. Geben Sie die Kanalkapazität der Verbindung an!
- 2. Welche Verfahren zur Vermeidung von Paketverlusten schlagen Sie vor, wenn Sie den Verlust von maximal einem Paket innerhalb in 5 übertragenen Paketen verhindern wollen? Wie groß ist der jeweilige Overhead bzw. die Coderate?
- 3. Berechnen Sie die Wahrscheinlichkeit für einen Paketverlust auf Anwendungsebene trotz der im obigen Aufgabenpunkt eingesetzten Codierung (Restfehler).
- 4. In welchen zeitlichen Abständen ist jeweils im Mittel mit einem Restfehler zu rechnen? Ergebnis:
 - 1. Kanalkapazität ist die theoretisch über einen gestörten Kanal maximal fehlerfrei übertragbare Datenrate. C =(1-p) * Bitrate = 0.99 * 100kbit/s = 99kbit/s = 99 Pakete/s
 - 2. XOR-FEC mit k=4, p=1 Overhead = 25% bzw. Coderate R=k/n=0.8
 - 3. Restfehlerwahrscheinlichkeit bei Korrektur eines Paketverlustes (Wkt., dass 2 oder mehr Pakete aus k+1 Paketen verloren gehen):

$$P_r = 1 - \left[(1-p)^{k+1} + {k+1 \choose 1} p \cdot (1-p)^k \right]$$

$$P_r(k=4) = 0.001$$

4. 100 Pakete/s -> 20 Gruppen/s, statistisch 1 Decodierfehler alle 1000 Gruppen -> Restfehler im Mittel alle 50s

1

3. Fehlererkennung und Fehlerkorrektur

Es ist ein Kanalcode mit $(n, k, d_{\min}) = (31, 15, 5)$ gegeben.

- 1. Wieviele Fehler kann dieser Code erkennen?
- 2. Wieviele Fehler kann dieser Code korrigieren?
- 3. Wieviele Ausfallstellen kann dieser Code korrigieren?
- 4. Wie hoch ist die Coderate R des Codes?
- 5. Berechnen Sie die Blockfehlerwahrscheinlichkeit (ohne Korrektur) und die Restfehlerwahrscheinlichkeit bei Fehlerkorrektur und einer Übertragung über einen Binär-Kanal mit einer Bitfehlerwahrscheinlichkeit (BER) von $P_b = 10^{-2}$.

Ergebnis:

- 1. Fehlererkennung: $t_E = d_{\min} 1 = 4$
- 2. Fehlerkorrektur: $t_K = \left\lfloor \frac{d_{\min} 1}{2} \right\rfloor = 2$
- 3. Ausfallstellen 4
- 4. R = k/n = 15/31 = 0.48
- 5. Blockfehlerwahrscheinlichkeit: $P_{block} = 1 (1 P_b)^{31} = 1 0,7323 = 0,2677$ ca. jeder 4. übertragende Block ist fehlerhaft!

Restfehlerwahrscheinlichkeit:

$$P_r \le \sum_{i=t+1}^n \binom{n}{i} (1 - P_b)^{n-i} \cdot P_b^i = 1 - \sum_{i=0}^t \binom{n}{i} (1 - P_b)^{n-i} \cdot P_b^i$$

$$= 1 - \left[(1 - P_b)^{31} + 31 \cdot (1 - P_b)^{30} \cdot P_b + 465 \cdot (1 - P_b)^{29} \cdot P_b^2 \right]$$

$$= 1 - (0.7323 + 0.2293 + 0.0347) = 1 - 0.9963 = 3.7 \cdot 10^{-3}$$

ca. jeder 270. übertragene Block wird falsch korrigiert (Restfehler)

4. Fehlerkorrektur

Gegeben ist folgender Kanalcode für die vier Zeichen A-D: (Tabelle 1)

Zeichen	Kanalcode x
A	000000
В	111000
\mathbf{C}	000111
D	111111

Tabelle 1: Kanalcode

1. Wie groß ist die Minimaldistanz des Codes?

- 2. Wieviele Bitfehler lassen sich erkennen, wieviele unbekannte Fehler korrigieren und wieviele Ausfallstellen korrigieren?
- 3. Wie würden Sie die folgenden gestörten Bitfolgen (Tabelle 2) beim MLD bzw. BMD-Decodierprinzip korrigieren? (Hinweis: BMD Bounded Minimum Distanz decodiert nur bis zur Minimaldistanz, MLD Maximum Likelihood decodiert zum wahrscheinlichsten Codewort)

Empfangswort y	\hat{x} BMD	\hat{x} MLD	
100000			
001111			
101111			
000111			
101010			

Tabelle 2: gestörte Übertragung

Ergebnis:

1. Die Minimaldistanz beträgt $d_{min} = 3$.

2.
$$t_e = d_{\min} - 1 = 2$$

$$t_k = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor = 1$$

$$t_A = 2$$

Es lassen sich 2 Fehler sicher erkennen bzw. 1 Fehler sicher korrigieren.

3. Geschätztes Zeichen ist zum empfangenen Zeichen ähnlichstes Codewort

Kanalcode	d_H	BMD	MLD
100000	1	A	A
001111	1	С	С
101111	1	D	D
000111	0	С	С
101010	2	_	В

Der Unterschied besteht in Empfangsworten, welche mit der Fehleranzahl den Wert $\frac{d_{\min}-1}{2}$ übersteigen. Das BMD-Prinzip kann diese Empfangsworte nicht decodieren und gibt einen Fehler aus. Beim MLD-Prinzip wird immer decodiert, auch wenn das Ergebnis mehrdeutig ist.

5. Praktische Codes

Gegeben ist ein (n, k, d_{\min}) -Code als (127, 64, 21)-BCH-Code.

- 1. Welche Parameter können Sie aus dem BCH-Code ableiten?
- 2. Welchen Wert für d_{\min} erhalten Sie aus der Singleton-Schranke?

Ergebnis:

- 1. Maximale Anzahl erkennbarer Fehler, $t_E=20$ Maximale Anzahl korrigierbarer Fehler, $t_{\rm K}=10$, Coderate: R=k/n=0.5
- 2. $d_{\min} = n k + 1 = 127 64 + 1 = 64 \gg 21$