Define coordinates such that the stick extends from position 0 (the left end) to position 1 (the right end). Denote the position of the first break by X and the position of the second break by Y. We have X < Y. We assume that X < Y and we later account for the case Y < X by using symmetry.

Under the assumption X < Y, the three pieces have lengths X, Y - X, and 1 - Y. In order that they form a triangle, the sum of the lengths of any two pieces must exceed the length of the third piece. Thus they form a triangle if

$$X < (Y-X)+(1-Y), \qquad (Y-X) < X+(1-Y), \qquad (1-Y) < X+(Y-X).$$

These conditions simplify to

$$X < 0.5, \qquad Y > 0.5, \qquad Y - X < 0.5.$$

For X and Y to satisfy these conditions, the pair (X,Y) must lie within the triangle with vertices (0,0.5), (0.5,0.5), and (0.5,1). This triangle has area 1/8. Thus the probability of the event that the three pieces form a triangle and X < Y is 1/8. By symmetry, the probability of the event that the three pieces form a triangle and X > Y is 1/8. Since there two events are disjoint and form a partition of the event that the three pieces form a triangle, the desired probability is 1/8 + 1/8 = 1/4.