COMS 4701 - Homework 2 - Written

Albert Go

ag4474

October 8, 2021

Question 1

- 1. First, S is added to the queue.
 - [S] Then, S will be expanded, and nodes A, B, and C will be added to the queue.
 - [A, B, C] S is removed and A will be expanded next, and node D will be added to the queue.
 - [B, C, D] A is removed and B will be expanded next, and node E will be added to the queue.
 - [C, D, E] B is removed and C will be expanded next, and node H will be added to the queue.
 - [D, E, H] C is removed and D will be expanded next, but no nodes will be added because it has no children.
 - [E, H] D is removed and E will be expanded next, but no nodes will be added because A was already explored.
 - [H] E is removed and H will be expanded next, and F and G will be added to the queue.
 - [F, G] F is removed and G will be expanded next, and no nodes will be added because D was already explored.
 - \bullet [G] H is removed and G is explored and is discovered to be the goal
- 2. First, S is added to the queue. The stack in my problem is shown so that the element on the right most is to be pulled out first.
 - [S] Then, S will be expanded, and nodes C, B, and A will be added to the stack.
 - [C, B, A] S is removed and A will be expanded, and node D will be added to the stack.
 - [C, B, D] A is removed and D will be expanded, and no nodes will be added because it has no children.
 - \bullet [C, B] D is removed and B will be expanded, and node E will be added to the stack.
 - [C, E] B is removed and E will be expanded, but no nodes will be added because A was already explored.
 - \bullet [C] E is removed and C will be expanded, and node H will be added to the stack.
 - [H] C is removed and H will be expanded, and G and F will be added to the stack.
 - [G, F] H is removed and F is explored and no nodes will be added to the stack because D has already been explored.
 - \bullet [G] F is removed and G is explored and is discovered to be the goal
- 3. First, S is added to the priority queue. The Priority Queue will be shown like a dictionary. The keys are the nodes and the values are the cost.
 - {S:0} Then, S will be expanded, and nodes B, C, and A will be added to the priority queue in that order.
 - $\{B: 2, C: 5, A: 6\}$ S is removed and B will be expanded next, and node E will be second in the priority queue.
 - $\{C:5,E:5,A:6\}$ B is removed and C will be expanded next, and H will be added to the end of the priority queue..
 - $\{E: 5, A: 6, H: 7\}$ C is removed and E will be expanded next, but no nodes will be added because A is already in the queue and has a lesser cost than what it would be going from E to A.
 - $\{A:6,H:7\}$ E is removed and A will be expanded next, and D will be added to the end of the priority queue.
 - $\{H:7,D:15\}$ A is removed and H will be expanded next, and node F and G will be added to the beginning of the priority queue.
 - $\{F: 9, G: 14, D: 15\}$ H is removed and F will be expanded, and D will be updated with a new priority value and moved up in the queue.
 - $\{D: 13, G: 14\}$ F is removed and D is explored next, and no nodes will be added because it has no children.
 - $\{G: 14\}$ H is removed and G is explored and is discovered to be the goal

- 4. First, S is added to the priority queue. The Priority Queue will be shown like a dictionary. The keys are the nodes and the values are the cost.
 - {S:0} Then, S will be expanded, and nodes B, C, and A will be added to the priority queue in that order.
 - $\{B:3,C:8,A:11\}$ S is removed and B will be expanded next, and node E will be second in the priority queue.
 - $\{C:5,E:9,A:11\}$ B is removed and C will be expanded next, and H will be added to the end of the priority queue..
 - $\{E: 9, A: 11, H: 14\}$ C is removed and E will be expanded next, but no nodes will be added because A is already in the queue and has a lesser cost than what it would be going from E to A.
 - $\{A:11,H:14\}$ E is removed and A will be expanded next, and D will be added to the end of the priority queue.
 - $\{H: 14, D: 22\}$ A is removed and H will be expanded next, and node F and G will be added to the beginning of the priority queue.
 - $\{F: 9, G: 14, D: 22\}$ H is removed and F will be expanded, and D will be updated with a new priority value.
 - $\{G: 14, D: 20\}$ F is removed and G is explored and is discovered to be the goal

Question 2

1. The Apriori algorithm will discover Mac \rightarrow PC. This association does exceed the minimum supply threshold with a $supp(Mac \rightarrow PC) = 40\%$ and exceeds the minimum confidence.

$$conf(Mac \to PC) = \frac{P(Mac \cap PC)}{P(Mac)} \approx 67\%$$
 (1)

2. To determine independence, we must calculate the $Interest(Mac \rightarrow PC)$

$$Interest(Mac \to PC) = \frac{P(Mac \cap PC)}{P(Mac) * P(PC)} \approx 0.89 \tag{2}$$

Since $Interest(Mac \rightarrow PC) \approx 0.89 < 1$, Mac and PC are negatively dependent.

Question 3

- (a) Each square with a variable, without considering constraints, can be any number between 1 and 4 inclusive. As a result, the size of the state space is 4^{12} —4 numbers to choose and 12 variables.
- (b) $A \neq 2, 4; B \neq 3, 4; C \neq 4; D \neq 4; E \neq 2, 4; F \neq 3, 4; G \neq 2, 4; H \neq 2, 3; I \neq 2, 3, 4; J \neq 2, 3, 4; K \neq 2, 3; L \neq 3, 4$
- (c) There is a tie if we choose to assign the first variable using the minimum remaining values heuristic. Letters I and J would be first because each of them can only be assigned a value of 1.
- (d) Figure 1 below depicts my thought process for reducing the domains of the problem through unary constraints and arc consistency.

Figure 1: Arc consistency tree.