Unsupervised Learning

May 23, 2019

You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.

1 Applied Machine Learning: Unsupervised Learning

1.1 Preamble and Datasets

```
In [1]: %matplotlib notebook
    import numpy as np
    import pandas as pd
    import seaborn as sn
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_breast_cancer

# Breast cancer dataset
    cancer = load_breast_cancer()
    (X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)

# Our sample fruits dataset
    fruits = pd.read_table('readonly/fruit_data_with_colors.txt')
    X_fruits = fruits[['mass','width','height', 'color_score']]
    y_fruits = fruits[['fruit_label']] - 1
```

1.2 Dimensionality Reduction and Manifold Learning

1.2.1 Principal Components Analysis (PCA)

Using PCA to find the first two principal components of the breast cancer dataset

```
In [2]: from sklearn.preprocessing import StandardScaler
    from sklearn.decomposition import PCA
    from sklearn.datasets import load_breast_cancer
    cancer = load_breast_cancer()
```

```
(X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)

# Before applying PCA, each feature should be centered (zero mean) and with
X_normalized = StandardScaler().fit(X_cancer).transform(X_cancer)

pca = PCA(n_components = 2).fit(X_normalized)

X_pca = pca.transform(X_normalized)

print(X_cancer.shape, X_pca.shape)

(569, 30) (569, 2)
```

Plotting the PCA-transformed version of the breast cancer dataset

<IPython.core.display.HTML object>

Plotting the magnitude of each feature value for the first two principal components

PCA on the fruit dataset (for comparison)

1.2.2 Manifold learning methods

Multidimensional scaling (MDS) on the fruit dataset

<IPython.core.display.HTML object>

Multidimensional scaling (MDS) on the breast cancer dataset (This example is not covered in the lecture video, but is included here so you can compare it to the results from PCA.)

```
In [ ]: from sklearn.preprocessing import StandardScaler
        from sklearn.manifold import MDS
        from sklearn.datasets import load_breast_cancer
        cancer = load breast cancer()
        (X_cancer, y_cancer) = load_breast_cancer(return_X_y = True)
        # each feature should be centered (zero mean) and with unit variance
        X_normalized = StandardScaler().fit(X_cancer).transform(X_cancer)
        mds = MDS (n_components = 2)
        X_mds = mds.fit_transform(X_normalized)
        from adspy_shared_utilities import plot_labelled_scatter
        plot_labelled_scatter(X_mds, y_cancer, ['malignant', 'benign'])
        plt.xlabel('First MDS dimension')
        plt.ylabel('Second MDS dimension')
        plt.title('Breast Cancer Dataset MDS (n_components = 2)');
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
```

t-SNE on the fruit dataset (This example from the lecture video is included so that you can see how some dimensionality reduction methods may be less successful on some datasets. Here, it doesn't work as well at finding structure in the small fruits dataset, compared to other methods like MDS.)

```
<IPython.core.display.HTML object>
```

t-SNE on the breast cancer dataset Although not shown in the lecture video, this example is included for comparison, showing the results of running t-SNE on the breast cancer dataset. See the reading "How to Use t-SNE effectively" for further details on how the visualizations from t-SNE are affected by specific parameter settings.

1.3 Clustering

1.3.1 K-means

This example from the lecture video creates an artificial dataset with make_blobs, then applies k-means to find 3 clusters, and plots the points in each cluster identified by a corresponding color.

```
In []: from sklearn.datasets import make_blobs
    from sklearn.cluster import KMeans
    from adspy_shared_utilities import plot_labelled_scatter

X, y = make_blobs(random_state = 10)

kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)

plot_labelled_scatter(X, kmeans.labels_, ['Cluster 1', 'Cluster 2', 'Cluster')
```

Example showing k-means used to find 4 clusters in the fruits dataset. Note that in general, it's important to scale the individual features before applying k-means clustering.

1.3.2 Agglomerative clustering

```
In []: from sklearn.datasets import make_blobs
    from sklearn.cluster import AgglomerativeClustering
    from adspy_shared_utilities import plot_labelled_scatter

X, y = make_blobs(random_state = 10)

cls = AgglomerativeClustering(n_clusters = 3)
    cls_assignment = cls.fit_predict(X)

plot_labelled_scatter(X, cls_assignment,
    ['Cluster 1', 'Cluster 2', 'Cluster 3'])
```

Creating a dendrogram (using scipy) This dendrogram plot is based on the dataset created in the previous step with make_blobs, but for clarity, only 10 samples have been selected for this example, as plotted here:

And here's the dendrogram corresponding to agglomerative clustering of the 10 points above using Ward's method. The index 0..9 of the points corresponds to the index of the points in the X array above. For example, point 0 (5.69, -9.47) and point 9 (5.43, -9.76) are the closest two points and are clustered first.

```
In [ ]: from scipy.cluster.hierarchy import ward, dendrogram
    plt.figure()
    dendrogram(ward(X))
    plt.show()
```

1.3.3 DBSCAN clustering