Unit 6: Government policy in competitive markets II – Distribution & incidence

Prof. Antonio Rangel

January 2, 2016

1 Endogenous income and inequality

1.1 Simple model

- There are two markets and two goods:
 - Labor market: consumers sell labor l at wage w to firms
 - Goods market: firms sell good q at price p to consumers
- Consumer side of the model:
 - -C consumers
 - no exogenous wealth: $W_i = 0$ for all i
 - $-U_i(q,l,m) = q \frac{l^2}{2\theta_i} + m$
 - -l = units of labor provided
 - $-\frac{1}{\theta_i}$ = measure of *i*'s disutility of providing labor (i.e., a cost of effort).
 - People with higher θ_i have lower disutility of labor.
 - Consumer's problem:

$$\max_{q,l \ge 0} q - \frac{l^2}{2\theta_i} + lw - pq$$

– FOCs for good q: MB = MC with MB = 1 and MC = p.

- It follows that demand for good q is given by

$$x_i^D(p) = \begin{cases} 0 & \text{if } p > 1\\ anything & \text{if } p = 1\\ \infty & \text{if } p < 1 \end{cases}$$

- Thus, aggregate demand for the market is given by

$$X_{mkt}^{D}(p) = \begin{cases} 0 & \text{if } p > 1\\ anything & \text{if } p = 1\\ \infty & \text{if } p < 1 \end{cases}$$

- FOCs for labor supplied by consumer i: MB = MC with MB = w and $MC = \frac{l}{\theta_i}$.
- It follows that $l_i^S(w) = \theta_i w$.
- Thus, aggregate labor supply is given by $L_{mkt}^S(w) = w \sum_i \theta_i = wC\bar{\theta}$, where $\bar{\theta}$ denotes average θ .
- Labor income of consumer i: $I_i(w) = \theta_i w^2$

• Firm side of the model:

- F identical firms
- Production function: $F(l) = \gamma l, \, \gamma > 0$
- Firm's problem:

$$\max_{l>0} p\gamma l - wl$$

- FOCs for firm's problem: MB = MC with $MB = p\gamma$ and MC = w.
- Thus, we get

$$l_{j}^{D}(w, p) = \begin{cases} 0 & \text{if } w > p\gamma \\ anything & \text{if } w = p\gamma \\ \infty & \text{if } w < p\gamma \end{cases}$$

- Aggegate labor demand is then given by:

$$L_{mkt}^{D}(w, p) = \begin{cases} 0 & \text{if } w > p\gamma \\ anything & \text{if } w = p\gamma \\ \infty & \text{if } w < p\gamma \end{cases}$$

- Given this, firms' supply at the individual and market level are given by $q_i^S(w,p) = \gamma l_i^D(w,p)$ and $X_{mkt}^S(w,p) = \gamma L_{mkt}^D(w,p)$
- Competitive market equilibrium:
 - cME given by p^*, w^*, α^* such that :
 - 1. Consumers optimize over q, l given p^*, w^*
 - 2. Firms optimize over q, l given p^*, w^*
 - 3. Both markets clear
 - The cME in this simple model satisfies the following properties:

$$p^* = 1$$

$$w^* = \gamma$$

$$q^* = C\bar{\theta}\gamma^2$$

$$l^* = C\bar{\theta}\gamma$$

- Note that prices and wages are uniquely determined by market parameters, independent of quantity
- Note that there are many possible cMEs, one for each possible quantity q
- Equilibrium level of inequality
 - In equilibrium, income of person i is given by $I_i = \theta_i w^2 = \theta_i \gamma^2$
 - This implies that the inequality of income is given by $Var(I_i) = \gamma^4 Var(\theta_i)$
 - In equilibrium, the utility of person i is given by:

$$U_i = -\frac{l^2}{2\theta_i} + lw + q - pq$$
$$= -\frac{\theta_i^2 w^2}{2\theta_i} + \theta_i w^2$$
$$= \frac{\theta_i \gamma^2}{2}$$

- It follows that the inequality of utility is given by $Var(U_i) = \frac{\gamma^4}{4} Var(\theta_i)$
- Summary: a simple model with individual differences in the disutility of labor generates inequality of income and utility in equilibrium

1.2 Labor income taxes and inequality

- Impact of taxes on market equilibrium
 - Labor income tax $\tau > 0$: for every dollar each consumer earns, she must pay τ to government

 - Consumer's problem now given by:

$$\max_{q,l \geq 0} q - \frac{l^2}{2\theta_i} + l(1-\tau)w - pq + T$$

- Consumer assumes T fixed when maximizing, due to large number of individuals in market
- No change in q-market $\implies p^* = 1$
- No change in firms' problem $\implies w^* = \gamma$
- Labor supply now given by MB = MC, with $MB = (1 \tau)w$ and $MC = \frac{l}{\theta_i}$, which implies that

$$l_i^S(w) = (1 - \tau)w\theta_i$$

and

$$L_{mkt}^{S}(w) = (1 - \tau)wC\bar{\theta}$$

- Impact of taxes on total tax revenue:
 - $TotalRev(\tau) = \tau w L_{mkt}^{S}(w^{*}) = \tau (1 \tau) \gamma^{2} C \bar{\theta}$
 - The relationship between total Revenue and the tax rate is often called a Laffer curve

- Key property of the Laffer curve: tax revenue increases with tax rate when τ is small, but decreases with the tax rate when τ is sufficiently large
- Impact of taxes on redistribution:
 - Net-Tax = transfers received taxes paid
 - For individual i, we have that

$$NetTax(\theta_i) = \tau(1-\tau)\gamma^2 \bar{\theta} - \tau(1-\tau)\gamma^2 \theta_i$$
$$= \tau(1-\tau)\gamma^2 \left[\bar{\theta} - \theta_i\right]$$

- $-NetTax(\theta_i) > 0$ if and only if $\theta_i < \bar{\theta}$
- This implies that individuals with an above average disutility of labor receive a net transfer from the government, and those with below average disutility of labor pay a net tax.
- Impact of taxes on income inequality:

$$-I_i = (1-\tau)^2 \gamma^2 \theta_i + \tau (1-\tau) \gamma^2 \bar{\theta}$$

- Tax reduces income inequality: intercept increasing, slope decreasing in τ

$$- Var(I_i) = (1 - \tau)^4 \gamma^4 Var(\theta_i)$$

- Impact of taxes on utility inequality:
 - Post-tax utility of person i is given by

$$U_i(\tau) = -\frac{(1-\tau)^2 \gamma^2 \theta_i^2}{2\theta_i} + (1-\tau)^2 \gamma^2 \theta_i + \tau (1-\tau) \gamma^2 \bar{\theta}$$

$$= \frac{(1-\tau)^2 \gamma^2 \theta_i}{2} + \tau (1-\tau) \gamma^2 \bar{\theta}$$

$$= \frac{1}{2} \gamma^2 (1-\tau) \left[\theta_i + \tau (2\bar{\theta} - \theta_i) \right]$$

$$- Var(U_i) = \frac{(1-\tau)^4 \gamma^4}{4} Var(\theta_i)$$

$$A = A = A$$

- Lesssons:
 - An income tax can reduce, but not eliminate, inequality
 - There is an efficiency cost of income taxes, since people work less as the tax rate increases

1.3 Optimal labor income tax

- Now let's compute the optimal labor income tax in our model
- Suppose consumers have preferences that depend on the distribution of income, as follows:

$$V_i(q, l, m, \{I_1, \dots, I_C\}) = \underbrace{\left[q - \frac{l^2}{2\theta_i} + m\right]}_{U_i} - \underbrace{\sigma\sqrt{Var(I)}}_{\text{Inequality pref}}$$

• Optimal tax problem for the government:

$$\max_{\tau \ge 0} \sum_{i} V_i(\tau)$$

- Notation:
 - $-U_i(\tau), V_i(\tau)$: utility as a function of tax rate, as derived above
 - $n(\theta)$: number of consumers of type θ
 - $I_{\theta}(\tau)$: total income of consumer of type θ as a function of tax rate
- Simplifying objective function we get

$$\begin{split} \sum_{i} V_{i}(\tau) &= \sum_{i} U_{i}(\theta) - C\sigma\sqrt{Var(I_{\theta}(\tau))} \\ &= \sum_{\theta} n(\theta) \left[\frac{w^{2}(1-\tau)^{2}\theta}{2} + \tau(1-\tau)w^{2}\bar{\theta} \right] - C\sigma\sqrt{\frac{\sum n(\theta) \left(I_{\theta}(\tau) - \overline{I_{\theta}(\tau)}\right)^{2}}{C}} \end{split}$$

• Observe that

$$I_{\theta}(\tau) - \overline{I_{\theta}(\tau)} = (1 - \tau)^2 w^2 (\theta_i - \bar{\theta})$$

• This implies that

$$\sum n(\theta) \left(I_{\theta}(\tau) - \overline{I_{\theta}(\tau)} \right)^{2} = (1 - \tau)^{4} w^{4} \sum n(\theta) (\theta_{i} - \overline{\theta})^{2}$$
$$= (1 - \tau)^{4} w^{4} Var(\theta) C$$

• So the objective function $\sum_{i} V_{i}(\tau)$ can be written as

$$= \frac{w^2(1-\tau)^2}{2} \underbrace{\sum_{=C\bar{\theta}} \theta n(\theta)}_{=C\bar{\theta}} + \tau (1-\tau) w^2 \bar{\theta} \underbrace{\sum_{=C} n(\theta)}_{=C} - C\sigma (1-\tau)^2 w^2 SD(\theta)$$

$$\propto w^2 C\bar{\theta} \left[(1-\tau)^2 + 2\tau (1-\tau) - 2(1-\tau)^2 \sigma \frac{SD(\theta)}{\bar{\theta}} \right]$$

$$\propto (1-\tau^2) - 2(1-\tau)^2 \sigma \frac{SD(\theta)}{\bar{\theta}}$$

• As a result, the optimal tax problem can be written as

$$\max_{\tau>0} (1-\tau^2) - 2(1-\tau)^2 \sigma \frac{SD(\theta)}{\bar{\theta}}$$

• From the Laffer curve material, we know that this problem has a unique maximum. So the following FOC is necessary and sufficient:

$$-2\tau + 4(1-\tau)\sigma \frac{SD(\theta_i)}{\bar{\theta}} = 0$$

• This implies a precise formula for the optimal tax

$$\tau^{opt} = \frac{2\sigma \frac{SD(\theta_i)}{\hat{\theta}}}{1 + 2\sigma \frac{SD(\theta_i)}{\hat{\theta}}}.$$

- Intuition check:
 - $-\tau^{opt}=0$ when individuals don't care about inequality since $\sigma=0$
 - $-\tau^{opt}=0$ when there is no inequality since $SD(\theta)=0$
 - The optimal tax goes to 1 as the distate for inequality increases (i.e., as $\sigma \to \infty$)
- Remark 1: Optimal tax problem induces a fundamental tradeoff: reduce inequality vs. avoid inefficiency
- Remark 2: Is the result robust to alternative model specifications? Basic logic of the problem is robust, although the precise details of the formula depends on the details of the model.

- Remark 3: Solution depends on consumers' objective function. We used an objective function in which consumers care about overall inequality, not about others' utility.
- Remark 4: Key empirical parameters affecting the size of the optimal tax:
 - measure of inequality $\frac{SD(\theta)}{\bar{\theta}}$
 - strength of social preferences σ
 - general equilibrium effects of taxation

1.4 Second welfare theorem

- Second Welfare Theorem (SWT):
 - Let α be a Pareto optimal allocation
 - Then there is a set of lump-sum m-good transfers, with $\sum T_i = 0$, such that α is a cME given transfers $\{T_i\}$
- ullet Intuition: The market for the q-good is not affected by lump-sum transfers.
- Naive interpretation of the SWT:
 - It implies no need to use distortionary taxes to redistribute.
 - It implies usage of lump-sum transfers is sufficient to reach desired
 P.O. allocation, since they generate no DWL!
- Problem Lump-sum tax policy in SWT involves unreasonable informational demands:
 - must choose T_i for each consumer
 - therefore must know fundamental parameters (preferences, effort costs) of each individual
 - very unrealistic!

2 Price controls

2.1 Simple price controls

• Taxonomy of price control policies

– Price ceiling: $p \leq p^{max}$

– Price floor: $p \ge p^{min}$

- Simple: just price restriction

- Complex: price restriction plus action necessary to clear market

• When does a simple price ceiling affect equilibrium outcomes?

– Policy is not binding if $p^{max} \ge p^*$. In this case the market generates the same outcome

– Policy binds if $p^{max} < p^*$. In this case p^{max} becomes the equilibrium price. But at that price there is excess demand, so a rationing rule is needed (specifying who gets the units that are produced)

- Efficient rationing rule: units are allocated to highest-value consumers

• Effect of binding price ceiling on social surplus under an efficient rationing rule:

	free mkt	p^{max}	change
CS	A + B + E	A + B + C	C - E
PS	C + D + F	D	-(C+F)
SS	$A + \ldots + F$	A + B + C + D	-(E+F)

• Note: E+F represents the DWL introduced by the price-ceiling policy

• Remarks:

- When policy binds, it creates inefficiency

 Policy can have redistributive effects. For example, in some cases there is a transfer of surplus from firm owners to consumers who are not firm owners.

2.2 Complex price controls

- Complex price floor
 - $-p \geq p_{min}$
 - Government buys excess supply at equilibrium price p^*
 - Revenue for government purchases financed using an equal lumpsum tax on all consumers
 - Units bought by government are destroyed
- Effects of binding complex price floor on equilibrium outcomes
 - Important quantities: $p^* = p_{min}, x^*_{consumed}, x^*_{produced}$
 - $-x^*_{consumed} < x^*_{produced}$
 - Government buys excess production and destroys it
- Effect of binding complex price floor on social surplus:

	free mkt	p^{min}	change
CS	A+B+E	A-(E+F+G+H+I)	-(B+2E+F+G+H+I)
PS	C+D+F	B+C+D+E+F+I	B+E+I
SS	A+B+C+D+E+F	A+B+C+D-(H+G)	-(E+F+H+G)

- NOTE: E+F+H+G represents the DWL of the policy
- Remarks:
 - DWL bigger than in simple price control
 - Policy also entails a transfer of surplus fron consumers to owners of the firms
 - This policy is particularly inefficient!

3 Economic vs. legal incidence

- Does it matter who pays the tax?
 - Suppose that government needs to raise a tax $\tau > 0$ per unit of good q sold:
 - Tax can be assigned to consumers, producers, or both
 - Class of policies:
 - * $0 \le a \le 1$: a is fraction of tax paid by consumers
 - * tax on consumers per-unit purchased: $\tau^C = a\tau$
 - * tax on producers per-unit sold: $\tau^F = (1-a)\tau$
- Incidence:
 - Legal: who sends a check to the government
 - Economic: who bears the cost of the tax
- RESULT: Equilibrium allocation is independent of a
 - -p = mkt price
 - $-p + a\tau$: net price paid by consumers
 - $-p-(1-a)\tau$: net price received by firms
 - Consumers treat tax as price increase: $X^{D}(p|a) = X_{no-tax}^{D}(p+a\tau)$
 - Likewise for producers: $X^{S}(p|a) = X_{no-tax}^{S}(p-(1-a)\tau)$
 - Market equilibrium $p^*(a)$ solves

$$X_{no-tax}^{D}(p^{*}(a) + a\tau) = X_{no-tax}^{S}(p^{*}(a) - (1-a)\tau)$$

- Let p_{τ}^* = equilibrium price when a = 0 (all tax paid by firms)
- Easy to check that $p^*(a) = p_{\tau}^* a\tau$ clears the market for all a
- But then the net price paid by consumers and received by firms is independent of a
- This immplies that the equilibrium allocation is also independent of a!
- See graphical intuition provided in video lecture

4 Final remarks

- Key ideas from this unit:
 - 1. Optimal tax problem involves a tradeoff between redistribution and efficiency
 - 2. Price controls lead to sizeable deadweight losses, but can improve consumer or producer surplus, through the redistribution of social surplus
 - 3. Legal incidence \neq economic incidence