数学外卖高等代数讲座——线性映射

梁海纳、刘欣晨

2025年4月13日

1 矩阵表示

题目 1.1. $A \in M_n(\mathbb{C})$ 为定映射,定义映射 $\varphi_A: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ 为 $\varphi_A(X) = AX - XA$ 。

- 1. 证明 φ_A 是线性变换。
- 2. 若 n=2 且 $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$,写出 φ_A 在标准基 $\{E_{1,1},E_{1,2},E_{2,1},E_{2,2}\}$ 下的矩阵。
- 3. 若 A 可对角化,证明 φ_A 也可对角化。

题目 1.2. (1) 设 V 为有限维线性空间. 证明: 不存在 V 上的线性变换 A, B, 使得 $AB - BA = E_V$. (2) 构造无限维线性空间 V 以及 V 上的线性变换 A, B, 使得 $AB - BA = E_V$.

2 像、核、不变子空间

题目 2.1. 6. 设 U 是有限维线性空间 V 的子空间, φ 是 V 上线性变换, 求证:

- 1. $\dim U \dim \operatorname{Ker} \varphi \leq \dim \varphi(U) \leq \dim U$;
- 2. $\dim \varphi^{-1}(U) \leq \dim U + \dim \operatorname{Ker} \varphi$.

题目 2.2. 设 f(x), g(x) 为数域 \mathbb{P} 上的多项式, 且满足 (f(x), g(x)) = 1. 设 V, V_1, V_2 分别是

$$f(A)g(A)X = 0$$
, $f(A)X = 0$, $g(A)X = 0$

的解空间. 证明: $V = V_1 \oplus V_2$.

题目 2.3. 设 φ 是线性空间 V 上的线性变换,

$$\operatorname{Im} \varphi = \{ \varphi \xi \mid \xi \in V \}, \quad \operatorname{Ker} \varphi = \{ \xi \mid \varphi \xi = 0, \xi \in V \}.$$

证明: $\operatorname{Im} \varphi^2 = \operatorname{Im} \varphi$ 当且仅当 $\operatorname{Ker} \varphi^2 = \operatorname{Ker} \varphi$.

题目 2.4. 设 φ , $\varphi_1, \ldots, \varphi_m$ 是 n 维线性空间 V 上的线性变换, 满足: $\varphi^2 = \varphi$ 且 $\varphi = \varphi_1 + \varphi_2 + \cdots + \varphi_m$. 求证: $r(\varphi) = r(\varphi_1) + r(\varphi_2) + \cdots + r(\varphi_m)$ 成立的充要条件是 $\varphi_i^2 = \varphi_i$, $\varphi_i \varphi_j = 0$ $(i \neq j)$.

3 特征值与特征向量 2

3 特征值与特征向量

题目 3.1. 设 A 是 n 阶实方阵,已知 A 的特征值全是实数且 A 的一阶主子式之和与二阶主子式之和都为零,求证: A 是幂零矩阵。

题目 3.2. 设 $A \neq m \times n$ 矩阵, $B \neq n \times m$ 矩阵, 且 $m \geq n$ 。求证:

$$|\lambda I_m - AB| = \lambda^{m-n} |\lambda I_n - BA|$$

题目 3.3. 设 ϕ , ψ 是数域 F 上的线性空间 V 上可交换的线性变换,且 ϕ , ψ 的特征值都在 F 中。求证: ϕ 和 ψ 至少有一个公共的特征向量。

题目 3.4. 设 $A \in n$ 阶矩阵, $A = (a_{ij})$, 若对任意的 i = 1, 2, ..., n, 满足:

$$|a_{ii}| > \sum_{\substack{j=1\\i \neq i}}^{n} |a_{ij}| \tag{1}$$

则称 A 为严格对角占优矩阵。求证:严格对角占优矩阵必是可逆矩阵

题目 3.5. 设 A, B 是数域 \mathbb{F} 上的 n 阶矩阵,且满足交换性条件 AB = BA。若 A 和 B 的特征值均属于 \mathbb{F} ,则存在 \mathbb{F} 上的可逆矩阵 P,使得: $P^{-1}AP$ 和 $P^{-1}BP$ 同时为上三角矩阵。

题目 3.6. 设 A 为 m 阶矩阵, B 为 n 阶矩阵, 求证: 若 A, B 没有公共的特征值, 则矩阵方程

$$AX = XB \tag{2}$$

只有零解 X = O。

题目 3.7. 设 n 阶方阵 A, B 的特征值全大于零且满足 $A^2 = B^2$, 求证:

$$A = B \tag{3}$$