Existence of unique solution

m.kristiansen

August 29, 2022

Abstract

This paper contains the derivation of Riesz representation theorem [1] and the Lax Milgram theorem [2].

Proposition 1

We claim that the orthogonal complement of any subset X of a Hilbert space H is a closed. We have

$$X^{\perp} := \{ x \in H | x \perp y \quad \forall y \in X \}$$

and want to show that X^{\perp} is closed.

Proof. Let $x_n \to x$ in H with $x_n \in X^{\perp}$. Then by continuity of the inner product

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle = 0.$$

Whence, we see that X^{\perp} contains all its limit points which means it is a closed subspace of H. \Box

Best approximation theorem

Let C be a nonempty convex closed subset of H. Then for all $x \in H$ there exists a unique $c \in C$ that minimises the distance from x to the points of C:

$$||x - c|| = \min_{y \in C} ||x - y||$$

Proof. Let $\{y_n\}_{n\geq 1}$ be a sequence in C such that

$$\lim_{n \to \infty} ||x - y_n|| = \inf_{y \in C} ||x - y|| := D$$

By the parallelogram law applied to the vectors $x - y_m$ and $x - y_n$ we have

$$||y_n - y_m||^2 + ||2x - (y_n - y_m)||^2 = 2||x - y_m||^2 + 2||x - y_n||^2.$$

As $m, n \to \infty$, the right hand side tends to $2D^2 + 2D^2 = 4D^2$ and from convexity we have $\frac{1}{2}(y_m - y_n) \in C$. It follows that

$$||2x - (y_n - y_m)||^2 = 4||x - \frac{1}{2}(y_n - y_m)||^2 \ge 4D^2.$$

Hence,

$$\lim_{m,n\to\infty} ||y_n - y_m||^2 = 4D^2 - \lim_{n,m\to\infty} ||2x - (y_n - y_m)||^2$$

$$\leq 4D^2 - 4D^2 = 0.$$

This shows that the sequence $\{y_n\}_{n\geq 1}$ is Cauchy in C. Since H is complete we have $\lim_{n\to\infty}y_n=c$ for some $c\in H$, and since C is closed we have $c\in C$. Now,

$$||x - c|| = \lim_{n \to \infty} ||x - y_n|| = D,$$

so c minimizes the distance to x.

Theorem 1

If X is a closed linear subspace of H, then we have an orthogonal direct sum decomposition

$$H = X \oplus X^{\perp}$$
.

That is, we have $X \cap X^{\perp} = \{0\}, X + X^{\perp} = H \text{ and } X \perp X^{\perp}.$

Proof. From Proposition 1. we have that Y^{\perp} is a closed subset of H. If $y \in Y \cap Y^{\perp}$ then $y \perp y$, so $\langle y,y \rangle = 0$ and y = 0. It remains to show that $Y + Y^{\perp} = H$. let $x \in H$ be arbitrary and fixed, we must show that $x \in Y + Y^{\perp}$. Let $f_y : H \to X$ denote the mapping arising from the previous theorem. Then $f_y(x)$ is the unique element of Y that minimizes the distance to x.

$$||x - f_y(x)|| = \min_{y \in Y} ||x - y||$$

Set $y_0 := f_y(x)$ and $y_1 := x - y_0$. Then $y_0 \in Y$, and for all $y \in Y$ we have

$$||y_1|| = ||x - y_0|| \le ||x - (y_0 - y)||$$

= $||y + (x - y_0)|| = ||y + y_1||$.

We claim that this implies $y_1 \in Y^{\perp}$. To see this, fix a nonzero $y \in Y$. For any $c \in \mathbb{F}$ we have

$$||y_1||^2 \le ||cy + y_1||^2 = |c|^2 ||y||^2 + 2\text{Re}\langle cy, y \rangle + ||y_1||^2$$

Taking $c = -\frac{\overline{\langle y, y_1 \rangle}}{\|y\|^2}$ gives

$$0 \le \frac{\langle y, y_1 \rangle^2}{\|y\|^2} - 2 \frac{\langle y, y_1 \rangle^2}{\|y\|^2}$$

which is only possible if $\langle y, y_1 \rangle = 0$. Since $y \neq 0 \in Y$ was arbitrary this shows that $y_1 \in Y^{\perp}$ which proves the claim. It follows that $x = y_0 + y_1$ belongs to $Y + Y^{\perp}$.

Riesz representation theorem

If $\phi: H \to F$ is a bounded linear functional, there exists a unique element $y \in H$ such that

$$\phi(x) = \langle x, y \rangle \qquad \forall \ y \in H \tag{1}$$

Proof. If $\phi(x) = 0 \ \forall x \in H$, we take y = 0. So assume $\phi(x) \neq 0$, we know from (insert theorem) that closed subspaces of a Hilbert space H is orthogonally complemented. Whence $(N(\phi))^{\perp} \neq \{0\}$, so we can choose a norm one vector $y_0 \in (N(\phi))^{\perp}$. Fix an arbitrary $x \in H$ with $c := \frac{\phi(x)}{\phi(y_0)}$, we then have

$$\phi(x - cy_0) = \phi(x) - c\phi(y_0) = 0$$

Where we have used the linearity of ϕ and our definition of c. This means that $x - cy_0 \in N(\phi)$, so $x - cy_0 \perp y_0$ and

$$\phi(x) = c\phi(y_0) = \phi(y_0)\langle cy_0, y_0 \rangle = \phi(y_0)\langle x, y_0 \rangle = \langle x, \overline{\phi(y_0)}y_0 \rangle$$

Setting $y = \overline{\phi(y_0)}y_0$ we obtain (1). To prove uniqueness, suppose that $\phi = \phi_y = \phi_{y'}$ for $y, y' \in H$. Then

$$||y - y'||^2 = \langle y - y', y - y' \rangle = \langle y - y', y \rangle - \langle y - y', y' \rangle = \phi(y - y') - \phi(y - y') = 0$$

Where we have used the properties of the inner product and (1). Since the norm is positive definite we see that the above derivation implies y=y'

Proposition 2

Assume $A: H \to H$ be a bounded linear operator that is bounded below i.e.

$$||Au|| \ge C||u||$$

for C > 0 and all $u \in H$. Then A is injective (1-1) and has closed range.

Proof. Assume A is not 1-1, then Ax = Ay for $x \neq y$, but since A is bounded from below we have

$$0 = ||Ax - Ay|| = ||A(x - y)|| \ge Cx - y > 0$$

which contradicts $x \neq y$. To show that R(A) is closed let $\{y_n\}_{n\geq 1}$ be a sequence in R(A) that converges to a point $y \in H$. For each $n \in \mathbb{N}$, there exists $x_n \in H$ such that $y_n = A(x_n)$. For any $m, n \in \mathbb{N}$ we have

$$C||x_m - x_n|| \le ||A(x_m - x_n)|| = ||y_m - y_n||.$$

Since $\{y_n\}_{n\geq 1}$ is a Cauchy sequence, we see from the above derivation that $\{x_n\}_{n\geq 1}$ is also a Cauchy sequence. Since H is a Banach space it is complete and there exists a $x\in H$ s.t. $x_n\to x$. Since A is bounded it is continuous and $y=Ax\in R(A)$.

Lax Milgram theorem

Assume that $H \times H \to \mathbb{R}$ is a bilinear mapping, for which there exists constants $\alpha, \beta > 0$ such that

- i) $|B[u, v]| \le \alpha ||u|| ||v||$
- ii) $\beta \|u\|^2 \le B[u, u]$

where $u,v\in H$. Finally let $f:H\to\mathbb{R}$ be a bounded linear functional on H. Then there exists a unique $u\in H$ such that

$$B[u,v] = [f,v]$$

for all $v \in H$. $[\cdot, \cdot]$ denotes the paring of H with its dual space $[\cdot, \cdot] : H^* \times H \to \mathbb{R}$.

Proof. For each fixed $u \in H$, the mapping $v \mapsto B[u,v]$ is a bounded linear functional on H, whence by the Riesz representation theorem there exists a unique element $w \in H$ satisfying

$$B[u, v] = \langle w, v \rangle.$$

Let us write Au = w whenever the above holds, so that

$$B[u, v] = \langle Au, v \rangle$$

for $u,v\in H$. We claim that $A:H\to H$ is a bounded linear operator, 1-1 and that the range of A is closed in H.

To prove that A is linear we let $\lambda_1, \lambda_2 \in \mathbb{R}$ and $u_1, u_2 \in H$. We then have

$$\begin{split} \langle A(\lambda_1 u_1 + \lambda_2 u_2, v \rangle &= B[\lambda_1 u_1, \lambda_2 u_2, v] \\ &= \lambda_1 B[u_1, v] + \lambda_2 B[u_2, v] \\ &= \lambda_1 \langle A u_1, v \rangle + \lambda_2 \langle A u_2, v \rangle \\ &= \langle \lambda_1 A u_1 + \lambda_2 A u_2, v \rangle. \end{split}$$

Since this holds for all $v \in H$, A is a linear operator. Furthermore,

$$||Au||^2 = \langle Au, Au \rangle = B[u, Au] \le \alpha ||u|| ||Au||$$

hence,

$$||Au|| \le \alpha ||u||.$$

So A is bounded. Next, we compute

$$\beta ||u||^2 \le B[u,u] = \langle Au,u \rangle \le ||Au|| ||u||.$$

Where in the last inequality we have used Cauchy - Scwartz. This shows that A is bounded from below

$$\beta \|u\| \le \|Au\|$$

and by proposition 2 we have that A is 1-1 and R(A) is closed. We demonstrate now that R(A) = H. For if not, then, since R(A) is closed, there would by Theorem 1 exists a nonzero element $w \in H$ with $w \in R(A)^{\perp}$. But this fact in turn implies

$$\beta ||w||^2 \le B[w, w] = \langle Aw, w \rangle = 0$$

So, w must be zero, and we have obtained a contradiction.

Next, we observe once more from the Riesz representation theorem that

$$[f, v] = \langle w, v \rangle \quad \forall v \in H$$

for some element $w \in H$. We can that use our previous derivations to find $u \in H$ satisfying w = Au, then

$$B[u,v] = \langle Au,v \rangle = \langle w,v \rangle = [f,v].$$

Finally, we show that there is at most one element $u \in H$ satisfying the above. For if both

$$B[u_1, v] = [f, v]$$
 and $B[u_2, v] = [f, v]$

then $B[u_1 - u_2, v] = 0 \ \forall v \in H$. We set $v = u_1 - u_2$ to find

$$\beta \|u_1 - u_2\|^2 \le B[u_1 - u_2, u_1 - u_2] = 0 \to u_1 = u_2$$

References

- [1] Van Neerven, J. (2022). Hilbert Spaces. In Functional Analysis (Cambridge Studies in Advanced Mathematics, pp. 87-114). Cambridge: Cambridge University Press. doi:10.1017/9781009232487.005
- [2] Lawrence C. Evans (2010). Partial Differential Equations second edition. (Lax Milgram Theorem p. 315-317) American Mathematical Society