第十章 曲线积分与曲面积分

积分学 定积分二重积分三重积分 曲线积分 曲面积分 积分域 区间域 平面域 空间域 曲线域 曲面域

第十章

第一爷

第一型曲线积分

- 一、第一型曲线积分的概念与性质
- 二、第一型曲线积分的计算法

一、第一型曲线积分的概念与性质

1.引例1: 曲线形构件的质量

假设曲线形细长构件在空间所占

弧段为 \widehat{AB} , 其线密度为 $\rho(x,y,z)$,

为计算此构件的质量, 采用

"大化小,常代变,近似和,求极限"

可得
$$M = \lim_{\lambda \to 0} \sum_{k=1}^{n} \rho(\xi_k, \eta_k, \zeta_k) \Delta s_k$$

引例2: 曲顶柱面的侧面积

假设曲顶柱面的准线为弧段为 \widehat{AB} , (ξ_k,η_k,ζ_k)

顶为u = f(x, y, z),

为计算此柱面的面积, 采用

"大化小,常代变,近似和,求极限"

可得
$$M = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta s_k$$

2.定义

设 Γ 是空间中一条有限长的光滑曲线, f(x,y,z) 是定义在 Γ 上的一个有界函数, 若通过对 Γ 的任意分割和对局部的任意取点, 下列"乘积和式极限" (ξ_k,η_k,ζ_k)

$$\lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta s_k = \int_{\Gamma} f(x, y, z) ds$$

都存在,则称此极限为函数 f(x,y,z) 在曲线 Γ 上对弧长的曲线积分,或第一型曲线积分. f(x,y,z) 称为被积函数, Γ 称为积分弧段.

曲线形构件的质量
$$M = \int_{\Gamma} \rho(x, y, z) ds$$

如果 L 是 xoy 面上的曲线弧,则定义对弧长的曲线积分为

$$\int_{L} f(x, y) ds = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta s_{k}$$

如果 L 是闭曲线,则记为 $\int_L f(x,y) ds$.

思考:

- (1) **若在**L**上**f(x,y)=1,问 $\int_L ds$ 表示什么?
- (2) 定积分是否可看作对弧长曲线积分的特例? 否! 对弧长的曲线积分要求 $ds \ge 0$,但定积分中 dx 可能为负.

3. 性质

(1)
$$\int_{\Gamma} [f(x, y, z) \pm g(x, y, z)] ds$$
$$= \int_{\Gamma} f(x, y, z) ds \pm \int_{\Gamma} g(x, y, z) ds$$

(2)
$$\int_{\Gamma} k f(x, y, z) ds = k \int_{\Gamma} f(x, y, z) ds \qquad (k 为常数)$$

(3)
$$\int_{\Gamma} f(x, y, z) ds = \int_{\Gamma_1} f(x, y, z) ds + \int_{\Gamma_2} f(x, y, z) ds$$
$$(\Gamma 由 \Gamma_1, \Gamma_2 组成)$$

- (4) $\int_{\Gamma} ds = l$ (1为曲线弧 Γ 的长度)
- (5)对称性类似重积分,例如 $\int_{\Gamma} f(x,y) ds$,若 Γ 关于y 轴对称,f 关于x 为奇函数,则偶倍奇零。

二、第一型曲线积分的计算法

基本思路: 求曲线积分 ── 转化 计算定积分

定理: 设 f(x,y) 是定义在光滑曲线弧

$$L: x = \varphi(t), y = \psi(t) \ (\alpha \le t \le \beta)$$

上的连续函数,则曲线积分 $\int_L f(x,y) ds$ 存在,且

$$\int_{L} f(x,y) ds = \int_{\alpha}^{\beta} f[\varphi(t), \psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt$$

证:根据定义

$$\int_{L} f(x, y) ds = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta s_{k}$$

设各分点对应参数为 t_k ($k=0,1,\dots,n$), 点 (ξ_k, η_k) 对应参数为 $\tau_k \in [t_{k-1}, t_k]$, $\Delta s_k = \int_{t_{k-1}}^{t_k} \sqrt{\varphi'^2(t) + \psi'^2(t)} \, \mathrm{d}t$ $= \sqrt{\varphi'^{2}(\tau'_{k})} + \psi'^{2}(\tau'_{k}) \Delta t_{k}, \quad \tau'_{k} \in [t_{k-1}, t_{k}]$ 则 $\int_{I} f(x,y) ds$ $= \lim_{\lambda \to 0} \sum_{k=1} f[\varphi(\tau_k), \psi(\tau_k)] \sqrt{\varphi'^2(\tau_k') + \psi'^2(\tau_k')} \Delta t_k$ 注意 $\sqrt{{\varphi'}^2(t)+{\psi'}^2(t)}$ 连续 $= \lim_{\lambda \to 0} \sum_{k=1}^{n} f[\varphi(\tau_k), \psi(\tau_k)] \sqrt{\varphi'^2(\tau_k) + \psi'^2(\tau_k)} \Delta t_k$

因此

$$\int_{L} f(x, y) ds$$

$$= \int_{\alpha}^{\beta} f[\varphi(t), \psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt$$

说明:

(1) :: $\Delta s_k > 0$, .: $\Delta t_k > 0$, 因此积分限必须满足 $\alpha < \beta$!

(2) 注意到

$$ds = \sqrt{(dx)^2 + (dy)^2}$$
$$= \sqrt{\varphi'^2(t) + \psi'^2(t)} dt$$

因此上述计算公式相当于"换元法".

如果曲线 L 的方程为 $y = \psi(x) (a \le x \le b)$,则有

$$\int_{L} f(x,y) ds = \int_{a}^{b} f(x,\psi(x)) \sqrt{1 + {\psi'}^{2}(x)} dx$$

如果方程为极坐标形式: $L: r = r(\theta) (\alpha \le \theta \le \beta)$,则

$$\int_{I} f(x,y) \mathrm{d}s$$

$$= \int_{\alpha}^{\beta} f(r(\theta) \cos \theta, r(\theta) \sin \theta) \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$$

推广: 设空间曲线弧的参数方程为

$$\Gamma$$
: $x = \phi(t)$, $y = \psi(t)$, $z = \omega(t)$ ($\alpha \le t \le \beta$)

则 $\int_{\Gamma} f(x, y, z) ds$

$$= \int_{\alpha}^{\beta} f(\varphi(t), \psi(t), \omega(t)) \sqrt{\varphi'^{2}(t) + \psi'^{2}(t) + \omega'^{2}(t)} dt$$

例1. 计算 $\int_L x ds$,其中 L 是抛物线 $y = x^2$ 上点 O(0,0)

与点 B(1,1)之间的一段弧.

解: :: $L: y = x^2 \quad (0 \le x \le 1)$

$$\therefore \int_{L} x ds = \int_{0}^{1} x \cdot \sqrt{1 + (2x)^{2}} dx$$

$$= \int_{0}^{1} x \sqrt{1 + 4x^{2}} dx$$

$$= \left[\frac{1}{12} (1 + 4x^{2})^{\frac{3}{2}} \right]_{0}^{1}$$

$$= \frac{1}{12} (5\sqrt{5} - 1)$$

$$y = x^{2/3}$$

$$y = x^{2/3}$$

$$0$$

$$1 x$$

例2. 计算 $\int_L (x+y) ds$,其中 L 是以 O(0,0), A(1,0), B(0,1) 为顶点的三角形的边界.

解:因L由OA,AB,BO三条线段连接而成,故

$$\int_{L} (x+y) \, ds = \int_{OA} (x+y) \, ds$$

$$+ \int_{AB} (x+y) \, ds + \int_{BO} (x+y) \, ds$$

$$\int_{OA} (x+y) \, ds = \int_{0}^{1} (x+0) \sqrt{1+0^{2}} \, dx = \frac{1}{2}$$

$$\int_{AB} (x+y) \, ds = \int_{0}^{1} [x+(1-x)] \sqrt{1+(-1)^{2}} \, dx = \sqrt{2}$$

$$\int_{BO} (x+y) \, ds = \int_{0}^{1} (0+y) \sqrt{1+0^{2}} \, dy = \frac{1}{2}$$

$$\int_{L} (x+y) \, ds = \sqrt{2} + \frac{1}{2} + \frac{1}{2} = \sqrt{2} + 1$$

例3. 计算 $I = \int_L |x| ds$,其中L为双纽线

$$(x^2 + y^2)^2 = a^2(x^2 - y^2)$$
 $(a > 0)$

解: 在极坐标系下 $L: r^2 = a^2 \cos 2\theta$,

它在第一象限部分为

$$L_1: r = a\sqrt{\cos 2\theta} \quad (0 \le \theta \le \frac{\pi}{4})$$

$$I = 4\int_{L_1} x \, \mathrm{d}s = 4\int_0^{\pi/4} r \cos\theta \sqrt{r^2(\theta) + r'^2(\theta)} \, \mathrm{d}\theta$$
$$= 4\int_0^{\pi/4} a^2 \cos\theta \, \mathrm{d}\theta = 2\sqrt{2} a^2$$

例4. 计算曲线积分 $\int_{\Gamma} (x^2 + y^2 + z^2) ds$,其中 Γ 为螺旋线 $x = a \cos t$, $y = a \sin t$, z = k t $(0 \le t \le 2\pi)$ 的一段弧.

解:
$$\int_{\Gamma} (x^2 + y^2 + z^2) \, ds$$

$$= \int_{0}^{2\pi} [(a\cos t)^2 + (a\sin t)^2 + (kt)^2] \cdot \sqrt{(-a\sin t)^2 + (a\cos t)^2 + k^2} \, dt$$

$$= \sqrt{a^2 + k^2} \int_{0}^{2\pi} [a^2 + k^2 t^2] \, dt$$

$$= \sqrt{a^2 + k^2} \left[a^2 t + \frac{k^2}{3} t^3 \right]_{0}^{2\pi}$$

$$= \frac{2\pi}{3} \sqrt{a^2 + k^2} \left(3a^2 + 4\pi^2 k^2 \right)$$

例5. 计算 $\int_{\Gamma} x^2 ds$, 其中 Γ 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 x + y + z = 0 所截的圆周.

解: 由对称性可知 $\oint_{\Gamma} x^2 ds = \oint_{\Gamma} y^2 ds = \oint_{\Gamma} z^2 ds$

$$\therefore \oint_{\Gamma} x^2 \, ds = \frac{1}{3} \oint_{\Gamma} (x^2 + y^2 + z^2) \, ds$$
$$= \frac{1}{3} \oint_{\Gamma} a^2 \, ds = \frac{1}{3} a^2 \cdot 2\pi a$$
$$= \frac{2}{3} \pi a^3$$

思考: 例5中 Γ 改为 $\left\{ (x-1)^2 + (y+1)^2 + z^2 = a^2 \right\}$ 如何 计算 $\int_{\Gamma} x^2 \, ds$?

例6. 计算
$$I = \int_{\Gamma} (x^2 + y^2 + z^2) ds$$
,其中 Γ 为球面 $x^2 + y^2$

$$+z^2 = \frac{9}{2}$$
与平面 $x + z = 1$ 的交线.

解:
$$\Gamma$$
: $\begin{cases} \frac{1}{2}(x-\frac{1}{2})^2 + \frac{1}{4}y^2 = 1, \text{ 化为参数方程} \\ x+z=1 \end{cases}$

$$\Gamma: \begin{cases} x = \sqrt{2}\cos\theta + \frac{1}{2} \\ y = 2\sin\theta \\ z = \frac{1}{2} - \sqrt{2}\cos\theta \end{cases} \quad (0 \le \theta \le 2\pi)$$

则

$$ds = \sqrt{(-\sqrt{2}\sin\theta)^2 + (2\cos\theta)^2 + (\sqrt{2}\sin\theta)^2} d\theta = 2d\theta$$

$$\therefore I = \frac{9}{2} \int_0^{2\pi} 2 \, \mathrm{d}\theta = 18\pi$$

例7. 求椭圆柱面 $\frac{x^2}{5} + \frac{y^2}{9} = 1$ 位于 xOy 面上方及平面 z = y 下方那部分柱面的侧面积 S.

解: 这是曲顶柱面的侧面积问题.

$$L: x = \sqrt{5} \cos t, y = 3 \sin t \ (0 \le t \le \pi)$$

$$\int_{L} z \, ds = \int_{L} y \, ds$$

$$= \int_{0}^{\pi} 3\sin t \sqrt{5\sin^{2} t + 9\cos^{2} t} \, dt$$

$$= -3 \int_{0}^{\pi} \sqrt{5 + 4\cos^{2} t} \, d\cos t$$

$$= 9 + \frac{15}{4} \ln 5$$

