

Курс лекций Физико-химические свойства продукции и основы многофазных течений

Содержание лекционного курса

- Блок 1. Состав продукции транспортируемой по промысловым трубопроводам. Основные физико-химические свойства и классификация углеводородной продукции
- Блок 2. Прогнозирование фазового поведения и параметров углеводородных смесей, воды
- Блок З. Основы многофазных потоков и прогнозирования градиента давления в трубопроводах

Основная концепция

Для чего необходимо знать физико-химические свойства транспортируемой продукции, закономерности фазовых переходов?

- Проектирование промысловых трубопроводных систем
- Гидравлические расчеты
- Разработка технологических режимов работы трубопроводов
- Мониторинг и анализ осложнений
- Учет продукции

СОСТАВ ПРИРОДНЫХ УГЛЕВОДОРОДОВ БАЗОВЫЕ ПОНЯТИЯ

Природные углеводороды

Основа транспортируемых жидких углеводородов входят:

- Парафины или алканы
- Циклопарафины или циклоалканы
- Ароматические углеводороды
- Дополнительно в пластовой смеси могут содержаться :
 - Cepa
 - A30T
 - Металлы
 - + минеральные вещества

Элементный состав нефти

Элементный химический состав – относительное

содержание отдельных элементов: C, H, O, N, S и др.

Средние массовые содержания элементов в нефтях

Углерод

83-87 %

Водород

11-14 %

Азот

0,01-0,6 %

Cepa

0,02-6,0 %

Кислород

0,05-0,8 %

Металлы (в основном, ванадий и никель)

до 0,05 %

Парафины (алканы, насыщенные у.в., предельные)

$$C_n H_{2n+2}$$

• Все связи углерод-углерод одинарные

Метан

Этан

Компоненты нефти и газа. Парафины

- ❖ Газообразные алканы С1 С4 (в виде растворенного газа, метан, этан....);
- ❖Жидкие алканы С5 С15; (пентан.....)
- ◆Твердые алканы С16 С53 и более. Их содержание до 5 % (масс.), входят в состав нефтяных парафинов.

Компоненты нефти и газа. Парафины

- Алканы насыщены водородом и по сравнению с углеводородами других классов имеют минимальную плотность;
- Нормальные углеводороды, молекулы которых лучше упаковываются в жидкой фазе, имеют более высокие температуры кипения и плотность, чем разветвленные.
- Твердые алканы кристалличны.

Компоненты нефти и газа. Парафины

- Алканы практически не растворимы в воде, но хорошо растворимы в ароматических углеводородах.
- Алканы химически наиболее инертная группа углеводородов, но для них свойственны реакции замещения, дегидрирования, изомеризации и окисления.
- Н-алканы могут легко окисляться микроорганизмами.
- И-алканы труднее н-алканов подвергаются воздействию микроорганизмов.

Компоненты нефти и газа. Циклопарафины (циклоалканы)

Циклопарафины

 C_nH_{2n}

• имеют замкнутое циклическое строение, структура стабильна

Циклогексан

 CH_3 Метилциклогексан H_2C CH_2 CH_2 CH_2 CH_2 CH_2 CH_2

Метилциклопентан

Циклопропан

Циклобутан

Циклопентан

Циклогексан

Компоненты нефти и газа. Циклопарафины (циклоалканы)

Циклопарафины $C_3 - C_4 -$ газы, $C_5 - C_7 -$ жидкости, C_8 и выше – твердые вещества.

В нефтях структуры $C_3 - C_4$ не обнаружены, а доминируют пяти- и шестичленные циклы.

Компоненты нефти и газа. Ароматические углеводороды (арены)

Ароматические (арены)

C_nH_{2n-6}

• циклические непредельные углеводороды, содержащие ядро бензола

Компоненты нефти и газа. Ароматические углеводороды (арены)

По физическим свойствам арены отличаются от алканов и нафтенов с тем же числом углеродных атомов в молекуле:

- более высокой плотностью, показателем преломления, температурой кипения;
- более высокой растворимостью в полярных растворителях, воде;
- повышенной склонностью кмежмолекулярным взаимодействиям.

Групповой состав, классификация

Углеводороды класса, по которому нефти даётся наименование, должны присутствовать в количестве более 50 %. Если присутствуют углеводороды также и других классов и один из классов составляет не менее 25 %, выделяют смешанные типы нефти;

Состав нефти различных месторождений

Нефти	Гру	/пповой сос	Тип нефти		
пефти	Арены	Нафтены	Парафины	тип нефти	
Катыльгинская	18	30	52	парафино- нафтеновая	
Озерная	22	33	45	парафино- нафтеновая	
Оленья	31	26	43	парафино- ароматическая	
Столбовая, скв.75	22	26	52	парафино- нафтеновая	
Столбовая, скв.91	23	27	50	парафино- нафтеновая	

Компоненты нефти и газа. Изомеры

- Вещества, имеющие одинаковый состав и одинаковую молекулярную массу, но различное строение молекул, а потому обладающие разными свойствами, называются изомерами.
- Число изомеров увеличивается с увеличением количеств атомов углерода.

Пример:

Компоненты нефти и газа. Изомеры

С увеличением числа атомов углерода в молекулах, резко возрастает число изомеров предельных УВ:

- Для бутана С4Н10 существует два изомера
- Для пентанов С5Н12 -три
- Для гексанов С6Н14 –пять

		neo-Pentane
n-Pentane	i-Pentane	(диметилпропан)
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₁ CH ₂ CH ₃ CH ₃	$ \begin{array}{c} \operatorname{CH_3} \\ \mid \\ \operatorname{CH_3} \\ -\operatorname{C} \\ \operatorname{CH_3} \end{array} $

Углеродный индекс группы

Увеличение количества изомеров с увеличением углеродного индекса, делает невозможным идентификацию каждого изомера.

- Вводится понятие углеродный индекс (Single Carbon Number)(SCN) группы
- SCN группы с номером n это все углеводороды с:

ı	b(Cn-1) < Ib)≤Ib(Cn)
	компонент	T _{boil} /Kelvin	
	Нормальный Гексан	341.9	
	Метилциклопентан	344.9)
	Бензол	353.2	
	Циклогексан	353.8	\rightarrow SCN C ₇
	2-Метилгексан	363.2	
	Нормальный Гептан	371.6	J

Общие характеристики углеводородных групп С6+

Carbon Number	Boiling Range (°C)	"Average" Boiling Point (°C)	Density (g/cm³)	Molecular Weig	ght
C_6	36.5-69.2	63.9	0.685	84	
C_7	69.2-98.9	91.9	0.722	96	
C_8	98.9-126.1	116.7	0.745	107	
C ₉	126.1-151.3	142.2	0.764	121	
C_{10}	151.3-174.6	165.8	0.778	134	
C ₁₁	174.6-196.4	187.2	0.789	147	
C_{12}	196.4-216.8	208.3	0.800	161	
C_{13}	216.8-235.9	227.2	0.811	175	
C_{14}	235.9-253.9	246.4	0.822	190	
C_{15}	253.9-271.1	266	0.832	206	
C ₁₆	271.1-287.3	283	0.839	222	
C ₁₇	287-303	300	0.847	237	
C_{18}	303-317	313	0.852	251	
C ₁₉	317-331	325	0.857	263	
C_{20}	331-344	338	0.862	275	
C_{21}	344-357	351	0.867	291	таблицы
C_{22}	357-369	363	0.872	305	Katz&
C_{23}	369-381	375	0.877	318	
C_{24}	381-392	386	0.881	331	Firoozabadi
C ₂₅	392-402	397	0.885	345	

Базовые понятия

		"Average" Boiling		
Carbon Number	Boiling Range (°C)	Point (°C)	Density (g/cm ³)	Molecular Weight
C ₂₆	402-413	408	0.889	359
C ₂₇	413-423	419	0.893	374
C_{28}	423-432	429	0.896	388
C_{29}	432-441	438	0.899	402
C ₃₀	441-450	446	0.902	416
C ₃₁	450-459	455	0.906	430
C_{32}	459-468	463	0.909	444
C ₃₃	468-476	471	0.912	458
C ₃₄	476-483	478	0.914	472
C ₃₅	483-491	486	0.917	486
C ₃₆	_	493	0.919	500
C ₃₇	_	500	0.922	514
C ₃₈	_	508	0.924	528
C ₃₉	_	515	0.926	542
C_{40}	_	522	0.928	556
C_{41}	_	528	0.930	570
C_{42}	_	534	0.931	584
C_{43}	_	540	0.933	598
C ₄₄	_	547	0.935	612
C_{45}	_	553	0.937	626

Описание компонентного состава нефти

Состав разгазированной нефти:

Компонент	молярная конц, %
N2	0.001
CO2	0.058
C1	0.348
C2	0.378
C3	0.983
iC4	0.417
nC4	1.472
iC5	1.203
nC5	2.077
C6	4.866
C7	10.416
C8	12.013
C9	7.745
C10+	58.023
Молярная масса	187.1

Определение компонентного состава углеводородной смеси

Базовые понятия

Новое определение единицы количества вещества опирается исключительно на значение постоянной Авогадро:

Моль — количество вещества, содержащее 6,02214076.1023 структурных элементов вещества — атомов, молекул или соответствующих комбинаций ионов.

Молярная масса — характеристика вещества, отношение массы вещества к его количеству. Численно равна массе одного моля вещества, то есть массе вещества, содержащего число частиц, равное числу Авогадро (Вес одного моля вещества)

Мольная концентрация z₁ (мольная доля i-ого компонента) — отношение числа молей i-ого компонента к общему числу молей системы

$$z_i = \frac{n_i}{\sum_{j=1}^{N} n_j}$$

Базовые понятия

Массовая концентрация wi (массовая доля i-ого компонента) отношение массы і-ого компонента к общей массы системы

связи между долями:
$$w_i = \frac{z_i M_i}{\displaystyle\sum_{j=1}^N z_j M_j}$$

$$z_i = \frac{w_i / M_i}{\sum_{j=1}^N w_j / M_j}$$

Серосодержащие соединения

Сера - наиболее распространенный гетероэлемент в нефтях. Она входит в состав до ~ 60 % углеводородов нефти, превращая их в серосодержащие гетероатомные соединения (ГАС).

- Растворенная элементарная сера,
- Сероводород,
- Меркаптаны,
- 🔲 Сульфиды,
- Дисульфиды,
- Тиофен и его производные,
- Соединения, содержащие

одновременно атомы серы, кислорода, азота.

Классифиикация. Серосодержащие соединения

Класс	Наименование	Массовая доля серы, %
1	Малосернистая	до 0,60 включительно
2	Сернистая	от 0,61 до 1,80
3	Высокосернистая	от 1,81 до 3,50
4	Особо	св. 3,50
	высокосернистая	

Наличие сернистых соединений в нефти крайне нежелательно:

- •Образуются агрессивные среды;
- •Образуются вредные дымовые выбросы $(SO_{2}, SO_{3});$
- •Ухудшаются свойства катализаторов процессов нефтепереработки;

HO: сернистые соединения можно утилизировать и получать элементарную серу

Классифиикация. Серосодержащие соединения

По массовой доле сероводорода и легких меркаптанов нефть подразделяют на виды

Цэммонованию показатоля	Группа			
Наименование показателя	1	2	3	
Массовая доля сероводорода, млн $^{-1}$ (ppm), не более	20	50	100	
Массовая доля метил- и этилмеркаптанов в сумме, млн ⁻¹ (ppm), не более	40	60	100	

Минеральные компоненты нефти

- соли (хлориды, сульфаты, корбонаты)
- 🍄 комплексы металлов,
- коллоидно-диспергированные минеральные вещества.

Элементы, входящие в состав этих веществ, называют **микроэлементами**, т.к. их содержание колеблется от **10**-8 до **10**-2 %.

Принято считать, что микроэлементы могут находиться в нефти в виде:

- мелкодисперсных водных растворов солей,
- тонкодисперсных взвесей минеральных пород,
- химически связанных с органическими веществами комплексных или молекулярных соединений

Классифиикация. Группы нефти по степени подготовки

Поромотр	Норма для нефти группы		
Параметр	1	2	3
1 Концентрация хлористых солей, мг/дм³, не более	100	300	900
2 Массовая доля механических примесей, %, не более	0,05	0,05	0,05
3 Массовая доля органических хлоридов во фракции, выкипающей до температуры 204 °C, ppm, не более	10	10	10

Металлы нефти

- ⋄ металлы подгруппы меди (Cu, Ag, Au),
- подгруппы цинка (**Zn**, **Cd**, **Hg**),
- подгруппы бора (B, AI, Ga, In, Ti),
- подгруппы ванадия (V, Nb, Ta),
- № металлы переменной валентности (Ni, Fe, Mo, Co, W,
 Cr, Mn, Sn и др.)

Смолисто-асфальтеновые вещества

Выделение индивидуальных веществ из остаточных фракций нефти сложно. Поэтому нефтяные остатки разделяют на групповые компоненты: смолы, асфальтены, парафины.

В тяжелых нефтяных остатках от 40 до 70 % составляют смолисто-асфальтеновые вещества.

Смолы - вязкие малоподвижные жидкости (или аморфные твердые тела) от темно-коричневого до темно-бурого цвета с плотностью около единицы или несколько больше. Молекулярная масса смол в среднем от 700 до 1000 а. е. м. Смолы нестабильны, выделенные из нефти или ее тяжелых остатков могут превращаться в асфальтены.

Асфальтены

Асфальтены — аморфные твердые вещества темнобурого или черного цвета. При нагревании не плавятся, а переходят в пластическое состояние (~300°С), при более высокой температуре разлагаются с образованием газа, жидких веществ и твердого остатка. Плотность асфальтенов больше единицы.

Асфальтены очень склонны к ассоциации, поэтому молекулярная масса в зависимости от метода определения может различаться на несколько порядков (от 2000 до 140000 а. е. м.).

Парафины

Нефтяной парафин — **это смесь твердых УВ** двух групп, резко отличающихся друг от друга по свойствам, — **парафинов** $C_{17}H_{36}$ - $C_{35}H_{72}$ и **церезинов** $C_{36}H_{74}$ - $C_{55}H_{112}$. Температура плавления первых **27** – **71** °C, вторых — **65** – **88** °C.

При одной и той же температуре плавления церезины имеют более высокую плотность и вязкость.

Содержание парафина в нефти иногда достигает 13 – 14 % и больше.

Классификация

По содержанию смол нефти подразделяются на: малосмолистые (содержание смол ниже 18 %); смолистые (18 – 35 %); высокосмолистые (свыше 35 %).

По содержанию парафинов нефти подразделяются на: малопарафинистые при содержании парафина менее 1.5 % по массе; парафинистые – 1.5 – 6.0 %; высокопарафинистые - более 6 %.

По содержанию асфальтенов нефти подразделяются на: Малоасфальтеновые при содержании асфальтенов менее 1% по массе; Асфальтеновые – 1-3% Высокоасфальтеновые – более 3%

Физико-химические свойства нефти (товарная)

- Плотность
- Молекулярная масса
- Вязкость
- Температура застывания
- Поверхностное натяжение
- Давление насыщенных паров
- Температура вспышки и воспламенения
- Реологические свойства

Классификация по плотности и вязкости

Самостоятельное обучение

Базовые параметры, характеризующие сырую нефть

Сырая нефть - жидкая природная ископаемая смесь углеводородов широкого химического состава, которая содержит растворенный газ, воду, минеральные соли, механические примеси

Физические свойства сырой нефти зависят не только от давления и температуры, но и от растворимости газа

Базовые параметры:

Р_b – давление насыщения

Rs – газосодержание нефти

Во – объемный коэффициент нефти

γ₀ – относительная (удельная) плотность нефти

µ₀ – вязкость нефти

Давление насыщения

Давление насыщения (Pb) - давление, при котором газ начинает выделяться из жидкости. Зависит от соотношения объемов нефти и растворенного газа, от их состава и пластовой температуры.

В природных условиях давление насыщения может соответствовать пластовому или же быть меньше его. При первом условии нефть будет полностью насыщена газом, при втором недонасыщена.

Газосодержание

Газосодержание – отношение объема газа, растворенного в нефти, в стандартных условиях к объему нефти в стандартных условиях

$$Rs = \frac{V(\text{раст. газа})\text{ст. усл.}}{V(\text{пефти})\text{ст. усл.}}$$

Давление насыщения давление начала выделения газа из нефти.

Объемный коэффициент нефти

Под **объемным коэффициентом** понимают такое количество нефти, содержащий растворенный газ, которое содержится в одном объеме дегазированной нефти при заданном давлении и температуре

$$B_o = \frac{(V_o)_{p,T}}{(V_o)_{sc}},$$

где B_o — объемный коэффициент нефти, $\mathbf{m}^3/\mathbf{m}^3$; $(V_o)_{p,T}$ — объем нефти при давлении p и температуре T, \mathbf{m}^3 ; $(V_o)_{sc}$ — объем нефти, приведенной к нормальным условиям, норм. \mathbf{m}^3 .

Относительная (удельная) плотность нефти

Относительная (удельная) плотность нефти – это отношение плотности нефти при ст. усл. к плотности дистилированной воды при ст. усл.

$$\gamma_o = \frac{\rho_o}{\rho_w}$$

АРІ плотность нефти

$$^{\circ}API = \frac{141.5}{\gamma_o} - 131.5$$

Вязкость нефти

Вязкость - свойство жидкостей и газов, характеризующих сопротивляемость скольжению или сдвигу одной их части относительно другой

Коэффициент динамической вязкости µ характеризует силы взаимодействия между молекулами газа, которые преодолеваются при его движении.

Единицы дин. вязкости: СИ - Па*с, СГС - пуаз (П), техническая система (ТС) - сантипуаз (сП). $1c\Pi = 0.01 \ \Pi = 0.001 \ \Pi a*c$.

Вязкость нефти

С повышением температуры вязкость нефти (как и любой другой жидкости) уменьшается. С увеличением количества растворенного газа в нефти вязкость нефти также значительно уменьшается.

Зависимость вязкости типовой нефти от количества растворенного газа и температуры Вязкость нефтей, добываемых в России, в зависимости от характеристики и температуры изменяется от 1 до нескольких десятков мПа·с (0.1-0.2 Па·с) и

более.

Углеводородные газы

Компоненты природного газа:

- УВ (алканы): метан, этан, пропан, бутан, пентан, и т.д. + жидкие алканы;
- S-соединения: H₂S, меркаптаны (*тиолы*, -SH), сульфиды (-S-, -S-S-), COS, CS₂, S;
- **неУВ газы**: CO₂, N₂, O₂, He, Ar;
- Вода;

Сухой газ - природный горючий газ, характеризующийся высоким содержанием метана;

Влажный газ — неосушенный природный газ или газ со значительным содержанием жидких УВ;

Тощий газ - природный горючий газ, характеризующийся низким содержанием УВ C_{3+} (C_{2+}) (*читай*, высоким содержанием метана);

Жирный газ - природный горючий газ, характеризующийся высоким содержанием УВ C_{3+} (C_{2+}).

Базовые параметры, характеризующие природный газ

- у_і компонентный состав,
- $\gamma_{\rm q}$ относительная плотность газа
- Z фактор,
- Bg объёмный коэффициент нефти
- μ_q вязкость
 - + содержание конденсата в газе

Углеводородные газы

Природный газ – газ месторождений:

- газовых;
- газоконденсатных;
- нефтегазовых.

Первичные (нативные) газы — газы природного происхождения: ПНГ, ПГ, газ газоконденсатных месторождений;

M	Объемное содержание компонентов, %								Относительная
Месторождение	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅₊	CO ₂	H ₂ S	N_2	плотность
Уренгойское	98,4	0,1	-	-	-	0,3	-	1,2	0,56
	89,3	4,9	1,6	0,9	2,7	0,2	-	0,4	0,66
Ямбургское	98,6	0,1	-	-	-	0,1	-	1,2	0,57
	90,2	4,3	1,5	0,7	2,0	0,9	-	0,4	0,63
Харасавейское	96,6	2,3	0,1	0,2	-	0,3	-	0,5	0,57
Шебелинское	92,0	4,0	1,1	0,5	0,3	0,1	-	2,0	0,61
Оренбургское	81,4	4,0	1,6	1,1	2,0	1,1	2,0	6,8	0,68
Мессояхское	97,6	0,1	0,1	-	-	0,6	-	1,6	0,57
Лак (Франция)	64,9	2,8	1,2	0,7	0,9	9,7	15,3	-	0,77
Эмори (США)	39,6	6,4	2,9	2,1	0,7	4,8	42,4	1,0	0,95
Самотлорское	86,5	3,2	2,6	3,9	3,1	0,5	-	0,2	0,86
	68,0	4,4	9,6	7,8	4,1	0,5	-	5,6	1,1
Усинское	89,1	4,8	1,7	1,6	0,7	0,1	-	2,0	0,79
	49,2	15,8	16,8	9,4	5,6	0,7	-	2,5	1,3
Марковское	76,1	12,1	5,3	4,0	2,2	0,1	-	0,2	0,93

Газовый конденсат

Газовые конденсаты:

- -смесь тяжелых УВ (иногда называемая *широкой фракцией легких углеводородов* (ШФЛУ) или *газовым бензином*), выделяемая из газа перед отправкой в магистральные газопроводы;
- -жидкая смесь тяжелых УВ, выносимая газом из скважин в капельном виде и отделяемая от газа методом низкотемпературной сепарации.

Конденсат газовый стабильный (КГС) - газовый конденсат, получаемый путем очистки нестабильного газового конденсата от примесей и выделения из него углеводородов C_1 - C_4 . (ГОСТ Р 54389-2011 Конденсат газовый стабильный. Технические условия)

Как химическое сырье (аналог нефти) ГК оценивали по ОСТ 51.58-79 Конденсаты газовые. Технологическая классификация.

Смесь, добываемая на нефтегазовом месторождении

Смесь, добываемая на газоконденсатном месторождении

Требования к качеству газового конденсата

Наименование показателя	Значение для группы				
	1	2			
1 Давление насыщенных паров, кПа (мм рт. ст.), не более	66,7 (500)				
2 Массовая доля воды, %, не более	0,5				
3 Массовая доля механических примесей, %, не более	0,05				
4 Массовая концентрация хлористых солей, мг/дмз, не более	100	300			
5 Массовая доля серы, %	Не нормируют. Определение по требованию				
	потребителя				
6 Массовая доля сероводорода, млн-1 (ppm), не более	20	100			
7 Массовая доля метил- и этилмеркаптанов в сумме, млн-1 (ppm), не более	40	100			
8 Плотность при 20 °C, кг/мз;	Не нормируют. Определение обязательно				
15 °C, кг/мз	Не нормируют. Определение по требованию потребителя				
9 Выход фракций, % до температуры, °C: 100, 200, 300, 360	Не нормируют. Определение обязательно				
10 Массовая доля парафина, %	Не нормируют. Определение по требованию потребителя				
11 Массовая доля хлорорганических соединений, млн-1 (ppm)	Не нормируют. Определение по требованию потребителя				

Пластовые воды

Воды нефтяных и газовых месторождений в основном минерализованные воды

- В состав вод нефтяных месторождений входят, главным образом, хлориды, бикарбонаты и карбонаты металлов натрия, кальция, калия и магния.
- Содержание хлористого натрия может доходить до 90 % от общего содержания солей.
- Иногда встречается сероводород и в виде коллоидов окислы железа, алюминия и кремния.
- Часто присутствует йод и бром

Стандартным химическим анализом пластовый вод является 6-ти компонентный анализ воды. где обязательными для исследования являются шесть компонентов (3 – катионы, 3 – анионы). В группу катионов входят: кальций (Ca2+), магний (Mg2+), натрий (Na+). Группу анионов составляют: хлор (CL-), соли угольной кислоты (HCO3-), соли серной кислоты (SO42-).

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ

Фазовая диаграмма – чистое вещество

- Критическое давление давление, выше которого жидкость и газ не могут сосуществовать, какова бы ни была температура;
- Критическая температура температура, выше которой газ не может конденсироваться, каково бы ни было давление;
- Тройная (нонвариантная) точка точка, в которой твердая, жидкая и газообразная фазы сосуществуют в условиях равновесия.

Фазовая диаграмма чистого компонента

Фазовая диаграмма многокомпонентной смеси

