Fusion without Neutrons Using protons & Boron-11 Fuel

Prof. Kim Molvig

D-T Fusion

$$D + T \rightarrow \alpha + n + 17.6 MeV$$
3.5 MeV 14.1 MeV

- What is GOOD about this reaction?
 - Highest specific energy of ALL nuclear reactions
 - Lowest temperature for sizeable reaction rate
- What is BAD about this reaction?
 - NEUTRONS => activation of confining vessel and resultant radioactivity
 - Neutron energy must be thermally converted (inefficiently) to electricity
 - Deuterium must be separated from seawater
 - Tritium must be bred

Consider Another Nuclear Reaction

$$p+^{11}B \rightarrow 3\alpha + 8.7 \; MeV$$

- What is GOOD about this reaction?
 - Aneutronic (No neutrons => no radioactivity!)
 - Direct electrical conversion of output energy (reactants all charged particles)
 - Fuels ubiquitous in nature
- What is BAD about this reaction?
 - High Temperatures required (why?)
 - Difficulty of confinement (technology immature relative to Tokamaks)

DT Fusion - Visual Picture

Figure by MIT OCW.

Energetics of Fusion

 $A_1 = 45.95$, $A_2 = 50200$, $A_3 = 1.368 \times 10^{-2}$, $A_4 = 1.076$, $A_5 = 409$

Coefficients for DT (E in KeV, σ in barns)

Tunneling Fusion Cross Section and Reactivity

$$\sigma_{Fus}(E) \; = \; \frac{S\left(E\right)}{E} \exp\left(-\sqrt{\frac{E_G}{E}}\right) \quad \text{Gamow factor} \dots$$

$$E_G \; = \; \left(\frac{2\pi e^2 Z_1 Z_2}{\hbar c}\right)^2 \frac{\mu c^2}{2}$$

$$E_G \; \approx \; 22,589 \; KeV \quad for \quad p-^{11} B \quad \text{Compare to DT} \dots$$

$$\langle \sigma v \rangle_{Fus} \; \equiv \; \int d^3 v_i d^3 v_j f\left(v_i\right) f\left(v_j\right) \left|v_i - v_j\right| \sigma\left(\left|v_i - v_j\right|\right)$$

$$= \; \sqrt{\frac{8T}{\pi \mu}} \; \left(\frac{1}{T_{eff}}\right)^2 \int_0^\infty dE E \sigma\left(E\right) \exp\left(-\frac{E}{T_{eff}}\right)$$

$$= \; \sqrt{\frac{8T}{\pi \mu}} \; \left(\frac{1}{T_{eff}}\right)^2 \int_0^\infty dE S\left(E\right) \exp\left[-\left(\sqrt{\frac{E_G}{E}} + \frac{E}{T_{eff}}\right)\right]$$

$$T_{eff} = \; \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$$

Reactivity for DT Fuel

Reactivity for proton-Boron Fuel

Figure by MIT OCW.

Comparison Reactivities

Figure by MIT OCW.

Figure by MIT OCW.

April 20, 2006: 22.012 Fusion Seminar (MIT)

Availability of Fuel

- Protons?
- => Overwhelmingly available in seawater (deuterium extraction not even required!)
- Boron?
- Widely found in nature as alkali or alkaline borates or as boric acid (Boron11 constitutes 80.2% of the natural abundance)

Power Density Comparison

p - 11 B has almost 3 times the alpha energy of DT, so even with $\frac{1}{2}$ the reactivity it produces LARGER alpha heating than DT => in that sense self-sustaining fusion is easier to maintain if high temperatures can be stably confined.

$$P_{Fus} = E_{\alpha} \langle \sigma v \rangle_{fus} n_p n_B$$

Example Numbers:

$$T = 250 \ KeV$$
 $n_p = 0.5 \times 10^{15}$
 $n_B = 1.0 \times 10^{14}$
 $P_{Fus} \simeq 22 \ Watts/cm^3$

Compare to losses (Bremstrahlung):

$$P_B = 5.34 \times 10^{-31} n_e^2 T_e^{1/2} Z_e f f$$

= 26 $Watts/cm^3$

Whoops!

How to beat Bremstrahlung losses?

- Some Radiation can be recovered via wall aborption and conversion
- But really must Run at lower electron temperature:

$$T_e < T_i$$

Example:

$$T_e = 85 \text{ KeV}$$

 $T_i = 235 \text{ KeV}$
 $P_B = 16 \text{ Watts / cm}^3$
 $P_{Fus} = 20 \text{ Watts / cm}^3$

Still marginal Power balance

ITER Comparison for Reference

$$P_{Fus} = E_{Fus} \langle \sigma v \rangle_{fus} n_1 n_2$$

$$T = 10 \ KeV$$
 $n_D = 0.5 \times 10^{14}$
 $n_T = 0.5 \times 10^{14}$
 $B = 5.0 \ Tesla$
 $P_{Fus} \simeq 2 \ Watts/cm^3$
 $P_B = 0.1 \ Watts/cm^3$

What losses dominate in this Tokamak scheme?

Requirements for Aneutronic Fusion

- Magnetic Pressure must balance particle pressure for $\frac{B^2}{8\pi} > (n_e T_e + n_i T_i)$ confinement: $\frac{B^2}{8\pi n} \approx 248 \, \text{KeV} @ n = 1 \times 10^{15} \, \& \, B = 10 \, \text{Tesla}$
- High beta plasma
- $\bullet \qquad T_e < T_i$
- Highly efficient direct energy recovery system (High recirculating power levels)

Field Reversed Configuration (FRC)

Diagram removed for copyright reasons.

See Figure 1 in Rostoker, N., A. Qerushi, and M. Binderbauer. "Colliding Beam Fusion Reactors." *Journal of Fusion Energy* 22, no. 2 (June 2003): 83-92.

Questions

- What about "negative" moving ions?
- What about electrons?

Formation Scenario

- Form cold target plasma in axial guide field
- Blast target plasma with proton and Boron beams at high energy
- This provides fuel, initial heating and confining current (electrons confined by positive electrostatic potential)
- Assume power balance all works out and one has a "win" that is self-sustaining thermonuclear fusion
- Collect energy (direct electric conversion) from escaping alphas

FRC Formation

Figure removed for copyright reasons.

A different view of the FRC configuration.

Problems?

- Do you recognize this geometry from schemes presented during semester?
- It's an elongated Tokamak tiped sidewise with no toroidal magnetic field!!??
- What gross stability issues would worry you?
- Kink & Sausage modes (toroidal varieties) gross MHD instability like Z-pinch
- Proposed to be "solved" via high energy, large orbit ions – system surely NOT MHD -- and possibly feedback control
- Efficiency requirements for ion beam systems, alpha and radiation energy recovery are daunting
- Some FRC properties demonstrated experimentally but BIG scale ups in all physical parameters will be required

The Challenge

If this Aneutronic fusion scheme can be realized in practice it is without question THE technology for electrical power production world-wide

A Good
Basic Science
Research Problem