Inferring Heap Abstraction Grammars

Alexander Dominik Weinert

RWTH Aachen University

July 30, 2012

Model Checking

Verification by exploration of states

Model Checking

Verification by exploration of states

```
Input: int i_1, int i_2
while i_1 \neq 0 do
i_1 := i_1 - 1
i_2 := i_2 + 1
end while
```

Finite number of states

Model Checking

Verification by exploration of states

```
Input: int i_1, int i_2
while i_1 \neq 0 do
i_1 := i_1 - 1
i_2 := i_2 + 1
end while
```

Finite number of states ✓

Model Checking

Verification by exploration of states

Input: int
$$i_1$$
, int i_2
while $i_1 \neq 0$ do
 $i_1 := i_1 - 1$
 $i_2 := i_2 + 1$
end while

Finite number of states ✓

```
Input: List /

Element e := l.first()

while e \neq null do

e := l.next(e)

end while
```

Infinite number of states

Model Checking

Verification by exploration of states

```
Input: int i_1, int i_2
while i_1 \neq 0 do
i_1 := i_1 - 1
i_2 := i_2 + 1
end while
```

Finite number of states ✓

```
Input: List I

Element e := I.first()

while e \neq null do

e := I.next(e)

end while
```

Infinite number of states χ

Model Checking

Verification by exploration of states

```
Input: int i_1, int i_2

while i_1 \neq 0 do

i_1 := i_1 - 1

i_2 := i_2 + 1

end while
```

Finite number of states ✓

```
Input: List I

Element e := I.first()

while e \neq null do

e := I.next(e)

end while
```

Infinite number of states χ

Idea [Heinen et al., 2009]

Heap Abstraction Grammars ⇒ Finitely many heap states

Traditional Case

An alphabet is a finite set of symbols

Traditional Case

An alphabet is a finite set of symbols

Traditional Case

An alphabet is a finite set of symbols

Definition

An alphabet is a triple: $\Sigma := (N, T, rk)$,

Traditional Case

An alphabet is a finite set of symbols

Definition

An alphabet is a triple: $\Sigma := (N, T, rk)$,

where

- N nonterminal symbols
- T terminal symbols
- rk: $N \cup T \rightarrow \mathbb{N}$ ranking function

Traditional Case

An alphabet is a finite set of symbols

Definition

An alphabet is a triple: $\Sigma := (N, T, rk)$,

where

- N nonterminal symbols
- T terminal symbols
- rk: $N \cup T \rightarrow \mathbb{N}$ ranking function

and
$$N \cap T = \emptyset$$

Definition

$$G := ($$

Definition

$$G := (V , labV)$$

- V nodes
- labV: $V \rightarrow \Gamma$ node labels

Definition

$$G := (V, E, labV, labE, att)$$

- V nodes
- E edges
- labV: $V \rightarrow \Gamma$ node labels
- labE: $E \rightarrow N \cup T$ edge labels
- att: $E \rightarrow V^*$ attachment

Definition

$$G := (V, E, labV, labE, att , \bot)$$

- V nodes
- E edges
- labV: $V \rightarrow \Gamma$ node labels
- labE: $E \rightarrow N \cup T$ edge labels
- ullet att: $E o V^*$ attachment
- $\bot \in V$ null node

Definition

$$G := (V, E, labV, labE, att , \bot)$$

- V nodes
- E edges
- labV: $V \rightarrow \Gamma$ node labels
- labE: $E \rightarrow N \cup T$ edge labels
- ullet att: $E o V^*$ attachment
- $\bot \in V$ null node

Definition

$$G := (V, E, labV, labE, att, ext, \bot)$$

- V nodes
- E edges
- labV: $V \rightarrow \Gamma$ node labels
- labE: $E \rightarrow N \cup T$ edge labels
- att: $E \rightarrow V^*$ attachment
- ullet ext $\in V^*$ external nodes
- $\bot \in V$ null node

Definitions

• Rank of an edge := number of nodes attached

Definitions

- Rank of an edge := number of nodes attached
- Terminal edge : $\Leftrightarrow labE(e) \in T$

Definitions

- Rank of an edge := number of nodes attached
- Terminal edge : $\Leftrightarrow labE(e) \in T$
- Terminal heap configuration :⇔ all edges are terminal

Definitions

- Rank of an edge := number of nodes attached
- Terminal edge : $\Leftrightarrow labE(e) \in T$
- Terminal heap configuration :⇔ all edges are terminal

Requirements

• Terminal edges are of rank 2

Definitions

- Rank of an edge := number of nodes attached
- Terminal edge : $\Leftrightarrow labE(e) \in T$
- Terminal heap configuration :⇔ all edges are terminal

Requirements

- Terminal edges are of rank 2
- Rank of a label determines rank of edges

Definitions

- Rank of an edge := number of nodes attached
- Terminal edge : $\Leftrightarrow labE(e) \in T$
- Terminal heap configuration :⇔ all edges are terminal

Requirements

- Terminal edges are of rank 2
- Rank of a label determines rank of edges
- All outgoing pointers of a class are represented

Definitions

- Rank of an edge := number of nodes attached
- Terminal edge : $\Leftrightarrow labE(e) \in T$
- Terminal heap configuration :⇔ all edges are terminal

Requirements

- Terminal edges are of rank 2
- Rank of a label determines rank of edges
- All outgoing pointers of a class are represented
- All pointers are connected according to their type

Given:

Assumed:

Given: heap configurations G, ,edge e Assumed: $e \in E_G$, $labE(e) \in N$

Given: heap configurations G, H ,edge e

Assumed: $e \in E_G$, $labE(e) \in N$

Given: heap configurations G, H ,edge e

Assumed: $e \in E_G$, $labE(e) \in N$

Substitute e with H

Given: heap configurations G, H ,edge e

Assumed: $e \in E_G$, $labE(e) \in N$

Substitute e with H, use external nodes as attachment points.

Given: heap configurations G, H ,edge e

Assumed: $e \in E_G$, $labE(e) \in N$

Substitute e with H, use external nodes as attachment points.

Given: heap configurations G, H ,edge e Assumed: $e \in E_G$, $labE(e) \in N$, $rk(e) = |ext_H|$.

Substitute e with H, use external nodes as attachment points.

Data Structure Grammars

Definition

A Data Structure Grammar (DSG) I over an alphabet Σ and a set of symbols Γ is a tuple (N, T, P, S),

Data Structure Grammars

Definition

A Data Structure Grammar (DSG) I over an alphabet Σ and a set of symbols Γ is a tuple (N, T, P, S),

where

- N − nonterminal symbols
- T terminal symbols
- $P = \{X_1 \rightarrow G_1, \dots, X_n \rightarrow G_n\}$ production rules
- \circ S axiom

Data Structure Grammars

Definition

A Data Structure Grammar (DSG) I over an alphabet Σ and a set of symbols Γ is a tuple (N, T, P, S),

where

- N nonterminal symbols
- T terminal symbols
- $P = \{X_1 \rightarrow G_1, \dots, X_n \rightarrow G_n\}$ production rules
- S axiom

L(I) :=Set of all terminal configurations that can be derived from S

Heap Abstraction Grammar

Definition

A Heap Abstraction Grammar (HAG) is a Data Structure Grammar (DSG), that

Produces only valid heap configurations

Heap Abstraction Grammar

Definition

A Heap Abstraction Grammar (HAG) is a Data Structure Grammar (DSG), that

- Produces only valid heap configurations
- Fulfills other restrictions [Heinen et al., tbp]

Heap Abstraction Grammar

Definition

A Heap Abstraction Grammar (HAG) is a Data Structure Grammar (DSG), that

- Produces only valid heap configurations
- Fulfills other restrictions [Heinen et al., tbp]

Any DSG that fulfils the first condition, but not the second one can be transformed into a HAG [Jansen, 2010].

Problem

Given: Set of Heap Configurations L

Problem

Given: Set of Heap Configurations L

Goal: Heap Abstraction Grammar I with $L(I) \supseteq L$

First: L(I) = L

Problem: Exponentially many subgraphs

Problem: Exponentially many subgraphs

Problem: Exponentially many subgraphs

Problem: Exponentially many subgraphs

Problem: Exponentially many subgraphs

Duplication vs. Isomorphism

Isomorphic subgraphs $\hat{=}$ Same structure at different points in the graph

Duplication vs. Isomorphism

Isomorphic subgraphs $\hat{=}$ Same structure at different points in the graph

Duplicate subgraphs $\hat{=}$ Same structure at same point in the graph

Generate Seeds

Generate Seeds

Get Subgraph

Choosing a Subgraph – Minimum Description Length

Question: Which subgraph to abstract?

Choosing a Subgraph – Minimum Description Length

Question: Which subgraph to abstract?

Answer: Optimization of cost function

Choosing a Subgraph - Minimum Description Length

Question: Which subgraph to abstract?

Answer: Optimization of cost function

Minimum Description Length [Rissanen, 1978]

$$sub = \operatorname{argmin}(cost(X \to H))$$

Choosing a Subgraph - Minimum Description Length

Question: Which subgraph to abstract?

Answer: Optimization of cost function

Minimum Description Length [Rissanen, 1978]

$$sub = \operatorname{argmin}(cost(X \to H) + cost(L')),$$

Choosing a Subgraph – Minimum Description Length

Question: Which subgraph to abstract?

Answer: Optimization of cost function

Minimum Description Length [Rissanen, 1978]

$$sub = \operatorname{argmin}(cost(X \to H) + cost(L')),$$

where L' is L under the assumption that the rule $X \to H$ is known.

Definition

Cost of a heap configuration G:

$$cost(G) = |V| + |E| + \sum_{e \in F} rk(e)$$

Definition

Cost of a heap configuration G:

$$cost(G) = |V| + |E| + \sum_{e \in E} rk(e)$$

Cost of a set of heap configurations L:

$$cost(L) = \sum_{G \in L} cost(G)$$

Definition

Cost of a heap configuration G:

$$cost(G) = |V| + |E| + \sum_{e \in E} rk(e)$$

Cost of a set of heap configurations *L*:

$$cost(L) = \sum_{G \in L} cost(G)$$

Description length of a production rule:

$$cost(X \rightarrow H) = 1 + cost(H)$$

Definition

Cost of a heap configuration G:

$$cost(G) = |V| + |E| + \sum_{e \in E} rk(e)$$

Cost of a set of heap configurations *L*:

$$cost(L) = \sum_{G \in L} cost(G)$$

Description length of a production rule:

$$cost(X \rightarrow H) = 1 + cost(H)$$

Several definitions possible

Simplification

After a single substitution of H

$$cost(L') = cost(L) - cost(H) + 2 \cdot |ext_H| + 1$$

Simplification

After a single substitution of H

$$cost(L') = cost(L) - cost(H) + 2 \cdot |ext_H| + 1$$

After *n* substitutions of *H*

$$cost(L') = cost(L) - n \cdot (cost(H) + 2 \cdot |ext_H| + 1)$$

Simplification

After a single substitution of H

$$cost(L') = cost(L) - cost(H) + 2 \cdot |ext_H| + 1$$

After n substitutions of H

$$cost(L') = cost(L) - n \cdot (cost(H) + 2 \cdot |ext_H| + 1)$$

⇒ Computation of cost without actual replacement

Now: $L(I) \supseteq L$

A structure S is recursive, iff

A structure S is recursive, iff there exist two embeddings, such that

• There are no nonterminal edges attached to the external nodes

- There are no nonterminal edges attached to the external nodes
- The two embeddings do not share internal nodes

- There are no nonterminal edges attached to the external nodes
- The two embeddings do not share internal nodes
- The external nodes can be partitioned into entry- and exit-nodes

- There are no nonterminal edges attached to the external nodes
- The two embeddings do not share internal nodes
- The external nodes can be partitioned into entry- and exit-nodes
- There are no incoming pointers to the entry-nodes
- There are no outgoing pointers from the exit-nodes

- There are no nonterminal edges attached to the external nodes
- The two embeddings do not share internal nodes
- The external nodes can be partitioned into entry- and exit-nodes
- There are no incoming pointers to the entry-nodes
- There are no outgoing pointers from the exit-nodes
- The exit-nodes of one embedding can be reached from the entry-nodes of the other one

Concatenation Rules

Complete Algorithm

Complete Algorithm

Singly Linked List

Input: Singly linked lists with 25 to 200 nodes

Singly Linked List

Input: Singly linked lists with 25 to 200 nodes

Nodes	Subgraphs [ms]	Complete [ms]
25	90	102
50	285	305
75	437	500
100	642	682
125	1 001	1 040
150	1 455	1 526
175	1 884	2 000
200	2 895	3 028

Singly Linked Circular List

Input: Singly linked circular lists with 25 to 200 nodes

Singly Linked Circular List

Input: Singly linked circular lists with 25 to 200 nodes

Nodes	Subgraphs [ms]	Complete [ms]
25	75	90
50	261	281
75	451	464
100	680	658
125	979	1 032
150	1 465	1511
175	1 889	1 933
200	2 805	2 995

Singly Linked Nested List

Input: Singly linked nested lists

Singly Linked Nested List

Input: Singly linked nested lists

Singly Linked Nested List

Input: Singly linked nested lists

Binary Tree

Binary Tree – Rules

Binary Tree – Rules

• Definition: Heap Configurations and Heap Abstraction Grammars

- Definition: Heap Configurations and Heap Abstraction Grammars
- Problem: Generate grammar from set of Heap Configurations

- Definition: Heap Configurations and Heap Abstraction Grammars
- Problem: Generate grammar from set of Heap Configurations
- Solution: Abstract subgraphs step by step
 - Find recursive subgraphs
 - Abstract subgraph with greatest gain in description length

- Definition: Heap Configurations and Heap Abstraction Grammars
- Problem: Generate grammar from set of Heap Configurations
- Solution: Abstract subgraphs step by step
 - Find recursive subgraphs
 - Abstract subgraph with greatest gain in description length
- Backed by experimental results

• Subgraph enumeration avoids certain graphs

- Subgraph enumeration avoids certain graphs
 - Efficiently enumerate subgraphs with unconnected internal nodes

- Subgraph enumeration avoids certain graphs
 - Efficiently enumerate subgraphs with unconnected internal nodes
- Recursion only works for simply concatenations

- Subgraph enumeration avoids certain graphs
 - Efficiently enumerate subgraphs with unconnected internal nodes
- Recursion only works for simply concatenations
 - Allow multiple sets of entry- and exit-points

Thank you for your attention

- Heinen, J., Jansen, C., Katoen, J.-P., and Noll, T. (tbp).

 Juggrnaut: Using Graph Grammars for Abstracting Unbounded Heap
 Structures.
 - Heinen, J., Noll, T., and Rieger, S. (2009).

 Juggrnaut: Graph Grammar Abstraction for Unbounded Heap Structures.

In Johnsen, E. B. and Stolz, V., editors, *Harnessing Theories for Tool Support in Software, Preliminary Proceedings*, pages 53–67. United Nations University - International Institute for Software Technology.

- Jansen, C. (2010).
 - Konstruktion und Inferenz von Hypergraphabstraktionsgrammatiken. Diplomarbeit, RWTH Aachen University.
 - Jonyer, I., Holder, L. B., and Cook, D. J. (2002).
 Concept Formation Using Graph Grammars.
 In Proceedings of the KDD Workshop on Multi-Relational Data Mining.

Rissanen, J. (1978).

Modeling by shortest data description.

Automatica, 14(5):465-471.