ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «Высшая Школа Экономики»

ФАКУЛЬТЕТ ЭКОНОМИЧЕСКИХ НАУК ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА «ЭКОНОМИКА»

КУРСОВАЯ РАБОТА

Стохастические методы оптимизации

Выполнил: СТУДЕНТ ГРУППЫ БЭК1812 ХАЙКИН ГЛЕБ АЛЕКСЕЕВИЧ

Научный руководитель: старший преподаватель Борзых Дмитрий Александрович

Оглавление

1.	Вве	дение	4					
2.	Осн	Основные понятия						
	2.1.	Форматирование текста	7					
	2.2.	Ссылки	5					
	2.3.	Формулы	5					
		2.3.1. Ненумерованные одиночные формулы	5					
		2.3.2. Ненумерованные многострочные формулы	6					
		2.3.3. Нумерованные формулы	8					
3.	Mea	годы и их применение	S					
	3.1.	Имитация отжига	8					
		3.1.1. N ферзей	10					
		3.1.2. Минимум негладкой функции	15					
	3.2.	Одиночное изображение	16					
	3.3.	Длинное название параграфа, в котором мы узнаём как сделать						
		две картинки с общим номером и названием	16					
	3.4.	Пример вёрстки списков	17					
	3.5.	Традиции русского набора	19					
		3.5.1. Пробелы	19					
		3.5.2. Математические знаки и символы	19					
		3.5.3. Кавычки	20					
		3.5.4. Тире	20					
		3.5.5. Дефисы и переносы слов	21					
	3.6.	Текст из панграмм и формул	21					
4.	Bëp	остка таблиц	25					
	4.1.	Таблица обыкновенная	25					
	4.2.	Таблица с многострочными ячейками и примечанием	25					
	4.3.	Параграф — два	27					
	4.4.	Параграф с подпараграфами	27					
		4.4.1. Подпараграф — один	27					
		4.4.2. Подпараграф — два	27					

Заключение	29
Список сокращений и условных обозначений	30
Список литературы	32

1. Введение

jjj.

2. Основные понятия

2.1. Форматирование текста

Мы можем сделать жирный текст и курсив.

2.2. Ссылки

Сошлёмся на библиографию. Одна ссылка: [Sokolov][Gaidaenko]. Две ссылки: [Sokolov; Gaidaenko]. Много ссылок: [Lermontov; Management; Borozda; Marketing; Constitution; FamilyCode; Gost.7.0.53; Razumovski; Lagkueva; Pokrovski; Sirotko; Lukina; Methodology; Encyclopedia; Nasirova; Berestova; Kriger]. И ещё немного ссылок: [Article; Book; Booklet; Conference; Inbook; Incollection; Manual; Mastersthesis; Misc; Phdthesis; Proceedings; Techreport; Unpublished]. [medvedev2006jelektronny CEAT:CEAT581; doi:10.1080/01932691.2010.513279; Gosele1999161; Li2007StressAnalysis; Shoji199895; test:eisner-sample; test:eisner-sample-show AB_patent_Pomerantz_1968; iofis_patent1960]

Ссылки на собственные работы: [vakbib1; confbib1]

Сошлёмся на приложения: Приложение ??, Приложение ??.

Сошлёмся на формулу: формула (2.2).

Сошлёмся на изображение: рисунок 3.7.

2.3. Формулы

Благодаря пакету *icomma*, LATEX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

2.3.1. Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικλmuνξπωρ ϱ σςτυφφχψωΓ Δ ΘΛΞΠΣΥΦΨ Ω

Для красивых дробей (например, в индексах) можно добавить макрос $\$ slantfrac и писать $\frac{1}{2}$ вместо 1/2.

2.3.2. Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки «равно» были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Здесь первый амперсанд (в исходном \LaTeX описании формулы) означает выравнивание по левому краю, второй — по x, а третий — по слову «если». Команда \u делает большой горизонтальный пробел.

Ещё вариант:

$$|x| = \begin{cases} x, \text{если } x \geqslant 0 \\ -x, \text{если } x < 0 \end{cases}$$

Кроме того, для нумерованых формул alignedat делает вертикальное выравнивание номера формулы по центру формулы. Например, выравнивание

компонент вектора:

$$\mathbf{N}_{o1n}^{(j)} = \sin\varphi \, n(n+1) \sin\theta \, \pi_n(\cos\theta) \, \frac{z_n^{(j)}(\rho)}{\rho} \, \hat{\mathbf{e}}_r + \\ + \sin\varphi \, \tau_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\theta + \\ + \cos\varphi \, \pi_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\varphi \,.$$
 (2.1)

Ещё об отступах. Иногда для лучшей «читаемости» формул полезно немного исправить стандартные интервалы L^AT_EX с учётом логической структуры самой формулы. Например в формуле 2.1 добавлен небольшой отступ \, между основными сомножителями, ниже результат применения всех вариантов отступа:

\!
$$f(x) = x^2 + 3x + 2$$
по-умолчанию $f(x) = x^2 + 3x + 2$
\\, $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\: $f(x) = x^2 + 3x + 2$
\\quad $f(x) = x^2 + 3x + 2$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\left(\begin{array}{ccc}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\right)$$

2.3.3. Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{2.2}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{2.3}$$

Впоследствии на формулы (2.2) и (2.3) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(2.4)

Используя команду \labelcref из пакета cleveref, можно красиво ссылаться сразу на несколько формул (2.2-2.4), даже перепутав порядок ссылок (\labelcref{eq:equation1,eq:equation3,eq:equation2}).

3. Методы и их применение

3.1. Имитация отжига

Определение. Имитация отжига (simulated annealing) представляет собой алгоритм решения задачи по поиску глобального оптимума некоторой функции $F: \mathbb{X} \to \mathbb{R}$ через упорядоченный стохастический поиск, базирующийся на моделировании физического процесса кристализации вещества из жидкого состояние в твердое.

Для описания метода рассмотрим задачу нахождения глобального минимума:

$$F(\overline{x}) \to \min_{\overline{x} \in \mathbb{X}},$$
 (3.1)

где $\overline{x} = (x_1, \dots, x_m)$ — вектор всех состояний, \mathbb{X} — множество всех состояний.

Решение. Положим, что k = 0 и изначально температура зафиксированна на определенном уровне $T(k) \equiv const.$

1. Из множества всех состояний выберем случайный элемент:

$$\widehat{x}(k) \equiv x_i \in \mathbb{X} : i \in (1, ..., m).$$

- 2. Понизим температуру одним из следующих способов:
 - 2.1. Методом тушения

$$T(k+1) \equiv \alpha T(k), \ \alpha \in (0,1)$$
(3.2)

2.2. Больцмановским отжигом

$$\frac{T(0)}{\ln(1+k)}, k > 0 \tag{3.3}$$

2.3. Отжигом Коши

$$T(k) = \frac{T(0)}{k} \tag{3.4}$$

3. Пусть следующий элемент зависит от функции $G: \mathbb{X} \to \mathbb{X}$, порождающей новое состояние:

$$\tilde{x}(k) \equiv G(x_i).$$

4. Рассчитываем разницу двух функций:

$$\Delta F = F(\hat{x}(k)) - F(\hat{x}(k)).$$

5. Принимаем $\tilde{x}(k)$ за новый элемент, то есть $\hat{x}(k+1) \equiv \tilde{x}(k)$, с вероятностью

$$\mathbb{P}(\{\widehat{x}(k+1) \equiv \widetilde{x}(k)\}) = \begin{cases} 1, & \Delta F < 0 \\ \exp\left(-\frac{\Delta F}{T(k)}\right), & \Delta F \geqslant 0, T(k) > 0 \end{cases}$$
(3.5)

и отвергаем его, то есть $\widehat{x}(k+1) \equiv \widehat{x}(k)$, с вероятностью

$$q = 1 - \mathbb{P}(\{\widehat{x}(k+1) \equiv \widetilde{x}(k)\}).$$

Заметим, чем выше температура, тем больше вероятность принять состояние хуже текущего ($\Delta F \geqslant 0$).

6. Возвращаемся к пункту 2, пока не достигнем глобального минимума.

Пример 1. N ферзей: Рассмотрим задачу, в которой необходимо расставить N ферзей на шахматной доске размера $N \times N$ так, чтобы ни один из них не «бил» другого.

В таком случае, множество всех состояний $\mathbb X$ будет содержать всевозможные расстановки ферзей на шахмотной доске. Общее число возможных расположений n ферзей на $N \times N$ -клеточной доске равно:

$$\binom{N \times N}{n} = \frac{N \times N!}{n!(N \times N - n)!}$$

Тогда функция $F: \mathbb{X} \to \mathbb{R}$ будет выдавать количество атак ферзей, и решением данной задачи будет нахождение такого распложения x^* , что $F(x^*) \equiv 0$.

Зафиксируем изначальное расположение ферзей на шахматной доске. Очевидно, что несколько ферзей не могут находиться на одной вертикали или горизонтали, ибо тогда они будут находиться под ударом друг-друга. Следовательно, наша задача сужается к поиску расположения:

$$x* = (q_1, ..., q_n) = \{(1, h_1), ..., (n, h_n)\} : h_i \in (1, ..., n), h_1 \neq ... \neq h_n,$$
 (3.6)

где (i,h_i) — расположение і-го ферзя (q_i) на і-ой вертикали по горизонтали h_i .

Отметим, что такая задача имеет N! решений.

Определим функцию (В ОБЩЕМ ВИДЕ), которая будет создавать изначальное неоптимальное расположение, учитывая тот, факт, что несколько ферзей не могут находиться на одной вертикали или горизонтали.

10

```
In [1]:

def queens(N):
    np.random.seed(33412)
    ver = np.arange(1, N + 1)
    hor = np.arange(1, N + 1)
    np.random.shuffle(hor)
    return np.column_stack((ver, hor)) # получаем массив
    # размерности (N, 2), отождествляющий расположение ферзей
```

Выведем первоначальное расположение ферзей для стандартной доски 8x8, где первый столбец массива — расположение по вертикали, второй столбец массива — расположение по горизонтали.

Рисунок 3.1 — Изначальное расположение.

Функция F, которая выявляет количество атак ферзей, выглядит следующим образом:

Посмотрим, сколько у атак у исходной расстановки.

```
In [4]: F(matrix, 8)
Out[4]: 56
```

Функция G — это случайная и незначительная перестановка номеров горизонтали в исходном наборе.

```
In [5]:

def G(Q, N):
    pos = Q.copy()
    while True:
        i = np.random.randint(0, N - 1)
        j = np.random.randint(0, N - 1)
        if i != j:
            break

pos[i, 1], pos[j, 1] = pos[j, 1], pos[i, 1]
    return pos # получаем новое расположение
```

Посмотрим, как изменится наша расстановка.

Теперь выведем и сам метод имитации отжига.

Рисунок 3.2 — Оптимальное расположение

```
In [7]:
    def SA(Q, T, schedule):
        N = np.shape(Q)[0]
        x_hat = Q.copy()
        while F(x_hat, N) != 0:
        x_tilda = G(x_hat, N)
        delta = F(x_tilda, N) - F(x_hat, N)
        prob = np.exp(- delta / T)
        if (delta < 0) or (prob >= np.random.random()):
            x_hat = x_tilda
        T *= schedule
    return x_hat
```

Так для нашего примера с параметрами $T(0) = 100, \alpha = 0.9$ мы получаем оптимальное решение, представленное на рисунке 3.2.

Также рассказать, почему для пхп нужен этот метод

Рисунок 3.3 — Оптимизация расстановки 8 ферзей в зависимости от параметра альфа.

Рисунок 3.4 — Оптимизация расстановки 25 ферзей в зависимости от параметра альфа.

Рисунок $3.5 - \Gamma$ рафик функции (3.7).

+ написать среднее время для 1000 итераций при n=8 и n=30 + сказать, что для доски 8х8 все легко, а вот для досок большей размерности - очень сложно + Минус метода, что он не всегда сходится к решению (Возможно, нужно несколько раз его прогнать, дабы получить удовлетворяющее решение)

Пример 2. Минимум функции:

Воспользуемся алгоритмом имитации отжига для нахождения глобального минимума функции:

$$f(x) = x^2(1 + |\sin 80x|) \tag{3.7}$$

3.2. Одиночное изображение

Рисунок 3.6 — TeX.

3.3. Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

б)

Рисунок 3.7 — Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

Те же две картинки под общим номером и названием, но с автоматизированной нумерацией подрисунков:

На рисунке 3.8a показан Дональд Кнут без головного убора. На рисунке 3.8б показан Дональд Кнут в головном уборе.

Возможно вставлять векторные картинки, рассчитываемые IATEX «на лету» с их предварительной компиляцией. Надписи в таких рисунках будут выполнены тем же шрифтом, который указан для документа в целом. На рисунке 3.9 на странице 18 представлен пример схемы, рассчитываемой пакетом tikz «на лету». Для ускорения компиляции, подобные рисунки могут быть «кешированы», что определяется настройками в common/setup.tex. Причём имя предкомпилированного файла и папка расположения таких файлов могут быть отдельно заданы, что удобно, если не для подготовки диссертации, то для подготовки научных публикаций.

16

а) Первый подрисунок

б)

в) Третий подрисунок

Подрисуночный текст, описывающий обозначения, например. Согласно ГОСТ 2.105, пункт 4.3.1, располагается перед наименованием рисунка.

Рисунок 3.8 — Очень длинная подпись к второму изображению, на котором представлены две фотографии Дональда Кнута

Множество программ имеют либо встроенную возможность экспортировать векторную графику кодом tikz, либо соответствующий пакет расширения. Например, в GeoGebra есть встроенный экспорт, для Inkscape есть пакет svg2tikz, для Python есть пакет matplotlib2tikz, для R есть пакет tikzdevice.

3.4. Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Нумерованные вложенные списки:

Рисунок 3.9 — Пример рисунка, рассчитываемого **tikz**, который может быть предкомпилирован

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Вообще, по ГОСТ 2.105 первый уровень нумерации (при необходимости ссылки в тексте документа на одно из перечислений) идёт буквами русского или латинского алфавитов, а второй— цифрами со скобками. Здесь отходим от ГОСТ.
 - а) в нём лежит нумерованный список,

- б) в котором
 - 1) ещё один нумерованный список,
 - 2) третий уровень нумерации не нормирован ГОСТ 2.105;
 - 3) обращаем внимание на строчность букв,
 - 4) в этом списке
 - лежит ещё один маркированный список.
- 4. Четвёртый пункт.

3.5. Традиции русского набора

Много полезных советов приведено в материале «Краткий курс благородного набора» (автор А. В. Костырка). Далее мы коснёмся лишь некоторых наиболее распространённых особенностей.

3.5.1. Пробелы

В русском наборе принято:

- единицы измерения, знак процента отделять пробелами от числа: $10~\mathrm{kBt},~15~\%$ (согласно ГОСТ $8.417,~\mathrm{раздел}~8$);
- tg 20°, но: 20 °C (согласно ГОСТ 8.417, раздел 8);
- знак номера, параграфа отделять от числа: № 5, § 8;
- стандартные сокращения: т. е., и т. д., и т. п.;
- неразрывные пробелы в предложениях.

3.5.2. Математические знаки и символы

Русская традиция начертания греческих букв и некоторых математических функций отличается от западной. Это исправляется серией \renewcommand.

До: $\epsilon \geq \phi$, $\phi \leq \epsilon$, $\kappa \in \emptyset$, tan, cot, csc.

После: $\varepsilon \geqslant \varphi$, $\varphi \leqslant \varepsilon$, $\kappa \in \emptyset$, tg, ctg, cosec.

Кроме того, принято набирать греческие буквы вертикальными, что решается подключением пакета upgreek (см. закомментированный блок в userpackages.tex) и аналогичным переопределением в преамбуле

(см. закомментированный блок в userstyles.tex). В этом шаблоне такие переопределения уже включены.

Знаки математических операций принято переносить. Пример переноса в формуле (2.4).

3.5.3. Кавычки

В английском языке приняты одинарные и двойные кавычки в виде '...' и "...". В России приняты французские («...») и немецкие ("...") кавычки (они называются «ёлочки» и «лапки», соответственно). "Лапки" обычно используются внутри «ёлочек», например, «... наш гордый "Варяг"...».

Французкие левые и правые кавычки набираются как лигатуры << и >>, а немецкие левые и правые кавычки набираются как лигатуры ,, и " (' ').

Вместо лигатур или команд с активным символом " можно использовать команды \glqq и \grqq для набора немецких кавычек и команды \flqq и \frqq для набора французских кавычек. Они определены в пакете babel.

3.5.4. Тире

Команда "--- используется для печати тире в тексте. Оно несколько короче английского длинного тире. Кроме того, команда задаёт небольшую жёсткую отбивку от слова, стоящего перед тире. При этом, само тире не отрывается от слова. После тире следует такая же отбивка от текста, как и перед тире. При наборе текста между словом и командой, за которым она следует, должен стоять пробел.

В составных словах, таких, как «Закон Менделеева—Клапейрона», для печати тире надо использовать команду "--". Она ставит более короткое, по сравнению с английским, тире и позволяет делать переносы во втором слове. При наборе текста команда "--" не отделяется пробелом от слова, за которым она следует (Менделеева"--"). Следующее за командой слово может быть отделено от неё пробелом или перенесено на другую строку.

Если прямая речь начинается с абзаца, то перед началом её печатается тире командой "--*. Она печатает русское тире и жёсткую отбивку нужной величины перед текстом.

3.5.5. Дефисы и переносы слов

Для печати дефиса в составных словах введены две команды. Команда "~ печатает дефис и запрещает делать переносы в самих словах, а команда "= печатает дефис, оставляя Т_ГХ'у право делать переносы в самих словах.

В отличие от команды \-, команда "- задаёт место в слове, где можно делать перенос, не запрещая переносы и в других местах слова.

Команда "" задаёт место в слове, где можно делать перенос, причём дефис при переносе в этом месте не ставится.

Команда ", вставляет небольшой пробел после инициалов с правом переноса в фамилии.

3.6. Текст из панграмм и формул

Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб!

Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг!Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен

Ку кхоро адолэжкэнс волуптариа хаж, вим граэко ыкчпэтында ты. Граэкы жэмпэр льюкяльиюч квуй ку, аэквюы продыжщэт хаж нэ. Вим ку магна пырикульа, но квюандо пожйдонёюм про. Квуй ат рыквюы ёнэрмйщ. Выро аккузата вим нэ.

$$\Pr(F(\tau)) \propto \sum_{i=4}^{12} \left(\prod_{j=1}^{i} \left(\int_{0}^{5} F(\tau) e^{-F(\tau)t_{j}} dt_{j} \right) \prod_{k=i+1}^{12} \left(\int_{5}^{\infty} F(\tau) e^{-F(\tau)t_{k}} dt_{k} \right) C_{12}^{i} \right) \propto \sum_{i=4}^{12} \left(-e^{-1/2} + 1 \right)^{i} \left(e^{-1/2} \right)^{12-i} C_{12}^{i} \approx 0.7605, \quad \forall \tau \neq \overline{\tau}$$

Квуй ыёюз омниюм йн. Экз алёквюам кончюлату квуй, ты альяквюам ёнвидюнт пэр. Зыд нэ коммодо пробатуж. Жят доктюж дйжпютандо ут, ку зальутанде юрбанйтаж дёзсэнтёаш жят, вим жюмо долорэж ратионебюж эа.

Ад ентэгры корпора жплэндидэ хаж. Эжт ат факэтэ дычэрунт пэржыкюти. Нэ нам доминг пэрчёус. Ку квюо ёужто эррэм зючкёпит. Про хабэо альбюкиюс нэ.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Про эа граэки квюаыквуэ дйжпютандо. Ыт вэл тебиквюэ дэфянятйоныс, нам жолюм квюандо мандамюч эа. Эож пауло лаудым инкедыринт нэ, пэрпэтюа форынчйбюж пэр эю. Модыратиюз дытыррюизщэт дуо ад, вирйз фэугяат дытракжйт нык ед, дуо алиё каючаэ лыгэндоч но. Эа мольлиз юрбанйтаж зигнёфэрумквюы эжт.

Про мандамюч кончэтытюр ед. Трётанё прёнкипыз зигнёфэрумквюы вяш ан. Ат хёз эквюедым щуавятатэ. Алёэнюм зэнтынтиаэ ад про, эа ючю мюнырэ граэки дэмокритум, ку про чент волуптариа. Ыльит дыкоры аляквюид еюж ыт. Ку рыбюм мюндй ютенам дуо.

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ $10 \times 65464 = 654640$ $3/2 = 1,5$

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ (3.8) $10 \times 65464 = 654640$ $3/2 = 1,5$

Пэр йн тальэ пожтэа, мыа ед попюльо дэбетиз жкрибэнтур. Йн квуй аппэтырэ мэнандря, зыд аляквюид хабымуч корпора йн. Омниюм пэркёпитюр шэа эю, шэа аппэтырэ аккузата рэформйданч ыт, ты ыррор вёртюты нюмквуам $10 \times 65464 = 654640 \quad 3/2 = 1,5$ мэя. Ипзум эуежмод a+b=c мальюизчыт ад дуо. Ад фэюгаят пытынтёюм адвыржаряюм вяш. Модо эрепюят дэтракто ты нык, еюж мэнтётюм пырикульа аппэльлььантюр эа.

Мэль ты дэлььынётё такематыш. Зэнтынтиаэ конклььюжионэмквуэ ан мэя. Вёжи лебыр квюаыквуэ квуй нэ, дуо зймюл дэлььиката ку. Ыам ку алиё путынт.

$$2 \times x = 4$$

$$3 \times y = 9$$

$$10 \times 65464 = z$$

Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт. Вэрйтюж аккюжамюз ты шэа, дэбетиз форынчйбюж жкряпшэрит ыт прё. Ан еюж тымпор рыфэррэнтур, ючю дольор котёдиэквюэ йн. Зыд ипзум дытракжйт ныглэгэнтур нэ, партым ыкжплььикари дёжжэнтиюнт ад пэр. Мэль ты кытэрож молыжтйаы, нам но ыррор жкрипта аппарэат.

$$\frac{m_t^2}{L_t^2} = \frac{m_x^2}{L_x^2} + \frac{m_y^2}{L_y^2} + \frac{m_z^2}{L_z^2}$$

Вэре льаборэж тебиквюэ хаж ут. Ан пауло торквюатоз хаж, нэ пробо фэугиат такематыш шэа. Мэльёуз пэртинакёа юлламкорпэр прё ад, но мыа рыквюы конкыптам. Хёз квюот пэртинакёа эи, ельлюд трактатоз пэр ад. Зыд ед анёмал льаборэж номинави, жят ад конгуы льабятюр. Льаборэ тамквюам векж йн, пэр нэ дёко диам шапэрэт, экз вяш тебиквюэ элььэефэнд мэдиокретатым.

Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ, доминг лаборамюз эи ыам. Чэнзэрет мныжаркхюм экз эож, ыльит тамквюам факильизиж нык эи. Квуй ан элыктрам тинкидюнт ентырпрытаряш. Йн янвыняры трактатоз зэнтынтиаэ зыд. Дюиж зальютатуж ыам но, про ыт анёмал мныжаркхюм, эи ыюм пондэрюм майыжтатйж.

4. Вёрстка таблиц

4.1. Таблица обыкновенная

Так размещается таблица:

Таблица 1 — Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min}), K$
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

Таблица 2

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

Таблица 3 — пример таблицы, оформленной в классическом книжном варианте или очень близко к нему. ГОСТу по сути не противоречит. Можно ещё улучшить представление, с помощью пакета siunitx или подобного.

Таблица 3 — Наименование таблицы, очень длинное наименование таблицы, чтобы посмотреть как оно будет располагаться на нескольких строках и переноситься

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

4.2. Таблица с многострочными ячейками и примечанием

Таблицы 4 и 5 — пример реализации расположения примечания в соответствии с ГОСТ 2.105. Каждый вариант со своими достоинствами и недостатками. 25

Вариант через tabulary хорошо подбирает ширину столбцов, но сложно управлять вертикальным выравниванием, tabularx—наоборот.

Таблица 4 — Нэ про натюм фюйзчыт квюальизквюэ

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдиокре- татым	Чэнзэ- рет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	\approx	\approx	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	\approx	_	_	_
Любя, съешь щипцы,— вздохнёт мэр,— кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание—Плюш изъят: «+»—адвыржаряюм квуй, вим емпыдит; «−»—емпыдит коммюны ат; «≈»—Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

Если таблица 4 не помещается на той же странице, всё её содержимое переносится на следующую, ближайшую, а этот текст идёт перед ней.

4.3. Параграф — два

Некоторый текст.

4.4. Параграф с подпараграфами

4.4.1. Подпараграф — один

Некоторый текст.

4.4.2. Подпараграф — два

Некоторый текст.

Таблица 5 — Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдио- крета- тым	Чэнзэрет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	\approx	\approx	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	\approx	_	_	_
Любя, съешь щипцы,— вздохнёт мэр,— кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа . . .
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан . . .

И какая-нибудь заключающая фраза.

Последний параграф может включать благодарности. В заключение автор выражает благодарность и большую признательность научному руководителю Иванову И. И. за поддержку, помощь, обсуждение результатов и научное руководство. Также автор благодарит Сидорова А. А. и Петрова Б. Б. за помощь в работе с образцами, Рабиновича В. В. за предоставленные образцы и обсуждение результатов, Занудятину Г. Г. и авторов шаблона *Russian-Phd-LaTeX-Dissertation-Template* за помощь в оформлении диссертации. Автор также благодарит много разных людей и всех, кто сделал настоящую работу автора возможной.

Список сокращений и условных обозначений

 a_n коэффициенты разложения Ми в дальнем поле соответствующие электрическим и магнитным мультиполям

ê единичный вектор

 E_0 амплитуда падающего поля

коэффициенты разложения Ми в дальнем поле соответствующие электрическим и магнитным мультиполям ещё раз, но без окружения minipage нет вертикального выравнивания по центру.

ј тип функции Бесселя

k волновой вектор падающей волны

и снова коэффициенты разложения Ми в дальнем поле соответствующие электрическим и магнитным мультиполям, a_n теперь окружение minipage есть и добавлено много текста, b_n так что описание группы условных обозначений значительно превысило высоту этой группы... Для отбивки пришлось добавить дополнительные отступы.

L общее число слоёв

l номер слоя внутри стратифицированной сферы

λ длина волны электромагнитного излучения в вакууме

n порядок мультиполя

 $egin{array}{ccc} \mathbf{N}_{e1n}^{(j)} & \mathbf{N}_{o1n}^{(j)} \\ \mathbf{M}_{o1n}^{(j)} & \mathbf{M}_{e1n}^{(j)} \end{array} \end{array}$ сферические векторные гармоники

μ магнитная проницаемость в вакууме

 r, θ, ϕ полярные координаты

 ω частота падающей волны

BEM boundary element method, метод граничных элементов

CST MWS Computer Simulation Technology Microwave Studio программа для компьютерного моделирования уравнений Максвелла

DDA discrete dipole approximation, приближение дискретиных ди-

FDFD finite difference frequency domain, метод конечных разностей в частотной области

FDTD finite difference time domain, метод конечных разностей во временной области

FEM finite element method, метод конечных элементов

FIT finite integration technique, метод конечных интегралов

FMM fast multipole method, быстрый метод многополюсника

FVTD finite volume time-domain, метод конечных объёмов во временной области

MLFMA multilevel fast multipole algorithm, многоуровневый быстрый алгоритм многополюсника

MoM method of moments, метод моментов

MSTM multiple sphere T-Matrix, метод Т-матриц для множества сфер

PSTD pseudospectral time domain method, псевдоспектральный метод во временной области

 ${f TLM}$ transmission line matrix method, метод матриц линий передач

Список литературы

[1] *Шамин Р.В.* (2019) Практическое руководство по машинному обучению. — М.: Научный канал. — 93 с.