

Description

Image

Caption

1. Aluminum foil. © images-of-elements.com - (CC BY 3.0) 2. Block of crushed, recycled aluminum cans. © Lance Cpl. Miranda Blackburn, United States Marine Corps - Public domain 3. Aluminum drinking can. © Thinkstock

The material

Aluminum is the most important of the light alloys, second only to steel in the volume of its use. When pure it is extremely ductile (it can be rolled to foil only a few microns thick) and corrosion resistant. Pure aluminum has a thermal and electrical conductivity about 60% that of copper (alloying reduces both), and it is only one third as dense. This record is for the series of wrought Al alloys that rely on solution hardening and do not exploit heat treatment. Here they are, using the IADS designations (see Technical notes for details).1000 series: pure Al (99+%) -- familiar as kitchen foil and electrical conductors.3000 series: Al with up to 1.5% Mn -- it can be found in the bodies of drink cans.5000 series: Al with up to 5% Mg -- peel off tops of drink cans, welded structures and pressure vessels; certain variants are superplastic.8000 series: a hodge-podge of special alloys used developed for aerospace and the nuclear industry. So this record is broad, encompassing all of these. None are particularly strong: the 1000 series have strengths around 90 MPa and the strongest 5000 series only reach 300 MPa; but they are robust, not requiring carefully controlled heat treatments that are destroyed by welding.

Compositional summary

1000 series: 99% AI, some with a little Si

3000 series: AI + 0.3 to 1.5% Mn + Cu, Mg, Si and Fe 5000 series: AI + 0.5 to 5.5% Mg + Mn, Si, Fe and Zn

8000 series: AI + Sn, Ni, Si, Fe

General properties

Density	156	-	181	lb/ft^3
Price	* 1.01	-	1.15	USD/lb
Date first used	1914			

Mechanical properties

Young's modulus	9.86	-	10.4	10^6 psi
Shear modulus	3.63	-	4.06	10^6 psi
Bulk modulus	9.28	-	10	10^6 psi

Non age-hardening wrought Al-alloys

Poisson's ratio	0.32	-	0.36	
Yield strength (elastic limit)	4.35	-	41.5	ksi
Tensile strength	10.2	-	52.2	ksi
Compressive strength	4.35	-	41.5	ksi
Elongation	2	-	41	% strain
Hardness - Vickers	30	-	100	HV
Fatigue strength at 10^7 cycles	6.09	-	23.2	ksi
Fracture toughness	23.7	-	38.2	ksi.in^0.5
Mechanical loss coefficient (tan delta)	2e-4	-	0.002	

Thermal properties

1.06e3	-	1.24e3	°F
266	-	428	°F
-460			°F
Good cor	nduc	tor	
68.8	-	139	BTU.ft/h.ft^2.F
0.212	-	0.238	BTU/lb.°F
12.2	-	13.9	μstrain/°F
	266 -460 Good cor 68.8 0.212	266460 Good conduct 68.8 - 0.212 -	266 - 428 -460 Good conductor 68.8 - 139 0.212 - 0.238

Electrical properties

Electrical conductor or insulator?	Good conductor	
Electrical resistivity	2.5 - 6 μohm.cm	

Optical properties

Transparency	Opaque
Processability	
Castability	4 - 5

Castability	4	- 0
Formability	3	- 4
Machinability	4	- 5
Weldability	3	- 4
Solder/brazability	2	- 3

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Acceptable
Soils, acidic (peat)	Unacceptable
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

Acetic acid (10%)

Citric acid (10%) Hydrochloric acid (10%) Limited use Hydrochloric acid (36%) Hydrofluoric acid (40%) Unacceptable Vitric acid (10%) Limited use Nitric acid (70%) Acceptable Phosphoric acid (10%) Unacceptable Limited use		
Citric acid (10%) Hydrochloric acid (10%) Limited use Hydrochloric acid (36%) Hydrofluoric acid (40%) Unacceptable Vitric acid (10%) Limited use Nitric acid (70%) Acceptable Phosphoric acid (10%) Unacceptable Limited use		Limited use
Hydrochloric acid (10%) Hydrochloric acid (36%) Hydrochloric acid (36%) Unacceptable Hydrofluoric acid (40%) Unacceptable Limited use Nitric acid (10%) Nitric acid (70%) Phosphoric acid (10%) Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Limited use	Acetic acid (glacial)	Unacceptable
Hydrochloric acid (36%) Hydrofluoric acid (40%) Nitric acid (10%) Nitric acid (70%) Phosphoric acid (10%) Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Unacceptable Limited use	Citric acid (10%)	Acceptable
Hydrofluoric acid (40%) Nitric acid (10%) Nitric acid (70%) Nitric acid (70%) Acceptable Phosphoric acid (10%) Phosphoric acid (85%) Sulfuric acid (10%) Limited use Limited use	Hydrochloric acid (10%)	Limited use
Nitric acid (10%) Nitric acid (70%) Acceptable Phosphoric acid (10%) Phosphoric acid (85%) Unacceptable Sulfuric acid (10%) Limited use	Hydrochloric acid (36%)	Unacceptable
Nitric acid (70%) Phosphoric acid (10%) Phosphoric acid (85%) Unacceptable Unacceptable Sulfuric acid (10%) Limited use	Hydrofluoric acid (40%)	Unacceptable
Phosphoric acid (10%) Phosphoric acid (85%) Sulfuric acid (10%) Unacceptable Limited use	Nitric acid (10%)	Limited use
Phosphoric acid (85%) Sulfuric acid (10%) Unacceptable Limited use	Nitric acid (70%)	Acceptable
Sulfuric acid (10%) Limited use	Phosphoric acid (10%)	Unacceptable
,	Phosphoric acid (85%)	Unacceptable
Sulfuric acid (70%) Unacceptable	Sulfuric acid (10%)	Limited use
	Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Unacceptable
Sodium hydroxide (60%)	Unacceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Acceptable
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent

Methyl alcohol (methanol)

SEDUPIICK	
	Acceptable
Durability: halogens and gases	
Chlorine gas (dry)	Limited use
Fluorine (gas)	Unacceptable
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Acceptable
Durability: built environments	
Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent
Durability: flammability	
Flammability	Non-flammable
Durability: thermal environments	
Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Acceptable
Tolerance up to 250 C (482 F)	Unacceptable
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable
Geo-economic data for principal componen	1
Annual world production, principal component	3.63e7 ton/yr
Reserves, principal component	4.67e10 - 5.16e10 I. ton
Primary material production: energy, CO2 a	
Embodied energy, primary production	* 2.17e4 - 2.39e4 kcal/lb
CO2 footprint, primary production	* 12.5 - 13.8 lb/lb
Water usage	* 137 - 151 gal(US)/lb
Eco-indicator 95	780 millipoints/kg
Eco-indicator 99	710 millipoints/kg
Material processing: energy	
Extrusion, foil rolling energy	* 1e3 - 1.11e3 kcal/lb
Rough rolling, forging energy	* 516 - 571 kcal/lb
	* 3.67e3 - 4.06e3 kcal/lb
Wire drawing energy Metal powder forming energy	* 3.67e3 - 4.06e3 kcal/lb * 2.39e3 - 2.89e3 kcal/lb

Non age-hardening wrought Al-alloys

Coarse machining energy (per unit wt removed)	* 125	-	138	kcal/lb
Fine machining energy (per unit wt removed)	* 779	-	861	kcal/lb
Grinding energy (per unit wt removed)	* 1.51e3	-	1.67e3	kcal/lb
Non-conventional machining energy (per unit wt removed)	1.68e4	-	1.85e4	kcal/lb

Material processing: CO2 footprint

Extrusion, foil rolling CO2	* 0.693	-	0.766	lb/lb
Rough rolling, forging CO2	* 0.357	-	0.395	lb/lb
Wire drawing CO2	* 2.54	-	2.81	lb/lb
Metal powder forming CO2	* 1.76	-	2.13	lb/lb
Vaporization CO2	* 1.16e3	-	1.28e3	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.086	-	0.0951	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.54	-	0.596	lb/lb
Grinding CO2 (per unit wt removed)	* 1.04	-	1.15	lb/lb
Non-conventional machining CO2 (per unit wt removed)	11.6	-	12.8	lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	✓
Embodied energy, recycling	* 3.65e3 - 4.03e3 kcal/lb
CO2 footprint, recycling	* 2.65 - 2.93 lb/lb
Recycle fraction in current supply	10 - 12 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Aluminum ore is abundant. It takes a lot of energy to extract aluminum, but it is easily recycled at low energy cost.

Supporting information

Design guidelines

Aluminum alloys are light, can be strong, and are easily worked. Pure 1000 series aluminum is soft and extremely ductile, allowing it to be rolled to thin sheet. It has outstanding electrical and thermal conductivity (copper is the only competition here). The 3000 series are stronger but still ductile, allowing sheet that can be deep drawn or spun. The 5000 series are stronger still, but at the sacrifice of ductility. Aluminum is relatively cheap, though still more than twice the price of steel. It is a reactive metal - in powder form it can explode - but in bulk an oxide film (Al2O3) forms on its surface, protecting it from corrosion in water and acids but not strong alkalis. The oxide film is thickened and its structure controlled by the process of anodizing; the anodized film will absorb dyes, giving vivid surface colors. Aluminum alloys are not good for sliding surfaces - they scuff - and the fatigue strength of the high-strength alloys is poor.

Technical notes

Until 1970, designations of wrought aluminum alloys were a mess; in many countries, they were simply numbered in the order of their development. The International Alloy Designation System (IADS), now widely accepted, gives each wrought alloy a 4-digit number. The first digit indicates the major alloying element or elements. Thus the series 1xxx describe unalloyed aluminum; the 2xxx series contain copper as the major alloying element, and so forth. The third and fourth digits are significant in the 1xxx series but not in the others; in 1xxx series they describe the minimum purity of the aluminum; thus 1145 has a minimum purity of 99.45%; 1200 has a minimum purity of 99.00%. In all other series, the third and fourth digits are simply serial numbers; thus 5082 and 5083 are two distinct aluminum-magnesium alloys. The second digit has a curious function: it indicates a close relationship: thus 5352 is closely related to 5052 and 5252; and 7075 and 7475 differ only slightly in composition. To these serial numbers are added a suffix indicating the state of hardening or heat treatment. The suffix F means 'as fabricated'. Suffix O means 'annealed wrought products'. The suffix H means that the material is 'cold worked'. The suffix T means that it has been 'heat treated'. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

The 5000 series of wrought aluminum alloys are based on alloys of aluminum (AI) with 1 - 5% magnesium (Mg), for which this is the phase diagram.

Typical uses

Non age-hardening wrought Al-alloys

1000 series: foil, sheet, wire, food equipment, electrical conductors and bus-bars, coatings for mirrors and reflectors. 3000 series: sheet, beverage can-stock, siding and roofing, cooking utensils, extrusions.5000 series: sheet and tubing, extrusions for marine and transport applications.

Links	
Reference	
ProcessUniverse	
Producers	