NOI2024 联合省选

第一试

时间: 2024 年 3 月 2 日 08:30 ~ 13:00

题目名称	季风	魔法手杖	虫洞
题目类型	传统型	传统型	传统型
目录	wind	xor	wormhole
可执行文件名	wind	xor	wormhole
输入文件名	wind.in	xor.in	wormhole.in
输出文件名	wind.out	xor.out	wormhole.out
每个测试点时限	0.5 秒	1.5 秒	2.0 秒
内存限制	512 MiB	1024 MiB	512 MiB
测试点数目	10	25	25
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	wind.cpp	xor.cpp	wormhole.cpp
-----------	----------	---------	--------------

编译选项

对于 C++ 语言	-O2 -std=c++14 -static	
-----------	------------------------	--

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 内存 16GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

NOI2024 联合省选 第一试 季风(wind)

季风 (wind)

【题目背景】

生活在二维平面的小 X 准备拜访小 Y,但由于气候的变化,平面上刮起了季风。小 X 想知道季风的影响下, TA 至少要多少天能够到达小 Y 的家,但小 X 也是第一次遇见这种怪事,所以请精通算法的你来帮忙。

【题目描述】

给定 n, k, x, y 和 2n 个整数 $x_0, y_0, x_1, y_1, \dots, x_{n-1}, y_{n-1}$ 。

找到最小的**非负整数** m,使得存在 2m 个**实数** $x'_0, y'_0, x'_1, y'_1, \cdots, x'_{m-1}, y'_{m-1}$ 满足以下条件,或报告不存在这样的 m:

- $\sum_{i=0}^{m-1} (x_i' + x_{i \bmod n}) = x;$
- $\sum_{i=0}^{m-1} (y_i' + y_{i \bmod n}) = y;$
- $\forall 0 \le i \le m-1$, $|x_i'| + |y_i'| \le k$.

特别地,m=0时,认为 $\left(\sum_{i=0}^{m-1} (x_i' + x_{i \bmod n})\right)$ 和 $\left(\sum_{i=0}^{m-1} (y_i' + y_{i \bmod n})\right)$ 均为 0。

【输入格式】

从文件 wind.in 中读入数据。

本题有多组测试数据。输入的第一行一个整数 T 表示测试数据组数。

对于每组测试数据,

- 第一行四个整数 n, k, x, y,
- 接下来 n 行, 第 i 行两个整数 x_{i-1}, y_{i-1} 。

【输出格式】

输出到文件 wind.out 中。

对于每组测试数据输出一行一个整数,如果存在满足题意的 m,输出其最小可能值,否则输出 -1。

【样例1输入】

```
  1
  4

  2
  1
  2
  2
  2

  3
  1
  1
  1

  4
  1
  2
  -2
  -2

  5
  1
  1
  1
  2
  0
  0
```

NOI2024 联合省选 第一试 季风(wind)

【样例1输出】

```
1
2 -1
3 0
4 399999999
```

【样例1解释】

该组样例共有四组测试数据。

- 对于第一组测试数据,取 m = 1, $(x'_0, y'_0) = (1, 1)$ 满足条件,可以证明不存在更小的 m 满足条件;
- 对于第二组测试数据,可以证明不存在任何非负整数 m 满足条件;
- 对于第三组测试数据,取 m=0 满足条件,可以证明不存在更小的 m 满足条件。

【样例 2】

见选手目录下的 *wind/wind2.in* 与 *wind/wind2.ans*。

该组样例共有八十组测试数据,所有测试数据均满足 n=1。其中测试数据 $1\sim 20$ 满足特殊性质 A, $21\sim 40$ 满足特殊性质 B, $41\sim 60$ 满足特殊性质 C。

【样例 3】

见选手目录下的 *wind/wind3.in* 与 *wind/wind3.ans*。

该组样例共有六十组测试数据,所有测试数据均满足 n=200。其中测试数据 $1\sim 20$ 满足特殊性质 A, $21\sim 40$ 满足特殊性质 B。

【子任务】

设 $\sum n$ 为单个测试点内所有测试数据的 n 的和。对于所有测试数据,

- $1 \le T \le 5 \times 10^4$;
- $1 \le n \le 10^5$, $1 \le \sum n \le 10^6$;
- $0 \le |x|, |y|, |x_i|, |y_i|, k \le 10^8$.

NOI2024 联合省选 第一试 季风(wind)

测试点编号	$n \leq$	$\sum n \le$	特殊性质
1	1 300	1 300	A
2			В
3			С
4			无
5	200	5,000	A
6			В
7			无
8	10^{4}	10^{5}	A
9	10		В
10	10^{5}	10^{6}	无

特殊性质 A: $\forall 0 \le i \le n-1$, $|x_i| + |y_i| \le k$ 。

特殊性质 B: k = 0。

特殊性质 C: $x_0 = y_0 = 0$ 。

【提示】

本题输入文件较大,请使用较为快速的输入方式。

魔法手杖 (xor)

【题目描述】

提示: 我们在题目描述的最后提供了一份简要的、形式化描述的题面。

C 城是一座魔力之都,以最高的魔法师水平闻名。对于一名魔法师而言,最重要的固然是魔法手杖和镶嵌在手杖上的魔法水晶。

每个魔法手杖和魔法水晶都可以用**魔力值**来衡量其能力大小,一个魔法手杖的魔力 值是镶嵌在其上的所有魔法水晶中魔力值的最小值。

小 ω 是 C 城的一名见习魔法师,他想加强他的魔法手杖。在加强之前,小 ω 的魔法手杖镶嵌着 n 颗魔法水晶,它们的魔力值分别为 a_1, a_2, \dots, a_n 。

小 ω 准备使用一次强力的秘术来加强他的手杖。这一次秘术中,他可以任意选择 x,然后将所有魔法水晶的魔力值由 a_i 变为 $(a_i \oplus x)$,其中 \oplus 表示按位异或。由于小 ω 能力有限, a_1, a_2, \cdots, a_n 和 x 都是 $[0, 2^k - 1]$ 中的整数。

小 ω 还发现这个秘术可以定向加强。具体地,他可以花费 b_i 的体力值对第 i 个魔法水晶进行定向加强,将原本应变为 $(a_i \oplus x)$ 的魔力值变为 $(a_i + x)$ 。小 ω 能力有限,因此他定向加强所花费的体力值总和不能超过 m,且每个水晶只能被定向加强至多一次。

小 ω 想知道他在加强魔法手杖后,魔法手杖的魔力值最大能为多少,但他并不会算,所以请你来帮他计算。

形式化的: 给定 a_1, a_2, \dots, a_n 以及 b_1, b_2, \dots, b_n ,满足 $a_i \in [0, 2^k - 1]$ 以及 $b_i \geq 0$,你需要给出 $S \subseteq \{1, 2, \dots, n\}$ 以及 $x \in [0, 2^k - 1]$ 满足以下条件:

- $\sum_{i \in S} b_i \leq m$;
- 满足以上条件的前提下,最大化 $val(S,x) = \min(\min_{i \in S} (a_i + x), \min_{i \in U \setminus S} (a_i \oplus x))$ 的值。 你只需要给出最大的 val(S,x) 的值即可。

【输入格式】

从文件 xor.in 中读入数据。

本题有多组测试数据。输入的第一行包含两个整数 c,T,表示测试点编号与测试数据组数。样例中的 c 表示该样例的数据范围与第 c 个测试点的数据范围相同。

接下来依次给出每组输入数据,对于每组数据:

- 第一行三个整数 n, m, k;
- 第二行 n 个整数 a_1, a_2, \dots, a_n ,分别表示每个魔法水晶的初始魔力值;
- 第三行 n 个整数 b_1, b_2, \dots, b_n ,分别表示每个魔法水晶定向加强需要的体力值。

【输出格式】

输出到文件 xor.out 中。

对于每组测试数据输出一行一个整数表示小 ω 能获得魔法手杖魔力值的最大值。

【样例1输入】

```
  1
  1
  2

  2
  5
  2
  3

  3
  1
  1
  2
  3
  7

  4
  1
  1
  0
  3
  2

  5
  1
  1
  1
  1
  1

  6
  1
  7
  0
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  1
  <td
```

【样例1输出】

```
1 5 2 2
```

【样例1解释】

- 对于第一组数据,一种可行的方案为: 定向强化魔法水晶 5 (即 $S = \{5\}$) 并取 x = 4。最后得到的魔法水晶魔力值分别为 5,5,6,7,11,故魔法手杖的魔力值为 5。可以证明不存在更优方案。
- 对于第二组数据,一种可行的方案为: 定向强化魔法水晶 1 (即 $S = \{1\}$) 并取 x = 1。

【样例 2】

见选手目录下的 xor/xor2.in 与 xor/xor2.ans。 该组样例满足 c=4。

【样例 3】

见选手目录下的 xor/xor3.in 与 xor/xor3.ans。 该组样例满足 c=7。

【样例 4】

见选手目录下的 xor/xor4.in 与 xor/xor4.ans。 该组样例满足 c=9。

【样例 5】

见选手目录下的 xor/xor5.in 与 xor/xor5.ans。 该组样例满足 c=11。

【样例 6】

见选手目录下的 xor/xor6.in 与 xor/xor6.ans。 该组样例满足 c=14。

【样例 7】

见选手目录下的 xor/xor7.in 与 xor/xor7.ans。 该组样例满足 c=22。

【子任务】

设 $\sum n$ 表示单组测试点各组数据 n 的和。对于所有测试数据,

- $T \ge 1$;
- $1 \le n \le 10^5$, $1 \le \sum n \le 5 \times 10^5$;
- $0 \le m \le 10^9$;
- 0 < k < 120;
- $\forall 1 \le i \le n$, $0 \le a_i < 2^k$;
- $\forall 1 \le i \le n$, $0 \le b_i \le 10^9$.

测试点编号	$\sum n \le$	$n \leq$	$m \leq$	$k \le$	特殊性质
$1 \sim 3$	10	10	10^{9}	10	/
$4 \sim 6$	5×10^5	10^{5}	0		A
7,8		2			В
9,10		10^{5}		30	Б
$11 \sim 13$		10			С
14, 15	500	10^{2}	10^{9}		
$16 \sim 18$	5×10^4	10^{4}		60	,
$19 \sim 21$	3×10^5 5×10^5	10^{5}		120	/
$22 \sim 25$		10		120	

特殊性质 A: m = 0; $\forall 1 \leq i \leq n$, $b_i \geq 1$ 。

特殊性质 B: m = 1; $\forall 1 \le i \le n$, $b_i \in \{1, 2\}$, 且至多只有 1 个 i 满足 $b_i = 1$ 。

特殊性质 C: m = 1; $\forall 1 \le i \le n$, $b_i \in \{1, 2\}$ 。

【提示】

本题输入文件较大,请使用较为快速的输入方式。

在评测环境中,你可以使用 128 位有符号整型类型 __int128,它可以存储范围在 $[-2^{127}, 2^{127} - 1]$ 内的整数,使用方法与其他整型类型基本一致。

需要注意,该类型无法使用诸如 cin/cout 或 scanf/printf 等常规输入输出方式进行输入输出。我们在选手目录下提供了一份 __int128 的输入输出函数实现供选手选择使用。

虫洞 (wormhole)

【题目描述】

E 国有 n 个城市,编号为 1 至 n。为了让城市之间的来往更加便利,E 国的交通部想在 n 个城市间建造一些虫洞。每条虫洞是一条**单向**的从某个城市到另一个城市的通道。允许通道的起点和终点是同一个城市,也允许两个城市之间有多个虫洞连接。

为了区分虫洞的建造时间,交通部给每一条虫洞一个正整数的编号。

我们称一种虫洞的建造方案是好的,若它满足如下四个条件:

- (1) 存在一个非负整数 d 使得每个城市恰好是 d 条虫洞的起点,也恰好是 d 条虫洞的终点。
- (2) 对于每个城市而言,在以它为起点的虫洞的编号中,1 到 d 恰好各出现一次。
- (3) 对于每个城市而言,在以它为终点的虫洞的编号中,1 到 d 恰好各出现一次。
- (4) 任意选取一个城市 u 和正整数 $1 \le j_1, j_2 \le d$ 。设从 u 出发,先经过一次编号为 j_1 的虫洞,再经过一次编号为 j_2 的虫洞,到达城市 v_1 。设从 u 出发,先经过一次编号为 j_2 的虫洞,再经过一次编号为 j_1 的虫洞,到达城市 v_2 。则条件 $v_1 = v_2$ 必定满足。

特别地,不建造任何虫洞的方案也是好的。

现在,建造师已建造了 mn 条虫洞,且给了它们 $1 \sim m$ 的编号,此时这样的建造方案是好的。他想要新建造 kn 条虫洞,并给它们 $(m+1) \sim (m+k)$ 的编号。他必须保证这 (m+k)n 条虫洞形成的建造方案仍然是好的。他想知道有多少种新建造 kn 条虫洞的方法,使得这 (m+k)n 条虫洞形成的建造方案是好的。

由于答案很大, 你只需要求出方案数除以 998244353 的余数。

【输入格式】

从文件 wormhole.in 中读入数据。

输入的第一行四个非负整数 c, n, m, k,其中 c 表示测试点编号。样例中的 c 表示该样例的数据范围与第 c 个测试点的数据范围相同。

接下来 nm 行,每行三个正整数 u, v, w,表示一条编号为 w 的,起点为 u 号城市,终点为 v 号城市的虫洞。

【输出格式】

输出到文件 wormhole.out 中。

输出一行整数,表示方案数除以998244353的余数。

【样例1输入】

【样例1输出】

1 8

【样例1解释】

在该组样例中,已经建造的编号为 1 的虫洞为 $1 \rightarrow 2, 2 \rightarrow 1, 3 \rightarrow 4, 4 \rightarrow 3$ 。为了使 8 条虫洞形成的建造方案是好的,新建造的编号为 2 的虫洞可能有 8 种情形:

$$(1) 1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4$$

$$(2) 1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 4, 4 \rightarrow 3$$

$$(3) 1 \rightarrow 2, 2 \rightarrow 1, 3 \rightarrow 3, 4 \rightarrow 4$$

$$(4) 1 \rightarrow 2, 2 \rightarrow 1, 3 \rightarrow 4, 4 \rightarrow 3$$

$$(5) 1 \rightarrow 3, 2 \rightarrow 4, 3 \rightarrow 1, 4 \rightarrow 2$$

(6)
$$1 \to 3, 2 \to 4, 3 \to 2, 4 \to 1$$

$$(7) \ 1 \to 4, 2 \to 3, 3 \to 1, 4 \to 2$$

(8)
$$1 \to 4, 2 \to 3, 3 \to 2, 4 \to 1$$

【样例 2】

见选手目录下的 wormhole/wormhole2.in 与 wormhole/wormhole2.ans。 该样例的 c=2,它满足第 2 个测试点的限制条件。

【样例 3】

见选手目录下的 wormhole/wormhole3.in 与 wormhole/wormhole3.ans。 该样例的 c=5,它满足第 5 个测试点的限制条件。

【样例 4】

见选手目录下的 wormhole/wormhole4.in 与 wormhole/wormhole4.ans。 该样例的 c=7,它满足第 7 个测试点的限制条件。

【样例 5】

见选手目录下的 wormhole/wormhole5.in 与 wormhole/wormhole5.ans。 该样例的 c = 9,它满足第 9 个测试点的限制条件。

【样例 6】

见选手目录下的 wormhole/wormhole6.in 与 wormhole/wormhole6.ans。 该样例的 c = 11,它满足第 11 个测试点的限制条件。

【样例 7】

见选手目录下的 wormhole/wormhole7.in 与 wormhole/wormhole7.ans。 该样例的 c=15,它满足第 15 个测试点的限制条件。

【样例 8】

见选手目录下的 wormhole/wormhole8.in 与 wormhole/wormhole8.ans。 该样例的 c=17,它满足第 17 个测试点的限制条件。

【样例 9】

见选手目录下的 wormhole/wormhole9.in 与 wormhole/wormhole9.ans。 该样例的 c=20,它满足第 20 个测试点的限制条件。

【样例 10】

见选手目录下的 wormhole/wormhole10.in 与 wormhole/wormhole10.ans。 该样例的 c=22,它满足第 22 个测试点的限制条件。

【子任务】

对于所有测试点,

- $1 < n < 2 \cdot 10^3$, $0 < m < 10^3$, $1 < k < 10^{15}$;
- 1 < u, v < n, 1 < w < m;
- 保证初始建造的 mn 条虫洞构成一个好的建造方案。

测试点编号	n	m	k	
$1 \sim 4$	≤ 5	≤ 3	≤ 3	
$5\sim6$	$\leq 2 \cdot 10^3$	=0		
$7 \sim 8$		= 1	= 1	
$9 \sim 10$		≤ 10		
$11 \sim 14$	$\leq 10^2$	$ $ \leq 10	$\leq 10^3$	
$15 \sim 16$		=0	$< 10^{15}$	
$17 \sim 19$		≤ 10	$ \leq 10^{\circ}$	
$20 \sim 21$	$< 2 \cdot 10^3$	$< 10^{3}$	$\leq 10^2$	
$22 \sim 25$	$\leq 2 \cdot 10$	$ \leq 10$	$\leq 10^{15}$	

【提示】

本题部分测试点输入规模较大,我们推荐你使用较为快速的读入方式。