

2023-2024

Classe: **Bac Maths**

Série 14: Isométrie du plan

Nom du Prof : Lahbib Ghaleb

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

5 pts

Dans le plan orienté, on considère un triangle équilatéral ABC de sens direct inscrit dans un cercle \mathscr{C} de centre O. On note I le milieu de [BC] et D le symétrique de A par rapport à O.

- On pose $g = t_{\overrightarrow{BO}} \circ f$ et K le point d'intersection des médiatrices des segments [AD] et [BO].
 - Déterminer g(O) et g(A). En déduire que $g = S_{(BO)}$ ou $g = r_{(O, -\frac{2\pi}{n})}$.
- On désigne par $f_1 = t_{\overrightarrow{OB}} \circ S_{(OB)}$ et $f_2 = r_{(K_r \frac{2\pi}{2})}$.

 - En déduire l'ensemble des points M du plan tels que $f_1(M) = f_2(M)$.

Exercice 2

5 pts

Dans le plan orienté, on donne un losange \overrightarrow{ABKI} tel que $(\overrightarrow{AB}, \overrightarrow{AI}) \equiv \frac{\pi}{2}[2\pi]$.

On note : I = A * I, O = I * K et $B' = S_I(K)$. On se propose de caractériser les isométries f qui transforment A en I et I en K.

- - \bigcirc Déterminer g(B) et g(K).
 - ⚠ Caractériser alors les isométries g.
 - En déduire que $f = S_{(AK)} \circ t_{\overrightarrow{AB}}$ ou $f = R_{(K, -\frac{\pi}{3})} \circ t_{\overrightarrow{AB}}$.
- la droite (AB).
 - \triangle Déterminer les droites \triangle et \triangle' telles que :

$$R_{(K,\frac{\pi}{3})} = S_{\Delta} \circ S_{(BK)} \text{ et } R_{(B,-\frac{\pi}{3})} = S_{(BK)} \circ S_{\Delta'}.$$

- \bigcirc En déduire que $R_{(K,\frac{\pi}{3})} \circ R_{(B,-\frac{\pi}{3})} = t_{\overrightarrow{AB}}$.
- \bigcirc Identifier alors l'isométrie f_1 .
- Prose $f_2 = S_{(AK)} \circ t_{\overrightarrow{AB}}$ et $\varphi = f_2^{-1} \circ f_1$.

- $\underline{\text{a}}$ Prouver que $f_2(B') = B$.
- \triangle Déterminer $\varphi(A)$, $\varphi(I)$ et $\varphi(B)$ puis caractériser φ .
- \bigcirc Déterminer l'ensemble des points M du plan tels que $f_1(M) = f_2(M)$.

Exercice 3

30 min

5 pts

Dans le plan orienté dans le sens direct, on considère un triangle \overrightarrow{ABC} rectangle en A de sens direct et tel que $(\overrightarrow{BC}, \overrightarrow{BA}) \equiv \frac{\pi}{6}[2\pi]$.

On désigne par I, J et O les milieux respectifs des segments [BC], [AB] et [AI].

- Montrer que le triangle ACI est équilatéral.
- - Montrer que $f \circ R_{(C,\frac{\pi}{3})}$ est une symétrie centrale dont on précisera le centre.
- on pose $D = S_{(BC)}(A)$.
 - Montrer que les points I, J et D sont alignés.
 - \triangle Caractériser l'application $S_{(IJ)} \circ S_{(AC)}$.
 - On pose $g = t_{\overrightarrow{AB}} \circ R_{(A,\frac{\pi}{3})}$.

 Montrer que g est une rotation de centre D, préciser son angle.