CS738: Advanced Compiler Optimizations Constant Propagation

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Agenda

- Using data flow analysis to identify "constant expressions" in a program
- ► Identify similarity/differences with bit-vector data flow analyses discussed earlier
- ► Other properties of constant propagation

Constant Propagation

► CP: Replace expressions that evaluate to same constant "c" every time they are executed, by the value "c"

DF Framework for CP

- Domain
 - For a simgle variable v of type τ , all possible constants of type τ
- Semilattice
 - ► What is /\?
 - What is ⊤?
 - What is ⊥?

Special Values for CP

- NAC: not a constant
 - ▶ If variable is inferred not to be a constant
 - ▶ Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value, ...
- ▶ Undef: No definition of the variable is seen yet nothing known!

NAC vs Undef

- $ightharpoonup NAC \Rightarrow too\ many\ definitions\ seen\ for\ a\ variable\ v\ to$ declare *v* is **NOT** a constant
- ▶ *Undef* ⇒ *too few* definitions seen to declare anything about the variable
- ▶ \top is *Undef*; \bot is *NAC*

CP Meet ∧

► Recall the requirement

$$\top \bigwedge x = x$$
$$\bot \bigwedge x = \bot$$

$$\perp \bigwedge x = \perp$$

Undef
$$\bigwedge c = c$$

$$NAC \land c = NAC$$

$$c_1 \wedge c_2 = NAC$$
 when $c_1 \neq c_2$

$$c \wedge c = c$$

CP Semilattice for an integer variable

► Infinite domain, but finite height

CP Semilattice

- ▶ Previous figure was semilattice for one variable of one type
- ► CP Semilattice = Product of such lattices for all variables (of all types)
- ► Each semilattice has a **finite** height

Computing GEN

► Informal representation

Statement	GEN
x = c // const	$\{x \to c\}$
x = y + z	if $\{y \rightarrow c_1, z \rightarrow c_2\}$ in IN then $\{x \rightarrow c_1 + c_2\}$ else if $\{y \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else if $\{z \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else $\{x \rightarrow Undef\}$
$\overline{x = complicated}$	$\{x \rightarrow NAC\}$
expr	

Monotonicity of CP

- ► Case analysis on transfer function *f*
- ▶ $NAC \le c \le Undef$
- ightharpoonup x = c has constant transfer function.
- ightharpoonup x = complicated expr also has constant transfer function
- ▶ See the next slide for x = y + z (and similar statements)

Monotonicity of CP: x = y + z

- Fix z to be one of *Undef*, c_2 , *NAC*
- ► Vary *y* over *Undef*, *c*₁, *NAC*
- ► Confirm that *x* does not "*increase*"
- ▶ Do this for all *z* choices.
- ► Similarly, fix *y* and vary *z*.

Nondistributivity of CP

- ► All paths:
 - $\begin{array}{c} \blacktriangleright & B_0 \rightarrow B_1 \rightarrow B_3 \\ \blacktriangleright & B_0 \rightarrow B_2 \rightarrow B_3 \end{array}$
- ► Value of z is 5 along both the paths.
- ► MOP value for z is 5.
- ► MFP value for *z* is *NAC*. (Exercise)
- ► MFP value ≠ MOP value (MFP < MOP)