Single Variable Visualization

At this time, we will focus in on a single variable, i.e., for each particular trait we have n observations on this trait, namely $x_{1j}, x_{2j}, ..., x_{nj}$. With what tools can we analyze this set of values?

Our first set of tools include pictorial and frequency methods from **Descriptive Statistics**.

The Cars 93 Data Frame

The Cars 93 data frame (in the MASS package) contains information on 93 cars sold in the U.S. in the year 1993. It has 93 rows and 27 columns. Additional information is available using ?Cars 93 or help(Cars 93)

The command head displays the first few lines (the default is 6) of an object in R.

>	head(Cars93	3)												
	Manufacture	er Model	Type M	in.Price	Price	Max.Pri	.ce M	MPG.city	MPG.hi	ghway			AirBags	DriveTrain
1	Acur	ra Integra	Small	12.9	15.9	18	8.8	25	5	31			None	Front
2	Acur	a Legend	Midsize	29.2	33.9	38	3.7	18	3	25	Driver	&	Passenger	Front
3	Aud	li 90	Compact	25.9	29.1	32	.3	20)	26		Dr	iver only	Front
4	Aud	li 100	Midsize	30.8	37.7	44	. 6	19		26	Driver	&	Passenger	Front
5	BM	W 535i	Midsize	23.7	30.0	36	5.2	22	2	30		Dr	iver only	Rear
6	Buio	k Century	Midsize	14.2	15.7	17	1.3	22	2	31		Dr	iver only	Front
	Cylinders E	EngineSize	Horsepowe:	r RPM Re	ev.per	.mile Ma	n.tr	ans.ava	il Fuel	. tank	.capacit	cy :	Passengers	Length
1	4	1.8	140	6300		2890		Y	es.		13.	. 2	5	177
2	6	3.2	200	5500		2335		Y	?es		18.	. 0	5	195
3	6	2.8	17:	2 5500		2280		Y	es.		16.	. 9	5	180
4	6	2.8	17:	2 5500		2535		Y	es.		21.	. 1	6	193
5	4	3.5	208	5700		2545		Y	es.		21.	. 1	4	186
6	4	2.2	110	5200		2565			No		16.	. 4	6	189
	Wheelbase W	Width Turn	.circle Rea	ar.seat.	room Lu	ıggage.r	coom	Weight	Origin		Mak	ce		
1	102	68	37	:	26.5		11	2705	non-USA	Acura	a Integr	ca		
2	115	71	38	:	30.0		15	3560	non-USA	Acu	ra Leger	nd		
3	102	67	37	:	28.0		14	3375	non-USA		Audi 9	90		
4	106	70	37	:	31.0		17	3405	non-USA		Audi 10	00		
5	109	69	39		27.0		13	3640	non-USA		BMW 535	5i		
6	105	69	41		28.0		16	2880	USA	Buicl	k Centui	cv		

Distribution of a Variable

The *distribution* of a variable provides the possible values that a variable can take on and how often (frequently) these possible values occur. The distribution of a variable shows the **pattern** of variation of the variable.

The distribution of a variable can be summarized graphically, numerically, or with a model.

Displaying Distributions

Categorical Variables

Categorical variables are usually not measured on a numerical scale. Typically, the frequency or percentage of observations in each category is displayed.

<u>Definition</u>: A *frequency* of a category is the number of times it occurs in the data set.

<u>Definition</u>: A *frequency distribution* is a table that presents the frequency for each category.

Example: The data frame Cars93 contains data from 93 cars on sale in the USA in 1993. We can use the table function to find the frequency distribution for the standard airbag option.

> table(Cars93\$AirBags)

Displaying Distributions

Categorical Variables

<u>Definition</u>: The *relative frequency* of a category is the frequency of the category divided by the sum of all the frequencies.

<u>Definition</u>: A *relative frequency distribution* is a table that presents the relative frequency of each category

-typically more useful

Example: We can use the table function to display the relative frequency for the standard airbag option in the Cars 93 dataset.

```
> table(Cars93$AirBags)/nrow(Cars93)
```

```
Driver & Passenger Driver only None 0.1720430 0.4623656 0.3655914
```

> round(table(Cars93\$AirBags)/nrow(Cars93),3)

```
Driver & Passenger Driver only None 0.172 0.462 0.366
```

Bar Graphs

- A *bar graph* is a graphical representation of a frequency distribution.
- One bar is displayed for each category, and the height of each bar is the frequency (count) or relative frequency (proportion) in each category.
- The width of the bars has <u>no meaning</u>.

```
> barplot(table(Cars93$AirBags),ylab="Frequency",cex.lab=1.3,col=c(2,3,4))
```

- > barplot(table(Cars93\$AirBags)/nrow(Cars93),ylab="Relative Frequency",
- + cex.lab=1.3,cex.names=1.2,col=c(2,3,4))

A Note on Colors

You will often want to add color to a graphic (lines, plotting characters, fill, ...) and R has a large variety of color possibilities. As is often the case in R, there are multiple ways to specify colors.

The available built-in color names can be accessed with the colors function. Here are the first 20 (of 657)

```
> colors()[1:20]
 [1] "white"
                     "aliceblue"
                                      "antiquewhite"
                                                      "antiquewhite1" "antiquewhite2"
 [6] "antiquewhite3" "antiquewhite4" "aquamarine"
                                                      "aquamarine1"
                                                                      "aquamarine2"
                                                      "azure1"
                                                                      "azure2"
[11] "aquamarine3"
                     "aquamarine4"
                                      "azure"
                                                      "bisque"
                                                                      "bisque1"
[16] "azure3"
                     "azure4"
                                     "beige"
```

The **color palette** tells R which color name is referred to by a specific integer. It can be viewed using the palette function.

```
> palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray"
```

This shows that in the current palette (the default) 1 indicates black, 2 gives red, 3 gives green3, 4 gives blue, etc.

A Note on Colors

You can also set the palette with the palette command.

The color palette now assigns 1 to red2, 2 to orchid1, 3 to yellow4, etc. We can restore the default at any time using

When setting the col parameter, either use the color names (with quotes around them) or first set the palette and then use the mapped integers.

Additional colors in R can be created using primitives rgb, hsv, and hcl or the derived rainbow, and heat.color.

Example

We can obtain the two-way frequency table of Airbags by Origin using:

> table(Cars93\$AirBags,Cars93\$Origin)

```
USA non-USA
Driver & Passenger 9 7
Driver only 23 20
None 16 18
```

- > barplot(table(Cars93\$AirBags,Cars93\$Origin),col=c(2,3,4),beside=T,
- + ylim=c(0,30), cex.axis=1.2)
- > legend(x=5,y=30,title="Airbags",legend=sort(unique(Cars93\$AirBags)),
- + fill=c(2,3,4))

The script above provides the figure to the right depicting the AirBags variable as a function of the Origin variable.

Pie Charts

- A pie chart is a graphical method for displaying the distribution of a qualitative variable.
- The circle or pie represents the whole (all the units). The pie is divided into slices, one for each category of the qualitative variable.

> pie(table(Cars93\$AirBags), main="Standard Air Bags", col=c(2,3,4),cex=1.3)

Standard Air Bags

Now, your turn! Visualize another variable in Cars93 by creating a bar graph and a pie chart.

