Université de Rennes 1-Année 2020/2021 L3-PRB/PSI1-Feuille de TD 8-Corrigé

Exercice 1. Soit X une v.a.r suivant la loi uniforme sur $[0,\pi]$. Montrer que $Y = \cos(X)$ suit une loi continue dont on déterminera la densité.

Solution : On rappelle que $\cos : [0, \pi] \to [-1, 1]$ est une bijection strictement décroissante, d'inverse $\arccos : [-1, 1] \to [0, \pi]$.

Soit $y \in \mathbf{R}$. On a $F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(\cos(X) \le y)$.

Si y < -1, alors $F_Y(y) = 0$ car $\cos(X) > -1$; si $y \ge 1$, alors $F_Y(y) = 1$ car $\cos(X) \le 1$.

Soit $y \in [-1, 1]$. Alors, comme cos est décroissante entre $[0, \pi]$ et [-1, 1], on a

$$F_Y(y) = \mathbf{P}(Y \le y) = \mathbf{P}(\cos(X) \le y) = \mathbf{P}(X \ge \arccos(y))$$
$$= \frac{1}{\pi} \int_{\arccos(y)}^{+\infty} \mathbf{1}_{[0,\pi]}(x) dx = \frac{1}{\pi} (\pi - \arccos(y)).$$

On obtient la densité g de Y en dérivant F_Y :

$$g(y) = \begin{cases} 0 \text{ si } y \le -1\\ \frac{1}{\pi \sqrt{1 - y^2}} \text{ si } -1 < y < 1\\ 0 \text{ si } y \ge 1 \end{cases}$$

Exercice 2. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et X une variable aléatoire sur Ω distribuée selon une loi exponentielle $\mathcal{E}(\lambda)$ avec $\lambda > 0$.

(i) Montrer que $Y=X^2$ suit une loi continue dont on déterminera la densité.

Solution : Pour tout $y \in \mathbf{R}$, on a $F_Y(y) = \mathbf{P}(Y \leq y) = \mathbf{P}(X^2 \leq y)$ et donc

$$F_Y(y) = \begin{cases} 0 \text{ si } y < 0\\ \mathbf{P}(-\sqrt{y} \le X \le \sqrt{y}) = \lambda \int_0^{\sqrt{y}} e^{-\lambda x} dx = 1 - e^{-\lambda \sqrt{y}} \text{ si } y \ge 0. \end{cases}$$

En dérivant F_Y , on obtient que Y est continue de densité g donnée par

$$g(y) = \begin{cases} 0 \text{ si } y < 0\\ \frac{\lambda}{2\sqrt{y}} e^{-\lambda\sqrt{y}} \text{ si } y \ge 0 \end{cases}$$

(ii) Soit A l'ensemble des $\omega \in \Omega$ tels que l'équation $t^2 - 2Y(\omega)t + 1 = 0$ possède deux solutions $t_1, t_2 \in \mathbf{R}$ avec $t_1 \neq t_2$. Déterminer $\mathbf{P}(A)$.

Solution : Pour $\omega \in \Omega$ fixé, le trinôme du second degré $t^2 - 2Y(\omega)t + 1$ possède deux racines réelles distinctes si et seulement son discriminant $\Delta = Y^2(\omega) - 1$ est > 0. On a donc $A = \{Y^2 > 1\}$. Comme

$$\{Y^2>1\}=\{Y>1\}=\{X>1\}\cup\{X<-1\}$$

et comme $\mathbf{P}(X < -1) = 0$, on a $\mathbf{P}(Y > 1) = \mathbf{P}(X > 1) = 1 - F_X(1) = e^{-\lambda}$ et donc $\mathbf{P}(A) = e^{-\lambda}$.

Exercice 3. Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et $\Omega_1, \Omega_2 \in \mathcal{F}$ tels $\Omega = \Omega_1 \cup \Omega_2$, $\Omega_1 \cap \Omega_2 = \emptyset$ et $\mathbf{P}(\Omega_1) = \mathbf{P}(\Omega_2)$. Pour $n \geq 1$, soit $X_{2n} = \mathbf{1}_{\Omega_1}$ et $X_{2n+1} = \mathbf{1}_{\Omega_2}$.

(i) Déterminer la loi de X_n .

Solution : Comme $X_n(\Omega) = \{0, 1\}$, X_n suit une loi de Bernoulli $\mathcal{B}(1/2)$, car $\mathbf{P}(X_n = 1) = \mathbf{P}(\Omega_1) = 1/2$ si n est pair et $\mathbf{P}(X_n = 1) = \mathbf{P}(\Omega_2) = 1/2$ si n est impair.

(ii) Déduire de (i) que $X_n \xrightarrow{\mathcal{L}} X_1$.

Solution : Par (i), tous les X_n ont la même loi. On a donc $F_{X_n} = F_{X_1}$ et il s'ensuit que $X_n \xrightarrow{\mathcal{L}} X_1$.

(iii) Calculer $\mathbf{P}(|X_{2n} - X_1| \ge 1)$.

Solution : Soit $\omega \in \Omega$. Supposons que $\omega \in \Omega_1$. Alors $\omega \notin \Omega_2$. D'où $X_{2n}(\omega) = 1$ et $X_1(\omega) = 0$ et donc $|X_{2n}(\omega) - X_1(\omega)| = 1$.

Supposons que $\omega \in \Omega_2$. Alors $\omega \notin \Omega_1$. D'où $X_{2n}(\omega) = 0$ et $X_1(\omega) = 1$ et donc $|X_{2n}(\omega) - X_1(\omega)| = 1$.

En résumé, on a $\{|X_{2n} - X_1| = 1\} = \Omega$ et donc $\mathbf{P}(|X_{2n} - X_1| \ge 1) = \mathbf{P}(\Omega) = 1$.

(iv) Déduire de (iii) que $(X_n)_n$ ne converge pas en probabilité vers X_1 .

Solution : Supposons, par l'absurde que $X_n \xrightarrow{\mathbf{P}} X_1$. Alors, par définition, on a $\mathbf{P}(|X_n - X_1| \ge \epsilon) = 0$ et donc, a fortiori, $\mathbf{P}(|X_{2n} - X_1| \ge \epsilon) = 0$ pour tout $\epsilon > 0$. Ceci contredit (iii) pour $\epsilon = 1$.

Exercice 4. Un livre de 100 pages contient 1000 erreurs, réparties aux hasard selon les pages. On ouvre le livre et on compte le nombre X d'erreurs contenues dans une page.

(i) Identifier la loi de X. Quelle est l'espérance de X? Quelle est sa variance?

Solution : On peut s'imaginer qu'on a 100 urnes (correspondant aux 100 pages) et 1000 boules (correspondant aux 1000 erreurs). On place alors au hasard chacune des boules, l'une après l'autre, dans une des urnes.

On fixe une urne (c-à-d une page). A chaque placement d'une boule, la probabilité que cette urne reçoive cette boule est 1/100. Comme il y a 1000 boules, on a donc affaire à 1000 expériences de Bernoulli indépendantes de paramètre 1/100 chacune.

La variable aléatoire X suit donc une loi binomiale $\mathcal{B}(n,p)$ avec n=1000 et p=1/100.

On a $\mathbf{E}(X) = np = 1000 \times (1/100) = 10$ et $\mathbf{Var}(X) = np(1-p) = 1000 \times (1/100) \times (99/100) = 9.9$.

(ii) Donner une majoration de P(X > 20) au moyen l'inégalité de Bienaymé-Tchebychev.

Solution : Par l'inégalité de Bienaymé-Tchebychev, on a

$$\mathbf{P}(|X - 10| \ge 10) = \mathbf{P}(|X - \mathbf{E}(X)| \ge 10) \le \frac{\mathbf{Var}(X)}{10^2} = 0.099.$$

Comme $\{X > 20\} \subset \{|X - 10| \ge 10\}$, il s'ensuit que $\mathbf{P}(X > 20) \le 0.099$.

(iii) En approchant la loi de X par une loi de Poisson, essayer de donner une valeur approchée de la probabilité P(X > 20).

Solution : On approche la loi de X par une loi de Poisson $\mathcal{P}(\lambda)$ avec $\lambda = np = 1000 \times 1/100 = 10$. Alors

$$\mathbf{P}(X > 20) \approx e^{-\lambda} \sum_{k=21}^{+\infty} \frac{\lambda^k}{k!} = e^{-10} \sum_{k=21}^{+\infty} \frac{10^k}{k!} \approx 2 \times 10^{-3}.$$

(iv) En approchant la loi de X par une loi normale, donner une valeur approchée de la probabilité P(X > 20).

Solution:

Soit

$$Z = \frac{X - np}{\sqrt{npq}} = \frac{X - 10}{\sqrt{9.9}}.$$

Alors (voir Cours) Z suit approximativement une loi normale centrée-réduite $\mathcal{N}(0,1)$. On a alors

$$\mathbf{P}(X > 20) = \mathbf{P}(\frac{X - 10}{\sqrt{99}} > \frac{10}{\sqrt{99}}) = \mathbf{P}(Z > \frac{10}{\sqrt{99}}) \approx \mathbf{P}(Z > 3) = 1 - \Pi(3).$$

On trouve dans la table de la loi normale que $\Pi(3) = 0.9987$. D'où $P(X > 20) \approx 1 - 0.9987 = 0.0013.$

Exercice 5. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} x^n e^{-x} dx$. (i) Justifier l'existence de I_n et établir une relation de récurrence entre I_{n+1} et I_n pour $n \in \mathbb{N}$.

Solution : La fonction $x \mapsto x^n e^{-x}$ est continue sur $[0, +\infty[$ et de plus $x^n e^{-x} = x^n / e^x \sim O(1/x^2)$ pour $x \to +\infty$; comme $x \mapsto 1/x^2$ est intégrable sur $[1, +\infty[$, ceci montre que I_n existe.

Par IPP, on a pour tout $n \geq 0$:

$$I_{n+1} = \int_0^{+\infty} x^{n+1} e^{-x} dx = -x^{n+1} e^{-x} \Big|_0^{+\infty} + (n+1) \int_0^{+\infty} x^n e^{-x} dx$$
$$= 0 + (n+1)I_n = (n+1)I_n.$$

(ii) Calculer I_n pour tout $n \in \mathbb{N}$.

Solution : En utilisant une récurrence sur $n \in \mathbb{N}$, on déduit de (i) que $I_n = n!I_0$. Comme $I_0 = \int_0^{+\infty} e^{-x} dx = -e^{-x}|_0^{+\infty} = 1$, il s'ensuit que $I_n = n!$

Soit X une v.a.r. qui suit une loi exponentielle de paramètre $\lambda > 0$.

(iii) Calculer, pour tout $n \ge 1$, le moment $\mathbf{E}(X^n)$ d'ordre n de X.

Solution : Comme la densité de X est $f: x \mapsto \lambda \mathbf{1}_{[0,+\infty[}(x)e^{-\lambda x},$ on a $\mathbf{E}(X^n) = \int_{-\infty}^{+\infty} x^n f(x) dx = \lambda \int_0^{+\infty} x^n e^{-\lambda x} dx;$ au moyen du changement de variable $t = \lambda x$, on obtient :

$$\mathbf{E}(X^n) = \frac{1}{\lambda^n} \int_0^{+\infty} t^n e^{-t} dt = \frac{1}{\lambda^n} I_n = \frac{n!}{\lambda^n}.$$

Exercice 6. (*) Des clients arrivent à un guichet de manière aléatoire. On suppose qu'il existe $\alpha > 0$ tel que, pour tout t > 0, le nombre de clients arrivant entre les instants 0 et t > 0 est une v.a.r. N_t qui suit une loi de Poisson de paramètre αt . Soit X_1 l'instant d'arrivée du premier client.

(i) Déterminer $P(X_1 > t)$ et en déduire que X_1 suit une loi exponentielle.

Solution : Soit t > 0. On a $\{X_1 > t\} = \{N_t = 0\}$; en effet, dire que l'instant d'arrivée X_1 du premier client est > t signifie qu'aucun client n'est arrivé entre les instants 0 et t. D'où $\mathbf{P}(X_1 > t) = \mathbf{P}(N_t = 0)$; comme

arrivé entre les instants
$$0$$
 et t . D'où $\mathbf{P}(X_1 > t) = \mathbf{P}(N_t = 0)$; comme $N_t \sim \mathcal{P}(\alpha t)$, on a donc $\mathbf{P}(X_1 > t) = e^{-\alpha t} \frac{(\alpha t)^0}{0!} = e^{-\alpha t}$. Il s'ensuit que

$$\mathbf{P}(X_1 \le t) = 1 - \mathbf{P}(X_1 > t) = 1 - e^{-\alpha t}.$$

De plus, il est clair que $\mathbf{P}(X_1 \leq t) = 0$ pour $t \geq 0$. Ceci montre que X_1 a la même fonction de répartition que celle de la loi exponentielle $\mathcal{E}(\alpha)$ et donc $X_1 \sim \mathcal{E}(\alpha)$.

(ii) Calculer $\mathbf{E}(X_1)$ et $\mathbf{Var}(X_1)$.

Solution : Comme $X_1 \sim \mathcal{E}(\alpha)$ par (i), on a (voir Cours) $\mathbf{E}(X_1) = 1/\alpha$ et $\mathbf{Var}(X_1) = 1/\alpha^2$.

(iii) Pour $n \geq 1$, soit X_n l'instant d'arrivée du n-ième client. Déterminer $\mathbf{P}(X_n > t)$ et en déduire la fonction de répartition de X_n .

Solution : Soit t>0. On a $\{X_n>t\}=\{N_t\leq n-1\}$; en effet, dire que l'instant d'arrivée X_n du n-ième client est >t signifie qu'au plus n-1 clients sont arrivés entre les instants 0 et t. D'où

$$\mathbf{P}(X_n > t) = \mathbf{P}(N_t \le n - 1) = \sum_{k=0}^{n-1} \mathbf{P}(N_t = k) = e^{-\alpha t} \sum_{k=0}^{n-1} \frac{(\alpha t)^k}{k!}.$$

Il s'ensuit que, pour t > 0, on a

$$F_{X_n}(t) = \mathbf{P}(X_n \le t) = 1 - \mathbf{P}(X_n > t) = 1 - e^{-\alpha t} \sum_{k=0}^{n-1} \frac{(\alpha t)^k}{k!}.$$

Il est clair que $F_{X_n}(t) = \mathbf{P}(X_n \le t) = 0$ pour $t \ge 0$.

(iv) Montrer que X_n est une v.a. continue et en déterminer une densité. En utilisant l'Exercice 5, calculer $\mathbf{E}(X_n)$ et $\mathbf{Var}(X_n)$.

Solution : Soit $n \geq 1$. Au vu de l'expression de F_{X_n} donnée en (iii), on a $\lim_{t\to 0} F_{X_n}(t) = 0$ et ceci implique que F_{X_n} est continue. Donc X_n possède une densité f_n . On obtient f_n en dérivant F_{X_n} : pour $t \leq 0$, on a $f_n(t) = 0$ et pour t > 0, on a

$$f_n(t) = \frac{d}{dt} F_{X_n}(t)$$

$$= \alpha e^{-\alpha t} \sum_{k=0}^{n-1} \frac{(\alpha t)^k}{k!} - e^{-\alpha t} \sum_{k=1}^{n-1} \frac{\alpha^k k t^{k-1}}{k!}$$

$$= \alpha e^{-\alpha t} \sum_{k=0}^{n-1} \frac{(\alpha t)^k}{k!} - e^{-\alpha t} \sum_{k=1}^{n-1} \frac{\alpha^k t^{k-1}}{(k-1)!}$$

$$= e^{-\alpha t} \sum_{k=0}^{n-1} \frac{\alpha^{k+1} t^k}{k!} - e^{-\alpha t} \sum_{k=0}^{n-2} \frac{\alpha^{k+1} t^k}{k!}$$

$$= e^{-\alpha t} \frac{\alpha^n t^{n-1}}{(n-1)!}$$

On a

$$\mathbf{E}(X_n) = \int_{-\infty}^{+\infty} t f_n(t) dt = \frac{\alpha^n}{(n-1)!} \int_0^{+\infty} t^n e^{-\alpha t} dt$$

$$\stackrel{=}{\underset{s=\alpha t}{=}} \frac{1}{\alpha(n-1)!} \int_0^{+\infty} s^n e^{-s} ds$$

$$\stackrel{=}{\underset{(Exo5)}{=}} \frac{1}{\alpha(n-1)!} n! = \frac{n}{\alpha}.$$

De même, on calcule que $\mathbf{E}(X_n^2) = \frac{n(n+1)}{\alpha^2}.$ On en déduit que

$$\mathbf{Var}(X_n) = \frac{n(n+1)}{\alpha^2} - \frac{n^2}{\alpha^2} = \frac{n}{\alpha^2}.$$