

Mining Streams

Shantanu Jain

Data Streams

- In many data mining situations, we do not know what data will arrive in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- Can think of streams as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We often represent elements as tuples
- The system cannot store the entire stream
- Q: How do you make calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

- Common Types of Queries:
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Filtering a data stream
 - Select elements with property
 x from the stream
 - Counting distinct elements
 - Number of distinct elements in last k elements of the stream
 - Estimating moments
 - Estimating frequency/surprise

Applications (1)

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
 - Wikipedia wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - E.g., look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Mining Streams

Shantanu Jain

Sampling from Streams

Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample (i.e. a random subset of elements)
- Two different approaches:
 - 1. Sample a fixed fraction of elements (say 1 in 10)
 - 2. Maintain a random sample of fixed size over a potentially infinite stream
 - At "any time" k we would like a random sample of s elements
 - For all time steps k, each of k elements so far should have an equal probability of being included in the s elements

Approach 1: Sampling a Fixed Proportion

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How many queries from a typical user in past 30 days are repeat queries.
 - Have space to store 1/10th of query stream
- Naïve solution: Random subsampling
 - Generate a random number u ~ Uniform([0, 1))
 - Store the query if u < 0.1, discard if $u \ge 0.1$

Problem with Naïve Approach

- Suppose each user issues x number of queries once and d number of queries twice (total of x+2d queries)
 - True Fraction of Duplicates (unknown): d / (x+d)
- Naive Estimate: Keep 10% of the queries
 - Sample will contain x / 10 of the singleton queries and 2d / 10 of the duplicate queries at least once
 - But only d / 100 pairs of duplicates
 d/100 = 1/10 · 1/10 · d
 - Of *d* "duplicates" 18d / 100 appear exactly once $18d / 100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$

Fraction in Sample
$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$$

Problem with Naïve Approach

- Suppose each user issues n_x number of queries once and n_d number of queries twice (total of $n_x + 2n_d$ queries)
 - True Fraction of Duplicates (unknown): $n_d/(n_x + n_d)$
- Naive Estimate: Keep 10% of the queries
 - Sample will contain $n_x/10$ of the singleton queries and $2n_d/10$ of the duplicate queries at least once
 - But only $n_d/100$ pairs of duplicates $n_d/100 = 1/10 \cdot 1/10 \cdot n_d$
 - Of d "duplicates" $18n_d$ / 100 appear exactly once $18n_d$ / $100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot n_d$

Fraction in Sample
$$\frac{\frac{n_d}{100}}{\frac{n_x}{10} + \frac{n_d}{100} + \frac{18n_d}{100}} = \frac{n_d}{10n_x + 19n_d}$$

Solution: Sample Users

Alternative Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function to uniformly assign user names to 10 buckets

Example hash function

$$h(u) = (u \mod 10) + 1$$
maps user id to a value in $\{1,2,...,10\}$
each user is assigned a randomly generated id

If $h(u) \leq 1$ store the tuple, else discard it.

Better Solution: Sample Keys

- Assume tuples with keys:
 - Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
 - Choice of key depends on application
- To get a sample of a / b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**. **How to generate a 30% sample?**

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Approach 2: Fixed-size Sample

- Suppose we want to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
 - Why? May not know length of stream in advance
- Goal: Ensure equal probability of inclusion
 - Suppose at time *n* we have seen *n* items
 - Each item should occur in the sample S
 with probability s / n

Approach 2: Fixed-size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s / n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s / n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1
 the sample maintains the property
 - Sample contains each element so far with prob s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s / n
- Inductive step: When element n+1 arrives, the probability for retention of each of the first n elements given it is already included in S is

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right) \left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$
Element **n+1**
discarded

Element **n+1**
not discarded

not replaced

The unconditional probability for retention after n+1 steps is

First
$$n$$
 Elements $\left(\frac{s}{n}\right)\left(\frac{n}{n+1}\right) = \frac{s}{n+1}$ New Element $\frac{s}{n+1}$

Retained Retained in after *n* steps step *n*+1

Element **n+1**not discarded

Mining Streams

Shantanu Jain

Counting with Exponetially Decaying Windows

 One model for stream processing is to apply queries to a window of N most recent elements

Future ----

 One model for stream processing is to apply queries to a window of N most recent elements

Stream of sales

Stream of bits

- Difficult case: Window size N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, such as finding frequent items that were sold more than s times

- Difficult case: Window size N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, such as finding frequent items that were sold more than s times

Exponentially Decaying Windows

Sliding window: Count occurrences in last N elements

$$\sigma_t^{\text{SW}}(x) = \sum_{i=t-N}^t I[x \in A_i] \qquad I[a_i \in x] = \begin{cases} 1 & x \in A_i \\ 0 & x \notin A_i \end{cases} \qquad \text{``Indicator'' function: returns 1 when query matches, 0 when not }$$

 Exponentially decaying window: Give lower "weight" to occurences that are farther back in time

$$\sigma_t^{\text{SDW}}(x) = \sum_{i=1}^t I[x \in A_i] (1-c)^{t-i}$$

c is a small constant (e.g. 0.001) such that (1-c) is close to 1, but (1-c)^{t-i} decays to 0 when $t \gg i$

Exponentially Decaying Windows

 Convenient Property: Can compute sum at time t from sum at time t-1

$$\begin{split} \sigma_t^{\text{EDW}}(x) &= \sum_{i=1}^t I[x \in A_i] (1-c)^{t-i} \\ &= I[x \in A_i] + \sum_{i=1}^{t-1} I[x \in A_i] (1-c)^{t-i} \\ &\text{Term for i = t} &\text{Terms for i < t} \\ &= I[x \in A_i] + (1-c) \, \sigma_{t-1}^{\text{EDW}}(x) \end{split}$$

Don't need to keep transactions $A_1, ..., A_t$ in memory, just need to keep track of running weights $\sigma(\mathbf{x})$

Counting Items with Decaying Windows

$$\sigma_t^{\text{EDW}}(x) = I[x \in A_i] + (1-c)\sigma_{t-1}^{\text{EDW}}(x)$$

- Initialization: Set $\sigma(x) = 0$ for all items x in some set X
- For each time step
 - Apply decay factor to all item weights $\sigma(x) = (1-c) \sigma(x)$
 - Increment weight for items in the current transaction A_i : $a \in A_i$, $\sigma[a] = \sigma[a] + 1$

Sliding vs Exponential Windows

Sliding and Exponential windows compute a weighted sum

$$\sigma_t(x) = \sum_{i=1}^t I[x \in A_i] w_i$$

What differs is the definition of the weights

Sliding
$$w_i = \begin{cases} 1 & i > t - N, \\ 0 & i \le t - N. \end{cases}$$
 Exponential Decaying $w_i = (1 - c)^{t - i}$

Sliding vs Exponential Windows

Sliding and Exponential windows compute a weighted sum

$$\sigma_t(x) = \sum_{i=1}^t I[x \in A_i] w_i$$

- In a sliding window, the sum of the weights is N
- In a exponentially window, the sum is a geometric series

$$\lim_{t \to \infty} \sum_{i=1}^{t} w_i = \lim_{t \to \infty} \sum_{i=1}^{t} (1-c)^{t-i} = \frac{1}{1-(1-c)} = \frac{1}{c}$$

We can think of 1/c as the "effective window size"

Extension to Itemsets

- Count (some) itemsets in an E.D.W.
 - What are currently "hot" itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory
- When a basket A_i comes in:
 - Multiply all counts by (1-c)
 - For uncounted items in A_i , create new count
 - Add 1 to count of any item in A_i and to any itemset contained in A_i that is already being counted
 - Drop counts < ½
 - Initiate new counts (next slide)

Initiation of New Counts

- Start a count for an itemset $S \subseteq A_i$ if every proper subset of S had a count prior to arrival of basket B
 - Intuitively: If all subsets of S are being counted this means they are "frequent/hot" and thus S has a potential to be "hot"

Example:

- Start counting S={i, j} iff both i and j were counted prior to seeing B
- Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all counted prior to seeing B

Mining Streams

Shantanu Jain

Filtering Data Streams

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S
- Obvious solution: Hash table
 - But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Applications

- Example: Email spam filtering
 - We know 1 billion "good" email addresses
 - If an email comes from one of these, it is NOT spam.
- Publish-subscribe systems
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user's interest

Idea: Hash-based Filtering

- Given a set of keys S that we want to filter
 - Create a bit array B of n bits, initially all 0s
 - Choose a hash function h with range [0,n)
 - Hash each member of $s \in S$ to one of n buckets and set B[h(s)]=1
 - For each element a, output a if B[h(a)] == 1
- No false negatives
- Can have false positives (hash collision)

Idea: Hash-based Filtering

Example:

S = 1 billion email addressesB = array of 1 billion bytes (1GB)

- If the email address is in S, then it must hash
 to a bucket that has is set to 1, so it always
 gets through (no false negatives)
- Approximately 1/8 of the bits are set to 1, so about 1/8th of the addresses not in S get through (false positives)
 - Actually, less than 1/8th, because more than one address might hash to the same bit

Analysis: False Positive Rate

- More accurate analysis for the number of false positives
- Consider: If we throw m darts into n
 equally likely targets, what is the probability
 that a target gets at least one dart?
- In our case:
 - Targets = bits / buckets
 - Darts = hash values of query keys

Analysis: False Positive Rate

- We have m "darts" (hash values of items in S),
 n "targets" (bits in array)
- Assuming darts hit targets uniformly at random, what is the probability that a target is hit?

Probability that all darts miss

$$1 - \left(1 - \frac{1}{n}\right)^m = 1 - \left(\left(1 - \frac{1}{n}\right)^n\right)^{m/n} \simeq 1 - \left(\frac{1}{e}\right)^{m/n} = 1 - e^{-m/n}$$

Probability that a single dart misses

When **n** is large

Analysis: False Positive Rate

- Fraction of 1s in the array B= probability of false positive = $1 - e^{-m/n}$
- Example: 109 darts, 8 · 109 targets
 - Fraction of 1s in B = $1 e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: 1/8 = 0.125

Bloom Filter

- Consider: *ISI* = *m*, *IBI* = *n*
- Use k independent hash functions h_1, \ldots, h_k
- Initialization:
 - Set B to all 0s
 - For each $s \in S$ set $B[h_i(s)] = 1$ (for all i = 1,..., k)
- Run-time:
 - For each stream element with key x
 - If $B[h_i(x)] = 1$ for all i = 1,..., kthen retain x, since $x \in S$
 - Otherwise discard the element x

Bloom Filter: False Positive Rate

- What fraction of the bit vector B are 1s?
 - Throwing k · m "darts" at n "targets"
 - So fraction of 1s is $(1 e^{-km/n})$
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter: False Positive Rate

- m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - k = 2: $(1 e^{-1/4})^2 = 0.0493$
- What happens as we keep increasing k?

- "Optimal" value of k: (n / m) In(2)
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized

Mining Streams

Shantanu Jain

Counting Distinct Elements

Counting Distinct Elements

Problem:

- A stream consists of a distribution over elements chosen from a set of size N
- We would like to count the number of distinct elements seen so far

Obvious approach:

- Maintain set of elements seen so far
- That is, keep a hash table of distinct elements

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Real problem: Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Algorithm

- Pick a hash function h that maps each of the
 N elements to at least log₂ N bits
- For each stream element a, let r (a)
 be the number of trailing 0s in binary representation of h(a)
 - r(a) = position of first 1 counting from the <u>right</u>
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R =the maximum r(a) seen
 - $R = \max_{a} r(a)$, over all the items a seen so far
- Estimated number of distinct elements = 2^R

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where
 2-r fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2

 (i.e., item hash ending *100) then we have probably seen about 4 distinct items
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Doesn't Work

- Expect value E[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i} ?
 - Median? All estimates are a power of 2
 - Pragmatic Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

Mining Streams

Shantanu Jain

Computing Moments

Moments of a Stream

- Suppose a stream has elements chosen from a set A of with IAI = N values
- Let m_i be the number of times value i occurs in the stream
- The k^{th} moment is $\sum_{i \in A} (m_i)^k$

Special Cases

$$\sum_{i \in A} (m_i)^k$$

- Oth moment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements (length of the stream)
 - Easy to compute
- 2nd moment = surprise number S
 (a measure of how uneven the distribution is)

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise S = 8,110

AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X, we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to approximate $S = \sum_{i \in A} (m_i)^2$

One Random Variable X

- How to set X.val and X.el?
 - Assume stream has length n (we relax this later)
 - Pick some random time t < n to start (any time equally likely)
 - Set X.el = i, where i is the item at time t.
 - We maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the AMC estimate of the 2nd moment is:

$$S = \sum_{i} (m_i)^2 \simeq f(X) = n(2 \cdot c - 1)$$

• Note, we can track multiple variables $(X_1, X_2, ..., X_k)$ to compute an average $S = \frac{1}{k} \sum_{j=1}^k f(X_j)$

AMC Estimate: Derivation

- Define c_t = number of <u>future</u> appearances of the item at time t
 - $c_1 = m_a, c_2 = m_a 1, c_3 = m_b, \dots$
- Then the expected value of f(X)=n(2c-1) is a sum over t $\mathbb{E}[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1)$
- We can re-arrange to obtain a sum counts c_t for each item i

$$\mathbb{E}[f(X)] = \frac{1}{n} \sum_{i} n \Big(\big(2m_i - 1 \big) + \big(2(m_i - 1) - 1 \big) + \dots 5 + 3 + 1 \Big)$$
First c_t Second c_t Final c_t for item i for item i

AMC Estimate: Derivation

Let's rewrite the result from previous slide:

$$\mathbb{E}[f(X)] = \frac{1}{n} \sum_{i} n((2m_i - 1) + (2(m_i - 1) - 1) + \dots + 3 + 1)$$

$$= \frac{1}{n} \sum_{i} n \sum_{j=1}^{m_i} (2j - 1) = \sum_{i} \sum_{j=1}^{m_i} (2j - 1)$$

• Now use *triangle numbers*: $\sum_{j=1}^{m_i} j = \frac{1}{2} m_i (m_i + 1)$

$$\mathbb{E}[f(X)] = \sum_{i} (m_i(m_i + 1) - m_i) = \sum_{i} (m_i)^2 = S$$

We have now shown that f(X) is an unbiased estimate of S!

Combining Samples

In practice:

- Compute f(X) = n (2 c 1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far

Moments of Infinite Streams

- The variables X have n as a factor –
 keep n separately; just hold the count in X
- 2. Suppose we can only store *k* counts. We must throw some *Xs* out as time goes on:
 - Objective: Each starting time t is selected with probability k / n
 - Solution: reservoir sampling! (from previous video)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k / n
 - If you choose it, throw one of the previously stored variables X out, with equal probability