Date Submitted: 11/02/19

Task 01:

Youtube Link: https://youtu.be/RrRJDH7ZEb4

Screenshots:

	Memo	ory Browser	
Memory Browser ⋈			
gSeries Data			
0x20000200 - a	SeriesData <memory r<="" td=""><td>endering 1> 🛭</td><td></td></memory>	endering 1> 🛭	
32-Bit Floating Point V			
0x20000200	gSeriesData		
0x20000200	0.0	0.0627905205	0.125333235
0x2000020C	0.187381327	0.248689905	0.309017003
0x20000218	0.368124574	0.425779313	0.481753707
0x20000224	0.535826862	0.587785244	0.637424052
0x20000230	0.684547186	0.72896868	0.770513296
0x2000023C	0.809017003	0.844327927	0.876306713
0x20000248	0.904827118	0.92977649	0.95105648
0x20000254	0.968583226	0.982287288	0.992114663
0x20000260	0.998026729	1.0	0.998026729
0x2000026C	0.992114663	0.982287228	0.968583107
0x20000278	0.95105648	0.92977643	0.904826999
0x20000284	0.876306593	0.844327807	0.809016883
0x20000290	0.770513117	0.728968501	0.684547126
0x2000029C	0.637423992	0.587785244	0.535826743
0x200002A8	0.481753588	0.425779164	0.368124396
0x200002B4	0.309016794	0.248689666	0.187381074
0x200002C0	0.125332966	0.0627904534	-8.74279067e-08
0x200002CC	-0.0627906322	-0.125333369	-0.187381476
0x200002D8	-0.248690069	-0.309017211	-0.368124783
0x200002F4	-0.425779551	-0.481753916	-0.535826862
0x200002E0	-0.587785304	-0.637424052	-0.684547186
0x200002FC	-0.72896874	-0.770513356	-0.809017122
0x20000308	-0.844328046	-0.876306832	-0.904827237
0x20000314	-0.929776609	-0.951056659	-0.968583226
0x20000314	-0.982287288	-0.992114782	-0.998026788
0x2000032C	-1.0	-0.998026729	-0.992114663
0x20000320	-0.982287288	-0.968583167	-0.95105648
0x20000330	-0.92977643	-0.904826999	-0.876306593
0x20000344	-0.844327807	-0.809016824	-0.770513058
0x2000035C	-0.728968382	-0.684546828	-0.637423694
0x20000350	-0.587784946	-0.535826445	-0.48175329
0x20000300	-0.425778866	-0.368124098	-0.309016496
0x20000374	-0.248689353	-0.187381208	-0.125333101
0x2000038C	-0.0627903715	0.107501200	0.125555101


```
Modified Code:
// Ricky Perez
// CpE 403
// Lab 9
// Task 1
// Submit a comprehensive commented file of the original code.
#include <stdint.h>
#include <stdbool.h>
#include <math.h> // this program uses sinf() so we need this library
#include "inc/hw memmap.h"
#include "inc/hw_types.h"
#include "driverlib/fpu.h" // support for Floating Point Unit
#include "driverlib/sysctl.h"
#include "driverlib/rom.h"
// If the variable M PI is not define when executing
// this will define it
#ifndef M PI
#define M PI 3.14159265358979323846 // value of Pi
#endif
#define SERIES LENGTH 100 // depth of our data buffer
float gSeriesData[SERIES LENGTH]; // an array of floats SERIES LENGTH long
int32 t i32DataCount = 0;// counter
int main(void)
    float fRadians; // will be used to calculate sine
    ROM_FPULazyStackingEnable(); // turn on Lazy Stacking
    ROM FPUEnable(); // turn on the FPU
    // set the system clock for 50MHz
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
SYSCTL OSC MAIN);
    // A full sine wave cycle is 2*pi radians.
    // Divide (2*pi) by the depth of the array.
    fRadians = ((2 * M PI) / SERIES LENGTH);
    while(i32DataCount < SERIES LENGTH)</pre>
        // calculate the sine value for each of the 100 values
        // of the angle and place them in our data array
        gSeriesData[i32DataCount] = sinf(fRadians * i32DataCount);
        i32DataCount++; // increment counter by one
    }
    while(1)
```

```
{
// endless loop
}
```

Task 02:

Youtube Link: https://youtu.be/y0GBMkazCCw

Modified Schematic (if applicable):

Modified Code:

```
// Insert code here
// Ricky Perez
// CpE 403
// Lab 9
// Task 2
// Modify the code to implement the equation:
\sin^{1/2}(2\pi^{1/2}*^{1/2}50t)^{1/2}+^{1/2}0.5^{1/2}*^{1/2}\cos(2\pi^{1/2}*^{1/2}200t)
// to generate a frequency of 5 Hz.
// Display the equation for 1 sec.
#include <stdint.h>
#include <stdbool.h>
#include \langle math.h \rangle // this program uses \underline{sinf}() so we need this library
#include "inc/hw_memmap.h"
#include "inc/hw types.h"
#include "driverlib/fpu.h" // support for Floating Point Unit
#include "driverlib/sysctl.h"
#include "driverlib/rom.h"
// If the variable M_PI is not define when executing
// this will define it
#ifndef M_PI
#define M PI
                     3.14159265358979323846 // value of Pi
#endif
#define SERIES LENGTH 100 // depth of our data buffer
float gSeriesData[SERIES_LENGTH]; // an array of floats SERIES_LENGTH long
int32_t i32DataCount = 0;// counter
int main(void)
{
    float fRadians; // will be used to calculate sine
```

```
float fRadians 2;
    ROM_FPULazyStackingEnable(); // turn on Lazy Stacking
    ROM_FPUEnable(); // turn on the FPU
    // set the system clock for 50MHz
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
SYSCTL OSC MAIN);
    // A full sine wave cycle is 2*pi radians.
    // Divide (2*pi) by the depth of the array.
    // 2\pi *050t; exclude "t" until loop
    fRadians = ((2 * M_PI* 50) / SERIES_LENGTH);
    // 2π<sup>10</sup>*<sup>10</sup>200; exclude "t" until loop
    fRadians 2 = ((2 * M_PI* 200) / SERIES_LENGTH);
    while(i32DataCount < SERIES_LENGTH)</pre>
        // calculate the sine value for each of the 100 values
        // of the angle and place them in our data array
         //gSeriesData[i32DataCount] = sinf(fRadians * i32DataCount);
        //\sin(2\pi i)*i050t)i0+i00.5i0*i0\cos(2\pi i0*i0200t)
        gSeriesData[i32DataCount] = 1.0*sinf(fRadians * i32DataCount) +
(0.5*(cosf(fRadians_2 *i32DataCount)));
        i32DataCount++; // increment counter by one
    }
    while(1)
        // endless loop
}
```