Final_VAR

Contents

Dummy	2
N	5
Tariff	6
Trade	9
China	10
First Term	14
N	14
Tariff	15
Trade	15
China	16
Second Term	16
Dummy	16
N	17
Tariff	17
Trade	17
China	18
Tables Terms	21

Dummy

```
y = cbind(Vdata$dummy, Vdata$SPY_vol)
colnames(y)[1:2] <- c("dummy", "vol")</pre>
est.VAR <- VAR(y,p=6)
#extract results
mod_vol = est.VAR$varresult$vol
f = formula(mod_vol)
d = model.frame(mod_vol)
lm_clean = lm(f, data = d)
#apply Newey-West
nw_vcov = NeweyWest(lm_clean, lag=6)
nw_se = sqrt(diag(nw_vcov))
#t-stats
coef = coef(lm_clean)
t_stat = coef/nw_se
#recalculate p-values
robust = 2*(1-pt(abs(t_stat), df = df.residual(lm_clean)))
#Recreate a Robust Omega Matrix
U = residuals(est.VAR)
T = nrow(U)
L = 6 #number of lag
Omega = matrix(0, ncol(U), ncol(U))
for(l in 0:L) {
  weight = 1 - 1/(L+1)
 if (1 == 0){
   Omega = Omega + Gamma_1_
 } else {
   Omega = Omega + weight*(Gamma_l_ + t(Gamma_l_))
 }
}
#make the B matrix
loss <- function(param){</pre>
  #Define the restriction
 B \leftarrow matrix(c(param[1], param[2], 0, param[3]), ncol = 2)
 #Make BB' approximatively equal to omega
 X <- Omega - B %*% t(B)
  #loss function
 loss <- sum(X^2)</pre>
 return(loss)
res.opt \leftarrow optim(c(1, 0, 1), loss, method = "BFGS")
```

```
B.hat <- matrix(c(res.opt$par[1], res.opt$par[2], 0, res.opt$par[3]), ncol = 2)</pre>
```

```
nb.sim = 7*7
#get back the coefficient of est.VAR
phi <- Acoef(est.VAR)</pre>
PHI = make.PHI(phi)
#take the constant
constant <- sapply(est.VAR$varresult, function(eq) coef(eq)["const"])</pre>
c=as.matrix(constant)
#Simulate the IRF
p <- length(phi)</pre>
n <- dim(phi[[1]])[1]</pre>
Y <- simul.VAR(c=c, Phi = phi, B = B.hat, nb.sim ,y0.star=rep(0, n*p),
                   indic.IRF = 1, u.shock = c(1,0))
Yd = data.frame(
 period = 1:nrow(Y),
 response = Y[,2])
ggplot(Yd,aes(x=period, y=response)) +
  geom_hline(yintercept = 0, color="red") +
  geom_line() +
  theme_light() +
  ggtitle("S&P IRF of Dummy on Volatility")+
  ylab("")+
  xlab("") +
 theme_minimal()
```

S&P IRF of Dummy on Volatility


```
ggplot(Yd,aes(x=period, y=cumsum(response))) +
  geom_hline(yintercept = 0, color="red") +
  geom_line() +
  theme_light() +
  ggtitle("S&P Cumulalitve IRF of Dummy on Volatility") +
  ylab("")+
  xlab("") +
  theme_minimal()
```


\mathbf{N}

```
y2 = cbind(Vdata$N, Vdata$SPY_vol)
colnames(y2)[1:2] <- c("N", "vol")
est.VAR2 \leftarrow VAR(y2,p=6)
#extract results
mod_vol2 = est.VAR2$varresult$vol
f2 = formula(mod_vol2)
d2 = model.frame(mod_vol2)
lm_clean2 = lm(f2, data = d2)
#apply Newey-West
nw_vcov2 = NeweyWest(lm_clean2, lag=6)
nw_se2 = sqrt(diag(nw_vcov2))
\#t\text{-}stats
coef2 = coef(lm_clean2)
t_stat2 = coef2/nw_se2
#recalculate p-values
robust2 = 2*(1-pt(abs(t_stat2), df = df.residual(lm_clean2)))
```

Tariff

```
y3 = cbind(Vdata$tariff, Vdata$SPY_vol)
colnames(y3)[1:2] <- c("tariff", "vol")</pre>
est.VAR3 \leftarrow VAR(y3,p=6)
#extract results
mod_vol3 = est.VAR3$varresult$vol
f3 = formula(mod_vol3)
d3 = model.frame(mod_vol3)
lm_clean3 = lm(f3, data = d3)
#apply Newey-West
nw_vcov3 = NeweyWest(lm_clean3, lag=6)
nw_se3 = sqrt(diag(nw_vcov3))
#t-stats
coef3 = coef(lm_clean3)
t_stat3 = coef3/nw_se3
#recalculate p-values
robust3 = 2*(1-pt(abs(t_stat3), df = df.residual(lm_clean3)))
#Recreate a Robust Omega Matrix
U3 = residuals(est.VAR3)
T3 = nrow(U3)
Omega3 = matrix(0, ncol(U3), ncol(U3))
for(l in 0:L) {
  weight = 1 - 1/(L+1)
  Gamma_1_3 = t(U3[(1+1):T3, , drop=FALSE]) %*% U3[1:(T3-1), , drop=FALSE] /T3
  if (1 == 0){
    Omega3 = Omega3 + Gamma_1_3
  } else {
    Omega3 = Omega3 + weight*(Gamma_1_3 + t(Gamma_1_3))
}
#make the B matrix
loss3 <- function(param3){</pre>
  #Define the restriction
  B3 <- matrix(c(param3[1], param3[2], 0, param3[3]), ncol = 2)
  #Make BB' approximatively equal to omega
  X3 <- Omega3 - B3 %*% t(B3)
  #loss function
  loss3 \leftarrow sum(X3^2)
  return(loss3)
}
res.opt3 \leftarrow optim(c(1, 0, 1), loss3, method = "BFGS")
B.hat3 \leftarrow matrix(c(res.opt3$par[1], res.opt3$par[2], 0, res.opt3$par[3]), ncol = 2)
```

```
\#get\ back\ the\ coefficient\ of\ est.VAR
phi3 <- Acoef(est.VAR3)</pre>
PHI3 = make.PHI(phi3)
#take the constant
constant3 <- sapply(est.VAR3$varresult, function(eq) coef(eq)["const"])</pre>
c3=as.matrix(constant3)
#Simulate the IRF
p3 <- length(phi3)
n3 <- dim(phi3[[1]])[1]</pre>
Y3 <- simul.VAR(c=c3, Phi = phi3, B = B.hat3, nb.sim ,y0.star=rep(0, n3*p3),
                  indic.IRF = 1, u.shock = c(1,0))
#Plot the IRF
Yd3 = data.frame(
 period = 1:nrow(Y3),
 response = Y3[,2])
ggplot(Yd3,aes(x=period, y=response)) +
  geom_hline(yintercept = 0, color="red") +
  geom_line() +
  theme_light() +
  ggtitle("S&P IRF of tariff on Volatility") +
  ylab("")+
 xlab("") +
 theme_minimal()
```

S&P IRF of tariff on Volatility


```
ggplot(Yd3,aes(x=period, y=cumsum(response))) +
  geom_hline(yintercept = 0, color="red") +
  geom_line() +
  theme_light() +
  ggtitle("S&P Cumulalitve IRF of tariff on Volatility") +
  ylab("") +
  xlab("") +
  theme_minimal()
```

S&P Cumulalitye IRF of tariff on Volatility

Trade

```
y4 = cbind(Vdata$trade, Vdata$SPY_vol)
colnames(y4)[1:2] <- c("trade", "vol")</pre>
est.VAR4 \leftarrow VAR(y4,p=6)
#extract results
mod_vol4 = est.VAR4$varresult$vol
f4 = formula(mod_vol4)
d4 = model.frame(mod_vol4)
lm_clean4 = lm(f4, data = d4)
#apply Newey-West
nw_vcov4 = NeweyWest(lm_clean4, lag=6)
nw_se4 = sqrt(diag(nw_vcov4))
\#t\text{-}stats
coef4 = coef(lm_clean4)
t_stat4 = coef4/nw_se4
#recalculate p-values
robust4 = 2*(1-pt(abs(t_stat4), df = df.residual(lm_clean4)))
```

China

```
ychina = cbind(Vdata$china, Vdata$SPY_vol)
colnames(ychina)[1:2] <- c("china", "vol")</pre>
est.VARchina <- VAR(ychina,p=6)
#extract results
mod_volchina = est.VARchina$varresult$vol
fchina = formula(mod_volchina)
dchina = model.frame(mod_volchina)
lm_cleanchina = lm(fchina, data= dchina)
#apply Newey-West
nw_vcovchina = NeweyWest(lm_cleanchina, lag=6)
nw_sechina = sqrt(diag(nw_vcovchina))
#t-stats
coefchina = coef(lm_cleanchina)
t_statchina = coefchina/nw_sechina
\#recalculate\ p\mbox{-}values
robustchina = 2*(1-pt(abs(t_statchina), df = df.residual(lm_cleanchina)))
dt_t = d \%
           rename(X.11 = dummy.11,
           X.12 = dummy.12,
          X.13 = dummy.13,
          X.14 = dummy.14,
          X.15 = dummy.15,
           X.16 = dummy.16)
f_t \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + v
                                                                     X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const
model <- lm(f_t, data = dt_t)</pre>
dt_t2 = d2 \%
           rename(X.11 = N.11,
           X.12 = N.12,
          X.13 = N.13,
           X.14 = N.14,
          X.15 = N.15,
           X.16 = N.16)
f_t2 \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 +
                                                                   X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model2 \leftarrow lm(f_t2, data = dt_t2)
dt_t3 = d3 \%
         rename(X.11 = tariff.11,
```

```
X.12 = tariff.12,
               X.13 = tariff.13,
               X.14 = tariff.14,
              X.15 = tariff.15,
               X.16 = tariff.16
f_t3 \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + 
                                                                                             X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model3 \leftarrow lm(f_t3, data = dt_t3)
dt t4 = d4 \%
               rename(X.11 = trade.11,
               X.12 = trade.12,
               X.13 = trade.13,
              X.14 = trade.14,
              X.15 = trade.15,
              X.16 = trade.16
f_t4 \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + 
                                                                                          X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model4 \leftarrow lm(f_t4, data = dt_t4)
dt_tchina = dchina %>%
               rename(X.11 = china.11,
               X.12 = china.12,
             X.13 = china.13,
              X.14 = china.14,
              X.15 = china.15,
              X.16 = china.16)
f_tchina <- as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 +
                                                                                            X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const")
modelchina <- lm(f_tchina, data = dt_tchina)</pre>
nw_se_t <- sqrt(diag(sandwich::NeweyWest(model, lag = 6)))</pre>
nw se2 t <- sqrt(diag(sandwich::NeweyWest(model2, lag = 6)))</pre>
nw_se3_t <- sqrt(diag(sandwich::NeweyWest(model3, lag = 6)))</pre>
nw se4 t <- sqrt(diag(sandwich::NeweyWest(model4, lag = 6)))</pre>
nw_sechina_t <- sqrt(diag(sandwich::NeweyWest(modelchina, lag = 6)))</pre>
robust_t <- 2 * (1-pt(abs(coef(model) / nw_se_t), df = df.residual(model)))</pre>
robust2_t <- 2 * (1-pt(abs(coef(model2) / nw_se2_t), df = df.residual(model2)))</pre>
robust3_t <- 2 * (1-pt(abs(coef(model3) / nw_se3_t), df = df.residual(model3)))</pre>
robust4_t <- 2 * (1-pt(abs(coef(model4) / nw_se4_t), df = df.residual(model4)))</pre>
```

```
robustchina_t <- 2 * (1-pt(abs(coef(modelchina) / nw_sechina_t), df = df.residual(modelchina)))
           <- nw_se_t[names(coef(model))]
<- robust_t[names(coef(model))]</pre>
nw_se_t
robust t
nw_se2_t <- nw_se2_t[names(coef(model2))]
<- nw_se4_t[names(coef(model4))]</pre>
nw_se4_t
robust4_t <- robust4_t[names(coef(model4))]</pre>
nw_sechina_t <- nw_sechina_t[names(coef(modelchina))]</pre>
robustchina_t <- robustchina_t[names(coef(modelchina))]</pre>
# Create list for models
models_list <- list(model, model2, model3, model4, modelchina)</pre>
# Create list for SE robustes
robust_ses <- list(nw_se_t, nw_se2_t, nw_se3_t, nw_se4_t, nw_sechina_t)</pre>
# Create list for p-value
robust_pvals <- list(robust_t, robust2_t, robust3_t, robust4_t, robustchina_t)</pre>
# Name of Variables
custom_names <- list(</pre>
  "vol.11" = "$AHV_{t-1}$",
  "vol.12" = "AHV_{t-2}",
  "vol.13" = \$AHV_{t-3}",
  "vol.14" = "$AHV_{t-4}$",
  "vol.15" = "$AHV_{t-5}$",
  "vol.16" = "$AHV_{t-6}$",
  "X.11" = "$X_{t-1}$",
  "X.12" = "$X_{t-2}$",
  "X.13" = "$X {t-3}$",
  "X.14" = "$X_{t-4}$",
  "X.15" = "$X_{t-5}$",
  "X.16" = "$X_{t-6}$",
  "const" = "Constant"
# Generate table
table_texreg <- texreg(</pre>
  1 = models_list,
  override.se = robust_ses,
  custom.coef.map = custom_names,
  override.pvalues = robust_pvals,
  custom.model.names = c("TweetDummy", "TweetCount", "Tariff", "Trade", "China"),
  caption = "VAR Models of Average Hourly Volatility",
  label = "tab:VAR_Second_Term",
```

Table 1: VAR Models of Average Hourly Volatility

	TweetDummy	TweetCount	Tariff	Trade	China
$\overline{AHV_{t-1}}$	0.344511***	0.345011***	0.342081***	0.346107***	0.344512***
	(0.103790)	(0.104492)	(0.098665)	(0.101918)	(0.097994)
AHV_{t-2}	0.023714	0.023575	0.027464	0.022949	0.024149
	(0.042739)	(0.043816)	(0.039912)	(0.041538)	(0.043585)
AHV_{t-3}	0.082941***	0.082525^{***}	0.075380^{***}	0.081148***	0.081646***
	(0.007496)	(0.008145)	(0.011695)	(0.008258)	(0.009192)
AHV_{t-4}	0.096948	0.096739	0.088777	0.095797	0.094919
	(0.059298)	(0.060827)	(0.063948)	(0.057082)	(0.058821)
AHV_{t-5}	0.022887***	0.022593**	0.026049***	0.023502**	0.022961^{**}
	(0.006876)	(0.006952)	(0.006815)	(0.007162)	(0.007678)
AHV_{t-6}	0.164034***	0.164442***	0.167546***	0.165323***	0.166695**
	(0.047379)	(0.049763)	(0.049876)	(0.049319)	(0.054194)
X_{t-1}	0.000083	0.000045	0.019718	0.003399	0.006729
	(0.000201)	(0.000037)	(0.018964)	(0.003747)	(0.006694)
X_{t-2}	-0.000473^{***}	-0.000116^{***}	0.005269	0.005600	0.002778
v -	(0.000071)	(0.000023)	(0.004124)	(0.004809)	(0.004067)
X_{t-3}	-0.000804^{***}	-0.000213***	-0.007797	-0.003904^*	-0.004652^*
	(0.000088)	(0.000028)	(0.005183)	(0.001726)	(0.002066)
X_{t-4}	-0.000546***	-0.000147^{***}	0.002275	0.000725	-0.002442^*
V 1	(0.000088)	(0.000021)	(0.002454)	(0.003458)	(0.001084)
X_{t-5}	-0.000579***	-0.000119**	-0.001145	-0.002363	-0.000607
	(0.000147)	(0.000041)	(0.002634)	(0.001901)	(0.000970)
X_{t-6}	-0.000099	0.000000	-0.002750	-0.001543	0.000596
<i>v</i> 0	(0.000101)	(0.000028)	(0.002450)	(0.001228)	(0.000981)
Constant	0.008726***	0.007587***	0.005770***	0.005939***	0.005857***
	(0.001609)	(0.001578)	(0.001405)	(0.001536)	(0.001612)
Shock (IRF)	0.004171	0.003061	0.001189	0.000215	0.001937
\mathbb{R}^2	0.325745	0.325324	0.331931	0.325134	0.326344
$Adj. R^2$	0.325306	0.324885	0.331496	0.324695	0.325905
Num. obs.	19965	19965	19965	19965	19965
Til.:. 4.1.1. 1:	1 I/A D			IV and V magnagaan	The solumn names

This table displays VAR regression with only two variables: AHV and X regressor. The column names represent the X variable for the selected model.

```
caption.above = TRUE,
digits = 6,
custom.gof.rows = list("Shock (IRF)" = c(0.0041713, 0.003061, 0.001189, 0.000215, 0.001937)),
custom.note = "\\parbox[t]{0.9\\textwidth}{\\small\\textit{This table displays VAR regression with on})

# print
table_texreg
```

```
# First and Second Mandate

#first term

Vdata_f = filter(data, between(timestamp, as.Date('2017-01-20'), as.Date('2021-01-20')))
```

```
#second term
Vdata_s = filter(data,between(timestamp, as.Date('2025-01-20'), as.Date('2025-05-07')))
```

First Term

Dummy

```
y_f_d = cbind(Vdata_f$dummy, Vdata_f$SPY_vol)
colnames(y_f_d)[1:2] <- c("dummy", "vol")</pre>
est.VAR_f_d \leftarrow VAR(y_f_d,p=6)
#extract results
mod_vol_f_d = est.VAR_f_d$varresult$vol
f f d = formula(mod vol f d)
d_f_d = model.frame(mod_vol_f_d)
lm_clean_f_d = lm(f_f_d, data = d_f_d)
#apply Newey-West
nw_vcov_f_d = NeweyWest(lm_clean_f_d, lag=6)
nw_se_f_d = sqrt(diag(nw_vcov_f_d))
#t-stats
coef_f_d = coef(lm_clean_f_d)
t_stat_f_d = coef_f_d/nw_se_f_d
#recalculate p-values
robust_f_d = 2*(1-pt(abs(t_stat_f_d), df = df.residual(lm_clean_f_d)))
```

Ν

```
y_f_n = cbind(Vdata_f$N, Vdata_f$SPY_vol)
colnames(y_f_n)[1:2] <- c("N", "vol")
est.VAR_f_n <- VAR(y_f_n,p=6)

#extract results
mod_vol_f_n = est.VAR_f_n$varresult$vol
f_f_n = formula(mod_vol_f_n)
d_f_n = model.frame(mod_vol_f_n)
lm_clean_f_n = lm(f_f_n, data= d_f_n)

#apply Newey-West
nw_vcov_f_n = NeweyWest(lm_clean_f_n, lag=6)
nw_se_f_n = sqrt(diag(nw_vcov_f_n))

#t-stats
coef_f_n = coef(lm_clean_f_n)
t_stat_f_n = coef_f_n/nw_se_f_n</pre>
```

```
#recalculate p-values
robust_f_n = 2*(1-pt(abs(t_stat_f_n), df = df.residual(lm_clean_f_n)))
```

Tariff

```
y_f_ta = cbind(Vdata_f$tariff, Vdata_f$SPY_vol)
colnames(y_f_ta)[1:2] <- c("tariff", "vol")</pre>
est.VAR_f_ta <- VAR(y_f_ta,p=6)</pre>
#extract results
mod_vol_f_ta = est.VAR_f_ta$varresult$vol
f_f_ta = formula(mod_vol_f_ta)
d_f_ta = model.frame(mod_vol_f_ta)
lm_clean_f_ta = lm(f_f_ta, data= d_f_ta)
#apply Newey-West
nw_vcov_f_ta = NeweyWest(lm_clean_f_ta, lag=6)
nw_se_f_ta = sqrt(diag(nw_vcov_f_ta))
#t-stats
coef_f_ta = coef(lm_clean_f_ta)
t_stat_f_ta = coef_f_ta/nw_se_f_ta
\#recalculate\ p-values
robust_f_ta = 2*(1-pt(abs(t_stat_f_ta), df = df.residual(lm_clean_f_ta)))
```

Trade

```
y_f_tr = cbind(Vdata_f$trade, Vdata_f$SPY_vol)
colnames(y_f_tr)[1:2] <- c("trade", "vol")</pre>
est.VAR_f_tr <- VAR(y_f_tr,p=6)
#extract results
mod_vol_f_tr = est.VAR_f_tr$varresult$vol
f_f_tr = formula(mod_vol_f_tr)
d_f_tr = model.frame(mod_vol_f_tr)
lm_clean_f_tr = lm(f_f_tr, data= d_f_tr)
#apply Newey-West
nw_vcov_f_tr = NeweyWest(lm_clean_f_tr, lag=6)
nw_se_f_tr = sqrt(diag(nw_vcov_f_tr))
#t-stats
coef_f_tr = coef(lm_clean_f_tr)
t_stat_f_tr = coef_f_tr/nw_se_f_tr
#recalculate p-values
robust_f_tr = 2*(1-pt(abs(t_stat_f_tr), df = df.residual(lm_clean_f_tr)))
```

China

```
y_f_ch = cbind(Vdata_f$china, Vdata_f$SPY_vol)
colnames(y_f_ch)[1:2] <- c("china", "vol")</pre>
est.VAR_f_ch <- VAR(y_f_ch,p=6)
#extract results
mod_vol_f_ch = est.VAR_f_ch$varresult$vol
f_f_ch = formula(mod_vol_f_ch)
d_f_ch = model.frame(mod_vol_f_ch)
lm_clean_f_ch = lm(f_f_ch, data = d_f_ch)
#apply Newey-West
nw_vcov_f_ch = NeweyWest(lm_clean_f_ch, lag=6)
nw_se_f_ch = sqrt(diag(nw_vcov_f_ch))
#t-stats
coef_f_ch = coef(lm_clean_f_ch)
t_stat_f_ch = coef_f_ch/nw_se_f_ch
\#recalculate\ p-values
robust_f_ch = 2*(1-pt(abs(t_stat_f_ch), df = df.residual(lm_clean_f_ch)))
```

Second Term

Dummy

```
y_s_d = cbind(Vdata_s$dummy, Vdata_s$SPY_vol)
colnames(y_s_d)[1:2] <- c("dummy", "vol")</pre>
est.VAR_s_d \leftarrow VAR(y_s_d,p=6)
#extract results
mod_vol_s_d = est.VAR_s_d$varresult$vol
f_s_d = formula(mod_vol_s_d)
d_s_d = model.frame(mod_vol_s_d)
lm_clean_s_d = lm(f_s_d, data= d_s_d)
#apply Newey-West
nw_vcov_s_d = NeweyWest(lm_clean_s_d, lag=6)
nw_se_s_d = sqrt(diag(nw_vcov_s_d))
#t-stats
coef_s_d = coef(lm_clean_s_d)
t_stat_s_d = coef_s_d/nw_se_s_d
#recalculate p-values
robust_s_d = 2*(1-pt(abs(t_stat_s_d), df = df.residual(lm_clean_s_d)))
```

```
y_s_n = cbind(Vdata_s$N, Vdata_s$SPY_vol)
colnames(y_s_n)[1:2] <- c("N", "vol")</pre>
est.VAR_s_n \leftarrow VAR(y_s_n,p=6)
#extract results
mod_vol_s_n = est.VAR_s_n$varresult$vol
f_s_n = formula(mod_vol_s_n)
d_s_n = model.frame(mod_vol_s_n)
lm_clean_s_n = lm(f_s_n, data = d_s_n)
#apply Newey-West
nw_vcov_s_n = NeweyWest(lm_clean_s_n, lag=6)
nw_se_s_n = sqrt(diag(nw_vcov_s_n))
#t-stats
coef_s_n = coef(lm_clean_s_n)
t_stat_s_n = coef_s_n/nw_se_s_n
\#recalculate\ p\mbox{-}values
robust_s_n = 2*(1-pt(abs(t_stat_s_n), df = df.residual(lm_clean_s_n)))
```

Tariff

```
y_s_ta = cbind(Vdata_s$tariff, Vdata_s$SPY_vol)
colnames(y_s_ta)[1:2] <- c("tariff", "vol")</pre>
est.VAR_s_ta <- VAR(y_s_ta,p=6)
#extract results
mod_vol_s_ta = est.VAR_s_ta$varresult$vol
f_s_ta = formula(mod_vol_s_ta)
d_s_ta = model.frame(mod_vol_s_ta)
lm_clean_s_ta = lm(f_s_ta, data= d_s_ta)
#apply Newey-West
nw_vcov_s_ta = NeweyWest(lm_clean_s_ta, lag=6)
nw_se_s_ta = sqrt(diag(nw_vcov_s_ta))
#t-stats
coef_s_ta = coef(lm_clean_s_ta)
t_stat_s_ta = coef_s_ta/nw_se_s_ta
#recalculate p-values
robust_s_ta = 2*(1-pt(abs(t_stat_s_ta), df = df.residual(lm_clean_s_ta)))
```

Trade

```
y_s_tr = cbind(Vdata_s$trade, Vdata_s$SPY_vol)
colnames(y_s_tr)[1:2] <- c("trade", "vol")</pre>
est.VAR_s_tr <- VAR(y_s_tr,p=6)
#extract results
mod_vol_s_tr = est.VAR_s_tr$varresult$vol
f_s_tr = formula(mod_vol_s_tr)
d_s_tr = model.frame(mod_vol_s_tr)
lm_clean_s_tr = lm(f_s_tr, data= d_s_tr)
#apply Newey-West
nw_vcov_s_tr = NeweyWest(lm_clean_s_tr, lag=6)
nw_se_s_tr = sqrt(diag(nw_vcov_s_tr))
#t-stats
coef_s_tr = coef(lm_clean_s_tr)
t_stat_s_tr = coef_s_tr/nw_se_s_tr
#recalculate p-values
robust_s_tr = 2*(1-pt(abs(t_stat_s_tr), df = df.residual(lm_clean_s_tr)))
```

China

```
y_s_ch = cbind(Vdata_s$china, Vdata_s$SPY_vol)
colnames(y_s_ch)[1:2] <- c("china", "vol")</pre>
est.VAR_s_ch <- VAR(y_s_ch,p=6)
#extract results
mod_vol_s_ch = est.VAR_s_ch$varresult$vol
f s ch = formula(mod vol s ch)
d_s_ch = model.frame(mod_vol_s_ch)
lm_clean_s_ch = lm(f_s_ch, data= d_s_ch)
#apply Newey-West
nw_vcov_s_ch = NeweyWest(lm_clean_s_ch, lag=6)
nw_se_s_ch = sqrt(diag(nw_vcov_s_ch))
#t-stats
coef_s_ch = coef(lm_clean_s_ch)
t_stat_s_ch = coef_s_ch/nw_se_s_ch
#recalculate p-values
robust_s_ch = 2*(1-pt(abs(t_stat_s_ch), df = df.residual(lm_clean_s_ch)))
#Construct the Robust Omega Matrix
U_s_ch = residuals(est.VAR_s_ch)
T_s_{ch} = nrow(U_s_{ch})
Omega_s_ch = matrix(0, ncol(U_s_ch), ncol(U_s_ch))
for(l in 0:L) {
 weight = 1 - 1/(L+1)
```

```
if (1 == 0){
    Omega_s_ch = Omega_s_ch + Gamma_l_s_ch
    Omega_s_ch = Omega_s_ch + weight*(Gamma_l_s_ch + t(Gamma_l_s_ch))
}
#make the B matrix
loss_s_ch <- function(param_s_ch){</pre>
  #Define the restriction
  B_s_ch <- matrix(c(param_s_ch[1], param_s_ch[2], 0, param_s_ch[3]), ncol = 2)</pre>
  #Make BB' approximatively equal to omega
  X_s_ch <- Omega_s_ch - B_s_ch %*% t(B_s_ch)</pre>
  #loss function
 loss_s_ch <- sum(X_s_ch^2)</pre>
  return(loss_s_ch)
}
res.opt_s_ch <- optim(c(1, 0, 1), loss_s_ch, method = "BFGS")
B.hat_s_ch <- matrix(c(res.opt_s_ch$par[1], res.opt_s_ch$par[2], 0, res.opt_s_ch$par[3]), ncol = 2)
#get back the coefficient of est.VAR
phi_s_ch <- Acoef(est.VAR_s_ch)</pre>
PHI_s_ch = make.PHI(phi_s_ch)
#take the constant
constant_s_ch <- sapply(est.VAR_s_ch$varresult, function(eq) coef(eq)["const"])</pre>
c_s_ch=as.matrix(constant_s_ch)
#Simulate the IRF
p_s_ch <- length(phi_s_ch)</pre>
n_s_{ch} \leftarrow dim(phi_s_{ch}[[1]])[1]
Y_s_ch <- simul.VAR(c=c_s_ch, Phi = phi_s_ch, B = B.hat_s_ch, nb.sim ,y0.star=rep(0, n_s_ch*p_s_ch),
                  indic.IRF = 1, u.shock = c(1,0))
#Plot the IRF
Yd_s_ch = data.frame(
  period = 1:nrow(Y_s_ch),
  response = Y_s_ch[,2])
ggplot(Yd_s_ch,aes(x=period, y=response)) +
  geom_hline(yintercept = 0, color="red") +
  geom_line() +
  theme_light() +
  ggtitle("S&P IRF of Second Term China on Volatility") +
  ylab("")+
  xlab("") +
  theme_minimal()
```

S&P IRF of Second Term China on Volatility


```
ggplot(Yd_s_ch,aes(x=period, y=cumsum(response))) +
  geom_hline(yintercept = 0, color="red") +
  geom_line() +
  theme_light() +
  ggtitle("S&P Cumulalitye IRF of Second Term China on Volatility") +
  ylab("") +
  xlab("") +
  theme_minimal()
```


Tables Terms

```
#first
d_f_d_t = d_f_d \%
                       rename(X.11 = dummy.11,
                       X.12 = dummy.12,
                     X.13 = dummy.13,
                      X.14 = dummy.14,
                      X.15 = dummy.15,
                       X.16 = dummy.16)
f_t_f_d \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                 X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const")
model_f_d \leftarrow lm(f_t_f_d, data = d_f_d_t)
d_f_n_t = d_f_n \%
                       rename(X.11 = N.11,
                      X.12 = N.12,
                      X.13 = N.13,
                      X.14 = N.14,
                      X.15 = N.15,
                   X.16 = N.16)
```

```
f_t_f_n \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                         X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_n \leftarrow lm(f_t_f_n, data = d_f_n_t)
d_f_ta_t = d_f_ta %>%
                        rename(X.l1 = tariff.l1,
                        X.12 = tariff.12,
                      X.13 = tariff.13,
                      X.14 = tariff.14,
                       X.15 = tariff.15,
                        X.16 = tariff.16)
f_t_f_ta \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.1
                                                                                                                                                         X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_ta \leftarrow lm(f_t_f_ta, data = d_f_ta_t)
d_f_tr_t = d_f_tr %>%
                        rename(X.11 = trade.11,
                       X.12 = trade.12,
                       X.13 = trade.13,
                      X.14 = trade.14,
                       X.15 = trade.15,
                        X.16 = trade.16
f_t_f_t - f_t - as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + 
                                                                                                                                                         X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_tr <- lm(f_t_f_tr, data = d_f_tr_t)</pre>
d_f_ch_t = d_f_ch \%
                        rename(X.11 = china.11,
                        X.12 = china.12,
                       X.13 = china.13,
                       X.14 = china.14,
                        X.15 = china.15,
                        X.16 = china.16
f_t_f_c + c < -as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + v
                                                                                                                                                          X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_f_ch \leftarrow lm(f_t_f_ch, data = d_f_ch_t)
nw_se_f_d_t <- sqrt(diag(sandwich::NeweyWest(model_f_d, lag = 6)))</pre>
nw_se_f_n_t <- sqrt(diag(sandwich::NeweyWest(model_f_n, lag = 6)))</pre>
nw_se_f_ta_t <- sqrt(diag(sandwich::NeweyWest(model_f_ta, lag = 6)))</pre>
nw_se_f_tr_t <- sqrt(diag(sandwich::NeweyWest(model_f_tr, lag = 6)))</pre>
nw_se_f_china_t <- sqrt(diag(sandwich::NeweyWest(model_f_ch, lag = 6)))</pre>
robust_f_d_t <- 2 * (1-pt(abs(coef(model_f_d) / nw_se_f_d_t), df = df.residual(model_f_d)))
```

```
robust_f_n_t <- 2 * (1-pt(abs(coef(model_f_n) / nw_se_f_n_t), df = df.residual(model_f_n)))</pre>
robust_f_ta_t <- 2 * (1-pt(abs(coef(model_f_ta) / nw_se_f_ta_t), df = df.residual(model_f_ta)))
robust_f_tr_t <- 2 * (1-pt(abs(coef(model_f_tr) / nw_se_f_tr_t), df = df.residual(model_f_tr)))</pre>
robust_f_ch_t <- 2 * (1-pt(abs(coef(model_f_ch) / nw_se_f_china_t), df = df.residual(model_f_ch)))
               <- nw_se_f_d_t[names(coef(model_f_d))]</pre>
nw_se_f_d_t
                 <- robust f d t[names(coef(model f d))]</pre>
robust f d t
<- nw_se_f_ta_t[names(coef(model_f_ta))]</pre>
nw_se_f_ta_t
robust_f_ta_t <- robust_f_ta_t[names(coef(model_f_ta))]</pre>
__se_f_tr_t
robust_f_tr_t
nw_se_f_s^:
                 <- nw_se_f_tr_t[names(coef(model_f_tr))]</pre>
                 <- robust_f_tr_t[names(coef(model_f_tr))]</pre>
nw_se_f_china_t <- nw_se_f_china_t[names(coef(model_f_ch))]</pre>
robust_f_ch_t <- robust_f_ch_t[names(coef(model_f_ch))]</pre>
# list of models, SE and p-value
models_list_f <- list(model_f_d, model_f_n, model_f_ta, model_f_tr, model_f_ch)</pre>
\verb|robust_ses_f| \leftarrow \verb|list(nw_se_f_d_t, nw_se_f_n_t, nw_se_f_ta_t, nw_se_f_tr_t, nw_se_f_china_t)| \\
robust_pvals_f <- list(robust_f_d_t, robust_f_n_t, robust_f_ta_t, robust_f_tr_t, robust_f_ch_t)
# Name of coefficient
custom names <- list(</pre>
  "vol.11" = "$AHV {t-1}$",
  "vol.12" = "$AHV \{t-2\}$".
  "vol.13" = "$AHV {t-3}$",
  "vol.14" = "$AHV_{t-4}$",
  "vol.15" = "$AHV {t-5}$",
  "vol.16" = "$AHV_{t-6}$",
  "X.11" = "X_{t-1}",
  "X.12" = "$X_{t-2}$",
  "X.13" = "$X_{t-3}$",
  "X.14" = "$X_{t-4}$",
  "X.15" = "$X_{t-5}$",
  "X.16" = "X_{t-6}",
  "const" = "Constant"
# Generate table
table_texreg_f <- texreg(</pre>
  1 = models list f,
  override.se = robust ses f,
  override.pvalues = robust_pvals_f,
  custom.model.names = c("TweetDummy", "TweetCount", "Tariff", "Trade", "China"),
  custom.coef.map = custom_names,
  caption = "First-Term VAR Models of Average Hourly Volatility",
  label = "tab:VAR_First_Term",
  caption.above = TRUE,
  digits = 6,
  custom.gof.rows = list("Shock (IRF)" = c(0.002919, 0.002236, 0.000484, 0.000702, 0.000904)),
  star.cutoffs = c(0.001, 0.01, 0.05),
```

Table 2: First-Term VAR Models of Average Hourly Volatility

	TweetDummy	TweetCount	Tariff	Trade	China
$\overline{AHV_{t-1}}$	0.541944***	0.542426***	0.543570***	0.543958***	0.543471***
	(0.074062)	(0.074300)	(0.074985)	(0.075228)	(0.074985)
AHV_{t-2}	-0.113920**	-0.113855**	-0.115106**	-0.115566**	-0.115002**
	(0.038762)	(0.039289)	(0.039650)	(0.039098)	(0.039605)
AHV_{t-3}	0.058050^*	0.057592*	0.053635^*	0.053636^*	0.054382^*
	(0.027504)	(0.027211)	(0.027121)	(0.026885)	(0.027488)
AHV_{t-4}	0.188383	0.187417	0.184183	0.184102	0.184610
0 1	(0.132562)	(0.131408)	(0.130566)	(0.133609)	(0.130953)
AHV_{t-5}	-0.088758	-0.089704	-0.091496	-0.091655	-0.091848
. 0	(0.091453)	(0.090665)	(0.090960)	(0.093255)	(0.091105)
AHV_{t-6}	0.336662***	0.337701***	0.343373***	0.343466***	0.343184***
<i>t</i> 0	(0.049019)	(0.048828)	(0.048409)	(0.048454)	(0.048945)
X_{t-1}	-0.000478^{***}	-0.000163^{**}	-0.000454	-0.001838^*	-0.000352
v i	(0.000133)	(0.000055)	(0.000352)	(0.000715)	(0.000375)
X_{t-2}	-0.000184^{**}	-0.000063^*	-0.000289	0.000221	-0.000048
v -	(0.000069)	(0.000029)	(0.000274)	(0.000520)	(0.000233)
X_{t-3}	-0.000693^{***}	-0.000263^{***}	-0.001007^{***}	-0.000949^{**}	-0.001412^{***}
	(0.000160)	(0.000064)	(0.000269)	(0.000301)	(0.000373)
X_{t-4}	-0.000564^{***}	-0.000208^{**}	-0.000274	-0.000612	-0.000202
U I	(0.000166)	(0.000064)	(0.000400)	(0.000408)	(0.000454)
X_{t-5}	-0.000435^{***}	-0.000125^{**}	-0.000468	-0.000605	-0.000057
. 0	(0.000113)	(0.000044)	(0.000281)	(0.000353)	(0.000352)
X_{t-6}	0.000118	0.000099^*	0.000240	-0.000121	0.000275
<i>t</i> 0	(0.000118)	(0.000047)	(0.000344)	(0.000412)	(0.000370)
Constant	0.004020***	0.003079***	0.001510***	0.001657***	0.001593***
	(0.000669)	(0.000520)	(0.000316)	(0.000329)	(0.000312)
Shock (IRF)	0.002919	0.002236	0.000484	0.000702	0.000904
\mathbb{R}^2	0.687909	0.687236	0.685341	0.685489	0.685533
$Adj. R^2$	0.687331	0.686657	0.684758	0.684907	0.684951
Num. obs.	7036	7036	7036	7036	7036
	Jana VAD mamaai	.,1 1 ,	· 11 ATTT	. 1 W	The solumn names

This table displays VAR regression with only two variables: AHV and X regressor. The column names represent the X variable for the selected model.

```
custom.note = "\\parbox[t]{0.9\\textwidth}{\\small\\textit{This table displays VAR regression with on
)

# Print table
table_texreg_f
```

```
#Second

d_s_d_t = d_s_d %>%
    rename(X.11 = dummy.11,
    X.12 = dummy.12,
    X.13 = dummy.13,
    X.14 = dummy.14,
    X.15 = dummy.15,
    X.16 = dummy.16)
```

```
f_t_s_d \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                                                             X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_d \leftarrow lm(f_t_s_d, data = d_s_d_t)
d_s_n_t = d_s_n \%
                              rename(X.11 = N.11,
                             X.12 = N.12,
                             X.13 = N.13,
                            X.14 = N.14,
                             X.15 = N.15,
                              X.16 = N.16)
f_t_s_n \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16
                                                                                                                                                                                             X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_n \leftarrow lm(f_t_s_n, data = d_s_n_t)
 d_s_ta_t = d_s_ta %>%
                              rename(X.11 = tariff.11,
                              X.12 = tariff.12,
                            X.13 = tariff.13,
                            X.14 = tariff.14,
                             X.15 = tariff.15,
                              X.16 = tariff.16
f_t_s_ta \leftarrow as.formula("y \sim -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18 + vol.18 + vol.18 + vol.18 + vol.18 + vol.19 + vol.1
                                                                                                                                                                                             X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_ta \leftarrow lm(f_t_s_ta, data = d_s_ta_t)
 d_s_tr_t = d_s_tr %>%
                              rename(X.11 = trade.11,
                             X.12 = trade.12,
                             X.13 = trade.13,
                             X.14 = trade.14,
                            X.15 = trade.15,
                             X.16 = trade.16
f_t_s_t < as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.18
                                                                                                                                                                                             X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_tr <- lm(f_t_s_tr, data = d_s_tr_t)</pre>
d_s_ch_t = d_s_ch \%
                              rename(X.11 = china.11,
                              X.12 = china.12,
                            X.13 = china.13,
                             X.14 = china.14,
                              X.15 = china.15,
                             X.16 = china.16
```

```
f_t_s_c < -as.formula("y ~ -1 + vol.11 + vol.12 + vol.13 + vol.14 + vol.15 + vol.16 + vol.16 + vol.16 + vol.16 + vol.16 + vol.17 + vol.18 + vol.1
                                             X.11 + X.12 + X.13 + X.14 + X.15 + X.16 + const"
model_s_ch \leftarrow lm(f_t_s_ch, data = d_s_ch_t)
nw_se_s_d_t <- sqrt(diag(sandwich::NeweyWest(model_s_d, lag = 6)))</pre>
nw_se_s_n_t <- sqrt(diag(sandwich::NeweyWest(model_s_n, lag = 6)))</pre>
nw se s ta t <- sqrt(diag(sandwich::NeweyWest(model s ta, lag = 6)))</pre>
nw se s tr t <- sqrt(diag(sandwich::NeweyWest(model s tr, lag = 6)))</pre>
nw se s china t <- sqrt(diag(sandwich::NeweyWest(model s ch, lag = 6)))
robust_s_d_t <- 2 * (1-pt(abs(coef(model_s_d) / nw_se_s_d_t), df = df.residual(model_s_d)))</pre>
robust_s_n_t <- 2 * (1-pt(abs(coef(model_s_n) / nw_se_s_n_t), df = df.residual(model_s_n)))</pre>
robust_s_ta_t <- 2 * (1-pt(abs(coef(model_s_ta) / nw_se_s_ta_t), df = df.residual(model_s_ta)))
robust_s_tr_t <- 2 * (1-pt(abs(coef(model_s_tr) / nw_se_s_tr_t), df = df.residual(model_s_tr)))
robust_s_ch_t <- 2 * (1-pt(abs(coef(model_s_ch)) / nw_se_s_china_t), df = df.residual(model_s_ch)))</pre>
                             <- nw_se_s_d_t[names(coef(model_s_d))]</pre>
nw_se_s_d_t
                           c- robust_s_d_t[names(coef(model_s_d))]
robust_s_d_t
                          <- nw_se_s_n_t[names(coef(model_s_n))]</pre>
nw_se_s_n_t
robust_s_n_t <- robust_s_n_t[names(coef(model_s_n))]</pre>
                            <- nw_se_s_ta_t[names(coef(model_s_ta))]</pre>
nw_se_s_ta_t
                             <- robust_s_ta_t[names(coef(model_s_ta))]</pre>
robust_s_ta_t
                           <- nw_se_s_tr_t[names(coef(model_s_tr))]</pre>
nw se s tr t
robust_s_tr_t <- robust_s_tr_t[names(coef(model_s_tr))]</pre>
nw_se_s_china_t <- nw_se_s_china_t[names(coef(model_s_ch))]</pre>
robust_s_ch_t <- robust_s_ch_t[names(coef(model_s_ch))]</pre>
# lists of model, robust SE and p-values
models_list_s <- list(model_s_d, model_s_n, model_s_ta, model_s_tr, model_s_ch)</pre>
robust_ses_s <- list(nw_se_s_d_t, nw_se_s_n_t, nw_se_s_ta_t, nw_se_s_tr_t, nw_se_s_china_t)
robust_pvals_s <- list(robust_s_d_t, robust_s_n_t, robust_s_ta_t, robust_s_tr_t, robust_s_ch_t)
# Generate table
table_texreg_s <- texreg(</pre>
   1 = models_list_s,
   override.se = robust ses s,
   override.pvalues = robust_pvals_s,
   custom.model.names = c("TweetDummy", "TweetCount", "Tariff", "Trade", "China"),
   custom.coef.map = custom_names,
   caption = "Second-Term VAR Models of Average Hourly Volatility",
   label = "tab:VAR Second Term",
   caption.above = TRUE,
   digits = 6,
   custom.gof.rows = list("Shock (IRF)" = c(0.014659, 0.013315, 0.010752, -0.005665, 0.013937)),
   star.cutoffs = c(0.05, 0.01, 0.001),
   custom.note = "\\parbox[t]{0.9\\textwidth}{\\small\\textit{This table displays VAR regression with on
)
# Print
```

Table 3: Second-Term VAR Models of Average Hourly Volatility

	TweetDummy	TweetCount	Tariff	Trade	China	
$\overline{AHV_{t-1}}$	0.299398**	0.299350^*	0.294752**	0.301160**	0.274419***	
	(0.112369)	(0.115966)	(0.110305)	(0.111228)	(0.078452)	
AHV_{t-2}	0.015406	0.013567	0.020667	0.011769	0.031670	
	(0.043748)	(0.045193)	(0.038728)	(0.043649)	(0.028307)	
$AHV_{t=3}$	0.076169^{***}	0.076851^{***}	0.068749^{***}	0.072284***	0.052697	
	(0.008464)	(0.008788)	(0.016281)	(0.014041)	(0.034520)	
AHV_{t-4}	0.084229	0.085108	0.074401	0.080544	0.035573	
	(0.067860)	(0.070966)	(0.079828)	(0.066709)	(0.100929)	
AHV_{t-5}	0.013424**	0.010406	0.015342**	0.017631^*	0.005467	
	(0.005076)	(0.005958)	(0.005363)	(0.008269)	(0.032198)	
AHV_{t-6}	0.126612^{*}	0.126324^{*}	0.132056**	0.124277^{*}	0.150909**	
	(0.050031)	(0.050865)	(0.049243)	(0.051402)	(0.051059)	
X_{t-1}	0.006569	0.000947	0.027028	0.020463	0.154584	
0 1	(0.010145)	(0.001307)	(0.028623)	(0.029865)	(0.138092)	
X_{t-2}	-0.003222**	-0.000736	0.008588	0.047163	0.099315	
v -	(0.001039)	(0.000524)	(0.007211)	(0.041341)	(0.095007)	
X_{t-3}	-0.005538**	-0.001637^*	-0.010306	-0.026631	-0.047690	
	(0.001707)	(0.000717)	(0.007584)	(0.021348)	(0.030038)	
X_{t-4}	0.002474	0.000136	0.002002	0.019925	-0.020669	
0 1	(0.004957)	(0.000914)	(0.002962)	(0.031571)	(0.012428)	
X_{t-5}	-0.008527^*	-0.001651	-0.002649	-0.012965	-0.004470	
	(0.003989)	(0.001068)	(0.004280)	(0.014973)	(0.018255)	
X_{t-6}	-0.003594	-0.000627	-0.004279	-0.011100	0.008027	
	(0.003191)	(0.000760)	(0.003854)	(0.010317)	(0.022286)	
Constant	0.072524**	0.068423**	0.049265^{**}	0.052127^{***}	0.044027^*	
	(0.024156)	(0.021308)	(0.015262)	(0.014290)	(0.017471)	
Shock (IRF)	0.014659	0.013315	0.010752	-0.005665	0.013937	
\mathbb{R}^2	0.244117	0.240788	0.251263	0.244406	0.285165	
$Adj. R^2$	0.224424	0.221009	0.231757	0.224721	0.266543	
Num. obs.	512	512	512	512	512	
This table displays VAR regression with only two variables · AHV and X regressor. The column names						

This table displays VAR regression with only two variables: AHV and X regressor. The column names represent the X variable for the selected model.

table_texreg_s