Greedy Quasi-Newton Method with Explicit Superlinear Convergence

Anton Rodomanov Yurii Nesterov

Catholic University of Louvain, Belgium

8 October 2019 Seminar in Mathematical Engineering, Louvain-la-Neuve

Quasi-Newton methods for minimizing functions

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function.

General quasi-Newton method

Initialize $x_0 \in \mathbb{R}^n$, $H_0 \in \mathbb{S}^n_{++}$ and iterate for $k \geq 0$:

- ② Update H_k into H_{k+1} .

Denote $s_k := x_{k+1} - x_k$ and $y_k := f'(x_{k+1}) - f'(x_k)$.

- (SR1) $H_{k+1} := H_k + \frac{(s_k H_k y_k)(s_k H_k y_k)^T}{\langle y_k, s_k H_k y_k \rangle}$.
- (DFP) $H_{k+1} := H_k \frac{H_k y_k y_k^T H_k}{\langle y_k, H_k y_k \rangle} + \frac{s_k s_k^T}{\langle y_k, s_k \rangle}$.
- $\bullet \text{ (BFGS) } H_{k+1} := \left(I \frac{s_k y_k^T}{\langle y_k, s_k \rangle}\right) H_k \left(I \frac{y_k s_k^T}{\langle y_k, s_k \rangle}\right) + \frac{s_k s_k^T}{\langle y_k, s_k \rangle}.$

Superlinear convergence of quasi-Newton methods

Theorem (Dennis-Moré 1974, 1977)

If (x_0, H_0) is sufficiently close to $(x^*, f''(x^*)^{-1})$, then both DFP and BFGS are superlinearly convergent: $\frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|} \to 0$.

Main question: Rate of convergence? $O(c^{k^2})$, $O(c^{k^3})$, $O(k^{-k})$, ...?

Our goal:

Present a new quasi-Newton method with an explicit superlinear rate.

BFGS update and norms

Definition (BFGS update)

For $A \in \mathbb{S}^n_{++}$, $H \in \mathbb{S}^n$ and $s \in \mathbb{R}^n$, define

$$\mathsf{BFGS}(H,A,s) := \left(I - \frac{\mathsf{ss}^\mathsf{T} A}{\langle A\mathsf{s},\mathsf{s}\rangle}\right) H\left(I - \frac{A\mathsf{ss}^\mathsf{T}}{\langle A\mathsf{s},\mathsf{s}\rangle}\right) + \frac{\mathsf{ss}^\mathsf{T}}{\langle A\mathsf{s},\mathsf{s}\rangle}.$$

• Here A plays the role of f''(x) and y := As.

Our goal: Decrease the distance between H and A^{-1} .

Main property of BFGS update

• Introduce the Euclidean norm induced by A:

$$||x||_A := \langle Ax, x \rangle^{1/2}.$$

• The corresponding conjugate norm:

$$||y||_A^* := \max_{||x||_A \le 1} \langle y, x \rangle = \langle y, A^{-1}y \rangle^{1/2}.$$

Operator norm:

$$\|W\|_A := \max_{\|y\|_A^* \le 1} \|Wy\|_A = \lambda_{\mathsf{max}} (WAWA)^{1/2}.$$

• Frobenius norm:

$$||W||_{\mathsf{Fr}(A)} := \mathsf{Tr}(WAWA)^{1/2} \quad (\geq ||W||_A).$$

Lemma (Progress in matrix for BFGS update)

For
$$H_+ := BFGS(H, A, s)$$
, we have

$$\|A^{-1} - H_+\|_{\mathsf{Fr}(A)}^2 \le \|A^{-1} - H\|_{\mathsf{Fr}(A)}^2 - \frac{\|(HA - I)s\|_A^2}{\|s\|_A^2}.$$

Greedy BFGS update

Definition (Greedy BFGS update)

Let e_1, \ldots, e_n be the standard orthonormal basis in \mathbb{R}^n . For

$$i_{\mathsf{max}}(H,A) := \operatorname*{argmax}_{1 \leq i \leq n} \frac{\|(HA-I)e_i\|_A^2}{\|e_i\|_A^2},$$

define

$$GreedyBFGS(H, A) := BFGS(H, A, e_{i_{max}(H, A)}).$$

- Makes the maximal progress keeping the update cost relatively small.
- NB: Using more sophisticated reasoning, one can instead work with

$$i_{\mathsf{max}}(H,A) := \operatorname*{argmax}_{1 \leq i \leq n} \frac{\langle Be_i, e_i \rangle}{\langle Ae_i, e_i \rangle},$$

where $B := H^{-1}$. This requires computing only the diagonal of the Hessian at each iteration.

Main property of greedy BFGS update

Lemma (Linear convergence in matrix)

For
$$H_+:=\mathsf{GreedyBFGS}(H,A)$$
, we have
$$\|A^{-1}-H_+\|_{\mathsf{Fr}(A)} \leq (1-\rho)\|A^{-1}-H\|_{\mathsf{Fr}(A)},$$
 where $\rho:=\rho(A)$ is the coordinate condition number of A :
$$\rho(A):=\frac{\lambda_{\mathsf{min}}(A)}{2\,\mathsf{Tr}(A)}\geq \frac{\lambda_{\mathsf{min}}(A)}{2\,\mathsf{n}\lambda_{\mathsf{max}}(A)}.$$

- Follows from lower bounding the maximum by the expectation for i chosen randomly with probability $\pi_i := \frac{\|a_i\|_A^2}{\text{Tr}(A)}$.
- The randomized version was first proposed in [Gower-Richtárik 2016].

Superlinear convergence on quadratic functions

Consider a simple quadratic function

$$f(x) := \frac{1}{2} \langle Ax, x \rangle = \frac{1}{2} ||x||_A^2.$$

- Denote $r_k := \|x_k x^*\|_A$ and $\sigma_k := \|A^{-1} H_k\|_{\mathsf{Fr}(A)}$.
- Quasi-Newton step: $x_{k+1} = x_k H_k f'(x_k) = (A^{-1} H_k) A x_k$.
- Hence,

$$r_{k+1} \leq \sigma_k r_k \qquad \Rightarrow \qquad r_k \leq r_0 \prod_{i=1}^{n-1} \sigma_i.$$

• From the previous slide,

$$\sigma_{k+1} \leq (1-\rho)\sigma_k \qquad \Rightarrow \qquad \sigma_k \leq (1-\rho)^k \sigma_0.$$

Thus,

$$r_k \leq r_0 \prod_{i=0}^{k-1} ((1-\rho)^i \sigma_0) = \sigma_0^k (1-\rho)^{\frac{k(k-1)}{2}} r_0.$$

Conclusion: If $\sigma_0 \leq \frac{1}{2}$, we obtain the $(\frac{1}{2})^k (1-\rho)^{k^2}$ superlinear rate.

Can we prove similar results for general nonlinear *f*?

GreedyBFGS method

Problem: $\min_{x \in \mathbb{R}^n} f(x)$.

GreedyBFGS method for minimizing functions

Initialize $x_0 \in \mathbb{R}^n$, $H_0 \in \mathbb{S}^n$ and iterate for $k \geq 0$:

- **1** Set $x_{k+1} := x_k H_k f'(x_k)$
- 2 Set $H_{k+1} := \text{GreedyBFGS}(H_k, f''(x_{k+1})).$

NB: $A := f''(x_{k+1})$ changes at every iteration.

General nonlinear functions

Lipschitz continuity of f'':

$$||f''(y) - f''(x)||_{X^*} \le L||y - x||_{X^*}.$$

Lemma (Progress of one step of GreedyBFGS)

For
$$r_k := \frac{1}{2} \|x_k - x^*\|_{x^*}$$
, $\sigma_k := \|f''(x_k)^{-1} - H_k\|_{\mathsf{Fr}(x_k)}$ and $\rho := \rho(f''(x^*))$, $r_{k+1} \le \frac{(1 + r_k)^{3/2}}{(1 - 2r_k)\sqrt{1 - r_k}} \sigma_k r_k + \frac{3\sqrt{1 + r_k}}{(1 - 2r_k)\sqrt{1 - r_k}} r_k^2$
$$\sigma_{k+1} \le \left(1 - \frac{1 - 2r_{k+1}}{1 + 2r_{k+1}} \rho\right) \frac{1 + 2r_{k+1}}{1 - 2r_k} \sigma_k + \frac{2\sqrt{n}}{1 - 2r_k} (r_k + r_{k+1}).$$

Simplification: Assuming r_k is sufficiently small, we get

$$\frac{r_{k+1} \leq \sigma_k r_k,}{\sigma_{k+1} \leq (1-\rho)\sigma_k} \Rightarrow \frac{r_k \leq \sigma_0^k (1-\rho)^{k^2} r_0}{\sigma_k \leq (1-\rho)^k \sigma_0.}$$

Local superlinear convergence of GreedyBFGS

Theorem

If
$$r_0 \leq \frac{\rho}{25\sqrt{n}}$$
 and $\sigma_0 \leq \frac{1}{2}$, then
$$r_k \leq \left(\frac{1}{2}\right)^k \left(1 - \frac{\rho}{2}\right)^{\frac{k(k-1)}{2}} r_0$$

$$\sigma_k \leq \left(1 - \frac{\rho}{2}\right)^k \frac{1}{2}.$$

Reminder: For quadratic f, we had

$$r_k \le \left(\frac{1}{2}\right)^k (1-\rho)^{\frac{k(k-1)}{2}} r_0$$
$$\sigma_k \le (1-\rho)^k \frac{1}{2}.$$

Conclusion

- New quasi-Newton method for minimizing nonlinear functions.
- It uses classic BFGS rule with greedily selected direction.
- Explicit $(\frac{1}{2})^k (1-\rho)^{k^2}$ superlinear convergence rate.

Thank you!