Math 488, Assignment 3

- 1. Let κ be an uncountable regular cardinal and let L be a countable language. Suppose $(M_{\alpha}: \alpha < \kappa)$ is an increasing sequence of L-structures and let $M = \bigcup_{\alpha < \kappa} M_{\alpha}$. Show that $\{\alpha \in \kappa: M_{\alpha} \prec M\}$ is a club set.
- 2. Using a coding of formulas as elements of HF (via their parsing trees), write " φ is a formula and $x \models \varphi(y)$ " as a Δ_1 property over HF in the language of set theory.
- 3. Write the sentence "V=WF" in the language of set theory.
- 4. Write the sentence "V=L" in the language of set theory.
- 5. Show that if M is a transitive class such that the Comprehension Axiom holds in M and for every subset $x \subseteq M$ there exists a set $y \in M$ with $x \subseteq y$, then $M \models ZF$.
- 6. Let κ be a regular uncountable cardinal. Show that $H(\kappa) \models ZF P$, where P stands for the Power Set Axiom.
- 7. Let κ be a regular uncountable cardinal. Show that $L_{\kappa} \models ZF P$.