Personalized medicine in early stage lung cancer

Ravi Salgia, MD, PhD

Professor of Medicine, Pathology & Dermatology
Director, Thoracic Oncology Program
Vice Chair for Translational Research
The University of Chicago

Goals

- Describe Molecular Advances in Lung Cancer
- Describe Molecularly Targeted Therapies—EGFR and ALK
- Detail the Early Stage Disease and Potential for Novel Therapies

NSCLC: Treatment and Outcome by Stage

Pathologic		
Stage	Treatment	5-Year Survival, %*
1	Surgery/Chemo	60-70
11	Surgery/Chemo	30-50
IIIA	Surgery/ Multimodality Regimen	10-30
IIIB	Chemotherapy/ Radiation	5
IV	Chemotherapy	<1

^{*}Overall 5-year survival is 18%.

- 1. Mountain CF. Semin Surg Oncol. 2000;18:106-115.
- 2. National Cancer Institute. SEER Cancer Statistics Review 1973-1999.

A. Molecular and Biochemical Abnormalities in a Lung Cancer Cell and its Interaction with the Extracellular Matrix ECM Procollagenase Plasmin · Metalloproteinase B INTEGRIN Tumor Suppressor GROWTH NCAM Genes: FACTOR RECEPTOR p53 Dominant Oncogenes: BcI-2 Myc ras c-erbB-2

Salgia & Skarin, 1996

Targeted Therapy in Oncology

Goals

- Identify anti-tumor agents that target tumorspecific molecules, thus sparing normal cells
 - Increased specificity leads to decreased toxicity
- Identify ideal drug target
 - Drives tumor growth
 - Turns on key mechanisms of cancer progression
 - Reversible by inhibition
 - Dispensable in normal cells
 - Target is measurable in tumor tissue used for diagnosis

Table 1. Molecular Abnormalities in Lung Cancer					
Molecular Abnormality	SCLC (%)	NSCLC (%)	Agent(s) Targeting Aberrant Pathway		
Incidence	25	75	Anne Anne Anne Anne		
Ras mutation	<1	30	Farnesyltransferase inhibitors, antisense oligonucleotides, <i>raf</i> inhibitors, MEK inhibitors, 17-AAG		
Myc amplification	30	10	Ş		
EGFR expression	NR	40-80	EGFR tyrosine kinase inhibitors; EGFR antibodies		
c-erbB-2 overexpression	10	30	Trastuzumab, EGFRTK inhibitors, 17AAG		
c-kit/SCFR coexpression	70	15	STI-1 <i>57</i>		
Bcl-2 expression	95	35	PS-341		
p53 mutation	75-100	50	PS-341, flavopiridol		
RB deletion (protein)	90	20	CCI-779, flavopiridol		
p16 inactivation	< 1	70	CCI-779		
COX-2 expression	NR	70	COX-2 inhibitors		
3p deletion	90	50	ś		
VEGF expression	> 100-fold variation		Monoclonal antibodies, RTK inhibitors, FTI		
Matrix metalloproteinase (gelatinase)	50	65	Matrix metalloproteinase inhibitors		
Neuropeptides	90	NR	Antibodies		

Abbreviations: EGFR, epidermal growth factor receptors; SCFR, stem-cell factor receptor; RB, retinoblastoma gene; VEGF, vascular endothelial growth factor; MEK, mitogen-activated protein kinase (MAPK) kinase; RTK, receptor tyrosine kinase; FTI, farnesyl transferase inhibitors; COX, cyclo-oxygenase.

Dy & Adjei, JCO 2002 Salgia & Skarin, JCO 1999

Potential Oncogenic "Drivers" in Non-small Cell Lung Cancer (NSCLC)

Adenocarcinoma

ALK = anaplastic lymphoma kinase; EGFR = epidermal growth factor receptor; Her2 = human epidermal growth factor receptor 2; PIK3CA = phosphoinositide-3-kinase, catalytic, alpha polypeptide

Massachusetts General Hospital, data on file.
[AT Shaw, personal communication]

Human Receptor Tyrosine Kinases

EGFR

Diverse Antitumor Effects of EGFR Inhibition

Proliferation

Invasion

Inhibition of apoptosis

Metastasis

Angiogenesis

Frequently expressed and over-expressed in lung cancer

Associated with poor prognosis

Characteristics of NSCLC patients Who Respond to EGFR TKIs

Females

Adenocarcinoma

Asian

Non-smokers

EGFR mutations

First-Line Treatment with Single-Agent EGFR Inhibitors in Selected Patient Populations

Clinically Selected Patients

IPASS First Signal

IPASS Study design

Conducted in China, Hong Kong, Indonesia, Japan, Malaysia, Philippines, Singapore, Taiwan and Thailand

Patients

- Chemonaïve
- Age ≥18 years
- Adenocarcinoma histology
- Never or light exsmokers*
- Life expectancy ≥12 weeks
- WHO PS 0-2
- Measurable stage IIIB / IV disease

Gefitinib (250 mg / day)

1:1 randomisation

Carboplatin (AUC 5 or 6) / paclitaxel (200 mg / m²) 3 weekly#

Endpoints

Primary

 Progression-free survival (non-inferiority)

Secondary

- Objective response rate
- Overall survival
- Quality of life
- Disease-related symptoms
- Safety and tolerability

Exploratory

- Biomarkers
 - EGFR mutation
 - EGFR-gene-copy number
 - EGFR protein expression

*Never smokers, <100 cigarettes in lifetime; light ex-smokers, stopped ≥15 years ago and smoked ≤10 pack years; #limited to a maximum of 6 cycles Carboplatin / paclitaxel was offered to gefitinib patients upon progression WHO, World Health Organization; PS, performance status; AUC, area under curve; EGFR, epidermal growth factor receptor

Progression-free survival in ITT population

IPass Progression-free survival in EGFR mutation positive and negative patients

Summary--EGFR

- EGFR TKI therapy is the treatment of choice for patients whose tumours have EGFR sensitizing mutations
- Selection should not be made on clinical grounds
- Even in Asian populations, 40% of highly selected patients have WT EGFR
- EGFR inhibitors should not be selected as "kinder and gentler" treatment for the elderly or infirm
- Patients with K-RAS mutations do not respond as well to EGFR inhibition
- There are several mechanisms of EGFR inhibitor resistance that are currently under investigation (T790M with HSP90 inhibition; compensatory signaling pathways such as c-MET)

Strategies to Inhibit RTK-dependent NSCLC

ALK

2007: EML4-ALK Rearrangements described as transforming event in NSCLC

Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer

Manabu Soda^{1,2}, Young Lim Choi¹, Munehiro Enomoto^{1,2}, Shuji Takada¹, Yoshihiro Yamashita¹, Shunpei Ishikawa⁵, Shin-ichiro Fujiwara¹, Hideki Watanabe¹, Kentaro Kurashina¹, Hisashi Hatanaka¹, Masashi Bando², Shoji Ohno², Yuichi Ishikawa⁶, Hiroyuki Aburatani^{5,7}, Toshiro Niki³, Yasunori Sohara⁴, Yukihiko Sugiyama² & Hiroyuki Mano^{1,7}

Soda et al., Nature 448: 561-566, 2007

EML4-ALK

- Echinoderm microtubule-associated protein-like 4 (EML4) becomes fused with the anaplastic lymphoma kinase (ALK)
 - Inversion within chromosome 2p
- First identified in 2007 from a resected lung adenocarcinoma specimen

FISH Assay for ALK Rearrangement*

General Hospital]

¹Shaw AT et al. J Clin Oncol 2009;27:4247–4253

ALK Pathway

*Subcellular localization of the ALK fusion gene, while likely to occur in the cytoplasm, is not confirmed.^{1,2}

1. Inamura K et al. J Thorac Oncol 2008;3:13–17 2. Soda M et al. Proc Natl Acad Sci U S A 2008;105:19893–19897 Figure based on: Chiarle R et al. Nat Rev Cancer 2008;8(1):11–23 Mossé YP et al. Clin Cancer Res 2009;15(18):5609–5614; and Data on file. Pfizer Inc.

EML4-ALK Variants

Crizotinib Selectivity Profile

^{*}The cellular kinase activities were measured using ELISA capture method

Selectivity findings

- Crizotinib ALK and c-MET inhibition at clinically relevant dose levels
- Crizotinib <u>low</u> probability of pharmacologically relevant inhibition of any other kinase at clinically relevant dose levels

Pfizer Inc. Data on file

Tumor Responses to Crizotinib

Best Percent Change from Baseline in Target Lesions*

Progression-Free Survival (N=119)

Crizotinib---UofC

- Phase I: 74 consented, 27 enrolled
- Phase II (ALK): 52 screened, 12 enrolled
- Phase III (ALK): 25 screened, 3 enrolled
- Future Goals (ALK):
 - New inhibitors (Ariad, Cephalon, Astellas)
 - Relevance of HSP90 inhibitors (Synta, Daiichi)
 - Work with CALGB for analysis of tumor tissues, as well in early stage disease
 - Determine the relevance in maintenance

WebApp Therapy Finder—Lung Cancer (www.collabrx.com)

Therapy Finder - Lung Cancer

Questions? Feedback? Problems?

How to Use This Tool

- Provide tumor information
- Learn about molecular tests and potential treatments
- Discuss results with treatment team

Learn More:

Patients | Physicians

Breaking News:

afatinib may be effective in patients resistant to first line therapy

Other Drugs in the News

Cancer Commons, ASCO

Stage Stage IV Hist Adenocarcinoma Mets Adrenal Glands, Bone EGFR- EML4+ KRAS-

EML4-ALK mutation: Consider Xalkori

You have indicated that your cancer has the EML4-ALK abnormality.

You belong to a group of patients who may benefit from medications such as Xalkori and ganetespib (read more). The EML4-ALK 'translocation' promotes cancer growth and survival. Hence your cancer may be effectively treated with medications that block EML4-ALK. See below for more information about relevant drugs and clinical trials.

Top drugs to consider:

Xalkori: (also called crizotinib) belongs to a class of drugs called ALK inhibitors. It was approved by the FDA on August 26th 2011. Once a drug gains approval your doctor can prescribe it to you for treatment of your cancer. This drug is exciting because it reduced tumor size in most patients during clinical testing (read more).

ganetespib: (also called STA-9090) belongs to a class of drugs called Hsp90 inhibitors. This drug is not yet approved by the FDA. It is being tested in clinical trials for a variety of cancers. In one case study from a patient with the EML4-ALK translocation who was resistant to Xalkori, ganetespib showed "significant tumor shrinkage" after three weeks treatment. Over all, preliminary results have been positive, especially in non-small cell lung cancer patients who do *not* have mutations in EGFR and KRAS genes. You can try out this drug by enrolling in one of the clinical trials listed below.

Summary

Key gene ALK, EML4 Potentially Relevant Drug Classes ALK inhibitors, Hsp90 inhibitors Trials

Drugs

Literature

Clinical Trials

Details of your condition will determine eligibility for any specific trial. To select clinical trials for which you may be qualified, click here. Also, ask your doctor for more information.

SELECT CLINICAL TRIALS

Trial	Drug	Status	Phase
IPI-504 in NSCLC Patients With ALK Translocations [NCT01228435]	IPI-504	Recruiting	Phase 2
A Study Of Combined C- MET Inhibitor And PAN-HER Inhibitor (PF-02341066 And PF-00299804) In Patients With Non- Small Cell Lung Cancer [NCT01121575]	Xalkori, PF- 00299804	Recruiting	Phase 1
Erlotinib Is Being Studied With Or Without An Investigational Drug, PF-02341066, In Patients With Lung Cancer [NCT00965731]	Tarceva, Xalkori	Recruiting	Phase 1 and 2
Study of Ganetespib (STA-9090) + Docetaxel in Advanced Non Small Cell Lung Cancer [NCT01348126]	Ganetespib, Docetaxel	Recruiting	Phase 2, Phase 3
A Study of the HSP90 Inhibitor, STA-9090 in Subjects With Stage IIIB or IV Non-Small Cell Lung Cancer (NSCLC) [NCT01031225]	STA-9090	Recruiting	Phase 2
A Study of AUY922 in Non-small-cell Lung Cancer Patients Who Have Received Previous Two Lines of Chemotherapy [NCT01124864]	AUY922	Recruiting	Phase 2
A Dose Finding Study With Oral LDK378 in Patients With Tumors Characterized by Genetic Abnormalities in Anaplastic Lymphoma Kinase (ALK) [NCT01283516]	LDK378	Recruiting	Phase 1
Study of STA-9090, Administered Twice-Weekly in Patients With Solid Tumors [NCT00688116]	Ganetespib	Recruiting	Phase I
A Dose Escalation Study of STA-9090 and Docetaxel in Patients With Solid Tumors [NCT01183364]	Ganetespib	Recruiting	Phase 1
A First In Patient, Study Of Investigational Drug PF-03446962 In Patients With Advanced Solid Tumors [NCT00557856]	PF- 03446962	Recruiting	Phase 1
A Study of DS-2248, in Subjects With Advanced Solid Tumors [NCT01288430]	DS-2248	Recruiting	Phase 1
Study of an Investigational Drug, ASP3026, in Patients With			

Early Stage Disease

Timeline Major Adjuvant Systemic Therapy Trials

Timeline Major Adjuvant Systemic Therapy Trials

Molecular markers in early stage: Frequency of mutations

Gene	Alteration	Frequency in NSCLC
AKT1	Mutation	1%
ALK	Rearrangement	3-7%
BRAF	Mutation	1-3%
DDR2	Mutation	4%
EGFR	Mutation	10-35%
FGFR1	Amplification	20%
HER2	Mutation	2-4%
KRAS	Mutation	15-25%
MEK1	Mutation	1%
MET	Amplification	2-4%
NRAS	Mutation	1%
PIK3CA	Rearrangement	1-3%
PTEN	Mutation	4-8%
ROS1	Mutation	1%

EGFR and K-Ras in early stage lung cancer

	EGFR Mutation N = 40	KRAS Mutation N = 50	EGFR/KRAS Wild-type N = 206	p
Age	70 (35-86)	70 (42-86)	68 (39-89)	
Gender				0.581
Men	14 (35%)	23 (46%)	83 (40%)	
Women	26 (65%)	27 (54%)	123 (60%)	
Stage				0.064
IA	21 (53%)	16 (32%)	103 (50%)	
IB	14 (35%)	14 (28%)	48 (23%)	
Ш	1 (2%)	7 (14%)	21 (10%)	
Ш	4 (10%)	13 (26%)	34 (17%)	
Cigarette smoking				< 0.001
Never	18 (47%)	4 (8%)	14 (5%)	
Former	20 (53%)	37 (74%)	154 (83%)	
Current	0	9 (18%)	38 (12%)	
Chemotherapy				0.405
None	25 (62%)	26 (52%)	128 (62%)	
Adjuvant/ neoadjuvant	15 (38%)	24 (48%)	78 (38%)	
Mutation				
	L858R: 19	G12C: 22	N/A	
	Exon 19 del: 19	G12V: 14		
	Exon 20 ins: 1	G12A: 7		
	Exon 21 (H835L): 1	G12D: 6		
		G13C: 1		

Marks et al JTO, 2008

EGFR and K-Ras in early stage lung cancer

Survival with/without EGFR and KRAS Mutations Among US Patients with Resected NSCLC

EGFR and K-Ras in early stage lung cancer

Takayuki, et al JTO, 2009

MOLECULARLY TARGETED AGENTS IN ADJUVANT SETTING

A Phase III Randomized, Double-Blind, Placebo-Controlled Trial of the Epidermal Growth Factor Receptor Inhibitor, Gefitinib in Completely Resected Stage IB-IIIA Non Small Cell Lung Cancer

NCIC CTG BR.19

G.D. Goss, MD

NCIC CTG BR.19

Trial Schema

Overall Survival and Disease-Free Survival

Patients were stratified by stage, histology, post-operative radiation, sex and adjuvant chemotherapy.

	Gefitinib (n = 251)	Placebo (n = 252)	Hazard Ratio	<i>p</i> -value
Median overall survival (OS)	5.1 years	Not reached	1.23	0.136
Median disease-free survival (DFS)	4.2 years	Not reached	1.22	0.152

Multivariate analysis

- Age ≥65 years and tumor size ≥4 cm (p = 0.0003) were significantly associated with shorter survival.
- Gefitinib remained not significant, but there was a trend suggesting it may be harmful (p = 0.097).

Goss GD et al. Proc ASCO 2010; Abstract LBA7005.

Goss GD et al. Proc ASCO 2010; Abstract LBA7005.

Conclusion: NCIC CTG BR.19

- Gefitinib was well tolerated.
- Gefitinib did not improve DFS and OS in patients with completely resected early stage NSCLC in this underpowered study.
- KRAS mutation status, EGFR by FISH or EGFR sensitizing mutation status were neither prognostic nor predictive of survival in exploratory analysis.
- A targeted agent that improves OS in NSCLC in the adjuvant setting has yet to be demonstrated.
- Currently, the treatment of choice for patients in good performance is chemotherapy.
- The results of the RADIANT trial of adjuvant erlotinib are awaited (NCT00373425).

Goss GD et al. Proc ASCO 2010; Abstract LBA7005; www.clinicaltrials.gov.

MOLECULARLY TARGETED AGENTS IN ADJUVANT SETTING

- Primary endpoint = disease-free survival (all patients, IHC+ve and/or FISH+ve)
- Co-primary = DFS in FISH+ve (US); TBC in Europe
- Secondary endpoints: OS, safety, biomarkers
- Status: 1st patient entered 09/2006, 1. interim 1Q11, 2. interim 2Q12, final analysis 3Q13

Summary for Promising Targets in Lung Cancer

- ALK targeting has come to clinical fruition, with recent FDA approval of crizotinib
- EGFR is approved therapy for second line, and if mutated for first line
- Early stage molecular characteristics are beginning to be defined
- It will be important to arrive at a number of targets based on biology of lung cancer, especially in the early stage setting

