Portfolio Managment: Homework 4

Gal Skarishevsky, Nathan Matare, Brian Thompson, Lior Sahaf April 19, 2017

B.1. Estimating E and V by the sample estimates.

stuff

B.2. Estimating the Performance-Flow Relation.

We write the function 'EVALperformancetoflow' that computes our desired question answers:

```
EVAL performance to flow <- function(year, graph = FALSE, ...){
    data <- transpose(rbind(rets[Date == year], flows[Date == year + 1]))</pre>
    colnames(data) <- c("returns", "inflows")</pre>
    data <- na.omit(data[-1, ]) # remove year and remove NAs
    data <- data[order(returns, decreasing = TRUE)]</pre>
    data[ ,group_interval := cut_number(returns, n = 10)]
    data[, decile := as.integer(group_interval)]
    data[ ,avg_returns := mean(returns), by = group_interval]
    data[ ,avg_flows := mean(inflows), by = group_interval]
    data_per_decile <- data[!duplicated(avg_returns)]</pre>
    linear <- lm(avg_flows ~ avg_returns + I(avg_returns ^ 2), data = data_per_decile)</pre>
    data_per_decile[ ,hat_avg_flows := linear$fitted][ ,c("returns", "inflows") := NULL]
    estimates <- rbind(
                    alpha_hat = summary(linear)$coefficients[,'Estimate'][1],
                    beta_hat = summary(linear)$coefficients[,'Estimate'][2],
                    charlie_hat = summary(linear)$coefficients[,'Estimate'][3],
                    alpha_se = summary(linear)$coefficients[,'Std. Error'][1],
                    beta_se = summary(linear)$coefficients[,'Std. Error'][2],
                    charlie_se = summary(linear)$coefficients[,'Std. Error'][3]
    ); colnames(estimates) <- year
    data <- merge(data, data_per_decile)</pre>
    if(graph){
        p <- ggplot(data = data, aes(decile, group = 1)) +</pre>
                geom_point(aes(y = avg_flows), color = "black") +
                geom_line(aes(y = avg_flows)) +
                geom_line(aes(y = hat_avg_flows), color = "darkgrey", linetype = "dotted", size = 1.3)
                ggtitle(paste("Performance(", year, ") to Fund Flows(", year + 1, ")", sep = "")) +
                labs(x = "Performance Deciles", y = "Average Fund Flow (t+1)")
```

```
print(p)
}

return(list(data = data_per_decile, estimates = estimates))
}
```

a) i - iv.

We evaluate the performance-fund for 2001 and observe a convex pattern. As expected, the better performing the fund in the previous year, the more new funds flow into it. Further, our estimates (fitted_values) are highly correlated with the real values. This linear model explains much of the variation (in-sample, of course). All three of the coefficients appear to be highly significant.

Table 1: Average: Returns, Flows, Fitted Values by Decile

group_interval	decile	avg_returns	avg_flows	hat_avg_flows
(0.0877, 0.735]	10	0.1781	0.4455	0.4770
(0.00687, 0.0877]	9	0.0426	0.3418	0.2497
(-0.041, 0.00687]	8	-0.0191	0.1531	0.1667
(-0.0813, -0.041]	7	-0.0610	0.0963	0.1178
(-0.118, -0.0813]	6	-0.1005	0.0454	0.0771
(-0.146, -0.118]	5	-0.1322	0.0395	0.0482
(-0.185, -0.146]	4	-0.1642	0.0342	0.0226
(-0.23, -0.185]	3	-0.2077	-0.0143	-0.0067

group_interval	decile	avg_returns	avg_flows	hat_avg_flows
(-0.294,-0.23]	2	-0.2577	-0.0310	-0.0324
[-0.722, -0.294]	1	-0.3717	-0.0499	-0.0594

Table 2: Coefficients and Standard Errors

	alpha_hat	beta_hat	charlie_hat	alpha_se	beta_se	charlie_se
2001	0.191	1.3	1.7	0.017	0.124	0.46

b) i.

We write the function 'getStatSignif' and compute our Fama-MacBeth estimates:

Confirming our results from above, the Fama-Macbeth approach is significant for all three coefficients, implying that the convexity pattern(charlie) is statistically significant as well.

Table 3: Fama-MacBeth Estimates

	Estimate	Standard Error
alpha	0.0433	0.0094
beta	1.5640	0.0936
charlie	4.4437	0.4863

b) ii

Next, we average the performance-flow per decile across years. We, again, observe a convex pattern:

Total Average Performance to Flow

c) i.

$$\mathbb{E}(A) = 1(0.01) + 0(0) = 0.01$$

 $\mathbb{E}(B) = -0.25(0.60) + 0.25(0.40) = -0.05$

Thus, choose A.

c) ii.

Given,

Initial investment size = 100M

 $\hat{a} = 0.04$

 $\hat{b} = 1.56$

 $\hat{c} = 4.44$

Scenario A:

$$\hat{F}_A = 0.04 + 1.56 * 0.01 + 4.44(0.01^2) = 0.05$$

Year-end investment size = 105.6

 $\mathbb{E}_{\mathbb{A}}(A) = 1.05 M$

Scenario B.

$$\hat{F}_B = 0.04 + 1.56 * 0.25 + 4.44(0.25^2) = 0.7075$$

Year-end investment size = 170.75

Fee(good) = 1.70M

$$\hat{F}_B = 0.04 + 1.56 * -0.25 + 4.44(-0.25^2) = -0.0725$$

Year-end investment size = 92.75 Fee(bad) = 9.275 M

$$\mathbb{E}(B) = 0.40(1.70) + 0.60(0.92) = 1.23$$

Thus, choose B.

c) iii.

Due to the quadractic term and incentive (1% fee after inflows) structure, the potential upside for investment B, even after factoring in the investment's riskyness (-0.25), is greater (1.23 > 1.05). Thus, a short term looking money manger would have greater incentives to take risky bets given their expected payoff.

d)

New money chases hot money.