Chapter 5: Eigenvalues, Eigenvectors, and invariant subspaces

Zelong Kuang May 22, 2024

Contents

A: Invariant Subspaces	3
B: Eigenvectors and Upper-Triangular Matrices	7
C: Eigenspaces and Diagonal Matrices	9

A: Invariant Subspaces

Problem: 1

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.

- (a) Prove that if $U \subset \text{null } T$, then U is invariant under T.
- (b) Prove that if range $T \subset U$, then U is invariant under T.

Proof. (a) Let $u \in U$. Then $T(u) \in \text{null } T$ because $u \in \text{null } T$. Therefore, $T(u) \in U$.

(b) Let $u \in U$. Then $T(u) \in U$ because $T(u) \in \text{range } T \subset U$.

Problem: 2

Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that null S is invariant under T.

Proof. We have ST(null S) = T(S(null S)) = T(0) = 0. This implies that $T(\text{null }S) \subset \text{null }S$.

Problem: 3

Suppose $S,T\in\mathcal{L}(V)$ are such that ST=TS. Prove that range S is invariant under T.

Proof. TODO: 5.A.12 Pending.

Problem: 4

Suppose that $T \in \mathcal{L}(V)$ and $U_1, \dots U_m$ are subspaces of V invariant under T. Prove that $U_1 + \dots + U_m$ is invariant under T.

Proof.

$$T(U_1 + \dots + U_m) = T(U_1) + \dots + T(U_m)$$
$$T(U_1) \subset U_1 \subset U_1 + \dots + U_m$$
$$\dots$$

$$T(U_m) \subset U_m \subset U_1 + \cdots + U_m$$

Since $U_1 + \cdots + U_m$ is still a subspace, $T(U_1 + \cdots + U_m) \subset U_1 + \cdots + U_m$. \square

Suppose $T \in \mathcal{L}(V)$. Prove that the intersection of every collection of subspaces of V that are invariant under T is invariant under T.

Proof. Every invariant subspace contains $\{0\}$, and also which is the smallest one. Hence, the intersection is $\{0\}$ and is trivially invariant under T.

Problem: 6

Prove or give a counterexample: if V is a finite-dimensional vector space and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Proof. Because every operator on V leaves $\{0\}$ invariant, the question turns to prove the existence of an operator under which only $\{0\}$ and V is invariant.

The case where $\dim V \leq 1$ is trivial. Suppose $\dim V \geq 2$. We could always construct such an operator U. Suppose there exists an invariant subspace U_1 of V under an operator T that is neither $\{0\}$ nor V for which $\dim U_1 < \dim V$. Define T which rotates U_1 to W, where $W \oplus U_1 = V$. $\forall u \in U_1, T(u)$ have some component in W, which is not in U_1 . Thus, U is not invariant under U, which is a contradiction. Therefore, $U = \{0\}$ or U = V.

Problem: 10

Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$$

- (a) Find all Eigenvalues and eigenvectors of T.
- (b) Find all invariant subspaces of T.

Proof. (a) *Proof.* the eigenvalues and the corresponding eigenvectors are i and $(0, \ldots, x_i, \ldots, 0)$

(b) *Proof.* The invariant subspaces are $\{0\}$, \mathbb{F}^n , and the subspaces spanned by the eigenvectors.

Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbb{R}))$ by

$$(Tp)(x) = xp'(x)$$

for all $x \in \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

Proof.

$$\lambda p(x) = Tp(x)$$

$$\lambda a_4 x^4 + \lambda a_3 x^3 + \lambda a_2 x^2 + \lambda a_1 x + \lambda a_0 = x(4a_4 x^3 + 3a_3 x^2 + 2a_2 x + a_1)$$

$$= 4a_4 x^4 + 3a_3 x^3 + 2a_2 x^2 + a_1 x$$

The eigenvalues and eigenvectors are i and ix^i respectively.

Problem: 13

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in F$. Prove that there exists $\alpha \in \mathbb{F}$ such that $|\alpha - \lambda| < \frac{1}{1000}$ and $T - \alpha I$ is invertible.

Proof. We only need to make α not be an eigenvalue of T. We could achieve this by the following procedure: suppose λ is an eigenvalue of T, then $T - \lambda I$ is not invertible. We could then choose $\alpha = \lambda + \frac{1}{1000+i}$, where $i \in \{1, \ldots, \dim V + 1\}$, which is not an eigenvalue of T.

Problem: 14

Suppose $V = U \oplus W$, where U and W are nonzero subspaces of V. Define $P \in \mathcal{L}(V)$ by P(u+w) = u for $u \in U$ and $w \in W$. Find all eigenvalues and eigenvectors of P.

Proof. The eigenvalues are 1 and 0, and the eigenvectors are u and w respectively.

Problem: 15

Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible.

- (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
- (b) What is the relationship between the eigenvectors of T and those of $S^{-1}TS$?
- (a) *Proof.* Let λ be a eigenvalue of T and v be the corresponding eigenvector. Then $T(v) = \lambda v$. Now we will verify that λ is also an eigenvalue of $S^{-1}TS$.

 $S^{-1}(T)S(S^{-1}(v)) = S^{-1}(\lambda v) = \lambda S^{-1}(v)$ since S is invertible. Therefore, eigenvalue for T is also an eigenvalue of $S^{-1}TS$. Similarly, let λ be an eigenvalue of $S^{-1}TS$ and v be the corresponding eigenvector such that $S^{-1}TS(v) = \lambda v$. Notice that $S(S^{-1}TS)S^{-1} = T$. Hence, an eigenvalue for $S^{-1}TS$ is also an eigen value for T. Therefore, the eigenvalues are the same.

(b) *Proof.* The eigenvectors of $S^{-1}TS$ are $S^{-1}v$.

Problem: 16

Suppose V is a complex vector space, $T \in \mathcal{L}(V)$, and the matrix of T with respect to some basis of V contains only real entries. Show that if λ is an eigenvalue of T, then so is $\bar{\lambda}$.

Proof. Suppose λ is an eigenvalue of T,

Problem: 18

Show that the operator $T \in \mathcal{L}(\mathbb{C}^{\infty})$ defined by

$$T(z_1, z_2, \ldots) = (0, z_1, z_2, \ldots)$$

has no eigenvalues.

Proof. Suppose λ is an eigenvalue of T, and $(0, z_1, z_2, \ldots)$ be the corresponding eigenvector. Then $T(z_1, z_2, \ldots) = \lambda(0, z_1, z_2, \ldots)$. This implies that $z_1 = 0$, and $z_2 = \lambda z_1 = 0$, and so on. Therefore, the eigenvector is $(0, 0, 0, \ldots)$, which is not an eigenvector.

Problem: 19

Suppose n is a positive integer and $T \in \mathcal{L}(\mathbb{F}^n)$ is defined by

$$T(x_1,...,x_n) = (x_1 + \cdots + x_n,...,x_1 + \cdots + x_n)$$

in other words, T is the operator whose matrix (with respect to the standard basis) consists of all 1's. Find all eigenvalues and eigenvectors of T.

Proof. The eigenvalues are n and 0, and the eigenvectors are (1, ..., 1), and $\{(x_1, ..., x_n) \in \mathbb{F}^n / \{0\} : x_1 + \dots + x_n = 0\}$ respectively.

TODO: Sec.A 20 and beyond

B: Eigenvectors and Upper-Triangular Matrices

Problem: 1

Suppose $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$

(a) Prove that I - T is invertible and that

$$(I-T)^{-1} = I + T + \dots + T^{n-1}.$$

- (b) Explain how you would guess the formula above.
- (a) *Proof.* Notice that

$$(I-T)(I+T+\cdots+T^{n-1})=(I+T+\cdots+T^{n-1})(I-T)=I-T^n=I$$

(b) Proof.

Problem: 2

Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I)=0. Suppose λ is an eigenvalue of T. Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$

Proof. Suppose (T-2I)(T-3I)(T-4I)=0, this implies that T is upper triangular. Therefore, the eigenvalues are either 2, 3, or 4.

Problem: 3

Suppose $T \in \mathcal{L}(V)$ and $T^2 = I$ and -1 is not an eigenvalue of T. Prove that T = I.

Proof. Suppose $T^2 = I$. Following from $T^2 * T = T$, we have $T^{2n} = I$. Now if $T \neq I$, then a matrix of T with respect to some basis which is upper triangular has eigenvalues 1 and -1. This is a contradiction.

Problem: 4

Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{Range } P$.

Proof. $P^2 = P$ implies that P is invariant under V. Therefore, $V = \text{null } P \oplus \text{Range } P$.

Suppose $S,T\in\mathcal{L}(V)$ and S is invertible. Suppose $p\in\mathcal{P}(\mathbb{F})$ is a polynomial. Prove that

$$p(STS^{-1}) = Sp(T)S^{-1}$$

Proof. From the properties of polynomials, we have

$$p(STS^{-1}) = a_0I + a_1STS^{-1} + \dots + a_n(STS^{-1})^n$$

$$= a_0I + a_1STS^{-1} + \dots + a_nSTS^{-1}STS^{-1} \dots STS^{-1}$$

$$= a_0I + a_1STS^{-1} + \dots + a_nST^nS^{-1}$$

$$= Sp(T)S^{-1}$$

Problem: 6

Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V invariant under T. Prove that U is invariant under p(T) for every polynomial $p \in \mathcal{P}(\mathbb{F})$

Proof. From the properties of polynomials, we have

$$p(T)(U) = a_0 I + a_1 T + \dots + a_n T^n(U)$$

= $a_0 I(U) + a_1 T(U) + \dots + a_n T^n(U)$
= U

Problem: 7

Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigenvalue of T^2 if and only if 3 or -3 is an eigenvalue of T.

Proof. The upper triangle matrix of T^2 with respect to some basis has 9 on the diagonal, namely eigenvalue, therefore, the eigenvalues of T are $\sqrt{9} = \pm 3$

Problem: 8

Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -1$.

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $v \in V$ with $v \neq 0$. Let p be a nonzero polynomial of smallest degree such that p(T)v = 0. Prove that every zero of p is an eigenvalue of T.

Proof. Suppose $\lambda \in \mathbb{F}$ is a zero of p. Then by the fundamental theorem of algebra, we have $p(x) = (x - \lambda)q(x)$, where q(x) is a polynomial of degree n - 1. Therefore, $p(T)v = (T - \lambda I)q(T)v = 0$. Since p is of smallest degree, $q(T)v \neq 0$. Hence, λ is an eigenvalue of T.

Problem: 10

Suppose $T \in \mathcal{L}(V)$ and v is an eigenvetor of T with eigenvalue λ . Suppose $p \in \mathcal{P}(\mathbb{F})$. Prove that $p(T)v = p(\lambda)v$

Proof.

$$p(T)v = a_0v + a_1Tv + \dots + a_nT^nv$$

= $a_0v + a_1\lambda v + \dots + a_n\lambda^n v$
= $p(\lambda)v$

Problem: 11

Suppose $\mathbb{F} = \mathbb{C}$, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbb{C})$ is a polynomial, and $\alpha \in \mathbb{C}$. Prove that α is an eigenvalue of p(T) if and only if $\alpha = p(\lambda)$ for some eigenvalue λ of T.

Proof. Suppose α is an eigenvalue of p(T), we have $p(T) = (T - \lambda I)q(T)$. \square

C: Eigenspaces and Diagonal Matrices

Problem: 1

Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V = \text{null } T \oplus \text{Range } T$.

Proof. Since T is diagonalizable, V has a basis of eigenvectors of T. Therefore, $V = \text{null } T \oplus \text{Range } T$.

Problem: 2

Prove the converse of the statement in the exercise above or give a counterexample to the converse.

Proof.

Problem: 3

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that the following are equivalent:

- (a) $V = \text{null } T \oplus \text{range } T$
- (b) V = null T + range T
- (c) $\operatorname{null} T \cap \operatorname{range} T = \{0\}$

Proof. (a) \iff (b): This is trivial.

(b) \rightarrow (c): Suppose V = null T + range T. By Theorem, we have

$$\dim V = \dim(\operatorname{null} T + \operatorname{range} T)$$

$$= \dim \operatorname{null} T + \dim \operatorname{range} T + \dim(\operatorname{null} T \cap \operatorname{range} T)$$

Problem: 4

Give an example to show that the exercise above is false without the hypothesis that V is finite-dimensional.

Proof.

Problem: 5

Suppose V is a 1finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Prove that T is diagonalizable if and only if

$$V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I)$$

for every $\lambda \in \mathbb{C}$

Proof. Suppose T is diagonalizable, the eigenvectors of T form a basis of V. This implies that $T - \lambda I$ has same dimension to V. That is, $V = \text{null}(T - \lambda I) \oplus \text{range}(T - \lambda I)$.

Problem: 6

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, and $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.

Proof. Since S and T have the same eigenvectors. Then S and T are diagonalizable, and this implies that ST = TS.

Problem: 7

Suppose $T \in \mathcal{L}(\mathbb{F}^5)$ and dim E(8,T)=4. Prove that T-2I or T-6I is invertible.

Proof. Suppose dim E(8,T)=4, then we have 4 independent eigenvectors of T with eigenvalue 8. And the diagonal matrix will have 4 8's on the diagonal. Therefore, Suppose T-2I or T-6I is not invertible, that is, 2 or 6 is an eigenvalue of T. the upper-triangular matrix of T will have 2 or 6 on the diagonal since dim $T \leq 5$, which is a contradiction.

Problem: 9

Suppose $T\in\mathcal{L}(V)$ is invertible. Prove that $E(\lambda T)=E(\frac{1}{\lambda},T^{-1})$ for every $\lambda\in\mathbb{F}$ with $\lambda\neq0$.

 \square