Catabolism

Lecture 9

Cellular Respiration

Schematic of catabolism

Carbohydrate Digestion and Catabolism

Overview of Carbohydrate Digestion and Catabolism

Carbohydrates

- •Carbohydrates are composed of carbon and water and have a composition of $(CH_2O)_n$.
- •The major nutritional role of carbohydrates is to provide energy and digestible carbohydrates provide **4 kilocalories per gram**.

Simple Sugars

Monosaccharides

- Glucose
- Mannose
- Fructose
- Galactose

Disaccharides

- Lactose : Glucose + Galactose
- Maltose : Glucose + Glucose
- Sucrose : Glucose + Fructose

Complex carbohydrates

- Oligosaccharides
- Polysaccharides
 - Starch
 - Glycogen
 - Cellulose (Dietary fiber)

Starch

Major storage carbohydrate in higher plants

Amylose – long straight glucose chains (a1-4)

Amylopectin – branched every 24-30 glucose residues (a 1-6)

Provides 80% of dietary calories in humans worldwide

Glycogen

- Major storage carbohydrate in animals
- Long straight glucose chains
 (α 1-4)
- Branched every 4-8 glucose residues (α 1-6)
- More branched than starch
- Less osmotic pressure
- Easily mobilized

Stage 1: Digestion of Carbohydrates

In Stage 1, the digestion of carbohydrates

- Begins in the mouth where salivary amylase breaks down polysaccharides to smaller polysaccharides (dextrins), maltose, and some glucose.
- Continues in the small intestine where pancreatic amylase hydrolyzes dextrins to maltose and glucose.
- Hydrolyzes maltose, lactose, and sucrose to monosaccharides, mostly glucose, which enter the bloodstream for transport to the cells.

13

Stage 2: Glycolysis

Stage 2: Glycolysis

- Is a metabolic pathway that uses glucose, a digestion product.
- Degrades six-carbon glucose molecules to three-carbon. pyruvate molecules.
- Is an anaerobic (no oxygen) process.

KREBS Krebs Cycle **OOO** Pyruvic acid CYCLE NAD' KREBS CYCLE **PRODUCES** NADH -A CoA Acetyl-CoA Coenzyme A NADH NAD+ FADH₂ NAD+ FAD 3 Energy NADH Extraction 00000 compound 5-carbon compound ADP NADH NAD+

Cell Respiration is separated into 3 stages

GLYCOLYSIS

KREBS CYCLE

ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION

Energy/electrons are transferred from glucose to convert NAD+ to NADH, which is used in the ETC to make ATP

Nutrition and digestion

Digestion of Carbohydrates

Digestion of Carbohydrates

- Monosaccharides
 - Do not need hydrolysis before absorption
 - Very little (if any) in most feeds
- Di- and poly-saccharides
 - Relatively large molecules
 - Must be hydrolyzed prior to absorption
 - Hydrolyzed to monosaccharides

Only monosaccharides can be absorbed

α and β glucose ring structures. These two interconvertible forms of glucose differ in the placement of the hydroxyl group (highlighted in blue) attached to the number 1 carbon.

Starch: Amylose and Amylopectin

Starch is synthesised in plant in two main compounds, amylose and amylopectin. These types of starch have quite different structures, and this affects the rate of digestion, and can have a profound affect on the glycaemic index of the food containing the starch.

Amylose

Amylose is structured as straight chains of glucose units. Glucose is hydrolysed one at a time from the open ends during digestion. This produces a slow digestion rate.

Amylopectin

Amylopectin is a branched structure, similar to animal glycogen. The branched structure allows more than one glucose to be hydrolysed at a time, thus increasing the rate of digestion significantly.

Legumes contain a high content of amylose which may explain their slow rate of digestion. However, there may be other reasons to explain why legumes are resistant to digestion, including a high protein content and as the presence of enzyme inhibitors.

Amylose and amylopectin

- Two different glucose polysaccharides can be isolated from most starches: amylose and amylopectin.
- Amylose is a straight chain glucose polymer and usually accounts for 15-20% of the starch.
- Amylopectin is a highly branched glucose polymer and accounts for about 80-85% of the starch.

Amylose and amylopectin

- The glycosidic linkages in amylose are α 1-4, but in amylopectin they are α 1-4 and α 1-6.
- These alpha linkages can be broken down in the human digestive tract by the enzyme amylase.
- Starches contained in potatoes, rice, corn, wheat, etc. are major food sources.

Carbohydrate Digestion

Mouth

Salivary amylase

- Breaks starches down to maltose
- Plays only a small role in breakdown because of the short time food is in the mouth
- Ruminants do not have this enzyme
- Not all monogastrics secrete it in saliva

Stomach

- Not much carbohydrate digestion
- Acid and pepsin to unfold proteins
- Ruminants have forestomachs with extensive microbial populations to breakdown and anaerobically ferment feed

Digestion in Small Intestine

 Digestion mediated by enzymes synthesized by cells lining the small intestine (brush border)

Disaccharides Brush Border Enzymes Monosaccharides

* Exception is β -1,4 bonds in cellulose

Small intestine

Portal for transport of virtually all nutrients Water and electrolyte balance

Enzymes associated with intestinal surface membranes

- Sucrase
- α dextrinase
- Glucoamylase (maltase)
- Lactase
- peptidases

Digestion in Small Intestine

* Ruminants do not have sucrase

* Poultry do not have lactase

Carbohydrate Digestion

Pancreas

- Pancreatic amylase
 - Hydrolyzes alpha 1-4 linkages
 - Produces monosaccharides, disaccharides, and polysaccharides
 - Major importance in hydrolyzing starch and glycogen to maltose

Polysaccharides — Amylase — Disaccharides

Digestion in Large Intestine

- Carnivores and omnivores
 - Limited anaerobic fermentation
 - Bacteria produce small quantities of cellulase
 - SOME volatile fatty acids (VFA) produced by microbial digestion of fibers
 - Propionate
 - Butyrate
 - Acetate

Overview Monogastric Carbohydrate Digestion

In the **monogastric** diet, starch is the primary **carbohydrate**

Location	Enzymes	Form of Dietary CHO
Mouth	Salivary Amylase	Starch Maltose Sucrose Lactose
Stomach	(amylase from saliva)	Dextrin→Maltose ↓ ↓
Small Intestine	Pancreatic Amylase	Maltose
	Brush Border Enzymes	Glucose Fructose Galactose + + + Glucose Glucose Glucose
Large Intestine	None	Bacterial Microflora Ferment Cellulose

Small Intestine Monosaccharides Carbohydrates **Active Portal Vein Transport** Distributed to Liver tissue through circulation

Digestion and Absorption

Microbial Populations

- Cellulolytic bacteria (fiber digesters)
 - Produce cellulase cleaves β1→4 linkages
 - Primary substrates are cellulose and hemicellulose
 - Prefer pH 6-7
 - Produce acetate, propionate, little butyrate, CO₂
 - Predominate in animals fed roughage diets

Summary of Carbohydrate in Monogastrics

- Polysaccharides broken down to monosaccharides
- Monosaccharides taken up by active transport or facilitated diffusion and carried to liver
- Glucose is transported to cells requiring energy
 - Insulin influences rate of cellular uptake

Glycogen Metabolism

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Regulation of Glycolysis and Gluconeogenesis

Regulation occurs as

- High glucose levels and insulin promote glycolysis.
- Low glucose levels and glucagon promote gluconeogenesis.

Utilization of Glucose

Glucose

- Is the primary energy source for the brain, skeletal muscle, and red blood cells.
- Deficiency can impair the brain and nervous system.

AEROBIC RESPIRATION -- SUMMARY

End products of glycolysis

- In cells with mitochondria & an adequate supply of oxygen (<u>Aerobic glycolysis</u>)
 - Pyruvate: enters the mitochondria & is converted into acetyl CoA.
 Acetyl CoA enters citric acid cycle (Krebs cycle) to yield energy in the form of ATP
 - NADH: utilizes mitochondria & oxygen to yield energy
- In cells with no mitochondria or adequate oxygen (or Both)
 (Anaerobic glycolysis)

Lactate: formed from pyruvate (by utilizing NADH)

Pathways for Pyruvate

Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

Basic overview of processes of ATP production extracellular surface glucose cell membrane intracellular surface glucose glycolysis 2 ATP oxidative pyruvate phosphorylation outer mitochondrial membrane pyruvate tricarboxylic NAD+ acid cycle matrix 2 ATP NADH inner membrane space mitochondrion inner mitochondrial membrane

Citric Acid Cycle CYCLE - SUMMARY

Krebs cycle

Step One: Generating a Proton Motive Force (PMF) High H+ Concentration NADH Low H+ Concentration

High energy electrons released by hydrogen carriers are shuttled through the electron transport chain. The released energy is used to translocate H⁺ ions from the matrix, creating an electrochemical gradient

Q: cytochrome c – oxidoreductase

- 1. Protons are moved across the membrane, from the cytosol to the intermembrane space.
- 2. Electrons are transported along the membrane, through a series of protein carriers depicted as "Q" and "cyt C" in the diagram.
- 3. **Oxygen is the final electron acceptor**, combining with electrons and H+ ions to produce water.

Summary of Cellular Respiration p.16			
Reaction	Location	Purpose	ATP YIELD
Glycolysis	CYTOPLASM	SPLIT Glucose into 2 Pyruvate	2 ATP
Kreb Cycle	MATRIX	USE PYRUVATE YIELDS CO2 FILLS ELECTRON CARRIERS	2 ATP
Electron Transport Chain	CRISTAE INNER MEMBRANE	CONVERT ELECTRONS TO ATP, O2 accepts electrons = WATER	32 ATP