Enoncé

EXERCICE N°1 (6 points)

Dans la figure ci-contre, ABCD est un parallélogramme de centre ω et les triangles ABO $_1$, BCO $_2$, CDO $_3$ et DAO $_4$ sont des triangles rectangles isocèles de sommets principaux respectifs O $_1$, O $_2$, O $_3$ et O $_4$. On suppose que le

plan est orienté et que $(\overrightarrow{O_1}A, \overrightarrow{O_1}B) \equiv \frac{\pi}{2}[2\pi]$

On désigne par R_1 , R_2 , R_3 et R_4 les rotations d'angle P/2 et de centre respectifs O_1 , O_2 , O_3 et O_4 .

- 1) a- Déterminer $(R_2 \circ R_1)$ (A); $(R_3 \circ R_2)$ (B) et $(R_4 \circ R_3)$ (C).
 - b- Montrer que les applications R₂0R₁, R₃oR₂, R₄oR₃ sont toutes les trois égales à une même application que l'on déterminera et que l'on désigne par f.
- 2) a-Montrer que $R_3(R_2(O_1))=R_2(O_1)$ et déterminer $f(O_1)$
 - b- Montrer que $f(O_2)=O_4$.
 - c- Quelle est la nature du quadrilatère O₁O₂O₃O₄ ?
- 3) Soit Δ la médiatrice du segment [AB] et S_{Λ} la symétrie orthogonale d'axe Δ . On pose $g=R_2\circ S_{\Lambda}$.
 - a- Déterminer g(A) et g(O₁)
 - b- Montrer que g n'est pas une symétrie axiale et en déduire la nature de g.
 - c- Construire le point $\omega'=g(\omega)$. Déterminer les éléments caractéristiques de g.

EXERCICE N°2 (4 points)

Une urne contient quatre boules indiscernables au toucher. Deux boules sont blanches et portent respectivement les nombres 1 et 2, les deux autres boules sont noires et portent respectivement les nombres 1 et 2.

Une épreuve consiste à tirer successivement deux boules de la manière suivante : on tire une première boule

- Si elle est blanche, on la remet dans l'urne et on tire une deuxième boule.
- Si elle est noire, on ne la remet pas dans l'urne et on tire une deuxième boule.
- 1) Soit X la variable aléatoire qui, à chaque épreuve, associe le nombre de fois où l'on obtient une boule blanche.
 - a- Donner la loi de probabilité de X
 - b- Calculer son espérance mathématique.
- 2) Soit Y la variable aléatoire qui, à chaque épreuve, associe le produit des nombres marqués sur les deux boules obtenues. Donner la loi de probabilité de Y.

PROBLEME (10 points)

- A- Soit f la fonction définie sur]0,+ ∞ [par f(x)=Log(1+ $\frac{1}{x}$) - $\frac{1}{x}$ + $\frac{1}{4x^2}$.
 - Etudier les variations de f et tracer sa courbe représentative (C) dans un repère orthonormé
 (O, i, i).
 - 2) a- Montrer qu'il existe un réel α unique tel que : 0< $\!\alpha\!<\!1$ et $f(\alpha)\!=\!0$
 - b- En déduire le signe de f(x) pour $x \ge \alpha$.
 - 3) Soit un réel λ tel que $\alpha \le \lambda$. On désigne par $A(\lambda)$ l'aire de la partie du plan limitée par la courbe (C), l'axe des abscisses et la droite d'équation $x = \lambda$.
 - a- Calculer $A(\lambda)$
 - b- Trouver la limite de $A(\lambda)$ lorsque λ tend vers $+\infty$.

- B- Dans cette partie, n désigne un entier naturel non nul. On se propose de déterminer la limite de la suite (u_n) définie par $u_n = \frac{n^n e^{-n}}{n!}$
- 1) Démontrer, en utilisant les variations de la fonction f, que :

$$Log (n+1)-Logn \le \frac{1}{n} - \frac{1}{4n^2}$$

et en déduire que :
$$(1+\frac{1}{n})^n \le e^{1-\frac{1}{4n}}$$

2) Démontrer alors que : $u_{n+1} \le u_n e^{-\frac{1}{4n}}$

et en déduire que :
$$u_{n+1} \le u_1 e^{-\frac{1}{4} \sum_{k=1}^{n} \frac{1}{k}}$$

3) Démontrer en utilisant la relation (1) de la première question de la partie B du problème, que :

$$Log(n+1) \le \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{4} \sum_{k=1}^{n} \frac{1}{k^2}$$

et en déduire que :
$$u_{n+1} \le u_1 e^{-\frac{1}{4}Log(n+1)}$$

4) Montrer que la suite (u_n) est convergente et calculer sa limite lorsque n tend vers $+\infty$.