

S P E C I F I C A T I O N

Docket No. 93-C-07

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN that I, William Carl Slemmer, a citizen of the United States of America, residing in the State of Texas, have invented new and useful improvements in a

DIRECT CURRENT SUM BANDGAP VOLTAGE COMPARATOR

of which the following is a specification:

842-101
056301

BACKGROUND OF THE INVENTION

Field of the Invention:

The present invention relates to integrated circuits and in particular to MOS integrated circuits. Still more particularly, the present invention relates to bandgap reference circuits in insulated gate FET semiconductor integrated circuits.

2. Description of the Prior Art:

In some situations it is desirable to provide retention of data in integrated circuits such as memory devices. A number of circuits are commercially available for retaining data in SRAMs when power is removed. These devices are often known as "zero power circuits". Typically, in a zero power circuit, the contents of the circuit are protected in the event that the power supply voltage to that circuit drops below some predetermined or preselected threshold voltage. This protection may be accomplished by switching the circuit from the primary power supply to a secondary power supply, typically an integral battery, when the voltage of the primary power supply drops below the selected threshold voltage. Secondary or backup power supplies are well known, as may be seen in United States Patent Nos. 4,381,458 and 4,645,943.

Power controller circuits exist, which provide automatic sensing of a primary power source voltage. These power controller circuits provide automatic switching to a secondary power source when the primary power source voltage drops below a predetermined threshold voltage. An example of one such system may be found in United States Patent No. 5,121,359, which describes a programmable logic device with a backup power supply that is automatically provided when a power loss at an input pin is detected. United States Patent No. 4,654,829 discloses a portable

1 non-volatile memory module, using a comparator and
2 switching circuitry to switch between a primary power
3 supply and a secondary power supply, such as a battery
4 power supply.

5 Past approaches in setting or selecting the voltage
6 level in a zero power circuit has involved the use of many
7 bipolar devices, large resistors, oscillators, switched
8 capacitors, autozero devices, etc. A bandgap reference
9 circuit is one circuit that may be used to set that voltage
10 level. One drawback with a typical bandgap reference
11 circuit is that a large number of devices are needed for
12 implementation. As a result, a large amount of area on a
13 semiconductor chip is required. In addition to the area
14 problem, typical bandgap reference circuits also are fairly
15 sensitive to noise within the circuit. For example, active
16 memory circuits are usually noisy and known bandgap
17 circuits used with active memories circuits are usually
18 sensitive to the noise generated.

19 Therefore it would be desirable to have a circuit that
20 is smaller, simpler, and less sensitive to noise.

SUMMARY OF THE INVENTION

2 The present invention provides a direct current sum
3 bandgap voltage comparator for detecting voltage changes in
4 a power supply. The direct current sum bandgap voltage
5 comparator includes a summing node, current sources, and an
6 indicator circuit. The current sources are connected to
7 the summing node and each current source supplies a current
8 to the summing node. ~~The current sources also are~~
9 ~~connected to a power supply voltage, wherein the current at~~
10 ~~the summing node is equal to zero when the power supply~~
11 ~~voltage is equal to a reference voltage.~~ The indicator
12 circuit has an input connected to the summing node and
13 generates a logical signal at an output that is responsive
14 to ^{Voltage} changes in the summing node.
A

15 The direct current sum bandgap voltage comparator may
16 be used in a zero power circuit also including a circuit,
17 in which power is to be maintained, and a switching circuit
18 for providing power to the first circuit from a primary
19 power supply and a secondary power supply. The switching
20 circuit is connected to the output of the indicator
21 circuit, wherein power from the primary power supply is
22 supplied to the first circuit if the logical signal
23 indicates that the power supply voltage is equal to or
24 greater than the preselected voltage, and power from the
25 secondary power supply is supplied to the first circuit if
26 the power supply voltage is less than the preselected
27 voltage.

1

BRIEF DESCRIPTION OF THE DRAWINGS

2 The novel features believed characteristic of the
3 invention are set forth in the appended claims. The
4 invention itself however, as well as a preferred mode of
5 use, and further objects and advantages thereof, will best
6 be understood by reference to the following detailed
7 description of an illustrative embodiment when read in
8 conjunction with the accompanying drawings, wherein:

9 **Figure 1** is a block diagram of a zero power circuit
10 according to the present invention;

11 **Figure 2** is a schematic diagram of a direct current sum
12 bandgap voltage comparator according to the present
13 invention; and

14 **Figure 3** is a schematic diagram of an alternative direct
15 current sum bandgap voltage comparator according to the
16 present invention.

1

DESCRIPTION OF THE PREFERRED EMBODIMENT

2 Referring now to **Figure 1**, a block diagram of a zero
3 power circuit **2** on a chip is illustrated. Zero power
4 circuit **2** is connected to a primary power supply **4** and has
5 a secondary power supply **6**, located within an integral
6 package. Secondary power supply **6** is typically a battery
7 constructed in the plastic package housing the chip. Other
8 secondary power supplies, such as, for example, a battery
9 located outside the package may also be used.

10 Zero power circuit **2** includes a switching circuit **8**,
11 a memory **10**, and a direct current sum bandgap voltage
12 (DCSBV) comparator **12** constructed according to the present
13 invention. Switching circuit **8** is connected to primary
14 power supply **4** and secondary power supply **6**. This circuit
15 controls the power supplied to memory **10** and may include
16 logic to provide for continuous supply of power to memory
17 **10** during switching back and forth between primary power
18 supply **4** and secondary power supply **6**.

19 DCSBV comparator **12** has an input connected to primary
20 power supply **4** and output connected to switching circuit **8**.
21 DCSBV comparator **12** has an output connected to switching
22 circuit **8** to indicate when the primary power supply voltage
23 is at or above a preselected voltage or drops below the
24 preselected voltage.

25 Those of ordinary skill in the art will realize that
26 the zero power circuit **2** may include additional circuits
27 and that various circuits may be used in place of memory
28 **10**. Switching circuit **8** may be implemented with a number
29 different designs known to those of ordinary skill in the
30 art.

1 A DCSBV comparator may be constructed using four
2 current sources, ~~each of which generates a current~~, representing the terms
3 of a bandgap circuit:
A A A

$$(1) K_1(V_{CC} - V_T) + K_1 V_T = K_2 V_{BE} + K_3 (kT/q)$$

4
5 where V_{CC} is the power supply voltage, V_T is the absolute
6 value of the threshold voltage, and V_{BE} is the base emitter
7 voltage. kT/q is equal to the thermal voltage, where k is
8 Boltzman's constant, T is the temperature in kelvin, and q
9 is the electronic charge. Voltages ($V_{CC} - V_T$), V_T , V_{BE} , and
10 kT/q ~~are~~ may be converted to currents in four current mirror
11 circuits. Other equivalent forms of this equation may be
12 implemented according to other embodiments of the present
13 invention.

14 The four current sources may be provided using current
15 mirrors A-D, as illustrated in the schematic diagram of a
16 current sum bandgap voltage (DCSBV) comparator in **Figure 2**.

17 Current mirror A generates a current:

18 *PROX*

$$(2) I_A \propto \frac{kT}{q} \frac{1}{R_1}$$

19 Current mirror B generates a current:

20 *PROX*

$$(3) I_B \propto \frac{V_{BE}}{q} \frac{1}{R_2}$$

21 Current mirror C generates a current:

22 *PROX*

$$(4) I_C \propto V_T \frac{1}{R_3}$$

23 while current mirror D generates a current:

24 *PROX*

$$(5) I_D \propto (V_{CC} - V_T) \frac{1}{R_4}$$

25 The constants K_1-K_3 from equation (1) may be set by
26 resistors and scaled transistors in the current mirrors.

A
A
A

1 The currents contributed by each of the current
2 mirrors, A-D, are summed at a summing node, referred to as
3 node V_{SUM} . ~~If the currents do not sum or add up to zero at~~
4 ~~node V_{SUM} , the node will swing to the edge of saturation on~~
~~mirror or~~ ^{The} ~~corresponding to~~
5 ^{or currents} ~~current mirrors supplying the larger current~~ Node
6 V_{SUM} is connected to two complementary metal-oxide
7 semiconductor (CMOS) inverters 20 and 22 formed by
8 transistors C1-C4, where transistors C1 and C3 are p-
9 channel metal-oxide semiconductor field effect transistors
10 (MOSFETs) and transistors C2 and C4 are n-channel MOSFETs.
11 Inverters 20 and 22 are used as detectors for node V_{SUM} and
12 provide for a rail-to-rail voltage swing at output 24 of
13 the DCSBV comparator.

14 Current mirror circuit A is constructed from sized
15 transistors M1-M4, T1, B1, and B2 and resistor R₁.
16 Transistors M1-M4, and T1 are MOSFETs. Transistors M1 and
17 M2 are p-channel MOSFETs, while transistors M3, M4, and T1
18 are n-channel MOSFETs. Transistors B1 and B2 are bipolar
19 junction transistors. The collectors and bases of
20 transistors B1 and B2 are connected to power supply voltage
21 V_{cc}; the sources of transistors M3 and M4 are connected to
22 power supply voltage GND, which is connected to ground.
23 Resistor R₁ has a one end connected to the emitter of
24 transistor B2 and the other end connected to the source of
25 transistor M2.

26 Transistors M1-M4, T1, B1, and B2 are sized
27 transistors and are employed to obtain different current
28 densities in different parts of current mirror circuit A.
29 Transistors M1 and M3 are sized to provide a current flow
30 that is ten times the current generated by transistors M2
31 and M4. The emitter area of transistor B2 is twice that of
32 transistors B1. The voltage across resistor R₁ provides a
33 current. The sizing of the transistors and the resistor R₁
34 is selected to generate a current of:

T90X
1

$$(6) \quad I = \frac{kT}{qR_1} \ln\left(\frac{J_1}{J_2}\right)$$

2 through transistor **M4**, where J_1 is the current density of
3 transistor **B1** and J_2 is the current density of transistor
4 **B2**.

5 Transistor **T1** is designed to generate a current that
6 is N times the current flowing through transistor **M4**. As
7 a result, the current contributed by current mirror **A** is:

T91Y
8

$$(7) \quad I_A = \frac{NkT}{q\rho_s r_1} \ln\left(\frac{J_1}{J_2}\right)$$

9 where R_1 has been replaced by sheet resistance ρ_s and the
10 number of squares r_1 . In the preferred embodiment, the
11 sheet resistance ρ_s for all of the resistors in the circuit
12 will be the same. Therefore, the constant K_3 in equation
13 (1) is as follows:

T92X
14

$$(8) \quad K_3 = \frac{N}{r_1} \ln\left(\frac{J_1}{J_2}\right)$$

15 By scaling the current in the left and right legs of
16 current mirror **A**, the need for a large number of bipolar
17 structures (i.e., 30 or more) is eliminated.

18 Current mirror circuit **B** includes transistors **M5-M8**,
19 transistor **B3**, and resistor R_2 . Transistors **M5** and **M6** are
20 p-channel MOSFETs, while transistors **M7** and **M8** are n-
21 channel MOSFETs. Transistor **B3** is a bipolar junction
22 transistor.

23 Resistor R_2 has one end connected to the drain of
24 transistor **M5** and a second end connected to power supply
25 voltage V_{cc} . The base and collector of transistor **B3** also
26 are connected to power supply voltage V_{cc} , while the sources

1 of transistors M7 and M8 are connected to power supply
2 voltage GND.

3 Transistors M5-M8 and T2 are sized MOSFETs.
4 Transistors M6 and M8 are scaled to generate a current flow
5 that is one tenth of the current flowing through
6 transistors M5 and M7. The current flowing through
7 transistors M5 and M7 is equal to the current flowing
8 through transistors M2 and M4 in current mirror A.
9 Transistor T2 is constructed to provide a current flow that
10 is M times the current flowing through transistor M7. The
11 voltage V_{BE} is set up by transistor B₃ and resistor R₂ sets
12 up the current; the voltage drop across R₂ is V_{BE} . As a
13 result, current mirror B generates a current:

T10X
14

$$(9) \quad I_B = \frac{MV_{BE}}{\rho_s r_2}$$

15 where ρ_s is the sheet resistance of resistor R₂ and r_2 is the
16 number of squares in resistor R₂. The constant K₂ from
17 equation (1) is defined as:

T10X
18

$$(10) \quad K_2 = \frac{M}{r_2}$$

19 Next, current mirror C includes transistors M9-M15,
20 and T3 and resistor R₃. Resistor R₃ has one end connected
21 to the source of transistor M11 and another end connected
22 to power supply voltage V_{cc}. Transistor M9 has its source
23 connected to power supply voltage V_{cc}, while the sources of
24 transistors M12, M13, and M14 are connected to ground power
25 supply voltage GND. The voltage V_t is set up by transistor
26 M9, while resistor R₃ sets up the current. The voltage drop
27 across R₃ is V_t.

28 Transistors M9-M11, M15, and T3 are p-channel MOSFETs,
29 while transistors M12-M14 are n-channel MOSFETs. These

1 transistors are sized transistors. The current flowing
2 through transistors M11 and M13 is the same as the current
3 flowing through transistors M14 and M15. The current
4 flowing through transistors M11 and M13-M15 is the same as
5 the current flowing through transistor M5 and M7 in current
6 mirror B. Transistors M9, M10, and M12 are sized to
7 provide a current flow that is one tenth of the current
8 flowing through transistors, M11, M13, M14, and M15.
9 Transistor T3 is designed to provide a current flow that is
10 L times the current flowing through transistor M14. Thus,
11 current mirror C generates a current:

T110X
12

$$(11) \quad I_C = \frac{L V_T}{\rho_s r_3}$$

13 where ρ is the sheet resistance of resistor R_3 and r_3 is the
14 number of squares in resistor R_3 . The coefficient K_1 in
15 equation (1) is defined as:

T111X
16

$$(12) \quad K_1 = \frac{L}{r_3}$$

17 for current mirror C.

18 Current mirror D includes transistor M16, transistor
19 T4, and resistor R₄. Both transistors M16 and T4 are p-
20 channel MOSFETs with their sources connected power supply
21 voltage V_{CC} . Resistor R₄ has one end connected to the drain
22 of transistor M16 and a second end connected to power
23 supply voltage GND. Transistor M16 sets up the voltage
24 $V_{CC} - V_T$, while resistor R₄ sets up the current. The voltage
25 drop across R₄ is $V_{CC} - V_T$.

26 Transistors M16 and T4 are scaled transistors.
27 Transistor M16 is designed to provide a current flow that
28 is equal to the current flowing through transistors M14 and
29 M15; transistor T4 is constructed to generate a current

1 that is J times the current flowing through transistor M16.
2 Thus, the current generated by current mirror D is:

T12X
3

$$(13) \quad I_D = \frac{(V_{CC} - V_T) J}{\rho_s r_4}$$

4 where the coefficient K_1 in the current mirror is set as:

T12X
5

$$(14) \quad K_1 = \frac{J}{r_4}$$

6 Since both current mirrors C and D create current
7 contributions that are related to the coefficient K_1 , the
8 current mirrors must be sized according the following
9 relationship:

T12X
10

$$(15) \quad \frac{J}{r_4} = \frac{L}{r_3}$$

A A
A
A
A
A
A

11 As a result, the ~~sum of the currents at node VSUM may~~
12 ~~be~~ set ~~equal to zero~~ by the selection of the sizes and
13 properties of the devices involved in constants $K_1 - K_3$. The
14 voltage at node OUT is set to $V_{CC}/2$ in the depicted circuit
15 when the voltage at VSUM is equal to $V_{CC}/2$, and the power
16 supply voltage V_{CC} is equal to ^{the} selected or threshold
17 voltage. If the current from transistors T1 and T2 is
18 ~~greater~~ than the current from transistors T3 and T4, the
19 voltage at node OUT will swing up to that of power supply
20 voltage V_{CC} . This situation occurs when the power supply
21 voltage V_{CC} is greater than the selected voltage. On the
22 other hand, if the current from transistors T1 and T2 is
23 ~~less~~ than the current from transistors T3 and T4, the
24 voltage at node OUT will swing down to that of power supply
25 voltage GND. This situation occurs when the power supply
26 voltage V_{CC} is less than the selected or threshold voltage.

27 The threshold voltage may be set at a value slightly
28 less than the desired power supply voltage according to the
29 present invention. For example, in a five volt power

1 supply system, the threshold voltage may be set at 4.8
2 volts such that when the power supply is at 5 volts, the
3 output at node OUT will swing up to power supply voltage
4 V_{cc} , 5 volts. If the power supply voltage drops below 4.8
5 volts, the output node OUT will swing down to the ground
6 power supply voltage. Thus, through the selection of
7 constants K_1-K_3 , a voltage may be selected, wherein
8 fluctuations of the power supply voltage V_{cc} below the
9 selected voltage will cause the comparator to indicate that
10 a secondary or backup power supply should be switched to
11 the circuit associated with the comparator.

12 The MOSFETs used in the current mirrors in the
13 depicted circuit may have longer channels than the base
14 technology. For example, in a 0.8 micron device, the
15 transistors used in the current mirrors may have channel
16 lengths from 3 to 6 microns. These longer channels may be
17 used improve the precision of the current supplied by the
18 current mirrors.

19 The scaling of currents in current mirrors A-D may be
20 done in a variety of ways. In accordance with a preferred
21 embodiment of the present invention, one of the transistors
22 is selected as unity. A transistor that is to provide a
23 current N times the current of the unity transistor is
24 replaced with N unity transistors connected in parallel.
25 Those of ordinary skill in the art will realize other
26 methods of scaling currents may be employed.

27 Next, the value of the resistors must match preset
28 ratios when specified, but the actual magnitude of the
29 resistors affects only the power consumption of the
30 circuit.

31 Current mirrors A-D in Figure 1 are an example of one
32 layout of a DCSBV comparator in accordance with a preferred
33 embodiment of the present invention. Other configurations

1 for the current mirrors will be apparent to those of
2 ordinary skill in the art. Other numbers of current mirror
3 layouts may be employed to satisfy equation (1).

4 Referring next to **Figure 3**, a schematic diagram of a
5 DCSBV comparator is illustrated. This comparator is
6 similar to the comparator depicted in **Figure 1** with a few
7 additional circuits. Drain impedance of the current
8 sources may limit the voltage swing in some cases in which
9 the current is limited to low or small changes.
10 Additionally, small current changes may have problems in
11 driving the node capacitance at node **V_{SUM}**, resulting in a
12 slow response.

13 To solve these problems, a cascode stage **24**, well
14 known to those of ordinary skill in the art, may be added
15 the DCSBV comparator between the current sources and node
16 **V_{SUM}**, as depicted in **Figure 2**, to improve the switching
17 speed of the circuit. Cascode stage **24** includes
18 transistors **E1-E6** and resistor **R_x**. Transistors **E1-E3** are p-
19 channel MOSFETs, while transistors **E4-E6** are n-channel
20 MOSFETs. Transistor **E2** has its source connected to power
21 supply voltage **V_{cc}**, while transistor **E6** has its source
22 connected to power supply voltage **GND**. Transistor **E1** has
23 its source connected to the drains of transistors **T3** and
24 **T4**; transistor **E4** has its source connected to the drains of
25 transistor **T1** and **T2**. Transistors **E1** and **E4** have their
26 drains connected to node **V_{SUM}**.

27 In some instances, a selected voltage swing having a
28 range other than that between the power supply voltage **V_{cc}**
29 and power supply voltage **GND** may be desired. A clamping
30 circuit **26**, well known to those of ordinary skill in the
31 art, may be added to provide a bias to set the voltage
32 swing at node **V_{SUM}** between selected or preset voltages.
33 Clamping circuit **26** includes transistors **D1-D4** and inverter
34 **30**. Transistors **D1** and **D2** are n-channel MOSFETs, while

1 transistors D3 and D4 are p-channel MOSFETs. Transistors
2 D1 and D2 have their drains connected to power supply
3 voltage V_{cc} ; transistors D3 and D4 have their drains
4 connected to ground power supply voltage GND. The sources
5 of transistors D2 and D3 are connected to node VSUM. Other
6 clamping circuits other than the one depicted also may be
7 used with the comparator of the present invention.

8 In addition, a hysteresis circuit 28, known to those
9 of ordinary skill in the art, may be used to reduce the
10 susceptibility of the comparator to noise from other
11 components. Hysteresis circuit 28 includes transistors H1-
12 H3. Transistors H1 and H2 are p-channel MOSFETs, and
13 transistor H3 is an n-channel MOSFET. Transistor H1 has
14 its source connected to power supply voltage V_{cc} . The gate
15 of transistor H1 is connected to the gate and source of
16 transistor M16. The gate of transistor H2 is controlled by
17 the output of inverter 34; the gate of transistor H3 is
18 controlled by the output of inverter 32. Inverters 32 and
19 33 are the same as inverters 10 and 12.

20 As a result, a DCSBV comparator provides an indicator
21 for switching between a primary and secondary power supply
22 without requiring a large number of devices for
23 implementation as compared to a typical bandgap reference
24 circuit. The present invention eliminates the need for
25 using a large number of bipolar devices, large resistors,
26 oscillators, switch capacitors, auto zero devices, etc.
27 Through the use of current mirrors, the number of bipolar
28 devices required are reduced. Additionally, sensitivity to
29 noise also may be reduced by using a DCSBV comparator
30 according to the present invention.

31 Although the depicted embodiment employs four current
32 mirrors, other numbers of current mirrors and current
33 mirrors of other designs may be used as long as the
34 implementation of the current mirrors performs the function

1 of summing currents at a node. Additionally, more than one
2 node may be used for summing currents.

3 An example of typical values which can be used to
4 fabricate an operational device are as follows. These
5 numbers assume a typical processing technology, and a
6 desired trip point for the comparator of approximately 4.4
7 volts. The constants K_1 , K_2 , and K_3 , respectively, can be
8 set to the values 2, 7, and 46 by proper selection of the
9 various components and transistor sizes. Transistor design
10 to give current densities of $J_1 = 1.0 \text{ A/cm}^2$ and $\Delta J \leq 0.05$
11 A/cm^2 provides for operation as described above.

12 While the invention has been particularly shown and
13 described with reference to a preferred embodiment, it will
14 be understood by those skilled in the art that various
15 changes in form and detail may be made therein without
16 departing from the spirit and scope of the invention.