FRAMEWORKS

Frameworks	Written Language	CUDA Support	Pretrained Model	Release Year
TensorFlow	C++, Python	Yes	Yes	2015
Keras	Python	Yes	Yes	2015
PyTorch	Python, C	Yes	Yes	2016
Caffe	C++	Yes	Yes	2013
Deeplearning4j	C++, Java	Yes	Yes	2014

Deep Learning Terminology - 1

Gradient Clipping

- Gradient Clipping is one way to solve the problem of exploding gradients.
- Exploding gradients arise in deep networks when gradients associating weights and the net's error become too large.
- Exploding gradients are frequently encountered in RNNs dealing with long-term dependencies.
- One way to clip gradients is to normalize them when the L2 norm of a parameter vector surpasses a given threshhold.

Deep Learning Terminology - 2

GRU (Gated recurrent unit)

- A GRU is a pared-down LSTM. GRUs rely on gating mechanisms to learn longrange dependencies while sidestepping the vanishing gradient problem.
- They include reset and update gates to decide when to update the GRUs memory at each time step.
- GRU is simplified LSTM

Deep Learning Terminology - 3

Word2Vec

- Word2vec is a two-layer neural net that processes text.
- Its input is a text corpus and its output is a set of vectors: feature vectors for words in that corpus.
- While Word2vec is not a deep neural network, it turns text into a numerical form that deep nets can understand