

Dr. D. Y. Patil Group of Institutions' Technical Campus

Dr. D. Y. PATIL SCHOOL OF ENGINEERING Dr. D. Y. Patil Knowledge City, Charholi Bk., Via. Lohegaon, Pune - 412 105.

Department of Electronics and Telecommunication Engineering

Title: To perform gray level and bit plan slicing on image.

Objectives:

- (a) Implement Gray level slicing (intensity level slicing) in to read cameraman image.
- (b) Read an 8-bit image and to see the effect of each bit on the image.
- (c) Read an image and to extract 8 different planes i.e., 'bit plane slicing."

Aim: To perform gray level and bit plan slicing.

Software: Scilab.

Theory:

1. Explain the image operation: Gray Level Slicing

Grey level slicing is equivalent to band pass filtering. It manipulates group of intensity levels in an image up to specific range by diminishing rest or by leaving them alone. This transformation is applicable in medical images and satellite images such as X-ray flaws, CT scan.

Without background

$$s = \begin{cases} L; A \le r \le B \\ 0; otherwise \end{cases}$$

With background

Dr. D. Y. Patil Group of Institutions' Technical Campus Dr. D. Y. PATIL SCHOOL OF ENGINEERING

Dr. D. Y. Patil Knowledge City, Charholi Bk., Via. Lohegaon, Pune - 412 105.

Department of Electronics and Telecommunication Engineering

2. Explain the image operation: Bit Plane Slicing.

Bit plane slicing is a method of representing an image with one or more bits of the byte used for each pixel. One can use only MSB to represent the pixel, which reduces the original gray level to a binary image. The three main goals of bit plane slicing are: Converting a gray level image to a binary image.

and course) Ser

D y facil group
Exposiment No. 8
To penform Image comprossion using DCT
TITUE: To perform image compression voing
O TITLE: 13 PRAFFUME
DCT DCT and IOCT of an Image
DAIM : 10 Kha Di
22.51.20 50.71.80
Software: MATLAS SCILAS
mege compression
Jude combression
1 - 1 - Canopies the
1) lowles Compression: In the type of compression the
1 be con call be con-
Image before compressión. The quality of recovered
1 1) f act reduced
all congression is the type of compression
to made will not be exactly since
other thage before compression, that's why the quality
of mage significantly reduced but this type of
of mage significant bill common miso of image
compression result to very high compression of image
data and is very useful in transmitting image over
ne turion K
3 Det is total use for long data compression because
it has very strong energy compaction ite its large amound
Of Information is stoned in very low frequency component
of a right and rost other frequency having very small data
which can be stored using very loss no, of hits (at most 2 to 3 bits
DYPSOE PUNE

to proform DL5 dransformation of an image, finst we have to botch image information (Pixel value it there of integer having varge 0,255) which we divide in block of 8x8 modring and then we apply discrete count transform on that block of data, after applying ducnote counte transform we will see must it 30-70 date will be in lower frequency Component, for singlicity we took a madrix of size 8x8 havily all value ao 255 (considering êmage to be completely white I and wo are giving to perform 2,1) discrete, come transform on that to observe 5 the cosess , sme and hastely transform are unitary transform Mad utilized sinusoidal basis function as does me fourier transform, the cossis and some transform are not simply the cosine and sine jouth of the Fourier transferm, In fect the come and some para of the fourier transform marvidually are not opmogoral Renction, the hantely transform jointly utilized sine and comme basis Renctions but its coefficients are real number as contrasted. with the fourier transform whose coefficient one in genral complex number. 6) DCT releas to discrete come transform a mathematical transform related to fourier transform A ducaete comme transform (DCT) the 2-D Rinchon 13 given by

	Experiment. No. 9
	To perform Image restoration using wiener
	TITEE: to perform image restoration using wellier filtering
	AIM! To generate degraded image come Croassian Noise and restore the image come weigner. filtering.
	Software: MATLAR SCELAR
	Dimage rostonation is the process of recovering an image that has be of degraded by some knowledge of
	character function to and the additive noise term nay). In in restoration degradation is modelled and its inverse process is applied to recovered the
	oniginal image.
•	Dogradation of filter Rinction (H)
-	Dogradation Restonation
	Ry- Image restonation and Image degradation model.
	DYPSOE: PUNE

	D I YALI Green
the	objective of the inage sustanation a to obtained
ac	estimate of original image from, her by some
14	noulledge of hand a(n,y) we find the appropriate
27	estonation filter so that output image furction
ê	(My) as possible some it is prochedly not possible
土	completely restore the original image
	lenmology;
	g(n,y) = degraded image
	f(n,s) = Input on original image
	P(my) = recovered as restone mage
	n(miy) = additive noise term
 X	In spatial Domain
	g(n,y) = h(n,y) * f(n,y) + n(n,y)
	Where * represent convolution
2	In Fraguery Domain
	1 0 - 1 1 to whom equation
	after taking fourier transform of the above equation
	2 (()) + N((1)) -0
	G(U,V) = H(U,V) f(U,V) + N(U,V) -0 DYPSOE: PUNE
	DYPSOL

wiener filter:
(minimum mean square error Riter) wirner. Pilter
executes the optimal trade of 9t between Riltering
and Nowa smoothing in the blomning smountaneously
wiener filter is real and even
It airimise the oursall magn square error
error (c) - f(ny) - f(ny) - degraded in an
Variance (e2) = E[f(nig) - P(nig)]
DYPSOE