

Seminar II:

Ứng dụng toán tử tuyến tính đa trị trong việc tìm bán kính điều khiển có cấu trúc của hệ chịu đa nhiễu

Nguyễn Đức Hùng-20212498M Phùng Anh Hùng-20212497M Nguyễn Đức Anh-20211315M Tháng 10, 2022

ONE LOVE. ONE FUTURE

Mục lục

Giới thiêu

Giới thiệu Ánh xạ đa trị

Bán kính điều khiển có cấu trúc

Bán kính điều khiển Ví dụ

Đa nhiễu

Bán kính điều khiển dưới đa nhiễu Ví dụ

Tài liêu tham khảo

♦ Hê điều khiển tuyến tính:

$$\dot{x} = Ax + Bu, x \in \mathbb{K}^n, A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times m}, \tag{1}$$

♦ Hệ là điều khiển được

$$rank [A \mid B] = n, (2)$$

Trong đó

$$[A \mid B] = [B \quad AB \quad \cdots \quad A^{n-1}B]. \tag{3}$$

♦ Chiu nhiễu

$$[A, B] \leadsto \left[\tilde{A}, \tilde{B}\right] = [A, B] + [\Delta_1, \Delta_2].$$
 (4)

♦ Khoảng cách đến trang thái không điều khiển được:

$$r_{\mathbb{K}}(A,B) = \inf\{\|\Delta_1, \Delta_2\| : [\Delta_1, \Delta_2] \in \mathbb{K}^{n \times (n+m)},$$

$$[A,B] + [\Delta_1, \Delta_2] \text{ là không điều khiển được}\}. \tag{5}$$

Mục lục

```
Giới thiệu
Giới thiệu
Ánh xạ đa trị
```

Bán kính điều khiển có cấu trúc

Đa nhiễu

Tài liệu tham khảo

(6)

$$\diamond$$
 Ánh xạ đa trị ${\mathcal F}$

$$\mathcal{F} \colon \mathbb{K}^n \rightrightarrows \mathbb{K}^m$$

$$\diamond$$
 Đồ thị của $\mathcal F$

$$\operatorname{gr} \mathcal{F} = \{(x, y) \in \mathbb{K}^n \times \mathbb{K}^m \colon y \in \mathcal{F}(x)\}$$
(7)

 \diamond Miền xác đinh của ${\mathcal F}$

$$\operatorname{dom} \mathcal{F} = \{ x \in \mathbb{K}^n \colon \mathcal{F}(x) \neq \emptyset \}$$
 (8)

 \diamond Nhân của ${\mathcal F}$

$$\ker \mathcal{F} = \{ x \in \operatorname{dom} \mathcal{F} \colon 0 \in \mathcal{F}(x) \}$$
(9)

♦ Chuẩn của ℋ

$$\|\mathcal{F}\| = \sup\left\{\inf_{y \in \mathcal{F}(x)} \|y\| : x \in \operatorname{dom}\mathcal{F}, \|x\| = 1\right\}$$
 (10)

Mục lục 7/3

Giới thiệu

Bán kính điều khiển có cấu trúc Bán kính điều khiển Ví dụ

Đa nhiễu

Tài liệu tham khảo

Nhiễu có cấu trúc

$$[A, B] \leadsto \left[\widetilde{A}, \widetilde{B}\right] = [A, B] + D\Delta E$$
 (11)

Bán kính điều khiển

$$r_{\mathbb{K}}^{D,\mathcal{E}}\left(A,B
ight)=\inf\left\{ \|\Delta\|:\Delta\in\mathbb{K}^{I imes q},\left[\widetilde{A},\widetilde{B}
ight]
ight.$$
 không điều khiển được $ight\}$ (12)

♦ Ánh xa đơn tri

$$W_{\lambda} \colon \mathbb{K}^{m+n} \to \mathbb{K}^{n}$$

$$W_{\lambda}(z) = \begin{bmatrix} A - \lambda I & B \end{bmatrix} z, \quad \lambda \in \mathbb{C}.$$
(13)

♦ Ánh xạ đa trị

$$EW_{\lambda}^{-1}D \colon \mathbb{K}^{I} \rightrightarrows \mathbb{K}^{q} \left(EW_{\lambda}^{-1}D\right)(u) = E\left(W_{\lambda}^{-1}(Du)\right).$$
 (14)

(15)

Nếu $\mathbb{K} = \mathbb{C}$ thì:

$$r_{\mathbb{C}}^{D,E}\left(A,B
ight) = rac{1}{\sup_{\lambda \in \mathbb{C}} \left\|EW_{\lambda}^{-1}D\right\|}.$$

$$\diamond$$
 Cho $G \in \mathbb{C}^{n \times p}$, rank_{row} $(G) = n$, $\mathcal{F}_G(z) = Gz$

$$d\left(0,\mathcal{F}_{G}^{-1}\left(y\right)\right) = \left\|G^{\dagger}y\right\|, \quad \left\|\mathcal{F}_{G}^{-1}\right\| = \left\|G^{\dagger}\right\|. \tag{16}$$

$$\diamond$$
 Cho $G \in \mathbb{C}^{n \times p}$, $\mathcal{F}_G(z) = Gz$

$$\mathcal{F}_{G}^{\dagger}(y) = \begin{cases} z & s.t. & Gz = y, ||z|| = d\left(0, \mathcal{F}_{G}^{-1}(y)\right) & y \in \operatorname{im} \mathcal{F}_{G}, \\ \emptyset & y \notin \operatorname{im} \mathcal{F}_{G}. \end{cases}$$
(17)

Mục lục 12/37

Giới thiệu

Bán kính điều khiển có cấu trúc Bán kính điều khiển Ví dụ

Đa nhiễu

Tài liệu tham khảo

$$\dot{x} = Ax(t) + Bu(t), \qquad (18)$$

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right],\tag{19}$$

$$B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \tag{20}$$

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} \delta_1 & \delta_1 + 1 & \delta_2 + 1 \\ \delta_1 + 1 & \delta_1 & \delta_2 \end{bmatrix}. \tag{21}$$

(22)

$$[A, B] \leadsto [A, B] + D\Delta E,$$

$$D = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \tag{23}$$

$$E = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{24}$$

Ví dụ 15/37

$$\left(E\left[A - \lambda I, B\right]^{-1} D\right)(v) = E\left[A - \lambda I, B\right]^{-1} \begin{bmatrix} 1\\1 \end{bmatrix} v$$

$$= E\left[A - \lambda I, B\right]^{-1} \begin{bmatrix} v\\v \end{bmatrix} \tag{25}$$

$$[A - \lambda I, B]^{-1} \begin{bmatrix} v \\ v \end{bmatrix} = \left\{ \begin{bmatrix} p \\ q \\ r \end{bmatrix} : [A - \lambda I, B] \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} v \\ v \end{bmatrix}, \forall p, q, r \in \mathbb{C} \right\}$$

$$= \left\{ \begin{bmatrix} p \\ q \\ r \end{bmatrix} : \begin{bmatrix} q + r - \lambda p \\ q - p\lambda \end{bmatrix} = \begin{bmatrix} v \\ v \end{bmatrix}, \forall p, q, r \in \mathbb{C} \right\}. \quad (26)$$

$$\left(E\left[A-\lambda I,B\right]^{-1}D\right)(v) = \left\{E\begin{bmatrix}p\\q\\r\end{bmatrix}: \begin{bmatrix}q+r-\lambda p\\q-p\lambda\end{bmatrix} = \begin{bmatrix}v\\v\end{bmatrix}, \forall p,q,r \in \mathbb{C}\right\} \\
= \left\{\begin{bmatrix}p+q\\r\end{bmatrix}: \begin{bmatrix}q+r-\lambda p\\q-p\lambda\end{bmatrix} = \begin{bmatrix}v\\v\end{bmatrix}, \forall p,q,r \in \mathbb{C}\right\} \\
= \left\{\begin{bmatrix}q+v+q\lambda\\v-q+\lambda(v+q\lambda)\end{bmatrix}: q \in \mathbb{C}\right\}.$$
(27)

$$ax_1 + x_2 = b$$
 (28)
 $x_1 = q + v + q\lambda,$ (29)
 $x_2 = v - q + \lambda (v + q\lambda).$ (30)

18/37

$$\diamond q = q_0, q = q_1 \implies a = 1 - \lambda, b = 2v.$$

Ví du

$$(1 - \lambda) x_1 + x_2 = 2v,$$

$$x_1 = q + v + q\lambda,$$

$$x_2 = v - q + \lambda (v + q\lambda).$$
(31)
(32)

(37)

$$\diamond \lambda = -1$$

$$x_1 = v,$$
 (34)
 $x_2 = 0,$ (35)

$$d\left(0,\left(E\left[A-\lambda I,B\right]^{-1}D\right)\left(v\right)\right)=\left|v\right|.\tag{36}$$

$$\diamond \lambda \neq -1$$
, $(\mathbb{C}, \|\cdot\|_{\infty})$

$$2|v| = |(1 - \lambda) x_1 + x_2|$$

$$\leq |(1 - \lambda) x_1| + |x_2|$$

$$\leq (|1 - \lambda| + 1) \max\{|x_1|, |x_2|\}$$

$$= (|1 - \lambda| + 1) \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_{20}$$

$$\diamond \lambda \neq -1$$
, $(\mathbb{C}, \|\cdot\|_{\infty})$

$$\frac{2|v|}{|\lambda - 1| + 1} \le \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_{\infty}. \tag{38}$$

♦ Dấu bằng:

$$x_1 = e^{i\varphi} x_2,$$
 (39)
 $x_2 = \frac{2v}{1 + |\lambda - 1|}$ (40)

$$-(\lambda - 1)e^{i\varphi} = |\lambda - 1| \tag{41}$$

$$-(\lambda - 1) e^{i\varphi} = |\lambda - 1| \tag{41}$$

$$\begin{aligned} \left\| E\left[A - \lambda I, B \right]^{-1} D \right\| &= \sup_{|v|=1} d \left(0, E\left[A - \lambda I, B \right]^{-1} D \left(v \right) \right) \\ &= \begin{cases} \sup_{|v|=1} \left\{ \inf \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_{\infty} \right\} & \lambda \neq -1, \\ \sup_{|v|=1} \left\{ \inf |v| \right\} & \lambda = -1, \end{cases} \\ &= \begin{cases} \sup_{|v|=1} \left\{ \frac{2|v|}{|\lambda - 1| + 1} \right\} & \lambda \neq -1, \\ \sup_{|v|=1} \left\{ |v| \right\} & \lambda = -1, \end{cases} \\ &= \begin{cases} \frac{2}{|\lambda - 1| + 1}, & \lambda \neq -1, \\ 1 & \lambda = -1. \end{cases} \end{aligned}$$

$$(42)$$

$$\sup_{\lambda \in \mathbb{C}} \left\| E \left[A - \lambda I, B \right]^{-1} D \right\| = 2, \tag{43}$$

$$r_{\mathbb{C}}^{D,E} \left(A, B \right) = \frac{1}{2}. \tag{44}$$

$$\mathbb{C}^{D,E}(A,B) = \frac{1}{2}.\tag{44}$$

Mục lục 23/37

Giới thiệu

Bán kính điều khiển có cấu trúc

Đa nhiễu Bán kính điều khiển dưới đa nhiễu Ví du

Tài liệu tham khảo

♦ Hệ chịu đa nhiễu

$$[A,B] \leadsto \left[\tilde{A},\tilde{B}\right] = [A,B] + \sum_{i=1}^{N} D_i \Delta_i E_i. \tag{45}$$

♦ Nhiễu

$$\Delta = (\Delta_1, \dots, \Delta_N) \in \Pi_{i=1}^N \mathbb{C}^{l_i \times q_i}$$
(46)

$$\|\Delta\| = \sum_{i=1}^{N} \|\Delta_i\| \tag{47}$$

♦ Bán kính điều khiển

$$r_{\mathbb{C}}^{\mathsf{mp}}(A,B) = \inf \left\{ \|\Delta\| : \Delta = (\Delta_i)_{i \in \underline{N}}, [A,B] + \sum_{i=1}^{N} D_i \Delta_i E_i \text{ không điều khiển được} \right\}.$$
(48)

⋄ Ký hiệu

$$P \leq Q \iff \|Px\| \leq \|Qx\|, \quad \forall x \in \mathbb{C}^m$$
 (49)

 $\diamond H \in \mathbb{C}^{k \times (n+m)}, E_i \leq H \forall i \in \underline{N}$

$$\left[\max_{i\in\underline{N}}\sup_{\lambda\in\mathbb{C}}\left\|HW_{\lambda}^{-1}D_{i}\right\|\right]^{-1}\leq r_{\mathbb{C}}^{\mathsf{mp}}\left(A,B\right)\leq\left[\max_{i\in\underline{N}}\sup_{\lambda\in\mathbb{C}}\left\|E_{i}W_{\lambda}^{-1}D_{i}\right\|\right]^{-1}.\tag{50}$$

 $\diamond E_i = \alpha_i E_1, \ \alpha_i \in \mathbb{C} \ \forall i \in \underline{N},$

$$r_{\mathbb{C}}^{\mathsf{mp}}\left(A,B\right) = \left[\max_{i \in \underline{N}} \sup_{\lambda \in \mathbb{C}} \left\| E_{i} W_{\lambda}^{-1} D_{i} \right\| \right]^{-1}. \tag{51}$$

Mục lục 27/37

Giới thiệu

Bán kính điều khiển có cấu trúc

Đa nhiễu

Bán kính điều khiển dưới đa nhiễu Ví du

Tài liệu tham khảo

 $\dot{x} = Ax(t) + Bu(t),$

 $\begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \leadsto \begin{bmatrix} \delta_1 & 1 + \delta_2 & 0 \\ -2 + \delta_3 & 0 & 1 + \delta_4 \end{bmatrix}.$

$$A = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix}, \tag{53}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \tag{54}$$

(52)

(55)

$$D_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, D_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \tag{56}$$

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{57}$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{58}$$

$$E_{1}[A - \lambda I, B]^{-1}D_{1}\begin{bmatrix} x \\ y \end{bmatrix} = E_{1}[A - \lambda I, B]^{-1}\begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$= \left\{\begin{bmatrix} p \\ x + \lambda p \\ 0 \end{bmatrix} : p \in \mathbb{C} \right\}, \tag{59}$$

$$E_{2}[A - \lambda I, B]^{-1}D_{2}\begin{bmatrix} x \\ y \end{bmatrix} = E_{2}[A - \lambda I, B]^{-1}\begin{bmatrix} 0 \\ y \end{bmatrix}$$

$$= \left\{\begin{bmatrix} p \\ 0 \\ y + (\lambda^{2} + 2)p \end{bmatrix} : p \in \mathbb{C} \right\}. \tag{60}$$

$$\left\| E_1 \left[A - \lambda I, B \right]^{-1} D_1 \right\| = \frac{1}{1 + |\lambda|},$$

$$\left\| E_2 \left[A - \lambda I, B \right]^{-1} D_2 \right\| = \frac{1}{1 + |\lambda^2 + 2|}.$$
(61)

$$H[A - \lambda I, B]^{-1} D_{1} \begin{bmatrix} x \\ y \end{bmatrix} = [A - \lambda I, B]^{-1} \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} p \\ x + \lambda p \\ \lambda x + (\lambda^{2} + 2) p \end{bmatrix} : p \in \mathbb{C} \right\}, \qquad (63)$$

$$H[A - \lambda I, B]^{-1} D_{2} \begin{bmatrix} x \\ y \end{bmatrix} = [A - \lambda I, B]^{-1} \begin{bmatrix} 0 \\ y \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} p \\ \lambda p \\ y + (\lambda^{2} + 2) p \end{bmatrix} : p \in \mathbb{C} \right\}. \qquad (64)$$

 \diamond Chọn p=0 và $p=-\frac{x}{\lambda}, \forall \lambda \in \mathbb{C}$:

$$d\left(0, H\left[A - \lambda I, B\right]^{-1} D_{1} \begin{bmatrix} x \\ y \end{bmatrix}\right) \leq \min\left\{\max\left\{\left|x\right|, \left|\lambda x\right|\right\}, \left|\frac{2x}{\lambda}\right|\right\} \leq \sqrt{2}\left|x\right|.$$
(65)

$$\implies \left\| H\left[A - \lambda I, B \right]^{-1} D_1 \right\| \le \sqrt{2} \quad \forall \lambda \in \mathbb{C}. \tag{66}$$

 \diamond Dấu bằng với $\lambda = \sqrt{2}i$:

$$\sup_{\lambda \in \mathbb{C}} \left\| H[A - \lambda I, B]^{-1} D_1 \right\| = \sqrt{2}. \tag{67}$$

Tương tư, với p = 0:

$$d\left(0, H\left[A - \lambda I, B\right]^{-1} D_2 \left[\begin{array}{c} x \\ y \end{array}\right]\right) \le |y|, \tag{68}$$

$$\left\| H\left[A - \lambda I, B \right]^{-1} D_2 \left[\begin{array}{c} x \\ y \end{array} \right] \right\| \le 1 \quad \forall \lambda \in \mathbb{C}. \tag{69}$$

 \diamond Dấu bằng khi $\lambda = \sqrt{2}i$:

$$\sup_{\lambda \in \mathbb{C}} \left\| H\left[A - \lambda I, B \right]^{-1} D_2 \right\| = 1. \tag{70}$$

♦ Ước lương bán kính điều khiển

$$\frac{1}{\sqrt{2}} = \frac{1}{\max\left\{1, \sqrt{2}\right\}} \le r_{\mathbb{C}}^{\mathsf{mp}}(A, B) \le \frac{1}{\max\left\{\sup\frac{1}{1 + |\lambda|}, \sup\frac{1}{1 + |\lambda^{2} + 2|}\right\}} = 1. \quad (71)$$

Nguyen Khoa Son and Do Duc Thuan.

The structured distance to uncontrollability under multi-perturbations: An approach using multi-valued linear operators.

Systems & Control Letters, 59(8):476–483, 2010.

ISSN 0167-6911.

doi: https://doi.org/10.1016/j.sysconle.2010.06.007.

URL https:

//www.sciencedirect.com/science/article/pii/S016769111000071X.

Cảm ơn mọi người đã chú ý lắng nghe!