```
import numpy as np
import pandas as pd
import seaborn as sns

#Step-1: Loading the data
data=pd.read_excel("FEV-data-Excel.xlsx")

#Step-2: Droped rows with missing values(NaN) in the energy consumption column
data=data.dropna(subset=["mean - Energy consumption [kWh/100 km]"])

#Step-3: View Result
data_cleaned=data[['Car full name', "mean - Energy consumption [kWh/100 km]"]]
data_cleaned
```

Out[]: Car full name mean - Energy consumption [kWh/100 km] Audi e-tron 55 quattro 24.45 0 1 Audi e-tron 50 quattro 23.80 2 Audi e-tron S quattro 27.55 23.30 Audi e-tron Sportback 50 quattro 3 4 Audi e-tron Sportback 55 quattro 23.85 5 Audi e-tron Sportback S quattro 27.20 6 BMW i3 13.10 7 BMW i3s 14.30 8 BMW iX3 18.80 10 DS DS3 Crossback e-tense 15.60 11 Honda e 17.20 Honda e Advance 12 17.50 13 Hyundai Ioniq electric 13.80 14 Hyundai Kona electric 39.2kWh 15.00 15 15.40 Hyundai Kona electric 64kWh 16 Jaguar I-Pace 21.20 17 Kia e-Niro 39.2kWh 15.30 Kia e-Niro 64kWh 18 15.90 19 Kia e-Soul 39.2kWh 15.60 Kia e-Soul 64kWh 20 15.70 21 14.50 Mazda MX-30 22 Mercedes-Benz EQC 21.85 23 Mini Cooper SE 16.75

Nissan Leaf

Nissan Leaf e+

18.50

17.10

24

25

	Car full name	mean - Energy consumption [kWh/100 km]
26	Opel Corsa-e	16.65
27	Opel Mokka-e	17.60
28	Peugeot e-208	16.40
30	Porsche Taycan 4S (Performance)	23.40
31	Porsche Taycan 4S (Performance Plus)	24.10
32	Porsche Taycan Turbo	24.85
33	Porsche Taycan Turbo S	25.10
34	Renault Zoe R110	16.50
35	Renault Zoe R135	16.50
36	Skoda Citigo-e iV	15.45
37	Smart fortwo EQ	16.35
38	Smart forfour EQ	17.00
46	Volkswagen e-up!	14.00
47	Volkswagen ID.3 Pro Performance	15.40
48	Volkswagen ID.3 Pro S	15.90
49	Volkswagen ID.4 1st	18.00
50	Citroën ë-Spacetourer (M)	25.20
51	Mercedes-Benz EQV (long)	28.20
52	Nissan e-NV200 evalia	25.90

In []: #Step-4: Outliers are values that are unusually high or low compared to the rest. To detect them, we use the IQR method (Interquartile Range #Step-5: Q1 gets the 25th percentile (Q1)- 25% of the cars use less energy than this and assume it as the "lower edge" of the typical range Q1= data_cleaned["mean - Energy consumption [kWh/100 km]"].quantile(0.25)

#Step-6: Q3 gets the 75th percentile (Q3)- 75% of the cars use less energy than this and assume it as the "upper edge" of the typical range Q3=data_cleaned["mean - Energy consumption [kWh/100 km]"].quantile(0.75)

#Step-7: IQR calculates the Interquartile Range, or the middle 50% of the data. It's the range between Q1 and Q3 i.e. "normal" energy usage IQR=Q3-Q1

```
#Step-8: These lines defined below what counts as an outlier.
                #Anything below lower bound is too low (outlier).
                #Anything above upper bound is too high (outlier).
                #And 1.5 is common default value.
        lower bound= Q1-1.5*IQR
        upper bound= Q3+1.5*IQR
        #Step-9: Filter outliers
        outliers=data cleaned[(data cleaned["mean - Energy consumption [kWh/100 km]"]<lower bound) |
        (data cleaned["mean - Energy consumption [kWh/100 km]"]>upper bound)]
        #Step-10: Show the outliers
        print("Outliers in Energy Consumption:")
        print(outliers[['Car full name', 'mean - Energy consumption [kWh/100 km]']])
        print(f"\nTotal outliers found: {len(outliers)}")
       Outliers in Energy Consumption:
       Empty DataFrame
       Columns: [Car full name, mean - Energy consumption [kWh/100 km]]
       Index: []
       Total outliers found: 0
In [ ]: #Step-11: Drawed the box plot to show ouliers but there are no outliers as such
        plt.figure(figsize=(8, 6))
        sns.boxplot(y=outliers['mean - Energy consumption [kWh/100 km]'])
        plt.title('Boxplot of Battery Capacity for All Cars')
        plt.ylabel('Battery Capacity [kWh]')
        plt.show()
```


