Analysis of the performance of min sum decode algorithm in Gaussian channel for QC matrices

Anurag Gupta Microelectronics (2015-17) Instructor: Prof Madhay P. Desai

IIT-Bombay Department of Electrical Engineering

Introduction

- Min sum algorithm is implemented for Gaussian channel.
- Quasi-cyclic matrix of block size(n=) 4K, 8K and 12K are formed using Sridhara-Fuja-Tanner algorithm.
- Five different code rates(R=) 0.75, 0.80, 0.85, 0.90 and 0.95 are taken.
- Raw input bit error rate(BER(IN)) is between 10^{-2} to 10^{-3} , converted in form of Eb/No(db) to express input SNR in db.
- BER(OUT) : Output bit error rate.
- CDB : Number of correctly decoded blocks.
- Itr : Average number of iterations per block.
- We have tabulated simulation by sending 100 blocks and noting BER and number of iteration to decode.
- We have tabulated when the first block get wrongly decoded till 1 million transmitted blocks.

Min Sum Decode (Rate=0.75)

n	BER(In)	Eb/No(db)	BER(OUT)	CDB	ltr
4112	$3.3x10^{-2}$	3.5	0	100	5
	1.0×10^{-2}	5.5	0	100	2
	4.8×10^{-3}	6.5	0	100	1
	1.8×10^{-3}	7.5	0	100	1
8180	$2.9x10^{-2}$	3.8	0	100	5
	1.0×10^{-2}	5.5	0	100	2
	4.8×10^{-3}	6.5	0	100	1
	1.8×10^{-3}	7.5	0	100	1
12304	$3.4x10^{-2}$	3.4	0	100	6
	1.0×10^{-2}	5.5	0	100	2
	4.8×10^{-3}	6.5	0	100	1
	1.8×10^{-3}	7.5	0	100	1

Min Sum Decode (Rate=0.8)

n	BER(In)	Eb/No(db)	BER	CDB	Itr(/25)
4075	$2.2x10^{-2}$	4.1	0	100	4
	0.8×10^{-2}	5.5	0	100	2
	3.8×10^{-3}	6.5	0	100	1
	1.5×10^{-3}	7.5	0	100	1
8275	2.4×10^{-2}	3.9	0	100	5
	0.8×10^{-2}	5.5	0	100	2
	3.8×10^{-3}	6.5	0	100	1
	1.5×10^{-3}	7.5	0	100	1
12275	2.5×10^{-2}	3.8	0	100	6
	0.8×10^{-2}	5.5	0	100	2
	3.8×10^{-3}	6.5	0	100	1
	1.5×10^{-3}	7.5	0	100	1

Min Sum Decode (Rate=0.85)

n	BER(IN)	Eb/No(db)	BER	CDB	Itr(/25)
4220	1.9×10^{-2}	4	0	100	6
	1.0×10^{-2}	5	0	100	3
	4.5×10^{-3}	6	0	100	2
	1.7×10^{-3}	7	0	100	1
8180	1.9×10^{-2}	4	0	100	6
	$1.0x10^{-2}$	5	0	100	3
	4.5×10^{-3}	6	0	100	2
	1.7×10^{-3}	7	0	100	1
12260	1.9×10^{-2}	4	0	100	6
	$1.0x10^{-2}$	5	0	100	3
	4.5×10^{-3}	6	0	100	2
	1.7×10^{-3}	7	0	100	1

Min Sum Decode (Rate=0.9)

n	BER(IN)	Eb/No(db)	BER	CDB	Itr(/25)
4120	1.1×10^{-2}	4.7	0	100	4
	0.9×10^{-2}	5	0	100	3
	3.6×10^{-3}	6	0	100	2
	$1.3x10^{-3}$	7	0	100	1
8440	$1.2x10^{-2}$	4.5	0	100	5
	0.9×10^{-2}	5	0	100	3
	3.6×10^{-3}	6	0	100	2
	1.3×10^{-3}	7	0	100	1
12280	$1.2x10^{-2}$	4.5	0	100	5
	0.9×10^{-2}	5	0	100	3
	3.6×10^{-3}	6	0	100	2
	1.3×10^{-3}	7	0	100	1

Min Sum Decode (Rate=0.95)

n	BER(IN)	Eb/No(db)	BER	CDB	Itr(/25)
4260	1.1×10^{-2}	4.5	6.8×10^{-3}	23	-
	4.7×10^{-3}	5.5	0	100	3
	1.6×10^{-3}	6.5	0	100	2
8220	1.1×10^{-2}	4.5	7.5×10^{-3}	8	-
	4.7×10^{-3}	5.5	2.8×10^{-7}	99	_
	1.6×10^{-3}	6.5	0	100	2
12660	1.1×10^{-2}	4.5	7.2×10^{-3}	4	-
	4.7×10^{-3}	5.5	0	100	4
	1.6×10^{-3}	6.5	0	100	2

First error till 1 million blocks

n≃	BER(In)≃	R=0.75	R=0.80
4K	1.0×10^{-2}	-	-
	0.5×10^{-3}	_	_
	1.0×10^{-3}	-	-
8K	1.0×10^{-2}	_	_
	0.5×10^{-3}	-	_
	$1.0x10^{-3}$	_	-
12K	1.0×10^{-2}	-	-
	0.5×10^{-3}	-	_
	$1.0x10^{-3}$	-	-

- : No error found till 1 million blocks.

First error till 1 million blocks

$n\simeq$	$BER(In){\simeq}$	R=0.85	R=0.9	R=0.95
4K	1.0×10^{-2}	2.677×10^3	1.7819×10 ⁴	1
	0.5×10^{-3}	2.4944×10 ⁴	1.65511 <i>x</i> 10 ⁵	1.79×10^2
	1.0×10^{-3}	5.47550 <i>x</i> 10 ⁵	4.89654 <i>x</i> 10 ⁵	3.328×10^3
8K	1.0×10^{-2}	2.3817×10 ⁴	1.16847 <i>x</i> 10 ⁵	1
	0.5×10^{-3}	6.9491×10 ⁴	1.72263 <i>x</i> 10 ⁵	1.001×10^3
	1.0×10^{-3}	9.16505×10^5	6.28939×10^5	9.338×10^3
12K	1.0×10^{-2}	9.705×10^3	5.37754 <i>x</i> 10 ⁵	1
	0.5×10^{-3}	5.6400×10 ⁴	_	1.318×10^3
	1.0×10^{-3}	_	_	1.6920x10 ⁴

- : No error found till 1 million blocks.