Factorization of n=87463 with the Quadratic Sieve

To find a factor base consider the values of $(\frac{n}{p})$:

We thus select the factor base 2, 3, 13, 17, 19, 29.

Solutions for $x^2 \equiv n \pmod{p}$ are:

We now start sieving, using a sieving interval of length $2 \cdot 30$ around $|\sqrt{n}| = 295$.

For the values of x for which $x^2 - n$ splits completely, the exponent vector modulo 2 is:

x	-1	2	3	13	17	19	29
265	1	1	1	0	1	0	0
278	1	0	1	1	0	0	1
269	0	0	0	0	1	0	0
299	0	1	1	0	1	1	0
307	0	1	0	1	0	0	1
316	0	0	0	0	1	0	0

We now solve (the matrix is transposed as we solve $A\underline{\mathbf{v}} = \underline{\mathbf{0}}$ and not $\underline{\mathbf{v}}A = \underline{\mathbf{0}}$):

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \cdot \mathbf{v} = \mathbf{0}$$

modulo 2. One solution is

$$\mathbf{v} = (1, 1, 1, 0, 1, 0)$$

We thus take the 1st, 2nd, 3rd and the 4th x-value and get

$$x = 265 \cdot 278 \cdot 296 \cdot 307 = 6694540240 \equiv 34757 \pmod{n}$$

$$y = \sqrt{(265^2 - n) \cdot (278^2 - n) \cdot (296^2 - n) \cdot (307^2 - n)}$$

$$= 2 \cdot 3^4 \cdot 13^2 \cdot 17 \cdot 29 = 13497354 \equiv 28052 \pmod{n}$$

This yields the gcds:

$$\gcd(x-y,n) = 149, \quad \gcd(x+y,n) = 587$$

which give a factorization

$x \mid$	2 3 13 17 1	19 29	$x^2 - n$ splits
261	X	X	
262	X X		
263	XX		
264			
265	X X X X		$-2\cdot 3\cdot 13^2\cdot 17$
266	Χ		
267	X		
268	XX		
269	XX		
270			
271	XX	X	
272	Χ		
273	X	X	
274	X		
275	XX		
276			
277	XX		
278	XX	X	$-3^3 \cdot 13 \cdot 29$
279	X X		
280		X	
281	XXX		
282	X		
283	XX		
284	X		
285	X		
286	X		
287	XX		
288			
289	XX		
290		X	
291	XX		
292	X		
293	XX		
294	X		
295	XX		

x	2 3 13 17 19 29	$x^2 - n$ splits
296	X X	$3^2 \cdot 17$
297	X	
298	X	
299	XX XX	$2 \cdot 3 \cdot 17 \cdot 19$
300		
301	XX	
302	X X	
303	X	
304	XX	
305	XX	
306		
307	XXX X	$2 \cdot 3^2 \cdot 13 \cdot 29$
308	X	
309	X X	
310	X	
311	XX	
312		
313	XXX	
314	X	
315	X	
316	X X	$3^6 \cdot 17$
317	XXX	
318	X	
319	XX	
320	XX	
321	X	
322	X	
323	XX	
324		
325	XX	
326	X	
327	X	
328	X X	
329	XX	
330	X X	