

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 January 2003 (16.01.2003)

PCT

(10) International Publication Number
WO 03/004629 A2

(51) International Patent Classification⁷: **C12N 9/00**

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(21) International Application Number: **PCT/EP02/07229**

(22) International Filing Date: 1 July 2002 (01.07.2002)

(25) Filing Language: English

Declarations under Rule 4.17:

(26) Publication Language: English

(30) Priority Data:

60/301,853 2 July 2001 (02.07.2001) US

60/337,130 10 December 2001 (10.12.2001) US

60/375,015 25 April 2002 (25.04.2002) US

(71) Applicant (*for all designated States except US*): **BAYER AKTIENGESELLSCHAFT [DE/DE]**; 51368 Leverkusen (DE).

(72) Inventor; and

(75) Inventor/Applicant (*for US only*): **ZHU, Zhimin [CN/US]**; 45 Hinckley Road, Waban, MA 02468 (US).

(74) Common Representative: **BAYER AKTIENGESELLSCHAFT**; 51368 Leverkusen (DE).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations*

Published:

- *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/004629 A2

(54) Title: REGULATION OF HUMAN CITRON RHO/RAC-INTERACTING KINASE-SHORT KINASE

(57) Abstract: Reagents that regulate human CRIK-sk and reagents which bind to human CRIK-sk gene products can play a role in preventing, ameliorating, or correcting dysfunctions or diseases including, but not limited to, obesity, diabetes, cancer or COPD.

- 1 -

REGULATION OF HUMAN CITRON RHO/RAC-INTERACTING KINASE-SHORT KINASE

5 This application incorporates by reference and claims the benefit of co-pending provisional applications Serial No. 60/301,853 filed July 2, 2001, Serial No. 60/337,130 filed December 10, 2001, and Serial Number 60/375,015 filed April 25, 2002.

10 **TECHNICAL FIELD OF THE INVENTION**

The invention relates to the regulation of human citron rho/rac-interacting kinase-short kinase (CRIK-sk).

15 **BACKGROUND OF THE INVENTION**

Kinases are involved in a variety of disease processes. There is a need in the art to identify related enzymes, which can be regulated for therapeutic effects.

20 **SUMMARY OF THE INVENTION**

It is an object of the invention to provide reagents and methods of regulating a human CRIK-sk. This and other objects of the invention are provided by one or more of the embodiments described below.

25

One embodiment of the invention is a human citron rho/rac-interacting kinase-short kinase polypeptide comprising an amino acid sequence selected from the group consisting of:

30 amino acid sequences which are at least about 88% identical to the amino acid sequence shown in SEQ ID NO: 2; the amino acid sequence shown in SEQ ID NO: 2;

- 2 -

amino acid sequences which are at least about 88% identical to
the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ ID NO: 9.

5

Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a human citron rho/rac-interacting kinase-short kinase polypeptide comprising an amino acid sequence selected from the group consisting of:

10

amino acid sequences which are at least about 88% identical to
the amino acid sequence shown in SEQ ID NO: 2;
the amino acid sequence shown in SEQ ID NO: 2;

15

amino acid sequences which are at least about 88% identical to
the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ ID NO: 9.

20

Binding between the test compound and the human citron rho/rac-interacting kinase-short kinase polypeptide is detected. A test compound which binds to the human citron rho/rac-interacting kinase-short kinase polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation. The agent can work by decreasing the activity of the human citron rho/rac-interacting kinase-short kinase.

25

Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a polynucleotide encoding a human citron rho/rac-interacting kinase-short kinase polypeptide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:

30

nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 1;
the nucleotide sequence shown in SEQ ID NO: 1;

5 nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 8; and
the nucleotide sequence shown in SEQ ID NO: 8.

Binding of the test compound to the polynucleotide is detected. A test compound
10 which binds to the polynucleotide is identified as a potential agent for decreasing
extracellular matrix degradation. The agent can work by decreasing the amount of the
human citron rho/rac-interacting kinase-short kinase through interacting with the
human citron rho/rac-interacting kinase-short kinase mRNA.

15 Another embodiment of the invention is a method of screening for agents which
regulate extracellular matrix degradation. A test compound is contacted with a
human citron rho/rac-interacting kinase-short kinase polypeptide comprising an
amino acid sequence selected from the group consisting of:

20 amino acid sequences which are at least about 88% identical to
the amino acid sequence shown in SEQ ID NO: 2;
the amino acid sequence shown in SEQ ID NO: 2;

25 amino acid sequences which are at least about 88% identical to
the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ ID NO: 9.

30 A human citron rho/rac-interacting kinase-short kinase activity of the polypeptide is
detected. A test compound which increases human citron rho/rac-interacting kinase-
short kinase activity of the polypeptide relative to human citron rho/rac-interacting
kinase-short kinase activity in the absence of the test compound is thereby identified

- 4 -

as a potential agent for increasing extracellular matrix degradation. A test compound which decreases human citron rho/rac-interacting kinase-short kinase activity of the polypeptide relative to human citron rho/rac-interacting kinase-short kinase activity in the absence of the test compound is thereby identified as a potential agent for
5 decreasing extracellular matrix degradation.

Even another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a human citron rho/rac-interacting kinase-short kinase product of a polynucleotide
10 which comprises a nucleotide sequence selected from the group consisting of:

nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 1;
the nucleotide sequence shown in SEQ ID NO: 1;

15 nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 8; and
the nucleotide sequence shown in SEQ ID NO: 8.

20 Binding of the test compound to the human citron rho/rac-interacting kinase-short kinase product is detected. A test compound which binds to the human citron rho/rac-interacting kinase-short kinase product is thereby identified as a potential agent for decreasing extracellular matrix degradation.

25 Still another embodiment of the invention is a method of reducing extracellular matrix degradation. A cell is contacted with a reagent which specifically binds to a polynucleotide encoding a human citron rho/rac-interacting kinase-short kinase polypeptide or the product encoded by the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:

- 5 -

nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 1;
the nucleotide sequence shown in SEQ ID NO: 1;

5 nucleotide sequences which are at least about 50% identical to
the nucleotide sequence shown in SEQ ID NO: 8; and
the nucleotide sequence shown in SEQ ID NO: 8.

10 Human citron rho/rac-interacting kinase-short kinase activity in the cell is thereby
decreased.

The invention thus provides a human CRIK-sk that can be used to identify test
compounds that may act, for example, as activators or inhibitors at the enzyme's
active site. Human CRIK-sk and fragments thereof also are useful in raising specific
15 antibodies that can block the enzyme and effectively reduce its activity.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the DNA-sequence encoding a human citron rho/rac-interacting
20 kinase-short kinase Polypeptide (SEQ ID NO: 1).

Fig. 2 shows the amino acid sequence deduced from the DNA-sequence of Fig.1
(SEQ ID NO: 2).

25 Fig. 3 shows the amino acid sequence of the protein identified by
trembl|AF086823|AF086823_1 (SEQ ID NO: 3).

Fig. 4 shows the amino acid sequence of the protein identified by
trembl|AF086824|AF086824_1 (SEQ ID NO: 4).

- 6 -

Fig. 5 shows the amino acid sequence of the protein identified by trembl|AF128625|AF128625_1 (SEQ ID NO: 5).

5 Fig. 6 shows the DNA-sequence encoding a human citron rho/rac-interacting kinase-short kinase Polypeptide (SEQ ID NO: 6).

Fig. 7 shows the amino acid sequence of the protein identified by swissnew|P54265|DMK_MOUSE (SEQ ID NO: 7)

10 Fig. 8 shows the BLASTP - alignment of CRIK-sk (SEQ ID NO: 2) against trembl|AF086823|AF086823_1 (SEQ ID NO: 3).

Fig. 9 shows the BLASTP - alignment of CRIK-sk (SEQ ID NO: 2) against trembl|AF086824|AF086824_1 (SEQ ID NO: 4).

15 Fig. 10 shows the BLASTP - alignment of CRIK-sk (SEQ ID NO: 2) against trembl|AF128625|AF128625_1 (SEQ ID NO: 5).

20 Fig. 11 shows the BLASTP - alignment of CRIK-sk (SEQ ID NO: 2) against swissnew|P54265|DMK_MOUSE.

Fig. 12 shows the BLASTP - alignment of CRIK-sk (SEQ ID NO: 2) against pdb|1CDK|1CDK-A.

25 Fig. 13 shows the HMMMPFAM - alignment of CRIK-sk (SEQ ID NO: 2) against pfam|hmm|pkinase

Fig. 14 shows the HMMMPFAM - alignment of CRIK-sk (SEQ ID NO: 2) against pfam|hmm|pkinase_C

30 Fig. 15 shows the Prosite search results.

Fig. 16 shows the Genewise output.

Fig. 17 shows the Relative expression of human citron rho/rac-interacting kinase-
5 short kinase.

Fig. 18 shows the shows the DNA-sequence encoding a human citron rho/rac-
interacting kinase-short kinase Polypeptide (SEQ ID NO: 8)

10 Fig. 19 shows the amino acid sequence deduced from the DNA-sequence of Fig. 18
(SEQ ID NO: 9)

Fig. 20 shows the TBLASTN - alignment of 544_Protein against
emnew|AX166510|AX166510 Sequence 1 from Patent
15 WO0138503 //:gbnew|AX166510|AX66510 Sequence Patent WO0138503

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to an isolated polynucleotide from the group consisting of:

20 a) a polynucleotide encoding a human citron rho/rac-interacting kinase-short
kinase polypeptide comprising an amino acid sequence selected from the
group consisting of:

25 amino acid sequences which are at least about 88% identical to
the amino acid sequence shown in SEQ ID NO: 2;
the amino acid sequence shown in SEQ ID NO: 2;

amino acid sequences which are at least about 88% identical to
30 the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ ID NO: 9.

- b) a polynucleotide comprising the sequence of SEQ ID NOS: 1 or 8;
- 5 c) a polynucleotide which hybridizes under stringent conditions to a polynucleotide specified in (a) and (b) and encodes a human citron rho/rac-interacting kinase-short kinase polypeptide;
- 10 d) a polynucleotide the sequence of which deviates from the polynucleotide sequences specified in (a) to (c) due to the degeneration of the genetic code and encodes a human citron rho/rac-interacting kinase-short kinase polypeptide; and
- 15 e) a polynucleotide which represents a fragment, derivative or allelic variation of a polynucleotide sequence specified in (a) to (d) and encodes a human citron rho/rac-interacting kinase-short kinase polypeptide.

Furthermore, it has been discovered by the present applicant that a novel CRIK-sk, particularly a human CRIK-sk which is differentially expressed in the hypothalamus, can be used in therapeutic methods to treat obesity, diabetes, cancer or COPD. Human CRIK-sk comprises the amino acid sequence shown in SEQ ID NO: 2. A coding sequence for human CRIK-sk is shown in SEQ ID NO: 1. This sequence is located on chromosome 12q24.2. Related ESTs are expressed in uterus_tumor, glioblastoma with EGFR amplification, colon, and normal nervous tissue.

25 Human CRIK-sk is 87% identical over 495 amino acids to trembl|AF086823|AF086823_1 (SEQ ID NO: 3) (FIG. 1), 88% identical over 468 amino acids to trembl|AF086824|AF086824_1 (SEQ ID NO: 4) (FIG. 2), 42% identical over 420 amino acids to trembl|AF128625|AF128625_1 (SEQ ID NO: 5) (FIG. 3), 44% identical over 386 amino acids to swissnew|P54265|DMK_MOUSE (SEQ ID NO: 11) (FIG. 4), and 33% identical over 333 amino acids to pdb|1CDK|1CDK-A (FIG. 5).

Human CRIK-sk of the invention is expected to be useful for the same purposes as previously identified CRIK-sk enzymes. Human CRIK-sk is believed to be useful in therapeutic methods to treat disorders such as obesity and COPD. Human CRIK-sk
5 also can be used to screen for human CRIK-sk activators and inhibitors.

Polypeptides

Human CRIK-sk polypeptides according to the invention comprise at least 6, 10, 15,
10 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425,
450, 475, or 495 contiguous amino acids selected from the amino acid sequence
shown in SEQ ID NO: 2 or a biologically active variant thereof, as defined below. A
CRIK-sk polypeptide of the invention therefore can be a portion of a CRIK-sk
protein, a full-length CRIK-sk protein, or a fusion protein comprising all or a portion
15 of a CRIK-sk protein.

Biologically Active Variants

Human CRIK-sk polypeptide variants which are biologically active, e.g., retain
20 enzymatic activity, also are human CRIK-sk polypeptides. Preferably, naturally or
non-naturally occurring human CRIK-sk polypeptide variants have amino acid
sequences which are at least about 88, 90, 96, or 98 or 99% identical to the amino
acid sequence shown in SEQ ID NO: 2 or a fragment thereof. Percent identity
between a putative human CRIK-sk polypeptide variant and an amino acid sequence
25 of SEQ ID NO: 2 is determined by conventional methods. See, for example,
Altschul *et al.*, *Bull. Math. Bio.* 48:603 (1986), and Henikoff & Henikoff, *Proc.
Natl. Acad. Sci. USA* 89:10915 (1992). Briefly, two amino acid sequences are
aligned to optimize the alignment scores using a gap opening penalty of 10, a gap
extension penalty of 1, and the "BLOSUM62" scoring matrix of Henikoff &
30 Henikoff, 1992.

Those skilled in the art appreciate that there are many established algorithms available to align two amino acid sequences. The "FASTA" similarity search algorithm of Pearson & Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino 5 acid sequence of a putative variant. The FASTA algorithm is described by Pearson & Lipman, *Proc. Nat'l Acad. Sci. USA* 85:2444(1988), and by Pearson, *Meth. Enzymol.* 183:63 (1990). Briefly, FASTA first characterizes sequence similarity by identifying regions shared by the query sequence (e.g., SEQ ID NO: 2) and a test sequence that have either the highest density of identities (if the ktup variable is 1) or 10 pairs of identities (if ktup=2), without considering conservative amino acid substitutions, insertions, or deletions. The ten regions with the highest density of identities are then rescored by comparing the similarity of all paired amino acids using an amino acid substitution matrix, and the ends of the regions are "trimmed" to include only those residues that contribute to the highest score. If there are several 15 regions with scores greater than the "cutoff" value (calculated by a predetermined formula based upon the length of the sequence the ktup value), then the trimmed initial regions are examined to determine whether the regions can be joined to form an approximate alignment with gaps. Finally, the highest scoring regions of the two amino acid sequences are aligned using a modification of the Needleman-Wunsch- 20 Sellers algorithm (Needleman & Wunsch, *J. Mol. Biol.* 48:444 (1970); Sellers, *SIAM J. Appl. Math.* 26:787 (1974)), which allows for amino acid insertions and deletions. Preferred parameters for FASTA analysis are: ktup=1, gap opening penalty=10, gap 25 extension penalty=1, and substitution matrix=BLOSUM62. These parameters can be introduced into a FASTA program by modifying the scoring matrix file ("SMATRIX"), as explained in Appendix 2 of Pearson, *Meth. Enzymol.* 183:63 (1990).

FASTA can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above. For nucleotide sequence comparisons, 30 the ktup value can range between one to six, preferably from three to six, most preferably three, with other parameters set as default.

Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions. Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.

Amino acid insertions or deletions are changes to or within an amino acid sequence. 5 They typically fall in the range of about 1 to 5 amino acids. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of a human CRIK-sk polypeptide can be found using computer programs well known in the art, such as DNASTAR software.

10 The invention additionally, encompasses CRIK-sk polypeptides that are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. 15 Any of numerous chemical modifications can be carried out by known techniques including, but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH₄, acetylation, formylation, 20 oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc.

Additional post-translational modifications encompassed by the invention include, 25 for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression. The CRIK-sk polypeptides may also be modified with a 30 detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.

The invention also provides chemically modified derivatives of CRIK-sk polypeptides that may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization can be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol, and the like. The polypeptides can be modified at random or predetermined positions within the molecule and can include one, two, three, or more attached chemical moieties.

10

Whether an amino acid change or a polypeptide modification results in a biologically active CRIK-sk polypeptide can readily be determined by assaying for enzymatic activity, as described for example, in Di Cunto F. *et al.*, J Biol Chem. 1998 Nov 6;273(45):29706-11.

15

Fusion Proteins

Fusion proteins are useful for generating antibodies against CRIK-sk polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins that interact with portions of a CRIK-sk polypeptide. Protein affinity chromatography or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.

25

A CRIK-sk polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond. The first polypeptide segment comprises at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375; 400, 425, 450, 475, or 495 contiguous amino acids of SEQ ID NO: 2 or of a biologically active variant, such as those described above. The first polypeptide segment also can comprise full-length CRIK-sk protein.

The second polypeptide segment can be a full-length protein or a protein fragment. Proteins commonly used in fusion protein construction include β -galactosidase, β -glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including 5 blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horse-radish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT). Additionally, epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags. Other fusion constructions can include maltose binding 10 protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions. A fusion protein also can be engineered to contain a cleavage site located between the CRIK-sk polypeptide-encoding sequence and the heterologous protein sequence, so 15 that the CRIK-sk polypeptide can be cleaved and purified away from the heterologous moiety.

A fusion protein can be synthesized chemically, as is known in the art. Preferably, a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology. Recombinant DNA methods 20 can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NO: 1 in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art. Many kits for constructing fusion proteins are available from companies such as Promega Corporation 25 (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International Corporation (MIC; Watertown, MA), and Quantum Biotechnologies (Montreal, Canada; 1-888-DNA-KITS).

Identification of Species Homologs

Species homologs of human CRIK-sk polypeptide can be obtained using CRIK-sk polypeptide polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of CRIK-sk polypeptide, and expressing the cDNAs as is known in the art.

Polynucleotides

10

A CRIK-sk polynucleotide can be single- or double-stranded and comprises a coding sequence or the complement of a coding sequence for a CRIK-sk polypeptide. A coding sequence for human CRIK-sk is shown in SEQ ID NO: 1.

15

Degenerate nucleotide sequences encoding human CRIK-sk polypeptides, as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, 98, or 99% identical to the nucleotide sequence shown in SEQ ID NO: 1 or its complement also are CRIK-sk polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2. Complementary DNA (cDNA) molecules, species homologs, and variants of CRIK-sk polynucleotides that encode biologically active CRIK-sk polypeptides also are CRIK-sk polynucleotides. Polynucleotide fragments comprising at least 8, 9, 10, 11,

20

12, 15, 20, or 25 contiguous nucleotides of SEQ ID NO: 1 or its complement also are CRIK-sk polynucleotides. These fragments can be used, for example, as hybridization probes or as antisense oligonucleotides.

25

Identification of Polynucleotide Variants and Homologs

Variants and homologs of the CRIK-sk polynucleotides described above also are CRIK-sk polynucleotides. Typically, homologous CRIK-sk polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known CRIK-sk polynucleotides under stringent conditions, as is known in the art. For example, using the following wash conditions--2X SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0), 0.1% SDS, room temperature twice, 30 minutes each; then 2X SSC, 0.1% SDS, 50°C once, 30 minutes; then 2X SSC, room temperature twice, 10 minutes each--homologous sequences can be identified which contain at most about 25-30% base pair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

Species homologs of the CRIK-sk polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast. Human variants of CRIK-sk polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the T_m of a double-stranded DNA decreases by 1-1.5°C with every 1% decrease in homology (Bonner *et al.*, *J. Mol. Biol.* 81, 123 (1973). Variants of human CRIK-sk polynucleotides or CRIK-sk polynucleotides of other species can therefore be identified by hybridizing a putative homologous CRIK-sk polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO: 1 or the complement thereof to form a test hybrid. The melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.

Nucleotide sequences which hybridize to CRIK-sk polynucleotides or their complements following stringent hybridization and/or wash conditions also are CRIK-sk

polynucleotides. Stringent wash conditions are well known and understood in the art and are disclosed, for example, in Sambrook *et al.*, MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed., 1989, at pages 9.50-9.51.

5 Typically, for stringent hybridization conditions a combination of temperature and salt concentration should be chosen that is approximately 12-20°C below the calculated T_m of the hybrid under study. The T_m of a hybrid between a CRIK-sk polynucleotide having a nucleotide sequence shown in SEQ ID NO: 1 or the complement thereof and a polynucleotide sequence which is at least about 50,
10 preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, *Proc. Natl. Acad. Sci. U.S.A.* 48, 1390 (1962):

$$T_m = 81.5^\circ\text{C} - 16.6(\log_{10}[\text{Na}^+]) + 0.41(\%G + C) - 0.63(\%\text{formamide}) - 600/l,$$

15 where l = the length of the hybrid in base pairs.

Stringent wash conditions include, for example, 4X SSC at 65°C, or 50% formamide, 4X SSC at 42°C, or 0.5X SSC, 0.1% SDS at 65°C. Highly stringent wash conditions include, for example, 0.2X SSC at 65°C.

20

Preparation of Polynucleotides

A CRIK-sk polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids. Polynucleotides can be made by a cell
25 and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated CRIK-sk polynucleotides. For example, restriction enzymes and
30 probes can be used to isolate polynucleotide fragments, which comprise CRIK-sk

nucleotide sequences. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.

Human CRIK-sk cDNA molecules can be made with standard molecular biology techniques, using CRIK-sk mRNA as a template. Human CRIK-sk cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook *et al.* (1989). An amplification technique, such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.

10

Alternatively, synthetic chemistry techniques can be used to synthesize CRIK-sk polynucleotides. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode a CRIK-sk polypeptide having, for example, an amino acid sequence shown in SEQ ID NO: 2 or a biologically active variant thereof.

Extending Polynucleotides

Various PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements. For example, restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, *PCR Methods Applic.* 2, 318-322, 1993). Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.

Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia *et al.*, *Nucleic Acids Res.* 16, 8186, 1988). Primers

can be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68-72°C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.

Another method which can be used is capture PCR, which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom *et al.*, *PCR Methods Applic.* 1, 111-119, 1991). In this method, multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.

Another method which can be used to retrieve unknown sequences is that of Parker *et al.*, *Nucleic Acids Res.* 19, 3055-3060, 1991). Additionally, PCR, nested primers, and PROMOTERFINDER libraries (CLONTECH, Palo Alto, Calif.) can be used to walk genomic DNA (CLONTECH, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5' non-transcribed regulatory regions.

Commercially available capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products. For example, capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) that are laser

activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA that might be present in limited amounts in a particular sample.

Obtaining Polypeptides

10

Human CRIK-sk polypeptides can be obtained, for example, by purification from human cells, by expression of CRIK-sk polynucleotides, or by direct chemical synthesis.

15

Protein Purification

20

Human CRIK-sk polypeptides can be purified from any cell that expresses the polypeptide, including host cells that have been transfected with CRIK-sk expression constructs. A purified CRIK-sk polypeptide is separated from other compounds that normally associate with the CRIK-sk polypeptide in the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. A preparation of purified CRIK-sk polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.

25

Expression of Polynucleotides

To express a CRIK-sk polynucleotide, the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding CRIK-sk polypeptides and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. Such techniques are described, for example, in Sambrook *et al.* (1989) and in Ausubel *et al.*, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1989. A variety of expression vector/host systems can be utilized to contain and express sequences encoding a CRIK-sk polypeptide. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (*e.g.*, baculovirus), plant cell systems transformed with virus expression vectors (*e.g.*, cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (*e.g.*, Ti or pBR322 plasmids), or animal cell systems.

The control elements or regulatory sequences are those non-translated regions of the vector -- enhancers, promoters, 5' and 3' untranslated regions -- which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORT1 plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (*e.g.*, heat shock, RUBISCO, and storage protein genes) or from plant viruses (*e.g.*,

viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a CRIK-sk polypeptide, vectors based on SV40 or
5 EBV can be used with an appropriate selectable marker.

Bacterial and Yeast Expression Systems

In bacterial systems, a number of expression vectors can be selected depending upon
10 the use intended for the CRIK-sk polypeptide. For example, when a large quantity of a CRIK-sk polypeptide is needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional *E. coli* cloning and expression vectors such as BLUESCRIPT (Stratagene). In a BLUESCRIPT vector, a sequence
15 encoding the CRIK-sk polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β -galactosidase so that a hybrid protein is produced. pIN vectors (Van Heeke & Schuster, *J. Biol. Chem.* 264, 5503-5509, 1989) or pGEX vectors (Promega, Madison, Wis.) also can be used to express foreign polypeptides as fusion proteins
20 with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety
25 at will.

In the yeast *Saccharomyces cerevisiae*, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used. For reviews, see Ausubel *et al.* (1989) and Grant *et al.*, *Methods Enzymol.* 153, 516-544,
30 1987.

Plant and Insect Expression Systems

If plant expression vectors are used, the expression of sequences encoding CRIK-sk polypeptides can be driven by any of a number of promoters. For example, viral
5 promoters such as the 35S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, *EMBO J.* 6, 307-311, 1987). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi *et al.*, *EMBO J.* 3, 1671-1680, 1984; Broglie *et al.*, *Science* 224, 838-843, 1984; Winter *et al.*, *Results Probl. Cell Differ.* 17, 85-105, 1991). These constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (e.g., Hobbs or Murray, in *MCGRAW HILL YEARBOOK OF SCIENCE AND TECHNOLOGY*, McGraw Hill, New York, N.Y., pp. 191-196, 1992).

15

An insect system also can be used to express a CRIK-sk polypeptide. For example, in one such system *Autographa californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in *Spodoptera frugiperda* cells or in *Trichoplusia* larvae. Sequences encoding CRIK-sk polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of CRIK-sk polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses can then be used to infect *S. frugiperda* cells or *Trichoplusia* larvae in which CRIK-sk polypeptides can be expressed (Engelhard *et al.*, *Proc. Nat. Acad. Sci.* 91, 3224-3227, 1994).

Mammalian Expression Systems

A number of viral-based expression systems can be used to express CRIK-sk polypeptides in mammalian host cells. For example, if an adenovirus is used as an expression vector, sequences encoding CRIK-sk polypeptides can be ligated into an
30

- 23 -

adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome can be used to obtain a viable virus that is capable of expressing a CRIK-sk polypeptide in infected host cells (Logan & Shenk, *Proc. Natl. Acad. Sci.* 81, 5 3655-3659, 1984). If desired, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells.

Human artificial chromosomes (HACs) also can be used to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6M to 10M are 10 constructed and delivered to cells via conventional delivery methods (e.g., liposomes, polycationic amino polymers, or vesicles).

Specific initiation signals also can be used to achieve more efficient translation of sequences encoding CRIK-sk polypeptides. Such signals include the ATG initiation 15 codon and adjacent sequences. In cases where sequences encoding a CRIK-sk polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the 20 ATG initiation codon) should be provided. The initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see 25 Scharf *et al.*, *Results Probl. Cell Differ.* 20, 125-162, 1994).

Host Cells

A host cell strain can be chosen for its ability to modulate the expression of the 30 inserted sequences or to process the expressed CRIK-sk polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to,

acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.

10 Stable expression is preferred for long-term, high-yield production of recombinant proteins. For example, cell lines which stably express CRIK-sk polypeptides can be transformed using expression vectors which can contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells can be allowed

15 to grow for 1-2 days in an enriched medium before they are switched to a selective medium. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced CRIK-sk sequences. Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for

20 example, ANIMAL CELL CULTURE, R.I. Freshney, ed., 1986.

Any number of selection systems can be used to recover transformed cell lines.

These include, but are not limited to, the herpes simplex virus thymidine kinase
25 (Wigler *et al.*, *Cell* 11, 223-32, 1977) and adenine phosphoribosyltransferase (Lowy
et al., *Cell* 22, 817-23, 1980) genes which can be employed in *tk* or *aprt* cells,
respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as
the basis for selection. For example, *dhfr* confers resistance to methotrexate (Wigler
et al., *Proc. Natl. Acad. Sci.* 77, 3567-70, 1980), *npt* confers resistance to the
30 aminoglycosides, neomycin and G-418 (Colbere-Garapin *et al.*, *J. Mol. Biol.* 150,
1-14, 1981), and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin

acetyltransferase, respectively (Murray, 1992, *supra*). Additional selectable genes have been described. For example, *trpB* allows cells to utilize indole in place of tryptophan, or *hisD*, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, *Proc. Natl. Acad. Sci.* 85, 8047-51, 1988). Visible markers such as anthocyanins, β -glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes *et al.*, *Methods Mol. Biol.* 55, 121-131, 1995).

10 Detecting Expression

Although the presence of marker gene expression suggests that the CRIK-sk polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding a CRIK-sk polypeptide is inserted within a marker gene sequence, transformed cells containing sequences that encode a CRIK-sk polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding a CRIK-sk polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the CRIK-sk polynucleotide.

20 Alternatively, host cells which contain a CRIK-sk polynucleotide and which express a CRIK-sk polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques that include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein. For example, the presence of a polynucleotide sequence encoding a CRIK-sk polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments 25 of polynucleotides encoding a CRIK-sk polypeptide. Nucleic acid amplification-

based assays involve the use of oligonucleotides selected from sequences encoding a CRIK-sk polypeptide to detect transformants that contain a CRIK-sk polynucleotide.

5 A variety of protocols for detecting and measuring the expression of a CRIK-sk polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on a CRIK-sk polypeptide can be used, or a
10 competitive binding assay can be employed. These and other assays are described in Hampton *et al.*, SEROLOGICAL METHODS: A LABORATORY MANUAL, APS Press, St. Paul, Minn., 1990) and Maddox *et al.*, *J. Exp. Med.* 158, 1211-1216, 1983).

15 A wide variety of labels and conjugation techniques are known by those skilled in the art and can be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding CRIK-sk polypeptides include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, sequences encoding a CRIK-sk polypeptide can be cloned into a vector for the
20 production of an mRNA probe. Such vectors are known in the art, are commercially available, and can be used to synthesize RNA probes *in vitro* by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical). Suitable reporter
25 molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Expression and Purification of Polypeptides

Host cells transformed with nucleotide sequences encoding a CRIK-sk polypeptide can be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing 5 polynucleotides which encode CRIK-sk polypeptides can be designed to contain signal sequences which direct secretion of soluble CRIK-sk polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of 10 membrane-bound CRIK-sk polypeptide.

As discussed above, other constructions can be used to join a sequence encoding a CRIK-sk polypeptide to a nucleotide sequence encoding a polypeptide domain which 15 will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). Inclusion of 20 cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the CRIK-sk polypeptide also can be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing a CRIK-sk polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The 25 histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath *et al.*, *Prot. Exp. Purif.* 3, 263-281, 1992), while the enterokinase cleavage site provides a means for purifying the CRIK-sk polypeptide from the fusion protein. Vectors that contain fusion proteins are disclosed in Kroll *et al.*, *DNA Cell Biol.* 12, 441-453, 1993.

Chemical Synthesis

Sequences encoding a CRIK-sk polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers *et al.*, *Nucl. Acids Res. Symp. Ser.* 215-223, 1980; Horn *et al.* *Nucl. Acids Res. Symp. Ser.* 225-232, 1980).

5 Alternatively, a CRIK-sk polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, *J. Am. Chem. Soc.* 85, 2149-2154, 1963; Roberge *et al.*, *Science* 269, 202-204, 1995). Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of CRIK-sk polypeptides can be separately synthesized and combined using chemical methods to produce a full-length molecule.

10 15 The newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (*e.g.*, Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983). The composition of a synthetic CRIK-sk polypeptide can be confirmed by amino acid analysis or sequencing (*e.g.*, the Edman degradation procedure; *see* Creighton,

20 *supra*). Additionally, any portion of the amino acid sequence of the CRIK-sk polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.

25 Production of Altered Polypeptides

As will be understood by those of skill in the art, it may be advantageous to produce CRIK-sk polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or 30 eukaryotic host can be selected to increase the rate of protein expression or to

produce an RNA transcript having desirable properties, such as a half-life that is longer than that of a transcript generated from the naturally occurring sequence.

The nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter CRIK-sk polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences. For example, site-directed mutagenesis can be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.

Antibodies

Any type of antibody known in the art can be generated to bind specifically to an epitope of a CRIK-sk polypeptide. "Antibody" as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab')₂, and Fv, which are capable of binding an epitope of a CRIK-sk polypeptide. Typically, at least 6, 8, 10, or 12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, e.g., at least 15, 25, or 50 amino acids.

An antibody which specifically binds to an epitope of a CRIK-sk polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art. Various immunoassays can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody that specifically binds to the immunogen.

- 30 -

Typically, an antibody which specifically binds to a CRIK-sk polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies
5 which specifically bind to CRIK-sk polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate a CRIK-sk polypeptide from solution.

Human CRIK-sk polypeptides can be used to immunize a mammal, such as a mouse,
10 rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies. If desired, a CRIK-sk polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin. Depending on the host species, various adjuvants can be used to increase the immunological response. Such adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g.,
15 aluminum hydroxide), and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol). Among adjuvants used in humans, BCG (*bacilli Calmette-Guerin*) and *Corynebacterium parvum* are especially useful.

20 Monoclonal antibodies that specifically bind to a CRIK-sk polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler *et al.*, *Nature* 256, 495-497, 1985; Kozbor *et al.*,
25 *J. Immunol. Methods* 81, 31-42, 1985; Cote *et al.*, *Proc. Natl. Acad. Sci.* 80, 2026-2030, 1983; Cole *et al.*, *Mol. Cell Biol.* 62, 109-120, 1984).

In addition, techniques developed for the production of "chimeric antibodies," the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison *et al.*,
30 *Proc. Natl. Acad. Sci.* 81, 6851-6855, 1984; Neuberger *et al.*, *Nature* 312, 604-608,

1984; Takeda *et al.*, *Nature* 314, 452-454, 1985). Monoclonal and other antibodies also can be "humanized" to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or
5 may require alteration of a few key residues. Sequence differences between rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grafting of entire complementarity determining regions. Alternatively,
10 humanized antibodies can be produced using recombinant methods, as described in GB2188638B. Antibodies that specifically bind to a CRIK-sk polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.

15 Alternatively, techniques described for the production of single chain antibodies can be adapted using methods known in the art to produce single chain antibodies that specifically bind to CRIK-sk polypeptides. Antibodies with related specificity, but of distinct idiotypic composition, can be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton, *Proc. Natl. Acad. Sci.* 88, 11120-23, 1991).

20 Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion *et al.*, 1996, *Eur. J. Cancer Prev.* 5, 507-11). Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent. Construction of tetravalent, bispecific single-chain
25 antibodies is taught, for example, in Coloma & Morrison, 1997, *Nat. Biotechnol.* 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Voss, 1994, *J. Biol. Chem.* 269, 199-206.

30 A nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DNA methods, and introduced into a cell to express the coding

sequence, as described below. Alternatively, single-chain antibodies can be produced directly using, for example, filamentous phage technology (Verhaar *et al.*, 1995, *Int. J. Cancer* 61, 497-501; Nicholls *et al.*, 1993, *J. Immunol. Meth.* 165, 81-91):

5 Antibodies which specifically bind to CRIK-sk polypeptides also can be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi *et al.*, *Proc. Natl. Acad. Sci.* 86, 3833-3837, 1989; Winter *et al.*, *Nature* 349, 293-299, 1991).

10

Other types of antibodies can be constructed and used therapeutically in methods of the invention. For example, chimeric antibodies can be constructed as disclosed in WO 93/03151. Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the "diabodies" described in WO 15 94/13804, also can be prepared.

Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which a CRIK-sk polypeptide is bound. The bound antibodies can then be eluted 20 from the column using a buffer with a high salt concentration.

Antisense Oligonucleotides

25 Antisense oligonucleotides are nucleotide sequences that are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense 30 oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of CRIK-sk gene products in the cell.

Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' 5 end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphordithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamide, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, *Meth. Mol. Biol.* 20, 1-8, 1994; Sonveaux, *Meth. Mol. Biol.* 26, 1-72, 1994; Uhlmann *et al.*, 10 *Chem. Rev.* 90, 543-583, 1990.

Modifications of CRIK-sk gene expression can be obtained by designing antisense oligonucleotides that will form duplexes to the control, 5', or regulatory regions of the CRIK-sk gene. Oligonucleotides derived from the transcription initiation site, 15 e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons. Therapeutic advances using triplex DNA have been described in the literature (e.g., 20 Gee *et al.*, in Huber & Carr, MOLECULAR AND IMMUNOLOGIC APPROACHES, Futura Publishing Co., Mt. Kisco, N.Y., 1994). An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

25 Precise complementarity is not required for successful complex formation between an antisense oligonucleotide and the complementary sequence of a CRIK-sk polynucleotide. Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely complementary to a CRIK-sk polynucleotide, each separated by a stretch of contiguous nucleotides which 30 are not complementary to adjacent CRIK-sk nucleotides, can provide sufficient targeting specificity for CRIK-sk mRNA. Preferably, each stretch of complementary

contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length. Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length. One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated
5 between a particular antisense oligonucleotide and a particular CRIK-sk polynucleotide sequence.

Antisense oligonucleotides can be modified without affecting their ability to hybridize to a CRIK-sk polynucleotide. These modifications can be internal or at one
10 or both ends of the antisense molecule. For example, internucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose. Modified bases and/or sugars, such as arabinose instead of ribose, or a 3', 5'-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are
15 substituted, also can be employed in a modified antisense oligonucleotide. These modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal *et al.*, *Trends Biotechnol.* 10, 152-158, 1992; Uhlmann *et al.*, *Chem. Rev.* 90, 543-584, 1990; Uhlmann *et al.*, *Tetrahedron Lett.* 215, 3539-3542, 1987.

20 Ribozymes

Ribozymes are RNA molecules with catalytic activity. See, e.g., Cech, *Science* 236, 1532-1539; 1987; Cech, *Ann. Rev. Biochem.* 59, 543-568; 1990, Cech, *Curr. Opin. Struct. Biol.* 2, 605-609; 1992, Couture & Stinchcomb, *Trends Genet.* 12, 510-515,
25 1996. Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff *et al.*, U.S. Patent 5,641,673). The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples include engineered hammerhead motif ribozyme molecules that can
30 specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.

The coding sequence of a CRIK-sk polynucleotide can be used to generate ribozymes that will specifically bind to mRNA transcribed from the CRIK-sk polynucleotide. Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff *et al.* *Nature* 334, 585-591, 1988). For example, the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme. The hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach *et al.*, EP 321,201).

Specific ribozyme cleavage sites within a CRIK-sk RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. Suitability of candidate CRIK-sk RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Longer complementary sequences can be used to increase the affinity of the hybridization sequence for the target. The hybridizing and cleavage regions of the ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.

Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease CRIK-sk expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art. A ribozyme-encoding

DNA construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.

5 As taught in Haseloff *et al.*, U.S. Patent 5,641,673, ribozymes can be engineered so that ribozyme expression will occur in response to factors that induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.

10

Differentially Expressed Genes

Described herein are methods for the identification of genes whose products interact with human CRIK-sk. Such genes may represent genes that are differentially expressed in disorders including, but not limited to, obesity and COPD.

15 Further, such genes may represent genes that are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the human CRIK-sk gene or gene product may itself be tested for differential expression.

20
25 The degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques. Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.

30

Identification of Differentially Expressed Genes

To identify differentially expressed genes total RNA or, preferably, mRNA is isolated from tissues of interest. For example, RNA samples are obtained from tissues of experimental subjects and from corresponding tissues of control subjects.

5 Any RNA isolation technique that does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel *et al.*, ed., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed

10 using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.

Transcripts within the collected RNA samples that represent RNA produced by differentially expressed genes are identified by methods well known to those of skill in the art. They include, for example, differential screening (Tedder *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 85, 208-12, 1988), subtractive hybridization (Hedrick *et al.*, *Nature* 308, 149-53; Lee *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 88, 2825, 1984), and, preferably, differential display (Liang & Pardee, *Science* 257, 967-71, 1992; U.S. Patent 5,262,311).

20 The differential expression information may itself suggest relevant methods for the treatment of disorders involving the human CRIK-sk. For example, treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding the human CRIK-sk. The differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the human CRIK-sk gene or gene product are up-regulated or down-regulated.

Screening Methods

The invention provides assays for screening test compounds that bind to or modulate the activity of a CRIK-sk polypeptide or a CRIK-sk polynucleotide. A test compound preferably binds to a CRIK-sk polypeptide or polynucleotide. More preferably, a test compound decreases or increases enzymatic activity by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the test compound.

10 Test Compounds

Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity. The compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound" library method, and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, *Anticancer Drug Des.* 12, 145, 1997.

25

Methods for the synthesis of molecular libraries are well known in the art (see, for example, DeWitt *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 90, 6909, 1993; Erb *et al.* *Proc. Natl. Acad. Sci. U.S.A.* 91, 11422, 1994; Zuckermann *et al.*, *J. Med. Chem.* 37, 2678, 1994; Cho *et al.*, *Science* 261, 1303, 1993; Carell *et al.*, *Angew. Chem. Int. Ed. Engl.* 33, 2059, 1994; Carell *et al.*, *Angew. Chem. Int. Ed. Engl.* 33, 2061; Gallop *et al.*, *J. Med. Chem.* 37, 1233, 1994). Libraries of compounds can be presented in solution

(see, e.g., Houghten, *BioTechniques* 13, 412-421, 1992), or on beads (Lam, *Nature* 354, 82-84, 1991), chips (Fodor, *Nature* 364, 555-556, 1993), bacteria or spores (Ladner, U.S. Patent 5,223,409), plasmids (Cull *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 89, 1865-1869, 1992); or phage (Scott & Smith, *Science* 249, 386-390, 1990; Devlin, 5 *Science* 249, 404-406, 1990); Cwirla *et al.*, *Proc. Natl. Acad. Sci.* 97, 6378-6382, 1990; Felici, *J. Mol. Biol.* 222, 301-310, 1991; and Ladner, U.S. Patent 5,223,409).

High Throughput Screening

10 Test compounds can be screened for the ability to bind to CRIK-sk polypeptides or polynucleotides or to affect CRIK-sk activity or CRIK-sk gene expression using high throughput screening. Using high throughput screening, many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened. The most widely established techniques utilize 96-well microtiter plates.
15 The wells of the microtiter plates typically require assay volumes that range from 50 to 500 µl. In addition to the plates, many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.

20 Alternatively, "free format assays," or assays that have no physical barrier between samples, can be used. For example, an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 91, 1614-18 (1994). The cells are placed under agarose in petri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose. The combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.
25

30 Another example of a free format assay is described by Chelsky, "Strategies for Screening Combinatorial Libraries: Novel and Traditional Approaches," reported at the First Annual Conference of The Society for Biomolecular Screening in

- 40 -

Philadelphia, Pa. (Nov. 7-10, 1995). Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel. Thereafter, beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds 5 were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.

Yet another example is described by Salmon *et al.*, *Molecular Diversity* 2, 57-63 (1996). In this example, combinatorial libraries were screened for compounds that 10 had cytotoxic effects on cancer cells growing in agar.

Another high throughput screening method is described in Beutel *et al.*, U.S. Patent 5,976,813. In this method, test samples are placed in a porous matrix. One or more assay components are then placed within, on top of, or at the bottom of a matrix such 15 as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support. When samples are introduced to the porous matrix they diffuse sufficiently slowly, such that the assays can be performed without the test samples running together.

Binding Assays

20 For binding assays, the test compound is preferably a small molecule that binds to and occupies, for example, the active site of the CRIK-sk polypeptide, such that normal biological activity is prevented. Examples of such small molecules include, but are not limited to, small peptides or peptide-like molecules.

25 In binding assays, either the test compound or the CRIK-sk polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase. Detection of a test compound that is bound to the CRIK-sk polypeptide can then be 30 accomplished, for example, by direct counting of radioemmission, by scintillation

counting, or by determining conversion of an appropriate substrate to a detectable product.

Alternatively, binding of a test compound to a CRIK-sk polypeptide can be determined without labeling either of the interactants. For example, a microphysiometer can be used to detect binding of a test compound with a CRIK-sk polypeptide. A microphysiometer (e.g., CytosensorTM) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a test compound and a CRIK-sk polypeptide (McConnell *et al.*, *Science* 257, 1906-1912, 1992).

Determining the ability of a test compound to bind to a CRIK-sk polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, *Anal. Chem.* 63, 2338-2345, 1991, and Szabo *et al.*, *Curr. Opin. Struct. Biol.* 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIACoreTM). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.

In yet another aspect of the invention, a CRIK-sk polypeptide can be used as a "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos *et al.*, *Cell* 72, 223-232, 1993; Madura *et al.*, *J. Biol. Chem.* 268, 12046-12054, 1993; Bartel *et al.*, *BioTechniques* 14, 920-924, 1993; Iwabuchi *et al.*, *Oncogene* 8, 1693-1696, 1993; and Brent W094/10300), to identify other proteins which bind to or interact with the CRIK-sk polypeptide and modulate its activity.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. For example, in one construct, polynucleotide

encoding a CRIK-sk polypeptide can be fused to a polynucleotide encoding the DNA binding domain of a known transcription factor (*e.g.*, GAL-4). In the other construct a DNA sequence that encodes an unidentified protein ("prey" or "sample") can be fused to a polynucleotide that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact *in vivo* to form an protein-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (*e.g.*, LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the DNA sequence encoding the protein that interacts with the CRIK-sk polypeptide.

It may be desirable to immobilize either the CRIK-sk polypeptide (or polynucleotide) or the test compound to facilitate separation of bound from unbound forms of one or both of the interactants, as well as to accommodate automation of the assay. Thus, either the CRIK-sk polypeptide (or polynucleotide) or the test compound can be bound to a solid support. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads). Any method known in the art can be used to attach the enzyme polypeptide (or polynucleotide) or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide (or polynucleotide) or test compound and the solid support. Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to a CRIK-sk polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.

In one embodiment, the CRIK-sk polypeptide is a fusion protein comprising a domain that allows the CRIK-sk polypeptide to be bound to a solid support. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized 5 microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed CRIK-sk polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be 10 determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.

Other techniques for immobilizing proteins or polynucleotides on a solid support also 15 can be used in the screening assays of the invention. For example, either a CRIK-sk polypeptide (or polynucleotide) or a test compound can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated CRIK-sk polypeptides (or polynucleotides) or test compounds can be prepared from biotin-NHS(N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce 20 Chemicals, Rockford, Ill.) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies which specifically bind to a CRIK-sk polypeptide, polynucleotide, or a test compound, but which do not interfere 25 with a desired binding site, such as the active site of the CRIK-sk polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.

Methods for detecting such complexes, in addition to those described above for the 30 GST-immobilized complexes, include immunodetection of complexes using antibodies which specifically bind to the CRIK-sk polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the CRIK-sk polypeptide, and SDS gel electrophoresis under non-reducing conditions.

Screening for test compounds which bind to a CRIK-sk polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises a CRIK-sk polypeptide or polynucleotide can be used in a cell-based assay system. A CRIK-sk polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to a CRIK-sk polypeptide or polynucleotide is determined as described above.

Enzyme Assays

10 Test compounds can be tested for the ability to increase or decrease the activity of a human CRIK-sk polypeptide. CRIK-sk activity can be measured, for example, as described in Di Cunto F. *et al.*, J Biol Chem. 1998 Nov 6;273(45):29706-11.

15 Enzyme assays can be carried out after contacting either a purified CRIK-sk polypeptide, a cell membrane preparation, or an intact cell with a test compound. A test compound that decreases kinase activity of a CRIK-sk polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for decreasing CRIK-sk activity. A test compound which increases a kinase activity of a human CRIK-sk polypeptide by at least about 20 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing human CRIK-sk activity.

Gene Expression

25 In another embodiment, test compounds that increase or decrease CRIK-sk gene expression are identified. A CRIK-sk polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the CRIK-sk polynucleotide is determined. The level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound. The test compound can then be identified as a modulator of expression based on this

- 45 -

comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less in the presence of the test
5 compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.

The level of CRIK-sk mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide.
10 Either qualitative or quantitative methods can be used. The presence of polypeptide products of a CRIK-sk polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, polypeptide synthesis can be determined *in vivo*, in a cell culture, or in an *in vitro*
15 translation system by detecting incorporation of labeled amino acids into a CRIK-sk polypeptide.

Such screening can be carried out either in a cell-free assay system or in an intact cell. Any cell that expresses a CRIK-sk polynucleotide can be used in a cell-based
20 assay system. The CRIK-sk polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.

25 Pharmaceutical Compositions

The invention also provides pharmaceutical compositions that can be administered to a patient to achieve a therapeutic effect. Pharmaceutical compositions of the invention can comprise, for example, a CRIK-sk polypeptide, CRIK-sk polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to a
30 CRIK-sk polypeptide, or mimetics, activators, or inhibitors of a CRIK-sk polypeptide

- 46 -

activity. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.

In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means. Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to
5 the tablets or dragee coatings for product identification or to characterize the quantity of active compound, *i.e.*, dosage.

Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as
10 glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

15

Pharmaceutical formulations suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such
20 as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers also can be used for delivery. Optionally, the
25 suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

30

The pharmaceutical compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

Further details on techniques for formulation and administration can be found in the latest edition of REMINGTON'S PHARMACEUTICAL SCIENCES (Maack Publishing Co., Easton, Pa.). After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.

Therapeutic Indications and Methods

20

Human CRIK-sk can be regulated to treat obesity and COPD.

Obesity. Obesity and overweight are defined as an excess of body fat relative to lean body mass. An increase in caloric intake or a decrease in energy expenditure or both can bring about this imbalance leading to surplus energy being stored as fat. Obesity is associated with important medical morbidities and an increase in mortality. The causes of obesity are poorly understood and may be due to genetic factors, environmental factors or a combination of the two to cause a positive energy balance. In contrast, anorexia and cachexia are characterized by an imbalance in energy intake versus energy expenditure leading to a negative energy balance and weight loss. Agents that either increase energy expenditure and/or decrease energy intake,

absorption or storage would be useful for treating obesity, overweight, and associated comorbidities. Agents that either increase energy intake and/or decrease energy expenditure or increase the amount of lean tissue would be useful for treating cachexia, anorexia and wasting disorders.

5

The hypothalamus has been considered as the feeding control center. Many neuropeptides, hormones, neurotransmitters, etc. that play important roles in the control of energy homeostasis have been identified in the hypothalamus. See *J. Lip. Res.* 40, 1735-46, 1999; *Pharm. Rev.* 52, 35-61, 2000. Leptin signaling pathway, MC4, and 5-HT2C systems in the hypothalamus play critical roles in the control of body weight homeostasis. Therefore, a gene selectively expressed in the hypothalamus, such as the human CRIK-sk of the invention, is a potential obesity target.

10

Thus, this gene, translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity, overweight, anorexia, cachexia, wasting disorders, appetite suppression, appetite enhancement, increases or decreases in satiety, modulation of body weight, and/or other eating disorders such as bulimia. Also this gene, translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity/overweight-associated comorbidities including hypertension, type 2 diabetes, coronary artery disease, hyperlipidemia, stroke, gallbladder disease, gout, osteoarthritis, sleep apnea and respiratory problems, some types of cancer including endometrial, breast, prostate, and colon cancer, thrombotic disease, polycystic ovarian syndrome, reduced fertility, complications of pregnancy, menstrual irregularities, hirsutism, stress incontinence, and depression.

20

25

30

COPD. Chronic obstructive pulmonary (or airways) disease (COPD) is a condition defined physiologically as airflow obstruction that generally results from a mixture of emphysema and peripheral airway obstruction due to chronic bronchitis (Senior & Shapiro, *Pulmonary Diseases and Disorders*, 3d ed., New York, McGraw-Hill, 1998, pp. 659-681, 1998; Barnes, *Chest* 117, 10S-14S, 2000). Emphysema is characterized by destruction of alveolar walls leading to abnormal enlargement of the air spaces of

the lung. Chronic bronchitis is defined clinically as the presence of chronic productive cough for three months in each of two successive years. In COPD, airflow obstruction is usually progressive and is only partially reversible. By far the most important risk factor for development of COPD is cigarette smoking, although
5 the disease does occur in non-smokers.

Chronic inflammation of the airways is a key pathological feature of COPD (Senior & Shapiro, 1998). The inflammatory cell population comprises increased numbers of macrophages, neutrophils, and CD8⁺ lymphocytes. Inhaled irritants, such as cigarette smoke, activate macrophages which are resident in the respiratory tract, as well as epithelial cells leading to release of chemokines (e.g., interleukin-8) and other chemotactic factors. These chemotactic factors act to increase the neutrophil-monocyte trafficking from the blood into the lung tissue and airways. Neutrophils and monocytes recruited into the airways can release a variety of potentially damaging mediators such as proteolytic enzymes and reactive oxygen species.
10 Matrix degradation and emphysema, along with airway wall thickening, surfactant dysfunction, and mucus hypersecretion, all are potential sequelae of this inflammatory response that lead to impaired airflow and gas exchange.
15

Protein kinases are signal transducing enzymes that phosphorylate proteins, including other kinases, and, along with protein phosphatases, regulate the level and extent of protein phosphorylation and activation. Intracellular signalling pathways have important roles in inflammatory processes. These pathways may be activated by cytokines, oxidant stress and other inflammatory mediators (reviewed in Kyraikis and Avruch, 1996 and 2001). For example, the pro-inflammatory cytokines, tumor necrosis factor α (TNF α) and interleukin-1 activate the protein ser/thr kinases c-Jun-NH₂-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase, leading to activation of AP-1 and IKB kinase (IKK), which, in turn, leads to activation of the transcription factor NFKB. Activation of NFKB is required for the transcription of several pro-inflammatory molecules, including interleukin-8 and
20
25
30

ICAM-1. Enzymes of the MAP kinase class may also act to increase cytokine production by stabilization of mRNA (Winzen et al., 1999).

Inhibition of specific protein kinases has been shown to elicit anti-inflammatory effects. For example, the accumulation of polymorphonuclear leukocytes in murine lung following intratracheal administration of bacterial lipopolysaccharide can be blocked by inhibition of p38 MAP kinase (Nick, et al. 2000). As a further example, aerosol delivery to rat lungs of antisense oligodeoxynucleotides to syk kinase mRNA, suppressed nitric oxide and TNF α production from alveolar macrophages stimulated with IgG-anti-IgG complexes (Stenton et al. 2000). Protein kinase subtypes are therefore attractive therapeutic targets for the attenuation of the inflammatory response in COPD. See Kyriakis, J.M. and Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. *J Biol Chem* 1996, 271:24313-6; Kyriakis, J.M. and Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. *J. Physiol. Rev.* 2001, 81:807-69; Winzen, R., Kracht, M., Ritter, B., Wilhelm, A., Chen C.A., Shyu, A., Müller, M., Gaestel, M., Resch, K., and Holtmann, H. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. *EMBO J.* 1999, 18: 4969-4980; Nick, J.A., Young, S.K., Brown, K.K., Avdi, N.J., Arndt, P.G., Suratt, B.T., Janes, M.S., Henson, P.M., Worthen, G.S. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. *J Immunol.* 2000, 164:2151-9; and Stenton, G.R., Kim, M.K., Nohara, O., Chen, C.F., Hirji, N., Wills, F.L., Gilchrist, M., Hwang, P.H., Park, J.G., Finlay, W., Jones, R.L., Befus, A.D., Schreiber, A.D. Aerosolized Syk antisense suppresses Syk expression, mediator release from macrophages, and pulmonary inflammation. *J Immunol* 2000, 164:3790-7.

This invention further pertains to the use of novel agents identified by the screening assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a modulating agent, an

antisense nucleic acid molecule, a specific antibody, ribozyme, or a CRIK-sk polypeptide binding molecule) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the 5 mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

A reagent which affects CRIK-sk activity can be administered to a human cell, either 10 *in vitro* or *in vivo*, to reduce CRIK-sk activity. The reagent preferably binds to an expression product of a human CRIK-sk gene. If the expression product is a protein, the reagent is preferably an antibody. For treatment of human cells *ex vivo*, an antibody can be added to a preparation of stem cells that have been removed from the body. The cells can then be replaced in the same or another human body, with or 15 without clonal propagation, as is known in the art.

In one embodiment, the reagent is delivered using a liposome. Preferably, the liposome is stable in the animal into which it has been administered for at least about 20 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours. A liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human. Preferably, the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.

25 A liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell. Preferably, the transfection efficiency of a liposome is about 0.5 µg of DNA per 16 nmole of liposome delivered to about 10^6 cells, more 30 preferably about 1.0 µg of DNA per 16 nmole of liposome delivered to about 10^6 cells, and even more preferably about 2.0 µg of DNA per 16 nmol of liposome

delivered to about 10^6 cells. Preferably, a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.

5 Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol. Optionally, a liposome comprises a compound capable of targeting
10 the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.

Complexing a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for
15 example, U.S. Patent 5,705,151). Preferably, from about 0.1 μ g to about 10 μ g of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 μ g to about 5 μ g of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 μ g of polynucleotides is combined with about 8 nmol liposomes.

20 In another embodiment, antibodies can be delivered to specific tissues *in vivo* using receptor-mediated targeted delivery. Receptor-mediated DNA delivery techniques are taught in, for example, Findeis *et al.* *Trends in Biotechnol.* 11, 202-05 (1993); Chiou *et al.*, GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE
25 TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, *J. Biol. Chem.* 263, 621-24 (1988); Wu *et al.*, *J. Biol. Chem.* 269, 542-46 (1994); Zenke *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 87, 3655-59 (1990); Wu *et al.*, *J. Biol. Chem.* 266, 338-42 (1991).

Determination of a Therapeutically Effective Dose

The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to that amount of active ingredient which increases or decreases CRIK-sk activity relative to the CRIK-sk activity which occurs in the absence of the therapeutically effective dose.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

Therapeutic efficacy and toxicity, e.g., ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD₅₀/ED₅₀.

Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect.

Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and

frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.

5

Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of poly-nucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

10

If the reagent is a single-chain antibody, polynucleotides encoding the antibody can be constructed and introduced into a cell either *ex vivo* or *in vivo* using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.

15

Effective *in vivo* dosages of an antibody are in the range of about 5 µg to about 50 µg/kg, about 50 µg to about 5 mg/kg, about 100 µg to about 500 µg/kg of patient body weight, and about 200 to about 250 µg/kg of patient body weight. For administration of polynucleotides encoding single-chain antibodies, effective *in vivo* dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 µg to about 2 mg, about 5 µg to about 500 µg, and about 20 µg to about 100 µg of DNA.

20

25

If the expression product is mRNA, the reagent is preferably an antisense oligonucleotide or a ribozyme. Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.

5 Preferably, a reagent reduces expression of a CRIK-sk gene or the activity of a CRIK-sk polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent. The effectiveness of the mechanism chosen to decrease the level of expression of a CRIK-sk gene or the activity of a CRIK-sk polypeptide can be assessed using methods well known in the
10 art, such as hybridization of nucleotide probes to CRIK-sk-specific mRNA, quantitative RT-PCR, immunologic detection of a CRIK-sk polypeptide, or measurement of CRIK-sk activity.

In any of the embodiments described above, any of the pharmaceutical compositions
15 of the invention can be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described
20 above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

Any of the therapeutic methods described above can be applied to any subject in need
25 of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

Diagnostic Methods

Human CRIK-sk also can be used in diagnostic assays for detecting diseases and
30 abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode the enzyme. For example,

differences can be determined between the cDNA or genomic sequence encoding CRIK-sk in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.

5

Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method. In addition, cloned DNA segments can be employed as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR. For example, a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR. The sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.

15

Genetic testing based on DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (*see, e.g., Myers et al., Science 230, 1242, 1985*). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S 1 protection or the chemical cleavage method (*e.g., Cotton et al., Proc. Natl. Acad. Sci. USA 85, 4397-4401, 1985*). Thus, the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA. In addition to direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by *in situ* analysis.

20
25
30

Altered levels of CRIK-sk also can be detected in various tissues. Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.

5

All patents and patent applications cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following 10 specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.

EXAMPLE 1

15

Detection of human citron rho/rac-interacting kinase-short kinase activity

Subconfluent COS7 cells in 10-cm dishes are transiently transfected by the DEAE-dextran/chloroquine method with 10 µg of FLAG-SEQ ID NO: 1 vector. Cells are harvested 48 h after transfection. Immunoblotting is performed, and cells are probed with anti-FLAG M2 antibodies (Eastman Kodak Co.) Blots are developed using horseradish peroxidase-conjugated secondary antibodies and ECL detection system (Amersham Pharmacia Biotech). In vitro kinase assays are performed by incubating immune complexes in 50 ml of kinase buffer (50 mM HEPES, pH 7.4, 5 mM MgCl₂, 3 mM MnCl₂, 1 mM dithiothreitol), in the presence or absence of 5 mg of histone H1 or myelin basic protein, plus 0.1 mM ATP and 10 mCi of [γ -32P] ATP (6000 Ci/mM, NEN Life Science Products) for 30 min at 30°C. The products are analyzed by 5% or 12.5% SDS-PAGE followed by autoradiography. For immunoprecipitation of metabolically labeled proteins, primary keratinocytes are incubated with 0.1 mCi/ml [³⁵S]methionine (Expre35S; NEN Life Science Products) for 4 h in methionine-free medium in the presence of serum. Immunoprecipitated proteins are separated on a 5% SDS-PAGE gel and visualized by autoradiography. It is shown

20

25

30

that the polypeptide of SEQ ID NO: 2 has a human citron rho/rac-interacting kinase-short kinase activity.

EXAMPLE 2

5

Expression of recombinant human CRIK-sk

The *Pichia pastoris* expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant human CRIK-sk polypeptides in yeast.

10 The CRIK-sk-encoding DNA sequence is derived from SEQ ID NO: 1. Before insertion into vector pPICZB, the DNA sequence is modified by well known methods in such a way that it contains at its 5'-end an initiation codon and at its 3'-end an enterokinase cleavage site, a His6 reporter tag and a termination codon. Moreover, at both termini recognition sequences for restriction endonucleases are added and after 15 digestion of the multiple cloning site of pPICZ B with the corresponding restriction enzymes the modified DNA sequence is ligated into pPICZB. This expression vector is designed for inducible expression in *Pichia pastoris*, driven by a yeast promoter. The resulting pPICZ/md-His6 vector is used to transform the yeast.

20 The yeast is cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea. The bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation of the polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San 25 Diego, CA) according to manufacturer's instructions. Purified human CRIK-sk polypeptide is obtained.

EXAMPLE 3*Identification of test compounds that bind to CRIK-sk polypeptides*

5 Purified CRIK-sk polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution. Human CRIK-sk polypeptides comprise the amino acid sequence shown in SEQ ID NO: 2. The test compounds comprise a fluorescent tag. The
10 samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.

The buffer solution containing the test compounds is washed from the wells. Binding of a test compound to a CRIK-sk polypeptide is detected by fluorescence measurements of the contents of the wells. A test compound that increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to a CRIK-sk polypeptide.
15

20 EXAMPLE 4*Identification of a test compound which decreases CRIK-sk gene expression*

A test compound is administered to a culture of human cells transfected with a
25 CRIK-sk expression construct and incubated at 37°C for 10 to 45 minutes. A culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.

RNA is isolated from the two cultures as described in Chirgwin *et al.*, *Biochem.* 18,
30 5294-99, 1979). Northern blots are prepared using 20 to 30 µg total RNA and hybridized with a ³²P-labeled CRIK-sk-specific probe at 65°C in Express-hyb

(CLONTECH). The probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO: 1. A test compound that decreases the CRIK-sk-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of CRIK-sk gene expression.

5

EXAMPLE 5

Identification of a test compound which decreases CRIK-sk activity

10 A test compound is administered to a culture of human cells transfected with a CRIK-sk expression construct and incubated at 37 °C for 10 to 45 minutes. A culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control. CRIK-sk activity is measured using the method of Di Cunto F. *et al.*, J Biol Chem. 1998 Nov
15 6;273(45):29706-11.

A test compound which decreases the CRIK-sk activity of the CRIK-sk relative to the CRIK-sk activity in the absence of the test compound is identified as an inhibitor of CRIK-sk activity.

20

EXAMPLE 6

Tissue-specific expression of CRIK-sk

25 The qualitative expression pattern of CRIK-sk in various tissues is determined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR).

To demonstrate that CRIK-sk is involved in the disease process of obesity, expression is determined in the following tissues: subcutaneous adipose tissue, mesenteric adipose tissue, adrenal gland, bone marrow, brain (cerebellum, spinal cord, cerebral cortex, caudate, medulla, substantia nigra, and putamen), colon, fetal

brain, heart, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle small intestine, spleen, stomach, testes, thymus, thyroid trachea, and uterus. Neuroblastoma cell lines SK-Nr-Be (2), Hr, Sk-N-As, HTB-10, IMR-32, SNSY-5Y, T3, SK-N-D2, D283, DAOY, CHP-2, U87MG, 5 BE(2)C, T986, KANTS, MO59K, CHP234, C6 (rat), SK-N-F1, SK-PU-DW, PFSK-1, BE(2)M17, and MC1XC also are tested for CRIK-sk expression. As a final step, the expression of CRIK-sk in cells derived from normal individuals with the expression of cells derived from obese individuals is compared.

10 To demonstrate that CRIK-sk is involved in the disease process of COPD, the initial expression panel consists of RNA samples from respiratory tissues and inflammatory cells relevant to COPD: lung (adult and fetal), trachea, freshly isolated alveolar type II cells, cultured human bronchial epithelial cells, cultured small airway epithelial cells, cultured bronchial smooth muscle cells, cultured H441 cells (Clara-like), freshly 15 isolated neutrophils and monocytes, and cultured monocytes (macrophage-like). Body map profiling also is carried out, using total RNA panels purchased from Clontech. The tissues are adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, mammary gland, pancreas, prostate, salivary gland, skeletal muscle, small intestine, spleen, stomach, testis, thymus, trachea, thyroid, and uterus.

20 *Quantitative expression profiling.* Quantitative expression profiling is performed by the form of quantitative PCR analysis called "kinetic analysis" firstly described in Higuchi *et al.*, *BioTechnology* 10, 413-17, 1992, and Higuchi *et al.*, *BioTechnology* 11, 1026-30, 1993. The principle is that at any given cycle within the exponential phase of PCR, the amount of product is proportional to the initial number of template 25 copies.

30 If the amplification is performed in the presence of an internally quenched fluorescent oligonucleotide (TaqMan probe) complementary to the target sequence, the probe is cleaved by the 5'-3' endonuclease activity of Taq DNA polymerase and a fluorescent dye released in the medium (Holland *et al.*, *Proc. Natl. Acad. Sci. U.S.A.*

88, 7276-80, 1991). Because the fluorescence emission will increase in direct proportion to the amount of the specific amplified product, the exponential growth phase of PCR product can be detected and used to determine the initial template concentration (Heid *et al.*, *Genome Res.* 6, 986-94, 1996, and Gibson *et al.*, *Genome Res.* 6, 995-1001, 1996).

The amplification of an endogenous control can be performed to standardize the amount of sample RNA added to a reaction. In this kind of experiment, the control of choice is the 18S ribosomal RNA. Because reporter dyes with differing emission spectra are available, the target and the endogenous control can be independently quantified in the same tube if probes labeled with different dyes are used.

All "real time PCR" measurements of fluorescence are made in the ABI Prism 7700.

15 *RNA extraction and cDNA preparation.* Total RNA from the tissues listed above are used for expression quantification. RNAs labeled "from autopsy" were extracted from autoptic tissues with the TRIzol reagent (Life Technologies, MD) according to the manufacturer's protocol.

20 Fifty µg of each RNA were treated with DNase I for 1 hour at 37°C in the following reaction mix: 0.2 U/µl RNase-free DNase I (Roche Diagnostics, Germany); 0.4 U/µl RNase inhibitor (PE Applied Biosystems, CA); 10 mM Tris-HCl pH 7.9; 10 mM MgCl₂; 50 mM NaCl; and 1 mM DTT.

25 After incubation, RNA is extracted once with 1 volume of phenol:chloroform:-isoamyl alcohol (24:24:1) and once with chloroform, and precipitated with 1/10 volume of 3 M NaAcetate, pH 5.2, and 2 volumes of ethanol.

30 Fifty µg of each RNA from the autoptic tissues are DNase treated with the DNA-free kit purchased from Ambion (Ambion, TX). After resuspension and spectrophotometric quantification, each sample is reverse transcribed with the TaqMan

- 64 -

Reverse Transcription Reagents (PE Applied Biosystems, CA) according to the manufacturer's protocol. The final concentration of RNA in the reaction mix is 200 ng/ μ L. Reverse transcription is carried out with 2.5 μ M of random hexamer primers.

5

TaqMan quantitative analysis. Specific primers and probe are designed according to the recommendations of PE Applied Biosystems; the probe can be labeled at the 5' end FAM (6-carboxy-fluorescein) and at the 3' end with TAMRA (6-carboxy-tetramethyl-rhodamine). Quantification experiments are performed on 10 ng of reverse transcribed RNA from each sample. Each determination is done in triplicate.

10

Total cDNA content is normalized with the simultaneous quantification (multiplex PCR) of the 18S ribosomal RNA using the Pre-Developed TaqMan Assay Reagents (PDAR) Control Kit (PE Applied Biosystems, CA).

15

The assay reaction mix is as follows: 1X final TaqMan Universal PCR Master Mix (from 2X stock) (PE Applied Biosystems, CA); 1X PDAR control – 18S RNA (from 20X stock); 300 nM forward primer; 900 nM reverse primer; 200 nM probe; 10 ng cDNA; and water to 25 μ l.

20

Each of the following steps are carried out once: pre PCR, 2 minutes at 50°C, and 10 minutes at 95°C. The following steps are carried out 40 times: denaturation, 15 seconds at 95°C, annealing/extension, 1 minute at 60°C.

25

The experiment is performed on an ABI Prism 7700 Sequence Detector (PE Applied Biosystems, CA). At the end of the run, fluorescence data acquired during PCR are processed as described in the ABI Prism 7700 user's manual in order to achieve better background subtraction as well as signal linearity with the starting target quantity.

30

EXAMPLE 7*Identification of test compound efficacy in a COPD animal model*

5 Guinea pigs are exposed on a single occasion to tobacco smoke for 50 minutes. Animals are sacrificed between 10 minutes and 24 hour following the end of the exposure and their lungs placed in RNAlater™. The lung tissue is homogenised ,and total RNA IS extracted using a Qiagen RNeasy™ Maxi kit. Molecular Probes RiboGreen™ RNA quantitation method is used to quantify the amount of RNA in
10 each sample.

15 Total RNA is reverse transcribed, and the resultant cDNA is used in a real-time polymerase chain reaction (PCR). The cDNA is added to a solution containing the sense and anti-sense primers and the 6-carboxy-tetramethyl-rhodamine labeled probe of the CRIK-sk gene. Cyclophilin is used as the housekeeping gene. The expression of the CRIK-sk gene is measured using the TaqMan real-time PCR system that generates an amplification curve for each sample. From this curve a threshold cycle value is calculated: the fractional cycle number at which the amount of amplified target reaches a fixed threshold. A sample containing many copies of the CRIK-sk
20 gene will reach this threshold earlier than a sample containing fewer copies. The threshold is set at 0.2, and the threshold cycle C_T is calculated from the amplification curve. The C_T value for the CRIK-sk gene is normalized using the C_T value for the housekeeping gene.

25 Expression of the CRIK-sk gene is increased by at least 3-fold between 10 minutes and 3 hours post tobacco smoke exposure compared to air exposed control animals.

30 Test compounds are evaluated as follows. Animals are pre-treated with a test compound between 5 minutes and 1 hour prior to the tobacco smoke exposure and they are then sacrificed up to 3 hours after the tobacco smoke exposure has been completed. Control animals are pre-treated with the vehicle of the test compound via

the route of administration chosen for the test compound. A test compound that reduces the tobacco smoke induced upregulation of CRIK-sk gene relative to the expression seen in vehicle treated tobacco smoke exposed animals is identified as an inhibitor of CRIK-sk gene expression.

5

EXAMPLE 8

Expression of human citron rho/rac-interacting kinase-short kinase

10 Total RNA used for Taqman quantitative analysis were either purchased (Clontech, CA) or extracted from tissues using TRIzol reagent (Life Technologies, MD) according to a modified vendor protocol which utilizes the Rneasy protocol (Qiagen, CA). One hundred µg of each RNA were treated with DNase I using RNase free-DNase (Qiagen, CA) for use with RNeasy or QiaAmp columns.

15

After elution and quantitation with Ribogreen (Molecular Probes Inc., OR), each sample was reverse transcribed using the GibcoBRL Superscript II First Strand Synthesis System for RT-PCR according to vendor protocol (Life Technologies, MD). The final concentration of RNA in the reaction mix was 50 ng/µL. Reverse transcription was performed with 50 ng of random hexamers.

20

Specific primers and probe were designed according to PE Applied Biosystems' Primer Express program recommendations and are listed below:

25

forward primer: 5'-(TCATCAAAAGCAAAGAGCTACAAGA)-3'

reverse primer: 5'-(CATATACGGACGGGAGGATCCT)-3'

probe: SYBR Green

30

Quantitation experiments were performed on 25 ng of reverse transcribed RNA from each sample. 18S ribosomal RNA was measured as a control using the Pre-

- 67 -

Developed TaqMan Assay Reagents (PDAR)(PE Applied Biosystems, CA). The assay reaction mix was as follows:

		final concentration/amount
5	TaqMan SYBR Green PCR Master Mix (2x) (PE Applied Biosystems, CA)	1x
	Forward primer	300 nM
	Reverse primer	300 nM
	cDNA	25 ng
10	Water to 25 uL	
	PCR conditions:	
	Once: 2' minutes at 50° C	
	10 minutes at 95°C	
	40cycles: 15 sec.at 95°C	
15	1 minute at 60°C	

The experiment was performed on an ABI Prism 7700 Sequence Detector (PE Applied Biosystems, CA). At the end of the run, fluorescence data acquired during PCR were processed as described in the ABI Prism 7700 user's manual. Fold change 20 was calculated using the delta-delta CT method with normalization to the 18S values. Relative expression was calculated by normalizing to 18s (D Ct), then making the highest expressing tissue 100 and everything else relative to it. Copy number conversion was performed without normalization using the formula $C_n=10(C_t-40.007)/-3.623$.

25

The results are shown in FIG. 17.

REFERENCES

1. Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, Migheli A, Atzori C, Turco E, Triolo R, Dotto GP, Silengo L, Altruda F. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis.
Neuron. 2000 Oct;28(1):115-27.
2. Di Cunto F, Calautti E, Hsiao J, Ong L, Topley G, Turco E, Dotto GP. Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron. J Biol Chem. 1998 Nov 6;273(45):29706-11.
3. Madaule P, Furuyashiki T, Reid T, Ishizaki T, Watanabe G, Morii N, Narumiya S. A novel partner for the GTP-bound forms of rho and rac. FEBS Lett. 1995 Dec 18;377(2):243-8.
4. Fujisawa K, Madaule P, Ishizaki T, Watanabe G, Bito H, Saito Y, Hall A, Narumiya S. Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem. 1998 Jul 24;273(30):18943-9.

CLAIMS

1. An isolated polynucleotide being selected from the group consisting of:
 - 5 a. a polynucleotide encoding a human citron rho/rac-interacting kinase-short kinase polypeptide comprising an amino acid sequence selected from the group consisting of:
 - i. amino acid sequences which are at least about 88% identical to the amino acid sequence shown in SEQ ID NO: 2;
 - 10 ii. the amino acid sequence shown in SEQ ID NO: 2;
 - iii. amino acid sequences which are at least about 88% identical to the amino acid sequence shown in SEQ ID NO: 9; and
 - iv. the amino acid sequence shown in SEQ ID NO: 9.
 - 15 b. a polynucleotide comprising the sequence of SEQ ID NOS: 1 or 8;
 - c. a polynucleotide which hybridizes under stringent conditions to a polynucleotide specified in (a) and (b) and encodes a human citron rho/rac-interacting kinase-short kinase polypeptide;
 - 20 d. a polynucleotide the sequence of which deviates from the polynucleotide sequences specified in (a) to (c) due to the degeneration of the genetic code and encodes a human citron rho/rac-interacting kinase-short kinase polypeptide; and
 - 25 e. a polynucleotide which represents a fragment, derivative or allelic variation of a polynucleotide sequence specified in (a) to (d) and encodes a human citron rho/rac-interacting kinase-short kinase polypeptide.

2. An expression vector containing any polynucleotide of claim 1.
3. A host cell containing the expression vector of claim 2.
- 5 4. A substantially purified human citron rho/rac-interacting kinase-short kinase polypeptide encoded by a polynucleotide of claim 1.
5. A method for producing a human citron rho/rac-interacting kinase-short kinase polypeptide, wherein the method comprises the following steps:
 - 10 a. culturing the host cell of claim 3 under conditions suitable for the expression of the human citron rho/rac-interacting kinase-short kinase polypeptide; and
 - 15 b. recovering the human citron rho/rac-interacting kinase-short kinase polypeptide from the host cell culture.
6. A method for detection of a polynucleotide encoding a human citron rho/rac-interacting kinase-short kinase polypeptide in a biological sample comprising the following steps:
 - 20 a. hybridizing any polynucleotide of claim 1 to a nucleic acid material of a biological sample, thereby forming a hybridization complex; and
 - 25 b. detecting said hybridization complex.
7. The method of claim 6, wherein before hybridization, the nucleic acid material of the biological sample is amplified.

8. A method for the detection of a polynucleotide of claim 1 or a human citron rho/rac-interacting kinase-short kinase polypeptide of claim 4 comprising the steps of:

5 a. contacting a biological sample with a reagent which specifically interacts with the polynucleotide or the human citron rho/rac-interacting kinase-short kinase polypeptide and

10 b. detecting the interaction

9. A diagnostic kit for conducting the method of any one of claims 6 to 8.

10. A method of screening for agents which decrease the activity of a human citron rho/rac-interacting kinase-short kinase, comprising the steps of:

15 a. contacting a test compound with any human citron rho/rac-interacting kinase-short kinase polypeptide encoded by any polynucleotide of claim 1;

20 b. detecting binding of the test compound to the human citron rho/rac-interacting kinase-short kinase polypeptide, wherein a test compound which binds to the polypeptide is identified as a potential therapeutic agent for decreasing the activity of a human citron rho/rac-interacting kinase-short kinase.

25 11. A method of screening for agents which regulate the activity of a human citron rho/rac-interacting kinase-short kinase, comprising the steps of:

30 a. contacting a test compound with a human citron rho/rac-interacting kinase-short kinase polypeptide encoded by any polynucleotide of claim 1; and

5 b. detecting a human citron rho/rac-interacting kinase-short kinase activity of the polypeptide, wherein a test compound which increases the human citron rho/rac-interacting kinase-short kinase activity is identified as a potential therapeutic agent for increasing the activity of the human citron rho/rac-interacting kinase-short kinase, and wherein a test compound which decreases the human citron rho/rac-interacting kinase-short kinase activity of the polypeptide is identified as a potential therapeutic agent for decreasing the activity of the human citron rho/rac-interacting kinase-short kinase.

10

12. A method of screening for agents which decrease the activity of a human citron rho/rac-interacting kinase-short kinase, comprising the steps of:

15 a. contacting a test compound with any polynucleotide of claim 1 and detecting binding of the test compound to the polynucleotide, wherein a test compound which binds to the polynucleotide is identified as a potential therapeutic agent for decreasing the activity of human citron rho/rac-interacting kinase-short kinase.

20

13. A method of reducing the activity of human citron rho/rac-interacting kinase-short kinase, comprising the steps of:

25 a. contacting a cell with a reagent which specifically binds to any polynucleotide of claim 1 or any human citron rho/rac-interacting kinase-short kinase polypeptide of claim 4, whereby the activity of human citron rho/rac-interacting kinase-short kinase is reduced.

30

14. A reagent that modulates the activity of a human citron rho/rac-interacting kinase-short kinase polypeptide or a polynucleotide wherein said reagent is identified by the method of any of the claim 10 to 12.

15. A pharmaceutical composition, comprising:

a. the expression vector of claim 2 or the reagent of claim 14 and a pharmaceutically acceptable carrier.

5
16. Use of the expression vector of claim 2 or the reagent of claim 14 in the preparation of a medicament for modulating the activity of a human citron rho/rac-interacting kinase-short kinase in a disease.

10

17. Use of claim 16 wherein the disease is obesity or COPD.

- 1/56 -

Fig. 1

atgttgaagt	tcaaataatgg	agccggaaat	ccttttgatg	ctggcgtgc	tgaaccatt
gccaggccgg	cctccaggct	aatctgtgt	ttccaggaa	aaccacctt	tatgactcaa
caggagatgt	ctcccttttc	cgagaagggg	atatttagatg	ccctcttgt	tctctttgaa
gaatgcaggc	agccgtgtct	gatgaaggatt	aagcatgta	gcacacttgt	ccgaaagtat
tccgacacca	tagctgaggtt	acaggaggctc	caggcttcgg	caaaggactt	cgaaggtcaga
agtcttgttag	gttgtgtca	cttgcgtgaa	gtgcagggtg	taaggagaaa	agcaaccggg
gacatctatg	ctatgaaaatg	gatgaagaag	aaggctttat	tgcccaggaa	gcaggttca
tttttttaggg	aagaggcgaa	catattatct	cgaaggcaca	cccccaatta	480
cagtatggct	ttcaggacaa	aaatcacctt	tatctggtca	tggaaatatca	120
gacttgcgt	cactttgaa	tagatatgg	gaccaggtag	atgaaaaacct	180
taccttagctg	agctgtttt	ggctgttcac	agcgttcac	tgtatggata	240
gacatcaagg	ctgagaacat	tctcggtgac	cgcacaggac	acatcaagct	300
ggatctgccc	cggaaaatgaa	ttcaaaacaag	atggtaatg	ccaaaactccc	360
ccagattaca	tggttcctga	agtctgtact	gtgtatgaaac	ggatggaaa	420
ggccttgact	gtgactgtgt	gtcagtgggc	gtgattgcct	atgagatgt	480
tccccctcg	cagaggaaac	ctctgcaga	accttcaata	acattatgaa	540
tttttggaaat	tccaggatga	coccaaaatg	aggatggact	ttcttgatct	600
ttgttgtcg	gccaggaaaga	gagactgaaag	tttgagggtc	ttatggaga	660
tctaaaattg	actggaaacaa	cattcgtaac	tctccccc	tttccaggcg	720
tctgacgtg	acaccctca	tttggatgaa	cattcgatct	gatccaagg	780
ccgtgcacgc	tgaggccctc	aggcttcctg	tttggttctc	ttatggatgt	840
tacagcaagg	cactggggat	tctggatgaa	ccttcgttcc	ttatggatgt	900
cctggcaaga	ctagctccat	ggaaaagaaa	caccctcaag	ttatggatgt	960
tctcaggaca	agggtcaca	ggtattttat	tttcgtgggt	ttatggatgt	1020
atccctccgt	cgatataatgc	caaggatcc	tttggttctc	ttatggatgt	1080

Fig. 2

Met Leu Lys Phe Lys Tyr Gly Ala Arg Asn Pro Leu Asp Ala Gly Ala
1 5 10 15
Ala Glu Pro Ile Ala Ser Arg Ala Ser Arg Leu Asn Leu Phe Phe Gln
20 25 30
Gly Lys Pro Pro Phe Met Thr Gln Gln Gln Met Ser Pro Leu Ser Arg
35 40 45
Glu Gly Ile Leu Asp Ala Leu Phe Val Leu Phe Glu Glu Cys Ser Gln
50 55 60
Pro Ala Leu Met Lys Ile Lys His Val Ser Asn Phe Val Arg Lys Tyr
65 70 75 80
Ser Asp Thr Ile Ala Glu Leu Gln Glu Leu Gln Pro Ser Ala Lys Asp
85 90 95
Phe Glu Val Arg Ser Leu Val Gly Cys Gly His Phe Ala Glu Val Gln
100 105 110
Val Val Arg Glu Lys Ala Thr Gly Asp Ile Tyr Ala Met Lys Val Met
115 120 125
Lys Lys Ala Leu Leu Ala Gln Glu Gln Val Ser Phe Phe Glu Glu
130 135 140
Glu Arg Asn Ile Leu Ser Arg Ser Thr Ser Pro Trp Ile Pro Gln Leu
145 150 155 160
Gln Tyr Ala Phe Gln Asp Lys Asn His Leu Tyr Leu Val Met Glu Tyr
165 170 175
Gln Pro Gly Gly Asp Leu Leu Ser Leu Leu Asn Arg Tyr Glu Asp Gln
180 185 190

-3/56 -

Fig. 2 (continued)

Leu	Asp	Glu	Asn	Leu	Ile	Gln	Phe	Tyr	Leu	Ala	Glu	Ile	Leu	Ala	
195							200				205				
Val	His	Ser	Val	His	Leu	Met	Gly	Tyr	Val	His	Arg	Asp	Ile	Lys	Pro
210						215				220					
Glu	Asn	Ile	Leu	Val	Asp	Arg	Thr	Gly	His	Ile	Lys	Leu	Val	Asp	Phe
225						230				235				240	
Gly	Ser	Ala	Ala	Lys	Met	Asn	Ser	Asn	Lys	Met	Val	Asn	Ala	Lys	Leu
					245					250				255	
Pro	Ile	Gly	Thr	Pro	Asp	Tyr	Met	Ala	Pro	Glu	Val	Leu	Thr	Val	Met
						260				265				270	
Asn	Gly	Asp	Gly	Lys	Gly	Thr	Tyr	Gly	Leu	Asp	Cys	Asp	Trp	Trp	Ser
						275				280				285	
Val	Gly	Val	Ile	Ala	Tyr	Glu	Met	Ile	Tyr	Gly	Arg	Ser	Pro	Phe	Ala
						290				295				300	
Glu	Gly	Thr	Ser	Ala	Arg	Thr	Phe	Asn	Asn	Ile	Met	Asn	Phe	Gln	Arg
						305				310				315	
Phe	Leu	Lys	Pro	Asp	Asp	Pro	Lys	Val	Ser	Ser	Ser	Asp	Phe	Leu	Asp
						325				325				330	
Leu	Ile	Gln	Ser	Leu	Leu	Cys	Gly	Gln	Lys	Glu	Arg	Leu	Lys	Phe	Glu
						340				345				350	
Gly	Leu	Cys	Cys	His	Pro	Phe	Phe	Ser	Lys	Ile	Asp	Trp	Asn	Asn	Ile
						355				360				365	
Arg	Asn	Ser	Pro	Pro	Pro	Phe	Val	Pro	Thr	Leu	Lys	Ser	Asp	Asp	Asp
						370				375				380	

Fig. 2 (continued)

Thr	Ser	Asn	Phe	Asp	Glu	Pro	Glu	Lys	Asn	Ser	Trp	Val	Ser	Ser	Ser
385											395				400
Pro	Cys	Gln	Ile	Ser	Pro	Ser	Gly	Phe	Ser	Gly	Glu	Glu	Leu	Pro	Phe
											410				415
Val	Gly	Phe	Ser	Tyr	Ser	Lys	Ala	Leu	Gly	Ile	Leu	Gly	Arg	Ser	Glu
											425				430
Ser	Val	Val	Ser	Gly	Ile	Asp	Ser	Pro	Ala	Lys	Thr	Ser	Ser	Met	Glu
											440				445
Lys	Lys	Leu	Ile	Lys	Ser	Lys	Glu	Leu	Gln	Asp	Ser	Gln	Asp	Lys	
											455				460
Cys	His	Lys	Val	Phe	Ile	Ser	Ala	Ala	Gly	Leu	Leu	Pro	Cys	Ser	Arg
											470				475
Ile	Leu	Pro	Ser	Val	Tyr	Ala	Lys	Gly	Ser	Ala	Arg	Gly	Arg	Cys	
											485				490
															495

Fig. 3

Met	Leu	Lys	Phe	Lys	Tyr	Gly	Val	Arg	Asn	Pro	Pro	Glu	Ala	Ser	Ala
1			5				10								15
Ser	Glu	Pro	Ile	Ala	Ser	Arg	Ala	Ser	Arg	Leu	Asn	Leu	Phe	Phe	Gln
	20				25			25							30
Gly	Lys	Pro	Pro	Leu	Met	Thr	Gln	Gln	Met	Ser	Ala	Leu	Ser	Arg	
	35				40				45						
Glu	Gly	Met	Leu	Asp	Ala	Leu	Phe	Ala	Leu	Phe	Glu	Glu	Cys	Ser	Gln
	50				55			60							
Pro	Ala	Leu	Met	Lys	Met	Lys	His	Val	Ser	Ser	Phe	Val	Gln	Lys	Tyr
	65				70			75							80
Ser	Asp	Thr	Ile	Ala	Glu	Leu	Arg	Glu	Leu	Gln	Pro	Ser	Ala	Arg	Asp
					85			90							95
Phe	Glu	Val	Arg	Ser	Leu	Val	Gly	Cys	Gly	His	Phe	Ala	Glu	Val	Gln
					100			105							
Val	Val	Arg	Glu	Lys	Ala	Thr	Gly	Asp	Val	Tyr	Ala	Met	Lys	Ile	Met
						115		120							125
Lys	Lys	Ala	Leu	Leu	Ala	Gln	Glu	Gln	Val	Ser	Phe	Phe	Glu	Glu	
						130		135							
Glu	Arg	Asn	Ile	Leu	Ser	Arg	Ser	Thr	Ser	Pro	Trp	Ile	Pro	Gln	Leu
						145		150							
Gln	Tyr	Ala	Phe	Gln	Asp	Lys	Asn	Asn	Leu	Tyr	Leu	Val	Met	Glu	Tyr
						165			170						175
Gln	Pro	Gly	Gly	Asp	Phe	Leu	Ser	Leu	Leu	Asn	Arg	Tyr	Glu	Asp	Gln
						180			185						190

Fig. 3 (continued)

Leu Asp Glu Ser Met Ile Gln Phe Tyr Leu Ala Glu Leu Ile Leu Ala
195 200 205
Val His Ser Val His Gln Met GLY Tyr Val His Arg Asp Ile Lys Pro
210 215 220
Glu Asn Ile Leu Ile Asp Arg Thr GLY Glu Ile Lys Leu Val Asp Phe
225 230 235 240
Gly Ser Ala Ala Lys Met Asn Ser Asn Lys Val Asp Ala Lys Leu Pro
245 250 255
Ile GLY Thr Pro Asp Tyr Met Ala Pro Glu Val Leu Thr Val Met Asn
260 265 270
Glu Asp Arg Arg Gly Thr Tyr GLY Leu Asp Cys Asp Trp Trp Ser Val
275 280 285
Gly Val Val Ala Tyr Glu Met Val Tyr Gly Lys Thr Pro Phe Thr Glu
290 295 300
GLY Thr Ser Ala Arg Thr Phe Asn Asn Ile Met Asn Phe Gln Arg Phe
305 310 315 320
Leu Lys Phe Pro Asp Asp Pro Lys Val Ser Ser Glu Leu Leu Asp Leu
325 330 335
Leu Gln Ser Leu Leu Cys Val Gln Lys Glu Arg Leu Lys Phe Glu Gly
340 345 350
Leu Cys Cys His Pro Phe Phe Ala Arg Thr Asp Trp Asn Asn Ile Arg
355 360 365
Asn Ser Pro Pro Pro Phe Val Pro Thr Leu Lys Ser Asp Asp Asp Thr
370 380

Fig. 3 (continued)

Ser	Asn	Phe	Asp	Glu	Pro	Glu	Lys	Asn	Ser	Trp	Ala	Phe	Ile	Leu	Cys
385															
Val	Pro	Ala	Glu	Pro	Leu	Ala	Phe	Ser	Gly	Glu	Glu	Leu	Pro	Phe	Val
Gly	Phe	Ser	Tyr	Ser	Lys	Ala	Leu	Gly	Tyr	Leu	Gly	Arg	Ser	Glu	Ser
Val	Val	Ser	Ser	Leu	Asp	Ser	Pro	Ala	Lys	Val	Ser	Ser	Met	Glu	Lys
435															
Lys	Leu	Ile	Lys	Ser	Lys	Glu	Leu	Gln	Asp	Ser	Gln	Asp	Lys	Cys	
450															
His	Lys	Val	Ser	Ile	Ser	Thr	Ala	Gly	Leu	Arg	Pro	Cys	Ser	Arg	Ile
465															
Leu	Gln	Ser	Ile	Tyr	Ala	Glu	Gly	Ser	Ala	Gly	Gly	His	Cys		
485															
490															

Fig. 4

Met Leu Lys Phe Lys Tyr Gly Val Arg Asn Pro Pro Glu Ala Ser Ala
1 5 10 15
Ser Glu Pro Ile Ala Ser Arg Ala Ser Arg Leu Asn Leu Phe Phe Gln
20 25 30
Gly Lys Pro Pro Leu Met Thr Gln Gln Met Ser Ala Leu Ser Arg
35 40 45
Glu Gly Met Leu Asp Ala Leu Phe Ala Leu Phe Glu Glu Cys Ser Gln
50 55 60
Pro Ala Leu Met Lys Met His Val Ser Ser Phe Val Gln Lys Tyr
65 70 75 80
Ser Asp Thr Ile Ala Glu Leu Arg Glu Leu Gln Pro Ser Ala Arg Asp
85 90 95
Phe Glu Val Arg Ser Leu Val Gly Cys Gly His Phe Ala Glu Val Gln
100 105 110
Val Val Arg Glu Lys Ala Thr Gly Asp Val Tyr Ala Met Lys Ile Met
115 120 125
Lys Lys Ala Leu Leu Ala Gln Glu Gln Val Ser Phe Phe Glu Glu
130 135 140
Glu Arg Asn Ile Leu Ser Arg Ser Thr Ser Pro Trp Ile Pro Gln Leu
145 150 155 160
Gln Tyr Ala Phe Gln Asp Lys Asn Asn Leu Tyr Leu Val Met Glu Tyr
165 170 175
Gln Pro Gly Gly Asp Phe Leu Ser Leu Leu Asn Arg Tyr Glu Asp Gln
180 185 190

Fig. 4 (continued)

Leu	Asp	Glu	Ser	Met	Ile	Gln	Phe	Tyr	Leu	Ala	Glu	Ile	Leu	Ala	
195														205	
Val	His	Ser	Val	His	Gln	Met	Gly	Tyr	Val	His	Arg	Asp	Ile	Lys	Pro
210														220	
Glu	Asn	Ile	Leu	Ile	Asp	Arg	Thr	Gly	Glu	Ile	Lys	Leu	Val	Asp	Phe
225														235	240
Gly	Ser	Ala	Ala	Lys	Met	Asn	Ser	Asn	Lys	Val	Asp	Ala	Lys	Leu	Pro
245														250	255
Ile	Gly	Thr	Pro	Asp	Tyr	Met	Ala	Pro	Glu	Val	Ile	Thr	Val	Met	Asn
260														265	270
Glu	Asp	Arg	Gly	Thr	Tyr	Gly	Leu	Asp	Cys	Asp	Trp	Trp	Ser	Val	
275														280	285
Gly	Val	Val	Ala	Tyr	Glu	Met	Val	Tyr	GLY	Lys	Thr	Pro	Phe	Thr	Glu
290														295	300
Gly	Thr	Ser	Ala	Arg	Thr	Phe	Asn	Asn	Ile	Met	Asn	Phe	Gln	Arg	Phe
305														310	315
Leu	Lys	Phe	Pro	Asp	Asp	Pro	Lys	Val	Ser	Glu	Leu	Leu	Asp	Leu	
														325	330
Leu	Gln	Ser	Leu	Leu	Cys	Val	Gln	Lys	Glu	Arg	Leu	Lys	Phe	Glu	Gly
														340	345
Leu	Cys	Cys	His	Pro	Phe	Phe	Ala	Arg	Thr	Asp	Trp	Asn	Asn	Ile	Arg
														355	360
Asn	Ser	Pro	Pro	Pro	Phe	Val	Pro	Thr	Leu	Lys	Ser	Asp	Asp	Asp	Thr
														370	375
														380	

Fig. 4 (continued)

Ser	Asn	Phe	Asp	Glu	Pro	Glu	Lys	Asn	Ser	Trp	Ala	Phe	Ile	Leu	Cys
385															
Val	Pro	Ala	Glu	Pro	Leu	Ala	Phe	Ser	Gly	Glu	Glu	Leu	Pro	Phe	Val
Gly	Phe	Ser	Tyr	Ser	Lys	Ala	Leu	Gly	Tyr	Leu	Gly	Arg	Ser	Glu	Ser
Val	Val	Ser	Ser	Leu	Asp	Ser	Pro	Ala	Lys	Val	Ser	Ser	Met	Glu	Lys
Lys	Leu	Leu	Ile	Lys	Ser	Lys	Glu	Leu	Asp	Ser	Gln	Asp	Lys	Cys	
His	Lys	Met	Glu	Gln	Glu	Met	Thr	Arg	Leu	His	Arg	Arg	Val	Ser	Glu
Val	Glu	Ala	Val	Leu	Ser	Gln	Lys	Glu	Val	Glu	Leu	Lys	Ala	Ser	Glu
Thr	Gln	Arg	Ser	Leu	Leu	Glu	Gln	ASP	Leu	Ala	Thr	Tyr	Ile	Thr	Glu
Cys	Ser	Ser	Lys	Arg	Ser	Leu	Glu	Gln	Ala	Arg	Met	Glu	Val	Ser	
Gln	Glu	Asp	Asp	Lys	Ala	Leu	Gln	Leu	Leu	His	ASP	Ile	Arg	Glu	Gln
Ser	Arg	Lys	Leu	Gln	Glu	Ile	Lys	Glu	Gln	Glu	Tyr	Gln	Ala	Gln	Val
Glu	Glu	Met	Arg	Leu	Met	Asn	Gln	Glu	Glu	Glu	Asp	Leu	Val	Ser	

Fig. 4 (continued)

Ala	Arg	Arg	Arg	Ser	Asp	Leu	Tyr	Glu	Ser	Glu	Leu	Arg	Glu	Ser	Arg
580															
Leu	Ala	Ala	Glu	Glu	Phe	Lys	Arg	Lys	Ala	Asn	Glu	Cys	Gln	His	Lys
595															
Leu	Met	Lys	Ala	Lys	Asp	Gln	Gly	Lys	Pro	Glu	Val	Gly	Glu	Tyr	Ser
610															
Lys	Leu	Glu	Lys	Ile	Asn	Ala	Glu	Gln	Gln	Leu	Lys	Ile	Gln	Glu	Leu
625															
Gln	Glu	Lys	Leu	Glu	Lys	Ala	Val	Lys	Ala	Ser	Thr	Glu	Ala	Thr	Glu
630															
Leu	Leu	Gln	Asn	Ile	Arg	Gln	Ala	Lys	Glu	Arg	Ala	Glu	Arg	Glu	Leu
645															
Glu	Lys	Leu	His	Asn	Arg	Glu	Asp	Ser	Ser	Glu	Gly	Ile	Lys	Lys	Lys
660															
Leu	Val	Glu	Ala	Glu	Glu	Arg	Arg	His	Ser	Leu	Glu	Asn	Lys	Val	Lys
675															
Arg	Leu	Glu	Thr	Met	Glu	Arg	Arg	Glu	Asn	Arg	Leu	Lys	Asp	Asp	Ile
705															
Gln	Thr	Lys	Ser	Glu	Gln	Ile	Gln	Met	Ala	Asp	Lys	Ile	Leu	Glu	
725															
Leu	Glu	Glu	Lys	His	Arg	Glu	Ala	Gln	Val	Ser	Ala	Gln	His	Leu	Glu
740															
Val	His	Leu	Lys	Gln	Lys	Glu	Gln	His	Tyr	Glu	Glu	Lys	Ile	Lys	Val
755															

Fig. 4 (continued.)

Leu Asp Asn Gln Ile Lys Lys Asp Leu Ala Asp Lys Glu Ser Leu Glu
770. 775
Asn Met Met Gln Arg His Glu Glu Ala His Glu Lys Gly Lys Ile
785 790 795 800
Leu Ser Glu Gln Lys Ala Met Ile Asn Ala Met Asp Ser Lys Ile Arg
805 810 815 820
Ser Leu Glu Gln Arg Ile Val Glu Leu Ser Glu Ala Asn Lys Leu Ala
825 830 835 840 845
Ala Asn Ser Ser Leu Phe Thr Gln Arg Asn Met Lys Ala Gln Glu Glu
850 855 860 865 870 875 880
Met Ile Ser Glu Leu Arg Gln Gln Lys Phe Tyr Leu Glu Thr Gln Ala
Gly Lys Leu Glu Ala Gln Asn Arg Lys Leu Glu Glu Gln Leu Glu Lys
Ile Ser His Gln Asp His Ser Asp Lys Ser Arg Leu Leu Glu Leu Glu
Thr Arg Leu Arg Glu Val Ser Leu Glu His Glu Glu Gln Lys Leu Glu
Leu Lys Arg Gln Leu Thr Glu Leu Gln Leu Ser Leu Gln Glu Arg Glu
Ser Gln Leu Thr Ala Ala Arg Ala Ala Leu Glu Ser Gln
Leu Arg Gln Ala Lys Lys Thr Glu Leu Glu Glu Thr Ala Glu Ala Glu
945 950 955 960

Fig. 4 (continued)

Glu Glu Ile Gln Ala Leu Thr Ala His Arg Asp Glu Ile Gln Arg Lys
965 970 975
Phe Asp Ala Leu Arg Asn Ser Cys Thr Val Ile Thr Asp Leu Glu Glu
980 985 990
Gln Leu Asn Gln Leu Thr Glu Asp Asn Ala Glu Leu Asn Asn Gln Asn
995 1000 1005
Phe Tyr Leu Ser Lys Gln Leu Asp Glu Ala Ser Gly Ala Asn Asp Glu
1010 1015 1020
Ile Val Gln Leu Arg Ser Glu Val Asp His Leu Arg Arg Glu Ile Thr
1025 1030 1035 1040
Glu Arg Glu Met Gln Leu Thr Ser Gln Lys Gln Thr Met Glu Ala Leu
1045 1050 1055
Lys Thr Thr Cys Thr Met Leu Glu Glu Gln Val Leu Asp Leu Glu Ala
1060 1065 1070
Leu Asn Asp Glu Leu Glu Lys Glu Arg Gln Trp Glu Ala Trp Arg
1075 1080 1085
Ser Val Leu Gly Asp Glu Lys Ser Gln Phe Glu Cys Arg Val Arg Glu
1090 1095 1100
Leu Gln Arg Met Leu Asp Thr Glu Lys Gln Ser Arg Ala Arg Ala Asp
1105 1110 1115 1120
Gln Arg Ile Thr Glu Ser Arg Gln Val Val Glu Leu Ala Val Lys Glu
1125 1130 1135
His Lys Ala Glu Ile Leu Ala Leu Gln Gln Ala Leu Lys Glu Gln LYS
1140 1145 1150

Fig. 4 (continued)

Leu Lys Ala Glu Ser Leu Ser Asp Lys Leu Asn Asp Leu Glu Lys Lys
1155 1160 1165
His Ala Met Leu Glu Met Asn Ala Arg Ser Leu Gln Gln Lys Leu Glu
1170 1175 1180
Thr Glu Arg Glu Leu Lys Gln Arg Leu Leu Glu Glu Gln Ala Lys Leu
1185 1190 1195 1200
Gln Gln Gln Met Asp Leu Gln Lys Asn His Ile Phe Arg Leu Thr Gln
1205 1210 1215
Gly Leu Gln Glu Ala Leu Asp Arg Ala Asp Leu Lys Thr Glu Arg
1220 1225 1230
Ser Asp Leu Glu Tyr Gln Leu Glu Asn Ile Gln Val Leu Tyr Ser His
1235 1240 1245
Glu Lys Val Lys Met Glu Gly Thr Ile Ser Gln Gln Thr Lys Leu Ile
1250 1255 1260
Asp Phe Leu Gln Ala Lys Met Asp Gln Pro Ala Lys Lys Lys Val
1265 1270 1275 1280
Pro Leu Gln Tyr Asn Glu Leu Lys Leu Ala Leu Glu Lys Glu Lys Ala
1285 1290 1295
Arg Cys Ala Glu Leu Glu Ala Leu Gln Lys Thr Arg Ile Glu Leu
1300 1305 1310
Arg Ser Ala Arg Glu Ala Ala His Arg Lys Ala Thr Asp His Pro
1315 1320 1325
His Pro Ser Thr Pro Ala Thr Ala Arg Gln Gln Ile Ala Met Ser Ala
1330 1335 1340

Fig. 4 (continued)

Ile Val Arg Ser Pro Glu His Gln Pro Ser Ala Met Ser Leu Leu Ala
1345 1350 1355 1360
Pro Pro Ser Ser Arg Arg Lys Glu Ser Ser Thr Pro Glu Glu Phe Ser
1365 1370 1375
Arg Arg Leu Lys Glu Arg Met His His Asn Ile Pro His Arg Phe Asn
1380 1385 1390
Val Gly Leu Asn Met Arg Ala Thr Lys Cys Ala Val Cys Leu Asp Thr
1395 1400 1405
Val His Phe Gly Arg Gln Ala Ser Lys Cys Leu Glu Cys Gln Val Met
1410 1415 1420
Cys His Pro Lys Cys Ser Thr Cys Leu Pro Ala Thr Cys Gly Leu Pro
1425 1430 1435 1440
Ala Glu Tyr Ala Thr His Phe Thr Glu Ala Phe Cys Arg Asp Lys Met
1445 1450 1455
Asn Ser Pro Gly Leu Gln Ser Lys Glu Pro Gly Ser Ser Leu His Leu
1460 1465 1470
Glu Gly Trp Met Lys Val Pro Arg Asn Asn Lys Arg Gly Gln Gln Gly
1475 1480 1485
Trp Asp Arg Lys Tyr Ile Val Leu Glu Gly Ser Lys Val Leu Ile Tyr
1490 1495 1500
Asp Asn Glu Ala Arg Glu Ala GLY Gln Arg Pro Val Glu Glu Phe Glu
1505 1510 1515 1520
Leu Cys Leu Pro Asp Gly Asp Val Ser Ile His GLY Ala Val GLY Ala
1525 1530 1535

Fig. 4 (continued)

Ser Glu Leu Ala Asn Thr Ala Lys Ala Asp Val Pro Tyr Ile Leu Lys
1540 1545
Met Glu Ser His Pro His Thr Thr Cys Trp Pro Gly Arg Thr Leu Tyr
1555 1560 1565
Leu Leu Ala Pro Ser Phe Pro Asp Lys Gln Arg Trp Val Thr Ala Leu
1570 1575 1580
Glu Ser Val Val Ala Gly Gly Arg Val Ser Arg Glu Lys Ala Glu Ala
1585 1590 1595 1600
Asp Ala Lys Leu Leu Gly Asn Ser Leu Leu Lys Leu Glu Gly Asp Asp
1605 1610 1615
Arg Leu Asp Met Asn Cys Thr Leu Pro Phe Ser Asp Gln Val Val Leu
1620 1625 1630
Val Gly Thr Glu Glu Gly Leu Tyr Ala Leu Asn Val Leu Lys Asn Ser
1635 1640 1645
Leu Thr His Ile Pro Gly Ile Gly Ala Val Phe Gln Ile Tyr Ile Ile
1650 1655 1660
Lys Asp Leu Glu Lys Leu Met Ile Ala Gly Glu Glu Arg Ala Leu
1665 1670 1675 1680
Cys Leu Val Asp Val Lys Lys Val Lys Gln Ser Leu Ala Gln Ser His
1685 1690 1695
Leu Pro Ala Gln Pro Asp Val Ser Pro Asn Ile Phe Glu Ala Val Lys
1700 1705 1710
Gly Cys His Leu Phe Ala Ala Gly Lys Ile Glu Asn Ser Leu Cys Ile
1715 1720 1725

Fig. 4 (continued)

Cys Ala Ala Met Pro Ser Lys Val Val Ile Leu Arg Tyr Asn Asp Asn
1730 1735 1740
Leu Ser Lys Tyr Cys Ile Arg Lys Glu Ile Glu Thr Ser Glu Pro Cys
1745 1750 1755 1760
Ser Cys Ile His Phe Thr Asn Tyr Ser Ile Leu Ile Gly Thr Asn Lys
1765 1770 1775
Phe Tyr Glu Ile Asp Met Lys Gln Tyr Thr Leu Asp Glu Phe Leu Asp
1780 1785 1790
Lys Asn Asp His Ser Leu Ala Pro Ala Val Phe Ala Ser Ser Asn
1795 1800 1805
Ser Phe Pro Val Ser Ile Val Gln Ala Asn Ser Ala Gly Gln Arg Glu
1810 1815 1820
Glu Tyr Leu Leu Cys Phe His Glu Phe GLY Val Phe Val Asp Ser Tyr
1825 1830 1835 1840
Gly Arg Arg Ser Arg Thr Asp Asp Leu Lys Trp Ser Arg Leu Pro Leu
1845 1850 1855
Ala Phe Ala Tyr Arg Glu Pro Tyr Leu Phe Val Thr His Phe Asn Ser
1860 1865 1870
Leu Glu Val Ile Glu Ile Gln Ala Arg Ser Ser Leu Gly Ser Pro Ala
1875 1880 1885
Arg Ala Tyr Leu Glu Ile Pro Asn Pro Arg Tyr Leu Gly Pro Ala Ile
1890 1895 1900
Ser Ser GLY Ala Ile Tyr Leu Ala Ser Ser Tyr Gln Asp Lys Leu Arg
1905 1910 1915 1920

Fig. 4 (continued)

Val Ile Cys Cys Lys Gly Asn Leu Val Lys Glu Ser Gly Thr Glu Gln
1925 1930 1935
His Arg Val Pro Ser Thr Ser Arg Ser Ser Pro Asn Lys Arg Gly Pro
1940 1945 1950
Pro Thr Tyr Asn Glu His Ile Thr Lys Arg Val Ala Ser Ser Pro Ala
1955 1960 1965
Pro Pro Glu GLY Pro Ser His Pro Arg Glu Pro Ser Thr Pro His Arg
1970 1975 1980
Tyr Arg Asp Arg Glu Gly Arg Thr Glu Leu Arg Arg Asp Lys Ser Pro
1985 1990 1995 2000
Gly Arg Pro Leu Glu Arg Glu Lys Ser Pro Gly Arg Met Leu Ser Thr
2005 2010 2015
Arg Arg Glu Arg Ser Pro Gly Arg Leu Phe Glu Asp Ser Ser Arg Gly
2020 2025 2030
Arg Leu Pro Ala GLY Ala Val Arg Thr Pro Leu Ser Gln Val Asn Lys
2035 2040 2045
Val Trp Asp Gln Ser Ser Val
2050 2055

- 19/56 -

Fig. 5
 60 gggccgggct gaggggcgcc ggccccatggc cccggggccc gcccggggcc gggccggggcc
 120 gggggggggc gggggggggc cccggggggc ccggggccc agactctcg
 180 gggggggggc atgtcgggcc gggggggggc ggacgcacgc
 240 gggggggggc cggggggggc gggggggggc gggggggggc
 300 gggggggggc cggggggggc gggggggggc acggactggc
 360 gggggggggc cggggggggc gggggggggc gggggggggc
 420 gggggggggc cggggggggc gggggggggc cggggggggc
 480 gggggggggc cggggggggc gggggggggc cggggggggc
 540 gggggggggc cggggggggc gggggggggc cggggggggc
 600 gggggggggc cggggggggc gggggggggc cggggggggc
 660 gggggggggc cggggggggc gggggggggc cggggggggc
 720 gggggggggc cggggggggc gggggggggc cggggggggc
 780 gggggggggc cggggggggc gggggggggc cggggggggc
 840 gggggggggc cggggggggc gggggggggc cggggggggc
 900 gggggggggc cggggggggc gggggggggc cggggggggc
 960 gggggggggc cggggggggc gggggggggc cggggggggc
 1020 gggggggggc cggggggggc gggggggggc cggggggggc
 1080 gggggggggc cggggggggc gggggggggc cggggggggc
 1140 gggggggggc cggggggggc gggggggggc cggggggggc
 1200 gggggggggc cggggggggc gggggggggc cggggggggc
 1260 gggggggggc cggggggggc gggggggggc cggggggggc
 1320 gggggggggc cggggggggc gggggggggc cggggggggc
 1380 gggggggggc cggggggggc gggggggggc cggggggggc

Fig. 5 (continued)

ctctgacaca	tccaaacttcg	acgtggatga	cgacgtgtcg	agaaaacacgg	aaatattacc
tccctggttct	cacacaggct	tttctggatt	acatttgcca	ttcatgggtt	ttacattcac
aacggaaaggc	tgtttttctg	atcgaggctc	tctgaagaggc	ataatgcagt	ccaaacacatt
aaccaaaaggat	gaggatgtgc	agcgggacct	ggagccacaggc	ctgcagatgg	1560
gaggaggatt	cgggggctgg	aacaggagaa	gctggggctg	agcaggaaaggc	1620
caccgagcc	gtgcagtccc	tccacggctc	atctcgggcc	ctcagaattt	1680
taaaggaaatc	aaaaggctaa	atgaaggaaat	cgaacgcctg	aagaataaaa	1740
aaacacaggctg	gaggcggacaggc	ttgtgggacac	agtggggctt	cgccaaaggagc	1800
cacgcggcgg	ctgcggggcc	ttggagaagca	gcacccggcg	gtccggcagg	1860
gctgcacaag	caactggttg	aaggctcaga	9cggttggaaa	tcccaggcca	1920
agatgcctcat	caggcggcaa	aggctggccct	gcaggaggttc	tcggagctga	1980
ggcagagctc	cgtgcccaga	aggcggagg	gtccccggcg	ctgcggagaca	2040
gatgggggtg	gccacgcaga	aggtgacgc	catgcggcag	gaaatgcggaa	2100
gctcaggaaaa	gaggctggaaag	ctcaaggcttga	tgatgtcttt	gtctggccct	2160
caaggcttcgt	gaggcacaggcg	agaacttctg	caagcaaatg	ccaaaggagcg	2220
caagggtggaaag	caaggaggccc	ggggaggcccc	tgccacttta	gaggcaccaggc	2280
caaaaatccaaa	tcccgaggctgg	agaaaggaaatg	tttattttat	gtggcagacg	2340
ttagggccccc	catgtgtctgg	aagtggaaaa	tgtgaaggaaat	tggaggccct	2400
ccaccaggctg	gcccctgcaga	aagaaatctt	gatgtttaaa	atccaggatgt	2460
gggagaacgg	cataaccaga	tggaggaggc	atggatgtaca	ataaaagata	2520
agaaaggaggcg	atgctgtttg	atgaaaaacaa	gaaatggtaact	aaatccggaaacg	2580
ttcccttttgtg	gataaaactca	cagctcaaaa	tgacagatgt	tgcaaggatct	2640
ggcaggccaaag	aaggaggctcag	tggcccccactg	ggaaaggctcag	tcattcagtgt	2700
					2760

Fig. 5 (continued)

ggtcagtgc	gagaaggatg	cccggtta	cttcaagct	cttgcttcca	agatgaccga	2820
agagtcgg	gctttggga	tttctagtc	gggtcaaga	acactggacc	cgctgtggaa	2880
ggtgtcgcc	aggcaggaa	tggacatgtc	cgcggctg	gagctgcaat	ggcccttggaa	2940
ggcgaggatc	cgggccaa	agcttgttcca	ggaggagctc	aggaaggatca	aggacgcca	3000
cctcacctg	gaaaacaac	taaaggattc	cgaaggcaa	aacaggaaat	tattagaaga	3060
aatggaaatt	ttgaaaaaa	agatggaa	aaaattcaga	gcagatactg	ggctcaaaact	3120
tcagatttt	caggattca	tttttggata	tttcaacact	gtcctcttgg	cacatgacct	3180
gacatttaga	accagctcag	ctagtgaggca	agaaaacacaa	gtcccgaa	cagaagggtc	3240
cccgtcgtg	tctgtggctg	catcaggagca	gcaggaggac	atggctcgcc	ccccggagag	3300
gcacatccgct	gtgcccgtgc	ccaccacgca	ggccctggtt	ctggctggac	cgaaggccaa	3360
agctcacccag	ttcaggatca	agtccttctc	cagccctact	cagtgcagcc	actgcaccc	3420
cctgtatggtt	gggtgtatcc	ggcagggtca	ggcctgcgag	gtgtgttcct	ttgtttgcca	3480
cgtgtcctgc	aaagacggtg	ccccccagg	gtgcccata	cctcccgagc	agtccaaagag	3540
gcctctgggc	gtggacgtgc	aggcaggcat	cgaaacagcc	tacaaggcc	atgtcaagg	3600
cccaaaagccc	acgggggtga	agaaggatg	gcagcgcgca	tatgcagtgc	tctgtgtgtg	3660
caagctttc	ctgtatgtc	tgcctgaaagg	aaaatccacc	cagcctggtg	tcattgtcgag	3720
ccaaagtctg	gatctcaggag	atgacgaggat	tcccggtgagg	tcagtcctgg	cctcagatgt	3780
cattcatgtct	acacgcccag	atattccatg	tatattcagg	gtgacggcct	ctctctttagg	3840
tgccacctct	aagaccaggct	cgtgtctcat	tctgacagaaa	aatggaaatg	aaaaggaggaa	3900
gtgggttggg	attcttagaag	gactccaggc	catccttcat	aaaaacggc	tgaggaaatca	3960
ggtcgtgtcat	gttcccttgg	aaggcctacga	cagctcgctg	cctctcatca	aggccatcct	4020
gacagctgtcc	atcggtggatg	cagacaggat	tgcaagtggc	ctagaagaag	ggctctatgt	4080
catagagggtc	accggatgt	tgatcggtccg	tgccgtgtgac	tgtaagaagg	tacaccagat	4140

- 22/56 -

Fig. 5 (continued)

cggatggct	cccgaggaga	agatcgtaat	cctcccttgt	ggccggaaacc	accatgtgca
cctctatccg	tggtcgtccc	ttgtatggagc	ggaaggcaggc	tttgacatca	agcttccggaa
aaccaaaggc	tgcgcagctca	tgcccacggc	cacactcaag	aggaactctg	gcacctggcct
gttttgtggcc	gtgaaaacggc	tgatcctttg	ctatgaggatc	cagagaacga	agccattcca
cagaaaagtcc	aatgtaggatg	tggtctccgg	cagcgtggcag	tgccctggcg	tgctcaggggaa
caggctctgt	gtgggctacc	tttctgggtt	ctgcctgtcg	agcatccagg	gggacgggca
gcctctaacc	ctggtaaattc	ccaatgacccc	ctcgcttgcg	ttcctctcac	aacagtcttt
tgtatggcctt	tgtgtctgtgg	agctcgaaaaag	cgaggagtac	ctgccttgtc	tcaggccacat
ggggactgtac	gtggaccggc	aggccggag	ggcacggcg	caggagctca	tgtggcctgca
ggctccctgtc	ggctgttagtt	gcagccccac	ccacgtcacg	gtgtacagcg	agtatggcgt
ggacgtgtttt	gtatgtggca	catacggtgt	ggtgcagacc	atcgccctgc	4800
gcccctgAAC	tctcaaaac	ccctcaaacct	cctcaactgc	gagcctccac	gctttgatcta
cttcaaggAGC	aagttcgtgg	gaggggttct	caacgtggcc	gacacccctcg	acaacagcaa
gaaggcaggATG	ctgcgcacca	ggagcaaaaaag	gcccgttcgtc	ttcaagggtcc	caggaaaga
gagactgAG	caggaggag	agatgtttag	agacccaggaa	ttgagatcca	aaatgatatc
caaccaACC	aacttcaacc	acgtggccca	catggggcca	ggcgacggca	tgcagggtgct
catggactcg	cctctgtgggt	ctgtgtcccg	ctccaggag	gaaaggccgg	gccccgtctcc
caccaactcg	gctcgccagg	ctccatccag	gaacaaggccc	tacatctcg	5160
aggtgttatcg	gaggcttagcg	tgactgtgcc	tctgtggaaatgt	atgtctgatc	5220
ctttgacaaa	gaggcttgatt	cggactccac	caaacactca	cagaccaggaa	5280
ccccaggGGC	ccacccggcc	ccaaactcccc	actccatcgaa	atagctccaa	5340
ggaggcaggCG	gcctgtgaca	cctgaaggccg	ccacaggaggc	cagtcggccc	5400
gatggccctcc	agcgtcagtgc	ccaaaggactga	cgaggccctc	gggaggctggaa	5460
			cagtgttgtc	caaggaaatg	5520

- 23/56 -

Fig. 5 (continued)

tagaaatcaat ttgttagatat ggagatggaaag aagacaaatc ttttattataa tattgatcg
 ttttatgccg cattgttcgt ggcaggtagac cacatctgtt cgctctgcaca gctgtgaggc
 gatgctgttc catctgcaca tgaaggaccc ccatacagcc tgctctccac cctgtgacaac
 ccgaggaggc atatggggcc ctgccaacac cacttcctca gcagaaccc gtcatgcgc
 ggctgcttcg gaaggagaca tctggggaca caggctcagt acccaggctt ttcccttagt
 cctgaaacct tccttaggacc ttaaggaaat agtagggat cctatagcat tcccaagtgtc
 actagaattt tgaaggacagg aaagtggagg ttagtctgtg gcctttttt catttagcca
 ttgcacagtc agctgcagaa gtcctgtga ccacctagtc atggacaaag gcccaggacc
 agtgacaccc tgcgtccctg tgtgcgttaa gttcatctgt ggtcgagcc atgaagtgtc
 accagatct actactgtga agtcagctgt gctgtttcc attcgcttcc acggctctcg
 ctcctggca taaaaaccagg gagtgctgtg gtgcaggcag gcccctgtggc ctgctggct
 gaggaaggc agagccccag ggcgccacga agcaggcact gggataacccc accccggccc
 gccnnncnnn cccccccnc cagtnagnn cggaaatggg gccccgggtga ttagtagccc
 gtatgatcac gttagaccac ccaacacact cctgcacact gggccggcc cacggcacag
 caatccctg cgctgtgatt tcacctcacc ctttgtacca gatgttgagt gaccaggctc
 gtggccctgt gtcgtcagag gcttgtgatt aactgtggcg ctgtccaca 6480
 gcttggggca ggcttccct gtcctccac cgttcggctg ctggcaagg ctgttcaggaa
 cgtgcacttc ccaagtccgg cactgaggatgg cccaggacca cctagccctg ccacccact
 gccctccctgg gccttctgtt ggtgggggt ctgggtttttt acttttttaa
 tgtaagtctc agtcttgtta attaattttt gaaatgtgag aacatttttgaacaattttac
 ctgtcaataa agcagaaggac ggcagaaggac aagttaaaaa aaaaaaaaaaaaaaaa
 5580
 5640
 5700
 5760
 5820
 5880
 5940
 6000
 6060
 6120
 6180
 6240
 6300
 6360
 6420
 6540
 6600
 6660
 6720
 6780

Fig. 6

gagccggccgc cgccccagg cttagaattca gcggccgcgt aattcttagt gctgccgg
acctcaggcc cccttaaaga ggaccattc ccctgttagac cagtcttgtt cccctgcaag
ctttacctgc attctgccc atggcgccc ccattttc ccatctgt tggtgatctta tctccctcac
ttaactctct ttccctgtt attcttatcc ttccatcta tgagctggac tgaggccctg ggtggaaag
tggctctgtt attcttatcc gtgcctaacc cagcgcctcc ttcttggtc ttctccctc
tctaggctat ctggtcaggc aggcaaccga tcttcctcag gatcattgtat ctctgtacct
ccaggggcag tgaacctcc ttccctggg ataattctca aggctcactg atcaaaacctt
tgggcttggt tcacaggta ggtctatgtc agtacgcac atcagatatt tggtgtcgct
agggtttctt agggaaaagg agctggtaga atggaaaaagg ggagatttat taggtgtcag
tctgtctatgc caccaatggc ttggatgttct ttggaaatgt atttattcc atcccttatg
tgtatgagta cctttggcct cctgtatctt tttagggagac acgactctgc caagcccttc
acctcctat cgtttagtctt tcccaggat ttctgtgtc gtggcccat tgccgtggag cgtggtcgg
tgtcagtacc cgtttagtgc ttccaggat tttagggagac ccggccggccat tgcccttcaa
ttcaagtatg gtgtggggaa cccggccggag gccaggccct ccgagccat tgccaggat
gcctccaggc taaatctt cttccagggg aaaaaggcc tcatgactca acaggcaggat
tctgtcttt cccggggagg gatgcttagac gccccttcg ctctttga agatgtcagg
caaccggcc ttagatggat aaaggcacgtg agcaggtttg tccagaagata ttccgacacc
ataggccggat tggggggaggct gcggccgtcg gcgagagact tcgaaaggttcg aaggccttgt
ggctgtgtc acttcgtctga agtggagggtg tttagagaga aggccggccgg ggacgtctat
ggccatggaa tcatggaaaggaa gaaggcttgc ctggccagg aacaggtttc attttcgag
gaggaggagg acaattatc tcggaggacg agtccttggaa tcccccaagg aacaggat
tttcaggaca aaaataaacct ttacctggtc atgaaatatc agcctggagg ggatttcctg
tcgtttctga acagatacga ggaccaatta gatggagagca tgatccaggat ttaccttgct

- 25/56 -

Fig. 6 (continued)

gaggctgattt	tggctgtccca	caggcgtgcac	cagatggat	atgtgcatcg	agacatcaa	1440
cccgagaaca	tccctcatcga	ccggacggaa	gagataa	tggtggattt	tggatcagcc	1500
gctaaggatga	attcaaaataa	ggtgttatgcc	aaactcccc	ttggggacccc	ggattacatg	1560
gctccggaaag	tgttgacacgt	gtatgaacggag	gaccgaaggg	tttggactgt	cttggactgt	1620
gactgggtgt	ctgtcgggagt	tgttgcttat	gagatggttt	atggggaaagac	cccattcaca	1680
gaggggaaacct	ccggccggac	tttcaacaac	atcatgaact	tccagggttt	tttggaaagttc	1740
ccagatgacc	ccaaaggatgg	cagtggagctc	tttgcattgc	ttcaggatgtt	gttgtgtgtc	1800
cagaaggagaga	gactgtggtt	cgggggtctc	tgctgcacc	ctttctttgc	cagaacggac	1860
tggaaacaaca	tccgttaactc	tccctccccc	ttcgtaa	ccctcaagtc	tgacgatgac	1920
acctcccaatt	ttgtatgaacc	agagaagaat	tctgggttt	tcatccctg	tgtgcccagt	1980
gagccctctcg	cgttctcagg	cggaggagctg	cgttgttgg	gttttctgt	tgatccaggat	2040
ctgggtatc	ttggtagatc	tgagtctgtc	tggtcgagtc	tggactccc	tgccaaaggtt	2100
agctccatgg	aaaaggaaact	tctcataaa	gtggatccat	tccaaaggactc	ccaggacaag	2160
tgtcacaaagg	tatctatctc	cacaggccggc	ctccgttccat	gttccaggat	cctcccaatca	2220
atatatggcg	aggatctgc	cggggccac	tggtgccgg	tggtgccgg	tccctcgctg	2280
aaggtcgtgcc	tccaggcagct	caggggaga	ggactccagg	cccagacatt	gccataaattc	2340
ctttaaattct	taaccaggagg	aggcccttgg	tttaaaaaaa			2380

Fig. 7

Met Ser Ala Glu Val Arg Leu Arg Gln Leu Gln Gln Leu Val Leu Asp
1 5 10 15
Pro Gly Phe Leu Gly Leu Glu Pro Leu Leu Asp Leu Leu Leu Gly Val
20 25 30
His Gln Glu Leu Gly Ala Ser His Leu Ala Gln Asp Lys Tyr Val Ala
35 40 45
Asp Phe Leu Gln Trp Val Glu Pro Ile Ala Ala Arg Leu Lys Glu Val
50 55 60
Arg Leu Gln Arg Asp Asp Phe Glu Ile Leu Lys Val Ile Gly Arg Gly
65 70 75 80
Ala Phe Ser Glu Val Ala Val Val Lys Met Lys Gln Thr Gly Gln Val
85 90 95
Tyr Ala Met Lys Ile Met Asn Lys Trp Asp Met Leu Lys Arg Gly Glu
100 105 110
Val Ser Cys Phe Arg Glu Glu Arg Asp Val Leu Val Lys Gly Asp Arg
115 120 125
Arg Trp Ile Thr Gln Leu His Phe Ala Phe Gln Asp Glu Asn Tyr Leu
130 135 140
Tyr Leu Val Met Glu Tyr Tyr Val Gly Gly Asp Leu Leu Thr Leu Leu
145 150 155 160
Ser Lys Phe Gly Glu Arg Ile Pro Ala Glu Met Ala Arg Phe Tyr Leu
165 170 175
Ala Glu Ile Val Met Ala Ile Asp Ser Val His Arg Leu Gly Tyr Val
180 185 190

- 27/56 -

Fig. 7 (continued)

His	Arg	Asp	Ile	Lys	Pro	Asp	Asn	Ile	Leu	Asp	Arg	Cys	Gly	His	
195					200						205				
Ile	Arg	Leu	Ala	Asp	Phe	Gly	Ser	Cys	Leu	Lys	Leu	Gln	Pro	Asp	Gly
210					215						220				
Met	Val	Arg	Ser	Leu	Val	Ala	Val	Gly	Thr	Pro	Asp	Tyr	Leu	Ser	Pro
225					230						235				240
Glu	Ile	Leu	Gln	Ala	Val	Gly	Gly	Gly	Pro	Gly	Ala	Gly	Ser	Tyr	Gly
					245						250				255
Pro	Glu	Cys	Asp	Trp	Trp	Ala	Leu	Gly	Vai	Phe	Ala	Tyr	Glu	Met	Phe
					260						265				270
Tyr	Gly	Gln	Thr	Pro	Phe	Tyr	Ala	Asp	Ser	Thr	Ala	Glu	Thr	Tyr	Ala
					275						280				285
Lys	Ile	Val	His	Tyr	Arg	Glu	His	Leu	Ser	Leu	Pro	Leu	Ala	Asp	Thr
					290						295				300
Val	Val	Pro	Glu	Glu	Ala	Gln	Asp	Leu	Ile	Arg	Gly	Leu	Leu	Cys	Pro
305					310						315				320
Ala	Glu	Ile	Arg	Leu	Gly	Arg	Gly	Gly	Ala	Gly	Asp	Phe	Gln	Lys	His
					325						330				335
Pro	Phe	Phe	Gly	Leu	Asp	Trp	Glu	Gly	Leu	Arg	Asp	Ser	Val	Pro	
					340						345				350
Pro	Phe	Thr	Pro	Asp	Phe	Glu	Gly	Ala	Thr	Asp	Thr	Cys	Asn	Phe	Asp
355					360						365				
Val	Val	Glu	Asp	Arg	Leu	Thr	Ala	Met	Vai	Ser	Gly	Gly	Glu	Glu	Thr
					370						375				380

- 28/56 -

Fig. 7 (continued)

Leu	Ser	Asp	Met	Gln	Glu	Asp	Met	Pro	Leu	Gly	Val	Arg	Leu	Pro	Phe
385				390					395						400
Val	Gly	Tyr	Ser	Tyr	Cys	Cys	Met	Ala	Phe	Arg	Asp	Asn	Gln	Val	Pro
				405					410						415
Asp	Pro	Thr	Pro	Met	Glu	Leu	Glu	Ala	Leu	Pro	Val	Ser	Asp		
				420					425						430
Leu	Gln	Gly	Leu	Asp	Leu	Gln	Pro	Pro	Val	Ser	Pro	Pro	Asp	Gln	Val
				435					440						445
Ala	Glu	Glu	Ala	Asp	Leu	Val	Ala	Val	Pro	Ala	Pro	Val	Ala	Glu	Ala
				450					455						460
Glu	Thr	Thr	Val	Thr	Leu	Gln	Gln	Leu	Glu	Ala	Leu	Glu	Glu		
				465					470						475
Val	Leu	Thr	Arg	Gln	Ser	Leu	Ser	Arg	Glu	Leu	Glu	Ala	Ile	Arg	Thr
				485					490						495
Ala	Asn	Gln	Asn	Phe	Ser	Ser	Gln	Leu	Gln	Ala	Glu	Val	Arg	Asn	
				500					505						510
Arg	Asp	Leu	Glu	Ala	His	Val	Arg	Gln	Leu	Gln	Glu	Arg	Met		
				515					520						525
Leu	Gln	Ala	Pro	Gly	Ala	Ala	Ile	Thr	Gly	Val	Pro	Ser	Pro	Arg	
				530					535						540
Ala	Thr	Asp	Pro	Pro	Ser	His	Leu	Asp	Gly	Pro	Pro	Ala	Val	Ala	
				545					550						555
Gly	Gln	Cys	Pro	Leu	Vai	Gly	Pro	Gly	Pro	Met	His	Arg	Arg	His	Leu
				565					570						575

Fig. 7 (continued)

Leu	Leu	Pro	Ala	Arg	Ile	Pro	Arg	Pro	Gly	Leu	Ser	Glu	Ala	Arg	Cys
580						585						590			
Leu	Leu	Phe	Ala	Ala	Ala	Leu	Ala	Ala	Ala	Ala	Thr	Leu	Gly	Cys	
595						600					605				
Thr	Gly	Leu	Val	Ala	Tyr	Thr	Gly	Gly	Leu	Thr	Pro	Val	Trp	Cys	Phe
610						615					620				
Pro	Gly	Ala	Thr	Phe	Ala	Pro									
625						630									

- 30/56 -

BLASTP - alignment of CRIK-sk (SEQ ID NO:2) against trembl | AF086823 | AF086823_1
 gene: "Crik-sk"; product: "rho/rac-interacting citron kinase short isoform" ;
 Mus musculus rho/rac-interacting citron kinase short isoform (Crik-sk) mRNA,
 complete cds. // :gp|AF086823|3599507 gene: "Crik-sk"; product:
 "rho/rac-interacting citron kinase short isoform" ; Mus musculus
 rho/rac-interacting citron kinase short isoform (Crik-sk) mRNA, complete cds. (SEQ
 ID NO:3)

This hit is scoring at : 0.0 (expectation value)

Alignment length (overlap) : 495

Identities : 87 %

Scoring matrix : BLOSUM62 (used to infer consensus pattern)
 Database searched : nrdb_1_;

Q:	1 MILKEKYGARNPLIDAGAAEPIASRASRLNLIFFQGKPPFM T QQQMSP S PLSREG I LDALFVLF E
	MILKEKYG.RNP :A.A:EPIASRASRLNLIFFQGKPP.MTQQQMS.LSREG:LDALF.LFE
H:	1 MILKEKYGVRNPPEASASEPIASRASRLNLIFFQGKPP L MTQQQMSALSREG M ILDALF A FE

Protein Kinase ATP Motif (K binds ATP)
ECSOPALMKIKHVSNEVRKYSDTIAELQELQPSAKDFEVRSILVGGHFAEVQVVREKATG
ECSQPALMK: KHTVS : FV : KYSDTIAEL: ELQPSA: DFEVRSILVGGHFAEVQVVREKATG
ECSQPALMKHKVSSFVQKYSDTIAELRELQPSARDFEVRSILVGGHFAEVQVVREKATG

DIYAMKVMKKALLAQEQVSFFEEERNILSRSTSPWIPQLQYAFQDKNHLYLVMYQPGG
D:YAMK:MKKKKALLAQEQVSFFEEERNILSRSTSPWIPQLQYAFQDKN:LYLVMYQPGG
DVYAMKIMKKKALLAQEQVSFFEEERNILSRSTSPWIPQLQYAFQDKNNLVMYQPGG

Fig. 8 (continued)

- 31/56 -

Protein_Kinase_ST Motif (D is an active site)

DLLSLNRYEDQLDENLIQFYLAELLILAVHSHVHQFYLAELLILAVHSHVH D . LSLLNRYEDQLD : : IQFYLAELLILAVHSHVH MGYVHRDIKPENIL:DRTG . IKLVDF DFLSLNRYEDQLDQFYLAELLILAVHSHVH QMGYVHRDIKPENILIDRTGEIKLVDF

GSAAKMNSNKVNAKLPIGTPDYMAPEVLTVMNFGQRFLKFQDGGKGTYGLDCDWSSVGVIAYEMIYGR
GSAAKMNSNK V : AKLPIGTPDYMAPEVLTVMNFGQRFLKFQDGGKGTYGLDCDWSSVGV:AYEM: YG:
GSAAKMNSNK- VDAKLPIGTPDYMAPEVLTVMNFGQRFLKFQDGGKGTYGLDCDWSSVGVVAYEMVYGR

SPEAEGTSARTFNNIMNFQRFLKFPPDDPKVSSDFLDLIIQSLLCGQKERLKFEGLCCHPFF
: PF . EGTSARTFNNIMNFQRFLKFPPDDPKVSS : . LDI : QSLLC QKERLKFEGLCCHPFF
TPFTEGT SARTFNNIMNFQRFLKFPPDDPKVSSSELLDLLQSLLCVQKERLKFEGLCCHPFF

SKIDWNNNIRNSPPPFPVPTLKSDDDTSNFDEPEKNSWVSSSPCQLSPSGFSGEELPFVGFS
: : DWNNIRNSPPPFPVPTLKSDDDTSNFDEPEKNSW . . . P . FSGEELPFVGFS
ARTDWNNIRNSPPPFPVPTLKSDDDTSNFDEPEKNSWAFILEPLAFSGEELPFVGFS

YSKALGILGRSESVVSGIDSPAKTSSMEKKLIKSKELQDSQDKCHKV FISAAGLLPCSR
YSKALG . LGRSESVVS . LDSPAK . SSMEKKLIKSKELQDSQDKCHKV IS . AGL PCSR
YSKALGILGRSESVVSSIDSPAKVSSSMEEKKLIKSKELQDSQDKCHKV IS STAGIIRPCSR

ILPSVYAKGSARGRC 495
IL . S : YA : GSA G . C
ILQSTIYAEGSAGGHC 494

Fig. 9

- 32/56 -

BLASTP - alignment of CRIK-sk (SEQ ID NO:2) against trembl|AF086824|AF086824_1
gene: "Crik"; product: "rho/rac-interacting citron kinase"; Mus musculus
rho/rac-interacting citron kinase (Crik) mRNA, complete cds.
//:gp | AF086824| 3599509 gene: "Crik"; product: "rho/rac-interacting citron kinase";
Mus musculus rho/rac-interacting citron kinase (Crik) mRNA, complete cds. (SEQ ID
NO:4)

This hit is scoring at : 0.0 (expectation value)

Alignment length (overlap) : 468

Identities : 88 %

Scoring matrix : BLOSUM62 (used to infer consensus pattern)

Database searched : nrdb_1_;

Q: 1 MILKFKYGARNPLDAGAAEPIASRASRLNLFQGKPPFMTOQQMSPLSREGILDALFVLFE
H: 1 MILKFKYGYG.RNP :A .A :EPIASRASRRLNLFQGKPP.MTQQQMS.LSREG:LDALF.LFE
1 MILKFKYGYVRNPPEASASEPIASRASRLNLFQGKPPLMTQQQMSALSREGMLDALFALFE

ECSQPALMKIKHVSNSNFRVKYSDTIAELQELQPSAKDFEVRSLVGGGHFAEVQVVREKATG
ECSQPALMK:KHVS:FV:KYSDTIAEL:ELOPSA:DFFEVRSLVGGGHFAEVQVVREKATG
ECSQPALMKMKHVSSFVQKYSDTIAELRELQPSARDFEVRSLVGGGHFAEVQVVREKATG

DIYAMKVMKKALLAQLQQVSFFEEERNILSRSTSPWIPQLQYAFOQDKNHILYLVMYEYPQGG
D:YAMK:MKKKALLAQLQQVSFFEEERNILSRSTSPWIPQLQYAFOQDKN:LYLVMYEYPQGG
DVYAMKIMKKALLAQLQQVSFFEEERNILSRSTSPWIPQLQYAFOQDKNNLILYLVMYEYPQGG

Fig. 9 (continued)

- 33/56 -

DLLSILLNRYEDQLDENLIQFYLAELLILAVHHSVHILMGYVHVDIKPENILVDRGHIKLVDF
D .LSILLNRYEDQLDE : : IQFYLAELLILAVHHSVH MGYVHVDIKPENIL: DRTG .IKLVDF
DFLSILLNRYEDQLDGESMIIQFYLAELLILAVHHSVHQMGYVHVDIKPENILIDRTGEIKLVDF

GSAAKMNSNKMVNAKLP1GTPDYMapevlTVmNGDGKGTyGLDCDWWSVGVIAYEMIYGR
GSAAKMNSNK V : AKLP1GTPDYMapevlTVmN D : GTYGLDCDWWSVGV:AYEM: YG:
GSAAKMNSNK- VDAKLP1GTPDYMapevlTVmNEDRRGTYGLDCDWWSVGVIAYEMVYGR

SPPAEGTISARTFNNIMNFQRFLKFPPDPKVSSDFLDLQSLLCGGKERLKFEGGLCCHPFF
: PF .EGTISARTFNNIMNFQRFLKFPPDPKVSS: . LDL: QSLLC QKERLKFEGGLCCHPFF
TPFTEGTISARTFNNIMNFQRFLKFPPDPKVSSSELLLQSLLCVQKERLKFEGGLCCHPFF

SKIDWNINRNSPPPFPVPTLKSDDDTSNFDEPEKNSWSSSPCQLSPSGFSGEELPFVGFS
: : .DWNNINRNSPPPFPVPTLKSDDDTSNFDEPEKNSW . . . P . FSGEELPFVGFS
ARTDWNNINRNSPPPFPVPTLKSDDDTSNFDEPEKNSWAFILCVPAEPLAFSGEELPFVGFS

YSKALGILGRSESVVSGLDSPAQTSSMEKKLLIKSKELQDSQDKCHKV 468
YSKALG . LGRSESVVS . LDSPA . SSMEKKLLIKSKELQDSQDKCHK :
YSKALG . GYLGRSESVVSSLDSPA . KVSSMEKKLLIKSKELQDSQDKCHKM 467

Fig. 10

BLASTP - alignment of CRIK-sk (SEQ ID NO:2) against trembl|AF128625|AF128625_1 gene: "CDC42BPB"; product: "CDC42-binding protein kinase beta"; Homo sapiens CDC42-binding protein kinase beta (CDC42BPB) mRNA, complete cds. // :gp|AF128625|5006445 gene: "CDC42BPB"; product: "CDC42-binding protein kinase beta"; Homo sapiens CDC42-binding protein kinase beta (CDC42BPB) mRNA, complete cds. (SEQ ID NO:5)

This hit is scoring at : 4e-94 (expectation value)
Alignment length (overlap) : 420

Identities : 42 %

Scoring matrix:

Scoring matrix : BLOSUM02 (useful to infer consensus pattern)
Database searched : nrdb_1/

GCGHFAEVQVREKATGDIYAMKVMKKKALLAQEQQSFFEEERNILSRSTSIPWIPQLQYA
G G F . EV . VV : K T IYAMK : : K : : L : : : EER : : L : : : WI : : L . YA
GRGAFGEVAVVKMKNTERIYAMKJLNLNKWEMLKRAETACFREERDVVLVNGDCOWITALHYA

FQDKNHLVLYMVEYQPGGDLSSLNRYEDQLDENLIQFYLAAELLILAVHSVHLMGYVHVDIK
FQD:NHLVLM:Y . GGDLL:LL: : ED:L.E: : FY:E:LA: : S:H : YVHVDIK
FQDENHLVLYMDYYVGGDLILLSKFEKDLPEDMARFYIGEMVLAIDSIIHOLHYVHVDIK

- 35/56 -

PENILVDRTGHIKLVDFGSAAKMNSNKVNNAKLPIGTPDYMPEVLTVMINGDGKGTYGLD
P:N:L:D . GHI:L.DFGS .. KMN . : . V . . . : GTPDY : PE:L..M. DG.G.YG :
PDNVLLDVNGHIRLADFGSCLKVNNDGTIVQSSVAVGTPDYISPEILQAME-DGMGKYGPE

CDWWWSVGVIAYEMIYGRSPFAEGTSARTFNNNIMNFQRFLKFDD-PKVSSDFFLDLIQSLL
CDWWS:GV..YEM:YG.:PF . : . T: . : IMN . : . : FP . . . VS . : DLIQ.L:
CDWWWSLGVCMYEMLYGETPFYAESLVEFYKIMHEERQFPSSHVTDVSEEAKDLIQRLI

CGQKERILKFEGL---CCHPFFFSKIDWNINIRNSPPPFVPTLKSDDDTSNFDPEKNSWSS
C.:::RL . G: H. FF . : W.NIRN . : P.::P.::S..DTSNFD . :: .
CSRERRLQNGIEDFKKHAFFEGLNWENIRNLLEAPYIPDVSSPSDTSNFDVDDDVLRNTE

SPCQLSPSGFSGEELPFTVGFSSYSKALGILGRSESVVSGILDSPAKTSSMEKKLLIKSKELQ
. S : GFSG . LPF:GF : : : ES .. S D. : . S M: . L.K. : : Q
ILPPGSHTGFSGLHLPPFIGFTFT-----TESCFST-----DRGSLKSIMQSNTLTKDEDVQ

459

431

Fig. 11

- 36/56 -

*BLASTP - alignment of CRIK-sk (SEQ ID NO:2) against swissnew|P54265|DMK_MOUSE
MYOTONIN-PROTEIN KINASE (EC 2.7.1.-) (MYOTONIC DYSTROPHY PROTEIN KINASE) (MDPK)
(DM-KINASE) (DMPK) (MT-PK) (MT-PK) .//: swiss|P54265|DMK_MOUSE MYOTONIN-PROTEIN KINASE
(EC 2.7.1.-) (MYOTONIC DYSTROPHY PROTEIN KINASE) (MDPK) (DM-KINASE) (DMPK)
(MT-PK) .//: trembl|Z38015|MMMDMPK_1 gene: "DM-PK"; product: "myotonic dystrophy
protein kinase"; M.musculus DMR-N9 gene, exons 4 and 5, and DM-PK gene encoding
myotonic dystrophy protein kinase // :gp|Z38015|563526 gene: "DM-PK"; product:
"myotonic dystrophy protein kinase"; M.musculus DMR-N9 gene, exons 4 and 5, and
DM-PK gene encoding myotonic dystrophy protein kinase. (SEQ ID NO:11)*

This hit is scoring at : 3e-89 (expectation value)

Alignment length (overlap) : 386
Identities : 44 %

Scoring matrix : BLOSUM62 (used to infer consensus pattern)
Database searched : nrdb_1_;

Q: 46 LSREGILDALFVLFEECSQPALMKIKHVSNFVRKYSDTIAELQELQPSAKDFEVRSLVGCG
L. E :LD.L. ::E. . . L. : K:V :F: : . . . A.L:E: : . . . DFE: : . . :G
H: 20 LGLEPLLDLILGVHQELGASHLIAQDKYVAADFLQWVEPIAARLKEVRLQRDDDFEILKVIGR

GHFAEVQVVREKATGDIYAMKVMKKALLAQEQQVSEEEERNILSRSTSPWIPQLQYAFQ
G F :EV . VV : K . TG . : YAMK :M . K :L . : VS F . EER : L : . . . WI . QL . :AFQ
GAESEVAVVKMKQTGQVYAMKIMNKWDMLKRGEVSCFREERDVLVKGDRREWITQLIHFAFQ

- 37/56 -

Fig. 11 (continued)

DKDNHLYLVMYEYQPGGDLSSLNRYEDQLDENLIQFYLAELILAVHSHVHLMGYVHRDIKEPE
D:N:LYLVMYE. GGDLL:LL:::
DENYLYLVMYEYVGDLLTLSKFGERIPAEMARFYLAETIVMAIDSVHRLGYVHRDIKPD

NILVDRGHIKLVDGSAAKMNSNKMVNAAKLPIGTPDYMAPEVL-TVMNGDGKGYGLDC
NII:DR.GHI:L.DFGS..K:...MV.:...:GTPDY:PE:L.V.G.G.YG:CG
NIII:DRGCHIRLADFGSCLKQPDGMVRSLVAVGTPDYLSSPEILQAVGGGPAGGSYGPEC

DWWWSVGVIAYEMIYGRSPFAEGTSARTENNIMNFQRFLKFP-DDPKVSSDFLDLIOQSLLC
DWW : : GV . AYEM . YG : : PF . . : A . T : . I : : . L . P D . V . . : DLI : . LLC
DWWALGVFAYEMFYGQTPFYADSTAETYAKIVHYREHLSPLADTVVPEEAQDLIRGLLC

GQKERLKEEG -- LCCHPFFSKIDWNINRNSPPPFVPTLKSDDDTSNFD--EPEKNSWVS
.: RL G . HPFF :DW . :R:S PPF.P.: . DT.NFD E. . : VS
PAEIRLGRGGAGDFQKHFFFFGLDWEGLRDSVPPFTPDFFEGATDTICNFDVVEDRLTAMVS

SSSPCQLSPSGFS---GEELPFGFSY
.. LS .. . G . LPFVG : SY
GGGETLSDMQEDMPLGVRLPPFVGYSY

421

**BLASTP - alignment of CRIK-sk (SEQ ID NO:2) against pdb|1CDK|1CDK-A
camp-dependent protein kinase (protein kinase a) protein kinase inhibitor (pki (5-24))**

This hit is scoring at : 9e-45 (expectation value)
 Alignment length (overlap) : 333

Identities : 33 %

Scoring matrix : BLOSUM62 (used to infer consensus pattern)
 Database searched : nrdb_1_;

Q:	71	KHVSNFVRKYSDDTIAELQELQPSAKDDEEVRSVLVCGGHEFAEVQVVREKATGDIYAMKVMKK
		K . :F: :K: .: L. . FE . : G.G.F. . V. : V. . K. TG: : AMK: : . K
H:	14	KAKEDFLKKWENPAQNTAHL D---QFERIKTTLGTGSFGRVMVVKHKE TNHFA MKI LDK
		KALLAQEQVSFFEEERNILSRSTS P WIP QLQYA F QDKN HLYLVMEY QPG GDLLS LLN RYE
		: . : . : Q: . . E: . IL. . P: : L: Y: F: D: . : LY: VM EY PGG: : . S L. R.
		QKVVKLKKQIEHTLNEKRILQAVNFPFLVKLEYSEKD NSNL YMVMEY VPG GEM FSHL RRI-
		DQLDENLIQFYLAELLIAVH SVHLMGYVH RD I K PEN I LV DRTG HIKL V DFG SAA KM NSNK
		: . : E . : FY. A: : L. . : H . : RD : K PEN : L: D: . G: I: : DFG A: : : . :
		GRFSEPHARFYAAQIVLT FEYLHSLDL IYRDLK PEN L LID QQGY IQVT DFGFAK RVKG RT
		MVNNAKLPIGTPDYMAPEVLTVMNGDGKGTYGLDCDWWSSVGVIAYEMIYGRSPFAEGTSAR
		GTP: Y: APE: : . KG Y. . DWW: : GV: . YEM. G . PF :
		WTLC---GTPEYLAPEIIL----SKG- YNKAVDWWALGVLIYEMAAGYPPFFADQPIQ

- 39/56 -

TFNNIMNFQRFLKFPPDKVSSDFLDLIQSLLCGQKERLKFEGLCCHPFFSK
.: .I.: : : EP. .: SSD. DL: : LL Q : .K G : H. : F : .
IYEKIVSGK--VRFPS--HFSSDLKDLLRNLL--QVDLTKRFGNLIKDGVNNDIKNHKWFA

IDWNNI--RNSPPPFVPTLKSDDDTSNFDPEK 393
DW I R. .: PF:P.K..: DTSNFD: E:
TDWIAIYQRKVEAPPFIPKFKGPGDTSNFDYYEE 325

Fig. 12 (continued)

Fig. 13

HMMER - alignment of CRIK-sk (SEQ ID NO:2) against pfam | hmmpkinase
Protein kinase domain

This hit is scoring at : 219.4 E=5.5e-62
Scoring matrix : BLOSUM62 (used to infer consensus pattern)

Q: 97 FEVRSLVGGHFAEVQVVREKaTGDIYAMKVKKKALLaaqeovsffffEEERNILSRSTSPW
 :E: . . :G G. F. :V. . . :K TG. I. A. K. :KK: :L . . E. :IL.R. : . P
 H: 1 yellek1GeGsfGkvakhk. tgkiwAVK1kkkesls. lreiq1lkr1lshpn
 IPQLQYAFQ-DKNHLYLVMEYQPQGGDLLSLLNRYEdQLDENLIQFYLAELLILAVHSVHLM
 I :L .F: . . :HLYLVMEMY..GGDL..L.R . . L.E. :H
 IvrllgvedtddhlylvmEymeggGdlfdy1rrng. plsekeakkialQ1lrgleyLhSn
 GYVHRDIKPENILIVDRTGH1KLVDFGSAAKMnsnktvNAKLP1GTPDYM-APEVLTVMNG
 G.VHRD:KPENIL:D..G :K: .DFG A. : . . . :GTP YM APEV: : G
 giVHRDLIKpenILLdengtvKiadFGlAr11. . . .ekl1tfvGtpwYmmAPEVi..leg
 dgkGTyG1LDCDWWSVGVIAYEMIYG-----RSPFAE----
 Y. . . D WS:GVI.YE: : G : PF: :
 ..rgysskvDvws1Gv1lyelltgoplfp gadlpaftggdevdql1ifv1k1Pfsdelp

- 41/56 -

Fig. 13 (continued)

```

-----GTSARTFNNIMNfqrflKFPDDPKVSSDFLDLQSSLIC-GQKERL---KFEGLCCH
      :: . . . F. :: . . . P . . . S. :: . DL: . . . L . . . :R . . . : . H
      ktridpleelFrikr...r1plpsncSeelkdLkkcLnkDPskRpGsatakeilnh

PFF.          360
P:F           278
pwf

```

Fig. 14

HMMPFAM - alignment of CRIK-sk (SEQ ID NO:2) against pfam|hmm|pkinase_C
Protein kinase C terminal domain

This hit is scoring at : 15.4 E=0.0018
Scoring matrix : BLOSUM62 (used to infer consensus pattern)

Q:	361 SKIDWNNT--RNSPPPFVPTLKSDDDTSNFDE	390
	:IDW: PPF P :KS. DTSNFD:	
H:	1 reIDwdkLENkeiePPPFPkPikksprDtsNFDK	32

Fig. 15

Prosite search results.

PS00107	103->127	PROTEIN_KINASE_ATP	PDOC00100
PS00108	217->230	PROTEIN_KINASE_ST	PDOC00100

genewise output:

AF086823_1 1 MLKFKYGVNPPEASPIASRASRLNLFFQ
 MLKFKYGC RNP +A A+EPIASRASRLNLFFQ
 MLKFKYGARNPLDAGAAEPIASRASRLNLFFQ
 gi|13653116|r1909637 atatatggcactggggggcagacgtacacttc
 ttataaggcgactacgcccactcggccgtattta
 gggcataggttttactccggccgtggccg

AF086823_1 33 GKPPLMTQQQMSALSREGMLDALFAI
 GKPP MTQQQMS LSREG+LDALF L
 GKPPEMFTQQQMSPLSREGILDALFVL
 gi|13653116|r1909733 GTAACAG Intron 1 TAGgaccctaaccatcctcgatggctgc
 0-----[1909733:1916-0>gaccttcaaattccgagtacttt
 gaactgttagggttcaagaatcc

AF086823_1 59 FEECSQPALMKMKHVSSFVQK
 FEECSQPALMK+KHVS+FV+K
 FEECSQPALMKIKHVSNFVRK
 Y:Y [tat] SD
 tggtaccggaaaacgaaatgtcatGTAAGT Introns 2 SD
 taaggaccttataatgattga 1-----[1916746:1928-1> CAGATTG
 taactgttgggtgcgcctcgg CC

Fig. 16 (continued)

AF086823_1	83	TIAELRELQPSARDFEVRSILVGCGHFAEVQVVREKATGDVYAMKIMKKK TIAEL+ELQPSA+DFEVRSLVGCGHFAEVQVVREKATGDD+YAMK+MKKK	
gi 13653116 r1928115		aaggtcgcctgagtgaaacggtgcggagaggatgaagaaaa ctcataatacccaaataatggttggatcatattgaaccatactattaaa catgaggcgtaggccccatttttagggaaacgcctttaggggggg	
AF086823_1	132	ALLAQEQ ALLAQEQ ALLAQEQ	VSEFFEEERNILSRSTSPWI VSEFFEEERNILSRSTSPWI VSEFFEEERNILSRSTSPWI
gi 13653116 r1928262		gttgcgcGTAGGAG Intron 3 TAGtttggcaattcaacta cttcaaa0-----[1928283:1935-0>tcttaaagattcggcggt tagcggg	tattggccaatacacacggc
AF086823_1	158	PQLQYAFQDKNNLYL PQLQYAFQDKN+LYL PQLQYAFQDKNHLYL	VMEYQPGGDFL VMEYQPGGD+L VMEYQPGGDLL
gi 13653116 r1935587		cctctgtcgaaacctcGTGAGTC Intron 4	CAGggagtccgggtc

- 44/56 -

Fig. 16 (continued)

cataactaaaatat0----- [1935632:1951-0>ttaaacggatt
caagtctgcatttgc

AF086823_1 184 SLLNRYEDQLDESMIQFYLAELLI.LAVH.SVHQMGYVH
SLLNRYEDQLDE+I.QFYLAELLI.LAVH.SVH MGYVH
gi | 13653116|r1951610 tctaattgtggacacttcggcatggcaggccatgtgc
cttagaaaaattatcattcttagtattgtata
atgtatgcatacgagtcatggtgttccctggacgt

AF086823_1 220 DIKPENILIDRTGEIKLVDFGSA
DIKPENIL+DRTG IKLVDFGSA
R:R [cga] DIKPENILVDRTGHIKLVDFGSA
Intron 5 CAGAgaaacgaaacggcaggcaacgggtgtg
2-----[1951720:1952-2> atacaatttagcataattatgcc
ccgtgctctccaaaccgggttatc
-DAKLPIGTPDYMapevl
AKLPIGTPDYMapevl
AKMNSNKV
AKMNSNK.+
VNZAKLPIGTPDYMapevl
AF086823_1 244 AKMNSNKM
gi | 13653116|r1953011 gaaataaaGTAAAAA Intron 6 TAGgagaccgacgttagcggc
catacaa0-----[1953035:1960-0>tacatctgcaatcatt
gagtacgg
gtcacgtgcatacggttagg

Fig. 16 (continued)

- 45/56 -

AF086823_1 269 TVMNEDRRGTYGLDCDWWWSVGVAYEMVYGKTPFTEGTSARTFNNIMNF
TVMN D +GTYGLDCDWWWSVGV+AYEM+Y+ +PF EGTSARTFNNIMNF
gi|13653116|r1960491 agaaggagatgcgttgtggagtgaatgtatctggatgaataaaat
cttagagaggcgttagaggctgtttcaattaggcctcagcccgcttaattat
tggcgtAACCCGCTCGAGCCTGGTgaccactcacctctgtc

AF086823_1 318 Q RFLKFPPDPKVSSSELLDLIQLLQCV
Q RFLKFPPDPKVSS+ LDL+QSLLC
gi|13653116|r1960638 CGTAAAGA Intron 7 CAGCttatcggcagaaggtcgcacatttg
a-----[1960641:1962-0>gttatcaacatggattttatgtgg
g gtgatatccaggctttgtacggcc

AF086823_1 344 QKERIKFEGLCCCHPFFARTDWNNIRN
QKERIKFEGLCCCHPFF++ DWNNIRN S:S [tct]
gi|13653116|r1962909 cagacatggcttcataagtaaacatGTAAAGTA Introns 8
aaaggatagtggtttatcataagaatga 1-----[1962988:19824
gaggatattccttcatacgccctc

Fig. 16 (continued)

AF086823_1	370	PPPFFVPTLKSDDDDTSNFDDEPEKNSWAFLILCVPAEPLAFSGEEELP PPPFFVPTLKSDDDDTSNFDDEPEKNSW P FSGEEELP PPPFFVPTLKSDDDDTSNFDDEPEKNSWVSSSSPCQLSPSGFSGEEELP gi 13653116 r1982415 CAGCTccatggatatggcgaaattgtttccactgttggcc -1> ccctcctacaaaccataacaacgtccccgatgccgtcgaaatc tcacctcccgctcccttaagggttttaagggtactgcggccaccgttaagg	- 46/56 -
AF086823_1	415	FVGFSYSKALGYLGRS FVGFSYSKALG LGRS FVGFSYSKALGIIGRS E:E [gag] tggttaaggcgacgatGAGTAAGTG Intron 9 TAGGtgtgcg ttgtcagactgtggc 2-----[1982602:20000-2> cttcgta tggtgccagggttat	SVVSSL SVVS LD SVVSGLD
AF086823_1	439	SPAKVSSMEKKLLIKSKELQDSQDKCHKV SISTAGLRPCSRLQSIYAE SPAK SSEKKLLIKSKELQDSQDKCHKV IS AGL PCSRL S+YA+ SPAKTSSMEKKLLIKSKELQDSQDKCHKV FISAGLLPCSRILPSVYAK gi 13653116 r20000764 tcgaaatagaacaaaaggccgtcgatcagtatggcccttaacctgtga cccacgctaaatttagaaataacaagaattttcccgtttcgcgttcctaca ctcgcccgatccacaaactgcgtcgattcacccattccgcgcacatcg	

- 47/56 -

Fig. 16 (continued)

AF086823_1	488	GSAGGHC
		GSA G C
		GSARGRC
gi 13653116 r2000911	gtgcgt	gccgggg
		accggcc

```

/
>gi|13653116|ref|NT_009775.3|Hs12_9932.[1909637:2000931].sp
ATGTTGAAGTCAAAATATGGAGCGGAAATCCTTGGATGCTGGTGTGAACCCATT
GCCAGCCGGCCCTCCAGGGCTGAATCTGTCTTCCGGAAAGGGATATTAGATGCCCTCTTTGAA
CAGGAGATGTCTCCTCTGGATGAGGAAAGGAAACTTAAAGCAGTGAGCAAACCTTGTCCGGAAGTAT
GAATGCAGTCAGCCTGTGATGAAGATAAGCAGGACTTCAAGGAGCTCCAGGCCCTGGCAAAGGAACTTCAAGTCAG
TCCGACACCATAGCTGAGTTACAGGAGCTCACTTGTGGTCACTTGCTGAAGTGAGGTGTAAGAGAGAAAGCAACCGGG
AGTCTTGTAGGTGTGGTCACTTGCTGAAGTGAGGTGTAAGAGAGAAAGGCTTATGGCCCCAGGGAGCAGGTTCA
GACATCATGGCTATGAAAGTGTGATGAAGAGAAGGCTTATGGCCCCAGGGAGCAGGTTCA
TTTTTGGAAAGAGCGGAACATATTATCTCGAAGCACAAGCCCCTGGATCCCCCAATTAA
CACTATGGCTTCACTTTGAATAGATATGAGGACCAAGTGAATATCAGGCTGGAGGG
GACTTGCTGTCACTTTGAATAGATATGAGGACCAAGTGAATACAGGCTGGAGGG

```

- 48/56 -

Fig. 16 (continued)

TACCTAGGCTGAGGTGATTGGCTCACAGCGTTCATCTGATGGGATACTGGCATCGA
GACATCAAGGCCTGAGAACATTCTCGTTGACCCGCACAGGACACATCAAGCTGGGATTT
GGATCTGCCGCAAATGAATTCAAACAAAGATGGTGAATGCCAACTCCCAGATGGGACC
CCAGATTACATGGCTCCTGAAGTGACTGCTGAAGCTGGGTCAAGTGGCCTATGAGATTTATGGGAGA
GGCTGGACTGTGAACTGGTCTGGGTCAAGTGGCCTATGAGATTTATGGGAGA
TCCCCCCTTCGGCAGAGGGAAACCTCTGCCAGAACCTTAATAACATTATGAATTTCCAGCGG
TTTTGAATTTCAAGATGACCCAAAGTGAGGAGTGAAGTTGAAGGTCTTGAAGGTTCTTC
TTGTTGTCGGCCAGAAAGAGAGACTGAAGTCTCCACCTCCTCCCCCCTTCGTTCCACCCCTCAAG
TCTAAATGACTGGAACACATTCTGTAACCTCTCCTCCCCCCTTCGTTCCACCCCTCAAG
TCTGACGATGACACCTCCAATTGATGAAACCAGAGAAGAATTCTGGGTTCATCCCTCT
CCGTGCCAGCTGAGGCCCTCAGGCTTCTCGGGTGAAGAACCTGCCGTTGGGTCTGGACTCC
TACAGCAAGGCACACTGGGATTCTGGTAGATCTGAGTCTGTTGTCGGGTCTGGACTCC
CCTGCCAAGGACTAGCTCCATGGAAAAGAAACTTCTCATCAAAGGCTAACAGAC
TCTCAGGACAAGTGTCAAAAGGTATTATTCGGCAGCCCCGGCCTCTTCCCTGCTCCAGG
ATCCTCCCGTCCGATATGCCAAGGGATCCGGGGCTG

Fig. 16 (continued)

gi 13653116 ref NT_009775.3 Hs12_9932	GeneWise	intron	1916746	1928106	0.00
+ AF086823_1		cds	1928107	1928282	0.00
gi 13653116 ref NT_009775.3 Hs12_9932	GeneWise	intron	1928283	1935529	0.00
+ AF086823_1		cds	1935530	1935631	0.00
gi 13653116 ref NT_009775.3 Hs12_9932	GeneWise	intron	1935632	1951576	0.00
+ AF086823_1		cds	1951577	1951719	0.00
gi 13653116 ref NT_009775.3 Hs12_9932	GeneWise	intron	1951720	1952940	0.00
+ AF086823_1		cds	1952941	1953034	0.00
gi 13653116 ref NT_009775.3 Hs12_9932	GeneWise	intron	1953035	1960436	0.00
+ AF086823_1		cds	1960437	1960640	0.00
gi 13653116 ref NT_009775.3 Hs12_9932	GeneWise	intron	1960641	1962833	0.00
+ AF086823_1					

Fig. 16 (continued)

gi|13653116|ref|NT_009775.3|Hs12_9932 GeneWise
+ 0 AF086823_1
gi|13653116|ref|NT_009775.3|Hs12_9932 GeneWise
+ AF086823_1
gi|13653116|ref|NT_009775.3|Hs12_9932 GeneWise
+ 2 AF086823_1
gi|13653116|ref|NT_009775.3|Hs12_9932 GeneWise
+ AF086823_1
gi|13653116|ref|NT_009775.3|Hs12_9932 GeneWise
+ 1 AF086823_1FIG. 10
gi|13653116|ref|NT_009775.3|Hs12_9932 GeneWise
+ AF086823_1

Fig. 17

LBRI-544 Relative Expression

- 52/56 -

ATGTTGAAGTCAAAATGGAGCGGAAATCCTTGGATGCTGGTGTGC
TGAACCCATTGCCAGCCCCCCTCCAGGCTGAATCTGTCTTCCAGGGAA
AACCACCCCTTATGACTCAACAGCAGATGTCCTCTCTTCCCAGAAGGG
ATATTAGATGCCCTCTTGTCTCTTGAAGAACGAGTCAAGCTGCTCT
GATGAAGGATTAAGCACGTCAGCAACTTGGTGGAAACTTCCGACACCA
TAGCTGAGTTACAGGAGCTCCAGCCTTCGGCAAAGGACTTCGAAGTCAGA
AGTCTTGTAGGTGTGGTCACITGGCTGAAGTCAGGTGGTAAGAGAGAA
AGCAACCGGGGACATCTATGCTATGAAAGTGTATGAAGAAGAAGGGTTAT
TGGCCZAGGAGCAGGTTCATTTTGAGGAAGAGCGGGAACATATTATCT
CGAAGCACAAGCCCCGTGGATCCCCAATTACAGTATGCCCTTCAGGACAA
AAATCACCTTATCTGGTCATGGAATATCAGCCCTGGAGGGACTTGCTGT
CACTTTGAATAAGATATGAGGACCCAGTTAGATGAAAACCTGATACAGTT
TACCTAGCTGAGCTGATTGGCTGTTCACAGGGTTCATCTGATGGGATA
CGTGCATCGAGACATCAAGCCTGAGAACATTCTCGTTGACCCGACAGGAC
ACATCAAGCTGGTGGATTGGATCTGCCAGAACATTACATGGCTCCTGA
ATGGTGAATGCCAAACTCCGATGGAACCCAGATTACATGGCTGGACT
AGTGCTGACTGTGATGAAACGGGGATGGAAAGGCACCTACGGCCCTGGACT
GTGACTGGTGGTCAGTGGGGGTGATTGCTATGAGATGATTATGGAGA
TCCCCTTCGCAAGGGAACCTCTGCCAGAACCTCAATAACATATTGAA
TTTCCAGCGGTTTGAATTCAGATGACCCAAAGTGAGCAGTGACT
TTCTTGATCTGATTCAAGCTTGTGCGCCATCCTTCTCTTCT
TTGAAGGTCTTGTGGCCATCCTTCTCT
CATTCGTAACCTCCCTCCACCCCTCAAGTCTGACGATG

- 53/56 -

Fig. 18 (continued)

ACACCTCCAATTGGATGAACCAGAGAATTCTGGGTTTCATCCCT
CGTGCAGCTGAGGCCCTCAGGCTTCTCGGGTGAAGAACTGCCGTGT
GGGGTTTCGGTACAGCAAGGCACTGGGATTCTGGTAGATCTGAGTCTG
TGTGTGGACTCCCCTGCCAAGAGACTAGCTCCATGGAAAGAAA
CTTCTCATCAAAGCAAGGCTACAAGACTCTCAGGACAAGTGTACAA
GTATTATTTCGGCAGCCGGCTCCTTCTTGCTCCAGGATCCTCCCGT
CCGTATATGCCAAGGGATCCGGCCGGGGCGCTGCTGGCTCTGAGGCC
TGATCCGTAGAGGTGAGGGCTCCTGCCTCGCTGAAGTCGGCCTCCA
GCAGCTCAGAGGAGATGAATTGGGCCCTGGATTAAACAGTCCGGTTCTCAGCAT
AAATCTAACCAAGGAGGCCATGCTGCTTCTCGGCAGGTGGCCTGGGTCC
GACCCAGCCAGATGCTGCTTCTGGGCTGGGCTGGGTCC
GTGGCTGAGATAACATCCCATCTGCTTGAGTGAATGCGAAGTCTCTCC
TAGTCTTTAAACT

Fig. 19

MLKFKYGARNPLDAGAAEPIASRASRLNLFQGKPPFMTQQQMSPLSREG
ILDALFVLFEECSQPALMKIKHVSNEVRKYSDTIAELQELQPSAKDFEVR
SLVGCGHFAEVQVVREREKATGDIYAMKVWKKKALLAQUEQVSFFEEERNILS
RSTSPWIPQLQYAFOQDKNHLVMEYQPGGDLISLLNRYEDQLDENLIQF
YLAELLILAVHSVHLMGYVHRDIKOPENILLYDRTGHKLVDFGSAAKMNSNK
MVNAKLPIGTPDYMAPENVLTVMNGDGKGTYGLDCDWWWSVGVIAYEMIYGR
SPFAEGTSARTENNIMNFQRFLKFPPDKVSSDFLDLIOQSLLCGQKERLK
FEGLCCHPFFSKIDWNNNIRNSPFFFFPTLKSDDDTSNFDEPEKNSWSSS
PCQLSPSGFSGEELPFVGFSYSKALGILGRSESVSGLDSPAKTSSMEK
LLIKSKELQDSQDKCHKVFISAAGLLPCSRILPSVYAKGSARGRCWL

TBLASTN - alignment of 544 Protein against emnew|AX166510|AX166510
Sequence 1 from Patent WO0138503 // :gbnew|AX166510|AX166510 Sequence 1 from
Patent WO0138503.

This hit is scoring at : 0.0 (expectation value)
Alignment length (overlap) : 469

Identities : 99 %

Scoring matrix : BLOSUM62 (used to infer consensus pattern)

Hit reading frame : +1

Database searched : nrnee_1_;

Q: 1 MLKFKYGARNPLDAGAAEPIASRASRLNLIFFQGKPPPFMTQQQMSPLSREGILDALFVLFE
H: 1 MLKFKYGARNPLDAGAAEPIASRASRLNLIFFQGKPPPFMTQQQMSPLSREGILDALFVLFE

ECSQPALMKIKHVSNFVRK - YSDTIAELQELQPSAKDFEVRSILVGCGHFAEVQVVREKAT
ECSQPALMKIKHVSNFV : YSDTIAELQELQPSAKDFEVRSILVGCGHFAEVQVVREKAT
ECSQPALMKIKHVSNFVPEVYSDTIAELQELQPSAKDFEVRSILVGCGHFAEVQVVREKAT

GDIYAMKVMKKKALLAQQSVSFFEEERNILSRSTSIPWIPQLQYAFQDKNHLYLVMEMYQPG
GDIYAMKVMKKKALLAQQSVSFFEEERNILSRSTSIPWIPQLQYAFQDKNHLYLVMEMYQPG
GDIYAMKVMKKKALLAQQSVSFFEEERNILSRSTSIPWIPQLQYAFQDKNHLYLVMEMYQPG

Fig. 20 (continued)

- 56/56 -

GDLLSLNRYEDQLDENLIQFYLAELILLAVHSVHLMGYVHRIK PENILVDR TGHIKLVD
GDLLSLNRYEDQLDENLIQFYLAELILLAVHSVHLMGYVHRIK PENILVDR TGHIKLVD
GDLLSLNRYEDQLDENLIQFYLAELILLAVHSVHLMGYVHRIK PENILVDR TGHIKLVD

FGSAAKMNSNKM\NAKLPIGTPDYM APEPVLTVMNGDGKGTYGLDCDWWSVGVIA YEMIYG
FGSAAKMNSNKM\NAKLPIGTPDYM APEPVLTVMNGDGKGTYGLDCDWWSVGVIA YEMIYG
FGSAAKMNSNKM\NAKLPIGTPDYM APEPVLTVMNGDGKGTYGLDCDWWSVGVIA YEMIYG

RSPFAEGTSARTFNNIMNFQRFLKF PDDPKVSSDFLDLIIQSLLCGQKERLK FEGLCCHPF
RSPFAEGTSARTFNNIMNFQRFLKF PDDPKVSSDFLDLIIQSLLCGQKERLK FEGLCCHPF
RSPFAEGTSARTFNNIMNFQRFLKF PDDPKVSSDFLDLIIQSLLCGQKERLK FEGLCCHPF

FSKIDWNNI RNSPPPFPVPTLKSDDDT SNEDEPEKNSWVSSSSPCQI LSPSGFSGEELP FVGF
FSKIDWNNI RNSPPPFPVPTLKSDDDT SNEDEPEKNSWVSSSSPCQI LSPSGFSGEELP FVGF
FSKIDWNNI RNSPPPFPVPTLKSDDDT SNEDEPEKNSWVSSSSPCQI LSPSGFSGEELP FVGF

468

SYSKALGILGRSESVVSGLDSPA KTSMEKKLLIKSKELQDSQDKCHKV

1407

SYSKALGILGRSESVVSGLDSPA KTSMEKKLLIKSKELQDSQDKCHK:
SYSKALGILGRSESVVSGLDSPA KTSMEKKLLIKSKELQDSQDKCHKM

SEQUENCE LISTING

<110> Bayer AG

<120> REGULATION OF HUMAN CITRON RHO/RAC-INTERACTING KINASE-SHORT KINASE

<130> LIO371 Foreign Countries

<150> US 60/301,853

<151> 2001-07-02

<150> US 60/337,130

<151> 2001-12-10

<150> US 60/375,015

<151> 2002-04-25

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 1485

<212> DNA

<213> Homo sapiens

<400> 1
atgttgaagt tcaaataatgg agcgcggaat cctttggatg ctgggtctgc tgaacccatt 60
gccagccggg cctccaggtt gaatctgttc ttccaggggg aaccaccctt tatgactcaa 120
cagcagatgt ctcccttttc ccgagaaggg atatttagatg ccctttgt tctctttgaa 180
aatgcagtc agcctgtct gatgaagatt aagcacgtga gcaactttgt ccggaagtat 240
tccgacacca tagctgagtt acaggagctc cagccttcgg caaaggactt cgaagtcaga 300
agtcttgtag gttgtggta ctttgctgaa gtgcagggtgg taagagagaa agcaaccggg 360
gacatctatg ctatgaaagt gatgaagaag aaggctttat tggcccagga gcaggttca 420
ttttttgagg aagagcggaa catattatct cgaagcacaa gcccgtggat ccccccaatta 480
cagtagtcctt ttcaggacaa aaatcacctt tatctggta tggaaatatca gcctggagg 540

gacttgctgt	cactttgaa	tagatatgag	gaccagttag	atgaaaacct	gatacagttt	600
tacctagctg	agctgatTTT	ggctgttcac	agcgttcatc	tgtatggata	cgtgcacatcg	660
gacatcaagc	ctgagaacat	tctcggtgac	cgcacaggac	acatcaagct	ggtgatttt	720
ggatctgccc	cgaaaaatgaa	ttcaaacaag	atggtaatg	ccaaactccc	gattggacc	780
ccagattaca	tggctcctga	agtgtctgact	gtgtatgaaac	ggatggaaa	aggcacctac	840
ggcctggact	gtgactgggt	gtcagtggc	gtgattgcct	atgagatgt	ttatggaga	900
tcccccttcg	cagagggAAC	ctctgccaga	accttcaata	acattatgaa	tttccagcgg	960
tttttgaat	ttccagatga	ccccaaggTG	agcagtgact	ttcttgatct	gattcaaAGC	1020
tttgtgtgcg	gccagaaAGA	gagactgaag	tttgaaggTC	tttgcgtCCA	tcctttcttc	1080
tctaaaattg	actggAACAA	cattcgtaac	tctcctcccc	ccttcgttcc	caccctcaag	1140
tctgacgatg	acacccTCAA	tttgatgaa	ccagagaAGA	attcgtgggt	ttcattccct	1200
ccgtgcccAGC	tgagccccTC	aggcttctcg	ggtgaAGAAC	tgccgtttgt	ggggTTTTCG	1260
tacagcaagg	cactggggat	tcttggtaga	tctgagtCTG	ttgtgtcGGG	tctggactCC	1320
cctgccaaga	ctagctccat	ggAAAAGAAA	cttctcatca	aaagcaaAGA	gctacaAGAC	1380
tccaggaca	agtgtcacAA	ggtattttatt	tccgcagccg	gcctcTTCC	ttgctccagg	1440
atcctcccgT	ccgtatatgc	caagggatcc	gcccggggcc	gctgc		1485

<210> 2

<211> 495

<212> PRT

<213> Homo sapiens

<400> 2

Met	Leu	Lys	Phe	Lys	Tyr	Gly	Ala	Arg	Asn	Pro	Leu	Asp	Ala	Gly	Ala
1							5		10					15	
Ala	Glu	Pro	Ile	Ala	Ser	Arg	Ala	Ser	Arg	Leu	Asn	Leu	Phe	Phe	Gln
							20		25					30	
Gly	Lys	Pro	Pro	Phe	Met	Thr	Gln	Gln	Met	Ser	Pro	Leu	Ser	Arg	
							35		40					45	
Glu	Gly	Ile	Leu	Asp	Ala	Leu	Phe	Val	Leu	Phe	Glu	Glu	Cys	Ser	Gln
							50		55					60	
Pro	Ala	Leu	Met	Lys	Ile	Lys	His	Val	Ser	Asn	Phe	Val	Arg	Lys	Tyr
							65		70					80	
Ser	Asp	Thr	Ile	Ala	Glu	Leu	Gln	Glu	Leu	Gln	Pro	Ser	Ala	Lys	Asp
							85		90					95	
Phe	Glu	Val	Arg	Ser	Leu	Val	Gly	Cys	Gly	His	Phe	Ala	Glu	Val	Gln
							100		105					110	
Val	Val	Arg	Glu	Lys	Ala	Thr	Gly	Asp	Ile	Tyr	Ala	Met	Lys	Val	Met
							115		120					125	
Lys	Lys	Ala	Leu	Leu	Ala	Gln	Glu	Gln	Val	Ser	Phe	Phe	Glu	Glu	
							130		135					140	
Glu	Arg	Asn	Ile	Leu	Ser	Arg	Ser	Thr	Ser	Pro	Trp	Ile	Pro	Gln	Leu
							145		150					160	
Gln	Tyr	Ala	Phe	Gln	Asp	Lys	Asn	His	Leu	Tyr	Leu	Val	Met	Glu	Tyr
							165		170					175	
Gln	Pro	Gly	Gly	Asp	Leu	Leu	Ser	Leu	Leu	Asn	Arg	Tyr	Glu	Asp	Gln
							180		185					190	
Leu	Asp	Glu	Asn	Leu	Ile	Gln	Phe	Tyr	Leu	Ala	Glu	Leu	Ile	Leu	Ala
							195		200					205	
Val	His	Ser	Val	His	Leu	Met	Gly	Tyr	Val	His	Arg	Asp	Ile	Lys	Pro
							210		215					220	
Glu	Asn	Ile	Leu	Val	Asp	Arg	Thr	Gly	His	Ile	Lys	Leu	Val	Asp	Phe
							225		230					240	
Gly	Ser	Ala	Ala	Lys	Met	Asn	Ser	Asn	Lys	Met	Val	Asn	Ala	Lys	Leu
							245		250					255	
Pro	Ile	Gly	Thr	Pro	Asp	Tyr	Met	Ala	Pro	Glu	Val	Leu	Thr	Val	Met
							260		265					270	

Asn Gly Asp Gly Lys Gly Thr Tyr Gly Leu Asp Cys Asp Trp Trp Ser
 275 280 285
 Val Gly Val Ile Ala Tyr Glu Met Ile Tyr Gly Arg Ser Pro Phe Ala
 290 295 300
 Glu Gly Thr Ser Ala Arg Thr Phe Asn Asn Ile Met Asn Phe Gln Arg
 305 310 315 320
 Phe Leu Lys Phe Pro Asp Asp Pro Lys Val Ser Ser Asp Phe Leu Asp
 325 330 335
 Leu Ile Gln Ser Leu Leu Cys Gly Gln Lys Glu Arg Leu Lys Phe Glu
 340 345 350
 Gly Leu Cys Cys His Pro Phe Phe Ser Lys Ile Asp Trp Asn Asn Ile
 355 360 365
 Arg Asn Ser Pro Pro Pro Phe Val Pro Thr Leu Lys Ser Asp Asp Asp
 370 375 380
 Thr Ser Asn Phe Asp Glu Pro Glu Lys Asn Ser Trp Val Ser Ser Ser
 385 390 395 400
 Pro Cys Gln Leu Ser Pro Ser Gly Phe Ser Gly Glu Glu Leu Pro Phe
 405 410 415
 Val Gly Phe Ser Tyr Ser Lys Ala Leu Gly Ile Leu Gly Arg Ser Glu
 420 425 430
 Ser Val Val Ser Gly Leu Asp Ser Pro Ala Lys Thr Ser Ser Met Glu
 435 440 445
 Lys Lys Leu Leu Ile Lys Ser Lys Glu Leu Gln Asp Ser Gln Asp Lys
 450 455 460
 Cys His Lys Val Phe Ile Ser Ala Ala Gly Leu Leu Pro Cys Ser Arg
 465 470 475 480
 Ile Leu Pro Ser Val Tyr Ala Lys Gly Ser Ala Arg Gly Arg Cys
 485 490 495
 <210> 3
 <211> 494
 <212> PRT
 <213> Homo sapiens

<400> 3
 Met Leu Lys Phe Lys Tyr Gly Val Arg Asn Pro Pro Glu Ala Ser Ala
 1 5 10 15
 Ser Glu Pro Ile Ala Ser Arg Ala Ser Arg Leu Asn Leu Phe Phe Gln
 20 25 30
 Gly Lys Pro Pro Leu Met Thr Gln Gln Met Ser Ala Leu Ser Arg
 35 40 45
 Glu Gly Met Leu Asp Ala Leu Phe Ala Leu Phe Glu Glu Cys Ser Gln
 50 55 60
 Pro Ala Leu Met Lys Met Lys His Val Ser Ser Phe Val Gln Lys Tyr
 65 70 75 80
 Ser Asp Thr Ile Ala Glu Leu Arg Glu Leu Gln Pro Ser Ala Arg Asp
 85 90 95
 Phe Glu Val Arg Ser Leu Val Gly Cys Gly His Phe Ala Glu Val Gln
 100 105 110
 Val Val Arg Glu Lys Ala Thr Gly Asp Val Tyr Ala Met Lys Ile Met
 115 120 125
 Lys Lys Lys Ala Leu Leu Ala Gln Glu Gln Val Ser Phe Phe Glu Glu
 130 135 140
 Glu Arg Asn Ile Leu Ser Arg Ser Thr Ser Pro Trp Ile Pro Gln Leu
 145 150 155 160
 Gln Tyr Ala Phe Gln Asp Lys Asn Asn Leu Tyr Leu Val Met Glu Tyr
 165 170 175

Gln Pro Gly Gly Asp Phe Leu Ser Leu Leu Asn Arg Tyr Glu Asp Gln
 180 185 190
 Leu Asp Glu Ser Met Ile Gln Phe Tyr Leu Ala Glu Leu Ile Leu Ala
 195 200 205
 Val His Ser Val His Gln Met Gly Tyr Val His Arg Asp Ile Lys Pro
 210 215 220
 Glu Asn Ile Leu Ile Asp Arg Thr Gly Glu Ile Lys Leu Val Asp Phe
 225 230 235 240
 Gly Ser Ala Ala Lys Met Asn Ser Asn Lys Val Asp Ala Lys Leu Pro
 245 250 255
 Ile Gly Thr Pro Asp Tyr Met Ala Pro Glu Val Leu Thr Val Met Asn
 260 265 270
 Glu Asp Arg Arg Gly Thr Tyr Gly Leu Asp Cys Asp Trp Trp Ser Val
 275 280 285
 Gly Val Val Ala Tyr Glu Met Val Tyr Gly Lys Thr Pro Phe Thr Glu
 290 295 300
 Gly Thr Ser Ala Arg Thr Phe Asn Asn Ile Met Asn Phe Gln Arg Phe
 305 310 315 320
 Leu Lys Phe Pro Asp Asp Pro Lys Val Ser Ser Glu Leu Leu Asp Leu
 325 330 335
 Leu Gln Ser Leu Leu Cys Val Gln Lys Glu Arg Leu Lys Phe Glu Gly
 340 345 350
 Leu Cys Cys His Pro Phe Phe Ala Arg Thr Asp Trp Asn Asn Ile Arg
 355 360 365
 Asn Ser Pro Pro Pro Phe Val Pro Thr Leu Lys Ser Asp Asp Asp Thr
 370 375 380
 Ser Asn Phe Asp Glu Pro Glu Lys Asn Ser Trp Ala Phe Ile Leu Cys
 385 390 395 400
 Val Pro Ala Glu Pro Leu Ala Phe Ser Gly Glu Glu Leu Pro Phe Val
 405 410 415
 Gly Phe Ser Tyr Ser Lys Ala Leu Gly Tyr Leu Gly Arg Ser Glu Ser
 420 425 430
 Val Val Ser Ser Leu Asp Ser Pro Ala Lys Val Ser Ser Met Glu Lys
 435 440 445
 Lys Leu Leu Ile Lys Ser Lys Glu Leu Gln Asp Ser Gln Asp Lys Cys
 450 455 460
 His Lys Val Ser Ile Ser Thr Ala Gly Leu Arg Pro Cys Ser Arg Ile
 465 470 475 480
 Leu Gln Ser Ile Tyr Ala Glu Gly Ser Ala Gly Gly His Cys
 485 490

<210> 4
 <211> 2055
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Leu Lys Phe Lys Tyr Gly Val Arg Asn Pro Pro Glu Ala Ser Ala
 1 5 10 15
 Ser Glu Pro Ile Ala Ser Arg Ala Ser Arg Leu Asn Leu Phe Phe Gln
 20 25 30
 Gly Lys Pro Pro Leu Met Thr Gln Gln Gln Met Ser Ala Leu Ser Arg
 35 40 45
 Glu Gly Met Leu Asp Ala Leu Phe Ala Leu Phe Glu Glu Cys Ser Gln
 50 55 60
 Pro Ala Leu Met Lys Met Lys His Val Ser Ser Phe Val Gln Lys Tyr
 65 70 75 80

Ser Asp Thr Ile Ala Glu Leu Arg Glu Leu Gln Pro Ser Ala Arg Asp
85 90 95
Phe Glu Val Arg Ser Leu Val Gly Cys Gly His Phe Ala Glu Val Gln
100 105 110
Val Val Arg Glu Lys Ala Thr Gly Asp Val Tyr Ala Met Lys Ile Met
115 120 125
Lys Lys Lys Ala Leu Leu Ala Gln Glu Gln Val Ser Phe Phe Glu Glu
130 135 140
Glu Arg Asn Ile Leu Ser Arg Ser Thr Ser Pro Trp Ile Pro Gln Leu
145 150 155 160
Gln Tyr Ala Phe Gln Asp Lys Asn Asn Leu Tyr Leu Val Met Glu Tyr
165 170 175
Gln Pro Gly Gly Asp Phe Leu Ser Leu Leu Asn Arg Tyr Glu Asp Gln
180 185 190
Leu Asp Glu Ser Met Ile Gln Phe Tyr Leu Ala Glu Leu Ile Leu Ala
195 200 205
Val His Ser Val His Gln Met Gly Tyr Val His Arg Asp Ile Lys Pro
210 215 220
Glu Asn Ile Leu Ile Asp Arg Thr Gly Glu Ile Lys Leu Val Asp Phe
225 230 235 240
Gly Ser Ala Ala Lys Met Asn Ser Asn Lys Val Asp Ala Lys Leu Pro
245 250 255
Ile Gly Thr Pro Asp Tyr Met Ala Pro Glu Val Leu Thr Val Met Asn
260 265 270
Glu Asp Arg Arg Gly Thr Tyr Gly Leu Asp Cys Asp Trp Trp Ser Val
275 280 285
Gly Val Val Ala Tyr Glu Met Val Tyr Gly Lys Thr Pro Phe Thr Glu
290 295 300
Gly Thr Ser Ala Arg Thr Phe Asn Asn Ile Met Asn Phe Gln Arg Phe
305 310 315 320
Leu Lys Phe Pro Asp Asp Pro Lys Val Ser Ser Glu Leu Leu Asp Leu
325 330 335
Leu Gln Ser Leu Leu Cys Val Gln Lys Glu Arg Leu Lys Phe Glu Gly
340 345 350
Leu Cys Cys His Pro Phe Phe Ala Arg Thr Asp Trp Asn Asn Ile Arg
355 360 365
Asn Ser Pro Pro Phe Val Pro Thr Leu Lys Ser Asp Asp Asp Thr
370 375 380
Ser Asn Phe Asp Glu Pro Glu Lys Asn Ser Trp Ala Phe Ile Leu Cys
385 390 395 400
Val Pro Ala Glu Pro Leu Ala Phe Ser Gly Glu Glu Leu Pro Phe Val
405 410 415
Gly Phe Ser Tyr Ser Lys Ala Leu Gly Tyr Leu Gly Arg Ser Glu Ser
420 425 430
Val Val Ser Ser Leu Asp Ser Pro Ala Lys Val Ser Ser Met Glu Lys
435 440 445
Lys Leu Leu Ile Lys Ser Lys Glu Leu Gln Asp Ser Gln Asp Lys Cys
450 455 460
His Lys Met Glu Gln Glu Met Thr Arg Leu His Arg Arg Val Ser Glu
465 470 475 480
Val Glu Ala Val Leu Ser Gln Lys Glu Val Glu Leu Lys Ala Ser Glu
485 490 495
Thr Gln Arg Ser Leu Leu Glu Gln Asp Leu Ala Thr Tyr Ile Thr Glu
500 505 510
Cys Ser Ser Leu Lys Arg Ser Leu Glu Gln Ala Arg Met Glu Val Ser
515 520 525
Gln Glu Asp Asp Lys Ala Leu Gln Leu Leu His Asp Ile Arg Glu Gln
530 535 540
Ser Arg Lys Leu Gln Glu Ile Lys Glu Gln Glu Tyr Gln Ala Gln Val
545 550 555 560

Glu Glu Met Arg Leu Met Met Asn Gln Leu Glu Glu Asp Leu Val Ser
 565 570 575
 Ala Arg Arg Arg Ser Asp Leu Tyr Glu Ser Glu Leu Arg Glu Ser Arg
 580 585 590
 Leu Ala Ala Glu Glu Phe Lys Arg Lys Ala Asn Glu Cys Gln His Lys
 595 600 605
 Leu Met Lys Ala Lys Asp Gln Gly Lys Pro Glu Val Gly Glu Tyr Ser
 610 615 620
 Lys Leu Glu Lys Ile Asn Ala Glu Gln Gln Leu Lys Ile Gln Glu Leu
 625 630 635 640
 Gln Glu Lys Leu Glu Lys Ala Val Lys Ala Ser Thr Glu Ala Thr Glu
 645 650 655
 Leu Leu Gln Asn Ile Arg Gln Ala Lys Glu Arg Ala Glu Arg Glu Leu
 660 665 670
 Glu Lys Leu His Asn Arg Glu Asp Ser Ser Glu Gly Ile Lys Lys Lys
 675 680 685
 Leu Val Glu Ala Glu Glu Arg Arg His Ser Leu Glu Asn Lys Val Lys
 690 695 700
 Arg Leu Glu Thr Met Glu Arg Arg Glu Asn Arg Leu Lys Asp Asp Ile
 705 710 715 720
 Gln Thr Lys Ser Glu Gln Ile Gln Gln Met Ala Asp Lys Ile Leu Glu
 725 730 735
 Leu Glu Glu His Arg Glu Ala Gln Val Ser Ala Gln His Leu Glu
 740 745 750
 Val His Leu Lys Gln Lys Glu Gln His Tyr Glu Glu Lys Ile Lys Val
 755 760 765
 Leu Asp Asn Gln Ile Lys Lys Asp Leu Ala Asp Lys Glu Ser Leu Glu
 770 775 780
 Asn Met Met Gln Arg His Glu Glu Glu Ala His Glu Lys Gly Lys Ile
 785 790 795 800
 Leu Ser Glu Gln Lys Ala Met Ile Asn Ala Met Asp Ser Lys Ile Arg
 805 810 815
 Ser Leu Glu Gln Arg Ile Val Glu Leu Ser Glu Ala Asn Lys Leu Ala
 820 825 830
 Ala Asn Ser Ser Leu Phe Thr Gln Arg Asn Met Lys Ala Gln Glu Glu
 835 840 845
 Met Ile Ser Glu Leu Arg Gln Gln Lys Phe Tyr Leu Glu Thr Gln Ala
 850 855 860
 Gly Lys Leu Glu Ala Gln Asn Arg Lys Leu Glu Glu Gln Leu Glu Lys
 865 870 875 880
 Ile Ser His Gln Asp His Ser Asp Lys Ser Arg Leu Leu Glu Leu Glu
 885 890 895
 Thr Arg Leu Arg Glu Val Ser Leu Glu His Glu Glu Gln Lys Leu Glu
 900 905 910
 Leu Lys Arg Gln Leu Thr Glu Leu Gln Leu Ser Leu Gln Glu Arg Glu
 915 920 925
 Ser Gln Leu Thr Ala Leu Gln Ala Ala Arg Ala Leu Glu Ser Gln
 930 935 940
 Leu Arg Gln Ala Lys Thr Glu Leu Glu Glu Thr Thr Ala Glu Ala Glu
 945 950 955 960
 Glu Glu Ile Gln Ala Leu Thr Ala His Arg Asp Glu Ile Gln Arg Lys
 965 970 975
 Phe Asp Ala Leu Arg Asn Ser Cys Thr Val Ile Thr Asp Leu Glu Glu
 980 985 990
 Gln Leu Asn Gln Leu Thr Glu Asp Asn Ala Glu Leu Asn Asn Gln Asn
 995 1000 1005
 Phe Tyr Leu Ser Lys Gln Leu Asp Glu Ala Ser Gly Ala Asn Asp
 1010 1015 1020
 Glu Ile Val Gln Leu Arg Ser Glu Val Asp His Leu Arg Arg Glu
 1025 1030 1035
 Ile Thr Glu Arg Glu Met Gln Leu Thr Ser Gln Lys Gln Thr Met
 1040 1045 1050

Glu Ala Leu Lys Thr Thr Cys Thr Met Leu Glu Glu Gln Val Leu
 1055 1060 1065
 Asp Leu Glu Ala Leu Asn Asp Glu Leu Leu Glu Lys Glu Arg Gln
 1070 1075 1080
 Trp Glu Ala Trp Arg Ser Val Leu Gly Asp Glu Lys Ser Gln Phe
 1085 1090 1095
 Glu Cys Arg Val Arg Glu Leu Gln Arg Met Leu Asp Thr Glu Lys
 1100 1105 1110
 Gln Ser Arg Ala Arg Ala Asp Gln Arg Ile Thr Glu Ser Arg Gln
 1115 1120 1125
 Val Val Glu Leu Ala Val Lys Glu His Lys Ala Glu Ile Leu Ala
 1130 1135 1140
 Leu Gln Gln Ala Leu Lys Glu Gln Lys Leu Lys Ala Glu Ser Leu
 1145 1150 1155
 Ser Asp Lys Leu Asn Asp Leu Glu Lys Lys His Ala Met Leu Glu
 1160 1165 1170
 Met Asn Ala Arg Ser Leu Gln Gln Lys Leu Glu Thr Glu Arg Glu
 1175 1180 1185
 Leu Lys Gln Arg Leu Leu Glu Glu Gln Ala Lys Leu Gln Gln Gln
 1190 1195 1200
 Met Asp Leu Gln Lys Asn His Ile Phe Arg Leu Thr Gln Gly Leu
 1205 1210 1215
 Gln Glu Ala Leu Asp Arg Ala Asp Leu Leu Lys Thr Glu Arg Ser
 1220 1225 1230
 Asp Leu Glu Tyr Gln Leu Glu Asn Ile Gln Val Leu Tyr Ser His
 1235 1240 1245
 Glu Lys Val Lys Met Glu Gly Thr Ile Ser Gln Gln Thr Lys Leu
 1250 1255 1260
 Ile Asp Phe Leu Gln Ala Lys Met Asp Gln Pro Ala Lys Lys Lys
 1265 1270 1275
 Lys Val Pro Leu Gln Tyr Asn Glu Leu Lys Leu Ala Leu Glu Lys
 1280 1285 1290
 Glu Lys Ala Arg Cys Ala Glu Leu Glu Glu Ala Leu Gln Lys Thr
 1295 1300 1305
 Arg Ile Glu Leu Arg Ser Ala Arg Glu Glu Ala Ala His Arg Lys
 1310 1315 1320
 Ala Thr Asp His Pro His Pro Ser Thr Pro Ala Thr Ala Arg Gln
 1325 1330 1335
 Gln Ile Ala Met Ser Ala Ile Val Arg Ser Pro Glu His Gln Pro
 1340 1345 1350
 Ser Ala Met Ser Leu Leu Ala Pro Pro Ser Ser Arg Arg Lys Glu
 1355 1360 1365
 Ser Ser Thr Pro Glu Glu Phe Ser Arg Arg Leu Lys Glu Arg Met
 1370 1375 1380
 His His Asn Ile Pro His Arg Phe Asn Val Gly Leu Asn Met Arg
 1385 1390 1395
 Ala Thr Lys Cys Ala Val Cys Leu Asp Thr Val His Phe Gly Arg
 1400 1405 1410
 Gln Ala Ser Lys Cys Leu Glu Cys Gln Val Met Cys His Pro Lys
 1415 1420 1425
 Cys Ser Thr Cys Leu Pro Ala Thr Cys Gly Leu Pro Ala Glu Tyr
 1430 1435 1440
 Ala Thr His Phe Thr Glu Ala Phe Cys Arg Asp Lys Met Asn Ser
 1445 1450 1455
 Pro Gly Leu Gln Ser Lys Glu Pro Gly Ser Ser Leu His Leu Glu
 1460 1465 1470
 Gly Trp Met Lys Val Pro Arg Asn Asn Lys Arg Gly Gln Gln Gly
 1475 1480 1485
 Trp Asp Arg Lys Tyr Ile Val Leu Glu Gly Ser Lys Val Leu Ile
 1490 1495 1500
 Tyr Asp Asn Glu Ala Arg Glu Ala Gly Gln Arg Pro Val Glu Glu
 1505 1510 1515

Phe	Glu	Leu	Cys	Leu	Pro	Asp	Gly	Asp	Val	Ser	Ile	His	Gly	Ala
1520				1525							1530			
Val	Gly	Ala	Ser	Glu	Leu	Ala	Asn	Thr	Ala	Lys	Ala	Asp	Val	Pro
1535					1540						1545			
Tyr	Ile	Leu	Lys	Met	Glu	Ser	His	Pro	His	Thr	Thr	Cys	Trp	Pro
1550					1555						1560			
Gly	Arg	Thr	Leu	Tyr	Leu	Leu	Ala	Pro	Ser	Phe	Pro	Asp	Lys	Gln
1565					1570						1575			
Arg	Trp	Val	Thr	Ala	Leu	Glu	Ser	Val	Val	Ala	Gly	Gly	Arg	Val
1580					1585						1590			
Ser	Arg	Glu	Lys	Ala	Glu	Ala	Asp	Ala	Lys	Leu	Gly	Asn	Ser	
1595					1600						1605			
Leu	Leu	Lys	Leu	Glu	Gly	Asp	Asp	Arg	Leu	Asp	Met	Asn	Cys	Thr
1610					1615						1620			
Leu	Pro	Phe	Ser	Asp	Gln	Val	Val	Leu	Val	Gly	Thr	Glu	Glu	Gly
1625					1630						1635			
Leu	Tyr	Ala	Leu	Asn	Val	Leu	Lys	Asn	Ser	Leu	Thr	His	Ile	Pro
1640					1645						1650			
Gly	Ile	Gly	Ala	Val	Phe	Gln	Ile	Tyr	Ile	Ile	Lys	Asp	Leu	Glu
1655					1660						1665			
Lys	Leu	Leu	Met	Ile	Ala	Gly	Glu	Glu	Arg	Ala	Leu	Cys	Leu	Val
1670					1675						1680			
Asp	Val	Lys	Lys	Val	Lys	Gln	Ser	Leu	Ala	Gln	Ser	His	Leu	Pro
1685					1690						1695			
Ala	Gln	Pro	Asp	Val	Ser	Pro	Asn	Ile	Phe	Glu	Ala	Val	Lys	Gly
1700					1705						1710			
Cys	His	Leu	Phe	Ala	Ala	Gly	Lys	Ile	Glu	Asn	Ser	Leu	Cys	Ile
1715					1720						1725			
Cys	Ala	Ala	Met	Pro	Ser	Lys	Val	Val	Ile	Leu	Arg	Tyr	Asn	Asp
1730					1735						1740			
Asn	Ileu	Ser	Lys	Tyr	Cys	Ile	Arg	Lys	Glu	Ile	Glu	Thr	Ser	Glu
1745					1750						1755			
Pro	Cys	Ser	Cys	Ile	His	Phe	Thr	Asn	Tyr	Ser	Ile	Leu	Ile	Gly
1760					1765						1770			
Thr	Asn	Lys	Phe	Tyr	Glu	Ile	Asp	Met	Lys	Gln	Tyr	Thr	Leu	Asp
1775					1780						1785			
Glu	Phe	Leu	Asp	Lys	Asn	Asp	His	Ser	Leu	Ala	Pro	Ala	Val	Phe
1790					1795						1800			
Ala	Ser	Ser	Ser	Asn	Ser	Phe	Pro	Val	Ser	Ile	Val	Gln	Ala	Asn
1805					1810						1815			
Ser	Ala	Gly	Gln	Arg	Glu	Glu	Tyr	Leu	Leu	Cys	Phe	His	Glu	Phe
1820					1825						1830			
Gly	Val	Phe	Val	Asp	Ser	Tyr	Gly	Arg	Arg	Ser	Arg	Thr	Asp	Asp
1835					1840						1845			
Leu	Lys	Trp	Ser	Arg	Leu	Pro	Leu	Ala	Phe	Ala	Tyr	Arg	Glu	Pro
1850					1855						1860			
Tyr	Leu	Phe	Val	Thr	His	Phe	Asn	Ser	Leu	Glu	Val	Ile	Glu	Ile
1865					1870						1875			
Gln	Ala	Arg	Ser	Ser	Leu	Gly	Ser	Pro	Ala	Arg	Ala	Tyr	Leu	Glu
1880					1885						1890			
Ile	Pro	Asn	Pro	Arg	Tyr	Leu	Gly	Pro	Ala	Ile	Ser	Ser	Gly	Ala
1895					1900						1905			
Ile	Tyr	Leu	Ala	Ser	Ser	Tyr	Gln	Asp	Lys	Leu	Arg	Val	Ile	Cys
1910					1915						1920			
Cys	Lys	Gly	Asn	Leu	Val	Lys	Glu	Ser	Gly	Thr	Glu	Gln	His	Arg
1925					1930						1935			
Val	Pro	Ser	Thr	Ser	Arg	Ser	Ser	Pro	Asn	Lys	Arg	Gly	Pro	Pro
1940					1945						1950			
Thr	Tyr	Asn	Glu	His	Ile	Thr	Lys	Arg	Val	Ala	Ser	Ser	Pro	Ala
1955					1960						1965			
Pro	Pro	Glu	Gly	Pro	Ser	His	Pro	Arg	Glu	Pro	Ser	Thr	Pro	His
1970					1975						1980			

Arg Tyr Arg Asp Arg Glu Gly Arg Thr Glu Leu Arg Arg Asp Lys
 1985 1990 1995
 Ser Pro Gly Arg Pro Leu Glu Arg Glu Lys Ser Pro Gly Arg Met
 2000 2005 2010
 Leu Ser Thr Arg Arg Glu Arg Ser Pro Gly Arg Leu Phe Glu Asp
 2015 2020 2025
 Ser Ser Arg Gly Arg Leu Pro Ala Gly Ala Val Arg Thr Pro Leu
 2030 2035 2040
 Ser Gln Val Asn Lys Val Trp Asp Gln Ser Ser Val
 2045 2050 2055
 <210> 5

<211> 6780

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (6244) .. (6245)

<223> n = a, t, g, or c

<220>

<221> misc_feature

<222> (6259) .. (6259)

<223> n = a, t, g, or c

<220>

<221> misc_feature

<222> (6269) .. (6269)

<223> n = a, t, g, or c

<220>

<221> misc_feature

<222> (6266) .. (6266)

<223> n = a, t, g, or c

<400> 5

gggcggggct	gagggcggcg	ggggcggggcc	gccccgagctg	ggagggcggc	ggcgcccgagg	60
ggaggagagc	ggcccatgga	cccgggggc	ccggcgcccc	agactctgcg	ccgtcgggac	120
ggagcccaag	atgtcgccct	aggccggggc	gcgacgacgc	ggacggggcg	gcgaggaggc	180
gccgctgctg	ccggggctcg	cagccgcccga	gcccccgagg	gcgcccccctg	acggactggc	240
cgagccggcg	gtgagaggcc	ggcgctctg	gagcggggcg	cgcggcacca	tgtcgccaa	300

ggtgccggctc	aagaagctgg	agcagctgct	cctggacggg	ccctggcgca	acgagagcgc	360
cctgagcgtg	gaaacgctgc	tcgacgtgct	cgtctgcctg	tacaccgagt	gcagccactc	420
ggccctgcgc	cgcgacaagt	acgtggccga	gttgcctcgag	tgggctaaac	catttacaca	480
gctggtaaaa	gaaatgcagc	ttcatcgaga	agactttgaa	ataattaaag	taatttggaaag	540
aggtgctttt	ggtgagggtt	ctgttgtcaa	aatgaagaat	actgaacgaa	tttatgcata	600
gaaaatcctc	aacaagtggg	agatgctgaa	aagagcagag	accgcgtgct	tccgagagga	660
gcccgtatgt	ctggatggacg	gcccgtccca	gtggatcacc	gcccgtact	acgccttca	720
ggacgagaac	cacctgtact	tagtcatgg	ttactatgt	gggtgtgatt	tactgaccct	780
gctcagcaaa	tttgaagaca	agttccgg	agatatggcg	aggttctaca	ttgggtgaaat	840
ggtgctggcc	attgactcca	tccatcagct	tcattacgt	cacagagaca	ttaaaacctga	900
caatgtcctt	ttggacgtga	atggtcata	ccgcctggct	gactttggat	catgtttgaa	960
gatgaatgat	gatggcactg	tgca	ctgc	ctgc	actacatctc	1020
gccggagatc	ctgcaggcga	tgaggacgg	catggc	catggc	agtgtactg	1080
gtggctctg	ggtgtctgca	tgtatgagat	gctctatgg	gaaacgcgt	tttatgcgg	1140
gtcactcgtg	gagacctatg	ggaagatcat	gaaccatgaa	gaggcattcc	agttcccatc	1200
ccatgtcactg	gatgtatctg	aagaagcgaa	ggacactcattc	cagagactga	tctgcagtag	1260
agaacgcgg	ctggggcaga	atgaaataga	ggatttcaaa	aagcatgcgt	tttttgaagg	1320
tctaaattgg	'aaaaatatac	gaaacctaga	agcacctt	attcctgatg	tgagcagtcc	1380
ctctgacaca	tccaa	ctcg	acgtggatg	cgacgtgct	agaaacacgg	1440
tcctggttct	cacacaggct	tttctggatt	acatttgc	ttcatttgg	ttacattcac	1500
aacggaaagc	tg	tttctg	atcgaggc	tctgaagac	ataatgcagt	1560
aaccaaagat	gaggatgtc	agcgggac	ggagcac	ctgcagatgg	aagttacga	1620
gaggaggatt	cgaggcgtt	aacaggagaa	gctggagct	agcaggaagc	tgcaagagtc	1680
caccaggacc	gtgc	actc	ccacggc	ctcagcaatt	caaaccgaga	1740
taaagaaatc	aaaagactaa	atgaaataaa	cgaacgc	tttgc	tagcagattc	1800
aaacaggctg	gagc	gac	ttgaggac	atgtggc	cgccaa	1860
cacgcagcgg	ctgc	gggg	ttgagaag	gacccgc	gtccggcagg	1920
gctcacaag	caactgg	tttgc	tttgc	tttgc	tttgc	1980
agatgcccatt	cagc	cg	agctggcc	gcaggat	tcgagct	2040
ggcagagctc	ctgt	ccc	gaga	gttccggc	ctgc	2100
gatggaggtt	gcc	ac	agg	ggc	gagaca	2160
gctcaggaaa	gag	cttgc	tttgc	tttgc	tttgc	2220
caagcttgcgt	gag	cac	acttct	caagcaat	gaa	2280
caagggtgaag	caagg	agg	ggcc	tgcc	tgagg	2340
caaaaatcaaa	tcc	gag	ctgg	tttgc	tttgc	2400
tgaggccttcc	cat	gt	gt	gt	gt	2460
ccaccagctg	gccc	tgc	gaga	tttgc	tttgc	2520
gcgagaaacgg	cata	ac	gg	tttgc	tttgc	2580
agaaaagagcg	atg	ctt	tttgc	tttgc	tttgc	2640
ttcctttgtt	gata	aaact	ca	tttgc	tttgc	2700
ggcagccaag	aagg	act	tttgc	tttgc	tttgc	2760
ggtcagtgc	gaga	aaat	tttgc	tttgc	tttgc	2820
agagctcgt	gtt	tttgc	tttgc	tttgc	tttgc	2880
ggtgcccgc	agcc	aga	tttgc	tttgc	tttgc	2940
ggcggagatc	cggg	ccaa	tttgc	tttgc	tttgc	3000
cctcaccttgc	gaa	agca	tttgc	tttgc	tttgc	3060
aatggaaattt	tttgc	aa	tttgc	tttgc	tttgc	3120
tccagatttt	cagg	att	tttgc	tttgc	tttgc	3180
gacattttaga	acc	agc	tttgc	tttgc	tttgc	3240
cccgctcgat	tct	gt	tttgc	tttgc	tttgc	3300
ccatccgcgt	gt	cc	tttgc	tttgc	tttgc	3360
agctcaccag	ttc	ag	tttgc	tttgc	tttgc	3420
cctgtatggtt	ggg	ct	tttgc	tttgc	tttgc	3480
cgtgtctgc	aa	ag	tttgc	tttgc	tttgc	3540
gcctctgggc	gt	gg	tttgc	tttgc	tttgc	3600
ccccaaagcc	ac	gg	tttgc	tttgc	tttgc	3660
caagcttgc	ct	gt	tttgc	tttgc	tttgc	3720
ccaaatgttgc	ga	t	tttgc	tttgc	tttgc	3780
catcatgt	ac	ac	tttgc	tttgc	tttgc	3840
tgcaccttct	a	ag	tttgc	tttgc	tttgc	3900
gtgggttggg	att	ct	tttgc	tttgc	tttgc	3960
ggtcgtgc	gt	tt	tttgc	tttgc	tttgc	4020

gacagctgcc	atcggtggatg	cagacaggat	tgcagtcggc	ctagaagaag	ggctctatgt	4080
catagaggcc	acccgagatg	tgatcgctcg	tgccgctgac	tgtaagaagg	tacaccagat	4140
cgagcttgc	cccagggaga	agatcgtaat	cctcctctgt	ggccggaaacc	accatgtgca	4200
cctctatccg	tggtcgtccc	ttgatggagc	ggaaggcagc	tttgacatca	agcttccgga	4260
aaccaaaggc	tgcagctca	tgcccacggc	cacactcaag	aggaactctg	gcacctgcct	4320
gttgtggcc	gtgaaacggc	tgatccttg	ctatgagatc	cagagaacga	agccattcca	4380
cagaaaggcc	aatagagatg	tggctcccg	cagctgca	tgctctggcg	tgctcaggga	4440
caggctctgt	gtgggcattc	cttctgggtt	ctgcctgctg	agcatccagg	gggacgggca	4500
gcctctaaac	ctggtaatac	ccaatgaccc	ctcgcttgcg	ttcgccttcac	aacagtcttt	4560
tgatgccctt	tgtctgtgg	agctcgaaag	cgaggagatc	ctgccttgc	tcagccacat	4620
gggactgtac	gtggacccgc	aaggccggag	ggcacgcgcg	caggagatc	tgtggctgc	4680
ggctctgtc	gcctgttagt	gcagccccac	ccacgtcacg	gtgtacagcg	agtatggcg	4740
ggacgtctt	gatgtgcgc	ccatggagtg	ggtgcagacc	atccgcctgc	ggaggataag	4800
gccctgtAAC	tctgaaggca	ccctcaacct	cctcaactgc	gaggcctccac	gcttgatcta	4860
cttcaagagc	aagttctcg	gagcggttct	caacgtgccc	gacacctccg	acaacagcaa	4920
gaagcagatg	ctgcgcacca	ggagcaaaag	gcgggtcg	ttcaaggatcc	cagaggaaga	4980
gagactgcag	cagaggcga	agatgcttag	agacccagaa	ttgagatcca	aatgatatac	5040
caacccaacc	aacttcaacc	acgtggccca	catgggccc	ggcgcacggc	tcgcagggtct	5100
catggacactg	cctctgatgt	ctgtggcccc	ctcccaggag	gaaaggccgg	gccccgtcc	5160
caccaacactg	gctcgccagc	ctccatccag	gaacaagccc	tacatctgt	ggccctcatac	5220
aggtggatcg	gagccttagcg	tgactgtgcc	tctgagaagt	atgtctgatc	cagaccagga	5280
ctttgacaaa	gagcctgatt	cggactccac	caaacactca	actccatcg	atagctccaa	5340
ccccagcggc	ccacccgagc	ccaaactcccc	ccacaggagc	cagctcccc	tcgaaggcct	5400
ggagcagccg	gcctgtgaca	cctgaagccg	ccagctcgcc	acagggggca	gggagctgga	5460
gatggcctcc	agcgtcgt	ccaaagactga	gcggccctc	cagtgttgc	caagggaaatg	5520
tagaatact	tttgatgat	ggagatggaa	aagacaaatc	tttattataa	tattgtatcg	5580
tttatgccg	cattgttcgt	ggcagtagac	cacatctgtt	cgtctgcaca	gctgtgaggc	5640
gatgtgttcc	catctgcaca	tgaaggaccc	ccatacagcc	tgctctccac	ccctgacaac	5700
ccgagagggc	atatgggccc	ctggcaacac	cacttcctca	gcagaaaccc	gtcatgacgc	5760
ggctgcttcg	gaagcagaca	tctggggaca	cagcctcagt	accaggatctt	ttcccttagtt	5820
cctgaaactt	tccttaggacc	ttaagagaat	agtaggaggt	cctatagcat	tcccagtgtc	5880
actagaattt	tgaagacagg	aaagtggagg	ttagtcgtg	gcctttttt	catttagcca	5940
ttgcacagt	agtcgagaa	gtcgtcgta	ccacctagtc	atggacaaag	gcccaggacc	6000
agtgcacacc	tgcgtccctg	tgtcgatcaa	gttcattctg	ggtcgcagcc	atgaagtgtc	6060
accagtatct	actactgtga	agtcagctgt	gctgtttcc	attcgcttc	acggcttctg	6120
cctcctgcca	taaaaccagc	gagtgctgt	gtgcaggcag	gcctgtggc	ctgctggct	6180
gagggaaatc	agagccccag	ggccacacg	agcagccact	gggataaccc	acccgcaccc	6240
gcccccccccc	ccccccccc	cagtcnagn	ccgaaatgga	gccccctgta	ttagtagccc	6300
gtatgtatc	gtagacccac	ccaaacacact	cctgcacact	gccccccggcc	cacggcacag	6360
caatccccctg	cgcgtggatt	tcacctcacc	ctttgtacca	gatgttgagt	gaccagctct	6420
gtggccctgt	gtcgtcgag	gtttgtgatt	aactgtggcg	gcagacacag	tttgtccaca	6480
gtttggggca	gcttcccct	gtcctccac	cggtcggctg	cttggcaagg	ctgttcagga	6540
cgtcacttc	cccaagtcgg	cactgatgtgg	cccagcacca	cctagccctg	ccacccact	6600
gccccctctgg	gccttctgt	ggatgggcac	ctggggggtt	ctgtttttt	actttttaa	6660
tgttaagtctc	agtcttttta	attaattt	gaattgtgag	aacattttt	aacaatttac	6720
ctgtcaataaa	agcagaagac	ggcagtttta	aagttaaaaa	aaaaaaaaaa	aaaaaaaaaa	6780

<210> 6

<211> 2380
<212> DNA
<213> Homo sapiens

<400> 6

gagcggccgc	ccggggcaggt	ctagaattca	gcccggctg	aattcttaggt	gctgcccggag	60
acctcaggcc	cccttaaaga	ggacccatcc	ccctgttagac	cagtctctgt	ccctgtcaag	120
cttacactgc	attcttgc	atggcgttc	ccatttctg	tgtgatctta	tcccttcac	180
ttaactctct	gttcctgtgt	cttcattctta	tgagctgac	tgaggccttg	ggtggggaaag	240
tggctctgt	attctatcc	gtgcctaacc	cagcgcctcc	ttcttgc	tttctccctc	300

tctagcctat	ctggtcagtc	aggcaaccga	tcttcctcag	gatcattgtat	ctctgtaccc	360
ccaggggcag	tgaaccttcc	tttccctggg	ataatccctca	aggctcaactg	atcaaaccctt	420
tgggcttggt	tcacaggta	ggtctatgtc	agtacgcgac	atcagatatt	tgtgttcgtc	480
agggtttct	aggggaaaag	agctggtaga	atggaaaagt	ggagatttat	taggctgcag	540
tctctagtc	caccaatggc	tggtagttct	tttggaaatg	atttatttcc	atcccttatg	600
tgtatggta	cctttgcct	tcctgtgtc	gtgcccata	tgccgtggag	cgtggtcgc	660
acccctcat	cctgatctt	ttagggagac	acgactctgc	caagcccttc	ctgccttcaa	720
tgtcgttacc	cgcttgactt	tccccagtt	tccttcggcg	ttggccgaga	gatgttgaag	780
ttaaagtatg	gtgtgggaa	cccgccggag	gccagtgcct	ccgagccat	tgccagtcgg	840
gcctccaggc	taaatcttt	cttccagggg	aaaccgcucc	tcatgactca	acagcagatg	900
tctgtcttt	ccccggaaagg	gatgctagac	gcctcttcg	ctcttttga	agagtgcagc	960
caacccgccc	tgtatggat	gaagcacgtg	agcagcttt	tccagaagta	ttccgacacc	1020
atacccgagt	tgcgggagct	gcagccgtc	gcgagagact	tcaagttcg	aagccttgc	1080
ggctgtggtc	acttcgtga	agtgcaggtg	gttagagaga	aggcgaccgg	ggacgtctat	1140
gccatgaaaa	tcatgaaagaa	gaaggcttt	ctggcccaagg	aacaggttt	attttcgag	1200
gaggagagga	acatattatc	tcggagcacg	agtccttgg	tcccccagtt	acagtagcc	1260
tttcaggaca	aaaataacct	ttacctggtc	atgaaatatc	agcctggagg	ggatttcctg	1320
tcgcttctga	acagatacga	ggaccaatta	gatgagagca	tgtccagtt	ttaccttgct	1380
gagctgatt	tggctgtcca	cagcgtgcac	cagatggat	atgtgcac	agacatcaag	1440
ccogagaaca	tcctcatcga	ccggacggga	gagatcaagc	tggggattt	tggatcagcc	1500
gctaagatga	attcaataa	ggtggtatgcc	aaactccca	ttgggacc	ggattacatg	1560
gctccggaaag	tgttgaccgt	gatgaacgag	gaccgaaggg	gcacatacgg	tttggactgt	1620
gactgggtgt	ctgtcgagg	tgttgcttat	gagatggttt	atggaaagac	cccattcaca	1680
gagggAACCT	ccggccggac	cttcaacaac	atcatgaact	tccagcggtt	tttgaagttc	1740
ccagatgacc	ccaaagttag	cagttagtgc	tttgatctgc	tccagagtct	gtctgtgtc	1800
cagaagaga	gactgaagtt	cgagggtctc	tgctgccacc	cttctttgc	cagaacggac	1860
tggaaacaaca	tccgtaaatc	tcctcccccc	ttcgccccca	ccctcaagtc	tgacgatgac	1920
acccaattt	tttgatgaaacc	agagaagaat	tctggggctt	tcatctctg	tgtgccaagct	1980
gagccctcg	cgttctcagg	cgaagagctg	ccgtttgtgg	gattttcgta	cagcaaggca	2040
ctggggatatc	ttggtagatc	tgagtctgtc	gtgtcgagtc	tggactcccc	tgccaaggtt	2100
agctccatgg	aaaagaaact	tctcatcaaa	agcaaagagc	tccaaagactc	ccaggacaag	2160
tgtcacaagg	tatctatctc	cacagccggc	ctccgtcctt	gtccaggat	cctccagtca	2220
atatatgccc	agggatotgc	cggggggccac	tgctgagcgg	tgggtccgc	tccctcgctg	2280
aagtctgtcc	tccagcagct	cagagggaga	ggactccagg	cccagacatt	gccataaaatc	2340
ctttaaatct	taaccagagg	aggccctgga	tttaaaaaaa			2380

<210> 7

<211> 631

<212> PRT

<213> Homo sapiens

<400> 7

Met	Ser	Ala	Glu	Val	Arg	Leu	Arg	Gln	Leu	Gln	Leu	Val	Leu	Asp	
1				5			10				15				
Pro	Gly	Phe	Leu	Gly	Leu	Glu	Pro	Leu	Leu	Asp	Leu	Leu	Gly	Val	
					20			25			30				
His	Gln	Glu	Leu	Gly	Ala	Ser	His	Leu	Ala	Gln	Asp	Lys	Tyr	Val	Ala
					35			40			45				
Asp	Phe	Leu	Gln	Trp	Val	Glu	Pro	Ile	Ala	Ala	Arg	Leu	Lys	Glu	Val
					50			55			60				
Arg	Leu	Gln	Arg	Asp	Asp	Phe	Glu	Ile	Leu	Lys	Val	Ile	Gly	Arg	Gly
					65			70			75			80	
Ala	Phe	Ser	Glu	Val	Ala	Val	Val	Lys	Met	Lys	Gln	Thr	Gly	Gln	Val
					85			90			95				
Tyr	Ala	Met	Lys	Ile	Met	Asn	Lys	Trp	Asp	Met	Leu	Lys	Arg	Gly	Glu
					100			105			110				
Val	Ser	Cys	Phe	Arg	Glu	Glu	Arg	Asp	Val	Leu	Val	Lys	Gly	Asp	Arg
					115			120			125				

Arg Trp Ile Thr Gln Leu His Phe Ala Phe Gln Asp Glu Asn Tyr Leu
 130 135 140
 Tyr Leu Val Met Glu Tyr Tyr Val Gly Gly Asp Leu Leu Thr Leu Leu
 145 150 155 160
 Ser Lys Phe Gly Glu Arg Ile Pro Ala Glu Met Ala Arg Phe Tyr Leu
 165 170 175
 Ala Glu Ile Val Met Ala Ile Asp Ser Val His Arg Leu Gly Tyr Val
 180 185 190
 His Arg Asp Ile Lys Pro Asp Asn Ile Leu Leu Asp Arg Cys Gly His
 195 200 205
 Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Lys Leu Gln Pro Asp Gly
 210 215 220
 Met Val Arg Ser Leu Val Ala Val Gly Thr Pro Asp Tyr Leu Ser Pro
 225 230 235 240
 Glu Ile Leu Gln Ala Val Gly Gly Pro Gly Ala Gly Ser Tyr Gly
 245 250 255
 Pro Glu Cys Asp Trp Trp Ala Leu Gly Val Phe Ala Tyr Glu Met Phe
 260 265 270
 Tyr Gly Gln Thr Pro Phe Tyr Ala Asp Ser Thr Ala Glu Thr Tyr Ala
 275 280 285
 Lys Ile Val His Tyr Arg Glu His Leu Ser Leu Pro Leu Ala Asp Thr
 290 295 300
 Val Val Pro Glu Glu Ala Gln Asp Leu Ile Arg Gly Leu Leu Cys Pro
 305 310 315 320
 Ala Glu Ile Arg Leu Gly Arg Gly Ala Gly Asp Phe Gln Lys His
 325 330 335
 Pro Phe Phe Gly Leu Asp Trp Glu Gly Leu Arg Asp Ser Val Pro
 340 345 350
 Pro Phe Thr Pro Asp Phe Glu Gly Ala Thr Asp Thr Cys Asn Phe Asp
 355 360 365
 Val Val Glu Asp Arg Leu Thr Ala Met Val Ser Gly Gly Glu Thr
 370 375 380
 Leu Ser Asp Met Gln Glu Asp Met Pro Leu Gly Val Arg Leu Pro Phe
 385 390 395 400
 Val Gly Tyr Ser Tyr Cys Cys Met Ala Phe Arg Asp Asn Gln Val Pro
 405 410 415
 Asp Pro Thr Pro Met Glu Leu Glu Ala Leu Gln Leu Pro Val Ser Asp
 420 425 430
 Leu Gln Gly Leu Asp Leu Gln Pro Pro Val Ser Pro Pro Asp Gln Val
 435 440 445
 Ala Glu Glu Ala Asp Leu Val Ala Val Pro Ala Pro Val Ala Glu Ala
 450 455 460
 Glu Thr Thr Val Thr Leu Gln Gln Leu Gln Glu Ala Leu Glu Glu Glu
 465 470 475 480
 Val Leu Thr Arg Gln Ser Leu Ser Arg Glu Leu Glu Ala Ile Arg Thr
 485 490 495
 Ala Asn Gln Asn Phe Ser Ser Gln Leu Gln Glu Ala Glu Val Arg Asn
 500 505 510
 Arg Asp Leu Glu Ala His Val Arg Gln Leu Gln Glu Arg Met Glu Met
 515 520 525
 Leu Gln Ala Pro Gly Ala Ala Ile Thr Gly Val Pro Ser Pro Arg
 530 535 540
 Ala Thr Asp Pro Pro Ser His Leu Asp Gly Pro Pro Ala Val Ala Val
 545 550 555 560
 Gly Gln Cys Pro Leu Val Gly Pro Gly Pro Met His Arg Arg His Leu
 565 570 575
 Leu Leu Pro Ala Arg Ile Pro Arg Pro Gly Leu Ser Glu Ala Arg Cys
 580 585 590
 Leu Leu Leu Phe Ala Ala Ala Leu Ala Ala Ala Ala Thr Leu Gly Cys
 595 600 605
 Thr Gly Leu Val Ala Tyr Thr Gly Gly Leu Thr Pro Val Trp Cys Phe
 610 615 620

Pro Gly Ala Thr Phe Ala Pro

625 630

<210> 8

<211> 1765

<212> DNA

<213> Homo sapiens

<400> 8

atgttgaagt	tcaaatatgg	agcgccgaat	ccttggatg	ctggtgctgc	tgaaccatt	60
gc	caggcccc	cctccaggct	aatctgttc	ttccaggggaa	aaccacccctt	120
c	caggatgt	ctccttttc	ccgagaaggg	atattagatg	ccctctttgt	180
g	aatgcagtc	agcctgtct	gatgaagatt	aagcacgtga	gcaactttgt	240
a	tccgacacca	tagctgagtt	acaggagctc	cagccttcgg	caaaggactt	300
t	agtctttag	gttgtggc	ta	gtgcagggtgg	cgaaagtca	360
c	gacatctatg	ctatgaaagt	gatgaagaag	aaggctttat	tggcccagga	420
g	ttttttaggg	aagagccgaa	cattattatct	cgaagcacaa	gcagggttca	480
t	cagtatgcct	ttcaggacaa	aaatcacctt	tatctgtca	tgaaatata	540
t	gacttgcgt	cactttgaa	tagatatgag	gaccagttag	atgaaaacct	600
t	tacctagctg	agctgat	ttt	gtgatggata	gatacagtt	660
a	gacatcaagc	ctgagaacat	tctcggtgac	cgcacaggac	atcatcaagct	720
c	ggatctgccc	cgaaaatgaa	ttcaaacaag	atggtgaatg	ccaaactccc	780
cc	ccagattaca	tggctcctga	agtgcgtact	gtgatgaacg	ggtatggaaa	840
g	ggcctggact	gtgactgg	gtc	gtgattgcct	aggcacctac	900
c	tcccccttcg	cagagggaa	ctctgccaga	accttcaata	atgatgtat	960
c	tttttggaaat	ttccagatg	ccccaatgt	agcagtact	tttgcattct	1020
t	tttgtgtcg	gccagaaaga	gagactgaag	tttgaaggtc	tttgcgtcc	1080
t	tctaaaattg	actggaaacaa	cattcgtaac	tctccccc	ccttcgttcc	1140
t	tctgacatg	acacccctaa	ttttgatgaa	ccagagaaga	attcgtgggt	1200
c	ccgtgccagc	tgagcccc	aggcttcg	gttgaagaaac	tgccgtttgt	1260
g	tacagcaagg	cactgggat	tcttggtaga	tctgagtc	ttgtgtcggg	1320
c	cctgccaaga	ctagctccat	ggaaaaagaaa	tttctcatca	aaagcaaaaga	1380
t	tctcaggaca	agtgtcaca	ggtatattt	tccgcagccg	gttgcattcc	1440
c	atcccccgt	ccgttatatgc	caagggatcc	gc	gcgtgtggct	1500
t	tgtatccgt	agagtgg	gtcctgcct	tgcgtgaat	cgccctcca	1560
t	gggagatgaa	ttcgggc	gtgttgc	taaattttt	aaatctaaac	1620
g	cctggat	aacagtccgt	tttcagcat	gaccagcc	gatgtctgt	1680
g	gttggc	gtcctcac	gtggctgaga	tacatccat	ctgttttag	1740
t	tctctttcc	tagtctttt	aaact	tgatgcgaa		1765

<210> 9

<211> 497

<212> PRT

<213> Homo sapiens

<400> 9

Met	Leu	Lys	Phe	Lys	Tyr	Gly	Ala	Arg	Asn	Pro	Leu	Asp	Ala	Gly	Ala
1				5			10		15						
Ala	Glu	Pro	Ile	Ala	Ser	Arg	Ala	Ser	Arg	Leu	Asn	Leu	Phe	Phe	Gln
							20		25					30	
Gly	Lys	Pro	Pro	Phe	Met	Thr	Gln	Gln	Gln	Met	Ser	Pro	Leu	Ser	Arg
							35		40					45	
Glu	Gly	Ile	Leu	Asp	Ala	Leu	Phe	Val	Leu	Phe	Glu	Cys	Ser	Gln	
							50		55					60	

Pro Ala Leu Met Lys Ile Lys His Val Ser Asn Phe Val Arg Lys Tyr
65 70 75 80
Ser Asp Thr Ile Ala Glu Leu Gln Glu Leu Gln Pro Ser Ala Lys Asp
85 90 95
Phe Glu Val Arg Ser Leu Val Gly Cys Gly His Phe Ala Glu Val Gln
100 105 110
Val Val Arg Glu Lys Ala Thr Gly Asp Ile Tyr Ala Met Lys Val Met
115 120 125
Lys Lys Lys Ala Leu Leu Ala Gln Glu Gln Val Ser Phe Phe Glu Glu
130 135 140
Glu Arg Asn Ile Leu Ser Arg Ser Thr Ser Pro Trp Ile Pro Gln Leu
145 150 155 160
Gln Tyr Ala Phe Gln Asp Lys Asn His Leu Tyr Leu Val Met Glu Tyr
165 170 175
Gln Pro Gly Gly Asp Leu Leu Ser Leu Leu Asn Arg Tyr Glu Asp Gln
180 185 190
Leu Asp Glu Asn Leu Ile Gln Phe Tyr Leu Ala Glu Leu Ile Leu Ala
195 200 205
Val His Ser Val His Leu Met Gly Tyr Val His Arg Asp Ile Lys Pro
210 215 220
Glu Asn Ile Leu Val Asp Arg Thr Gly His Ile Lys Leu Val Asp Phe
225 230 235 240
Gly Ser Ala Ala Lys Met Asn Ser Asn Lys Met Val Asn Ala Lys Leu
245 250 255
Pro Ile Gly Thr Pro Asp Tyr Met Ala Pro Glu Val Leu Thr Val Met
260 265 270
Asn Gly Asp Gly Lys Gly Thr Tyr Gly Leu Asp Cys Asp Trp Trp Ser
275 280 285
Val Gly Val Ile Ala Tyr Glu Met Ile Tyr Gly Arg Ser Pro Phe Ala
290 295 300
Glu Gly Thr Ser Ala Arg Thr Phe Asn Asn Ile Met Asn Phe Gln Arg
305 310 315 320
Phe Leu Lys Phe Pro Asp Asp Pro Lys Val Ser Ser Asp Phe Leu Asp
325 330 335
Leu Ile Gln Ser Leu Leu Cys Gly Gln Lys Glu Arg Leu Lys Phe Glu
340 345 350
Gly Leu Cys Cys His Pro Phe Phe Ser Lys Ile Asp Trp Asn Asn Ile
355 360 365
Arg Asn Ser Pro Pro Pro Phe Val Pro Thr Leu Lys Ser Asp Asp Asp
370 375 380
Thr Ser Asn Phe Asp Glu Pro Glu Lys Asn Ser Trp Val Ser Ser Ser
385 390 395 400
Pro Cys Gln Leu Ser Pro Ser Gly Phe Ser Gly Glu Glu Leu Pro Phe
405 410 415
Val Gly Phe Ser Tyr Ser Lys Ala Leu Gly Ile Leu Gly Arg Ser Glu
420 425 430
Ser Val Val Ser Gly Leu Asp Ser Pro Ala Lys Thr Ser Ser Met Glu
435 440 445
Lys Lys Leu Leu Ile Lys Ser Lys Glu Leu Gln Asp Ser Gln Asp Lys
450 455 460
Cys His Lys Val Phe Ile Ser Ala Ala Gly Leu Leu Pro Cys Ser Arg
465 470 475 480
Ile Leu Pro Ser Val Tyr Ala Lys Gly Ser Ala Arg Gly Arg Cys Trp
485 490 495
Leu