Computational Physics II Spring 2021

Lalit Chaudhary

March 24, 2021

Integration using Metropolis Algorithm

${\bf Contents}$

1	Que	Question Formulation and Analytical solution															2						
2	2 Implementation and Results															2							
	2.1	Histog	gra	$_{ m ms}$																			2
		2.1.1	_		vith																		4
		2.1.2			vith																		5
		2.1.3			$_{ m vith}$																		6
		2.1.4	p	_b w	rith	$\delta =$	2																7
		2.1.5	p	_b w	rith	$\delta =$	2.5																8
		2.1.6	p	b W	rith	$\delta =$	3																9
		2.1.7	p	c W	rith	$\delta =$	2																10
		2.1.8	p	c W	rith	$\delta =$	2.5																11
		2.1.9	p	c W	rith	$\delta =$	3																12
	2.2 Comparison with analytical solution												13										
		2.2.1	A	At δ	$\tilde{s} = 2$	2																	13
		2.2.2	A	At δ	$\tilde{s} = 2$	2.5																	14
		2.2.3	A	At δ	$\delta = 3$	3																	15
3	3 Conclusion														17								

1 Question Formulation and Analytical solution

The integral of the function,

$$f(x) = (x^2 + x) \cdot e^{-x}$$

is to be calculated over the interval [1,5 using metropolis algorithm.

To check the correctness of the implementation, the analytical result can be first evaluated.

 $I = \int_{1}^{5} f(x)dx$

The solution to the above integral is:

$$I = e^{-5} (7e^4 - 43) = 2.28542436$$

2 Implementation and Results

The metropolis algorithm was implemented and the integral was evaluated using three different probability distribution functions

$$p_a(x) = 1$$

$$p_b(x) = e^{-x}$$

$$p_c(x) = (x^2 + x)e^{-x}$$

and three different values maximum step size, $\delta = [2, 2.5, 3]$

2.1 Histograms

The graph the function in the concerned domain is shown in figure (1).

Figure 1: Graph of function

2.1.1 p_a with $\delta = 2$

Figure 2: Histogram distribution using p_a with $\delta=2$

2.1.2 p_a with $\delta = 2.5$

Figure 3: Histogram distribution using p_a with $\delta=2.5$

2.1.3 p_a with $\delta = 3$

Figure 4: Histogram distribution using p_a with $\delta=3$

2.1.4 p_b with $\delta = 2$

Figure 5: Histogram distribution using p_b with $\delta=2$

2.1.5 p_b with $\delta = 2.5$

Figure 6: Histogram distribution using p_b with $\delta=2.5$

2.1.6 p_b with $\delta = 3$

Figure 7: Histogram distribution using p_b with $\delta=3$

2.1.7 p_c with $\delta = 2$

Figure 8: Histogram distribution using p_c with $\delta=2$

2.1.8 p_c with $\delta = 2.5$

Figure 9: Histogram distribution using p_c with $\delta=2.5$

2.1.9 p_c with $\delta = 3$

Figure 10: Histogram distribution using p_c with $\delta=3$

2.2 Comparison with analytical solution

2.2.1 At $\delta = 2$

Figure 11: Evaluated integral with different probability distributions at d=2

2.2.2 At $\delta = 2.5$

Figure 12: Evaluated integral with different probability distributions at d=2.5

2.2.3 At $\delta = 3$

Figure 13: Evaluated integral with different probability distributions at d=3

The above plots are be summarised in plot (14).

Figure 14: Evaluated integral with different probability distributions

3 Conclusion

As seen from the above plots, it can be concluded the integral evaluated using metropolis algorithm converged for the probabilities distribution defined by $p_c(x)$ as well as $p_a(x)$. However, the results obtained using the distribution defined by $p_b(x)$ deviates considerably from the expected analytical solution and does not converge. This is because of the fact that the distribution $p_b(x)$ does not mimic the function around its local maxima in the given interval as seen from the histograms (5-7) and figure (1). Since the probability distribution function $p_c(x)$ is exactly the same as the original function f(x) that needs to be integrated, it mimes the function at all values and thus produce the results closest to the analytical result.