PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-321628

(43) Date of publication of application: 11.11.1992

(51)Int.CI.

A61K 33/38

(21)Application number: 03-112253

(71)Applicant: KANEBO LTD

(22)Date of filing:

18.04.1991

(72)Inventor: ANDO SATOSHI

NAKAJIMA KAZUHIKO

DONO AKIRA

(54) ANTIMICROBIAL AGENT CONSISTING OF COLLOID PARTICLE OF SILVER

(57) Abstract:

PURPOSE: To obtain silver colloid and silver particle having remarkably high antimicrobial property, compared with a conventional silver colloid and silver compound, etc.

CONSTITUTION: A silver colloid having high antimicrobial property is obtained by a new production of silver colloid characterized by blending an aqueous solution of silver nitrate with hydrogen peroxide and a water soluble alkaline substance and previously making another liquid blended with the water soluble alkaline substance acidic. Silver particles separated from silver colloid obtained thus have also high antimicrobial property. These silver colloid and silver particles can be used in a form of colloid liquid or fine powder or a form supported on an adsorbing agent such as zeolite as an antimicrobial agent and the antimicrobial agent prepared thus has remarkably high antimicrobial force, compared with an antimicrobial agent containing a conventional silver colloid or silver ion.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-321628

(43)公開日 平成4年(1992)11月11日

(51) Int.Cl.5

識別配号

庁内整理番号

8314-4C

FI

技術表示箇所

A61K 33/38

ADZ

審査請求 未請求 請求項の数9(全 5 頁)

(21)出願番号

特願平3-112253

(22)出願日

平成3年(1991)4月18日

(71)出願人 000000952

鐵紡株式会社

東京都墨田区墨田五丁目17番4号

(72)発明者 安藤 聡

大阪府大阪市城東区鴫野西5-1-2-

604

(72)発明者 中島 和彦

大阪府大阪市東淀川区瑞光4-2-25

(72)発明者 堂野 彬

大阪府大阪市都島区友渕町1丁目5番11の

1514

(74)代理人 弁理士 松井 光夫

(54) 【発明の名称】 銀のコロイド粒子から成る抗菌剤

(57)【要約】

【目的】 本発明は、従来の銀コロイド及び銀化合物等に比べて、著しく高い抗菌性を有する銀コロイド及び銀粒子、並びにその製造法を提供することを目的とする。

【構成】 硝酸銀水溶液と過酸化水素水と水溶性のアルカリ性物質とを混合すること、かつ水溶性アルカリ性物質と混合すること、かつ水溶性アルカリ性物質と混合される他方の液を予め酸性としておくことを特徴とする、銀コロイドの新規な製造法により、高い抗菌性を有する最コロイドが得られる。こうして得られた銀コロイドから分離された銀粒子もまた、高い抗菌性を有する。これらの銀コロイド及び銀粒子は、コロイド液の形で、微粉末の形で、あるいはゼオライト等の吸着剤に担持させた形で、抗菌剤として用いることができ、そうして作られた抗菌剤は、従来の銀コロイドまたは銀イオンを含有する抗菌剤に比べ、著しく高い抗菌力を有する。

1

【特許請求の範囲】

【請求項1】 銀塩水溶液と過酸化水素と水溶性アルカリ性物質を混合すること、かつAg* を還元する工程において水溶性アルカリ性物質と混合される他方の液を予め酸性としておくことを特徴とする、銀コロイドの製造法。

【請求項2】 銀塩及び過酸化水素を含む酸性水溶液に 水溶性アルカリ性物質を添加する、請求項1記載の製造 法。

【請求項3】 過酸化水素と水溶性アルカリ性物質とを 10 含有する水溶液に、銀塩の酸性水溶液を添加する、請求 項1記載の製造法。

【請求項4】 請求項1記載の方法で作った銀コロイド.

【請求項5】 銀粒子が+チャージを有する銀コロイド。

【請求項6】 請求項4記載の銀コロイドを含有する抗 菌剤。

【請求項7】 請求項4記載の銀コロイドから分離した 銀粒子。

【請求項8】 水に分散すると+チャージを示す銀粒子。

【請求項9】 請求項7記載の銀粒子を含有する抗菌剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、銀のコロイドまたは粒子から主として成る、優れた抗菌性を有する抗菌剤及びそれら銀コロイドまたは銀粒子の製造法に関する。

[0002]

【従来の技術】銀、銅、亜鉛等が抗菌性を有することは 古くより知られている。中でも銀は高い抗菌性を有し、 例えば金属銀の細線や粉末または銀塩溶液の形で、ある いはゼオイライト等に担持させて、消毒剤や抗菌剤とし て広く利用されてきた。

【0003】銀はまた、コロイド状態でも抗菌性を有することが知られており、例えばポリマー プレプリンツ、ジャパン(Polymer Preprints, Japan)第39巻、第9号 (1990年),3347~3349ページには、大腸菌、緑膿菌及びプドウ球菌に対して夫々1250、1250、2500 ppmのMIC値を有する銀コロイドが記載されている。

【0004】銀コロイドの製造法としては、酸化銀にリンのエーテル溶液または水素を加える方法、硝酸銀にヒドラジンと炭酸ナトリウム;または硫酸第一鉄とクエン酸ナトリウムと水酸化ナトリウムを加える方法、酸化銀にホルマリンと炭酸ナトリウム;または過酸化水素と炭酸ナトリウムを加える方法、銀と水酸化ナトリウムとからブレージッヒ法によって作る方法等が知られている。また、銀ゾル粒子は、ーチャージを持つと知られている(化学便覧、昭和33年4月15日発行)。

[0005]

【本発明が解決しようとする課題】本発明は、従来の銀 系抗菌剤に比べて著しく優れた抗菌性を有する銀のコロ イド及び粒子、並びにそれらの製造法を提供することを 日的とする。

[0006]

【課題を解決するための手段】本発明者は、銀イオンを 過酸化水素とアルカリ性物質により還元して銀コロイド を作る際に、アルカリ性物質と混合される他方の液のpE を予め酸性にしておくことによって、高い抗菌性を有す る銀コロイドが生成すること、及びそうして得られた銀 コロイドから分離された銀粒子もまた、高い抗菌性を有 することを見出し、本発明を完成した。

【0007】すなわち、本発明は、銀塩水溶液と過酸化水素と水溶性アルカリ性物質を混合すること、かつAgを還元する工程において水溶性アルカリ性物質と混合される他方の液を予め酸性としておくことを特徴とする銀コロイドの製造法である。

【0008】本発明はまた、そうして得られた銀コロイ 20 ド、及び該銀コロイドから分離した銀粒子を提供する。

[0009] また、本発明は上記の銀コロイドまたは銀 粒子を含有する抗菌剤である。

【0010】本発明の銀コロイドの製造法によって作られた銀コロイド及び銀粒子は、従来の製法による銀コロイド、あるいは銀の微粒子、銀塩の水溶液等に比べて著しく高い抗菌性を有する。このことは全く予期されなかったことである。本発明の方法によって作られた銀コロイドの銀粒子は+チャージを有する。この+チャージが、細菌の細胞膜の-チャージと相互作用して抗菌作用のあるものと推測される。従来の銀コロイドの銀粒子は-チャージを有する。

【0011】本発明で使用し得る水溶性のアルカリ性物質としては、例えば水酸化ナトリウム等のアルカリ金属またはアルカリ土類金属の水酸化物、酢酸ナトリウム、シュウ酸ナトリウム及び炭酸ナトリウム等の弱酸と強塩基との塩、アンモニア水、並びにピリジン等のアミンが挙げられるが、これらに限定されない。二種以上のアルカリ性物質を併用しても良い。好ましくは弱酸のアルカリ金属塩、特に、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリを使用する。銀塩としては、硝酸銀、硫酸銀、酢酸銀、テトラフルオロホウ酸銀、ヘキサフルオロ酸銀等の可溶性銀塩を使用することができる。中でも硝酸銀が好ましい。

【0012】アルカリ性物質と混合される他方の液を酸性とするために、硝酸、硫酸、酢酸等の酸を使用することができる。好ましい酸は、硝酸である。

【0013】銀塩、過酸化水素水及び水溶性のアルカリ 性物質の混合順序に特に制限はないが、過酸化水素を含 有する銀塩の酸性水溶液に、水溶性のアルカリ性物質の 50 水溶液を少量づつ添加するのが好ましい。さらに好まし

くは、過酸化水素含有硝酸銀水溶液に硝酸等の酸を予め 加えてpHを約2~6、特に約3~5としておく。好まし い実施旗様を例示すると、 500~3000 rpm、より好まし くは1000~2000 rpmでの提弁下、20~60℃にて、約 0.0 01~20重量%の銀イオン濃度、pH約3~5の硝酸銀溶液 に、銀イオンに対して0.01~100 重量%、より好ましく は 0.1~50重量%の過酸化水素を加え、次に、コロイド 溶液のpHが最終的に4~12、さらに好ましくは5~9、 特に好ましくは7~9となるような量のアルカリ性物質 を徐々に添加する。ここで、攪拌速度を速めると、より 微細なコロイド粒子を得ることができる。

【0014】あるいは、過酸化水素とアルカリ性物質と を含有する水溶液に、銀塩の酸性水溶液を少量づつ添加 しても良い。この場合にも、銀塩溶液のpH、過酸化水素 及びアルカリ性物質の量、並びに攪拌時の攪拌速度及び 温度は、上記の場合と同じにするのが好ましい。逆に、 銀塩の酸性水溶液に、アルカリ性物質と過酸化水素とを 含有する液を徐々に添加して行っても良い。一般に、ア ルカリ性物質との混合による銀塩含有液pHの上昇をゆっ くりと行った方が、抗菌作用の優れた銀コロイドを得る 20 帯びている)銀粉末を得た。 ことができる。

【0015】担体物質、例えば繊維または吸着剤例えば 活性炭、ゼオライト、活性アルミナあるいはケイソウ土 の存在下で I:記の銀コロイドの生成を行うと、銀コロイ ドを担持する抗菌性の製品を得ることができる。

【0016】上記のようにして得られた銀コロイドを固 液分離することによって、本発明の銀粒子を得ることが できる。分離方法としては、濾過などの種々の慣用の方 法を用いることができる。固液分離後の銀粒子は、通 常、任意的な洗浄及び/または乾燥処理に付される。洗 30 装置とした。 浄処理は、単なる水洗でも良く、また、酸溶液、緩衝溶 液、界面活性剤含有液等で洗浄しても良い。乾燥処理 は、好ましくは20~500 ℃で1分間~5時間行う。こう して得られた銀粒子もまた、優れた抗菌作用を有する。

【0017】本発明の製造法によれば、高い抗菌性を有 する銀コロイドまたは銀粒子を、非常に容易にかつ案早 く得ることができる。こうして得られた銀コロイドまた は銀粒子は、コロイド液の形で、微粉末の形で、あるい はゼオライト等の吸着剤に担持させた形で、抗菌剤とし て用いることができる。この抗菌剤は、従来の銀コロイ 40 ドまたは銀イオンを含有する抗菌剤に比べ、著しく高い 抗菌力を有する。これらの抗菌剤は、医療分野、食品包 装分野、水処理分野で、あるいは繊維、樹脂等に混入し て、抗菌性繊維、抗菌性樹脂材料、抗菌性塗料を作るな ど、種々の用途に使用することができる。本発明の銀コ ロイドは、非常に高い抗菌性を有するので、基材に極少 量混入するだけで抗菌作用を付すことができ、経済的で ある上、基材の特性を損なうおそれが少ないと言う利点 を有する。

説明する。

[0019]

【実施例】

[0020]

【実施例1】25℃、1500 rpmでの攪拌下、0.05Nの硝酸 銀水溶液 1.0リットルに濃硝酸 0.5mlを加えてpHを約4 とし、10分間後、過酸化水素水溶液(10%) 20mlを加え た。さらに10分間後から、炭酸ナトリウム水溶液(10%) 少量づつを徐々に添加した。液の色は、炭酸ナトリウム 添加開始当所 (pH<7) は、牛乳のような白色であった 10 が、炭酸ナトリウムの添加量が増し、液pHが上昇するに 従い、淡黄緑色、さらにモスグリーン (pH約7以上) へ と変化し、最後 (pH約9) には液全体が緑色を帯びた灰 褐色となった。液pHが9となったことを確認して炭酸ナ トリウムの添加を終了し、10分間後に攪拌を停止した。 得られた銀コロイドをブッフナー濾過装置を使用して固 被分離した後、濾過装置上部よりイオン交換水を注入し 十分に水洗してから、130℃で3時間加熱乾燥し、軽く 粉砕してくすんだ灰褐色の(すかして見ると若干育味を

【0021】次に、本発明の銀粒子が+チャージを帯び ていることを電気泳動により示す。

【0022】電気泳動を行うために、次のような装置を 作成した。内径60mm、内容量120mlのガラスセル中に、 5mm×20mmの白金電極2枚を、約20mmの間隔で設置し た。ここに、電解液としてTRIAZMA-BASE (シグマ(SIGM A) 社製、Tris- ヒドロキシメチレンアミノメタン 3.0g とグリシン 14.4gとを水1リットルに溶かした溶液、p H約8] 100mlを加えて、白金電極を浸し、電気泳動用

【0023】上記で得られた銀粒子を局型乳鉢で挽いて 二次挺集を十分に解除した後、その約0.5gを20mlの水に 分散させ、超音波で分散を十分なものとした。さらに、 該分散物にグリセリン30mlを加えて粘度を保持させ、鈕 コロイドが沈降するのを防いだ。

【0024】この分散物約 20ml を上記の装置に加え、 室温で、2枚の白金電極に20V、30mAの電流を流し た。10分間後、マイナス側の電極表面には多量の銀粒子 が引き寄せられ、黒茶色となっていた。次に、電流を止 めると、マイナス側電極に引き寄せられていた銀粒子 が、電極を離れて電解液の下方へと沈降して行くのが観 察された。尚、テスト後、このマイナス側電極に蒸留水 を振りかけたところ、総ての銀粒子は洗い流され、白金 質極は元の状態となんら変化していなかったことより、 化学変化が起ったわけではないと言うことが判明した。

[0025] 以上より、本発明の銀粒子が+チャージを 有することが判明した。

[0026]

【実施例2】イオン交換水 500mlに、20mlの過酸化水素 【0018】以下、実施例により本発明をさらに詳しく 50 水溶液(10%) と50mlの炭酸ナトリウム水溶液(10%) とを 5

加えた溶液 (pH≥10) を用意した。別途に、0.05Nの硝酸銀水溶液1.0 リットルに濃硝酸 0.5mlを加えたpH約4.0 の硝酸銀水溶液を別途用意した。これを上配溶液に25℃、1500 rpmの攪拌下で徐々に添加した。総ての硝酸銀水溶液の添加後のpHは9であった。硝酸銀水溶液の添加終了の10分間後に攪拌を停止し、実施例1のようにして適別、水洗、乾燥及び粉砕して、くすんだ褐色の銀コロイド粒子粉末を得た。

【0027】尚、実施例1及び2において、ブッフナー 濾過装置による固液分離後の濾液に濃塩酸を加えたとこ 10 ろ、いずれの場合もAgClは生じず、銀イオンの殆ど 全部が銀コロイドとなったことが判明した。

【0028】得られた二つの銀微粒子について、その抗菌力を判定した。抗菌力の判定は、大腸菌、緑膿菌、ブ*

*ドウ球菌及びクロカビに対する最小発育阻止濃度(MinimumInhibitory Concentration: MIC)を測定することによって行った。その結果を表1に示す。対照として、硝酸銀の抗菌力の測定結果をまた、表1に示す。本発明に従い得られた銀コロイドの抗菌力が優れていることが明らかである。

[0029]

【比較例1】市販の銀粉末(275 メッシュ)を、ボールミル型粉砕機で十分に粉砕し、平均粒径3ミクロンの粉ま状銀粒子を得た。この銀粒子の抗菌力を、実施例1と同じ方法によって判定した。その結果をまた表1に示す。

[0030] 【表1】

表1 各面に対する無コロイド粒子の以[C値(002)

				大器盆		プドウ草目	クロカビ
尖		Ħ	1	≤ 3.9	≤ 3.9	3.9	≤ 3.9
実	×	4	2	8.9	5.9	7.8	3.9
¥	思	Ħ		-	_	15.6(9.9)	15.6(9.9
比	収	Ħ	1	_	_	≥ 2000	≥ 2000

新製内の敷盤は掘イオンの濃度、一は来影定

単に機械的に微粉化しただけの銀粒子は、いずれの菌に対しても2000 ppm以 hのM I C値を示し、特段に優れた抗菌力を有するわけではない。本発明により得られる銀 微粒子との抗菌力の差は顕著である。

[0031]

【実施例3】本発明の銀微粒子を種々の吸着剤に担持させた抗菌性吸着剤を、以下のようにして調製した。

【0032】内容量2リットルの攪拌装置付き反応槽に 30 表3に示した各吸着剤100gを入れ、イオン交換水500 m lを加えて室温下500rpmの穏やかな回転速度で攪拌分散させた。この中に10%硝酸を徐々に添加して分散液のpH をほぼ5に調製した後、 0.1N硝酸銀水溶液 300ml (吸着剤に対して 3.2重量%の銀イオンを含有する)を10分間かけて注加し、さらに10分間後に10%過酸化水素水溶液10mlを加えた。10分間後、攪拌速度を1000 rpmに上昇

し、10%炭酸ナトリウム水溶液を少しずつこの分散液中 に注ぎ入れていった。分散液のpHがほぼ9となった時点で で炭酸ナトリウム溶液の注入を終了し、さらに10分間後 機幹を停止した。

【0033】次にブッフナー濾過装置を用いて固液分離 し、濾過装置上部からイオン交換水を注加して十分に水 洗し、130℃で4時間乾燥した後、軽く粉砕して本発明 の抗菌剤とした。抗菌力測定の結果を表2に示す。

【0034】比較のため、上記と同じ吸着剤を、pH中性、室温下、攪拌速度500rpmにて、上記と同量、同濃度の硝酸銀水溶液中で3時間攪拌して調製した抗菌剤について、その抗菌力を判定した。その結果をまた、表2に示す。

【0035】 【表2】

表2	必理技	MIC値(ppm)	
		プドウ草蘭	クロカビ
セライト1)	本発明	1000	250
•	姓 盟	≥ 2000	≥ 2000
粉末活性炭1)	本 兒 明	2 5 0	125
	対 原	2000	≥ 2000
括性アルミナ1)	本角明	1000	500
	対 層	≥ 2000	≥ 2000
天然ゼオライト*)	本 発 明	250	125
	姓 盟	500	500
合成ゼオライト3)	本 発 明	125	62.5
	対 類	250	250

7

11世 李 華 華 子 章 章

2) 出版品、共和物館(株)製のサモブライト

3) 市販品、図内M社製のA型セオライト

本発明に従い銀のコロイド粒子を担持させた抗菌剤と銀イオン(または銀塩)を担持させた抗菌剤との抗菌力の 登は顕著である。

【0036】尚、各抗菌剤の固液分離の際の菌液に濃塩酸を添加したところ、セライト、活性アルミナ及び活性炭に銀イオンを担持させた場合には、全量担持には至らず、溶液側に僅かのAgClの沈殿が生じたが、ゼオライトに銀イオンを担持させた場合には、この沈殿は生じず、銀イオンの殆ど総てが吸着剤に担持されたことが判明した。本発明方法の場合には、いずれもAgClの沈殿は生じなかった。このことより、セライト、活性アルミナ及び活性炭に本発明の銀のコロイド粒子を担持させたものと、対照のために銀イオンを担持させたものとの抗菌力の差は、一つには担持された銀の量が関係しているとも考えられるが、ゼオライトを吸着剤として用いた

場合にも抗菌力の差が顕著なことより、本発明と対照例 の抗菌力の差は、担持された銀の量よりもむしろ、担持 された銀の状態によって生じるものであると考えられ る。

【0037】尚、合成ゼオライトに銀のコロイド粒子を 担持させた抗菌剤の、大腸菌及び緑膿菌に対する抗菌力 10 試験を行ったところ、そのMIC値はいずれも62.5であ って、これらの菌に対しても優れた抗菌性を有すること が確認された。

[0038]

【発明の効果】本発明によって、高い抗菌力を有する銀コロイド及び銀粒子並びにその製造法が提供された。本発明の銀コロイド及び銀粒子の抗菌力が従来の抗菌剤のものに比べ格段に優れていることより、本発明の効果は顕著である。