Vesicle traffic system and constraints.

1 Formula variables

Basic notation for the formula we are trying to generate.

- 1. edge = e(i,j,q) There is an qth edge between node i and j.
- 2. dump = d(i,j,q) drop edge(i,j,q) from the graph.
- 3. presence node = n(i,k) kth molecule is present on the node i.
- 4. $active_node = a(i,k)$ kth molecule is active on the node i.
- 5. presence_edge = e(i,j,q,k) There is an qth edge between node i and j with kth molecule present.
- active_edge = b(i,j,q,k) There is an qth edge between node i and j with kth molecule
 active.
- 7. reachability = r(i,j,k,z) Node i and j are reachable with kth molecule present in z steps.
- 8. pairing matrix = p(k,k') Molecule k and k' are pairing molecules in the matrix.
- 9. Type of the Boolean function = sorts (takes k-1 arguments Bool and return Bool)
- 10. Boolean function on nodes Function (fn_m,*sorts)
- 11. Boolean function on edge Function(fe_m,*sorts)

2 Regulation on nodes and edges

Regulation of a model is based on the kind of the model under consideration. for example model 1 (-V 1) has two different arbitrary Boolean function dictating the activity of the molecules on edge and nodes and for variation 3 (-V 3) activity on edge is driven by SNARE-SNARE inhibition.

We have build constraints A0, A1 for these two regulations.

A0: No regulation on nodes.

$$\bigwedge_{i,k} n_{i,k} == a_{i,k}$$

A1: No regulation on edges.

$$\bigwedge_{i,j,q,k} e_{i,j,q,k} == b_{i,j,q,k}$$

A0: Boolean regulation on nodes. Activity of a molecule k on a node is defined as a Boolean function of presence of other molecule present on that node.

$$\bigwedge_{i,k} n_{i,k} \supset a_{i,k} == f_n[k](\bigvee_{k'!=k} n_{i,k'})$$

A1: Boolean regulation on edges. Activity of a molecule k on a node is defined as a Boolean function of presence of other molecule present on that node.

$$\bigwedge_{i,j,q,k} e_{i,j,q,k} \supset b_{i,j,q,k} == f_e[k](\bigvee_{k'!=k} e_{i,j,q,k'})$$

A1: SNARE-SNARE inhibition. Inhibition of the edges are driven by the pairing matrix.

$$\bigwedge_{i,j,q,k} (e_{i,j,q,k} \wedge [(\bigvee_{k'} p_{k,k'} \wedge \bigwedge_{k'!=k} p_{k,k'} \supset e_{i,j,q,k'})]) \supset \neg b_{i,j,q,k})$$

$$\bigwedge_{i,j,q,k} (e_{i,j,q,k} \wedge \neg [(\bigvee_{k'} p_{k,k'} \wedge \bigwedge_{k'!=k} p_{k,k'} \supset e_{i,j,q,k'})]) \supset b_{i,j,q,k})$$

3 Basic constraints on the edges and nodes

The edge labels are subset of the node label of source and target compartment.

C0: The edge labels are subset of the node label of source compartment.

$$\bigwedge_{i,j,k} e_{i,j,k} \supset a_{i,k}$$

C1: The edge labels are subset of the node label of target compartment.

$$\bigwedge_{i,q} e_{i,j,k} \supset a_{j,k}$$

C2: Self edges are not allowed.

$$\bigwedge_{i,q} \neg e_{i,i,q}$$

C4: Condition on p_kk'. Diagonal blocks should be all 0's.

$$\bigwedge_{(x < M/2 \, \land \, y < M/2) \vee (x > = M/2 \land y > = M/2)} \neg p(x,y)$$

C5: Activity on the node. A molecule should be present to be active on a node.

$$\bigwedge_{i,k} a_{i,k} \supset n_{j,k}$$

4 Main constraints

Main constraints to be followed.

F0: An edge has to have one present molecule. F0 looks redundant.

$$\bigwedge_{i,j,q} \bigvee_{k} e_{i,j,q,k} \supset e_{i,j,q}$$

F1: If molecule is active on an edge then it should be present on the edge.

$$\bigwedge_{i,j,q,k} b_{i,j,q,k} \supset e_{i,j,q,k}$$

5 Steady state specification

Each molecule leaving the node on a vesicle should come back to its source node in a cycle, i.e., for every molecule leaving the node there exists a cycle with that molecule present on each of the edges and nodes of the path taken.

5.1 Reachability definition and stability condition

If molecule is active on an edge then it should be present on the edge.

F3: stability condition. Source node is reachable by target node with that molecule present in p steps.

$$\bigwedge_{i,j,k} (\bigvee_{q} e_{i,j,q,k}) \supset (r_{j,i,k,0} \vee r_{j,i,k,1} \vee \ldots \vee r_{j,i,k,p})$$

F2: Reachability definition.

$$\bigwedge_{i,j,k,p} r_{i,j,k,p} \supset (\bigvee_{q} \ e_{i,j,q,k} \lor \bigvee_{i \neq i'} (\bigvee_{q} e_{i,i',q,k}) \land r_{i',j,k,p-1})$$

6 Fusion rule Formula

Fusion rules consist of two different mechanisms.

- 1. A **SNARE** pairing mechanism which determines compatible Q-R pairs on vesicles and compartments that can cause fusion.
- 2. **Regulatory mechanisms** on edges and on nodes (possibly distinct) which regulate SNARE activity based on the presence/absence of other molecules on the corresponding node or edge.

F4: For an edge to be valid, at least one SNARE pair on the vesicle and target compartment must be active, and have a non-zero entry in the pairing matrix.

$$\bigwedge_{i,j,q} e_{i,j,q} \supset \bigvee_{k,k'} (b_{i,j,q,k} \wedge a_{j,k'} \wedge p_{k,k'})$$

F5: To ensure that fusion respects the graph structure by the edge under consideration, it should not be possible to fuse with any other node.

$$\bigwedge_{i,j,k} b_{i,j,k} \supset \neg \bigvee_{j \neq j',k''} (a_{j',k''} \land p_{k,k''})$$

7 Connectivity

To check the whether that n connected is necessary condition, we remove (drop) n edges from the graph and if it disconnects the graph and we get an assignment we have a n connected satisfying graph. We can go down or up using -C $_{-}$ option.

D0: Only present edges can be dropped.

$$\bigwedge_{i,j,q} d_{i,j,q} \supset e_{i,j,q}$$

D1,D2: We are dropping c edges from the graph. exactly c are dropped.

$$\sum_{i,j,q} d_{i,j,q} == c$$

D3: Graph becomes disconnected. Ensure that there is no path between some nodes i,j in the underlying undirected graph. Different reachability.

$$\bigwedge_{i,j} \neg (r'_{i,j} \vee r'_{j,i})]$$

D4: New reachability definition for grph connectedness: dReachable. Node i,j are reachable either if there is a direct edge and its not dropped. Or there is an node i' such that, there is a direct edge between i,i' which is not dropped and i' and j is dReachable.

$$\bigwedge_{i,j} \left[\bigvee_{q} (e_{i,j,q} \land \neg d_{i,j,q}) \lor (\bigvee_{i'!=i} r'(i',j) \land \bigvee_{q} (e_{i,i',q} \land \neg d_{i,i',q}) \right] \supset r'(i,j)$$