Determination of the CKM angle γ in $B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$ decays

Martin Tat Guy Wilkinson Sneha Malde

University of Oxford

B2OC Meeting

4th November 2021

Outline

- 1 Introduction to the CKM angle γ
- 2 Binned γ analysis of the $D \to K^+K^-\pi^+\pi^-$ mode
- Binning scheme

Sneha Malde

- Backgrounds
- 6 Global fit
- Binned CP fit
- 8 Systematics
- Summary and conclusion

γ and the unitary triangle

• Unitarity of CKM matrix: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \implies$

$$\gamma = \mathrm{arg} \Big(- \frac{\mathit{V_{ud}} \mathit{V_{ub}^*}}{\mathit{V_{cd}} \mathit{V_{cb}^*}} \Big)$$

- Only CKM angle accessible at tree level ⇒
 - Negligible theoretical uncertainties
 - Ideal Standard Model benchmark

Sneha Malde

Compare with indirect measurements

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005)

3/59

Sensitivity through interference

- ullet Superposition of D^0 and $ar{D^0}$
- ullet b o uar cs and b o car us interference o Sensitivity to γ

$$\mathcal{A}(B^{-}) = \mathcal{A}(D^{0}) + r_{B}e^{i(\delta_{B}-\gamma)}\mathcal{A}(\bar{D^{0}})$$

$$\mathcal{A}(B^{+}) = \mathcal{A}(\bar{D^{0}}) + r_{B}e^{i(\delta_{B}+\gamma)}\mathcal{A}(D^{0})$$

Binned measurement of γ

- Enhance sensitivity through binning of phase space
- Need strong phases of D decay \rightarrow Measure at BESIII!
- LHCb-PAPER-2020-019: $B^\pm \to D h^\pm$, $D \to K_S^0 h^+ h^-$
 - Single most precise measurement: $\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$

The $D \to K^+ K^- \pi^+ \pi^-$ decay

Binned
$$\gamma$$
 analysis of the $D \to K^+K^-\pi^+\pi^-$ mode

The $D \to K^+K^-\pi^+\pi^-$ decay

Measurement of γ from $B^{\pm} \to DK^{\pm}$, $D \to K^+K^-\pi^+\pi^-$

- First proposed by J. Rademacker and G. Wilkinson
 - arXiv:hep-ph/0611272
 - Amplitude model by FOCUS
 - Expected γ precision with 1000 candidates: 14 $^{\circ}$
- CLEO amplitude analysis
 - arXiv:1201.5716
 - ullet Expected γ precision with 2000 candidates: 11°
- State of the art amplitude analysis by LHCb LHCb-PAPER-2018-041:
 - Used to develop efficient binning scheme in this analysis
 - Final measurement will be model-independent
 - \bullet Poor binning reduces statistical sensitivity \to No bias!

The BPGGSZ method

• $B^{\pm} \rightarrow Dh^{\pm}$ amplitude:

$$\begin{split} \mathcal{A}(B^-) &= \mathcal{A}(D^0) + r_B e^{i(\delta_B - \gamma)} \mathcal{A}(\bar{D^0}) \\ \mathcal{A}(B^+) &= \mathcal{A}(\bar{D^0}) + r_B e^{i(\delta_B + \gamma)} \mathcal{A}(D^0) \end{split}$$

- ullet $\mathcal{A}(D^0)$ and $\mathcal{A}(ar{D^0})$ depend on D phase space
- ullet Strong-phase difference of D^0 and $ar{D^0}$ decays inaccessible at LHCb
- Model-independent measurement: Integrate over bins of phase space

Event yield in bin i

$$N_{i}^{-} = h_{B^{-}} \Big(F_{i} + (x_{-}^{2} + y_{-}^{2}) \bar{F}_{i} + 2 \sqrt{F_{i} \bar{F}_{i}} (x_{-} c_{i} + y_{-} s_{i}) \Big)$$

$$N_{-i}^{+} = h_{B^{+}} \Big(F_{i} + (x_{+}^{2} + y_{+}^{2}) \bar{F}_{i} + 2 \sqrt{F_{i} \bar{F}_{i}} (x_{+} c_{i} + y_{+} s_{i}) \Big)$$

The BPGGSZ method

Event yield in bin i

$$\begin{split} N_i^- &= h_{B^-} \big(F_i + (x_-^2 + y_-^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_- c_i + y_- s_i) \big) \\ N_{-i}^+ &= h_{B^+} \big(F_i + (x_+^2 + y_+^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_+ c_i + y_+ s_i) \big) \end{split}$$

- CP observables:
 - $\mathbf{x}_{\pm}^{DK} = r_{B}^{DK} \cos(\delta_{B}^{DK} \pm \gamma), \quad \mathbf{y}_{\pm}^{DK} = r_{B}^{DK} \sin(\delta_{B}^{DK} \pm \gamma)$ • $\mathbf{x}_{\varepsilon}^{D\pi} = \text{Re}(\xi^{D\pi}), \ \mathbf{y}_{\varepsilon}^{D\pi} = \text{Im}(\xi^{D\pi}) \qquad \left(\xi^{D\pi} = \frac{r_{B}^{D\pi}}{r_{\rho DK}} e^{i(\delta_{B}^{D\pi} - \delta_{B}^{DK})}\right)$
- Fractional bin yield:
 - $\bullet \ F_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}{\sum_i \int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}$
 - Floated in the fit, mostly constrained by $B^\pm o D\pi^\pm$
- Amplitude averaged strong phases from BESIII:

$$c_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \cos(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi |\mathcal{A}(\bar{D^0})|^2}} \quad s_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \sin(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi |\mathcal{A}(\bar{D^0})|^2}}$$

Binning Scheme

Binning scheme

Binning scheme requirements

A binning scheme must satisfy the following:

- Avoid dilution of strong phases when integrating over bins
- Enhance interferences between $B^\pm o D^0 h^\pm$ and $B^\pm o \bar{D^0} h^\pm$ amplitudes

How to bin a 5-dimensional phase space?

- Generate C++ code for LHCb amplitude model using AmpGen¹
- For each B^{\pm} candidate, calculate

$$\frac{A(D^0)}{A(\bar{D^0})} = r_D e^{i\delta_D}$$

• Bin along δ_D and r_D , maximize Q-value to optimize

¹AmpGen by Tim Evans

Binning scheme

2x8 binning scheme for $K^+K^-\pi^+\pi^-$ phase space

Bins i > 0 on top, i < 0 below

Binning scheme

Study of γ precision

- ullet Generate 2000 $B^\pm o DK^\pm$ candidates using LHCb model in AmpGen
- Fit back with same model using AmpGen

Precision of γ in unbinned fit: 11°

Study of γ precision

• Binned fit setup: Optimized 2×8 bins

Sneha Malde

• Fit same AmpGen samples, using c_i , s_i and F_i from LHCb model

Precision of γ in unbinned fit: 12° Consistent with unbinned fit and Q-value

Comparison of binned fit precision with unbinned fit

c_i , s_i and F_i

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 selection

$$B^{\pm} \rightarrow (K^+K^-\pi^+\pi^-)_D h^{\pm}$$
 selection

18 / 59

Samples

- Stripping lines:
 - $\bullet \ Stripping B2D0PiD2HHHHBeauty 2 Charm Line Decision$
 - StrippingB2D0KD2HHHHBeauty2CharmLineDecision
- Data samples: 2011-2018 (2011-2012 not processed yet)
- MC samples: 2011-2018 (excluding 2015), filtered, AmpGen

Initial cuts

Rectangular cuts before BDT

Number	Variable description	Cut
1	DTF converged	True
2	Bachelor momentum	$< 100 {\sf GeV}$
3	Bachelor has RICH	True
4	D invariant mass	[1839.84, 1889.84]MeV
5	B^\pm invariant mass	[5080, 5800]MeV
6	${\mathcal K}^\pm$ daughter PID	> -10
7	π^\pm daughter PID	< 20

Boosted Decision Tree

- BDTG from TMVA Toolkit
- Signal sample: $B^\pm \to DK^\pm$ and $B^\pm \to D\pi^\pm$ MC samples
- Background sample: $B^\pm \to D\pi^\pm$ using $m_{B^\pm}^{\mathsf{DTF}} \in [5800, 7000] \mathsf{MeV}$
- Random, equal sized test and training samples

BDT training results

(a) BDT output

Sneha Malde

(b) BDT output on a logarithmic scale

BDT optimization study

- Run 1: Pick BDT working point at 0.65
- Run 2: Pick BDT working point at 0.75

Sneha Malde

Final cuts

Rectangular cuts after BDT

Number	Variable description	Cut
8	K^{\pm} bachelor PID	> 4
9	π^\pm bachelor PID	< 4
10	Bachelor is muon	False
11	z flight significance	> 2
12	\mathcal{K}^{\pm} PID	> 0
13	K_S^0 mass veto	[477, 507]MeV

Backgrounds

Backgrounds

D semileptonic backgrounds

- $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K(X)I\nu$, $K(X) \rightarrow K\pi\pi$
 - $K_1(1270)$
 - $K_1(1400)$
 - K*(1410)
 - K*(1680)
 - $K_2^*(1430)$
- Single mis-ID: $K\mu\pi\pi \to KK\pi\pi$
- Double mis-ID: $K\pi\pi\mu \to KK\pi\pi$

Sneha Malde

Generate Rapidsim samples, reweight with PIDCalib2

26 / 59

D semileptonic backgrounds

Conclusion: Negligible impact, include in systematics

Sneha Malde

$D o K\pi\pi\pi$ mis-ID background

- $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K\pi\pi\pi$
- Single mis-ID: $K\pi\pi\pi \to KK\pi\pi$
- Triple mis-ID: $\pi\pi K\pi \to KK\pi\pi$

Sneha Malde

Use LHCb MC generated with AmpGen, reweight with PIDCalib2

Figure 9: D invariant mass

$D o K\pi\pi\pi$ mis-ID background

Figure 10: B invariant mass

Conclusion: Negligible impact, include in systematics

$D o K\pi\pi\pi\pi^0$ mis-ID background

- $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K\pi\pi\pi[\pi^0]$
- π^0 not reconstructed \rightarrow Lower D mass
- Single mis-ID: $K\pi\pi\pi \to KK\pi\pi \to \text{Higher } D$ mass
- Generate RapidSim samples, reweight with PIDCalib2

Conclusion: Fix shape from RapidSim, allow yield to float

Global fit

Global fit

Signal parameterisation

- PDF shape parameterization identical to LHCb-ANA-2020-001
- Signal: Gaussian + Modified Cruijff
- Shape fixed from MC, yield and width floated
- Exponential background

Sneha Malde

$$f_{\text{MG}}(m|m_B,\sigma,\alpha_L,\alpha_R,\beta) \propto \begin{cases} \exp\left(\frac{-\Delta m^2(1+\beta\Delta m^2)}{2\sigma^2+\alpha_L\Delta m^2}\right), & \Delta m=m-m_B<0\\ \exp\left(\frac{-\Delta m^2(1+\beta\Delta m^2)}{2\sigma^2+\alpha_R\Delta m^2}\right), & \Delta m=m-m_B>0 \end{cases}$$

Partially reconstructed background

- $B^{\pm} \rightarrow D\pi^{\pm}$:
 - $lackbox{0} B^{\pm} o (D^{*0} o D^0[\pi^0])\pi^{\pm}$
 - ② $B^0 \to (D^{*\mp} \to D^0[\pi^{\mp}])\pi^{\pm}$
 - **3** $B^{\pm(0)} \to D^0[\pi^{0(\mp)}]\pi^{\pm}$
 - **4** $B^{\pm} \to (D^{*0} \to D^0[\gamma])\pi^{\pm}$
- $B^{\pm} \rightarrow DK^{\pm}$:
 - **1** $B^{\pm} \to (D^{*0} \to D^0[\pi^0])K^{\pm}$
 - ② $B^0 \to (D^{*\mp} \to D^0[\pi^{\mp}])K^{\pm}$
 - **3** $B^{\pm(0)} \to D^0[\pi^{0(\mp)}]K^{\pm}$
 - **4** $B^{\pm} \to (D^{*0} \to D^0[\gamma])K^{\pm}$
 - **5** $B_s^0 \to \bar{D^0}[\pi^+]K^-$
 - **1** Mis-ID from partially reconstructed $B^\pm o D\pi^\pm$ channel

Global fit

Figure 11: Global fit of B^{\pm} mass distribution for the DK^{\pm} channel (left) and $D\pi^{\pm}$ channel (right)

- $B^{\pm} \rightarrow DK^{\pm}$ yield: 3543 \pm 75
- $B^{\pm} \rightarrow D\pi^{\pm}$ yield: 47503 ± 260

Binned CP fit

Binned CP fit

Binned CP fit

- Use 2×8 bins
- \bullet c_i and s_i calculated using MC integration of LHCb amplitude model
- Fit for CP observables
- PDF shape parameters fixed from global fit
- Yield of signal, low mass partially reconstructed background and combinatorial background floated
- Fractional yields F_i floated

Sneha Malde

$$\mathcal{R}_{i} = \begin{cases} F_{i}, & i = -8 \\ F_{i} / \sum_{j \geq i}, -8 < i \leq +8 \end{cases}$$

36 / 59

CP observables result: x_{-}^{DK}

CP observables result: y_{-}^{DK}

CP observables result: x_{\pm}^{DK}

CP observables result: y_+^{DK}

CP observables result: $x_{\xi}^{D\pi}$

$\overline{\sf CP}$ observables result: $y_\xi^{D\pi}$

Systematics

Systematics

Sneha Malde

Summary of all systematics

x_{-}^{DK}	y_{-}^{DK}	x_{+}^{DK}	y_+^{DK}	$x_{\xi}^{D\pi}$	$y_{\xi}^{D\pi}$
2.73	3.23	2.38	2.90	4.30	5.27
0.66	1.55	0.32	1.31	1.73	1.03
-0.15	0.05	-0.11	0.03	0.35	-0.25
-0.17	0.03	-0.04	0.01	0.46	-0.18
0.09	0.11	-0.00	-0.18	0.16	0.21
-0.21	-0.05	-0.17	0.01	0.37	-0.11
0.05	-0.09	-0.05	-0.18	0.41	-0.48
0.03	0.03	0.02	0.02	0.04	0.01
0.02	0.03	0.02	0.02	0.01	0.01
0.03	0.03	0.02	0.02	0.04	0.01
0.19	0.03	0.16	-0.04	0.30	-0.16
0.39	0.17	0.27	0.26	0.87	0.64
0.76	1.55	0.41	1.33	1.93	1.21
	2.73 0.66 -0.15 -0.17 0.09 -0.21 0.05 0.03 0.02 0.03 0.19 0.39	2.73 3.23 0.66 1.55 -0.15 0.05 -0.17 0.03 0.09 0.11 -0.21 -0.05 0.05 -0.09 0.03 0.03 0.02 0.03 0.03 0.03 0.19 0.03 0.39 0.17	2.73 3.23 2.38 0.66 1.55 0.32 -0.15 0.05 -0.11 -0.17 0.03 -0.04 0.09 0.11 -0.00 -0.21 -0.05 -0.17 0.05 -0.09 -0.05 0.03 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.19 0.03 0.16 0.39 0.17 0.27	2.73 3.23 2.38 2.90 0.66 1.55 0.32 1.31 -0.15 0.05 -0.11 0.03 -0.17 0.03 -0.04 0.01 0.09 0.11 -0.00 -0.18 -0.21 -0.05 -0.17 0.01 0.05 -0.09 -0.05 -0.18 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.19 0.03 0.16 -0.04 0.39 0.17 0.27 0.26	2.73 3.23 2.38 2.90 4.30 0.66 1.55 0.32 1.31 1.73 -0.15 0.05 -0.11 0.03 0.35 -0.17 0.03 -0.04 0.01 0.46 0.09 0.11 -0.00 -0.18 0.16 -0.21 -0.05 -0.17 0.01 0.37 0.05 -0.09 -0.05 -0.18 0.41 0.03 0.03 0.02 0.02 0.04 0.02 0.03 0.02 0.02 0.01 0.03 0.03 0.02 0.02 0.04 0.19 0.03 0.16 -0.04 0.30 0.39 0.17 0.27 0.26 0.87

c_i and s_i systematic uncertainty

- Originate from (mostly statistical) uncertainty of c_i and s_i in BESIII analysis
- By far the largest systematic uncertainty
- Take uncertainties from $D \to 4\pi$ strong phase analysis and extrapolate to 20 fb $^{-1}$
- Smear c_i and s_i and do many fits to data

Remaining systematic uncertainties

- For these systematics, generate toy datasets, fit with default model and take the bias as a systematic:
 - Small backgrounds $(D \to K(X) l \nu_l, D \to K \pi \pi \pi, \Lambda_b)$
 - Bin dependent mass shape
 - Low mass physics effects
- For these systematics, do multiple fits to data while smearing parameters:
 - Mass shape
 - Fixed yield fractions

Sneha Malde

- PID efficiency
- Fit bias: From toys

Efficiency difference between $B^{\pm} \to DK^{\pm}$ and $B^{\pm} \to D\pi^{\pi}$

Conclusion: More or less identical phase space acceptance, no systematic uncertainty considered

Efficiency correction of c_i and s_i

Need to reweight events to account for efficiency differences between AmpGen samples and LHCb MC

Efficiency correction of c_i and s_i

After reweighing, use weights to recalculate c_i and s_i Conclusion: Efficiency correction of c_i and s_i is an order of magnitude smaller than their uncertainties, no systematic uncertainty considered

Sneha Malde

Summary and conclusion

Summary and conclusion

Interpretation in terms of γ

Measured CP observables:

$$\begin{split} x_{-}^{DK} &= (x.x \pm 2.7 \pm 0.4 \pm 0.7) \times 10^{-2}, \\ y_{-}^{DK} &= (x.x \pm 3.2 \pm 0.2 \pm 1.6) \times 10^{-2}, \\ x_{+}^{DK} &= (x.x \pm 2.4 \pm 0.3 \pm 0.3) \times 10^{-2}, \\ y_{+}^{DK} &= (x.x \pm 2.9 \pm 0.3 \pm 1.3) \times 10^{-2}, \\ x_{\xi}^{D\pi} &= (x.x \pm 4.3 \pm 0.9 \pm 1.7) \times 10^{-2}, \\ y_{\xi}^{D\pi} &= (x.x \pm 5.3 \pm 0.6 \pm 1.0) \times 10^{-2}, \end{split}$$

- Note: Currently CP observables are determined using c; and s; from the LHCb model
- Publication strategy: Publish current results together with binned vields \rightarrow Redo fit to obtain model-independent CP observables once c; and s; from BESIII are available

Interpretation in terms of γ

• Interpret in terms of physics parameters:

$$\begin{split} \gamma &= (x.x_{-15}^{+14})^{\circ}, \\ \delta_B^{DK} &= (x.x_{-14}^{+15})^{\circ}, \\ r_B^{DK} &= x.x_{-0.018}^{+0.019}, \\ \delta_B^{D\pi} &= (x.x_{-63}^{+117})^{\circ}, \\ r_B^{D\pi} &= x.x_{-0.0024}^{+0.0052}. \end{split}$$

Bonus measurement

- The mode $B^\pm o Dh^\pm$, $D o \pi^+\pi^-\pi^+\pi^-$ very similar
- Run this through <u>same</u> selection (including BDT)
- Can measure GLW CP observables as additional constraints on γ :

$$A_{h} = \frac{\Gamma(B^{-} \to Dh^{-}) - \Gamma(B^{+} \to Dh^{+})}{\Gamma(B^{-} \to Dh^{-}) + \Gamma(B^{+} \to Dh^{+})},$$

$$R_{\text{CP}} = \frac{R(4\pi)}{R(K3\pi)},$$

$$R = \frac{\Gamma(B \to DK)}{\Gamma(B \to D\pi)}.$$

ullet $B^\pm o Dh^\pm$, $D o K\pi\pi\pi$ yields provided by Tim Evans

Global fit of $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$

Compare with PDG: 3.06 ± 0.16

Thank you!

Thank you!

Sneha Malde

55 / 59

Backup

Backup

Trigger requirements

Run 1 trigger	(Bu_LOGlobal_TIS or Bu_LOHadronDecision_TOS)
requirements	and (Bu_Hlt1TrackAllLODecision_TOS)
	and (Bu_Hlt2Topo2BodyBBDTDecision_TOS or
	Bu_Hlt2Topo3BodyBBDTDecision_TOS or
	Bu_Hlt2Topo4BodyBBDTDecision_TOS or
	Bu_Hlt2IncPhiDecision_TOS)
Run 2 trigger	(Bu_LOGlobal_TIS or Bu_LOHadronDecision_TOS)
requirements	and (Bu_Hlt1TrackMVADecision_TOS or
	Bu_Hlt1TwoTrackMVADecision_TOS)
	and (Bu_Hlt2Topo2BodyDecision_TOS or
	Bu_Hlt2Topo3BodyDecision_TOS or
	Bu_Hlt2Topo4BodyDecision_TOS or
	Bu_Hlt2IncPhiDecision_TOS)

BDT training variables

Name	Rank (%)	Description
log(DO_RHO_BPV)	7.7	D radial distance to beamline
log(Bu_FDCHI2_OWNPV)	6.3	B^\pm flight distance χ^2
log(Bu_RHO_BPV)	6.1	B^\pm radial distance to beamline
log(Bach_PT)	6.1	Bachelor transverse momentum
Bu_PTASY_1.5	5.3	B^\pm asymmetry parameter
log(1-D0_DIRA_BPV)	5.0	Angle between PV and $\it D$
log(Bu_IPCHI2_OWNPV)	4.8	B^\pm impact parameter χ^2
log(1-Bu_DIRA_BPV)	4.7	Angle between PV and B^\pm
log(h[1,2]_PT)	4.4	${\it K}^{\pm}$ transverse momentum
Bu_MAXDOCA	4.4	B^\pm distance of closest approach
log(Bach_IPCHI2_OWNPV)	4.1	Bachelor impact parameter χ^2

BDT training particles

Name	Rank (%)	Description
log(Bu_constDOPV_DO_P)	3.7	D momentum from DTF
log(D0_VTXCHI2D0F)	3.3	$D0$ vertex fit χ^2
log(h[3,4]_IPCHI2_OWNPV)	3.3	π^{\pm} impact parameter χ^2
log(DO_IPCHI2_OWNPV)	3.2	D impact parameter χ^2
log(h[3,4]_PT)	3.2	π^{\pm} transverse momentum
log(Bu_PT)	2.8	B^\pm transverse momentum
log(h[1,2]_P)	2.8	K^{\pm} momentum
log(Bach_P)	2.7	Bachelor momentum
log(Bu_constDOPV_P)	2.6	B^\pm momentum from DTF
log(h[1,2]_IPCHI2_OWNPV)	2.5	K^\pm impact parameter χ^2
DO_MAXDOCA	2.5	D distance of closest approach
log(Bu_VTXCHI2DOF)	2.0	B^{\pm} vertex fit χ^2
log(h[3,4]_P)	1.9	π^{\pm} momentum