Lab 8: Temporal Difference Learning

Lab Objective:

In this project, you are going to build a AI to play 2048 through reinforcement learning, TD(0). This AI should be able to improve its performance on 2048 through played game sequences/experiences. The output of the AI would be the Q(s,a) of the input state s.

Lab Description:

- Reinforcement Learning is a computational approach to learning from interaction and is focus on goal-directed learning.
- Agent-Environment Interaction Framework
 - Agent: The learner and decision-maker.
 - Environment: The thing it interacts with, comprising everything outside the agent.
 - State: whatever information is available to the agent.
 - Reward: single numbers.

- Temporal Difference Learning(TD-Learning) is a kind of reinforcement learning and is able to adjust weights automatically.
 - The goal of TD-Learning is to predict the actual return R_t
 - The way is adjust the weights is through: $V(s_t) = V(s_t) + \alpha (R_t V(s_t))$
 - TD(0): $V(s_t) = V(s_t) + \alpha(r_{t+1} + V(s_{t+1}) V(s_t))$
- According to [1], because 2048 is a stochastic game (random tile generation after player's move). Training by afterstate is a better choice. Please Check *Methodology* section for details.
- Please hand in your source code and report, and demo to TAs.

Game Environment – 2048:

- Introduction: 2048 is a single-player sliding block puzzle game. The game's objective is to slide numbered tiles on a grid to combine them to create a tile with the number 2048.
- Actions: Up, Down, Left, Right

• Reward: The score is the value of new tile when two tiles are combined.

2048

• A sample of two-step state transition

Implementation Details:

- Learning Rate:
 - Start with: 0.0025
 - Train 400k~500k per tuple configuration
- Tuples: 4 tuples

4 (1)

	2	4
	4	
2		32
2	2	16

4 (2)

6 (1)

	2	4
	4	
2	16	32
2	2	16

■ 6 (2)

	2	4
	4	8
2	16	32
2	2	16

Requirements:

- 1. Set tuples
- 2. Finish AI::get_best_move().
 - 0 up, 1 right, 2 down, 3 left
- 3. Finish AI::update_tuple_values().
 - Note: Pay attention to terminal states.
- 4. Try different tuple settings.

Functions:

- state::move(int *dir*) move the game board according to *dir* and save the reward in private member variable *reward*. Note: When the *dir* is illegal (cannot not be executed), the return value would be -1.
- state::get_reward() return the reward when the action applied.
- state::evaluate_score() evaluate the board score by the value of tuples.
- feature::list().push_back(new pattern<N>(TILE INDEXES)) set the size and the shape of a tuple
 - Tile index:

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

• Save and Load tuple weights. (Please check code for detail)

Methodology:

A pseudocode of a game engine

```
function PLAY GAME

score \leftarrow 0

s \leftarrow INITIALIZE GAME STATE

while IS NOT TERMINAL STATE(s) do

a \leftarrow \underset{a' \in A(s)}{\operatorname{argmax}} \quad \text{EVALUATE}(s, a')

r, s', s'' \leftarrow \text{MAKE MOVE}(s, a)

score \leftarrow score + r

s \leftarrow s''

if LEARNING ENABLED then

LEARN EVALUATION(s, a, r, s', s'')

return score
```

TD(0)-afterstate

```
function EVALUATE(s, a)
s', r \leftarrow \text{COMPUTE\_AFTERSTATE}(s, a)
\text{return } r + V(s')
function LEARN EVALUATION(s, a, r, s', s'')
a_{next} \leftarrow \underset{a' \in A(s'')}{\operatorname{argmax}} EVALUATE(s'', a')
s'_{next}, r_{next} \leftarrow COMPUTE \ AFTERSTATE(s'', a_{next})
V(s') \leftarrow V(s') + \alpha(r_{next} + V(s'_{next}) - V(s'))
```

Scoring Criteria:

- Winning (reach 2048) rate in 10000 games. (50%)
- Report
 - Describe how you implement AI::get_best_move() (15%)
 - Describe how you implement AI::update_tuple_values() (15%)
 - Statistic charts include following data
 - ◆ Winning rate and average score of standard tuple setting with 0.0025 learning rate (10%)
 - ◆ Winning rate and average score of your tuple setting with learning rate 0.0025 (10%)
 - Discussion (Reinforcement Learning, TD) (5%)

References:

- [1] Szubert, Marcin, and Wojciech Jaśkowski. "Temporal difference learning of N-tuple networks for the game 2048." 2014 IEEE Conference on Computational Intelligence and Games. IEEE, 2014.
- [2] Kun-Hao Yeh, I-Chen Wu, Chu-Hsuan Hsueh, Chia-Chuan Chang, Chao-Chin Liang, and Han Chiang, Multi-Stage Temporal Difference Learning for 2048-like Games, accepted by IEEE Transactions on Computational Intelligence and AI in Games (SCI), doi: 10.1109/TCIAIG.2016.2593710, 2016.