Correction IE1 « formative » Chimie 2A du 9 novembre 2020

Question							
Ex. 1	Synthèse industrielle de l'éthanol						
A.1.	$\Delta_{\rm r} H_{298}^0 = -235$	0,5					
		$\Delta_{\rm r} S_{298}^0 = 282,7 - 188,8 - 219,5 = -125,6 {\rm J.K^{-1}.mol^{-1}}$					
		$\frac{1}{1298} = \Delta_{\rm r} H_{298}^{0} - T\Delta_{\rm r} S_{298}^{0} = -46000 + 298 \times 125, 6 = -8571, 2 \text{ J.mol}^{-1}$ $\frac{1}{1298} = -8,57 \text{ kJ.mol}^{-1}$					
A.2.	$\Delta_{\rm r}G_{573}^0 = -460$	$\frac{0}{573} = -46000 + 573 \times 125,6 = 25968,8 \text{ J.mol}^{-1}$					
	$K_{(573)}^0 = \exp(-\frac{1}{2})$	0,5					
	$0,25/0,5$ si ΔG_{57} Les capacités th	ermiques ne soi			aleur cohérente	0,5	
A.3.	Influence de la t $\Delta r H^0 < 0 \Rightarrow$ la r de la températur l'éthanol \Rightarrow sens diminuer la tem	0,5					
	Influence de la pression Une augmentation de la pression déplace l'équilibre dans le sens qui s'accompagne d'une diminution de la quantité de gaz $(\Delta n_{gaz} = -1) \Rightarrow$ sens (1) Choix des conditions expérimentales						
	Une pression éle élevée diminue (Pour info : la te	<u>le rendement</u> . Empérature de 3	2*0,25				
B.1	v = N - r - r' + p à 573 K). Le sys (Paramètres inte	0,5 0,5					
	$P = P_{C2H4} + P_{H2O} + P_{CH3CH2OH}$ $P_{C2H4} = P_{H2O}$						
	$K_P = \frac{P_{CH_3CH_2C}}{P_{C_2H_4}.P_H}$	0,25					
	Il y a (5-2) inconnues (p et T fixées) et 3 équations \Rightarrow v = 5-2-3 = 0						
B.2		C_2H_4	H ₂ O	CH ₃ CH ₂ OH	Total	0,5	
	E.I.	n_0	n ₀	0	2 n ₀		
	équilibre	n_0 - ξ_e	n_0 - ξ_e	$\xi_{ m e}$	$2 n_0 - \xi_e$		
	P _i	$\frac{n_0 - \xi_e}{2n_0 - \xi_e} P$	$\frac{n_0 - \xi_e}{\frac{n_0 - \xi_e}{2n_0 - \xi_e}} P$	$\frac{\xi_{\rm e}}{2n_0 - \xi_{\rm e}} P$	P	3*0,25 pour les Pi	
	$n_0 = 2 \text{ mol}$						
	$K_{P} = \frac{P_{CH_{3}CH_{2}OH}}{P_{C_{2}H_{4}}.P_{H_{2}O}} = \frac{\xi_{e}P(4-\xi_{e})^{2}}{(4-\xi_{e})(2-\xi_{e})^{2}P^{2}} = \frac{\xi_{e}(4-\xi_{e})}{(2-\xi_{e})^{2}P} = 3,4.10^{-3} \text{ bar}^{-1}$						
	$4.K_{P}.P - 4.K_{P}.P.\xi_{e} + K_{P}.P.\xi_{e}^{2} = 4.\xi_{e} - \xi_{e}^{2}$						

	$(K_P.P + 1).\xi_e^2 - 4.(K_P.P + 1).\xi_e$	0,5
	$\begin{vmatrix} 1,238.\xi_e^2 - 4,952.\xi_e + 0,952 = 0 \\ \Delta = 4,952^2 - 4 \times 1,238 \times 0,952 = 0 \end{vmatrix}$	0,5
В.3	$r = \frac{\xi}{2} = \frac{0,202}{2} = 0,101$	2*0,25
B.4	Les quantités à l'équilibre sont	2*0.5
	$n (C_2H_4) = n (H_2O) = 2 - \xi_e = 1,$ $n (C_2H_5OH) = \xi_e = 0,202 \text{ mol}$	2*0,5
	$\ln (C_2\Pi_5O\Pi) = \zeta_e = 0,202 \text{ mor}$	
	A l'équilibre	
	Après ajout et avant évolution	2*0,25
	$Q = \frac{P_{\text{CH}_3\text{CH}_2\text{OH}}.P^0}{P_{\text{C}_2\text{H}_4}.P_{\text{H}_2\text{O}}} = \frac{0,202.P}{4,798}$	0,5
	$ \begin{array}{c} Q < K^{\circ} \Rightarrow \Delta_r G_{T,P,\xi} = RT. \ li \\ de \ la \ formation \ de \ l'éthanol \ (se \\ \hline 1,00/2,00 \ si \ \xi \ faux \ mais \ raison \end{array} $	0,5

Question		Barème				
Ex. 2	Oxydation du	8,00				
1	ΔrH° ₂₉₈ formule	0,5				
	A.N. : = -1255 kJ	0,5				
2	Formule : ∆rU° 298	0,5				
	A.N. :	0.5				
	Δ n gaz = -2,5 mg	0,5 0,5				
3	ΔrU° ₂₉₈ = -1255.10	,				
3	$\Delta rU^{\circ}_{298}+\Sigma C_{V}dT=0$	1,0				
	Cas 1 : 4 x 0,25	tableau bilan				1,0
		V	O ₂	V ₂ O ₅	N ₂	
	état initial	0,2	0,4	0	1,6	
	état final	0	0,15	0,1	1.6	
	$\Sigma C_{V}dT = (0,1*122)$					
	$=> T_f = = 2928,2$	1,0				
	1 pt ou 0,5 si cal					
4	i pt ou o,o si cai	icui iait avec	298 Piuto	t que Ai O 29	<u>o</u>	
,	$\Sigma C_{\text{apacité colo}} dT = 0$	0.1*122.0 +0.1	5*20.8+836+	+1.6*20.1)(T _f	-298)	
	=> Tf = 439,4 K	1.0				
	1 pt ou 0,5 si cal					
	$n_f = 1,6 (N_2)+0,15$	0,5				
	$P_{\text{finale}} = n_f * 8.314 * 4$					
				,	<u>-</u>	1,0
	1 pt ou 0,5 si cal					