Lab 2: Current Flow in the Bipolar Junction Transistor

ELEC 3908 A-A3

Name: Youssef Ibrahim

Date Performed: 20 - November - 2020

3.0 EXPERIMENT

3.1 Ebers-Moll Parameters of BC Junction

3.2 Ebers-Moll Parameters of BE Junction

3.3 Forward and Reverse Current Gains

• 3.3 Forward Current Gain

• 3.3 Reverse Current Gain

3.4 BJT I-V Characteristics

• NPN I-V Characteristics 0V to 5V

• NPN I-V Characteristics -2V to 5V

• NPN I-V Characteristics -2V to 5V VAF = 5

• PNP I-V Characteristics 0V to 5V

• PNP I-V Characteristics -2V to 5V

• PNP I-V Characteristics -2V to 5V VAF=5

3.5 Plots in MatLab

• Ebers-Moll Parameters of BC Junction

• Ebers-Moll Parameters of BE Junction

• NPN I-V Characteristics

• NPN I-V Characteristics -2V to 5V

• NPN I-V Characteristics -2V to 5V VAF = 5

• PNP I-V Characteristics 0V to 5V

• PNP I-V Characteristics -2V to 5V

• PNP I-V Characteristics -2V to 5V VAF = 5

4.0 DATA ANALYSIS

4.1 Parameter Extraction

•
$$ln(I_C)$$
 vs V_{BC} :

$$\frac{n_c kT}{q} = \frac{1}{Slope} = \frac{1}{38.6635} = 0.02586$$

$$n_c = \frac{0.02586}{0.0259} = 0.9986$$

$$ln(I_{Cs}) = -36.8315$$

$$I_{Cs} = 1 \times 10^{-16} \text{ A}$$

•
$$ln(I_E)$$
 vs V_{BE} :

$$\frac{n_E kT}{g} = \frac{1}{Slone} = \frac{1}{38.6635} = 0.02586$$

$$n_E = \frac{0.02586}{0.0259} = 0.9986$$

$$ln(I_{ES}) = -37.5147$$

$$I_{Es} = 5.1 \times 10^{-17} \text{ A}$$

	Forward	Reverse
Alpha(α)	0.9901	0.5
$Beta(\beta)$	100	1

•
$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}$$
; $\beta_R = \frac{\alpha_R}{1 - \alpha_R}$; $\alpha_F = 0.9901$; $\beta_F = 100$; $\alpha_R = 0.5$; $\beta_R = 1$

$$\alpha_F = \frac{\beta_F}{1 + \beta_F} = \frac{100}{1 + 100} = 0.9901$$

$$\alpha_R = \frac{\beta_R}{1 + \beta_R} = \frac{1}{1 + 1} = 0.5$$

$$1 = \frac{\alpha_F}{\beta_F} + \alpha_F$$
; $1 = \frac{\alpha_R}{\beta_R} + \alpha_R$

$$\frac{\alpha_F}{\beta_F} + \alpha_F = \frac{\alpha_R}{\beta_R} + \alpha_R$$

$$\frac{\alpha_F}{\beta_F} + \alpha_F = \frac{0.9901}{100} + 0.9901 = 1$$

$$\frac{\alpha_R}{\beta_R} + \alpha_R = \frac{0.5}{1} + 0.5 = 1$$

Hence, α_F , β_F , α_R , and β_R are all related by the equation shown above.

V_{BE}	V_{BC}	Sim. I_C	Calc. I _C	%	Sim. I_B	Calc. I _B	%
				error			error
0	0.602	-1.30x10 ⁻⁶	-1.28x10 ⁻⁶	1.54	6.50×10^{-7}	6.42x10 ⁻⁷	1.23
0	0.606	-1.50x10 ⁻⁶	-1.50x10 ⁻⁶	0.00	7.60×10^{-7}	7.49x10 ⁻⁷	1.45
0	0.609	-1.70x10 ⁻⁶	-1.68x10 ⁻⁶	1.18	8.45x10 ⁻⁷	8.41x10 ⁻⁷	0.47

$$\begin{split} I_C &= \alpha_F I_{ES} \left(e^{\frac{qV_{BE}}{n_E k T}} - 1 \right) - I_{CS} \left(e^{\frac{qV_{BC}}{n_C k T}} - 1 \right) \\ I_C &= 0.9901 * 5.1 * 10^{-17} (e^{38.6635*0} - 1) - 10^{-16} (e^{38.6635*0.602} - 1) \\ I_C &= -1.28 \times 10^{-6} \text{ A} \\ I_B &= (1 - \alpha_F) I_{ES} \left(e^{\frac{qV_{BE}}{n_E k T}} - 1 \right) + (1 - \alpha_R) I_{CS} \left(e^{\frac{qV_{BC}}{n_C k T}} - 1 \right) \\ I_B &= (1 - 0.9901) 5.1 * 10^{-17} (e^{38.6635*0} - 1) + (1 - 0.5) * 10^{-16} (e^{38.6635*0.602} - 1) \\ I_B &= 6.42 \times 10^{-7} \text{ A} \\ \% \text{ error} &= \left| \frac{calculated - simulated}{simulated} \right| * 100 = \left| \frac{(-1.28*10^{-6}) - (-1.30*10^{-6})}{(-1.30*10^{-6})} \right| * 100 = 1.54 \end{split}$$

4.2 Matlab Neural Net Development

NPN I-V Characteristics NN Model

NPN I-V Characteristics -2 to 5V VAF=5 NN Model

4.3 Discussion Question

- NPN is used more often than PNP since the NPN has e⁻ as its majority carriers but PNP has holes as its majority carriers. The mobility of e⁻ in NPN is better than hole in PNP, hence NPN is a better choice than the PNP.
- Simulations are usually theory and do not take into consideration, bad calculations or using the formula wrong, or maybe wrong data was mistakenly entered