CS 5/7350 – Test 1 March 8, 2023

Name: _____

•	This exam is closed book and closed notes .				
•	Only the approved TI-30Xa calculator				
•	No cell phones, or other electronics.				
•	Pencil and/or pen only are permitted.				
•	Two Scratch Pages are on the back.				
•	It is 3 hours in duration.				
•	You should have 15 problems. Pay attention to the point value of each problem and dedicate time as appropriate.				
On my honor, I have neither given nor received unauthorized aid on this exam.					
	SIGNED:				
	DATE:				

CS 7350 – Test #1 March 8, 2023

Name:	
ID:	
	[+5 pts CS-5350]

1. [5 pts] Circle the asymptotically larger function OR circle both if they are the same.

a.
$$f(n) = 2n \text{ and } g(n) = 8n$$

f.
$$f(n) = n!$$
 and $g(n) = (n+1)!$

b.
$$f(n) = 2^n \text{ and } g(n) = 3^n$$

g.
$$f(n) = log_{10} n \text{ and } g(n) = log_2 n$$

c.
$$f(n) = n!$$
 and $g(n) = n^n$

h.
$$f(n) = lg(2^n)$$
 and $g(n) = n$

d.
$$f(n) = n^2$$
 and $g(n) = n^3$

i.
$$f(n) = lg(n!)$$
 and $g(n) = n lg(n)$

e.
$$f(n) = \lg (n^2)$$
 and $g(n) = \lg (n^3)$

j.
$$f(n) = \lg(2^n)$$
 and $g(n) = \lg(3^n)$

2. [6 pts] Argue that the problem, S, of sorting an unsorted array of integers is at least as hard-and maybe even harder - than the problem, M, of finding the minimum element of the same unsorted array of integers.

3. [5 pts] Using n_0 equal to 100, find the tightest C_1 and C_2 to show that $f(n) = 7n^2 + 4n + 7$ is $\Theta(n^2)$.

4. [8 pts] Consider the following graph:

- a) Give a Smallest Last Vertex Ordering for the graph where the terminal clique is the largest complete subgraph. Circle the vertex you removed first in your ordering.
- b) Give a Smallest Last Vertex Ordering for the graph where the terminal clique is not the largest complete subgraph. Circle the vertex you removed first in your ordering.
- c) A smallest last ordering for a different graph has a terminal clique of size 15 and a largest degree when deleted of 17.
 - i. As an upper bound, how many colors might be needed for coloring the graph?
 - ii. As a lower bound, how many colors must be required for coloring the graph?

5. [6 pts]Consider the following graph: For any algorithms below requiring a starting vertex, **use vertex H**

- a) What is the value of the third edge chosen when computing the minimum spanning tree with Kruskal's Algorithm
- b) What is the value of the third edge chosen when computing the minimum spanning tree with Prim's Algorithm
- c) What is the value of the minimum spanning tree.
- d) You want to find the shortest path from vertex H to all other vertices. What is the order you reach the other vertices using Dijkstra's Single Source Shortest Path algorithm?
- 6. [6 pts] Describe how you could write an algorithm which uses Dijkstra's Single Source Shortest Path algorithm as a building block to find the shortest path between all pairs of vertices in the graph above.

If Dijkstra's Single Source Shortest Path algorithm had an asymptotically bounded running time of $\Theta(f(n))$, what is the running time of your algorithm?

- 7. [15 pts] Consider three different implementations that each solve a different problem.
 - Implementation X solves Problem Px and Implementation X is $\Theta(n)$
 - Implementation Y solves Problem Py and Implementation Y is $\Theta(2^n)$
 - Implementation Z solves Problem Pz and Implementation Z is $O(n^2)$

•

Determine if each of these "Yes it is true", "Maybe it is true but doesn't have to be", or "No it is not true"

a	Problem Py is harder than Problem Px
b	Implementation Y is harder than Implementation X
c	Problem X is Ω (n)
d	Problem X is ω (n)
e	Problem Z is O (n ³)
f	Problem Z is O (n ²)
g	Problem Y is O (n)
h	Problem X is o (n)
i	Implementation X is Ω (n)
j	Implementation X is ω (n)
k	Implementation X is O (n ⁴)
1	Implementation Z is O (n)
m	Implementation Z is O (n ³)
n	Implementation Z is Ω (n)
0	Implementation Y is O (n)

8.	[6 pts] Answer the following questions:					
	a)	What is the maximum flow between two vertices for a complete graph with V vertices where all edges have a weight of w?				
	b)	What is the maximum flow between two vertices for a tree with $ V $ vertices where all edges have a weight of w ?				
	c)	A complete bi-partite graph $B_{j,k}$ is a graph which has J vertices in one partition and k vertices in another partition and all possible edges present between the partitions. What is the maximum flow between the two partitions for a complete bi-partite graph $B_{j,k}$ where all edges have a weight of 3?				
	d)	What is the weight of a minimum spanning tree for a connected bi-partite graph $B_{j,k}$ where all edges have a weight of 3?				
9.	9. [4 pts] Two people need to establish a secret key for encrypting communications. They agree to use a Diffie-Hellman key exchange with a modulus of 11 and decide on 2 as the base. Person A chooses a random value performs the appropriate computations and sends the value 4 to person B. Person B chooses a random value of 5 and performs the appropriate computations:					
	a.	What is the value Person B sends to Person A				
	b.	What is the shared secret key between Person A and Person B				

10. [8 pts] Consider a Huffman encoding of the following string.		
20 A's, 20 B's, 7 D's, 7 E's, 4 F's, 2 G's, 1 H and 1 K.		
How many bits are in the entire message if each symbol is encoded with 3 bits?		
Create a Huffman encoding of the bits for each symbol:		
How many bits are in the entire Huffman coded message?		
How much entropy is in the entire message?		

11.	[6 pts]	Answer	the	follo	wing	Questions	3:
11.	lo bro	7 1115 W C1	tiic	10110	wing	Questions	٠.

- a. Compute Φ (31*29) _____
- b. Compute 11 ^{Φ (35879)} % 35879 _____
- c. Compute 11 ⁽⁴⁾ (35879) + 1 % 35879 _____

12. [7 pts] Answer the following Questions:

- a. Given that M > 100 and $3^{31} \mod M = 4$; Find $3^{32} \mod M = ______$
- b. Given that M > 100 and $3^{32} \mod M = 4$; Find $3^{64} \mod M = ______$
- c. How much entropy does an entire message with 50A's and 50 B's have?
- d. How much entropy does an entire message with 100A's and 0 B's have?
- e. How much entropy does an entire message with 20 A's, 10 B's, 5 C's and 5 D's have?
- f. Compute 7 mod 11 _____
- g. Compute (½) mod 7 _____
- h. Compute (½) mod 13 _____

13.	[6 pts]	What is	s an algorithm?
11	[[A	she fallowing aveations.
14.	[o pts]	a)	the following questions.: A program requires 9 days to brute force attack a password of 64 bits. Since the running time is Θ (2 ⁿ) about how days would it take for the program to brute force attack a password of 128 bits?
		b)	A program requires 9 days to brute force attack a password of 64 bits. About how days would it take for the program to brute force attack a password of 128 bits if the running were $O(n^2)$ instead of exponential?
15.	$\Theta(n^2)$. 10 time	You wes faster	cular algorithm on a computer requires 3 seconds to process 50 items and is vant to process 4000 items. You have a choice to either use a computer that is a (allowing it to process 50 items in 0.3 seconds) or use the same computer with corithm that still processes 50 items in 3 seconds, but has a growth rate that is
		a)	Which is the faster choice for 4000 items?
		b)	For what input sizes is the faster computer better?
		c)	For what input sizes is the $\Theta(n^2)$ algorithm better?