Final Project Presentation

Maria DeCaro, Erin Lloyd, Courtney Gerard, Gabriel Lucey, Aiden Robinson, and Connor Cluett

Data Mining Problem

- Banks want to predict likelihood of "Defaulting" on loan/credit payments
- What factors increase likelihood a customer defaults?
- What risk is tied to a customer?
- Can the Bank reliably predict the customer will repay their loan?
- Goal: Make a comprehensive machine learning model that can predict who will default on their loan

Dataset Overview

Overview:

Rows: 255, 347Columns: 18

Data Columns

- LoanID: Unique identifier for each loan application
- Age: Applicant's age in years
- o Income: Applicant's income
- LoanAmount: Amount of the loan requested
- o Credit Score: Applicant's credit score
- MonthsEmployed: # of months employed
- NumCreditLines: # of credit lines
- InterestRate: Interest rate on the loan
- LoanTerm: Term of the loan in months
- DTIRatio: Debt-to-income ratio
- Education: Applicant's education level
- EmploymentType: Applicant's employment type.
- MaritalStatus: Applicant's marital status.
- HasMortgage: Whether the applicant has a mortgage.
- HasDependents: Whether the applicant has dependents.
- o LoanPurpose: Purpose of the loan.
- HasCoSigner: Whether the loan has a co-signer.
- o Default: Binary indicator of loan default (1 for default, 0 for non-default).

General Preprocessing Steps

- Check for missing values
 - Nothing missing from our data
- Examined what data type each column was and converted it if needed
 - Categorical data into numeric
- Normalized numeric features using min-max scaling
 - This method scales it to a fixed range between 1 and 0
- Dropped unnecessary columns
 - o Only 1 dropped LoanID
- Saved all of this into a new CSV file

Number of Default instances: 29653 Number of Non-Default instances: 225694 Percentage of Default instances: 11.61% Percentage of Non-Default instances: 88.39%

Dataset Imbalance

- Our dataset has a severe class imbalance
- Why?
 - This dataset reflects the natural distribution of loan outcomes
 - In real world scenarios, defaults are less common compared to successful repayments
- SMOTE
 - Oversampling the minority class

Tried without PCA first

- Uninterpretable Results

Performed K Means clustering with PCA

- 2 clusters
- 5 clusters

Silhouette score for 2 clusters: 0.0317320336106 Silhouette score for 5 clusters: 0.0539852511404

Fails to identify any real patterns due to dataset of

Empty DataFrame

Columns: [antecedents, consequents, antecedent support, consequent support, support, confidence, lift, leverage, conviction, zhangs_metric]

Index: [

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(LoanAmount)	(Income)	0.999996	0.999991	0.999987	0.999991	1.000000	-3.786904e-11	0.999996	-0.000009
1	(Income)	(LoanAmount)	0.999991	0.999996	0.999987	0.999996	1.000000	-3.786904e-11	0.999991	-0.000004
2	(LoanAmount)	(InterestRate)	0.999996	0.999813	0.999809	0.999813	1.000000	-8.141849e-10	0.999996	-0.000187
3	(InterestRate)	(LoanAmount)	0.999813	0.999996	0.999809	0.999996	1.000000	-8.141849e-10	0.999813	-0.000004
4	(InterestRate)	(Income)	0.999813	0.999991	0.999804	0.999991	1.000000	-1.628370e-09	0.999813	-0.000009
			***	***						
95	(LoanAmount)	(DTIRatio, CreditScore)	0.999996	0.991837	0.991832	0.991837	1.000000	-3.552118e-08	0.999996	-0.008163
96	(DTIRatio, CreditScore)	(Income)	0.991837	0.999991	0.991828	0.999991	1.000000	-7.104237e-08	0.991837	-0.000009
97	(DTIRatio, Income)	(CreditScore)	0.993721	0.998098	0.991828	0.998095	0.999997	-3.237180e-06	0.998290	-0.000520
98	(CreditScore, Income)	(DTIRatio)	0.998090	0.993730	0.991828	0.993726	0.999997	-3.275201e-06	0.999477	-0.001726
99	(DTIRatio)	(CreditScore, Income)	0.993730	0.998090	0.991828	0.998086	0.999997	-3.275201e-06	0.998278	-0.000526

Association Rule Mining

- Can generate rules
- No rules are generating with the consequent of a person defaulting or not defaulting
- Data exploded when using One-Hot encoding
- Subsetted the data originally because of run time, but now running with 100% of the data there
 are still no rules being generated
- Could be helpful to understand other relationships in our data but not our business problem

Standard Vector Machine (SVM)

- Data Preprocessing
 - > SMOTE
- Model Performance
 - Accuracy of 75% (with smote)
 - Using a subset of 15% of the overall data
 - Long Runtime
- Model Hyperparameters
 - Kernel: RBF
 - \circ C = 1.0
- Without smote, got a 88% accuracy, but super imbalanced, especially when already using a subset of the data

K-Nearest Neighbors (KNN)

- Without SMOTE
 - o ACC: 88%, F1: .07
- With SMOTE
 - > ACC: 81%. F1: .80
- SMOTE helps to increase F1 score. KNN here also did an exceptional job at predicting if someone will default.

```
Selected Features and their Importance Scores:
Feature Score
Age 991.147593
Income 343.608125
LoanAmount 249.812510
MonthsEmployed 315.319187
InterestRate 574.348579
```

Classification Report:								
	precision	recall	f1-score	support				
0	0.71	0.68	0.70	45127				
1	0.70	0.72	0.71	45151				
accuracy			0.70	90278				
macro avg	0.70	0.70	0.70	90278				
weighted avg	0.70	0.70	0.70	90278				

Logistic Regression

- Without SMOTE
 - o ACC: 89%, F1: .06
- With SMOTE
 - o ACC: 70%. F1: .70
- SMOTE helps to increase F1
 score, but Logistic
 Regression struggle because
 relationships are not
 defined by a boundary

Classification	on Report: precision	recall	f1-score	support
0 1	0.57 0.57	0.57 0.58	0.57 0.57	45127 45151
accuracy macro avg weighted avg	0.57 0.57	0.57 0.57	0.57 0.57 0.57	90278 90278 90278

Multinomial Naive Bayes

- Data Preprocessing
 - > SMOTE
- Model Performance
 - Used GridSearch and still not getting any higher of an accuracy
 - Overall not great accuracy at 57%
- Overall, I think this is just not the best model for this data
- Guassian Naive Bayes may be a better approach!

Gaussian Naive Bayes

- Accuracy was originally 68.08%
- SMOTE helped address the class imbalance and improved the Naive Bayes classifier's performance in predicting loan defaults
- After using Borderline SMOTE the accuracy increased from 72.63% to 74.03%
- Used SMOTE-ENN and got an accuracy around 80%
 - ENN- Edited Nearest Neighbors

Deep Learning

- SMOTE for dataset imbalance
- Attempted RUS and class weights
- ANN Model
- Input Layer with 64 Neurons
- Hidden layer with 32 Neurons
- Output Layer with 1 Neuron
- Adam optimizer to adjust learning rates
- 20 Epochs

Classific	atio	n Report:			
		precision	recall	f1-score	support
	0	0.74	0.75	0.75	45127
	1	0.75	0.74	0.74	45151
accur	acy			0.74	90278
macro	avg	0.74	0.74	0.74	90278
weighted	avg	0.74	0.74	0.74	90278

Deep Learning

Without SMOTE

- Higher Accuracy 0.89
- F1 score for default instances 0.18
- Major Decrease in Validation Accuracy

Classification Report:

CIGOSTITCG		ii ikepoi e.			
		precision	recall	f1-score	support
	0	0.89	0.99	0.94	45170
	1	0.51	0.11	0.18	5900
accura	су			0.89	51070
macro a	vg	0.70	0.55	0.56	51070
weighted a	vg	0.85	0.89	0.85	51070

Gradient Boosting Accuracy: 0.8968630231064046

Gradient Boosting Classification Report:

	precision	recall	f1-score	support
0	0.84	0.98	0.90	45127
1	0.97	0.81	0.89	45151
accuracy			0.90	90278
macro avg	0.91	0.90	0.90	90278
weighted avg	0.91	0.90	0.90	90278

Frequency of Predictions for Gradient Boosting:

- 0 52550
- 1 37728

Gradient Boosting Machine

- Data Preprocessing
 - One-hot encoding
 - SMOTE
- Model Performance
 - Overall High with 89% Accuracy
 - Initial was 8% F1 Score

Accuracy: 0.9222844989920025

Classification Report:

		precision	recall	f1-score	support
	0	0.87	0.99	0.93	45127
	1	0.98	0.86	0.92	45151
accur	racy			0.92	90278
macro	avg	0.93	0.92	0.92	90278
eighted	avg	0.93	0.92	0.92	90278

Frequency of Predictions:

50871

39407

XGBoost

- **Model Training**
 - 100 estimators
 - Log loss evaluation metric
- Accuracy
 - 92% high overall performance
- High Recall Ensure Reliable Identification

Decision Tree

- Without SMOTE
 - ACC: 80%, F1: 55%
- With SMOTE
 - ACC: 85%, F1: 85%
- SMOTE helped to correct the imbalance of Defaulting payments

Classification	Report: precision	recall	f1-score	support
0 1	0.86 0.84	0.83 0.86	0.85 0.85	45127 45151
accuracy macro avg weighted avg	0.85 0.85	0.85 0.85	0.85 0.85 0.85	90278 90278 90278

Accuracy: 0.918219278229469

Classification Report:								
		precision	recall	f1-score	support			
	0	0.91	0.93	0.92	45127			
	1	0.93	0.90	0.92	45151			
				0.02	00270			
accurac	У			0.92	90278			
macro av	g	0.92	0.92	0.92	90278			
weighted av	g	0.92	0.92	0.92	90278			

Random Forest

- Data Preprocessing
 - SMOTE
 - One-hot encoding
- Parameters
 - o 100 trees
- Model Performance
 - 91.8% accuracy

Models Accuracy

With SMOTE

- Support Vector Machines 75%
- Logistic Regression 70%
- Multinomial Naive Bayes 57%
- Gaussian Naive Bayes 80%
- ANN Deep Learning 74%
- Gradient Boosting Machine 90%
- XGBoost 92%
- Decision Tree 85%
- Random Forest 92%

Final Business Insight

- What makes a person default on a loan?
 - Loan Terms
 - Credit Lines
 - Age
 - Employment
 - Type
 - Length of

Thank You!

Any Questions?

