PPRAM Project/Consortium Summary

Kazuaki Murakami

Dept. CS&CE, Kyushu Univ.

http://kasuga.csce.kyushu-u.ac.jp/~ppram

PPRAM Consortium

http://www.k-isit.or.jp/~ppram

Outline

- What is **PPRAM**?
- Why *PPRAM*?
- Status of *PPRAM* Project at Kyushu
- **PPRAM** Consortium

- **PPRAM** (Parallel Processing Random Access Memory) is an *architectural framework*, or *paradigm*, for microprocessor&memorybased computer systems in the near future.
- Technologies which *PPRAM* tries to utilize and exploit include:
 - Merged DRAM/logic LSI technology
 - Parallel/distributed processing technology
 - Standardized high-speed interconnect technology

Technologies **PPRAM** Stands on

Multiple Motivations for *PPRAM*

Goals of **PPRAM** (1 of 2)

Improve *cost/energy/performance* over conventional system organizations by means of the following methods

- Bridge *processor-DRAM performance gap* via low on-chip memory latency and ultra-high on-chip memory bandwidth
 ← Merged DRAM/logic LSI technology
- Improve overall performance beyond *the limit of instruction-level parallelism* via multitasking and multiprocessing
 - Parallel/distributed processing technology

Goals of **PPRAM** (2 of 2)

- Have *PPRAM*-based systems be *scalable with respect to size*, *functionality*, *and performance*, by enabling system designers to make a system of any scale by combining the necessary number and kind of *PPRAM* chips
 - ← High-speed standard interconnect technology
- Improve *energy consumption* of the memory system, by reducing the necessity to drive high-capacitance off-chip buses and by optimizing the number of sense-amplifiers to be activated simultaneously
 - Merged DRAM/logic LSI technology

- Definition of **PPRAM** Node -

PPRAM Node = Application-Specific Logic +
Application-Specific Memory +
Standard Communication

Zero or more

- General-purpose processors, and/or
- Special-purpose processors, and/or
- Application-specific logic, and/or
- FPGA, and/or ...

Zero or more bits of

- DRAM, and/or
- SRAM, and/or
- Flash EEPROM, and/or
- FRAM, and/or ...

- Definition of **PPRAM** Chip -

- Network of **PPRAM** nodes
 - Integrating one or more *PPRAM* nodes on single chip
 - Interconnecting them via the standard network

- Definition of *PPRAM*-Based System -

- Network of *PPRAM* chips
 - Consisting of one or more *PPRAM* chips
 - Interconnecting them via the standard network

Outline

- What is **PPRAM**?
- Why *PPRAM*?
- Status of *PPRAM* Project at Kyushu
- **PPRAM** Consortium

Why **PPRAM**?

- How shall we partition an entire computer system into multiple chips (if a single chip is not enough)?
 - We have divided it into microprocessor and DRAM chips for 25 years
- How shall we turn plenty of transistors into performance ?

How to Partition Entire System into Multiple Chips?

■ Traditional partition into separate microprocessor & DRAM chips

PPRAM partition into unified DRAM/processor chips

How Much Memory Bandwidth Is Required ? (1 of 2)

■ Traditional partition into separate microprocessor & DRAM chips

Required Memory Bandwidth:

$RMB = P \times MPC \times CMR \times LS \times CR$

- -P: number of microprocessor chips
- -MPC: memory accesses per clockcycle
- CMR: cache-miss rate
- LS: cache line size
- -CR: clock rate

Ex.)

$$RMB = 2 \times 1.25 \times 5\% \times 64B \times 500MHz$$
$$= 4GB/s$$

How Much Memory Bandwidth Is Required ? (2 of 2)

PPRAM partition into unified

DRAM/processor chips

Required Memory Bandwidth:

 $RMB = P \times MPC \times PFR \times PS \times CR$

-P: number of **PPRAM** chips

- MPC: memory accesses per clock-cycle

- **PFR** : page-fault rate

-PS: page size

- CR: clock rate

Ex.)

 $RMB = 2 \times 1.25 \times 0.05\% \times 1024B \times 500MHz$

=640MB/s

How to Turn Plenty of Transistors into Performance? (1 of 2)

- Enhance performace of single processors
 - from Simple processor
 - to *Powerful* processor
- Increase the number of processors on a single chip
 - from *Single* processor
 - to *Multiple* processors
- Increase memory size on a chip
 - from the size of SRAM Cache-memory
 - to the size of a whole or part of DRAM *Main-memory*

How to Turn Plenty of Transistors into Performance? (2 of 2)

No. of	Single-Processor	Memory		
Processors	Performance	Size	Approaches	Examples
Single	Simple	Cache-only	SSC	RISC
		M ain-memory	SSM	M32R/D,(Sun)
	P owerful	Cache-only	SPC	Superscalar
		M ain-memory	SPM	IRAM,DataScalar
Multiple	Simple	Cache-only	MSC	TI MVP
		Main-memory	MSM	<i>PPRAM</i> ^R
	P owerful	Cache-only	MPC	Micro2000
		M ain-memory	MPM	-

PPRAM approaches

Three Promising Architectures

- MPC vs. SPM vs. MSM -

Performance Modeling

Program Execution Time:

$$ET = \max_{p} \left(\sum_{t \in T_{p}} IC_{t} \times CPI_{t} \times CCT \right)$$

$$\approx \frac{N}{P} \times IC_{mean} \times CPI \times CCT \propto \frac{CPI}{P}$$

- -p: processor index
- -t: task index
- $-T_p$: set of tasks to be executed by processor p
- $-IC_t$: instruction count on executing task t
- CPIt: clock-cycles per instruction on executing task t

- -N: total number of tasks to be executed
- -P: number of processors
- ICmean: mean instruction count
- *CPI* : clock-cycles per instruction
- *CCT* : clock-cycle time

Performance Comparison Conditions

- MPC vs. SPM vs. MSM -

- **MPC** (Multiple Powerfulprocessors with Cache-only)
- SPM (Single Powerfulprocessor with Mainmemory)
- MSM (Multiple Simpleprocessors with Mainmemory)

Die Size: 389mm² @0.25μm

Die Size: **445mm**² @0.25μm

Die Size: **427mm**² @0.25μm

Performance Comparison Results - MPC vs. SPM vs. MSM -

Performance Advantage of MSM (*PPRAM*^R) over MPC

■ MPC (Multiple Powerfulprocessors with Cache-only)

1.41· Faster ■ MSM (Multiple Simpleprocessors with Mainmemory)

In other words, logic in a hybrid DRAM/logic process has the *performance margin* of 30% (=1-1/1.41) against logic in a logic process

Performance Comparison Results

- Impact of Cache Size -

Performance Comparison Results

- Impact of On-Chip DRAM Size -

Why **PPRAM**?

- Answers -
- How shall we partition an entire computer system into multiple chips (if a single chip is not enough)?
 - Partition into unified DRAM/processor (i.e., *PPRAM*)
 chips
 - ⇒ Relieve inter-chip memory bandwidth requirement
- How shall we turn plenty of transistors into performance?
 - Put DRAM main memory as much as possible
 - ⇒ Reduce off-chip memory access traffic
 - \Rightarrow Exploit ultra-high on-chip memory bandwidth
 - Put multiple simple processors rather than powerful ones
 - \Rightarrow Exploit parallelism at higher-level than instruction-level

How to Turn High On-Chip Memory Bandwidth into Performance

How to Turn High On-Chip Memory Bandwidth into Performance - Cache Refill -

Mitsubishi M32R/D

How to Turn High On-Chip Memory Bandwidth into Performance - Cache Refill-

Sun Microsystems

Performance Evaluation - Sun Microsystems -

How to Turn High On-Chip Memory Bandwidth into Performance - Cache Refill -

■ Kyushu *PPRAM*^R

Performance Comparison Results - Impact of Cache Line Size -

How to Turn High On-Chip Memory Bandwidth into Performance - Load/Store Ops -

UC-Berkeley Vector IRAM

Performance Evaluation - UC-Berkeley Vector IRAM -

How to Turn High On-Chip Memory Bandwidth into Performance

■ PPRAM_{MOE}

- 0.35µm CMOS logic process with 3+ metal layers
- 32b Integer RISC Core+ 76b Floating-pointMul&Add
- 1Mb SRAM
- Die size: 225mm²
- **200MFlop/s@100MHz**

Outline

- What is **PPRAM**?
- Why *PPRAM*?
- Status of *PPRAM* Project at Kyushu
- **PPRAM** Consortium

Status of **PPRAM** Project at Kyushu

PPRAM^R 256-4

- Based on reference PPRAM (PPRAM^R) architecture and PPRAM-Link standard
- Fabricate prototype chip with 256Mb DRAM and 4 media processors using 0.25μm-CMOS hybrid-DRAM/logic process by March 1999

■ PPRAM_{moe}

- Processing node for *MOE* (*Molecular Orbital calculation Engine*), each with 1Mb SRAM, one 32b RISC integer processor, one 64b floating-point multiply&add unit, and *PPRAM-Link* interface
- Collaborate with Fuji Xerox, Taisho Pharmaceutical, other three universities
- Fabricate 0.35μm ASIC chip by March 1998
- Also develop *IEEE1394 PPRAM-Link* bridge chip

Reference PPRAM (PPRAM^R)

PPRAM^R 256-4 @ 0.25μm

$PPRAM_{MOE}$ @ 0.35µm

- 0.35µm CMOS logic process with 3+ metal layers
- 32b Integer RISC Core+ 76b Floating-pointMul&Add
- 1Mb SRAM
- \blacksquare Die size: $225mm^2$
- 200MFlop/s@100MHz

1GFlop/s MOE Board

Outline

- What is **PPRAM**?
- Why **PPRAM**?
- Status of *PPRAM* Project at Kyushu
- **PPRAM** Consortium

PPRAM Paradigm Shift

Issues on Realization of **PPRAM** Paradigm

- > What **PPRAM** nodes/chips shall be made?
- > How shall we design/fabricate/test **PPRAM** chips?
- > How shall we interconnect *PPRAM* chips and make system?
- > What *PPRAM*-based systems shall be made?

- Objectives and Activities -

Objectives

- Solve the following issues on realization of *PPRAM* paradigm:
 - > Primary: How shall we interconnect **PPRAM** chips and make system?
 - > Secondary: How shall we design/fabricate/test **PPRAM** chips?
- Promote the proliferation of *PPRAM* paradigm

Activities

- Define a communication protocol and interface (*PPRAM-Link*)
 optimized for interconnecting *PPRAM* nodes/chips
- Provide an open forum for discussing the secondary issues (design/fabrication/test) to be solved
- Promote industry awareness and acceptance of *PPRAM-Link* standard
- Submit, as appropriate, proposals to national/international standards bodies

Goals of PPRAM-Link

- High-performance and low-cost
 - Performance: >1GB/s per link @2000
 - Cost: <10% of die size @2000</p>
- Communicate via *memory read/write* rather than I/O
 - NUMA (NonUniform Memory Access)
- Support real-time transfer
 - Correspond to isochronous transfer (e.g., IEEE1394)
- Scalable moderately
 - Not an interface for MPP (Massively Parallel Processor)
 - NCC (Non Cache Coherent) NUMA
- Provide hot plug/plug&play
 - Facilitate the usage of *PPRAM* cards

PPRAM-Link Protocol Stack

- Scope of Standardization -

- Organization -

- Statement of Openness -

- Supporting Members committed to open competition
- All Steering Committee meetings open to all Supporting Members and representatives of Associate Members
- Implementation or use of anything proposed by *PPRAM* Consortium is voluntary
- No discrimination: an individual or legal entity interested in promoting *PPRAM* may be a Supporting Member provided they accept the Articles

- Intellectual Property Rights -

- All material presented to *PPRAM* Consortium is considered nonconfidential
- Intellectual property generated through the activities of *PPRAM* Consortium will be licensed on open, reasonable and nondiscriminatory terms (but more favorable pricing to Members)

- Current Supporting Members and Officers -

- Supporting members (as of July 1997)
 - Fuji Xerox, Matsushita, Mitsubishi, NEC,
 Oki, Samsung, SONY, Taito, TI, Toshiba
 - Pending: Fujitsu, Hitachi, NTT, and so on
- Officers
 - Chair: Kazuaki Murakami, Kyushu Univ.
 - Vice chair: Eiji Masuda, Toshiba
 - Treasurer: Akira Matsuzawa, Matsushita

PPRAM ConsortiumPlan for 1997 -

- Found three Working Groups for *PPRAM-Link*:
 - PPRAM-Link Physical-layer WG
 - PPRAM-Link Logical-layer WG
 - **PPRAM-Link** API WG
- Meet once every 4-6 weeks
- Complete *PPRAM-Link Standard Draft 1.0* by end of 1997 and distribute it in public

Backup Slides

(The following slides are used to help answer questions)

Why Mixing DRAM and Logic on a Single Chip Now?

- Advance of semiconductor technology now makes "Fast Logic + Large DRAM" available at a reasonable cost.
- Gap between processor and DRAM speed, the "Memory Wall", is now the biggest performance bottleneck.
- DRAM manufacturers are now facing challenges and therefore interested in merged DRAM/logic LSI.

Memory Wall

-Growing Processor-DRAM Performance Gap-

Memory Wall -Limits of DRAM Bandwidth-

Source: Nikkei Electronics, no.641, July 31, 1995

Merged DRAM/Logic LSIs

- Pros & Cons -

Pros

- High memory bandwidth
- Low memory latency
- Low energy consumption
- Optimal memory size & organization
- Low EMI
- Low PCB cost, ...

Cons

- "Fast Logic + Large DRAM" ???
- High processing cost
- High testing cost
- CAD ???
- Killer applications ???

Low Energy Consumption - Ex.) Mitsubishi M32R/D -

Source: Nikkei Microdevices, no.129, p.62, March 1996

How Much is Processing Cost?

Source: Nikkei Microdevices, no.135, p.77, Sept. 1996

Applications of Merged DRAM/Logic LSIs

Applications of Merged DRAM/Logic LSIs

Merged DRAM/Logic LSI Architectures

- Application-specific logic-embedded DRAM
 - Mitsubishi 3D-RAM, ...
- Application-specific DRAM-embedded controller/accelerator/processor
 - Hitachi Media Chip (8Mb)
 - Oki Multimedia Accelerator MSM7680 (1.3MB)
 - NEC 2D Graphics Controller mPD76230 (2MB), ...

Merged DRAM/Logic LSI Architectures

- DRAM-embedded microcontroller/microprocessor
 - Uniprocessor
 - » Mitsubishi M32R/D
 - » Sun Microsystems
 - » UC-Berkeley Vector IRAM
 - » UW-Madison DataScalar, ...
 - Multiprocessor
 - » IBM Execube
 - » Kyushu *PPRAM*^R, ...

Applications of **PPRAM**

Inter-LSI Interconnection - Today -

■ Traditional PC-style Inter-LSI Interconnection

Inter-LSI Interconnection - Future Possibilities -

■ DRAM-Logic Bus Interconnect

■ DRAM-Logic Point-to-Point ■ Connectionless Merged Interconnect

DRAM/Logic LSI

■ Merged-DRAM/Logic LSI Interconnect

Physical Layer

- Issues and Alternatives -

- Bus vs. Point-to-Point
- Unidirectional vs. Bidirectional
- Parallel vs. Serial
- Clocking scheme
- Data encoding scheme
- Electrical vs. Optical
- Hot plug/Plug&Play

Physical Layer - Case Study: SCI Type 18-DE -

Transmission Layer

- Requirements and Issues -

- Requirements
 - Deadlock-free
 - Starvation-free
 - » Fairness
 - » Guaranteed delivery
 - Real-time transport
 - » Unfairness
 - » Guaranteed timing

- Issues
 - Routing
 - Forwarding
 - » Store&Forward vs.Wormhole routing vs.Virtual cut-through
 - Flow control
 - » Bandwidth allocation
 - » Queue allocation

Transmission Layer

- PPRAM Node Model: A Proposal -

Transaction Layer

- Issues and Alternatives -

- Transaction architecture
 - Memory vs. I/O channel (message passing)
- Transaction protocol
 - Unified vs. Split transactions
- Cache coherence
 - Supported (CC-NUMA) vs. Not supported (NCC-NUMA)
- Special transport (e.g.; real-time, broadcast, etc.)
 - Supported vs. Not supported

Transaction Architecture

- Fixed 64-bit Addressing: A Proposal -

Transaction Protocol: A Proposal

- Transactions, Subactions, Packets -

Transaction Protocol

- Packet Formats: A Proposal -

Transaction Protocol

- Transaction Types: A Proposal -

Topology-Independent Network

- Ring Interconnect
 - Cheapest, but slowest

Topology-Independent Network

Switch Interconnect

Fastest, but expensive

