Total No	o. of Que	estions: 8]		30	SEAT No. :			
P483		1.0021.202	,)	[Total]	No. of Pages : 2			
[6003] 702								
T.E. (Information Technology) OPERATING SYSTEMS								
(2019 Pattern) (Semester-I) (314442)								
		(201) [atter	beines	(C1-1) (C	/1 111 2)			
Time: 2½ Hours] Instructions to the candidates:						Max. Marks: 70		
1nstructi 1)		r Q.1 or Q.2, Q.3 or Q	0.4. O.5 or O.6.	0.7 or 0	.8.			
2)		iagrams must be draw			•0•			
3)	Figure	es to the right side ind	licate full mark					
<i>4</i>)	Assum	e suitable data, if nec	cessary.		90			
) 3						
Q1) a)		nt conditions are gen	nerally associ	ated with	ı readers-wri	_		
	Writ	e its pseudo code.				[9]		
b)	Desc	eribe resource alloca	ation graph in	detail.	,90	[9]		
				7 3				
	X		OR	,0.				
Q2) a)	Enli	st different IPC tec	hniques. Diff	ferentiate	between na	med pipe and		
	unna	amed pipe with suita	able example.	Sv		[9]		
b)	Wha	at is Critical Section	Problem? Giv) ve seman	hore solution	for producer-		
- /		sumer problem.		r		[9]		
	• • • • • • • • • • • • • • • • • • • •	winer processin	900			٠.		
			3			· ·		
Q3) a)	Con	sider six memory	partitions o	f size 10	00 KB, 300	KB, 50 KB,		
	200	200 KB,150 KB and 200 KB. These partitions need to be allocated to						
	proc	processes of sizes 200 KB, 100 KB, 50 KB in that order. Perform the						
	alloc	allocation of processes using dynamic partitioning algorithms given be-						
	low	low and comment on internal and external fragmentation- [12]						
	i)	First Fit Algorithm			~ ~			
	1)	ThstritAlgorium	L		0,00			
	ii)	Best Fit Algorithm			, 66			
	iii)	Worst Fit Algorithm	m		38			
b)	Expl	lain Buddy system r	nemory alloca	ation wit	h suitable exa	ample. [5]		
			OR	3.70.	7			

P.T.O.

Q4) a)	Find the number of page faults for the reference string
	6,5,1,2,5,3,5,4,2,3,6,3,2,1,2 using FIFO, LRU and optimal page
	replacement strategies. Consider frame size as 3. [12]
b)	Explain Belady's anomaly with suitable example. [5]
0.5)	
Q 5) a)	Assume a disk with 200 tracks and the disk request queue has random
	requests in it as follows: 55,58,39,18,90,160,150,38,184. Find the no of tracks traversed and average seek length if
	1) SSTF
	2) SCAN
	3) CSCAN
	3) CESCAIV
	Is used and initially head is at track no 100. [12]
b)/	What are typical operations that may be performed on a directory? [6]
	OR O.
Q6) a)	What is I/O buffering? Why I/O buffering is needed? State and explain
	different approaches of I/O buffering. [9]
b)	Explain with example any three disk scheduling criteria. [9]
O(7)(2)	List down the phases of a compiler. Explain with suitable example [9]
Q1) a)	9.
b)	Explain macro call and macro expansion with suitable example. [8]
	OR OR
Q8) a)	Explain with example imperative statement, declarative statement, and
20) (1)	assembly directive of assembly language programming? [9]
V	
5)	What is system software explain any four system software in brief? [8]
	O'
	~6·V
[6003]-7	2
_	