Modelling Performance in the Sustained Attention to Response Task

David Peebles (University of Huddersfield, UK)

and

Daniel Bothell (Carnegie Mellon University)

The Sustained Attention to Response Task (SART)

- Digits 1–9 presented in random order, one every 1.15 s
- Each digit shown for 250 ms followed by 900 ms mask
- Participants must click the mouse in response to each digit
- Must withhold response when they see the number 3
- Total of 225 trials (25 \times 9 digits), lasting approx. 4.3 min
- 18 practice trials (2 × 9 digits)
- Instructions: "Press for each digit as quickly as possible with the exception of the digit 3. Try and press as quickly as possible while making as few errors (pressing for a 3) as possible"

Measures:

- errors of commission (EOC; mouse clicks to number 3)
- response time for each trial

Previous studies

- Devised by Manly and Robertson (1997) studying patients with frontal lobe injury – region previously associated with sustained attention
- SART performance:
 - normal = 6.36 (25%) EOC
 - diminishes following injury to frontal lobes
 - correlates with some other measures of sustained attention (e.g., cognitive failures questionnaire)

Previous studies

- Devised by Manly and Robertson (1997) studying patients with frontal lobe injury – region previously associated with sustained attention
- SART performance:
 - normal = 6.36 (25%) EOC
 - diminishes following injury to frontal lobes
 - correlates with some other measures of sustained attention (e.g., cognitive failures questionnaire)
- SART performance reflects the ability to sustain attention:
 - continuous performance over 225 trials
 - long and unpredictable intervals between targets
 - response to non-target trials becomes automatic
 - vigilant monitoring required to withhold response on infrequent target trials

Speed-accuracy trade-off

• Mean RT (over all go trials) significantly predictive of number of errors made (r=-0.49)

Speed-accuracy trade-off

 Trials immediately prior to EOC significantly faster (51 ms) than trials prior to correctly withheld response

Slow down after error

 Trials immediately after EOC significantly slower (31 ms) than trials immediately prior to error

My own experience of using SART

- Collaborative project with Institute of Medical and Social Care Research, University of Wales, Bangor, UK
- Mindfulness training for patients with anxiety and depression, chronic pain, binge eating disorder, fibromyalgia, etc.
- Clinical evidence that mindfulness:
 - increases overall psychological wellbeing
 - helps people to more effectively manage some disorders
- Mindfulness involves increased awareness and attention to everyday actions and mental events
- I used SART and STT to investigate effect of eight-week course of mindfulness training on sustained attention

My own experience of using SART

- Observing people doing SART:
 - subjects approach the task in different ways
 - emphasise either speed or accuracy
 - many deliberately slow down after an EOC

My own experience of using SART

- Observing people doing SART:
 - subjects approach the task in different ways
 - emphasise either speed or accuracy
 - many deliberately slow down after an EOC
- Hypothesis: performance largely determined by an individual's strategy when satisfying competing task instructions to minimise both RT and error
- Question: would an ACT-R model of the SART produce the same pattern of behaviour found by Manly & Robertson?

An ACT-R model of the SART

- ACT-R 5.0 using perceptual-motor components
- Interacts with SART through the same interface as the human participants (reads text on screen and clicks mouse)
- Consists of 11 production rules

An ACT-R model of the SART

- ACT-R 5.0 using perceptual-motor components
- Interacts with SART through the same interface as the human participants (reads text on screen and clicks mouse)
- Consists of 11 production rules
- Two competing strategies:
 - simply click mouse after detecting stimulus faster but more errors
 - check stimulus before clicking mouse slower but fewer errors

An ACT-R model of the SART

- ACT-R 5.0 using perceptual-motor components
- Interacts with SART through the same interface as the human participants (reads text on screen and clicks mouse)
- Consists of 11 production rules
- Two competing strategies:
 - simply click mouse after detecting stimulus faster but more errors
 - check stimulus before clicking mouse slower but fewer errors
- Two responses to EOC:
 - don't change strategy just keep clicking
 - decide to use checking strategy on the next trial

Choosing a strategy

- On each trial, the model has to choose between fast-but-inaccurate and slow-but-accurate productions
- ACT-R's conflict resolution mechanism selects production with highest utility, U_i , defined as

$$U_i = P_i G - C_i + \sigma$$

- \circ P_i = probability of successfully achieving goal if production i fires (reflects history of success and failure for production i)
- $^{\circ}$ $C_i = \cos t$ (in time) associated with using production i until goal achieved
- \circ G =value of current goal
- \circ $\sigma = \mathsf{noise}$

Choosing a strategy

- Utility learning if a production leads to a successfully achieved goal, likelihood of it being used again increases
- Model's preference changes from trial to trial:
 - \circ P and C values of productions adjusted
 - history of success and failure
 - time taken to produce success or failure
- Both strategies lead to a majority of successful trials
 - so if model starts to prefer a strategy, will generally continue with it
 - but this affects number of errors and mean RT
- However: Explicit production for adopting encode-and-check strategy after error produces bias

Simulation

- Model run 150 times (simulating 150 participants)
- Utility values of the two strategy productions set equal –
 likelihood of choosing either strategy equal at start of task
- Two parameters which control the learning of production utilities were adjusted:
 - \circ s adjusts the amount of the variance in the noise added to the calculations set to a low value (.01).
 - $^{\circ}$ G the value of the goal in utility equation set to 0.45 s to reflect very short trial duration
- EOC and RT for each trial recorded

Comparing the response data

- Very close fit to observed pattern of responses
- $R^2 = .998$ (*RMSE* = .756). Mean model EOC = 6.67

Comparing the RT data

- Reasonable fit to RT data. $R^2 = .665$ (RMSE = 19.933)
- Mean model RT for go trials = 367 ms (observed = 375 ms)

Speed-accuracy trade-off in ACT-R

- Range of RTs produced by model smaller than observed
- Significant correlation between mean RT on go trials and the number of EOC (r = -0.788, p < .01).

Conclusions

Simulation

- model shows that much of performance in SART can be explained by strategy choice in speed-accuracy trade-off
- o instructions to "...[t]ry and press as quickly as possible while making as few errors (pressing for a 3) as possible"
- subject's have to satisfy conflicting task demands

Speed-accuracy trade-off in ACT-R

- typically addressed by manipulating G parameter lower G reduces emphasis on accuracy
- model accounts for a range of speed-accuracy behaviour in SART using utility learning mechanism with fixed G.

Conclusions

Sustained Attention

- model questions explanatory role of sustained attention in the SART
- issue about vigilance in repetitive, automated tasks (e.g., driving, monitoring ATC display, washing dishes)
- people disengage attention from task to engage in other mental activities (daydreaming, guided thinking etc.)

ACT-R

- has one attention mechanism (W parameter) –
 determines how activation from current goal used to
 retrieve knowledge in declarative memory
- SART model involves no declarative retrievals
- currently no mechanism in ACT-R to allow for multiple concurrent tasks that affect allocation of attention