Homework 5 Due in two weeks

Exercise 1, Laplace Equation by Gauss-Seidel

Solve the Laplace equation

$$\partial_x^2 \psi + \partial_y^2 \psi = 0$$

with $\psi = 0$ on x = 0; $\psi = 0$ on x = 1; $\psi = 0$ on y = 1 and $\psi = \sin(3n\pi x)$ on y = 0. Obtain numerical solutions with n = 1 and n = 3.

Use Gauss-Seidel, with SOR. Stop either when the modulus of the residual either has dropped by a factor of 10^{-4} , or after 2,000 iterations.

- Provide the algorithm part of your code.
- Provide contour plots of streamfunction for each of 15×15 and 151×101 grids, for both n values.
- For the 151×101 grid and n=1, on a single graph, plot residual versus iteration for each of the relaxation parameter values $\lambda=1$, $\lambda=0.5$, $\lambda=1.25$ and $\lambda=1.9$. Plot as $\log(residual/residual_0)$ versus iteration number. (Use the L_2 residual defined at the end of the next problem.)

Exercise 2, Potential flow round a square

Solve incompressible flow,

$$\nabla^2 \Psi = \omega$$

in the domain $0 \le x \le 2$, $0 \le y \le 1$. A 0.3×0.3 square lies in $0.35 \le y \le 0.65$, $0.7 \le x \le 1$. The vorticity is

$$\omega = 50, 0.35 \le y \le 0.5, 1 \le x \le 1.3$$

 $\omega = -50, 0.5 \le y \le 0.65, 1 \le x \le 1.3$

The boundary conditions are

$$\Psi = -y + 0.5$$
 on $x = 0$ and $x = 2$ for $0 \le y \le 1$
 $\Psi = 0$ on (and in) the rectangle
 $\Psi = 0.5$ on the lower wall, $y=0$, and
 $\Psi = -0.5$ on the upper wall, $y=1$

The inlet and exit condition, $\Psi = -y + 0.5$, corresponds to flow in the x-direction with unit velocity.

Use a 200×181 point, uniformly spaced, Cartesian grid. Represent the rectangle by *i-blanking*: that is, set the implicit matrix, \boldsymbol{A} , to the identity matrix and $\Delta\Psi=0$ at all points inside and on the surface of the rectangle.

Solve by Gauss-Seidel with SOR. Iterate until $||\Delta\Psi|| < 10^{-4}||\Delta\Psi||_0$, where the L_2 norm is

$$||\Delta\Psi|| = \sqrt{\sum_{i=1,I} \sum_{j=1,J} (\Delta\Psi_{ij})^2 / (I \times J)}$$

and $||\Delta\Psi||_0$ is the initial correction.

- Provide the algorithm part of your code.
- \bullet Provide contour line plots of Ψ