```
In [26]: # numpy and pandas for data manipulation
    import numpy as np
    import pandas as pd

# sklearn preprocessing for dealing with categorical variables
    from sklearn.preprocessing import LabelEncoder

# File system manangement
    import os

# Suppress warnings
    import warnings
    warnings.filterwarnings('ignore')

# matplotlib and seaborn for plotting
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [27]: # List files available print(os.listdir("../Colab Notebooks"))

['COMPSCIX433.3-009 Function.ipynb', 'COMPSCIX433.3-009', 'COMPSCIX433.1-002 Fashion MNIST reader.i pynb', 'COMPSCIX433.1-002 How to Search Credit Card.ipynb', '.DS Store', 'COMPSCIX433.6-007', 'kaggl e', 'WorldRecords.csv', 'COMPSCIX433.1-002 Example 8 Metrics and Validation', 'fashionmnist', 'COM PSCIX433.3-009 Assingment 2.ipynb', 'input', 'COMPSCIX433.1-002 Assignment Web Scraping 1.0.ipynb', 'COMPSCIX433.3-009 Data-Structures-PG.ipynb', 'Visualization.ipynb', 'COMPSCIX433.3-009 Pandas DataF rame-092519.ipynb', 'COMPSCIX433.3-009 Numpy.ipynb', 'COMPSCIX433.3-009 Assingment1.ipynb', 'Pandas DataFrame-093019.ipynb', 'WorldRecords old.csv', 'ASSIGNMENT4.pdf', 'Scripts export', 'COMPSCIX433.3 -009 Lecturel-basic-syntax.ipynb', 'COMPSCIX433.1-002 Example 10 Autoregression', 'COMPSCIX433.1-00 2 Assingment WebScraping.ipynb', 'COMPSCIX433.3-009 Practice.ipynb', 'test.pdf', 'COMPSCIX433.1-002 Example 7 Input Vectorization.ipynb', 'COMPSCIX433.1-002', 'COMPSCIX433.1-002 WebScraping Self Tryou t 1.ipynb', 'implement-perceptron-algorithm-scratch-python.ipynb', 'COMPSCIX433.1-002 Example 4 Cate gorical Data Analysis.ipynb', 'COMPSCIX433.1-002 Example 3 Tabulation and Chi-Square Testing.ipynb', 'COMPSCIX433.1-009 Example 9 Simple Classifiers and Regressors', 'COMPSCIX433.3-009 Assignment 4.ipy nb', '.ipynb checkpoints', 'Visualization.pdf', 'COMPSCIX433.1-002 How to Search Credit Card (1).ipy nb', 'COMPSCIX433.3-009 Assignment 3.ipynb', 'COMPSCIX433.1-002 Example 6 A Simple Perceptron Classi fier.ipynb', 'Data', 'COMPSCIX433.1-002 Example 2 Finding how people talk about dogs.ipynb', 'Edmund s-Data Analysis - Cross Continent Review.ipynb', 'COMPSCIX433.1-002 Web Scraping Self Try.ipynb']

```
In [28]: # Load dataset
# I cleaned Up the Data manually before loading as the Data was having a non UTF 8 Char.
app_data = pd.read_csv('../Colab Notebooks/WorldRecords_old.csv', engine='python')
print('Training data shape: ', app_data.shape)
app_data.head(25)
```

Training data shape: (285, 7)

Out[28]:								
_		Event	Туре	Record	Athlete	Nationality	Location	Year
	0	Mens 100m	time	10.06	Bob Hayes	United States	Tokyo, Japan	1964
	1	Mens 100m	time	10.03	Jim Hines	United States	Sacramento, USA	1968
	2	Mens 100m	time	10.02	Charles Greene	United States	Mexico City, Mexico	1968
	3	Mens 100m	time	9.95	Jim Hines	United States	Mexico City, Mexico	1968
	4	Mens 100m	time	9.93	Calvin Smith	United States	Colorado Springs, USA	1983
	5	Mens 100m	time	9.92	Carl Lewis	United States	Seoul, South Korea	1988
	6	Mens 100m	time	9.90	Leroy Burrell	United States	New York, USA	1991
	7	Mens 100m	time	9.86	Carl Lewis	United States	Tokyo, Japan	1991
	8	Mens 100m	time	9.85	Leroy Burrell	United States	Lausanne, Switzerland	1994
	9	Mens 100m	time	9.84	Donovan Bailey	Canada	Atlanta, USA	1996
1	10	Mens 100m	time	9.79	Maurice Greene	United States	Athens, Greece	1999
1	11	Mens 100m	time	9.78	Tim Montgomery	United States	Paris, France	2002
1	12	Mens 100m	time	9.77	Asafa Powell	Jamaica	Athens, Greece	2005
1	13	Mens 100m	time	9.74	Asafa Powell	Jamaica	Rieti, Italy	2007
1	14	Mens 100m	time	9.72	Usain Bolt	Jamaica	New York, USA	2008
1	15	Mens 100m	time	9.69	Usain Bolt	Jamaica	Beijing, China	2008
1	16	Mens 100m	time	9.58	Usain Bolt	Jamaica	Berlin, Germany	2009
1	17	Womens 100m	time	11.07	Wyomia Tyus	United States	Mexico City, Mexico	1968
1	18	Womens 100m	time	11.07	Renate Stecher	East Germany	Munich, West Germany	1972
1	19	Womens 100m	time	11.04	Inge Helten	West Germany	F�rth, West Germany	1976
2	20	Womens 100m	time	11.01	Annegret Richter	West Germany	Montreal, Canada	1976
2	21	Womens 100m	time	10.88	Marlies Oelsner	East Germany	Dresden, East Germany	1977
2	22	Womens 100m	time	10.88	Marlies G�hr	East Germany	Karl-Marx-Stadt, East Germany	1982
2	23	Womens 100m	time	10.81	Marlies G�hr	East Germany	Berlin, East Germany	1983
2	24	Womens 100m	time	10.79	Evelyn Ashford	United States	US Air Force Academy, United States	1983

```
In [29]: #Cleaning the Non UTF 8 Char From Dataframe

app_data['Nationality'] = app_data['Nationality'].str.encode('ascii', 'ignore').str.decode('ascii')
app_data['Athlete'] = app_data['Athlete'].str.encode('ascii', 'ignore').str.decode('ascii')
app_data['Location'] = app_data['Location'].str.encode('ascii', 'ignore').str.decode('ascii')
print('Training data shape: ', app_data.shape)
app_data.head(25)
```

Training data shape: (285, 7)

	Event	Туре	Record	Athlete	Nationality	Location	Year
0	Mens 100m	time	10.06	Bob Hayes	United States	Tokyo, Japan	1964
1	Mens 100m	time	10.03	Jim Hines	United States	Sacramento, USA	1968
2	Mens 100m	time	10.02	Charles Greene	United States	Mexico City, Mexico	1968
3	Mens 100m	time	9.95	Jim Hines	United States	Mexico City, Mexico	1968
4	Mens 100m	time	9.93	Calvin Smith	United States	Colorado Springs, USA	1983
5	Mens 100m	time	9.92	Carl Lewis	United States	Seoul, South Korea	1988
6	Mens 100m	time	9.90	Leroy Burrell	United States	New York, USA	1991
7	Mens 100m	time	9.86	Carl Lewis	United States	Tokyo, Japan	1991
8	Mens 100m	time	9.85	Leroy Burrell	United States	Lausanne, Switzerland	1994
9	Mens 100m	time	9.84	Donovan Bailey	Canada	Atlanta, USA	1996
10	Mens 100m	time	9.79	Maurice Greene	United States	Athens, Greece	1999
11	Mens 100m	time	9.78	Tim Montgomery	United States	Paris, France	2002
12	Mens 100m	time	9.77	Asafa Powell	Jamaica	Athens, Greece	2005
13	Mens 100m	time	9.74	Asafa Powell	Jamaica	Rieti, Italy	2007
14	Mens 100m	time	9.72	Usain Bolt	Jamaica	New York, USA	2008
15	Mens 100m	time	9.69	Usain Bolt	Jamaica	Beijing, China	2008
16	Mens 100m	time	9.58	Usain Bolt	Jamaica	Berlin, Germany	2009
17	Womens 100m	time	11.07	Wyomia Tyus	United States	Mexico City, Mexico	1968
18	Womens 100m	time	11.07	Renate Stecher	East Germany	Munich, West Germany	1972
19	Womens 100m	time	11.04	Inge Helten	West Germany	Frth, West Germany	1976
20	Womens 100m	time	11.01	Annegret Richter	West Germany	Montreal, Canada	1976
21	Womens 100m	time	10.88	Marlies Oelsner	East Germany	Dresden, East Germany	1977
22	Womens 100m	time	10.88	Marlies Ghr	East Germany	Karl-Marx-Stadt, East Germany	1982
23	Womens 100m	time	10.81	Marlies Ghr	East Germany	Berlin, East Germany	1983
24	Womens 100m	time	10.79	Evelyn Ashford	United States	US Air Force Academy, United States	1983

```
In [30]: #United States is present in data as USA and United State. Making it consistent
app_data.replace("USA", "United States", inplace=True)
```

Q1. How many different types of events (e.g. "Mens 100m", "Womens shotput" etc) are represented in the dataset

```
In [31]: print("Total Number of Different Events: ", len(app data['Event'].unique()))
         print("Names of Different Events: ", app data['Event'].unique())
         # Number of each type of column
         app data.dtypes.value counts()
         app data.select dtypes('object').apply(pd.Series.nunique, axis = 0)
         Total Number of Different Events: 10
         Names of Different Events: ['Mens 100m' 'Womens 100m' 'Mens 800m' 'Womens 800m' 'Mens TripleJump'
          'Mens Mile' 'Womens Mile' 'Mens Polevault' 'Mens Shotput'
          'Womens Shotput'
Out[31]: Event
                         10
                          2
         Type
         Athlete
                        150
         Nationality
                         42
         Location
                        147
         dtype: int64
```

Q2.In what year did Usain Bolt first break the world record for the Men's 100m?

Q3. Which variable tells us the record setting time or distance? The variable name in the data set is? What type of the variable is this?

```
In [33]: # Type colum tells us if the event record is in time or distance.
    app_data['Type'].value_counts()
# The variable name is Type
    print("Data Type for Type Variable : ", app_data['Type'].dtypes)
Data Type for Type Variable : object
```

Q4. Create a subset of the dataset that contains only the world record cases for men's shotput and women's shotput

```
In [34]: data subset = app data[(app data['Event'] == 'Womens Shotput') | (app data['Event'] == 'Mens Shotput'
         print("Subset Data Type : ", data subset.head())
         Subset Data Type :
                                        Event
                                                   Type Record
                                                                          Athlete
                                                                                     Nationality \
         205 Mens Shotput distance
                                      17.68 Charlie Fonville United States
                                      17.79
         206 Mens Shotput distance
                                                    Jim Fuchs United States
                                      17.82
         207 Mens Shotput distance
                                                    Jim Fuchs United States
                                      17.90
         208 Mens Shotput distance
                                                    Jim Fuchs United States
         209 Mens Shotput distance
                                      17.95
                                                    Jim Fuchs United States
                        Location Year
         205
                 Lawrence, U.S. 1948
         206
                   Oslo, Norway 1949
         207
               Los Angeles, U.S. 1950
         208
                   Visby, Sweden 1950
         209
             Eskilstuna, Sweden 1950
```

Q5. Create a scatter plot of the year and record shotput distance one for men and one for women.

```
In [35]: data_subset.shape
Out[35]: (80, 7)
In [36]: t = data_subset['Year']
    print(len(t))
    s = data_subset['Record']
    print(len(s))
    80
    80
```

```
In [37]: import numpy as np
         import matplotlib.pyplot as plt
         plt.figure(figsize=(13,18))
         tw = data subset[data subset['Event'] == 'Womens Shotput']['Year']
         tm = data subset[data subset['Event'] == 'Mens Shotput']['Year']
         sw = data subset[data subset['Event'] == 'Womens Shotput']['Record']
         sm = data subset[data subset['Event'] == 'Mens Shotput']['Record']
         plt.subplot(2, 1, 1)
         plt.scatter(sm, tm)
         plt.xlabel('Record in mtr')
         plt.ylabel('Year')
         plt.title('Mens Record')
         plt.grid(True)
         plt.subplot(2, 1, 2)
         plt.scatter(sw, tw)
         plt.xlabel('Record in mtr')
         plt.ylabel('Year')
         plt.title('Women Record')
         plt.grid(True)
         plt.tight layout()
         plt.show()
```


Q6. Find the average/mean time for each event. How many athletes have time more than average in each event.

```
In [38]: print(app data.groupby('Event')['Record'].agg([np.mean, np.sum, np.std]))
                                                      std
                                mean
                                           sum
         Event
         Mens 100m
                                       167.43
                            9.848824
                                                 0.130330
         Mens 800m
                          105.345833
                                      2528.30
                                                3.832241
         Mens Mile
                                      7599.80
                                                8.982490
                          237.493750
                                       308.49
                                                0.400480
         Mens Polevault
                            5.608909
         Mens Shotput
                                                1.829229
                           20.194872
                                        787.60
         Mens TripleJump
                           16.671200
                                       416.78
                                                0.824537
         Womens 100m
                           10.880000
                                       108.80
                                                0.180801
                          127.851724
                                      3707.70
         Womens 800m
                                                10.377951
                          263.653846
         Womens Mile
                                      3427.50
                                                8.366363
         Womens Shotput
                                                2.572595
                           19.139756
                                        784.73
In [39]: mean val = app data.groupby('Event')['Record'].agg([np.mean])
In [40]: mean val
Out[40]:
```

mean

Event	
Mens 100m	9.848824
Mens 800m	105.345833
Mens Mile	237.493750
Mens Polevault	5.608909
Mens Shotput	20.194872
Mens TripleJump	16.671200
Womens 100m	10.880000
Womens 800m	127.851724
Womens Mile	263.653846
Womens Shotput	19.139756

In [41]: app_data.head()

Out[41]:

	Event	Type	Record	Athlete	Nationality	Location	Year
0	Mens 100m	time	10.06	Bob Hayes	United States	Tokyo, Japan	1964
1	Mens 100m	time	10.03	Jim Hines	United States	Sacramento, USA	1968
2	Mens 100m	time	10.02	Charles Greene	United States	Mexico City, Mexico	1968
3	Mens 100m	time	9.95	Jim Hines	United States	Mexico City, Mexico	1968
4	Mens 100m	time	9.93	Calvin Smith	United States	Colorado Springs, USA	1983

Out[42]:

	Event	Туре	Record	Athlete	Nationality	Location	Year	mean
0	Mens 100m	time	10.06	Bob Hayes	United States	Tokyo, Japan	1964	9.848824
1	Mens 100m	time	10.03	Jim Hines	United States	Sacramento, USA	1968	9.848824
2	Mens 100m	time	10.02	Charles Greene	United States	Mexico City, Mexico	1968	9.848824
3	Mens 100m	time	9.95	Jim Hines	United States	Mexico City, Mexico	1968	9.848824
4	Mens 100m	time	9.93	Calvin Smith	United States	Colorado Springs, USA	1983	9.848824
5	Mens 100m	time	9.92	Carl Lewis	United States	Seoul, South Korea	1988	9.848824
6	Mens 100m	time	9.90	Leroy Burrell	United States	New York, USA	1991	9.848824
7	Mens 100m	time	9.86	Carl Lewis	United States	Tokyo, Japan	1991	9.848824
8	Mens 100m	time	9.85	Leroy Burrell	United States	Lausanne, Switzerland	1994	9.848824
9	Mens 100m	time	9.84	Donovan Bailey	Canada	Atlanta, USA	1996	9.848824
10	Mens 100m	time	9.79	Maurice Greene	United States	Athens, Greece	1999	9.848824
11	Mens 100m	time	9.78	Tim Montgomery	United States	Paris, France	2002	9.848824
12	Mens 100m	time	9.77	Asafa Powell	Jamaica	Athens, Greece	2005	9.848824
13	Mens 100m	time	9.74	Asafa Powell	Jamaica	Rieti, Italy	2007	9.848824
14	Mens 100m	time	9.72	Usain Bolt	Jamaica	New York, USA	2008	9.848824
15	Mens 100m	time	9.69	Usain Bolt	Jamaica	Beijing, China	2008	9.848824
16	Mens 100m	time	9.58	Usain Bolt	Jamaica	Berlin, Germany	2009	9.848824
17	Womens 100m	time	11.07	Wyomia Tyus	United States	Mexico City, Mexico	1968	10.880000
18	Womens 100m	time	11.07	Renate Stecher	East Germany	Munich, West Germany	1972	10.880000
19	Womens 100m	time	11.04	Inge Helten	West Germany	Frth, West Germany	1976	10.880000

```
In [43]: # Number of Athelete who have their record more than the average of the respective events
          app data[app data['Record'] > app data['mean']].groupby('Event')['Athlete'].agg(['count'])
Out[43]:
                         count
                   Event
                             9
               Mens 100m
               Mens 800m
                            10
                            15
                Mens Mile
                            31
            Mens Polevault
             Mens Shotput
                            16
           Mens TripleJump
                            12
            Womens 100m
                             4
            Womens 800m
                            13
                             5
             Womens Mile
                            21
           Womens Shotput
```

Q7. Select the athlete who took most time in men's 100m and women's event.

```
In [44]: app_data.groupby('Event')['Record', 'Athlete'].max().loc['Mens 100m']['Athlete']
Out[44]: 'Usain Bolt'
In [45]: app_data.groupby('Event')['Record', 'Athlete'].max().loc['Womens 100m']['Athlete']
Out[45]: 'Wyomia Tyus'
```

Q8. Which country won maximum times of men's 100m event?

```
In [46]: countries_with_win = app_data.groupby(['Event'])['Nationality'].max().loc['Mens 100m']
countries_with_win
Out[46]: 'United States'
```

Q9. How many athletes are there in each event?

```
In [47]: app data.groupby(['Event'])['Athlete'].count()
Out[47]: Event
         Mens 100m
                             17
                             24
         Mens 800m
         Mens Mile
                             32
         Mens Polevault
                             55
         Mens Shotput
                             39
         Mens TripleJump
                             25
                             10
         Womens 100m
         Womens 800m
                             29
         Womens Mile
                             13
         Womens Shotput
                             41
         Name: Athlete, dtype: int64
```

Q10. Which country has maximum wins?