МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н. Э. Баумана

Кафедра «Системы обработки информации и управления»

Домашнее задание по курсу

«Средства проектирования АСОИУ» На тему «Сегментация объектов на спутниковых снимках»

ИСПОЛНИТЕЛЬ:		
студентка группы ИУ5-71Б Шимолина П. К.	""	2023 г
ПРЕПОДАВАТЕЛЬ:		
Лосева С. С.		
Кафедра ИУ5		

Оглавление

Введение	3
Постановка задачи	
Функциональная модель	
Диаграмма «Сушность-связь»	14

Введение

Целью домашнего задания является описаниие сервиса сегментации объектов на спутниковых снимках. Сервис сегментации объектов на спутниковых снимках нужен для получения и работы с обработанными изображениями. Он может быть применен в различных областях, таких как геоинформационные системы, геопланирование, экология, разведка и безопасность.

В ходе выполнения домашнего задания были использованы следующие программные средства: AllFusion Process Modeler r7 и ERwin Data Modeler r7.3.

Постановка задачи

Сервис сегментации объектов на спутниковых снимках рассматривается с точки зрения пользователя. Использование данной системы позволит эффективно анализировать и использовать геопространственные данные.

Система сегментации объектов на спутниковых снимках проходит через несколько важных этапов. Вначале происходит загрузка и получение спутниковых снимков, которые будут использоваться для анализа. Затем система применяет алгоритмы и методы сегментации, чтобы выделить различные объекты на изображении, такие как здания, дороги, водные объекты и растительность. После этого происходит визуализация результатов, где сегментированные объекты отображаются на изображении или создается отдельная визуализация с отмеченными объектами. В конечном этапе система сохраняет обработанное изображение и предоставляет его для дальнейшего использования, анализа или предоставления другим пользователям или системам.

Это позволяет эффективно анализировать геопространственные данные, обнаруживать изменения в окружающей среде, отслеживать развитие инфраструктуры и использовать эти данные для прогнозирования и планирования в различных областях, таких как геоинформационные системы, геопланирование и экология.

Функции создания системы приведены в таблице 1.

Цель: описать работу сервиса сегментации объектов на спутниковых изображениях.

Точка зрения: пользователь.

Таблица 1 – Описание основных функций

Функции	Описание	Данные, требуемые для
T y mann	Onneume	выполнения функций
1. Получить	Сервис получает	Входные данные:
изображения	изображение со	Пользовательское
	спутника,	изображение
	загруженное	Управление:
	пользователем	Правила работы с системой
		Законодательство РФ
		Механизмы:
		Пользователь
2. Обработать	Применить	Входные данные:
изображения	алгоритмы	Загруженное изображение
	сегментации	Управление:
	объектов на	Правила использования
	спутниковых	модели МО
	снимках.	Законодательство РФ
		Механизмы:
		Обученная модель МО
		Пользователь
3. Визуализировать	Представить	Входные данные:
изображение	результаты	Предобработанное
	сегментации	изображение
	объектов на	Управление:
	спутниковых	Законодательство РФ
	снимках в удобной	Механизмы:
	для восприятия	Пользователь
	форме.	
4. Сохранить	Веб-сервис	Входные данные:
изображение	предоставляет	Изображение с
	возможность	визуализацией результатов
	скачать	Управление:
	сегментированные	Правила работы с системой
	изображения	Законодательство РФ
		Механизмы:
		Пользователь

Функциональная модель

Для изучения предметной области была использована методология SADT. Функциональная модель SADT отображает функциональную структуру объекта, т. е. производимые им действия и связи между этими действиями. Построение модели начинается с контекстной диаграммы, которая представляет всю систему в виде простейшей компоненты — одного блока «Сегментация объектов на спутниковых снимках» и дуг, изображающих все основные связи моделируемой системы с внешним миром. Диаграмма декомпозиции, полученная в результате разбиения контекстной диаграммы на отдельные активности, выявляет полный набор подфункций, каждая из которых представлена как блок, границы которого определены интерфейсными дугами.

Построение модели начинается с контекстной диаграммы, которая представляет всю систему в виде простейшей компоненты - одного блока «Сегментация объектов на спутниковых снимках» и дуг, изображающих все основные связи моделируемой системы с внешним миром (рисунок 1).

Второй уровень модели — диаграмма декомпозиции, полученная в результате разбиения контекстной диаграммы. Диаграмма декомпозиции выявляет полный набор подфункций, каждая из которых представлена как блок, границы которого определены интерфейсными дугами. В ходе декомпозиции получено 4 блока (рисунок 2): «Получить изображение», «Обработать изображение», «Визуализировать изображение», «Сохранить изображение».

Сначала система получает спутниковое изображение, которое будет использоваться. Затем оно проходит обработку, где применяются алгоритмы и методы сегментации, чтобы выделить и разделить объекты на отдельные сегменты. После этого система визуализирует результаты, отображая сегментированные объекты на изображении. Наконец, обработанное и визуализированное изображение сохраняется для дальнейшего использования или анализа.

Третий уровень модели — диаграмма декомпозиции блока «Обработать изображение», а также диаграмма декомпозиции блока «Визуализировать изображение».

Диаграмма декомпозиции блока «Обработать изображение» (рисунок 3) разбита на четыре блока:

- 1. Предобработать изображение сервис предварительно обрабатывает изображение, чтобы подготовить его для применения обученной модели сегментации.
- 2. Применить обученную модель применяется обученная модель сегментации к предобработанному изображению. Модель анализирует изображение и выдает маску сегментации, которая показывает, где на изображении находятся объекты интереса.
- 3. Нормализовать контрастность производится нормализация контрастности изображения чтобы сделать сегментацию более четкой .
- 4. Нормализовать яркость производится нормализация контрастности изображения чтобы сделать сегментацию более четкой.

Диаграмма декомпозиции блока «Визуализировать изображение» (рисунок 4) разбита на четыре блока:

- 1. Подготовить изображение производится подготовка изображения для дальнейшего использования.
- 2. Создать маски сегментации создаются маски сегментации, которые показывают, где на изображении находятся объекты интереса.
- 3. Наложить маски сегментации маски сегментации накладываются на исходное изображение, чтобы визуализировать сегментированные объекты в контексте оригинального изображения.
- 4. Отобразить сегментированные объекты сегментированные объекты отображаются пользователю, позволяя ему увидеть результаты сегментации и оценить качество работы модели.

В таблицах 2 и 3 содержится описание всех функций и стрелок разработанной модели.

Рисунок 1 – Контекстная диаграмма сервиса сегментации объектов на спутниковых снимках

Рисунок 2 – Диаграмма декомпозиции сервиса сегментации объектов на спутниковых снимках

Рисунок 3 – Диаграмма функции «Обработать изображение»

Рисунок 4 – Диаграмма функции «Визуализировать изображение»

Таблица 2 – Отчёт по функциональным блокам модели

Номер блока	Название блока	Описание функционального блока	
	Сегментация объектов	Создание веб-сервиса для	
0	на спутниковых	сегментации объектов на снимках,	
	снимках	загруженных пользователем	
		Пользователь загружает	
1	Получить изображение	изображение для дальнейшей	
		обработки и сегментации	
2	Обработать изображение	Сервис обрабатывает изображение	
		Сервис предварительно	
21	Предобработать	обрабатывает изображение, чтобы	
21	изображение	подготовить его для применения	
		обученной модели сегментации	
		Применяется обученная модель	
		сегментации к предобработанному	
	Применить обущения	изображению. Модель анализирует	
22	Применить обученную модель	изображение и выдает маску	
		сегментации, которая показывает,	
		где на изображении находятся	
		объекты интереса	
	Нормализовать	Производится нормализация	
23	контрастность	контрастности изображения чтобы	
	Kompacinocis	сделать сегментацию более четкой	
		Происходит нормализация яркости	
24	Нормализовать яркость	изображения, чтобы сделать его	
2 1	порманизовать пркость	более равномерным и улучшить	
		визуальное качество	
_	Визуализировать	Сервис визуализирует исходное	
3	изображение	изображение с наложенными	
	посорилисти	масками сегментации	
	31 Подготовить изображение	Производится подготовка	
31		изображения для дальнейшего	
	3 of management	использования	
		Создаются маски сегментации,	
32	Создать маски	которые показывают, где на	
54	сегментации	изображении находятся объекты	
		интереса	

Номер блока	Название блока	Описание функционального блока
33	Наложить маски на исходное изображение	Маски сегментации накладываются на исходное изображение, чтобы визуализировать сегментированные объекты в контексте оригинального изображения
34	Отобразить сегментированные объекты	Сегментированные объекты отображаются пользователю, позволяя ему увидеть результаты сегментации и оценить качество работы модели
4	Сохранить изображение	Пользователь сохраняет полученное изображение в формате JPEG в выбранную папку

Таблица 3 – Отчёт по стрелкам модели

Название стрелки	Описание	Источник	Тип источника
Загруженное изображение	Изображение, загруженное в систему	Получить изображение	Output
Законы РФ	Законодательство Российской Федерации	{ Border }	Control
Изображение с визуализацией результатов	Изображение с графическим представлением полученных результатов	Отобразить сегментированные объекты	Output
Изображение с наложенными масками	Изображение, на котором применены маски для выделения определенных областей	Наложить маски на исходное изображение	Output
Контрастное изображение	Изображение с усиленным контрастом	Нормализовать контрастность	Output

Название стрелки	Описание	Источник	Тип источника
Маски сегментации	Маски, используемые для разделения изображения на отдельные объекты или области	Создать маски сегментации	Output
Обработанное изображение	Изображение, подвергнутое обработке	Примененить обученную модель	Output
Обученная модель МО	Обученная модель МО	{ Border }	Mechanism
Подготовленное изображение	Изображение, подготовленное для дальнейшей обработки	Подготовить изображения	Output
Пользователь	Пользователь	{ Border }	Mechanism
Пользовательское изображение	Изображение, загруженное пользователем	{ Border }	Input
Постобработанное изображение	Изображение, подвергнутое дополнительной обработке	Нормализовать яркость	Output
Правила использования модели	Правила и ограничения, касающиеся использования обученной модели, такие как размеры изображения.	{ Border }	Control
Правила работы с системой	Правила работы с системой	{ Border }	Control
Предобработанное изображение	Изображение, подвергнутое предварительной обработке	Предобработать изображение	Output
Сервис	Разработанный сервис сегментации объектов	{ Border }	Mechanism

Название стрелки	Описание	Источник	Тип источника
Сохраненное изображение	Изображение, сохраненное или экспортированное после обработки или анализа.	Сохранить изображение	Output

Диаграмма «Сущность-связь»

Диаграмма содержит информацию о сущностях системы и способах их взаимодействия, включает идентификацию объектов, важных для предметной области (сущностей), свойств этих объектов (атрибутов) и их отношений с другими объектами (связей).

Сущности диаграммы изображены в виде прямоугольника, содержащем её имя. Атрибуты сущности записаны внутри прямоугольника. Также определены ключевые атрибуты сущностей. Связи изображены линией, которая связывает две сущности, участвующие в отношении.

Такая диаграмма является методом представления информационной структуры базы данных в графическом виде для более простого и наглядного отображения основных компонентов конкретного проекта базы данных.

Идентифицирующая связь показывается на диаграмме сплошной линией с жирной точкой на дочернем конце связи.

В диаграмме «сущность-связь» (рисунок 5) представлено 9 сущностей: «Исходное_Изображение», «Разрешение», «Полученное_Изображение», «Пользователь», «Сегментация», «Исходное_Изображение_Разрешение», «Полученное_Изображение_Разрешение»,

«Исходное_Изображение_Сегментация»,

«Полученное_Изображение_Сегментация».

Сущность «Исходное_Изображение» содержит имя исходного изображения и путь к файлу.

Сущность «Разрешение» содержит информацию о разрешении изображения, например «FullHD» или «4К».

Сущность «Полученное_Изображение» содержит информацию о сегментированном изображении, его имя и путь к файлу.

Сущность «Пользователь» содержит информацию о пользователе, который загрузил и обрабатывает изображение. Может включать такие данные, как имя, электронная почта и пароль от учетной записи.

Сущность «Сегментация» содержит информацию о процессе сегментации. Включает в себя пороговое значение сегментации, режим пороговой обработки.

Сущность «Исходное_Изображение_Разрешение» содержит информацию о связи между исходным изображением и его разрешением. Включает в себя данные, такие как идентификатор исходного изображения, идентификатор разрешения, длину и ширину.

Сущность «Полученное_Изображение_Разрешение» содержит информацию о связи между полученным изображением и его разрешением. Включает в себя данные, такие как идентификатор полученного изображения, идентификатор разрешения, длину и ширину.

Сущность «Исходное_Изображение_Сегментация» содержит информацию о связи между исходным изображением и сегментацией. Включает в себя данные, такие как идентификатор исходного изображения, идентификатор сегментации, идентификатор пользователя, размеры преобразованного изображения.

Сущность «Полученное_Изображение_Сегментация» содержит информацию о связи между полученным изображением и его сегментацией. Включает в себя данные, такие как идентификатор исходного изображения, идентификатор сегментации, идентификатор пользователя, цветовая карта полученного изображения.

Рисунок 5 – Логическая модель данных