Infrared radiation in the middle and upper atmosphere of planets: current problems in calculation and interpretation

A.G. Feofilov¹, A.A. Kutepov^{2,3}, L. Rezac⁴

- 1 Dynamic Meteorology Laboratory, Ecole Polytechnique, Paris, France
- 2 The Catholic University of America, Washington, DC, USA
- 3 NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 4 Max-Planck Institute for Solar System Research, Katlenburg-Lindau, Germany

Motivation

"The purpose of the workshop is to ... reinforce the interactions between experts ... to meet the challenges and requirements of future space observation..."

Middle and upper atmosphere (MUA): why bother?

- MUA is a "gateway" between the lower atmosphere and space.
- MUA is sensitive to solar influence and to the inputs from below.
- MUA absorption and emission in molecular bands affect the atmospheric observations of other areas.

On Earth

- Anthropogenic changes in greenhouse gases may change the composition of MUA and the input from below.
- Noctilucent clouds observed in polar summer mesosphere are very sensitive to temperature changes.

IR radiance in the MUA

An important peculiarity of the MUA

- Infrared radiance absorption/emission corresponds to vibrational excitation/de-excitation of the molecules.
- To estimate the energetic characteristics of the given area or to interpret the infrared observations in MUA one needs to know the vibrational levels populations.

BUT !!!

- In the upper atmosphere, the collisions between the molecules are **not** frequent and the populations are **not** defined by local temperature.
- Breakdown of Local Thermodynamic Equilibrium (LTE).
- Special methodology is applied (non-LTE modeling).

LTE and non-LTE: two-level atom

In the lower atmosphere:

$$\begin{array}{ccc}
R & << C \\
R_{21}n_2 \sim R_{12}n_1
\end{array} \qquad n_2C_{21} = n_1C_{12}
\qquad \frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-\frac{E_2-E}{kT}}$$

In the upper atmosphere:

Collisions are less frequent, and the populations are not defined by local temperature anymore = non-LTE

Vibrational levels and transitions for CO₂

O₃ levels and transitions

 O_2/O_3 photolysis products

H₂O levels and transitions

Hydrocarbons in Titan's MUA

LTE breakdown for different species and atmospheres

• Earth:

 $CO_2(v_2) - 70$ km; 15µm channel used for T retrieval $CO_2(v_3) - 40$ km for the daytime; 4.3µm CO_2 retrieval $O_3(v_3) - 30$ km daytime, 70 km nighttime; 9.6µm O_3 retr $H_2O(v_2) - 50$ km, 6.3µm; solar pumped levels: down to 0km

• Mars: $CO_2(v_2, 15\mu m) - 80 \text{ km}$; 15 μm channel used for T retrieval

• Titan: CH_4 , C_2H_2 , $C_2H_6 - 450$ km

• Rule of thumb: P < 1Pa – non-LTE

Example of LTE breakdown for CO_2 levels and T_{vib}

Radiative and collisional terms: uncertainties

$$n_l \Sigma (R_{ll'} + C_{ll'}) = \sum_{l} n_{l'} (R_{l'l} + C_{l'l}) + P_l - L_l$$

$$\sum_{l} n_l = n$$

Atmospheric applications:

- Calculating of radiative cooling/heating rates for GCMs
- Retrieval of pressure/temperature and trace gas concentrations from satellite observations

Main contributors:

• Fundamental/first hot bands of main isotopes

Uncertainties:

- Radiative terms (solar absorption, IR emission)
- Collisional terms (vibration↔vibration, vibration↔translation)

Uncertainties in radiative terms, R_{II} ,

- Changing the number of ro-vibrational lines from 20000 (HITRAN) to 40000 (HITEMP) does not affect low v_2 and v_3 level populations
- Cooling/heating rates and 15 μ m and 4.3 μ m radiances remain the same. No changes in GCM or retrieval is expected.

CO_2 Uncertainties in quenching rate coefficient, C_{ll}

- Current uncertainty in $k_{VT}(CO_2(v_2)-O)$ is a factor of 3-4 [Feofilov et al, 2012]
- This uncertainty affects T retrievals above ~60km and C/H rates above ~80km
- Laboratory measurements do not match atmospheric observations.

Uncertainties in nascent population model, P_l

- Three-body recombination reaction $O_2+O+M \rightarrow O_3(v_1, v_2, v_3)+M$
- Where does the energy excess go? $(E_{vib}+E_{transl}=8900cm^{-1})$
- •"Zero-surprisal" (solid) vs "Top-8" (dashed) model plot shows the sensitivity of daytime v_3 level population to nascent distribution.

Uncertainties in C_{ll} ,

- 1) $H_2O(v_1; v_2; v_3) + O_2(0) \leftrightarrow H_2O(v_1; v_2-1;v_3) + O_2(1)$
 - 2) $H_2O(v_1; v_2; v_3) + M \leftrightarrow H_2O(v_1; v_2-1; v_3) + M$
 - 3) $H_2O(v_1; v_2; v_3) + M \leftrightarrow H_2O(v_1-1; v_2+2; v_3) + M$
 - 4) $H_2O(v_1; v_2; v_3) + M \leftrightarrow H_2O(v_1; v_2+2; v_3-1) + M$
- The rate constants for 3) and 4) are known only for $(001,100 \rightarrow 020)$.
- Manuilova et al., [2014] have estimated ([Barnes et al., 2004]) the rate constants for #3 and #4 for the upper vibrational levels to be **4 times larger** than currently used (!)

Conclusions and suggestions

- ✓ The vibrational level populations of atmospheric molecules are not in LTE at pressures lower than ~1 Pa
- This affects both radiative cooling/heating rates calculation and interpretation of satellite observations in the infrared
- The non-LTE codes can treat this physics given that the set of spectroscopic and collisional parameters is given.
- Accuracy and completeness of the spectroscopic parameters is sufficient for most of planetary atmosphere applications.
- Some crucial rate coefficients are known with large uncertainty
- The effects in observations can propagate downwards (!)
- GEISA community expertise in quantum mechanic calculations is highly welcome.