Vv255 Lecture 20

Dr Jing Liu

UM-SJTU Joint Institute

July 12, 2017

• For y = f(x), we often use the u-substitution for the integral

$$\int_{a}^{b} f(x) \ dx$$

• For example, consider the following integral,

$$\int_0^{\sqrt{\pi}} 2x \sin(x^2) \ dx$$

• Typically, in this case, we use the following substitution

$$u = g(x) = x^2$$

which is essentially a change of variables from x to u, "new in terms of old".

Applying the substitution formula

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} F(g(x))g'(x) dx = \int_{g(a)}^{g(b)} F(u) du$$

$$\implies \int_{0}^{\sqrt{\pi}} \sin(x^{2})2x dx = \int_{0}^{\pi} \sin(u) du = 2$$

• This can also be done using transformation as "old in terms of new", that is,

$$x = h(u) = \sqrt{u}$$

• Of course, the substitution formula still holds in this case,

$$\int_{g(a)}^{g(b)} F(u) \ du = \int_a^b F(g(x))g'(x) \ dx = \int_a^b f(x) \ dx = \int_{h^{-1}(a)}^{h^{-1}(b)} f(h(u)) \ h'(u) \ du$$

• Apply this version of the formula, we surely obtain the same result

$$\int_0^{\sqrt{\pi}} 2x \sin(x^2) \ dx = \int_0^{\pi} 2 \cdot \sqrt{u} \cdot \sin(u) \cdot \left| \frac{1}{2\sqrt{u}} \right| \ du = \int_0^{\pi} \sin(u) \ du = 2$$

• This version offers insights into the change of variables

$$\int_{a}^{b} f(x) \ dx = \int_{h^{-1}(a)}^{h^{-1}(b)} f(\sqrt{u}) \frac{1}{2\sqrt{u}} \ du$$

• Notice the effect of the change of variables

$$x = h(u) = \sqrt{u}$$

is to stretch the x-axis in a non-uniform way.

Q: What does this term h'(u) actually do?

• Consider the definition of the definite integral with $x_i^* = x_{i-1}$,

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i} = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i-1}) (x_{i} - x_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(\sqrt{u_{i-1}}) (\sqrt{u_{i}} - \sqrt{u_{i-1}})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(\sqrt{u_{i-1}}) \frac{u_{i} - u_{i-1}}{\sqrt{u_{i}} + \sqrt{u_{i-1}}}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(\sqrt{u_{i-1}^{*}}) \frac{u_{i} - u_{i-1}}{2\sqrt{u_{i-1}^{*}}}$$

$$= \int_{h^{-1}(a)}^{h^{-1}(b)} f(h(u)) \frac{1}{2\sqrt{u}} du$$

• The correction term, h'(u), gives how much the operation of changing axes expanded or contracted the subinterval containing the sample points.

• Recall the correction term for changing into the polar coordinates is

$$\int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x, y) \, dx \, dy = \int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2} F(r, \theta) \, r \, dr \, d\theta$$

which was found by using the definition of double integral.

Q: Can we find the the correction term using differentiation like

$$\int_{x_1}^{x_2} f(x) \ dx = \int_{u_1}^{u_2} f(h(u)) h'(u) \ du = \int_{u_1}^{u_2} F(u) h'(u) \ du$$

ullet First let us consider the correction term for a general transformation in \mathbb{R}^2 .

$$x = x(u, v), \qquad y = y(u, v)$$

Using vector notation,

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x(u,v) \\ y(u,v) \end{bmatrix} = x(u,v)\mathbf{e}_x + y(u,v)\mathbf{e}_y$$

• To find the correction term between $\Delta x \Delta y$ and $\Delta u \Delta v$ for

$$\mathbf{r} = x(u, v)\mathbf{e}_x + y(u, v)\mathbf{e}_y$$

we will need to find how regions in one plane become distorted when they are transformed into another plane, for example,

Q: How can we find ΔA for S in terms of ΔA^* for \mathcal{D} ?

If x and y are differentiable functions of u and v,

$$\mathbf{r} = x(u, v)\mathbf{e}_x + y(u, v)\mathbf{e}_y$$

then we expect no sudden and drastic change going from S to D.

Q: What are the graph of

$$\mathbf{r}(u, v_0)$$
 and $\mathbf{r}(u_0, v)$

ullet For small enough Δu and Δv , we expect the following curves to be fairly flat

$$\mathbf{r}(u, v_0)$$
 and $\mathbf{r}(u_0, v)$

• Use linear approximations,

$$\Delta \mathbf{r_u} = \mathbf{r}(u_0 + \Delta u, v_0) - \mathbf{r}(u_0, v_0)$$

$$\approx \frac{\partial \mathbf{r}}{\partial u} \Big|_{u_0, v_0} \Delta u$$

$$= \left(\frac{\partial x}{\partial u} \mathbf{e}_x + \frac{\partial y}{\partial u} \mathbf{e}_y\right) \Big|_{u_0, v_0} \Delta u$$

$$\Delta \mathbf{r_v} = \mathbf{r}(u_0, v_0 + \Delta v) - \mathbf{r}(u_0, v_0)$$

$$\approx \frac{\partial \mathbf{r}}{\partial v} \Big|_{u_0, v_0} \Delta v$$

$$= \left(\frac{\partial x}{\partial v} \mathbf{e}_x + \frac{\partial y}{\partial v} \mathbf{e}_y\right) \Big|_{u_0, v_0} \Delta v$$

ullet It follows that the area of the region \mathcal{D} , denote by ΔA^* , is roughly given by

ullet If ${f r}$ is thought of as vector in ${\Bbb R}^3$ with zero components of ${f e}_z$

$$\mathbf{r} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \implies \frac{\partial \mathbf{r}}{\partial u} = \begin{bmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ 0 \end{bmatrix} \quad \text{and} \quad \frac{\partial \mathbf{r}}{\partial v} = \begin{bmatrix} \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} \\ 0 \end{bmatrix}$$

and the derivatives are evaluated at (u_0, v_0) , then the area expressed as

$$\Delta A^* \approx \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| \Delta u \Delta v$$

• Computing the cross product, we obtain

$$\left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| = \left| \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right| = \left| \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} \right|$$

Q: Have you seen this before?

Definition

The Jacobian of the coordinate transformation x=x(u,v), y=x(u,v) is

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}.$$

It gives how much the transformation is expanding or contracting an infinitesimal area at a point in uv-plane as the point is transformed into xy-plane.

Theorem

If f(x,y), and x(u,v) and y(u,v) have continuous partial derivatives and J(u,v) is zero only at isolated points, if at all, then

$$\iint_R f(x,y) \, dA = \iint_S f(g(u,v),h(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

• The ABSOLUTE VALUE of the Jacobian severs to correct the distortion.

Theorem

If f(x,y), and x(u,v) and y(u,v) have continuous partial derivatives and J(u,v) is zero only at isolated points, if at all, then

$$\iint_R f(x,y) \; dA = \iint_S f(g(u,v),h(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \; du \, dv$$

Q: Why the correct term for y=f(x) can be both positive and negative?

Exercise

(a) Find the Jacobian for the polar coordinate transformation

$$x = r \cos \theta, \qquad y = r \sin \theta,$$

and write the Cartesian integral $\iint\limits_{\Omega} f(x,y) \, dA$ as a polar integral.

(b) Evaluate
$$\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2x)^{2} dy dx$$
.

• Similar procedures can be applied to substitutions in triple integrals.

Definition

For an one-to-one transformation that maps a region in \mathbb{R}^3 onto a region in \mathbb{R}^3 ,

$$x = g(u, v, w)$$
 $y = h(u, v, w)$ $z = k(u, v, w)$

the Jacobian is

$$J(u, v, w) = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{bmatrix}$$

This determinant measures how much the volume near a point is being expanded or contracted by the transformation from (u,y,w) to (x,y,z) coordinates.

• For cylindrical coordinates r, θ , and z,

$$\iiint\limits_{E} F(x,y,z) dV = \iiint\limits_{G} H(r,\theta,z) |r| dr d\theta dz$$

• We can drop the absolute value signs whenever $r \geq 0$.

Matlab

• For spherical coordinates, ρ , θ , and ϕ ,

$$\iiint\limits_E F(x,y,z) \, dV = \iiint\limits_G H(\rho,\theta,\phi) \, |\rho^2 \sin \phi| \, d\rho \, d\theta \, d\phi$$

ullet We can drop the absolute value signs because $\sin\phi$ is never negative.

```
Matlab
>> syms r t p
>> J_rho_theta_phi = jacobian(...
[rho*sin(p)*cos(t), rho*sin(p)*sin(t), rho*cos(p)], [r, t, p])
J_rho_theta_phi =
[ cos(t)*sin(p), -r*sin(p)*sin(t), r*cos(p)*cos(t)]
[\sin(p)*\sin(t), r*\cos(t)*\sin(p), r*\cos(p)*\sin(t)]
         cos(p),
                                0, -r*sin(p)
>> simplify(det(J_rho_theta_phi))
```

Exercise

Evaluate

$$\int_0^3 \int_0^4 \int_{y/2}^{y/2+1} \left(\frac{2x-y}{2} + \frac{z}{3} \right) \, dx \, dy \, dz$$

by applying the transformation

$$u = (2x - y)/2,$$
 $v = y/2,$ $w = z/3$

and integrating over an appropriate region in uyw-space.