MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

04 de dezembro de 2023

2 Perguntas, observações, comentários?

Prove que se p é primo, então, para $1 \le k \le p-1$,

$$\binom{p}{k} \equiv 0 \pmod{p}$$

Seja p um número primo. Prove que

- 1. $(x + y)^p \equiv x^p + y^p \pmod{p}$.
- 2. Se z < x, então $(x z)^p + z \equiv (x (z + 1))^p + z + 1 \pmod{p}$
- 3. (Pequeno teorema de Fermat) $\forall a \in \mathbb{Z}_p^*, \ a^{p-1} \equiv 1 \pmod p$

8

Encontre constantes $c \in n_0$ que provam que $\log(\log(n^3 + 2n)) \in O(\log(\log n))$.

4

Seja
$$f(n) = \begin{cases} 10 & \text{se } n \leq 1 \\ f(\lfloor n/4 \rfloor) + f(\lfloor n/2 \rfloor) + n & \text{se } n \geq 2 \end{cases}$$

Prove que $f(n) \in O(n \log n)$.

5

(Lista 6) Lembre-se de que uma matriz quadrada tem inversa se, e somente se, seu determinante é diferente de zero. Além disso, o determinante tem as sequintes propriedades:

(1)
$$\det(A \cdot B) = \det(A) \cdot \det(B) \in (2) \det(A^{-1}) = 1/\det(A)$$
.

Seja $GL_n(\mathbb{R})=\{A\in\mathbb{R}^{n\times n}: \det(A)\neq 0\}$, ou seja, o conjunto de matrizes quadradas, com n linhas e n colunas, com entradas reais, e que possuem inversas.

Seja $\mathbb{H}=\{A\in\mathbb{Z}^{n\times n}: \det(A)=1\}$, isto é, o conjunto de matrizes inteiras, $n\times n$, com determinante igual a um. Note que $\mathbb{H}\subset GL_n(\mathbb{R})$.

Considere a relação

$$\mathcal{R} = \{ (A, B) \in GL_n(\mathbb{R})^2 : A \cdot B^{-1} \in \mathbb{H} \}$$

Prove que \mathcal{R} é uma relação de equivalência, descreva as classes de equivalência e encontre o quociente $GL_n(\mathbb{R})^2/\mathcal{R}$.

Perguntas, observações, comentários?