1.1.3 连续性: 从度量到拓扑

¶ 强等价度量

根据定义,度量空间之间的映射 $f: X \to Y$ 是否连续取决于在 X, Y 上所给定的度量。下面我们给出一个简单的例子,它表明在某些情况下,"连续性"并不那么依赖于度量:

例 1.19. 考虑函数 $f: \mathbb{R}^n \to \mathbb{R}$. 赋予 \mathbb{R}^n 两个不同的度量,即例1.6(2) 中的 d_1 和 d_∞ 。我们断言: 函数 $f: (\mathbb{R}^n, d_1) \to \mathbb{R}$ 是连续的当且仅当函数 $f: (\mathbb{R}^n, d_\infty) \to \mathbb{R}$ 是连续的。

【事实上,如果 $f:(\mathbb{R}^n,d_1)\to\mathbb{R}$ 是连续的,那么根据定义,

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ } \notin \exists \delta > 0 \text{ } \notin \exists \delta < X, d_1(x, x_0) < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

因为

$$d_1(x,y) \le n \cdot \max_i |x_i - y_i| \le n \cdot d_\infty(x,y),$$

我们有

$$\forall \varepsilon > 0, \exists \delta' = \frac{\delta}{n} > 0 \ \text{\'e} \exists \forall x \in X, d_{\infty}(x, x_0) < \delta' \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

换言之, $f:(\mathbb{R}^n,d_\infty)\to\mathbb{R}$ 是连续的。

反之, 由不等式

$$d_{\infty}(x,y) \le d_1(x,y)$$

及同样的论证易得: 如果 f 关于 d_{∞} 是连续的, 那么它关于 d_1 也是连续的。】

如果我们回顾上面的例子,我们可以很容易看出度量 d_1 和 d_2 之所以会诱导出相同的连续性,其主要原因在于以下事实:

$$\frac{1}{n}d_1(x,y) \le d_2(x,y) \le \sqrt{n} \cdot d_1(x,y).$$

这个事实启发我们给出如下定义:

定义 1.20. (强等价度量)

设 d_1 和 d_2 是集合 X 上的两个度量。如果存在常量 $C_1, C_2 > 0$ 使得对于任意 $x, y \in X$,均有

$$C_1 d_1(x, y) \le d_2(x, y) \le C_2 d_1(x, y),$$

则我们称 d_1 和 d_2 是 强等价的。

通过重复例1.19中的论证,可以证明强等价度量会诱导相同的连续性概念:[证明细节留作习题。]

命题 1.21. (强等价度量与连续性)

设 d_X 和 \tilde{d}_X 是 X 上的强等价度量,而 d_Y 和 \tilde{d}_Y 是 Y 上的强等价度量。则映射 $f:(X,d_X)\to (Y,d_Y)$ 是连续的当且仅当 $f:(X,\tilde{d}_X)\to (Y,\tilde{d}_Y)$ 是连续的。

¶ 更多诱导等价的连续性的度量

让我们再研究一个例子。

例 1.22. 考虑 \mathbb{R}^n 上的另一对度量,欧氏度量 $d_2(x,y) = |x-y|$ 和 d_2 诱导的有界度量 $\bar{d}_2(x,y) := \min\{1,d_2(x,y)\}.$

显然 $\bar{d}_2(x,y) \leq d_2(x,y)$,但是 d_2 和 \bar{d}_2 是 **不是强等价的**,因为给定任意常数 C > 0,都 存在 $x,y \in \mathbb{R}^n$ 使得

$$d_2(x,y) > C \ge C\bar{d}_2(x,y).$$

然而,在考察任意函数 $f: \mathbb{R}^n \to \mathbb{R}$ 的连续性时,我们将再次得到相同的结论: 函数 $f: (\mathbb{R}^n, d_2) \to \mathbb{R}$ 是连续的当且仅当函数 $f: (\mathbb{R}^n, \bar{d_2}) \to \mathbb{R}$ 是连续的!

【假设 $f:(\mathbb{R}^n, \bar{d}_2) \to \mathbb{R}$ 是连续的。因为 $\bar{d}_2(x,y) \leq d_2(x,y)$, 所以 $f:(\mathbb{R}^n, d_2) \to \mathbb{R}$ 也是连续的,

反之, 如果 $f:(\mathbb{R}^n, d_2) \to \mathbb{R}$ 是连续的, 即

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ } \notin \exists \delta > 0 \text{ } \notin \exists \delta < X, d_2(x, x_0) < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

那我们只要取 $\delta' = \min(1/2, \delta)$,就有

$$\forall \varepsilon > 0, \exists \delta' > 0 \notin \exists \delta' > 0 \notin \exists \delta' = |f(x) - f(x_0)| < \varepsilon.$$

即 $f:(\mathbb{R}^n,\bar{d}_2)\to\mathbb{R}$ 是连续的。】

从上面的例子我们可以预期、应该有一个比度量结构更基本的结构诱导了连续性。

¶用邻域定义的局部连续性

为了弄清楚连续性背后的结构,让我们回到命题1.17. 直观地说,f 在点 x_0 处的连续性仅仅涉及 X 中 x_0 附近的点和 Y 中 f(x) 附近的点。当然,命题1.17中的各条等价刻画都依赖于度量结构(度量 d 或度量球)。我们在定义1.1.1中给出了开集、闭集的概念。我们还可以进一步引入邻域的定义,以刻画"附近的点"这样一个概念:

定义 1.23. (邻域)

设x是X中的一个点,而N \subset X 为X 的一个子集。如果X 中存在一个开集U 使得x \in U \subset N ,则称X 是x 的一个**邻域**。a

"在一些教材(包括 J. Munkres 的《拓扑学》等)中,作者要求邻域是开集。本书中不要求邻域是开集。我们将使用"x 的开邻域"一词表示一个集合既是开集又是 x 的邻域。

注 1.24. 如果我们用 $\mathcal{N}(x)$ 表示 x 的所有邻域的集合,不难验证

- (N1) 如果 $N \in \mathcal{N}(x)$, 那么 $x \in N$.
- (N2) 如果 $M \supset N$ 且 $N \in \mathcal{N}(x)$, 那么 $M \in \mathcal{N}(x)$.
- (N3) 如果 $N_1, N_2 \in \mathcal{N}(x)$, 那么 $N_1 \cap N_2 \in \mathcal{N}(x)$.
- (N4) 如果 $N \in \mathcal{N}(x)$, 那么存在 $M \in \mathcal{N}(x)$ 使得 $M \subset N$ 且对于任意 $y \in M$, 都有 $N \in \mathcal{N}(y)$.

事实上,我们可以利用邻域刻画映射在一点处的连续性:

命题 1.25. (邻域与单点连续性)

设 $f:(X,d_X)\to (Y,d_Y)$ 是度量空间之间的映射,那么 f 在 $x\in X$ 处连续当且仅 当 f(x) 的任何邻域的原像是 x 的邻域。

证明 设 f 在 $x \in X$ 处是连续的, $M \subset Y$ 是 f(x) 的一个邻域。那么根据定义,存在 Y 中的开集 V 使得 $f(x) \in V \subset M$ 。根据开集的定义, $\exists \varepsilon > 0$ 使得开球 $B(f(x), \varepsilon) \subset V$. 由 f 在 x 处的连续性, $\exists \delta > 0$ 使得

$$B(x,\delta) \subset f^{-1}(B(f(x),\varepsilon)) \subset f^{-1}(V) \subset f^{-1}(M).$$

所以 $f^{-1}(M)$ 是 x 的一个邻域。

反之,假设对于 f(x) 的任何邻域 $M \subset Y$, $f^{-1}(M)$ 是 x 的邻域。那么,特别地,对于 $\forall \varepsilon > 0$, $f^{-1}(B(f(x),\varepsilon))$ 是 x 的邻域,即它包含一个含有点 x 的开集 U. 由开集的定义, $\exists \delta > 0$ 使得 $B(x,\delta) \subset U$,而这意味着 $B(x,\delta) \subset f^{-1}(B(f(x),\varepsilon))$ 。所以 f 在 x 处连续.

值得说明的是,一般而言,即使 f 在 x_0 处连续,点 $f(x_0)$ 的开邻域的原像也可能不是 X 中的开集。[读者可以尝试找到一个例子!]

¶用开集定义整体连续性

作为命题 1.25 的推论, 我们给出如下抽象度量空间之间的(整体)连续映射的刻画:

定理 1.26. (连续映射的刻画)

一个映射 $f:(X,d_X)\to (Y,d_Y)$ 是连续映射,当且仅当对于 Y 中的任何开集 V,其原像 $f^{-1}(V)$ 是 X 中的开集。

证明 设 f 是连续的, $V \subset Y$ 是开集。那么 $\forall x \in f^{-1}(V)$, 由命题 1.25, $f^{-1}(V)$ 包含一个含点 x 的开集 U. 所以 $f^{-1}(V)$ 在 X 中是开集。

反之,假设 Y 中任何开集 V 的原像 $f^{-1}(V)$ 在 X 中都是开的。对于任意 $x \in X$,取 Y 中的任意包含点 f(x) 的开集 V,那么 $f^{-1}(V)$ 本身是 X 中的一个包含点 x 的开集。所以由命题 1.25,f 是连续的。

由此可见,度量空间之间的映射是否连续,其根本因素不在于度量 d 所给出的具体数值,在于该度量所生成的开集族。我们定义

定义 1.27. (拓扑等价度量)

设 d_1 和 d_2 是集合 X 上的两个度量。如果它们诱导的开集族是相同的,则我们称 d_1 和 d_2 是 **拓扑等价的** 。

显然,强等价的度量总是拓扑等价的,反之则不然。一般来说,如果一个概念只依赖于开集族,我们就称这个概念为"拓扑概念"(这点后面会讲清楚)。所以"邻域"是一个拓扑概念,即它只依赖于开集族;"连续性"也是拓扑概念。在习题中我们将看到,"一

致连续性"不是拓扑概念。

由定理 1.26, 我们得到

推论 1.28

设 \widetilde{d}_X 和 \widetilde{d}_Y 分别是拓扑等价于 d_X 和 d_Y 的度量,那么映射 $f:(X,d_X)\to (Y,d_Y)$ 连续映射,当且仅当映射 $f:(X,\widetilde{d}_X)\to (Y,\widetilde{d}_Y)$ 是连续映射。

这就是为什么 \mathbb{R}^n 上的三个不同度量 d_1, d_2 和 \bar{d}_2 给出了完全相同的连续函数集,而 离散度量则给出了不同的连续函数集的原因: 从上面例子的论证中不难看出,由 d_1, d_2, \bar{d}_2 确定的开集族都相同,而由离散度量确定的开集族是与之不同的!

1.2 拓扑空间: 定义与基本例子

在上一节中我们看到,虽然我们通过度量结构定义了映射的连续性,但连续性实际 上只依赖于度量所诱导的邻域族或者开集族。在本节中,我们将通过公理化的方式引入 邻域以及开集的概念,从而定义一般的拓扑空间。

1.2.1 拓扑的定义

¶邻域结构

为了将连续性和收敛性的概念扩展到更一般的"空间",直观上我们需要首先公理化"邻域"的概念。任给一个点x,哪些集合可以被视为x的邻域呢?不同点的邻域之间有什么关联呢?受注记1.24启发,我们可以对于任何 $x \in X$,都为其指定一个非空的子集族

$$\mathcal{N}(x) \subset \mathcal{P}(X)^{5}$$

 $\mathcal{N}(x)$ 中的每个元素都视为 x 的一个邻域,这些子集族 $\mathcal{N}(x)$ 要满足的公理如下:

- (N1) 如果 $N \in \mathcal{N}(x)$, 那么 $x \in N$.
- (N2) 如果 $M \supset N$ 且 $N \in \mathcal{N}(x)$,那么 $M \in \mathcal{N}(x)$.
- (N3) 如果 $N_1, N_2 \in \mathcal{N}(x)$, 那么 $N_1 \cap N_2 \in \mathcal{N}(x)$.
- (N4) 如果 $N \in \mathcal{N}(x)$, 那么存在 $M \in \mathcal{N}(x)$ 使得 $M \subset N$,且对于任意 $y \in M$,都有 $N \in \mathcal{N}(y)$.

邻域的前三条公理具有较为明确的意义,而第四条 (N4) 给出了不同点的邻域之间的 关系,可以看作是度量结构的三角不等式的某种替代。

以上邻域概念的公理化是 1912 年由德国数学家 Hausdorff 6 完成的。 7 他的目标是定义一个非常一般的空间概念,这样的抽象空间会包括 \mathbb{R}^n 、黎曼曲面、无限维空间或由曲线和函数组成的空间为特例。他给出了引入这样一个一般性概念的两个好处:简化理论,以及防止我们错误地使用直觉。

定义 1.29. (邻域结构)

我们把集合 X 上的一个满足公理 (N1)-(N4) 的映射

$$\mathcal{N}: X \to \mathcal{P}(\mathcal{P}(X)) \setminus \{\emptyset\}$$

称为 X 的一个**邻域结构**,把 $\mathcal{N}(x)$ 称为 x 的**邻域系**,而把 $\mathcal{N}(x)$ 里的每个元素均 称为 x 的一个 **邻域**。

给定集合 X 上的一个邻域结构 \mathcal{N} , 我们称 (X,\mathcal{N}) 为一个 (邻域结构) 拓扑空间。

⁵我们使用符号 $\mathcal{P}(X)$,有时也使用符号 2^X ,来表示 X 的幂集,即 X 的所有子集的集合。

⁶豪斯道夫(Felix Hausdorff, 1868-1942),德国数学家,现代拓扑学的奠基人之一,在集合论、测度论、泛函分析等领域也有重要贡献。1914 年,他出版了《集合论原理》一书,在 Frechét 等人工作的基础上,创立了拓扑空间的理论。

 $^{^7}$ 然而,Hausdorff 给出的公理体系与上面的公理稍有不同,即他额外要求一个分离公理:对于任意两点 $x \neq y$,存在 $N \in \mathcal{N}(x)$ 和 $M \in \mathcal{N}(y)$ 使得 $N \cap M = \emptyset$. 这样的分离公理称为 Hausdorff 性质,我们将在下一章对其进行更深入地研究。

¶从邻域结构到内部结构

相比于接下来要引入的(也是大部分教材中不加说明而直接引入的)开集公理,邻域公理显得更加直观,但其缺点在于用起来比较复杂。接下来我们阐述如何从邻域结构出发,逐步引入"内部结构"、"开集结构"、"闭集结构"等其他相互等价的拓扑空间公理体系。给定一个邻域结构拓扑空间 (X, \mathcal{N}) ,我们如何得到 X 中开集的概念呢?回想一下,在数学分析中,一个集合是开集当且仅当该集合中的每个点都是其内点,所以开集跟"内部"这个概念是紧密相连的。什么是内点呢?点 x 是集合 A 的内点当且仅当 A 包含一个以 x 为中心的开球。换而言之,点 x 是集合 A 的内点当且仅当集合 A 是点 x 的邻域!于是在邻域结构拓扑空间可以定义任意集合的"内部":

定义 1.30. (内部)

设 (X, \mathcal{N}) 是一个邻域结构拓扑空间。对于任意子集 $A \subset X$,其 **内部** 定义为

$$Int(A) := \{ x \in A \mid A \in \mathcal{N}(x) \}. \tag{1.2.1}$$

根据定义和公理 (N1)-(N4), 不难验证映射

$$\operatorname{Int}: \mathcal{P}(X) \to \mathcal{P}(X), \quad A \mapsto \operatorname{Int}(A)$$

满足

- (I1) $\operatorname{Int}(A) \subset A$.
- (I2) $\operatorname{Int}(A) \cap \operatorname{Int}(B) = \operatorname{Int}(A \cap B)$.
- (I3) Int(Int(A)) = Int(A).
- (I4) Int(X) = X.

定义 1.31. (内部结构)

设 X 是一个集合。我们称满足公理 (I1)-(I4) 的映射 $\operatorname{Int}:\mathcal{P}(X)\to\mathcal{P}(X)$ 为 X 上的一个"内部结构"。

给定 X 上的一个内部结构 Int,我们称 (X, Int) 为一个 **(内部结构) 拓扑空间**。可以验证,(邻域结构)拓扑空间和(内部结构)拓扑空间是相互等价的:给定 X 上的一个邻域结构,我们上面构造了 X 上的一个内部结构;反之,给定集合 X 上的一个内部结构 Int,也不难定义出 X 上的一个邻域结构,

$$\mathcal{N}(x) = \{ A \subset X \mid x \in \text{Int}(A) \}. \tag{1.2.2}$$

我们有(证明留作习题):

命题 1.32. (邻域结构与内部结构的等价性)

任给集合 X 上的一个邻域结构 \mathcal{N} ,由 (1.2.1) 所定义的映射 $\mathrm{Int}: \mathcal{P}(X) \to \mathcal{P}(X)$ 为 X 上的一个内部结构;反之,任给集合 X 上的一个内部结构 Int ,由 (1.2.2) 所定义的子集族 \mathcal{N} 是 X 上的一个邻域结构。更进一步,上述从"邻域结构"到"内部结构"以及从"内部结构"到"邻域结构"的两个过程互为逆过程。

¶从内部结构到开集结构

如上所述,欧氏空间(或者一般度量空间中)一个集合是开集当且仅当该集合中的每个点都是其内点。受此启发,由"内部"的概念出发,不难给出如下(邻域结构或者内部结构)拓扑空间中开集的定义:

定义 1.33. (开集)

在邻域结构 (或内部结构) 拓扑空间中,我们称集合 U 是一个 开集,如果它满足: 对于任意 $x \in U$,均有 $U \in \mathcal{N}(x)$.

由邻域结构与内部结构的等价性, 马上可得如下等价刻画:

命题 1.34. 开集与内部

邻域结构 (或内部结构) 拓扑空间中的集合 U 是一个开集当且仅当 Int(U) = U.

给定 (X, \mathcal{N}) , 如果我们记

$$\mathcal{T} = \{ U \subset X \mid U \not\in \mathcal{T} \not\in \mathcal{T} \} \tag{1.2.3}$$

为 (X, \mathcal{N}) 中所有开集构成的集族,则可以验证:

- (O1) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- (O2) 如果 $U_1, U_2 \in \mathcal{T}$, 那么 $U_1 \cap U_2$ 亦然.
- (O3) 如果 $\{U_{\alpha} : \alpha \in \Lambda\} \subset \mathcal{T}$, 那么 $\cup_{\alpha \in \Lambda} U_{\alpha} \in \mathcal{T}$.

1935年, Alexandrov ⁸和 Hopf⁹ 在他们撰写的《拓扑学(I)》 ¹⁰一书中, 将开集公理作为 拓扑空间的定义。相比于邻域公理(N1)-(N4) 或者内部公理(I1)-(I4), 开集公理(O1)-(O3) 更简洁而且易于使用, 因而得到了广泛的采纳, 成为拓扑空间的标准定义:

定义 1.35. (拓扑)

集合 X 上的满足 (O1) (O2) 和 (O3) 的子集族 $\mathcal{T} \subset \mathcal{P}(X)$ 称为 X 上的一个**拓扑结构**,或者简称为 X 上的一个**拓扑**。

给定 X 上的一个拓扑结构 \mathcal{I} , 我们称 (X,\mathcal{I}) 为一个 **拓扑空间**。

前文阐述了如何由邻域结构公理 (N1)-(N4) 出发,构造满足开集公理 (O1)-(O3) 的过程。反之,给点拓扑结构,即满足 (O1)-(O3) 的集族 \mathcal{I} ,我们定义

定义 1.36. (拓扑空间里的邻域)

设 (X,\mathcal{T}) 是一个拓扑空间, $x\in X$ 为一个元素,而 $N\subset X$ 为一个子集。如果存在开集 $U\in\mathcal{T}$ 使得 $x\in U\subset N$,则称集合 N 为 x 的一个 **邻域**。

⁸亚历山大洛夫(Pavel Alexandrov,1896-1932),前苏联数学家,莫斯科拓扑学派的奠基人之一,在拓扑学、集合论等方面做出了杰出工作。

⁹霍普夫(Heinz Hopf, 1894-1971), 德国数学家, 在拓扑与整体微分几何方面有卓越建树。

¹⁰该书是拓扑学方面最早的著作之一,原计划写三卷,但最终只完成了第一卷。

于是,给定拓扑结构 \mathcal{T} 后,点 x 的邻域系为

$$\mathcal{N}(x) = \{ N \subset X : \exists U \in \mathcal{T} \ \text{the first partial } x \in U \ \exists U \subset N \}. \tag{1.2.4}$$

可以验证开集公理体系和邻域公理体系的等价性(证明依然留作习题):

命题 1.37. (开集公理体系与邻域公理体系的等价性)

任给集合 X 上的一个邻域结构 N,由 (1.2.3) 所给出的开集族 \mathcal{T} 为 X 上的一个拓扑结构; 反之,任给集合 X 上的一个拓扑结构 \mathcal{T} ,由 (1.2.4) 所定义的子集族 N 是 X 上的一个邻域结构。更进一步,上述从"邻域结构"到"拓扑结构"以及从"拓扑结构"到"邻域结构"的两个过程互为逆过程。

『用闭集定义拓扑

有了开集的概念,我们自然可以定义闭集:

定义 1.38. (闭集)

设 F 为拓扑空间 (X,\mathcal{T}) 的一个子集。如果 F 的补集 $F^c=X\setminus F$ 是开集,则称 F 是一个 **闭集**。

将"开集公理"转换为"闭集公理"是平凡的:

- (C1) ∅ 和 X 都是闭集。
- (C2) 如果 U_1, U_2 是闭集,那么 $U_1 \cup U_2$ 亦然。
- (C3) 如果对任意 $\alpha \in \Lambda$, U_{α} 都是闭集, 那么 $\cap_{\alpha \in \Lambda} U_{\alpha}$ 也是闭集。

在某些特定问题里, 闭集公理更适用。

1.2.2 拓扑空间举例

『一些简单的拓扑空间

例 1.39. 下面我们给出一些拓扑的例子。

(1) (**度量拓扑**) 设 (*X*, *d*) 是任意度量空间。令

$$\mathcal{T}_{metric} = \{ U \subset X \mid \forall x \in U, \exists r > 0 \ \text{det} \ B(x,r) \subset U \}.$$

那么 \mathcal{I}_{metric} 是 X 上的一个拓扑,称为度量拓扑。

(2) (**离散拓扑**) 设 *X* 是任意集合。令

$$\mathcal{I}_{discrete} = \mathcal{P}(X) = \{Y \mid Y \subset X\}.$$

显然它是 X 上的一个拓扑, 且不难发现它是关于 X 上的离散度量的度量拓扑。

(3) (**平凡拓扑**)¹¹设 *X* 是任意集合。令

$$\mathcal{I}_{trivial} = \{\emptyset, X\}.$$

易见它是 X 上的一个拓扑。但只要 X 的元素个数大于 1 ,那么它就**不是**一个度量 拓扑。

¹¹该拓扑也被称为"非离散拓扑"。

(4) (**余有限拓扑**) 设 *X* 是任意集合。令

 $\mathcal{I}_{cofinite} = \{A \subset X \mid \mathbb{Z} \subseteq \mathbb{Z}, \mathbb{Z} \subseteq \mathbb{Z} \setminus A \in \mathbb{Z} \subseteq \mathbb{Z}$

它是 X 上的一个拓扑, 验证如下:

- $\emptyset \in \mathcal{I}; X \in \mathcal{I}$ 因为 $X^c = \emptyset$ 是有限的。
- 如果 $A, B \in \mathcal{T}, A, B \neq \emptyset$. 那么 A^c, B^c 是有限的,所以 $(A \cap B)^c = A^c \cup B^c$ 是有限的。
- 如果 $A_{\alpha} \in \mathcal{T}$ 而且至少有一个 $A_{\alpha_1} \neq \emptyset$, 那么 $(\cup_{\alpha} A_{\alpha})^c = \cap_{\alpha} A_{\alpha}^c \subset A_{\alpha_1}^c$ 是有限的。
- (5) (**余可数拓扑**) 设 *X* 是任意集合。令

 $\mathcal{I}_{cocountable} = \{A \subset X \mid \mathbb{E} \subseteq \mathbb{E} \subseteq \mathbb{E}$ 要么 $A = \emptyset$,要么 A^c 是至多可数的 $\}$.

读者可自行验证它是 X 上的一个拓扑。

(6) (**Zariski 拓扑**) 设 $X = \mathbb{C}^n$, $R = \mathbb{C}[z_1, \dots, z_n]$, 即具有复系数的 n 元多项式环。定义 $\mathcal{I}_{Zariski} = \{U \subset \mathbb{C}^n \mid \exists f_1, \dots, f_m \in R \ \text{使得}U^c 为 f_1, \dots, f_m \ \text{的公共零点集}\}.$ 可以证明这是一个拓扑。(注意: 此处验证闭集公理更方便。) 更一般地,可以在任意交换环上定义 Zariski 拓扑。该拓扑主要用于代数几何的研究。

(7) (Sorgenfrey 拓扑) 设 $X = \mathbb{R}$,定义

可以验证这是一个拓扑。该拓扑将是我们理解不同拓扑性质之间关系的一个重要例子。

『不同拓扑的比较

所以任何一个集合上都有很多不同的拓扑,其中某些拓扑是度量拓扑,而另一些拓扑不是度量拓扑。注意对于 X 上的任意拓扑 \mathcal{T} ,我们总是有

$$\mathcal{I}_{trivial} \subset \mathcal{I} \subset \mathcal{I}_{discrete}$$
.

一般地, 我们定义

定义 1.40. (拓扑的比较)

设 \mathcal{S}_1 和 \mathcal{S}_2 是 X 上的两个拓扑。我们称 \mathcal{S}_1 是 **弱于**⁴ \mathcal{S}_2 , 或者等价地,称 \mathcal{S}_2 is **强** 于 \mathcal{S}_1 , 如果有 $\mathcal{S}_1 \subset \mathcal{S}_2$.

"一些作者使用"粗糙于"的说法代替"弱于",用"精细于"的说法代替"强于"

因此,在任意集合 X 上, $\mathcal{I}_{trivial}$ 是最弱/最粗糙的拓扑,而 $\mathcal{I}_{discrete}$ 是最强/最精细的拓扑。当然,并不是 X 上的任意两个不同的拓扑都可以比较。例如, \mathbb{R} 上的欧氏拓扑和余可数拓扑是无法比较的,即存在欧氏开集不是余可数拓扑下的开集,也存在余可数拓扑下的开集不是欧氏开集。

一般而言,同一个集合上两个不同拓扑的并不再是拓扑。但是,

命题 1.41. (拓扑的交)

给定 X 上的任意一族拓扑 \mathcal{I}_{α} , 则 $\bigcap_{\alpha} \mathcal{I}_{\alpha}$ 是 X 上的一个拓扑。

证明 验证如下:

- $\emptyset, X \in \mathscr{T}_{\alpha}, \forall \alpha \Rightarrow \emptyset, X \in \cap_{\alpha} \mathscr{T}_{\alpha}$.
- $U_1, U_2 \in \mathscr{T}_{\alpha}, \forall \alpha \Rightarrow U_1 \cap U_2 \in \mathscr{T}_{\alpha}, \forall \alpha \Rightarrow U_1 \cap U_2 \in \cap_{\alpha} \mathscr{T}_{\alpha}$.
- $U_{\beta} \in \mathscr{T}_{\alpha}, \forall \alpha \Rightarrow \cup_{\beta} U_{\beta} \in \mathscr{T}_{\alpha} \Rightarrow \cup_{\beta} U_{\beta} \in \cap_{\alpha} \mathscr{T}_{\alpha}.$

¶从已有的拓扑空间构造新空间

和抽象度量空间的情况一样,我们可以通过已有的拓扑空间构造新的拓扑空间,而 最常见的构造是"子集继承原空间拓扑"而得到的子空间拓扑,以及在乘积空间上通过 合适的方法定义的乘积空间拓扑。

命题 1.42. (子空间拓扑)

设 (X,\mathcal{I}) 是一个拓扑空间, $Y \subset X$ 是一个子集,则集族

 $\mathscr{T}_Y := \{ U \cap Y \mid U \in \mathscr{T} \}$

是 Y 上一个拓扑, 称为 子空间拓扑。

其验证是平凡的, 故而略去。

注 1.43. 如果 (X, d_X) 是一个度量空间且 $Y \subset X$,那么"由 X 上的度量拓扑所诱导的 Y 上的子空间拓扑"与" (Y, d_Y) (作为 (X, d_X) 的子空间度量)上的度量拓扑"是一致的。证明留作习题。

下面我们解释如何在两个拓扑空间的笛卡尔积上构造合理的拓扑。在数学分析中,我们知道: 一个集合 $U \subset \mathbb{R}^2$ 是一个开集,当且仅当 U 中的任意点 (x,y) 均为 U 的内点,也当且仅当对于 U 中的任意点 (x,y),可以找到 $\varepsilon_x > 0$ 和 $\varepsilon_y > 0$ 使得 U 包含 (x,y) 的"方形邻域" $(x-\varepsilon_x,x+\varepsilon_x)\times (y-\varepsilon_y,y+\varepsilon_y)$. 后者,作为笛卡尔积,可以轻易推广到一般的拓扑空间:

命题 1.44. (乘积拓扑)

设 (X, \mathcal{I}_X) 和 (Y, \mathcal{I}_Y) 是拓扑空间。则

 $\mathcal{I}_{X\times Y} := \{W \subset X\times Y \mid \forall (x,y) \in W, \exists U \in \mathcal{I}_X \ \pi V \in \mathcal{I}_Y \ \text{使得}(x,y) \in U\times V \subset W\}$ 是 $X\times Y$ 上的一个拓扑,称为 **乘积拓扑**。

证明留作习题。

注 1.45. 对于度量空间,在注记1.9中我们指出,可以在 $X \times Y$ 定义各种不同的 l^p 型乘积度量。可以证明,这些不同的乘积度量是拓扑等价的,且它们所诱导的度量拓扑都跟由命题1.8给出的"每个分量空间上的度量拓扑的乘积拓扑"一致!