

离

散

离散数学: 期末总结

刻世實 shixia@tsinghua.edu.cn

发了一张纸

*表示非基本要求的内容

 $5.4 \sim 5.6$

考试内容

概述,第1章	绪论,离散数学与数理逻辑学科概述,研究内容与发展概况
1.1~1.5	命题概念,命题联结词与真值表,合式公式重言式,命题形式化
第 1 章 1.6	波兰表达式, 悖论简介, 其它联结词, 等值定理, 基本等值公式
第 2 章 2.1 ~2.4	命题公式与真值表的关系, 联结词的完备集, 对偶式
放假	
第2章	范式概念, 析取范式, 合取范式, 主范式
2.5~ 2.10	基本推理公式,推理演算与推理规则,归结推理法,应用举例
第3章	命题逻辑的公理化,公理系统的结构,命题逻辑的公理系统
3.1 ~ 3.6	公理系统的完备性,王浩算法*,非标准逻辑简介*
第 4 章	谓词逻辑的基本概念,谓词和个体词,函数和量词,合式公式
4.1 ~ 4.6	自然语句的形式化,有限域下公式的表示法

第5章 谓词逻辑等值和推理演算, 否定型等值式, 量词分配等值式 范式,前束范式,SKOLEM标准型,存在量词前束范式* $5.1 \sim 5.3$ 基本的推理公式及其证明方法, 推理演算与推理规则 第5章 语词逻辑的旧姓推理法 语词逻辑应用举例

公式的普遍有效性和判定问题

考试内容

第9章	幂集性质,传递集合,包含排斥原理,有限集合的基数
9.5~ 9.7	集合论公理系统简介,无穷公理与自然数集合
第 10 章	关系的基本概念, 二元关系与特殊关系, 关系矩阵和关系图
10.1 ~10.4	关系的逆、合成, 限制和象, 关系的基本性质
第 10 章	关系基本性质的几个结论,关系的闭包,关系的合成
10.4 ~ 10.6	闭包的性质及其构造方法,等价关系的概念
第 10 章	划分与等价关系,相容关系和覆盖,偏序关系与哈斯图
10.6 ~ 10.8	上确界和下确界,全序关系和链
第 11 章 11.1,	函数,任意集合上的函数定义,特殊函数,满射单射与双射
11.2, 11.5	选择公理*,函数的合成,函数的逆*
第 12 章	实数集合与集合的基数,集合的等势,有限集合与无限集合
12.1~12.7	的基数,可数集合与连续统假设

离散数学1 的主要内容

- 两个演算加四论
- 两个演算(命题演算与谓词演算)
- 集合论(集合、关系、函数、基数)
- 模型论(形式语言语法与语义间的关系)
- 递归论(可计算性与可判定性)
- 证明论(数学本身的无矛盾性)

際述句

主要内容

• 命题逻辑

命题 (proposition)

命题是一个能判断真假且非真即假的陈述句。

- 1. 命题必须是一个<mark>陈述句,</mark>而祈使句、疑问句和感叹句都不是命题。
- 2. 作为命题的陈述句所表达的判断结果有真假之别命题的真值:命题所表达的判断结果,

真值只取两个值:真或假(1或0)。

真命题: 与事实相符或表达的判断正确; 真值为真

假命题: 与事实不符或表达的判断错误; 真值为假

规定: 任何命题的真值都是唯一的;

不能非真非假, 也不能既真又假。

Multiple Choice(multiple) Points: 1

以下哪些是命题?

- A 8小于10.
- B 8大于10.
- c 任一个>2的偶数可表成两个素数的和.
- □ 8大于10吗?
- E X大于Y.
- F 我正在撒谎。

1.2 常用的5个命题联结词

- 常用的5个命题联结词:
- 否定联结词
- 合取联结词
- 析取联结词
- 蕴涵联结词
- 双蕴涵联结词

```
(非, ¬)
```

(与, ∧)

(或, ∨)

(如果…,则…,→)

(当且仅当, ↔)

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

析取及异或联结词举例

- 例1. 5 将下列命题符号化
 - (1) 张明喜欢学数学或计算机。
 - (2)张明报考的第一志愿(<mark>唯</mark>一)只选择数学专业 或软件专业。
- 解 先将原子命题符号化
- (1) p: 张明喜欢学数学。
- q:张明喜欢学计算机。
- · 显然(1)中的"或"为相容或,即p与q可以同时为真,符号化为 $p \lor q$ 。

- (2) 张明报考的第一志愿只选择数学专业或软件专业。
- 设 r: 张明选择数学专业
 - s: 张明选择软件专业
- 若将命题符号化为r\s, 由于r, s的联合取值情况有四种: 同真,同假,一真一假(两种情况)。
 张明就可能同时选择数学专业和软件专业,这不符合报考的实际情形。
- 如何达到只能选择唯一的第一志愿要求呢?

• 设 r: 张明选择数学专业

s: 张明选择软件专业

可以使用多个联结词,将该命题符号化为

$(r \land \neg s) \lor (\neg r \land s)$

- 此复合命题为真当且仅当r, s中一个为真,且另一个为假。
- 由题意可知, (2)中的"或"应为排斥或(不可 兼或)。

异或联接词与命题形式化

自然语句的形式化

教材P10例3: 给出三个命题

p: 今晚我在家里看电视。

q: 今晚我去体育场现场看球赛。

r: 今晚我在家里看电视或去体育场看球赛。

问题是:命题 $rnp \lor q$ 表达的是否是同一命题?

(注:上述看电视与看球赛均指同一时间段)

异或联接词与命题形式化

p	q	r
0	0	0
0	1	1
1	0	1
1	1	0

该表的前三行很容易理解。而 第四行是说今晚我在家看电视, 又去体育场看球赛。显然据题 意假设,对同一个人、同一时 间段这是不可能发生的事情。 从而这时*r* 的真值为F。

这也说明:

r与p V Q在逻辑上是并不相等的,即r 中出现的"或"不能以普通的"V"来表示。

析取联结词"∨"与异或"⊽"的真值表

(注: ∇ 为 \vee 上面加一横,见教材P10,不可兼或)

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

p	q	$p \overline{\vee} q$
0	0	0
0	1	1
1	0	1
1	1	0

关于联结词的几点说明

- 对简单命题多次使用联结词集中的联结词,可以 组成更为复杂的复合命题。
- 求复合命题的真值时,除依据前面的真值表外, 还要规定联结词的优先顺序
- 教材中规定的联结词优先顺序为:

(), \neg , \wedge , \vee , \rightarrow , \leftrightarrow ,

同一优先级的联结词,先出现者先运算。

在逻辑中所关心的是复合命题中命题之间的真值 关系,而并不关心命题的内容。

1.3 合式公式及其赋值

- 介绍了将命题表示为符号串。
- 是否每个符号串都是命题呢?

 $p q \rightarrow$

- 什么样的符号串才能表示命题呢?
- 如下命题形式定义的符号串表示的才是命题(公式)。

合式公式(命题公式)的定义

定义1.6 合式公式

- (1) 单个命题变项是合式公式,并称为原子命题公式。
- (3) 若A, B是合式公式,则(A∧B),(A∨B), (A→B),(A↔B) 也是合式公式。
- (4) 只有有限次地应用(1)~(3)形成的符号串 才是合式公式。

合式公式也称为命题公式或命题形式,简称公式。

设A为合式公式,B为A中的一部分,若B也是合式公式,则
 称B为A的子公式。

$p \land (p \rightarrow q) \rightarrow q$ 的真值表

p	q	$p \rightarrow q$	$p \land (p \rightarrow q)$	$p \land (p \rightarrow q) \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

命题公式的分类

- 定义1.9 重言式 矛盾式 可满足式设A为任一命题公式,
 - (1) 若A在它的各种赋值下取值均为真,则称A是重言式或永真式。
 - (2) 若A在它的各种赋值下取值均为假,则称A是矛盾式或永假式。
 - (3) 若A不是矛盾式,则称A是可满足式

• 代入规则

一个重言式,对其中所有相同的命题变项都用一合式公式代换,其结果仍为一重言式。这一规则称为代入规则。

换句话说,A是一个公式,对A使用 代入规则得到公式B,若A是重言式,则B也是重言式。

- 代入规则的具体要求为:
 - 1. 公式中被代换的只能是命题变项 (原子命题),而不能是复合命题。
 - 对公式中某命题变项施以代入,必须对该公式中出现的所有同一命题变项施以相同的代换。

例2:

判断

不难验证 $(A \land (A \rightarrow B)) \rightarrow B$ 是重言式。

作代入

$$\frac{A}{(R\vee S)}, \frac{B}{(P\vee Q)}$$

便知

$$((R \lor S) \land ((R \lor S) \rightarrow (P \lor Q)) \rightarrow (P \lor Q)$$

是重言式。

1.5 命题形式化

所谓命题符号化,就是用命题公式的符号串来表示 给定的命题。

- 命题符号化的方法
 - 1. 明确给定命题的含义。
 - 2. 对复合命题,找联结词,分解出各个原子命题。
 - 3. 设原子命题符号,并用逻辑联结词联结原子命题符号,构成给定命题的符号表达式。

例1.说离散数学无用且枯燥无味是不对的。

P: 离散数学是有用的。

Q: 离散数学是枯燥无味的。

该命题可写成: $\neg (\neg P \land Q)$

例2.如果小张与小王都不去,则小李去。

P: 小张去。 Q: 小王去。 R: 小李去。

该命题可写成: $(\neg P \land \neg Q) \rightarrow R$

1.5 命题形式化

- 1. 注意掌握用不同的方式表示同一命题公式的方法
- 2. 善于以真值表为工具分析、验证、解决命题形式 化中的问题

第二章 命题逻辑的等值和推理演算

- 2.1 等值定理
- 2.2 等值公式
- 2.3 命题公式与真值 表的关系
- 2.4 联接词的完备集
 2.9 推理演算
- 2.5 对偶式

- 2.6 范式
- 2.7 推理形式
- 2.8 基本的推理公 式

 - 2.10 归结推理法

2.1 等值定理

⇔不是联结词 A⇔B与A↔B

等值

给定两个命题公式 A和 B,设 P_1 , P_2 , ..., P_n 为出现于A和B中的所有命题变项,则公式 A和 B共有 2^n 个解释。

若在任一解释下,公式A和B的真值都相同,则 称 A和B是等值的、或称等价,记作

A=B 或 $A\Leftrightarrow B$ 。

2.1 等值定理

· 定理2-1-1

设A, B为两个命题公式, A = B的充分必要条件是 $A \leftrightarrow B$ 为一个重言式。

重要的等值式

$$\neg \neg P = P$$

• 结合律

$$(P \lor Q) \lor R = P \lor (Q \lor R)$$

 $(P \land Q) \land R = P \land (Q \land R)$
 $(P \leftrightarrow Q) \leftrightarrow R = P \leftrightarrow (Q \leftrightarrow R)$
 $(P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

"→"不满足结合律

• 3. 交換律

$$P \lor Q = Q \lor P$$
 $P \land Q = Q \land P$
 $P \leftrightarrow Q = Q \leftrightarrow P$
 $P \leftrightarrow Q = Q \leftrightarrow P$
 $P \rightarrow Q \neq Q \rightarrow P$

- "→"不满足交换律
- · 4. 分配律

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

$$P \land (Q \lor R) = (P \land Q) \lor (P \land R)$$

$$P \rightarrow (Q \rightarrow R) = (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

$$P \leftrightarrow (Q \leftrightarrow R) \neq (P \leftrightarrow Q) \leftrightarrow (P \leftrightarrow R)$$

• "↔"不满足分配律

35

• 5. 等幂律(恒等律)

$$P \lor P = P$$
 $P \land P = P$
 $P \rightarrow P = T$
 $P \leftrightarrow P = T$

• 6. 吸收律

$$P \lor (P \land Q) = P$$

 $P \land (P \lor Q) = P$

• 7. 摩根(De Morgan)律:

$$\neg (P \lor Q) = \neg P \land \neg Q$$
$$\neg (P \land Q) = \neg P \lor \neg Q$$

对蕴含词、双条件词作否定有

$$\neg (P \to Q) = P \land \neg Q
\neg (P \leftrightarrow Q) = \neg P \leftrightarrow Q = P \leftrightarrow \neg Q
= (\neg P \land Q) \lor (P \land \neg Q) (借助图形)$$

• 8. 同一律:

$$P \lor F = P$$
 $P \land T = P$
 $T \rightarrow P = P$ $T \leftrightarrow P = P$
 $P \rightarrow F = \neg P$ $F \leftrightarrow P = \neg P$

• 9. 零律:

$$P \lor T = T$$
 $P \land F = F$
 $P \rightarrow T = T$
 $F \rightarrow P = T$

• 10. 补余律:

$$P \lor \neg P = T$$
 $P \land \neg P = F$ 还有

$$P \rightarrow \neg P = \neg P$$

 $\neg P \rightarrow P = P$
 $P \leftrightarrow \neg P = F$

- 蕴涵等值式 $A \rightarrow B = \neg A \lor B$
- 等价等值式: $A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$
- 假言易位: $A \rightarrow B = \neg B \rightarrow \neg A$
- 等价否定等值式: $A \leftrightarrow B = \neg A \leftrightarrow \neg B$
- 归谬论: $(A \rightarrow B) \land (A \rightarrow \neg B) = \neg A$

证明其他等值式

2.2.4 等值演算

· 定义

由已知等值式推演出另外一些等值式的过程称为等值演算。

方法

- 方法1: 列真值表。
- 方法2: 公式的等价变换.

置换定律:A是一个命题公式,X是A中子公式,如果X=Y,用Y代替A中的X得到公式B,则A=B。

用途1: 判别命题公式的类型

• 例1 判别 $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q))$ 公式类型.

解原式

$$\neg \neg (P \land Q) \lor ((\neg P \lor \neg P) \lor Q)$$
 (蕴涵等值式,结合律)

$$=(P \land Q) \lor (\neg P \lor Q)$$
 (双重否定律,幂等律)

$$= (P \land Q) \lor (Q \lor \neg P) \qquad (交換律)$$

$$= ((P \land Q) \lor Q) \lor \neg P \qquad (结合律)$$

$$= Q \lor \neg P$$
 (吸收律)

可满足式

用途2:验证两个公式等值

例3: 证明 $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$

• 证明:

$$P \rightarrow (Q \rightarrow R) = P \rightarrow (\neg Q \lor R)$$
 (置换)
 $= \neg P \lor (\neg Q \lor R)$ (置换)
 $= (\neg P \lor \neg Q) \lor R$ (结合律)
 $= \neg (P \land Q) \lor R$ (摩根律)
 $= (P \land Q) \rightarrow R$ (置换)

用途3:解决实际问题

• 例6: 试用较少的开关设计一个与下图有相同功能

的电路。

解:可将该图所示之开关

电路用下述命题公式表示:

$$(P \land Q \land S) \lor (P \land R \land S)$$

利用基本等值公式,将上述公式转化为:

$$(P \land Q \land S) \lor (P \land R \land S)$$

- $= ((P \land S) \land Q) \lor ((P \land S) \land R)$
- $= (P \land S) \land (Q \lor R)$

所以其开关设计图可简化为

两个重要的命题联结词

与非联接词

与非联接词是二元命题联结词。两个命题P和 Q用与非联接词"↑"联结起来,构成一个新的复合 命题,记作 $P \uparrow Q$ 。读作P 和Q的"与非"。当且仅 当P和Q的真值都是T时,P↑Q的真值为F,否则 $P \uparrow Q$ 的真值为T。 $P \uparrow Q = \neg (P \land Q)$ (真值表)

P	Q	$P \uparrow Q$
F	F	T
F	T	T
T	F	T
T	T	F

两个重要的命题联结词

• 或非联接词

或非联接词是二元命题联结词。两个命题P和Q用或非联接词" \downarrow "联结起来,构成一个新的复合命题,记作 $P \downarrow Q$ 。读作P和Q的"或非"。当且仅当P和Q的真值都是F时, $P \downarrow Q$ 的真值为T,否则 $P \downarrow Q$ 的真值为F。

$$P \downarrow Q = \neg (P \lor Q)$$

(真值表)

P	Q	$P \downarrow Q$
F	F	T
F	T	F
T	F	F
T	T	F

概念

- 真值函项
- 联结词的完备集
- {¬, ∨, ∧}是完备的联结词集合

逻辑联接词 常用5 + 1(异或) + 2(与非、或非)

推论: 以下联结词集都是完备集:

- $(1) \qquad S_1 = \{\neg, \land\}$
- (2) $S_2 = \{ \neg, \lor \}$
- $(3) \qquad S_3 = \{\neg, \rightarrow\}$
- $(4) S_4 = \{\uparrow\}$
- $(5) \qquad S_5 = \{\downarrow\}$

概念

- 对偶式
- 将给定的命题公式 *A* 中出现的 \(\), *T*, *F* 分别以 \(\), *F*, *T* 代
 换, 得到公式 *A**,则
 称 *A**是公式 *A*的对偶式,或说 *A*和 *A**互为对偶式。
- $A = A(P_1, P_2, ..., P_n)$ $A^- = A(\neg P_1, \neg P_2, ..., \neg P_n)$
 - $\neg (A^*) = (\neg A)^*$
 - $\neg (A^-) = (\neg A)^-$
 - $-(A^*)^* = A, (A^-)^- = A$
 - $\neg A = A^* -$
 - 若A = B,必有 $A^* = B^*$
 - 若 $A \rightarrow B$ 永真,必有 $B^* \rightarrow A^*$ 永真
 - A与A-同永真, 同可满足;
 - ¬A与A*同永真,同可满足。

范式

- 命题变项及其否定式 (如P与¬P)统
 称文字。
 且P与¬P 称为互补对。
- 由<u>文字</u>的合取所组成 的公式称为<mark>合取式</mark>。
- 由<u>文字</u>的析取所组成 的公式称为<mark>析取式</mark>。

- 析取范式是形如 $A_1 \lor A_2 \lor ... \lor A_n$ 的公式,其中 $A_i (i = 1,...,n)$ 为合取式。
- 合取范式是形如 $A_1 \land A_2 \land ... \land A_n$ 的公式,其中 $A_i (i = 1,...,n)$ 为析取式

命题公式的合取范式和析取范式并不唯一

主范式

• n 个命题变项 P₁, $P_2, ..., P_n$ 组成的合取 : : $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n$ 其中 $Q_i = P_{i-1}$ 或¬P_i。即每个命题变 项与它的否定式二者 之一必出现且仅出现 一次。则称合取式 $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n$ 为极小 项**,**并以**m**; 表示。

• n个命题变项 P_1, P_2, \ldots, P_n 组成的析 取式: $Q_1 \vee Q_2 \vee \ldots \vee Q_n$ 其中 $Q_i = P_{i}$ 或¬P_i。即每个命题变 项与它的否定式二者 之一必出现且仅出现 一次。则称析取式 $Q_1 \lor Q_2 \lor ... \lor Q_n$ 为极大 项,并以/// 表示。

极小项和极大项

•
$$\mathbf{m_0} = \neg \mathbf{P} \land \neg \mathbf{Q}$$

•
$$\mathbf{m_1} = \neg \mathbf{P} \wedge \mathbf{Q}$$

•
$$\mathbf{m}_2 = \mathbf{P} \wedge \neg \mathbf{Q}$$

•
$$m_3 = P \wedge Q$$

•
$$\mathbf{M_0} = \neg \mathbf{P} \lor \neg \mathbf{Q}$$

•
$$\mathbf{M}_1 = \neg \mathbf{P} \vee \mathbf{Q}$$

•
$$\mathbf{M}_2 = \mathbf{P} \vee \neg \mathbf{Q}$$

•
$$\mathbf{M}_3 = \mathbf{P} \vee \mathbf{Q}$$

主析取范式与主合取范式

· 设由n 个命题变项构成的析取范式中所有的合取式都是极小项,则称该析取范式为主析取范式(仅由极小项构成的析取范式称为主析取范式)。

求主析取范式的方法

- 1. 先求析取范式
- 2. 再填满变项

· 设由n个命题变项构成的合取范式中所有的析取式都是极大项,则称该合取范式为主合取范式(仅由极大项构成的合取范式称为主合取范式)。

求主合取范式的方法

- 1. 先求合取范式
- 2. 再填满变项

 $A = \vee_{0.2.4}$

¬ **A=**∨_{1.3.5,6,7}

主析取范式与主合取范式的求法

$$P \rightarrow Q = \neg P \lor Q$$
因为 $\neg P = \neg P \land (Q \lor \neg Q)$

$$= (\neg P \land Q) \lor (\neg P \land \neg Q)$$

•
$$P \rightarrow Q = (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$$

$$\mathbf{m}_{1} \qquad \mathbf{m}_{0} \qquad \mathbf{m}_{3}$$

$$= \mathbf{m}_{0} \lor \mathbf{m}_{1} \lor \mathbf{m}_{3}$$

$$= \bigvee_{0, 1, 3}$$

填满变项的简便方法

$$\neg P \lor Q$$

$$= m^{0x} \lor m^{x1}$$

$$= m_0 \lor m_1 \lor m_3$$

主范式的求法与举例

• 综合举例

$$= (\neg P \land Q) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q) \lor (P \land R)$$

$$=m^{01X} \lor m^{010} \lor m^{10X} \lor m^{1X1}$$

主范式的求法与举例

- · 主析范式 = V_{2,3,4,5,7}
- ・ 主合范式 = \(\lambda_{({0.1...7} {2.3.4.5.7}) } \) \(\text{\tilde{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{

$(P \lor \neg Q) \rightarrow (\neg P \leftrightarrow (Q \land \neg R))$

列写真值表验算

P	Q	R	$P \lor \neg Q$	$Q \land \neg R$	$\neg P \leftrightarrow (Q \land \neg R)$	原式	
0	0	0	1	0	0	0	M_7
0	0	1	1	0	0	0	M_6
0	1	0	0	1	1	1	m_2
0	1	1	0	0	0	1	m_3
1	0	0	1	0	1	1	m_4
1	0	1	1	0	1	1	m_5
1	1	0	1	1	0	0	M_1
1	1	1	1	0	1	1	m_7

2.6 空公式 (补充)

• 求P \ ¬ P的主析取和主合取范式

主析取范式: P ∨ ¬ P

主合取范式: 空公式

结论: 永真式的主合取范式为空公式

矛盾式的主析取范式为空公式

基本推理公式

$$1. P \land Q \Rightarrow P$$
, $\not = P \lor Q \neq P$

$$2. \neg (P \rightarrow Q) \Rightarrow P$$

1式的直接推论 $P \land \neg Q \Rightarrow P$

$$3. \neg (P \rightarrow Q) \Rightarrow \neg Q$$

 $3. \neg (P \rightarrow Q) \Rightarrow \neg Q$ 1式的直接推论 $P \land \neg Q = \neg Q$

$$4. P \Rightarrow P \lor Q$$

5.
$$\neg P \Rightarrow P \rightarrow Q$$

2式的逆否,4式的推论。

6.
$$Q \Rightarrow P \rightarrow Q$$

*3*式的逆否,4式的推论。

7.
$$\neg P \land (P \lor Q) \Rightarrow Q$$

 $7. \neg P \land (P \lor Q) \Rightarrow Q$ 非 P,而P \lor Q 又成立,只有Q成立

8.
$$P \land (P \rightarrow Q) \Rightarrow Q$$

8. $P \land (P \rightarrow Q) \Rightarrow Q$ *假言推理,分离规则,7式的变形

$$9. \neg Q \land (P \rightarrow Q) \Rightarrow \neg P$$
 7式的变形 $\frac{P}{Q}$ $\frac{Q}{\neg P}$

基本推理公式

10.
$$(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow P \rightarrow R$$

*三段论

11.
$$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow P \leftrightarrow R$$

类似10式

12.
$$(P \rightarrow R) \land (Q \rightarrow R) \land (P \lor Q) \Rightarrow R$$

10式的推论

13.
$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) \Rightarrow Q \lor S$$

10式的推论

14.
$$(P \rightarrow Q) \land (R \rightarrow S) \land (\neg Q \lor \neg S) \Rightarrow \neg P \lor \neg R$$

9式的推论

15.
$$(Q \rightarrow R) \Rightarrow ((P \lor Q) \rightarrow (P \lor R))$$

P=F时左=右, *P*=T时右=T

16.
$$(Q \rightarrow R) => ((P \rightarrow Q) \rightarrow (P \rightarrow R))$$

P=T时左=右, *P*=F时右=T

2.8 基本的推理公式

证明 $A \Rightarrow B$ 的几种方法:

- 1. 证 $A \rightarrow B$ 是重言式
- 2. 证 *A* ∧ ¬*B* 为矛盾式
- 3. 真值表法
- 4. 证 $\neg B \Rightarrow \neg A$ 即反证法
- 5. 解释法
- 6.

证明: $(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R) \Rightarrow Q$

$$(P \rightarrow Q) \land (R \rightarrow S) \land (P \lor R)$$

$$= (P \rightarrow Q) \land (R \rightarrow S) \land (\neg P \rightarrow R)$$

$$\Rightarrow (P \rightarrow Q) \land (\neg P \rightarrow S)$$

$$\Rightarrow (\neg Q \rightarrow \neg P) \land (\neg P \rightarrow S)$$

$$\Rightarrow \neg Q \rightarrow S$$

$$\Rightarrow Q \lor S$$

2.9 推理演算

主要的推理规则

- (1) 前提引入规则;推理过程中可随时引入前提
- (2) 结论引入规则; 中间结论可作为后续推理的前提
- (3) 代入规则; 仅限于重言式中的命题变项
- (4) 置换规则; 利用等值公式对部分公式进行置换
- (5) 分离规则; 由A及A→B成立, 可将B分离出来
- (6) 条件证明规则。 $A_1 \land A_2 \Rightarrow B = A_1 \Rightarrow A_2 \rightarrow B = A_1 \Rightarrow A_2 \rightarrow B = A_2 \rightarrow A_2 \rightarrow B = A_2 \rightarrow A_$

归结法

• 归结法步骤

- 从A∧¬B 出发(欲证A ⇒B,等价于证 A∧¬B 是矛盾式)
- 建立子句集S,将A∧¬B 化成合取范式:
 C₁∧C₂∧…∧Cn
 其中C₁为析取式。由诸C₁构成子句

集

$$S = \{ C_1, C_2, ..., C_n \}$$

- 3. 对S 中的子句作归结(消互补对),归结结果(归结式)仍放入S 中。重复此步。
- 4. 直至归结出矛盾式(囗)。

公理系统的概念

- 从一些公理出发,根据演绎规则推导出一系列定理,这样形成的演绎体系叫做公理系统 (axiom system)。
- · 公理系统自成体系,是一个抽象符号系统。 又称之为形式系统。

公理系统的结构

1. 初始符号

公理系统内允许出现的全体符号的集合。

2. 形成规则

公理系统内允许出现的合法符号序列的形成 方法与规则。

公理系统的结构(续)

3. 公理

精选的最基本的重言式,作为推演其它所有 重言式的依据。

- 4. 变形规则 公理系统所规定的推理规则。
- 5. 建立定理 公理系统所作演算的主要内容,包括所有的 重言式和对它们的证明。

具有代表性的命题逻辑的公理系统

系统名称	年代	公理总条数	彼此独立的 条数
Russell公理系统	1910	5	4
Frege公理系统	1879	6	3
Hilbert—Bernays	1934	15	
王浩算法	1959	1 (10条变形规则)	
自然演绎系统		0 (5条变形规则)	

谓词逻辑

第四章 谓词逻辑的基本概念

- 4.1 谓词*和个体词
- 4.2 函数和量词*
- 4.3 合式公式
- 4.4 自然语句的形式化*
- 4.5 有限域下公式的表示法
- 4.6 公式的普遍有效性和判定问题

- · 谓词逻辑: 区分主语、谓语,引入变元, 引入谓词、量词
- 可将谓词逻辑理解为命题逻辑 + {变元,谓词,量词,函数}
- 这里讨论的是一阶谓词逻辑, 或称狭谓词逻辑。

概念

- 个体词(主词)
- 将表示具体或特定客体的个体词称作个体常项, 用小写字母a, b, c,...表示;
- 而将表示抽象或泛指的个体词称作个体变项,用小写字母x, y, z, ...表示。
- 并称个体变项的取值范围为个体域或论域,以D 表示。
- 约定有一个特殊的个体域,它由世间一切事物组成,称之为总论域。

概念

- 谓词(Predicate)
- 谓词是用来刻划个体词的性质或多个个体词间关系的词。 P(x), Q(x, y)
- 谓词又可看作是由给定的个体域到集合{T, F}上的一个映射。
- 表示具体性质或关系的谓词称作谓词常项;
- 表示抽象或泛指的性质或关系的谓词称作谓词变项。
- · 谓词常项与谓词变项都用大写英文字母P, Q, R, ...表示,可根据上下文区分。

概念

- 多元谓词
 - 一命题逻辑中的命题均可以表示成零元谓词,或认为一个命题是没有个体变项的零元谓词。
- 量词
 - 全称量词和存在量词
- 一阶谓词:在所讨论的谓词逻辑中,限定量词仅 作用于个体变项,不允许量词作用于命题变项和 谓词变项。

非一阶示例: $\forall p(p \rightarrow Q(x)), \exists Q(Q(x) \rightarrow P(x))$

4-3-2 一阶谓词逻辑的符号集

- 个体常项: a, b, c, ...(小写字母)。
- · 个体变项: x, y, z, ... (小写字母)。
- 命题变项: p, q, r, ... (小写字母)。
- 谓词符号: P, Q, R, ... (大写字母)。
- 函数符号: f, g, h, ... (小写字母)。
- 联结词符号 ¬, ∧, ∨, →, ↔ 。
- 量词符号: ∀,∃。
- 括号与逗号: () ,

4.4 自然语句的形式化

- 在分析的基础上,将问题分解成一些合适的谓词表示; 即先做一些谓词(函数)设定;
- 然后使用量词、联接词将设定的谓词构成合式公式。
- "所有的…都是…",这类语句的形式描述只能使用 " \rightarrow " 而不能使用 " \wedge "。
- 例: 所有的有理数都是实数 $(\forall x)(P(x) \rightarrow Q(x))$
- ・ 有的实数是有理数 $(\exists x)(Q(x) \land P(x))$
- 没有无理数是有理数 $\neg(\exists x)(A(x) \land B(x))$

几种描述

• "唯一性"

先表示存在一个,同时如果还能找到另一个的话, 则它们一定相等。

> $(\exists x)$ (P(x) \land ($\forall y$) (P(y) \rightarrow E(x, y))) 其中 E(x, y) 表示 x = y。

自然数集的形式描述

0 0 0 0 0

耀瓔

范式

等值式

第五章 谓词逻辑的等值和推理演算

- 5.1 否定型等值式
- 5.2 量词分配等值式
- 5.3 <u>范式</u>*(全称量词的前束范式)
- 5.4 基本推理公式
- 5.5 推理演算*
- 5.6 谓词逻辑的归结推理法*

5.1 等值式

$$\neg(\forall x)P(x) = (\exists x)\neg P(x)$$

$$\neg(\exists x)P(x) = (\forall x)\neg P(x)$$

$$(\forall x)P(x) = \neg(\exists x)\neg P(x)$$

$$(\forall x)P(x) = \neg(\exists x)\neg P(x)$$

$$(\exists x)P(x) = \neg(\forall x)\neg P(x)$$

$$(\exists x)P(x) = \neg(\forall x)\neg P(x)$$

$$(\forall x)(P(x) \lor q) = (\forall x)P(x)\lor q$$

$$(\exists x)(P(x)\lor q) = (\exists x)P(x)\lor q$$

$$(\exists x)(P(x)\lor q) = (\exists x)P(x)\lor q$$

$$(\forall x)(P(x)\lor q) = (\exists x)P(x)\lor q$$

$$(\forall x)(P(x)\lor q) = (\forall x)P(x)\lor (\forall x)Q(x)$$

$$(\forall x)(P(x)\lor Q(x)) = (\forall x)P(x)\lor (\forall x)Q(x)$$

$$(\exists x)(P(x)\lor Q(x)) = (\exists x)P(x)\lor (\exists x)Q(x)$$

 $(\forall x)(\forall y)(P(x) \lor Q(y)) = (\forall x)P(x) \lor (\forall x)Q(x)$

 $(\exists x)(\exists y)(P(x) \land Q(y)) = (\exists x)P(x) \land (\exists x)Q(x)$

那些不等于的……

$$(\forall x)(\forall y)(P(x) \lor Q(y)) \neq (\forall x)(P(x) \lor Q(x))$$

$$(\exists x)(\exists y)(P(x) \land Q(y)) \neq (\exists x)(P(x) \land Q(x))$$

∀对∨ 不满足分配率, ∃对△不满足分配率

$$(\forall x)(P(x) \land Q(x)) = (\forall x)P(x) \land (\forall x)Q(x)$$

$$(\exists x)(P(x) \lor Q(x)) = (\exists x)P(x) \lor (\exists x)Q(x)$$

$$(\forall x) P(x) \lor (\forall x) Q(x) \Rightarrow (\forall x) (P(x) \lor Q(x))$$

$$(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$$

5.3.1 前束范式

- 设A为一阶谓词逻辑公式,如果满足
 - (1) 所有量词都位于该公式的最左边;
 - (2) 所有量词前都不含否定词;
 - (3) 量词的辖域都延伸到整个公式的末端, 则称A为前束范式。
- $(Q_1x_1)(Q_2x_2)\cdots(Q_nx_n)M(x_1, x_2, \cdots, x_n)$,称作公式 A的基式或母式。

• 例1: 求下式的前束范式

$$\neg ((\forall x) (\exists y) P(a, x, y) \rightarrow (\exists x) (\neg (\forall y) Q(y, b) \rightarrow R(x)))$$

- · 可按下述步骤实现:
 - (1) 消去联结词→, ↔; 得¬(¬(∀x)(∃y)P(a, x, y) ∨ (∃x)(¬¬(∀y)Q(y, b) ∨R(x)))
 - (2) ¬内移(反复使用摩根律)

得
$$(\forall x)(\exists y)P(a, x, y) \land \neg (\exists x)((\forall y)Q(y, b) \lor R(x))$$

= $(\forall x)(\exists y)P(a, x, y) \land (\forall x)((\exists y)\neg Q(y, b) \land \neg R(x))$

- (3) 量词左移(使用分配等值式)得
 - $(\forall x) (\exists y) P(a, x, y) \land (\forall x) ((\exists y) \neg Q(y, y)) \land (\exists y) (\exists y)$
 - b) $\wedge \neg R(x)$
 - $= (\forall x) ((\exists y) P(a, x, y) \land (\exists y) \neg Q(y, b) \land \neg R(x))$
 - (4) 变元易名(使用变元易名分配等值式)
- $(\forall x)((\exists y)P(a, x, y) \land (\exists z) \neg Q(z, b) \land \neg R(x))$
- $= (\forall x) (\exists y) (\exists z) (P(a, x, y) \land \neg Q(z, b) \land \neg R(x))$
 - $= (\forall x) (\exists y) (\exists z) S(a, b, x, y, z)$

· 使用以上步骤,可求得任一公式的前束范式。 由于每一步变换都保持等值性,所以,得到的 前束形与原公式是等值的。这里的

S(a, b, x, y, z)

便是原公式的母式。

由于前束形中量词的次序排列,如(∃y)(∃z)也可以写成(∃z)(∃y)以及对母式没有明确的限制,自然其前束范式并不唯一,如例1的前束范式也可以是

(∀x)(∃z)(∃y)(S(a, b, x, y, z)∧P) 其中P可以是任一不含量词的普遍有效的公式。

5.3.4 SKOLEM 标准型

- 一阶谓词逻辑的任一公式 A ,若其
 - (1) 前束范式中所有的存在量词都在全称量词的 左边, 且至少有一个存在量词;
- (2) 或仅保留全称量词而消去存在量词, 便得到公式 A的 SKOLEM 标准型。
- 公式 A 与其 SKOLEM 标准型只能保持某种意义 下的等值关系。

基本推理公式(命题逻辑温习)

Rule of Inference	Name/名称	
$P \Rightarrow PVQ$	Addition/析取附加式	
$P \wedge Q \Rightarrow P$	Simplification/合取化简式	
$P \setminus Q \Rightarrow P \wedge Q$	Conjunction/并发式	
$P \cdot P \rightarrow Q \Rightarrow Q$	Modus ponens/分离式	
$\neg Q \land P \rightarrow Q \Rightarrow \neg P$	Modus tollens/拒取式	
$\neg P \cdot P \lor Q \Rightarrow Q$	Disjunctive syllogism/	
	析取三段式	
$P \rightarrow Q , Q \rightarrow R \Rightarrow P \rightarrow R$	Hypothetical syllogism/	
	假言三段式	

88

谓词逻辑推理规则

Rule of Inference	Name
$(\forall x)P(x) \Rightarrow P(c) \text{ if } c \in U$	UI / 全称举例
P(c) for an arbitrary $c \in U \Rightarrow (\forall x)P(x)$	UG / 全称推广
$(\exists x)P(x) \Rightarrow P(c) \text{ for some } c \in U$	EI / 存在举例
$P(c)$ for some $c \in U \Rightarrow (\exists x)P(x)$	EG / 存在推广

推理

- 全称量词消去规则
- 全称量词引入规则
- 存在量词消去规则
- 存在量词引入规则
- 首先将以自然语句表示的推理问题引入谓词加以 形式化;
- · 若不能直接使用基本的推理公式则消去量词;
- 在无量词的条件下使用规则和公式推理;
- 最后再引入量词以求得结论。

5-6-2 归结推理法步骤

- 1. 欲证 $A_1 \wedge A_2 \wedge \cdots \wedge A_n \rightarrow B$ 是定理,等价于证 $G = A_1 \wedge A_2 \wedge \cdots \wedge A_n \wedge \neg B$. 是矛盾式。
- 2. 将G化为前束范式。进而化为SKOLEM标准型,消去存在量词,得到仅含全称量词的前束范式G*

由于全称量词的前束范式G*保持原式G不可满足的特性,故G与G*在不可满足的意义下是一致的。

3. 略去G*中的全称量词,G*中的合取词 \triangle 以","表示,便得到G*的子句集S。实用中可分别求出诸 A_i 与¬B的子句集。

4. 对S作归结。直至归结出空子句□。

举例

第九章 集合

- 9.1 集合的概念与表示方法
- 9.2 集合间的关系和特殊集合
- 9.3 集合的运算
- 9.4 集合的图形表示法
- 9.5 集合运算的性质和证明
- 9.6 有限集合的基数
- 9.7 <u>集合论公理系统</u>

- N:全体自然数集合
 - 0是不是自然数?
- N+:除0以外的其他自然数的全体构成的集合
- Z:全体整数集合
- Z⁺:全体正整数集合
- Q:全体有理数集合
- R:全体实数集合
- 若元素a属于集合A, 记为 $a \in A$, 否则记为 $a \notin A$

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$-A = E - A = \{x \mid x \notin A\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$A \oplus B = (A - B) \cup (B - A) = \{x \mid x \in A \ \overline{\lor} \ x \in B\}$$

元素x ∈ 集合A

$$A = B \Leftrightarrow (\forall x)(x \in A \leftrightarrow x \in B)$$

$$A = B \Leftrightarrow (A \subseteq B \land B \subseteq A)$$

$$A \neq B \Leftrightarrow (\exists x) \neg (x \in A \leftrightarrow x \in B)$$

$$A \subseteq B \Leftrightarrow (\forall x)(x \in A \to x \in B)$$

$$A \subset B \Leftrightarrow (A \subseteq B \land A \neq B)$$

$$\emptyset = \{x \mid x \neq x\}$$

$$E = x \mid x = x$$

对任意的集合A, $\emptyset \subseteq A$

$$A$$
和 B 不相交 $\Leftrightarrow \neg(\exists x)(x \in A \land x \in B)$

$$\cup A = \{x \mid (\exists z)(z \in A \land x \in z)\}\$$

$$\cap A = \{x \mid (\forall z)(z \in A \to x \in z)\}\$$

$$\bigcup \emptyset = \emptyset$$

$$P(A) = \{x | x \subseteq A\}$$

对称差

$$A \oplus B = (A - B) \cup (B - A) = x \mid x \in A \quad \overline{V} \quad x \in B$$
$$= (A \cup B) - (B \cap A)$$

- (1) 交換律 $A \oplus B = B \oplus A$
- $(2) 结合律 (A \oplus B) \oplus C = A \oplus (B \oplus C)$
- (3) 分配律 $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- (4) 同一律 $A \oplus \Phi = A$
- (5) 零律 $A \oplus A = \Phi$
- (6) 吸收律 $A \oplus (A \oplus B) = B$

	U	\cap	r	⊕
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$		$A \oplus B = B \oplus A$
结合	$(A \cup B) \cup C =$	$(A \cap B) \cap C =$		$(A \oplus B) \oplus C =$
	$A \cup (B \cup C)$	$A\cap (B\cap C)$		$A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A$	_A	
	∪与○		○与⊕	
分配	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		$A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$	
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			
吸收	$A \cup (A \cap B) = A$			
	$A \cap (A \cup B) = A$			

吸收律的前提: 〇、〇可交换

Way was

	_	~
D.M 律	$A - (B \cup C) = (A - B) \cap (A - C)$	$\sim (B \cup C) = \sim B \cap \sim C$
	$A-(B\cap C)=(A-B)\cup (A-C)$	$\sim (B \cap C) = \sim B \cup \sim C$
双重否定		~~A=A
	Ø	$m{E}$
补元律	$A \cap \sim A = \varnothing$	$A \cup \sim A = E$
零律	$A\cap\varnothing=\varnothing$	$A \cup E = E$
同一律	$A \cup \varnothing = A$	$A \cap E = A$
否定	~Ø=E	~E=Ø

概念: 幂集(power set)

• 设A为集合,由A的所有子集组成的集合称为A的 幂集,记作P(A)。符号化表示为

$$P(A) = \{x | x \subseteq A\}$$

对任意的集合A,有 $\emptyset \subseteq A$ 和 $A \subseteq A$,因此有 $\emptyset \in P(A)$ 和 $A \in P(A)$ 。

$$x \in P(A) \Leftrightarrow x \subseteq A$$

概念: 集合A和B的**笛卡儿积**

(Descartes product)

- 设*A*, *B*为集合,用*A*中元素为第一元素, *B*中元素 为第二元素构成有序对。
- 所有这样的有序对组成的集合称为A和B的笛卡儿积,记作 $A \times B$ 。
- A和B的笛卡儿积的符号化表示为

$$A \times B = \{ \langle x, y \rangle | x \in A \land y \in B \}$$

概念: n 阶笛卡儿积

• 若 $n \in \mathbb{N}$ 且 n > 1, $A_1, A_2, ..., A_n$ 是n个集合,它们的 n阶笛卡儿积记作 $A_1 \times A_2 \times ... \times A_n$, 并定义为

$$A_1 \times A_2 \times \cdots \times A_n$$

$$= \{ < x_1, x_2, \dots, x_n > | x_1 \in A_1 \land x_2 \in A_2 \land \dots \land x_n \in A_n \}$$

概念: 传递集合

 如果集合的集合A的任一元素的元素都是A的元素, 就称A为传递集合。该定义可写成

$$\Leftrightarrow (\forall x)(\forall y)((x \in y \land y \in A) \rightarrow x \in A)$$

• A是传递集合 由集合组成的集合A

 x_1 , x_2

• 例: $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

$$y_1, y_2, y_3$$

• 内层括号里的内容, 在外层也能找得到。

https://en.wikipedia.org/wiki/Transitive_set

9.6 有限集合的基数

• 定义9.6.1 有限集合的基数 (cardinal number, potency) 如果存在 $n \in N$,使集合 A与集合

 $x \mid x \in N \land x < n = 0, 1, 2, \dots, n-1$ 的元素个数相同,就称集合 A的基数是 n,记作 |A| = n 或 card(A) = n。 空集的基数是 0。

清华大学软件学院 离散数学

9.6 有限集合的基数

• 定理9.6.1 幂集的基数 对有限集合 *A*

$$|P(A)| = 2^{|A|}$$

• 定理9.6.2 笛卡儿积的基数 对有限集合 A和 B

$$|A \times B| = |A| \bullet |B|$$

定理9.6.4 包含排除原理

(Principle of inclusion and exclusion)

• 对有限集合A和B

$$|A \cup B| = |A| + |B| - |A \cap B|$$

• 该定理可推广到n个集合的情形。若 $n \in N$ 且 n > 1, $A_1, A_2, ..., A_n$ 是有限集合,则

$$\begin{aligned} |A_{1} \cup A_{2} \cup \cdots \cup A_{n}| &= \sum_{1 \leq i \leq n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}| \\ &+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| + \cdots + (-1)^{n-1} |A_{1} \cap A_{2} \cap \cdots \cap A_{n}| \end{aligned}$$

9.7 集合论公理系统

- 集合论公理系统的一个基本思想是 "任一集合的所有元素都是集合"。
 - 集合论研究的对象只是集合。除集合外的其它对 象(如有序对、数字、字母)都要用也完全可以 用集合来定义。
- 集合论公理系统的主要目的:
 - (1)判定集合的<u>存在性</u>;
 - (2) 由已知集合构造出所有合法的 集合(<u>合法性</u>)

9.7.1 ZF(Zermelo-Frankel)集合论公理系统(续)

• (8) 无穷公理

存在一个由所有自然数组成的集合

$$(\exists x)(\Phi \in x \land (\forall y)(y \in x \rightarrow (y \cup y) \in x))$$

$$(\exists N)(\Phi \in N \land (\forall y)(y \in N \rightarrow y^+ \in N))$$

9.7.4 无穷公理和自然数集合

- 自然数的集合表示方法:
- Zermelo 1908年曾给出一种方法:
- $0 = \Phi$, $1 = {\Phi}$, $2 = {{\Phi}}$, ...
- 满足0 ∈ 1 ∈ 2 ∈ ...。 但 '∈' 关系不满足传递 性。
- 即由 A∈B ∧ B∈C 成立,却推不出 A∈C 成立。
- 未能准确刻画自然数本身所固有的良好性质。

后继与自然数

• 定义9.7.3 前驱与后继

对任意的集合A,定义集合

$$A^+ = A \cup \{A\}$$

 A^+ 称为 A的后继, A称为 A^+ 的前驱。

• 定义9.7.4 用后继定义自然数 集合 $0 = \Phi$ 是一个自然数。若集合n是一个自然数, 则集合n+1 = n+也是一个自然数。

9.7.4 无穷公理和自然数集合

• 按照上述定义,每个自然数可表示为:

$$0 = \Phi$$

$$1 = 0^{+} = 0 \cup \{0\} = \{0\} = \{\Phi\}$$

$$2 = 1^{+} = 1 \cup \{1\} = \{0,1\} = \{\Phi, \{\Phi\}\}\}$$

$$3 = 2^{+} = 2 \cup \{2\} = \{0,1,2\} = \{\Phi, \{\Phi\}, \{\Phi, \{\Phi\}\}\}\}$$
...

$$n+1=n^+=n\cup\{n\}=\{0,1,\cdots,n\}.$$

第十章 关系

- 10.1 二元关系
- 10.2 关系矩阵和关系图
- 10.3 关系的逆、合成、(限制和象)
- 10.4 <u>关系的性质</u>
- 10.5 <u>关系的闭包</u>
- 10.6 <u>等价关系和划分</u>
- 10.7 <u>相容关系和覆盖</u>
- 10.8 <u>偏序关系</u>

- 二元关系
 - 关系的定义
 - 表示
 - 性质
 - 运算

关系的性质

自 反:

$$\forall x (x \in X \rightarrow xRx)$$

反自反:

$$\forall x (x \in X \to xRx)$$

对 称:

$$\forall x \forall y (x \in X \land y \in X \land xRy \to yRx)$$

反对称:

$$\forall x \forall y (x \in X \land y \in X \land xRy \land yRx \rightarrow x = y)$$

传 递:
$$\forall x \forall y \forall z (x \in X \land y \in X \land z \in X \land xRy \land yRz \rightarrow xRz)$$

	自反 Reflexive (10.4.1)	反自反 Irreflexive (10.4.1)	对称 Symmetric (10.4.2)	反对称 Antisymmetric (10.4.2)	传递 Transitive (10.4,3)
定义 要点	$x \in A \to xR x$	$x \in A \to x \mathbb{R} x$ $\langle x, x \rangle \notin R$	$xRy \to yRx$ $\langle x, y \rangle \in R \to$ $\langle y, x \rangle \in R$	$xRy \wedge x \neq y$ $y R x$ $xRy \wedge yRx$ $x = y$	$xRy \wedge yRz$ $\rightarrow xRz$ $\langle x, y \rangle \in R \wedge$ $\langle y, z \rangle \in R \rightarrow$ $\langle x, z \rangle \in R$
关系矩阵的特点	r _{ii} =1 主对角元 均为1	r _{ii} = 0 主对角元 均为0	对称矩阵 $r_{ij}=r_{ji}$	若 $r_{ij} = 1 \land i \neq j$ $\rightarrow r_{ji} = 0$	无直观特点 或难以直接判 断
关系图 的特点	每个结点 都有自圈	每个结点 都没有自圈	若两个结点 之间有边, 一定是一对 方向相反的 边	若两个结点之 间有边,一定 是一条有向边	若从结点 x_i 到 x_j 有边, x_j 到 x_k 有边,则从 x_i 到 x_k 一定有边

性质 运算	自反性	反自反性	对称性	反对称性	传递性
R^{-1}	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	7
$R_1 \cap R_2$	√	√	V	√	√
$R_1 \cup R_2$	√	V	$\sqrt{}$	×	X
$R_1 - R_2$	×	√	$\sqrt{}$	√	×
$R_1 \circ R_2$	$\sqrt{}$	×	×	×	X

注:√表示经过左端的运算仍保持原来的性质,×则表示原来的性质不再满足。

需按纵列理解,不能按横向。如不存在一个关系,它既是自反的又是非自反的。

A是非Φ的

几个主要关系的性质

					5 -1911- 3
性质 关系	自反性	非自反性	对称性	反对称性	传递性
恒等关系 <i>I_A</i>	√	×	\checkmark	√	√
全域关系 <i>E_A</i>	√	×	$\sqrt{}$	×	√
<i>A</i> 上的空 关系 <i>Φ</i>	×	√		√	√
N上的整 除关系	√	×	×		
包含关系 □	√	×	×	√	√
真包含关 系 ⊂	×	√	×	√	√

清华大学软件学院 离散数学

10.5 关系的闭包(closure)

自 (本) (*

定义10.5.2 闭包的定义

- (1) R'是自反的(对称的或传递的);
- $(2) \quad R \subseteq R' \quad ;$

包含关系

(3) 对A上任何自反的(对称的或传递的) 关系R'' 。 $R' \subset R''$ 。

则称关系R'为R的自反(对称或传递)闭句 闭包 一般将R的自反闭包记作r(R),

对称闭包记作s(R), 传递闭包记作t(R)。

10.6 等价关系和划分

定义10.6.1 等价关系

- 设R为非空集合A上的关系,如果R是自反的、 自反的、 对称的、 传递的,
- 则称R为A上的等价关系。

10.6 等价关系与划分

等价类

设R是非空A集合上的等价关系,对于任何 $x \in A$,令:

- $[x]_R = \{y | y \in A \land xRy\}$
- $[x]_R$ 是由 $x \in A$ 生成的R等价类
- x为等价类[x] $_R$ 的表示元素

10.6 等价关系与划分

商集: R是A上的等价关系, R的所有等价类构成的集合

记为A/R: $\{[x]_R \mid x \in A\}$

• 例: A为全班同学的集合,|A| = n, $(n \in N)$

按指纹的相同关系 R_1 是一个等价关系

$$A/R_1 = \{[x_1]_{R_1}, \dots [x_n]_{R_1}\}$$

同姓关系R₂是一等价关系

$$A/R_2 = \{ [\mathfrak{R}]_{R_2}, [\mathfrak{P}]_{R_2}, \dots \}$$

偏序关系

- 偏序关系R (记作≼)
 - 自反性: ∀*a*∈*A*,有<*a*,*a*>∈*R*
 - 反对称性: $\forall a,b \in R$,如果 $< a,b > \in R$ 且 $< b,a > \in R$,则必有a = b
 - 传递性: ∀*a,b,c*∈*A*,如果<*a,b*>∈*R*,<*b,c*>∈*R*, 必有<*a,c*>∈*R*
- 例:偏序关系
 - $-A = \{a,b,c\}$
 - $-R = \{ \langle a,a \rangle, \langle a,b \rangle, \langle a,c \rangle, \langle b,b \rangle, \langle b,c \rangle, \langle c,c \rangle \}$
 - 哈斯图
 - 链, 反链

第10章重点内容

- 二元关系概念与表示
- 关系的主要性质

自反、非自反、对称、反对称、传递

- 等价关系(与划分)自反、对称、传递,掌握证明方法。
- 偏序关系 自反、反对称、传递,掌握证明方法

第11章 函数

定义11.1.1 (函数-function)

- 对集合A到集合B的关系f,若满足下列条件:
 - (1)对任意的 $x \in dom(f)$, 存在唯一的 $y \in ran(f)$,使xfy 成立;
 - (2)dom(f) = A
- 则称f 为从A到B的函数,或称f把A映射到B(有的教材称f 为全函数、映射、变换)。
- 一个从A到B的函数f,可以写成 $f: A \to B$ 。
- 这时若xfy,则可记作 $f: x \to y$ 或f(x) = y。

• 例3: $A = \{1, 2, 3\}, B = \{a, b\}. 从A到B的函数有?个$

$$f_1 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, a \rangle \}$$

 $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, b \rangle \}$
 $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle \}$
 $f_4 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, b \rangle \}$
 $f_5 = \{ \langle 1, b \rangle, \langle 2, a \rangle, \langle 3, a \rangle \}$
 $f_6 = \{ \langle 1, b \rangle, \langle 2, a \rangle, \langle 3, b \rangle \}$
 $f_7 = \{ \langle 1, b \rangle, \langle 2, b \rangle, \langle 3, a \rangle \}$
 $f_8 = \{ \langle 1, b \rangle, \langle 2, b \rangle, \langle 3, b \rangle \}$

于是

$$A_B = \{ f_1, f_2, f_3, \dots, f_8 \}$$

概念

- 满射
- 单射
- 双射
- 常函数
- 恒等函数
- 单调函数
- 泛函
- 特征函数
- 自然映射

第十二章

第十二章

1. 整数集合Z 12.1 实数集合 { 2. 有理数集合 Q 3. 实数集合 R

12.2 集合的等势

12.3 有限集合与无限集合

12.4 集合的基数

12.5 基数的算术运算

12.6 基数的比较

12.7 可数集合与连续统假设

实数集合与集合的基数

12. 2 集合的等势

定义12.2.1 (集合的等势)

对集合A和B,如果存在从A到B的双射函数, 就称A和B等势,记作 $A \approx B$;

如果不存在从A到B的双射函数,就称A和B不等势,记作 $\neg A \approx B$

・注意, $A \approx B$ 时不一定有A = B, 反之一定成立(A = B 则必有 $A \approx B$)。

12.4 集合的基数

定义12.4.1 对任意的集合A和B,它们的基数分别用 card(A) 和 card(B) 表示,

并且 $card(A) = card(B) \Leftrightarrow A \approx B$ 。 (有时把 card(A) 记作 |A| 或 #(A)。)

对有限集合A和 $n \in N$,若 $A \approx n$,则 card(A) = n。

12.4 集合的基数

12-4-1 (自然数集合N的基数)

- N的基数不是自然数,因为N不与任何自然数等势。
- 通常用Cantor的记法,把 card(N)记作ℵ₀,
 读作"阿列夫零"。
- 因此, $card(Z) = card(Q) = card(N \times N) = \aleph_0$

12.4 集合的基数

12-4-2 (实数集合R的基数)

- R的基数不是自然数,也不是 \aleph_0 (因为 $\neg R \approx N$)。
- 通常把card(R)记作 ℵ₁, 读作 "阿列夫 壹"。
- 因此, $card([0,1]) = card((0,1)) = card(R^+) = \aleph_1$

• $R \approx N_2$

证明: 只需证 $R \leq N_2$, 且 $N_2 \leq R$

(1) 先证 $R \le N_2$. 为此只需证(0, 1) $\le N_2$.

构造函数H: $(0, 1) \rightarrow N_2$,

対 \forall z∈(0, 1), 有H(z)∈ N₂={f | f: N→{0, 1}}

其中z表示二进制无限小数

 $H(z): N \to \{0, 1\}$

 \forall n ∈ N, 取H(z)(n)为z的小数点后的第n位数显然, $z_1 \neq z_2$ 时, H(z_1) \neq H(z_2)

∴ H为单射, ∴ (0, 1) ≤ N₂.

(2) 证 $N_2 \le R$. 只需证 $N_2 \le [0, 1]$,

设G: $N_2 \rightarrow [0,1]$

$$\forall f \in \mathbb{N}_2 = \{f \mid f : \mathbb{N} \rightarrow \{0, 1\}\}$$

则f的函数值确定一个[0,1]区间上的实数,例如f(0), f(1), f(2), f(3), ... 依次为1,0,1,1,0,0,0,0,... 时,取十进制数

y=0.10111000..., 则y∈[0, 1] 即G(f)=0.101110...

显然G是单射. ∴ N₂ ≤[0, 1]

• 推论: \aleph_1 =card R=card $N_2 = 2^{\aleph_0}$.

12.5 基数的算术运算

定义12.5.1

- 对任意的基数 k 和 l,
- (1) 若存在集合K和L, $K \cap L = \emptyset$, card(K) = k, card(L) = l, 则 $k + l = card(K \cup L)$
- (2) 若存在集合K和L, card(K) = k, card(L) = l, 则 $k \cdot l = card(K \times L)$
- (3) 若存在集合K和L, card(K) = k, card(L) = l, 则 $k^l = card(LK)$, 其中 L_K 是从L到K的函数的集合。

• 例6:

$$2^{\aleph_0} \le \aleph_0 * 2^{\aleph_0} \le 2^{\aleph_0} * 2^{\aleph_0} = 2^{\aleph_0}$$
 所以, $\aleph_0 * 2^{\aleph_0} = 2^{\aleph_0}$

12.7 可数集合与连续统假设

定义12.7.1 (可数集合)

对集合K,如果 $card(K) \leq K_0$,则称K是可数集合。

12.7 可数集合与连续统假设

定理12.7.1 (可数集的性质)

- (1) 可数集的任何子集是可数集。
- (2) 两个可数集的并集和笛卡儿积是可数集。
- (3) 若K是无限集合,则P(K)是不可数的。
- (4) 可数个可数集的并集是可数集

• 已知的基数按从小到大的次序排列有

$$0, 1, \cdots, n, \cdots, \aleph_0, \aleph_1, 2^{\aleph_1}, \cdots$$

12.7 可数集合与连续统假设

12-7-1 (连续统假设 Continuum Hypothesis 1878年,由Cantor提出,简称CH假设)

• "连续统假设"就是断言不存在基数k,使

$$\aleph_0 < k < 2^{\aleph_0} (\aleph_1)$$

- 这个假设至今未经证明。
- 有人已证明:根据现有的(ZF)公理系统, 既不能证明它是对的,也不能证明它是错的。

补交作业

• 1月7号23:59, 网络学堂提交

考试时间及答疑

考试时间

• 地点: 五教5204、五教5305

• 时间: 1月8日(周三)

下午 2:30-4:30

答疑

• 1月7日下午 2:00— 5:00

• 东主楼10区101

查卷

• 1月10号下午, 东主楼10-315 2:00-4:00

	J 120.	۲۰۰۰	1/1	HC • 4	700	O 1
16	2018011190	吴嘉赟	男	计算机系	计86	本科生
17	2018011997	孔祥哲	男	计算机系	计86	本科生
18	2018013429	郭沛辰	男	计算机系	ì † 84	本科生
19	2018013432	张潇宇	女	计算机系	计85	本科生
20	2018013443	陈新	男	计算机系	计82	本科生
21	2018013446	王隽伟	男	计算机系	计83	本科生
22	2018013466	李瀚明	男	计算机系	计81	本科生
23	2018013481	卢展	男	计算机系	计83	本科生
24	2018013484	黄海天	男	计算机系	计85	本科生
25	2019011220	吴伟浩	男	计算机系	计91	本科生
26	2019011234	王子腾	男	计算机系	计9 2	本科生
27	2019011271	韩子宣	女	计算机系	计93	本科生
28	2019011310	王兆臻	男	计算机系	计95	本科生

计算机系

计算机系

29

30

2019011314

2019011325

李骁

江灿

本科生

本科生

计95

计95

2019011328	付超然	男	计算机系	计96
2019011333	吕俊伟	男	计算机系	计96
2019011335	朱俊	男	计算机系	计96
2019011340	王星淇	男	计算机系	计96
2019011342	汪子涵	男	计算机系	计96
2018010869	刘禹潇	男	自动化系	自83
2019011397	王博闻	男	自动化系	自93
2017011751	张杰	男	工物系	核71

2018011960	刘松铭	男	化工系	分8
2018012342	潘泽宇	男	化工系	分8
2019011926	尤沛兴	男	材料学院	材93
2015012065	邬靖翔	男	数学系	数61
2014012919	张锦苏	女	物理系	物理61
2017012302	薛宗麒	男	物理系	基科72
2018012209	朱思漠	男	物理系	物理81
2019012209	李奕杉	男	化学系	化学92
2018012398	邱俣涵	男	生命学院	生81
2019012282	王政	男	生命学院	生9 2
2018012708	郑毅喆	男	外文系	英81
2014013420	秦堤	男	软件学院	软件61
2016011990	靳紫荆	男	软件学院	软件62
2016080047	李泫撰	男	软件学院	软件62
2017010395	王澳	男	软件学院	软件81
2017010396	张智	男	软件学院	软件81

2017010428	孙梓健	男	软件学院	软件81
2017010561	金凤	女	软件学院	软件83
2017010713	陈嘉澍	男	软件学院	软件82
2017011672	沈澎博	男	软件学院	软件82
2017011834	肖今朝	男	软件学院	软件83
2018010110	赖翔翔	男	软件学院	软件91

				V.A. I	
201	8010115	诸葛向文	男	软件学院	软件92
201	8010139	张驰	男	软件学院	软件92
201	8010683	伍冠宇	男	软件学院	软件83
201	8010717	何金龙	男	软件学院	软件82
201	8010746	杨启欣	男	软件学院	软件82
201	8011439	王问涵	男	软件学院	软件93
201	8080149	托夫	男	软件学院	软件83
201	9013245	童圣博	男	软件学院	软件91
201	9013246	游嘉诚	男	软件学院	软件91
201	9013248	李毅	男	软件学院	软件91
201	9013249	王森	男	软件学院	软件91
201	9013251	王文昊	男	软件学院	软件91

考试地点分配: 五教5305

2019013252	宋子昂	男	软件学院	软件91
2019013254	李金鹏	男	软件学院	软件91
2019013255	彭贻豪	男	软件学院	软件91
2019013256	张思旭	男	软件学院	软件91
2019013258	张兴龙	男	软件学院	软件91
2019013259	李云飞	男	软件学院	软件91
2019013261	周昱辰	男	软件学院	软件91
2019013262	刘星宇	男	软件学院	软件91
2019013264	周雨星	男	软件学院	软件91
2019013265	蒋哲宇	男	软件学院	软件92

2019013267	张博闻	男	软件学院	软件92
2019013268	李端	男	软件学院	软件92
2019013270	胡学浚	男	软件学院	软件92
2019013271	张楚炎	男	软件学院	软件92
2019013272	王冠	男	软件学院	软件92
2019013273	范逍宇	男	软件学院	软件92
2019013274	肖子凯	男	软件学院	软件92
2019013277	陈哲涵	男	软件学院	软件92

考试地点分配: 五教5305

男

男

李佐元

郭昊

2019013291

2019013292

软件学院

软件学院

软件93

男

顾德禹

软件学院

					2019013297	徐文博	男	软件学院	软件93
					2019013301	高宇睿	男	软件学院	软件93
					2019013302	文雨	男	软件学院	软件93
2019013279	胡梦箫	男	软件学院	软件92	201001001	r.v.=	_	4574 370	<i>+</i>
2019013281	王子元	男	软件学院	软件92	2019013304	伍俊豪	男	软件学院	软件93
2019013282	李松泽	男	软件学院	软件92	2019013306	王泽文	男	软件学院	软件93
2013013202	→ 1A/丰	25	4X11-3-10G			Am hat t Tark	_	46.61.345	<i>+</i>
2019013284	孙沛瑜	男	软件学院	软件92	2019080106	梁潘钰曈	男	软件学院	软件92
2019013288	任俊宇	男	软件学院	软件93	2019080124	魏乐	男	软件学院	软件91
2019013289	孟德华	男	软件学院	软件93	2019080127	丁佳华	男	软件学院	软件91
2019013290	张凌峰	男	软件学院	软件93					

2019013293

软件93

软件93

期末考试主要题型

- 1. 选择/判断题 (给出正确选择)
- 2. 填空题 (直接给出结果)
- 3. 计算题 (列出计算步骤)
- 4. 证明题 (写出证明过程)

• 选择题与填空题需直接答在试卷纸上。

典型题目:选择题

- 1. () 简而言之, 命题逻辑的公理系统是
- A. 用来建立公理的系统。 B. 由公理产生推理规则的系统。 C. 用来完善已有公理的系统。
- D. 从精选的几条公理出发,根据规定的演绎规则, 推导出一系列定理的形式符号系统。

D

典型题目: 选择题

- 2. ()孔子曰:"己所不欲,勿施于人。"以下哪一选项不是这句话的逻辑推论?
- A. 只有己所欲,才能施于人。 否则不施于人。
- B. 除非己所欲,

C. 若己所欲,则施于人。 应该是己所欲的。 D. 凡施于人的都

 \mathbf{C}

典型题目: 选择题

- 6. 非空集合A上的恒等关系 I_A 是(C); 全关系 E_A 是(B); 空关系 \emptyset 是(D)。
- A. 偏序关系但不是等价关系
- B. 等价关系但不是偏序关系
- C. 既是等价关系又是偏序关系
- D. 既不是等价关系也不是偏序关系

几个主要关系的性质

性质 关系	自反性	反自反性	对称性	反对称性	传递性
恒等关系 <i>I_A</i>	√	×	√	√	√
全域关系 <i>E_A</i>	√	×	\checkmark	×	$\sqrt{}$
<i>A</i> 上的空 关系 <i>Φ</i>	×	√	$\sqrt{}$	√	√
N上的整 除关系	\checkmark	×	×		$\sqrt{}$
包含关系 ⊆	√	×	×	√	√
真包含关 系 ⊂	×	√	×	√	√

判断题

(×)整数上的"≥"关系是等价关系。 (标出v或×)

填空题示例

• 对3个命题变元,可以定义

(______)

个3元命题联接词(仅考虑二值逻辑)。

参见教材P22。

典型题目:填空题

按照连续统假设,用最简洁的形式写出下列计算结果。

$$|N_N| = 8_1 |R_R| = 8_2$$

对任意的无限基数 $k,k^k=2^k$

形式化

没有最大的素数

P(x)表示x是素数,

Q(x, y)表示x比y大

$$\neg(\exists x) \Big(P(x) \land (\forall y) \Big(P(y) \rightarrow Q(x,y) \Big) \Big)$$

计算题

用空集 \emptyset 构造一个集合序列 S_0, S_1, \dots, S_{i-1} ,满足 $|S_i|$ = i,且 $S_i \subseteq S_{i+1}$,试写出序列的<u>前 4 个集合</u> S_0, S_1, S_2, S_3 。

$$S_0 = \emptyset, S_1 = \{\emptyset\}, S_2 = \{\emptyset, \{\emptyset\}\}, S_3 = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$$

计算题示例

证明题示例

- 使用推理规则或归结法证明下列推理:
- 每个人喜欢乘车或(普通或)喜欢骑自行车。
- 每个喜欢步行的人都不喜欢乘车。
- 有的人不喜欢骑自行车。
- 因而有的人不喜欢步行。

计算题: 求[99,1000]的范围内不能被5,6,8中任一个数整除的数的个数

- 用A、B、C表示[99,1000]之间分别能被5,6,8整除的整数的个数,则
- |A|=1000/5-98/5=181 |B|=1000/6-98/6=150 |C|=1000/8-98/8=113
- $|A \cap B| = \frac{1000}{30} \frac{98}{30} = 30 |A \cap C| = \frac{1000}{40} \frac{98}{40} = 23$
- $|B \cap C| = \frac{1000}{24} \frac{98}{24} = 37$
- $|A \cap B \cap C| = \frac{1000}{120} \frac{98}{120} = 8$
- $|\overline{A} \cap \overline{B} \cap \overline{C}| = E |A \cup B \cup C| = E |A| |B| |C| + |A \cap B| + |A \cap C| + |B \cap C| |A \cap B \cap C|$
- \bullet = 902-181-150-113+30+23+37-8=540

证明题:利用推理规则或归结推理法证明证明下列推理

•
$$(\forall x)(P(x) \to Q(x)) \land (\forall x)(R(x) \to \neg Q(x)) \Rightarrow$$

 $(\forall x)(R(x) \to \neg P(x))$

$$\textcircled{1}(\forall x)(P(x) \to Q(x))$$

$$\bigcirc (\forall x)(R(x) \rightarrow \neg Q(x))$$

$$\mathfrak{I}(x) \to Q(x)$$

$$\textcircled{4}R(x) \rightarrow \neg Q(x)$$

$$\bigcirc \neg Q(x) \rightarrow \neg P(x)$$

$$\bigcirc (\forall x)(R(x) \rightarrow \neg P(x))$$

前提

前提

①全称量词消去

②全称量词消去

③置换

④⑤三段论

⑥全称量词引入

4. 公理

公理1 **►**((PVP)→P)(重言律)

公理2 **├**(*P*→(*P*∨*Q*))

(V引入律,类似第2章中的基本推理公式4)

公理3 **►**((PVQ)→(QVP)) (类似析取交换律)

公理4 $\vdash ((Q \rightarrow R) \rightarrow ((P \lor Q) \rightarrow (P \lor R)))$

证明题:利用罗素公理系统证明:

$$\vdash (Q \to R) \to ((P \to Q) \to (P \to R))$$

证明:

(1)
$$\vdash (Q \rightarrow R) \rightarrow (P \lor Q \rightarrow P \lor R)$$

公理4

(2)
$$\vdash (Q \rightarrow R) \rightarrow (\neg P \lor Q \rightarrow \neg P \lor R)$$

$$(1)$$
代入 $\frac{P}{\neg P}$

(3)
$$\vdash (Q \to R) \to ((P \to Q) \to (P \to R))$$

证毕

3, 定义

- (1)(A→B)定义为(¬AVB)。
- (2) (A ∧ B) 定义为¬(¬A ∨ ¬B)。
- (3) $(A \leftrightarrow B)$ 定义为 $((A \rightarrow B) \land (B \rightarrow A))$

获奖情况

- 辅助教学奖
- 优秀作业奖
- 大作业创新奖

