АО «Росжелдорпроект»

Новосибирский проектно-изыскательский институт «Сибжелдорпроект» — филиал АО «Росжелдорпроект»

Реконструкция участка Москва-Пассажирская-Курская (вкл.) — Москва-Товарная-Курская — Карачарово (искл.) со строительством дополнительных главных путей

Этап 1 «Реконструкция станции Москва-Пассажирская-Курская»

Проектная документация

Раздел 4. Здания, строения и сооружения, входящие в инфраструктуру линейного объекта Подраздел 4. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

Часть 5. Сети связи

Книга 1.5

Пассажирские обустройства Системы видеонаблюдения

0905-1344-01-ИЛО4.5.1.5

Том 4.4.5.1.5

АО «Росжелдорпроект»

Новосибирский проектно-изыскательский институт «Сибжелдорпроект» — филиал АО «Росжелдорпроект»

Реконструкция участка Москва-Пассажирская-Курская (вкл.) – Москва-Товарная-Курская – Карачарово (искл.) со строительством дополнительных главных путей

Этап 1 «Реконструкция станции Москва-Пассажирская-Курская»

Проектная документация

Раздел 4. Здания, строения и сооружения, входящие в инфраструктуру линейного объекта Подраздел 4. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

Часть 5. Сети связи Книга 1.5 Пассажирские обустройства Системы видеонаблюдения 0905-1344-01-ИЛО4.5.1.5 Том 4.4.5.1.5

Главный инженер филиала

Главный инженер проекта

А.Д. Цигипов

А.А. Ермолич

Инв. № подл. Подп. и дата

Взам. инв.№

Подп. и дата

Акционерное общество «МОСГИПРОТРАНС»

Заказчик: «Сибжелдорпроект» - филиал АО «Росжелдорпроект»

Реконструкция участка Москва-Пассажирская-Курская (вкл.) – Москва-Товарная-Курская – Карачарово (искл.) со строительством дополнительных главных путей

Этап 1 «Реконструкция станции Москва-Пассажирская-Курская»

Проектная документация

Раздел 4. Здания, строения и сооружения, входящие в инфраструктуру линейного объекта Подраздел 4. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

Часть 5. Сети связи Книга 1.5 Пассажирские обустройства Системы видеонаблюдения 0905-1344-01-ИЛО4.5.1.5 Том 4.4.5.1.5

0905-1344-01-ИЛО4.5.1.5 Том 4.4.5.1.5	
Главный инженер	А.А. Щербаков
Главный инженер комплексного проекта	М.Е. Приезжев
Главный инженер проекта раздела	П.А. Котов

2019

Содержание тома 4.4.5.1.5

Обозначение	Наименование	Примечание
0226-1295-04-ИЛО 4.5.1.3-С	Содержание тома 4.4.5.1.5	3
0905-1344-01-ИЛО4.5.1.5.ТЧ	Пассажирские обустройства. Системы видеонаблюдения. Текстовая часть.	4
	Пассажирские обустройства. Системы видеонаблюдения. Графическая часть.	
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 1	Система видеонаблюдения за «посадкой- высадкой». Структурная схема видеонаблюдения	20
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 2	Система видеонаблюдения за «посадкой- высадкой». Трасса прокладки кабелей на отметке -5,200	21
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 3	Система видеонаблюдения за «посадкой- высадкой». План размещения оборудования и трассы прокладки кабелей на платформах	22
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 4	Система видеонаблюдения за работой вертикального транспорта. Структурная схема видеонаблюдения	23
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 5	Система видеонаблюдения за работой вертикального транспорта. Размещение оборудования и трассы прокладки кабелей на отм5,200	24
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 6	Система видеонаблюдения за работой вертикального транспорта. Размещение оборудования и трассы прокладки кабелей на платформе в осях А-И и 11-18	25
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 7	Система видеонаблюдения ЦППК. Структурная схема видеонаблюдения	26
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 8	Система видеонаблюдения ЦППК. Размещение оборудования и трассы прокладки кабелей на отм5,200 в осях А-И и 1а-8	27
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 9	Система видеонаблюдения ЦППК. Размещение оборудования и трассы прокладки кабелей на отм5,200 в осях А-И и 15-23	28
0905-1344-01-ИЛО4.5.1.5.ГЧ, лист 10	АСОКУПЭ пом. N 135. ИБП. Схема соединений. Расчет и выбор оборудования	29
Изм. Кол.у Лист №док Подп. Дата	0905-1344-01-ИЛО4.5.1.5	5.C
Разработал Никитин Проверил Бороданов	Стадия П	Лист Листоп 1 2
Гл.спец. Левшунов Н. контр. Марина ГИП Котов	Содержание тома 4.4.5.1.5	<u>(OCCUNP</u>

Подп. и дата

Инв. № подл.

Содержание

Вве	едение	5
1	Общие сведения	7
2	Краткое описание условий строительства	9
3	Описание проектных решений по оснащению распределительного вестибюля	
тех	нологического видеонаблюдения (СТВ)	11
3.1	Система видеонаблюдения за «посадкой-высадкой» пассажиров	11
3.2	Система видеонаблюдения ЦППК (СВЦППК)	13
3.3	Система видеонаблюдения за работой вертикального транспорта (СВРВТ)	16
Пер	речень принятых сокращений	19
Tab	обращия регистрации изменений	20

Подп. и дата Взам. Инв. №
Подп. и дата

	Изм.	Кол.у	Лист	№док	Подп.	Дата	
	Разраб	ботал	Никит	ГИН			
4	Прове	рил	Бород	анов			
3434	Гл.спец.		Левш	унов			
`,	Н. кон	нтр.	Мари	на			
	ГИП		Котов	3			

0905-1344-01-ИЛО4.5.1.5.ТЧ

Пассажирские обустройства Системы видеонаблюдения Текстовая часть

Стадия	Лист	Листов
П	1	16
	Maci	чпрп

Основанием для разработки проектной документации являются:

- инвестиционная программа ОАО «РЖД»;
- генеральная схема развития Московского железнодорожного узла, утвержденная Постановлением Правительства Москвы от 18.11.2008
 №1070-ПП и согласованная ОАО "РЖД";
- соглашение между правительством Москвы и ОАО "РЖД" от 24.12.2012 №77-629/1263 о сотрудничестве в области развития железнодорожной инфраструктуры для улучшения условий городских и пригородных пассажирских перевозок в Московском железнодорожном узле в 2012-2020 г.:
- поручение Президента Российской Федерации В.В. Путина от 15.11.2017
 №Пр-2320.

Полный перечень исходных данных для разработки проектной документации приведен в томе 0905-1344-01-П32. Они учитывают требования Федерального закона от 30.12.2009 № 384-Φ3 (ч.2, ст.15) и Положения, утвержденного ПП РФ от 16.02.2008 № 87 (п.34, «б»).

Заказчиком работ является «ДКРС-Москва» - филиал ОАО "РЖД", генеральной проектной организацией — институт «Сибжелдорпроект», субподрядной проектной организацией - АО «Мосгипротранс».

Настоящая документация разработана институтом АО «Мосгипротранс», регистрационный номер 22 от 10.08.2009 г. в реестре членов саморегулируемой организации «Объединение проектных организаций транспортного комплекса СРО-П-065-30112009.

При разработке настоящего тома проектной документации использовались законодательные и нормативно-технические документы:

- Федеральный закон от 10.01.2003 г. № 17-ФЗ «О железнодорожном транспорте в Российской Федерации»;
- Федеральный закон от 30.12.2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»;
- ГОСТ Р 53195.2-2008. Безопасность функциональная связанных с безопасностью зданий и сооружений систем;
- ГОСТ Р 55963-2014. Лифты. Диспетчерский контроль. Общие технические требования.
- Постановление от 15 ноября 2014 г. № 1208 «Об утверждении требований по соблюдению транспортной безопасности для физических лиц, следующих либо

Подп. и дата	
Инв. № подл.	

Взам. Инв. №

находящихся на объектах транспортной инфраструктуры или транспортных средствах, по видам транспорта»;

- Приказ Минтранса России от 21.2.2011 г. № 62 «О Порядке установления количества категорий и критериев категорирования объектов транспортной

Взам. Инв. №												
Подп. и дата												
Инв. № подл.	3434							0905-13	// O1 I/	ПОЛ 5.1	1 5 TH	Лист
Инв		Изм.	Кол.уч	Лист	№док	Подп.	Дата	U9U3-13 	44-U1-YI	J1U4.3.	1.3.14	3

1 Общие сведения

В настоящее время пригородные железнодорожные перевозки для Столичной магистрали имеют особую социальную значимость. Железная дорога активно интегрируется в городскую транспортную систему Москвы и ближайших районов Подмосковья, железнодорожный транспорт преобразуется из пригородного в пригородногородской.

Развитие диаметральных маршрутов городского железнодорожного сообщения Московского транспортного узла с необходимой интенсивностью движения позволит значительно повысить эффективность пригородных железнодорожных перевозок узла.

Работа по увеличению интенсивности движения пригородно-пассажирских поездов выполняется в два этапа:

- І этап с учетом пропускной способности существующей инфраструктуры выбранного направления и объектов, вводимых в 2019 году;
- II этап с учетом усиления пропускной способности выбранного направления.

Технология пропуска пригородно - городских электропоездов на I этап развития диаметральной связи МЦД-2 разработана с учетом пропускной способности существующей инфраструктуры головных участков Московского железнодорожного узла.

Разработанной технологией предусматривается обеспечение пропуска пригородногородских электропоездов по I и II главным путям со всеми остановками по станциям рассматриваемых сообщений Подольск – Нахабино.

При этом пригородно - городские электропоезда движутся по I и II главным путям совместно с пригородными поездами дальних зон, обеспечивая совокупно на рассматриваемых участках удобные для пассажиров интервалы движения: по МЦД-2 5-6 минут.

На участке Москва — Подольск согласно проекту «Развитие железнодорожной инфраструктуры МЖД на Курском направлении» по III и IV главным путям предусмотрен пропуск скорых пригородных поездов в сообщении Подольск — Царицыно в соответствии с модернизацией участка Люблино — Подольск и переспециализацией III и IV главных путей под движение пассажирских поездов.

Пропуск пассажирских поездов, следующих в дальнем и местном сообщениях, предусмотрен: на участке Подольск – Люблино по I, II, III и IV главным путям, на участке Люблино – Москва – по I и II главным путям совместно с пригородными поездами.

На II этапе организация движения разрабатывается с учетом сооружения дополнительной пары главных путей на участке Москва-Пассажирская-Курская-Люблино и Москва-Рижская-Нахабино.

Специализация главных путей на рассматриваемом направлении предусматривается следующая:

- I и II главные пути для пропуска пригородно-городских поездов назначением Подольск-Нахабино, следующих в интенсивный период с 5минутным поездным интервалом;
- III и IV главные пути для пропуска поездов других категорий, оборачивающихся по головным станциям Московско-Курского направления и Московско-Рижского направления -по станции Москва-Рижская.

Размеры движения поездов, следующих по участку Подольск-Нахабино во всех видах сообщений приняты по данным института АО «ИЭРТ». Интенсивность движения пригородно-городских поездов назначением Подольск-Нахабино принята в соответствии с «Требованиями к технологии транспортного обслуживания на Московских центральных

Изм.	Кол.уч	Лист	№док	Подп.	Дата

диаметрах (МЦД-1 и МЦД-2)», утвержденными Правительством Москвы и Министерством транспорта и дорожной инфраструктуры Московской области.

Схема расположения Курско-Рижского диаметра Подольск-Нахабино (МЦД-2) на полигоне Московской железной дороги приведена на рисунке 1.

Протяженность МЦД-2 – 80 км.

Проектом предусмотрено устройство на полигоне МЦД-2 38-ми остановочных пунктов, отвечающих требованиям технологии транспортного обслуживания Московских центральных диаметров (МЦД-1, МЦД-2), утвержденным Правительством Москов и Минтрансом Московской области, в том числе строительство в составе І-го этапа — 7-ми новых остановочных пунктов

В качестве подвижного состава планируется использовать электропоезда «Иволга» (ЭГ2Тв).

Рисунок 1 — Схема расположения Курско-Рижского диаметра Подольск-Нахабино (МЦД-2) на полигоне Московской железной дороги

подл.	4						
нв. №	343						
Ин		Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв.

Іодп. и дата

Лист

2 Краткое описание условий строительства

В соответствии с климатическим районированием для строительства согласно СП 131.13330.2012 «СНиП 23-01-99*» площадка строительства находится в строительно-климатическом районе IIB.

Климат умеренно-континентальный с достаточным увлажнением, умеренным теплым летом и умеренно холодной снежной зимой с преобладанием пасмурной облачной погоды, с устойчивым снежным покровом. Зима (середина ноября — конец марта) умеренно-холодная. Характерной особенностью климата является большое непостоянство погоды во все времена года, связанное с проникновением атлантических циклонов и арктических воздушных масс.

Сильные морозы и палящий зной здесь бывают достаточно редко и имеют обычно небольшую продолжительность. Морозы в холодный период года (существенное отклонение от нормы, более чем на 4 градуса) устанавливаются чаще всего не более чем на 2-3 недели, а летняя жара может длиться от 3-4 дней до 1,5 месяцев (лето 1920, 1936, 1938, 1972, 2010, 2011 г.).

В зимнее время территория находится под влиянием европейско-азиатского антициклона, несущего обычно безветренную морозную погоду, когда температура падает до минус 20-33 °C. В то же время нередки вторжения атлантических циклонов, вызывающих внезапные оттепели (плюс 4-5 °C) и сопровождающиеся обильными снегопадами.

Среднее многолетнее количество осадков за год равно 638 – 704 мм. Распределение их в течение года неравномерное. Большая часть осадков выпадает в теплый период года с апреля по октябрь. Летом осадки выпадают в виде дождей (чаще кратковременных ливней), осенью и весной – моросящих дождей и мокрого снега, зимой – снега.

Снежный покров по данным метеостанций обычно появляется в конце октября. Устойчивый снежный покров образуется к концу ноября, разрушается в конце марта — начале апреля. Максимальная высота снежного покрова достигается во второй-третьей декаде февраля. Характер залегания снежного покрова находится в непосредственной зависимости от местных условий.

Средняя из наибольших за зиму высота снежного покрова за многолетний период наблюдений составляет 38 - 48 см, максимальная -62 - 78 см, минимальная -10 - 21 см.

Ветровой режим в течение года характеризуется преобладанием юго-западного (ВДНХ), западного (Балчуг) и южного (Подмосковная) направлений. Средняя скорость ветра -1,3-2,1 м/с. Максимальная скорость ветра в порывах составляет 28 м/с.

Ливни кратковременные, нередко с грозами (до 4-10 дней в месяц), иногда с градом, отмечаются в летний период. Град отмечают практически ежегодно, с различной вероятностью в разные месяцы. Наиболее часто выпадение града отмечается в мае и июне. Среднегодовое количество дней с градом составляет 0.6-1 день.

Среднегодовое количество дней с грозой составляет $18-23\,$ дня. Наибольшее число дней с грозой составляет 43 дня.

За год среднее число дней с туманами - 3-17 дней. Наибольшее число дней с туманами составляет 11-37 дней.

Снегопады и метели возможны с середины октября по апрель. Ежемесячно бывает 4-8 дней с метелью. Продолжительность метелей обычно несколько часов. Они возможны при всех направлениях ветра, однако чаще всего при южных и юго-западных, скорость которых превышает $6\,$ м/с, максимальные до $20\,$ м/с, в порывах до $28\,$ м/с. В среднем за год наблюдается 13,8 дня с метелью по м/ст.

3434

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Гололеды бывают в дни с оттепелями в осенне-зимнее время. Наблюдаются все виды гололедно-изморозевых образований, но наиболее часто повторяется и дает наибольшие весовые нагрузки изморозь и «ледяные дожди». Ежемесячно от 3 до 6 раз бывают кратковременные оттепели, нередко со снегопадами и даже дождями. Максимальная толщина стенки гололеда по м/ст. Москва, ВДНХ за период $1988-2017~\mathrm{r.}$ составляет $-9~\mathrm{mm.}$

Взам.	_							
Подп. и дата								
Инв. № подл. 3434		м. Кол.	уч Лист	№док	Подп.	Дата	0905-1344-01-ИЛО4.5.1.5.ТЧ	<u>Лист</u>

3 Описание проектных решений по оснащению распределительного вестибюля технологического видеонаблюдения (СТВ)

Основными видами СТВ, используемыми в проектируемом распределительном вестибюле, являются:

- система видеонаблюдения за «посадкой-высадкой» пассажиров (СВПВП).
- система видеонаблюдения ЦППК (СВЦППК);
- система видеонаблюдения за работой вертикального транспорта (СВРВТ).

Расположение CTB в распределительном вестибюле показано в графической части настоящего тома.

3.1 Система видеонаблюдения за «посадкой-высадкой» пассажиров

Система видеонаблюдения за «посадкой-высадкой» пассажиров машинистом Synergo «Платформа» обеспечивает возможность машинисту визуально контролировать нахождение пассажиров в опасной зоне платформы при отправлении поезда.

Система Synergo «Платформа» состоит из следующих элементов:

- табло машиниста Synergo IB-LC-TDM предназначено для вывода изображения с видеокамер.
- видеокамеры, размещённые на протяжении платформенного пути.

В таблицах 3.1 приведены основные технические характеристики табло машиниста «Synergo IB-LC-TDM».

Таблица 3.1 Основные технические характеристики табло машиниста «Synergo IB-LC-TDM»

Наименование параметра	Значение
1	2
Тип экрана	TFT
Угол обзора	не меньше 178°
Диагональ TFT экрана	55" (>55"-по требованию заказчика и геометрии платформы: проектное решение)
Разрешение экрана	4K, 3840x2160
Интерфейсы	НОМІ - Зшт.
Промышленный компьютер	Intel Core i5/ Core i7, 32 Gb Ram, 240 GB SSD, 5 Tb HDD SATA, 1 Ge Ethernet, 1HDMI, 3xUSB 3.0
Операционная система	Linux/Windows
Интерфейс связи	Ethernet, 10/100/1000 Mbit
Интерфейс связи	FB Optic, 1000 Mbit
Сменный SFP Модуль	Да
Оптический кроссмодуль	Да
Источник резервного питания	АКБ 12 В/12 А/Ч (ёмкость а/ч больше заявленной, определяется требованием заказчика)
Тип экрана	TFT

Продолжение таблицы 3.1

Взам. Инв. №

Подп. и дата

нв. № подл.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

0905-1344-01-ИЛО4.5.1.5.ТЧ

1	2
Архив	30 суток
Питание однофазное	220 Br±10%
Потребляемая мощность не более	500 BT
Система термостатирования	Да
Получение телеметрии о состоянии табло	SNMP
Видеоаналитика	Да
Специальное обогреваемое защитное стекло монитора	Да
Температура эксплуатации	от минус 50 до +60 °C (УХЛ1)
Влажность	≤ 95 %
Сигнальная лампа	Опционально
Звуковая сигнализация	Опционально
Габариты, мм	2300x1290x780
Масса не более	150 кг
Корпус табло	Антивандальный

Функции системы анализа изображения:

- Автоматическое обнаружение пересечения заданной линии.
- Контроль нахождения человека в опасной зоне.
- Визуальное и звуковое оповещение о тревоге.
- Настройка чувствительности видеоаналитики.
- Самодиагностика работоспособности системы с выдачей тревожного сообщения при отказе элементов.
- Минимум ложных срабатываний.

Да<u>та</u>

- Формирование базы данных обнаруженных целей и ситуаций.

В таблице 3.2 приведены основные технические характеристики видеокамеры BM4685RV.

Таблица 3.2 Основные технические характеристики IP видеокамеры BM4685RV

2
1/3" CMOS
2688x1512
2688x1512 (до 25 κ/c), 2048x1536 (до 25 к/c), 1080p (до 25 к/c), 720p (до 25 к/c), D1 (до 25 к/c), CIF (до 25 к/c), 480x240 (до 25 к/c)
3 индивидуально настраиваемых
H.264/H.265/MJPEG
Встроенный вариофокальный (М14)
f=2.8-11 mm (F1.4)
96°-35°
2

ЭΠ	
Инв. № подл.	

5455					
•					
	Изм.	Кол.уч	Лист	№док	Подп.

Наименование параметра

Значение

Функции:	
Режим «день/ночь»	Есть, механический ИК-фильтр
ИК-подсветка	Встроенная (20-30 м)
Детектор движения	Есть
Сеть:	
Интерфейс	Fast Ethernet (1x RJ45)
Протоколы	TCP/IP, UDP, DHCP, NTP, RTSP, PPPoE, DDNS, SMTP, FTP
Физические параметры:	
Питание	12 B (DC) / PoE (IEEE 802.3af), ≤ 6 B _T
Исполнение	Уличное
Класс защиты	IP66, IK10
Рабочая температура	минус 55+50 °С

Размещение технических средств видеонаблюдения на проектируемом остановочном пункте показано на схемах и планах в графической части настоящего тома.

Электропитание видеокамер осуществляется по кабелю "витая пара" от сетевых коммутаторов с поддержкой технологии питания Power over Ethernet (PoE+).

Основные технические показатели СВПВП приведены в таблице 3.3: Таблица 3.3 Основные технические показатели СВПВП

Перечень оборудования	Единицы измерения	Количество
Уличная IP камера BM4685RV 4 Мп, 1/3" КМОП, 0.05 лк (день)/0.005 лк	ШТ	50
(ночь)		
Табло машиниста	ШТ	10

3.2 Система видеонаблюдения ЦППК (СВЦППК)

Подсистема видеонаблюдения и видеозаписи ЦППК запроектирована в соответствии с Техническими условиями, выданными АО «Центральная ППК» от 15.08.2018 г. № Исх.14271-18, и предназначена для визуального контроля и регистрации обстановки на контролируемой территории, для повышения эффективности работы служб безопасности и эксплуатации объекта.

Подсистема видеонаблюдения и видеозаписи обеспечивает:

- контроль и регистрацию обстановки в области перед кассой внутри кассы продажи проездных документов, внутри кассы продажи проездных документов, перед билетно-печатающими автоматами и в области турникетов;
- ведение видеозаписи с камер видеонаблюдения с возможностью экспорта архивного видеоизображения и просмотра на локальном APM видеонаблюдения в билетной кассе. Срок хранения архива видеозаписей не менее 2 (двух) месяцев.

Для организации видеонаблюдения внутри коммуникационного вестибюля проектом предусмотрена установка видеокамер и видеосерверов.

Основные технические характеристики видеокамеры BM4685DV приведены в таблице 3.6.

В качестве видеосервера СВ в проекте применен специализированный видеосервер объектового и видеоаналитического контроля SecurOS IVS-NVR-Enterprise производства

Подп. и дата	
Инв. № подл.	

Взам. Инв. №

Изм.	Кол.уч	Лист	№лок	Полп.	Лата

0905-1344-01	-ИПО4	5 1 5	ТU
0703-1344-01	- Y 1 J 1 O + .		. 1 1

компании ISS, рассчитанный на подключение 23 IP камер с разрешением 1920х1080 (Full HD) и позволяющий хранить видеоинформацию в режиме 24 часа в сутки в течении не менее 60 суток.

Глубина видеоархива рассчитывается исходя из следующих параметров:

- общее количество видеокамер 23 шт.;
- разрешение для видеокамер 1920х1080;
- частота кадров 25 кадров/сек.;
- длительность записи 24 часа в сутки 60 суток.

При разрешении 1920х1080 пикселей и частоте смены кадров 25 кадров/сек. видеокамера выдает поток 4 Мбита в секунду (при алгоритме сжатия Н.264).

Формула расчёта требуемого видеоархива V = X*N*Y/K

где:

V - объем памяти необходимый для ведения видеоархива в Терабайтах;

X — объем памяти в Мегабайтах, который записывается с одной телекамеры в секунду (4 Мбит/с = 0,5 Мбайт/с);

N – количество камер – 23 шт.;

Y – длительность записи видеоархива в секундах (60x60x24x60=5184000 с.);

К – коэффициент для пересчета объема памяти в Терабайты (1024х1024=1048576);

Получаем: 0.5*23*5184000/1048576 = 57 Тб

Емкость дискового пространства сервера составляет 80 Тб. Таким образом, объема системы хранения данных, установленной в сервере, достаточно для хранения видеоархива системы видеонаблюдения.

Видеосервер поставляется с предустановленным программным обеспечением, в том числе с видеоаналитикой. Данная система использует современную видеоаналитику для объектов массового скопления людей.

Состав видеосервера приведен в таблице 3.4.

Таблица 3.4 Видеосервер с функциями видеоаналитики:

Наименование параметра	Значение
Сервер SecurOS IVS-NVR-Enterprise-F/MGKN	1 шт.
Лицензия ядра видеосервера версия 10.х	1 шт.
Лицензия подключения видеоканала	23 шт.
Лицензия модуля комплексного анализа качества видеосигнала (детекция засветки/заслонения, расфокусировки)	13 шт.
Лицензия аудиоканала	2 шт.
Лицензия рабочего места удаленного оператора	1 шт.
Лицензия модуля диагностики SDM	1 шт.

Программное обеспечение «SecurOS» - Ядро видеосервера версия 10.х

Модуль, лицензирующий количество серверов в системе.

Отвечает за построение архитектуры системы безопасности. Обеспечивает: запись видео, трансляцию видео на удаленные рабочие места, работу модулей видеоналитики,

подл.	4						
Š	343						
IHB.							
Ι		Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

0905-1344-01-ИЛО4.5.1.5.ТЧ

Лист

получение событий от реальных и виртуальных объектов в системе. Поддерживает внутреннюю БД системы безопасности, регламентирует права пользователей.

<u>Программное обеспечение «SecurOS» – Подключение видеоканала</u> Модуль, лицензирующий количество камер, подключенных к системе.

Программное обеспечение «SecurOS» – Модуль комплексного анализа качества видеосигнала (детекция засветки/заслонения, расфокусировки)

Модуль, анализирующий качество видеосигнала, поступающего с камеры, на предмет целенаправленной засветки кадра, заслонения объектива и прочих событий для нехарактерного поведения камеры.

<u>Программное обеспечение «SecurOS» – Рабочее место удаленного оператора</u>

Модуль, лицензирующий количество клиентских рабочих мест в системе. Предназначен для использования в качестве рабочих мест операторов и реализации функции удаленного видеонаблюдения и аудиоконтроля, просмотра видеосигналов и прослушивания аудиосигналов, контроля состояния тревожных входов, управления видеокамерами, поворотными устройствами, получение событий, генерируемых системой и реакции на них.

<u>Программное обеспечение «SecurOS» – Подключение аудиоканала (за канал)</u>
Данное ПО предназначено для синхронной записи звука вместе с видеоизображением.

<u>Программное обеспечение «SecurOS» – Модуль диагностики SDM</u> Модуль, ведущий постоянную диагностику компьютерных компонентов видеосервера.

Основные технические показатели СВЦППК приведены в таблице 3.5:

Таблица 3.5 Основные технические показатели СВЦППК

Перечень оборудования	Единицы измерения	Количество
Купольная ІР камера 4 Мп, 1/3" КМОП, 0.05 лк (день)/0.005 лк	ШТ	23
(ночь)		
Специализированный 23 канальный видеосервер объектового контроля /	ШТ	1
хранение видеоархива в течение 60 суток		
Специализированная рабочая станция для отображения до 48-ми камер	ШТ	1
высокого разрешения		
Moнитор Dell U2414H	ШТ	2
Микрофон активный	ШТ	2
Источник бесперебойного питания с комплектом батарей	ШТ	1

 Инв. № подл.
 Подп. и дата
 Взам. Инв. №

 3434
 3434

Изм.	Кол.уч	Лист	№док	Подп.	Дата

3.3 Система видеонаблюдения за работой вертикального транспорта (СВРВТ)

Система видеонаблюдения за «за работой вертикального транспорта (СВРВТ) обеспечивает диспетчеру возможность видеоконтроля обстановки на этажных площадках перед лифтами, а также на входе-выходе с эскалатора.

Для организации видеонаблюдения внутри распределительного вестибюля проектом предусмотрена установка видеокамер и видеосерверов.

В таблице 3.6 приведены основные технические характеристики видеокамеры BM4685DV.

Таблица 3.6 - Основные технические характеристики купольной IP видеокамеры BM4685DV

Наименование параметра	Значение
Видео:	
Матрица	1/3" CMOS
Разрешение	2688x1512
Основной поток	2688x1512 (до 25 к/c), 2048x1536 (до 25 к/c), 1080p (до 25 к/c), 720p (до 25 к/c), D1 (до 25 к/c), CIF (до 25 к/c), 480x240 (до 25 к/c)
Дополнительный поток	3 индивидуально настраиваемых
Кодек	H.264/H.265/MJPEG
Объектив:	
Тип объектива	Встроенный вариофокальный
Фокусное расстояние	f=2.8-11 мм (F1.4)
Угол зрения по горизонтали	96°-35°
Аудио:	
Аудио Вход / выход	1х микрофонный / 1
Кодек	G.711a, G711u (двухсторонняя связь)
Функции:	
Режим «день/ночь»	Есть, механический ИК-фильтр
ИК-подсветка	Встроенная (20-30 м)
Детектор движения	Есть
Сеть:	
Интерфейс	Fast Ethernet (1x RJ45)
Протоколы	TCP/IP, UDP, DHCP, NTP, RTSP, DDNS, SMTP, FTP
Физические параметры:	
Питание	12 B (DC) / PoE (IEEE 802.3af), ≤ 4.5 BT
Исполнение	Уличное
Класс защиты	IP66, IK10
Рабочая температура	минус 55+50 °С

В качестве видеосервера СВРВТ и СВПВП в проекте применен специализированный видеосервер объектового и видеоаналитического контроля **SecurOS IVS-NVR-Enterprise** производства компании ISS, рассчитанный на подключение 59 IP камер с разрешением 1920х1080 (Full HD) и позволяющий хранить видеоинформацию в режиме 24 часа в сутки в течении не менее 30 суток.

					
Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. Инв. №

Подп. и дата

Інв. № подл.

Лист

Глубина видеоархива рассчитывается исходя из следующих параметров:

- общее количество видеокамер 59 шт. (9 видеокамер CBPBT и 50 видеокамер CBПВП);
- разрешение для видеокамер 1920х1080;
- частота кадров 25 кадров/сек.;
- длительность записи 24 часа в сутки 30 суток.

При разрешении 1920х1080 пикселей и частоте смены кадров 25 кадров/сек. видеокамера выдает поток 4 Мбита в секунду (при алгоритме сжатия H.264).

Формула расчёта требуемого видеоархива V = X*N*Y/K

где:

V - объем памяти необходимый для ведения видеоархива в Терабайтах;

X — объем памяти в Мегабайтах, который записывается с одной телекамеры в секунду (4Мбит/с = 0,5 Мбайт/с);

N – количество камер – 59 шт.;

Y – длительность записи видеоархива в секундах (60x30x24x60=2592000c.);

К – коэффициент для пересчета объема памяти в Терабайты (1024x1024=1048576);

Получаем: 0.5*59*2592000/1048576 = 73 Тб

Емкость дискового пространства сервера составляет 80 Тб. Таким образом, объема системы хранения данных, установленной в сервере, достаточно для хранения видеоархива системы видеонаблюдения.

Видеосервер поставляется с предустановленным программным обеспечением, в том числе с видеоаналитикой.

Состав видеосервера приведен в таблице 3.7.

Таблица 3.7 Видеосервер с функциями видеоаналитики:

Наименование параметра	Значение				
Сервер (на 59 камер) SecurOS IVS-NVR-Enterprise-F/MGKN	1 шт.				
Лицензия ядра видеосервера версия 10.х					
Лицензия подключения видеоканала					
Лицензия модуля комплексного анализа качества видеосигнала (детекция засветки/заслонения, расфокусировки)	40 шт.				
Лицензия рабочего места удаленного оператора	11 шт.				
Лицензия модуля диагностики SDM	1 шт.				

Для электропитания технических средств СВН устанавливаются источники бесперебойного питания в комплекте с аккумуляторной батареей с запасом емкости 1 час работы в аварийном режиме.

Основные технические показатели СВРВТ приведены в таблице 3.8:

Подп. 1	
Инв. № подл.	

Взам. Инв. №

II.	Vozva	Пист	Maran	Подп.	Лата

0905-1344-	$01-M\Pi\Omega$	5 1 5 T	'n
U9UJ-1344-	-U1-YIJIU4	·.J.1.J.1	4

Таблица 3.8 Основные технические показатели СВРВТ

Перечень оборудования	Единицы измерения	Количество
Купольная ІР камера 4 Мп, 1/3" КМОП, 0.05 лк (день)/0.005 лк	ШТ	9
(ночь)		
Специализированный 59 канальный видеосервер объектового	ШТ	1
контроля / хранение видеоархива в течение 30 суток		
Специализированная рабочая станция для отображения до 48-ми	ШТ	1
камер высокого разрешения		
Mонитор Dell U2414H	ШТ	2

Взам. И									
Подп. и дата									
Инв. № подл.	3434	Изм.	Кол.уч	Лист	№док	Подп.	Дата	0905-1344-01-ИЛО4.5.1.5.ТЧ	Лист 15

Перечень принятых сокращений

МЦД – Московский центральный диаметр

СТВ – система технологического видеонаблюдения

СВПВП – система видеонаблюдения за «посадкой-высадкой» пассажиров

СВЦППК – система видеонаблюдения ЦППК

СВРВТ – система видеонаблюдения за работой вертикального транспорта

7нв. № подп. и дата Взам. Инв. № 3434

Изм.	Кол.уч	Лист	№док	Подп.	Дата

			Табл	пица регист	рации измене	ний		
	Таблица регистрации изменений Номера листов Васто						1	
Изм.	(по сквозной нумерации)			и) аннули-	Всего листов	Номер	Подп.	Дата
	изме- ненных	заме-	новых	рован- ных	(страниц) в док.	док.		
_								
7								