2013-MA-'40-52'

AI24BTECH11006 - Bugada Roopansha

- 40) Let X be an arbitrary random variable that takes values in [0, 1, ..., 10]. The minimum and maximum possible values of the variance of X are
 - a) 0 and 30
 - b) 1 and 30
 - c) 0 and 25
 - d) 1 and 25
- 41) Let M be the space of all 4×3 matrices with entries in the finite field of three elements. Then the number of matrices of rank three in
 - a) $(3^4 3)(3^4 3^2)(3^4 3^3)$
 - b) $(3^4 1)(3^4 2)(3^4 3)$
 - c) $(3^4 1)(3^4 3)(3^4 3^2)$ d) $3^4(3^4 1)(3^4 2)$
- 42) Let V be a vector space of dimension $m \geq 2$. Let $T:V\to V$ be a linear transformation such that $T^{n+1} = 0$ and $T^n \neq 0$ for some $n \geq$ 1. Then which of the following is necessarily TRUE?
 - a) Rank $(T^n) \leq \text{Nullity}(T^n)$
 - b) trace $(T) \neq 0$
 - c) T is diagonalizable
 - d) n=m
- 43) Let X be a convex region in the plane bounded by straight lines. Let X have 7 vertices. Suppose f(x,y) = ax + by +c has maximum value M and minimum value N on X and N < M. Let SP: P is a vertex of X and N < f(P) < M. If S has n elements, then which of the following statements is **TRUE**?
 - a) n cannot be 5
 - b) n can be 2
 - c) n cannot be 3
 - d) n can be 4
- 44) Which of the following statements are **TRUE**? P: If $f \in L^1(\mathbb{R})$, then f is continuous. Q: If $f \in L^{1}(\mathbb{R})$ and $\lim_{|x|\to\infty} f(x)$ exists, then the limit is zero.

R: If $f \in L^1(\mathbb{R})$, then f is bounded. S: If $f \in L^1(\mathbb{R})$ is uniformly continuous, then $\lim_{|x|\to\infty} f(x)$ exists and equals zero.

- a) Q and S only
- b) P and R only
- c) P and Q only
- d) R and S only
- 45) Let u be a real valued harmonic function on \mathbb{C} . Let $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$g(x,y) = \int_0^{2\pi} u\left(e^{i\theta}(x+iy)\right) \sin\theta \, d\theta.$$

Which of the following statements is **TRUE**?

- a) g is a harmonic polynomial
- b) q is a polynomial but not harmonic
- c) g is harmonic but not a polynomial
- d) g is neither harmonic nor a polynomial
- 46) Let $S = z \in \mathbb{C} : |z| = 1$ with the induced topology from \mathbb{C} and let $f:[0,2]\to S$ be defined as $f(t) = e^{2\pi it}$. Then, which of the following is TRUE?
 - a) K is closed in $[0,2] \Rightarrow f(K)$ is closed in
 - b) U is open in $[0,2] \Rightarrow f(U)$ is open in S
 - c) f(X) is closed in $S \Rightarrow X$ is closed in [0,2]
 - d) f(Y) is open in $S \Rightarrow Y$ is open in [0,2]
- 47) Assume that all the zeros of the polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ have negative real parts. If u(t) is any solution to the ordinary differential equation

$$a_n \frac{d^n u}{dt^n} + a_{n-1} \frac{d^{n-1} u}{dt^{n-1}} + \dots + a_1 \frac{du}{dt} + a_0 u = 0,$$

then $\lim_{t\to\infty} u(t)$ is equal to

- a) 0
- b) 1
- c) ∞
- d) n-1

Common Data for Questions 48 and 49:

Let c_{00} be the vector space of all complex sequences having finitely many non-zero terms. Equip c_{00} with the inner product x, y =

 $\sum_{n=1}^{\infty} x_n y_n$ for all $x = (x_n)$ and $y = (y_n)$ in c_{00} . Define $f: c_{00} \to \mathbb{C}$ by $f(x) = \sum_{n=1}^{\infty} \frac{x_n}{n}$. Let N be the kernel of f.

- 48) Which of the following is **FALSE**?
 - a) f is a continuous linear functional
 - b) $||f|| \le \frac{\pi}{\sqrt{6}}$
 - c) There does not exist any $y \in c_{00}$ such that $f(x) = x, y \text{ for all } x \in c_{00}$
 - d) $N^{\perp} \neq 0$
- 49) Which of the following is FALSE?
 - a) $c_{00} \neq N$
 - b) N is closed
 - c) c_{00} is not a complete inner product space
 - d) $c_{00} = N \oplus N^{\perp}$

Common Data for Questions 50 and 51:

Let X_1, X_2, \ldots, X_n be an i.i.d random sample from an exponential distribution with mean μ . In other words, they have density

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-x/\mu} & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

- 50) Which of the following is **NOT** an unbiased estimate of μ ?

 - a) X_1 b) $\frac{1}{n-1}(X_1 + X_2 + \dots + X_n)$ c) $n \min(X_1, X_2, \dots, X_n)$

 - d) $\frac{1}{n} \max (X_1, X_2, \dots, X_n)$
- 51) Consider the problem of estimating μ . The error $m \cdot s \cdot e$ (meansquareerror) of the estimate $T(X) = \frac{X_1 + X_2 + \dots + X_n}{n+1}$ is
 - a) μ^2

Linked Answer Questions

Statement for Linked Answer Questions 52 **and** 53:

Let
$$X = ((x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1) \cup ([-1,1] \times \{0\}) \cup (\{0\} \times [-1,1]).$$

Let $n_0 = \max\{k : (x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1$

 $k < \infty$, there are k distinct points $p_1, \ldots, p_k \in$ X such that $X \setminus \{p_1, \ldots, p_k\}$ is connected

52) The value of n_0 is ...