BEST AVAILABLE CON

A2 Range Chart R	Control Limit Factor Size Deviation Divisor Limit Factor Linit Factor	0.419	15 3.256 0.283 14 3.316 0.307 15 3.477 0.328 16 3.472 0.347 17 3.588 0.378 19 3.689 0.413 20 3.778 0.415 21 3.778 0.415 22 3.689 0.443	LCL. LCC. LCC.
NTS AND FORMULAS FORMULA FOR & AND R CHARTS C-Chart R X	$X = \frac{\Sigma R}{n}$ $CLX = \overline{X} = \frac{\Sigma R}{k}$ $CLX = \overline{X} = \frac{\Sigma R}{k}$ $UCLR = D_4 \times R$	$JCL\bar{X} = \overline{X} + (A_2 \times R) \qquad LCLR = D_3 \times R$ $LCL\bar{X} = \overline{X} - (A_2 \times R) \qquad \partial = \frac{R}{d_2}$ $Cp = \frac{USL - LSL}{6 \partial} \qquad \overline{X} - \underline{LSL}$ $Cpk = minimum of \frac{USL - \overline{X}}{d_2} \text{ or } \overline{X} - \underline{LSL}$	GONTROL CHARTS FOR VARIABLE DATA Thich dual Measurement Subgroup Average Grand Average Sum of Range = Highest Value - Lowest Value CL. Centigr Line UCL Uppeir Control Limit LCL Loweir Control Limit Mumiber of Subgroups	Process Standard Deviation A Factor for X Chart Limits D Factor for UCL on R Chart DSL Upper Specification Limit LSL Lower Specification Limit d ₂ Factor for estimating Process Control Line

CONSTANTS AND FORMULAS

:\Film Bulle Ellmha