PROJECTION DEVICE

Publication number: JP2002055394

Publication date:

2002-02-20

Inventor:

NOJI MINORU; YASUMURA HIROTO; KADOTA

SHIGEHIRO; SHIGETA KAZUYUKI; HIROBE

TOSHINORI

Applicant:

CANON KK

Classification:

- international: G03B21/20:

G03B21/20; G03B21/20; (IPC1-7): G03B21/14;

G02F1/13; G02F1/1335; G03B21/00

- european:

G03B21/20

Application number: JP20010150252 20010521

Priority number(s): JP20010150252 20010521; JP20000158656 20000529

Also published as:

US6543900 (B2) US2002008850 (A1)

Report a data error here

Abstract of JP2002055394

PROBLEM TO BE SOLVED: To realize a good projection device using plural light sources. SOLUTION: In this projection device using the plural light sources, the light source mainly irradiating a light valve is switched by moving the relative position of the plural light sources to a mirror guiding the outputted light from the light sources to the light valve. Then, the constitution of the device is simplified by making a light condensing device common for the plural light sources.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-55394 (P2002-55394A)

(43)公開日 平成14年2月20日(2002.2.20)

(51) Int.Cl.7		識別記号	FΙ		Ť.	-マコード(参考)
G 0 3 B	21/14		G 0 3 B	21/14	В	2H088
G02F	1/13	505	G 0 2 F	1/13	505	2H091
	1/1335			1/1335		
G 0 3 B	21/00		G 0 3 B	21/00	E	

審査請求 未請求 請求項の数18 OL (全 13 頁)

(21)出願番号	特願2001-150252(P2001-150252)	(71)出願人	000001007
			キヤノン株式会社
(22)出願日	平成13年5月21日(2001.5.21)		東京都大田区下丸子3丁目30番2号
		(72)発明者	野地 稔
(31)優先権主張番号	特願2000-158656(P2000-158656)		東京都大田区下丸子3丁目30番2号キヤノ
(32)優先日	平成12年5月29日(2000.5.29)		ン株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	安村 洋人
			東京都大田区下丸子3丁目30番2号キヤノ
			ン株式会社内
		(74)代理人	100086287
			弁理士 伊東 哲也

最終頁に続く

(54)【発明の名称】 プロジェクション装置

(57)【要約】

【課題】 複数光源を用いた好適なプロジェクション装 置を実現する。

【解決手段】 複数の光源を用いたプロジェクション装 置において、複数の光源とそれらの出力光をライトバル ブに導くミラーとの相対位置を動かすことによりライト バルブを主に照射する光源を切り替える。また、複数の 光源の集光装置を共通化することにより構成を簡素化す る。

【特許請求の範囲】

【請求項1】 ライトバルブを有しており、該ライトバルブにおいて2次元配列された複数画素により光を変調し、該変調した光を投射するプロジェクション装置であって、

第1の光源と、

第2の光源と、

前記第1の光源からの光もしくは前記第2の光源からの 光を前記ライトバルブに導くミラーと、

該ミラーと前記第1の光源及び前記第2の光源との相対 位置を変更する可動機構とを有することを特徴とするプロジェクション装置。

【請求項2】 ライトバルブを有しており、該ライトバルブにおいて2次元配列された複数画素により光を変調し、該変調した光を投射するプロジェクション装置であって、

第1の光源と、

第2の光源と、

前記第1の光源からの光もしくは前記第2の光源からの光を前記ライトバルブに導くミラーと、

該ミラーの位置を変更させることにより前記第1の光源からの光を前記ライトバルブに照射するのかもしくは前記第2の光源からの光を前記ライトバルブに照射するのかを選択することを有することを特徴とするプロジェクション装置。

【請求項3】 ライトバルブを有しており、該ライトバルブにおいて2次元配列された複数画素により光を変調し、該変調した光を投射するプロジェクション装置であって、

第1の光源と、

第2の光源と、

前記第1の光源からの光もしくは前記第2の光源からの光を前記ライトバルブに導くミラーと、

前記第1の光源と前記第2の光源の少なくとも一方の前記第1一に対する位置を変更させることにより前記第1の光源からの光を前記ライトバルブに照射するのかもしくは前記第2の光源からの光を前記ライトバルブに照射するのかを選択することを有することを特徴とするプロジェクション装置。

【請求項4】 ライトバルブを有しており、該ライトバルブにおいて2次元配列された複数画素により光を変調し、該変調した光を投射するプロジェクション装置であって、

第1の光源と、

第2の光源と、

前記第1の光源からの光と前記第2の光源からの光を集 光する反射鏡と、を有しており、

前記反射鏡の焦点近傍に前記第1の光源と前記第2の光源とを設けていることを特徴とするプロジェクション装置。

【請求項5】 前記第1の光源が前記ライトバルブを照射する光量を調整する調光手段を有する請求項4に記載のプロジェクション装置。

【請求項6】 前記第1の光源が前記ライトバルブを照射する光量を、前記第2の光源への電源投入後該第2の光源が安定点灯に至るまでの間に徐々に減光させる請求項4もしくは5に記載のプロジェクション装置。

【請求項7】 前記第1の光源が前記ライトバルブを照射する光量と前記第2の光源が前記ライトバルブを照射する光量とをあわせた光量が、一定の値に近づくように制御する制御部を有する請求項4乃至6のいずれかに記載のプロジェクション装置。

【請求項8】 前記調光手段が、前記第2の光源の発光 開始からの時間経過に伴う光量変化に基づいて決められ た補正データに応じて光量調整を行う請求項5に記載の プロジェクション装置。

【請求項9】 前記調光手段が、前記ライトバルブを照射する光の光量を検出した結果に基づいて光量調整を行う請求項5に記載のプロジェクション装置。

【請求項10】 前記第1の光源は、電源投入から安定 点灯に至るまでの時間が、前記第2の光源よりも短い請 求項1乃至4のいずれかに記載のプロジェクション装

【請求項11】 前記第1の光源からの光による前記ライトバルブの照射を制御するためのタイマーを有する請求項1乃至10のいずれかに記載のプロジェクション装置。

【請求項12】 前記第1の光源からの光による前記ライトバルブの照射を制御するための光量センサを有する請求項1乃至10のいずれかに記載のプロジェクション装置。

【請求項13】 前記第2の光源の出力光量を検出するセンサを有する請求項1乃至10のいずれかに記載のプロジェクション装置。

【請求項14】 前記第2の光源の発光を所定期間停止 させる停止手段を有する請求項1乃至13のいずれかに 記載のプロジェクション装置。

【請求項15】 前記第1の光源が、キセノン系ランプ、ハロゲン電球、タングステン型電球、蛍光ランプ、発光ダイオード、電子源型光源、のいずれかである請求項1乃至14のいずれかに記載のプロジェクション装置。

【請求項16】 前記第2の光源が、メタルハライドランプ、水銀封入型放電ランプのいずれかである請求項1 乃至15のいずれかに記載のプロジェクション装置。

【請求項17】 前記ライトバルブに照射される光をフィルタするフィルタとして、前記第1の光源により前記ライトバルブを主に照射している期間と前記第2の光源により前記ライトバルブを主に照射している期間とのいずれか一方で用いる光学フィルタを有する請求項1乃至

16のいずれかに記載のプロジェクション装置。

【請求項18】 前記第1の光源により前記ライトバルブを主に照射している期間と前記第2の光源により前記 ライトバルブを主に照射している期間とで、前記ライトバルブを駆動する映像信号に対する演算を異ならせる回路を有している請求項1乃至16のいずれかに記載のプロジェクション装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶パネルまたはマイクロミラー動揺画素パネル類の映像を拡大投写するライトバルブプロジェクション装置に関するもので、特に光源として、瞬時発光タイプの光源と、高効率、高演色の特性を持ったタイプの光源とを併せ持つプロジェクション装置に関するものである。そして、本発明は、透過型または、反射型の液晶による、或いはマイクロミラー動揺画素等を利用した、直接反射型スクリーンに投射するフロント型プロジェクタ、或いは透過型スクリーンに投影するリアプロジェクタ、或いは透過型スクリーンに投影するリアプロジェクタ、または前記いずれかを他の機器と組み合わせた装置のいずれにも適用可能である。【0002】

【従来の技術】従来からメタルハライドランプ等の光源を使用して液晶などによる、ライトバルブパネルの映像を拡大投影する装置が実用化されている。これは光源から発する光がミラー等を経由してライトバルブパネルに集光され、投写レンズを通してスクリーンに写し出されるものである。タイプとしては液晶パネル1枚の単板方式と液晶パネル3枚にダイクロイックミラー等で色分解、色合成して照明する3板方式、液晶パネルには、透

所、出言成して照明するう板力式、成語パネルには、超過型と、近年は反射型も実用化されている。また液晶を用いず、マイクロミラーを画素として半導体チップ上に、配列させ、各々の画素のミラーを動揺させ階調を制御するようにしたタイプのパネルも発売され、これらも色順次光源によるパネル1枚の単板方式と、パネル3枚にダイクロイックミラー等で色分解、色合成して照明す

【0003】また、使用される照明は、最近では明るい部屋でも大画面で投写映像が見られるように高輝度なものが要求されており、光源には、高効率、高演色なメタルハライドランプ、高圧水銀ランプ、などが主流である。

る3板方式が知られている。

【0004】図11は、従来の、3板式液晶プロジェクタの構成図の例である。図11において、1 aは放電管であるメタルハライドランプ、1 bは楕円面または放物面に形成された反射鏡、1 c はメタルハライドランプ1 aの電極、5は第1のフライアイレンズ、6 は反射ミラー、7 は第2のフライアイレンズ、8,9 はダイクロイックミラー、10,11,12はミラー、13はクロスダイクロイックプリズム、14 は投射レンズ、15 は赤色用透過型液晶パネル、16 は緑色用透過型液晶パネ

ル、17は青色用透過型液晶パネル、18は光学系遮光 ケース、100は本投射系全体を収納する外装ケースで ある。

【0005】次に図11において装置の電源スイッチを 投入すると、メタルハライドランプ1aが点灯開始す る。次に、メタルハライドランプ1aの発光光が反射鏡 1bにより比較的平行な照明光として、フライアイレン ズ5に入射する。フライアイレンズ5は、複数のレンズ を構成した構造を取り、フライアイレンズ7とコンビネ ーションで、後段の被照射面の輝度を均一化する効果を 持つ。

【0006】6は反射ミラーであって、フライアイレンズ5からの照明光の光路を90度折り曲げて、フライアイレンズ7に入射させる。ミラー6はダイクロイック膜構成の赤外線と紫外線を透過させる特性として、フライアイレンズ7への色光の赤外線と紫外線を低減させ、発熱や信頼性を改善している。フライアイレンズ7より出射した色光はダイクロイックミラー8に入射し、青色光が透過して、ミラー10にて光路を折り曲げられ、青色用透過型液晶パネル17を照明する。

【0007】一方、ダイクロイックミラー8では、青色よりも波長の長い緑色、及び赤色の光は反射され、ダイクロイックミラー9に入射する。ダイクロイックミラー9は緑光を反射する特性を持ち、緑色用透過型液晶パネル16を照明する。また、ダイクロイックミラー8では、緑色よりも波長の長い赤色光は、透過され、ミラー11及び12により光路を変えられ、赤色用透過型液晶パネル15を照明する。

【0008】以上の赤色用透過型液晶パネル15、緑色用透過型液晶パネル16、及び青色用透過型液晶パネル17には、図示しないが、それぞれ各色用の駆動信号が入力され、パネルの表示エリアに映像を表示し、前記照明光を光学的に変調する。

【0009】ここで、前記緑色用液晶パネル16の表示画像は、前記他の色用の液晶パネル15,17の表示画像とは、ダイクロイックミラー13での像の合成過程を考慮して、予め、電気的或いは、パネルの裏表逆転等により、像を上下方向(図11は上面図)に対して、逆転しておく。

【0010】赤色用透過型液晶パネル15、緑色用透過型液晶パネル16、及び青色用透過型液晶パネル17からの映像光は、それぞれクロスダイクロイックプリズム13に、図示するように予め決められた方向から入射し、合成され、カラー画像として、図示された第4面より投影レンズ14に出射され、投影レンズ14にてスクリーンに拡大投影される。また、光源として2つの光源を用いる構成が、実開平4-33034号と特開平9-127467号に開示されている。

[0011]

【発明が解決しようとする課題】本願発明は、プロジェ

クション装置において、複数の光源を用いた好適な構成 を実現することを課題とする。

[0012]

【課題を解決するための手段】例えば、液晶、またはマイクロミラー動揺画素方式のプロジェクション装置の光源に、高効率、高演色性である、メタルハライドランプ、高圧水銀ランプなどの放電型ランプを使用すると、装置の電源投入から、前記照明用のランプの光量が、所定の光量になるまで、約2~3分間以上の、時間を要する。

【0013】また、何らかの供給電源の瞬間的停止等からの回復に至っては、再点灯ができるまでに、更に多くの時間(3~5分)が要求される。この間、重要なプレゼンテーション、会議など、緊急性を要する用途において、映像を投射出来ないという、著しい不都合があった。

【0014】例えば上記の場合などにおいて、ライトバルブを照射する光源を複数設けると好適である場合がある。本願発明は光源を複数用いた場合において、ライトバルブを効率よく照射できる構成や、光源を複数用いた場合でも構成を簡便にできる構成を実現できるものである。

【0015】本願に係るプロジェクション装置の発明の 一つは以下のように構成される。ライトバルブを有して おり、該ライトバルブにおいて2次元配列された複数画 素により光を変調し、該変調した光を投射するプロジェ クション装置であって、第1の光源と、第2の光源と、 前記第1の光源からの光もしくは前記第2の光源からの 光を前記ライトバルブに導くミラーと、該ミラーと前記 第1の光源及び前記第2の光源との相対位置を変更する 可動機構とを有することを特徴とするプロジェクション 装置。この構成においては、ミラーと光源との相対位置 を変更する可動機構を有しているので、第1の光源がラ イトバルブを主に照射している状態と、第2の光源がラ イトバルブを主に照射している状態とを、ミラーと光源 との相対位置を変更することによって切り替えることが 出来る。これにより、別々に設けた光源からの出力光の 光路上にそれぞれの光源からの光の光路を一部共通化す るためのハーフミラーを設ける必要がなくなる。これに より光を効率よく用いることが可能となる。なお、ミラ ーと光源との相対位置の変更としては、ミラーの位置を 動かす構成や、光源の位置を動かす構成を好適に採用で きる。

【0016】また、本願に係るプロジェクション装置の他の発明の一つは以下のように構成される。ライトバルブを有しており、該ライトバルブにおいて2次元配列された複数画素により光を変調し、該変調した光を投射するプロジェクション装置であって、第1の光源と、第2の光源と、前記第1の光源からの光と前記第2の光源からの光を集光する反射鏡と、を有しており、前記反射鏡

の焦点近傍に前記第1の光源と前記第2の光源とを設け ていることを特徴とするプロジェクション装置。

【〇〇17】この発明においては、光源部の構造を極めて簡素化できる。なお、前記第1の光源と第2の光源の発光特性(特には電源投入後の時間経過に対する光量の変化特性)が異なるものである構成を好適に採用できる。なお、この発明において、前記第1の光源が前記ライトバルブを照射する光量を調整する調光手段を有する構成を採用できる。この調光手段としては、前記第1の光源の出力光光量を調光する制御回路を好適に用いることが出来る。前記第1の光源が前記ライトバルブを照射する光量を、前記第2の光源への電源投入後該第2の光源が安定点灯に至るまでの間に徐々に減光させる構成が好適である。

【0018】前記第1の光源が前記ライトバルブを照射する光量と前記第2の光源が前記ライトバルブを照射する光量とをあわせた光量が、一定の値に近づくように制御することにより、視覚される映像の違和感を減らすことが出来る。なお、この制御部としては具体的には、前記第1の光源の出力光光量を調光する制御回路を用いることが出来る。このような調光を実現する構成としては、前記第2の光源の発光開始からの時間経過に伴う光量変化に基づいて決められた補正データに応じて調光する構成を採用することが出来る。このときの調光は時間経過に基づいて行うことが出来る。タイマーを用いることにより時間経過に応じた調光を行うことが出来る。また、前記調光は、前記ライトバルブを照射する光の光量を検出した結果に基づいて行わう構成としても良い。

【0019】なお上記各発明は、2つの光源の特性が異なる場合に好適に採用できるものであるが、特に、前記第1の光源は、電源投入から安定点灯に至るまでの時間が、前記第2の光源よりも短いものである場合に好適に採用できる。ここで電源投入から安定点灯に至るまでの時間とは、電源投入した時点から、電源投入後十分に時間が経過した時点(定常発光している時点)での光量の90パーセントの光量が得られる時点までの時間のことを言う。なお、第1の光源における電源投入から安定点灯に至るまでの時間は、第2の光源における電源投入から安定点灯に至るまでの時間よりも15秒以上短いと特に好適である。

【0020】なお、上記各発明において、前記第1の光源からの光による前記ライトバルブの照射を制御するためのタイマーを有する構成や、前記第1の光源からの光による前記ライトバルブの照射を制御するための光量センサを有する構成を好適に採用できる。例えば第2の光源の出力光量を検出するセンサの出力値に応じて第1の光源がライトバルブを照射する光量を制御することが出来る。また、上記各発明において、前記第2の光源の発光を所定期間停止させる停止手段を有すると好適である。これにより、電力供給が停止された後、所定時間の

間第2の光源の発光を停止することが出来る。このような場合は第1の光源からの光によりライトバルブを照射するようにするとよい。なお、前記第1の光源としては、キセノン系ランプ、ハロゲン電球、タングステン型電球、蛍光ランプ、発光ダイオード、電子源型光源、のいずれかを好適に採用でき、第2の光源としては、メタルハライドランプ、水銀封入型放電ランプのいずれかを好適に採用できる。

【0021】また、上記各発明において、前記ライトバルブに照射される光をフィルタするフィルタとして、前記第1の光源により前記ライトバルブを主に照射している期間と前記第2の光源により前記ライトバルブを主に照射している期間とのいずれか一方で用いる光学フィルタを用いる構成を好適に採用できる。また、上記各発明において、前記第1の光源により前記ライトバルブを主に照射している期間と前記第2の光源により前記ライトバルブを主に照射している期間とで、前記ライトバルブを駆動する映像信号に対する演算を異ならせる回路を有している構成を好適に採用できる。上記映像信号に対する演算としては、映像のコントラストやブライトやデガンマ特性を調整する演算が挙げられる。

[0022]

【発明の実施の形態】(第1の実施例)以下の実施例では、光源と該光源からの照明を、二次元複数画素配列のライトバルブに照射して、投射レンズによりスクリーンに投射するプロジェクタを有するプロジェクション装置において、第1の瞬時点灯可能な光源と、第2の高効率、高演色な光源と、光源切り替え手段、光源点灯順序制御手段により装置の電源投入時は、点灯速度に制限のある高効率で安定点灯が可能なランプが、安定点灯した時点において、光路を後者の光源に切換えると共に、その時点で、前記点灯速度の速い光源を、停止させ、後者の光源を照明光源として、高演色、高効率に、映像を投射可能としている。

ものであって、本実施例に係るプロジェクション装置のプロジェクタ投射系内部構造を表す上面図であり、図1において、1 aは電源投入から安定発光に至るまでの時間(t=B)の比較的長い照明手段としての放電管であるメタルハライドランプ、1 bは楕円面または放物面に形成された反射鏡、1 cはメタルハライドランプ1 aの電極、2 aは電源投入から安定点灯に至るまでの時間(t=A)の短い照明手段であるハロゲンランプ、2 bは楕円面または放物面に形成された反射鏡、2 cはハロゲンランプ2 aの電極、3は移動式ミラー、4 はシャッタ、5 は第1のフライアイレンズ、6 は反射ミラー、7は第2のフライアイレンズ、8,9はダイクロイックミラー、10,11,12はミラー、13はクロスダイクロイックプリズム、14は投射レンズ、15は赤色用透

【0023】図1は、本実施例の特徴を最もよく表した

過型液晶パネル、16は緑色用透過型液晶パネル、17 は青色用透過型液晶パネルである。

【0024】また、18は光学系遮光ケース、19aはタイミングベルト、19bはタイミングベルト19aと移動式ミラー3とを連結する結合部材、19cはタイミングベルト19aとシャッタ4とを連結する結合部材、20a,20b,20cはタイミングベルト走路用プーリ、20dはギア連動型タイミングベルト走路用プーリ、20eはプーリ20dと連結連動し該プーリ20dよりも径が大きいギア、20fは前記ギア20eと噛み合う連結ギア、21は前記ギア20fと同軸で結合された駆動用電動機、100は本投射系全体を収納する外装ケースである。

【0025】図4は、本実施例の電気的な構成を示す図 である。図4において、101は赤色用信号入力端子、 102は緑色用信号入力端子、103は青色用信号入力 端子、104は信号処理回路ブロック、105はメタル ハライドランプ点灯用回路、106はハロゲンランプ点 灯用回路、107は全体の電源回路、108は本システ ムの制御を司る装置制御手段であるマイクロコンピュー タ、109は電動機駆動回路、21はタイミングベルト 19aを駆動する電動機、111, 112はタイミング ベルト19a、或いはシャッタ4、またはミラー3の位 置を検出する位置センサとしてのスイッチ、110は本 実施例に係るプロジェクション装置の電源端子を示す。 【0026】図5は、プロジェクタ起動時、及び停止時 の、内部制御フローチャートを表す図である。図6は、 プロジェクタ瞬断処理の内部フローチャートを表す図で ある。

【0027】次に、図1に示す本実施例に係る投射系におけるメタルハライドランプユニット構造を図2に示す。先ず、メタルハライドランプ1aは、楕円面または放物面を持った反射鏡1bのおおよそ焦点部分に固定され、メタルハライドランプ1aの電極1cは反射鏡1bの投射方向と逆の光軸中心位置に開けられている小さな孔を通して設けられる。

【0028】もう一方の電極は図示しないが、反射鏡1 bの外周の前記メタルハライドランプ1aの電極1cよ り比較的離れた位置にて金属線1eが貫通するようにし て、前記図14のメタルハライドランプ点灯回路105 に絶縁されたコードにより接続される。

【0029】本実施例に係るハロゲンランプユニット構造を図3に示す。ハロゲンランプ2aは、楕円面や放物面を持った反射鏡2bのおおよそ焦点部分に固定され、電極2cは前記反射鏡2bの光軸後部の比較的小さな貫通孔より、後部に引き出され、前記図14のハロゲンランプ点灯回路106に絶縁コードにより接続される。 【0030】次に、本実施例に係るプロジェクション装置の電源を投入しない状態、或いは電源を投入、また

は、親電源が投入されたスタンバイ状態からの投影モー

ドへの操作スイッチが、投入された直後(以下初期状態と呼ぶ)から、図5に示すシーケンス図に従って、順次動作を説明する。

【0031】尚、本体の光源等による発熱による温度上昇は、図示による具体的な説明は省くが、本体内部の冷却ファン等により、安全な温度に保つものとする。先ず、図5のシーケンス図に示すように、ステップS1で電源を投入、または、親電源が投入されたスタンバイ状態からの投影モードへの操作スイッチが、投入された直後において、マイクロコンピュータの初期設定がなされ(ステップS2)、前記ハロゲンランプ2aが点灯される(ステップS3)。同様に、メタルハライドランプ1aも点灯される(ステップS5)。

【0032】前記ハロゲンランプ2aとメタルハライドランプ1aの点灯直後の照度の立上り特性は以下のとおりである。ハロゲンランプ2aは点灯直後より充分な明るさ(一般的には、約300mSec.程度で、最終明るさの約90%に達する。)に到達し、その後においては、安定した発光を持続する。従って、ステップS4でハロゲンランプ2aを光源として、信号処理回路の起動、映像出画がなされる。

【0033】しかし、一方のメタルハライドランプ1a は、徐々に光量は増加するものの点灯から20秒前後す ると、ランプ内部の水銀蒸気圧が上がり始め、急激にラ ンプ電圧は上昇しだし、2~3分間経過すると、ほぼ定 格電圧に近い値になる。ランプが安定するまでの時間 は、ランプ立ち上がり途中の外部強制空冷状態、レフレ クタやランプ前面ガラスの有無などの影響で増減する。 【0034】ランプ安定までの期間、点灯回路105に てランプ電圧を観測しながら、電流制御を行わせる。従 って光の立ち上がりは、ほぼランプ電圧の挙動に連動し た関係に成るという状況にある。つまり光量が安定する には、2~3分間以上は必要である。また、図示しない が、装置の、特に前記光源等からの発熱に起因した温度 上昇を回避する為に、冷却ファン等により冷却を行う。 【0035】次に、前記初期状態において、反射ミラー 3は、ハロゲンランプ2aからの光を、フライアイレン ズ5に反射させる位置3(イ)に、配置されている。同 様にシャッタ4は、メタルハライドランプ1aからの、 光束を遮断する位置4(ハ)に配置されている。

【0036】ここで、反射ミラー3は結合部材19bにより、タイミングベルト19aに前記ミラー3の上辺(非光路部分)で、機械的に連結され、またシャッタ4もタイミングベルト19aの(ハ)の位置で結合部材19cにより、シャッタ4の上辺(非光路部分)で、機械的に連結されている。

【0037】タイミングベルト19aは、4つのプーリ20a、20b、20c、20dで、図1のように、走路が決定されている。プーリ20dは、ギア20eと、同一軸上で力学的に結合され、ギア20eは、プーリ2

0 dよりも大きく、ギア20eの外周の一点には、ギア20fが力学的に結合され、電動機21からの駆動により、プーリ20dの回転が減速され、タイミングベルト19aは、充分なトルクが得られ、タイミングベルト19aを、搬送させる構造になっている。

【0038】また、前記ミラー3及び前記シャッタ4 は、図示してないが、検出する手段により、停止位置 が、決定される。前記ミラー3及び前記シャッタ4は、 一部に突起機構を施し、或いは、タイミングベルト19 aに特定光学的のマーキングまたは突起構造を施し、フ ォトインタラプタ等により検出する、または、機構的に マイクロスイッチにより検出、或いは、電気的伝導体を 前記ミラー3及び前記シャッタ4の一部に突起機構とし て施し、或いは、タイミングベルト19aに直接構成 し、接触子によって、電気的導通により位置が検出され る。そのため磁気的にも可能である。本実施例では、図 4のブロックダイアグラムに示すように、検出スイッチ 111, 112にて検出して、マイクロコンピュータ1 08の2つの入力ポートに接続され、マイクロコンピュ ータ108のプログラミング処理により、電動機駆動回 路109により、電動機21が駆動され、前記タイミン グベルト19aの回転と方向の制御を行い、前記ミラー 3及び前記シャッタ4の位置が制御される。

【0039】従って、前記初期状態においては、ハロゲンランプ2aからの色光がミラー3aを介して、第1のフライアイレンズ5に入射され、フライアイレンズ5を通った色光は、ミラー6を介して第2のフライアイレンズ7に入射され、第2のフライアイレンズ7に入射した色光は更に、ダイクロイックミラー8に照射される。

【0040】ダイクロイックミラー8は、所定の角度では、透過光が青色の波長に設定され、青色光は、反射ミラー10に照射され、反射ミラー10において光路の角度を変えて、液晶パネル17を照明する。一方ダイクロイックミラー8においては、緑色光と赤色光は、反射され、図示したように、45度の光路を変えて、ダイクロイックミラー9に入射する。

【0041】ダイクロイックミラー9は緑光を反射し液晶パネル16を照明する。また、ダイクロイックミラー9は、赤色光を透過して、次段の反射ミラー11と12にて、光路の角度を変えて、液晶パネル15を照明する。

【0042】次に、前記液晶パネル15は、赤色用の信号処理回路により、赤色画像が表示されており、同様に、液晶パネル16は、緑色用の信号処理により、緑色画像が表示され、液晶パネル17は、青色用の信号処理回路により、青色画像が表示される。この電気的な構成は、図4のブロックダイヤグラムに示す。

【0043】図1において、ライトバルブとしての液晶パネル15、16、17は、近年では、0.9インチから1.8インチ程度の透過型ポリシリコンのTFTアク

ティブマトリクス液晶パネルなどが主流に、搭載されるようになった。

【0044】前記液晶パネル15,16,17より出射される、それぞれの青色、緑色、赤色光の像は、それぞれの角度から、クロスダイクロイックプリズム13にて、合成され、投射レンズ14によりカラー画像がスクリーンに拡大投射される。ここにおける各液晶パネル15,16,17の表示画像の向きに関しては、本明細書に記載の従来例と同様である。

【0045】次に、前記メタルハライドランプ1aが電源投入時より、図5のステップS5で点灯開始されてから、徐々に光量が増加し約2~3分間程度の立上り時間を経て、ほぼ安定光量の発光状態に近づいた時点において、ステップS6でメタルハライドランプ1aからの光量が充分であるか判断される。充分と判断されると、ステップS7でシャッタ4及びミラー3がメタルハライドランプモードの位置に移動する。即ち、前記電動機21を駆動させ、機構的伝達系のプーリ20f,20e,20dを介して、タイミングベルト19aを矢印aの方向に搬送させる。その結果、反射ミラー3は、位置(ロ)まで移動する。

【0046】一方、同じタイミングベルト19aに、結合されている、シャッタ4も同様の回転方向に沿って、位置(二)まで移動する。前記タイミングベルト19aもしくはシャッタ4、反射ミラー3、回転機構20(20a~20f)には、図示してないが、前述したように位置検出センサが連動しており、図4に示すマイクロコンピュータ108に、フィードバックされ、マイクロコンピュータ108のプログラミング処理により、電動機駆動回路109から、電動機21が駆動され、前記タイミングベルト19aの回転と方向の制御を行い、前記タイミングベルト19aの回転と方向の制御を行い、前記シー3及び前記シャッタ4の位置が制御され、所定の場所に停止する。そして、ステップS8でシャッタ4及びミラー3の移動が完了したか判断する。かくして、放電管であるメタルハライドランプ1aからの発光光が、反射ミラー3を介して、フライアイレンズ5に入射する。

【0047】フライアイレンズ5より後段の光路は、前記の説明の通りで、投射レンズ14により、スクリーンに投射される。同時に前記ハロゲンランプ2からの、色光は、シャッタ4により、遮光されると同時に、任意の安全時間をおいて間もなく、光源制御回路106により、遮断消灯され(ステップS9)、それ以降の投射は、光源であるメタルハライドランプ1 aにて、行われ、効率の良い、演色性に優れた、安定した、映像の投射が可能となる。

【0048】図5において、装置を停止させる動作は、停止スイッチ制御(ステップS10)、メタルハライドランプ1aの停止(ステップS11)、信号処理回路104の停止(ステップS12)、シャッタ4及びミラー3の初期位置への復帰(ステップS13)、ファンの冷

却終了(ステップS14)、スタンバイランプ停止(ス テップS15)、マイクロコンピュータ108のウオー ミングアップ(ステップS16)の順序にて行われる。 【0049】次に、上記光源であるハロゲンランプ2a から、光源であるメタルハライドランプ1 aに切り替わ った後の、効率の良い、演色性に優れた、安定した投射 状態において、万が一、瞬間的な電源の停止が発生した 場合は、図6のシーケンス図に示すように、ステップS 21で瞬間的停電を検出し、ステップS22で電源再投 入処理を行い、電源が復帰した時点において、図示しな いが、冷却ファンを、回転させ、内部を所定の温度に保 つと共に、図5に示したのと同様に、ステップS1の電 源投入/スタート制御及びステップS2のマイクロコン ピュータ初期設定を経て、ステップS23において、電 動機21は、シャッタ4及び反射ミラー3をそれぞれ前 記位置(イ)、(ハ)に、復帰させるように、回転させ て、動力伝達系の連結ギア20f、大きいギア20e、 及びプーリ20dを介して、タイミングベルト19aを 搬送させる。

【0050】また、ハロゲンランプ2aを、瞬時に点灯させる(ステップS3)。ハロゲンランプ2aの色光が、フライアイレンズ5に照射され映像が、スクリーンに投影される(ステップS4)。

【0051】メタルハライドランプ1aは、メタルハライドランプ再点灯処理され、ステップS24でメタルハライドランプ再投入と判断されると、ステップS25でタイマにより定められた再点灯禁止時間の間、メタルハライドランプ1aの点灯を停止する。ステップS25のタイマの再点灯禁止時間は、メタルハライドランプの信頼性の補償に基づく時間であり、一般的には、2~数分間程度である。

【0052】以上の動作により、本実施例に係るプロジェクション装置の、電源の瞬間的停止に対して、電源が、再供給された時点で、前記メタルハライドランプ1 aの再点灯禁止時間に、拘束されることなく、投射が即座に可能となるものである。

【0053】メタルハライドランプ1 aの再点灯禁止時間を経過した時点で、前記メタルハライドランプ1 aを、再点灯し(ステップS5)、メタルハライドランプ1 aの光量が所定の光量になったか判断し(ステップS6)、所定の光量になった時点で、前記初期の点灯からのシーケンス同様、ステップS7で電動機21を起動させ、動力伝達系の連結ギア20f、大きいギア20e、プーリ20d、を介して、タイミングベルト19aを搬送させ、シャッタ4を(ハ)の位置に移動させると同時に、ミラー6を(二)の位置に移動させ、ステップS8で移動完了を確認したら、ステップS9で安定した、メタルハライドランプ1 aからの色光を、フライアイレンズ5を介して照明光とし、演色性が高く、高効率な投影が回復できるものである。

【0054】以上の実施例において、点灯開始より安定 点灯に至る時間が長いランプとしては、メタルハライド ランプ 1 a に示した放電管はメタルハライドランプの他 に、高圧水銀ランプなど水銀系ガスを封入したランプが ある。

【0055】また、点灯より直ちに安定光量が得られる 光源としては、ハロゲンランプ2aのほかに、タングス テン電球等の白熱型電球や、キセノンガスを封入したキ セノン放電発光管、蛍光ランプ、発光ダイオード、蛍光 表示管、電子源型光源なども使用出来ることはもちろん である。

【0056】また、シャッタ4は、省いて、ミラー3において反射されず直進した色光を、光学系遮光ケース18等に直接当てても良い。この場合、光学系遮光ケース18は、黒色等の光が反射し難い表面処理にするのがよい。また、光学系遮光ケース18が光線により加熱されて温度が上昇することに対しては、放熱を考慮すればよい。

【0057】また、上記のミラー4を移動して、前記2種類の光源を切り替える以外に、前記ミラー4以降の光路を固定として、前記ハロゲンランプ2aと、メタルハライドランプ1aとを、移動させても同様の効果は得られる。

【0058】以上説明したように、光源であるメタルハライドランプ1a等の放電管の点灯時の光量が安定するまでの期間、ハロゲンランプ2aを光源とする構造とすることにより、本体の電源投入、或いは待機状態からのスタート操作から直ちに、映像の投射が可能となるものである。また、瞬間的電源停止に対しても速やかに、投影状態に回復出来るものである。

【0059】(第2の実施例)前記第1の実施例においては光源をミラーとシャッタにより切り替えたが、本発明の第2の実施例に係るプロジェクション装置は、図8及び図4に示す構造において、放電管であるメタルハライドランプ1aと、ハロゲンランプ2aは、隣合わせで配置され、共通の楕円面または放物面を持った反射鏡1dのおおよそ焦点部分に固定され、各々の電極1cと2cは、それぞれ、前記反射鏡1dを貫通して取り出され、図4のブロックダイアグラムに示す点灯回路105と106に接続される。

【0060】前記共通の反射鏡1 dに取り付けられたメタルハライドランプ1 aと、ハロゲンランプ2 a及び各々の端子を、以下において複合ランプユニット201と呼ぶ。複合ランプユニット201の外観図を図7に示す。

【0061】以下、第2の実施例におけるプロジェクション装置の要部構造図を、図8に示し、その動作を説明する。図8において、複合ランプユニット201は、前記反射ミラー3を介して、フライアイレンズ5に入射される構造を取り、以降の光路は前記第1の実施例の場合

と同じである。

【0062】次に、図9に示す、シーケンスに従って、電源投入からの本実施例に係るプロジェクション装置の動作を説明する。先ず、ステップS1で電源を投入、または、親電源が投入されたスタンバイ状態からの投影モードへの操作スイッチが、投入された直後において、ステップS2のマイクロコンピュータ初期設定を経て、ステップS3で前記ハロゲンランプ2aが点灯される。同様に、メタルハライドランプ1aも点灯される。

【0063】前記2つのランプの点灯直後の照度の立上り特性は、前述したように、ハロゲンランプ2aは点灯直後より充分な明るさ(一般的には、約300mSec.程度で、最終明るさの約90%に達する。)に到達し、その後においては、安定した発光を持続する。従って、ステップS4で信号処理回路が起動し映像が出画される。

【0064】一方、メタルハライドランプ1 aは、前述したように緩やかに光量が増加し、2~3分間程度で最終的な明るさに到達する(ステップS5)。ステップS6でメタルハライドランプ1 aの光量が充分であるとの判断がされると、ステップS9でハロゲンランプ2 aが停止消灯される。一方、メタルハライドランプ1 aは、前述したように、緩やかに光量が増加し、2~3分間程度で最終的な明るさに到達する。

【0065】反射鏡1 dにおいては、双方の色光をまとめて集光して、フライアイレンズ5に入射させ、以降は第1の実施例と同様に、映像が投映されるものであり、メタルハライドランプ1 aにおいて徐々に、その発光光量が増加してくるのに対応して、前記ハロゲンランプ点灯用回路106において、時間と共に、ハロゲンランプ2aの点灯光量を、減衰させて、常に照明光の光量を一定になるように、制御するものである。

【0066】この場合、前記ハロゲンランプ点灯用回路 106は、図4に示す前記マイクロコンピュータ108 において、予め、メタルハライドランプ1 aの光量増加 を補正するデータにより、前記ハロゲンランプ点灯用回路106を制御しハロゲンランプ2 aの光量を徐々に減衰させる構造とした。具体的にはハロゲンランプ点灯用 回路106において、チョッパ制御を行うと電力ロスは 少ない。

【0067】また、前記マイクロコンピュータ108よりのハロゲンランプ点灯用回路106の制御は、デジタル信号パラレル制御や、デジタル信号シリアル制御、またはマイクロコンピュータ108にD/Aコンバータや、パルス幅変調(PWM)出力のポートを持たせ、アナログ的電圧制御でも良い。この場合ハロゲンランプ点灯用回路106においては、前記マイクロコンピュータ108よりの制御データを例えばパルス幅に変換し、チョッパ時間を制御して出力電圧を制御するものである。【0068】図9の停止時フローにおいて、停止動作

は、停止スイッチ制御(ステップS10)、メタルハライドランプ1a停止(ステップS11)、信号処理回路104停止(ステップS12)、ファン冷却終了(ステップS14)、メイン電源停止(ステップS17)の順序にて行われる。

【0069】(第3の実施例)また、上記第2の実施例において、図8に示すように、光路の途中に光量センサを配して、マイクロコンピュータにより、光量が一定になるように、前記ハロゲンランプ点灯用回路106を制御することにより、更に光量は安定する。

【0070】図8に示す液晶パネル16のイメージエリア下辺に接近した位置に、光量センサ200を、配置して、ノイズ等の外乱に対応して積分化等のしかるべき信号処理を施し、マイクロコンピュータ108にフィードバックして、例えば内部に具備されたA/Dコンバータにより、量子化デジタル化を施し、図10に示すシーケンス処理等により前記ハロゲンランプ点灯用回路106を制御する。

【0071】図10において、電源投入時フローのステップS1~ステップS5は図9の場合と同じであり、その後ステップS31の光量センサレベル検出がなされて、ステップS32で光量値>規定値Aが成立するか判断され、これが成立すると、ステップS33でハロゲンランプ制御電圧1ステップ降下、ステップS34でハロゲンランプ駆動電圧<規定電圧Bならば、ステップS9でハロゲンランプ停止となり、動作が終了する。この場合、光量センサは、フォトトランジスタ、フォトダイオード、太陽電池、Cdsセンサ等が、実用的である。

【0072】また、この場合、ハロゲンランプは、電圧により調光可能であるが、定格値の約50%以下においては、ハロゲンランプの劣化につながる為、それ以下の、駆動電圧においては、ハロゲンランプ2aの点灯を停止させる必要はある。

【0073】また、他の前記点灯立上りの早い光源の中に在っても同様に、調光範囲を考慮する必要はある。

【0074】また、前記第1の実施例においても、前記第1の実施例が、メタルハライドランプの点灯開始からの時間をマイクロコンピュータ等の手段により、計数して得て、点灯時間により前記ランプの切り替えを行っているのに対して、同様の光量センサにより、規定の明るさを検出した時点において、前記ランプの切り替えを行うことにより、更に精度は向上する。この場合前記光量センサは図示してないが、メタルハライドランプの光路の一部に設置することが望ましい。

【0075】(第4の実施例)前記の第1の実施例、第2の実施例及び第3の実施例等において、第1の光源としての放電管であるメタルハライドランプ1aと第2の光源であるハロゲンランプ2aとを、切り替えることにより、特に、ハロゲンランプ2aは、前記メタルハライドランプ1aに比較して、一般的には、色温度が低い。

【0076】従って、本実施例に係るプロジェクション 装置は、ハロゲンランプ2aと光路切り替え手段との間 に、色温度を改善すべく、トリミングフィルタを挿入す ることにより、色温度の変動を改善するものである。

【0077】(第5の実施例)また、上述のように光学的に色温度を改善するほかに、光源の切り替え制御と連動して、信号処理回路の、赤、青、緑の3色の信号のレベル及びセットアップ(ブライトネス)及びデガンマ補正のバランスを変える手段により、色温度の変動が、改善できる。

【0078】図4に示す回路ブロックダイアグラムの、信号処理回路104において、前記光源の切り替え制御と連動して、信号処理回路104の、赤、青、緑の3色の信号のレベル及びセットアップ(ブライトネス)及びデガンマ補正の値のバランスを、図示してないがマイクロコンピュータ108により、光源切り替え制御に連動した色温度切り替え信号により、制御することにより、前記光源切り替えにおいて、色温度の極端な変動を回避できる。

【0079】以上の各実施例に係るプロジェクション装置は、瞬時投影できるように、2種類の光源を用いて電源投入時から即座に、実用的な明るい映像を投射でき、更に、立上り後、段階的に高効率、高演色性の投射画像が得られる。また、電源の瞬間的な切断においても、即座に投影状態に回復が可能となる。

【発明の効果】本発明によれば、複数光源を用いた好適 なプロジェクション装置を実現できる。

【図面の簡単な説明】

【図1】 本発明の第1の実施例に係る液晶プロジェクション装置におけるプロジェクタの光学レイアウトの平面図である。

【図2】 本発明の実施例に係るメタルハライドランプ ユニットの構造図である。

【図3】 本発明の実施例に係るハロゲンランプユニットの構造図である。

【図4】 本発明の実施例に係る回路ブロックダイアグラムである。

【図5】 本発明の第1の実施例に係るランプ点灯制御 フローチャートである。

【図6】 本発明の第1の実施例に係るランプ再点灯処理制御フローチャートである。

【図7】 本発明の第1の実施例に係る複合ランプユニットの構造を示し、(A)は側面図、(B)は正面図である

【図8】 本発明の第2の実施例に係る液晶プロジェク_ション装置におけるプロジェクタの光学レイアウトの平面図である。

【図9】 本発明の第2の実施例及び第3の実施例に係るプロジェクション装置の動作説明のためのフローチャート図である。

【図10】 本発明の第2の実施例及び第3の実施例に 係るプロジェクション装置の動作説明のためのフローチャート図である。

【図11】 従来のプロジェクション装置の例を示す構成図である。

【符号の説明】

1 a: 放電管であるメタルハライドランプ、1 b: 楕円面または放物面に形成された反射鏡、1 c: メタルハライドランプ1 aの電極、1 d: 反射鏡、2 a: ハロゲンランプ、2 b: 楕円面または放物面に形成された反射鏡、2 c: ハロゲンランプ2 aの電極、3: 移動式ミラー、4:シャッタ、5: 第1のフライアイレンズ、6: 反射ミラー、7: 第2のフライアイレンズ、8, 9: ダイクロイックミラー、10, 11, 12: ミラー、13: クロスダイクロイックプリズム、14: 投射レンズ、15: 赤色用透過型液晶パネル、16: 緑色用透過型液晶パネル、17: 青色用透過型液晶パネル、18: 光学系遮光ケース、19a: タイミングベルト、19

b:タイミングベルトと移動式ミラー3を連結する結合 部材、19c:タイミングベルトとシャッタ4を連結す る結合部材、20a, 20b, 20c:タイミングベル ト走路用プーリ、20 d:ギア連動型タイミングベルト 走路用プーリ、20e:プーリ20dと連結連動しプー リ20 dよりも径が大きいギア、20 f:前記ギア20 eと噛み合う連結ギア、21:前記ギア20fと同軸で 結合された駆動電電動機、100:本投射系全体を収納 する外装ケース、101:赤色用信号入力端子、10 2:緑色用信号入力端子、103:青色用信号入力端 子、104:信号処理回路ブロック、105:メタルハ ライドランプ点灯用回路、106:ハロゲンランプ点灯 用回路、107:全体の電源回路、108:本システム の制御を司るマイクロコンピュータ、109:タイミン グベルトを駆動する電動機駆動回路、110:本装置の 電源端子、111,112:タイミングベルト或いはシ ャッタまたはミラーの位置を検出する位置センサとして のスイッチ、200:光量センサ。

[図1] [図2]

【図3】 【図7】

【図4】

【図10】

【図8】

【図9】

【図11】

フロントページの続き

(72)発明者 門田 茂宏

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 繁田 和之

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 廣部 俊典

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

Fターム(参考) 2H088 EA15 HA13 HA18 HA20 HA21

HA23 HA24 HA28 MA06 MA09

MA10

2H091 FA05Z FA14Z FA21X FA26Z

FA34Y FA41Z LA15 LA17

MA07