LES CLASSIQUES DE LA SOMMABILITÉ

On pose pour tout réel
$$x \in]1, +\infty[, \zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{p^x}$$

Problème 1: Calcul de la somme
$$\sum_{n=2}^{+\infty} (\zeta(n) - 1)$$

Dans cette partie, z un nombre complexe tel que |z| < 2 et $(u_{n,p})$ est une famille de nombres complexes définie pour n et p entiers naturels, $n \ge 2$, $p \ge 2$ par $u_{n,p} = \frac{z^n}{p^n}$.

L'objectif de cette partie est de calculer la somme $\sum_{n=2}^{+\infty} (\zeta(n) - 1)$

- 1. (a) Justifier que, pour tout $p \ge 2$, la série $\sum_{n \ge 2} u_{n,p}$ est absolument convergente et calculer $S_p = \sum_{n=2}^{+\infty} \left| \frac{z^n}{p^n} \right|$
 - (b) En déduire que la famille $(u_{n,p})_{n\geq 2, p\geq 2}$ de nombres complexes est sommable.
- 2. (a) Démontrer que $\sum_{p=2}^{+\infty} \frac{z^2}{p(p-z)} = \sum_{n=2}^{+\infty} \left(\zeta(n) 1\right) z^n$
 - (b) En déduire la valeur de la somme $\sum_{n=2}^{+\infty} (\zeta(n) 1)$

Problème 2: Calcul de la somme $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \zeta(n)$

On rappelle que $\forall x \in]-1,1], \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n = \ln(1+x).$

Dans ce problème on calcule la valeur de la somme $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \zeta(n)$.

On définit la suite $(x_n)_{n\in\mathbb{N}}$ par $x_0=0$ et $\forall n\in\mathbb{N}^*, x_n=\left(\sum_{k=1}^n\frac{1}{k}\right)-\ln(n)$.

- 1. (a) Montrer que $x_{n-1} x_n \sim \frac{1}{2n^2}$
 - (b) En déduire que $(x_n)_{n\geqslant 0}$ converge vers un réel γ
- 2. Montrer que $\sum_{n\geqslant 1} \left(\frac{1}{n} \ln\left(1 + \frac{1}{n}\right)\right)$ converge et que $\sum_{n=1}^{+\infty} \left(\frac{1}{n} \ln\left(1 + \frac{1}{n}\right)\right) = \gamma$.
- 3. On considère la suite double $\left(\frac{(-1)^k}{kn^k}\right)_{\substack{n\geq 2\\k\geq 2}}$
 - (a) Justifier que, pour tout $n \ge 2$, la série $\sum_{k\ge 2} \frac{(-1)^k}{kn^k}$ est absolument convergente;
 - (b) Vérifier que $S_n = \sum_{k=2}^{+\infty} \frac{1}{kn^k} = \mathcal{O}\left(\frac{1}{n^2}\right)$
 - (c) En déduire que la famille $\left(\frac{(-1)^k}{kn^k}\right)_{\substack{n\geqslant 2\\k>2}}$ est sommable. .

LES CLASSIQUES DE LA SOMMABILITÉ

4. Montrer que $\sum_{k=2}^{+\infty} \frac{(-1)^k}{k} \zeta(k) = \gamma.$

Dans cette partie on se propose de calculer les trois sommes

$$A = \sum_{(p,q) \in \mathbb{N}^{\star 2}} \frac{1}{p^2 q^2}, B = \sum_{\substack{(p,q) \in \mathbb{N}^{\star 2} \\ p \mid q}} \frac{1}{p^2 q^2} \text{ et } C = \sum_{\substack{(p,q) \in (\mathbb{N}^{\star}) \\ p \mid q = 1}} \frac{1}{p^2 q^2}.$$

On considère la suite double $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in\mathbb{N}^{*2}}$ et les ensembles

$$I = \{ (p, q) \in \mathbb{N}^{*2} \mid p \text{ divise } q \}$$

et

$$\forall n \in \mathbb{N}^*, \quad J_n = \{(p,q) \in \mathbb{N}^{*2} \mid p \land q = n\} \text{ et } I_n = \{(p,np) \mid p \in \mathbb{N}^*\}$$

- 1. Montrer que $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in\mathbb{N}^{*2}}$ est sommable et calculer $A=\sum_{(p,q)\in\mathbb{N}^{*2}}\frac{1}{p^2\,q^2}$
- 2. (a) Justifier que la famille $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in I}$ est sommable;
 - (b) Montrer que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de I;
 - (c) Par le théorème de la sommation par paquets calculer $\sum_{\substack{(p,q)\in\mathbb{N}^{\star 2}\\p|q}} \frac{1}{p^2 q^2}$.
- $3. \quad \text{(a) V\'erifier que: } \forall n \in \mathbb{N}^*, \quad \sum_{(p,q) \in J_n} \frac{1}{p^2 q^2} = \frac{1}{n^4} \sum_{(p,q) \in J_1} \frac{1}{p^2 q^2};$
 - (b) Montrer que $(J_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2} ;
 - (c) Déduire la valeur de la somme $C=\sum_{\stackrel{(p,q)\in\mathbb{N}^{\star 2}}{p\wedge q=1}}\frac{1}{p^2\,q^2}$

Problème 4: Sommabilité de la famille
$$\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$$

Soit a et b deux réels strictement positifs.

On propose d'étudier la sommabilité de la famille $\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$.

- 1. On suppose, dans cette question, que la famille $\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$ est sommable
 - (a) Donner un équivalent de $\frac{1}{a^n+b^m}$ lorsque n tend vers $+\infty$, puis de $\frac{1}{a^n+b^m}$ lorque $m\to +\infty$ (discuter selon les valeurs de a et b).
 - (b) En déduire que a > 1 et b > 1 .
- 2. On suppose que a>1 et b>1. On pose $\alpha=\frac{1}{\sqrt{a}}$ et $\beta=\frac{1}{\sqrt{b}}$

LES CLASSIQUES DE LA SOMMABILITÉ

- (a) Montrer majoration de $\frac{1}{a^n+b^m}\leqslant \frac{1}{2}\alpha^n.\beta^m$
- (b) Etudier la sommabilité de $(\alpha^n \beta^m)$ puis conclure .

Problème 5: Étude d'une sommabilité

On considère la suite double $(u_{p,q})_{(p,q)\in\mathbb{N}^{*2}}$, définie par: $u_{p,q}=\frac{1}{p^{\alpha}+q^{\beta}}$

1. Montrer que si $\alpha \leqslant 1$ ou $\beta \leqslant 1$, alors $(u_{p,q})_{(p,q) \in \mathbb{N}^{*2}}$ n'est pas sommable.

On suppose dans ce qui suit que $\alpha > 1$ et $\beta > 1$

- 2. Soit $p \ge 1$ fixé. Montrer que la série $\sum_{q \ge 1} u_{p,q}$ est convergente. On note $X_p = \sum_{q=1}^{+\infty} u_{p,q}$
- 3. On considère la fonction $\varphi_p: \left\{ \begin{array}{ccc} [0,+\infty[& \longrightarrow & \mathbb{R} \\ & t & \longmapsto & \frac{1}{p^{\alpha}+t^{\beta}} \end{array} \right.$
 - (a) Justifier la convergence de l'intégrale $\int_1^{+\infty} \varphi_p(t)\,\mathrm{d}t,$ puis montrer que

$$\int_1^{+\infty} \varphi_p(t) \, \mathrm{d}t \leqslant X_p \leqslant \int_0^{+\infty} \varphi_p(t) \, \mathrm{d}t$$

(b) En déduire que:

$$\frac{1}{p^{\gamma}} \int_{p^{-\frac{\alpha}{\beta}}}^{+\infty} \varphi_1(t) \, \mathrm{d}t \leqslant X_p \leqslant \frac{1}{p^{\gamma}} \int_0^{+\infty} \varphi_1(t) \, \mathrm{d}t$$

Où γ est une constante que l'on déterminera.

- 4. Conclure que $X_p \sim \frac{C}{p^{\gamma}}$, où C est une constante à préciser
- 5. Étudier la sommabilité de la famille