Combinatorial games on multi-type Galton-Watson trees

Moumanti Podder

Indian Institute of Science Education & Research (IISER) Pune

IISc-IISER Pune Twenty-20 Symposium September 17, 2020

Where it all began

- ► Galton-Watson Games, by Alexander Holroyd and James Martin.
- ▶ They studied combinatorial games on rooted Galton-Watson trees.

Galton-Watson trees:

- ▶ Start with the root ϕ . Let it have X_0 children where $X_0 \sim \chi$.
- If $X_0 = m$ for some $m \neq 0$, then name these children v_1, \ldots, v_m . Let v_i have X_i children, where X_1, \ldots, X_m are i.i.d. χ .
- \triangleright Continue thus. The (random) rooted tree obtained is denoted \mathcal{T} .

For the purpose of the games: \mathcal{T} will be visualized as a directed graph: an edge $\{u, v\}$ between parent u and child v will be directed from u to v and denoted (u, v).

Games that Holroyd-Martin analyzed

- ightharpoonup A token placed at an *initial* vertex of \mathfrak{T} .
- ► Two players take turns to move the token along directed edges.

Three different games studied:

- 1. Normal games: The players are denoted P1 and P2. Whichever player fails to move the token first, loses.
- 2. Misère games: The players are denoted P1 and P2. Whichever player fails to move the token first, wins.
- 3. Escape games: The players are denoted *Stopper* and *Escaper*. If either player fails to move the token, Stopper wins. Else Escaper wins. **Note:** No draw is possible in this game.

My set-up: multi-type Galton-Watson trees

- ▶ Let $\sigma_v \in \{\text{blue}, \text{red}\}$ denote colour of each vertex v in \mathcal{T} .
- Each vertex v gives birth independent of all else; offspring distribution depends on σ_v only:

$$\mathbf{P}[v \text{ has } m \text{ blue and } n \text{ red children} | \sigma_v = \text{blue}] = \chi_b(m, n),$$

 $\mathbf{P}[v \text{ has } m \text{ blue and } n \text{ red children} | \sigma_v = \text{red}] = \chi_r(m, n).$

▶ Directed edge (u, v) monochromatic if $\sigma_u = \sigma_v$ and non-monochromatic if $\sigma_u \neq \sigma_v$.

My version of the games

- ▶ Players P1 (respectively Stopper) and P2 (respectively Escaper) take turns to move the token along directed edges.
- ▶ P1 / Stopper allowed to move token only along monochromatic edges.
- ▶ P2 / Escaper allowed to move token only along non-monochromatic edges.

The outcomes of the games are decided via the same rules as before:

- ▶ Normal game: Whoever fails to move the token, loses the game.
- ▶ Misére game: Whoever fails to move the token, wins the game.
- Escape game: Stopper wins if either player is unable to move the token. Else Escaper wins. Draw not possible.

Analysis of the normal game: defining subsets

- NW_{1,b} set of blue vertices v such that, if v initial vertex and P1 plays first round, P1 wins. Likewise, define NW_{1,r}.
- ▶ $NL_{1,b}$ set of blue vertices v such that, if v initial vertex and P1 plays first round, P1 loses. Likewise, define $NL_{1,r}$.
- ▶ Similarly, define $NW_{2,b}$, $NW_{2,r}$, $NL_{2,b}$ and $NL_{2,r}$.
- ▶ For $n \in \mathbb{N}$, define $\mathrm{NW}_{1,b}^{(n)} \subset \mathrm{NW}_{1,b}$ comprising v such that if v initial vertex and P1 plays first round, game lasts < n rounds. Set $\mathrm{NW}_{1,b}^{(0)} = \emptyset$.
- ▶ Likewise, define $NW_{1,r}^{(n)}$, $NL_{1,b}^{(n)}$, $NL_{1,r}^{(n)}$, $NW_{2,b}^{(n)}$, $NW_{2,r}^{(n)}$, $NL_{2,b}^{(n)}$, and $NL_{2,r}^{(n)}$.

Analysis of the normal game: defining probabilities

- ► Likewise, define $n\ell_{1,b}^{(n)}$, $n\ell_{1,r}^{(n)}$, $nw_{2,b}^{(n)}$, $nw_{2,r}^{(n)}$, $n\ell_{2,b}^{(n)}$ and $n\ell_{2,r}^{(n)}$.
- ▶ Define $\operatorname{nw}_{1,b} = \mathbf{P} \left[\phi \in \operatorname{NW}_{1,b} \middle| \sigma_{\phi} = \text{blue} \right].$
- ▶ Define $\mathbf{nw}_{1,r} = \mathbf{P} \left[\phi \in \mathrm{NW}_{1,r} \middle| \sigma_{\phi} = \mathrm{red} \right].$
- ightharpoonup Likewise, define $\mathrm{n}\ell_{1,b},\,\mathrm{n}\ell_{1,r},\,\mathrm{nw}_{2,b},\,\mathrm{nw}_{2,r},\,\mathrm{n}\ell_{2,b}$ and $\mathrm{n}\ell_{2,r}$.

Lemma: $\lim_{n\to\infty} \mathrm{nw}_{1,b}^{(n)} = \mathrm{nw}_{1,b}$. Similar results hold for the other sequences.

Probability generating functions

▶ For $x, y \in [0, 1]$, let

$$G_b(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^m y^n \chi_b(m,n).$$

▶ For $x, y \in [0, 1]$, let

$$G_r(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^m y^n \chi_r(m,n).$$

Define

$$G_b^{(1)}(x) = G_b(x, 1), \ G_b^{(2)}(x) = G_b(1, x),$$

 $G_r^{(1)}(x) = G_r(x, 1), \ G_r^{(2)}(x) = G_r(1, x).$

A glimpse of the recursions

Vertex $v \in NW_{1,b}^{(n+1)}$ if

- $ightharpoonup \sigma_v =$ blue, and
- ▶ v has at least one blue child u such that, if u is the initial vertex and P2 plays first round, P2 loses in less than n rounds, i.e. $u \in NL_{2,b}^{(n)}$.

$$\operatorname{nw}_{1,b}^{(n+1)} = \sum_{m_1=1}^{\infty} \sum_{m_2=0}^{\infty} \left\{ 1 - \left(1 - \operatorname{n}\ell_{2,b}^{(n)} \right)^{m_1} \right\} \chi_b(m_1, m_2)$$
$$= 1 - G_b^{(1)} \left(1 - \operatorname{n}\ell_{2,b}^{(n)} \right).$$

Likewise,

$$nw_{1,r}^{(n+1)} = 1 - G_r^{(2)} \left(1 - n\ell_{2,r}^{(n)} \right).$$

A glimpse of the recursions

Vertex $v \in NL_{1,h}^{(n+1)}$ if

- $ightharpoonup \sigma_v =$ blue, and
- ▶ either v has no blue child, or each blue child u of v is such that, if u is the initial vertex and P2 plays first round, P2 wins in less than n rounds, i.e. $u \in NW_{2h}^{(n)}$.

$$n\ell_{1,b}^{(n+1)} = \sum_{m_2=0}^{\infty} \chi_b(0, m_2) + \sum_{m_1=1}^{\infty} \sum_{m_2=0}^{\infty} \left(nw_{2,b}^{(n)} \right)^{m_1} \chi_b(m_1, m_2)$$
$$= G_b^{(1)} \left(nw_{2,b}^{(n)} \right).$$

Likewise,

$$n\ell_{1,r}^{(n+1)} = G_r^{(2)} \left(nw_{2,r}^{(n)} \right).$$

What the recursions lead to

• We have $\operatorname{nw}_{1,b}^{(n+4)} = H_1\left(\operatorname{nw}_{1,b}^{(n)}\right)$, where

$$H_1(x) = 1 - G_b^{(1)} \left(1 - G_b^{(2)} \left(1 - G_r^{(2)} \left(1 - G_r^{(1)}(x) \right) \right) \right).$$

Taking limit as $n \to \infty$, conclude that $nw_{1,b}$ a fixed point of H_1 .

- ▶ In fact, using monotonically increasing properties of H_1 , we can say that $nw_{1,b}$ is the minimum fixed point of H_1 in [0,1].
- We have $nw_{2,b}^{(n+4)} = H_2(nw_{2,b}^{(n)})$, where

$$H_2(x) = 1 - G_b^{(2)} \left(1 - G_r^{(2)} \left(1 - G_r^{(1)} \left(1 - G_b^{(1)}(x) \right) \right) \right).$$

Taking limit as $n \to \infty$, conclude that $nw_{2,b}$ a fixed point of H_2 .

▶ As above, $nw_{2,b}$ is the minimum fixed point of H_2 in [0,1].

A special case: bi-type binary Galton-Watson tree

- Given $\sigma_v = \text{blue}$, v has no child with probability p_0 , two blue children with probability p_{bb} , two red children with probability p_{rr} , and one red and one blue child with probability p_{br} .
- ▶ Given $\sigma_v = \text{red}$, v has no child with probability q_0 , two blue children with probability q_{bb} , two red children with probability q_{rr} , and one red and one blue child with probability q_{br} .
- Let $\operatorname{nd}_{i,b}$ denote the probability, conditioned on $\sigma_{\phi} = \operatorname{blue}$, that if ϕ is the initial vertex and $\operatorname{P}i$ plays first round, the game ends in a draw, for i=1,2. Likewise, define $\operatorname{nd}_{i,r}$ for i=1,2.

Lemma

- $ightharpoonup \operatorname{nd}_{i,b} = \operatorname{nd}_{i,r} = 1 \text{ for } i = 1, 2 \text{ if } p_{\operatorname{br}} = q_{\operatorname{br}} = 1.$
- In all other cases, $nd_{i,b} = nd_{i,r} = 0$ for i = 1, 2.

Similar conclusions hold for draw probabilities in misère games and win probabilities for Escaper in escape games.