MAT140B WINTER 2024: PROBLEM SET 2

Due: S 28/01/2024, by 11:59pm

Directions: You can collaborate, but must write up the solutions independently and in a good handwriting. Consulting solutions to problem sets of previous semesters or internet solutions is not allowed.

Problem 1. Assume that f is a continuous function on [0,1]. Assume that f' is also continuous on [0,1]. Prove that there exists an $M \ge 0$ so that

$$|f(x) - f(y)| \le M|x - y|$$

for all $x, y \in [0, 1]$.

Problem 2. Let f be a continuous function on [0,1]. Assume that f' is also continuous on [0,1]. Define $M = \{y \in \mathbb{R} : y = f(x) \text{ and } f'(x) = 0\}$. In other words, $M = f(\{x \in [0,1] : f'(x) = 0\})$. Prove that M cannot contain an interval. Show by an example that M may contain infinitely many points.

Hint: for the proof, you could use that f' is actually uniformly continuous on [0,1] since [0,1] is compact and think about the image under f of a small ball around a critical point.

Problem 3. Directly compute

$$\int_0^1 x^2 dx$$

using Riemann sums.

Problem 4. Chapter 5: 8, 11, 14, 15, 25