Dr. Andrey Soldatenkov

Exercises, Algebraic Geometry II – Week 4

Exercise 15. (3 points) Regular and smooth.

Determine whether the following curves are smooth over k.

- 1. $V(x_0^n + x_1^n + x_2^n) \subset \mathbb{P}_k^2$.
- 2. $V(x_1^2 + f(x_2)) \subset \mathbb{A}_k^2$, assuming char $(k) \neq 2$.
- 3. $V(ax_0^2 + bx_1^2 + cx_2^2) \subset \mathbb{P}_k^2$, assuming $\operatorname{char}(k) \neq 2$.

Exercise 16. (2 points) Tangent spaces under base change.

Let X be a scheme of finite type over a field k. Consider a closed point $x \in X$ and a \bar{k} -rational point $y \in Y = X_{\bar{k}}$ over x. Show that there exists a natural map between their maximal ideals $\mathfrak{m}_x \to \mathfrak{m}_y$ and an induced \bar{k} -linear map

$$T_{Y,y} \to T_{X,x} \otimes_{k(x)} \bar{k}$$
.

Is this map always an isomorphism?

Exercise 17. (6 extra points) Normal bundles of rational curves.

Show, as a warm-up, that the restriction of $T_{\mathbb{P}^n_k}$ to any line $\mathbb{P}^1_k \subset \mathbb{P}^n_k$ is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus n-1}$.

Now, consider a closed immersion $\mathbb{P}^1_k \hookrightarrow \mathbb{P}^3_k$ defined by sections $s_0, \ldots, s_3 \in H^0(\mathbb{P}^1_k, \mathcal{O}(n))$.

- 1. We know that locally free sheaves on \mathbb{P}^1_k are always isomorphic to sums of invertible sheaves. So, $\mathcal{N}_{\mathbb{P}^1_k/\mathbb{P}^3_k} \cong \mathcal{O}(a) \oplus \mathcal{O}(b)$. Show that a+b=4n-2.
- 2. Show that the Euler sequence on \mathbb{P}^1_k and the restriction of the Euler sequence on \mathbb{P}^3_k fit into a commutative diagram

$$0 \longrightarrow \Omega_{\mathbb{P}^3_k}|_{\mathbb{P}^1_k} \longrightarrow \mathcal{O}(-1)^4|_{\mathbb{P}^1_k} \longrightarrow \mathcal{O} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow \Omega_{\mathbb{P}^1_k} \longrightarrow \mathcal{O}(-1)^2 \longrightarrow \mathcal{O} \longrightarrow 0.$$

Here, the first vertical arrow is the canonical map and the second is given by the Jacobi matrix $\left(\frac{\partial s_i}{\partial x_j}\right)$, $i=0,\ldots,3,\ j=0,1,$ (using $\mathcal{O}(1)|_{\mathbb{P}^1_k}\cong\mathcal{O}(n)$).

3. Let now n=3. In this case the image of \mathbb{P}^1_k in \mathbb{P}^3_k is the rational normal curve. Compute a and b in this case. (With a little more work one can show that $0 \le \rho \le n-1$ where $\rho = |a-b|/2$ for any n, see the article by Ghione, Sacchiero Manuscripta Math. 33 (1980/81).)

Please turn over

Exercise 18. (3 points) Varieties without smooth points.

Construct a variety X over k without any smooth closed point and with $H^0(X, \mathcal{O}_X) \cong k$.

Exercise 19. (6 points) Complete intersection.

Let X be a smooth variety over a field k. A closed subscheme $Y \subset X$ is a complete intersection if it is the (scheme theoretic) intersection $H_1 \cap \ldots \cap H_c$ of c hyperfourfaces $H_i \subset X$ with $c = \dim(X) - \dim(Y)$.

- 1. Show that the normal bundle $\mathcal{N}_{Y/X}$ of a complete intersection Y (which by definition is $\mathcal{H}om(\mathcal{I}_Y/\mathcal{I}_Y^2, \mathcal{O}_Y)$) is isomorphic to $(\mathcal{O}(H_1) \oplus \ldots \oplus \mathcal{O}(H_c))|_Y$.
- 2. Let $X = \mathbb{P}^n_k$ and $Y = H_1 \cap \ldots \cap H_c$ be a smooth complete interesection with $H_i \subset \mathbb{P}^n_k$ hypersurfaces of degree d_i . Show that $\omega_{Y/k} \cong \mathcal{O}(\sum d_i n 1)$. (You may for simplicity assume that the H_i themselves are also smooth.)
- 3. Determine all (d_1, \ldots, d_{n-2}) for which there exists a smooth complete intersection $Y := H_1 \cap \ldots \cap H_{d_{n-2}} \subset \mathbb{P}^n_k$ with trivial canonical bundle. Can you compute $H^1(Y, \mathcal{O}_Y)$ in these cases?

Exercise 20. (4 points) Isomorphism type of hypersurfaces. Let $Y_1, Y_2 \subset \mathbb{P}^n_k$ be smooth hypersurfaces of degrees $d_1 \neq d_2$.

- 1. Show that Y_1 and Y_2 are not isomorphic under additional assumption that $d_1 \ge n + 1$ and $d_2 < n + 1$;
- 2. Show that they are not isomorphic when $d_1 \neq d_2$ in general.