2018 ~ 2019 学年第一学期

《复变函数与积分变换》课程考试试卷(A卷)(闭卷)

院(系)	专业班级	学号	姓名	
考试日期: 201	18年12月2日		老试时间· 8:30 ~ 11	.00

一、单项选择题 (每数2分,共24分).

1. 复数 3 - 2*i* 的主辐角为: ()

A.
$$\arctan \frac{3}{2} + \pi$$
, B. $\arctan \frac{2}{3} + \pi$, C. $\arctan \frac{2}{3}$, D. $\arctan \frac{3}{2}$.

B.
$$-\arctan\frac{2}{3} + \pi$$

C. -
$$\arctan \frac{2}{3}$$
,

D. –
$$\arctan \frac{3}{2}$$
.

2. $\left(\frac{1+\sqrt{3}i}{1-\sqrt{2}i}\right)^{10}$ 的值为: (

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, B. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, C. $\frac{1}{2} - \frac{\sqrt{3}}{2}i$, D. $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

C.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

3. 在复平面上,下列哪个方程不能表示以 z_0 为圆心,以r(>0)为半径的圆周? ()

A.
$$|z - z_0| = r$$
,

B.
$$|z|^2 - z_0 \overline{z} - \overline{z_0} z + |z_0|^2 - r^2 = 0$$
,

C.
$$(z-z_0)^2=r^2$$
,

D.
$$z = z_0 + re^{-i\theta} (0 \le \theta \le 2\pi)$$
.

4. 若复变函数 f(z) = v + ui 在区域 D 内解析,则在区域 D 内下列说法一定正确的是: (

 $A. u \in v$ 的共轭调和函数,

B. $v \in u$ 的共轭调和函数,

C.-u 是 v 的共轭调和函数, D.u 是 -v 的共轭调和函数.

5. 若曲线 C为 $z=t-t^2i$, $0 \le t \le 1$,则积分 $\int_C (z-1)dz$ 的值为: ()

$$C.1+i$$

B. -1, C.1+
$$i$$
, D.1- i .

6. 积分 $\oint_{|z|=1} (\frac{z}{z} + \frac{\overline{z}}{z}) dz$ 的值为: ()

A.
$$2\pi i$$

$$B.4\pi i$$

A.
$$2\pi i$$
, B. $4\pi i$, C. 0, D. $-2\pi i$.

7. 若幂级数 $\sum_{n=0}^{+\infty} a_n (z-1)^n$ 在点 z=3 收敛,则该级数一定收敛的点为: ()

A.
$$-2 + \sqrt{3}i$$
, B. $2 + \sqrt{3}i$, C. $-1 + \sqrt{3}i$, D. $1 + \sqrt{3}i$.

B.2 +
$$\sqrt{3}i$$

C.
$$-1 + \sqrt{3}i$$

D. 1 +
$$\sqrt{3}i$$
.

8. 函数 $f(z) = \frac{1}{z} + 1 + 2z$ 在无穷远点的留数为: ()

A.
$$-1$$
, B.1, C. -2 , D.2.

9. z = 0 是函数 $f(z) = \frac{1}{\cos^{\frac{1}{2}}}$ 的 ().

- A. 可去奇点, B. 本性奇点, C. 极点, D. 非孤立奇点.

10. 级数 $\sum_{n=0}^{+\infty} \left(\frac{2^n}{z^{n+1}} + \frac{z^n}{3^{n+1}} \right)$ 的收敛环域为: ()

A.
$$\frac{1}{2} < |z| < 3$$
,

C.
$$\frac{1}{2} < |z| < 2$$

A.
$$\frac{1}{2} < |z| < 3$$
, B. $2 < |z| < 3$, C. $\frac{1}{3} < |z| < 2$, D. $\frac{1}{3} < |z| < \frac{1}{2}$.

11. 函数 $F(\omega) = e^{\omega j}$ 的 Fourier 逆变换 f(t)为: ()

A. $2\pi\delta(t-1)$,

B. $2\pi\delta(t+1)$, C. $\delta(t-1)$, D. $\delta(t+1)$.

12. 函数 $f(t) = (t-1) (sint) \delta(t-2)$ 的 Fourier 变换 $F(\omega)$ 为: ().

A. $e^{-2\omega j} \sin 2$,

B.0, $C.e^{2\omega j} \sin 2$,

- 二、(12 含) 已知 u(x,y) = 2(x-1)y, 验证 u(x,y)为调和函数,并求二元函数 v(x,y),使得函 数 f(z) = u(x,y) + iv(x,y)为解析函数,且满足 f(2) = -i.
- 三、(12 分) 将函数 $f(z) = \frac{1}{(z-2)(z-4)}$ 在点 $z_0 = 3$ 展开为 Laurent 级数。
- 四、计算下列积分(每题5分,共10分)。

1.
$$\oint_{|z|=2} \frac{\cos z}{(z-\frac{\pi}{2})^{10}} dz$$
. 2. $\oint_{|z|=2} \frac{z}{1-z} e^{\frac{1}{z}} dz$.

2.
$$\oint_{|z|=2} \frac{z}{1-z} e^{\frac{1}{z}} dz$$

五、计算下列积分(每题5分,共10分)。

1.
$$\int_0^{+\infty} \frac{x^2 \cos\sqrt{2}x}{x^4+1} dx$$

1.
$$\int_0^{+\infty} \frac{x^2 \cos\sqrt{2}x}{x^4+1} dx$$
. 2. $\oint_{|z|=2} \frac{z^{33}}{(z^3+3)^3(z^5+5)^5} dz$.

- 六、(6 分) 求区域 $D = \{z = x + yi: -\frac{\pi}{2} < x < \frac{\pi}{2}, y > 0\}$ 在映射 $w = \sqrt{\frac{i + e^{iz}}{i e^{iz}}}$ 下的像.(**答题过** 程需用图形表示)
- 七、(10 含) 求一共形映射 W = f(z),将 z 平面上的区域 $D = \{z: |z| < 1, |z + \sqrt{3}| < 2\}$ 映射 到 w 平面的上半平面. (答题过程需用图形表示)
- 八、(10 含) 利用 Laplace 变换求解下面常微分方程:

$$x''(t) + x(t) = -3\cos 2t$$
, $x(0) = 1$, $x'(0) = 1$.

九、(65) 设函数 f(z)在 $|z-z_0| < R$ 内满足条件: (1). 除一阶极点 z_0 外处处解析, (2). 只有

一个一阶零点
$$z_1$$
,且 $|z_1-z_0| < r < R$. 证明: $\frac{1}{2\pi i} \oint_{|z-z_0| = r} \frac{zf'(z)}{f(z)} dz = z_1 - z_0$.