1.3 Argumenteu si són certes (amb una justificació) o falses (amb un contraexemple) les següents afirmacions en general

t)
$$L = L^2 \implies (L = L^*) \lor (L = \emptyset)$$

Certa. Demostrem-ho per inducció:

Volem demostrar que $L^n = L$ per a tot $n \ge 1$.

- Cas base (n = 1): $L^1 = L$
- Pas inductiu: Suposem com hipòtesi d'inducció (HI) que $L^k = L$ per a algun $k \ge 1$. Aleshores:

$$L^{k+1} = L^k \cdot L \stackrel{\mathrm{HI}}{=} L \cdot L = L^2 = L$$

Per tant, per inducció, $L^n = L$ per a tot $n \ge 1$.

Llavors:

$$L^* = \bigcup_{n=0}^{\infty} L^n = L^0 \cup \bigcup_{n=1}^{\infty} L = \{\lambda\} \cup L$$

Distingim dos casos principals:

• Cas 1: $\lambda \in L$: Aleshores $\{\lambda\} \subseteq L$, i com hem demostrat que $L^n = L$ per a tot $n \ge 1$, tenim que

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \{\lambda\} \cup L \cup L \cup \dots = L$$

Per tant, $L = L^*$,.

• Cas 2: $\lambda \notin L$:

$$\lambda \notin L \wedge L^* = \{\lambda\} \cup L \implies \{\lambda\} \subseteq L^* \implies L^* \neq L$$

Per tal que la conclusió $(L = L^*) \lor (L = \emptyset)$ sigui certa, i sabent que $L^* \neq L$, ha de ser que $L = \emptyset$. Comprovem, doncs, si $L = \emptyset$ és consistent amb la nostra suposició inicial $L = L^2$ i $\lambda \notin L$.

$$L = \emptyset \implies \lambda \notin L \land L^2 = \emptyset \cdot \emptyset = \emptyset \implies L = L^2$$

En resum, $\lambda \notin L \implies L = \emptyset$

Així doncs, hem demostrat que:

$$L = L^2 \Rightarrow (L = L^*) \lor (L = \emptyset)$$

NOTA: Aquest exercici també es pot demostrar elegantment usant les propietats dels apartats s) i q):

- s) $\lambda \in L \wedge L^2 \subseteq L \iff L = L^*$
- q) $L \subseteq L^2 \iff \lambda \in L \lor L = \emptyset$

Com que $L = L^2$, aleshores $L \subseteq L^2$, i per la propietat q) se'n dedueix que:

$$\lambda \in L \vee L = \emptyset$$

En el primer cas, si $\lambda \in L$, com que $L = L^2$, aleshores $L^2 \subseteq L$, i per tant:

$$\lambda \in L \wedge L^2 \subset L \stackrel{\mathrm{s}}{\Rightarrow} L = L^*$$

En el segon cas, si $L = \emptyset$, també es compleix la propietat.

Així, es conclou que:

$$L = L^2 \Rightarrow (L = L^*) \lor (L = \emptyset)$$