Tópicos Especiais em Matemática Aplicada - 2025-1 IME - UERJ

01 - Conceitos Fundamentais - Espaços Funcionais

Rodrigo Madureira rodrigo.madureira@ime.uerj.br

Github: https://github.com/rodrigolrmadureira/ElementosFinitos

Sumário

Alguns espaços funcionais

- Derivada fraca (Conceito de Distribuições)
- Bibliografia

Seja Ω um conjunto aberto no \mathbb{R}^n .

Obs. 1: Se n = 1, o conjunto aberto fica na reta $\mathbb{R}^1 = \mathbb{R}$.

Exemplo 1: (0,1) é um conjunto aberto em \mathbb{R} .

Obs. 2: Se n = 2, o conjunto aberto fica no plano \mathbb{R}^2 .

Exemplo 2: Se $A_1=(0,1)$ e $A_2=(0,2)$ são dois conjuntos abertos de \mathbb{R} , o produto cartesiano $A_1\times A_2=\{(a_1,a_2)\in\mathbb{R}^2: a_1\in A_1 \text{ e } a_2\in A_2\}$ é um conjunto aberto em \mathbb{R}^2 .

1. Espaço $C^{\infty}(\Omega)$: é o conjunto de todas as funções reais contínuas com infinitas derivadas também contínuas sobre Ω .

Suporte compacto: Dada uma função ϕ definida em Ω , denomina-se suporte de ϕ ao menor subconjunto fechado do domínio Ω onde a função não é nula.

Obs. 3: Se $\Omega = (a, b)$ é um conjunto aberto em \mathbb{R} , o fecho de (a, b) é o conjunto fechado [a, b]. Ou seja, $\overline{(a, b)} = [a, b]$.

Obs. 4: O suporte compacto de uma função $\phi \in C_0^\infty(a,b)$ é o fecho em Ω do conjunto dos pontos de Ω onde a função u é diferente de zero. Portanto, é denotado por $\operatorname{supp}(\phi) = \overline{\{x \in (a,b) : \phi(x) \neq 0\}}$

2. Espaço das Funções Testes (ou Admissíveis) $C_0^\infty(\Omega)$: é o subespaço de $C^\infty(\Omega)$ que contém funções ϕ com suporte compacto contido em Ω . Ou seja, se anulam na fronteira (ou contorno). Quando $\Omega=(a,b)$, é definido por:

$$C_0^{\infty}(a,b) = \{ \phi \in C^{\infty}(\Omega) ; \ \phi(a) = \phi(b) = 0 \}.$$

Exemplo 3: Na figura à esquerda, são mostrados alguns exemplos de funções $\phi_{\epsilon}(x) \in C_0^{\infty}(-\epsilon, \epsilon)$ com seus respectivos suportes compactos para cada valor de ϵ .

3. Espaço $L^p(\Omega)$: é o espaço das funções reais u(x) que são p-integráveis para $p \ge 1$. Ou seja, é definido por:

$$L^{p}(\Omega) = \left\{ u : \Omega \to \mathbb{R} ; \int_{\Omega} |u(x)|^{p} dx < \infty \right\}$$

Em particular:

4. Espaço $L^1(\Omega)$: é o espaço das funções integráveis. Ou seja,

$$L^{1}(\Omega) = \left\{ u : \Omega \to \mathbb{R} ; \int_{\Omega} |u(x)| dx < \infty \right\}$$

5. Espaço $L^1_{loc}(\Omega)$: uma função u(x) é localmente integrável, isto é, $u(x) \in L^1_{loc}(\Omega)$, quando $u(x) \in L^1(\Omega)$ em cada subconjunto do suporte compacto de Ω .

Obs. 5: $u(x) \in L^p(\Omega) \Rightarrow |u(x)|^p \in L^1(\Omega)$ para $p \ge 1$.

- **6. Espaço de Hilbert** \mathcal{H} : é um espaço vetorial completo que possui um produto interno. **Exemplo:** Espaço $L^2(\Omega)$.
- **6.1. Espaço** $L^2(\Omega)$: Se Ω é um aberto de \mathbb{R}^n , $L^2(\Omega)$ é o espaço das funções u com quadrado integrável,

$$L^2(\Omega) = \Big\{ u : \Omega \to \mathbb{R} \; ; \; \int_{\Omega} |u(x)|^2 dx < \infty \Big\},$$

que é um espaço de Hilbert munido de:

• **Produto interno**: Se $u, v \in L^2(\Omega)$, é definido por

$$< u, v>_{L^2(\Omega)} = \int_{\Omega} u(x)v(x)dx$$

Obs. 6: Outras notações recebidas por $\langle u, v \rangle_{L^2(\Omega)}$ são $(u, v)_0$ e (u, v).

• Norma: Se $u \in L^2(\Omega)$, é definida por

$$||u||_{L^2(\Omega)}^2 = \int_{\Omega} |u(x)|^2 dx$$

Obs. 7: Outras notações recebidas por $||u||_{L^2(\Omega)}^2$ são $||u||_{0}^2$ e, $|u|_{\mathbb{R}}^2$.

6.2. Espaços de Sobolev $H^m(\Omega)$, $m \in \mathbb{N}$, $m \ge 1$:

Se Ω é um aberto de \mathbb{R}^n , a definição geral é:

$$H^m(\Omega) = \Big\{ u : \Omega \to \mathbb{R} \; ; \; u \in L^2(\Omega), \; \frac{\partial^{\alpha} u}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}} \Big\},$$

onde $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, $0 \le \alpha \le m$, $\alpha_i \in \mathbb{N}$.

Exemplos de espaços de Sobolev para m=1 e $\Omega=(a,b)\in\mathbb{R}$:

6.2.1. Espaço $H^1(a, b)$: é o espaço onde as funções u e sua derivada em relação a x, $u_x = \frac{du}{dx}$, estão em $L^2(a, b)$. Ou seja,

$$H^1(a,b) = \{u: (a,b) \to \mathbb{R} \; ; \; u \in L^2(a,b), u_x \in L^2(a,b)\},$$

que é um espaço de Hilbert munido de:

• Produto interno: $\langle u, v \rangle_{H^1(a,b)} = \int_a^b u(x)v(x) + u_x v_x dx$;

• Norma:
$$||u||_{H^1(a,b)}^2 = \int_a^b |u(x)|^2 + |u_x|^2 dx$$

Exemplo 4: A função $u(x) = \frac{1}{x}$, definida em $\Omega = [1, \infty) \subset \mathbb{R}$, pertence ao espaço $L^2([1, \infty))$, pois

$$\int_{1}^{\infty} \left(\frac{1}{x}\right)^{2} dx = \int_{1}^{\infty} x^{-2} dx = -x^{-1} \Big|_{1}^{\infty} = -\frac{1}{x} \Big|_{1}^{\infty} = -\frac{1}{x} \Big|_{1}^{\infty} = 1 < \infty.$$

Exemplo 5: A função $u(x)=\frac{1}{x^n}, n \in \mathbb{N}$, definida em $\Omega=(0,1)\subset \mathbb{R}$, pertence ao espaço $L^2(0,1)$ somente para $n\neq \frac{1}{2}$, pois

$$\int_0^1 \left(\frac{1}{x^n}\right)^2 dx = \int_0^1 x^{-2n} dx = -\frac{x^{-2n+1}}{-2n+1} \Big|_0^1 = -\frac{1}{-2n+1} = \frac{1}{2n-1}.$$

$$\Rightarrow 2n-1 \neq 0 \Rightarrow n \neq \frac{1}{2}.$$

Obs. 8: Outra notações recebidas por $< u, v>_{H^1(\Omega)}$ e $||u||^2_{H^1(\Omega)}$ são, respectivamente, $(u, v)_1$ e $||u||^2_1$.

6.2.2. Espaço $H_0^1(a,b)$: subespaço importante de $H^1(a,b)$ definido pelas funções $u \in H^1(a,b)$ que se anulam na fronteira Γ de $\Omega = (a,b) \subset \mathbb{R}$, ou seja, se anulam nos contornos x = a e x = b. Ou seja,

$$H_0^1(a,b) = \{u \in H^1(a,b) \; ; \; u(a) = u(b) = 0\},$$

que é um espaço de Hilbert munido de (demonstração a posteriori):

- Produto interno: $< u, v>_{H_0^1(a,b)} = \int_a^b u_x v_x dx$;
 - Norma: $||u||_{H_0^1(a,b)}^2 = \int_a^b |u_x|^2 dx$

Obs. 9: Outra notações recebidas por $< u, v >_{H_0^1(\Omega)}$ e $||u||^2_{H_0^1(\Omega)}$ são, respectivamente, ((u, v)) e $||u||^2$.

Utilizamos o conceito de **derivada fraca** ou **derivada no sentido das distribuições** na passagem da **formulação forte** para a **formulação fraca** dos problemas que veremos neste curso.

7. Distribuição: Uma distribuição T é um funcional linear e contínuo (limitado) sobre $\mathcal{D}(\Omega)$ que associa a todo elemento elemento $\phi \in \mathcal{D}(\Omega)$ um número real, ou seja,

$$T: \mathcal{D}(\Omega) \longrightarrow \mathbb{R}$$

 $\phi(\mathbf{x}) \mapsto T(\phi),$

de tal modo que as seguintes condições estejam satisfeitas:

- **D1.** O funcional *T* é **linear**. Isto é, são satisfeitas as propriedades:
- Associativa: $T(\phi_1 + \phi_2) = T(\phi_1) + T(\phi_2)$, para todo ϕ_1 , $\phi_2 \in \mathcal{D}(\Omega)$;
- Multiplicação por escalar: $T(c\phi) = cT(\phi)$, onde $c \in \mathbb{R}$, para todo $\phi \in \mathcal{D}(\Omega)$.
- **D2.** O funcional T é **contínuo**. Ou seja, se uma sequência de funções (ϕ_{ν}) converge para zero em $\mathcal{D}(\Omega)$, então $T(\phi_{\nu})$ converge para zero em \mathbb{R} .
- Obs. 10: O espaço das distribuições é denotado por $\mathcal{D}'_{\ell}(\Omega)$.

Obs. 11: Também escrevemos $T(\phi)$ como o produto interno $< T, \phi >$.

Exemplo de distribuição: Uma função $u(x) \in L^1_{loc}(\Omega)$, dita localmente integrável, define univocamente uma distribuição T_u . Assim, podemos reescrever o produto interno substituindo T_u por u quando não houver ambiguidade. Assim,

$$T_u(\phi) = \langle T_u, \phi \rangle = \langle u, \phi \rangle = \int_{\Omega} u(x)\phi(x) dx, \forall \phi \in \mathcal{D}(\Omega).$$

Exercício: Verifique se T_u é um funcional linear.

- 7.1. Derivada fraca (ou no sentido das distribuições):
- Primeira derivada de T_u (ou u) no sentido das distribuições:

$$(T_u)_x = \frac{dT_u}{dx} = \left\langle \frac{dT_u}{dx}, \phi \right\rangle = \left\langle \frac{du}{dx}, \phi \right\rangle = \int_{\Omega} \frac{du}{dx} \phi(x) dx$$

Usando integração por partes, obtemos:

$$\int_{\Omega} \frac{du}{dx} \phi(x) dx = u \phi \Big|_{\Omega} - \int_{\Omega} u \frac{d\phi}{dx} dx$$

Supondo que Ω é um aberto em \mathbb{R} e $\Omega = (a, b)$, obtemos:

$$\int_{a}^{b} \frac{du}{dx} \phi(x) dx = u\phi \Big|_{a}^{b} - \int_{a}^{b} u \frac{d\phi}{dx} dx = u(b)\phi(b) - u(a)\phi(a) - \int_{a}^{b} u \frac{d\phi}{dx} dx$$
$$= -\left\langle u, \frac{d\phi}{dx} \right\rangle,$$

pois se $\phi \in \mathcal{D}(a, b)$, então $\phi(a) = \phi(b) = 0$.

Portanto, se $u(x) \in L^1_{loc}(a,b)$, denominamos a **primeira derivada de** u(x) **no** sentido fraco (das distribuições) como o produto interno:

$$\left\langle \frac{du}{dx}, \phi \right\rangle = -\left\langle u, \frac{d\phi}{dx} \right\rangle, \ \forall \phi \in \mathcal{D}(a, b).$$

• Segunda derivada de T_u (ou u) no sentido das distribuições:

$$(T_u)_{xx} = \frac{d^2 T_u}{dx^2} = \left\langle \frac{d^2 T_u}{dx^2}, \phi \right\rangle = \left\langle \frac{d^2 u}{dx^2}, \phi \right\rangle = \left\langle \frac{d}{dx} \left(\frac{du}{dx} \right), \phi \right\rangle$$

Portanto, se $\frac{du}{dx} \in L^1_{loc}(a,b)$, denominamos a **segunda derivada de** u(x) **no sentido fraco (das distribuições)** como o produto interno:

$$\left\langle \frac{d^2u}{dx^2}, \phi \right\rangle = \left\langle \frac{d}{dx} \left(\frac{du}{dx} \right), \phi \right\rangle = -\left\langle \frac{du}{dx}, \frac{d\phi}{dx} \right\rangle, \ \forall \phi \in \mathcal{D}(a, b).$$

Referências I

Liu, I.S.; Rincon, M.A.. Introdução ao Método de Elementos Finitos, Análise e Aplicação. IM/UFRJ, 2003.