Overview of use cases (DAS-33)					
[DAS-34] For spectroscopy (magnetism) Created: 2019-Mar-26 Updated: 2019-Apr-03 Resolved: 2019-Apr-03					
Status:	Done				
Project:	Diffraction Analysis Software				
Component/s:	None				
Affects Version/s:	None				
Fix Version/s:	None				

Туре:	Sub-task	Priority:	Normal		
Reporter:	Thomas Holm Rod	Assignee:	Piotr Rozyczko		
Resolution:	Done	Votes:	0		
Labels:	VISPY				
Remaining Estimate:	Not Specified				
Time Spent:	Not Specified				
Original Estimate:	Not Specified				

Attachments:	tutorial10_03.png tutorial1 tutorial5_01.png tutorial5_02.		torial21_01.png 🎑 tutorial3_05.png 🞑 tutorial4_0 5_03.png 🔝 tutorial7_04.png 🚭 tutorial8_07.png			
Issue Links:	Dependency					
	is depended on by	DAS-42	Structure viewer/editor	To Do		
	Hierarchy					
	is part of	DAS-44	For spectroscopy (chemical)	Done		

Comments

Comment by Simon Ward [2019-Apr-01]

Data Presentation

1D Plots

Line plots

These plots are an arbitrary XY plot used to show data. There may be stacking of multiple lines. Lines must be able to be represented as data points. Legend entries must also be available. e.g:

The plots must also be able to have non-standard axes. i.e going from $[2, 0, 0] \rightarrow [0, 0, 0] \rightarrow [0, 2, 0]$

Multiple plots

We must be able to have multiple plots on a graph

2D plots

As seen above 2D plots are needed to visualise intensities.

These are line plots which also contain intensity which is mapped to a colour bar e.g.

Also 2D maps can be shown

Note:

We will want to overlay plot types. E.g add a line plot to a colour map

Comment by Simon Ward [2019-Apr-01]

Atom plots

General information

Plots of atoms must have:

- Atoms which are generated by symmetry operations
- The visual properties of the atom must be editable (size, color, specularity etc...)
- The unit cell must be visible
- There must also be a way of showing bonds between atoms
- Each atom has a spin-moment. This has to be depicted by an arrow.
- 2D surfaces for anisotropies, chemical environment etc must also be plotable.
- Plotting in lattice units or cartesian units.
- Visualisation of x,y,z which rotates with the unit cell

Interactivity:

- The plot must be 3D and rotatable
- Clicking on an item must display information on the item
- Clicking on an atom shows other symmetry equivalent atoms.
- The extent can be changed i.e more than 1 unit cell
- The view can be reset or set to an axis

Interfaces

The plot must be usable in the following:

- Ipython notebooks
- python scripting. i.e complete control of the plot from the command line.
- QT widget so it can be embedded in other applications

Examples

Atoms

MCu1

Atoms + Bonds

Note the increase in number of unit cells along the a and b direction.

Atoms + Bonds + Spins

Chemical Environment

Anisotropies

Comment by Simon Ward [2019-Apr-01]

Symmetries

We want to be able to:

- Generate atomic equivalent positions based on crystal symmetry
- From a position, give other symmetry equivalent positions.
- If 2 atoms are selected, we have a bond. What are the symmetry equivalent bonds in the unit cell.
- If you select a bond, using the space group determine what off-diagonal exchange components are allowed to form an exchange matrix.
- Apply symmetry elements to an exchange matrix for equivalent bonds in the unit cell.

Why?

- We need all atomic positions
- We need to select all equivalent positions (also for visualisation)
- Equal bond length is not a determining factor for equal exchanges. It is symmetry environment+bond length
- Exchange matrix symmetry allows for physically correct setups and no easy mistakes.
- We want to plot the bond for all elements in the unit cell.

Comment by Piotr Rozyczko [2019-Apr-03]

Minor comments:

for atom plots we need a bit more functionality, I think.

- arrows on atoms should be used to represent any vector atomic quantity, not just spin (velocity, force etc)
- cell view should be extendable for supercells so we can easily see bonds between atoms in different cells
- we probably need to make visual distinction between multiple bonds (single, double, hydrogen etc)
- lattice specific visualization needs to be implemented for Miller planes, bandstructure path etc.

Interactivity should include zooming and possibly z-clipping (important when you have many atoms in the cell)

For **symmetry**:

- generate primitive cell
- generate conventional cell
- given a structure find symmetry within a specific tolerance

Maybe we need extra functionality for surfaces in reflectometry like:

- cleave surface
- build surface
- create vacuum slab

Generated at Tue Apr 30 10:50:11 CEST 2019 by Thomas Holm Rod using Jira 7.12.3#712004-sha1:5ef91d760d7124da5ebec5c16a948a4a807698df.