NTNU Department of Industrial Economics and Technology Management Spring 2020

TIØ4285 Production and Network Economics Assignment 4 – Suggested solution

Exercise 1. Cournot oligopoly with capacity constraints

a. The optimization problems:

$$\forall i: \min z_i = \left(c_i q_i + d_i q_i^2\right) - \left(a - b \sum_j q_j\right) q_i$$

$$s.t. \quad cap_i - q_i \ge 0$$

Note:
$$\left(a - b\sum_{j} q_{j}\right)q_{i} = \left(aq_{i} - bq_{i}\sum_{j} q_{j}\right) = aq_{i} - bq_{i}\sum_{j\neq i} q_{j} - bq_{i}^{2}$$

b. The complementarity problem:

$$\forall i: \qquad 0 \le q_i \perp \left(c_i + 2d_i q_i\right) - \left(a - b \sum_{j \ne i} q_j - 2bq_i\right) \ge 0$$
$$0 \le \lambda_i \perp cap_i - q_i \ge 0$$

Which is equivalent to:

$$\forall i: \qquad 0 \le q_i \perp (c_i + 2d_i q_i) - \left(a - b \sum_j q_j - bq_i\right) \ge 0$$
$$0 \le \lambda_i \perp cap_i - q_i \ge 0$$

c. The equilibrium price and quantities for N=3, $c_i=2$, $d=\frac{1}{2}$, a=20, b=1, $cap_i=5$ can be calculated via the optimal response function (see lecture slides), but also taking into account the

capacity restrictions:
$$q_i = \min \left(\frac{a - c_i - b \sum_{j \neq i} q_j}{2(b + d_i)}, cap_i \right)$$

Assume first that the capacities are not binding:

$$q_i = \frac{a - c_i - b \sum_{j \neq i} q_j}{2(b + d_i)} = \frac{20 - 2 - 1 \sum_{j \neq i} q_j}{2(1 + 0.5)} = \frac{18 - \sum_{j \neq i} q_j}{3} = 6 - \frac{\sum_{j \neq i} q_j}{3}$$

Use symmetry:
$$q_i = q_j \Rightarrow q_j = \frac{18 - (N-1)q_j}{3} \Rightarrow (N+2)q_j = 18 \Rightarrow q_j = \frac{18}{5} = 3.6$$

Since this is lower than the respective capacity limits of 5, this is the optimal solution.

d. See separate GAMS code

```
*Capacity-constrainted oligopoly on a single node. Partial solution assignment 4
 *Ruud Egging-Bratseth, 2020. NTNU TIØ4285, Production and Network Economics.
set i suppliers /1*4/;
alias(i,j);
parameter a
                 intercept of the inv demand curve
                                                                            /20/
                                                                            / 1/
                 negative slope of inverse demand curve
          b
                constant cost term in productoin cost c*q + d*q^2 /1*3 2/
          c(i)
                 increasing cost term in productoin cost c*q + d*q^2 /1*4 0.5/capacity of supplier i /1*3 5/
          d(i)
          cap(i) capacity of supplier i
c('4')= 99;
positive variable Q(i) quantity supplied by supplier i
                  lam(i) capacity dual price i
equations stat_q, eq_cap
stat_q(i) .. c(i) + 2*d(i)*Q(i) + lam(i) - (a - b*(sum(j,Q(j))) + Q(i))) = G = 0
eq_cap(i) .. cap(i) - Q(i) =G= 0;
model olig / stat_q.Q
             eq_cap.lam
solve olig using mcp
parameter rep(*,*,*) output report;
```

```
parameter rep(*,*,*) output report;
rep('p','mkt', '1') = a-b*sum(j,Q.l(j));
rep('q', i, '1') = Q.l(i);
rep('lam',i, '1') = lam.l(i);
c(i) \$ (ord(i) < 4) = 1;
solve olig using mcp;
rep('p','mkt', '2') = a-b*sum(j,Q.l(j));
rep('q', i, '2') = Q.l(i);
rep('lam',i, '2') = lam.l(i);
cap(i) $(ord(i) < 4) = 3;
solve olig using mcp;
rep('p', 'mkt', '3') = a-b*sum(j,Q.l(j));
rep('q', i, '3') = Q.l(i);
rep('lam',i, '3') = lam.l(i);
cap('2')=4;
cap('3')=5;
solve olig using mcp;
rep('p','mkt', '4')= a-b*sum(j,Q.l(j));
rep('q', i, '4')= Q.l(i);
rep('q', i,
rep('lam',i, '4') = lam.l(i);
c('4')=1;
cap(i)=3;
solve olig using mcp;
rep('p', 'mkt', '5') = a-b*sum(j,Q.l(j));
rep('q', i, '5') = Q.l(i);
rep('lam',i, '5') = lam.l(i);
c(i) = 2;
solve olig using mcp;
rep('p','mkt', '6')= a-b*sum(j,Q.l(j));
rep('q', i, '6')= Q.l(i);
                     '6') = lam.l(i);
rep('lam',i,
option rep:2:2:1
display rep;
```

	1	2	3	4	5	6
p .mkt	9.20	8.60	11.00	9.00	8.00	8.00
q .1	3.60	3.80	3.00	3.00	3.00	3.00
q .2	3.60	3.80	3.00	4.00	3.00	3.00
q .3	3.60	3.80	3.00	4.00	3.00	3.00
q .4					3.00	3.00
lam.1			4.00	2.00	1.00	
lam.2			4.00		1.00	
lam.3			4.00		1.00	
lam.4					1.00	

	1	2	3	4	5	6
parameter	value	value	value	value	value	value
N	3	3	3	3	4	4
а	20	20	20	20	20	20
b	1	1	1	1	1	1
c_i	2	1	1	1	1	2
cap_1	5	5	3	3	3	3
cap_2	5	5	3	4	3	3
cap_3	5	5	3	5	3	3
cap_4					3	3
variable						
p	9.2	8.6	11	9	8	8
q_1	3.6	3.8	3	3	3	3
q_2	3.6	3.8	3	4	3	3
q_3	3.6	3.8	3	4	3	3
q_4					3	3
λ_1	0	0	4	2	1	0
λ_2	0	0	4	0	1	0
λ_3	0	0	4	0	1	0
λ_4					1	0

Discuss briefly for each supplier how MR=MC in each outcome.

Column 1

- MR_i=a-(N+1)bq_l=20-4x3.6=5.6
- MC_i=c+2dq_I=2+q_i=2+3.6=5.6

Column 2

- MR_i=a-(N+1)bq_I=20-4x3.8=4.8
- MC_i=c+2dq_l=1+q_i=1+3.8=4.8

Column 3

- MR_i=20-4*3=8
- MC=1+3=4
- The difference between MR and MC = lambda = 4!

Column 4

Is the capacity limit restrictive in the last column?

- Column 5
 - MR(i)=20-(3x3+2x3)=5

MR(1)=20-(2x3+4+4)=6

• MR(2,3)= 20-(2x4+3+4)=5

• MC=1+3=4

• MC(1)=1+3=4

• MC(2,3)=1+4=5

• Lam(1)=2

• Lam=1

Column 6

- MR(i)=20-(3x3+2x3)=5
- MC(i)2+3=5
- Lam=0

No. The shadow price on the constraint is zero. This means that increasing the capacities will not change the solution.

Exercise 2. Social welfare maximization

SW_assignment.mos

```
!SW maximization on a single node. Solution assignment 4.2
!Ruud Egging-Bratseth, 2020. Lecture notes NTNU TIØ4285, Production and Network Economics.
model "SW opt"
 uses "mmxprs", "mmquad"
parameters
            ! intercept of the inverse demand curve
   a= 20
   b= 1 ! negative slope of inverse demand curve
c= 2 ! constant cost term in productoin cost c*q + d*q^2
   d= 0.5 ! increasing cost term in productoin cost c*q + d*q^2
end-parameters
declarations
   Q: mpvar;
   Z: qexp;
end-declarations
Q>=0
!def sw :=
Z:= 0.5*b*Q*Q + (a - b*Q)*Q - (c + d*Q)*Q
maximize(Z);
writeln("Market price ", a - b*getsol(Q))
end-model
```

```
Supply 9
Social welfare: 81
Market price 11
MR(i)=20-9=11
```

MC(i)=2+2x0.5x9=11