A Model to Estimate Home Values in Ames, Iowa

• Goal: to build a model that will make the best possible prediction of home values in Ames, Iowa.

Materials/Data:

- A train data set describing the sale of individual residential property in Ames, lowa from 2006 to 2010.
 - 79 variables related to the quality and quantity of many physical attributes of the property.
 - 51 columns were categorical and 28 were continuous.
- A test data with which to feed data into the regression model.

- The oldest house was built in 1872.
- The newest house was built in 2010.

Number of Homes

- The average sales price was \$181,470.
- The median price was \$162,500

I applied a log transformation to the Sale Price to see if it could make the skewed sale price take on a more normal distribution.

This table shows that features associated with square footage or quality have a strong correlation to the sale price.

	SalePrice	
SalePrice	ce 1.000000	
Overall Qual	0.800207	
Gr Liv Area	0.697038	
Garage Area	0.650270	
Garage Cars	0.648220	
Total Bsmt SF	0.628925	
1st Flr SF	0.618486	
Year Built	0.571849	
Year Remod/Add	0.550370	
Full Bath	0.537969	
Garage Yr Blt	0.533922	
Mas Vnr Area	0.512230	
TotRms AbvGrd	rd 0.504014	

 To deal with multicollinearity I dropped variables that were highly correlated with others and grouped together multiple features that could be defined by one total feature.

• Example:

- Dropped garage_cars and and kept garage_area.
- Combined the half baths and full baths into one total bathroom feature

garage_cars	garage_area	0.896401
garage_area	garage_cars	0.896401
year_built	garage_yr_blt	0.846149
garage_yr_b		0.846149
saleprice	overall_qual	0.826279
overall_qual		0.826279
totrms_abvg	rd gr_liv_area	0.812397
gr_liv_area	totrms_abvgrd	0.812397
1st_flr_sf	total_bsmt_sf	0.792965
total_bsmt_s	sf 1st_flr_sf	0.792965
gr_liv_area	saleprice	0.713477
saleprice	gr_liv_area	0.713477
garage_cars	saleprice	0.682522
saleprice	garage_cars	0.682522
	garage_area	0.673294
garage_area	saleprice	0.673294
bedroom_abv		0.664206
totrms_abvg		0.664206
total_bsmt_s		0.658320
saleprice	total_bsmt_sf	0.658320
bsmt_full_ba		0.657202
bsmtfin_sf_:		0.657202
2nd_flr_sf	gr_liv_area	0.656673
<pre>gr_liv_area</pre>	2nd_flr_sf	0.656673
garage_yr_b		0.643299
year_remod/a	add garage_yr_blt	0.643299
saleprice	1st_flr_sf	0.631785
1st_flr_sf	saleprice	0.631785
saleprice	year_built	0.631615
year_built	saleprice	0.631615
<pre>gr_liv_area</pre>	full_bath	0.629593
full_bath	gr_liv_area	0.629593
year_remod/a		0.629447
year_built	year_remod/add	
half_bath	2nd_flr_sf	0.615200
2nd_flr_sf	half_bath	0.615200
garage_yr_b		0.609707
garage_cars	<pre>garage_yr_blt</pre>	0.609707
saleprice	garage_yr_blt	0.608484
garage_yr_b		0.608484
saleprice	year_remod/add	
year_remod/a		0.604411
overall_qua		0.602812
year_built	overall_qual	0.602812

GridSearch Lasso Test Predictions

Variance Threshold: [0, .05, .1], Kbest: [10, 15, 20], Alpha: np.logspace(-3,3,7)

Most Important Features and Weights y intercept: 12.02

- Suggestions for improved modeling:
 - Better feature engineering and subset selection.
 - The most important features in all of my models were 'overall_quality', 'total_area', 'gr_liv_area', garage area', 'year_remodeled/add' and 'year_built'. I could run my models with these as the only features to see if it improves their accuracy.
 - I can also do more feature engineering to try and reduce the number of redundant variables, especially after I got dummies of all my categorical columns.
 - Finally, I might consider log transforming individual features that had above 0.7 or 0.8 in order to make their distributions closer to normal.
 - Adjust the Kbest and variance threshold parameters in my modeling.