COMP 3030 Fall 2021 Homework Assignment 5

due Tuesday, November 30, 2021, 11:59pm Must be submitted on Crowdmark, **not** UM Learn

Page 1: Important definitions, notation, and hints!

• Notation: for any string W and any symbol x, we write $\#_x(W)$ to represent the number of occurrences of symbol x in W.

Examples:
$$\#_0(\varepsilon) = 0, \#_1(\varepsilon) = 0, \#_0(0010) = 3, \#_1(0010) = 1, \#_0(111) = 0$$

• In this assignment, if you need to prove something is recognizable or decidable, you should be using 'Turing machine pseudocode' (as in Lectures 49 and after) instead of trying to draw a transition diagram.

The assignment questions start on the next page.

- 1. Let function $D: \{0,1\}^* \to \mathbb{Z}$ be defined by $D(W) = \#_1(W) \#_0(W)$.
- (2 pts)
- (a) Is *D* one-to-one? Prove that your answer is correct.
- (2 pts)
- (b) Is *D* onto? Prove that your answer is correct.
- 2. Let function *C* . {0, 1}
- $\{0,1\}^*$ be defined by $C(W) = 1 \cdot W$.

- (2 pts)
- (a) Is C one-to-one? Prove that your answer is correct.

- (2 pts)
- (b) Is *C* onto? Prove that your answer is correct.
- (3 pts)
- (c) Let $L = \{0, 1\}^*$, that is, the set of all binary strings. Prove that L is a countable set.

- 3. Let $S = \{f \mid f : \{0,1\}^* \to \{0,1\}^*\}$. In other words, S is the set consisting of all functions whose (5 pts) domain and range are binary strings. Use the Diagonal Method to prove that S is uncountable. (Drawing a table can be a useful visual tool, but your submitted solution should not contain one.) Side note: We can conclude from this result that, even if we were able to write out every possible Java program that takes in a binary string and outputs a binary string, there are still infinitely many such functions out there that we cannot implement. This is because the number of different Java programs is countably infinite, yet this question proves that the
- - Prove that a language *L* is decidable if and only if $L \le_m 000^*(11+111)$

Is this a Tm?Can we say let's assume, Tr is a Tm that decides this regular expression?

Are all regular expression Turing decideable?

5. Prove that the following language is decidable.

number of functions is uncountably infinite!

- $\operatorname{HighSteps}_{\scriptscriptstyle{\operatorname{TM}}} = \{W \in \{0,1\}^* \mid W = \langle T \rangle \text{ and } T \text{ is a TM that:}$
- no matter which input $X \in \{0, 1\}^*$ is given, machine T takes at least 420 steps}
- Clarification: "takes 1 step" means "follows 1 transition"

- (8 pts) 6. Prove that $\overline{\text{Equal}_{\text{TM}}}$ is unrecognizable by choosing an appropriate language L and proving that $L \leq_m \overline{\text{Equal}_{\text{TM}}}$.
- (10 pts) 7. In this question, we'll consider a new kind of Turing machine, that I call an "American Turing Machine", or USTM. They are pretty much exactly the same as the Turing machines we've been using in this course (i.e., see Lectures 32-35), but with one difference: every state in the machine has a colour, Red or Blue.

Let $L = \{W \in \{0, 1\}^* \mid W = \langle T, c \rangle \text{ where } T \text{ is a USTM, } c \in \{\text{Red,Blue}\}, \text{ and:}$ there exists at least one binary input string *X* such that *T* executed on input *X* enters a state coloured *c*}

Your task: Prove that *L* is undecidable.

- 1. Let function $D: \{0,1\}^* \to \mathbb{Z}$ be defined by $D(W) = \#_1(W) \#_0(W)$.
 - (a) Is D one-to-one? Prove that your answer is correct.
 - (b) Is *D* onto? Prove that your answer is correct.

$$D(x) \neq D(y)$$

$$D(x) = D(\lambda)$$

$$\#_{1}(n) - \#_{0}(n) = \#_{1}(y) - \#_{0}(y)$$

we can disprove by an asample?

(c) Let $L = \{0, 1\}^*$, that is, the set of all binary strings. Prove that L is a countable set.

	Proof a bijection:	
h ()		

one to one

1

 $2.60,13^{*} \rightarrow 60,13^{*}$ f(N) = taken i Am

Sinca e is a bijection from all matural numberos.

I bence e is countable.

if we can proof	e bjyption dru	om a countable se	et to another set
than that sort is	also countable		

4. Prove that a language *L* is decidable if and only if $L \leq_m 000^*(11+111)$

a partitudinal	à proofs.	ideable than L≤m000 (11+111)
is fund who will paid	if L is doc	cideoble than L≤m000 (11+111)
can we dozeribe	if L≤mor	00 (11+111) then L is decided bla
turity machine like,	if Li	s decide Abla,
keep going right		there is a TM To deciding L.
until see a 1.		
occupt,	<i>i</i> 4 F	is decideable, if NEL Then NE 000 (11+111)
		if nel than x \$000th (u+m)
		flow) if $\alpha \in L$ then $f(\omega) = 0011$
		if $x \in L$ then $f(x) = 0110$
		· ,
		Hence
	Since, St re	gular expression has OFA
		U .

if $w \in L$ then $f(w) \in \mathcal{I}\left(000^{\alpha}(11+111)\right)$ hiven: L is decideable.

if $w \in L$ than f(w) = 0011also if $w \notin L$ f(w) = 0101

As Lis dacidadola

Prove f(w) is the correct reduction:

Firest suppose that, WEL

than since f(w) = 0011

and oon E L (000*(11+1N))

Next suppose that, W& L

then since f(w) = 0101

and 0101 \$ L (000*(11+1N))

thereefore f(W) is the correct reduction.

Therefore L Sm (000 (11+111)

Proof if: L≤m000" (11+111) than L is decideable.
3 DFA such that it dacides 000*(1H111)
11 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
therefore 000° (11+111) is decideable,
Lollowing the definition of reduction
if 000° (11+111) is decideable then
L is also decideable

HighSteps_{TM} = $\{W \in \{0,1\}^* \mid W = \langle T \rangle \text{ and } T \text{ is a TM that:}$ no matter which input $X \in \{0, 1\}^*$ is given, machine T takes at least 420 steps} Clarification: "takes 1 step" means "follows 1 transition" $f(\omega) \Rightarrow$ W=<T> taken len than 420 steps. € High Steps TM W=<T> taken at least 420 staps € High Staps TM $f(\omega) \Rightarrow$ W=<T> taken len than 420 steps. € High Steps TM return <>> > Some L regact W=<T> taken at least 420 steps € High Steps TM redurin <> > some L accepts. Prove both Highstep TM and It's complement recognizeable.

(7 pts) 5. Prove that the following language is decidable.

	Highslaptm is decideable.
wt KA7	we build a Tru that simulates the $\langle T, x \rangle$ for

-	the following language is decidable. $A \subseteq_{M} B$ $M = \{W \in \{0,1\}^* \mid W = \langle T \rangle \text{ and } T \text{ is a TM that:} $ $Which input X \in \{0,1\}^* \text{ is given, machine } T \text{ takes at least 420 steps} \} $ $A \subseteq_{M} B$ $A \subseteq$
Testing Halt	$f(w) \Rightarrow$ $w = \langle T \rangle \text{High-Steps-Tm}$ $w = \langle T \rangle \text{Takes best 420 steps.} \notin \text{High-Steps-Tm}$ $w = \langle T \rangle \text{Takes at least 420 steps.} \in \text{High-Steps-Tm}$
for at 20,13	W= <t> & High Steps TM recturen € W=<t> takes less than 420 steps. & High Steps TM recture <m> > Some Halt regrect M > simulate T if T takes less than 420 staps loop forcever.</m></t></t>
	W= <t> taken at least 420 staps High Staps TM recturn <m> > some L accepts. recturn <t></t></m></t>

-f(w) if W = <T> for any Turing machine T, than output E. if w=<T> forc some Turing machine T, than output <M> 1. Simulate T on input x 2. if T stops before 420 steps. then enter an infinite loop Accept DFA to accept DFA, accept NFA on accept RE traduction function from TM to sceptora

	High Steps TM Sm Accopt TM
	WE HSTM
	$f(w) = \langle T, \varepsilon \rangle \in Accept_{TM}$
	and ha
	W € HSTM
	case 1: $\omega \neq \langle T \rangle$
4.0 (T)	$f(w) = \langle \tau, \varepsilon \rangle \notin Accept_{TM}$
W= <t></t>	
M _x simulatas T, with	in the second se
if accepts the in	
	years, can ear $2: W = \langle T \rangle$
iz razios svacio	return Mx
	icelotore i te
	Mx simulates T
	·
	M _X →
can we simulate	1. Simulates T with input x
multiple input	
X (a. After simulating uso transition it halts and accept.
•	
	3. If it stops before 420 transition than, regard
	Now, WEHSTM
	$f(w) = \langle M_x, x \rangle \in Accept_{TM}$
	Next, W € HS _{TM}
	τιαχή, ω φ τωτρή
Car ma una comatin	1. W≠ <t></t>
can we use something that is true about	$f(\omega) = \langle M_x, X \rangle \notin Accept_{TM}$
- chat is there should t	
	2. W = (T) but Jx 2 (T, n) T stops befor 1/20 7 tops
	flw= <mx, x=""> < Accept +M</mx,>
	1

-	
	High Steps TM Scoopt TM
	WE HSIM
	$f(\omega) = \langle T, \varepsilon \rangle \in Accept_{TM}$
	W ¢ HS _{TM}
	case 1: $\omega \neq \langle \tau \rangle$
	$f(w) = \langle \tau, \varepsilon \rangle \notin Accept_{TM}$
₩= <t></t>	
Mx simulates T, with	
if accepts the in	frite loop
if ragaets shown	yets. case 2: $W=\langle T \rangle$ for α in $\{0,1\}$ 420
	return Mx
	Simulate TEX
	Mx simulates T
	N 4
	M _X ->
ana na alimulala	1. Simulates T with input x + x e fo, 13 420
can we simulate	1. Strictors I write tripid N 1 12 E 70,11 y
multiple input	a. After simulating uso transition it moves to step (1)
X (d. 114 lear similarity size microsition of moves to the
, cha,	3. If it stops before 420 transition than, reject
10ma lond	s. 17 11 210hz malour dan mananan mun' Indire
1,-//	Accept.
	Nao, WEHSTM
	10000' M S 1,2LW
	$\int_{-\infty}^{\infty} (w) = \langle M_{x}, X \rangle \in Accept_{TM}$
	Next, W € HS _{TM}
	state to be selled
can we use something	1. W≠⟨T⟩
that is true about	$f(\omega) = \langle M_X, X \rangle \notin Accept_{TM}$
way is time showly	
	2. W = (T) but Jx 2 (T, n) T stops befor 420 7 tops
	flw= (Mx, r) E Accept TM
	1

High Slaps TM Sm Accapt TM

Mc ->
O Simulate T with input or for all ox \(\xi \) \(\int \) \(\text{O} \) 13 420

O for any simulation of T halfs bafore 420

transitions the rangest.

@ Else & crapt.

forc & in 20,13,00

Simulata Twith input & upto 100 staps if That's baforca 100 staps ragact accept.

$L \leq_m \overline{\mathrm{Equal}_{\mathrm{TM}}}.$		
	Eghel TM	Accept _{TM}
hruit 6		Accept _{TM} ≤m Equal _{TM}
Con the shire of	- Accept-TM	, Equal _{TM} are unrecognizeable.
is way	We meed	to find a L that can be raducal
can we buil a turing machine that accepts all binary string?		Egyalton lot, M, = accepts exactly one string.
	f(W)	$w \neq \langle \tau, \pi \rangle$ then $w \in Accept_{TM}$,
		$\langle M_{p}, M_{v} \rangle$
0-70,R 1-71,R	if w=<	(T,x) and T down't Accord & them, <mx, mu=""></mx,>
Mu	C8921:	T rajects x then,
is My decideable		

6. Prove that $\overline{\text{Equal}_{\text{TM}}}$ is unrecognizable by choosing an appropriate language L and proving that

Í	f Mp dec	ideable 8	han Mo	is also	dacidaslola.