## LMI Methods in Optimal and Robust Control

Matthew M. Peet Arizona State University

Lecture 03: Relaxations, Duality, Cones, Positive Matrices, LMIs

# What is Optimization?

An Optimization Problem has 3 parts.

$$\min_{x\in\mathbb{F}} \ f(x):$$
 subject to  $g_i(x)\leq 0 \qquad i=1,\cdots K_1 \ h_i(x)=0 \qquad i=1,\cdots K_2$ 

### Variables: $x \in \mathbb{F}$

- The things you must choose.
- Typically vectors or matrices.

## **Objective:** f(x)

• A function which assigns a scalar value to any choice of variables.

Constraints: 
$$g(x) \le 0$$
;  $h(x) = 0$ 

- Defines what is a minimally acceptable choice of variables.
- Equality and Inequality constraints are common.

## New Concept: Relaxations and Tightenings

How to Approximate a Non-Convex Problem (Using a Convex Approximation)

## **Original Problem:**

$$\gamma^* := \min_{x \in \mathbb{R}} \quad f(x) : \qquad g(x) \ge 0 \quad (FS)$$





## Definition 1.

In a **Relaxation**, we remove or loosen one of the constraints.

$$\gamma_R^* := \min_{x \in \mathbb{R}} \quad f(x) : \qquad g(x) \ge -1$$

- $\gamma_R^* \leq \gamma^*$
- Solution  $x^*$  no longer feasible.
- An Outer Approximation of FS.

## **Definition 2.**

In a **Tightening**, we add new constraints.

$$\gamma_T^* := \min_{x \in \mathbb{R}} \quad f(x) : \qquad g(x) \ge 1$$

- $\gamma_T^* \ge \gamma^*$
- Solution  $x^*$  is still feasible.
- An Inner Approximation of FS.

-New Concept: Relaxations and Tightenings

| $\gamma' := \min_{x \in \mathbb{R}} f(x)$ :                        | $g(x) \ge 0$ (FS)                                               |
|--------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                    |                                                                 |
| Definition 1.                                                      | Definition 2.                                                   |
| In a Relaxation, we remove or loosen one of the constraints.       | In a Tightening, we add new constraints.                        |
| $\gamma_R^* := \min_{x \in \mathbb{R}}  f(x) : \qquad g(x) \ge -1$ | $\gamma_T^a := \min_{x \in \mathbb{R}}  f(x) : \qquad g(x) \ge$ |
| <ul> <li>γ<sub>k</sub> ≤ γ*</li> </ul>                             | <ul> <li>¬§ ≥ ¬°</li> </ul>                                     |
| <ul> <li>Solution x* no longer feasible.</li> </ul>                | <ul> <li>Solution x* is still feasible.</li> </ul>              |
| <ul> <li>An Outer Approximation of FS.</li> </ul>                  | <ul> <li>An Inner Approximation of FS</li> </ul>                |

- FS stands for Feasible Set
  - The set of values of x which satisfy the constraints
- Relaxations *Increase* the size of the feasible set
  - The solution may not be feasible for the original problem
- Tightenings *Decrease* the size of the feasible set
  - The solution may not be optimal for the original problem

### **MAX-CUT: Original Problem**

$$\max_{\substack{x_i^2 = 1}} \frac{1}{2} \sum_{i,j} w_{i,j} (1 - x_i x_j)$$

**Solution:** 
$$\gamma^* = 4$$

• 
$$x_1 = x_3 = x_4 = 1$$

• 
$$x_2 = x_5 = -1$$

### MAX-CUT: Relaxed Problem

$$\max_{\frac{x_i^2 \le 1}{2}} \frac{1}{2} \sum_{i,j} w_{i,j} (1 - x_i x_j)$$

4 / 20

Solution:  $\gamma_B^* = 4$ 

• 
$$x_2 = x_5 = 1$$

• 
$$x_1 = x_4 = -1$$

• 
$$x_3 = 0$$

### YALMIP Code:

$$> x = sdpvar(5,1);$$

$$> obj=2.5-.5*x(1)*x(2)-.5*x(2)*x(3)$$

$$>$$
 -.5\*x(3)\*x(4)-.5\*x(4)\*x(5)-.5\*x(1)\*x(5);

Link: Download the Free version of IBM solver CPLEX and add path to MATLAB



To a various of the first position of the f

Note the solution to the relaxed Max Cut problem is not feasible for the original problem.

## A Third Option: Duality

A Cool Word, but Meaning is Vague



## Definition 3.

Two **Optimization Problems are Dual** if any feasible solution to one has objective value which bounds the solution to the other problem.

### **Primal Problem:**

$$\min_{x \in \mathbb{R}} f(x): \qquad x \in S$$

### **Dual Problem:**

$$\max_{y \in \mathbb{R}} f_D(y): \qquad y \in S_D$$

### Relationship:

- if  $y \in S_D$ , then  $f_D(y) \le f(x)$  for any  $x \in S$ .
- if  $x \in S$ , then  $f(x) \ge f_D(y)$  for any  $y \in S_D$ .

M Peet

## Lagrangian Duality

$$\min_{x\in\mathbb{F}} f_0(x): \qquad \text{ subject to } f_i(x)\geq 0 \qquad i=1,\cdots k$$

Note that

$$\max_{\alpha>0} -\alpha f_i(x) = \begin{cases} \infty & f_i(x) < 0\\ 0 & \text{otherwise} \end{cases}$$

### **Equivalent Form:**

$$\gamma^* = \min_{x \in \mathbb{F}} \max_{\alpha_i > 0} f_0(x) - \sum_i \alpha_i f_i(x) = \min_{x \in \mathbb{F}} \max_{\alpha_i > 0} L(x, \alpha)$$

The function  $L(x,\alpha)=f_0(x)-\sum_i \dot{\alpha}_i f_i(x)$  is called the **Lagrangian**.

The **Dual Problem** switches the min-max:

$$\lambda^* = \max_{\alpha_i > 0} \min_{x \in \mathbb{F}} f_0(x) - \sum_i \alpha_i f_i(x)$$

Or if we define  $g(\alpha) = \min_{x \in \mathbb{F}} f_0(x) - \sum_i \alpha_i f_i(x)$ ,

$$\lambda^* = \max_{\alpha_i > 0} \ g(\alpha)$$

For convex optimization,  $\lambda^* = \gamma^*$ . However,  $x^* \neq \alpha^*$ .

Note: We always have  $\max_x \min_y g(x,y) \leq \min_y \max_x g(x,y)$  (2-player game).

M. Peet Lecture 03: Optimization 6 / 20

Lagrangian Duality: subject to  $f(x) \ge 0$  ( $x = 1, \dots, k$ ). Since the  $\max_{i \ne j \ne 0} f(x) \ge 0$  ( $x = 1, \dots, k$ ). Since the  $\max_{i \ne j \ne 0} f(x) \ge 0$  ( $x = 1, \dots, k$ ). Since the  $\max_{i \ne 0} f(x) \ge 0$  ( $x = 1, \dots, k$ ). The foreign that  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ . The foreign that  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ . The foreign that  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ . Of f and define  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ . We write  $f(x) \ge 1$ ,  $f(x) \ge 1$ ,  $f(x) \ge 1$ . For some application,  $f(x) \ge 1$ ,  $f(x) \ge 1$ , f(x)

The property (Weak Duality)

$$\max_{x} \min_{y} g(x, y) \le \min_{y} \max_{x} g(x, y)$$

always holds for smooth functions and when equality holds can be interpreted as a Nash equilibrium (See window drawings in "A Beautiful Mind").

The player which moves second always wins. Note the second player here is the inner optimization problem ( $\min$  on LHS and  $\max$  on RHS). To verify, just use the function

$$g(x,y) = xy$$

# Strong vs. Weak Duality (In the Lagrangian Sense)



 $q(\lambda^\star) < f(x^\star)$   $q(\lambda)$  weak duality

strong duality

**Primal Problem:** 

$$\gamma^* = \min_{x \in \mathbb{R}} f(x) : x \in S$$

### **Dual Problem:**

$$\lambda^* = \max_{y \in \mathbb{R}} f_D(y) : \qquad y \in S_D$$

## Definition 4.

**Strong Duality** holds if  $\lambda^* = \gamma^*$ . Weak Duality holds if  $\lambda^* < \gamma^*$ .

- ullet Strong Duality holds if f, S are convex and S has non-empty interior.
- · Weak Duality always holds.
- The Lagrangian Dual Problem is ALWAYS Convex.

M. Peet Lecture 03: Optimization 7 / 20

## Lagrangian Duality Examples

Two Ways to Solve the Same Problem

### Primal LP:

$$\max_{x \in \mathbb{R}} c^T x :$$

$$Ax \le b$$

$$x \ge 0$$

### Dual LP:

$$\min_{y \in \mathbb{R}} b^T y :$$

$$A^T y \ge c$$

$$y \ge 0$$

$$g(\alpha) = \max_{x \ge 0} c^T x - \alpha^T (Ax - b) = \max_{x \ge 0} (c - A^T \alpha)^T x + \alpha^T b = \begin{cases} b^T \alpha & A^T \alpha \ge c \\ \infty & \text{otherwise} \end{cases}$$

### Primal SDP:

$$\min_{x \in \mathbb{R}} \sum_{i=1}^{m} c_i x_i$$

$$X = \sum_{i=1}^{m} F_i x_i - F_0 \ge 0$$

### **Dual SDP:**

$$\max_{y\in\mathbb{R}} \ \operatorname{trace}(F_0Y):$$
 
$$\operatorname{trace}(F_iY) = c_i \quad (i=1,\cdots,m)$$
 
$$Y\geq 0$$

8 / 20

The trace notation simply means trace $(FY) = \sum_{i,j} F_{ij} Y_{ij}$ .

## Lagrangian Duality Examples

$$\max_{x \ge 0, Ax - b \le 0} c^T x$$

$$= \max_{x \ge 0} \min_{\alpha \ge 0} c^T x - \alpha^T (Ax - b)$$

$$\leq \min_{\alpha \ge 0} \max_{x \ge 0} c^T x - \alpha^T (Ax - b)$$

$$= \min_{\alpha \ge 0} \max_{x \ge 0} (c^T - \alpha^T A)x + \alpha^T b$$

$$= \min_{\alpha \ge 0, c^T - \alpha^T A \le 0} \alpha^T b$$

 $= \min_{\alpha \geq 0, \, c \leq A^T \alpha} \ b^T \alpha$ 

#### Lagrangian Duality Examples

| Primal LF                   | te contract of the contract of | Dual LP:                                                                                                                                     |             |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                             | $\max_{x \in \mathbb{R}} \ e^T x$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\min_{y \in \mathbb{R}} \ b^T y :$ $A^T y \geq c$                                                                                           |             |
|                             | $Ax \le b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A^T y \ge c$                                                                                                                                |             |
|                             | $x \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $y \ge 0$                                                                                                                                    |             |
| $g(\alpha) = \frac{\pi}{2}$ | $\max_{\geq 0} c^T x - \alpha^T (Ax - b) = \max_{a \geq 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sum_{0}^{\infty} (c - A^{T} \alpha)^{T} x + \alpha^{T} b = \begin{cases} b^{T} \alpha & A^{T} \alpha \\ \infty & \text{other} \end{cases}$ | ≥ c<br>wise |
| Primal SE                   | P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dual SDP:                                                                                                                                    |             |
| min                         | $\sum_{i} c_i x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\max_{y \in \mathbb{R}} \ \operatorname{trace}(F_0Y)$ :                                                                                     |             |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $trace(F_iY) = c_i  (i = 1, \cdots$                                                                                                          | , m)        |
|                             | $X = \sum_{i} F_i x_i - F_0 \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Y \ge 0$                                                                                                                                    |             |
| The trace                   | notation simply means trac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\pi(FY) = \sum_{i,j} F_{ij}Y_{ij}$ .                                                                                                        |             |

# Convex Cones: What Does Positivity Even Mean?

Question: What does  $f(x) \ge 0$  mean.

• What does  $y \ge 0$  mean?

## **Definition 5.**

A set is a **cone** if for any  $x \in Q$ ,

$$\{\mu x : \mu \ge 0\} \subset Q.$$



### Examples:

- Positive Orthant:  $y \ge 0$  if  $y_i \ge 0$  for  $i = 1, \dots, n$ .
- Half-space:  $y \ge 0$  if  $\sum y_i \ge 0$  ( $\mathbf{1}^T y \ge 0$ ).
  - More generally,  $y \ge 0$  if  $\mathbf{a}^T y + b \ge 0$ .
- Intersection of Half-spaces:  $y \ge 0$  if  $a_i^T y + b_i \ge 0$  for  $i = 1, \dots, n$ .
- Positive Matrices:  $P \ge 0$  if  $x^T P x \ge 0$  for all  $x \in \mathbb{R}^n$ .
- Positive Functions:  $f \ge 0$  if  $f(x) \ge 0$  for all  $x \in \mathbb{R}^n$ .

M. Peet

## Generalized Inequalities and Convex Cones

What is an inequality? What does  $\geq 0$  mean?

- An inequality implies a partial ordering:
  - $x \ge y \text{ if } x y \ge 0$
- Any convex cone, C defines a partial ordering:
  - $x-y \ge 0$  if  $x-y \in C$
- The ordering is only partial because  $x \le 0$  does not imply  $x \ge 0$ 
  - $-x \notin C$  does not imply  $x \in C$ .
  - x may be indefinite.
- The Cone of Positive Matrices is a partial ordering.
  - A matrix may have both positive and negative eigenvalues.

# Dual Cones (on an inner-product space)

## Definition 6.

Two Sets are Dual (X and Y) if  $x \in X$  implies  $\langle x, y \rangle \geq 0$  for all  $y \in Y$ .

For every point  $y \in Y$ , the angle between y and every point in X is less than  $90^\circ$  (and vice-versa holds be definition).

We can now consider **Self-Dual Cones**:

- Positive Orthant:  $y \ge 0$  if  $y_i \ge 0$  for  $i = 1, \dots, n$ .
- Positive Matrices:  $P \ge 0$  if  $x^T P x \ge 0$  for all  $x \in \mathbb{R}^n$ .
  - $\langle X, Y \rangle = \operatorname{trace}(XY)$



This is why we refer to both primal and dual versions of SDP and LP.

- Their dual problems are of the same form.
- Allows Primal-Dual Algorithms
- Faster Convergence

## Linear Algebra Review: Symmetric Matrices

### Definition 7.

A square matrix  $P \in \mathbb{R}^{n \times n}$  is **Symmetric**, denoted  $P \in \mathbb{S}^n$  if  $P = P^T$ .

$$P = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 2 & 3 \\ *^T & 4 & 5 \\ *^T & *^T & 6 \end{bmatrix}$$

• Symmetric Matrices have **Real** Eigenvalues:  $\{\lambda: Px = \lambda x, \ x \in \mathbb{R}^n\} \subset \mathbb{R}$ 

## **Definition 8.**

A matrix U is **Unitary** (orthogonal) if  $U^{-1} = U^T$ .

Unitary Matrices have the pleasant property that ||Ux|| = ||x|| for any  $x \in \mathbb{R}^n$ .

• e.g. Rotation Matrices  $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ .

Symmetric Matrices can be diagonalized by a Unitary matrix.

$$P = U\Lambda U^T$$
 or  $U^T P U = \Lambda$   $\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$  ( $\lambda_i$  are eigenvalues)

# Linear Algebra Review: Singular Value Decomposition

For ANY non-symmetric matrices,  $P = U\Sigma V^T$ , with U, V unitary and  $\Sigma = \mathrm{diag}(\sigma_1, \cdots, \sigma_n)$  diagonal, positive.

- This is called the Singular Value Decomposition (SVD).
- $\sigma_i \geq 0$  (Singular Values) are the square roots of the eigenvalues of  $P^TP$ .
- The maximum  $\sigma_i$  is denoted  $\bar{\sigma}(P)$ . Note that  $\bar{\sigma}(P) = \max_x \frac{\|Px\|}{\|x\|}$ .

Matlab Code: > [U,S,V]=svd([1 2 3;2 4 5;3 5 6]);

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \underbrace{\begin{bmatrix} -.33 & -.74 & -.59 \\ -.59 & -.33 & .74 \\ -.74 & .59 & -.33 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 11.34 & 0 & 0 \\ 0 & .52 & 0 \\ 0 & 0 & .17 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} -.33 & .74 & -.59 \\ -.59 & .33 & .74 \\ -.74 & -.59 & -.33 \end{bmatrix}}_{V^T}$$

**NOTE:** This is not quite the same as Diagonalization! Unless....

Matlab Code: > [U,S]=schur([1 2 3;2 4 5;3 5 6]);

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} = \underbrace{\begin{bmatrix} -.33 & -.74 & -.59 \\ -.59 & -.33 & .74 \\ -.74 & .59 & -.33 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 11.34 & 0 & 0 \\ 0 & -.52 & 0 \\ 0 & 0 & .17 \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} -.33 & -.74 & -.59 \\ -.59 & -.33 & .74 \\ -.74 & .59 & -.33 \end{bmatrix}^{T}}_{II^{T}}$$

M. Peet Lecture 03: Optimization 13 / 20

# Linear Algebra Review: Matrix Positivity - Definition

Try not to define positivity using eigenvalues. (Eigenvalues don't add)

## Definition 9.

A symmetric matrix  $P \in \mathbb{S}^n$  is **Positive Semidefinite**, denoted  $P \geq 0$  if

$$x^T P x \ge 0 \qquad \text{ for all } x \in \mathbb{R}^n$$

## Definition 10.

A symmetric matrix  $P \in \mathbb{S}^n$  is **Positive Definite**, denoted P > 0 if

$$x^T P x > 0$$
 for all  $x \neq 0$ 

- P is Negative Semidefinite if  $-P \ge 0$
- P is Negative Definite if -P > 0
- A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a *convex cone*.

M. Peet Lecture 03: Optimization 14

## Pleasant Properties of Positive Matrices

### Lemma 11.

 $P \in \mathbb{S}^n$  is positive definite if and only if all its eigenvalues are positive.

In this case, the SVD and Unitary (Schur) Diagonalization are the same.

$$\begin{bmatrix} 4 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 6 \end{bmatrix} = \underbrace{ \begin{bmatrix} -.37 & .82 & -.44 \\ -.58 & -.58 & -.58 \\ -.73 & .04 & .69 \end{bmatrix} }_{U} \underbrace{ \begin{bmatrix} 9.4 & 0 & 0 \\ 0 & 3.4 & 0 \\ 0 & 0 & 2.2 \end{bmatrix} }_{\Lambda = \Sigma} \underbrace{ \begin{bmatrix} -.37 & .82 & -.44 \\ -.58 & -.58 & -.58 \\ -.73 & .04 & .69 \end{bmatrix}^{T}}_{U^{T} = V^{T}}$$

**Fact:** If T is invertible, then P > 0 is equivalent to  $T^T P T > 0$ .

• 
$$P > 0 \to (Tx)^T P(Tx) = x^T T^T P T x > 0$$

• 
$$T^T PT > 0 \to (T^{-1}x)^T T^T PT(T^{-1}x) = x^T Px > 0$$

**Fact:** A Positive Definite matrix is invertible:  $P^{-1} = U\Sigma^{-1}U^T$ .

**Fact:** The inverse of a positive definite matrix is positive definite:  $\Sigma^{-1} > 0$ 

**Fact:** For any P>0, there exists a positive square root,  $P^{\frac{1}{2}}>0$  where  $P=P^{\frac{1}{2}}P^{\frac{1}{2}}$ 

$$P^{\frac{1}{2}} = U \Sigma^{\frac{1}{2}} U^T > 0 \qquad P^{\frac{1}{2}} P^{\frac{1}{2}} = U \Sigma^{\frac{1}{2}} U^T U \Sigma^{\frac{1}{2}} U^T = U \Sigma^{\frac{1}{2}} \Sigma^{\frac{1}{2}} U^T = U \Sigma U^T = P$$

M. Peet Lecture 03: Optimization 15 / 20

# **Building Linear Matrix Inequalities**

Fact: 
$$\begin{bmatrix} X & Y \\ Y^T & Z \end{bmatrix} > 0$$
, implies both  $X > 0$  and  $Z > 0$ .

**Proof:** True since 
$$\begin{bmatrix} 0 \\ z \end{bmatrix}^T \begin{bmatrix} X & Y \\ Y^T & Z \end{bmatrix} \begin{bmatrix} 0 \\ z \end{bmatrix} > 0$$
 and  $\begin{bmatrix} x \\ 0 \end{bmatrix}^T \begin{bmatrix} X & Y \\ Y^T & Z \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} > 0$ 

**Fact:** X>0 and Z>0 is equivalent to  $\begin{bmatrix} X & 0 \\ 0 & Z \end{bmatrix}>0.$ 

**Proof:** True since  $x^T X x > 0$  and  $z^T Z z > 0$  implies

$$\begin{bmatrix} x \\ z \end{bmatrix}^T \begin{bmatrix} X & 0 \\ 0 & Z \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = x^T X x + z^T Z z > 0.$$

## Theorem 12 (Schur Complement).

$$\begin{bmatrix} X & Y \\ Y^T & Z \end{bmatrix} > 0 \; \Leftrightarrow \; \begin{bmatrix} X & 0 \\ 0 & Z - Y^T X^{-1} Y \end{bmatrix} > 0 \; \Leftrightarrow \; \begin{bmatrix} X - Y Z^{-1} Y^T & 0 \\ 0 & Z \end{bmatrix} > 0$$

Diagonal Dominance: If X and Z are big enough, Y doesn't matter.

M. Peet Lecture 03: Optimization 16

## Leftover Factoids on Positive Matrices

### Things which are true:

- P > 0 and Q > 0 implies P + Q > 0.
- P>0 implies  $\mu P>0$  for any positive scalar  $\mu>0.$
- $M^T M \ge 0$  for any matrix, M.
- P > 0 implies  $M^T P M > 0$  if nullspace of M is empty.

## Things which are **NOT TRUE** (Fallacies):

- P > 0 implies  $TPT^{-1} > 0$ .
- P > 0 and Q > 0 implies PQ > 0.
- P > 0 implies  $T^T P + PT > 0$
- $P \ge 0$  implies P invertible.
- A has positive eigenvalues implies  $A + A^T > 0.([1 3; 0.1])$

M. Peet Lecture 03: Optimization

# Semidefinite Programming - Dual Form

minimize 
$$\operatorname{trace} CX$$
 subject to  $\operatorname{trace} A_i X = b_i$  for all  $i$   $X \succeq 0$ 

- ullet The variable X is a symmetric matrix
- $X \succeq 0$  is another way to say X is positive semidefinite
- The feasible set is the intersection of an affine set with the positive semidefinite cone

$$\left\{\,X\in\mathbb{S}^n\mid X\succeq 0\,\right\}$$

Recall trace  $CX = \sum_{i,j} C_{i,j} X_{j,i}$ .

M. Peet Lecture 03: Optimization 18 / 20

## SDPs with Explicit Variables - Primal Form

We can also explicitly parametrize the affine set to give

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & F_0 + x_1 F_1 + x_2 F_2 + \cdots + x_n F_n \preceq 0 \\ \end{array}$$

where  $F_0, F_1, \ldots, F_n$  are symmetric matrices.

The inequality constraint is called a *Linear Matrix Inequality (LMI)*; e.g.,

$$\begin{bmatrix} x_1 - 3 & x_1 + x_2 & -1 \\ x_1 + x_2 & x_2 - 4 & 0 \\ -1 & 0 & x_1 \end{bmatrix} \preceq 0$$

which is equivalent to

$$\begin{bmatrix} -3 & 0 & -1 \\ 0 & -4 & 0 \\ -1 & 0 & 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \preceq 0$$

M. Peet Lecture 03: Optimization 19 / 20

## Linear Matrix Inequalities

Linear Matrix Inequalities are often a *Simpler* way to solve control problems. **Common Form:** 

Find 
$$X$$
: 
$$\sum_{i} A_{i}XB_{i} + Q > 0$$

There are several very efficient **LMI/SDP Solvers** which interface with YALMIP:

- SeDuMi
  - Fast, but somewhat unreliable.
  - Link: http://sedumi.ie.lehigh.edu/
- LMI Lab (Part of Matlab's Robust Control Toolbox)
  - Universally disliked, but you already have it.
  - Link: http://www.mathworks.com/help/robust/lmis.html
- MOSEK (commercial, but free academic licenses available)
  - Probably the most reliable
  - ► Link: https://www.mosek.com/resources/academic-license

M. Peet Lecture 03: Optimization

20 / 20