$\sigma = 5.6705 \times 10^{-8} \, W/m^2 \cdot K^4$ (含常數 Planck h、光速 c、電子電荷 e)。 例:中空金屬上的小洞對光吸收率 e=1 ,故是黑体,燒紅時在暗室中小洞最亮。

(物体表面對光的吸收率e)=(物体表面的發光率)的証明:

假設上方是黑体,intensity $I_{h}(T) = \sigma T^{4}$;

下方是一般物体,會吸收 $eI_{b}(T)$ 。

但根據第0定律,T相同時必定平衡,

吸收必等於輻射,故必有 $eI_{h}(T) = e\sigma T^{4}$ 被射出。

假設環境是黑体,當其溫度 $T_s \neq$ 物体的溫度T 時,有 $I_b(T_S)$ 落到物体表面,物体吸收 $eI_b(T_S) = e\sigma T_S^4$,而依本身溫度輻射出 $I(T) = e\sigma T^4$,故能量淨射出是

 $H = AI(T) - AeI_b(T_S) = Ae\sigma(T^4 - T_S^4)$ ($\stackrel{.}{\cong} e_S = 1$ $\stackrel{.}{\Leftrightarrow}$) $\stackrel{.}{\circ}$

H.W.: Prob. 3, 4, 8, 9, 10

Ch. 20 Kinetic Theory

Hooke \rightarrow Bernoulli 1738 \rightarrow Joule 1848 modified

Ideal gas:分子間距離遠大於分子大小(故分子体積可略),且分子間除彈性碰撞的

瞬間外無其它作用(故分子位能可略)。

在 1 atm 及室溫下,空氣分子間距為分子大小的約 10 倍,分子約佔 1/1000 体積。

i -th 分子撞牆前後的 $\Delta p_{ix} = (-mv_{ix}) - mv_{ix} = -2mv_{ix}$.

二次撞牆間時間差 $\Delta t_i = 2L/v_{ix}$

此分子對牆的力 $F_i = -\Delta p_{ix}/\Delta t_i = m v_{ix}^2/L$.

更合理的導法:

把分子分成許多速度群,第i群速度 \vec{v}_i ,分子數 N_i 。

在dt 時間內(dt 極短故群間不碰撞)·第i 群分子(若向

右運動)傳給牆的動量 $dp_{ix} = (N_i/V)(Av_{ix}dt)(2mv_{ix})$

此群的分壓 $P_i = (1/A)dp_{ix}/dt = (N_i/V)2mv_{ix}^2$ if $v_{ix} > 0$ °

總壓力
$$P = \sum_{\text{向右的}i} P_i = \sum_{v_{ix}>0\text{的}i} (N_i/V) 2mv_{ix}^2 = \frac{Nm}{V} \frac{1}{N} \sum_{all \text{ i}} N_i v_{ix}^2 = \frac{mN}{V} < v_x^2 > \cdots$$

Heat Capacity for Monatomic Ideal Gas

 $U = N < mv^2/2 > = N3kT/2 = 3nRT/2$,只與溫度有關 , $\Delta U = 3nR\Delta T/2$ 。

定容: $3nR\Delta T/2 = \Delta U = Q = nC_V\Delta T$ · 故 $C_V = 3(R/2)$ 。

定壓: $C_P = C_V + R = (5/2)R$ 。 故單原子氣体的 $\gamma = C_P/C_V = 5/3 = 1.67$ 。

 $v < v_x^2 > = < v_y^2 > = < v_z^2 > = < v^2 > /3 \& < mv^2/2 > = 3kT/2$

∴ $< m v_x^2 / 2 > = < m v_y^2 / 2 > = < m v_z^2 / 2 > = kT / 2$ per mole °

Equipartition of energy: 分子的每一個對能量有貢獻的自由度平均貢獻能量kT/2。

【 參考不考:各項都是 $c\,q^2/2$,而能量 ϵ 的狀態被佔的機率 $\propto \exp(-\epsilon/kT)$,故 $< c\,q^2/2 >$

$$=\frac{\int_{-\infty}^{\infty}(cq^2/2)\exp(-cq^2/2kT)dq}{\int_{-\infty}^{\infty}\exp(-cq^2/2kT)dq}=kT/2 \cdot \mathbf{1}$$

能量均分失敗(右圖): 量子能階不連續, 能量形式 $cq^2/2$ 不正確,有狀態未能激發。

Heat Capacity of Solids

原子在位置上作三個方向的振盪 $\epsilon = (m/2)(v_x^2 + v_y^2 + v_z^2) + (k/2)(x^2 + y^2 + z^2)$, 共 f = 6 自由度, $\langle K.E. \rangle = 3kT/2 = \langle P.E. \rangle$,內能U = N3kT = n3RT。 $:: \Delta V \approx 0$ · $:: W \approx 0$ · $C_P \approx C_V = (1/n)(\Delta U/\Delta T) = 3R$ –Dulong-Petit rule · 但只適用在高溫,古典力學能量形式 $c \, q^2/2$ 成立故能量均分成立時。

Molecular Speeds - 分子速率分布函數

 $\theta = \omega t$, x = vt , $\therefore v = x/t = (x/\theta)\omega$, $\theta \& x$ 固定,以此可量出<mark>速率在 v & v + dv 間的分子數 dn 。若總分子數 N ,則</mark>

 $f(v) \equiv (1/N) dn/dv = 機率密度$ 。

總機率 $\int_0^\infty f(v)dv = \int_0^\infty (1/N)(dn/dv)dv = (1/N)\int dn = (1/N)N = 1$ 。

Maxwell-Boltzmann 分布 (Maxwell 先導出 · Boltzmann 証明自任何的分布出發 · 最後都會變成如下的分布): $f(v) = 4\pi (m/2\pi kT)^{3/2} v^2 \exp(-mv^2/2kT)$

 $= (8\pi/m)(m/2\pi kT)^{3/2} \in \exp(-\epsilon/kT) \cdot \epsilon \equiv mv^2/2 \cdot \epsilon$

【理由:(1)統計力學証明能量 \in 的狀態被分子佔據的機率 $\propto \exp(-\epsilon/kT)$;(2)把分子速度空間分成許多晶格點,每點代表一速度狀態並佔有一方塊空間,而在v & v + dv 間的体積是 $4\pi v^2 dv$,故分子狀態的數目 $\propto 4\pi v^2 dv$ 。 因此 $f(v) = Av^2 \exp(-mv^2/2kT)$,再由 $\int_0^\infty f(v) dv = 1$

最可能速率 v_{mp} 由 $(df/dv)|_{v=v_{mp}} = 0$ 得 $v_{mp} = \sqrt{2kT/m}$ 。
Average $v_{av} = \int_0^\infty vf(v)dv = \sqrt{8kT/\pi m} = \sqrt{2.55kT/m}$ 。

Root-mean-square $v_{rms} = \sqrt{\int_0^\infty v^2 f(v) dv} = \sqrt{3kT/m}$ °

 $v \propto \sqrt{1/m} \cdot m$ 愈小v 愈大 $\cdot v$ 可大於地表的 v_{escape}

故大氣中無 $H_2 \& He$ 。在液体中,v大於液面的 v_{escape} 造成氣化。

Molecular Collision (Mean Free Path)

假設分子都是半徑r的圓球,且僅有一分子以 v_{rel} 在動,則在dt時間內,所有中心在「半徑2r、長 $v_{rel}dt$ 」的管子內的分子都會被撞到,有 $dn = (N/V)[(2r)^2\pi]v_{rel}dt$,故

 $dn/dt = (N/V)4\pi r^2 v_{rel} \circ$

但其它分子也在動。把分子分成許多速度群,第i 群速度 $ec{v}_i$,分子數 N_i :

$$\overrightarrow{v_i} \longrightarrow \overrightarrow{v_i} \longrightarrow \overrightarrow$$

在dt 內,第i 群中一個分子會碰撞的次數

$$\begin{split} dn_i &= \sum_j \frac{N_j}{V} [(2r)^2 \pi] |\vec{v}_i - \vec{v}_j| dt \ \cdot \ \dot{t} \dot{t} \frac{dn_i}{dt} = 4\pi \ r^2 \frac{N}{V} \frac{1}{N} \sum_j N_j |\vec{v}_i - \vec{v}_j| \\ &\mathbb{E}$$

$$\mathbb{E}$$

$$\left\langle \frac{dn}{dt} \right\rangle = \frac{1}{N} \sum_i N_i \frac{dn_i}{dt} = \frac{1}{N} \sum_i N_i \left(4\pi \ r^2 \frac{N}{V} \frac{1}{N} \sum_j N_j |\vec{v}_i - \vec{v}_j| \right) \\ &= \frac{N}{V} 4\pi \ r^2 \sum_{i,j} \frac{N_i N_j |\vec{v}_i - \vec{v}_j|}{N^2} = (N/V) 4\pi \ r^2 < v_{rel} > \circ \end{split}$$

用真正速率分布仔細計算,得 $< v_{rel} > = \sqrt{2} < v >$ 如右圖。

故 $< dn/dt >= (N/V)4\pi r^2 \sqrt{2} < v >= < dn > /dt$ 。

Mean free time $\tau = dt/\langle dn \rangle = V/(N4\pi r^2 \sqrt{2} \langle v \rangle)$

Mean free path $\lambda = \langle v \rangle \tau = V/(N4\pi r^2 \sqrt{2})$ °

 $\langle v \rangle$ $\langle v \rangle$ $\langle v \rangle$

但若是理想氣体則V = NkT/P ,故也可寫成 $\lambda = kT/(P4\pi r^2\sqrt{2})$ 。

例:air at 300~K~&~1~atm ,已知 air 分子直徑 $D=2r\approx 0.3~nm=3$ 。取 n=1 ,則 $V=nRT/P=(1mole)(8.31J/mol\cdot K)(300K)/(1.01\times 10^5~N/m^2)=0.0247m^3$, $\therefore N/V=N_A/(0.0247m^3)=2.44\times 10^{25}/m^3$,得分子間距 $\approx (V/N)^{1/3}=3.5\times 10^{-9}~m\approx 11D$,平均自由路徑 $\lambda\approx 1.02\times 10^{-7}~m\approx 340D$ 。

Van der Waals equation for real gas (只是經驗公式,有物理基礎的 2-參數 fit) $(P + a n^2/V^2)(V - nb) = nRT \leftrightarrow P'V' = nRT$ 。

- (1) $b = (1 \text{ mole } \mathcal{G})$ 分子可活動空間V' = V nb。
- (2) a>0。「牆的阻擋力(P)+後面分子的拉力」相當於「牆對理想氣体的阻擋力 (P')」。而每分子受的拉力數 $\propto n/V$ (密度)・撞牆的分子通量 dN/Adt 也 $\propto n/V$,故拉力的總數 $\propto (n/V)^2$, P'- $P=an^2/V^2$ 。

若把 Van der Waals eq. 用在「液-氣共存」區·則下頁 P - V 圖中的平滑虛線 BE(CF) 間都是不穩定狀態,它們的溫度低(高)於正常的液-氣共存態:

BE代表過冷氣体(supercooled 該凝結而未凝結),可作雲霧室量帶電粒子軌跡; CF 代表過熱液体(superheated 該氣化而未氣化),可作氣泡室量軌跡。以微波爐 燒開水會造成過熱水,加入咖啡時會造成瞬間氣化(爆開)。 T_c 是臨界(critical)溫度, $T>T_c$ 時物質不再有液、氣態的分別(液 \leftrightarrow 氣態有体積變化,故 P-V 圖中的水

平線;液態有表面張力而氣態無)。超臨界流体有液体的攜帶力,但無液体的表面張力而可進入極細縫,故可用來乾洗、萃取、......。 CO_2 的 T_c 只有 $31.1^{\circ}C$ 。

H.W.: Ex. 15, 24; Prob. 4, 7, 8

P = P(V,T) 代表一曲面

Ch. 21 Entropy and the 2nd Law of Thermodynamics

Direction of Natural Processes (例:轉動的水停下而升溫,鐵棒兩端冷升溫熱降溫, free expansion,糖溶於水,...。)

History: Newcomen's steam engine (1712) improved by James Watt (1763~82) °

Heat Engine: 把熱變為功 ($Q_H > 0$ & $Q_C < 0$)

Working substance between hot & cold reservoirs in cyclic process。 例水在鍋爐吸熱變成蒸氣,推動葉片作功後在冷凝器放熱變回水。 ∵ For each cycle $\Delta U=0$ · ∴ $W=Q=Q_H+Q_C=|Q_H|-|Q_C|$ 。 Thermal efficiency $\in =W/Q_H=1+Q_C/Q_H=1-|Q_C|/|Q_H|$ 。

永動機研發失敗(不可能有輪船只吸海水的熱而永遠航行)⇒

Kelvin-Planck statement of the 2nd law:不可能把熱全變為功而無其它改變。 即 no perfect engine,<<1, $|Q_c|\neq 0$ 。

Refrigerator: 把熱從低溫送到高溫 ($Q_H < 0$ & $Q_C > 0$)

For each cycle, $W=Q=Q_H+Q_C=-|Q_H|+|Q_C|<0$,被作功。 Coefficient of performance COP:

 $COP \equiv |Q_C|/|W|$ for fridge; $COP \equiv |Q_H|/|W|$ for heat pump。 Clausius statement of the 2nd law:不可能把熱從低溫送到高溫而無其它改變。即 no perfect fridge, $COP < \infty$, $|W| \neq 0$ 。

