

Química **Nivel medio** Prueba 1

Miércoles 16 de mayo de 2018 (tarde)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

								Па	bla pe	Tabla periódica	ğ							
	_	7	ო	4	ည	9	7	ω	တ	9	7	12	5	4	15	16		17
	1,0,1		_	Z Z	Número atómico		-					·						
7	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	elativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00		9 F 19,00
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	36	17 CI 35,45
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	19	35 Br 79,90
ro.	37 Rb 85,47	38 Sr 87,62	39 ≺ 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,9	53 I 126,90
9	55 Cs 132,91	56 Ba 137,33	57† La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 0s 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	⊙ t 5
7	87 Fr (223)	88 Ra (226)	89‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	(28 L	117 Uus (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	1 1,97
			#	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	g _ 33

1. ¿Cuál es la suma de los coeficientes cuando la ecuación se ajusta con la menor relación de números enteros?

$$_Na_2S_2O_3(aq) + _HCl(aq) \rightarrow _S(s) + _SO_2(g) + _NaCl(aq) + _H_2O(l)$$

- A. 6
- B. 7
- C. 8
- D. 9
- **2.** ¿Cuál es el número de átomos de oxígeno en 2,0 mol de carbonato de sodio hidratado, $Na_2CO_3 \cdot 10H_2O$? Constante de Avogadro, L o N_A : $6,02 \times 10^{23} \, \text{mol}^{-1}$
 - A. 6
 - B. 26
 - C. 3.6×10^{24}
 - D. 1.6×10^{25}
- 3. ¿Cuál es el volumen de la solución final, en cm³, si se diluyen $100 \,\mathrm{cm}^3$ de una solución que contiene $1,42\,\mathrm{g}$ de sulfato de sodio, $\mathrm{Na_2SO_4}$, hasta una concentración de $0,020\,\mathrm{mol\,dm}^{-3}$? $M_{_\Gamma}(\mathrm{Na_2SO_4}) = 142$
 - A. 50
 - B. 400
 - C. 500
 - D. 600

4. ¿Cuál es el rendimiento porcentual cuando se forman 2,0 g de eteno, C_2H_4 , a partir de 5,0 g de etanol, C_2H_5OH ? M_r (eteno) = 28; M_r (etanol) = 46

A.
$$\frac{2,0}{28} \times \frac{5,0}{46} \times 100$$

B.
$$\frac{2,0}{\frac{28}{5,0}} \times 100$$

C.
$$\frac{28}{2,0} \times \frac{5,0}{46} \times 100$$

D.
$$\frac{28}{\frac{2,0}{5,0}} \times 100$$

5. ¿Cuál es la composición del núcleo de ²⁶Mg?

	Protones	Neutrones	Electrones
A.	12	14	12
В.	14	12	0
C.	14	12	14
D.	12	14	0

6. ¿Qué transición electrónica emite energía de mayor longitud de onda?

7. ¿Qué aumenta a lo largo de un periodo de izquierda a derecha?

A.	Radio iónico	Electronegatividad
B.	Radio atómico	Radio iónico
C.	Energía de primera ionización	Radio atómico
D.	Energía de primera ionización	Electronegatividad

8.	¿Qué	elemento	está er	n el	bloque	p?
----	------	----------	---------	------	--------	----

- A. Pb
- B. Pm
- C. Pt
- D. Pu

9. ¿Cuál es la fórmula del nitruro de magnesio?

- A. MgN
- B. Mg₂N₃
- C. Mg₃N
- D. Mg_3N_2

10. ¿Qué especie tiene mayor longitud de enlace carbono oxígeno?

- A. CO
- B. CH₃OH
- C. CH₃CO₂⁻
- D. H₂CO

11. ¿Cuáles son las geometrías de dominio electrónico alrededor del átomo de carbono y de ambos átomos de nitrógeno en la urea, (NH₂)₂CO, aplicando la TRPEV?

	Átomo de carbono	Átomos de nitrógeno
A.	Plana trigonal	Pirámide trigonal
B.	Plana trigonal	Tetraédrica
C.	Tetraédrica	Tetraédrica
D.	Pirámide trigonal	Plana trigonal

- **12.** Los compuestos que se muestran a continuación tienen masas moleculares relativas similares. ¿Cuál es el orden creciente correcto respecto de los puntos de ebullición?
 - A. $CH_3COOH < (CH_3)_2CO < (CH_3)_2CHOH$
 - B. $CH_3COOH < (CH_3)_2CHOH < (CH_3)_2CO$
 - C. $(CH_3)_2CO < CH_3COOH < (CH_3)_2CHOH$
 - D. $(CH_3)_2CO < (CH_3)_2CHOH < CH_3COOH$
- 13. ¿Qué enunciado describe la reacción que muestra el siguiente perfil de energía potencial?

- A. La reacción es endotérmica y la entalpía de los productos es mayor que la de los reactivos.
- B. La reacción es endotérmica y la entalpía de los reactivos es mayor que la de los productos.
- C. La reacción es exotérmica y la entalpía de los productos es mayor que la de los reactivos.
- D. La reacción es exotérmica y la entalpía de los reactivos es mayor que la de los productos.

14. ¿Cuál es la variación de entalpía de combustión de la urea, (NH₂)₂CO, in kJ mol⁻¹?

$$2(NH_2)_2CO(s) + 3O_2(g) \rightarrow 2CO_2(g) + 2N_2(g) + 4H_2O(l)$$

	$\Delta H_{\rm f}$ / kJ mol ⁻¹
(NH ₂) ₂ CO(s)	-333
CO ₂ (g)	-394
$H_2O(l)$	-286

A.
$$2 \times (-333) - 2 \times (-394) - 4 \times (-286)$$

B.
$$\frac{1}{2} [2 \times (-394) + 4 \times (-286) - 2 \times (-333)]$$

C.
$$2 \times (-394) + 4 \times (-286) - 2 \times (-333)$$

D.
$$\frac{1}{2} [2 \times (-333) - 2 \times (-394) - 4 \times (-286)]$$

15. Dos soluciones acuosas de 100 cm³, una contiene 0,010 mol de NaOH y la otra 0,010 mol de HCl, están a la misma temperatura.

Cuando las dos soluciones se mezclan, se produce una elevación de temperatura de y °C.

Suponga que la densidad de la solución final es de $1,00\,\mathrm{g\,cm^{-3}}$. Capacidad calorífica específica del agua = $4,18\,\mathrm{J}~\mathrm{g}^{-1}~\mathrm{K}^{-1}$

¿Cuál es la variación de entalpía de neutralización en kJ mol⁻¹?

A.
$$\frac{200 \times 4,18 \times y}{1000 \times 0.020}$$

B.
$$\frac{200 \times 4,18 \times y}{1000 \times 0,010}$$

C.
$$\frac{100 \times 4,18 \times y}{1000 \times 0,010}$$

D.
$$\frac{200 \times 4,18 \times (y+273)}{1000 \times 0,010}$$

16. El perfil de energía potencial para la reacción reversible, $X + Y \rightleftharpoons Z$ se muestra a continuación.

Coordenada de reacción

¿Qué flecha representa la energía de activación de la reacción inversa, $Z \rightarrow X + Y$, en presencia de un catalizador?

17. ¿Qué factores pueden afectar la velocidad de reacción?

- I. Tamaño de partículas del reactivo sólido
- II. Concentración de la solución reaccionante
- III. Presión del gas reaccionante
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

18. ¿Qué factor no afecta la posición de equilibrio en esta reacción?

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -58 \text{ kJ mol}^{-1}$

- A. Variación de volumen del recipiente
- B. Variación de temperatura
- C. Adición de un catalizador
- D. Variación de presión

19. Serie de actividades de elementos seleccionados:

K, Ca, Al, Fe, H, Cu, Ag, Au mayor actividad

menor actividad

menor actividad

¿Cuáles reaccionan con ácido sulfúrico diluido?

- I. Cu
- II. CuO
- III. CuCO₃
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

20. ¿Qué enunciado es correcto?

- A. Un ácido fuerte es un buen donante de protones y su base conjugada es fuerte.
- B. Un ácido débil es un pobre receptor de protones y su base conjugada es fuerte.
- C. Un ácido fuerte es un buen donante de protones y su base conjugada es débil.
- D. Una base fuerte es una buena donante de protones y su ácido conjugado es débil.
- 21. ¿Qué elemento tiene el mismo número de oxidación en ambas especies?
 - A. C en C_2H_4 y CO_2
 - B. H en H₂O y NaH
 - C. S en SO₄²⁻ y SO₃
 - D. O en H₂O₂ y H₂O
- 22. ¿Qué describe la oxidación?
 - A. Pérdida de hidrógeno
 - B. Disminución del número de oxidación
 - C. Ganancia de electrones
 - D. Pérdida de oxígeno

23. ¿Cuáles son los productos de la electrólisis del bromuro de cinc fundido?

	Electrodo negativo (cátodo)	Electrodo positivo (ánodo)
A.	Cinc	Bromo
B.	Hidrógeno	Bromo
C.	Bromo	Cinc
D.	Bromo	Hidrógeno

– 10 –

- 24. ¿Qué compuestos pertenecen a la misma serie homóloga?
 - A. CHCCH₂CH₃, CHCCH₂CH₂CH₃
 - B. CH₃CH₂CH₂CH₂OH, CH₃CH₂OCH₂CH₃
 - C. CH₂CHCH₃, CH₃CH₂CH₂CH₃
 - D. CH₃COCH₃, CH₃CH₂OCH₃

25. ¿Cuál es el nombre de este compuesto de acuerdo con las normas de la IUPAC?

- A. Ácido 1,1-dimetilpropanoico
- B. Ácido 3,3-dimetilpropanoico
- C. Ácido 2-metilbutanoico
- D. Ácido 3-metilbutanoico
- 26. ¿Cuál es el mecanismo de la reacción del propeno con yodo en la oscuridad?
 - A. adición electrófila
 - B. sustitución electrófila
 - C. sustitución por radicales libres
 - D. sustitución nucleófila

27.	¿Cuáles so	n isómeros	estructurales?
-----	------------	------------	----------------

- I. CH₃CH₂OH y CH₃OCH₃
- II. HOCH₂CH₃ y CH₃CH₂OH
- III. CH₃COOH y HCOOCH₃
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- 28. ¿Qué característica de una molécula se detecta mediante la espectroscopía en el infrarrojo?
 - A. Masa molecular
 - B. Enlaces presentes
 - C. Número total de protones
 - D. Número total de ambientes de protones
- **29.** ¿Cómo son las incertidumbres de dos cantidades combinadas cuando las cantidades se multiplican entre sí?
 - A. Las incertidumbres se suman.
 - B. Los % de las incertidumbres se multiplican.
 - C. Las incertidumbres se multiplican.
 - D. Los % de las incertidumbres se suman.
- **30.** Se estudia la velocidad de una reacción a diferentes temperaturas.

¿Cuál es la mejor forma de graficar los datos?

	Eje x	Tipo de variable en el eje x
A.	Velocidad	Dependiente
B.	Velocidad	Independiente
C.	Temperatura	Independiente
D.	Temperatura	Dependiente