

Objectives

- Convert a design from using the Classic timing analyzer to using the TimeQuest timing analyzer
- Understand the differences between the two timing analysis engines
- Find sources for more information

Prerequisites

- Read <u>TimeQuest Timing Analyzer</u> in Volume III of the Quartus[®] II Handbook or
- View <u>TimeQuest Timing Analyzer online training</u>
- Have a copy of <u>Switching to the TimeQuest</u>
 <u>Timing Analyzer</u> chapter of Quartus II Handbook for reference

Agenda

- Introduction to switching
- Differences between the Classic and TimeQuest timing analyzers
 - Analysis
 - I/O timing constraints
 - Reporting
- Converting a design to the TimeQuest analyzer
- References

Introduction to Switching

- "Test drive" the TimeQuest tool with an existing project before switching
- SDC file required for constraints
 - Conversion utility helps convert QSF assignments to SDC file
- Switch on a per-project basis

Switching Options and Target Devices

- Default setting is to use Classic analyzer
- Exceptions
 - Projects targetting Arria™ GX devices
 - Must use TimeQuest analyzer
 - Cannot switch to Classic analyzer
 - New projects targetting Cyclone[®] III and Stratix[®] III devices
 - Default is TimeQuest analyzer
 - Can switch to Classic analyzer
- Check Quartus II Handbook, Help, or newer device handbook for other exceptions

Choosing Whether to Switch

Switch if...

- You are familiar with SDC
- You have a design that is difficult to constrain with the Classic analyzer
 - DDR
 - Complex clocking structures
- You prefer TimeQuest analysis and interface

Don't switch if...

Classic analyzer does everything you need

Switching to the TimeQuest Timing Analyzer

Analysis Differences

Classic Analyzer Settings for Switching

Setting	Classic Default	Recommended for Switching
Cut paths between unrelated clock domains	ON	OFF
Enable clock latency	OFF	ON
Enable recovery/removal analysis	OFF	ON
Default hold multicycle	Same as Multicycle	One

Change Classic Settings in GUI

Cut Paths between Unrelated Clock Domains

- Classic analyzer default: ON
 - Worst-case behavior (matches TimeQuest behavior): OFF
- Does not analyze paths between unrelated clock domains

Cut Paths between Unrelated Clock Domains

- Classic analyzer does not analyze paths between unrelated clock domains by default
 - May mask design problems
 - Timing Constraint Check tool helps show those paths
- Turn setting OFF and constrain cross-clock domain paths
 - Add cut or setup/hold relationship assignments

TimeQuest Behavior: Cross-Domain Paths

- Analyzes all paths between clock domains
- All clocks related
 - Matches turning OFF Cut paths between unrelated clock domains
 - Manually cut unrelated clock domains
 - set_false_path Or set_clock_groups

Enable Clock Latency

- Classic analyzer default: OFF
 - Treats clock path delays between base clock and derived clock as offset instead of latency
 - Example: PLL compensation delays
- Offset affects setup/hold relationships
 - Sometimes requires multicycle assignments to correct
 - Place and route changes can "break" corrections
- Latency affects clock skew
- Always turn this setting ON

Analysis Using Clock Offset

Using offset

Offset = -2 ns Clock skew = 0 ns

Setup relationship = 2 nsSlack = 2 + 0 - 3 = -1 ns

Requires multicycle = 2 Setup relationship = 12 ns Slack = 12 + 0 - 3 = 9 ns

Analysis Using Clock Latency

Using latency

Latency = -2 ns Clock skew = 2 ns

Setup relationship =
$$10 \text{ ns}$$

Slack = $10 + 2 - 3 = 9 \text{ ns}$

TimeQuest Behavior: Clock Latency

- TimeQuest treats clock path delays between base clock and derived clock as latency
- Always uses latency, not offset

Enable Recovery/Removal Analysis

- Classic analyzer default: OFF
 - Worst-case behavior (matches TimeQuest behavior): ON
- Does not perform recovery & removal analysis on asynchronous control paths

Enable Recovery/Removal Analysis

- Classic analyzer does not analyze asynchronous control signals by default
 - Similar to setup/hold check for synchronous data paths
 - Tests assertion/de-assertion of asynchronous control signal near an active clock edge
- Turn this setting ON

TimeQuest Behavior: Asynchronous Path Analysis

- Always performs recovery/removal analysis
- Analyzes asynchronous control paths

Default Hold Multicycle

- Edge to use for analysis when creating a (setup) multicycle assignment with no corresponding hold multicycle assignment
- ■Classic analyzer default: Same as Multicycle
 - Worst-case behavior: One

Classic Default Hold Multicycle

Disabled by divide-by-2 enable

Worst-Case Behavior

Classic Multicycle Recommendation

- Do not rely on a default value
 - Possibility of different assumptions
 - Multiple people designing modules
 - One person has default of One
 - One person has default of Same as Multicycle
- Specify a hold multicycle value for each multicycle assignment

TimeQuest Behavior: Hold Multicycle

- ■Hold multicycle default value is 0
 - Equivalent to Classic setting of One
 - TimeQuest hold multicycle = Classic setting 1
- Defaults to worst-case behavior

Switching to the TimeQuest Timing Analyzer

I/O Timing Constraint Differences

I/O Timing Assignments

- ■FPGA-centric: t_{SU}, t_{CO}, etc.
 - Between FPGA boundary and internal register
- System-centric: input delay, output delay
 - Between external register and internal register
 - Just a register-to-register path
- Often easier to use system-centric I/O assignments
 - Define external environment that I/O timing must meet

FPGA-Centric vs. System-Centric

- ■Table shows conversion for simple cases
 - Not appropriate in every situation
- Detailed information in Switching to TimeQuest chapter

FPGA-Centric	System-Centric (SDC constraints)	
t _{SU} requirement	set_input_delay -max <period -="" t<sub="">SU></period>	
t _H requirement	set_input_delay -min <t<sub>H></t<sub>	
t _{CO} requirement	set_output_delay -max <period -="" t<sub="">CO></period>	
Minimum t _{CO} requirement	set_output_delay -min -< <i>min t</i> _{CO} >	

Switching to the TimeQuest Timing Analyzer

Reporting Differences

Classic Analyzer Reporting

- Generates many reports by default
- Get further detail from default reports

TimeQuest Analyzer Reporting

- ■TimeQuest analyzer generates 4 summary compilation reports when enabled
- Use TimeQuest interface for ondemand reporting
 - More efficient reporting, less cluttered interface

Path-Based Reporting

- Classic analyzer reports only single worst-case path between registers
- TimeQuest analyzer reports all paths between registers
 - Can uncover more failing paths

Switching to the TimeQuest Timing Analyzer

Conversion

Convert a Design to the TimeQuest TA

- 1. Compile design in the Quartus II software
- 2. Run conversion utility to create SDC file
- Analyze design in TimeQuest interface and review timing reports
- Turn on TimeQuest analyzer in Quartus II settings
- If you are comfortable with SDC, skip steps 1 and 2 and write your own SDC file

Compile Design in the Quartus II Software

- Some assignments not in QSF but are reported by Classic timing analyzer
 - Assignments in HDL source code
 - PLL input clocks
- Conversion utility reads timing analysis report if it exists
- Use recommended settings for Classic analyzer

Run Conversion Utility

C:\Projects> quartus_sta --qsf2sdc project_name

Conversion Utility Notes

- Not all QSF assignments are converted
- Conversion utility makes assumptions
 - May result in incorrect conversion if your assignments don't match assumptions
- Review SDC file to ensure accuracy
 - Add or update constraints as necessary
- Edit a copy of the SDC file so reconverting doesn't overwrite changes

Conversion Utility Assumptions

- Recommended global settings configured correctly
- All (setup) multicycle exceptions require matching hold multicycle exception
- Other assumptions detailed in Switching chapter

Sample Conversion (Clock & Multicycle)

Sample Conversion (T_{SU} & T_H Require.)

```
# QSF: -name TSU_REQUIREMENT 3 ns -from * -to in4
set_max_delay 3 -from [get_ports {in4}] -to [get_registers *]
# QSF: -name TSU_REQUIREMENT 5 ns -from * -to in1
set_max_delay 5 -from [get_ports {in1}] -to [get_registers *]
# QSF: -name TH_REQUIREMENT 1 ns -from * -to in2
set_min_delay -1.0 -from [get_ports {in2}] -to [get_registers *]
```


Analyze Design & Review Reports

- Perform timing analysis in TimeQuest analyzer
- If there are unexpected results...
- Check recommended settings and re-convert if needed
- 2. Cut unrelated clock domains
- 3. Add hold multicycle exceptions if needed
 - Automatically added if setup multicycle exceptions exist
- 4. Ensure all clocks are constrained

Check Recommended Settings

Other recommended Classic settings exist

All can cause differences between Classic and TimeQuest analysis

■To fix:

- Update settings in Classic analyzer
- Re-analyze design (recompile and perform timing analysis again)
- Run conversion again, or accept differences

```
Info: ** Translating Global Settings

Critical Warning: QSF: Expected CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS to be set to 'OFF', but it

Critical Warning: In SDC, all clocks are related by default

Critical Warning: QSF: Expected ENABLE_CLOCK_LATENCY to be set to 'ON', but it is set to 'OFF'

Critical Warning: In SDC, create_generated_clock auto-generates clock latency

Critical Warning: QSF: Expected DEFAULT_HOLD_MULTICYCLE to be set to 'ONE', but it is set to 'S

Critical Warning: In SDC, the Default Hold Multicycle is zero - equivalent to one in the C
```


Report Clock Transfers

- Verify cross-clock domain paths
- Right-click to cut clock domains or add multicycle constraints
 - Applied to timing netlist in TimeQuest memory, not SDC file
 - Write out or manually edit SDC file

Report Clocks

- Are all clocks listed (constrained correctly)?
- Make necessary clock constraints
 - Create generated clocks on ripple clocks

Clocks Summary						
	Clock Name	Туре	Period	Frequency	Rise	Fall
1	clk	Base	4.000	250.0 MHz	0.000	2.000
2	clk_int	Generated	4.000	250.0 MHz	0.000	2.000
3	clk_out	Generated	4.000	250.0 MHz	0.000	2.000

Report Unconstrained Paths

Unconstrained Paths Summary

Setup

Π

0

Hold

ln.

0

Property

Illegal Clocks

2 Unconstrained Clocks

Compare Path Details

- List critical path in Classic analyzer
- Report timing on same path in TimeQuest analyzer
- Are slack values the same?
- Are source and destination clocks the same?
- Compare TimeQuest launch/latch time to Classic setup/hold relationship
 - TimeQuest launch/latch times are absolute
 - Classic launch/latch times are relative (launch is usually 0)
- Are clock latency values the same?

Switch to TimeQuest Timing Analyzer

- By default, Quartus II software uses Classic timing analyzer
 - Exceptions: all Arria GX projects and new Stratix III and Cyclone III projects
 - Timing assignments in QSF
- Change setting to use TimeQuest timing analyzer
 - Timing constraints in SDC file

Turn On TimeQuest Timing Analyzer

Use GUI or add assignment to QSF file:

set global assignment -name USE TIMEQUEST TIMING ANALYZER ON

Switch on a per-project basis

Add SDC File(s) & Other Settings

- May want to manually add converted SDC file or other SDC files to project
- Multicorner analysis checks and compiles for all process corners in one analysis/compilation
 - On by default for Cyclone II & III, Stratix II & III devices

Switch is Complete!

- Future compilations use constraints in SDC file(s)
- Perform timing analysis with TimeQuest tools

Switching to TimeQuest Summary

- Classic and TimeQuest timing analyzers behave differently
 - TimeQuest analysis more pessimistic
 - TimeQuest reporting on-demand
- Recommended process to convert to TimeQuest analyzer
- Review SDC file created by conversion utility

References

- ■Volume 3 of the Quartus II Handbook
 - Chapter 6: <u>TimeQuest Timing Analyzer</u>
 - Chapter 7: <u>Switching to the TimeQuest Timing</u>
 <u>Analyzer</u>
- SDC and TimeQuest API Reference Manual
- Online Training
 - TimeQuest Timing Analyzer

Learn More Through Technical Training

Instructor-Led Training

With Altera's instructor-led training courses, you can:

- Listen to a lecture from an Altera technical training engineer (instructor)
- Complete hands-on exercises with guidance from an Altera instructor
- Ask questions & receive real-time answers from an Altera instructor
- Each instructor-led class is one or two days in length (8 working hours per day).

Online Training

With Altera's online training courses, you can:

- Take a course at any time that is convenient for you
- Take a course from the comfort of your home or office (no need to travel as with instructor-led courses)

Each online course will take approximate one to three hours to complete.

http://www.altera.com/training

View training class schedule & register for a class

The Quartus II Design Series

■Quartus II Software Design Series: Foundation

- Project creation and management
- Design entry methods and tools
- Compilation and compilation results analysis
- Creating and editing settings and assignments
- I/O planning and management
- Introduction to timing analysis with TimeQuest Timing Analyzer

Quartus II Software Design Series: Verification

- Basic design simulation with ModelSim®-Altera simulator
- Power analysis
- Device programming and configuration
- Debugging solutions

■Quartus II Software Design Series: Timing Analysis

- Create timing constraints to meet and optimize timing
- Perform detailed timing analysis on an Altera device

■ Quartus II Software Design Series: Optimization

- Incremental compilation
- Quartus II optimization features & techniques

Altera Technical Support

- ■Reference Quartus II software on-line help
- ■Quartus II Handbook
- Consult Altera applications (factory applications engineers)
 - MySupport: http://www.altera.com/mysupport
 - Hotline: (800) 800-EPLD (7:00 a.m. 5:00 p.m. PST)
- ■Field applications engineers: contact your local Altera sales office
- ■Receive literature by mail: (888) 3-ALTERA
- ■FTP: ftp.altera.com
- ■World-wide web: http://www.altera.com
 - Use solutions to search for answers to technical problems
 - View design examples

Give Us Your Feedback

- When you registered for this training you received a confirmation email
- Please click on the link in the email to complete a short survey
- Your feedback is important to help us improve future trainings!

Thank you!

