Konuşmacıdan Bağımsız Kelime Tanıma

Nurefşan Sertbaş Shamyrat Zyrriyev Meryem Meray Yağmur

May 1, 2015

- Proje Tanımı
- ② Çerçeve yapısı ve Pencereleme
- 1 LPC Katsayılarının Çıkartılması
- Vektör Kuantalama İşlemi
- Öklid Uzaklığı Hesabı
- 6 Eşleşme
- Kapanış
- Referanslar

▶Proje Tanımı

Kişiden bağımsız kelime tanıma ve tanınan kelimenin arayüz yardımı ile mevcut dillerdeki karşılığının bulunması

Problemler

- Parametre seçiminin kompleksiteye etkisi
- Eğitim setindeki çeşitlilik(training)
- Ses sinyalindeki anlık/duygulara bağlı değişimler

▶Blok Diyagramı

Figure: Proje Blok Diyagramı

▶Konuşma sinyalinin uygun forma getirilmesi

Figure: Elma sözcüğünün zamana bağlı değişimi

- * Durağan olmayan(non-stationary) sinyal
- * Zamanla sürekli ve hızlı değişim [1] ve [2]

★ Her çerçeve boyunca sinyalin durağan oluğu kabulu

Figure: Çerçeve Yapısı

Figure: Sinyalin çerçevelere ayrılması [3]

Not:

Çerçeve boyutu 500, örtüşme 50 ve Fs 48000 Hz (1sn kayıt) olarak alınmıştır.

► Hamming Penceresi [4]

$$w(n) = 0.54 - 0.46\cos(\frac{2\pi n}{N-1})$$

 $n = 0...N-1$

Figure: Hamming Penceresi Kullanımı

►LPC Katsayılarının Çıkartılması

$$Xa = b$$
 En küçük kareler çözümünden (1)

Denklem 1'in matrix formda uyarlanmasıyla:

$$\begin{bmatrix} r(1) & r(2)^* & \cdots & r(p)^* \\ r(2) & r(1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & r(2)^* \\ r(p) & \cdots & r(2) & r(1) \end{bmatrix} \begin{bmatrix} a(2) \\ a(3) \\ \vdots \\ a(p+1) \end{bmatrix} = \begin{bmatrix} -r(2) \\ -r(3) \\ \vdots \\ -r(p+1) \end{bmatrix}$$

Figure: Yule-Walker denklemi(Levinson-Durbin algoritması) [5] ve[6]

$$r = [r(1)r(2)...r(p+1)] \times$$
 dizisinin özilişki fonksiyonu

- ▶Vectör Kuantalama Işlemi
- Elde edilen öznitelik vektörlerinin boyutu
- Yüksek hesaplama maaliyeti

Onerilen Çözüm: Vektör Kuantalama

- ⇒ Vektörler üzerindeki bir indirgeme işlemidir.
- ⇒ Amaç bilgiyi performans kaybı olmadan minimum miktarda veri ile ifade etmek.

Figure: Vektör Kuantalama

[7]

▶Öklid Uzaklığının Hesaplanması

$$\sqrt{\sum_{i=1}^{n}(p_i-q_i)^2} \tag{2}$$

p:Eğitim verisi noktaları q:Test verisi noktaları

► Eşleşme sırasında sistemde kayıtlı olan verilerle, demo sırasında alınan sözcük arası mesafeler hesaplanır ve en yakın olana karar verilir.

▶Eşleşmenin Yapılması

Figure: Sistemde kayıtlı veri formu

Figure: Matlab arayüzü

Dinlediğiniz için teşekkür ederiz...

Danışman: Ayşe Betül Büyükşar

Referanslar I

- J. F. Frigon and V. Teplitsky, "Implementation of linear predictive coding (lpc) of speech," Spring 2000.
- N. A. Meseguer, "Speech analysis for automatic speech recognition," 2009.
- G. M. M. K. Linga Murthy, "Isolated word recognition using lpc and vector quantization," *IJRET: International Journal of Research in Engineering and Technology*, vol. 1, pp. 479–482, November 2012.
- M. N. Do, "An automatic speaker recognition system," 2015.
- C. G. Si (Laura) Cai, Pritish Gandhi, "The music really speaks to me," tech. rep., Carnegie Mellon University, 2009.

Referanslar II

T. MathWorks, "lpc," 2015.

R. M. Gray, "Vector quantization," ASSP Magazine, IEEE, vol. 1, no. 2, pp. 4-29, 1984.

