

Recap: Kripke Structure

- Model for reactive systems
 - M = (S, S0, R, L)
- S is the set of states
- \circ S0 \subseteq S is the set of initial states
- ${}^{\circ}$ R \subseteq is the transition relation
 - Set of (source-state, destination-state) pairs
- $^{\circ}$ L: S $\rightarrow 2^{AP}$ is the labeling function
 - Maps each state s to a subset of AP
 - These are the atomic prop. which are true in s.

Abhik Roychoudhury, CS4271 lectures 3

Properties

- Does the spring always remain extended ?
- Does the spring remain extended infinitely often?
- How to specify such properties and reason about them?
 - This Lecture!

Abhik Roychoudhury, CS4271 lectures

Organization

- General Introduction
- LTL
- CTL*
- CTL A fragment of CTL*

Atomic propositions

- All of our logics will contain atomic props.
 - These atomic props. will appear in the labeling function of the Kripke Structure you verify.
 - Kripke structure is only a model of your design.
 - Thus the atomic props. represent some relationships among variables in the design that you verify.
 - · Atomic props in the previous example
 - · ext, malfn

Abhik Rovchoudhury, CS4271 lectures

Why study new logics?

- Need a formalism to specify properties to be checked
- · Our properties refer to dynamic system behaviors
 - Eventually, the system reaches a stable state
 - Never a deadlock can occur
- We want to maintain more than input-output properties (which are typical for transformational systems).
 - Input-output property: for input > 0, output should be > 0
 - No notion of output or end-state in reactive systems.

Abbik Roychoudbury, CS4271 Jectures

Why study new logics?

- Our properties express constraints on dynamic evolution of states.
- Propositional/first-order logics can only express properties of states, not properties of traces
- We study behaviors by looking at all execution traces of the system.
 - Linear-time Temporal Logic (LTL) is interpreted over execution traces.

Abhik Roychoudhury, CS4271 lectures

Temporal Logics

- The temporal logics that we study today build on a "static" logic like propositional/first-order logic.
 - We work with propositional logic.
 - Used to describe properties of states.
- Temporal operators describe properties on execution traces / trees.
- Time is not explicitly mentioned in the formulae
 - Rather the properties describe how the system should evolve over time.

bhik Roychoudhury, CS4271 lectures

Example

- Does not capture exact timing of events, but rather the relative order of events
- We capture properties of the following form.
 - $^{\circ}\,$ Whenever event e occurs, eventually event e' must occur.
- We do not capture properties of the following form.
 - At t = 2 e occurs followed by e' occurring at t = 4.

Abbik Roychoudhury, CS4271 Jectures

Organization

- General Introduction
- LTL
- CTL*
- CTL a fragment of CTL*

LTL

- An LTL formula ϕ is interpreted over and infinite sequence of states $\pi = s0, s1, \ldots$
 - \circ Use M,π |= ϕ to denote that formula ϕ holds in path π of Kripke Structure M.
- Define semantics of LTL formulae w.r.t. a Kripke Structure M
 - $^{\circ}$ An LTL property ϕ is true of a program model iff all its traces satisfy ϕ
 - $M \mid = \phi$ iff $M, \pi \mid = \phi$ for all path π in Kripke Structure M

Abbik Pouchoudhuny CS4271 lectures 1

LTL syntax

- Propositional Linear-time Temporal logic
- $\varphi = X\varphi \mid G\varphi \mid F\varphi \mid \varphi \cup \varphi \mid \varphi \mid R \mid \varphi \mid$ $\neg \varphi \mid \varphi \land \varphi \mid Prop$
- Prop is the set of atomic propositions
- Temporal operators
 - X (next state)
 - F (eventually), G (globally)
 - · U (until), R (release)

Alberta Daniela Indiana CC 4274 Landina

Semantics of LTL - notations

- M,π |= φ
 - Path $\pi = s_0, s_1, s_2,...$ in model M satisfies property φ
- M,π^k |= φ
 - \circ Path s_k , s_{k+1} , ... in model M satisfies property ϕ
- We now use these notations to define the semantics of LTL operators

Abhik Roychoudhury, CS4271 lectures

Semantics of LTL

- M,π |= p iff s0 |= p i.e. p \in L(s0) where L is the labeling function of Kripke Structure M
- M, π |= $\neg \phi$ iff \neg (M, π |= ϕ)
- M, π |= ϕ I \wedge ϕ 2 iff M, π |= ϕ I and M, π |= ϕ 2

Abhik Roychoudhury, CS4271 lectures

Semantics of LTL

- M, π |= X ϕ iff M, π | |= ϕ
 - \circ Path starting from next state satisfies ϕ
- M, π |= F ϕ iff $\exists k \geq 0$ M, π^k |= ϕ
- $^{\circ}$ Path starting from an eventually reached state satisfies ϕ
- M, π |= G ϕ iff $\forall k \ge 0$ M, π^k |= ϕ
 - $^{\circ}$ Path always satisfies ϕ (all suffixes of the path satisfy ϕ

CTL* Introduction LTL formulae describe properties of computation traces. CTL* formulae describe properties of computation trees. Given a Kripke Structure M, computation tree formed by starting at initial state and unfolding M to construct an infinite tree. A CTL* formula then describes properties that this infinite tree should satisfy. LTL is contained within CTL* All LTL properties are CTL* properties. All CTL* properties are not LTL properties.

Traces vs. Tree (IMPORTANT)

- LTL formulae describe properties of computation traces of a Kripke Structure
- CTL* formulae describe properties of computation tree of a Kripke Structure.
- Given a Kripke Structure M
 - a LTL formula ϕ is true iff it is true for all the traces of M
 - a CTL* formula ϕ is true iff it is true for the computation tree of M

Abhik Rovchoudhury, CS4271 lectures 31

Traces vs. Tree (IMPORTANT)

Given a Kripke Structure M

- a LTL formula ϕ is true iff it is true for all the traces of \boldsymbol{M}
- a CTL* formula ϕ is true iff it is true for the computation tree of M
- Associate states with computation tree rooted there.
 - Interpret a CTL* formula to be true in a state s iff it is true in the computation tree rooted at s
 - Thus a CTL* formula is true in a Kripke structure M, iff it is true in the initial states of M.

Abbik Roychoudbury, CS4271 Jectures

CTL* formulae

- Once again choose propositional logic as the underlying static logic.
- We need to consider two flavors of formulae:
 - State formula: Property of a state
 - Path formula: a property of a computation path
- All LTL formulae are path formulae
- Are the state formulae same as the formulae in the underlying static logic ?
 - $\circ~$ NO, refers to system evolution from a state.

Abhik Roychoudhury, CS4271 lectures

Operators in CTL*

- Path Quantifiers
 - Describe properties on the branching structure of the computation tree
 - · A: for all computation paths, ...
 - \cdot E : there exists a computation path, ...
- Temporal Operators
 - Same as LTL operators. Describe properties of a trace in the computation tree.

ohik Roychoudhury, CS4271 lectures

CTL* Syntax

- State = Prop | ¬State | State ∧ State |
- A Path | E Path
- Path = State | ¬Path | Path∧ Path |
- X Path | F Path | G Path |
- Path U Path | Path R Path
 - State denotes formulae interpreted over states
 - Path denotes formulae interpreted over paths
 - CTL* is the set of all state formulae above.
 - $^{\circ}$ AFp is a state formula not expressed in prop. Logic
 - · (Assume p is an atomic proposition.)

Abhik Roychoudhury, CS4271 lectures

Examples

- State formulae
 - AG ext
 - \circ AG (ext \Rightarrow EF malfn)
 - \circ AG (ext \Rightarrow F malfn)
- Path formulae
- G ext
- \circ G (ext \Rightarrow F malfn)

Path formulae

- Same as LTL formulae
- Furthermore, any state formula is a path
- How to interpret a state formula over a path?
 - Coming soon ...

Abhik Rovchoudhury, CS4271 lectures

Path Quantifiers

- A, E
 - Denote universal/existential quantification over all computation paths starting from a state.
 - $^\circ$ A ϕ holds in a state s if for all computation paths starting from s, the path formula ϕ holds.
 - $^{\circ}$ E ϕ holds in a state s if there exists a computation path starting from s, for which the path formula ϕ holds

Alberta Daniel and Innovation of April 1 about

Semantics of CTL*

- Define semantics of a formula w.r.t. a Kripke Structure M
- A state formula ϕ holds in a state s of M denoted as
- A path formula ϕ holds in a path π of M denoted as M, π |= ϕ
- Recall that syntax of path formulae are
 - \circ Path = State | \neg Path | Path \wedge Path |
 - X Path | F Path | G Path |
 - Path U Path | Path R Path

Abhik Roychoudhury, CS4271 lectures

Semantics of path formulae

- Defined as before (all LTL formulae)
 - M,π|= Xφ
 - \circ M, π |= G ϕ M, π |= F ϕ
 - \circ M,π |= φ I U φ2 M, π |= φ I R φ2
 - M, $\pi \mid = \varphi \mid \land \varphi \mid = \neg \varphi$
- M, π |= ϕ (a state formula) holds if ϕ holds in the first state of π

Abhik Roychoudhury, CS4271 lectures

Semantics of CTL* state formula

- Syntax
 - \circ State = Prop | \neg State | State \land State |
 - A Path | E Path
- Ingredients:
 - Atomic propositions
 - Negation
 - Conjunction
 - Universal Path Quantifier
 - · Existential Path Quantifier
 - Using our intuitive understanding of each, can we give the formal semantics?

Abbik Roychoudhury, CS4271 lectures 4

Semantics of CTL* State Formulae

- M,s |= p iff
- $p \in L(s)$ where M = (S,S0,R,L)
- M,s |= ¬φ iff
 - $^{\circ}$ not M,s |= ϕ
- M,s $\mid = \varphi_1 \wedge \varphi_2$
 - \circ M,s |= ϕ_1 and M,s |= ϕ_2
- M,s $|= A\phi$ iff
- for every path π starting from s s.t. M, $\pi \mid = \phi$
- M,s |= Eφ iff
 - there exists a path $\,\pi$ starting from s $\,$ s.t. M, π |= ϕ

LTL and CTL*

- LTL is strictly less expressive than CTL*
- All LTL formulae are path formulae and not state formulae
- They can be converted to CTL* formulae by quantifying over all paths using A
 - Implicit in the semantics of LTL formulae

Abbil: Doughoudhum: CC4371 Jackuros

LTL and CTL*

- LTL formula $G(ext \Rightarrow F malfn)$
 - · Equivalent to CTL* formula
 - A(G ext \Rightarrow F malfn)
- Example of a CTL* formula not expressible in LTL
 - AG(ext ⇒ EF malfn)
 - CTL* is a strictly more powerful logic.

Abbik Roychoudbury, CS4271 lectures

Organization

- General Introduction
- LTL
- CTL*
- CTL a fragment of CTL*

bhik Roychoudhury, CS4271 lectures

CTL

- A sublogic of CTL*
 - Temporal operators in CTL*: X,F,G,U,R
 - Path Quantifiers: A, E
 - CTL enforces the occurrence of a temporal operator to be immediately preceded by a path quantifier
 - $^{\circ}$ AGF $\!\phi$ is not allowed

Abhik Roychoudhury, CS4271 lectures

Expressivity

Ahhik Rovchoudhury, CS4271 Jectures

CTL* and CTL syntax

- CTL*
 - State = Prop | ¬State | State ∧ State | A Path | E Path
 - Path = State $| \neg Path | Path \land Path | X Path |$
 - F Path | G Path | Path U Path | Path R Path
- CTL
 - $_{\circ}$ State = Prop |— State |State /\ State | A Path | E Path
- Path = X State | G State | F State |
- State U State | State R State
- This leads to:

Syntax of CTL

- φ = true | false | Prop | $\neg \varphi | \varphi \land \varphi |$
- AX φ | EX φ |
- AG φ | EG φ |
- AF φ | EF φ |
- A(φ U φ) | E(φ U φ) |
- A(φ R φ) | E (φ R φ)

Abbile Doughoudhum: CC4271 Instrume

Interpreting CTL formulae

- Similar to CTL* formulae
- Again CTL formulae are property of computation trees.
- Given a Kripke Structure M
 - a CTL formula $\boldsymbol{\phi}$ is true iff it is true for the computation tree of \boldsymbol{M}
- Associate states with computation tree rooted there.
 - Interpret a CTL formula to be true in a state s iff it is true in the computation tree rooted at s
 - Thus a CTL formula is true in a Kripke structure M, iff it is true in the initial states of M.

Abhik Rovchoudhury, CS4271 lectures

Relationship to other logics

- Sublogic of CTL*
 - AGFext not in CTL
- Incomparable to LTL
- AGEFext not expressible in LTL
- LTL formula FGext not expressible in CTL
- Not equivalent to the CTL formula AFAGext

Abhik Roychoudhury, CS4271 lectures

Relationship of CTL and LTL

Satisfies the LTL formula FG ext
What about the CTL formula AFAG ext ?

Starting from initial state

Along all outgoing paths, eventually we reach a state s.t. along all outgoing paths globally **ext** holds

Abhik Roychoudhury, CS4271 lectures

CTL operators

- Most common operators
 - AF, EF, AG, EG
 - Pictorial description of each now!
 - $\,\cdot\,$ We only show a finite part of an inf. Computation tree
- Other operators: AU, EU, AR, ER, AX, EX
- \bullet EX, EG,EU can express all the ten operators (along with \neg and $\land)$
 - This will be exploited in CTL model checking algorithm (to be discussed later !)

Abhik Roychoudhury, CS4271 lectures 5

EFp,AFp

Shaded nodes satisfy p, white nodes do not satisfy p.

- Invariant: always p.
- Reachability: of a state where p holds.
- AF p
 - Inevatibility of reaching a state where p holds.
- AG EF p
- Recovery: from any state we can reach a state where p holds.
- AG $(p \Rightarrow AF q)$
 - Non-starvation: p request is always provided a q response.

Recursive characterization of CTL formulae

- Take a formula EGφ
- M,s₀ |= EG ϕ iff
- There exists a path s₀, s₁,s₂,s₃, ...
- ∘ Such that $s_i |= φ$ for all i ≥ 0
- Instead think of it as follows:
 - EG φ holds iff
 - $\boldsymbol{\cdot}$ $\boldsymbol{\phi}$ holds in the current state, and
 - \bullet EG ϕ holds in one of the successor states of the current state.

Recursive characterization of EG

- EG $\phi = \phi \wedge EX EG \phi$
- Note that
 - \circ EX ϕ holds in a state s, if there exists s' s.t. $(s,s') \in R$ and φ holds in state s'
 - R is the transition relation.
 - $^{\circ}$ EG ϕ holds in a state s, if there exists s' s.t. $(s,s') \in R$ and $EG\phi$ holds in state s'

Recursive characterization of EG Satisfies ϕ Satisfies EG φ

Recursive characterization of CTL

- It is possible to develop such characterizations of other CTL operators
- Online Exercise: Do it now!
 - \circ Recursive characterization of EF ϕ

Sanity Check

- Give a CTL formula which can be expressed in LTL.
- Give a CTL formula which cannot be expressed in LTL.
- Give a LTL formula which cannot be expressed in CTL.
- Give a CTL* formula which cannot be expressed in CTL.
- Give a CTL* formula which cannot be expressed in LTL.

Abhik Roychoudhury, CS4271 lectures 6

Wrapping up: Satisfaction

- A CTL formula is satisfiable if some Kripke structure satisfies it.
 - Otherwise unsatisfiable. Examples ??
 - Similarly for LTL formula .
- A CTL formula is valid if all Kripke structures satisfy it.

Abbik Roychoudbury, CS4271 Jectures

Wrapping up: Equivalent formulae

- Two temporal properties are equivalent iff they are satisified by exactly the same Kripke structures.
 - EF p and E(true U p)
- Where does model checking stand ??
 - Is it checking for satisfiability of a temporal property ? Is it checking for validity ?

Abhik Roychoudhury, CS4271 lectures

Wrapping up

- Model Checking
 - ... is not checking for satisfiability / validity.
 - $\circ~$ It is checking for satisfaction of a temporal property for a given Kripke structure.
 - This is a very different problem from traditional satisfiability checking!!

Abhik Roychoudhury, CS4271 lectures

Before ending ...

- Cadence SMV allows user to specify LTL properties.
 - LTL MC is achieved by internally performing CTL MC under fairness constraints.
 - Symbolic LTL MC via symbolic fair CTL MC.
 - How this is done is quite technical and will not be covered in our course.
 - Interested students can refer to Chapter 6.7 of the textbook.