

Unidade de Ensino Médio e Técnico – Cetec Grupo de Supervisão Educacional – GSE

Plano de Trabalho Docente - 2025

Etec: Etec Juscelino Kubitschek de Oliveira

Curso: Habilitação Profissional de Técnico em Desenvolvimento de Sistemas

Série/Módulo: 2º Módulo - B

Componente Curricular: Sistemas Embarcados

Docente: Ederson Luiz Silva

Turno: Noite

Plano Didático

Período: 1º BIMESTRE

Competências	Habilidades	Bases Tecnológicas ou Conhecimentos / Temas	Procedimentos Didáticos	Instrumentos de Avaliação	Critérios de Avaliação	Cronograma
1 Analisar modelos de sistemas embarcados.	1.1 Identificar as características de sistemas embarcados.	Introdução desenvolvimento de software embarcado - Hardware open-source; - Movimento maker e tinkering; - Internet das coisas; - Microcontroladores de Sistemas embarcados; - Linguagem, IDE e simuladores.	Aula Expositiva	1 Observação direta	1.1 Assiduidade	28/07 a 08/08
1 Desenvolver aplicações com microcontroladores.	1.1 Programar sistemas para microcontroladores.	Princípios de elétrica e eletrônica • Práticas de manuseio de componentes; • Protoboards, LEDs e botões; • Módulos e shields.	Aula Expositiva	1 Observação direta	1.1 Argumentação consistente	11/08 a 22/08
1 Analisar modelos de sistemas embarcados.	1.1 Executar instruções para microcontroladores.	Programação de microcontroladores • Estrutura de um programa (setup e loop); • Compilação, gravação e execução; • Variáveis e tipos de dados; • Estruturas de decisão e repetição; • Funções.	Aula Expositiva com exercícios.	1 Observação direta	1.1 Construir argumentos	25/08 a 05/09
1 Analisar modelos de sistemas embarcados.	1.1 Identificar as características de sistemas embarcados.	Programação de microcontroladores • Estrutura de um programa (setup e loop); • Compilação, gravação e execução; • Variáveis e tipos de dados; • Estruturas de decisão e repetição; • Funções.	Aula Expositiva com exercícios.	1 Observação direta	1.1 Construir argumentos	08/09 a 19/09
1 Desenvolver aplicações com microcontroladores.	1.1 Programar sistemas para microcontroladores.	Entrada e saída digital • pinMode, digitalWrite e digitalRead.	Aula Prática	1 Trabalho em grupo	1.1 Interatividade, cooperação/colaboração	22/09 a 03/10
1 Desenvolver aplicações com microcontroladores.	1.1 Executar instruções para microcontroladores.	Utilização de controle de tempo • Timers e contadores; • Millis e micros; • Delay e delayMicroseconds.	Prova	1 Prova prática	1.1 Coerência e coesão	06/10 a 08/10

Plano Didático

Período: 2º BIMESTRE

Competências	Habilidades	Bases Tecnológicas ou Conhecimentos / Temas	Procedimentos Didáticos	Instrumentos de Avaliação	Critérios de Avaliação	Cronograma
1 Analisar modelos de sistemas embarcados.	1.1 Programar sistemas para microcontroladores.	Entrada e saída analógica • Conversão Analógico-Digital • Conversão Analógico-Digital e Digital-Analógico. • AnalogReference, analogRead e analogWrite.	Aula Expositiva e prática	1 Atividades em grupo.	1.1 Comunicabilidade	09/10 a 17/10
1 Analisar modelos de sistemas embarcados.	1.1 Executar instruções para microcontroladores.	Funções matemáticas e trigonométricas e de texto; • Números aleatórios.	Aula Prática	1 Observação direta	1.1 Argumentação consistente	20/10 a 31/10
1 Desenvolver aplicações com microcontroladores.	1.1 Executar instruções para microcontroladores.	Sensores, sons, interrupções e comunicação.	Aula Prática	1 Observação direta	1.1 Construir argumentos	03/11 a 14/11
1 Desenvolver aplicações com microcontroladores.	1.1 Programar sistemas para microcontroladores.	AnalogReference, analogRead e analogWrite. • Funções matemáticas e trigonométricas e de texto; • Números aleatórios.	Aula Prática	1 Observação direta	1.1 Construir argumentos	17/11 a 29/11
1 Analisar modelos de sistemas embarcados	1.1 Programar sistemas para microcontroladores.	Entrada e saída analógica • Conversão Analógico-Digital • Conversão Analógico-Digital e Digital-Analógico. • AnalogReference, analogRead e analogWrit	Aula Prática	1 Exercício prático em laboratório.	1.1 Comunicabilidade	01/12 a 12/12
1 Analisar modelos de sistemas embarcados.	1.1 Programar sistemas para microcontroladores.	Bibliotecas • Sensores, sons, interrupções e comunicação.	Aula expositiva	1 Avaliações práticas	1.1 Criatividade na resolução dos problemas	45/40 - 47/40
					1.2 Objetividade	15/12 a 17/12
					1.3 Organização	

Estratégias de Recuperação Contínua:						
Exercícios em Sala de Aula práticos, trabalho continuo de nivelamento.						

Informações Complementares

Propostas de Integração e/ou Interdisciplinaridade e/ou Atividades Escolares (presenciais ou virtuais):						

Material de Apoio:

Arduino y algunas Aplicaciones - Universidad Nacional Autónoma del México. Apostila de Eletricidade básica - IFSP - Prof. Andryos da Silva Lemes

Parecer do Coordenador de Curso:

(X) O PTD está em consonância com o Plano de Curso