4COSC007C Mathematics for Computing

Tutorial 8

1. What is the inverse of matrix A?

$$\mathbf{A} = \begin{bmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{bmatrix}$$

2. Solve the following system of linear equations using matrices only. You will get a system of AX = B and you will need to find the inverse A^{-1} .

$$y + 2z = 17$$

 $-2x+3y - z = 6$
 $4x + z = -1$

3. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 4 & 5 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix}$

- (a) Find A^{-1} and B^{-1}
- (b) Verify that $(\mathbf{A} + \mathbf{B})^{-1} \neq \mathbf{A}^{-1} + \mathbf{B}^{-1}$
- Find the determinant using the diagonal method and find the inverse of the matrix A using the determinant.

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 4 & -2 \\ 1 & -3 & 5 \end{bmatrix}$$

5. Show that if **A** and **B** are any two invertible and square matrices of the same size, then $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$

6 Show that if **A** is invertible and AB = O then B = O.

7 Use matrices to solve the following pair of simultaneous linear equations.

$$(3/5)x - (4/5)y = 18$$

 $(4/5)x + (3/5)y = -1$

Challenge:

1. Solve the following equation for the variable x.

$$\begin{vmatrix} x & x+1 \\ -1 & x-2 \end{vmatrix} = 7$$

2. In general, matrix multiplication is not commutative (i.e., $AB \neq BA$). However, in certain special cases the commutative property does hold. Show that:

If **A** and **B** are $n \times n$ diagonal matrices, then AB = BA.

- 3. Suppose that $\mathbf{A} = \mathbf{B}\mathbf{D}\mathbf{B}^{-1}$ where \mathbf{B} is an invertible matrix and \mathbf{D} is a diagonal matrix. Find \mathbf{A}^{100} .
- 4. Let **A** be an $n \times n$ matrix and let x and y be vectors in \mathbb{R}^n . Show that if $\mathbf{A}x = \mathbf{A}y$ and $x \neq y$, then the matrix \mathbf{A} must be singular.