Aufgabe 1. (Diagonalisieren)

1. Es sei

$$A := \begin{pmatrix} 3 & 4 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \in \mathrm{M}_3(\mathbb{F}_5).$$

Bestimmen Sie eine Matrix $S \in GL_3(\mathbb{F}_5)$, so dass $S^{-1}AS$ in Diagonalform ist.

2. Es sei

$$A := \begin{pmatrix} 2 & 1 & & \\ 1 & 2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 2 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Bestimmen Sie eine Matrix $S \in GL_n(\mathbb{R})$, so dass $S^{-1}AS$ in Diagonalform ist.

3. Es sei

$$A := \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Geben Sie eine Basis von K^{2n} aus Eigenvektoren von A an. Bestimmen Sie anschließend $p_A(t)$ sowie det A.

(Tipp : A vertauscht die Basisvektoren e_i und e_{n+i} .)

Aufgabe 2. (Eigenwerte und Diagonalisierbarkeit)

- 1. Es sei $A \in GL_2(\mathbb{C})$ mit Spur A = 0. Zeigen Sie, dass A diagonalisierbar ist.
- 2. Zeigen Sie, dass jede Matrix $A \in M_3(\mathbb{R})$ einen reellen Eigenwert hat.
- 3. Folgern Sie, dass jede nicht-triagonalisierbare Matrix $A \in M_3(\mathbb{R})$ über \mathbb{C} diagonalisierbar ist.
- 4. Es sei $A \in M_n(\mathbb{C})$ und $k \geq 0$ mit $f^k = I$. Zeigen Sie, dass A diagonalisierbar ist, und bestimmen Sie alle möglichen Eigenwerte für A.
- 5. Es sei $A \in M_2(\mathbb{C})$ mit Spur A = 2 und Spur $A^2 = 4$. Zeigen Sie, dass A diagonalisierbar ist, und bestimmen Sie die Eigenwerte von A.
- 6. Es sei $A \in M_2(\mathbb{C})$ mit Spur A = 0 und Spur $A^2 = -2$. Bestimmen Sie det A.
- 7. Zeigen Sie für alle $A \in M_3(\mathbb{C})$ die Gleichheit

$$\det A = \frac{1}{6} (\operatorname{Spur} A)^3 - \frac{1}{2} (\operatorname{Spur} A^2) (\operatorname{Spur} A) + \frac{1}{3} (\operatorname{Spur} A^3).$$

- 8. Es sei $A \in M_n(\mathbb{C})$ mit $A^2 + A = 6I$ und det A = 144. Bestimmen Sie n.
- 9. Es sei $A \in M_n(\mathbb{C})$ mit $A^3 = 3A 2$ und $A^3 + A^2 = A + I$. Zeigen Sie, dass A = I.

Aufgabe 3. (Cayley-Hamilton)

Es sei K ein Körper.

- 1. Zeigen Sie für $A \in M_n(K)$, dass die Potenzen I, A, A^2, \ldots, A^n linear abhängig sind.
- 2. Es sei $A \in GL_n(K)$. Zeigen Sie, dass es ein Polynom $p \in K[t]$ mit $p(A) = A^{-1}$ gibt. Bestimmen Sie ein solches Polynom für die Matrix

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in GL_n(\mathbb{R}).$$

Aufgabe 4. (Simultane Diagonalisierbarkeit)

- 1. Es sei V ein endlichdimensionaler K-Vektorraum, und es seien $f,g\colon V\to V$ zwei diagonalisierbare Endomorphismen mit $f\circ g=g\circ f$. Zeigen Sie, dass auch $f\circ g$ diagonalisierbar ist.
- 2. Bestimmen Sie alle $a, b \in \mathbb{R}$, so dass die beiden Matrizen

$$\begin{pmatrix} a & 1 \\ 0 & 3 \end{pmatrix}$$
 und $\begin{pmatrix} -1 & 2 \\ 0 & b \end{pmatrix}$

simultan diagonalisierbar sind.

3. Es seien $A, B \in M_3(\mathbb{R})$ mit

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 3 & 0 & -4 \\ 4 & -1 & -4 \\ 0 & 0 & -1 \end{pmatrix}.$$

Bestimmen Sie $S \in GL_3(\mathbb{R})$, so dass $C^{-1}AC$ und $C^{-1}BC$ in Diagonalgestalt sind.

Aufgabe 5. (Links- und Rechtsshift)

Es sei $V=K^{\mathbb{N}}=\{(a_1,a_2,a_3,\dots)\,|\,a_i\in K\}$ der Vektorraum der K-wertigen Folgen. Es sei

$$R: V \to V, \quad (a_1, a_2, a_3, \dots) \mapsto (0, a_1, a_2, \dots)$$

der Rechts-Shift-Operator, sowie

$$L: V \to V, (a_1, a_2, a_3, \dots) \mapsto (a_2, a_3, a_4, \dots)$$

der Links-Shift-Operator.

- 1. Bestimmen Sie die Eigenwerte von R, sowie die zugehörigen Eigenräume.
- 2. Bestimmen Sie die Eigenwerte von L, sowie die zugehörigen Eigenräume.