Data Mining (Mining Knowledge from Data)

Neural Networks

Marcel Jiřina, Pavel Kordík

What are neural networks?

- Artificial Neural Network (ANN) is a computational model based on the connection of a large number of simple computational elements.
- Originally inspired by nature neuronal connections in the nervous system of animals.

What does it serve for?

- Wide range of applications:
 - Classification
 - Regression
 - Clustering
 - Compression
 - Artificial Intelligence
 - Management
 - •

Examples of ANN

- ANN recognition of numbers:
 - Input: binary image 4x7 pixels
 - Output: the number in the figure in the code "1 of N"

Inspiration from biology

- The human brain contains about 10¹¹ neurons.
- Each neuron is connected to 10⁴ other neurons in average
- Neuron activation takes approx. 10⁻³ s (10⁻¹⁰ s compared with silicon chips)
- The brain is able to perform complex operations in a short time (face recognition 10^{-1} s)
- The longest signal path can be up over hundreds of neurons (max.)
- This is achieved by <u>massively parallel</u> architecture that mimics ANN

Human neuron

- In a neuron, a signal is received via synapses which are connected through dendrites to adjacent neurons
- A neuron sums the incoming signals and if the value exceeds a certain limit, the neuron creates tension (potential, voltage) which spreads over the axon to other neurons

Artificial neuron

- The basic element of an artificial neural network is a neuron (also called processing element, unit)
- Each neuron consists of:
 - Several inputs x₀ ... x_i
 - Weights $w_0 \dots w_i$ assigned to each input
 - Bias s
 - Activation function F
 - A single output *y* (can be lead to multiple neurons)

Neuron as a basic processing element

 The output of a neuron is a value of the activation function F applied to a weighted sum of inputs plus bias

$$y = F\left(\sum_{i} (x_{i} \cdot w_{i}) + s\right)$$

$$x_{0} \searrow w_{0}$$

$$x_{1} - w_{1} \nearrow F \longrightarrow y$$

$$x_{i} \nearrow w_{i} \uparrow_{s}$$

- There is a wide range of possible activation functions according to desired properties
 - There can be multiple kinds of activation functions within a single neural network

The most commonly used activation functions

- Heaviside function
 - binary neuron is active(y = 1) or inactive (y = 0)
 - Used e.g. in the Perceptron

Signum

The most commonly used activation functions

Piecewise linear function

- Sigmoidal (logistic) function
 - limited function resembling letter S
 - $F(x) = \frac{1}{1+e^{-x}}$ range (0; 1)
 - Similar to function tanh(x) }same shape, different range (-1; +1)
 - Used e.g. in MLP (Multilayer Perceptron)

The most commonly used activation functions

- Bell curve (Gaussian function)
 - $e^{-\frac{(x-a)^2}{2\sigma}}$
 - Used e.g. in RBF, SOFM

ANN structure

- According to the structure, the ANN can be divided to:
 - Forward neural networks (feedforward, FF)
 - > include feedback
 - > signal propagates in one direction from inputs to outputs only

- Recurrent neural networks
 - include a feedback

ANN as a graph

- The structure of a neural network can be often expressed by an oriented graph:
 - Nodes represent neurons
 - Edges represent connections of neuron outputs to inputs of another neurons
 - Usually the ANN is drawn in the form of several layers of neurons with the same characteristics
 - Orientation of edges in feedforward ANNs is usually not drawn it is assumed that inputs are at the left and outputs at the right

ANN layers

- The task of the input layer is to promote the neural network inputs to other layers
 - The number of neurons in the input layer is determined by the number of attributes in the training set
- The output layer
 - # of neurons = # model outputs (in proper coding, e.g. "1 of N")

Modes of ANN

- Neural networks operate in two modes:
 - Learning/training
 - > Adjusting values of weights and the bias (and possibly the structure)
 - Recall/use
 - The already learned network predicts output value on the basis of a given instance

Learning/training

- Learning/training can be either with a teacher or without a teacher (supervised/unsupervised)
 - Samples (patterns, instances, cases) from the training set are presented to a neural network, and the neural network accordingly adjusts the weights and bias (possibly structure)
- Each instance of the training set is mostly used multiple times during the learning stage (mode)
- The use of all instances of the training set just once is called "epoch"

ANN - Perceptron

- Frank Rosenblatt, 1957
- single-layer neural network + training algorithm
- The Heaviside function is used as the activation function

Perceptron

•
$$y = \begin{cases} 1, & \sum_{i} (x_i \cdot w_i) + s > 0 \\ 0, & \sum_{i} (x_i \cdot w_i) + s \le 0 \end{cases}$$
 linear combination of inputs

 A hyperplane is used as the discrimination/decision border (a line for 2 inputs)

Perceptron - training

- 1. initialize weights $w_0 w_n$ and bias s
 - Set them to small random values (e.g. from the range -0.3 to 0.3)
- 2. for each instance *j* from the training set:
 - Calculate output of a neuron $y = \sum_{i} (x_i \cdot w_i) + s$
 - Adjust the weights:

$$> w_i(t+1) = wi(t) + \alpha(y - \hat{y})x_i$$

- 3. Repeat step 2 until the error is sufficiently low
- α is so called *learning rate* and represents the speed of learning
 - Lower values indicate slower convergence
 - At a high value the optimum can be skipped and the algorithm may not converge
 - α can be gradually reduced

Perceptron

- The learning algorithm of the Perceptron works for linearly separable data only (= can be perfectly classified by a hyperplane)
- For linearly inseparable data the algorithm does not converge
- E.g. XOR:

See applet: http://lcn.epfl.ch/tutorial/english/perceptron/html/index.html

ANN - MLP

- MLP = Multi-layer perceptron
- A multilayer feedforward neural network
 - Number of layers ≥ 3, there can be multiple hidden layers

- The activation function is usually the logistic sigmoid
 - $F(sum) = \frac{1}{1 + e^{-sum}}$

MLP

- The decision boundary is nonlinear
- The more neurons in the hidden layers, the more complex shape of the data can be expressed
- By using the sigmoid function the output in not binary any more, but is from continuous interval (0; 1)
- The value corresponds to the degree of membership to which the given class should belong

MLP - XOR

Solving the XOR problem using MLP:

MLP training

- Backpropagation (backward propagation of error)
- Error minimization $Err=\frac{1}{2}\sum_j(y-out)^2$, where j are neurons of the input layer
- 2 stages:
 - Calculating outputs of neurons in all layers
 - Backward propagation of error adjusting the weights starting from the output layer toward the input layer

Backpropagation – pseudocode

- 1. Initialize the weights to small random values
 - E.g. from the interval (-0.3,0.3)
- Repeat until the stopping condition is fulfilled For all training data (epoch)
 - 1. Randomly select instance [X,y] from the training data set
 - 1. Calculate output *out*, for each neuron
 - 2. For each neuron v in the input layer calculate error $Err_v = out_v(1 out_v)(y out_v)$
 - 3. For each neuron *s* in the hidden layer calculate error

$$Err_s = out_s(1 - out_s) \sum_{v \in v \circ stup} (w_{s,v} \cdot Err_v)$$

4. For each connection from neuron j to k adjust weight $w_{j,k} = w_{j,k} + \Delta w_{j,k}$, where $\Delta w_{j,k} = \eta Err_k x_{j,k}$

Structure of the network with respect to the problem solved

• Example: Training Multilayer Perceptron Network

x1	x2	třída
0.8680	0.2640	1
0.1790	0.4230	0
0.6940	0.1630	1
0.5380	0.6450	1
0.6230	0.0030	0
0.7870	0.2680	1
0.4610	0.3860	1
0.6030	0.2790	1
0.1700	0.8050	0

$$\xi_1 = w_{01} \cdot 1 + w_{11} \cdot x_1 + w_{21} \cdot x_2$$
$$y_1 = f(\xi_1)$$

$$\xi_2 = w_{02} \cdot 1 + w_{12} \cdot x_1 + w_{22} \cdot x_2$$
$$y_2 = f(\xi_2)$$

$$\xi_3 = w_{03} \cdot 1 + w_{13} \cdot y_1 + w_{23} \cdot y_2$$

 $y = f(\xi_3)$

Post-synaptic potential of the first node Output from the first node

Post-synaptic potential of the second node Output from the second node

Post-synaptic potential of the third node Output from the third node (output from the network)

$$\delta = y(1-y)(d-y)$$

$$w_{03} = w_{03} + \eta \cdot \delta \cdot 1,$$

$$w_{13} = w_{13} + \eta \cdot \delta \cdot y_1,$$

$$w_{23} = w_{23} + \eta \cdot \delta \cdot y_2,$$

$$\delta_1 = y_1(1 - y_1) \cdot \delta \cdot w_{13}$$

$$\delta_2 = y_2(1 - y_2) \cdot \delta \cdot w_{23}$$

$$\begin{split} \xi_1 &= w_{01} \cdot 1 + w_{11} \cdot x_1 + w_{21} \cdot x_2 = 0 \;, \\ \xi_2 &= w_{02} \cdot 1 + w_{12} \cdot x_1 + w_{22} \cdot x_2 = 0 \;. \end{split}$$

$$\begin{split} x_2 &= -\frac{w_{11}}{w_{21}} \cdot x_1 - \frac{w_{01}}{w_{21}} \,, \\ x_2 &= -\frac{w_{12}}{w_{22}} \cdot x_1 - \frac{w_{02}}{w_{22}} \,, \end{split}$$

$$k_1 = -\frac{w_{11}}{w_{21}}, \ k_2 = -\frac{w_{12}}{w_{22}}$$

$$q_1 = -\frac{w_{01}}{w_{21}}$$
 , $q_2 = -\frac{w_{02}}{w_{22}}$

