Aula 20: Árvores Binárias de Busca

Caminhos externo e interno

Problema de busca

 $s_i = chave$

$$S = \{ s_1, ..., s_n \}, s_1 < ... < s_n \}$$

x = valor dado

x pertence a S?

Em caso positivo, encontrar s_j tal que $x = s_j$

Idéia: Estruturar o conjunto de chaves, de modo a facilitar a busca de x.

Problema de busca

- Utilizar uma árvore binária rotulada T:
 - (i) T possui n nós. Cada nó v corresponde a uma chave distinta s_j pertencente a S e possui como rótulo o valor $r(v) = s_i$
 - (ii) Sejam v, v_1 , v_2 nós distintos de T, sendo v_1 pertencente à subárvore esquerda de v, e v_2 à subárvore direita de v. Então

$$r(v_1) < r(v) e$$

$$r(v_2) > r(v)$$

T é denominada árvore binária de busca

Exemplo

Exemplo de árvore binária de busca

$$-$$
 S = { 1, 2, 3, 4, 5, 6, 7 }

- Uso da árvore binária de busca para resolver o problema de busca:
 - Objetivo: Encontrar a chave s_j tal que $x = s_j$
 - Para tal: percorrer o caminho em T, desde a raiz até s_i

- Passo inicial: considerar a raiz de T.
- Passo geral:

Seja v o nó considerado.

Se x = r (v), a busca termina (sucesso) Caso contrário, o novo nó a considerar será

- o filho esquerdo w_1 de v, se x < r(v) ou
- o filho direito w_2 de v, se x > r (v).

Se não existir o nó que deveria ser considerado, w_1 ou w_2 , a busca termina (insucesso).

Exemplo de busca com sucesso:

Animar

Voltar

Exemplo de busca sem sucesso:

$$x = 2,5$$

Animar

Voltar

Exercício

Verificar se as árvores binárias seguintes são árvores binárias de busca.

Tempo: 1 minuto

<u>cederj</u>

Solução

Nenhuma das duas árvores é binária de busca.

Algoritmo de Busca

- ptraiz = ponteiro para raiz da árvore
- variável f: natureza final da busca
 - f=0 árvore vazia.

 - $-f > 1, x \notin S$

Algoritmo de Busca

Algoritmo: busca em árvore binária de busca

```
procedimento busca-árvore(x, pt, f)
    se pt = \lambda então f := 0
    senão se x = ptî.chave então f := 1
           senão se x < pt↑.chave
                  então
                       se pt\uparrow.esq = \lambda então f := 2
                       senão
                            pt := pt↑.esq
                            busca-árvore(x, pt, f)
                   senão
                       se pt\uparrow.dir = \lambda então f := 3
                       senão
                            pt := pt<sup>↑</sup>.dir
                            busca-árvore( x, pt, f)
pt := ptraiz ; busca-árvore( x, pt, f )
```

Complexidade do Algoritmo

Complexidade = número total de chamadas =
= número de nós existentes no caminho,
desde a raiz de T até o nó v onde
termina o processo.

Pior caso: v pode se encontrar a uma distância O(n) da raiz.

 \bigcirc Complexidade = O(n)

Conclusão: complexidade = altura da árvore

melhor complexidade <-> árvore de altura mínima melhor árvore <-> árvore completa

Árvore Binária de Busca Ótima

A árvore binária de busca ótima é a árvore completa.

Complexidade = altura.

Lema: seja uma árvore binária completa com n nós e altura h. Então,

$$2^{h-1} \le n \le 2^h - 1$$

Prova: o valor 2 ^h - 1 ocorre quando a árvore é cheia.

Nesse caso, o número de nós em cada nível é igual ao dobro do número de nós do nível anterior.

O valor 2 ^{h - 1} corresponde ao caso em que há apenas um nó no último nível.

Portanto, complexidade = $O(\log n)$ (busca com sucesso) Para a busca sem sucesso vale a mesma expressão.

Exercício

Seja $S = \{ 1, 2, 3, 4, 5, 6, 7 \}$ um conjunto de chaves.

Desenhar uma árvore binária de busca T para S, nos seguinte casos:

- (i) T possui altura máxima.
- (ii) T possui altura mínima.

Quantas árvores distintas existem em cada caso?

Tempo: 5 minutos

Solução

Número de árvores distintas:

- (i) $2^6 = 64$
- (ii) 1

Inserção

Inserção em árvores binárias de busca

 $\mathbf{s}_{i} = \mathbf{chave}$

$$S = \{ s_1, ..., s_n \}, s_1 < ... < s_n \}$$

T = árvore binária de busca para S

x = chave a ser inserida em T

Idéia do algoritmo:

- utilizar o algoritmo de busca (procedimento <u>busca-árvore</u>)
- $\overline{}$ verificar se $x \in S$
- 🗕 em caso positivo, inserção inválida (chave duplicada)
- em caso negativo, a chave de valor x será o rótulo de algum novo nó w, situado à esquerda de v, se f = 2, ou à direita de v, quando f = 3. O nó v é aquele onde o procedimento busca-árvore termina.

Algoritmo de Inserção

Algoritmo: inserção em árvore binária de busca pt := ptraiz; busca-árvore(x, pt, f) se f = 1 então "inserção inválida" senão ocupar (pt1) pt1\u00e1.chave := x; pt1\u00e1.info := novo-valor; $pt1\uparrow.esq := \lambda; pt1\uparrow.dir := \lambda;$ se f = 0 então ptraiz := pt1 $\underline{\text{senão}}$ $\underline{\text{se}}$ $\underline{\text{f}}$ = 2 então pt↑.esq := pt1 senão pt[↑].dir := pt1

Complexidade de inserção = complexidade da busca

Construção de árvore binária de busca

 $S = \{ s_1, ..., s_n \}$, conjunto de chaves

Construir uma árvore binária de busca T para S.

<u>Idéia de um método:</u>

Construir uma árvore binária de busca T(i) para { s₁, ..., s_i } iterativamente.

Passo inicial:

seja T(1) a árvore formada pelo único nó s₁.

Passo geral:

para j=2, ..., n, utilizando o algoritmo de inserção, inserir em T(j-1) o nó de rótulo s_j , denotando por T(j) a árvore assim obtida. Ao final, T = T(n).

Complexidade do algoritmo de inserção:

n. altura da árvore

Pior caso, O (n²)

Pior caso, árvore zigue zague.

Exemplo

Pode ser construída com a permutação das chaves 3 1 7 2 5 4 6

- Há várias outras permutações que conduzem a esta mesma árvore. Exemplo: 3 7 5 6 1 2 4
- A permutação 3 1 2 5 4 7 6 não conduz à construção dessa árvore.

ceder

Árvore Binária de Busca

Aplicar a construção geral, com uma ordenação adequada para o conjunto de chaves.

 s_0 , s_{n+1} = chaves fictícias, $s_0 < s_1 e s_{n+1} > s_n$, definidas como <u>já inseridas</u>.

A cada passo, inserir em T uma nova chave s_j de índice médio entre duas chaves s_i e s_j, já inseridas, e tais que não hajam chaves já inseridas entre s_i e s_j.

Definir s_i como já inserida e repetir o processo.

Complexidade: O (n log n)

Exercício

Sejam p_1 , p_2 duas permutações de um conjunto de chaves S, e T_1 , T_2 as árvores binárias de busca correspondentes a p_1 , p_2 respectivamente. Então

$$p_1 \neq p_2 \iff T_1 \neq T_2$$

Provar ou dar contra exemplo.

Tempo: 2 minutos

Solução

Comprimento do Caminho Interno

> S = { s_1 , ..., s_n } , conjunto de chaves

T = árvore binária de busca para S

 $l_k = n$ ível em T da chave s_k

 $\sum_{1 \le k \le n} l_k$ =comprimento do caminho interno de T = I(T)

Exemplo:

$$I(T) = 1 + 2 + 2 + 3 + 3 + 4 + 4 = 19$$

Modelagem da busca sem sucesso

- $\begin{array}{l} \blacksquare & R = conjunto \ dos \ valores \ possíveis \ para \ as \ chaves \\ & R_0 = \{ \ x \in R \ | \ x < s_1 \, \} \\ & R_n = \{ \ x \in R \ | \ x > s_n \, \} \\ & R_i = \{ \ x \in R \ | \ s_i < x < s_{i+1} \, \}, \, j = 1, \, ..., \, n \ -1 \end{array}$
- Os n + 1 conjuntos R_j , $0 \le j \le n$, representam os diferentes intervalos onde se localizam as chaves correspondentes às buscas sem sucesso.
- Os conjuntos R_j correspondem as n+1 subárvores vazias da árvore binária de busca para $\{s_1, ..., s_n\}$
- ullet Os conjuntos R_j ocorrem da esquerda para a direita em T segundo valores crescentes de seus índices.

Nós externos

Os nós externos são as folhas da árvore.

A árvore com nós externos é estritamente binária.

Comprimento de caminho externo

Seja T uma árvore binária de busca com nós externos $R_0, ..., R_n$ = nós externos de T

 l_k = nível do nó R_k em T

$$\sum_{0 \le k \le n} (l_k - 1) = comprimento do$$

$$caminho externo de T = E(T)$$

Exemplo de cálculo do comprimento do caminho externo:

$$E(T) = 2 + 2 + 3 + 3 + 4 + 4 + 4 + 4 = 26$$

- O comprimento de caminho externo representa o número total de comparações para as buscas sem sucesso, considerando que cada intervalo R_j seja acessado uma vez.
- Os valores I(T) e E(T) exprimem a qualidade da árvore (quanto menor, melhor).

Exercício

Exercício

Determinar o comprimento de caminho interno e externo da seguinte árvore binária T.

Tempo: 3 minutos

Solução

Solução

$$I(T) = 1 + 2 + 2 + 3 + 3 + 4 = 15$$

$$E(T) = 2 + 2 + 3 + 3 + 3 + 4 + 4 = 21$$