

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2016 - الموضوع -

المملكة المفربية وزارة التربية الولمنية والتكوين الممنس

المرحر الوط*ئي* للتعويم والامتحانات والتوجيه

المهنية (المهنيي) 013% ا 0110% 1800% ا 01400% المهني (المهني المهني المنتقويم) المركز الوطني للتقويم

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعبة أو المسلك

RS 25

- o La durée de l'épreuve est de 4 heures.
- o L'épreuve comporte 5 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- Le premier exercice se rapporte au calcul des probabilités(3 pts)
- Le deuxième exercice se rapporte aux structures algébriques.. (3.5 pts)
- Le troisième exercice se rapporte aux nombres complexes.....(3.5 pts)
- Le quatrième exercice se rapporte à l'analyse.....(6.5 pts)
- Le cinquième exercice se rapporte à l'analyse.....(3.5 pts)

L'usage de la calculatrice n'est pas autorisé

L'usage de la couleur rouge n'est pas autorisé

0.5

0.5

0.5

1

RS 25

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

EXERCICE 1:(3pts)

On a deux boites U et V .La boite U contient 4 boules rouges et 4 boules bleues.

La boite V contient deux boules rouges 4 boules bleues.

On considère l'épreuve suivante : On tire au hasard une boule de la boite U :Si elle est rouge, on la remet dans la boite V puis on tire au hasard une boule de la boite V ;si elle est bleue on la pose de coté puis on tire une boule de la boite V .

Soient les événements suivants : $R_{\!\scriptscriptstyle U}$ « La boule tirée de la boite U est rouge »

 $\emph{\textbf{B}}_{\scriptscriptstyle U}$ « La boule tirée de la boite U est bleue »

 $R_{\scriptscriptstyle V}$ « La boule tirée de la boiteV est rouge »

 $B_{\scriptscriptstyle V}$ « La boule tirée de la boite V est bleue »

- 0.5 1- Calculer la probabilité de chacun des deux événements R_U et B_U .
 - 2- a)Calculer la probabilité de l'événement $B_{\scriptscriptstyle V}$ sachant que l'événement $R_{\scriptscriptstyle U}$ est réalisé.
 - b) Calculer la probabilité de l'événement $B_{\scriptscriptstyle U}$ sachant que l'événement $B_{\scriptscriptstyle U}$ est réalisé.
 - 3- Montrer que la probabilité de l'événement $B_{\scriptscriptstyle V}$ est : $\frac{13}{21}$

EXERCICE 2: (3.5 pts)

On rappelle que $(M_3(\cdot),+,')$ est un anneau unitaire d'unité $I=egin{matrix} \xi^1 & 0 & 0_{\frac{\cdot}{\xi}} \\ \xi^0 & 1 & 0_{\frac{\cdot}{\xi}} \\ \xi^0 & 0 & 1_{\frac{\cdot}{\xi}} \end{bmatrix}$ et que $(\pounds,+,')$

est un corps commutatif.

Pour chaque nombre complexe z = x + iy où $(x, y)\dot{z}$, on pose :

$$M(z) = \begin{cases} x + 2y & 0 & 5y \\ 0 & 1 & 0 \end{cases} \stackrel{\frac{1}{2}}{\stackrel{\cdot}{=}} \text{ et on considère l'ensemble } E = \left\{ M(z) / z \dot{z} \, \pounds \right\}$$

1- On munit $\it E$ de la loi de composition interne $\it ^*$ définie par :

$$("z \dot{z} f) ("z' \dot{z} f) : M(z) * M(z') = M(z) + M(z') - M(0)$$

1 Montrer que (E,*) est un groupe commutatif.

- 2- On considère l'application ${f j}: {f f}^*$ a E qui associe au nombre complexe z de ${f f}^*$ la matrice M(z) de E
- a) Montrer que j est un homomorphisme de (f_*) dans (E,')
- 0.5 b) En déduire que $(E \{M(0)\},')$ est un groupe commutatif.

1

0.5

3- Montrer que (E, *, ') est un corps commutatif.

EXERCICE 3: (3.5 pts)

On considère dans l'ensemble £ l'équation : (E): z^2 - $(1+\sqrt{3})(1+i)z+4i=0$

- 0.5 1-a) Vérifier que le discriminant de l'équation (E) est : $D = (\sqrt{3} 1)(1 i)_{\hat{\mathbf{u}}}^{\hat{\mathbf{u}}}$
 - b) Ecrire sous forme trigonométrique les deux solutions de (E)
 - 2- Le plan complexe est rapporté à un repère orthonormé direct (O, u, v).

On considère les deux points A et B d'affixes respectives $a=1+i\sqrt{3}$ et $b=\sqrt{3}+i$

- 0.75 a) Montrer que l'ensemble (D) des points du plan complexe dont l'affixe z vérifie $z = \frac{1}{2}az$ est une droite qui passe par le point B
 - b)Soient M et M 'deux points d'affixes respectives z et z 'tels que : z '= $a\overline{z}$ b et z 1 b
 - Montrer que : $\frac{b^2}{(z-b)(z-b)} = \frac{2}{|z-b|^2}$
- 0.75 c) En déduire que la droite (D)est une bissectrice de l'angle (BM,BM')

EXERCICE 4: (6.5 pts)

n est un entier naturel non nul.

Soit f_n la fonction numérique définie sur l'intervalle $]0,+\infty[$ par : $f_n(x)=\ln(x)-\frac{n}{x}$ et soit (C_n) la courbe représentative de la fonction f_n dans un repère orthonormé (O,\vec{i},\vec{j}) .

- 0.75 1-a) Etudier les deux branches infinies de la courbe (C_n) .
- 0.75 b) Etudier les variations de la fonction f_n sur $]0,+\infty[$ puis donner son tableau de variation.
- 0.5 c) Construire (C_2)
- 0.5 2- Montrer que la fonction f_n est une bijection de $]0,+\infty[$ dans \square
- 0.5 3-a) Montrer que pour tout entier naturel n supérieur ou égal à 1 ,il existe un unique nombre réel α_n de l'intervalle $]0,+\infty[$ tel que : $f_n(\alpha_n)=0$
- b) Comparer $f_n(x)$ et $f_{n+1}(x)$ pour tout x de $]0,+\infty[$
- 0.5 c) Montrer que la suite $(\alpha_n)_{n\geq 1}$ est strictement croissante.
- 0.5 4-a) Montrer que : ("x > 0); $\ln(x) < x$

الصفحة 4	RS 25	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)		
4				
0.5	b) Montrer que : $\lim_{n\to+\infty}\alpha_n=+\infty$			
	5- Pour tout entier naturel n supérieur ou égal à 1 on pose : $I_n = \frac{1}{\alpha_{n+1} - \alpha_n} \int_{\alpha_n}^{\alpha_{n+1}} f_n(x) dx$			
0.5	a) Monti	a) Montrer que : $\left(\forall n \in \square^* \right) \left(\exists c_n \in [\alpha_n, \alpha_{n+1}] \right) : I_n = f_n(c_n)$		
0.5	b) Mont	b) Montrer que : $(\forall n \in \square^*)$; $0 \le I_n \le \frac{1}{\alpha_{n+1}}$		
0.5	c) Déterminer $\lim_{n \circledast + \Psi} I_n$			
	EXERCIO	<u>CE 5 :</u> (3.5 pts)		
	$\it n$ est un entier naturel supérieur ou égal à2.			
	On considère la fonction numérique g_n à variable réelle x définie sur l'intervalle $[n,+\infty[$ par :			
		$g_n(x) = \int_n^x \frac{1}{\ln t} dt$		
0.5	1-a) Montrer que la fonction g_n est dérivable sur l'intervalle $[n,+\infty[$ puis déterminer sa fonction			
	dérivée pre	emière g'_n		
0.25	b) Montr	Tontrer que la fonction g_n est strictement croissante sur l'intervalle $[n,+\infty[$		
0.5	2-a) Montr	$\operatorname{rer que}: \left(\forall x \ge n\right) ; g_n(x) \ge \ln\left(\frac{x-1}{n-1}\right)$		
		(On pourra utiliser l'inégalité : $(\forall t \! \geq \! 0)$; $\ln(1+t) \! \leq \! t$)		
0.25	b) En déc	duire que: $\lim_{x \to +\infty} g_n(x) = +\infty$		
0.25	3-a) Montr	er que $g_{_n}$ est une bijection de l'intervalle $igl[n,+\inftyigl[$ dans l'intervalle $igl[0,+\inftyigl[$.		
0.5	b) En déc	Huire que : $(\forall n \ge 2)$ $(\exists ! u_n \ge n)$: $\int_n^{u_n} \frac{1}{\ln t} dt = 1$		
	4- On cons	idère la suite numérique $\left(u_{n} ight)_{n\geq2}$ définie dans la question 3-b).		
0.5		er que : $(\forall n \ge 2)$; $\int_{u_n}^{u_{n+1}} \frac{1}{\ln t} dt = \int_{n}^{n+1} \frac{1}{\ln t} dt$		
0.5	b) En déc	luire que la suite $(u_n)_{n\geq 2}$ est strictement croissante.		

FIN

c) Déterminer $\lim_{n \to +\infty} u_n$

0.25