Back to Basics: Linear Algebra

Let $X \in \mathbb{R}^{n \times m}$. We introduce some important terms and notation

The **Columnspace**, also called the range, or span, of X is $Range(X) := \{y \mid y = Xv\}$.

The **Rowspace** is $Row(X) := \{y \mid y = X^{T}v\}.$

The **Nullspace**, or Kernel, of X is defined is $\mathcal{N}(x) := \{v \mid Xv = 0\}$.

The **Orthongal Complement** of a subspace, U, is a subspace, U^{\perp} such that $u \in U, u' \in U^{\perp} \implies$ $\langle u, u' \rangle = 0$

For this problem We do not assume that *X* has full rank.

- (a) Check the following facts:
 - (i) The $Row(X) = Range(X^{T})$
 - (ii) The $\mathcal{N}(X)^{\perp} = Row(X)$
 - (iii) $\mathcal{N}(X^{\top}X) = \mathcal{N}(X)$ Hint: if $v \in \mathcal{N}(X^{\top}X)$, then $v^{\top}X^{\top}Xv = 0$.
 - (iv) $Row(X^{T}X) = Range(X^{T}X) = Row(X)$ Hint: Use the relationship between nullspace and rowspace.
- (b) We now prove an important result of linear algebra, the Rank-Nullity theorem. Let Rank(X) =dim(Range(X)) = dim(Row(X)) and Nullity(X) = dim(N(X)). The Rank nullity theorem says that for $X \in \mathbb{R}^{nxm}$ we have

$$Rank(X) + Nullity(X) = m$$

Use the above results to prove this theorem. Hint: The complementary subspace theorem says that for a vector space V and subspace U, we can always find a complementary subspace U^{\perp} such that $U + U^{\perp} = V$

2 Probability Review

There are n archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer's score is independent of the others, and is distributed uniformly between 0 and 1. What is the expected value of the worst (highest) score?

- (a) Define a random variable Z that corresponds with the worst (highest) score.
- (b) Derive the Cumulative Distribution Function (CDF) of *Z*.

(c) Let X be a non-negative random variable. The Tail-Sum formula states that

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge t) dt$$

Using both the Tail-Sum formula and the CDF of Z derived above, calculate the expected value of Z *Hint:* Write $\mathbb{P}(X \ge t)$ in terms of the CDF of X

(d) Consider what happens to $\mathbb{E}[Z]$ as $n \to \infty$. Does this match your intuition?

3 Vector Calculus

Below, $\mathbf{x} \in \mathbb{R}^d$ means that \mathbf{x} is a $d \times 1$ column vector with real-valued entries. Likewise, $\mathbf{A} \in \mathbb{R}^{d \times d}$ means that \mathbf{A} is a $d \times d$ matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$. In the following questions, $\nabla_{\mathbf{x}}$ denotes the gradient with respect to \mathbf{x} , which, by convention, is a column vector.

Calculate the following derivatives.

(a) $\nabla_{\mathbf{x}}(\mathbf{w}^{\top}\mathbf{x})$

1

- (b) $\nabla_{\mathbf{x}}(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})$
- (c) $\nabla_{\mathbf{A}}(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})$
- (d) $\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})$
- (e) $\nabla_{\mathbf{x}}^2(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})$

Now let's apply our identities derived above to a practical problem. Given a design matrix $X \in \mathbb{R}^{n \times d}$ and label vector $Y \in \mathbb{R}^n$, the Ordinary least squares regression problem becomes

$$w^* = min_w \frac{1}{2} ||Xw - Y||_2^2$$

(f) Using parts (a) - (e), derive a necessary condition for w^* . Note: We do not necessarily assume X is full rank!

- The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Wikipedia: https://en.wikipedia.org/wiki/Matrix_calculus
- Khan Academy: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
- YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7.

¹Good resources for matrix calculus are: