

Backtracking

ALGORITHMICS

Vicente García Díaz

garciavicente@uniovi.es

Basic concepts

Examples of use

Permutations of elements

Subsets of a given sum

The problem of the n queens

The horse jumping problem

The problem of assigning tasks to agents

BACKTRACKING

Basic concepts

Brute force to solve a problem

> Brute force or exhaustive search should not be used unless absolutely necessary

- For example, this simple game: Magic Square
 - There is a $n \times n$ table with n^2 distinct integers from 1 to n^2 . The aim is to place the numbers so that the sum of the numbers in each row, column and corner-to-corner diagonal has to be the same

Brute force to solve a problem (II)

How many ways are there to fill such a table?

4	9	2
3	5	7
8	1	6

- There are 9 ways to place 1, 8 ways to place 2, and so until the last number 9 that is placed in the only unoccupied cell of the table
- \rightarrow If n = 3 \rightarrow 9! = 9*8*7*6*5*4*3*2*1 = 362880 ways to arrange the 9 numbers
- \triangleright If n = 5 → 25! ≈ 1.5 * 10²⁵ ways to arrange the 25 numbers!!!

Problems represented as graphs

Many problems can be represented as abstract graphs

Nodes represent the state of the problem

Edges represent valid changes

To solve the problem, we must find a node or a path in the associated graph

Tree of states for the 3 in a row game

Implicit graph

- If the graph contains a large or infinite number of nodes, it is impossible to explicitly construct it and use a conventional technique for searching in graphs
- ➤ We do not create the graph → implicit graph
- ➤ We have a description of its nodes and edges → constructing parts of the graph only when the path is processed
- > We save computation time if the path is successful before we build the entire graph
- **Economy of space is obtained**, since nodes can be discarded after examination

Backtracking

The implicit graph used for backtracking is usually depicted as a **tree**, called **tree of** states

With the technique of backtracking, we perform a depth-first search of the tree

The objective is to find the nodes (states) that are **solutions** to the problem

To that end, an **exhaustive and systematic search** in the solution space of the problem is performed

Backtracking (II)

- > The **solution** of a backtracking problem can be expressed as a vector
 - $(x_1, x_2, ..., x_n)$

- At each moment, the algorithm will stay at some level k, with a partial solution
 - $\bullet \quad (x_1, \dots, x_k)$

If we can add a new item to the solution x_k , we generate it and we move to the level k+1

Backtracking (III)

The path is **successful** if we can completely define a solution

- In this case, the algorithm may stop (if all we need is a solution to the problem)
 - \rightarrow first solution
- Or keep looking for alternative solutions (if we want to examine all the possibilities)
 - \rightarrow all the solutions

Backtracking (IV)

The path is **not successful** if at any stage the partial solution created so far cannot be completed

- In such a case, the path comes back
 - Removing the elements that were added in each stage
 - When it returns to a node that has one or more children not yet explored, it continues the path through these nodes

Depth-first seach. Backtracking

Pseudocode. First solution and exit

```
boolean found = false
found = backtracking(initialState, ...)
if (!found) "THERE IS NO SOLUTION"
boolean backtracking (State state, ...)
  if (isSolution(state))
     print(state) //make things with the solution
     found = true
 else //for all the j children of state
     if (!found)
           backtracking(j, ...)
```

Pseudocode. All the solutions / Best solution / Worst solution

```
int count = 0
backtracking(initialState, ...)
if (count == 0) "THERE IS NO SOLUTION"
int backtracking (State state, ...)
  if (isSolution(state))
      print(state) //make things with the solution
      //here you could calculate if it is the best or worst solution
      count++
  //we put the else ONLY when below a solution state there cannot appear more
  solutions. If there can appear more solutions, we should remove the else
  else //for all the j children of state
      backtracking(j, ...)
```

Complexity analysis

The execution time depends on the number of nodes generated and the time required for each node

Usually, the time for each node is constant

Assuming that a solution is of the form: (x_1, x_2, \dots, x_n) , in the worst case there will be generated all the possible combinations for each x_i

Complexity analysis (II)

- \triangleright If the number of possible values for each x_i is m (tree degree), then we will generate:
 - \mathbf{m}_1 nodes at level 1
 - $m_1 \cdot m_2$ nodes at level 2
 - $m_1 \cdot m_2 \cdot \dots \cdot m_n$ nodes at level n
- \triangleright For a problem m = 2 (degree 2). The number of generated nodes:
 - $T(n) = 2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} 2 \rightarrow O(2^n)$
- For a problem that the degree of the tree is reduced by one at each level:
 - $T(n) = n + n \cdot (n-1) + n \cdot (n-1) \cdot (n-2) + ... + n! \in O(n!)$
- In general, factorial or exponential complexities

Memory consumption

- The memory consumption (M_{stack})
 - $M_{stack} = O(h) * O(f(n)) = O(h * f(n))$
 - h → height of the tree of calls
 - $f(n) \rightarrow$ waste of stack of each recursive call
- > Assuming that each method has a stack waste of O(1)
 - $M_{stack} = O(h * 1) = O(h)$
- It is usually:
 - O(logn)
 - O(n)

BACKTRACKING

Examples of use

Permutations of elements

- \triangleright We have some numbers (e.g., $v = \{0, 1, 2, 3\}$)
- We need all algorithm that gives us all the permutations:
 - **0**,1,2,3
 - 0,1,3,2
 - **0**,2,3,1
 - 0,2,1,3
 - •

Hints:

- We can save all the solutions in the same array (e.g. sol[])
- We need to mark the elements that are already used in each of the solutions
- A possible method: backtracking(int level)
 - At the beginning level = 0 because we have nothing
 - At the end of each solution level = n because we have created a permutation

Subsets of a given sum

- We need a program that, given a set consisting of n different positive integers, computes all subsets which sum a given value c
- For example, with this numbers {1,2,3,4,5}, and looking for the sum 10
 - SUBSET THAT SUMS 10 = 2+3+5
 - SUBSET THAT SUMS 10 = 1+4+5
 - SUBSET THAT SUMS 10 = 1+2+3+4
- **Hints**
 - We don't need an array for the solutions (e.g. sol[]). A sum variable is enough
 - At the end of the tree of calls (when level == n) we also need to check if sum == c (if not, it is not a valid solution)
 - From any position of the array we have only 2 options (in the previous case we had n-1 options)
 - Consider the item as part of the solution
 - Don't consider the item as part of the solution

The problem of the n queens

- The aim is to place n queens on a chessboard without any queen can eat another queen
 - http://www.hbmeyer.de/backtrack/achtdamen/eight.htm#up
- > A queen can move any number of cells horizontally, vertically or diagonally

- The difficulties in solving the problem are:
 - To find a suitable board representation
 - To always know if a movement is possible or not

Strategy

- Board representation
 - To represent the board, we can use a one-dimensional ad-hoc structure
 - int[] sol = new int[n];
 - If $sol[j] = i \rightarrow there is a$ queen in column j and row i

0	_	•••	n-I

Strategy (II)

- Representing valid positions
 - array[0..n-1] of boolean \rightarrow boolean[] a = new boolean[n]
 - Rows
 - if a[i]= true → There is a queen in row i
 - if a[i]= false → There is **not** a queen in row i
 - array [0..2*n-2] of boolean \rightarrow boolean [] b= new boolean [2*n-1]
 - Diagonals /45° meet (i+j)=const
 - b[i+j]=true → There is queen in diagonal i+j
 - $b[i+j]=false \rightarrow There is$ **not**queen in diagonal <math>i+j
 - array[0..2*n-2] of boolean \rightarrow boolean[] c= new boolean[2*n-1]
 - Diagonals \ 135° meet (i-j)=const
 - $c[i-j+(n-1)]=true \rightarrow There is queen in diagonal i-j$
 - $c[i-j+(n-1)]=false \rightarrow There is$ **not**queen in diagonal <math>i-j

First solution


```
void backtracking(int j) {
    if (j==n) { //we have already placed the n queens
       found = true;
       System.out.println("SOLUTION FOUND"); //print it
    else
       for (int i=0; i<n; i++)
           if (!a[i] && !b[i+j] && !c[i-j+n-1] && !found) {
                  sol[j] = i; //a queen in column j and row i
                  a[i] = true; //row used
                  b[i+j] = true; //diagonal i+j used
                  c[i-j+n-1] = true; //diagonal i-j used
                  backtracking (j+1);
                  sol[j] = -1; //we leave it as it was
                  a[i] = false;
                  b[i+j] = false;
                  c[i-j+n-1] = false;
           } //if
    } //method
```

All the solutions


```
void backtracking(int j) {
    if (j==n) { //we have already placed the n queens
       count++;
       System.out.println("SOLUTION FOUND"); //print it
    else
       for (int i=0; i<n; i++)
           if (!a[i] && !b[i+j] && !c[i-j+n-1]){
                  sol[j] = i; //a queen in column j and row i
                  a[i] = true; //row used
                  b[i+j] = true; //diagonal i+j used
                  c[i-j+n-1] = true; //diagonal i-j used
                  backtracking (j+1);
                  sol[j] = -1; //we leave it as it was
                  a[i] = false;
                  b[i+j] = false;
                  c[i-j+n-1] = false;
           } //if
    } //method
```

backtracking()?

More at:

N Queen Problem Using Backtracking Algorithm https://www.youtube.com/watch?v=xouin83ebxE

VISUALIZE it

http://www.cs.usfca.edu/~galles/visualization/RecQueens.html

The horse jumping problem

It consists in fully going through a chessboard based on the movements performed by the horse

 3
 2

 4
 1

 *
 .

 5
 8

 6
 7

The cells that a horse can access from a given cell are shown in the following tables

1		7		
8			6	
	2			
	9			5
		3		
		10	4	

Strategy

- ▶ board → array representing the board
- int [][] board= new int [n][n]
 - board[x][y]=0 the cell (x y) has not been visited
 - board[x][y]=i the cell (x, y) has been visited in the *i*th order
- \rightarrow number of movement of the horse
- x, $y \rightarrow$ coordinates of the last movement of the horse
- Initial cell [0] [1]

	0	1	2	3	4	5	6	n
0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
n	0	0	0	0	0	0	0	0

Strategy (II)

- Rules of variation of the states
 - Possible movements of the horse are represented through two vectors:
 - Horizontal displacement, a
 - Vertical displacement, b
 - The order to choose the horse's movements has been established arbitrarily

	3°		2°	
4°				1°
		*		
5°				8°
	6°		7°	

a -1 -2 -2 -1 1 2 2 1

b 2 1 -1 -2 -2 -1 1 2

Strategy (III)

- Application of the scheme: "first solution"
 - Recursive call, we pass as parameters the number of movement and the current coordinates
 - backtracking(int i, int x, int y) \leftarrow Parameters
 - Loop to select a state
 - k index ranging between 0 and NUM MOVEMENT of the horse
 - Target position: u = x+a[k]; v = y+b[k];
 - backtracking(i+1,u,v) ← Call
 - Valid status conditions:
 - Verify that it is within the limits of the board
 - Check that the box has not been accessed
 - Solution condition:
 - i == $n*n \rightarrow We completed the board$
 - Record new state → board[u][v] = i;
 - Remove previously recorded state → board[u][v] = 0;

First solution


```
void backtracking(int i, int x, int y) {
    if (i==n*n+1) { //the horse has finished
       found=true;
       System.out.println("SOLUTION FOUND"); //print it
   else
       for (int k=0; k<=7; k++) { //8 possibilities
          int u = x+a[k]; //target coordinate x
          int v = y+b[k]; //target coordinate y
          if (!found && u>=0 && u<=n-1 && v>=0 && v<=n-
          1 && board[u][v]==0) {
                       board[u][v] = i; //we mark it
                       backtracking(i+1,u,v);
                       board[u][v] = 0; //we unmark it
       } //for
  //method
```

Analysis

- \rightarrow coordinates on the board of the position of the horse at a given moment
- \rightarrow u, \vee \rightarrow target coordinates of the horse

- Complexity analysis:
 - Tree of states (degree): 8
 - Tree of states (height): n²
 - The maximum complexity assuming all valid states is O(8^{n²})

The problem of assigning tasks to agents

 We must assign j tasks to i agents, so that each agent performs only one task

 We have a matrix of costs, to know the cost of performing a task j by an agent i

 Goal: Minimizing the sum of the costs for executing the n tasks

Solution


```
public void backtracking(int worker) {
   if (worker==n) { //solution condition
       checkIfBestSolution(sol); //if the new solution
   improves the past solutions => we get a new best solution
   else {
       for (int task=0; task<n; task++) {</pre>
           if (!assigned(task)) {
               sol[worker] = task;
               backtracking(worker+1);
               sol[worker] = -1; //we leave it as it was
                                                                    checkIfBestSolution()?
                                                                             assigned()?
       } //for
                                                                          printBestSol()?
    } //else
```


On your mobile browser go to

web.meetoo.com

Or

Download Meetoo from your app store and enter meeting ID

120-620-870

POLL OPEN

If you need to solve a problem and you know how to solve it using a dynamic programming algorithm, but you also know how to solve it using a backtracking-based algorithm, which one you should usually use?

1. Backtracking

✓ 2. Dynamic Programming

3. Neither

POLL OPEN

For the Magic Square problem, with a size of n=3, how many ways to arrange the n² numbers are there using brute force?

- 1 27
- 2 9
- 3 81
- 4 362.880
 - 5 About 1000
 - 6 3

Many problems can be represented as abstract graphs. Nodes usually represent valid changes and edges usually represent the state of the problem. Thus, to solve the problem we must find a node or a path in the associated graph

1 True

2 False

There are usually two versions of backtracking algorithms. There can be:

2. False the problem

"a 10%

solutions, the best or the worst solution

Indicate which ones can be common complexities when working with backtracking

1 O(n!)

Vote for up to 3 choices

- $2 O(n^2)$
- 3 O(n)
- √ 4 O(2ⁿ)
- √ 5 O(4ⁿ)
 - 6 O(nlogn)

Which complexity is the worst?

- 1. O(n!)
- 2. $O(10^{n})$
- ✓ 3. O(nⁿ)

The memory consumption with backtracking depends on the height of the tree of calls and the waste of stack for each recursive call

1. True

2. False

POLL OPEN

With backtracking, the height of the tree of states is usually XXX when we have a behavior by division and XXX when we have a

1 O(n) and O(logn) behavior by subtraction

- 2 O(logn) and O(n)
- 3 O(logn) and $O(n^2)$
- 4 $O(n^2)$ and O(n)
- 5 O(n) and O(n)
- 6 O(logn) and O(long)

Working with backtracking to solve the problem of the n Queens with a board of size n=5, what is the time complexity of the algorithm?

- 1. O(4!)
- ✓ 2. O(n!)
 - 3. $O(2^n)$
 - 4. $O(5^n)$
 - 5. O(nⁿ)

Bibliography

