NEW CLAIMS

17. The imaging system of claim 1, wherein:

the optical viewing device comprises one of the following: a monocular, a binocular, or a periscope.

18. The imaging system of claim 1, further comprising:
an encoder in the camera control unit to encode the electronic image signal, wherein the encoder
adds source identifying information as a unique identification code to the electronic image signal.

19. The system of claim 18, wherein:

the encoder adds the source identifying information with a video adder as an on-screen display for an output device.

20. The system of claim 18, wherein:

the encoder comprises a key pad for entering a unique identification code that is received by a key pad decoder which adds enameters generated by the code to the electronic video signal through a video adder.

- 21. The system of claim 1, further comprising:
- a decoder in the receiver to decode the encoded electronic video signal, wherein the

Application No. 09/171,018

decoder and receiver supply a base band video signal to an output device.

22. The system of claim 1, wherein:

the beam splitter and the electronic video imaging device are mounted in a circular member having an inner ring that removably attaches to the eyepiece of the optical viewing device, wherein the ring is replaceable with alternate rings of varying diameter to accommodate varying diameters of alternate eyepieces.

23. A method for real time, multiple path imaging, comprising:

observing an image of a subject through an eyepiece of an optical viewing device;

directing the image through optical beam splitter that divides the image into first and second optical viewing paths;

receiving the second optical viewing path into a video camera that is removably attached in alignment with the eyepiece without internal modification of the basic optical viewing device, wherein the video camera member is adjustable to accommodate varying sizes of eyepieces and converts the optical image into an electronic image signal;

transmitting the electronic image signal to a camera control unit; encoding the electronic image signal in the camera control unit with an encoder, wherein the encoder enters source identifying information as a unique identification code that is added to the electronic image signal as an on-screen display with a video adder;

transmitting the electronic image signal and added source identifying information in real

Application No. 09/171,018

time through a wireless transmitter to a remote receiver;

distinguishing between a plurality of electronic image signals transmitted from a plurality of camera control units and received at the receiver.

24. The method of claim 23, wherein:

the first optical viewpath divided by the beam splitter is terminated by the eyepiece, said beam splitter being aligned with the eyepiece.

25. The method of claim 23, further comprising:

distinguishing a plurality of video signals received by the receiver from one another by data in an on screen display added to said respective video signals by the camera control unit.

26. The method of claim 23, further comprising:

distinguishing a plurality of video signals from one another by respective transmission carrier frequencies transmitted by said camera control unit.

27. The method of claim 23, wherein:

encoding the electronic image signal adds the source identifying information with a video adder as an on-screen display for an output device.

28. The method of claim23, wherein:

Application No. 09/171,018

the electronic image signal is encoded by entering a unique identification code with a key pad which adds coded characters to the electronic video signal through a video adder.

29. The method of claim 23, further comprising:

decoding the encoded electronic video signal with a decoder in the receiver, wherein the decoder and receiver supply a base band video signal to an output device.

30. The method of claim 23, further comprising:

mounting the beam splitter and the electronic video imaging device in a circular member having an inner ring that removably attaches to the eyepiece of the optical viewing device, wherein the ring is replaceable with alternate rings of varying diameter to accommodate varying diameters of alternate eyepieces.