Problem Set - 19 Jan 2024

PROBLEM 1 (2018 AMC 10B #1)

Kate bakes a 20-inch by 18-inch pan of cornbread. The cornbread is cut into pieces that measure 2inches by 2 inches. How many pieces of cornbread does the pan contain?

(A) 90

(B) 100

(C) 180

(D) 200

(E) 360

PROBLEM 2 (2014 AIME II #7)

Let $f(x) = (x^2 + 3x + 2)^{\cos(\pi x)}$. Find the sum of all positive integers n for which

$$\left|\sum_{k=1}^n \log_{10} f(k)
ight| = 1.$$

PROBLEM 3 (2010 AMC 12B #22)

Let ABCD be a cyclic quadrilateral. The side lengths of ABCD are distinct integers less than 15 such that $BC \cdot CD = AB \cdot DA$. What is the largest possible value of BD?

(A) $\sqrt{\frac{325}{2}}$ (B) $\sqrt{185}$ (C) $\sqrt{\frac{389}{2}}$ (D) $\sqrt{\frac{425}{2}}$ (E) $\sqrt{\frac{533}{2}}$

PROBLEM 4 (2011 AMC 12B #22)

Let T_1 be a triangle with side lengths 2011, 2012, and 2013. For $n \ge 1$, if $T_n = \Delta ABC$ and D, E, and F are the points of tangency of the incircle of $\triangle ABC$ to the sides AB, BC, and AC, respectively, then T_{n+1} is a triangle with side lengths AD, BE, and CF, if it exists. What is the perimeter of the last triangle in the sequence (T_n) ?

(A) $\frac{1509}{8}$ (B) $\frac{1509}{32}$ (C) $\frac{1509}{64}$ (D) $\frac{1509}{128}$ (E) $\frac{1509}{256}$

PROBLEM 5 (2013 AIME | #13)

Triangle AB_0C_0 has side lengths $AB_0=12$, $B_0C_0=17$, and $C_0A=25$. For each positive integer n, points B_n and C_n are located on $\overline{AB_{n-1}}$ and $\overline{AC_{n-1}}$, respectively, creating three similar triangles $\triangle AB_nC_n \sim \triangle B_{n-1}C_nC_{n-1} \sim \triangle AB_{n-1}C_{n-1}$. The area of the union of all triangles $B_{n-1}C_nB_n$ for n ≥ 1 can be expressed as $rac{p}{q}$, where p and q are relatively prime positive integers. Find q.