ふな...

SORMO LOOMETHAE 17-806B 6 mm ruted x 39

No.	
Date	······································
,	(U) = T:X -> C : hol. submartion s. T. Thice, = idices a (2) = A: non-sty hol. toliarism on X. S.Y. , C is T lent of ZI
	holomy of to defined by \mathcal{T}_1 (c, +) -> $\mathcal{O}_{C,O}$ is the map of the holomy of to defined by \mathcal{T}_1 (x -> fix) (x -> fix)
	Construction of (X, i)
	0 C = 0 = 0
	$\gamma \sigma_1 \sigma_2 = V_1 \sigma_2 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_5 \sigma_5 \sigma_5 \sigma_5 \sigma_5 \sigma_5 \sigma_5 \sigma_5 \sigma_5$
-	0) tix ocr «R <<1.
	Θ X:= (U, x De) U (U, x/-)/
	(c.8. δ_{1} . $\frac{1}{2}$) (k.2.) $\delta_{1}V_{1}X_{2}V_{2}$ (2.2) (2.2) (2.4) (2.4)
	Q Pr. : X; → U; gluss up to Lette T: X→C.
	@ sub antides Dixfolo CX; -+- icco CX-
	1) foliations "I Dix 1 convert" of X; -+ Zi
_	Rak (X(c, ri, oz, +), ((c, oz, oz, +))! unique up to show by
	(i(C) # [(end) > dy Nices = 0

(X,C):= (X (c.8,824) (C)) T:= +(0) 0: repelly, attracting, or siegel fixed point of & 15(=1, f: 11mble. (C) comi-positue. O: vationally indifferent fixed p.t. of f ant. (14=1. ay(c) = Dx.) } ? ≠ id tor to. (C: advices a str. psd convenue while system (Ox (C); set semi-positive. (1) Asame cond (x)": D: O-nbh/ of C. = periodic cycle. 1f(1), +2(1), ..., for(1)=78 CD-109. Then Ox CC)! not semi-positive Rale " A:= 17 = U(1) 1. (-11-TR) = O(1-12) as 2-100%. B1:= 17000) 1 Sen 3/1/ 1.T. lind Al (1-11 1/4) (1) M A: full-nearme in. U(1), #Bd ≥ #20 f(0) = T)=A => \$ 0 is a giegel fixed p.t. (Signal.)
f(0) = B => Condition (4) holds (Veda, Cruev.) put of (ThuB = ThuA); Consider to Cax):= T:X+X2 52 Thun B V.s. Vada thou cos X sm. surt.

copt come, sm. surt.

sm. deg Nex =0.

s.t. & N/c = Nex. ~ = N: flat 1.6. deficion a suff. snall ubble V of Cink. Vedu's classification of (C, X)type $(X) \bigoplus O_V(C) \not\equiv formally O_V(N)$ or $Q_V(C) \equiv O_V(N)$ for $Q_V(C) \equiv O_V(N)$ Ov(c) = dv(N) alog c, have 40, Ov(c) \$00(N)

KAM. they (x,c) = (X(c,o,v2,+), (c,v,o2+)(c)) T = f(0) & U(1). (1) 0 is a siegel fixed p.c. = (c, x); of type (t) (2) ors on indiffering fresh p. c. (31 cond. of) holds (cx)! - (d) (CX)! -+ (B) \Rightarrow (Veda) 53. prd of ThmB

(1) ... sklp, (2) ← (" type(d.) → Ox (c); not. s.p."

(K-14). (3) Assumty = h: cooherm. netric. on (c) with s.p. carr. and considery $\psi:=-l_{og}[f_{c}]_{h}$ (fe=H'(X,Ox(C)))

It is suff. to show: Claim VW @ X, tob noble of cin X, V! W -> (-00, +00]: cont! func. Ww.c ipsh =) (io.1)

(io.1)

Yi bold from adome //

acount c @ Cond. (4) ~ = 21 Cn9: a seq. of opt leaves fix PEC., and regard T-(p) as a deman in C. (a) tin 1.

No we may assure that unit is

for the india way in

A for india way in

A (a) I con : bold from above my psh forme foin! on at (in) extends to Sefin a psh two on @ maxil principle ~ You & Sup You & M. A. Sup You & M. Sup You 9 Circonti, 4/c 5 M

KOKEYO LOOSE-LEAF DA 1955 - Simerindy in Science

·····	
*	Fix · C! sm. ellipt. curve. , $T_1, T_2 \in \mathcal{T}_1(C, t)$! generall · $f \in O_{0,0}$ s.t. $f(0) = 0$ and $T := f'(0) \neq 0$.
	Then $\exists X = X_{(e,f)} : \alpha \text{ sm cpx surf.}$ $\exists i = i_{(e,f)} : C \longrightarrow X : \text{ embedday}$
	S.E. (1) = 7: X -> C: hol. submersion ST. Thise, = id (2) = 7: Sm. hol. foliation on X.
	ST $P(C)$ is a leaf of C . • $Hol_{C}[P]$ (E) = E and $Hol_{C}[P]$ (E) = E (E) hold,
	Construction: (construction: (construction:
	$U_{i} \wedge U_{i} = 0$ $V_{i} \cup V_{i}$
	$ \begin{array}{c} $
	VixD2 TixDo
	Pr_ : UxPo→U, DxD2→U): glue up to define X. (1) foliations "[Ux121 (5000") — 11 (1) 2x121(300")
	@ sab untes [] = // ((c) Runk
 .	(C=i(C)! a leaf (5) dente day Ny =0.
	(C=i(C): a leat to day Ny =0

Than B (Main result) (X,C):= (Kcost), (cost) (cost) T:=f(0).(1) 0: repelling, attracting, or Siegel fixed p.t. of f.

(1717) (1716) (CCI=1, f: linble aco) - Codmics or psoffax uphd system. (C): seri-posithe. (2) Who: vatily indifferent fixed p.t. and $f^n \neq i'd$ (i.e. $|\mathcal{U}| = 1$, $\frac{ang(\mathcal{U})}{n} \in \mathbb{Q}$)

for $n \geq 1$. =) C admits a str. ps/ concave ubhd system,

Ox(c): not semi-positive. (3) D: a noble of oin C, = periodic cycle

17.+(9),+2(9)...,+"(9) & C =) Oxce): not semi-positive. 11 Ruk, $0 | log | l-T^2 | = O(log l)$ as $l \rightarrow \infty \Rightarrow 0$: Sigel fixed p.c. @ |TEUCII (log 1-tel = 0 (1/21) -++ (< UCI): tull-menum. () f: poly of day = d and 3/71, like All-72/30-0 Vd21, #{TeUCI) (**) {222 --- Consider + (5) != T & + 52 Thu B => Thung; 52 ThuB v.s. Veda theny X: sm. surt DC: sm. opt cume, st. Nox =0. -> =(N: flat l.b./aubhl.tc)-t. N/c = Nox.

Velais classification of (C.X)

CONUMO INCOSERSAS UM BORS LA cina industria Se traci

· · ·	
6) type(K) for (C) 7 formly	Or (N)
type (B) \rightleftharpoons Or(C) \simeq	0 v (N)
type (7) (Oo(c) = Oo	-(N) along c. however \$00(N)
@ Assure == f(0) € U(1),	
~> (1) 0: Siegel fixed p.t.	
	(x.c): of upe(4)
2: (3) continen (4)	=> (x.c): of type(8).
	[[Vala]'s prt for the existence of type(0)
53. prf of Thm B	(the existence of type(0))
U) Skip.	[K-, 14]
(2) (c. x): of upe (d) =) ((c)! not seni-positive"
and by consider	y + = - log 14.
(3) Assuming OxCC) admits and by considered the suff. to show.	HO(X(C)): Com.
Claim VW &X: c-ubhd	H°(X,C)): Cun. Scation
$/ \forall \psi : w \longrightarrow (-\infty, \infty)$; conti. fue
(Ylwic: psh "En.	4: bd trom above
Claim VW &X: c-nbhd, Y! w -> (-0,0) Ylwic: psh (52)	avound C 4
@ condition (*) ~> =1 Gn {. 1	
@ pec: fix regard TC'(p)	SC St. Cn -> C.
@ pcc: fix regard TC-(p):	subset of the Tuliaser of f
The ibdl from about yorkist → R excends to a psh fue. A	+ 7 s.t. Walne In purcuil dose
O Yla boll from about	In(20) = Pan 2W
∀la : boll from about Yohn: D + → R extends to psh from D Yohn < M	Pro Cn.
VOI CM 41	~ < M continued the