Буси-до, 武士道, кодекс чести самурая:

- 1. Подпишите работу сверху: id_for_online, фамилию, имя, номер группы.
- 2. Для задач должно быть выписано решение, только ответ не засчитывается. В тесте проверяется только ответ.
- 3. Для каждого пункта задания обведите полученный результат в торжественную рамочку.
- 4. Ссылка на гитхаб: https://classroom.github.com/a/Nau7nIP5.
- 5. Имя файла должно иметь вид retake_kr2_NNN.pdf или retake_kr3_NNN.pdf или retake_test_NNN.pdf в зависимости от того, что переписывается. Вместо цифр NNN следует написать id_for_online.
- 6. При загрузке версий работы и на гитхаб, и в лмс, проверяется версия из лмс.
- 7. Начало переписывания: 15:30.
- 8. Пропустившим две контрольных предоставляется право переписать вторую из пропущенных, за первую остаётся ноль. Загрузите свою работу в лмс или на гитхаб в виде одного .pdf файла. Дедлайн: 16:00 —без штрафа, 16:05 —со штрафом 30%, 16:10 —со штрафом 60%.
- 9. Пропустившим три контрольных предоставляется право переписать вторую и третью, за первую пропущенную остаётся ноль. Загрузите свою работу в лмс или на гитхаб в виде двух .pdf файлов. Дедлайн по первой: 16:00 —без штрафа, 16:05 —со штрафом 30%, 16:10 —со штрафом 60%. Дедлайн по второй: 16:30 —без штрафа, 16:35 —со штрафом 30%, 16:40 —со штрафом 60%.
- 10. Оперативные важные сообщения будут в телеграм-канале @room112.

Миниконтрольная №2

Имеется случайная выборка $X_1,\,X_2,\,...,\,X_n$ из распределения с функцией плотности

$$f(x) = \begin{cases} \theta x^{\theta-1}, \text{ при } x \in [0;1], \\ 0, \text{ иначе.} \end{cases}$$

- 1. Методом моментов, используя первый момент, найдите оценку параметра θ .
- 2. Методом максимального правдоподобия найдите
 - а) оценку параметра θ ;
 - б) оценку $E(X_i)$.
- 3. Вычислите информацию Фишера о параметре θ , содержащуюся во всей выборке.
- 4. Вычислите асимптотическую дисперсию оценки максимального правдоподобия параметра.
- 5. Вычислите асимптотическую дисперсию оценки максимального правдоподобия.
- 6. Найдите оценку асимптотической дисперсии оценки максимального правдоподобия $\mathrm{E}(X_i)$.

Миниконтрольная №3

В этой миниконтрольной константа k —это номер id_for_online.

1. По случайной выборке $X_1, X_2, ..., X_n$ из равномерного распределения $U[0; \theta]$ построены две оценки

$$T_1 = k_1 \cdot \bar{X}, \quad T_2 = k_2 \cdot \max\{X_1, X_2, \dots, X_n\}.$$

- а) Найдите значения k_1 и k_2 при которых оценки являются несмещёнными.
- б) Проверьте, будет ли несмещённая оценка T_2 состоятельной?
- в) Какая из двух несмещённых оценок T_1 или T_2 является более эффективной?
- 2. Дана случайная выборка $X_1, X_2, ..., X_n$ из дискретного распределения

$$\mathbb{P}(X_i = m) = e^{-\lambda} \frac{\lambda^{m-k}}{(m-k)!}$$
, где $m = k, k+1, k+2, \dots$

с неизвестным параметром $\lambda.$ Проверьте, будет ли оценка $\hat{\lambda} = \bar{X}$ эффективной?

Тест 1. Выборочные характеристики

Условие к вопросам 1-12. Дана реализация случайной выборки x=(2,0,-1,-1).

- 1. Чему равно выборочное среднее?
- 2. Чему равна выборочная дисперсия (неисправленная выборочная дисперсия)?
- 3. Чему равна несмещенная оценка дисперсии (исправленная выборочная дисперсия)?
- 4. Чему равен выборочный второй начальный момент?
- 5. Чему равен выборочный третий центральный момент?
- 6. Чему равен первый член вариационного ряда?
- 7. Чему равен последний член вариационного ряда?
- 8. Чему равен теоретический второй начальный момент?
- 9. Что такое теоретический центральный момент второго порядка случайной величины X?
- 10. Что такое теоретический начальный момент второго порядка случайной величины X?
- 11. Чему равна выборочная функция распределения в точке x = -0.7?
- 12. Чему равна выборочная функция распределения в точке x = 0?
- 13. Дайте определение выборочной функции распределения в точке x.
- 14. Отметьте все правильные ответы. Какими свойствами обладает выборочная функция распределения?
 - а) выборочная функция распределения нестрого возрастает;
 - б) выборочная функция распределения строго возрастает;
 - в) выборочная функция распределения нестрого убывает;
 - г) выборочная функция распределения строго убывает;
 - д) при стремлении аргумента к плюс бесконечности выборочная функция распределения стремится к единице;
 - е) при стремлении аргумента к плюс бесконечности выборочная функция распределения стремится к плюс бесконечности;
 - ж) при стремлении аргумента к плюс бесконечности выборочная функция распределения стремится к нулю;
 - з) при стремлении аргумента к минус бесконечности выборочная функция распределения стремится к минус бесконечности;
 - и) при стремлении аргумента к минус бесконечности выборочная функция распределения стремится к нулю;
 - к) при стремлении аргумента к минус бесконечности выборочная функция распределения стремится к единице;
 - л) в отличие от теоретической функции распределения выборочная функция распределения может принимать отрицательные значения.

Таблица к вопросам 15-19:

	Страта 1	Страта 2	Страта 3
Bec	0.2	0.3	0.5
Стандартное отклонение	2	1	1
Стоимость наблюдения	4	9	1
Число наблюдений	n_1	n_2	n_3

- 15. Общее число наблюдений в выборке равно $n=n_1+n_2+n_3$, где n_1, n_2, n_3 —число наблюдений в 1-й, 2-й и 3-й стратах соответственно. Какое количество наблюдений (n_1, n_2, n_3) должно быть в выборке из 1,2,3 страты при пропорциональном разбиении, если общее число наблюдений n равно 10?
- 16. Общее число наблюдений в выборке равно $n=n_1+n_2+n_3$, где $n_1,\,n_2,\,n_3$ —число наблюдений в 1-й, 2-й и 3-й стратах соответственно. Каким должно быть общее число наблюдений n в выборке при бюджетном ограничении 22 у.е. $(4n_1+9n_2+n_3=22)$?
- 17. Общее число наблюдений в выборке равно $n=n_1+n_2+n_3$, где n_1 , n_2 , n_3 —число наблюдений в 1-й, 2-й и 3-й стратах соответственно. Вычислите дисперсию стратифицированного среднего при пропорциональном разбиении выборки из 10 наблюдений.
- 18. Общее число наблюдений в выборке равно $n=n_1+n_2+n_3$, где n_1, n_2, n_3 —число наблюдений в 1-й, 2-й и 3-й стратах соответственно. Какое количество наблюдений (n_1, n_2, n_3) должно быть в выборке из 1,2,3 страты при оптимальном разбиении, если фиксировано общее число наблюдений n равно 10?
- 19. Общее число наблюдений в выборке равно $n=n_1+n_2+n_3$, где n_1 , n_2 , n_3 —число наблюдений в 1-й, 2-й и 3-й стратах соответственно. Найдите дисперсию стратифицированного среднего при оптимальном разбиении выборки из 10 наблюдений.
- 20. В барабане три шара с написанными на них суммами выигрыша: 1, 2, 3. Ведущий раскручивает барабан и достаёт без возвращения два шара. Чему равна дисперсия среднего выигрыша по двум шарам выигрыша?