

A Statistical Variant of the Inductive Miner

Martin Bauer

Institut fr Informatik Humboldt-Universitt zu Berli

Contents of this presentation

- ▶ Process Mining
- Incremental Log Analysis
- ▶ the Statistical Inductive Miner infrequent
- Discussion

Process Mining

user id	activity	timestamp
3456	Α	03-07-2016
3456	В	03-07-2016
4788	Α	04-07-2016
3456	C	04-07-2016
4788	D	04-07-2016

Process Discovery

user id	activit
1	Α
1	В
1	E
2	В
2	Α
2	C
3	В
3	Α
3	C
3	D
3	C

A Statistical Variant of the Inductive Miner

Inductive Miner - Conversion to df-Graph

user id	activity
1	Α
1	В
1	E
2	В
2	Α
2	C
2 2 2 3 3	В
3	Α
3	C
3 3 3	D
3	C

$\rightarrow A \rightarrow E \rightarrow$
$\begin{array}{c} () \times \\ \rightarrow B \rightarrow C \rightarrow \\ () \end{array}$
D

A Statistical Variant of the Inductive Miner

Inductive Miner - Detecting Cuts

Inductive Miner - Building a Process Tree

Inductive Miner infrequent - Filtering out Noise

Incremental Process Discovery - Redundancy of Logs

- ► A,B,C,D 500
- ► A,B,E 400
- ► A,G 20

How likely are we to see new information in the next N Traces?

$$Bin(N,k) = \binom{N}{k} \cdot p^k \cdot (1-p)^{N-k}$$

Delta-Completeness

"A Log is δ -complete, if the probability p of seeing new information in the next trace is smaller than δ "

Incremental Process Discovery - Estimating p

$$\begin{split} & [\frac{1}{1+\frac{z^2}{N}} \cdot (\hat{p} + \frac{z^2}{2N} - \sqrt{\frac{\hat{p} \cdot (1-\hat{p})}{N} + \frac{z}{4N^2}}), \\ & \frac{1}{1+\frac{z^2}{N}} \cdot (\hat{p} + \frac{z^2}{2N} + \sqrt{\frac{\hat{p} \cdot (1-\hat{p})}{N} + \frac{z}{4N^2}})] \end{split}$$

Assuming $\hat{p} = 0$ gives

$$\frac{1}{1+\frac{z^2}{N}}\cdot(\frac{z^2}{2\cdot N}+\sqrt{\frac{z}{4\cdot N^2}})$$

Increase N until upper bound is smaller than δ

Content of the Thesis

- Apply the Incremental Process Discovery Procedure to Inductive Miner infrequent using model correctness and approximated average cycle time as quality criteria
- ► Evaluate the algorithm on runtime properties and on factors that influence it's efficiency

Model Correctness

A trace may add events, edges, starting- or ending nodes - if it does, it contains new information

Cycle Time Correctness

Trace-based and Event-based Cycle times

- ► A(5s), B(10s), C(5s)
- ► A,B,C (20s)

Iterative Estimation of cycle time is converging towards correct cycle time:

$$\forall \epsilon \geq 0 \exists 0 < \textit{N} < \max(|t|) \forall \textit{N} \leq \textit{t}_\textit{n}, \textit{t}_\textit{m} < \max(|t|) : \textit{d(cycletime}_\textit{n}, \textit{cycletime}_\textit{m})$$

given $\epsilon,$ if trace changes cycle time more than ϵ assume new information

A Statistical Variant of the Inductive Miner — 13/23

The Algorithm

Evaluation - Runtime

Evaluation - Traces

Evaluation - Memory

Evaluation - what runtime approximation is better?

Evaluation - Fitness

Log properties - Noise and Cycle Time Deviations

Control flow structures

AND and sequential complex blocks (AND, XOR) influence runtime the most

Conclusion

- ▶ slMi outperforms lMi an almost all cases
- ▶ the algorithmic framework is extensible
- no fitness loss
- \blacktriangleright bad ϵ increase runtime by a lot
- random nature of trace picking (can be adjusted easily)

Thank you! Any questions?