Conjuntos y Lógica

Cecilia Chávez Aguilera

Facultad de Ciencias CU

14 de octubre de 2020

Un lenguaje de primer orden consta de los siguientes símbolos:

- Un conjunto de variables individuales $V = \{x_i : i \in \mathbb{N}\}$
- Un conjunto de símbolos de predicado $P = \{A_i^j : i, j \in \mathbb{N}\}$
- Un conjunto de símbolos de función $F = \{f_i^j : i, j \in \mathbb{N}\}\$
- Un conjunto de símbolos de constantes individuales $C = \{c_i : i \in \mathbb{N}\}$
- Símbolos de conectivos $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$
- Símbolos para cuantificar $\{\forall, \exists\}$
- Símbolos de puntuación {), (, , }

Términos

- Para toda $x_i \in V$, x_i es un término
- ② Si t_1, \ldots, t_n son términos y $f_i^n \in F$, entonces $f_i^n(t_1, \ldots, t_n)$
- $oldsymbol{3}$ Sólo aquellas expresiones formadas mediante un número finito de pasos de los casos 1 y 2 es un término

Dado un lenguaje de primer orden L denotamos al conjunto de términos de L mediante T_L

C. Chávez

Resumen 2da parte

Dado un lenguaje de pimer orden L, con P su conjunto de predicados, el conjunto de fórmulas atómicas está formado por el conjunto de expresiones de la forma:

$$A_i^n(t_1,\ldots,t_n)$$

con $A_i^n \in P$, y $t_1, \dots t_n \in T_L$. Al conjunto de fórmulas atómicas de un lenguaje lo denotaremos mediante \mathcal{A}

Dado L lenguaje de primer orden, definimos su conjunto de fórmulas de manera recursiva de la siguiente manera

- Para toda $\alpha \in \mathcal{A}$, α es una fórmula
- Si α, β son fórmulas, entonces las siguientes son fórmulas: $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ son fórmulas.
- Si α es fórmula y $x_i \in V$, entonces las siguientes son fórmulas $((\forall x_i)\alpha), ((\exists x_i)\alpha)$.
- Sólo aquellas expresiones formadas mediante un número finito de pasos basados en los casos anteriores es fórmula.

- En una fórmula del tipo $((\forall x_i)\alpha)$ decimos que α es el alcance del cuantificador \forall .
- En una fórmula del tipo $((\exists x_i)\alpha)$ decimos que α es el alcance del cuantificador \exists
- $\neg((\forall x_1)\alpha) \equiv ((\exists x_1)\neg\alpha)$
- $\neg ((\exists x_1)\alpha) \equiv ((\forall x_1) \neg \alpha)$