AXIOMS FOR THE INTEGERS

Let

$$\mathbb{Z}$$
 = the set of $integers = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

and

$$\mathbb{N}$$
 = the set of natural numbers = $\{1, 2, 3, \ldots\}$,
- \mathbb{N} = the set of negative integers = $\{-1, -2, -3, \ldots\}$.

- Addition Properties. There is an operation +, called addition, such that
 - \circ $a+b \in \mathbb{Z}$ for all $a,b \in \mathbb{Z}$;
 - \circ a+b=b+a for all $a,b\in\mathbb{Z}$;
 - \circ (a+b)+c=a+(b+c) for all $a,b,c\in\mathbb{Z}$;
 - \circ a+0=a for all $a\in\mathbb{Z}$;
 - \circ for any $a \in \mathbb{Z}$ there exists $-a \in \mathbb{Z}$ such that a + (-a) = 0.
- Multiplication Properties. There is an operation \cdot (or \times), called multiplication, such that
 - $\circ \quad a \cdot b \in \mathbb{Z} \text{ for all } a, b \in \mathbb{Z};$
 - \circ $a \cdot b = b \cdot a$ for all $a, b \in \mathbb{Z}$;
 - \circ $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in \mathbb{Z}$;
 - \circ $a \cdot 1 = a$ for all $a \in \mathbb{Z}$;
- Distributive Property. We have $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in \mathbb{Z}$.
- Trichotomy Principle. The set of integers can be partitioned into three disjoint sets: $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$. We write a > b if $a b \in \mathbb{N}$, a = b if a b = 0, and a < b if $a b \in -\mathbb{N}$.
- Positivity. If $a, b \in \mathbb{N}$, then $a + b \in \mathbb{N}$ and $a \cdot b \in \mathbb{N}$.
- Well-Ordering Principle. Every nonempty subset of \mathbb{N} has a least (smallest) element.

USEFUL RESULTS EASILY DERIVED FROM THE AXIOMS

- Relations \leq and \geq . We write $a \leq b$ or $b \geq a$ to signify that a < b or a = b. The integers \mathbb{Z} are ordered by this relation, and we have
 - \circ $a \leq a$ for all $a \in \mathbb{Z}$;
 - \circ if $a \leq b$ and $b \leq a$, then a = b;
 - \circ $a \leq b$ and $b \leq c$, then $a \leq c$;
 - \circ for all $a, b \in \mathbb{Z}$, either $a \leqslant b$ or $b \leqslant a$.
- Principle of Induction. Let S be a subset of \mathbb{N} such that

$$1 \in S$$
 and $k \in S \implies k+1 \in S$.

Then $S = \mathbb{N}$.

- Cancellation Laws. If a + x = a + y, then x = y. If $a \cdot x = a \cdot y$ and $a \neq 0$, then x = y.
- Zero Multiplication. $a \cdot 0 = 0$ for all $a \in \mathbb{Z}$.
- Integral Domain Property. If $a \cdot b = 0$, then a = 0 or b = 0.
- Properties of Negatives. We have $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$ and $(-a) \cdot (-b) = ab$ for all $a, b \in \mathbb{Z}$. In particular, the product of any two negative numbers is positive.
- FOIL Law. $(a+b) \cdot (c+d) = a \cdot c + a \cdot d + b \cdot c + b \cdot d$ for all $a, b, c, d \in \mathbb{Z}$.
- General Associative-Commutative Laws.
 - \circ When adding a collection of n integers $a_1 + a_2 + \cdots + a_n$, the numbers may be grouped in any way and added in any order. In particular, the expression $a_1 + a_2 + \cdots + a_n$ is well-defined (no parentheses are needed to specify the order of operations).
 - When multiplying a collection of n integers $a_1 \times a_2 \times \cdots \times a_n$, the numbers may be grouped in any way and added in any order. In particular, the expression $a_1 \times a_2 \times \cdots \times a_n$ is well-defined.