Bevezetés

Számítógépes nyelvészet – 2018 tavasz 1. óra

Simon Eszter – Mittelholcz Iván

MTA Nyelvtudományi Intézet

Tartalom

- 1. Bemutatkozás
- 2. A félév bemutatása
- 3. Adminisztráció
- 4. Technikai részletek
- 5. Fogalmi tisztázás

Bemutatkozás

BEMUTATKOZÁS

- · mi
- · ti

A félév bemutatása

Az órák

- · összesen 13 óra
 - · ebből 11-re van terv
 - · egy lauf
 - · egy úgyis elmarad...
- · egy órán belül:
 - · elméleti bevezetés slide-okkal
 - · gyakorlatok gépen
 - · házi feladat

Bevezetés a karakterkódolások rejtelmes világába

- · Elmélet:
 - · szöveges fájlok
 - karakterkódolás általában, karakterkódolás és fontkészlet
 - · ASCII és kiegészítései
 - · Unicode, Unicode kódolások (UTF és UCS)
 - karakterkódolás detektálása
 - konvertálás kódolások között.
- Gyakorlat:
 - · file és iconv parancsok
 - · karakterkódolás python-ban
 - python2 és python3 közti különbségek

Bevezetés a héjak és szabályos kifejezések csodálatos világába

- · Elmélet:
 - · shell bevezetés
 - nyelvosztályok
 - regex elméleti alapok (reguláris nyelvek, automaták)
 - regex motorok működése, hatékonyság
- · Gyakorlat:
 - · sed, grep
 - · python regex-ek
 - regexek és karakterkódolás
- · Házi feladat:

• -

Automaták, FST, kétszintű morfológia

· Flmélet:

- · mi az automata, hogyan kell csinálni
- · mire lehet használni: különböző morfofonológiai feladatokra
- · Kimmo és a kétszintű morfológia
- · automaták implementálásának alapjai táblázattal

· Gyakorlat:

 hfst-nek van olyan parancsa, amivel szabályokból FST-t lehet építeni

· Házi feladat:

- automata építése, ami egy nyelv minden elemét legenerálja, és csak azt
- · szorgalmi: játékautomata leprogramozása pythonban

Korpuszépítés

· Elmélet:

- a forrás módja: hang, írott, multimodális → innentől csak írott
- forrás: papír Vs elektronikus \rightarrow kép Vs szöveg \rightarrow txt
- · az annotáció formátuma: inline (XML) vagy standoff (tsv & BIE1)
- annotációs séma → annotációs útmutató
- · kézi annotálás, annotációs eszközök, inter-annotator agreement

Gyakorlat:

- · crawling: wget, scrapy
- · boilerplate removal: beautifulsoup4
- · odt -> xml-ből kinyerés
- · docx, pdf: tika
- · kézi annotáció segítése: excel, ana2html, GATE

· Házi feladat:

- · játékkorpusz annotálása (NER v. NP-chunk v. dependencia) ketten vagy hárman, inter-annotator agreement számolása
- · szorgalmi: NLTK-ban van rá eszköz, azzal kiszámolgatni

Korpuszannotáció 1.

- · Elmélet:
 - · kézi vs. automatikus annotáció, gold vs. silver standard
 - · az automatikus korpuszannotáló eszközök kiértékelése (P, R, F)
 - · mondatra bontás, tokenizálás
 - · morfológiai elemzés
 - egyértelműsítés
- Gyakorlat:
 - GATE vagy NLTK, polyglot?
- · Házi feladat:
 - · egy szöveg végigtolása egy elemzőláncon

7. óra

Korpuszannotáció 2.

- · Elmélet:
 - NER
 - · sekély szintaktikai elemzés
 - · szintaktikai elemzés (konstituencia és dependencia)
- · Gyakorlat:
 - . ?
- · Házi feladat:
 - az ötödik hét kézzel annotált játékkorpusza legyen a gold standard
 az e-magyar teljesítményének a kiértékelése ezeken a korpuszokon (precision, recall, f-measure)

Korpuszlekérdezések, -statisztika

- · Elmélet:
 - · alapfogalmak: korpusz, korpuszlekérdező motor, nyelvek és felület
 - · lekérdező nyelvek: CQL (MNSZ), MQL (Emdros)
 - token–type, gyakoriság, relatív gyakoriság, MLE...
- Gyakorlat:
 - MNSZ-en vagy ómagyar korpuszon parancssorból lekérdezgetni dolgokat, valami egyszerűbb statisztikát számolni
- Házi feladat:
 - ómagyar korpuszon egy nyelvi jelenség diakrón vizsgálatát elvégezni: pl. a főnevek száma az egyes kódexekben, relatív gyakoriság, diagram

Gépi tanulás 1.

- · Elmélet:
 - · történeti kitekintés: szabályalapú vs. statisztikai módszerek
 - · supervised és unsupervised tanulás
 - · gold standard adat
 - train-devel-test halmazok, keresztvalidáció
 - · feature extraction, n-gramok
 - modellépítés
 - taggelés
 - kiértékelés
- · Gyakorlat:
 - · huntagen végigpróbáljuk az egyes lépéseket
- · Házi feladat:
 - NLTK-ban egy korpuszon egy tanuló algoritmussal valamit kipróbálni

Gépi tanulás 2.

- · Elmélet:
 - · Bayes-tétel, noisy channel, HMM
 - supervised algoritmusok: döntési fa, maxent, CRF, neurális háló stb.
 - · unsupervised: klaszterezés
- · Gyakorlat:
 - · Scikit-learn-ben megnézni egy-két dolgot
- · Házi feladat:
 - . ?

Kitekintés

- · Elmélet:
 - · ontológia, linked open data, RDF
 - · információkinyerés, NER
 - · információ-visszakeresés
 - kulcsszókinyerés
 - · metaforák és metonímiák felismerése
 - automatikus szótárgenerálás
 - sentiment analysis
 - · gépi fordítás
- · Gyakorlat:
 - . -
- · Házi feladat:
 - játék kulcsszókinyerés

Adminisztráció

Házi feladatok és teljesítés

- · összesen 8 házi feladat kerül kiadásra
- · ebből legalább 3-at kell beadni a teljesítéshez
- · a feladatokból 4 megoldható programozási tudás nélkül is
- · a beadott házikra megajánlott jegyet lehet kapni
- · akinek ez nem jó, írhat javító ZH-t

Technikai részletek

Technikai részletek

OS

- unix-like oprendszerek preferáltak (Linux, OS X)
- · windows:
 - cygwin
 - Windows Subsystem for Linux
 - VirtualBox + Linux (Debian, Ubuntu, CentOS)

Shell

- Linux, OS X: ✓
- · online: Unix Terminal Online

Python 3

- Linux, OS X: ✓
- · Windows: python
- Anaconda
- · online lehetőségek: PythonAnywhere, repl.it

Repó

https://github.com/m-ivan/compling

Git

- · TryGit, The Simple Guide
- git clone https://github.com/m-ivan/compling.git

Jupyter Notebook

- tutorial
- pip install jupyter vagy pip3 install jupyter
- Anacondában elvileg benne van ha mégsem: conda install jupyter

Fogalmi tisztázás

Fogalmi tisztázás

- számítógépes nyelvészet
- korpusznyelvészet
- · NLP
- · HLT
- · stb.