Problem 2: We would like to evaluate the result of the First-Visit Monte Carlo algorithm used for policy evaluation in the episodic, discounted setting. Recall that this algorithm estimates the value function under policy π in any state s, i.e.,

$$V^{\pi}(s) = \mathbb{E}_{\substack{A_t \sim \pi(.|S_t) \\ S_{t+1} \sim P(.|S_t, A_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(S_t, A_t) | S_0 = s \right]$$

by the empirical mean of a set of sample returns. Let $\mathcal{T}(s) = \{\tau_1^s, \tau_2^s, \dots, \tau_{N^s}^s\}$ be the sample trajectories starting from s and ending in a terminal state obtained from different episodes of the algorithm. Let $\mathcal{G}(s) = \{G_1^s, G_2^s, \dots, G_{N^s}^s\}$ be the sample returns corresponding to $\mathcal{T}(s)$, i.e.,

$$G_i^s = \sum_{t=0}^{|\tau_i^s|} \gamma^t R(S_{t,i}^s, A_{t,i}^s),$$

where $S_{t,i}^s$ and $A_{t,i}^s$ are the state and action observed at time t in trajectory τ_i^s , respectively. The Monte Carlo algorithm estimates $V^{\pi}(s)$ as follows:

$$\hat{V}^{\pi}(s) = \frac{1}{N^s} \sum_{i=1}^{N^s} G_i^s = \frac{1}{N^s} \sum_{\substack{\tau_i^s \in \mathcal{T}(s) \\ \tau_i^s \in \mathcal{T}(s)}} \sum_{t=0}^{|\tau_i^s|} \gamma^t R(S_{t,i}^s, A_{t,i}^s).$$

1. Assume that the reward function is bounded, $|R(s,a)| \leq R_{max}$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$. Find an upper bound and lower bound on G_i^s , i.e., find α and β such that

$$\alpha \leq G_i^s \leq \beta.$$

Answer:

Since $|R(s, a)| \leq R_{max}$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$, then

$$G_i^s = \sum_{t=0}^{|\tau_i^s|} \gamma^t R(S_{t,i}^s, A_{t,i}^s) \le \sum_{t=0}^{|\tau_i^s|} \gamma^t R_{max} = R_{max} \sum_{t=0}^{|\tau_i^s|} \gamma^t \le R_{max} \sum_{t=0}^{\infty} \gamma^t = \frac{R_{max}}{1-\gamma}$$

Similarly, since $R(s, a) \ge -R_{max}$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$, then

$$G_{i}^{s} = \sum_{t=0}^{|\tau_{i}^{s}|} \gamma^{t} R(S_{t,i}^{s}, A_{t,i}^{s}) \ge \sum_{t=0}^{|\tau_{i}^{s}|} \gamma^{t} (-R_{max}) = -R_{max} \sum_{t=0}^{|\tau_{i}^{s}|} \gamma^{t} \ge -R_{max} \sum_{t=0}^{\infty} \gamma^{t} = \frac{-R_{max}}{1 - \gamma}$$

$$\implies \frac{-R_{max}}{1 - \gamma} \le G_{i}^{s} \le \frac{R_{max}}{1 - \gamma}$$

2. Let $E(s) = \sum_{i=1}^{N^s} G_i^s$ be the sum of all sample returns for state s. Recall that the expected value of each sample return is the true value function, i.e., $\mathbb{E}_{\substack{A_t \sim \pi(.|S_t) \\ S_{t+1} \sim P(.|S_t, A_t)}} [G_i^s] = V^{\pi}(s)$.

Derive and express $\mathbb{E}_{\substack{A_t \sim \pi(.|S_t) \\ S_{t+1} \sim P(.|S_t, A_t)}} [E(s)]$ in terms of $V^{\pi}(s)$.

Answer:

$$\mathbb{E}_{\substack{A_t \sim \pi(.|S_t) \\ S_{t+1} \sim P(.|S_t, A_t)}} [E(s)] = \mathbb{E}_{\substack{A_t \sim \pi(.|S_t) \\ S_{t+1} \sim P(.|S_t, A_t)}} [\sum_{i=1}^{N^s} G_i^s]$$

$$= \sum_{i=1}^{N^s} \mathbb{E}_{\substack{A_t \sim \pi(.|S_t) \\ S_{t+1} \sim P(.|S_t, A_t)}} [G_i^s] \qquad \text{due to linearity of expectation}$$

$$= \sum_{i=1}^{N^s} V^{\pi}(s) \qquad \text{by definition}$$

$$= V^{\pi}(s) \sum_{i=1}^{N^s} 1$$

$$= N^s V^{\pi}(s)$$

3. Apply Hoeffding's inequality (or other concentration inequalities) to bound the probability that E(s) deviates from its expected value obtained in the previous part, i.e., bound $\mathbb{P}(|E(s) - \mathbb{E}[E(s)]| \ge \epsilon)$ (the subscript for the expectation operator is omitted for simplifying the notation) for any $\epsilon > 0$. Notice that the samples G_i^s are independent random variables.

Answer: For $j \neq i$, G_i^s and G_j^s are independent since they are coming from different episodes. As E(s) is a summation of independent variables G_i^s and $\alpha \leq G_i^s \leq \beta$, then we can directly apply Hoeffding's inequality.

$$\begin{split} \mathbb{P}\left(|E(s) - \mathbb{E}[E(s)]| \ge \epsilon\right) \le 2 \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^{N^s} (\beta - \alpha)^2}\right) \\ &= 2 \exp\left(-\frac{2\epsilon^2}{N^s (\frac{2R_{max}}{1 - \gamma})^2}\right) \\ &= 2 \exp\left(-\frac{(1 - \gamma)^2 \epsilon^2}{2N^s R_{max}^2}\right) \end{split}$$

4. Now, considering $\hat{V}^{\pi}(s) = \frac{1}{N^s} E(s)$, bound the probability that $\hat{V}^{\pi}(s)$ deviates from $V^{\pi}(s)$, i.e., bound $\mathbb{P}\left(|\hat{V}^{\pi}(s) - V^{\pi}(s)| \ge \epsilon'\right)$ for any $\epsilon' > 0$.

Answer:

$$\begin{split} \mathbb{P}\left(|\hat{V}^{\pi}(s) - V^{\pi}(s)| \geq \epsilon'\right) &= \mathbb{P}\left(\left|\frac{1}{N^{s}}E(s) - \frac{1}{N^{s}}\mathbb{E}[E(s)]\right| \geq \epsilon'\right) \quad \text{by definition of } \hat{V}^{\pi}(s) \text{ and by part 2} \\ &= \mathbb{P}\left(\frac{1}{N^{s}}\left|E(s) - \mathbb{E}[E(s)]\right| \geq \epsilon'\right) \\ &= \mathbb{P}\left(\left|E(s) - \mathbb{E}[E(s)]\right| \geq N^{s}\epsilon'\right) \end{split}$$

Setting $\epsilon = \epsilon' N^s$ in part 3

$$\mathbb{P}\left(|\hat{V}^{\pi}(s) - V^{\pi}(s)| \ge \epsilon'\right) \le 2\exp\left(-\frac{(1-\gamma)^2 \epsilon'^2 N^s}{2R_{max}^2}\right)$$