with $u \in U$ and $v \in U^{\perp}$. If we let $p = p_U(b) \in U$, then for any point $y \in U$, the vectors $\overrightarrow{py} = y - p \in U$ and $\overrightarrow{bp} = p - b \in U^{\perp}$ are orthogonal, which implies that

$$\|\overrightarrow{by}\|_2^2 = \|\overrightarrow{bp}\|_2^2 + \|\overrightarrow{py}\|_2^2,$$

where $\overrightarrow{by} = y - b$. Thus, p is indeed the unique point in U that minimizes the distance from b to any point in U. See Figure 23.2.

Figure 23.2: Given a 3×2 matrix A, $U = \operatorname{Im} A$ is the peach plane in \mathbb{R}^3 and p is the orthogonal projection of b onto U. Furthermore, given $y \in U$, the points b, y, and p are the vertices of a right triangle.

Thus the problem has been reduced to proving that there is a unique x^+ of minimum norm such that $Ax^+ = p$, with $p = p_U(b) \in U$, the orthogonal projection of b onto U. We use the fact that

$$\mathbb{R}^n = \operatorname{Ker} A \oplus (\operatorname{Ker} A)^{\perp}.$$

Consequently, every $x \in \mathbb{R}^n$ can be written uniquely as x = u + v, where $u \in \operatorname{Ker} A$ and $v \in (\operatorname{Ker} A)^{\perp}$, and since u and v are orthogonal,

$$||x||_2^2 = ||u||_2^2 + ||v||_2^2.$$

Furthermore, since $u \in \text{Ker } A$, we have Au = 0, and thus Ax = p iff Av = p, which shows that the solutions of Ax = p for which x has minimum norm must belong to $(\text{Ker } A)^{\perp}$. However, the restriction of A to $(\text{Ker } A)^{\perp}$ is injective. This is because if $Av_1 = Av_2$, where $v_1, v_2 \in (\text{Ker } A)^{\perp}$, then $A(v_2 - v_1) = 0$, which implies $v_2 - v_1 \in \text{Ker } A$, and since $v_1, v_2 \in (\text{Ker } A)^{\perp}$, we also have $v_2 - v_1 \in (\text{Ker } A)^{\perp}$, and consequently, $v_2 - v_1 = 0$. This shows that there is a unique x^+ of minimum norm such that $Ax^+ = p$, and that x^+ must belong to $(\text{Ker } A)^{\perp}$. By our previous reasoning, x^+ is the unique vector of minimum norm minimizing $\|Ax - b\|_2^2$.