PROBABILIDAD II

Grado en Matemáticas

Tema 0 Repaso de teoría de la medida

Javier Cárcamo

Departamento de Matemáticas Universidad Autónoma de Madrid

javier.carcamo@uam.es

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

1

Tema 0: Repaso de teoría de la medida

- 1. σ -álgebras
- 2. Espacios de medida
- 3. Teorema de extensión
- 4. Medida de Lebesgue y Borel-Stieljes
- 5. Funciones medibles
- 6. Integrales
- 7. Paso al límite bajo signo integral
- 8. Continuidad absoluta de medidas
- 9. El Teorema de Radon-Nikodym

Sea Ω un conjunto no vacío. Una colección de conjuntos $\mathcal{F}\subset\mathcal{P}(\Omega)$ (partes de Ω) se dice que es una σ -álgebra o tribu si

- (1) $\Omega \in \mathcal{F}$.
- (2) \mathcal{F} es cerrada o estable para la complementación.

Si
$$A \in \mathcal{F}$$
, entonces $A^c \in \mathcal{F}$.

(3) \mathcal{F} es estable para la unión numerable.

Si
$$\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$$
, entonces $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

El par (Ω, \mathcal{F}) se denomina **espacio medible** y los elementos de \mathcal{F} **conjuntos medibles**.

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

 σ -álgebras

Si $\{\mathcal{F}_i\}_{i\in I}\subset\mathcal{P}(\Omega)$ σ -álgebras, entonces $\bigcap_{i\in I}\mathcal{F}_i$ es σ -álgebra. Dado $\mathcal{C}\subset\mathcal{P}(\Omega)$, se define

$$\sigma(\mathcal{C}) = \bigcap_{\mathcal{F}} \{ \mathcal{F} : \mathcal{F} \supset \mathcal{C} \text{ y } \mathcal{F} \text{ } \sigma\text{-\'algebra} \}.$$

El conjunto C se denomina **generador de la** σ -álgebra $\sigma(C)$.

Si (Ω, τ) es un espacio topológico, a la σ -álgebra $\sigma(\tau)$ se denomina σ -álgebra Boreliana o de Borel asociada a τ .

De interés especial para nosotros serán:

- $\Omega = \mathbb{R}$ o $\overline{\mathbb{R}}$, $\tau = \tau_u$ (topología usual).
- $\Omega = \mathbb{R}^k$ o $\overline{\mathbb{R}}^k$, $au = au_u$ (topología usual).

 $\sigma(\tau_u) = \mathcal{B} \ \sigma$ -álgebra Boreliana (sin especificar la topología).

Sea (Ω, \mathcal{F}) un espacio medible. Se dice que μ es una **medida (positiva)** en Ω si $\mu : \mathcal{F} \longrightarrow [0, \infty]$ verificando:

- (1) $\mu(\emptyset) = 0$.
- (2) σ -aditividad o aditividad numerable: $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ disjuntos dos a dos (i.e., $A_i \cap A_j = \emptyset$, $i \neq j$), entonces:

$$\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mu(A_{i}).$$

El triplete $(\Omega, \mathcal{F}, \mu)$ se llama **espacio de medida**.

 $(\Omega, \mathcal{F}, \mu)$ es un **espacio de medida finita** si $\mu(\Omega) < \infty$.

 $(\Omega, \mathcal{F}, \mu)$ es un **espacio de medida** σ -finita si existe $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ tal que $\Omega = \bigcup_{i=1}^{\infty} A_i$ y $\mu(A_i) < \infty$, para todo i.

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

5

Propiedades de la medida

Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, decimos que A_n **crece** hasta A, $A_n \uparrow A$, si $A_1 \subset A_2 \subset A_3 \subset \cdots$ y $A = \bigcup_{i=1}^{\infty} A_i$.

Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, decimos que A_n decrece hasta A, $A_n \downarrow A$, si $A_1 \supset A_2 \supset A_3 \supset \cdots$ y $A = \bigcap_{i=1}^{\infty} A_i$.

- 1 $\{A_i\}_{i=1}^n \subset \mathcal{F}$ disjuntos, entonces $\mu\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$.
- 2 A, $B \in \mathcal{F}$, con $A \subset B$, entonces $\mu(A) \leq \mu(B)$.
- **3** A, $B \in \mathcal{F}$, con $A \subset B$ y $\mu(A) < \infty$, entonces $\mu(B A) = \mu(B) \mu(A)$.
- **⑤** $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F} \text{ y } A_n \uparrow A, \text{ entonces } \mu(A_n) \uparrow \mu(A).$
- **(**1) $\{A_i\}_{i=1}^{\infty}$ ⊂ \mathcal{F} con $A_n \downarrow A$ y $\mu(A_1) < \infty$, entonces $\mu(A_n) \downarrow \mu(A)$.
- $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}, \ \mu(\cup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i).$

Una colección $\mathcal{A}\subset\mathcal{P}(\Omega)$ se dice que es una **álgebra** si

- (1) $\Omega \in \mathcal{A}$.
- (2) Si $A \in \mathcal{A}$, entonces $A^c \in \mathcal{A}$.
- (3) Si $A, B \in \mathcal{A}$, entonces $A \cup B \in \mathcal{A}$.

Se dice que $\mu_0: \mathcal{A} \longrightarrow [0, \infty]$ es una **medida sobre el álgebra** \mathcal{A} si

- (1) $\mu_0(\emptyset) = 0$.
- (2) σ -aditividad: $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$ disjuntos dos a dos tales que $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, entonces:

$$\mu_0\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty \mu_0(A_i).$$

 $(\Omega, \mathcal{A}, \mu_0)$ se dice σ -finito si existe $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$ tal que $\Omega = \bigcup_{i=1}^{\infty} A_i$ y $\mu_0(A_i) < \infty$, para todo i.

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

7

Teorema de extensión

Teorema de extensión de Caratheodory (1948)

Sea $\mu_0: \mathcal{A} \longrightarrow [0, \infty]$ una medida sobre el álgebra \mathcal{A} . Existe una medida $\mu: \sigma(\mathcal{A}) \longrightarrow [0, \infty]$ que es una extensión de μ_0 , es decir, $\mu_{|\mathcal{A}} = \mu_0$.

Si además $(\Omega, \mathcal{A}, \mu_0)$ es σ -finito, entonces μ es única.

Los conjuntos $B \in \mathcal{F}$ con $\mu(B) = 0$ se llaman **conjuntos** μ -nulos Un espacio de medida se dice **completo** si para todo conjunto μ -nulo B y para todo $A \subset B$, se tiene que $A \in \mathcal{F}$.

Teorema de completación

Sea $(\Omega, \mathcal{F}, \mu)$ espacio de medida. Existe un espacio medida $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ completo tal que $\mathcal{F} \subset \overline{\mathcal{F}}$ y $\overline{\mu}$ es una extensión de μ .

Además, este espacio de medida $(\Omega, \overline{\mathcal{F}}, \overline{\mu})$ es único y se dice que es la **completación** de $(\Omega, \mathcal{F}, \mu)$.

Dado (a, b] (a < b) intervalo semiabierto de $\mathbb R$ definimos m((a,b]) = b - a. Queremos extender esta aplicación. Definimos el álgebra

 $\mathcal{A} = \{ \text{Uniones finitas de intervalos semiabiertos disjuntos} \}$ y

$$m: \mathcal{A} \longrightarrow [0, \infty]$$

$$A = \biguplus_{i=1}^{n} I_i \longmapsto m(A) = \sum_{i=1}^{n} m(I_i).$$

La aplicación m es una medida sobre A.

Por tanto, podemos usar el Teorema de Caratheodory para obtener una extensión $(\mathbb{R}, \sigma(A) = \mathcal{B}(\mathbb{R}), m)$ $(\mathcal{B}(\mathbb{R}) = Borelianos)$.

El Teorema de completación permite obtener un espacio medible completo $(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$ extensión de $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$.

Esto mismo funciona en \mathbb{R}^d usando $(\mathbf{a},\mathbf{b}]=(a_1,b_1] imes\cdots imes(a_d,b_d]$ y $m((\mathbf{a},\mathbf{b}]) = (b_1 - a_1)(b_2 - a_2) \cdots (b_d - a_d).$

Javier Cárcamo Probabilidad II. Tema 0: Repaso teoría de la medida

Ejemplo: Medidas de Borel-Stieljes

Medida de Borel-Stieljes asociada a g

Sea $I\subset\mathbb{R}$ (intervalo) y $g:I\longrightarrow\mathbb{R}$ funcion no decreciente y continua por la derecha.

Existe una única medida $m_g: \mathcal{B}(I) \longrightarrow [0,\infty]$ tal que $m_g((a,b]) =$ g(b)-g(a). A m_g se le llama la **medida de Borel-Stieljes asociada a** g.

Nota: Se tiene $m_g(\{x_0\}) = g(x_0) - g(x_0^-)$.

Nota: Si g, h son dos funciones continuas por la derecha y no decrecientes tales que $m_g = m_h$, entonces g - h =constante.

Función de distribución de una medida

Dada $\mu: \mathcal{B}(I) \longrightarrow [0,\infty]$ medida finita, existe g no decreciente y continua por la derecha tal que $\mu=\mu_{\mathrm{g}}$. Además, podemos tomar $g(x) = \mu(I \cap (-\infty, x])$ que se llama función de distribución de μ .

Sean (Ω, \mathcal{F}) , (Ω', \mathcal{F}') dos espacios medibles. Se dice que una función $f:(\Omega, \mathcal{F}) \longrightarrow (\Omega', \mathcal{F}')$ es \mathcal{F}/\mathcal{F}' -medible si para todo $A \in \mathcal{F}'$, se tiene que $f^{-1}(A) \in \mathcal{F}$.

 $f^{-1}(A) = \{\omega \in \Omega : f(\omega) \in A\}$ (anti-imagen de A por f).

Si $f:(\Omega,\mathcal{F})\longrightarrow\mathbb{R}$ es constante, entonces es medible.

Si $A \subset \Omega$, el **indicador de** A es la función $1_A : \Omega \longrightarrow \mathbb{R}$ tal que $1_A(\omega) = 1$ si $\omega \in A$ y $1_A(\omega) = 0$ si $\omega \notin A$. ¿Cuándo 1_A es una función medible?

Una función $f:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ se dice **simple** si es medible y $f(\Omega)$ es finito.

Nota: $f:(\Omega,\mathcal{F})\longrightarrow \mathbb{R}$ es simple si y solo si $f=\sum_{i=1}^k a_i 1_{A_i}$, con $A_i\in \mathcal{F}$ disjuntos.

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

11

Integral de una función medible

 $(\Omega, \mathcal{F}, \mu)$ espacio de medida. Si $s = \sum_{i=1}^{n} a_i 1_{A_i}$ función simple positiva, se define la **integral de** s **con respecto a la medida** μ

$$\int_{\Omega} s \, d\mu = \sum_{i=1}^n a_i \mu(A_i).$$

 $f:(\Omega,\mathcal{F})\longrightarrow [0,\infty]$ medible, existe $\{s_n\}_{n=1}^\infty$ simples con $0\leq s_n\uparrow f$. Se define la **integral de** f **con respecto a la medida** μ

$$\int_{\Omega} f \ d\mu = \lim_{n \to \infty} \int_{\Omega} s_n \ d\mu = \sup_{0 \le s \le f, \ s \ \text{simple}} \int_{\Omega} s \ d\mu.$$

 $f:(\Omega,\mathcal{F})\longrightarrow\overline{\mathbb{R}}$ medible, entonces $f=f^+-f^-$. Si $\int_{\Omega}f^+\,d\mu<\infty$ o $\int_{\Omega}f^-\,d\mu<\infty$, integral de f

$$\int_{\Omega}f\,d\mu=\int_{\Omega}f^{+}\,d\mu-\int_{\Omega}f^{-}\,d\mu.$$

Si $\int_{\Omega} |f| d\mu < \infty$, f se dice μ -integrable $(f \in \mathcal{L}^1(\mu))$.

 $f,g\in\mathcal{L}^1(\mu)$, $a,b\in\mathbb{R}$, se tiene:

1 Linealidad: $af + bg \in \mathcal{L}^1(\mu)$ y

$$\int_{\Omega} (af + bg) d\mu = a \int_{\Omega} f d\mu + b \int_{\Omega} g d\mu.$$

2 Monotonicidad: Si $f \leq g$, entonces

$$\int_{\Omega} f \ d\mu \leq \int_{\Omega} g \ d\mu \quad \left(\mathsf{En \ particular}, \quad \left| \int_{\Omega} f \ d\mu \right| \leq \int_{\Omega} |f| \ d\mu. \right).$$

- 3 Sea $f \ge 0$. $\int_{\Omega} f \, d\mu = 0$ si y solo si f = 0 c.s. (casi seguramente). Es decir, $\mu(\{\omega \in \Omega : f(\omega) \ne 0\}) = 0$.
- 4 Si $f \geq 0$ y $\int_{\Omega} f \ d\mu < \infty$, entonces $\mu(\{\omega \in \Omega : f(\omega) = \infty\}) = 0$, es decir, $f \neq \infty$ c.s.

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

12

Integral indefinida

 $f \in \mathcal{L}^1(\mu)$, para $A \in \mathcal{F}$ se define

$$\int_{A} f \, d\mu = \int_{\Omega} f \, 1_{A} \, d\mu.$$

Proposición: Sea $f:(\Omega,\mathcal{F})\longrightarrow [0,\infty]$ medible, la aplicación

$$u: \mathcal{F} \longrightarrow [0, \infty]$$

$$A \longmapsto \nu(A) = \int_A f \, d\mu,$$

es una medida sobre (Ω, \mathcal{F}) . Se denota $d\nu = f d\mu$. La función f se denomina la μ -densidad de la medida ν .

Paso al límite bajo el signo integral

Teorema de la convergencia monótona

Hacia arriba: Si $f_n \uparrow f$ y existe k tal que $f_k^- \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Hacia abajo: Si $f_n \downarrow f$ y existe k tal que $f_k^+ \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Lema de Fatou-Lebesgue

(a) Si $f_n \leq f$ y $f^+ \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} \limsup_{n \to \infty} f_n \, d\mu \geq \limsup_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

(b) Si $f_n \geq f$ y $f^- \in \mathcal{L}^1(\mu)$, entonces

$$\int_{\Omega} \liminf_{n\to\infty} f_n \, d\mu \leq \liminf_{n\to\infty} \int_{\Omega} f_n \, d\mu.$$

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

1 =

Paso al límite bajo el signo integral

Teorema de la convergencia dominada

Si $f_n o f$ y existe $g \in \mathcal{L}^1(\mu)$ tal que $|f_n| \le g$ para todo n, entonces

$$\int_{\Omega} f \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu.$$

Sea (Ω, \mathcal{F}) un espacio medible y ν , μ dos medidas. Se dice que ν es **absolutamente continua con respecto a** μ y se denota $\nu << \mu$ si para todo $A \in \mathcal{F}$ tal que $\mu(A) = 0$, entonces $\nu(A) = 0$.

Ejemplo:

Una medida μ se dice que se **concentra** en un conjunto $A \in \mathcal{F}$ si para todo $B \in \mathcal{F}$, se tiene que $\mu(B) = \mu(A \cap B)$.

Se dice que ν es **singular con respecto a** μ y se denota $\nu \perp \mu$ si existe $A \in \mathcal{F}$ tal que $\mu(A) = 0$ y ν se concentra en A.

Ejemplo:

Javier Cárcamo

Probabilidad II. Tema 0: Repaso teoría de la medida

17

El Teorema de Radon-Nikodym

Teorema de descomposición de Lebesgue

Sean ν , μ dos medidas σ -finitas sobre (Ω, \mathcal{F}) . Existen dos únicas medidas ν_c , ν_s tales que $\nu_c << \mu$ y $\nu_s \perp \mu$ con $\nu = \nu_c + \nu_s$. Esta descomposición se denomina **descomposición de Lebesgue** de la medida ν (con respecto a μ).

Teorema de Radon-Nikodym

Sean ν , μ dos medidas σ -finitas sobre (Ω, \mathcal{F}) tales que $\nu << \mu$. Existe una única función medible $f:(\Omega, \mathcal{F}) \longrightarrow [0, \infty]$ tal que

$$u(A) = \int_A f \, d\mu, \quad A \in \mathcal{F}.$$

Es decir, $d\nu = fd\mu$.

A la función $f = \frac{d\nu}{d\mu}$ se le llama la **derivada de Radon-Nikodym de** ν **con respecto a** μ . (f es la μ -densidad de ν .)