RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

SESSION ID: CRYP-F03

A Non-Interactive Shuffle Argument With Low Trust Assumptions

Antonis Aggelakis, Prastudy Fauzi, Georgios Korfiatis, Panos Louridas, Foteinos Mergoupis-Anagnou, Janno Siim, Michal Zajac

Janno Siim

Junior Research Fellow in Cryptography University of Tartu

RS/Conference2020

Motivation

Internet Voting

Voters

Goal: anonymity (location privacy) for ciphertexts

Ciphertexts

 Goal: anonymity (location privacy) for ciphertexts **Ciphertexts**

Mixer 1 Mixer 2 Mixer 3

 Goal: anonymity (location privacy) for ciphertexts **Ciphertexts Solution:** Zero-knowledge proof Mixer 1 Mixer 2

Goal: anonymity (location privacy) for ciphertexts

Ciphertexts

RSA*Conference2020

Zero-Knowledge Arguments

Zero-Knowledge Proof/Argument

Protocol between **Prover** and **Verifier** where

- Prover proves to Verifier validity of some statement (soundness)
- Prover does not leak any information besides validity (zero-knowledge)

More formally ...

- Fix an **NP**-Language \mathcal{L}
- **Prover** claims $x \in \mathcal{L}$
- Honest Prover knows witness w for x
- Properties:
 - Completeness honest Prover's argument is accepted
 - **Soundness** computationally hard to find accepting proof for $x \notin \mathcal{L}$
 - Zero-Knowledge proof can be simulated with a trapdoor

Shuffle Arguments

Best (non-interactive) shuffle arguments either require

- Random oracle model
 - Only a security heuristic

- Common reference string (CRS) model
 - Trust in the setup phase

CRS Model

Idea

- Take the 'best' CRS model shuffle
- Reduce trust requirements as much as possible
- Recent techniques
 - Distributed CRS generation
 - Subversion zero-knowledge

RSA*Conference2020

Our Construction

FLSZ17 Shuffle Argument

Starting point: Shuffle argument by Fauzi et al. (Asiacrypt 2017)

- CRS model but no RO model
- Relatively efficient:
 - 100,000 ciphertexts proving + verification time < 2.5min
- Strong assumptions and generic group model

Our Contributions

- Simplifications in structure
- Weaker assumptions:
 - Generic group model -> algebraic group model
 - Less specialized assumptions
- Less trust:
 - Modifications to CRS such that distributed CRS generation is possible (security with N-1 malicious parties)
 - CRS verification algorithm for zero-knowledge (ZK even with N malicious parties)

Pairings

- Bilinear groups: \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T of size p with generators \mathcal{P}_1 , \mathcal{P}_2 , \mathcal{P}_T
- Additive notation & bracket notation:

$$-a \cdot \mathcal{P}_1 \coloneqq [a]_1$$

$$-a\cdot\mathcal{P}_2\coloneqq[a]_2$$

$$-a\cdot\mathcal{P}_T\coloneqq [a]_T$$

• Bilinear map: $[a]_1 \bullet [b]_2 = [ab]_T$

Structure

Prove that commitment C opens to (0, ..., 0, 1, 0, ... 0)

Unit Vector Argument

ZK: unconditional **Knowledge soundness:** power DL assumption in algebraic group model

Power DL: Given elements $[x, ..., x^d]_1$ find x

Structure

Prove that commitments C_1 , ... C_n open to a permutation matrix

Unit Vector Argument

Permutation Argument **ZK:** unconditional **Knowledge soundness:** if unit vector argument is KS & commitment is binding

Structure

- Commit to permutation matrix
- Give permutation argument
- Show that permutation was used for shuffling

Unit Vector
Argument

Permutation
Argument

Shuffle Argument

ZK: unconditional **Soundness:** if permutation argument is KS & (variation of) KerMDH assumption holds

KerMDH: Given matrix $[M]_1$ find non-zero $[x]_2$ s.t. $M^T x = 0$

Distributed CRS Generation

- Ben-Sasson et al. (S&P 15) and Abdolmaleki et al. (Africacrypt 19) proposed specialized CRS generation protocols
- Very efficient
- Tolerates N-1 malicious parties
- But only for specific pairing-based arguments
- Not directly applicable for FLSZ17 shuffle (

Modification to CRS

- Need to modify CRS of FLSZ17
- Lots of ad-hoc tricks
- Example:
 - $-[\beta \cdot P(\chi) + \hat{\beta} \cdot \hat{P}(\theta)]_2$ where $\beta, \hat{\beta}, \theta \in \mathbb{Z}_p$ and P(X) and $\hat{P}(Y)$ are polynomials
 - CRS generation requires that computation is done one multiplication and addition at the time

Example Continued

Example Continued

Subversion Zero-Knowledge

- Zero-knowledge even if CRS is malicious
- Idea from Bellare et al. (AC 2016) and Abdolmaleki et al. (AC 2017)
 - Prover verifies well-formedness of CRS
 - In security proof trapdoor is extracted with knowledge assumption

Example: well-formedness check

- Suppose $[\beta^2]_1$, $[P(\chi)]_2$, $[\beta\hat{\beta}]_1$, $[\hat{P}(\theta)]_2$ have been verified
- Then check that

$$[\beta^{2}]_{1} \bullet [P(\chi)]_{2} + [\beta \hat{\beta}]_{1} \bullet [\hat{P}(\theta)]_{2} = [1]_{1} \bullet [\beta^{2} \cdot P(\chi) + \beta \hat{\beta} \cdot \hat{P}(\theta)]_{2}$$

• Knowledge assumption: If adversary outputs $[\theta]_1$, $[\theta]_2$, then he knows θ

Prototype Implementation

- By GRNET team
- Zeus I-voting system
- https://github.com/grnet/lta_shuffle

Conclusion

- Improvement over state-of-the-art shuffle argument
- Reorganizing structure and weaker assumptions
- CRS generation protocol and verification algorithm:
 - Soundness holds if at least 1 party is honest
 - ZK holds even if all parties are malicious

RSA*Conference2020

Questions