

LICENCE LICENCES PHYSIQUE CHIMIE ET SCIENCES POUR L'INGÉNIEUR

S₁ PC - SPI - SPA

Vendredi 15 janvier 2021

CORRIGE PARTIEL DE CHIMIE n°3

Durée: 2h

Les calculettes collège sont autorisées

Une grande importance devra être accordée à la présentation de la copie (marge, indication des exercices et des questions, mise en évidence des réponses, calculs littéraux puis numériques etc....) et à la rédaction (claire avec des réponses justifiées).

Chaque étudiant doit posséder sa propre calculette collège. L'échange de calculettes est interdit pendant le partiel. Le barème est donné à titre indicatif.

Données : Charge de l'électron : $e = 1,602 \cdot 10^{-19} \text{ C}$.

 $1D = 3.33 \ 10^{-30} \ C \cdot m$

Constante d'Avogadro : $N_A = 6,022 \ 10^{23} \ \text{mol}^{-1}$

Exercice 1 Stéréochimie. (6 points)

1)

2)

Règles CIP: C*

Rang 1	С	С	0	Н
Rang 2	OHH	OOH	Н	
Priorité	3	2	1	4

Donc S sur ce dessin C*

3) Image dans un miroir ou permutation de deux substituants.

b) isomérie de fonction (0,25 point)

5) Règles CIP:

C*1:

Rang 1	С	С	0	Н
Rang 2	OCH	OOH	Н	
Priorité	3	2	1	4

C*2:

Rang 1	С	С	О	Н
Rang 2	OHH	OCH	Н	
Priorité	3	2	1	4

6) Newman

7) Diastéréoisomères : Non superposables, non images dans miroir. ..

$$HOC$$
 H
 CH_2OH

Exercice 2 Interactions microscopiques. (9,5 points)

1) Formules de Lewis:

Nom	Formule semi-développée	Nb de	Formule de Lewis
		doublets	
Eau	НОН	8	н—-ё—н
Ethanol	CH ₃ CH ₂ OH	10	H H H H H H H H

Peroxyde d'hydrogène	НООН	н—ё—ё—н
Propan- 1,2,3-triol	CH ₂ (OH)-CH(OH)-CH ₂ (OH)	H—C—C—H H—C—C—H

- 2) L'eau:
- a) VSEPR, O: AX₂E₂ n+m=4, figure de répulsion : tétraèdrique, géométrie : coudée
- b) Polarisation des liaisons OH de la molécule d'eau.

$$\chi(H) = 2.2$$
; $\chi(O) = 3.44$.

c) $\theta = 104,5^{\circ}$. La norme du moment dipolaire de l'eau est de $\mu_{H20} = 1,85$ D.

$$\overrightarrow{\mu_{H2O}} = \overrightarrow{\mu_1} + \overrightarrow{\mu_2}$$

$$\|\overrightarrow{\mu_1}\| = \|\overrightarrow{\mu_2}\| = \mu_{OH}$$

$$\mu_{H2O} = \|\overrightarrow{\mu_{H2O}}\| = 2\cos\left(\frac{\theta}{2}\right)\mu_{OH}$$

$$\mu_{OH} = \frac{\mu_{H2O}}{2\cos(\frac{\theta}{2})}$$

Application numérique :
$$\mu_{OH} = \frac{1,85}{2\cos(\frac{104,5^{\circ}}{2})} = 1,51 \text{ D}$$

d) Caractère ionique partiel en pourcentage de la liaison OH:

$$\mu_{OH} = \delta e l$$

$$\delta = \frac{\mu_{OH}}{el}$$

Application numérique :
$$\delta = \frac{1,51 \times 3,33.10^{-30}}{1,602.10^{-19} \times 0,96.10^{-10}} = 0,327$$

$$\delta = 32,7\%$$

- 3) Interactions entre les différents composants du gel hydroalcoolique.
- a) Polaires ou apolaires.

On peut faire l'approximation que les liaison CH ne sont pas polarisées et que seules les liaisons CO et OH le sont.

Nom	VSPER et géométrie autour des	Figure	Polarité
	О		
Eau	O: AX ₂ E ₂ , coudée	H_O_H	polaire
Ethanol	O : AX ₂ E ₂ , coudée	C ₂ H ₅ O H	polaire
Peroxyde d'hydrogène	O : AX ₂ E ₂ , coudée		Polaire, une seule conformation va donner un moment dipolaire total nul pour la molécule.
Propan- 1,2,3-triol	O : AX ₂ E ₂ , coudée		polaire

b) Interactions intermoléculaires attendues entre ces composés :

Liaison H, car il y a des groupements OH

Forces de van der Waals : Keesom, Debye et London car elles sont polaires

- c) Ces composés sont miscibles entre eux car ils présentent des interactions intermoléculaires entre eux du même type que les interactions intermoléculaires du corps pur.
- 4) Différences observées entre les températures d'ébullition :

	Propane	Propane-2-ol	2-chloropropane	Propoan-1,2,3- triol
$\theta_{eb}(^{\circ}C)$	-42	82,5	35,74	290
Moment dipolaire (D)	0,084	1,69	2,17	4,21
Liaisons intermoléculaires	Van der Waals (London)	Liaison-H Van der Waals (London, Debye et Keesom)	Van der Waals (London, Debye et Keesom)	Liaison-H (3 possibles) Van der Waals (London, Debye et Keesom)

Exercice 3 Solides: Interactions dans les solides. (4,5 points)

- 1) Le cristal parfait d'or (symbole chimique : Au) est décrit par un réseau cubique à faces centrées (CFC) de paramètre de maille $a = 400 \cdot 10^{-12}$ m. Données : $M(Au) = 197 \text{ g} \cdot \text{mol}^{-1}$.

 - a) Dessiner en perspective la maille correspondante.

RAPPEL:

Dans le réseau cubique à faces centrées (CFC), les nœuds du réseau se trouvent aux sommets du cube et au centre de chacune des 6 faces. Donc, pour le cristal parfait d'or, on trouve un atome à chaque sommet du cube et un atome au centre de chaque face du cube.

Afin de dessiner correctement la maille sans oublier des atomes, on peut le faire en $\underline{\text{deux}}$ $\underline{\text{\'etapes}}$:

1) tout d'abord, on dessine les atomes aux sommets du cube (représentés en bleu dans le dessin ci-dessous) :

2) et ensuite, on dessine les atomes qui manquent au centre de chaque face du cube (représentés en rouge dans le dessin ci-dessous) :

De cette façon, on peut dessiner la maille d'un réseau cubique à faces centrées (CFC) sans oublier des atomes.

b) Calculer la multiplicité de la maille N, c'est-à-dire, déterminer le nombre d'atomes d'or par maille.

RAPPEL (décompte du nombre de particules par maille, voir Chapitre 8) :

Le nombre de particules par maille est le nombre de particules (atomes/molécules) qu'on peut reconstituer avec les morceaux qui sont à l'intérieur de la maille.

• Si on regarde une <u>particule</u> placée au <u>centre d'une face</u>, elle est partagée en deux entre les deux cubes de part et d'autre de la face. Donc, le morceau à l'intérieur de la maille :

$$Morceau_{particule\ face} = \frac{1}{2}\ particule$$

• Si on regard une <u>particule</u> placée sur une <u>arête</u>, elle est partagée en 4 entre les 4 cubes qui touchent cette arête. Donc, le morceau à l'intérieur de la maille :

$$Morceau_{particule\ ar\^{e}te} = \frac{1}{4}\ particule$$

• Si on regarde une <u>particule</u> placée au <u>sommet du cube</u>, elle est partagée en 8 entre les 8 cubes qui touchent ce sommet. Donc, le morceau à l'intérieur de la maille :

$$Morceau_{particule\ sommet} = \frac{1}{8}\ particule$$

Dans la maille d'or on a **8 atomes** d'or aux **sommets** du cube et **6 atomes** d'or au centre des **faces**, donc la **multiplicité** est :

$$\mathbf{N} = \mathbf{8} \cdot \mathbf{Morceau}_{Au \, sommet} + \mathbf{6} \cdot \mathbf{Morceau}_{Au \, face} = 8 \cdot \frac{1}{8} + 6 \cdot \frac{1}{2} = 1 + 3 = \mathbf{4}$$

Donc, il y a <u>4 atomes de fer en propre dans la maille d'or.</u> (ATTENTION : Si on trouve un nombre non entier, on s'est trompé quelque part).

c) Calculer la masse volumique ρ de l'or.

RAPPEL:

La masse volumique ρ (rho) est la masse par unité de volume, pour le fer γ :

$$\rho = \frac{m_{maille}}{V_{maille}} = \frac{N \cdot m_{Au}}{V_{maille}} = \frac{N \cdot \frac{M(Au)}{N_A}}{V_{maille}}$$

où:

N — <u>multiplicité</u> de la maille (nombre d'atomes de fer par maille).

 $\frac{M(Au)}{N_{\Delta}}$ \rightarrow masse d'un atome de fer (en g si M(Au) est donné en g · mol⁻¹).

 $V_{maille} \rightarrow$ volume de la maille (pour une maille cubique $V_{maille} = a^3$).

$$ho = rac{m_{maille}}{V_{maille}} = rac{ ext{N} \cdot m_{ ext{Au}}}{V_{maille}} = rac{ ext{N} \cdot rac{ ext{M(Au)}}{N_{ ext{A}}}}{V_{maille}}$$

$$1kg = 10^3g$$

$$\rho = \frac{4 \cdot \frac{197 \text{ g} \cdot \text{mol}^{-1} \cdot \frac{1 \text{kg}}{10^3 \text{g}}}{6.02 \cdot 10^{23} \text{ mol}^{-1}}}{(400 \cdot 10^{-12})^3} = 2.04 \cdot 10^4 \text{ kg} \cdot \text{m}^{-3}$$

- 2) Pour les cristaux suivants : Cu, C(Diamant), Al, NaOH, CO₂, CaF₂, H₂O, ZnS
 - a) Donner le type de solide (solide ionique, métallique, moléculaire ou covalent).
 - b) Donner le type des forces d'interactions qui casseront si on chauffe le cristal ou si on le dissous dans un solvant.

	Cu	C(Diamant)	Al	NaOH
Type de solide	Métallique	Covalent	Métallique	Ionique
Type de forces d'interactions	- Van der Waals - Liaison métallique (Délocalisation des e ⁻ de valence)	- Van der Waals - Liaison covalent	- Van der Waals - Liaison métallique (Délocalisation des e ⁻ de valence)	 Van der Waals Liaison ionique

		(Interactions
		électrostatiques entre
		charges opposées)

	CO ₂	CaF ₂	H ₂ O	ZnS
Type de solide	Moléculaire	Ionique	Moléculaire	Ionique
Type de forces d'interactions	- Van der Waals	- Van der Waals - Liaison ionique (Interactions électrostatiques entre charges opposées)	- Van der Waals - Liaisons hydrogène	- Van der Waals - Liaison ionique (Interactions électrostatiques entre charges opposées)