Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №3

З дисципліни «Методи оптимізації та планування» Тема: Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням ефекту взаємодії.

> ВИКОНАВ: Студент II курсу ФІОТ Групи IO-92 Рожко М.М.

> > ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета:

Провести повний трьохфакторний експеримент. Знайти рівняння регресії адекватне об'єкту.

Завдання на лабораторну роботу

- 1. Скласти матрицю планування для повного трьохфакторного експерименту.
- 2. Провести експеримент, повторивши N раз досліди у всіх точках факторного простору і знайти значення відгуку Y. Знайти значення Y шляхом моделювання випадкових чисел у певному діапазоні відповідно варіанту. Варіанти вибираються за номером в списку в журналі викладача.

$$y_{i \max} = 200 + x_{cp \max}$$
$$y_{i \min} = 200 + x_{cp \min}$$

де
$$x_{cp\,\text{max}} = \frac{x_{1\text{max}} + x_{2\,\text{max}} + x_{3\,\text{max}}}{3}$$
, $x_{cp\,\text{min}} = \frac{x_{1\text{min}} + x_{2\,\text{min}} + x_{3\,\text{min}}}{3}$

- 3. Знайти коефіцієнти рівняння регресії і записати його.
- 4. Провести 3 статистичні перевірки за критеріями Кохрена, Стьюдента, Фішера.
- 5. Зробити висновки по адекватності регресії та значимості окремих коефіцієнтів і записати скореговане рівняння регресії.
- 6. Написати комп'ютерну програму, яка усе це моделює.

Варіант завдання:

N	X1		X	[2	X3		
	min	max	min	max	min	max	
217	-10	50	25	65	-10	15	

Розруківка коду програми:

```
import numpy as np
from scipy.stats import f, t
             self.var factor table[i].append(self.var factor table[i][0] *
             self.var factor table[i].append(self.var factor table[i][1] *
self.var_factor_table[i].append(self.var_factor_table[i][0] *
self.var_factor_table[i][1] * self.var_factor_table[i][2])
       d=self.getDataForTable, bg='Gold')
```

```
fig.show()
def getDataForTable(self):
        data.append(self.var factor table[i])
```

```
importance to print))
betas_to_print)), x_i_names)])
```

Результати роботи программи:

Х1	X2	хз	X12	X13	X23	X123	Y1	Y2	Y3
-10	25	-10	-250	100	-250	2500	208	221	243
-10	65	15	-650	-150	975	-9750	215	216	203
50	25	15	1250	750	375	18750	229	226	231
50	65	-10	3250	-500	-650	-32500	230	211	241
-10	25	15	-250	-150	375	-3750	236	205	233
-10	65	-10	-650	100	-650	6500	236	220	213
50	25	-10	1250	-500	-250	-12500	209	241	224
50	65	15	3250	750	975	48750	202	231	209

```
m = 3, n = 8

Перевірка рівномірності дисперсій за критерієм Кохрена:
Gp = 8.286; Gt = 8.768
Gp < Gt => дисперсії рівномірні

Перевірка значимості коефіцієнтів регресії за критерієм Стьюдента:
Оцінки коефіцієнтів вs: 222.208, 1.458, -3.292, -2.542, 8.292, 8.298, -3.708, -8.625

Коефіцієнти ts: 96.77, 8.63, 1.43, 1.11, 8.13, 8.09, 1.61, 8.27

Табличне значення критерія Стьюдента: 2.1199
gθ важливий; рі неважливий; рі неважливий; рі неважливий; рі неважливий; різ неважливий
```

Висновок:

Успішно проведено трьохфакторний експеримент. Складено матрицю планування. Результати виконання лабораторної роботи надані у звіті.