Etude de variations

Définition. Un intervalle I est **trivial** ssi I est vide ou de la forme I = [a; a] avec $a \in \mathbb{R}$. (I a 0 ou 1 point).

Un intervalle non trivial a au moins deux points distincts a < b, donc une infinité de points (entre a et b).

Définition. Un intervalle I est **ouvert** s'il est de la forme I = a; b[avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$

Définition. Un réel x est **intérieur** à l'intervalle I ssi il existe $a, b \in I$ tels que a < x < b.

Exemple. 5 est intérieur à [3; 6] puisque 3 < 5 < 5,5 avec $3 \in [3; 6]$ et $5,5 \in [3; 6]$.

Exemple. 5 n'est pas intérieur à [5; 6] car il n'existe pas de $a \in [5; 6]$ tel que a < 5.

Hypothèse. Soit *f* une fonction définie et <u>dérivable</u> sur un intervalle *I* <u>non trivial</u>.

Théorème (admis). Etudier les variations d'une fonction, c'est étudier le signe de sa dérivée.

f est croissante sur I si et seulement si, pour tout $x \in I$, $f'(x) \ge 0$.

f est décroissante sur I si et seulement si, pour tout $x \in I$, $f'(x) \le 0$.

f est constante sur I si et seulement si, pour tout $x \in I$, f'(x) = 0.

Théorème (admis). Etude des variations strictes d'une fonction.

Si f est strictement croissante sur I, alors pour tout $x \in I$, $f'(x) \ge 0$. La réciproque est fausse.

Si f est strictement décroissante sur I, alors pour tout $x \in I$, $f'(x) \le 0$. La réciproque est fausse.

<u>Si</u> pour <u>presque</u> tout $x \in I$, f'(x) > 0 (f(x) peut éventuellement s'annuler pour un nombre <u>fini</u> de valeurs de x), <u>alors</u> f est strictement croissante sur I.

<u>Si</u> pour <u>presque</u> tout $x \in I$, f'(x) < 0 (f(x) peut éventuellement s'annuler pour un nombre <u>fini</u> de valeurs

de x), alors f est strictement décroissante sur I.

Exemple. Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

Par somme et produits de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour déterminer ses variations, on peut étudier le signe de f'.

Pour tout $x \in \mathbb{R}$, $f'(x) = 5 \times 2x - 3 \times 1 + 0 = 10x - 3$

Or $10x - 3 = 0 \Leftrightarrow x = \frac{3}{10}$ et $10x - 3 > 0 \Leftrightarrow 10x > 3 \Leftrightarrow x > \frac{3}{10}$. Donc :

x	-∞		$\frac{3}{10}$		+∞
Signe de $f'(x)$		_	0	+	
Variations de f		•	81		•

Remarque. Si f est strictement croissante sur I, on a pas forcément : pour tout $x \in I$, f'(x) > 0.

Par exemple, la fonction définie sur \mathbb{R} par $f(x) = x^3$ est strictement croissante sur $I = \mathbb{R}$ mais f'(0) = 0.

Remarque. Si pour tout $x \in I$, $f'(x) \ge 0$ <u>et</u> f' s'annule un nombre <u>infini</u> de fois, alors f est croissante mais pas forcément strictement. Il suffit de considérer une fonction constante $f: x \mapsto 3$. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = 0 \ge 0$. f est bien croissante car constante, mais pas strictement croissante.

Remarque. Si f est strictement croissante sur I, alors pour tout $x \in I$, $f'(x) \ge 0$, mais il reste possible que f' s'annule un nombre infini de fois. (Dessiner une fonction lisse strictement croissante en escalier avec des points régulièrement espacés où la tangente devient horizontale).

Hypothèse. Soit f une fonction définie et <u>dérivable</u> sur un intervalle I <u>non trivial</u>. Soit $x_0 \in I$.

Définition. On dit que f admet un minimum global en x_0 si pour tout $x \in I$, $f(x) \ge f(x_0)$

Définition. On dit que f admet un maximum global en x_0 si pour tout $x \in I$, $f(x) \le f(x_0)$

Définition. Un minimum ou un maximum global est appelé **extremum global**.

Définition. On dit que f admet un minimum local en x_0 s'il existe un intervalle <u>ouvert</u> f contenant f contenant f que pour tout f contenant f contenant

Définition. On dit que f admet un maximum local en x_0 s'il existe un intervalle <u>ouvert</u> f contenant f contenant f que pour tout f contenant f contenant

Définition. Un minimum ou un maximum local est appelé <u>extremum</u> local.

Remarque. Un extremum global est local. Un extremum local n'est pas forcément global.

Exemple. Soit f une fonction définie sur l'intervalle I = [-8, 7] dont voici le tableau de variations :

x	-8	-1	4	7
Variations de f	10		7 6	_5

f admet un minimum local en -1 qui vaut -2. Avec J =]-8; 4[, pour tout $x \in I \cap J$, $f(x) \ge f(-1)$

f admet un maximum local en 4 qui vaut 6. Avec J =]-1; 7[, pour tout $x \in I \cap J$, $f(x) \le f(4)$

f admet un maximum local en -8 qui vaut 10. Avec $I =]-\infty; -1[$, pour tout $x \in I \cap I$, $f(x) \leq f(-8)$

f admet un minimum local en 7 qui vaut -5. Avec I =]4; ∞ [, pour tout $x \in I \cap I$, $f(x) \ge f(7)$

f admet un maximum global en -8 qui vaut 10 car pour tout $x \in I$, $f(x) \le f(-8)$

f admet un minimum global en 7 qui vaut -5 car pour tout $x \in I$, $f(x) \ge f(7)$

Propriété (admis). En un extremum local intérieur, la dérivée s'annule.

Si f admet un extremum local en x_0 et x_0 est un point intérieur à I, alors $f'(x_0) = 0$.

Exemple. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 2x + 1$. f est dérivable sur \mathbb{R} .

D'après le cours sur le second degré, on sait que f admet un minimum global en $x_0 = \alpha = -\frac{b}{2a} = 1$.

 x_0 est un point intérieur à \mathbb{R} , et f admet un extremum local (car global) en 1 donc le théorème permet d'en déduire sans calcul que f'(1) = 0. Vérifions le en calculant la dérivée de f.

Pour tout $x \in \mathbb{R}$, f'(x) = 2x - 2. Donc $f'(1) = 2 \times 1 - 2 = 0$. C'est bien ce que l'on attendait.

Remarque. Si f admet un extremum local en un point x_0 non intérieur à I, alors il est possible que $f'(x_0) \neq 0$. Soit f la fonction définie sur I = [0; 1] par f(x) = x. f admet un minimum local en 0 qui vaut 0 et un maximum local en 1 qui vaut 1. Mais $f'(0) = f'(1) = 1 \neq 0$.

Propriété (admis). Si la dérivée s'annule en changeant de signe, il y a extremum local.

 $\underline{\operatorname{Si}} f'(x_0) = 0$ $\underline{\operatorname{et}} x_0$ est intérieur à I $\underline{\operatorname{et}} f'$ change de signe en x_0 , alors f admet un extremum local en x_0 **Remarque**. En pratique retenir cette propriété n'est pas très utile. Il suffit de construire le tableau de variations de f pour voir où se situe les minimums et les maximums locaux.

Exemple. Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

Par somme et produits de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, f'(x) = 10x - 3. Pour tout $x \in \mathbb{R}$, $f'(x) > 0 \Leftrightarrow 10x - 3 > 0 \Leftrightarrow x > \frac{3}{10}$.

On peut donc dresser le tableau de signe de f' puis le tableau de variations de f comme précédemment.

x	-∞	$\frac{3}{10}$		+∞
Signe de $f'(x)$	ı	0	+	
Variations de f		* 81 -		*

Observer le tableau de signe de f' montre que $f'\left(\frac{3}{10}\right) = 0$, et que f' change de signe en $\frac{3}{10}$, ce qui permet d'en déduire par la propriété précédente que f admet un extremum local en $\frac{3}{10}$.

Observer tableau de variations de f permet de voir directement que f admet un minimum local en $\frac{3}{10}$.

Remarque. Si $f'(x_0) = 0$, alors f n'admet pas forcément un extremum local en x_0 .

Par exemple soit f définie sur \mathbb{R} par $f(x) = x^3$. f est dérivable sur \mathbb{R} avec pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2$. f'(0) = 0, mais 0 n'est ni un minimum ni un maximum local de f puisque f(x) > 0 dès que x > 0 et f(x) < 0 dès que x < 0.