

#SAT based Bounded Model Checking

Deep Karkhanis
Summer 2019

Content

Markov Decision Process (MDP)

A Markov decision process is a 4-tuple (S,A,P_a,R_a)

Markov Decision Process (MDP)

A Markov decision process is a 4-tuple (S, A, P_a, R_a) where,

- S is a finite set of states
- A is a finite set of actions
- $P_a(s,s')$ is the transition probability from state s to s' on performing action a
- R_a is the reward function (immediate reward received on transition from state s to s' due to action a)

Markov Decision Process (MDP)

A Markov decision process is a 4-tuple (S, A, P_a, R_a) where,

- S is a finite set of states
- A is a finite set of actions
- $P_a(s,s')$ is the transition probability from state s to s' on performing action a
- R_a is the reward function (immediate reward received on transition from state s to s' due to action a)

▶ k-step MDP Policy

A k-step Policy in an MDP is a function:

$$\pi: S \times G \to A$$
 s.t $G = \{x \mid 0 \le x \le k-1, x \in \mathbb{Z}\}$

Markov Decision Process (MDP)

A Markov decision process is a 4-tuple (S, A, P_a, R_a) where,

- S is a finite set of states
- A is a finite set of actions
- $P_a(s,s')$ is the transition probability from state s to s' on performing action a
- R_a is the reward function (immediate reward received on transition from state s to s' due to action a)

▶ k-step MDP Policy

A k-step Policy in an MDP is a function:

$$\pi: S \times G \to A$$
 s.t $G = \{x \mid 0 \le x \le k-1, x \in \mathbb{Z}\}$

Equivalently, a k-step policy specifies the action to be taken at each state for each step made by the agent

A k-step policy induces a Markov Chain with $|S|^*(k+1)$ number of states

➤ Model Counting (#SAT)

Model Counting, or equivalently the **Sharp-SAT** problem

➤ Model Counting (#SAT)

Model Counting, or equivalently the **Sharp-SAT** problem

Counting the number of satisfying assignments of a given propositional formula Typically represented as a CNF

➤ Model Counting (#SAT)

Model Counting, or equivalently the **Sharp-SAT** problem

Counting the number of satisfying assignments of a given propositional formula Typically represented as a CNF

Eg:

No of satisfying assignments of $(a \lor b)$ is 3.

For simplicity, denoted as:

$$\#(a \vee b) = 3$$

Similarly,

$$\#((a \land b) \lor c) = 5$$

➤ Model Counting (#SAT)

Model Counting, or equivalently the **Sharp-SAT** problem

Counting the number of satisfying assignments of a given propositional formula Typically represented as a CNF

Eg:

No of satisfying assignments of $(a \lor b)$ is 3.

For simplicity, denoted as:

$$\#(a \vee b) = 3$$

Similarly,

$$\#((a \land b) \lor c) = 5$$

Problem: Finding Reachability Probability of a target state from a given initial state within k steps

Problem: Finding Reachability Probability of a target state from a given initial state within k steps

Idea: Encode the Markov Chain as a Boolean Formula F such that,

Reachability Prob =
$$\frac{\text{No.of Satisfying Assignments of F}}{\text{No.of possible Assignments to F}} = \frac{\#(F)}{\#(F \vee True)}$$

Problem: Finding Reachability Probability of a target state from a given initial state within k steps **Idea**: Encode the Markov Chain as a Boolean Formula F such that,

Reachability Prob =
$$\frac{\text{No.of Satisfying Assignments of F}}{\text{No.of possible Assignments to F}} = \frac{\#(F)}{\#(F \vee True)}$$

> The SAT formula

Input: Input variables denote the possible paths that a run of the MC may take **Output**: A variable assignment (equivalently, a path) satisfies the formula iff it:

- Starts at the initial state
- Chooses successive states based on the probability distributions
- Ends at a target state

Problem: Finding Reachability Probability of a target state from a given initial state within k steps **Idea**: Encode the Markov Chain as a Boolean Formula F such that,

Reachability Prob =
$$\frac{\text{No.of Satisfying Assignments of F}}{\text{No.of possible Assignments to F}} = \frac{\#(F)}{\#(F \vee True)}$$

> The SAT formula

Input: Input variables denote the possible paths that a run of the MC may take **Output**: A variable assignment (equivalently, a path) satisfies the formula iff it:

- Starts at the initial state
- Chooses successive states based on the probability distributions
- Ends at a target state

Assign a bit $s_{(j,i)}$ each for the |S|*(k+1) locations possible in a MC run Thus, the formula F can be written as:

Problem: Finding Reachability Probability of a target state from a given initial state within k steps **Idea**: Encode the Markov Chain as a Boolean Formula F such that,

Reachability Prob =
$$\frac{\text{No.of Satisfying Assignments of F}}{\text{No.of possible Assignments to F}} = \frac{\#(F)}{\#(F \vee True)}$$

> The SAT formula

Input: Input variables denote the possible paths that a run of the MC may take **Output**: A variable assignment (equivalently, a path) satisfies the formula iff it:

- Starts at the initial state
- Chooses successive states based on the probability distributions
- Ends at a target state

Assign a bit $s_{(j,i)}$ each for the |S|*(k+1) locations possible in a MC run Thus, the formula F can be written as:

$$F = (s_{(0,0)} \land (\bigwedge_{j=1}^{|S|-1} \overline{s_{(j,0)}})) \land (\bigwedge_{i=0}^{k-1} \bigwedge_{j=0}^{|S|-1} PE_{\pi}(s_{(j,i)})) \land (\bigvee_{i=0}^{k} s_{(|S|-1,i)})$$

where, $PE_{\pi}(s_{(j,i)})$ encodes the probability distribution for state no j at step i+1

Biased Coins

The fraction of assignments that satisfy a given Boolean formula is the probability that the formula encodes

Unbiased Coin: (p=0.5)
$$\equiv c \qquad \frac{\#(c)}{2} = 0.5$$

Biased coin: (p=0.75)
$$\equiv (c_1 \lor c_2)$$
 $\frac{\#(c_1 \lor c_2)}{2^2} = 0.75$

Biased Coins

The fraction of assignments that satisfy a given Boolean formula is the probability that the formula encodes

Unbiased Coin: (p=0.5)
$$\equiv c \qquad \frac{\#(c)}{2} = 0.5$$

Biased coin: (p=0.75)
$$\equiv (c_1 \lor c_2)$$
 $\frac{\#(c_1 \lor c_2)}{2^2} = 0.75$

Equivalently, each variable represents an independent coin flip. (Every input configuration is equi-probable) Interpret the vector of coin variables as a binary integer, *x*

Biased Coins

The fraction of assignments that satisfy a given Boolean formula is the probability that the formula encodes

Unbiased Coin: (p=0.5)
$$\equiv c \qquad \frac{\#(c)}{2} = 0.5$$

Biased coin: (p=0.75)
$$\equiv (c_1 \lor c_2)$$
 $\frac{\#(c_1 \lor c_2)}{2^2} = 0.75$

Equivalently, each variable represents an independent coin flip. (Every input configuration is equi-probable) Interpret the vector of coin variables as a binary integer, *x*

Allowing the output to be True iff x < m: $\Pr(x < m) = \frac{m}{2^n}$ where, n is the number of coins

Every probability having a terminating binary representation can thus be encoded

Biased Coins

The fraction of assignments that satisfy a given Boolean formula is the probability that the formula encodes

Unbiased Coin: (p=0.5)
$$\equiv c \qquad \frac{\#(c)}{2} = 0.5$$

Biased coin: (p=0.75)
$$\equiv (c_1 \lor c_2)$$
 $\frac{\#(c_1 \lor c_2)}{2^2} = 0.75$

Equivalently, each variable represents an independent coin flip. (Every input configuration is equi-probable) Interpret the vector of coin variables as a binary integer, *x*

Allowing the output to be True iff x < m: $\Pr(x < m) = \frac{m}{2^n}$ where, n is the number of coins

Every probability having a terminating binary representation can thus be encoded

For any rational number
$$p/q$$
: $\Pr(x$

That is, only allow q inputs to be "valid" and p of them to be accepting

> Knuth-Yao Encoding

> Knuth-Yao Encoding

- Represent the probabilities as binary numbers
- Create a binary tree such that if the bit of the expansion of Pr(A) is 1, then A appears as a leaf at depth j
 where, A ∈ S s.t S is a Mutually Exclusive and Collective Exhaustive set

> Knuth-Yao Encoding

- Represent the probabilities as binary numbers
- Create a binary tree such that if the bit of the expansion of Pr(A) is 1, then A appears as a leaf at depth j
 where, A ∈ S s.t S is a Mutually Exclusive and Collective Exhaustive set
- Assign an unbiased coin (equivalently, a boolean variable) for each depth of the tree
 The decisions in the tree are modelled by these coin flips

> Knuth-Yao Encoding

- Represent the probabilities as binary numbers
- Create a binary tree such that if the bit of the expansion of Pr(A) is 1, then A appears as a leaf at depth j where, $A \in S$ s.t S is a Mutually Exclusive and Collective Exhaustive set
- Assign an unbiased coin (equivalently, a boolean variable) for each depth of the tree
 The decisions in the tree are modelled by these coin flips

Eg:
$$S = \{A,B,C\}$$
 $Pr(A) = 0.5$ $Pr(B) = 0.25$ $Pr(C) = 0.25$ In binary, $Pr(A) = 0.1$ $Pr(B) = 0.01$ $Pr(C) = 0.01$

> Knuth-Yao Encoding

A concise representation for Probability Mass Functions

- Represent the probabilities as binary numbers
- Create a binary tree such that if the bit of the expansion of Pr(A) is 1, then A appears as a leaf at depth j where, $A \in S$ s.t S is a Mutually Exclusive and Collective Exhaustive set
- Assign an unbiased coin (equivalently, a boolean variable) for each depth of the tree
 The decisions in the tree are modelled by these coin flips

t1

In binary,
$$Pr(A) = 0.1 Pr(B) = 0.01 Pr(C) = 0.01$$

Eg: $S = \{A,B,C\}$ Pr(A)=0.5 Pr(B)=0.25 Pr(C)=0.25

$$F = (a \leftrightarrow (t_1 \land \overline{c_1})) \land (t_2 \leftrightarrow (t_1 \land c_1)) \land (b \leftrightarrow (t_2 \land \overline{c_2})) \land (c \leftrightarrow (t_2 \land c_2))$$

$$|S| = 2, k = 2$$

$$Pr(s_0, s_0) = 0.5 \equiv 0.1 \quad Pr(s_0, s_1) = 0.5 \equiv 0.1 \quad Pr(s_1, s_1) = 1.0 \equiv 1.0$$

$$|S| = 2, k = 2$$

$$Pr(s_0, s_0) = 0.5 \equiv 0.1 \quad Pr(s_0, s_1) = 0.5 \equiv 0.1 \quad Pr(s_1, s_1) = 1.0 \equiv 1.0$$

$$F = [(s_{(0,0)} \land \overline{s_{(1,0)}})] \land [s_{(1,0)} \lor s_{(1,1)} \lor s_{(1,2)}]$$

$$|S| = 2, k = 2$$

$$Pr(s_0, s_0) = 0.5 \equiv 0.1 \quad Pr(s_0, s_1) = 0.5 \equiv 0.1 \quad Pr(s_1, s_1) = 1.0 \equiv 1.0$$

$$F = [(s_{(0,0)} \wedge \overline{s_{(1,0)}})] \wedge [s_{(1,0)} \vee s_{(1,1)} \vee s_{(1,2)}]$$

$$\wedge [(s_{(0,1)} \leftrightarrow (s_{(0,0)} \wedge \overline{c_1})) \wedge (t_1 \leftrightarrow (s_{(0,0)} \wedge c_1)) \wedge (t_2 \leftrightarrow s_{(1,0)}) \wedge (s_{(1,1)} \leftrightarrow (t_1 \vee t_2))$$

$$\wedge (s_{(0,2)} \leftrightarrow (s_{(0,1)} \wedge \overline{c_2})) \wedge (t_3 \leftrightarrow (s_{(0,1)} \wedge c_2)) \wedge (t_4 \leftrightarrow s_{(1,1)}) \wedge (s_{(1,2)} \leftrightarrow (t_3 \vee t_4))]$$

$$|S| = 2, k = 2$$

$$Pr(s_0, s_0) = 0.5 \equiv 0.1 \quad Pr(s_0, s_1) = 0.5 \equiv 0.1 \quad Pr(s_1, s_1) = 1.0 \equiv 1.0$$

$$F = c_1 \vee c_2$$

$$\frac{\#(F)}{2^2} = \frac{3}{4}$$

Problem: Does there exist a k-step Policy which ensures that the Reachability Probability of a target state from a given initial state within k steps exceeds a certain threshold?

$$\Pr_{\pi}(\lozenge_{\leq k} (s_{|S|-1})) \geq \lambda ?$$

Problem: Does there exist a k-step Policy which ensures that the Reachability Probability of a target state from a given initial state within k steps exceeds a certain threshold?

$$\Pr_{\pi}(\lozenge_{\leq k} (s_{|S|-1})) \geq \lambda ?$$

Idea: Allow for control bits which enforce policies. Given a policy, these action bits are uniquely set.

Upon enforcing these action bits, formula represents the induced Markov Chain

Problem: Does there exist a k-step Policy which ensures that the Reachability Probability of a target state from a given initial state within k steps exceeds a certain threshold?

$$\Pr_{\pi}(\lozenge_{\leq k} (s_{|S|-1})) \geq \lambda ?$$

Idea: Allow for control bits which enforce policies. Given a policy, these action bits are uniquely set. Upon enforcing these action bits, formula represents the induced Markov Chain

Each sub-formula corresponding to the pmf will be relevant iff the action bits corresponding to it are set

$$\bigwedge_{h=0}^{|A|-1} (PE(s_{(j,i,h)}) \leftrightarrow a_{(j,i,h)})$$

The values of action bits which give the maximum SAT-count will represent the optimal policy

Problem: Does there exist a k-step Policy which ensures that the Reachability Probability of a target state from a given initial state within k steps exceeds a certain threshold?

$$\Pr_{\pi}(\lozenge_{\leq k} (s_{|S|-1})) \geq \lambda ?$$

Idea: Allow for control bits which enforce policies. Given a policy, these action bits are uniquely set.

Upon enforcing these action bits, formula represents the induced Markov Chain

Each sub-formula corresponding to the pmf will be relevant iff the action bits corresponding to it are set

$$\bigwedge_{h=0}^{|A|-1} (PE(s_{(j,i,h)}) \leftrightarrow a_{(j,i,h)})$$

The values of action bits which give the maximum SAT-count will represent the optimal policy

Essentially the Max#SAT problem

Policy Iteration is a more scalable approach

- > Binary encoding for states
 - Specifying that a particular state is reached would require a log |S| length long formula

- > Binary encoding for states
 - Specifying that a particular state is reached would require a log|S| length long formula
 - Most #SAT solvers only accept CNF formulas
 - Need to efficiently convert the formula into CNF
 - Tseitin Encoding

- > Binary encoding for states
 - Specifying that a particular state is reached would require a log|S| length long formula
 - Most #SAT solvers only accept CNF formulas
 - Need to efficiently convert the formula into CNF
 - Tseitin Encoding
- Do not encode action bits
 - Precompute and generate encoding for each of the $|S|^*|A|$ Probability distributions

- Binary encoding for states
 - Specifying that a particular state is reached would require a log | S | length long formula
 - Most #SAT solvers only accept CNF formulas
 - Need to efficiently convert the formula into CNF
 - Tseitin Encoding
- Do not encode action bits
 - Precompute and generate encoding for each of the $|S|^*|A|$ Probability distributions
 - Given a policy, stitch the Boolean formula on the fly
 - Formula generation is the bottleneck

> Binary Decision Diagrams

For a more concise encoding of the pmfs, use the BDD representation of the transition function. The BDD has leaves as probabilities.

> Binary Decision Diagrams

For a more concise encoding of the pmfs, use the BDD representation of the transition function.

The BDD has leaves as probabilities.

A bit string (which encodes the transition to be taken) is used as input and the BDD is traversed.

The leaf reached gives the transition probability.

> Binary Decision Diagrams

For a more concise encoding of the pmfs, use the BDD representation of the transition function.

The BDD has leaves as probabilities.

A bit string (which encodes the transition to be taken) is used as input and the BDD is traversed.

The leaf reached gives the transition probability.

Thus a single highly optimized tree with max-depth = 2*log|S|Rather than |S| trees (depths relying on precision of probability distribution).

> Binary Decision Diagrams

For a more concise encoding of the pmfs, use the BDD representation of the transition function.

The BDD has leaves as probabilities.

A bit string (which encodes the transition to be taken) is used as input and the BDD is traversed.

The leaf reached gives the transition probability.

Thus a single highly optimized tree with max-depth = 2*log|S|Rather than |S| trees (depths relying on precision of probability distribution).

Incremental #SAT solvers

Most #SAT solvers keep counts for sub-formulas.

Can potentially reuse them

> Binary Decision Diagrams

For a more concise encoding of the pmfs, use the BDD representation of the transition function.

The BDD has leaves as probabilities.

A bit string (which encodes the transition to be taken) is used as input and the BDD is traversed.

The leaf reached gives the transition probability.

Thus a single highly optimized tree with max-depth = 2*log|S|Rather than |S| trees (depths relying on precision of probability distribution).

Incremental #SAT solvers

Most #SAT solvers keep counts for sub-formulas.

Can potentially reuse them

Policy Iteration primarily only changes a single action choice => only a few clauses are altered

Experimental Results

PC Specs: Intel i5, 8GB RAM

	States in k-MDP	Variable Count in Formula	Clauses in Formula
2-state MDP (k=10)	22	37	78
Finite Reachability (k=10)	44	81	131
Grid MDP (5x5)	200	312	508
Grid MDP optimized (5x5)	200	24	126

	Storm (DRN input)	#SAT with approxMC3
5x5	0.012s	0.023s
15x15	0.027s	0.114
100x100	>1min	7.213s

Making use of Specificity

> Easy jump into Specificity

The #SAT approach allows a lot of freedom in specifying the encoding. Most MDPs have special patterns and properties.

Making use of Specificity

Easy jump into Specificity

The #SAT approach allows a lot of freedom in specifying the encoding. Most MDPs have special patterns and properties.

Thus allowing much more concise formulas while also retaining the power of well-known MDP solving techniques

Making use of Specificity

> Easy jump into Specificity

The #SAT approach allows a lot of freedom in specifying the encoding. Most MDPs have special patterns and properties.

Thus allowing much more concise formulas while also retaining the power of well-known MDP solving techniques

Eg: Simplified Grid Problem

The formula can be as simple as a circuit which adds k-bits

