Adam Gregosiewicz

Zadanie 1. Niech

$$m = 2^{13} \cdot 3^5 \cdot 17^{21} \cdot 31^4 \cdot 59^{1000}, \qquad n = 2^4 \cdot 5^{12^3} \cdot 31^{52} \cdot 59^{14}.$$

Znaleźć NWD(m, n) oraz NWW(m, n), gdzie NWW jest najmniejszą wspólną wielokrotnością.

Zadanie 2. Rozkładając liczby na czynniki pierwsze, znaleźć NWD(m, n), gdzie

- a) m = 120, n = 162,
- b) m = 289, n = 850,
- c) m = 2000, n = 987.

Zadanie 3. Wykorzystując algorytm Euklidesa, znaleźć $\mathrm{NWD}(m,n)$, gdzie

- a) m = 72, n = 17,
- b) m = 2000, n = 987,
- c) m = 3000, n = 999,
- d) m = 8359, n = 9373,
- e) m = 21212121, n = 12121212.

Zadanie 4. Wykorzystując rozszerzony algorytm Euklidesa, znaleźć $\mathrm{NWD}(m,n)$ oraz takie liczby sit,że

$$NWD(m, n) = s \cdot m + t \cdot n,$$

gdzie

- a) m = 20, n = 30,
- b) m = 35, n = 96,
- c) m = 320, n = 30,
- d) m = 14259, n = 3521.

Zadanie 5. Załóżmy, że

$$k = s \cdot m + t \cdot n$$

dla pewnych liczb całkowitych k, m, n, s, t. Wykazać, że

- a) NWD(m, n)|k,
- b) wszystkie liczby całkowite a i b spełniające równość

$$k = a \cdot m + b \cdot n$$

są postaci

$$a = s + i \cdot \frac{n}{\text{NWD}(m, n)}, \qquad b = t - i \cdot \frac{m}{\text{NWD}(m, n)}$$

dla $i \in \mathbb{Z}$.

Zadanie 6. Wyznaczyć wszystkie liczby całkowite a i b, dla których

- a) 8a + 3b = 1,
- b) 7a 11b = 1,
- c) 8a + 3b = 4,
- d) 9a + 6b = 5,
- e) 9a + 3b = 39,
- f) 5a 3b = 4.

Zadanie 7. Wykazać, że

$$NWD(13m + 8n, 5m + 3n) = NWD(m, n)$$

dla dowolnych $m, n \in \mathbb{Z}$.

Zadanie 8. Niech m i n będą liczbami całkowitymi. Wykazać, że

- a) każdy wspólny dzielnik m i n jest również dzielnikiem NWD(m, n),
- b) $\text{NWD}(km, kn) = k \cdot \text{NWD}(m, n)$ dla dowolnego $k \in \mathbb{N}$,
- c) jeżeli k|mn oraz NWD(k,m)=1, to k|n,
- d) jeżeli p jest liczbą pierwszą oraz p|mn, to p|m lub p|n,
- e) jeżeli k jest najmniejszą dodatnią wartością wyrażenia

$$s \cdot m + t \cdot n$$
,

to
$$k = \text{NWD}(m, n)$$
.

Zadanie 9. Wykazać, że

$$NWD(m^5, n^5) = NWD(m, n)^5$$

dla dowolnych $m, n \in \mathbb{Z}$.

Zadanie 10. Wyznaczyć resztę z dzielenia liczby

$$1^{100} + 2^{100} + 3^{100} + 4^{100} + 5^{100} + 6^{100} + 7^{100} + 8^{100} + 9^{100}$$

przez 5.

Zadanie 11. Wyznaczyć resztę z dzielenia liczby

$$9876^{3456789}(9^{99})^{5555} - 6789^{3414259}$$

przez 14.

Zadanie 12. Sprawdzić, że liczba

- a) $5^{36} 1$ jest podzielna przez 13,
- b) $53^{53} 33^{33}$ jest podzielna przez 10,
- c) $7^{222} + 1$ jest podzielna przez 5,
- d) $4^{2n+1} + 3^{n+2}$ jest podzielna przez 13.

Zadanie 13. Wyznaczyć dwie ostatnie cyfry liczby

- a) 2^{999} .
- $b) 76^{57} 57^{76}$.

Zadanie 14. Wyznaczyć ostatnią cyfrę liczby 7^{7^7} .

Zadanie 15. Wykazać, że liczba naturalna jest podzielna przez 3 wtedy i tylko wtedy, gdy suma jej cyfr w zapisie dziesiętnym jest podzielna przez 3.

Zadanie 16. Znaleźć regułę podzielności przez 11.

Zadanie 17. Znaleźć liczbę odwrotną do m modulo p, gdzie

- a) m = 22, p = 2,
- b) m = 8, p = 21,
- c) m = 21, p = 8,
- d) m = 50, p = 7.

Zadanie 18. Rozwiązać kongruencję

- a) $5x \equiv 1 \pmod{26}$,
- b) $17x \equiv 1 \pmod{26}$,
- c) $8x \equiv 4 \pmod{13}$,
- d) $3x \equiv 59 \pmod{100}$,
- $e) 99x \equiv 1 \pmod{13},$
- f) $4x \equiv 6 \pmod{7}$,
- q) $16x \equiv 8 \pmod{24}$,
- h) $12x \equiv 8 \pmod{2}$,

- i) $2000x \equiv 1 \pmod{643}$,
- $j) 788x \equiv 24 \pmod{1647}$.

Zadanie 19. Rozwiązać układy kongruencji

adanie 19. Rozwiązać u

a)
$$\begin{cases} x \equiv 5 \pmod{5}, \\ x \equiv 6 \pmod{11}, \end{cases}$$

b) $\begin{cases} x \equiv 8 \pmod{13}, \\ x \equiv 65 \pmod{99}, \end{cases}$

c) $\begin{cases} x \equiv 10 \pmod{13}, \\ x \equiv 96 \pmod{99}, \end{cases}$

$$\begin{cases} x \equiv 3 \pmod{4}, \\ x \equiv 4 \pmod{5}, \\ x \equiv 1 \pmod{7}, \end{cases}$$

e) $\begin{cases} x \equiv 2 \pmod{4}, \\ x \equiv 3 \pmod{9}, \\ x \equiv 5 \pmod{1}. \end{cases}$

$$\begin{cases} x \equiv 2 \pmod{3}, \\ x \equiv 3 \pmod{5}, \\ x \equiv 2 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 2 \pmod{3}, \\ x \equiv 3 \pmod{5}, \\ x \equiv 2 \pmod{7}, \end{cases}$$

$$\begin{cases} x \equiv 2 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 2 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 2 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \\ x \equiv 3 \pmod{5}, \end{cases}$$

$$\begin{cases} x \equiv 3 \pmod{5}, \end{aligned}$$

$$\begin{cases} x \equiv 3 \pmod{5$$