Lab Exercise

- Matrix-vector multiplication using multi-threading
 - Product of M*N matrix and N*1 vector is M*1 vector
 - Row size (M) and column size (N) of matrix are given as command line arguments
 - Elements of matrix and vector are randomly generated between 0~9 (data type is uint8_t)
 - Create M threads where M is the row size
 - Each thread performs a calculation on one row of the matrix
 - thread_data struct is used to store calculation result (uint64_t)
 and read the vector, matrix row, and column size (N).
 - Main function must wait other threads to terminate

Lab Exercise Hint

Matrix-Vector multiplication

```
Thread #0 \rightarrow \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}
```

- #include <time.h>
 - srand(time(NULL));
 - int a = rand() % 10;
- Skeleton Code : iCampus

Lab Exercise Hint

- A function is provided to print the expected results of the matrix-vector multiplication and an error if the results are not expected.
 - To compile a program that uses this function, you have to define DEBUG (just like _GNU_SOURCE) either by adding -DDEBUG as a compiler option in your Makefile (i.e. gcc -DDEBUG) or adding "#define DEBUG" on top.

Lab Exercise

Running Example

```
*** Matrix ***
[2][8][4][8][7][6][1][8][4][3]
[8][4][5][6][6][4][6][4][9]
[3][8][7][3][2][2][3][0][2][3]
[3][8][7][4][0][8][9][7][2][2]
*** Vector ***
[6] [4] [0] [8] [0] [2] [2] [3] [4] [7]
*** Result ***
183 7
159 ]
```

Exercise Submission

- Submit your source code and Makefile
 - The make command should generate a w12 executable.
 - via iCampus
 - Bundle source code and Makefile with tar command
 - » tar.gz format
 - **\$ tar cvzf** [student_id].tar.gz week12
 - We'll grade your submission with make
 - » If compilation fails, your points for this exercise will be zero