ENSF592 FINAL: TRAFFIC ANALYSIS FOR THE CITY OF CALGARY

DATE: AUG 13, 2020

INTRODUCTION

PURPOSE: The purpose of this project is to analyze potential factors that can lead to an increase in traffic incidents in the City of Calgary, and determine how strongly these factors correlate to an increase in incidents. Our team analyzes data provided by the City of Calgary itself, readily available at https://data.calgary.ca/browse. The potential factors that we consider for our analysis include various road features (speed limits, traffic volume, and the number of traffic cameras, signs, and signals) and changing weather conditions (temperature and visibility). The potential factors, as well as incident data, are analyzed for the year 2018. These factors will be mathematically and graphically compared so that we can make a data-driven conclusion on which factors result in increased traffic incidents.

HYPOTHESIS: All scientific experiments start with an initial hypothesis, and this study is no different for us. While this data analysis isn't a true experiment, we can still treat it like such and hypothesize how the various factors listed above can potentially affect traffic incident numbers. Our initial hypothesis is as follows:

- Areas with higher average speed limits (such as highways) will see lower incident numbers when compared to areas with relatively lower speed limits (such as inner-city roads). We base this assumption on the fact that highway driving is more streamlined with less stopping and going.
- Areas with higher traffic volume will see higher incident numbers (more cars means more chance of accidents occuring).
- Areas with more traffic cameras, that are more closely monitored by the City, will have lower incident numbers (the presence of cameras will encourage drivers to obey the law more and drive more carefully).
- · Areas with more traffic signs will see lower incident numbers (presence of road signs will encourage drivers to obey the law more and drive more carefully).
- · Areas with more traffic signals will see higher incident numbers (the presence of more intersections increases the risk of accidents due to failure to stop, yield, or give right of way).
- Colder temperatures (which also brings about ground frost and snow) will see higher incident numbers, with incident spikes occurring around 0 degrees C and single negative digits (temperatures hovering around 0 and just below result in the roads being at their most slippery due to frost)
- · Higher visibility will result in lower incident numbers (drivers who can see clearer are less likely to fall victims to traffic incidents).

PROJECT FLOW: The project is broken down and presented in the following format:

- · Data Preparation and Aggregation
- · Data Analysis and Visualization
- · Conclusion of Findings

DATA PREPARATION AND AGGREGATION

In this section, the City of Calgary will be approximately split up into 100 grids which will each be analyzed. The analysis of each grid will include:

- · Average Speed Limit
- · Average Traffic Volume
- · Number of Traffic Cameras
- · Number of Traffic Signals
- · Number of Traffic Signs
- Number of Traffic Incidents

The resulting calculations from each grid's analysis will be presented in a DataFrame, as well as visually, in the next section.

In [1]: # Import required packages to aid with data analysis: %matplotlib inline import pandas as pd import numpy as np import folium import re from statistics import mean from folium.plugins import HeatMap import matplotlib.pyplot as plt import seaborn as sns import datetime import json import geojson import branca import branca.colormap as cm import pdb from geojson import MultiLineString import gmaps

Data Preparation starts with finding the City of Calgary boundary. Data Analysis will only be performed within the City limits. We read from the City_Boundary_layer CSV file and clean the data before obtaining the max and min coordinates for the City limits. We then visually display the boundary for ease of viewing our project scope.

```
In [2]: #Read in csv for data cleaning:
        test_df = pd.read_csv('City_Boundary_layer.csv')
        boundary_coordinates = test_df.the_geom.get(0)
        boundary coordinates = boundary coordinates.replace('(', '').replace(')', '').replace('POLYGON', '').replace(',', '')
        coordinate_list = boundary_coordinates.split()
        #Create a list of latitude and longitude coordinates the City falls within:
        lat_list = [float(coordinate_list[i]) for i in range(len(coordinate_list)) if i % 2 == 1]
        long_list = [float(coordinate_list[j]) for j in range(len(coordinate_list)) if j % 2 == 0]
        #Find the maximum and minimum coordinates from the coordinate list to show the maximum city boundary:
        min_lat = min(lat_list)
        max lat = max(lat list)
        min_long = min(long_list)
        max_long = max(long_list)
        #Use central coordinates for the City to center the Folium map:
        calgary_lat = 51.0447
        calgary_long = -114.0719
        #Pass the max and min boundary coordinates to Folium to generate a Calgary map showing our boundary scope:
        my map = folium.Map(location=[calgary lat, calgary long], zoom start=10)
        folium.vector_layers.Rectangle([[max_lat, max_long], [min_lat, min_long]]).add_to(my_map)
        my_map
```

Out[2]:

Appendix: grid_df

	0	1	2	2	1			1 7	,l 8	
	{'min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 51.175464700000006, 'max_lat': 51.212425, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 51.175464700000006, 'max_lat': 51.212425, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{'min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': - 114.0878505, 'max_long': -	{'min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': - 113.9966723, 'max_long': -	('min_lat': 51.17546470000006, 'max_lat': 51.212425, 'min_long': - 113.9510832, 'max_long': -	('min_lat': 51.175464700000006, 'max_lat': 51.212425, 'min_long': - 113.9054941, 'max_long': -
1	('min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 51.1385044, 'max_lat': 51.175464700000006, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': - 114.134396, 'max_long': -114.0878505}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long': - 113.95510832, 'max_long': - 113.9054941}	{'min_lat': 51.1385044, 'max_lat': 51.17546470000006, 'min_long':- 113.9054941, 'max_long':- 113.859905}
	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 51.1015441, 'max_lat': 51.1385044, 'min_long': - 113.9054941, 'max_long': - 113.859905}
3	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': -114.134396, 'max_long': -114.0878505}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long':- 113.9966723, 'max_long':- 113.9510832}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 51.0645838, 'max_lat': 51.1015441, 'min_long': - 113.9054941, 'max_long': - 113.859905}
4	('min_lat': 51.02762350000004, 'max_lat': 51.0645838, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 51.027623500000004, 'max_lat': 51.0645838, 'min_long': -114.2246178} 'max_long': -114.2246178}	{'min_lat': 51.02762350000004, 'max_lat': 51.0645838, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 51.027623500000004, 'max_lat': 51.0645838, 'min_long': -114.1390287, 'max_long': -114.1334396}	{'min_lat': 51.02762350000004, 'max_lat': 51.0645838, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{"min_lat': 51.02762350000004, "max_lat': 51.0645838, "min_long': - 114.0878505, "max_long': - 114.0422614}	{'min_lat': 51.027623500000004, 'max_lat': 51.0645838, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 51.027623500000004, 'max_lat': 51.0645838, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 51.027623500000004, 'max_lat': 51.0645838, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 51.027623500000004, 'max_lat': 51.0645838, 'min_long': - 113.9054941, 'max_long': - 113.859905}
	('min_lat': 50.9906632, 'max_lat': 51.027623500000004, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 50.9906632, 'max_lat': 51.027623500000004, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 50.9906632, 'max_lat': 51.02762350000004, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 50.9906632, 'max_lat': 51.027623500000004, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 50.9906632, 'max_lat': 51.02762350000004, 'min_long': -114.1334396, 'max_long': -114.0878505}	{'min_lat': 50.9906632, 'max_lat': 51.02762350000004, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 50.9906632, 'max_lat': 51.02762350000004, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 50.9906632, 'max_lat': 51.027623500000004, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 50.9906632, 'max_lat': 51.027623500000004, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 50.9906632, 'max_lat': 51.027623500000004, 'min_long': - 113.9054941, 'max_long': - 113.859905}
	{'min_lat': 50.953702899999996, 'max_lat': 50.9906632, 'min_long': -114.315796, 'max_long': - '114.2702069}	{'min_lat': 50.95370289999996, 'max_lat': 50.990632, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 50.95370289999996, 'max_lat': 50.9906632, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 50.953702899999996, 'max_lat': 50.9906632, 'min_long': -114.1790287, 'max_long': -114.134396}	{'min_lat': 50.95370289999996, 'max_lat': 50.9906632, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{'min_lat': 50.953702899999996, 'max_lat': 50.9906632, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 50.95370289999996, 'max_lat': 50.990632, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 50.953702899999996, 'max_lat': 50.9906632, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 50.953702899999996, 'max_lat': 50.9906632, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 50.953702899999996, 'max_lat': 50.9906632, 'min_long': - 113.9054941, 'max_long': - 113.859905}
	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 50.9167426, 'max_lat': 50.953702899999996, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': -114.1790287, 'max_long': -114.134396}	{'min_lat': 50.9167426, 'max_lat': 50.953702899999996, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{'min_lat': 50.9167426, 'max_lat': 50.953702899999996, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 50.9167426, 'max_lat': 50.95370289999996, 'min_long': - 113.9054941, 'max_long': - 113.859905}
	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 50.8797823, 'max_lat': 50.9167426, 'min_long': - 113.9054941, 'max_long': - 113.859905}
	('min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': -114.315796, 'max_long': - 114.2702069}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': -114.2702069, 'max_long': -114.2246178}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': -114.2246178, 'max_long': - 114.1790287}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': -114.1790287, 'max_long': -114.1334396}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': - 114.1334396, 'max_long': -114.0878505}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': - 114.0878505, 'max_long': - 114.0422614}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': -114.0422614, 'max_long': -113.9966723}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': - 113.9966723, 'max_long': - 113.9510832}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': - 113.9510832, 'max_long': - 113.9054941}	{'min_lat': 50.842822, 'max_lat': 50.8797823, 'min_long': - 113.9054941, 'max_long': - 113.859905}

	column	row	avg_speed_limit	avg_volume	traffic_cameras	traffic_signals	traffic_signs	traffic_incidents
0	0	0			0	0	0	0
1	0	1			0	0	0	0
2	0	2			0	0	43	0
3	0	3	110	44000	0	0	109	5
4	0	4			0	0	0	0
5	0	5			0	0	0	0
6	0	6			0	0	0	0
7	0	7			0	0	0	0
8	0	8			0	0	0	0
9	0	9			0	0	0	0
10	1	0	75.07936508	3935.483871	0	0	18	0
11	1	1	64.94252874	12898.77301	0	7	1667	10
12	1	2	61.75438596	25233.19328	0	10	2249	26
13	1	3	70.859375	32582.8877	0	0	942	14
14	1	4	60	8000	0	0	81	3
15	1	5	73.96825397	17906.97674	0	0	59	1
16	1	6			0	0	0	0
17	1	7			0	0	0	0
18	1	8			0	0	0	0
19	1	9			0	0	0	0
20	2	0	71.18421053	4842.105263	0	0	82	0
21	2	1	64.84554815	28350.93168	1	10	1243	32
22	2	2	64.86463257	20248.64539	1	39	3875	67
23	2	3	63.48336595	17951.36778	1	17	3225	44
24	2	4	61.0202864	19318.89081	0	22	3100	45
25	2	5	65.70743405	15631.57895	0	2	1446	15
26	2	6			0	0	0	0
27	2	7			0	0	2	0
28	2	8	70	12352.94118	0	0	122	1
29	2	9			0	0	0	0
30	3	0	63.63636364	5068.100358	0	1	808	11
31	3	1	63.7347561	24163.93443	1	22	1917	84
32	3	2	67.98728814	21647.1846	2	32	3888	93

33	3	3	65.62115621	25056.28141	2	46	5203	123
34	3	4	66.25495376	27780.4878	2	35	5248	107
35	3	5	73.40909091	24648.82943	0	21	2522	69
36	3	6	60	2571.428571	0	1	228	0
37	3	7	72.18533887	10875.91241	0	0	430	9
38	3	8	70.45454545	14358.97436	0	0	442	6
39	3	9			0	0	0	0
40	4	0	60	1961.206897	0	2	613	2
41	4	1	65.63218391	33696.93095	2	24	2976	79
42	4	2	71.52993348	23391.00346	0	7	859	23
43	4	3	61.79112272	27171.07811	3	49	4796	161
44	4	4	57.83313325	29086.92308	8	77	9621	326
45	4	5	59.43378995	41029.41176	3	28	5163	303
46	4	6	62.34993614	21442.66667	2	26	2729	88
47	4	7	64.78494624	14508.22669	0	13	2410	46
48	4	8	62.04255319	12285.47579	0	16	2411	50
49	4	9		2000	0	0	58	0
50	5	0	75.04950495	5485.294118	0	1	273	5
51	5	1	63.56513676	18897.17046	0	33	3347	94
52	5	2	70.43478261	33751.9084	1	33	2673	161
53	5	3	61.48484848	25199.29141	4	53	5777	238
54	5	4	44.25901202	15870.37037	22	223	18374	465
55	5	5	58.44332176	31340.81463	9	61	5475	307
56	5	6	62.78884462	18290.61224	3	70	4039	225
57	5	7	62.06577119	31692.23573	5	34	3008	154
58	5	8	63.67415194	19579.35735	3	33	3320	111
59	5	9	59.67320261	2509.433962	1	1	247	7
60	6	0	88.55238095	68347.82609	0	0	44	22
61	6	1	72.75438596	32529.95392	2	15	933	55
62	6	2	67.54098361	19294.11765	0	6	220	25
63	6	3	67.25333333	37966.82464	6	36	1610	354
64	6	4	74.37106056	48142.14286	5	38	4009	362
65	6	5	70.82397004	47646.04462	5	19	1360	297
66	6	6	68.22074566	37399.01881	3	34	2511	149

67	6	7	66.55727156	38376.11408	0	18	2667	96
68	6	8	71.49141631	27660.76696	1	6	1437	27
69	6	9	66.20689655	11914.8265	1	5	1348	17
70	7	0	69.62298025	17750	0	0	34	20
71	7	1	68.57015192	29355.32995	2	14	1414	63
72	7	2	61.29476584	18288.26152	0	17	2022	80
73	7	3	59.10411622	21158.99123	6	50	3966	290
74	7	4	75.69165143	19009.92556	5	56	4457	259
75	7	5	62.31227652	13521.73913	1	17	1899	63
76	7	6	70.02633889	16257.98212	2	18	1155	104
77	7	7	69.9034062	23227.1028	5	27	2156	93
78	7	8	67.21440397	23421.97802	2	17	3477	104
79	7	9	80.44554455	17805.12821	0	7	650	13
80	8	0	98.83333333	40000	0	0	4	1
81	8	1	83.72116349	40318.58407	0	3	304	26
82	8	2	76.88504326	19832.71375	0	22	2632	81
83	8	3	71.12003781	34263.04802	2	19	2451	127
84	8	4	69.50310559	32221.95704	0	23	1577	84
85	8	5	72.13842975	28179.48718	0	4	124	36
86	8	6	72.98299845	14462.26415	1	1	295	38
87	8	7	64.29906542	14836.06557	0	6	850	27
88	8	8	70.76843198	21129.65723	1	10	2400	35
89	8	9			0	0	25	0
90	9	0			0	0	0	0
91	9	1			0	0	12	0
92	9	2			0	0	0	0
93	9	3			0	0	14	0
94	9	4	80	16000	0	1	83	5
95	9	5	80		0	0	6	0
96	9	6		10200	0	0	86	0
97	9	7	58.07531381		0	0	95	0
98	9	8	76.34146341	9000	0	0	51	2
99	9	9			0	0	4	0