Les vrais informaticiens confondent toujours Halloween et Noël car pour eux Oct 31 = Dec 25. (Andrew Rutherford)

Exercice 1 Montrer que la limite simple d'une suite de fonctions croissantes sur I est croissante sur I.

Exercice 2 Soit
$$f_n: x \in \mathbb{R} \mapsto \frac{1}{(1+x^2)^n}$$
. CVS,CVU sur \mathbb{R} ? CVU sur $[a, +\infty[$ avec $a > 0$?

Exercice 3 Soit $f_n : x \in \mathbb{R}_+ \mapsto e^{-nx} \sin(nx)$. CVS,CVU sur \mathbb{R}_+ ? CVU sur $[a, +\infty[$ avec a > 0?

Exercice 4 Soit $f_n: x \in \mathbb{R} \mapsto \frac{nx}{1+n^2x^2}$. Etudier la CVS de $(f_n)_n$ sur \mathbb{R} , déterminer $\lim_n f_n(1/n)$, étudier la CVU de $(f_n)_n$ sur \mathbb{R} puis montrer qu'il y a CVU sur tout segment de \mathbb{R}_+^* .

Exercice 5 Pour $a \ge 0$ on note $f_n : x \in [0,1] \mapsto n^a x^n (1-x)$. Déterminer la limite simple de $(f_n)_n$ puis déterminer les valeurs de a pour lesquelles il y a CVU.

Exercice 6 Soit (f_n) , (g_n) deux suites de fonctions continues sur [a,b] à valeurs réelles, convergeant uniformément vers f et g sur [a,b]. Montrez que f_ng_n converge uniformément vers fg sur [a,b]. Montrez que ce résultat est en défaut si on ne travaille pas sur un segment.

Exercice 7 Soit f_n convergeant uniformément vers f, montrez que $\frac{f_n}{1+f_n^2}$ CVU vers $\frac{f}{1+f^2}$

Exercice 8 Soit f_n convergeant uniformément sur \mathbb{R} vers f, montrez que $\sin(f_n)$ CVU sur \mathbb{R} . (On pourra observer que sin est lipschitzienne sur \mathbb{R} .)

Exercice 9 Soit $f_n(x) = n \cos^n x \sin x$. Chercher la limite simple, f, des fonctions f_n , calculer $\lim_{n \to \infty} \int_0^{\pi/2} f_n(t) dt$. Y-a-t'il CVU de $(f_n)n$ vers f sur $[0, \pi/2]$?

Exercice 10 Soit $(P_n)_n$ une suite de fonctions polynômiales convergeant uniformément vers f sur \mathbb{R} . Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que $\forall x \in \mathbb{R}, \forall n \geq n_0, |P_n(x) - f(x)| \leq 1$. En déduire que f est une fonction polynôme.

Exercice 11 Soit $P_n: x \mapsto \left(1 + \frac{x}{n}\right)^n$. Préciser la limite simple, y-a-t'il CVU sur \mathbb{R} ?

Exercice 12 (difficile) On pose pour $x \ge 0$: $f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$. Montrer que $(f_n)_n$ CVU sur \mathbb{R}_+ vers une fonction à préciser.

Exercice 13 Soit $(f_n)_n$ une suite de fonctions convergeant uniformément sur un intervalle I vers une fonction f continue sur I, et soit $(x_n)_n$ suite de I de limite x dans I. Montrer que $f_n(x_n)$ tend vers f(x) quand n tend vers l'infini.

Exercice 14 CVS et somme de $\sum_{n} f_n$ avec $f_n : x \mapsto \frac{\sin(nx)}{n2^n}$.

Exercice 15 Soit $f_n: x \mapsto \frac{1}{n+n^2x}$.

- 1. Déterminer l'ensemble de définition de $S = \sum_{n=1}^{+\infty} f_n$. Préciser sa monotonie.
- 2. Montrer que S est continue sur \mathbb{R}_+^* .
- 3. Préciser sa limite en $+\infty$.
- 4. A l'aide d'une comparaison série intégrale donner un équivalent en 0 et en $+\infty$ de S(x).

Exercice 16 Etudier CVS,CVU,CVN sur \mathbb{R} de $\sum_{n} f_n$ avec :

1.
$$f_n(x) = \frac{x}{(1+x^2)^n}$$
 avec $n \in \mathbb{N}$.

2.
$$f_n(x) = (-1)^n \frac{x}{(1+x^2)^n}$$
 avec $n \in \mathbb{N}$.

3.
$$f_n(x) = \frac{(-1)^n}{n+x^2}$$
 avec $n \in \mathbb{N}^*$.

Exercice 17 Etudier sur \mathbb{R}_+ la CVS,CVN,CVU de la série de fonctions $\sum_n f_n$ avec $f_n = \frac{1}{n+1} \mathbf{1}_{[n,n+1[}$.

Exercice 18 Notons pour n > 0 et $x \in \mathbb{R}$: $f_n(x) = \frac{x}{x^2 + n^2}$.

- 1. Montrer que $\sum_{n} f_n$ CVU sur tout [-a, a] avec a > 0. En déduire que $S = \sum_{n=1}^{+\infty} f_n$ est continue sur \mathbb{R} .
- 2. Calcular $\int_0^{+\infty} \frac{x}{x^2 + t^2} dt.$
- 3. A l'aide d'une comparaison série-intégrale trouver un équivalent de S(x) quand x tend vers $+\infty$.
- 4. Y-a-t'il CVU sur \mathbb{R}_+ ?

Exercice 19 On considére la série de fonctions Σf_n avec $f_n(x) = \frac{x e^{-nx}}{\ln n}$ sur \mathbb{R}_+ .

- 1. A l'aide d'une comparaison série intégrale, montrer que $\sum_{n} \frac{1}{n \ln n}$ diverge.
- 2. Montrer qu'il y a CVS sur \mathbb{R}_+ , CVN sur $[a, +\infty[$ pour tout a > 0. Y-a-t'il CVN sur \mathbb{R}_+ ?
- 3. Montrer que la somme S de cette série est continue sur \mathbb{R}_+ .
- 4. Montrer que S est C^1 sur \mathbb{R}_+^* mais non dérivable à droite en 0.
- 5. Montrer enfin que pour tout entier k on a $\lim_{x \to \infty} x^k S(x) = 0$.

Exercice 20 Vérifier que l'on peut définir une fonction f sur \mathbb{R}_+^* en posant :

$$\forall x \geqslant 0, f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$$

- 1. Montrer que f est continue sur \mathbb{R}_+^*
- 2. Montrer que pour tout x > 0: $xf(x) f(x+1) = e^{-1}$, en déduire un équivalent de f en 0^+ .

Exercice 21 Vérifier que l'on peut définir une fonction f sur \mathbb{R}_+^* en posant : $\forall x > 0, f(x) = \sum_{n=1}^{+\infty} \frac{\mathrm{e}^{-nx}}{n}$. Montrer que f est C^1 sur \mathbb{R}_+^* , préciser f' et en déduire f.

Exercice 22 (fonction zéta et zéta alternée de Riemann)

- 1. Montrer que l'on définit une fonction sur]1, $+\infty$ [en posant $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.
- 2. Montrer que ζ est de classe C^k sur $]1, +\infty$ pour tout entier naturel k et préciser ζ' .
- 3. A l'aide d'une comparaison série-intégrale démontrer que $\zeta(x) \sim \frac{1}{x-1}$.
- 4. Montrer que quand $x \to +\infty$ on a $\zeta(x) = 1 + 2^{-x} + o_{+\infty}(2^{-x})$.
- 5. Montrer que pour tout x > 0 la série $\sum_{n>0} \frac{(-1)^{n-1}}{n^x}$ converge. On note $\eta(x)$ sa somme.
- 6. Montrer que η est C^{∞} sur \mathbb{R}_{+}^{*} .
- 7. Montrer que pour tout x > 1: $\eta(x) = (1 2^{1-x}) \zeta(x)$.
- 8. à l'aide de l'équivalent de ζ en 1 trouvé en 3 retrouver la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$.
- 9. Déterminer la limite en 0 de η .
- 10. A l'aide d'un DL en 1 de η donner la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n \ln n}{n}$.

Exercice 23 on note pour $n \ge 0$: $f_n(x) = \begin{cases} (-1)^{n+1} x^{2n+2} \ln(x) & \text{si } x \in]0,1] \\ 0 & \text{si } x = 0 \end{cases}$

- 1. CVS de $\sum f_n$ et fonction somme?
- 2. Montrer qu'il y a CVU sur [0, 1].
- 3. En déduire $\int_0^1 \frac{\ln x}{1+x^2} dx = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(2n+1)^2}$ et calculer sa valeur en admettant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 24 Démontrer que $\int_0^1 \frac{dt}{t^t} = \sum_{n=1}^\infty \frac{1}{n^n}$ et que $\int_0^1 t^t dt = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^n}$. Valeur approchée?

Exercice 25 Dans tout le problème α désigne un réel. Soit $(u_n)_{n\geq 1}$ la suite de fonctions définies sur [0,1] par : $u_n(0)=0$ et $u_n(x)=-n^{\alpha}x^n\ln x$ pour x>0.

- 1. Etudier suivant les valeurs de α la convergence et la convergence uniforme de la suite (u_n) sur [0,1]. Pour quelles valeurs de α a-t'on $\lim_{n} \int_{0}^{1} u_n(x) dx = \int_{0}^{1} \lim_{n} u_n(x) dx$?
- 2. On étudie maintenant la série de fonctions Σu_n .
 - (a) Vérifier que pour tout $x \in [0,1]$ $\Sigma u_n(x)$ converge. On note S(x) la somme de cette série.
 - (b) Pour quelle valeurs de α la série Σu_n est-elle normalement convergente sur [0,1]?
 - (c) Pour $\alpha = 0$ calculer S et étudier sa continuité sur [0, 1].
 - (d) Pour quelles valeurs de α S est-elle continue à gauche en 1?
 - (e) La fonction S est-elle continue sur [0, 1]?

Exercice 26 Pour tout $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{e^{-x}}{1 + n^2 x^2}$ et $u_n = \int_0^1 f_n(x) dx$.

- 1. Étudier la convergence simple de la suite de fonctions (f_n) sur [0,1].
- 2. Soit $a \in [0, 1[$. La suite de fonctions (f_n) converge-t-elle uniformément sur [a, 1]?
- 3. La suite de fonctions (f_n) converge-t-elle uniformément sur [0,1]?
- 4. Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 27 Pour tout entier naturel n, on définit sur l'intervalle $J=[1,+\infty[$, la fonction f_n définie par :

$$f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}}.$$

1. Démontrer que la série de fonctions $\sum_{n\geqslant 0} f_n$ converge simplement sur J.

On note alors pour tout x de J, $\varphi(x)$ sa somme.

- 2. Montrer que cette série de fonctions ne converge pas normalement sur J.
- 3. Étudier alors sa convergence uniforme sur J.
- 4. Déterminer $\ell = \lim_{x \to +\infty} \sum_{n=0}^{+\infty} f_n(x)$.
- 5. Pour $n \in \mathbb{N}^*$, on note $u_n = \frac{(-1)^n}{\sqrt{n}}$.
 - 5.1. Justifier la convergence de la série de terme général u_n . On note $a = \sum_{n=1}^{+\infty} u_n$ sa somme.
 - 5.2. Montrer que l'on a au voisinage de l'infini : $\varphi(x) = \ell + \frac{a}{\sqrt{x}} + O\left(\frac{1}{x^{3/2}}\right)$.