Average Causal Effect in Observational Studies II

Xinzhou Guo

HKUST

(Credited to Zhichao Jiang)

February 26, 2024

Xinzhou Guo Causal Inference February 26, 2024

$$E \stackrel{\text{Y}(I)}{=} = E \frac{2i \stackrel{\text{Y}(I)}{=}}{e(X_{i})} = E \underset{\text{CC}(X_{i})}{\text{EC}(X_{i})} = E \underset{\text{Mic}(X_{i})}{\text{Mic}(X_{i})}$$
Mellod IPW OR.

Hydrid Dously Roburt

Other estimation strategies

- Other use of propensity score in estimating ACE besides stratification, IPW, doubly robust estimator
 - Can we use propensity in regression? reweight and covariate
 - 2 How is regression with propensity related to the others?
- Calibration methods without modelling the propensity score
- Matching distance or propensity

Xinzhou Guo Causal Inference February 26, 2024 2

Regression weighted by inverse of propensity score

• Hajek estimator LZPW

$$\int_{1}^{\infty} \mu \zeta = \widehat{ACE}^{\text{hajek}} = \frac{\sum_{i=1}^{n} \frac{Z_{i}Y_{i}}{\widehat{e}(\mathbf{X}_{i})}}{\sum_{i=1}^{n} \frac{Z_{i}}{\widehat{e}(\mathbf{X}_{i})}} - \frac{\sum_{i=1}^{n} \frac{(1-Z_{i})Y_{i}}{1-\widehat{e}(\mathbf{X}_{i})}}{\sum_{i=1}^{n} \frac{1-Z_{i}}{1-\widehat{e}(\mathbf{X}_{i})}}$$

• Weighted least squares estimation – why and what is the interpretation?

$$(\widehat{\beta}_{0}^{\text{wls}}, \widehat{\beta}_{1}^{\text{wls}}) = \underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n} w_{i} (Y_{i} - \beta_{0} - \beta_{1} Z_{i})^{2}$$

$$w_{i} = \frac{Z_{i}}{\widehat{e}(\mathbf{X}_{i})} + \frac{1 - Z_{i}}{1 - \widehat{e}(\mathbf{X}_{i})} = \begin{cases} \frac{Z_{i}}{\widehat{e}(\mathbf{X}_{i})} & \text{if } Z_{i} = 1\\ \frac{1 - Z_{i}}{1 - \widehat{e}(\mathbf{X}_{i})} & \text{if } Z_{i} = 0 \end{cases}$$

Variance estimation: bootstrap but how?

Xinzhou Guo Causal Inference February 26, 2024

$$\int = \left(\begin{array}{ccc} \sum w_i & \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i \end{array} \right) \left(\begin{array}{c} \sum w_i \geq i \\ \\ \sum w_i \geq i$$

Colrectly:
$$\mathcal{F} = \mathcal{A} + \mathcal{F} \times + \mathcal{F$$

Weighted regression with covariates

- In randomized experiments, we run $\operatorname{Im}(Y_i \sim 1 + Z_i + X_i + Z_i)$ improve efficiency
- In observational studies, can we run $\operatorname{Im}(Y_i \sim 1 + Z_i + X_i + Z_i X_i)$ with weights – what's the role of weight?
 - equivalent to two regressions $\mathbb{E}(Y_i \mid Z_i = z, X_i) = \alpha_z + \gamma_z^{\mathsf{T}} X_i)$ does models have to be correctly specified?
 - ACE estimator: $\hat{\alpha}_1^{\text{wls}} \hat{\alpha}_0^{\text{wls}}$
 - How about the propensity is misspecified?

February 26, 2024

Weighted regression with covariates

• Consider a doubly robust estimator based on linear models

• From the property of weighted least squares

$$\widehat{\text{ACE}}_{\text{DR}} = \widehat{\alpha}_{1}^{\text{wls}} - \widehat{\alpha}_{0}^{\text{wls}} + \bar{X}^{\top} \left(\widehat{\gamma}_{1}^{\text{wls}} - \widehat{\gamma}_{0}^{\text{wls}} \right)$$

What is the interpretation?

Xinzhou Guo Causal Inference February 26, 2024 5/23

Weighted Regression with Propensity

- Reweight $Y \sim Z$ with propensity leads to valid estimator; i.e. IPW;
- 2 Reweight $Y \sim Z + X + ZX$ with propensity leads to doubly robust estimator; i.e. the outcome model can be misspecified.

6/23

$$E(X) = \frac{\sum_{i} \{Y_{i} - \alpha - X_{i}\}}{\sum_{i} \{Y_{i} - \alpha - X_{i}\}}$$

$$= E(X_{i})$$

$$= E(X_{i}) - X_{i}$$

$$= E(X_{i}) - X_{i}$$

Structural model

- Model $Y_i(z)$ instead of Y_i
 - Estimation involves $Y_i(z)$, e.g., MLE, moment estimation
- Under ignorability, for any function h

$$\mathbb{E}\left\{h\left(Y_{i}(1), X_{i}\right)\right\} = \mathbb{E}\left\{\frac{Z_{i}h\left(Y_{i}, X_{i}\right)}{e\left(X_{i}\right)}\right\}$$
$$\mathbb{E}\left\{h\left(Y_{i}(0), X_{i}\right)\right\} = \mathbb{E}\left\{\frac{\left(1 - Z_{i}\right)h\left(Y_{i}, X_{i}\right)}{1 - e\left(X_{i}\right)}\right\}$$

- IPW corresponds to h(y,x) = y
- Estimation involves only Y_i with inverse propensity score weighting

$$h(y,x) = (y-a)^2$$

$$h(y,\chi) = (y - a - \chi r)^2$$

Regression with propensity score as a covariate

Under ignorability, $Z_i \perp \{Y_i(1), Y_i(0)\} \mid e(X_i)$

- 3 Can we do more?

Xinzhou Guo Causal Inference February 26, 2024

$$E(X|X, z=1) = \mu(x)$$

$$\mu_{i}^{0}(x_{i} = Xr)$$

$$Y = \mu_{i}^{0}(x_{i}) + \frac{r}{e(x_{i})}$$

$$Y = \chi + \xi + \chi + \xi$$

$$Y = \chi + \xi + \chi + \xi$$

$$\chi = \chi + \xi + \xi$$

Regression with propensity score as a covariate

- include propensity score (spline basis) in the outcome model (Little and An, 2004; Zhang and Little, 2009)
- include 1/e(X) as regressor in the outcome model (Scharfstein, 1997; Bang and Robins, 2005) – why and is it different from e(X)?
- Procedure for estimating $\mathbb{E}\{Y_i(1)\}$:
 - fit a model for propensity seore logit $\{e(X_i)\} = X_i^{\top} \beta$, obtain $\hat{e}(X_i)$
 - fit a linear regression model of $Y_i(1)$ on X_i and $\hat{e}(X_i)$

$$\mathbb{E}\left(Y_{i}(1) \mid X_{i}\right) = X_{i}^{\top} \gamma + \phi/\hat{e}\left(X_{i}\right), \text{ obtain } \hat{\gamma} \text{ and } \hat{\phi}$$
calculate the estimator for $\mathbb{E}\left\{Y_{i}(1)\right\}$

$$\widehat{\mathcal{E}}(\widehat{X}, \widehat{Z}) \qquad \widehat{\mu}_{R} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathbb{E}} \left\{ Y(1) \mid X \right\} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i}^{\top} \widehat{\gamma} + \frac{\widehat{\phi}}{\widehat{e}(X_{i})} \right)$$

Xinzhou Guo Causal Inference February 26, 2024 Y~ Zf Xi + eaxi)

E (xicu /x)

Double robustness

• From the property of linear regression

$$\frac{1}{n} \sum_{i=1}^{n} \frac{Z_i}{\hat{e}(X_i)} \left\{ Y_i - \left(X_i^{\top} \hat{\gamma} + \frac{\hat{\phi}}{\hat{e}(X_i)} \right) \right\} = 0$$
 (1)

• $\hat{\mu}_R$ has the same expression as the doubly robust estimator

$$\hat{\mu}_{R} \left(= \frac{1}{n} \sum_{i=1}^{n} \left(X_{i}^{\top} \hat{\gamma} + \frac{\hat{\phi}}{\hat{e}\left(X_{i}\right)} \right) \right) \sum_{i=1}^{n} \frac{Z_{i}}{\hat{e}\left(X_{i}\right)} \left\{ Y_{i} - \left(X_{i}^{\top} \hat{\gamma} + \frac{\hat{\phi}}{\hat{e}\left(X_{i}\right)} \right) \right\}$$

• $\hat{\mu}_R$ is consistent if either outcome or propensity score model is correctly specified

Xinzhou Guo Causal Inference February 26, 2024

$$\frac{1}{100} = \frac{1}{10} = \frac{2i(x_i - x_i - \frac{6}{6x_i})}{2(x_i)} + \frac{5}{10} = \frac{2i(x_i - x_i - \frac{6}{6x_i})}{2(x_i)}$$

$$= \frac{1}{100} = \frac{1}{100} = \frac{2i(x_i - x_i - \frac{6}{6x_i})}{2(x_i)}$$

$$= \frac{1}{100} = \frac{1}{100} = \frac{2i(x_i - x_i - \frac{6}{6x_i})}{2(x_i - x_i - \frac{6}{6x_i})}$$

$$= \frac{1}{100} = \frac{1}{100} = \frac{2i(x_i - x_i - \frac{6}{6x_i})}{2(x_i - x_i - \frac{6}{6x_i})}$$

Generalization

- Regression estimator becomes doubly robust estimator under Equation (1)
 - linear model with $1/\hat{e}(X_i)$ as regressor guarantees Equation (1) how about with $\hat{e}(X_i)$
 - $X_i^{\top} \gamma$ determines the outcome model
- Generalization: $\mathbb{E}\{Y_i(1) \mid X_i\} = \hat{\mathbb{E}}^0\{Y_i(1) \mid X_i\} + \phi/\hat{e}(X_i)$, where $\hat{\mathbb{E}}^0\{Y_i(1) \mid X_i\}$ is an outcome regression estimator what's the benefit?
- $\hat{\mu}_{R}$ is consistent if either $\hat{\mathbb{E}}^{0}\left\{Y_{i}(1)\mid X_{i}\right\}$ or $\hat{e}\left(X_{i}\right)$ is consistent

Xinzhou Guo Causal Inference February 26, 2024

Targeted maximum likelihood estimation (TMLE)

- Estimate $\mathbb{E}\{Y_i(1) \mid X_i\}$ to get initial estimator $\hat{\mathbb{E}}^0\{Y_i(1) \mid X_i\}$
- Estimate propensity score to get $\hat{e}(X_i)$
- Construct a "clever" covariate: $1/\hat{e}(X_i)$
- Update the outcome model to $\mathbb{E}^1(Y(1) \mid X)$ by fitting $\mathbb{E}\{Y_i(1) \mid X_i\} = \mathbb{E}^0\{Y_i(1) \mid X_i\} + \phi/\hat{e}(X_i)$
- Estimator: $\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbb{E}}^{1} \{Y_i(1) \mid X_i\}$
- Van der laan and Rubin (2006) propose TMLE
 - similar procedure for ACE where is the difference?
 - link function can be used for different types of outcome (e.g., logit link for binary outcome)

Calibration methods

We do not have to model propensity score. Instead, we can figure out a pseudo one.

- Balancing property of $e(X_i)$
- Directly estimate the weights w_i without imposing model
 - weights w_i should satisfy balancing property

$$\mathbb{E}\left\{w_{i}Z_{i}h\left(X_{i}\right)\right\} = \mathbb{E}\left\{w_{i}\left(1 - Z_{i}\right)h\left(X_{i}\right)\right\} = \mathbb{E}\left\{h\left(X_{i}\right)\right\}$$

• ACE estimation

$$ACE = \mathbb{E} \left\{ w_i Z_i Y_i \right\} - \mathbb{E} \left\{ w_i \left(1 - Z_i \right) h \left(X_i \right) \right\}$$

- Weights are not unique (e.g. propensity score) \rightsquigarrow minimize some functions of the weights
 - e.g., weights to minimize the variance of the ACE estimator
 - implementation using optimization

Xinzhou Guo Causal Inference February 26, 2024 13 / 23

Wiz eckin

Find
$$w_i$$
: $\frac{1}{2}$ $\frac{2i h(x_i)}{2ii}$ $\frac{1}{2}$ $\frac{1-x_i}{1-x_i}$

Whinte

Vanuace $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1-x_i}{2i}$ $\frac{1-x_i}{1-x_i}$

Or

Other

Criteria

Calibration Methods

• Entropy balancing (Hainmueller. 2012. Political Anal.)

$$\{w_1^*, w_2^*, \dots, w_{n_0}^*\} = \underset{w}{\operatorname{argmin}} \sum_{i: Z_i = 0} w_i \log(w_i/q_i)$$

subject to

$$w_i \geqslant 0$$
, $\sum_{i:Z_i=0} w_i = 1$, $\sum_{i:Z_i=0} w_i f(\mathbf{X}_i) = \frac{1}{n} \sum_i f(\mathbf{X}_i)$

• Stable weights (Zubizarreta, 2015, JASA)

$$\{w_1^*, w_2^*, \dots, w_n^*\} = \underset{w}{\operatorname{argmin}} \|\mathbf{w} - \overline{\mathbf{w}}\|_2^2$$

subject to

$$w_i \geqslant 0$$
, $\sum_{i:Z_i=0} w_i = 1$, $\left| \sum_{i:Z_i=0} w_i X_{ij} - \frac{1}{n} \sum_i X_{ij} \right| \leqslant \delta_j$

Xinzhou Guo Causal Inference February 26, 2024 14/23

Weighted Op with PS

(D weight &n Z with Ps -) IPW

(D) weight &n Xt2+X2 with PS

-> doubly rosust estence or

Structural Model

Add PS into OR

$$x \sim x + \frac{1}{e^{cx}} | z=1$$
 $x \sim \left(\frac{2}{e^{cx}}\right) + \frac{1}{e^{cx}} | z=1$

Midel-free Method

(ali)vation

Matching

What if we do not want to model the outcome or propensity score

- Popular in empirical research
- Easy implementation without modeling
- Complicated theory why?
- A practical guide for matching: Stuart (2010) "Matching methods for causal inference: A review and a look forward"

Xinzhou Guo Causal Inference February 26, 2024 15 / 23

Exact matching

- Exact matching \rightsquigarrow perfect covariate balance
- No model dependence
- Infeasible when there are many covariates and covariates are continuous

Xinzhou Guo Causal Inference February 26, 2024 16/23

Matching based on distance measures

- Matching based on distances between covariates $\underline{d}(\mathbf{X}_i, \mathbf{X}_i)$

 - Euclidean distance $d(\mathbf{X}_i, \mathbf{X}_j) = \|\mathbf{X}_i \mathbf{X}_j\|_2^2$ Mahalanobis distance $d(\mathbf{X}_i, \mathbf{X}_j) = (\mathbf{X}_i \mathbf{X}_j)^{\top} \Omega^{-1} (\mathbf{X}_i \mathbf{X}_j)$
 - Propensity score
- Different types of matching
 - One to one, one to many
 - With or without replacement (non i.i.d vs i.i.d)
 - Optimal matching
 - Full matching
- For a given unit in the treatment (control) group, find the unit with the smallest distance in the control (treatment) group
 - 1 to M matching (M > 1)
 - depends on the distance measure
 - may drop units that are hard to find matches
 - adjustment after matching regression or propensity?

February 26, 2024

17 / 23

Xinzhou Guo Causal Inference

Connection with Regression

Covariate adjustment 14 RCT

[Σ Zi(ξ.- ξ.) + 1-20, (ξ.- ξ.)

Matching estimator for the ACE

- For a treated unit i, we find the M matched units in the control group and denote $\tilde{Y}_i = \frac{1}{M} \sum_{k \in \mathcal{M}_i} Y_k$, where $\tilde{\mathcal{M}}_i$ is the set of matched units from the control group for unit i
- For a control unit i, we find the M matched units in the treatment group and denote $\tilde{Y}_i = \frac{1}{M} \sum_{k \in \mathcal{M}_i} Y_k$, where \mathcal{M}_i is the set of matched units from the treatment group for unit i

• Matching estimator

Xinzhou Guo Causal Inference 18 / 23February 26, 2024

Matching estimator for the ACE

- Abadie and Imbens (2006, 2008, 2011) study the properties of the matching estimator with replacement assuming $(Z_i, X_i, Y_i(1), Y_i(0))$ are i.i.d.
- $\widehat{ACE}^{\text{matching}}$ has non-negligible bias especially when X is $\widehat{\text{multidimensional}} \widehat{\text{why}}$?
- Estimator for the bias $\hat{B} = n^{-1} \sum_{i=1}^{n} \hat{B}_i$

$$\hat{B}_{i} = \begin{cases} M^{-1} \sum_{k \in \mathcal{M}_{i}} \{ \hat{\mu}_{0} (X_{i}) - \hat{\mu}_{0} (X_{k}) \} & Z_{i} = 1 \\ M^{-1} \sum_{k \in \mathcal{M}_{i}} \{ \hat{\mu}_{1} (X_{k}) - \hat{\mu}_{1} (X_{i}) \} & Z_{i} = 0 \end{cases}$$

- $\{\hat{\mu}_1(X_i), \hat{\mu}_0(X_i)\}$ are the predicted outcomes, e.g., from OLS
- bias corrected estimator: $\widehat{ACE}^{mbc} = \widehat{ACE}^{matching} \widehat{B}$

- **◆ □ ▶ ◆ 昼 ▶ ◆ 昼 ▶ ○ 夏 ・ 夕** ♀ ○

Xinzhou Guo Causal Inference

$$F_{i}=1 \quad \text{in } \sum_{k \in A_{i}} \left\{ \widehat{A_{o}}(X_{i}) - \widehat{A_{o}}(X_{k}) \right\}$$

$$= \widehat{A_{o}}(X_{i}) - \widehat{A_{o}}(X_{k})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i}) - \widehat{A_{o}}(X_{k})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

$$= \widehat{A_{i}}(X_{i}) - \widehat{A_{o}}(X_{i})$$

Matching estimator for the ACE

• Linear expansion form:
$$\widehat{ACE}^{mbc} = \widehat{n^{-1}\sum_{i=1}^{n}\widehat{\psi}_{i}}$$

$$\widehat{\psi}_{i} = \widehat{\mu}_{1}(X_{i}) - \widehat{\mu}_{0}(X_{i}) + (2Z_{i} - 1)(1 + K_{i}/M)\{Y_{i} - \widehat{\mu}_{Z_{i}}(X_{i})\}$$

- K_i is the number of times that unit i is used in a match
- Variance estimator

$$\widehat{\operatorname{var}}\left\{\widehat{\mathsf{ACE}}^{\mathsf{mbc}}\right\} = \frac{1}{n^2} \sum_{i=1}^{n} \left(\hat{\psi}_i - \widehat{\mathsf{ACE}}^{\mathsf{mbc}}\right)^2$$

• Otsu and Rai (2017) propose a bootstrap procedure based on the linear expansion

Xinzhou Guo Causal Inference February 26, 2024 20 / 23

Connection with doubly robust estimator

 \bullet \widehat{ACE}^{mbc} is equal to

$$\underbrace{\frac{1}{n} \sum_{i=1}^{n} \{\hat{\mu}_{1}(X_{i}) - \hat{\mu}_{0}(X_{i})\}}_{} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left\{ \left(1 + \frac{K_{i}}{M}\right) \underbrace{Z_{i} \hat{R}_{i}}_{} - \left(1 + \frac{K_{i}}{M}\right) (1 - Z_{i}) \hat{R}_{i} \right\}$$

- $\hat{R}_i = Y_i \hat{\mu}_{Z_i}(X_i)$ is the residual from outcome regression
- $n^{-1} \sum_{i=1}^{n} {\{\hat{\mu}_1(X_i) \hat{\mu}_0(X_i)\}}$ is the outcome regression estimator
- the second term is similar to the inverse probability weighting of residual R_i
- Matching can be viewed as a nonparametric method to estimate the propensity score
 - $1 + K_i/M$ should be similar to $1/\hat{e}(X_i)$ for Z=1 and $1/\{1-\hat{e}(X_i)\}$ for $Z_i = 0$ why?
 - Lin et al. (2023) provide a formal theory

Xinzhou Guo Causal Inference

$$\frac{1}{n} \sum_{i=1}^{n} \frac{2(i + i)}{(-e(x_i))} \frac{1 - i \cdot (x_i)}{(-e(x_i))} \frac{1 - i \cdot (x_i)}{(-e(x_i))}$$

$$\frac{M}{M + K_i} \sum_{i=1}^{n} \frac{e(x_i)}{2} \frac{1 - i \cdot (x_i)}{2}$$

|Summary|

- The identification of the average treatment effect in observational studies typically requires:
 - overlap
 - ignorability
- Various methods to estimate causal effects:
 - use propensity score in regression
 - connection to DR estimator
 - Calibration methods
 - estimate weights without modeling
 - need to choose which covariates to balance
 - Matching
 - easy implementation but complicated theory
 - non-negligible bias www bias corrected matching estimator
 - connection to weighting methods

Xinzhou Guo Causal Inference February 26, 2024 22 / 23

Suggested readings

- Using propensity score in regression
 - Ding. Chapter 14
 - Robins, 2007. "Comment: Performance of Double-Robust Estimators When "Inverse Probability" Weights Are Highly Variable"
- Calibration methods
 - papers by Jose Zubizarreta and references therein
- Matching
 - DING. Chapter 15
 - papers by Abadie and Imbens
 - Stuart, 2010. "Matching methods for causal inference: A review and a look forward"

Xinzhou Guo Causal Inference February 26, 2024 23 / 23