|      | Date           | CIPLA      | PFC        | RECLTD     | IOC        | HINDPETRO  | AKZONO      |
|------|----------------|------------|------------|------------|------------|------------|-------------|
| 0    | 2017-<br>04-26 | 555.099976 | 157.699997 | 204.699997 | 216.625000 | 361.600006 | 1994        |
| 1    | 2017-<br>04-27 | 560.900024 | 157.850006 | 203.850006 | 221.550003 | 357.166656 | 1972        |
| 2    | 2017-<br>04-28 | 556.799988 | 159.500000 | 202.649994 | 220.000000 | 367.799988 | 1962        |
| 3    | 2017-<br>05-02 | 554.500000 | 163.500000 | 212.050003 | 221.524994 | 354.333344 | 1972        |
| 4    | 2017-<br>05-03 | 554.299988 | 160.850006 | 210.899994 | 220.675003 | 354.100006 | 199(        |
| •••  |                |            |            |            |            |            |             |
| 1234 | 2022-<br>04-25 | 953.650024 | 116.000000 | 125.949997 | 127.699997 | 292.399994 | 1873        |
| 1005 | NI - T         | NI-NI      | NI - NI    | N1-N1      | K I = K I  | NI - NI    | <b>&gt;</b> |

```
stock = df
stock["Date"] = stock["Date"].astype("datetime64")
stock
```

```
Date
                       CIPLA
                                     PFC
                                              RECLTD
                                                             IOC
                                                                  HINDPETRO AKZONO
            2017-
       0
                  555.099976
                              157.699997 204.699997 216.625000
                                                                                1994
                                                                 361.600006
            04-26
            2017-
       1
                  560.900024
                              157.850006 203.850006 221.550003 357.166656
                                                                                1972
            04-27
            2017-
       2
                  556.799988
                              159.500000 202.649994 220.000000 367.799988
                                                                                1962
            04-28
            2017-
       3
                  554.500000
                              163.500000 212.050003 221.524994 354.333344
                                                                                1972
            05-02
            2017-
                  55/ 200088 160 850006 210 80000/ 220 675002 35/ 100006
                                                                                1001
plt.figure(figsize=(15, 12))
plt.title('Close Price')
plt.plot(stock.Date, stock.CIPLA, label='CIPLA',
         linewidth=0.5)
plt.plot(stock.Date, stock.PFC, label='PFC',
         linewidth=0.5)
plt.plot(stock.Date, stock.RECLTD, label='RECLTD',
         linewidth=0.5)
plt.plot(stock.Date, stock.IOC, label='IOC',
         linewidth=0.5)
plt.plot(stock.Date, stock.HINDPETRO, label='HINDPETRO',
         linewidth=0.5)
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
```

## <matplotlib.legend.Legend at 0x7fddbcb583d0>

```
CIPLA
                                             PFC
                                             RECLTD
                                                                                                                                                                                      man harman harma
                        1000
                                             HINDPETRO
                           800
                           400
                           200
plt.figure(figsize=(15, 12))
plt.title('Close Price')
plt.plot(stock.Date, stock.CIPLA, label='CIPLA',
                                linewidth=1)
plt.plot(stock.Date, stock.PFC, label='PFC',
                                linewidth=1)
plt.plot(stock.Date, stock.RECLTD, label='RECLTD',
                                linewidth=1)
plt.plot(stock.Date, stock.IOC, label='IOC',
                                linewidth=1)
plt.plot(stock.Date, stock.HINDPETRO, label='HINDPETRO',
                                linewidth=1)
plt.plot(stock.Date, stock.AKZONOBEL, label='AKZONOBEL',
                                linewidth=1)
plt.plot(stock.Date, stock.BPCL, label='BPCL',
                                linewidth=1)
plt.plot(stock.Date, stock.GILLETTE, label='GILLETTE',
                                linewidth=1)
plt.plot(stock.Date, stock.ASTRAZENECA, label='ASTRAZENECA',
                                linewidth=1)
#plt.plot(stock.Date, stock.NESTLE, label='NESTLE',
                                    linewidth=1)
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
```

## <matplotlib.legend.Legend at 0x7fddbbab5650>



```
[<matplotlib.lines.Line2D at 0x7fddb9d0d6d0>]
      350
      300
CIPLA = stock['CIPLA'].pct change()
PFC = stock['PFC'].pct_change()
RECLTD =stock['RECLTD'].pct_change()
IOC= stock['IOC'].pct_change()
           =stock['HINDPETRO'].pct_change()
HINDPETRO
            =stock['AKZONOBEL'].pct_change()
AKZONOBEL
BPCL = stock['BPCL'].pct_change()
GILLETTE=stock['GILLETTE'].pct_change()
ASTRAZENECA =stock['ASTRAZENECA'].pct change()
NESTLE= stock['NESTLE'].pct_change()
ERs = {"CIPLA": CIPLA,
        "PFC": PFC,
        "RECLTD": RECLTD,
        "IOC" : IOC,
        "HINDPETRO": HINDPETRO,
        "AKZONOBEL": AKZONOBEL,
        "BPCL": BPCL,
        "GILLETTE": GILLETTE,
        "ASTRAZENECA": ASTRAZENECA,
        "NESTLE": NESTLE}
CIPLA.head(10)
     0
               NaN
          0.010449
     1
         -0.007310
     2
     3
         -0.004131
         -0.000361
     5
         -0.008389
     6
         -0.001910
     7
          0.003737
     8
          0.001634
     9
          0.014867
     Name: CIPLA, dtype: float64
Returndf = pd.concat(ERs,
               axis = 1)
Returndf.drop(Returndf.index[0])
Returndf
```

|      | CIPLA     | PFC       | RECLTD    | IOC       | HINDPETRO | AKZONOBEL | ВРС      |
|------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| 0    | NaN       | NaN       | NaN       | NaN       | NaN       | NaN       | Nal      |
| 1    | 0.010449  | 0.000951  | -0.004152 | 0.022735  | -0.012260 | -0.011180 | -0.02182 |
| 2    | -0.007310 | 0.010453  | -0.005887 | -0.006996 | 0.029771  | -0.005146 | 0.02850  |
| 3    | -0.004131 | 0.025078  | 0.046385  | 0.006932  | -0.036614 | 0.005096  | -0.00709 |
| 4    | -0.000361 | -0.016208 | -0.005423 | -0.003837 | -0.000659 | 0.009431  | -0.00462 |
|      |           |           |           |           |           |           |          |
| 1234 | -0.013806 | -0.023569 | -0.020987 | -0.049144 | 0.003087  | -0.001066 | 0.00784  |
| 1235 | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.00000  |
| 1236 | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.00000  |
| 1237 | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.00000  |
| 1238 | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.00000  |
| 4    |           |           |           |           |           |           | •        |

Ret = pd.read\_excel (r'/content/Returns.xlsx')
Ret["Date"] = Ret["Date"].astype("datetime64")

Ret

Date CIPLA PFC RECLTD IOC HINDPETRO AKZONOBEL

import seaborn as sn

covmat = Ret.cov() \* 252
covmat

|             | CIPLA    | PFC      | RECLTD    | IOC       | HINDPETRO | AKZONOBEL |
|-------------|----------|----------|-----------|-----------|-----------|-----------|
| CIPLA       | 0.081048 | 0.020620 | 0.018956  | 0.013056  | 0.003798  | 0.003279  |
| PFC         | 0.020620 | 0.150426 | 0.113657  | 0.053570  | 0.001562  | 0.003159  |
| RECLTD      | 0.018956 | 0.113657 | 0.145884  | 0.049960  | -0.002657 | 0.003272  |
| IOC         | 0.013056 | 0.053570 | 0.049960  | 0.355825  | 0.005563  | 0.001239  |
| HINDPETRO   | 0.003798 | 0.001562 | -0.002657 | 0.005563  | 0.179038  | 0.000880  |
| AKZONOBEL   | 0.003279 | 0.003159 | 0.003272  | 0.001239  | 0.000880  | 0.064046  |
| BPCL        | 0.004656 | 0.005841 | -0.000275 | 0.006243  | 0.123218  | 0.001978  |
| GILLETTE    | 0.004331 | 0.004958 | 0.005221  | -0.002625 | 0.014963  | -0.003393 |
| ASTRAZENECA | 0.002003 | 0.013654 | 0.012821  | 0.006361  | 0.001194  | 0.020275  |
| ◀           |          |          |           |           |           | •         |

```
plt.figure(figsize=(15, 12))
sn.heatmap(covmat, annot=True, fmt='g')
plt.show()
```



variance = np.dot(weights.T, np.dot(covmat,weights)) variance

## 0.025654590445933385

volatility = np.sqrt(variance) volatility

0.16017050429443427

annualizedreturns = np.sum(Ret.mean()\* weights) \* 252

annualizedreturns

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1: FutureWarning: DataFrame """Entry point for launching an IPython kernel. 0.08567519669609704

pip install PyPortfolioOpt

```
Collecting PyPortfolioOpt
```

Downloading pyportfolioopt-1.5.2-py3-none-any.whl (61 kB)

61 kB 3.3 MB/s

Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.7/dist-packages (+ Collecting cvxpy<2.0.0,>=1.1.10

Downloading cvxpy-1.2.0-cp37-cp37m-manylinux\_2\_24\_x86\_64.whl (2.8 MB)

2.8 MB 10.5 MB/s

Requirement already satisfied: scipy<2.0,>=1.3 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: numpy<2.0,>=1.12 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: ecos>=2 in /usr/local/lib/python3.7/dist-packages (from < Requirement already satisfied: scs>=1.1.6 in /usr/local/lib/python3.7/dist-packages (frc

Requirement already satisfied: osqp>=0.4.1 in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: qdldl in /usr/local/lib/python3.7/dist-packages (from osc Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from Installing collected packages: cvxpy, PyPortfolioOpt

Attempting uninstall: cvxpy

Found existing installation: cvxpy 1.0.31

Uninstalling cvxpy-1.0.31:

Successfully uninstalled cvxpy-1.0.31

Successfully installed PyPortfolioOpt-1.5.2 cvxpy-1.2.0

**→** 

from pypfopt.efficient\_frontier import EfficientFrontier
from pypfopt import risk\_models
from pypfopt import expected\_returns

stock = stock.drop(['Date'], axis = 1)
stock

|                        | CIPLA      | PFC        | RECLTD     | IOC        | HINDPETRO  | AKZONOBEL | COCHINSHIP |   |  |
|------------------------|------------|------------|------------|------------|------------|-----------|------------|---|--|
| 0                      | 555.099976 | 157.699997 | 204.699997 | 216.625000 | 361.600006 | 1994.70   | 522.000000 | 2 |  |
| 1                      | 560.900024 | 157.850006 | 203.850006 | 221.550003 | 357.166656 | 1972.40   | 541.549988 | ۷ |  |
| 2                      | 556.799988 | 159.500000 | 202.649994 | 220.000000 | 367.799988 | 1962.25   | 536.549988 | 2 |  |
| 3                      | 554.500000 | 163.500000 | 212.050003 | 221.524994 | 354.333344 | 1972.25   | 536.500000 | ۷ |  |
| 4                      | 554.299988 | 160.850006 | 210.899994 | 220.675003 | 354.100006 | 1990.85   | 532.750000 | ۷ |  |
|                        |            |            |            |            |            | •••       |            |   |  |
| 1234                   | 953.650024 | 116.000000 | 125.949997 | 127.699997 | 292.399994 | 1873.75   | NaN        | 3 |  |
| 1235                   | NaN        | NaN        | NaN        | NaN        | NaN        | NaN       | NaN        |   |  |
| 1236                   | NaN        | NaN        | NaN        | NaN        | NaN        | NaN       | NaN        |   |  |
| 1237                   | NaN        | NaN        | NaN        | NaN        | NaN        | NaN       | NaN        |   |  |
| 1238                   | NaN        | NaN        | NaN        | NaN        | NaN        | NaN       | NaN        |   |  |
| 1239 rows × 11 columns |            |            |            |            |            |           |            |   |  |

```
mu = expected_returns.mean_historical_return(stock)
S = risk_models.sample_cov(stock)
ef = EfficientFrontier(mu,S)
weights = ef.max_sharpe()
cleanedweights = ef.clean_weights()
print(cleanedweights)
ef.portfolio_performance(verbose=True)
```

```
OrderedDict([('CIPLA', 0.18522), ('PFC', 0.0), ('RECLTD', 0.0), ('IOC', 0.0), ('HINDPETF Expected annual return: 20.3%
Annual volatility: 17.7%
Sharpe Ratio: 1.03
(0.20256956562418288, 0.17650351617978455, 1.0343678674266157)

from pypfopt import objective_functions

ef = EfficientFrontier(mu, S)
ef.add_objective(objective_functions.L2_reg, gamma=0.1)
w--ef.max_sharpe()
print(ef.clean_weights())

OrderedDict([('CIPLA', 0.19148), ('PFC', 0.0), ('RECLTD', 0.0), ('IOC', 0.0), ('HINDPETF / usr/local/lib/python3.7/dist-packages/pypfopt/efficient_frontier/efficient_frontier.py
    "max_sharpe transforms the optimization problem so additional objectives may not work
```

×