FIGURAS Y TABLAS PRIMER INFORME ESTATUS Y CBA 2022 SARDINA AUSTRAL LOS LAGOS

PRIMER PARTE: CORRE CÓDIGOS Y FUNCIONES

```
library(knitr) # para generar reporte Rmarkdown
library(stringr)
library(reshape)
library(dplyr)
library(ggplot2)
library(ggthemes) # para ggplot
library(patchwork) # para unir gráficos de ggplot
library(strucchange) # libreria utilizada para análisis de quiebres
            <-"Figuras/" # carpeta de las figuras utilizadas y generadas en este estudio
dir.Fig
            <-c("pdf") # formato de figuras generadas por este código
fig
dir.0
            <-getwd() # directorio de trabajo
           <-paste(dir.0,"/codigos_admb",sep="") # carpeta de códigos ADMB</pre>
dir.1
dir.2
           <-paste(dir.0,"/Retrospectivobase",sep="") # carpeta de códigos ADMB
dir.3
            <-paste(dir.0,"/Retrospectivoalternativo",sep="") # carpeta de códigos ADMB</pre>
            <-paste(dir.0,"/Verosimilitudalternativo",sep="") # carpeta de códigos ADMB</pre>
dir.4
dir.5
            <-paste(dir.0,"/Verosimilitudbase",sep="") # carpeta de códigos ADMB
            <-paste(dir.0, "/funciones/", sep="") # carpeta de funciones utilizadas en este informe
source(paste(dir.fun, "functions.R", sep="")) # functiones para leer .dat y .rep
source(paste(dir.fun, "Fn_PBRs.R", sep="")) # functiones para leer .dat y .rep
setwd(dir.1)
#Asesoría septiembre 2021 MODELO BASE NUEVO
data.0 <- lisread(paste(dir.1,"MAT0921.dat", sep='/'));</pre>
names(data.0)<-str trim(names(data.0), side="right")</pre>
rep0 <- reptoRlist("MAT0921.rep")</pre>
         <- read.table("MAT0921.std",header=T,sep="",na="NA",fill=T)</pre>
std0
```

FUNCIÓN DE RETROSPECTIVO FUNCIÓN DE VEROSIMILITUD FUNCIÓN DE CBA

CÁLCULO DE TAMAÑO DE MUESTRA

```
age <-seq(5.5,20,0.5)
nage<-length(age)</pre>
#Proporci?n observada
pobsF<-rep1$Propfl_obs</pre>
pobsR<-rep1$Propcru_obs</pre>
#Proporci?n predicha
ppredF<-rep1$Propfl pred
ppredR<-rep1$Propcru_pred
#-----#
# M?TODO de Francis
Nf1 <-60
Nr1 <-34
#-----#
#FLOTA
fanos<-years
fobs <-pobsF
fpre <-ppredF</pre>
#RECLAS
ranos<-years
robs <-pobsR[rowSums(pobsR)>0,]
rpre <-ppredR[rowSums(pobsR)>0,]
#composicion de edad Flota
Of <- rep(0,length(fanos))
Ef <- rep(0,length(fanos))</pre>
vf <- rep(0,length(fanos))
vNf <- rep(0,length(fanos))</pre>
#composicion de edad crucero de verano reclas
Or <- rep(0,length(robs[,1]))
Er <- rep(0,length(robs[,1]))</pre>
vr <- rep(0,length(robs[,1]))</pre>
vNr <- rep(0,length(robs[,1]))</pre>
#-----#
#composicion de edad Flota
for(i in 1:length(fanos)){
   Of[i] <- sum(fobs[i,]*age)
   Ef[i] <- sum(fpre[i,]*age)</pre>
   vf[i] <- sum(fpre[i,]*age^2)-Ef[i]^2
   vNf[i] <- vf[i]/Nf1}</pre>
#composicion de edad crucero de verano reclas
for(i in 1:length(robs[,1])){
   Or[i] <- sum(robs[i,]*age)</pre>
   Er[i] <- sum(rpre[i,]*age)</pre>
   vr[i] <- sum(rpre[i,]*age^2)-Er[i]^2</pre>
   vNr[i] <- vr[i]/Nr1}</pre>
wf <- 1/var((Of-Ef)/sqrt(vNf)) #Flota
wr <- 1/var((Or-Er)/sqrt(vNr)) #Reclas
Nf2 <- Nf1*wf
                            # NM FLOTA
Nr2 <- Nr1*wr
                             # NM RECLAS
```

```
#-----#
\#NM\_Fran \leftarrow data.frame(nmF=c(Nf1,Nf2),nmR=c(Nr1,Nr2));NM\_Fran
#-----#
#----#
# M?todo de Ianelli 2002
#-----#
#Composici?n de edad de la FLOTA
Ofl <-ppredF[rowSums(pobsF)>0,]*(1-ppredF[rowSums(pobsF)>0,])
Ef1 <-(pobsF[rowSums(pobsF)>0,]-ppredF[rowSums(pobsF)>0,])^2
wfl <-rep(0,length(Ofl[,1]))</pre>
for(i in 1:length(Ofl[,1])){
   wfl[i] <-sum(Ofl[i,])/sum(Efl[i,])}</pre>
nmf_ari <-mean(wfl)</pre>
                                # MEDIA ARITMETICA
nmf_geo <-exp(sum(log(wfl))/length(wfl)) # MEDIA GEOM?TRICA</pre>
nmf_arm <-1/mean(1/wfl)</pre>
                               # MEDIA ARM?NICA
#-----
#Composici?n de edad Crucero de verano RECLAS
Ore <-ppredR[rowSums(pobsR)>0,]*(1-ppredR[rowSums(pobsR)>0,])
Ere <-(pobsR[rowSums(pobsR)>0,]-ppredR[rowSums(pobsR)>0,])^2
wre <-rep(0,length(Ore[,1]))</pre>
for(i in 1:length(Ore[,1])){
   wre[i] <-sum(Ore[i,])/sum(Ere[i,])}</pre>
nmr_ari <-mean(wre)
                                # MEDIA ARITMETICA
nmr_geo <-exp(sum(log(wre))/length(wre)) # MEDIA GEOM?TRICA
nmr_arm <-1/mean(1/wre)
                              # MEDIA ARM?NICA
#-----
NM_Ian <- data.frame(nmF=c(nmf_ari,nmf_geo,nmf_arm),nmR=c(nmr_ari,nmr_geo,nmr_arm));NM_Ian</pre>
```

SEGUNDA PARTE: GENERA GRÁFICAS Y TABLAS

1. Antecedentes

```
year<-seq(2006,2021,1)
desemb<-c(39146,50506,45078,49225,20123,16429,19763,21888,22951,23643,18495,14134,8366,12565,14194,NA)
cuota<-c(40522,50872,41904,58481,30966,17693,14500,21670,18276,23848,18380,20000,18897,11137,15471,1234

par(mfcol=c(1,1),mar=c(4,4,1,1))
plot(year,desemb,type="h",lwd=15,ylab="Desembarques (t.)",xlab="Año",ylim=c(0,60000),xaxp=c(2000,2022,2 lines(year,cuota,type="l",lwd=2,col=1)
legend(2011,60000,c("Datos oficiales","Cuota"),lwd=c(10,2),col=c("cadetblue4",1),bty="n",cex=0.8)</pre>
```



```
datafrec<-read.table(paste(getwd(), "/Tallasmensuales.txt", sep=""), header = FALSE, sep = "")
           <-seq(5.5,20,0.5)
tallas
           <-length(tallas)
ntallas
etf_obs <- data.frame(datafrec[,3:32])</pre>
        <- datafrec[,1]
yearf
nyearf <-length(yearf)</pre>
month <- datafrec[,2]</pre>
nmonth <-length(month)</pre>
obs <- as.data.frame(etf_obs) %>%
  mutate(year=yearf) %>%
  mutate(mes=month) %>%
  melt(id.vars=c('year','mes'))%>%
  mutate(talla = rep(tallas, each=nyearf))
fig0 <-
          ggplot(filter(obs,year==2017)) +
```

```
geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
          facet_grid(mes~year) +
          labs(x = '', y = 'Proporción de tallas de la captura') +
          theme(panel.background = element_rect(fill ="gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2))+
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig1 <-
         ggplot(filter(obs,year==2018)) +
          geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
          facet_grid(mes~year) +
          labs(x = 'Tallas', y = 'Proporción de tallas de la captura') +
          theme(panel.background = element_rect(fill = "gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2)) +
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig2 <-
         ggplot(filter(obs,year==2019)) +
          geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
          facet_grid(mes~year) +
          labs(x = '', y = '') +
          theme(panel.background = element_rect(fill = "gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2))+
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig3 <-
         ggplot(filter(obs,year==2020)) +
          geom_bar(aes(x = talla, y = value), stat="identity", fill='gray66', color = 'gray28') +
          facet_grid(mes~year) +
          labs(x = 'Tallas', y = '') +
          theme(panel.background = element_rect(fill = "gray99"),axis.text.y = element_text(hjust = 1, s
          theme(panel.grid=element_line(color=NA)) +
          scale_x_continuous(breaks = seq(from = 2, to = 20, by = 2))+
          scale_y_continuous(breaks = seq(from = 0, to = 0.3, by = 0.1))
fig0+fig2+fig1+fig3
```


2. Metodología

```
dirb<-paste(dir.0,"/cba_septiembre2021",sep="")</pre>
setwd(dirb)
          <- reptoRlist("MAT0921s1.rep")</pre>
reps1b
reps2b
         <- reptoRlist("MAT0921s2.rep")</pre>
         <- reptoRlist("MAT0921s3.rep")</pre>
reps3b
par(mfcol=c(1,1), mar=c(2,4,1,1)+0.5)
# modelo base
plot(reps1b$Years,reps1b$Reclutamiento,type="l",
     ylab="Reclutamientos",xlab="",
     main="Modelo base (Asesoría Septiembre 2020)",
     cex.axis=0.6,cex.main=0.7,cex.lab=0.7)
abline(h=c(exp(8.6053e+000)),
           reps2b$Reclutamiento[11],
           reps3b$Reclutamiento[17]),col=c(1,3,2))
text(2010,c(exp(8.6053e+000),
            reps2b$Reclutamiento[11],
            reps3b$Reclutamiento[17])+1000,
            round(c(exp(8.6053e+000),
                     reps2b$Reclutamiento[11],
                     reps3b$Reclutamiento[17]),0),cex=0.7)
```

3. RESULTADOS OBJETIVO 1

3.1. Descripción de los datos de entrada al modelo de evaluación de stock

ESTRUCTURA DE TALLAS DE LA FLOTA

```
age
     <-seq(5.5,20,0.5)
nage
     <-length(age)
etf_obs_sept <- data.frame(rep0$pf_obs)</pre>
yearf
     <- rep0$YRS
nyearf <- length(yearf)</pre>
        <- as.data.frame(etf_obs_sept) %>%
obs
                    mutate(year=yearf) %>%
                    melt(id.vars='year') %>%
                    mutate(edad = rep(age, each=nyearf)) %>%
                    mutate(type='obs')
mat <- rbind(obs)</pre>
# GRAFICAS
fig1 <- ggplot(filter(mat, type=='obs')) +</pre>
      geom_bar(aes(x = edad, y = value),
             stat="identity", fill='gray66', color = 'gray28') +
      facet_wrap(~year, dir = 'v', as.table = TRUE) +
      labs(x = 'Tallas', y = 'Proporción de tallas de la captura') +
      theme(panel.background = element_rect(fill ="gray99")) +
      theme(panel.grid=element_line(color=NA))
fig1
```


ESTRUCTURA DE TALLAS DEL CRUCERO

```
# AREGLOS DE DATOS
\leftarrow seq(5.5,20,0.5)
        <- length(age)
etc_obs_jun <- data.frame(rep0$pobs_RECLAN)</pre>
        <- rep0$YRS
yearc
nyearc
        <- length(yearc)
      <- as.data.frame(etc_obs_jun) %>%
obs
                 mutate(year=yearc) %>%
                 melt(id.vars='year') %>%
                 mutate(edad = rep(age, each=nyearc)) %>%
                 mutate(type='obs')
mat <- rbind(obs)</pre>
```


3.2. Ajustes del modelo a los datos de índices

```
# AREGLOS DE DATOS
library(patchwork)
    <- rep0$YRS
vrs
nyrs <- length(yrs)</pre>
lasty <- yrs[nyrs]</pre>
cvCB <-data.0$Ind[,8]
cvcpue <-data.0$Ind[,7]</pre>
cvdes <-data.0$Ind[,6]</pre>
ind obs <- cbind(rep0\$reclan,
              rep0$cpue,
              rep0$desemb);
ind_obs[ind_obs==0] <- NA</pre>
colnames(ind obs) <- c('Biomasa Crucero',</pre>
                  'CPUE',
                  'Desembarques')
ind_sept <- cbind(c(rep0$reclan_pred),</pre>
              c(rep0$cpue_pred),
              c(rep0$desemb_pred))
colnames(ind_sept) <- c('Biomasa_Crucero',</pre>
                   'CPUE',
                   'Desembarques')
ind
      <- data.frame(ind obs) %>%
        mutate(Asesoría='observado') %>%
        mutate (yrs= yrs) %>%
        melt(id.var=c('yrs', 'Asesoría'))
sept
      <- data.frame(ind_sept) %>%
        mutate (Asesoría='septiembre_2021') %>%
        mutate (yrs= yrs) %>%
        melt(id.var=c('yrs', 'Asesoría'))
base1 <- data.frame(rbind(ind, sept))</pre>
# GRAFICAS
f1 <- ggplot(base1 %>% filter(Asesoría!='observado', variable=='Biomasa_Crucero'),
      aes(yrs,value/1000000)) +
      geom line(aes(colour=Asesoría), size=1) +
      scale_colour_manual(values=c('black')) +
      geom_point(data = base1 %>% filter(Asesoría=='observado',
                                  variable=='Biomasa_Crucero'),
      aes(yrs,value/1000000), shape = 19, colour = 'gray30') +
```

```
geom_errorbar(data = base1 %>% filter(Asesoría=='observado',
                                              variable=='Biomasa_Crucero'),
        aes(ymin = value*exp(-1.96*cvCB)*10^{-6},
           ymax = value*exp(1.96*cvCB)*10^-6), color = 'gray30') +
        scale_x_continuous(breaks = seq(from = 1985, to = 2021, by = 5)) +
        labs(title='Biomasa de Crucero', x = 'Año', y = 'Toneladas (millones)') +
        theme_bw(base_size=9)
f2 <- ggplot(base1 %% filter(Asesoría!='observado', variable=='CPUE'),</pre>
            aes(yrs, value/1000000)) +
        geom_line(aes(colour=Asesoría), size=1) +
        scale_colour_manual(values=c('black')) +
        geom_point(data = base1 %>% filter(Asesoría=='observado',
                                           variable=='CPUE'),
        aes(yrs,value/1000000), shape = 19, colour = 'gray30') +
        geom_errorbar(data = base1 %>% filter(Asesoría=='observado',
                                              variable=='CPUE'),
        aes(ymin = value*exp(-1.96*cvcpue)*10^-6,
           ymax = value*exp(1.96*cvcpue)*10^-6), color = 'gray30') +
        scale_x_continuous(breaks = seq(from = 1985, to = 2021, by = 5)) +
        labs(title='CPUE', x = 'Año', y = 'toneladas/viaje') +
        theme_bw(base_size=9)
f3 <- ggplot(base1 %>% filter(Asesoría!='observado', variable=='Desembarques'),
        aes(yrs,value/1000)) + geom line(aes(colour=Asesoría), size=1) +
        scale colour manual(values=c('black')) +
        geom_point(data = base1 %>% filter(Asesoría=='observado',
                                           variable=='Desembarques'),
        aes(yrs,value/1000), shape = 19, colour = 'gray30') +
        geom_errorbar(data = base1 %>% filter(Asesoría=='observado',
                                              variable=='Desembarques'),
        aes(ymin = value*exp(-1.96*cvdes)*10^-3,
            ymax = value*exp(1.96*cvdes)*10^-3), color = 'gray30') +
        scale_x_continuous(breaks = seq(from = 1985, to = 2021, by = 5)) +
        labs(title='Desembarques', x = 'Año', y = 'Toneladas (miles)') +
        theme_bw(base_size=9)
f1/f2/f3 + plot_layout(guides="collect")
```


3.2. Análisis de Residuales de los índices

```
# AREGLOS DE DATOS
Res_matt <- data.frame(log(ind_obs) - log(ind_sept)) %>%
         mutate(yrs = yrs) %>%
         mutate(Asesoría = 'Septiembre 2020')
Res
       <- rbind(Res_matt) %>%
              melt(id.vars= c('yrs','Asesoría'))
       <- base1 %>%
pred
         filter(Asesoría!='observado') %>%
         mutate (pred = log(value))
       <- pred$pred
predm
Res2
       <- cbind(Res,predm)
# GRAFICAS
r1 <- ggplot(Res, aes(yrs, value)) +
    geom_bar(aes(fill=Asesoría), stat='identity', position='dodge') +
    scale_fill_manual(values=c("black"))+
    geom_hline(yintercept = 0) +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Año', y = 'Residuales (escala log)') +
    theme_bw(base_size=12)
r2 <- ggplot(Res2, aes(predm, value)) +
    geom point(aes(colour=Asesoría), size = 1.5) +
    scale_colour_manual(values=c("black")) +
    geom hline(yintercept = 0) +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Predicho (log)', y = 'Residuales') +
    theme_bw(base_size=12)
r3 <- ggplot(Res, aes(value, colour=Asesoría)) +
    geom_histogram(fill='white', position = 'dodge') +
    facet_wrap(. ~ variable, ncol = 1) +
    labs(x= 'Residuales', y ='Histograma de Residuos (Frecuencia)') +
    theme_bw(base_size=12)
r4 <- ggplot(Res, aes(sample = value, colour = Asesoría)) +
    stat qq() +
    stat_qq_line() +
    scale_colour_manual(values=c("black")) +
    facet wrap(. ~ variable, ncol = 1) +
    labs(x= 'Sample Quantiles', y ='Theoretical') +
    theme bw(base size=12)
r1+r4 + plot_layout(guides="collect")
```


3.3. Ajustes del modelo a los datos de Composiciones de tallas

FLOTA

```
# AREGLOS DE DATOS
<-seq(5.5,20,0.5)
age
      <-length(age)</pre>
nage
etf_obs_sept <- data.frame(rbind(rep0$pf_obs))</pre>
etf_pre_sept <- data.frame(rbind(rep0$pf_pred))</pre>
     <- rep0$YRS
yearf
nyearf <- length(yearf)</pre>
        <- as.data.frame(etf obs sept) %>%
obs
                     mutate(year=yearf) %>%
                     melt(id.vars='year') %>%
                     mutate(edad = rep(age, each=nyearf)) %>%
                     mutate(type='obs')
pred_sept <- as.data.frame(etf_pre_sept) %>%
                     mutate(year=yearf) %>%
                     melt(id.vars='year') %>%
                     mutate(edad = rep(age, each=nyearf)) %>%
                     mutate(type='pred_sept')
mat <- rbind(obs,pred_sept)</pre>
# GRAFICAS
fig1 <- ggplot(filter(mat, type=='obs')) +</pre>
      geom bar(aes(x = edad, y = value),
             stat="identity", fill='gray66', color = 'gray28') +
      facet_wrap(~year, dir = 'v', as.table = TRUE) +
      labs(x = 'Tallas', y = 'Proporción de tallas de la captura') +
      geom_line(data = filter(mat, type=='pred_sept'),
              aes(x = edad, y = value), color = 'black', size = 1) +
      theme(panel.background = element_rect(fill = "gray99")) +
      theme(panel.grid=element_line(color=NA))
fig1
```


CRUCERO

```
# AREGLOS DE DATOS
<-seq(5.5,20,0.5)
age
nage
      <-length(age)
etc_obs_sept <- data.frame(rbind(rep0$pobs_RECLAN))</pre>
etc pre sept <- data.frame(rbind(rep0$ppred RECLAN))</pre>
yearc <- rep0$YRS
nyearc <-length(yearc)</pre>
       <- as.data.frame(etc_obs_sept) %>%
obs
                   mutate(year=yearc) %>%
                   melt(id.vars='year') %>%
                   mutate(edad = rep(age, each=nyearc)) %>%
                   mutate(type='obs')
pred_sept <- as.data.frame(etc_pre_sept) %>%
                   mutate(year=yearc) %>%
                   melt(id.vars='year') %>%
                   mutate(edad = rep(age, each=nyearf)) %>%
                   mutate(type='pred_sept')
mat <- rbind(obs,pred sept)</pre>
# GRAFICAS
fig1 <- ggplot(filter(mat, type=='obs')) +</pre>
      geom_bar(aes(x = edad, y = value),
             stat="identity", fill='gray66', color = 'gray28') +
      facet_wrap(~year, dir = 'v', as.table = TRUE) +
      labs(x = 'Tallas', y = 'Proporción de tallas del Crucero') +
      geom_line(data = filter(mat, type=='pred_sept'),
              aes(x = edad, y = value),color = 'black', size = 1) +
      theme(panel.background = element rect(fill = "gray99")) +
      theme(panel.grid=element line(color=NA))
fig1
```


3.4. Análisis de Residuales de Composiciones de tallas

```
par(mfcol=c(1,2))
#Flota
cx < -0.7
# Residuales Flota
<-rep0$YRS
anos
obsF_alt
         <-rep0$pf_obs</pre>
preF_alt <-rep0$pf_pred</pre>
resF_alt <-obsF_alt-preF_alt
rng <-range(resF_alt,na.rm=T)</pre>
dd <-dim(resF_alt)</pre>
est <-matrix(NA,nrow=dd[1],ncol=dd[2])</pre>
for(j in 1:dd[1]){for(k in 1:dd[2]){val<-resF_alt[j,k]</pre>
if(val>0){est[j,k]<-val/rng[2]}</pre>
else{est[j,k]<-val/rng[1]*-1}}}
par(mar=c(5.4,6.7,2,1),cex.axis=cx,cex.lab=cx)
image(age,anos,t(est),col=0,yaxt="n",xlab="",ylab="")
ee <-dim(est)
for(n in 1:ee[1]){for(m in 1:ee[2]){vol<-est[n,m]</pre>
if(is.na(vol)==FALSE){
   if(vol>0){points(age[m],anos[n],pch=19,cex=2*sqrt(vol),col=1)}
   if(vol<0){points(age[m],anos[n],pch=1,cex=2*sqrt(vol*-1),col=1)}</pre>
}}}
mtext("Flota - Septiembre 2021",side=3,cex=cx)
mtext("Tallas (cm)",side=1,line=3.2,cex=cx);posi<-seq(1,57,by=4)</pre>
axis(2,at=anos,labels=anos,las=2,cex=cx)
mtext("Años",side=2,line=4.7,cex=cx)
box()
# Residuales Cruceros
obsB alt <-rep0$pobs RECLAN
preB_alt <-rep0$ppred_RECLAN</pre>
resB_alt <-obsB_alt-preB_alt
rng <-range(resB_alt,na.rm=T)</pre>
dd <-dim(resB_alt)</pre>
est <-matrix(NA,nrow=dd[1],ncol=dd[2])
for(j in 1:dd[1]){for(k in 1:dd[2]){val<-resB_alt[j,k]</pre>
if(val>0){est[j,k]<-val/rng[2]}</pre>
else{est[j,k]<-val/rng[1]*-1}}}
par(mar=c(5.4,6.7,2,1),cex.axis=cx,cex.lab=cx)
image(age,anos,t(est),col=0,yaxt="n",xlab="",ylab="")
ee <-dim(est)
for(n in 1:ee[1]){for(m in 1:ee[2]){vol<-est[n,m]</pre>
if(is.na(vol)==FALSE){
```

```
if(vol>0){points(age[m],anos[n],pch=19,cex=2*sqrt(vol),col=1)}
if(vol<0){points(age[m],anos[n],pch=1,cex=2*sqrt(vol*-1),col=1)}
}}
mtext("Crucero Acústico - Septiembre 2021",side=3,cex=cx)
mtext("Tallas (cm)",side=1,line=3.2,cex=cx);posi<-seq(1,57,by=4)
axis(2,at=anos,labels=anos,las=2,cex=cx)
mtext("Años",side=2,line=4.7,cex=cx)
box()</pre>
```


6.5. Análisis retrospectivo modelo alternativo

3.7. Perfil de verosimilitud

```
# AREGLOS DE DATOS
admb<-"MAT0921"
dir<-paste(dir.0,"/VerosimilitudBaseN_sept",sep="")</pre>
casos <-36
 logRo
       <- rep(0,casos)
 likeval <- matrix(ncol=9,nrow=casos)</pre>
 slikeval <- matrix(ncol=10,nrow=casos)</pre>
 for(i in 1:casos){
  rep <- reptoRlist(paste(admb, "s",i,".rep", sep=""))
          <- readLines(paste(admb, "s",i,".dat", sep=''),encoding="UTF-8")</pre>
  data
  logRo[i] <- as.numeric(data[154])</pre>
  likeval[i,] <- rep$likeval}</pre>
 #-----
 # SEXTO PASO: ESTANDARIZAR VEROSIMILITUD
 #-----
      <- data.frame(round(likeval,3),Total=apply(likeval,1,sum))
 minLik <- apply(like,2,min)</pre>
                                      # busca el minimo
 for(i in 1:10){slikeval[,i]<-like[,i]-minLik[i]} # Estandarizacin</pre>
 # ULTIMO PASO: GUARDAR TABLAS Y FIGURA
 names<-c("Ro","cpue", "cru", "desemb", "proflo",</pre>
                                      "procru",
       "desvRo", "desNo", "Lo", "", "Total")
 # Tabla verosimilitud
 TLk1 <- data.frame(exp(logRo),like);</pre>
 colnames(TLk1)<-names</pre>
 # Tabla estandarizada
 TLk2 <- data.frame(exp(logRo),slikeval);</pre>
 colnames(TLk2)<-names</pre>
# GRAFICAS
par(mar=c(4,4,1,1)+0.5)
 plot(TLk2$Ro,TLk2$Total,type="1",lwd=3,ylim=c(0,4),xlim=c(2500,8000),
    xaxs= "i",yaxs= "i", ylab="L-min(L)",xlab="Ro", las=1,
    main="Asesoría Septiembre 2021",cex.main=0.7,cex.axis=0.7,cex.lab=0.7)
 abline(h=2,col=1,lty=2)
 for(i in 2:6){
 lines(TLk2$Ro,TLk2[,i],col=i,lty=2,lwd=2)}
 legend(6000,4,names[c(11,2:6)],col=1:7,lty=c(1,rep(2,6)),
      lwd=2,bty="n",cex=0.8)
```


3.8. Sensibilidad a la actualización de datos

4. RESULTADOS OBJETIVO 2

4.1. Indicadores del stock

sel_2002-2012 sel_2013-2020

6

5

Tabla 13.

Indicadores poblacionales de sardina austral en aguas interiores de Chiloé. Tabla comparativa entre los resultados de la evaluación de septiembre (primer hito) y junio (segundo hito).

anos	BD_sep	BT_sep	R_sep	F_sep
2002	49521	187500	8594	0.43
2003	47382	181770	10332	0.43
2004	48200	249770	21228	0.43
2005	78180	311580	17012	0.38
2006	91755	256720	5967	0.28
2007	54739	203150	9704	0.64
2008	37425	176500	10526	0.71
2009	32407	140660	4880	0.84
2010	23822	95121	5141	0.54
2011	22760	87651	4500	0.46
2012	21224	139790	14099	0.54
2013	47818	142290	2564	0.29
2014	34159	141790	10472	0.47
2015	40200	125150	2948	0.38
2016	27601	81693	2296	0.48
2017	14781	66542	4391	0.66
2018	17506	63034	3134	0.31
2019	18543	109670	11150	0.36
2020	41489	118120	2214	0.21
2021	33300	97360	4508	0.28

```
write.csv(VarPoblO, file="Tablas/TablaVarpob.csv")
```

4.2. Estados de explotación

```
#PBRs Modelo alternativo
      <- rep0$Bo
BD_00
BRMS0 <- BDo0*0.55
BDlim0 <- BDo0*0.275
FRMSO <- exp(subset(std0,name=="log_Fref")$value[3])
par(mfcol=c(1,2), mar=c(4,4,1,1)+0.5)
plot(rep0$Tallas,rep0$Selflo_talla[1,],type="l",las=1,col=4,
    ylab="Selectividad",xlab="Tallas (cm)")
lines(rep0$Tallas,rep0$Selflo_talla[9,],type="1",col=3)
lines(rep0$Tallas,rep0$Selflo_talla[nyears1,],type="1",col=2)
lines(rep0$Tallas,data.0$Madurez,lwd=2)
legend(13,0.3,c("bloque_sel1","bloque_sel2","bloque_sel3","Madurez"),
      col=c(4,3,2,1),lwd=c(1,1,1,2),cex=0.8,bty="n")
plot(PBRsb1[,1],PBRsb1[,4],type="l",ylab="%BDPR",xlab="Mortalidad por pesca (F)",lwd=1,las=1,col=4)
lines(PBRsb2[,1],PBRsb2[,4],col=3,lwd=1)
lines(PBRsb3[,1],PBRsb3[,4],col=2,lwd=1)
abline(h=0.6,col=1,lty=1)
abline(v=c(FRMSb1,FRMSb2,FRMSb3),col=c(4,3,2),lty=2)
   text(1.5,c(0.55,0.50,0.45),c("F60_sel1=0,33", "F60_sel2=0,26","F60_sel3=0,31"),cex=0.8,col=c(4,3,2))
yrs
      <- rep0$YRS
nyrs
      <- length(yrs)
tallas \leftarrow seq(5,19.5,0.5)
ntallas <- length(tallas)</pre>
age
      \leftarrow seq(0,4,1)
      <- length(age)
nage
x <-c(yrs,rev(yrs))
x1 < -c(yrs[1], yrs[nyrs]+1, nyrs+1/2) #xaxp
x2 < -c(yrs[1]-1, yrs[nyrs]+1) #xlim
      <-rep0$YRS
years0
#modelo alternativo
<-subset(std0,name=="RPRrms")$value
Rpr0std <-subset(std0,name=="RPRrms")$std</pre>
       <-subset(std0,name=="Frpr")$value
Frpr0std <-subset(std0,name=="Frpr")$std
       <-c((Rpr0-1.96*Rpr0std),
rpr0
        rev((Rpr0+1.96*Rpr0std)));
       <-c((Frpr0-1.96*Frpr0std),
frpr0
        rev((Frpr0+1.96*Frpr0std)))
### *MODELO BASE*
# biomasa desovante vs BDrms
xbs1 <- rnorm(1000, mean = Rpr0[length(years0)],
                  sd = Rpr0std[length(years0)])
```

```
xbs <- seq(min(xbs1),</pre>
       \max(xbs1), 0.005)
ybs <- dnorm(xbs, mean = Rpr0[length(years0)],
             sd = Rpr0std[length(years0)])
icbs <-qnorm(c(0.05,0.95,0.5),
        Rpr0[length(years0)],
        Rpr0std[length(years0)])
xxbs <- c(xbs[xbs>=icbs[1]&xbs<=icbs[2]],</pre>
   rev(xbs[xbs>=icbs[1]&xbs<=icbs[2]]))</pre>
yybs <- c(ybs[xbs>=icbs[1]&xbs<=icbs[2]],</pre>
    rep(0,length(ybs[xbs>=icbs[1]&xbs<=icbs[2]])))
# mortalidad por pesca vs Frms
xfs1 <-rnorm(1000, mean = Frpr0[length(years0)],</pre>
             sd = Frpr0std[length(years0)])
xfs <-seq(min(xfs1),</pre>
       \max(xfs1), 0.005)
yfs <-dnorm(xfs, mean = Frpr0[length(years0)],</pre>
             sd = Frpr0std[length(years0)])
icfs <-qnorm(c(0.05,0.95,0.5),
        Frpr0[length(years0)],
        Frpr0std[length(years0)])
xxfs <-c(xfs[xfs>=icfs[1]&xfs<=icfs[2]],
   rev(xfs[xfs>=icfs[1]&xfs<=icfs[2]]))</pre>
yyfs <-c(yfs[xfs>=icfs[1]&xfs<=icfs[2]],
   rep(0,length(yfs[xfs>=icfs[1]&xfs<=icfs[2]])))
### *Probabilidad de estar bajo BRMS*
# MALTERNATIVO
pa0<-pnorm(1,Rpr0[length(years0)],
        Rpr0std[length(years0)],
        lower.tail = TRUE,log.p = F)
### *Probabilidad de estar bajo FRMS*
# MALTERNATIVO
pb0<-1-pnorm(1,Frpr0[length(years0)],
         Frpr0std[length(years0)],
          lower.tail = TRUE,log.p = F)
### *Probabilidad de estar en zona de sobreexplotacion*
# MALTERNATIVO
```

```
pc0<-pnorm(0.9,Rpr0[length(years0)],</pre>
          Rpr0std[length(years0)],
          lower.tail = TRUE,log.p = F)
### *Probabilidad de estar en zona de colapso*
# MALTERNATIVO
pd0<-pnorm(0.5,Rpr0[length(years0)],
          Rpr0std[length(years0)],
          lower.tail = TRUE,log.p = F)
### *Probailidad de sobrepesca*
# MALTERNATIVO
pe0<-1-pnorm(1.1,Frpr0[length(years0)],</pre>
           Frpr0std[length(years0)],
           lower.tail = TRUE,log.p = F)
PBRs<-round(rbind("BD~0~"=c(BDo0)/1000,
            "BD~RMS~"=c(BRMS0)/1000,
            "BD~LIM~"=c(BDlim0)/1000,
            "F~RMS~"=c(FRMSO),
            "p(BD~2021~<BD~RMS)~"=round(c(pa0),2),
            "p(F~2021~>F~RMS~)"=round(c(pb0),2),
            "*p(sobreexplotación)*"=round(c(pc0),2),
            "*p(agotado/colapsado)*"=round(c(pd0),2),
            "*p(sobrepesca)*"=round(c(pe0),2)),3)
colnames(PBRs)<-c("Septiembre")</pre>
kable(PBRs)
```

	Septiembre
$\overline{\mathrm{BD}_0}$	59.815
$\mathrm{BD}_{\mathrm{RMS}}$	32.898
$\mathrm{BD}_{\mathrm{LIM}}$	16.449
F_{RMS}	0.299
$p(BD_{2021} < BD_{RMS)}$	0.470
$p(F_{2021} > F_{RMS})$	0.390
$p(sobre explotaci\'on)$	0.260
p(agotado/colapsado)	0.000
p(sobrepesca)	0.240

```
write.csv(PBRs, file="Tablas/PBRs.csv")
```


Variación interanual de F respecto de FRMS (F/F RMS), BD respecto de BDRMS (BD/BD RMS), y de las tasas de explotación referidos a la biomasa total (Y/BT) en la pesquería de sardina austral. Comparación entre las Estimaciones de la evaluación de stock actual (sept 2018) y anterior (jun 2018).

anos	$F/F_{RMS}\mathbf{S}$	$\mathrm{BD}/\mathrm{BD}_{\mathrm{RMS}}\mathbf{S}$	Y/BT_ S
2002	1.439	1.505	0.189
2003	1.438	1.440	0.175
2004	1.450	1.465	0.142
2005	1.286	2.376	0.162
2006	0.948	2.789	0.151
2007	2.148	1.664	0.257
2008	2.358	1.138	0.255
2009	2.823	0.985	0.341
2010	1.804	0.724	0.215
2011	1.547	0.692	0.194
2012	1.794	0.645	0.147
2013	0.954	1.454	0.156
2014	1.567	1.038	0.166
2015	1.262	1.222	0.193

anos	$F/F_{\rm RMS}\mathbf{S}$	$\mathrm{BD}/\mathrm{BD}_{\mathrm{RMS}}\mathbf{S}$	Y/BT_ S
2016	1.616	0.839	0.232
2017	2.196	0.449	0.231
2018	1.021	0.532	0.137
2019	1.189	0.564	0.103
2020	0.716	1.261	0.120
2021	0.936	1.012	0.130

write.csv(VarPobl0, file="Tablas/Estatus.csv")

Diagramas de Fase

```
source(paste(getwd(),"/funciones/Fn_DiagramaFase.R",sep=""))
nameO<-"Modelo alternativo Asesoría Septiembre 2021"
years0<-rep0$YRS
SSBt0
             <- subset(std0,name=="BD")$value
SSBt0std
             <- subset(std0,name=="BD")$std
Ft0
             <- subset(std0,name=="log_F")$value
Ft0std
             <- subset(std0,name=="log_F")$std
BDoO <- rep0$Bo
BRMS0 <- BDo0*0.55
FRMSO <- exp(subset(std0,name=="log_Fref")$value[3])
DiagramaFase(name0,FRMS0,BRMS0,SSBt0,SSBt0std,Ft0,Ft0std,years0)
#cruz del año previo
lastB0 <- SSBt0[nyears0-1]/BRMS0</pre>
lastB <- SSBt0[nyears0-1]
lastF <- exp(Ft0[nyears0-1])/FRMS0</pre>
# Calculate confidence intervals
Qmult <- -qnorm((1-(80/100))/2.0)
sbSE <- SSBt0std[nyears0-1]
sb95
       <- c(lastB-Qmult*sbSE,lastB+Qmult*sbSE)
       <- sb95/BRMS0
B95
FvSE <- Ft0std[nyears0-1]
        <- c(lastF*exp(-Qmult*FvSE),lastF*exp(Qmult*FvSE))
arrows(x0=B95[1],
       y0=lastF,
       x1=B95[2],
       y1=lastF,
       length=0.05,angle=90,col=4,lwd=1,code=3)
arrows(x0=lastB0,
       y0=F95[1],
       x1=lastB0,
       y1=F95[2],
       length=0.05,angle=90,col=4,lwd=1,code=3)
points(lastB0,lastF,pch=19,col=4)
text(lastB0,lastF-0.1,years0[nyears0-1],cex=0.8)
```


5. RESULTADOS OBJETIVO 3

Escenarios de reclutamiento - CBA 2022


```
dir<-paste(dir.0,"/cba_septiembre2021",sep="")</pre>
admb<-"/MAT0921"
           <- read.table(paste(dir,admb,"s1.std", sep=''),header=T,sep="",na="NA",fill=T)</pre>
stds1a
           <- read.table(paste(dir,admb,"s2.std", sep=''),header=T,sep="",na="NA",fill=T)</pre>
stds2a
           <- read.table(paste(dir,admb,"s3.std", sep=''),header=T,sep="",na="NA",fill=T)</pre>
stds3a
           <- subset(stds1a ,name=="CBAp")$value[3]
cbas1a
cbas1astd <- subset(stds1a ,name=="CBAp")$std[3] #reclutamiento medios</pre>
cbas2a
           <- subset(stds2a ,name=="CBAp")$value[3]
cbas2astd <- subset(stds2a ,name=="CBAp")$std[3] #reclutamiento medios</pre>
           <- subset(stds3a ,name=="CBAp")$value[3]
cbas3a
cbas3astd <- subset(stds3a ,name=="CBAp")$std[3] #reclutamiento medios</pre>
        <- seq(0.1,0.5,0.1) # niveles de riesgo (cuantiles)
q
        <- length(q)
nq
           <- rep(0,nq)
CBAs1a
CBAs2a
           <- rep(0,nq)
CBAs3a <- rep(0,nq)
```

```
buffer1a <- rep(0,nq)</pre>
buffer2a <- rep(0,nq)</pre>
buffer3a <- rep(0,nq)</pre>
for(j in 1:nq){
  CBAs1a[j] <-qnorm(q[j],cbas1a,cbas1astd )</pre>
  CBAs2a[j] <-qnorm(q[j],cbas2a,cbas2astd )</pre>
  CBAs3a[j]<-qnorm(q[j],cbas3a,cbas3astd )</pre>
for(j in 1:nq){
    buffer1a[j] <-round(1-CBAs1a[j]/CBAs1a[5],2)</pre>
    buffer2a[j] <-round(1-CBAs2a[j]/CBAs2a[5],2)</pre>
    buffer3a[j] <-round(1-CBAs3a[j]/CBAs3a[5],2)</pre>
tCBA1<-cbind(percentil=c(seq(10,50,10)),CBA_Rmed=round(CBAs1a,0),CBA_Ralto=round(CBAs2a,0),CBA_Rbajo=round(CBAs3a,0)
#kable((tCBA1))
tCBA2<-cbind(percentil=c(seq(10,50,10)),CBA_Ralto=round(CBAs2a,0),Resguardo=buffer2a)
\#kable((tCBA2))
tCBA3<-cbind(percentil=c(seq(10,50,10)),CBA_Rbajo=round(CBAs3a,0),Resguardo=buffer3a)
\#kable((tCBA3))
dira<-paste(dir.0,"/cba_septiembre2021",sep="")</pre>
setwd(dira)
           <- reptoRlist("MAT0921s1.rep")</pre>
reps1a
           <- reptoRlist("MAT0921s2.rep")</pre>
reps2a
           <- reptoRlist("MAT0921s3.rep")</pre>
reps3a
par(mfcol=c(2,1), mar=c(4,4,1,1)+0.5)
plot(tallas,reps1a$CTPp,type="l",ylim=c(0,3000),main="CBA 2022 a la talla ",
     ylab="CBA proyectada (t)",xlab="Tallas (cm)",cex.axis=0.8,cex.main=0.8,cex.lab=0.8)
lines(tallas,reps2a$CTPp,col=2)
lines(tallas,reps3a$CTPp,col=3)
plot(seq(10,50,10),CBAs1a,type="o", ylab="CBA toneladas",xlab="Percentil de probabilidad de captura",main="CBA 2022
lines(seq(10,50,10),CBAs1a,type="o",col=1)
lines(seq(10,50,10),CBAs2a,type="o",col=2)
lines(seq(10,50,10),CBAs3a,type="o",col=3)
legend(12,18000,c("Rmed","Ralto","Rbajo"),col=c(1,2,3),lwd=1,bty="n",cex=0.8)
```


Percentil de probabilidad de captura

```
### *modelo altarnativo*
xca1 <-rnorm(1000, mean = cbas1a, sd = cbas1astd)
xca <-seq(min(xca1),max(xca1),0.5)
yca <-dnorm(xca, mean = cbas1a, sd =cbas1astd)
icca <-qnorm(c(0.05,0.95,0.5),cbas1a,cbas1astd)
xxca <-c(xca[xca>=icca[1]&xca<=icca[2]],rev(xca[xca>=icca[1]&xca<=icca[2]]))
yyca <-c(yca[xca>=icca[1]&xca<=icca[2]],rep(0,length(yca[xca>=icca[2]])))

par(mfcol=c(1,2),mar=c(4,4,1,1)+0.5)
plot(xca,yca,type="1",ylab="Densidad de probabilidad",xaxs="i",yaxs= "i",ylim=c(0,0.00019),xlim=c(1000,25000),xlab=polygon(xxca,yyca,col=gray(0.8,0.7),border="gray80")
lines(xca,yca,lwd=1,col="red2",lty=1)
legend(2000,0.00019,c(paste("alternativo_IC95% = [",round(icca[1],0),"-",round(icca[2],0),"]",sep=" ")), lty=c(1,1)
box()

plot(seq(10,50,10),CBAs1a,type="o", ylab="CBA toneladas",xlab="Percentil de probabilidad de captura",main="Escenarilegend(12,18000,c("modelo alternativo"),col=c(1,2),lwd=1,bty="n",cex=0.6)
```


