FEATURES

- Programmable Output Voltage to 40V
- Guaranteed 0.5% Reference Voltage Tolerance
- Cathode Current Range(Continuous) 100 ~ 150 mA
- Equivalent Full Range Temperature Coefficient of 50PPM/ $^{\circ}$ C
- Temperature Compensated For Operation Over Full Rate Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response
- TO-92, SOT-89 or SOT-23 3L Package

APPLICATION

- Shunt Regulator
- Precision High-Current Series Regulator
- High-Current Shunt Regulator
- Crowbar Circuit
- PWM Converter With Reference
- Voltage Monitor
- Precision Current Limiter

DESCRIPSION

The TL431 is a three-terminal adjustable shunt regulator with specified thermal stability over applicable temperature V_{REF} (Approx. 2.5V) and 40V with two external resistors. This device has a typical dynamic output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making this device excellent replacement for zener diodes in many applications. The TL431 is characterized for operation from -40 $^{\circ}$ C to +125 $^{\circ}$ C.

ORDERING INFORMATION

Device	Package			
TL431	TO-92(Bulk)			
TL431TA	TO-92(Taping)			
TL431SF	SOT-23 3L			
TL431F	SOT-89 3L			

^{*} Refer to the page 2 for detailed ordering Information,

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Cathode Voltage	V_{KA}	-	42	V
Cathode Current Range(Continuous)	I _K	-100	150	mA
Reference Input Current Range	I _{REF}	-0.05	10	mA
Junction Temperature Range	T_J	-40	150	${\mathbb C}$
Operating Temperature Range	T _{OPR}	-40	125	${\mathbb C}$
Storage Temperature Range	T _{STG}	-65	150	$^{\circ}$

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Cathode Voltage	V_{KA}	V_{REF}	40	V
Cathode Current	I _K	0.5	100	mA

Ordering Information

V _{REF}	Package	Tolerance	Order No.	Package Marking	Supplied As	
		0.5%	TL431C	TL431-C	Dulle	
			TL431GC	TL431GC	Bulk	
			TL431CTA	TL431-C	Tana	
			TL431GCTA	TL431GC	- Tape	
		1%	TL431A	TL431-A	Dulle	
	TO-92		TL431GA	TL431GA	- Bulk	
	10-92		TL431ATA	TL431-A	Tono	
			TL431GATA	TL431GA	- Tape	
		2%	TL431	TL431	Dulle	
			TL431G	TL431G	- Bulk	
2.495V			TL431TA	TL431	Tono	
			TL431GTA	TL431G	- Tape	
	SOT-23	0.5%	TL431CSF	431	DI	
			TL431GCSF	431	Reel	
		1%	TL431ASF	431	DI	
			TL431GASF	431	Reel	
		2%	TL431SF	431	D. J	
			TL431GSF	431	Reel	
	SOT-89	0.5%	TL431CF	431	Reel	
		1%	TL431AF	431	Reel	
		2%	TL431F	431	Reel	

Ordering Information (continued)

PIN CONFIGURATION

SOT-23 PKG

SOT-89 PKG

PIN DESCRIPTION

Pin No.	TO-92 / SOT-23 / SOT-89			
FIII NO.	Name	Function		
1	Reference	Reference Voltage		
2	2 Anode Ground			
3	Cathode	Input Supply Voltage		

TL431 ELECTRICAL CHARACTERISTICS

(T_A =25 $^{\circ}$ C, unless otherwise specified)

CHARACTERISTIC	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT	
		V _{KA} =V _{REF} , I _K =10mA		TL431C	2.483	2.495	2.507	V
Reference Input Voltage	V_{REF}			TL431A	2.470	2.495	2.520	
				TL431	2.440	2.495	2.550	
Deviation of Reference Input Voltage	ΔV _{REF} /ΔT	$V_{KA} = V_{REF}, I_{K} = 10mA$ $T_{A} = Full Range$				8	20	mV
Ratio of Change in Reference	$\Delta V_{REF}/\Delta V_{KA}$ $I_{K} =$	L =10mA	ΔV _{KA} =	=10V -V _{REF}		-1.4	-2.7	mV/V
Input Voltage to the Change in Cathode Voltage		I _K =10mA	ΔV _{KA} =	=36V-10V		-1.0	-2.0	- IIIV/V
Reference Input Current	I _{REF}	I _{KA} =10mA, R ₁ =10kΩ, R ₂ =∞				1.8	4.0	uA
Deviation of Reference Input Current	ΔI _{REF} /ΔΤ	I _K =10mA, R ₁ =10kΩ, R ₂ =∞ T _A =Full Range				0.4	1.2	uA
Minimum Cathode Current for Regulation	I _{K(MIN)}	V _{KA} = V _{REF}					0.5	mA
Off-State Cathode Current	I _{K(OFF)}	V _{KA} =36V, V _{REF} =0				0.17	0.90	uA
Dynamic Impedance	Z _{KA}	V_{KA} = V_{REF} , I_{K} =1mA~100mA $f \le 1$ kHz				0.27	0.50	Ω

TEST CIRCUITS

< Fig 1. Test circuit for $V_{KA} = V_{REF} >$

< Fig 2. Test circuit for $V_{KA} \, \geq \, V_{REF}$ >

< Fig 3. Test circuit for $I_{KA(OFF)}$ >

The deviation parameters $\Delta V_{REF}/\Delta T$ and $\Delta I_{REF}/\Delta T$ are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, αV_{REF} , is defined as :

Where:

 ΔT_A is the recommended operating free-air temperature range of the device.

 αV_{REF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature.

Example : Maximum V_{REF} =2496mV at 30 °C, maximum V_{REF} =2492mV at 0 °C, V_{REF} =2495mV at 25 °C, ΔT_A =70 °C for TL431C.

$$\left|\alpha V_{\text{REF}}\right| = \frac{(\frac{4mV}{2495mV}) \times 10^6}{70^{\circ}\text{C}} \approx 23 \text{ppm/}^{\circ}\text{C}$$

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

Calculating Dynamic Impedance

The dynamic impedance is defined as : $\left|Z_{KA}\right| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors, the total dynamic impedance of the circuit is given by:

$$\left|Z'\right| = \frac{\Delta V}{\Delta I} \approx \left|Z_{KA}\right| (1 + R1/R2)$$

TYPICAL OPERATING CHARACTERISTICS

Reference Voltage vs. Ambient Temperature

Pulse Response

Cathode Current vs. Cathode Voltage

Cathode Current vs. Cathode Voltage

Small Signal Voltage Amplification vs. Frequency

< Fig 4. TEST Circuit for Voltage Amplification >

Dec. 2010 – Rev.1.5 - 7 - HTC

TYPICAL OPERATING CHARACTERISTICS (continued)

Stability Boundary Conditions

< Fig 5. TEST Circuit >

A $V_{KA} = V_{REF}$, R1= 0 Ω , R2 = ∞

 $\mathbf{B} V_{KA} = 5.0 V$, $R1 = 10 k\Omega$, $R2 = 10 k\Omega$

 $\boldsymbol{C}~V_{KA}$ = 10.0V, R1=10k Ω , R2 = 3.3k Ω

 \mathbf{D} V_{KA} = 15.0V, R1=10k Ω , R2 = 2K Ω

APPLICATION INFORMATION

1. Shunt Regulator

Note A : R Should provide cathode current 1mA to the TL431 at minimum $V_{\text{I(BATT)}}$

2. Precision High-Current Series Regulator

Note A : R Should provide cathode current \geq 1mA to the TL431 at minimum $V_{I(BATT)}$

3. Output Control of a Three-Terminal Fixed Regulator

4. High-Current Shunt Regulator

5. Precision 5-V 1.5A Regulator

6. Efficient 5-V Precision Regulator

NOTE A: R_B Should provide cathode current≥1mA to the TL431.

7. PWM Converter With Reference

8. Voltage Monitor

NOTE A : R3 and R4 are selected to provide the desired LED intensity and cathode current ≥1mA to the TL431 at the available V_{I(BATT)}.

9. Delay Timer

10. Precision Current Limiter

11. Precision Constant-Current Sink

