Fundamentos de programación. Tarea 2. Algoritmos y programas.

- 1. Elabora un algoritmo y escribe un programa que muestre en la pantalla la siguiente información:
 - Tu nombre completo.
 - Tu matrícula.
 - Tu carrera.
 - Tu escuela de procedencia (Preparatoria, si es Prepa Tec el programa que cursaste)
 - Dos o tres líneas que te describan de manera general (gustos, habilidades, deportes, libros preferidos, viajes, etc)

Análisis.

Entradas: (No hay)

Salidas: Imprimir nombre, matrícula, carrera, escuela y gustos.

Relación E/S: Debido a que el usuario no tendrá que poner nada, no existen entradas. Con el comando "print", el programa directamente desplegará los datos.

Inserta aquí la imagen con el **algoritmo**. (foto, captura de pantalla, texto, etc.) Ilasitma 1 1- Implimis (nomble: "nomble Implimit (" dorhela: ", " mombre de la confesce " Escuela de phocederin:", Implimit ("Descripción: ", " Label mi - Desplegent datos.

El programa lo escribes directamente en el archivo en github, milnfo.py. Listo.

Ejemplo de salida:

Nombre:

Margarito Pérez

Matrícula:

A01112131

Carrera:

ISC

Escuela de procedencia:

Prepa Tec, programa Bicultural

Descripción:

Me gusta la tecnologia y todo lo relacionado con la computacion.

Practico el futbol americano y me gusta tocar la guitarra.

- **2.** La velocidad de un auto puede calcularse con la fórmula v = d/t. (v-velocidad, d-distancia, t-tiempo). Elabora un algoritmo y escribe un programa que pregunte al usuario la velocidad a la que viaja un auto (km/h) y calcule e imprima lo siguiente:
 - La distancia en km. que recorre en 6 hrs.
 - La distancia en km. que recorre en 10 hrs.
 - El tiempo en horas que requiere para recorrer 500 km.

Entradas: EL usuario pone la velocidad constante de su auto.

Salidas: Distancia recorrida en 6 hrs. Distancia recorrida en 10 hrs. Tiempo para recorrer 500 km.

Relación E/S: Considerando una velocidad constante y la velocidad introducida en Km/hr, por medio de la fórmula v = d/T:

- 1. d = v(t) -> d=velocidadAuto(6) (introducida por el usuario con la variable "velocidadAuto"). El resultado será en Km.
- 2. d = v(t) -> d=velocidadAuto(10) (introducida por el usuario con la variable "velocidadAuto"). El resultado será en Km.
- 3. $t = d/v \rightarrow t = (500)/(velocidadAuto)$ El resultad será en Km/h.

algoritma z: autre	Enero '
	第回窗 窗
1- gest relocidad. (*m/n)	
82 - Calcular distancia en 6 hr.	=>d=V/+
93. Concular d'an 10 Mrs.	=> d=V/+
10 4- Calculat timpe en 500 km.	=> += dN
11 5 - Amplinis 2, 3 y 4.	

NOTA: Corrección de imagen en punto 2 y 3 – es d=v*t

El programa lo escribes directamente en el archivo en **github**, **auto.py**. Listo.

Ejemplo de salida:

Velocidad del auto en km/h: 115
Distancia recorrida en 6 hrs: 690 km
Distancia recorrida en 10 hrs: 1150 km

Tiempo para recorrer 500 km: 4.3478260869565215 hrs.

- 3. Elabora un algoritmo y escribe un programa que calcula el costo total de una comida en un restaurante.
 - El programa le pregunta al usuario el total de la comida.
 - Agrega 12% de propina y 16% de IVA.
 - Cada porcentaje se calcula con respecto al costo de la comida.
 - Imprime:
 - o El subtotal (costo de la comida)
 - o La propina.
 - o IVA.
 - Total a pagar. (subtotal + propina + IVA)

Entradas: Costo de la comida sin IVA y propina

Salidas: Costo con IVA y propina.

Relación E/S: Por medio de una regla de tres, se calculará la IVA del subtotal y la propina del subtotal. Se sumará: El subtotal, el IVA de ese subtotal y la propina de ese Subtotal.

algoritma 3: IVA
1- Led "subtatal (cuenta sin IVA y Phopina)
8 2: Multiplical sublatal por IVA.
(Inflotal * 116)/100 = 1VA
3 - Restarble subtatal
iVA-sultalal = jettA FIVAL
2 4- Multiplicas subtetal part plagina.
Subtotal # 112)/100 = palopina.
5. Restall phapira.
Phiparo - subtatal = Phapin FINAL
6? Ampliner (Sublatal + Propina FIXA FIXAL)

El programa lo escribes directamente en el archivo en **github, cuenta.py**. Listo. pág. 6

Ejemplos de salida:

Costo de su comida: 100

Propina: \$12.00 IVA: \$16.00

Total a pagar: \$128.00

Costo de su comida: 255

Propina: \$30.60 IVA: \$40.80

Total a pagar: \$326.40

- **4.** Elabora un algoritmo y escribe un programa que calcula el porcentaje de hombres y mujeres inscritos en una clase.
 - El programa le pregunta al usuario el número de mujeres y el número de hombres inscritos.
 - Imprime:
 - o El número total de alumnos inscritos.
 - o El porcentaje de mujeres.
 - o El porcentaje de hombres.

Entradas: Número de mujeres y número de hombres.

Salidas: Porcentaje de hombres y mujeres en el salón.

Relación E/S: Sumando la cantidad de hombres y mujeres del salón, se sacará respectivamente con una regla de tres el porcentaje a partir del total sumado. Se imprimirá el valor final de cada u

El programa lo escribes directamente en el archivo en github, porcentajes.py. Listo.

Ejemplo de salida (por ahora no te preocupes por los acentos):

Mujeres inscritas: 13
Hombres inscritos: 15
Total de inscritos: 28

Porcentaje de mujeres: 46.4% Porcentaje de hombres: 53.6%

- 5. Elabora un algoritmo y escribe un programa que convierta de coordenadas cartesianas a coordenadas polares. Usa la función $\alpha \tan 2(y,x)$ en Python que regresa el arcotangente de y/x en el rango $-\pi$ a π .
 - El programa le pregunta al usuario el valor de x y y.
 - Imprime:
 - El valor de la magnitud *r*.
 - \circ El valor del ángulo θ en grados.

Entradas: Valor de "x" y de "y".

Salidas: Coordenadas polares, osea magnitud del vector y su ángulo.

Relación E/S: Por medio de la coordenada x y ya, se obtendrá la magnitud del vector con su respectiva fórmula. Se obtendrá de igual manera el ángulo con dichos valores del plano cartesiano el arcotangente.

Crea el programa desde cero y lo agregas al repositorio en github, coordenadas.py. Listo.

Ejemplo de salida (por ahora no te preocupes por los acentos):

x: 6 y: 4

Magnitud: 7.211102550927978 Angulo: 33.690067525979785