SATURATED O-MINIMAL EXPANSIONS OF REAL CLOSED FIELDS

ANNALISA CONVERSANO, PAOLA D'AQUINO, AND SALMA KUHLMANN

ABSTRACT. In [KKMZ02] the authors gave a valuation theoretic characterization for a real closed field to be κ -saturated, for a cardinal $\kappa \geq \aleph_0$. In this paper, we generalize the result, giving necessary and sufficient conditions for certain o-minimal expansion of a real closed field to be κ -saturated.

1. Introduction

A totally ordered structure $\mathcal{M} = \langle M, <, \ldots \rangle$ (in a countable first order language containing <) is o-minimal if every subset of it which is definable with parameters in M is a finite union of intervals in M. These structures have many interesting features. We focus here on the following: For $\alpha > 0$, \mathcal{M} is \aleph_{α} -saturated if and only if the underlying order $\langle M, < \rangle$ is \aleph_{α} -saturated as a linearly ordered set ([AK94]). If \mathcal{M} is an o-minimal expansion of a divisible ordered abelian group (DOAG), then $\langle M, < \rangle$ is a dense linear order without endpoints (DLOWEP). Now, \aleph_{α} -saturated DLOWEP are well understood, they are Hausdorff's η_{α} - sets, see [R]. The above equivalence provides therefore a characterization of \aleph_{α} -saturation of such o-minimal expansions for $\alpha \neq 0$. We are reduced to characterising \aleph_0 -saturation. This problem was solved in [Ku90] and in [KKMZ02] for DOAG and for real closed fields, respectively.

In this paper we generalize this result to power bounded o-minimal expansions of real closed fields, see Theorem 5.2. Miller in [M1] proved a dichotomy theorem for o-minimal expansions of the real ordered field by showing that for any o-minimal expansion \mathcal{R} of \mathbb{R} not polynomially bounded the exponential function is definable in \mathcal{R} . Later, Miller extended this result to any o-minimal expansion of a real closed field (see [M2]) by replacing polynomially bounded by power bounded.

In [DKS10] it was shown that a countable real closed field is recursively saturated if and only if it has an integer part which is a model

Date: May 17, 2012.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 06A05, 12J10, 12J15, 12L12, 13A18; Secondary: 03C60, 12F05, 12F10, 12F20.

Key words and phrases. natural valuation, value group, residue field, pseudo-Cauchy sequences, o-minimal expansion of a real closed field, definable closure, dimension, \aleph_0 -saturation.

of Peano Arithmetic (see [DKS10] for these notions). In a forthcoming paper, we give a valuation theoretic characterization of recursively saturated real closed fields (of arbitrary cardinality), and their o-minimal expansions.

2. Background on o-minimal structures

We recall some properties of o-minimal structures. Let \mathcal{L} be a countable language containing <, and let $\mathcal{M} = \langle M, <, \ldots \rangle$ be an o-minimal \mathcal{L} -structure. If $A \subset M$ then the algebraic closure $\operatorname{acl}(A)$ of A is the union of the finite A-definable sets, and the definable closure $\operatorname{dcl}(A)$ is the union of the A-definable singletons. In general, $\operatorname{dcl}(A) \subseteq \operatorname{acl}(A)$, but in an o-minimal structure \mathcal{M} they coincide. For example, if \mathcal{M} is a divisible abelian group and $A \in M$ then the definable closure of A coincides with the \mathbb{Q} vector space generated by A, $\operatorname{dcl}(A) = \langle A \rangle_{\mathbb{Q}}$. If \mathcal{M} is a real closed field then the definable closure of $A \subset M$ is the relative real closure of the field $\mathbb{Q}(A)$ in M, i.e. $\operatorname{dcl}(A) = \mathbb{Q}(A)^{rc}$.

Notice that over a countable language \mathcal{L} the cardinality of the definable closure of a set A is:

(1)
$$|\operatorname{dcl}(A)| = \begin{cases} \aleph_0 & \text{if } |A| \le \aleph_0 \\ |A| & \text{if } |A| > \aleph_0 \end{cases}$$

In [PS] it is proved that in any o-minimal structure \mathcal{M} the operator dcl is a pregeometry, i.e. it satisfies the following properties:

- (1) for any $A \subseteq M$, $A \subseteq dcl(A)$;
- (2) for any $A \subseteq M$, $dcl(A) \subseteq dcl(dcl(A))$;
- (3) for any $A \subseteq M$, $dcl(A) = \bigcup \{ dcl(F) : F \subseteq A, F \text{ finite} \}$
- (4) (Exchange Principle) for any $A \subseteq M$, $a, b \in M$ if $a \in dcl(A \cup \{b\}) dcl(A)$ then $b \in dcl(A \cup \{a\})$.

The Exchange Principle guarantees that in any o-minimal structure \mathcal{M} there is a good notion of independence:

A subset $A \subset M$ is independent if for all $a \in A$, $a \not\in \operatorname{dcl}(A - \{a\})$. If $B \subset M$ we say that A is independent over B if $a \not\in \operatorname{dcl}(B \cup (A - \{a\}))$. A subset $A \subseteq M$ is said to generate \mathcal{M} if $M = \operatorname{dcl}(A)$. An independent set A that generates \mathcal{M} is called a basis. The Exchange Principle guarantees that any independent subset of M can be extended to a basis, and all basis for \mathcal{M} have the same cardinality. So a basis for \mathcal{M} is any maximal independent subset. The dimension of \mathcal{M} is the cardinality of any basis. It is easy to extend the notion of a basis of \mathcal{M}' over \mathcal{M} when $\mathcal{M} \preceq \mathcal{M}'$. Note that

(2)
$$\dim(\mathcal{M}') \le |A|$$

We recall the notion of *prime* model of a theory T. Let $A \subseteq \mathcal{M} \models T$. The model \mathcal{M} is said to be prime over A if for any $\mathcal{M}' \models T$ with $A \subseteq M'$ there is an elementary mapping $f : \mathcal{M} \to \mathcal{M}'$ which is the

identity on A. For exampe, if T is the theory of real closed fields the real closure of an ordered field F is prime over F. It is well known, see [PS], that if \mathcal{M} is an o-minimal structure, and $A \subseteq M$ then $Th(\mathcal{M})$ has a prime model over A, and this is unique up to A-isomorphism. For any subset $A \subseteq M$ it coincides with dcl(A). If $A = \emptyset$ then $dcl(\emptyset) = P$ is the prime model of T.

Let us notice that if \mathcal{M} is a real closed field, then the dimension of \mathcal{M} over the prime field coincides with the transcendence degree of \mathcal{M} over \mathbb{Q} .

3. \aleph_{α} -Saturated divisible ordered abelian groups

We summarize the required background (see [Ku01] and [Ku90]). Let (G,+,0,<) be a divisible ordered abelian group. For any $x\in G$ let $|x|=\max\{x,-x\}$. For non-zero $x,y\in G$ we define $x\sim y$ if there exists $n\in\mathbb{N}$ such that $n|x|\geq |y|$ and $n|y|\geq |x|$. We write x<< y if n|x|<|y| for all $n\in\mathbb{N}$. Clearly, \sim is an equivalence relation. Let $\Gamma:=G-\{0\}/\sim=\{[x]:x\in G-\{0\}\}$. We can define an order on $<\Gamma$ in terms of << as follows, $[y]<_{\Gamma}[x]$ if x<< y (notice the reversed order).

Fact 3.1. (a) Γ is a totally ordered set under $<_{\Gamma}$, and we will refer to it as the value set of G.

(b) The map

$$v: G \longrightarrow \Gamma \cup \{\infty\}$$

$$0 \mapsto \infty$$

$$x \mapsto [x] \quad (\text{if } x \neq 0)$$

is a valuation on G as a \mathbb{Z} -module, i.e. for every $x,y\in G$: $v(x)=\infty$ if and only if x=0, v(nx)=v(x) for all $n\in\mathbb{Z}$, $n\neq 0$, and $v(x+y)\geq \min\{v(x),v(y)\}$.

(c) For every $\gamma \in \Gamma$ the Archimedean component associated to γ is the maximal Archimedean subgroup of G containing some $x \in \gamma$. We denote it by A_{γ} . For each γ , $A_{\gamma} \subseteq (\mathbb{R}, +, 0, <)$.

Definition 3.2. Let λ be an infinite ordinal. A sequence $(a_{\rho})_{\rho<\lambda}$ contained in G is said to be *pseudo Cauchy* (or *pseudo convergent*) if for every $\rho < \sigma < \tau$ we have

$$v(a_{\sigma} - a_{\rho}) < v(a_{\tau} - a_{\sigma}).$$

Fact 3.3. If $(a_{\rho})_{{\rho}<\lambda}$ is pseudo Cauchy sequence then for all ${\rho}<\sigma$ we have

$$v(a_{\sigma} - a_{\rho}) = v(a_{\rho+1} - a_{\rho}).$$

Definition 3.4. Let $(a_{\rho})_{{\rho}<\lambda}$ be a pseudo Cauchy sequence in G. We say that $x\in G$ is a *pseudo limit* of S if

$$v(x - a_{\rho}) = v(a_{\sigma} - a_{\rho}) = v(a_{\rho+1} - a_{\rho})$$
 for all $\rho < \sigma$.

We now recall the characterization of \aleph_{α} -saturation for divisible ordered abelian groups, see [Ku90].

Theorem 3.5. [Ku90] Let G be a divisible ordered abelian group, and let $\aleph_{\alpha} \geq \aleph_0$. Then G is \aleph_{α} -saturated in the language of ordered groups if and only

- (1) its value set is an η_{α} -set
- (2) all its Archimedean components are isomorphic to \mathbb{R}
- (3) every pseudo Cauchy sequence in a divisible subgroup of value $set < \aleph_{\alpha}$ has a limit in G.

Notice that in the case of \aleph_0 -saturation the necessary and sufficient conditions reduce only to (1) and (2), see [Ku90].

4. \aleph_{α} -saturated real closed fields

If $(R, +, \cdot, 0, 1, <)$ is an ordered field then it has a natural valuation v, that is the natural valuation associated to the ordered abelian group (R, +, 0, <). We will denote by G the value group of R with respect to v, i.e. G = v(R). If $(R, +, \cdot, 0, 1, <)$ is a real closed field then G is divisible, and we will refer to the rational rank of G, $\operatorname{rk}(G)$, for the linear dimension of G as a \mathbb{Q} -vector space.

For the natural valuation on R we use the notations $\mathcal{O}_R = \{r \in R : v(r) \geq 0\}$ and $\mu_R = \{r \in R : v(r) > 0\}$, for the valuation ring and the valuation ideal, respectively. The residue field k is the quotient \mathcal{O}_R/μ_R , and we recall that it is a subfield of \mathbb{R} . Notice that in the case of ordered fields there is a unique archimedean component up to isomorphism, and if the field is real closed the archimedean component is the residue field.

A notion of pseudo Cauchy sequence is easily extended to any ordered field as in the case of ordered abelian groups.

The following characterization of \aleph_{α} -saturated real closed fields was obtained in [KKMZ02].

Theorem 4.1. [KKMZ02, 6.2] Let R be a real closed field, v its natural valuation, G its value group and k its residue field. Let $\aleph_{\alpha} \geq \aleph_0$. Then R is \aleph_{α} -saturated in the language of ordered fields if and only if

- (1) G is \aleph_{α} -saturated,
- (2) $k \cong \mathbb{R}$,
- (3) every pseudo Cauchy sequence in a subfield of absolute transcendence degree less than \aleph_{α} has a pseudo limit in R.

In the proof of Theorem 4.1 the dimension inequality (see [P]) is crucially used in the case of \aleph_0 -saturation. This says that the rational rank of the value group of a finite transcendental extension of a real closed field is bounded by the transcendence degree of the extension.

5. \aleph_{α} -Saturated expansions of a real closed field

We show now a generalization of Theorem 4.1 to o-minimal expansions of a real closed field $\mathcal{M} = (M, +, \cdot, 0, 1, <, \ldots)$.

The proof follows the lines of the previous characterizations. Also in this case some care is needed for \aleph_0 -saturation. We need to bound the rational rank of the value group of a finite dimensional extension. (Recall from (1) that the cardinality of the definable closure of a finite set is infinite.) Analogues of the dimension inequality have been proved by Wilkie and van den Dries in more general cases.

Let T be the theory of an o-minimal expansion of \mathbb{R} and assume T is smooth, see [W]. In [W] Wilkie showed that if \mathcal{R} is a model T, and $\dim(\mathcal{R})$ is finite then $\mathrm{rk}(\mathcal{R}) \leq \dim(\mathcal{R})$. This result has been further generalized by van den Dries in [vdD] to power bounded o-minimal expansions of a real closed field. We recall that \mathcal{M} is power bounded if for each definable function $f: \mathcal{M} \to \mathcal{M}$ there is $\lambda \in M$ such that $|f(x)| \leq x^{\lambda}$ for all sufficiently large x > 0 in M.

Theorem 5.1. [vdD] Suppose the dimension of \mathcal{M} is finite. Then the rational rank of the value group G of \mathcal{M} is bounded by dim(\mathcal{M}).

Theorem 5.2. Let $\mathcal{M} = \langle M, <, +, \cdot, \ldots \rangle$ be a power bounded o-minimal expansion of a real closed field, v its natural valuation, G its value group, k its residue field, $\mathcal{P} \subseteq \mathcal{M}$ its prime model.

Then \mathcal{M} is \aleph_{α} -saturated if and only if

- (1) (G, +, 0, <) is \aleph_{α} -saturated,
- (2) $k \cong \mathbb{R}$,
- (3) for every substructure \mathcal{M}' with $\dim(\mathcal{M}'/\mathcal{P}) < \aleph_{\alpha}$, every pseudo Cauchy sequence in M' has a pseudo limit in M.

Proof. We assume conditions (1), (2) and (3) and we show that \mathcal{M} is \aleph_{α} -saturated.

Let q be a complete 1-type over \mathcal{M} with parameters in $A \subset M$, with $|A| < \aleph_{\alpha}$. Let \mathcal{M}_0 be an elementary extension of \mathcal{M} in which q(x) is realized, and $x_0 \in M_0$ such that $\mathcal{M}_0 \models q(x_0)$.

To realize q in \mathcal{M} it is necessary and sufficient to realize the cut that x_0 makes in $\mathcal{M}' = \operatorname{dcl}(A) \subseteq \mathcal{M}$

$$q'(x) := \{b \le x \; ; \; b \in M, \; q \vdash b \le x\} \cup \{x \le c \; ; \; c \in M, \; q \vdash x \le c\}.$$

As we will see in realizing the cut q' instead of type q some care is needed in the case of \aleph_0 -saturation. If q'(x) contains an equality, the result is obvious. So suppose that in q'(x) there are only strict inequalities.

Set

$$B := \{ b \in M' ; q \vdash b < x \} \text{ and } C := \{ c \in M' ; q \vdash x < c \}$$

and consider the following subset of $v(M_0)$:

$$\Delta = \{ v(d - x_0) \mid d \in M' \}.$$

There are three cases to consider:

- (a) Immediate transcendental case: Δ has no largest element.
- (b) Value transcendental case: Δ has a largest element $\gamma \notin v(M')$.
- (c) Residue transcendental case: Δ has a largest element $\gamma \in v(M')$.
- (a) Δ has no largest element. Then

$$\forall d \in M' \ \exists d' \in M' : v(d' - x_0) > v(d - x_0).$$

Let $\{v(d_{\lambda}-x_0)\}_{\lambda<\mu}$ be cofinal in Δ , then $\{d_{\lambda}\}_{\lambda<\mu}$ is a pseudo Cauchy sequence in M' and $\dim(\mathcal{M}'/P) \leq |A| < \aleph_{\alpha}$. Condition (3) implies the existence of a pseudolimit $a \in M$ of $\{d_{\lambda}\}_{\lambda<\mu}$. We claim that a realizes q'(x) in \mathcal{M} . The ultrametric inequality gives

$$v(a - x_0) = v(a - d_{\lambda} + d_{\lambda} - x_0) \ge \min\{v(a - d_{\lambda}), v(d_{\lambda} - x_0)\}.$$

Moreover, from properties of pseudo Cauchy sequences we have

$$v(a - d_{\lambda}) = v(d_{\lambda+1} - d_{\lambda}) = v(x_0 - d_{\lambda}),$$

which implies that for all λ , $v(a-x_0) \geq v(d_{\lambda}-x_0)$. Thus for all $d \in \mathcal{M}'$, $v(a-x_0) > v(d-x_0)$. We want to show that a fills the cut determined by B and C, and so a realizes q'. Let $b \in B$, if $a \leq b$ then $a \leq b < x_0$, and this implies $v(a-x_0) \geq v(b-x_0)$, which is a contradiction. Hence b < a. In a similar way we can how that if $c \in C$ then a < c.

(b) Δ has a largest element $\gamma \notin v(M')$. Fix $d_0 \in M'$ such that $v(d_0 - x_0) = \gamma$ is the maximum of Δ . Assume $d_0 \in B$ (the case $d_0 \in C$ is treated similarly). Let $\Delta_1 = \{v(c - d_0) : c \in C\}$ and $\Delta_2 = \{v(b - d_0) : b \in B, b > d_0\}$.

Claim. $\Delta_1 < \gamma < \Delta_2$.

From
$$d_0 \in B$$
 it follows $v(c - x_0) < \gamma$ for all $c \in C$. Thus $v(c - d_0) = v(c - x_0 + x_0 - d_0) = \min\{v(c - d_0), v(x_0 - d_0)\} = v(c - x_0) < \gamma$

Let $b \in B$ and $b \ge d_0$ then $v(x_0 - b) \ge v(x_0 - d_0) = \gamma$, and by the maximality of γ the equality must hold. Thus,

$$v(b - d_0) = v(b - x_0 + x_0 - d_0) \ge \min\{v(b - d_0), v(x_0 - d_0)\} = \gamma.$$

Since $\gamma \notin v(M')$ we have $v(b-d_0) > \gamma$, which completes the proof of the Claim.

Consider the set of formulas

$$t(y) = \{v(c - d_0) < y; c \in C\} \cup \{y < v(b - d_0); b \in B, b > d_0\}.$$

This is a type over G with parameters in v(M'). Let G' = v(M'). If $\aleph_{\alpha} > \aleph_0$ then $\operatorname{card}(G') < \aleph_{\alpha}$ and by hypothesis (1) we can realize t(y) in G.

If $\aleph_{\alpha} = \aleph_0$ then \mathcal{M}' has finite dimension over the prime field \mathcal{P} , and Theorem 5.1 implies that the rational rank of G' is bounded by the dimension of \mathcal{M}' over \mathcal{P} . So, we can transform the type t(y) in a type t'(y) where the parameters vary over the finite \mathbb{Q} -basis of G'. Since G is \aleph_0 -saturated we can realize t'(y) in G. Let $a \in M$, a > 0 such that v(a) = g. We claim that $a + d_0 \in M$ realizes q'. From the definition of the type t(y), it follows that for all $c \in C$ and for all $b \in B$ such that $b > d_0$,

$$v(c - d_0) < v(a) < v(b - d_0),$$

and by order property of the valuation v we have that for all $c \in C$ and for all $b \in B$ such that $b > d_0$

$$b - d_0 < a < c - d_0$$

which implies for all $c \in C$ and for all $b \in B$

$$b < a + d_0 < c$$
,

hence a realizes the type q' in \mathcal{M} .

(c) Δ has a largest element $\gamma \in v(M')$. Let $d_0 \in M'$ and $a \in M'$ such that $v(d_0 - x_0) = \gamma = v(a)$ (without loss of generality we may assume a > 0).

Claim. There exist $b_0 \in B$ and $c_0 \in C$ such that for all $b \in B$ with $b \ge b_0$ and for all $c \in C$ with $c \le c_0$ we have

$$v(b - d_0) = \gamma = v(a) = v(c - d_0).$$

From $v(d_0-x_0)=v(a)$ it follows that there exists $n\in\mathbb{N}$ such that $na>|x_0-d_0|>\frac{a}{n}$. We distinguish the two cases according to $d_0\in B$ and $d_0\in C$. Assume $d_0\in B$, and let $b_0=d_0+\frac{a}{n}$ and $c_0=d_0+na$. Clearly, $b_0< x_0$, so $b_0\in B$, and $x_0< c_0$, so $c_0\in C$. Moreover, $v(b_0-d_0)=v(\frac{a}{n})=v(a)=v(na)=v(c_0-d_0)$. If $b\in B$, $b>b_0$ and $c\in C$, $c< c_0$, then the following inequalities hold $d_0< b_0< b< c< c_0$. Thus, $v(b-d_0)\leq v(b_0-d_0)=\gamma=v(c_0-d_0)\leq v(b-d_0)$. Hence, $\gamma=v(b-d_0)$. Similarly, one shows that $\gamma=v(c_0-d_0)\leq v(c-d_0)\leq v(b_0-d_0)=\gamma$, and so $\gamma=v(c-d_0)$.

Assume $d_0 \in C$, and let $b_0 = d_0 - na$ and $c_0 = d_0 - \frac{a}{n}$. Similar calculations show that $v(c - d_0) = \gamma = v(b - d_0)$ for $c \in C$, $c < c_0$, and $b \in B$, $b > b_0$.

Our aim is to show that there is an element $r \in M$ which realizes the cut q'(x). It is enough to show that there is $r'' \in M$ realizing

(3)
$$\left\{ \frac{b - d_0}{a} < x; b \in B, b \ge b_0 \right\} \cup \left\{ x < \frac{c - d_0}{a}; c \in C, c \le c_0 \right\}.$$

Indeed, $r' = r''a \in M$ realizes

$$(4) \{b - d_0 < x; b \in B, b \ge b_0\} \cup \{x < c - d_0; c \in C, c \le c_0\}$$

and so $r = r' + d_0 \in M$ realizes q'(x). Assume $d_0 \in B$. The claim implies that for all $b \in B$, $b \ge b_0$, and for all $c \in C$, $c \le c_0$ we have

$$v\left(\frac{b-d_0}{a}\right) = v\left(\frac{x_0-d_0}{a}\right) = v\left(\frac{c-d_0}{a}\right) = 0,$$

and taking residues the following inequalities hold in \mathbb{R} , the residue field

$$\frac{\overline{b-d_0}}{a} < \frac{\overline{x_0 - d_0}}{a} < \frac{\overline{c-d_0}}{a}.$$

(Notice that the inequalities are strict because of the maximality of v(a) in Δ .) The cut in \mathbb{R}

$$\left\{\frac{\overline{b-d_0}}{a}; b \in B, b \ge b_0\right\} \cup \left\{\frac{\overline{c-d_0}}{a}; c \in C, c \le c_0\right\}$$

is realized in \mathbb{R} by $\frac{\overline{x_0-d_0}}{a}$. If $r'' \in M$ is such that $\overline{r''} = \frac{\overline{x_0-d_0}}{a}$ then r'' realizes (3) in \mathcal{M} . The proof in the case $d_0 \in C$ is similar and we omit it.

We now assume that \mathcal{M} is \aleph_{α} -saturated and we show that conditions (1),(2) and (3) hold.

(1) Let q(x) be a type with set of parameters $A \subset G$ such that $\operatorname{card}(A) < \aleph_{\alpha}$, e.g. suppose $A = \{g_{\mu} : \mu < \lambda\}$, where $\lambda < \aleph_{\alpha}$. We have to show that q(x) is realized in G. Without loss of generality we can assume that q(x) is a complete type. Let H be the divisible hull of A in G. Notice that $\operatorname{card}(H) < \aleph_{\alpha}$ for $\aleph_{\alpha} > \aleph_{0}$.

It is enough to realize in G the set

$$\{g \le x \; ; \; g \in H, q(x) \vdash g \le x\} \cup \{x \le g \; ; \; g \in H, q(x) \vdash x \le g\}.$$

If the set contains an equality, we are done. So suppose that we only have strict inequalities.

For every $\mu \in \lambda$ fix an element $a_{\mu} \in M$, $a_{\mu} > 0$, such that $v(a_{\mu}) = g_{\mu}$. If $g \in H$ and $g = q_1 g_{i_1} + \cdots + q_m g_{i_m}$ with $q_1, \ldots, q_m \in \mathbb{Q}$, then $g = v(a_{i_1}^{q_1} \cdot \cdots \cdot a_{i_m}^{q_m})$ where for simplicity we choose $a_{i_j}^{q_j} > 0$ for all $j \in \{1, \ldots, m\}$. Let

$$H_1 = \{g \in H; q(x) \vdash g < x\} \text{ and } H_2 = \{g \in H; q(x) \vdash x < g\}$$

and consider

$$q'(x) = \{ka_{i_1}^{q_1} \cdot \dots \cdot a_{i_k}^{q_k} < x; k \in \mathbb{N}, v(a_{i_1}^{q_1} \cdot \dots \cdot a_{i_k}^{q_k}) \in H_2\} \cup \{kx < a_{i_1}^{q_1} \cdot \dots \cdot a_{i_k}^{q_k}; k \in \mathbb{N}, v(a_{i_1}^{q_1} \cdot \dots \cdot a_{i_k}^{q_k}) \in H_1\}.$$

Since \mathcal{M} is a dense linear ordering without endpoints, q'(x) is finitely realizable in \mathcal{M} . Thus q'(x) is a type in the parameters $\{a_{\mu}\}_{{\mu}<\lambda}$.

Since \mathcal{M} is \aleph_{α} -saturated it follows that q'(x) is realized in \mathcal{M} , say by a. Then v(a) realizes q(x).

- (2) Since (M, +, 0, <) is \aleph_{α} -saturated Theorem 3.5 implies that all Archimedean components are isomorphic to \mathbb{R} , but there is only one Archimedean component and this is the residue field, so $k \cong \mathbb{R}$.
- (3) Let $(a_{\nu})_{\nu<\mu}$ be a pseudo Cauchy sequence in \mathcal{M}' , where \mathcal{M}' is a substructure of \mathcal{M} and $\dim(\mathcal{M}'/\mathcal{P}) = \lambda < \aleph_{\alpha}$. Let $\{b_{\alpha}; \alpha < \lambda\}$ be a basis of \mathcal{M}' over the prime field \mathcal{P} . Then all elements a_{ν} are definable in terms of finitely many elements of the basis with coefficients in the prime field \mathcal{P} . Recall that the prime field \mathcal{P} coincides with $\operatorname{dcl}(\emptyset)$ hence every element of \mathcal{P} is definable by a formula without parameters. This is crucial in the case of \aleph_0 -saturation. Let

$$q_1(x) = \{n|x - a_{\nu+1}| < |a_{\nu} - a_{\nu+1}|; \nu < \mu, n \in \mathbb{N}\}.$$

Then $q_1(x)$ is a set of formulas in λ parameters (in the case of \aleph_0 -saturation the parameters are only finitely many). Moreover, $q_1(x)$ is finitely satisfied in \mathcal{M} since $(a_{\mu})_{{\mu}<\lambda}$ is pseudo Cauchy. Hence $q_1(x)$ is a type, and a realization of $q_1(x)$ in \mathcal{M} (which is \aleph_{α} -saturated) is a pseudo limit of the sequence.

6. \aleph_{α} -Saturated o-minimal expansions

If we take any o-minimal expansion of a real closed field (not necessarily power bounded) we obtain the following analogue of Theorem 4.1.

Theorem 6.1. Let $\mathcal{M} = \langle M, <, +, \cdot, \ldots \rangle$ be an o-minimal expansion of a real closed field, v its natural valuation, G its value group, k its residue field, $\mathcal{P} \subset \mathcal{M}$ its prime model.

Then \mathcal{M} is \aleph_{α} -saturated \iff for every substructure $\mathcal{M}' \subset \mathcal{M}$ such that $\dim(\mathcal{M}'/\mathcal{P}) < \aleph_{\alpha}$, then

- (1) $(G, <, +, v(\mathcal{M}'))$ is \aleph_{α} -saturated,
- (2) $k \cong \mathbb{R}$,
- (3) every pseudo Cauchy sequence in \mathcal{M}' has a pseudo limit in \mathcal{M} .

The proof is analogous to that of Theorem 5.2, and we omit it. We just point out that in the value transcendental case the expansion $(G, <, +, v(\mathcal{M}'))$ of the value group is needed for \aleph_0 -saturation. In the

power bounded case the valuation inequality allows us to get rid of the parameters in $v(\mathcal{M}')$. By Miller's dichotomy (see [M2]) the exponential function is definable if we are not in the power bounded case. In a forthcoming paper we further analyze Theorem 6.1 in that particular case. Finally, note that if in Theorem 5.2 we assume \mathcal{M} is just a real closed field, then we obtain exactly Theorem 4.1: the prime model \mathcal{P} is the field of real algebraic numbers, and \mathcal{M}' is a submodel of finite dimension over \mathcal{P} if and only if it is of finite absolute transcendence degree.

References

- [AK94] N. L. ALLING AND S. KUHLMANN, On η_{α} -Groups and Fields, *Order*, **11** (1994), pp. 85–92.
- [DKS10] P. D'AQUINO, J.F. KNIGHT AND S. STARCHENKO, Real closed fields and models of Peano arithmetic, J. Symb. Logic, 75(1) (2010), pp. 1–11.
- [vdD] L. VAN DEN DRIES, T-Convexity and Tame Extensions II, J. Symb. Logic, **62** (1997), pp. 14–34.
- [KKMZ02] F.-V. KUHLMANN, S. KUHLMANN, M. MARSHALL, M. ZEKAVAT, Embedding ordered fields in formal power series fields, *J. Pure Appl. Algebra*, **169** (2002), pp. 71–90.
- [Ku90] S. Kuhlmann, Groupes abéliens divisibles ordonnés, Séminaire sur les Structures Algébriques Ordonnées, Sélection d'exposés 1984-1987, Vol.1 (1990), pp. 3–14.
- [Ku01] S. Kuhlmann, **Ordered Exponential Fields**, The Fields Institute Monograph Series, vol 12. Amer. Math. Soc. 2000.
- [M1] C. MILLER, Exponentiation is hard to avoid, *Proceedings of the American Mathematical Society*, vol. 122 (1994), pp. 257-259.
- [M2] C. MILLER, A growth dichotomy for o-minimal expansions of ordered fields, *Logic: from foundations to applications*, **European Logic Colloquium 1993**, (eds. W.Hodges et al.) (Oxford University Press 1993), pp. 385-399.
- [PS] A. PILLAY AND C. STEINHORN, Definable sets in ordered structures, I, Proceedings of the American Mathematical Society, vol. 295 (1986), pp. 565-592.
- [P] A. Prestel, Valued Fields, Springer, 2005.
- [R] J.G. ROSENSTEIN, Linear Orderings, Academic Press, 1982.
- [W] A. WILKIE, Model completeness results for expansions of the ordered field of real numbers by restricted pfaffian functions and the exponetial functions, *Journal Amer. Math. Soc.*, **9** (1996), pp. 1051-1094.

FB MATHEMATIK & STATISTIK, UNIVERSITÄT KONSTANZ, GERMANY $E\text{-}mail\ address:}$ annalisa.conversano@uni-konstanz.de

DIPARTIMENTO DI MATEMATICA, SECONDA UNIVERSITÀ DI NAPOLI, ITALY $E\text{-}mail\ address:}$ paola.daquino@unina2.it

FB MATHEMATIK & STATISTIK, UNIVERSITÄT KONSTANZ, GERMANY $E\text{-}mail\ address:}$ salma.kuhlmann@uni-konstanz.de