

Programme Cirruculum

9 Terms 5 Projects 1 Elective

Preface

Term 1 Foundation of Statistics ————		
Term 2 Introduction to Python		
Term 3 Data Visualization EDA	&	
-		- Capstone Project
Term 4 Supervised Learni	ng ———	-
		– Capstone Project
Term 5 Unsupervised Lea	arning ———	
	Term 6 Natural Prog Language (BA	
	– Capstone Projec	et
		—— Advanced TABLEAU
	Term 7 Natural Progra Language (ADVA	
Term 8 Deep Learning —		
		——— Capstone Project
Term 9 Dive Deep Learn	ing	
		——— Canstone Project

Programme Curriculum

9 Terms

5 Projects

1 Elective

Term 1

Foundation of Statistics

Term Duration: 1 Week

Software Skill: N/A

Assgnments: 2

Module 1 Statistics

Topic 1

What is Data Science?

What is Data Science?

Life cycle of data science

Skills required for data science

Applications of data science in different industries

Topic 2

What is Data Science?

Statistics in Data science

What is Statistics?

How is Statistics used in Data Science?

Population and Sample

Parameters and Statistics

Module 2

Statistics for Data Science

Topic 3

What is Data Science?

Data types

Variable and it's types

Sampling Techniques:

Convenience Sampling

Simple Random Sampling

Stratified Sampling

Systematic Sampling

Cluster Sampling

Term 1 Foundation of Statistics

Module 2 Statistics for Data Science

Topic 4

Descriptive Statistics

What is Univariate and Bi Variate Analysis?

Measures of Central Tendencies

Measures of Dispersion

-Normal Distribution

-Standard Normal Distribution

Skewness and Kurtosis

Box Plots and Outliers detection

Covariance and Correlation

Term 2 Introduction to **Python**

Term Duration: 2 Weeks

Software Skill: Python

Module 1 Core Python

Topic 1

Python Introduction

What is Python?

Why Data Science requires Python?

Installation of Anaconda

Understanding Jupyter Notebook

Basic commands in Jupyter Notebook

Understanding Python Syntax

Topic 2

Data Types & Data Structures

Variables

Strings

Lists

Sets

Tuples

Dictionaries

Topic 3

Control Flow & Conditional Statements

Conditional Operators, Arithmetic Operators &

Logical Operators

If, Else if and Else Statements

While Loops

For Loops

Nested Loops

List and Dictionary Comprehensions

Topic 4

Functions

Code Optimization

Scope

Lambda Functions

Map, Filter and Reduce

Modules and Packages

Module 2 Advanced Python

Topic 5

File Handling

Create, Read, Write files

Operations in File Handling

Errors and Exception Handling

Topic 6

Miscellaneous Python

Date and Time

OOPS Concepts

Topic 7

Regular Expressions

Structured Data and Unstructured Data

Literals and Meta Characters

How to Regular Expressions using Pandas?

Inbuilt Methods

Pattern Matching

Term 3

Data Visualization & EDA

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Industry Project

Module 1 **Number Analytics**

Topic 1

Numpy

Arrays

Basic Operations in Numpy

Indexing

Array Processing

Case Study

Module 2 **Working with Data Frames**

Topic 1

Pandas

Series

DataFrames

Indexing and slicing

Groupby

Concatenating

Merging Joining

Missing Values

Operations

Data Input and Output

Pivot

Cross tab

Case Study

Capstone Project

Term 4

Supervised Learning

Term 4

Supervised Learning

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Module 1 Regression

Topic 1

Introduction to Supervised Learning

What Is Machine Learning?

Why Estimate f?

How Do We Estimate f?

The Trade-Off Between Prediction Accuracy &

Model Interpretability

Supervised Versus Unsupervised Learning

Regression Versus Classification Problems Assessing

Model Accuracy

Topic 2

Linear Regression

Simple Linear Regression:

Multiple Linear Regression:

- · OLS Assumptions
- · Residual Analysis

Non-linear Transformations of the Predictors

Polynomial Regression

Topic 3

Regularization Techniques

Lasso Regularization

Ridge Regularization

Elastic Net Regularization

Topic 4

Classification Overview

An Overview of Classification

Why Not Linear Regression?

Topic 5

Logistic Regression

Logistic Regression:

- · The Logistic Model
- · Estimating the Regression Coefficients and Making Predictions
- · Multiple Logistic Regression
- · Logit and Sigmoid functions
- · Setting the threshold and understanding decision boundary

Topic 6

Evaluation Techniques

Evaluation Metrics for Classification Models:

- · Confusion Matrix
- \cdot Accuracy and Error rate
- · TPR and FPR
- · Precision and Recall
- ·F1Score
- · AUC ROC
- · Kappa Score

Concordant - Discordant Ratio

Term 4 Supervised Learning

Module 2 Tree Based Learning

Topic 7

Decision Tree

Decision Trees (Rule Based Learning):

- · Basic Terminology in Decision Tree
- · Root Node and Terminal Node
- · Regression Trees
- · Classification Trees
- · ID3 and C4.5 Decision Trees
- · Trees Versus Linear Models
- · Advantages and Disadvantages of Trees
- · Gini Index, Information Gain/Entropy and Reduction in Variance
- · Overfitting and Pruning
- · Stopping Criteria
- · Accuracy Estimation using Decision Trees

Case Study

Topic 8

Resampling Methods

Resampling Methods:

- · Cross-Validation
- · The Validation Set Approach Leave-One-Out Cross-Validation
- · k-Fold Cross-Validation
- · Bias-Variance Trade-Off for k-Fold Cross-Validation

Topic 10

Ensemble Learning

Ensemble Methods in Tree Based Models:

- $\cdot \, \text{What is Ensemble Learning?} \\$
- · What is Bagging and how does it work?
- · What is Random Forest and how does it work?
- · The Bootstrap
- $\cdot \ \text{Variable selection using RandomForest}$
- · What is Boosting and how does it work?
- · Ada Boosting
- · Gradient Boosting

Module 3 Distance Based Learning

Topic 11 Support Vector Machines

Support Vector Machines:

- · Hyperplane
- · The Maximal Margin Classifier
- · Support Vector Classifiers
- · Support Vector Machines
- · Hard and Soft Margin Classification
- · Classification with Non-linear Decision Boundaries
- · Kernel Trick
- · Linear, Polynomial and Radial
- · Tuning Hyperparameters for SVM
- · Gamma, Cost and Epsilon
- · SVMs with More than Two Classes

Case Study

Topic 12

K Nearest Neighbors

K Nearest Neighbors:

- · K-Nearest Neighbor Algorithm
- · Eager Vs Lazy learners
- · How does the KNN algorithm work?
- · How do you decide the number of neighbors in KNN?
- · Curse of Dimensionality
- · Pros and Cons of KNN
- · How to improve KNN performance?

Case Study

Industry Project

Capstone Project

Term 5

Unsupervised Learning

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Module 1 Clustering & Dimensionality Reduction

Topic 1

Principal Component Analysis

Principal Components Analysis:

- · Introduction to Dimensionality Reduction and it's necessity
- · What Are Principal Components?
- · Demonstration of 2D PCA and 3D PCA
- · Eigen Values, Eigen Vectors and Orthogonality
- · Transforming Eigen values into a new data set
- · Proportion of variance explained in PCA

Case Study

Topic 2

Clustering

Clustering Methods:

- · K-Means Clustering
- · Centroids and Medoids
- · Deciding optimal value of 'k' using Elbow Method
- · Linkage Methods
- · Hierarchical Clustering
- · Divisive and Agglomerative Clustering
- · Dendrograms and their interpretation
- · Applications of Clustering
- · Practical Issues in Clustering
- · Improving Supervised Learning algorithms with clustering

Unsupervised Learning

Topic 3

Association Rules

Association Rules Mining:

- · Association Rules
- · Market Basket Analysis
- · Apriori/Support/Confidence/Lift

Case Study

Topic 4

Naive Bayes Algorithm

- ü Naive Bayes:
- · Principle of Naive Bayes Classifier
- $\cdot \, \mathsf{Bayes} \, \mathsf{Theorem}$
- · Terminology in Naive Bayes
- § Posterior probability
- § Prior probability of class
- § Likelihood
- · Types of Naive Bayes Classifier
- · Multinomial Naive Bayes
- · Bernoulli Naive Bayes
- · Gaussian Naive Bayes

Term 6 Natural Language Processing (BASIC)

Term 6 Natural Language Processing (BASIC)

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Topic 1

Time Series (Forecasting)

What is Times Series Data?

Stationarity in Time Series Data and

Augmented Dickey Fuller Test

The Box-Jenkins Approach

The AR Process

The MA Process What is ARIMA?

SARIMA

ACF, PACF and IACF plots

Decomposition of Times Series Trend, Seasonality and Cyclic

Exponential Smoothing

EWMA

Module 2 Natural Language Processing (I)

Topic 2 Intro to NLP

What is NLP?

- · Why NLP?
- Applications of NLP
- Unstructured data
- · Life cycle of NLP
- Tools for NLP
- Libraries for NLP
- o NLTK
- o Spacy
- o TextBlob

Natural Language Processing (BASIC)

Topic 3

Extracting the Data

Potential data sources

- Reading a pdf file
- Reading a HTML file
- Reading a JSON file
- Data extraction through API and Intro to Webscraping
- Regular expressions
- Handling string

Module 2

Nuts & Bolts of NLP

Topic 4

Text Preprocessing

Text normalizing

- Spelling correction
- Stop words removal
- Stemming
- Lemmatization
- Tokenization
- Text standardization and exploratory data analysis

Topic 5

Text Indexing

Inverted Indexes

Boolean query processing

Handling phrase queries, proximity queries

Latent Sematic Analysis

Topic 6

Feature Engineering

One hot encoding

- N gram
- Feature hashing
- Count vectorizer
- TFIDF
- Co occurance matrix

Word embeddings - word2vec, fasttext etc

Case Study

Text Mining
Sentiment Analysis
Spam Detection
Dialogue Prediction

Industry Project

Elective

Capstone Project

Advanced TABLEAU

Term 7 Natural Language Processing (ADVANCED)

Term 7 Natural Language Processing (ADVANCED)

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Module 1 Natural Language Processing (II)

Topic 1 Advanced NLP & ML

Noun phrase extraction

- POS tagging
- NER
- Topic modeling
- Text classification
- Sentiment analysis
- Text similarity
- Support Vector Machine: Classification
- Word sense disambiguation
- Speech recognition and speech to text
- Text to speech
- Language detection and translation

Module 2 Applications of NLP

Topic 2Implementing Industrial Applications

Consumer complaint classification

Customer reviews sentiment prediction

Data stitching using text similarity and record linkage

Text summarization for subject notes

Document clustering

Architectural details of Chatbot and Search Engine along with Learning to rank

Term 7 Natural Language Processing (ADVANCED)

Module 2 Applications of NLP

Topic 3

Deep Learning for NLP

What is a sequence-based model?

Vanishing Gradient

Exploding Gradient

The Idea behind Recurrent Neural Networks

LSTM (Long Short-Term Memory)

GRU (Gated Recurrent Unit)

Batching Sequence Models

Information retrieval using word embedding's

Text classification using deep learning approaches

(CNN, RNN, LSTM, Bi-directional LSTM)

Natural language generation -

prediction next word/ sequence of words using LSTM.

Text summarization using LSTM encoder and decoder.

Term 8 Deep Learning

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Module 1 All About Neural Networks

Topic 1

Introduction to Neural Networks

Introduction to Neural Network
Introduction to Neuron and Perceptron

- · Primitive Neuron
- · Sigmoid Neuron

Types of Activation functions used in deep learning networks

Cost Functions

Gradient Decent

Stochastic Gradient Descent

The feedforward model of neural network

Disadvantages of feedforward model

Applying weights to the feedforward model

Backpropagation algorithm

Topic 2

Artificial Neural Network

Understanding Neural Networks

The Biological Inspiration

Perceptron Learning & Binary Classification

Back propagation Learning & Object Recognition

Term 8 Deep Learning

Topic 3

Tensorflow & Keras

- Introducing Tensorflow
- •Neural Networks using Tensorflow
- Debugging and Monitoring
- •Keras for Classification and Regression in

TypicalData Science Problems

- Setting up KERAS
- •Different Layers in KERAS
- •Creating a Neural Network
- •Training Models and Monitoring
- & Artificial Neural Networks

Case Study

Module 2 Types of Neural Networks

Topic 4

Recurrent Neural Network

- •Introduction to RNN
- •RNN Network Structure
- Different Types of RNNs
- •Bidirectional RNN
- Limitations of RNN
- •Training a RNN with a use case
- GRU's
- Introduction to LSTM
- •LSTM Architecture

Variants on LSTM

•Time Series Forecasting or

Sequential Modelling using LSTM

Term 8 Deep Learning

Topic 5

Convolutional Neural Network

- •Intro to CNN
- •Convolutional operations and Image Features
- •ReLu
- Pooling
- •Fully Connected Layer
- •Training a CNN & Image Classification

Case Study

Capstone Project

Term 9

Dive Deep Learning

Term Duration: 2 Weeks

Software Skill: Python

Industry Project

Assgnments: 4

Module 1 **Computer Vision**

Topic 1

Open CV

- •Introduction to Computer Vision
- OpenCV to work with image files
- •image manipulation including smoothing, blurring
- Translation, rotation, cropping
- •thresholding, and morphological operations.
- Open and Stream video with OpenCV
- Create Color Histograms with OpenCV
- Corner, edge, and grid detection techniques with OpenCV
- •Face Recognition
- Template matching

Topic 2

Advanced CV

Transfer Learning Using Keras

VGG

RESNET

Object Detection

Drawing bounding boxes

Yolo

Module 2

Deploy

Topic 1

Deployment

Creating pickle and frozen files

Cloud Deploying Machine Learning &

Deep Learning model for production

Case Study

Capstone Project