Modelos de datos

Colección de herramientas conceptuales para describir

datos,
relaciones entre ellos,
semántica asociada a los datos y
restricciones de consistencia.

Realidad a modelar Modelado Conceptual Esquema conceptual Ej.: Modelo E-R CREATE TABLE cliente (id-cliente ..., ..., ...) CREATE TABLE préstamo (número-préstamo ..., ..., ...) CREATE TABLE prestatario (id-cliente, número-préstamo) Esquema lógico Ej.: Modelo Relacional préstamo)

Modelos de datos

Modelos basados en objetos

 Se usan para describir datos a nivel conceptual.

Modelo entidad-relación

Modelos basados en registros

 Se utilizan para describir datos a nivel físico.

Modelo relacional

Modelado de datos utilizando el Modelo Entidad-Relación

Bibliografía: Fundamentos de bases de datos – Korth , Silberschatz

Entidades

ENTIDAD:

es un **objeto** que **existe** y es **distinguible** de otros objetos.

Puede ser:

- concreta: persona, empleado, casa, auto,
- abstracta: cuenta bancaria, empresa, curso,
- Una entidad está representada por un conjunto de atributos.

Atributos

Formalmente:

un **atributo** es una función que asigna al conjunto de entidades un dominio.

- Como un conjunto de entidades puede tener diferentes atributos, cada entidad se puede describir como un conjunto de pares (atributo,valor)
 - un par para cada atributo del conjunto de entidades.
- Ejemplo: empleado se puede describir mediante el conjunto

{(DNI, 67789901), (nombre, López), (calle, Mayor), (ciudad, Rosario)}

Atributos

ATRIBUTOS:

son propiedades específicas que describen la entidad.

 Ejemplo: persona puede describirse con nombre, edad, dirección, ...

DOMINIO:

es el conjunto de **valores permitidos** para un atributo.

Tipos de atributos

Atributos simples y compuestos.

- Simples: no están divididos en subpartes.
 - Son los que vimos hasta ahora: nombre, calle, ...
- **Compuestos**: se pueden dividir en subpartes (es decir, en otros atributos).
 - Ejemplo: nombre-persona podría estar estructurado como un atributo compuesto consistente en nombre, primer-apellido y segundo-apellido.

Tipos de atributos

Atributos monovalorados y multivalorados.

- Monovalorados: atributos con un valor único para la entidad.
 - Ejemplo: fecha-nacimiento
- Multivalorado: tiene un conjunto de valores para una entidad.
 - Ejemplo: número-teléfono para los empleados.

Un empleado puede tener **cero**, **uno** o **más** números de teléfono.

Ejemplos de entidades

 Sucursal → el conjunto de todas las sucursales de un banco determinado.

Atributos: nombre-sucursal, ciudad-sucursal, activo

 Cliente → el conj. de todas las personas que tienen una cuenta en el banco.

Atributos: nombre-cliente, seguridad-social, calle, ciudadcliente

 Empleado → el conjunto de todas las personas que trabajan en el banco.

Atributos: nombre-empleado, número-teléfono

 Cuenta → el conjunto de todas las cuentas que mantiene en el banco.

Atributos: número-cuenta, saldo

• Transacción → el conj. de todas las transacciones realizadas en

Tipos de atributos

Atributos derivados.

- Su valor se puede obtener a partir de valores de otros atributos.
 - Ej.: edad se puede derivar a partir de la fecha de nacimiento.
- Su valor no se almacena, sino que se calcula cuando es necesario

Valor **nulo**.

 Un atributo toma un valor nulo cuando una entidad no tiene un valor para ese atributo.

Relaciones

RELACIÓN es una **asociación entre** varias **entidades**.

Formalmente:

Sean E_1 , E_2 , E_n conjuntos de entidades,

un **conjunto de relaciones R** es un **subconjunto** de

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots e_n \in E_n\}$$

donde una instancia $(e_1, e_2, \dots e_n)$ es una instancia de la relación.

Entidades Cliente y Cuenta 259 1000 630 2000 Oliver 654-32-1098 Main Austin 401 1500 Harris 890-12-3456 North Georgetown 700 1500 Marsh 456-78-9012 Main Austin 199 500 369-12-1518 North Georgetown 467 900 Pepper 115 1200 Ratliff 246-80-1214 Park Round Rock 121-21-2121 183 1300 Brill Putnam San Marcos 135-79-1357 118 2000 Evers Nassau Austin 225 2500 Cliente 210 2200

Relación CtaCli: muestra la asociación entre clientes y cuentas 259 1000 630 2000 Oliver 654-32-1098 Main 401 Austin 1500 700 890-12-3456 North Georgetown 1500 Harris Marsh 456-78-9012 Main Austin 199 500 369-12-1518 North 467 900 Pepper Georgetown Ratliff 246-80-1214 Park Round Rock 115 1200 Brill 121-21-2121 Putnam San Marcos 183 1300 Evers 135-79-1357 Nassau Austin 118 2000 225 2500 Cliente 210 2200 Cuenta

Relaciones

Cuenta

- Relaciones binarias:
 son entre 2 entidades (grado 2)
- Las entidades asociadas con una relación pueden no ser distintos.
 - Ejemplo: trabaja-para
 - podría modelarse por pares ordenados de entidades Empleado,
 - donde el primero es el jefe, y el segundo es el subordinado.

Relaciones

Una relación puede tener atributos descriptivos

- Ejemplos:
 - fecha_préstamo de un libro a un lector
 - fecha en CtaCli, especifica la última fecha en la que un cliente tuvo acceso a su cuenta.

¿Atributo o Entidad?

- Se pueden definir entidades y sus relaciones de varias formas.
- La principal diferencia es la forma en que se tratan los atributos.

Ejemplo: Empleado(nombre-empleado, númeroteléfono)

- Se puede argumentar que teléfono es una entidad en sí misma con atributos: Teléfono(número, oficina).
- Entonces, quedarían las entidades:

Empleado(nombre-empleado)
Teléfono(número-teléfono, oficina)

v la relación: **EmpTel**, que asocia empleados y sus teléfonos

¿Atributo o Entidad?

¿Qué constituye un atributo o una entidad?

Depende de

- la estructura de la empresa que se modela y
- la semántica asociada con el atributo en cuestión.

Caso 1 vs. Caso 2

Caso 1: Empleado(nombre-empleado, número-teléfono)

 cada empleado tiene exactamente un número de teléfono

Caso 2: Empleado(nombre-empleado)

Teléfono(número-teléfono, oficina)

relación **EmpTel**

- los empleados pueden tener varios números de teléfono
- El Caso 2 es más general y puede ser más

Restricciones de asignación (mapping)

La cardinalidad de asignación expresa el número de entidades con las que se puede asociar otra entidad a través de un conjunto de relaciones.

En una relación **binaria** entre las entidades A y B, la **cardinalidad** debe ser una de las siguientes:

1:1 1:N N:1 N:N

Restricciones de asignación (mapping)

1:1

Restricciones de asignación (mapping)

1:N

Restricciones de asignación (mapping)

N:1

Restricciones de asignación (mapping)

N:N

Restricciones de asignación (mapping)

 La cardinalidad depende del mundo real que se está modelando.

Ejemplo:

Para la relación CtaCli

- Si una cuenta puede pertenecer únicamente a un cliente, y un cliente puede tener varias cuentas
 - ⇒ 1:N de Cliente a Cuenta.
- Si una cuenta puede pertenecer a varios clientes, y un cliente puede tener varias cuentas

⇒ N:N

subordinada) **depende de**

Es otra clase de restricción.

la **existencia de la entidad y** (entidad dominante)

entonces

Dependencias de existencia

Si la existencia de la entidad x (entidad

se dice que **x es dependiente por existencia de y**.

 \Rightarrow si se suprime **y**, también se suprime **x**.

Claves en entidades

Superclave es un conjunto de uno o más atributos que permiten identificar de forma única a una entidad.

Ejemplos: Superclaves de la entidad

Cliente (nombre-cliente, seguridad-social, calle, ciudadcliente)

- {nombre-cliente, seguridad-social}
- seguridad-social
- Si K es una superclave, también lo será cualquier superconjunto de K.

Claves en entidades

Claves candidatas
son superclaves para las cuales
ningún subconjunto propio
es superclave.

Clave primaria

es aquella clave candidata que **elige** el diseñador de la BD.

Claves en entidades

Una entidad que **tiene** una **clave candidata** se denomina **entidad fuerte**.

 Es posible que una entidad no tenga atributos suficientes para formar una clave candidata.

Estas se denominan entidad débil.

Claves en entidades

Discriminador de una entidad débil es el conjunto de atributos que permite, fijada una entidad fuerte, distinguir una entidad débil de otra.

Ejemplo: Fijado un número de cuenta **número-transacción** es el **discriminador** de la entidad débil **Transacción**

Claves en entidades

Ejemplo de entidad débil:

Transacción (número-transacción, fecha, cantidad)

Transacciones en cuentas diferentes pueden compartir el mismo número de transacción

=> no tiene clave candidata

Claves en entidades

Por lo tanto:

La clave primaria de una entidad débil está formada por:

- la clave primaria de la fuerte de la cual depende
- y su discriminador

Ejemplo:

 clave primaria de Transacción es {número-cuenta, número-transacción}

Claves en relaciones

Sean

 ${\bf R}$ una relación que involucra a las entidades ${\bf E_1},\,{\bf E_2}$... ${\bf E_n}.$

(E_i) la clave primaria de la entidad E_i

Si R

no tiene atributos ⇒

atributo(R) =
$$(E_1)$$
 U (E_2) U U (E_n)

tiene atributos descriptivos {a₁, a₂, ..., am} ⇒

atributo(R) = (E₁) U (E₂) U U (E_n) U {a₁, a₂, ..., a_m}

Claves en relaciones

Si R no tiene atributos ⇒ atributo(R) forma una superclave.

Si la cardinalidad es N:N ⇒
 esta superclave es clave primaria.

Ejemplo: Si *CtaCli* es muchas a muchas, entonces {seguridad-social, número-cuenta} es la clave primaria

Claves en relaciones

Ejemplo:

Sea la relación CtaCli con:

- atributo: fecha
- entidades involucradas:
 - -cliente con clave primaria seguridad-social
 - -cuenta con clave primaria número-cuenta

resulta:

atributo(CtaCli)={seguridad-social,númerocuenta,fecha}

Claves en relaciones

Si R no tiene atributos ⇒ atributo(R) forma una superclave.

Si la cardinalidad es N:1 o 1:N ⇒
 la clave primaria es un subconjunto de esta superclave.

Ejemplo: Si *CtaCli* es muchas a una de *Cliente* y *Cuenta*

Es decir, una persona puede tener **una sola cuenta** asociada

pero una cuenta puede estar a nombre de varias personas

entonces la clave primaria es {seguridad-social}

... and all administration of control of a c

Claves en relaciones

Si R tiene atributos asociados ⇒
una superclave está formada igual que antes
con el posible agregado de
uno ó más de estos atributos.

Ejemplo: Sea la relación BanqueroCli con

- entidades: Cliente y Banquero

atributo: **tipo**(con valores prestamista o banquero personal).

Diagrama entidad-relación

- Consta de los siguientes componentes:
 - Rectángulos: conjuntos de entidades
 - Elipses: atributos
 - **Rombos**: relaciones entre conjuntos de entidades
 - Líneas: conectan atributos a conjuntos de entidades y conjuntos de entidades a relaciones.
- Cada componente se etiqueta con la entidad ó relación que representa.

Claves en relaciones

• Si un banquero puede representar dos papeles distintos (prestamista o banquero personal) en una relación con un cliente.

la clave primaria de BanqueroCli es

clave-primaria(cliente) U clave-primaria(banquero) U {tipo}

 Si un banquero puede tener un sólo tipo de papel con un cliente.

la clave primaria de BanqueroCli es

clave-primaria(cliente) U clave-primaria(banquero)

Por lo tanto, si el atributo tipo queda determinado por uno de los dos elementos de la clave.

na faunca nauta da la alauca

Ejemplo: Sistema bancario de BD que consta de los clientes y sus cuentas.

Diagrama entidad-relación

Se nota la **cardinalidad** con **1** ó **n** junto a la entidad correspondiente.

 Cuando una entidad está relacionada consigo misma (trabaja-para) los papeles se indican etiquetando las líneas que conectan los rombos a los rectángulos.

Reducción de DER a tablas (mapa canónico)

Representación de conjuntos de entidades fuerte

- Sea E una entidad fuerte con atributos descriptivos a₁, a₂,...., a_n.
- Representamos esta entidad por medio de una tabla llamada E con n columnas
- Cada columna corresponde un atributo de E.
- · Cada fila corresponde a una entidad.

Diagrama entidad-relación

Una **entidad débil** se indica por medio de un **rectángulo de doble contorno**.

Ejemplo: tabla cuenta

Número-cuenta	Saldo	
259	1000	
630	2000	
401	1500	
700	1500	
199	500	
467	900	
115	1200	
183	1300	
118	2000	
225	2500	
210	2200	

Tabla **cuenta**

Sean:

- D₁ el conjunto de todos los números de cuentas, y
- D₂ el conjunto de todos los saldos.

Cualquier fila de la tabla Cuenta consiste en una tupla binaria (v_1,v_2) con v_1 en D_1 y v_2 en D_2 .

- El conjunto de todas la filas posibles de Cuenta es el producto cartesiano D₁ x D₂.
- La tabla Cuenta contendrá un subconjunto de D₁ x D₂.

Tabla proveniente de una entidad

En general, para una tabla con n columnas, el producto cartesiano $D_1 \times D_2 \times \times D_n$ es el conjunto de todas las filas posibles.

La tabla contiene un subconjunto de D₁ x D₂ xx D_n

Tabla cliente

Representación de entidades débiles

Sean:

- A una entidad débil con atributos descriptivos a₁,a₂,....,a_r.
- B la entidad fuerte de la que depende A.
- La clave primaria de B es {b₁,b₂,...,b_s}

Entonces, se representa la entidad **A** por medio de una

tabla llamada A con columnas:

$$\{b_1, b_2, \dots, b_s\} \cup \{a_1, a_2, \dots, a_r\}$$

Tabla transacción

Número-cuenta	Número-transacción	Fecha	Cantidad
259	5	11 mayo 1990	+ 50
630	11	17 mayo 1990	+ 70
401	22	23 mayo 1990	- 300
700	69	28 mayo 1990	- 500
199	103	3 junio 1990	+ 900
259	6	7 junio 1990	- 44
115	53	7 junio 1990	+ 120
259	7	17 junio 1990	- 79

Tabla CtaCli

Tiene las columnas:

seguridad-social, número-cuenta y fecha

Representación de relaciones

Sea R una **relación** que involucra a las **entidades**

E₁, E₂, .. E_m

Supongamos que atributo(R) consta de n atributos.

Entonces, **representamos** esta relación mediante una **tabla** llamada **R** con **n columnas** distintas, donde cada columna corresponde a un atributo de atributo(R).

Representación de relaciones entre entidades fuertes y débiles

Las **relaciones** que conectan una **entidad fuerte con una débil** son un caso especial.

- Son relaciones muchas a una.
- No tienen atributos descriptivos.
- La clave primaria de la entidad débil incluye la clave primaria de la entidad fuerte de la cual depende.

Por esto, la tabla de la relación resulta **una tabla redundante** y no necesita presentarse.

Tabla bitácora

- Cuenta es entidad fuerte con clave primaria número-cuenta
- Transacción es entidad débil con clave primaria {número-cuenta, número-transacción}

Como la relación **no tiene atributos descriptivos** la **tabla bitácora** tendrá 2 columnas:

número-cuenta, número-transacción.

Pero la **tabla** para la entidad **transacción** tiene 4 **columnas**:

número-cuenta, número-transacción, fecha y cantidad.

• Por lo que la tabla Ritácora es redundante

Número-Saldo cuenta En el DER se Cuenta representa mediante un IS A triángulo etiquetado **Cuenta-cheques Cuenta-ahorros** IS A. Tasa-interés Saldo-deudor

Algunas extensiones al DER: Generalización y Especialización

Si clasificamos cada cuenta en cuenta-ahorros y cuenta-cheques

y considerando que cada una de estas entidades tiene

- algunos atributos diferentes
- y otros atributos en común con la entidad cuenta

esto se puede expresar por generalización

Generalización y Especialización

Generalización
es una relación de inclusión
que existe entre una entidad de nivel más
alto
y una o más entidades de nivel más bajo.

y una o mas entidades de invermas bajo.

Especialización es la relación inversa.

Representación en tablas

· Existen dos métodos.

Método 1:

- Crear una tabla para la entidad del nivel más alto.
- Crear una tabla para cada entidad de nivel más bajo que incluya:
 - una columna por cada atributo de esa entidad
 - más una columna para cada atributo de la clave primaria de la entidad del nivel más alto.

Representación en tablas

Método 2:

- No crear una tabla para la entidad del nivel más alto.
- Crear una tabla para cada entidad de nivel más bajo que incluya:
 - una columna para cada uno de los atributos de esta entidad,
 - más una columna para cada atributo de la entidad de nivel más alto.

Representación en tablas – Método 1

Cuenta(número-cuenta, saldo)

Cuenta-ahorros (número-cuenta, tasa-interés)

Cuenta-cheques (número-cuenta, saldo-deudor)

Representación en tablas – Método 2

Cuenta-ahorros (número-cuenta, tasa-interés, saldo)

Cuenta-cheques (número-cuenta, saldo-deudor, saldo)

Diseño de un esquema de BD Comentarios generales

• Existe una amplia variedad de alternativas.

El diseñador deberá tomar decisiones, por ejemplo:

- Uso de una relación ternaria ó un par de binarias
- Un concepto se expresa mejor mediante un conjunto de entidades ó de relaciones
- Utilización de un atributo ó un conjunto de entidades
- Uso de un conjunto de entidades fuerte ó débil
- Uso de **generalización**.

-