Algorithm

```
library(tidyverse)
library(haven)
library(palmerpenguins)
library(gtsummary)
library(caret)
library(finalfit)
library(ranger)
library(kernlab)
```

Import dataset

```
#PR <- read_spss("BDPR7RFL.SAV")</pre>
hr <- read_sav("BDHR7RFL.SAV")</pre>
#PR df <-PR |>
# select(HV226, HV206, HV208, HV243A, HV221, HV209, HV242, HV025, HV220, HV219, HV106,
# rename(fuel= HV226, Electricity = HV206,
          Television = HV208, Mobile.phone = HV243A, Landline = HV221,
       # Refrigerator = HV209, separate.kitchen = HV242, residence = HV025, age = HV220,
        # sex = HV219, education = HV106, marital.status = HV115, work.status = SH13,
         #mutate(Cooking.fuel = cut(fuel,
                                   breaks = c(1,5,10),
         #
                                   labels = c("Clean Fuel", "Not Clean"),
                                  right = TRUE))
hr_df <- hr |>
  select(HV226, HV206, HV208, HV243A, HV221, HV209, HV242, HV241, HV025, HV220,
         HV219, `HV106$01`, HV024, `HV115$01`, `SH13$01`, HV270, HV009) |>
  ## Renaming Variable
  rename(fuel= HV226, Electricity = HV206, Television = HV208,
         Mobile.phone = HV243A, Landline = HV221, Refrigerator = HV209,
         separate.kitchen = HV242, Kitchen = HV241, residence = HV025,
         age = HV220, Division = HV024,
         sex = HV219, education = `HV106$01`, marital.status = `HV115$01`,
         work.status = `SH13$01`, Wealth.index = HV270, Family.size = HV009) |>
```

```
mutate(cooking.fuel = case_when(fuel <= 5 ~ 1,</pre>
                                            ## Categories fuel into two categories
                                           fuel == 6 \sim 0,
                                            ## 1 = Clean, O = Unclean
                                           fuel == 7 \sim 0,
                                           fuel == 8 ~ 0,
                                           fuel == 9 \sim 0,
                                           fuel == 10 ~ 0,
                                           fuel == 11 ~ 0,
                                           TRUE ~ NA),
                 sex = case\_when(sex == 2 \sim 0,
                                  sex == 1 ~ 1),
                 residence = case_when(residence == 1 ~ 1,
                                        # 1 = Urban 0 = Rural
                                        residence ==2 \sim 0),
                 marital.status = case_when(marital.status == 1 ~ 1,
                                             marital.status == 2 ~ 1,
                                             # 1 = Yes
                                             marital.status == 0 ~ 0,
                                             marital.status == 3 ~ 0,
                                             marital.status == 4 ~ 0,
                                             marital.status == 5 \sim 0),
                                             \# 0 = No
                 separate.kitchen = if_else(separate.kitchen == 1, 1, 0, missing = 1),
                                              \# 0 = No 1 = Yes
                 tele.communication = case_when(Landline == 1 | Mobile.phone == 1 ~ 1,
                                                  TRUE ~ 0)
                                             # 1 = Yes 0 = N0
         )
 table(hr_df$separate.kitchen)
   0
387 19070
 table(hr_df$tele.communication)
         1
1042 18415
 head(hr_df)
```

```
# A tibble: 6 x 19
 fuel
                       Electricity Television Mobile.phone Landline Refrigerator
  <dbl+1b1>
                       <dbl+lbl>
                                   <dbl+1bl> <dbl+1bl>
                                                            <dbl+lb> <dbl+lbl>
1 8 [Wood]
                       0 [No]
                                   0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                     0 [No]
2 8 [Wood]
                       0 [No]
                                   0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                     0 [No]
3 11 [Animal dung]
                       0 [No]
                                   0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                     0 [No]
4 8 [Wood]
                       0 [No]
                                   0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                     O [No]
5 8 [Wood]
                                                            0 [No]
                       0 [No]
                                   0 [No]
                                               1 [Yes]
                                                                     0 [No]
6 10 [Agricultural cr~ 0 [No]
                                   0 [No]
                                               1 [Yes]
                                                            0 [No]
                                                                     O [No]
# i 13 more variables: separate.kitchen <dbl>, Kitchen <dbl+lbl>,
    residence <dbl>, age <dbl+lbl>, sex <dbl>, education <dbl+lbl>,
   Division <dbl+lbl>, marital.status <dbl>, work.status <dbl+lbl>,
   Wealth.index <dbl+lbl>, Family.size <dbl>, cooking.fuel <dbl>,
    tele.communication <dbl>
```

Multidimentional Energy Poverty Index:

```
hr_ep <- hr_df |>
  select(cooking.fuel, Electricity, Television, tele.communication ,
         Refrigerator, separate.kitchen, residence, age, sex, education,
         marital.status, work.status, Wealth.index, Family.size, Division) |>
  mutate(cooking.fuel = case when( cooking.fuel == 0 ~ 1,
                                    cooking.fuel == 1 ~ 0,
                                    # 1 = Do not use clean fuel
                                    TRUE ~ NA),
         Electricity = case_when( Electricity == 0 ~ 1,
                                   # 1 = Do not have Electricity
                                   Electricity == 1 \sim 0),
         Television = case_when( Television == 0 ~ 1,
                                  # 1 = Do not have Television
                                  Television == 1 \sim 0),
         tele.communication = case_when( tele.communication == 0 ~ 1,
                                  # 1 = Do not have a landline or mobile phone
                                          tele.communication == 1 \sim 0),
         Refrigerator = case_when( Refrigerator == 0 ~ 1,
                                    # 1 = Do not have Refrigerator
                                    Refrigerator == 1 \sim 0),
         separate.kitchen = case_when( separate.kitchen == 0 ~ 1,
                                        # 1 = Do not have separate.kitchen
                                        separate.kitchen == 1 \sim 0),
         ) |>
  na.omit()
```

```
head(hr_ep)
# A tibble: 6 x 15
  cooking.fuel Electricity Television tele.communication Refrigerator
                                 <dbl>
         <dbl>
                     <dbl>
                                                     <dbl>
                                                                   <dbl>
1
             1
                          1
                                     1
                                                         0
                                                                       1
2
             1
                                                         0
                          1
                                     1
                                                                       1
3
                                                         0
4
                          1
                                                         0
                                                                       1
5
             1
                          1
                                     1
                                                         0
                                                                       1
6
             1
                          1
                                     1
                                                         0
                                                                       1
# i 10 more variables: separate.kitchen <dbl>, residence <dbl>, age <dbl+lbl>,
    sex <dbl>, education <dbl+lbl>, marital.status <dbl>,
    work.status <dbl+lbl>, Wealth.index <dbl+lbl>, Family.size <dbl>,
    Division <dbl+lbl>
  table(hr_ep$cooking.fuel)
    0
          1
3983 15434
  table(hr_df$cooking.fuel)
    0
          1
15435 3983
  table(hr_ep$Electricity)
          1
15779 3638
  table(hr_df$Electricity)
3643 15814
  table(hr_ep$Television)
    0
          1
9218 10199
```

```
table(hr_df$Television)
    0
10223 9234
  table(hr_ep$tele.communication)
18379 1038
  table(hr_df$tele.communication)
   0 1
 1042 18415
  table(hr_ep$Refrigerator)
    0
5734 13683
  table(hr_df$Refrigerator)
13711 5746
  table(hr_ep$separate.kitchen)
    0
         1
19031
        386
  table(hr_df$separate.kitchen)
    0 1
  387 19070
  w \leftarrow c(0.2, 0.2, 0.15, 0.15, 0.15, 0.15)
```

```
y1 = as.matrix(hr_ep$cooking.fuel)*(w[1])
  y2 = as.matrix(hr_ep$Electricity)*w[2]
  y3 = as.matrix(hr_ep$Television)*w[3]
  y4 = as.matrix(hr_ep$tele.communication)*w[4]
  y5 = as.matrix(hr_ep$Refrigerator)*w[5]
  y6 = as.matrix(hr_ep$separate.kitchen)*w[6]
  head(y6)
     [,1]
[1,]
[2,]
       0
[3,]
       0
[4,]
       0
[5,]
       0
[6,]
       0
  Y = as.matrix(cbind(y1, y2, y3, y4, y5, y6), ncol = 6)
  head(Y)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15
                       0 0.15
[2,] 0.2 0.2 0.15
                       0 0.15
[3,] 0.2 0.2 0.15
                       0 0.15
                                 0
[4,] 0.2 0.2 0.15
                       0 0.15
[5,] 0.2 0.2 0.15
                       0 0.15
                                 0
[6,] 0.2 0.2 0.15
                       0 0.15
  \#C = Y * as.vector(w)
  C = Y
  Energy <- C %>% as_tibble() %>%
     mutate(deprivation_score = rowSums(across(where(is.numeric))),
            deprived = case_when( deprivation_score >= 0.35 ~ deprivation_score,
                                   deprivation_score < 0.35 ~ 0),</pre>
            energy_poor = case_when(deprived == 0 ~ 0,
                              TRUE ~ 1)
```

```
)
Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
`.name_repair` is omitted as of tibble 2.0.0.
i Using compatibility `.name_repair`.
  dim(Y)
[1] 19417
              6
  dim(t(w))
[1] 1 6
  head(C)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15
                       0 0.15
[2,] 0.2 0.2 0.15
                       0 0.15
                                 0
[3,] 0.2 0.2 0.15
                       0 0.15
                                 0
[4,] 0.2 0.2 0.15
                       0 0.15
                                 0
[5,]
     0.2 0.2 0.15
                       0 0.15
                                 0
[6,]
      0.2 0.2 0.15
                       0 0.15
  head(Y)
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.2 0.2 0.15
                       0 0.15
    0.2 0.2 0.15
                       0 0.15
[2,]
[3,] 0.2 0.2 0.15
                       0 0.15
                                 0
[4,] 0.2 0.2 0.15
                       0 0.15
                                 0
[5,]
     0.2 0.2 0.15
                       0 0.15
                                 0
[6,] 0.2 0.2 0.15
                       0 0.15
                                 0
  head(Energy)
```

```
# A tibble: 6 x 9
     V1
           ٧2
                 VЗ
                              ٧5
                       ۷4
                                    V6 deprivation_score deprived energy_poor
                                                   <dbl>
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                             <dbl>
                                                                         <dbl>
    0.2
          0.2 0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                                                              1
    0.2
2
          0.2
               0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                                                              1
    0.2
          0.2 0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                     0
                                                                              1
    0.2
          0.2 0.15
                        0 0.15
                                     0
                                                      0.7
                                                               0.7
                                                                              1
5
    0.2
          0.2 0.15
                        0 0.15
                                                      0.7
                                                               0.7
                                     0
                                                                              1
    0.2
          0.2 0.15
                        0 0.15
                                     0
                                                      0.7
                                                               0.7
                                                                              1
  head = 13113/19417; head
[1] 0.675336
  intensity = sum(Energy$deprived)/13113;intensity
[1] 0.5199115
  MEPI = head * intensity;MEPI
[1] 0.351115
  table(Energy$energy_poor)
    0
          1
 6304 13113
#Building Model
  hr_ml <-hr_ep |>
    select(Family.size, age, residence, sex, education, marital.status, work.status, Wealth.index, Div
    na.omit()
  hr_ml$poverty <- cbind(Energy$energy_poor)</pre>
  head(hr_ml)
```

```
# A tibble: 6 x 10
 Family.size age
                        residence
                                     sex education
                                                     marital.status work.status
        <dbl> <dbl+lbl>
                            <dbl> <dbl> <dbl+lbl>
                                                               <dbl> <dbl+lbl>
1
            5 45
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
2
            6 65
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
3
            5 65
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
4
            6 68
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
                                                                   1 1 [Yes]
5
            4 42
                                 0
                                       0 1 [Primary]
6
            5 42
                                 0
                                       1 1 [Primary]
                                                                   1 1 [Yes]
# i 3 more variables: Wealth.index <dbl+lbl>, Division <dbl+lbl>,
    poverty <dbl[,1]>
  table(hr_ml$poverty)
    0
          1
 6304 13113
  hrml1 <- hr_ml |>
    mutate_at(factor, .vars = vars(residence:poverty))
  hrml1 |>
    pivot_longer(poverty) |>
    mutate(Ep = case_when( value == 1 ~ "Energy Poor",
                          TRUE ~ "Energy non Poor"),
           Division = case_when(Division == 1 ~ "Barisal",
                                 Division == 2 ~ "Chittagong",
                                 Division == 3 ~ "Dhaka",
                                 Division == 4 ~ "Khulna",
                                 Division == 5 ~ "Mymensingh",
                                 Division == 6 ~ "Rajshahi",
                                 Division == 7 ~ "Rangpur",
                                 Division == 8 ~ "Sylhet"
                                 )) |>
    ggplot(aes(x = value)) +
    geom_bar(aes(fill= Ep),alpha = 0.8) +
    facet_wrap(~Division,scales = "free") +
    theme minimal()
```


Characteristic	$0, \mathrm{N} = 6,304$	1, N = 13,113	p-value
Number of household members	4.00 (3.00, 6.00)	4.00 (3.00, 6.00)	< 0.001
Age of head of household	44 (35, 55)	45 (35, 56)	0.001
residence			< 0.001
0	2,154 (34%)	10,179 (78%)	
1	4,150 (66%)	$2,934\ (22\%)$	
sex			0.5
0	986 (16%)	1,997 (15%)	
1	5,318 (84%)	11,116 (85%)	
education		•	< 0.001
0	858 (14%)	4,550 (35%)	
1	1,461 (23%)	4,842 (37%)	
2	2,064 (33%)	$2,932\ (22\%)$	
3	1,915 (30%)	779 (5.9%)	
8	6 (<0.1%)	10 (<0.1%)	
marital.status	` '	,	< 0.001
0	492~(7.8%)	1,325 (10%)	
1	5,812 (92%)	11,788 (90%)	
work.status	, , ,	, , ,	< 0.001
0	1,181 (19%)	$1,633 \ (12\%)$	
1	5,123 (81%)	11,480 (88%)	
Wealth.index	. ,	. ,	< 0.001
1	0 (0%)	4,072 (31%)	
2	16~(0.3%)	3,817 (29%)	

Characteristic	$0, \mathrm{N} = 6,304$	1, N = 13,113	p-value
3	582 (9.2%)	3,046 (23%)	
4	1,930 (31%)	1,859 (14%)	
5	3,776 (60%)	319 (2.4%)	
Division		, ,	< 0.001
1	436 (6.9%)	1,606 (12%)	
2	1,177 (19%)	1,464 (11%)	
3	1,870 (30%)	1,034 (7.9%)	
4	653 (10%)	1,858 (14%)	
5	484 (7.7%)	$1,728\ (13\%)$	
6	684 (11%)	1,877 (14%)	
7	368 (5.8%)	2,095 (16%)	
8	632 (10%)	1,451 (11%)	

```
names(hrml1)
```

Table 2: Logistic regression results predicting likelihood of Energy Poverty

	Dependent: poverty		0	1	Odds ratio (univariable)	Odds ratio (multivariable)
15	Number of	Mean	4.8(2.3)	4.6(2.0)	0.956 (0.943 to 0.970,	0.949 (0.926 to 0.972,
	household members	(SD)			TRUE < 0.0001)	TRUE < 0.0001)
1	Age of head of	Mean	45.1	46.0	1.004 (1.002 to 1.006,	1.009 (1.005 to 1.013,
	household	(SD)	(13.7)	(14.6)	TRUE = 0.0001)	TRUE<0.0001)
18	residence	0	2154	10179	-	-
			(17.5)	(82.5)		
19		1	4150	2934	0.150 (0.140 to 0.160,	0.550 (0.496 to 0.611,
			(58.6)	(41.4)	TRUE<0.0001)	TRUE<0.0001)
20	sex	0	986	1997	-	-
			(33.1)	(66.9)		
21		1	5318	11116	1.032 (0.950 to 1.121,	1.163 (0.973 to 1.390,
			(32.4)	(67.6)	TRUE=0.4563)	TRUE=0.0969)

	Dependent: povert	y	0	1	Odds ratio (univariable)	Odds ratio (multivariable)
10	education	0	858	4550	-	-
			(15.9)	(84.1)		
11		1	1461	4842	0.625 (0.569 to 0.686,	0.901 (0.777 to 1.044,
			(23.2)	(76.8)	TRUE<0.0001)	TRUE=0.1654)
12		2	2064	2932	0.268 (0.244 to 0.294,	0.799 (0.687 to 0.928,
			(41.3)	(58.7)	TRUE<0.0001)	TRUE=0.0033)
13		3	1915	779	0.077 (0.069 to 0.086,	0.567 (0.473 to 0.679,
			(71.1)	(28.9)	TRUE<0.0001)	TRUE<0.0001)
14		8	6 (37.5)	10 (62.5)	0.314 (0.116 to 0.926,	0.568 (0.036 to 3.809,
			,	,	TRUE=0.0254)	TRUE=0.6112)
16	marital.status	0	492	1325	-	-
			(27.1)	(72.9)		
17		1	5812	11788	0.753 (0.675 to 0.839,	0.765 (0.627 to 0.933,
			(33.0)	(67.0)	TRUE<0.0001)	TRUE=0.0083)
27	work.status	0	1181	1633	-	-
			(42.0)	(58.0)		
28		1	$5123^{'}$	11480	1.621 (1.493 to 1.759,	1.158 (0.987 to 1.358,
			(30.9)	(69.1)	TRUE<0.0001)	TRUE=0.0717)
22	Wealth.index	1	0(0.0)	$4072^{'}$	-	-
			()	(100.0)		
23		2	16(0.4)	3817	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			,	(99.6)	TRUE=0.9334)	TRUE=0.9320)
24		3	582	3046	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			(16.0)	(84.0)	TRUE=0.9154)	TRUE=0.9140)
25		4	1930	1859	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			(50.9)	(49.1)	TRUE=0.9074)	TRUE=0.9064)
26		5	3776	319 (7.8)	0.000 (0.000 to 0.000,	0.000 (0.000 to 0.000,
			(92.2)	,	TRUE=0.8960)	TRUE=0.8952)
2	Division	1	436	1606	-	-
			(21.4)	(78.6)		
3		2	1177	1464	0.338 (0.296 to 0.385,	0.543 (0.442 to 0.667,
			(44.6)	(55.4)	TRUE<0.0001)	TRUE<0.0001)
4		3	1870	1034	0.150 (0.132 to 0.171,	0.278 (0.226 to 0.341,
			(64.4)	(35.6)	TRUE<0.0001)	TRUE<0.0001)
5		4	653	1858	0.772 (0.672 to 0.887,	2.096 (1.696 to 2.592,
			(26.0)	(74.0)	TRUE=0.0003)	TRUE<0.0001)
6		5	484	1728	0.969 (0.837 to 1.122,	0.789 (0.629 to 0.991,
			(21.9)	(78.1)	TRUE=0.6754)	TRUE=0.0415)
7		6	684	1877	0.745 (0.649 to 0.854,	0.949 (0.769 to 1.171,
		-	(26.7)	(73.3)	TRUE<0.0001)	TRUE= 0.6252)
8		7	368	2095	1.546 (1.326 to 1.802,	2.291 (1.800 to 2.921,
-		•	(14.9)	(85.1)	TRUE<0.0001)	TRUE<0.0001)
9		8	632	1451	0.623 (0.541 to 0.718,	1.355 (1.081 to 1.698,
-		J	(30.3)	(69.7)	TRUE<0.0001)	TRUE=0.0083)

Model Building

```
split <- createDataPartition(hrml1$poverty, p=3/4, list = FALSE)</pre>
  training <- hrml1[split,]</pre>
  testing <- hrml1[-split,]</pre>
  set.seed(12345)
  model <- train(poverty ~ ., data =training,</pre>
  method = "svmLinear",
  na.action = na.omit,
  preProcess = c("scale", "center"),
  trControl = trainControl(method = "none"),
  tune_grid = data.frame(degree=1, scale = 1, C=1))
  model.cv <- train(poverty ~ ., data = training,</pre>
  method = "svmLinear",
  na.action = na.omit,
  preProcess = c("scale", "center"),
  trControl = trainControl(method = "cv", number = 10),
  tuneGrid = expand.grid(C = c(0,0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,5)),
  tuneLength = 10)
Warning: model fit failed for Fold01: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for Fold02: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for Fold03: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for Fold04: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for FoldO5: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for Fold06: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for Fold07: C=0.00 Error in .local(x, ...):
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for FoldO8: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
```

```
Warning: model fit failed for Fold09: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning: model fit failed for Fold10: C=0.00 Error in .local(x, ...) :
  No Support Vectors found. You may want to change your parameters
Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
: There were missing values in resampled performance measures.
Warning in train.default(x, y, weights = w, ...): missing values found in
aggregated results
  model.Rf <- train(poverty ~ ., data = training,</pre>
  method = 'ranger',
  na.action = na.omit.
  preProcess = c("scale", "center"),
  trControl = trainControl(method = "cv", number = 10))
Growing trees.. Progress: 52%. Estimated remaining time: 3 minutes, 18 seconds.
  model.knn <- train(poverty ~ ., data = training,</pre>
  method = "knn",
  na.action = na.omit,
  preProcess = c("scale", "center"),
  trControl = trainControl(method = "cv", number = 10))
  model.glm <- train(poverty ~ ., data = training,</pre>
  method = "glm",
  na.action = na.omit,
  preProcess = c("scale", "center"),
  trControl = trainControl(method = "cv", number = 10))
```

Apply model for prediction

```
model.train <- predict(model, training)
model.test <- predict(model, testing)
model.cross <- predict(model.cv,training)
model.cross.test <- predict(model.cv, testing)
model.random.forest <- predict(model.Rf,training)
model.random.forest.test <- predict(model.Rf, testing)
model.kNN <- predict(model.knn,training)
model.kNN.test <- predict(model.knn, testing)
model.lr <- predict(model.glm,training)
model.lr.test <- predict(model.glm, testing)</pre>
```

Display confusion matrix

```
model.train.confusion <- confusionMatrix(model.train, training$poverty)</pre>
  print(model.train.confusion)
Confusion Matrix and Statistics
         Reference
Prediction 0 1
         0 3996 973
         1 732 8862
               Accuracy : 0.8829
                 95% CI : (0.8776, 0.8881)
    No Information Rate: 0.6753
    P-Value [Acc > NIR] : < 2.2e-16
                  Kappa: 0.7365
 Mcnemar's Test P-Value: 6.162e-09
            Sensitivity: 0.8452
            Specificity: 0.9011
         Pos Pred Value: 0.8042
         Neg Pred Value: 0.9237
             Prevalence: 0.3247
         Detection Rate: 0.2744
   Detection Prevalence: 0.3412
      Balanced Accuracy: 0.8731
       'Positive' Class : 0
  model.test.confusion <- confusionMatrix(model.test, testing$poverty)</pre>
  print(model.test.confusion)
Confusion Matrix and Statistics
         Reference
Prediction 0 1
         0 1317 320
         1 259 2958
               Accuracy : 0.8807
                 95% CI : (0.8713, 0.8897)
    No Information Rate: 0.6753
    P-Value [Acc > NIR] : < 2e-16
```

Kappa: 0.7307

Mcnemar's Test P-Value: 0.01265

Sensitivity: 0.8357 Specificity: 0.9024 Pos Pred Value: 0.8045 Neg Pred Value: 0.9195 Prevalence: 0.3247 Detection Rate: 0.2713

Detection Prevalence: 0.3372
Balanced Accuracy: 0.8690

'Positive' Class : 0

model.cv.confusion <- confusionMatrix(model.cross, training\$poverty)
model.cv.confusion1 <- confusionMatrix(model.cross.test, testing\$poverty)
print(model.cv.confusion)</pre>

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 3784 727 1 944 9108

Accuracy : 0.8853

95% CI : (0.88, 0.8904)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7352

Mcnemar's Test P-Value: 1.264e-07

Sensitivity: 0.8003
Specificity: 0.9261
Pos Pred Value: 0.8388
Neg Pred Value: 0.9061
Prevalence: 0.3247
Detection Rate: 0.2598

Detection Prevalence : 0.3098 Balanced Accuracy : 0.8632

'Positive' Class : 0

print(model.cv.confusion1)

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 1250 234 1 326 3044

Accuracy : 0.8846

95% CI : (0.8753, 0.8935)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7329

Mcnemar's Test P-Value: 0.0001203

Sensitivity: 0.7931 Specificity: 0.9286 Pos Pred Value: 0.8423 Neg Pred Value: 0.9033 Prevalence: 0.3247 Detection Rate: 0.2575

Detection Prevalence: 0.3057 Balanced Accuracy: 0.8609

'Positive' Class : 0

model.rf.confusion <- confusionMatrix(model.random.forest,training\$poverty)
model.rf.confusion1 <- confusionMatrix(model.random.forest.test, testing\$poverty)
print(model.rf.confusion)</pre>

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 3473 405 1 1255 9430

Accuracy: 0.886

95% CI: (0.8807, 0.8911)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7273

Mcnemar's Test P-Value : < 2.2e-16 Sensitivity: 0.7346 Specificity: 0.9588 Pos Pred Value: 0.8956 Neg Pred Value: 0.8825 Prevalence: 0.3247 Detection Rate: 0.2385 Detection Prevalence: 0.2663 Balanced Accuracy: 0.8467 'Positive' Class : 0 print(model.rf.confusion1) Confusion Matrix and Statistics Reference Prediction 0 0 1133 144 1 443 3134 Accuracy : 0.8791 95% CI: (0.8696, 0.8881) No Information Rate: 0.6753 P-Value [Acc > NIR] : < 2.2e-16 Kappa: 0.7099 Mcnemar's Test P-Value : < 2.2e-16 Sensitivity: 0.7189 Specificity: 0.9561 Pos Pred Value: 0.8872 Neg Pred Value: 0.8762 Prevalence: 0.3247 Detection Rate: 0.2334 Detection Prevalence: 0.2631 Balanced Accuracy: 0.8375 'Positive' Class: 0 model.knn.confusion <- confusionMatrix(model.kNN, training\$poverty)</pre> model.knn.confusion1 <- confusionMatrix(model.kNN.test, testing\$poverty)</pre>

print(model.knn.confusion)

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 3838 640 1 890 9195

Accuracy : 0.8949

95% CI : (0.8898, 0.8999)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7571

Mcnemar's Test P-Value: 1.943e-10

Sensitivity: 0.8118
Specificity: 0.9349
Pos Pred Value: 0.8571
Neg Pred Value: 0.9118
Prevalence: 0.3247
Detection Rate: 0.2635

Detection Prevalence : 0.3075 Balanced Accuracy : 0.8733

'Positive' Class : 0

print(model.knn.confusion1)

Confusion Matrix and Statistics

Reference

Prediction 0 1 0 1213 263 1 363 3015

Accuracy: 0.871

95% CI: (0.8613, 0.8803)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.701

Mcnemar's Test P-Value: 7.595e-05

Sensitivity: 0.7697 Specificity: 0.9198 Pos Pred Value: 0.8218 Neg Pred Value: 0.8925 Prevalence: 0.3247 Detection Rate: 0.2499 Detection Prevalence: 0.3041 Balanced Accuracy: 0.8447 'Positive' Class : 0 model.glm.confusion <- confusionMatrix(model.lr,training\$poverty)</pre> model.glm.confusion1 <- confusionMatrix(model.lr.test,testing\$poverty)</pre> print(model.glm.confusion) Confusion Matrix and Statistics Reference Prediction 0 0 3785 717 1 943 9118 Accuracy: 0.886 95% CI: (0.8807, 0.8911) No Information Rate: 0.6753 P-Value [Acc > NIR] : < 2.2e-16 Kappa: 0.7368 Mcnemar's Test P-Value: 3.344e-08 Sensitivity: 0.8005 Specificity: 0.9271 Pos Pred Value: 0.8407 Neg Pred Value: 0.9063 Prevalence: 0.3247 Detection Rate: 0.2599 Detection Prevalence: 0.3091 Balanced Accuracy: 0.8638 'Positive' Class: 0 print(model.glm.confusion1)

20

Confusion Matrix and Statistics

```
Reference
Prediction 0 1
0 1243 244
1 333 3034
```

Accuracy : 0.8811

95% CI : (0.8717, 0.8901)

No Information Rate : 0.6753 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7249

Mcnemar's Test P-Value : 0.0002488

Sensitivity: 0.7887
Specificity: 0.9256
Pos Pred Value: 0.8359
Neg Pred Value: 0.9011
Prevalence: 0.3247
Detection Rate: 0.2561
Detection Prevalence: 0.3063
Balanced Accuracy: 0.8571

select(-c(n_missing,complete_rate)) %>%

filter(skim_variable != "poverty")

'Positive' Class: 0

Univariate Analysis

```
hr_a <- hr_df |>
    select(cooking.fuel, Electricity, Television, Mobile.phone, Landline, Refrigerator, separate.kitche
    mutate_all(as.numeric, as.factor) |>
    mutate(across(1:7,as.factor)) |>
    tbl_summary()

skimr::skim(hrml1) %>%
```

Table 3: Data summary

Name	hrml1
Number of rows	19417
Number of columns	10

Column type frequency:

factor	7
numeric	2
Group variables	None

Variable type: factor

skim_variable	ordered	n_unique	top_counts
residence	FALSE	2	0: 12333, 1: 7084
sex	FALSE	2	1: 16434, 0: 2983
education	FALSE	5	1: 6303, 0: 5408, 2: 4996, 3: 2694
marital.status	FALSE	2	1: 17600, 0: 1817
work.status	FALSE	2	1: 16603, 0: 2814
Wealth.index	FALSE	5	5: 4095, 1: 4072, 2: 3833, 4: 3789
Division	FALSE	8	3: 2904, 2: 2641, 6: 2561, 4: 2511

Variable type: numeric

skim_variable	mean	sd	p0	p25	p50	p75	p100	hist
Family.size	4.62	2.11	1	3	4	6	30	
age	45.72	14.33	15	35	45	55	95	

Generate data from Normal Distribution

```
x <- rnorm(1000,2,5)
hist(x)
```

Histogram of x


```
penguins |>
  ggplot(aes(x= bill_length_mm, fill = species))+
  geom_histogram(bins = 50, alpha=0.8)
```

Warning: Removed 2 rows containing non-finite values (`stat_bin()`).

Data Cleaning

head(mtcars)

```
mpg cyl disp hp drat
                                           wt qsec vs am gear carb
Mazda RX4
                           160 110 3.90 2.620 16.46
                  21.0
Mazda RX4 Wag
                  21.0
                         6 160 110 3.90 2.875 17.02
                                                                   4
Datsun 710
                         4 108 93 3.85 2.320 18.61
                                                                   1
                  22.8
Hornet 4 Drive
                  21.4
                           258 110 3.08 3.215 19.44
                                                                   1
Hornet Sportabout 18.7
                           360 175 3.15 3.440 17.02
                                                                   2
                           225 105 2.76 3.460 20.22 1 0
Valiant
                  18.1
```

```
ggplot(mtcars,aes(x= disp,y=hp,col=as.factor(cyl)))+
  geom_point(alpha=0.7,size=3)+
  theme_minimal()
```



```
library(tidyverse)
ikea <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/202
```

```
Rows: 3694 Columns: 14
-- Column specification
                               ----- Delimiter: "," chr
(7): name, category, old_price, link, other_colors, short_description, d... dbl
(6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
i Use `spec()` to retrieve the full column specification for this data. i
Specify the column types or set `show_col_types = FALSE` to quiet this message.
* `` -> `...1`
  ikea <- rename(ikea, id = ...1)</pre>
  ikea %>%
    select(id, price, depth:width) %>%
    pivot_longer(depth:width, names_to = "dim") %>%
    ggplot(aes(value, price, color = dim)) +
    geom_point(alpha = 0.4, show.legend = FALSE) +
    scale_y_log10() +
    facet_wrap(~dim, scales = "free_x") +
    labs(x = NULL) +
    theme minimal()
```

New names:


```
ikea_df <- ikea %>%
  select(price, name, category, depth, height, width) %>%
  mutate(price = log10(price)) %>%
  mutate_if(is.character, factor)

ikea_df
```

```
# A tibble: 3,694 \times 6
```

	price	name	category		depth	height	width
	<dbl></dbl>	<fct></fct>	<fct></fct>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	2.42	FREKVENS	Bar f	urniture	NA	99	51
2	3.00	NORDVIKEN	Bar f	urniture	NA	105	80
3	3.32	NORDVIKEN / NORDVIKEN	Bar f	urniture	NA	NA	NA
4	1.84	STIG	Bar f	urniture	50	100	60
5	2.35	NORBERG	Bar f	urniture	60	43	74
6	2.54	INGOLF	Bar f	urniture	45	91	40
7	2.11	FRANKLIN	Bar f	urniture	44	95	50
8	2.29	DALFRED	Bar f	urniture	50	NA	50
9	2.11	FRANKLIN	Bar f	urniture	44	95	50
10	3.34	EKEDALEN / EKEDALEN	Bar f	urniture	NA	NA	NA
# i	3,684	1 more rows					

#Building Model

```
## Build Model
```

library(tidymodels)

```
-- Attaching packages ----- tidymodels 1.1.1 --
v broom
              1.0.5
                      v rsample
                                     1.2.0
v dials
              1.2.0
                       v tune
                                      1.1.2
v infer
             1.0.5
                       v workflows 1.1.3
v modeldata
              1.2.0
                       v workflowsets 1.0.1
v parsnip
             1.1.1
                      v yardstick 1.2.0
v recipes
              1.0.8
-- Conflicts ----- tidymodels_conflicts() --
x recipes::all_double()
                          masks gtsummary::all_double()
x recipes::all_factor()
                          masks gtsummary::all_factor()
x recipes::all_integer()
                          masks gtsummary::all_integer()
x recipes::all_logical()
                          masks gtsummary::all_logical()
                          masks gtsummary::all_numeric()
x recipes::all_numeric()
x scales::alpha()
                          masks kernlab::alpha(), ggplot2::alpha()
x kernlab::cross()
                          masks purrr::cross()
x scales::discard()
                          masks purrr::discard()
x dplyr::filter()
                          masks stats::filter()
x recipes::fixed()
                          masks stringr::fixed()
x dplyr::lag()
                          masks stats::lag()
x caret::lift()
                          masks purrr::lift()
x yardstick::precision()
                          masks caret::precision()
x yardstick::recall()
                          masks caret::recall()
x yardstick::sensitivity() masks caret::sensitivity()
x yardstick::spec()
                          masks readr::spec()
x yardstick::specificity() masks caret::specificity()
x recipes::step()
                          masks stats::step()
* Learn how to get started at https://www.tidymodels.org/start/
  set.seed(123)
  ikea_split <- initial_split(ikea_df, strata = price)</pre>
  ikea_train <- training(ikea_split)</pre>
  ikea_test <- testing(ikea_split)</pre>
  set.seed(234)
  ikea_folds <- bootstraps(ikea_train, strata = price)</pre>
  ikea_folds
# Bootstrap sampling using stratification
# A tibble: 25 x 2
   splits
                      id
   t>
                      <chr>>
 1 <split [2770/994] > Bootstrap01
 2 <split [2770/1003] > Bootstrap02
 3 <split [2770/1037] > Bootstrap03
 4 <split [2770/1010] > Bootstrap04
```

```
5 <split [2770/1014] > Bootstrap05
 6 <split [2770/1007] > Bootstrap06
 7 <split [2770/1036] > Bootstrap07
 8 <split [2770/1016] > Bootstrap08
 9 <split [2770/1021] > Bootstrap09
10 <split [2770/1043] > Bootstrap10
# i 15 more rows
  library(usemodels)
  use_ranger(price ~ ., data = ikea_train)
ranger_recipe <-
  recipe(formula = price ~ ., data = ikea_train)
ranger_spec <-
  rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
  set_mode("classification") %>%
  set_engine("ranger")
ranger_workflow <-
  workflow() %>%
  add_recipe(ranger_recipe) %>%
  add_model(ranger_spec)
set.seed(67013)
ranger_tune <-
  tune_grid(ranger_workflow, resamples = stop("add your rsample object"), grid = stop("add number of o
  ## lots of options, like use_xgboost, use_glmnet, etc
  library(textrecipes)
  ranger_recipe <-</pre>
    recipe(formula = price ~ ., data = ikea_train) %>%
    step_other(name, category, threshold = 0.01) %>%
    step_clean_levels(name, category) %>%
    step_impute_knn(depth, height, width)
  ranger_spec <-
    rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>%
    set_mode("regression") %>%
    set_engine("ranger")
  ranger_workflow <-
    workflow() %>%
    add_recipe(ranger_recipe) %>%
    add_model(ranger_spec)
```

```
set.seed(8577)
  doParallel::registerDoParallel()
  ranger_tune <-
    tune_grid(ranger_workflow,
     resamples = ikea_folds,
      grid = 11
    )
i Creating pre-processing data to finalize unknown parameter: mtry
  show_best(ranger_tune, metric = "rmse")
# A tibble: 5 x 8
  mtry min_n .metric .estimator mean
                                        n std_err .config
 <int> <int> <chr>
                   <chr> <dbl> <int>
                                            <dbl> <chr>
1
     2
         4 rmse standard 0.340
                                       25 0.00203 Preprocessor1_Model10
     4
          10 rmse standard 0.348
2
                                       25 0.00226 Preprocessor1_Model05
3
     5
         6 rmse standard 0.349
                                       25 0.00235 Preprocessor1_Model06
4
     3
        18 rmse standard 0.350
                                       25 0.00218 Preprocessor1_Model01
     2
                   standard 0.352
5
        21 rmse
                                       25 0.00200 Preprocessor1_Model08
  show_best(ranger_tune, metric = "rsq")
# A tibble: 5 x 8
  mtry min_n .metric .estimator mean
                                        n std_err .config
 <int> <int> <chr>
                   <chr>
                               <dbl> <int>
                                            <dbl> <chr>
1
     2
          4 rsq
                    standard 0.726
                                       25 0.00332 Preprocessor1_Model10
2
     4
         10 rsq
                    standard 0.713
                                       25 0.00372 Preprocessor1_Model05
3
     5
                                       25 0.00385 Preprocessor1_Model06
         6 rsq
                    standard 0.711
     3 18 rsq
4
                    standard 0.709
                                       25 0.00368 Preprocessor1_Model01
5
          21 rsq
                               0.707
                                      25 0.00347 Preprocessor1_Model08
                    standard
```

autoplot(ranger_tune)


```
final_rf <- ranger_workflow %>%
  finalize_workflow(select_best(ranger_tune))
```

Warning: No value of `metric` was given; metric 'rmse' will be used.

```
final_rf
```

Computational engine: ranger

```
ikea_fit <- last_fit(final_rf, ikea_split)</pre>
  ikea_fit
# Resampling results
# Manual resampling
# A tibble: 1 x 6
 splits
                     id
                                      .metrics .notes
                                                        .predictions .workflow
                                                        t>
  t>
                     <chr>
                                      <list>
                                              st>
                                                                     t>
1 <split [2770/924]> train/test split <tibble> <tibble> <tibble>
                                                                     <workflow>
  collect_metrics(ikea_fit)
# A tibble: 2 x 4
  .metric .estimator .estimate .config
  <chr>
                         <dbl> <chr>
         <chr>>
1 rmse
                         0.318 Preprocessor1_Model1
          standard
                         0.753 Preprocessor1_Model1
2 rsq
          standard
  collect_predictions(ikea_fit) %>%
    ggplot(aes(price, .pred)) +
```



```
predict(ikea_fit$.workflow[[1]], ikea_test[15, ])
```

geom_abline(lty = 2, color = "gray50") +

coord_fixed()

geom_point(alpha = 0.5, color = "midnightblue") +

```
# A tibble: 1 x 1
  .pred
  <dbl>
1 2.42
  library(vip)
Attaching package: 'vip'
The following object is masked from 'package:utils':
    vi
  imp_spec <- ranger_spec %>%
    finalize_model(select_best(ranger_tune)) %>%
    set_engine("ranger", importance = "permutation")
Warning: No value of `metric` was given; metric 'rmse' will be used.
  workflow() %>%
    add_recipe(ranger_recipe) %>%
    add_model(imp_spec) %>%
    fit(ikea_train) %>%
    pull_workflow_fit() %>%
    vip(aesthetics = list(alpha = 0.8, fill = "midnightblue"))
Warning: `pull_workflow_fit()` was deprecated in workflows 0.2.3.
```

i Please use `extract_fit_parsnip()` instead.

