Computer Networks

Chapter 1. Introduction

Autumn 2017 GUO Xunhua

Information

- ◆ Instructor: GUO Xunhua (郭迅华)
- Office: 435, Weilun Building
- Tel.: 010-62792738
- Email: guoxh@tsinghua.edu.cn
- Office hours: Friday 10:30-12:00am, or by appointment
- ◆TA: WANG Cong (王聪)
 - E-mail: dusong00@126.com
 - Office Phone: 8610-62792254
- Discussion Board
 - http://learning.sem.tsinghua.edu.cn
 - Public user name: 17a205100820
 - Password: 17a205100820

Question 1

• What do you expect to learn from this course?

Course description

- Overview: a comprehensive introduction
 - Concepts and principles about data communication and computer networking
- Topics to be discussed
 - Architectures / Protocols
 - Technologies: Hardware / Software
 - Applications
- What you may learn
 - Knowledge: Key concepts in networking
 - Insight: How the Internet works
 - Skill: Requirement analysis and network planning

Briefly

- We try to learn
 - What is the Internet
 - How it is formed
 - How it works
 - How to make use of it (more effectively)

Prerequisites & Textbook

- Prerequisites
 - Programming Languages
 - Computer Systems Architecture
- Text Book
 - Peterson, L.L., and Davie, B.S. Computer Networks: A Systems Approach, (5 ed.) China Machine Press, Beijing, 2012. (Elsevier, 2012).

Reference Books

- Kurose, J.F., and Ross, K.W. 2016. Computer Networking: A Top-Down Approach Featuring the Internet, (5 ed.) Beijing: Higher Education Press. (Pearson, 2012).
- Hall, B.B.J. Beej's Guide to Network Programming, Jorgensen Publishing, 2016. (http://beej.us/guide/bgnet/)
- Oppenheimer, P. 2011. Top-Down Network Design, (3 ed.) Beijing: Post & Telecom Press. (Cisco Press, 2010).

Another reference book

- Stibel, J. M. Wired for Thought: How the Brain Is Shaping the Future of the Internet, Harvard Business School Press, 2009.
 - (Chinese translation: "我们改变了互联网,还是互联网改变了我们?",中信出版社,2010)

Grading

- Assignments: 20%
- Course project: 30%
 - in groups
 - including weekly progress reports and a written report
 - possible topics:
 - ▶ Designing a corporate network
 - Programming an email client (like Outlook)
 - ▶ Planning and/or developing a website
 - "How does Bitcoin work?"
 - "Why Google and Facebook are (technically) not usable in China, and how we may make them usable?"
 - **...**
- Participation: 10%
- Final exam: 40%

Introduction

- Computer networks and applications
 - Why networks?
- Connectivity
 - How are they connected?
- Networking resource sharing
 - How does the infrastructure support various applications?
- Architecture overview
 - How can the complexity be handled?

Computer Networks and Applications

Why networks?

What kinds of networks are there in the world?

- Highway networks
- Railway networks
- Telephone networks
- Computer networks
- Electricity networks
- Television networks
- Social networks

Networking used to be complicated ...

Richard L. Nolan and Kelley A. Porter "Sun Microsystems and the N-tier Architecture", Harvard Business School case 399-037 (November 30, 1998):5.

... but it is becoming simpler

http://blog.comparemymobile.com/what-do-you-use-your-phone-for/

What network applications are you using?

- WWW (world wide web)
- Email
- Mobile apps
- Instance message
- IP telephone
- Video conference
- Online games
- Microblogging (Twitter/Weibo)
- Wechat (Weixin)
- FTP (file transfer protocol)
- BBS (bulletin board system)
-

What kind of devices can be connected to networks?

Computers (desktop, laptop, workstations,

servers, ...)

Mobile phones

- Tablets
- TV sets

Web-enabled toaster + weather forecaster

Internet of Things (物联网)

- "from anytime, any place connectivity for anyone, we will now have connectivity for anything"
 - ITU Internet Reports 2005: The Internet of Things

Ubiquitous computing will enable diverse wireless applications, including monitoring of pets and houseplants, operation of appliances, keeping track of books and bicycles, and much more.

http://quantumcinema.blogspot.com/2008/01/ubiquitous-computing.html

Internet-connected devices

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

What's more

Girl said:

- Dad, I'm in love with a boy who is far away from me. I am in Australia and he lives in Scotland.
- We met on a dating website, became friends on Facebook, had long chats on Whatsapp, he proposed to me on Skype, and now we've had two months of relationship through Viber.
- I need your blessings and good wishes, daddy.
- Dad said:
 - Wow! Really!! Then get married on **Twitter**, have fun on **Tango**. Buy your kids on **Amazon**, receive them through **Gmail**, and pay for it all through **PayPal**. And if you are fed up with your husband...sell him on **EBay**.

What's more

- Computer networks are evolving.
- They have been changing our lives ...
- ... and they still will.

After all, why computer networks?

- Communication
- Resource sharing
- Collaboration

Computer networks

- two or more computers connected so that they can
 - communicate with each other
 - share information, software, peripheral devices, and/or processing power
 - collaborate with each other

"We are the Web"

freeandopen

https://www.google.com/intl/en/takeaction/we-are-the-web/

So, how does it work?

What is behind the applications?

Network in the Weilun Building

图2-1 伟伦楼计算机网络拓扑结构图

The most basic questions to be addressed

- How are things connected together?
 - Connectivity
- Now can different applications run on the same infrastructure at the same time?
 - Networking resource sharing
- How to keep it simple?
 - Architecture overview: common services support and layered structure

Connectivity

• How are they connected?

What do we need to connect two computers?

- Computers: with connection component in hardware system
 - Network adapter / Modem
- Links: Connection media
 - ■Twisted pair cable (双绞线)
 - Coaxial cable (同轴电缆)
 - ■Optical fiber (光纤)
 - Radio (无线电波)
 - ...

Building blocks

- ◆ Nodes (节点): PCs, servers, workstations, ...
 - Hosts (主机): work for the users.
 - Switches (交換机): work for the network.
- Direct links: coax cable, optical fiber...
 - point-to-point

点对点

multiple access

多路访问

Scalable connectivity

- Device at the center
 - Hub (集线器)
 - Switch (交换机)
 - Router (路由器)
- We will learn more about the differences later

点对点或是多路访问, 取决于中间设备是计算机或仅仅是线盒

Switched network (交換网络)

A switched network can be defined recursively as

 two or more nodes connected by a link, or two or more networks connected by a node

Network scales

- ◆ SAN: System Area Network (系统网络)/ Storage Area Network (存储网络)
- ◆ LAN: Local Area Network (局域网)
- ◆ WAN: Wide Area Network (广域网)
- ◆ MAN: Metropolitan Area Network (城域図)
- INTERNET

Networking resource sharing

Now does the infrastructure support various applications?

Resource Sharing

- Now do hosts share the network resources?
 - Links
 - Routers
- Fundamental resource sharing concept
 - Multiplexing (复用)

Sharing the link: Multiplexing

- Early solutions:
 - Synchronous Time-Division Multiplexing (STDM) 若某刻将权限交给L1,而L1没用使用,则存在浪费
 - Frequency-Division Multiplexing (FDM)

分频复用 (每台计算机得到一条通道), 存在浪费

Statistical Multiplexing

- On-demand time-division
- Packet switching (as compared with circuit switching)

Circuit vs. Packet switching

- ◆ Circuit switching (线路交换)
 - carry bit streams
 - original telephone network
- ◆ Packet switching (分组交换)
 - store-and-forward messages
 - Internet

Circuit switching: telephone network

信息的去向由线路的去向决定

Packet switching

Packets

Architecture overview

• How to keep it simple?

The complexity

- So many applications
 - WWW (world wide web), email, Instance message, IP telephone, Video conference, Online games, ...
- So diversified mediums
 - Twisted pair cables, Radio, Satellite, Coaxial cables, Optical Fiber,
- Large amount of nodes
 - PCs, laptops, mobile phones, servers, switches, routers, ...
- Long distance

Support for common services

- Intuitively, the network provides logical channels over which applications communicate with each other
 - request/reply channels: applications such as file access and digital library
 - message stream channels: applications such as video conferences

Dealing with complexity: Layering

- Use abstractions to hide complexity
- Abstractions naturally lead to layering

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Application programs	
Request/reply channel	Message stream channel
Host-to-host connectivity	
Hardware	

Layers of network applications

Users

Applications

Network services

Network hardware

Goods owners

Shipping offices

Goods vehicles

Highway network

Simplified File Transfer Architecture

Layers of ISO/OSI model

- The Open Systems Interconnection (OSI) model
- defined by International Standard Organization (ISO) in 1984.
- Open communication between different systems without changing the underlying architecture (software and hardware).
- An international standard that referenced by most network vendors for their products and services

Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data link

Layer 1: Physical

Summary

- Networks are used to share distributed resources
- Networking resources are shared by various applications
- Packet switching is the modern solution to networking resource sharing

49

- Layers are used to handle complexity
- The OSI model gives us a road map

Exercises

- Reading: Textbook, Sections 1.1-1.2.
- Questions
 - What is packet switching? What are the advantages of packet switching?
 - Why is layering useful?