



Jimmy Nguyen MADS Student

Sarah Alqaysi MADS Student



Sai Thiha

MADS Student

## The Team



## The Utopia

Top 3 problems our project is addressing are:

### Problem 1

One of the most basic human rights in life is to have access to a drinkable water that adheres to all safety criteria and regulations.

### Problem 2

Water potability is essential to human survival and should be prioritized for detecting safe drinking water.

### Problem 3

National and local authorities as well as private companies, are all obliged to regularly monitoring and enforcing the right procedures when it comes to water safety regulations.



## Main Water Quality Metrics

Quality 1
The pH value evaluates
the acid-base range of
water.

Quality 4
The amount of chlorine and chloramine in public water systems determines the safety for potable water.

Quality 2
Hardness is an observed metric
of how much hardness is in raw
water when meeting calcium
and magnesium salts

Quality 5
total amount of organic carbon
compounds found in water
sources which can determine
the potable water quality.

Quality 3
Total dissolved solids
produce an unpleasant
taste and diluted color in
water.

Quality 6 turbidity describes the amount of solid matter present in the suspended state of water.

# Distribution of Water Quality Metrics Frequency Distributions of Predictors







| AUC    | Sensitivity                                                                 | Specificity                                                                                                                                                                            |                                                      |
|--------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.5297 | 0                                                                           | 1                                                                                                                                                                                      |                                                      |
| 0.6841 | 0.305                                                                       | 0.9012                                                                                                                                                                                 |                                                      |
| 0.7241 | 0.4223                                                                      | 0.8618                                                                                                                                                                                 |                                                      |
| 0.7335 | 0.2884                                                                      | 0.935                                                                                                                                                                                  |                                                      |
| 0.6072 | 0.2336                                                                      | 0.8768                                                                                                                                                                                 |                                                      |
| 0.7545 | 0.3744                                                                      | 0.9293                                                                                                                                                                                 |                                                      |
| 0.5292 | 0                                                                           | 1                                                                                                                                                                                      |                                                      |
| 0.6032 | 0.1672                                                                      | 0.9199                                                                                                                                                                                 |                                                      |
| 0.5    | 0                                                                           | 1                                                                                                                                                                                      |                                                      |
| 0.5297 | 0                                                                           | 1                                                                                                                                                                                      |                                                      |
|        | 0.5297 $0.6841$ $0.7241$ $0.7335$ $0.6072$ $0.7545$ $0.5292$ $0.6032$ $0.5$ | $\begin{array}{cccc} 0.5297 & 0 \\ 0.6841 & 0.305 \\ 0.7241 & 0.4223 \\ 0.7335 & 0.2884 \\ 0.6072 & 0.2336 \\ 0.7545 & 0.3744 \\ 0.5292 & 0 \\ 0.6032 & 0.1672 \\ 0.5 & 0 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

## Modeling



### Neural Networks - Test Set Confusion Matrix



#### **SVM Radial Function – Test Set Confusion Matrix**



## Final Results

