Trabalho prático 01 - Integração de Sistemas de Informação

Tomás Ferreira N^0 a
20457 Outubro 2024

Contents

1	Introdução	3
2	Problema	4
3	Estratégia utilizada	5
4	Transformações 4.1 Diagrama principal	6
5	Transformações - Problema 1	7
6	Transformações - Problema 2	8
7	Tranformações - Problema 3	10
8	Transformações - Ficheiros Excel e XML	11
9	Conclusão	12

1 Introdução

Este projeto foi realizado no âmbito da disciplina Integração de Sistemas de Informação, o mesmo presenta uma visão geral da análise de dados dos Pokémon realizada no KNIME. O projeto focou na classificação e filtragem dos Pokémon com base em características como geração e tipo. O objetivo é descrever as etapas do processo e os métodos aplicados, oferecendo uma análise clara e detalhada dos resultados obtidos.

2 Problema

O principal objetivo deste projeto é a demonstração de como podemos realizar uma ETL para transformar diversos tipos de dados. Para isso, utilizamos a plataforma **KNIME**. Foi desenvolvida uma ETL com o tema "Pokémon" com os seguintes objetivos principais:

- Problema 1: Identificar o número de Pokémon por cada geração.
- **Problema 2:** Contabilizar o número total de Pokémon por tipo (Fogo, Água, etc.).
- Problema 3: Calcular a média de cada estatística dos Pokémon, incluindo HP, Ataque, Defesa, Ataque Especial, Defesa Especial e Velocidade.

3 Estratégia utilizada

A obtenção de dados é obtida a partir de um ficheiro .csv. Utilizando o KNIME, iremos utilizar processos para manipular esses dados, tais como:

- $\bullet\,$ Filtros de colunas.
- ullet Filtros de linhas com regras.
- Operações matemáticas.
- Agrupamentos.

4 Transformações

4.1 Diagrama principal

Este diagrama contém o esquema que foi utilizado para resolver todos os problemas.

5 Transformações - Problema 1

A resolução para obter o número de Pokémon por cada geração foi o seguinte.

Usando um Group By, agrupando as gerações e fazendo uma contagem do número de Pokémon. O
 # representa o id do Pokémon.

Ficando este o resultado:

Generation Number (integer)	~	Count*(#) Number (integer)
1		151
2		99
3		140
4		116
5		164
6		81

6 Transformações - Problema 2

A resolução para obter o número total de Pokémon por tipo foi a seguinte.

Nesta resolução foi necessária ir por dois caminhos com o GroupBy, pois cada Pokémon pode ter dois tipos. Sendo assim, foi usado um GroupBy para contar cada tipo no Tipo 1 e outro GroupBy para cada tipo no Tipo 2. Com isto, usando o value Lookup foi criado esta tabela.

Type 1 String	Type 1 Count Number (integer)	Type 2	Type 2 Count Number (integer)
Bug	65	Bug	3
Dark	28	Dark	17
Dragon	26	Dragon	15
Electric	42	Electric	6
Fairy	17	Fairy	18
Fighting	25	Fighting	21
Fire	48	Fire	11
Flying	4	Flying	91
Ghost	30	Ghost	13
Grass	66	Grass	25
Ground	32	Ground	31

 ${\cal O}$ que queremos agora é juntar isto tudo em uma coluna "total". Usamos assim uma Math Formula.

Com isto a tabela final ficou assim, adicionando uma nova coluna com o total de cada tipo $\,$

Type 1 String	~	Type 1 Count Number (integer)	V	Type 2 String	V	Type 2 Count Number (integer)	~	TotalTipos Number (double)
Bug		65		Bug		3		68
Dark		28		Dark		17		45
Dragon		26		Dragon		15		41
Electric		42		Electric		6		48
Fairy		17		Fairy		18		35
Fighting		25		Fighting		21		46
Fire		48		Fire		11		59
Flying		4		Flying		91		95
Ghost		30		Ghost		13		43
Grass		66		Grass		25		91
Ground		32		Ground		31		63
		0.0		i.e.		10		0.0

7 Tranformações - Problema 3

A resolução para a média de cada estatística dos Pokémon foi a seguinte.

Começamos com um Column Filter para mostrar apenas as estatísticas. Depois é usado um GroupBy, este GroupBy não agrupa nada em especifico, mas faz antes a agregação de cada coluna, fazendo assim a média.

Ficando este o resultado.

Média HP	Média Ataque	Média Defesa Number (double)	Média Sp. Ataque	Média Sp. Defesa	Média Velocidade
Number (double)	Number (double)		Number (double)	Number (double)	Number (double)
68.67	75.979	71.744	70.213	70.109	66.607

8 Transformações - Ficheiros Excel e XML

Usando Excel Writers e XML Writers no KNIME, foram criados ficheiros Excel e XML para cada problema.

```
▼<root>
 ▼<item>
    <Generation>1</Generation>
    <Total>151</Total>
   </item>
 ▼<item>
     <Generation>2</Generation>
    <Total>99</Total>
   </item>
 ▼<item>
    <Generation>3</Generation>
    <Total>140</Total>
   </item>
 ▼<item>
     <Generation>4</Generation>
    <Total>116</Total>
   </item>
 ▼<item>
    <Generation>5</Generation>
    <Total>164</Total>
   </item>
 ▼<item>
     <Generation>6</Generation>
    <Total>81</Total>
   </item>
 </root>
```

Δ	Α	В			
1	Generation	Total			
2	1	151			
3	2	99			
4	3	140			
5	4	116			
6	5	164			
7	6	81			
Q					

9 Conclusão

Este projeto proporcionou uma oportunidade para aprofundar conhecimentos sobre a integração e manipulação de dados utilizando a plataforma KNIME. Ao longo do trabalho, foi possível realizar uma análise detalhada dos dados dos Pokémon, aplicando técnicas de ETL para transformar informações brutas.

Além disso, a criação de ficheiros em formato Excel e XML evidenciou a versatilidade do KNIME na exportação de dados, permitindo a integração com outras aplicações e sistemas. Este trabalho não só fortaleceu as competências técnicas na utilização de ferramentas de análise, mas também destacou a importância da organização e interpretação dos dados para a tomada de decisões informadas.

Resumindo, este projeto foi um passo significativo nas competências de manipulação de dados e criação de ficheiros.