Non Determinismo

Dipartimento di Elettronica e Informazione Politecnico di Milano

21 marzo 2017

Modelli operazionali non deterministici

Modelli deterministici vs. modelli non deterministici

- Solitamente, un algoritmo è una sequenza deterministica di passi
 - Dato uno "stato" della computazione e un input, il passo successivo unico
- È sempre utile? È sempre il modello più maneggevole?
- Non sempre l'ordine di esecuzione è fondamentale
 - Es. Trovare due calzini dello stesso colore e metterli
 - È importante che la computazione termini con due calzini dello stesso colore addosso, non "come ci sono arrivati"

Modelli operazionali non deterministici

La "comodità" del non determinismo

 Una descrizione di un algoritmo non deterministico è solitamente più compatta (sacrificando operatività)

Non-det. "Trova una strada dall'entrata all'uscita"

 $\begin{tabular}{ll} Det. & thm $$ $$ https://en.wikipedia.org/wiki/Maze_solving_algorithm $$ $$ $$$

- Per una realizzazione pratica si possono sfruttare più esecutori
- Simmetricamente, un modello di esecuzione non-deterministico può essere utile come semantica per il calcolo parallelo (Ada, OpenCL inter)

Versioni nondeterministiche (ND) di modelli noti

Automi a stati finiti ND

- La δ diventa $\delta : \mathbf{Q} \times \mathbf{I} \mapsto \wp(\mathbf{Q})$
- Nell'esempio abbiamo $\delta(q_0,a)=\{q_1,q_2\};\ \delta(q_2,b)=\{q_1,q_2\}$

Automi a stati finiti ND

Formalizzazione della sequenza di mosse

- La δ diventa $\delta : \mathbf{Q} \times \mathbf{I} \mapsto \wp(\mathbf{Q})$
- Nell'esempio abbiamo $\delta(q_0,a)=\{q_1,q_2\};\ \delta(q_2,b)=\{q_1,q_2\}$
- Di conseguenza, $\delta^*(q_0, aa) = \delta(q_1, a) \cup \delta(q_2, a) = \{q_{11}, q_{12}, q_{22}\}$

Automi a stati finiti ND

Formalizzazione della sequenza di mosse - 2

ullet Estensione di δ a stringhe:

$$\delta^*(q,x) = \begin{cases} \delta(q,\varepsilon) = \{q\}, \text{ con } x = \varepsilon \\ \delta(q,y.i) = \bigcup_{r \in \delta*(q,y)} \delta(r,i), \text{ con } x = y.i, i \in \mathbf{I} \end{cases}$$

Accettazione di un FSA-ND

• Nostra convenzione: l'FSA-ND accetta x se almeno uno degli stati dell'insieme $\delta^*(q_0,x)$ è finale, ovvero

$$x \in L \Leftrightarrow (\delta^*(q_0, x) \cap \mathbf{F}) \neq \emptyset$$

• È possibile anche considerare $\delta^*(q_0, x) \subseteq \mathbf{F}$

Automi a stati finiti ND e D a confronto

Automi a stati finiti ND e D a confronto

FSA ND ha maggior potere riconoscitivo di FSA? No...

• Intuitivamente: Otteniamo un FSA-D equivalente chiamando "stato" ogni insieme d'arrivo della δ e mantenendo gli archi

Automi a stati finiti ND e D a confronto

Sistematizzando il confronto

- Posso sempre costruire automaticamente un FSA-D equivalente a un ND dato:
- Da $\mathcal{A}_{nd} = \langle \mathbf{Q}_n, \mathbf{I}_n, \delta_n, q_{0n}, \mathbf{F}_n \rangle$ ricavo $\mathcal{A}_d = \langle \mathbf{Q}_d, \mathbf{I}_d, \delta_d, q_{0d}, \mathbf{F}_d \rangle$
 - $\mathbf{Q}_d = \wp(\mathbf{Q}_n)$, $\mathbf{I}_d = \mathbf{I}_n$
 - $\delta_d(q_d, i) = \bigcup_{q_n \in q_d} \delta_n(q_n, i)$
 - $q_{d0} = \{q_{n0}\}$
 - $\mathbf{F}_d = \{ s \in \wp(\mathbf{Q}_n) | s \cap \mathbf{F}_n \neq \varnothing \}$
- Gli FSA-ND non sono più potenti degli FSA-D

Usi degli FSA-ND

Comodità di specifica

- Se FSA-D e FSA-ND sono equivalenti come potere riconoscitore, perchè mantenere gli ND (più "problematici")?
- Può essere più comodo specificare un FSA ND e poi far ricavare automaticamente il corrispondente D ad un programma, risparmiando la fatica di concepire quello D
- Attenzione: la determinizzazione di un FSA ha un costo: alla peggio $|\mathbf{Q}_d| = |\wp(\mathbf{Q}_n)| = 2^{|\mathbf{Q}_n|}$
 - É il caso pessimo, non tutti gli stati sono necessariamente raggiungibili, ma può succedere
 - Esempio: l'FSA riconoscitore di stringhe con un dato suffisso

Automi a pila non deterministici

Come ottenerli?

 "Naturalmente" non deterministici, basta eliminare la restrizione imposta fino ad ora

Automi a pila non deterministici

Effetti della generalizzazione

- Otteniamo la $\delta_{\mathsf{AP-ND}}: \mathbf{Q} \times (\mathbf{I} \cup \{\varepsilon\}) \times \Gamma \to \wp_F(\mathbf{Q} \times \Gamma^*)$
 - Come mai il pedice F? I possibili sottoinsiemi di $\mathbf{Q} \times \Gamma^*$ sono infiniti, consideriamo solo quelli ottenibili dalle coppie nell'immagine di $\delta_{\mathsf{AP-ND}}$, ottenendo un insieme delle parti *finito*
- L'AP ND accetta x se esiste una sequenza $c_o \stackrel{*}{\vdash} \{c_1, \dots c_n\}$ con $c_0 = \langle q_0, x, Z_0 \rangle, c_1 = \langle q, \varepsilon, \gamma \rangle, q \in \mathbf{F}$
- N.B. ⊢ non è più univoca!

Automi a pila non deterministici

Conseguenze del riconoscitore d'esempio

Proprietà degli AP ND

- L'automa precedente è in grado di riconoscere $\{a^nb^n\} \cup \{a^nb^{2n}\}$
 - Gli AP ND sono più potenti degli AP D
- Generalizzando l'AP precedente si ottiene una dimostrazione costruttiva della chiusura di AP ND rispetto all'unione
 - Proprietà non condivisa dagli AP D
- Gli AP ND non sono chiusi rispetto all'intersezione
 - $\{a^nb^nc^*\}\cap\{a^*b^nc^n\}=\{a^nb^nc^n\}$ non è riconoscibile neppure in modo ND da un AP (il pumping lemma per AP vale anche per quelli ND)

Conseguenze delle proprietà

Chiusura rispetto al complemento

- Se la famiglia di linguaggi $\mathbf{L}_{\mathsf{APND}}$ è chiusa rispetto a \cup e non rispetto a \cap non può esserlo rispetto al complemento
- Il nondeterminismo impatta direttamente sulla complementazione:
 - Se un automa è deterministico e termina sempre la sua computazione è sufficiente scambiare accettazione e non accettazione per avere il complemento
- Con gli APND la computazione termina sempre ma se ho:
 - $\langle q_0, x, Z_0 \rangle = c_0 \stackrel{\sim}{\vdash} \{ \langle q_1, \varepsilon, \gamma_1 \rangle, \langle q_2, \varepsilon, \gamma_2 \rangle \}, \ q_1 \in \mathbf{F}, q_2 \notin \mathbf{F}$
 - x è accettata nella computazione precedente, ma continua ad esserlo anche se scambio ${\bf F}$ con ${\bf Q}\setminus {\bf F}$

Macchine di Turing nondeterministiche

Definizione e caratteristiche

- $\delta: \mathbf{Q} \times \mathbf{I} \times \Gamma^k \to \wp(\mathbf{Q} \times \Gamma^k \times \{\mathtt{L},\mathtt{S},\mathtt{R}\})$ (perchè \wp e non \wp_F ?)
- Configurazione, transizione, sequenza di transizioni e accettazione definite come negli altri casi
- Prima domanda: le MT ND sono più potenti delle MT D?

Albero delle computazioni

Equivalenza tra MT ND e MT D

Emulare una MT ND con una MT D

- x è accettata da una MT ND solo se esiste un calcolo che termina in uno stato di accettazione
- Come emulare una MT ND con una D?
 - Percorrere l'albero delle computazioni ND per stabilire se esiste un percorso che termina in uno stato di accettazione
 - Nel caso di un albero "normale", esistono algoritmi consolidati per effettuare questa visita
 - Come gestisco le computazioni che non terminano?
- Visita dell'albero "in ampiezza"
 - Costruisco una MT D che scandisce le configurazioni della ND a partire dalle più vicine a c_0
 - Intuitivamente: se la MT ND termina, termina anche la mia MT D con lo stesso esito

Conclusioni sul nondeterminismo

Un utile formalismo

- Utile per rappresentare problemi/algoritmi dove alcune scelte locali non sono fattibili al momento/importanti
- Aumenta la potenza dei soli AP (tra i formalismi visti)
- Può essere applicato praticamente a tutti i modelli di calcolo (estensione facile ai traduttori)
- N.B.: nondeterministico ≠ probabilistico
 - La computazione procede sempre con certezza verso l'insieme di stati successivo
 - Esistono modelli di calcolo probabilistico, ma sono ben diversi (e.g., FSA-prob ≈ catene di Markov)