Вариант 2

Задача 1 "Проверка статистических гипотез"

Дано:

n1 := 50 Объём первой выборки

xsr1 := 3.8 Выборочное стреднее первой выборки

n2 := 40 Объём второй выборки

xsr2 := 4.0 Выборочное среднее второй выборки

 $\sigma := 0.5$ CKO

α := 0.05 Урове нь значимости

 H_0 : a1 = a2. Термообработка не увеличила

растяжимость пружины

H₁: a1<a2. Термообработка увеличила

растяжимость пружины

Knabl :=
$$\frac{xsr1 - xsr2}{\sqrt{\frac{\sigma^2}{n1} + \frac{\sigma^2}{n2}}} = -1.886$$
 Наблюдаемое значение параметра

$$x := -4, -3.99..4$$

Плотность нормального распределения

Альтернативная гипотеза левосторонняя. Ищем Kkrit с помощью значений функции Лапласа.

Kkrit := qnorm
$$\left(\frac{1}{2} - \alpha + 0.5, 0, 1\right) = 1.645$$

Так как критическая область левосторонная (-\infty; -1,645). Наблюдаемое значение попадает в критическую область, следовательно, основную гипотезу отклоняем в пользу альтернативной. Т. е. термообработка увеличила растяжимость пружины.

Задача 2. "Критерий согласия Пирсона"

Дано:

ORIGIN := 1

k := 6Число интервалов группировки

Объём выборки n := 33

∞:= 0.05 Уровень значимости

Число зависимых степеней для нормального распределения r := 2

$$a:=egin{pmatrix} 2.3 \\ 2.5 \\ 2.7 \\ 2.9 \\ 3.1 \\ 3.3 \\ 3.5 \end{pmatrix}$$
 $nj:=egin{pmatrix} 3 \\ 6 \\ 9 \\ 8 \\ 5 \\ 2 \end{pmatrix}$ Число попаданий СВ х в заданные интервалы(по условию задачи)

Число попаданий СВ х в

$$zj := \begin{pmatrix} \frac{a_1 + a_2}{2} \\ \frac{a_2 + a_3}{2} \\ \frac{a_3 + a_4}{2} \\ \frac{a_4 + a_5}{2} \\ \frac{a_5 + a_6}{2} \\ \frac{a_6 + a_7}{2} \end{pmatrix} = \begin{pmatrix} 2.4 \\ 2.6 \\ 2.8 \\ 3 \\ 3.2 \\ 3.4 \end{pmatrix}$$

Расчёт середин интервалов для вычисления среднего арифметического по сгруппированному статистическому ряду

Вычисляем среднее арифметическое по формуле по сгруппированному статистическому ряду

$$xsr := \frac{1}{n} \cdot \sum_{j=1}^{k} \left(nj_j \cdot zj_j \right) = 2.873$$

Вычисляем исправленную дисперсию по сгрупп. статичтисе скому ряду. Получим оценку дисперсии.

s2 :=
$$\frac{1}{n-1} \cdot \sum_{i=1}^{k} \left[nj_i \cdot (zj_i - xsr)^2 \right] = 0.075$$

Вычислим выборочное СКО

$$sko := \sqrt{s2} = 0.273$$

С помощью критерия Пирсона проверим основную гипотезу

Н0: $X\sim N(a,\sigma)$, то есть $X\sim N(2.873,0.273)$ с параметрами, рассчитанными по выборке Альтернативная гипотеза

 $H1: X != N(a, \sigma)$, то есть X != N(2.873, 0.273)

Вычислим вероятности рј попадания в интервалы. Так как мы предполагаем, что $X \sim N(a, \sigma)$, то используем формулу "Вероятность попадания нормально распределённой CB в заданный интервал" $i := 1 \dots 6$

$$p_i := pnorm(a_{i+1}, xsr, sko) - pnorm(a_i, xsr, sko) = ...$$

$$p = \begin{pmatrix} 0.068 \\ 0.177 \\ 0.276 \\ 0.258 \\ 0.144 \\ 0.048 \end{pmatrix} \qquad \sum p = 0.971$$

Вычислим наблюдаемое значение K~ χ^2 (k-r-1)

Knabl:=
$$\sum_{i=1}^{k} \frac{\left(nj_i - n \cdot p_i\right)^2}{n \cdot p_i} = 0.409$$

Вычислим критическое значение статистики $K\sim\chi^2(k-r-1)$

Kkrit := qchisq
$$(1 - \alpha, k - r - 1) = 7.815$$

Критическая область критерия Пирсона правосторонняя, то есть (Kkrit; +\infty)

Статистичке ское решение: Knabl < Kkrit => наблюдаемое значение не попадает в критиче скую область => (следовательно) гипотеза H0 принимается: CB имеет нормальное распределение $X\sim N(2.873,0.273)$ с параметрами ,рассчитанными по выборке

Задача 3. "Проверка однородности выборок с помощью критерия знаков"

Дано:

Вычитаем соответствующие значения второй выборки из значений первой для поиска нетипичных сдвигов

Knabl :=
$$7$$

Kkit := 5

Так как притерий знаков левосторонний, критическая область имеет вид (-\infty; 5) Следовательно наблюдаемое значение не попадает в критическую область => мы отвергаем гипотезу Н1. То есть, выборки однородны.

Задача 4. "Проверка однородности выборки с помощью критерия Вилкоксона"

11	
/ 1	ano.
Д	ano.

$\mathbf{x} :=$	(0.81) 3.3 5.52 1.64 4.18 2.81 1.32 4.09 3.44 1.68 0.1 1.56 1.01 2.41 1.49 2.11 4.42	$y := \begin{pmatrix} 4.17 \\ 0.79 \\ 3.26 \\ 2.14 \\ 2.7 \\ 2.89 \\ 3.26 \\ 3.83 \\ 4.63 \\ 2.89 \\ 2.89 \\ 2.41 \\ 2.97 \\ 3.19 \\ 3.35 \\ 2.52 \\ 3.22 \end{pmatrix}$	α ;= 0.02 Уровень значимости Гипотезы: $Q := \frac{\alpha}{2} = 0.01$ Н0: $F1(x) = F2(x)$ Н1: $F1(x)! = F2(x)$ Объединяем и сортируем выобрки $z := stack(x,y)$ sort(z)
	4.42	3.22	объединённые выборки
	4.21	3.14	
	2.5	2.36	
	0.3	3.4	

Находим наблюдаемое значение критерия Вилкоксона, суммируя ранги первой выборки

Knabl :=
$$\sum_{i=1}^{20} z1_i = 358.5$$

WL := 324

WR := 496

Так как критерий Вилкоксона имеет двустороннюю крит. область, в данной ситуации она имеет вид (-\infty; 324) (496; +\infty). Наблюдаемое значение не попадает в крит. область => мы отвергаем альтернативную гипотезу. То есть, выборки однородны.

		1
	1	4
	2	29
	3	40
	4	9
	5	36
	6	19
	7	6
	8	34
	9	32
	10	10
	11	1
	12	8
	13	5
	14	14.5
	15	7
	16	11
	17	38
	18	37
	19	16
z1 := Rank(z) =	20	2
	21	35
	22	3
	23	27.5
	24	12
	25	18
	26	21
	27	27.5
	28	33
	29	39
	30	21
	31	21
	32	14.5
	33	23
	34	25
1	35	30
аемое	36	17
вную	37	26
	38	24
	39	13
	40	31