Relaxing Local Robustness

Klas Leino*, Matt Fredrikson | Carnegie Mellon University

Adversarial Examples

Certified Defenses

Want to defend against *adversarial examples*

A model F satisfies *local robustness* with robustness radius ε on a point x if

$$\forall x'. \|x - x'\|_p \le \varepsilon \implies F(x) = F(x')$$

Local Robustness May Be Ill-suited

Our Contributions

We introduce two *relaxed notions of robustness* that are more suitable than local robustness in many contexts

We devise a way to construct networks such that our robustness properties can be *efficiently certified*

We provide case studies showing the *suitability* of our proposed properties to real-world classification tasks

Overview

- Novel robustness properties
 - Relaxed Top-K Robustness
 - Affinity Robustness
- Certification of novel robustness properties
- Experimental results

"Global" Robustness

Recall: robust points must be far from decision boundaries

Robust models must induce separation between classes

Motivation

What about cases where there is not always a clear separation between classes?

EuroSAT: Helber et al. 2017

Motivation

Issue 1
Ambiguous class labels due to multiple plausible subjects

Issue 2Tough-to-separate instances

Robustness and Top-k Accuracy

On Imagenet it's common to use top-5 accuracy

Leopard
Jaguar
Cheetah
Snow Leopard
Egyptian cat

Cherry
Dalmatian
Grape
Elderberry
Bull Terrier

Grille
Convertible
Pickup
Beach Wagon
Fire Engine

Can we make a robustness notion that mirrors this?

Top-k Robustness

We can think of a neural network as outputting a set of predictions

Given a model F, let $F^k(x)$ be the set of the top k classes as evaluated by F on x

Top-k Robustness

A model F is top-k robust with robustness radius ε on a point x if

$$\forall x'. ||x - x'||_p \le \varepsilon \Longrightarrow F^k(x) = F^k(x')$$

Note that this is *not* a relaxation!

Relaxed Top-K (RTK) Robustness

A model F is relaxed-top-K robust with robustness radius ε on a point x if

$$\forall x'. ||x - x'||_p \le \varepsilon \implies \exists k \le K : F^k(x) = F^k(x')$$

This *is* a relaxation of local robustness

Example Boundaries

Affinity Robustness

We can also restrict the classes that can be grouped together to a collection of specified affinity groups, S

A model F is **affinity-robust** wrt. a collection of affinity groups S, with robustness radius E on a point X if

$$\forall x'. \left| |x - x'| \right|_p \le \varepsilon$$

$$\Rightarrow \exists S \in \mathcal{S} : F^{|S|}(x) = F^{|S|}(x') \land F^{|S|}(x) \cap S = F^{|S|}(x)$$

Overview

- Novel robustness properties
 - Relaxed Top-K Robustness
 - Affinity Robustness
- Certification of novel robustness properties
- Experimental results

Globally Robust Neural Networks (GloRo Nets)

Globally Robust Neural Networks (GloRo Nets)

Globally Robust Neural Networks (GloRo Nets)

Achieving Relaxed Robustness Guarantees

Main Idea

We modify the way the \bot class is computed from the Lipschitz constant and logits, such that whenever the network is not RTK/Affinity-robust the network outputs \bot

See paper and code for more details...

Overview

- Novel robustness properties
 - Relaxed Top-K Robustness
 - Affinity Robustness
- Certification of novel robustness properties
- Experimental results

Results

dataset	guarantee	VRA*
EuroSAT	local robustness	0.749
EuroSAT	RT3	0.908
CIFAR-100	local robustness	0.281
CIFAR-100	RT5	0.360
CIFAR-100	superclass affinity	0.323
Tiny-Imagenet	local robustness	0.224
Tiny-Imagenet	RT5	0.277

Results

CIFAR-100 (RT5)

oak, maple, willow, pine

flatfish, man, trout, woman, girl

palm tree, house

EuroSAT (RT3)

highway, annual crop

highway, residential buildings

highway, permanent crop, annual crop

Results

Conclusion

Summary

We provide two relaxed notions of robustness that are better suited for many types of classification tasks, and we show how these robustness properties can be efficiently certified

Check Out Our Paper!

- Full paper on ArXiv
- Implementation on GitHub https://github.com/klasleino/gloro

