Estatística e Inferência Causal

Uma breve introdução

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Café do DEST - UFPR, 2020

▶ A inferência causal é a ciência de inferir a presença e a magnitude das relações de causa e efeito a partir dos dados.

- ▶ A inferência causal é a ciência de inferir a presença e a magnitude das relações de causa e efeito a partir dos dados.
- Como estatísticos, epidemiologistas, sociólogos, etc., e de fato como seres humanos, é algo sobre o qual sabemos muito.

- ▶ A inferência causal é a ciência de inferir a presença e a magnitude das relações de causa e efeito a partir dos dados.
- Como estatísticos, epidemiologistas, sociólogos, etc., e de fato como seres humanos, é algo sobre o qual sabemos muito.
 - Suponha que um estudo encontre uma associação entre a "o pai possuir gravata de seda" e a "mortalidade infantil".

- ▶ A inferência causal é a ciência de inferir a presença e a magnitude das relações de causa e efeito a partir dos dados.
- Como estatísticos, epidemiologistas, sociólogos, etc., e de fato como seres humanos, é algo sobre o qual sabemos muito.
 - Suponha que um estudo encontre uma associação entre a "o pai possuir gravata de seda" e a "mortalidade infantil".
 - ► Com base nisso, o governo implementa um programa no qual 5 gravatas de seda são dadas a todos os homens com idade entre 18 e 45 anos, com o objetivo de reduzir a mortalidade infantil.

- A inferência causal é a ciência de inferir a presença e a magnitude das relações de causa e efeito a partir dos dados.
- Como estatísticos, epidemiologistas, sociólogos, etc., e de fato como seres humanos, é algo sobre o qual sabemos muito.
 - Suponha que um estudo encontre uma associação entre a "o pai possuir gravata de seda" e a "mortalidade infantil".
 - Com base nisso, o governo implementa um programa no qual 5 gravatas de seda são dadas a todos os homens com idade entre 18 e 45 anos, com o objetivo de reduzir a mortalidade infantil.
- ▶ Nós todos concordamos que isso é uma bobagem!

- ▶ A inferência causal é a ciência de inferir a presença e a magnitude das relações de causa e efeito a partir dos dados.
- Como estatísticos, epidemiologistas, sociólogos, etc., e de fato como seres humanos, é algo sobre o qual sabemos muito.
 - Suponha que um estudo encontre uma associação entre a "o pai possuir gravata de seda" e a "mortalidade infantil".
 - Com base nisso, o governo implementa um programa no qual 5 gravatas de seda são dadas a todos os homens com idade entre 18 e 45 anos, com o objetivo de reduzir a mortalidade infantil.
- ▶ Nós todos concordamos que isso é uma bobagem!
- Isso porque entendemos a diferença entre associação e causalidade.

O roteiro da inferência causal consiste em (pelo menos) três etapas:

- Uma linguagem formal para definir inequivocamente conceitos causais.
 - Desfechos potenciais, contrafactuais, operador do()
- 2. Suposições causais para a identificação dos efeitos causais.
 - ▶ Diagramas causais (DAGs) são uma ferramenta para exibir nossas suposições causais
- Métodos de análise (isto é, métodos estatísticos) que podem nos ajudar a tirar conclusões causais mais confiáveis a partir dos dados disponíveis.

Um pouco de dor de cabeça!

Um pouco de dor de cabeça!

Um exemplo

- ▶ 12 senhoras estão sofrendo de **dor de cabeça**.
- Algumas tomam aspirina; outras não.
- Uma hora depois, perguntamos para cada uma delas se a dor de cabeça sumiu (desapareceu).

Os dados observados

	Z (tomou aspirina?)	R (dor de cabeça sumiu?)	
Mary	0	0	
Anna	1	0	
Emma	1	1	
Elizabeth	0	0	
Minnie	0	1	
Margaret	1	0	
lda	1	0	
Alice	0	0	
Bertha	0	1	
Sarah	0	0	
Annie	0	1	
Clara	1	1	

Os dados observados

	Z (tomou aspirina?)	R (dor de cabeça sumiu?)	
Mary	0	0	
Anna	1	0	
Emma	1	1	
Elizabeth	0	0	
Minnie	0	1	
Margaret	1	0	
lda	1	0	
Alice	0	0	
Bertha	0	1	
Sarah	0	0	
Annie	0	1	
Clara	1	1	

Os dados observados

- **E**mma tomou aspirina (Z = 1) e a sua dor de cabeça passou (R = 1).
- A aspirina causou o desaparecimento da sua dor de cabeça?

A estrutura da inferência causal:

► *X_i* representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.

- ➤ X_i representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.
- u_i representa um vetor de covariáveis não observadas: variante de um gene, fator ambiental, etc.

- ► X_i representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.
- u_i representa um vetor de covariáveis não observadas: variante de um gene, fator ambiental, etc.
- ► Z_i é o tratamento atribuído: tomou aspirina?

- ➤ X_i representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.
- u_i representa um vetor de covariáveis não observadas: variante de um gene, fator ambiental, etc.
- ► Z_i é o tratamento atribuído: tomou aspirina?
 - $ightharpoonup Z_i = 0$, se não tomou aspirina; $Z_i = 1$, se tomou aspirina.

- ► *X_i* representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.
- u_i representa um vetor de covariáveis não observadas: variante de um gene, fator ambiental, etc.
- $ightharpoonup Z_i$ é o tratamento atribuído: tomou aspirina?
 - ▶ $Z_i = 0$, se não tomou aspirina; $Z_i = 1$, se tomou aspirina.
- ▶ Utilizaremos $\pi_i = \Pr(Z_i = 1)$ para designar a probabilidade do indivíduo i ser atribuído ao grupo tratado (tomou aspirina).

- ► *X_i* representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.
- u_i representa um vetor de covariáveis não observadas: variante de um gene, fator ambiental, etc.
- $ightharpoonup Z_i$ é o tratamento atribuído: tomou aspirina?
 - ▶ $Z_i = 0$, se não tomou aspirina; $Z_i = 1$, se tomou aspirina.
- ▶ Utilizaremos $\pi_i = \Pr(Z_i = 1)$ para designar a probabilidade do indivíduo i ser atribuído ao grupo tratado (tomou aspirina).
- $ightharpoonup R_i$ é o desfecho/resposta: dor de cabeça sumiu?

- ► *X_i* representa um vetor de covariáveis **observadas**: idade, faz uso de medicamentos, tem pressão alta, etc.
- u_i representa um vetor de covariáveis não observadas: variante de um gene, fator ambiental, etc.
- Z_i é o tratamento atribuído: tomou aspirina?
 - ▶ $Z_i = 0$, se não tomou aspirina; $Z_i = 1$, se tomou aspirina.
- ▶ Utilizaremos $\pi_i = \Pr(Z_i = 1)$ para designar a probabilidade do indivíduo i ser atribuído ao grupo tratado (tomou aspirina).
- $ightharpoonup R_i$ é o desfecho/resposta: dor de cabeça sumiu?
 - $ightharpoonup R_i=0$, se dor de cabeça não sumiu; $R_i=1$, se dor de cabeça sumiu.

 $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - r_C é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - r_C é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - $ightharpoonup r_C$ é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.
- ▶ O par de desfechos potenciais (r_{C_i}, r_{T_i}) será descrito como o **efeito** causal (individual).

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - $ightharpoonup r_C$ é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.
- ▶ O par de desfechos potenciais (r_{C_i}, r_{T_i}) será descrito como o **efeito** causal (individual).
 - ▶ Chamaremos $\delta_i = r_{T_i} r_{C_i}$ de o efeito causal na escala da diferença (ou a diferença do efeito causal).

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - $ightharpoonup r_C$ é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.
- ▶ O par de desfechos potenciais (r_{C_i}, r_{T_i}) será descrito como o **efeito** causal (individual).
 - ► Chamaremos $\delta_i = r_{T_i} r_{C_i}$ de o efeito causal na escala da diferença (ou a diferença do efeito causal).
 - ▶ Se $\delta_i = 0$ então o efeito causal é **nulo**; se $\delta_i \neq 0$ então existe um efeito causal (benéfico ou prejudicial).

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - r_C é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.
- ▶ O par de desfechos potenciais (r_{C_i}, r_{T_i}) será descrito como o **efeito** causal (individual).
 - ► Chamaremos $\delta_i = r_{T_i} r_{C_i}$ de o efeito causal na escala da diferença (ou a diferença do efeito causal).
 - ▶ Se $\delta_i = 0$ então o efeito causal é **nulo**; se $\delta_i \neq 0$ então existe um efeito causal (benéfico ou prejudicial).
- ▶ Um destes desfechos potenciais é observado: se Z = 0, r_C é observada; se Z = 1, r_T é observada.

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - r_C é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.
- ▶ O par de desfechos potenciais (r_{C_i}, r_{T_i}) será descrito como o **efeito** causal (individual).
 - ► Chamaremos $\delta_i = r_{T_i} r_{C_i}$ de o efeito causal na escala da diferença (ou a diferença do efeito causal).
 - ▶ Se $\delta_i = 0$ então o efeito causal é **nulo**; se $\delta_i \neq 0$ então existe um efeito causal (benéfico ou prejudicial).
- ▶ Um destes desfechos potenciais é observado: se Z = 0, r_C é observada; se Z = 1, r_T é observada.
 - Ou seja, $R_i = Z_i \times r_{T_i} + (1 Z_i) \times r_{C_i}$.

- $ightharpoonup r_{C_i}$ e r_{T_i} representam os **desfechos potenciais**.
 - r_C é o desfecho que teria sido observado caso a aspirina NÃO tivesse sido tomada.
 - r_T é o desfecho que teria sido observado caso a aspirina tivesse sido tomada.
- ▶ O par de desfechos potenciais (r_{C_i}, r_{T_i}) será descrito como o **efeito** causal (individual).
 - ► Chamaremos $\delta_i = r_{T_i} r_{C_i}$ de o efeito causal na escala da diferença (ou a diferença do efeito causal).
 - ▶ Se $\delta_i = 0$ então o efeito causal é **nulo**; se $\delta_i \neq 0$ então existe um efeito causal (benéfico ou prejudicial).
- ▶ Um destes desfechos potenciais é observado: se Z = 0, r_C é observada; se Z = 1, r_T é observada.
 - Ou seja, $R_i = Z_i \times r_{T_i} + (1 Z_i) \times r_{C_i}$.
 - O outro é contrafactual.

Estrutura: observações

- Consideramos apenas dois níveis de tratamento por uma questão de simplicidade. Esta ideia pode ser generalizada para múltiplos níveis de tratamento e para outros regimes de tratamento mais gerais.
- **2.** Em um **experimento aleatorizado** $\pi_i = 1/2$.
- 3. Na estatística, a ideia de definir efeitos causais como comparações de desfechos potenciais foi introduzia por Neyman no contexto de experimentos aleatorizados¹. Posteriormente, Rubin generalizou esta ideia para o contexto de experimentos não-aleatorizados (estudos observacionais)². Alguns autores se referem a esta abordagem como o modelo causal de Rubin³.

¹Splawa-Neyman, J., Dabrowska, D.M., Speed, T.P. On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9. *Statistical Science* 5:465-472, 1990.

²Rubin, D.B. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology* 66:688–701, 1974.

³Holland, P. Statistics and Causal Inference. *JASA*, 81:945-960, 1986.

Estrutura: observações

- **4.** Efeitos causais são comparações de desfechos potenciais sob tratamentos alternativos.
 - Para um indivíduo específico é perguntado:
 - O que aconteceria com esse indivíduo sob o primeiro tratamento?
 - O que aconteceria com o indivíduo sob o segundo tratamento?
 - O indivíduo se sairia melhor sob o primeiro, em vez do segundo tratamento?
 - O desfecho seria o mesmo sob os dois tratamentos?
- 5. Problema fundamental da inferência causal⁴: nós nunca vemos o efeito causal porque o efeito causal é a comparação de dois desfechos potenciais que o indivíduo teria exibido sob os dois tratamentos alternativos.
 - A inferência causal é difícil porque é sobre algo que nunca podemos ver.
- **6.** Em verdade, $R_i = Z_i \times r_{T_i} + (1 Z_i) \times r_{C_i}$ é **uma suposição**. Chamaremos esta **suposição de consistência** (se $Z_i = 0 \Rightarrow R_i = r_{C_i}$, e se $Z_i = 1 \Rightarrow R_i = r_{T_i}$).

⁴Holland, P. Statistics and Causal Inference. JASA, 81:945-960, 1986.

Estrutura: observações

- **7. Notações alternativas:** o par de desfechos potenciais (r_{C_i}, r_{T_i}) muitas vezes é denotado por $(Y_i(0), Y_i(1))$.
- 8. No exemplo, o desfecho é dicotômico. Mas, o mesmo poderia ser um desfecho qualquer (discreto ou contínuo).
- 9. Alguns autores utilizam os termos "desfechos potenciais" e "variáveis contrafactuais" de forma alternada⁵. Já outros autores fazem a distinção entre estes dois termos⁶, pois no primeiro, antes da atribuição ao tratamento, os dois desfechos são possíveis (potenciais) de ocorrer, enquanto que o segundo se refere ao momento posterior a atribuição ao tratamento (fato e contrário ao fato).

⁵VanderWeele, T. *Explanation in Causal Inference: Methods for Mediation and Interaction*. Oxford University Press, 2015.

⁶Imbens, G. W., Rubin, D. B. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press, 2015.

Desfechos potenciais no senso comum

The Family Man (2000)

Jack Campbell é um investidor de Wall Street jovem e solteiro vivendo uma vida de rico em Nova lorque. Ele se surpreende quando sua ex-namorada, Kate, tentou ligar para ele após anos sem se verem. Após uma conversa com o seu mentor na empresa, Jack resolve pensar se responderia a esta chamada no dia seguinte. Naquela noite de Natal, porém, ele resolve ir a pé até sua casa, passando por uma loja de conveniências no caminho e convencendo para que um vencedor da loteria, irritado, chamado Cash, não atirasse no vendedor. Ele oferece ajuda à Cash antes de ir dormir em sua cobertura.

Tudo muda num passe de mágica quando na manhã seguinte ele acorda em um quarto no subúrbio de Nova Jersey com Kate, a sua atual esposa, com quem anteriormente ele havia deixado de se casar e ainda com duas crianças que ele sequer conhecia. Jack percebe então que esta é justamente a vida que ele teria se não tivesse se transformado em um investidor financeiro quando jovem. Ao invés disso, ele tem uma vida modesta, onde ele é um vendedor de pneus e Kate é uma advogada não-remunerada.

Desfechos potenciais no senso comum

Rodrigo do violão

O "mundo ideal"

	r _C	r _T
Mary	0	0
Anna	1	0
Emma	0	1
Elizabeth	0	0
Minnie	1	1
Margaret	0	0
lda	0	0
Alice	0	0
Bertha	1	0
Sarah	0	0
Annie	1	1
Clara	0	1

O "mundo ideal"

Com o par de desfechos potenciais, podemos responder as seguintes perguntas:

- ▶ A aspirina causou o desaparecimento da dor de cabeça de Emma?
 - ► E de Margaret?
 - ► E de Clara?
 - ► E de Alice?

O "mundo ideal"

i	r_{C_i}	r_{T_i}	$\delta_i = r_{\mathcal{T}_i} - r_{\mathcal{C}_i} eq 0$? (existe efeito causal?)
Mary	0	0	0 (Não)
Anna	1	0	-1 (Sim, prejudicial)
Emma	0	1	1 (Sim, benéfico)
Elizabeth	0	0	0 (Não)
Minnie	1	1	0 (Não)
Margaret	0	0	0 (Não)
lda	0	0	0 (Não)
Alice	0	0	0 (Não)
Bertha	1	0	-1 (Sim, prejudicial)
Sarah	0	0	0 (Não)
Annie	1	1	0 (Não)
Clara	0	1	1 (Sim, benéfico)

O mundo real!

i	r _{Ci}	r_{T_i}	Z_i	R_i
Mary	0	?	0	0
Anna	?	0	1	0
Emma	?	1	1	1
Elizabeth	0	?	0	0
Minnie	1	?	0	1
Margaret	?	0	1	0
lda	?	0	1	0
Alice	0	?	0	0
Bertha	1	?	0	1
Sarah	0	?	0	0
Annie	1	?	0	1
Clara	?	1	1	1

O mundo real!

O problema fundamental da inferência causal

- ▶ É impossível de se observar o valor de r_{T_i} e r_{C_i} na mesma unidade e, portanto, é impossível observar o efeito δ_i .
- Um problema de dados ausentes.

Efeitos causais populacionais

- $\delta_i = r_{T_i} r_{C_i} = ?$, para todo indivíduo i, pois um dos desfechos potenciais nunca é observado.
- Um objetivo menos ambicioso é focar no efeito causal médio (ou em nível populacional):

$$\overline{\delta} = \mathsf{E}\left[r_{\mathcal{T}_i} - r_{\mathcal{C}_i}\right] = \mathsf{E}\left[r_{\mathcal{T}_i}\right] - \mathsf{E}\left[r_{\mathcal{C}_i}\right].$$

No caso em que a resposta é dicotômica, temos

$$\overline{\delta} = \mathsf{Pr}(r_{\mathcal{T}_i} = 1) - \mathsf{Pr}(r_{\mathcal{C}_i} = 1).$$

Efeitos causais populacionais

i	r_{C_i}	r_{T_i}	δ_i
Mary	0	0	0
Anna	1	0	-1
Emma	0	1	1
Elizabeth	0	0	0
Minnie	1	1	0
Margaret	0	0	0
lda	0	0	0
Alice	0	0	0
Bertha	1	0	-1
Sarah	0	0	0
Annie	1	1	0
Clara	0	1	1
	$E\left[r_{C_{i}}\right] = Pr(r_{C_{i}} = 1) = 4/12$	$E\left[r_{\mathcal{T}_i}\right] = Pr(r_{\mathcal{T}_i} = 1) =$	$\overline{\delta} = 4/12 - 4/12 = 0$
	4/12	4/12	

Ou seja, não existe efeito causal em nível populacional.

Efeitos causais populacionais

- Em verdade, **não sabemos** r_T para cada indivíduo, então **não podemos simplesmente estimar** $Pr(r_{T_i} = 1)$ como a proporção de todos os indivíduos com $r_T = 1$.
- ▶ Da mesma forma, **não podemos simplesmente estimar** $Pr(r_{C_i} = 1)$ como a proporção de todos os indivíduos com $r_C = 1$.
- Assim, **não podemos estimar** facilmente $\overline{\delta} = \Pr(r_{T_i} = 1) \Pr(r_{C_i} = 1)$ pelo mesmo motivo que não podemos estimar $\delta_i = r_{T_i} r_{C_i}$.
- A inferência causal é toda sobre a escolha de quantidades dos dados observados (isto é, envolvendo Z, R e outras variáveis observadas) que representam substitutos razoáveis para quantidades hipotéticas tais como $\overline{\delta}$, que envolvem contrafactuais não observáveis.

- ▶ O que pode ser um bom substituto para $Pr(r_{T_i} = 1)$?
 - $\hat{r}_T = \Pr(R = 1 | Z = 1)$?
 - ► Esta é a proporção de "dor de cabeça que desapareceu" entre aquelas senhoras que realmente tomaram a aspirina.
 - ▶ Isso é o mesmo que $Pr(r_{T_i} = 1)$?

Ignorabilidade

- Somente se aquelas senhoras que tomaram a aspirina forem intercambiáveis com aquelas que não o fizeram.
- ► Esta condição (suposição) é conhecida como ignorabilidade da atribuição ao tratamento ((r_C, r_T) ⊥ Z|X, ausência de confundimento).
- ► Este seria o caso se a escolha de tomar a aspirina fosse feita **ao acaso**.
- ► É por isso que **experimentos aleatorizados** são o **padrão-ouro** para inferir efeitos causais.

i	r_{C_i}	r_{T_i}	Z_i	R_i
Mary	0	?	0	0
Elizabeth	0	?	0	0
Minnie	1	?	0	1
Alice	0	?	0	0
Bertha	1	?	0	1
Sarah	0	?	0	0
Annie	1	?	0	1
				$\hat{r}_C = \Pr(R = 1 Z = 0) = 3/7$

i	r_{C_i}	r_{T_i}	Z_i	R_i
Anna	?	0	1	0
Emma	?	1	1	1
Margaret	?	0	1	0
lda	?	0	1	0
Clara	?	1	1	1
				$\hat{r}_T = \Pr(R = 1 Z = 1) = 2/5$

Portanto,

$$\hat{\delta} = \Pr(R = 1|Z = 1) - \Pr(R = 1|Z = 0) = \frac{2}{5} - \frac{3}{7} = -\frac{1}{35}.$$

- Se assumirmos "associação = causalidade", concluiremos que existe efeito causal e que a aspirina foi, em média, prejudicial.
- ► **Teste exato de Fisher:** a "base racional para inferência" $(H_0: \delta_i = 0, i = 1, ..., I)$.
 - No capítulo 2 de seu Design of Experiments, Fisher falou da aleatorização em experimentos como a "base racional da inferência" nos experimentos.

Mas, e se ...

... as senhoras com uma dor de cabeça **mais forte** (grave) fossem **mais propensas** a tomarem a aspirina?

▶ Neste caso, "associação \neq causalidade"! Ou $(r_C, r_T) \not\perp\!\!\!\perp Z | X$.

Levando em conta a gravidade

- Suponha que perguntamos a cada uma das 12 senhoras no início do estudo: "sua dor de cabeça é forte?".
 - Então, poderíamos propor que, depois de levar em conta a gravidade, a decisão de tomar ou não a aspirina fosse efetivamente tomada de forma aleatória.
- Suponha que X denota a gravidade. Então, sob essa suposição, dentro dos estratos de X, os indivíduos expostos e não expostos podem ser intercambiáveis.
- Isso é chamado de intercambiabilidade (permutabilidade) condicional (dado X).
- Sob intercambiabilidade condicional dada X, "associação = causalidade" dentro dos estratos de X.

Levando em conta a gravidade

i	r _{Ci}	r_{T_i}	Z_i	R_i	Xi
Mary	0	0	0	0	1
Anna	1	0	1	0	0
Emma	0	1	1	1	0
Elizabeth	0	0	0	0	1
Minnie	1	1	0	1	0
Margaret	0	0	1	0	1
lda	0	0	1	0	1
Alice	0	0	0	0	0
Bertha	1	0	0	1	1
Sarah	0	0	0	0	0
Annie	1	1	0	1	0
Clara	0	1	1	1	1

Estratificando por gravidade

No estrato X = 0:

• $\hat{r}_T = \Pr(R = 1|Z = 1) = 1/2 \text{ e } \hat{r}_C = \Pr(R = 1|Z = 0) = 2/4, \text{ e portanto,}$

$$\hat{\delta} = \hat{r}_T - \hat{r}_C = \frac{1}{2} - \frac{2}{4} = 0.$$

No estrato X = 1:

 $\hat{r}_T = \Pr(R = 1|Z = 1) = 1/3 \text{ e } \hat{r}_C = \Pr(R = 1|Z = 0) = 1/3, \text{ e portanto,}$

$$\hat{\delta} = \hat{r}_T - \hat{r}_C = \frac{1}{3} - \frac{1}{3} = 0.$$

Ou seja, dentro dos estratos não existe efeito causal.

Exemplo da dor de cabeça: breves conclusões

- De maneira mais geral, se existe um efeito causal de Z em R, mas também uma associação não-causal devido a X, então o efeito causal será estimado com viés, a menos que estratifiquemos em X.
 - Este viés será chamada de viés de confundimento (ou viés de confusão) e X será chamada de variável confundidora.

Exemplo da dor de cabeça: breves conclusões

- ▶ A intercambiabilidade condicional é o principal critério que nos permite fazer declarações causais usando dados observacionais.
- Assim, precisamos identificar, se possível, um conjunto de (co)variáveis X_1, X_2, \ldots , de tal forma que a intercambiabilidade condicional é válida, dado este conjunto de variáveis.
- ▶ Na vida real, pode haver muitas variáveis candidatas X.
- Estes podem ser causalmente inter-relacionados de uma maneira muito complexa.
- Decidir se os indivíduos expostos e o não expostos são condicionalmente intercambiáveis, dado X₁, X₂,..., requer conhecimento detalhado do assunto.
- Os diagramas causais (DAGs) podem nos ajudar a usar esse conhecimento para determinar se a intercambiabilidade condicional é válida ou não (critério back-door, variáveis não observadas).

DAGs: um exemplo

Grafo acíclico dirigido

- Este é um exemplo de um grafo acíclico dirigido (DAG) causal (diagrama causal).
- ► É dirigido, pois cada aresta é uma seta de ponta única.
- É causal, pois as setas representam nossas suposições a respeito da direção da influência causal.
- É acíclico, pois não contém ciclos: nenhuma variável causa a si mesma.

Métodos de estimação

- Suponha que, aplicando o critério *back-door*, nosso diagrama causal nos diga que o conjunto $X = \{X_1, X_2, ..., X_p\}$ (sexo, idade, gravidade da dor, uso de álcool, ...) é suficiente para controlar para confusão.
- **Como** analisamos os dados para estimarmos o efeito causal médio da exposição (ou tratamento, o $\bar{\delta}$)?
 - Estratificação.
 - Ajuste por covariável na análise de regressão.
 - Escore de propensão.
 - Pareamento.
 - ▶ Ponderação.

Métodos de estimação: estratificação

- Se o número de covariáveis de ajuste é pequeno e estes são categóricos/dicotômicos, podemos criar estratos com base nestas covariáveis.
- ► Em seguida, calculamos o efeito de interesse em cada estrato e então combinamos os resultados (ajuste direto e Mantel-Haenszel).

Métodos de estimação: estratificação

$$\bar{\delta} = \bar{r}_{T} - \bar{r}_{C}
= E[r_{T_{i}}] - E[r_{C_{i}}]
= E[E[r_{T_{i}}|X_{i}]] - E[E[r_{C_{i}}|X_{i}]]
= E[E[r_{T_{i}}|Z_{i} = 1, X_{i}]] - E[E[r_{C_{i}}|Z_{i} = 0, X_{i}]]
= E[E[R_{i}|Z_{i} = 1, X_{i}]] - E[E[R_{i}|Z_{i} = 0, X_{i}]]
= E[E[R_{i}|Z_{i} = 1, X_{i}] - E[R_{i}|Z_{i} = 0, X_{i}]]
= \sum_{i} (E[R_{i}|Z_{i} = 1, X_{i} = x] - E[R_{i}|Z_{i} = 0, X_{i} = x]) \Pr(X_{i} = x).$$

Métodos de estimação: estratificação

Table 5.6. How many strata are there with C covariates each at L levels?

Number of covariates (C)	L=2 levels	L=3 levels	
1	2	3	
2	4	9	
5	32	243	
10	1,024	59,049	
20	~1 million	~3.5 billion	
30	~1 billion	$\sim 2.1 \times 10^{14}$	
50	$\sim 1.1 \times 10^{15}$	$\sim 7.2 \times 10^{23}$	
75	$\sim 3.8 \times 10^{22}$	\sim 6.1 × 10 ³⁵	

- Se o nosso conjunto suficiente para controle de confusão contém muitos confundidores (e possivelmente contínuos), teremos muitos e pequenos estratos, perdendo precisão nas estimativas.
- Uma alternativa natural é ajustar para X em um modelo de regressão.
 - Desenhe o DAG
 - ▶ Identifique o conjunto suficiente de confundidores *X*
 - Inclua estes confundidores apropriadamente em um modelo de regressão
 - É importante avaliar relações não-lineares, termos de interação, suposições distribucionais, etc.

- ► Considere o caso em que *R*, a variável resposta/desfecho, seja contínua.
- ▶ O modelo de regressão linear supõe:

$$\mathsf{E}[R|Z=z,X_1,\ldots,X_p]=\beta_0+\beta_Zz+\beta_1x_1+\ldots+\beta_pX_p.$$

Assim,

$$\hat{\delta} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{E} \left[R_{i} | Z_{i} = 1, x_{1}, \dots, x_{p} \right] - \hat{E} \left[R_{i} | Z_{i} = 0, x_{1}, \dots, x_{p} \right] \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ (\hat{\beta}_{0} + \hat{\beta}_{Z} + \sum_{k=1}^{p} \hat{\beta}_{k} x_{ik}) - (\hat{\beta}_{0} + \sum_{k=1}^{p} \hat{\beta}_{k} x_{ik}) \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{\beta}_{Z} \right\} = \frac{1}{n} \times n \hat{\beta}_{Z} = \hat{\beta}_{Z}.$$

Se

- o conjunto suficiente de confundidores Z foi corretamente selecionado a partir do DAG corretamente especificado;
- 2. o modelo de regressão foi corretamente especificado;

então pode ser dada uma interpretação causal a \hat{eta}_Z .

▶ Intervalos de confiança e testes de hipóteses podem ser cosntruídos a partir das propriedades de $\hat{\beta}_Z$.

- lacktriangle Agora, suponha que R, a variável resposta/desfecho, seja dicotômica.
- O modelo de regressão logísitica (uma possibilidade de modelo para uma variável resposta dicotômica) supõe:

$$\begin{split} \mathsf{E}\left[R|Z=z,X_{1},\ldots,X_{p}\right] &= \mathsf{Pr}[R=1|Z=z,X_{1},\ldots,X_{p}] \\ &= \frac{\mathsf{exp}\{\beta_{0}+\beta_{Z}z+\sum_{k=1}^{p}\beta_{k}x_{k}\}}{1+\mathsf{exp}\{\beta_{0}+\beta_{Z}z+\sum_{k=1}^{p}\beta_{k}x_{k}\}}. \end{split}$$

Assim,

$$\begin{split} \hat{\delta} &= \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{E} \left[R_{i} | Z_{i} = 1, x_{1}, \dots, x_{p} \right] - \hat{E} \left[R_{i} | Z_{i} = 0, x_{1}, \dots, x_{p} \right] \right\} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{\Pr} \left[R = 1 | Z = 1, X_{1}, \dots, X_{p} \right] - \hat{\Pr} \left[R = 1 | Z = 0, X_{1}, \dots, X_{p} \right] \right\} \\ &= \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{\exp\{\hat{\beta}_{0} + \hat{\beta}_{Z} + \sum_{k=1}^{p} \hat{\beta}_{k} x_{k}\}}{1 + \exp\{\hat{\beta}_{0} + \sum_{k=1}^{p} \hat{\beta}_{k} x_{k}\}} - \frac{\exp\{\hat{\beta}_{0} + \sum_{k=1}^{p} \hat{\beta}_{k} x_{k}\}}{1 + \exp\{\hat{\beta}_{0} + \sum_{k=1}^{p} \hat{\beta}_{k} x_{k}\}} \right\}. \end{split}$$

- ▶ Observação: fora do modelo linear, $\hat{\beta}_Z$ não é a estimativa do δ .
- Métodos de reamostragem (por exemplo, o bootstrap) podem ser utilizados na construção de intervalos de confiança e testes de hipóteses para o δ.

Métodos de estimação: o escore de propensão

- No caso em que o conjunto suficiente possui muitos confundidores, o ajuste destes confundidores na análise de regressão pode implicar na falta de precisão das estimativas.
- Uma alternativa é ajustar por uma função (resumo) dos confundidores, por exemplo, o escore de propensão.
- ▶ O escore de propensão p(X) é a probabilidade condicional de Z=1 dado $X=(X_1,\ldots,X_p)$

$$p(X) = \Pr(Z = 1|X).$$

Métodos de estimação: o escore de propensão

- \triangleright p(X) é um escalar, independentemente da dimensão de X.
- ightharpoonup p(X) pode ser estimado por regressão logística.
 - Abordagens mais modernas têm utilizado métodos de aprendizagem de máquina para estimar p(X).
- ▶ Intuição: Se dois indivíduos, um exposto e outro não-exposto, têm o mesmo valor do escore de propensão, 0,25, por exemplo, são igualmente propensas a serem expostas (receberem o tratamento).
- **Resultado teórico:** intercambiabilidade condicional dado p(X).

Métodos de estimação: o escore de propensão

- ► Existem diferentes maneiras de incorporar o escore de propensão na análise para a estimação do efeito causal de interesse:
 - 1. estratificação (faixas do escore de propensão como estratos)
 - 2. ajuste na regressão (no lugar dos confundidores, se utiliza apenas o escore de propensão)
 - pareamento (esocore de propensão como uma medida de distância entre indivíduos)
 - 4. ponderação (o inverso do escore de propensão como uma ponderação).
- ► Estes métodos são válidos somente se os confundidores corretos X são incluídos no conjunto de ajuste e se p(X) é modelado corretamente.

Métodos de estimação: pareamento

- Métodos de pareamento: controlam os confundidores por uma etapa pré-análise.
 - Encontram pares de indivíduos (um exposto e um não-exposto) similares com respeito aos confundidores.
 - Métricas (distâncias) são utilizadas para estabelecer a similaridade entre indivíduos.
 - ▶ O escore de propensão pode ser utilizado como medida de similaridade, assim como a distância Euclidiana, ou a distância de Mahalanobis.

Métodos de estimação: pareamento

Comentários finais

- Nesta introdução apresentamos os conceitos básicos da abordagem de desfechos potenciais para inferência causal.
 - Definição dos efeitos causais.
 - Identificação dos efeitos causais.
 - Estimação dos efeitos causais.

O que vem depois?

- Análise de sensibilidade.
- Análise de mediação: decomposição do efeito total em efeitos direto e indireto.
- Análise de interação: modificação do efeito.
- Confundidores intermediários.
- Confundidores tempo-dependentes.
- Desfechos: tempo até evento; séries temporais; dados longituinais.

Muito obrigado!

