МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №4

з дисципліни «Дискретна математика»

Виконав:

студент групи КН-113

Омелюх Роман

Викладач: Мельникова Н.І.

Лабораторна робота № 4. Варіант№6

Тема: Основні операції над графами. Знаходження остова мінімальної ваги за алгоритмом Прима і Краскала

Мета роботи: набуття практичних вмінь та навичок з використанням алгоритмів Прима і Краскала.

Завдання № 1. Розв'язати на графах наступні задачі:

- 1. Виконати наступні операції над графами:
- 1) знайти доповнення до першого графу,
- 2) об'єднання графів,
- 3) кільцеву суму G1 та G2 (G1+G2),
- 4) розщепити вершину у другому графі,
- 5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1\ A),
- 6) добуток графів.

Розв'язки:

1) знайти доповнення до першого графу,

2) об'єднання графів,

3) кільцеву суму G1 та G2 (G1⊕G2),

4) розщепити вершину у другому графі,

5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1 \setminus A),

Підграф А

Стягнення A в G1

6) добуток графів.

2. Знайти таблицю суміжності та діаметр графа.

Діаметр: d = 3(V1-V8-V6-V9)

	V1	V2	V3	V4	V5	V6	V7	V8	V9
V1	0	1	1	0	0	0	0	1	0
V2	1	0	1	0	0	0	0	1	0
V3	1	1	0	1	1	0	0	0	0
V4	0	0	1	0	1	0	0	1	0
V5	0	0	1	1	0	1	1	1	0
V6	0	0	0	0	1	0	1	1	1
V7	0	0	0	0	1	1	0	1	0
V8	1	1	1	1	1	1	1	0	0
V9	0	0	0	0	0	1	0	0	0

3. Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Алгоритм Краскала

 $V(t) = \{3,6,5,2,4,1,7,6,10,11,2,9,8\}; \\ E(t) = \{(3,6),(3,5),(5,2),(4,1),(4,7),(4,6)(6,10),(10,11),(11,9),(11,8)\};$

 $V(t) = \{3,5,6,2,6,4,1,7,10,11,9,8\}; \\ E(t) = \{(3,5),(3,6),(5,2),(6,4),(4,1),(4,7),(6,10),(10,11),(11,9),(11,8)\};$

Завдання №2. Написати програму, яка реалізує алгоритм знаходження остового дерева мінімальної ваги згідно свого варіанту.

Варіант № 6

За алгоритмом Краскала знайти мінімальне остове дерево графа. Етапи розв'язання задачі виводити на екран. Протестувати розроблену програму на наступному графі:


```
#include <iostream>
 1
 2
        #include <stdio.h>
 3
        using namespace std;
 4
      struct mas1{
 5
        int vag;
 6
         int v1;
 7
        int v2;
 8
        bool in =false;
      L};
 9
10
      struct graf {
11
         int arr[11] {0};
12
        int c=0;
13
      L);
14
     □int main(){
15
         setlocale(LC_ALL, "Ukrainian");
         int n=11, a=100, b=100, m=11;
16
17
               int k;
18
        graf inn[5];
19
            masl mas[18];
20
        int v1[18]={1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,10};
21
        int v2[18]={2,3,4,5,7,5,6,6,7,8,9,8,10,9,10,11,11,11};
22
        int vag[18]={7,2,1,2,1,7,4,3,5,4,5,6,2,3,3,7,4,4};
      for (int i=1;i<=18;i++) {
23
24
        mas[i].vl=vl[i-1];
25
       mas[i].v2=v2[i-1];
26
      -mas[i].vag=vag[i-1];}
27
                         for (int i=1;i<=18;i++) {
28
                       for(int j=1;j<=18;j++) {
29
                    if (mas[j].vag>mas[i].vag) {
28
                       for(int j=1;j<=18;j++) {
29
                    if (mas[j].vag>mas[i].vag) {
30
                             swap(mas[i],mas[j]);
31
                    }}}
32
                    for (int i=1;i<=18;i++) {
33
                cout<<mas[i].vl<<" "<<mas[i].vag<<" "<<mas[i].v2<<endl;
34
35
         int c=-1;
36
        for (int i=0;i<18; i++) {
37
          for (int j=0;j<5; j++) {
38
           for (int k=0; k<11; k++) {
39
           if (mas[i].vl==inn[j].arr[k]) {a=j; goto point0; }}}
40
        point0:;
41
          for (int j=0;j<5; j++)
42
         -{
43
           for (int k=0; k<11; k++)
44
45
            if (mas[i].v2==inn[j].arr[k]){b=j; goto pointl; }
46
47
48
        pointl:;
49
          if (a!=b && a==100) {inn[b].arr[inn[b].c]=mas[i].vl; inn[b].c++; }
50
51
          if (a!=b && b==100) {inn[a].arr[inn[a].c]=mas[i].v2; inn[a].c++; }
52
53
          if (a!=b && a!=100 && b!=100) {
54
           if (a<b) {
55
            for (int l=0; l<inn[b].c; l++)
56
```

```
55
            for (int l=0; l<inn[b].c; l++)
56
57
             inn[a].arr[inn[a].c+1]=inn[b].arr[1];
58
            inn[b].arr[1] = 0;
59
60
            inn[a].c+=inn[b].c;
           inn[b].c = 0;
62
          if (b<a) {
63
            for (int l=0;l<inn[a].c; l++)</pre>
64
65
            inn[b].arr[inn[b].c+1]=inn[a].arr[1];
66
67
            inn[a].arr[l];
68
69
           inn[b].c+=inn[a].c;
70
            inn[a].c=0;
71
72
    73
         if(a==100 && b==100) {c++;inn[c].arr[inn[c].c]=mas[i].v1; inn[c].arr[inn[c].c + 1]=mas[i].v2; inn[c].c += 2; }
74
75
76
    1
         if (a==b && a!=100) {mas[i].in=false;} a=100;b=100;
77
        {
m cout} << "остове дерево мінімальної ваги, ми повинні включити в нього такі ребра: " << endl;
78
79
         int sum= 0;
80
         for (int i=1; i<=m; i++)
81
         if (mas[i].in==true) {cout<<mas[i].vl<< " " <<mas[i].vag<<" "<<mas[i].v2<<endl;sum+=mas[i].vag; }</pre>
82
    ı
83
79
          int sum= 0;
          for (int i=1; i<=m; i++)
 80
 81
           if (mas[i].in==true) {cout<<mas[i].vl<< " " <<mas[i].vag<<" "<<mas[i].v2<<endl;sum+=mas[i].vag; }</pre>
 82
 83
 84
         cout << "Остове дерево мінімальної ваги для даного графа: " << sum;
 85
Результати:
```

```
2 3
  2 10
4 3 6
7 3 9
  3 10
  4 8
3 4 6
9 4 11
10 4 11
5 5 9
4 5 7
6 6 8
  7 11
1 7
остове дерево мінімальної ваги, ми повинні включити в нього такі ребра:
1 1 4
2 1 7 2 2 5
  2 10
  3 9
  3 10
 4 8
9 4 11
Остове дерево мінімальної ваги для даного графа: 25
Process returned 0 (0x0)
                             execution time : 0.153 s
Press any key to continue.
```

Висновок: на цій лабораторній ми набули практичних вмінь та навичок з використанням алгоритмів Прима і Краскала.