Towards a "standard" salmon stock monitoring programme

Examples from the Scorff (Brittany, France) and Frome (Dorset, UK)

Ibbotson

Bagliniere

Nevoux

Gregory

Beaumont

Rivot

MorFish

Prevost

Jeannot

Roberts

Roussel

Lauridsen

Riley

Scott

Frome
Oir
Scorff

To share technical expertise:

$$((\stackrel{\mp}{\sim}))$$
 Modelling

To share technical expertise:

Monitoring

$$\left(\begin{pmatrix} \overline{+} & \overline{\sim} \\ \hline \end{array}\right)$$
 Modelling

 To make recommendations based on shared experience

Monitoring

Aim: to collect data on stage-specific stock size(s)

Aim: to collect data on stage-specific stock size(s)

Method	Pros	Cons
Active trapping		
Passive counting		
Combo		

Monitoring: Scorff

Smolt captured & marked in Scm trap

Smolt recaptured in Sr trap

Adults captured & marked in Acm trap

Adults recaptured at spawning grounds (A_r)

Monitoring: Pros & Cons

Method	Pros	Cons
Active trapping	Yields biological data	Labour-intensive
	Individual data	Potential sampling error
		May impact fish survival

Monitoring: Frome adults

Fish detected on resistivity counter

Waveform analysis to species

Each waveform verified by video or camera

Regular system calibration tests

Flow

Monitoring: Pros & Cons

Method	Pros	Cons
Active trapping	Yields biological data	Labour-intensive
	Individual data	Potential sampling error
		May impact fish survival
Passive counting	Automatic counting	Labour-intensive
	Reduced sampling error	Precludes biological data
		No individual data

Monitoring: Frome smolts

Autumn: 10,000 parr PIT tagged

Spring: smolt migration

- Smolt detected on first PIT readers
- Smolt trapped in Rotary Screw Trap
- Smolt detected on second PIT reader

Monitoring: Pros & Cons

Method	Pros	Cons
Active trapping	Yields biological data	Labour-intensive
	Individual data	Potential sampling error
		May impact fish survival
Passive counting	Reduced sampling error	Labour-intensive
	Automatic counting	Precludes biological data
		No individual data
Combo	Yields biological data	High initial PIT tagging effort
	Reduced sampling error	May impact fish survival
	Individual data	
	Less labour-intensive	

Monitoring: Pros & Cons

Method	Pros	Cons
Active trapping	Yields biological data	Labour-intensive
	Individual data	Potential sampling error
		May impact fish survival
Passive counting	Reduced sampling error	Labour-intensive
	Automatic counting	Precludes biological data
		No individual data
Combo	Yields biological data	High initial PIT tagging effort
	Reduced sampling error	May impact fish survival
	Individual data	
	Less labour-intensive	

Modelling

Aim: to use monitoring data to estimate stagespecific stock size(s), vital rates and their uncertainties

Modelling

Aim: to use monitoring data to estimate stagespecific stock size(s), vital rates and their uncertainties

Method	Pros	Cons
SLC model		
Classical CMR		

Modelling: INRA

Salmon Life Cycle model (Rivot et al., 2004)

Modelling: INRA

Salmon Life Cycle model (Rivot et al., 2004)

Modelling: Pros & Cons

Method	Pros	Cons
SLC model	Uses monitoring data for all life stages	Technical proficiency needed to adapt, fit and extend
	Uncertainty integrated across all life stages	Computationally demanding
	Permits missing values	No closed solution
	Estimates unmonitored life stages & vital rates	
	Uses Capture-Mark- Recapture data efficiently	

Chapman-Petersen estimators

$$N = \frac{(n_1 + 1)(n_2 + 1)}{(n_3 + 1)} - 1$$

$$\frac{(8+1)(8+1)}{(2+1)} - 1 = 26$$

Modelling: Pros & Cons

Method	Pros	Cons
SLC model	Uses monitoring data for all life stages	Technical proficiency needed to adapt, fit and extend
	Uncertainty integrated across life stages	Computationally demanding
	Permits missing values	No closed solution
	Estimates unmonitored life stages & vital rates	
	Uses Capture-Mark- Recapture data efficiently	
Classical CMR	Simple estimation	No missing values allowed
	Mathematical solution	Estimate for single life stage
	Known properties	No vital rate estimates

Modelling: Pros & Cons

Method	Pros	Cons
SLC model	Uses monitoring data for all life stages	Technical proficiency needed to adapt, fit and extend
	Uncertainty integrated across life stages	Computationally demanding
	Permits missing values	No closed solution
	Estimates unmonitored life stages & vital rates	
	Uses Capture-Mark- Recapture data efficiently	
Classical CMR	Simple estimation	No missing values allowed
	Mathematical solution	Estimate for single life stage
	Known properties	No vital rate estimates

Verdict

Monitoring: Active-Passive combo

- Example: Frome smolt monitoring

Modelling: Salmon Life Cycle model

 $\begin{pmatrix} + \\ - \end{pmatrix} \end{pmatrix}$ – Example: Rivot *et al.* 2004, INRA

A "standard" salmon stock monitoring programme

More info: www.morfish.org.uk; sgregory@gwct.org.uk

<u>Collaboration</u>: Jean-Luc Bagliniere, Bill Beaumont, Stephen Gregory, Anton Ibbotson, Nicolas Jeannot, Rasmus Lauridsen, Marie Nevoux, Etienne Prevost, Bill Riley, Etienne Rivot, Dylan Roberts, Jean-Marc Roussel, Luke Scott

