INTRODUCTION TO DIGITAL HEALTH AND ARTIFICIAL INTELLIGENCE IN MEDICAL APPLICATIONS

HW2 – Classification of Medical Image

Chew Zhi Qi (H34128412)

Dataset Description

Xray lung images of normal patients and patients with COVID

Train set

- 144 COVID and Normal images respectively

Validation set

- 30 COVID and Normal images respectively

Prediction

- 23 images

Task: Use deep learning models to predict whether a patient has COVID based on their Xray lung image

COVID

Normal

Rescaling

- Normalize the pixel values of the images from the range [0, 255] to the range [0, 1]
- Faster convergence during training

Zoom Transformation

- Randomly zooms in on images by up to 20%
- Allows the model to learn features at different scales.

Horizontal Flip

- Randomly flips images horizontally
- Helps the model generalize better by learning from different orientations

Early Stopping

- Stop the training process when a metric stops increasing and use weights at the state where the metric was the highest
- Helps with preventing overfitting and saves computational resources

Learning Rate

- ReduceLROnPlateau
- Learning rate is decreased when a metric stops improving.
- Model is able to converge more effectively by taking smaller steps as it gets closer to the minimum of the loss function

Model 1: VGG16

Deep convolutional neural network model

- 16 layers of artificial neurons
- Uses convolution layers with a 3x3 filter and a stride 1 that are in the same padding and maxpool layer of 2x2 filter of stride 2.
- Pre-trained version is trained on over one million images from the ImageNet visual database

Model 1: VGG16

On top of the pretrained model, additional layers are added to adapt the model for the binary classification task.

GlobalAveragePooling2D Layer:

- Performs an average pooling operation, reducing the spatial dimensions
- Significantly reduces the output size by averaging each feature map

Dense Layers with Dropout:

- Adds a dense layer with 64 units and ReLU activation to learn complex patterns from the pooled features.
- Dropout regularizes the model by randomly dropping 50% of the neurons during training, preventing overfitting and improving generalization.

Final Dense Layer (Binary Classification):

- Outputs a single probability score indicating the likelihood of the input image belonging to the positive class.

VGG16 Training Performance

VGG16 Performance on Test Set

Score = [0.9797249] Ground Truth: 1

Prediction: Normal Score = [0.17291074] Ground Truth: 0

Prediction: Covid Score = [0.9791897] Ground Truth: 1

Prediction: Normal Score = [0.10214663] Ground Truth: 0

Score = [0.11496843] Ground Truth: 0

Prediction: Normal Score = [0.12025426] Ground Truth: 0

VGG16 Performance on Test Set

Model 2: Self Designed CNN

Convolutional Layers:

- Five convolutional layers with ReLU activation function and a 3x3 filter.
- Each convolutional layer is followed by a max pooling layer with a 2x2 pool size and stride of 2.

Flattening and Dense Layers:

- The feature maps are flattened into a vector.
- Two dense layers with ReLU activation, having 128 and 64 units respectively.

Output Layer:

- Final dense layer with sigmoid activation ('sigmoid') for binary classification (outputting a probability score).

Optimizer and Loss Function:

- Optimized using Adam (Adaptive Moment Estimation) optimizer
- Loss function is binary cross-entropy

ReLU

- Most popular activation function (function that defines the output of a node given an input and introduces the property of nonlinearity into the model) for training convolutional layers and deep learning models
- Easy to implement and less time consuming compared to sigmoid

Feature Maps

 Two-dimensional array generated from the application of convolutional filters/kernals to an input image or a previous layer's feature map.

CNN Training Performance

CNN Performance on Test Set

Score = [0.92965055] Ground Truth: 1

Score = [0.9959284] Ground Truth: 0

Prediction: Covid Score = [0.7608206] Ground Truth: 1

Score = [0.99962026] Ground Truth: 1

Prediction: Normal Score = [2.5362866e-05] Ground Truth: 0

Prediction: Covid Score = [0.9998523] Ground Truth: 0

Prediction: Normal Score = [0.00077418] Ground Truth: 0

Score = [0.9865577] Ground Truth: 0

Prediction: Normal Score = [0.00030168] Ground Truth: 0

Score = [0.0052172] Ground Truth: 0

Score = [0.0009421] Ground Truth: 0

Prediction: Covid Score = [0.9684667] Ground Truth: 1

Prediction: Normal Score = [7.32735e-05] Ground Truth: 0

Prediction: Covid Score = [0.9998852] Ground Truth: 0

Prediction: Normal Score = [0.00350669] Ground Truth: 0

CNN Performance on Test Set

Performance Comparision

Metrics	Formula	Focus	VGG16	CNN
Accuracy	(TP+TN)/ (FP+FN+TP+TN)	Overall correctness	0.78	0.74
Precision	TP/ (TP+FP)	Correctness of positive predictions	0.50	0.45
Sensitivity / Recall	TP/ (TP+FN)	Ability to find all positive instances	0.80	1
Specificity	TN/ (TN+FP)	Ability to find all negative instances	0.78	0.67
F1-Score	2× ((Precision*Sensitivity)/(Precision+Sensitivity))	Balance between precision and sensitivity	0.62	0.62
ROC AUC	Integration	Overall performance across all classification thresholds	0.84	0.73

Model Interpretability

LIME (Local Interpretable Model-agnostic Explanations)

- Technique designed to explain the predictions of any machine learning model by approximating it locally with an interpretable model.
- **Model-Agnostic**: LIME is not dependent on the type of model. It can be used with any classifier or regressor, whether it's a neural network, decision tree, or any other type.
- **Local Explanations**: LIME focuses on explaining individual predictions. It provides insight into why the model made a specific prediction for a given input.
- Benefits
 - **Transparency**: Helps in understanding complex models by breaking down predictions into understandable components.
 - **Debugging**: Identifies which features are driving predictions, useful for debugging and improving models.
 - Trust: Increases trust in model predictions by providing explanations
- Drawbacks
 - Computationally Intensive and Time-Consuming: Involves training a local surrogate model for each instance, which can be computationally expensive and time-consuming

VGG16 LIME Results on Normal Patients

Highlighted areas = important features that influenced the model's prediction

VGG16 LIME Results on COVID Patients

CNN LIME Results on Normal Patients

CNN LIME Results on COVID Patients

Conclusion from Model Performance and LIME Results

Model Performance

- VGG16 performed better generally (higher ROC AUC, accuracy)
- However, recall score for CNN is higher than VGG16
 - Recall is an important metric to look at
 - For COVID19 detection, false negative should be avoided as much as possible (someone who has COVID is not diagnosed)

LIME Results

- Important features detected by VGG16 are more inconsistent (often consisting of areas outside the lungs or not having a specific area at all)
- For CNN, the important features identified are often the lower part of the lungs

Conclusion

- CNN model has more potential to do better if more hyperparameter tuning is done, specifically in the context of Xray image classification.
- VGG16 is trained on ImageNet dataset (>1 million images and >20000 categories), hence when training it on the small xray dataset, overfitting most likely occurred.