Travaux Dirigés de Physique

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

TD n° 10	Circuits linéaires en régime sinusoïdal forcé	1
Exercice n° 1 - Mod	ule et argument de nombres complexes	1
Exercice n° 2 - Déte	rmination de l'impédance d'un dipôle	1
Exercice n° 3 - Equi	valence entre deux dipôles	1
Exercice n° 4 - Calci	uls d'intensités dans différentes branches	1
Exercice n° 5 - Equi	valence de circuits	2
Exercice n° 6 - Cara	ctérisation expérimentale d'un régime sinusoïdal	2
Exercice n° 7 - Adap	otation d'impédance	2
Exercice n° 8 - Relèv	vement d'un facteur de puissance	2

CIRCUITS LINÉAIRES EN RÉGIME SINUSOÏDAL FORCÉ

Exercice n° 1 - Module et argument de nombres complexes

Déterminer le module et l'argument des nombres complexes suivants, où x est une valeur réelle positive :

$$\underline{z_1} = 1, \ \underline{z_2} = 1 - x^2, \ \underline{z_3} = jx, \ \underline{z_4} = 1 + j, \ \underline{z_5} = \frac{1}{1 - j}, \ \underline{z_6} = \frac{1}{1 + jQ(x - \frac{1}{x})}.$$

Exercice n° 2 - Détermination de l'impédance d'un dipôle

Déterminer l'impédance complexe \underline{Z} du dipôle représenté ci-contre. On précisera sa partie réelle $X(\omega)$ et sa partie imaginaire $Y(\omega)$.

Exercice n° 3 - Equivalence entre deux dipôles

Montrer que les deux dipôles ci-dessous sont équivalents à toutes les fréquences pour des valeurs particulières de L et C que l'on exprimera en fonction de L_0 et C_0 .

Exercice n° 4 - Calculs d'intensités dans différentes branches

On considère le circuit ci-contre. On pose $u(t) = U_m cos(\omega t)$.

- 1. Déterminer les intensités efficaces des courants i_1 et i_2 ainsi que leurs déphasages φ_1 et φ_2 .
- 2. Pour quelle valeur de $C,\ i_1$ et i_2 sont-elles en quadrature pour une pulsation ω donnée ?
- 3. On veut maintenant que i_1 et i_2 soient non seulement en quadrature, mais également de même valeur efficace. Déterminer la relation liant r, L et ω pour que ces conditions soient vérifiées.

Exercice n° 5 - Equivalence de circuits

Déterminer le courant complexe $\underline{i_L}$ circulant dans l'inductance (L) du circuit de la figure ci-contre en utilisant les équivalences entre les représentations de Thévenin et de Norton.

Exercice nº 6 - Caractérisation expérimentale d'un régime sinusoïdal

Un circuit RC série est alimenté par une source de tension idéale de force électromotrice sinusoïdale :

$$e(t) = E_0 \cos(\omega t)$$

On mesure à l'oscilloscope la tension aux bornes de la source et celle aux bornes du condensateur.

La capacité C vaut 1,0 μ F.

- 1. Exprimer l'amplitude U_C , la valeur efficace U_{Ceff} et la phase φ de la tension u_C aux bornes du condensateur.
- 2. Déterminer, à partir de l'oscillogramme, les valeurs de la pulsation, de la phase φ , de l'amplitude de la force électromotrice et celle de la tension u_C .
- 3. Calculer la valeur de la résistance R.
- 4. Calculer la puissance moyenne reçue par la résistance.

Exercice n° 7 - Adaptation d'impédance

Un GBF de résistance interne $r=50\Omega$ délivre une tension sinusoïdale de pulsation ω et de valeur efficace E. Il alimente un appareil (un moteur par exemple) d'impédance $\underline{Z}=R+jX$. Afin que l'appareil puisse utiliser une puissance maximale, quelle est la valeur optimale de \underline{Z} à utiliser?

Exercice n° 8 - Relèvement d'un facteur de puissance

Considérons un moteur d'impédance $\underline{Z} = R + jX$ à caractère inductif (X > 0). On souhaite relever le facteur de puissance de ce réseau, c'est-à-dire donner à $\cos \varphi$ une valeur égale à l'unité sans dépense d'énergie.

- 1. Calculer, en fonction de R, X et ω , la capacité C_1 à placer en parallèle sur le réseau pour que le facteur de puissance devienne égal à 1.
- 2. Quelle capacité C_2 aurait-il fallu placer en série sur le réseau pour obtenir le même résultat?
- 3. Des deux solutions, quelle est celle à retenir si le moteur fonctionne sur le secteur?

- 4. On considère un moteur ($\cos \varphi = 0, 7$) de puissance $\mathcal{P} = 10$ kW alimenté sous une tension de fréquence f = 50 Hz et d'amplitude $u_m = 220\sqrt{2}$ V. On souhaite relever à 1 son facteur de puissance à l'aide d'une batterie de condensateurs de capacité C, placée en parallèle avec le moteur.
 - a. Calculer les intensités efficaces I_{eff} et I'_{eff} traversant le circuit d'alimentation avant et après le relèvement du facteur de puissance.

- b. Quelle est l'intérêt du relèvement de puissance sur les pertes en ligne par effet Joule (énergie dissipée sous forme de chaleur dans la ligne pour amener la puissance à l'installation)?
- c. Calculer la valeur de la résistance R du moteur (qu'on modélisera par une impédance complexe $\underline{Z} = R + jX$).
- d. Déterminer l'expression de $tan(\varphi)$ en fonction de R et X, et en déduire la valeur de la capacité C_1 à placer en parallèle pour relever le facteur de puissance de l'installation.

Indication : On rappelle que $1 + tan^2(\varphi) = \frac{1}{cos^2(\varphi)}$.