3.1 Rappels de l'an dernier

3.1.1 Expression

Définition 1.3.

Les fonctions f, définies sur \mathbb{R} , dont l'expression peut se mettre sous la forme _____, où m et p sont des réels, sont appelées fonctions affines.

Exemple 1.3.

▶ Note 1.3.

- 1. Si m=0 alors f(x)=p est dite ______
- 2. si p = 0 alors f(x) = mx est dite _____

3.1.2 Représentation graphique

Le plan est muni d'un repère.

Théorème 1.3.

Toute fonction affine f définie sur \mathbb{R} par f(x) = mx + p est représentée par une droite \mathcal{D} non parallèle à l'axe des ordonnées qui aura pour équation y = mx + p.

Réciproquement, toute expression de la forme y = mx + p est celle d'une fonction affine. Par ailleurs :

- 1. p s'appelle ordonnée à l'origine : la droite \mathcal{D} passe par le point de coordonnées (0; p).
- 2. m s'appelle le coefficient directeur ou pente de la droite \mathcal{D} , et le taux d'accroissement de f: Si $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points de \mathcal{D} tels que $x_A \neq x_B$ alors :

$$m = \frac{f(x_{\rm B}) - f(x_{\rm A})}{x_{\rm B} - x_{\rm A}} = \frac{y_B - y_A}{x_B - x_A} = \frac{\Delta y}{\Delta x}$$

Illustration.

Description 1.3. Soit la fonction f définie sur \mathbb{R} par $f(x) = -4(x-1) + 2(x-3)$.
Démontrer que la fonction f est une fonction affine.

3.2 Variations d'une fonction affine

Théorème 2.3.

Soit $f: x \mapsto mx + p$ une fonction affine.

Pour deux réels u et v: si u < v alors f(u) < f(v).

On dit que f conserve l'ordre dans $\mathbb R$ ou encore que f est strictement croissante sur $\mathbb R$:

m < 0

Pour deux réels u et v: si u < v alors f(u) > f(v).

On dit que f ne conserve pas l'ordre dans \mathbb{R} ou encore que f est strictement décroissante sur \mathbb{R} :

Exemple 2.3.

1. Pour $f: x \longmapsto 3,8x$:	
m = 3, 8 > 0: si $u < v$ alors,	, c'est-à-dire

2. Pour
$$g: x \longmapsto -4, 1x:$$

 $m = -4, 1 < 0: \text{si } u < v \text{ alors}, \underline{\hspace{1cm}}, \text{c'est-à-dire} \underline{\hspace{1cm}}$

▶ Note 2.3.

À partir des variations d'une fonction, on peut élaborer son tableau de variations : c'est un tableau synthétique regroupant les informations concernant les variations de cette fonction.

Résultats à retenir :

1. Cas m < 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

2. Cas m = 0

x	$-\infty$	$+\infty$
Variation		
$\mathrm{de}\ f$		

3. Cas m > 0

x	$-\infty$	$+\infty$
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$		

Application 2.3.

Dresser le tableau de variation de la fonction f définie sur \mathbb{R} par f(x) = -4x + 2.

3.3 Signe d'une fonction affine

Définition 2.3.

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p avec $m \neq 0$.

- 1. On appelle racine de f le réel x_0 tel que $f(x_0) = 0$.
- 2. Le point de coordonnées $(x_0; 0)$ est le point d'intersection de la courbe représentative de f avec l'axe des abscisses.

Théorème 3.3.

Soit $f: x \mapsto mx + p$ une fonction affine avec $m \neq 0$ admettant pour racine x_0 . Le signe de f(x) selon les valeurs de x est donné par le tableau suivant :

 \square Si m>0

x	$-\infty$	x_0	$+\infty$
signe de $f(x)$		0	

 \square Si m < 0

x	$-\infty$	x_0	$+\infty$
signe de $f(x)$		0	

ightharpoonup Application 3.3. Faire le tableau de signes des fonctions f et g définies sur \mathbb{R} respectivement par :

$$f(x) = 5x + 22$$
 et $g(x) = -3x + 11$.