AD A 139127

INORGANIC HALOGEN OXIDIZERS

17180-17386-31-CH

FINAL REPORT

ROCKETDYNE DIVISION ROCKWELL INTERNATIONAL 6633 CANOGA AVENUE CANOGA PARK, CA 91304

AUTHOR: K. O. Christe

22 FEBRUARY 1984

Final Report for Period 1 March 1982 - 31 December 1983

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Prepared for

OFFICE OF NAVAL RESEARCH MECHANICS DIVISION ARLINGTON, VA 22217

A Report on Work Sponsored by the Office of Naval Reaearch, Contract N00014-82-c-0414, and by the Army Research Office through ONR.

DTIC ELECTE MAR 1 9 1984

E

84 03 19 007

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
I. REPORT NUMBER	A13972	RECIPIENT'S CATALOG MUMBER					
INORGANIC HALOGEN OXIDIZERS,		5. TYPE OF REPORT & PERIOD COVERED Final Report, 1 March 1982 through 31 December 1983					
FINAL REPORT		FERFORMING ORG. REPORT NUMBER RI/RD84-126					
K. O. Christe		N00014-82-C-0414 N1 PR - 05-85					
Penforming organization name and address Rocketdyne Division, Rockwell Inte 6633 Canoga Avenue Canoga Park, California 91304	rnational .	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Office of Naval Research, Mechanics Division		12 REPORT OATE 22 February 1984					
Arlington, VA 22217		218					
14. MONITORING AGENCY NAME & ADDRESS(II dillerent	from Controlling Office)	Unclassified					
		150 DECLASSIFICATION DOWNGRADING SCHEDULE					

It DISTRIBUTION STATEMENT (of this Report)

Reproduction in whole or in part is permitted for any purpose of the United States Government.

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

15. KEY WORDS (Continue on tevarae aide if necessary and identify by block number)

Synthesis, Novel Oxidizers, Perfluoro Ammonium Salts, Fluorine Perchlorate, Positive Fluorine, Oxonium Salts, Trifluoromethylazide, Iodine (VII) Oxytetra-fluoride Hypofluorite, Pentafluorotellurium (VI) Hypofluorite, N.N-Difluoro-Operfluoroalkylhydroxylamines, Nitrogen Trifluoride Radical Cation, Nitrogen NMR Spectroscopy, Hexafluoro Chlorine (VII) Cation, Coordinatively Saturated

20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)

A basic research program was carried out in the area of inorganic halogen oxidizers. The main effort was directed towards the synthesis and characterization of CIF6 salts. Pure CIF6 salts were prepared for the first time and shown to be of excellent kinetic stability. Methods developed for NF4 chemistry were successfully transferred to CIF6 chemistry, and CIF6SbF6, CIF6AsF6 and CIF6BF4 were prepared and characterized. By analogy with NF6ClO4

The second secon

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered

19. (Continued)

Fluoro Cations, Dioxygenfluoride Radical, Far-Infrared Laser Magnetic Resonance Spectroscopy, Tungsten Oxide Tetrafluoride, Platinum Hexafluoride, Krypton Difluoride, Cesium Hexafluoromanganate (IV), Chloryl Fluoride, Chlorine Oxyfluorides, Sulfur Tetrafluoride Radical Anion, Sulfur Tetrafluoride Oxide Radical Anion.

(+)

20. (Continued)

CligClO4 was found to be unstable. The relative oxidizing power of KrF, PtF_6 , and F_2 in the presence of a strong Lewis acid and an activation energy source was studied and found to decrease in this order. Numerous new NF4' salts were prepared and characterized. Attempts to prepare substituted NF_4 salts were unsuccessful. The first known example of a metal hypofluorite, TeF; UF, was prepared and characterized. Attempts conducted on the synthesis of ClF_4OF from ClF_4O and $FOSO_2^DF$ were unsuccessful, but resulted in an unusual oxygen abstraction reaction. The 07F radical was prepared and subsequently characterized by laser magnetic resonance spectroscopy. The structures of the NF $_3$ radical cation and of the SF $_4$ and SF $_4$ 0 radical anions were studied by ESR spectroscopy. The gas phase structure of $CF_3^{(1)}N_3^{(1)}$ was investigated by electron diffraction and microwave spectroscopy. $\check{\text{W}}$ ork on the synthesis of energetic F₂NO- substituted fluorocarbons was completed. Several oxonium and deuterated oxonium salts were prepared and then characterized by x-ray, neutron diffraction and vibrational spectroscopy. Polar covalence theory arguments are presented against the existence of positively polarized fluorine in covalent hypofluorites. A total of 26 papers, manuscripts and patents are included in the Appendix.

PREFACE

The research reported herein was supported by the Mechanics Division of the Office of Naval Research with Dr. R. S. Miller as Scientific Officer and by the Chemistry Division of the Army Research Office with Dr. B. Spielvogel as Scientific Officer. This report covers the period 1 March 1982 through 31 December 1983. The program has been directed by Dr. K. O. Christe. scientific effort was carried out mainly by Drs. K. O. Christe, W. W. Wilson, C. J. Schack and Mr. R. D. Wilson with contributions from Drs. E. C. Curtis, W. Maya, D. Pilipovich and Mr. M. Warner (all at Rockwell International). Other contributors to these research efforts, at no cost to the contract, were Drs. R. Bougon, P. Charpin, E. Soulie and T. Bui Huy (French Atomic Energy Commission), J. Fawcett (University of Leicester, England), H. Oberhammer and D. Christen (University of Tübingen, Germany) J. Mason (The Open University, Milton Keynes, England), F. Temps and H. G. Wagner (Max Planck Institut, Götingen, Germany), P. B. Davies and D. P. Stern (University of Cambridge, England) and F. Williams, B. Walther and J. Wang (University of Tennessee). The program was administered by Dr. L. R. Grant.

Acces	sien For
NTIS	FP\&I
DIIC	rus (j
Unann	omiced []
Justi	fication
Ву	
Distr	ibution/
Avai	lability Codes
	Avail and/or
Dist	Special
1	1 1
10 1	1
M-1	
	1 416
	C-,
	-

CONTENTS

Introduction																	3
Publications and Patents	Ge	ner	ate	dι	Jnder	· т	h1s	Pr	ogr.	am							4
Publications																	4
Papers in Press																	5
Papers Presented at Me	eeti	ngs															6
Patents Issued																	6
Patents Pending																	8
Results and Discussion																	8
ClF ₆ Chemistry .																	8
NF Chemistry .					•												9
Oxidative Fluorination	is w	1th	Kr	F ⁺	Salt	: \$	and	Pt	F,								10
Hypofluorite Chemistry																	10
Chlorine Oxyfluorides																	11
Energetic Fluorocarbor	าร																11
Structural Studies .																	11
Miscellaneous																	12
Conclusion																	12
References																	13
Appendices A Through Z																	
Technical Papers and Pai	tent	S															Α
•											·	Ť	Ť	•	·	Th	rough
																	Z
Appendix AA																	-
Wistribution List																	ΔΔ. 1

INTRODUCTION

This is the final report of a research program carried out at Rocketdyne between 1 March 1982 and 31 December 1983. The purpose of this program was to explore the synthesis and properties of energetic inorganic halogen oxidizers. Although the program was directed toward basic research, applications of the results were continuously considered.

Only completed items of research, which have been summarized in manuscript form, are included in this report. A total of 14 technical papers were published and 9 papers are in press in major scientific journals. In addition, 8 papers were presented at international and national conferences. A further testimony to the creativity of this program is the fact that it resulted in 3 U.S. patents issued and 5 pending. The technical papers and issued patents are reproduced in Appendices A through Z.

PUBLICATIONS AND PATENTS GENERATED UNDER THIS PROGRAM

PUBLICATIONS

- 1. "Syntheses of NF_4^+ Salts Derived From the Lewis Acids AlF_3 and $8eF_2$," by K. D. Christe, W. W. Wilson and C. J. Schack, <u>J. Fluorine Chem.</u>, <u>20</u>, 751 (1982).
- 2. "Perfluoroammonium Salts of Metal Heptafluoride Anions," by W. W. Wilson and K. D. Christe, <u>Inorg. Chem.</u>, 21. 2091 (1982).
- 3. "Fluorine Perchlorate. Vibrational Spectra, Force Field, and Thermodynamic Properties," by K. O. Christe and E. C. Curtis, <u>Inorg. Chem.</u>, <u>21</u>, 2938 (1982).
- 4. "Perfluoroammonium and Alkali-Metai Salts of the Heptafluoroxenon (VI) and Octafluoroxenon (VI) Anions," by K. O. Christe and W. W. Wilson, <u>Inorg. Chem.</u>, 21, 4113 (1982).
- "Synthesis and Characterization of TeF₅OF," by C. J. Schack, W. W. Wilson and K. D. Christe, <u>Inorq. Chem.</u>, <u>22</u>, 18 (1983).
- Synthesis of N,N-Difluoro-D-perfluoroalkylhydroxylamines.
 Reaction of Perfluoroalkyl Hypofluorites with Difluoramine, by W. Maya,
 Pilipovich, M. G. Warner, R. D. Wilson and K. D. Christe, <u>Inorg. Chem.</u>,
 810 (1983).
- 7. "EPR Evidence on Molecular and Electronic Structure of Nitrogen Trifluoride Radical Cation," by A. M. Maurice, R. L. Belford, I. 8. Goldberg and K. D. Christe, J. Amer. Chem. Soc., 105, 3799 (1983).
- "Synthesis of N,N-Difluoro-D-perhaloalkylhydroxylamines. 2. Lewis Acid Catalyzed Addition of NF₃D to Diefins," by R. D. Wilson, W. Maya, D. Pilipovich and K. D. Christe, <u>Inorg. Chem.</u>, <u>22.</u> 1355 (1983).
- "Nitrogen-14 and Nitrogen-15 NMR Spectroscopy of Fluoronitrogen Cations: w and σ Fluoro Effects," by J. Mason and K. D. Christe, <u>Inorg. Chem.</u>, 22. 1849 (1983).
- 10. "Synthesis and Properties of ClF_68F_4 ," by K. D. Christe and W. W. Wilson, <u>Inorg. Chem.</u>, <u>22</u>, 1950 (1983).
- 11. "Coordinative]y Saturated Complex Fluoro Cations. Synthesis and Characterization of ClF₆AsF₆ and ClF₆SbF₆, by K. D. Christe, W. W. Wilson, and E. C. Curtis, <u>Inorg. Chem.</u>, 22, 3056 (1983).

- 12. "On the Reality of Positive Fluorine," by K. O. Christe, <u>J. Fluorine</u> Chem., 22, 519 (1983).
- 13. "Thermochemistry of NF_4^{\dagger} Salts. On the Enthalpy of Formation of NF_4XeF_7 and the $NF_4SbF_6-BrF_3$ System," by K. O. Christe, W. W. Wilson, R. O. Wilson, R. Bougon, and T. Bui Huy, <u>J. Fluorine Chem.</u>, <u>23</u>, 399 (1983).
- 14. "Far-Infrared Laser Magnetic Resonance Detection of FO₂," by F. Temps, H. G. Wagner, P. 8. Davies, O. P. Stern, and K.O. Christe, <u>J. Phys. Chem.</u>, <u>87</u>. 5068 (1983).

PAPERS IN PRESS

- "Positive Fluorine Reality or Misconcept?," by K. O. Christe, <u>J. Fluorine Chem.</u>
- 16. "Tetrafluoroammonium Salts," by K. O. Christe, W. W. Wilson, C. J. Schack and R. O. Wilson, <u>Inorg. Synth</u>.
- 17. "Tungsten Oxioe Tetrafluoride," by W. W. Wilson and K. O. Christe, <u>Inorg.</u>
 <u>Synth.</u>
- 18. "Coordinatively Saturated Fluoro Cations. Oxidative Fluorination Reactions with ${\rm KrF}^{\dagger}$ Salts and ${\rm PtF}_{6}$," by K. O. Christe, W. W. Wilson and R. O. Wilson, <u>Inorg. Chem.</u>
- 19. "Cesium Hexafluoromanganate(IV)," by W. W. Wilson and K. O. Christe, Inorg. Synth.
- 20. "Chloryl Fluoride," by K. O. Christe, R. O. Wilson and C. J. Schack, Inorg. Synth.
- "Some Interesting Observations in Chlorine Oxyfluoride Chemistry," by K.
 Christe and W. W. Wilson, J. Fluorine Chem.
- 22. "Structure and Vibrational Spectra of Oxonium HexafluoroArsenates (V) and -Antimonates (V)," by K. O. Christe, P. Charpin, E. Soulie, R. Bougon and J. Fawcett, <u>Inorg. Chem.</u>
- 23. "The Gas Phase Structure of CF₃N₃. An Electron Oiffraction, Microwave Spectroscopy and Normal Coordinate Analysis," by K. O. Christe, O. Christen, O. Christen, H. Oberhammer, and C. J. Schack, <u>Inorq. Chem.</u>

PAPERS PRESENTED AT MEETINGS

- 24. "Structure of Fluorine Containing Radical Anions from ESR Studies of ¹³C and ³³S Hyperfine Interaction," by B. W. Walther, J. T. Wang, F. Williams, K. O. Christe and C. J. Schack, 186th ACS National Meeting, Washington, O.C., August 1983.
- 25. "Pentafluorotellurium Hypofluorite," by C. J. Schack, W. W. Wilson and K. O. Christe, 183rd National ACS Meeting, Las Vegas, Nevada, April 1902.
- 26. "CIF Chemistry and the Use of KrF₂ for the Synthesis of High Oxi-dation State Catinns," by W. W. Wilson, R. D. Wilson, and K. O. Christe, 10th International Symposium on Fluorine Chemistry, Vancouver, B.C., August 1982.
- 27. "Perfluoro Ammonium and Alkali Metal Salts of the Heptafluoro Xenon (VI) and Octafluoro Xenon (VI) Anions," by K. O. Christe and W. W. Wilson, 10th International Symposium on Fluorine Chemistry, Vancouver, B.C., August 1982.
- 28. "Synthesis of N,N-Difluoro-O-Perhaloalkylhydroxylamines," by K. O. Christe, W. Maya, D. Pilipovich, M. Warner and R. Wilson, Sixth Winter Fluorine Conference, Oaytona Beach, FLA., February 1983.
- 29. "Twenty Years of Excitement in High-Energy Halogen Oxidizers," by K. O. Christe, Distinguished Symposium on Chemistry Near the Limits of Oxidation and Bonding, Tarrytown, NY, March 1983.
- 30. "Synthesis of Coordinatively Saturated Complex Fluoro Cations," by K. O. Christe and W. W. Wilson, 8th European Symposium on Fluorine Chemistry, Jerusalem, Israel, August 1983.
- 31. Invited seminars on various aspects of our work were given at UC Berkeley and the North Carnlina ACS Section.

PATENTS ISSUED

- 32. "Iodine (VII) Oxytetrafluorohypofluorite and a Process for Preparing Same," by K. O. Christe and R. O. Wilson, U.S. Pat. 4,329,330 (May 1982).
- 33. "Peroxonium Salts," by K. D. Christe and W. W. Wilson, U.S. Pat. 4,339,423 (July 1982).
- 34. "Stable $\lceil NF_{4}^{+} \rceil$ Salt of High Fluorine Content," by K. O. Christe and W. W. Wilson, U.S. Pat. 4,374,112 (February 1983).

PATENTS PENDING

- 35. "Improved NF $_3$ -F $_2$ Gas Generator Composition," by K. O. Christe and W. W. Wilson.
- 36. "Pentafluorotellurium Hypofluorite," TeF₅OF, by C. J. Schack, W. W. Wil-son and K. O. Christe.
- 37. ${}^{\rm HNF}_4{\rm XeF}_7$ and ${\rm (NF}_4)_2{\rm XeF}_8$, by K. O. Christe and W. W. Wilson.
- 38. "NF $_4$ WF $_7$ and NF $_4$ UF $_7$ and Methods of Preparation," by W. W. Wilson and K. O. Christe.
- 39. "(NF $_4$) $_2$ S1F $_6$ and a Method of Preparation," by K. O. Christe and W. W. Wilson.

RESULTS AND DISCUSSION

In view of the large amount of data generated under this program, we will limit ourselves to a highlight of the major areas. For more detail, the interested reader is referred to the manuscripts given in the Appendix.

CIF + CHEMISTRY

The two most promising energetic oxidizer cations are NF_4^+ and CIF_6^+ . Their central atoms are in their highest oxidation states (+V N and +VII C1) and they possess a high fluorine content. Whereas the N-F and C1-F bond energies are relatively low which make them powerful oxidizers, these bond energies are high enough to give them good stability. Furthermore, these two ions possess outstanding kinetic stability due to their energetically favorable structures (tetrahedron for NF_4^+ and octahedron for CIF_6^+). This is also reflected by the fact that NF_4^+ and CIF_6^+ are isoelectronic with CF_4^- and SF_6^- , respectively, which are the two most thermally stable covalent inorganic fluorides.

Whereas the chemistry of NF $_4^+$ had been well developed during the past decade, very little work had been done on ${\rm ClF}_6^+$. Although the existence of ${\rm ClF}_6^+$ had been firmly established in 1972 (Ref. 1,2), the only known ${\rm ClF}_6^+$ salt was ${\rm ClF}_6^+{\rm PtF}_6^-$ which could be prepared only as an inseparable mixture with ${\rm ClF}_4{\rm PtF}_6$. Claims by Glemser and coworkers for the synthesis of ${\rm ClF}_6{\rm AuF}_6$ (Ref. 3) and by Batsanov and coworkers for ${\rm ClF}_6{\rm CuF}_4$ (Ref. 4) were shown (Ref. 5) to be invalid. Consequently, it was very desirable to develop methods for the synthesis of pure ${\rm ClF}_6^+$ salts and to determine their potential as high energy oxidizers.

Using ${\rm Krf}_2$ as the oxidizer, we have succeeded in preparing pure ${\rm Clf}_6{\rm Asf}_6$ and ${\rm Clf}_6{\rm Sbf}_6$ (see Appendix A). The salts were thoroughly characterized and exhibited very good thermal stability. In order to increase the energy content of ${\rm Clf}_6^{\dagger}$ salts, the weight of the nonenergetic counterion must be

minimized. This goal was achieved (see Appendix B) by replacing Asf_6^- by Bf_4^- using low-temperature metathetical techniques previously developed in our laboratory for Nf_4^+ salts. The $\mathrm{Clf}_6\mathrm{Bf}_4$ also exhibited good thermal stability and is a potentially useful oxidizer. Attempts to replace the nonenergetic anions by the energetic ClO_4^- anion (see Appendix C) were only partially successful. By analogy with $\mathrm{Nf}_4\mathrm{ClO}_4$ (Ref. 6), $\mathrm{Clf}_6\mathrm{CiO}_4$ was found to be thermally unstable. However, as with $\mathrm{Nf}_4\mathrm{ClO}_4$, the decomposition of $\mathrm{Clf}_6\mathrm{ClO}_4$ provides a new, high yield synthesis of the interesting hypofluorite, FOClO_3 .

Performance calculations were carried out for $\mathrm{ClF}_6\mathrm{BF}_4$ with various fuels. It was found that the performance of $\mathrm{ClF}_6\mathrm{BF}_4$ is close to but not quite as good as that of $\mathrm{NF}_4\mathrm{BF}_4$. In view of the fact that $\mathrm{NF}_4\mathrm{BF}_4$ is thermally more stable and easier to prepare than $\mathrm{ClF}_6\mathrm{BF}_4$, the NF_4^+ cation remains the most promiting cationic oxidizer presently known.

NF + CHEMISTRY

In view of NF_4^{\dagger} being theoretically the most powerful cationic oxidizer presently known, we have continued to develop its chemistry. Work on the syntheses of NF_4^{\dagger} salts derived from the lewis acids AlF_3 , BeF_2 , XeF_6 , WF_6 and UF_6 was completed and published in manuscript form (Appendices O through G).

The $(NF_4)_2XeF_B$ salt is the most energetic NF_4^{\dagger} salt presently known. With 65.6 weight percent of usable fluorine (in the form of F_2 and NF_3) and xenon as the only inert byproduct, $(NF_4)_2XeF_8$ is capable of delivering the highest known performance for any NF_3 - F_2 gas generator composition. The difficulty of synthesizing the compound, the high cost of Xe and the shock sensitivity of the XeO_3 hydrolysis product, however, render this compound impractical at the present time.

A summary of the most important synthetic methods for the preparation of NF_4^+ salts was written for publication in Inorganic Syntheses and is given in Appendices H through J.

OXIDATIVE FLUORINATIONS WITH KrF SALTS AND Ptf

Krf $^+$ salts, PtF $_6$ and F $_2$ in the presence of a Lewis acid and an activation energy source appear to be the most powerful fluorinating agents presently known. We therefore have carried out a systematic study of the relative oxidizing power of these three reagents and their usefulness for the preparation of coordinatively saturated fluoro cations (see Appendix K). It was found that Krf $^+$ was the strongest oxidative fluorinator, capable of fluorinating ClF $_5$ to ClF $_6^+$, BrF $_5$ to BrF $_6^+$, and NF $_3$ to NF $_4^+$. PtF $_6$ was second strongest, and fluorinated ClF $_5$ to ClF $_6^+$ and NF $_3$ to NF $_4^+$, whereas activated F $_2$ in the presence of a strong Lewis acid oxidized only NF $_3$ to NF $_4^+$. Numerous attempts made to prepare a substituted NF $_4^+$ cation, such as CF $_3$ NF $_3^+$ of SF $_5$ NF $_3^+$, from KrF $^+$ salts and either CF $_3$ NF $_2$ of SF $_5$ NF $_2$ all failed. Similary, attempts to prepare OF $_3^+$ from OF $_2$ and KrF $^+$ were unsuccessful.

HY: OFLUORITE CHEMISTRY

Hypofluorites are strong oxidizers and useful fluorinating agents. During our synthesis of NF_4ClO_4 (Ref. 6), a convenient synthesis was discovered for $FOClO_3$ which allowed us to carry out a thorough characterization of this interesting compound (see Appendix L). We have also successfully synthesized and characterized the new hypofluorite TeF_5OF . This compound, which had previously been claimed to be nonexistent (Ref. 7), was shown to be surprisingly stable (see Appendix M). The attempts made to prepare the unknown ClF_4OF molecule from $CsClF_4O$ and $FOSO_2F$ were unsuccessful, but led to an interesting O abstraction reaction from ClF_4O^- (see Appendix C). Numerous attempts to prepare hitherto unknown hypofluorites derived from transition metal fluorides were all unsuccessful. The O_2F radical, prepared by pyrolysis of $O_2^+MF_6^-$ salts, was characterized by far-infrared laser magnetic resonance spectroscopy (see Appendix N).

CHLORINE OXYFLUORIOES

Although the existence of ${\rm ClF}_50$ has previously been claimed (Ref. 8), this claim has subsequently been refuted (Ref. 9). Performance calculations carried out at Rocketdyne show that this compound would be the ideal stgrable liquid oxidizer. Consequently, extensive experimental efforts were conducted on the synthesis of this compound using numerous techniques, such as low-temperature glow discharge in sapphire reactors, UV-photolysis, and fluorination reactions with ${\rm KrF}^+$ salts and ${\rm PtF}_6$. So far, all efforts in this direction have been unsuccessful although we firmly believe in the possible existence of this compound. A manuscript on the preparation of ${\rm FClO}_2$ was written for Inorganic Synthesis (Appendix 0).

ENERGETIC FLUOROCARBONS

Work originally started 10 years ago on the synthesis of $-\mathrm{ONF}_2$ substituted fluorocarbons was completed during this contract. It was summarized in the form of two manuscripts (Appendices P and Q) and describes two different synthetic methods. One involves the reaction of HNF_2 with hypofluorites, while the other one is based on the Lewis acid catalyzed addition of $\mathrm{NF}_3\mathrm{O}$ to C=C double bonds. Numerous new $-\mathrm{ONF}_2$ substituted fluorocarbons were prepared in this manner and were characterized.

The gas phase structure of the most simple fluorocarbon azide, CF_3N_3 , was determined by electron diffraction and microwave spectroscopy (see Appendix R).

STRUCTURAL STUDIES

Under a previous contract (Ref. 10), a series of unusually stable oxonium salts of the composition $0\mathrm{H}_3\mathrm{MF}_6$ was discovered. A thorough structural study of these salts was carried out using isotopically substituted salts, X-ray and neutron diffraction and vibrational spectroscopy (see Appendix S).

The structure of the NF_3^+ radical cation, trapped in powdered $NF_4AsF_6^+$ was studied by ESR spectroscopy (Appendix T). The new radical anions SF_4^- and SF_40^- were prepared by low-temperature γ -irradiation of $CsSF_5^-$ and $CsSF_50$, respectively, and characterized by ESR spectroscopy. The results of this study will be written up in manuscript form. A number of fluoronitrogen cations was investigated by ^{14}N and ^{15}N NMR spectroscopy and evidence for and σ fluoron effect was found. The results are summarized in Appendix U.

MISCELLANEOUS

Two brief manuscripts (Appendices V and W) were written to correct a commonly accepted misconception about the existence of positively polarized fluorine in compounds such as hypofluorites.

Three patents issued during this contract are given as Appendices X, Y and Z. They deal with the new iodine hypofluorite OIF_4 OF, peroxonium salts $\mathrm{H}_3\mathrm{O}_2^+\mathrm{AsF}_6^-$ and $\mathrm{H}_3\mathrm{O}_2^+\mathrm{SbF}_6^-$, and $(\mathrm{NF}_4)_2\mathrm{MnF}_6$.

CONCLUSION

The ClF_6^+ cation is an exceptionally stable, highly energetic ion, comparable to NF_4^+ . Many of the techniques, previously developed for NF_4^+ , can successfully be applied to ClF_6^+ ; however, more convenient routes must be found for the synthesis of ClF_6^+ salts in order to make them competitive with NF_4^+ salts. In addition we have demonstrated again that inorganic halogen oxidizers are a fruitful area of research. There are many potential uses for novel energetic compounds in traditional and new applications, such as rocket propellants, explosives, and chemical lasers, and continuing efforts in this direction are definitely warranted. Furthermore, the productivity of this program proves the feasibility and benefits that can be expected from well-planned, goal-oriented basic research and program continuity.

REFERENCES

- 1. Christe, K. O.; Inorg. Nucl. Chem. Lett., 8, 741 (1972).
- 2. Roberto, F. Q.; Inorg. Mucl. Chem. Lett., <u>8</u>, 737 (1972).
- Glemser, O.; K. Züchner; N. Bartlett; Paper IG2, 9th International Symposium on Fluorine Chemistry, Avignon, France, September 1979.
- 4. Batsanov, A. S.; Yu. T. Struchkov, S. S. Batsanov; Dokl. Akad. Nauk SSSR, Ser. Khim., 251. 347-(1980).
- 5. Von Schnering, H. G.; D. Vu; Angew. Chem., Int. Ed. Engl., <u>22</u>, 408 (1983).
- 6. Christe, K. O.; W. W. Wilson; R. D. Wilson; Inorg. Chem., 1g, 1494 (1980).
- 7. Seppelt, K.; Angew. Chem.; Int. Ed. Engl., <u>18</u>, 186 (1979).
- 8. Züchner K.; O. Glemser; Angew, Chem., <u>84</u>, 1147 (1972).
- g. Christe, K. O., C. J. Schack; Adv. Inorg. Chem. Radiochem., <u>18</u>, 31g (1976).
- "Inorganic Halogen Oxidizer Research," Final Report, ONR Contract NO0014-70-C-0294, Rocketdyne Report RI/RD79-165, 16 February 1979.

Reprinted from Inorganic Chemistry, 1983, 22, 3056 Copyright © 1983 by the American Chemical Society and reprinted by permission of the copyright owner.

> Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

Coordinatively Saturated Complex Fluoro Cations. Synthesis and Characterization of CIF₆⁺AsF₆⁻ and CIF₆⁺SbF₆⁻

KARL O. CHRISTE, WILLIAM W. WILSON, and E. C. CURTIS

Received December 14, 1982

The reaction of KrF2 with CIF3 and AsF3 in either CIF3 or anhydrous HF solution produces pure CIF6+AsF6. The white, crystalline solid is stable up to 110 °C under a dynamic vacuum and decomposes at higher temperature to CIF₅, F₂, and AsF₅. X-ray powder diffraction patterns show that $ClF_6^+AsF_6^-$ (face-centered cubic; a = 9.47 Å) is isotypic with $1F_6^+AsF_6^-$. The reaction of KrF₂ with ClF₃ and SbF₃ produces ClF₆+SbF₆; however, this salt could not be isolated in pure form. ¹⁹F NMR and vibrational spectra were recorded for the ClF₆+ salts, and an anharmonic general valence force field was computed for ClF₆+ by using the observed frequencies and the 15 Cl- 17 Cl isotopic shift of ν_3 (F_{1u}). General methods for the syntheses of coordinatively saturated complex fluoro cations are compared and discussed.

Introduction

The two kinetically most stable covalent inorganic fluorides are CF4 and SF6. Their exceptional stability is due to the energetically favorable sp3 and sp3d2 hybridization, respectively, of the valence-electron orbitals of the central atoms and their coordinative saturation. Their isoelectronic complex fluoro cations are NF4+ and ClF6+, respectively. Recent studies in our and other laboratories have shown that the NF4+ cation possesses unusual kinetic stability! and forms a surprisingly large number of stable salts.² Consequently, a similar behavior might be predicted for CIF₆⁺, which is isoelectronic with SF₆. Although the CIF₆⁺ cation has been known for a decade, ³⁻⁵

the only salt prepared to date is its PtF6 salt

$$2ClF_5 + 2PtF_6 \xrightarrow{UV} ClF_6 + PtF_6 + ClF_4 + ClF_6 + ClF_6$$
 (1)

$$6FClO_2 + 6PtF_6 \rightarrow 5ClO_2 + PtF_6 + ClF_6 + PtF_6 + O_2$$
 (2)

In both reactions the CIF6+PtF6- product could not be sepa-

rated from the other solid byproducts, and to our knowledge the preparation of a pure CIF6+ salt has previously not been achieved. Although claims for the syntheses of CIF₆+AuF₆-6 and ClF₆+CuF₄-7 have previously been made, either these claims have been withdrawn8 or, for ClF6+CuF4-, the reported properties are incompatible with the presence of a CIF₆⁺ salt.⁴² Therefore, the purpose of this study was the preparation of pure CIF₆+ salts, preferably containing counterions more accessible than the exotic PtF6.

Experimental Section

Caution! The reaction of KrF2 with AsF3 can result in a spontaneous exothermic decomposition of KrF2 accompanied by a bright flash and gas evolution.9 Proper safety precautions should be used in working with this system.

Apparatus and Materials. Volatile materials used in this work were manipulated in a well-passivated (with CIF₃) stainless-steel-Teflon FEP vacuum system. The reactions between KrF2, CIF5, and a Lewis acid were carried out in either a 10-mL stainless-steel cylinder (Hoke) or a 30 cm long, 0.5-in. o.d. sapphire tube that was connected to a stainless-steel valve with a Swagelok compression fitting using a Teflon

A-1

⁽¹⁾ Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18,

²⁵⁷² and references cited therein.
(2) Wilson, W. W.; Christe, K. O. Inorg. Chem. 1982, 21, 2091 and references cited therein.

Roberto, F. Q. Inarg. Nucl. Chem. Lett. 1972, 8, 737.

 ⁽⁴⁾ Christe, K. O. Inorg. Nucl. Chem. Lett. 1972, 8, 741.
 (5) Christe, K. O. Inorg. Chem. 1973, 12, 1580.

⁽⁶⁾ Glemser, O.; Züchner, K.; Bartlett, N. Paper 192, 9th International Symposium on Fluorine Chemistry, Avignon, France, Sept 1979.
(7) Batsanov, A. S.; Struchkov, Yu. T.; Batsanov, S. S. Dokl. Akad. Nauk SSSR, Ser. Khim. 1980, 251, 347.

⁽⁸⁾ Bartlett, N., private communication

⁽⁹⁾ Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22.

front and a stainless-steel backup ferrule. A metal support frame was used to guard against slippage of the sapphire tube out of the compression seal at elevated pressure. To avoid the facile decomposition of KrF2 during dead-end transfers, the reactors were designed to permit pump-through operation by means of a dip tube. Solid materials were handled in the dry-nitrogen atmosphere of a glovebox.

Infrared spectra were recorded on a Perkin-Elmer Model 283 spectrometer, which was calibrated by comparison with standard gas calibration points. 10,11 The reported frequencies and isotopic shifts are believed to be accurate to ± 2 and ± 0.3 cm⁻¹, respectively. Gas spectra were recorded with a Teflon cell of 5-cm path length equipped with AgCl windows. Spectra of solids were recorded as dry powders pressed between AgCl windows in an Econo press (Barnes Engineering Co.). Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-Å exciting line of an Ar ion laser and a Claassen filter¹² for the climination of plasma lines. Sealed glass or quartz tubes were used as sample containers. The low-temperature spectra were recorded by using a previously described device. 13

The 19F NMR spectra were recorded at 84.6 MHz on a Varian Model EM390 spectrometer using heat-sealed Teflon FEP sample tubes (Wilmad Glass Co.) and CFCl3 as an external standard with positive shifts being downfield from the standard.14

X-ray powder diffraction patterns were recorded on a General Electric XRD6 diffractometer using Ni-filtered Cu Kα radiation. The sample holder was machined out of a solid Teflon block, and the powdered sample was held in place and protected against atmospheric moisture by a 1 mil thick Teflon FEP sheet, which was scaled against the Tesson block with a plastic snap ring. Lines having θ values of less than 10° were difficult to measure by this technique due to interference by Teflon lines. The instrument was calibrated with NaCl and IF6AsF6 powder.

Chlorine pentafluoride15 and KrF216-18 were prepared by previously described methods. Hydrogen fluoride (Matheson) was dried by storage over BiF₅.¹⁹ Arsenic pentafluoride (Ozark Mahoning) and BF, (Matheson) were purified by fractional condensation, and SbF, (Ozark Mahoning) was purified by distillation.

Synthesis of CIF₆AsF₆. In a typical experiment, KrF₂ (11.61 mmol) and AsF₅ (11.60 minol) were combined at -196 °C in a 33-mL sapphire reactor. The mixture was allowed to warm slowly to -78 °C and then to ambient temperature for 10 min, resulting in the formation of solid KrFAsF₆. The sapphire tube was cooled to -142 °C, and the amount of Kr and F₂ (0.50 mmol) that had formed by decomposition of some KrF₂ during the KrFAs. 6 formation was measured. Chlorine pentafluoride (29.6 mmol) was added to the reactor at -142 °C, and the mixture was gently warmed to ambient temperature for 30 min, resulting in a clear colorless solution containing some white solid. Slow gas evolution was observed and measured by recooling the reactor to -142 °C. This process was repeated 10 times, and the reactor was finally kept at ambient temperature for 2 days and at 40 °C for 1 h. A total of about 21 mmol of gas (Kr and F2), volatile at -142 °C, was removed in this manner, suggesting that the decomposition of KrF2 was essentially complete. The unreacted ClF5 and any CIF4AsF6 that has a dissociation pressure of about 1 atm at room temperature20 were pumped off at 25 °C for 12 h. The white solid residue (428.4 mg = 1.27 mmol) was shown by ¹⁹F NMR, infrared, and Raman spectroscopy to consist of pure CIF6AsF6 (11.15% yield based on KrFAsF₆).

The reaction between KrFAsF, and ClF, was carried out as described above, except for adding about 6 mL of liquid HF to the reactor after the KrF2 addition and before the AsF3 addition. The Kr and F2 evolution at ambient temperature was faster than in the absence of HF; however the yield of CIF6AsF6 (based on KrFAsF6) was only

When Kr₂F₃+AsF₆" was reacted with an excess of ClF₅ in the absence of HF, the best yield of CIF6+AsF6- obtained was 18.36%, based on AsF₅, and 9.18%, based on KrF₂, but on several runs, yields of only about 6% were obtained.

Synthesis of CIF6SbF6. In the drybox SbF3 (1.67 mmol) was syringed into a passivated sapphire reactor, and KrF₂ (7.19 mmol) was added at -196 °C on the vacuum line. The mixture was carefully warmed to room temperature and then recooled to -78 °C. This temperature cycling was repeated several times and a small amount of Kr and F2 (0.42 mmol) formed by decomposition of some KrF2 was pumped off at -78 °C. Chlorine pentafluoride (15.94 mmol) was added to the reactor at -196 °C, and the resulting mixture was warmed for 30 min to 25 °C. At this temperature slow gas evolution was observed. The reactor was cooled to -196 °C and then to -142 °C at which temperatures F₂ (1.1_mmol) and Kr (1.2 mmol) were pumped off and measured. This procedure was repeated several times to avoid overpressurization of the reactor by the evolved F2 and Kr. When the KrF2 decomposition rate became very slow, the temperature was raised to 35 °C. After most of the KrF2 had been decomposed and removed in this manner, the excess of CIF5 was pumped off at 25 °C. The white solid residue (896 mg) was shown by infrared, Raman, and 19F NMR spectroscopy to be a mixture of CIF₆SbF₆, CIF₄SbF₆, and KrF₂·nSbF₅. Heating of the solid to 50 °C for 4 h under a dynamic vacuum resulted in decomposition and removal of all (KrF2), SbF5, leaving behind a mixture (~0.6 g) of ClF6SbF6. CIF₄SbF₆, and the corresponding polyantimonates, as shown by infrared and Raman spectroscopy.

Results and Discussion

Synthesis of Coordinatively Saturated Complex Fluoro Cations. At present, only three coordinatively saturated complex fluoro cations are known. They are NF4+, CIF6+, and BrF₆^{+,21,22} The principal difficulty with their syntheses stems from the fact that the corresponding parent molecules, NF₅, ClF₇, and BrF₇, do not exist. 1.5.21 Therefore, a simple transfer of a fluoride anion to a strong Lewis acid according to

$$ClF_7 + AsF_5 \rightarrow ClF_6^+ AsF_6^-$$
 (3)

is not possible. Addition of a fluorine cation F+ to a lower fluoride according to

$$ClF_5 + F^+ \rightarrow ClF_6^+$$
 (4)

is preempted by the fact that fluorine is the most electronegative element, and F+ can therefore not be generated by chemical means.

The following three methods are presently known for the synthesis of these coordinatively saturated complex fluoro cations.

(i) Reaction of a Lower Fluoride with F2 and a Lewis Acid in the Presence of an Activation Energy Source,23 Such as Heat, 24 Glow-Discharge, 23,25 Bremsstrahlung, 26 or UV Photolysis.27 This method is well suited for the synthesis of NF4+ salts according to

$$NF_3 + F_2 + MF_5 \xrightarrow{\Delta E} NF_4 + MF_6$$
 (5)

However, many attempts in our laboratory to apply this me-

⁽¹⁰⁾ Plyler, E. K.; Danti, A.; Blaine, L. R.; Tidwell, E. D. J. Res. Natl. Bur.

Stand., Sect. A 1960, 64A, 841. International Union of Pure and

 ⁽¹²⁾ Clanssen, H. H.; Seig, H.; Shanar, J. Appl. Spectrosc. 1970, 24, 271.
 (13) Miller, F. A.; Harney, B. M. J. Appl. Spectrosc. 1970, 24, 271.
 (14) Pure Appl. Chem. 1972, 29, 62.
 (15) Pilipovich, D.; Maya, W.; Lawton J. A.; Bauer, H. F.; Sheehan, D. Ogimachi, N. N.; Wilson, R. D.; Serloy, F. C.; Bedwell, V. E. Ir A.; Bauer, H. F.; Sheehan, D. F.; terloy, F. C.; Bedwell, V. E. Inorg. hem. 1967, 6, 1918.

Christe, K. O.; Wilson, R. D. I. Chem. 1975, 14, 694. Schreiner, F.; Malm, J. G.; Hinsan, J. C. J. Am. Chem. Soc. 1965,

 ⁽¹⁸⁾ Kirshenbaum, A. D.; Grosse, A. V. J. Am. Chem. Soc. 1959, 81, 1277.
 (19) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978,

⁽²⁰⁾ Christe, K. O.; Pilipovich, D. In ... Chem. 1969, 8, 391.

Gillespie, R. J.; Schrobligen, G. J. J. Chem. Soc., Chem. Commun. 1974, 90; Inorg. Chem. 1974, 13, 1230.
 Christe, K. O.; Wilson, R. D. Inorg. Chem. 1975, 14, 694.
 Christe, K. O.; Guertin, J. P.; Pavlath, A. E. U.S. Patent 3 503 719, 1970; Inorg. Nucl. Chem. Lett. 1966, 2, 83; Inorg. Chem. 1966, 5, 1921.
 Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg. Nucl. Chem. Lett. 1966, 2, 79; Inorg. Chem. 1967, 6, 1156.
 Sinel'nikov, S. M.; Rosolovskii, V. Ya. Dokl. Akad. Nauk SSSR, Ser. Khim. 1970, 194, 1341. Rosolovskii, V. Ya.; Nefedov, V. I.; Sinel'nikov, S. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1973, 7, 1445.
 Goetschel, C. T.; Campanile, V. A.; Curtis, R. M.; Loos, K. R.; Wagner, C. D.; Wilson, J. N. Inorg. Chem. 1973, 11, 1696.
 Christe, K. O.; Wilson, R. D.; Axworthy, A. E. Inorg. Chem. 1973, 12, 2478. Christe, K. O.; Schack, C. J.; Wilson, R. D. Ibid. 1976, 15, 1275.

Table L. X-ray Data for CIF, AsF, 6

d (obsd), λ	d(caled), A	I/I_0	hkl
3.35	3.35	100	220
2.855	2.858	25	331
2.740	2.737	60	222
2.179	2.175	15	331
2.120	2.120	25	420
1.936	1.935	65	422
1.826	1.824	10	511/333
1.677	1.676	45	440
1.601	1.602	15	531
1.580	1.580	70	600/442
1.498	1.499	20	620
1.428	1.429	25	622
1.367	1.368	10	444
1.313	1.315	25	640
1.265	1.267	25	642

^a Cu Kα radiation and Ni filter; space group Pa3; face-centered cubic; a = 9.47 A; Z = 4; $V = 849.3 \text{ A}^3$; $d(\text{calcd}) = 2.631 \text{ g cm}^{-3}$.

thod to ClF₆⁺ were unsuccessful because these activation energy sources decompose CIF, to F, and CIF, with the latter reacting instantaneously with strong Lewis acids to form ClF₂⁺ salts.

(ii) Reaction of PtF6 with a Lower Fluoride. As shown in (1) and (2), this method has successfully been applied to the synthesis of ClF₆+ salts.³⁻⁵ However, attempts to prepare NF₄ salts in the same manner have failed. For the preparation of NF₄PtF₆, elevated temperature and pressure are required, 28 i.e. conditions under which PtF₆ decomposes to PtF₅ and F₂, hereby corresponding to reaction 5 of method i.

(iii) Reaction of KrF2 with a Lower Fluoride in the Presence of a Strong Lewis Acid. This method has successfully been used for the synthesis of BrF_6^{+21} and $NF_4^{+29,30}$ salts

$$NF_3 + KrF_2 + MF_5 \rightarrow NF_4 + MF_6 + Kr$$
 (6)

$$BrF_5 + KrF_2 + MF_5 \rightarrow BrF_6^+ MF_6^- + Kr$$
 (7

The most promising method for the synthesis of pure CIF₆⁺ salts appeared to be method iii, the reaction of CIF, with KrF, in the presence of a Lewis acid. Indeed, it was found that KrF2-Lewis acid adducts are capable of oxidatively fluorinating ClF₅ to ClF₆⁺. It was found advantageous to preform the well-known adducts^{9,21,31,32} between KrF₂ and the Lewis acids, AsF₅ and SbF₅, before addition of the ClF₅. The yields of CIF₆⁺ salts were as high as 11%, based on the amount of KrF₂ used in the reaction. The reactions proceeded whether KrF+ or KrF+.nKrF2 salts were used as starting materials, although the ClF₆⁺ yields, based on KrF₂, appeared higher when KrF+ salts were used. An excess of ClF, as a solvent gave the highest yields of ClF₆⁺ salts. Addition of anhydrous HF as a diluent significantly reduced the ClF₆⁺ yield.

The CIF₆+AsF₆-salt could readily be prepared in pure form because the byproduct CIF₄+AsF₆⁻ is unstable at ambient temperature²⁰ and because AsF₆⁻ does not form stable polyanions with AsF₅. For ClF₆+SbF₆-, the stability of ClF₄+-SbF₆⁻²⁰ and the tendency of SbF₅ to form stable polyanions did not permit isolation of the pure compound.

Properties of CIF₆+AsF₆- and CIF₆+SbF₆-. Both compounds are white, crystalline, hygroscopic solids that are stable at room temperature. As a result of the above described experimental difficulties, only CIF₆+AsF₆- could be prepared in a pure state and therefore was characterized more thoroughly than CIF₆+SbF₆. The CIF₆+AsF₆ salt is stable up to 110 °C.

Figure 1. Infrared and Raman spectra of solid CIF₆AsF₆ and assignments to the ions in point group O_h . The broken line is due to absorption by the AgCl window material.

Above this temperature it begins to slowly decompose according to

$$ClF_6AsF_6 \rightarrow ClF_5 + F_2 + AsF_5$$
 (8)

The infrared spectra of the gaseous decomposition products showed CIF5 and AsF5 in a 1:1 mole ratio.

The X-ray powder diffraction data of CIF6AsF6 are given in Table I. The lines for hkl = 110 and 200 could not be observed by our technique due to an intense broad background peak below a 2θ value of 20° . The observed data show that CIF₆AsF₆ is isotypic with IF₆AsF₆^{33,34} and BrF₆AsF₆, ¹⁶ although surprisingly the unit cell dimension of CIF₆AsF₆ (9.47 Å) is only slightly smaller than that of IF₆AsF₆ (9.49 Å)^{33,34} and larger than that of BrF₆AsF₆ (9.39 Å). A more detailed study for this series of compounds is needed to verify this effect.

The ¹⁹F NMR spectra of these salts were recorded in anhydrous HF solutions at 29 °C. In addition to a broad unresolved resonance due to rapidly exchanging HF and the anions, a sharp signal was observed at 383.3 ppm downfield from external CFCl₃. In good agreement with a previous report,35 the signal consisted of two sharp (half-width ~5 Hz) sets of quadruplets of equal intensity due to the 35Cl and 37Cl isotopes $(I = \frac{3}{2})$ with $J_{\text{IICIF}} = 340$ Hz, $J_{\text{IICIF}} = 283$ Hz, and $J_{\text{IICIF}}/J_{\text{IICIF}} = 1.201$.

The vibrational spectra of CIF₆+AsF₆- are shown in Figure 1, together with a-listing of the observed frequencies and assignments for the two ions in point group O_A . The only band not marked in Figure 1 is the weak Raman band at 706 cm⁻¹, which can be assigned to $2\nu_6$ ($A_{1g} + E_g + F_{1g} + F_{2g}$) of ClF₆⁺ being in Fermi resonance with ν_1 (A_{1g}) at 688 cm⁻¹. The value of 353 cm⁻¹ thus obtained for the infrared and Raman-inactive ν_6 (F_{2u}) mode is in excellent agreement with the value of 347. cm⁻¹ reported for the isoelectronic SF₆ molecule.³⁶ frequencies for CIF₆⁺ in its SbF₆⁻ salt were within experimental error identical with those of the AsF₆ salt and therefore are not listed separately. These vibrational spectra confirm our previous assignments⁵ for CIF₆⁺, which had to be made for

⁽²⁸⁾ Tolberg, W. E.; et al., private communication,

Artyukhov, A. A.; Koroshev, S. S. Koord, Khim. 1977, 3, 1478, Christe, K. O.; Wilson, W. W.; Wilson, R. D., unpublished results. Frlee, B.; Holloway, J. H. Inorg. Chem. 1976, 15, 1263; J. Chem. Soc., Chem. Commun. 1974, 89.

⁽³²⁾ Selig, H.; Pencock, R. D. J. Am. Chem. Soc. 1964, 86, 3895.

Christe, K. O.; Sawodny, W. Inorg. Chem. 1967, 6, 1783.

Beaton, S. P. Ph.D. Thesis, University of British Columbia, 1966. Christe, K. O.; Hon, J. F.; Pilipovich, D. Inorg. Chem. 1973, 12, 84, McDowell, R. S.; Aldridge, J. P.; Holland, R. F. J. Phys. Chem. 1976,

Table II. Symmetry and Valence Force Constants (mdyn/A) of CIF, * Compared to Those of BrF, *, 1F, *, SF, SeF, and TeF,

$\inf_{\mathfrak{t}(\mathcal{O}_h)}$	35CHE,* freq. cm ⁻¹	force constants	CIE,* (AH)ª	SF, (AH)b	SF. (H) ^c	BrF. * d	Sel , f	11F ₄ *d	TcF, I
		Sym	metry Force	Constants					
Α.	r, 688	$F_{11} = f_r + 4f_{rr} + f_{rr}^{-1}$	5,298	6.70	6.845	4.88	5.61	5.61	5.50
il.	e ₂ 631	$F_{22} = f_r - 2f_{rr} + f_{rr}$	4.456	4.61	4.715	5.02	4.85	6.00	5.08
Aug II _B II _{IM}	r, 894	$F_{ij}^{ij} = f_r - f_{rr}$	5.200	5.30	5.465	4.82	4.93	5.23	4.98
· Iu	r 590	$F_{44}^{33} = f_{01} + 2f_{020} = 2f_{020} = -f_{020} = -f_{020}$	0.957	1.034	1.051	0.63	0.646	0.45	0.40
	4	$F_{14} = 2(f_{p0} - f_{p0}^{*})$	0.935	0.90	0.907	0.41	0.46	0.21	0.24
11 .	$\nu_s = 517$	$F_{11} = f_{\alpha} - 2f_{\alpha\alpha}$ + $f_{\alpha\alpha}$	0.748	0.765	0.780	0.46	0.453	0.32	0.27
1 2 g	347	$F_{40} = f_{\alpha} - 2f_{\alpha\alpha} + 2f_{\alpha\alpha} - f_{\alpha\alpha} - f_{\alpha\alpha}$	0.574	0.670	0.693		0.389		0.22
		Va	lence Force (Constants					
		$f_{\mathbf{r}}$	4.968	5.30	5.445	4.90	5.02	5.42	5.10
		f_{rr} (adjacent bonds)	0.140	0.348	0.355	-0.03	0.13	- 0.07	0.07
		fre' (opposite bonds)	-0.232	0.003	-0.020	0.08	0.09	0.19	0.12
		$f_{\alpha} = f_{\alpha\alpha}$ (* f_{α})	0.782	0.809	0.826		0.49		0.30
		$f_{\alpha} - f_{\alpha\alpha}$	0.816	0.852	0.872		0.52		0.31
		fra - fra"	0.468	0.45	0.454	0.21	0.23	0.11	0.12

^a Using observed frequencies and a 38 Cl= 32 Cl isotopic shift of 13.1 cm $^{-1}$ for v_2 . PFD for $F_{341} = v_3$, 1.21 (3), 0.24 (4), -0.46 (3, 4); v_4 , 0.98 (4), 0.02 (3, 4). ^b Using observed frequencies. ³⁶ C Using harmonic frequencies. ³⁶ Modified valence force field values from 1cf 16, assuming F_{44} = minimum. ^c Data from 1cf 37. ^f Data from 1cf 38.

Figure 2. Infrared spectrum of the ν_3 (F₁₀) band of ClF₆⁺ in solid CIF, SbF, recorded with 20-fold scale expansion under higher resolution

rather complex mixtures and therefore were somewhat tentative. Furthermore, the fact that both CIF₆⁺ and AsF₆⁻ show no detectable deviations from the O_h selection rules suggests little or no ion interaction or distortion in CIF₆+AsF₆, as expected for these coordinatively saturated ions. The structure of CIF6AsF6 can be visualized as a closest fluoride packing with Cl and As occupying some of the interstices in the lattice.

Under higher resolution conditions, the infrared spectra of ClF_6AsF_6 and ClF_6SbF_6 showed a splitting of the ν_3 (F_{1u}) band into two components (see Figure 2). These splittings are due to the 35Cl and 37Cl isotopes, which have a natural abundance of 75.4 and 24.6%, respectively. From a series of measurements the chlorine isotopic shifts for ν_3 (F_{1u}) of ClF_6^+ were found to be 12.8 ± 0.3 cm⁻¹ for CIF₆AsF₆ and 13.4 ± 0.3 cm⁻¹ for CIF₆SbF₆. On the basis on these data, a value of 13.1 ± 0.3 cm⁻¹ was used for the force field computation of CIF₆⁺.

General Valence Force Field of CIF₆⁺. Modified valence force fields (MVFF) have previously been reported for 1F6+,33 BrF₆⁺, 16 and ClF₆^{+5,16} by using for the underdetermined F_{1u} block (two frequencies; three symmetry force constants) the mathematical constraint F_{44} = minimum. A test of this constraint for the isoelectronic series TeF6, ScF6, and SF6 for which fully determined general valence force fields (GVFF) are known³⁶⁻³⁸ showed that F_{44} = minimum is a good approximation for TeF₆ and SeF₆. However, for the lighter SF₆, which is isoelectronic with CIF₆⁺, this approximation did not duplicate the GVFF values36 very well. Therefore, for CIF₆⁺ a second force field based on a transfer of the f_{rr} value of the GVFF of SF₆ to ClF₆⁺ was preferred.⁵ In the resulting force field, however, the value of the Cl-F stretching force

Figure 3. Solution range of the F_{1u} block symmetry force constants (mdyn/Å) of CIF₆⁺ with the observed chlorine isotopic shift (13.1 ± 0.3 cm⁻¹) as a constraint. The horizontal and the broken vertical lines indicate the preferred values and their uncertainties, respectively.

constant (4.68 mdyn/Å)⁵ was smaller than that found for CIF2+ (4.7 mdyn/A);39 a surprising result in view of the general trends observed for a large number of halogen fluorides.40

The observation of the chlorine isotopic shift for ν_3 (F₁₀) of CIF₆⁺ in this study provided the additional data point required for the computation of a GVFF for CIF₆⁺. The force field was computed by a previously described method⁴¹ using the 35ClF₆+ frequencies given in Table II and a 35Cl-37Cl isotopic shift of 13.1 \pm 0.3 cm⁻¹ for ν_3 (F_{1u}). In the absence of anharmonicity constants, the observed frequencies were used for the calculation of an anharmonic GVFF. On the basis of comparison between the anharmonic and the harmonic GVFF of isoelectronic SF₆ (see Table II),36 the anharmonicity cor-

⁽³⁹⁾ Christe, K. O.; Schack, C. J. Inorg. Chem. 1970, 9, 2296. Gillespie, R. J.; Morton, M. J. Ibid. 1970, 9, 811.

⁽⁴⁰⁾ Christe, K. O.; Proc. Int. Congr. Pure Appl. Chem. 1974, 4, 115. Christe, K. O.; Schack, C. J. Adv. Inorg. Chem. Radiochem. 1976, 18,

⁽⁴¹⁾ Christe, K. O.; Curtis, E. C. Inorg. Chem. 1982, 21, 2938 and references cited therein.

⁽⁴²⁾ The compound claimed to be CIF₆*CuF₄* has in the meantime been identified as [Cu(H₂O)₄][SiF₆] (von Schnering, H. G.; Vu, D. Angew. Chem., Int. Ed. Engl. 1983, 22, 408).

⁽³⁷⁾ Königer, F.; Müller, A.; Selig, H. Mol. Phys. 1977, 34, 1629.
(38) Abramowitz, S.; Levin, I. W. J. Chem. Phys. 1966, 44, 3353.

rections should have only a minor influence on the force field

To obtain an estimate for the uncertainties of the F_{10} force constants of ClF_6^+ , the relevant parts of the F_{33} and F_{44} ellipses of ClF_6^+ and the corresponding $^{35}Cl^{-37}Cl$ isotopic shifts of ν_3 and ν_4 were computed as a function of F_{34} . As can be seen from Figure 3, the resulting uncertainties in the force constants are very small and the force field of ClF_6^+ is rather well determined.

A comparison of the GVFF of ClF₆⁺ (see Figure 3 and Table 11) with the two previously published modified valence force fields^{5,16} shows that F_{44} = minimum is a much better constraint than the transfer of the fr value from SF6 to ClF6+ Also, the resulting Cl-F stretching force constant value of 4.97 mdyn/Å for CIF6+ is, as expected for a perfluoro cation in its highest oxidation state.40 the highest value found to date for a Cl-F bond and agrees with the good thermal stability found for these CIF₆⁺ salts. A comparison of the CIF₆⁺ force field with those of BrF₆⁺¹⁶ and IF₆⁺³³ (see Table II) shows the expected trends. ⁴⁰ The stretching force constant drops slightly from CIF6+ to BrF6+ and then markedly increases for IF6+. The deformation constants decrease from CIF₆⁺ toward 1F₆⁺. as expected from the increase in bond lengths. The stretchstretch interaction constants f_{rr} and $f_{rr'}$ show smooth trends from CIF₆⁺ toward 1F₆⁺, similar to those observed for the isoelectronic SF₆, SeF₆, TeF₆ series, although the relative contributions from f_{rr} and $f_{rr'}$ are different within each series.

A comparison of the GVFF of ClF_6^+ with that of SF_6 (see Table 11)³⁶ also shows excellent agreement, except for the above noted difference in the relative contribution from f_m and f_m .

Conclusion. The KrF⁺ cation is capable of oxidizing ClF₅ to ClF₆⁺ and provides a method for the synthesis of pure ClF₆⁺ salts. Thus, KrF⁺ is the first oxidative fluorinator capable of producing all three of the presently known coordinatively saturated complex fluoro cations, NF₄⁺, BrF₆⁺, and ClF₆⁺. The synthesis of pure ClF₆AsF₆ permitted a better characterization of the ClF₆⁺ cation and the determination of a general valence force field for ClF₆⁺. The Cl-F bond in ClF₆⁺ (4.97 mdyn/Å) is the strongest Cl-F bond presently known, suggesting highly covalent bonds with sp³d² hybridization of the valence electrons of chlorine. By analogy with the known NF₄⁺ chemistry, the existence of numerous stable ClF₆⁺ salts is predicted.

Acknowledgment. The authors are grateful to Drs. C. J. Schack and L. R. Grant for helpful discussions, to R. D. Wilson for his help with the preparation of KrF_2 , and to the Office of Naval Research and the Army Research Office of financial support.

Registry No. CIF₆AsF₆, 86527-33-5; CIF₆SbF₆, 86527-34-6; CIF₆*, 38217-33-3; KrF₂, 13773-81-4; AsF₅, 7784-36-3; CIF₅, 13637-63-3; SbF₅, 7783-70-2.

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

Synthesis and Properties of ClF₄BF₄

Karl O. Christe® and William W. Wilson

Received January 11, 1983

The only CIF₆⁺ salts presently known are CIF₆PtF₆, ¹⁻³ CIF₆SbF₆, and CIF₆AsF₆, ⁴ To improve the energy content of ClFo+ salts, replacement of these relatively heavy nonenergetic MF₆" (M = Pt, Sb, As) anions by a lighter one such as BF, is desirable. Attempts in our laboratory failed to synthesize CIF, BF, by direct methods such as those used for the preparation of CIF₆MF₆ salts. Consequently, indirect methods were sought to exchange the anion in CIF, *MF, for BF4". Using low-temperature metathetical techniques, previously developed for NF₄⁺ salts, we have successfully converted CIF, AsF, to CIF, BF4.

Experimental Section

Materials and Apparatus. CIF6AsF64 and CsBF46 were prepared by known methods. The HF (Matheson Co.) was dried by storage over BiF_{6.5} Volatile materials were handled in a Teflon-FEP stainless steel vacuum line that was well passivated with CIF, and treated with HF prior to use. Nonvolatile materials were handled in the drynitrogen atmosphere of a glovebox. The metathesis was carried out in a previously described double-U-tube filter apparatus.7 The thermal decomposition of CIF₆BF₄ was studied in a previously described sapphire apparatus.

Infrared specira were recorded on a Perkin-Elmer Model 283 spectrometer that was calibrated by comparison with standard gas calibration points. 9.10 Gas spectra were recorded with a Teflon cell of 5-cm path length equipped with AgCl windows. Spectra of solids were recorded as dry powders pressed between AgCl windows in an Econo press (Barnes Engineering Co.). Raman spectra were recorded on a Cary Model 83 spectrophotometer with use of the 4880-Å exciting line of an Ar-ion laser and a Claassen filter 11 for the elimination of plasma lines. Sealed glass or quartz tubes were used as sample

Synthesis of CIF₆BF₄. A mixture of CIF₆AsF₆ (0.5175 mmol) and CsBF₄ (0.5171 mmol) was loaded into the double-U-tube metathesis apparatus in the drybox. Dry HF (42 mmol) was condensed at -196 °C into the apparatus on the vacuum line, and the mixture was warmed for 30 min to 25 °C with stirring. The apparatus was cooled to -78 °C and inverted, and the solid and liquid phases were separated by filtration assisted by 2 atm of dry N2 gas. The material volatile at 25 °C was pumped off for 1.5 h and separated by tractional con-

Figure 1. Infrared and Raman spectra of solid CIF₆BF₄ recorded at ambient temperature. The broken line in the infrared spectrum is due to absorption by the AgCl window material. The assignments for ClF_6^+ and BF_4^- are for point groups O_h and T_d , respectively.

densation through a series of traps kept at -112, -142, and -196 °C. It consisted of BF₃ (\sim 0.08 mmol), ClF₅ (\sim 0.08 mmol), and the bulk of the HF solvent. The filter cake (199.6 mg, weight calculated for 0.517 mmol of CoAsF₆ 166.5 mg) was shown by vibrational spectroscopy to consist of mainly CsAsF, containing small amounts of CIF6+ and BF4. The filtrate residue (67.4 mg, weight calculated for 0.517 mmol of CIF₆3F₄ 122.1 mg, corresponding to a 55% yield) was shown by vibrational spectroscopy to consist mainly of CIF, BF, containing a small amount of AsF₆ salts as impurities. The losses of CIF, BF, can be attributed to hang-up of CIF, BF, on the filter cake (27%) and some reduction of CIF, BF, (16%)

Results and Discussion

Synthesis and Properties of CIF₆BF₄. The successful synthesis of CIF6BF4 according to

$$ClF_cAsF_c + CsRF_c \xrightarrow{ttF solution} CsAsF_c + ClF_cBF_c$$

demonstrates that the metathetical process previously developed for the indirect synthesis of NF₄⁺ salts⁵ is transferable to CIF6+ salts. The yield of only 55% for CIF6BF4 can be attributed to the following factors: (i) hang-up of some mother liquor on the filter cake; (ii) possibly, the use of an insufficient amount of solvent causing precipitation of some CIF₆BF₄; (iii) reduction of some CIF, DE' to CIF, and BF3 by attack of metal parts of the apparatus by this strongly oxidizing H1 solution. No attempts have been made as yet to maximize the yield by varying or eliminating any of these conditions.

CIF₆BF₄ is a white crystalline solid that is highly soluble in anhydrous HF. It is stable at room temperature and starts to slowly decompose under a dynamic vacuum at about 70 °C according to

$$ClF_6BF_4 \rightarrow ClF_5 + F_2 + BF_3$$

The nature of the decomposition products was established by their infrared spectra, which showed only the absorptions characteristic for BF3 and ClF5. An exhaustive vacuum py-

^{1400 1200 1000 800 600} 400 200 FREQUENCY, cm⁻¹

⁽¹⁾ Christe, K. O. Inorg. Nucl. Chem. Lett. 1972, 8, 741.

^{11. 71} and references cited therein. Cantor, S.; McDermoti, D. P.; Gilpatrick, L. O. J. Chem. Phys. 1970,

Christe, K. O.; Wilson, W. W.; Schack, C. J.; Wilson, R. D. Inorg. Synth., in press. Christe, K. O.; Wilson, R. D.; Goldberg, t. B. Inorg. Chem. 1979, 18,

⁽⁹⁾ Plyler, E. K.; Danti, A.; Blaine, L. R.; Tidwell, E. D. J. Res. Natl. Bur. Stand., Sect. A 1960, 64A, 841.

⁽¹⁰⁾ International Union of Pure and Applied Chemistry. "Tables of Wavenumbers for the Calibration of Infrared Spectrometers"; Butterworths: Washington, DC, 1961.

⁽¹¹⁾ Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc 1969, 23, 8.

rolysis of CIF_bBF₄ was carried out at 110 °C and resulted in only a small amount of a solid residue, which was identified by Raman spectroscopy as CSASE.

by Raman spectroscopy as $CsAsF_6$.

The presence of octahedral ClF_6^+ and tetrahedral BF_4^- ions in ClF_6BF_4 was established by infrared and Raman spectroscopy. The spectra together with the observed frequencies and assignments for ClF_6^+ and BF_4^- in point groups O_h and T_d , respectively, are shown in Figure 1. The spectra confirm our previous assignments for ClF_6AsF_6 , where ν_1 of ClF_6^+ and ν_1 of AsF_6^- had almost identical frequencies and had to be assigned on the basis of their relative intensities. The frequencies and assignments for BF_4^- in ClF_6BF_4 closely correspond to those in NF_4BF_6 .

Conclusion. The successful synthesis of CIF₆BF₄ and its relatively good thermal stability confirm the previous prediction of unusual stability for salts containing coordinatively saturated cations. Allowever, as expected, the thermal stability of CIF₆* salts is inferior to that of NF₄* salts.

Acknowledgment. The authors are grateful to C. J. Schack, L. R. Grant, and R. D. Wilson for their help and to the Office of Naval Research and the Army Research Office for financial support.

Registry No. C1F₆BF₄, 85662-38-0.

⁽¹²⁾ Christe, K. O., Schack, C. J., Wilson, R. D. Inorg. Chem. 1976, 15, 1275

APPENDIX C

SOME INTERESTING OBSERVATIONS IN CHLORINE OXYFLUORIDE CHEMISTRY

KARL O. CHRISTE AND WILLIAM W. WILSON

Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91304 (U.S.A.)

SUMMARY

A new synthesis of ${\rm FOC10}_3$ was discovered involving the fluorination of ${\rm C10}_4^-$ with ${\rm C1F}_6^+$. An unexpected oxygen abstraction from ${\rm C1F}_4^-$ 0 was observed when ${\rm CsClF}_4^-$ 0 was reacted with ${\rm FOS0}_2^-$ F.

INTRODUCTION

We would like to report two interesting reactions observed during our studies in the area of chlorine oxyfluorides. The first reaction involved the low-temperature metathesis of ${\rm ClF_6AsF_6}$ with ${\rm CsClO_4}$ in anhydrous HF solution. In view of the known ${\rm NF_4}^+$ reaction [1]

$$NF_4SbF_6 + CsClO_4 \frac{HF}{-45°C} - CsSbF_6 + NF_4ClO_4$$

$$NF_4C10_4 \xrightarrow{25^{\circ}C} NF_3 + FOC10_3$$

it was interesting to study whether ${\rm ClF}_6^{\dagger}$ is also capable of

oxidizing ${\rm ClO}_4^-$ to ${\rm FOClO}_3$. The thermal stability of ${\rm ClF}_6{\rm ClO}_4$ was found to be lower than that of ${\rm NF}_4{\rm ClO}_4$ [1] and did not permit the isolation of solid ${\rm ClF}_6{\rm ClO}_4$ even at temperatures as low as -45°C. However, the corresponding decomposition products ${\rm FOClO}_3$ and ${\rm ClF}_5$, were observed in good yield.

$$\frac{\text{Clf}_{6}\text{Asf}_{6} + \text{CsClO}_{4} \xrightarrow{\text{HF}} \text{CsAsf}_{6} + [\text{Clf}_{6}\text{ClO}_{4}]}{\text{Clf}_{6}\text{ClO}_{4}] - \text{Clf}_{5} + \text{FoClO}_{3}}$$

Although this presents an alternative synthetic path to $FOClO_3$, the NF_4^{-1} reaction is preferred from a synthetic point of view since the NF_4SbF_6 starting material is more readily accessible [2].

The second reaction involved $CsClF_4O$ and $FOSO_2F$. Fluorine fluorosulfate is known to be a useful reagent for the synthesis of hypofluorites [3], such as

$$CsTeF_5O + FOSO_2F \longrightarrow CsSO_3F + TeF_5OF$$

For $\mathrm{CsClF_4O}$, however, the major reaction was not the formation of either the unknown $\mathrm{ClF_4OF}$ or its expected decomposition products, but oxygen abstraction accompanied by $\mathrm{SO_2F_2}$ elimiation according to the following reaction.

$$CsCir_4O + FOSO_2F \longrightarrow CsCir_4 + SO_2F_2 + O_2$$

This unexpected reaction path might be rationalized in terms of an addition of $FOSO_2F$ to the Cl=O bond in one of the favored resonance structures of $ClF_4O^-[4]$, followed by an intramolecular

nucleophilic substitution (S $_{N}^{-1})$ reaction accompanied by ${\rm O}_{2}$ and ${\rm SO}_{2}{\rm F}_{2}$ elimination:

To our knowledge, this is the fire example of a reaction in which $FOSO_2F$ acts as a deoxygenating agent.

EXPERIMENTAL

Apparatus. Volatile materials were handled in a stainless steel-Teflon FEP vacuum line [5]. The line and other hardware used were well passivated with ClF₃ and, if HF was to be used, with HF. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glovebox. Metathetical reactions were carried out in HF solution using a previously described apparatus [6].

Infrared spectra were recorded on a Perkin Elmer Model 283 spectrophotometer. Spectra of solids were obtained using dry powders pressed between AgCl windows. Spectra of gases were obtained by using a Teflon cell of 5 cm path length equipped with AgCl windows. Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-A exciting line of an Ar-ion laser.

Materials. Literature methods were used for the syntheses of $ClF_6AsF_6[7]$, $CsClF_4O[8]$ and $FOSO_2F[9]$ and for the drying of

the HF solvent [10]. The ${\rm CsClO}_4$ (ROC/RIC) was used as received.

Reaction of ClF₆AsF₆ with CsClO₄. In the drybox ClF₆AsF₆ (0.318 mmol) and $CsClO_A$ (0.304 mmol) were placed into the bottom U-tube of the metathesis apparatus [6]. Or the vacuum line, dry HF (1.1 ml of liquid) was added at -78°C. The resulting mixture was agitated at -45°C for 1.5 hr and then filtered at -78°C through a porous Teflon filter while the filtrate was collected at ~45°C. All material volatile at -45° was pumped off for 2.5 hr and separated by fractional condensation through a series of traps kept at -126, -142 and -196°C. The -126° trap contained the HF solvent and a small amount of FClO2, the -142° trap contained a mixture of $FOClO_3$ and ClF_5 (0.445 mmol), and the -196° trap contained $FClO_3$ (0.128 mmol). Essentially no filtrate residue was left behind. The white solid filter cake (106 mg, weight calcd for 0.304 mmol of $CsAsF_6$ 98 mg) was identified by infrared and Raman spectroscopy as CsAsF6. The FC10, formed in the above reaction is attributed to decomposation of a small amount of FOClO3. For a larger scale reaction, the percentage of $FClO_3$ in the product is expected to decrease significantly.

<u>Caution!</u> Fluorine perchlorate is highly shock sensitive [11] and proper safety precautions must be taken when working with this material.

Reaction of $CsClF_4O$ with $FOSO_2F$. In the dry box $CsClF_4O$ (2.24 mmol) was placed into a 10 ml stainless steel cylinder. On the vacuum line $FOSO_2F$ (4.97 mmol) was added to the cylinder at -196°C. The cylinder was kept at O°C for 3 days, then cooled

to -196°C. Oxygen (2.23 mmol) was pumped off at -J96°C, and all material volatile at ambient temperature was separated by fractional condensation through traps kept at -112, -142, and -196°C. The -112° trap contained small amounts of C1F $_3$ O, FC1O $_2$ and C1F $_3$. The -142° trap contained FOSO $_2$ F (2.6 mmol) and SO $_2$ F $_2$ (1.7 mmol), and the -196° trap showed SO $_2$ F $_2$ (0.52 mmol). The white solid residue showed a weight loss of 39 mg (calcd weight loss for 1.12 mmol of O $_2$ 36 mg) and was identified by infrared and Raman spectroscopy as CsCJF $_4$ [12] containing a small amount of CsSO $_3$ F.

ACKNOWLEDGEMENTS

The authors are grateful to Drs. C. J. Schack and L. R. Grant and Mr. R. D. Wilson for their help and to the Army Research Office and the Office of Naval Research for financial support.

REFERENCES

- 1 K. O. CHRISTE, W. W. WILSON, and R. D. WILSON, Inorg. Chem., 19, 1494 (1980).
- 2 K. O. CHRISTE, C. J. SCHACK, and R. D. WILSON, J. Fluorine Chem., 8, 541 (1976).
- 3 C. J. SCHACK, W. W. WILSON, and K. O. CHRISTE, Inorg. Chem., 22, 18 (1983).
- 4 K. O. CHRISTE and E. C. CURTIS, Inorg. Chem., 11, 2209 (1972).
- 5 K. O. CHRISTE, R. D. WILSON, and C. J. SCHACK, Inorg. Synth., in press.
- 6 K. O. CHRISTE, W.W. WILSON, C. J. SCHACK, and R. D. WILSON, Inorg. Synth., in press.
- 7 K. O. CHRISTE, W. W. WILSON, and E. C. CURTIS, Inorg. Chem., 22, 3056 (1983).

- 8 K. O. CHRISTE, C. J. SCHACK, and D. PILIPOVICH, Inorg. Chem., <u>11</u>, 2205 (1972).
- 9 F. B. DUDLEY, G. H. CADY, and D. F. EGGERS, J. Am. Chem. Soc., 78, 290 (1956).
- 10 K. O. CHRISTE, W. W. WILSON, and C. J. SCHACK, J. Fluorine Chem., 11, 71 (1978).
- 11 K. O. CHRISTE and C. J. SCHACK, Adv. Inorg. Chem. Radiochem., 18, 319 (1976).
- 12 K. O. CHRISTE and D. NAUMANN, Inorg. Chem., 12, 59 (1973).

Fi ceived: December 18, 1981

SYNTHESES OF NF4 + SALTS DERIVED FROM THE LEWIS ACIDS A1F3 AND BeF2

KARL O. CHRISTE, WILLIAM W. WILSON AND CARL J. SCHACK

Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91304 (U.S.A.)

SUMMARY

The new salts $NF_4Be_2F_5$ and NF_4AlF_4 were prepared from concentrated NF_4HF_2 solutions and EeF_2 and AlF_3 respectively.

INTRODUCTION

Salts containing the NF $_4^+$ cation are of significant practical interest for high detonation pressure explosives [1] or solid-propellant NF $_3^-$ F $_2$ gas generators for chemical lasers [2]. For these applications, it is desirable to maximize the usable fluorine content, expressed as weight percent of fluorine available as F $_2$ or NF $_3$ upon thermal decomposition of the salt. Optimization of the usable fluorine content is best achieved by the selection of an anion which is as light as possible, is multiply charged and, if possible, is itself an oxidizer capable of fluorine evolution. Of the presently known NF $_4^+$ salts, (NF $_4$) $_2$ NiF $_6$ (64.6%), (NF $_4$) $_2$ MnF $_6$ (59.9%), (NF $_4$) $_2$ SiF $_6$ (59.0%), (NF $_4$) $_2$ TiF $_6$ (55.6%) and NF $_4$ BF $_4$ (53.7%) have the highest usable fluorine contents. Theoretically, a further increase in the usable fluorine content of NF $_4^+$ salts should be possible by the use of the very light and multiply charged anions, BeF $_4^-$ and AIF $_6^-$. Their NF $_4^+$ salts would have a usable fluorine content of 71.7 and 69.3 percent, respectively. In this paper, we report on the syntheses of NF $_4^+$ salts containing anions derived from BeF $_2^-$ and AIF $_3^-$.

0022-1139/82/0000-0000/\$02.75

Preparation of NF₄Be₂E₅ Ory CsF (30.34 mmol) and NF₄SbF₆ (30.47 mmol) were loaded in the drybox into one half of a prepassivated Teflon double-U metathesis apparatus. Dry HF (20 ml) was added on the vacuum line and the mixture was stirred with a Teflon coated magnetic stirring bar for 15 minutes at 25°C. After cooling the apparatus to -78° C, it was inverted, and the NF₄HF₂ solution was filtered into the other half of the apparatus which contained 12.14 mmol of BeF₂. The mixture was stirred for 65 hours at 25°C, followed by removal of most of the HF until the onset of NF₄HF₂ decomposition became noticeable. The concentrated mixture was stirred at 25°C for 14 hours and a clear, colorless solution resulted. All volatile materials were pumped off at 55°C for 15 hours, leaving behind a white solid (1.448g, 97% yield based on BeF₂) which, based on its elemental analysis, had the following composition (weight %): NF₄BeF₃·1.06BeF₂, 84.06; NF₄SbF₆, 11.23; CsSbF₆ 4.71. Anal. Calcd: NF₃, 31.45; Be, 7.58; Cs, 1.70; Sb, 5.75. Found: NF₃, 31.43; Be, 7.58; Cs, 1.69; Sb, 5.74.

Preparation of NF₄AlF₄ Freshly prepared AlF₃ (0.469g, 5.58 mmol) was combined with NF₄HF₂ (generated as described above from 33.8 mmol of NF₄SbF₆) in 35 ml of HF. The mixture was stirred at 25° C for 1 hour, then most of the HF solvent was pumped off until incipient decomposition of NF₄HF₂ became noticeable. After stirring for 2 hours at 25° C, this concentrated mixture turned into a clear solution. The remaining HF solvent and the excess of NF₄HF₂ were removed at 55° C for 40 hours in a dynamic vacuum. The weight (1.257g) of the solid white residue agreed with that expected for 5.58 mmol of NF₄AlF₄ (1.077g) containing, as in the case of the analagous NF₄Be₂F₅ preparation, about 17 weight % of NF₄SbF₆ and CsSbF₆. The presence of these ions was confirmed by vibrational spectroscopy which also demonstrated the absence of any unreacted NF₆HF₂.

RESULTS AND DISCUSSION

The syntheses of $(\mathrm{NF_4})_2\mathrm{BeF_4}$ and $(\mathrm{NF_4})_3\mathrm{AlF_6}$ by direct methods involving $\mathrm{NF_3}$, $\mathrm{F_2}$ and the corresponding Lewis acid in the presence of an activation energy source [9] is not possible because $\mathrm{BeF_2}$ and $\mathrm{AlF_3}$ are nonvolatile polymeric solids. Simple metatheses

$$M_3AIF_6 + 3NF_4SbF_6 \xrightarrow{solvent} 3MSbF_{64} + (NF_4)_3AIF_6$$

were also investigated where M was either Cs or Na and the solvents were either BrF_{ς} at $25^{\circ}C$, HF at $-78^{\circ}C$ or molten $NF_{L}SbF_{\zeta}$ at $275^{\circ}C$ under 1000 psi

Preparation of NF₄Be₂E₅ Dry CsF (30.34 mmol) and NF₄SbF₆ (30.47 mmol) were loaded in the drybox into one half of a prepassivated Teflon double-U metathesis apparatus. Ory HF (20 ml) was added on the vacuum line and the mixture was stirred with a Teflon coated magnetic stirring bar for 15 minutes at 25°C. After cooling the apparatus to -78° C, it was inverted, and the NF₄HF₂ solution was filtered into the other half of the apparatus which contained 12.14 mmol of BeF₂. The mixture was stirred for 65 hours at 25°C, followed by removal of most of the HF until the onset of NF₄HF₂ decomposition became noticeable. The concentrated mixture was stirred at 25°C for 14 hours and a clear, colorless solution resulted. All volatile materials were pumped off at 55°C for 15 hours, leaving behind a white solid (1.448g, 97% yield based on BeF₂) which, based on its elemental analysis, had the following composition (weight %): NF₄BeF₃·1.06BeF₂, 84.06; NF₄SbF₆, 11.23; CsSbF₆ 4.71. Anal. Calcd: NF₃, 31.45; Be, 7.58; Cs, 1.70; Sb, 5.75. Found: NF₃, 31.43; Be, 7.58; Cs, 1.69; Sb, 5.74.

Preparation of NF₄AlF₄ Freshly prepared AlF₃ (0.469g, 5.58 mmol) was combined with NF₄HF₂ (generated as described above from 33.8 mmol of NF₄SbF₆) in 35 ml of HF. The mixture was stirred at 25° C for 1 hour, then most of the HF solvent was pumped off until incipient decomposition of NF₄HF₂ became noticeable. After stirring for 2 hours at 25° C, this concentrated mixture turned into a clear solution. The remaining HF solvent and the excess of NF₄HF₂ were removed at 55° C for 40 hours in a dynamic vacuum. The weight (1.257g) of the solid white residue agreed with that expected for 5.58 mmol of NF₄AlF₄ (1.077g) containing, as in the case of the analagous NF₄Be₂F₅ preparation, about 17 weight % of NF₄SbF₆ and CsSbF₆. The presence of these ions was confirmed by vibrational spectroscopy which also demonstrated the absence of any unreacted NF₄HF₂.

RESULTS AND DISCUSSION

The syntheses of $({\rm NF_4})_2{\rm BeF_4}$ and $({\rm NF_4})_3{\rm AlF_6}$ by direct methods involving ${\rm NF_3}$, ${\rm F_2}$ and the corresponding Lewis acid in the presence of an activation energy source [9] is not possible because ${\rm BeF_2}$ and ${\rm AlF_3}$ are nonvolatile polymeric solids. Simple metatheses

$$M_3AIF_6 + 3NF_4SbF_6 \xrightarrow{solvent} 3MSbF_6 + (NF_4)_3AIF_6$$

were also investigated where M was either Cs or Na and the solvents were either ${\rm BrF}_5$ at $25^{\rm O}{\rm C}$, HF at $-78^{\rm O}{\rm C}$ or molten ${\rm NF}_L{\rm SbF}_6$ at $275^{\rm O}{\rm C}$ under 1000 psi

NF $_3$ and F $_2$ pressure. In all cases, no evidence for $(NF_4)_3AlF_6$ was obtained, probably because the AlF_6^{2-} and BeF_4^{2-} anions are very strong Lewis bases which undergo rapid solvolysis, such as

$$A1F_6^{3-} + 2HF + 2HF_2^{-} + A1F_4^{-}$$

This metathetical approach was further complicated by the fact that the AIF $_{\mu}^{-}$ salts appear to be quite insoluble and therefore cannot be separated from the highly insoluble alkali metal SbF $_{6}^{-}$ salts. Since previous studies in our laboratory had demonstrated that these solubility and separation problems can be overcome by digesting a polymeric insoluble Lewis acid, such as UOF $_{\mu}^{-}$ [10] or WOF $_{\mu}^{-}$ [11], in a large exess of a highly concentrated NF $_{4}$ HF $_{2}^{-}$ solution, this approach was also applied to AIF $_{3}^{-}$ and BeF $_{2}^{-}$.

The concentrated solutions of NF_4HF_2 in HF were prepared according to

$$NF_4SbF_6 + CsHF_2 \xrightarrow{HF} CsSbF_6 + NF_4HF_2$$

followed by its addition to either AlF $_3$ or BeF $_2$. After digesting these mixtures at 25° C until clear solutions were obtained, the excess of unreacted NF $_4$ HF $_2$, which in the absence of a solvent is unstable at 25° C, was decomposed at 55° C

$$NF_4HF_2 \rightarrow NF_3 + F_2 + HF$$

and pumped off. Based on the observed material balances and spectroscopic and elemental analyses, the solid residues consisted of mainly NF $_4$ Be $_2$ F $_5$ and NF $_4$ AlF $_4$ with some NF $_4$ SbF $_6$ and CsSbF $_6$ as the expected impurities. Attempts to purify NF $_4$ AlF $_4$ by recrystallization or extraction with HF were unsuccessful due to the low solubilities of the salts involved and due to solvolysis. It appears that the presence of a high HF $_2$ —ion concentration is required to diminish the acidity of the HF solvent and to suppress the solvolyses of the strong Lewis bases AlF $_6$ —, AlF $_4$ —or BeF $_4$ —. The fact that at the end of the digestion periods of AlF $_3$ or BeF $_2$ in HF solutions of NF $_4$ HF $_2$ clear solutions were obtained, while NF $_4$ AlF $_4$ and NF $_4$ Be $_2$ F $_5$ appear to possess only limited solubilities in HF, suggests the possibility that, in the presence of a large excess of HF $_2$ —, either AlF $_6$ — or BeF $_4$ — might exist in these solutions. Obviously, an excess of HF $_2$ — should suppress the following solvolysis reactions

$$A1F_6^{3-} + 2HF \rightarrow A1F_4^- + 2HF_2^-$$

 $A1F_4^- + HF \longrightarrow A1F_3^- + HF_2^-$

Unfortunately the nature of the complex fluoro anions in these solutions could not be established because these anions are inherently poor Raman scatterers. Nor do they result in separate ¹⁹F NMR signals due to rapid exchange with the HF solvent.

Although the above described experiments did not permit the isolation of either $(NF_4)_3AlF_6$ or $(NF_4)_2BeF_4$, they resulted in the syntheses of the new salts $NF_4Be_2F_5$ and NF_4AlF_4 . The existence of the Be_2F_5 anion is well known, and the infrared spectrum observed for $NF_4Be_2F_5$ (see Figure 1) confirms the presence of Be_2F_5 [12]. Due to the poor scattering by the anion, the Raman spectrum of $NF_4Be_2F_5$ (see Figure 1) is dominated by the NF_4 lines. These lines are in excellent agreement with a tetrahedral NF_4 cation exhibiting splittings into the degenerate components of each mode due to site symmetry lowering or slight distortion of the cation. The assignments for NF_4 agree well with our previous observations [13] and are summarized in Table 1.

The results of this study demonstrates that, in principle, the synthesis of NF_L^{+} salts containing complex fluoro anions derived from either AlF_2

Fig. 1. Infrared and Raman Spectrum of Solid NF4Be2F5

or BeF $_2$ is possible. However, the isolation of NF $_4^+$ salts containing the strongly basic AlF $_6^{3-}$ or BeF $_4^{2-}$ anions remains a challenge for the synthetic fluorine chemist.

osd freq, cm ⁻¹ and	rel. intens.	Assignment for NF_4^+				
		in point group T _d				
1 R	Ra	u				
2310vw	. 1	$2v_3(A_1 + E + F_2)$				
1995 w		$v_1 + v_3 (F_2)$				
1455 (w		$\frac{1}{1} + \frac{1}{4} (F_2)$				
1444 ∫		1 4 1 2				
1234)						
1220 mw		$2v_4 (A_1 + E + F_2)$				
1210)						
1185 sh)	1189 (1.0)					
1160 vs	1158 (1.0)	∨ ₃ (F ₂)				
1145 sh)	1141 (1.0)	_				
955 s,br		Be ₂ F ₅				
	851 (10)	v_1 (A ₁)				
765 ms, br						
690 ms, br∫		Be ₂ F ₅				
623 mw	621 (1.9)					
611 m	610 (3.3)	ν ₄ (F ₂)				
597 mw)	599 (2.4)					
558 vw	-					
498 vw	150 (0.0)					
	458 (2.2)	ν ₂ (Ε)				
1.57	447 (2.1))	Z *-				
436 m						
416 ms		Be ₂ F ₅				
400 mw)						

ACKNOWLEDGEMENTS

The authors are grateful to Mr. R. D. Wilson and Dr. L. R. Grant for their help and to the Office of Naval Research and the Army Research Office for financial support.

REFERENCES

- 1 K. O. CHRISTE, U. S. Pat. 4,207,124 (1980).
- 2 K. O. CHRISTE, R. O. WILSON, and C. J. SCHACK, Inorg. Chem., <u>16</u>, 937 (1977).
- 3 K. O. CHRISTE, C. J. SCHACK, and R. O. WILSON, Inorg. Chem., <u>16</u>, 849 (1977).
- 4 H. CLAASSEN, H. SELIG, and J. SHAMIR, J. Appl. Spectroscop., 23, 8 (1969).
- 5 R. RUSHWORTH, C. J. SCHACK, W. W. WILSON, and K. O. CHRISTE, Anal. Chem., 53, 845 (1981).
- 6 K. O. CHRISTE, C. J. SCHACK, and R. O. WILSON, J. Fluorine Chem., 8, 541 (1976).
- 7 K. O. CHRISTE, W. W. WILSON, and R. O. WILSON, Inorg. Chem., <u>19</u>, 1494 (1980).
- 8 K. O. CHRISTE, W. W. WILSON, and C. J. SCHACK, J. Fluorine Chem., <u>11</u>, 71 (1978).
- 9 K. O. CHRISTE, J. P. GUERTIN, and A. E. PAVLATH, U. S. Pat. 3,503,719 (1970).
- 10 W. W. WILSON, R. O. WILSON, and K. G. CHRISTE, J. inorg. nucl. Chem., 43, 1551 (1981).
- 11 W. W. WILSON and K. O. CHRISTE, Inorg. Chem., in press.
- 12 V. G. VASIL'EV and V. S. MARKOV, Russ. J. Inorg. Chem., (Engl. Transl.), 21, 1772 (1976).
- 13 K. O. CHRISTE, Spectrochim Acta, Part A, 36A, 921 (1980).

APPENDIX E

Reprinted from Inorganic Chemistry, 1982, 21, 2091 Copyright @ 1982 by the American Chemical Society and reprinted by permission of the copyright owner

> Contribution from Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California, 91304

Perfluoroammonium Salts of Metal Heptafluoride Anions

William W. Wilson and Karl O. Christe*

Recen ed October 21, 1981

Due to its high-energy content and unusual kinetic stability, the NF4* cation is a unique oxidizer. Its salts have found numerous applications such as solid propellant NF3-F3 gas generators for chemical HF-DF lasers, ingredients in high detonation pressure explosives, and fluorinating agents for aromatic compounds. Although the NF₄* cation has suecessfully been combined with a large number of different anions in the form of stable salts, all these anions were derived from relatively strong Lewis acids, and their number of ligands did not exceed six. It was therefore of interest to explore whether NF4+ salts containing metal heptafluoride anions can exist.

Experimental Section

Apparatus. Volatile materials used in this work were handled in a stainless-steel-Tellon FFF vacuum line. The line and other hardware

⁽¹⁾ Christe, K. O., Wilson, S. Schack, C. J. Imorg. Chem. 1977, In. 937.
(2) Christe, K. O. U.S. Laix. (207-124, 1980)
(3) Schack, C. J., Christe, K. O. J. Fluorine Chem. 1981, IS, 363.

used were well passivated with CIF, and, if HF was to be used, with HF. Nonvolatile materials were handled in the dry-nitrogen atmosphere of a glovebox. Metathetical reactions were carried out in HF solution with an apparatus consisting of two FEP U-traps interconnected through a coupling containing a porous Teston filter.4 Thermal decomposition measurements were earried out in a previously described' sapphire reactor

Infrared spectra were recorded in the range 4000- 200 cm 1 on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl windows in an Econo press (Barnes Engineering Co.). Spectra of gases were obtained by using a Teffon cell of 5-cm path length equipped with AgCl windows.

Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-A exciting line of an Ar ion laser and Claassen filter* for the elimination of plasma lines. Sealed glass, Teffon FEP, or Kel-F tubes were used as sample containers in the transverse-viewing transverse-excitation mode. Lines due to the Teffon or Kel-F sample tubes were suppressed by the use of a metal mask

Elemental analyses were carried out as previously described.

Materials. Literature methods were used for the syntheses of NF4SbF4 and NF4HF2 solutions in HF.9 Hydrogen fluoride (Matheson) was dried by storage over BiFs to remove the H₂O 10 Tungsten hexafluoride (high purity, Alfa) and UF, (Allied) were used as received. Cesium fluoride (KBI) was dried by fusion in a platinum crucible and ground in the drybox.

Preparation of NF₄WF₂. Dry CsF (15.0 mmol) and NF₄SbF₆ (15.0 mmol) were loaded in the drybox into half of a prepassivated Teflon double U metathesis apparatus. Dry HF (15 mL of liquid) was added on the vacuum line, and the mixture was stirred with a Teflon-coated magnetic stirring bar for 15 min at 25 °C. After the apparatus was cooled to -78 °C, it was inverted and the NF₄HF₃ solution was filtered into the other half of the apparatus. Tungsten hexall joride (22.5 mmol) was condensed at -196 °C onto the NF4HF3. The mixture was warmed to ambient temperature, and two immiscible liquid phases were observed. After 30 min of vigorous stirring at 25 °C, the lower WF, layer dissolved in the upper HF phase. Most of the volatile products were pumped off at ambient temperature until the onset of NF4HF3 decomposition became noticeable (NF3 evolution). An additional 8.0 mmol of WF, was added at -196 °C to the residue. When the mixture was warmed to ambient temperature, a white solid product appeared in the form of a slurry. All material volatile at -31 °C was pumped off for 1 h and consisted of HF and some NF₃. An additional 14 5 mmol of WF6 was added to the residue, and the resulting mixture was kept at 25 °C for 14 h. All material volatile at -13 °C was pumped off for 2 h and consisted of HF and WF6. The residue was kept at 22 °C for 2.5 days, and pumping was resumed at -13 °C for 2.5 h and at 22 °C for 4 h. The volatiles, collected at -210 °C, consisted of some HF and small amounts of NF3 and WFa. The white solid residue (5.138 g, 84% yield) was shown by vibrational and 19F NMR spectroscopy to consist mainly of NF4WF7 with small amounts of SbF6 as the only detectable impurity. On the basis of its elemental analysis, the product had the following composition (weight %): NF4WF7, 98.39; CsSbF6, 1.61. Anal. Calcd: NF₃, 17.17; W, 44.46; Cs, 0.58; Sb, 0.53. Found: NF₃, 17.13; W, 44.49; Cs, 0.54; Sb, 0.55.

Preparation of NF₄UF₂. A solution of NF₄HF₂ in anhydrous HF was prepared from CsF (14.12 mmol) and NF₄SbF₆ (14.19 mmol) in the same manner as described for NF4WF7. Most of the HF solvent was pumped off on warmup from -78 °C toward ambient temperature until the enset of NF4HF2 decomposition became noticeable. Uranium hexafluoride (14.59 mmol) was condensed at -196 °C into the reactor, and the mixture was stirred at 25 °C for 20 h. The material volatile at 25 °C was briefly pumped off and separated by fractional con-

Figure 1. Vibrational spectra of solid NF,WF, and NF,UFs: traces A and D, infrared spectra of the dry powders pressed between AgCl disks (the broken lines indicate absorption due to the AgCl window material); traces B, C, and E, Raman spectra recorded at different sensitivities and resolution.

densation through traps kept at ~78, -126, and -210 °C. It consisted of HF (6.3 mmol), UF₆ (9.58 mmol), and a trace of NF₁. Since the NF₄HF₅ solution had taken up only about one-third of the stoichiometric amount of UF6, the recovered UF6 was condensed back into the reactor. The mixture was stirred at 25 °C for 12 h, and the volatile material was pumped off again and separated. It consisted of HF (12.8 mmol), UF₆ (1.7 mmol), and a trace of NF₃. Continued pumping resulted in the evolution of only a small amount of UF6, but no NF3 or HF, thus indicating the absence of any unreacted NF4HF3. The pale yellow solid residue (5.711 g, 88% yield) was shown by vibrational and ¹⁹F NMR spectroscopy and elemental analysis to have the following composition (weight %): NF₄UF₃, 97.47; NF₄SbF₆₀ 1.50; CsSbF₆, 1.03. Anal. Calcd: NF₃, 15.34; U, 50.32; Sb, 0.90; Cs, 0.37. Found: NF₃, 15.31; U. 50.2; Sb, 0.90; Cs, 0.37.

Results and Discussion

Synthesis of NF₄XF₇ Salts. The synthesis of NF₄XF₇ salts proved rather difficult because metal hexafluorides are weak Lewis acids and exhibit only a moderate tendency to form the energetically relatively unfavorable heptafluoro anions. Consequently, neither direct synthetic methods, based on the reaction of NF₃ with F₂ and a Lewis acid in the presence of an activation energy source, tt nor indirect methods such as displacement reactions¹² or metathesis in anhydrous IF solution10 could be used. For example, anhydrous HF displaces UF₆ from NOUF₇ or CsUF₇.¹³ However, in the course of

Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849. Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18, 2572.

⁽⁶⁾ Claassen, H. H.; Selig, H.; Shamir, J. J. Appl. Spectrosc. 1969, 23, 8.
(7) Rushworth, R.; Schack, C. J.; Wilson, W. W.; Christe, K. O. Anal.

Chem. 1981, 53, 845.

Christe, K. O.; Schack, C. J.; Wilson, R. D. J. Fluorine Chem. 1976, Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19,

⁽¹⁰⁾ Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978,

⁽¹¹⁾ Christe, K. O.; Guertin, J. P.; Pavlath, A. E. U.S. Patent 3503719,

⁽¹²⁾ Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1976, 15.

Table 1. Vibrational Specific of Solid NE, WE, and NE, UE,

shed from am " (satintage")

	onsa treq, ca	n (retiniens)						
NI Wt.		NE, UF,		assignt tpoint group th				
IR	Raman	1R	Raman	$NU_{\epsilon^*}(T_{cl})$	Wt. $(D_{sh})^{\nu}$			
23 15 vw		23 t 5 v w		$2\nu_s(\mathbf{A}_s + \mathbf{E} + \hat{\mathbf{I}}_s)$				
2000 w		200 t w		n, + n,(h,)				
1760 vw		1760 vw		$\nu_1 + \nu_2(\mathbf{A}_1 + \mathbf{I} + \mathbf{I}_2)$				
1456 W		1458 w		$\nu_i + \nu_i(\Gamma_i)$				
1220 mw		1222 mw		$2c_1(\mathbf{A}_1+\mathbf{E}_1+\mathbf{L}_2)$				
716535	1165 (0.3) 1155 sh	1165 vs	1164 (0.1)	$\{v_i(\mathbf{t}_j)\}$				
1055 v w		t052 vw		$y \leftarrow v_{s}(1), \forall 1 \in \mathbb{N}$				
895 vw	890 (0 +)	89812	88510+)	$v_{\mathbf{a}}(\mathbf{L}_{1} + \mathbf{L}_{2}) = 2v_{\mathbf{a}}(\mathbf{A}_{1} + \mathbf{A}_{2} + \mathbf{L})$				
851.YW	849 (5.0)		85 t i t (t)	$i_{-}(\Lambda_{i})$				
711 w	711 (1m)	6.26 W	6.28 (10)		r (A 1			
630 vs. br		530 v c bi			1.(A) 3.2(1b)			
6 t 0 sh	614 (1.31 609 (2.0)	610 m	$613.j \cdot 1.01\mathrm{sh}$	}+,cL,1				
	446 (1).9) 44) (1.1)		457 (T.0)	$\frac{1}{2} i_{\mu}(\mathbf{t})$				
4.36 W	43.5 sh	460 sh	457 (1.0)		1,1 1 }			
	31810 3) br		31 t (0.41		1,41 1			
	285 sti		283 (0 -)		$\nu_s(X-1)$			
			249 (0.5)					
			225 (0+)					
			214 (0.3)					

⁴ Uncorrected Raman intensities. ^b Based on the splitting of the bands and the violations of the selection rules observed for some of the modes, the actual site symmetries of these ions are expected to be lower than F_d and D_M . ^c Assignments Used on tel. 16

a recent study in our laboratory a method for the preparation of (NF₄)₂SiF₆ was discovered¹⁴ in which equilibrium 1 was

$$2NF_4HF_2nHF + SiF_4 + (NF_4)SiF_6 + 2(n+1)HF$$
 (1)

successfully shifted to the right by repeatedly treating a highly concentrated NF₄HF₂-HF solution⁹ with an excess of SiF₄ while periodically stripping off the HF. This method has now been extended to the synthesis of NF₄WF₇ and NF₄UF₇ according to (2) and provided the first known examples of NF₄* salts containing complex anions with more than six ligands about their central atom.

$$NF_4HF_2nHF + XF_6 \rightleftharpoons NF_4XF_7 + (n+1)HF$$

$$(X = W, U)$$
(2)

The purity of the NF₄XF₇ salts prepared in this manner was about 98 weight % with CsSbF₆ and NF₄SbF₆ as the principal impurities. Product purification by recrystallization from HF solution was not possible due to equilibrium 2, which in the presence of a large excess of HF is shifted to the left. The yields of NF₄XF₇ were about 86%, on the basis of NF₄HF₂, with most of the NF₄HF₂ values lost being due to hang up of some mother liquor on the CsSbF₆ filter cake during the metatherical preparation of NF₄HF₂ according to (3).

$$NF_4SbF_6 + C_5HF_2 \stackrel{HF}{\rightarrow} C_5SbF_6\downarrow + NF_4HF_2$$
 (3)

Physical Properties. NF₄WF₇ and NF₄UF₇ are white and pale yellow, respectively, and are moderately soluble in BrF₅. They are crystallinie, hygroscopic solids that are stable in a dynamic vacuum at 125 °C. At higher temperatures, both salts decompose according to (4), with no evidence for the

$$NF_4XF_7 \rightarrow NF_3 + F_2 + XF_6 \tag{4}$$

formation of stable, volatile, higher valence state florides. The ratio of NF_3 to XF_6 in the decomposition products was shown to be 1:1, and the vibrational spectra of the solid residues

showed no evidence for doubly charged amons. These observations indicate that neither the stepwise (eq. 5) nor re-

$$2MUF_7 - M_2UF_8 + UF_6$$
 (5)

ductive (eq b) decomposition, previously observed for the

$$M_2UF_8 + M_2UF_7 + 1/3F_5$$
 (6)

alkali-metal salts, ¹⁴ are significant for the NF₄* salts. Based on the observed decomposition rates in a dynamic vacuum at 145 °C (NF₄UF₂, 25% decomposition/h; NF₄WF₂, 1.4% decomposition/h), NF₄WF₂ is thermally somewhat more stable than NF₄UF₂.

Vibrational Spectra. The infrared and Raman spectra of NF₄WF₂ and NF₄UF₃ are shown in Figure 1, and the observed frequencies and their assignments are summarized in Table 1. These spectra establish beyond doubt the presence of NF₄* cations 15 and WF₇⁻¹⁶ and UF₇^{-anions (3)} and also demonstrate that, under the given reaction conditions, no significant amounts of XF₈² salts are formed.

¹⁹F NMR Spectra. The ionic nature of the NF₄XF₇ salts in BrF₅ solution was established by ¹⁹F NMR spectroscopy. For NF₄WF₇ at -60 °C two signals, a triplet of equal intensity at $\phi = 222.7$ with $J_{\rm NF} = 232.7$ Hz and a half-line width of 2 Hz and a singlet at $\phi = 142.2$ with a half-line width of 2.8 Hz and missing ¹⁸³W satelites were observed which are characteristic for NF₄+4.9 and WF₇-, ^(3,17) respectively. An area integration of the two signals showed a ratio of 4:6.99, in excellent agreement with the expected ratio of 4:7. These two signals changed very little when the sample was warmed to ambient temperature; however, the solvent signals which at -60 °C were well resolved collapsed at 25 °C to a single peak. For NF₄UF₇ at -60 °C, again, well-resolved signals for the BrF₅ solvent and NF₄+ were observed, but the UF₇- signal could not be detected. These observations rule out a rapid

⁽¹³⁾ Bougon, R.; Charpin, P.; Desmoulin, J. P.; Malm, J. G. Inorg. Chem.

⁽¹⁴⁾ Wilson, W. W.; Christe, K. O. J. Fluorine Chem. 1982, 19, 253.

⁽¹⁵⁾ Christe, K. O. Spectrochum Acta, Part A 1980, 36A, 921 and references cited therein.

⁽¹⁶⁾ Beuter, A.; Kuhlmann, W.; Sawodny, W. J. Fluorine Chem. 1975, 6, 367.

⁽¹⁷⁾ Prescott, A.; Shaip, D. W. A., Winfield, J. M. J. Chem. Soc., Dalton Trans. 1975, 934.

exchange between UF-7 and either the BrF₃ solvent or NF₄*, but can be explained by the relatively large (400-600 Hz) half-line width previously reported¹³ for UF-7.

Conclusion. The successful synth, sis of NF₄WF- and NF₄UF₇ shows that even very weak Lewis acids such as metal hexafluorides are capable of forming stable NF₄* salts. This surprising result is a further manifestation of the unique properties of the NF₄* cation.

Acknowledgment. The authors gratefully acknowledge helpful discussions with Drs. C. J. Schack and L. R. Grant and Mr. R. D. Wilson and financial support from the Office of Naval Research and the Army Research. Sice.

Registry No. NF4WEs, 80735-93-9; NF4UF-, 80735-09-7; WF6, 7783-82-6, UF6, 7783-81-5; NF4SbF5, 16871-76-4

APPENDIX F

Reprinted from Inorganic Chemstry, 1982, 21, 4113. Copyright © 1982 by the American Chemical Society and reprinted by permission of the copyright owner.

> Contribution from Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91304

Perfluoroammonium and Alkali-Metal Salts of the Heptafluoroxenon(VI) and Octafluoroxenon(VI) Anions

KARL O. CHRISTE® and WILLIAM W. WILSON

Received February 2, 1982

The NF₄XeF₂ sall was prepared from XeF₆ and NF₄HF₂ and was converted to (NF₄)₂XeF₃ by selective laser photolysis. These new salts and the known CsXeF₇ and Cs₂XeF₄ were characterized, and their vibrational spectra are reported. Evidence is presented for the existence of a stable NaXeF, salt. The presence of different phases in solid XeF, was confirmed by Raman spectroscopy

Introduction

Perfluoroammonium salts are the major ingredient in solid-propellant NF₃-F₂ gas generator compositions for chemical lasers. For these applications, the active fluorine content should be high, and the evolved gases should contain, besides F₂ and NF₃, only inert pases to avoid deactivation of the laser. Removal of undesired gases such as the parent Lewis acids of the salts' anions can be accomplished by the addition of a suitable alkali-metal fluoride which forms a nonvolatile clinker with the Lewis acids.2 However, the additional weight of the clinkering agents lowers the effective fluorine yields of these compositions and renders them less desirable. This problem might be circumvented by the use of NF4+ salts containing noble-gas fluoride anions which, on decomposition, would yield additional fluorine values and inert noble-gas diluent as the only byproduct. In this paper we report the successful synthesis of the first known examples of INF₄⁺ salts containing noble-gas fluoride anions and the characterization of the YeF, and XeF₈²- anions.

Experimental Section

Caution! Hydrolysis of XeF, and of its NF4+ salts produces highly sensitive xenon oxides and results in violent explosions. These compounds must therefore be handled with the necessary safety precautions and in the complete absence of moisture

Materials and Apparatus. The apparatus, handling procedures, analytical methods, and spectroscopic techniques used in this study have previously been described.3 Literature methods were used for the preparation of XeFe₆, ⁴ CsXeF₇, Cs₂XeF₆, ⁵ and the NF₄HF₂ solution in anhydrous HF.⁶ Cesium fluoride (KBI) was dried by fusion in a platinum crucible and ground in the drybox.

Preparation of NF₄XcF₇. Dry CsF (15.54 mmol) and NF₄SbF₆ (15.65 mmol) were loaded in the drybox into half of a prepassivated Teflon U metathesis apparatus. Dry HF (9 mL of liquid) was added on the vacuum line, and the mixture was stirred with a Teflon-coated magnetic stirring bar for 45 min at 25 °C. After the apparatus was cooled to -78 °C, it was inverted and the NF4HF2 solution was filtered into the other half of the apparatus. Most of the HF solvent was pumped off during warm-up from -78 °C toward room temperature until the first signs of NF4HF2 decomposition became noticeable. At this point the solution was cooled to -196 °C and XeF₆ (17.87 mmol) was added. The mixture was warmed to 25 °C and stirred for 12 h. Although most of the XeF6 dissolved in the liquid phase, there was some evidence for undissolved XeF₆. Material volatile at 25 °C was removed under a static vacuum and separated by fractional condensation through traps kept at -64 and -196 °C. Immediately, a white copious precipitate formed in the reactor but disappeared after about 10 min, resulting in a clear colorless solution. As soon as the first signs of NF4HF2 decomposition were noted, removal of volatiles was stopped and the reactor was cooled to -196 °C. The HF collected in the -196 °C trap was discarded, but the XeF6 collected in the -64 °C trap was recycled into the reactor, resulting in a yellow solution at room temperature. This mixture was stirred at 25 °C for several hours, followed by removal of the material volatile at 25 °C under a dynamic vacuum. The volatiles were separated by fractional condensation through traps kept at -210, -126, and -64 °C and consisted of NF₁ (~0.3 mmol), HF (~11 mmol), and XeF_{b1} respectively. The reactor was taken to the drybox, and the solid products were weighed. The yellow filtrate residue (5.149 g; weight calculated for 15.54 mmol of NF, XeF, 5.506 g, corresponding to a yield of 93.5%) consisted of NF, XeF,, and the white filter cake (5.78 g; weight calculated for 15.54 mmol of CsSbF₆ 5.72 g) consisted of CsSbF₆. The composition of these solids was confirmed by vibrational and ¹⁹F NMR spectroscopy, pyrolysis, and analysis of the pyrolysis residue for NF₄⁺, Cs*, and SbF₆. On the basis of these results, the reaction product had the following composition (wt %): NF4XeF7 (98.01), NF4SbF6 (0.88), and CsSbF, (1.11).

Results and Discussion

The XeF₇ and XeF₈² anions are thermally quite stable⁵ and, therefore, were a logical choice for the synthesis of the corresponding NF4+ salts. Although the syntheses of MXeF2 $(M = Cs, Rb, NO_2)^{5.7}$ and M_2XeF_R (M = Cs, Rb, K, Na,NO)5,8 salts have been reported, these salts have not been well characterized, except for a crystal structure determination of

⁽¹⁾ Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1977, 16, 937.

Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849.
 Wilson, W. W.; Christe, K. O. Inorg. Chem. 1982, 21, 2091.
 Malm, J. G.; Schreiner, F.; Osborne, D. W. Inorg. Nucl. Chem. Lett. 1965, 1, 97

⁽⁵⁾ Peacock, R. D.; Selig, H.; Sheft, I. J. Inorg. Nucl. Chem. 1966, 28,

⁽⁶⁾ Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19,

⁽⁷⁾ Holloway, J. H.; Selig, H.; El-Gad, U. J. Inorg. Nucl. Chem. 1973, 35,

⁽⁸⁾ Moody, G. J.; Selig, H. Inorg. Nucl. Chem. Lett. 1966, 2, 319.

Figure 1. Raman spectra of CsXeF₇ containing excess XeF₆ (trace A), CsXeF₇ recorded at two different sensitivity levels (traces B and C), Cs₇XeF₈ generated by decomposition of CsXeF₇ at 25 °C in the 4880-Å laser beam (trace D), Cs₂XeF₈ generated by vacuum pyrolysis of CsXeF₇ at 160 °C (trace E), and a mixture of NaXeF₇ and Na₂XeF₈ (trace F).

 $(NO)_2XeF_8$.9 Therefore, a better characterization of the XeF_7 and the XeF_8 2- anion was necessary to allow proper identification of their NF_4 4 salts.

Synthesis and Characterization of CsXeF₇, Cs₂XeF₈, and XeF₆. In agreement with a previous report⁵ it was found that CsF reacts with XeF₆ at 60 °C to form CsXeF₇. However, the following observations deviate from the previous report.⁵

Figure 2. Raman spectra of XeF₆ recorded at -120 and 25 °C and at different sensitivity levels. The differences between traces A-C and D, E are attributed to different phases (see text).

(i) It was not necessary to carefully add the XeF₆ in small increments to the CsF. No evidence for decomposition or explosions was noted, as long as the CsF was carefully dried. (ii) We could not obtain complete conversion of CsF to Cs-XeF₇. Even with a 13-fold excess of XeF₆ and 3-week reaction time at 60 °C, followed by I week at ambient temperature, the XeF6 uptake by the CsF was less than expected for a 1:1 stoichiometry. When the removal of the excess of XeF6 from the sapphire reactor was stopped at a weight corresponding approximately to a 1:1 adduct, the Raman spectrum of the product showed, in addition to CsXeF7, the presence of either free or very weakly associated XeF6, and the product evolved XeF6 on standing. Even after removal of additional XeF6 (weight corresponding to the composition of CsXeF₇-0.19CsF) the Raman spectrum still showed the presence of free XeF6 (see trace A of Figure 1). A pumping time of about 8 h at ambient temperature was required to obtain a constant weight and to completely remove free XeF6 (see trace B of Figure 1). At this point the composition of the product had dropped to CsXeF₇-0.89CsF. (iii) The Cs₂XeF₈ salt, prepared by vacuum pyrolysis of CsXeF, at 160 °C, was white and not cream colored.

Since xenon fluorides are excellent Raman scatterers, Raman spectroscopy was used to distinguish $^{\circ}$ eF₆, XeF₇, and XeF₈² from each other. Previous work on similar MF₆, MF₇, MF₈² (M = Mo, W, Re)¹⁰ systems has shown that the addition of F to a MF₆ molecule or MF₇ anion increases the polarity of the M-F bonds and therefore progressively lowers the frequencies of the MF_n stretching modes. Since XeF₇ salts are yellow, they strongly absorbed the blue 4880-Å exciting line of our laser. To avoid decomposition of the samples in the laser beam, we recorded the Raman spectra of XeF₇ salts at low temperature. Although the Raman spectrum of solid

⁽⁹⁾ Peterson, S. W.; Holloway, J. H.; Coyle, B. A.; Williams, J. M. Science (Washington, D.C.) 1971, 173, 1238.

⁽¹⁰⁾ Beuter, A.; Kuhlmann, W.; Sawodny, W. J. Fluorine Chem. 1975, 6, 367 and references cited therein.

Table 1. Raman Spectra of Solid Xel , a

A		н				
25 °C	120 ℃	25 °C	120 °C			
656 (10)	658 (£0)	652 sh	658 (5)			
620 (1013	649 (9.7)	646 (10)	649 (10)			
636 (6)	633 (7.1)					
	620 (1)		620 sh			
	613(1)		613 sh			
	597 (2)		589 sh			
502 (4.2)	576 (5.0)	579 (4.1)	579 (4.3)			
582 (4.2)	564 (4.5)		5 64 sh			
404 (0.1)	396 (0.4)	398 (0.3)	396 (0.2)			
365 (0.2)	365 (1.0)	362 (0.4)	365 (0+) ht			
	346 (0+)					
204 (0.2)	296 (0.4)	291 (0.6)	296 (0.4) br			
294 (0.3)	284 (0.5)					
236)	232 (0.4)	235-180 (0+) br	235-180 (0.4) br			
220 (0.2)	205 sh					
204)	195 (0.3)					
	179 sh					
	142 (0+)		140 (0+)			
105 (0+)	110 (0.2)		107 (0+)			
	93 (0.3)		86 (0+)			
	64 sh					

a The observed differences in the A and B type spectra are attributed to the presence of more than one phase in different ratios. Observed frequencies are given in cm⁻¹, with relative intensities in parentheses (uncorrected Raman intensities).

XeF₆ has previously been recorded at 40 °C,11 its low-temperature spectrum was required to allow its comparison with those of XeF7 and XeF82. The spectrum observed for XeF6 at -120 °C (trace A of Figure 2) shows splittings for most of the bands observed in the room-temperature spectrum (trace B of Figure 2). The latter agrees well with that previously reported.11 However, depending on temperature cycling and exposure time to the laser beam, a second type of spectrum could reversibly be generated from the same sample and was recorded at both -120 °C (trace D of Figure 2) and 25 °C (trace E of Figure 2). Since XeF6 is known to exist in at least four different crystalline modifications,12 the different spectra are attributed to the presence of more than one XeF, phase. The observed frequencies are summarized in Table 1.

As expected from the previously known MF6, MF7, MF82 series spectra, 10 the strongest Raman line in the spectra of XeF₆ and XeF₇ and XeF₈² shows a frequency decrease with increasing negative charge (see Figure 1). For Cs2XeF8, two different spectra were observed, depending on its method of preparation. When the sample was prepared by laser photolysis at ambient temperature (XeF7 is yellow and strongly absorbs the blue 4880-A line of the Ar ion laser, whereas XeF₈²⁻ is white and does not decompose in the laser beam), the spectrum shown by trace D of Figure 1 was observed. When the Cs₂XeF₈ sample was prepared by vacuum pyrolysis of CsXeF7 at 160 °C,5 the spectrum shown by trace E of Figure 1 was obtained. The general appearance of the spectra is quite similar, but some of the bands exhibit significant frequency shifts (see Table II). These shifts might be caused by solid-state effects.

On the Existence of NaXeF7. On the basis of a previous report⁵, only CsF and RbF form 1:1 adducts with XeF₆, while for NaF only a 2:1 adduct can be isolated. However, the experimental evidence given by the same authors⁵ (combining ratios of NaF:XeF6 were as low as 1.73) suggested that NaXeF, might exist in addition to Na2XeF. This was now verified by Raman spectroscopy. As can be seen from Table II and trace F of Figure 1, the product obtained by reacting

Figure 3. Infrared spectra of CsXeF7 recorded at 25 °C between AgCI windows (trace A) and of NF₄XeF₇ recorded at -196 °C between Cs1 windows (trace B) and 25 °C between AgCl windows (trace C) and Raman spectra of NF4XeF2 and (NF4)2XeF8 recorded at different temperatures and sensitivities (traces D-I). The broken lines in the infrared spectra indicate absorption due to the AgCl windows.

Xe with a large excess of F2 and NaF at 250 °C, followed by removal of all material volatile at 55 °C in vacuo, clearly contains XeF₇ in addition to XeF₈2. Consequently, NaF can form a 1:1 adduct with XeF6 that is stable up to at least 55 °C. Since KF generally forms more stable adducts than NaF, it appears safe to predict that KXeF₇ should also exist. The difficulty in obtaining 1:1 combining ratios for MF (M = Na or K) with XeF6 might therefore be attributed to difficulties in achieving a high conversion of the starting materials and not to the nonexistence of the 1:1 adducts.

On the Structure of XeF_7 and XeF_8^2 . From a crystal structure determination of $(NO)_2XcF_8$, the XeF_8^2 anion is known to possess a square-antiprismatic structure. The observed Raman spectra of Cs₂XeF₈ are in excellent agreement with such a structure of symmetry D_{4d} . Three Raman-active stretching modes should be observed, one each in species A₁, E_2 , and E_3 . Of these, the A_1 mode is assigned to the most intense and single band at about 510-530 cm⁻¹, while the two doubly degenerate E modes are assigned to the two doublets at about 430 and 370 cm⁻¹ (see Table II). The observed frequencies agree well with those reported for TaF₈³⁻ (622, 426, and 377 cm⁻¹), 10 which is also known from X-ray data¹³ to be a square antiprism. The fact that XeF₈²⁻ has a square-antiprismatic structure suggests that the free valence electron pair on xenon is sterically inactive. This is analogous to the observations previously made for BrF₆, which due to its smaller central atom can accommodate only a maximum of six ligands, thus forcing the free valence electron pair on bromine to become sterically inactive.14

CsXeFy 25°C 1,00 800 600 400 200 0 FREQUENCY, cm.

⁽¹¹⁾ Gasner, E. L.; Claassen, H. H. Inorg. Chem. 1967, 6, 1937.
(12) Sladky, F. MTP Int. Rev. Sci., Inorg. Chem., Ser. One 1972, 3, 14.

⁽¹³⁾ Hoard, J. L.; Martin, W. J.; Smith, M. E.; Whitney, J. F. J. Am. Chem. Soc. 1954, 76, 3820.

Table II. Vibrational Spectra of MXeF, and M, XeF, Salts (M = NF, Cs, and Na)

	obed freq. cm ⁻¹ , and rel intens ⁴									Assignment		
though disch.	Antel _a + Nathefg	Thermal	(s,le Thermal	F _A	(#F4)	pteF _p ——			,			(point group)
hers (nag)h	Ra 2500	Ì≠ •4Ω(Th ^o (25 %	-1.70°¢	?s ⁰ (120 20	-50°C	- 196° (750C		NF ₄ (1 _d) ^C
	1.254				1160(a.31) 1151(a.31)	1158(0, 11) 1145(0, 31)	1164(0-11) 1164(0-11)	1159(0.11) 1149(0.13)	1215± 1149+5	12.22 mu 1160vs		2:4(A1+E1F2)
					1119[5-11] 	ام (۱۹۵۰ امارین	1(3e _(i) 1) 94°{1 31 610{0 41 603:0 21	원하다 다 하다 다 하다 기 기가 있다 나	ક ^{દાદ} દમ ુ કાર્ય ાનુ ક	61)sh 6)mul		(4) (4)
	6116.11						55 a	614,711	ենր դ	16 15 h	55.1(10) 460m	
(4,1	50% 101	50,1%	111 101	4,5,5 - 1 51	Egen, her	K He tot	م طل ۱ او مروود		6,11-4	5 eys,br	5.940 H) 1.954,	31
	\$ 45 J. 25		aà1, 1 11				545 11 343 14 3133 3	44°CN 484(7)	441.4		\$36(+ 4)	
	456,11				\$\$4, 1.54	44 ° ° 0	440(n 011 1 110 141 411 11	41134	14		445/3,41	"(E)
(E. ar E ₁)	416, 11		(476(2)	[430(1.8)	(4)8(3)	[413.] E)						
1181		47555,51	(4185h	tappsh	11.6(-)	(a'c ''						
.,.,	318,03		151,1,51	[178, T 11	Lift, Tit	(100, 143	4 " " < H 41 E 11		4/7/~	4 24kn	396(0.21 392 5 386(0.51	
in Egror Egi	215,11		153658	farmen.	{2115B	173 1						
								100.0			14,5(2 (1) 166(3, 1)	
							16201.11	130(0.11			280.21	
							367(0:11	1.40 41:1.1.				

a Uncorrected Raman intensities. b Tentative assignments. c Observed splittings into degenerate components are caused by solid-state effects.

For XeF₂ no structural data are available and several structural models must be considered. The free valence electron pair on aenon could be sterically either active or inactive. If it is active, one would expect a structure derived from a square antiprism with one of the positions being occupied by the free pair. Such a structure would be of low symmetry and result in 18 mutually nonexclusive infrared and Raman bands. If the free pair is sterically inactive, two models are most likely. One model is a pentagonal bipyramid of symmetry D_{5h} , as observed for MF₇ (M = I, Re), ZrF₇³⁻, and certain CsMF, (M = W, Mo, Re) salts. 10 In this case, five infrared- and five Raman-active bands are expected, which should be mutually exclusive.15 The other model is a monocapped trigonal prism of symmtry C_{2r} , as in MF_7^{2-} (M = Nb, Ta), 13 for which 18 Raman and 15 mutually nonexclusive infrared bands are expected. The spectra observed for CsXeF7 (Table II, trace B of Figure 1, and trace A of Figure 3) show at least 10 Raman bands, most of which are also observed in the infrared spectrum. Therefore, a model of symmetry D_{5k} appears unlikely. However, a distinction between the two remaining models (pseudo square antiprism and monocapped trigonal prism) is not possible on the basis of the available data.

Synthesis and Properties of NF₄XeF₇ and (NF₄)₂XeF₂. The NF4XeF2 salt, the first example of an NF4+ salt containing a noble-gas fluoride anion, was prepared by repeatedly treating a highly concentrated solution of NF4HF2 in anhydrous HF with an excess of XeF6 in order to shift the equilibrium

$$NF_4HF_2 + XeF_6 \Rightarrow NF_4XeF_7 + HF$$
 (1)

to the right-hand side. The displaced HF was removed together with unreacted XeF6. The XeF6 was separated from the HF by fractional condensation and was recycled. In this

manner, NF₄XeF₇ was prepared in 94% yield and 98% purity. The yield is based on NF₄SbF₆ used in the NF₄HF₂ preparation step6

$$NF_4SbF_6 + CsHF_2 \rightarrow NF_4HF_2 + CsSbF_6 \downarrow$$
 (2)

and is less than quantitative due to hang-up of some mother liquor on the CsSbF, filter cake. The 2% impurities consisted of CsSbF6 and NF4SbF6 and are typical3.16 for metathetical reactions involving NF4HF2.

The NF₄XeF₇ salt is a light yellow solid. It is stable at ambient temperature and starts to slowly decompose at about 75 °C. Under a dynamic vacuum, the decomposition rates at 75 and 100 °C were found to be 1.6%/h and 28%/h, respectively. The decomposition mode

$$NF_4XeF_7 \rightarrow NF_3 + F_2 + XeF_6 \tag{3}$$

was established by mass balance and the observed decomposition products. Since the NF₄XeF₇ salt violently explodes on contact with water and therefore could not be analyzed by standard hydrolytic methods, 17 an exhaustive vacuum pyrolysis at 120 °C, followed by an analysis of the solid residue, was used to assay the compound.

The ionic nature of solid NF4XeF7 was established by vibrational spectroscopy (see Table II and Figure 3, traces B-F), which showed the bands characteristic for tetrahedral NF4+18 and XeF7 (see above). When solid NF4XeF7 was dissolved in anhydrous HF, 19F NMR and Raman spectra of the resulting solution showed XeF_6 and NF_4^+ as the principal species, suggesting that, in a large excess of HF, equilibrium 1 is shifted all the way to the left-hand side. In BrF, solution at -40 °C, the ¹⁹F NMR spectra originally showed the presence of NF₄⁺ (triplet of equal intensity at 221 ppm below external CFCl₃

⁽¹⁴⁾ Bougon, R.; Charpin, P.; Soriana, J. C. R. Hebd. Seances Acad. Sci.

Paris, Ser. C 1971, 272, 565.
(15) Ferraro, J. R. In "Low Frequency Vibrations of Inorganic and Coordination Compounds"; Plenum Press: New York, 1971; pp 112-114.

⁽¹⁶⁾ Wilson, W. W.; Christe, K. O. J. Fluorine Chem. 1982, 19, 253.
(17) Rushworth, R.; Schack, C. J.; Wilson, W. W.; Christe, K. O. Anal. Chem. 1981, 53, 845.

⁽¹⁸⁾ Christe, K. O. Spectrochim. Acta, Part A 1980, 36A, 921.

with $J_{\rm NF}$ = 232 Hz), ¹⁶ which was slowly replaced by the signal of NF₃ (triplet of equal intensity at 145 ppm below CFCl₃ with $J_{\rm NF}$ = 290 Hz), ¹⁹ suggesting again solvolysis of NF₄XeF₇, followed by decomposition of the unstable NF₄BrF₆ intermediate:

$$NF_4XeF_7 + BrF_5 \Rightarrow [NF_4BrF_6] + XeF_6$$
 (4)

$$[NF_4BrF_6] \rightarrow NF_3 + F_2 + BrF_5 \tag{5}$$

When a sample of NF₄XeF₇ was exposed at room temperature for prolonged time to blue 4880-Å laser light, photolytic decomposition of NF₄XeF₇ occurred, resulting in (NF₄)₂XeF₃ formation:

$$2NF_4XeF_7 \xrightarrow{h_F(4880 \text{ Å})} (NF_4)_2XeF_8 + XeF_6$$
 (6)

Attempts were unsuccessful to duplicate this reaction by carefully controlled thermal decomposition of NF_4XeF_7 . The only products obtained were NF_3 , F_2 , XeF_6 , and unreacted NF_4XeF_7 . The selective decomposition of NF_4XeF_7 and stability of $(NF_4)_2XeF_8$ in the laser beam can be explained by the different color of the two compounds. The yellow NF_4XeF_7 strongly absorbs the blue 4880-Å light, whereas the white $(NF_4)_2XeF_8$ does not. Since the output of the available laser was just 75 mW, only very small amounts of $(NF_4)_2XeF_8$

could be produced in this manner, and identification of the product was limited to Raman spectroscopy. As can be seen from traces G-I of Figure 3 and Table II, the spectra clearly show the presence of the NF₄⁺¹⁸ and XeF₈²⁻ ions (see above). The observed splittings are due to lifting of the degeneracies for the E and F modes in the solid state.¹⁸

Conclusion. The present study further demonstrates the unique ability of the NF₄⁺ cation to form a host of stable salts. The successful synthesis of NF₄XeF₇ and (NF₄)₂XeF₈ provided the first known examples not only of NF₄⁺ salts containing noble-gas fluoride anions but also of an NF₄⁺ salt containing an octafluoro anion. 'These salts are very powerful oxidizers and on thermal decomposition generate NF₃, F₂, and only inert gases. The formation of (NF₄)₂XeF₈ is an interesting example of a selective laser-induced reaction. The XeF₇⁻ and XeF₈²⁻ anions were characterized by vibrational spectroscopy. Raman spectroscopic evidence was obtained for the existence of a stable NaXeF₇ salt, and the presence of different phases in solid XeF₆ was confirmed.

Acknowledgment. The authors gratefully acknowledge helpful discussions with Drs. C. J. Schack and L. R. Grant and Mr. R. D. Wilson and financial support from the Office of Naval Research and the Army Research Office.

Registry No. $(NF_4)(XeF_7)$, 82963·12-0; CsF, 13400-13-0; $(N-F_4)SbF_6$, 16871·76-4; Cs (XeF_7) , 19033·04-6; Cs $_2(XeF_8)$, 17501-71-2; XeF₆, 13693-09-9; Na (XeF_7) , 82963-13-1; Xe, 7440-63-3; F₂, 7782-41-4; NaF, 7681·49·4; $(NF_4)_2XeF_8$, 82963-15-3; Na $_2(XeF_8)$, 17501-70-1.

⁽¹⁹⁾ Dungan, C. H.: Van Wazer, J. R. In "Compilation of Reported 19F NMR Chemical Shifts": Wiley: New York, 1970.

Journal of Fluorine Chemistry, 23 (1983) 399-402

Received: January 19, 1983; accepted: March 9, 1983

THERMOCHEMISTRY OF NF₄ + SALTS. ON THE ENTHALPY OF FORMATION OF NF₄XeF₇ AND THE NF₄SbF₆-BrF₃ SYSTEM

K.O. CHRISTE^a, W.W. WILSON^a, R.D. WILSON^a, R. BOUGON^b and T. BUI HUY^b

SUMMARY

The thermal decomposition of NF_4XeF_7 was studied by differential scanning calorimetry. From the observed enthalpy of decomposition, a value of -491 kJ mol⁻¹ was calculated for $\Delta H_f^0(NF_4XeF_{7(s)})$. The reaction of NF_4^+ salts with BrF_3 , previously suggested [1] for the determination of more precise thermochemical values for NF_4^+ salts by solution calorimetry, was shown to be infeasible.

INTRODUCTION

In a previous paper [2] thermochemical data were summarized for NF₄BF₄, NF₄PF₆, NF₄AsF₆, NF₄SbF₆, NF₄GeF₅ and (NF₄)₂GeF₆. In this paper we would like to report thermochemical data for the recently synthesized [3] NF₄XeF₇ which is of particular interest due to its exceptionally high energy content. Furthermore, we would like to comment on several suggestions, recently made by Woolf [1], concerning the thermochemistry of NF₄ salts.

EXPERIMENTAL

The synthesis of $\mathrm{NF}_4\mathrm{XeF}_7$ [3] and the DSC method [2] have previously been described. Based on its elemental analysis [3] the purity of the $\mathrm{NF}_4\mathrm{XeF}_7$ sample used in this study was 98.0 weight percent with a total of two percent of $\mathrm{NF}_4\mathrm{SbF}_6$ and CsSbF_6

0022-1139/83/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

^aRocketdyne Division of Rockwell International, Canoga Park, CA 91304 (USA)

^bCentre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette Cedex (France)

being present as impurities. Since these impurities are thermally much more stable [4] than $NF_4XeF_7[3]$, they did not interfer with the DSC measurements, and a simple 2 percent correction of the starting weights was made.

The reaction of $\operatorname{NF}_4\operatorname{SbF}_6[5]$ with BrF_3 (The Matheson Company) was carried out in a well-passivated (with ClF_3) Teflon FEP ampule connected to a 314-stainless steel Teflon FEP vacuum system. The $\operatorname{NF}_4\operatorname{SbF}_6$ was treated with a tenfold excess of BrF_3 at $25^{\circ}\mathrm{C}$ for 2 hours. The volatile products were separated by fractional condensation and consisted of mainly unreacted BrF_3 and a small amount of HF and NF_3 . No evidence for the formation of either BrF_5 or F_2 was observed. The solid residue had changed only little in weight and based on its Raman spectrum consisted mainly of $\operatorname{NF}_4\operatorname{SbF}_6$, a small amount of Br_2^+ and possibly some BrF_2^+ salts.

RESULTS AND DISCUSSION

Enthalpies of Decomposition and Formation of NF_4XeF_7 In a previous study [3] it was shown that the thermal decomposition of NF_4XeF_7 proceeds according to

$$NF_4XeF_7 \longrightarrow NF_3 + F_2 + XeF_6$$

Although $(NF_4)_2 XeF_8$ is the logical intermediate in this decomposition, this compound could only be isolated by selective laser photolysis [3]. The observation of a shoulder at $107^{\circ}C$ on the main decomposition endotherm of $NF_4 XeF_7$ (onset at $80^{\circ}C$) supports a two step decomposition mechanism for $NF_4 XeF_7$ and suggests the formation of $(NF_4)_2 XeF_8$ as an intermediate. Unfortunately, a large enough sample of pure $(NF_4)_2 XeF_8$ was not available to measure the decomposition enthalpy of the second step separately. For the overall decomposition enthalpy of $NF_4 XeF_7$ a value $\Delta H_{\rm dec} = 64.6 \pm 5 \ {\rm kJ \ mol}^{-1}$ (10) was found. From the known enthalpies of formation of $NF_3 [6]$ and $XeF_6 [7]$ the enthalpy of formation of $NF_4 XeF_7$ is calculated as $\Delta H_{\bf f} (NF_4 XeF_7 ({\bf s})) = -490.7 \ {\rm kJ \ mol}^{-1}$. A comparison of this value with those previously found [2] for a series of NF_4 salts containing other complex fluoro anions clearly demonstrates that $NF_4 XeF_7$ is by far the most energetic of these salts.

Comments on the Paper by Woolf In a recent paper by Woolf [1] the interesting observation was made that the experimentally determined enthalpies of formation of several NF₄⁺ salts [2] closely correspond to those estimated for the corresponding NO₂⁺ salts [1]. Furthermore, it was extrapolated that this relationship for salts with anion dominated lattices should also hold for the cation dominated lattice salts NF₄⁺F and NO₂⁺F, deriving the enthalpy of formation of NF₄⁺F from an estimate for NO₂⁺F [1]. Criticizing the admittedly substantial uncertainties in the known experimental data [2]. Woolf preferred his values derived from the same data, but extended by estimates and extrapolations. In our opinion, this is unwarranted.

In spite of the above criticism, it is most gratifying that Woolf's estimated value of -91 kJ mol^{-1} for the enthalpy of formation of solid NF₄+F-[1] is almost identical to that (-95 kJ mol^{-1} derived from our previous data [2]

$$NF_{3(g)} + F_{2(g)} \xrightarrow{+36} NF_{4} + F^{-}(s)$$

 $\Delta H_{f}^{0} - 131.4 \quad 0 \quad -95.4 \text{ kJ mol}^{-1}$

Unfortunately, the commentary in [1] could easily be misinterpreted. After listing an exothermic value of -91 kJ mol⁻¹ for the enthalpy of formation of $NF_4^+F^-$, reference is made [1] to "the previous prediction of instability" of this compound. Obviously, in both papers [1,2] almost identical exothermic values are obtained for the enthalpy of formation of solid $NF_4^+F^-$. However, as stressed in [2], solid $NF_4^+F^-$ is unstable with respect to decomposition to NF_3 and F_2 by about 36 kJ mol⁻¹.

In [1], solvolysis of NF4 salts in BrF3 according to

$$NF_4^+SbF_6^- + 2BrF_3 \xrightarrow{BrF_3} NF_3^{\dagger} + BrF_5(BrF_3) + BrF_3 \cdot SbF_5(BrF_3)$$

was suggested as a method of obtaining more precise thermochemical values for NF $_4$ ⁺ salts, and a heat of reaction of about 70 kJ mol $^{-1}$ was anticipated for this reaction. A study of the NF $_4$ SbF $_6$ -BrF $_3$ system carried out in our laboratory shows that this reaction does not proceed as postulated and therefore is of no practical

usefulness. No BrF₅ formation was observed, and the evolution of some NF₃, accompanied by some Br₂⁺ and HF formation, is indicative of experimental difficulties with undesired side reactions, even in well-passivated Teflon-stainless steel equipment. The discrepancy between the predicted [1] 70 kJ mol⁻¹ exothermicity and the observed unreactivity of the above system might be attributed to the previous neglect of taking the strong association of liquid BrF₃ into account. If the left side of the equation is corrected for $\Delta H_{\rm vap}$ of BrF₃ (42.84 kJ mol⁻¹) [8], the heat of reaction becomes endothermic by about 15 kJ mol⁻¹ and agrees with the observed lack of reactivity.

ACKNOWLEDGEMENTS

The authors are indebted to the Office of Naval Research, the Army Research Office and la Direction des Recherches Etudes et Techniques for financial support, and to Drs. C. J. Schack and L. R. Grant for helpful discussions.

REFERENCES

- 1 A. A. Woolf, J. Fluorine Chem., 20 (1982) 627.
- 2 R. Bougon, T. Bui Huy, J. Burgess, K. O. Christe and R. D. Peacock, J. Fluorine Chem., 19 (1982) 263.
- 3 K. O. Christe and W. W. Wilson, Inorg. Chem., in press.
- 4 K. O. Christe, R. D. Wilson and I. B. Goldberg, Inorg. Chem., <u>18</u>, (1979) 2572.
- 5 W. W. Wilson and K. O. Christe, J. Fluorine Chem., <u>15</u> (1980), 83, and references cited therein.
- 6 'JANAF Interim Thermochemical Tables', The Dow Chemical Company, Midland, Michigan, 1965 and subsequent revisions.
- 7 B. Weinstock, E. E. Weaver and C. P. Knop, Inorg. Chem., <u>5</u> (1966) 2189.
- 8 G. D. Oliver and J. W. Grisard, J. Amer. Chem. Soc., <u>74</u> (1952) 2705.

APPENDIX H

TETRAFLUOROAMMONIUM SALTS

Submitted by KARL O. CHRISTE, * WILLIAM W. WILSON, *

CARL J. SCHACK, * and RICHARD D. WILSON*

Checked by R. BOUGON†

Since $[NF_4]^+$ is a coordinatively saturated complex fluoro cation, the synthesis of its salts is generally difficult. A limited number of salts can be prepared directly from NF3, and these salts can then be converted by indirect methods into other $[NF_4]^+$ salts which are important for solid propellant NF3-F2 gas generators or reagents for the electrophilic fluorination of aromatic compounds.

The two direct methods for the synthesis of $[NF_4]^+$ salts are based on the reaction of NF_3 with either $[KrF]^+$ salts².

$$NF_3 + [KrF][AsF_6] \longrightarrow [NF_4][AsF_6] + Kr$$

or F_2 and a strong Lewis acid in the presence of an activation energy source E.

$$NF_3 + F_2 + XF_n = [NF_4][XF_{n+1}]$$

For the chemist interested in synthesis, the second method³ is clearly superior due to its high yields, relative simplicity and scalability.

^{*}Rocketdyne, A Division of Rockwell International Corp., Canoga Park, CA 91304

Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France

Four different activation energy sources have been used for the direct syntheses of the following $[NF_{\ell}]^{+}$ salts:

- (i) $\text{Heat:}^{4..7}[\text{NF}_4][\text{BiF}_6], [\text{NF}_4][\text{SbF}_6], [\text{NF}_4][\text{AsF}_6], [\text{NF}_4]_2[\text{TiF}_6 \cdot \text{nTiF}_4]$
- (ii) Glow discharge: $^{8,9}[NF_4][AsF_6]$, $[NF_4][BF_4]$
- (iii) UV-photolysis $^{10,11}[NF_4][SbF_6]$, $[NF_4][AsF_6]$, $[NF_4][PF_6]$, $[NF_4][GeF_5]$, $[NF_4][BF_4]$
- (iv) Bremsstrahlung: 12[NF₄][BF₄]

Of these, the thermal synthesis of $[NF_4][SbF_6]^{4-7}$ is most convenient (Method A) and provides the starting material required for the syntheses of other $[NF_4]^+$ salts by indirect methods. For the syntheses of pure $[NF_4]^+$ salts on a small scale, low-temperature UV-photolysis is preferred (Method B).

The following indirect methods for the interconversion of $[NF_4]^+$ salts are known:

(i) Metathesis reaction:

where typically X = Sb and solvent = anhydrous HF or BrF₅. This method is limited to anions which are stable in the given solvent and results in an impure product. Typical compounds prepared in this manner include: $[NF_4][BF_4]$, $^{6,13,14}[NF_4][HF_2]^{15}$ (Method C), $[NF_4][SO_3F]$, 16 $[NF_4][ClO_4]$, 15 and $[NF_4]_2[MF_6][M=Sn$, 17 Ti, 18 Ni, 19 Mn²⁰] (Method D).

(ii) Reaction of solid [NF $_4$][HF $_2$ ·xHF] with a weak Lewis acid: When the MF $_{\rm m+n}^{\rm n-}$ anion is unstable in a solvent, such as HF, and the Lewis acid MF $_{\rm m}$ is volatile, the equilibrium

$$n[NF_4][HF_2 \cdot xHF] + MF_m \longrightarrow [NF_4]_n[MF_{m+n}] + n(x+1) HF$$

can be shifted to the right by the use of an excess of MF_{m} and continuous removal of HF with the excess of MF_{m} . Typical salts prepared in this manner include: $[\mathrm{NF}_4]_2[\mathrm{SiF}_6]^{21}$ (Method E) and $[\mathrm{NF}_4][\mathrm{MF}_7](\mathrm{M=U,W}^{22},\mathrm{Xe}^{23})$.

(iii) Reaction of $[NF_4][HF_2]$ with a nonvolatile polymeric Lewis acid: When in the metathesis (i) all the materials except $[NF_4][XF_6]$ are insoluble, product separation becomes impossible. This problem is avoided by digesting the Lewis acid in a large excess of $[NF_4][HF_2]$ in HF solution, followed by thermal decomposition of the excess $[NF_4][HF_2]$ at room temperature.

$$[NF_4][HF_2] + MF_n \xrightarrow{HF} [NF_4][MF_{n+1}] + HF$$

Salts prepared in this manner include [NF₄][MOF₅](M=U, 24 w²⁵)(Method F), [NF₄][AlF₄] and [NF₄][Be₂F₅]. 26

(iv) Displacement reaction: Displacement of a weaker Lewis acid by a stronger Lewis acid can be carried out easily, as demonstrated for $[NF_4][PF_6]$.

$$[NF_4][BF_4] + PF_5 \longrightarrow [NF_4][PF_6] + BF_3$$

(v) Rearrangement reaction: When $[NF_4][GeF_5]$ is treated with anhydrous HF, the following equilibrium is observed.

$$2[NF_4][GeF_5] \xrightarrow{+HF} [NF_4]_2[GeF_6] + GeF_4$$

This equilibrium can be shifted to the right by repeated treatments of $[NF_4][GeF_5]$ with HF and GeF_4 removal, and to the left by treatment of $[NF_4]_2[GeF_6]$ with GeF_4 .

A. TETRAFLUOROAMMONIUM HEXAFLUOROANTIMONATE (V)

$$NF_3 + 2F_2 + SbF_3 = \frac{250^{\circ}}{70 \text{ atm}} [NF_4][SbF_6]$$

Procedure

Caution. High pressure fluorine reactions should only be carried out behind barricades or in a high pressure bay using appropriately pressure-temperature rated nickel or Monel reactors which have been well passivated with several atmospheres of F₂ at the described reaction temperature. Stainless steel reactors should be avoided due to the potential of metal fires. All [NF₄] salts are moisture sensitive and must be handled in a dry atmosphere. They are strong oxidizers and contact with organic materials and fuels must be avoided.

A prepassivated (with ClF₃), single-ended, 95-mL-Monel cylinder (Hoke, and charged with a Monel valve (Hoke 3232 M4M or equivalent), is loaded in the dry nitrogen atmosphere of a glove box with SbF₃⁺ (31 mmole). The cylinder is connected to a metal vacuum system, evacuated, vacuum leak tested, and charged with NF₃⁵ (65 mmole) and F₂⁵ (98 mmole) by condensation at -196°. The barricaded cylinder is heated for five days to 250°. The cylinder is allowed to cool by itself to ambient temperature and is then cooled to -196°. The unreacted F₂ (and NF₃ are pumped off at

^{*}Available from Hoke Inc., One Tenakill Park, Creskill, NJ 07626

[†]Available from Ozark-Mahoning, 1870 South Boulder, Tulsa, OK 74119

[§]Available from Air Products and Chemicals Inc., Specialty Gas Dept., Hometown Facility, P.O. Box 351, Tamaqua, PA 18252

-196° (the pump must be protected by a fluorine scrubber 28), and during the subsequent warm-up of the cylinder to ambient temperature, $[NF_4][SbF_6]$ (10.1g, 31 mmole, 100% yield based on SbF_3) is left behind as a solid residue. The product is either scraped out of the cylinder in the dry box or, more conveniently, dissolved in anhydrous HF which has been dried over BiF_5 . Small amounts of $Ni[SbF_6]_2$ and $Cu[SbF_6]_2$, formed as impurities by attack of the Monel reactor by F_2 and SbF_5 , are only sparingly soluble in HF and are removed from the $[NF_4][SbF_6]$ solution by filtration using a porous Teflon filter. If desired, the SbF_3 starting material can be replaced by SbF_5 without changing the remaining procedure. Anal. Calcd. for $[NF_4][SbF_6]:NF_3,21.80;Sb,37.38$. Found: NF_3 , 21.73;Sb,37.41.

Properties

Tetrafluoroammonium hexafluoroantimonate (V) is a hygroscopic, white, crystalline solid which is stable up to about 270° . 4,5,30 . It is highly soluble in anhydrous HF (259 mg per g of HF at -78°) and moderately soluble in BrF₅. Its ¹⁹F NMR spectrum in anhydrous HF solution consists of a triplet of equal intensity at 214.7 ppm downfield from CFCl₃ ($J_{\rm NF}$ =231Hz) for [NF₄]⁺. The vibrational spectra of the solid exhibit the following major bands (cm⁻¹): IR(pressed AgCl disk), 1227(mw), 1162(vs), 675(vs), 665(vs), 609(m); Ra, 1160(0.6), 1150(0.2), 843(7.0), 665(1), 648(10), 604(3.9), 569(0.9), 437(1.5), 275(3.8).

^{*}Available from Pallflex Products Corp., Kennedy Drive, Putnam, Conn 06260

[†]Available from Ozark-Mahoning, 1870 South Boulder, Tulsa, OK 74119

B. TETRAFLUOROAMMONIUM TETRAFLUOROBORATE (III)

$$NF_3 + F_2 + BF_3 \xrightarrow{hv} [NF_4][BF_4]$$

Procedure

Caution. Ultraviolet goggles should be worn for eye protection when working with higher power UV-lamps, and the work should be carried out in a fume hood. NF₄BF₄ is a strong oxidizer and contact with organic materials, fuels and moisture must be avoided.

The low-temperature UV-photolysis reaction is carried out in a quartz reactor with a pan-shaped bottom and a flat top consisting of a 7.5-cm diameter optical grade quartz window (see Figure 1). The vessel has a side arm connected by a Teflon O ring joint to a Fischer-Porter Teflon valve to facilitate removal of solid reaction products. The depth of the reactor is about 4 cm, and its volume is about 140 mL. The UV source consists of a 900-W, air-cooled, high-pressure mercury arc (General Electric Model B-H6) which is positioned 4 cm above the flat reactor surface. The bottom of the reactor is kept cold by immersion in liquid N_2 . Dry, gaseous N_2 is used as a purge gas to prevent condensation of atmospheric moisture on the flat top of the reactor. As a heat shield, a 6-mm thick quartz plate is positioned between the UV source and the top of the reactor.

Premixed NF $_3$ [†] and BF $_3$ [§] (27 mmole of each) are condensed into the cold bottom of the quartz reactor. Fluorine[†] (9 mmole) is added, and the mixture is photogyzed at -196° for 1 hour. After termi-

^{*}Available from Fischer & Porter Co., 51 Warminster Rd, Warminster, PA 18976

[†]Available from Air Products and Chemicals, Inc., Specialty Gas Dept., Hometown Facility, P.O. Box 351, Tamaqua, PA 18252

Available from Matheson, P.O. Box 85, 932 Pacerson Plank Rd., East Rutherford, NJ 07073

nation of the photolysis, volatile material is pumped out of the reactor (through a scrubber 28) during its warm-up to room temperature. The nonvolatile white solid residue (1.0g) is pure [NF $_4$][BF $_4$] Instead of the pan-shaped reactor a simple round quartz bulb can be used with a [NF $_4$][BF $_4$] yield of about 0.3g/hr. Anal. 29 Calcd. for [NF $_4$][BF $_4$]:NF $_3$,40.16;B,6.11. Found: NF $_3$,40.28;B,6.1.

Properties

Tetrafluoroammonium tetrafluoroborate (III) is a hygroscopic, white, crystalline solid which is stable up to about 150° , 9 , 11 , 12 , 30 It is highly soluble in anhydrous HF and moderately soluble in BrF5. Its 19 F NMR spectrum in anhydrous HF solution consists of a sharp triplet of equal intensity at 220 ppm downfield from CFCl3 ($J_{\rm NF}$ =230Hz) for [NF4] and an exchange broadened singlet at 158 ppm upfield from CFCl3 for [BF4]. The vibrational spectra of the solid exhibit the following major bands (cm⁻¹): IR(pressed AgCl disk), 1298(ms), 1222(mw), 1162(vs), 1057(vs), 609(s), 522(s); Ra, 1179(0.6), 1148(0.6), 1130(0+), 1055(0.2), 884(0+), 844(10), 772(3.2), 609(6.3), 524(0.4), 443(2.6), 350(0.9).

C. TETRAFLUOROAMMONIUM (HYDROGEN DIFLUORIDE)

$$[NF_4][SbF_6] + CsF \frac{HF}{-78^{\circ}} Cs[SbF_6]_{+} + [NF_4][HF_2]$$

Procedure

Caution. Anhydrous HF causes severe burns and protective clothing should be worn when working with this material. The HF solutions of NF₄ salts are strongly oxidizing and contact with fuels must be avoided.

A mixture of dry CsF^* (2.361g = 15.54 mmole) and $[NF_{\Delta}][SbF_{6}]$ (5.096g = 15.64 mmole) is placed inside the drybox into trap I of the leak-checked and passivated (with ClF, and dry HF¹³) Teflon FEP-Monel metathesis apparatus shown in Figure 2. The CsF is dried by fusion in a platinum crucible, immediately transferred to the drybox, cooled and finely ground. apparatus is attached to a metal-Teflon vacuum system 27 by two flexible, corrugated Teflon tubes and the connections are vacuum leak-checked and passivated. The system is repeatedly exposed to anhydrous $\mathrm{HF}^{\$}$, until the HF is colorless when frozen out at -1960 in a Teflon U-trap of the vacuum system to avoid contamination of the product with any chlorine-fluorides which may be adsorbed onto the walls of the metal vacuum system. Anhydrous HF^{13} (16.2g = 810 mmole) is added to trap I and the mixture is magnetically stirred for 1 hour at room temperature. The metathesis apparatus is cooled with powdered dry ice to -78° for 1 hour, and then inverted. The HF solution which contains the $[NF_4][HF_2]$ is separated from the $Cs[SbF_6]$ precipitate by filtration. To facilitate the filtration step, trap I is pressurized with \angle atm of dry N_2 after inversion. A pressure drop in trap I indicates the completion of the filtration step. If desired, repressurization of trap I may be repeated to minimize the amount of mother liquor held up in the filter cake. The desired HF solution of $[NF_A][HF_2]$ is collected in trap II. It contains about 94% of the original $[NF_{\Delta}]^{+}$ values, with the remainder being adsorbed on the Cs[SbF₆] filter cake. The [NF₆][HF₂]

^{*}Available from Kawecki Berylco Industries, Inc., 220 E. 42nd Street, New York, NY 10017

[†]Available from Penntube Plastics Co., Madison Ave and Holley St., Clifton Heights, PA 19018

[§]Available from Matheson, P.O. Box 85, 932 Paterson Plank Road, East Rutherford, NJ 07073

solution has a purity of about 97 mole % and contains small amounts of $Cs[SbF_6]$ (solubility of $Cs[SbF_6]$ in HF at -78° is 1.8 mg/gHF) 13 and $[NF_4][SbF_6]$ (if a slight excess of $[NF_4][SbF_6]$ has been used in the reaction to suppress, by the common ion effect, the amount of dissolved $Cs[SbF_6]$).

An unstable solid having the composition $[NF_4][HF_2]nHF](n=2-10)$ can be prepared by pumping off as much HF as possible below 0°.

Properties

Tetrafluoroammonium (hydrogen difluoride) is stable in HF solution at room temperature, but decomposes to NF $_3$, F $_2$ and HF on complete removal of the solvent. The 19 F NMR spectrum of the solution shows a triplet of equal intensity of 216.2 ppm downfield from CFCl $_3$ with J $_{\rm NF}$ =230Hz. The Raman spectrum of the HF solution shows bands at 1170(w), 854(vs), 612(m) and 448(mw) cm $^{-1}$.

D. BIS(TETRAFLUOROAMMONIUM) HEXAFLUOROMANGANATE(IV)

$$2[NF_4][SbF_6] + Cs_2[MnF_6] \xrightarrow{HF} 2Cs[SbF_6] + [NF_4]_2[MnF_6]$$

Procedure

■ Caution. Anhydrous HF can cause severe burns and protective clothing should be worn when working with this solvent. [NF₄]₂ [MnF₆] is a strong oxidizer and contact with water and fuels must be avoided.

The same apparatus is used as for procedure C. In the dry N_2 atmosphere of a glovebox, a mixture of $[NF_4][SbF_6](37.29$ mmole)

and $\text{Cs}_2[\text{MnF}_6]^{20}$ (18.53 mmole) is placed in the bottom of a prepassivated (with ClF_3) Teflon FEP (fluoro-ethylene-propylene copolymer) double U-tube metathesis apparatus. Dry HF^{13} (20 mL of liquid) is added at -78° on the vacuum line, 27 and the mixture is warmed to 25° for 30 minutes with stirring. The mixture is cooled to -78° and pressure filtered at this temperature. The HF solvent is pumped off at 30° for 12 hours resulting in 14g of a white filter cake (mainly $\text{Cs}[\text{SbF}_6]$) and 6.1g of a yellow filtrate residue having the approximate composition (weight %): $[\text{NF}_4]_2[\text{MnF}_6], 92; [\text{NF}_4][\text{SbF}_6], 4; \text{Cs}[\text{SbF}_6], 4. Yield of <math>[\text{NF}_4]_2[\text{MnF}_6] = 87\%$ based on $\text{Cs}_2[\text{MnF}_6]$.

Properties

Bis(tetrafluoroammonium) hexafluoromanganate(IV) is a yellow, crystalline solid which is stable at 65° , but slowly decomposes at 100° to NF₃, F₂ and MnF₃. The is highly soluble in anhydrous HF and reacts violently with water. Its ¹⁹F NMR spectrum in anhydrous HF solution shows a broad resonance at 218 ppm below CFCl₃ due to [NF₄]⁺. The vibrational spectra of the solid show the following major bands (cm⁻¹): IR(pressed AgCl disk), 1221(mw), 1160(vs), 620(vs), 338(s); Ra, 855(m), 593(vs), 505(m), 450(w), 304(s).

E. BIS(TETRAFLUOROAMMONIUM) HEXAFLUOROSILICATE(IV)

$$2[NF_4][HF_2 \cdot nHF] + SiF_4 - [NF_4]_2[SiF_6] + 2(n+1)HF$$

Procedure

Caution. Anhydrous HF can cause severe burns and protective clothing should be worn when working with liquid HF. All [NF4]

salts are strong oxidizers and contact with fuels and water must be avoided.

A solution of $[NF_4][HF_2](27 \text{ mmole})$ in anhydrous HF^{13} is prepared at -78° by procedure C. Most of the HF solvent is pumped off during warm-up towards 0° until the first signs of decomposition of $[NF_4][HF_2]$ are noted from the onset of gas evolution. resulting residue is cooled to -196° and SiF₄ (35 mmole) is added. The mixture is allowed to warm to ambient temperature while providing a volume of about IL in the vacuum line for expansion. During warm-up of the apparatus, the SiF, evaporates first and, upon melting of the $[NF_4][HF_2 nHF]$ phase, a significant reduction in the SiF, pressure is noted, resulting in a final pressure of about 400 torr. A clear colorless solution is obtained without any sign of solid formation. The material volatile at 0° is pumped off, and separated by fractional condensation through -126° and -196° traps. The SiF_L portion (about 22 mmole), trapped at -196°, is condensed back into the reactor which contains a white fluffy solid. After this mixture has been kept at 25° for 24 hours, all volatile material is pumped off at 25° and the SiF, is separated again from the HF. The solid residue is treated again with the unreacted SiF₄ at 25° for 14 hours. The materials volatile at 25° are pumped off again. They contain at this point less than I mmole of HF. The solid residue is heated in a dynamic vacuum to 50° for 28 hours until no further HF evolution is noticeable. The white solid residue (about 3.8g = 80% yield) has the approximate composition (weight %): $[NF_4]_2[SiF_6](95.0), Cs[SbF_6](2.2), [NF_4][SbF_6](2.3).$

Properties

Bis(tetrafluoroammonium) hexafluorosilicate(IV) is a white

^{*}Available from Matheson, P.O. Box 85, 932 Paterson Plank Road, East Rutherford, NJ 07073

crystalline solid which is stable at 25° , but slowly decomposes at 90° to NF₃, F₂ and SiF₄. The vibrational spectra of the solid show the following major bands (cm⁻¹): IR(pressed AgCl disk), 1223(mw), 1165(vs), 735(vs,br), 614(m), 609(mw), 478(s), 448(w); Ra, 1164(1.5), 895(0+), 885(0+), 859(10), 649(3.2), 611(5.8), 447, 441(3.8), 398(1).

F. TETKAFLUOROAMMONIUM PENTAFLUOROOXOTUNGSTATE (VI)

$$[NF_4][HF_2] + WOF_4 - \frac{HF}{25} [NF_4][WOF_5] + HF$$

Procedure

Caution. Anhydrous HF can cause severe burns and protective clothing should be worn when working with liquid HF. All [NF,] talls are strong oxidizers and contact with fuels and water should be avoided.

A solution of 20 mmole of $[NF_4][HF_2]$ in 16 mL of dry HF^{13} is prepared at -78° by procedure C and pressure filtered into the second half of the metathesis double U-tube containing 14.6 mmole of WOF₄. The mixture is stirred with a magnetic stirring bar for 30 min at 25° . The volatile material is pumped off at 25° for 12 hours. The solid residue (about $5g \approx 86\%$ yield based on WOF₄) has the approximate composition (weight %): $[NF_4][WOF_5](96)$, $Cs[SbF_6]$ (2), $[NF_4][SbF_6]$ (2).

Properties

Tetrafluoroammonium pentafluoroxotungstate (VI) is a white, crystalline solid which is stable at 55° , but slowly decomposes at 85° to yield

NF₃, OF₂, WF₆ and [NF₄][W₂O₂F₉]. ²⁵ The vibrational spectra of the solid show the following major bands (cm⁻¹): IR(pressed AgC1 disk), 1221(mw), 1160(vs), 991(vs), 688(vs), 620(vs,br), 515(vs); Ra, 1165(0.7), 996(10), 852(8.4), 690(5.4), 613(4.9), 446(1.6), 329(6.8), 285(0.5).

References

- 1. K. O. Christe and W. W. Wilson, Inorg. Chem., <u>22</u>,....(1983).
- A. A. Artyukhov and S. S. Koroshev, Koord. Khim., 3, 1478 (1977); K. O. Christe, W. W. Wilson, and R. D. Wilson, Inorg. Chem., 23,....(1984).
- K. O. Christe, J. P. Guertin, And A. E. Pavlath, U.S. Pat. 3503719 (1970).
- W. E. Tolberg, R. T. Rewick, R. S. Stringham, and M. E. Hill, Inorg. Chem., 6, 1156(1967).
- K. O. Christe, R. D. Wilson, and C. J. Schack, Inorg. Chem., 16, 937(1977).
- K. O. Christe, C. J. Schack, and R. D. Wilson, J. Fluorine Chem., <u>8</u>, 541 (1976).
- 7. W. W. Wilson and K. O. Christe, J. Fluorine Chem., <u>15</u>, 83(1980).
- 8. K. O. Christe, J. P. Guertin, and A. E. Pavlath, Inorg. Nucl. Chem. Lett., 2, 83 (1966); Inorg. Chem., 5, 1921 (1966).
- 9. S. M. Sinel'nikov and V. Ya. Rosolovskii, Dokl. Akad. Nauk SSSR, 194, 1341 (1970).
- 10. K. O. Christe, R. D. Wilson, and A. E. Axworthy, Inorg. Chem., 12, 2478 (1973).
- K. O. Christe, C. J. Schack, and R. D. Wilson, Inorg. Chem., 15, 1275 (1976).
- 12. C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, D. C. Wagner, and J. N. Wilson, Inorg. Chem., <u>11</u>, 1696 (1972).

- K. O. Christe, W. W. Wilson, and C. J. Schack, J. Fluorine Chem., <u>11</u>, 71 (1978).
- 14. W. E. Tolberg, private communication.
- K. O. Christe, W. W. Wilson, and R. D. Wilson, Inorg. Chem., 19, 1494 (1980).
- K. O. Christe, R. D. Wilson, and C. J. Schack, Inorg. Chem., 19, 3046 (1980).
- 17. K. O. Christe, C. J. Schack, and R. D. Wilson, lnorg. Chem., 16, 349 (1977).
- 18. K. O. Christe and C. J. Schack, Inorg. Chem., 16, 353 (1977).
- 19. K. O. Christe, Inorg. Chem., 16, 2238 (1977).
- 20. W. W. Wilson and K. O. Christe, Inorg. Synth.,...
- 21. W. W. Wilson and K. O. Christe, J. Fluorine Chem., 19, 253 (1982).
- 22. W. W. Wilson and K. O. Christe, lnorg. Chem., 21, 2091 (1982).
- 23. K. O. Christe and W. W. Wilson, Inorg. Chem., 22,....(1983).
- 24. W. W. Wilson, R. D. Wilson, and K. O. Christe, J. Inorg. Nucl. Chem., <u>43</u>, 1551 (1981).
- 25. W. W. Wilson and K. O. Christe, Inorg. Chem., 20, 4139 (1981).
- 26. K. O. Christe, W. W. Wilson, and C. J. Schack, J. Fluorine Chem., 20, 751 (1982).
- 27. K. O. Christe, R. D. Wilson and C. J. Schack, lnorg. Synth.,...
- 28. G. H. Cady, Inorg. Synth., 8, 165 (1966).
- 29. R. Rushworth, C. J. Schack, W. W. Wilson, and K. O. Christe, Anal. Chem., <u>53</u>, 845 (1981).
- 30. K. O. Christe, R. D. Wilson, and I. B. Goldberg, Inorg. Chem., <u>18</u>, 2578 (1979).
- 31. W. W. Wilson and K. O. Christe, Inorg. Synth.,...

FIGURE 1.

FIGURE 2.

APPENDIX I

CESIUM HEXAFLUOROMANGANATE (IV)

 $2CsF + MnCl_2 + 7F_2 - Cs_2MnF_6 + 2C1F_5$

Submitted by WILLIAM W. WILSON * and KARL O. CHRISTE * Checked by

Several methods have been described in the literature for the syntheses of alkali metal hexafluoromanganates (IV). The reactions of ${\rm K_2MnO_4}^1$, ${\rm MnO_2}$ and KF mixtures, or KMnO₄ and 30% ${\rm H_2O_2}^2$ with aqueous HF produce ${\rm K_2MnF_6}$, however, the yields and product purities are low. Pure alkali metal hexafluoromanganates (IV) were obtained in high yield by the fluorination with ${\rm F_2}$ in a flow system of either ${\rm MnCl_2} + 2{\rm MCl}$ at 375 to $400^{\rm o}{\rm C}$, 3 , 4 ${\rm MnF_3} + 2{\rm KF}$ in a rotating ${\rm Al_2O_3}$ tube at $600^{\rm o}{\rm C}$, or ${\rm MnCl_2} + 2{\rm KCl}$ at $280^{\rm o}{\rm C}$, or by the fluorination of a ${\rm KMnO_4}$ -KCl mixture with ${\rm BrF_3}$. The method described below is based on the fluorination of a stoichiometric mixture of CsF and ${\rm MnCl_2}$ in a static system at $400^{\rm o}{\rm C}$. Hexafluoromanganate (IV) salts have interesting spectroscopic properties, 9 , 10 and ${\rm Cs_2MnF_6}$ is a starting material for the metathetical synthesis of $({\rm NF_4})_2{\rm MnF_6}$.

Procedure

☐ Caution. Safety barricades must be used for carrying out high pressure fluorination reactions. The ClF₅-ClF₃ byproducts are strong oxidizers and contact with fuel, water or reducing agents must be avoided.

^{*}Rocketdyne, A Division of Rockwell International Corp., Canoga Park, CA 91304

Commercially available $MnCl_2$ '4 H_2 0 is dehydrated by heating in a Pyrex flask to 255 °C in vacuo (10^{-4} torr) for 24 hours. Commercially available CsF^{\dagger} is dried by fusion in a platinum crucible and immediately transferred to the drybox.

A mixture of finely ground dry CsF (7.717g, 50.80 mmol) and MnCl $_2$ (3.150g, 25.40 mmol) is placed inside the drybox into a prepassivated (with ClF $_3$) 95mL high pressure Monel cylinder (Hoke Model 4HSM, rated for 5000 psi working pressure) equipped with a Monel valve (Hoke, Model 3212M4M). The cylinder is attached to a metal-Teflon vacuum system, 12 evacuated, and cooled to $^{-196}$ C with liquid N $_2$. Fluorine (262 mmol) is condensed into the cylinder. The cylinder is disconnected from the vacuum line, heated in an oven to 400° C for 36 hours, and then cooled again to $^{-196}$ C on the vacuum line. Unreacted F $_2$ is pumped off at $^{-196}$ C through a fluorine scrubber, 12 and the ClF $_5$ -ClF $_3$ by-products are pumped off during the warm-up of the cylinder towards room temperature. The yellow solid residue (11.045g, 100% yield) is pure Cs $_2$ MnF $_6$. Anal. Calcd. for Cs $_2$ MnF $_6$: Cs, 61.14; Mn, 12.63. Found: Cs, 61.2; Mn, 12.5.

Properties

Cesium hexafluoromanganate (IV) is a stable yellow solid which decomposes only slowly in moist air. The infrared spectrum of the solid as a dry powder pressed between AgCl plates shows the following major absorptions: 62G, vs (antisymmetric stretch); 338 cm⁻¹, s (antisymmetric deformation). The Raman spectrum of the solid shows bands at 590 vs (symmetric in phase stretch), 502 m (symmetric out of phase stretch), and 304 cm⁻¹, s (symmetric deformation). According to ref. 4, Cs_2MnF_6 crystallizes at room temperature in the cubic K_2PtCl_6 system with a = 8.92A.

^{*}Available from Alfa Products, Thiokol/Ventron Divn., P.O. Box 299, 152 Andover Street, Danvers, MA 01923

[†]Available from Kawecki Berylco Industries, Inc., 220 E. 42nd Street, New York, NY 10017

⁵ Available from Air Products and Chemicals Inc., Specialty Gas Dept., Hometown Facility, P.O. Box 351, Tamaqua, PA 18252

References

- 1. R. F. Weinland and G. auenstein, Z. anorg. Chem., 20, 40 (1899).
- 2. H. Bode, H. Jenssen, and F. Bandte, Angew. Chem., <u>65</u>, 304 (1953).
- 3. E. Huss and W. Klemm, Z. anorg. allg. Chem., 262, 25 (1950).
- 4. H. Bode and W. Wendt, Z. anorg. allg. Chem., 269, 165 (1952).
- 5. C. B. Root and R. A. Sutula, Proc. 22nd Ann. Power Sources Conf., U.S. Army Electronics Command, page 100 (1968).
- 6. T. L. Court, Ph.D. Thesis, University of Nottingham, England, 1971.
- 7. A. G. Sharpe and A. A. Woolf, J. Chem. Soc. 798 (1951).
- 8. K. O. Christe, W. W. Wilson, and R. D. Wilson, Inorg. Chem., 19, 3254 (1980).
- 9. C. D. Flint, J. Mol. Spectroscop.. <u>37</u>, 414 (1971).
- 10. S. L. Chodos, A. M. Black, and C. D. Flint, J. Chem. Phys., 65, 4816 (1976).
- 11. K. O. Christe, W. W. Wilson, C. J. Schack, and R. D. Wilson, Inorg. Synthesis,...
- 12. K. O. Christe, R. D. Wilson, and C. J. Schack, Inorg. Synthesis,...

APPENDIX J TUNGSTEN OXIDE TETRAFLUORIDE 2WF₆ + SiO₂ HF 2WOF₄ + SiF₄

Submitted by WILLIAM W. WILSON* and KARL O. CHRISTE*
Checked by

Tungsten oxide tetrafluoride can be prepared by numerous methods, such as the fluorination of WO₃ at 300° C, ¹ slow hydrolysis of WF₆, ² the direct fluorination of W in the presence of O₂ at 300° C, ³ the reaction of WF₆ with WO₃ at 400° C, ⁴ the reaction of WOCl₄ with HF, ^{5,6} or by oxygen-fluorine exchange between WF₆ and B₂O₃. ⁶ The method given below is a modification of the method of Paine and McDowell which uses stoichiometric amounts of SiO₂ and WF₆ in anhydrous HF for the controlled hydrolysis of WF₆. ² In our experience, ⁷ the use of stoichiometric amounts of SiO₂ and WF₆ leads to the formation of some H₃O⁺WOF₅ and H₃O⁺W₂O₂F₉ as by-products which are difficult to separate from WOF₄. This problem can however be avoided by the use of an excess of WF₆. Tungsten oxide tetrafluoride is a starting material for the syntheses of numerous WOF₅ salts.

Procedure

Caution. Anhydrous HF causes severe burns and protective clothing and safety glasses should be worn when working with liquid HF.

Quartz wool[†](1.0482g, 17.445mmol) is placed into a 3/4 inch o.d. Teflon FEP (fluoro-ethylene-propylene copolymer) ampule equipped

^{*} Rocketdyne, A Division of Rockwell International Corp., Canoga Park, CA 91304

Available from Preiser Scientific, 1500 Algonquin Parkway, Louisville, KY 40201

with a Teflon coated magnetic stirring bar and a stainless steel The ampule is connected to a metal-Teflon vacuum system, 8 evacuated, and dry 9 HF * (19g) and WF $_6$ † (22.102g, 74.207 mmol) are condensed into the ampule at -196° C. The contents of the ampule are allowed to warm to room temperature and are kept at this temperature for 15 hours with stirring. All material volatile at room temperature is pumped off (vacuum of 10⁻⁴ torr) for 12 hours leaving behind 9.7226g of a white solid (weight calcd for 34.89 mmol WOF, 9.6244g). This crude product usually still contains some $\rm H_3O^+W_2O_2F_9^-$ (infrared spectrum of the solid pressed as a AgCl disk 3340, 3100, 1625, 1040, 1030, 908 cm $^{-1}$) and can be purified by vacuum (10⁻⁴ torr) sublimation in an ice water cooled Pyrex sublimator at 55°C resulting in 4.245g of sublimate. The purity of the sublimate is verified by vibrational spectroscopy of the solid (infrared spectrum as a AgCl disk: 1054vs, 733s, 666vs, 550vs, cm⁻¹. Raman: 1058(10), 740(1.9), 727(6.3), 704(0+), 668(0+), 661(0.9), 559(0+), 518(0.7), 325sh, 315sh, 311(5), 260(0+), 238(0.7), 212(0.5), 185(0+) cm⁻¹. 10

Anal. Calcd. for WOF_{Δ} : W, 66.65; F, 27.55. Found: W, 66.5; F,27.7.

Properties

Tungsten oxide tetrafluoride is a white hygroscopic solid (mp 104.7 at 33 mbar, bp 185.9° C) which can readily be sublimed. It is soluble in HF, propylene carbonate, CHCl $_3$, and absolute alcohol. The 19 F NMR spectrum in propylere carbonate solution consists of a singlet at 65.2 ppm downfield from external CFCl $_3$ with two satellites with J $_{\rm WF}$ = 69 Hz. 11

^{*}Available from Matheson, P.O. Box 85, 932 Paterson Plank Road, East Rutherford, NJ 07043

[†]Available from Alfa Products, Thiokol/Ventron Divn., P.O. Box 299, 152 Andover Street, Danvers, MA 01923

References

- 1. G. Cady and G. B. Hargreaves, J. Chem. Soc., 1563 (1961).
- 2. R. T. Paine and R. S. McDowell, Inorg. Chem., 13, 2367 (1974).
- 3. H. Meinert, L. Friedrich, and W. Kohl, Z. Chem., 15, 492 (1975).
- 4. F. N. Tebbe and E. L. Muetterties, Inorg. Chem., 7, 172 (1968).
- O. Ruff, F. Eisner, and W. Heller, Z. anorg. allg. Chem., <u>52</u>, 256 (1907).
- R. C. Burns, T. A. O'Donnell, and A. B. Waugh, J. Fluorine Chem., <u>12</u>, 505 (1978).
- 7. W. W. Wilson and K. O. Christe, Inorg. Chem., 20, 4139 (1981).
- 8. K. O. Christe, R. D. Wilson, and C. J. Schack, Inorg. Synthesis,....
- 9. K. O. Christe, W. W. Wilson, C. J. Schack, and R. D. Wilson, Inorg. Synthesis,....
- 10. I. R. Beattie, K. M. S. Livingston, D. J. Reynolds, and G. A. Ozin, J. Chem. Soc. Part A, 1210 (1970).
- R. Bougon, T. Bui Huy, and P. Charpin, Inorg. Chem., <u>14</u>, 1822
 (1975).

APPENDIX K

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304

Coordinatively Saturated Fluoro Cations.

Oxidative Fluorination Reactions with KrF[†] Salts and PtF₆

Karl O. Christe*, William W. Wilson, and Richard D. Wilson Received August 24, 1983

Abstract

The usefulness of KrF+ salts and PtF6 as oxidative fluorinators for the syntheses of the coordinatively saturated complex fluoro cations NF_4^+ , ClF_6^+ , and BrF_6^+ was studied. The syntheses of NF₄SbF₆, NF₄AsF₆, NF₄BF₄, and NF₄TiF₅·nTiF₄ from KrF₂·Lewis acid adducts and NF3 were investigated under different reaction conditions. The fluorination of NF3 by KrF SbF6 in HF solution was found to proceed quantitatively at temperatures as low as -31°C, indicating an ionic two electron oxidation mechanism. An improved synthesis of KrF⁺MF₆ (M=As,Sb), Raman data and solubilities in HF, and the existence of a Kr₂F₃+.nKrF₂BF₄ adduct in HF at -40°C are reported. Attempts to fluorinate OF2, CF3NF2, and ClF40 with KrF salts were unsuccessful. Whereas KrF is capable of oxidizing NF_3 , ClF_5 , and BrF_5 to the corresponding complex fluoro cations, PtF $_6$ was shown to be capable of oxidizing only NF $_3$ and ClF $_5$. Since the yield and purity of the NF $_4$ fluoroplatinate salts obtained in this manner was low, NF₄PtF₆ was also prepared from NF₃, F₂ and PtF6 at elevated temperature and pressure. General aspects of the formation mechanisms of coordinatively saturated complex fluorocations are discussed briefly.

Introduction

The preparation of coordinatively saturated complex fluoro cations presents a great challenge to the synthetic chemist. The

nonexistence of the corresponding parent molecules preempts the normally facile cation formation by a simple F^- abstraction from a parent molecule, and an F^+ addition to a lower fluoride is ruled out by the fact that fluorine is the most electronegative element and therefore F^+ cannot be generated by chemical means. In view of these difficulties it is not surprising that at the present time only three coordinatively saturated fluoro cations, $NF_4^{+,2,3}$ $ClF_6^{+,4,5}$ and $BrF_6^{+,6}$ are known to exist. In addition to their challenge to the synthetic chemist, the formation mechanism of these cations represents an intriguing and yet unsolved puzzle.

These problems were complicated by the facts that each of the three known coordinatively saturated fluoro cations had been prepared by a different method, 2-6 and that these methods could not readily be transferred from one cation to another. The purpose of this study was to examine whether the synthesis of each coordinatively saturated fluoro cation is indeed limited to a specific method and whether these methods possess any commonalties.

Experimental

Apparatus. Volatile materials used in this work were handled in a stainless steel-Teflon FEP vacuum line. The line and other hardware used were well passivated with ClF₃ and, if HF was to be used, with HF. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glovebox. Metathetical reactions and solubility measurements were carried out in HF solution using an apparatus consisting of two FEP U-traps interconnected through a coupling containing a porous Teflon filter. 8

Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl windows

in an Econo press (Barnes Engineering Company). Spectra of gases were obtained by using a Teflon cell of 5 cm path length equipped with AgCl windows.

Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-A exciting line of an Ar-ion laser and Claassen filter for the elimination of plasma lines. Sealed glass, Teflon FEP, or Kel-F tubes were used as sample containers in the transverse-viewing transverse-excitation mode. Lines due to the Teflon or Kel-F sample tubes were suppressed by the use of a metal mask.

Materials. Literature methods were used for the preparation of PtF_6 , 10 KrF₂, 11 CF₃NF₂, 12 ClF₃0, 13 ClF₅, 14 and FNO¹⁵ and for the drying of HF. Nitrogen trifluoride (Rocketdyne), F₂ (Air Products), OF₂ (Allied Chemical), BrF₅ and BF₃ (Matheson), and AsF₅, SbF₅ and TiF₄ (Ozark Mahoning) were commercially available. Their purity was checked by vibrational spectroscopy prior to use, and where necessary, improved by fractional condensation or distillation.

Preparation of KrFSbF₆. Antimony pentafluoride (21.7 mmol) was syringed in the drybox into a prepassivated Teflon-FEP U-tube equipped with two stainless steel valves. The tube was connected to the vacuum line and dry HF (5 ml of liquid) was distilled into the tube. The HF and SbF₅ were allowed to homogenize at ambient temperature, and a preweighed amount of KrF₂ (22.9 mmol) was transferred in a dynamic vacuum into the U-tube at -196°C. The mixture was warmed towards room temperature until a slight effervescence was noted. At this point the tube was cooled again, and the warm up procedure was repeated. After a total of three warm up cycles, all volatile material was pumped off at -22°C leaving behind pure KrFSbF₆ (21.5 mmol = 99% yield based on SbF₅).

 ${\rm KrFAsF}_6$ was prepared in an analogous manner, except for loading the ${\rm AsF}_5$ into the tube on the vacuum line.

Reaction of NF₃ with KrF₂ and AsF₅. A prepassivated (with ClF₃) 10 ml stainless steel Hoke cylinder equipped with a 1/8" Whitey stainless steel valve was loaded on the vacuum line at -196° C with KrF₂ (6.15 mmol), AsF₅ (3.07 mmol) and NF₃ (21.9 mmol). The cylinder was placed in a liquid N₂-dry ice slush bath and allowed to warm slowly to room temperature over a 30 hr time period and then was kept in an oven at 53° C for 4 days. The cylinder was cooled to -210° C (N₂ slush bath, prepared by pumping on liquid N₂) and the volatile products were separated during warm up of the cylinder by fractional condensation through traps kept at -156° C (nothing) and -210° C (24.9 mmol of NF₃ and Kr). The white solid residue (827.6 mg = 2.97 mmol) was identified by infrared and Raman spectroscopy as pure NF₄AsF₆¹⁷ (96.7% yield based on AsF₅).

Reaction of NF₃ with KrF₂ and BF₃. The reaction was carried out as described above for the corresponding AsF_5 system, except for a 40% reduction in the amount of starting materials used. The yield of solid NF₄BF₄ was 30.6% based on BF₃.

Reaction of Solid KrFSbF₆ with NF₃. KrFSbF₆ (2.42 mmol) was added in the drybox to a prepassivated Teflon PFA U-tube (59 ml volume) equipped with Teflon PFA valve(s). The tube was connected to the vacuum line and NF₃ (2.43 mmol) was added at -196° C. After 3 hr at 22°C, the volatile products were removed. Analyses of the volatile material and of the solid residue showed that 12.7 percent of the KrFSbF₆ had been converted to an NF₄ salt.

When the reaction was repeated with 2.32 mmol of KrFSbF $_6$ and 6.84 mmol of NF $_3$ at 30°C for 3.5 hr, the conversion of KrFSbF $_6$ to NF $_4$

salts was 43.8 percent. An additional treatment of the solid mixture of NF $_4$ salts and unreacted KrFSbF $_6$ with more NF $_3$ for 4 hr at 30°C resulted in little further conversion to NF $_4$ salts. Vibrational spectra of the white solid product showed the presence of the NF $_4$, KrF $_4$, SbF $_6$, and Sb $_2$ F $_{11}$, ions.

Reactions of KrFSbF, with NF, in HF Solution. General procedure: KrFSbF₆ (~3 mmol) was weighed in the drybox into a prepassivated 0.5 in o.d. Teflon PFA U-tube (58 ml volume) equipped with two Teflon PFA valves. The tube was connected to the vacuum line, and anhydrous HF (1.25g) and NF₃ were added at -196°C. contents of the tube were warmed for a specified time period to the desired reaction temperature. The reaction was stopped by quickly pumping off the NF3, followed by removal of the HF solvent. The material balances were obtained by separating the volatile products via fractional condensation through traps kept at -126° and -210°C, PVT measurements and infrared analysis of each fraction, and by the weight change of the solid phase and its Raman and infrared spectra which were compared against mixtures of known composition. When stoichiometric amounts of KrFSbF6 and NF3 were used, the NF3 was condensed into the U-tube and the valves were closed. When a large excess of NF3 was used, the NF3 pressure was kept constant at 1000 mm by the use of a large ballast volume and a pressure regulator. The results of these reactions are summarized in Table 1.

Reaction of PtF₆ with NF₃ in HF. A prepassivated Teflon FEP U-trap (119 ml volume) was loaded at -196° C with HF (5 ml liquid) and equimolar amounts (4.88 mmol each) of PtF₆, NF₃ and F₂. The contents of the trap were kept at 25°C for 14 hr. All volatile material was pumped off at 25°C leaving behind 828 mg of a dark

red tacky solid which based on its infrared spectrum was an NF $_4$ salt (1158 cm $^{-1}$,vs,v $_3$ (F $_2$)) of PtF $_6$ and/or a fluoroplatinate polyanion (665vs,625s,560vs). Attempts were unsuccessful to purify the sample by extraction with anhydrous HF.

<u>UV-Photolysis of NF₃-PtF₆</u>. A prepassivated 0.5 in o.d. sapphire reactor (26 ml volume) was loaded at -196°C with PtF₆ (1.22 mmol) and NF₃ (1.31 mmol). The mixture was irradiated for 2 days at ambient temperature with a Hanovia Model 616A high-pressure quartz mercury vapor arc lamp. All volatile material was pumped off at 25°C, leaving behind a red-brown solid (116 mg) which based on its infrared spectrum contained the NF₄ cation (2000w, $v_1 + v_3$ (F₂); 1218mw, $2v_4$ (A₁+E+F₂); 1159vs, v_3 (F₂); 607m, v_4 (F₂)) and a fluoroplatinate polyanion (690vs; 659vs; 63vs; 535vs,br).

Synthesis of NF₄PtF₆. Into a prepassivated Monel cylinder (100 ml volume) PtF₆ (2.22 mmol), NF₃ (211.8 mmol), and F₂ (216.7 mmol) were loaded at -196°C. The cylinder was heated to 125°C for 7 days, followed by removal of all material volatile at 25°C. The residue consisted of 802 mg of a dark red solid (weight calcd for 2.22 mmol of NF₄PtF₆ = 884 mg) which based on its infrared and Raman spectra consisted mainly of NF₄PtF₆. IS,17,20 IR: NF₄, 2305vw,2v₃; 1995w,v₁+v₃; 1758vw,v₃+v₄; 1452w,v₁+v₄; 1220mw,2v₄; 1180sh,1158vs,1145sh,v₃; 1049w,v₂+v₄; 606m,v₄; PtF₆ ,1320,1300, 1280w,v₁+v₃; 1220v₂+v₃; 675sh,650vs,625sh,v₃; 570s,tr,v₂; Ra: NF₄ ,850mw,v₁; PtF₆ ,641vs,v₁; 580mw,v₂; 239m,v₅; 194w,v₆.

Reaction of PtF₆ with ClF₅ in HF. A prepassivated 0.75 in o.d. Teflon FEP ampule (49 ml volume) was loaded at -196° C with PtF₆ (2.10 mmol), HF (2 ml liquid), and ClF₅ (4.20 mmol). The mixture was allowed to slowly warm to ambient temperature in an empty

cold dewar. After keeping the ampule for 2 days at ambient temperature, the brown PtF_6 color had disappeared. The volatile material was removed in vacuo at room temperature and separated by fractional condensation. It consisted of the HF solvent and ClF_5 (2.1 mmol). The orange-yellow solid residue (0.9lg) was shown by infrared and Raman spectroscopy to be an about equimolar mixture of ClF_4PtF_6 and $ClF_6PtF_6^{15}$ (weight calcd for a mixture of 1.05 mmol ClF_4PtF_6 and 1.05 mmol $ClF_6PtF_6 = 0.923g$).

When the reaction was repeated under the same conditions, except for using BrF_5 in place of ClF_5 , no evidence for the formation of a stable BrF_6^+ salt was obtained.

Results

Syntheses and Some Properties of KrF_2 -Lewis Acid Adducts. Although the synthesis of $\mathrm{KrF}^+\mathrm{MF}_6^-$ (M=As,Sb) salts is well known, 6,18,21,22 the reported direct combination of KrF_2 with the Lewis acids can result in a spontaneous exothermic decomposition of KrF_2 accompanied by a bright flash and gas evolution. In this study this problem was avoided by dissolving the Lewis acid in a large excess of anhydrous HF, before adding a stoichiometric amount of KrF_2 . This procedure resulted in an easily controllable, scalable and quantitative synthesis of the desired KrF_2 -Lewis acid adducts.

Since the Raman spectra of solid KrF $^+$ MF $_6^-$ salts show many more bands than expected for an isolated diatomic cation and an octahedral anion, 18 we have recorded the Raman spectrum of KrF $^+$ SbF $_6^-$ in HF solution at $^{-5}$ C. The total number of bands was reduced to four, as expected for a diatomic KrF $^+$ (610 cm $^-$ 1) and octahedral SbF $_6^-$ (1 2 1 4 1 3 1 2 1 576, 1 4 2 5 1 576, 1 5 1 576, 1 576, 1 576, 1 776, 1 786, 1 787788 are indeed due to

solid state effects. The solubility of $\mathrm{KrF}^+\mathrm{SbF}_6^-$ in anhydrous HF at $-31^{\circ}\mathrm{C}$ was also measured as 43.9 mg/g HF by the use of a previously described method 16.

Since mixtures of KrF_2 and BF_3 in anhydrous HF are capable of oxidizing NF_3 to NF_4^{+2} (see below), it was interesting to establish whether BF3 forms an adduct with KrF2 under these conditions. Raman spectra of an equimolar mixture of KrF2 and BF₃ in anhydrous HF at -40° C showed bands (597(10), 561(2), 462(7.5), 334(1), 179(1.7)) characteristic for $Kr_2F_3^+ \cdot xKrF_2^{18}$ and a weak band at 879 cm⁻¹ due to $v_1(A_1,)$ of $BF_3.23$ The bands expected for BF, were difficult to observe under the given conditions due to their low relative intensity and the low signal to noise ratio. Removal of volatile material in a dynamic vacuum at -78°C resulted in a white solid residue which, based on its Raman spectrum (461 cm⁻¹) at -110°C, consisted of KrF₂. 24 These results clearly show that KrF₂ does not form a stable solid adduct with BF3 at temperatures as low as -78°C, but that in HF solution, even at temperatures as high as -40°C, ionization to $[Kr_2F_3^+ \cdot xKrF_2][BF_4^-]$ occurs. The observation of free BF3 is readily accounted for by the formation of krypton fluoride polycations which leaves most of the BF, uncomplexed. Whether any free KrF2 is also present in the HF solution is difficult to say because the KrF_2 band coincides with the 462 cm⁻¹ band of $Kr_2F_3^+ \cdot xKrF_2$.

Fluorination Reactions with KrF^+ Salts. The oxidative fluorination of NF_3 to NF_4^+ by KrF^+ salts was first discovered by Artyukhov and Khoroshev and independently rediscovered in our laboratory. In our study, mixtures of NF_3 , KrF_2 and either AsF_5 or BF_3 in mole ratios of 7:2:1 were allowed to warm in stainless steel cylinders from -196 to $50^{\circ}\mathrm{C}$ under autogenous pressures of about 75 atm. In two

days NF_4AsF_6 and NF_4BF_4 had formed in 97 and 30% yield, respectively, based on the limiting reagents AsF_5 and BF_3 , in agreement with the following equations

$$NF_3 + KrF_2 + AsF_5 \longrightarrow NF_4AsF_6 + Kr$$
 $NF_3 + KrF_2 + BF_3 \longrightarrow NF_4BF_4 + Kr$

and

In the Russian study the reactions were carried out at room temperature with either solid $\mathrm{Krf}^+\mathrm{SbF}_6^-$ and one atm of NF_3 , or in HF solution with stoichiometric amounts of KrF_2 , NF_3^- and the following Lewis acids, SbF_5 , NbF_5 , PF_5 , TiF_4^- or BF_3^- at total pressures of 3-4 atm and with reaction times of 1-3 hr. Based on elemental analyses and vibrational spectra their products were assigned to NF_4^+ salts of SbF_6^- , NbF_6^- , PF_6^- , $\mathrm{TiF}_6^{-2}^-$ and BF_4^- , respectively. We have repeated some of these reactions in our laboratory because for $(\mathrm{NF}_4)_2\mathrm{TiF}_6^-$ and $\mathrm{NF}_4\mathrm{SbF}_6^-$ the reported vibrational spectra were those of polyanions, 17,19,26 and no yields and concentration or temperature dependences were given which would help to shed some light on the possible mechanism of these reactions.

Our results for the reaction of solid KrFSbF $_6$ with NF $_3$ showed that indeed the NF $_4$ cation is formed, but that under the reported conditions the reaction is incomplete and that the NF $_4$ salt is mainly NF $_4$ Sb $_2$ F $_{11}$ and not NF $_4$ SbF $_6$.

When the reaction of ${\rm KrF_2-SbF_5}$ mixtures or of preformed ${\rm KrFSbF_6}$ with stoichiometric amounts of ${\rm NF_3}$ was carried out, as previously reported, 25 in HF solution at ambient temperature, the reaction was complete in less than three hours. However, contrary to the previously reported elemental analysis but in agreement with the listed vibrational spectra, 25 the solid product consisted mainly of ${\rm NF_4Sb_2F_{11}}$ (90 %) and not ${\rm NF_4Sb_5}$. The formation of mainly ${\rm NF_4Sb_2F_{11}}$ suggests that under these conditions the oxidation of

NF $_3$ by KrFSbF $_6$ is not quantitative and that some KrFSbF $_6$ decomposes to Kr, F $_2$ and SbF $_5$ with the latter combining with NF $_4$ SbF $_6$ to form NF $_4$ Sb $_2$ F $_{11}$. By lowering the reaction temperature, we succeeded in completely suppressing the formation of NF $_4$ Sb $_2$ F $_{11}$, and NF $_4$ SbF $_6$ was obtained as the only product, contaminated by large amounts of unreacted KrFSbF $_6$. However a quantitative oxidation of NF $_3$ by KrFSbF $_6$ according to

$$NF_3 + KrFSbF_6 \longrightarrow NF_4SbF_6 + Kr$$

was accomplished by the use of a sufficient excess of ${\rm NF_3}$. Since the concentration of ${\rm NF_3}$ in the HF solution is proportional to the ${\rm NF_3}$ pressure above the solution, 27 the excess of ${\rm NF_3}$ required for a complete reaction can be minimized by using a small ullage in the reactor. This results in a high ${\rm NF_3}$ pressure and consequently in a high concentration of ${\rm NF_3}$ in the HF solution. The results of a series of runs are summarized in Table 1 and demonstrate that, for example at -31°C in HF solution at an ${\rm NF_3}$ pressure of 1000 mm, ${\rm NF_3}$ can quantitatively be oxidized by ${\rm KrFSbF_6}$ to ${\rm NF_4SbF_6}$ in less than one hour.

In the absence of yield data in the previous report, 25 it was of interest to examine whether NF₄BF₄ can also be formed quantitatively under similar conditions. We found that an equimolar mixture of KrF₂, NF₃ and BF₃ in anhydrous HF, when allowed to warm slowly from -196 to 25°C and kept at 25°C for 3 hr, resulted in only a 28.1% yield of pure NF₄BF₄. When the reaction was carried out at -78°C for 3 hr, the yield of NF₄BF₄ (7.1%) was, contrary to the NF₃-KrFSbF₆ system, still appreciable. Without the use of HF as a solvent and at ambient pressure, no detectable amounts of NF₄BF₄ were obtained after 3 hr at 25°C. However, as stated above, the use of a sevenfold excess of NF₃ at 45 atm pressure and gentle

Oxidative Fluorination of NF3 to NF4SbF6 by KrFSbF6 in HF Solution Table 1.

Charles and the second second

Product Composition (%)	$NF_4Sb_2F_{11}(91), NF_4SbF_6(9)$	$NF_{4}SEF_{6}(37)$, $KrFSbF_{6}(63)$	$NF_{f 4}SbF_{f 6}$ (100)	$\mathrm{NF}_4\mathrm{SbF}_6$ (23), KrfSbF $_6$ (77)	KrFSbF ₆ (100)	
Conversion of KrFSbF ₆ (%)	100	37	100	23	0	
Reaction time [hr]	3	33	1	e.	٣	
Ratio of Start. Mat. KrFSbF ₆ :NF ₃	1:1	1:1	large excess of NF ₃ $P_{NF_3} = 1000 \text{ mm}$	1:1	1:1	
Reaction Temperature [^O C]	25	-31	-31	-45	K-1	

heating to 53°C for 4 days resulted in a 31% yield of NF₄BF₄.

In view of the known tendency of ${\rm TiF_4}$ to form polyanion salts with ${\rm (NF_4)_2TiF_6}^{26}$ and the fact that the vibrational bands attributed in the Russian study 5 to ${\rm TiF_6}^{2-}$ resemble those of a polyanion, 26 we have also repeated the reaction of ${\rm NF_3}$ with ${\rm KrF_2}$ and ${\rm TiF_4}$ in the same 2:2:1 mole ratio in HF solution at room temperature for 3 hr. Based on the observed material balance, our solid product had the average composition ${\rm NF_4TiF_5} \cdot 2.25{\rm TiF_4}$. The presence of only polytitanate anions and of no ${\rm TiF_6}^{2-}$ was confirmed by vibrational spectroscopy (strongest Raman bands at 795 and 755 cm⁻¹). Based on our above results for ${\rm NF_4SbF_6}$, it appears safe to predict that the use of a large excess of ${\rm NF_3}$ and particularly of an increase in the ${\rm NF_3}$ pressure and concentration should also decrease the extent of polyanion formation in the ${\rm NF_3-KrF_2-TiF_4}$ system.

Attempts to prepare the unknown $0F_3^+AsF_6^-$ and $0F_3^+SoF_6^+$ salts by the above methods (reaction of $0F_2$ with KrFMF6 in either HF solution at temperatures as low as $-31^{\circ}C$ or neat in a nickel cylinder under 25 atm of $0F_2$ pressure) produced no evidence for the existence of these salts.

We have also attempted to oxidatively fluorinate $\mathrm{CF_3NF_2}$ with KrF^+ salts to $\mathrm{CF_3NF_3}^+$ salts. A mixture of $\mathrm{KrF_2}$, $\mathrm{AsF_5}$ and $\mathrm{CF_3NF_2}$ in a mol ratio of 1.86:1:5.62, when slowly warmed in a nickel reactor from -196 to 50°C produced NF₃ and CF₄ as the main products, with the excess of $\mathrm{CF_3NF_2}$ being decomposed to give $\mathrm{CF_4}$ and $\mathrm{cis-}$ and $\mathrm{trans-}$ $\mathrm{N_2F_2}$. The $\mathrm{cis-}$ $\mathrm{N_2F_2}$ reacted with $\mathrm{AsF_5}$ to form solid $\mathrm{N_2F}^+\mathrm{AsF_6}^-$.28 Attempts to moderate this reaction

by using preformed ${\rm KrFSbF}_6$ and ${\rm HF}$ as a solvent resulted again in an oxidative fluorination of the C-N bond with ${\rm CF}_4$, and ${\rm NF}_3$ and some trans- ${\rm N_2F_2}$ as the main products. However in this case the white solid product consisted mainly of ${\rm NF_4SbF_6}$ ${\rm xSbF_5}$.

An attempt was also made to oxidize the ${\rm ClF_4O}^-$ anion 29,30 with preformed ${\rm KrFSbF_6}$ in anhydrous HF solution at -78 $^{\rm o}$ C. The following reaction was observed.

$$KrFSbF_6 + CsClF_4O + HF \longrightarrow CsSbF_6 + Kr + F_2 + ClF_2O^+HF_2^-$$

This result is not surprising since CsClF₄O was shown to readily undergo solvolysis in HF,

$$CsC1F_4O + 2HF \longrightarrow CsHF_2 + C1F_2O^+HF_2^-$$

and because the ${\rm ClF_2O}^+$ cation is difficult to oxidize. ¹⁵ Reaction of solid ${\rm KrFSbF_6}$ with ${\rm CsClF_4O}$ and of liquid ${\rm ClF_3O}$ with ${\rm KrF_2}$ also did not result in oxidation of the ${\rm ClF_4O}^-$ anion.

Fluorination Reactions with PtF₆. Since gaseous PtF₆ does not react with gaseous NF₃ at ambient temperature to any significant extent, 20 we have studied this reaction in HF solution without irradiation and in the gas phase under the influence of unfiltered uv-irradiation. In both cases, the vibrational spectra of the so'id reaction products demonstrated the formation of some NF₄⁺ salts. The anions in these salts were not very well defined due to the simultaneous formation of PtF₅ and possibly lower platinum fluorides and their interaction with PtF₆⁻ to form polyanions. Attempts to purify the products by extraction with anhydrous HF were unsuccessful.

To obtain a better defined sample of an NF_4^+ fluoroplatinate salt for comparison, we have prepared NF_4PtF_6 by a known, but unpublished

method. Using a large excess of F_2 and NF_3 and carrying out the reaction at 125° C under an autogenous pressure of about 140 atm, NF_4 PtF₆ was obtained in high yield according to

$$2NF_3 + F_2 + 2PtF_6 \longrightarrow 2NF_4PtF_6$$

The NF₄PtF₆ salt is a stable solid which shows spectra characteristic for tetrahedral NF₄ $^{+17}$ and octahedral PtF₆ $^{-15}$.

It was shown that the known oxidative fluorination of ${\rm ClF}_5$ to ${\rm ClF}_6^+$ with ${\rm PtF}_6^{4,5,15}$ can also be carried out at room temperature in HF solution without requiring uv-irrediation.

$$2C1F_5 + 2PtF_6 - \frac{HF}{25^{\circ}C} - C1F_4^{+}PtF_6^{-} + C1F_6^{+}PtF_6^{-}$$

However, attempts to prepare $\mathrm{BrF}_6^{\ +}\mathrm{PtF}_6^{\ -}$ in an analogous manner from BrF_5 and PtF_6 were unsuccessful.

Discussion

Syntheses of Coordinatively Saturated Fluoro Cations. At present, only three coordinatively saturated fluoro cations, i.e. NF_4^+ , ClF_6^+ and BrF_6^+ are known to exist. They can be prepared from the corresponding lower fluorides by one or more of the following three methods: (1) oxidation by KrF^+ salts; (2) oxidation by PtF_6 ; and (3) oxidation by F_2 in the presence of a strong Lewis acid and an activation energy source.

One of the goals of this study was to examine the scope of these methods. A priori one would expect that the ease of preparing a

given coordinatively saturated fluoro cation should increase with increasing oxidizing power of the fluorinating agent and with decreasing oxidation potential of the desired coordinatively saturated fluoro cation. Although the oxidation potentials of the three coordinatively saturated fluoro cations are unknown, a comparison with those of either the isoelectronic fluorides CF_4 , SF_6 and SeF_6 or the corresponding oxo anions in the same oxidation states, i.e. NO_3^- , ClO_4^- and BrO_4^- , suggests that the oxidation potentials should increase in the following order NF_4^+ ClF_6^+ BrF_6^+ . As far as the order of oxidizing power of KrF^+ , PtF_6^- and F_2 -Lewis acid combinations is concerned, Sokolov et al. have shown that KrF^+ can oxidize PtF_6^- to PtF_6^- , and PtF_6^- , are expected to be stronger oxidizers than mixtures of F_2 with Lewis acids. Therefore, the oxidizer strength should increase in order: F_2 -Lewis acid $< PtF_6^ < KrF^+$.

The results of this study are in accord with these predictions. Thus, KrF⁺, the most powerful oxidizer, is capable of oxidizing all three substrates, NF3, ClF5 and BrF5. The second strongest oxidizer, PtF₆, can still fluorinate NF₃ and ClF₅, whereas the weakest oxidizer, the Lewis acid-F2 mixtures, can oxidize only NF3. These results show that the preparative methods are transferrable from one coordinatively saturated fluoro cation to another, provided that the oxidant is powerful enough to oxidize the substrate. Obviously, secondary effects, such as the possibility of high activation energy barriers and competitive side reactions might also be important. For example, the activation energy sources used in the F2-Lewis acid method can cause breakdown of ClF5 and BrF5 to F2 and lower fluorides with the latter being continuously removed from the equilibrium by rapid complexing with the Lewis acid. For NF3, such a side reaction is not effective, and the F2-Lewis acid method is therefore well suited for the preparation of NFA salts.

Formation Mechanisms of Coordinatively Saturated Fluoro Cations. Previous reports have been concerned almost exclusively with the formation and decomposition mechanisms of ${\rm NF_4}^+$ salts, and several different mechanisms have been proposed. These include the heterolytic fission of fluorine, 2,32

$$NF_3 + F - F + AsF_5 \xrightarrow{\Delta E} NF_4 + AsF_6$$
 (1)

the dissociation of NF_4AsF_6 to yield unstable NF_5 , 33

$$NF_4 As F_6 = [NF_5] + As F_5$$

$$[NF_5] = NF_3 + F_2$$

$$(11)$$

the formation of an intermediate strongly oxidizing Lewis acid. F radical, 34

$$F_{2} = 2F$$

$$\dot{F} + AsF_{5} = AsF_{6}$$

$$\dot{AsF}_{6} + NF_{3} = NF_{3}^{+}AsF_{6}^{-}$$

$$\dot{NF}_{3}^{+}AsF_{6}^{-} + \dot{F} = NF_{4}^{+}AsF_{6}^{-}$$

$$(111)$$

the formation of an intermediate NF₄ radical, ⁷

$$F_{2} = 2F$$

$$\dot{F} + NF_{3} = NF_{4}$$

$$\dot{N}F_{4} + AsF_{5} = NF_{3}^{\dagger} AsF_{6}^{\dagger}$$

$$\dot{N}F_{3}^{\dagger} AsF_{6}^{\dagger} + \dot{F} = NF_{4}^{\dagger} AsF_{6}^{\dagger}$$

and the absorption and ionization of NF₃ on a $\mathrm{KrF}^+\mathrm{MF}_6^-$ surface. ²⁵

$$NF_3 + KrF^+SbF_6^- \longrightarrow (F_3^{\delta+} \cdot \cdot \cdot \cdot \cdot \cdot \cdot Kr)^+SbF_6^- \longrightarrow NF_4^+SbF_6^- + Kr$$
 (V)

For the formation of ${\rm NF_4}^+$ salts from ${\rm NF_3}$, ${\rm F_2}$ and Lewis acids, the importance of the ${\rm F_2}$ dissociation step and of ${\rm NF_3}^+$ formation has previously been experimentally confirmed, ${\rm ^{34,35}}$ thus rendering mechanisms (III) and IV) most likely. Of these two mechanisms (IV) has previously been preferred by us because the formation and decomposition of ${\rm NF_4}^+$ salts were assumed to follow the same mechanism and the decomposition of ${\rm NF_4AsF_6}$ is suppressed more strongly by ${\rm AsF_5}$ than by ${\rm NF_3}$. However recent ab initio molecular orbital calculations ${\rm ^{36}}$ have provided evidence for ${\rm NF_4}$ being energetically unfavorable, and the formation and decomposition of ${\rm NF_4}^+$ salts do not necessarily proceed by the same mechanism. These considerations prompted us to reconsider our previous preference.

The results of the present study confirm that ${\rm NF_4}^+$ salts can be formed from ${\rm NF_3}$ and either ${\rm F_2}$ -Lewis acid mixtures, ${\rm KrF}^+$ salts or ${\rm PtF_6}$. Furthermore, the fact that the reaction of ${\rm KrF}^+$ with ${\rm NF_3}$ proceeds not only quantitatively, but also at temperatures (-31 to -45°C) at which ${\rm KrF}^+{\rm SbF_6}^-$ is completely stable, rules out a free radical mechanism based on the decomposition of ${\rm KrF_2}$ to ${\rm Kr}$ and ${\rm F}$ atoms and supports an ionic mechanism for the ${\rm KrF}^+{\rm -NF_3}$ reaction. In such an ionic mechanism, ${\rm NF_3}$ is oxidized either to an intermediate ${\rm NF_3}^+$ radical cation or directly to ${\rm NF_4}^+$. In view of the quantitative yields of ${\rm NF_4}^+$ salts and our failure to obtain evidence for an intermediate ${\rm NF_3}^+$ radical cation in these ${\rm KrF}^+$ reactions by ESR spectroscopy, the direct fluorination to ${\rm NF_4}^+$ is preferred. One can easily envision an intermediate activated complex between the electrophilic ${\rm KrF}^+$ cation and the, albeit weak, electron donor ${\rm NF_3}$ which could readily decompose to ${\rm NF_4}^+$ with ${\rm Kr}$ elimination.

For the reactions of NF $_3$ with F $_2$ -Lewis acid mixtures the requirement for an activation energy source capable of dissociating F $_2$, the ESR evidence for the intermediate formation of the NF $_3$ ⁺ radical cation, so and the unlikely formation of an NF $_4$ radical favor the free radical mechanism III. For the thermal decomposition of NF $_4$ ⁺ salts which are derived from stable Lewis acids, mechanism II is preferred because it best explains the observed strong rate suppression by the Lewis acids.

Even in the absence of experimental data it appears rather safe to propose for the PtF_6 oxidation reactions a one electron transfer leading to NF_3 $^+PtF_6$ as an intermediate which is then further fluorinated by a second PtF_6 molecule to NF_4 . Such a mechanism is in accord with the rather low yields of NF_4 salts obtained for the NF_3 - PtF_6 system, and has previously also been proposed for the ClF_5 - PtF_6 system.

Considering all the experimental evidence presently available for the formation mechanisms of coordinatively saturated complex fluoro cations, it appears that all reactions exhibit a certain commonality. The crucial step in all systems appears to be the reaction of a powerful one electron (PtF₆ or Lewis acid·F) or two electron (KrF⁺) oxidizer with the substrate (NF₃, ClF₅, or BrF₅) resulting in an electron transfer from the substrate to the oxidant, with a simultaneous (in the case of KrF⁺) or subsequent (in the case of PtF₆ and Lewis acid·F) fluorination of the intermediate radical cation (NF₃⁺, ClF₅⁺, BrF₅⁺) to give the final product (NF₄⁺, ClF₆⁺, BrF₆⁺). Thus, the mechanisms of the three presently known methods for the syntheses of NF₄⁺ salts might be written in the following manner.

Lewis acid -F2 system:

$$F_{2} \xrightarrow{\Delta E} 2\dot{F}$$
 $\dot{F} + AsF_{5} \xrightarrow{\dot{A}sF_{6}} \dot{AsF_{6}} + NF_{3} \xrightarrow{\dot{N}F_{3}} \dot{AsF_{6}} - NF_{3}^{\dot{+}AsF_{6}} - NF_{4}^{\dot{+}AsF_{6}} - NF_{4}^{\dot{+}AsF_{6}} + \dot{F} \text{ (or } \dot{AsF_{6}}) \xrightarrow{\dot{N}F_{3}} \dot{AsF_{6}} - NF_{4}^{\dot{+}AsF_{6}} - NF_{3}^{\dot{+}PtF_{6}} - NF_{4}^{\dot{+}PtF_{6}} - NF_{4}^{\dot{$

and KrF system:

$$NF_3 + KrF^+SbF_6^- \longrightarrow [KrF \cdots NF_3]^+SbF_6^-$$

$$[KrF \cdots NF_3]^+SbF_6^- \longrightarrow NF_4^+SbF_6^- + Kr$$

As can be seen from these equations, an ionic oxidant (KrF⁺) results in an ionic mechanism and a radical oxidant (LAF or PtF₆) in a radical mechanism.

If in the Lewis acid $-F_2$ reactions the hard base NF $_3$ is replaced by a soft base, such as Xe, the reaction can proceed even in the absence of an activation energy source, as was demonstrated by Stein for the Xe-F $_2$ -SbF $_5$ system. ³⁷ Although XeF $^+$ is not a coordinatively saturated cation, this reaction is most interesting. Contrary to the NF $_3$ -F $_2$ -Lewis acid reactions, it probably proceeds as a two electron oxidation reaction by F $_2$ and therefore might be

considered as the only presently known example of an actual heterolytic fission of fluorine by a Lewis acid and a Lewis base. 32

$$Xe \cdot \cdot \cdot F - F \cdot \cdot \cdot SbF_5 \longrightarrow XeF + SbF_6$$

The lower activation energy required for fluorinating Xe, compared to NF₃, is attributed mainly to its increased polarizability, i.e. it is a softer base, and to a lesser degree to the difference in their ionization potentials (IP_{NF3} = 13.0, IP_{Xe} = 12.13eV), because the hard base 0_2 has an even lower IP of 12.06eV, but does not react with fluorine and a Lewis acid in the absence of an activation energy source.

Conclusion. Although the present study has provided us with more insight into the formation reactions of coordinatively saturated complex fluoro cations, and particularly into those involving the use of KrF[†] salts as an oxidant, there is a definite need for more experimental and theoretical work in this field to further establish the mechanisms of these interesting reactions.

Acknowledgement. We are indebted to Drs. C. J. Schack and L. R. Grant for helpful discussions, to Drs. I. B. Goldberg and T. McKinney for ESR measurements, and to the Army Research Office and the Office of Naval Research for financial support of this work.

References

- (1) Christe, K. O.; Wilson, W. V; Curtis, E. C. <u>Inorg. Chem.</u> 1983, <u>22</u>, 3056.
- (2) Christe, K. O.; Guertin, J. P.; Pavlath, A. E. <u>Inorg. Nucl.</u> Chem. Lett. 1966, 2, 83.
- (3) Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg. Nucl. Chem. Lett. 1966, 2, 79.
- (4) Roberto, F. Q. <u>Inorg. Nucl. Chem. Lett.</u> 1972, <u>8</u>, 737.
- (5) Christe, K. O. <u>Inorg. Nucl. Chem. Lett.</u> 1972, 8, 741.
- (6) Gillespie, R. J.; Schrobilgen, G. J. <u>J.C.S. Chem. Comm.</u> 1974, 90; <u>Inorg. Chem.</u> 1974, <u>13</u>, 1230.
- (7) Christe, K. O.; Wilson, R. D.; Goldberg, I. B. <u>Inorg. Chem.</u> 1979, <u>18</u>, 2572, and references cited therein.
- (8) Christe, K. O.; Schack, C. J.; Wilson, R. D. <u>Inorg. Chem.</u> 1977, <u>16</u>, 849.
- (9) Claassen, H. H.; Selig, H.; Shamir, J. <u>J. Appl. Spectroscop.</u> 1969, 23, 8.
- (10) Weinstock, B.; Claassen, H. H.; Malm, J. G. <u>J. Amer. Chem.</u>
 <u>Soc.</u> 1957, <u>79</u>, 5832; Weinstock, B.; Malm, J. G.; Weaver, E. E. ibid. 1961, <u>83</u>, 4310.
- (11) Christe, K. O.; Wilson, R. D. <u>Inorg. Chem.</u> 1975, 14, 694.
- (12) Schack, C. J. <u>J. Fluorine Chem.</u> 1981, <u>18</u>, 583.
- (13) Pilipovich, D.; Lindahl, C. B.; Schack, C. J.; Wilson, R. D.; Christe, K. O. <u>Inorg. Chem.</u> 1972, <u>11</u>, 2189.
- (14) Pilipovich, D.; Maya, W.; Lawton, E. A.; Bauer, H. F.; Sheehan, D. F.; Ogimachi, N. N.; Wilson, R. D.; Gunderloy, F. C.; Bedwell, V. E. Inorg. Chem. 1967, 6, 1918.
- (15) Christe, K. O. Inorg. Chem. 1973, 12, 1580.
- (16) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.
- (17) Christe, K. O.: Schack, C. J.; Wilson, R. D. <u>Inorg. Chem.</u> 1976, <u>15</u>, 1275.

- (18) Gillespie, R. J.; Schrobilgen, G. J. <u>Inorg. Chem.</u> 1976, <u>15</u>, 22.
- (19) Christe, K. O.; Wilson, R. D.; Schack, C. J. <u>Inorg. Chem.</u> 1977, <u>16</u>, 937.
- (20) Tolberg, W. E. et al. unpublished results.
- (2') Frlec, B.; Holloway, J. H.; <u>Inorg. Chem.</u> 1976, <u>15</u>, 1263; J.C.S. Chem. Comm. 1974, 89.
- (22) Selig, H.; Peacock, R. D. J. Amer. Chem. Soc. 1964, 86, 3895.
- (23) Lindeman, L. P.; Wilson, M. K. J. Chem. Phys. 1956, 24, 24:
- (24) Claassen, H. H.; Goodman, G. L.; Malm, J. G.; Schreiner, F. J. Chem. Phys. 1965, 42, 1229.
- (25) Artyukhov, A. A.; Koroshev, S. S. Koord. Khim. 1977, 3, 1478.
- (26) Christe, K. O.; Schack, C. J. Inorg. Chem. 1977, 16, 353.
- (27) Rewick, R. T.; Tolberg, W. E.; Hill, M. E. <u>J. Chem. Eng.</u>
 <u>Data</u>, 1970, <u>15</u>, 527.
- (28) Christe, K. O.; Wilson, R. D.; Sawodny, W. <u>J. Mol. Structure</u>, 1971, <u>8</u>, 245.
- (29) Christe, K. O.; Schack, C. J.; Pilipovich, D. <u>Inorg. Chem.</u> 1972, <u>11</u>, 2205.
- (30) Christe, K. O.; Curtis, E. C. <u>Inorg. Chem.</u> 1972, <u>11</u>, 2209.
- (31) Sokolov, V. B.; Drobyshevskii, Yu. V.; Prusskov, V. N.; Ryzhkov, A. V.; Khoroshev, S. S. Doklady Akad. Nauck SSSR, 1976, 229, 641.
- (32) Christe, K. O.; Guertin, J. P.; Pavlath, A. E. <u>US Patent</u> 3 503 719 (1970).
- (33) Solomon, I. J.: Keith, J. N.: Snelson, A. <u>J. Fluorine Chem.</u> 1972, <u>2</u>, 129.
- (34) Christe, K. O.; Wilson, R. D.; Axworthy, A. E. <u>Inorg. Chem.</u> 1973, <u>12</u>, 2478.
- (35) Goldberg, I. B.: Crowe, H. R.: Christe, K. O. <u>Inorg. Chem.</u> 1978, <u>17</u>, 3189.

- (36) Peters, N. J. S.: Allen, L. C.: De Frees, D. J.; Pople, J. A. to be published.
- (37) Stein. L. <u>J. Fluorine Chem.</u> 1982, <u>20</u>, 65.

APPENDIX L

Reprinted from Inorganic Chemistry, 1982, 21, 2938. Copyright © 1982 by the American Chemical Society and reprinted by permission of the copyright owner

> Contribution from Rocketdyne, a Division of Rockwell International Corporation, Canoga Park, California 91304

Fluorine Perchlorate. Vibrational Spectra, Force Field, and Thermodynamic Properties

KARL O. CHRISTE® and E. C. CURTIS

Received December 15, 1981

Infrared spectra of gaseous, solid, and matrix-isolated ClO₃OF and Rantan spectra of liquid ClO₃OF are reported. All 12 fundamental vibrations expected for the covalent perchlorate structure

of symmetry C, were observed and assigned. A modified valence force field was computed for CIO, OF by using the observed ¹⁵Cl-³⁷Cl isolopic shifts, symmetry relations between the A' and the A" block, and the off-diagonal symmetry force constants of the closely related FClO₃ molecule as constraints. Previous assignments for ClO₃OCl, ClO₃OBr, ClO₃OCF₃, Cl₂O₇, and Cl₂O₇ are revised. The ¹⁹F NMR spectrum of ClO₃OF was recorded, and thermodynamic properties were computed in the range 0-2000 K.

Introduction

Fluorine perchlorate (or perchloryl hypofluorite) was probably first prepared¹ in 1929 by Fichter and Brunner by the fluorination of dilute HClO4 with F2 but was incorrectly identified. The first positive identification of ClO3OF was reported2 in 1947 by Rohrback and Cady, who obtained the compound from the reaction of F2 with concentrated perchloric acid. They reported that ClO₃OF consistently exploded when frozen.

In view of its explosive nature, it is not surprising that very few papers dealing with ClO3OF have been published since then. In 1962, Agahigian and coworkers reported3 the 19F NMR spectrum of ClO₃OF in CFCl₃ and four infrared absorptions of the gas. The same four infrared bands have also been observed in a study at United Technology Corp. in which the heat of hydrolysis was measured for ClO3OF. Macheteau and Gillardeau studied5 the thermal decomposition of ClO3OF

⁽¹⁾ Fichter, F.; Brunner, E. Helv. Chim. Acta 1929, 12, 305.

⁽²⁾ Rohrback, G. H.; Cady, G. H. J. Am. Chem. Soc. 1947, 69, 677.

 ⁽³⁾ Agahigian, H.; Gray, A. P.; Vickers, G. O. Can. J. Chem. 1962, 40, 157.
 (4) Brazeale, J. D.; et al. "Thermochemistry of Oxygen Finorine Bonding", Report UTC 2002-FR, AD No. 402889; United Technology Corp.

Sunnyvale, CA, March 1963.

Figure 1. Traces A, B, and C: infrared spectra of gaseous ClO3OF recorded in a 5-em path length cell at pressures of 1000, 100, and 10 torr, respectively. The broken line indicates background absorption by the AgCl windows. Traces D and E: infrared spectra of neat and Ne matrix-isolated ClO₃OF, respectively, recorded at 4 K with CsI windows.

and confirmed the four infrared bands previously reported.34 Small amounts of ClO₃OF have been reeported to form as byproducts in the reactions of F2 with metal perchlorates4.6.7 and Cl₂O₆. Force constants have been predicted for ClO₃OF by Witt and Hammaker using the four published infrared frequencies, estimating the missing frequencies from the known ClO₃OCl data¹⁰ and transferring five internal force constants from ClO₃OCl to ClO₃OF. It was recently found that very pure ClO₃OF could be obtained in high yield by the 'hermal decomposition of NF₄ClO₄.11 The ClO₃OF, prepared in this manner, could be manipulated and repeatedly frozen without explosions.¹² In view of this improved synthesis and the paucity of previous data on ClO₃OF, a better characterization of this compound was undertaken.

Experimental Section

Caution! Although no explosions were incurred during the present study, the original reports2 of Rohrback and Cady indicate that ClO₃OF is a highly sensitive and powerful explosive. It should be handled only in small quantities and with proper safety precautions.

Fluorine perchiorare was prepared by illermal decomposition of NF₄ClO₄^{11,13} at ambient temperature and was purified by fractional condensation in a well-passivated (with CIF3) stainless steel-Teflon FEP vacuum system. Fluorine perchlorate was found to pass slowly through a -126 °C trap but to stop in a colder trap. The only impurity detectable in the infrared spectrum of the gas at 1000 mm pressure was a trace of FCIO2.

Infrared spectra were recorded on a Perkin-Elmer Model 283 spectrometer, which was calibrated by comparison with standard gas calibration points. 14,15 The reported frequencies and isotopic shifts

are believed to be accurate to ± 2 and ± 0.1 cm⁻¹, respectively. Gas spectra were recorded with use of a Teflon cell of 5-cm path length equipped with a Teflon PFA valve (Fluoroware Inc.) and AgCl windows. The spectra of neat and matrix-isolated ClO₃OF were recorded at 4 K with use of an Air Products Model ACL3 helium. refrigerator equipped with CsI windows. Research grade No or Ne (Matheson) was used as the matrix in a mole ratio of 1000:1.

The Raman spectra were recorded on a Cary Model 83 spectrometer using the 4880-Å exciting line with a Claassen filter for the elimination of plasma lines.16 Polarization measurements were carried out by method VIII, as described16 by Claassen et al. A flamed-out 4-mm old. quariz tube was used as a sample container in the transverse excitation-transverse viewing mode. It was cooled to -100 °C in an apparatus similar to that17 described by Miller and Harney.

The 19F NMR spectrum of ClO:OF in HF solution was recorded at 84.6 MHz on a Varian Model EM390 spectrometer equipped with a variable temperature probe. Chemical shifts were determined relative to external CFCl₃ with positive shifts being downfield from CFCl₃.

Results and Discussion

Properties of ClO₃OF. Fluorine perchlorate is colorless as a gas and a liquid and white as a solid. It was found to be stable at room temperature in either Teffon or passivated steel containers and to be the most stable member of the series ClO₃OF, ClO₃OCl, ClO₃OBr. Contrary to the original report of Rohrback and Cady,2 explosions were not incurred on either freezing or melting ClO3OF. Since Rohrback and Cady had prepared their sample of ClO₃OF by fluorination of HClO₄, a small amount of the latter could have caused their samples to be more sensitive. 18

The 19F NMR chemical shift of ClO3OF has been reported3 to be 225.9 ppm downfield from CFCl3. However, since the

Macheteau, Y.; Gillardeau, J. Bull. Soc. Chim. Fr. 1969, 1819.

Grakauskas, V. Fr. Patent 1 360 968, 1964. Bode, H.; Klesper, E. Z. Anorg. Allg. Chem. 1951, 266, 275.

Da Vila, W. H. B. Rev. Fac. Cinenc. Quim., Univ. Nac. La Plata 1957,

Witt, J. D.; Hammaker, R. M. J. Chem. Phys. 1973, 58, 303.

Christe, K. O.; Schack, C. J.; Curtis, E. C. Inorg. Chem. 1971, 10, 1589.
 Christe, K. O.; Wilson, W. W. Inorg. Chem. 1980, 19, 1494.
 Schack, C. J. Christe, K. O. Inorg. Chem. 1979, 18, 2619.

⁽¹³⁾ Tolberg, W. E., private communication.

⁽¹⁴⁾ Plyle: E. K.; Danti, A.; Blaine, L. R.; Tidwell, E. D. J. Res. Natl. Bur. Stand., Sect. A 1960, 64, 841.

tniernational Union of Pure and Applied Chemistry. "Tables of Wavenumbers for the Calibration of Infrared Spectrometers"; Butterworths: Washington, D.C., 1961.

Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc. 1969, 23, 8.

Miller, F. A.; Harney, B. M. J. Appl. Spectrosc, 1970, 24, 271. Schack, C. J.; Pilipovich, D.; Christe, K. O. J. Inorg. Nucl. Chem.,

Suppl. 1976, 207.

Figure 2. Infrared spectra of N₂ and Ne matrix-isolated and of gaseous ClO₃OF recorded with 20-fold scale expansion under higher resolution conditions.

Figure 3. See caption of Figure 2.

shift for FClO₃, reported in the same paper, is in error by about 35 ppm, ¹⁹ we have redetermined the shift for ClO₃OF. In HF solution, a single line, 219.4 ppm downfield from external CFCl₃, was observed, in fair agreement with the previously reported ³ value of 225.9 ppm.

Vibrational Spectra. The infrared spectra of ClO₃OF were recorded for the gas, and for the neat and the neon- and nitrogen-matrix-isolated solid (see Figures 1-3). The Raman spectra of liquid ClO₃OF, recorded at -100 °C, are given in Figure 4. The observed frequencies and their assignments are summarized in Table I. The four infrared bands previously reported³⁻⁵ for gaseous ClO₃OF agree well with our results.

Assignments. By analogy with closely related molecules, such as CF_3OF , 20,21 fluorine perchlorate should possess a staggered structure of symmetry C_3 .

The 12 fundamental vibrations expected for ClO₃OF of symmetry C_r can be classified as 8 A' and 4 A", where all modes are allowed in both the infrared and the Raman spectra. In

⁽¹⁹⁾ Christe, K. O.; Schack, C. J. Adv. Inorg. Chem. Radiochem. 1976, 18, 319.

 ⁽²⁰⁾ Diodati, F. P.; Bartell, L. S. J. Mol. Struct. 1971, 8, 395.
 (21) Buckley, P.; Weber, J. P. Can. J. Chem. 1974, 52, 942.

Table 1. Vibrational Spectra of ClO, OF

		obsd freq, cm 1, a	IN THEIR				
	infrared			Rama			
gas	N ₁ matrix	Ne matrix	solid	liquid	111 soln	assignt in poin	t group C
2588 vw						11302 + 1295 = 2597	$\nu_1 + \nu_{\phi} (A^{\prime\prime})$
2335 w						(2 x 1295 = 2590 1295 + 1049 = 2344	$2\nu_{\bullet} (A'') = \nu_{\bullet} + \nu_{\bullet} (A'')$
						(1302 + 885 = 2187	$v_1 + v_2 (A')$
2183 vvw						1295 + 885 = 2180	$\nu_{\bullet} + \nu_{1} (A'')$
2092 vw						2 × 1049 = 2098	$2\nu_2$ (A')
1968 vw						1295 + 677 = 1972	$\nu_a + \nu_A (A'')$
1891 vvw						1295 + 599 = 1894	$\nu_{s} + \nu_{s} \left(\Lambda^{\prime\prime} \right)$
1749 vw						2 × 885 = 1770	2ν ₃ (A΄)
1670 vvw, sh						1295 + 379 = 1674	$v_{\theta} + v_{\pi} (A'')$
1645 vvw						1049 + 599 = 1648 1049 + 563 = 1612	$\nu_2 + \nu_3$ (A')
1610 vvw, sh 1555 vvw, sh						885 + 677 ÷ 1562	$v_2 + v_{10} (A'')$ $v_3 + v_4 (A')$
1538 vvw						1302 + 230 = 1532	$v_1 + v_2 (A')$
1480 vvw						885 + 599 = 1484	$\nu_1 + \nu_2(A')$
1394 vvw						563 + 559 + 230 = 1392	$v_1 + v_2 + v_k (A'')$
1345 vvw, sh						$2 \times 677 = 1354$	$2\nu_{\perp}(A^2)$
		1307 sh					
	1304.6 vs	/1303.6 vw	1284 vs	1289 (0.3) br	1289 (0.3)		υ _λ (A') 35Cl
	1303.0 vs	1302 sh				$2 \times 386 + 529 - 1301$	$2\nu_{11} + \nu_{6} (A')$
	1301.8 sh	1297.4 mw	1004	1200 .0 0 1	1110.00		. Alla Stena
	1294 8 vs	1296.1 mw	1284 vs	1289 (0.3) br	1289 (0.3)		ν _* (A") ³⁵ Cl
129" vs	1293.7 sh 1289.8 m	/ 1295.2 vs } 1289.7 m					ν ₁ (A') ³⁷ Cl
127 13	1207.0 111	1288.4 mw)					•
	1286.4 m	1285.9 mw				$2 \times 378 + 529 = 1285$	$2\nu_7 + \nu_6 (A')$
		1281.5 w					ν _α (A") ³⁷ Cl
	1280.2 ms	1280.6 ms					•
	1276 sh						
1195 va						$2 \times 599 = 1198$	$2\nu_{5} (A')$
		1063 w				$2 \times 529 = 1058$	$2\nu_{b}$ (A')
	1055 vw	1056.0 w				678 + 379 = 1057	$\nu_4 + \nu_7 (A')^{-35} C1$
	1051.2 sh 1050.0 mw					671 + 379 = 1050	$\nu_4 + \nu_7 (A')^{37} C1$
1049.2 s	1047.3 ms	1047.5 ms	1042 ms	1044 (10) p	1045 (10)		ν, (A') 35Cl
1017.23	1046.5 mw	101110 1110	10121110	1014 (10) p	1045 (10)		P3 (11) X1
1046.8 ms	1044.2 mw	1044.2 m					$\nu_3 \ ({\rm A'})^{-37}{\rm Cl}$
975 vvw						599 + 379 = 978	$\nu_s + \nu_2 (A')$
943 vvw						563 + 379 = 942	$\nu_{av} + \nu_{\tau} (\mathbf{A}'')$
886.7 w	883.3 mw	882.3 mw				$2 \times 379 + 127 = 885$	$2\nu_7 + \nu_{12} (A'')$
884.6 mw	881.6 m	887.2 m	879 m	882 (4.3) p	882 (1.9)		$\nu_{\mathfrak{z}}(\mathbf{A}')$
751 w		692.7	750 w			2 × 379 = 758	$2v_7$ (A')
682.1 \		683.7 mw				563 + 127 = 690	$\nu_{10}+\nu_{12}\left(\mathbf{A}^{\prime}\right)$
679.2							
676.8							
674.6 } s	674.6	677.7 s	669 s	670 (2.8) p	670 (1.5)		ν ₄ (A') ²⁵ Cl
672.3	667.6 ms	670.7 ms					$\nu_{A} (A')^{37} C1$
671.0							
668							
599 mw	597.1 ms	597.6 ms	595 ms	596 (0.8) dp			ν ₅ (A') ¹⁵ Cl
563 mw	593.3 m 561.8 ms	593.8 m 562.9 ms	558 ms	559 (0.8) dp			ν ₅ (A') ²⁷ CL
202 Htw	558.9 m	560.0 m	220 IIIS	223 (0.0) up			$\nu_{10}^{'}$ (A'') ³⁵ ('1 $\nu_{10}^{'}$ (A'') ³⁷ ('1
529 w	530.7 m	531.6 m	529 m	528 (4.4) p	528 (1.8)		$\nu_{10}(\mathbf{A}')$
	(386.9 w)	386 w \	V = 7 111	220 (414) P	0=0 (110)		16 1117
	}	}	383 sh	382 sh, dg	382 sh		ν_{11} (A") and $3\nu_{11}$ (A"
378 w)380.7 w)	381 mw J		_		$3 \times 127 = 381$	44
	⁽ 377.3 mw	378 mw	377 mw	377 (8 7) p	377 (4.7)		$\nu_{\tau}(\mathbf{A}')$
				230 (1.4) p	232 (0.8)		ν_s (A')
				127 (0.6) dp			ν_{12} (A'')

the Raman spectrum, the A' modes can be either polarized or depolarized, while the A" modes should all be depolarized. An approximate description of all 12 modes is given in Table

By comparison with the known spectra of the related molecules CIO₃OCl,¹⁰ CIO₃OBr,¹⁰ CIO₃OH,²² CIO₃OD,²² O₃ClOClO₃,^{9,23,24} CF₃OClO₃,²⁵ FClO₃,²⁶⁻³⁰ FOSO₂F,³¹⁻³³ and

(23) Pavia, A. C.; Rozière, J.; Potier, J. C. R. Hebd. Seances Acad. Sci., Ser. C 1971, 273, 781.
 (24) Rozière, J.; Pascal, J. L.; Potier, A. Spectrochim. Acta, Part A 1973,

CF₃OF,³⁴⁻³⁹ the assignments for most fundamental vibrations of ClO3OF (see Table II) are straightforward. Additional

⁽²⁴⁾ ROLLEG, J.; Pascal, J. L.; Potter, A. Spectrochim. Acta, Part A 29A, 169.
(25) Schack, C. J.; Christe, K. O. Inorg. Chem. 1974, 13, 2374.
(26) Lide, D. R., Jr.; Mann, D. E. J. Chem. Phys. 1956, 25, 1128.
(27) Madden, R. P.; Benedict, W. S. J. Chem. Phys. 1956, 25, 594.
L-4 (28) Claassen, H. H.; Appelman, E. H. Inorg. Chem. 1979, 9, 622.

⁽²²⁾ Karelin, A. I.; Grigorovich, A. I.; Rosolovskii, V. Ya. Spectrochim. Acta, Part A 1975, 31A, 765.

^a References 28–30. ^b Reference 22: ν_i and ν_a of ClO, OH are strongly coupled and best described as antisymmetric (1326) and symmetric (1200) combination of the corresponding symmetry coordinates. ^c Reference 10. ^d Reference 9, but with revised assignment for ν_s , ν_s , and ν_s . ^e References 34–38; it should be noted that for the A' block of CF, OF the mode description is inaccurate due to strong mixing. ³⁵ [³⁵Cl-³⁷Cl isotopic shifts.

Figure 4. Raman spectra of liquid ClO3OF in a 4-mm quartz tube recorded at -100 °C with parallel and perpendicular polarization. The insert shows the 377-cm⁻¹ band recorded with scale expansion.

support for these assignments comes from the observed 35Cl-37Cl isotopic shifts (chlorine has two naturally occurring isotopes, 35Cl and 37Cl, with an abundance ratio of 3:1), from the normal-coordinate analysis (see below), and from the Raman polarization data. Consequently, only the less straightforward assignments will be discussed.

The two antisymmetric ClO₃ stretching modes, $\nu_1(A')$ and $\nu_{q}(A'')$, are almost degenerate and therefore could be observed as separate bands only in the matrix spectra at about 1303 and 1295 cm⁻¹. In the Ne matrix, the ³⁷Cl satellite of the 1303.6-cm⁻¹ fundamental at 1289.7 cm⁻¹ appears to be in Fermi resonance with the A' combination band $(2\nu_1 + \nu_6)$ at 1285.9 cm⁻¹. Because Fermi resonance is possible only between vibrations belonging to the same symmetry species, the 1303.6-cm⁻¹ band is tentatively assigned to the A' mode. The additional smaller splittings observed for the 1295-cm⁻¹ band in the Ne matrix and for the other bands in the N2 matrix are attributed to matrix site effects. The Raman polarization data for the 1289-cm⁻¹ band were inconclusive due to the great line width, low intensity, and low degree of polarization and therefore were not useful for distinguishing between the A' and the A" fundamental.

The frequencies of the two ClO₃ rocking modes, $\nu_7(A')$ and $\nu_{11}(A'')$, almost coincide and are readily assigned on the basis of their Raman polarization ratios (see Figure 4). The splitting of $\nu_{11}(A'')$ (see Figure 3; into two components in the matrix-isolated infrared spectra is attributed to Fermi resonance with $3\nu_{12}(A'')$.

The symmetric (umbrella) ClO₃ deformation mode, $\nu_5(A')$, and the two antisymmetric ClO₃ deformation modes, $\nu_{10}(A'')$ and $\nu_6(A')$, are assigned to the three fundamentals observed at about 599, 563, and 529 cm⁻¹, respectively. The assignment of the 599-cm^{-t} fundamental to $\nu_5(A')$ is established by the

assignt for	anarox description				obsd freq, cm ⁻¹	i, cm-¹			
point group C,	of mode for ClO, OF	FCIO, a	CIO, OH	CIO, OD	Clo, OF	CIO, OCF	2, CIOCIO, d	CiO,OBr	CF, OF
A. v.	vasym(CIO ₃)	1314 (15.8)	1326 1201	1282	1302 (14.5)	1287 (15)	1300	1279	1222
2,	ν _{avm} (ClO ₃)	1062 (3.05)	1048	1050	1049 (3.3)	1040	1060, 1025	1039	1294
. ₂	(O-1-)		3553	2624	885 (~0)	749 (3.8)	1204 (00	683	882
, 7 ₄	×(0+0)	717 (10.0)	726	725	(0.1) (1.0)	646 (8.5)	, OT, 090	648	947
์ ล์	Sumbrella (ClO ₃)	549 (0.89)	582	587	599 (3.8)	580 (2.5)	009	572	678
` a"	δarvmCIO, (α)	589 (3.1)	555	555	529 (~1)	511 (<1.5)	521, 512	209	585
, ₄	Sin-plane (CIO, rock) (3)	405 (0.2)	421	420	379 (<1)	355	430, 283	387	429
**	Sin-plane (Cl-O-F) {		1326 1201	930	230	198	154		278
Α. ν.	Vasvm (ClO ₃)	1314 (15.8)	1263	1282	1295 (14.6)	1271 (15)	1300	1262	1261
7 2	Sarym (CIO,) (a)	589 (3.1)	582	577	563 (2.9)	561 (2.5)	571, 567	266	607
, n	Sout-of-plane (CIO, rock (3)	405 (0.2)	421	420	385 (<1)	382 (<1)	490, 272	387	431
Ų	(XO-D)		305		137	60			147

Murphy, W. F.; Sunder, S.; Katz, H. J. Raman Spectrosc. 1978, 7, 76. Christe, K. O.; Curtis, E. C.; Sawodny, W.; Haertner, H.; Fogarasi, G.,

The second secon

Spectrochim. Acta, Part A 1981, 37A, 549. Dudley, F. B.; Cady, G. H.; Eggers, D. F. J. Am. Chem. Soc. 1956, 78,

⁽³²⁾ Qureshi, A. M.; Levchuk, L. E.; Aubke, F. Can. J. Chem. 1971, 49,

Oakes, K. Dissertation, University of Washington, 1972.

Will, P. M. Dissertation, Vanderbill University, 1967. Will, P. M.; Jones, E. A. J. Inorg. Nucl. Chem. 1967, 29, 2108; 1968,

Smardzewski, R. R.; Fox, W. B. J. Fluorine Chem. 1975, 6, 417. Christe, K. O.; Schack, C. J. Inorg. Chem. 1981, 20, 2366. Kuo, J. C.; Des Marteau, D. D.; Fateley, W. G.; Hammaker, R. M.; Marsden, C. J.; Witt, J. D. J. Raman Spectrosc. 1980, 9, 230.

Hammaker, R. M.: Faleley, W. G.; Manocha, A. S.; Des Marteau, D. D.; Streusand, B. J.; Durig, J. R. J. Raman. Spectrosc. 1980, 9, 181. (40) Ueda, T.; Shimanouchi, T. J. Mol. Spectrosc. 1968, 28, 350.

Table 111. Symmetry Force Constants, Observed and Calculated Frequencies, and SCL-27Cl Shifts and Potential Energy Distribution of ClO, OF

	freq.	cm ⁻¹	Cl iso shift,				
assignt	obsd	calcd	obsd	calcd	symmetry force constants		potential energy distribution
$\overline{A'} \nu_1$	1302	1303	14.5	15.7	$F_{\rm B} = f_{\rm F} - f_{\rm pp}$	9.53	97 (1)
ν,	1049	1049	3.3	3.3	$F_{22} = f_r + 2f_{rr}$	9.49	97 (2)
ν_1	885	885	<1	0.1	$F_{AA} = f_D$	3.51	84(3) + 10(7)
ν_{4}	677	677	7.0	7.0	$F_{AA} = f_{R}$	2.38	52 (4) + 41 (5) + 9 (8) + 6 (6) - 20 (45)
ν,	599	599	3.8	3.8	$F_{33} = 0.65 f_{\beta} + 0.35 f_{\alpha} + 1.30 f_{\beta\beta} + 0.70 f_{\alpha\alpha} - 1.91 f_{\alpha\beta}' - 0.95 f_{\alpha\beta}$	2.38	54 (5) + 20 (6) + 8 (8)
$\nu_{\rm a}$	5 29	529	~1	1.2	$F_{ab} = f_{ab} - f_{aa}$	1.62	$-63(6) + 28(4) + 7(8) + 4(5) - 9(46) \cdot 5(45)$
ν_{γ}	2.50	379	<1	0.7	$F_{\alpha\alpha} = f_{\beta} - f_{\beta\beta}$	1.54	69 (7) + 13 (3) + 10 (6; + 7 (4) + 5 (8) - 6 (67
ν.	230	230		0.3	$F_{\gamma\gamma} = f_{\beta} - f_{\beta\beta}$ $F_{\bullet\bullet} = f_{\gamma}$	0.99	66 (8) + 18 (7) + 15 (4)
$\mathbf{A}^{\prime\prime} = \nu_{\mathbf{s}}^{\mathbf{v}}$	1295	1295	14.6	15.1	$F_{qq} = f_{r} - f_{rr}$	9.53	99 (9)
ν_{s}		563	2.9	2.9	$F_{10,10} = f_{\alpha} - f_{\alpha\alpha}$	1.55	80 (10) + 8 (11) + 7 (10,11)
ν_{i}	385	385		0.3	$F_{n_{\sigma}n} = f_{\beta} - f_{\beta\beta}$ $F_{n_{\sigma}n} = f_{\tau}$	1.21	94 (11) + 18 (10) - 12 (10,11)
					$F_{16} = -F_{9,10} = f_{PG} - f_{PG}$	0.27	
					$F_{17} = F_{7/1} = f_{r\beta} - f_{r\beta}''$ $F_{24} = 3^{1/2} f_{rR}$	0.35	
					$F_{rs} = 3^{1/3} f_{rR}$	0.16	
					$F_{13} = 0.8 \text{t} f_{r\beta} - 1.18 f_{r\alpha} + 1.61 f_{r\beta}' - 0.59 f_{r\alpha}'$	0	
					$F_{43} = 1.39 f_{R\beta} - 1.02 f_{R\alpha}$	0.51	
					$F_{44} = f_{R\alpha}$	0.218	
					$F_{\bullet,7} = -F_{\bullet,\bullet,\bullet} = f_{\alpha\beta} - f_{\alpha\beta}$	- 0.2	

^a Stretching constants in mdyn/A, deformation constants in mdyn A/rad², and stretch-bend interaction constants in mdyn/rad. Although identical explicit F terms are given for F_{11} , F_{9*} , F_{77} and F_{9*} , $F_{10,10}$, $F_{11,11}$, respectively, it must be kept in mind that the corresponding A' and A' force constants are similar, but not identical (see text for explanation). b Contributions of less than 5% to the PED are not listed.

observed PQR band contour in the infrared spectrum of the gas, by its large 35Cl-37Cl isotopic shift, and, in particular, by the results from the normal-coordinate analysis (see below). By analogy with CF3OF,35 ClO3OF is an accidental symmetric top with Cl and F lying on the axis of the smallest moment of inertia (I_A) and rotational constants of A = 0.181, B =0.0932, and C = 0.0931 cm⁻¹. Therefore, the band contours for ClO₃OF are expected to be analogous of those of CF₃OF for which the PQR band contour of the umbrella deformation mode is well established. By analogy with FClO330 and Cl-O₃OCl, 10 the Cl-O single bond stretching and the ClO₃ umbrella deformation mode in ClO3OF are expected to exhibit a total of about 11 cm⁻¹ in ³⁵Cl-³⁷Cl isotopic shift whose distribution between the two modes is governed by their degree of coupling. The assumption of a total isotopic shift of about 11 cm⁻¹ for these two modes was supported by a large number of different force fields. As long as plausible interaction terms were used, this total isotopic shift remained close to 11 cm⁻¹. In ClO₃OF, the Cl isotopic shift of the Cl-O stretching mode is only 7.0 cm⁻¹, thus requiring a Cl shift of about 4 cm⁻¹ for the ClO₃ umbrella deformation mode. This condition is met by the 599-cm⁻¹ fundamental ($\Delta \nu = 3.8$ cm⁻¹) but not by that at 529 cm⁻¹ ($\Delta \nu \approx 1$ cm⁻¹). Furthermore, the normal-coordinate analysis strongly preferred a Cl isotopic shift of about 3.0 cm⁻¹ for $\nu_{10}(A'')$ and could accommodate a 3.8- or 1-cm⁻¹ shift only with unreasonable off-diagonal symmetry force constants. Also, the potential energy distributions of all physically meaningful force fields, obtained with the different possible assignments, insisted on 599 cm⁻¹ belonging to the A' block and being the umbrella deformation mode. With the 599-cm⁻¹ fundamental being firmly assigned to the umbrella deformation mode, assignments for $\nu_6(A')$ and $\nu_{10}(A'')$ are unambiguous on the basis of the Raman polarization data.

The frequency of 127 cm⁻¹ for the Cl-OF torsional mode in ClO₃OF is in excellent agreement with that $^{36.39}$ found for the closely related CF₃OF molecule and confirmed by microwave spectroscopy. 21 Since the reduced moment of inertia for internal rotation $(I_A)_r$, of CF₃OF and ClO₃OF should be comparable, the potential barrier to internal rotation in ClO₃OF is expected to be similar to that of CF₃OF (about 4 kcal

mol⁻¹).^{20,39} The remaining assignments for ClO₃OF are all unambiguous and require no further comment.

Only minor frequency shifts were observed for ClO₃OF when going from the gas to the liquid and the solid. This indicates little or no association in the condensed phases.

Comparison of the ClO₃OF Assignments with Those of Similar Molecules. In Table 11, the assignments for ClO₃OF are compared to those of similar molecules. The general agreement between the different compounds is excellent and permitted improvement of some of the previous assignments. For example, the assignments previously proposed for the antisymmetric (A') and the symmetric ClO₃ deformation modes of ClO₃OCl, ¹⁰ ClO₃OBr, ¹⁰ and Cl₂O₇⁹ should be reversed and the assignments for ClO₃OCF₃ should be revised to conform with those of ClO₃OF.

For CF₃OF, we propose to exchange the previous assignments³⁸ for the symmetric and antisymmetric CF₃ stretching modes in species A'. The CF₃ modes in CF₃OF are almost identical with those in CF₃ONF₂. Raman polarization data recently obtained in our laboratory for CF₃ONF₂ established beyond doubt that the highest CF₃ fundamental represents the symmetric stretching mode.

Chlorine Isotopic Shifts. The 15 Cl 17 Cl isotopic shifts observed for ClO₃OF are summarized in Table 111. In view of the importance of these shifts for the force field computation, factors influencing some of these shifts will be briefly discussed. Whereas ν_5 , ν_9 , and ν_{10} are essentially undisturbed, some of the other bands appear to be influenced by effects such as Fermi resonance with combination bands.

For ν_1 , resonance between $(2\nu_7 + \nu_6)^{37}$ Cl and ν_1^{37} Cl most likely shifts the latter to higher frequency and decreases its relative intensity and the apparent 35 Cl- 37 Cl separation of ν_1 's. Using a weighted average of the 1285.9- and 1289.7-cm⁻¹ bands for the frequency of ν_1^{37} Cl results in a Cl isotopic shift of abut 14.5 cm⁻¹, similar to that (14.6 cm⁻¹) observed for the almost degenerate $\nu_9(A'')$ fundamental.

For ν_2 a discrepancy exists between the matrix isolation and the gas-phase data. Whereas two Q branches with a frequency separation of 2.4 cm⁻¹ were observed in the gas-phase spectrum, the matrix isolation data show that in the Ne and N₂

matrices the isotopic shifts are 3.3 cm⁻¹. Two combination bands, $(\nu_4 + \nu_7)$ and $2\nu_6$, occur in this region and were indeed observed in the matrix spectra. However, since in the Ne matrix they occur on the high-frequency side of v2 and are of low relative intensity, the larger isotopic shift in the matrix spectrum cannot be attributed to Fermi resonance effects. Since in the closely related FClO3 molecule the Cl isotopic shift of this highly characteristic symmetric ClO3 stretching mode is 3.05 cm⁻¹, 30 we prefer the matrix shift value for ν_2 of ClO3OF. The second Q branch, observed in the infrared spectrum of the gas, might be due to other effects such as hot bands.

The O-F stretching mode, $\nu_3(A')$, shows a splitting of about 5 cm⁻¹ in the Ne-matrix spectrum, but in the N₂-matrix and gas-phase spectra the satellite band is shifted to the highfrequency side of v₃ and therefore is attributed to the combination band $(2\nu_7 + \nu_{12})$.

Normal-Coordinate Analysis. The normal-coordinate analysis of ClO₁OF presented a particular challenge because previous force field computations for the closely related $ClO_3OX (X = Cl, Br, ClO_3),^{9,10} CF_3OX (X = F, Cl),^{34,38,41}$ and FSO₂OF³³ molecules revealed difficulties in reproducing the experimental frequencies and resulted in extensive mixing of symmetry coordinates for many of the A' modes. Because of the highly underdetermined nature of these force fields, the mere reproduction of the observed frequencies does not necessarily result in a meaningful force field or even support a certain assignment. In order to avoid most of these drawbacks, we have used for our normal-coordinate analysis of ClO₃OF the following additional constraints: (i) 35Cl-37Cl isotopic shifts, (ii) symmetry relations between the A' and A" block, and (iii) transfer of many force constants, particularly offdiagonal symmetry force contants from the closely related FCIO, molecule to CIO, OF. For this purpose, it became necessary to determine first a reliable general valence force field for FCIO, from a combination of Cl isotopic shifts, Coriolis constants, and ab initio force constant calculations.30 Using this well-established FClO3 force field both as a starting point for the ClO₃OF computations and as a criterion for judging the plausibility of the resulting force field, we determined a force field that met all our criteria.

For the computation of the ClO3OF force field, the vibrational frequencies, Cl isotopic shifts, and assignments of Tables II and III were used. The required potential and kinetic energy metrics were computed by a machine method⁴² using the following geometry, estimated from a comparison with the related molecules FClO3,43 ClO3OH,44 and CF3OF.20,21

The symmetry coordinates used were the same as those given in ref 38, except that the numbering is different and the redundant coordinate was made exactly orthogonal to the other coordinates by the Gram-Schmidt process. Analytical expressions for the symmetry force constants are given in Table III. The off-diagonal symmetry force constants were adjusted by trial and error and then kept fixed during adjustment of the diagonal symmetry force constants by a least-squares

Table IV. Comparison of Internal Force Constants of ClO, OF with Those of FCIO,

	CiO,OF	ICIO,		CIO, OF	FCIO,
f.	9.52	9.76	fa-faa	1.54 (A')	1.49
fre .	-0.01	0.07		1.21 (A")	
f_{rR}	0.09	0.08	fra -fra	0.27	- 0.29b
Ja-Jaa	1.62 (A')	1.53	$f_{rB} - f_{rB}$	0.35	-0.33^{b}
, u , uu	1.55 (A")		Jod - Jos'	0.2	0.26

⁴ For dimensions of force constants see footnote a of Table III. b The different signs in these force constants are caused by the different signs in the symmetry coordinates used for the two computations and therefore have no physical meaning.

method to reproduce the observed frequencies and isotopic shifts. Due to the symmetry relations between the A' and the A" block $(F_{11} = F_{99}, F_{66} = F_{10,10}, F_{77} = F_{11,11}, F_{16} = -F_{9,10},$ $F_{17} = F_{9,11}$, and $F_{67} = -F_{10,11}$), both blocks were refined simultaneously. Due to its low frequency and weak coupling with other modes, the torsional mode v_{12} was omitted for the analysis.

With use of this method and the FClO3 force field as a starting solution (supplemented by appropriate estimates for the O-F group), the A'-A" symmetry constaint was at first fully enforced. Although a close duplication of the observed frequencies and isotopic shifts was possible, the resulting force field and potential energy distribution were unsatisfactory. For satisfactory force field solutions, the computed frequency of ν_7 was always too low and that of ν_{11} too high. This suggested that the two ClO₃ rocking modes, $\nu_7(A')$ and $\nu_{11}(A'')$, are not completely degenerate, and therefore the $F_{77} = F_{11,11}$ constraint was removed. Removal of this constraint significantly improved that force field, but again the results suggested that removal of the $F_{66} = F_{10,10}$ constraint would significantly benefit the force field. In this manner, a very satisfactory force field (see Table III) was obtained that exactly duplicated the observed frequencies and isotopic shifts and contained force constants for the ClO₃ part of the molecule, which are very similar to those of FCIC₃30 (see Table IV). Removal of the $F_{11} = F_{99}$ constraints was shown to be unnecessary since it did not change the values of F_{11} and F_{99} . The only minor deviation between observed and computed isotopic shifts exists for ν_1 and ν_9 ; however, it must be kept in mind (i) that the shift of ν_1 is disturbed by Fermi resonance effects (see above) and (ii) that anharmonicity corrections45 for these large shifts would be of the same magnitude as the observed deviations.

The force field of ClO3OF, given in Table III, contains, in addition to the interaction terms transferred from FClO3, only one relatively small ($F_{46} = 0.22$ mdyn rad⁻¹) off-diagonal symmetry force constant. This is not surprising in view of the near degeneracy of the -OCIO, modes. if these modes were completely degenerate, ν_1 , ν_6 , and ν_7 would belong to species E and ν_2 , ν_4 , and ν_5 to species A_1 of the corresponding C_{3c} . symmetry molecule and, therefore, no interaction force constants between the two species would be allowed. In the case of near degeneracy of these modes, as in ClO₃OF, the interaction force constants between the two groups can be nonzero because they both belong now to species A'. However, their numerical values should be very small or zero, as can be shown by semiquantitative arguments.

The fact that the symmetry constraints between the A' and the A" block are not strictly valid is not surprising. As expected, the two ClO₃ rocking modes are the least degenerate (22% difference). Because the O-F group is situated in the symmetry plane of the molecule, the in-plane rocking motion requires a significantly higher force than the corresponding out-of-plane motion. For the antisymmetric ClO₃ deformation

Wahi, P. K.; Patel, N. D. Can. J. Spectrosc. 1980, 25, 70. Curtis, E. C. Spectrochim. Acta. Part A, 1971, 27A, 1989. Clark, A. H.; Beagley, B.; Cruickshank, D. W. J.; Hewitt, T. G. J. Chem. Soc. A 1970, 872. Clark, A. H.; Beagley, B.; Cruickshank, D. W. J.; Hewitt, T. G. J. Clark, A. H.; Beagley, B.; Cruickshank, D. W. J.; Hewitt, T. G. J.

Chem. Soc. A 1970, 1613.

Mueller, A. "Vibrational Spectroscopy-Modern Trends"; Barnes, A. J., Orville-Thomas, W. J., Eds.; Elsevier: Amsterdam, 1977.

Figure 5. Solution range of the A" block symmetry force constants of ClO_3OF computed from the chlorine isotopic data and plotted as a function of $F_{9,11}$. The units are identical with those given in Table 111. The broken line indicates the preferred force field.

constants the difference between A' and A" values amounts to only 4% and for the antisymmetric ClO₃ stretching modes it is zero. In view of the very near degeneracy of the antisymmetric ClO₃ stretching and deformation modes, it is not surprising the symmetry constraint imposed on the corresponding off-diagonal symmetry force constants worked well for our force field. In this connection, it should be pointed out that the expected, albeit small, tilt angle of the Cl-O bond away from the threefold axis of the ClO₃ group should cause a smalt difference between the A' and A" force constants. However, in the absence of exact structural data for ClO₃OF, the tilt angle was assumed to be zero in this study

To obtain a better feel for the possible variation in the force constant values of ClO₃OF, we calculated the range of possible solutions for the A" block which is shown in Figure 5. Since five independent frequency values were available from the isotopic data for the computation of six symmetry force constants, five force constants were calculated as a function of the sixth one, in this case $F_{9,11}$. As can be seen from Figure 5, limitation of the off-diagonal force constants to reasonable values places rather narrow limits on the more important diagonal terms. The force field selected from the simultaneous A-A" refinement is given by the broken line and is analogous to the FClO₃ E block force field.³⁰ The differences in the signs of some of the off-diagonal force constants between FClO, and ClO3OF are caused by the different signs in the symmetry coordinates used for the two computations and therefore have no physical meaning.

The potential energy distribution for ClO₃OF is given in Table III. It shows that the approximate mode descriptions used in Table II are appropriate. The largest amount of mixing was o' served for ν_4 , which, by analogy with ν_2 of FClO₃, ³⁰ is an antisymmetric combination of S_4 (Cl-O stretch) and S_5 (δ_6 (ClO₃)).

In order to test the possibility of interchanging the assignments of ν_3 , ν_6 , and ν_{10} , we computed force fields for all possible

Table V. Thermodynamic Properties of Clo, OF

	Cp°, cal/	$(H^{\circ}_{T} - H^{\circ}_{p}),$	$-(F^{\circ}_{T} - H^{\circ}_{\bullet})/T,$	
<i>T</i> , K	(mol deg)	kcal/mol	cal/(mol deg)	S"T, Ct
0	0	0	0	0
100	9.438	0.8 41	50.106	58.411
200	14.097	2.003	56.334	66.347
298.15	18.311	3.592	60.712	72.761
300	18.176	3 626	60.787	72.873
400	21.166	5.601	64.532	78.535
500	23.289	7.830	67.840	83.500
600	24.789	10.238	70.823	87.886
700	25.861	12.774	73.545	91.793
800	26.641	15.401	76.049	95.299
900	27.221	18.095	78.367	98.472
1000	27.660	20.840	80.524	101.364
1100	28.000	23.624	82.541	104.017
1200	28.266	26.438	84.434	106.465
1300	28.480	29.275	86.217	108.736
1400	28.652	32.132	87.902	110.854
1500	28.794	35.005	89.499	112.835
1600	28.911	37.890	91.016	114.697
t 7 00	29.010	40.786	92.461	116.453
1800	29.093	43.692	93.841	118.114
1900	29.164	46.605	95.160	119.689
2000	29.225	49.524	96.424	121.186

assignments, which led to the conclusions stated in the discussion of the assignments.

Thermodynamic Properties. The thermodynamic properties of ClO₃OF were computed with the molecular geometry given above and the vibrational frequencies of Table II, with the assumption of an ideal gas at 1 atm pressure and use of the harmonic-oscillator, rigid-rotor approximation.⁴⁶ These properties for the range 0-2000 K are given in Table V.

Conclusions. The observed spectra of ClO3OF agree well with a covalent perchlorate structure of symmetry C_i . All 12 fundamental vibrations were observed and assigned. The assignments were confirmed by a normal-coordinate analysis using Cl isotopic shifts, symmetry relations between the A' and A" block, and force constants transferred from FClO3. as constraints. The resulting force field exactly duplicates the experimental data, retains the most important force constant features of FCIO₁, and results in a characteristic potential energy distribution, thus demonstrating the usefulness of these constraints for the determination of a reliable force field. A comparison of the A' and A" block force constants shows that the two ClO3 rocking modes significantly differ, whereas the two antisymmetric ClO₁ deformation modes are almost degenerate and the two antisymmetric ClO₃ stretching modes are completely degenerate. This is not obvious from the observed frequencies, which due to a different degree of mixing in A' and A" are very similar for the two rocking modes but are significantly different for the two antisymmetric ClO3 deformations. The force constants of the ClO₁ group of ClO3OF are very similar to those of FClO3 but, as expected from the replacement of F by the somewhat less electronegative -OF group, are slightly lowered.

Acknowledgment. The authors are indebted to Mr. R. D. Wilson for help in the sample preparation, to the Office of Naval Research and the Army Research Office for financial support, and to Dr. E. Appelman for making a preprint of his paper on the vibrational spectra of SO₃OF and ClO₃OF available to us.

Registry No. CIO3OF, 10049-03-3.

⁽⁴⁶⁾ Mayer, J. E.; Mayer, M. G. "Statistical Mechanics"; Wiley: New York, 1940.

Contribution from Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91304

Synthesis and Characterization of TeF₅OF

APPENDIX M

CARL J. SCHACK, WILLIAM W. WILSON, and KARL O. CHRISTE®

Received April 12, 1982

A new method for the synthesis of hypofluorites was discovered utilizing fluorine fluorosulfate as the fluorinating agent. The method was successfully applied to the high-yield synthesis of the new hypofluorite TeF₃OF. The compound was also prepared in lower yield by the fluorination of TeF,OH with a concentrated NF4HF, solution. The physical properties and infrared, Raman, 1°F NMR and mass spectra of TeF,OF are reported. The vibrational spectra of Tel,OCI were redetermined, and complete vibrational assignments are given for TeF5OF and TeF5OCI.

Introduction

The number of elements known to form hypofluorites is small and until recently was limited to the following nonmetal main-group elements: H, C, N, O, S, Se, F, and Cl. The synthetic method used for the syntheses of these hypofluorites involved the fluorination of the corresponding hydroxyl compounds of their metal salts with elemental fluorine. An unsuccessful attempt2 was made to apply this method to the synthesis of the hitherto unknown TeF₆OF. This failure to prepare TeFsOF, but the success in the synthesis of TeFsOCI by an analogous method,2 led to the conclusion3 that TeF5OF is unstable or actually nonexistent.

Our recent success4 in preparing a stable iodine hypofluorite and the observation that hypofluorites are generally more stable than the other hyponalites suggested that TeFsOF should not only exist but should also be stable. In this paper we present data that show that TeF5OF indeed exists and is stable.

Experimental Section

Materials and Apparatus. Volatile materials were manipulated in a stainless steel vacuum line equipped with Teflon FEP U-Traps, 316 stainless steel bellows-seal valves, and a Heise Bourdon tube-type pressure gauge. Telluric acid was prepared by a literature method⁵ and also purchased from Cerac, Inc., and from Pfaltz and Bauer. Fluorosulfuric acid (Allied) was used both as it was received (light brown color) and after it was distilled to obtain the clear colorless material. Fluorine fluorosulfate was synthesized as described.6 The reaction of TeF3OH with either ClOSO2F or CIF was used to prepare TeF₄OCl.⁷ Cesium and potassium chloride were oven-dried and then cooled and powdered under the dry N2 atmosphere of a glovebox.

Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer calibrated by comparison with standard gas calibration points, ^{8,9} and the reported frequencies are believed to be accurate to ±2 cm⁻¹. The spectra of gases were obtained with use of either a Teflon cell of 5-cm path length equipped with AgCl windows or a 10-cm stainless steel cell equipped with polyethylene windows that were seasoned with CIF3. The spectra of matrix-isolated TeF5OF and TeF5OCI were obtained at 6 K with an Air Products Model DE202S helium rel'rigerator equipped with Csl windows. Research grade Ne (Matheson) was used as a matrix material in a mole ratio of 400:1.

The Raman spectra were recorded on a Cary Model 83 spectrophotometer with use of the 488-nm exciting line of an Ar ion laser and a Claassen filter10 for the elimination of plasma lines. Quartz tubes (3 mm o.d.), closed by a metal valve, were used as sample containers in the transverse-viewing, transverse-excitation technique. A previously described 11 device was used for recording the low-temperature spectra. Polarization measurements were carried out by method VIII as described by Claassen et al.10

The 19F NMR spectra were recorded at 84.6 MHz on a Varian Model EM 390 spectrometer. Chemical shifts were determined relative to the CFCl₃ solvent with positive shifts being downfield from CFCl₃.12 Second-order spectra were analyzed by using the programs NMRIT and NMREN by Swalen. 13

The mass spectra were recorded with an EAI Quad 300 quadrupole

spectrometer at an ionization potential of 40 eV

Synthesis of TeF₅OH. Telluric acid, H₂TeO₄·2H₂O or Te(OH)₆. was fluorinated to give TeF₅OH by the method of Seppelt and Nothe? with use of HSO₃F as the fluorinating agent. This technique calls for the use of distilled HSO3F, and initially we encountered difficulty in producing TeF₅OH. Subsequently, it was discovered that adding a few milliliters of H₂O to the reaction mixture and heating the reaction mixture at 160-170 °C for 5-6 h resulted in continuous evolution of TeF3OH at a slow to moderate rate. Finally, undistilled HSO3F was employed which furnished TeF₅OH in 70% purified yield; 93.9 mmol of TeF5OH from 135 mmol of Te(OH), and 1.75 mol of HSO₃F. Fractional condensation was used for the final product

Fluorination of M+TeF₄O⁻. The salts C₅TeF₄O¹⁴ and KTeF₄O¹⁵ were treated with F_2 in stainless steel cylinders at low temperature. Thus CsTeF₅O (1.43 mmol) and F₂ (4.46 mmol) were allowed to react for 8 days at -45 °C. The only volatile product condensable at -196 °C was TeF₆ (0.38 mmol, 26%). Similarly at -10 °C for 2 weeks a 48% yield of TeF, was obtained from the cesium salt. When the potassium salt (2.92 mmol) and F2 (4.46 mmol) were kept at -45 °C for 6 weeks, again Tell (2.35 mmol, 80%) was the only volatile tellurium compound observed.

Synthesis of TcF₃OF from CsTcF₃O and FOSO₃F. A 30-mL stainless steel Hoke cylinder was loaded with CsTeFsO (3.42 mmol) in the glovebox. After evacuation and cooling of the cylinder to -196 °C, FOSO₂F (2.79 mmol) was added from the vacuum line. The closed cylinder was slowly warmed to -78 °C in a liquid-nitrogen-CO2 slush bath and finally kept at -45 °C for 9 days. When the cylinder was recooled to -196 °C, about 4-5 cm3 of noncondensable gas was observed to be present. This was pumped away, and the condensable products were separated by fractional condensation in a series of U-traps cooled at -78, -126, and -196 °C. The -78 °C fraction was TeF₅OH (0.19 mmol) while the -196 °C fraction was TeF₆ (0.49 mmol). A white solid was retained at -126 °C, which changed to a colorless glass and melted, over a range of a few degrees, near -80 °C to a clear, colorless liquid. This material was identified as TeF₅OF (1.91 mmol, 68% yield) on the basis of its vapor density molecular weight: found, 256.2; calculated, 257.6. Further identification was based on its spectroscopic properties (see below) and on the preparation of derivatives.16 The observed weight loss of the solid (0.375 g) agreed

⁽¹⁾ Lustig, M.; Shreeve, J. M. Adv. Fluorine Chem. 1973, 7, 175.

Seppeli, K.; Nothe, D. Inorg. Chem. 1973, 12, 2727

 ⁽³⁾ Seppell, K. Angew. Chem., Int. Ed. Engl. 1979, 18, 186.
 (4) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1981, 20. 2104.

⁽⁵⁾ Mathers, F. C.; Rice, C. M.; Brokerick, H.; Forney, R. Inorg. Synth.

⁽⁶⁾ Dudley, F. B.; Cady, G. H.; Eggers, D. F. J. Am. Chem. Soc. 1956, 78,

Schack, C. J.; Christe, K. O., submitted for publication.

Plyler, E. K.; Danti, A.; Blaine, L. R.; Tidwell, E. D. J. Res. Natl. Bur. Stand., Sect. A. 1960, 64A, 841.
"Tables of Wavenumbers for the Calibration of Infrared

Spectrometers"; Butterworths: Washington, DC, 1961.

Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc. 1969, 23, 8.

Miller, F. A.; Harney, B. M. Appl. Spectrosc. 1970, 24, 271. Pure Appl. Chem. 1972, 11, 1215.

Swalen, D. J. Comput. Programs Chem. 1968, 1, 54.

Mayer, E.; Sladky, F. Inorg. Chem. 1975, 14, 589.
 Seppelt, K. Z. Anorg. Alig. Chem. 1974, 406, 287.
 Schack, C. J.; Christe, K. O., 10 be submitted for publication.

well with that calculated (0.389 g) for the conversion of 2.79 mmol of CsTeF5O to CsSO3F. The following vapor pressure-temperature data of TeF₃OF were measured (T in °C, P in mm): -79.3, 16; -64.2, 45, -57.6, 63; -46.9, 108; -32.5, 210; -23.0, 312.

Synthesis of TeF₅OF from TeF₅OH and NF₄HF₂. A sample of NF₄HF₂nHF (10.5 mmol) was prepared and concentrated in a Teflon double-U metathesis apparatus, as previously described.17 To this reactor was added TeF₅OH (10.5 mmol) on the vacuum line at -196 °C. The mixture was allowed to warm slowly to -23 °C and was kept at this temperature for 8 h under a dynamic vacuum. The volatile products were separated by fractional condensation through traps kept at -95, -126, -142, and -210 °C. On the basis of their infrared and ¹⁹F NMR spectra the following products were collected in these traps: -210 °C, NF3 and a trace of TeF6: -142 °C, TeF6 and TeF5OF in a mole ratio of about 3:1; -126 °C, HF and some TeF₅OF; -95 °C, TeF₅OH and some HF. The white solid residue (0.57 g) decomposed during an attempt to transfer it at ambient temperature to a drybox for further characterization. The overall yield of TeF₅OF was estimated to be about 10-20% with TeF, and unreacted TeF,OH being the principal products.

Results and Discussion

Synthesis of TeF₅OF. By analogy to previous attempts^{2,18} to synthesize TeF₅OF from either Hg(TeF₅O)₂ or CsTeF₅O and F2, the fluorination of either CsTeF5O or KTeF5O with F₂ at -45 to -10 °C was unsuccessful and resulted only in TeF₆ formation. Since the decomposition of NF4XO salts had recently been shown to provide new high-yield syntheses for hypofluorites such as FOCIO3, 19 FOSO, F, 20 and FOIF, O, 4 the synthesis of NF₄TeF₅O by metathesis of NF₄SbF₆ and CsTeFsO in anhydrous HF was attempted. This attempt, however, was preempted by the fact that CsTeF₅O was found to react with anhydrous HF, undergoing a displacement reaction. Recent work¹⁷ in our laboratory had shown that even in cases of Lewis acids that are weaker than HF their NF4+ salts can be prepared by treating NF₄HF₂nHF with this acid. Therefore, this approach was studied for NF₄TeF₅O. Although the NF₄TeF₅O salt itself could not be isolated, it was found that TeF₅OH (which is equivalent to an equimolar mixture of the Lewis acid TeF4O and HF) reacted with NF_4HF_2nHF at -23 °C to produce TeF_5OF in moderate yield:

$$NF_4HF_2 + TeF_5OH \rightarrow NF_3 + TeF_5OF + 2HF$$

Since TeF₆ was the major product, we prefer to interpret this reaction in terms of a fluorination of TeF₅OH by nascent fluorine formed in the decomposition of NF4HF2, rather than in terms of a decomposition of an unstable NF₄TeF₅O intermediate. In the latter case, we would expect a nearquantitative yield of TeF5OF.

A more facile high-yield synthesis of TeF5OF was discovered by reacting CsTeF₅O with FOSO₂F at -45 °C:

$$CsTeF_1O + FOSO_2F \rightarrow CsSO_2F + TeF_2OF$$

This reaction represents a new synthetic route to hypofluorites. On the basis of the general usefulness of the analogous CIO-SO₂F reagent for the syntheses of hypochlorites,²¹ FOSO₂F may be similarly useful for the synthesis of hypofluorites.

When the synthesis of TeF₅OF from CsTeF₅O and FOSO₂F was carried out above -45 °C, the amount of TeF₆ byproduct sharply increased. For example, at -10 °C and with a reaction time of 7 days, the TeF6 to TeF5OF ratio in the product increased to 1:1. The use of an excess of CsTeF₅O in this reaction was found advantageous for the product purification since it eliminates the need for separating TeF5OF from FOSO₂F.

⁽¹⁸⁾ Sladky, F. O. Monatsh. Chem. 1970, 101, 1571.
(19) Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19. 1494

Figure 1. Observed and calculated 191 NMR spectra of the AB4 part of TeF,OF.

Figure 2. Observed and calculated 19F NMR spectra of the X part of TeF5OF.

Table I. Mass Spectrum of TeF OF Compared to Those of Telf, OCI and Telf, OH

Telf ,	OF:	TeF _s O	C1	Telf,0	H
assigni	intens	assignt	intens	assign1	inten
TeF,OF*	vw	Teli,OCt	WW	Tel-,OII*	W
Teli Ol *	} vvw	Tel: OCI	VV.	TeF_OH*	V W
TeF_O*	, vvw	•		•	
TeF.	2	Tel.	5	TeF,*	Vs
TeF.*	W	TeF.	vw	Tel/[*	W
TeF,O*	m	TeF ₃ O*	111.5	Tel ,O*	8
TeF,*	V\$	TeF(*	V\$	Tel ,	VS
TeF,	311	Tel≟,*	111	TeF.	m
TeFÔ*	VW	Tel O'	W	Tel-O*	W
TcF*	w	TeF*	w	Tel-	W
Te*	w	Te*	W	Te*	W

Properties of TeF₅OF. This compound is colorless as a gas and liquid. Its vapor pressure-temperature relationship for the range -79 to -23 °C is given by the equation

$$log[P (mm)] = 6.9022 - 1101.2/[T (K)]$$

The extrapolated boiling point is 0.6 °C. The derived heat of vaporization is $\Delta H_{\text{vap}} = 5039 \text{ cal mol}^{-1}$ and the Trouton constant is 18.4, indicating little or no association in the liquid phase. Vapor density measurements showed that in the gas phase the compound is also not associated. We were not able to observe a sharp melting point for TeF5OF because our samples showed a tendency to form a glass near -80 °C. The compound appears to be completely stable at ambient temperature and has been stored in stainless steel cylinders for more than 4 months without any sign of decomposition.

¹⁹F NMR Spectrum. The ¹⁹F NMR spectrum of TeF₅OF in CFCl₃ solution at 28 °C is shown in Figures 1 and 2 and is characteristic for a second-order AB₄X spin system. A computer-aided analysis of the spectrum resulted in the fellowing parameters: $\phi^*(A) = -52.5$, $\phi^*(B_4) = -54.0$, $\phi^*(X)$ = 128.3, J_{AB} = 180 Hz, J_{AX} = 4.9 Hz, J_{BX} = 19.0 Hz, R = 1.20, $J_{^{12}\text{Te}^{19}\text{F}}$ = 3800 Hz. These values are in excellent agreement with those found for numerous other covalent

TeF,O-type compounds.22

⁽²⁰⁾ Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1980, 19,

⁽²¹⁾ Schack, C. J.; Christe, K. O. Isr. J. Chem. 1978, 17, 20.

M-2 (22) Seppeli, K. Z. Anorg. Allg. Chem. 1973, 399, 65

Figure 3. Vibrational spectra of TeF₃OF: trace A, infrared spectrum of TeF₃OF isolated in a neon matrix (mole ratio 400:1) and recorded at 6 K; traces B and C, infrared spectra of the 8as, recorded at pressures of 74 and 3 mm, respectively, in a 5-cm path length cell equipped with AgCl windows (the very weak bands at 1272, 1105, 640, and 548 cm⁻¹ in spectrum B are due to a trace of FClO₂ resulting from the ClF₃ used for passivation): traces D and E, infrared spectra of the gas, recorded at pressures of 86 and 8 mm, respectively, in a 10-cm path length cell equipped with polyethylene windows and with polyethylene windows in the reference beam; traces F and G, Raman spectra of the liquid, recorded in 3 mm o.d. quartz tubes at -55 °C with the incident polarization parallel and perpendicular, respectively.

Table II. Vibrational Spectra of TeF, OF

2)	m 4 (rel intens ^a	bsd freq, c	C
un	Ram	₹	13
solid, -110 °C	liquid, -55 °C	Ne matrix	gas
			1800 vw
			1449 vw
			1403 w
904 (0.8)	905 (0.4) p		908 vw
735 sti	738 sh, dp	738° vs	*70 L
721 (1.3)	721 (1.1) p	727 vs	738 15
	•	718 vw	
		709 vw	
670 (10)	669 (10) p	668 vw	
662 sh	660 (0.3) dp		
613 (4)	613 (3.8) p	618 m	616 m
325 sh	325 sh, dp	327 vs	324 · 1
319 sh		318 vs	324 vs
309 (1.6)	309 (1.0) dp	308 vw	
		302 m	300 sh
		278 m	280 mw
		239 mw	241 mw
)))	904 (0.8 735 sh 721 (1.3 670 (10) 662 sh 613 (4) 325 sh 319 sh 309 (1.6 301 sh 279 (0.2 240 (0.2	Ruman liquid, solid, -55 °C -110 °C 905 (0.4) p 904 (0.8 738 sh, dp 721 (1.1) p 721 (1.3 669 110) p 660 (0.3) dp 662 sh 613 (3.8) p 319 sh 325 sh, dp 325 sh 319 sh 309 (1.0) dp 301 (0.5) p 301 sh 279 (0.2) dp 240 (0.2) p 240 (0.2	Ne matrix

⁴ Uncorrected Raman intensities (peak heights). ^b For mode description see Table IV. ^c Band shows tellurium isotope fine structure with splittings of about 1.30 cm. ¹

Mass Spectrum. The mass spectrum of TeF₅OF is listed in Table I together with the spectra of TeF₅OCl and TeF₅OH, which were measured for comparison. All of the listed frag-

Figure 4. Vibrational spectra of TeF₃OCl: traces A and C, infrared spectra of TeF₃OCl isolated in a neon matrix (mole ratio 400:1) at 6 K; trace B, infrared spectrum of the gas, recorded at a pressure of 27 mm in a 5-cm path length cell equipped with AgCl windows; traces D and E, Raman spectra of the liquid, recorded in 3 mm o.d. quartz tubes at -80 °C with the incident polarization parallel and perpendicular, respectively; trace F, spectrum recorded under the same conditions as for trace D, except for a narrower slit width.

Table-III. Vibrational Spectra of Telf sOCl

	l intens ^a)	I freq. cm 1 (re	obsa
	Raman liquid,	R	1
assign) ⁸	−80 °C	Ne matrix	gas
$v_{3} + v_{12}$			1365 vw
P _B	809 (0.9) p	814 s 811 s	812 \$
r.	730 sh, dp	732 vsc	732 vs
P.	713 (1.6) p	718 s	732 VS
12	663 (10) p		
ν_{s}	655 sh, dp		
P_3	554 (6.5) p	558 m	551 m
ν_{\bullet}	328 sh, dp	327 vs	
ν,	316 (0.8) dp	322 vs	
Ρ,	308 (0.8) dp		
r _{ir}		285 m	
₽4	281 (2.8) p	281 m	
P ₁₃	218 (1.1) p		
P14	141 (0.3) dp		

^a Uncorrected Raman intensities. ^b For mode description see Table IV. ^c Band shows fine structure with splittings of about 1.30 cm⁻¹ due to fellurjum isotopes.

ments showed the characteristic tellurium isotope pattern, and therefore the individual m/e listings were omitted for simplicity. The spectra of all three compounds show weak parent ions and TeF₃⁺ as the base peak.

Vibrational Spectra of TeF₃OF and TeF₃OCl. The infrared spectra of gaseous and of neon-matrix-isolated TeF₃OF and the Raman spectra of liquid and solid TeF₃OF were recorded (see Figure 3), and the observed frequencies are summarized in Table 11. Since the assignments previously reported²³ for TeF₃OCl could not be reconciled with our results for TeF₃OF, the vibrational spectra of TeF₃OCl were also recorded (see Figure 4 and Table 111). The following deviations from the

⁽²³⁾ Seppelt, K. Z. Anorg. Allg. Chem. 1973, 399, 87.

Table IV. Vibrational Spectra of Tell OF and Tell OCI and Their Assignment Compared to Those of Tell Cl

				ohså freq. em	tiel intensa)		
	approx descripii	To	:l·¸Cl ^b	Te	F,OCT	Tel	10,
assignt	of mode	IR (gas)	Raman (liquid)	IR (gas, matrix)	Raman (liquid)	IR (gas, matrix)	Raman (liquid)
$C_{AB} = A_1 \cdot c_1$	r(Tel·)	711 sh, m	708 (3.1) p	718 5	713 (1.6) p	727 vs	721 (1.11 p
1/3	$v_{\bullet}({\rm TeF}_{\bullet})$	662 VW	659 (10) p		663 (10) p		669 (10) p
P ₃	v(TeX)	411 ms	413 (7.7) p	551 m	554 (6.5) p	616 m	613 (3.8) p
- e4	δ _e (Tet _e)	317 s	312 (0.8) p	281 m	281 (2.8) p	301 m	301 (0.5) p
\overline{B}_{1} Γ_{1}	$v_{\mathbf{s}}(\mathbf{Id}^{\mathbf{s}})$		651 (0.8) dp		655 sh, dp		660 (0,3) dp
1,	== 8(Td+) >>>						
$B_x v_y$	ا مان مان مان مان مان مان مان مان مان ما		302 (0.5) dp		308 (0.81 dp	308 vw	309 (1 th dp
L'e,	cas(Tel 4)	726 NV	726 (0.6) dp	732 88	730 str. dp	7.38 vs	738 sh, dp
r.	είί Tel ()	325 ms	327 (0.9) dp	327 88	328 sh, dp	327 44	325 sli. dp
l'je	δ(XTel] l		167 (1.8) dp	322 15	316 i0,81 dp	318 vs	(309 - 325)
1711	$\delta_{as}(tel_a)$	259 m	259 i 1.71 dp	285 m	•	280 mw	279 (0.2) dp
$C_{\mathbf{s}} = \overline{\mathbf{X}} \cdot \mathbf{r}_{12}$	v(XY)			812 8	809 (0.9) p	908 vw	905 to 4) p
$\tilde{\mathbf{A}} \cdot \tilde{\mathbf{e}}_{0}$	8) IcXY)				218 (1.1) p	240 mw	240 (0.2) p
1714	τ(TcXY)				141 (0.5) dp		166 IO 11 de

a Uncorrected Raman intensities (peak heights). b Data from ref 24,

previous literature data²¹ were observed. (i) The infrared spectrum of the gas does not exhibit a very strong band at 708 cm⁻¹. Although our Ne-matrix spectra show the presence of two intense bands at 732 and 718 cm⁻¹, respectively, their frequencies are too close to result in two separate bands in the gas-phase spectrum. (ii) In the Raman spectrum of the liquid the 141-cm⁻¹ band is depolarized and the 809-cm⁻¹ band is polarized. (iii) The infrared spectrum of the neon-matrix sample shows the presence of two fundamental vibrations in the 280-cm⁻¹ region (see trace C of Figure 4).

Using the well-established assignments of TeF_3Cl and the revised experimental data of TeF_3OCl for comparison, we can readily assign the vibrational spectra of TeF_3OF (see Table IV), assuming a model with C_4 , symmetry for the TeF_3O part and C_4 symmetry for the TeOF part of the molecule:

Except for the symmetric out of phase, out of plane TeF_4 deformation mode in species B_1 , which is usually not observed for pseudooctahedral molecules and is inactive under O_k symmetry, all fundamentals expected for the above C_4 , C_5 model were observed. The assignments (see Table IV) are straightforward and show for the three molecules almost identical frequencies for the TeF_5 part of the molecules. The modes involving the XY group of this TeF_5 XY molecule show the expected mass effects for different X and Y groups. Since

the Te–O stretching mode is expected to couple strongly with the O–Hal stretch and to couple moderately with $\delta_s(\text{TeF}_4)$ (A₁),²⁵ these modes also exhibit a mass effect.

Comparison of the assignments of Table IV with those previously given²³ for TeF₃OCl shows that with the exception of v_7 (B₂) and v_{13} all the previously given assignments for the deformation modes should be revised. Since a thorough normal-coordinate analysis has previously been carried out²⁴ for TeF₃Cl and since the TeF₃Cl and TeF₃XY spectra are similar, a normal-coordinate analysis of the latter molecules appears unwarranted.

Conclusion. The results of this study show that FOSO₂F is a useful reagent for the synthesis of hypofluorites. Furthermore, it is shown that TeF₂OF, as expected from comparison with TeF₂OCl, TeF₂OBr, and FOIF₄O, indeed exists and is a stable molecule. The TeF₂OF molecule was characterized, and the vibrational assignments were made for TeF₃OF and TeF₃OCl.

Acknowledgment. The authors are grateful to R. D. Wilson for his help in some of the experiments, to L. R. Grant for helpful discussions, and to K. Seppelt for a sample of TeF,OH used in the initial part of this work. This work was financially supported by the Air Force Office of Scientific Research, the Office of Naval Research, and the Army Research Office.

Registry No. TeF₅OH, 57458-27-2; CsTeF₅O, 19610-48-1; KTeF₅O, 19610-51-6; TeF₅OF, 83314-21-0; FOSO₅F, 13536-85-1; NF₄HF₃, 71485-49-9; TeF₅OCI, 41524-13-4.

⁽²⁴¹ Brooks, W. V. F.; Eshaque, M.; Lau, C.; Passmore, J. Can. J. Chem. 1976, 34, 817.

⁽²⁵⁾ Christe, K. O.; Curtis, E. C. Inorg, Chem. 1982, 31, 3938. (26) After completion of this work, D. D. DesMarteau has informed us in

a private communication that he has also used FOSO. F for the preparation of CF,C(O)OF from the corresponding aikali-metal salt.

In conclusion, we have identified three crystallina forms of N2O4. We believe that a-N2O4 is identical with tha low-temperature crystal already reported. The β-N₂O₄ form is new, and we are currently working to obtain its crystal structure. We know, however, that this form is not cubic, that it has a significant N-N bond alignment lacking in a a-N2O4, and that it converts readily to the ionic structure. The third form of N2O, is the ionic NO'NO3. which is apparently the thermodynamically favored atructure at high density. It is obtained upon either ranidly increasing the pressure of fluid N2O4 or increasing the pressure of \$\beta-N_2O_4\$ above 20 kbar. Indeed, it is the only well-formed single a-N2O4 crystals that can survive at higher than 20 kbar. Work is now in progress to identify the crystal structures of these various solida by X-ray diffraction.

Note Added in Proof. We have recently become aware of work by Boldman and Jodlic also concerning the production of NO*NO₃ from N₂O₄. In this work the metastable ionic solid was trapped in a low-temperature neon matrix.

Acknowledgment. This work was performed under the auspices of the U.S. Department of Energy.

Registry No. N₂O₄, t0544-72-6.

APPENDIX N

Far-Infrared Laser Magnetic Resonance Detection of FO₂

F. Temps, H. Gg. Wagner,

Max-Planck-Institut für Strömungsforschung, D-3400 Göttingen, F.R.G.

P. B. Dav es. D. P. Stern.

Department of Physical Chemistry, University of Cembridge, Cembridge C82 IEP, England

and K. O. Christa

Rockwell International, Rockettyne Division, Canoga Park, California \$1304 (Received; September 14, 1983)

New far-infrared laser magnetic resonance (LMR) spectrs have been detected in the reactions of fluorine atoms with O2 and O3. These are assigned to the FO2 radical based on chemical and kinetic results and on a qualitative spectroscopic investigation. Thermal decomposition of O₂SbF₆, a known source of FO₂, also yielded the same spectra.

Introduction

The FO radical has not been as extensively studied as the other diatomic halogen oxidea. The first structural parameters for the radical in the gas phase were determined only recently from the 10-µm laser magnetic resonance spectrum of the ²II ground state. ¹ Subsequent photoelectron spectroscopy yielded ionization potentials,2 and improved vibrational and rotational parameters have been determined from infrared diode laser spectroscopy by McKellar et al.3

Prior to these investigations the microwave spectrum had been searched for unsuccessfully by gas-phase electron paramagnetic resonance spectroscopy.4 The relatively high concentrations of FO measured mass spectrometrically and the souch enhanced sensitivity of far-infrared laser magnetic resonance over microwave spectroscopy led to the present search for FO spectra by LMR. During this investigation strong, previously unreported spectra were detected at many laser frequencies. Based on chemical and qualitative spectroscopic evidence the carrier of these

TABLE I: Source Reactions and Far-IR Lazer Lines Used to Detect FO, Spectra

		source reaction		
wavelength, µm	laser gas	F + O,	F + O, +	
119	CH,OH		X	
170	CH,OH		Х	
354	CD OD	X	X X	
383	CH.F.	X	X	
419	нсоон		X	
433	нсоон		X	
502	C,H,F	X	х	
513	НСООН		X	
634	C,H,Cl	X	X	
635	C.H.Br	x	X	
742	нсоон	X		

^a X indicates spectra observed.

spectra is identified as the FO, radical.

LMR Spectra and Assignment

The LMR spectrometers operated on a large number of far-infrared molecular laser lines excited by optical pumping with flowing gas CO2 lasers. Further details of these instruments have been published elsewhere. 47 With

A. R. W. McKellar, Can. J. Phys., 57, 2106 (1979).
 J. M. Dyke, N. Jonathan, J. D. Milla, and A. Morria, Mol. Phys.,

^{44, 1177 (1980).} (3) A. R. W. McKellar, C. Yamada, and E. Hirota, J. Mol. Spectrosc.,

^{97, 425 (1983).}

 ⁽⁴⁾ D. H. Lavy, J. Chem. Phys., 56, 1415 (1972).
 (5) H. Gg Wagner, C. Zetzsch, and J. Warnatz, Ber. Bunsenges, Phys. Chem., 78, 526 (1972). N-1

⁽⁶⁾ A. W. Preuse, F. Tempe, end H. Gg Wagner, MPI für Strömungsforschung, report 18, Göttingen, 1980.
(7) D. P. Stern, Ph.D. Thesis, University of Cambridge, 1983.

Figure 1. LMR spectrum in parallel polarization recorded with the 354-µm CO₃CO leser line by using the reaction of F atoms with ozone as source.

Figure 2. Part of the LMR spectrum at 634 μ m in perpendicular polarization between 0.3 and 0.5 T. Identical spectra were recorded in both F + O₃ and F + O₂ + M sources.

He-cooled bolometer detectors, 1-2-kHz Zeeman modulation, and phase-sensitive detection, the sensitivity for OH was $\sim 2 \times 10^6/\text{cm}$.³

Initially the reaction of F atoms with ozone was selected for generating high concentrations of FO⁵

$$F + O_3 = FO + O_2$$
 $\Delta H^{\circ}_{300} = -110 \text{ kJ mol}^{-1} (1)$

Mixing occurred within a few milliseconds of the center of the LMR sampling region, which was part of a fast flow system inside the far-IR laser cavity. Under these conditions the concentration of FO is known⁵ to be $>2 \times 10^{13}/\text{cm}$.³

Suitable laser lines for FO in both v=0 and 1 levels were selected for rotational transition frequencies calculated from the 10- μ m data. Spectra were detected at 11 wavelengths between 119 and 742 μ m (Table I). They usually consisted of complicated patterns (Figures 1 and 2) with occasional doublet splittings of ~ 50 G (Figures 3 and 4). All the spectra behaved identically with respect to reactant concentrations, pressure, etc. indicating that a single carrier was responsible.

The complexity and extent of these spectra suggested that FO was not the carrier and an alternative source, reaction 2, was tried. This reaction gave identical but

$$F + O_2 + M = FO_2 + M$$
 (2)

more intense spectra. Zetzsch⁸ has reported a kinetic study of (2) using mass apectroscopy and shown that (2) is followed by reaction 3 which partly removes FO₂. It was also

$$\mathbf{F} + \mathbf{FO}_2 = \mathbf{F}_2 + \mathbf{O}_2 \tag{3}$$

found⁸ that FO₂ formed in (2) increased steadily with reaction time and identical behavior was observed with the

Figure 3. Part of the 382.6- μ m spectrum showing the effect of increasing pressure for the F + O₂ + M source.

Figure 4. Pert of the LMR spectrum at 513 µm in perpendicular polarization showling a doublet splitting of the lines.

spectra reported here. If the LMR spectra arise from FO₂ formed in the three-body reaction 2 their intensity should also increase linearly with pressure and with O₂. Both effects were qualitatively observed, for example, in the spectra at 382.6 μ m (Figure 3) recorded at two different pressures.

In addition to FO₂ small concentrations of FO were detected in the mass spectrometric study.⁸ These were though to arise from reaction with an O-atom impurity in the rapid interaction

$$O + FO_2 = FO + O_2 \tag{4}$$

This reaction was also used to test the assignment. When oxygen atoms were added through a second discharge the new spectra disappeared and the O_2 LMR signals increased in intensity. The presence of the same but weaker spectra in the $F + O_3$ system is accounted for by the known^{9,10} bimolecular reaction of FO with itself (reaction 5), followed by reaction 2, and also by the reaction of FO with O_3 .

$$FO + FO = O_2 + 2F \tag{5}$$

Supplementary evidence was provided by using a quite different source of the radical. It has been shown^{11,12} that

Hg. Gg wagner, J. Warnatz, and C. Zetzsch, Angeu. Chem., Int. Ed. Engl., 10, 564 (1971).

⁽¹⁰⁾ M. A. A. Clyne and R. T. Watson, Chem. Phys. Lett., 12, 344 (1971).

⁽¹¹⁾ R. D. Coombe, D. Pilipovich, and R. K. Horne, J. Phys. Chem., 82, 2484 (1978).

⁽⁸⁾ C. Zetzsch, "European Symposium on Combustion", 1973, p 35.

thermal decomposition of O2As 1, and O2ShF6 is a source of FO2. A weak spectrum identical with that in Figure 3 was obtained when a sample of O2SbF, was heated to ahout 200 °C and the products pumped rapidly into the spectrometer sample region.

Supporting spectroscopic evidence comes from the doublet splittings observed in a small number of spectra indicating the presence of a single I = 1/2 nucleus. These splittings are about 50 G (Figure 4) and much smaller than expected for FO. ESR spectra of FO2 in an inert matrix and in the liquid phase yield values 3 of |A| = 36 MHz (12.83 G¹⁴) and $B_1 = \pm 252$, $B_2 = \mp 177$, and $B_3 = \mp 75$ MHz for the fluorine hyperfine splittings. Gas-phase hyperfine splittings cannot be calculated from this data without an exact rotational assignment but the relative magnitude of isotropic and anisotropic components accounts qualitatively for observed splittings several times larger than A itself. Assuming the same geometry suggested by Adrian¹³ we have calculated the rotational levels and transitions of FO₂. Both a and b-type transitions are allowed and for each laser frequency several possible candidates exist. However, these predictions are strongly dependent on the assumed geometry and not surprisingly transitions occur in high rotational levels accounting, in part, for the complexity of the spectra.

Discussion

The discovery of strong LMR spectra in the ges phase attributable to FO2 rather than FO is not surprising considering the ubiquitous presence of FO₂ in the condensed and liquid phases. 13-16.18 Recently, McKellar 19 has

(12) J. E. Griffiths, D. Distefano, and W. A. Sunder, J. Raman.

Spectrosc., 9, 67 (1980). (13) F. J. Adrian, J. Chem. Phys., 45, 1548 (1967).

measured the electric dipole moment of FO using 10-44 LMR. In the v = 0 level it is 0.0043 D which explains the elusive nature of its rotational spectra. Following th initial experiments on FO2 the far-infrared LMR spects of CISO and FSO have been reported.21 FSO has als been investigated by microwave spectroscopy²² which ha enabled an assignment of its 513-µm LMR spectrum to be made. Some of the FO2 spectra are strikingly similar to both FSO and CISO spectra, i.e., many sharp resonance varying steadily in intensity (Figures 1 and 2). The complexity of these Zeeman patterns suggests that the best approach initially for structure determination will be microwave spectroscopy or tunable laser spectroscopy in the mid-infrared, and results have recently been reported on two of the fundamentals of FO2 using diode laser spectroscopy.23 The discovery of these quite intense far-infrared LMR spectra of FO2 may well explain the origin of many unassigned LMR spectra at 524.25 and 10 μ m¹ in systems containing fluorine atoms.

Acknowledgment. We thank the Max-Planck-Geasellschaft and the Science and Engineering Research Council for financial support. We are grateful to Prof. E. Hirota for communicating his results to us before publication and Prof. B. A. Thrush for helpful comments on the work. K.O.C. thanks the Office of Naval Research and the US Army Office for financial support and Dr. C. J. Schack and Mr. R. D. Wilson for help with the preparation of the O2 * salta.

Registry No. FO₂, 15499-23-7.

CONTROL OF THE PARTY OF THE PAR

⁽¹⁴⁾ R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 44, 434

⁽¹⁵⁾ P. H. Kasai and A. D. Kirshenbaum, J. Am. Chem. Soc., 87, 3069

⁽¹⁶⁾ A. Arkell, J. Am. Chem. Soc., 87, 4057 (1965).

⁽¹⁷⁾ R. D. Spratley, J. J. Turner, and G. C. Pimentel, J. Chem. Phys.,

⁽¹⁸⁾ M. E. Jacox, J. Mol. Spectrosc., 84, 74 (1980).

⁽¹⁹⁾ A. R. W. McKellar, Bull. Soc. Chim. Belg., 92, 516 (1983) (20) P. B. Davies, F. Temps, H. Gg Wagner, and D. P. Stern, MPI fur

Strömungsforschung, report 19, 1982
(21) H. E. Radford, F. D. Wayne, and J. M. Brown, J. Mol. Spectrosc.,

^{99, 209 (1983).} (22) Y. Endo, S. Saito, and E. Hirots, J. Chem. Phys., 74, 1568 (1981).
(23) E. Hirota, unpublished results.
(24) J. A. Burtenshaw, Ph.D. Thesis, University of Southampton, 1979.

APPENDIX O

CHLORYL FLUORIDE

6NaClO₃ + 4ClF₃ 6NaF + 2Cl₂ + 3O₂ + 6ClO₂F

Submitted by KARL O. CHRISTE*, RICHARD D. WILSON*,

and CARL J. SCHACK*

Checked by D. D. DESMARTEAU[†]

Chloryl fluoride is the most common chlorine oxyfluoride. It is always encountered in reactions of chlorine mono-, tri-, or pentafluorides with oxides, hydroxides or poorly passivated surfaces. It was first obtained in 1942 by Schmitz and Schumacher by the reaction of ${\rm ClO}_2$ with ${\rm F}_2$. Other methods involve the reaction of ${\rm KClO}_3$ with either ${\rm BrF}_3$ or ${\rm ClF}_3^{3,4}$. The simplest method involves the reaction of ${\rm NaClO}_3$ with ${\rm ClF}_3$, resulting in the highest yields and products which can readily be separated.

Procedure

Caution. The hydrolysis of ClO₂F can produce shock sensitive ClO₂. Therefore, the use of a slight excess of ClF₃ is recommended for the synthesis to suppress any ClO₂ formation. Chlorine trifluoride is a powerful oxidizer and ignites most organic substances on contact. The use of protective face shields and gloves is recommended when working with these materials.

Dry sodium chlorate (30 mmol 3.193g) is loaded in the dry box into a 30-mL high-pressure stainless steel Hoke cylinder equipped with

^{*}Rocketdyne, A Division of Rockwell International Corp., Canoga Park, CA 91304

 $^{^\}dagger$ Department of Chemistry, Clemson University, Clemson, SC 29631

a stainless steel Hoke valve. The cylinder is connected to a stainless steel Teflon FEP vacuum manifold (Fig. X) which has been well passivated with CIF3 until the CIF3, when condensed at -196°, shows no color. The cylinder is then evacuated and ClF_3 * (21.5 mmol) is condensed into the cylinder at -196°. Next, the cylinder is allowed to warm to room temperature and is kept at this temperature for one day. The cylinder is then cooled back to -1960 and during subsequent warm-up of the cylinder the volatile products are separated by fractional condensation in a dynamic vacuum through a series of U-traps kept by liquid N_2 slush baths at -95° (toluene), -112° , (CS₂), and -126° (methylcyclohexane). The trap at -95° contains only a trace of chlorine oxides, the trap at -112° contains most of the ClO₂F (29 mmol) and the trap at -126° (7 mmol) contains mainly Cl_2 and some ClO₂F. The yield of ClO₂F is almost quantitative (29.4 mmol, 98%) based on the limiting reagent NaClO3. The purity of the material is checked by infrared spectroscopy in a well passivated Teflon or metal cell equipped with AgCl windows and should not show any impurities. A small amount of chlorine oxides which can readily be detected by their intense color if present or formed during handling of ClO2F, can readily be removed by either conversion to ClO₂F with elemental F₂ or by allowing them to decompose to Cl_2 and O_2 during storage at ambient temperature. Chloryl fluoride can be stored in a metal vessel at room temperature for long time periods without significant decomposition.

Properties⁶

Chloryl fluoride is a colorless liquid boiling at -6° . The infrared spectrum of the gas 4 shows the following major bands (cm⁻¹): 1271(vs),

^{*} Available from Ozark Mahoning Co., 1870 So. Boulder, Tulsa, OK 74119

[†] The checker used one-third of the stated scale and obtained ClO₂F in a yield of 95%.

1106(ms), 630(s) and 547(ms). The $^{19}{\rm F}$ NMR spectrum 7 of the liquid at -80 $^{\circ}{\rm C}$ consists of a singlet at 315 ppm downfield from external CFCl₃.

References

- H. Schmitz and H. J. Schumacher, Z. anorg. allgem. Chem., 249, 238 (1942).
- 2. A. A. Woolf, J. Chem. Soc. 4113 (1954).
- A. Engelbrecht and H. Atzwanger, J. Inorg. Nucl. Chem.,
 2, 348 (1956).
- 4. D. F. Smith, G. M. Begun, and W. H. Fletcher, Spectrochim. Acta, 20, 1763 (1964).
- K. O. Christe, R. D. Wilson and C. J. Schack, Inorg. Nucl. Chem. Lett., <u>11</u>, 161 (1975).
- 6. K. O. Christe and C. J. Schack, Adv. Inorg. Chem. Radiochem., 18, 319 (1976).
- 7. K. O. Christe, J. F. Hon, and D. Pilipovich, Inorg. Chem., 12, 84 (1973).

0-4

Fig. X. Typical metal-Teflon vacuum system used for handling strongly oxidizing or corrosive fluorine compounds. As the vacuum source A, a good mechanical pump (10⁻⁴ torr or better) is normally sufficient. The use of a fluorocarbon oil, such as Fomblin (Montedison), Krytox (Du Pont), or Halocarbon (Halocarbon Products Corp.) as a pump oil is strongly recommended for safety reasons. B, glass waste trap with glass or Teflon stopcocks and a detachable bottom; only fluorocarbon grease should be used for the stopcocks and joint; the trap is kept cold by a dewar with liquid nitrogen; great care must be taken and a face shield and heavy leather gloves must be worn when pulling off the cold lower half of the waste trap for disposal of the trapped material by evaporation in a fume hood. The glass waste trap can be connected to the metal line by either a glass-metal joint, a graded glass-metal seal, or most conveniently by a quick coupling compression fitting with Viton O-ring seals; C, scrubber for removal of fluorine; the scrubber consists of a glass tower packed with alternating layers of NaCl and soda lime which are held in place by plugs of glass wool at either end; the valves E are arranged in such a manner that the scrubber can be by-passed during routine operation; D, Teflon FEP (fluoro-ethylene-propylene-copolymer) or PFA (polyperfluoroether) U-traps made from 1/2 or 3/4 inch o.d. commercially available heavy wall tubing,; all metal lines are made from either 316 or 321 3/8 inch o.d. stainless steel or Monel tubing, except for the lines from the U-traps to the Heise gage J for which 1/4 inch o.d. tubing is preferred; stainless steel bellows valves E, such as Hoke Model 4200 series, are used throughout the

whole line; metal-metal or metal-Teflon connections are all made with either flare or compression (Swagelok or Gyrolok) compression fittings; F, lecture bottle of ClF3 (Air Products) used for passivation of the vacuum line; G, He gas inlet; H, F, gas inlet; I, connectors for attaching reaction vessels, reagent containers, etc.; J. Heise Bourdon tube pressure gage (0-1000mm±0.1%); K, crude pressure gage (0-5 atm); L, 2 liter steel bulbs used for either measuring or storing larger amounts of gases; M, 3/8 inch o.d. metal U-tubes to permit condensation of gases into the storage bulbs L; N, infrared cell for gases, Teflon body with condensing tip, 5 cm pathlength, AgCl windows. The four U-traps D, connected in series constitute the fractionation train used routinely for the separation of volatile materials by fractional condensation employing slush baths of different temperatures. The volumes of each section of the vacuum line are carefully calibrated by PVT measurements using a known standard volume.

APPENDIX P Contribution from Rocketdyne. A Division of Rockwell International Corporation, Canoga Park, California 91304

Synthesis of N.N-Diffuoro-O-perfluoroalkylhydroxylamines. 1. Reaction of Perfluoroalkyl Hypofluorites with Difluoramine

WALTER MAYA.19 DONALD PILIPOVICH,19 MICHAEL G. WARNER,16 RICHARD D. WILSON, and KARL O. CHRISTE®

Received June 14, 1982

Perfluoroalkyl hypofluorites react with difluoramine in the presence of alkali-metal fluorides to produce the corresponding ONF₂ substituted perfluoroalkanes. This method was used to prepare the prototype compounds CF₂ONF₂, (CF₃)₂CFONF₂. CF₂(ONF₂)₂, and FOCF₂ONF₂. Physical and spectroscopic properties are reported for these compounds including vibrational assignments for CF3ONF2, the simplest member of this class of compounds.

Introduction

Although the existence of NF3O has been known for more than 20 years,2 only a few RONF, compounds have been reported, e.g. CF₃ONF₂, FC(O)ONF₂, SF₃ONF₂, and FS-O2ONF2, usually prepared by the combination of NF2 and RO radicals generated from N₂F₄ and the corresponding peroxides or hypohalites, respectively.³ In 1964 studies at Rocketdyne showed that the low-temperature reaction of alkali-metal fluoride-difluoramine adducts with fluorocarbon hypofluorites provides a new synthetic route to -ONF2-substituted fluorocarbons. However, except for a brief and incomplete description of some of the results in a U.S. patent, 4 these data remained unpublished. In this paper, we present a full account of this and some subsequent work in our laboratory.

Experimental Section

Caution! Difluoramine is highly explosive,5 and protective shielding should be used during handling operations. The compound was always condensed at -142 °C, and the use of a -196 °C bath for condensing HNF2 should be avoided. Furthermore, the CsF.HNF2 adduct invariably explodes before reaching 0 °C.

Materials and Apparatus. Volatile materials, except for HNF2, were manipulated in a passivated (with CIF3) stainless-steel vacuum line equipped with Teflon FEP U-traps and 316 stainless-steel bellows-seal valves and a Heise Bourdon tube-type pressure gauge. Difluoramine was handled in either a Pyrex glass or an all-Teflon PFA vacuum system. The hypofluorites CF₁OF, (CF₃)₂CFOF, and CF2(OF)28,9 and difluoramine6 were prepared by literature methods. The alkali-metal fluorides were dried by fusion in a platinum crucible and then cooled and powdered in the dry N2 atmosphere of a glovebox.

Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer calibrated by comparison with standard gas calibration points, 10,11 and the reported frequencies

Table 1. Reaction of Perfluoroalkyl Hypothuorites with HNF, in the Presence of $K\bar{E}^0$

starting materials (mole ratio)	product	yield. 7
CF,OF, HNF, (1:1)	CE,ONE,	10
$(CF_4)_*CFOF_*IINF_*(1:1)$	(CE ₂),CFONE,	10
$CF_1(OF)_2$, $HNF_2(1:2)$	$CF_{i}(ONF_{i}),$	10-20
CF ₂ (OF)ONF ₂ , HNF ₂ (1:2.51	CF ₂ (OF)ONF ₂ CF ₂ (ONF ₂),	5-10 20-100 ⁶

a In all reactions, except for that indicated in footnote b, HNF, KF was performed at -78 °C with use of using a large excess of KF; the perfluoroalkyl hypofluorites were added at ~126 or ~142 °C, and the mixtures were allowed to warm slowly to -80 °C over a period of several hours. The quantitative yield of Cl₂(ONl₂), was achieved by cocondensation of the starting materials over KF (see text).

are believed to be accurate to ±2 cm⁻¹. The spectra of gases were obtained by using a Teflon cell of 5-cm path length equipped with AgCl windows. The spectra of matrix-isolated CF3ONF2 were obtained at 6 K with an Air Products Model DE202S helium refrigerator equipped with Csl windows. Research grade Ar (Matheson) was used as a matrix material in a mole ratio of 300:1.

The Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 488-nm exciting line of an Ar ion laser and a Claassen filter12 for the elimination of plasma lines. Quartz tubes (3-mm o.d.), closed by a metal valve, were used as sample containers in the transverse-viewing, transverse-excitation technique. A previously described13 device was used for recording the low-temperature spectra. Polarization measurements were carried out by method VIII as described by Claassen et al.12

The 19F NMR spectra were recorded at 84.6 MHz on a Varian Model EM 390 spectrometer. Chemical shifts were determined relative to the CFCl₁ solvent with positive shifts being downfield from CFCl₁.14

Mass spectra were recorded with a CEC21-103C mass spectrometer modified with a metal inlet system, CEC Part No. 285400.

Syntheses of RONF₂ Compounds. Most reactions between the perfluoroalkyl hypofluorites and HNF2 were carried out according to the following general procedure. Finely powdered dry KF (2 g) was loaded in the drybox into a 300-ml. Pyrex reactor. Difluoramine (4 mmol) was added from the glass or Teflon line to the reactor at -142 °C. The mixture was warmed briefly to -78 °C and then recooled to -142 °C. The reactor was transferred to the metal line, and a slightly less than stoichiometric amount of perfluoroalkyl hypofluorite was added at -142 °C. The mixture was allowed to warm slowly over several hours to -78 °C. The volatile products were separated by fractional condensation through a series of cold traps kept at appropriate temperatures. The amounts of material were determined by PVT messurements and identified by spectroscopic techniques. Typical reaction conditions and yields are summarized

Synthesis of F2C(ONF2)2 in a Flow System. In a vacuum line, a U-trap filled with glass beads coated with KF was kept at -112 °C;

(3) For a review of these reactions see: Schmutzler, R. Angew Chem., Int.

⁽¹⁾ Present addresses: (a) Department of Chemistry. California State Polytechnic University, Pomona, CA 91768; (b) MVT, Microcomputer Systems, Inc., Westlake Village, CA 91361; (c) Jacobs Engineering Group, Inc., Pasadena, CA 91101.

(2) NF₁O was independently discovered in 1961 at Rocketdyne (Maya, W.

U.S. Patent 3320147, 1962) and Allied Chemical (Fox, W. B.; Mackenzie, J. S.; Vaanderkooi, N.; Sukornick, B.; Wamser, C. A.; Holmes, J. R.; Eibeck, R. E.; Stewart, B. B. J. Am. Chem. Soc. 1966, 88, 2604) and in 1965 at the University of British Columbia, Vancouver (Bartlett, N.; Passmore, J.; Wells, E. J. Chem. Commun. 1966, 213).

Ed. Engl. 1968, 7, 440.
Pilipovich, D.; Warner, M. G. U.S. Patent 3663 588, 1972.
Lawless, E. W.; Smith, I. C. "Inorganic High Energy Oxidizers"; Marcel Dekker: New York, 1968; p 69.

Lawton, E. A.; Weber, J. Q. J. Am. Chem. Soc. 1963, 85, 3595.
 Lawton, E. A.; Pilipovich, D.; Wilson, R. D. Inorg. Chem. 1965, 4, 118.
 Ruff, J. K.; Pitochelli, A.; Lustig, M. J. Am. Chem. Soc. 1966, 88, 4531. Lustig, M.; Pitochelli, A. R.; Ruff, J. K. Ibid. 1967, 89, 2841.

Hohorst, F. A.; Shreeve, J. M. J. Am. Chem. Soc. 1967, 89, 1810.
 Plyler, E. K.; Danti, A.; Blaine, L. R.; Tidwell, E. D. J. Res. Natl. Bur.

Stand., Sect. A 1960, 64, 841.

(11) International Union of Pure and Applied Chemistry, "Tables of Wavenumbers for the Calibration of Infrared Spectrometers": Butterworths: Washington, DC, 1961.

⁽¹²⁾ Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc. 1969, 23, 8.
(13) Miller, F. A.; Hamey, B. M. Appl. Spectrosc. 1970, 24, 271.
(14) Pure Appl. Chem. 1972, 11, 1215.

on either side, U-traps were kept at -142 °C to condense products. A mixture of F2C(OF)2 (6.70 mmol) and HNF2 (6.70 mmol) was passed through the system. The reactants were condensed at -142 *C allowed to pass through the cold traps and KF trap by warming, and recondensed at -142 °C. The operation was repeated several times. The products were separated by fractional condensation through traps kept at -142 and -196 °C. The -142 °C trap contained 0.45 mmol of a mixture of F2C(ONF2), and FOCF2ONF3. In the -196 °C trap, there was left 6.52 mmol of a mixture of F2C(OF)2, N2F4. and NF.

Results and Discussion

Syntheses of RONF₂ Compounds. Perfluoroalkyl bypofluorites react with alkali-metal fluoride-HNF2 adducts at low temperatures to produce the corresponding -ONF2-substituted perfluoroalkanes:

The generality of this reaction was demonstrated by the synthesis of a primary (CF₁ONF₂), a secondary (CF₁)₂CFON- F_2 , a geminal bis-substituted $[CF_2(ONF_2)_2]$, and a geminal -OF-substituted (FOCF2ONF) N, N-diffuoro-O-perfluoroalkylhydroxylamine. It was found important to preform the alkali-metal fluoride-difluoramine adduct because in the absence of alkali-metal fluorides most of these bypofluorites react uncontrollably and sometimes explosively with HNF2 to give zero yields of the desired -ONF2-substituted products. A study of the effect of different alkali-metal fluorides showed that KF-, RbF-, and KF-NaF mixtures were all equivalent; CsF afforded only traces of the desired compounds and is also less desirable because of the tendency of its HNF2 adduct to explode before reaching 0 °C.7 Sodium fluoride alone and LiF were not examined because they do not form an adduct with

The yields of RONF2 in these reactions were generally low and were in the 10-20% range, except for the reaction of CF₂(OF)ONF₂ with HNF₂. When this reaction was carried out with preformed KF.HNF2, the yield of CF2(ONF2)2 was low, but it was found that CF2(OF)ONF2 and HNF2 could be premixed without reaction and after cocondensation over KF at -142 °C and slow warm-up to -78 °C produced CF,(ONF₂)₂ in quantitative yield. The generally low yields and the nature of the main products (COF2, CF3CFO, CF3-COCF₃, CF₄, N₂F₄, NF₃, etc.) suggest a free-radical mechanism for these reactions. For CF2(OF)2 and HNF2 a flow reaction was also studied by repeatedly passing an equimolar mixture of the starting materials over KF at -112 °C. Although CF2(ONF2)2 and CF2(OF)ONF2 were formed, their yields were considerably lower than those obtained in a static

Since for CF₃ONF₂ the synthesis from CF₃OF and N₂F₄ under the influence of UV radiation 15,16 is clearly superior to the method reported here, we examined the analogous reaction between CF₂(OF)₂ and N₂F₄ under the influence of waterfiltered UV radiation. However, no evidence could be obtained for the formation of either CF₂(OF)ONF₂ or CF₂(ONF₂)₂. The only -ONF₂ compound formed was a small amount of CF₁ONF₂, with COF₂ and FNO being the major products. Therefore, the KF-catalyzed reaction of HNF2 with CF2(OF)2 represents, presently, the only known method for the syntheses of CF₂(OF)ONF₂ and CF₂(ONF₂)₂.

Properties of CF3ONF2. This compound is well-known and has been well characterized, 15,16 and the properties observed in this study were in good agreement with the literature data. However, since CF₁ONF₂ is the simplest member of the class of N,N-difluoro-O-perfluoroalkylhydroxylamines and since

Table 11. Viorational Spectra of CF, ONF,

2 8000		LDC	Assignation in paint
	775	Ranco	proup (
**	-	There	
7605 re			7,3
7530 es			1 1 2
2485 ew			2-12
7411 es			2;
2340 see			19.159
22.8G + ww			1 12
2745 en			7 1
2140 sh			vg 1 vg
2151 w			2.14
2020			3.18
1975 55			1 1 E 67 6 17
11% a			7 1 74 OF 7 1 14 OF 41 11
1907 1			1'3
1842 ***			a * *s
180F w			7 75 00 4 5 5
1792 sh			1.15
1739			the deligit of
1961 sym			1 1 30 PF 11 1 14 PF 14 1 TF
1568 ++			7 * 70 ** 4 * 74
1502			16 1 19 10 1 10 10 10 10 10 10 10 10 10 10 10 1
1420			יר ' פי אר ' אי ^{אר} ור' קי
1 340 40	3 341 mg		'S " 15 "" 14
1303 +5	1 702 VI	130A (P 2)&	1
	12.92 ×		4 * 35 FF W * 7
	1266 =		ጎ0 * ጎ3
	1751 -		2.34
1247 +4	1242 +5	124H (0+)	זר
	1230 w		3 1 16
1221 +5	121A +5	3774 (0+)	7
	1216 sh		* 1n
	1207 ga		* * *
	1176 =		7 11
1076 🖦		1080 sh	5 " 11 ar 5 " 10
1434 ms	1035 #	1032 (1n)p	3
342 As	942 mg	939 (1.4)p	*
901 1	SOR s	906 (T 2) dp	13
870 Vt	864 vs	860 (1 2) _H	*
	853 vw		15 * 36
718 a	727 s	71P (9.6%)	*
	210 🖚	708 (0.7)p	7 40
62P ==	\$29 m	625 (1 1) 4p	71.6
579 w	56R w	566 (4 2)p	"
578 ••	514 .	\$10 (0+1p	*
480 w	4 RC may	476 (D 2)dp	* 15
		36F (2, 3) 40E	16
		151 (7,31p	110
		201 (1 2)0	111
		75 (0+)	El7" YIA

⁽a) Uncorracted Raman Intensities representing relative peak height

only a partial infrared spectrum had previously been reported. 15.16 it was desirable to obtain complete vibrational spectra (see Figure 1 and Table II). Assignments were made for CF₁ONF₂ by assuming symmetry C, with the F-C-O-N part of the molecule being located in the symmetry plane. These assignments are summarized in Table 111 and were made by comparison with the spectra of similar molecules such as CF₃OF, 17 CF₃NO, 18 CF₃N₃, 19 CF₃NF₂, 20 SF₅ONF₂, 16 and

Shroeve, J. M.; Duncan, L. C.; Cady, G. H. Inorg. Chem. 1968, 4, 1516.

⁽¹⁶⁾ Hale, W. H.; Williamson, S. M. Inorg. Chem. 1968, 4, 1342.

Kuo, J. C.; DesMarteau, D. D.; Fately, W. G.; Hammaker, R. M.; Marsden, C. J.; Witt, J. D. J. Raman Spectrosc. 1980, 9, 230.

Table III Vibrational Assignments of CF,ONF, Compared to Those of Similar Molecules

assignt in point	approx descript of mode for				obsd tre	q. cm 1			
group C	CF,ONE,	CF,ONE	ti ,8,•	CL , OF 6	CL ₃ NO ^e	CE,NE,d	NF_1^{-q}	line,/	SE, ONE,
	i-(Cl·) ^h	1303	1284	1294	1291	1290			
$P_{\mathbf{k}}$	$v_{as}(\Gamma \Gamma_{a})^{a}$	1218	1168	1222	1175	1221			
ν,	$v_{i}(NL_{i})$	1034				1018	1070	972	1029
r,	r(C-O)	942		947					
	r(O-N)	866							858
ν	6.(C+1)	720	730	678	730	721			
ν,	dastCF,)	567	513	585	53,3	576			
ν,	6(NF,)	512				525	573	500	
, Pg	Arock(Cl.,)	478	402	429	428				
11 ₁₀	Arock(NI)	35 t			100				
	a(CON)	205	179	278					
Va	ν _{nn} (CF ₂) ^h	1245	1254	1261	1230	1240			
4 V12	ν _{ma} (NF ₃)	907	125,			951	931	888	928
P _{II}	6 ag (CF 3 I	627	556	607	551	6(R)	y•		,
PH	Agt (Ct.)	478	450	43 t	428	Direct			
r _u	Srock(CF.)	368	430	431	7.0				
$\nu_{\rm m}$	6 rock (NF ₂)			127	[50]				
P14	r(C-O)	75		127	1501				
N 14	r(O-N)								

Reference 19. * Reference 17. * Reference 18. * Reference 20; the potential energy distribution of the fundamentals assigned to the CF₁, NF₂, and CN stretching modes indicates strong mixing of the corresponding symmetry coordinates. C Harmony, M. D.; Myers, R. J. J. Chem. Phys. 1962, 37, 636. Comeford, J. J.; Mann, D. E.; Schoen, L. J.; Lide, D. R. Ibid. 1963, 38, 461. Reference 16. The assignments given in this table for the CF, stretching modes are tentative.

Figure 1. Vibrational spectra of CF₃ONF₂: traces A and B, infrared spectra of the gas recorded in a 5-cm path length cell with AgCl windows at pressures of 300 and 8 torr, respectively; trace C, infrared spectrum of Ar-matrix-isolated CF₃ONF₂ (mole ratio 300) at 6 K; traces D, E, and F, G, Raman spectra of the liquid in a quartz tube at -80 °C recorded at two different sensitivities with incident polarization parallel and perpendicular.

other -ONF2-substituted perfluoroalkanes.21 Most stretching modes and the ν_6 , ν_7 , and ν_{14} deformation modes can be assigned with confidence. The assignment for the remaining six deformation modes and for the CF3 stretching modes are more or less tentative. In all the >CONF2 compounds studied in this laboratory, the >CONF2 group exhibits a very characteristic band pattern at about 860, 910, 940, and 1030 cm⁻¹ of almost constant frequencies and intensities and therefore is well suited for the identification of a >CONF2 group. In particular, the symmetric NF2 stretching mode at about 1030 cm⁻¹ is very useful for diagnostic purposes due to its high Raman intensity and the absence of other bands in this frequency region.

Properties of (CF3)2CFONF2. This compound had previously been prepared by the reaction of (CF₃), CO with N.F. and N₂F₂ in a platinum tube at 100 °C and 1000 atm external pressure and identified by its infrared and mass spectrum.²² The infrared spectrum of our product (frequency (cm⁻¹), intensity: 1327, s; 1264, vs; 1215, w; 1176 s; 1121, s; 1064, ms; 985, s; 910, ms: 849, s; 804, vw; 740, m; 725, m) was identical with that previously reported.²² The identity of the compound was confirmed by its 19F NMR spectrum, which showed the following shifts, multiplicities, coupling constants, and area

Properties of CF₂(ONF₂)₂, CF₂(ONF₂)₂ is the first known example of geminal (ONF₂)₂-substituted compound. It is colorless as a solid, liquid, and gas. A sharp melting point was not observed for CF2(ONF2)2 due to its tendency to form a glass at low temperature. The liquid boils at -9 °C. The vapor slowly passes through a -112 °C trap but stops at -126 °C. Vapor density measurements (M, found 187, calcd 186) showed that in the gas phase the compound is not associated. The compound is completely stable at ambient temperature. Drop-weight tests performed on the liquid at about 0 °C were

⁽¹⁸⁾ Demuth, R.; Bürger, H.; Pawelke, G.; Willner, H. Spectrochim. Acta, Part A 1978, 34A, 113.

Christe, K. O.; Schack, C. J. Inorg. Chem. 1981. 20, 2566.
 Atalla, R. H.; Craig, A. D. J. Chem. Phys. 1960, 45, 427. Bjork, C. W.; Craig, N. C.; Mitsch, R. A.; Overend, J. J. Am. Chem. Soc. 1965, 87, 1186. Oberhammer, H.; Güather, H.; Bürger, H.; Heyder, F.; Pawelke, G. J. Phys. Chem. 1983, 86, 664. (21) Christe, K. O., unpublished results.

⁽²²⁾ Smiley, R. A.; Sullivan, R. H. "Synthesis of High Energy Polymers and Solid Oxidizers", Summary Report, Contract AF04(611)-8169, 1962.

Table IV. Vibrational Spectra of CF, (ONF,),

obse freq,	cm ', and intens	
IR gas	Raman liquid, -80 °C	assignt
		essignt vas(CF ₂) and combination bands in Fermi resonance va(CF ₂) va(NF ₂) v(C=O) vas(NF ₂) v(N=O)
57) vw 5)7 vw	570 (7) p 458 (0.4) 39) (2.5) p 358 (2.2) p 341 (1.9) p 317 (2.5) p 270 (0.6) p 260 (3.2) p 241 (1.6) dp 217 (2) p 166 (0.6) dp	

Table V. Mass Spectrum of CF. (ONF.).

mje	abund	jon	m/e	abund	ion
118	21.5	CF,ONF,*	50	2.2	CF.
99	1	CF, ONF and CFONF,	47	44.3	CFO
69	0.64	CF.	33	14.7	NF*
68	1	NF,O'	31	< 0.5	CF.
66	< 0,5	ርክ[0*	30	70.5	NO.
52	100	NF.	28	< 0.5	CO

^{*} Recorded at 70 eV.

all negative at the 115 cm kg level, compared to a 50% point at 6.1 cm kg for ethyl nitrate. These tests indicate that $CF_2(ONF_2)_2$ is surprisingly stable and is much less sensitive than the analogous CNF_2 derivative, $CF_2(NF_2)_2$, which under the same conditions gave a positive test at 23 cm kg.

The structure of $\overline{CF_2(ONF_2)_2}$ was established by its vihrational (see Figure 2, Tahle IV), mass (see Table V), and ¹⁹F NMR spectra. The latter showed the following parameters:

As expected, $CF_2(ONF_2)_2$ is an oxidizer liberating iodine from a KI solution. Unlike fluorocarbon ethers, $CF_2(ONF_2)_2$ does not readily hydrolyze in concentrated H_2SO_4 at 25 °C. After a 40-h contact time with a gitation, 95% of the $CF_2(O-NF_2)_2$ was recovered unchanged. In CH_3OH after 40 h at 25 °C, 90% of $CF_2(ONF_2)_2$ was recovered; however, in 1 M sodium metboxide in methanol, slow reaction was observed. Similarly, it slowly reacted with acetic acid. The nature of the reaction products was not investigated.

Properties of CF₂(OF)ONF₂. Like CF₂(ONF₂)₂, this compound had not been prepared previously. It is colorless as a

Figure 2. Vibrational spectra of CF₂(ONF₂)₂: traces A and B, infrared spectra of the gas in a 5-cm path length cell at 60 and 7 torr, respectively; traces C, E and D, F, Raman spectra of the liquid at -80 °C at two different sensitivities with incident polarization parallel and perpendicular.

Table VI. Vibrational Spectra of CF, (OF)ONF,

obsd freq, c
IR gas
IR

solid, liquid, and gas and also shows a tendency to form a glass at low temperature. From experimental data (temperature (°C), vapor pressure (mm): -94.8, 11; -78.4, 41; -64, 101; -57.5, 141; -47, 228), the vapor pressure-temperature relationship was found to be

$$log[P(mm)] = 7.31997 - 1116.029/[T(K)]$$

with an index of correlation of 0.9997. During fractional condensation, the compound slowly passes through a -126 °C trap but stops at -142 °C. The extrapolated boiling point is -21.8 °C, and the derived heat of vaporization is $\Delta H_{\rm vap} = 5105$

Figure 3. Vibrational spectra of CF₂(OF)ONF₂: traces A and B, infrared spectra of the gas recorded in a 5-cm path length cell with AgCl windows at pressures of 42 and 15 torr, respectively; traces C and D, Raman spectra of liquid CF₂(OF)ONF₂ at -100 °C recorded at two different sensitivities.

cal mol⁻¹. The Trouton constant (20.3) and the molecular weight of the gas M_i , found 153, calcd 153) indicate little or no association in both the liquid and the gas phases.

The structure of the compound was established by vibrational (see Figure 3, Table VI) and ¹⁹F NMR spectroscopy:

The compound is stable at ambient temperature and liberates iodine from KI solution.

Conclusion. Complexing of HNF₂ with alkali-metal fluoride has successfully been used to moderate the otherwise explosive reaction of HNF₂ with hypofluorites. The general applicability of this method for the syntheses of N,N-difluoro-O-per-fluoroalkylhydroxylamines has been demonstrated, and CF₂(ONF₂)₂, the first known example of a geminal-disubstituted -ONF₂ compound, has been prepared by this method.

Acknowledgment. The authors are grateful to Dr. C. J. Schack for helpful discussions and to the Air Force Rocket Propulsion Laboratory, the Office of Naval Research, and the Army Research Office for financial support of this work.

Registry No. CF₃OF, 373-91-1; (CF₃)₂CFOF, 3848-93-9; CF₂· (OF)₃, 16282-67-0; CF₂(OF)ONF₂, 36781-60-9; HNF₂, 10405-27-3; CF₃ONF₂, 4217-93-0; (CF₃)₂CFONF₂, 84194-25-2; CF₂(ONF₂)₂, 36781-59-6; KF, 7789-23-3.

APPENDIX O

Reprinted from Inorganic Chemistry, 1983, 22, 1955. Copyright @ 1983 by the American Chemical Society and repri ited by permission of the copyright owner.

> Contribution from Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91304

Synthesis of N,N-Difluoro-O-perhaloalkylhydroxylamines. 2. Lewis Acid Catalyzed Addition of NF3O to Olefins

RICHARD D. WILSON, WALTER MAYA, DONALD PILIPOVICII, Dand KARL O. CIIRISTE®

Received June 15, 1982

N.N.Diffuoro O-perhaloalkylhydroxylamines, RONF2, were successfully prepared by the Lewis acid catalyzed addition of NF₃O to olefins. The new compounds $XC_2F_4ONF_2$ (X = F, Cl, Br) were obtained and characterized. The unexpected direction of the NF₃O addition, resulting exclusively in the anti-Markownikoff-type isomer XCF₂CF₂ONF₂, was elucidated by model reactions involving the stepwise addition of BF, and NF,O to CF, **C=CF. It is shown that all reactions can be rationalized in terms of an R_fBF₂ intermediate produced by the normal polar addition of BF₁ to the olefin. In the case of CF = C=CF3, the new vinvldifluoroborane CF2=C(BF2)CF1 was isolated and characterized. Attempts to isolate -ONF substituted vinyl compounds by reaction of NF1O with vinyldifluoroboranes led to difluoramino ketones formed via a keto-enol-type tautomerism.

Introduction

Following the discosvery of NF₄O in 1961 by Rocketdyne² and Allied Chemical,3 studies were carried out in these two laboratories to add NF₃O to olefinic double bonds. Except for an incomplete description of some of the Rocketdyne results in a patent4 and a one-sentence statement in a paper on NF₃O by the Allied group, these data have not been published, partially due to their incompleteness and the lack of a plausible mechanism to explain the observed direction of the NF₃O addition. The previous Rocketdyne studies have now been complemented and are summarized in this paper.

Experimental Section

Caution! The addition reactions of NF3O to olefins, particularly hydrogen-containing compounds, can proceed explosively. Appropritate safety precautions must be taken when these reactions are carried out.

Materials and Apparatus. The apparatus, handling techniques, and instrumental conditions used in this study have been described in part I of this series. 1. Iterature methods were used for the syntheses of NF₃O, CF₂—C=CF₂, and CF₂—CFBF₂. Monomeric CF₂=CF₂. was prepared by vacuum pyrolysis of poly(tetrafluoroethylene): C₂F₃Cl and BF, (The Matheson Co.) and C,F,Br (Ozark Mahoning Co.) were purified by fractional condensation prior to their use

Syntheses of XCF2CF2ONF2. Most reactions of NF1O in the presence of BF3 with C2F4, C2F4Cl, or C2F4Br were carried out according to the following general procedure. Equimolar amounts (3 mmol each) of C_3F_3X (X = F, Cl. Br) and BF3 were condensed at -196 °C into the tip of a 250-ml. Pyrex reactor. The mixture was warmed for 2 h to -78 °C and then recooled to -196 °C. An equimolar

amount of NF3O (3 mniol) was condensed at -196 °C above the C₂F₁X-BF₃ mixture. The reactor was allowed to warm slowly to -78 *C and was kept at this temperature for several hours before being allowed to warm to ambient temperature. The volatile materials were separated by fractional condensation through a series of traps at -78 °C, at -95 °C (for C₂F₃Br reaction), or -112 °C (for C₂F₃Cl reaction), or -142 °C (for C₂F₄ reaction), and at -196 °C. The -78 °C trap contained small amounts of unidentified material. The -196 °C trap contained mainly unreacted BF₃, C₂F₃X, C₂F₃X, and sometimes small amounts of NF₃O. The -95, -112, or 142 °C trap contained the desired XC₂F₄ONF₂ product. The reactor generally contained some white solid residue, which according to its spectra consisted of NOBF4. The yields of C₂F₃ONF₂, CF₂CICF₂ONF₂, and CF₂BrCF₂ONF₂ were about 60, 18, and 10%, respectively. Whereas C2F3ONF2 could be obtained in high purity by the above described simple fractionation. CIC2F4ONF2 and BrC2F4ONF2 contained about 10% of an unidentified halocarbon impurity whose removal required either repeated careful fractionations or gas chromatographic techniques.

CF₃^CF₂⁸ONF₂^C: bp -24.9 °C; mp -146.5 °C; mol wt found 185; mol wt calcd 187; $\log [P (mm)] = 8.0222 - 1271/[T (K)]; \Delta H_{vap}$ = 5.8 kcal/mol: Trouton constant 23.5; mass spectrum (70 eV) [m/e (intensity) ion], 119 (69) C₂F₅*, 100 (3.4) C₂F₆*, 69 (100) CF₃*, 66 (2.1) CF₂O*, 52 (29) NF₂*, 50 (10) CF₃*, 47 (7.1) CFO*, 33 (7.7) NF+, 31 (12) CF+, 30 (24) NO+, 19 (1.1) F+, 16 (0.3) O+; 19F NMR (positive shifts are low field from CFCl₃) neat ϕ_A (tr tr = sept) -89.0, $\Phi_{\rm B}$ (quart tr) -95.9, $\psi_{\rm C}$ (br tr) 124.9, CFCl, solvent $\phi_{\rm A}$ -85.9 $\phi_{\rm B}$ -93.0, $\phi_{\rm C3}$ 128.1 ($J_{\rm AB}$ = 2.02, $J_{\rm AC}$ = 1.01, $J_{\rm BC}$ = 3.0, $J_{\rm NC}$ = 110 Hz); IR 2640 (vw), 2600 (vvw), 2478 (vw), 2408 (vw), 2350 (vvw), 2317 sh, 2235 (vw), 2090 (vvw), 2050 (vw), 1984 (vw), 1931 (vw), 1867 (vw), 1815 sh, 1791 (vw), 1775 sh, 1679 (vw), 1594 (vw), 1510 (vw), 1471 (vvw), 1401 (mw), 1300 sh, 1247 (vs), 1206 (vs), 1114 (vw), 1028 (vs), 903 (s), 850 (vs), 741 (m, PQR), 730 sh, 660 (w), 621 (vw), 569 (vw),531 (mw), 474 (vvw), 462 (vvw), 444 (vvw) cm⁻¹; Raman (liquid -90 °C) 1402 (0.7), 1240 (0.1), 1205 (0.1), 1111 (1.2) p, 1025 (6.6) p, 903 (0.7) dp, 849 (2.4) p, 835 (1.2) p, 741 (10) p, 659 (2.8) p. 619 (0.7) dp. 570 (3.1) p. 559 (0.2) dp. 529 (0.2) dp. 466 (0.2) dp, 442 (0.1) dp, 358 (1.7) p, 342 (1.9) dp, 303 (6.2) p, 244 (4.1) p, 121 (0.6) dp cm⁻¹. Anal. Caled for C_2F_7NO : N, 7.48.

Found: N, 7.21 (N₂ by evolution by Na reduction). CICF₂^ACF₂^BONF₂^C: bp 13.8 °C; mol wt found 204.6; mol wt calcd 203.5; log $[P \text{ (mm)}] = 7.6002 - 1355/[T \text{ (K)}]; \Delta_{\text{rap}} = 6.2 \text{ kcal/mol};$ 1966, 88, 2604.

(4) Pilipovich, D. U.S. Patent 3 440 251, 1969.

(5) Maya, W.; Pilipovich, D.; Warner, M. G.; Wilson, R. D.; Christe, K. O. Inorg. Chem. 1983, 22, 810.

(6) Maya, W. Inorg. Chem. 1964, 3, 1063.

(7) Jacobs, T. L.; Bauer, R. S. J. Am. Chem. Soc. 1956, 78, 4815.

(8) Stafford, S. L.; Stone, F. G. A. J. Am. Chem. Soc. 1960, 82, 6238.

(9) Stafford, S. L.; Stone, F. G. A. J. Am. Chem. Soc. 1960, 82, 6238.

⁽¹⁾ Present addresses: (a) Department of Chemistry, California State University, Pomona, CA 91768; (b) MVT, Microcomputer Systems

Inc., Westlake Village, CA 91361.
(2) Maya, W. U. S. Palent 3 320 147, 1967.
(3) Fox, W. B.; MacKenzie, J. S.; Vaanderkooi, N.; Sukornick, B.; Wamser, A.; Holmes, J. R.; Eibeck, R. E.; Stewart, B. B. J. Am. Chem. Soc. 1966, 88, 2604.

85 (100) CF₂¹⁵Cl*, 69 (20) CF₃*, 68 (2.4) CF³²Cl*, 66 (5.3) CF³⁵Cl*, 52 (28) NF₂*, 50 (23) CF₂*, 49 (1.3) CCl^{37*}, 47 (4.2) CCl^{35*}, 47 (8.9) CFO*, 37 (1.1) ³⁷Cl*, 35 (3.4) ³⁵Cl*, 33 (7.7) NF*, 31 (21.2) CF*, 30 (23) NO*, 19 (1.2) F*, 16 (0.5) O*; ³⁹F NMR (neat) (liquid 29 °C) ϕ_A (tr tr) -75.2, ϕB (tr tr) -93.7, ϕ_C (br tr) 126.0 (J_{AB} = 2.3, J_{AC} = 0.95, J_{BC} 3.15, J_{NC} ~ 100 Hz); IR 1339 (m), 1286 (vw), 1241 (m), 1200 (vs), 1185 (vs), 1129 (s), 170 sh, 1058 (vw), 1033 (m), 975 (vs), 909 (m), 898 sh, 845 (vs), 802 (w), 784 (vw), 768 (vw), 720 (vw), 702 (vw), 680 (vw), 656 (w), 615 (vw), 558 (vw), 480 (vvw) cm⁻³.

BrCF₂*CF₁*BONF₂C: mol wt found 245; mol wt calcd 248; mass spectrum (70 eV) [m/e (intens) on] 197 (4.6) $C_1F_4^{B1}$ BrO*, 195 (4.6) $C_2F_4^{B1}$ BrO*, 181 (66) $C_2F_4^{B1}$ Br', 179 (66) $C_2F_2^{B1}$ Br', 162 (2.4) $C_2F_3^{B1}$ Br', 160 (2.4) $C_2F_3^{B1}$ Br', 131 (136) $C_2F_3^{B1}$ Br', 162 (2.4) $C_2F_3^{B1}$ Br', 119 (83) $C_2F_3^{A1}$ Br', 112 (7.8) $C_2F_3^{B1}$ Br', 110 (7.8) $C_2F_3^{B1}$ Br', 100 (2.8) $C_2F_3^{A1}$, 93 (4.2) C_2^{B1} Br', 91 (4.2) C_2^{B1} Br', 81 (38) C_2^{B1} Br', 79 (38) C_2^{B1} Br', 66 (1.5) C_2^{B1} Br', 52 (25) C_2^{B1} Br', 50 (46) C_2^{B1} Br', 47 (18) C_2^{B1} Br', 66 (1.5) C_2^{B1} Br', 50 (47) C_2^{B1} Br', 100 C_2

Synthesis of $CF_1 = C(BF_1)CF_1$. Tetrafluoroaliene (5.1 mmol) and BF_3 (5.1 mmol) were combined at -196 °C in a Pyrex ampule. The mixture was allowed to warm slowly to ambient temperature, then cooled again to -196 °C, and warmed as before. The volatile products were separated by fractional condensation with $CF_2 = C(BF_2)CF_1$ (3.6 mmol) stopping in a -112 °C trap. The other reaction products were a trace of SiF_4 , oily tetrafluoroallene polymer, and unreacted BF_1 .

CF₂=C(BF₂)CF₁; colorless liquid and gas; mol wt found 179; mol wt calcd 179.8; approximate bp 12 °C; ¹⁹F NMR (neat liquid, 25 °C) φ(CF_c) 1broad unresolved multiplet) -47.6, φ(CF₁) (3 quart)

$$\sum_{i=0}^{n} c = c < \sum_{i=1}^{n} c_i = c$$

-57.3, ϕ (CF₃) (d d)-59.9, ϕ (BF₂) (br.s) -82.2; area ratios t:t:3:2 ($J_{CF,CF_1} = 22.6$, $J_{CF,CF_2} = 12.0$, $J_{CF,CF_1} = 39.0$ Hz). Vibration spectra: IR [gas) t769 (mw), 1714 (vs), 1689 (sh), 1469 (m), 1426 (vs), 1392 (vs), 1323 (m), 1290 (mw), 1260 (sh) 1170 (vs), 1129 (mw), 1081 (vw), 1043 (s), 998 (ms), 969 (mw), 875 (vw), 744 (mw), 736 (m), 708 (vw), 650 (vv), 642 (mw), 608 (m), 581 (w), 539 [mw), 434 (w), 392 (w) cm⁻¹; Raman (liquid, -80 °C) 1770 (0.3) p, 1713 (1.6) p, 1689 (sh), 1465 (0+), 1415 (0.1), 1382 (0.11, 1323 (0.7) p, 1298 (0.4), 1175 (0.1), 1135 (0.1), 992 (0.3) p, 964 (0.2) p, 873 (1.5) p, 742 (10) p, 730 (1.8) dp, 708 (0.5) p, 650 (2.4) p, 637 (1.7) dp, 608 (0.8) p, 580 (0.2) dp, 538 (0.6) p, 434 (0.2) dp, 399 (2.1), 376 (4.5) p, 331 (1.4) p, 193 (0.2) dp, 169 (1.5) dp, 150 (0.2) dp, 129 (0.2) cm⁻¹. The mass spectrum showed parent at m/e 180 (C₂¹¹BF₇*) and 179 (C₂¹⁰BF₇*) and parent minus F at m/e 161 and 160. Hydrolysis of CF₂=C(BF₂)CF₂ gave CF₂=CHCF₃ + (HOBF₄).

Reaction of CF₂=C(BF₂)CF₃ with NF₃O. Trifluoramine oxide (1.8 mmol) and CF₂=C(BF₂)CF₃ (0.45 mmol) were combined at -196 °C in a Pyrex reactor and allowed to warm slowly to room temp. This cooling-warming was repeated several times. The volatile materials were separated by fractional condensation and consisted at BF₃ (0.45 mmol), unreacted NF₃O (1.3 mmol), and CF₃COCF₂NF₂ (0.45 mmol). This ketone stopped in a -112 °C trap and was identified by its infrared, mass, and °F NMR spectra, ° molecular weight, and its hydrolysis reaction, which yielded the hydrate CF₃C(OH), CF₂NF₂.

The compound CF₃COCF₂NF₂ was also directly obtained by cocondensing equimolar amounts of NF₃O, BF₃, and CF₂—C=CF₂ at -196 °C in a Pyrex ampule and allowing the mixture to warm up slowly to ambient temperature. This warm-up procedure was repeated twice to ensure complete reaction. The reaction products were separated by fractional condensation with the -112 °C trap containing CF₃COCF₂NF₂ in 25% yield. CF₃^COCF₂NF₂C: ¹⁹F NMR (CFCl₃ -55 °C) ϕ_A (It tr) -76.2, ϕ_B (quart tr) -109.9, ϕ_C (br s) 18.0 (J_{AB} = 6.4, J_{AC} = 2.0, J_{BC} = 3.1 Hz), area ratios A:B:C = 3:2:2.

Results and Discussion

Syntheses of -ONF₂-Substituted Perhalocarbons and Mechanism of the NF₃O Addition. Shortly after the discovery

of NF₃O in 1961, 2.3 stucies were begun at Rocketdyne to add NF₃O across olefinic double bonds. At ambient temperature neat NF₃O was unreactive toward olefins such as CF₂=CF₂ or CH2-CH2. Furthermore, UV irradiation of mixtures of NF,O with either CF,=CF, or CF2=CFCI in Pyrex did not result in any appreciable reaction. Although heating of NF₃O with C₂F₄ or C₂F₃Cl to 150 °C resulted in reaction, the principal products (C₂F₆, C₄F₁₀, CF₃COF, C₂F₅Cl, etc.) arose from fluorination of the olefins and were not the desired RONF, addition compounds. However, Lewis acids catalyzed the addition of NF₃O to olefinic double bonds. The most effective Lewis acid was BF₃, but the reaction was generally limited to perhalogenated olefins. Low temperatures were necessary with NF₃O being added at -196 °C to a mixture of BF, and the olefin, which had been premixed at ~78 °C. The ternary mixture was allowed to warm slowly from ~196 to -78 °C and sometimes to ambient temperature. Although other Lewis acids such as PF₃, AsF₃, or SbF₃ in the presence or absence of solvents such as anhydrous HF or CF, COCF, were also used, the above described low-temperature BF1catalyzed reaction gave generally the best and most reproducible results. With use of this method, the following reactions were carried out and their reaction products well characterized.

$$X \leftarrow F = C^{3} F_{1} + NF_{3}O \xrightarrow{BF_{1}} XCF_{2}CF_{1}ONF_{2}$$

 $X = F, CI, Br$ (1)

For X * F the yields of the -ONF, adduct were as high as 70% but decreased with increasing atomic weight of X, with the competitive fluorination reaction to C₂F₃X becoming dominant. For X being iodine, the yield of ICF₃CF₂ONF₂ became almost zero.

Only one isomer was obtained for all reactions and, surprisingly, corresponded to an anti-Markownikoff-type addition; i.e., the $O^h.F_2$ group was addit to the positively polarized carbon atom of the substrate. The observation of only one isomer and the fact that free-radical conditions such as UV irradiation and heat did not produce significant amounts of $RONF_2$ adducts suggest a polar mechanism.

Since NF₁O is known¹⁰ to form with Lewis acids such as BF₃ ionic adducts containing the NF₂O* cation and since the positive charge in NF₂O* resides on the nitrogen atom, the simplest polar mechanism would involve a $\pi^{-\pi}$ bond interaction between the N=O bond of NF₂O* and the C=C bond of the olefin:

Although such an intermediate could conveniently account for an attack of the positively polarized carbon by oxygen, the following arguments can be raised against this mechanism: (i) the above $\pi - \pi$ mechanism is analogous to the reaction of two ground-state ethylene molecules to ground-state cyclobutane, which is symmetry forbidden;¹¹ (ii) also, the $\pi - \pi$ mechanism cannot account for the products observed in the reaction of $CF_2 = C(BF_2)CF_3$ with NF_3O (see below); (iii) the Lewis acid catalyzed addition of NF_3O to the olefin appears to require reaction temperatures at which the NF_2O^+ salt has some, albeit small, dissociation pressure. If a preformed stable NF_2O^+ salt is used, fluorination is obtained instead of sub-

⁽¹⁰⁾ Christe, K. O.; Maya, W. Inorg. Chem. 1969, 8, 1253. Wamser, C. A.; Fox, W. B.; Sukornick, B.; Holmes, J. R.; Stewarl, B. B.; Juurik, R.; Vanderkooi, N.; Gould, D. Ibid. 1969, 8, 1249.

Vanderkooi, N.; Gould, D. Ibid. 1969, 8, 1249.

(11) Woodward, R. B.; Hoffmann, R. in "The Conservation of Orbital Symmetry"; Verlag Chemie, GmbH: Weinheim/Bergstrasse, Wesl Germany, 1971.

stitution; (iv) premixing of the Lewis acid with the olefin enhances the yield of RONF₂. Most of these arguments suggest that the first step in the NF₃O addition to olefins is the interaction of the olefin with the Lewis acid. Examination of the BF3-C2F4 system at -112 °C showed a positive interaction between the two compounds; i.e., the vapor pressure was significantly lower than that expected from Raoult's law, but no stable adduct was formed. The lack of a stable C2F4BF3 adduct is not surprising since -BF2-substituted saturated fluorocarbons are very unstable due to the great facility for intramolecular migration of a fluoring atom from an \alpha- or B-carbon atom to boron followed by BF3 elimination. 12 This facility of BF, elimination can be strongly decreased by incorporation of an a-pertinorovinyl group. Thus CF,=CFBF, is known⁸ to be stable, and another stable compound CF₂= C(BF₂)CF₃ was prepared for the first time during this study from tetrafluoroallene and BF3 (eq 2). The direction of this

$$C^{b+}F_2 = C^{b-} = C^{b+}F_2 + F^{b-} - B^{b+}F_2 - CF_2 = C(BF_2)CF_3$$
(2)

addition agrees with that expected from the known¹³ polarity of the bonds in tetrafluoroallene and a normal polar addition of BF₃. The observation of only the BF₃ monoadduct is not surprising, since the addition of a second BF₃ molecule would result in a saturated -BF₂-substituted fluorocarbon, which would be prone to undergo the above mentioned BF₃ elimination¹² with re-formation of CF₂=C(BF₂)CF₃.

The availability of CF2=C=CF2 and of its BF3 adduct allowed us to test the hypothesis that a BF3 adduct is an intermediate in the BF₁-catalyzed addition of NF₁O to perhaloolefins. If in the BF3-catalyzed addition reaction of NF3O to $CF_2 = C = CF_2$ the intermediate is $CF_2 = C(BF_2)CF_3$, then the reaction of CF₂=C(BF₂)CF₃ with NF₃O should result in the same final product. Indeed this was found to be the case. In both reactions, CF₃COCF₂NF₂ was the only -NF₂ containing product. For the CF₂=C=CF₂ + BF₃ + NF₃O reaction its yield was 25%, whereas for the CF₂=C(BF₂)CF₃ + NF₃O reaction its yield was essentially quantitative. The fact that CF3COCF2NI was the only product and that no evidence for an -ONF2-substituted compound was observed can be readily rationalized by the following sequence. Reaction 2 is followed by a Lewis acid-Lewis base interaction between CF₂=C(BF₂)CF₃ and NF₃O. The formed adduct can then undergo BF, elimination (eq 3) to form the vinyl-ONF, compound, followed by a quasi keto-enol tautomeric rearrangement (eq 4) to give the observed final product, a difluoroamino ketone. The fact that in the BF3-catalyzed ad-

dition of NF₃O to CF₂—C—CF₂ the yield of NF₂CF₂C(O)-CF₃ was only 25% compared to 100% for the CF₂—C(BF₂)-CF₃ + NF₃O reaction can be ascribed to the low (60%) yield observed for reaction 2 and the case of polymerization of tetrafluoroallene.⁷

1964, 121.

The above reactions of tetrafluoroallene lead to a better understanding of the observed reactions between CF₂=CFBF₂ and NF₃O. Two-NF₂-containing products, CF₃CF₂ONF₂ and NF₂CF₂CF(O), were observed for this reaction. The formation of the latter compound is analogous to the tetrafluoroallene reactions

The formation of CF₃CF₂ONF₂ is ascribed to the competitive fluorination reaction (6), followed by reaction 1, the BF₃-

$$CF_2 = CF(BF_2) + NF_2O^+BF_4^- \rightarrow CF_2 = CF_2 + NO^+BF_4^- + BF_3^-$$
 (6)

catalyzed addition of NF3O to CF2CF2.

The formation of an intermediate r_1 halo diffuoroborane can also explain the unexpected "anti-Markownikoff-type" addition of NF₃O to the unsymmetric perhalogenated ethylene (eq. 1). The observed reaction products can be rationalized by a mechanism assuming the normal polar addition of BF₃ to the double bond, followed by the interaction of the Lewis base NF₃O with the Lewis acid R-BF₂, followed by BF₃ elimination, a fluoride migration from the β - to the α -carbon atom, and formation of the C-ONF₂ bond (eq. 7). This

$$F = C + \frac{1}{2} + \frac{1}{2$$

mechanism is analogous to that (eq. 3 and 5) outlined for the perfluorovinylboranes, except for the $-ONF_2$ substitution occurring on the β -carbon due to the facile migration of fluorine from the β -carbon to the α -carbon in these saturated fluoroalkylboranes. The $-ONF_2$ substitution on the β -carbon in saturated fluoroalkylboranes vs. α -carbon substitution in vinylboranes may also be favored by the decrease in the C-C-B bond angle upon going from an sp²-hybridized vinylborane to an sp³-hybridized alkylborane.

Attempts to extend the BF₃-catalyzed NF₁O addition to hydrogen-containing olefins such as CH=CH₂, CF₂=CH₂, and CF₂=CFH were unsuccessful due to both fluorination and polymerization of the substrate. Fluorination of the double bond was also the only reaction observed for CFCl=CFCl and CF₂=CClCF₂Cl. Similarly, attempts to replace the BF₂ group in CH₂FBF₂ by an ONF₂ group by low-temperature treatment with NF₃O were unsuccessful, resulting in the quantitative fluorination (8).

$$CH_2FBF_2 + NF_3O - CH_2F_2 + NO^*BF_4$$
 (8)

The low-temperature BF₃-catalyzed addition of NF₃O to the perfluorinated acetylene CF₃C=CCF₄ was also studied, but no reaction was observed under the given conditions. With perfluorobutadiene a smooth reaction occurred, but resulted only in fluorination to perfluorobutene-2.

Attempts were unsuccessful to verify the intermediates postulated in eq 3-5 and 7 by low-temperature ¹⁹F LMR spectroscopy. For the CF₂=C(BF₂)CF₃-NF₃O system, when kept at -80 °C or below, only the final products NF₂CF₂C-

⁽¹²⁾ Lappert, M. F. In "The Chemistry of Boron and its Compounds"; Muetlerties, E. L., Ed.; Wiley: New York, 1967; p 461.
(13) Banks, R. E.: Hazeldine, R. N.; Taylor, D. R. Proc. Chem. Soc., London

(O)CF₃ and BF₃ were observed. For CF₂=CF₂ and BF₃ in CFCl₃ solution, no interaction was observable at temperatures as low as -120 °C.

Properties of the N_1N_1 -Diffuoro-O-perhalonikylhydroxylamines. All the XCF₂CF₂ONF₂-type (X = F, Cl, Br) compounds prepared in this study are colorless gases or liquids, which are stable at ambient temperature. The thermal stability of the compounds is surprisingly high. For example, C_2F_5O -NF₂, when heated over CsF in a Pyrex ampule to 93 °C for 17 h, showed no decomposition. In stainless steel, heating to 325 °C for several hours was required to observe degradation to C_2F_6 and NO. In their chemical properties these R-ONF₂ compounds are similar to NF₃. Thus, C_2F_5O NF₂ is not reduced by H1 and is not hydrolyzed by concentrated aqueous alkali solutions at 50 °C. Fluorination of C_2F_5O NF₂ with F₂ at 150 °C produced C_2F_6 , but no evidence for NF₃O or the unknown and probably unstable FONF₂ was obtained.

The lack of NF₃O formation in this fluorination reaction supports the spectroscopic evidence that the ONF₂ group in these RONF₂ compounds is bonded to the carbon atom through an oxygen and not a nitrogen atom.

The new RONF₂ compounds prepared in this study were thoroughly characterized by spectroscopic techniques, and the observed data are listed in the Experimental Section. ¹⁹F NMR data were particularly useful to demonstrate the presence of the -ONF₂ group and to show that, for the unsymmetric perhaloethylenes, XCF₂CF₂ONF₂ was the only isomer formed. It should be mentioned that for BrCF₂CF₂-ONF₂ the ¹⁹F NMR spectra were strongly temperature dependent, indicating the presence of different rotamers due to hindered rotation caused by the bulky bromine ligand. The BrCF₂CF₂ONF₂ molecule is expected to exist as three different rotamers, one trans and two equally probable gauche forms, which could be sterically less favored.

At 30 °C, the two CF₂ group signals consisted of broad (\sim 15-Hz half-width) unresolved lines. At 20 °C, the two lines separated into two signals each, a resolved lower field signal for the trans isomer and a poorly resolved signal of similar intensity at slightly higher field attributed to the two gauche isomers. At -20 °C the relative intensity and resolution of the trans signals were significantly increased. At -50 °C, the resolution of the trans signal decreased again and the frequency apparation between the trans and the gauche signals increased.

Although only the XCF₂CF₂ONF₂ isomers were present, the mass spectra generally exhibited CF₃⁺ ions of medium intensity. This is not unusual for compounds of this type and is readil explainable by ion recombination in the mass spectrometer.

The vibrational spectra are listed in the Experimental Section. The assignments for the CONF₂ group are straightforward and can be made by comparison with those previously discussed for CF₃ONF₂.⁵ In addition to the characteristic⁵ CONF₂ stretching modes in the 1050–850-cm⁻¹ region and the CF₂ stretching modes in the 1300–1100-cm⁻¹ region, the spectra exhibit a medium intense infrared and weak Raman band at about 1400 cm⁻¹, characteristic for the C-C stretching mode.

Properties of CF₂=C(BF₂)CF₃. This new vinyldifluoroborane is a colorless liquid and gas and is stable at ambient temperature. In addition to its spectroscopic identification (see Experimental Section), the compound was identified by its hydrolysis reaction (9), yielding CF₂=CHCF₃. The vi-CF₂=CF(BF₂)CF₃ + H₂O \rightarrow CF₂=CHCF₃ + (HOBF₂)

brational spectra of $CF_2 = C(BF_2)CF_3$ show bands in the regions expected for the stretching modes of the $C = C (\sim 1710 \text{ cm}^{-1})$, BF_2 , $(\sim 1450 \text{ and } 1290 \text{ cm}^{-1})$, 15 and $F_2C = CF (\sim 1390, 1177, \text{ and } 1040 \text{ cm}^{-1})^{16}$ groups. However, these assignments are tentative, and a definitive assignment will require a more detailed study.

Conclusion. The Lewis acid catalyzed addition of NF₃O to olefins provides a useful method for the synthesis of -ONF₂-substituted halocarbons, provided the substrates do not contain hydrogen and are highly fluorinated. Heavy halogens such as iodine or bromine also appear to be detrimental to the yield of R₁ONF₂. The only isomer observed for the addition of NF₃O to XCF=CF₂ is XCF₂CF₂ONF₂. This apparent anti-Markownikoff-type addition is explainable by the normal polar addition of the Lewis acid to the olefins followed by appropriate substitution and elimination reactions. The intermediate formation of the Lewis acid-olefin adduct was demonstrated for CF₂=C=CF₂. The reactions of NF₃O with vinyldifluoroboranes such as CF₂=CFBF₂ and CF₂=C(BF₂)CF₃ indicate that -ONF₂-substituted vinyl compounds are unstable and easily undergo a keto-enol-type tautomeric rearrangement to the corresponding difluoramino ketones.

Acknowledgment. The authors are grateful to M. Warner for his help with some of the experiments and to Drs. C. J. Schack, W. W. Wilson, and L. R. Grant for helpful discussions. This work was financially supported by the Air Force, the Office of Naval Research, and the Army Research Office.

Registry No. NF₃O, t3847-65-9; C₂F₄, 1t6-14-3; C₂F₄C1, 79-38-9; C₂F₃Br, 598-73-2; CF₃CF₂ONF₂, 24687-10-3; CICF₂CF₂ONF₂, 24684-27-3; BrCF₂CF₂ONF₂, 24684-28-4; CF₂==C(BF₂)CF₃, 84238-04-0; CF₃COCF₂NF₃, 4188-38-9; CF₃C(OH)₂CF₂NF₃, 84238-05-1; BF₃, 7637-07-2; tetrafluoroallene, 461-68-7

Hauptschein, M.; Oesterling, R. E. J. Am. Chem. Soc. 1960, 82, 2868.
 Parsons, T. D.; Self, J. M.; Schaad, L. H. J. Am. Chem. Soc. 1967, 89,

⁽¹⁶⁾ Shimanouchi, T. Nati, Stand, Ref. Data Ser. (U.S., Natl. Bur Stand.) 1972, NSRDS:NBS 39, 75-83.

APPENDIX R

Contribution from the Institut für Physikalische und Theoretische Chemie der Universität Tübingen, 7400 Tübingen, West Germany, and Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91304

THE GAS PHASE STRUCTURE OF AZIDOTRIFLUOROMETHANE. AN ELECTRON
DIFFRACTION, MICROWAVE SPECTROSCOPY AND NORMAL COORDINATE ANALYSIS

Karl O. Christe, la Dines Christen, lb Heinz Oberhammer, *lb and Carl J. Schack la

ABSTRACT

The geometric structure of azidotrifluoromethane has been obtained by a combined analysis of electron diffraction intensities and ground state rotational constants derived from the microwave spectrum.

The following parameters were obtained (r_{av} -values in Å and deg. with 20 uncertainties in units of the last decimal): C-F = 1.328(2), C-N_a = 1.425(5), N_a-N_b = 1.252(5), N_b-N_b = 1.118(3), $\frac{1}{3}$ CN_aN_b = 112.4(2), $\frac{1}{3}$ N_aN_bN_a = 169.6(34) and $\frac{1}{3}$ FCF = 108.7(2). The CF₃ group is in the staggered position with respect to the N₃ group and tilted away from it by 5.8(4)°.

INTRODUCTION

Structural data on covalent azides are rare due to the explosive nature $^{(2,3)}$ and handling difficulties encountered with these compounds. One of the more stable covalent azides is ${\rm CF_3N_3}$, a

compound originally prepared by Makarov and coworkers $^{(4,5)}$ and recently studied in more detail by two of us $^{(6)}$. Although the closely related CH_3N_3 molecule has previously been studied by both electron diffraction $^{(7)}$ and microwave spectroscopy $^{(8)}$, the available data were insufficient to determine whether the N_3 group is linear, and to obtain a reliable value for the tilt angle of the methyl group. Furthermore, a comparison of the structures of CH_3N_3 and CF_3N_3 was expected to contribute to our knowledge of how the substitution of a CH_3 group by a CF_3 group influences the structure of the rest of the molecule $^{(9)}$.

EXPERIMENTAL SECTION

Synthesis and Handling of CF_3N_3 . The sample of CF_3N_3 was prepared as previously described Prior to the electron diffraction experiments, a small amount of N_2 formed by decomposition of some CF_3N_3 was pumped off at -196°C. The only other decomposition products were nonvolatile and therefore did not interfere with the measurements.

Electron Diffraction. The scattering intensities were recorded with the Balzers gas diffractograph at two camera distances (25 and 50 cm) on Kodak electron image plates (13 x 18 cm). The accelerating voltage was about 60 kV. The sample was cooled to -80°C and the nozzle temperature was 15°C. The camera pressure never exceeded 2.10⁻⁵ torr during the experiment. Exposure time was 6-9 sec for the long, and 15-25 sec for the short camera distance. The electron wavelength was calibrated with 2nO diffraction patterns. Two plates for each camera distance were analyzed by the usual procedures. Background scattering recorded without gas was subtracted from the 25 cm data. Averaged molecular intensities for both camera distances

(s = 1.4 - 17 and 8 - $35^{\circ}_{A}^{-1}$) are presented in Fig. 1 and numerical values for the total scattering intensities are available as supplementary data⁽¹⁰⁾.

Microwave Spectroscopy. The microwave spectrum was recorded at temperatures between -70° and -40°C at pressures around 10 mtorr, and at frequencies between 7 and 25 GHz (X- and K-Band) using a standard 100 kHz Stark spectrometer.

 ${\rm CF_3N_3}$ was initially flowed through the cell, but since the sample proved to be very stable, it was only changed at hours' intervals.

An initial broad band sweep in K-band, applying a 0-20 V ramp voltage at the external sweep connector of the Marconi sweeper, immediately revealed the μ_a R-branch heads typical of a near prolate rotor, and thus restricted the ranges to be searched.

STRUCTURE ANALYSIS

A preliminary analysis of the radial distribution function (Fig. 2) clearly demonstrates that the CF $_3$ group is staggered with respect to the N $_3$ chain. Model calculations for the eclipsed configuration result in very bad agreement with the experimental data in the range r > 2.5Å (see Fig. 2). The radial distribution function for the eclipsed configuration was calculated with the final geometric parameters derived for the staggered conformation. Increase of the CN N $_{\alpha}$ angle to about 130° improved the fit for the peak at 3.3Å but the disagreement for the peaks around 2.7 and 4.5Å remained. Therefore, in the following analysis the CF $_3$ group was constrained to the staggered position. However, small torsional deviations (<10°) from this position cannot definitely be excluded.

In the least squares analysis a diagonal weight matrix was applied to the intensities and scattering amplitudes, and the phases of J. Haase (11) were used. The spectroscpic corrections, Δr (Table 1), were incorporated in the refinement. For torsional vibrations, the concept of perpendicular (rectilinear) amplitudes results in unrealistically large contributions to these corrections for torsion independent distances (C-F, F..F and N..F). Therefore, contributions from the CF, torsion, which is a large amplitude vibration, were neglected for torsion independent distances (12). Assuming local C3, symmetry for the CF3 group with a possible tilt angle between the C2 axis and the C-N bond, eight geometric parameters (including the $^{N}_{\alpha}^{\ N}_{\beta}^{\ N}_{\omega}$ angle) are required for the determination of the structure of CF_3N_3 . These parameters were refined simultaneously with six vibrational amplitudes (see Table 1). The remaining vibrational amplitudes which either cause high correlations or are badly determined in the electron diffraction experiment, were constrained to the spectroscopic values, calculated from the force field. This is justified, since the refined amplitudes agree very well with the spectroscopic values. results from the electron diffraction analysis is included in Tables 1 and 2.

In the final stage of the analysis, structural parameters were fitted to electron diffraction intensities as well as rotational constants (13). The relative weight between electron diffraction and microwave data was adjusted until all rotational constants were reproduced within their estimated uncertainties. The geometric parameters derived from the combined analysis agree within their error limits with the results derived using the electron diffraction intensities alone.

The results demonstrate the usefulness of the rotational constants for the reduction of the uncertainties in the CN N $_{\alpha}$ - and the CF $_{3}$ tilt angle, which are very sensitive to the asymmetry or, in other words, to B $_{7}$ -C $_{7}$.

NORMAL COORDINATE ANALYSIS

A force field, required for the joint analysis of microwave and electron diffraction data, was derived from the 14 fundamental frequencies determined in a previous study $^{(6)}$, the torsional frequency, derived from relative intensity measurements of rotational transitions of the excited torsional states, and the centrifugal distortion constant \mathbf{D}_{JK} , determined from the rotational spectrum of the ground state.

Valence force constants were refined with the program NCA⁽¹⁴⁾ based on mass weighted cartesian coordinates. The modified harmonic force field (Table 3) looks reasonable, but is, of course, underdetermined.

The mean deviation between measured and calculated frequencies is $\overline{\Delta v} = 4 \text{ cm}^{-1}$.

ROTATIONAL SPECTRUM

The assignment of the band heads in the K-band region to the J: 4+5 (19.62 GHz) and J: 5+6 (23.54 GHz) transitions was straightforward since these band heads appeared very close to the frequencies predicted by the preliminary electron diffraction model (B+C = 3.94 GHz), but the high resolution recordings d.1 not openly display the characteristic pattern of a near prolate (K = -0.989) rotor (see

Fig. 3). The deviations arise from excited vibrational states - especially the low lying torsional states - as will be discussed below. The frequencies of all measured transitions and the ensuing rotational constants have been collected in Table 4. The K_{-1} = 1 lines stand out quite clearly, though, and recording at different Stark fields permitted the identification of K_{-1} = 0 lines which appear only at high fields. Subsequently higher K_{-1} -lines were identified, but because many of them are subject to heavy overlapping, some of them could only be measured using a radio frequency/microwave double resonance technique (RFMWDR) as described below.

The lowest J-lines show signs of quadrupole hyperfine structure, but no attempt was made to resolve and analyze these splittings. Stark measurements on different M-components of the transitions $4_{14}^{+5}_{15}$, $4_{13}^{+5}_{14}^{+5}_{15}^{+6}_{16}$ and $5_{14}^{+6}_{15}$ (calibrating the field against the OCS shifts and using Muenter's value for its dipole moment (15) yielded a dipole moment in the a-direction of μ_a = 1.15(10) D.

To understand the microwave spectrum in detail, especially the many lines between the two K_{-1} = 1 transitions, it is necessary to consider the possible molecular vibrations. In an earlier study (6), the vibrational spectra were investigated and 14 of the 15 fundamentals identified. The missing one, the torsion of the CF₃ group, was predicted to lie below 90 cm⁻¹, but could not experimentally be observed.

Fig. 4 shows the $5_{15} + 6_{16}$ transition in a highly amplified recording. From the characteristic Stark patterns it is possible to identify all of the obvious lines with the same transition, only in different vibrational states. The very intense progression to higher frequency must be assigned to the torsion, and relative intensity

measurements using the Wilson-Nesbitt method $^{(16)}$ yield an energy above the ground state of 47(3) cm⁻¹ for the first excited torsional state and thus for the torsional frequency.

To test the reliability of this method, the energy of excited states of other vibrations were determined and compared to the fundamental frequency determined from the IR and Raman spectra (in parenthesis): v_{10} : 177 (179), v_{9} : 409 (402). v_{14} : 459 (450), $v_{10}^{+}v_{15}$: 221 cm⁻¹ comprised of v_{10} : 174 and v_{15} : 47 cm⁻¹.

The reliability of the method obviously decreases with increasing frequency (decreasing intensity) and the method fails for transitions falling between the two ${\rm K}_{-1}$ = 1 lines because of serious overlapping of lines and Stark components.

Examination of the $5_{14}^{+6}_{15}$ transitions to determine their relative intensities revealed that the v_{15} progression extends toward lower frequencies, and thus the frequency difference between the K_{-1} = 1 lines decreases with increasing excitation of v_{15} . This effect is not observed with the other excited states (notably v_{10}). The frequency difference between the K_{-1} = 1 lines directly determines B-C, and thus the observed trend indicates an increase in symmetry in the v_{15} progression.

In order to explain this trend, it must be noted that a structural model having the C_3 axis of the CF_3 group colinear with the C-N bond, only produces a B-C value of 1-2 MHz. To reproduce the observed B-C value for the ground state (20.5 MHz) it is necessary to assume a tilt angle of $\sim 5^{\circ}$.

Consequently, one could propose that the effect of higher torsional excitation is the removal of the tilt of the CF₃ group. In that case one would expect higher torsional states to have B-C values between 1 and 2 MHz.

On the other hand, if one realizes that most of the molecular mass is concentrated in the trifluoro methyl group, it is possible to visualize the light "frame" rotating about the heavy "top" and higher excitation would lead to an effective symmetric top molecule with the excited energy levels lying well above the barrier to the torsional motion. In that case, however, as the energy levels approach the top of the barrier, tunnelling through the threefold barrier would cause the rotational lines to split into nondegenerate A and doubly degenerate E components.

Unfortunately, this splitting is expected to take place at the frequency where the center of the rotational transitions of the excited torsional states have "turned back" (see Fig. 3) into the upper $K_{-1} = 1$ lines of the lower torsional states, and thus it is impossible to clearly distinguish the weaker lines of the higher excited states.

It was hoped that double resonance experiments (RFMWDR) could circumvent this problem $^{(17)}$ RFMWDR techniques were used to identify and measure the J: 5+6, K_{-1} = 2 transitions of the molecule in its ground as well as first excited torsional state, using a pump frequency of 3.1 MHz, which happens to be the asymmetry splitting of the J=5 levels for the ground state and the splitting of the J=6 levels of the first excited torsional state. Using a pump frequency of 6.15 MHz (the ground state splitting of the J=6 levels) only the ground state transitions are observed.

It was also possible to observe the K $_{-1}$ = 1 lines in RFMWDR (J: 5+6) for the ground (ν_p = 307.0 MHz), the 1st excited torsional (ν_p = 218.4 MHz), the 2nd (ν_p = 128.7 MHz) and barely the 3rd excited torsional state (ν_p = 36.1 MHz).

The weakness of the 3rd excited torsional state transitions extinguished the hope of finding the v_{15} = 4 lines using the DR-technique, which would otherwise have overcome the problem of overlapping.

Fortunately, however, the J: 1+2 transitions around 7.9 GHz (Fig. 5), modulated at a Stark field of 800 V/cm only show the $K_{-1}=0$ transitions, and thus provide a somewhat clearer picture. It looks like the $v_{15}=3$ transition is somewhat broadened compared to the $v_{15}=0$, 1 and 2 transitions, and the $v_{15}=4$ transition is possibly split into two components, indicating a torsional level approaching the top of the barrier.

The assumption of a purely sinusoidal potential allows a determination of the barrier heights from the torsional force constant, known from the normal coordinate analysis

f.c. =
$$\frac{\partial^2 V}{\partial \alpha^2}$$
 = $\frac{\partial^2}{\partial \alpha^2}$ ($\frac{V_3}{2}$ (1 - cos 3 α)) at $\alpha = 0 = \frac{9V_3}{2}$

or: 0.03 mdyn
$$A^2 = 4.35 \text{ kcal/mol} = \frac{9V_3}{2}$$
; $V_3 = 0.97 \text{ kcal/mol}$.

Thus, the v_{15} = 4 state with an energy of .675 kcal is in fact quite close to the top of the barrier, especially since the addition of a few per cent V_6 potential would somewhat lower the value of V_3 . It seems, although the evidence is sparse, that the decrease in B-C on excitation of v_{15} is due to the hindered internal rotation of the trifluoro methyl group.

DISCUSSION

The most significant features of the $\mathrm{CF_3N_3}$ structure are the bond lengths, the nonlinearity of the $\mathrm{N_3}$ group, and the torsion and tilt angle of the $\mathrm{CF_3}$ group with respect to the $\mathrm{N_3}$ group. These features are discussed in the following paragraphs.

Bond Lengths. The above results clearly demonstrate that in CF_3N_3 the $N_\beta-N_\omega$ bond is significantly shorter than the $N_\beta-N_\alpha$ bond. This can be attributed to the electron withdrawing effect of the CF_3 group. A comparison of the MN_3 series (M = alkali metal, (CH_3) $_3$ Si, H, Cl, CF_3) shows that if M is of very low electronegativity, as for example in the alkali metals, we have an ionic $M^+N_3^-$ structure (I) with two degenerate N-N bonds of 1.16Å each. With increasing electronegativity of M, the M-N bond becomes more covalent and the contribution from the resonance structure (III) increases, due to the electron withdrawing effect of M. This causes an increase in the bond length difference between $N_\beta-N_\omega^-$ and $N_\beta-N_\omega^-$ (see Table 5).

A comparison of the C-N bond lengths in $\mathrm{CH_3N_3}$ and $\mathrm{CF_3N_3}$ also shows the expected effect (9). Replacement of the $\mathrm{CH_3}$ by the $\mathrm{CF_3}$ group results in bond shortening if the groups are bonded to electronegative atoms or groups. Hence the C-N bond in $\mathrm{CF_3N_3}$ (1.425Å) is significantly shorter than that in $\mathrm{CH_3N_3}$ (1.468Å).

Torsional Angle of the CX₃ Group. In general methyl or trifluoro methyl groups prefer the staggered position with respect to single bonds, but prefer an eclipsed position with respect to double bonds. Representative examples in the case of C=C double bonds are: $\text{CX}_3\text{CH}=\text{CH}_2^{(18)}$ and trans $\text{CX}_3\text{CH}=\text{CHCX}_3^{(19,20)}$. Only strong steric repulsions can force CF_3 groups to abandon the eclipsed position, such as in dis $\text{CF}_3\text{CH}=\text{CHCF}_3^{(20)}$. Only one example is known for N=N double bonds: rans $\text{CX}_3\text{N=NCX}_3^{(20,21,22)}$, where the CX₃ groups again eclipse the N=N double bond and stagger the N lone pair. In CF_3N_3 the CF₃ group occupies a staggered position with respect to the N₃ group as shown by (IV), and this indicates

a significant contribution from resonance structure (III). For this structure configuration (IV) minimizes the repulsion between the fluorine free valence electrons and the <u>two</u> sterically active free electron pairs on the N_Q atom (indicated by broken lines in (IV). In contrast to CF_3N_3 , the CH_3 group in CH_3N_3 appears to be in an intermediate position between eclipsed and staggered (23), (25±7° from the eclipsed position) which may be explained in the following manner: resonance structure (II) should result in a staggered (V) and resonance structure (III) in an eclipsed (VI) configuration. Since, as discussed above, the bond lengths indicate that structure (II) contributes more strongly to the structure of CH_3N_3 than to that of CF_3N_3 , the observation of an

intermediate torsional angle is not surprising.

Linearity of the N₃ Group and CF₃ Tilt Angle. In CF₃N₃ the N₃ group is slightly (10°) bent away from the CF₃ group, and the CF₃ group is tilted away from the N₃ group by 5.8°. This is readily explained by the repulsion between the fluorine free valence electron pairs and the π bond electron system of the N₃ group. A comparison of these values with those in CH₃N₃ would be most interesting, but unfortunately no experimental values are presently available for CH₃N₃. It is interesting to note that the angles of the N₃ group found for HN₃, ClN₃, NCN₃, and CF₃N₃ are all very similar. However, it should be kept in mind that most of these values carry rather large uncertainties.

Torsional Effects on the Structure. The present data for the excited torsional states do not allow a determination of the structural changes upon excitation of ν_{15} . It is clear from model calculations, however, that several parameters must change their value in order to reproduce the rotational constants of the excited states. Thus heavy relaxation, not only in the trifluoro methyl group, but also in the tilt and the CN N angle, is assumed to take place.

ACKNOWLEDGEMENT

We are grateful to Dr. G. Pawelke for providing a sample of ${\rm CF_3N_3}$ for the RFMWDR measurements. D. Christen and H. Oberhammer acknowledge financial support by the Fonds der Chemie. K. O. Christe and C. J. Schack thank the Office of Naval Research and the U.S. Army Research Office for financial support.

References

- (1) (a) Rocketdyne (b) University of Tubingen
- (2) "The Chemistry of the Azido Group"; Patai, S., Ed.; Wiley-Interscience: New York, 1971.
- (3) Dehnicke, K. Adv. Inorg. Chem. Radiochem. 1983, 26,169.
- (4) Makarov, S. P.; Yakubovich, A. Ya.; Ginsburg, V. A.; Filatov, A. S.; Englin, M. A.; Privezentseva, N. F.; Nikiforova, T. Ya. <u>Dokl. Akad. Nauk SSSR 1961</u>, 141,357.
- Makarov, S. P.; Yakubovich, A. Ya.; Filatov, A. S.; Englin,M. A.; Nikiforova, T. Ya. Zh. Obshch. Khim. 1968, 38,709.
- (6) Christe, K. O.; Schack, C. J. Inorg. Chem. 1981, 20,2566.
- (7) Livingston, R. L.; Rao, C. N. R. J. Phys. Chem. 1960, 64,756.
- (8) Salathiel, W. M.; Curl, R. F. Jr. J. Chem. Phys. 1966, 44.1288.
- (9) Oberhammer, H. J. Fluorine Chem. 1983, 23,147.
- (10) Supplementary data available (see masthead page).
- (11) Haase, J. Z. Naturforsch. 1970, A25,936.
- (12) Oberhammer, H. J. Chem. Phys. 1978, 69,468.
- (13) Hilderbrandt, R. L.; Wieser, D. D. J. Chem. Phys. 1972, 56,1143.
- (14) Christen, D. J. Mol. Struct. 1978, 48,101.
- (15) Muenter, J. S. J. Chem. Phys. 1968, 48,4544.
- (16) Nesbitt, Jr., A. S.; Wilson, Jr., E. B. Rev. Sci. Instr. 1963, 34,901.
- (17) Wodarczyk, F. J.; Wilson, Jr., E. B. <u>J. Mol. Spectr.</u> 1971, 37,445.
- (18) Tokue, J. Fukuyama, T., Kuchitsu, K. <u>J. Mol. Struct.</u> 1973, 17,207.

- (19) Almenningen, A.; Anfinsen, I. M.; Haaland, A. Acta. Chim. Scand. 1970, 24,43.
- (20) Bürger, H., Pawelke, G.; Oberhammer, H. <u>J. Mol. Struct.</u> 1982, 84,49.
- (21) Chiang, C. H.; Porter, R. F.; Bauer, S. H. J. Am. Chem. Soc. 1970, 92,5313.
- (22) 'Almenningen, A.; Anfinsen, I. M.; Haaland, A. Acta Chim. Scand. 1970, 24,1230.
- (23) Anderson, D. W. W.; Rankin, D. W. H.; Robertson, A. <u>J. Mol. Struct.</u> 1972, 14,385.
- (24) Cook, R. L.; Gerry, M. C. L. J. Chem. Phys. 1970, 53,2525.

Table 1. Interatomic distances, vibrational amplitudes from spectroscopic and electron diffraction data (error limits are 3σ values) and vibrational corrections Δ (in \tilde{A}).

atom pair	r _{ij}	vibration spectr.	al amplitudes e.d.	Δ=r _a -r _z
N _β - N _ω	1.12	0.034	0.034 ^a	0.0060
N _α - N _β	1.25	0.042	0.042 (4) ^b	0.0004
C - F	1.33	0.045	0.045 (4) ^b	0.0013
C - N _a	1.43	0.053	0.053 (4) ^b	-0.0001
FF	2.16	0.054	0.056 (3) ^c	0.0009
$N_{\alpha}F_{t}$	2.18	0.061	0.063 (3) ^C	0.0004
N _a F _g	2.30	0.063		0.0001
CN _B	2.23	0.067	0.067 ^a	-0.0006
$N_{\alpha} \cdot N_{\omega}$	2.36	0.046	0.046ª	0.0028
N _B F _g	2.71	0.169	0.174 (26)	-0.0072
CN _ω	3.27	0.085	0.095 (40)	-0.0003
$N_{\beta}F_{t}$	3.31	0.092	0.092 ^a	0.0021
$N_{\omega} \cdot F_{g}$	3.56	0.229	0.250 (33)	-0.0096
$N_{\omega} \dots F_{t}$	4.42	0.141	0.096 (57)	0.0130

a Not refined, b, C Ratio constrained to spectroscopic ratio.

Table 2. Geometric parameters ($\overset{\circ}{A}$ and degrees) for CF_3N_3 from electron diffraction and combined electron diffraction - microwave analysis.

	e.d. ^a r ^o	e.d. + m.w. ^b
C-F	1.329 (3)	1.328 (2)
C-N _a	1.427 (5)	1.425 (5)
$N_{\alpha}-N_{\beta}$	1.250 (7)	1.252 (5)
$N_{\beta}-N_{\omega}$	1.117 (4)	1.118 (3)
CN _a N _B	111.8 (1.1)	112.4 (0.2)
$N_{\alpha}N_{\beta}N_{\omega}^{C}$	175.3 (4.3)	169.6 (3.4)
FCF	108.4 (0.4)	108.7 (0.2)
tilt ^đ	4.4 (1.2)	5.8 (0.4)

^aResults from electron diffraction analysis; error limits are 2σ values and include a possible scale error of 0.1% for bond lengths.

bResults from combined electron diffraction - microwave analysis; error limits are 20 values.

 $^{^{\}mathrm{C}}$ Bend away from CF_3 group.

 $^{^{}d}$ Tilt of CF₃ group away from N₃ group.

Table 3. Force Field for CF3N3

CF	6.69	CF/CF	1.06
CN	4.84	CF/CN	0.46
Na Na	7.75	CF/FCF (adj)	0.51
N _β N _ω	16.88	CF/FCF (opp)	-0.33
FCF	1.82	CN/FCF	-1.00
NCF	1.20	CN/NCF (adj)	0.42
CNN	1.49	CN/NNN	-0.54
NNN	0.67	FCF/FCF	0.23
tors	0.03	FCF/NNN	-0.18
		NNN/tors	-0.07

^aStretch in mdyn/ \mathring{A} , stretch/bend in mdyn/rad, bend in mdyn \mathring{A} /rad²

0 4 >	v ₁₅ * 1	v ₁₅ = 2	v ₁₅ * 3	v15 * 4	v ₁₀ = 1	v10 = 2	v15 * 1, v10	_ 6, _{7 =} (
203 7845.90	7848.36	7851.39	7854.87	7858.13	7851.84	7857.67	7853.68	
11738.22	11750.70	11764.13	11778.62		11743.79	11749.23	11755.80	
20,30, 11768.73	11772.52	11777.05	11782.32	11787.38	11777.53		11780.40	
2,3,3, 11768.72	11772.33	11776.69	11781.82		11777.72		11780.28	
2,03,1 11768.93	11772.49	11776.69	11781.82		11778.00		11780.51	
11799.67	11794.40	11789.80	11785.77				11805.19	
414515 19563.32	19584.34	19606.66	19630.92		19572.60	19581.52	19592.76	
441542 19612.98 440541	19618.70	19625.77	19633.66		19627.90		19632.07	
04505 19613.36	19620.17	19627.90	19637.11	19646.89	19627.75	19641.95	19633.17	
432533 19614.09	19619.84	19626.93	19635.37		19629.06	19643.67	19633.17	
4,25,4 19614.28	19620.17	19627.75	19636.38		19629.06	19643.67	19633.58	
422523 19615.96	19621.02	19627.90	19636.38			19646.29	19634.74	
13514 19665.79	19657.02	19649.58	19642.92		19686.00	19706.00	19675.23	
5 ₁₅ 6 ₁₆ 23475.69	23500.96	23527.92	23557.02		23486.68	23497.42	23510.98	23480.85
5 ₁ 6 ₅₂ 23534.01	23540.81	23549.30			23551.87			
505606 23534.97	23543.71	23553.54	23564.72		23552.18	23568.80		
542643 23535.65	23542.48	23551.08	23560,39		23553.51			
524 ⁶ 25 23536.98	23544:36	23553.06	23563.73		23554.88		23560.39	
533634 23537.01	23543.71	23552.40	23562.22		23554.88			
52,33 53,634 23540.01	23545.76	23553.54	23563.73		23558.48		23562.22	
514615 23598.62	23588.29	23579.39	23571,50		23662.84	23646.77	23609.94	23607.58
5544. 1971.750(4) 1951.260(4) 0.0142(1)	5631.5 1969.374(6) 1954.825(6) 0.0150(2)	5722.4 1967.121(6) 1958.544(6) 0.0158(2)	5722.4 5817.2 1967.121(6)1964.924(7) 1958.544(6)1962.519(7) 0.0158(2) 0.0220(31)	5880.5 3929.1 ^C	5517.5 1974.335(6) 1951.648(6) 0.0143(2)	5490. 1976.896(5) 1952.002(5) 0.0141(5)	5600. 1971.679(6) 1955.188(6) 0.0148(3)	5525.5 1967.30 19 5 6.74 0.

Principal geometric parameters of some azides, XN2, studied in the gas phase. Table 5.

	HN ₃	CH ₃ N ₃	Me3SiN3	C1N ₃	NCN ₃	CF3N3
»-×	1.015 (15)	1.468 (5)	1.734 (7)	1.745 (5)	1.355 (2)	1.425 (5)
N - N B	1.243 (5)	1.216 (4)	1.198 (8)	1.252 (10)	1.261 (2)	1.252 (5)
N - 8	1.134 (2)	1.130 (5)	1.150 (11)	1.133 (10)	1.121 (2)	1.118 (3)
X N N N N N N N N N N N N N N N N N N N	108.8 (4.0)	116.8 (0.3)	128.0 (1.6)	108.7 (0.5)	114.5 (0.2)	112.4 (0.2
z z z z	171.3 (5.0)	180 ^h	180 ^h	171.9 (0.5)	169.2 (1.6)	169.6 (3:4
T a	1	35.0 (7.0)	24.0 (5.0)	;	;	0.0

 $^{\rm a}$ Torsional angle of group X around X-N bond. τ = 0 corresponds to staggered position.

 $r_{\rm s}/r_{\rm o}$ values, Ref. 24. hestimated value. d ralues, Ref. $^{\mathrm{g}}_{\mathrm{rav}}$ values, this study. cra values, Ref. 7,8. br values, Ref. $f_{r_{\alpha}}$ values, Ref.

Figure Captions

- Experimental (....) and calculated (——) molecular intensities and differences.
- Experimental radial distribution function, theoretical functions for staggered and eclipsed conformations and difference curve between experimental and theoretical staggered conformation.
- 3. The J: 4+5 rotational transitions. Stark field: 200 V/cm. Arrows indicate frequencies at which $K_{-1} = 0$ lines appear at higher Stark fields.
 - $v_T = v_{15}$. $v_T = 4$ indicates the center of the A components of the torsionally split $v_T = 4$ state. The $K_{-1} = 1$ lines have not definitively been assigned.
- 4. The J: $5_{15}^{+6}_{16}$ transitions showing several vibrationally excited states at a Stark field of 800 V/cm. $v_{\pi} = v_{15}$.
- 5. The J: $1_{01}^{+2}_{02}$ transitions at a Stark field of 800 V/cm. Marker spacing is 0.8 MHz. The assignment of v_T = 4 is speculative, although other J candidates for the A components have been located.

FIGURE 1.

FIGURE 2.

FIGURE 4.

FIGURE 5.

APPENDIX S

Contribution from Rocketdyne, A Oivision of
Rockwell International, Canoga Park, California 91304
the Centre d'Etudes Nucleaires de Saclay, 91191 Cif-sur-Yvette Cedex,
France, and the Department of Chemistry, University of Leicester,
Leicester LEI 7RH, U.K.

Structure and Vibrational Spectra of Oxonium Hexafluoro-Arsenates (V) and-Antimonates (V)

K. O. Christe, *1 P. Charpin, E. Soulie, R. Bougon, and J. Fawcett

Abstract

The salts 00_3^+AsF_6^- , 00_3^+SbF_6^- and partially deuterated $0\text{H}_3^+ \text{SbF}_6^-$ were prepared and characterized by X-ray and neutron diffraction techniques, OSC measurements, and vibrational spectroscopy. At room temperature, $0\text{H}_3^+ \text{AsF}_6^-$ exists in a plastic phase where ions, centered on the atomic positions of the NaCl structure, are in motion or oscillation. No valuable information on atomic distances or angles in $0\text{H}_3^+ \text{AsF}_6^-$ could be obtained due to these dynamic structural disorder problems. For $0\text{H}_3^+ \text{SbF}_6^-$ the phase transition from an ordered to a disordered phase was shown to occur above room temperature. The room temperature phase can be described by an ordered hydrogen bonded model based on a CsCl type structure. Vibrational spectra were recorded for these oxonium salts and confirm the presence of the different phases and phase transitions. Improved assignments are given for the 0H_3^+ and 00D_3^+ cations, and the 0H_1^- . FM bridge stretching mode and some of the bands characteristic for $00\text{D}_2\text{H}^+$ and 00H_2^+ were identified. A modified valence force field was calculated for 0H_3^+ which is in good agreement with the known general valence force field of isoelectronic 0H_3^+ and values obtained by ab initio calculations.

Introduction

Although the existence of oxonium salts at low temperature had been well known for many years, the synthesis of surprisingly stable OH_3^+ salts containing the AsF_6^- and SbF_6^- anions has been reported only in 1975. Since then numerous papers have been published on other OH_3^+ salts containing complex fluoro anions, such as UF_6^- , BiF_6^- , IrF_6^- , PtF_6^- , RuF_6^- , 7 , 8 TiF_5^- , or BF_4^- . In these oxonium salts the cations and anions are strongly hydrogen bonded, as shown by the short O-F distances of 2.51 to 2.61Å found by X-ray diffraction studies. 9,10 Since the nature of these hydrogen bridges is strongly temperature dependent, these oxonium salts show phase transitions and present interesting structural problems. In this paper we report unpublished results accumulated during the past eight years in our laboratories for these oxonium salts.

Experimental Section

Materials and Apparatus. Volatile materials used in this work were manipulated in a well-passivated (with ${\rm ClF_3}$ and HF or DF) Monel-Teflon FEP vacuum system. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glove box. Hydrogen fluoride (The Matheson Co.) was dried by storage over ${\rm BiF_5}^6$. SbF₅ and ${\rm AsF_5}$ (Ozark Mahoning Co.) were purified by distillation and fractional condensation, respectively, and DF (Ozark Mahoning Co.) and ${\rm O_2O}$ (99.6%, Volk) were used as received. Literature methods were used for the preparation of ${\rm O_2AsF_6}^{12}$ and ${\rm OH_3SbF_6}$ and ${\rm OH_3AsF_6}^4$.

Infrared spectra were recorded on a Perkin-Elmer Model 283 spectrometer, which was calibrated by comparison with standard gas calibration points. 13,14 Spectra of solids were obtained by using dry powders pressed between AgCl or AgBr windows in an Econo press (Barnes Engineering Co.). For low-temperature spectra, the pressed silver halide disks were placed in a copper block cooled to $^{-196}$ C with liquid N 2 and mounted in an evacuated 10 cm path length cell equipped with CsI windows.

Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 0 4880-Å exciting line and a Claassen filter 15 for the elimination of plasma lines. Sealed quartz tubes were used as sample containers in the transverse-viewing, transverse-excitation technique. The low-temperature spectra were recorded using a previously described 16 device.

A Perkin-Elmer differential scanning calorimeter, Model DSC-18, equipped with a liquid N_2 cooled low-temperature assembly, was used to measure phase transitions above -90° C. The samples were crimp sealed in aluminum pans, and a heating rate of 5° /min in N_2 was used. The instrument was calibrated with the known mp of n-octane, water, and indium.

The neutron powder diffraction patterns of $OH_3^+AsF_6^-$, $OD_3^+AsF_6^-$, and $OD_2^+AsF_6^-$ were measured at Saclay using the research reactor EL3 with λ = 1.14DA for 20 ranging from 6 to 44°. The data for $OD_3^+SbF_6^-$ were recorded at ILL Grenoble with λ = 1.2778A for 20 ranging from 12 to $OD_3^+SbF_6^-$ with 400 measured values of intensity separated by ODD_3^- .

The X-ray powder diffraction patterns were obtained from samples sealed in D.3mm Lindemann capillaries with a 114.6mm diameter Philips camera using Ni-filtered Cu $K\alpha$ radiation. Low-temperature diagrams were measured using a jet of cold N_2 to cool the sample and a Meric MV3D00 regulator.

The single crystal of $0H_3^{+}SbF_6^{-}$ was isolated as a side product from the reaction of $MoF_4^{-}0$ and SbF_5^{-} in a thin walled Teflon FEP reactor with $H_2^{-}0$ slowly diffusing through the reactor wall.

<u>Preparation of CD₃⁺AsF₆⁻</u>. A sample of D₂O (987.5mg, 49.30mmol) was syringed in the drybox into a 3/4 inch Teflon FEP ampule equipped with a Taflon coated magnetic stirring bar and a stainless steel valve. The ampule was connected to a Monel-Teflon vacuum line, cooled to -196° C, evacuated, and DF (10g) was added. The mixture was homogenized at room temperature, and AsF₅ (57.7mmol) was added at -196° C. The mixture was warmed to -78° C and then to ambient

temperature for 1 hr with agitation. All material volatile at ambient temperature was pumped off for 2 hr, leaving behind a white solid residue (10.408g, weight calcd for 49.30mmol of 00_3^+AsF_6^- 10.4D2g) identified by IR spectroscopy as mainly 00_3^+AsF_6^- containing a small amount of $00_2^+ \text{H}^+ \text{AsF}_6^-$ as impurity.

Preparation of $0D_3^+SbF_6^-$. Antimony pentafluoride (18.448g, 85.11mmol) was added in the drybox to a 3/4 inch Teflon FEP ampule equipped with a Teflon coated magnetic stirring bar and a stainless steel valve. The ampule was connected to the vacuum line, cooled to $-78^{\circ}C$, evacuated and DF (23.1g) was added. The mixture was homogenized at room temperature. The ampule was cooled inside the drybox to $-196^{\circ}C$, and D_2 0 (1.6951g, 84.63mmol) was added with a syringe. The mixture was agitated for several hours, and all material volatile at $45^{\circ}C$ was pumped off for 14 hr. The white solid residue (21.987g, weight calcd for 84.63mmol of $00_3^+SbF_6^-$ 21.813g) was identified by spectroscopic methods as mainly $0D_3^+SbF_6^-$ containing small amounts of $0D_2^{\circ}H^+SbF_6^-$.

Preparation of Partially Deuterated $OH_3^+SbF_6^-$. A sample of $OH_3^+SbF_6^-$ (2.0016g, 7.857mmol) was dissolved in liquid DF (2.012g, 95.81mmol) in a Teflon ampule for 1 hr. All volatile material was pumped off at $45^{\circ}C$ for 3 hr leaving behind a white solid residue (2.020g, weight calcd for 7.857mmol of $OD_3^+SbF_6^-$ 2.0252g) which based on its vibrational spectra showed about equimolar amounts of OD_3^+ and OD_2^+ , and smaller amounts of $ODH_2^+SbF_6^-$ (calcd statistical product distribution for 19.74%H and 3D.26%D: $OD_3^+51.68$, $OD_2^+H^+38.16$, $OOH_2^+g.33$, and $OH_3^+0.77$ mol%).

Results and Discussion

Syntheses and Properties of Deuterated Oxonium Salts. The ${\rm OD}_3^+$ salts were prepared by the same method as previously reported for the corresponding ${\rm OH}_3^+$ salts, except for replacing H₂O and HF by D₂O and OF, respectively.

$$0_20 + DF + MF_5 \xrightarrow{DF} 00_3^+ MF_6^-$$
 (M=As,Sb)

The yields are quantitative and the samples were almost completely deuterated. The small amounts of $\mathrm{DD}_2\mathrm{H}^+$ observed in the infrared spectra and to a lesser degree in the Raman spectra of the products (see below), are attributed to small amounts (0.6%) of $\mathrm{H}_2\mathrm{D}$ in the $\mathrm{D}_2\mathrm{D}$ starting material and to exchange with traces of moisture during the preparation of the IR samples. A partially deuterated sample of $\mathrm{DH}_3^+\mathrm{SbF}_6^-$ was prepared by treating solid $\mathrm{DH}_3^+\mathrm{SbF}_6^-$ with an excess of DF.

$$DH_{3}^{+}SbF_{6}^{-} + nDF \longrightarrow DH_{3-n}D_{n}^{+}SbF_{6}^{-} + nHF$$

The exchange appeared to be fast, and the product exhibited the correct statistical DD_3^+ , DD_2^+ , DD_2^+ , DD_2^+ , DD_3^+ distribution based on the H:D ratio of the starting materials. As expected, the physical properties of the deuterated oxonium salts were practically identical to those of the corresponding DD_3^+ salts.

DSC Data. Since the neutron and X-ray diffraction data suggested (see below) that at room temperature DH_3SbF_6 is ordered whereas OH_3AsF_6 exists in a plastic phase, low-temperature DSC data were recorded to locate the corresponding phase changes for each compound.

The ${
m OD}_3{
m AsF}_6$ salt exhibited on warm up from $-9D^{\rm O}{\rm C}$ a large endothermic phase change at 2.5° which was shown to be reversible, occurring at -7.5° on cooling. For ${
m DH}_3{
m AsF}_6$ this phase change was observed at practically the same temperatures. No other endotherms or exotherms were observed between $-9D^{\rm O}{\rm C}$ and the onset of irreversible decomposition. The observed phase change temperatures are in excellent agreement with those found by low-temperature Raman spectroscopy (see below).

For DH_3SbF_6 three small endotherms at 2D, 49, and $81^{\circ}C$ and a large endothermic phase change at $100^{\circ}C$ were observed on warming. All of these were reversible occurring at 19, 42, 77 and $96^{\circ}C$, respectively, on cooling. For $0D_3SbF_6$ the

corresponding changes were observed at 20, 48, 82, and 100° C on warming and 20, 43, 74, and 76° C on cooling. Again no other heat effects were observed in this temperature range. The temperature differences observed for phase changes between the heating and cooling data is attributed to hysteresis which normally is a problem in salts of this type. ¹⁷ The smaller heat effects observed for OH_3SDF_6 below the major order-disorder phase transition may be attributed to damping of rotational motions of the ions, similar to those found for O_2ASF_6 . ¹⁷

For $\mathrm{OH_3BiF_6}$ no phase transitions were observed between -90°C and the onset of decomposition.

Structural Studies

 OH_3AsF_6 . As previously reported, 4 this compound is cubic at room temperature, and a cell parameter of 8.043(8)Å was found in this study from X-ray powder data. It exhibits only one phase transition at $-2\pm5^{\circ}C$ (based on DSC and Raman data) in the temperature range from $-90^{\circ}C$ to its decomposition point. The X-ray powder pattern at $-153^{\circ}C$ is given in Table 1 and indicates a lowering of the symmetry in agreement with the low-temperature vibrational spectra (see below). Attempts to index the pattern were unsuccessful.

It is interesting to compare the X-ray powder diffraction patterns of OH_3AsF_6 and O_2AsF_6 . Whereas their room temperature patterns $^4, ^{12}, ^{18}$ and cell parameters are for practical purposes identical, their low-temperature patterns (Table 1 and ref. 19) are very distinct due to different ion motion freezing. Since OH_3^+ , OD_3^+ , and O_2^+ are weak X-ray scatterers, but contribute strongly to the neutron scattering, neutron diffraction powder patterns were also recorded at room temperature for their AsF_6^- salts (see Table II). As expected, the cell dimensions were for practical purposes identical, but the observed relative intensities were very different.

Attempts were made to obtain structural information from the room-temperature neutron diffraction powder patterns of OH_3AsF_6 and OD_3AsF_6 . It was shown that the unit cell is indeed face-centered cubic and that an alternate solution, a primitive cubic $CsPF_6$ structure, can be ruled out for both compounds. The number of observed peaks is rather small, but the respective intensities due to the substitution of hydrogen by deuterium (scattering lengths $D_H = -0.374$, $D_D = 0.667$) are very different (Table II). The rapid vanishing of intensities at large diffraction angles and the presence of a bump in the background level implying a short distance order, are characteristic of plastic phases with ions in motion. The only models which could be tested to describe such a motion have been tried successively.

The first one is a disordered model with statistical occupancy factors for fluorine atoms and hydrogen atoms in the Fm3 symmetry group. This corresponds to four equivalent positions of the octahedra around the fourfold axes, and to eight positions for the $\mathrm{OH_3}^+$ ion. Using the intensities observed for $\mathrm{OH_3AsF_6}$, the solution refines to R = 0.047, but is not considered acceptable because the resulting distances As-F = 1.58Å and O-H = 0.82Å are too short when compared to As-F = 1.719(3)Å in KAsF $_6^{20}$ and O-H = 1.011(8)Å in $\mathrm{OH_3}^+$ p-CH $_3\mathrm{C_6H_4SO_3}^-$.

The second one is a rotating model which places As at the 000 position connected to fluorines by a complex term

$$b_{As} + 6b_F \frac{\sin x}{x}$$
 with $x = 4 \pi r_F \sin \theta/\lambda$

and 0 at the 1/2 1/2 1/2 position connected to H atoms by

$$b_0 + 3b_H \frac{\sin x}{x}$$
 with $x = 4 \pi r_H \sin e/\lambda$

where b_{AS} , b_{F} , b_{O} and b_{H} are the scattering lengths of As, F, O, and H, respectively. The As-F distance, r_{F} ,and the O-H distance, r_{H} ,are the only unknowns with the scale factor of the structure. The best results

(R = 0.059) are obtained with the combination As-F = 1.59A and 0-H = 0.81A, not so different indeed from the first model.

For 00_3AsF_6 , the second model gives more plausible distances, As-F = 1.65A and 0-0 = 1.01A with R = 0.054, if the intensity of the 200 reflexion is arbitrarily lowered by 20% assuming the excessive intensity being due to preferential orientation.

Based on the short distances found for OH_3AsF_6 , we can consider that the real structure is probably not properly accounted for by either one of the models, due to the motion of the ions which is not correctly simulated as for other plastic phases.

 OH_3SbF_6 . Based on the DSC data (see above) the transition from an ordered to a disordered phase occurs at $88\pm12^{\circ}C$. The existence of an ordered phase at room temperature for OH_3SbF_6 and its deuterated analogues was confirmed by the diffraction studies. The X-ray powder diffraction pattern, which originally had been read backwards due to very intense back reflections and indexed incorrectly as tetragonal, is listed in Table III. By analogy with a large class of other OH_6 compounds, such as O_2PtF_6 and O_2SbF_6 , the OH_3SbF_6 pattern can be indexed for a cubic unit cell with a = OH_3SbF_6 pattern can be indexed for a cubic unit cell with a = OH_3SbF_6 pattern can be indexed for a cubic unit cell dimensions were confirmed by a single crystal X-ray study at Leicester (see below) which resulted in a = OH_3SbF_6 Although all of the observed X-ray reflections obey the conditions (h+k+l=2n and Okl where kl=2) for space Ia3, the neutron diffraction data (see below) suggest a lower symmetry subgroup, such as OH_3SbF_6 are discussed in more detail.

Single Crystal X-ray Study. The OH_3SbF_6 single crystal had the approximate dimensions 0.46 x 0.35 x 0.22mm and was sealed in a Pyrex capillary. Preliminary cell dimensions were obtained from Weissenberg and precession

photographs. The final value for the unit cell parameter was determined from the optimized counter angles for zero layer reflections on a Stoe Weissenberg diffractometer. The data were collected for layers Okl to 6kl of the aligned pseudotetragonal cell, using the Stoe Stadi-2 diffractometer, in the four quadrants h \pm k \pm l and an ω -scan technique with Zr filtered Oko Ka radiation. The intensities of reflections with 0.171 \leq Sine/ $\lambda \leq$ 1.22A were collected, and a total of 719 reflections obtained with I/oI \geqslant 3. Check reflections were monitored during the data collection of each layer and no deterioration of the crystal was indicated. Lorentz and polarisation corrections were made to the data set.

The program system Shelx²⁵ was used to solve the structure. Neutral scattering factors were used with anomalous dispersion coefficient. Three cycles of least squares refinement with antimony on the Wyckoff position, 8a (1/2, 1/2) of the space group Ia3 gave an R factor of 0.27. The Fourier difference map located a 9 electron peak, assumed to be oxygen, on the 8b position $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ with two sets of possible fluorine octahedra each at 1.90Å from Sb. Three cycles of refinement with the oxygen atom included, reduced the R factor to The inclusion of either of the peaks on the general positions about Sb. 0.22. as F atoms, with all atoms refining isotropically resulted in a reduced $\mathbf{R}_{\mathbf{n}}$ factor of 0.13; however, the refinement cycles moved the F atoms to > 2.0A from Sb. The inclusion of fluorine atoms also resulted in a more complex difference Fourier map, with several peaks € 3 electrons appearing. The alternate fluorine atom positions indicated were refined as disordered. initially refining the site occupation factors and then the temperature factors. The resultant R factor of 0.12 was not significantly less than with an ordered structure; one of the fluorine atoms refined to a position 2.2Å from Sb, and further possible fluorine sites appeared in the Fourier map. Refinement of various models with either ordered fluorine atoms or disordered atoms constrained to be 1.86(3)Ă from antimony, did not improve the R factor or the residual Fourier map. For final cycles of least-squares refinement, the atomic positional and thermal parameters of that fluorine atom which remained at the expected distance from antimony in the disordered model, were refined. This

represents an incomplete solution, as the fluorine atom parameters reported appear representative of disorder. This is reflected in the structure factors, where agreement between |Fo| and |Fc| is good for even, even, even reflections with dominant contribution by the antimony and oxygen atoms but poor for odd, odd, even reflections which are dependent only upon the fluorine (and hydrogen) atom parameters. The final atomic positional and thermal parameters are given in Table IV, with some atomic distances and angles. Final residual indices for 155 unique reflections is R = 0.119.

Neutron Powder Oiffraction Study. For $00_3 \mathrm{SbF}_6$ 46 reflexions were observed (see Figure 1) out of which 4 could not be indexed on the basis of the cubic cell and are attributed to an unidentified impurity (mainly lines at 3.269, 2.235 and 2.225Å). The list of observed reflexions is given in Table V in comparison with X-ray data. The cell parameter is 10.116(6)Å.

The Rietweld program for profile refinement 26 was used to solve the structure. The first refinement was attempted in the Ia3 space group starting from the X-ray values for Sb, O and F and adding approximate values for O with the 00_3^+ ion being disordered on two equivalent positions (occupancy factor = $\frac{1}{2}$ of general positions xyz). The system refined to R = 0.135 with the following parameters:

Atom	x	у	Z	B (A)
Sb	0.5	0.5	0.5	0.94(25)
0x	0.25	0.25	0.25	4.87(41)
F	0.441(6)	0.604(6)	0.641(7)	2.88(13)
0	0.300(1)	0.317(1)	0.204(1)	2.98(27)

The y and z coordinates of fluorine atom have been permuted, probably due to the choice of the coordinates of deuterium. The atomic distances and angles are then

	0	
Sb-F	1.87 <u>A</u>	
0-F	2.67Å	
0-D	0.96Å	
D- D	1.56Å	D00: 10

which compare relatively well with the X-ray values of Table IV. At this stage, our attention was drawn to the presence of a weak but well isolated line at an angle σ high enough not to be attributed to the impurity. This line corresponded to a 730 reflexion, a forbidden reflexion in the space group Ia3 (hko, hk = 2n). In view of a similar observation for the cubic phase of KSbF₆(II) (in this case the 310 reflexion), ²⁷ the trouble with locating the fluorine atoms by difference X-ray syntheses, and mainly the incompatibility of the group Ia3 with the observed Raman and IR spectra (see below), we considered the possibility of an ordered structure in a subgroup of the Ia3 space group, first the noncentrosymmetric I243 space group (No. 199).

Since the symmetry center does not exist anymore, the local symmetry of the Sb and O atoms is then only a threefold axis. The structure has to be described with two sets of fluorine atoms F_1 and F_2 , and the oxonium ion is ordered with a full occupation of deuterium atoms on the general positions. The Sb and O atoms are also allowed to move along the threefold axes from their ideal positions (000, 1/2, 1/2, 1/2).

This hypothesis was tested and led to a better R factor (0.106) with the following parameters:

orioning parame	1	1	1	
Atom	x	у	z	B(A ²)
Sb	-0.012(1)	-0.012(1)	-0.012(1)	0.13(0.38)
0	0.238(3)	0.238(3)	0.238(3)	3.50(0.75)
F1	0.044(1)	-0.118(1)	-0.143(2)	1.26(0.42)
F2	-0.75(2)	0.091(1)	0.137(2)	1.89(0.45)
0	0.199(2)	0.184(1)	0.299(1)	3.40(0.30)
		S-11		1

Figure 1 gives the resulting profile of observed and calculated neutron diffraction diagrams and shows satisfactory agreement.

The Sb and O atoms are displaced from their ideal positions by 0.21Å, and the environment of the Sb atom has 3 F_1 atoms at 1.80Å and 3 F_2 atoms at 1.94Å, which seems to be compatible with the Raman and IR spectra.

The F_2 atoms are closer to the oxygen atom of the oxonium group than the F_1 atoms with F_2 -0 = 2.60Å and F_1 -0 = 2.79Å. The F_2 -0 distance is within the correct range for a strong 00...F hydrogen bridge bond (2.51-2.56Å in OH_3TiF_5 and 2.58-2.61Å in OH_3BF_4).

The deuterium atoms are located at 0.91\AA from the oxygen atom, (with a D-O distance of 1.54\AA and a DOO angle of 116°) on the line 0-F_2 (00 + 0F₂ = 0.91 + 1.69 = 2.60Å). This confirms, in the precision of our results, the quasi linearity of the 0-0...F bond in this compound. The geometry of the 00_3^+ cation itself is a flat pyramid with 0.18\AA out of the plane of the 3 deuterium atoms.

Figure 2 illustrates the environment around the oxonium ion, with the F_2 atoms being differentiated from the F_1 atoms by traces of the ellipses. The two SbF_6 octahedra fully represented are approximately located at 000 and 1/2 1/2 1/2 along the [111] direction and bring the environment to an icosahedron. The distinction between F_1 and F_2 implies a small displacement of the fluorine atoms from their average positions obtained in the Ia3 space group (F- F_1 or $F-F_2$ distances are about 0.20A) but the angular distortion of the octahedron is small, one side being flattened (F_1 53°9) and the other one being elongated (F_2 55°5). To obtain a refinement in the I2 $_1$ 3 symmetry group, we had to allow the existence of antiphase domains without local symmetry centers, but which are images of each other.

The interesting point of this structure is the existence of an ordered solution for all atoms with a scheme of hydrogen bonding which prevents at room temperature the existence of a plastic phase. Such a phase may however exist at higher temperatures and explains the phase changes observed before the decomposition point. To obtain more information on the motions of the ions in the different phases, additional experimental data, such as second moment and relaxation time NMR measurements, are required.

As far as the exact geometry of the ${\rm OD}_3^{-1}$ cation is concerned, it must be pointed out that the precision of the results obtained from the powder diffraction data is not very high and that the final values depend on the starting points used for the different refinements. Thus the O-D distance was found to vary from 0.91 to 1.05Å with the 0DO angle varying from 116° to 92° . The correct values certainly lie between these extreme values. This is also reflected by the higher thermal parameters found for the deuterium and oxygen positions (see above) indicating high thermal motion of the 00_3^+ cation itself. For the 0-H bond length in $0H_3^+$, a lower limit of 0.97A appears more realistic for the following reasons. The bond length in free OH, is already 0.96A and both the hydrogen-fluorine bridging and the increased 0-H polarity of the 0-H bond in 0H3SbF6 are expected to increase the 0-H bond length. This bond weakening in $\mathrm{OH_3}^+$ when compared to free OH₂ is also supported by the force constant calculations given below. The most likely range of the O-H bond length in these $0 \text{H}_3 \text{MF}_6$ salts is therefore 0.98-1.05Å which is in excellent agreement with the values of 1.013(8), 1.020(3), and 0.994(5)Å previously found for $0H_3^+CH_3C_6H_4S0_3^-$, 20 $0D_3^+CH_3C_6H_4S0_3^-$, 28 and $0H_3^+CF_3S0_3^-$, 29 respectively, by neutron diffraction, and values of 1.01 to 1.04Å for $0H_3^+N0_3^-$ and $0H_3^+C10_4^-$, derived from wide line NMR measurements. 30

The value of 1.19A, previously reported for the 0-H bond length in $OH_3^+BF_4^-$, is based on X-ray data and therefore is deemed unreliable. It should be pointed out that the OH...F distances in $OH_3^+BF_4^-$ and $OD_3^+AsF_6^-$ are practically

identical (2.60Å). This suggests that r_{0-H} and r_{0-D} in these two compounds should also be similar.

Vibrational Spectra. Although many papers have been published on the vibrational spectra and force field of the exonium ion, 4-9,31-45 many discrepancies exist among these data. Frequently, the infrared bands observed for the stretching modes are very broad, overlap and are complicated by Fermi resonance with combination bands. Also, the smooth transition from highly ionic $\mathrm{OH_2}^+$ salts to proton transfer complexes and the interpretation of some of the more weakly ionized proton transfer complexes in terms of discrete OH, salts may have significantly contributed to the general confusion. As a consequence there is still considerable ambiguity whether the antisymmetric or the symmetric OH_3^+ stretching mode has the higher frequency. Furthermore, the symmetric OH₃ deformation mode is generally very difficult to locate due to the great line width of the band. 46 Although vibrational spectra have previously been reported for $OD_3^+, 32, 34, 38$ they have been of little help to strengthen the vibrational assignments for the oxonium cation. Consequently, it was interesting to record the vibrational spectra of deuterated and partially deuterated OH_3^+ in salts containing well defined discrete oxonium cations. We hoped to verify the above described phase changes and to compare the experimentally observed spectra with the results from recent theoretical calculations 47-49 and with those of the isoelectronic ammonia analogues. 50-54

The observed infrared and Raman spectra and the more important frequencies are given in Figures 3-7 and Table VI.

Room Temperature Spectra of $0D_3AsF_6$. Figure 3 shows the room temperature spectra of solid $0D_3AsF_6$. As can be seen, the bands are broad and show no splittings or asymmetry as expected for ions undergoing rapid motion in a plastic phase. A,17,19 Based on their relative infrared and Raman intensities, the band at about 2450 cm⁻¹ can be assigned with confidence to the

antisymmetric $0D_3^+$ stretching mode $v_3(E)$ and the band at about 2300 cm⁻¹ to the symmetric $0D_3^+$ stretching mode $v_1(A_1)$. This assignment of $v_3 > v_1$ is further supported by all the other spectra recorded in this study (see below). Also, their frequency separation of about 150 cm⁻¹ is very similar to that of 144 cm⁻¹ found for isoelectronic ND₃. Furthermore, a recent ab initio calculation for $0D_3^+$ also arrived (after applying the suggested -12.3% correction to all frequencies) at v_3 being 165 cm⁻¹ higher than v_1 (see Table VII). This finding that in a strongly hydrogen bridged oxonium salt v_3 is higher than v_1 disagrees with the previous suggestion that the order of the $0H_3^+$ stretching frequencies should invert when r_{x-y} in X-H...Y becomes shorter than the van der Waals radius sum. ³⁸

The assignment of the 1192 cm⁻¹ infrared and the 1178 cm⁻¹ Raman band to the antisymmetric 00_3^+ deformation $v_4(E)$ is straight forward and again is in excellent agreement with the frequency values of 1191 and 1161 cm⁻¹, found for isoelectronic ND₃^{5D} and calculated for 00_3^+ by ab initio methods, respectively (see Table VII).

The assignment of the last yet unassigned fundamental of ${\rm OD}_3^+$, the symmetric deformation mode ${\rm v}_2({\rm A}_1)$ is more difficult. Based on analogy with ${\rm ND}_3$, this mode should occur at about 75D cm⁻¹ and indeed the Raman spectrum of ${\rm OD}_3{\rm AsF}_6$ exhibits a band at 770 cm⁻¹ of about the right intensity. The failure to observe a well defined infrared counterpart could possibly be due to its great linewidth. The ab initio calculations for ${\rm v}_2({\rm A}_1)$ of ${\rm OD}_3^+$ predict an intense infrared band at 549 cm⁻¹. Indeed the infrared spectrum of ${\rm OD}_3{\rm AsF}_6$ (trace A, Figure 3) shows a medium strong band at 580 cm⁻¹. However, we prefer to assign this band to ${\rm v}_2({\rm E}_g)$ of ${\rm AsF}_6^-$ for the following reasons. This mode frequently becomes infrared active in many ${\rm AsF}_6^-$ salts. Furthermore, it has also been observed in ${\rm OH}_3{\rm AsF}_6^+$ if it were due to ${\rm OD}_3^+$, it would have been shifted in ${\rm OH}_3{\rm AsF}_6^-$ to a significantly higher frequency. This

assignment to v_2 of ${\rm AsF}_6^-$ is also supported by the low-temperature infrared spectra of ${\rm OH_3AsF}_6^-$ and ${\rm OD_3AsF}_6$ (Figure 4) both of which show two sharp bands of almost identical intensities and frequencies at about 58D and 560 cm⁻¹.

The remaining bands due to AsF_6^- in OD_3AsF_6 are in excellent agreement with those previously observed for OH_3AsF_6 and can be assigned accordingly. IR: $v_3(F_{1u})$, 70D; $v_4(F_{1u})$, 38g cm⁻¹. RA: $v_1(A_{1g})$, 682; $v_2(E_g)$, 560; $v_5(F_{2g})$, 363 cm⁻¹. Several weak bands in the spectrum of OD_3AsF_6 are marked by an asterisk. These are due to a small amount of OD_2H^+ and will be discussed below.

Low-Temperature Spectra of 00_3AsF_6 . Figure 4 shows the low-temperature spectra of 00_3AsF_6 . The most prominent changes from the room temperature spectra are the pronounced sharpening of all bands accompanied by splittings. As discussed above, these changes are caused by freezing of the ion motions. The change from a plastic phase to an ordered one, occurring based on the DSC measurements in the +7 to $\pm 2^{\circ}\text{C}$ temperature range was confirmed by Raman spectroscopy. As can be seen from Figure 5, the freezing out of the ion motion occurs indeed within the very narrow temperature range.

Compared to the room temperature spectra, the low-temperature spectra do not provide much additional information on the fundamental vibrations of OD_3^+ . The $\operatorname{v}_1(A_1)$ fundamental is shown to occur at a lower frequency than $\operatorname{v}_3(E)$, and $\operatorname{v}_4(E)$ shows a splitting into two components in the infrared spectrum. The $\operatorname{v}_2(A_1)$ deformation mode is again difficult to locate but clearly cannot be attributed to the 582 cm⁻¹ infrared band for the above given reasons.

From the AsF_6^- part of the spectra some conclusions concerning the possible site symmetry of AsF_6^- might be reached. All degeneracies appear to be lifted for the fundamentals and the band, are not mutually exclusive. This eliminates all centrosymmetric space groups and site symmetries, such as C_h , T_h or C_{3i} . The highest possible site symmetry appears to be C_3 , in

agreement with our triply hydrogen bonded model possessing AsF₆ ions with three shorter and three longer As-F bonds. Since the unit cell contains more than one molecule, additional splittings are possible due to in-phase out-of-phase coupling effects within the unit cell.

The low-temperature spectra of 00_3AsF_6 show a medium strong IR band at 341 cm⁻¹ and a Raman band at 329 cm⁻¹. These bands are of too low a frequency to be assignable to AsF_6 and also were not observed in the low-temperature spectra of $0\text{H}_3\text{AsF}_6$. In $0\text{H}_3\text{AsF}_6$, however, two corresponding bands were observed at 467 cm⁻¹ (IR) and 480 cm⁻¹ (RA). Since their average frequency values, 335 and 474 cm⁻¹, respectively, are exactly in a ratio of 1: 2, these bands must involve the hydrogen atoms and therefore are assigned to the 0...F and H...F stretching modes, respectively. As expected, these bands due to H...F stretching are not observed in the plastic phase, room temperature spectra due to rapid motion of the ions.

Spectra of $00_3 \mathrm{SbF}_6$, $0\mathrm{H}_3 \mathrm{SbF}_6$ and Partially Deuterated $0\mathrm{H}_3 \mathrm{SbF}_6$. Figure 6 shows the room temperature vibrational spectra of $00_3 \mathrm{SbF}_6$, $0\mathrm{H}_3 \mathrm{SbF}_6$ and partially deuterated $0\mathrm{H}_3 \mathrm{SbF}_6$. Although the Raman lines due to SbF_6^- (670, 590, 555 and 282 cm⁻¹ in trace E) are broadened, the 670 cm⁻¹ line has a pronounced shoulder at 644 cm⁻¹, the $v_2(E_g)$ mode is split into its two degenerate components (see Figure 5), and the D...F stretching mode at 355 cm⁻¹ (trace E of Figure 6) and H...F stretching mode at 487 cm⁻¹ (trace A of Figure 6) are observed. All these features clearly indicate that $00_3 \mathrm{SbF}_6$ and $0\mathrm{H}_3 \mathrm{SbF}_6$ are ordered at room temperature, thus confirming the above given DSC and diffraction data.

The assignments for 00_3^+ in its SbF_6^- salt can be made by complete analogy to those given above for $0D_3AsF_6$. The increased splitting of the 2430 and 2330 cm⁻¹ bands and their relative infrared intensities 49 (trace D of Figure 6) lend further support to the $v_3>v_1$ assignment for the oxonium salts. On cooling (see Figure 7) all the important spectral features are retained,

but become more evident due to better resolution caused by the narrower linewidths. Thus the D...F stretching vibrations at 380 cm⁻¹ become very prominent in the infrared spectra.

An analysis of the bands attributable to SbF_6^- (IR: 668, 645, 590, 554, 548, 285sh, 270sh, 261; RA: 680sh, 673, 650sh, 640, 586, 554, 291sh, 287sh, 281, 265sh) shows again that a centrosymmetric space group, such as Ia3 must be ruled out and that the site symmetry can be at best C_3 . Thus the vibrational spectra appear to be compatible with a space group, such as $I2_1^3$ which was chosen for the above given neutron diffraction structure analysis.

Assignments for 00_2H^+ and 00H_2^+ . The vibrational spectra of the 00_3^+ salts showed bands at about 3160, 2920 and 1470 cm⁻¹, marked by an asterisk in Figure 3, which could not readily be attributed to combination bands of 00_3^+ . Assignment of the 1470 cm⁻¹ infrared band to the antisymmetric stretching mode of ${\rm HF}_2^-$ is also unsatisfactory, because the band was also observed in the Raman spectrum which in turn did not show the expected symmetric HF₂ stretching mode at 6D0 cm⁻¹. Furthermore, 0D₃ +SbF₆ should result in the formation of OF2 and not of HF2. Consequently, we have examined the possibility of these bands being due to small amounts of incompletely deuterated oxonium ions by recording the spectra of partially deuterated OH3SbF6. As can be seen from trace B of Figure 6, the intensity of the band at about 316D, 2920 and 1470 cm⁻¹ has increased strongly for the partially deuterated sample and therefore these bands are assigned to the ${\tt OD_2H}^{+}$ cation. The observed frequencies closely correspond to those of isoelectronic NO_2H 51-54 and the ab-initio calculated OD_2H values 49(see Table VIII). Consequently the 3160 and 1470 cm⁻¹ bands are assigned to the OH stretching mode and the antisymmetric (A') $00_2\mathrm{H}$ deformation mode, respectively of ${\rm OD_2H}^{\dagger}$. The 2920 cm $^{-1}$ band can readily be assigned to the first overtone of the 1470 cm⁻¹ band being in Fermi resonance with the OH stretching mode. The antisymmetric and symmetric OD_2 stretching modes of

 $00_2 \mathrm{H}^+$ are expected to have frequencies of about 2400 and 2300 cm⁻¹, $^{49,51-54}$ respectively, and therefore are hidden underneath the intense 00_3^+ stretching modes. The antisymmetric (A") $00_2 \mathrm{H}^+$ deformation mode is expected $^{49,51-54}$ to have a frequency between 1190 and 1250 cm⁻¹ and therefore can be assigned to the infrared band at 1220 cm⁻¹ observed in Trace B of Figure 6.

In addition to the bands attributed to 00_3^+ and 00_2^- H⁺, the infrared spectrum of the partially deuterated $0H_3SbF_6$ sample (calcd. product distribution: $00_3^+51.68$, 00_2^- H⁺38.16, $00H_2^+$ 9.33, and $0H_3^+$ 0.77mol%) exhibits two bands at 1601 and 1388 cm⁻¹ (see trace 8 of Figure 6). These band are in excellent agreement with our expectations 49,51-54 (see Table VIII) for 6as(A'') and 6as(A''), respectively, of $00H_2^-$ and are assigned accordingly. The 0D and $0H_2$ stretching modes of $00H_2^+$ are again buried in the broad intense bands centered at about 2400 and 3300 cm⁻¹ and therefore cannot be located with any reliability. The symmetric deformation modes of 00_2^- H⁺ and $00H_2^-$ + are probably giving rise to the strong shoulder in the 800-900 cm⁻¹ range (trace 8 of Figure 6), but cannot be located precisely due to their broadness.

The above assignments for ${\rm OD_2H}^+$ and ${\rm ODH_2}^+$ are further substantiated by the low-temperature spectra shown in Figures 4 and 7, with the decreased line widths allowing a more precise location of the individual frequencies. Most of the infrared bands observed in the 320-510 cm $^{-1}$ region for the low-temperature spectra of the different oxonium ${\rm SbF_6}^-$ salts are attributed to the 0...F and H...F stretching modes of the hydrogen bridges.

In summary, most of the features observed for the vibrational spectra of the oxonium salts can satisfactorily be accounted for by the assumption of disordered higher-temperature and ordered, strongly hydrogen bridged, lower-temperature phases. Reasonable assignments can be made for the series OH_3^+ , OD_2^+ , OD_2^+ , OD_3^+ (see Table VI) which are in excellent agreement with

those of the corresponding isoelectronic ammonia molecules $^{51-54}$ and the results of recent ab-initio calculations 49 (see Tables VII and VIII). The only discrepancy between the ab-initio calculations and the experimental data exists in the area of the symmetric deformation modes. This could be caused by the low barrier to inversion in OH_3^{+49} .

Force Constants. In view of our improved assignments for the oxonium cation, it was interesting to redetermine its force field. The frequencies and assignments given in Table VIII, a bond length of 1.01Å and a bond angle of 110^{0} were used to calculate a valence force field of $0D_{3}^{+}$ using a previously described method to obtain an exact fit between calculated and observed frequencies. The results of these computations are summarized in Table IX.

Since isotopic shifts obtained by light atom substitution, such as H-D, are virtually useless for the determination of a general valence force field 56, approximating methods were used. Three different force fields were computed for ${\rm OD_2}^+$ to demonstrate that for a vibrationally weakly coupled system, such as \mathtt{OD}_{3}^{+} , the choice of the force field has little influence on its values. Our preferred force field is that assuming F_{22} and F_{44} being a minimum. This type of force field has previously been shown 57 to be a good approximation to a general valence force field for vibrationally weakly coupled systems. As can be seen from Table IX, the force field obtained in this manner is indeed very similar to the general force field previously reported 55 for ND $_{2}$ and NH_3 . The fact that the force constants of OD_3^+ deviate somewhat from those of OH_3^+ is mainly due to the broadness of the OH_3^+ vibrational bands and the associated uncertainties in their frequencies. Since the stretching frequencies of 00_3 are more precisely known than those of $\mathrm{OH_3}^+$, the $\mathrm{OD_3}^+$ force field should be the more reliable one. The fact that F_{12} in NH_3 and ND_3 is somewhat larger than the value obtained for F_{12} in our F_{22} =Min force field is insignificant because in the published 55 NH $_3$ force field 7 F $_{12}$ was not well determined and was consequently assumed to equal $-2F_{34}$. The fact that the stretching force constant f_r in OD_3^+ is slightly lower and the deformation constant f_α in OD_3^+ is slightly higher than those in ND_3 is not unexpected. The ND_3 frequencies were those of the free molecule, whereas the OD_3^+ values are taken from the ionic solid $OD_3^+AsF_6^-$. In this solid, D-F bridging occurs (see above), hereby lowering the OD stretching and increasing the deformation frequencies. As secondary effects, the higher electronegativity of oxygen and the positive charge in DD_3^+ are expected to increase the polarity of the O-D bonds, thereby somewhat decreasing all the frequencies. These explanations can well account for the observed differences.

For the bending force constant f_{α} values of 0.576 and D.552 mdyn A/radian² were obtained for 00_3^+ and $0H_3^+$, respectively. These values are in excellent agreement with the value of D.55 mdyn A/radian² obtained for $0H_3^+$ by an ab-initio calculation.⁴⁷

In summary, the results from our normal coordinate analysis lend strong support to our analysis of the vibrational spectra. They clearly demonstrate the existence of discrete ${\rm OH_3}^+$ ions which in character closely resemble the free ${\rm NH_3}$ molecule, except for some secondary effects caused by hydrogenfluorine bridging.

Conclusion. The results of this study show that ${\rm OD}_3{\rm AsF}_6$ exists at room temperature in a plastic phase, whereas ${\rm OD}_3{\rm SbF}_6$ has an ordered structure. Based on diffraction data and vibrational spectra, a structural model is proposed for the ordered phase of ${\rm OD}_3{\rm SbF}_6$. More experimental data are needed to define the exact nature of the ion motions and the associated phase changes in these salts. Many of the observations made in this study are in poor agreement with previous reports for other oxonium salts and cast some doubt on the general validity of some of the previous conclusions.

Due to their strong hydrogen-fluorine bridges and good thermal stability, oxonium salts of complex fluoro cations are well suited for further experimental studies.

Acknowledgement. The authors are indebted to Drs. C. Schack, R. Wilson, and W. Wilson of Rocketdyne, Dr. P. Meriel of CEN Saclay, and Dr. P. Aldebert of ILL Grenoble for their help with experiments. One of us (KOC) thanks the U.S. Army Research Office and the Office of Naval Research for financial support.

References

- (1) Rocketdyne
- (2) CEN Saclay
- (3) University of Leicester
- (4) Christe, K. O.; Schack, C. J.; Wilson, R. D. <u>Inorq. Chem.</u> 1975, 14,2224.
- (5) Masson, J. P.; Desmoulin, J. P.: Charpin, P.; Bougon, R. <u>Inorg. Chem.</u> <u>1976</u>, 15,2529.
- (6) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluor. Chem. 1978, 11,71.
- (7) Selig, H.; Sunder, W. A.; Disalvo, F. A.; Falconer, W. E. <u>J. Fluor. Chem.</u> 1978, 11,39.
- (8) Selig. H.; Sunder, W. A.; Schilling, F. C.; Falconer, W. E. <u>J. Fluor. Chem.</u> 1978, 11,629.
- (9) Cohen, S.; Selig, H.; Gut, R. J. Fluor. Chem. 1982, 20,349.
- (10) Mootz, D.; Steffen, M. Z. anorg. allgem. Chem. 1981, 482,193.
- (11) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth., in press.
- (12) Shamir, J.; Binenboym, J. <u>Inorg. Chim. Acta 1968</u>, 2,37.
- (13) Plyler, E. K.; Danti, A.; 8laine, L. R.; Tidwell, E. D. <u>J. Res. Natl. Bur. Stand., Sect. A</u> 1960, 64A,841.
- (14) International Union of Pure and Applied Chemistry. "Tables of Wavenumbers for the Calibration of Infrared Spectrometers"; 8utterworths: Washington, DC, 1961.
- (15) Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc. 1969, 23,8.
- (16) Miller, F. A.; Harney, B. M. <u>J. Appl. Spectrosc.</u> 1970, 24,271.
- (17) Griffiths, J. E.; Sunder, W. A. J. Chem. Phys. 1982, 77,1087.
- (18) Young, A. R.; Hirata, T.; Morrow, S. I. <u>J. Am. Chem. Soc.</u> 1964, 86,20.

- (19) Naulin, C.; 8ougon, R. J. Chem. Phys. 1976, 64,4155.
- (20) Gafner, G.; Kruger, G. J. Acta Cryst. 1974, B30,250.
- (21) Lundgren, J. C.; Williams, J. M. J. Chem. Phys. 1973, 58,788.
- (22) APL program written by G. Langlet.
- (23) Ibers, J. A.; Hamilton, W. C. J. Chem. Phys. 1966, 44, 1748.
- (24) McKee, D. E.; Bartlett, N. Inorg. Chem. 1973, 12,2738.
- (25) Sheldrick, G. M.; "Shelx a Program for Structure Oetermination," Univ. of Cambridge, England, 1976.
- (26) Rietweld, H. M. J. Appl. Cryst. 1969, 2,65.
- (27) Heyns, A. M.; Pistorius, C. W. F. T. Spectrochim. Acta, Part A 1976, 32A,535.
- (28) Finholt, J. E.; Williams, J. M. J. Chem. Phys. 1973, 59,5114.
- (29) Lundgren, J. O.; Tellgren, R.; Olovsson, I. <u>Acta Cryst. B</u> 1978, B34,2945.
- (30) Herzog-Cance, M. H.; Potier, J.; Potier, A. Adv. Mol. Relax. Interact. Proc. 1979, 14,245.
- (31) Bethell, D. E.; Sheppard, N. <u>J. Chem. Phys.</u> 1953, 21,1421.
- (32) Ferriso, C. C.; Hornig, D. F. J. Am. Chem. 1953, 75,4113 and J. Chem. Phys. 1955, 23,1464.
- (33) Fournier, M.; Roziere, J. <u>C. R. Hebd. Seances Acad. Sci., Ser. C, 1970</u>, 270,729.
- (34) Fournier, M.; Mascherpa, G.; Rousselet, D.; Potier, J. <u>C. R. Hebd.</u>
 <u>Seances Acad. Sci., Ser. C, 1969</u>, 269,279.
- (35) Millen, D. J.; Vaal, E. G. <u>J. Chem. Soc.</u> 1956, 2913.
- (36) Taylor, R. C.; Videale, G. L. J. Amer. Chem. Soc. 1956, 78,5999.

- (37) Mullhaupt, J. T.; Hornig, D. F. J. Chem. Phys. 1956, 24,169.
- (38) Basile, L. J.; La Bonville, P.; Ferraro, J. R.; Williams, J. M. <u>J. Chem. Phys.</u> 1974, 60,1981.
- (39) Ferraro, J. R.; Williams, J. M.: La Bonville, P. Appl. Spectrosc. 1974, 28,379.
- (40) Huong, P. V.; Oesbat, B. J. Raman Spectrosc. 1974, 2,373.
- (41) Gilbert, A. S.; Sheppard, N. J. Chem. Soc. Faraday Trans. II 1973, 69,1628.
- (42) Savoie, R.; Giguere, P. A. <u>J. Chem. Phys. 1964</u>, 41,2698.
- (43) Schneider, M.; Giguere, P. A. <u>C. R. Hebd. Seances Acad. Sci., Ser. C, 1968</u>, 267,551.
- (44) Desbat, B.; Huong, P. V. Spectrochim. Acta, Part A 1975, 31A,1109.
- (45) Giguere, P. A.; Turrell, S. <u>J. Amer. Chem. Soc.</u> 1980, 102,5473 and <u>Canad. J. Chem.</u> 1976, 54,3477.
- (46) Giguere, P. A.; Guillot, J. G. <u>J. Phys. Chem.</u> 1982, 86,3231.
- (47) Allavena, M.; Le Clec'h, E. J. Mol. Structure 1974, 22,265.
- (48) Bunker, P. R.; Kraemer, W. P.; Spirko, V. <u>J. Mol. Spectrosc.</u> <u>1983</u>, 101,180.
- (49) Colvin, M. E.; Raine, G. P.; Schaefer, H. F.; Dupuis, M. <u>J. Chem. Phys.</u> 1983, 79,1551.
- (50) Shimanouchi, T., "Tables of Molecular Vibrational Frequencies," <u>Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.) 1972</u>, 39,15.
- (51) Whitmer, J. C. J. Chem. Phys. 1972, 56,1050.
- (52) Wolff, H.; Rollar, H. G.; Wolff, E. J. Chem. Phys. 1971, 55,1373.
- (53) Reding, F. P.; Hornig, D. F. <u>J. Chem. Phys.</u> 1951, 19,594 and 1955, 23,1053.

- (54) Thornton, C.; Khatkale, M. S.; Devlin, J. P. <u>J. Chem. Phys. 1981</u>, 75,5609.
- (55) Shimanouchi, T.; Nakagawa, I.; Hiraishi, J.; Ishii, M. <u>J. Mol. Spectrosc.</u> 1966, 19.78.
- (56) Mohan, N.; Mueller, A.; Nakamoto, K. <u>Advances in Infrared and Raman</u>
 <u>Spectrose</u>. 1975, 1,180.
- (57) Sawodry, W. J. Mol. Spectrosc. 1969, 30,56.

Table I. X-ray Diffraction Powder Pattern of OH_3AsF_6 at -153^OC^8

- 10 - 12		3 6	
d obs (A)	int	d obs (A)	int
6.35	VW	2.024	ms
4.95	S	2.010	m
4.72	s	1.942	m
4.12	W	1.913	VVW
3.87	W	1.877	ms
3.749		1.871	W
3.730)	ms	1.802	VW
3.473	m	1.775	VW
3.225	/(m)	1.769	VW
3.163	m	1.739	VW
3.029	mw	1.712	W
2.845		1.695	W
2.837	m	1.659	VW
2.596	W	1.648	mw
2.530	w vw	1.612	W
2.362		1.585	mw
2.139	w	1.581	VW
2.061)	•	1.301	***
2.001	m		
2.055			

^aCuKa radiation and Ni filter

Table II. Neutron Diffraction Powder Patterns of the Face Centered Cubic, Room Temperature Phases of OH_3AsF_6 , OD_3AsF_6 and O_2AsF_6 and O_2AsF_6

hkl	OH3ASF6 OD3ASF6		0 ₂ AsF ₆	
	int_calc	int obs	int obs	int obs
111	1100	1127	12	200
200	177	174	1033	1000
220	11	-	177	215
311	5	-	137	210
222	0	_	19	V45
400	2	-	12	20
331	5	-	-	-
420	66	71	38	90
422	100	92	26	100
511/333	5	-	16	35

^aIntensities in arbitrary units

Table III. Room-Temperature X-ray Powder Data for OH₃SbF₆

d _{obsd} ,A	d _{clcd} ,A	Intens	ħ	k	1
5.04	5.04	٧S	2	0	0
3.56	3.57	٧s	2	2	0
2.909	2.912	mw	2	2	2
2.691	2.696	W	3	2	1
2.519	2.522	mw	4	0	0
2.374	2.378	W	.4	1	1
2.254	2.256	m	4	2	0
2.149	2.151	mw	3	3	2
2.060	2.059	S	4	2	2
1.979	1.978	W	4	3	1
1.784	1.783	ms	4	4	0
1.682	1.681	ms	6	0	0, 4 4 2
1.637	1.636	VW	5	3	2
1.596	1.595	ms	6	2	0
1.519	1.521	ms	6	2	2
1.456	1.456	W	4	4	4
1.398	1.399	ms	6	4	0
1.372	1.373	VW	6	3	3
1.349	1.348	ms	6	4 :	2
1.282	1.281	VW	7	3	2,651
1.262	1.261	Vw	8	0	0
1.225	1.223	m "	8	2	0,644
1.189	1.189	m	8	2	2,660
1.159	1.157	W	6	6	2
1.129	1.128	m	8	4	0
1.103	1.101	m	8	4	2

cubic, a = 10.09A, $V = 1027.2A^3$, Z = 8, $\rho c z c d = 3.296 g cm^{-3}$, $Cu K_{\alpha}$ radiation, Ni filter

Table IV. Final Atomic Positional and Thermal Parameters (with e.s.d. in parentheses) for OH_3SbF_6 from X-ray Data

Atom	Х	Y	Z	U ₁₁	U ₂₂	U ₃₃
Sb	0.5	0.5	0.5	0.0205(18)		
0	0.25	0.25	0.25	0.043(17)	ı	
F	0.4334(33)	0.6444(34)	0.6021(22)	0.059(20)	0.158(35)	0.003(12)
н	Not located					İ

Atomic Distances and Angles

Sb-F	o 1.891(19)A	F-Sb-F	180 ⁰
Sb-0	o 4.386A	F-Sb-F	89.5 ⁰ (1.0)
0-F	2.63Å		
F-F	o 2.68/2.71A	F-Sb-F	90.5 ⁰ (1.0)

Table V. X-ray and Neutron Powder Patterns of ${\rm OD_3SbF_6}$ at Room Temperature

h k 1	X-ray	Neutron	h k l	X-ray	Neutron
200	100	6	71 0/550/543		4
211	-				1
		2	640	11	8
220	70	100	721/633/552	1	8
222	13	8	642	21	9
321	3	30	730	-	3
400	7	2	732/651	2	18
411/330	6	13	800	4	-
420	17	17	811/741/554	-	7
332	4	22	820/644	11	9
422	36	18	653	-	3
431/510	3	13	822/660	10	2
440	19	14	831/750/743	-	4
433/530	21	3	662	4	-
442/600	2	7	752	-	3
611/532	2	9	840	6	2
620	21	3			
541	1	14			
£22	12	5			
631	-	2			
444	4	4			

Table VI. Wibrational Spectra of $00_3 {\rm Asf}_6$, $00_3 {\rm Sbf}_6$ and Their Partially Deuterated Analogues

The state of the s	(%) 998										*		was(fig), vs(Aig)	1	, ,	, in					445(F ₁₀)	45(^F 2y)	
— essignments (point group) ^b	003 (C3) 005/4 (C4) 004/2 (C4)	1000	**************************************			(.v)00	des(A")		6es (A.)														
Ments (paint	00, r (C,)		-OH(A')	2405(A')	ver.00.(A*)	, sob, (A')	Ī	6es(A')		\$\$\$(¥.)	64(A')						-: 3	e					
Ţ					(J)\$4*	2005(4,1)	1				40 5(E)	45(4))								٠٠.٠٠			
	- 196°		3150	2367 2375 2375 2475 2475 2475 2475 2475 2475 2475 24	22.2	2340	N.	X 2		2.2	11998s	7600	A70vs	643vs	200	Š	2 N	=	ź	Ž.	1 0 K	2745h 262vs	
3. 8	₀ S2	ĭ.	3000vs. br	2930	244045, br	2320rs, br	, alog	146185	1396	1220-	1195ms 200-ROSh lev 4		680vs.br		76 F. W								
	٠. ا ھو (-	\$			2500sh 2406sh	2335(0-)	(a n) (a v)	1475ms	386			4505	(01)(19)	640(4.1)	506(0.7)	654(1.0)			375(0.3)		291sh	281 (4.4) 265sh	
obsd freq. cm ⁻¹ , and ral inter ^a	-1380	.	9256	Z6162	25055			X		1226	11995		3	4458	2005	ž	S10vv	41014	370sh	A	290sh	275sh (281vs)	
20 - 50 - 1 20 - 50 - 1		2				2200(0.2)	7.0 64.33	1480m			1)99(0+)	742(0+)	A70(10)	3	\$90(0.8)	\$55(1.5)			355(0.2)			28 (•)	
psqd L) ₂	Ħ	3165m. br	\$282	2430vs, br	Z330s,br	1603	1475m			119500		\$70vs.br		765m, br								
	Asf (Ob)														(al. 10)	,6[vs(Eg)		ses(F _{1u})	45(F20)	•		
Trassignments (point group)	ω ₃ *(ς ₃ *) ω ₂ μ*(ς _s)		OH(A')	2405(A')	ves(E) { ves00 ₂ (A [*])) ~s((0 ⁵ (A')	405(A.)	(4)									3 4	33					
-assignmen	00, ((3,)				ves(E)	ું			3	(4) S e 9			65(A,)	-							4		
	-100	2			2490sh	2400sh 2705(0.6)				1182(0.3)				712sh	(01)	(6.7(7.9)	\$65(3.3)		-	347(1.9)	359(2.9)	329(0.8)	
rel intens	-19K0	E	2 2 2 3 3	0262	24#5s	24 1 Drs	1462	9	1183	*	1030	882vv	750sh		(J4) \$40 5	5.025	5565	2 2 2	38745	37253	1	325sh	
obso freq, ca ⁻ l, and ral intens ^a	֓֞֞֞֜֞֜֞֓֓֓֓֓֓֓֟֓֓֓֟֟ ֓֓֓֓֞֓֓֓֓֞֓֓֓֞֓֓֞֓֓֓֓֓֓֡֓֓֓֓֡	\$			₩306₩		140(0+)		1178(0.3)				610sh 770(0.2)		(01/61)		(9:1)095			363(3.6)			
	582	£	33.701.15	2910, vw. br	2450rs,br	1	1471		1,624					į	700es, br	19.5			\$6 9				

(a) Uncorrected Raman intensities. (b) Idealized point groups were assumed for the ions; this approximation is reasonable for the disordered phases but is not valid for the ordered phases in which the vite symmetry of the ions is C_3 or lower. (c) The spectra of these compounds contain bands due to some $W_0 H^4$ resulting from a small amount of H_2 0 in the O_2 0 starting material $[\psi 0.45]$ and from handling of the IR samples.

Table VII. Frequencies (cm $^{-1}$), Frequency Shifts on Deuteration, and Relative Infrared Intensities of 00_3^+ and $0{\rm H}_3^+$ Compared to Those of Gaseous ${\rm M}_3$ and ${\rm MH}_3^0^+$ and to the Results

from Ab-Initio Calculations	,	J(m) 1.37 2420 3336 1.38 2424(0.6) 3411(1.0) 1.41	(m,br) 1.26 748 950 1.27 549(6.6) 725(13.9) 1.32	0(vs) 1.35 2564 3444 1.34 2589(7.0) 3516(13.5) 1.36	1(ms) 1.37 1191 1626 1.37 1161(1.3) 1598(3.2) 1.36
	VNH3:VND3	1.38	1.27	1.34	1.37
ulations	MH ₃	3336	950	3444	
tio Calc	NO.3	2420	748	2564	1191
from Ab-Ini	v0H ₃ ± v0B ₃ +	1.37	1.26	1.35	1.37
•	OH3 obsd	3150(m)	900(m.br)	3300(vs)	1620(ms)
	obsdo	2300(m)	715	2450(vs)	1182(ms)
	Approximate description of mode	usym Xh3	6 Sym XY3	wasym XY3	6asym XY ₃
	Assignment for point group C _{3v}		2,	'n	, e

(a) Data from ref 50. (b) Data from ref 49 after application of the suggested -12.3% frequency correction.

Table VIII. Frequencies (cm⁻¹) and Relative Infrared Intensities of 00_2H^+ and 00H_2^+ Compared to Those of Solid 10_2H and 10_2H and to the Results of Ab-Inftio Calculations b

00H ₂ ^{+C} NOH ₂ obsd obsd	2447(s)	3300(m)	1398(w) 1393(w)	992(vs)	3359(vs)	1613(mw) 1602(mw)
	4.4)	5.8)		1.5)	13.5)	
ODH ₂ clcd	2532(4.4)	3450(5.8)	w) 1344(1.7)	(3.11).5)	s) 3516(13.5)	1580(3.4)
NO ₂ H obsd	;) 3329(s)	2392(m)	1476 (mw)	905(vs)	2501(vs)	1254(w)
OD2H ^{+C} obsd	3150(vs)		1481 (mw)			1229(₩)
00 ₂ H ⁺	3484 (9.9)	2476(2.1)	1447(2.7)	611(9.0)	2589(7.2)	1186(1.2)
Approximate description of mode for XY ₂ Z	XZ stretch	sym XY ₂ stretch	asym deformation	sym deformation	asym XY ₂ stretch	asym deformation
Assignment for point group C _s	Α' ۷	22	چ ۶-3	b	۸" ۸	စ ာ

(a) Data from ref 52. (b) Data from ref 49 after application of the suggested -12.3% frequency correction. (c) Frequency values taken from the low-temperature IR spectra of the ${
m SbF}_6^{-}$ salts.

Symmetry and Internal Force Constants^a of OD₃ Compared to Those of OH₃, NH₃ and NO₃^b Table IX.

Æ

NH3-N03	GVFF	6.4540	0.4130	0.3276	6.4732	0.6285	-0.1638	6.4668	-0.0064	0.5567	-0.0718	0.1638	0
oH3 +	F ₂₂ and F ₄₄	5.7783	0.4470	0.0244	5. 9696	0.6053	-0.0661	5. 9058	-0.0638	0.5525	-0.0528	0.0359	-0.0302
	NH ₃ TR	6.085	0.5097	0.3276	6.133	0.6132	-0.1638	6.117	-0.016	0.5787	-0.0345	0.1638	0
00 ³ +	F_{22} and F_{44} \equiv Min	6.0440	0.4964	0.0532	6.1194	0.6131	-0.1240	6.0943	-0.0251	0.5762	-0.0369	0.0591	-0.0649
	0FF	6.030	0.4966	0	6.0595	0.6162	0	6.0497	-0.0098	0.5763	-0.0399	0	0
	Forcefield ^c	Fll=fr+2fpr	F22=f +2fa	Fl2=2fra+fra	F33=fr-frr	F44 = f a - f aa	F34=-fr+fra'	· LE	frr	گي ا	faa	fra	المرا

constants in mdyn/radian. The following bond angles and lengths were used, 00_3 and $0H_3$, 110^0 and 1.01Å, 107^0 and 1.01Å, and the bending coordinates were weighted by unit (1Å) distance. Frequency values from ref 55 assuming F_{12} =-2 F_{34} . (c) The potential energy distribution for 00_3^+ showed all fundamentals to used: 00_3^+ , $v_1 = 2300$, $v_2 = 715$, $v_3 = 2450$, $v_4 = 1182$; $0H_3^+$, $v_1 = 3150$, $v_2 = 900$, $v_3 = 3300$, $v_4 = 1620$ cm⁻¹. (b) Values Stretching constants in mdyn/A, deformation constants in mdyn A/radian2, and stretch-bend interaction be close to or 100% characteristic with the largest amount of mixing being observed for $v_{\bf d}$ in the NH₃ transfer force field of OH₃t. (e)

Oiagram Captions

- <u>Figure 1.</u> Neutron powder diffraction diagram of ${\rm OD_3SbF_6}$ at ambient temperature, traces A and B, observed and calculated profiles, respectively.
- <u>Figure 2.</u> ORTEP stereoview of the structure of ${\rm OD_3SbF_6}$. The bridging F₂ atoms are differentiated from the non-bridging F₁ atoms by smaller circles marked by traces.
- Figure 3. Vibrational spectra of solid OD_3AsF_6 at room temperature. Trace A, infrared spectrum of the solid pressed between AgCl disks. The broken line indicates absorption due to the window material. The bands marked by an asterisk are due to OO_2H^+ mainly formed during sample handling. Traces B and C, Raman spectra recorded at two different sensitivities with a spectral slit width of 3 and 8 cm⁻¹, respectively.
- <u>Figure 4.</u> Vibrational spectra of solid OD_3AsF_6 at low-temperature. Trace A, infrared spectrum of the solid pressed between AgCl disks and recorded at -196°C. Traces B and C, Raman spectra recorded at -100°C at two different sensitivities.
- <u>Figure 5.</u> Raman spectra of OD_3SbF_6 and OD_3AsF_6 at different temperature contrasting the slow gradual temperature induced line broadening for the ordered OD_3SbF_6 phase against the abrupt change within a narrow temperature range for OD_3AsF_6 caused by the transition from an ordered to a plastic phase.
- Figure 6. Vibrational spectra of solid OD_3SbF_6 , OH_3SbF_6 and partially deuterated OH_3SbF_6 at room temperature. Trace A, IR spectrum of OH_3SbF_6 ; trace B, IR spectrum of partially deuterated OH_3SbF_6 containing about equimolar amounts of OD_3SbF_6 , and OD_2HSbF_6 and smaller amounts of OD_4SbF_6 ; trace C, IR spectrum of OD_3SbF_6 containing a significant amount of OD_2HSbF_6 formed during sample handling; trace D, IR spectrum of OO_3SbF_6 containing only a small amount of OO_2HSbF_6 ; traces E and F, RA spectra of OD_3SbF_6 recorded at two different sensitivities.

<u>Figure 7.</u> - Vibrational spectra of solid OD_3SbF_6 and partially deuterated OH_3SbF_6 at low temperature. Traces A and B, infrared spectra of partially deuterated OH_3SbF_6 and of OD_3SbF_6 , respectively, between AgBr windows; traces C and C, Raman spectra recorded at two different sensitivities.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

and the second of the second o

The CI ion chromatogram contains the ususal CH4 CI ions: predominantly protonated diethylbenzene and smaller amounts of $(M - H)^{+}$, $(M + C_{1}H_{1})^{+}$, and $(M + C_{1}H_{2})^{+}$. The HPCA spectra contain several fragment ions diagnostic of the structure of the sample with the major dissociation pathways being

$$(C_4H_4(C_2H_5)_2 + H)^4 \xrightarrow{CH_4} (C_6H_5(C_2H_5) + H)^4 + C_2H_4$$
(19)

and

$$(C_8H_5(C_2H_5) + H)^4 \xrightarrow{CH_4} C_8H_7^4 + C_2H_4$$
 (20)

HPCA mass spectra acquirod at a fixed extent of dissociation cannot provide the detailed structural information obtained from a breakdown curve. However, when combined with the C1 mass spectra and GC retention times, the HPCA data provide a potentially powerful additional dimension in sample characterization.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Registry No. CHa. 74-82-8, C2Ha. 74-84-0; ethyl abelate, 141-78-6; 3-beptanone, 106-35-4; o-dichlorobenzene, 95-50-1; m-dichlorobenzene, 541-73-1; ethylbenzene, 100-41-4; m-xylene, 108-38-3; p-xylene, 106-

APPENDIX T

EPR Evidence on Molecular and Electronic Structure of Nitrogen Trifluoride Radical Cation

Aivin M. Maurice, R. Linn Belford, of Ira B. Goldberg, and Karl O. Christes

Contribution from the School of Chemical Sciences, University of Illinois, Urbana, Illinois vi 801, Rockwell International Science Center, Thousand Oaks, California 91360, and Rocketdyne Division, Rockwell International, Canoga Park, California 91304. Received April 26, 1982

Abstract: Computer simulations of the EPR spectra of rigid 16NF₃*- and 15NF₃*- trapped in powdered NF₄AsF₄ at 25 K show characteristics of a trigonal pyramid with the following principal values for the coupling matrices: $\{g([i, 1]) = 2.003, [A_{i+1}([i, 1])] = 2.003, [A_{i+$ and $A_N = 15^\circ$. The nitrogen ps spin-density ratio (computed from the nitrogen hyperfine splittings) is consistent with sp²⁵ nitrogen hybrids in the NF bonds and with a pyramid angle of about 105°. Although the same pyramid angle appears to agree with the orientation of the principal axis of the fluorine hyperfine coupling matrix $\{a_i\} = 15^\circ$, pyramid angle = 90° + [at]), electronic structure computations imply that a is negative and that the agreement is fortuitous. Some comparisons are made with isoelectronic radicals BF₃ and CF₃—the latter being essentially tetrahedral with sp³ hybridization.

Goldberg, Crowe, and Christe have presented high- and low-temperature EPR spectra of the radical cations ¹⁴NF₃* and 15NF₃* produced by γ -irradiation of NF₄AsF₆. Their analyses properly accounted for the high-temperature (~240 K) spectra, but computational limitations prevented a complete analysis of the low-temperature (~25 K) EPR spectra, which are drastically different. At the high temperature, the molecule is axially symmetric, apparently spinning freely, probably both about its threefold axis and about an axis nearer to the F, plane. In contrast, at the low temperature, each molecule appears to be locked into a fixed orientation and the EPR spectra are, as expected, much more complex. Now, with an appropriately modified computer simulation program, we are able to interpret these low-semperature spectra

Several studies providing information on hyperfine coupling, spin density, and geometry of the isoelectronic species BF₃⁻² and CF₃, have been published.³⁻⁷ The opportunity to compare those bonding features that can be deduced from hyperfine matrices of the isoelectronic series provides one of the motivations for the atudy of NF1+. Here we describe our interpretation of the lowtemperature EPR spectra and draw conclusions regarding geometry and booding in the nitrogen trifluoride radical cation.

Experiments and Computation

Low-temperature EPR spectra of 14NF1+ and 15NF1+ have been described as have the synthesis, experimental conditions, and the spectrometer used in this work. The spectra chosen for the current analysis are reproduced in the figures.

University of Illinois. Rockwell International Science Center.

Rocketcyne Division.

Simulated ŁPR spectra are generated by means of the program "POWD" running on the VAX 11/780 computer connected to a Houston Instruments HIPLOT digital plotter Program Pown has its origins in an EPR powder simulation program, kindly provided by Dr. J. R. Pilbrow of Monash University, which employs second-order perturbation theory for the first nucleus and first-order approximations for superhyperfine terms. It was revised by White and Belford^{4,9} and Chasteen et al. ¹⁰ into EPRPOW. Nilges and Belford^{11,12} rewrote this program as POW to employ more efficient angular sampling (to minimize the unevenness of point density on the sphere) and integration technique four-point Gauss quadrature).¹³ The version of POWD that we have created for the current work is a substantially modified POW that uses a perturbation method accurate to second order in all hyperfine terms (including internuclear erost-terms)¹⁴ to calculate a powder spectrum for a spin S = 1/2 xystem with up to four hyperfine nuclei. Program rown permits principal axes of all four hyperfine nuclei interaction matrices as well as those of the

(7) J. Maruani, C. A. McDowell, H. Nakajima, and P. Raghunathan, Mol.

J. Maruani, C. A. McDowell, H. Nakajima, and P. Ragdinathan, Mos. Phys., 14, 349 (1968).
 L. K. White and R. L. Belford, J. Am. Chem. Soc., 96, 4428 (1976).
 L. K. White, Ph.D. Thesis, University of Illinois, Urbana, 1975.
 N. F. Albanese and N. D. Chasteen, J. Phys. Chem., 82, 910 (1978).
 M. J. Nilges and R. L. Belford, J. Magn. Reson., 35, 259 (1975).
 M. J. Nilges, Ph.D. Thesis, University of Illinois, Urbana, 1979.
 R. L. Belford and M. J. Nilges, "Computer Simulation of EPR PowderSpectra", Symposium on Electron Paramagnetic Resonance Spectroscopy, Rocky Mountain Conference on Analytical Chemistry, Denver, Analytical 1979.

August 1979. (14) J. A. Weil, J. Magn. Reson., 18, 113 (1975).

^{(1) 1.} B. Goldberg, H. R. Crowe, and K. O. Christe, Inorg. Chem., 17, 3189 (1978).

R. L. Hudson and F. Williams, J. Chem. Phys., 65, 3381 (1976).
 R. W. Fessenden, J. Magn. Reson., 1, 277 (1969).
 R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 43, 2704 (1965).
 M. T. Rogers and L. D. Kispert, J. Chem. Phys., 46, 3193 (1967).
 J. Maruani, J. A. R. Coope, and C. A. McDowell, Mol. Phys., 18, 165 (2020). (1970).

Figure 1. (EXPT) EPR spectrum of $^{14}NF_3^{+}$, at 26 K in $NF_4A_aF_1$ γ -irradiation at 77 K after annealing at 195 K. (SIM) $^{14}NF_3^{+}$, computer simulation with the parameters listed in Table I.

g tensor to be noncoincident. For this computation, all nuclear Zeeman and quadrupole terms are deemed insignificant and are ignored.

Theory

The Hamiltonian is

$$\mathcal{H}_{1} = \beta \vec{S} \cdot g \cdot \vec{B} + \sum_{i \in I} \hat{I}_{i} \cdot \vec{A}_{i} \cdot \vec{S}$$

which generates the following energy terms, correct to the second order of perturbation:⁴

$$E(M,m_1,m_2,m_3,m_4) =$$

$$g\beta BM_{S} + \left[K_{1}M_{1}m_{1} + \frac{M_{4}}{2g\beta B}\left\{\frac{1}{2}(tr(\bar{A}_{1}\cdot A_{1}) - k_{1}^{2})\cdot\left(\frac{1}{2}\right)(I_{1}(I_{1} + 1) - m_{1}^{2})\right\}\right] + \left[K_{2}M_{1}m_{2} + \frac{M_{3}}{2g\beta B}\left\{\frac{1}{2}(tr(\bar{A}_{2}\cdot A_{2}) - k_{2}^{2})\left(\frac{1}{2}\right) \times (I_{2}(I_{2} + 1) - m_{2}^{2})\right\}\right] + \dots + \left[\frac{1}{2g\beta B}\left[\left\{-\frac{\operatorname{Det}(A_{1})}{K_{1}}\left(\frac{1}{2}\right)m_{1} + (k_{1} - k_{1}^{2})M_{1}m_{1}^{2}\right\} + \dots\right] + \left[\frac{\operatorname{Det}(A_{2})}{K_{2}}\left(\frac{1}{2}\right)m_{2} + (k_{2}^{2} - K_{2}^{2})M_{1}m_{2}^{2}\right\} + \dots\right] + \left[\frac{M_{4}}{2g\beta B}\left[(L_{12} - K_{1}K_{2})m_{1}m_{2} + (L_{13} - K_{1}K_{3})m_{1}m_{3} + (L_{14} - K_{1}K_{4})m_{1}m_{4} + (L_{23} - K_{2}K_{2})m_{2}m_{3} + (L_{24} - K_{3}K_{4})m_{3}m_{4}\right]\right]$$

where

$$\begin{split} g^2 &= \eta_1 g_2 q_1 \\ g^2 K_1^{\ 2} &= \eta_1 g_1 \tilde{A}_1 \cdot A_1 \cdot g_2 \eta \\ g^2 K_1^{\ 2} &= \eta g_1 \tilde{A}_1 \cdot A_1 \cdot \tilde{A}_1 \cdot A_1 \cdot g_2 \eta \\ g^2 K_1 K_2 L_{12} &= \eta_1 g_2 \tilde{A}_1 \cdot A_1 \cdot \tilde{A}_2 \cdot A_2 + \tilde{A}_2 \cdot A_2 \cdot \tilde{A}_1 \cdot A_1 \cdot g_2 \eta \end{split}$$

These terms are used in FOWD to construct transition energies from which transition fields are computed by an approximation to the

Table L. Hyperfine Matrices^a and g Values of ¹⁴NF₃* and ¹³NF₃*.

_		14NF,*	13NF,1-
	A _N (1)	(+) 187.1 ± 5.0b	(-) 259 5 ± 7
	AN(1)	(+) 324.3 : 1.4	(-) 450.8 + 2
	$A_{\mathcal{H}}(x)$	(1) 340.0 1 20	(+) 340.0 ± 20
	$A_{\mathbf{F}}(\mathbf{r})$	(r) 360.0 · 20	(2) 360.0 ± 20
	Ap(:)	(1) 880.0 1 1	(±) 880.0 ± [
	g(1)	2.002	2.002
	g(1)	2.001	2.001
	a	15.0 1 1°	15.0 ± 1"

⁴⁰ Hyperfine splittings are in MHz. ¹⁰ Uncertainties were estimated by comparing numerous simulations to the experimental spectra. The estimates given are ranges outside which, in our subjective judgment, a satisfactory fit to the spectra could not be achieved.

first-order frequency shift perturbation formula.15

Low-Temperature Spectrum of 14NF3*. The overall shape of the experimental EPR spectrum (see Figure 1) does not match our preliminary computer simulations. The comparisons suggest that the expermental spectrum contains a spurious component—a broad background. The EPR spectra of BF3-2 exhibited a similar background, which was attributed to a matrix radical (-CH₂SiMe₃). Accordingly, a background curve consisting of a single, broad peak was included for all simulations of NF, . A word of caution is in order. Even though we had to include an extra background peak to accomplish the analysis, we cannot prove. that it is not part of the spectrum of the species under study. To avoid any further arbitrariness, we allowed this background to have no structure. The necessity for including a superimposed background spectrum introduces extra uncertainty in the parameters, especially the perpendicular peaks that are located where the background is most intense. Because the byperfine splitting is larger for parallel peaks, these peaks are masked to a lesser

The additional uncertainty introduced by the background spectrum is somewhat compensated for by the availability of spectra for two different nitrogen isotopes. The ground rules for simulation of the two isotopic species are as follows. Both spectra should be defined by identical g matrices and fluorine hyperfine matrices and angle α . (Note: α is the angle between the principal axes of the ¹⁹F and N byperfine matrices; it may be close to the angle between the N-F bond and the plane of the three fluorines (see Figure 3 and Discussion).) The nitrogen hyperfine matrix elements abould be related by a factor of -1.4029, which is the ratio of their nuclear moments (i.e., $A_{\perp}(^{19}N)/A_{\perp}(^{14}N) = A_{\parallel}(^{19}N)/A_{\parallel}(^{14}N) = -1.4029$). Fitting two isotopic spectra with the same parameters in this way increases our confidence in the resulting values.

Low-Temperature Spectrum of ¹⁵NF₃⁺. Similarly, the ¹⁵NF₃⁺ experimental spectrum (see Figure 2) also suggests a hroad background resonance, which was included in the simulations.

Discussion

The principal values of the hyperfine and g matrices for both isotopes are listed in Table I. One can estimate the spin density of the free electron from the nitrogen byperfine parameters obtained from the ¹⁴NF₃*- simulation and the equations in the article hy Goldberg et al.:¹

$$\rho^{s}_{N} = a_{N}(iso)/a^{\bullet}_{N} \qquad \rho^{p}_{N} = (A_{N}(\parallel) - a_{N}(iso))/2\hbar^{\bullet}_{N}$$

In these equations ρ_N^s and ρ_N^p are integrated spin densities of the s and p orbitals; a^o_N and h^a_N are the reference atomic isotropic and anisotropic hyperfine couplings, ¹⁶ respectively. The calculated ratio of ρ^p_N to ρ^s_N , 6.37, suggests the unpaired electron to be largely in the following hybrid orbitals:

$$\psi_1 = 0.9293 \psi_N(2p_z) + 0.3694 \psi_N(2s)$$

⁽¹⁵⁾ R. L. Beiford, P. H. Davis, G. G. Beiford, T. M. Lenhart, ACS Symp. Ser., No. 5 (1974).

⁽¹⁶⁾ J. E. Wertz and J. R. Bolton, "Electron Spin Resonance: Elementary Theory and Practical Applications", McGraw-Hill, New York, 1972.

Table II. Comparison of Hyperfine Couplings^a and Spin Densities^b of Mi , Radicals

	И _М (x)I	l 4_M(v)	И _М (z)1	a _M (iso)	U _F (x)	U _F (v)	U p(z)	ap(iso)	₽M [®]	ρM ^p	PF 8	PFP	hybridi- zation of M-F bond
BF.	LIC:	55		428.7°				498.8°	0.211		0.0104		
CF,	667.7 ^d	720.84	891.2 ^d	759.9ª	258.1 ^d 244.1 ^e	246.8 ^d 224.4 ^e	709.1 ^d 738.5 ^e	404.7 ^d 402.3 ^d	0.244	0.723	0.0084	0.1113	sp ^{3, (1)}
NF,	187.1 ^f	187.1 ^f	324.3 ^f	232.8 ^f	340.0	360.0	880.0	526.7 ^f	0 151 (0.129	0.957 0.824)	0.0110	0.1166	ap ^{3,47}

^d Hyperfine splittings are in MHz. ^b Spin densities are calculated from hyperfine values as in ref 1 and 16; those in parentheses are calculated from the newer compilation by. J. R. Morton and K. F. Preston, J. Magn. Reson. 30, 577 (1978). ^c See ref 2, ^d See ref 5. ^e See ref 6 and 7. ^f This work.

Figure 2. (EXPT) EPR spectrum at ¹³NF₃⁴, at 24 K in ¹³NF₄A₈F₆ γ-irradiated at 77 K after annealing at 195 K. (S1M) ¹³NF₃⁴, computer simulation generated by the program POWD with the variables listed in Table 1. See text.

having about 13.6% s and 86.4% p character. A simplified hybrid orbital picture of the bonding in NF₃⁺ can then be constructed in the following way. Starting with an isolated ⁵S N⁺ ion (prepared for bonding with four valence electrons in four orbitals—one s and three p (2a1, 2p11) and eliminating the singly occupied nonbonding so 136p0.864 orbital from the s and 3p's leaves 0.8635 s and 2.1365 p—that is, three N-F bonds, each using a nitrogen hybrid so 2878p0.7122 or ca. ap2.5. Now it is interesting to predict the angle, α' , between sp2.5 orbitals and the plane of the 3 F atoms of and compare it with the angle α , which characterizes the 19F hyperfine interaction anisotropy.

The four N⁺ bonding electrons must be placed in four orthogonal orbitals, the nonbonding one directed along the z axis (ψ_1) and three equivalent ones (ψ_2, ψ_3, ψ_4) directed along the N-F bonds. It is sufficient to consider any one of the bonding orbitals, ψ_2 , chosen to be directed somewhere in the xz plane (Figure 3). Orthonormality requires $(\psi_1, \psi_2) = 0$ and

$$\psi_1 = (1 - 3f)^{1/2} \psi_N(2s) + (3f)^{1/2} \psi_N(2p_r)$$

$$\psi_2 = f^{1/2}\psi_N(2s) + (1 - f)^{1/2}\psi_N(2p_s) = f^{1/2}\psi_N(2s) + (1 - f)^{1/2}[-\cos\lambda\psi_N(2p_{s'}) + \sin\lambda\psi_N(2p_{s'})]$$

where the f is the fraction of s character in the nitrogen bonding orbital ψ_2 . With $3f^{1/2} = 0.9293$ as previously estimated, we find $\cos \lambda = 0.2527$, or $\lambda = 75.4^{\circ}$, $\alpha' = 14.6^{\circ}$. The angle between

Figure 3. (a) Nonbonding orbital directed along the z axis, ψ_1 . This orbital is a linear combination of a nitrogen 2s and 2p, orbital. (b) One of the three nitrogen bonding orbitals. This orbital is in the xz plane and is directed along the N-F bond.

any NF bond and the threefold axis might be expected to be about 104.6°, a little under the tetrahedral angle (109.5°).

It is interesting that the magnitude of α' agrees with the value of $|\alpha| = 15 \pm 1^{\circ}$ (Table I). The consistency in magnitude between the isotropic and dipolar nitrogen hyperfine matrix and the dipolar fluorine hyperfine matrix within a simple hybrid-orbital picture of bonding is remarkable. However, since the experiment and simulations provide only the magnitude of α and not its sign, the agreement could be illusory. A similar, generally consistent picture can be constructed for -CF3, which was previously analyzed. For this radical, the magnitude of α was 17.8°, and judging from the 13 C hyperfine matrices, it has a consistent hybridization of \sim sp³; more specifically, $\alpha'=19.6^{\circ}$; Edlund et al. 16 propose, on the basis of INDO calculations, that the measured value of α is actually -17.8°. That is, they assert that, fortuitously, the spin-density distribution is such that α and α' are approximately equal in magnitude but opposite in sign, making a large angle (~37*) between the principal axis of the fluorine hyperfine matrix and the normal to the C-F bond. With no more information, it is difficult to judge the validity of their conclusion, particularly as INDO methods are grounded in a great many formidable approximations. However, since Edlund et al. supplemented their INDO work with a few ah initic computations, with similar results, one must suspect that a really is negative for -CF, and possibly for NF, and/or BF, as well. Therefore, Benzel et al. 19 have carried out full ab initio computations, with geometric variation to establish the potential minima, on the isoeiectronic series ·NF,*, ·CF₃, and ·BF₃... The results, presented in the following paper, generally confirm the proposition of Edlund et al. 15 They support the idea that the main fluorine contribution to the singly occupied molecular orbital (HOMO) is a p orbital that is directed along the principal axis of the 19F hyperfine coupling matrix but that is neither coincident with nor orthogonal to any of the bonds or molecular symmetry axes. The anisotropic part of the fluorine hyperfine coupling apparently can indicate the spin density and orientation of this participating p orbital but cannot be used to establish the molecular geometry.

O. Ediund, A. Lund, M. Shiotani, J. Sohma, and K. A. Thuomus, Mol. Phys., 31, 49 (1976).
 M. Benzel, A. M. Maurice, R. L. Belford, and C. E. Dykstra, J. Am.

⁽¹⁷⁾ C. A. Coulson, "Valence", Oxford University Press, London, 1961. T = 3 Chem. Soc., following paper in this issue.

Figure 4. Schematic representation of the two possible local orbital achemes for the highest (singly) occupied molecular orbital in NF₃°: (a) F orbital essentially orthogonal to bond direction, $\alpha = \pm 15^{\circ}$; (b) F orbital tilted toward bond direction, $\alpha = -15^{\circ}$.

Conclusions

Despite an apparently large, diffuse background, it has been possible to obtain satisfactory Zeeman, nitrogen hyperfine, and fluorine hyperfine matrices for the rigid trigonal-pyramidal ·NF₃⁺ radical cation hy computer simulation of the EPR spectra of λ-irradiated NF₆AsF₆ and ¹³NF₄AsF₆, annealed and then cooled to ~25 K.

All the data can be rationalized in terms of a hybrid-orbital bonding scheme with (1) the unpaired electron in mainly a non-bonding N(sp^{6.35}) orbital (which also to some extent involves fluorine p_c orbitals in an antibonding interaction), (2) sp^{2.5} nitrogen hybrid bonding orbitals, (3) 105° angles between the threefold

axis and the N-F bonds, and (4) the fluorine part of the HOMO being mainly p₂-like, with its 2 axis tilted plus or minus 15° from the threefold axis (see Figure 4).

The isoelectronic radical -CF₃ is similar, the corresponding angle being 108° and the carbon bonding hybrids about sp³ (see Table 11). Unfortunately, no anisotropic data are available for BF₃⁻, the next member of the isoelectronic series; isotropic parameters are compared in Table 11.

The structural angles between the C_3 axis and normals to the bonds for $\cdot NF_3^+$ and $\cdot CF_3$ are $\sim 14.6^\circ$ and 19.6° , respectively. The principal axes of the fluorine hyperfine matrices deviate from the C_{3c} axes by $\sim 15^\circ$ and 18° , respectively. Depending on the sign of this deviation, these fluorine A axes could be either essentially perpendicular to or tilted, by $\sim 30^\circ$ or 37° , respectively, from the N-F or C-F bonds. The latter interpretation (schematically indicated in Figure 4h) is supported by electronic structure calculations.

Acknowledgment. This work was in part supported by the National Science Foundation Quantum Chemistry Program, the U.S. Army Research Office, and the Office of Naval Research. We thank Mary Kolor Gurnick for helpful suggestions.

Registry No. ¹⁴NF₃*, 54384-83-7; ¹³NF₃*, 67745-75-9; NF₄A₃F₄, 16871-75-3.

Ab Initio SCF Study of Hyperfine Couplings, Geometries, and Inversion Barriers in the Isoelectronic Radicals NF₃⁺, CF₃, and BF₃⁻⁻

M. A. Benzel, A. M. Maurice, R. L. Belford,* and C. E. Dykstra*

Contribution from the School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801. Received April 26, 1982

Abstract: Ah initio SCF molecular orbital calculations with double-\(\) and polarized double-\(\) bases are reported for the isoelectronic series of \(C_{30} \) radicals \(NF_3^+, -CF_3 \), and \(-BF_3^-. \) At the potential minima, the bond lengths are 1.314 Å for \(NF_3^+, 1.341 Å for \(CF_3 \), and 1.442 Å for \(NF_3^+, 1.341 Å for \(CF_3 \), and \(1.42 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(NF_3^+, 1.12 \) for \(NF_3^+, 1.12 \) for \(CF_3 \), and \(1.96 Å for \(NF_3^+, 1.12 \) for \(NF_3^+, 1.12 \) for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(1.96 Å for \(NF_3^+, 1.12 \) for \(1.96 Å for \(1.96 Å for \(1.96 Å for \) fo

The trigonal-pyramidal fluorocarbon -CF₃ and its isoelectric neighbors ·NF₃* and ·BF₃* are archetypal fluoro radicals. However, there have been no direct determinations of the molecular structure of any of these species, and experimental information bearing on their electronic structure is still being accumulated. The most detailed experimental clues available on these species are to be found in the anisotropic electron paramagnetic resonance spectra of ·YM₃ (Y = C, N*, B*) as impurity sites in solids at low temperature. An intriguing feature of both -CF₃, whose EPR parameters are fairly well-known, and ·NF₃*, for which anisotropic EPR results are just now being reported, is that the angle α between the trigonal axis and the principal axis of the ¹⁹F hyperfine coupling tensor is about the same as the structural angle α' by the pyramid is expected to deviate from a planar structure. The obvious interpretation is that the part

of the spin density localized on the fluorine center occupies a pa orbital oriented perpendicular to the bond. However, since the experiments were done on isotropic (polycrystalline) samples, the relative signs of α and α' are indeterminable. If they are of opposite sign, the obvious interpretation is invalid. In that event, it would seem that the fluorine p orbital involved in the highest (singly occupied) molecular orbital would be poised for bonding hy being strongly skewed with respect to the Y-F (Y = C, B', or N') bond. In the case of -CF₃, 1NDO calculations and limited ab initio calculations² have supported this second interpretation. Here we report ah initio self-consistent-field (SCF) calculations with large hasis sets, caried out to determine not only the equilibrium structures of the three radicals but also their inversion barriers. These calculations provide detailed information on the electron-spin distributions leading to an elucidation of the rela-

⁽¹⁾ A. M. Maurice, R. L. Belford, I. B. Goldberg, and K. O. Christe, J. Am. Chem. Soc., preceding paper in this issue.

⁽²⁾ O. Edlund, A. Lund, M. Shiotani, J. Sohma, and K. A. Thuomas, Mol. Phys., 32, 49 (1976).

Contribution from the Department of Chemistry, The Open University, Milton Keynes, MK7 6AA England, and Rocketdyne, A Division of Rockwell International, Canoga Park, Californio 21:304

Nitrogen-14 and Nitrogen-15 NMR Spectroscopy of Fluoronitrogen Cations: π and σ Fluoro Effects

JOAN MASON® and KARL O. CHRISTE

APPENDIX U

Received September 30, 1982

High-resolution spectra have been obtained for (anhydrous HF) solutions of NOF, *, NF4*, NH4*, NO, *, and NO* in 14N resonance and for NH₃F+ (in CF₃SO₃H) in 15N resonance. Broader 14N lines were obtained for N₂F+ (although the one-bond NF coupling was resolved), N₂F₃⁺, and NH₃F⁺. For F₂N=NF⁺ and NH₃F⁺ the reduced electronic symmetry promotes quadrupolar broadening of the ¹⁴N line; for N₂F⁺ and F₂N=NF⁺ exchange processes may contribute also. The nitrogen lines in the linear or planar species N=NF+, NOF2+, and F2N=NF+ show # fluoro effects, being shifted upfield relative to those in corresponding species with hydrogen, alkyl, or anyl groups instead of fluorine, despite the reduction in electron density on nitrogen. The higher shielding is related to increase in energy of $n_N \to \pi^+$ and $\sigma \to \pi^+$ paramagnetic circulations and so corresponds to perfluoro effects which are well-known in electronic and photoelectron spectroscopy. In planar systems, fluorination stabilizes σ relative to π orbitals, since interaction with the filled F_σ orbitals counteracts the inductive stabilization of the π orbitals. In the nonplanar species, however, the nitrogen line moves strongly downfield with fluorination, as from NH₄+ 10 NH₃F+ 10 NF₄+. These shifts are described as σ fluoro effects and are explained, at least in part, by the decrease in electron density on nitrogen. The higher shielding of nitrogen in NH₄+ in anhydrous HF relative to that in aqueous solutions can be attributed to N-H-F hydrogen bonding.

Introduction

Because of the extreme position of fluorine in the periodic table, effects that occur to a lesser degree with other substituents can be "tested" in fluorine chemistry; indeed some are then so marked as to be called "(per)fluoro effects". An example is the perfluoro effect in planar systems which is used to distinguish σ from π orbitals in photoelectron spectroscopy and to characterize $n \to \pi^*$ (or $\sigma \to \pi^*$) excitations in electronic spectroscopy. 1-3 It results from the marked stabilization of the σ -orbital manifold relative to the π when hydrogens or alkyl groups are replaced by fluorine. Although the (-1) inductive effect of fluorine stabilizes the σ and the π orbitals, the effect on the π orbitals is offset by the repulsion of the fluorine nonbonding electrons (+1,).

Corresponding effects can be discerned in 13C and 15N NMR shifts.⁴ In the azabenzenes, ^{4c} for example, $n_N \rightarrow \pi^*$ bands are strongly blue shifted and nitrogen resonances shifted upfield, since (planar) nitrogen carrying a lone pair is deshielded by $n_N \to \pi^{\bullet}$ electronic circulations in the magnetic field, and an increase in the excitation energy $\Delta E(n_N \to \pi^*)$ acts to reduce the circulation and the deshielding. Such "perfluoro" effects are usefully (following Liebman) termed π fluoro effects, as they are evident also on partial fluorination, with some additivity. The term "o fluoro effects" can then be applied to nonplanar systems (in which dramatic downfield shifts may be observed for atoms directly bonded to fluorine) and also to contributory influences of fluorine attached to a resonant atom in a x-bonded system. These effects reflect changes in electron density and orbital coefficients as well as in excitation energies, as discussed below.

We now report a nitrogen NMR spectroscopic study of the cations NF₄^{+,7} NH₃F^{+,8} F₂N=NF^{+,9} NOF₂^{+,10} FN=N^{+,11,12} NH₄⁺, NO⁺, and NO₂⁺, in anhydrous HF (or CF₃SO₃H) solution, to throw light on the effects of fluorination in these

14N vs. 15N NMR Spectroscopy

Nitrogen NMR spectroscopy in high resolution normally requires the 15N nucleus, but the low abundance (0.365%) has severely restricted its application to fluoronitrogen chemistry. Sharp lines can, however, be obtained for the abundant but quadrupolar 14N nucleus in mobile solutions of NH4+, CH1+ N=C, or NO3, since the high local symmetry (small electric

field gradient) allows the nuclear electric quadrupole and therefore the nuclear spin to relax sufficiently slowly.5 Thus high-resolution ¹⁴N NMR spectroscopy should in principle be possible for the NF4+, FN=N+, and F2N=X+ ions, but greater quadrupolar broadening is expected for the F2N=NF+ nitrogen, which carries a lone pair of electrons, although ${}^3J_{\rm NF}$ and ${}^2J_{\rm NF}$ were resolved in ${}^{19}{\rm F}[{}^{14}{\rm N}]$ double resonance studies of cis- and trans-FN=NF. 13 (${}^{14}{\rm N}{}^{14}{\rm N}$ coupling constants are expected to be small, 5 Hz or less, since Jones, is about 6 Hz for the dinitrogen ligand M-N=N14a or 10 Hz for the hydrazido(2-) ligand M=N-NH2.14b)

The low viscosity of fluoro compounds and liquid HF as solvent is advantageous for 14N work since the quadrupolar relaxation rate is proportional to the molecular reorientation time and therefore to the viscosity. Pure liquid HF has a viscosity of 0.26 cP at 0 °C and 0.45 cP at -45 °C (cf. 1 cP at 20 °C for water). Unfortunately this solvent is (understably) unpopular with operators of widebore spectrometers for

Academic Press: New York, 1974; Vol. 1, Chapter I; Vol. 2, Chapter VtA. (b) *Ibid.*, Vol. 1, Chapter IIID. (c) *Ibid.*, Vol. 1, Chapter IIIB. (3) Brundle, C. R.; Robin, M. B., Kuebler, N. A.; Basch, H. *J. Am. Chem.*

 Brundle, C. R.; Robin, M. B., Kuebler, N. A.; Basch, H. J. Am. Chem. Soc. 1972, 94, 1451.
 (a) ¹³C: Mason, J. J. Chem. Soc., Faraday Trans. 2 1979, 75, 607. (b) ¹⁵N: Kanjia, D. M.; Mason, J.; Stenhouse, I. A.; Banks, R. E.; Venayak, N. D. J. Chem. Soc., Perkin Trans. 2 1981, 975. Mason, J. J. Chem. Soc., Faraday Trans. 2 1982, 79, 1539. (d) ¹⁵N, ³¹P, ¹⁷O, ⁷⁷Se; Furin, G. G.; Rezvukhin, A. I.; Fedolov, M. A.; Yakobson, G. G. J. Fluorine Chem. 1983, 231 and afformed blooming the property of the propert Chem. 1983, 22, 231 and references therein.

Mason, J. Chem. Rev. 1981, 81, 205. Liebman, J. F.; Politzer, P: Rosen, D. C. "Applications of Atomic and Molecular Electrostatic Potentials to Chemistry"; Politzer, P., Truhlar,

D. M., Eds.; Plenum Press: New York, 1981. (a) Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1976, 15, 1275. (b) Christe, K. O.; Guertin, J. P.; Pavlath, A. E.; Sawodny, W. *Ibid.* 1967, 6, 533. (c) Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. *Ibid.* 1967, 6, 1156. Grakauskas, V.; Remanick, A. H.; Baum, K. J. Am. Chem. Soc. 1968,

 Christe, K. O.; Schack, C. J. Inorg. Chem. 1978, 17, 2749.
 (a) Christe, K. O.; Hon, J. F.; Pilipovich, P. Inorg. Chem. 1973, 12, 84. (a) Christe, K. O.; Maya, W. Ibid. 1969, 8, 1253.
(11) Moy, D.; Young, A. R. J. Am. Chem. Soc. 1965, 87, 1889.
(12) Christe, K. O.; Wilson, R. D.; Sawodny, W. J. Mol. Struct. 1971, 8,

(13) Noggle, J. H.; Baldeschwieler, J. D.; Colburn, C. B. J. Chem. Phys. 1962, 37, 182. The N₂F₄ and NF₃ measurements are quoted from: Randall, E. W.; Baldeschwieler, J. D., unpublished results.
(14) (a) Chall, J.; Fakley, M. E.; Richards, R. L.; Mason, J.; Stenhouse, I. A. J. Chem. Res., Synop. 1979, 44. (b) Chall, J.; Fakley, M. E.; Richards, R. L.; Mason, J.; Stenhouse, I. A. Ibid. 1979, 322.

the same that the printing of the same of the same will be a

⁽¹⁾ Bralsford, R.; Harris, P. V.; Price, W. C. Proc. R. Soc. London, Ser. A 1960, 258, 459. Potts, A. W.: Lempka, H. J.; Streets, D. G.; Price, W. C. Philos. Trans. R. Soc. London, Ser. A 1970, No. 268, 59.
(2) (a) Robin, M. B. "Higher Excited States of Polyatomic Molecules";

^{*}To whom correspondence should be addressed at The Open University.

Table 1. #-Bonded Fluoronitrogen and Related Compoundsi

compd		solvent	Tf°C¶	6(N)6	² J14NF/ Hz ^c	³ J _{14NF} / tiz ^c	W _{1/1} /Hz ^d	T _q /ms ^e	(i,E)t	ref (14,13N)
FN≅N*AsF,* t 2	N-1	HF		191.2	339 (14) [328]	nr	120 (12)		t I	
			-50				400			
	N-2		-50	-166.1	10	10	205 (14) 600			
PhN=N*BI',	N-I			-156.4						19 (1FN)
1 2	N-2			-63.4						
NOIF, *Asir, "		1117		99.0	254 (3) [250]	• • •	18 (3)	18 (6)	10	
NO ₂ I:		near liq	-110	-87.6	109 (5) [112.5]	• • •				24
F ₂ N=NF*AsE ₄	N-I	HF	-50	-75.9	nr	10	870 (50) 2200			
	N-2		-50	26.0	195 (15)	10	280 (20) 950			
cis-IFN=NIF		CCLF		4	:145	∓37				t3
trans-FN=NF		CCLF		66	1136	÷73				1.3
NOF		neat liq	−80 −78	104 110	• • •	10	245			13 21 24 h
$CF_1N(O)=NF$	N-1		-123							h
1 2	N-2		-58							

⁴ Other than ambient temperature. ^{b 14}N shift relative to neat liquid CD₃NO₃, with low field positive. The new measurements were made at 28.9 Mttz (400 MHz for proto :r) except for NOE₂*AsF₃*, which was measured at 4.33 MHz (60 MHz for protons). The reference for shifts measured at 4.33 MHz is 5 M NH₄NO₃ in 2 M HNO₃, for which NH₄*(aq) has 6 –360.0 telative to neat liquid CH₃NO₂. ^c Jis_N/Jis_N = -1.403. In means "not resolved". The spin-spin coupling unresolved in ¹⁵N resonance has not been resolved in ¹⁵F resonance. Coupling constants shown in brackers were measured in ¹⁵F resonance. ^d Line width at half-height. ^c Quadrupolar relaxation time, given by $T_{\bf q} = 1/\pi W_{1/2}$ when the line is not broadened significantly by unresolved coupling of exchange. ^f Reference to ¹⁵F measurement of J_{NF}. ^g Reference to nitrogen NMR measurement. ^h Frazer, J. W.; Holder, B. E.; Worden, E. F. J. Inorg. Nucl. Chem. 1962, 24, 45. ² Uncertainties are given in patentheses in units of the last digits.

Table II. Nitrogen Oxo Ions

compd	solvent	T/°Ca	6(N) ^b	$W_{1/2}/Hz$	$T_{\mathbf{q}}/\mathrm{m}s$	ref
NO, AsF.	HIF	-70	-136.3	5 (t)	65 (30)	
NO, BF, (FSO,)	SO,	60	·· 131.5	- •-/		34 (15N)
NO, HSO.	4:111,SO,-HNO ₃		-132(1)	29	11	c
O,N=NO-Na,2*	aq		-43.4			16
0,111 110 1111			·· 27.9			
NO*AsE,"	H1:		-7.5	95 (14)	3 (9.3)	
NO'tISO,	H ₂ SO ₄		-5(10)	broad		21
NO'BF, (PF,)	só,	-60	-3.2			34 (15N)
NII, NO. (5 M)	HNO _x (aq) (2 M)		-4.5			
Na NO,	(satd, aq)		229			

^a See footnote g of Table 1. ^b See footnote b of Table 1. ^c Chew, K. F. unpublished results. Quoted by: Logan, N. In "Nitrogen NMR"; Witanowski, M., Webb, G. A., Eds.; Plenum Press: London, 1973; Chapter 6.

the study of ¹³N in natural abundance when the sample volume is 12 cm³ or more, particularly if the solute is under pressure. Triflic acid (CF₃SO₃H) is more acceptable, and we used this for the ¹⁵N spectrum of NH₃F⁺.

Results and Discussion

As recorded in Tables I-III, the ¹N lines are very sharp for $N\Gamma_4^+$ and NH_4^+ , quite sharp for NOF_2^+ and NO_2^+ , but rather broad for NO^+ , and broader still for $N=NF^+$, $FN=NF_2^+$, and NH_3F^+ . For solutions of similar viscosity, the quadrupolar broadening should perhaps increase as $NF_4^+ < F_2NO^+ < F_2N=NF^+ \le N=NF^+ < N=NF^+ < < F_2N=NF^+$, and also $NF_4^+ < NH_3F^+$. Thus some of the lines are broader than might be expected from the electronic asymmetry near nitrogen and the resolution of $^1J_{NF}$ and $^2J_{NF}$ in NF_3 and FN=NF.

Another possible mechanism for line broadening is exchange of F^- or H^+ with the solvent, e.g.

$$N_2F_3^+ + F^- = N_2F_4$$

 $N_2F^+ + F^- = N_2F_2$
 $NH_1F^+ = NH_2F + H^+$

Such exchange is evident in the ¹⁹F spectrum of $N_2F_3^+$ in liquid HF, the line sharpening with decrease in temperature, or

addition of a Lewis acid such as As F_5 to slow down exchange by withdrawing F^- as As $F_6^{-,9}$ The three FF couplings were resolved but NF coupling was not. In the ¹⁴N spectra, unexpectedly, ¹J_{NF} could be observed for the less symmetrical nitrogen (carrying a lone pair) but not for the other (Table I). Both resonances are broad and broaden further with decrease in temperature because of the increase in viscosity. For N_2F^+ the one-bond NF coupling was resolvable in ¹⁴N and in ¹⁹F resonance, but no two-bond coupling was resolved, and these ¹⁴N lines, also, broaden with decrease in temperature (Table I). Clearly there is a conflict between the temperature conditions needed for the reduction of quadrupolar broadening and of exchange broadening.

In ¹⁹F resonances of (¹⁴NH₃F)(CF₃SO₃) in concentrated H₂SO₄ no coupling was resolved at 30 °C. An optimum spectrum was obtained at -40 °C, a quartet with ² J_{HF} = 43 Hz and $W_{1/2}$ = 5.6 Hz, but no ¹⁴NF coupling was resolved. No NH or NF coupling in NH₃F⁺ in HF solution could be resolved in ¹⁴N resonance under the various conditions given in Table III. Addition of AsF₃ increased the line width, indicating that any decrease in exchange broadening is outweighed by effects of increased viscosity. ⁷⁵As observations of KAsF₆ in acctone showed ^{15a} that doubling the concentration (from 1 to 2 M) increased the viscosity hy a factor of about 1.7 and roughly halved the spin-lattice relaxation time, cor-

Table III. Nonplanar Fluoronitrogen and Related Compounds

compd	solvent	T/°Cª	6(N)b	Ju _{NF} /Hz ^c	¹J₁₄ _{NH} /Hz	W _{1/1} /Hz ^d	Tq/mse	(1+E)t	(M12N)
NH,	neat liq		-380.0						
NH, 'AsF,	HF		-369.6		54.3 (1.7)	2(1)	160		
NH, 'NO, (5 M)	HNO ₃ (aq) (2 M)		-360.0		52				
N,H,	neat liq		-335		•				25 (14N)
NH, FTO, SCF,	CF,SO,H	+20	-252.1b	33.9 (3.0)b	30.8 (3.0)	3			
,	HF	+10	-259.6	nt	nr	3500	1		
		-40	-257.6		***	600°	0.6		
	IH//AsF.	+10	- 260:0	nr	nr	420	****		
		-40	- 256		***	730			
NOF,	neat liq	-120	147			208			23a
	11001 117	-110	-137	134		41.0			24
			•••	[135.5]				23b	
NF,*BF,	HI:		-92.3	230.5		2(1)	160	•	
4 - 51 4	***		76.2	[231]		2 (1)	100		
NF Asl	HF		-92.2	230.5		3(1)	100		
141 4 1631 4	•••		72.2	[234]		2 (1)		7b	
				[231]				7c	
N,F.	neat liq		- 49	10011				,,	13
1136.4	meat my		-41	nı					24
			71	[160]				d	2-
ME	mont his	-130	-9			225		и	22
NF,	neat liq	-150 152	- 14.3	nt 1 c ü		223			23 24
		~134	~ 14.3	158				1.2	24
				[155]				13	

⁴ Terms in the column heads are defined in footnotes a-g of Table 1. ^{b 18}N measurements at 18.24 MHz giving ${}^{1}J_{18}_{NF} = 47.6$ (3.0) Hz with proton decoupling and ${}^{2}J_{18}_{NH} = 43.2$ (3.0) Hz. ^c Broad-band proton decoupling reduced these line widths by about 50 Hz. ^d Ettinger, R.; Colburn, C. B. Inorg. Chem. 1963, 2, 1311.

responding to a doubling of the line width. We obtained a septet for the 75As line for AsF, in the (NH3F)(CF3SO3) solution in HF, with ¹J_{AsF} = 933 Hz as obtained previously, ¹⁵ but with a greater line width ($W_{1/2} = 800 \text{ Hz}$ at 25 °C) than those reported for aqueous solutions (94 Hz)156 or in organic solvents (150-450 Hz)15e despite the lower viscosity of liquid HF. This indicates exchange broadening as well as quadrupolar broadening of the 75 As line. (In highly symmetric environments, as in AsF, quadrupolar relaxation is mediated by transient electric field gradients at the nucleus during Brownian motions.)

Fortunately we could measure the natural-abundance 15N spectrum of NH₃F+ in solution in triflic acid, CF₃SO₃H. Proton decoupling gave a doublet with negative intensity corresponding to the maximal NOE factor for ¹⁵N ($\eta = -4.93$) and an 15NF coupling constant of 48 Hz, equivalent to 34 Hz for ¹⁴N. The fully coupled spectrum gave an ¹⁵NH coupling constant of 43 Hz, equivalent to 31 Hz for 14N

π Fluoro Effects. Table I gives the nitrogen NMR parameters for linear or planar fluoronitrogen ions and molecules, with some related compounds for comparison. Some interesting correspondences can be observed in the chemical shifts. The F,N+= nitrogen has similar shifts in F,N=O+ and in F₂N=NF⁺, and the mean of the two nitrogen shifts in F₂N=NF⁺ resembles that for the isoelectronic nitrohydroxamate ion (O₂N=NO)^{2-,16} The resonance of the =NF nitrogen in F₂N=NF⁺, which has fluorine cis and trans, lies between the resonances for cis- and trans-FN=NF.13

A π fluoro effect is evident in the upfield shift of up to 100 ppm on replacement of R or Ar by fluorine in diazenes (azo compounds) RN=NR,17 and similarly for the diazenium nitrogen =NF2+ compared with protonated diazenes11 and for terminal nitrogen in the diazonium ions FN≡N+ compared with PhN=N+.19 Interestingly the upfield shift is smaller,

30 ppm, for the two-coordinate diazonium nitrogen FN==N+, and this illustrates the multiplicity of factors when fluorine is directly attached to the resonant atom. As well as the x fluoro effect, tending to increase the shielding by increasing ΔE(HOMO-LUMO), the fluoro substitu', on tends to increase the shielding by removing electron density from the paramagnetic circulations on nitrogen; but the increase in positive charge on nitrogen reduces the radius of the paramagnetic circulations, increasing their effect. These factors are represented (respectively) by the three terms ΔE , $\sum Q$, and $\langle r^{-3} \rangle_{2p}$ in the approximate formulation of the local paramagnetic term, restricted to electronic circulations on the observed atom A bonded to other atoms B20

$$\sigma_{\rm p}^{\rm AA} = \frac{-\mu_0 \mu_{\rm B} (r^{-3})_{2\rm p}}{2\pi (\Delta E)} (Q_{\rm AA} + \sum_{\rm A \neq B} Q_{\rm AB}) \tag{1}$$

where μ_0 is the permeability of free space, μ_B the Bohr magneton, and r_{20} the radius of the valence p electrons, and the downfield shift increases with the absolute magnitude of σ_p^{AA} . The $\sum Q$ term expresses the imbalance of electronic charge that allows the paramagnetic circulation in the magnetic field. The Q_{AA} part depends on the 2p orbital populations on the atom A, whereas $\sum Q_{AB}$ is a multiple-bond term that (with the energy term) is responsible for the large differences in chemical shift for the different bond orders. Loss of electron density (or reduction of orbital coefficients) with substitution by electronegative ligands such as oxygen or fluorine may increase the shielding, by reducing $\sum Q$. On the other hand, the radial term $(r^{-1})_{2p}$ and therefore the deshielding increase in proportion to the increase in (positive) atomic charge. Thus the π fluoro (ΔE) effects tend to increase the shielding, whereas the σ fluoro effects, decrease in $\sum Q$ and increase in radial terms $(r^{-3})_{2\pi}$, tend to eancel. Substituen' effects are particularly influential for the lower field resonances such as those of the diazene or nitroso compounds: there is an upfield shift of 450 ppm from alkyl or aryl nitroso compounds to NOF,

^{(15) (}a) Arnold, M. S.; Packer, K. J. Mol. Phys. 1966, 10, 141. (b) Bali-

mann, G., Pregosin, P. S. J. Magn. Reson. 1977, 26, 283.

There is some doubt as to the assignments of the two lines: Schultheiss, H.; Fluck, E. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1977, 32B,

Mason, J.; van Bronswijk, W. J. Chem. Soc. A 1971, 791.

⁽¹⁸⁾ Duthaler, R. O.; Roberta, J. D. J. Am. Chem. Soc. 1978, 100, 4969 Kuroda, Y.; Lee, H.; Kuwae, A. J. Phys. Chem. 1980, 84, 3417.

⁽¹⁹⁾ Duthaler, R. O.; Förster, H. G.; Roberts, J. D. J. Am. Chem. Soc. 1978, 100, 4974.

⁽²⁰⁾ Saika, A.; Slichter, C. P. J. Chem. Phys. 1954, 22, 26. Pople, J. A. Mol. Phys. 1963-1964, 7, 301.

Figure 1. σ fluoro effects in nonplanar systems.

paralleled by a blue shift in $n_N \rightarrow \pi^*$ absorption from 760 to 311 nm (corresponding to an increase in ΔE from 1.6 to 4 eV, for this contribution to the appropriate component of the shielding tensor).21

Replacement of O by fluorine results in upfield nitrogen shifts, of 120 ppm for NOF compared with NO₂ and 80 ppm for NO₂F (95 ppm for NOF₂⁺) compared with NO₃⁻ (Tables 1 and 11); cf. the blue shift in the $n_N \rightarrow \pi^*$ absorption from 357 nm for NO_2^- to 311 nm for NOF. Again, there are σ fluoro effects of the reduction in electron density on nitrogen which tend to cancel: a CNDO/S estimate indicates a 5% increase in $(r^{-3})_{2p}$ from NO₂ to NOF, corresponding to deshielding by 30 ppm or so, counteracted by effects of decrease in the constitutive terms.

σ Fluoro Effects in Nonplanar Groups. Table 111 and Figure I show the strong deshielding of nitrogen in nonplanar groups when directly bonded hydrogen or alkyl (or aryl) substituents are replaced by fluorine. The deshielding is particularly large from NH₃ to NF₃, 23a, 24 and N₂H₄25 to N₂F₄, 13 and is smaller for nitrogen bearing a positive charge (NH₄⁺ to NF₄⁺) or an oxygen substituent (Me₃NO²² to NOF₃^{23b}). The increase in the radial factor with fluorination now acts in the same direction as the observed shifts, on the whole; $(r^{-3})_{2p}$ increases by 17% from NH, to NF, and by 20% from NH₄⁵ to NF₄⁺. However, the line shifts upfield from NF3 to NF4+ or NOF3. despite sizable increase in the radial term. The upfield shift from NF, to NOF, has been attributed in part to the increase in the electronic symmetry around nitrogen, approaching the spherically symmetric distribution of an inert gas;26 but nitrogen in NF4+ is significantly deshielded compared to NOF3 (despite similar values of the radial term). Indeed, the deshielding in NF4+ compared with NH4+ or NOF, illustrates the subtlety of the concept of "imbalance of electronic charge" as it contributes to nuclear magnetic deshielding.

As to the energy terms, the electronic circulations deshielding nitrogen in these molecules are all of $\sigma \rightarrow \sigma^*$ type, including the $n_N \rightarrow \sigma^*$ circulations in NH₃, NF₃, N₂H₄, and N₂F₄, since the nitrogen lone-pair orbitals are strongly linked to the σ framework. The higher shielding of nitrogen in NOF, or NF4+ compared with NF3 follows the normal pattern on replacement of a lone pair on nitrogen by a strong σ bond,

removing the lower energy $n_N \rightarrow \sigma^{\bullet}$ circulation. The strong deshielding of nitrogen with fluorination of NH₃ or NH₄⁺ is paralleled by that of phosphorus27 in phosphines or phosphonium ions, carbon in alkanes, silicon in silanes,28 and so on. It is part of a periodic trend, of increased deshielding in saturated compounds as the ligand moves across the row of the periodic table, 29 so that it might be expected to be an inductive effect influencing the energy terms, since these are usually involved when substituent effects are large. On the other hand, the evidence1-3 from photoelectron, optical, and electron impact energy loss spectroscopy suggests that the relevant excitation energies are significantly higher overall in the fluorinated than in the unfluorinated molecules. The $n_N \rightarrow \sigma^*$ excitation energy increases from about 6.5 to 8.7 eV from NH, to NF, 26 and there are similar increases in excitation energies with fluorination in the series of the fluoromethanes,2c which are isoelectronic with the fluoroammonium ions, although the CH σ orbitals are destabilized in CH₃F and CH₂F₂ (but not C11F₃) compared with CH₄. The high ionization energy of fluorine, compared with that of the other halogens, makes for better matching, and therefore mixing, of the 2p orbitals with carbon and nitrogen bonding orbitals. Whereas the halogen lone-pair orbitals are highest lying in the other halogenomethanes, the CH σ orbitals are highest lying in the fluoromethanes, and the fluorine "lone pair" and CF σ orbitals are comparable in energy. The fluorine "lone pair" electrons are extensively delocalized, and it may be that their circulations in the magnetic field help to deshield nitrogen or carbon (etc.) as well as fluorine in these molecules, reinforcing the effects of increase in the radial term.

Patterns of chemical shifts can be described in broad terms by eq 1, which is a very approximate version (with an average energy denominator) of the local term approximation, which restricts calculation to electronic circulations on the observed atom A.20 Our use of this equation is intended to give a "chemical" picture of nuclear magnetic shielding, in terms of orbitals and bonds. More accurate calculations sum over all the excited states (or else treat the magnetic field as a perturbation on the orbital manifold) and reckon the shielding contribution from circulations on neighboring atoms by means of a dipolar (neighbor anisotropy) approximation, although this gives an underestimate, as is evident from the magnitudes of observed substituent effects.²⁹ The deshielding of carbon from CH₄ to CH₃F is matched quite well (slightly underestimated) by ab initio SCF methods with some extension of the basis set, 30 but further fluoro substitution would make large demands on computer time. The semiempirical methods can deal with larger molecules but cannot usually match experimental shifts without ad hoc parameterization. This has been demonstrated for the INDO method with the specific example of the deshielding of carbon from CH₄ to CH₃F.³¹ The standard parameterization greatly underestimates the deshielding, but the estimate can be increased by a (drastic) reduction in the absolute value of the resonance integral β^0_{CF} , which corresponds to the splitting of CF σ and σ orbitals. This reduction corresponds to an increase in ionicity of the CF bond; but the fault may be with the local term approximation, which cannot take full account of the deshielding of the central atom in these nonplanar molecules by circulations of the fluorine "lone pair" electrons.

Effects of the HF Medium on the Nitrogen Shifts. The nitrogen shift of -369.9 ppm for NH₄⁺ in anhydrous HF effectively doubles the range that has now been observed for

Andersson, L.-O.; Mason, J.; van Bronswijk, W. J. Chem. Soc. A 1970, (21)

⁽²²⁾ Herbison-Evans, D.; Richards, R. E. Mol. Phys. 1964, 8, 19.
(23) (a) Mason, J.; van Bronswijk, W. J. Chem. Soc. D 1969, 357. (b) Bartlett, N.; Passmore, J.; Wells, E. J. Chem. Commun. 1966, 213. Qureshi, A. M.; Ripmeester, J. A.; Aubke, F. Can. J. Chem. 1969, 47,

⁽²⁵⁾ Lichter, R. L.; Roberts, J. D. J. Am. Chem. Soc. 1972, 94, 4904.

Aubke, F.; Herring, F. G.; Qureshi, A. M. Can. J. Chem. 1970, 48,

Crutchfield, M. M.; Dungan, C. H.; Letcher, J. H.; Mark, V.; van Wazer, J. R. Top. Phosphorus Chem. 1967, 5.
Stanislawski, D. A.; West, R. J. Organomet. Chem. 1981, 204, 307.
Mason, J. Adv. Inorg. Chem. Radiochem. 1979, 22, 199; 1976, 18, 197.
Ditchfield, R. Mol. Phys. 1974, 27, 789.

Cheremisin, A. A.; Schastnev, P. V. Zh. Struht. Khim. 1979, 20, 999.

this ion. The range previously extended from -359 or -360 ppm for the nitrate in water or aqueous nitric acid to -350 ppm for the chloride in concentrated HCl, with the bromide and iodide slightly downfield of this. Briggs and Randall³² found that the nitrogen shifts in aqueous acid solutions of 15NH₄+ are independent of pH and concentration of NH₄+ but are sensitive to the nature of the counterion, depending in linear fashion on its concentration. The nitrogen shielding increases in the sequence $1^{\circ} < Br^{\circ} < Cl^{\circ} < SCN^{\circ} < SO_4^{2^{\circ}} < NO_5^{\circ}$, which differs from that of the efficiency of the anion in disrupting the hydrogen bonding of water. It is the order of increasing strength of hydrogen bonding of NH, to the anion,32 and corresponding results were subsequently found for chlorides, iodides, etc., of protonated (saturated) amines.33 Similarly, for a given anion, the nitrogen line moves upfield with change from a chlorinated solvent to methanol or water.33 It is pleasing to find that the HF solutions of fluoro anions lie to the extreme of the NH4+ series, with maximal nitrogen shielding for the strongest hydrogen bond, N-H...F. There appears to be a significant upfield shift also of the nitrogen lines in NO+ and NO2+ from liquid SO214 to HF as medium, with fluoro anions in each case (Table 11). Hydrogen bonding to a lone pair on nitrogen in ammonia or alkylamines normally deshields the nitrogen,33 with a sizable deshielding from gaseous to liquid NH, and from NH, to NH, +.35

Spin-Spin Coupling Constants. The NF coupling constants measured in nitrogen resonance agree with those observed in ¹⁹F resonance, as shown in the tables. The $^{1}J_{^{10}NF}$ value of 339 Hz for $FN=N^{+}$ is the largest known, correlating with the high s character in the nitrogen bonding orbitals, analogous to the maximal $^{1}J_{^{10}NH}$ value of 96 Hz (123 Hz for ¹⁵N) measured for HC=NH^{+,36}. The new $^{1}J_{^{10}NF}$ value of 195 Hz for the diazene nitrogen $F_{2}N=NF^{+}$ is larger than those observed for cis- or trans-FN=NF. If the qualitative correlation with s character holds (the quantitative relation frequently fails when nitrogen bears a lone pair with s character, as here³⁷), it would suggest that this diazene NNF angle is larger than in cis-FN=NF (114.4°, 18 $^{11}J_{^{10}NF}$ = 145), which is larger than in trans-FN=NF (105.5°, 38 $^{11}J_{^{10}NF}$ = 136 Hz).

The NF coupling constant is much smaller in NH,F⁺ than in NF₄⁺, the disparity being greater than in the fluoro-

methanes: ${}^{1}J_{CF}$ is 158 Hz in CH₃F compared with 259 Hz for CF₄. But the factors involved are not simple, for the fluoromethane values peak at 274 Hz for CHF₃. ${}^{1}J_{NH}$ in NH₃F⁺ is unexpectedly small (31 Hz, cf. 54 Hz for NH₄+) since an electronegative substituent usually increases the magnitude of a coupling constant, regardless of sign.

Our discussion so far has been of absolute magnitudes of $J_{\rm NF}$. One-bond ¹⁴NF coupling constants are expected to be negative³⁹ (and the ¹⁵NF values positive because of the negative magnetogyric ratio of ¹⁵N), so that the two-bond coupling

constants in the diazenes are positive.13

It seems that the NH coupling constants increase with the strength of hydrogen bonding in the medium, as does the nitrogen shielding. For NH₄+, ¹J_{18NH} increases from (+)50 Hz for chlorides in aqueous HCl to 52 Hz for nitrates in aqueous HNO₃, and this trend is continued by the value of 54 Hz that we observe for [NH₄][AsF₆] in anhydrous HF (Table III). This increase is consistent with contraction of the valence s orbitals increasing the Fermi contact term, with increase in effective nuclear charge as electron density is withdrawn in hydrogen bonding.

Experimental Section

The compounds were made by published methods. 7-12 The 14N spectra were measured with a Bruker WH 400 spectrometer operating at 28.9 MHz. The solution in anydrous HF was contained in a sealed 4-mm FEP Tellon tube, which was placed within coaxial 5- and 10-mm glass tubes with CD₃NO₂ between them to serve as reference and deuterium field-frequency lock. Susceptibility effects are small, since the volume susceptibility of liquid HF is close to that of MeNO₂. The [NOF₂][AsF₅] measurements were made with a Bruker WP 60 spectrometer at 4.33 MHz. The natural-abundance ¹⁵NH₃F⁴ spectra were measured on a Bruker WH 180 widebore spectrometer operating at 18.24 MHz, with a sealed tube containing the CF₃SO₃H solution and a coaxial 5-mm tube containing CD₃NO₂.

Acknowledgment. We thank Gordon Howell for spectra run on the WP 60 spectrometer at The Open University, Drs. Oliver Howarth and Eirian Curzon for the many spectra run on the WH 400 spectrometer at the University of Warwick, Maurice Cooper for the ¹⁵NH₃F⁺ spectra run on the 180-MHz widebore spectrometer at PCMU, Harwell, and the Science and Engineering Research Council for the provision of high-field spectrometers. K.O.C. is indebted to the U.S. Army Research Office and the Office of Naval Research for financial support.

Registry No. NOF₂*, 43575-45-7; NF₄*, 30494-78-1; NH₄*, 14798-03-9; NO₂*, 14522-82-8; NO*, 14452-93-8; NH₃F*, 53768-39-1; N₂F*, 33687-51-3; N₂F*, 39448-70-9; nitrogen, 7727-37-9; nitrogen-15, 14390-96-6

⁽³²⁾ Briggs, J. M.; Randall, E. W. Mol. Phys. 1973, 26, 699.

 ⁽³³⁾ Duthaler, R. O.; Roberts, J. D. J. Magn. Reson. 1979, 34, 129.
 (34) Olah, G. A.; Gupta, B. G. B.; Narang, S. C. J. Am. Chem. Soc. 1979,

 <sup>101, 5317.
 (35)</sup> Alei, M.; Florin, A. E.; Litchman, W. M. J. Am. Chem. Soc. 1970, 92, 4828. Litchman, W. M.; Alei, M.; Florin, A. E. J. Am. Chem. Soc. 1876, 91, 627.

⁽³⁶⁾ Olah, G. A.; Kiovsky, T. E. J. Am. Chem. Soc. 1968, 90, 4666.

⁽³⁷⁾ Schulman, J. M.; Venanzi, T. J. J. Am. Chem. Soc. 1976, 98, 6739.

⁽³⁸⁾ Bohn, R. K.; Bauer, S. H. Inorg. Chem. 1967, 6, 309.

⁽³⁹⁾ Pople, J. A.; Santry, D. P. Mol. Phys. 1964, 8, 1.

Received: September 28, 1982; accepted: November 17, 1982

APPENDIX V

ON THE REALITY OF POSITIVE FLUORINE

K.O. CHRISTE

Rocketdyne, A Division of Rockwell International, Canoga Park, Calif. 91304 (U.S.A.)

SUMMARY

Recent experimental data are not consistent with the postulate of a positively polarized fluorine for compounds such as hypofluorites.

INTRODUCTION

In their recent paper on fluorination with positive fluorine, Cartwright and Woolf commented [1] on the marked reluctance by fluorine chemists to accept the "reality" of positive fluorine. They cite as evidence for this reality the weakening of aromatic carboxylic acids by o- and p- fluorine substitution and t ${}_{2}$ CF $_{3}^{5}$ 0-F polarity required to explain fluorination reactions. Whereas their first argument is not convincing experimental proof for positively polarized fluorine due to the complexity of the system and the different possible electronic effects, recent experimental studies show that in covalent hypofluorites fluorine is not positively polarized.

RESULTS and DISCUSSION

For example, the addition of ClO_3OF to the unsymmetrical olefin $\text{CF}_3\text{CF}\text{+}\text{CF}_2$ produces 68% of $\text{CF}_3\text{CF}_2\text{CF}_2\text{OClO}_3$ and 32% of $\text{CF}_3\text{CF}(\text{OClO}_3)\text{CF}_3$. The direction and the nature of these addition products suggest that the 0-F bond in ClO_3OF is not strongly polarized in either direction, and that the direction of the addition is probably governed by steric effects with the bulkier CF_3 group repelling the larger OClO_3 group [2]. Similar results were found for the addition of CF_3OF to olefins. By analogy with ClO_3OF , low stereospecificity was observed, and the direction of the addition was again governed mainly by steric effects [3].

0022-1139/83/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

Extreme electronegativities, i.e. electronegativities larger than that of fluorine, have previously been postulated not only for the CF₂Oand ClO_3O - groups, but also for the TeF_5O - and SeF_5O - groups [4-6]. However recent multinuclear nmr and Mossbauer measurements have shown that fluorine is more electronegative than the TeF50- group with the latter having a value of 3.87 on the Pauling scale [7]. This is also supported by the results from the addition of TeF50F to olefins [8]. which are analogous to those obtained for ClO3OF and CF3OF.

Since fluorine is the most electronegative element it appears logical that the addition of fluorine to a central atom of lower electronegativity cannot result in a group which has a group electronegativity higher than that of fluorine itself. In the extreme case, the addition of an infinite number of fluorines to a highly electronegative element might produce a group with an electronegativity assymptotically approaching that of fluorine. In the absence of convincing experimental data in favor of a positively polarized fluorine and in view of the existing experimental data to the contrary [2,3,7,8], the postulate of a positively polarized fluorine should be labeled 'misconception' rather than 'reality'.

ACKNOWLEDGEMENT

The author wishes to thank the Office of Naval Research and the Army Research Office for financial support.

REFERENCES

- 1 M. Cartwright and A. A. Woolf, J. Fluorine Chem., 19(1981)101.
- 2 C. J. Schack and K. O. Christe, Inorg. Chem., 18(1979)2619.
- 3 K. K. Johri and D. D. DesMarteau, Paper 0-65 presented at the 10th International Symposium on Fluorine Chemistry, Vancouver,
 - B. C., Canada (August 1982).
- 4 D. Lentz and K. Seppelt, Angew. Chem. Int. Ed. Engl., 17(1978)355.
- 5 D. Lentz and K. Seppelt, Z. anorg. allg. Chem., 460(1980)5.
- 6 P. Huppmann, D. Lentz, and K. Seppelt, Z. anorg. allg. Chem., 472(1981)26.
- 7 T. Birchall, R. D. Myers, H. DeWaard, and G. J. Schrobilgen, Inorg. Chem., 21(1982)1068.
- 8 C. J. Schack and K. O. Christe, Paper I-61 presented at the 10th International Symposium on Fluorine Chemistry, Vancouver, B. C., Canada (August 1982).

APPENDIX W

POSITIVE FLUORINE-REALITY OR MISCONCEPTION?

K. O. CHRISTE

Rocketdyne, A Division of Rockwell International, Canoga Park, Calif. 91304 (U.S.A.)

SUMMARY

Polar covalence theory arguments are presented against the existence of a permanent positive polarization of fluorine in heteronuclear X-F molecules and against the existence of X groups having a higher electronegativity than fluorine itself. The heterolytic fission of fluorine and the possibility of inducing a positive fluorine dipole in X-F molecules with highly electronegative X groups are briefly discussed.

INTRODUCTION

Fluorination reactions with highly electronegative compounds are frequently explained by invoking a positive fluorine. In a recent note [1], this author took exception to the postulate of positive fluorine by criticizing a recent paper of Cartwright and Woolf on this subject [2]. In the preceding paper [3], the same authors (C+W) summarized some arguments in favor of positive fluorine. Since the issue of a positive fluorine is largely a conceptual problem and is not readily accessible to direct experimental measurements, a speculative interpretation of the mechanism of poorly studied complex organic reactions has little merit. A systematic analysis of this problem therefore appeared more rewarding and is given below.

DISCUSSION

Definition of a Positive Fluorine.

A positive fluorine is the direct result of a transfer of electron density in a covalent X-F bond from F to X resulting in the following polar covalence X-F, where XF can be either heteronuclear (X is different from F) or homonuclear (X equals F). If XF is homonuclear, i.e. F_2 , one cannot have a permanent but only an induced dipole. If XF is heteronuclear, one can have both a permanent and an induced dipole. It should be noted that this dipole is not identical with the experimentally measurable overall dipole moment of the XF molecule due to other factors such as lone valence electron pair effects.

Definition of the Problem.

The issue raised by us in our previous critique [1] was that there is no experimental and theoretical justification for the assumption of a permament X-F polarity in a heteronuclear XF molecule. Therefore, unless stated otherwise, the following arguments will be referring to this issue.

Theoretical Arguments.

The assumption of a permanent positive fluorine dipole in a heteronuclear XF atom violates the principle of electronegativity equalization which was first published in 1951 by Sanderson [4] and proven correct by quantum mechanics in 1978 by Parr and coworkers [5] and in 1979 by Politzer and Weinstein [6]. This principle states that when two or more atoms unite to form a compound, their electronegativities become adjusted to the same intermediate value within the compound. In other words, the

different kinds of atoms become equal in electronegativity by unequal sharing of the bonding electrons. This means that the more electronegative atom must acquire a negative charge and the less electronegative atom a positive charge. Since fluorine is without doubt the most electronegative element, a heteroatomic X-F bond can be permanently polarized in only one direction, i.e. X-F. This principle also rules out the possibility that X groups, such as CF_3O_7 , SeF_5O_7 , or TeF_5O_7 , which consist of fluorine substituted heteroatoms of lower electronegativity can become more electronegative than fluorine itself [1,7-10].

Experimental Arguments.

Electrophilic substitution reactions are not a convincing argument in favor of a positive fluorine. First of all, the mechanisms of most of these complex reactions have not been established. Secondly, in these reactions a strong electrophile attacks an electron rich center, and the polarity of the bonds within the electrophile is of lesser importance than other factors. In NF_4^{-1} , for example, the nitrogen atom is coordinatively saturated. Consequently, NF_4^{-1} can attack an electron rich center only through one of its fluorine ligands but not through its nitrogen atom. The fact that NF_4^{-1} can undergo electrophilic substitution reactions is therefore no indication for a positively polarized fluorine.

On the other hand, addition reactions in which a polar X-F molecule is added across a polar double bond, are capable of yielding information about the polarity of the X-F bond. Several such studies have recently been carried out using ClO₃OF[11].TeF₅OF, and CF₃OF[12] and did not provide any evidence for a positive fluorine in these hypofluorites.

One piece of experimental evidence for positive fluorine, cited by (C+W) is the selective substitution at acidic hydrogens,

e.g.
$$Na^{+}CH(NO_{2})_{2}^{-} + F_{2}^{-} \frac{H_{2}O}{Na^{+}F^{-}} + FCH(NO_{2})_{2}^{-}$$

(C+W) concluded that, if half the fluorine becomes fluoride, by a simple charge-balance the other half must be positive fluorine. The shallowness of this conclusion can easily be demonstrated by the following analogous equation which would prove that the fluorine in HF must be positive.

Induced Polarization and Heterolytic Fission of Fluorine.

Although our original critique of the paper by (C+W) was only concerned with the permanent dipole of a heteronuclear XF molecule, the preceding paper [3] requires some comment on the heterolytic fission of fluorine. If in XF molecules X becomes more and more electronegative and eventually becomes F, the energy required to induce a dipole moment decreases and the possibility of forming an induced positive fluorine dipole increases. Although the formation of NF $_4$ AsF $_6$ was originally postulated [13] to involve the heterolytic fission of F $_2$,

subsequent studies [14-16] have shown that the mechanism of this reaction is more complicated, requires predissociation of F_2 , and involves the formation of the NF_3^+ radical cation as an intermediate. However, if the hard Lewis base NF_3 is replaced by the soft base Xe, the following reaction proceeds spontaneously even in the dark [17].

$$Xe + F - F + SbF_5 \longrightarrow XeF^{\dagger}SbF_6^{-}$$

It is likely that this reaction is a rare example of an actual heterolytic fission of fluorine and therefore involves a Lewis acid - Lewis base induced polarization of fluorine. However, the possible existence of such

a reaction for homonuclear difluorine has no bearing on the formation of a permanent positive fluorine in the heteronuclear XF molecules discussed above.

ACKNOWLEDGEMENT

The author wishes to thank Ors. C. J. Schack and W. W. Wilson for helpful discussions and the Army Research Office and the Office of Naval Research for financial support.

REFERENCES

- 1 K. O. Christe, J. Fluorine Chem., 22 (1983) 519.
- 2 M. Cartwright and A. A. Woolf, J. Fluorine Chem., 19 (1981) 101.
- 3 M. M. Cartwright and A. A. Woolf, preceeding paper in this issue.
- 4 R. T. Sanderson, Science, 114 (1951) 670; "Polar Covalence," Academic Press, New York, 1983.
- 5 R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys., 68 (1978) 3801.
- 6 P. Politzer and H. Weinstein, J. Chem. Phys., <u>71</u> (1979) 4218.
- D. Lentz and K. Seppelt, Angew. Chem. Int. Ed. Engl, 17 (1978) 355.
- 8 D. Lentz and K. Seppelt, Z. anorg. allg. Chem., <u>460</u> (1980) 5.
- P. Huppmann, D. Lentz, and K. Seppelt, Z. anorg. allg. Chem.,
 472 (1981) 26.
- T. Birchall, R. D. Myers, H. de Waard, and G. J. Schrobilgen, Inqrg. Chem., 21 (1982) 1068.
- 11 C. J. Schack and K. O. Christe, Inorg. Chem., 18 (1979) 2619.
- 12 K. K. Johri and D. D. Des Marteau, J. Org. Chem., <u>48</u> (1983) 242.
- 13 K. O. Christe, J. P. Guertin, and A. E. Pavlath, U.S. Pat. 3 503 719 (1970).
- 14 K. O. Christe, R. D. Wilson, and A. E. Axworthy, Inorg. Chem., <u>12</u> (1973) 2478.

- 15 I. B. Goldberg, H. R. Crowe, and K. O. Christe, Inorg. Chem., <u>17</u> (1978) 3189.
- 16 K. O. Christe and W. W. Wilson, Inorg. Chem., in press.
- 17 L. Stein, J. Fluorine Chem., 20 (1982) 65.

United States Patent [19]

4,329,330 [11] Christe et al. [45] May 11, 1982

[54]	· · · · · · · · · · · · · · · · · · ·	VII) IAFLUOROHYPOFLUORITE AND SS FOR PREPARING THE SAME
[75]	Inventors:	Karl O. Christe, Calabasas, Richard D. Wilson, Canoga Park, both of Calif
[73]	Assignee:	Rockwell International Corporation, El Segundo, Calif.
[21]	Appl No	176,314
[22]	Filed:	Aug. 8, 1980
[51] [52]	Int, Cl U.S. Cl	C01B 7/24 423/473; 423/466 423/472, 149/119
[58]	Field of Se	arch 423/462, 466, 472, 473
[56]		References Cited
		PUBLICATIONS

Berry et al., "Molecular Complexes and Redox Reac-

tions of lodine Pentafluoride", J. Chem. Research(S), Oct. 1978, p. 377. Gillespie et al., "Lewis Acid-Base Properties of Iodine (VII) Dioxide Trifluoride", Inorganic Chemistry, vol. 16, No. 6, (1977), pp. 1384-1392. Chemical Abstracts, vol. 91, (1979), No. 221,675e.

Primary Examiner-Brian E. Hearn

Attorney, Agent, or Firm-H. F. Hamann, Harry B. Field

[57] A fluorisising agent having an empirical formula which comprises FOIF4O whereby said fluorinating agent is prepared by a metathetical reaction of solutions of NF4SbFe and CslF4O2 in anhydrous HF, removing the precipitated CsSbF6 and HF solvent, followed by thermal decomposition of the filtrate residue

ABSTRACT

5 Claims, No Drawings

IODINE (VII) **OXYTETRAFLUOROHYPOFLUORITE AND A** PROCESS FOR PREPARING THE SAME

The Government has rights in this invention pursuant to Contract (or grant) NOOO14-79-C-0176 awarded by the U.S. Department of the Navy.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to fluorinating agents and. more specifically, to iodine (VII) oxytetrafluorohypofluorite and the process for its preparation

2 Description of the Prior An

The number of elements known to form stable hypofluorites is very limited. They are known only for curbon, nitrogen, sulfur, selenium, fluorine, and chlorine containing compounds. In addition, the unstable hypofluorous acid. HOF, has been prepared. However, no 20 iodine hypofluorites had been known prior to this in-

Inorganic hypofluorites are generally prepared by the alkali metal fluoride catalyzed fluorination of the corresponding oxyfluorides by elemental fluorine (Lustig and Shreeve. Advances in Fluorine Chemistry, Vol. 7. pages 175-198, 1973) In the case of iodine compounds, this method does not lead to the formation of todine hypoflucrites, as demonstrated by extensive ex-

periments in the inventors' laboratory

Recent work in the inventors' laborators has resulted in an alternate synthetic method for the hypofluorites FOCIO: and FOSO;F It was found that the NF4"ClO4" and NF4"SO(F) salts, which were isolated from a metathetical reaction of NF4SbFr with CsClOz or CsSO:F in anhydrous HF solution, on thermal decomposition yield the corresponding hypothuorites FOCiO, and FOSO;F However, application of this approach to CsIO4 failed because CsIO4 interacts 40 with HF to give fluorinated products, as demonstrated by Selig and cowerkers (Journal Inorganic Nuclear Chemistry, Supplement, 91, 1976). Furthermore, it was shown by the inventors that Cs+1F4O2+, when dissolved in anhydrous HF undergoes solvolysis to pro- 45 duce C5-HF2- and HOIF4O

SUMMARY OF THE INVENTION

Accordingly, there is provided by the present invention todine (VII) oxytetrafiuorohypofluorite (FOIF4O) 50 and a process for preparing the same. The interaction of CsIF4O; with NF4SbF6 in anhydrous HF results in solutions containing NF4", HF7", and HOIF4O. On standing or when pumped to dryness, these mixtures decompose to yield NF3 and the new compound 55 FOIF4O in high yield. The latter compound is the first known example of an iodine hypofluorite

OBJECTS OF THE INVENTION

a fluorinating agent.

Another object of the invention is to provide a highdensity oxidizer for pyrotechnics.

Yet another object of the present invention is to provide a compound capable of introducing fluorine into 65

A further object of the present invention is to provide a process for preparing iodine hypofluorites

Other objects, advantages, and novel features of the present invention will become apparent from the following detailed description.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

In view of the previous art, it appeared very unlikely that any iodine hypofluorites could be prepared. Direct fluorinations with elemental fluorine do not produce 10 hypofluorites, metathetical reactions of 104° in anhydrous HF are impossible because IO4" chemically reacts with HF to give other products, and the synthesis of an NF₄-IF₄O₂- salt was not possible due to the solvolysis of IF₄O₂- to give HOIF₄O.

Surprisingly, it was now found that the product from low-temperature metathetical reaction between NFsSbFb and Cs1F4O2 in anhydrous HF solution, when warmed to ambient temperature, produces an iodine hypofluorite in high yield. The first step of this reaction

involved the following reaction

The CsSbFe precipitate could be easily filtered off at — 8° C and Raman and F NMR spectoscopy of the filtrate showed the presence of NF4" and HOIF4O with no evidence for the IF4O2 anion. This is in agree ment with the above results for CslFaO2 which demonstrated that MIF4O; salts undergo solvolysis in anhydrous HF according to

Raman and F. NMR specta showed that these NFaHF1-HOIF4O containing HF solutions are unstable at room temperature and slowly decompose to NF; and a new compound identified as a mixture of cis and trans FOIE₄O

At the same time, the relative intensities of the NF47 and HOIF4O signals decreased accordingly. When the HF solvent was pumped off at -30° C from a freshlyprepared NF4HF2-HOIF4O solution, a white solid residue was obtained. The low-temperature Raman spectrum of this solid showed the presence of the NF4" cation, but the remaining bands were too broad to permit a positive distinction between 1F4O2-, HO1F4O and possibly some HF2-,nHF. The new compound Therefore, it is an object of the invention to provide 60 FOIF4O was obtained in high yield by decomposing at room temperature this thermally unstable solid, with the by-product being NF; Since the same products were obtained from HF solutions which, based on their F NMR and Raman spectra, contained only HO1F4O but not 1F4O2-, it appears that FO1F4O is formed by fluorination of HOIF4O by either NF4+ or nascent fluorine formed during the thermal decomposition of the marginally stable NF4+HF2+nHF.

By way of example and not limitation, the following synthesis of FOIF4O is given. In a typical experiment, CsIF₄O₂ (5.0 mmol) and NF₄SbF₆ (5.0 mmol) were placed in a Teflon-FEP metathesis apparatus and anhydrous HF (5 ml liquid) was condensed in at -78° C. 5 The mixture was stirred for one hour at room temperature. The apparatus was cooled to -78° C., inverted and the white precipitate was separated from the solution by pressure filtration. Most of the HF solvent was pumped off over several hours at temperatures ranging 10 from -64° to -30° C. The resulting white solid residue was allowed to decompose during slow warm-up from -30° C. to ambient. The volatile products were passed through a Teflon U-trap containing passivated NaF pellets, followed by a series of cold traps kept at -78° , 15 -95°, -112° and -210° C. The -89° C trap contained a small amount of unidentified material which was discarded, the -95° C fraction consisted of pure FOIF4O (2.36 mmol), the -112° C. trap had 1.69 mmol of FO1F4O containing a small amount of 1F5O as impu- 20 rity, and the contents of the -210° C. trap consisted of NF3 (4.0 mmol). A small amount of white solid residue, which was left behind after the thermal decomposition of the filtrate, was shown by vibrational spectroscopy to consist mainly of trans-Cs1F4O2. The filter cake (1.8 25 g) was identified by Raman spectroscopy as CsSbFe. The -95' C fraction was used for the characterization of HOIF4O and was shown by vibrational and F NMR analysis to be free of IF(O)

For the elemental analysis, 278.7 mg of the material 30 was condensed at -196° C, into an ampule containing 12 ml of frozen 1 N NaOH. The mixture was warmed to ambient temperature for twelve hours and then analyzed for total rodine by energy dispersive X-ray fluorescence spectrometry, for 104° by rodometric titra-35 tion, for base consumption by back titration with 0.1 N HCl using a pH electrode and for fluoride by titration using $La(NO_3)_3$ and an anion specific ion electrode. Anal calcd for FOIF4O 1, 49.98; F, 37.42, OH= consumed, 6.0 equiv/mol, iodometric titration, 8.0 equiv/40 mol, assuming the following hydrolysis reaction:

Found: 1, 50.0, F, 36.0, OH= consumed, 6.1 equiv/mol, 45 iodometric titration, 7.8 equiv/mol

Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within

the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

What is claimed and desired to be secured by Letters Patent of the United States is:

- A compound having an empirical formula which consists essentially of FOIF₄O.
- 2. A compound having an empirical formula of FOIF₆O which comprises a stereo-isomer selected from the group consisting of

and mixtures thereof.

3. The compound of claim 2 wherein one stereo-isomer has the cis structural formula comprising

4 The compound of claim 2 wherein a second stereoisomer has the trans structural formula compasing

5. A process for preparing FOIF4O, comprising the steps of:

metathetically reacting solutions of NF₄SbF₆ and CsIF₄O₂ in anhydrous HF;

removing the CsSbF₆ precipitate and HF solvent; and thermally decomposing the filtrate residue.

50

60

United States Patent 1191

Christe et al., "Novel Onium Salts Synthesis and Characterization of the Peroxonium Cation, H₂OOH+", Inorganic Chemistry, 18 (1979), pp. 2578-2586. Christe et al., in Inorganic Chemistry, vol. 14 (1975), pp. 2224-2233, 2821-2824.

References Cited

PUBLICATIONS

[56]

Alder et al., "An Exceptionally Powerful Oxidant: the Ion H₃O₂+", J. Chem. Soc., (1964), pp. 4707-4712. Olah et al., "Chemistry in Superacids", J. Am. Chem. Soc., vol. 95, May, 1973,pp. 3582-3584.

[11]

[45]

4,339,423

Jul. 13, 1982

Primary Examiner—Brian E. Hearn Attorney, Agent, or Firm—Robert F. Beers; W. Thom Skeer; Lloyd E. K. Pohl

[57] ABSTRACT

The peroxonium salts, H₃O₂+Sb₂F₁₁⁻, H₃O₂+SbF₆⁻ and H₃O₂+AsF₆⁻, are prepared by protonation of H₂O₂ in anhydrous HF solutions of the corresponding Lewis acids. The salts decompose producing the corresponding H₃O+ salts and O₂ in the temperature range of from 20° to 50° C, and thus are useful as oxidizers in situations where the production of oxygen in the 20°-50° C, temperature range is desirable. The salts also provide a convenient means for storing H₂O₂ in a solid form.

3 Claims, No Drawings

PEROXONIUM SALES

BACKGROUND OF THE INVENTION

1. I reld of the Invention

Has invention relates to peroxonium salts and to method for their preparation.

Description of the Prior Ait

Materials which will produce Og at relatively low temperatures are in demand. For example, such a mate- in rial could be used to produce oxygen for use in manned space vehicles and the like simply by placing a quantity of the material in a heatable container and heating the material when oxygen production was desired

H₂O₂ is a very useful producer of molecular oxygen. 18 For example, it is used to generate excited oxygen for use in chemical lasers. Also, it is used as a monopropellant in hquid rocket engines. However, it has a drawhack in that it is difficult to handle. It readily undergoes autocatalytic decomposition. Accordingly, it would be convenient if this material could be stored in a stable salt. 20 form

SUMMARY OF THE INVENTION

According to this invention, the first known peroxonium salts are prepared. The salts are H_1O_2 * $ShF_{11}=$, 25 H_2O_2 * $ShF_{6}=$ and H_3O_2 * $AsF_{6}=$. The salts are prepared by protonation of H2O3 in anhydrous HF solutions of the corresponding Lewis acids. The salts may be used to produce oxygen by heating them to a temperature in the range of from 20° to 50° C, whereupon they decompose producing the corresponding H₂O₂ salts and O2. The salts also provide a convenient means for storing H;O; in a solid form.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following specific examples describe the preparation of the three peroxonium salts of this invention.

EXAMPLE 1

PREPARATION OF HOOS AVE

The Lewis acid. AsFs (15.39 mmol) and anhydrous HF (50.76 mmol) were combined at -196° C. in a passivated Teflon-FEP ampule equipped with a valve. The mixture was allowed to melt and homogenize. The ampule was then taken to a drybox and H2O2 of 99.95% 45 purity (15.29 minol) was syringed in at -196° C. The ampule was then transferred back to the vacuum line and evacuated at -196° C. It was then kept at -78° C. for 2 days to allow reaction. After this period, no evidence was found for material noncondensible at -196' 50 group consisting of SbF₆, said method comprising the C., i.e., there was no evidence of O2 evolution. The mixture was then (after 2 days) warmed to -45° C. and a clear solution resulted. Material volatile at -45° C was removed by pumping for 10 hours and was collected at -196° C. A white solid residue resulted which 55 was marginal stability at ambient temperature. On the basis of the observed material balance (weight of 15.29 mmol H₃O₂ ⁴ AsF₆ calculated: 3.423 g; found: 3.47 g) the conversion of H₂O₂ to H₃O₂ + AsF₆ - was complete within experimental error. The compound was shown by infrared and Raman spectroscopy to contain the 60 H₃O₂+ cation and the AsF₆= anion.

EXAMPLE H

PREPARATION OF H:O2 * ShF6-

Antimony pentafluoride (27.96 mmol) was added in a drybox to a passivated Teflon FEP U-tube equipped with two valves and a Teflon-coated magnetic stirring bar. Anhydrous HF (522.9 mmol) was added on the

vacuum line at 196°C, and the inviture was homogemized by stirring at 20 °C. In the drybox, hydrogen peroxide (27.97 mmol) was syringed into the U-inbe at

196° C. The cold tube was transferred back to the vacuum line and was evacuated. The tube was warnied from 196° C to 78° C for I hom with agitation which resulted in the formation of a finely divided white solid, suspended in the liquid HF. When the mixture was warmed to 20° C, the white solid completely dissolved. No gas evolution was observed during the entire warm-up operation, and no noncondensable material could be detected when the mixture was cooled again to -196° C. The HF solvent was pumped affeat -22° C. for 3 hours resulting in 7.566 g of a white solid calculated for 27.96 muol (weight HiO · SbF - 7.570 g), stable at 20° C. The compound was shown by vibrational spectroscopy to be composed of HiO; cations and SbF6 anions Adds nonal support for the composition of the product was obtained by allowing a sample of HiO; SbF 6 to thermally decompose at about 45° C. This decomposition produced O2 and the known HiOSbFo salt in almost quantitative yield.

ENAMPLE III

PREPARATION OF H₃ O₂ * Sh₂F₁₁

The synthesis of this compound was carried out in a manner identical with that described above for the preparation of HaO; * ShF6 , except for using an excess of SbF₅. Thus, the combination of ShF₅ (14.83 mmol), HF (407 mmol), and H₂O₂ (6.83 mmol) produced 3.581 g of a white solid (weight calculated for 6.83 mmol of H₁O₂+SbF₆ | 1.17ShF<= 3.581 g), stable up to about 50° C. The compound was shown by vibrational and NMR spectroscopy to contain the HiO2+ cation and 35 Sb₂F₃₁ as the principal anion.

All of the above peroxonium salts decompose to form O2 and the corresponding H3O * salts at temperatures in the range of from 20' to 50' C. Thus, to use the salts of this invention to produce O; one may heat them to a 40 temperature with the stated range.

As has been indicated above, the salts of this invention also provide a means for storing H2O2 in a solid

form

What is claimed is:

I. A peroxonium salt having the formula H₃O₂ * X wherein X - is selected from the group of amons having the formulas SbF6 and AsF6

2. A method for preparing a solid salt having the formula H3O2 X wherein X is selected from the steps of

A. dissolving a Lewis acid selected from the group consisting of AsFs and SbFs in anhydrous HF to form a solution:

B. adding H₂O₂ in an amount equimolar to that of said Lewis acid to the solution to form a reaction mixture: and

C. allowing the mixture to react to form a solid salt. A method for preparing a salt containing H₃O₂ * cations and Sb₂F₁₁ anions, said method comprising the steps of:

A. dissolving SbF₅ in anhydrous HF to form a solution:

B. adding H₂O₂ to said solution to form a reaction mixture, said H2O2 being added in an amount calculated to provide an excess of ShF5 in said reaction mixture; and

C. allowing the mixture to react.

APPENDIX Z

United States Patent [19] [11] 4,374,112 Christe et al. [45] Feb. 15, 1983

[54]	STABLE N	TF4+ SALT OF HIGH FLUORINE
[75]	leventors:	Karl O. Christe, Calabasas; William W. Wilson, Canoga Park, both of Calif.
(73)	Assignee:	The United States of America as represented by the Secretary of the Army, Washington, D.C.
[21]	Appl No.	219,056
[22]	Filed.	Dec. 22, 1980
		C01B 21/00; C01G 45/00 423/351; 423/472; I49/119
[58]	Field of Sea	irch 423/351, 472
[56]		References Cited
	U.S. 1	PATENT DOCUMENTS
	4,101,965 1/	978 Christe et al. 423/276 978 Christe et al. 423/351 979 Christe et al. 423/351
	4 17: KM 10/1	579 Character of al

OTHER PUBLICATIONS

Cotton, Ed. Progress in Inorganic Chemistry, vol. II, Interscience N.Y. (1960), pp. 209-214.

Hoppe et al., "Manganese Tetrafluoride", Chemical Abstracts, vol. 58 (1962), No. 220b.

Jenkins et al., "Resppraisal of Thermochemical Radii for Complex Ions", Journal of Chemical Education, vol. 56, No. 9, Sep. (1979), pp. 576, 577.

Karl O. Christe, Inorg. Chem., 16, 2238-2241 (1977).

Privacy Examiner—Brian E. Hears Attorney, Agent or Firm—Nathan Edelberg; Robert P. Gibnon, Jack W. Voight

[57] ABSTRACT

An improved NF₄+ composition for solid propellant NF₃-F₂ gas generators and high detonation pressure explosives is described which combines high oxidizer content with good thermal stability. The novel composition has the formula (NF₄)₂MnF₆, and a process for its production is disclosed.

1 Claim, No Drawings

STABLE NEAS SALT OF HIGH FLUORINE CONTENT

DEDICATORY CLAUSE

The invention described herein was made in the course of or under a contract or subcontract thereunder with the Government, therefore, the invention described herein may be manufactured, used, or licensed by or for the Government for governmental purposes without the payment to us of any royalues thereou.

BACKGROUND OF THE INVENTION

I Field of the Invention

This invention relates to a composition of matter and a method of producing the same and is particularly directed to improved solid propellant NF_3 - F_2 gas generators and high detenation pressure explosives.

2. Description of Prior Art

NF4* salts are the key ingredients for solid propellant NF3—F; gas generators, as shown by D. Pilipovich in U.S. Pat. No. 3,963,542. These propellants consist of a highly over-oxidized grain using NF4* salts as the oxidizer Burning these propellants with a small anyomit of fuel, such as aluminum, powder, generates sufficient beat to thermally dissociate the bulk of the oxidizer. This is shown in NF4BF4 in the following equation.

As can be seen from the equation the gaseous combustion products contain the volatile Lewis and BF). This disadvantage of a volatile Lewis and by-product a shared by many of the previously known NF4" compoattions. These volatile Lewis ands possess a relatively. 35 high-molecular weight and a low γ value ($\gamma = C_{ps}/C_{w}$). relative to the preferred diluent helium and frequently act as a deactivator for the chemical HF-DF laser. Consequently, these volatile Lewis and must be removed from the generated gas prior to its use in an efficient 40 chemical laser Based on the state of the art, this is achieved by adding a clinker forming agent, such as KF, to the solid propellant formulation. The function of this additive server to convert the volstile Lewis acid, such as BF3, to a non-volatile salt as shown by the following equation

RF+ BF -KBF

In addition, several NF₄+ compositions are known 50 which are based on self-clinkering NF₄+ salts, as shown by K.O. Christe et al. m. U.S. Pat. No. 4,172,884. The theoretical fluorine yields achievable with the presently known NF₄+ salts are summarized in Table I.

TABLE I

RANK	SYSTEM	THEORETICAL F
ī	(NFADNIFA	64.6
2	(NF4hSnF4	46.0
3	(NF ₄);TiF ₄ 24KF	. 39 .5
4	NF4BF412KF	34.6
5	(NF ₄) ₂ GeF ₄ 24KF	37.6
6	NF45aFs	3 13
7	NEAPE, LIKE	31.2
	NF4CeF512KF	25.0
9	NE ALFA IZKE	27.3
10	NF & SOF & 1.2 L.F	24.0

TABLE Inontinued

		n the form of Nhy and F2) o Sots before Burning
	SYSTEM	THEORETICAL F
11	NF ₄ BJF ₄ 12 kF	19.7

As can be seen from Table 1, the self-clinkering 10 (NF₄)₂NiF₄ salt gives by far the highest fluorine yield. Unfortunately, the thermal stability of (NF₄)₂NiF₄ (Sec. K. O. Christe, Inorg. Chem 16, 2234, 1977) is insufficient to pass the requirements of long term stability tests.

Another potential application for energetic NF4*
15 salts is their use in high detonation pressure explosives as disclosed in a recently issued patent titled. "High Desonation Pressure Explosives", (for additional information see U.S. Pai. No 4,207,124 dated June 10, 1980, by Karl O. Christe, one of the co-inventors of the insertion).

Again, the most energetic NF4* salt, i.e. (NF4); NiF4, has the major drawback of insufficient thermal stability to meet long term storability requirements.

The above discussion demonstrates that the prior art provided either a high performing NF₄+ salt of insufficient thermal stability or low performing NF₄+ salts of sufficient thermal stability. However, an NF₄+ salt combining both high energy and good thermal stability has previously been unknown.

Accordingly, it is an object of the present invention to provide a high performing NF4* salt of a thermal stability sufficient to meet long term stability requirements.

Another object of the present invention is to provide a process for the production of such a high performing stable NF4* salt.

These and other objects and features of the present invention will be apparent from the examples set forth hereinbelow. It is understood, however, that these examples are merely illustrative of the invention and should not be considered as briting the invention in any

BRIEF SUMMARY OF THE INVENTION

The above described problem of obtaining an NF₄+ salt which combines both high energy and good thermal stability is overcome by the present invention. We have found that the new composition (NF₄)₂MnF₆ not taily has a high theoretical fluorine content of 59.9 weight percent, but also possesses the thermal stability required for long term storability. This salt is prepared by the metathetical reaction of Ca₂MnF₆ with NF₄SbF₆ in anhydrous HF as a solvent.

DETAILED DESCRIPTION OF THE INVENTION

Preparation and Purification

In the N₂ atmosphere of a dry box a mixture of NF₄SbF₆ (37.29 mmol) and Ca₂MnF₆ (18.53 mmol) was placed into the bottom a prepassivated Teflon FEP double U-tube metathesis apparatus. Dry HF (20 ml liquid) was added at -78° C. on the vacuum line, and the mixture was warmed to 25° C. for 30 min with 65 stirring The mixture was cooled to -78° C. and presaure filtered at this temperature. The HF solvent was pumped off at 30° C. for 12 bours. The white filter-cake (14 g, weight clod for 37.1 mmol of CaSbF₆=13.7 g)

was shown by Raman spectroscopy to consist mainly of CaSbF₆. The yellow filtrate residue (6.1 g, weight cled for 18.5 mmol of (NF₄)₂MnF₆=6.46 g) was shown by elemental analysis to have the following composition (weight %). (NF₄)₂MnF₆, 91.27; NF₄SbF₆ 4.27; CaSbF₆ 4.46 For the elemental analysis, a sample of (NF₄)₂MnF₆ was hydrolyzed in M₂O₁ and NF₃ and O₂ evolution was measured by PVT and gas chromatography, and Ca, Sb, and Mn in the hydrolysate were determined by atomic absorption spectroscopy. Anal. Calcd for (NF₄)₂MnF₆ 91.27, NF₄SbF₆ 4.27, CaSbF₆ 4.46; NF₃, 38.07, Mn, 14.37, Sb, 3.07, Ca, 1.61. Found NF₃, 37.8, Mn, 14.5, Sb, 3.10, Ca, 1.62. Purification of the sample is accomplished by using well established recrystallization techniques.

Solubility and Reactivity Properties

The (NF₄)₂MnF₄ salt is a yellow, 'crystallinic solid which is highly soluble in anhydrous HF. At 24' C., in 20 solubility exceeds 1.30 g per g HF. It is stable at room temperature and, in the absence of fuels, it is not shock sensitive. With water a violent reaction occurs. By analogy with the other known NF₄+ salts, the hydrolysis was found to result in quantitative NF₃ evolution and therefore, is a useful analytical method. The hydrolysis also produced oxygen in a NF₃·O₂ mole ratio of 8.5 in excellent agreement with the following equation

Stability and Thermal Decomposition Rate

At 65' C., (NF4);MnF4 appears to be stable, but at 35 about 100' it starts to slowly decompose. Its decomposition rate in a supplier reactor was monitored by total pressure measurements over the temperature range 100° to 130' C. Except for a slightly faster rate during the firs: 20 minutes, the decomposition pressures increased approximately linearly with time at 100° C. At 130° C. the rates slightly accelerated with increasing time, however, this rate increase was quite small. At 100° C. 0.17% of the sample decomposed in 17 hours, whereas, 4 at 130° C. 0 66% of the sample decomposed in the same time. The gaseous decomposition products consisted of NF and Film a mol mano of about 1 to 1.2. For identification of the solid residue is sample of (NF4)2MnF4 was completely decemposed in a dynamic vacuum at 240° 5 C. Based on its weight, X-ray powder diffraction pattern and mauve color, this residue was identified as MnF₃ Consequently, (NF₄)₂MnF₄ decomposes accord-

2(NF4)2MnFa-4NF3+5F3+2MnF3

A comparison with the decomposition data previously published for (NF₄)₂NiF₆ shows that the thermal stability of (NF₄)₂MnF₆ is significantly higher than that of (NF₄)₂NiF₆ which in 6 hours at 100° C. exhibited 9% decomposition.

Crystaliographic Data

The X-ray powder diffration pattern of (NF4)2MnF6 is listed in Table 2. It was indexed for a tetragonal unit

cell with a=6.90 Å, c=9.23 Å, Z=2, apace group 14/m, and a calculated density of 2.64 g cm^{-3} .

Ionic Nature By NMR Spectrum

The ionic nature of (NF₄)₂MnF₄ in HF solution was established by its ¹⁷F NMR spectrum which was recorded over the temperature range ± 20° to -75° C. It showed at all temperatures a broad resonance at \$\phi -218\$ (downfield from external CFCl₃), characteristic of NF₄+. The lack of observable NF spin-spin coupling, generally seen for tetrahedral NF₄+ is attributed to the influence of the paramagnetic MnF₄²- anion which can provide rapid relaxation.

TABLE 2

d abod	<u> </u>	d elect	d obsd	<u>ha</u> k	e cia
5.45	**	\$5)	1.875	-	1,874
3 43		145			
1.35		1.13	1714	•	1.713
2.93		2.93	1.736	~	1.725
2.81		2.81	1.677	-	1.476
2 44		2 64	L&47	-	1.607
2.307	-	2.301	1.427	-	1.427
2183	•	(2112	1.545	•	1.585
		2179			
2.045	-	2.084	1.534	-	1234
E 975	~	1.973	1.446	-	1.467

MCs E. reduces and M Stre

The some nature of (NF₄)₂MnF₆ in the solid state was estimated by its vibrational spectra which exhibit the brinds characteristic for NF₆* and MnF₆?. The observed vibrational frequencies and their assignments are automatized in Table 3.

TABLE 3

		BRATIC	NAL SPECTRA OF SOL	ID (NF45 in F4		
	Obed free	. cm .	Америтин (рожи доогр)			
	Dt.	Rames	NEAT (TA)	MaFs (Os)		
40	2310		201(A + E + F2)			
	2000w		v₁ + vy(F₂)			
	[739vw		#) + w(A) + E + F2)			
	1446-		♥1 + **(F ₂)			
	1221mm		2ma(A1 + E + F2)			
			_	$v_1 + v_2(F_{1n})$		
45	1160vs		♥) (F ₂)			
	1110ab			$v_2 + v_3(F_{1n} + F_{2n})$		
	10s1vm		$\forall 2 + m_0(F_1 + F_2)$			
	915vm			$v_1 + v_2(F_{1n})$		
	24000	R55mg	₩1(A1)			
	TitOub					
30	735ab			$\mathbf{v}_2 + \mathbf{v}_2(\mathbf{F}_{1n} + \mathbf{F}_{2n})$		
	620%		■ (F ₂)	♥7(F a)		
		593 a	-	$v_1(A_{1a})$		
	500vm	500m		₹ (E ₂)		
	450vw	450w	₩2(E)	•		
	33 8 a			wa(Fiz)		
55		304s		ν ₃ (F _{2g})		

Obviously, numerous variations and modifications may be made without departing from the present invention. Accordingly, it should be clearly understood that the forms of the present invention Jescribed above are illustrative only and are not intended to limit the scope of the present invention.

We claim:

 The salt having the formula: (NF4)2MnF6, and 65 characterized by having good thermal stability in storage.

APPENDIX AA

DISTRIBUTION LIST

	No. Copies		No. Copies
Assistant Secretary of the Navy (R, E, and S) Attn: Dr. R. E. Reichenbach Room 5E7B7	1	AFATL Eglin AFB, FL 32542 Attn: Dr. Dtto K. Heiney	1
Pentagon Washington, DC 2035D		AFRPL Code PACC Edwards AFB, CA 93523	1
Office of Naval Research Code 473	10	Attn: Mr. W. C. Andrepont	
Arlington, VA 22217 Attn: Dr. R. Miller		AFRPL Code CA Edwards AFB, CA 93523	1
Office of Naval Research Code 200B	1	Attn: Dr. R. R. Weiss	
Arlington, VA 22217 Attn: Dr. J. Enig		Code AFRPL MKPA Edwards AFB, CA 93523 Attn: Mr. R. Geisler	1
Dffice of Naval Research Code 26D Arlington, VA 22217 Attn: Mr. D. Siegel	1	Code AFRPL MKPA Edwards AFB, CA 93523 Attn: Dr. F. Roberto	1
Dffice of Naval Research Western Dffice 103D East Green Street Pasadena, CA 91106 Attn: Dr. T. Hall	1	AFSC Andrews AFB, Code DLFP Washington, DC 2D334 Attn: Mr. Richard Smith	1
Dffice of Naval Research Eastern Central Regional Dffice 495 Summer Street Boston, Ma D2210 Attn: Dr. L. Peebles	2	Air Force Dffice of Scientific Research Directorate of Chemical & Atmospheric Sciences Bolling Air Force Base Washington, DC 20332	1
Dr. A. Wood Office of Naval Research San Francisco Area Dffice One Hallidie Plaza Suite 601 San Francisco, CA 941D2 Attn: Dr. P. A. Miller	1	Air Force Office of Scientific Research Directorate of Aero- space Sciences Bolling Air Force Base Washington, DC 2D332 Attn: Dr. L. H. Caveny	1
Defense Technical Information Center DTIC-DDA-2 Cameron Station Alexandria, VA 22314	on 12	Anal-Syn Lab Inc. P.D. Box 547 Paoli, PA 193Dl Attn: Dr. V. J. Keenan	1

<u>No</u>	. Copies	<u>No</u>	. Copies
Army Ballistic Research Labs Code DRDAR-BLP Aberdeen Proving Ground, MD 21DD5 Attn: Mr. L. A. Watermeier	1	Hercules Inc. Eglin AFATL/DLDL Eglin AFB, F1 32542 Attn: Dr. Ronald L. Simmons	1
Army Ballistic Research Labs ARRADCOM Code DRDAR-BLP Aberdeen Proving Ground, MD 21005	1	Hercules Inc. Magna Bacchus Works P.O. Box 9B Magna, UT B4D44 Attn: Mr. E. H. DeButts	1
Attn: Dr. Ingo W. May Army Ballistic Research Labs ARRADCDM Code DRDAR-BLT	1	Hercules Inc. Magna Bacchus Works P.O. Box 9B Magna, UT B4044 Attn: Dr. James H. Thatcher	1
Aberdeen Proving Ground, MD 21DD5 Attn: Dr. Philip Howe		HQ US Army Material Development Readiness Command Code DRCDE-DW	1
Army Missile Command Code DRSME-RK Redstone Arsenal, AL 35BD9 Attn: Dr. R. G. Rhoades Dr. W. W. Wharton	2	5D11 Eisenhower Avenue Room BN42 Alexandria, Va 22333 Attn: Mr. S. R. Matos	
Atlantic Research Corp. 539D Cherokee Avenue Alexandria, Va 22314 Attn: Dr. C. B. Henderson	1	Johns Hopkins University APL Chemical Propulsion Information Agency Johns Hopkins Road Laurel, MD 2D810	1
Ballistic Missile Defense Advanced Technology Center P.D. Box 150D Huntsville, AL 35BD7	1	Attn: Mr. Theodore M. Gilliland Lawrence Livermore Laboratory University of California Livermore, CA 94550 Attn: Dr. M. Finger	1
Attn: Dr. David C. Sayles Ballistic Research Laboratory USA ARRADCDM DRDAR-BLP	1	Lawrence Livermore Laboratory University of California Livermore, CA 94550	1
Aberdeen Proving Ground, MD 21DD5 Attn: Dr. A. W. Barrows		Attn: Dr. R. McGuire Lockheed Missiles and Space Co. P.O. Box 504 Sunnyvale, CA 94088	1
Hercules Inc. Cumberland Aerospace Division Allegany Ballistics Lab P.O. Box 21D Cumberland, MD 21502 Attn: Dr. Rocco Musso	2	Attn: Dr. Jack Linsk Drg. 83-1D Bldg. 154	

<u>No</u>	. Copies	N <u>o</u> .	Copies
Lockheed Missile & Space Co. 3251 Hanover Street Palo Alto. CA 94304 Attn: Dr. 1. P. Marshall	1	Naval Research Lab Code 6100 Washington, DC 20375	1
Dept. 52-35		Naval Sea Systems Command Washington, DC 20362	1
Los Alamos Scientific Lab P.O. Box 1663 Los Alamos, NC 87545 Attn: Dr. R. Rogers, WX-2	1	Attn: Mr. G. Edwards, Code 62R3 Mr. J. Murrin, Code 62R2 Mr. W. Blaine, Code 62R	
Los Alamos Scientific Lab P.O. Box 1663 Los Alamos, NC 87545 Attn: Dr. B. Craig, M Divisio] on	Naval Sea Systems Command Washington, DC 20362 Attn: Mr. R. Beauregard SEA 64E	1
Naval Air Systems Command	1	Naval Surface Weapons Center Code R11	1
Code 330 washington, DC 20360 Attn: Mr. R. Heitkotter		White Oak, Silver Spring, MD 20910 Attn: Dr. H. G. Adolph	
Mr. R. Brown		Naval Surface Weapons Center	1
Naval Air Systems Command Code 310 Washington, DC 20360	ì	Code R13 White Oak, Silver Spring, MD 20910	
Attn: Dr. H. Mueller Or. H. Rosenwasser		Attn: Dr. R. Bernecker	,
Naval Explosive Ordnance Disposal Facility Indian Head, MD 20640 Attn: Lionel Dickinson Code D	1	Naval Surface Weapons Center Code R10 White Oak, Silver Spring, MD 20910 Attn: Dr. S. J. Jacobs	1
Naval Ordnance Station	1	Naval Surface Weaspons Center Code R11	1
Code 5034 Indian Head, MD 20640 Attn: Mr. S. Mitchell		White Oak, Silver Spring, MD 20910 Attn: Dr. M. J. Kamlet	
Naval Ordnance Station Code PM4 Indian Head, MD 20640	1	Naval Surface Weapons Center Code RO4	1
Attn: Mr. C. L. Adams		White Oak, Silver Spring, MD 20910 Attn: Dr. D. J. Pastine	
Dean of Research Naval Postgraduate School Monterey, Ca 93940 Attn: Or. William Tolles	1	Naval Surface Weapons Center Code R13 White Oak, Silver Spring, MD	1
Naval Research Lab Code 6510 Washington, DC 20375 Attn: Dr. J. Schnur		20910 Attn: Or. E. Zimet	

<u>No</u>	. Copies	<u> </u>	lo. Copies
Naval Surface Weapons Center Code R101 Indian Head, MD 20640 Attn: Mr. G. L. MacKenzie	1	Naval Weapons Center Code 388 China Lake, Ca 93555 Attn: D. R. Derr	1
Naval Surface Weapons Center Code R17 Indian Head, MD 2064D Attn: Dr. H. Haiss	1	Naval Weapons Center Code 388 China Lake, Ca 93555 Attn: Dr. R. Reed, Jr.	1
Naval Surface Weaspons Center Code Rll White Oak, Silver Spring, MD 2091D Attn: Dr. K. F. Mueller	1	Naval Weapons Center Code 385 China Lake, Ca 9355 Attn: Dr. A. Nielsen	1
	1	Naval Weapons Center Code 3858 China Lake, Ca 93555 Attn: Mr. E. Martin	1
Naval Surface Weapons Center Code R122 White Oak, Silver Spring, MD	1	Naval Weapons Center China Lake, CA 93555 Attn: Mr. R. McCarten	1
2091D Attn: M:r. L. Roslund Naval Surface Weapons Center	1	Navai Weapons Support Center Code 5D42 Crane, Indiana 47522 Attn: Dr. 8. Douda	1
Code R121 White Oak, Silver Spring, MD 2D91D Attn: M:r. M. Stosz		Rohm and Haas Company 723-A Arcadia Circle Huntsville, Alabama 35801 Attn: Dr. H. Shuey	1
Naval Weapons Center Code 3853 China Lake, Ca 93555 Attn: Dr. R. Atkins	1	Strategic Systems Project Dffic Dept. of the Navy Room 9D1 Washington, DC 203/6	ce 1
Naval Weapons Center Code 3205 China Lake, Ca 93555 Attn: Dr. L. Smith	1	Attn: Dr. J. F. Kincaid Strategic Systems Project Dffic Dept. of the Navy Room 1D48	ce 2
Naval Weapons Center Code 3205 China Lake, CA 93555 Attn: Dr. C. Thelen	1	Washington, DC 20376 Attn: Mr. E. L. Throckmorton Mr. R. Kinert	
Naval Weapons Center Code 385 China Lake, CA 93555 Attn: Dr. A. Amster	1	Thiokol Chemical Corp. 8righam City Wasatch Division 8righam City, UT 843D2 Attn: Dr. G. Thompson	1

<u>.</u>	lo. Copies		No. Copies
USA ARRAOCOM OROAR-LCE Oover, NJ 07801 Attn: Dr. R. F. Walker	1	Univ. of Massachusetts Department of Chemistry Amherst, MA 03003 Attn: Professor P. Lillya	1
USA ARRAOCOM DRDAR-LCE Dover, NJ 07801 Attn: Or. N. Slagg	1	Office of Naval Research 800 N. Quincy Street Arlington, Va 22217 Attn: Dr. G. Neece Code 472	1
U.S. Army Research Office Chemistry Division P.O. Box 12211 Research Triangle Park, NC 27709 Attn: Dr. B. Spielvogel	50	SRI International 333 Ravenswood Ave. Menlo Park, CA 94025 Attn: Or. D. L. Ross	1
Fluorochem. Inc. 6BO South Ayon Ave. Azusa, CA 91702 Attn: Dr. Kurt Baum	1		
Univ. of Illinois at Chicago Circle Dept. of Chemistry P.O. Box 4348 Chicago, ILL 60680 Attn: Professor J. H. Boyer	1		
University of Massachusetts Department of Chemistry Amherst, MA 03003 Attn: Professor J:. C. Chien	1		
Rockwell International Rocketdyne Division 6633 Canoga Avenue Canoga Park, CA 91304 Attn: Dr. M. B. Frankel	1		
Polysciences, Inc. Paul Valley Industrial Park Harrington, PA 18976 Attn: Dr. B. David Halpern	1		
The Johns Hopkins University Department of Chemistry Baltimore, MO 21218 Attn: Dr. Joyce J. Kaufman	1		