CHAPITRE 3 - GL

LANGAGE UML

Présenté par : Dr. Lamia BERKANI

Section:L3 ACAD « B »

Année: 2024-2025

Pourquoi et comment modéliser?

- Modèle : représentation abstraite et simplifiée d'une entité du monde réel en vue de le décrire, de l'expliquer
- Cette représentation peut être sous forme physique, graphique, mathématique ou verbale.

INTÉRÊT "INFORMATIQUE" DE LA MODÉLISATION

- Les modèles aident à visualiser un système existant ou futur (tel que l'on souhaite qu'il devienne)
- Les modèles permettent de spécifier la structure et le comportement d'un système
- o Les modèles documentent les choix effectués

LANGAGES DE MODÉLISATION

Un langage de modélisation doit définir :

- La sémantique des concepts (sens);
- Une notation pour la représentation de concepts;
- Des règles de construction et d'utilisation des concepts.

LANGAGES DE MODÉLISATION

Des langages à différents niveaux de formalisation (modélisation):

- Langages formels (Z,B,VDM): le plus souvent mathématiques, au grand pouvoir d'expression et permettant des preuves formelles sur les spécifications;
- Langages semi-formels (MERISE, UML...): le plus souvent graphiques, au pouvoir d'expression moindre mais plus faciles d'emploi.

LANGAGES DE MODÉLISATION

Le développement du logiciel dispose de nombreux langages de modélisation :

- o Adaptés aux systèmes procéduraux (MERISE...);
- o Adaptés aux systèmes temps réel (ROOM, SADT...);
- o Adaptés aux systèmes à objets (OMT, Booch, UML, ...).

HISTORIQUE DES MODÉLISATIONS PAR OBJETS

- Années 80: méthodes fondées sur la modélisation séparée des données et des traitements;
- 1990-1995 : plus de 50 méthodes apparaissent (Booch, Classe-Relation, Fusion, HOOD, OMT, OOA, OOD, OOM, OOSE, etc.) mais aucune ne parvient à s'imposer
- En 1994, un **consensus** se fait autour de trois méthodes dont la fusion a donné naissance au langage **UML** (**Unified Modelling Language**):
 - OMT (Object Modeling Technique Technique de Modélisation Objet);
 - Booch (par Grady Booch) qui introduit le concept de package (élément d'organisation des modèles);
 - OOSE (Object Oriented Software Engineering) inventée par Ivar Jacobson fonde l'analyse sur la description des besoins des utilisateurs

HISTORIQUE DES MODÉLISATIONS PAR OBJETS

- 1997 : l'OMG (Object Management Group) accepte UML, proposé par Rational, comme standard de modélisation objet.
- o 2001 : révision par l'OMG d'UML 1.
- 2004 : adoption d'UML 2.0
- Dernière version validée par OMG est celle de 2017
 https://www.omg.org/spec/UML/

Dernière version UML 2.5.1

MODÉLISATION UML

Fonctionnel

Diagramme de Cas d'utilisation (Diagramme de Séquence) (Diagramme d'Activité)

3 Axes de modélisation

Statique

Diagramme de Classes Diagramme de Packages (Diagramme d'Objets) Diagramme de Structure Composite (Diagramme de Déploiement)

Dynamique

Diagramme d'États Diagramme d'Activité Diagramme de Séquence (Diagramme de Communication)

DIAGRAMMES UML

DIAGRAMMES COMPORTEMENTAUX

Diagramme de cas d'utilisation: (Use case diagram)

- o utilisé dans l'activité de spécification des besoins.
- o présente les interactions fonctionnelles entre les acteurs et le système
 - présente les fonctions du système du point de vue des utilisateurs).

Diagramme d'états (state machine diagram):

- o représente le cycle de vie commun aux objets d'une même classe;
- o montre les différents états et transitions possibles des objets d'une classe à l'exécution.

DIAGRAMMES COMPORTEMENTAUX

Diagramme d'activité:

- o adapté à la modélisation du cheminement de flots de contrôle et de flots de données.
- o utilisé pour afficher la séquence des activités, en présentant les règles d'enchaînement des actions et décisions au sein d'une activité ou le comportement d'un cas d'utilisation.

DIAGRAMMES COMPORTEMENTAUX

Diagrammes d'interactions - Diagrammes de séquence: modélisation des scénarios

- o représente la succession chronologique des opérations réalisées par un acteur,
- o indique les objets qu'il va manipuler et les opérations qui sont passées d'un objet à l'autre.

DIAGRAMMES STRUCTURELS

Diagramme de classes:

- o permet en analyse de décrire la structure statique des entités manipulées par les utilisateurs (classes, associations, attributs, opérations, interfaces, etc.); et
- o en conception, permet de représenter la structure d'un code orienté objet.

DIAGRAMMES STRUCTURELS

Diagramme d'objets:

- o permet de représenter les instances des classes, i.e. des objets.
- o exprime les relations qui existent entre les objets, mais aussi l'état des objets, ce qui permet d'exprimer des contextes d'exécution.
 - i.e. représente une photographie à un instant précis des attributs et objet existants.

DIAGRAMMES STRUCTURELS

Diagramme de packages:

o montre l'organisation logique du modèle et les relations entre packages;

o permet de structurer les classes d'analyse et de conception, ainsi que les cas d'utilisation.

VUES D'UML

