Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

16 de maio de 2016

Plano de Aula

- Pensamento
- 2 Revisão
 - MT Multifita
- Máquina de Turing Multifita
- Definição de algoritmo
- 5 Terminologia para descrever MTs

Sumário

- Pensamento
- RevisãoMT Multifita
- Máquina de Turing Multifita
- Definição de algoritmo
- 5 Terminologia para descrever MTs

Definição de algoritmo Terminologia para descrever MTs

Pensamento

Terminologia para descrever MTs

Pensamento

Frase

Machines take me by surprise with great frequency.

Quem?

Alan Turing (1912-54) Matemático, lógico, cientista da computação.

Sumário

- Pensamento
- 2 Revisão
 - MT Multifita
- Máquina de Turing Multifita
- Definição de algoritmo
- 5 Terminologia para descrever MTs

$L(M_3)$

Uma máquina de Turing M_3 que decide $C = \{a^i b^j c^k \mid i \times j = k \text{ e } i, j, k \ge 1\}$

 M_3 = "Sobre a cadeia de entrada w:

- Faça uma varredura na entrada da esquerda para a direita para determinar se ela é um membro de a*b*c* e rejeite se ela não o é.
- 2. Retorne a cabeça para a extremidade esquerda da fita.
- 3. Marque um a e faça uma varredura para a direita até que um b ocorra. Vá e volte entre os b's e os c's, marcando um de cada até que todos os b's tenham terminado. Se todos os c's tiverem sido marcados e alguns b's permanecem, rejeite.
- 4. Restaure os b's marcados e repita o estágio 3 se existe um outro a para marcar. Se todos os a's tiverem sido marcados, determine se todos os c's também foram marcados. Se sim, aceite; caso contrário, rejeite."

$L(M_4)$

Uma máquina de Turing M_3 que reconhece $E=\{\#x_1\#x_2\#\ldots\#x_l\mid \mathsf{cada}\ x_i\in\{0,1\}^*\ \mathsf{e}\ x_i\neq x_j\ \mathsf{para}\ \mathsf{cada}\ i\neq j\}$

M_4 = "Sobre a entrada w:

- Coloque uma marca em cima do símbolo de fita mais à esquerda. Se esse símbolo era um branco, aceite. Se esse símbolo era um #, continue com o próximo estágio. Caso contrário, rejeite.
- Faça uma varredura procurando o próximo # e coloque uma segunda marca em cima dele. Se nenhum # for encontrado antes de um símbolo em branco, somente x1 estava presente, portanto aceite.

- Fazendo um zigue-zague, compare as duas cadeias à direita dos #s marcados. Se elas forem iguais, rejeite.
- 4. Mova a marca mais à direita das duas para o próximo símbolo # à direita. Se nenhum símbolo # for encontrado antes de um símbolo em branco, mova a marca mais à esquerda para o próximo # à sua direita e a marca mais à direita para o # depois desse. Dessa vez, se nenum # estiver disponível para a marca mais à direita, todas as cadeias foram comparadas, portanto aceite.
- 5. Vá para o estágio 3."

Definição

Uma máquina de Turing multifita é como uma máquina de Turing comum com várias fitas:

- cada fita tem sua própria cabeça de leitura e escrita;
- a configuração inicial consiste da cadeia de entrada aparecer sobre a fita 1, e as outras iniciar em branco;
- a função de transição permite ler, escrever e mover as cabeças em algumas ou em todas as fitas simultaneamente

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D, P\}^k$$

em que k é o número de fitas.

Exemplo

$$\delta(q_i,a_1,\ldots,a_k)=(q_j,b_1,\ldots,b_k,P,D,\ldots,E)$$

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

FIGURA **3.14**Representando três fitas com apenas uma

S = "Sobre a entrada $w = w_1 \cdot \cdot \cdot \cdot w_n$:

 Primeiro S ponha sua fita no formato que representa todas as k fitas de M. A fita formatada contém

$$\#w_1 w_2 \cdots w_n \# \sqcup \# \sqcup \# \cdots \#$$

2. Para simular um único movimento, S faz uma varredura na sua fita desde o primeiro #, que marca a extremidade esquerda, até o (k+1)-ésimo #, que marca a extremidade direita, de modo a determinar os símbolos sob as cabeças virtuais. Então S faz uma segunda passagem para atualizar as fitas conforme a maneira pela qual a função de transição de M estabelece.

3. Se em algum ponto S move uma das cabeças virtuais sobre um #, essa ação significa que M moveu a cabeça correspondente para a parte previamente não-lida em branco daquela fita. Portanto, S escreve um símbolo em branco nessa célula da fita e desloca o conteúdo da fita, a partir dessa célula até o # mais à direita, uma posição para a direita. Então ela continua a simulação tal qual anteriormente."

Sumário

- Pensamento
- RevisãoMT Multifita
- Máquina de Turing Multifita
- 4 Definição de algoritmo
- 5 Terminologia para descrever MTs

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing multifita a reconhece.

PROVA Uma linguagem Turing-reconhecível é reconhecida por uma máquina de Turing comum (com uma única fita), o que é um caso especial de uma máquina de Turing multifita. Isso prova uma direção desse corolário. A outra direção segue do Teorema 3.13.

Sumário

- Pensamento
- 2 Revisão
 - MT Multifita
- Máquina de Turing Multifita
- Definição de algoritmo
- 5 Terminologia para descrever MTs

Contribuição

Apresentou uma noção do que seria um algoritmo no Congresso Internacional de Matemáticos em Paris, no ano de 1900.

Quem?

David Hilbert (1862-1943)
Matemático alemão.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Definições

Um **polinômio** é uma soma de termos. Um **termo** é um produto de variáveis e uma constante chamada de **coeficiente**.

Exemplo: Termo

$$6 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z = 6x^2yz^3$$

Exemplo: Polinômio

$$6x^2yz^3 + 3xy^2 - 10$$

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Definições

Uma raiz de um polinômio é uma atribuição de valores às suas variáveis de modo que o valor do mesmo seja 0. Chamamos de raiz inteira aquela em todos os valores atribuídos são valores inteiros.

Exemplo: Raiz

O polinômio $6x^3yz^2 + 3xy^2 - x^3 - 10$ tem uma raiz em x = 5, y = 3 e z = 0.

Exemplo: Raiz Inteira

A raiz do exemplo acima é uma raiz inteira.

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Problema apresentado por Hilbert

É possível conceber um algoritmo que teste se um polinômio tem uma raiz inteira ou não?

Expressão utilizada por Hilbert

"Um processo com o qual ela possa ser determinada por um número finito de operações".

Curioso

Não existe algoritmo que execute esta tarefa.

Contribuição

Mostrou, em 1970, que não existe algoritmo para se testar se um polinômio tem raízes inteiras.

Quem?

Yuri Matijasevich (1947-) Cientista da computação e matemático russo.

Noção intuitiva de algoritmos	é igual a	algoritmos de máquina de Turing
----------------------------------	-----------	------------------------------------

FIGURA **3.22** A Tese de Church–Turing

Noção intuitiva é igual a algoritmos de de algoritmos máquina de Turing

FIGURA 3.22

A Tese de Church-Turing

Conclusão

Existem problemas que são algoritmicamente insolúveis.

Contexto

 $D = \{p \mid p \text{ \'e um polin\^omio com uma raiz inteira}\}$

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Contexto

 $D = \{p \mid p \text{ \'e um polinômio com uma raiz inteira}\}$

Problema

O conjunto D é decidível?

Resposta

Não é decidível. Mas é Turing-reconhecível.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

MT M_1 que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Problema análogo

 $D_1 = \{p \mid p \text{ \'e um polinômio sobre } x \text{ com uma raiz inteira}\}$

MT M_1 que reconhece D_1

 M_1 = "A entrada é um polinômio p sobre a variável x.

• Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \dots$

Se em algum ponto o valor do polinômio resulta em 0, aceite.

Considerações

 M_1 reconhece D_1 , mas não a decide.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

Justificativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Resultado obtido por Matijasevich

É possível construir um decisor para D_1 . Mas não para D.

<u>Justifi</u>cativa

É possível obter um limitante para polinômios de uma única variável. Porém, Matijasevich provou ser impossível calcular tais limitantes para polinômios multivariáveis.

Limitante para polinômios de uma única variável

$$\pm k \frac{c_{max}}{c_1}$$

em que

- k é o número de termos do polinômio,
- c_{max} é o coeficiente com maior valor absoluto, e
- c₁ é o coeficiente do termo de mais alta ordem.

Sumário

- Pensamento
- RevisãoMT Multifita
- Máquina de Turing Multifita
- 4 Definição de algoritmo
- 5 Terminologia para descrever MTs

Níveis de descrição

 Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;

Níveis de descrição

 Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;

Níveis de descrição

 Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Níveis de descrição

- Descrição formal: esmiúça todos os elementos da 7-upla, conforme definição;
- Descrição de implementação: descreve a forma pela qual a MT move a sua cabeça e a forma como ela armazena os dados na fita;
- Descrição de alto nível: neste nível não precisamos mencionar como a máquina administra a sua fita ou sua cabeça de leitura-escrita.

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$$

Exemplo

Seja A a linguagem consistindo em todas as cadeias representando grafos não-direcionados que são conexos. Logo:

$$A = \{\langle G \rangle | G \text{ \'e um grafo n\~ao-direcionado conexo}\}$$

Descrição de alto nível

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
 - Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados. Se eles estão, aceite; caso contrário, rejeite".

Exemplo

Pergunta

Como seria a descrição de M no nível de implementação?

Bônus (0,5 pt)

Desafio

- Problema 3.16 (a):
 - Mostre que a coleção de linguagens Turing-reconhecíveis é fechada sob a operação de concatenação.
- Candidaturas até amanhã (17 de maio, 09h30);
- Apresentação e resposta por escrito → Segunda (23 de maio, 11h30);
- 20 minutos de apresentação.

Candidato

???

Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

16 de maio de 2016

