Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil.

Version: April 24, 2023

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	$\operatorname{Scalars}$
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A},\mathcal{B},\mathcal{C},\ldots$	Tensors
$A, B, C, \ldots, \mathcal{A}, \mathcal{B}, C, \ldots, A, \mathbb{B}, \mathbb{C}, \ldots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n],x[k],x[m],x[i],\ldots$	Discrete-time n, k, m, i, \dots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x[((n-m))_N], x((n-m))_N$	Circular shift in m samples within a
	N-samples window [11, 15]

2.2 Common functions

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)

$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Operations and symbols

$f:A\to B$	A function f whose domain is A and codomain is B
$\mathbf{f}:A o\mathbb{R}^n$	A vector-valued function \mathbf{f} , i.e., $n \geq 2$
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or $x(t)$
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or
$f', f^{(1)}, x'(t)$	x(t) 1th derivative of the function f or $x(t)$
$f^{\prime\prime}, f^{(2)}, x^{\prime\prime}(t)$	2th derivative of the function f or $x(t)$
$\underset{x \in \mathcal{A}}{\arg\max} \ f(x)$	Value of x that minimizes x
$\underset{x \in \mathcal{A}}{\arg\min} f(x)$	Value of x that minimizes x
$f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum, i.e., $f(\mathbf{x}) = \min \{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\},$ which is the greatest lower bound of this set [3]
$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Supremum, i.e., $f(\mathbf{x}) = \max\{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\},$ which is the least upper bound of this set [3]
$f\circ g$	Composition of the functions f and
*	g Convolution (discrete or continuous)
$_{ ext{ ext{@}}}$, $\stackrel{ ext{ ext{N}}}{ ext{ ext{ ext{\chi}}}}$	Circular convolution [7, 15]

2.4 Transformations

W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$ [11]
$\mathcal{F}\left\{ \cdot ight\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot \right\}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$

X(f)Fourier transform (FT) (in linear frequency, Hz) of x(t) $X(j\omega)$ Fourier transform (FT) (in angular frequency, rad/sec) of x(t) $X(e^{j\omega})$ Discrete-time Fourier transform (DTFT) of x[n] $X[k], X(k), X_k$ Discrete Fourier transform (DFT) or fast Fourier transform (FFT) of x[n], or even the Fourier series (FS) of the periodic signal x(t) $\tilde{X}[k], \tilde{X}(k), \tilde{X}_k$ Discrete Fourier series (DFS) of $\tilde{x}[n]$ X(z)z-transform of x[n]

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

$\mathrm{E}\left[\cdot\right],\mathbf{E}\left[\cdot\right],E\left[\cdot\right]$	Statistical expectation operator [6, 14]
$\mathbf{E}_{u}\left[\cdot\right],\mathbf{E}_{u}\left[\cdot\right],E_{u}\left[\cdot\right],\mathbb{E}_{u}\left[\cdot\right]$	Statistical expectation operator with respect to u
$\langle \cdot \rangle$	Ensamble average
$\operatorname{var}\left[\cdot\right], \operatorname{VAR}\left[\cdot\right]$	Variance operator [2, 10, 13, 17]
$\operatorname{var}_{u}[\cdot][\cdot], \operatorname{VAR}_{u}[\cdot]$	Variance operator with respect to u
$cov[\cdot], COV[\cdot]$	Covariance operator [2]
$\operatorname{cov}_{u}[\cdot], \operatorname{COV}_{u}[\cdot]$	Covariance operator with respect to
	u
μ_{x}	Mean of the random variable x
$\mu_{\mathrm{x}}, \mathrm{m}_{\mathrm{x}}$	Mean vector of the random variable
	x [4]
μ_n	nth-order moment of a random vari-
_	able
σ_x^2, κ_2	Variance of the random variable x
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x
κ_n	nth-order cumulant of a random vari-
	able
$ ho_{x,y}$	Pearson correlation coefficient be-
_	tween x and y
$a \sim P$	Random variable a with distribution
Ø.	P
$\mathcal R$	Rayleigh's quotient

3.2 Stochastic processes

$r_{x}(\tau), R_{x}(\tau)$	Autocorrelation function of the signal $x(t)$ or $x[n]$ [14]
$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$ in linear (f) or angular (ω) frequency
$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear or angular (ω) frequency
R_x	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$ [14]
R_{xy}	Cross-correlation matrix of $\mathbf{x}(n)$ and
·	$\mathbf{y}(n)$
$\mathbf{p}_{\mathbf{x}d}$	Cross-correlation vector
	between $\mathbf{x}(n)$ and $d(n)$
	$[{ m diniz Adaptive Filtering 1997}]$
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or x[n] [14]
$\mathbf{C}_{\mathbf{x}}, \mathbf{K}_{\mathbf{x}}, \mathbf{\Sigma}_{\mathbf{x}}, \operatorname{cov}\left[\mathbf{x}\right]$	(Auto)covariance matrix of x [10, 13,
	17, 22
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	nal x(t) or x[n] [14]
$\mathbf{C}_{\mathrm{xy}}, \mathbf{K}_{\mathrm{xy}}, \mathbf{\Sigma}_{\mathrm{xy}}$	Cross-covariance matrix of \mathbf{x} and \mathbf{y}

3.3 Functions

$Q(\cdot)$	<i>Q</i> -function, i.e., $P[N(0,1) > x][17]$
$\operatorname{erf}(\cdot)$	Error function [17]
$\operatorname{erfc}(\cdot)$	Complementary error function i.e.,
.,	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x)$ [17]
P[A]	Probability of the event or set A [13]
$p(\cdot), f(\cdot)$	Probability density function (PDF)
	or probability mass function (PMF)
	[13]
$p(x \mid A)$	Conditional PDF or PMF [13]
$F(\cdot)$	Cumulative distribution function
	(CDF)
$\Phi_X(\omega), M_X(j\omega), E\left[e^{j\omega x}\right]$	First characteristic
	function (CF) of x
	[the odorid is Machine Learning Bayesian 2020a,
	17]

3.

3.4 Distributions	
$\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a real-valued white Gaussian process with mean equal to μ and power spectral density equal to $N_0/2$, e.g., $s(t) \sim \mathcal{N}(\mu, N_0/2)$
$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a complex-valued white Gaussian process with mean equal to μ and power spectral density equal to N_0 , e.g., $s(t) \sim CN(\mu, N_0)$
$\mathcal{N}(\mu,\Sigma)$	Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{CN}(oldsymbol{\mu}, oldsymbol{\Sigma})$	Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ
$\mathcal{U}(a,b)$ $\chi^2(n), \chi_n^2$	Uniform distribution from a to b Chi-square distribution with n degree of freedom (assuming that the Gaus- sians are $\mathcal{N}(0,1)$)
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate parameter λ
$\Gamma(\alpha, \beta)$	Gamma distribution with shape parameter α and rate parameter β
$\Gamma(lpha, heta)$	Gamma distribution with shape parameter α and scale parameter $\theta = 1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape parameter m and spread parameter Ω
$\operatorname{Rayleigh}(\sigma)$	Rayleigh distribution with scale parameter σ

 $\begin{array}{ll} \operatorname{Rayleigh}(\Omega) & \operatorname{Rayleigh} \operatorname{distribution} \text{ with the second} \\ \operatorname{moment} \ \Omega = E\left[x^2\right] = 2\sigma^2 \\ \operatorname{Rice}(s,\sigma) & \operatorname{Rice} \operatorname{distribution} \text{ with noncentrality} \\ \operatorname{parameter} \ (\text{specular component}) \ s \\ \operatorname{and} \ \sigma \\ \operatorname{Rice} \ \operatorname{distribution} \ \text{with Rice factor} \\ K = s^2/2\sigma^2 \ \text{and scale parameter} \ A = \\ s^2 + 2\sigma^2 \end{array}$

4 Statistical signal processing

$oldsymbol{ abla} f, \mathbf{g} \ oldsymbol{ abla}_x f, \mathbf{g}_x$	Gradient descent vector with respect
$\begin{array}{l} \mathbf{g} \ (\text{or} \ \hat{\mathbf{g}} \ \text{if the gradient vector is} \ \mathbf{g}) \\ J(\cdot), \mathcal{E}(\cdot) \\ \Lambda(\cdot) \\ \Lambda_l(\cdot) \\ \hat{x}(t) \ \text{or} \ \hat{x}[n] \\ \hat{\boldsymbol{\mu}}_x, \hat{\mathbf{m}}_x \\ \hat{\boldsymbol{\mu}}_x, \hat{\mathbf{m}}_x \\ \hat{r}_x(\tau), \hat{R}_x(\tau) \end{array}$	Stochastic gradient descent (SGD) Cost-function or objective function Likelihood function Log-likelihood function Estimate of $x(t)$ or $x[n]$ Sample mean of $x[n]$ or $x(t)$ Sample mean vector of $x[n]$ or $x(t)$ Estimated autocorrelation function
$\hat{S}_x(f), \hat{S}_x(j\omega)$	of the signal $x(t)$ or $x[n]$ Estimated power spectral density (PSD) of $x(t)$ in linear (f) or angular
$\hat{\mathbf{R}}_{\mathbf{x}}$ $\hat{r}_{x,d}(\tau), \hat{R}_{x,d}(\tau)$	(ω) frequency Sample (auto)correlation matrix Estimated cross-correlation between x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	Estimated cross PSD of $x(t)$ and $y(t)$ in linear or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$ $\hat{ ho}_{x,y}$	Sample cross-correlation matrix of \mathbf{R}_{xy} Estimated Pearson correlation coefficient between x and y
$\hat{c}_{x}(au),\hat{C}_{x}(au)$	Estimated autocovariance function of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$ $\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	Sample (auto)covariance matrix Estimated cross-covariance function of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{xy}}, \hat{\mathbf{K}}_{\mathbf{xy}}, \hat{\mathbf{\Sigma}}_{\mathbf{xy}}$ w, $\mathbf{\theta}$	Sample cross-covariance matrix Parameters, coefficients, or weights vector

$\mathbf{w}_o, \mathbf{w}^{\star}, \mathbf{\theta}_o, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
	coefficients, or weights vector
\mathbf{W}	Matrix of the weights
J	Jacobian matrix
Н	Hessian matrix
$\hat{\mathbf{H}}$	Estimate of the Hessian matrix

5 Linear Algebra

5.1 Common matrices and vectors

W, D	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
${f L}$	Lower matrix
U	Upper matrix
\mathbf{C}	Cofactor matrix
$\mathbf{C}_{\mathbf{A}}, \operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,,i_N}, [X]_{i_1,i_2,,i_N}$	Element in the position
17/2/,. _N	(i_1,i_2,\ldots,i_N) of the tensor X
$\mathcal{X}^{(n)}$	nth tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor $\boldsymbol{\mathcal{X}}$

5.3 General operations

 $\langle \mathbf{a}, \mathbf{b} \rangle, \mathbf{a}^{\mathsf{T}} \mathbf{b}, \mathbf{a} \cdot \mathbf{b}$ Inner product or dot product Outer product, e.g., $\mathbf{a} \circ \mathbf{b} = \mathbf{a} \mathbf{b}^{\mathsf{T}}$ Kronecker product \otimes Hadamard (or Schur) (elementwise) \odot product $\odot n$ nth-order Hadamard power $\cdot \circ \frac{1}{n}$ nth-order Hadamard root Hadamard (or Schur) (elementwise) \oslash division Khatri-Rao product Kronecker Product \otimes n-mode product \times_n

5.4 Operations with matrices and tensors

 \mathbf{A}^{-1} Inverse matrix A^+, A^\dagger Moore-Penrose left pseudoinverse $\mathbf{A}^{ op}$ Transpose Transpose of the inverse, i.e., $(\mathbf{A}^{-1})^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}})^{-1}$ [8, 16] $\mathbf{A}^{-\top}$ \mathbf{A}^* Complex conjugate \mathbf{A}^{H} Hermitian $\|\mathbf{A}\|_{\mathrm{F}}$ Frobenius norm Matrix norm $\|\mathbf{A}\|$ $|\mathbf{A}|, \det(\mathbf{A})$ Determinant diag(A)The elements in the diagonal of A $\mathbf{E}\left[\mathbf{A}\right]$ Vectorization: stacks the columns of the matrix A into a long column vec- $\mathbf{E}_d [\mathbf{A}]$ Extracts the diagonal elements of a square matrix and returns them in a column vector

$\mathbf{E}_{l}\left[\mathbf{A} ight]$	Extracts the elements strictly below the main diagonal of a square matrix in a column-wise manner and returns
$\mathbf{E}_{u}\left[\mathbf{A} ight]$	them into a column vector Extracts the elements strictly above the main diagonal of a square matrix in a column-wise manner and returns
$\mathbf{E}_b\left[\mathbf{A} ight]$	them into a column vector Block vectorization operator: stacks square block matrices of the input into a long block column matrix
$\mathrm{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a matrix
$ ext{tr}\{\mathbf{A}\} \ \mathbf{X}_{(n)}$	trace n -mode matricization of the tensor \boldsymbol{X}

5.5 Operations with vectors

$\ \mathbf{a}\ $	l_1 norm, 1-norm, or Manhatan norm
$\ \mathbf{a}\ , \ \mathbf{a}\ _2$	l_2 norm, 2-norm, or Euclidean norm
$\ \mathbf{a}\ _p$	l_p norm, p -norm, or Minkowski norm
$\ \mathbf{a}\ _{\infty}^{'}$	l_{∞} norm, ∞ -norm, or Chebyshev
	norm
diag (a)	Diagonalization: a square, diagonal matrix with entries given by the vec-
	tor a

5.6 Decompositions

Λ	Eigenvalue matrix [20]
Q	Eigenvectors matrix; Orthogonal ma-
	trix of the QR decomposition[20]
R	Upper triangular matrix of the QR
	decomposition[20]
\mathbf{U}	Left singular vectors[20]
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse [20]
Σ_r^+	Singular value matrix of the pseu-
	doinverse with nonzero singular val-
	ues in the main diagonal

V	Right singular vectors [20]
\mathbf{V}_r	Right singular nondegenerated vec-
	tors
$\operatorname{eig}\left(\mathbf{A}\right)$	Set of the eigenvalues of A [5, 13, 16]
$[\![\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor $\boldsymbol{\mathcal{X}}$ from the
	outer product of column vectors of A,
	$\mathbf{B}, \mathbf{C}, \dots$
$\llbracket \boldsymbol{\lambda}; \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots bracket$	Normalized CANDE-
	COMP/PARAFAC (CP) decom-
	position of the tensor X from the
	outer product of column vectors of
	A, B, C, \dots

5.7 Spaces

$\operatorname{span}\left\{\mathbf{a}_{1},\mathbf{a}_{2},\ldots,\mathbf{a}_{n}\right\}$	Vector space spanned by the argu-
	ment vectors [8]
$C(\mathbf{A})$, columnspace(\mathbf{A}), range(\mathbf{A}),	Columnspace, range or image, i.e.,
$\operatorname{span} \{\mathbf{A}\}, \operatorname{image}(\mathbf{A})$	the space span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, where
	\mathbf{a}_i is the ith column vector of the ma-
	trix A [14, 20]
$C(\mathbf{A}^{H})$	Row space (also called left
	columnspace) [14, 20]
$N\left(\mathbf{A}\right)$, $\mathrm{nullspace}(\mathbf{A})$, $\mathrm{null}(\mathbf{A})$, $\mathrm{kernel}(\mathbf{A})$	Nullspace (or kernel space) [14, 20,
	21]
$N\left(\mathbf{A}^{H}\right)$	Left nullspace
$\operatorname{rank} \mathbf{A}$	Rank, that is, $\dim(\operatorname{span}\{A\}) =$
	$\dim \left(C\left(\mathbf{A}\right) \right) \left[14\right]$
nullity (A)	Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$
$\mathbf{a} \perp \mathbf{b}$	a is orthogonal to b
$\mathbf{a} \not\perp \mathbf{b}$	${\bf a}$ is not orthogonal to ${\bf b}$

5.8 Inequalities

$X \le 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space $\mathbb{R}^n[3]$
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space $\mathbb{R}^n[3]$

$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the nonnegative orthant conic subset, \mathbb{R}^n_+ , in the space \mathbb{R}^n .[3]
a < b	Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the positive orthant conic subset, \mathbb{R}^n_{++} , in the space $\mathbb{R}^n[3]$
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the conic subset K in the space $\mathbb{S}^n[3]$
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the interior of the conic subset K in the space $\mathbb{S}^{n}[3]$
$A \le B$	Generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the positive semidefinite conic subset, \mathbb{S}_{+}^{n} , in the space $\mathbb{S}^{n}[3]$
A < B	Strict generalized inequality meaning that $\mathbf{B} - \mathbf{A}$ belongs to the positive orthant conic subset, \mathbb{S}_{++}^n , in the space $\mathbb{S}^n[3]$

6 Communication systems

B	One-sided bandwidth of the trans-
	mitted signal, in Hz
W	One-sided bandwidth of the trans-
	mitted signal, in rad/s
x_i	Real or in-phase part of x
x_q	Imaginary or quadrature part of x
f_c , f_{RF}	Carrier frequency (in Hertz)
f_L	Carrier frequency in L-band (in
<u> </u>	Hertz)
f_{IF}	Intermediate frequency (in Hertz)
f_s	Sampling frequency or sampling rate
	(in Hertz)
$T_{\mathcal{S}}$	Sampling time interval/duration/pe-
	riod
R	Bit rate
T	Bit interval/duration/period
T_c	Chip interval/duration/period
T_{sy}, T_{sym}	Symbol/signaling[17] interval/dura-
9y/ 9ym	tion/period

S_{RF}	Transmitted signal in RF
SFI	Transmitted signal in FI
S, S_l	Lowpass (or baseband) equivalent
	signal or envelope complex of trans-
	mitted signal
r_{RF}	Received signal in RF
r_{FI}	Received signal in FI
r, r_l	Lowpass (or baseband) equivalent
	signal or envelope complex of re-
	ceived signal
ϕ	Signal phase
ϕ_0	Initial phase
η_{RF}, w_{RF}	Noise in RF
η_{FI}, w_{FI}	Noise in FI
η, w	Noise in baseband
τ	Timing delay
Δau	Timing error (delay - estimated)
arphi	Phase offset
$\Delta arphi$	Phase error (offset - estimated)
f_d	Linear Doppler frequency
Δf_d	Frequency error (Doppler frequency -
	estimated)
ν	Angular Doppler frequency
Δv	Frequency error (Doppler frequency -
	estimated)
γ, A	Transmitted signal amplitude
γ_0, A_0	Combined effect of the path loss and
	antenna gain

7 Discrete mathematics

7.1 Set theory

A + B	Set addition (Minkowski sum), i.e., $\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} + \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$ [12]
A - B	Minkowski difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} - \mathbf{y}, \ \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
$A\ominus B$	Pontryagin difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} + \mathbf{y} \in \mathcal{X}, \ \forall \ \mathbf{y} \in \mathcal{Y}\}$ [12]
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,
•	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-
	taining the elements of A that are not
	in B [18]

$A \cup B$ $A \cap B$ $A \times B$	Set of union Set of intersection Cartesian product
A^n	$\underbrace{A \times A \times \cdots \times A}_{}$
A^{\perp}	Orthogonal complement of A , e.g., $N(\mathbf{A}) = C(\mathbf{A}^{\top})^{\perp}$ [3]
$A \oplus B$	Direct sum, i.e., each $\mathbf{v} \in \{\sum \mathbf{a}_i \mid \mathbf{a}_i \in S_i, i = 1, \dots, k\}$ has a unique representation of $\sum \mathbf{a}_i$ with $\mathbf{a}_i \in S_i$. That is, they expand to a space. Note that $\{S_i\}$ might not be orthogonal each other [8]
$A \stackrel{\perp}{\oplus} B$	Direct sum of two space that are orthogonal and span a <i>n</i> -dimensional
	space, e.g., $C(\mathbf{A}^{\top}) \stackrel{\perp}{\oplus} C(\mathbf{A}^{\top})^{\perp} = \mathbb{R}^{n}$ (this decomposition of \mathbb{R}^{n} is called the orthogonal decomposition induced by \mathbf{A}) [3]
$ar{A},A^c$	Complement set (given U)
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
**	ements $1, 2, \ldots, n$
$U = 2^A$	Universe
-	Power set of A
\mathbb{R} \mathbb{C}	Set of carmley numbers
$\mathbb Z$	Set of complex numbers Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
Ñ	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)
$\mathbb{K}^{I_1 \times I_2 \times \cdots \times I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space [3]
\mathbb{K}_{++}	Positive real (or complex) space, i.e., $\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\}$ [3]
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices in $\mathbb{R}^{n \times n}$ [3]
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive semidefinite matrices in $\mathbb{R}^{n \times n}$ [3]

$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
₩ ₊₊ , ₩ ₊₊	definite matrices in $\mathbb{R}^{n \times n}$, i.e., $\mathbb{S}^n_{++} =$
	$\mathbb{S}^n_+ \setminus \{0\} [3]$
\mathbb{H}^n	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A A	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b

7.2 Quantifiers, inferences

A	For all (universal quantifier) [9]
3	There exists (existential quantifier)
	[9]
∄	There does not exist [9]
∃!	There exist an unique [9]
€	Belongs to [9]
∉	Does not belong to [9]
::	Because [9]
 ,:	Such that, sometimes that paranthe-
	ses is used [9]
$,,(\cdot)$	Used to separate the quantifier with
	restricted domain from the its scope,
	e.g., $\forall x < 0 (x^2 > 0)$ or $\forall x < 0$
	$0, x^2 > 0$ [9]
·	Therefore [9]

7.3 Propositional Logic

$\neg a$	Logical negation of a [18]
$a \wedge b$	Conjunction (logical AND) operator
	between a and $b[18]$
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and $b[18]$
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and $b[18]$
$a \rightarrow b$	Implication (or conditional) state-
	ment[18]
$a \leftrightarrow b$	Bi-implication (or biconditional)
	statement, i.e., $(a \rightarrow b) \land (b \rightarrow a)$
	[18]

b

Logical equivalence, i.e., $a \leftrightarrow b$ is a tautology [18]

8 Physics

${f E}$	Electric feild vector (in V/m)
Φ	Electric flux (scalar) (in V m)
D	Electric flux density, electric dis-
	placement, or electric induction vec-
	tor (in C/m^2)
J	Electric current density vector (in
	A/m^2)
H	Magnetic feild vector (in A/m)
В	Magnetic flux density vector (in
	$Wb/m^2 = T$
ϵ	Electric permittivity
μ	Magnetic permeability
μ_0	Magnetic permeability in vacuum

9 Number theory, algorithm theory, and other notations

9.1 Mathematical symbols

	Q.E.D.
≜	Equal by definition
:=, ←	Assignment [18]
<i>≠</i>	Not equal
∞	Infinity
j	$\sqrt{-1}$

9.2 Calculus

abla	Nabla operator (vector differential operator), i.e., ∇f is the gradient
	of the scalar-valued function f , i.e., $f: \mathbb{R}^n \to \mathbb{R}$
t, (u, v)	$f: \mathbb{R} \to \mathbb{R}$ Parametric variables commonly used,
	t for one variable, (u, v) for two vari-
	ables

$\mathbf{r}(t)$	Vector position $(x(t), y(t), z(t))$
w'(4)	parametrized by t
$\mathbf{r}'(t)$	First derivative of $\mathbf{r}(t)$, i.e., the tangent vector of the curve
	(x(t), y(t), z(t))
$\mathbf{t}(t), \mathbf{T}(t)$	Unit tangent vector of $\mathbf{r}(t)$, i.e., $\mathbf{t}(t) = \mathbf{r}'(t)/ \mathbf{r}'(t) $
$\mathbf{n}(t), \left(\frac{\mathbf{y}'(t)}{ \mathbf{r}'(t) }, -\frac{\mathbf{x}'(t)}{ \mathbf{r}'(t) }\right)$	Normal vector of $\mathbf{r}(t)$, i.e.,
$(\mathbf{r}', (\mathbf{r}'(t) , \mathbf{r}'(t)))$	$\mathbf{n}(t) \perp \mathbf{T}(t)$
C	Contour that traveled by $\mathbf{r}(t)$, for $a \leq$
L, L(C)	$t \le b$ Total length of the contour C
2,2(0)	(which can be defined the vector
	\mathbf{r} , parametrized by t), i.e., $L_C =$
(1)	$\int_{a}^{b} \mathbf{r}'(t) \mathrm{d}t$
s(t)	Length of the arc, which can be defined by the vector \mathbf{r} and t , that is,
	$s(t) = \int_a^t \mathbf{r}'(t) \mathrm{d}t \ (s(b) = L)[19]$
$\mathrm{d}s$	Differential operator of the length of
a ab	the contour C , i.e., $ds = \mathbf{r}'(t) dt$
$\int_C f(\mathbf{r}) \mathrm{d}s$, $\int_a^b f(\mathbf{r}(t)) \mathbf{r}'(t) \mathrm{d}t$	Line integral of the function $f: \mathbb{R}^n \to \mathbb{R}^n$
$\int_C \mathbf{F} \cdot d\mathbf{r} , \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt , \int_C \mathbf{F} \cdot \mathbf{T} ds$	\mathbb{R} along the contour C [1, 19] Line integral of vector field \mathbf{F} along
$\int_C \mathbf{r} \cdot \mathbf{d} \mathbf{r}, \int_a \mathbf{r} (\mathbf{r}(t)) \cdot \mathbf{r}(t) dt, \int_C \mathbf{r} \cdot \mathbf{r} ds$	the contour C [1, 19]
$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F}, \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{r}$	Alternative notation to the line inte-
	gral, where the parametric variable t
	goes from a to b , making r goes from $\mathbf{r}(a) = \mathbf{a}$ to $\mathbf{r}(b) = \mathbf{b}$ [1]
\oint_C,\oint_C	Closed line integral along the contour
36,36	C
$\mathbf{r}(u,v)$	Vector position
	(x(u,v),y(u,v),z(u,v)) parametrized
\mathbf{r}_u	by (u, v) $(\partial x/\partial u, \partial y/\partial u, \partial z/\partial u)$
\mathbf{r}_{v}	$(\partial x/\partial v, \partial y/\partial v, \partial z/\partial v)$
$\mathrm{d}A$	Differential operator of 2D area (D
	or R) in 2D space (\mathbb{R}^2 domain). This
	differential operator can be solved
	in different ways (rectangular, polar, cylindric, etc) [19]
D,R	Integration domain in which dA is in-
	tegrated, i.e., $\iint_D f dA$ [19]
S	Smooth surface S , i.e., a 2D area in a
	3D space (\mathbb{R}^3 domain)

Differential operator of a 2D area in a 3D domain (an surface). Note that $dS = |\mathbf{r}_u \times \mathbf{r}_v| dA$ should be accompanied with the change of the integration interval(from S to D)

Area of the surface S parametrized by (u, v), in which dA is the area defined in the D domain (which is form by the u-by-v graph)

Volume of the function f over the region D

Surface integral over S

Normal vector of of the smooth surface S

Flux integral of vector field \mathbf{F} through the smooth surface S ($\mathbf{n} \, \mathrm{d} S \triangleq \mathrm{d} \mathbf{S}$) Curl (rotacional) of the vector field \mathbf{F} Divercence of the vector field \mathbf{F} Laplacian operator

9.3 Operations

 $\nabla \cdot \mathbf{F}, \operatorname{div} \mathbf{F}$

 $\nabla^2 \mathbf{F}$

a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
∠.	Phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y\lfloor x/y \rfloor$, for $y \neq 0$
$x \operatorname{div} y$	Quotient [18]
$x \equiv y \pmod{m}$	Congruent, i.e., $m \setminus (x - y)$ [18]
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$ [9]
$a \backslash b$, $a \mid b$	b is a positive integer multiple of a ,
	i.e., $\exists n \in \mathbb{Z}_{++} \mid b = na \ [9, 18]$
$a \not\setminus b, a \not\mid b$	b is not a positive integer multiple of
	$a, \text{ i.e., } \nexists n \in \mathbb{Z}_{++} \mid b = na \ [9, 18]$
[·]	Ceiling operation [9]
[.]	Floor operation [9]

9.4 Functions

 $O(\cdot), O(\cdot)$ Big-O notation $\Gamma(\cdot)$ Gamma function

10 Abbreviations

wrt. With respect to st. Subject to iff. If and only if

EVD Eigenvalue decomposition, or eigen-

decomposition [14]

SVD Singular value decomposition CP CANDECOMP/PARAFAC

References

[1] TM Apostol. Calculus, 2nd Edn., Vol. 2. 1967.

- [2] Christopher M Bishop and Nasser M Nasrabadi. *Pattern Recognition and Machine Learning*. Vol. 4. 4. Springer, 2006.
- [3] Stephen Boyd, Stephen P. Boyd, and Lieven Vandenberghe. *Convex Optimization*. Cambridge university press, 2004.
- [4] Robert Grover Brown and Patrick YC Hwang. "Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions". In: Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions (1997).
- [5] Rama Chellappa and Sergios Theodoridis. Signal Processing Theory and Machine Learning. Academic Press, 2014. ISBN: 0-12-396502-0.
- [6] Paulo SR Diniz. Adaptive Filtering: Algorithms and Practical Implementation. Nowell, MA: Kluwer Academic Publishers, 2002.
- [7] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto. Digital Signal Processing: System Analysis and Design. Cambridge University Press, 2010. ISBN: 1-139-49157-1.
- [8] Gene H Golub and Charles F Van Loan. *Matrix Computations*. JHU press, 2013. ISBN: 1-4214-0859-7.
- [9] Ronald L Graham et al. "Concrete Mathematics: A Foundation for Computer Science". In: Computers in Physics 3.5 (1989), pp. 106–107. ISSN: 0894-1866.
- [10] Simon S Haykin. Adaptive Filter Theory. Pearson Education India, 2002. ISBN: 81-317-0869-1.
- [11] Vinay K Ingle and John G Proakis. *Digital Signal Processing Using MAT-LAB*. Cole Publishing Company, 2000.

- [12] Basil Kouvaritakis and Mark Cannon. "Model Predictive Control". In: Switzerland: Springer International Publishing 38 (2016).
- [13] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd ed. edição. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN: 978-0-13-147122-1.
- [14] Josef Nossek. Adaptive and Array Signal Processing. 2015.
- [15] Alan V. Oppenheim and Ronald W. Schafer. *Discrete-Time Signal Processing: International Edition.* 3ª edição. Upper Saddle River Munich: Pearson, Nov. 12, 2009. ISBN: 978-0-13-206709-6.
- [16] Kaare Brandt Petersen and Michael Syskind Pedersen. "The Matrix Cookbook". In: Technical University of Denmark 7.15 (2008), p. 510.
- [17] John Proakis and Masoud Salehi. *Digital Communications*. 5th ed. edição. Boston: Mc Graw Hill, Jan. 1, 2007. ISBN: 978-0-07-295716-7.
- [18] Kenneth H Rosen. "Discrete Mathematics and Its Applications (7Th Editio)". In: William C Brown Pub (2011).
- [19] James Stewart. Calculus. Cengage Learning, 2011. ISBN: 1-133-17069-2.
- [20] Gilbert Strang et al. Introduction to Linear Algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993.
- [21] Sergios Theodoridis. Machine Learning: A Bayesian and Optimization Perspective. 2nd ed. Academic Pr, 2020. ISBN: 978-0-12-818803-3.
- [22] Harry L Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002. ISBN: 0-471-09390-4.