Calcul différentiel 1

Exercice 1

Soient U le plan privé de l'origine et

$$f(x,y) = (x^2 - y^2, 2xy)$$

Montrer que f est un difféomorphisme local au voisinage de tout point de U, mais n'est pas un difféomorphisme global.

Expliciter des ouverts U et W, aussi grands que possible, tels que $f:U\to W$ soit un difféomorphisme global.

Exercice 2

Soit $f(x) = x + x^2 \sin(\frac{\pi}{x})$ si $x \neq 0$, f(0) = 0. Montrer que f est dérivable sur \mathbb{R} , que $f'(0) \neq 0$, mais que f n'est inversible sur aucun voisinage de 0. Pourquoi le théorème d'inversion locale ne s'applique-t-il pas ici?

Exercice 3

Soient k une constante strictement positive et $f: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe C^1 , telle que $\forall x,y \in \mathbb{R}^n \quad ||f(x)-f(y)|| \geq k||x-y||$. On va montrer que f est alors un difféomorphisme global de \mathbb{R}^n sur lui-même.

- 1. Montrer que f est injective, et que l'image $f(\mathbb{R}^n)$ est une partie fermée de \mathbb{R}^n .
- 2. Montrer que la différentielle Df(x) est inversible pour tout x.
- 3. Montrer que $f(\mathbb{R}^n)$ est une partie ouverte de \mathbb{R}^n . Conclure.

Exercice 4

Soit C l'ensemble des $(x,y) \in \mathbb{R}^2$ tels que

$$x^3 + y^3 - 3xy = 0.$$

- 1. Cette équation définit-elle y comme fonction implicite de x? Lorsque c'est le cas, calculer la dérivée de la fonction implicite, et écrire l'équation de la tangente à C.
- 2. Dessiner C, et préciser l'asymptote. On pourra pour cela calculer l'intersection de C avec la droite y = tx et en déduire une paramétrisation de C.

Exercice 5

On considère le système d'équations

$$x = \frac{1}{2}\sin(x+y) + t - 1, \ y = \frac{1}{2}\cos(x-y) - t + \frac{1}{2}$$

aux inconnues x et y.

- 1. Montrer que ce système admet une unique solution (x(t), y(t)) et que ces fonctions de t sont indéfiniment dérivables sur \mathbb{R} .
- 2. Donner un développement limité à l'ordre deux de x(t) et y(t) au point x=y=0.

3. Généralisation

Soit $f:(x,\lambda)\mapsto f(x,\lambda)$ une application de classe C^1 de $\mathbb{R}^n\times\mathbb{R}^p$ dans \mathbb{R}^n . On suppose qu'il existe k tel que, pour tous x,λ

$$||\partial_1 f(x,y)|| \le k < 1.$$

Montrer que l'équation $f(x,\lambda)=x$ admet pour chaque λ une unique solution $x=x(\lambda)$, et que l'application $\lambda\mapsto x(\lambda)$ est de classe C^1 sur \mathbb{R}^p . Calculer $Dx(\lambda)$.