Statistics with R and Tidyverse Exam

Your Name

2025-05-20

Table of contents

data about various car models.	2
Load the mtcars dataset	2
Inspect the dataset	2
Create transmission_type	2
Calculate mean mpg for 4 and 6 cylinder cars	3
Create scatter plot of mpg vs wt	3
Create boxplot of mpg by cyl	3
Create bar chart of cylinder counts	4
Perform t-test	4
Calculate correlation	4
Perform chi-squared test	5
Fit linear model	5
Fit logistic model	5

Instructions This is an open-book exam. You may use any resources available to you (notes, books, online documentation).

• You are expected to work individually. Collaboration is not permitted.

- All code and answers should be clearly presented in this document.
- Ensure this document renders successfully to a PDF file.
- Show all your work, including the R code used to arrive at your answers. Partial credit may be awarded.
- Pay attention to the specific questions asked and provide concise and relevant answers.
- This exam uses pre-built R datasets. You do not need to load any external data.

Section 1: Data Wrangling This section uses the mtcars dataset, which contains data about various car models.

Question 1 ([Insert Points Here])

Load the mtcars dataset

Inspect the dataset

glimpse(mtcars) head(mtcars) summary(mtcars)

Your written answer for Question 1 goes here.

Question 2 ([Insert Points Here])

The am column in the mtcars dataset represents the transmission type (0 = automatic, 1 = manual). Create a new factor variable called transmission type based on the am column.

Create transmission_type

mtcars <- mtcars %>% mutate(transmission_type = factor(am, labels = c("Automatic", "Manual"))) # print(table(mtcars\$transmission_type))

Your written answer for Question 2 goes here.

Question 3 ([Insert Points Here])

Calculate the mean mpg (miles per gallon) for cars with 4 cylinders (cyl) and for cars with 6 cylinders.

Calculate mean mpg for 4 and 6 cylinder cars

mtcars %>% filter(cyl %in% c(4, 6)) %>% group_by(cyl) %>% summarise(mean_mpg = mean(mpg))

Your written answer for Question 3 goes here.

Question 4 ([Insert points here])

Filter the data to include only observations where the car has a manual transmission and has more than 4 gears. How many observations meet these criteria?

```
manual_and_more_than_4_gears <- mtcars \%>\% filter(am == 1 & gear > 4) nrow(manual_and_more_than_4_gears)
```

Your answer here

Section 2: Data Visualization This section continues to use the mtcars dataset.

Question 5 ([Insert Points Here])

Create a scatter plot showing the relationship between mpg and wt (weight). Add appropriate labels for the axes and a title for the plot.

Create scatter plot of mpg vs wt

```
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() + labs(title = "Relationship between MPG and Weight", x = "Weight (1000 lbs)", y = "MPG")
```

Your written answer for Question 5 goes here.

Question 6 ([Insert Points Here])

Generate a boxplot to visualize the distribution of mpg across different cyl (number of cylinders) values.

Create boxplot of mpg by cyl

```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) + geom\_boxplot() + labs(title = "MPG Distribution by Number of Cylinders", x = "Number of Cylinders", y = "MPG")
```

Your written answer for Question 6 goes here.

Question 7 ([Insert Points Here])

Create a bar chart showing the count of cars for each number of cylinders (cyl).

Create bar chart of cylinder counts

 $ggplot(mtcars, aes(x = factor(cyl))) + geom_bar() + labs(title = "Car Count by Number of Cylinders", x = "Number of Cylinders", y = "Count")$

Your written answer for Question 7 goes here.

Section 3: Basic Statistics This section uses the mtcars dataset.

Question 8 ([Insert Points Here])

Perform an independent samples t-test to compare the mean mpg for cars with automatic and manual transmissions. State the null and alternative hypotheses, report the p-value, and interpret the results.

Perform t-test

```
t.test(mpg \sim am, data = mtcars)
```

Your written answer for Question 8 goes here.

Question 9 ([Insert Points Here])

Calculate the Pearson correlation coefficient between mpg and hp (horsepower). Interpret the strength and direction of the correlation.

Calculate correlation

cor(mtcarsmpq, mtcarshp)

Your written answer for Question 9 goes here.

Question 10 ([Insert Points Here])

Conduct a chi-squared test to examine the relationship between cyl (number of cylinders) and am (transmission type). State the null and alternative hypotheses, report the chi-squared statistic and p-value, and interpret the results.

Perform chi-squared test

 $table_cyl_am < -table(mtcarscyl, mtcarsam) chisq.test(table_cyl_am)$

Your written answer for Question 10 goes here.

Question 11 ([Insert Points Here])

Fit a linear model to predict mpg using wt (weight) and hp (horsepower). Provide the R code, summarize the model, and interpret the coefficients for wt and hp.

Fit linear model

 $linear_model_mpg < -lim(mpg \sim wt + hp, data = mtcars) summary(linear_model_mpg)$

Your written answer for Question 11 goes here.

Question 12 ([Insert Points Here])

Fit a logistic regression model to predict am (transmission type) using mpg and wt (weight). Provide the R code, summarize the model, and interpret the odds ratio for mpg.

Fit logistic model

 $logistic_model_am <- glm(am \sim mpg + wt, data = mtcars, family = "binomial") summary(logistic_model_am) exp(coef(logistic_model_am))$

Your written answer for Question 12 goes here.

Section 4: Basic Introduction to Multivariate Analysis This section uses the iris dataset.

Question 13 ([Insert Points Here])

Briefly explain the purpose of Principal Component Analysis (PCA). In the context of the 'iris