Задание 4. Мощность множества, сравнение мощностей.

- 1. Докажите, что следующие множества счетны: \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, \mathbb{Q} , множество всех конечных последовательностей натуральных чисел, множество всех конечных подмножеств натурального ряда, $\mathbb{Q}[x]$, множество всех алгебраических чисел.
- 2. а) Докажите, что следующие множества континуальны: $P(\mathbb{N})$, $2^{\mathbb{N}}$, $3^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, \mathbb{R} , \mathbb{C} , $2^{\mathbb{N}} \times 2^{\mathbb{N}}$, $(2^{\mathbb{N}})^{\mathbb{N}}$, любой открытый интервал, множество всех точек плоскости, множество всех последовательностей вещественных чисел, множество всех шаров в трехмерном пространстве, множество всех прямых на плоскости, множество всех непрерывных функций на \mathbb{R} .
- б) Докажите, что существует вещественное трансцендентное число. Каких чисел больше — алгебраических или трансцендентных и почему?
- 3. а) Докажите, что если $X \neq \emptyset$, то существование инъекции из X в Y равносильно существованию сюръекции из Y на X.
- б) Докажите, что объединение любой последовательности счетных множеств счетно.
- 4. Докажите, что следующие множества конечны или счетны: любое множество попарно не пересекающихся интервалов числовой прямой; любое множество попарно не пересекающихся открытых шаров в пространстве; любое множество попарно не пересекающихся букв T на плоскости; множество всех точек разрыва любой монотонной функции на \mathbb{R} .

5. Докажите, что:

множество конечно в точности тогда, когда любая инъекция этого множества в себя является биекцией;

мощность любого конечного множество меньше мощности любого бесконечного множества;

любое бесконечное множество содержит счетное подмножество; не существует множества наибольшей мощности.