4K超高清HDR技术简介

索尼中国专业系统集团 创新业务开发本部 技术总监 王亚明 2016年10月20日

与活动图像质量相关的5个因素(2D画面)

EBU(欧广联)的超高清电视发展规划

UHDTV Phase	UHD-1Phase 1		UHD-1Phase 2	UHD-2	
引入的时间(Time frame for introduction)	2014-2015		~2017-2018	~2020+	
清晰度(Video resolution)	3840x2160	1920x1080	3840x2160	7680X4320	
帧率(Frame rate)	p50/p60	p100/p120	p100/p120	p100/p120	
量化比特(Bit depth)	10		10	10,12,14?	
色域(Color Gamut)	Rec.709		Rec.2020 profile	Full(er)Rec.2020?	
高动态范围(High Dynamic range, HDR)	NO		Yes	Yes	

UHD (超高清)

2K与4K: 电影与电视不同

7% 单帧画面,4K是2K(HD)像素数量(信息量)的4倍 QFHD 4K 3840H x 2160V 8,294,400 像素 16:9 7% 4K 电影 4096H x 2160V HDTV 2K 8,847360 像素 1920H x 1080V 17:9 2,073,600 像素 16:9 2K 电影 **SDTV** 2048H x 1<mark>080V</mark> 720H x 576V 2,211,840 像素 414,720 像素 17:9 4:3

技术标准

- □电影(2K/4K)
 - ■拍摄: SMPTE 2048-1-2011
 - ■放映: DCI数字影院技术规范文件, SMPTE 428-1-2006
 - ■分辨率: 2048x1080像素(2K), 4096x2160像素(4K)
 - ■帧频: 2K每秒24/48帧, 4K每秒24帧, 逐行扫描
 - ■DCP(发行放映包): 80-250Mb/s, 12比特, 4:4:4, 伽玛2.6
 - ■放映系统2K/4K分辨率双向兼容
- □超高清电视 UHDTV (4K/8K)
 - ITU-R BT.2020(2012年8月),SMPTE 2036-1-2009
 - 宽高比: 16:9 (与HDTV相同)
 - ■分辨率: 3840x2160像素(4K或QFHD), 7680x4320像素(8K)
 - ■帧频: 每秒24/25/30/50/60/120帧,逐行扫描
 - ■量化: 10/12比特

标清、高清与超高清比较

- □标清、高清与超高清基于相同的技术,但参数不同
- □从技术角度看,4K超高清与数字电影更接近

	标清电视 SDTV	高清电视 HDTV	超高清电视 UHDTV		
技术标准	ITU-R BT.601	ITU-R BT.709	ITU-R BT.2020		
分辨率	720x576/720x480	1280x720/1920x1080 3840x2160/7680x4			
像素宽高比	非方形像素	方形像素			
画幅宽高比	4:3/16:9	16:9			
取样结构	4:4:4, 4:2:2, 4:2:0				
量化	8/10比4	10/12比特			
色域	ITU-R BT.601/EBU/SMPTE-C	ITU-R BT.709	ITU-R BT.2020		
基准白	D65				
伽玛	0.45				
扫描	隔行扫描	隔行/逐行扫描	逐行扫描		
刷新频率	50/60Hz	24/25/30/50/60Hz	24/25/30/50/60/100/120Hz		

刷新频率中与24、30和60Hz对应的还分别有24/1.001、30/1.001和60/1.001这3种降低千分之一的频率

全高清与4K最佳观看距离比较

□在与50英吋高清电视观看距离相同的位置上,适合观看100英吋4K电视

色域

- □标清、高清电视色域受限于当时显示器件(显像管荧光粉)性能
- □新的显示器件如LED背光LCD、OLED等支持更大色域显示
- □R.2020物理色域太大(绿色G),目前很难实现,只能用矩阵校正模拟

	R.601/EBU(标清)		R.709(高清)		R.2020(超高清)	
	x	у	x	у	X	у
R	0.640	0.330	0.640	0.330	0.708	0.292
G	0.290	0.600	0.300	0.600	0.170	0.797
В	0.150	0.060	0.150	0.060	0.131	0.046
基准白	D65					
	0.3127	0.329	0.3127	0.329	0.3127	0.329

UHD 4K技术难点

4K UHD流程

4K拍摄的技术难点: 分辨率(像素密度)与灵敏度/宽容度的矛盾

成像器件面积相同时像素数量 越多每个像素的面积就越小

4K摄影机的挑战: 同时提高分辨率和宽容度

解决方案: 使用大尺寸成像器件

B4与PL镜头的后距

大尺寸成像器件配套使用35mm电影镜头,不能用棱镜分色

分辨率与像素数量的关系

- ■3片成像器件采用棱镜分色,单色成像器件的像素数量就是分辨率
- ■35mm电影镜头的后距比较小,没有空间安装分色棱镜
- ■使用电影镜头时只能采用单片成像器件,滤色片分色

单片成像器件,4K像素还是4K分辨率?

- □单片彩色成像器件: 4K像素数量还是4K分辨率?
- □对拜尔(Bayer)滤色片来说,分辨率是像素数量的1/2至2/3
- □单片成像器件实现4K分辨率需要6K至8K像素
- □市场上大部分4K摄像机都是4K像素, 简称"4K"
- □8K、6K、5K和4K像素摄像机(摄影机)产品均有供货

4K演播室(转播车)摄像机技术要求

- □单电缆连接
 - ■长距离传输4K信号、供电、控制、通话、返送、TALLY等
 - ■操作方式与现有高清摄像机相同
- □演播室摄像机需要考虑的重要因素
 - ■灵敏度、动态范围、噪波、景深范围、可使用的镜头
 - ▶ 目前大多数35mm 4K摄像机使用4K像素单片成像器件,需要更多像素(6-8K)
 - ▶ 2015年NAB很多厂家展示了2/3英寸4K成像器件的演播室摄像机
 - ▶ 从灵敏度、动态范围、噪波性能考虑成像器件尺寸越大越好
 - > 与电影不同,电视经常需要大景深画面,成像器件尺寸越小景深范围越大
 - ▶ 可使用的镜头只有2/3英寸B4接口与35mm PL接口2个系列
 - ▶ 2/3英寸B4接口镜头需要更好的MTF性能满足4K拍摄的要求
 - > 35mm PL接口镜头MTF性能好但没有大倍率变焦镜头产品,变焦镜头遥控附件不如B4镜头齐全
 - ■不同需求相互矛盾,摄影机厂家需要综合考虑各种因素重新设计

成像器件尺寸对景深的影响

- □成像器件尺寸对图像效果的影响
 - ■景深与成像器件尺寸成反比,尺寸越大景深越浅
 - ▶ 例如, 2/3英吋成像器件的宽度是S35成像器件的1/2.5, 当镜头的光圈、等效焦距相同时 2/3英吋的图像景深是S35的2.5倍

相同光圈时S35(左)与2/3英吋(右)成像器件图像对比

3片2/3英吋2K成像器件2K摄像机

3片成像器件 单片分辨率: 2Kx1K(1920x1080)像素 总像素数量600万

透过棱镜, RGB像素在空间上完全重合

B/G/R 2Kx1K

3片2/3英吋4K成像器件4K摄像机

В

透过棱镜, RGB像素在空间上完全重合

B/G/R 4Kx2K

3片成像器件 单片分辨率: 4Kx2K(3840x2160)像素 总像素数量2500万

3片2/3英吋2K成像器件4K摄像机

3片成像器件 单片分辨率: 2Kx1K(1920x1080) 像素 总像素数量600万

空间像素偏置:

B/R与G在水平/垂直方向上偏置1/2像素 输出处理: G+B+R (2K+2K) x (1K+1K) = 4Kx2K

在没有高性能2/3英吋4K成像器件的情况下,有些摄像机厂商利用现有的高清分辨率成像器件制作了4K摄像机

4片2/3英吋2K成像器件4K摄像机

4片成像器件 单片分辨率: 2Kx1K(1920x1080) 像素 总像素数量800万

索尼全新的4K演播室摄像机: HDC-4300

3片2/3英吋4K像素CMOS成像器件

2/3英吋B4卡口镜头

高清高速拍摄

支持HDR

IP 接口

索尼演播室摄像机的发展

4K 摄像机的应用

新 2/3" 4K 摄像机

体育/新闻/娱乐

F65 和 F55

音乐/娱乐

s35mm 4K 1-CMOS

4K电视节目制作/交换、播出格式

		制作/交换			播出		
编码		ProRes 422 H	Q ProRes 422 LT	XAVC	H.264 (AVC)	H.265 (HEVC)	
分辨率 3840 x 2160 像素							
取	样	4:2:2			4:2:0		
量	化	10比特					
GOP	结构	吉构 帧内(I帧,GOP=1))	帧间(IBP帧,长GOP)		
文件格式		MOV MXF			-		
码率 Mb/s	24P	707	328/471	240	27-46	14-23	
	25P	737	342/492	250	28-48	14-24	
	50P	1475	684)983	500	56-96	28-48	
	60P	1768	821/1178	600	67-115	34-58	

传输接口

SDI / IP

- ■4个3G-SDI可传输1路4:2:2@60P(最高) 4K信号
 - > 3G-SDI的2种传输方式: Level A / Level B
 - ▶ 4K传输的2种方式: SQD / 2SI

SQD Square Division

每个SDI传输1个完整的HD 画面,接口端合成4K SQD:画面分割,1帧延时 2SI:像素分割,延时小

4链接

2SI 2 Sample Interleave

- ■1个12G-SDI接口可传输1路4:2:2@60P 4K信号
- □SDI+浅压缩编码传输4K
 - ■1个3G-SDI采用TICO编码传输1路4:2:2@60P 4K信号(压缩比4:1)
- - 10G以太网+浅压缩编码传输4:2:2@60P 4K(LLVC/TICO/VC2)
 - 40G/100G以太网无压缩传输4:2:2@60P 4K

HDR (高动态范围)

现有电视制作流程(SDR)

实际景物: 1015:1

白昼视觉

夜间视觉

现行标准(SDR)

• 拍摄: 100,000:1

LCD: 1,000:1

OLED, LCD(LD):

即使显示设备提高

但由于转换时丢失

仍然无法再现高亮

度部分的灰度层次

了亮度和对比度,

了部分动态信息,

• 转换: 1,000:1

100,000:1

•显示

HDR制作流程

实际景物: 1015:1

夜间视觉

信号电

实景

OETF / EOTF ST2084
Hybrid

压缩

512

X1000

HDR标准

- 拍摄: 100,000:1
- 转换: 100,000:1或更多
- 显示

HDR 显示: 100,000:1

采用HDR后拍摄的影像 动态信息得以忠实还原

显示映射

空间: 伽玛(亮度)+色域

空间: 伽玛(亮度)+色域

- 传统:显像管伽玛曲线(ITU Rec.1886)
- · HDR:新的伽玛曲线

HDR就是建立一个比SDR更大的色彩/亮度 坐标体系并改变系统的传输函数,以再现 更大的色域和更高的亮度动态范围

HDR的难点

- □高清/超高清增加了像素信息量,增加像素信息量需要增加码率
- □HDR: 增加图像的动态范围信息量
 - ■增加彩色和亮度灰阶的信息量
 - ▶ 扩大再现色域范围,扩大亮度/对比度再现范围
 - ■增加彩色和亮度灰阶信息量并不增加码率
 - > 需要重新定义拍摄、制作和显示的坐标系
 - ■必须提高拍摄和显示器件的硬件性能
 - > 比增加像素、提高码率的难度更大
- □必须解决与现有标清/高清SDR的兼容问题

电平资源分配比较

- □OETF/EOTF本质上是电平(量化比特)资源的分配方案
 - ■SDR(Rec709)用于高亮度(HDR)的电平资源约为10%,正常拍摄90%
 - ■HDR(ST2084和HLG)用于HDR(高亮度)的电平资源为50%,正常拍摄50%

量化值与电平的关系

2016年7月,HDR有了技术标准

ITU-R BT.2100正式发布

ITU 定义了两种 HDR 播出格式

- □ITU-R.BT2100-0(07/2016)的建议
 - ■PQ(Perceptual Quantization)定义了EOTF,显示亮度绝对值
 - ■HLG(Hybrid-Log Gamma)定义了OETF,显示亮度相对值

http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2100-0-201607-I!!PDF-E.pdf

Defines **EOTF**OETF = OOTF + Inverse EOTF

Defines **OETF**EOTF = Inverse OETF + OOTF

ITU-R BT.2100 文件的关键点

Items	Substance	Substance			Remarks
Format	HLG	HLG		PQ	
HLG	Adopted, formally called	called HLG BBC proposal			OETF has remained unchanged, including the discussion history till now.
Special Resolution	HD: 1920 x 1080	4K/UHD:	HD: 3840 x 2160 8K: 7680 x 4320		
Color Space		BT.2020			
Bit depth	10bit		12bit		
Frame rate	120, 120/1.001 (119.88) 60, 60/1.001 (59.94), 5 30, 30/1.001 (29.97), 2 24, 24/1.001 (23.98)	50,			
Scan	Progressive Only				

OETF、EOTF与OOTF

OETF、EOTF与OOTF

OETF、EOTF与OOTF

- □OETF (Opto-Electrical Transfer Function, 光电转换特性)
 - ■摄像机中,被摄景物光亮度转换为电信号的特性

- □EOTF (Electro-Optical Transfer Function, 电光转换特性)
 - ■监视器(电视机)中,电信号转换为显示光亮度的特性

- ■OOTF (Opto-Optical Transfer Function, 光光转换特性)
 - 艺术加工或调整,经过OETF/EOTF 抵消后遗留的特性
 - 从摄像机到监视器(电视机)的拍摄/显示系统总特性
 - 不只HDR, SDR亦然

OETF与EOTF的关系

为什么需要与播出方案无关的HDR中间母版格式

- □用PQ(ST2084)制作HDR母版
 - ■PQ有多种不同的显示亮度,用某种亮度制作的节目只适合于该亮度的监视器(电视机)显示
 - ■用1000尼特制作的HDR母版其动态范围只有1000%
 - ■当制作亮度与显示亮度不同时必须引入元数据把制作 母版的电平映射到不同亮度的显示设备上
- □用HLG制作HDR母版
 - ■HLG的动态范围只有1200%,用HLG制作HDR母版后即使转换成PQ动态范围也被限制在1200%以内
- □索尼建议采用与PQ/HLG无关的S-Log3作为HDR中间母版(Mezzanine Master)
 - ■制作S-Log3中间母版,播出时再转换成PQ或HLG

Davinci Resolve 12.5 菜单截图

索尼建议的HDR中间母版格式S-Log3

- ■S-Log3是索尼摄影机使用的OETF
 - ■可利用成像器件的全部动态范围
 - ■与之对应用于显示的是S-Log3 EOTF
 - ■支持4000%动态范围
- □基于Cineon数字负片设计
 - ■与电影行业的Cineon对数伽玛几乎完全相同
 - 获得大多数后期制作设备支持, 便于调色
 - ■适合10比特接口设备处理、制作中间母版

HDR与SDR的兼容

超高清即将到来

- □高清正在加速普及
- □超高清即将到来
- □从标清到高清,从高清到超高清,技术标准变了
 - ■在技术发展的过程中,改变标准是最困难的
 - > 改变标准必须考虑兼容问题
 - 与标清相比高清只改变了分辨率和宽高比,量化、色域、扫描方式、帧率和显示亮度未变
 - ▶ 与高清相比超高清除了宽高比未变,量化、色域、扫描方式、帧率和显示亮度都不一样,市场上还有大量不支持HDR/宽色域的电视机和显示设备,兼容问题更加复杂
 - > 从历史经验看,为实现兼容采取的措施,带来的问题可能比解决的更多
- □电视行业必须解决超高清发展过程中无法回避的两个问题
 - ■HDR与SDR兼容:播出4K HDR时现有4K SDR电视机能正常显示
 - ■4K HDR与高清SDR制作兼容:直播时用一个系统同时制作超高清4K HDR与高清SDR节目

重点

- □SDR (Standard Dynamic Range)制作
 - ■使用SDR监视器,峰值亮度100尼特
 - ■在现有电视机上显示正常对比度图像
 - ■摄像机对数伽玛控制范围: 100%以内(100%-600%为拐点/斜率控制范围)
- □HDR (High Dynamic Range)制作
 - ■使用HDR监视器,峰值亮度1,000尼特以上
 - ■在HDR电视机上显示高对比度图像
 - ■摄像机对数伽玛控制范围:全部动态范围(达到或超过1,200%)
- □理论上所有对数伽玛OETF/EOTF都可以用于HDR制作/播出
 - ■实际上只有提供了完善SDR兼容方案、被行业广泛接受的OETF/EOTF用于播出
 - ■行业广泛接受的两种OETF/EOTF: PQ(ST2084)和HLG

双层与单层数据传输方式比较

单码流双层数据传输

Dolby Vision用单码流双层数据传输实现了SDR与HDR兼容

双层系统: SDR只能利用基本层数据, HDR设备检测到元数据后可利用HDR增强层数据

传输带有增强层和元数据的基本层

购买Dolby Vision编解码芯片时需要支付授权费

HDR与SDR兼容方案

- □双层数据传输: Dolby Vision
 - ■HDR母版经Dolby Vision编码后分成两层传输(卫星/地面无线/有线电视/网络/蓝光盘等)
 - ▶ 用于普通电视的基本层:现有4K SDR电视机/机顶盒可直接解码基本层信息,显示标准动态范围的正常图像
 - ▶ 包括HDR信息的增强层: Dolby Vision 4K电视机/机顶盒可解码基本层和增强层的全部信息,在HDR 4K电视机上显示高动态范围图像
 - ➤ SDR与HDR电视机/机顶盒无需操作,可自动识别HDR信号

□单层数据传输

- 用PQ制作HDR母版编码后传输
 - ➤ 在支持PQ的HDR 4K电视机上显示高动态范围图像
 - ▶ 在现有4K SDR电视机上显示对比度、彩色不正常的灰暗图像
 - ▶ 显示设备不能自动识别HDR信号
- ■用HLG制作HDR母版编码后传输
 - ➤ 在支持HLG的HDR 4K电视机上显示高动态范围图像
 - ▶ 在现有的4K SDR电视机上显示对比度、彩色正常的的SDR图像

HLG向下兼容

100%动态范围时HLG与Rec709(SDR)的比较

HLG开大1档光圈时与Rec709(SDR)的比较

HLG向下(SDR)兼容

- □HLG兼顾了SDR与HDR显示
 - ■高亮度部分:过曝光动态范围1,200%,比PQ的10,000%小
 - ■100%动态范围时HLG的电平是SDR(Rec709)的50%
 - ■现有SDR电视机显示HLG HDR图像时会变暗
 - ▶ 解决方案:在正常曝光的基础上摄像机开大1档光圈
 - ❖ 开大1档光圈后HLG的曲线与SDR电视伽玛+拐点/斜率性能相近
 - > 对HDR电视机显示影响不大,在现有的SDR电视机上显示正常对比度图像
- □HLG动态范围比PQ小,但能够满足相当长时间内HDR电视的需求
 - ■家庭电视机显示面板的峰值亮度很难达到10,000尼特
- □无需双层数据、元数据传输,实现HDR与SDR直接兼容

不同HDR方案的比较

4 种不同OOTF的比较

OOTF 比较(~10,000nit)

4 种不同OOTF的比较

OOTF 比较(~1200nit)

4 种不同OOTF的比较

OOTF 比较(~100nit)

HLG的2个不同版本

- ■NHK: HLG 1.2
 - ■系统伽玛1.2
 - 根据ITU-R BT.2100, γ = 1.2时峰值显示亮度为1000 cd/m2
 - ■日本电波协会ARIB STD-B67定义
 - ■索尼HDR监视器对应的设置: HLG SG 1.2 (HDR)
- BBC: HLG Variable
 - ■显示器件峰值亮度不同时系统伽玛可变(1.0-1.5)
 - ■BBC White Paper WHP309定义
 - ■索尼HDR监视器对应的设置: HLG SG Variable (HDR)

4K HDR与高清SDR制作兼容

索尼4K现场制作产品线

HDC-4300/BPU-4000

HDC-4800/BPU-4800

HDR/SDR现场制作

目前典型的高清现场制作

索尼推荐的4K/HDR系统

✓ 所有SDR域的摄像机和光圈控制,自动同步反映在HDR域制作中

4K HDR与4K SDR同播/双播制作系统

4K HDR与SDR同播/双播制作系统

4K HDR与SDR同播/双播制作系统

4K HDR与SDR同播/双播制作系统

如何实现HDR/SDR同播制作? 如何在正常操作SDR时自动产生合适的HDR图像?

HDR/SDR同播制作的需求要点

HDR实施方案

HDR方案

□主要方案

HDR10 (CEA), BBC/NHK, Dolby, Philips, Technicolor

□重点

■OETF, 单层或多层传输, 元数据, 与现有SDR的兼容性

方 案	OETF	功能	元数据	下兼容	层
BDA/HDR 10	PQ	HDR(SL)	Static	No	Single
BBC/NHK	HLG	OETF(SL)	No	Yes	Single
Philips/Technicolor-1	PQ	HDR(BL)	Static+Dynamic	Yes(with IP)	Single
Philips/Technicolor-2	PQ	SDR(BL)	Static+Dynamic	Yes	Single
Dolby Vision-1	PQ	HDR(BL)+EL	Static+Dynamic	Yes(with IP)	Dual
Dolby Vision-2	PQ	SDR(BL)+EL	Dynamic	Yes(with IP)	Dual

HDR生态系统

- OETF/EOTF/OOTF (ITU-R BT.2100)
 - PQ (Perceptual Quantizer, SMPTE ST2084)
 - HLG (Hybrid Log-Gamma, BBC White Paper WHP309/ARIB STD B67)
- HDR Metadata
 - ■SMPTE ST 2086: 母版显示元数据
 - SMPTE ST 2094: 描述HDR显示的动态元数据(正在制定中)

- ■2.0a:支持ST 2084 + ST 2086元数据
- ■2.1: HLG, ST 2094? (正在制定中)

■输入规格: 支持ST 2084 + ST 2086元数据

后期制作调色工具(2016年7月)

EOTF/Color Space	FilmLight Baselight 4,4m1	Quantel Pablo RIO 4K	Da Vince Resolve 12.5	AutoDesk Flame Premium
S-Log3/R2020	Yes	Yes	Yes	Yes
PQ/R2020	Yes	Yes	Yes	Yes
HLG/R2020	?	Yes	Yes	?
PQ/P3	Yes	Yes	Yes w/ACES ODT	Yes
PQ/P3 (Dolby Vision)	Yes	No	Yes	Yes

HDR发展现状

□美国

- ■OTT和演播室表演类节目(电影和连续剧)引领HDR发展
- ■播出格式: HDR10
- ■地面广播,ATSC正在讨论采用709色域的 "HDR plus"

□欧洲

- ■卫星和实况直播体育节目引领HDR发展
- ■SDR向下兼容性受到高度重视
- ■HLG(Hybrid Log Gamma)是最优先考虑的

□日本

- ■与欧洲情况类似
- ■地面广播,需要用于高清的8比特播出HDR解决方案

HDR₁₀

- □正式名称: HDR10 Media Profile
 - ■CEA(Consumer Electronics Association, [美国] 消费电子产品协会)发布
- ■HDR10 Media Profile 内容
 - EOTF: SMPTE ST 2084 (Perceptual Quantizer 感知量化, 简称PQ)
 - ■彩色取样: 4:2:0 (压缩后的视频源)
 - ■量化: 10比特
 - ■色域BT.2020
 - 一元数据: SMPTE ST 2086, MaxFALL, MaxCLL

超高清蓝光(Ultra HD Blu-ray)

□蓝光格式扩展视频

- ■编码: HEVC
- ■分辨率: 3840x2160
- ■峰值码率: 100Mbps
- EOTF: SMPTE ST 2084
- ■彩色取样: 4:2:0
- ■量化: 10比特
- ■色域BT.2020
- ■元数据: SMPTE ST 2086, MaxFALL, MaxCLL

Blu-ray Format Extension Video Characteristics

AVC	HEVC ⁽¹⁾		Video Codec
1920×1080	1920×1080	3840×2160 1920×1080	
	16:9		Picture Format Aspect Ratio
8(2)		10	
BT.709 (SDR only)	BT.2020 ⁽³⁾ BT.709 (SDR only)		Color Space Primaries
	4:2:0		Color Sub sampling
23.976р, 24р	23.976p, 24p, 25p ⁽⁴⁾ , 50p ⁽⁴⁾ , 59.94p, 60p		Frame Rates
40Mbps	100Mbps		Peak Video Bit rate ⁽⁵⁾
	10		Bit Depth - HDR
N/A	SMPTE ST 2084		HDR EOTF
	ily) (6), MaxCLL (HDR only) (6)	SMPTE ST2086, MaxFALL (HDR o	Static Metadata
1		SMPTE ST	Bit Depth - HDR HDR EOTF Static Metadata

⁽¹⁾ Main 10 High Tier Level 5.1, NOTE: in the mandatory part, HDR content is transmitted using a single layer codec with metadata in SEI messages.

NOTE

BDA Authoring Guideline for HDR Content will be prepared to include the following recommendation text: "Maximum Frame Average Light Level" not to exceed 400nits. Over 1000 nits should be limited to specular highlights which are expected to be a small percentage of the picture area.

SD resolution and 3D (MVC) video are not included. HDR Video optional functions under study in BDA

ST 2084 : High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays (published as of September 2014)

ST 2086: Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images (published as of November 2014)

⁽²⁾ AVC 8-bit BT.709 SDR is allowed only for 1080/23.976p and 1080/24p frame rates and with a peak bit rate that is within existing BD specification

⁽³⁾ BT 2020 uses the YCbCr non-constant luminance format

⁽⁴⁾ Decoding 25Hz and 50Hz video is BD-ROM Player mandatory if a 50Hz TV system is used.

⁽⁵⁾ Peak Video Bitrate is constrained by the relevant ISO/IEC HRD conformance and by the MPEG-TS T-STD decoder buffer input rate

⁽f) See following slides for description of MaxFALL and MaxCLL metadata

小结:制作HDR节目

- □拍摄 (摄像机)
 - ■14+档光圈宽容度
 - ■BT.2020色域
 - ■16比特线性RAW/10比特对数伽玛记录
 - ■10比特对数伽玛输出(直播)
- □制作(非线性设备)
 - OETF: PQ/HLG/Log HDR
 - ■BT.2020色域(或更大色域如ACES等)采集/制作/输出
- □显示(监视器/电视机)
 - ■峰值亮度大或等于1000尼特,黑电平亮度小或等于0.005尼特(对比度大或等于200,000:1)
 - EOTF: PQ/HLG/Log HDR
 - BT.2020色域(含2020 Profile)
- □传输
 - ■兼容方案: HDR10/HLG/Dolby Vision

谢谢!