IPv6

Introducción

La longitud de las direcciones Ipv4 es de 32 bits y por lo tanto es posible identificar un total de 232 host. Al inicio de Internet esta cantidad pareció suficiente a los diseñadores del protocolo pero la evolución de Internet y la gran cantidad de dispositivos que actualmente están conectados superó las expectativas. A principios de 2010, quedaban menos del 10% de IPs sin asignar. En la semana del 3 de febrero del 2011, la IANA (Agencia Internacional de Asignación de Números de Internet) entregó el último bloque de direcciones disponibles (33 millones) a la organización encargada de asignar IPs en Asia.

La solución a este problema latente se definió a finales de la década de los 90 con el diseño de un nuevo protocolo IPv6, que sustituiría al protocolo IPv4. La principal diferencia es la cantidad de direcciones, 2¹²⁸ (340.282.366.920.938.463.463.374.607.431.768.211.456 o 340 sextillones de direcciones).

Aparte de la cantidad de direcciones disponibles. IPv6 ofrece multiples ventajas respecto a IPv4.

Formato de las direcciones IPv6

Las direcciones IPv6 están formadas por 128 bits. Para facilitar su lectura se expresan en números hexadecimales agrupados de cuatro en cuatro y cada grupo está separado por dos puntos (:). Se necesitan 32 dígitos hexadecimales agrupados en 8 grupos de 4 dígitos para representar los 128 bits de las direcciones IPv6.

Un ejemplo de dirección IPv4 podría ser:

fedc:ba98:7654:3210:fedc:ba98:7654:3210

Para hacer más manejables las direcciones IPv6 si hay un grupo de ceros en una dirección podemos comprimir la dirección dejando sólo los dos puntos (:). Por ejemplo, la dirección:

baca:ba98:7654:3210:0000:ba98:7654:3210

es equivalente a

baca:ba98:7654:3210::ba98:7654:3210

Si nos encontramos con varios grupos de ceros seguidos también podemos utilizar el operador dos puntos para comprimirlos. Por ejemplo, todas estas direcciones serían equivalentes:

baca:ba90:0000:0000:0000:0000:1350:00f0 baca:ba90:0000:0000:0000::1350:00f10

baca:ba90:0000:0000::1350:00f0

baca:ba90:0000::1350:00f0

baca:ba90::1350:00f0

Los ceros iniciales de un grupo también se pueden omitir. Estas dos direcciones

serían equivalentes:

baca:ba90::1350:00f0 baca:ba90::1350:f0

Dirección de red y dirección de host

Las direcciones de red IPv6 también se separan en parte de red y parte de host y para especificarlo se utiliza la notación **CIDR** que se usaba en IPv4, es decir, después de la dirección IP y separados por una barra inclinada (/), se especifican los bits que pertenecen al prefijo de la red.

Este número recibe el nombre de longitud del prefijo de subred.

Por ejemplo, la dirección 2010:13c2:a3fa::/48 definirá la red que comienza en el número:

2010:13c2:a3fa:0000:0000:0000:0000:0000

y termina en el número

2010:13c2:a3fa:ffff:ffff:ffff:ffff.

Tipos de direcciones IPv6

En cuanto a la forma de enrutarlas, las direcciones IPv6 se clasifican en tres grandes grupos:

- **Direcciones unicast**: Identificador para una **única interfaz**. Un paquete enviado a una dirección unicast es entregado solo a la interfaz identificada con dicha dirección.
- Direcciones multicast: van dirigidas a un grupo de interfaces (normalmente en diferentes nodos). Se caracterizan por tener los ocho primeros bits de la dirección a 1. Por tanto las direcciones multicast empiezan por ff.
- **Direcciones anycast**: Una dirección anycast IPv6 es una dirección que es asignada a más de una interface (que normalmente pertenecen a diferentes nodos), con la propiedad que un paquete enviado a una dirección anycast es **enrutado a la interface más cercana** que tenga dicha dirección.

Cuando una dirección unicast es asignada a más de una interface esta se convierte en una dirección anycast y los nodos donde esta dirección sea asignada deben configurarse explícitamente para que sepan que es una dirección anycast.

Direcciones reservadas

Dentro de las direcciones unicast existen algunas cuyo uso está reservado:

- La dirección de **loopback** 0:0:0:0:0:0:0:0:1, que también puede expresarse como ::1/128
- La dirección con todos sus bits a 0, que se expresa como ::/128 que

recibe el nombre de dirección **indefinida**. Al igual que en IPv4, esta dirección se usa por las interfaces cuando a la interfaz no se le ha asignado ninguna dirección.

Direcciones unicast

- Unique Local Unicast Adressess (ULA). Las direcciónes locales únicas:
 - Estas direcciones son de uso privado y no son enrutables en Internet, pero si dentro de la organización. Por lo que su alcance está limitado al sitio local.
 - Tienen uso similar al de las direcciones privadas IPv4 (10.0.0.0/8, 172.16.0.0/16 y 192.168.0.0/24).
 - Su dirección de red es fc00::/7
 - Rango de direcciones: fc00:: fdff:ffff:ffff:ffff:ffff
- Link Local Unicast Addresses (LLA). Las direcciones de enlace local
 - Tienen su alcance limitado al **enlace** y **no son ruteables**, ni exterior ni interiormente en nuestras redes.
 - Estas direcciones aparecen siempre en todos los dispositivos de red.
 - Tienen mucho en comun con lo que en IPv4 se llama APIPA
 (Automatic Private IP Address Assignement) las direcciones de tipo 169.254.0.0/16. Permiten la comunicación entre dispositivos que están en un mismo segmento de red sin necesidad de otro tipo de direcciones.
 - Son generadas dinámicamente.
 - Tienen el prefijo fe80::/10.
 - Rango de direcciones; fe80:: febf:ffff:ffff:ffff:ffff:ffff
- Global Unicast Addresses (GUA). Direcciones globales.
 - Son utilizadas para el tráfico global y, por supuesto, son ruteables en la Internet IPv6.
 - Son similares a las direcciones públicas de IPv4.
 - En la actualidad IANA y RIR están asignando para este tipo, direcciones del rango 2000::/3 y, por tanto, las podemos distinguir porque en binario empiezan por 001.
 - Rango de direcciones: 2000:: 3f::ffff:ffff:ffff:ffff:ffff

Túneles IPv6

La mayoría de proveedores de Internet todavía no han migrado su infraestructura para utilizar IPv6 por lo que no podemos acceder directamente a servicios mediante direccionamiento IPv6. Para comprobarlo podemos acceder a la web http://www.test-ipv6.consulintel.es/ veremos que actualmente no tenemos acceso a Internet sino por IPv4.

Existen varios mecanismos que nos permiten conectar por IPv6, uno de ellos es la utilización de túneles que nos conectan a un nodo que nos da salida a Internet por IPv6 y para ello introducen el tráfico IPv6 en IPv4 hasta el otro extremo del túnel, a través del cual salimos por IP6.