Predicting Customer Loyalty

Vo Thuc Khanh Huyen

Viettel Digital Talent 2021

July 7, 2021

- Abstract
- Related work
- Introduction
- Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

- Abstract
- Related work
- Introduction
- O Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Abstract

Abstract

- In this project, we will focus on resolving the **problem** in the Kaggle challenge named "Elo Merchant Category Recommendation".
- We will **analyze**, **process** data, and use **machine learning** to improve the understanding of customer loyalty for the Elo payment brand.

- Abstract
- Related work
- Introduction
- O Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Related work

- Abstract
- Related work
- Introduction
- Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Introduction

- Elo is one of the biggest and most reliable payment brands in Brazil.
- The **loyalty score** is calculated in 2 months after the historical and evaluation period.
- This is a regression task and we use RMSE for evaluation.

In this project, we aimed to:

- Analyze, process data to create many suitable features from our data.
- Apply various machine learning models to our dataset and do the assessment on achieved results.

- Abstract
- Related work
- Introduction
- Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Data Analysing - Tables in dataset

- Train: contains 6 features, which is card_id, target, first_active_month, 3 anonymous categorical features are feature_1, feature_2 and feature_3. The target feature is the loyalty score.
- **Test:** contains the same feature as train data but the target feature is not present in this dataset.
- Historical transaction: contains transactions information made up to the reference month.
- New transaction: contains transactions information made in 2 months after the reference month.
- Merchant: contains additional information about all merchants (merchant_id) in the dataset.

Data Analysing - Train and Test data

Data Analysing - Train and Test data

is_outlier: target = -33.21928095

Data Analysing - Historical transaction

Data Analysing - New transaction

- Abstract
- Related work
- Introduction
- Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Data Preprocessing - Train and Test data

Encode

- We don't encode the categorical features (feature_1, 2, 3) because
 we will use LightGBM and CatBoost algorithm, which allow data to
 have categorical features.
- We tried to encode them, but the results are not good.

Data Preprocessing - Historical transaction

- Reduce about half of memory size of historical_transactions table.
- **Encode** categorical features like *month_lag*, *category_2*, *category_3* using *LabelEncoder* and *get_dummies* from sklearn and pandas.
- **Replace** infinite values with nan values. Replace installments which values are -1 or 999 with nan values.
- Replace nan values from categorical feature with mode and numerical data with the median.
- **Transfer** type of *purchase_date* into datetime type.
- Normalize the *purchase_amount* by the way like:

$$pa = pa/0.00150265118 + 497.06$$

- Abstract
- Related work
- Introduction
- Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Feature Engineering - Train and Test data

Train and Test data

We extract *month* and *year* of *first_active_month* feature, and then encode them.

Feature Engineering - Historical transaction

purchase_date related features:

- Extract several **elements of day** like *year*, *month*, *weekofyear*, *dayofyear*, *weekofyear*, *day*, *hour*.
- Check whether the purchase_date is on the weekend or not.
- We count the countdown days from the purchase_date and these special days.
- We count days difference between two consecutive purchase_date of each customer. We also count months difference between the purchase_date and the day that this contest released.
- And much more features related to month_lag, ...

Feature Engineering - Historical transaction

purchase_amount related features:

- We group historical transaction table by card_id using simple aggregation functions on purchase_amount. Also, we try to group by 2 features which are card_id and one of these features: category_1, 2, 3, installments, and ID related features.
- We also consider the ratio of total purchase_amount between 2 month_lag.

Feature Engineering - Historical transaction

merchant_id related features:

- We define intimate merchant for each customer which is the place that the customer visited at least 2 times. In this situation, the customer and transaction are called an intimate customer and transaction for this merchant.
- For each merchant, we count the ratio between total intimate customers and total customers, total intimate transactions and total transactions.

Basic information related features:

• We **consider** authorized and unauthorized transactions, count unique values of ID related features, ...

Feature Engineering - New transaction

New transaction

We do the same things as in the historical transaction table, but we **don't consider** authorized and unauthorized transactions.

- Abstract
- Related work
- Introduction
- O Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Modelling - Training data

We do the same things for train and test table, example for train table:

- Merge train, hist_feats and new_feats table into one table by using card_id.
- Create features related to both hist_feats and new_feats table by taking ratio, sum, ...

new_hist_transac_amount_sum_ratio
new_hist_transac_amount_max_ratio
new_hist_transac_amount_sum_log_ratio
new_hist_transac_amount_max_log_ratio
installment_total_sum
new_hist_purchase_amount_ratio_1_1
new_hist_purchase_amount_log_ratio_1_1
new_hist_purchase_amount_ratio_1_2
new_hist_purchase_amount_log_ratio_1_2

Modelling - Training models

- We tried 2 models LightGBM and CatBoost.
- We tried to pass encoded and unencoded categorical features (feature_1, feature_2, fetures_3).
- We use 5 folds cross-validation for training, we also use property is_outlier to split train and validation data.

	CV score	Private score	Public score
LightGBM - unencoded	3.64529	3.60952	3.69481
CatBoost - unencoded	3.66582	3.62592	3.72180
LightGBM - encoded	3.66342	3.61376	3.70235
CatBoost - encoded	3.67428	3.62856	3.72337

Modelling - Final model

The final result we achieve score as rank 108 on the private leaderboard.

lgb_sub_1 (3).csv

3.60952

3.69481

6 days ago by Huyen Khanh

$max_depth = 9$
learning_rate=0.005
bagging_fraction=1
bagging_freq=1
feature_fraction=0.2
verbosity=-1
num_boost_round=10000
early_stopping_rounds=200
verbose_eval=100

Modelling - Final model

Modelling - Error Analysing

target	RMSE
(10, 20]	11.52012
(0, 10]	1.95751
(-10, 0]	1.61847
(-20, -10]	11.71220
(-30, -20]	no element in this interval
(-40, -30]	30.31161

- Abstract
- Related work
- Introduction
- Data Analysing
- Data Preprocessing
- Feature Engineering
- Modelling
- Future work

Future work

- We have to be very careful about the preprocessing of data and feature engineering of data.
- Implement more models such as XGBoost, Neural Network, ... We want to try stacking method on this problem.
- We will try to implement a better classification model to classify outliers.

Reference

- R. McMullan and A. Gilmore, Customer loyalty: anempirical study, European Journal of Marketing (2008).
- Q G. Martin, Reduce Memory Usage (https://www.kaggle.com/gemartin/load-data-reduce-memory-usage)
- raddar, Purchase amount (https://www.kaggle.com/raddar/towards-de-anonymizing-the-data-some-insights)
- CPMP, Purchase amount (https://www.kaggle.com/cpmpml/raddar-magic-explained-a-bit)
- **30CrMnSiA**, *First solution* (https://www.kaggle.com/c/elomerchant-category-recommendation/discussion/82036)

Thank you!