0.1 Galois Fields

Fundamentals for understanding Non-binary codes like BCH and Reed-Solomon

Definition 0.1

A Galois Field, or finite field, is defined as a set $(\mathbb{F}, +, \times)$ with two operations such that:

- 1.(\mathbb{F} , +)is a commutative group with identity 0
- 2.(\mathbb{F} , \times) is a commutative group with identity 1
- 3. Multiplication distributes over addition

Remark

 \forall a in \mathbb{F} , there necessarily exists a additive inverse and multiplicative inverse with a + (-a) = 0 and $a * a^{-1} = 1$; a(b+c)=ab+ac.

Definition 0.2

A field \mathbb{F} with a finite number, q of elements is \mathbb{F}_q

Theorem 0.1

Any integer $n \in \mathbb{N}^*$ can be factored into an unique product of prime numbers

Remark

Proof by Contradiction

Theorem 0.2

let $m, n \in \mathbb{Z}$ with greatest common divisor g. Then, $\exists a, b \in \mathbb{Z}$ such that g = am + bn

Theorem 0.3

For any prime p, $\mathbb{Z}_p = [0, p-1]$ forms a field under modulo p addition and multiplication. The characteristic of the field is p

Remark

It is easily provable that both $(\mathbb{Z}_p; +_{modp})$ and $(\mathbb{Z}_p; \times_{modp})$ are groups because in fact:

$$\forall m \in \mathbb{Z}_p \qquad m + 0 = 0 + m = m \tag{1}$$

$$\forall m \in \mathbb{Z}_p \qquad m \times 1 = 1 \times m = m \tag{2}$$

Also by definition gcd(p, m) = 1, then by Theorem 2 we have 1 = ap + bm, and therefore there exists a such that $bm = 1 \mod p$

Theorem 0.4

Every field \mathbb{F} with a prime number p of elements is isomorphic to \mathbb{Z}_p via the correspondence:

$$(i)1 \in \mathbb{F} \iff i \in \mathbb{Z}_p \tag{3}$$

Theorem 0.5

if α , $\beta \in \mathbb{F}_q$ with characteristic p prime, then $(\alpha + \beta)^p = \alpha^p + \alpha^p$

Definition 0.3

A non-zero polynomial f(x) of degree m over \mathbb{F} has expression:

$$f(x) = \sum_{i=1}^{m} f_i x^i \quad \text{with} \quad [f_i]_{i[1,m]} \in \mathbb{F}^m \quad \text{and} \quad f_m \neq 0$$
 (4)

Remark

A monic polynomial of degree m has $f_m = 1$; Polynomials over a field has coefficients within the field; The set of all polynomials over \mathbb{F} is $\mathbb{F}[x]$

Theorem 0.6

If \mathbb{F}_q is a Galois field and there exists a prime polynomial $g(x) \in \mathbb{F}_q[x]$ of degree m, then $\mathbb{F}_{g(x)}$ with addition and multiplication modulo g(x) in $\mathbb{F}_q[x]$ is a field with q^m elements

Definition 0.4

if $f(x) \in \mathbb{F}_q[x]$ has a degree 1 factor $(x - \alpha)$, then α is a root of f(x)

Theorem 0.7

A monic polynomial $f(x) \in \mathbb{F}_q[x]$ of degree m has at most m roots in \mathbb{F}_q , $\beta_{i \in [1,m]}$, then the unique factorization is

$$f(x) = \prod_{i=1}^{m} (x - \beta_i)$$
 (5)

Theorem 0.8

A minimal polynomial w.r.t \mathbb{F}_q of $\beta \in \mathbb{F}_{q^m}^*$ is a lowest degree monic polynomial M_β in $\mathbb{F}_q[x]$ such that $M_\beta(\beta) = 0$

Remark

The polynomial $x^4 - 1$ factorizes over GF(2)[x]as:

$$x^4 - 1 = x(x+1)(x^2 + x + 1)$$
 (6)

of which $(x^2 + x + 1)$ is primitive; a polynomial of degree n is primitive over galois field GF(2) if it has polynomial order $2^n - 1$