(1)
$$Aa\sqrt{14}$$
 coocerbe Bearopei a graverus $A = \begin{pmatrix} -1 & -6 \\ 2 & 6 \end{pmatrix}$ $A = \begin{pmatrix} -1 & -6 \\ 2 & 6 \end{pmatrix}$ $A = \begin{pmatrix} -1 & -4 \\ 2 & 6 \end{pmatrix}$ $A = \begin{pmatrix} -1 & -6 \\ 2 & 6 \end{pmatrix}$

(2)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

COUCT $b - v$ Bentop - 210 Heregnebori

Bentop generale onep-pa Hea

 $k - v$ elogier Ca k guero were eto eto

Ha aleno: $Ax = \lambda x$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

(3)
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$
 $x = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (1) $= \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 1$

(4)
$$A = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 $X = \begin{pmatrix} 3 & 7 & 3 \\ 3 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ -3 & 3 & 3 \\ -4 & -4 & 3 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ -3 & 3 & 3 \\ -4 & -4 & 3 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 \\ 0 & 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 & 3 & 3 \\ -3 & 3 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 & 3 \\ 0 & 3 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 & 3 \\ 0 & 3 & 3 & 3 & 3 \\ 0 & 3 & 3 & 3 & 3 \\ -4 & 3 & 3 & 3 & 3 \\ 0 & 3 & 3 & 3 \\ 0 & 3 &$