More on QR

- There are other ways to calculate QR factors
 - Householder transformations
 - Givens rotations
- We discussed what Matlab calls the 'economy' QR factorization, where Q is mxn orthogonal, R is nxn upper triangular.
- More generally, it is written as

$$A = QR = [Q_1 \quad Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1,$$

where Q is mxm, R is mxn (while Q_1 is mxn and R_1 is nxn).

Matlab's qr function

- [Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular matrix R and an m-by-m orthogonal matrix Q so that A = Q*R.
- [Q,R] = qr(A,0) produces the "economy size" decomposition. If m>n, only the first n columns of Q and the first n rows of R are computed. If m<=n, this is the same as [Q,R] = qr(A).
- If A is sparse: R = qr(A) computes a "Q-less qr decomposition" and returns the upper triangular factor R. Note that R = chol(A'*A). Since Q is often nearly full, even when A is sparse, this is preferred to [Q,R] = qr(A).

Matlab's qr function

- [Q,R,E] = qr(A) produces orthogonal Q, upper triangular R and a permutation matrix E so that A*E = Q*R. The column permutation E is chosen so that ABS(DIAG(R)) is decreasing. Note [Q,R,e] = qr(A,'vector') produces the permutations in vector e instead of matrix E.
- Other variations are available.

Suppose rank(A) = k < n

- Permute columns, using "largest" columns first
- $Q^TAP = \begin{bmatrix} \tilde{R} & S \\ 0 & 0 \end{bmatrix}$, where
- Q is mxm orthogonal, P is nxn permutation (for columns), \widetilde{R} is kxk triangular with $|\widetilde{r_{11}}| \geq |\widetilde{r_{22}}| \geq \cdots |\widetilde{r_{kk}}|$, S is kx(n-k).
- solution not unique
 Multiple solutions, including
 - Let $\tilde{c} = (Q^T b)_{1:k}$
 - Solve $\tilde{R}z=\tilde{c}$
 - $\text{ Then } x = P \begin{bmatrix} z \\ 0 \end{bmatrix}$