Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

LAB WDEC 5 Sprawozdanie Zestaw danych: t_dane_2.txt

1. Utwórz bibliotekę o nazwie LIB5.

```
/* Zadanie 1 */
libname LIB5 "/folders/myfolders/Analiza";
```

2. Wczytaj plik tekstowy t_dane_[x].txt do pliku sas o nazwie t_dane_lib5 w bibliotece LIB5.

3. Narysuj histogramy dla zmiennych numerycznych.

```
/* Zadanie 3 */
proc univariate data = LIB5.t_dane_lib5; var VAR3; histogram; run;
```


4. Narysuj wykresy zależności zmiennych numerycznych od id.

```
/* Zadanie 4 */
proc sgplot
data = LIB5.t_dane_lib5;
scatter x=VAR1 y=VAR5; run;
```


5. Policz za pomocą procedury MEANS statystyki: N, MAX, MIN, NMISS, MEAN.

```
/* Zadanie 5 */
proc means data = LIB5.t_dane_lib5 N NMISS MAX MIN MEAN; var
VAR5; run;
```

		System S	AS	
	1	Procedura M	EANS	
	Zmier	ına analizow	ana: VAR5	
N	N braków	Maksimum	Minimum	Średnia
1100	0	18198 25	16.4508137	8255 33

6. Policz statystyki oddzielnie dla id parzystych i nieparzystych z wykorzystaniem CLASS i BY.

```
/* Zadanie 6 z użyciem class */
proc means data=LIB5.t_dane_lib5 N NMISS MAX MIN MEAN;
var VAR5;class VAR2; run;
```

System SAS

Procedura MEANS

Zmienna analizowana: VAR5						
VAR2	N obs.	N	N braków	Maksimum	Minimum	Średnia
s4_niep	550	550	0	18198.25	16.4508137	8278.88
s4_parz	550	550	0	17625.39	31.1938689	8231.77

```
/* Zadanie 6 z użyciem by */
proc sort data=LIB5.t_dane_lib5 out=LIB5.t_dane_lib5_mean;
by VAR2;
run;
proc means data=LIB5.t_dane_lib5_mean N NMISS MAX MIN MEAN;
by VAR2; var VAR5; run;
```

System SAS

Procedura MEANS

VAR2=s4 niep

Zmienna analizowana: VAR5						
N	N braków	Maksimum	Minimum	Średnia		
550	0	18198.25	16.4508137	8278.88		

VAR2=s4 parz

	Zmie	nna analizov	vana: VAR5	
N	N braków	Maksimum	Minimum	Średnia
550	0	17625.39	31.1938689	8231.77

7. Znajdź parametry a i b modelu regresji y = a + b*id dla id parzystych.

```
/* Zad 7 */
proc reg data=LIB5.t_dane_lib5;
model VAR5=VAR1;
where (VAR2="s4_parz");
run;
Wynik: /* a = 40.97727, b = 14.86533 */
```

		Oceny	parametrów		
Zmienna	DF	Ocena parametru	Błąd standardowy	Wartość t	Pr. > t
Intercept	1	40.97727	56.22020	0.73	0.4664
VAR1	1	14.86533	0.08840	168.15	<.0001

8. Dodaj kolumnę o nazwie ye zawierającą obliczona wartość z modelu regresji dla id nieparzystych.

/* Zadanie 8. */
data LIB5.reg;
set LIB5.t_dane_lib5;
ye=40.97727+ 14.86533 * VAR1;
where (VAR2="s4_niep");run;

	VAR1	VAR2	VAR3	VAR4	VAR5	ye
1	1	s4_niep	0.8146222675	5.0868014961	16.450813699	55.8426
2	3	s4_niep	3.1552933651	-7.214194407	50.024416082	85.57326
3	5	s4_niep	-0.080881229	-19.3591453	75.810440598	115,30392
4	7	s4_niep	-0.610537351	22.131225312	105.89300799	145.03458
5	9	s4_niep	2.5362676897	4.7577686608	143.82061466	174.76524
6	11	s4_niep	1.4387689365	5.4796105335	159.22784936	204.4959
7	13	s4_niep	-0.236162589	-18.28784864	195.51915408	234.22656
8	15	s4_niep	1.2976107953	11.97820105	241.65880207	263.95722
9	17	s4_niep	0.9626801377	-15.16492393	262.00970147	293.68788
10	19	s4_niep	-0.188867446	20.555662803	265.3087526	323.41854

9. Narysuj zależność y i ye od id nieparzystych dla 10, 100 i wszystkich obserwacji (nieparzystych).

```
/* Zadanie 9. */
proc sgplot data=LIB5.reg (obs=10);
/*plot*/
scatter x=VAR1 y=ye;
run;
proc sgplot data=LIB5.reg (obs=10);
scatter x=VAR1 y=VAR5;
run;
proc sgplot data=LIB5.reg (obs=100);
/*plot*/
scatter x=VAR1 y=ye;
run;
proc sgplot data=LIB5.reg (obs=100);
scatter x=VAR1 y=VAR5;
run;
proc sgplot data=LIB5.reg;
/*plot*/
scatter x=VAR1 y=ye;
run;
proc sgplot data=LIB5.reg;
scatter x=VAR1 y=VAR5;
run;
```


Wykres 3. Zależność VAR5 od id dla 100 obserwacji.

Wykres 4. Zależność ye od id dla 100 obserwacji.

Wykres 5. Zależność VAR5 od id dla wszystkich obserwacji.

Wykres 6. Zależność ye od id dla wszystkich obserwacji.

