Machine Learning Classical algorithms

Decision Trees

Decision Tree Structure

Decision Tree Structure

Algorithm

- Tree is grown from root
- Different algorithms exist but the process is usually as follows:
 - 1. Select feature that division of which will generate the most value
 - 2. Divide the feature
 - 3. Repeat the points 1-3 for each subset that was created until no further divisions possible
 - 4. Prune the tree, going from leafs up to the root check if branches can be removed
- There are different metrics that decide on the goodness of split
 - Information Gain
 - Gini Impurity (1 p^2)
- The tree is pruned to avoid overfitting
 - Alternatives are providing max tree depth or min number of instances in a leaf

Decision Boundary

- Decision boundary of a decision tree is determined by overlapping orthogonal half-planes (each node creates a half-plane)
 - In 2D it looks like rectangles

Img src: https://www.mathworks.com/matlabcentral/fileexchange/52003-viewboundary

Naive Bayes

Bayes Theorem

Bayes theorem states that:

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)},$$

• In ML we are dealing with similar problem:

$$p(C_k \mid \mathbf{x}) = rac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$

 $p(C_k \mid x)$ -> probability that an instance (x) belongs to a given class (C_k)

Naive Bayes

- Naive Bayes assumes features are independent
- Which simplifies equation to:

$$p(C_k \mid x_1, \dots, x_n) = rac{1}{Z} p(C_k) \prod_{i=1}^n p(x_i \mid C_k)$$

- Where Z is a constant (probability of x)
- Per features probability is easy to calculate:
 - Count of occurences for nominal features
 - Discretization or gaussian approximation for continuous features
- To classify we need to select the class with the highest

$$p(C_k)\prod_{i=1}^n p(x_i\mid C_k)$$

Naive Bayes

- Assumption of features independence is most likely false
 - The classifier still performs quite strong despite of that
- It is very popular choice when dealing with text classification

Nearest Neighbours

Nearest Neighbour

- Simple concept:
 - For an unseen instance find k closest instances (nearest neighbours) from training dataset
 - Select the most frequently occurring class among the k neighbours.
- This is a lazy evaluation algorithm
 - During training it just memorizes training dataset (whole dataset stored in memory)
 - Heavy computations are performed during evaluation phase (finding neighbours from all training samples)
- What defines nearest neighbours?

Distance Measures

Euclidian

Measures absolute "straight line" distance between two points. Typically used metric

Manhattan

 May deal better with outliers and may be appropriate if different dimensions are not comparable.

Cosine

- Measures cosine of angle between two feature vectors (parallel = 0, orthogonal = 1)
- Use when magnitude of vectors do not matter

Hamming

- Finds distance between all-binary instances
- ... and many more. Which one to use?
 - Check different measures and use one that produces model with best performance

Distance Measures

Regression

Regression

- ML can also be used to predict continuous target variables
- All three classifiers that we have learnt so far can be modified to do that
 - In DT each leaf will have mean value of instances
 - NN will return mean across neighbours
 - In NB target variable can be discretized
- But typically different algorithms are used for this task

Regression - Evaluation

- Target variable is continuous so there is no confusion matrix nor predicted probabilities
- MAE Mean Absolute Error Σ|Y(x_i) Y'(x_i)|
- MSE Mean Squared Error $\Sigma(Y(x_i) Y'(x_i))^2$
- R² coefficient of determination
 - 1 is a perfect score
 - o it can be less than 0

Linear regression

Fit a line that will minimize MSE

https://towardsdatascience.com/simple-linear-regression-2421076a5892

Logistic regression

- Regression models can also be used for classification problems
- Logistic regression is a good model when class is binary
- It is linear combination of features wrapped in a sigmoid activation function
 - Linear combination: $a = w_1x_1 + w_2x_2 + w_3x_3 + ... + b$
 - Sigmoid activation: 1/(1+e^{-a})
- It can be seen as a simple neural network with one node
- Decision boundary is a hyperplane (line in 2D)
 - So it works great for classes that can be separated by straight line
 - In higher dimensions it's more likely there will be a hyperplane that can separate classes

Logistic Regression - Example

What to do if there are more than 2 class values

- One-vs-Rest
 - Say you have k classes
 - For each class:
 - Train classifier predicting {class, not class}
 - Predict on test sample with all k classifiers
 - Each classifier gives probability [0, 1]
 - Pick the class with the classifier with highest prediction
- There are other techniques (one-vs-one, predicting distribution, etc.)

Regularization

- When building regression model it will tend to overfit to training set
- To prevent that we introduce a penalty for model complexity:
 - \circ LossFunction(X,y) + α N(ω)
 - α a scaling factor
 - N a selected norm (L1, L2, or any other)
- Other classifiers also use regularization
 - Tree pruning (in general sense of preventing overfitting)
 - Distance metric

Regularization

- Examples from http://scikit-learn.org/stable/modules/linear_model.html:
 - Ridge Regression (L2-norm)

$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

- Penalize sum of squared weights
- This Penalty punishes more complex models
- Lasso Regression (L1-norm)

$$\min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha ||w||_{1}$$

- Penalizes absolute value of weights
- Tends to favor sparse representations