3.4 The Expected Value of a Function of a Random Variable

Often times in the real world, we wish to look at a function of our variables – or transform them. Changing feet into meters, Fahrenheit into centigrade, etc. In this section we seek to determine the expected value of this new variable. If we transform a random variable X by some function Y = g(X), it should be clear that Y itself is a random variable.

Suppose that we have a discrete random variable X with pmf given below. We now let Y=2X+5. What is the expected value of Y? By definition $E[Y]=\sum yf_{Y}(y)$. So to determine the E[Y], we will find $f_{Y}(y)$ and then compute $E[Y]=\sum yf_{Y}(y)$.

Х	$f_{X}(x)$				
-2	1/8				
-1	1/8				
0	2/8				
1	1/8				
2	1/8				
3	1/8				
4	1/8				

$$\begin{array}{c|cccc}
 & Y & f_{Y}(y) \\
\hline
 & 1 & 1/8 \\
\hline
 & 3 & 1/8 \\
\hline
 & 5 & 2/8 \\
\hline
 & 7 & 1/8 \\
\hline
 & 9 & 1/8 \\
\hline
 & 11 & 1/8 \\
\hline
 & 13 & 1/8 \\
\end{array}$$

1/8
1/8
So,
$$E[Y] = \sum y f_{Y}(y) = (1+3+7+9+11+13) \left(\frac{1}{8}\right) + 5 \left(\frac{2}{8}\right) = \frac{54}{8}$$
.

We also note that,

$$\frac{1/8}{1/8} \qquad E[Y] = \sum y f_Y(y) = \sum_{x=-2}^{4} (2x+5) f_X(x) = \sum_{x \in Support(X)} g(x) f_X(x)$$

Theorem: Given a discrete random variable X and the linear transformation Y = g(X) = aX + b,

$$E[Y] = E[g(X)] = \sum_{x \in Support(X)} g(x) f_X(x).$$

Proof: Since Y = q(X) = aX + b is a 1 to 1 function, this will be rather straight forward.

$$E[Y] = \sum y f_{Y}(y) = \sum (ax + b)P(Y = ax + b) = \sum (ax + b)P(X = x) = \sum g(x)f_{X}(x)$$

Note that the argument above would work with any function Y = g(X) that is 1 to 1.

Theorem: Given a discrete random variable X and the linear transformation Y = g(X) = aX + b, E[Y] = E[aX + b] = aE[X] + b.

Proof:
$$E[aX + b] = \sum (ax + b)f(x) = \sum (ax)f(x) + \sum (b)f(x)$$

 $a\sum xf(x) + b\sum f(x) = aE[X] + b = a\mu_x + b$

Thus, the expected value of a random variable is a **linear operator**.

Example: If a random variable X has mean $\mu = 4$, determine the mean of Y, where Y = 2X + 3

$$\mu_{Y} = 2\mu_{X} + 3 = 11$$
 or $E[Y] = E[2X + 3] = 2E[X] + 3 = 11$

If we think about this last example, it seems like a no brainer that it is true. Suppose that the average score is 4. I now double everybody's score. The new average is 8. I now add 3 to everybody's already doubled score. The new average is 11.

In this linear case, notice if we consider Y = g(X) = 2X + 3, then E[Y] = E[g(X)] = 2X + 3 = g(E[X]). We would naturally wonder if that statement always holds. That is, will it always be true that If Y = g(X) then E[Y] = g(E[X])? The answer is no, this is not always true. **How will we show this?**

Suppose that we have a discrete random variable X with pmf given below. The expected value of X can be determined by $\sum xf(x)=7/8$. We now let $Y=X^2$. What is the expected value of Y? By definition $E[Y]=\sum yf_Y(y)$. So to determine the E[Y], we will find $f_Y(y)$ and then compute $E[Y]=\sum yf_Y(y)$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				=				_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	х	$f_{X}(x)$	$xf_{X}(x)$		У	$f_{Y}(y)$	$yf_{Y}(y)$		У	$f_{Y}(y)$	$yf_{Y}(y)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2	1/8	-2/8		4	1/8	4/8		0	2/8	0	
1 1/8 1/8 1 1/8 1/8 9 1/8 9/8 2 1/8 2/8 4 1/8 4/8 16 1/8 16/8 3 1/8 3/8 9 1/8 9/8 4 1/8 4/8 1 1/8 1/8 1/8 16/8	-1	1/8	-1/8	$Y = X^2$	1	1/8	1/8		1	2/8	2/8	
2 1/8 2/8 3 1/8 3/8 4 1/8 9/8 4 1/8 4/8 16 1/8 16/8	0	2/8	0	\rightarrow	0	2/8	0	=	4	2/8	8/8	
3 1/8 3/8 4 1/8 4/8 9 1/8 9/8 16 1/8 16/8	1	1/8	1/8		1	1/8	1/8		9	1/8	9/8	
4 1/8 4/8 16 1/8 16/8	2	1/8	2/8		4	1/8	4/8		16	1/8	16/8	
	3	1/8	3/8		9	1/8	9/8					
F[Y] - 7 / 8 F[Y] - 35 / 8	4	1/8	4/8		16	1/8	16/8					
	E[X]=7/8								<i>E</i> [<i>Y</i>] = 35/8			

We note that $E^2[X] = (7/8)^2 \neq 35/8 = E[Y] = E[X^2]$. So, we have our counter example and in general, it is not true that E[Y] = g(E[X]). We do however see something helpful when looking at the first two groupings in the above table. We see that the probabilities are identical and that each y-value is the square of the x-value. This leads us to the following theorem that will help us determine E[Y]:

Theorem: Given a discrete random variable X and a function Y = g(X), $E[Y] = E[g(X)] = \sum g(x) \cdot f_X(x)$.

The theorem is much bigger than it seems. It allows us to determine the expected value of a transformation of a random variable without determining the distribution of the new random variable. We easily found $f_v(y)$ in the above problem. With continuous random variables, it can often be difficult to determine $f_v(y)$, so this will be huge when we get to continuous random variables.

3.5 Some Important Functions of a Random Variable (Moments and Variance)

Definition: The **Variance** of a discrete random variable X is defined by the formula $\sigma^2 = \sum_{x \in Support} (x - \mu)^2 f(x)$ (provided the sum converges). Alternatively, $\sigma^2 = E[(x - \mu)^2]$.

Definition: The Standard Deviation of a random variable, denoted by σ , is defined by $\sigma = \sqrt{\sigma^2}$

Note that we can consider the function $Y = g(X) = (x - \mu)^2$. Then the variance is just E[g(X)] = E[Y].

In a data set, we use the standard deviation of the data set to denote a measure of the variation of the data. The standard deviation of a random variable does the same thing. It gives us a measure of how spread out the support is with respect to the associated probabilities.

Example: Determine the standard deviation for rolling a single die.

$$\sigma^2 = \sum_{x=1}^{6} (x-3.5)^2 \frac{1}{6} = \frac{1}{6} \left((1-3.5)^2 + (2-3.5)^2 + \dots + (6-3.5)^2 \right) = \frac{17.5}{6} \approx 2.916667. \text{ So } \sigma = 1.7078.$$

Theorem: $\sigma^2 = E[(x - \mu)^2] = E[X^2] - E^2[X]$

Proof:
$$E[(x - \mu)^2] = \sum (x - \mu)^2 f(x) = \sum (x^2 - 2x\mu + \mu^2) f(x)$$

 $= \sum x^2 f(x) - 2\mu \sum x f(x) + \mu^2 \sum f(x)$
 $= E[X^2] - 2\mu^2 + \mu^2 = E[X^2] - \mu^2 = E[X^2] - E^2[X]$

Example: Recalculate the variance of a single die using the theorem.

$$\sigma^2 = \frac{1}{6}(1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2) - 3.5^2 = \frac{91}{6} - 3.5^2 \approx 2.916667$$

In general, this theorem allows a much easier calculation than the definition. Soon, we will see problems where this formula is a necessity.

Not all random variables have a finite variance. We saw earlier that we can have a random variable that does not have a finite mean. We can also have a random variable with finite mean, but not finite variance.

 $f(x) = \frac{k}{x^3}$ for $x = 1, 2, 3, \cdots$, where k is the value that makes f(x) a pmf. That is, so that $\sum_{x=1}^{\infty} \frac{k}{x^3} = 1$. This random variable has finite mean since $E[X] = \sum_{x=1}^{\infty} x \frac{k}{x^3} = \sum_{x=1}^{\infty} \frac{k}{x^2} = \frac{k\pi^2}{6}$, which is finite. To determine the variance of our random variable, we need to determine $E[X^2]$. $E[X^2] = \sum_{x=1}^{\infty} x^2 \frac{k}{x^3} = \sum_{x=1}^{\infty} \frac{k}{x}$ which diverges. So, this random variable has finite mean but not finite variance.

Theorem: Given a discrete random variable X and the linear transformation Y = g(X) = aX + b, $Var[Y] = Var[aX + b] = a^2Var[X]$. Or, we can write $\sigma_{aX+b}^2 = a^2\sigma_X^2$

Proof:
$$Var[(aX + b)] = E[\{(aX + b) - E[aX + b]\}^2] = E[\{(aX + b) - aE[X] - b]\}^2]$$

$$= E[(aX - aE[X])^2] = E[a^2(X - E[X])^2]$$

$$= a^2 E[(X - E[X])^2]$$

$$= a^2 Var[X]$$

Exercise: Given a random variable X, with variance $\sigma_X^2 = 8$, determine the variance of Y = 3X - 5.

Exercise: Given a random variable X, with variance $\sigma_X^2 = 8$, determine the variance of Y = 5 - 3X.

The E[X] is often called the **first moment** of X and $E[X^2]$ is called the **second moment** of X.

Definition: The **kth moment** of X is defined to be $E[X^k]$

These moments are important features of a random variable. Sometimes they are called the moments about the origin and then moments about the mean would be defined as $E[(X-\mu)^k]$.