Зачетные задачи

Зотов Алексей 497

May 24, 2017

Задача. 1. Построить систему интерактивных доказательств для языка GI-NO-EQUAL-CLASSES $= \{(G_1, \ldots G_m) \mid \text{в разбиении этого набора графов на классы эквивалентности по отношению изоморфизма нет двух классов одинакового размера<math>\}$

Ответ. Мы уже знаем, что $\mathsf{GNI} \in \mathbf{IP}$ и будем это использовать. Также $\mathsf{GI} \in \mathbf{NP}$. $M = \{1, \dots, m\}$ Рассмотрим такой протокол :

- 1. $\forall i \in 1, \ldots, m$ верификатор V посылает пруверу P индекс i соответствующий G_i .
- 2. P возвращает $X_i = \{(k, S_{ki}) | G_k \cong G_i\}$ множество индексов графов, изоморфных G_i и соответствующие сертификаты изоморфности. $X_i = (K_i, S_i)$ обозначение.
- $3. \ V$ проверяет полученные сертификаты.
- 4. $\forall j: j \notin K_i$ верификатор V инициирует протокол проверки, что $G_i \ncong G_j$, причем вероятность ошибки $p_{ij} \leq \frac{1}{3m^2}$.
- 5. Повторяется с пункта (1), пропуская те индексы, для которых уже найден класс изоморфности.
- 6. V проверяет, что все классы получились разного размера.

Докажем, что алгоритм корректен:

- если $(G_1, \ldots G_m) \in GI$ -NO-EQUAL-CLASSES, тогда каждый на каждой итерации прувер будет действовать наилучшим образом, положительная проверка на изоморфность и неизоморфность проходит без ошибок (с вероятностью 1).
- если $(G_1, \ldots G_m) \notin \mathsf{GI-NO-EQUAL-CLASSES}$, тогда P не может неизоморфные графы отнести в один класс, но может попробовать изоморфные графы разбить по разным классам, воспользовавшись наличем ошибки при проверке $G_i \ncong G_j$. Таких проверок не больше m^2 , значит $P_{err} \le \sum p_{ij} \le m^2 \cdot \frac{1}{3m^2} = \frac{1}{3}$.

Задача. 5. Постройте систему интерактивных доказательств с общими случайными битами для языка GROUP-NI = $\{G_0, G_1 \mid G_0, G_1 - \text{табилцы умножения двух неизоморфных конечных групп}$

Ответ. Проверить, что данные таблицы это таблицы умножения групп, верификатор может без прувера за $O(n^2)$. Достаточно проверить ассоциативность, наличие единицы и обратимость всех элементов. Нужно проверить их неизоморфность.

Рассмотрим $S = \{(H, \sigma) | H \cong G_i, i \in \{0, 1\}, \sigma \in \text{Aut} H\}$. Тогда, если $G_0 \cong G_1$, то |S| = n!, иначе $|S| = 2 \cdot n!$. Воспользуемся семейством попарно независимых полиномиально вычислимых хешфункций $H_{n,k}: 2^{\mathbf{N}} \to 2^{\mathbf{K}}$. А дальше как на лекции! TODO...

Задача. 6. Пусть G является генератором псевдослучайных чисел. Рассмотрим следующие модификации:

- $G'(s) = \left\{ egin{array}{ll} 0^{|G(s)|}, & \textit{если s содержит ровно} \ \frac{|s|}{2} \ \textit{единиц} \\ G(s), & \textit{иначе} \end{array} \right.$
- wначе $G'(s) = \left\{ \begin{array}{ll} 0^{|G(s)|}, & \textit{если s содержит ровно } \frac{|s|}{3} \; \textit{единиц} \\ G(s), & \textit{иначе} \end{array} \right.$

Какие из этих функций являются генераторами псведослучайных чисел и почему?

Ответ. Считаем n = |s|.

1.

$$G'(s) = \begin{cases} 0^{|G(s)|}, & \text{если s содержит ровно } \frac{|s|}{2} \text{ единиц} \\ G(s), & \text{иначе} \end{cases}$$
 (1)

G'(s) - не является ГПСЧ.

В s ровно $\frac{|s|}{2}$ единиц в $C_n^{\frac{n}{2}}$ различных s. Считая, что $s \sim U_n$ и воспользовавшись тем, что для достаточно больших n выполнено $C_n^{\frac{n}{2}} > \frac{2^n}{n+1}$, получим:

$$P(G(s) = 0^{p(n)}) \ge \frac{C_n^{\frac{n}{2}}}{2^n} \ge \frac{1}{n+1} \quad n \ge N_0$$
 (2)

Воспользуемся определением вычислительной неотличимости, $y_n \sim U_{p(n)}$, пусть $\{D_n\}$ - такое симейство схем, что $D_n(x)=1\iff x=0^n$. Получим : $|P\{D_n(G'(s))=1\}-P\{D_n(y_n))=1\}|\geq \frac{1}{n+1}-\frac{1}{2^n}\geq \frac{1}{2(n+1)}$. при $n\geq 10$. Также $\frac{1}{2(n+1)}\geq \frac{1}{2(p(n)+1)}$ при $n>N_p$. То есть мы получили, что $\exists \{D_n\}$, $\exists q(p(n))=\frac{1}{2(p(n)+1)}\ \forall N\exists n>N: |P\{D_n(G'(s))=1\}-P\{D_n(y_n))=1\}|\geq \frac{1}{q(p(n))}$. Значит y_n и G'(s) - не являются вычислительно неотличимыми. Значит G'(s) - не является ГПСЧ.

2. $G'(s) = \left\{ egin{array}{ll} 0^{|G(s)|}, & \text{если s содержит ровно } \frac{|s|}{3} \ \text{единиц} \\ G(s), & \text{иначе} \end{array} \right.$ G'(s) - не является ГПСЧ.

В s ровно $\frac{|s|}{3}$ единиц в $C_n^{\frac{n}{3}}$ различных s. Воспользуемся формулой Стирлинга:

$$C_n^{\frac{n}{3}} = \frac{n!}{\frac{n}{3}! \frac{2n}{3}!} \sim \frac{3}{\sqrt{4\pi n}} \frac{3^n}{2^{\frac{2n}{3}}}$$
 (3)

Обозначим событие $X=\{$ в s ровно $\frac{|s|}{3}$ единиц $\}$. Тогда, считая $s\sim U_n$, получим :

$$P\{G'(s) \neq G(s)\} \le P\{X\} \sim \frac{3^n}{2^{\frac{5n}{3}}}$$
 (4)

 $\frac{3^n}{2^{\frac{5n}{3}}}=e^{n(\ln 3-\frac{5}{3}\ln 2)}.$ Заметим, что $\ln 3-\frac{5}{3}\ln 2=c<0.$ Т.е. $P\{G'(s)\neq G(s)\}\sim\frac{3}{2\sqrt{\pi n}}e^{cn}.$ Значит $\exists N\forall n>N:P\{G'(s)\neq G(s)\}\leq\frac{3}{\sqrt{\pi n}}e^{c_0n}\leq e^{cn},\quad c_0,c<0.$

Так как G(s) - ГПСЧ, то $y_n \sim U_{p(n)}, \forall \{D_n\} \forall q_1(x)$ - полином $\exists N \forall n > N:$ $|P\{D_n(G(s))=1\} - P\{D_n(y_n)=1\}| < \frac{1}{q_1(p(n))}.$

Воспользуемся определением вычислительной неотличимости:

Высиользуемся определением вычислительной неогличимости :
$$y_n \sim U_{p(n)}, \forall \{D_n\} \forall q(x) \text{ - полином } \exists q_1(x) = \frac{q(x)}{2}, \exists N \forall n > N : |P\{D_n(G'(s)) = 1\} - P\{D_n(y_n) = 1\}| \leq |P\{D_n(G'(s)) = 1\} - P\{D_n(G(s)) = 1\}| + |P\{D_n(G(s)) = 1\}| - P\{D_n(y_n) = 1\}| < e^{cn} + \frac{1}{q_1(p(n))} < \frac{1}{q(p(n))}$$

Получили, что G'(s) и y_n вычислительно неотличимы. Значит G'(s) - ГПСЧ.

Задача. 7. Обобщённым судоку называется такая задача: в квадрате $n^2 \times n^2$ в некоторых клетках расставлены числа от 1 до n^2 . Вопрос: можно ли заполнить оставшиеся клетки числами от 1 до n^2 , так чтобы в каждой строке, в каждом столбце, а также в каждом из n^2 "выровненных" квадратов $n \times n$ каждое число встречалось по одному разу. В стандартном судоку n=3. Известно, что эта задача NP-полна. Предложите протокол доказательства существования решения с вычислительно нулевым разглашением, не использующий сводимость к какой-либо другой задаче.

Черновик ответа. Идея: Исходная таблица T_0 . P выбирает случайную перестановку $\sigma \in S_{n^2}$, записывает решение в таблицу T_1 , применяет σ к числам $\{1,\dots n^2\}$ из таблицы T_1 . "Закрывает" таблицу и перестановку σ . V использует сколько нужжно случайных бит, выбирает строку, столбец или квадрат, и просит прувера открыть в T_1 . Также выбирает случайную позицию (i,j) в исходной таблице такую, что $T_0[i,j]=x$ (т.е. в $T_0[i,j]$ записано некоторое известное число x), и просит открыть $\sigma(x)$. Проверяет на корректность строку, столбец или квадрат соответственно, а также проверяет, что $T_1[i,j]=\sigma(x)$. Случайные биты, открытие-закрытие как на лекции. Вероятность найти ошибку за 1 шаг $p\geq \frac{1}{7}n^10$.