# Recommendation Systems

Cam Tu Nguyen

阮锦绣

Software Institute, Nanjing University nguyenct@lamda.nju.edu.cn ncamtu@gmail.com

### Outline

- Recommendation Systems
- Main Approaches
  - Content-Based Recommendations
  - Collaborative Filtering
- Approximate Nearest Neighbor Search
  - Locality Sensitive Hashing

### Recommendations

#### Product Recommendations

- Online retailers such as Amazon, Alibaba
- Return users products that they might like to buy

#### Movie Recommendations

- Netflix offers its customers recommendations of movies they might like.
- The recommendations are based on ratings provided by users

#### News Articles

- News services have attempted to identify articles of interest to readers ,based on the articles that they have read in the past.
- Other applications: blogs recommendations, video recommendations on Youtube, etc.

# The Long Tail



### Recommendation Types

- Editorial
- Simple aggregates
  - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
  - Amazon, Netflix, ...

### Formal Model

- C = set of Customers
- S = set of Items
- Utility function u: C x S → R
  - R = set of ratings
  - R is a totally ordered set
  - E.g., 0-5 starts, real number in [0,1]

# **Utility Matrix**

|       | Avatar | LOTR | Matrix | Pirates |
|-------|--------|------|--------|---------|
| Alice | 1      |      | 0.2    |         |
| Bob   |        | 0.5  |        | 0.3     |
| Carol | 0.2    |      | 1      |         |
| David |        |      |        | 0.4     |

# Populating the Utility Matrix

#### Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered.

#### Implicit

- Learn ratings from user actions
- E.g., purchase implies high ratings
- What is about

# Two basic architectures for a recommendation system

- Content-based systems focus on properties of items
  - Similarity of items is determined by measuring the similarity in their properties.
- Collaborative-Filtering systems focus on the relationship between users and items.
  - Similarity of items is determined by the similarity of the ratings of those items by the users who have rated both items.

### Outline

- Recommendation Systems
- Main Approaches
  - Content-Based Recommendations
  - Collaborative Filtering
- Approximate Nearest Neighbor Search
  - Locality Sensitive Hashing

### Item Profiles

- For each item, create an item profile
- Profile is a set of features/attributes
  - Movies: author, title, actor, director, ...
  - Text: set of "important" words in document
  - Music Product: artist, composer, and genre.

### TF.IDF

- How to pick important words?
  - Use heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)
- TF.IDF
  - $f_{ij}$  = frequency of term  $t_i$  in document  $d_j$   $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$
  - n<sub>i</sub> = number of docs that mention term I
  - N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

- TF.IDF score  $W_{ij} = Tf_{ij} \times IDF_i$
- Doc profile = set of words with highest TF.IDF scores, together with their scores.

## Representing Item Profiles

- Example: Suppose the only features of movies are the set of actors and the average rating. Consider two movies with five actors each.
  - Two of the actors are in both movies
  - One movie has an average rating of 3, and the other an average of 4.

- Alpha is introduced as a scaling factor for the average rating feature.
- Similarity between 2 items can be measured using cosine

### User profiles and predictions

- User profiles describe users' preferences
- User profile possibilities
  - Average of rated item profiles.
  - Variation: normalize the utilities by subtracting the average value for a user. That way, we get negative weights for items with a below-average rating, and positive weights for items with aboveaverage rating.

•

# Recommending Items to Users Based on Content

- Given user profile c and item profile s
  - Estimate u(c,s) = cos(c,s) = c.s/(|c||s|)
  - Need efficient method to find items with high utility
    - Locality Sensitive Hashing (stay tune!)

# Limitations of content-based approach

- Find the appropriate features
  - E.g., images, movies, music
- Overspecialization
  - Never recommends items outside user's content profile
  - People might have multiple interests
- Recommendations for new users
  - How to build a profile?

## Collaborative Filtering

- Consider user c
- Find set **D** of other users whose ratings are "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D

### Similar Users

- Let r<sub>x</sub> be the vector of user x's ratings
- Cosine similarity measure
  - Sim(x,y) =  $cos(r_x, r_y)$
- Pearson correlation coefficient
  - $S_{xy}$  = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Other similarity measures: Jaccard Distance, etc.

### Similar Users

|                  | HP1 | $_{ m HP2}$ | HP3 | TW       | SW1 | SW2 | SW3 |
|------------------|-----|-------------|-----|----------|-----|-----|-----|
| $\overline{A}$   | 4   |             |     | 5        | 1   |     |     |
| B                | 5   | 5           | 4   |          |     |     |     |
| $\boldsymbol{C}$ |     |             |     | <b>2</b> | 4   | 5   |     |
| D                |     | 3           |     |          |     |     | 3   |

#### Cosine Similarity

- We can treat blanks as a 0 value (it might be not the best choice)
- The cosine of the angle between A and B is

$$\frac{4 \times 5}{\sqrt{4^2 + 5^2 + 1^2}\sqrt{5^2 + 5^2 + 4^2}} = 0.380$$

The cosine of the angle between A and C is

$$\frac{5 \times 2 + 1 \times 4}{\sqrt{4^2 + 5^2 + 1^2}\sqrt{2^2 + 4^2 + 5^2}} = 0.322$$

## Rating predictions

- Let **D** be the set of **k** users most similar to **c** who have rated item **s**
- Possibilities for prediction function (item s):

$$r_{cs} = 1/k \sum_{d \text{ in D}} r_{ds}$$

$$r_{cs} = (\sum_{d \text{ in D}} sim(c,d) r_{ds})/(\sum_{d \text{ in D}} sim(c,d))$$

## Complexity

- Expensive step is finding k most similar customers
  - For each user, O(|U|)
  - How to make it faster? (Again, Locality Sensitive Hashing comes to rescue!)
- Too expensive to do at runtime
  - Could pre-compute (e.g. using MapReduce in offline mode)
- Can use clustering, partitioning as alternatives, but quality degrades.

# Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view
  - For item s, find other similar items
  - Estimate rating for item based on ratings for similar items
  - Can use same similarity metrics and prediction functions as in user-user model.
- In practice, it has been observed that item-item often works better than user-user.

# Pros and cons of Collaborative Filtering

- Works for any kind of item
  - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
  - Cluster-based smoothing
  - Add more data.

## **Evaluating Predictions**

- Compare predictions with known ratings
  - Root-mean-square error (RMSE)
- Another approach: 0/1 model
  - Coverage
    - Number of items/users for which system can make predictions
  - Precision
    - Accuracy of predictions
  - Receiver operating characteristic (ROC)
    - Tradeoff curve between false positives and false negatives.

## Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high similarity
  - E.g. User profiles, item profiles
- We need a method to solve this problem fast! (Locality Sensitive Hashing)

### Outline

- Recommendation Systems
- Main Approaches
  - Content-Based Recommendations
  - Collaborative Filtering
- Near Neighbor Search in High Dimensional Data
  - Locality Sensitive Hashing

### Locality Sensitive Functions

- Locality-sensitive (LS) family is a family of functions that can be combined to distinguish strongly between pairs at a low distance from pairs at a high distance.
- Three conditions for a LS family function
  - They must be more likely to make close pairs be candidate pairs than distant pairs
  - They must be statistically independent
  - They must be efficient, in two ways
    - Serve to identify candidates pairs in time much less than the time it takes to look at all pairs.
    - They must be combinable to build functions that are better at avoiding false positives and negatives.

# A (d<sub>1</sub>, d<sub>2</sub>, p<sub>1</sub>, p<sub>2</sub>)-sensitive function



## Amplifying a LS-family

#### Two constructions:

- AND construction
- OR construction

#### AND of Hash functions

- Given family H, construct family H' consisting of r functions from H
- For  $h=[h_1,...,h_r]$  in H', h(x)=h(y) if and only if  $h_i(x)=h_i(y)$  for all i.
- Theorem: If H is  $(d_1, d_2, p_1, p_2)$ -sensitive, then H' is  $(d_1, d_2, (p_1)^r, (p_2)^r)$ -sensitive.

#### OR of Hash functions

- Given family H, construct family H' consisting of b functions from H
- For h=[h1, ..., hb] in H', h(x)=h(y) if and only if  $h_i(x)=h_i(y)$  for **some** i.
- Theorem: If H is  $(d_1, d_2, p_1, p_2)$ -sensitive, then H' is  $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$ -sensitive.

### **AND-OR Composition**

- Apply a r-way AND construction followed by an b-way OR construction.
- Transforms probability p into 1-(1-p<sup>r</sup>)<sup>b</sup>.
- Example: Take H and construct H' by the AND construction with r=4. Them from H', construct H'' by the OR construction with b=4.

### **AND-OR Composition**

 Example: Take H and construct H' by the AND construction with r=4. Them from H', construct H'' by the OR construction with b=4.

| р  | 1-(1-p <sup>4</sup> ) <sup>4</sup> |
|----|------------------------------------|
| .2 | .0064                              |
| .3 | .0320                              |
| .4 | .0985                              |
| .5 | .2275                              |
| .6 | .4260                              |
| .7 | .6666                              |
| .8 | .8785                              |
| .9 | .9860                              |

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

### **OR-AND Composition**

- Apply a b-way OR construction followed by an r-way AND construction.
- Transforms probability p into (1-(1-p)b)r.
- Example: Take H and construct H' by the OR construction with b=4. Then from H', construct H" by the AND construction with r =4.

### **OR-AND Composition**

 Example: Take H and construct H' by the OR construction with b=4. Then from H', construct H" by the AND construction with r =4.

| р  | (1-(1-p) <sup>4</sup> ) <sup>4</sup> |
|----|--------------------------------------|
| .1 | .0140                                |
| .2 | .1215                                |
| .3 | .3334                                |
| .4 | .5740                                |
| .5 | .7725                                |
| .6 | .9015                                |
| .7 | .9680                                |
| .8 | .9936                                |

Example: Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family.

### Summary of LS families

- Pick any two distances x < y</li>
- Start with a (x,y, (1-x), (1-y))-sensitive family
- Apply constructions to produce (x,y, p, q)-sensitive family, where p is almost 1 and q is almost 0.
- The closer to 0 and 1 we get, the more hash functions must be used.

### LSH for Cosine Distance

- Random Hyper planes
  - Convert data matrix to signature matrix (each signature corresponds to one object).
  - A  $(d_1,d_2, (1-d_1/180), (1-d_2/180))$ -sensitive family for any  $d_1, d_2$ .
- Apply hashing to the signature matrix
  - Objects in the same buckets are candidate pairs.

### Random Hyperplanes

- Pick a random vector v, which determines a hash function hv with two buckets
  - $h_v(x) = +1$  if v.x > 0; -1 if v.x < 0
- LS-family H = set of all functions derived from any vector.
- Claim: For points x and y
  - P[h(x)=h(y)] = 1 d(x,y)/180

### **Proof of Claim**



# Locality Sensitive Hashing for Cosine Distance

- Signatures for Cosine Distance
  - Pick some number of random vectors, and hash your data for each vector.
    - It suffices to consider only vectors consisting of +1 and -1 components
  - The result is a signature (sketch) of +1 and -1's for each data point.

# Locality Sensitive Hashing for Cosine Distance

- Example: Suppose our space is 4-dimensional space
  - Consider two vectors x=[3,4,5,6] and y=[4,3,2,1]
  - The cosine of the angle between x and y is 0.7875, or the angle between x and y is about 38 degrees.
  - We pick 3 random vectors: v1=[+1, -1, +1, +1]; v2=[-1, +1, -1, +1], and v3=[+1, +1, -1, -1].
    - For the vector x=[3,4,5,6], the sketch is [+1,+1, -1]
    - For the vector y=[4,3,2,1], the sketch is [+1, -1, +1]
    - The sketches for x and y agree in 1/3 of the positions, we estimate the angle between them is 120 degrees. (**not even close!**)
  - If we look at all 16 random vectors (why 16?)
    - There are only 4 of v vectors where v.x and v.y have different signs.
      - The vectors include v2, and v3
    - The estimate of the angle would have been 180/4=45 degrees.
       (better)

# Locality Sensitive Hashing for Cosine Distance

- Signatures for Cosine Distance
  - Pick some number of random vectors, and hash your data for each vector.
  - The result is a signature (sketch) of +1 and -1's for each data point.
- LSH: Partition into bands



Signature Matrix: #rows = # random vectors #columns = # data objects



### Partition into Bands (cont.)

- Divide signature matrix M into b bands of r rows.
  - Create one hash table per band.
- For each band, hash its portion of each column to its hash table
- Candidate pairs are columns that hash to the same bucket for >= band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.

### Other LSH

- LSH for Jaccard distance
- LSH for Euclidean distance
- LSH for Hamming distance

## Summary

- Recommendation Systems
- Main Approaches
  - Content-Based Recommendations
  - Collaborative Filtering
- Approximate Nearest Neighbor Search
  - Locality Sensitive Hashing