84.4 Counterexample

Proof. For any $U \subset X$, where \mathscr{F} is skycraper sheaf at $p \in X$ with value group A and \mathscr{G} is a constant sheaf on topological space X with value group A. We claim that

$$\mathcal{H}om(\mathscr{F},\mathscr{G})(U) = \operatorname{Mor}(\mathscr{F}|_{U},\mathscr{G}|_{U}) = 0$$

as an Abelian group for arbitrary $U \subset X$.

It suffices to check the above statment is correct when U=X for $\mathcal{H}om(\mathscr{F},\mathscr{G})$ is a sheaf, i.e. we need to show the group

$$\mathcal{H}om(\mathscr{F},\mathscr{G})(X) = \operatorname{Mor}(\mathscr{F},\mathscr{G}) = 0$$

Pick any natural transformation $\alpha \in \operatorname{Mor}(\mathscr{F},\mathscr{G})$. We wish to show the group homomorphism $\alpha(U)$ is 0 (i.e. sends everything to 0 in the codomain $\mathscr{G}(U)$). For an open subset U, it admits an open covering $\{U_i\}$ in which every U_i is connected. While \mathscr{G} is a sheaf, to prove $\alpha(U) = 0$ it suffices to check $\alpha(U_i) = 0$. Fix i and denote $U_i = U_0$. When $p \notin U_0$, then $\mathscr{F}(U_0) = 0$ and the map $\alpha(U_0) = 0$.

Now assume $p \notin U_0$. We can still argue $\alpha(U_0)$ is 0 group homomorphism by restrict it to a smaller open subset that doesn't contain p, because the skycraper sheaf will be 0 group.

Assume p is closed an not open, which means it's not isolated. Then $V := U \setminus \{p\}$ is an open subset that doesn't contain p, hence $\mathscr{F}(V) = 0$ by definition.

$$\begin{split} \mathscr{F}(U_0) & \xrightarrow{\alpha(U)} \mathscr{G}(U_0) = A \\ \underset{\text{Res}_{U_0V}}{\longrightarrow} & \downarrow \\ \mathscr{F}(V) = 0 & \longrightarrow \mathscr{G}(V) = \oplus A \end{split}$$

Notice that we assumed U_0 to connected, therefore $\mathscr{G}(U_0) = A$ is composed of single one copy of A. While $\mathscr{G}(V) = \bigoplus_{j \in J} A$ for some index set J. We claim that $\mathscr{G}(U_0) \to \mathscr{G}(V)$ is an injection:

• We claim that the map is in fact diagonal map by considering the following commutative diagram

Therefore by commutativity of the diagram together with the injectivity of the above map we can conclude $\alpha(U_0) = 0$ as expected.