Echtzeitverarbeitung

R. Kaiser, K. Beckmann, R. Kröger

(HTTP: http://www.cs.hs-rm.de/~kaiser EMail: robert.kaiser@hs-rm.de)

Sommersemester 2022

8. Regelungstechnische Grundlagen

https://www.stadtreporter.de/hannover/news/wirtschaft/robben-am-ball-ein-tierisch-sportlicher-geburtstag

Inhalt

- 8. Regelungstechnische Grundlagen
 - 8.1 Ziele
 - 8.2 Grundbegriffe
 - 8.3 Grundlagen der Systemtheorie
 - 8.4 Entwurf zeitkontinuierlicher Regler
 - 8.5 Unstetige Regelung
 - 8.6 Fuzzy-Regler

Regelungstechnik-Grundlagen

Grundlegende Einführung in die Regelungstechnik

- Grundbegriffe
 - Signal
 - System
 - Steuerung und Regelung
- Grundlagen der Systemtheorie
 - Differentialgleichung und Übergangsfunktion
 - ► Laplace-Transformation und Übertragungsfunktion
- Entwurf zeitkontinuierlicher Regler
 - Regelkreis
 - Klassische Regelalgorithmen
 - Stabilität
- Unstetige Regelung
- Fuzzy-Regler

Grundbegriffe: Signal

Definition: Signal

Ein Signal ist eine sich zeitlich ändernde Größe, durch die eine Information ausgedrückt wird.

- Darstellung als Funktion der Zeit: s(t)
- Formen:
 - ▶ Zeit- und wertkontinuierlich: $t, s(t) \in \mathbb{R}$ Beispiel: $s(t) = sin(2\pi ft)$
 - ▶ Wertkontinuierlich, zeitdiskret: $s(n) \in \mathbb{R}, n \in \mathbb{N}$
 - Zeit- und wertdiskret: $n, s(n) \in \mathbb{N}$ Beispiel: $s = (1, 3, 4, 4, ...) \Rightarrow s(0) = 1, s(1) = 3, s(2) = 4, ...$
 - ightarrow "Folge von Abtastwerten"
 - → Verwendung in digitalen Regelungen

Grundbegriffe: System

8.2.2

- Zuordnung von Eingangs- zu Ausgangssignal z.B. $u(t) \rightarrow y(t)$
- Rückwirkungsfrei → Kein Einfluss von Ausgang auf Eingang

Statisches System

 Der Wert der Ausgangsgröße zur Zeit t wird nur durch den Wert der Eingangsgröße zur selben Zeit t bestimmt:

$$y(t) = S(u(t)) \ \forall t \in \mathbb{R}$$

- → System "ohne Gedächtnis"
- Beispiele:
 - ▶ Ohmscher Widerstand ($U = R \cdot I$)
 - Tabelle (y = Tabelle[n];)
- Math. Beschreibung durch Funktion: y = S(u)

Dynamisches System (2)

 Der Wert der Ausgangsgröße zur Zeit t wird nur durch den bisherigen Verlauf der Eingangsgröße bis zur Zeit t bestimmt:

$$y(t) = S(u([-\infty, t]))$$

- → "Vorgeschichte" geht ein (Aber kausal: Zukunft geht <u>nicht</u> ein)
 - Mathematische Beschreibung durch Differentialgleichung
 - Beispiel: Inverses Pendel
 - Momentengleichgewicht

$$\Rightarrow M = \frac{1}{2} \cdot m \cdot g \cdot \sin \phi - J \cdot \ddot{\phi}$$

• hier: M(t) = u(t), $\phi(t) = y(t)$

Dynamisches System (2)

Weitere Eigenschaften

• Linear \rightarrow "Verzerrungsfrei"

wenn:
$$y_1(t) = S(u_1([-\infty, t]))$$

und: $y_2(t) = S(u_2([-\infty, t]))$
 $\Rightarrow y_1(t) + y_2(t) = S(u_1([-\infty, t]) + u_2([-\infty, t]))$

(N.B.: daraus folgt auch: $k \cdot y(t) = S(k \cdot u([-\infty, t])) \ \forall \ k \in \mathbb{R})$

• **Zeitinvariant**→ "unabhängig von absoluter Zeit"

wenn:
$$y(t) = S(u([-\infty, t]))$$

dann: $y(t + t_0) = S(u([-\infty, t + t_0]))$

Kausal (s.o.) → "Keine Kenntnis über die Zukunft"

"LTI-System" (linear time invariant)

Der Weg zur Differentialgleichung

	Vorgehen Allgemein	Am Beispiel inv. Pendel
1.	System in Komponenten	Gewicht, Trägheit, Drehmoment
	zerlegen	
2.	Physikalische Gesetze für	$F_g = m \cdot g \cdot \sin \phi$
	die Komponenten zusam-	$\Rightarrow M_g = F_g \cdot r = \frac{m \cdot g \cdot l}{2} \cdot \sin \phi$
	menstellen	$M_t = J \cdot \dot{\omega} = J \cdot \ddot{\phi}$
3.	Beziehungen zwischen den	Summe aller Momente ist Null:
	Komponenten aufstellen	$M - M_g + M_t = 0 \Rightarrow M = M_g - $
		M_t
4.	Gleichungen zu einer DGL	$M = \frac{m \cdot g \cdot l}{2} \cdot \sin \phi - J \cdot \ddot{\phi}$
	zusammenfassen	_
5.	ggf. DGL linearisieren	für kleine ϕ gilt: $\phi pprox \sin \phi$
		$\Rightarrow M \approx \frac{m \cdot g \cdot l}{2} \cdot \phi - J \cdot \ddot{\phi}$

Differentialgleichung: allgemeine Form

Allgemeine Form der Differentialgleichung:

$$\ldots + a_3 \cdot \dddot{y} + a_2 \cdot \ddot{y} + a_1 \cdot \dot{y} + a_0 \cdot y = \ldots + b_3 \cdot \dddot{u} + b_2 \cdot \ddot{u} + b_1 \cdot \dot{u} + b_0 \cdot u$$

- Grad der höchsten Ableitung: Ordnung des Systems
- Division durch a_0 und $T_i^n := \frac{a_i}{a_0}$, und $K_i^n := \frac{b_i}{a_0}$ ergibt:

$$\Rightarrow \ldots + T_3^3 \cdot \ddot{y} + T_2^2 \cdot \ddot{y} + T_1 \cdot \dot{y} + y = \ldots + K_3^3 \cdot \ddot{u} + K_2^2 \cdot \ddot{u} + K_1 \cdot \dot{u} + K_0 \cdot u$$

o Die T_i und K_i haben die Dimension "Zeit" o Zeitkonstanten

Steuerung (1)

Steuerung: offene Wirkungskette, keine Rückkopplung

- Ziel: Eingangssignal u(t) so, dass das gewünschte Ausgangssignal y(t) erzeugt wird
- Beispiel: invertiertes Pendel aufrichten

- d.h.:
$$\phi \stackrel{!}{=} 0$$
, $\dot{\phi} \stackrel{!}{=} 0$

- Dabei Vorgaben:
 - Möglichst schnell
 - $M(t) \leq M_{max}$
- Gesucht: M(t)

Prinzipielles Vorgehen:

- M(t) vorgeben
- Lösung der Differentialgleichung (s.o.) suchen
- ... nichtlineare DGL 2. Ordnung \rightarrow heute nicht!

$$M = \frac{1}{2} \cdot m \cdot g \cdot \sin \phi - J \cdot \ddot{\phi}$$

Steuerung (1)

Steuerung: offene Wirkungskette, keine Rückkopplung

- Ziel: Eingangssignal u(t) so, dass das gewünschte Ausgangssignal y(t) erzeugt wird
- Beispiel: invertiertes Pendel aufrichten

- d.h.:
$$\phi \stackrel{!}{=} 0$$
, $\dot{\phi} \stackrel{!}{=} 0$

- Dabei Vorgaben:
 - Möglichst schnell
 - $M(t) \leq M_{max}$
- Gesucht: M(t)

Prinzipielles Vorgehen:

- M(t) vorgeben
- Lösung der Differentialgleichung (s.o.) suchen
- ... nichtlineare DGL 2. Ordnung \rightarrow heute nicht!

$$M = \frac{1}{2} \cdot m \cdot g \cdot \sin \phi - J \cdot \ddot{\phi}$$

Steuerung (2)

Intuitive Lösung:

- **1** Beschleunigen mit $M = M_{max}$
- 2 Rechtzeitig abbremsen mit $M = -M_{max}$

• Wann ist "rechtzeitig"?

Energieerhaltungssat

$$\phi_{w} = \frac{\phi_{0}}{2} - \frac{mgl}{4M_{max}} \cdot (1 - \cos\phi_{0})$$

Steuerung (2)

Intuitive Lösung:

- **1** Beschleunigen mit $M = M_{max}$
- 2 Rechtzeitig abbremsen mit $M = -M_{max}$

• Wann ist "rechtzeitig"?

Energieerhaltungssatz

$$\phi_{w} = \frac{\phi_{0}}{2} - \frac{mgl}{4M_{max}} \cdot (1 - \cos\phi_{0})$$

Steuerung (2)

Intuitive Lösung:

- **1** Beschleunigen mit $M = M_{max}$
- 2 Rechtzeitig abbremsen mit $M = -M_{max}$

Wann ist "rechtzeitig"?

Energieerhaltungssatz:

$$\phi_{w} = rac{\phi_{0}}{2} - rac{mgl}{4M_{max}} \cdot (1 - cos\phi_{0})$$

Steuerung (3)

Bei Steuerung: Keine Rückkopplung

• Reagiert äußerst empfindlich auf kleinste Störungen bzw. Fehler:

- Beispiel
- Minimaler Fehler bei ϕ_0
- → Aufrichten misslingt (Instabiles System)

Regelung

Stellgröße M(t) aus $\phi(t)$ berechnen:

$$M(t) = a \cdot \phi(t) + b \cdot \dot{\phi}(t)$$
, wobei: $a \cdot \phi(0) + b \cdot \dot{\phi}(0) = M_{max}$

- Je nach Wahl von a und b unterschiedliches Verhalten
- Gleichgewichtszustand wird erreicht, da M(t)=0, nur wenn $\phi(t)$ und $\dot{\phi}(t)=0$

• Nachteil: Vorgang dauert länger

Kombination: Steuern + Regeln

"Vorsteuerung":

- $u(t) = u_v(t) + u_r(t)$
- ullet Vorsteuerung kann schnell das gewünschte Signal y(t) einstellen
- (kleine) Fehler dabei werden durch die Regelung kompensiert

Kombiniert Vorteile von Steuerung und Regelung:

- schnell
- eigenstabil

Grundlagen der Systemtheorie

Allgemein: System

- Eingangssignal u(t)
- Ausgangssignal y(t)
- Linear, zeitinvarient, kausal, rückwirkungsfrei (s.o)
- Kann durch eine Diffentialgleichung beschrieben werden (s.o)

Lösen der Differentialgleichung (1)

Prinzipielles Vorgehen

gegeben Differentialgleichung (s.o):

$$\ldots + T_3^3 \cdot \ddot{y} + T_2^2 \cdot \ddot{y} + T_1 \cdot \dot{y} + y = \ldots + K_3^3 \cdot \ddot{u} + K_2^2 \cdot \ddot{u} + K_1 \cdot \dot{u} + K_0 \cdot u$$

• Rechte Seite = 0 setzen \rightarrow homogene DGL

$$\ldots + T_3^3 \cdot \ddot{y} + T_2^2 \cdot \ddot{y} + T_1 \cdot \dot{y} + y = 0$$

- Ansatz: $y = A \cdot e^{s \cdot t} \ (\Rightarrow \dot{y} = A \cdot s \cdot e^{s \cdot t}, \ \ddot{y} = A \cdot s^2 \cdot e^{s \cdot t}, \ldots)$
- → Charakteristische Gleichung:

$$\dots + T_3^3 \cdot s^3 + T_2^2 \cdot s^2 + T_1 \cdot s + 1 = 0$$

• Hieraus kann s ermittelt werden \rightarrow Lösung der homogenen DGL:

$$\Rightarrow y_{hom}(t) = A \cdot e^{s \cdot t}$$

Lösen der Differentialgleichung (2)

Spezielle Lösung der inhomogenen DGL:

$$\ldots + T_3^3 \cdot \ddot{y} + T_2^2 \cdot \ddot{y} + T_1 \cdot \dot{y} + y = \ldots + K_3^3 \cdot \ddot{u} + K_2^2 \cdot \ddot{u} + K_1 \cdot \dot{u} + K_0 \cdot u$$

- \bullet Eingangsfunktion u(t) muss bekannt sein
- Anfangsbedingungen (Werte für bestimmte Zeitpunkte) müssen bekannt sein
- Wähle Ansatz für $y_{inh}(t)$ entsprechend der rechten Seite der DGL.
- Gesamtlösung ist dann:

$$y(t) = y_{hom}(t) + y_{inh}(t)$$

- Konstanten können aus Anfangsbedingungen bestimmt werden
- Keine Panik! Beispiel folgt....

Lösen der Differentialgleichung (2)

Spezielle Lösung der inhomogenen DGL:

$$\ldots + T_3^3 \cdot \ddot{y} + T_2^2 \cdot \ddot{y} + T_1 \cdot \dot{y} + y = \ldots + K_3^3 \cdot \ddot{u} + K_2^2 \cdot \ddot{u} + K_1 \cdot \dot{u} + K_0 \cdot u$$

- \bullet Eingangsfunktion u(t) muss bekannt sein
- Anfangsbedingungen (Werte für bestimmte Zeitpunkte) müssen bekannt sein
- Wähle Ansatz für $y_{inh}(t)$ entsprechend der rechten Seite der DGL.
- Gesamtlösung ist dann:

$$y(t) = y_{hom}(t) + y_{inh}(t)$$

- Konstanten können aus Anfangsbedingungen bestimmt werden
- Keine Panik! Beispiel folgt....

Beispiel (1)

$$P_{Heiz} = P_{zu} - P_{ab}$$

$$\dot{\theta} = \frac{P_{Heiz}}{C} = \frac{P_{Heiz}}{c_{H_2O} \cdot m}$$

$$P_{ab} = R_{th} \cdot (\theta - \theta_u)$$

$$= A \cdot K_{Glas} \cdot (\theta - \theta_u)$$

Gegeben ein Aquarium mit:

- Volumen: $250I \rightarrow \text{Masse } m = 250kg$
- Oberfläche: $A = 1.5m^2$
- Temperatur für t=0: $\theta(0)=$ Umgebungstemperatur $\theta_U=20^{\circ}C$
- Zugeführte Heizleistung für $t \ge 0$: $P_{zu} = 100W$

Gesucht: Temperaturverlauf $\theta(t)$ für $t \ge 0$

Materialparameter (aus Wikipedia):

- Spezifische Wärmekapazität von Wasser: $c_{H_2O} = 4,187 \cdot 10^3 \frac{J}{k\sigma \ K}$
- K-Wert (Wärmedurchgangskoeffizient) von Glas: $K_{Glas} = 5, 9 \frac{W}{m^2 \kappa}$

Aufstellen der DGL:

$$\begin{split} \dot{\theta} &= \frac{P_{zu} - P_{ab}}{c_{H_2O} \cdot m} \\ &= \frac{1}{c_{H_2O} \cdot m} \cdot (P_{zu} - A \cdot K_{Glas} \cdot (\theta - \theta_u)) \\ \Rightarrow \frac{c_{H_2O} \cdot m}{A \cdot K_{Glas}} \cdot \dot{\theta} + \theta &= \frac{P_{zu}}{A \cdot K_{Glas}} + \theta_u \\ \Rightarrow \text{DGL 1. Ordnung, } T_1 &= \frac{c_{H_2O} \cdot m}{A \cdot K_{Glas}} = 118022, 6s \end{split}$$

Beispiel (3)

Rechte Seite = 0 setzen → homogene DGL

$$T_1 \cdot \dot{\theta} + \theta = 0$$

- Ansatz: $\theta = \Theta_0 \cdot e^{s \cdot t} \ (\Rightarrow \dot{\theta} = \Theta_0 \cdot s \cdot e^{s \cdot t})$
- → Charakteristische Gleichung:

$$\begin{array}{rcl} T_1 \cdot \Theta_0 \cdot s \cdot e^{s \cdot t} + \Theta_0 \cdot e^{s \cdot t} & = & 0 \mid : \Theta_0 \cdot e^{s \cdot t} \\ \Rightarrow T_1 \cdot s + 1 & = & 0 \\ \Rightarrow s & = & -\frac{1}{T_1} \end{array}$$

→ Lösung der homogenen DGL:

$$\theta_{hom} = \Theta_0 \cdot e^{-\frac{t}{T_1}}$$

Beispiel (4)

• Spezielle Lösung der inhomogenen DGL:

$$\begin{array}{cccc} T_1 \cdot \dot{\theta} + \theta & = & \theta_u + \left\{ \begin{array}{ccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{array} \right. \\ \theta_{inh} & = & \theta_u + \left\{ \begin{array}{ccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{array} \right. \end{array}$$

Gesamtlösung:

$$\begin{array}{ll} \theta & = & \theta_{hom} + \theta_{inh} \\ & = & \Theta_0 \cdot e^{-\frac{t}{\tilde{\tau}_1}} + \theta_u + \left\{ \begin{array}{ll} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{array} \right. \end{array}$$

Beispiel (5)

 $\dot{\theta}(t)$

• Anfangsbedingungen: für $t \le 0$ gilt: $\theta(t) = \theta_u$

$$\begin{array}{lcl} \Rightarrow 0 & = & \Theta_0 + \left\{ \begin{array}{ll} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{array} \right. \\ \Rightarrow \Theta_0 & = & \left\{ \begin{array}{ll} -\frac{P_{zu}}{A \cdot K_{Glas}} & \text{für } t \geq 0 \\ 0 & \text{für } t < 0 \end{array} \right. \end{array}$$

32

Ergebnis ("Sprungantwort"):

$$\theta = \theta_u + \left(1 - e^{-\frac{t}{\tau_1}}\right) \cdot \left\{ \begin{array}{cccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{f\"{u}r } t \geq 0 \\ 0 & \text{f\"{u}r } t < 0 \\ 0 & \text{f\'{u}r } t \end{array} \right. \underbrace{\begin{array}{ccccc} 28 \\ 26 \\ 24 \\ 22 \\ 20 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}}_{Zeit \text{ in Tagen}} \underbrace{\begin{array}{ccccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{f\'{u}r } t \geq 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}}_{Zeit \text{ in Tagen}} \underbrace{\begin{array}{ccccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{f\'{u}r } t \geq 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}}_{Zeit \text{ in Tagen}} \underbrace{\begin{array}{ccccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{f\'{u}r } t \geq 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}}_{Zeit \text{ in Tagen}} \underbrace{\begin{array}{ccccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{f\'{u}r } t \geq 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}}_{Zeit \text{ in Tagen}} \underbrace{\begin{array}{ccccc} \frac{P_{zu}}{A \cdot K_{Glas}} & \text{f\'{u}r } t \geq 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \end{array}}_{Zeit \text{ in Tagen}}$$

© R. Kaiser, K. Beckmann, R. Kröger, Hochschule RheinMain

EZV SS 22

8 - 22

Spezielle Eingangsfunktionen

- Anregung des Systems wird durch eine Eingangsfunktion (auch: "Störfunktion") beschrieben
- Im vorangegangenen Beispiel: Sprungfunktion $\sigma(t)$

$$\sigma(t) = \begin{cases} 0 & \text{für } t < 0 \\ 1 & \text{für } t > 0 \end{cases}$$

(N.B.: für t = 0 ist $\sigma(t)$ streng genommen undefiniert)

Damit: Störfunktion ...

$$\theta_{inh} = \theta_u + \frac{P_{zu}}{A \cdot K_{Glas}} \cdot \sigma(t)$$

... und Sprungantwort des Beispielsystems:

$$\theta = \theta_u + \frac{P_{zu}}{A \cdot K_{Glas}} \cdot \left(1 - e^{-\frac{t}{T_1}}\right) \cdot \sigma(t)$$

Sprungfunktion

Technische Realisierbarkeit

 Unendlich schnelle Werteänderung nicht technisch realisierbar (Reale Signale sind immer stetig)

- ullet Realistische Anstiegszeigen t_a
 - ► Elektronik: < 1 ns
 - Mechanik, Thermodynamik, etc. z.T. wesentlich größer

Bedeutung

- Sprungantwort eines Systems kann (innerhalb gegebener Grenzen) experimentell ermittelt werden
- Charakterisiert das dynamische Verhalten eines Systems

Impulsfunktion

Impulsfunktion $\delta(t)$ (auch: "Dirac-Impuls" oder "Dirac-Stoß")

- $\delta(t) = 0 \ \forall \ t \neq 0$
- für t=0: unendlich hoher, unendlich schmaler Impuls der Fläche 1, d.h.: $\int\limits_{-\infty}^{+\infty} \delta(t) dt = 1$

 \bullet 1. Ableitung der Sprungfunktion: $\delta=\dot{\sigma}$

Bedeutung

- Eher theoretisches Konstrukt, technisch nicht realisierbar
- Enthält alle Frequenzen gleichermaßen
- Die "Eins der Laplace-Transformation" (s.u.)

Laplace-Transformation

Definition

$$\mathcal{L}(y(t))(s) = Y(s) = \int_{0}^{\infty} y(t) \cdot e^{-st} dt$$

Schreibweise: Y(s) $\bullet \multimap y(t)$ $(\rightarrow, Y(s)$ korrespondiert zu y(t)")

- Umkehrbar eindeutige Abbildung von Funktionen im Zeitbereich in den Bildbereich ("Laplace-Raum") mit s als neuer unabhängiger Variablen (s ist i.A. komplex: $s \in \mathbb{C}$, Dimension: Frequenz (Hz))
- Anwendbar auf Zeitfunktionen, die für t < 0 Null sind, d.h. $y(t) = y(t) \cdot \sigma(t) \ \forall \ t \in \mathbb{R}$
- Berechnung des Integrals ist i.d.R. nicht erforderlich, da es Korrespondenztabellen¹ gibt

イロト イ御 トイミト イミト 一度

Eigenschaften der L-Transformation

Hochschule RheinMain

• Linearität, Skalierung und Verschiebung:

Überlagerungssatz:
$$a \cdot u(t) + b \cdot v(t)$$
 $\circ \longrightarrow a \cdot U(s) + b \cdot V(s)$
Ähnlichkeitssatz: $u(a \cdot t)$ $\circ \longrightarrow \frac{1}{a} \cdot U\left(\frac{s}{a}\right)$
Verschiebesatz: $u(t-a)$ $\circ \longrightarrow e^{-as} \cdot U(s)$
Integration: $\int_{-\infty}^{t} u(\tau) d\tau$ $\circ \longrightarrow \frac{1}{s} \cdot U(s)$

Differentiation:

$$\begin{array}{cccc}
\dot{u}(t) & \circ & & s \cdot U(s) - u(0) \\
\ddot{u}(t) & \circ & & s^2 \cdot U(s) - s \cdot u(0) - \dot{u}(0) \\
\ddot{u}(t) & \circ & & s^3 \cdot U(s) - s^2 \cdot u(0) - s \cdot \dot{u}(0) - \ddot{u}(0) \\
& & & & & & & & & & \\
\end{array}$$

\mathcal{L} -Transformation zum Lösen einer DGL (1)

 Durch die Regel zur Differentiation werden Differentialgleichungen im Zeitbereich zu einfachen Gleichungen im Bildbereich:

$$T_1 \cdot \dot{y} + y = K_0 \cdot u$$
 $\circ \longrightarrow \bullet$ $T_1 \cdot s \cdot Y(s) - y(0) + Y(s) = K_0 \cdot U(s)$ \Rightarrow $Y(s) \cdot (T_1 s + 1) - y(0) = K_0 \cdot U(s)$

• bzw. für y(0) = 0:

$$Y(s) \cdot (T_1 s + 1) = K_0 \cdot U(s)$$

 $\Rightarrow \frac{Y(s)}{U(s)} = \frac{K_0}{T_1 s + 1} =: G(s)$

- G(s) heißt Übertragungsfunktion des Systems
- G(s) liefert eine vollständige Beschreibung des Systems (Mit Ausnahme der Anfangszustände)

\mathcal{L} -Transformation zum Lösen einer DGL (2)

Aquariumsbeispiel (s.o.)

$$T_1 \cdot \dot{ heta} + heta = K_0 \cdot \sigma(t) + heta_u$$

(wobei (s.o)
$$T_1 = \frac{c_{H_2} o \cdot m}{A \cdot K_{Glas}}$$
 und $K_0 = \frac{P_{zu}}{A \cdot K_{Glas}}$)

- Substitution: $v(t) := \theta(t) \theta_u \ (\Rightarrow \dot{v}(t) = \dot{\theta}(t))$
- Damit DGL: $T_1 \cdot \dot{v} + v = K_0 \cdot \sigma(t)$

$$\mathcal{L}\text{-Transformation:} \Rightarrow \qquad T_1\left(sY-y(0)\right)+Y=K_0\cdot\frac{1}{s}$$

$$y(0)=0 \Rightarrow \qquad Y=\frac{K_0}{T_1}\cdot\frac{1}{s\left(s+\frac{1}{T_1}\right)}$$

$$\mathcal{L}\text{-R\"{u}cktransformation:} \Rightarrow \quad y(t)=\frac{K_0}{T_1}\cdot T1\cdot\left(1-\mathrm{e}^{-\frac{1}{T_1}}\right)\cdot\sigma(t)$$

Rück-Substitution liefert gleiches Ergebnis wie oben:

$$\theta(t) = \theta_u + K_0 \cdot \left(1 - e^{-\frac{1}{T_1}}\right) \cdot \sigma(t)$$

4 D F 4 A F F A F F F F

Regelungstechnische Grundlagen

Übertragungsfunktion (1) U(s) Y(s)u(t) y(t) G(s)g(t)

 Ubertragungsverhalten eines Systems entspricht im Bildbereich einer Multiplikation mit der Übertragungsfunktion

(s.o.)
$$G(s) = \frac{Y(s)}{U(s)} \Rightarrow Y(s) = U(s) \cdot G(s)$$

- Die Impulsfunktion $\delta(t)$ ist das "1-Element" der Laplace-Transformation, d.h. es gilt: $\delta(t) \circ - 1$ (vgl. Korrespondenztabelle)
- → Bei Anregung mit einer Impulsfunktion antwortet das System mit seiner Übertragungsfunktion:

Für
$$u(t) = \delta(t)$$
 gilt: $Y(s) = 1 \cdot G(s)$ \bullet $y(t) = g(t)$

4 D > 4 A > 4 B > 4 B > B

Übertragungsfunktion (2)

• Für die Sprungantwort eines Systems gilt:

$$\sigma(t) \quad \circ \longrightarrow \quad \frac{1}{s}$$

$$\Rightarrow \text{ für } u(t) = \sigma(t) \text{ gilt:}$$

$$Y(s) = \frac{1}{s} \cdot G(s) \quad \bullet \longrightarrow \quad y(t) = \int_{0}^{t} g(\tau) d\tau$$

- → Die Sprungantwort ist das Integral über die Impulsantwort
- → Rückschluss auf die Übertragungsfunktion auch ohne "echten" Dirac-Impuls möglich

Übertragungsfunktion (3)

 Die Übertragungsfunktion eines LTI-Systems lässt sich als Quotient zweier Polynome darstellen:

• Dies lässt sich auch in *Nullstellenform* bringen::

$$G(s) = \frac{\ldots (s - \mu_2) \cdot (s - \mu_1) \cdot (s - \mu_0)}{\ldots (s - \lambda_2) \cdot (s - \lambda_1) \cdot (s - \lambda_0)}$$

- Die λ_i sind die *Pole*, die μ_i die *Nullstellen* der Übertragungsfunktion
- → LTI-System kann auch durch Pole und Nullstellen der Übertragungsfunktion charakterisiert werden

Aggregation von Systemen

• (s.o.) Verhalten eines LTI-System kann durch seine Übertragungsfunktion G(s) beschreiben werden

$$Y(s) = U(s) \cdot G(s)$$

• LTI-Systeme können als Blöcke kombiniert werden..

Serienschaltung

Wegen Rückwirkungsfreiheit gilt:

$$X(s) = U(s) \cdot G_1(s)$$

 $Y(s) = X(s) \cdot G_2(s)$
 $\Rightarrow Y(s) = U(s) \cdot G_1(s) \cdot G_2(s)$

◄□▶
□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Parallelschaltung

Addierschaltung:

$$X_1(s) = U(s) \cdot G_1(s)$$

$$X_2(s) = U(s) \cdot G_2(s)$$

$$\Rightarrow Y(s) = U(s) \cdot (G_1(s) + G_2(s))$$

Rückkopplung (Gegenkopplung)

• Grundschaltung für Regelungen:

$$X(s) = E(s) \cdot G_1(s)$$

$$E(s) = U(s) - X_M(s)$$

$$X_M(s) = X(s) \cdot G_2(s)$$

$$\Rightarrow Y(s) = U(s) \cdot \frac{G_1(s)}{1 + G_1(s) \cdot G_2(s)}$$

4□ > 4□ > 4 = > 4 = > = 90

Rückkopplung (Mitkopplung)

Analog zu Gegenkopplung:

$$X(s) = E(s) \cdot G_1(s)$$

$$E(s) = U(s) + X_M(s)$$

$$X_M(s) = X(s) \cdot G_2(s)$$

$$\Rightarrow Y(s) = U(s) \cdot \frac{G_1(s)}{1 - G_1(s) \cdot G_2(s)}$$

4□ > 4□ > 4 = > 4 = > = 90

Verschieben von Summationsstellen

Verschieben von Verzweigungsstellen

Wichtige Übertragungsfunktionen

Name	DGL	G(s)	SprungAW	Symbol
P-Glied	$y = K \cdot u$	К	у к	K y
I-Glied	$y = K \cdot \int_{0}^{\infty} u(\tau) d\tau$	<u>K</u> s	y Kt	u y
D-Glied	$y = K \cdot \dot{u}$	K·s	у 4 К 8(t)	u y
TZ-Glied $(T_t$ -Glied)	$y = K \cdot u(t - T)$	K · e ^{−T·s}	y	u y
VZ_1 -Glied $(PT_1$ -Glied)	$T\dot{y} + y = K \cdot u$	$\frac{K}{1+Ts}$	У <u>К(1 -</u> е ^{-үг})	u y
VD_1 -Glied (DT ₁ -Glied)	$T\dot{y} + y = KT\dot{u}$	KTs 1+Ts	y Ke of	u y y

Experimentelle Bestimmung der Ü-Fkt. (1)

Genaue physikale Zusammenhänge sind mitunter nicht bekannt

- → Es kann kein math. Modell des Systems aufgestellt werden
- → Vorgehen:
 - Annahme eines (näherungsweise) passenden, parametrisierten Modells
 - ► Ermitteln der Parameter durch Messungen im Zeitbereich

Experimentelle Bestimmung der Ü-Fkt. (2)

- Viele praktische Systeme können durch ein Übertragungsglied 2. Ordnung (PT₂-Glied) approximiert werden.
- Normierte Übertragungsfunktion eines PT₂-Gliedes:

$$G_n(s) = \frac{1}{\left(\frac{s}{\omega_0}\right)^2 + 2 \cdot \zeta \cdot \left(\frac{s}{\omega_0}\right) + 1} = \frac{\omega_0^2}{s^2 + 2 \cdot \zeta \cdot \omega_0 \cdot s + \omega_0^2}$$

darin sind:

 ω_0 : Kennkreisfrequenz (Resonanzfrequenz) des Systems

C: Dämpfung des Systems

• Polstellen von $G_n(s)$...:

$$\lambda_{1,2} = -\zeta \omega_0 \pm \omega_0 \sqrt{\zeta^2 - 1}$$

... bestimmen das Zeitverhalten

Experimentelle Bestimmung der Ü-Fkt. (3)

Normierte Sprungantwort

 \rightarrow Anregung mit $u(t) = \sigma(t) \bullet - \circ U(s) = \frac{1}{2}$:

$$Y_n(s) = G_n(s) \cdot \frac{1}{s} = \frac{\omega_0^2}{s^2 + 2 \cdot \zeta \cdot \omega_0 \cdot s + \omega_0^2} \cdot \frac{1}{s}$$

Laplace-Rücktransformation (längere Rechnung...)

$$\begin{split} & \text{für } \zeta \leq 1: \\ & y_n(t) = & 1 - \mathrm{e}^{-\zeta \omega_0 t} \cdot \left(\cos(\sqrt{1-\zeta^2} \omega_0 t) + \frac{\zeta}{\sqrt{1-\zeta^2}} \sin(\sqrt{1-\zeta^2} \omega_0 t) \right) \end{split}$$

für
$$\zeta \geq 1$$
:

$$y_n(t) = 1 - e^{-\zeta \omega_0 t} \frac{1}{2} \cdot \left((1 - \frac{\zeta}{\sqrt{\zeta^2 - 1}}) \cdot e^{-\sqrt{\zeta^2 - 1} \omega_0 t} + (1 + \frac{\zeta}{\sqrt{\zeta^2 - 1}}) \cdot e^{\sqrt{\zeta^2 - 1} \omega_0 t} \right)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆○○○

Experimentelle Bestimmung der Ü-Fkt. (4)

Sprungantwort eines Systems ist i.d.R. gut messbar

Mögliche Fälle:

- $\zeta < 0$: Instabil (System "explodiert")
- $\zeta=0$: System schwingt ungedämpft (Mit Frequenz $F=\frac{\omega_0}{2\pi}$)
- ullet 0 < ζ < 1: Abklingende Schwingung
- ullet $\zeta=1$: "Aperiodischer Grenzfall"
- $\zeta > 1$: Strebt gegen Endwert, keine Schwingung

Vorgehen:

- Messen der Sprungantwort
- Ermitteln der Parameter (ζ , ω_0 , Skalierfaktor)

Oft genügen schon ungenaue Werte als Anhaltspunkte

Experimentelle Bestimmung der Ü-Fkt. (5)

Faustregeln ...

Faustformeln:

$$(t_s = \text{Ausregelzeit für } \epsilon = 0.05)$$

•
$$\zeta \approx \sin\left(\arctan\left(\frac{1}{\pi}\ln\frac{1}{M_p}\right)\right)$$

•
$$\omega_0 \approx \frac{3}{\zeta \cdot t_s}$$

• Wert für $t \to \infty$: $e_{\infty} \Rightarrow$ Proportionalfaktor:

$$K=rac{1}{e_{\infty}}-1$$

Damit nicht-normierte Übertragungsfunktion:

$$G(s) = \frac{K}{1 + \frac{2\zeta}{\omega_0}s + \frac{1}{\omega_0^2}s^2}$$

Entwurf zeitkontinuierlicher Regler

Allgemeine Reglerstruktur:

Übertragungsfunktion:

$$G(s) = \frac{R(s)H(s)}{1 + R(s)H(s)}$$

Idealziel:

- Entwurf eines Reglers so dass gilt: $e(t) = 0 \ \forall t$
- Kein Einfluss von Störungen auf Regel- und Messgrößen

Theoretisch erreichbar durch $|R(s)| \to \infty \Rightarrow G(s) \to 1$

Gütekriterien

Beschränkung auf erreichbare Forderungen

- Der Regelkreis soll stabil bleiben und nicht schwingen
- Der Regelkreis soll der Führungsgröße w(t) unabhängig von äußeren Störeinflüssen möglichst schnell und genau folgen (→ er soll gutes "Führungsverhalten" zeigen)

Gütekriterien:

- Stabilität
- Schnelligkeit
- Genauigkeit

Gütekriterien

Beschränkung auf erreichbare Forderungen

- Der Regelkreis soll stabil bleiben und nicht schwingen
- Der Regelkreis soll der Führungsgröße w(t) unabhängig von äußeren Störeinflüssen möglichst schnell und genau folgen (→ er soll gutes "Führungsverhalten" zeigen)

Gütekriterien:

- Stabilität
- Schnelligkeit
- Genauigkeit

Im Folgenden näher betrachtet

Stabilität

Definition: E/A-Stabilität (Auch: "BIBO(*)-Stabilität")

Ein LTI-System heißt E/A-stabil, wenn für verschwindende Anfangswerte $x^{(i)} = 0$ und ein beschränktes Eingangssignal:

$$|w(t)| < w_{max} \forall t > 0$$

das Ausgangssignal beschränkt bleibt:

$$|u(t)| < u_{max} \forall t > 0$$

Anders ausgedrückt:

 Ein System ist stabil, wenn zu einer beschränkten Eingangsgröße eine beschränkte Ausgangsgröße gehört

(*)(BIBO: Bounded Input Bounded Output)

Asymptotische Stabilität (1)

Definition: Asymptotische Stabilität

Ein LTI-System heißt asymptotisch stabil, wenn seine Ausgangsvariable u(t) mit der Zeit eindeutig nach Null strebt bei einer ebenfalls nach Null strebenden Eingangsvariable w(t):

$$\lim_{t\to\infty} u(t) = 0$$
 wenn $\lim_{t\to\infty} w(t) = 0$

 D.h. ein asymptotisch stabiles System kehrt nach Abklingen einer Störung in seinen Ruhezustand zurück

Bedingung:

• Ein System ist asymptotisch stabil wenn die Pole (=Nullstellen des Nenners der Übertragungsfunktion) einen negativen Realteil haben.

Asymptotische Stabilität (2)

Beispiel PT₂-Glied (s.o.)

• Normierte Übertragungsfunktion:

$$G_n(s) = \frac{\omega_0^2}{s^2 + 2 \cdot \zeta \cdot \omega_0 \cdot s + \omega_0^2} = \frac{\omega_0^2}{(s - \lambda_1)(s - \lambda_2)}$$

Wobei:
$$\lambda_{1,2} = -\zeta \omega_0 \pm \omega_0 \sqrt{\zeta^2 - 1}$$
 (Polstellen von $G_n(s)$)

- → Instabil für ζ < 0
- ightarrow Stabil für $0<\zeta<1\Rightarrow\Re\left\{\lambda_{1,2}\right\}=-\zeta\omega_{0}<0$
- ightarrow Stabil für $\zeta>1$ da $\sqrt{\zeta^2-1}<\zeta$

Weitere Kriterien (Hurwitz-, Routh-, Nyquist,- Phasenrand-) hier nicht behandelt \rightarrow [Lunze], [Wörn/Brinkschulte]

Dynamisches Verhalten (1)

- Zur Spezifikation von Stabilität und Schnelligkeit: Betrachte Sprungantwort
- "relative Stabilität" oder Stabilitätsgüte: Sprungantwort soll möglichst schnell auf stationären Wert gehen
- wichtige Maße: Überschwingweite M_p , Ausregelzeit t_s

- $M_p = \frac{y(t_p)}{y(\infty)}$
- ightarrow Überschwingen (*overshoot*): $M_o = M_p 1$, $\ddot{\mathrm{u}}(\%) = 100 \cdot M_o$

Dynamisches Verhalten (2)

Genauigkeit: Integralkriterien, z.B.:

• "ISE"-Kriterium (integral of squared error)

$$Q_1 = \int\limits_0^\infty \left(1 - y(t)\right)^2 dt$$

"IAE"-Kriterium (integral of absolute error)

$$Q_2 = \int\limits_0^\infty |1 - y(t)| \, dt$$

Neben den hier vorgestellten, anwendungsunabhängigen Verfahren werden in der Praxis auch anwendungsabhängige Kriterien verwendet (z.B. "Benchmarkbahnen" bei Robotern)

PID-Regler

- In der Praxis i.d.R. kein Entwurf neuer Reglertypen
- Stattdessen Anpassen eines Standardreglers, so dass Gütekriterien (s.o.) erfüllt sind
- Am häufigsten verwendet: *PID*-Regler:
 - Propotional-Anteil
 - ► Integral-Anteil
 - Differenzial-Anteil

PID-Regler: P-Anteil

- P-Anteil: Stellgröße y(t) Proportional zur Regeldifferenz e(t)
- Faktor (Verstärkung): K_p
- ⇒ Übertragungsfunktion:

$$G(s) = \frac{R(s)H(s)}{1+R(s)H(s)} = \frac{K_pH(s)}{1+K_pH(s)}$$

- Da für reale Regelstrecke i.A. gilt: $K_pH(s)>0$ ist |G(s)|<1, also $U(s)\neq W(s)$
- → Problem: Bleibende Regelabweichung
- → Regler **muss** um einen I-Anteil erweitert werden.

PID-Regler: PI-Anteil

• Übertragungsfunktion eines PI-Reglers mit Nachstellzeit T_N :

$$R(s) = K_P \cdot \left(1 + \frac{1}{T_N s}\right)$$

- Keine bleibende Regelabweichung
- Aber: Regelung reagiert langsam
- Abhilfe: Änderungen der Regeldifferenz e(t) stärker betonen
- → Regler um einen D-Anteil erweitern.

PID-Regler und PD-Regler

• Allgemeine Übertragungsfunktion eines PID-Reglers:

$$R(s) = K_P \cdot \left(1 + \frac{1}{T_N s} + T_v s\right)$$

• Falls höhere Verstärkung erforderlich und einfaches Erhöhen von K_p zur Instabilität führt: **PD**-Regler:

$$R(s) = K_P \cdot (1 + T_v s)$$

P & I Qualitativ

P-Glied

- Verändert Stellsignal proportional zu Regeldifferenz ("Je größer die Abweichung desto größer die Stellgröße")
- Verstärkungsfaktor K_p bestimmt Regelgeschwindigkeit (" Je höher desto schneller")
- Zu hoher Verstärkungsfaktor führt zu Instabilität
- Es bleibt eine dauerhafte Regeldifferenz

I-Glied

- Integriert die Regeldifferenz ("Solange Regelabweichung \rightarrow Stellgröße verändern")
- Regeldifferenz wird immer ausgeregelt
- Kann zu Instabilität führen

D Qualitativ

D-Glied

- Differenziert die Regeldifferenz ("Je stärker die Änderung der Regelabweichung desto stärker muss Stellgröße verändert werden")
- Verbessert i.d.R. Regelgeschwindigkeit und dynamische Regelabweichung
- Verstärkt besonders hochfrequente Anteile (Rauschen)
 - → Neigung zum Schwingen

Einstellregeln für PID-Regler (1)

Methode nach Ziegler und Nichols

- **1** Zunächst reiner P-Regler mit minimalem K_p
- $(\rightarrow \mathsf{Stabilit"atsgrenze} \ \mathsf{und} \ \mathsf{krit}. \ \mathsf{Verst"arkung} \ \mathsf{K}_{pkr} \ \mathsf{erreicht})$
- \odot Schwingungsdauer T_{kr} bei krit. Verstärkung messen

Dann Regelparameter:

P-Regler	$K_p = 0, 5K_{pkr}$
PI-Regler	$K_p = 0,45K_{pkr}$
	$T_N = 0.85 T_{kr}$
PID-Regler	$K_p = 0,6K_{pkr}$
	$T_N = 0,5T_{kr}$
	$T_V = 0, 12 T_{kr}$

Einstellregeln für PID-Regler (2)

Weitere Verfahren

- Kompensationsreglerentwurf
- T-Summen Einstellverfahren
- Einstellregel von Chien, Hrones und Reswick (CHR)

Hier nicht weiter vertieft→[Wörn/Brinkschulte]

Unstetige Regelung

Statische Kennlinie eines Reglers

- Beschreibt das Übertragungsverhalten für statische (d.h. konstante) Signale
- Entsteht aus DGL durch Nullsetzen aller Ableitungen:

$$\dots T_2^2 \cdot \ddot{y} + T_1 \cdot \dot{y} + y = \dots + K_2^2 \cdot \ddot{u} + K_1 \cdot \dot{u} + K_0 \cdot u$$

$$\Rightarrow y_R = K_0 \cdot u$$

Stetige Regler

- Bisher betrachtete Regler:
 Statische Kennlinie ist eine stetige
 Funktion
- Voraussetzung für LTI-System: statische Kennlinie ist zudem (zumindest stückweise) linear

Unstetige Regelung

Dagegen unstetiger Regler

- Einfachste Form: Zweipunktregler
- Nur zwei diskrete Zustände
 - Regeldifferenz $> 0 \rightarrow Ein$
 - 2 Regeldifferenz $\leq 0 \rightarrow Aus$

Technische Realisierung...

- ... ist denkbar einfach ...
 (z.B. Bimetallschalter,
 Kontaktthermometer, Relais, ...)
- ... und damit preiswert.

Zweipunktregler

Einfachster unstetiger Regler

- Wohl der am weitesten verbreitete Regler (da einfach und billig)
- Zahlreiche Anwendungsbeispiele Kühlschrank, Bügeleisen, Heizkörperventil, Lichtmaschinen-Reglerschalter, ...

Hauptnachteil:

- Istwert pendelt ständig um den Sollwert
- Bei einfachen Systemen kein Problem
- Durch geeignete Maßnahmen (Meßgenaugkeit) lässt sich die Pendelamplitude sehr weit reduzieren
- → Dann auch für komplexere Anwendungen nutzbar
 - Dann ist aber auch der Preisunterschied zu stetigen Reglern nicht mehr groß

Zweipunktregler ohne Hysterese

Beispiel: Aquarium (s.o.)

$$x = K_1 \cdot \left(1 - e^{-\frac{t}{T_1}}\right) \cdot \sigma(t)$$

- Modellierung der Thermometer-Trägheit durch Laufzeit T_t
- Annahme: Thermometer-Schaltpunkt in beide Richtungen gleich

Modell:

Temperaturverlauf (1)

- Inbetriebnahme bei t = 0
- Solltemperatur *w*
- Anfangstemperatur x_A
- Endtemperatur x_E

- ^aAus [Zacher/Reuter]
- \rightarrow Periodische Temperaturschwankung um Mittelwert $x_3 \ (\neq w!)$
- \rightarrow Amplitude der Schwankung x_0 , Mittelwertabweichung x_{MA}

Temperaturverlauf (2)

Schwankungsamplitude x₀

• x_1 , x_2 : oberer/unterer Grenzwert

$$x_1 = w + (x_E - w) \cdot (1 - e^{-\frac{T_t}{T_1}})$$
 , $x_2 = w \cdot e^{-\frac{T_t}{T_1}}$
 $\Rightarrow 2 \cdot x_0 = x_1 - x_2 = x_E \cdot (1 - e^{-\frac{T_t}{T_1}})$

N.B: hängt nicht von w ab

Mittelwert x_3 und Mittelwertabweichung x_{MA}

$$x_{3} = \frac{x_{1} + x_{2}}{2} = \frac{1}{2} \cdot \left(x_{F} \cdot (1 - e^{-\frac{T_{t}}{T_{1}}}) + 2w \cdot e^{-\frac{T_{t}}{T_{1}}} \right)$$

$$x_{MA} = w - x_{3} = \left(w - \frac{x_{E}}{2} \right) \cdot \left(1 - e^{-\frac{T_{t}}{T_{1}}} \right)$$

Temperaturverlauf (3)

- sollwertabhängig
 Für $w = \frac{x_E}{2} \rightarrow x_{MA} = 0$
- Symmetrischer Betrieb
- Dann: $t_e = t_a = T_t$

Kurvenform ist

- ^aAus [Zacher/Reuter]
- $\rightarrow \ \, \text{Schwingungsdauer im symmetrischen Betrieb:}$

$$T_0 = 2t_e + 2t_a = 4T_t$$

Modell in SciCosLab

Regelungstechnische Grundlagen

Linearisierung

Für kleine x₀: Annähernd lineare Verläufe

• Dreiecke ABC und Aab sind \ddot{a} hnlich $\ddot{AB} = \ddot{ab} = \frac{x_E}{2} = x_0$

$$x_0 \approx \frac{x_e}{2} \cdot \frac{T_t}{T_1}$$

^aAus [Zacher/Reuter]

Linearisierung

Für kleine x_0 : Annähernd lineare Verläufe

^aAus [Zacher/Reuter]

 Dreiecke ABC und Aab sind ähnlich

 x_E

$$\Rightarrow \frac{\overline{AB}}{\overline{BC}} = \frac{\overline{ab}}{\overline{Ab}} \Rightarrow \frac{\frac{x_E}{2}}{\overline{T_1}} = \frac{x_0}{\overline{T_t}}$$

⇒ Faustformel

$$x_0 \approx \frac{x_e}{2} \cdot \frac{T_t}{T_1}$$

Linearisierung

Für kleine x₀: Annähernd lineare Verläufe

^aAus [Zacher/Reuter]

• Dreiecke ABC und Aab sind ähnlich

$$\Rightarrow \frac{\overline{AB}}{\overline{BC}} = \frac{\overline{ab}}{\overline{Ab}} \Rightarrow \frac{\frac{x_E}{2}}{T_1} = \frac{x_0}{T_t}$$

⇒ Faustformel:

$$x_0 \approx \frac{x_e}{2} \cdot \frac{T_t}{T_1}$$

Regelungstechnische Grundlagen Unstetige RegelungSchaltfrequenz und Schwingdauer (1)

- Schwingdauer $T_0 = 2T_t + t_1 + t_2$
- Ausserdem $w = x_1 \cdot e^{-\frac{t}{T_1}}$
- und (s.o.):

$$x_1 = w + (x_E - w) \cdot (1 - e^{-\frac{T_t}{T_1}})$$

^aAus [Zacher/Reuter]

$$ightarrow$$
 ... (längere Rechnung): $t_1 = T_1 \cdot ln \left(rac{x_E}{w} + \left(1 - rac{X_E}{w}
ight) \cdot e^{-rac{T_t}{T_1}}
ight)$

Schaltfrequenz und Schwingdauer (2)

• Analog für t₂:

$$w - x_2 = (x_e - x_2)(1 - e^{-\frac{t_2}{T_1}})$$

$$e^{-\frac{t_2}{T_1}} = 1 - \frac{w - x_2}{x_E - x_2} = \frac{x_E - w}{x_E - x_2}$$

$$\Rightarrow t_2 = R_1 \cdot \ln \frac{x_E - x_2}{x_E - w}$$

• mit (s.o. $x_2 = w \cdot e^{-\frac{I_t}{T_1}}$:

$$t_2 = T_1 \cdot ln \frac{x_E - w \cdot e^{-\frac{r_E}{T_1}}}{x_E - w}$$

$$\Rightarrow T_0 = 2T_t + T_1 \cdot ln \left[\left(\frac{1}{1 - \frac{w}{v_t}} - e^{-\frac{T_t}{T_1}} \right) \cdot \left(\frac{x_E}{w} - e^{-\frac{T_t}{T_1}} \right) \right]$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺

Schaltfrequenz und Schwingdauer (3)

Abhängigkeit der Schwingdauer vom Sollwert:

- Für $w=\frac{x_E}{2}$ ist unabhängig von T_t Schwingdauer minimal, d.h. die Schaltfrequenz maximal
- Vernünftiger Regelbereich etwa $0.2x_E < w < 0.8x_E$

- Für $T_t \rightarrow 0$ wird die Schwankungsbreite 0
- ⇒ Totzeit sollte minimiert werden
 - Allerdings wird dann auch $T_0 = 0$, d.h. die Schaltfrequenz wird unendlich
 - Mechanische Kontakte stoßen hier schnell an Grenzen

Zweipunktregler mit Hysterese

Hysterese

- Reale Zweipunktregler sind stets Hysterese-behaftet
- Im Gegensatz zum Idealfall ohne Hysterese zwei Schaltschwellen:
 - **1** Einschalten bei $x = +x_L$
 - 2 Abschalten bei $x = -x_I$
 - Entsteht z.B. durch Restmagnetisierung bei Relais:

Einschaltstrom ist h\u00f6her als Abschaltstrom

 y_{Rmax}

 y_R

2x_I

Beispiel: Aquarium (s.o.)

Modell:

Temperaturverlauf:

- Inbetriebnahme bei t = 0
- Anfangstemperatur 0
- Endtemperatur x_E
- Solltemperatur0 < w < x_F

- ^aAus [Zacher/Reuter]
- © R. Kaiser, K. Beckmann, R. Kröger, Hochschule RheinMain

Temperaturverlauf

- $\rightarrow \ \mathsf{Periodische} \ \mathsf{Schwankung}$
- Symmetrisch um Sollwert w
- $_{a}$ \rightarrow Amplitude: $2x_{L}$

- ^aAus [Zacher/Reuter]
- Schwingdauer und Frequenz:

$$2 \cdot x_{L} = (x_{E} - w + x_{L}) \cdot (1 - e^{-\frac{t_{e}}{T}}) \qquad w - x_{L} = (w + x_{L}) \cdot e^{-\frac{t_{a}}{T}}$$

$$\Rightarrow t_{e} = T \cdot \ln \frac{x_{E} - w + x_{L}}{x_{F} - w - x_{I}} \qquad \Rightarrow t_{a} = T \cdot \ln \frac{w + x_{L}}{w - x_{I}}$$

 $\Rightarrow t_e$, t_a proportional zu T, für $w = \frac{x_E}{2}$ ist $t_a = t_e$

Schwingdauer und Frequenz (1)

• Schwingdauer $T_0 = t_e + t_a$

$$\Rightarrow T_0 = T \cdot \left(ln \frac{x_E - w + x_L}{x_E - w - x_L} + ln \frac{w + x_L}{w - x_L} \right)$$

- Für $w = \frac{x_E}{2}$ ist die Schwingdauer minimal, d.h. die Schaltfrequenz maximal
- Vernünftiger Regelbereich etwa $0.2x_F < w < 0.8x_F$

Schwingdauer und Frequenz (2)

- Ziel für möglichst kleine Schwingungsbreite: kleine Hysterese
- Allerdings wird für $x_L \to 0$ die Schwingungsdauer $T_0 \to 0$, d.h. die Schwingungsfrequenz $f_0 = \frac{1}{T_0} \to \infty$
- Die maximale Frequenz ergibt sich bei $w = \frac{x_E}{2}$, dann gilgt

$$T_{0min} = T \cdot 2 \cdot ln \frac{0.5x_E + x_L}{0.5x_E - x_L} = 2Tln \frac{1 + 2\frac{x_L}{x_E}}{1 - 2\frac{x_L}{x_E}}$$

• Näherung (Reihenentwicklung) für $\frac{2x_L}{x_F} \ll 1$:

$$T_{0min} \approx 2 \cdot T \cdot 2 \cdot 2 \cdot \frac{x_L}{x_E} = 8T \cdot \frac{x_L}{x_E}$$

Maximale Schaltfrequenz:

$$f_{0max} \approx \frac{x_E}{8Tx_L}$$

Exakte Werte durch Simulation ...

8.5.2

• Simulation in Scicos: Aquarium mit Hysterese ($x_L = 0.5 \cdot x_E$) und Totzeit $T_t = 10000$

- Daraus abgelesen:
 - $T_0 = 168.100 91.490 = 76.600s$
 - $2x_0 = 6.6^{\circ}C 4.7^{\circ}C = 1.9^{\circ}C$

Dreipunktregler

 Zweipunktregler sind für Stellglieder mit Motorantrieb nicht gut geeignet (keine Möglichkeit zur Richtungsumkehr)

- Daher: Dreipunktregler
- Weiterer Vorteile:
- Ruhezustand <u>ohne</u>
 Dauerschwingen ist möglich
- "Abgestufte" Reaktion

Dreipunktregler: Statische Kennlinie

Motivation

Vorgehensweise bisher:

- Eigenschaften der Regelstrecke bestimmen (z.B. experimentell aus SPrungantwort oder durch Modellierung)
- Wahl eines Reglers (z.B. PID), Festlegung seiner Anforderungen (Überschwingen, Ausregelzeit)
- Simulation, Optimierung, Test

Probleme dabei:

- Eigenschaften der Regelstrecke sind nicht immer konstant und nicht einfach zu berücksichtigen
- "Experten" können das System dennoch beherrschen
- → **Frage:** Wie kann man Expertenwissen auf Regler übertragen?

Regelbasis

Beispiel:

- Der Bremsweg eines Zuges hängt ab von Beladung, Wetter, Steigung ...
- Trotzdem bekommt ein erfahrener Lokführer i.d.R eine Zielbremsung hin (.. und das ohne große Physik-Kenntnisse)
- Würde man den Lokführer fragen, wie er denn den Bremsweg "regelt", so wäre die Antwort in etwa:
 - "WENN es nicht regnet UND es warmes Wetter ist, UND viele Passagiere an Bord sind, DANN ..."
- → Ziel bei der Entwicklung eines "Expertenreglers": eine möglichst vollständige Liste solcher Regeln zusammen- stellen, in der alle vorstellbaren Fälle berücksichtigt sind
- → Diese Liste ist die **Regelbasis**

Unscharfe Begriffe

• Fragen:

- ▶ was genau ist "warmes Wetter" (wieviele ° C …)
- wieviel sind "viele Passagiere" (genaue Anzahl …)
- Umgangssprachliche Begriffe wie "warm", "kalt", "schnell" sind zwar verständlich, aber dennoch unscharf (engl.: fuzzy)
- Gesucht: math. Methoden zur Verarbeitung unscharfer Begriffe
- Erster Schritt: *Fuzzyfizierung*:
 - Umwandlung exakter Eingangsgrößen in linguistische Variablen
 - Frmitteln eines Maßes der "Zugehörigkeit" des Wertes zu unscharfen Begriffen anhand von Zugehörigkeitsfunktionen μ .

Fuzzyfizierung

Beispiel: Temperatur $\theta = 18^{\circ} C$:

$$\mu_{sehrkalt}(\theta) = 0$$
 $\mu_{kalt}(\theta) = 0, 2$
 $\mu_{mittel}(\theta) = 0, 8$
 $\mu_{warm}(\theta) = 0$

- → "zu 20% kalt und zu 80% mittel"
- $\mu_{\mathbb{A}}$: Zugehörigkeitsgrad zu einer *unscharfen Menge*² \mathbb{A}
- Wird gewöhnlich aus Trapez-/Dreieckformen (s. Beispiel) oder Gaußfunktionen zusammengesetzt

Inferenz

Nächster Schritt: Verarbeitung Inferenz der linguistischen Variablen

- Anwenden der Regelbasis auf die "fuzzifizierten" Eingangsgrößen
- Aus mehr oder weniger erfüllten Prämissen der Regeln ("WENN
 UND ...") ergeben sich Folgerungen (Konklusionen)
 ("...DANN....")
- Diese können sich teilweise widersprechen
- Auch hier ergeben sich unscharfe Größen:
 - ▶ Folgerungen sind meist nicht zu 100% erfüllt
 - "Erfülltheitsgrad" als Maß der Wirksamkeit
- Inferenz umfasst drei Schritte:
 - 4 Aggregation: Bestimmen des Erfülltheitsgrades der Prämisse
 - 2 Implikation: Bestimmen des Erfülltheitsgrades der Konklusion
 - 3 Akkumulation: Zusammenfassen der Ergebnisse aus allen Regeln

Aggregation

 Die Regelbasis besteht aus Prämissen und zugeordneten Konklusionen:

Regel Nr.	Prämisse	Konklusion
1	WENN UND	DANN
2	WENN ODER	DANN
3	WENN NICHT	DANN

- Aggregation: Anwenden der Prämissen auf linguistische Variablen
- Fragen:
 - ▶ Wie bildet man UND- und ODER-Verknüpfungen linguistischer Variablen?
 - ▶ Was ist das "Gegenteil" (NICHT) einer linguistischen Variablen?

UND: Schnittmenge

- Die Schnittmenge $\mu_{\mathbb{S}}$ zweier unscharfer Mengen 3 $\mu_{\mathbb{A}}$ und $\mu_{\mathbb{B}}$ entspricht der logischen UND-Verknüpfung
- wird als *t-Norm* $(\mu_{\mathbb{A}}UND\mu_{\mathbb{B}})$ bezeichnet
- Entspricht dem Minimum-Operator: $\mu_{\mathbb{S}} = MIN(\mu_{\mathbb{A}}, \mu_{\mathbb{B}})$:

ODER: Vereinigungsmenge

- Die Vereinigungsmenge $\mu_{\mathbb{V}}$ zweier unscharfer Mengen $\mu_{\mathbb{A}}$ und $\mu_{\mathbb{B}}$ entspricht der logischen ODER-Verknüpfung
- wird als *t-CoNorm* ($\mu_{\mathbb{A}}ODER\mu_{\mathbb{B}}$) bezeichnet
- Entspricht dem Maximum-Operator: $\mu_{\mathbb{V}} = MAX(\mu_{\mathbb{A}}, \mu_{\mathbb{B}})$:

NICHT: Komplementärmenge

- Die Komplementärmenge $\mu_{\mathbb{K}}$ einer unscharfen Menge $\mu_{\mathbb{A}}$ entspricht dem logischen NICHT-Operator
- Entspricht der Subtraktion von 1: $\mu_{\mathbb{K}} = NOT(\mu_{\mathbb{A}}) = 1 \mu_{\mathbb{A}}$:

Implikation

- Regeln der Regelbasis liefern für jeder Prämisse wiederum linguistische Variablen als Ergebnis
- Diese werden mit dem Erfülltheitsgrad der Prämisse gewichtet
- Zu betrachten: alle aktiven Regeln: Alle Regeln mit einem Erfülltheitsgrad > 0
- Beispiel: Regelbasis:

Regel Nr.	Prämisse	Konklusion
1	WENN e_1 ist negativ UND e_2 ist null	DANN y ist klein
2	WENN e1 ist null UND e2 ist null	DANN v ist mittel

Regelungstechnische Grundlagen

Implikation: Beispiel

Akkumulation

a) Jede aktive Regel liefert eine unscharfe Ergebnismenge

b) Ergebnismengen werden durch ODER-Verknüpfung zu einer unscharfen Vereinigungsmenge zusammengefaßt

^aAus [Zacher/Reuter]

Defuzzyfizierung (1)

- Ergebnis der Inferenz: unscharfe Menge ("Fläche im Diagramm")
- Defuzzyfizierung: daraus einen scharfen Wert ermitteln
- Verschiedene Methoden sind möglich, meist wird mit der Flächenschwerpunkt- oder COG⁵-Methode gearbeitet
- Flächenschwerpunkt der unscharfen Menge $\mu_{res}(y)$:

$$y_{akt} = \frac{\int\limits_{a}^{b} y \cdot \mu_{res}(y) dy}{\int\limits_{a}^{b} \mu_{res}(y) dy}$$

Defuzzyfizierung (2)

• Im Beispiel: Fläche besteht aus Rechtecken und Dreiecken

→ einfach zu berechnen:

$$y_{akt} = \frac{G_1 \cdot y_{\mu 1} + G_2 \cdot y_{\mu 2}}{G_1 + G_2}$$
$$= \frac{0, 6 \cdot 2, 5 + 0, 2 \cdot 5}{0, 6 + 0, 2}$$
$$= 3, 125$$

^aAus [Zacher/Reuter]

Test des Reglers

Aufbau eines Regelkreises mit Fuzzy-Regler:

- Ein Fuzzy-Regler muss in der Regel getestet, evtl. auch iterativ nachgebessert werden
- Erst hier zeigt sich, ob die Regelbasis brauchbar ist
- Hierzu können Simulationen in MATLAB/ScicosLab hilfreich sein

Eigenschaften von Fuzzy-Reglern

- Im Vergleich zu "klassischen" Reglern sind Fuzzy-Regler ...
 - .. robust: behalten stabiles Verhalten, auch bei Änderungen der Regelstreckenparameter
 - .. mit weniger Aufwand zu entwickeln
- Typische Einsatzgebiete:
 - Haushaltsgeräte
 - Kraftfahrzeuge
 - Medizingeräte

Fuzzy-Beispiel: Temperaturregelung

- Ein befragter Experte beschreibt die Temperatur X eines Ofens mit den Begriffen "niedrig", "mittel" und "hoch"
- Der interessierende Temperaturbereich ist: $150^{\circ}C \le X \le 220^{\circ}C$
- ullet Für eine effizientere Regelung soll auch die Temperaturänderung \dot{X} erfasst werden
- Für diesen "Temperaturtrend" werden die Begriffe "fallend", "gleichbleibend" und "steigend" definiert
- ullet Der interessierende Bereich ist dabei: $-10\frac{{}^{\circ} {\it C}}{\it s} \leq \dot{\it X} \leq +10\frac{{}^{\circ} {\it C}}{\it s}$
- Nach Befragung des Experten werden für die Heizleistung Y die Begriffe "sehr niedrig", "niedrig", "mittel", "hoch" und "sehr hoch" definiert.

Fuzzy-Beispiel: Fuzzyfizierung (1)

Unscharfe Mengen für:

- z.B.: $X = 180^{\circ} C$
 - $\rightarrow \mu_{niedrig}(X) = 0, 2$
 - $\rightarrow \mu_{mittel}(X) = 0.8$
 - $\rightarrow \mu_{hoch}(X) = 0$

- z.B.: $\dot{X} = -5\frac{^{\circ}C}{c}$

 - $ightarrow \mu_{fallend}(\dot{X}) = 0, 5$ ightarrow \mu_{gleichbleibend}(\dot{X}) = 0, 5
 - $\rightarrow \mu_{steigend}(X) = 0$

Fuzzy-Beispiel: Fuzzyfizierung (2)

Unscharfe Menge für:

• z.B.: Y = 6kW

$$\rightarrow \mu_{sehrniedrig}(Y) = 0$$

$$\rightarrow \mu_{niedrig}(Y) = 0$$

$$\rightarrow \mu_{mittel}(Y) = 0.6$$

$$\rightarrow \mu_{hoch}(Y) = 0,4$$

$$\rightarrow \mu_{sehrhoch}(Y) = 0$$

Als nächstes: Regelbasis aufstellen

- Durch Expertenbefragung
- Je nachdem, welchen Experten man fragt können die Regeln unterschiedlich ausfallen
- Erst ein Praxistest zeigt, ob die Regelbasis etwas taugt

Fuzzy-Beispiel: Regelbasis

Regel Nr.	Prämisse	Konklusion
1	WENN X niedrig UND \dot{X} fallend	DANN Y sehr hoch
2	WENN X niedrig UND \dot{X} gleich	DANN Y hoch
3	WENN X niedrig UND \dot{X} steigend	DANN Y mittel
4	WENN X mittel UND \dot{X} fallend	DANN Y mittel
5	WENN X mittel UND \dot{X} gleich	DANN Y mittel
6	WENN X mittel UND \dot{X} steigend	DANN Y mittel
7	WENN X hoch UND \dot{X} fallend	DANN Y mittel
8	WENN X hoch UND \dot{X} gleich	DANN Y niedrig
9	WENN X hoch UND \dot{X} steigend	DANN Y sehr niedrig

- Beispiel: $X = 180^{\circ} C$, $\dot{X} = -5 \frac{^{\circ} C}{s}$
- → Aktive Regeln: 1,2,4,5

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

Für alle aktiven Regeln: Schnittmenge bilden

Beispiel wieder: $X=180^{\circ}$ C, $\dot{X}=-5\frac{^{\circ}\text{C}}{\text{s}}$

Regel Nr.	Prämisse	Konklusion
1	WENN X niedrig UND \dot{X} fallend	DANN Y sehr hoch
2	WENN X niedrig UND \dot{X} gleich	DANN Y hoch
4	WENN X mittel UND \dot{X} fallend	DANN Y mittel
5	WENN X mittel UND \dot{X} gleich	DANN Y mittel

Für alle aktiven Regeln: Schnittmenge bilden

Beispiel wieder: $X=180^{\circ}$ C, $\dot{X}=-5\frac{^{\circ}\text{C}}{\text{s}}$

Regel Nr.	Prämisse	Konklusion
1	MIN(0.2, 0.5) = 0.2	DANN Y sehr hoch
2	MIN(0.2, 0.5) = 0.2	DANN Y hoch
4	MIN(0.8, 0.5) = 0.5	DANN Y mittel
5	MIN(0.8, 0.5) = 0.5	DANN Y mittel

Durchführen der Inferenz

(Beispiel immer noch: $X=180^{\circ}C$, $\dot{X}=-5\frac{^{\circ}C}{s}$)

• z.B.:
$$Y = 6kW$$

$$\rightarrow \mu_{sehrhoch}(Y) = 0,2$$

$$\rightarrow \mu_{hoch}(Y) = 0,2$$

$$\rightarrow \mu_{mittel}(Y) = 0, 5$$

$$\rightarrow \mu_{mittel}(Y) = 0, !$$

Durchführen der Inferenz

(Beispiel immer noch: $X=180^{\circ}$ C, $\dot{X}=-5\frac{^{\circ}}{s}$)

• z.B.:
$$Y = 6kW$$

$$\rightarrow \mu_{sehrhoch}(Y) = 0, 2$$

$$\rightarrow \mu_{hoch}(Y) = 0,2$$

$$\rightarrow \mu_{mittel}(Y) = 0,5$$

$$\rightarrow \mu_{mittel}(Y) = 0, 5$$

Durchführen der Inferenz

(Beispiel immer noch: $X=180^{\circ}$ C, $\dot{X}=-5\frac{^{\circ}}{s}$)

•
$$z.B.: Y = 6kW$$

$$\rightarrow \mu_{sehrhoch}(Y) = 0, 2$$

$$\rightarrow \mu_{hoch}(Y) = 0,2$$

$$\rightarrow \mu_{mittel}(Y) = 0, 5$$

$$\rightarrow \mu_{mittel}(Y) = 0, !$$

Durchführen der Inferenz

(Beispiel immer noch:
$$X=180^{\circ}$$
 C, $\dot{X}=-5\frac{^{\circ}}{s}$)

- z.B.: Y = 6kW
 - $\rightarrow \mu_{sehrhoch}(Y) = 0,2$
 - $\rightarrow \mu_{hoch}(Y) = 0,2$
 - $\rightarrow \mu_{mittel}(Y) = 0,5$
 - $\rightarrow \mu_{mittel}(Y) = 0,5$

Durchführen der Inferenz

(Beispiel immer noch:
$$X=180^{\circ}$$
 C, $\dot{X}=-5\frac{^{\circ}}{s}$)

- z.B.: Y = 6kW
 - $\rightarrow \mu_{sehrhoch}(Y) = 0,2$
 - $\rightarrow \mu_{hoch}(Y) = 0,2$
 - $\rightarrow \mu_{mittel}(Y) = 0,5$
 - $\rightarrow \mu_{mittel}(Y) = 0,5$

Fuzzy-Beispiel: Defuzzyfizierung

Flächenschwerpunkt nach:

$$Y_{akt} = \frac{\int\limits_{a}^{b} Y \cdot \mu_{res}(Y) dY}{\int\limits_{a}^{b} \mu_{res}(Y) dY}$$

8.6.8

