Série 1 Calculer une longueur – Théorème de Thalès

Exercice corrigé

Sur la figure ci-dessous, les droites (CD) et (HT) sont parallèles.

On donne DG = 25 mm: GH = 45 mm; CG = 20 mmet HT = 27 mm. Calcule GT.

Correction

Les droites (DH) et (CT) sont sécantes en G. Les droites (CD) et (HT) sont parallèles. D'après le théorème de Thalès, on a :

$$\frac{GC}{TG} = \frac{GD}{GH} = \frac{CD}{HT}, \text{ soit } \underbrace{\frac{20}{GT} = \frac{25}{45}} \neq \frac{CD}{27}$$

Calcul de GT : $25 \times GT = 45 \times 20$.

$$GT = \frac{45 \times 20}{25} \text{ donc } GT = 36 \text{ mm}.$$

1 Longueurs proportionnelles

Dans chacun des cas suivants, nomme les triangles qui ont leurs longueurs proportionnelles et écris les proportions égales.

Les droites en couleur sont parallèles.

Figure 2.

2 Place les points manguants sur la figure sachant que les droites (d_1) , (d_2) et (d_3) sont parallèles et qu'on a les égalités suivantes :

$$\frac{RF}{RC} = \frac{RT}{RQ} = \frac{FT}{CQ}$$
 et $\frac{RC}{RM} = \frac{RQ}{RH} = \frac{CQ}{MH}$

Dans la figure ci-dessous la droite (MS) est parallèle à la droite (RN).

1	os	ОМ	MS	
	RS	ON	RN	

2	NO	RO	RN
	ОМ	os	MS

a. Leguel des tableaux de proportionnalité proposés peut être associé à la figure ci-dessus ?

b. Explique pourquoi les deux autres ne peuvent pas l'être.

4 Associer les proportions aux figures

Dans chaque figure, les droites (d₁) et (d₂) sont parallèles. Relie les figures avec les égalités correspondantes.

•
$$\frac{AE}{EH} = \frac{EF}{EG} = \frac{AF}{GH}$$

•
$$\frac{FE}{FG} = \frac{FH}{FA} = \frac{EH}{AG}$$

•
$$\frac{AE}{AH} = \frac{AF}{AG} = \frac{EF}{HG}$$

Calculer une longueur – Théorème de Thalès

Dans tout l'exercice, les points A, P et B sont alignés ainsi que les points A, R et C.

Pour chaque cas, explique pourquoi tu peux appliquer le théorème de Thalès.

Écris alors les rapports égaux dans ces figures.

I	6	Dans la figure	suivante (MI)	est parallèle	à (HB),
(cal	cule FM et FB.		·	

4 cm M I H 4,8 cm B	 		F
H 4,8 cm B	 	~ //	أُمَّا
H 4,8 cm B	 	//	\ \ \
4,0 CIII	 	M 4	cm
	 	H 4,	8 cm B

7 Les points M, A, C sont alignés et les points N, A, B aussi. Les droites (MN) et (BC) sont parallèles. Calcule MN.

	 		•													 -		 -	 -		 		 				
	 		٠											 ٠							 						
			٠				 ٠							 ٠							 						

Soit POT un triangle tel que PO = 4 cm; TP = 2.5 cm et OT = 3.3 cm. On appelle K le point de [PT) tel PK = 4 cm. Trace la parallèle à (OT) passant par le point K. Elle coupe [PO) en I.

a. Construis la figure.

b. Calcule PI et KI.

Série 1 Calculer une longueur - Théorème de Thalès

9 Dans l'espace

Voici deux cônes de sommet S. [SB] et [SH] sont les hauteurs des cônes. H, B et S sont alignés. On a HJ = 7.3 cm; HB = 7.8 cm et BS = 2.6 cm.

Calcule la m	esure du rayon AB.	

10 La longueur de la ligne d'un téléphérique est 1 437 m. Après avoir parcouru 450 m en montant, il marque un temps d'arrêt. À quelle altitude, arrondie à l'unité, se trouve-t-il ? La figure n'est pas à l'échelle.

11	Avec	du	calcul	littéral

Sachant que les droites (EN) et (CO) sont parallèles, détermine la valeur de *x*.

	٠			١		٠			٠		٠		٠		٠		٠			٠			٠	 ٠				٠		٠				

12 Dans la figure suivante BCRE est un parallélogramme.

a. Démontre que BP = 2 AP.

															 							 			-	 -					
															 							 				 -					
	٠		٠		٠									٠	 			٠		 ٠		 						 ٠	 ٠		

b. Déduis-en la longueur AR.

٠																													