9.25.2024

704 二分法:

二分法听起来简单,在做起来时候会经常遇到边界错误,原因则在于对于边界 条件判定的不一致

左闭右开时, left index 在正常判断时必然小于 right index,

举个例子:

[0, 1, 2, 3, 4], 我们若搜索 4 的时候, 第一步骤将 array 分成[0, 2), [3, 5) 但实际上我们永远不会再取到 2 了。

所以当其不满足判断条件时候, 即为失败。

```
class Solution:
   def search(self, nums: List[int], target: int) -> int:
      # 左闭右开
       left = 0
       right = len(nums)
       while left < right:
          mid = (left + right) // 2
           # 判定
          # 在右边
           if nums[mid] < target:</pre>
             left = mid + 1
           # 在左边
           elif nums[mid] > target:
             right = mid
           else:
           return mid
```

同理, 左闭右闭

```
def search(self, nums: List[int], target: int) -> int:
   # 左闭右闭
   left = 0
   right = len(nums) - 1
   while left <= right:
      mid = (left + right) // 2
      # 判定
      # 在右边
      if nums[mid] < target:
          left = mid + 1
       # 在左边
      elif nums[mid] > target:
       right = mid - 1
      else:
       return mid
   return -1
```

27 移除元素

暴力法 O(n²):

外层找值,内层移动数据

如果 left 所在值等于 val, 移除之后在下个循环仍要继续判断 left, 因为需要确定新的 left 是否满足条件

双指针法只需要 O(n)的时间复杂度

```
# 双指针法
slow, fast = 0, 0
while fast < len(nums):
    if nums[fast] != val:
        nums[slow] = nums[fast]
        slow += 1
        fast += 1
    else:
        fast += 1
return slow
```

确保 slow 所在的位置即是更新后数组最后位置即可

977.有序数组的平方

最简单的方法便是算出平方后的值并且重新进行排序,时间复杂度为 O(nlogn)

更有效率的方法是使用双指针,因为大头永远在两端(绝对值最大的元素)

```
def sortedSquares(self, nums: List[int]) -> List[int]:
    res = [0] * len(nums)
    left, right, res_index = 0, len(nums) - 1, len(nums) - 1
    while left <= right:
        if pow(nums[left], 2) < pow(nums[right], 2):
            res[res_index] = pow(nums[right], 2)
            right -= 1
        else:
            res[res_index] = pow(nums[left], 2)
            left += 1
        res_index -= 1
    return res</pre>
```