Cumulative Reasoning With Large Language Models

Abstract

即使大语言模型功能强大而且丰富,他们在解决高度复杂问题上仍然不太行. 这是因为解决负载问题需要自由的思考,但这在训练过程中很少被指导. 在本文中,我们提出一种新的方法被称为累计推理/Cumulative Reasoning,以累计/迭代的方式来模仿人类思考的过程. 通过讲任务分解为多个小的成分,CR可以讲问题解决过程流水线化,使得其更加的可管理和高效. CR在FOLIOwiki数据集和24点游戏上比其他方法性能显著的好. 在MATH数据集上, 58.0%准确率, 新的SOTA.

Introduction

LLMs在困难推理问题上比较差.

我们的认知过程包括两个不同的系统,系统1是快速的,本能的,情感的;系统2是慢速的,深思熟虑的,逻辑的.LLMs更像是系统1.

现有方法, CoT, ToT等等. 然而这些方法都没有一个存储中间结果的地方, 假设所有的思维形成一个链or树, 这并没有完全捕捉到人类的思维过程.

我们提出了CR, cumulative learning, 对思考具有更加一般的刻画. CR使用三种不同的LLM, proposer, verifier, reporter. Proposer提出潜在可能的命题, 通过一个or多个verifier验证, 而reporter决定何时停止并且报告solution.

CR显著增强了语言模型在处理复杂问题方面的能力.

实验方面,首先使用 FOLIO wiki / AutoTNLI,分别涉及一阶逻辑和高阶逻辑. 然后24点游戏. 然后MATH数据集

Example of Logic

- 1. All monkeys are mammals: $\forall x (Monkey(x) \Rightarrow Mammals(x))$.
- 2. An animal is either a monkey or a bird: $\forall x (\text{Animal}(x) \Rightarrow (\text{Monkey}(x) \vee \text{Bird}(x)))$.
- 3. All birds fly: $\forall x (Bird(x) \Rightarrow Fly(x))$.
- 4. If something can fly, then it has wings: $\forall x(\text{Fly}(x) \Rightarrow \text{Wings}(x))$.
- 5. Rock is not a mammal, but Rock is an animal: \neg Mammal(Rock) \land Animal(Rock).

The question is: does Rock have wings? We have the following derivations:

Figure 1: Illustration of our logical derivation

- a. The contrapositive of (1) is: $\forall x (\neg Mammals(x) \Rightarrow \neg Monkey(x))$.
- b. (a) and (5) $\Rightarrow \neg Monkey(Rock) \land Animal(Rock)$.
- c. (2) and (5) \Rightarrow (Monkey(Rock) \vee Bird(Rock))
- d. (b) and (c) \Rightarrow Bird(Rock).
- e. (3) and (d) \Rightarrow Fly(Rock).
- f. (4) and (e) \Rightarrow Wings(Rock).

这种推理过程不是CoT/ToT, 而是图

对此表示反对,依然是CoT啊,推理过程就是一步一步的. 不过,如果推理步骤出错了,如何回退是一个问题.

Remark: CR就是能够回退,这一点确实比CoT强很多.

Method

Cumulative Reasoning

三个类型的LLMs:

• proposer: 基于当前的context, 提出下一步;

- verifier(s): 这个模型会仔细审查proposer提出的步骤的准确性, 如果是正确的, 则会加入到context中;
- reporter: 通过评估当前的条件是否能直接得到最终的答案, 决定推理过程是否结束

与CoT/ToT的比较

CR明显是对CoT的一种泛化,如果没有verifier, proposer一直提出下一步,指导结束.但由于CR中,整体的思维过程可以是一个有向无环图,所以可以解决更加复杂的问题.

ToT和CR看起来很像,但是CR会将历史上所有的正确的推理结果存放在内存中.

所以CR到底是DFS还是BFS呢, BFS必然是不行的吧, 因为分支数目过多. 但是DFS也只有当前这一条可能正确的推理路径.

Experiments

Setting

- GPT3.5-turbo
- GPT4
- LLaMA-13B
- LLaMA-65B

CR中Proposer / Verifier / Reporter使用相同的LLM, 不同的prompt. 未来可以考虑特定任务语料上训练的Proposer, 使用形式逻辑系统辅助的Verifier

FOLIO wiki

Table 1: Results for various reasoning approaches on FOLIO-wiki dataset.

Model	Method	Acc. ↑ (%)	Error ↓ (%)
-	[Random]	33.33	66.67
LLaMA-13B	Direct	44.75	55.25
	CoT	49.06 (+4.31)	50.94 (-4.31)
	CoT-SC $(k = 16)$	52.43 (+7.68)	47.57 (-7.68)
	CR (ours, $n = 2$)	53.37 (+8.62)	46.63 (-8.62)
LLaMA-65B	Direct	67.42	32.58
	CoT	67.42 (+0.00)	32.58 (-0.00)
	CoT-SC $(k = 16)$	70.79 (+3.37)	29.21 (-3.37)
	CR (ours, $n = 2$)	72.10 (+4.68)	27.90 (-4.68)
GPT-3.5-turbo	Direct	62.92	37.08
	CoT	64.61 (+1.69)	35.39 (-1.69)
	CoT-SC (k = 16)	63.33 (+0.41)	36.67 (-0.41)
	CR (ours, n = 2)	73.03 (+10.11)	26.97 (-10.11)
GPT-4	Direct	80.52	19.48
	CoT	84.46 (+3.94)	15.54 (-3.94)
	CoT-SC $(k = 16)$	85.02 (+4.50)	14.98 (-4.50)
	CR (ours, $n = 2$)	87.45 (+6.93)	12.55 (-6.93)

FOLIO wiki curated

Auto TNLI

Tabular Natural Language Inference. 可以视为高阶逻辑推理数据集.

Method	Acc. ↑ (%)	# Avg. visited states ↓
Direct	7.3	1
СоТ	4.0	1
CoT-SC $(k = 100)$	9.0	100
Direct (best of 100)	33	100
CoT (best of 100)	49	100
ToT $(b = 5)$	74	61.72
\mathbf{CR} (ours, $b = 1$)	84 (+10)	11.68 (- 50.04)
\mathbf{CR} (ours, $b = 2$)	94 (+20)	13.70 (-48.02)
\mathbf{CR} (ours, $b = 3$)	97 (+23)	14.25 (-47.47)
\mathbf{CR} (ours, $b = 4$)	97 (+23)	14.77 (-46.95)
CR (ours , <i>b</i> = 5)	98 (+24)	14.86 (-46.86)

24点

MATH

Table 5: Comparative performance on the MATH dataset using GPT-4. We adopted a default temperature setting of t=0.0, consistent with prior research settings (greedy decoding). PHP denotes the application of the progressive-hint prompting. "Iters" represents the average number of LLM interactions, and **Overall** reflects the overall results across MATH subtopics.

	w/ PHP	MATH Dataset (* denotes using 500 test examples subset following Lightman et al. (2023))							
		InterAlgebra	Precalculus	Geometry	NumTheory	Probability	PreAlgebra	Algebra	Overall
CoT (OpenAI, 2023)	×	-	-	-	-	-	-	-	42.50
Complex CoT, 8-shot (Zheng et al., 2023)	×	23.4 26.3	26.7 29.8	36.5 41.9	49.6 55.7	53.1 56.3	71.6 73.8	70.8 74.3	50.36 53.90
	(Iters)	3.2414	3.2435	3.2233	3.1740	2.8122	2.3226	2.4726	2.8494
Complex CoT* (repro., 8-shot)	x √ (Iters)	29.9 28.9 2.7629	33.9 30.4 2.4643	34.1 43.9 2.7805	46.8 53.2 2.7581	47.4 50.0 2.4474	62.1 68.5 2.3780	70.7 84.1 2.5484	48.80 53.80 2.59
CR* (ours, 4-shot)	x √ (Iters)	28.9 (-1.0) 32.0 (+3.1) 2.6598	30.4 (-3.5) 35.7 (+5.3) 2.4821	39.0 (+4.9) 43.9 (+0.0) 2.5122	54.8 (+8.0) 59.7 (+6.5) 2.2903	57.9 (+10.5) 63.2 (+13.2) 2.2105	71.8 (+9.7) 71.8 (+3.3) 2.2195	79.3 (+8.6) 86.6 (+2.5) 2.3548	54.20 (+5.40) 58.00 (+4.20) 2.40 (-0.19)

Table 6: Comparative performance on the MATH dataset using GPT-4 for different difficulty levels.

	w/ PHP	MATH Dataset (* denotes using 500 test examples subset)					
		Level 5	Level 4	Level 3	Level 2	Level 1	Overall
CoT (OpenAI, 2023)	x	-	-	-	-	-	42.50
Complex CoT*	Х	22.4	38.3	62.9	72.2	79.1	48.80
(repro., 8-shot)	\checkmark	23.9	43.8	63.8	86.7	83.7	53.80
CR* (ours, 4-shot)	×	32.1 (+9.7) 27.3 (+3.4)	43.0 (+4.7) 50.0 (+6.2)	62.9 (+0.0) 70.9 (+ 7.1)	78.9 (+6.7) 86.7 (+0.0)	83.7 (+4.6) 90.7 (+7.0)	54.20 (+5.40) 58.00 (+4.20)

分别比较了CoT / Complex CoT / CR 以及 w / wo PHP(progressive hint prompt)