1. (1) 解:
$$y^{(0)} = \chi^{(0)} = (1,0,0)^T$$

$$\chi^{(1)} = Ay^{(0)} = (-4,-5,-1)^T, \, \chi = 25$$

$$y^{(1)} = \frac{\chi^{(1)}}{\lambda} = (-\frac{1}{5},-1,-\frac{1}{5})^T$$

$$\chi^{(2)} = Ay^{(1)} = (-10.8,-9.0.4)^T, \, \chi = 10.8$$
如此继续下去,(平均(第)。

k	7,(k)	12(k)	13(k)	\ X	y,(k)	42(k)	y3(k)
0	1	0	0	111	一隻1	0	0
1	÷4	-5	-1	5	- 4 5	-1	75
2	-10.8	-9	0.4	10.8	-110	-0.8333	00370
3	-7.6667	-5.8333	1.074	10.8	-1.0	-0.7609	0.1401
4	-6.6522	-48913	1,2802	7.6667	-10	-0.1353	0.1924
5	-6.2941	-45588	1.3849	6.6522	-1.0	-0.7243	0.2200
6	-6,1402	-44159	1.440]	6.294	-1.0	-0.7192	02345
7	-610685	4.349	1.4691	6.1402	-1.0	-0.7167	0.2421
8	-6.0339	7 -4.3172	114842	6. \$0683	-1.0	-0.7155	0.2460

耳又小公台,0685. 村日祉的华寿征向星为U公(20-6.0339,-43112,1.4842)T 实际上:A的最大特征值》1=6.与入时相对征约特征的星为:(-6,-4.2857,1.5)T

1	2)	解
(2)	144

k	1/(k)	X2(k)	13(k)	A	y,(k)	1/2(k)	y3(k)
0	1	0	0	1	1	0	0
1	4	-1	1	4	, , , , , , , , , , , , , , , , , , ,		2025
2	4.5	-2	2.25	4.5	-1	-0.25	≈ 0.25
3	4.9444	-2.8333	3.3889	1	1,	-0,4444	0.5000
4		Ì	'	4.9444	•	-0.5730	0.6854
	5,2584	-3:4045	42022	5.2584	1	-0.6474	0.7991
5	5.4466	-374/5	4.6923	5.4466	1	-0.6869	0.8615
6	5,5485	-3.9223	4.9584	5.5485	7	-0.7069	0.8937
1	5.6006	~4:014H	5.0948	5.6006	1	-0.7166	0.9097
8	5.6285	-4.0601	5.1627	5.6265	1	-0.7216	0.9176
9	5.6392		i '				
()	12.0392	-4:0824	1	5.6392	1	-0.7239	0.92/4

耳又八元5.6392.相处的件部正向置为以完(5.6392,一4.0824,5.1959)「

实际上: A的最大特征值入1=5.6511,与入1和技术的特征户至为(565·11,-4:1033),5.2272)。

2.解(1)

k	X1(k)	71(k)	13(k)	3 dk	1(k).
0	1	0	0	1	
	-4	-5	-1	5	-0.3333
2	-10.8000	-9.0000	0,4000	10.8000	-7.8889
3	-7.6667	-5.8333	1.074	7.6667	8.7657
4	-6.6522	-48913	1.2802	6.6522	6.1664
5	-6,2941	-4.5588	1.3849	6.2941	6.0988
6	-6,1402	-4.4159	1.4401	6.1402	6,024
1	-6.0685	-43493	1,4691	6.0685	60060
8	-6:0339	-43172	1:4842	6.0339	6.0015

取入, 26.0015. 木目盆的特征向望(-6.0339,-4.3172,-1.4842)T.

᠘)	k	Y, (k)	X2(k)	/3(k)	dk)(k)
	0	1	0	0	1	
	1	4	-1	4	4	-0.5000
	2	4.5000	-2.2500	.2.2500	4,5000	4.6000
	3	5.000	-3.5000	3.5000	5	-
	4	5.4000	-4.5000	45000	5:4000	7
,	5	5.6667	÷5.1667	5.1667	5.6667	6.2000
	6	5.8235	-5.5588	5.5588	<i>5</i> , <i>8</i> 235	6.0476
	, ,					6.0118
	8	5.9538	-5.8846	5.8846	5,9538	6.0029
	9	5.9767	-5.9419	5,9419	59767	54767
	·	•			• •	6.0007

耳双, 26.0007, 相象的特征和向量为·(5,9767,-5,9419,5,9419)T.

3.解:用幂运计算其按模最大的特征值及对应向量.取X(0)=(1,0,0)T

k	X, (k)	χ ₂ (k)	x3(k)	W	y,(k)	y ₂ (k)	y3(k)
0	Ī	O	0	1	1	0	0
1	2 1	2	Ø 3	3	13	当	1
2	4.6667	6.6667	8.6667	8.6667	0.5385	0.7692	1.0000
3	5.0769	7.3846	9.6923		0.5238		1:0000
4	5,0476	7,3333	9.6190	9.6190	0.5248	017624	1.0000
5	5.0495	7.3366	9.6238				1.0000
6	5.0494	733 64	9.6235	9.6235	0.5247	0.7623	1.0000
7	5.0494	7:3364	96235	9.6235	0,5247	0.7623	1.0000
8	5.0494	713364	9.6235	9.6235	0.5247	0.7623	1.0000

则接近96的特征值为9.6235.

特征向量约为:(5:0494,7.3364,9.6235)7、

4.解,对A-NI进行部分选业的三角分解:

$$P(A-\lambda 1) = LU$$

$$\Rightarrow L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 1.7321 & 1 \\ 0 & 1 & 2.7321 \\ 0 & 0 & 2.7405 \times 10^{3} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

由UV1=(1,1,1)^T得: V1=(12692,-9290.3 3,3400,8)^T U1=(1,-0、732198,0、26795)^T

 $U_2 = (20404, -14937, 54674)^T$ $U_2 = (1, -0.73206, 0.26796)^T$

入3. 对应的特种征向量为: X3=(1,1-15,3-15) 2(1,-0.73205,0.26795)T

由此看出以足形的相数好的近似 特征值的2679+故=1,26794901 5、(1)解,A 取X*=0, X⁽⁰⁾=(0,0,1)^T 对A作=角分解得:

$$\dot{A} = \begin{bmatrix}
-0.2857 & \cdot 1.000 & 0 \\
1.000 & \cdot 0 & 0 \\
0.5714 & 0.8000 & \cdot 1.000
\end{bmatrix}
\begin{bmatrix}
-21.00 & \cdot -3.000 & \cdot 24.00 \\
0 & -12.8571 & 12.8571
\end{bmatrix}$$

$$= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

取整数Y

T按算法件3: 92U=1. 第二人 3=1. 第二人

海内=0.037. $\beta=0.037$, 此时 $|\dot{\beta}-\dot{\eta}|=26$, 別全ル=0.037. $\lambda=27.027$ 第二次数代: $\chi=0.037$. $\ddot{\chi}=\ddot{\chi}=(1,1,1)$. $\ddot{\chi}=L^{-1}\ddot{\chi}=(1,1.2857,-0.6000)$

 $\vec{\gamma}_{1} = (-0.0556, -0.1222, -0.0222), \vec{\gamma}_{2} = -0.1222 = \vec{\beta}$

此时|| 市- 元|=352103、剛定 ル=-0.1222、 入=-8.1833
相登特征向星为 ルモ 元 = (*0.4550, *1,01817

(2) 全年 -8.1833、用风器法 计算过程如下:

习得入nfn=-9.

相应特征值为·(0.5345,0.8018 0.2673)T

6.证明:因A的特征值满足入1.7人12~~入n-1.2入n 则不论AP为何值,B=A-PI的主特征值为入1.-P或入n-P.

当我们计算·入1及:不时,要使·1入1-P1>1入n-P1

且使收敛速的比值为:

$$W = \max\{\left|\frac{\lambda_{1}-P}{\lambda_{1}-P}\right|, \left|\frac{\lambda_{n}-P}{\lambda_{1}-P}\right|\} = \min$$

则生/2-P=-(/n-P)日十.

此时收敛速度的比值为:

$$\gamma = \frac{\lambda_1 - \lambda_n}{2\lambda_1 - \lambda_2 - \lambda_n}$$

即级级雄度最快

7. 证明: 不好设A的n个特征值l满足: /n/</r>

$$Q_{ij} \Lambda_{j} = min \Lambda(A)$$
. $\lambda_{n} = max \Lambda(A)$.

$${\mathcal L}(x) = \frac{\langle AX, X \rangle}{\langle X, X \rangle}.$$

则原命题可变为求证: Ai EPCN E An .

下面进行证明:

由于任意的量可表示的: Y= d/X1+dxx +111·+dn Xn

$$= [x_1, \dots, x_n] \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix}$$

$$= [X][X]$$

RIJ XT = [Q]T·[X]T

[X]为特征的量阵、政矩阵.

正交条件:[X]^T[A]·[X]=[N],[X]^T[X]=[]

代入(の)空义, 目PPCA) =
$$\frac{X^TAX}{X^TX} = \frac{L^T : X^TAX < L}{L^T : X^T \times L}$$

$$=\frac{2^{T}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}{2^{T}}\left[\begin{array}{c}\lambda_{1}\\\lambda_{1}\end{array}\right]}$$

$$=\frac{2^{T}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}{2^{T}}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}$$

$$=\frac{2^{T}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}{2^{T}}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}$$

$$=\frac{2^{T}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}{2^{T}}\left[\begin{array}{c}\lambda_{1}\\\lambda_{2}\end{array}\right]}$$

可见:P(X)是剂…)们的加权平均值,水类发为以产 Epeca = Existi

 $(1) \lambda_1 \leq f(x) \leq \lambda_1 n$.

证毕

8. (1)解:
$$A^{(0)}$$
 [4 2 2], 新取 $i=1$, $j=2$. $a_{12}=2$.

计算. 旋转矩阵:

计算·施转矩阵:
$$\alpha = \cot 2\varphi = \frac{\alpha_1 - \alpha_{22}}{2\alpha_{12}} = -\frac{1}{4}. \quad b = \tan \varphi = \frac{\text{sign(a)}}{2\alpha_{12}} (\sqrt{\alpha_{11}^2} - |a|) = \frac{1-\sqrt{17}}{4} \approx -\alpha_{1808}.$$

$$C = (0.5) = \frac{1}{1.16} = 0.7882$$
. $51n = -0.6154$

$$\text{Per} V^{(0)} = V_{12}(\varphi) = \begin{bmatrix} 0.7882 & -0.6154 & 0 \\ 0.6154 & 0.7882 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{(1)} = V^{(0)} \cdot A^{(0)} V^{(0)T} = \begin{bmatrix} 2.4384 \cdot 0 & 0.9610 \\ 0 & 6.5614 & 2.0190 \\ 0.9610 & 2.0190 & 6 \end{bmatrix}$$

再取1=2 j=3 · Q23=2.0190.

再写
$$i=2$$
 $j=3$. $a_{23}=2.0190$.
$$a=\cot 2\varphi=0.1390 \qquad b=\tan \varphi=0.8706 \cdot C=\cos \varphi=0.7542 \cdot \sin \varphi=0.6566 \cdot C=\cos \varphi=0.7542 \cdot \sin \varphi=0.6566 \cdot C=\cos \varphi=0.7542 \cdot \cos \varphi=0.75$$

$$V^{(4)} = V_{23}(\varphi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.7542 & 0.6566 \\ 0 & -0.6566 & 0.7542 \end{bmatrix}$$

$$A^{(2)} = V^{(1)}A^{(1)}V^{(1)T} = \begin{bmatrix} 2.4384 & 0.6310 & 0.7248 \\ 0.6310 & 8.3186 & 0 \\ 0.7248 & 0 & 4.2420 \end{bmatrix}$$

$$\alpha = (ot 2)^2 = -1.2442$$
 $b = tany = -0.3521$ $c = cosy = 0.9433$ $d = -0.3321$.

$$|\mathcal{F}| V^{(2)} = V_{13}(\varphi) = \begin{bmatrix} 0.9433 & 0 & -0.3321 \\ 0 & 1 & 0 \\ *0.3321 & 0 & 0.9433 \end{bmatrix}$$

$$|A| A^{(3)} = V^{(2)}A^{(2)}V^{(2)}^{T} = \begin{bmatrix} 2.1835 & 0.5952 & 0 \\ 0.5952 & 8.3/86 & 0.2096 \\ 0 & 0.2096 & 4.4976 \end{bmatrix}$$

EV BJE (A(3)) = 0.7964

要使精度捏高,重复上述操作,可得到:

$$A^{(n)} = \begin{bmatrix} 2.1259 & 0 & 0 \\ 0 & 4.4865 & 0 \\ 0 & 0 & 8.3876 \end{bmatrix}$$

RY 12 8.3876 , 12=4.4865 13=2.1259

$$a = \cos 2\varphi = -2, \quad b = \tan \varphi = 0.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2, \quad b = \tan \varphi = -0.2298 \quad 0$$

$$a = \cos 2\varphi = -2, \quad b = \tan \varphi = -0.2298 \quad 0$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = 0.9732, \quad d = \sin \varphi = -0.2298$$

$$a = \cos 2\varphi = -2.2361, \quad c = \cos \varphi = -0.2298, \quad d = -$$

$$AJV^{(0)} = V_{12}(4) = \begin{bmatrix} 0.9732 & -0.2298 & 0 \\ 0.2298 & 0.9332 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{(1)} = V^{(0)} A^{(0)} V^{(0)T} = \begin{bmatrix} 2.2359 & 0.0003 & 0.2298 \\ 0.0003 & -2.2359 & -0.9732 \\ 0.2298 & -0.9732 & 2.000 \end{bmatrix}$$

再取1=1, j=3. a13=0.2298.

 $a = \cot 2 \varphi = 0.5133$ $b = \tan \varphi = 0.6108$ $c = \cos \varphi = 0.8534$ $d = \sin \varphi = 0.5213$

$$\text{Res}(\varphi) = \begin{cases} 0.8534 & 0 & 0.5213 \\ 0 & 1 & 0 \\ -0.5213 & 0 & 0.8534 \end{cases}$$

$$R_{1}V^{(1)} = V_{13}(\varphi) = \begin{bmatrix} 0.8534 & 0 & 0.5213 \\ 0 & 1 & 0 \\ -0.5213 & 0 & 0.8534 \end{bmatrix}$$

$$A^{(2)} = V^{(1)}A^{(1)}V^{(1)T} = \begin{bmatrix} 2.3764 & -0.5071 & 0 \\ -0.5071 & -2.2359 & -0.8307 \\ 0 & -0.8307 & 1.8597 \end{bmatrix}$$

重复上述操作。最终得到
$$A^{(1)} = \begin{bmatrix} -24495 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 24495 \end{bmatrix}, 则 $J_1 = -24495 \quad J_2 = 2 \quad J_3 = 24495$.$$

9. (1) # :
$$a_{II} = (2.4)^{T}$$
, $b_{II} = h_{I} = h_$

$$[O:II:H]: 因为Pu=e_1=c_1,o...,o)^T, P又是正发阵.$$
 $R_1P_1^T=X, B_1=P_1^T=PAu=\Lambda Pu=\Lambda Pu=\Lambda e_1,$ $Y_1B=PAP_1^T=Y_1^T=PAu=\Lambda e_1,$ $Y_1B=PAP_1^T=PAu=\Lambda e_1,$ $Y_1B=PAP_1^T=PAP_1^T=PAU=\Lambda e_1,$ $Y_1B=PAP_1^T$

11. 解心首先将·A化为拟上三角形矩阵·耳用Householder变换得:

$$H = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$

下面将 H进行 QR分解: toHOO=H.

$$r_{1} = \sqrt{2^{2}+(4)^{2}} = \sqrt{5} \quad \cos \varphi_{1} = \frac{7}{16} \quad \sin \varphi_{1} = \frac{7}{16}.$$

$$r_{1} = \sqrt{2^{2}+(4)^{2}} = \sqrt{5} \quad \cos \varphi_{1} = \frac{7}{16} \quad \sin \varphi_{1} = \frac{7}{16}.$$

$$r_{2} = \sqrt{2^{2}+(4)^{2}} = \sqrt{5} \quad \cos \varphi_{1} = \frac{7}{16}.$$

再取了=
$$\sqrt{5+1}$$
= $\sqrt{6}$, $(054)_2 = \frac{1}{16}$ $51118 = \frac{1}{16}$ $\frac{1}{16}$ $\frac{$

$$Q = V_1^T \cdot V_3^T = \begin{bmatrix} 0.8944 & 0.4082 & 0.1826 \\ -0.4472 & 0.8165 & 0.3651 \\ 0 & -0.4082 & 0.9129 \end{bmatrix}$$

所以A的中部(正值的)1=01.2679

(2)解:将A化为拟上三翻矩阵,·

$$H = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

将HQR分解:记H⁽¹⁾=H

将HQK分解: 7011 -11

$$Y_1 = \sqrt{3^2 + 1^2} = \sqrt{10}$$
 (05 $\psi_1 = \frac{3}{10}$ 5 $\eta_1 = \frac{1}{10}$

取以=「福 福 0], 于是以
$$H^{(1)} = \begin{bmatrix} -3.1623 & 1.58811 & 0.3162 \\ 0 & 1.5811 & 0.9487 \\ 0 & 1 & 1 \end{bmatrix}$$

再取·Y₂ =
$$\sqrt{1,5811^2+1^2}$$
 = 1.8708 $(059_2 = 0.8451$ $579_2 = 0.5345$.

$$V_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.845 | & 0.5345 \\ 0 & -0.8345 & 0.845 | \end{bmatrix} \quad \vec{\mathcal{T}} = \begin{bmatrix} 3.1623 & 1.581 | & 0.3162 \\ 0 & 1.8707 & 1.3362 \\ 0 & 0 & 0.3380 \end{bmatrix} = R_1$$

$$Q_{1} = V_{21}^{T} V_{32}^{T} = \begin{bmatrix} 0.9487 & -0.2672 & 0.1690 \\ 0.3162 & 0.8017 & -0.5071 \\ 0 & 0.5345 & 0.8451 \end{bmatrix}$$

$$71 \cdot 71 = 3.7321$$

 $712 = 2$
 $713 = 0.2619$