Ejercicios Tema 4 - Contraste hipótesis. Taller 3

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso completo de estadística inferencial con R y Python

Contenidos

L	Con	ontraste hipótesis taller 3: Contra	rastes de dos parámetros.	1
	1.1	1 Ejercicio 1		1
	1.2	2 Ejercicio 2		1
	1.3	3 Ejercicio 3		1
	1.4	4 Ejercicio 4		2
	1.5	5 Ejercicio 5		2
	1.6	6 Ejercicio 6		9

1 Contraste hipótesis taller 3: Contrastes de dos parámetros.

1.1 Ejercicio 1

Para comparar la producción media de dos procedimientos de fabricación de cierto producto se toman dos muestras, una con la cantidad producida durante 25 días con el primer método y otra con la cantidad producida durante 16 días con el segundo método. Por experiencia se sabe que la varianza del primer procedimiento es $\sigma_1^2 = 12$ y al del segundo $\sigma_2^2 = 10$. De las muestras obtenemos que $\overline{X}_1 = 136$ para el primer procedimiento y $\overline{X}_2 = 128$ para el segundo. Si μ_1 y μ_2 son los valores esperados para cada uno de los procedimientos, calcular un intervalo de confianza para $\mu_1 - \mu_2$ al nivel 99%.

1.2 Ejercicio 2

Estamos interesados en comparar la vida media, expresada en horas de dos tipos de componentes electrónicos. Para ello se toma una muestra de cada tipo y se obtiene:

Tipo	tamaño	\overline{x}	\tilde{s}
1	50	1260	20
2	100	1240	18

Calcular un intervalo de confianza para $\mu_1 - \mu_2$ (μ_1 esperanza del primer grupo y μ_2 esperanza del segundo grupo) al nivel 98% Suponer si es necesario las poblaciones aproximadamente normales.

1.3 Ejercicio 3

Para reducir la concentración de ácido úrico en la sangre se prueban dos drogas. La primera se aplica a un grupo de 8 pacientes y la segunda a un grupo de 10. Las disminuciones observadas en las concentraciones de ácido úrico de los distintos pacientes expresadas en tantos por cien de concentración después de aplicado el tratamiento son:

Suponer que las reducciones de ácido úrico siguen una distribución normal son independientes

Contrastar la igualdad de medias contra que la droga 1 es mejor (menor media) que la droga 2. Resolver el test en los dos casos varianzas iguales y varianzas distintas. Calcular el intervalo de confianza asociado al contraste

1.4 Ejercicio 4

Para comparar la dureza media de dos tipos de aleaciones (tipo 1 y tipo 2) se hacen 20 pruebas de dureza con la de tipo 1 y 25 con la de tipo 2. Obteniéndose los resultados siguientes:

```
set.seed(345)
aleacion1=round(0.2*(rnorm(20))+18.2,2)
aleacion2=round(0.5*(rnorm(25))+17.8,2)
aleacion1=c(18.04,18.14,18.17,18.14,18.19,18.07,18.01,18.54,
            18.53, 18.56, 18.57, 17.92, 18.03, 18.26, 18.38, 17.92,
            18.31,18.41,18,18.26)
aleacion2=c(18.02,18.21,16.51,17.21,17.85,18.24,17.48,17.28,
            17.51,17.51,17.43,18.14,17.32,17.11,17.55,17.49,
            18.27,17.92,18.14,18.52,18.12,18.22,17.37,17.91,
            17.77)
media1=mean(aleacion1)
media1
## [1] 18.22
sd1=sd(aleacion1)
sd1
## [1] 0.2163
media2=mean(aleacion2)
media2
## [1] 17.72
sd2=sd(aleacion2)
sd2
## [1] 0.4693
```

 $\overline{X}_1 = 18.2225, \quad S_1 = 0.2163 \text{ y}$

$$\overline{X}_1 = 17.724, \quad S_2 = 0.4693$$

Suponer que la población de las durezas es normal y que las desviaciones típicas no son iguales.

Contrastar que las medias de las durezas son iguales contra que son distintas. Calcular un intervalo de confianza para $\mu_1 - \mu_2$ al nivel de significación del 95%.

Haced lo mismo si las varianzas son distintas.

1.5 Ejercicio 5

Se encuestó a dos muestras independientes de empresas, en las islas de Ibiza y otra en Mallorca, sobre si utilizaban sistemas de almacenamiento en la nube. La encuesta de Ibiza tuvo un tamaño $n_1 = 500$ y 200

usuarios de la nube, mientras que en Mallorca se encuestaron a $n_2=750~\mathrm{y}$ se obtuvo un resultado de 210 usuarios.

se pide:

- 1. Construir una matriz 2 por 2 que contenga en filas los valores de Ibiza y Mallorca y por columnas las respuestas Sí y No
- 2. Con la función prop.test y el 'contrastar si las proporciones por islas son iguales o distintas.
- 3. Resolver el contraste con el p-valor y obtener e interpretar un los intervalos de confianza del 95% para la comparación de las proporciones (!cuidado con el orden;).

1.6 Ejercicio 6

Se pregunta a un grupo de 100 personas elegido al azar asiste a un *webinar* sobre tecnología para la banca. Antes de la conferencia se les pregunta si consideran que Internet es segura para la banca, después de la conferencia se les vuelve a preguntar cual es su opinión. Los resultados fueron los siguientes:

		Después	
		Sí Segura	No Segura
Antes	Sí Segura	50	20
	No Segura	15	15

Contrastar, calculando el p-valor, si ha cambiado (en cualquier sentido) la proporción de los asistentes que consideran que Internet es segura para la banca.