End Term Examination (CBCS)(SUBJECTIVE TYPE) (OffLine) Course Name: B.Tech. ECE, Semester:4

(May, 2025)

Subject Code: BEC 202	Subject: Linear Integrated Circuits (LIC)		
Time: 3 Hours	Maximum Marks :60		

Note: Q1 is compulsory. Attempt one question each from the Units I, II, III & IV.

100		15.11		3
Q1		2.5*8	=20)	CO Mappin
1	a) The output voltage of Op-amp is changes by 20V in 4μsec. What is slew rate of Op-amp?	the		CO1
000	b) Explain the virtual ground concept with a suitable example.			CO1
	c) What is precision diode? What part it plays in a half wave rectifier	?		CO2
	d) Explain the basic principle of a RC Phase shift oscillator.			CO2
	e) Give limitations of an Operational Transconductance Amplifier (OT	4).		CO3
	f) Discuss the power conversion efficiency of a Class A Amplifier.	1	311	соз
	g) For which applications active filters are preferred over passive filter and why?	rs		CO4
	h) What is a phase detector? What are its types?			CO4
03	UNITI			CO Mapping
Q2	Explain the meaning of open loop and closed loop operation of an op-amp Discuss different circuits and their working for both types of operation of Op Amp.). (1	0)	CO1
Q3	Discuss about the various methods used for improving CMRR of the Op-Amp	100	-	
	UNIT II		0)	CO1
Q4	Draw the circuit of a Monostable Multivibrator using Op-Amp. Explain it.	(10	1	CO Mapping
	operation and find out the mathematical expression for pulse width 'T' for the	1	"	002
Q5	monostable multivibrator.			
Ų3	Design an op-amp differentiator that will differentiate an input signal with f_{max} = 500 Hz. Draw the output waveform for a sine wave of 2V peak at 200 Hz	(10)	CO2
	applied to the differentiator.			
	UNIT III		-	
Q6	Find the transfer function of the circuit given in Figure below:	(10)	-	O Mapping
	g _{m3}	(10)		CO3
	+			
			1	-
	$c_2 + $			
				1
-	g _{m2}			
- 1	+		1	
	v _o			400
	一			
		100		
		4		
8				
	4-			
	+ B _m			
	v omi			
		-		

