

E0131 Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Mathematik für Physiker 2 (Analysis 1)

Klausur: MA9202 / Klausur Datum: Freitag, 4. März 2022

Prüfer: Prof. Robert König **Uhrzeit:** 11:30 – 13:00

	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 8
Ι								

Bearbeitungshinweise

- Diese Klausur umfasst **12 Seiten** mit insgesamt **8 Aufgaben**. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Klausur beträgt 40 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- Es wird nur dieses Prüfungsheft eingesammelt, weitere Seiten werden nicht akzeptiert.
- Als Hilfsmittel sind zugelassen:
 - 1 einseitig beschriftetes DIN A4 Blatt (handgeschrieben)
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Alle Ergebnisse sind grundsätzlich zu begründen.
- Schreiben Sie weder mit roter / grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Hörsaal verlassen von	bis /	Vorzeitige Abgabe um
	/	Voizeitige Hogabe um

Aufgabe 1 (4 Punkte)

Beweisen oder widerlegen Sie (mit Begründung!):

0	
1	

a) Die Reihe $\sum\limits_{n=1}^{\infty}e^{-n^2}$ konvergiert.

b) Es existiert eine monoton fallende Folge $(a_n)_{n\in\mathbb{N}}\subseteq(0,\infty)$, die nicht konvergiert.

c) Es existiert eine Funktion $f:[-1,1] \to \mathbb{R}$, die surjektiv und differenzierbar ist.

Extra Platz

Aufgabe 2 (6 Punkte)

Sei $a_1 \in \mathbb{R}$. Betrachten Sie die rekursiv definierte Folge $(a_n)_{n \in \mathbb{N}}$ gegeben durch $a_{n+1} := \frac{1+a_n^2}{2}$ für $n \ge 1$.

į	a) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ monoton wachsend ist.

c) Zeigen Sie: die Folge konvergiert für $a_1 \in [-1, 1]$.	
	H

-1,1].	

Aufgabe 3 (3 Punkte)

Sei $P(x) = \sum_{n=0}^{\infty} a_n (1+x)^n$ eine Potenzreihe mit $\frac{1}{4} \le |a_n| \le 2^n \ \forall \ n \in \mathbb{N}_0$ und die Folge $(\sqrt[n]{|a_n|})_{n \in \mathbb{N}}$ konvergiert.

a) Zeigen Sie $\frac{1}{2} \leq R \leq 1$ (RKonvergenzradius von P(x)).

b) Entscheiden Sie jeweils ob die Reihe für die folgenden drei Punkte konvergiert:

 $x_1 = -\frac{3}{4}, x_2 = 2, x_3 = 0$.

1	
2	

Seite leer

0

Aufgabe 4 (5 Punkte)

Berechnen Sie die folgenden Ausdrücke. Achten Sie auf eine nachvollziehbare Darstellung Ihres Lösungswegs.

a) $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$	
	1

b) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 + \tan(x)^2}{\cos(x)^2} dx$	(Tip: Substitution mit $z = \tan(x)$)

0	
1	
_	

b) $\int_{-\frac{\pi}{4}}^{1+tan(x)} \cos(x)^2 dx$	(Tip: Substitution mit $z = \tan(x)$)

0 1

$c) \int_{0}^{\sqrt{2}} \frac{x}{x^2 + 2} dx$		
Extra Platz		

Seite leer

Aufgabe 5 (9 Punkte)

Betrachten Sie die Funktionen $f_n:(0,\infty)\to\mathbb{R}, f_n(x)=x^n\mathrm{e}^{-x}$ für $n\in\mathbb{N}.$

a) Bestimmen Sie für $n \in \mathbb{N}$ die Definitionsbereiche auf denen f_n monoton ist.		(
		١,
	H	1
		2
		•

c) Berechnen Sie $\int_{1}^{2} f_2(x) dx$.						

Aufgabe 6 (4 Punkte)

Bestimmen Sie ein reelles Fundamentalsystem für $q^{(4)}=2q^{(3)}-3q^{(2)}+4q^{(1)}-2q$. Schreiben Sie die DGL als eine lineare DGL erster Ordnung.

Aufgabe~7~~(2~Punkte)

0 _____1

a) Bestimmen Sie das größte abgeschlossene Intervall $[a,b]\subseteq [0,2\pi]$ sodass sin : $[a,b]\to \mathbb{R}$ konvex ist.

0

b) Finden Sie (mit Begründung) die korrekte Relation (
? $\in \{\leq, \geq, =\})$ für den Ausdruck

 $\sin\left(\frac{67}{50}\pi\right) \quad ? \quad \frac{1}{5}\sin\left(\frac{6\pi}{5}\right) + \frac{4}{5}\sin\left(\frac{11\pi}{8}\right) \ .$

Seite leer

Aufgabe 8 (7 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 1}$. Bestimmen Sie das Taylorpolynom zweiten Grades bei $x_0 = \sqrt{3}$. Welche der folgenden oberen Schranken für die Genauigkeit der Approximation von f durch dieses Polynom auf dem Intervall $[\sqrt{3}, 3]$ gelten mit Sicherheit? Begründen Sie Ihre Antwort!

$\square 0$	\square .25	\Box .5	$\Box 1$	\square 5

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

