Math 8851. Homework #2. Preliminary version To be completed by 11:59pm on Mon, Feb 10

1 (extended version of HW#1.1). Let G be a group and S a generating set of G.

- (a) Prove that the following are equivalent:
 - (i) G is free and S is a free generating set of G. By definition this means that every element of G can be uniquely written as a reduced word $\prod_{i=1}^{n} s_i^{\varepsilon_i}$ with $s_i \in S$ and $\varepsilon_i = \pm 1$ (reduced means that $s_i \neq s_{i+1}$ whenever $\varepsilon_{i+1} = -\varepsilon_i$).
 - (ii) The Cayley graph Cay(G, S) is a tree and S has no elements of order 2.
- (b) Describe all groups G with the property that Cay(G, S) is a tree for some generating set S of G.
- 2. Let (X, R) be a group presentation, $G = \langle X|R\rangle$, and let \mathcal{D} be a van Kampen diagram over (X, R). Prove that one can label the vertices of \mathcal{D} by elements of G such that whenever e is an oriented edge from a vertex v to a vertex w we have $\ell(w) = \ell(v)\ell(e)$ (where $\ell(\cdot)$ denotes the label of a vertex or an edge). Moreover, show that if we fix a base vertex v_0 , then $\ell(v_0)$ can be chosen to be any element of G, and once $\ell(v_0)$ is chosen, all other vertex labels are uniquely determined. **Hint:** Use van Kampen's lemma.
 - 3. Let $X = \{a, b\}, R = \{aba^{-1}b^{-1}\}$ and $G = \langle X|R \rangle \cong \mathbb{Z}^2$.
 - (a) Let $w = a^2b^2a^{-2}b^{-2}$, and let \mathcal{D} be the disk van Kampen diagram of area 4 from the example in Lecture 9 with $\ell(\partial D) = w$. Use the proof of van Kampen lemma to explicitly write w in the form $\prod_{i=1}^4 u_i r_i^{\pm 1} u_i^{-1}$ with $u_i \in F(X)$ and $r_i = aba^{-1}b^{-1}$ (as the only element of R in this case).
 - (b) Now reverse the process from (a): start with the factorization found in (a), construct the corresponding 'lollipop' diagram, call it \mathcal{D}' , and show that after edge cancellations in $\partial \mathcal{D}'$ (as defined below), one obtains the original diagram \mathcal{D} from (a).

Here is what we formally mean by an edge cancellation. Suppose that e_1 and e_2 are consecutive edges of $\partial \mathcal{D}'$ (as we traverse $\partial \mathcal{D}'$ in some direction) which have the same label $x \in X$ and point in opposite directions. As we traverse e_1 , we move from some vertex u to some

vertex v, and then as we traverse e_2 , we move from v to some vertex w (which may concide with u).

- (i) If $w \neq u$, we start by gluing the edges e_1 and e_2 , identifying u and w. If after this process the vertex u = w becomes a leaf, we also remove the entire edge $e_1 = e_2$.
- (ii) If w = u, we remove the edges e_1 and e_2 possibly together with any cells of \mathcal{D}' enclosed between e_1 and e_2 .

You should convince yourself that each of the operations (i) and (ii) results in a valid van Kampen diagram whose boundary label is obtained from $\ell(\partial \mathcal{D}')$ by the cancellation of the subword xx^{-1} or $x^{-1}x$ corresponding to the edges e_1 and e_2 .