

TIVI-03

MACHINE LEARNING

Regresi Logistik

Dr. Sirojul Munir, S.Si., M.Kom. rojulman@nurulfikri.ac.id

ARTIFICIAL INTELLIGENCE - INFORMATICS STTNF

Daur ulang Project Data Science

Logistic Regression

STT-NF

- Regresi: metode analisis data yang menggambarkan hubungan antara variabel respon dan satu atau lebih variabel prediktor
- Dalam kehidupan nyata sering ditemukan variable respon/target/dependen adalah bernilai diskrit yang mempunyai dua atau lebih kemungkinan hasil (kategori).

LOGISTIC REGRESSION

Logistic Regression

- Regresi: metode analisis data yang menggambarkan hubungan antara variabel respon dan satu atau lebih variabel prediktor
- Dalam kehidupan nyata sering ditemukan variable respon/target/dependen adalah bernilai diskrit yang mempunyai dua atau lebih kemungkinan hasil (kategori).

Logistic Regression

- Regresi: metode analisis data yang menggambarkan hubungan antara variabel respon dan satu atau lebih variabel prediktor
- Dalam kehidupan nyata sering ditemukan variable respon/target/dependen adalah bernilai diskrit yang mempunyai dua atau lebih kemungkinan hasil (kategori).

Fungsi Logistik

- Regresi Logistik: Metode analisis yang dapat digunakan untuk menggambarkan hubungan antara variabel respon yang bersifat kategori dengan satu atau lebih variabel prediktor yang bersifat kategori
- ☐ Logistik binomial: variable respon terdiri dua kategori
- ☐ Logistik multinomial: variable respon bersifat nominal dan lebih dari dua kategori yang tidak terurut
- ☐ Logistik Ordinal: variable respon bersifat nominal dan lebih dari dua kategori yang tidak terurut

Persamaan - Regresi Logistik

$$X = egin{bmatrix} x_{11} & ... & x_{1m} \ x_{21} & ... & x_{2m} \ dots & \ddots & dots \ x_{n1} & ... & x_{nm} \end{bmatrix}$$

$$Y = egin{cases} 0 & ext{if $Class 1$} \ 1 & ext{if $Class 2$} \end{cases}$$

$$\sigma(z) = \frac{1}{1+e^{-z}}$$

☐ Z = Fungsi multi linear dengan inputan variable dependent X

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$

$$z = w \cdot X + b$$

$$w_i = [w_1, w_2, w_3, \cdots, w_m]$$

Bobot koefisien dari bias / intecept

Regresi Logistik

- ☐ Fungsi sigmoid mengembalikan nilai probabilitas 0 atau 1
- ☐ Memetakan nilai probabilitas ke nilai diskrit 0 atau 1
- ☐ Ekpressi matematis:
- P >= 0.5 => class 1
- P < 0.5 => class 0

Linear vs. Logistic Regression

Pustaka Program Logistic Regression - Binomial


```
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.20, random state=23)
clf = LogisticRegression(max iter=10000, random state=0)
clf.fit(X train, y train)
acc = accuracy_score(y_test, clf.predict(X_test)) * 100
print(f"Logistic Regression model accuracy: {acc:.2f}%")
```

Pustaka Program Logistic Regression - Multinomial


```
@
from sklearn.model_selection import train test split
from sklearn import datasets, linear model, metrics
digits = datasets.load digits()
X = digits.data
y = digits.target
X train, X test, y train, y test = train test split(X, y,
test size=0.4, random state=1)
reg = linear model.LogisticRegression(max iter=10000,
random_state=0)
reg.fit(X train, y train)
y_pred = reg.predict(X_test)
print(f"Logistic Regression model accuracy:
{metrics.accuracy_score(y_test, y_pred) * 100:.2f}%")
```

Evaluasi Model Logistic Regression - Klasifikasi

	1 (Predicted)	0 (Predicted)
1 (Actual)	True Positive	False Negative
0 (Actual)	False Positive	True Negative

Data Ke:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Prediksi	1	1	0	1	1	1	1	0	0	0	1	1	0	0	0
Aktual	0	1	1	1	1	1	0	0	0	1	1	1	1	0	0
Hasil	FP	TP	FN	TP	TP	TP	FP	TN	TN	FN	TP	TP	FN	TN	TN

1. Accuracy: Accuracy provides the proportion of correctly classified instances.

$$Accuracy = rac{True\ Positives + True\ Negatives}{Total}$$

2. Precision: Precision focuses on the accuracy of positive predictions.

$$Precision = rac{True\,Positives}{True\,Positives + False\,Positives}$$

	1 (Predicted)	0 (Predicted)			
1 (Actual)	True Positive	False Negative			
0 (Actual)	False Positive	True Negative			

3. Recall (Sensitivity or True Positive Rate): Recall measures the proportion of correctly predicted positive instances among all actual positive instances.

$$Recall = rac{True\,Positives}{True\,Positives + False\,Negatives}$$

4. F1 Score: F1 score is the harmonic mean of precision and recall.

$$F1\,Score = 2*rac{Precision*Recall}{Precision+Recall}$$

Kelas	Prediksi Benar	Prediksi Salah
Normal	13.946 benar (True Positive)	1.658 salah (False Positive)
Stunting	4.164 benar (True Negatif)	232 salah (False Negative)

Hitung Metrik Evaluasinya?

$$egin{aligned} Accuracy &= rac{TP + TN}{TP + TN + FP + FN} \end{aligned}$$
 $Precision &= rac{TP}{TP + FP}$ $Recall &= rac{TP}{TP + FN}$ $F1 ext{-}score &= rac{2 imes Precision imes Recall}{Precision + Recall}$

Praktikum Case Study: Prediksi Berat Balita

Sampel Data:

	Jenis Kelamin	Umur (bulan)	Tinggi Badan (cm)	Berat Badan (kg)	Stunting	Wasting
0	Laki-laki	19	91.6	13.3	Tall	Risk of Overweight
1	Laki-laki	20	77.7	8.5	Stunted	Underweight
2	Laki-laki	10	79.0	10.3	Normal	Risk of Overweight
3	Perempuan	2	50.3	8.3	Severely Stunted	Risk of Overweight
4	Perempuan	5	56.4	10.9	Severely Stunted	Risk of Overweight

Prediksi balita normal atau stunting!

Praktikum Case Study: Prediksi Berat Balita

Sampel Data:

	Jenis Kelamin	Umur (bulan)	Tinggi Badan (cm)	Berat Badan (kg)	Stunting	Wasting	Stunting_bin	JK_bin
0	Laki-laki	19	91.6	13.3	Tall	Risk of Overweight	0	1
1	Laki-laki	20	77.7	8.5	Stunted	Underweight	1	1
2	Laki-laki	10	79.0	10.3	Normal	Risk of Overweight	0	1
3	Perempuan	2	50.3	8.3	Severely Stunted	Risk of Overweight	1	0
4	Perempuan	5	56.4	10.9	Severely Stunted	Risk of Overweight	1	0

Case Studi: Calon pembeli mobil

Dataset: https://www.kaggle.com/code/ajieraflipamungkas/prediksi-calon-pembeli-regresi-logistik

•Usia: Usia calon pembeli mobil

•Status: Status pernikahan calon pembeli (0=single, 1=menikah, 2=menikah mempunyai anak, 3=duda/janda)

•Kelamin: Jenis kelamin calon pembeli (0=pria, 1=wanita).

•Memiliki Mobil: Jumlah mobil yang dimiliki calon pembeli.

•Penghasilan: Penghasilan calon pembeli dalam setahun (jutaan).

•Beli Mobil (Target): Apakah calon pembeli mobil benar benar membeli mobil atau tidak (0=tidak membeli, 1=membeli mobil)

Praktikum Mandiri: Prediksi Pembelian Mobil

Sampel Data:

[1]:		ID	Usia	Status	Kelamin	Memiliki_Mobil	Penghasilan	Beli_Mobil
	0	1	32	1	0	0	240	1
	1	2	49	2	1	1	100	0
	2	3	52	1	0	2	250	1
	3	4	26	2	1	1	130	0
	4	5	45	3	0	2	237	1

Prediksi apakah pelanggan benar-benar akan membeli mobil!

