

7032899594

17/09/2024 16:05

Nome:		-1
Disciplina: ARA0301 / PROGRAMAÇÃO DE MICROCONTROLADORES		ata://
Período: 2024.2 / SM1	Turma: 1001	NSQ: 12970054
Leia com atenção as questões antes de responder.		
É proibido o uso de equipamentos eletrônicos portáteis e consulta a materiais de qualquer naturez	za durante a rea	lização da prova.
Boa prova.		
		de 0,10
Analise o código a seguir.		
int meu_sensor = 8; int i = 0;		
void setup() { pinMode(meu_sensor, OUTPUT); }		
<pre>void loop() { for (i; i < 5; i++) { tone(meu_sensor, 1500); delay(500); noTone(meu_sensor); delay(500); }</pre>		
Após analisar o código acima, você precisa identificar qual sensor foi utilizado, representado meu_sensor e o que ele faz ao ser executado.	no código pel	a variável
O sensor utilizado foi um relé. Este projeto aciona este componente em uma determide tempo gerando um corte de corrente.	inada frequên	cia e intervalo
■ O sensor utilizado foi um ldr. Este projeto aciona este componente em uma determin tempo gerando um alerta luminoso.	nada frequênci	a e intervalo de
© O sensor utilizado foi uma solenoide. Este projeto aciona este componente em uma o intervalo de tempo fazendo a abertura e fechamento automaticamente.	determinada fr	requência e
O sensor utilizado foi um buzzer. Este projeto aciona este componente em uma deter de tempo gerando um som.	rminada frequ	ência e interva l o

2.

_ de **0,10**

O microcontrolador pode ser considerado como um computador em um único chip. Abaixo são descritos alguns dispositivos que podem fazer parte de um microcontrolador.

O sensor utilizado foi um de carga. Este projeto aciona este componente em uma determinada frequência e

I Um disco rígido, que funciona como um sistema de armazenamento de dados compactado.

II Uma memória programável, na qual são gravadas as instruções do programa.

intervalo de tempo medindo o peso.

III Uma memória RAM, que serve para memorizar as variáveis utilizadas pelo programa.

IV Uma unidade de processamento central cuja finalidade é interpretar as instruções de programas.

V Uma placa de expansão, permitindo o aumento da memória RAM e troca da unidade de processamento central.

O microcontrolador é basicamente constituído pelos dispositivos:

- **A** ☐ I, II, III, IV e V.
- **B**II, III e IV.
- ^C□ II, III, e V.
- □ I, II e III.
- I, IV e V.

3.

___ de **0,10**

O Tinkercad é uma ferramenta disponibilizada na Internet, de forma totalmente gratuita, pela Autodesk. Por meio dele, é possível montar e simular vários circuitos eletrônicos, sendo possível inclusive empregar o Arduino como componente ne sses circuitos. Dentre todas as suas aplicações e vantagens, é possível afirmar que o Tinkercad é uma alternativa adequada para o aprendizado de circuitos eletrônicos, porque:

- A impede um aprendizado mais rápido, dinâmico e sem riscos de queimar componentes.
- **B** □ permite um aprendizado mais lento e com risco de queimar componentes.
- não permite implementação de código com a linguagem C++
- permite um aprendizado rápido, prático e sem riscos de queimar componentes
- possibilita impor limites em seus componentes

4.

de **0,10**

Observe o protótipo abaixo desenvolvido em um simulador. Sobre o projeto para que ele execute a função de ao apertar o botão estabeleça o ascender do led, precisamos de uma variável para ler o valor do pino onde está localizado a conexão do botão na entrada/saída digital e armazenar em uma variável que irá controlar o estado do botão (HIGH ou LOW, ou ainda, 1 ou 0). Se as variáveis citadas recebem, respectivamente, os nomes: botaoPin e estadoBotao. Qual a linha abaixo que deve ser inserida no código para esta ação?

- ▲ botãoPin = digitalWrite(estadoBotao)
- **B** botãoPin = digitalRead(estadoBotao)

c	
estadoBotao = digitalRead(botaoPin)	
5. de 0,1 (^
Dado um projeto com Arduino que envolva a utilização de um LED, marque a opção correta.	J
_	
 A utilização de um resistor resultará na queima do LED. B □ O fio que servirá para transmitir a corrente elétrica deve ser conectada ao cátodo do LED. 	
© Nenhuma das demais opções é correta.	
O fio que servirá para transmitir a corrente elétrica deve ser conectada ao ânodo do LED.	
É obrigatório que o LED esteja conectado com o pino 13.	
de 0,1 0	0
A função do Arduino que pausa a execução do programa por um intervalo de tempo, definido em microsegundos, é o:	
A micros()	
■ millis()	
©	
delayMicroseconds() E delay()	
7 de 0,1 0	0
Um microcontrolador pode ser definido como um single-chip computer (computador em um único chip). Com relação aos seus periféricos internos, as afirmações abaixo estão todas corretas, EXCETO NA OPÇÃO:	
GND é a abreviatura de Ground, em circuitos eletrônicos e elétricos, refere-se a um caminho de retorno comum da corrente para a fonte elétrica e, assim, permite que o circuito seja concluído.	l
O Arduino UNO tem 12 pinos de entrada/saída digital (dos quais 6 podem ser usados como saídas PWM), 5 entradas analógicas, um cristal oscilador de 16MHz, uma conexão USB, uma entrada de alimentação uma conexão ICSP e um botão de reset.	
PWM é a técnica usada para gerar sinais analógicos de um dispositivo digital como um Microcontrolador. O Arduino apenas possui 6 pinos para saída PWM, são estes os pinos 3,5,6,9,10 e 11 que podem ser usados como saídas PWM de 8 bits através da função analogWrite().	
No mesmo chip estão integrados uma CPU, também chamada de core (núcleo), e circuitos auxiliares (periféricos) como memória de programa, memória de dados, circuito de clock, interface de comunicação serial,	
temporizadores/contadores, portas de I/O, etc E A entrada de 5 V fornece tensão de 5 V para alimentação de shields e circuitos externos.	
— Mentrada de 3 y Torrides tensas de 3 y para animentação de sincias e en cartos externos.	
8 de 0,1 6	0
Análise as sentenças abaixo sobre microcontroladores e classifique-as com (V) para sentença verdadeira e (F) para sentença falsa.	à
() Um microcontrolador pode ser definido como um computador em um único <i>chip</i> , pois nele está integrado CPU memória de programa, memória de dados, circuito de <i>clock</i> , interface de comunicação serial.	J,
() Um microcontrolador possibilita o gerenciamento de grande quantidade de memória.	
() Um microcontrolador possui uma capacidade de processamentos lógicos limitada.	
() Um microcontrolador permite tratamento de muitos formatos de dados.	
Após analisar e classificar as sentenças acima qual a ordem obtida?	
A	

С	V-F-V-\
D	V-V-V-V
E	F-F-V-F

9.	de C	0,10
----	-------------	------

Um microcontrolador pode ser definido como um computador em um único circuito integrado, pois em seu interior estão todos os componentes necessários para o seu funcionamento. A respeito de um microcontrolador, é correto afirmar que:

- Não é possível a atualização do software de um microcontrolador, o que é uma desvantagem em relação aos circuitos analógicos ou digitais tradicionais.
- Os microcontroladores são reconhecidos pela sua dificuldade de utilização, e o seu custo elevado é uma barreira para a utilização em dispositivos eletrônicos digitais, pois tornam mais complexa a construção de placas de circuito aumentam o custo dos componentes e da produção.
- c☐ Os microcontroladores dependem de um microprocessador externo para funcionar.
- Os microcontroladores são muitos utilizados pela sua versatilidade, pois seu comportamento depende principalmente do software que nele é gravado. Assim, um mesmo microcontrolador pode ser utilizado em diversas de aplicações, bastando mudar o seu software.
- E☐ Microcontroladores não são seguros, por isso não são utilizados em automóveis, aviões e na indústria.

10.

__ de **0,10**

O Arduino possui entrada de pinos digitais e entradas de pinos analógico. Qualquer um dos pinos digitais ou analógicos pode ser designado (no software) como um pino de entrada ou saída e usado para uma ampla gama de propósitos, como conectar um LED ou sensor. Na figura abaixo os pinos envolvidos na marcação de amarelo recebem um nome. Qual o nome dado para essa sequência de pinos?

- ▲☐ Entrada e Saída de Circuito
- Entradas Analógicas
- □ Protoboard
- E GPIO

Campus:

