Image Processing Masterclass

Python

50+ Solutions and Techniques Solving Complex Digital Image Processing Challenges Using Numpy, Scipy, Pytorch and Keras

SANDIPAN DEY

Table of Contents

1. Basic Image and Video Processing	1
Introduction	1
Structure	2
Objectives	
Problems	3
Display RGB image color channels in 3D	3
Video I/O	8
Read/write video files with scikit-video	
Capture video from camera and extract frames with OpenCV-Python	12
Implement Instagram-like Gotham filter	14
The Gotham filter	15
Interpolation with NumPy interp() function	15
Explore image manipulations with different python libraries	23
Plot image montage with scikit-image	23
Crop/resize images with the SciPy ndimage module	26
Draw contours with OpenCV-Python	28
Counting objects in an image	32
Convert a PNG image with palette to grayscale with PIL	34
Different ways to convert an RGB image to grayscale	37
Rotating an image with scipy.ndimage	39
Image differences with PIL	40
Converting RGB to HSV and YUV color spaces with scikit-image	42
Resizing an image with OpenCV-Python	46
Add a logo to an image with scikit-image	48
Change brightness/contrast of an image with linear transform and gam	
correction with OpenCV-Python	
Detecting colors and changing colors of objects with OpenCV-Python	
Object removal with seam carving	
Creating fake miniature effect	60
Summary	64

	Questions	64
	Key terms	69
	References	70
2.	More Image Transformation and Manipulation	71
	Introduction	
	Structure	72
	Objectives	72
	Problems	
	Applying Euclidean and Affine transformation on an image	73
	Basics of linear geometric transformations in 2D	
	Rotating an image with scipy.ndimage	75
	Flipping and flopping an image with NumPy	77
	Apply affine transformation with scipy.ndimage	78
	Implement image transformation with warping/inverse warping using	
	scikit-image and scipy.ndimage	82
	Applying translation on an image using scikit-image warp	82
	Implementing the swirl transformation using scikit-image warp	84
	Implementing swirl transform using scipy.ndimage	86
	Implementing elastic deformation	88
	Image projection with homography using scikit-image	90
	Detecting colors and changing colors of objects with OpenCV- Python	94
	Detecting Covid-19 virus objects with colors in the HSV colorspace	96
	Finding duplicate and similar images with hashing	98
	Using Perceptual Hash function (pHash) to find similar images using	
	imagehash	
	Summary	
	Questions	
K	Key terms.	
	References	.115
3.	Sampling, Convolution, Discrete Fourier, Cosine and Wavelet Transform	.117
	Introduction	.117
	Structure	
	Objectives	.118
	Droblems	110

	Fourier Transform Basics	119
	Sampling to increase/decrease the resolution of an image	128
	Up-sampling an image by using the DFT and a low pass filter (LPF)	128
	Down-sampling with anti-aliasing using the Gaussian filter	132
	Denoising an image with LPF/Notch filter in the Frequency domain	135
	Removing periodic noise with Notch filter	136
	Removing salt and pepper noise using the Gaussian LPF with scipy fftpack.	138
	Blurring an image with an LPF in the frequency domain	142
	Different blur kernels and convolution in the frequency domain	142
	Blurring with scipy.ndimage frequency-domain filters	146
	With fourier gaussian	146
	With fourier_uniform	148
	With fourier_ellipsoid	
	Gaussian blur LPF with scipy.fftpack	152
	Convolution in the frequency domain with a colored image using	
	fftconvolve from scipy signal	156
	Edge detection with high pass filters (HPF) in the frequency domain	
	Implementation of homomorphic filters	
	Summary	174
	Questions	
	Key terms	179
	References	179
4.	Discrete Cosine/Wavelet Transform and Deconvolution	181
	Introduction	181
	Structure	181
	Objectives	182
	Template matching with phase-correlation in the frequency domain	182
	Image compression with the Discrete Cosine Transform (DCT)	186
	JPEG compression	188
	Image denoising with Discrete Cosine Transform (DCT)	192
	Deconvolution for image deblurring	194
	Blur detection	195
	Non-blind deblurring with SimpleITK deconvolution filters	197
	Non-blind deblurring with scikit-image restoration module functions	204

Image denoising with wavelets	205
Wavelet basics	206
Image denoising using wavelets with pywt	209
Image denoising with wavelets using scikit-image restoration	212
Image fusion with wavelets	215
Fusion algorithm	217
Secure spread spectrum digital watermarking with the DCT	219
Summary	223
Questions	224
Key terms	
References	227
References	229
Introduction	
Structure	230
Problems	231
Image Enhancement Filters with PIL for noise removal and smo	oothing231
BLUR filter to remove salt and pepper noise	231
Gaussian BLUR filter to remove salt and pepper noise	235
Median filter to remove salt and pepper noise	236
Max, min, and mode filters to remove outliers from an image.	238
Min filter	238
Max filter	239
Mode filter	240
Progressive application of Gaussian blur, median, mode, and r	nax filters on
an image	241
Unsharp masking to sharpen an image	
With the scikit-image filters module	
With the PIL ImageFilter module	245
Laplacian sharpening with SimpleITK	247
Implementing a unsharp mask with opency-python	249
Averaging of images to remove random noise	251
Image denoising with curvature-driven algorithms	
Anisotropic diffusion	
Contrast stretching/histogram equalization with opency-python	n261

	Fingerprint cleaning and minutiaes extraction	267
	Fingerprint cleaning with morphological operations	267
	Feature (minutiae) extraction from an enhanced fingerprint	270
	Edge detection with LOG/zero-crossing, canny versus holistically-nested	.273
	Computing the image derivatives	274
	With LoG/zero-crossing	276
	Marr-Hildteth (LOG) algorithm	277
	With canny and holistically-nested (deep learning model based)	280
	Canny edge detection	280
	Holistically-nested edge detection	
	SummaryQuestions	285
	Key terms	289
	References	289
6.	More Image Enhancement	291
	Introduction	291
	Structure	291
	Problems	292
	Object detection with Hough transform and colors	292
	Counting circular objects in an image with the circle Hough transform	293
	Detecting lines with progressive probabilistic Hough transform	296
	Detecting objects of arbitrary shapes using the generalized Hough transf 299	orm.
	Detecting objects with colors in HSV colorspace	301
	Object saliency map, depth map, and tone map (HDR) with	
	OpenCV-python	
	Creating object saliency map	
	Creating depth-map from stereo images	
	Tone mapping and High Dynamic Range (HDR) imaging	309
	Pyramid blending	
	Constructing the Gaussian pyramid	313
	Constructing the Laplacian Pyramid	314
	Reconstructing an image only from its Laplacian pyramid	315
	Blending images with pyramids	316

	Image Super Resolution with Deep Learning Model (SRGAN)	319
	Low-light image enhancement using CNNs	327
	Realistic image dehazing using deep neural net	331
	Distributed image processing with Dask	344
	Summary	351
	Questions	351
	Key terms	352
	References	352
7.	Face Image Processing	353
	Introduction	353
	Structure	354
	Objectives	354
	Problems	
	Face morphing with dlib, scipy.spatial, and opency-python	354
	Facial landmark detection with deep learning models	363
	Facial landmark detection with Keras	364
	Facial landmark detection with the MTCNN	368
	Implementation of face swapping	370
	Implementation of face parsing	
	Face recognition with FisherFaces	379
	Face recognition with Local Binary Patterns Histogram (LBPH) with	
	opencv- python	386
	Face detection and recognition with Microsoft Cognitive Vision APIs	
	Summary	
	Questions	
	Key terms	
	References	403