

A Level · Edexcel · Maths

4 hours

? 40 questions

5.6 Compound & Double Angle Formulae (A Level only)

Total Marks	/218
Very Hard (10 questions)	/65
Hard (10 questions)	/53
Medium (10 questions)	/55
Easy (10 questions)	/45

Scan here to return to the course

or visit savemyexams.com

Easy Questions

- Write down the exact value of $\cos 60^{\circ}$. **1** (i)
 - Write down the exact value of $\cos 45^{\circ}$. (ii)
 - Use your calculator to find the exact value of $\cos 105^{\circ}$. (iii)
 - Hence show that $\cos 60^{\circ} + \cos 45^{\circ} \neq \cos 105^{\circ}$.

(5 marks)

2 (a) Express $\sin 15^{\circ}$ in terms of $\sin 45^{\circ}$ and $\sin 30^{\circ}$.

(2 marks)

(b) Hence show that

$$\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$$

3 (a) Starting with the identity

$$sin(A + B) \equiv sin A cos B + sin B cos A$$

And using the substitution B = A, show that $\sin 2A \equiv 2 \sin A \cos A$.

(2 marks)

(b) Hence show the exact value of $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$.

Use an appropriate identity to find $\sin(\theta+\alpha)$ in terms of sines and cosines of θ and α .						
(2 marks)						
Hence show that $R \sin(\theta + \alpha) \equiv R \cos \alpha \sin \theta + R \sin \alpha \cos \theta$.						

(1 mark)

5 (a) Solve the following equations in the given intervals.

$$\sin 2\theta = \frac{1}{2}, \quad -\pi \le \theta \le \pi$$

(4 marks)

(b)
$$\cos 2\theta = \frac{\sqrt{3}}{2}, \quad 0 \le \theta \le 2\pi$$

(4 marks)

6 Show that

$$5\cos\left(\theta - \frac{\pi}{6}\right) \equiv \frac{5\sqrt{3}}{2}\cos\theta + \frac{5}{2}\sin\theta$$

(4 marks)

7 Show that

$$\cos^2 x + \cos^2 x = 3\cos^2 x - 1$$

- Show that , $R \sin(\theta + \alpha) \equiv R \cos \alpha \sin \theta + R \sin \alpha \cos \theta$ where R and α are **8 (a)** (i) constants with R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - Use your result from part (i) to show that $\sqrt{3} \sin \theta + \cos \theta = 2 \sin \left(\theta + \frac{\pi}{6}\right)$. (ii)

(4 marks)

(b) Write down the maximum value of $\sqrt{3} \sin \theta + \cos \theta$.

(1 mark)

9 Sketch the graph of $y = \tan 2\theta$ for $0 \le \theta \le 2\pi$.

Label the points at which the graph intersects the coordinate axes.

10 (a) Use the difference of two squares to show that

$$\cos^4 x - \sin^4 x \equiv \cos 2x$$

(3 marks)

(b) Hence solve the equation

$$\cos^4 x - \sin^4 x = \frac{\sqrt{2}}{2}$$

for
$$-\frac{\pi}{2} \le X \le \frac{\pi}{2}$$
.

Medium Questions

1 Prove by a counter-example that sin(A + B) = sin A + sin B is **not** true in general.

2 (a) Express $\tan (210^{\circ})$ in terms of $\tan (180^{\circ})$ and $\tan (30^{\circ})$

(2 marks)

(b) Hence show that $\tan(210^\circ) = \frac{\sqrt{3}}{3}$.

3 (a) Starting with the identity

$$\cos(A+B) \equiv \cos A \cos B - \sin A \sin B$$

and using the substitution B = A, show that $\cos 2A \equiv \cos^2 A - \sin^2 A$

(2 marks)

(b) Hence, or otherwise, show that $\cos 2A \equiv 1 - 2 \sin^2 A$.

_						
4	(a)	Using an	appropriate	trigonometric	identity.	show that
- '	\-,	001110 0111	appi opi iate	ci igoriorii caric	10.0116.697	STICKE CITOR

$$R\sin(\theta + \alpha) \equiv R\cos\alpha\sin\theta + R\sin\alpha\cos\theta$$

where R and lpha are constants.

(2 marks)

(b) Hence show that
$$3 \sin \theta + 2 \cos \theta = \sqrt{13} \sin(\theta + 0.588)$$
.

5 (a) Use appropriate double angle formulae to solve the following equations in the given intervals.

$$\cos^2 \theta - \sin^2 \theta = \frac{1}{2} - \pi \le \theta \le \pi$$

(5 marks)

(b)
$$4 \sin x \cos x = -\sqrt{3}$$
 $0 \le x \le \pi$

(5 marks)

6 Show that

$$\frac{5\sin 2x}{\tan x} \equiv 10\cos^2 x \qquad x \neq \frac{k\pi}{2}$$

- **7 (a)** (i) Show that $R \cos(x + \alpha) \equiv R \cos \alpha \cos x R \sin \alpha \sin x$, where R and α are constants.
 - Use your result from part (i) to show that $\cos x \sqrt{3} \sin x \equiv 2 \cos \left(x + \frac{\pi}{3}\right)$. (ii)

(4 marks)

(b) Hence solve the equation $\cos x - \sqrt{3} \sin x = 1$ for $0 \le x \le 2\pi$.

8 (a) Using the identities

$$\sin(A+B) \equiv \sin A \cos B + \sin B \cos A$$
 and

$$\cos 2A \equiv 1 - 2 \sin^2 A$$

show that $\sin 3A \equiv 3 \sin A - 4 \sin^3 A$

(5 marks)

(b) Hence, or otherwise, solve the equation

$$3 \sin \theta - 4\sin^3 \theta = \frac{1}{2} \qquad -\pi \le \theta \le \pi$$

(4 marks)

Hard Questions

1 If A = B, then

$$\sin(A-B) = \sin(A-A) = \sin(0) = 0 = \sin A - \sin A = \sin A - \sin B$$

By using a suitable counter-example with $A \neq B$, prove that $\sin(A - B) = \sin A - \sin B$ is **not** true in general.

2 (a) Express $cos(285^{\circ})$ in terms of cosines and sines of 315° and 30°.

(2 marks)

(b) Hence show that
$$\cos(285^{\circ}) = \frac{\sqrt{6} - \sqrt{2}}{4}$$
.

(3 marks)

3 Show that

$$\sin 2A \equiv 2 \sin A \cos A$$

(You may use the identity $\sin (A + B) \equiv \sin A \cos B + \cos A \sin B$.)

- **4** Show that $2\cos\theta-5\sin\theta$ can be written in the form $R\cos(\theta+\alpha)$, where R and α are constants with R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - Give R in the form \sqrt{k} where k is an integer, and give lpha correct to three significant figures.

(5 marks)

5 (a) Solve the equation

$$\sin 2\theta = \sin \theta$$
 $-\pi \le \theta \le \pi$

(6 marks)

(b) Solve the equation

$$\cos 2x + \sin^2 x = 0 \qquad 0 \le x \le 2\pi$$

(4 marks)

6 Show that

$$\frac{\sin(A+B) + \sin(A-B)}{\cos(A+B) + \cos(A-B)} \equiv \tan A \qquad \left(A, B \neq \left(k + \frac{1}{2}\right)\pi\right)$$

(4 marks)

(4 marks)

(b) Hence solve the equation

$$2 \sin \theta + 4 \cos \theta = 3$$
 $-\pi \le \theta \le \pi$

giving your answers correct to 3 significant figures.

(5 marks)

(b) Hence, or otherwise, solve the equation

$$\frac{6 \tan x - 2 \tan^3 x}{1 - 3 \tan^2 x} = 2 \qquad 0 \le x \le \pi$$

(3 marks)

9 Sketch the graph of $y = 2(\sin x - \cos x)$ for $0^{\circ} \le x \le 360^{\circ}$.

Be sure to label any points where the graph intercepts the coordinate axes, and state the coordinates of any maximum and minimum points.

(7 marks)

10 Show that

$$2-2 \cot 2A \tan A \equiv \sec^2 A$$
 $A \neq k\pi$

Very Hard Questions

- Prove that sin(A B) = sin A + sin B is **not** true in general. **1** (i)
 - Find values for A and B, with $A \neq 0$ and $B \neq 0$, for which $\sin(A - B) = \sin A + \sin B$ is true.

2 (a) Use the identities $\sin(A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$ and $cos(A \pm B) \equiv cos A cos B \pm sin A sin B$ to show that

$$\sin(X+Y-Z) \equiv$$

 $\sin X \cos Y \cos Z + \cos X \sin Y \cos Z - \cos X \cos Y \sin Z + \sin X \sin Y \sin Z$

(3 marks)

(b) Hence show that $\sin(165^{\circ}) = \frac{\sqrt{6} - \sqrt{2}}{4}$.

(4 marks)

3 Show that

$$\tan 2A \equiv \frac{2 \tan A}{1 - \tan^2 A}$$

State clearly any trigonometric identities you use to show this result.

(4 marks)

- **4** Given that $a \sin \theta + b \cos \theta$, where a and b are positive constants, is to be written in the form $R \sin(\theta + \alpha)$, find expressions for:
 - lpha in terms of a and b(i)
 - R in terms of a and b(ii)

(6 marks)

$$\cos 2\theta = \cos \theta$$
 $0 \le \theta < 2\pi$

(5 marks)

(b) Solve the equation
$$\tan 2x = 3 \, \tan x \qquad -\pi \le x \le \pi$$

(6 marks)

6 Show that

$$\tan 2\theta \tan \theta \equiv \sec 2\theta - 1$$

(5 marks)

(4 marks)

(b) Use your result from part (a), and the properties of the sine and cosine functions, to solve the equation

$$3\cos 2x + 5\sin 2x = 0.4$$
 $0 \le x \le 2\pi$

(5 marks)

8 (a) Use an identity for $\cos 2A$ to derive an identity for $\cos 4A$, in terms of $\cos A$.

(4 marks)

(b) Hence, or otherwise, solve the equation

$$2\cos 4x = 7\sin^2 x - 2 \qquad 0 \le x \le \pi$$

(5 marks)

9 The diagram below shows two right-angled triangles. Angles \boldsymbol{A} and \boldsymbol{B} have been labelled.

