Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming

precedence constraint graph

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

$$0 \rightarrow 5$$
 $0 \rightarrow 2$
 $0 \rightarrow 1$ $3 \rightarrow 6$
 $3 \rightarrow 5$ $3 \rightarrow 4$
 $5 \rightarrow 2$ $6 \rightarrow 4$
 $6 \rightarrow 0$ $3 \rightarrow 2$
 $1 \rightarrow 4$

directed edges

DAG

topological order

Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

0→5
0→2
0→1
3→6
3→5
3→4
5→2
6→4
6→0
3→2
1→4

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

done

Depth-first search order

```
public class DepthFirstOrder
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder(Digraph G)
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   }
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
   public Iterable<Integer> reversePost()
   { return reversePost; }
```

returns all vertices in "reverse DFS postorder"

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v\rightarrow w$. When dfs(v) is called:

- Case 1: dfs(w) has already been called and returned.
 Thus, w was done before v.
- Case 2: dfs(w) has not yet been called.
 dfs(w) will get called directly or indirectly
 by dfs(v) and will finish before dfs(v).
 Thus, w will be done before v.
- Case 3: dfs(w) has already been called,
 but has not yet returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

all vertices pointing from 3 are done before 3 is done, so they appear after 3 in topological order

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
	2000	- The college Droich	200

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
```

```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- *v* is strongly connected to *v*.
- If v is strongly connected to w, then w is strongly connected to v.
- If *v* is strongly connected to *w* and *w* to *x*, then *v* is strongly connected to *x*.

Def. A strong component is a maximal subset of strongly-connected vertices.

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

connected component id (easy to compute with DFS)

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

constant-time client connectivity query

strongly-connected component id (how to compute?)

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- how to compute?
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph G and its strong components

kernel DAG of G (in reverse topological order)

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

digraph G

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

 $reverse\ digraph\ G^R$

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

V	scc[]	
0	1	
1	0	
2	1	
3	1	
4	1	
5	1	
6	3	
7	4	
8	3	
9	2	
10	2	
11	2	
12	2	

done

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph GR

check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12

reverse postorder for use in second dfs() 1 0 2 4 5 3 11 9 12 10 6 7 8

```
dfs(0)
  dfs(6)
    dfs(8)
      check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
             check 11
             dfs(10)
             | check 9
            10 done
          12 done
          check 7
          check 6
```

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order 1 0 2 4 5 3 11 9 12 10 6 7 8

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

Pf.

- Running time: bottleneck is running DFS twice (and computing GR).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```
public class CC
   private boolean marked[];
   private int[] id;
   private int count;
   public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v])
            dfs(G, v);
            count++;
   }
   private void dfs(Graph G, int v)
     marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   public boolean connected(int v, int w)
   { return id[v] == id[w]; }
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSharirSCC
   private boolean marked[];
   private int[] id;
   private int count;
   public KosarajuSharirSCC(Digraph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePost())
         if (!marked[v])
            dfs(G, v);
            count++;
   }
   private void dfs(Digraph G, int v)
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   public boolean stronglyConnected(int v, int w)
      return id[v] == id[w]; }
```

Digraph-processing summary: algorithms of the day

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Algorithms

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components