Задача 3.2.5 Вынужденные колебания в электрическом контуре

Лось Денис (группа 611) 9 ноября 2017

Цель работы: исследование вынужденных колебаний и процессов их установления.

В работе используются: генератор звуковой частоты, осциллограф, вольтметр, частотометр, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

Экспериментальная установка

Для экспементального исследования резонансной кривой тока в последовательном колебательном контуре можно снять зависимость амплитуды напряжения на резисторе R от частоты генератора (при постоянной амплитуде выходного напряжения на генераторе). Однако импеданс этого контура будет включать в себя также выходной импеданс генератора. Нам следует убедиться, что выходной импеданс генератора много меньше импеданса контура и не влияет на процессы, происходящие в контуре.

Чтобы устранить влияние импеданса генератора, можно использовать принципиальную схему, изображённую на рис.1: синусоидальный сигнал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость C_1 .

Рис. 1: Принципиальная схема установки для исследования вынужденных колебаний

Зависимость амплитуды этого напряжения от частоты генератора будет практически совпадать с резонансной кривой для последовательного контура, если импедансы возбуждающей и измеряющей цепей намного превосходят импеданс самого контура вблизи резонанса $Z_{\rm pes} = L/(RC) = Q/(\Omega C)$. Разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот её импеданс $Z_{C_1} = 1/(\Omega C_1)$ много больше импеданса контура, поэтому в цепи генератора течёт ток практически с постоянной амплитудой, а колебательный контур выполняет роль нагрузочного сопротивления, которое, в свою очередь, зависит от частоты. Поскольку в резонансе сопротивление $Z_{\rm pes}$ параллельного контура максимально, то и напряжение на ёмкости C тоже маскимально. Входное сопротивление осциллографа должно быть достаточно велико $R_{\rm so} = 1\,{\rm MOm}$.

Таким образом, при выполнении условий

$$Z_{C_1} = \frac{1}{\Omega C_1} \gg |Z_{\mathrm{pes}}| = \frac{Q}{\Omega C}, \quad R_{\mathrm{so}} \gg \frac{Q}{\Omega C}$$

и при условии, что действительная часть импеданса катушки много меньше её мнимой части, резонансная кривая в нашем контуре будет выглядить так же, как и в последовательном: максимум амплитуды при резонансе. Схема экспериментальной установки для исследования вынужденных колебаний приведена на рис.2.

Рис. 2: Схема экспериментальной установки для исследования вынужденных колебаний

Ход работы

Исследование резонансных кривых

Соберём схему согласно рис.2, установив на магазине индуктивностей значение $L=100~{\rm M}\Gamma$ н, а на магазине сопротивлений $R=0~{\rm Om}$. В данной экспериментальной установке $C=0.1~{\rm mk}\Phi~(\sigma_C=2\%)$. Рассчитаем теоритическую резонансную частоту контура $f_{\rm reop}=1/\left(2\pi\sqrt{LC}\right)$. Получим, что теоритическая резонансная частота

контура $f_{\text{теор}} = 1591~\Gamma$ ц. Найдём экспериментальную резонансную частоту, получим, что $f_0 = 1550~\Gamma$ ц.

Меняя частоту генератора в обе стороны от резонансной, снимем зависимость показаний вольтметра U от показаний частотометра f. По окончании измерений установим на магазине сопротивлений значение R=100 Ом и повторим измерения. Затем построим на одном графике резонансные кривые в координатах $U/U_0=G(f/f_0)$, где U_0 — напряжение при резонансной частоте f_0 Γ ц.

U, B	5.70	6.33	6.96	7.28	7.91	8.54	8.23	7.59	6.96	6.65	6.33	5.70
f, Гц	1519	1525	1530	1532	1537	1542	1563	1568	1572	1575	1578	1583

Таблица 1: Зависимость U=G(f) при R=0 Ом и $U_0=9.02$ В

U, B	I	1			l					
f , Γ ц	1447	1463	1481	1501	1518	1601	1623	1648	1672	1703

Таблица 2: Зависимость U=G(f) при R=100 Ом и $U_0=2.22$ В

Рис. 3: Резонансные кривые для R=0 Ом и R=100 Ом

Найдём добротность контура при R=0 Ом и R=100 Ом как $f_0/(2\,\Delta f_{0.7})$. Получим, что

$$Q_0 = (29 \pm 1)$$

 $Q_{100} = (7.40 \pm 0.04)$

Процессы установления и затухания колебаний

Подключим контур к клемме Цуги и установим на генераторе резонансную частоту. В данном случае экспериментальная резонансная частота $f_{0 \text{ эксп.}} = 1603 \text{ Гц.}$ Убедимся, что огибающая затухающих колебаний — это перевёрнутая огибаюзая нарастающего участка.

Для рассчёта добротности по скорости нарастания и скорости затухания будем измерять амплитуды двух колебаний U_k и U_{k+n} , разделённых целым числом периодов n, а также амплитуду установившихся колебаний U_0 в случае нарастания. Проведём измерения при R=0 Ом и R=100 Ом. Для расчёта по нарастанию амплитуды получим, что $U_0=2.8$ дел и $U_0=0.8$ дел при R=0 Ом и R=100 Ом соотвественно.

R, OM		()		10	.00	
U_k , дел	1.6	0.8	1.6	1.6	0.2	0.2	
U_{k+n} , дел	2.2	1.6	1.8	2.0	0.4	0.6	
n_T	6	4	1	3	1	2	
\overline{Q}	27.19	24.60	17.23	23.24	7.75	5.72	

Таблица 3: Измерения U_k и U_{k+n} для расчёта добротности по нарастанию амплитуды

В данном случае (при расчёте добротности по нарастанию амплитуды) мы определяем добротность Q как π/Θ , где логарифмический декремент затухания

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}$$

R, Om	0	100
U_k , дел	1.2	0.6
U_{k+n} , дел	0.8	0.4
n_T	3	1
Q	23.23	7.74

Таблица 4: Измерения U_k и U_{k+n} для расчёта добротности по затуханию амплитуды

Измерим активное сопротивление R_L и индуктивность L магазина индуктивностей с помощью измерителя LCR на частотах 50 Γ ц, 500 Γ ц, 1500 Γ ц.

f , Γ ц	R, Om	L , м Γ н
50	28.98	99.924
500	29.20	99.912
1500	30.37	99.932

Теоритические значения добротности мы можем найти как $1/R \cdot \sqrt{L/C}$. В результате получим, что

$$Q_{0 \text{ Teop.}} = 33$$

 $Q_{100 \text{ Teop.}} = 7.67$

Сместим частоту генератора с резонансного значения и получим на экране картину биений. Полученная таким образом картина:

Рис. 4: Наблюдаемая картина биений