universidade do minho miei

introdução aos sistemas dinâmicos iteração de funções — parte dois

_ 1.

Seja S o sistema dinâmico discreto definido por

$$S(x) = \begin{cases} 2x & \text{se } 0 \le x < 1/2; \\ 2x - 1 & \text{se } 1/2 \le x \le 1. \end{cases}$$

Dado $x \in [0,1]$, consideremos a sua representação binária, isto é,

$$x = (0.d_1d_2d_3...)_2 = d_1 \times \frac{1}{2} + d_2 \times \frac{1}{2^2} + d_3 \times \frac{1}{2^3} + ...$$

Sendo S uma função definida por ramos, para determinar a imagem de x por S, torna-se necessário perceber a que subintervalo pertence x. Suponhamos então que $x \in [0, 1/2)$. Assim sendo, temos que

$$S(x) = 2x = d_1 \times 1 + d_2 \times \frac{1}{2} + d_3 \times \frac{1}{2^2} + \dots$$

Contudo, uma vez que $x \in [0, 1/2)$, sabemos de antemão que o seu primeiro dígito é nulo, ou seja, que $d_1 = 0$. Deste modo, a igualdade anterior permite-nos escrever

$$S(x) = d_2 \times \frac{1}{2} + d_3 \times \frac{1}{2^2} + \dots = (0.d_2d_3\dots)_2,$$

isto é, a representação binária de $\mathcal{S}(x)$ corresponde ao deslocamento para a esquerda da representação binária de x. Em alternativa, caso x pertença ao subintervalo [1/2,1], temos que é sempre possível escrever a sua representação binária como

$$x = (0.d_1d_2d_3...)_2 = d_1 \times \frac{1}{2} + d_2 \times \frac{1}{2^2} + d_3 \times \frac{1}{2^3} + ...$$

onde o primeiro dos dígitos será sempre igual a 1, ou seja, $d_1=1$. Assim sendo, a representação binária de $\mathcal{S}(x)$ vem

$$S(x) = 2x - 1 = -1 + d_1 \times 1 + d_2 \times \frac{1}{2} + d_3 \times \frac{1}{2^2} + \dots = d_2 \times \frac{1}{2} + d_3 \times \frac{1}{2^2} + \dots$$

isto é, a representação binária de S(x) corresponde ao deslocamento para a esquerda da representação binária de x, desprezando o dígito correspondente à parte inteira,

$$S(x) = (0.d_2d_3...)_2.$$

Se a representação binária da imagem de \bar{x} por \mathcal{S} corresponde ao deslocamento para a esquerda dos dígitos da sua representação binária, então as soluções de $\mathcal{S}(\bar{x})=\bar{x}$ são os elementos do intervalo [0,1], tais que

$$S(\bar{x}) = (0.d_2d_3...)_2 = \bar{x} = (0.d_1d_2d_3...)_2$$

isto é, para os quais

$$d_2 = d_1$$
$$d_3 = d_2$$
$$\vdots$$

Ora, os únicos pontos do intervalo que satisfazem $d_1=d_2=d_3=\dots$ são $0=(0.\bar{0})_2$ e $1=(0.\bar{1})_2$, onde, como é habitual, por \bar{d} se denota a repetição do dígito d. Assim sendo, os pontos fixos de \mathcal{S} são $\bar{x}=0,1$. O mesmo tipo de argumentos permite-nos concluir que a representação binária dos elementos $\bar{x}\in[0,1]$ tais que $\mathcal{S}^2(\bar{x})=\bar{x}$ tem necessariamente que satisfazer

$$d_3 = d_1$$
$$d_4 = d_2$$
$$d_5 = d_3$$
$$\vdots$$

ou seja, são todos os elementos \bar{x} do intervalo [0,1] cujas representações binárias são dadas por

$$\bar{x} = (0.\overline{d_1d_2})_2, \qquad d_1, d_2 \in \{0, 1\}.$$

A anterior identificação dos pontos fixos de \mathcal{S} permite-nos concluir que os pontos periódicos de período 2 de \mathcal{S} são $\bar{x}=(0.\overline{01})_2$ e $\bar{x}=(0.\overline{10})_2$.

1.3 Os argumentos apresentados acima permite afirmar que os 54 pontos periódicos de período 6 de \mathcal{S} (correspondentes a nove ciclos periódicos de período 6) são:

$(0.\overline{000001})_2$	$(0.\overline{000010})_2$	$(0.\overline{000011})_2$	$(0.\overline{000100})_2$
$(0.\overline{000101})_2$	$(0.\overline{000110})_2$	$(0.\overline{000111})_2$	$(0.\overline{001000})_2$
$(0.\overline{001010})_2$	$(0.\overline{001011})_2$	$(0.\overline{001100})_2$	$(0.\overline{001101})_2$
$(0.\overline{001110})_2$	$(0.\overline{001111})_2$	$(0.\overline{010000})_2$	$(0.\overline{010001})_2$
$(0.\overline{010011})_2$	$(0.\overline{010100})_2$	$(0.\overline{010110})_2$	$(0.\overline{010111})_2$
$(0.\overline{011000})_2$	$(0.\overline{011001})_2$	$(0.\overline{011010})_2$	$(0.\overline{011100})_2$
$(0.\overline{011101})_2$	$(0.\overline{011110})_2$	$(0.\overline{011111})_2$	$(0.\overline{100000})_2$
$(0.\overline{100001})_2$	$(0.\overline{100010})_2$	$(0.\overline{100011})_2$	$(0.\overline{100101})_2$
$(0.\overline{100110})_2$	$(0.\overline{100111})_2$	$(0.\overline{101000})_2$	$(0.\overline{101001})_2$
$(0.\overline{101011})_2$	$(0.\overline{101100})_2$	$(0.\overline{101110})_2$	$(0.\overline{101111})_2$
$(0.\overline{110000})_2$	$(0.\overline{110001})_2$	$(0.\overline{110010})_2$	$(0.\overline{110011})_2$
$(0.\overline{110100})_2$	$(0.\overline{110101})_2$	$(0.\overline{110111})_2$	$(0.\overline{111000})_2$
$(0.\overline{111001})_2$	$(0.\overline{111010})_2$	$(0.\overline{111011})_2$	$(0.\overline{111100})_2$
$(0.\overline{111101})_2$	$(0.\overline{111110})_2$		

Escrever a representação binária um ponto pertencente ao intervalo [0, 1] que não seja nem ponto fixo, nem ponto periódico de S, significa apresentar uma sequência (infinita) de dígitos relativamente à qual seja reconhecível que não é a repetição (infinita) de um bloco (finito) de dígitos. Ora, isso é possível escrevendo o início de uma sequência de dígitos com uma regularidade que não passe pela repetição. Eis um exemplo: consideremos a seguinte sequência de dígitos:

$$(0.0100011011...)_2$$

onde a ideia é concatenar, por ordem crescente, todas as possíveis combinações de n dígitos, para $n \in \mathbb{N}$ (como facilmente se identifica, na construção da sequência acima foram consideradas todas as possíveis combinações de n dígitos, para n=1 e n=2). Com esta construção temos a certeza que o ponto do intervalo com esta representação binária não é nem um ponto fixo, nem um ponto periódico de \mathcal{S} .

2.

Consideremos o sistema dinâmico discreto ${\mathcal T}$ definido por

$$\mathcal{T}(x) = \begin{cases} 2x & \text{se } 0 \le x < 1/2; \\ 2 - 2x & \text{se } 1/2 \le x \le 1. \end{cases}$$

- Esta questão já foi respondida anteriormente, mas deixamos aqui os resultados: os dois pontos fixos de \mathcal{T} são $\bar{x}=0$ e $\bar{x}=2/3$; os dois pontos periódicos de período 2 de \mathcal{T} são $\bar{x}=2/5$ e $\bar{x}=4/5$.
- Seja $\bar{x}=k/p$ um número racional pertencente ao intervalo (0,1), com p um número ímpar. Vamos começar por mostrar que, se \bar{x} é um ponto periódico de \mathcal{T} , então k é um número par. Pela definição de \mathcal{T} , podemos afirmar que, para todo $x \in [0,1]$,

$$\mathcal{T}^n(x) = \pm m \mp 2^n x$$

com m um número par menor ou igual a 2^n . Assim sendo, temos que

$$\mathcal{T}^n(\bar{x}) = \mathcal{T}^n(k/p) = m \pm 2^n \frac{k}{n},$$

para algum $m \in \mathbb{Z}$. Deste modo, podemos concluir que

$$\mathcal{T}^n(\bar{x}) = \mathcal{T}^n(k/p) = \frac{\pm m \, p \mp 2^n k}{p},\tag{1}$$

ou seja, $\mathcal{T}^n(\bar{x})$ é um número racional cujo numerador é um número par, como queríamos mostrar. Atentemos agora na implicação contrária, isto é, que se k é um número par, então k/p é um ponto periódico de \mathcal{T} . Ora, da igualdade 1, uma vez que $\mathcal{T}^n(\bar{x}) \in [0,1]$, podemos concluir que, para todo $n \in \mathbb{N}$ o numerador é um número par inferior a p. Havendo um número finito de números com essas características e podendo n ser escolhido tão grande quanto queiramos, podemos afirmar que existem inteiros a e n tais que

$$\mathcal{T}^n(k/p) = \mathcal{T}^a(k/p),$$

ou seja, que existem inteiros i e j tais que

$$\mathcal{T}^{i+j}(k/p) = \mathcal{T}^i(k/p).$$

Suponhamos que esses inteiros, i,j são os menores tais que a igualdade é válida. Então, se i=0, temos que k/p é um ponto periódico de \mathcal{T} , mas, caso i>0, então temos que k/p é apenas um ponto eventualmente periódico de \mathcal{T} . Por outras palavras, temos que mostrar que a primeira repetição das iteradas de k/p por \mathcal{T} ocorre para $\mathcal{T}^j(k/p)=k/p$.

Partindo da igualdade $\mathcal{T}^{i+j}(k/p)=\mathcal{T}^i(k/p)$, supondo que i>0, vamos mostrar que então se tem $\mathcal{T}^{i+j-1}(k/p)=\mathcal{T}^{i-1}(k/p)$. Para tal, recordemos o resultado anterior, que nos permitia afirmar que, para todo $n\in\mathbb{N}$, a iterada $\mathcal{T}^n(k/p)$ é sempre o quociente de um número par por um número ímpar.

Escrevendo $\mathcal{T}^n(k/p) = 2a/p$, com a um número inteiro, temos que, por definição,

$$\mathcal{T}^{n+1}(k/p) = \left\{ egin{array}{ll} 4 \, a/p & ext{se } 0 \le \mathcal{T}^n(k/p) < 1/2 \, ; \ \\ 2 - 4 \, a/p = (2 + 4b)/p & ext{se } 1/2 \le \mathcal{T}^n(k/p) \le 1 \end{array}
ight.$$

onde b=(2a-p-1)/2 é um número inteiro (atente-se que, sendo p um número ímpar, então p+1 é um número par, pelo que 2a-p-1 é um número par). Por outras palavras, se $\mathcal{T}^{n+1}(k/p)$ é o quociente de um inteiro múltiplo de 4 por um número ímpar, então podemos concluir que este é imagem de um ponto pertencente ao subintervalo [0,1/2]. Caso contrário, pertence ao subintervalo [1/2,1]. (Provámos assim que, apesar de \mathcal{T} não ser invertível, é possível determinar univocamente x, se $\mathcal{T}(x)$ é o quociente de um número par por um número ímpar.) Resumindo, para k um número par, se $\mathcal{T}^{i+j}(k/p)=\mathcal{T}^i(k/p)$, então podemos concluir que $\mathcal{T}^{i+j-1}(k/p)=\mathcal{T}^{i-1}(k/p)$. Usando os mesmos argumentos, caso i>1, vai ser possível concluir que $\mathcal{T}^j(k/p)=k/p$, isto é, que k/p é um ponto periódico de \mathcal{T} .

- Seja x=k/p pertencente ao intervalo (0,1), com p um número par. Supondo que k e p são os menores inteiros que verificam x=k/p, podemos concluir que k é um número ímpar. Mas vejamos que forma vai ter a imagem de x por \mathcal{T} : por definição, temos que $\mathcal{T}(x)=\mathcal{T}(k/p)=2k/p=k/(p/2)$ ou $\mathcal{T}(x)=\mathcal{T}(k/p)=2-2k/p=(p-k)/(p/2)$, isto é, em ambas as situações, a imagem de x por \mathcal{T} vai ser o quociente de um número ímpar por p/2. Então, se p/2 é um número ímpar, podemos concluir imediatamente que $\mathcal{T}^2(x)$ é o quociente de um número par por um número ímpar, logo, pela alínea anterior, um ponto periódico de \mathcal{T} . Deste modo, podemos afirmar que a igualdade $\mathcal{T}^n(x)=x$, nunca será possível. Se p/2 é ainda um número par, podemos repetir os mesmos argumentos. Resumindo, qualquer que seja o número par p, podemos afirmar que k/p é um ponto eventualmente fixo ou um ponto eventualmente periódico de \mathcal{T} , não sendo portanto um ponto periódico de \mathcal{T} .
- 2.4 Basta usar as alíneas anteriores.

3.

Seja $f:[0,1]\to[0,1]$ o sistema dinâmico discreto definido por f(x)=2x(1-x). Vamos começar por mostrar que f tem pontos fixos.

Consideremos a equação $f(\bar{x})=2\bar{x}(1-\bar{x})=\bar{x}$. Como vemos, as suas soluções são $\bar{x}=0,1/2$. Assim sendo, uma vez que ambos os pontos pertencem ao domínio de f, podemos concluir que f tem dois pontos fixos. Coloquemos agora a mesma questão relativamente aos pontos periódicos, de período 2, de f.

Consideremos a equação

$$f^{2}(\bar{x}) = f(2\bar{x}(1-\bar{x})) = 2 \times 2\bar{x}(1-\bar{x})(1-2\bar{x}(1-\bar{x})) = -8\bar{x}^{4} + 16\bar{x}^{3} - 12\bar{x}^{2} + 4\bar{x} = \bar{x},$$

ou seja,

$$-8\bar{x}^4 + 16\bar{x}^3 - 12\bar{x}^2 + 3\bar{x} = 0.$$

Uma vez que os pontos fixos, encontrados anteriormente, satisfazem esta igualdade, podemos dividir este polinómio por x(x-1/2), sabendo que as soluções da equação então encontrada corresponderão a pontos periódicos, de período 2, de f. Um pequeno cálculo permite-nos escrever

$$-8\bar{x}^4+16\bar{x}^3-12\bar{x}^2+3\bar{x}=\bar{x}(\bar{x}-1/2)(-8\bar{x}^2+12\bar{x}-6),$$

donde se retira que os pontos periódicos de período 2 de f serão as soluções, pertencentes ao domínio de f, de

$$-8\bar{x}^2 + 12\bar{x} - 6 = 0.$$

Como facilmente se constata, essas soluções não são reais, pelo que podemos concluir que f não admite quaisquer pontos periódicos de período 2. Então, uma vez que f é uma função contínua no intervalo [0,1], o teorema de Sharkovsky permite-nos concluir que f não admite quaisquer pontos periódicos de período p, para $2 \prec_S p$, onde por \prec_S se denota a ordem de Sharkovsky dos números naturais, ou seja, podemos concluir que f não admite admite quaisquer pontos periódicos.

4

Uma vez que o Teorema de Sharkovsky permite concluir que qualquer função contínua num intervalo com pontos periódicos de período 3 admite pontos periódicos de qualquer outro período, temos apenas que mostrar que o sistema dinâmico discreto $\mathcal T$ admite pontos periódicos de período 3.

A expressão da aplicação tenda \mathcal{T} permite-nos concluir que $\mathcal{T}([0,1/2]) = \mathcal{T}([1/2,1]) = [0,1]$. Sendo assim, em cada um desses subintervalos existe \bar{x} tal que $\mathcal{T}(\bar{x}) = \bar{x}$, donde \mathcal{T} tem dois pontos fixos. Do resultado anterior, podemos também concluir que existem quatro subintervalos cuja imagem por \mathcal{T}^2 é exactamente igual a [0,1], isto é, que

$$\mathcal{T}^2([0,1/4]) = \mathcal{T}^2([1/4,1/2]) = \mathcal{T}^2([1/2,3/4]) = \mathcal{T}^2([3/4,1]) = [0,1].$$

Prosseguindo com o mesmo tipo de argumento, podemos dizer que existem oito subintervalos cuja imagem por \mathcal{T}^3 é exactamente igual ao intervalo [0,1], isto é, que

$$\mathcal{T}^3([\frac{k}{8}, \frac{k+1}{8}]) = [0, 1], \qquad k = 0, 1, \dots, 7.$$

Deste modo, podemos concluir que existem oito soluções da equação $\mathcal{T}^3(\bar{x}) = \bar{x}$. Ora, como \mathcal{T} tem dois pontos fixos, ficamos a saber que a aplicação tenda \mathcal{T} admite pontos periódicos de período 3. Assim sendo, o Teorema de Sharkovsky permite-nos concluir que \mathcal{T} admite pontos periódicos de qualquer outro período.

nota: como alternativa, poderíamos calcular um ponto periódico de período 3 de \mathcal{T} e usar o teorema de Sharkovsky para concluir a existência de pontos periódicos de qualquer outro período.