```
In [46]: import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
In [47]: df=pd.read_csv("https://gist.githubusercontent.com/stoicsapien1/72729ffbcd4b75b7bedd4b01b65bc9b5/raw/bf95a2e30fceb9f2ae990eac8379
In [48]: df.head()
Out[48]:
            Gender
                      Height
                                Weight
              Male 73.847017 241.893563
              Male 68.781904 162.310473
         1
              Male 74.110105 212.740856
              Male 71.730978 220.042470
              Male 69.881796 206.349801
In [49]: df["Gender"]=df["Gender"].map({"Male":0,"Female":1})
In [50]: df
```

Out[50]:		Gender	Height	Weight
	0	0	73.847017	241.893563
	1	0	68.781904	162.310473
	2	0	74.110105	212.740856
	3	0	71.730978	220.042470
	4	0	69.881796	206.349801
	•••		•••	
	9995	1	66.172652	136.777454
	9996	1	67.067155	170.867906
	9997	1	63.867992	128.475319
	9998	1	69.034243	163.852461
	9999	1	61.944246	113.649103

10000 rows × 3 columns

```
In [51]: sns.heatmap(df.corr(),annot=True,cmap="coolwarm")
Out[51]: <Axes: >
```



```
In [52]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()

In [53]: from sklearn.model_selection import train_test_split

In [54]: X=df.iloc[:,0:2]
y=df.iloc[:,-1]

In [55]: X
```

```
Out[55]:
               Gender
                         Height
            0
                    0 73.847017
                    0 68.781904
            1
            2
                    0 74.110105
            3
                    0 71.730978
            4
                    0 69.881796
          9995
                    1 66.172652
          9996
                    1 67.067155
          9997
                    1 63.867992
          9998
                    1 69.034243
          9999
                    1 61.944246
         10000 rows × 2 columns
In [56]: y
                 241.893563
Out[56]:
                 162.310473
                 212.740856
          2
                 220.042470
          3
                 206.349801
          4
         9995
                 136.777454
         9996
                 170.867906
         9997
                 128.475319
         9998
                 163.852461
         9999
                 113.649103
         Name: Weight, Length: 10000, dtype: float64
In [57]: from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=42)
In [58]: lr.fit(X_train,y_train)
```


In [59]: X_test

Out[59]:		Gender	Height
	6252	1	68.687232
	4684	0	68.829334
	1731	0	66.398128
	4742	0	71.929340
	4521	0	67.042903
	•••	•••	•••
	4862	0	70.534667
	7025	1	65.873106
	7647	1	60.646988
	7161	1	67.122422
	73	0	67.595269

2500 rows × 2 columns

In [60]: y_test

```
6252
                 173.115813
Out[60]:
         4684
                 195.162042
                 170.217451
         1731
         4742
                 215.049660
         4521
                 182.721452
                    . . .
         4862
                 203.763292
         7025
                155.915544
         7647
                123.862430
         7161
                165.324899
         73
                 163.108002
         Name: Weight, Length: 2500, dtype: float64
In [61]: y_pred=lr.predict(X_test)
In [62]: y_pred
         array([165.57063635, 185.78881695, 171.26964188, ..., 117.55424148,
Out[62]:
                156.22557983, 178.41897264])
In [63]: m=lr.coef_
In [64]: m
         array([-19.36954901,
                                5.97200677])
Out[64]:
In [68]: X_test["ypred"]=y_pred
In [69]: X_test
```

Out[69]:		Gender	Height	ypred
	6252	1	68.687232	165.570636
	4684	0	68.829334	185.788817
	1731	0	66.398128	171.269642
	4742	0	71.929340	204.302076
	4521	0	67.042903	175.120240
	•••			
	4862	0	70.534667	195.973080
	7025	1	65.873106	148.764658
	7647	1	60.646988	117.554241
	7161	1	67.122422	156.225580
	73	0	67.595269	178.418973

2500 rows × 3 columns

```
In [70]: X_test["y_test"]=y_test
In [71]: X_test
```

Out[71]:		Gender	Height	ypred	y_test
	6252	1	68.687232	165.570636	173.115813
	4684	0	68.829334	185.788817	195.162042
	1731	0	66.398128	171.269642	170.217451
	4742	0	71.929340	204.302076	215.049660
	4521	0	67.042903	175.120240	182.721452
	•••				
	4862	0	70.534667	195.973080	203.763292
	7025	1	65.873106	148.764658	155.915544
	7647	1	60.646988	117.554241	123.862430
	7161	1	67.122422	156.225580	165.324899
	73	0	67.595269	178.418973	163.108002

2500 rows × 4 columns

7.993905209333191

Out[76]:

```
In [77]: mean_squared_error(y_test,y_pred)
Out[77]: 101.86825136044213

In [84]: plt.scatter(y_test,y_pred,marker="+",color="red")
    plt.xlabel("Actual")
    plt.ylabel("Predicted")
    plt.plot([0, 250], [0, 250], color='blue', linestyle='--', label='y=x')
Out[84]: [<matplotlib.lines.Line2D at 0x198c7f32050>]
```


In []: