Relatório 3 IA: Machine Learning

Erick Grilo¹, Max Fratane¹, Vitor Araujo¹, Vítor Lourenço¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF) Niterói, Rio de Janeiro – Brazil

{simas_grilo, mfratane, vitoraraujo, vitorlourenco}@id.uff.br

Resumo.

1. Introdução

O que é pensado pelas pessoas sempre foi uma informação importante para seres humanos para o processo de tomada de decisão. Com o advento da *World Wide Web*, cresceu o acesso à quantidade de opiniões e experiências sobre determinados assuntos que são de pessoas que não conhecemos e nem são profissionais especialistas no assunto. Dessa forma, é possível obter informações de pessoas com os mais variados sentimentos acerca de algum assunto.

Nesse espectro, surge a área de análise de sentimentos (ou mineiração de opiniões), que é responsável por fazer o processamento de linguagem natural, usando táticas de análise textual e linguística computacional a fim de identificar, extrair e estudar opiniões, estados afetivos e informação subjetiva. Dessa forma, é possível extrair opiniões de consumidores acerca de um determinado produto, por exemplo. Tal mineiração é extremamente útil, pois como é visto em [Pang et al. 2008], influencia bastante em tópicos como a aquisição de serviços: a cada 2000 americanos, dentre os leitores de resenhas on-line de restaurantes, hotéis e outros serviços, como viagens, escolas, médicos e cursos, de 73% à 87% dos entrevistados disseram que tais resenhas tiveram uma influência significante na aquisção desses serviços [Zhu and Zhang 2010].

Tal abordagem também é útil para outras finalidades: além da compra de serviços e produtos, as revisões de outros usuários online também são úteis na busca de opiniões políticas (tanto acerca de empresas e organizações quanto acerca de políticos): muitas pessoas buscam atualmente informações de outras acerca de políticos, por exemplo, para confirmar se a opinião dele é condizente com a sua, ou até mesmo buscam na internet opiniões que divergem das suas a fim de enriquecer o debate [Gil de Zúñiga et al. 2009].

Com o advento de plataformas na web, tais como blogs, fóruns de discussão, redes peer-to-peer e outros tipos de social media, tais como o Facebook e o Twitter. consumidores têm uma quantidade de informação e uma facilidade de expor sua opinião sem precedentes, sejam elas negativas ou positivas. sobre qualquer produto ou serviço. Nesse âmbito, grandes companhias (bancos, restaurantes, agências de viagem, redes de fast-food e muitas outras companhinhas dos mais diversos ramos) buscam ler desse "apelo"informações relevantes para satisfazer as opiniões dos potenciais clientes; em outras palavras, essas opiniões podem exercer uma influência enorme na formação de opiniões de outros usuários, formando a "lealdade"à marca, o público consumidor, podendo alavancar ou condenar um determinado produto ou até mesmo a imagem de uma empresa [Hoffman 2008].

2. Metodologia de Pesquisa

A metodologia abordada foi dividida em três partes. A primeira parte consiste na comparação da abordagem de redução de dimensionalidade PCA [Jolliffe 2002] e seleção de atributos RFE [Guyon and Elisseeff 2003] aplicados no classificador SVM [Michalski et al. 2013]. A segunda parte trata da seleção de parâmetros utilizando a técnica de Grid Search [Snoek et al. 2012]. Por fim, a terceira parte confere a execução dos classificadores Naive Bayes, SVM, Decision Tree e Random Forest [Michalski et al. 2013] em cima da base de dados selecionada.

A base de dados utilizada é formada por tweets sobre os produtos e serviços fornecidos pela Apple e fornecida pela Carnegie Mellon University¹ ². A base foi tratada segundo a abordagem de *Bag of Words* utilizando a ferramenta NLTK³. A seleção da base baseou-se na proximidade das informações nela presente com o conhecimento de mundo dos integrantes do grupo.

Os algoritmos supracitados e técnicas foram implementadas conforme a ferramenta de aprendizado de máquina SciKit-Learn⁴ e a linguagem utilizada foi Python⁵ release 3.5.2.

3. Avaliação Experimental

Tabela 1. Matriz de Confusão Binária: *Naïve Bayes*

Atual\Previsto	positivo	negativo
positivo	142	21
negativo	0	316

Tabela 2. Medidas da Matriz de Confusão

	precisão	recall	f1-score
positivo	1.00	0.87	0.93
negativo	0.94	1.00	0.97
média	0.96	0.96	0.96
acurácia	0.956158663883		

Tabela 3. Matriz de Confusão Binária: SVM

Dilialia. 37101				
Atual\Previsto	positivo	negativo		
positivo	163	0		
negativo	0	316		

Tabela 4. Medidas da Matriz de Confusão

Comius	Comusao		
	precisão	recall	f1-score
positivo	1.00	1.00	1.00
negativo	1.00	1.00	1.00
média	1.00	1.00	1.00
acurácia		1.0	

4. Conclusão

Referências

Gil de Zúñiga, H., Puig-i Abril, E., and Rojas, H. (2009). Weblogs, traditional sources online and political participation: An assessment of how the internet is changing the political environment. *New media & society*, 11(4):553–574.

¹http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/twitter-sanders-apple2.zip

²http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/twitter-sanders-apple3.zip

³http://www.nltk.org/

⁴http://scikit-learn.org/stable/

⁵https://www.python.org/

Tabela 5. Matriz de Confusão Binária: Decision Tree

Billaria. Decision nee				
Atual\Previsto	positivo	negativo		
positivo	163	0		
negativo	0	316		

Tabela 6. Medidas da Matriz de Confusão

	precisão	recall	f1-score
positivo	1.00	1.00	1.00
negativo	1.00	1.00	1.00
média	1.00	1.00	1.00
acurácia		1.0	

Tabela 7. Matriz de Confusão Binária: Random Forest

Binaria: <i>Random Forest</i>					
Atual\Previsto	positivo	negativo			
positivo	162	1			
negativo	3	313			

Tabela 8. Medidas da Matriz de Confusão

Comusao				
	precisão	recall	f1-score	
positivo	0.98	0.99	0.99	
negativo	1.00	0.99	0.99	
média	0.99	0.99	0.99	
acurácia	0.991649269311			

Tabela 9. Matriz de Confusão Ternária: *Naïve Bayes*

Atual\Previsto	positivo	negativo	neutro	
positivo	16	1	146	
negativo	0	99	217	
neutro	0	0	509	

Tabela 10. Medidas da Matriz de Confusão

	precisão	recall	f1-score
positivo	1.00	0.10	0.18
negativo	0.99	0.31	0.48
neutro	0.58	1.00	0.74
média	0.78	0.63	0.56
acurácia	0.631578947368		

Tabela 11. Matriz de Confusão Ternária: SVM

Terriaria. Svivi				
Atual\Previsto	positivo	negativo	neutro	
positivo	40	3	120	
negativo	0	118	198	
neutro	0	2	507	

Tabela 12. Medidas da Matriz de Confusão

ac comiacac			
	precisão	recall	f1-score
positivo	1.00	0.25	0.39
negativo	0.96	0.37	0.54
neutro	0.61	1.00	0.76
média	0.79	0.67	0.63
acurácia	0.673076923077		

Tabela 13. Matriz de Confusão Ternária: SVM com Grid Se-

arcn			
Atual\Previsto	positivo	negativo	neutro
positivo	161	0	2
negativo	0	314	2
neutro	3	0	506

Tabela 14. Medidas da Matriz de Confusão

uc oui	iiusao			
	precisão	recall	f1-score	
positivo	0.98	0.99	0.98	
negativo	1.00	0.99	1.00	
neutro	0.99	0.99	0.99	
média	0.99	0.99	0.99	
acurácia	0.992914979757			

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. *The Journal of Machine Learning Research*, 3:1157–1182.

Hoffman, T. (2008). Online reputation management is hot—but is it ethical. Compu-

Tabela 15. Matriz de Confusão

Ternana: Decision Tree				
Atual\Previsto	positivo	negativo	neutro	
positivo	162	0	1	
negativo	1	314	1	
neutro	3	2	504	

Tabela 16. Medidas da Matriz de Confusão

uo oo:	iiiuguo			
	precisão	recall	f1-score	
positivo	0.98	0.99	0.98	
negativo	0.99	0.99	0.99	
neutro	1.00	0.99	0.99	
média	0.99	0.99	0.99	
acurácia	0.991902834008			

Tabela 17. Matriz de Confusão Ternária: *Random Forest*

Terriaria. Haridoni i Orest					
Atual\Previsto	positivo	negativo	neutro		
positivo	163	0	5		
negativo	0	316	7		
neutro	3	1	505		

Tabela 18. Medidas da Matriz de Confusão

ac ooi	Odinusao			
	precisão	recall	f1-score	
positivo	0.96	0.97	0.96	
negativo	1.00	0.97	0.98	
neutro	0.98	0.99	0.98	
média	0.98	0.98	0.98	
acurácia	0.97975708502			

Tabela 19. Matriz de Confusão Quartenário: *Naïve Bayes*

Qual tellario. Naive Dayes				
Atual\Previsto	positivo	negativo	neutro	irrelevante
positivo	127	20	16	0
negativo	2	309	5	0
neutro	25	132	350	2
irrelevante	14	22	23	26

Tabela 20. Medidas da Matriz de Confusão

	precisão	recall	f1-score	
positivo	0.76	0.78	0.77	
negativo	0.64	0.98	0.77	
neutro	0.89	0.69	0.78	
irrelevante	0.93	0.31	0.46	
média	0.80	0.76	0.75	
acurácia	0.992914979757			

Tabela 21. Matriz de Confusão

Quartenário:	SVM			
Atual\Previsto	positivo	negativo	neutro	irrelevante
positivo	78	18	67	0
negativo	17	243	56	0
neutro	23	67	417	2
irrelevante	4	8	41	32
			•	•

Tabela 22. Medidas da Matriz de Confusão

de Comusão				
	precisão	recall	f1-score	
positivo	0.64	0.48	0.55	
negativo	0.72	0.77	0.75	
neutro	0.72	0.82	0.77	
irrelevante	0.94	0.38	0.54	
média	0.73	0.72	0.71	
acurácia	0.71761416589			

Tabela 23. Matriz de Confusão Quartenário: *SVM com Grid*

Search				
Atual\Previsto	positivo	negativo	neutro	irrelevante
positivo	159	0	4	0
negativo	0	312	4	0
neutro	1	1	507	0
irrelevante	5	2	43	35

Tabela 24. Medidas da Matriz de Confusão

ue comu	ie Comusao			
	precisão	recall	f1-score	
positivo	0.96	0.98	0.97	
negativo	0.99	0.99	0.99	
neutro	0.91	1.00	0.95	
irrelevante	1.00	0.41	0.58	
média	0.95	0.94	0.94	
acurácia	0.944082013048			

terworld, February, pages 1-4.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer.

Ta

Tabela 25. Ma	de Confusão					
Quartenário:						precisão
al\ Previsto	positivo	negativo	neutro	irrelevante	positivo	0.88

Tabela 25. Matriz de Confusão					de Confusão			
Quartenário: Decision Tree					precisão	recall	f1-score	
Atual\Previsto	positivo	negativo	neutro	irrelevante	positivo	0.88	1.00	0.93
positivo	163	0	0	0	negativo	0.97	1.00	0.98
negativo	0	316	0	0	neutro	0.91	0.99	0.95
neutro	4	2	503	0	irrelevante	1.00	0.09	0.17
irrelevante	19	8	50	8	média	0.93	0.92	0.89
				acurácia	0.92	2646784	716	

Tabela 26. Medidas da Matriz

Tabela 28. Medidas da Matriz

Tabola 27 Matriz do Confusão

Tabela 27. Matriz de Confusão					de Confusão				
Quartenário: Random Forest					precisão	recall	f1-score		
Atual\Previsto	positivo	negativo	neutro	irrelevante	positivo	0.96	1.00	0.98	
positivo	163	0	0	0	negativo	0.99	1.00	0.99	
negativo	0	316	0	0	neutro	0.90	1.00	0.95	
neutro	0	1	508	0	irrelevante	1.00	0.20	0.33	
irrelevante	7	3	58	17	média	0.94	0.94	0.92	
					acurácia	0.922646784716			

- Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013). Machine Learning: An Artificial Intelligence Approach. Springer Publishing Company, Incorporated.
- Pang, B., Lee, L., et al. (2008). Opinion mining and sentiment analysis. Foundations and *Trends*(\mathbb{R}) *in Information Retrieval*, 2(1–2):1–135.
- Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. pages 2960–2968.
- Zhu, F. and Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of marketing, 74(2):133-148.