(5)

4

(2)

(45)

(32)

(5)

(5)

(7)

\$

4 (m)

0

(34)

4

மொறட்டுவை பல்கலைக்கழக பொறியியற் பீட தமிழ் மாணவர்கள் நடாத்தும் க.பொ.த உயர்தர மாணவர்களுக்கான 8 👐

முன்னோடிப் பரீட்சை - 2017

இரசாயனவியல் பல்தேர்வு வினா விடைகள் / Chemistry M C Q Answers

DIAS B.Sc(Hons)Spl in Chem Prepared By 02

CHEMISTRY

பாடமும் பாட எண்ணும் Subject and Subject No

1 3 4 5	• (2) (3)	Θ
(31) (2) (3) (4) (5) (41)	2 3	(2)
(21) (1) (2) (4) (5)	(22) (1) (2) (3) (6) (5)	◆
(11) (1) (1) (1) (1) (1)	(12) (2) (3) (4) (5)	(13) (1) (2) (3) (5)
(01) (1) (2) (4) (5)	(02) (1) (2) (3) (4)	(3) (1) (2) (3) (5)

4

0 (14)

(5)

(4)

(7)

8

4

 \odot

(7)

(12)

(5)

4

(m)

(2)

(02)

(5)

4

(7) Θ

(1)

(5)

4

4 <u>(</u>

(7)

(16)

(5)

4

(m)

(m)

(5)

(m)

(7)

0

(18)

(5)

4

(2)

4

(2)

4 \odot

(7)

0

(47)

(5)

4

(5)

4

(2)

 $\overline{\Theta}$

(48)

(5)

4

(5)

(m)

(7)

(49)

(5)

4

(m)

(33)

(5)

4

(5)

(m)

(2)

0

(20)

(A)

(7)

Ö

6

3 4

(2)

(5)

Committee Examination 2019 E-Tamils Mora

Part A – Structured Essay

01. (a) Arrange the following in the **increasing** order of the property indicated in parenthesis.

i. S,C,H,Br (electronegativity)

H < C < S < Br

ii. Ag^+ , Mg^{2+} , Zn^{2+} , Fe^{2+} (Ability to act as an oxidizing agent in aqueous solution)

 Mg^{2+} < Zn^{2+} < Fe^{2+} < Ag^{+}

iii. AgI, AgBr, AgCl, AgF (covalent character)

AgF < AgCl < AgBr < AgI

iv. CH₄,HCl,PH₃,H₂S (boiling point)

 CH_4 < PH_3 < HCl < H_2S

v. SOCl₂, XeF₂, ICl₄, CO₃²⁻ (number of repulsive units around the central atom)

 CO_3^{2-} < $SOCl_2$ < XeF_2 < ICl_4^- [04 marks x 5 = 20marks]

1(a): 20 Marks

(b) Elements P, Q, R and S are nonmetals with atomic number less than 20. The corresponding maximum stable valences are 7, 6, 4 and 5. R and S have maximum electro negativity in their respective groups. The fundamental structure of the molecule H₂RQPSO₃ formed by these elements is given below.

i. Identify the elements P,Q, R and S.

P -Cl/Chlorine

Q-S/Sulphur

R -C/ Carbon

S - N/Nitrogen

 $[02marks \times 4 = 08marks]$

ii. Draw the most acceptable Lewis structure for this molecule.

08marks

iii. Draw six resonance structures for this molecule.(excluding the structure draw in the part(ii)above)

- iv. State the following regarding Q, R and S atoms in the table given below using the structure drawn in part (ii) above
 - 1. Electron pair geometry (arrangement of electron pair) around the atom
 - 2. Shape around the atom
 - 3. Hybridization of the atom
 - 4. Approximate value of bond angle around the atom

		Q	R	S
1.	Electron pair geometry	Tetrahedral	Trigonal Planer	Tetrahedral
2.	Shape	Tetrahedral	Trigonal Planer	Trigonal Pyramidal
3.	Hybridization	sp ³	sp ²	sp³
4.	Bond angle	1080-1100	1190-1210	1060-1080

[01marks x12 = 12 marks]

v. Identify the atomic/hybrid orbital involved in the formation of the following σ – bond in the Lewis structure draw in part (ii) above.

P-Q : P 3p(a.o) $Q sp^3(h.o)$ Q-R : $Q sp^3(h.o)$ $R sp^3(h.o)$ R-S : $R sp^2(h.o)$ $S sp^3(h.o)$

[01 marks x 6 = 6 marks]

[04 Marks]

vi. 1. Among the elements Q and R in the above molecule, which is more electronagative?

Sulphur(S) / Q

2. State two main factors which determine the electro negativity of an atom in a molecule.

Oxidation state/ electronegativity of the combined atoms

Hybridization

Charge on atom

(any two)

[02 marks x2 = 04 marks]

1(b): 60Marks

- (c) Consider the halogen hydrides HCl,HBr and HI.
 - 1. Give the increasing order of the strength of London forces

HCl < HBr < HI

2. Give the increasing order of the strength of dipole-dipole interactions.

HI < HBr < HCl

3. Give the increasing order of boiling points.

HCl < HBr < HI

4. Which interaction mainly contributes for the increase of boiling point.

Vanderwaals interaction / London dispersal force

[05 Marks x4 = 20 Marks]

02. a) S block element M dissolves in NaOH and gives solution A and a gaseous product X. When HCl is added drop by drop to the solution A a white colour precipitate B is formed even though it dissolves in excess of reagent and gives a clear solution C. At high temperatures, M reacts with gas X and gives white colour solid D. D reacts with water and gives product B and same gas X.

i. Identify the element M.

Be / Beryllium

[05 Marks]

ii. Identify the compounds A, B, C and D and gas X.

A- Na₂BeO₂

 $B - Be(OH)_2$

C- BeCl₂

D- BeH₂ X- H₂

[04Marks x 5 = 20Marks]

iii. Give the balanced chemical equations related with the formation of the above compounds A, B, C and D.

2Be + 2NaOH \rightarrow Na₂BeO₂ + H₂ $Na_2BeO_2 + 2HCl$ \rightarrow 2NaCl + Be(OH)₂ $Be(OH)_2 + 2HCl_{(aq)} \rightarrow BeCl_{2(aq)} + 2H_2O$ Be + $H_2 \rightarrow BeH_2$

 $[04Marks \times 4 = 16Marks]$

iv. Give three properties in which M differs from other members of the same group.

Amphoteric nature / reacts / dissolves with both acid and base

Forms the covalent compounds BeCl₂, BeH₂

BeH₂ and BeCl₂ are found as polymers, do not react with liquid state water

BeF₂ dissolves in water, high ionization potential

(any three) [03 marks x3 = 9 Marks][2(a): 50Marks]

(b) (i) Following solids/solutions are found in the given reagent bottles.

Cr₂(SO₄)₃, Co(NO₃)₂, Na₂S₂O₃, (NH₄)₂Cr₂O₇, BiCl₃, Pb(CH₃COO)₂

When BaCl₂solution is added, yellow colour precipitate is obtained.

State the compounds related with the following observations in the cages given.

 $(NH_4)_2Cr_2O_7$

When excess water is added and diluted, bluish violet colour solution is observed.

 $Cr_2(SO_4)_3$

C. With dil.HCl solution Pale yellow colour turbid solution is obtained.

 $Na_2S_2O_3$

D. When diluted by adding water, thick white colour precipitate is obtained. This precipitate dissolves in dil.HCl.

BiCl₃

E. Blue colour solution is obtained when con.HCl is added as excess.

 $Co(NO_3)_2$

When KI solution is added a precipitate is obtained. On heating precipitate dissolves and gives a clear solution.

Pb(CH₃COO)₂

[04 Marks x 6 = 24 Marks]

(ii) Give the relevant balanced chemical equation for the above observations A to F.

- A- BaCl₂ + $(NH_4)_2$ Cr₂O₇ + H₂O \rightarrow BaCrO₄ + $(NH_4)_2$ CrO₄ + 2HCl
- B- $Cr^{3+} + 6H_2O \rightarrow [Cr(H_2O)_6]^{3+} / Cr(SO_4)_3 + 12H_2O \rightarrow [Cr(H_2O)_6]_2(SO_4)_3$
- C- $NO_2S_2O_3 + 2HCl \rightarrow 2NaCl + S + SO_2 + H_2O$
- D- BiCl₃ + H₂O \rightleftharpoons BiOCl + 2HCl
- E- $CO^{2+} + 4HCl^{-} \rightarrow [CoCl_{4}]^{2-} / CO(NO_{3})_{2} + 4HCl \rightarrow H_{2}[CoCl_{4}] + 2HNO_{3}$
- F- $Pb(CH_3COO)_2 + 2KI \rightarrow PbI_2 + 2CH_3COO \cdot K^+$ $PbI_2(s) \rightarrow PbI_2(2a)$

 $PbI_2(s) \rightarrow PbI_2(aq)$ (2Marks)

[6Marks x4 = 24Marks] + (2Marks)2(b) : 50 Marks

- 03. (a) A, B and C are completely miscible volatile liquids. At their pure states the vapour pressure and standard boiling points are P_A^0 , P_B^0 and P_C^0 and T_A^0 , T_B^0 and T_C^0 respectively. Here $T_A^0 < T_B^0 < T_C^0$. By mixing liquids one with another, solutions A-B, A-C and B-C are obtained. The vapour pressures of these solutions are P_{AB} , P_{AC} , P_{BC} respectively. The vapour pressures calculated assuming that the above solutions are obeying the Rault's Law are x, y and z and the observed vapour pressures at the same temperature are p, q and r. The relationships between the calculated and observed vapour pressures are p> x, q = y and r < z.
 - i. Denote P_A^0 , P_B^0 and P_C^0 in the vertical axis.
 - ii. Draw the variation of P_A , P_B and P_C in the graph and denote them.(In the solution P_A Vapour pressure of A, P_B –Vapour pressure of B, P_C Vapour pressure of C)
 - iii. Draw the variation of total vapour pressure P_{AB} , P_{AC} and P_{BC} on the axis and denote them.

[6Marks x3 = 18Marks] 03(a):40 Marks

iv. Complete the following table regarding the above solution.

	Solution A – B	Solution A - C	Solution B – C
Type of solution	Positive deviation	Ideal solution	Negative deviation
Temperature change	Decrease	No change	Increase

- v. Draw the following graphs regarding the resultant solutions obtained by mixing liquids A and C without changing the total number of moles.
 - 1. Enthalpy change vs composition.
 - 2. Entropy vs composition.
 - 3. Gibb's free energy vs composition.

[03Marks + 03 Marks + 04 Marks = 10Marks]

03(a):40 Marks

(b) The following diagram shows a cell constructed using standard $Pt(s)/Cl_2(g)$, $Cl_{(aq)}^-$ electrode and Ag(s), AgCl(s)/Cl⁻_(aq) electrode. Direction of electron flow through the external circuit is shown in the figure given below.

i. Identify the parts A to F denoted in the above standard cell. State the physical state, concentration and pressure in required places.

B - HCl (aq, 1moldm-3) $A - Cl_2(g, 1atm)$

C - Voltmeter D - KCl (aq, saturated)

E - AgCl(s)F - Pt(s)

G - Ag(s)H – Quartz / Glass fibre junction

 $[02 \text{ Marks } \times 8 = 16 \text{Marks}]$

ii. Give the cell reaction takes place in this cell.

$$2Ag(s) + Cl_2(g) \rightarrow 2AgCl(s)$$

[08Marks]

iii. State the appropriate cell notation for this cell.

Ag(s), AgCl(s)|Cl_(aq)- $\frac{1}{2}$ Cl_(aq,1moldm-3), Cl_{2(g,1atm)}/, Pt(s) Note :- Here, since KCl is in saturated state in the elctrode Ag_(s)AgCl(s)/Cl_(aq), it can also be written as Ag(s), AgCl(s)/Cl_{(aq),satu}).

[08Marks]

- iv. The standard enthalpy change and standard entropy change of this cell are -254kJmol⁻¹ and -116Jmol⁻¹K⁻¹respectively. The relationship between the standard Gibb's free energy change (ΔG^{θ}) and standard electromotive force (E^{θ}_{cell}) is $\Delta G^{\theta} = -nFE^{\theta}_{cell}$ Here,
 - n the number of moles of electrons participated in the oxidation or reduction in the balanced reaction.
 - F Faraday constant (96500Cmol⁻¹)

If $E_{\text{Cls(g)/Cl (aq)}}^{\theta} = +1.36\text{V}$, then find the standard reduction potential of electrode $E_{\text{Ag(s),AgCl(s)/Cl (aq)}}^{\theta}$.

$$\begin{split} \Delta G^{\theta} &= \Delta H^{\theta} - T \Delta S^{\theta} \\ &= -254 \text{ x} 103 \text{Jmol}^{-1} - (298 \text{K x} - 116 \text{Jmol}^{-1} \text{K}^{-1}) \\ &= -219 \text{ 432 Jmol}^{-1} \\ \Delta G^{\theta} &= -n \text{FE}^{\theta} \\ -219 \text{ 432 Jmol}^{-1} &= -2 \text{ x} 96500 \text{Cmol}^{-1} \text{ x} \text{ E}^{\theta} \\ E^{\theta}_{\text{Cell}} &= 1.13 \text{V} \\ E^{\theta}_{\text{cell}} &= E^{\theta}_{\text{Cathode}} - E^{\theta}_{\text{Anode}} \\ 1.13 \text{V} &= 1.36 \text{V} - E^{\theta}_{\text{anode}} \\ E^{\theta}_{\text{Anode}} &= (1.36 - 1.13 \text{V}) \\ &= 0.23 \text{ V} \end{split}$$

[04Marks x 7 =28marks]

(03(b) : 60 marks)

- 04.(a) A, B, C and Dare four structural isomers of C₅H₁₁Cl. B, C and D have the ability to rotate the plane of plane polarized light. The product Ewhich is obtained in the reaction of A with NaOH (aq)gives immediate turbidity with anhydrous ZnCl₂/Con.HCl. When B, C and D are reacted with C₂H₅OH/ KOH, products F, G and H are obtained respectively. H shows geometrical isomerism. When B is reacted with NaOH_(aq) and then oxidized by PCC/CH₂Cl₂, the product I obtained reduces the Tollen's Reagent.
 - i. Draw the structures of A, B, C, D, E, F, G, H and I in the cages given below. (It is not necessary to draw stereo isomeric forms)

$$CH_3$$

$$CH_3 - C - Cl$$

$$CH_2CH_3$$

$$\begin{array}{c} \mathsf{CH}_3 \\ \mathsf{CH}_3 - \mathsf{C} - \mathsf{OH} \\ \mathsf{I} \\ \mathsf{CH}_2 \mathsf{CH}_3 \end{array}$$

$$CH_3CH_2 - C = CH_2$$

$$CH_3$$

D

Е

F

$$CH_3CH_2CH = CH - CH_3$$

(09x 5 = 45 Marks)

ii. Draw the stereoisomeric forms of H in the following cages.

$$CH_3 \qquad C_2H_5$$

$$C = C$$

$$H$$

$$CH_3 \qquad H$$

$$C = C$$

$$H \qquad C_2H_5$$

(05 Marks x 2 = 10 Marks)

iii. What are the products obtained when F is reacted with HBr?

Br H $CH_3CH_2 - C - CH_3$ CH_3 CH_3 CH_3 CH_3

iv. Which one of the above products in part(iii) above is obtained as a main product? State the mechanism for the formation of this product.

Br $CH_3 - C - CH_2CH_3$ $CH_3 \qquad \delta^+ \cdot \delta^ \rightarrow H \stackrel{\nearrow}{P}Br$ $CH_3 - CH_2 - C = CH_2$ $CH_3 - CH_2 - C^+ = CH_3$ $CH_3 - CH_2 - C^+ = CH_3$ $CH_3 - CH_3 - CH_3$

Br. CH₃ = CH₂ = C = CH₃. CH₃

[1Mark x11 = 11 Marks]

(b) Draw the structures of the main products of the reactions given in the table below. Classify each of the given reactions as nucleophilic addition (A_N) electrophilic addition (A_E) , nucleophilic substitution (S_N) , electrophilic substitution (S_E) , elimination (E), and other (Mo) in the appropriate cages.

Reaction number	Reactant	Reagent	Main product	Reaction type
1	$CH = CH_2$	Br ₂ /CCl ₄	$\begin{array}{c} \operatorname{Br} & \operatorname{Br} \\ \operatorname{CH} = \operatorname{CH}_2 \end{array}$	A_{E}
2	O ∥ CH₃CH₂ −C − CH₃	KCN/ Dil H ₂ SO ₄	OH CH ₃ CH ₂ –C – CH ₃ CN	$A_{ m N}$
3	$CH_3 - CH = CH_2$	HBr/ (CH ₃) ₂ O ₂	CH₃CH₂CH₂Br	Мо
4	Q C-CH ₃	CH 2-4-DNPH	$3 - C = N - NH$ NO_2 NO_2	A _N +E
5	CH ₂ I	$H - C \equiv C \cdot Na^{+}$	CH ₂ C ≡C −H	S_N
6	СООН	C.HNO ₃ / C. H ₂ SO ₄	COOH NO ₂	S_{E}

[12 x 2Marks = 24Marks]

Part B - Essay

05. (a) i.
$$V\alpha n [T][[P]$$

Here
$$V_A = V_X = V_{Ne}$$

Therefore $n_A = n_X = n_{Ne}$

Mole fraction $X_A = X_X = =X_{Ne} = 1/3$

$$P_A = P_X = P_{Ne} = 1/3 \times 3.6 \times 10^5 Pa = 1.2 \times 10^5 Pa$$

After the dissociation

At 300K

$$2A(g) \rightleftharpoons B(g) + C(g)$$

Initial Pressure 1.2 x105Pa

At equilibrium $4 \times 10^4 Pa$ $4 \times 10^4 Pa$ $4 \times 10^4 Pa$

 $P \alpha n [V] [T]$

Degree of Dissociation
$$=$$
 $\frac{8 \times 10^4 Pa}{12 \times 10^4 Pa} = \frac{2}{3} = 0.67$

ii.
$$Kp = \frac{P_{B(g)} \times P_{C(g)}}{P_A^2}$$

$$= \frac{4 \times 10^4 Pa \times 4 \times 10^4 Pa}{(4 \times 10^4 Pa)^2}$$
=1

iii. This equilibrium reaction occurs with no change in the no. of moles. Change in equilibrium does not affect the pressure.

Therefore, Pa T

$$12 \times 10^4 \text{Pa} \propto 300 \text{K}$$
(1)

So, $P = 24 \times 10^4 Pa$

$$2A(g) \rightleftharpoons B(g) + C(g)$$

Equilibrium Pressure 4 x10⁴Pa 10x10⁴Pa 10 x10⁴Pa

$$Kp = \frac{(10 \times 10^4 Pa)(10 \times 10^4 Pa)}{(4 \times 10^4 Pa)^2}$$
$$= \frac{25}{4} = 6.25$$

iv. Endothermic reaction

Kp(600K) > Kp(300K)

Equilibrium is shifted in forward direction.

It is endothermic according to Le Chatelier's principle.

v. Now, $P_{Ne} = 12 \times 10^4 \text{Pa} \times 2 = 24 \times 10^4 \text{Pa}$

Pressure of first equilibrium components = 24 x104Pa

Therefore, Pressure of second equilibrium components

$$= 78 \times 10^{4} Pa - (24 \times 10^{4} Pa + 24 \times 10^{4} Pa)$$

$$= 30 \times 10^{4} Pa$$

$$24 \times 10^{4} Pa + x = 30 \times 10^{4} Pa$$

 $x = 6 \times 10^{4} Pa$

Therefore, degree of dissociation = $\frac{12 \times 10^4 Pa}{24 \times 10^4 Pa} = 0.5$

vi.
$$Kp = \frac{(P_{Y(g)})^2 \times P_{Z(g)}}{(P_{X(g)})^2}$$
$$= \frac{(12 \times 10^4 Pa)^2 \times 6 \times 10^4 Pa}{(12 \times 10^4 Pa)^2}$$
$$= 6 \times 10^4 Pa$$

vii.
$$n_{Ne}: n_{Ar} = \frac{W}{20gmol^{-1}}: \frac{W}{40gmol^{-1}} = 2:1$$

$$P_{Ar} = 12 \times 10^4 Pa$$

Ar is a noble gas. It does not affect the equilibrium.

$$P_T = 78 \times 10^4 Pa + 12 \times 10^4 Pa$$

= $9 \times 10^5 Pa$

$$\begin{array}{ll} P_B = P_C = 1x10^5 Pa & P_Z = 6x10^4 Pa \\ P_A = 4 \ x10^4 Pa & P_{Ar} = 12 \ x10^4 Pa \\ P_X = P_y = 12 \ x10^4 Pa & P_{Ne} = 24 \ x10^4 Pa \end{array}$$

05 (a): 80 marks

(b) i.
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_{2(g)}$$
 $\Delta H^{\theta} = -284 \text{kJmol}^{-1}$ (1)
 $2NO(g) + 2CO(g) \rightarrow N_{2(g)} + 2CO_{2(g)}$ $\Delta H^{\theta} = -748 \text{kJmol}^{-1}$ (2)

(1) X 2 - (2)
$$\Longrightarrow$$

 $N_2(g) + O_2(g) \rightarrow 2NO(g)$
Therefore $\Delta H_f^{\theta}(NO(g)) \times 2 = 2x - 284kJmol^{-1} (-748kJmol^{-1})$
 $= 180kJmol^{-1}$
 $\Delta H_f^{\theta}(NO(g)) = 90KJmol^{-1}$
 $\Delta H_R^{\theta} = \sum \Delta H_f^{\theta}(Products) - \sum \Delta H_f^{\theta}(reactants)$
 $= \{(+90kJmol^{-1} x4) + (-242kJmol^{-1} x6)\} - \{-46kJmol^{-1}x4\} + 0.00kJmol^{-1}\}$
 $= -908KJmol^{-1}$

$$\begin{split} ii.\Delta S^{\theta} &= \sum S^{\theta}_{\text{(product)}} - \sum S^{\theta}_{\text{(reactants)}} \\ &= \{211 \text{Jmol}^{-1} \text{K}^{-1} \times 4) + (189 \text{Jmol}^{-1} \text{K}^{-1} \times 6) \} - \{\ 193 \text{Jmol}^{-1} \text{K}^{-1} \times 4) + (205 \text{Jmol}^{-1} \text{K}^{-1} \times 5) \} \\ &= 181 \text{Jmol}^{-1} \text{K}^{-1} \end{split}$$

iii.
$$\Delta G^{\theta} = \Delta H_R^{\theta} - T\Delta S^{\theta}$$

= -908kJmol⁻¹ - (298Kx 181 x10⁻³kJmol⁻¹K⁻¹)
= -961.9kJmol⁻¹

v. This reaction is spontaneous because $\Delta G < 0$.

05 (b): 70 marks

06. (a) i.
$$NH_4Cl_{(aq)} \rightarrow NH_4^+(aq) + Cl^-(aq)$$

 $[NH_4^+(aq)] = [NH_4Cl(aq)] = Cmoldm^{-3}$
 $NH_4^+(aq) + H_2O_{(1)} \rightleftharpoons NH_4OH(aq) + H^+_{(aq)}$

Initial concentration Cmoldm⁻³

Equilibrium

(C-x) moldm-3

x moldm-3 xmoldm-3

concentration

According to law of equilibrium,

$$ka = \frac{[NH_4OH_{(aq)}][H^+_{(aq)}]}{[NH_4^+_{(aq)}]}$$

Here, $[NH_4OH(aq)] = [H^+(aq)]$

Therefore,

$$ka = \frac{[H_{(aq)}^{+}]^{2}}{[NH_{4}^{+}(aq)]}$$

$$[H_{(aq)}^{+}] = \sqrt{ka(NH_{4}^{+}(aq))}$$

$$= \sqrt{ka \times (C - x) moldm^{-3}}$$
x <<< C

Therefore $[H^+_{(aq)}] = \sqrt{kaC}$

But kakb =kw

$$\begin{split} [H^{+}_{(aq)}] &= \sqrt{\frac{kw}{kb}} \times C \\ \text{pH} &= -\log[\text{H}^{+}_{(aq)}] \\ &= -\log\sqrt{\frac{kw \times c}{kb}} \\ &= -1/2\log \text{kw} - \frac{1}{2}\log\text{c-(-\frac{1}{2}\log\text{kb})} \\ \text{pH} &= \frac{1}{2}\text{pkw} - \frac{1}{2}\text{pkb} - \frac{1}{2}\log\text{c} \end{split}$$

[20 marks]

ii.
$$n[NH_4]_2 SO_4 = \frac{0.66g}{132gmol^{-1}} = 0.005mol$$

$$[NH_{4(aq)}^+] = \frac{0.005mol \times 2}{0.5dm^3}$$

$$= 0.02 \text{moldm}^{-3}$$

$$\begin{split} p^{H} &= \frac{1}{2} \; p^{kw} - \frac{1}{2} \; p^{kb} - \frac{1}{2} \; \log C \\ &= \frac{1}{2} \; x \; 14 - \frac{1}{2} \; x5 - \frac{1}{2} \; \log 2 \; x10^{-2} \\ &= 7 - 2.5 + 1 - \frac{1}{2} \; x \; 0.3010 \\ &= 5.3495 \end{split}$$

[08 marks]

iii. The resultant solution is buffer solution.

$$[NH_{4_{(aq)}}^{+}] = \frac{0.005mol \times 2}{1dm^{3}}$$

$$= 1x10^{-2} \text{moldm}^{-3}$$

$$pOH = pkb + \log 0 \frac{[salt]}{[base]}$$

$$= 5 + \log \frac{1 \times 10^{-2} moldm^{-3}}{0.1 moldm^{3}}$$

$$= 5 - 1$$

$$= 4$$

$$pH + pOH = pkw$$

$$pH = 14 - 4 = 10$$

[08 marks]

iv. $[OH_{(aq)}] = 1x10^{-4} \text{moldm}^{-3}$

For the precipitation $[N^{2+}_{(aq)}][OH^{-}_{(aq)}]^2 \ge 1x10^{-10} mol^3 dm^{-9}$

$$[N_{(aq)}^{2+}] \ge \frac{1 \times 10^{-10}}{1 \times 10^{-8}} moldm^{-3}$$

 $[N^{2+}_{(aq)}] \ge 1 \times 10^{-2} moldm^{-3}$
min $nN(NO_3)_2 = 1 \times 10^{-2} mol$

[10 marks]

v.
$$IP = [M^{2+}_{(aq)}] [OH^{-}_{(aq)}]^2$$

= 0.01moldm⁻³ x (1x10⁻⁴moldm⁻³)² = 1x10⁻¹⁰mol³dm⁻⁹
4x10⁻¹¹mol³dm⁻⁹ = Ksp(M(OH)₂) < IP(M(OH)₂) Therefore, precipitation is observed. [04marks]

06 (b): 50 marks

(b) i. NaOH(aq) + HA(aq)
$$\rightarrow$$
NaA(aq) + H₂O(l)
nNaOH(aq) = 0.1moldm⁻³ x 50 x10⁻³dm³ = 5x10⁻³mol
nHA: nNaOH = 1:1
Therefore, nHA = 5x10⁻³mol

$$[HA] = \frac{5 \times 10^{-3} mol}{25 \times 10^{-3} dm^3} = 0.2moldm^{-3}$$

ii. 50% neutralization at point B

[HA(aq)] = [NaA(aq)]

The resultant solution is buffer solution.

Therefore
$$pH = Pka + \log \frac{[Salt]}{[Acid]}$$

 $pH = pka$
 $-\log ka = 5$
 $ka = 1x10^{-5} \text{moldm}^{-3}$

$$A^{-}_{(aq)} + H_2O(1) \rightleftharpoons HA_{(aq)} + OH^{-}(aq)$$

$$ka = \frac{[HA_{(aq)}][OH^{-}_{(aq)}]}{[A_{(aq)}^{-}]}$$

$$[A_{(aq)}^{-}] = \frac{5 \times 10^{-3} \, mol}{75 \times 10^{-3} \, dm^{3}} = \frac{2}{30} \, moldm^{-3}$$

$$kb = \frac{kw}{ka} = \frac{1 \times 10^{-14} mol^2 dm^{-6}}{1 \times 10^{-5} moldm^{-3}} = 1 \times 10^{-9} moldm^{-3}$$

In the solution, $[HA(aq)] = [OH_{(aq)}]$

Therefore, $[OH^{-}_{(aq)}]^2 = kb \times [A^{-}(aq)]$

$$[OH_{(aq)}^{-}] = \sqrt{1 \times 10^{-9} \, moldm^{-3} \times \frac{2}{30} \, moldm^{-3}}$$
$$= \sqrt{\frac{2}{3} \times 10^{-10} \, mol^{2} dm^{-6}}$$

$$pOH = -\log \sqrt{\frac{2}{3} \times 10^{-10} mol^{2} dm^{-6}}$$

$$= -\frac{1}{2} \log 2 + \frac{1}{2} \log 3 + 5$$

$$pH + pOH = pkw$$

$$pH = 14 + \frac{1}{2} \times 0.3010 - \frac{1}{2} \times 0.4771$$

$$= 8.911$$

iv. Decreases

When adding NaOH, HA +OH \rightarrow A $^-$ +H₂O

Concentration of A- increases in the solution. In the resultant solution, $HA_{(aq)} \rightleftharpoons H^+_{(aq)} + A^-(aq)$ Equilibrium shifts in backward direction.

v. Phenolphthalein

06 (b): 50 marks

(c) i.
$$A(g) \rightarrow B(g) + C(g) + D(g)$$

 $t=0$ $400kPa$ -- -- ---
 $t=400s$ $400kPa - P$ p p p p
 $400kPa - P + P + P + P = 800kPa$
 $P=200k$ Pa

$$A(g) \rightarrow B(g) + C(g) + D(g)$$

$$t=800s \ 200kPa - P_1 \ 200 + P_1 \ 200 + P_1 \ 200 + P_1$$
 $800k$ Pa $+P_1 = 1000kPa$
 $P_1 = 100kPa$
 $PV = nRT$
 $P = (n/V)$ RT
 $P=CRT$

While T is unchanged, PαC

That is, if the concentration of A becomes half, partial pressure of A becomes half. As it remains unchanged for 400s, order with respect to A = 1

 \therefore Order of the reaction = 1

ii. Half life of A is 400s.

∴ At 1200s, 100kpa x $\frac{1}{2}$ = 50kPa

$$A(g) \rightarrow B(g) + C(g) + D(g)$$

t=1200s 50k Pa 350 k Pa 350 k Pa 350 k Pa

 $P_{Total} = 50kPa + 350kPa + 350kPa + 350kPa$ = 1200kPa

iii.
$$\frac{25kPa}{400kPa} = \frac{1}{16} = \left(\frac{1}{2}\right)^4$$

Time taken = 4x400s = 1600s

06 (c): 50 marks

(c) i.
$$CH_3 - \overset{O}{C} - O - C_6H_5$$
, $CH_3 - \overset{O}{C} - O - CH_3$

ii. CH₃O⁻

Lone pair in C_6H_5O - resonates with the Benzene ring. But, electron density of Oxygen in CH_3O - is high due to the electron repelling ability of Methyl group. So, lone pair donating ability of CH_3O - is greater than that of C_6H_5O -. Hence, ability of CH_3O - to act as nucleophile is high.

Part C - Essay

$$\begin{array}{ccc} \text{O8.} & \text{i. A - Ba} & \text{E - SO}_2 \\ & \text{B - S} & \text{F - H}_2\text{O} \\ & \text{C - BaS} & \text{G - BaSO}_4 \end{array}$$

 $D - H_2S$

ii. Na₂S₂, Na₂S₂O₃, H₂O

 $3S + 6NaOH \rightarrow 2Na_2S + Na_2SO_3 + 3H_2O$ $4S + 6NaOH \rightarrow 2Na_2S + Na_2S_2O_3 + 2H_2O$

08 (a): 50 marks

(b) i. Ag₂CO₃, PbCO₃

ii.
$$P_1 - Ag_2O$$

$$P_2 - PbCrO_4$$

$$P_3 - PbCl_2$$

iii. Milky colour appears if the gas liberated by the addition of acid is passed into the limewater. Milky colour disappears by the continuous passage.

08 (b): 40 marks

(c) In procedure I

$$nEDTA = 0.1 moldm^{-3} \times 22 \times 10^{-3} dm^{3} = 2.2 \times 10^{-3} mol$$

nEDTA:
$$nMIn^{-} = 1:1$$

 $nIn^{-}: nM^{2+} = 1:1$
 $nM^{2+} = 2.2 \times 10^{-3} = 1:1$

$$[M^{2+}] = \frac{2.2 \times 10^{-3} \, mol}{50 \times 10^{-3} \, dm^3}$$
$$= 0.044 \, \text{moldm}^{-3}$$

In procedure III

$$KIO_3 + 5KI + 6HCl \rightarrow 3I_2 + 3H_2O$$

$$I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$$

$$nNa_2S_2O_3 = 0.04moldm^{-3} \times 25 \times 10^{-3}dm^3 = 1\times 10^{-3}mol$$

$$nNa_2S_2O_3 : nI_2 = 2:1$$

$$nI_2: nHCl = 1:2$$

Therefore, $nNa_2S_2O_3 : nHCl = 1:1$

 $nHCl = 1x10^{-3}mol$

$$[HCl] = \frac{1 \times 10^{-3} \, mol}{20 \times 10^{-3} \, dm^3} = 0.05 \, moldm^{-3}$$

In procedure II

$$M(HCO_3)_2 + 2HCl \rightarrow 2H_2O + 2CO_2 + 2Cl^{-1}$$

$$nHCl = 0.05 \text{moldm}^{-3} \times 30 \times 10^{-3} \text{dm}^{3} = 1.5 \times 10^{-3} \text{mol}$$

 $nHCl: nM(HCO_3)_2 = 2:1$

$$n_{M(HCO_3)_2} = 1.5/2 \text{ x} 10^{-3} = 0.75 \text{ x} 10^{-3} \text{ mol}$$

$$\left[M_{(HCO_3)_2}\right] = \frac{0.75 \times 10^{-3} \, mol}{25 \times 10^{-3} \, dm^3} = 0.03 \, moldm^{-3}$$

Concentration of $M^{2+}_{(aq)}$ cause for temporary hardness = 0.03 moldm⁻³

Concentration of M²⁺(aq) cause for permanent hardness

= 0.044 moldm⁻³ - 0.03moldm⁻³

 $= 0.014 \text{moldm}^{-3}$

Permanent hardness = $0.014 \text{moldm}^{-3} \times 100 \times 10^3 \text{mg}$

 $= 1.4 \times 10^{3} \text{mgdm}^{-3} \text{CaCO}_{3}$

08 (c): 60 marks

09. (a) i. R_1 – Sea water R_2 – Limestone

 R_3 – Water R_4 – Air

ii. M_1 – Evaporating M_2 – Heating

M₃ – Electrolysis M₄ – Fractional distillation

iii. I_1 – Haber process

I₂ - Solvay process

I₃ - Production of Urea

iv. P_1 – NaCl P_2 – H_2 P_3 – Cl_2 P_4 - NaOH P_5 – N_2

 $P_6 - NH_3$ $P_7 - CO_2$ $P_8 - CaO$ $P_9 - Ca(OH)_2$ $P_{10} - NaHCO_3$

 $P_{11} - NH_4Cl$ $P_{12} - Na_2CO_3$ $P_{13} - CO(NH_2)_2$

v. $P_2: N_2(g) + 3H_2(g) \rightleftharpoons 2NH_{3(g)}$

Conditions :- 250atm Pressure

450°C Temperature

 $P_3: 2NH_{3(1)} + CO_{2(1)} \rightleftharpoons NH_2COONH_4(s)$

Conditions :- 130 – 150°C Temperature

35atm Pressure

 $NH_2COONH_4(s) \rightleftharpoons CO(NH_2)_{2(aq)} + H_2O(l)$

 $CO(NH_2)_{2(aq)} \xrightarrow{Evaporation} CO(NH_2)_{2(s)}$

vi. $CaO(s) + 2NH_4Cl_{(aq)} \rightarrow CaCl_{2(aq)} + 2NH_{3(aq)} + H_2O(l)$

 P_8 P_{11}

0r

 $Ca(OH)_{2(aq)} + 2NH_4Cl_{(aq)} \rightarrow CaCl_{2(aq)} + 2NH_{3(aq)} + 2H_2O_{(1)}$

 P_0 P_1

vii. $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$

 $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$

 $4NO_{2(g)} + 2H_2O_{(l)} + O_{2(g)} \rightarrow 4HNO_{3(aq)}$

viii. $P_2[H_2]$: \rightarrow Synthesis of NH_3

→ Production of HCl

→ Production of organic compounds

 $\rightarrow Production \ of \ Margarine$

→ Used in Oxy-hydrogen flame

→ Used as reducing agent in the extraction of metals like Mo and W

→ In Hydrogen balloons

→ Eco-friendly fuel

 $P_4[NaOH]: \rightarrow Manufacture of soap$

→ Production of bleaching agents like NaOCl, NaClO₃ and bleaching powder

→ To purify Bauxite in the extraction of Al

→ Production of paper pulp

→ Manufacture of rubber, artificial silk and dyestuffs

- → Purification of petroleum
- → Manufacture of HCOOH and, H₂C₂O₄

 $P_{12}[Na_2CO_3]: \longrightarrow Used as washing soda$

→ To remove the permanent hardness of water

→ Manufacture of soap

→ Manufacture of glass

→ Manufacture of detergents

→ Manufacture of paper

09 (a): 75 marks

(b) i. CO₂, CFC, Hydrocarbon

ii. CO_2 - Iron extraction

Burning of fossil fuel

Lime industry

Daily cooking activities

CFC - Leaked from refrigerators

As propellant in sprayers

In foam equipments

Air conditioners

Hydrocarbon- Incomplete combustion in vehicles

Wet zone crop cultivation

Animal farms

Improper garbage disposal

- iii. Hydrocarbons
- iv. PAN[Peroxyacetylnitrate], PBN [peroxybenzsyl nitrate] CH₃ONO₂ [Methyl nitrate] short carbon chain Aldehydes
- v. CFC Chloroflouro carbon

vii. No, because pH of dissolved state CO_2 tends to the range 5.1 -6.8/ Its acid strength is insufficient hence the pH of acid rain < 5.

09 (b): 75 marks

- 10. (a) i. AgBr (pale) yellow
 - ii. $X [C_0(Br)_2 (H_2O)_4]Br$ Y- $[C_0(Br)(CH_2O)_5]Br_2$
 - $Z [C_0(H_2O)_6]Br_3$
 - iii. If the oxidation state of Co is +3

X: charge of complex is +1, one Br-

Y: charge of complex is +2, two Br-

Z: charge of complex is +3, three Br-

Therefore, oxidation state of Co is +3

Or

If the oxidation state of Co is +2

X: charge of complex is O, No Br-

Y: charge of complex is +1, one Br-

Z: charge of complex is +2, two Br-

Therefore, oxidation state of Co cannot be +2. It should be +3.

- iv. X tetraaquadibromidocobalt[iii] bromide
 - Y pentaaquabromidocoalt[iii] bromide
 - Z hexaaquacobalt(iii) bromide
- Violet
- vi. $[Co(gl_y)_3]$

10 (b): 75 marks


```
: Mg(s) \rightarrow Mg^{2+}(aq) + 2e
ii. Anodic reaction
     Cathodic reaction
                                 : 2H_2O_{(1)} + 2e \rightarrow H_{2(g)} + 2OH_{(aq)}
     To just precipitate,
     K_{sp} = IP
     Ksp = [Mg^{2+}_{(aq)}][OH^{-}_{(aq)}]^{2}
     1x10^{-12}mol^3dm^{-9} = 1moldm^{-3} [OH_{(aq)}]^2
     Concentration of Mg<sup>2+</sup>(aq) formed by the dissolution of Mg electrode can be neglected.
     [OH_{(aq)}]^2 = 1x10^{-12}
     [OH_{(aq)}] = 1x10^{-6} moldm^{-3}
     nOH^{-} = 1x10^{-6} moldm^{-3} x 4dm^{3} = 4x10^{-6} mol
     nOH : ne = 1:1
     ne = 4x10^{-6}mol.
     Qe = 4x10^{-6} mol \ x \ 96500 cmol^{-1}
     2x10^{-3}Axt = 4x10^{-6}mol x96500Cmol^{-1}
     t=193s.
```

iv. I – constant t
$$\alpha$$
 ne
193s α 4x10-6mol(1)
965 x 60s α ne(2)

$$\binom{2}{(1)} \Rightarrow \binom{ne}{4\times 10^{-6} mol} = \frac{965 \times 605}{1935}$$
ne = 300 x 4 x10-6mol
= 1.2 x10-3mol

$$Mg^{2+}(aq) + 2OH^{-}(aq) \rightleftharpoons Mg(OH)_{2}(s)$$
nOH-: nMg(OH)₂ 2:1
nMg(OH)₂ = 0.6 x10-3mol
Mg(OH)₂ \rightarrow MgO + H₂O
nMg(OH)₂: nMgO = 1:1
nMgO = 6x10-4mol

 $WMgO = 6x \ 10^{-4} mol \ x \ 40 gmol^{-1}$

= 24mg

09 (b): 75 marks

