CS229: Evaluation Metrics

Jeremy Irvin

Slides by Anand Avati, Jeremy Irvin Oct 20, 2023

Why should we care about evaluation metrics?

- Quantitatively define a real world objective
 - Training objective (loss function) is typically only a proxy for this objective
 - Ideally this objective matches the real world objective as closely as possible
- Help organize ML team effort toward that target
 - Generally by trying to improve the metric on the *validation set*
- Quantify the gap between
 - Baseline and desired performance (initial difficulty estimate)
 - Current performance and desired performance
- Help debug (bias vs. variance)

Binary Classification Setting

- Input X, binary output $y \in \{0, 1\}$
- Two types of models:
 - Models that output a categorical class directly (K Nearest neighbor, Decision tree)
 - Models that output a real valued score (Logistic Regression, SVM, NN)
 - Score could be margin (SVM) or a probability (LR, NN)
 - We'll focus on this type for now, although many of the metrics we'll discuss apply to the other type as well

Score-based Models

- Positive labeled example
- Negative labeled example

Higher score assigned by model

- Score output by a logistic regression model or SVM
- For many metrics, only the order of positive/negative examples matters
- Prevalence (# positives / # total)
 determines class imbalance
- If too many examples, can plot a histogram (binned by scores) instead
- Rank view helpful for error analysis (look at topmost negative or bottommost positive)

Classifier

 Need to pick a threshold to have a classifier

Classifier

 Need to pick a threshold to have a classifier

Classifier

Confusion Matrix

- Need to pick a threshold to have a classifier
- Once we have a threshold, can create a confusion matrix

Confusion Matrix

Properties

- Total sum is fixed (population)
- Column sums are fixed (class-wise population)
- Threshold determines how to split into rows
- Want diagonal entries to be large and off-diagonal small

Point Metrics: True Positives

Point Metrics: True Negatives

Point Metrics: False Positives

• Type-I error

Point Metrics: False Negatives

• Type-II error

Point Metrics: Accuracy

- Accuracy = (TP + TN) / Total(9 + 8) / 20 = 0.85
- Equivalent to 0-1 loss.

Point Metrics: Precision

- Precision = TP / (TP + FP)
 - o 9 / (9 + 2) = 0.82
- Out of model predicted positives, how many were actually positive?
 - p(y_true = 1 | y_pred = 1)
- Also called PPV (Positive Predictive Value)
- Trivial 100% precision: threshold to right before topmost labeled positive (if possible)

Point Metrics: Positive Recall

- Recall = TP / (TP + FN)
 - 0 9 / (9 + 1) = 0.9
- Out of all the positives, how many did the model predict positive?

- Also called sensitivity
- Trivial 100% recall: super small threshold
- Good precision with 100% recall: push lowest red up
- Good recall with 100% precision: push highest grey down

Point Metrics: Negative Recall

Negative Recall = TN / (TN + FP)

$$\circ$$
 8 / (8 + 2) = 0.8

 Out of all the negatives, how many did the model predict negative?

- Also called *specificity*
- Sensitivity and specificity operate in different sub-universes

• Summarize **precision** and **recall** into a single score

- Summarize precision and recall into a single score
- F1-score: Harmonic mean of precision and recall
 - Why harmonic mean?

- Summarize precision and recall into a single score
- F1-score: Harmonic mean of precision and recall
 - O Why harmonic mean?

$$F_{1} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = \frac{1}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}}$$

$$\text{precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \quad \text{recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

- Summarize precision and recall into a single score
- F1-score: Harmonic mean of precision and recall
 - O Why harmonic mean?
- Feta-score: $F_eta = (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$

Point Metrics: Varying the threshold

- Changing the threshold can result in a new confusion matrix, and new values for some of the metrics
- Many threshold values are redundant (between two consecutively ranked examples)
 - Number of effective thresholds = # examples + 1

Point Metrics: Varying the threshold

F1	Specificity	Recall	Precision	Accuracy	FN	FP	TN	TP	Threshold
0	1	0	1	0.50	10	0	10	0	1.00
0.182	1	0.1	1	0.55	9	0	10	1	0.95
0.333	1	0.2	1	0.60	8	0	10	2	0.90
0.308	0.9	0.2	0.667	0.55	8	1	9	2	0.85
0.429	0.9	0.3	0.750	0.60	7	1	9	3	0.80
0.533	0.9	0.4	0.800	0.65	6	1	9	4	0.75
0.625	0.9	0.5	0.833	0.70	5	1	9	5	0.70
0.588	0.8	0.5	0.714	0.65	5	2	8	5	0.65
0.667	0.8	0.6	0.750	0.70	4	2	8	6	0.60
0.737	0.8	0.7	0.778	0.75	3	2	8	7	0.55
0.800	8.0	0.8	0.800	0.80	2	2	8	8	0.50
0.857	0.8	0.9	0.818	0.85	1	2	8	9	0.45
0.818	0.7	0.9	0.750	0.80	1	3	7	9	0.40
0.783	0.6	0.9	0.692	0.75	1	4	6	9	0.35
0.750	0.5	0.9	0.643	0.70	1	5	5	9	0.30
0.720	0.4	0.9	0.600	0.65	1	6	4	9	0.25
0.692	0.3	0.9	0.562	0.60	1	7	3	9	0.20
0.667	0.2	0.9	0.529	0.55	1	8	2	9	0.15
0.643	0.1	0.9	0.500	0.50	1	9	1	9	0.10
0.690	0.1	1	0.526	0.55	0	9	1	10	0.05
0.667	0	1	0.500	0.50	0	10	0	10	0.00

Summary Metrics: ROC Curve

- Each point defined by a threshold, and corresponds to point metrics
- Most people plot FPR (1 Specificity) against TPR (Recall, Sensitivity)
- Diagonal line = random guessing
- How do you select a threshold?
 - Youden's J
 - o F1
 - High sensitivity/specificity
 - 0 ...
 - Always use the validation set!

Summary Metrics: AUC

- Area Under the Curve (AUC)
 - AKA Concordance statistic/index
 (C-statistic, C-index)
- Rank-statistic, i.e. only depends on the ordering of the positives/negatives.
 - This is known as discrimination
- If you pick positive and negative by random, probability that the positive ranked higher than the negative

Summary Metrics: PR Curve

- End of curve at right cannot be lower than prevalence - why?
- Area under PRC (AUPRC) = average precision
 - By randomly picking the threshold, what's the expected precision?

Summary Metrics: Log-loss

Model scores on the same dataset.

Which is better?

Summary Metrics: Log-loss

- Same AUROC, AUPRC, point metrics etc. (same discrimination)
- Log-loss (cross entropy) rewards
 confident correct predictions and
 heavily penalizes confident incorrect
 predictions.

$$-(y \log(p) + (1 - y) \log(1 - p))$$

- All 0.5 predictions:
 - \circ -log(0.5) = 0.69
 - For C > 2 classes, log(C) is random/uniform loss.

Summary Metrics: Log-loss

- So log-loss captures more than just discrimination
- It also captures calibration, i.e.
 how well the model's
 predictions actually correspond
 to confidences
- Log-loss encourages calibration (proper scoring rule)

Calibration Metrics: Reliability Diagrams

Plot binned predicted probabilities against fraction of positives within each bin

Calibration Metrics: Techniques for Calibrated Models

- Histogram binning
- Platt scaling
- Isotonic regression
- ...
- See <u>On Calibration of Modern Neural Networks</u> for a nice overview!

Class Imbalance: Problems

- Symptom: prevalence < 5%
- Metrics lose meaning
- Inhibits learning
 - E.g. logistic regression can be overwhelmed by majority class

Class Imbalance: Metrics

- Accuracy: high score just by predicting majority class
 - This should be the low-bar!
- Log-loss: majority class can dominate
- AUROC: Can attain high AUROC by scoring negatives low
 - Artificially increased by true negatives
 - o 10% prevalence. top-10% are all negatives, next are all the positives, followed by the rest of the negatives. AUROC = 0.9.
- AUPRC: Somewhat more robust, but other challenges
- For class imbalance in general: Accuracy << AUROC << AUPRC

Multi-class

- Confusion matrix will be NxN (still want heavy diagonals, light off-diagonals)
- Most metrics (except accuracy) generally analyzed as several
 1-vs-many comparisons
- Class imbalance is common (both in absolute, and relative sense)
- Cost sensitive learning techniques (also helps in binary imbalance)
 - Assign weighted value for each block in the confusion matrix, and incorporate those into the loss function

Summary

- Score-based binary classification models
- Point metrics vs. summary metrics
- Discrimination vs. calibration
- Evaluation with class imbalance and multiple classes