Отчёт по практическому заданию по ДГСП

Лазар Владислав Игоревич, 416 группа $12 \ {\rm апрел } \ 2025 \ {\rm r}.$

Содержание

1	Teo	ретическая часть	3			
	1.1	Исследуемое явление	3			
			4			
2	Практическая часть 6					
	2.1	Значения параметров системы	6			
	2.2	Сравнение работы алгоритмов				
		2.2.1 Оценки траектории				
		2.2.2 Графики ошибок для нерасходящихся траекторий				
		2.2.3 Графики ошибок для всех траекторий				
		2.2.4 Численные результаты				
3	Выводы по расчётам					
4	Прі	ложение 3	3			
	4.1^{-1}	Аналитическое решение системы	3			
	4.2	Вычисление математического ожидания				
	4.3	Доказательство сходимости $X(t)$ при $t \to +\infty$				
		Выводы о трививальной оценке траектории				

1 Теоретическая часть

1.1 Исследуемое явление

В данной работе рассматривается задача наблюдения за перемещающейся по плоскости тележкой. Состоянием тележки является её положение на плоскости (x, y, ориентация в пространстве) и угол поворота колёс. На плоскости в начале координат установлен локатор, измеряющий расстояние до тележки и угол направления на неё.

Далее будет описана используемая матемаическая модель. Типичная траектория получаемая с её помощью выглядит следующим образом:

1.2 Система наблюдения

Математическая модель описывается системой с дискретным временем:

$$\begin{cases} x_{1,k} = x_{1,k-1} + Tcos(\theta_{k-1})cos(\phi_{k-1})u_{1,k-1} \\ x_{2,k} = x_{2,k-1} + Tsin(\theta_{k-1})cos(\phi_{k-1})u_{1,k-1} \\ \theta_k = \theta_{k-1} + Tsin(\phi_{k-1})\frac{u_{1,k-1}}{l} + \omega_{3,k} \\ \phi_k = \phi_{k-1} + Tu_{2,k-1} + \omega_{4,k} \end{cases}$$

где

- x_1 координата объекта по оси х
- x_2 координата объекта по оси у
- θ угол между направлением движения тележки и положительной полуосью Ох (ориентация на плоскости)
- ullet ϕ угол поворота колёс тележки относительно направления движения
- \bullet T параметр дискретизации системы по времени
- l расстояние между осями тележки
- ω шум в модели динамики, $\omega_k \sim \mathcal{N}(0,Q)$
- u_1 управляемая линейная скорость
- \bullet u_2 управляемая угловая скорость

Наблюдения определяются следующим образом:

$$\begin{cases} r_k = \sqrt{x_{1,k}^2 + x_{2,k}^2} + \nu_{1,k} \\ \alpha_k = \arctan(\frac{x_{2,k}}{x_{1,k}}) + \nu_{2,k} \end{cases}$$

где

- ullet r_k расстояние от локатора до цели
- ullet α_k угол направления от локатора к цели
- ν шум в наблюдениях, $\nu \sim \mathcal{N}(0,R)$

2 Практическая часть

2.1 Значения параметров системы

В численных экспериментах установим следующие параметры системы:

$$l = 0.1, u_1 = 3, u_2 = 0$$

Шаги по времени:

$$\delta_1 = \delta_2 = 10^{-3}, \ \delta_1 = 10^{-2}, \ T_{max} = 1$$

Заметим, что равенство δ_1 и δ_2 следует из того, что система заране дискретизирована.

Также для наблюдений вместо arctan возьмём \arctan_2 . Это обусловлено тем, что область действия $\arctan - \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, а \arctan_2 - вся тригонометрическая окружность. Благодаря этому мы сможем избежать ошибки наблюдений с неправильным определением полуплоскости.

Матрицы шумов возьмём следующими:

$$Q = \begin{bmatrix} 3 \cdot 10^{-7} & 0 & 0 & 0 \\ 0 & 3 \cdot 10^{-7} & 0 & 0 \\ 0 & 0 & 3 \cdot 10^{-5} & 0 \\ 0 & 0 & 0 & 3 \cdot 10^{-5} \end{bmatrix}$$
$$R = 5 \cdot 10^{-3} \cdot I_2$$

Начальное значение траектории моделируется следующим образом:

$$X_0 \sim \mathcal{N}(\mu, 0.3 \cdot I_4)$$

где
$$\mu = (0, 0, \frac{\pi}{4}, 0)$$

Все необходимые для фильтрации параметры были посчитаны аналитически во время работы программы с помощью соответствующих пакетов Python (filterpy, sympy). Реализации всех фильтров также взяты из соответствующих пакетов на Python. В фильтре частиц количество частиц равно 1000. Для достижения большей точности были использованы 128-битные числа с плавающей точкой (стандарт IEEE 754).

Все расчёты проводились на пучке траекторий объёмом 10000.

2.2 Сравнение работы алгоритмов

2.2.1 Оценки траектории

Рис. 1: Оценка x_1

_

Рис. 2: Оценка x_2

Рис. 4: Оценка ϕ

Рис. 5: Ошибка x_1

Рис. 6: Ошибка x_2

Рис. 7: Ошибка θ

Рис. 8: Ошибка ϕ

Рис. 9: Ошибка x_1

Рис. 11: Ошибка θ

Рис. 12: Ошибка ϕ

2.2.4 Численные результаты

Метод	Процент расходящихся траекторий
UKF	21.65
UKFR	21.65
PF	6.37

Время	UKF	UKFR	PF
0.14	0.01643	0.01643	0.04384
0.43	0.01925	0.01925	0.05596
0.71	0.02398	0.02398	0.04997

Таблица 1: Средние ошибки фильтров на оценивания x_1

Время	UKF	UKFR	\mathbf{PF}
0.14	0.01535	0.01535	0.04507
0.43	0.01781	0.01781	0.05932
0.71	0.01972	0.01972	0.05258

Таблица 2: Средние ошибки фильтров оценивания x_2

Время	UKF	UKFR	\mathbf{PF}
0.14	0.68856	0.68856	0.92878
0.43	1.19046	1.19046	2.4862
0.71	1.8347	1.8347	4.01625

Таблица 3: Средние ошибки фильтров оценивания θ

Время	UKF	UKFR	PF
0.14	0.46508	0.46508	0.3543
0.43	0.54605	0.54605	0.35385
0.71	0.68886	0.68886	0.36416

Таблица 4: Средние ошибки фильтров оценивания ϕ

3 Выводы по расчётам

Из графиков видно, что оценки UKF и его корневой модификации ведут себя абсолютно одинаково. Это логично следует из вышеописанных особенностей реализации для 128-битных чисел. Более подробно о таком поведении фильтров Калмана написано в соответствующем разделе документации.

Также можно заметить, что лучше всего фильтры справляются с оценкой местоположения тележки, а хуже всего - с углами θ и ϕ . Этому есть логичное объяснение: в качестве наблюдений мы получаем полярные координаты тележки. Благодаря этому мы достаточно точно можем строить оценку для x_1 и x_2 . В то же время, в наблюдениях никоим образом не участвуют углы, поэтому информацию о них мы получаем косвенно через перемещение тележки. Более того, поскольку угловая скорость u_2 при расчётах взята равной нулю, поведение ϕ описывается винеровским процессом с соответствующими параметрами. Из-за этого оценивать его сложнее всего, хотя и возможно из изменения θ . Но, поскольку все наблюдения зашумлены, а при изменении состояния также добавляется шум, эффект накопления ошибки сильнее всего виден именно на этой компоненте состояния. Тем не менее, основную задачу можно признать выполненной - полученный алгоритм достаточно точно оценивает траекторию движения цели несмотря на помехи. Также из таблиц можно увидеть, что оценка, полученная фильтром частиц, часто оказывается хуже оценки UKF (ошибка большге примерно в 1.5-1.6 раза), но при этом процент расходящихся траекторий у РГ меньше (6 против почти 17). То есть, в данном случае большая вычислительная сложность оправдывается большей стабильностью. Если также посмотреть на графики средних ошибок на всех и на неразваливающихся траекториях, будет видно, что фильтр частиц ведёт себя и на тех и на других траекториях похожим образом. в то время как средняя ошибка сигма-точечного фильтра сильно зависит от типа траектории.

Если взглянуть на графики средних ошибок на всех траекториях, можно также заметить, что средняя ошибка растёт. Это может быть связано с тем, что, начиная с некоторого момента, тележка может начать кружить вокруг некоторой точки из-за неуправляемого роста угла поворота. В такие моменты становится сложно предсказать траекторию, так как малое изменение местоположения тележки по сравнению с погрешностью наблюдений сильно сказывается на работе фильтра, и для него такое движение с точки зрения постановки задачи становится мало отличимым от броуновского. Возможно, такого поведения цели можно избежать путём изменения управления с константного на зависящее от времени.

4 Приложение

Рассмотрим систему стохастических дифференциальных уравнений

$$\frac{dx}{dt} = u_1 \cos \theta(t) \cos \phi(t),
\frac{d\theta}{dt} = \frac{u_1}{l} \sin \phi(t) + \omega_3(t),
\frac{d\phi}{dt} = \omega_4(t),$$
(1)

с начальными условиями

$$x(0) = 0$$
, $\theta(0) = \frac{\pi}{4}$, $\phi(0) = 0$.

Белые шумы $\omega_3(t)$ и $\omega_4(t)$ представлены через стандартные винеровские процессы следующим образом:

$$\omega_3(t) dt = \sigma_3 dW_3(t), \qquad \omega_4(t) dt = \sigma_4 dW_4(t),$$

где $W_3(t)$ и $W_4(t)$ — стандартные броуновские движения с дисперсией t, то есть

$$\mathbb{D}\{\sigma_3 W_3(t)\} = \sigma_3^2 t$$
 и $\mathbb{D}\{\sigma_4 W_4(t)\} = \sigma_4^2 t$.

4.1 Аналитическое решение системы

Решение для $\phi(t)$

Уравнение для $\phi(t)$:

$$\frac{d\phi}{dt} = \omega_4(t),$$

при $\phi(0) = 0$ имеет решение:

$$\phi(t) = 0 + \sigma_4 W_4(t) = \sigma_4 W_4(t). \tag{2}$$

Решение для $\theta(t)$

Уравнение для $\theta(t)$:

$$\frac{d\theta}{dt} = \frac{u_1}{l} \sin \phi(t) + \omega_3(t),$$

при $\theta(0)=\pi/4$ даёт интегральное представление:

$$\theta(t) = \frac{\pi}{4} + \frac{u_1}{l} \int_0^t \sin(\sigma_4 W_4(s)) ds + \sigma_3 W_3(t).$$
 (3)

Решение для x(t)

Аналитическое решение для x(t) записывается в виде:

$$x(t) = 0 + u_1 \int_0^t \cos \theta(s) \cos \phi(s) ds, \tag{4}$$

то есть

$$x(t) = u_1 \int_0^t \cos \theta(s) \cos \phi(s) ds.$$

Подставляя выражения (2) и (3) для $\phi(s)$ и $\theta(s)$, получаем:

$$x(t) = u_1 \int_0^t \cos \left\{ \frac{\pi}{4} + \frac{u_1}{l} \int_0^s \sin \left(\sigma_4 W_4(\tau) \right) d\tau + \sigma_3 W_3(s) \right\} \cos \left(\sigma_4 W_4(s) \right) ds.$$

Это и есть полное аналитическое представление решения системы.

4.2 Вычисление математического ожидания

Обозначим математическое ожидание процесса x(t) как

$$X(t) = \mathbb{E}[x(t)].$$

Из (4) следует:

$$X(t) = u_1 \int_0^t \mathbb{E}\Big[\cos\theta(s)\,\cos\phi(s)\Big]ds.$$

Запишем $\theta(s)$ в виде

$$\theta(s) = A(s) + \sigma_3 W_3(s),$$

где

$$A(s) = \frac{\pi}{4} + \frac{u_1}{l} \int_0^s \sin(\sigma_4 W_4(\tau)) d\tau.$$

Используем независимость процессов W_3 и W_4 и известный результат для нормальной случайной величины:

$$\mathbb{E}\left[\cos\left(A(s) + \sigma_3 W_3(s)\right)\right] = \cos A(s) \exp\left(-\frac{\sigma_3^2 s}{2}\right).$$

Таким образом, математическое ожидание можно записать как

$$X(t) = u_1 \int_0^t \exp\left(-\frac{\sigma_3^2 s}{2}\right) \mathbb{E}_{W_4} \left\{ \cos\left[A(s)\right] \cos\left(\sigma_4 W_4(s)\right) \right\} ds.$$

Итоговая форма математического ожидания выглядит следующим образом:

$$X(t) = u_1 \int_0^t \exp\left(-\frac{\sigma_3^2 s}{2}\right) \mathbb{E}_{W_4} \left\{ \cos\left[\frac{\pi}{4} + \frac{u_1}{l} \int_0^s \sin\left(\sigma_4 W_4(\tau)\right) d\tau\right] \cos\left(\sigma_4 W_4(s)\right) \right\} ds.$$
(5)

4.3 Доказательство сходимости X(t) при $t \to +\infty$

Наша задача — показать, что предел

$$X(\infty) = \lim_{t \to +\infty} X(t)$$

существует и конечен.

Шаг 1. Оценка подынтегрального выражения.

Так как

$$\left|\cos\left[\frac{\pi}{4} + \frac{u_1}{l}\int_0^s \sin\left(\sigma_4 W_4(\tau)\right) d\tau\right| \cos\left(\sigma_4 W_4(s)\right)\right| \le 1,$$

получаем

$$\left| \exp\left(-\frac{\sigma_3^2 s}{2}\right) \mathbb{E}_{W_4} \{\cdots\} \right| \le \exp\left(-\frac{\sigma_3^2 s}{2}\right).$$

Шаг 2. Интегрируемость доминирующей функции.

Рассмотрим функцию

$$g(s) = \exp\left(-\frac{\sigma_3^2 s}{2}\right).$$

Интеграл

$$\int_{0}^{+\infty} g(s) \, ds = \int_{0}^{+\infty} \exp\left(-\frac{\sigma_3^2 \, s}{2}\right) ds = \frac{2}{\sigma_3^2}$$

конечен.

Шаг 3. Применение теоремы Лебега о доминированной сходимости.

Так как подынтегральная функция

$$f(s) = \exp\left(-\frac{\sigma_3^2 s}{2}\right) \mathbb{E}_{W_4} \left\{ \cos\left[\frac{\pi}{4} + \frac{u_1}{l} \int_0^s \sin\left(\sigma_4 W_4(\tau)\right) d\tau\right] \cos\left(\sigma_4 W_4(s)\right) \right\}$$

ограничена функцией g(s), интегрируемой на $[0, +\infty)$, по теореме Лебега о доминированной сходимости следует, что интеграл

$$\int_0^{+\infty} f(s) \, ds$$

сходится к конечному числу. Следовательно,

$$X(\infty) = u_1 \int_0^{+\infty} \exp\left(-\frac{\sigma_3^2 s}{2}\right) \mathbb{E}_{W_4} \left\{ \cos\left[\frac{\pi}{4} + \frac{u_1}{l} \int_0^s \sin\left(\sigma_4 W_4(\tau)\right) d\tau\right] \cos\left(\sigma_4 W_4(s)\right) \right\} ds < \infty.$$

4.4 Выводы о трививальной оценке траектории

Поскольку X(t) при $x\to\infty$ ограничена $(|X(t)|<\frac{2}{\sigma_3^2})$ и сходится, можно сделать вывод о том, что тривиальная оценка для x_1 сходится при $t\to\infty$. Это подтверждается и практическими результатами (см. графики оценок). Для x_2 доказательство и вывод строится аналогично.