

High accurate, Low noise, Ultra small package ME6219 Series

General Description

ME6219 series are highly accurate, low noise, CMOS LDO voltage regulators. Offering low output noise, high ripple rejection ratio, low dropout, the ME6219 series is ideal for today's cutting edge mobile phone. The ME6219 series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The CE function allows the output of regulator to be turned off, resulting in greatly reduced power consumption.

Selection Guide

Features

- I Highly accurate:±2%
- I Operating voltage range:1.2V~5.0V (selectable in 0.1V steps)
- I Power consumption:65uA (TYP.)
- Large output current:300mA ($V_{IN} = 4.3V, V_{OUT} = 3.3V$)
- Input stability:0.05%/V(TYP.)
- I Packages: SOT23-3,SOT89-3,SOT23-5,SOT89-5

Typical Application

- I Mobile phones
- I Cordless phones, radio communication equipment
- I Portable games
- I Cameras, Video cameras
- I Reference voltage sources
- I Battery powered equipment

Typical Application Circuit

Pin Configuration

Pin Assignment

ME6219Axx

	Pin Number		Pin Name	Functions
SOT23-3	SOT23-3*	SOT89-3	Fillivallie	i diletions
1	2	1	V_{SS}	Ground
2	1	3	V _{OUT}	Output
3	3	2	V _{IN}	Input

ME6219Cxx

Pin Number			Pin Name	Functions
SOT23-5	SOT23-5*	SOT89-5	Fill Name	Functions
1	5	4	V _{IN}	Input
2	2	2	V_{SS}	Ground
3	1	3	CE	ON/OFF Switch
4	3	1	NC	No Connection
5	4	5	V_{OUT}	Output

^{*:}Special pin array

V11 <u>www.microne.com.cn</u> Page 2 of 13

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Volt	Input Voltage		6.5	V
Output Cu	rrent	I _{OUT}	500	mA
Output Vo	tage	V _{OUT}	Vss-0.3 ~ Vout+0.3	V
CE pin Voltage		V _{CE}	Vss-0.3 ~ Vout+0.3	V
Power Dissipation	SOT23	P _D	250	mW
Fower Dissipation	SOT89	P_{D}	500	mW
Operating Ambient Temperature		Т	-25 ~ +85	
Storage Temperature		T _{STG}	-40 ~ +125	
Soldering Temperat	ture And Time	T _{SOLDER}	260 , 10s	

Block Diagram

Electrical Characteristics ME6219C12

 $(V_{IN}=V_{OUT}+1V, V_{CE}=V_{IN}, C_{IN}=C_{OUT}=1uF, Ta=25^{O}C$ Unless otherwise stated)

Parameter	Symbol	Conditions	Min	TYP.	MAX	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		130		mA
Load Regulation	V_{OUT}	V _{IN} =Vout+1V, 1mA I _{OUT} 100mA		30		mV
Dropout Voltage	V_{dif1}	I _{OUT} =50mA		750		mV
(Note 3)	V_{dif2}	I _{OUT} =100mA		800		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		65		μΑ
Stand-by Current	I _{CEL}	Vce = 0V		0.1	1	μΑ
Line Regulations	V _{OUT} V _{IN} •V _{OUT}	I _{OUT} =40mA Vout+1V V _{IN} 6.5V		0.05		%/V
CE "High" Voltage	VCEH	Start up	0.6			V
CE "Low" Voltage	VCEL	Shut down			0.5	V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =50mA,f=1kHz		62		dB
Output noises	en	I _{OUT} =40mA , 300Hz~50kHz		50		uVrms

ME6219C18

 $(V_{\text{IN}} = V_{\text{OUT}} + 1 \text{V}, V_{\text{CE}} = V_{\text{IN}}, C_{\text{IN}} = C_{\text{OUT}} = 1 \text{uF}, \text{Ta} = 25^{\text{O}}\text{C Unless otherwise stated})$

Parameter	Symbol	Conditions	Min	TYP.	MAX	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		200		mA
Load Regulation	V_{OUT}	V _{IN} =Vout+1V, 1mA I _{OUT} 100mA		30		mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		210		mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		420		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		65		μΑ
Stand-by Current	I _{CEL}	Vce = 0V		0.1	1	μΑ
Line Regulations	V _{OUT} V _{IN} •V _{OUT}	I _{OUT} =40mA Vout+1V V _{IN} 6.5V		0.05		%/V
CE "High" Voltage	VCEH	Start up	0.6			V
CE "Low" Voltage	VCEL	Shut down			0.5	V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =50mA,f=1kHz		62		dB
Output noises	en	I _{OUT} =40mA , 300Hz~50kHz		50		uVrms

ME6219C25

 $(V_{IN}=V_{OUT}+1V, V_{CE}=V_{IN}, C_{IN}=C_{OUT}=1uF, Ta=25^{O}C$ Unless otherwise stated)

Parameter	Symbol	Conditions	Min	TYP.	MAX	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		250		mA
Load Regulation	V_{OUT}	V _{IN} =Vout+1V, 1mA I _{OUT} 100mA		30		mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		170		mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		350		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		65		μA
Stand-by Current	I _{CEL}	Vce = 0V		0.1	1	μA
Line Regulations	V _{OUT} V _{IN} •V _{OUT}	I _{OUT} =40mA Vout+1V V _{IN} 6.5V		0.05		%/V
CE "High" Voltage	VCEH	Start up	0.6			V
CE "Low" Voltage	VCEL	Shut down			0.5	V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =50mA,f=1kHz		62		dB
Output noises	en	I _{OUT} =40mA , 300Hz~50kHz		50		uVrms

ME6219C28

 $(V_{\text{IN}}\!\!=\!\!V_{\text{OUT}}\!\!+\!\!1V,\!V_{\text{CE}}\!\!=\!\!V_{\text{IN}},\!C_{\text{IN}}\!\!=\!\!C_{\text{OUT}}\!\!=\!\!1u\text{F},\!T\!a\!\!=\!\!25^{\text{O}}\text{C Unless otherwise stated})$

Parameter	Symbol	Conditions	Min	TYP.	MAX	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300		mA
Load Regulation	V _{OUT}	V _{IN} =Vout+1V, 1mA I _{OUT} 100mA		30		mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		180		mV
(Note 3)	V _{dif2}	I _{OUT} =200mA		320		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		65		μΑ
Stand-by Current	I _{CEL}	Vce = 0V		0.1	1	μΑ
Line Regulations	$\frac{V_OUT}{V_IN \bullet V_OUT}$	$I_{OUT} = 40 \text{mA}$ $Vout + 1V V_{IN} 6.5V$		0.05		%/V
CE "High" Voltage	VCEH	Start up	0.6			V
CE "Low" Voltage	VCEL	Shut down			0.5	V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =50mA,f=1kHz		62		dB
Output noises	en	I _{OUT} =40mA , 300Hz~50kHz		50		uVrms

ME6219C30

 $(V_{\text{IN}} = V_{\text{OUT}} + 1 \text{V}, V_{\text{CE}} = V_{\text{IN}}, C_{\text{IN}} = C_{\text{OUT}} = 1 \text{uF}, \text{Ta} = 25^{\text{O}}\text{C Unless otherwise stated})$

Parameter	Symbol	Conditions	Min	TYP.	MAX	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300		mA
Load Regulation	V _{OUT}	V _{IN} =Vout+1V, 1mA I _{OUT} 100mA		30		mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		160		mV
(Note 3)	V_{dif2}	I _{OUT} =200mA		330		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		65		μΑ
Stand-by Current	I _{CEL}	Vce = 0V		0.1	1	μΑ
Line Regulations	V _{OUT} V _{IN} •V _{OUT}	$I_{OUT} = 40 \text{mA}$ Vout+1V V _{IN} 6.5V		0.05		%/V
CE "High" Voltage	VCEH	Start up	0.6			V
CE "Low" Voltage	VCEL	Shut down			0.5	V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =50mA,f=1kHz		62		dB
Output noises	en	I _{OUT} =40mA , 300Hz~50kHz		50		uVrms

ME6219C33

 $(V_{\text{IN}}\!\!=\!\!V_{\text{OUT}}\!\!+\!1V,\!V_{\text{CE}}\!\!=\!\!V_{\text{IN}},\!C_{\text{IN}}\!\!=\!\!C_{\text{OUT}}\!\!=\!\!1u\text{F},\!T\!a\!\!=\!\!25^{\text{O}}\text{C Unless otherwise stated})$

Parameter	Symbol	Conditions	Min	TYP.	MAX	Units
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =10mA, V _{IN} =Vout+1V	X 0.98	V _{OUT} (T) (Note 1)	X 1.02	V
Maximum Output Current	I _{OUT} (max)	V _{IN} =Vout+1V		300		mA
Load Regulation	V_{OUT}	V _{IN} =Vout+1V, 1mA I _{OUT} 100mA		30		mV
Dropout Voltage	V_{dif1}	I _{OUT} =100mA		180		mV
(Note 3)	V_{dif2}	I _{OUT} =200mA		310		mV
Supply Current	I _{SS}	V _{IN} =Vout+1V		65		μΑ
Stand-by Current	I _{CEL}	Vce = 0V		0.1	1	μA
Line Regulations	V _{OUT}	$I_{OUT} = 40 \text{mA}$ Vout+1V V _{IN} 6.5V		0.05		%/V
CE "High" Voltage	VCEH	Start up	0.6			V
CE "Low" Voltage	VCEL	Shut down			0.5	V
Power Supply Ripple Rejection Ratio	PSRR	Vin= [Vout+1]V +1Vp-pAC I _{OUT} =50mA,f=1kHz		62		dB
Output noises	en	I _{OUT} =40mA , 300Hz~50kHz		50		uVrms

Note:

1. V_{OUT} (T) : Specified Output Voltage

2. V_{OUT} (E): Effective Output Voltage (le. The output voltage when "V_{OUT} (T)+1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)

3. V_{DIF} : V_{IN1} –V_{OUT} (E)'

V_{IN1}: The input voltage when V_{OUT}(E)' appears as input voltage is gradually decreased.

 V_{OUT} (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} (V_{OUT} (T)+1.0V) is input.

Type Characteristics

(1) Output CurrentVS.Output Voltage (VIN=Vout+1, Ta = 25 °C)

ME6219C33M5G

ME6219C30M5G

ME6219C28M5G

(2) Input Voltage VS.Output Voltage (Ta = 25 °C)

ME6219C33M5G

ME6219C30M5G

ME6219C28M5G

(3) Output Current VS.Droput Voltage (VIN=Vout+1V,Ta = 25 °C)

ME6219C33M5G

Input Voltage VS.Droput Voltage | Comparison of the comparison of

ME6219C30M5G

ME6219C28M5G

(4) Input Voltage VS. Supply Current (Ta = 25 °C)

ME6219C33M5G

ME6219C30M5G

ME6219C28M5G

Packaging Information

SOT23-5

SOT89-3

SOT23-3

SOT89-5

- I The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- I The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.