Non-Euclidean High-Order Smooth Convex Optimization

Juan Pablo Contreras**

JUAN.CONTRERAS@UDP.CL

Escuela de Ingeniería Industrial Universidad Diego Portales

Cristóbal Guzmán*

CRGUZMANP@MAT.UC.CL

Institute for Mathematical and Computational Engineering Faculty of Mathematics and School of Engineering Pontificia Universidad Católica de Chile

David Martínez-Rubio*

DMRUBIO@ING.UC3M.ES

Signal Theory and Communications Department, Universidad Carlos III de Madrid, Spain

Editors: Nika Haghtalab and Ankur Moitra

Abstract

We develop algorithms for the optimization of convex objectives that have Hölder continuous q-th derivatives by using a q-th order oracle, for any $q \geq 1$. Our algorithms work for general norms under mild conditions, including the ℓ_p -settings for $1 \leq p \leq \infty$. We can also optimize structured functions that allow for inexactly implementing a non-Euclidean ball optimization oracle. We do this by developing a non-Euclidean inexact accelerated proximal point method that makes use of an inexact uniformly convex regularizer. We show a lower bound for general norms that demonstrates our algorithms are nearly optimal in high-dimensions in the black-box oracle model for ℓ_p -settings and all $q \geq 1$, even in randomized and parallel settings. This new lower bound, when applied to the first-order smooth case, resolves an open question in parallel convex optimization.

Acknowledgments

Research partially supported by ANID FONDECYT 1251029 grant, ANID FONDECYT Postdoctoral grant 3240505, National Center for Artificial Intelligence CENIA FB210017, Basal ANID, and by the Generación de Conocimiento grant PID2022-142506NA-I00.

[.] Extended abstract. Full version appears as [arxiv reference, 2411.08987]

^{. (*)} Equal contribution.

^{. (*)} Work partially completed while at Pontificia Universidad Católica de Chile.