This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WIRE MATERIAL HAVING SNOW MELTING EFFECT

Patent number:

JP5292638

Publication date:

1993-11-05

Inventor:

INASAWA SHINJI; others: 02

Applicant:

SUMITOMO ELECTRIC IND LTD

Classification:

- international:

H02G7/16

- european:

Application number:

JP19920085441 19920407

Priority number(s):

Abstract of JP5292638

PURPOSE:To melt ice or snow accreted on a transmission line effectively by mounting a magnetic wire material having Curie point higher than a specific point, applied with a film of a mixture of a water repellent material and a conductive metal, onto the transmission line. CONSTITUTION: A wire material is formed of a ferromagnetic body 2 of Fe-Ni- Cr-Si alloy having Curie point higher than 0 deg.C. The magnetic body 2 is then subjected to electroplating or electroless plating of at least one metal selected from Cu, Al, Fe, Co, or Ni which forms a film 3 together with a water repellent material thus producing a snow melting wire member 1. The snow melting wire member 1 is fixed to a transmission line or a distribution line at a proper interval. The snow melting wire material 1 melts snow or ice accreted on the transmission line or distribution line and protects disconnection or short circuit thereof easily.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-292638

(43)公開日 平成5年(1993)11月5日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H02G 7/16

H 7028-5G

S 7028-5G

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平4-85441

(71)出願人 000002130

住友電気工業株式会社

大阪府大阪市中央区北浜四丁目5番33号

(22)出願日

平成4年(1992)4月7日

(72)発明者 稲澤 信二

大阪市此花区島屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

(72)発明者 澤田 和夫

大阪市此花区島屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

(72)発明者 藤井 淳彦

大阪市此花区島屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

(74)代理人 弁理士 深見 久郎 (外3名)

(54) 【発明の名称】 融雪効果を有する線材

(57)【要約】

【目的】 十分な発熱効果を示し、かつ融雪により発生 した水を効率よくその表面から除去することができる融 雪部材を提供する。

【構成】 送電線への氷雪の付着を防止するため送電線 に装着して使用する線材1であって、0℃以上のキュリ 一温度を有する線状の磁性体2の表面に、撥水性材料お よび導電性金属が混合されてなる皮膜3を有する。

1

【特許請求の範囲】

【請求項1】 送電線への氷雪の付着を防止するため前 記送電線に装着して使用する融雪効果を有する線材であ って、

0℃以上のキュリー温度を有する線状の磁性体の表面 に、撥水性材料および導電性金属を含む皮膜を形成して なる、融雪効果を有する線材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、送電線への氷雪の付 10 着を防止する融雪効果を有する線材に関し、特に、架空 送電線に取付けて、融雪および融氷を行なうのに適した 線材に関する。

[0002]

【従来の技術】寒冷地方においては、架空送電線につい た雪が落下せずに大きな筒雪に発達し、その重量によっ て架空送電線が切断したり、鉄塔が倒壊するなどの雪害 事故が発生している。

【0003】架空送電線についた雪は、除雪機の走行や 電線の強制加振等により排除することができるが、ま 20 た、着雪対策として、電線の表面にリングやひれ等の突 起を設けて雪の回転成長を阻止する技術や、電線に低キ ュリー点材や加熱線などの発熱材を取付けて雪を溶かす 技術等を用いて難着雪化および融雪化が行なわれてい

【0004】一般に、融雪技術では、発熱体として電線 に磁性体を装着して交番磁界でのヒステリシス損失およ び渦電流損失による発熱を利用する。従来、発熱体に は、特開昭58-175914に開示されているような 磁性体で構成される融雪リングが用いられている。この 30 融雪リングは、鉄、パーマロイ、Fe-Ni、またはF e-Ni-Cr等の強磁性金属で構成されている。

[0005]

【発明が解決しようとする課題】融雪リングは、電線の 外周に環装される。送電線に電流が流れると、電線周囲 に交流磁界が発生し、磁性体で構成される融雪リングは ヒステリシス損失および渦電流損失による発熱を利用し て融雪効果を起こす。

【0006】また、強磁性金属としては、0℃付近では 小さい電流範囲でも十分に発熱し、高温側では発熱しな 40 い低キュリー点材が用いられる。低キュリー点材は、雪 の降らない夏場に送電線が発熱することなく、電流損失 を抑えるため使用される。このため、代表的には、キュ リー温度が約100℃のFe-Ni-Cr-Si合金が 用いられる。

【0007】一方、このような融雪に際しては、水の蒸 発により発熱体の表面温度が上昇しにくく、かつ、つら らの成長を起こしやすい状況となる。

【0008】そこで、本発明は、十分な発熱効果を示す

除去し、着雪が起こりにくい融雪部材を提供することを 目的とする。

[0009]

【課題を解決するための手段】この発明にしたがって、 送電線への氷雪の付着を防止するため送電線に装着して 使用する融雪効果を有する線材であって、0℃以上のキ ュリー温度を有する線状の磁性体の表面に、撥水性材料 および導電性金属を含む皮膜を形成してなる線材が提供 される。

【0010】この明細書において、「撥水性材料」とい う用語は、水の接触角が90度以上となる表面を形成す ることができる材料を示す。

【0011】この発明において、撥水性材料には、たと えば、フッ化物を用いることができ、好ましい撥水性材 料には、たとえば、フッ素樹脂等のフッ素を含有する有 機材料、およびフッ化黒鉛等がある。またフッ素樹脂 は、たとえば、ポリテトラフルオロエチレン、ポリクロ ロトリフルオロエチレン、テトラフルオロエチレンとエ チレンの重合体およびポリフッ化ビニリデン等を含む。

【0012】この発明において、線状の磁性体は、F e、Ni、Cr、SiおよびAlのうち少なくとも1つ を含むものとすることができ、その中で好ましい磁性体 には、Fe-Ni合金、Fe-Ni-Cr-Si合金等 がある。

【0013】線状磁性体の形態は、特に限定されるもの ではなく、丸線状および平角線状等その断面形状につい ても種々の形をとることができる。

【0014】この発明において、皮膜に含有される導電 性金属は、たとえば、Cu、Al、Fe、CoおよびN iからなる群から選択される少なくとも1つとすること ができる。このような導電性金属は、電気メッキ、また は無電界メッキによって、撥水性材料とともに磁性体に 付着させることができる。

【0015】この発明にしたがう融雪効果を有する線材 は、線状の形態であるが、その使用に際しては、目的お よび用途等に応じて種々の形態に加工することができ る。たとえば、この発明にしたがう線材は、スパイラル 状に加工されて送電線に取付けられてもよい。

[0016]

【発明の作用効果】この発明の線材において、線状の磁 性体は、0℃以上のキュリー温度を有するため、少なく とも0℃(水の融点)以下においては、強磁性体であ り、送電線が発生する交番磁界によって発熱して、氷雪 を溶かすように働く。

【0017】交番磁界による発熱の原因としては、ヒス テリシス損失、渦重流損失および残留損失がある。ヒス テリシス損失は、交番磁界中で磁性体が磁化する過程で 損失するエネルギに対応し、磁化が1周するエネルギで 現わされる。ヒステリシス損失は、外部磁界に比例する のみならず、融雪により発生した水を効率よく表面から 50 のは言うまでもないが、材料の磁化率が大きければ損失

量が大きい。しかしながら、送電線によって形成される 交番磁界の大きさは、たかだか数エルステッド程度であ り、一般の磁性体では磁気的に飽和に達しておらず、い わゆるレイリーループの範囲内である。

【0018】レイリーループ内では保磁力の効果は小さ く、発熱量は交番磁界の周波数と透磁率にのみ依存する が、50~60Hzの送電線を考慮した場合、発熱量は かなり小さい。したがって、レイリーループ内での発熱 は、渦電流損失が特に重要となる。渦電流は、磁性体が 磁化されるとき電磁誘導則によって磁性体内部に磁化を 10 妨げるように流れる電流である。渦電流の大きさは、磁 性体の形や磁化機構によっても異なるが、一般には、磁 性体の透磁率に比例し、導電率に反比例する。

【0019】また、送電線により形成される磁束は、磁 性材料の中に深く侵入することはなく、いわゆる s k i n depth (表皮厚) と呼ばれる磁性材料の表層部 分にしか侵入しない。

【0020】そこで、この発明にしたがう線材では、高 導電性の金属を磁性体の表面に付着させることにより、 禍電流損失をさらに発生させ、発熱量を向上させてい 20 キュリー温度が50℃のFe-Ni-Cr-Siで構成

【0021】さらに、この発明において高導電性金属に 撥水性の高い材料を複合させて形成した皮膜は、水をは - じきやすい。したがって、この皮膜は水に濡れにくく、 融雪した結果生成する水滴は、この皮膜で覆われる線材 表面から効果的に除去される。

【0022】また、撥水性材料の微粒子が皮膜の表面に 存在するため、送電線に通電しない状態でも、降雪量が 少ない場合は着雪を防ぐことができる。

【0023】さらに、この発明にしたがう線材は、送電 30 線にたとえばスパイラル状に巻付けることにより、送電 線表面にも熱を効率的に伝えることができ、融雪効果を 向上させることができる。

【0024】以上説明したように、この発明にしたがう 線材は、十分な発熱効果を示すのみならず、融雪により 生成した水を効率よくその表面から排除し、つららの成 長等を起こしにくく、かつ着雪がより起こりにくい融雪 部材となっている。

[0025]

【実施例】実施例1

キュリー温度が250℃で、2mmの線径を有するFe Ni14%の線材を準備した。

【0026】一方、酒石酸ナトリウム20g/1、次亜 リン酸ナトリウム2g/1、硫酸ニッケル230g/1 およびフッ素系界面活性剤1g/1を含有する水溶液 に、公称粒径1μmのフッ化黒鉛粉末を20g/1の濃

度で分散させ、共析メッキ液を調製した。

【0027】このメッキ液を80℃に加温して、Fe‐ Ni14%の線材を浸漬することにより、1µmの厚み で共析メッキを行なった。

【0028】以上のようにして作製した線材を図1に示 す。図1 (a) に示すように、作製された融雪線材1は 丸線状であり、その断面は図1(b)に示すとおりで、 Fe-Ni14%の磁性体2の表面にNiおよびフッ化 黒鉛が混在してなる皮膜3が形成されている。

【0029】以上のように構成される融雪線材を、図2 に示すように、ACSR810mm² に5mmのピッチ で巻付けた。気温1.5℃、風速0~3m/分、降雪量 5mm/Hrの気象下で、電線に100Aの通電を行な ったところ、線材は完全に融雪を遂行した。また、融雪 の結果生成する水滴も線材の表面に認められなかった。 さらに、電線に通電を行なわない状態でも、気温0.5 ℃、風速3m/分、降雪量3mm/Hrの気象下で着雪 現象は認められなかった。

実施例2

される線径φ2mmの線材を準備した。

【0030】硫酸ニッケル7水和物320g/1、塩化 ニッケル6水和物20g/1、硫酸第一鉄7水和物18 g/1、硼酸30g/1、ステアリン酸ナトリウム1g /1、および公称粒径2μmのテトラフルオロエチレン 粉末20g/1を含有するメッキ液中で、電流密度1A /dm²、浴温55℃において、Fe-Niメッキを上 記線材に50μmの厚さで行なった。

【0031】以上のようにして作製した融雪線材をAC SR810mm²上にピッチ5mmでスパイラルに環設 した。気温1.5℃、風速0~3m/分、降雪量5mm /Hrの気象下で、電線に100Aの通電を行なったと ころ、線材表面に付着した雪は完全に溶け、融雪の結果 生じる水滴も線材の表面に認められなかった。さらに、 電線に通電を行なわない状態でも、気温 0.5℃、風速 3m/分、降雪量3mm/Hrの気象下では着雪減少は 認められなかった。

【図面の簡単な説明】

【図1】この発明にしたがう融雪線材の一具体例を示す (a) 斜視図、および(b) 断面図である。

【図2】この発明にしたがう融雪線材を送電線に取付け た状態を示す側面図である。

【符号の説明】

- 1 融雪線材
- 2 磁性体
- 3 皮膜

[図1]

【図2】

(b)

