1968

STATISTICAL ANNEX OF THE
ECONOMETRIC STUDY OF SMALL
AND INTERMEDIATE SIZE DIAMETER
DRILLING COST FOR THE UNITED STATES

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

Prepared for
U. S. Atomic Energy Commission
Washington, D. C.

MATHEMATICA

One Palmer Square

Princeton, New Jersey

20000908 124

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

This report has been reproduced directly from the best available copy.

Printed in USA. Price \$3.00. Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia 22151.

NUCLEAR EXPLOSIONS -PEACEFUL APPLICATIONS (TID-4500)

STATISTICAL ANNEX OF THE ECONOMETRIC STUDY OF SMALL AND INTERMEDIATE SIZE DIAMETER DRILLING COST FOR THE UNITED STATES

Prepared for

U. S. Atomic Energy Commission Washington, D. C. 20585

under

Contract Number AT(04-3)-744

MATHEMATICA
Princeton, New Jersey

CONTENT

SECTION I. SMALL SIZE DIAMETER DRILLING COST FUNCTIONS:

A) PER STATES

I. A. Average Drilling Estimated Cost Functions Per State:
Tables 1 to 54 and their corresponding figures.

Total and Marginal Costs Per State: Tables 1. a to 54 a.*

B) PER REGIONS

I.B.1. Average Drilling Estimated Cost Functions Per Geological Region: Tables 55 to 63 and their corresponding figures.

Total and Marginal Costs Per Region: Tables 55.a to 63 a.

- SECTION II. INTERMEDIATE SIZE DIAMETER DRILLING COST FUNCTIONS:
 - II.1. Mud Costs: Table 1
 - II. 2. Cutter Costs: Tables 2 to 6
 - II. 3. Casing Costs: Table 7
 - II. 4. Cementing Costs: Table 8
 - II.5. Rig Costs: Tables 9 to 13
 - II. 6. Total Fixed Costs: Table 14
 - II. 7. Total and Average Costs for Cased Wells: Tables 15 to 19 and the corresponding figures for average costs both as a function of Depth and Diameter.

- II. 8. Total and Average Costs for Uncased Wells: Tables 20 to 24 and the corresponding figures for average costs both as a function of depth and diameter.
- II. 9. Difference of Total Drilling Costs Between Cased and Uncased Wells: Tables 25 to 29.
- II.10. Marginal Drilling Costs for Cased Wells: Tables 30 to 34.
- II.11. Marginal Drilling Costs for Uncased Wells: Tables 35 to 39.
- II.12. Estimated Drilling Time Function for Gomez Field (Texas): Tables 40 to 42.
- II.13. Estimated Drilling Time Function for Aggregated Lockridge and South Pyote (Texas): Tables 43 to 44.

^{*}Tables 6.a, 11-13.a, 28.a, 29.a, and 44.a, were excluded since in these cases the coefficient of the independent variable (depth) is equal to the marginal costs.

SECTION I: ESTIMATED DRILLING COST FUNCTIONS
FOR SMALL SIZE DIAMETER HOLES

ESTIMATED DRILLING COST FUNCTIONS PER STATE

Includes Average Drilling Estimated Cost Functions (Tables 1 to 54 and their Correspond Figures) and Total Marginal Costs (Tables 1.a to 54.a).

Table 1
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN ALABAMA

 $\hat{\mathbf{Y}} = 9 - 0.16(10^{-2})\mathbf{x}_1 + 0.19(10^{-6})\mathbf{x}_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	UMBER X ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6	789. 1756. 2841. 6012. 8512. 11012.	622521. 3083536. 8071281. 36144144. 72454144. 121264144.	8.0500 6.5500 5.7700 5.9000 9.4500 14.1500	7.8255 6.7082 5.8859 6.0969 9.0097 14.3438	0.2245 -0.1582 -0.1159 -0.1969 0.4403 -0.1938

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.90054826E 01 -0.16484000E-02	0.37140264E-00 0.17231981E-03 0.14509948E-07	0.24247222E 02 -0.95659336E 01 0.13350400E 02	0.09999999E 01 0.51536666E 04 0.40273295E 08	0. 0.75709767E 00 0.88172356E 00

RSQ = 0.9929 R = 0.9965 F(2, 3)= 210.8145 SUMUSQ = 0.3591 DURBIN-W.= 2.6819

Table la

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN ALABAMA

```
DEPTH
  13000 . feet
 TOTAL COST
         7550.69990
        12967.60000
        17412.90000
        22048.80000
        28037.50000
        36541.20100
        48722.10000
        65742.40200
        88764.30100
       118950.00000
       157461.70000
       205461.60000
       264111.90000
       33 457 4.80000
       418012.50000
       515587.21000
       628461.11000
       757796.41000
MINIMUM AVERAGE COST DEPTH
               4254 · feet
MINIMUM MARGINAL COST DEPTH
               2836. feet
MARGINAL COST
             6.29010
             4.7374Ø
             4.34690
             5.11860
             7.05250
            10.14860
            14.40690
            19.82740
            26.41010
            34.15500
            43.06210
            53.13140
            64.36290
            76.75660
            90.31250
           105.03060
           120.91090
137.95340
POINT OF INFLECTION
        23395.74300
MINIMUM AVERAGE COST
             5.49970
MINIMUM MARGINAL COST
             4.33127
```

Table 2 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN ARKANSAS

 $\hat{\mathbf{Y}} = 9.46 - 0.19(10^{-2})\mathbf{x}_1 + 0.27(10^{-6})\mathbf{x}_2$

Where:

 \hat{Y} = Escimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
	\mathbf{x}_{1}	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6	1137. 2373. 3530. 4777. 6799. 9689.	1292769. 5631129. 12460900. 22819729. 46226401. 93876721.	8.2300 5.7000 5.6600 6.9900 9.2600 16.1500	7.6410 6.4569 6.0948 6.5126 8.9717 16.3130	0.5890 -0.7569 -0.4348 0.4774 0.2883 -0.1630

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.94574813E 01	0.97804947E 00	0.96697371E 01	0.09999999E 01	0.
-0.19041104E-02	0.43140002E-03	-0.44137929E 01	0.47175000E 04	0.82178795E 00
0.26954950E-06	0.38514859E-07	0.69985846E 01	0.30384608E 08	0.92713635E 00

RSQ = 0.9813 R = 0.9906 F(2, 3) = 78.5521 SUMUSQ = 1.4465 DURBIN-W.= 2.0649

Table 2a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN ARKANSAS

```
DEPTH
   18000 .feet
 TOTAL COST
          7822.50000
         13454.00000
         18511.50000
        24612.000000
        33372.50100
         46410.00100
         65341.50100
        91784.00200
        127354.50000
       173670.00000
       232347.50000
       305004.00000
       393256.51000
        498722.01000
       623017.51000
       767760.01000
       934566.51000
      1125054.00000
MINIMUM AVERAGE COST DEPTH
               3532.feet
MINIMUM MARGINAL COST DEPTH
               2355. feet
MARGINAL COST
             6.45750
             5.07500
             5.30950
             7.16100
            10.62950
           15.71500
           22.41750
           30.73700
            40.67350
           52.22700
           65.39750
           80.18500
           96.58950
          114.61100
          134.24950
          155.50500
          178.37750
          202.36700
POINT OF INFLECTION
        21527.17800
MINIMUM AVERAGE COST
            6.09409
MINIMUM MARGINAL COST
            4.97312
```

Table 3 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN ARKANSAS

$$\hat{Y} = 9.11 - 0.2(10^{-2})X_1 + 0.23(10^{-6})X_2$$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X2 = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	1065. 2102. 3315. 4584. 6679. 8760. 11780.	1134225. 4418404. 10989225. 21013056. 44609041. 76737600. 269384200. 198154060.	7.6000 5.8200 4.4900 4.8300 6.3500 9.4500 17.6400 26.5000	7.2468 5.9330 5.0280 4.8105 6.0831 9.3592 17.6800 26.5393	0.3532 -0.1130 -0.5380 0.0195 0.2669 0.0908 -0.0400 -0.0393

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.91144027E 01	0.33206112E-00	0.27447967E 02	0.09999999E 01	0.
-0.20001819E-02	0.11244711E-03	-0.17787756E 02	0.65369999E 04	0.87115944E 00
0.23152085E-06	0.73346759E-08	0.31565247E 02	0.61747258E 08	0.96053169E 00

RSQ = 0.9988 R = 0.9994 F(2, 5)= 2074.3122 SUMUSQ = 0.5100 DURBIN-W.= 1.6042

Table 3a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN ARKANSAS

```
DEPTH
    18000.feet
  TOTAL COST
           73 45.50010
          12080.00000
         15592.50000
         19272.00100
         24507.50100
         32688.00100
         45202.50100
         63440.00100
         88789.50400
        122640.00000
        166380.51000
        221400.000000
        289087.51000
        370832.00000
        468022.51000
        582048.01000
        71 4297.52000
        866160.02000
MI VI MUM AVERAGE COST DEPTH
               4320. feet
MINIMUM MARGINAL COST DEPTH
               2880.feet
MARGINAL COST
             5.80850
             3.89200
             3.36450
             4.22600
             6.47650
            10.11600
            15.14450
            21.56200
            29.36850
            38.56400
            49.14850
            61.12200
            74.48450
            89.23600
           105.37650
           122.90600
           141.82450
           162.13200
POINT OF INFLECTION
        20709.91600
MINIMUM AVERAGE COST
            4.79435
MINIMUM MARGINAL COST
            3.35446
```

Table 4
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN APPALACHIAN

$$\hat{Y} = 16.96 - 0.28(10^{-2})X_1 + 0.40(10^{-6})X_2$$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	LE OBSERVED VALUES		5	ESTIMATED VALUES	ŖESIDUAL
NUMBER	JMBER X ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5	798. 1871. 3192. 4270. 6118. 8552.	636804. 3500641. 10188864. 18232900. 37429924. 73136704.	15.6000 13.5600 10.3600 11.5800 17.4800 21.5600	15.0103 13.1789 12.1848 12.4044 14.9363 22.4255	0.5897 0.3811 -1.8248 -0.8244 2.5437 -0.8655

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.16967462E 02	0.24796499E 01	0.68426846E 01	0.09999999E 01	0.
-0.27707126E-02	0.12759406E-02	-0.21715058E 01	0.41334999E 04	0.66553251E 00
0.39861197E-06	0.13217060E-06	0.30158897E 01	0.23854306E 08	0.80290894E 00

RSQ = J.8618 R = 0.9284 F(2, 3)= 9.3565 SUMUSQ = 11.7221 DURBIN-W.= 2.4635

Table 4a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN APPALACHIAN

```
DEPTH
  18000 .feet
TOTAL COST
        14597.60000
        26044.80000
        36733.20000
        49054.40000
        65400.00100
        88161.60100
       119730.80000
       162499.20000
       218858:40000
       291200.00000
       381915.60000
       493396.30000
       628035.20000
       788222.39000
       976350.00000
      1194809.60000
      1445992,80000
      1732291.20000
MINIMUM AVERAGE COST DEPTH
              3476. feet
MINIMUM MARGINAL COST DEPTH
              2317. feet
MARGINAL COST
           12.62380
           10.66920
           11.10620
           13.93480
           19.15500
           26.76680
           36.77020
           49.16520
           63.95180
           81.13000
          100.69980
          122.66120
          147.01420
          173.75880
          202.89500
          234.42280
          268.34221
          304.65321
POINT OF INFLECTION
        42246.69300
MINIMUM AVERAGE COST
           12.15412
MINIMUM MARGINAL COST
           10.54883
```

Table 5

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN APPALACHIAN

 $\hat{Y} = 7 - .0.10(10^{-2})X_1 + 0.27(10^{-6})X_2$

Where:

Y = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES		5	ESTIMATED VALUES	RESIDUAL
NUMBER	MBER X ₁	x ₂	Y	Ŷ	· Y - Ŷ
1 2 3 4 5 6	849. 1867. 3144. 4341. 6195. 8755.	720801. 3485689. 9884736. 18844281. 38378025. 76650025. 122633476.	6.1200 6.4700 6.5200 7.1800 13.1500 17.1800 30.0700	6.4050 6.1301 6.5851 7.8200 11.2766 19.1338 29.3396	-0.2850 0.3399 -0.0651 -0.6400 1.8734 -1.9538 0.7304

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.70669841E 01	0.16078386E 01	0.43953314E 01	0.09999999E 01	0.
-0.10114302E-02	0.67878664E-03	-0.14900562E 01	0.51750000E 04	0.93483800E 00
0.27295288E-06	0.55596265E-07	0.49095543E 01	0.38656718E 08	0.98594870E 00

RSQ = 0.9821 R = 0.9910 F(2, 4)= 109.4536 SUMUSQ = 8.4710 DURBIN-W.= 3.4299

Table 7
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN CALIFORNIA

 $\hat{Y} = 10 - 0.11(10^{-2})X_1 + 0.15(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	\mathbf{x}_1	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	848. 1893. 3085. 4367. 6134. 8707. 11033. 13890. 16333.	719104. 3583449. 9517225. 19070689. 37625956. 75811849. 121727089. 196466050.	10.5800 8.1800 7.7600 7.2600 8.4000 14.3100 17.0400 21.6200 32.8000	9.3871 8.6865 8.2813 8.3139 9.1547 12.0284 16.3094 23.7548 32.0339	1.1929 -0.5065 -0.5213 -1.0539 -0.7547 2.2816 0.7306 -2.1348 0.7661

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.10192630E 02	0.13777641E 01	0.73979501E 01	0.09999999E 01	0.
-0.10752305E-02	0.41833092E-03	-0.25702869E 01	0.73655555E 04	0.90509595E 00
0.14770563E-06	0.24128724E-07	0.61215682E 01	0.80861593E 08	0.97343295E 00

RSQ = 0.9750 R = 0.9874 F(2, 6)= 117.2245 SUMUSQ = 14.5157 DURBIN-W.= 2.1709

Table 7a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN CALIFORNIA

```
DEPTH
  12000 . feet
TOTAL COST
         9262.69990
        17261.60000
        24882.90100
        33012.80000
        42537.50100
        54343.20100
        69316.10000
        88342.40100
       112308.30000
       142100.00000
       178603.70000
       222705.60000
       275291.90000
       337248.80000
       409462.51000
       492819.20000
       588205.11000
       696506.41000
MINIMUM AVERAGE COST DEPTH
              3639.feet
MINIMUM MARGINAL COST DEPTH
              2426. feet
MARGINAL COST
            9.48310
            7.66240
            7.72790
            8.67962
           10.51750
           13.24160
           16.85190
           21.34840
           26.73110
           33.00000
           40.15510
           48.19640
           57.12390
           66.93760
           77.63750
           89.22360
           101.69590
          115.05440
POINT OF INFLECTION
        29964.50000
MINIMUM AVERAGE COST
            8.23397
MINIMUM MARGINAL COST
             7.58195
```

Table 8
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN COLORADO

 $\hat{\mathbf{Y}} = 22 - 0.6(10^{-2})\mathbf{x}_1 + 0.78(10^{-6})\mathbf{x}_2$ Where:

Y = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
	x ₁	x ₂	Y	Ŷ	Ý - Ŷ
1 2 3 4 5 6	727. 1705. 2955. 4283. 5867. 8409.	528529. 2907025. 8732025. 18344089. 34421689. 70711281.	17.1000 15.0500 12.5500 10.4300 12.1400 27.3000	18.2468 14.1729 11.1543 40.6374 13.6452 26.7133	-1.1468 0.8771 1.3957 -0.2074 -1.5052 0.5867

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.22249128E 02	0.17869822E 01	0.12450670E 02	0.09999999E 01	0.
-0.60764775E-02	0.95227242E-03	-0.63810284E 01	0.39910000E 04	0.49876572E-00
0.78574805E-06	0.10132395E-06	0.77548098E 01	0.22607439E 08	0.69269755E 00

RSQ = 0.9643 R = 0.9820 F(2, 3) = 40.5223 SUMUSQ = 6.6853 DURBIN-W.= 1.9439

Table 8a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN COLORADO

```
DEPTH
    18000 .feet
 TOTAL COST
         16961.70000
         26489.60000
         33297.90000
         42100.80000
         57612.50100
         84547.20000
        127619.10000
        191542.40000
       281031.30000
        400800.01000
        555562.70000
       750033.60000
       988926.90000
       1276956.80000
      1618837.50000
      2019293.20000
      2483008.10000
      3014726.50000
MINIMUM AVERAGE COST DEPTH
               3865. feet
MINIMUM MARGINAL COST DEPTH
               2577.feet
MARGINAL COST
            12.45910
             7.38240
             7.01990
            11.37160
           20.43750
           34.21760
            52.71190
            75.92040
          103.84310
          136.48000
          173.83110
          215.89640
          262.67590
          314.16960
          370.37750
          431.29960
          496.93590
          567.28640
POINT OF INFLECTION
        40628.44000
MINIMUM AVERAGE COST
           10.51095
MINIMUM MARGINAL COST
            6.59794
```

Table 9

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN COLORADO

 $\hat{\mathbf{Y}} = 20 - 0.57 (10^{-2}) \mathbf{x}_1 + 0.59 (10^{-6}) \mathbf{x}_2$ Where:

Y = Estimated drilling cost per foot

X₁ = Depth

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	$\mathbf{x}_{\mathbf{l}}$	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6	740. 1637. 2922. 4157. 5795. 8493. 10753.	547600. 2679769. 8538084. 17280649. 33582025. 72131049. 115627009.	15.6900 12.2500 9.2900 6.2900 6.3200 14.2700 27.3000	16.0885 12.2221 8.3504 6.4797 6.7965 14.2737 27.1991	-0.3985 0.0279 0.9396 -0.1897 -0.4765 -0.0037 0.1009

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.19998342E 02	0.60396262E 00	0.33111887E 02	0.0999999E 01	0.
-0.57235704E-02 0.59455232E-06	0.26784114E-03 0.22768743E-07	-0.21369272E 02 0.26112653E 02	0.49281428E 04 0.35769454E 08	0.53758558E 00 0.72282435E 00

0.9959 0.9979 480.3265 1.3157 1.9800 RSQ = F(2, 4)= SUMUSQ = DURBIN-W.=

Table 9a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN COLORADO

(in dollars)

```
DEP TH
    18000. feet
  TOTAL COST
         14870.60000
         21860.30000
         24538.20000
         26470.40000
         31224.99900
         42369.59900
         63 471 . 79 700
         98099.19900
        149819.40000
        222200.00000
        318808.59000
        443212.80000
        598980.20000
        789678.39000
       1018875.00000
       1290137.60000
       1607033.80000
       1973131.20000
MINIMUM AVERAGE COST DEPTH
               4813. feet
MINIMUM MARGINAL COST DEPTH
               3209. feet
MARGINAL COST
            10.33590
             4.23920
             1.71020
             2.74880
             7.35500
            15.52880
           27.27020
            42.57920
            61.45580
            83.90000
          109.91180
          139.49120
          172.63820
          209.35280
          249.63500
          293.48480
          340.90220
          391.88720
POINT OF INFLECTION
        29959.44200
MINIMUM AVERAGE COST
            6.22428
MINIMUM MARGINAL COST
```

1.63237

Table 10

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN KENSAS

 $\hat{\mathbf{Y}} = 8.60 - 0.80(10^{-3})\mathbf{x}_1 + 0.20(10^{-6})\mathbf{x}_2$

Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	x_	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5	870. 1881. 3127. 4369. 6012.	756900. 3538161. 9778129. 19088161. 36144144.	8.0100 7.9200 8.0900 9.0100 11.2800	8.0591 7.8246 8.1173 9.0484 11.2606	-0.0491 0.0954 -0.0273 -0.0384 0.0194

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.85994167E 01	0.13854218E-00	0.62070745E 02	0.09999999E 01	0.
-0.80106035E-03	0.95110872E-04	-0.84223846E 01	0.32517999E 04	0.89016402E 00
0.20687184E-06	0.13474621E-07	0.15352701E 02	0.13861099E 08	0.96762513E 00

RSQ = 0.9983 R = 0.9991 F(2, 2) = 571.4864 SUMUSQ = 0.0141 DURBIN-W.= 2.7928

Table 10a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN KANSAS

```
DEPTH
  18000.feet
 TOTAL COST
         8004.80010
        15648.80000
        24173.40000
        34820.00000
        48830.00100
        67444.80100
        91905.80100
       123454.40000
       163332.00000
       212780.00000
       273039.80000
       345352.80000
       430960.40000
       531104.000000
       647025.00000
       779964.80000
       931164.81000
      1101866.40000
MINIMUM AVERAGE COST DEPTH
              1936.feet
MINIMUM MARGINAL COST DEPTH
               1291 · feet
MARGINAL COST
            7.61750
            7.87740
            9.37870
            12.12140
            16.10550
           21,33100
            27.79790
            35.50620
            44.45590
            54.64700
            66.07950
            78.75349
            92.66870
           107.22540
           124.22350
           141.86300
           160.74390
           180.86620
POINT OF INFLECTION
         15146.07800
MINIMUM AVERAGE COST
             7.82355
MINIMUM MARGINAL COST
             7.56507
```

Table 11 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN KENTUCKY

 $\hat{Y} = 3.80 + 0.27(10^{-2})X$ Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

X = Depth

SAMPLE NUMBER	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
	х	Y	Ŷ	Y - Ŷ
1 2 3 4 5	836. 1819. 3019. 4295. 4090.	7.8200 5.0600 13.5000 16.4000 19.7300	6.0582 8.7244 11.5791 15.4399 20.3084	1.7618 -3.6644 1.5209 0.9601 -0.5784

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.37907695E 01	0.23210088E 01	0.16332421E 01	0.09999999E 01	0.
0.27122580E-02		0.43302410E 01	0.32117999E 04	0.92848005E 00

RSC = R = F(1, 3)= SUMUSO = DURBIN-W.= 0.8621 0.9285 18.7510 20.1010 2.9358

Table 12
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN KENTUCKY

$$\hat{Y} = 5.04 + 0.53(10^{-3}) \text{ x}$$

Where:

Ŷ = Estimated drilling cost per foot

X = Depth

SAMPLE	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
NUMBER	х	Y	Ŷ	Y - Ŷ
1 2 3 4 5	816. 1814. 3028. 4171. 6677.	5.9000 5.4300 6.4600 7.7500 8.5300	5.4839 6.0180 6.6678 7.2795 8.6208	0.\$161 -0.5880 -0.2078 0.4705 -0.0908

GOEFFIC LENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.50471625E 01	0.43850111E-00	0.11510033E 02	0.09999999E 01	0.
0.53521071E-03	0.11314147E-03	0.47304554E 01	0.33012000E 04	0.93903343E 00

RSQ = C.8818 R = C.9390 F(1. 3)= 22.3772 SUMUSQ = C.7917 DURBIN-W.= 2.4352

Table 13

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN NORTH DAKOTA

$$\hat{Y} = 3.2 + 0.13(10^{-2})X$$

Where:

Ŷ = Estimated drilling cost per foot

X = Depth

SAMPLE	OBSERVED V	VALUES	ESTIMATED VALUES	RESIDUAL Y - Ŷ
NUMBER	х	Y Ŷ	Ŷ	
1 2 3 4 5 6	3294. 4442. 6603. 8720. 11403. 14588.	8.1200 9.3700 10.0000 17.5400 15.3900 23.8500	7.5852 9.1045 11.9645 14.7663 18.3171 22.5323	0.5348 0.2655 -1.9645 2.7737 -2.9271 1.3177

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.32257318E 01	0.22263015E 01	0.14489195E 01	0.09999999E 01	0.
0.13234578E-02	0.24558997E-03	0.53888918E 01	0.81750000E 04	0.93751547E 00

RSQ = 0.8789 R = 0.9375 F(1. 4)= 29.0402 SUMUSQ = 22.2136 DURBIN-W.= 3.5120

Table 14
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN NORTH LOUISIANA

 $\hat{Y} = 8.2 - 0.15(10^{-2})X_1 + 0.26(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	umber x ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7	800. 1770. 3064. 4378. 6151. 8515. 10683.	640000. 3132900. 9388096. 19166884. 37834801. 72505225. 114126489.	6.4800 5.9200 6.8200 8.1300 7.2800 12.5800 22.2700	7.1263 6.2702 5.8923 6.4024 8.5183 13.8905 21.3801	-0.6463 -0.3502 0.9277 1.7276 -1.2383 -1.3105 0.8899

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.82016734E 01	0.15830246E 01	0.51810145E 01	0.09999999E 01	0.
-0.15529329E-02	0.69183334E-03	-0.22446632E 01	0.50515714E 04	0.87199655E 00
0.26083722E-06	0.58970150E-07	0.44232077E 01	0.36684912E 08	0.95293786E 00

RSQ = 0.9593 R = 0.9795 F(2, 4)= 47.1706 SUMUSQ = 8.4284 DURBIN-W.= 1.8988

Table 14a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN NORTH LOUISLANA

```
DEPTH
   18000 feet
 TOTAL COST
          6909.80000
        12278.40000
        17670.60000
        24651.20000
        34785.00100
        49636.80000
        70771.40000
99753.59900
       138148.20000
       187520.00000
       249433.80000
       325454.40000
       417146.60000
       526075.19000
       653805.00000
       801900.79000
       971927.40000
      1165449.60000
MINIMUM AVERAGE COST DEPTH
               2977. feet
MINIMUM MARGINAL COST DEPTH
               1985.feet
MAPGINAL COST
             5.87840
             5.11960
             5.92560
             8.29640
            12.23200
            17.73240
            24.79760
            33.42760
            43.62240
            55.38200
            68.70640
           83.59560
           100.04960
           118.06840
           137.65200
          158.80040
          181.51360
          205.79160
POINT OF INFLECTION
        17536.95000
MINIMUM AVERAGE COST
            5.89007
MINIMUM MARGINAL COST
            5.11942
```

Table 15 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN NORTH LOUISIANA

 $\hat{\mathbf{Y}} = 7.4 - 0.11(10^{-2})\mathbf{X}_1 + 0.25(10^{-6})\mathbf{X}_2$ Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER X ₁	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6	992. 2131. 3216. 4526. 6635. 9165. 10320.	984064. 4541161. 10342656. 20484676. 44023225. 83997225. 106502400.	6.9500 5.9200 5.9000 7.1300 11.3500 18.6800 22.0200	6.5269 6.1124 6.3300 7.3891 10.9246 18.1451 22.5218	0.4231 -0.1924 -0.4300 -0.2591 0.4254 0.5349 -0.5018

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.74245929E 01	0.68403053E 00	0.10854183E 02	0.09999999E 01	0.
-0.11567045E-02	0.30028611E-03	-0.38520079E 01	0.52835714E 04	0.94054385E 00
0.25383826E-06	0.25575846E-07	0.99249212E 01	0.38696486E 08	0.98934136E 00

RSQ = R = F(2, 4) = SUMUSQ = DURBIN-W = 442.2111 1.1869 1.7017

Table 15a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN NORTH LOUISIANA (in dollars)

```
DEPTH
    12000. feet
  TOTAL COST
          6520.80000
         12250.40000
         18711.60000
         27427.20000
         39920.00100
         57712.80100
         82328.40100
        115289.60000
        153119.20000
        2123 40.000000
        279474.31000
        361046.41000
        458577.61000
        573591.20000
        707610.01000
        862156.81000
       1038754.40000
       1238925.60000
MINIMUM AVERAGE COST DEPTH
               2279.feet
MINIMUM MARGINAL COST DEPTH
               1520. feet
MARGINAL COST
             5.87140
             5.84160
             7.33460
            10.35040
            14.88900
           20.95040
           28.53460
           37.64160
            48.27140
            60.42400
            74.00040
           89.29760
          106.01860
          124.26240
          144.02900
          165.31840
          188.13061
          212.46560
POINT OF INFLECTION
        13916.35300
MINIMUM AVERAGE COST
            6.10539
MINIMUM MARGINAL COST
            5.66586
```

Table 16
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN SOUTH LOUISIANA

 $\hat{Y} = 16.40 - 0.11(10^{-2})X_1 + 0.12(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER X ₁		OBSERVED VALUES	ESTIMATED VALUES	RESIDUAL	
	\mathbf{x}_1	x ₂	Y	Ŷ	Y - Ŷ
1	1093.	1194649.	13.6500	15.2997	-1.6497
2	1955.	3822025.	16.6100	14.6395	1.9705
3	2997•	8982009.	12.6600	14.0774	-1.4174
4	4528.	20502784.	15.1200	13.7200	1.4000
2	6206.	38514436.	14.8900	13.9686	0.9214
0	8420.	70896400.	14.4200	15.3212	-0.9012
	11314.	128006596.	19.0200	18.8471	0.1729
8	13669.	193420780.	21.8200	23.1863	-1.3663
9	16611.	268981330.	31.3300	30.4601	0.8699
		1 1			

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.16390815E 02	0.14387243E 01	0.11392603E 02	0.09999999E 01	0.
-0.11282787E-02	0.42787471E-03	-0.26369370E 01	0.74214444E 04	0.85232950E 00
0.11891313E-06	0.24236657E-07	0.49063338E 01	0.81631752E 08	0.93924233E 00

RSQ = 0.9454 R = 0.9723 F(2, 6)= 51.9695 SUMUSQ = 14.8878 DURBIN-W.= 2.9954

Table 16a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN SOUTH LOUISIANA

```
DEPTH
    18000.feet
  TOTAL COST
         15380.90000
         29219.20000
         42228.30000
         55121.60000
         68612.50100
         83414.40100
        100240.70000
        119804.80000
        142820.10000
        170000.000000
        202057.90000
        239707.20000
        283661.30000
        334633.60000
        393337.50000
        460486.40000
        536793.70000
        622972.80000
MINIMUM AVERAGE COST DEPTH
               4743 · feet
MINIMUM MARGINAL COST DEPTH
               3162. feet
MARGINAL COST
            14.49070
            13.30480
            12.83230
            13.07320
            14.02750
            15.69520
            18.07630
            21.17080
            24.97870
            29.50000
            34.73470
            40.68280
            47.34430
            54.71920
            62.80750
            71.60920
           81.12430
            91.35280
POINT OF INFLECTION
        65055.31900
MINIMUM AVERAGE COST
           13.71468
MINIMUM MARGINAL COST
           12.82290
```

Table 17
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN SOUTH LOUISIANA

 $\hat{Y} = 20 - 0.25(10^{-2})X_1 + 0.22(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	x ₁	x ₂	Ŷ	y - Ŷ	
1 2 3 4 5 6 7 8	1156. 2207. 3457. 4708. 6879. 9327. 11409. 13952. 16633.	1336336. 4870849. 11950849. 22165264. 47320641. 86992929. 130165281. 197329152. 269164172.	16.5000 15.6000 14.8500 14.3000 13.3700 15.9900 19.1300 29.4500 40.1600	17.4281 15.6140 14.0926 13.2622 13.4645 16.1940 20.6019 28.5876 40.1050	-0.9281 -0.0140 0.7574 1.0378 -0.0945 -0.2040 -1.4719 0.8624 0.0550

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.19987895E 02	0.91288817E 00	0.21895229E 02	0.09999999 01	0.
-0.24700807E-02	0.26293816E-03	-0.93941503E 01	0.77475555E 04	0.82127405E 00
0.22121986E-06	0.14754975E-07	0.14992899E 02	0.86235237E 08	0.93116445E 00

RSQ = 0.9915 R = 0.9958 F(2, 6)= 351.5016 SUMUSQ = 5.4761 DURBIN-W.= 1.9196

Table 17a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN SOUTH LOUISIANA

```
DEP TH
   18000. feet
 TOTAL COST
        17741.20000
        31869.60000
         43712.40000
        54596.80100
        65850.00000
        78799.20000
        94771.60100
       115094.40000
       141094.80000
       174100.00000
215437.20000
       266433.60000
       328416.40000
       402712.80000
       490650.00000
       593555.20000
       712755.61000
       849578.41000
MINIMUM AVERAGE COST DEPTH
               5583. feet
MINIMUM MARGINAL COST DEPTH
               3722. feet
MARGINAL COST
            15.71360
            12.76440
            11.14240
            10.84760
            11.88000
            14.23960
            17.92640
           22.94040
           29.28160
           36.95000
            45.94560
            56.26940
            67.91840
           80.89560
            95.20000
           110.83160
          127.79040
           146.07640
POINT OF INFLECTION
        73110.48900
MINIMUM AVERAGE COST
            13.09477
MINIMUM MARGINAL COST
            10.79636
```

Table 18

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN SOUTH LOUISIANA

$$\hat{Y} = 14.30 - 0.26(10^{-2})x_1 + 0.23(10^{-6})x_2$$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	$\mathbf{x}_{\mathbf{l}}$	x ₂	Y	Ŷ	Ý - Ŷ
1 2 3 4 5 6 7 8	767. 1872. 3018. 4288. 6187. 8750. 11611. 13550. 16411.	588289. 3504384. 9108324. 18386944. 38278969. 76562500. 167407660. 191801250. 267330230.	11.3500 9.6400 10.3500 7.4000 7.1800 9.1500 13.0500 19.6700 33.3800	12.4427 10.2058 8.4712 7.2453 6.7778 8.7421 14.4562 20.4410 32.3880	-1.0927 -0.5658 1.8788 0.1547 0.4022 0.4079 -1.4062 -0.7710 0.9920

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.14321256E 02	0.10611146E 01	0.13496427E 02	0.09999999E 01	0.
-0.26232614E-02	0.32528242E-03	-0.80645654E 01	0.73837777E 04	0.77349409E 00
0.22693018E-06	0.18878084E-07	0.12020827E 02	0.81574238E 08	0.90021742E 00

RSQ = 0.9840 R = 0.9920 F(2, 6)= 184.3259 SUMUSQ = 8.9522 DURBIN-W.= 1.7974

Table 18 a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN SOUTH LOUISIANA

```
DEPTH
  18000 feet
TOTAL COST
        11923.90000
        19963.20000
        25479.30000
        29833.60000
        34387.50000
        40502.40100
        49539.70100
        62860.80100
        81827.10200
       107800.00000
       142140.90000
       186211.20000
       241372.30000
       308985.60000
       390412.50000
       487014.41000
       600152.70000
       731188.82000
MINIMUM AVERAGE COST DEPTH
              5780.feet
MINIMUM MARGINAL COST DEPTH
              3853. feet
MARGINAL COST
            9.75470
            6.55080
            4.70830
            4.22720
            5.10750
            7.34920
           10.95230
           15.91680
           22.24279
           29.93000
           38.97870
           49.38880
           61.16030
           74.29320
           88.78750
          104.64320
          121.86030
          140.43880
POINT OF INFLECTION
        38954.41700
MINIMUM AVERAGE COST
            6.73943
MINIMUM MARGINAL COST
            4.21257
```

Table 19

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN MICHIGAN

 $\hat{Y} = 9 - 0.23(10^{-2})X_1 + 0.44(10^{-6})X_2$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	NUMBER X ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5	830. 1829. 3069. 4338. 6157. 8657.	688900. 3345241. 9418761. 18818244. 37908649. 74943649.	7.0500 6.5500 6.5200 7.1600 11.2000 22.2500	7.3901 6.2708 6.1010 7.3256 11.5482 22.0943	-0.3401 0.2792 0.4190 -0.1656 -0.3482 0.1557

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.89867935E 01 -0.22882996E-02	0.53324708E 00 0.27413914E-03 0.28082716E-07	0.16852963E 02 -0.83472192E 01 0.15640483E 02	0.09999999E 01 0.41466666E 04 0.24187240E 08	0. 0.87588058E 00 0.96522795E 00

RSQ = 0.9972 R = 0.9986 F(2,3)= 530.2631 SUMUSQ = 0.5421 DURBIN-W.= 1.9039

Table 19a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN MICHIGAN

(in dollars)

```
DEP TH
   18000. feet
 TOTAL COST
         7138.20000
        12335.60000
        18227.40000
        27448.80000
        42635.00100
        66421.20100
       101442.60000
       150334.40000
       215731.80000
       300270.01000
       406584.20000
       537309.61000
       695081.41000
       882534.81000
      1102305.00000
      1357027.20000
      1649336.60000
      1981868.40000
MINIMUM AVERAGE COST DEPTH
              2605. feet
MINIMUM MARGINAL COST DEPTH
               1736. feet
MARGINAL COST
             5.72860
             5.10540
             7.11740
            11.76460
            19.04700
           28.96460
            41.51740
            56.70540
           74.52860
           94.98700
          118.08060
          143.80940
          172.17340
          203.17260
          236.80700
          273.07660
          311.98140
          353.52140
POINT OF INFLECTION
        15647.12300
MINIMUM AVERAGE COST
            6.00718
MINIMUM MARGINAL COST
```

5.01391

 ${\tt Table~20}$ ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN MISSISSIPPI

 $\hat{Y} = 20 - 0.31(10^{-2})X_1 + 0.21(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per toot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES		5	ESTIMATED VALUES	RESIDUAL
NUMBER	x	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6	4632. 6754. 9034. 11557. 14345. 16303.	21455424. 45616516. 81613156. 133564249. 162889512. 232893904.	9.3300 8.7700 10.0100 12.0300 16.4200 26.7000	9.9412 8.4047 8.8991 12.0362 18.6677 25.3112	-0.6112 0.3653 1.1109 -0.0062 -2.2477 1.3888

COEFFIC IENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.19981811E 02	0.52512776E 01	0.38051333E 01	0.09999999E 01	0.
-0.31577088E-02	0.11098828E-02	-0.28450829E 01	0.10437500E 05	0.86967392E 00
0.21374012E-06	0.52177312E-07	0.40964187E 01	0.12563603E 09	0.92915692E 00

RSQ = 0.9630 R = 0.9813 F(2, 3) = 39.0895 SUMUSQ = 8.7221 DURBIN-W.= 2.4084

Table 20a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN MISSISSIPPI

```
DEP TH
   18000 · feet
  TOTAL COST
         17035.70000
         29037.60000
         37287.90000
         43068.80000
         47662.50000
         52351.20000
         58417.10000
         67142.40100
         79809.30100
         97700.00000
        122096.70000
        154281.60000
        195536.90000
        247144.80000
       310387.50000
       386547.20000
        476906.11000
        582746.41000
MINIMUM AVERAGE COST DEPTH
               7389.feet
MINIMUM MARGINAL COST DEPTH
               4926.feet
MARGINAL COST
            14.30510
             9.91240
             6.80190
             4.97360
             4.42750
             5.16360
             7.18190
            10.48240
            15.06510
           20.93000
           28.07710
            36.50640
            46.21790
            57.21160
            69.48750
           83.04560
           97.88590
          114.00840
POINT OF INFLECTION
        61423.51000
MINIMUM AVERAGE COST
            8.31299
MINIMUM MARGINAL COST
             4.42398
```

Table 21
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN MISSISSIPPI

 $\hat{Y} = 15.80 - 0.30(10^{-2})X_1 + 0.25(10^{-6})X_2$

Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	$\mathbf{x}_{\mathbf{l}}$	х ₂ ч		Ŷ	Y - Ŷ
1 2 3 4 5 6 7	2789. 4830. 5310. 8057. 10786. 13590. 16500.	7778521. 23328900. 28196100. 64915249. 116337796. 192344050. 268062500.	8.6000 7.4500 7.2600 7.9500 12.3000 19.3400 34.5000	9.3148 7.0182 6.7795 7.6222 12.1825 20.7332 33.7496	-0.7148 0.4318 0.4805 0.3278 0.1175 -1.3932 0.7504

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.15809097E 02	0.16335370E 01	0.96778321E 01	0.09999999E 01	0.
-0.30233748E-02	0.40200010E-03	-0.75208309E 01	0.88374285E 04	0.88199981E 00
0.24913208E-06	0.20519195E-07	0.12141415E 02	0.99642094E 08	0.95455401E 00

RSQ = 0.9941 R = 0.9971 F(2, 4)= 338.9050 SUMUSQ = 3.5535 DURBIN-W.= 2.3249

Table 21a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN MISSISSIPPI

```
DEP TH
   18000. feet
 TOTAL COST
        13036.10000
        21520.80000
        26948.70000
        30814.40000
        34612.50000
        39837.59900
         47984.29800
        60547.19900
        79020.89900
       104900.00000
       139679.10000
       184852.80000
       241915.70000
       312362.39000
       397687.49000
       499385.60000
       618951.31000
       757879.19000
MINIMUM AVERAGE COST DEPTH
               6068.feet
MINIMUM MARGINAL COST DEPTH
               4045. feet
MARGINAL COST
           10.51130
            6.70720
            4.39770
            3.58280
            4.26250
            6.43680
           10.10570
           15.26920
           21.92730
           30.08000
           39.72730
           50.86920
           63.50570
           77.63680
           93.26250
          110.38280
          128.99770
          149.10720
POINT OF INFLECTION
        40281.10200
MINIMUM AVERAGE COST
            6.63845
MINIMUM MARGINAL COST
            3.58127
```

Table 22 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN MISSISSIPPI

 $\hat{\mathbf{Y}} = 9.16 - 0.73(10^{-2})\mathbf{x}_1 + 0.11(10^{-6})\mathbf{x}_2$ Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	\mathbf{x}_1	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	933. 1899. 3149. 4411. 6331. 8798. 11226. 13763. 16663.	870489. 3606201. 9916201. 19456921. 40081561. 77404804. 126023076. 194710084. 269413892.	8.8500 7.4000 5.9000 4.8700 4.2200 5.3700 8.3200 16.3300 16.0500	8.0306 7.0613 6.1180 5.5216 5.3001 6.2307 8.4808 12.2462 18.3206	0.8194 0.3387 -0.2180 -0.6516 -1.0801 -0.8607 -0.1608 4.0838 -2.2706

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.91657085E 01	0.18142848E 01	0.50519677E 01	0.09999999E 01	0.
-0.13213772E-02	0.53833065E-03	-0.24545828E 01	0.74636666E 04	0.71780948E 00
0.11227234E-06	0.30572493E-07	0.36723319E 01	0.82714998E 08	0.83717223E 00

SUMUSQ = DURBIN-W.=

Table 22a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN MISSISSIPPI (in dollars)

```
DEPTH
    18000.feet
  TOTAL COST
          7957.30000
         13946.40000
         18641.10000
         22715.20000
         26842.50000
         31696.80000
         37951.89900
         46281.59900
         57359.69900
         71859.99900
         90456.29900
        113822.40000
        142632.10000
       177559.20000
       219277.50000
       268460.80000
       325782.90000
       391917.60000
MINIMUM AVERAGE COST DEPTH
               5882. fget
MINIMUM MARGINAL COST DEPTH
               3921. feet
MARGINAL COST
             6.86090
             5.22960
             4.27210
             3.98840
             4.37850
             5.442.40
            7.18010
             9.59160
            12.67690
            16.43600
           20.86890
           25.97560
           31.75610
           38.21040
           45.33850
           53.14040
           61.61610
           70.76560
POINT OF INFLECTION
        31061.87900
MINIMUM AVERAGE COST
            5.28122
MINIMUM MARGINAL COST
            3.98630
```

Table 23 ESTIMATED AVERAGE DRILLING COST FUNCTIONFOR OIL WELLS IN MONTANA

 $\hat{Y} = 13.60 - 0.14(10^{-2})X_1 + 0.16(10^{-6})X_2$ Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X2 = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	x	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5	2021. 2946. 4727. 6475. 8738. 12836.	4084441. 8678916. 22344529. 41925625. 76352644. 182381448.	11.8800 10.5100 9.6700 11.5700 13.5800 21.4500	11.3876 10.8083 10.4568 11.0897 13.3479 21.5695	0.4924 -0.2983 -0.7868 0.4803 0.2321 -0.1195

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.13597228E 02 -0.14136806E-02	0.10186199E 01 0.33179527E-03 0.21943840E-07	0.13348676E 02 -0.42607014E 01 0.72239147E 01	0.09999999E 01 0.62904999E 04 0.53024841E 08	0. 0.86654340E 00 0.95105937E 00

RSQ = 0.9865 R = 0.9932 F(2, 3)= 109.2674 SUMUSQ = 1.2493 DURBIN-W.= 2.1249

Table 23a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN MONTANA

```
DEPTH
   18000.feet
 TOTAL COST
         12344.50000
         22812.00000
         32353.50000
         41920.00000
         52 462 . 50000
         64932.00100
         80279.50100
         99456.00100
        123412.50000
       153100.000000
       189469.50000
       233472.000000
       286058.50000
       348180.000000
       420737.51000
       504832.01000
       601264.51000
       711036.02000
MINIMUM AVERAGE COST DEPTH
               4461. feet
MINIMUM MARGINAL COST DEPTH
               2974. feet
MARGINAL COST
            11.24750
             9.84600
             9.39550
             9.89600
            11.34750
            13.75000
            17.10350
           21.40800
           26.66350
           32.87000
            40.02750
            48.13600
            57.1955Ø
           67.20600
           78.16750
           90.09000
          102.94350
          116.75800
POINT OF INFLECTION
        46596.78000
MINIMUM AVERAGE COST
           10.44638
MINIMUM MARGINAL COST
            9.39517
```

Table 24
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN MONTANA

 $\hat{Y} = 11.40 - 0.22(10^{-2})X_1 + 0.24(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	\mathbf{x}_1	x ₂	Y	Ŷ	Ý - Ŷ
1 2 3 4 5 6 7 8	817. 2063. 2915. 4439. 6010. 8533. 10815. 12648.	667489. 4255969. 8497225. 19704721. 36120100. 72812089. 116964225. 179985952.	10.7900 7.0100 5.9800 6.5400 7.7200 10.7400 14.4500 22.2100	9.7501 7.8935 7.0476 6.3930 6.8706 10.0862 15.5937 21.8054	1.0399 -0.8835 -1.0676 0.1470 0.8494 0.6538 -1.1437 0.4046

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.11367012E 02	0.10909040E 01	0.10419808E 02	0.09999999E 01	0.
-0.21727429E-02	0.41103370E-03	-0.52860457E 01	0.60300000E 04	0.79376312E 00
0.23703717E-06	0.29775370E-07	0.79608471E 01	0.52374215E 08	0.90651380E 00

RSQ = 0.9729 R = 0.9864 F(2, 5) = 89.9137 SUMUSQ = 5.6439 DURBIN-W.= 2.0142

Table 24a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN MONTANA

```
DEP TH
   18000. feet
 TOTAL COST
          9433.99990
         15944.000000
         20952.00000
         25980.00000
         32150.00100
         41184.00100
         54404.00100
         73232.00000
         99090.00200
        133400,00000
       177584.00000
       233064.00000
       301262.00000
       383600.01000
        481500.01000
       596384.00000
       729674.01000
       882792.01000
MINIMUM AVERAGE COST DEPTH
               4584.feet
MINIMUM MARGINAL COST DEPTH
               3056. feet
MARGINAL COST
             7.73500
             5.52200
             4.73100
             5.36200
             7.41500
            10.89000
            15.78700
           22.10600
           29.84700
           39.01000
            49.59500
           61.60200
           75.03100
           89.88200
          106.15500
          123.85000
          142.96700
          163.50600
POINT OF INFLECTION
        29289.94200
MINIMUM AVERAGE COST
            6.38906
MINIMUM MARGINAL COST
            4.72875
```

Table 25
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN EAST NEW MEXICO

 $\hat{\mathbf{Y}} = 20 - 0.26(10^{-2})\mathbf{x}_1 + 0.20(10^{-6})\mathbf{x}_2$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER X ₁		OBSERVED VALUES			TED RESIDUAL	
	x ₂	Y	Ŷ	Y - Ŷ		
1 2 3 4 5 6 7 8	839. 1958. 3267. 4446. 6509. 9047. 11324. 13495.	703921. 3833764. 10673289. 19766916. 42367081. 81848209. 128232976. 191057512.	19.2800 15.2800 12.4700 10.2600 12.2000 13.8600 16.6900 20.0100	17.8047 15.5295 13.4976 12.2486 11.3882 12.6429 15.9406 20.9979	1.4753 -0.2495 -1.0276 -1.9886 0.8118 1.2171 0.7494 -0.9879	

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.19835980E 02	0.14740152E 01	0.13457106E 02	0.09999999E 01	0.
-0.25873333E-02	0.52562203E-03	-0.49224216E 01	0.63606250E 04	0.29467937E-00
0.19810522E-06	0.36019492E-07	0.54999449E 01	0.58692648E 08	0.49271436E-00

RSQ = 0.8705 R = 0.9330 F(2, 5) = 16.8007 SUMUSQ = 10.9272 DURBIN-W-= 1.4411

Table 25a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN EAST NEW MEXICO (in dollars)

```
DEPTH
   18000. feet
 TOTAL COST
         17451.10000
         30916.20000
         41585.70000
         50646.40000
         59287.50000
68697.59900
         80065.30000
         94579.20000
        113427.90000
        137800.00000
        168884.10000
       207868.80000
       255942.70000
       314294.40000
       384112.50000
        466585.60000
       562902.31000
       674251.21000
MINIMUM AVERAGE COST DEPTH
               6530.feet
MINIMUM MARGINAL COST DEPTH
               4353. feet
MARGINAL COST
            15.26030
            11.86920
             9.66670
             8.65280
             8.82750
            10.19080
            12.74270
            16.48320
            21.41230
            27.53000
            34.83630
            43.33120
            53.01470
            63.88680
            75.9475%
           89.19680
           103.63470
          119.26120
POINT OF INFLECTION
        74397.81100
MINIMUM AVERAGE COST
           11.39405
MINIMUM MARGINAL COST
            8.57874
```

Table 26
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN EAST NEW MEXICO

 $\hat{Y} = 17.90 - 10.18(10^{-2})X_1 + 0.20(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

X₁ = Depth

X2 = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X	x ₂	Y-	Ŷ	Y - Ŷ	
1 2 3 4 5 6 7	1794. 3044. 4294. 6003. 8346. 11427. 14050.	3218436. 9265936. 18438436. 36036009. 69655716. 130576329. 198701250.	17.7500 13.2000 11.4000 13.5800 19.5200 24.9000 32.0100	15.3505 14.3439 13.9743 14.4999 17.1560 24.0556 32.9797	2.3995 -1.1439 -2.5743 -0.9199 2.3640 0.8444 -0.9697

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.17908543E 02	0.32559638E 01	0.55002276E 01	0.09999999E 01	0.
-0.17916169E-02	0.10145777E-02	-0.17658744E 01	0.69940000E 04	0.87080166E 00
0.20386449E-06	0.62919205E-07	0.32400995E 01	0.66370480E 08	0.93879110E 00

RSQ = 0.9333 R = 0.9661 F(2, 4)= 27.9917 SUMUSQ = 21.7808 DURBIN-W.= 1.5483

Table 26a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN EAST NEW MEXICO

```
DEPTH
    18000. feet
  TOTAL COST
          16321.90000
          30283.20000
          43107.30100
          56017.60100
          70237.50000
         86990.40200
107499.70000
        132988.80000
        164681.10000
        203800.00000
        251568.90000
        309211.20000
        377950.30000
        459009.60000
        553612.50000
        662982.40000
        788342.71000
        930916.81000
MINIMUM AVERAGE COST DEPTH
                4394. feet
MINIMUM MARGINAL COST DEPTH
                2930. feet
MARGINAL COST
            14.93770
            13.18880
            12.66330
            13.36120
            15.28250
            18.42720
            22.79530
            28.38680
            35.20170
            43.24000
            52.50170
            62.98680
            74.69530
            87.62720
           101.78250
           117.16120
           133.76330
151.58880
POINT OF INFLECTION
        61 400.37700
MINIMUM AVERAGE COST
            13.97270
MINIMUM MARGINAL COST
            12.66026
```

Table 27 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN EAST NEW MEXICO

 \hat{Y} = 15.90 - 0.22(10⁻²) x_1 + 0.20 Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL	
NUMBER	x_1 x_2		Y	Ŷ	Y - Ŷ	
1 2 3 4 5 6 7 8	811. 1694. 3086. 4309. 6069. 8815. 11075. 13603.	657721. 2869636. 9523396. 18567481. 36832761. 77704225. 122655625. 192520804. 277871800.	14.0200 11.4100 11.0600 10.0200 12.6400 11.9100 14.5200 20.4200 39.9500	14.1973 12.6699 10.8939 9.9716 9.6921 11.7249 15.6555 22.4675 38.6773	-0.1773 -1.2599 0.1661 0.0484 2.9479 0.1851 -1.1355 -2.0475	

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.15874351E 02	0.14125227E 01	0.11238297E 02	0.09999999E 01	0.
-0.22296798E-02	0.40207100E-03	-0.55454878E 01	0.74567778E 04	0.79669463E 00
0.19954126E-06	0.21927875E-07	0.90998905E 01	0.85037738E 08	0.92132134E 00

RSQ = 0.9753 R = 0.9876 F(2, 6)= 118.5623 SUMUSQ = 17.4744 DURBIN-W.= 1.8804

Table 27a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN EAST NEW MEXICO (in dollars)

```
DEPTH
  18000. feet
 TOTAL COST
        13839.50000
        24416.000000
        32926.50000
         40568.00000
         48537.50000
         58032.00000
         70248.49900
         86384.00100
        107635.50000
        135200.00000
       170274.50000
       21 4056.00000
       267741.50000
       332528.00000
        409612.50000
       500192.00000
       605463.51000
       726624.00000
MINIMUM AVERAGE COST DEPTH
               5589. feet
MINIMUM MARGINAL COST DEPTH
               3726. feet
MARGINAL COST
            12.00850
             9.34400
             7.87650
            7.60600
             8.53250
            10.65600
            13.97650
            18.49400
           24.20850
           31.12000
           39.22850
            48.53 400
           59.03650
           70.73600
           83.63250
           97.72600
          113.01650
          129.50400
POINT OF INFLECTION
        53868.17000
MINIMUM AVERAGE COST
             9.63830
MINIMUM MARGINAL COST
```

7.56106

Table 28

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN WEST NEW MEXICO

 $\hat{Y} = 10 + 0.10(10^{-2})X$

Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

X = Depth

SAMPLE	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
NUMBER	х	Y	Ŷ	Y - Ŷ
1 2 3 4 5	973. 1637. 2510. 6660. 7854.	12.5000 11.4000 10.7060 17.1500 18.0200	10.5555 11.6296 12.5158 16.7285 17.9406	1.5445 -0.2296 -1.8158 0.4215 0.6794

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.99678132E 01	0.10850479E 01	0.91865180E 01	0.09999999E 01	0.
0.10151232E-02	0.22530238E-03	0.45056037E 01	0.39268000E 04	0.93340631E 00

RSQ = 0.8712 R = 0.9334 F(1.3)= 20.3005 SUMUSQ = 5.9191 DURBIN-W.= 1.8222

Table 29

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN WEST NEW MEXICO

 $\hat{\mathbf{Y}} = 7.50 \pm 0.82(10)^{-3})$ XX

Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

X = Depth

SAMPLE NUMBER	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
	х	Y	Ŷ	Y - Ŷ
1 2 3 4 5	2299. 3066. 4037. 6654. 7836.	10.5900 9.2500 10.0200 12.5100 14.5500	9.3531 9.9814 10.7767 12.9203 13.8885	1.2369 -0.7314 -0.7567 -0.4103 0.6615

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.74700503E 01	0.11460935E 01	0.65178340E 01	0.09999999E 01	0.
	0.21922079E-03	0.37363781E 01	0.47783999E 04	0.90725884E 0 0

RSQ = 0.8231 R = 0.9073 F(1.3)= 13.9605 SUMUSQ = 3.2434 DURBIN-W.= 1.5858

Table 30

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN WEST NEW MEXICO

 $\hat{Y} = 14.50 - 0.36(10^{-2})X_1 + 0.49(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X ₁	x ₂	Y	Ŷ	Y - Ŷ	
1 2	857. 1 7 11.	734449• 2927521•	11.7200 9.3800	11.7756 9.7559	-0.0556 -0.3759
3 4 5	3260. 4528. 6172.	10627600. 20502784. 38093584.	9.1100 7.5000 10.4500	7.9152 8.1574 10.8155	1.1948 -0.6574 -0.3655
6	7811.	61011721.	16.3600	16.1003	0.2597

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.14520332E 02	0.11317559E 01	0.12829915E 02	0.09999999E 01	0.
-0.36223447E-02	0.63695540E-03	-0.56869674E 01	0.40565000E 04	0.49628913E-00
0.48964477E-06	0.72320512E-07	0.67704826E 01	0.22316276E 08	0.67424250E 00

RSQ = 0.9537 R = 0.9766 F(2, 3) = 30.8999 SUMUSQ = 2.2052 DURBIN-W.= 2.9370

Table 30a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN WEST NEW MEXICO

```
DEPTH
   13000 . feet
 TOTAL COST
        11387.60000
        18468.80000
        24181.20000
        31462.40000
        43250.00100
        62481.60200
        92094.80100
       135027.20000
       194216.41000
       272600.01000
       373115.61000
       498700.81000
       652293,20000
       836830.41000
      1055250.00000
      1310489.60000
      1605486.80000
      1943179.20000
MINIMUM AVERAGE COST DEPTH
              3699.feet
MINIMUM MARGINAL COST DEPTH
               2466. feet
MARGINAL COST
            8.74480
             5.90720
             6.00720
             9.04480
           15.02000
           23.93280
           35.78320
           50.57120
           68.29680
           88.96000
          112.56080
          139.09920
          168.57520
          200.98880
          236.34000
          274.62881
          315.85521
          360.01921
POINT OF INFLECTION
        28930.22000
MINIMUM AVERAGE COST
            7.82122
MINIMUM MARGINAL COST
            5.58830
```

Table 31
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN OKLAHOMA

 $\hat{Y} = 11 - 0.12(10^{-2})X_1 + 0.18(10^{-6})X_2$

Where

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER		OBSERVED VALUES			RESIDUAL
	\mathbf{x}_{1}	x ₂	Y	Ŷ	Y - Ŷ
- ₁ -	881.	776161.	8.6300	10.1257	-1.4957
2	1908.	3640464.	8.7400	9.3956	-0.6556
3	3115.	9703225.	10.3800	9.0360	1.3440
4	4401.	19368801.	11.3900	9.2455	2.1445
5	6504.	42302016.	11.6800	10.9053	0.7747
6	8718.	76003524	12.4900	14.4194	-1.9294
7	11119.	123632161.	20.1800	20.2783	-0.0983
8	13463.	190626184.	27.1600	28.0539	-0.8939
9	17108.	273170916.	44.9900	44.1802	0.8098

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.11062604E 02	0.13609909E 01	0.81283459E 01	0.09999999E 01	0.
-0.12263358E-02	0.39188837E-03	-0.31292987E 01	0.74685555E 04	0.91344202E 00
0.18483342E-06	0.21865149E-07	0.84533346E 01	0.83262486E 08	0.98297115E 00

RSQ = 0.9872 R = 0.9936 F(2, 6)= 230.8398 SUMUSQ = 14.8592 DURBIN-W.= 1.4417

Table 3la

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN OKLAHOMA (in dollars)

```
DEPIH
   18000 feet
 TOTAL COST
        10018.80000
        18694.40000
        27135.60000
        36451.20100
        47750.00100
        62140.80000
        80732.39900
       104633.60000
       134953.20000
       172900.00000
       219282.80000
       275510.40000
       3 42591.60000
       421635.20000
       513750.00000
       620044.81000
       741628.41000
       879609.61000
MINIMUM AVERAGE COST DEPTH
              3317.feet
MINIMUM MARGINAL COST DEPTH
              2211. feet
MARGINAL COST
            9.16240
            8.37360
            8.69360
           10.12240
           12.55000
           16.30640
           21.06160
           26.92560
           33.89840
           41.98000
           51.17040
           61.46960
           72.87760
           85.39440
           99.02000
          113.75440
          129.59760
          146.54960
POINT OF INFLECTION
        29942.19100
MINIMUM AVERAGE COST
            9.02662
MINIMUM MARGINAL COST
            8.34882
```

 ${\tt Table~32}$ ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN OKLAHOMA

 $\hat{Y} = 12.90 - 0.12(10^{-2})X_1 + 0.16(10^{-6})X_2$

Where

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUE	S	ESTIMATED VALUES	RESIDUAL
NUMBER	x	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	648. 1504. 2878. 4116. 6114. 8413. 10857. 13753.	419904. 2262016. 8282884. 16941456. 37380996. 70778569. 117874449. 194572504. 232779808.	11.3000 10.3700 13.4700 9.5200 11.6300 14.3500 19.2400 21.7100 37.1800	12.1455 11.3914 10.6642 10.5188 11.3038 13.7647 18.2087 25.9132 34.8596	-0.8455 -1.0214 2.8058 -0.9988 0.3262 0.5853 1.0313 -4.2032 2.3204

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.12869987E 02	0.19877251E 01	0.64747317E 01	0.09999999E 01	0.
-0.12202635E-02	0.61850923E-03	-0.19729108E 01	0.71754444E 04	0.87304425E 00
0.15768608E-06	0.36310789E-07	0.43426786E 01	0.78738321E 08	0.95151040E 00

RSQ = 0.9426 R = 0.9709 F(2, 6) = 49.2698 SUMUSQ = 35.1922 DURBIN-W.= 2.8737

Table 32a

TOT AL AND MARGINAL DRILLING COST FOR GAS WELLS IN OKLAHOMA

```
DEPTH
   19000 . feet
 TOTAL COST
        11807.70000
        22121.60000
        31887.90000
        42052.80100
        53562.50100
        67363.20100
        84401.10000
       105622.40000
       131973.30000
       164400.00000
       203843.70000
       251265.60000
       307596.90000
       373788.80000
       450787.50000
       539539.20000
       640990.11000
       756086.41000
MINIMUM AVERAGE COST DEPTH
               3868.feet
MINIMUM MARGINAL COST DEPTH
              2579.feet
MARGINAL COST
           10.90310
            9.88240
            9.80790
           10.67960
           12.49750
           15.26160
           18.97190
           23.62840
           29.23110
           35.78000
           43.27510
           51.71640
           61.10390
           71.43760
           82.71750
           94.94360
          108.11590
          122.23440
POINT OF INFLECTION
        40655.53900
MINIMUM AVERAGE COST
           10.51046
MINIMUM MARGINAL COST
            9.72394
```

Table 33
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN OKLAHOMA

 $\hat{Y} = 8.10 - 0.10(10^{-2})X_1 + 0.18(10^{-6})X_2$

Where:

Y = Estimated drilling cost per foot

 $x_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER	X,	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	888. 1873. 3167. 4414. 6351. 8753. 11095. 13686. 16509.	788544. 3508129. 10029889. 19483396. 40335201. 76615009. 123099025. 193653298. 268136770.	7.4200 6.7100 7.0500 7.4500 8.5800 11.4700 15.6500 34.0000 37.3900	7.3431 6.8020 6.6236 7.0237 8.7587 12.7919 18.7302 27.6075 40.0391	0.0769 -0.0920 0.4264 0.4263 -0.1787 -1.3219 -3.0802 6.3925 -2.6491

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.81312618E 01	0.27870822E 01	7.29174817E 01	0.09999999E 01	0.
-0.10478366E-02	0.83194815E-03	-0.12594974E 01	0.74151111E 04	0.90912658E 00
0.18054339E-06	0.47688852E-07	0.37858617E 01	0.81523651E 08	0.96709346E 00

RSQ = 0.9488 R = 0.9741 F(2, 6) = 55.5996 SUMUSQ = 59.5264 DURBIN-W.= 2.9658

Table 33a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN OKLAHOMA

```
DEPTH
    18000 · feet
  TOTAL COST
          7263.50000
         13514.000000
         19834.50000
         27308.00000
         37017,50000
         50046.00000
         67476.50000
         90392.00100
        119875.50000
        157010.00000
        202878.50000
        258564.00000
        325149.50000
        403718.00000
        495352.50000
        601136.00000
        722151.51000
        859482.00000
MINIMUM AVERAGE COST DEPTH
               2903. feet
MINIMUM MARGINAL COST DEPTH
               1935. feet
MARGINAL COST
             6.57650
             6.10500
             6.71650
             8.41100
            11.18850
            15.04900
            19.99250
            26.01900
            33.12850
            41.32100
            50.59650
            60.95500
            72.39650
           84.92100
           98.52850
          113.21900
          128.99250
          145.84900
POINT OF INFLECTION
        19188.57000
MINIMUM AVERAGE COST
            6.60980
MINIMUM MARGINAL COST
            6.10274
```

 ${\tt Table~34}$ ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN EAST TEXAS

 $\hat{Y} = 13.50 \div 0.32(10^{-2})X_1 + 0.38(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	UMBER X ₁ X	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7	671. 1917. 3210. 4378. 6376. 8755.	450241. 3674889. 10304100. 19166884. 40653376. 76650025. 120384784.	12.4700 7.7500 6.2600 6.3900 9.3100 14.4200 23.4000	11.4760 8.6651 6.9972 6.5841 8.2840 14.2696 23.7241	0.9940 -0.9151 -0.7372 -0.1941 1.0260 0.1504 -0.3241

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.13479058E 02 -0.32404959E-02	0.10050416E 01 0.42793664E-03	0.13411442E 02 -0.75723730E 01	0.09999999E 01 0.51827142E 04	0. 0.72599754E 00
0.38044441E-06	0.35654625E-07	0.10670269E 02	0.38754899E 08	0.86824593E 00

RSQ = 0.9839 R = 0.9919 F(2, 4)= 122.6010 SUMUSQ = 3.5870 DURBIN-W.= 1.7987

Table 34 a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN EAST TEXAS

```
DEPTH
     13000 · feet
   TOTAL COST
          10620.40000
          17043.20000
          21550.80000
          26425.60000
          33950.00000
          46406.40000
          66077.19800
          95244.80000
         136191.60000
         191200.00000
         262552.40000
         352531.20000
         463418.81000
         597497.59000
         757050.01000
        944358.39000
       1161705.20000
       1411372.80000
 MINIMUM AVERAGE COST DEPTH
                4259. feet
 MINIMUM MARGINAL COST DEPTH
                2839.feet
 MARGINAL COST
              8.14120
              5.08480
              4.31080
              5.81920
             9.61000
            15.68320
            24.03880
            34.67680
            47.59720
            62.80000
            80.28520
           100.05280
           122.10280
           146.43520
           173.05000
           201.94720
          233.12688
266.58881
POINT OF INFLECTION
        28026.11200
MINIMUM AVERAGE COST
             6.58095
MINIMUM MARGINAL COST
             4.28126
```

Table 35
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN EAST TEXAS

 $\hat{Y} = 10.60 - 0.14(10^{-2})X_1 + 0.21(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $x_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER	X,	x ₂	Y	Ŷ	Ÿ - Ŷ
1 2 3 4 5 6 7 8	761. 1772. 3023. 4345. 6177. 8648. 11102. 13440.	579121. 3139984. 9138529. 18879025. 38155329. 74787904. 123254404. 190316800.	11.0000 8.5000 7.1000 7.0700 10.1100 13.5300 23.2300 27.4200	9.6100 8.7090 8.1825 8.3334 9.7438 13.8569 20.4546 29.0698	1.3900 -0.2090 -1.0825 -1.2634 0.3662 -0.3269 2.7754 -1.6498

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y+X)
0.10568593E 02	0.16756748E 01	0.63070674E 01	0.09999999E 01	0.
-0.14178455E-02	0.60850254E-03	-0.23300567E 01	0.61584999E 04	0.88423499E 00
0.20791855E-06	0.42208633E-07	0.49259722E 01	0.56070987E 08	0.96034689E 00

RSQ = 0.9627 R = 0.9812 F(2, 5) = 64.5825 SUMUSQ = 15.4097 DURBIN-W.= 2.3165

Table 35a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN EAST TEXAS (in dollars)

```
DEPTH
  17000 feet
 TOTAL COST
         9359.90000
        17131.20000
        24561.30000
        32897.60000
        43387.50100
        57278.40100
        75817.69900
       100252.80000
       131331.10000
       171800.000000
       221 406.90000
       281899.20000
       354524.30000
       440529.59000
       541162.50000
       657670.40000
       791300.71000
       943300.80000
MINIMUM AVEPAGE COST DEPTH
              3410. feet
MI VIMUM MARGINAL COST DEPTH
              2274. feet
MARGINAL COST
            8.35770
            7.39280
            7.67530
            9,20520
           11.98250
           16.00720
           21.27930
           27.79880
           35.56570
           44.58000
           54.84170
           66.35080
           79.10730
           93.11120
          108.36250
          124.86120
          142.60730
          161.60030
POINT OF INFLECTION
        27801.06000
MINIMUM AVERAGE COST
            8.15210
MINIMUM MARGINAL COST
             7.34614
```

 ${\tt Table~36}$ ${\tt ESTIMATED~AVERAGE~DRILLING~COST~FUNCTION~FOR~OIL~WELLS~IN~GULF~COAST~TEXAS}$

$$\hat{Y} = 9.40 - 0.19(10^{-3})x_1 + 0.89(10^{-7})x_2$$

Where:

 \hat{Y} = Estimated drilling cost per foot

X₁ = Depth

X₂ = Square of depth

SAMPLE NUMBER		OBSERVED VALUES			RESIDUAL
	\mathbf{x}_{1}	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7	945. 1910. 3205. 4396. 6235. 8783. 11343.	893025. 3648100. 10272025. 19324816. 38875225. 77141089. 128663649. 197944008.	8.3500 8.8700 10.4600 12.4500 11.8200 12.8800 18.2100 25.0600	9.3102 9.3760 9.7253 10.3104 11.7104 14.6465 18.7619 24.2594	-0.9602 -0.5060 0.7347 2.1396 0.1096 -1.7665 -0.5519 0.8006

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.94065246E 01	0.14281049E 01	0.65867181E 01	0.09999999E 01	0.
-0.18620212E-03	0.49382114E-03	-0.37706387E-00	0.63516250E 04	0.93873595E 00
0.89127411E-07	0.32672875E-07	0.27278716E 01	0.59338243E 08	0.97514541E 00

RSQ = 0.9523 R = 0.9758 F(2, 5) = 49.8734 SUMUSQ = 10.3739 DURBIN-W.= 1.4136

Table 36a

TOTAL AND MARGINAL DRILLING COSTS FOR ONS WELLS IN GULF COAST TEXAS

```
DEPTH
   13000. feet
 TOTAL COST
          9308,93000
        18780.24000
        28948.71000
         40349.12000
         53516.25100
         68984.88000
         87239.79100
        108965.76000
       134547.57000
       164570.00000
       199567.83000
       240075.84000
       286628.81000
       339761.52000
       400008.76000
       467905.29000
       543985.90000
       628785.36000
MINIMUM AVERAGE COST DEPTH
               1045. feet
MINIMUM MARGINAL COST DEPTH
                696. feet
MARGINAL COST
             9.30099
             9.73076
            10.69531
            12.19464
            14.22875
            16.79764
            19.90131
           23.53976
           27.71299
           32.42100
           37.66379
            43.44136
            49.75371
            56.60084
            63.98275
           71.89944
           80.35091
           89.33716
POINT OF INFLECTION
         9723.38050
MINIMUM AVERAGE COST
            9.30875
MINIMUM MARGINAL COST
            9.27634
```

 ${\tt Table~37}$ <code>ESTIMATED</code> AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN GULF COAST TEXAS

 $\hat{Y}=13.90 - 0.15(10^{-2})X_1 + 0.19(10^{-6})X_2$

Where

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	\mathbf{x}_1	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	1090. 1751. 2986. 4281. 5995. 8523. 10898. 13745.	1188100. 3066001. 8916196. 18326961. 35940025. 72641529. 118766404. 194462512. 268293696.	9.7900 12.4500 12.3000 11.8200 11.7600 13.5300 18.6800 26.7400 41.0000	12.3611 11.6719 10.8312 10.5749 11.2199 14.2179 19.2567 28.1342 39.8023	-2.5711 0.7781 1.4688 1.2451 0.5401 -0.6879 -0.5767 -1.3942 1.1977

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.13861742E 02	0.14313317E 01	0.96845064E 01	0.09999999E 01	0.
-0.15847757E-02	0.43205734E-03	-0.36679754E 01	0.73107778E 04	0.89256857E 00
0.19084370E-06	0.24656942E-07	0.77399582E 01	0.80105002E 08	0.96952811E 00

RSQ = 0.9815 R = 0.9907 F(2, 6)= 159.0757 SUMUSQ = 15.3991 DURBIN-W.= 1.3733

Table 37a

TOTAL AND MARGINAL DRILLEING COSTS FOR GAS WELLS IN GULF COAST TEXAS

```
DEPTH
   18000.feet
 TOTAL COST
        12465.80000
        22906.40000
        32466.60000
         42291.20000
        53525.00100
        67312.30100
        84799.40100
       107129.60000
       135448.20000
       170900.00000
       214629.30000
       267782.40000
       331502.60000
       406935.20000
       495225.01000
       597516.81000
       71 4955.41000
       848685.61000
MINIMUM AVERAGE COST DEPTH
               4154 · feet
MINIMUM MARGINAL COST DEPTH
               2769.feet
MARGINAL COST
            11.26240
            9.80960
             9.50160
            10.33840
           12.32000
           15.44640
           19.71760
           25.13360
           31.69440
           39.40000
           48.25040
           58.24560
           69.38560
           81.67040
           95.10000
          109.67440
          125.39360
          142.25760
POINT OF INFLECTION
        43896.11200
MINIMUM AVERAGE COST
           10.56830
MINIMUM MARGINAL COST
            9.47107
```

Table 38
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN GULF COAST TEXAS

 $\hat{Y} = 13.80 - 10.28(10^{-2})X_1 + 0.28(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X	\mathbf{x}_1	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	840. 1730. 3031. 4287. 6004. 8535. 10942. 13458.	705600. 2992900. 9186961. 18378369. 36048016. 72846225. 119727364. 190558882. 269422224.	10.5600 10.0200 8.4800 7.7800 7.2400 9.7400 16.1900 26.9500 45.3900	11.6226 9.7686 7.8599 6.9203 7.0709 10.3159 16.7438 26.9454 45.1025	-1.0626 0.2514 0.6201 0.8597 0.1691 -0.5759 -0.5538 0.0046

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.13781044E 02	0.61281663E 00	0.22488038E 02	0.09999999E 01	0.
-0.28057200E-02	0.18384600E-03	-0.15261251E 02	0.72767778E 04	0.84535801E 00
0.28116363E-06	0.10523650E-07	0.26717310E 02	0.79854676E 08	0.95146515E 00

RSO = 0.9976 R = 0.9988 F(2, 6)= 1258.1919 SUMUSQ = 3.0657 DURBIN-W.= 1.0909

Table 38a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN GULF COAST TEXAS (in dollars)

```
DEP TH
  18000. feet
 TOTAL COST
        11255.20000
        18585.60000
        23678.40000
        28220.80000
        33900.00100
        42 403 .20000
        55417.60100
        74630.40100
       101728.80000
       138400.00000
       186331.20000
       247209.60000
       322722.41000
       41 4556.80000
       524400.01000
       653939.20000
       804861.61000
       978354.42000
MINIMUM AVERAGE COST DEPTH
              4989. feet
MINIMUM MARGINAL COST DEPTH
              3326. feet
MARGINAL COST
            9.01160
            5.93040
            4.53640
            4.82960
            6.81000
           10.47760
           15.83240
           22.87449
           31.60360
           42.02000
           54.12360
           67.91440
           83.39240
          100.55760
          119.41000
          139.94960
          162.17640
          136.09040
POINT OF INFLECTION
        33827.50800
MINIMUM AVERAGE COST
            6.77997
MINIMUM MARGINAL COST
           4.44662
```

Table 39
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN NORTH CENTRAL TEXAS

 $\hat{Y} = 5.95 + 0.29(10^{-3})X_1 + 0.43(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X ₁	x ₁	x ₂	Y	Ŷ	y - Ŷ
1 2 3 4 5	825. 1792. 3038. 4320. 6095. 8546.	680625. 3211264. 9229444. 18662400. 37149025. 73034116.	6.4000 6.4600 7.0700 8.0700 9.5400 11.5400	6.2246 6.6170 7.2424 8.0265 9.3477 11.6219	0.1754 -0.1570 -0.1724 0.0435 0.1923 -0.0819

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.59539565E 01	0.26165964E-00	0.22754585E 02	0.09999999E 01	0.
0.29219873E-03	0.13634574E-03	0.21430719E 01	0.41026666E 04	0.98674266E 00
0.43415127E-07	0.14159883E-07	0.30660654E 01	0.23661146E 08	0.99190383E 00

RSQ = 0.9936 R = 0.9968 F(2, 3) = 233.9064 SUMUSQ = 0.1307 DURBIN-W.= 1.9482

Table 39a

TOTAL AND MARCINAL DRILLING COSTS FOR OIL WELLS IN NORTH CENTRAL TEXAS

(in dollars)

```
DEPTH
  18000. feet
TOTAL COST
        6289.62000
       13424.16000
       21664.14000
       31270.08000
        42502.50000
        55621.92100
        70888.86000
        88563 .84100
       108907.38000
       132180.00000
       158642.22000
       188554.56000
       222177.54000
       259771.68999
       301597.51000
       347915.52000
       398986.26000
       455070.25000
MINIMUM AVERAGE COST DEPTH
             -3365. feet
MINIMUM MARGINAL COST DEPTH
             -2243.feet
MARGINAL COST
            6.66866
            7.64384
            8.87954
           10.37576
           12.13250
           14.14976
           16.42754
           18.96584
           21.76466
           24.82400
           28.14386
            31.72424
            35.56514
            39.66656
            44.02850
            48.65096
            53.53394
            58.67744
POINT OF INFLECTION
        -18379.93600
MINIMUM AVERAGE COST
             5.46240
MINIMUM MARGINAL COST
             5.29854
```

Table 40 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN NORTH CENTRAL TEXAS

 $\hat{Y} = 16.16 - 0.34(10^{-2})X_1 + 0.36(10^{-6})X_2$

Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER 2	x_	x ₂	Y	Ŷ	Ÿ - Ŷ
1 2 3 4 5	882. 1807. 3069. 4337. 6141. 8131.	777924. 3265249. 9418761. 18809569. 37711881. 66113161.	13.8500 11.0300 8.4400 8.3200 9.6100 12.0300	13.4533 11.2095 9.1412 8.2173 8.8965 12.3621	0.3967 -0.1795 -0.7012 0.1027 0.7135 -0.3321

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.16166199E 02	0.87815559E 00	0.18409266E 02	0.09999999 01	0.
-0.33931397E-02	0.47503795E-03	-0.71428811E 01	0.40611666E 04	-0.20348234E-00
0.35976984E-06	0.51499553E-07	0.69858827E 01	0.22682757E 08	0.18915436E-01

RSQ = 0.9445 R = 0.9718 F(2, 3) = 25.5200 SUMUSQ = 1.3112 DURBIN-W.= 2.0720

Table 40a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN NORTH CENTRAL TEXAS

```
DEPIH
   18000. feet
 TOTAL COST
        13136.80000
        21646.40100
        27627.60000
        33419.20100
        41 300.30000
        52588.80000
        70344.40200
        96425.60300
       132991.20000
       182200.00000
       246210.80000
       327182.40000
       427273.61000
       548643.21000
       693 450 . 01000
       863852.82000
      1062010.40000
      1290081.60000
MINIMUM AVERAGE COST DEPTH
              4715. feet
MINIMUM MARGINAL COST DEPTH
              3143. feet
MARGINAL COST
           10.46340
            6.91560
            5.52660
            6.29640
            9.22500
           14.31240
           21.55860
           30.96360
           42.52740
           56.25000
           72.13140
           90.17160
          110.37050
          132.72840
          157.24500
          183.92040
          212.75460
          243.74769
POINT OF INFLECTION
        38526.29800
MINIMUM AVERAGE COST
            8.17080
MINIMUM MARGINAL COST
            5.50440
```

Table 41
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN NORTH CENTRAL TEXAS

 $\hat{Y} = 8.60 - 0.24(10^{-2})X_1 + 0.30(10^{-6})X_2$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES X ₁			ESTIMATED VALUES	RESIDUAL
NUMBER				Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	820. 1787. 3039. 4300. 6099. 8606. 11071.	672400. 3193369. 9235521. 18490000. 37197801. 74063236. 122567041. 197119984.	5.0500 4.5600 5.4500 5.6600 6.0900 7.5700 15.5500 34.1800	6.7706 5.1564 3.8944 3.5676 4.7417 9.5948 18.0187 32.3658	-1.7206 -0.5964 1.5556 2.0924 1.3483 -2.0248 -2.4687 1.8142

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y.X)
0.85760517E 01	0.21384872E 01	0.40103355E 01	0.09999999E 01	0.
-0.24461094E-02	0.75089325E-03	-0.32575994E 01	0.62073750E 04	0.84898027E 00
0.29798786E-06	0.50370100E-07	0.59159672E 01	0.57457417E 08	0.94393449E 00

RSQ = 0.9651 R = 0.9824 F(2, 5) = 69.1225 SUMUSQ = 25.4177 DURBIN-W.= 1.4421

Table 4la

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN NORTH CENTRAL TEXAS

```
DEPTH
   18000. feet
 TOTAL COST
         6428.00000
         9751.99990
        11760.00000
        1 42 40 .00000
        13980.00000
        27768.00000
        42391.99900
        64640.00000
        96300.00000
       139160.00000
       195008.00000
       265632.00000
       352820,00000
       458359.99000
       584040.00000
       731648.00000
       902972.00000
      1099800.00000
MINIMUM AVERAGE COST DEPTH
               4104. feet
MINIMUM MARGINAL COST DEPTH
              2736. feet
MARGINAL COST
            4.57800
            2.36800
            1.94600
            3.31200
            6.46600
           11.40800
           18.13800
           26.65600
           36.96200
           49.05600
           62.93800
           78.60800
           96.06600
          115.31200
          136.34600
          159.16800
          183.77800
          210.17600
POINT OF INFLECTION
        14597.10100
MINIMUM AVERAGE COST
            3.55678
MINIMUM MARGINAL COST
            1.88370
```

Table 42
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN PANHANDLE TEXAS

 $\hat{Y} = 8.80 - 0.48(10^{-3})X_1 + 0.13(10^{-6})X_2$

Where:

Y = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X ₁	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6	2052. 3250. 4501. 6622. 8891. 11502. 14066.	4210704. 10562500. 20259001. 43850884. 79049881. 132296004. 198926178.	7.9100 9.4800 9.5800 10.8800 14.9400 21.9800 28.5500	8.3985 8.6794 9.3887 11.5619 15.2388 21.1993 28.8534	-0.4885 0.8006 0.1913 -0.6819 -0.2988 0.7807 -0.3034

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.88223914E 01 -0.48510917E-03	0.11015289E 01 0.33340275E-03 0.20479185E-07	0.80092234E 01 -0.14550244E 01 0.66277288E 01	0.09999999E 01 0.72691428E 04 0.69725904E 08	0. 0.96307448E 00 0.99536333E 00

RSQ = 0.9940 R = 0.9970 F(2, 4)= 328.5868 SUMUSQ = 2.1720 DURBIN-W.= 2.4323

Table 42a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN PANHANDLE TEXAS

```
DEPTH
   18000 feet
 TOTAL COST
         8472.60000
         16789.20000
        25764.000000
        36211.20100
         48945.00100
         64779.60000
        84529.20100
        109008.00000
        139030.20000
        175410.000000
       218961.60000
       270499.20000
       330837.00000
       400789.20000
       481170.000000
       572793.60000
       676474.21000
       793026.00000
MINIMUM AVERAGE COST DEPTH
               1727. feet
MINIMUM MARGINAL COST DEPTH
               1192.feet
MARGINAL COST
             8.25890
             8.51000
             9.57530
            11.45480
            14.14850
            17.65640
           21.97850
           27.11480
           33.06530
           39.83000
            47.40890
            55.80200
           65.00930
           75.03080
           85.86650
           97.51640
          109.98050
          123.25880
POINT OF INFLECTION
        14993.53400
MINIMUM AVERAGE COST
            8.38847
MINIMUM MARGINAL COST
            8.24396
```

Table 43

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN PANHANDLE TEXAS

 $\hat{Y} = 17 - 0.28(10^{-2}) x_1 + 0.40(10^{-6}) x_2$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	mber x ₁	x ₂	Y	Ŷ	y - Ŷ
1 2 3 4 5	798. 1871. 3192. 4270. 6118. 8552.	636804. 3500641. 10188864. 18232900. 37429924. 73136704.	15.6000 13.5600 10.3600 11.5800 17.4800 21.5600	15.0103 13.1789 12.1848 12.4044 14.9363 22.4255	0.5897 0.3811 -1.8248 -0.8244 2.5437 -0.8655

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.16967462E 02	0.24796499E 01	0.68426846E 01	0.09999999 01	0.
-0.27707126E-02	0.12 7 59406E-02	-0.21715058E 01	0.41334999E 04	0.66553251E 00
0.39861197E-06	0.13217060E-06	0.30158897E 01	0.23854306E 08	0.80290894E 00

RSQ = 0.8618 R = 0.9284 F(2, 3) = 9.3565 SUMUSQ = 11.7221 DURBIN-W.= 2.4635

Table 43a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN PANNANDLE TEXAS

```
DEPTH
  18000. feet
TOTAL COST
        14763.80000
        25402.40000
        33606.60000
        41067.20000
        49 475 . 00100
        60520.80100
        75895.40000
        97289.60000
       126394.20000
       164900.00000
       214497.80000
       276878.40000
       353732.60000
       446751.20000
       557625.01000
       688044.81000
       839701.41000
      1014285.60000
MINIMUM AVERAGE COST DEPTH
              5160. feet
MINIMUM MARGINAL COST DEPTH
              3440. feet
MARGINAL COST
           12.41940
            9.13960
            7.55060
            7.652.40
            9.44500
           12.92840
           18.10260
           24.96760
           33.52340
            43.77000
           55.70740
           69.33560
           84.65460
          101.66440
          120.36500
          140.75640
          162.83860
          136.61160
POINT OF INFLECTION
        51018.03400
MINIMUM AVERAGE COST
             9.88781
MINIMUM MARGINAL COST
             7.38709
```

Table 44

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN PANHANDLE TEXAS

 $\hat{Y} = 2.90 + 0.15(10^{-2})X$

Where:

Ŷ = Estimated drilling cost per foot

 $X_i = Depth$

SAMPLE OBSERVED V		VALUES	ESTIMATED VALUES	RESIDUAL
NUMBER	X.	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	832. 1852. 3120. 4387. 6380. 8533. 11472.	4.8000 5.4900 9.5700 10.8100 9.9900 12.1400 16.2200 28.3000	4.1287 5.6344 7.5063 9.3767 12.3322 15.4973 19.8360 23.0084	0.6713 -0.1444 2.0637 1.4333 -2.3422 -3.3573 -3.6160 5.2916

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y.X)
0.29004278E 01	0.20486338E 01	0.14157862E 01	0.09999999E 01	0.
0.14762492E-02	0.26903588E-03	0.54871833E 01	0.62757500E 04	0.91314696E 00

RSO = 0.8338 R = 0.9131 F(1.6)= 30.1092 SUMUSO = 64.6176 DURBIN-W.= 1.5574

Table 45
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN SOUTH WEST TEXAS

 $\hat{Y} = 12.90 - 0.28(10^{-2})x_1 + 0.32(10^{-6})x_2$ Where:

Y = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X ₁	\mathbf{x}_1	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	787. 1827. 3101. 4349. 6195. 8360. 11430.	619369. 3337929. 9616201. 18913801. 38378025. 69889600. 130644900. 181408800.	10.2100 8.4700 7.9000 7.8500 8.1800 11.2500 19.5700 31.2000	10.8706 8.8365 7.2789 6.7506 7.7790 11.7370 22.4425 28.9349	-0.6606 -0.3665 0.6211 1.0994 0.4010 -0.4870 -2.8725 2.2651

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.12865459E 02	0.17818746E 01	0.72201820E 01	0.09999999E 01	0.
-0.27842205E-02	0.66751281E-03	-0.41710366E 01	0.61011250E 04	0.82056715E 00
0.31689490E-06	0.47600417E-07	0.66573974E 01	0.54277178E 08	0.92285074E 00

RSQ = 0.9669 R = 0.9833 F(2, 5)= 72.9906 SUMUSQ = 15.9453 DURBIN-W.= 2.1732

Table 45a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN SOUTHWEST TEXAS

```
DEP TH
   18000. feet
 TOTAL COST
        10392.90000
        17119.20000
        22080.30000
        27177.60000
        34312.50000
         45386.40100
        62300.70000
        86956.79900
       121256.10000
       167100.00000
       226389.90000
       301027.20000
       392913,30000
       503949.60000
       636037.50000
       791078.39000
       970973.70000
      1177624.80000
MINIMUM AVERAGE COST DEPTH
               4393. feet
MINIMUM MARGINAL COST DEPTH
               2928. feet
MARGINAL COST
             8.24270
             5.52680
             4.71230
             5.79920
             8.78750
            13.67720
           20.46830
           29.16080
            39.75470
            52.25000
            66.64670
            82.94480
           101.14430
           121.24520
           143.24750
167.15120
           192.95630
          220.66280
POINT OF INFLECTION
        29630.25700
MINIMUM AVERAGE COST
             6.74557
MINIMUM MARGINAL COST
             4.70742
```

 ${\tt Table~46}$ ${\tt ESTIMATED~AVERAGE~DRILLING~COST~FUNCTION~FOR~GAS~WELLS~IN~SOUTH~WEST~TEXAS}$

 $\hat{Y} = 7.50 - 0.7(10^{-3})X_1 + 0.21(10^{-6})X_2$

Where:

Y = Estimated drilling cost per foot

 $x_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER	$\mathbf{x}_{_{1}}$	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	802. 1779. 3113. 4254. 6139. 8635. 11190. 13563.	643204. 3164841. 9690769. 18096516. 37687321. 74563225. 125216100. 191977484. 273616400.	7.6000 6.9500 6.8200 8.1400 11.2900 16.6300 26.1700 37.2500 56.7700	7.0967 6.9408 7.3737 8.3355 11.1190 17.0953 25.9158 36.5574 57.1858	0.5033 0.0092 -0.5537 -0.1955 0.1710 -0.4653 0.2542 0.6926 -0.4158

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.75235213E 01	0.43163382E-00	0.17430333E 02	0.09999999E 01	0.
-0.70015248E-03	0.12602250E-03	-0.55557737E 01	0.74038889E 04	0.95065692E 00
0.20945372E-06	0.70345253E-08	0.29775104E 02	0.83053616E 08	0.99801023E 00

RSQ = 0.9994 R = 0.9997 F(2, 6)= 4633.5646 SUMUSQ = 1.5611 DURBIN-W.= 2.0286

Table 46a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN SOUTHWEST TEXAS

```
DEPTH
  18000. feet
TOTAL COST
         7033.20000
        13922.40000
        21924.00000
        32294.40100
        46290.00000
        65167.20100
        90182.40100
       122592.00000
       163652.40000
       214620.000000
       276751.20000
       351302.40000
       439530.00000
       542690.40000
       662040.000000
       798835.21000
       954332.40000
      1129788.00000
MINIMUM AVERAGE COST DEPTH
              1672. feet
MINIMUM MARGINAL COST DEPTH
              1115. feet
MARGINAL COST
            6.75180
            7.23600
            8.97660
           11.97360
           16.22700
           21.73680
           28.50300
           36.52560
           45.80460
           56.34000
           68.13180
           81.18000
           95.48460
          111.04560
          127.86300
          145.93680
          165.26700
          185.85360
POINT OF INFLECTION
        11600.88500
MINIMUM AVERAGE COST
             6.93866
MINIMUM MARGINAL COST
             6.74355
```

Table 47
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN SOUTH WEST TEXAS

 $\hat{Y} = 3.90 - 0.43(10^{-3})X_1 + 0.16(10^{-6})X_2$ Where:

Y = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	\mathbf{x}_{1}	x ₂	Y	Ŷ	Y - Ŷ
ì	815.	664225.	4.0600	3.6540	0.4060
2	1806.	3261636.	3.4600	3.6350	-0.1750
3	3049.	9296401.	4.0800	4.0481	0.0319
4	4291.	18412681.	6.0300	4.9464	1.0836
5	6122.	37478884.	5.5900	7.1559	-1.5659
6	8635.	74563225.	10.4800	11.9059	-1.4259
7	11215.	125776225.	19.3300	18.8499	0.4801
8	13464.	190639648.	28.5300	26.6115	1.9185
9	18690.	287329025.	50.0400	50.7932	-0.7532

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.39011955E 01	0.10649510E 01	0.36632629E 01	0.09999999E 01	0.
-0.43150876E-03	0.28674909E-03	-0.15048303E 01	0.75652222E 04	0.94708916E 00
0.15732723E-06	0.14798908E-07	0.10631002E 02	0.88894296E 08	0.99641670E 00

RSQ = 0.9948 R = 0.9974 F(2, 6)= 574.6333 SUMUSQ = 10.3346 DURBIN-W.= 2.0674

Table 47a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN SOUTHWEST TEXAS

```
DEPTH
   18000. feet
 TOTAL COST
          3626.80000
          7334.40000
         12066.60000
         18767.20000
         28380.00000
         41848.80100
         60117.40100
         84129.60100
        114829.20000
       153160.000000
       200065.30000
       256490.40000
       323377.60000
401671.20000
       492315.00000
       596252.80000
       714428.41000
       847785.60000
MINIMUM AVERAGE COST DEPTH
               1372. feet
MINIMUM MARGINAL COST DEPTH
                914. feet
MARGINAL COST
             3.50990
             4.06260
             5.55910
             7.99940
            11.38350
            15.71140
            20.98310
            27.19860
            34.35790
            42.46100
            51.50790
            61.49860
            72.43310
            84.31140
            97.13350
           110.89940
125.60910
           141.26260
POINT OF INFLECTION
          4944.66760
MINIMUM AVERAGE COST
             3.60508
MINIMUM MARGINAL COST
            3.50644
```

Table 48
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN WEST TEXAS

$$\hat{Y} = 16.70 - 0.21(10^{-2})X_1 + 0.17(10^{-6})X_2$$

Where:

Ŷ = Estimated drilling cost per foot

X₁ = Depth

X₂ = Square of depth

SAMPLE	(OBSERVED VALUES	ESTIMATED VALUES	RESIDUAL	
NUMBER	x,	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7	771. 1821. 3091. 4347. 6068. 8519. 11028. 13193.	594441. 3316041. 9554281. 18896409. 36820624. 72573361. 121616784. 187027624.	16.2000 13.5000 11.3900 9.7500 10.0900 12.5200 16.7100 18.2600	15.2088 13.5105 11.9666 10.9890 10.5366 11.6626 14.9699 19.5758	0.9912 -0.0105 -0.5766 -1.2390 -0.4466 0.8574 1.7401 -1.3158

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.16698845E 02 -0.20661344E-02	0.12741010E 01 0.46673521E-03 0.32772372E-07	0.13106374E 02 -0.44267806E 01 0.52830338E 01	0.09999999E 01 0.61047500E 04 0.54678398E 08	0. 0.46001182E-00 0.64092053E 00

RSQ = 0.8802 R = 0.9382 F(2, 5)= 18.3720 SUMUSQ = 8.5441 DURBIN-W.= 1.6630

Table 48a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN WEST TEXAS

```
DEPTH
   18000. feet
 TOTAL COST
         14807.10000
        26520.20000
        36179.70000
         44822.39900 53487.50000
         63213.59900
         75039.29900
        90003.19900
       109143.90000
       133500.00000
       164110.10000
       202012.80000
       248246.70000
       303850.40000
       369862.49000
       447321.60000
       537266.30000
       640735.19000
MINIMUM AVERAGE COST DEPTH
               5968. feet
MINIMUM MARGINAL COST DEPTH
               397g. feet
MARGINAL COST
            13.08730
            10.51320
             8.97770
             8.48080
             9.02250
            10.60280
            13.22170
            16.37920
            21.57530
            27.31000
            34.08330
            41.89520
            50.74570
            60.63480
            71.56250
            83.52880
           96.53370
          110.57720
POINT OF INFLECTION
        62871.68000
MINIMUM AVERAGE COST
            10.53542
MINIMUM MARGINAL COST
             8.48056
```

Table 49
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN WEST TEXAS

 $\hat{Y} = 15.30 - 0.20(10^{-2})x_1 + 0.22(10^{-6})x_2$

Where:

 $\hat{\hat{\mathbf{Y}}}^{\cdot}$ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	\mathbf{x}_1	x ₂	Ÿ	Ŷ	Y - Ŷ
1	2236.	4999696.	12.0500	11.8298	0.2202
2	3455.	11937025.	10.7500	10.8507	-0.1007
3	4536.	20575296	9.9800	10.5295	-0.5495
4	6776.	45914176.	12.8600	11.5002	1.3598
5	8917.	79512889	12.3200	14.4914	-2.1714
6	12022.	72264242•	25.3200	22.4127	2.9073
7	14189.	100663860.	28.3700	30.4541	-2.0841
. a	17007.	172309512.	44.4200	44.0016	0.4184

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.15325065E 02 -0.20550638E-02	0.26515328E 01 0.68480874E-03	0.57797004E 01 -0.30009310E 01	0.09999999E 01 0.86422500E 04	0. 0.91437023E 00
0.21998136E-06	0.35529834E-07	0.61914547E 01	0.99754166F 08	0.97314890F 00

RSQ = 0.9811 R = 0.9905 F(2, 5)= 129.6749 SUMUSQ = 19.8958 DURBIN-W.= 3.6887

Table 49a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN WEST TEXAS

```
(in dollars)
  DEPTH
   18000 feet
 TOTAL COST
         13485.000000
        24180.00000
        33 405.00000
         42479.99900
         52725.00000
         65460.00000
        82004.99900
        103680.00000
       131805.00000
       167700.00000
       212685.00000
       268080.000000
       335205.00000
       415379.99000
       509925.00000
       620160.00000
       747405.01000
       892980.01000
MINIMUM AVERAGE COST DEPTH
               4670 feet
MINIMUM MARGINAL COST DEPTH
               3114. feet
MARGINAL COST
            11.87000
            9.74000
            8.93000
            9.44000
            11.27000
            14.42000
           18.89000
           24.68000
           31.79000
            40.22000
            49.97000
           61.04000
           73.43000
           87.14000
          102.17000
          118.52000
          136.19000
          155.18000
POINT OF INFLECTION
        49138.35600
MINIMUM AVERAGE COST
           10.52111
MINIMUM MARGINAL COST
```

8.92148

Table 50

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN WEST TEXAS

 $\hat{Y} = 18.90 - 0.33(10^{-2})X_1 + 0.29(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER X ₁		OBSERVED VALUES			RESIDUAL
	x ₂	Y	Ŷ	Y - Ŷ	
1 2 3 4 5 6 7 8	858. 1829. 3081. 3081. 4337. 6163. 8717. 11109.	736164. 3345241. 9492561. 9492561. 18809569. 37982569. 75986089. 123409881.	17.1900 14.8700 11.5700 8.5000 9.0500 11.0100 13.2900 16.8900	16.2994 13.8347 11.4622 11.4622 9.9939 9.4879 12.0180 17.8116	0.8906 1.0353 0.1078 -2.9622 -0.9439 1.5221 1.2720 -0.9216

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.18931539E 02 -0.33160336E-02	0.19727010E 01 0.83445264E-03 0.67793738E-07	0.95967602E 01 -0.39739027E 01 0.42692008E 01	0.09999999E 01 0.48968749E 04 0.34906829E 08	0. 0.15852749E-00 0.35679197E-00

RSQ = 0.7901 R = 0.8889 F(2, 5) = 9.4124 SUMUSQ = 16.3264 DURBIN-W.= 1.5518

Table 50a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN WEST TEXAS

```
DEP TH
   18000. feet
 TOTAL COST
        15903.40000
        26911.20000
        34759.80000
        41185.60100
        47925.00000
        56714.40000
        69290.20000
        87388.79900
       112746.60000
       147100.00000
       192185.40000
       249739.20000
       321497.80000
       409197.59000
       51 457 4.99000
       639366.39000
       785308.21000
       954136.80000
MINIMUM AVERAGE COST DEPTH
               5729.feet
MINIMUM MARGINAL COST DEPTH
              3819. feet
MARGINAL COST
           13.16620
            9.13880
            6.84780
            6.29320
            7.47500
           10.39320
           15.04780
           21.43880
           29.56620
           39.43000
           51.03020
           64.36690
           79.43980
           96.24920
          114.79500
          135.07720
          157.09580
          180.85080
POINT OF INFLECTION
        54032.01500
MINIMUM AVERAGE COST
            9.43116
MINIMUM MARGINAL COST
            6.26488
```

 ${\bf Table~5l}$ ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN UTAH

 $\hat{Y} = 23.30 - 0.38(10^{-2})X_1 + 0.37(10^{-6})X_2$

Where:

Ŷ = Estimated drilling cost per foot

X₁ = Depth

X₂ = Square of depth

	OBSERVED VALUE	ESTIMATED VALUES	RESIDUAL	
NUMBER X ₁	x ₂	Y	Ŷ	Y - Ŷ
777.	603729.	21.3500	20.5814	0.7686 0.4114
2962.	8773444.	13.0900	15.3790	-2.2890 -0.0546
5923.	35081929.	15.3400	13.9767	1.3633
	1774. 2962. 4346.	X ₁ X ₂ 777. 603729. 1774. 3147076. 2962. 8773444. 4346. 18887716. 5923. 35081929.	777. 603729. 21.3500 1774. 3147076. 18.1800 2962. 8773444. 13.0900 4346. 18887716. 13.8600 5923. 35081929. 15.3400	X1 X2 Y Ŷ 777. 603729. 21.3500 20.5814 1774. 3147076. 18.1800 17.7686 2962. 8773444. 13.0900 15.3790 4346. 18887716. 13.8600 13.9146 5923. 35081929. 15.3400 13.9767

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X).
0.23284450E 02	0.17530668E 01	0.13282123E 02	0.09999999E 01	0.
-0.37668142E-02	0.73519441E-03	-0.51235621E 01	0.46203333E 04	0.64832935E 00
0.37064882E-06	0.54537104E-07	0.67962687E 01	0.34842915E 08	0.80950232E 00

RSQ = 0.9646 R = 0.9822 F(2, 3)= 40.9288 SUMUSQ = 7.9011 DURBIN-W.= 2.1347

Table 5la

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN UTAH

```
DEP TH
    18000. feet
  TOTAL COST
         19243.60000
         34376.30000
         45823.20000
         56406.40100
         68350.00100
        83877.60100
105212.80000
        134579.20000
        174200.40000
        226300.00000
        293101.50000
        376828.81000
        479705.20000
        603954.40000
        751800.00000
        925465.61000
       1127174.80000
       1359151.20000
MINIMUM AVERAGE COST DEPTH
               5082.feet
MINIMUM MARGINAL COST DEPTH
               3388.feet
MARGINAL COST
            16.81780
            12.61920
            10.64420
            10.89280
            13.36500
            18.06080
            24.98020
            34.12320
            45.48980
            59.08000
            74.89380
            92.93120
           113,19220
           135,67680
           160.38500
          187.31680
          216.47220
          247.85120
POINT OF INFLECTION
        69462.27200
MINIMUM AVERAGE COST
            13.66749
MINIMUM MARGINAL COST
            10.47665
```

 $$\mathsf{Table}\ 52$$ ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN WYOMING

 $\hat{\mathbf{Y}} = 6.30 + 0.15(10^{-2}) \text{ X}$

Where:

Ŷ = Estimated drilling cost per foot

X = Depth

SAMPLE NUMBER	OBSERVED	OBSERVED VALUES		RESIDUAL
	х	Y	Ŷ	Y - Y
3 4 5 6 7 8 9	671. 1891. 3083. 4473. 6192. 8596.	10.4700 14.8800 17.0600 14.6000 14.4300 28.0700	10. \$386 13.0283 15.5991 19.2028 21.7122 26.0834 29.6811	-0.4686 1.8517 1.4609 -4.6028 -7.2822 1.9866 4.3889

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.63170613E 01	0.23048529E 01	0.27407665E 01	0.09999999E 01	0.
0.14990374E-02	0.26751748E-03	0.56035120E 01	0.71057778E 04	0.90427058E 00

RSO = 0.8177 R = 0.9043 F(1, 7)= 31.3993 SUMUSO = 107.0273 DURBIN-W.= 1.3678

Table 53
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR GAS WELLS IN WYOMING

 $\hat{Y} = 25.95 - 0.35(10^{-2})X_1 + 0.36(10^{-6})X_2$

Where:

Y = Estimated drilling cost per foot

 $X_1 = Depth$

X2 = Square of depth

SAMPLE		OBSERVED VALUES	5	ESTIMATED VALUES	RESIDUAL
NUMBER	R X ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7	442. 1778. 3029. 4346. 6586. 8708.	195364. 3161284. 9174841. 18887716. 43375396. 75829264. 122367844.	25.0000 19.4600 20.0200 16.3800 19.7200 21.4900 31.1100	24.4764 20.8602 18.6270 17.4809 18.3700 22.5098 30.8558	0.5236 -1.4002 1.3930 -1.1009 1.3500 -1.0198 0.2542

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.25952718E 02	0.13987689E 01	0.18553971E 02	0.09999999E 01	0.
-0.34976043E-02	0.60722432E-03	-0.57599871E 01	0.51358571E 04	0.46795885E-00
0.35625020E-06	0.51235718E-07	0.69531612E 01	0.38998815E 08	0.66731428E 00

RSQ = 0.9403 R = 0.9697 F(2, 4)= 31.5118 SUMUSQ = 8.3141 DURBIN-W.= 3.7247

Table 53a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN WYOMING

```
DEP TH
   18000. feet
 TOTAL COST
        22803.20000
        40757.60000
        55985.40100
        70628.80000
        86825.00000
       106711.20000
       132424.60000
       166102.40000
       209881.80000
       265900.000000
       336294.20000
       423201.61000
       528759.40000
       655104.80000
       804375.00000
       978707.21000
      1180238.60000
      1411106.40000
MINIMUM AVERAGE COST DEPTH
               4910. feet
MINIMUM MARGINAL COST DEPTH
               3273. feet
MARGINAL COST
           20.02260
           16.23240
           14.57940
           15.06360
           17.68500
           22.44360
           29.33940
           38.37240
           49.54260
           62.85000
           78.29460
           95.27640
          115.59540
          137.45160
          161.44500
          187.57560
          215.84340
          246.24840
POINT OF INFLECTION
        85250.86200
MINIMUM AVERAGE COST
           17.36213
MINIMUM MARGINAL COST
           14.49950
```

Table 54 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN WYOMING

 \hat{Y} = 19.15 - 0.33(10⁻²) x_1 + 0.25(10⁻⁶) x_2 Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER X ₁	$\mathbf{x}_{\mathbf{l}}$	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8	655. 1847. 3148. 4396. 6413. 8701. 10695. 13154.	429025. 3411409. 9909904. 19324816. 41126569. 75707401. 114383025. 186513858.	17.1500 14.0100 11.3200 8.7900 7.8100 7.8600 14.4000 17.5700	17.0730 . 13.8312 11.1066 9.2908 8.0079 9.0231 12.0494 18.5279	0.0770 0.1788 0.2134 -0.5008 -0.1979 -1.1631 2.3506 -0.9579

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.19157694E 02 -0.33470983E-02	0.12138972E 01 0.44354088E-03	0.15781973E 02 -0.75463130E 01	0.09999999E 01 0.61261250E 04	0. 0.73119218E-01
0.25081490E-06	0.31591156E-07	0.79394025E 01	0.54664983F 08	0.30715182F-00

0.9269 R = F(2, 5) = SUMUSQ = DURBIN-W.= 0.9289 0.9628 31.6999 8.1690 3.0404

Table 54a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN WYOMING

```
DEP TH
   1gggg. feet
 TOTAL COST
        16063.80000
        26938.40000
        34128.60100
        39139.20100
        43 475.00100
        48640,80200
        56141.40100
        67481.60200
        84166.20300
       107700.00000
       139587.80000
       181334.41000
       234444.60000
       300423.20000
       380775.01000
       477004.81000
       590617.42000
       723117.63000
MINIMUM AVERAGE COST DEPTH
               6673.feet
MINIMUM MARGINAL COST DEPTH
               4448. feet
MARGINAL COST
           13.21840
            8.78160
            5.84960
             4.42240
             4.50000
            6.08240
             9.16960
           13.76160
           19.85840
           27.46000
           36.56640
            47.17760
           59.29360
           72.91440
           88.04000
          104.67040
          122.80560
          142.44560
POINT OF INFLECTION
        53336.63600
MINIMUM AVERAGE COST
            7.99332
MINIMUM MARGINAL COST
            4.27110
```

ESTIMATED DRILLING COST FUNCTIONS PER GEOLOGICAL REGION

Includes Average Drilling Estimated Cost Functions
(Tables 55 to 63 and their Corresponding Figures) and
Total and Marginal Costs (Tables 55.a to 63.a).

Table 55
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN REGION I (Carbon-Permian)

 $\mathbf{\hat{Y}} = 8.30 - 0.57(10^{-3})\mathbf{x}_1 + 0.14(10^{-6})\mathbf{x}_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	x	x ₂	Y	Ŷ	¥ - Ŷ
1	1137.	1292769.	8.2300	7.8313	0.3987
1 2 3	2373.	5631129.	5.7000	7.7366	-2.0366
3	3530.	12460900.	5.6600	8.0416	-2.3816
4	4777.	22819729.	6.9900	8.7965	-1.8065
5	6799.	46226401.	9.2600	10.9605	-1.7005
6	785.	616225.	7.1300	7.9377	-0.8077
7	1748.	3055504.	7.5600	7.7302	-0.1702
8	2911.	8473921.	8.7300	7.8311	0.8989
9	881.	776161.	8.6300	7.9052	0.7248
10	1908.	3640464.	8.7400	7.7212	1.0188
11	3115.	9703225	10.3800	7.8884	2.4916
12	4401.	19368801.	11.3900	8.5223	2.4916
13	6504.	42302016.	11.6800	10.5723	1.1077
14	8718.	76003524	12.4900	14.0895	-1.5995
15	11119.	123632161.	20.1800	19.4791	0.7009
16	825.	680625	6.4000	7.9239	-1.5239
17	1792.	3211264.	6.4600	7.7270	-1.2670
18	3038.	9229444	7.0700	7.8654	-0.7954
19	4320.	18662400.	8.0700	8.4685	
20	6095.	37149025.	9.5400	10.0751	-0.3985 -0.5351
21	8546.	73034116.	11.5400	13.7663	
22	836.	698896	7.8200	7.9201	-2.2263 -0.1001
23	1819.	3308761.	5.0600	7.7253	-2.6653
24	3019.	9114361.	13.5000	7.8599	5.6401
25	870.	756900.	8.0100	7.9088	
26	1881.	3538161.	7.9200	7.7222	0.1012 0.1978
27	3127.	9778129.	8.0900	7.8922	0.1978
28	4369.	19088161.	9.0100	8.5009	0.1978
29	6012.	36144144.	11.2800	9.9801	1.2999
30	933.	870489.	7.6600	7.8887	
31	3085.	9517225.	8.4600	7.8792	-0.2287 0.5808
32	13465.	190653112.	27.1600	26.3286	0.8314
33	1836.	3370896.	8.4000	7.7244	0.6756
				101277	0.0196

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.83020014E 01 -0.57566073E-03	0.73831981E 00 0.32132816E-03 0.25532837E-07	0.11244451E 02 -0.17915041E 01 0.55684574E 01	0.09999999E 01 0.38355757E 04 0.24104913E 08	0. 0.82580031E 00 0.90932264E 00

RSQ = 0.8436 R = 0.9185 F(2, 30)= 80.9078 SUMUSQ = 90.3551 DURBIN-W.= 1.6571

Table 55a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN REGION I

(Carbon Permian)

```
DEP TH
   18000. feet
TOTAL COST
         7868.49990
        15438.80000
        23564.10100
        33097.60000
        44892.50100
        59802.00100
        78679.30100
       102377.60000
       131750.10000
       167650.00000
       210930.50000
       262444.80000
       323046.10000
       393587.60000
       474922.50000
       567904.00000
       673385.31000
       792219.61000
MINIMUM AVERAGE COST DEPTH
2024. feet
MINIMUM MARGINAL COST DEPTH
               1350. feet
MARGINAL COST
             7.57720
             7.70560
             8.68720
            10.52200
            13.21000
            16.75120
            21.14560
            26.39320
            32.49400
            39.44800
            47.25520
            55.91560
            65.42920
            75.79600
            87.01600
            99.08920
           112.01560
           125.79520
POINT OF INFLECTION
         15625.91600
MINIMUM AVERAGE COST
             7.71932
MINIMUM MARGINAL COST
             7.52509
```

Table 56

ESTIMATED AVERAGE DRILLING COST FUNCTIONOFOR GASS WELLS IN REGION I (Carbon-Permian)

 $\hat{Y} = 13.50 - 0.16(10^{-2})X_1 + 0.19(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUES			RESIDUAL
NUMBER	\mathbf{x}_{1}	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	648. 1504. 2878. 4116. 6114. 8413. 10857. 16296. 882. 1807. 3069. 4337. 6141. 920. 1735. 4470. 6156. 887. 1909. 3182. 4066. 887. 1897. 3041.	419904. 2262016. 8282884. 16941456. 37380996. 70778569. 117874449. 132779808. 777924. 3265249. 9418761. 18809569. 37711881. 846400. 3010225. 19980900. 37896336. 786769. 364281. 10125124. 16532356. 786769. 3598609. 9247681.	11.3000 10.3700 13.4700 9.5200 11.6300 14.3500 19.2400 37.1800 13.8500 11.0300 8.4400 8.3200 9.6100 9.6000 9.9400 8.0700 10.6400 14.1000 11.5000 11.0700 10.6200 14.1200 11.6800 9.8400	12.5072 11.4589 10.3631 9.9949 10.6387 13.2710 18.2889 37.6657 12.1927 11.1552 10.2680 9.9909 10.6579 12.1437 11.2242 9.9975 10.6686 12.1863 11.0608 10.2183 9.9984 12.1863 11.0717 10.2811	-1.2072 -1.0889 3.1069 -0.4749 0.9913 1.0790 0.9511 -0.4857 1.6573 -0.1252 -1.8280 -1.6709 -1.0479 -2.5437 -1.2842 -1.9275 -0.0286 1.9137 0.4392 0.8517 0.6216 1.9337 0.6083 -0.4411

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.13487265E 02	0.67202146E 00	0.20069694E 02	0.09999999E 01	0.
-0.16365980E-02	0.25654092E-03	-0.63794811E 01	0.40088333E 04	0.74305878E 00
0.19147660E-06	0.16476230E-07	0.11621384E 02	0.28997445E 08	0.90715762E 00

RSQ = 0.9397 R = 0.9694 F(2, 21) = 163.7232 SUMUSQ = 46.9091 DURBIN-W.= 1.3721

Table 56a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN REGION I

(Carbon Permian)

```
DEPTH
   18000 .feet
  TOTAL COST
         12045.50000
         21968.00000
         30916.50000
         40040.00000
         50487.50100
         63 408.00100
         79950.50100
        101264.000000
        128497.50000
        162800.00000
       205320.50000
       257208.00000
       319611.50000
       393680.00000
        480562.51000
       581408.01000
       697365.51000
       829534.01000
MINIMUM AVERAGE COST DEPTH
               4272. feet
MINIMUM MARGINAL COST DEPTH
               2848.feet
MARGINAL COST
            10.79250
            9.24400
            3.84450
             9.59400
            11.49250
            14.54000
           18.73650
           24.08200
           30.57650
           38.22000
           47.01250
           56.95400
           68.04450
           80.28400
           93.67250
          108.21000
          123.89650
          140.73200
POINT OF INFLECTION
        42697.80600
MINIMUM AVERAGE COST
            9.99588
MINIMUM MARGINAL COST
            8.83117
```

Table 57

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY WIOLES IN REGION I (Carbon-Permian)

 $\hat{\mathbf{Y}} = 6.90 - 0.11(10^{-2})\mathbf{X}_1 + 0.18(10^{-6})\mathbf{X}_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUE	S	ESTIMATED VALUES	RESIDUAL
NUMBER	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1	2102.	4418404.	5.8200	5.4808	0.3392
	3315.	10989225.	4.4900	5.3973	-0.9073
2 3 4 5 6	4584.	21013056.	4.8300	5.8866	-1.0566
4	6679.	44609041.	6.3500	7.9846	-1.6346
5	8760.	76737600.	9.4500	11.6594	-2.2094
6	11780.	69384200	17.6400	19.8126	-2.1726
7	830.	688900.	7.0500	6.1470	0.9030
8	1829.	3345241.	6.5500	5.5739	0.9761
ğ	3069.	9418761.	6.5200	5.3707	1.1493
10	4338.	18818244.	7.1600	5.7457	1.4143
11	6157.	37908649.	11.2000	7.3115	3.8885
12	888.	788544•	7.4200	6.1037	1.3163
13	1873.	3508129.	6.7100	5.5570	1.1530
14	3167.	10029889.	7.0200	5.3787	1.6413
15	4414.	19483396.	7.4500	5.7869	1.6631
16	6351.	40335201.	8.5800	7.5500	1.0300
17	8753.	76615009.	11.4700	11.6444	-0.1744
18	11095.	123099025	15.6500	17.6705	-2.0205
19	13686.	193653298	34.0000	26.6771	7.3229
20	16509.	268136770.	37.3900	39.2882	-1.8982
21	820.	672400.	5.0500	6.1546	-1.1046
22	1787.	3193369.	4.5600	5.5906	-1.0306
23	3039.	9235521.	5.4500	5.3690	0.0810
24	4300.	18490000	5.6600	5.7259	-0.0659
25	6099•	37197801.	6.0900	7.2429	-1.1529
26	8606.	74063236.	7.5700	11.3331	-3.7631
27	816.	665856	5.9000	6.1576	-0.2576
28	1814.	3290596.	5.4300	5.5798	- 0.1498
29	3028.	9168784.	6.4600	5.3684	1.0916
30	4171.	17397241.	7.7500	5.6627	2.0873
31	979.	958441.	4.3100	6.0383	-1.7283
32	1897.	3598609.	5.7400	5.5481	0.1919
33	3152.	9935104.	4.9300	5.3772	-0.4472
34	4385.	19228225.	5.2800	5.7709	-0.4909
35	6000.	36000000.	7.1700	7.1286	0.0414
36	840.	705600.	4.2800	6.1394	-1.8594
37	1780.	3168400.	4.8100	5.5934	-0.7834
38	2996.	8976016.	5.8700	5.3671	0.5029
39	748.	559504.	5.7900	6.2103	-0.4203
40	1671.	2792241.	4.9400	5.6402	-0.7002
41	2923.	8543929.	4.6000	5.3654	-0.7654

COEFFICIENT	STANDARD ERROR	Ţ-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.69010858E 01 -0.10604930E-02	0.69677698E 00 0.25980275E-03 0.17314141E-07	0.99042965E 01 -0.40819161E 01 0.10573349E 02	0.09999999E 01 0.44397561E 04 0.33372419E 08	0. 0.84413901E 00 0.94610474E 00

RSQ = 0.9271 R = 0.9629 F(2, 38) = 241.5781 SUMUSQ = 137.9256 DURBIN-W.= 1.8373

Table 57a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN REGION I

(Carbon Permian)

```
DEPTH
   12000.feet
 TOTAL COST
          6024.10000
         11026.80000
         16106.70000
         22352.40000
         30292.50000
         42795.60000
         59170.29900
         31115.19900
        109728.90000
        146110.000000
        191357.10000
       246568.80000
       312843.70000
391280.40000
        482977.50000
        589033.60000
        710547.31000
       848617.20000
MINIMUM AVERAGE COST DEPTH
               2895.feet
MINIMUM MARGINAL COST DEPTH
               1930. feet
MARGINAL COST
             5.33030
             4.85820
             5.48470
             7.20980
            10.03350
            13.95580
            18.97670
            25.09620
            32.31430
            40.63100
            50.04630
            60.56020
            72.17270
            34.88380
            98.69350
           113.60180
          129.60870
          146.71420
POINT OF INFLECTION
        15534.89300
MINIMUM AVERAGE COST
             5.36687
MINIMUM MARGINAL COST
             4.85549
```

Table 58

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OIL WELLS IN REGION II (Cenozoic)

 $\hat{Y} = 9.45 - 0.10(10^{-2})X_1 + 0.17(10^{-6})X_2$

Where:

Ŷ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE NUMBER	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
	\mathbf{x}_{1}	x ₂	Y	Ŷ	Y - Ŷ
1	945.	893025.	8.3500	8.6350	-0.2850
2	1910.	3648100.	8.8700	8.1055	0.7645
2 3 4 5 6 7	3205.	10272025.	10.4600	7.8898	2.5702
4	4396.	19324816.	12.4500	8.1922	4.2578
5	6235.	38875225.	11.8200	9.6014	2.2186
6	8783.	77141089.	12.8800	13.4445	-0.5645
7	11343.	128663649.	18.2100	19.5171	-1.3071
8	13996.	197944008.	25.0600	28.1494	-3.0894
9	671.	450241.	12.4700	8,8428	3.6272
10	1917.	3674889.	7.7500	8.1028	-0.3528
11	3210.	10304100.	6.2600	7.8901	-1.6301
12	4378.	19166884.	6.3900	8.1840	-1.7940
13	6376.	40653376.	9.3100	9.7567	-0.4467
14	8755.	76650025.	14.4200	13.3903	1.0297
15	10972.	120384784.	23.4000	18.4997	4.9003
16	2052.	4210704.	7.9100	8.0541	-0.1441
17	3250.	10562500.	9.4800	7.8925	1.5875
18	4501.	20259001.	9.5800	8.2419	1.3381
19	6622.	43850884.	10.8800	10.0437	0.8363
20	8891.	79049881.	14.9400	13.6559	1.2841
21	11502.	132296004.	21.9800	19.9674	2.0126
22	14066.	198926178.	28.5500	28.4094	0.1406
23	800.	640000.	6.4800	8.7418	-2.2618
24	1770.	3132900.	5.9200	8.1628	-2.2428
25	3064.	9388096.	6.8200	7.8858	-1.0658
26	4378.	19166884.	8.1300	8.1840	-0.0540
27	6151.	37834801.	7.2800	9.5121	-2.2321
28	8515.	72505225.	12.5800	12.9369	-0.3569
29	787.	619369.	10.2100	8.7517	1.4583
30	1827.	3337929.	8.4700	8.1386	0.3314
31	3101.	9616201.	7.9000	7.8862	0.0138
32	4349.	18913801.	7.8500	8.1712	-0.3212
33	6195.	38378025.	8.1800	9.5586	-1.3786
34	8360.	69889600.	11.2500	12-6545	-1.4045
35	3595.	12924025.	4.0500	7.9360	-3.8860
36	4536.	20575296.	7.6500	8.2592	-0.6092
37	6066.	36796356.	6.4800	9.4242	-2.9442
İ					

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.94588698E 01	0.95594873E 00	0.98947459E 01	0.09999999E 01	0.
-0.10316027E-02	0.33478972E-03	-0.30813453E 01	0.54451351E 04	0.82903978E 00
0.16912110E-06	0.23627842E-07	0.71577041E 01	0.42913242E 08	0.91675043E 00

RSQ = 0.8753 R = 0.9356 F(2, 34) = 119.2880 SUMUSQ = 143.8210 DURBIN-W.= 1.2662

Table 58a

TOTAL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN REGION II

(Cenozoic)

```
DEPTH
  19000 feet
 TOTAL COST
         8596.09990
        16142.80000
        23654.70000
        32146.40000
        42632.50000
        56127.60000
        73646.30000
        96203.20000
       124812.90000
       160490.00000
       204249.10000
       257104.80000
       320071.70000
       394164.40000
       480397.50000
       579785.60000
       693343.30000
       822085.21000
MINIMUM AVERAGE COST DEPTH
              3051.feet
MINIMUM MARGINAL COST DEPTH
              2034. feet
MARGINAL COST
            7.90230
            7.36020
            7.83270
            9.31980
           11.82150
           15.33780
           19.86870
           25.41420
           31.97430
           39.54900
           48.13830
           57.74220
           68.36070
           79.99380
           92.64150
          106.30380
          120.98070
          136.67220
POINT OF INFLECTION
        24059.00300
MINIMUM AVERAGE COST
            7.88445
MINIMUM MARGINAL COST
             7.35960
```

Table 59

ESTIMATED AVERAGE DRILLING COST EUNCTION FOR GAS WELLS IN REGION II (Cenozoic)

 $\hat{Y} = 13.55 - 0.16(10^{-2})x_1 + 0.20(10^{-6})x_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUE	s	ESTIMATED VALUES	RESIDUAL
NUMBER	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1	1090.	1188100.	9.7900	12.0122	-2.2222
2 3	1751.	3066001.	12.4500	11.3037	1.1463
4	2986.	8916196.	12.3000	10.4397	1.8603
5	4281.	18326961.	11.8200	10.1770	1.6430
6	5995.	35940025.	11.7600	10.8416	0.9184
7	8523.	72641529.	13.5300	13.9272	-0.3972
å l	10898. 13745.	118766404.	18.6800	19.1120	-0.4320
9	16528.	94462512.	26.7400	28.2458	-1.5058
10	761.	68293696.	41.0000	40.2502	0.7498
ii	4345 .	579121.	11.0000	12.4288	-1.4288
12	6177.	18879025.	7.0700	10.1811	-3.1111
13	8648.	38155329.	10.1100	10.9800	-0.8700
14	11102.	74787904.	13.5300	14.1449	-0.6149
15	13440.	123254404.	23.2300	19.6606	3.5694
16	1934.	190316800.	27.4200 12.1100	27.1151	0.3049
17	3081.	3740356. 9492561.	12.1100	11.1379	0.9721
18	4950.	24502500.	9.8400	10.3981	1.7619
19	6756.	45643536.	10.3300	10.2991	-0.4591
20	8510.	72420100.	12.8900	11.5065	-1.1765
21	11292.	127509264.	20.6200	13.9049	-1.0149
22	1997.	3988009.	11.9500	20.1863	0.4337
23	2910.	8468100.	10.5000	11.0839	0.8661
24	9327.	86992929.	15.9900	10.4756	0.0244
25	11409.	130165281.	19.1300	15.4344 20.5170	0.5556
26	13952.	197329152.	29.4500	29.0340	-1.3870
27	16633.	269164172.	40.1600	40.7626	0.4160
	20035.	209104172.	40.1000	40.7626	-0.6026

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.13555149E 02 -0.16295295E-02	0.81703498E 00 0.23521020E-03	0.16590659E 02 -0.69279713E 01	0.09999999E 01 0.75192963E 04	0. 0.87406142E 00
0.19631346E-06	0.13743018E-07	0.14284596E 02	0.79313777E 08	0-96202286F 00

RSQ = 0.9752 R = 0.9875 F(2, 24)= 471.1217 SUMUSQ = 52.4999 DURBIN-W.= 1.5069

Table 59a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN REGION II

(Cenozoic)

```
DEP TH
   18000.feet
 TOTAL COST
        12126.30000
        22170.40000
        31310.10000
        40723.20100
        51587.50000
        65080.80000
        82380.89900
       104665.60000
       133112.70000
       168900.00000
       213205.30000
       267206.40000
       332081.10000
       409007.19000
       499162.50000
       603724.81000
       723871.91000
       360781.60000
MINIMUM AVERAGE COST DEPTH
               4152.feet
MINIMUM MARGINAL COST DEPTH
              2763. feet
MARGINAL COST
           10.88890
            9.39560
            9.08010
            9.94240
            11.98250
            15.20040
            19.59610
           25.16960
           31.92090
           39.35000
            48.95690
            59.24160
            70.70410
           83.34440
           97.16250
          112.15840
          128.33210
          145.68360
POINT OF INFLECTION
        42249.94900
MINIMUM AVERAGE COST
            10.17628
MINIMUM MARGINAL COST
             9.04837
```

Table 60
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN REGION II (Cenozoic)

 $\hat{Y} = 7.45 - 0.15 (10^{-2}) X_1 + 0.20(10^{-6}) X_2$

Where:

Y' = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUE	s	ESTIMATED VALUES	RESIDUAL
NUMBER	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1	847.	717409.	7.1300	6.3232	0.8068
2	1877.	3523129.	5.6400	5.3299	0.3101
3	3153.	9941409.	5.1600	4.6849	0.4751
3 4	4307.	18550249.	5.8600	4.6596	1.2004
5	6225•	38750625.	7.5000	5.7900	1.7100
6	8787.	77211369.	10.9900	9.5839	1.4061
7	11219.	125865961.	16.0600	15.6021	0.4579
8	13633.	92929344•	17.0000	23.9036	-6.9036
9	2532•	6411024.	5.0000	4.9179	0.0821
10	4434.	19660356.	5.4900	4.6892	0.8008
ii	5917.	35010889.	6.5800	5.5098	1.0702
12	8548.	73068304.	9.5200	9.1195	0.4005
13	11472.	131606784.	9.8300	16.3633	-6.5333
14	836.	698896.	7.0000	6.3361	0.6639
15	1825•	3330625	5.8400	5.3700	0.4700
16	3065.	9394225	4.6000	4.7086	-0.1086
17	4329•	18740241.	4.0800	4.6643	-0.5843
18	6121.	37466641.	4.1200	5.6911	-1.5711
19	8715.	75951225•	9.0300	9.4416	-0.4116
20	11045.	121992025.	15.3200	15.0933	0.2267
21	815.	664225.	4.0600	6.3609	-2.3009
22	1806.	3261636.	3.4600	5.3849	-1.9249
23	3049.	9296401.	4.0800	4.7132	-0.6332
24	4291.	18412681.	6.6300	4.6563	1.9737
25	6122.	37478884.	5.5900	5.6921	-0.1021
26	8635•	74563225.	10.4800	9.2859	1.1941
27	11215.	125776225.	19.3300	15.5903	3.7397
28	13464.	190639648	28.5300	23.2470	5.2830
29	18690.	287329025.	50.0400	48.8123	1.2277
30	3427.	11744329.	5.1700	4.6309	0.5391
31	4513.	20367169.	4.1100	4.7108	-0.6008
32	6091.	37100281.	3.3000	5.6634	-2.3634

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.74564342E 01	0.11190859E 01	0.66629682E 01	0.09999999E 01	0.
-0.15064259E-02	0.32130256E-03	-0.46884961E 01	0.62814062E 04	0.83049481E 00
0.19899150E-06	0.18729658E-07	0.10624406E 02	0.58219077E 08	0.94260571E 00

RSQ = 0.9366 R = 0.9678 F(2, 29) = 214.1302 SUMUSQ = 167.9000 DURBIN-W.= 1.5513

Table 60a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN REGION II

(Cenozoic)

```
DEPTH
  18000.feet
 TOTAL COST
         6149.00000
        10480.00000
        14187.00000
        18464.00000
        24505.00000
        33504.00000
        46654.99900
        65151.99900
        90188.99900
       122960.000000
       164659.00000
       216480.000000
       279617.00000
       355264.000000
       444615.00000
       548864.00000
       669205.01000
       806832.00000
MINIMUM AVERAGE COST DEPTH
               3784.feet
MINIMUM MARGINAL COST DEPTH
               2523.feet
MARGI VAL COST
             5.04100
             3.82000
             3.79300
             4.96000
             7.32100
            10.87600
            15.62500
           21.56800
           28.70500
            37.03600
            46.56100
            57.28000
            69.19300
            82.30000
            96.60100
          112.09600
128.78500
           146.66300
POINT OF INFLECTION
        17431.41500
MINIMUM AVERAGE COST
             4.60671
MINIMUM MARGINAL COST
             3.65694
```

Table 61 ESTIMATED AVERAGE DRILLING COST FUNCTION FOR OWS WELLS IN REGION III (Mesozoic)

 $\hat{\mathbf{Y}} = 18.40 - 0.24(10^{-2})\mathbf{X}_1 + 0.195(10^{-6})\mathbf{X}_2$ Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE	OBSERVED VALUES			ESTIMATED VALUES	RESIDUAL
NUMBER	x ₁	x ₂	Y	Ŷ	Y - Ŷ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	727. 1705. 2955. 4283. 5867. 771. 1821. 3091. 4347. 6068. 8519. 11028. 13193. 839. 1958. 3267. 4446. 6509. 9047. 11324.	528529. 2907025. 8732025. 18344089. 34421689. 594441. 3316041. 9554281. 18896409. 36820624. 72573361. 121616784. 187027624. 703921. 3833764. 10673289. 19766916. 42367081. 81848209. 128232976.	17.1000 15.0500 12.5500 10.4300 12.1400 16.2300 13.5000 11.3900 9.7500 10.0900 12.5200 16.7100 18.2600 19.2800 15.2800 12.4700 10.2600 12.2000 13.8600 16.6900	16.7513 14.8465 12.9552 11.6137 10.9134 16.6576 14.6453 12.7862 11.5665 10.8945 11.9321 15.4216 20.4066 16.5142 14.4145 12.5782 11.4965 10.9083 12.4624 15.9953	0.3487 0.2035 -0.4052 -1.1837 1.2266 -0.4276 -1.1453 -1.3962 -1.8165 -0.8045 0.5879 1.2884 -2.1466 2.7658 0.8655 -0.1082 -1.2365 1.2917 1.3976 0.6947

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.18408988E 02	0.80086083E 00	0.22986501E 02	0.09999999E 01	0.
-0.24220044E-02	0.31520085E-03	-0.76840034E 01	0.50882500E 04	0.10599291E-00
0.19505961E-06	0.23715746E-07	0.82248984E 01	0.39489334E 08	0.33428725E-00

RSQ = R = F(2, 17) = SUMUSQ = DURBIN-W.= 0.8014 0.8952 34.3054 31.2811 1.9952

Table 6la

TOT AL AND MARGINAL DRILLING COSTS FOR OIL WELLS IN REGION III

(Mesozoic)

(in dollars)

```
DEPTH
   18000.feet
 TOTAL COST
        16183.00000
        28692.00000
        38697.00100
        47368.00000
        55875.00000
        65388.00100
        77077.00100
        92112.00000
       111663.00000
       136900.00000
       168993.00000
       209112.00000
       258427.00000
       318108.00000
       389325.00000
       473248.00000
       571047.01000
       683892.00000
MINIMUM AVERAGE COST DEPTH
               6210. feet
MINIMUM MARGINAL COST DEPTH
               41 40. feet
MARGINAL COST
           14.15100
           11.06200
            9.14300
            8.39400
            8.81500
            10.40600
           13.16700
           17.09800
           22.19900
           28.47000
           35.91100
            44.52200
            54.30300
            65.25400
            77.37500
            90.66600
           105.12700
           120.75800
POINT OF INFLECTION
         67625.84000
MINIMUM AVERAGE COST
            10.88938
MINIMUM MARGINAL COST
             8.38251
```

Table 62

ESTIMATED AVERAGE DRILLING COST FUNCTION FOR CAS WELLS IN REGION III (Mesozoic)

 $\hat{Y} = 12.60 - 0.9(10^{-3}) x_1 + 0.16(10^{-6}) x_2$

Where:

 $\hat{\hat{Y}}$ = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

NUMBER X ₁ X ₂ Y Ŷ 1 5828. 33965584. 14.3400 12.7338 2 8182. 66945124. 17.3300 15.8620 3 2236. 4999696. 12.0500 11.3673 4 3455. 11937025. 10.7500 11.3697 5 4536. 20575296. 9.9800 11.7683 6 6776. 45914176. 12.8600 13.7810 7 8917. 79512889. 12.3200 17.2009 8 12022. 72264242. 25.3200 24.7589 9 14189. 100663860. 28.3700 31.8560	RESIDUAL	ESTIMATED VALUES	OBSERVED VALUES			SAMPLE			
2 8182. 66945124. 17.3300 15.8620 3 2236. 4999696. 12.0500 11.3673 4 3455. 11937025. 10.7500 11.3697 5 4536. 20575296. 9.9800 11.7683 6 6776. 45914176. 12.8600 13.7810 7 8917. 79512889. 12.3200 17.2009 8 12022. 72264242. 25.3200 24.7589	Y - Ŷ	Ŷ	Y	x ₂	NUMBER X,				
10 17007. 72309512. 44.4200 43.3258 11 4294. 18438436. 11.4000 11.6467 12 6003. 36036009. 13.5800 12.9056 13 8346. 69655716. 19.5200 16.1459 14 11427. 130576329. 24.9000 23.0724 15 14050. 98701250. 32.0100 31.3558	1.6062 1.4680 0.6827 -0.6197 -1.7883 -0.9210 -4.8809 0.5611 -3.4860 1.0942 -0.2467 0.6744 3.3741 1.8276	15.8620 11.3673 11.3697 11.7683 13.7810 17.2009 24.7589 31.8560 43.3258 11.6467 12.9056 16.1459 23.0724	17.3300 12.0500 10.7500 9.9800 12.8600 12.3200 25.3200 28.3700 44.4200 11.4000 13.5800 19.5200 24.9000	33965584. 66945124. 4999696. 11937025. 20575296. 45914176. 79512889. 72264242. 100663860. 72309512. 18438436. 36036009. 69655716. 130576329.	5828. 8182. 2236. 3455. 4536. 6776. 8917. 12022. 14189. 17007. 4294. 6003. 8346. 11427.	1 2 3 4 5 6 7 8 9 10 11 12 13 14			

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.12595283E 02	0.27131832E 01	0.46422530E 01	0.09999999E 01	0.
-0.90584718E-03	0.65613861E-03	-0.13805728E 01	0.84845333E 04	0.93294191E 00
0.15950979E-06	0.34077887E-07	0.46807418E 01	0.90070200E 08	0.97305916E 00

RSQ = 0.9541 R = 0.9768 F(2, 12)= 124.8032 SUMUSQ = 62.7873 DURBIN-W.= 1.6055

Table 62a

TOTAL AND MARGINAL DRILLING COSTS FOR GAS WELLS IN REGION III

(Mesozoic)

(in dollars)

```
DEPIH
   18000.feet
 TOTAL COST
        11853.70000
        22852.90000
        33954.30000
        46115.20000
        60292.50100
        77443.20100
        98524.30000
       124492.80000
       156305.70000
       194920.000000
       241292.70000
       296380.80000
       361141.30000
       436531.20000
       523507.50000
       623027.19000
       736047.30000
       863524.80000
MINIMUM AVERAGE COST DEPTH
               2339. feet
MINIMUM MARGINAL COST DEPTH
               1893. feet
MARGINAL COST
            11.26690
            10.89080
            11.47170
            13.00960
            15.50450
            18.95640
            23.36530
            28.73120
            35.05410
            42.33 400
            50.57090
            59.76480
            69.91570
            81.02360
           93.08850
106.11040
           120.08930
           135.02520
POINT OF INFLECTION
        32126.06100
MINIMUM AVERAGE COST
11.31399
MINIMUM MARGINAL COST
            10.88532
```

Table 63
ESTIMATED AVERAGE DRILLING COST FUNCTION FOR DRY HOLES IN REGION III (Mesozoic)

 $\hat{Y} = 19.33 - 0.39(10^{-2})X_1 + 0.32(10^{-6})X_2$

Where:

 \hat{Y} = Estimated drilling cost per foot

 $X_1 = Depth$

X₂ = Square of depth

SAMPLE		OBSERVED VALUE	S	ESTIMATED VALUES	RESIDUAL
NUMBER X	x ₂	Y	Ŷ	Y - Ŷ	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	740. 1637. 2922. 4157. 5795. 8493. 858. 1829. 3081. 4337. 6163. 8717. 11109. 13277. 18403. 811. 1694. 3086. 4309. 6069. 8815. 11075. 13603.	547600. 2679769. 8538084. 17280649. 33582025. 72131049. 736164. 3345241. 9492561. 18809569. 37982569. 75986089. 123409881. 188139364. 284667602. 657721. 2869636. 9523396. 18567481. 36832761. 77704225. 122655625. 192520804.	15.6900 12.2500 9.2900 6.2900 6.3200 14.2700 17.1900 14.8700 9.0500 11.0100 13.2900 16.8900 61.7100 14.0200 11.0600 10.0200 12.6400 11.9100 20.4200	16.5996 13.7608 10.6008 8.5699 7.3980 9.2502 16.1964 13.2208 10.2840 8.3563 7.3734 9.6156 15.5409 24.1078 56.4523 16.3559 13.5980 10.2743 8.3882 7.3714 9.7857 15.4308 25.6589	-0.9096 -1.5108 -1.3108 -2.2799 -1.0780 5.0198 0.9936 1.6492 1.2860 0.1437 1.6766 1.3944 -2.2509 -7.2178 5.2577 -2.3359 -2.1880 0.7857 1.6318 5.2686 2.1243 -0.9108 -5.2389

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.19333119E 02	0.15670921E 01	0.12336938E 02	0.09999999E 01	0.
-0.39332607E-02	0.47160805E-03	-0.83401049E 01	0.61295652E 04	0.60701833E 00
0.32333207E-06	0.27430759E-07	0.11787207E 02	0.59709687E 08	0.80259019E 00

RSQ = 0.9205 R = 0.9594 F(2, 20) = 115.8361 SUMUSQ = 205.3996 DURBIN-W.= 1.8129

Table 63a

TOTAL AND MARGINAL DRILLING COSTS FOR DRY HOLES IN REGION III

(Mesozoic)

(in dollars)

```
DEPTH
   18000 .feet
 TOTAL COST
        15720.30000
        25514.40000
        31322.10000
        35083.20000
        38737.49900
         44224.79800
        53 48 4 . 8 9 8 0 0
        68457.59800
        91082.69700
       123300.00000
       167049.30000
       224270.39000
       296903.09000
       386887.19000
       496162.49000
       626668.79000
       780345.89000
       959133.60000
MINIMUM AVERAGE COST DEPTH
               6083 feet
MINIMUM MARGINAL COST DEPTH
               4055 •feet
MARGINAL COST
           12.43390
             7.47760
             4.46110
             3.38440
             4.24750
             7.05040
            11.79310
            18.47560
           27.09790
           37.66000
           50.16190
            64.60360
           30.98510
            99.30640
           119.56750
           141.76840
          165.90910
          191.98960
POINT OF INFLECTION
        44820.11000
MINIMUM AVERAGE COST
             7.36859
MINIMUM MARGINAL COST
             3.38146
```

SECTION II: INTERMEDIATE SIZE DIAMETER DRILLING COST FUNCTIONS

Includes Tables 1 to 44 and Figures of Average Costs for Cased and Uncased Wells as a Function of Both Depth and Diameter.

Table 1

MUD COSTS AS A FUNCTION OF DEPTH AND DIAMETER

(in dollars)

$$Y_{MU} = \frac{1}{5.6148} (\pi \cdot \frac{\Phi^2}{4} \cdot D \cdot P \cdot 2)$$

Where:

Y_{MU} = Mud cost per well;

P = Price of mud per barrel equal to \$4.00 in our calculations;

φ = Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing

ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3} \phi$;

D = Depth ranging from 1,000 to 10,000 feet in our calculations.

YMU (given	Y _{MU} (given	Y _{MU} (given	Υ _{MU} (given	Y _{MU} (given	Υ _{MU} (given
$\phi = 10 \text{ in.}$)	φ = 11 in.)	φ = 12 in.)	φ = 13 in.)	φ = 14 in.)	φ = 15 in.)
777.11	940.30	1119.04	1313.32	1523.14	1748.50
1554.22	1880.61	2238.08	2626.63	3046.27	3497.00
2331.33	2820.91	3357.12	3939.95	4569.41	5245.50
3108.44	3761.21	4476.16	5253.27	6092.55	6993.99
3885.55	4701.52	5595.19	6566.58	7615.68	8742.49
4662.66	5641.82	6714.23	7879.90	9138.82	10490.99
5439.77	6582.13	7833.27	9193.22	10661.95	12239.49
6216.88	7522.43	8952.31	10506.53	12185.09	13987.99
6993.99	8462.73	10071.35	11819.85	13708.23	15736.49
7771.10	9403.04	11190.39	13133.17	15231.36	17484.98
Y _{MU} (given	$\phi = 17 \text{ in.}$	Υ _{MU} (given	Y _{MU} (given	Υ _{MU} (given	Y _{MU} (given
φ = 16 in.)		φ = 18 in.)	\$\phi = 19 in.)	φ = 20 in.)	φ = 21 in.)
1989.40	2245.85	2517.84	2805.37	3108 • 44	3427.06
3978.81	4491.70	5035.68	5610.74	6216 • 88	6854.11
5968.21	6737.55	7553.51	8416.11	9325 • 32	10281.17
7957.61	8983.40	10071.35	11221.47	12433 • 77	13708.23
9947.01	11229.25	12589.19	14026.84	15542 • 21	17135.28
11936.42	13475.09	15107.03	16832.21	18650 • 65	20562.34
13925.82	15720.94	17624.86	19637.58	21759 • 09	23989.40
15915.22	17966.79	20142.70	22442.95	24867 • 53	27416.46
17904.62	20212.64	22660.54	25248.32	27975 • 97	30843.51
19894.03	22458.49	25178.38	28053.68	31084 • 42	34270.57

Y _{MU} (given	Y _{MU} (given	Y _{MU} (given	Y _{MU} (given	Y _{MU} (given	Y _{MU} (given
$\phi = 22 \text{ in.})$	$\phi = 23 \text{ in.})$	$\phi = 24 \text{ in.})$	$\phi = 25 \text{ in.}$	ϕ = 26 in.)	$\phi = 27 \text{ in.}$
3761.21	4110.91	4476 • 16	4856 • 94	5253•27	5665+13
7522 • 43	8221 • 83	8952 • 31	9713.88	10506.53	11330 • 27
	12332.74	13428 • 47	14570 • 82	15759 80	16995 • 40
11283.64				21013.06	22660.54
15044.86	16443 • 66	17904.62	19427 • 76		1
18806 • 07	20554.57	22380.78	24284.70	26266 • 33	28325 • 67
22567•29	24665 • 48	26856 • 94	29141.64	31519.60	33990 • 81
26328.50	28776 • 40	31333.09	33998•58	36772.86	39655 • 94
30089.71	32887 • 31	35809.25	38855.52	42026 • 13	45321.08
33850 • 93	36998 • 23	40285 40	43712.46	47279 • 40	50986.21
37612 • 14	41109 • 14	44761.56	48569 • 40	52532.66	56651-35
					<u> </u>
Y _{MU} (given	Y _{MU} (given	Y _{MU} (given	Y _{MU} (given	Y _{MU} (given	Y _{MU} (given
				$\phi = 32 \text{ in.}$	$\phi = 33 \text{ in.})$
ϕ = 28 in.)	$\phi = 29 \text{ in.}$	$\phi = 30 \text{ in.}$	$\phi = 31 \text{ in.}$	$\psi = 32 \text{ in.}$	Ψ = 35 m. /
6000.55	4525 50	6993•99	7468•03	7957.61	8462.73
6092.55	6535.50		14936 • 06	15915.22	
12185 • 09	13071-00	13987.99			16925 • 46
18277 • 64	19606 • 50	20981 • 98	22404.09	23872.83	25388•20
24370 • 18	26141.99	27975•97	29872 • 12	31830 • 44	33850.93
30462.73	32677 • 49	34969.97	37340 • 15	39788.05	42313.66
36555 • 27	39212.99	41963 • 96	44808 • 19	47745.66	50776.39
42647 • 82	45748•49	48957 • 96	52276 • 22	55703.27	59239 • 13
48740 • 36	52283•99	55951.95	59744.25	63660.88	67701.86
		62945.94	67212.28	71618-49	
54832 • 91	58819 • 49	69939.94	74680.31	79576 • 11	76164.59
60925•46	65354•98	07737•74	74660.31	77378•11	84627 • 32
Y _{MII} (given	Y _{MII} (given	Y _{MII} (given	Y _{MII} (given	Y _{MU} (given	Y _{MU} (given
Y _{MU} (given • 34 in.)	Y _{MU} (given φ = 35 in.)	Υ _{MU} (given φ = 36 in.)	Y _{MU} (given ϕ = 37 in.)	Y _{MU} (given ф = 38 in.)	Υ _{MU} (given φ = 39 in.)
			, -·		
	φ = 35 in.)	φ = 36 in.)	$\phi = 37 \text{ in.}$	$\phi = 38 \text{ in.})$	$\phi = 39 \text{ in.}$
φ = 34 in.) 8983•40	φ = 35 in.) 9519.60	φ = 36 in.) 10071.35	φ = 37 in.) 10638•64	φ = 38 in.)	φ = 39 in.) 11819•85
φ = 34 in.) 8983.40 17966.79	φ = 35 in.) 9519.60 19039.20	φ = 36 in.) 10071.35 20142.70	φ = 37 in.) 10638.64 21277.28	Φ = 38 in.) 11221.47 22442.95	φ = 39 in.) 11819.85 23639.70
φ = 34 in.) 8983.40 17966.79 26950.19	\$\phi = 35 in.) 9519.60 19039.20 28558.81	φ = 36 in.) 10071.35 20142.70 30214.05	φ = 37 in.) 10638.64 21277.28 31915.93	φ = 38 in.) 11221.47 22442.95 33664.42	φ = 39 in.) 11819.85 23639.70 35459.55
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59	\$\phi = 35 in.) 9519.60 19039.20 28558.81 38078.41	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57	Φ = 38 in.) 11221.47 22442.95	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98	\$\phi = 35 in.) 9519.60 19039.20 28558.81	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21	φ = 38 in.) 11221.47 22442.95 33664.42	φ = 39 in.) 11819.85 23639.70 35459.55
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38	\$\phi = 35 in.) 9519.60 19039.20 28558.81 38078.41	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85	φ = 38 in.) 11221 • 47 22442 • 95 33664 • 42 44885 • 90 56107 • 37 67328 • 84 78550 • 32	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13	φ = 38 in.) 11221 • 47 22442 • 95 33664 • 42 44885 • 90 56107 • 37 67328 • 84 78550 • 32 89771 • 79	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13	φ = 38 in.) 11221 • 47 22442 • 95 33664 • 42 44885 • 90 56107 • 37 67328 • 84 78550 • 32 89771 • 79	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41	φ = 38 in.) 11221 • 47 22442 • 95 33664 • 42 44885 • 90 56107 • 37 67328 • 84 78550 • 32 89771 • 79 100993 • 27 112214 • 74	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41	φ = 38 in.) 11221 • 47 22442 • 95 33664 • 42 44885 • 90 56107 • 37 67328 • 84 78550 • 32 89771 • 79 100993 • 27 112214 • 74	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y MU (given φ = 40 in.)	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.)	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 Y MU (given φ = 42 in.)	$\phi = 37 \text{ in.})$ $10638 \cdot 64$ $21277 \cdot 28$ $31915 \cdot 93$ $42554 \cdot 57$ $53193 \cdot 21$ $63831 \cdot 85$ $74470 \cdot 49$ $85109 \cdot 13$ $95747 \cdot 77$ $106386 \cdot 41$ $Y_{MU} \text{ (given } \phi = 43 \text{ in.})$	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 YMU (given φ = 44 in.)	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 YMU (given φ = 45 in.)
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y _{MU} (given φ = 40 in.)	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.)	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.)	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.)	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.)	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 YMU (given φ = 45 in.)
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y MU (given φ = 40 in.)	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.) 13063.23 26126.45	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27416.46	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 Y MU (given φ = 43 in.) 14368.77 28737.54	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 YMU (given φ = 44 in.) 15044.86 30089.71	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 Y _{MU} (given φ = 45 in.) 15736.49 31472.97
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y MU (given φ = 40 in.)	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.)	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.)	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.)	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.)	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 YMU (given φ = 45 in.)
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y _{MU} (given φ = 40 in.) 12433.77 24867.53 37301.30	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.) 13063.23 26126.45	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27416.46	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 Y MU (given φ = 43 in.) 14368.77 28737.54	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 YMU (given φ = 44 in.) 15044.86 30089.71	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 Y _{MU} (given φ = 45 in.) 15736.49 31472.97
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y _{MU} (given φ = 40 in.) 12433.77 24867.53 37301.30 49735.07	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.) 13063.23 26126.45 39189.68 52252.90	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27416.46 41124.68 54832.91	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.) 14368.77 28737.54 43106.31 57475.09	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.) 15044.86 30089.71 45134.57 60179.43	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 Y _{MU} (given φ = 45 in.) 15736.49 31472.97 47209.46 62945.94
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y _{MU} (given φ = 40 in.) 12433.77 24867.53 37301.30 49735.07 62168.83	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.) 13063.23 26126.45 39189.68 52252.90 65316.13	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27.416.46 41124.68 54832.91 68541.14	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.) 14368.77 28737.54 43106.31 57475.09 71843.86	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.) 15044.86 30089.71 45134.57 60179.43 75224.29	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 Y _{MU} (given φ = 45 in.) 15736.49 31472.97 47209.46 62945.94 78682.43
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y _{MU} (given φ = 40 in.) 12433.77 24867.53 37301.30 49735.07 62168.83 74602.60	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 YMU (given φ = 41 in.) 13063.23 26126.45 39189.68 52252.90 65316.13 78379.36	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27.416.46 41124.68 54832.91 68541.14 82249.36	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 Y _{MU} (given φ = 43 in.) 14368.77 28737.54 43106.31 57475.09 71843.86 86212.63	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.) 15044.86 30089.71 45134.57 60179.43 75224.29 90269.14	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 Y _{MU} (given φ = 45 in.) 15736.49 31472.97 47209.46 62945.94 78682.43 94418.91
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y MU (given φ = 40 in.) 12433.77 24867.53 37301.30 49735.07 62168.83 74602.60 87036.37	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 Y _{MU} (given φ = 41 in.) 13063.23 26126.45 39189.68 52252.90 65316.13 78379.36 91442.58	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27416.46 41124.68 54832.91 68541.14 82249.36 95957.59	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.) 14368.77 28737.54 43106.31 57475.09 71843.86 86212.63 100581.40	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.) 15044.86 30089.71 45134.57 60179.43 75224.29 90269.14 105314.00	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 YMU (given φ = 45 in.) 15736.49 31472.97 47209.46 62945.94 78682.43 94418.91 110155.40
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y MU (given φ = 40 in.) 12433.77 24867.53 37301.30 49735.07 62168.83 74602.60 87036.37 99470.13	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 Y _{MU} (given φ = 41 in.) 13063.23 26126.45 39189.68 52252.90 65316.13 78379.36 91442.58 104505.81	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 Y MU (given φ = 42 in.) 13708.23 27.416.46 41124.68 54832.91 68541.14 82249.36 95957.59 109665.82	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.) 14368.77 28737.54 43106.31 57475.09 71843.86 86212.63 100581.40 114950.17	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.) 15044.86 30089.71 45134.57 60179.43 75224.29 90269.14 105314.00 120358.86	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 YMU (given φ = 45 in.) 15736.49 31472.97 47209.46 62945.94 78682.43 94418.91 110155.40 125891.88
φ = 34 in.) 8983.40 17966.79 26950.19 35933.59 44916.98 53900.38 62883.77 71867.17 80850.57 89833.96 Y MU (given φ = 40 in.) 12433.77 24867.53 37301.30 49735.07 62168.83 74602.60 87036.37	φ = 35 in.) 9519.60 19039.20 28558.81 38078.41 47598.01 57117.61 66637.22 76156.82 85676.42 95196.02 Y _{MU} (given φ = 41 in.) 13063.23 26126.45 39189.68 52252.90 65316.13 78379.36 91442.58	φ = 36 in.) 10071.35 20142.70 30214.05 40285.40 50356.75 60428.11 70499.46 80570.81 90642.16 100713.51 YMU (given φ = 42 in.) 13708.23 27416.46 41124.68 54832.91 68541.14 82249.36 95957.59	φ = 37 in.) 10638.64 21277.28 31915.93 42554.57 53193.21 63831.85 74470.49 85109.13 95747.77 106386.41 YMU (given φ = 43 in.) 14368.77 28737.54 43106.31 57475.09 71843.86 86212.63 100581.40	φ = 38 in.) 11221.47 22442.95 33664.42 44885.90 56107.37 67328.84 78550.32 89771.79 100993.27 112214.74 Y _{MU} (given φ = 44 in.) 15044.86 30089.71 45134.57 60179.43 75224.29 90269.14 105314.00	φ = 39 in.) 11819.85 23639.70 35459.55 47279.40 59099.25 70919.10 82738.94 94558.79 106378.64 118198.49 YMU (given φ = 45 in.) 15736.49 31472.97 47209.46 62945.94 78682.43 94418.91 110155.40

Table 2

CUTTER COSTS FOR SOFT ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

$$Y_{CU} = W \frac{\phi^2}{4} DC_H$$

Where:

YCU = Cutter cost per well;

φ = iDiameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3}$ φ;

D = Depth ranging from 1,000 to 10,000 feet in our calculations;

C_H = Cost per foot of linear cut as a function of the geological medium equal to \$0.50 in the below calculations for soft rock.

Y _{CU} (given	YCU (given $\phi = 11$ in. γ)	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given
ϕ = 10 in1)		φ = 12 in.)	$\varphi = 13 \text{ in.}$)	φ = 14 in.)	φ = 15 in.)
272.71	329.98	392.70	460.88	534.51	613.59
545.41	659.95	785.40	921.75	1069.01	1227.18
818.12	989.93	1178.10	1382.63	1603.52	1840.78
1090.83	1319.90	1570.79	1843.50	2138.03	2454.37
1363.54	1649.88	1963.49	2304.38	2672.53	3067.96
1636.24	1979.86	2356.19	2765.25	3207.04	3681.55
1908.95	2309.83	2748.89	3226.13	3741.55	4295.14
2181.66	2639.81	3141.59	3687.00	4276.05	4908.73
2454.37	2969.78	3534.29	4147.88	4810.56	5522.33
2727.07	3299.76	3926.99	4608.76	5345.07	6135.92
Y _{CU} (given φ = 16 in.)	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given
	\$\Phi = 17 in.)	\$\Phi = 18 in.)	\$\Phi = 19 in.)	¢ = 20 in.)	φ = 21 in.)
698.13	788.12	883.57	984.47	1090.83	1202.64
1396.26	1576.25	1767.14	1968.95	2181.66	2405.28
2094.39	2364.37	2650.72	2953.42	3272.49	3607.92
2792.52	3152.50	3534.29	3937.90	4363.32	4810.56
3490.66	3940.62	4417.86	4922.37	5454.15	6013.20
4188.79	4728.75	5301.43	5906.84	6544.98	7215.84
4886.92	5516.87	6185.01	6891.32	7635.81	8418.48
5585.05	6305.00	7068.58	7875.79	8726.64	9621.12
6283.18	7093.12	7952.15	8860.27	9817.47	10823.76
6981.31	7881.25	8835.72	9844.74	10908.30	12026.40

Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given
φ = 22 in.)	φ = 23 in.)	φ = 24 in.)	φ = 25 in.)	φ = 26 in.)	φ = 27 in.)
1319.90 2639.81 3959.71 5279.62 6599.52 7919.42 9239.33 10559.23 11879.14	1442.62 2885.24 4327.87 5770.49 7213.11 8655.73 10098.36 11540.98 12983.60 14426.22	1570.79 3141.59 4712.38 6283.18 7853.97 9424.77 10995.57 12566.36 14137.16 15707.95	1704.42 3408.84 5113.26 6817.69 8522.11 10226.53 11930.95 13635.37 15339.80 17044.22	1843.50 3687.00 5530.51 7374.01 9217.51 11061.01 12904.52 14748.02 16591.52 18435.02	1988.04 3976.07 5964.11 7952.15 9940.19 11928.22 13916.26 15904.30 17892.34 19880.37

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given φ = 31 in.)	Y _{CU} (given	Y _{CU} (given
φ = 28 in.)	φ = 29 in.)	φ = 30 in.)		φ = 32 in.)	φ = 33 in.)
2138.03	2293.47	2454.37	2620.72	2792.52	2969.78
4276.05	4586.94	4908.73	5241.44	5585.05	5939.57
6414.08	6880.41	7363.10	7862.16	8377.57	8909.35
8552.11	9173.88	9817.47	10482.87	11170.10	11879.14
10690.13	11467.35	12271.84	13103.59	13962.62	14848.92
12828.16	13760.82	14726.20	15724.31	16755.15	17818.71
14966.19	16054.29	17180.57	18345.03	19547.67	20788.49
17104.21	18347.76	19634.94	20965.75	22340.20	23758.27
19242.24	20641.23	22089.30	23586.47	25132.72	26728.06
21380.27	22934.70	24543.67	26207.19	27925.24	29697.84

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given	Y _{CU} (given
	φ = 35 in.)	φ = 36 in.)	ϕ = 37 in.)	φ = 38 in.)	φ = 39 in.)
3152.50	3340.67	3534.29	3733.37	3937 • 90	4147.88
6305.00	6681.33	7068.58	7466.73	7875 • 79	8295.76
9457.50	10022.00	10602.87	11200.10	11813 • 69	12443.64
12609.99	13362.67	14137.16	14933.46	15751 • 58	16591.52
15762.49	16703.33	17671.44	18666.83	19689 • 48	20739.40
18914.99	20044.00	21205.73	22400.19	23627 • 37	24887.28
22067.49	23384.67	24740.02	26133.56	27565 • 27	29035.16
25219.99	26725.33	28274.31	29866.92	31503 • 17	33183.04
28372.48	30066.00	31808.60	33600.29	35441 • 06	37330.92
31524.98	33406.66	35342.89	37333.65	39378 • 96	41478.81

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Ϋ́CU (given	Y _{CU} (given
\$\Phi = 40 in.)	φ = 41 in.)	ϕ = 42 in.)	φ = 43 in.)	Φ = 44 in.)	φ = 45 in.)
4363.32	4584.21	4810.56	5042.36	5279.62	5522.33
8726.64	9168.42	9621.12	10084.72	10559.23	11044.65
13089.96	13752.64	14431.68	15127.08	15838.85	16566.98
17453.28	18336.85	19242.24	20169.44	21118.47	22089.30
21816.60	22921.06	24052.80	25211.81	26398.08	27611.63
26179.92	27505.27	28863.36	30254.17	31677.70	33133.96
30543.24	32089.49	33673.92	35296.53	36957.32	38656.28
34906.56	36673.70	38484.48	40338.89	42236.93	44178.61
39269.87	41257.91	43295.04	45381.25	47516.55	49700.94
43633.19	45842.13	48105.60	50423.61	52796.17	55223.26

Table 3

CUTTER COSTS FOR MEDIUM SOFT ROCK AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

 $z_{\rm CH} = \pi \, \phi^2 \, DC_{\rm H}$

Where:

YCU = Cutter cost per well;

φ = Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3}$ φ;

D = Depth ranging from 1,000 to 10,000 feet in our calculations;

C_H = Cost per foot of linear cut as a function of the geological medium equal to \$0.75 in the below calculations for medium soft rock.

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	YCU (given	Y _{CU} (given
\$\Phi = 10 in.)	φ = 11 in.)	φ = 12 in.)	φ = 13 in.)	$\varphi = 14 \text{ in.}$)	Φ = 15 in.)
409.06	494.96	589.05	691.31	801.76	920.39
818.12	989.93	1178.10	1382.63	1603.52	1840.78
1227.18	1484.89	1767.14	2073.94	2405.28	2761.16
1636.24	1979.86	2356.19	2765.25	3207.04	3681.55
2045.31	2474.82	2945.24	3456.57	4008.80	4601.94
2454.37	2969.78	3534.29	4147.88	4810.56	5522.33
2863.43	3464.75	4123.34	4839.19	5612.32	6442.71
3272.49	3959.71	4712.38	5530.51	6414.08	7363.10
3681.55	4454.68	5301.43	6221.82	7215.84	8283.49
4090.61	4949.64	5890.48	6913.13	8017.60	9203.88
Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given φ = 21 in.)
\$\phi = 16 in.)	φ = 17 in.)	φ = 18 in.)	\$\Phi = 19 in.)	φ = 20 in.)	

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given
Φ = 16 in.)	Φ = 17 in.)	Φ = 18 in.)	Φ = 19 in.)	Φ = 20 in.)	Φ = 21 in.)
1047.20	1182 • 19	1325•36	1476•71	1636.24	1803.96
2094•39	2364•37	2650 • 72	2953•42	3272•49	3607 • 92
3141•59	3546•56	3976 • 07	4430•13	4908•73	5411 • 88
4188•79	4728•75	5301 • 43	5906•84	6544•98	7215 • 84
5235•98	5910•93	6626.79	7383•55	8181•22	9019.80
6283•18	7093•12	7952.15	8860•27	9817•47	10823.76
7330•38	8275•31	9277.51	10336•98	11453•71	12627.72
8377•57	9457 • 49	10602 · 87	11813•69	13089.96	14431•68
9424•77	10639 • 68	11928 · 22	13290•40	14726.20	16235•64
10471•97	11821 • 87	13253 · 58	14767•11	16362.45	18039•60

Υ _{CU} (given	Υ _{CU} (given	Y _{CU} (given	$ \begin{array}{l} Y_{CU} \text{ (given} \\ $	Y _{CU} (given	Y _{CU} (given
φ = 22 in.)	φ = 23 in.)	φ = 24 in.)		φ = 26 in.)	φ = 27 in.)
1979 • 86	2163.93	2356·19	2556.63	2765.25	2982.06
3959 • 71	4327.87	4712·38	5113.26	5530.51	5964.11
5939 • 57	6491.80	7068·58	7669.90	8295.76	8946.17
7919 • 42	8655.73	9424·77	10226.53	11061.01	11928.22
9899 • 28	10819.67	11780·96	12783.16	13826.27	14910.28
11879 • 14	12983.60	14137·16	15339.80	16591.52	17892.34
13858 • 99	15147.54	16493·35	17896.43	19356.78	20874.39
15838 • 85	17311.47	18849·54	20453.06	22122.03	23856.45
17818 • 71	19475.40	21205·73	23009.69	24887.28	26838.51
19798 • 56	21639.34	23561·93	25566.33	27652.54	29820.56

YCU (given	YCU (given	Y _{CU} (given Φ = 30 in.)	$\Upsilon_{CU}^{(given)}$ $\Phi = 31 \text{ in.})$	Y _{CU} (given Φ = 32 in.)	Y _{CU} (given φ = 33 in.)
Φ = 28 in.) 3207.04 6414.08 9621.12 12828.16 16035.20 19242.24 22449.28 25656.32 28863.36 32070.40	Φ = 29 in.) 3440.20 6880.41 10320.61 13760.82 17201.02 20641.23 24081.43 27521.64 30961.84 34402.05	3681 • 55 7363 • 10 11044 • 65 14726 • 20 18407 • 75 22089 • 31 25770 • 86 29452 • 41 33133 • 96 36815 • 51	3931.08 7862.16 11793.23 15724.31 19655.39 23586.47 27517.55 31448.63 35379.70	4188.79 8377.57 12566.36 16755.15 20943.93 25132.72 29321.51 33510.29 37699.08 41887.87	4454.68 8909.35 13364.03 17818.71 22273.38 26728.06 31182.74 35637.41 40092.09 44546.76

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given
	φ = 35 in.)	φ = 36 in.)	$\phi = 37$ in.)	\$\phi = 38 \text{ in.} \text{)}	φ = 39 in.)
4728.75 9457.49 14186.24 18914.99 23643.74 28372.49 33101.23 37829.98 42558.73 47287.48	5011.00 10022.00 15033.00 20044.00 25055.00 30066.00 35077.00 40088.00 45099.00	5301 • 43 10602 • 87 15904 • 30 21205 • 73 26507 • 17 31808 • 60 37110 • 03 42411 • 47 47712 • 90 53014 • 33	5600.05 11200.10 16800.14 22400.19 28000.24 33600.29 39200.34 44800.38 50400.43	5906.84 11813.69 17720.53 23627.37 29534.22 35441.06 41347.91 47254.75 53161.59 59068.44	6221.82 12443.64 18665.46 24887.28 31109.10 37330.93 43552.75 49774.57 55996.39 62218.21

YCU (given	YCU (given	YCU (given	Y _{CU} (given	Y _{ÇU} (given	YCU (given
$\phi = 40 \text{ in.}$	$\phi = 41 \text{ in.}$	$\phi = 42 \text{ in.})$	$\phi = 43 \text{ in.})$	$\phi = 44 \text{ in.})$	$\phi = 45 \text{ in.})$
6544.78 13089.96 19634.94 26179.92 32724.90 39269.87 45814.85 52359.83 58904.81	6876.32 13752.64 20628.96 27505.27 34381.55 41257.91 48134.23 55010.55 61886.87 68763.19	7215 • 84 14431 • 68 21647 • 52 28863 • 36 36079 • 20 43295 • 04 50510 • 88 57726 • 72 64942 • 56 72158 • 40	7563.54 15127.08 22690.62 30254.17 37817.71 45381.25 52944.79 60508.33 68071.87 75635.42	7919.42 15838.85 23758.27 31677.70 39597.12 47516.55 55435.97 63355.40 71274.82 79194.25	8283 • 49 16566 • 98 24850 • 47 33133 • 96 41417 • 45 49700 • 94 57984 • 43 66267 • 91 74551 • 40 82834 • 89

Table 4

CUTTER COSTS FOR MEDIUM HARD ROCK
AS A FUNCTION QF DEPTH AND DIAMETER
(in dollars)

$$Y_{CU} = \pi \frac{\phi^2}{4} DC_H$$

Where:

YCU = Cutter cost per well;

φ = Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3}$ φ;

D = Depth ranging from 1,000 to 10,000 feet in our calculations;

C_H = Cost per foot of linear cut as a function of the geological medium equal to \$1.00 in the below calculations for medium hard rock.

1 in.) $\phi = 12$ in.) 9.95 785.40 9.90 1570.79 9.86 2356.19 9.81 3141.59 9.76 3926.99	Φ = 13 in.) 921.75 1843.50 2765.25 3687.00 4608.76	1069.01 2138.03 3207.04 4276.05 5345.07	Y _{CU} (given Φ = 15 in.) 1227.18 2454.37 3681.55 4908.73
9.95 785.40 9.90 1570.79 9.86 2356.19 9.81 3141.59	1843 • 50 2765 • 25 3687 • 00	2138•03 3207•04 4276•05	2454•37 3681•55 4908•73
9.90 1570.79 9.86 2356.19 9.81 3141.59	1843 • 50 2765 • 25 3687 • 00	2138•03 3207•04 4276•05	2454•37 3681•55 4908•73
9 · 86 2356 · 19 9 · 81 3141 · 59	2765.25 3687.00	3207 • 04 4276 • 05	3681 • 55 4908 • 73
9.81 3141.59	3687.00	4276 • 05	4908 • 73
,,,,,			
9.76 3926.99	4608.76		/ / 25 00
			6135.92
9.71 4712.38	5530-51	6414.08	7363.10
9.66 5497.78	6452.26	7483.09	8590 29
6283 • 18	7374.01		9817 • 47
7068.58	8295.76	1	11044.65
7853.97	9217 • 51	10690 • 13	12271.84
	7068.58	7068.58 8295.76	7068.58 8295.76 9621.12

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	YCU (given
φ = 16 in.)	φ = 17 in.)	φ = 18 in.)	\$\Phi = 19 in.)	φ = 20 in.)	Ф = 21 in.)
1396.26 2792.52 4188.79 5585.05 6981.31 8377.57 9773.84 11170.10 12566.36 13962.62	1576.25 3152.50 4728.75 6305.00 7881.25 9457.50 11033.74 12609.99 14186.24 15762.49	1767 • 14 3534 • 29 5301 • 43 7068 • 58 8835 • 72 10602 • 87 12370 • 01 14137 • 16 15904 • 30 17671 • 44	1968.95 3937.90 5906.84 7875.79 9844.74 11813.69 13782.64 15751.58 17720.53	2181.66 4363.32 6544.98 8726.64 10908.30 13089.96 15271.62 17453.28 19634.94 21816.60	2405.28 4810.56 7215.84 9621.12 12026.40 14431.68 16836.96 19242.24 21647.52 24052.80

Y _{CU} (given	Y _{CU} (given	^Y CU ^{(given}	Υ _{CU} (given	Y _{CU} (given	YCU (given
φ = 22 in.)	φ = 23 in.)	φ = 24 in.)	φ = 25 in.)	φ = 26 in.)	$\phi = 27 \text{ in.}$)
2639.81	2885 • 24	3141.59	3408 • 84	3687.00	3976.07
5279.62	5770 • 49	6283.18	6817 • 69	7374.01	7952.15
7919.42	8655 • 73	9424.77	10226 • 53	11061.01	11928.22
10559.23	11540 • 98	12566.36	13635 • 37	14748.02	15904.30
13199.04	14426 • 22	15707.95	17044 • 22	18435.02	19880.37
15838.85	17311 • 47	18849.54	20453 • 06	22122.03	23856.45
18478.66	20196 • 71	21991.13	23861 • 90	25809.03	27832.52
21118.47	23081 • 96	25132.72	27270 • 75	29496.04	31808.60
23758.27	25967 • 21	28274.31	30679 • 59	33183.04	35784.67
26398.08	28852 • 45	31415.90	34088 • 43	36870.05	39760.75

Y _{CU} (given • = 28 in.)	Y _{CU} (given φ = 29 in.)	Υ _{CU} (given φ = 30 in.)	Y _{CU} (given φ = 31 in.)	Y _{CU} (given \$\phi = 32 in.)	Y _{CU} (given φ = 33 in.)
4276.05	4586.94	4908.73	5241.44	5585.05	5939.57
8552.11	9173.88	9817.47	10482.87	11170.10	11879.14
12828.16	13760.82	14726.20	15724.31	16755.15	17818.71
17.104.21	18347.76	19634.94	20965.75	22340.20	23758.27
21380.27	22934.70	24543.67	26207.19	27925.24	29697.84
25656.32	27521.64	29452.41	31448.63	33510.29	35637.41
29932.37	32108.58	34361.14	36690.06	39095.34	41576.98
34208.43	36695.52	39269.87	41931.50	44680.39	47516.55
38484.48	41282.46	44178.61	47172.94	50265.44	53456.12
42760.53	45869.39	49087.34	52414.38	55850.49	59395.69

•					
Y _{CU} (given	Y _{CU} (given	YCU (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given
Φ = 34 in.)	φ = 35 in.)	ϕ = 36 in.)	φ = 37 in.)	ϕ = 38 in.)	φ = 39 in.)
6305.00 12609.99 18914.99 25219.99 31524.98 37829.98 44134.98 50439.97 56744.97	6681.33 13362.67 20044.00 26725.33 33406.66 40088.00 46769.33 53450.66 60132.00 66813.33	7068.58 14137.16 21205.73 28274.31 35342.89 42411.47 49480.04 56548.62 63617.20 70685.78	7466.73 14933.46 22400.19 29866.92 37333.65 44800.38 52267.11 59733.84 67200.57 74667.31	7875.79 15751.58 23627.37 31503.17 39378.96 47254.75 55130.54 63006.33 70882.12 78757.91	8295.76 16591.52 24887.28 33183.04 41478.81 49774.57 58070.33 66366.09 74661.85 82957.61
Y _{CU} (given	Υ _{CU} (given	Υ _{CU} (given	Y _{CU} (given	Ϋ́CU (given	Y _{CU} (given
• 40 in.)	φ = 41 in.)	φ = 42 in.)	\$\phi = 43 in.)	Φ = 44 in.)	\$\phi = 45 in.)
8726.64	9168-42	9621.12	10084.72	10559.23	11044.65
17453.28	18336-85	19242.24	20169.44	21118.47	22089.30
26179.92	27505-27	28863.36	30254.17	31677.70	33133.96
34906.56	36673-70	38484.48	40338.39	42236.93	44178.61
43633.19	45842-13	48105.60	50423.61	52796.17	55223.26
52359.83	55010-55	57726.72	60508.33	63355.40	66267.91
61086.47	64178-98	67347.84	70593.05	73914.63	77312.57
69813.11	73347-40	76968.96	80677.78	84473.36	88357.22
78539.75	82515-82	86590.07	90762.50	95033.10	99401.87
87266.39	91684-25	96211.20	100847.22	105592.33	110446.52

Table 5

CUTTER COSTS FOR HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

$$Y_{CU} = \pi \frac{\phi^2}{4} DC_H$$

Where:

Y_{CU} = Cutter cost per well;

φ = Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3}$ φ;

D = Depth ranging from 1,000 to 10,000 feet in our calculations;

C_H = Cost per foot of linear cut as a function of the geological medium equal to \$1.50 in the below calculations for hard rock.

YCU (given	YCU (given	Y _{CU} (given	YCU (given	YCU (given	YCU (given
$\Phi = 10 \text{ in.}$	$\phi = 11 \text{ in.}$	$\phi = 12 \text{ in.}$	ϕ = 13 in.)	$\phi = 14 \text{ in.}$)	Φ = 15 in.)
818.12 1636.24 2454.37 3272.49 4090.61 4908.73 5726.86 6544.98 7363.10 8181.22	989.93 1979.86 2969.78 3959.71 4949.64 5939.57 6929.50 7919.42 8909.35 9899.28	1178.10 2356.19 3534.29 4712.38 5890.48 7068.58 8246.67 9424.77 10602.87 11780.96	1382.63 2765.25 4147.88 5530.51 6913.13 8295.76 9678.39 11061.01 12443.64 13826.27	1603.52 3207.04 4810.56 6414.08 8017.60 9621.12 11224.64 12828.16 14431.68 16035.20	1840.78 3681.55 5522.33 7363.10 9203.88 11044.65 12885.43 14726.20 16566.98 18407.75

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CU} (given	Y _{CU} (given	Υ _{CU} (given
	Φ = 17 in.)	φ = 18 in.)	φ = 19 in.)	ϕ = 20 in.)	φ = 21 in.)
2094.39	2364.37	2650.72	2953.42	3272.49	3607 • 92
4188.79	4728.75	5301.43	5906.84	6544.98	7215 • 84
6283.18	7093.12	7952.15	8860.27	9817.47	10823 • 76
8377.57	9457.49	10602.87	11813.69	13089.96	14431 • 68
10471.97	11821.87	13253.58	14767.11	16362.45	18039 • 60
12566.36	14186.24	15904.30	17720.53	19634.94	21647 • 52
14660.75	16550.62	18555.02	20673.75	22907.43	25255 • 44
16755.15	18914.99	21205.73	23627.37	26179.92	28863 • 36
18849.54	21279.36	23856.45	26580.80	29452.41	32471 • 28
20943.93	23643.74	26507.17	29534.22	32724.90	36079 • 20

				,	
Y _{CU} (given	YCU (given	Y _{CU} (given	YCH (given	Y _{CU} (given	YCU (given
φ = 22 in.)	$\phi = 23 \text{ in.})$	$\phi = 24 \text{ in.})$	$\phi = 25 \text{ in.}$	φ = 26 in.)	$\phi = 27 \text{ in.}$
		4712•38	5113.26	5530 • 51	5964•11
3959.71	4327 • 87		10226.53	11061-01	11928 • 22
7919.42	8655•73	9424.77			17892.34
11879.14	12983•60	14137 • 16	15339 - 80	16591.52	
15838.85	17.311 • 47	18849•54	20453-06	22122.03	23856 • 45
19798.56	21639•34	23561.93	25566-33	27652 • 54	29820.56
23758.27	25967 • 21	28274.31	30679.5 9	33183.04	35784.67
27717.99	30295.07	32986.70	35792•86	38713.55	41748•79
31677.70	34622.94	37699.08	40906 - 12	44244•06	47712.90
35637.41	38950 81	42411.47	46019.39	49774.57	53677 • 01
39597 • 12	43278.67	47123.85	51132 • 65	55305.07	59641 • 12
<u></u>					
YCU (given	Y _{CU} (given	YCU (given	YCU (given	YCU (given	YCU (given
				$\phi = 32 \text{ in.}$	$\phi = 33 \text{ in.}$
$\Phi = 28 \text{ in.}$	$\phi = 29 \text{ in.})$	ϕ = 30 in.)	ϕ = 31 in.)	$\psi = 32 \text{ in.}$	Ψ = 33 III.)
6414.08	6880 • 41	7363•10	7840	8377 • 57	8909•35
	13760 • 82		7862.16	16755.15	17818.71
12828 • 16	20641 • 23	14726 • 20	15724.31	25132.72	26728.06
19242 • 24	27521.64	22089•31	23586 • 47		35637 • 41
25656 • 32		29452 • 41	31448.63	33510.29	44546.76
32070 • 40	34402.05	36815•51	39310.78	41887 • 87	
38484•48	41282 • 46	44178•61	47172.94	50265.44	53456 • 12
44898 • 56	48162.87	51541.71	55035.09	58643.01	62365 • 47
51312.64	55043 • 27	58904 81	62897 • 25	67020.59	71274.82
57726 • 72	61923•68	66267 • 91	70759.41	75398-16	80184 • 18
64140.80	68804•09	73631.02	78621.56	83775.73	89093•53
Y _{CU} (given Φ = 34 in.)	Y _{CU} (given φ = 35 in.)	Y _{CU} (given Ф = 36 in.)	Y _{CU} (given \$\Phi = 37 in.)	Y _{CU} (given \$\Phi = 38 in.)	Y _{CU} (given \$\Phi = 39 in.)
$\Psi = 34 \text{ in.})$	Ψ = 35 m.)	Ψ = 30 m.)	Ψ = 31 /	Ψ 30 2 /	1 ,
9457 • 49	10022.00	10602.87	11200.10	11813.69	12443.64
18914-99	20044.00	21205.73	22400 • 19	23627 • 37	24887 • 28
28372 • 49	30066.00	31808 - 60	33600 • 29	35441.06	37330.93
37829.98	40088.00	42411.47	44800.38	47254.75	49774.57
47287 • 48	50110.00	53014.33		59068 • 44	62218-21
56744.97	60132.00	63617 • 20	56000 • 48	70882 • 12	74661.85
i i	70154.00	74220.06	67200.58	82695 • 81	87 105 • 49
66202 • 47 75659 • 96	80176.00	84822.93	78400-67	94509.50	99549 • 13
	90197.99	95425.80	89600.77	106323 • 19	111992.77
85117 • 45 94574 • 95	100219.99	106028-66	100800 · 86 112000 · 96	118136 • 87	124436 • 42
94514.95	100217077	100020-00	112000.96	110130487	1244001.2
37 /	V (circa	V (given	V (giver	Y _{CU} (given	Y _{CU} (given
YCU (given	Y _{ÇU} (given	Y _{CU} (given	YCU (given		
$\hat{\Phi}$ = 40 in.)	$\phi = 41 \text{ in.}$	$\phi = 42 \text{ in.})$	$\phi = 43 \text{ in.})$	φ = 44 in.)	φ = 45 in.)
				455	
13089 • 96	13752 • 64	14431 • 68	15127 • 08	15838 • 85	16566 • 98
26179.92	27505 • 27	28863.36	30254-17	31677 • 70	33133.96
39269 • 87	41257 • 91	43295 • 04	45381 • 25	47516.55	49700.94
52359 • 83	55010-55	577.26 • 72	60508 • 33	63355 • 40	66267 • 91
65449.79	68763-19	72158.40	75635 • 42	79194-25	82834-89
78539.75	82515 83	86590.07	90762.50	95033 • 10	99401-87
91629.71	96268 • 46	101021.75	105889 • 58	110871.95	115968.85
104719.67	110021-10	115453 • 43	121016 - 67	126710.80	132535 • 83
117809 • 63	123773 • 74	129885 11	136143.75	142549 • 65	149102 - 81
130899 • 58	Trainatia	*	4	1 '	
	137526 • 37	144316.79	151270 - 83	158388-50	165669.79

Table 6
CUTTER COSTS FOR VERY HARD ROCK
AS A FUNCTION OF DEPTH AND DIAMETER
(in dollars)

 $Y_{CU} = \pi \frac{\Phi^2}{4} DC_H$

Where:

D

Y_{CU} = Cutter cost per well;

Φ = Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing

ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3} \phi$; = Depth ranging from 1,000 to 10,000 feet in our calculations;

C_H = Cost per foot of linear cut as a function of the geological medium equal to \$2.00 in the below calculations for very hard rock.

					
YCU (given	Y _{CU} (given	YCU (given	YCU (given	YCU (given	Y _{CU} (given
$\Phi = 10 \text{ in.}$	$\phi = 11 \text{ in.}$	φ = 12 in.)	ϕ = 13 in.)	$\phi = 14 \text{ in.}$	$\Phi = 15 \text{ in.}$
1090.83	1319.90	1570.79	1843.50	2138.03	2454.37
2181 • 66	2639.81	3141.59	3687 • 00	4276.05	4908.73
3272 • 49	. 3959•71	4712.38	5530.51	6414.08	7363-10
4363 • 32	5279.62	6283 • 18	7374.01	8552 • 11	9817 • 47
5454 • 15	6599•52	7853.97	9217.51	10690-13	12271.84
6544.98	7919.42	9424.77	11061.01	12828 • 16	14726.20
7635 • 81	9239•33	10995 • 57	12904.52	14966 • 19	17180.57
8726 • 64	10559 • 23	12566 • 36	14748.02	17104-21	19634.94
9817 • 47	11879 • 14	14137 • 16	16591.52	19242-24	22089.30
10908-30	13199-04	15707 • 95	18435.02	21380.27	24543.67
	1				
	<u> </u>	<u> </u>	l	L	I
_					
Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given
Y _{CU} (given \$\phi = 16 in.)	Υ _{CU} (given φ = 17 in.)	Y _{CU} (given ф = 18 in.)	Y _{CU} (given φ = 19 in.)	Y _{CU} (given φ = 20 in.)	Υ _{CU} (given φ = 21 in.)
		φ = 18 in.)	1 . ~ -		1
Φ = 16 in.)	$\phi = 17 \text{ in.}$	1 ,00	φ = 19 in.)	$\phi = 20 \text{ in.}$	Φ = 21 in.)
φ = 16 in.) 2792.52	φ = 17 in.) 3152.50	$\phi = 18 \text{ in.}$)	$\phi = 19 \text{ in.}$)	φ = 20 in.) 4363.32 8726.64 13089.96	Φ = 21 in.)
φ = 16 in.) 2792.52 5585.05	φ = 17 in.) 3152.50 6305.00	φ = 18 in.) 3534.29 7068.58	φ = 19 in.) 3937.90 7875.79 11813.69 15751.58	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28	Φ = 21 in.) 4810.56 9621.12
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62	Φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49	φ = 18 in.) 3534.29 7068.58 10602.87	φ = 19 in.) 3937.90 7875.79 11813.69 15751.58 19689.48		φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62 16755.15	φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49 18914.99	φ = 18 in.) 3534.29 7068.58 10602.87 14137.16	φ = 19 in.) 3937.90 7875.79 11813.69 15751.58 19689.48 23627.37	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28 21816.60 26179.92	φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80 28863.36
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62 16755.15 19547.67	φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49 18914.99 22067.49	φ = 18 in.) 3534.29 7068.58 10602.87 14137.16 17671.44	φ = 19 in.) 3937 90 7875 79 11813 69 15751 58 19689 48 23627 37 27565 27	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28 21816.60 26179.92 30543.24	φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80 28863.36 33673.92
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62 16755.15 19547.67 22340.20	φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49 18914.99 22067.49 25219.99	φ = 18 in.) 3534.29 7068.58 10602.87 14137.16 17671.44 21205.73	φ = 19 in.) 3937 90 7875 79 11813 69 15751 58 19689 48 23627 37 27565 27 31503 17	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28 21816.60 26179.92 30543.24 34906.56	φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80 28863.36 33673.92 38484.48
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62 16755.15 19547.67 22340.20 25132.72	φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49 18914.99 22067.49 25219.99 28372.48	φ = 18 in.) 3534.29 7068.58 10602.87 14137.16 17671.44 21205.73 24740.02	φ = 19 in.) 3937.90 7875.79 11813.69 15751.58 19689.48 23627.37 27565.27 31503.17 35441.06	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28 21816.60 26179.92 30543.24 34906.56 39269.87	φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80 28863.36 33673.92 38484.48 43295.04
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62 16755.15 19547.67 22340.20	φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49 18914.99 22067.49 25219.99	φ = 18 in.) 3534.29 7068.58 10602.87 14137.16 17671.44 21205.73 24740.02 28274.31	φ = 19 in.) 3937 90 7875 79 11813 69 15751 58 19689 48 23627 37 27565 27 31503 17	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28 21816.60 26179.92 30543.24 34906.56	φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80 28863.36 33673.92 38484.48
φ = 16 in.) 2792.52 5585.05 8377.57 11170.10 13962.62 16755.15 19547.67 22340.20 25132.72	φ = 17 in.) 3152.50 6305.00 9457.50 12609.99 15762.49 18914.99 22067.49 25219.99 28372.48	φ = 18 in.) 3534.29 7068.58 10602.87 14137.16 17671.44 21205.73 24740.02 28274.31 31808.60	φ = 19 in.) 3937.90 7875.79 11813.69 15751.58 19689.48 23627.37 27565.27 31503.17 35441.06	φ = 20 in.) 4363.32 8726.64 13089.96 17453.28 21816.60 26179.92 30543.24 34906.56 39269.87	φ = 21 in.) 4810.56 9621.12 14431.68 19242.24 24052.80 28863.36 33673.92 38484.48 43295.04

Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	Υ _{CÜ} (given	$ \begin{array}{l} Y_{\text{CU}} \text{ (given} \\ \varphi = 26 \text{ in.)} \end{array} $	Y _{CU} (given
Φ = 22 in.)	Φ = 23 in.)	\$\Phi = 24 in.)	φ = 25 in.)		\$\Phi = 27 in.)
5279.62	5770.49	6283 • 18	6817.69	7374.01	7952.15
10559.23	11540.98	12566 • 36	13635.37	14748.02	15904.30
15838.85	17311.47	18849 • 54	20453.06	22122.03	23856.45
21118.47	23081.96	25132 • 72	27270.75	29496.04	31808.60
26398.08	28852.45	31415 • 90	34088.43	36870.05	39760.75
31677.70	34622.94	37699 • 08	40906.12	44244.06	47712.90
36957.32	40393.43	43982 • 26	47723.81	51618.07	55665.05
42236.93	46163.92	50265 • 44	54541.49	58992.08	63617.20
47516.55	51934.41	56548 • 62	61359.18	66366.09	71569.35
52796.17	57704.90	62831 • 80	68176.87	73740.10	79521.50

YCU (given	Y _{CU} (given	YCU (given	Y _{CU} (given	Υ _{CU} (given	Y _{CU} (given
\$\Phi = 28 in.)	φ = 29 in.)	\$\phi = 30 in.)	\$\phi = 31 in.)-	φ = 32 in.)	φ = 33 in.)
8552 • 11	9173.88	9817 • 47	10482.87	*11170.10	11879.14
17104 • 21	18347.76	19634 • 94	20965.75	22340.20	23758.27
25656 • 32	27521.64	29452 • 41	31448.63	33510.29	35637.41
34208 • 43	36695.52	39269 • 87	41931.50	44680.39	47516.55
42760 • 53	45869.39	49087 • 34	52414.38	55850.49	59395.69
51312 • 64	55043.27	58904 • 81	62897.25	67020.59	71274.82
59864 • 74	64217.15	68722 • 28	73380.13	78190.68	83153.96
68416 • 85	73391.03	78539 • 75	83863.00	89360.78	95033.10
76968 • 96	82564.91	88357 • 22	94345.88	100530.88	106912.23
85521 • 06	91738.79	98174 • 69	104828.75	111700.98	118791.37

YCU (given	Υ_{CU} (given $\Phi = 35 \text{ in.}$)	Υ_{CU} (given $\Phi = 36 \text{ in.}$)	$^{\text{Y}}_{\text{CU}}$ (given $\Phi = 37 \text{ in.}$)	Y _{CU} (given φ = 38 in.)	$ \begin{array}{c} Y_{CU} \text{ (given} \\ \phi = 39 \text{ in.)} \end{array} $
Φ = 34 in.) 12609.99 25219.99 37829.98 50439.97 63049.97 75659.96 88269.95 100879.94 113489.94 126099.93	13362.67	14137 • 16	14933.46	15751.58	16591.52
	26725.33	2827 4 • 31	29866.92	31503.17	33183.04
	40088.00	42411 • 47	44800.38	47254.75	49774.57
	53450.66	56548 • 62	59733.84	63006.33	66366.09
	66813.33	70685 • 78	74667.31	78757.91	82957.61
	80176.00	84822 • 93	89600.77	94509.50	99549.13
	93538.66	98960 • 09	104534.23	110261.08	116140.65
	106901.33	113097 • 24	119467.69	126012.66	132732.18
	120263.99	127234 • 40	134401.15	141764.25	149323.70
	133626.66	141371 • 55	149334.61	157515.83	165915.22

YCU (given	Y _{CU} (given	Y _{CU} (given	Y _{CU} (given	YCU (given	YCU (given
$\Phi = 40 \text{ in.}$	$\phi = 41 \text{ in.})$	$\Phi = 42 \text{ in.})$	$\phi = 43 \text{ in.}$	$\Phi = 44 \text{ in.}$	$\Phi = 45 \text{ in.}$
17453•28	18336 • 85	19242 • 24 38484 • 48	20169•44	21118-47	22089 • 30 44178 • 61
349Ø6•56 52359•83	36673•7Ø 55Ø1Ø•55	57726.72	40338•89 60508•33	42236•93 63355•40	66267 • 91
69813 • 11	73347 • 40 91684 • 25	76968•96 96211•20	80677 • 78 100847 • 22	84473.86 105592.33	88357 • 22 110446 • 52
87266•39 104719•67	110021-10	115453 • 43	121016.66	126710.80	132535 • 83
122172•95 139626•22	128357 • 95	134695 • 67 153937 • 91	141186 • 11 161355 • 55	147829•26 168947•73	154625 • 13 176714 • 44
157079.50	165031.65	173180 • 15	181525 • 00	190066 • 19	198803.74
174532•78	183368-50	192422•39	201694•44	211184•66	220893.05

Table 7

CASING COSTS AS A FUNCTION OF DEPTH: AND DIAMETER

$$\dot{\mathbf{Y}}_{\mathbf{CAS}} = \left[7,500 + 1,625(\frac{2}{3} \, \dot{\mathbf{p}} - 10)\right] \frac{\mathbf{D}}{1,000}$$

T_{CAS} = Casing cost per well;

Diameter of the well in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter ((ID) of the casing ranges from 8 to 30 inches, given that casing ID≈ 2/3 Φ;
 Depth ranging from 1,000 to 10,000 feet in our calculations.

D

Y _{CAS} (given	YCAS (given	Y _{CAS} (given	Y _{CAS} (given	YCAS (given	Y _{CAS} (given
ϕ = 10 in.)	ϕ = 11 in.)	ϕ = 12 in.)	ϕ = 13 in.)	ϕ = 14 in.)	ϕ = 15 in.)
2083.33 4166.67 6250.00 8333.33 10416.67 12500.00 14583.33 16666.67 18750.00	3166.67 6333.33 9500.00 12666.67 15833.33 19000.00 22166.67 25333.33	4250.00 8500.00 12750.00 17000.00 21250.00 25500.00 29750.00	5333•33 10666•67 16000•00 21333•33 26666•67 32000•00 37333•33 42666•67	6416.67 12833.33 19250.00 25666.67 32083.33 38500.00 44916.67 51333.33	7500.00 15000.00 22500.00 30000.00 37500.00 45000.00 52500.00
20833•33	28500 • 00 31666 • 67	38250 • 00 42500 • 00	48000 • 00 53333 • 33	57750 • 00 64166 • 67	67500 • 00 75000 • 00
Υ _{CAS} (given φ = 16, in.)	YCAS (given ϕ = 17 in.)	$ \begin{array}{c} Y_{\text{CAS}} \text{ (given} \\ \phi = 18 \text{ in.}) \end{array} $	$\phi = 19 \text{ in.}$	YCAS (given ϕ = 20 in.)	Y _{CAS} (given ϕ = 21 in.)
8583+33	9666 • 67	10750.00	11833.33	12916 • 67	14000.00

Y _{CAS} (given φ = 22 in.)	YCAS (given $\phi = 23 \text{ in.}$)	Y _{CAS} (given φ = 24 in.)	$\phi = 25 \text{ in.}$	Y _{CAS} (given φ = 26 in.)	YCAS (given ϕ = 27 in.)
15083.33 30166.67 45250.00 60333.33 75416.67 90500.00 105583.33 120666.67 135750.00 150833.33	16166.67 32333.33 48500.00 64666.67 80833.33 97000.00 113166.67 129333.33 145500.00	17250.00 34500.00 51750.00 69000.00 86250.00 103500.00 120750.00 138000.00 155250.00	18333.33 36666.67 55000.00 73333.33 91666.67 110000.00 128333.34 146666.67 165000.00	19416.67 38833.33 58250.00 77666.67 97083.33 116500.00 135916.67 155333.33 174750.00	20500.00 41000.00 41000.00 61500.00 82000.00 102500.00 123000.00 143500.00 164000.00 184500.00

Υ_{CAS} (given $\phi = 28 \text{ in.}$)	Y _{CAS} (given φ = 29 in.)	Y _{CAS} (given $\phi = 30 \text{ in.}$)	Y_{CAS} (given $\varphi = 31 \text{ in.}$)	Υ_{CAS} (given $\varphi = 32 \text{ in.}$)	Y _{CAS} (given φ = 33 in.)
21583.33 43166.67 64750.00 86333.33 107916.67 129500.00 151083.33 172666.67 194250.00 215833.34	22666.67 45333.33 68000.00 90666.67 113333.33 136000.00 158666.67 181333.33 204000.00 226666.67	23750.00 47500.00 71250.00 95000.00 118750.00 142500.00 166250.00 190000.00 213750.00	24833.33 49666.67 74500.00 99333.33 124166.67 149000.00 173833.33 198666.67 223500.00 248333.34	25916.67 51833.33 77750.00 103666.67 129583.33 155500.00 181416.67 207333.33 233250.00 259166.67	27000.00 54000.00 81000.00 108000.00 135000.00 162000.00 189000.00 216000.00 243000.00

Y _{CAS} (given ϕ = 34 in.)	YCAS (given $\phi = 35 \text{ in.}$)	Y _{CAS} (given ϕ = 36 in.)	[¥] CAS ^{(given} φ = 37 in.)	YCAS (given	Υ _{CAS} (given φ = 39 in.)
28083.33 56166.67 84250.00 112333.33 140416.67 168500.00 196583.33 224666.67 252750.00 280833.34	29166.67 58333.33 87500.00 116666.67 145833.33 175000.00 204166.67 233333.33 262500.00 291666.66	30250.00 60500.00 90750.00 121000.00 151250.00 181500.00 211750.00 242000.00 272250.00 302500.00	31333.33 62666.67 94000.00 125333.33 156666.67 188000.00 219333.33 250666.67 282000.00 313333.34	32416.67 64833.33 97250.00 129666.67 162083.33 194500.00 226916.66 259333.33 291750.00 324166.66	33500 • 00 67000 • 00 100500 • 00 134000 • 00 167500 • 00 201000 • 00 234500 • 00 268000 • 00 301500 • 00

Y _{CAS} (given $\varphi = 40 \text{ in.}$)	Y _{CAS} (given $\phi = 41$ in.)	$ \begin{array}{c} Y_{\text{CAS}} \text{ (given)} \\ \phi = 42 \text{ in.)} \end{array} $	Y _{CAS} (given φ = 43 in.)	Υ_{CAS} (given $\varphi = 44 \text{ in.}$)	Y_{CAS} (given $\varphi = 45 \text{ in.}$)
34583.33 69166.67 103750.00 138333.33 172916.67 207500.00 242083.34 276666.67 311250.00 345833.34	35666.67 71333.33 107000.00 142666.67 178333.33 214000.00 249666.67 285333.33 321000.00 356666.66	36750.00 73500.00 110250.00 147000.00 183750.00 220500.00 257250.00 294000.00 330750.00	37833.33 75666.67 113500.00 151333.33 189166.67 227000.00 264833.34 302666.67 340500.00 378333.33	38916.67 77833.33 116750.00 155666.67 194583.33 233500.00 272416.67 311333.33 350250.00 389166.66	40000 • 00 80000 • 00 120000 • 00 160000 • 00 200000 • 00 240000 • 00 280000 • 00 320000 • 00 400000 • 00

Table 8

CEMENTING COSTS PER WELL

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

$$Y_C = 1.30 \left(\frac{5}{9} \pi P \frac{\phi^2}{4} D \right)$$

Where:

Y_C = Cementing cost per well;

P = Price of cementing material equal to \$2 per cubic foot, in our calculations;

 ϕ = Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing ID $\approx \frac{2}{3} \phi$;

D = Depth in feet ranging from 1,000 to 10,000 feet in our calculations.

Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y _C (given
$\Phi = 10 \text{ in.}$	$\Phi = 11 \text{ in.}$	Φ = 12 in.)	Φ = 13 in.)	Φ = 14 in.)	Φ = 15 in.)
787.82 1575.64	953•26 1906•53	1134•46 2268•93	1331 • 42 2662 • 84	1544•13 3088•26	1772•60 3545•20
2363 • 46 3151 • 29	2859.79 3813.06	3403•39 4537•85	3994·26 5325·67	4632 • 39	5317.80
3939 • 11	4766.32	5672.32	6657 • 09	6176.52 7720.65	7090•39 8862•99
4726 • 93 5514 • 75	5719•58 6672•85	6806•78 7941•24	7988•51 9319•93	9264•78 10808•91	10635•59 12408•19
6302•57 7090•39	7626 • 11 8579 • 38	9075.70 10210.17	10651•35 11982•77	12353.04 13897.17	14180•79 15953•39
7878.22	9532•64	11344•63	13314-18	15441.30	17725 • 99

Y _C (given	Y _C (given	YC (given	YC (given	Y _C (given	Y _C (given
$\phi = 16 \text{ in.})$	$\Phi = 17 \text{ in.})$	φ = 18 in.)	φ = 19 in.)	Φ = 20 in.)	φ = 21 in.)
2016.82	2276.80	2552.54	2844•04	3151•29	3474•29
4033•65	4553•61	5105.08	5688.07	6302.57	6948•59
6050 • 47	6830 • 41	7657•63	8532 • 11	9453•86	10422 • 88
8067 • 29	9107.22	10210-17	11376 • 14	12605 • 15	13897 • 17
10084-12	11384-02	12762.71	14220-18	15756 • 43	17371 • 47
12100.94	13660 • 83	15315.25	17064-21	18907.72	20845•76
14117.76	15937 • 63	17867.79	19908•25	22059.00	24320•05
16134.59	18214-43	20420•34	22752•29	25210.29	27794.34
18151 • 41	20491.24	22972.88	25596•32	28361.58	31268•64
20168•23	22768.04	25525•42	28440•36	31512.86	34742.93

Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y _C (given
$\phi = 22 \text{ in.})$	$\phi = 23 \text{ in.}$	$\phi = 24 \text{ in.}$	$\phi = 25 \text{ in.}$	$\phi = 26 \text{ in.}$	$\phi = 27 \text{ in.}$
3813.06	4167.58	4537 • 85	4923 • 88	5325 • 67	5743.22
7626.11	8335 • 15	9075.70	9847 • 77	10651 • 35	11486 • 44
11439.17	12502.73	13613.56	14771.65	15977 • 02	17229.66
15252 • 23	16670.30	18151-41	19695.54	21302.69	22972.88
19065 • 28	20837 • 88	22689 • 26	24619 • 42	26628 • 37	28716 • 10
22878•34	25005 • 46	27227 • 11	29543.31	31954.04	34459 • 32
26691•39	29173-03	31764.97	34467 • 19	37279.72	40202 • 53
30504.45	33340.61	36302 • 82	39391 • 08	42605 • 39	45945•75
34317.51	37508 • 19	40840.67	44314.96	47931•06	51688•97
38130 • 56	41675.76	45378.52	49238 • 85	53256•74	57432•19
·					
Y _C (given	Y _C (given	Y _C (given	Y _C (given	YC (given	Υ
1 0	, -	. •	, 0	(given	YC (given
$\Phi = 28 \text{ in.})$	φ = 29 in.)	φ = 30 in.)	φ = 31 in.)	ϕ = 32 in.)	$\Phi = 33 \text{ in.})$
6176.52	6625.58	7090.39	7570.97	8067 • 29	8579•38
12353.04	13251 • 16	14180.79	15141.93	16134.59	17158.75
18529.56	19876 • 74	21271.18	22712.90	24201.88	25738 • 13
24706.08	26502.32	28361.58	30283.86	32269 • 17	34317.51
30882 • 61	33127 - 90	35451.97	37854.83	40336 • 46	42896 • 88
37059 • 13	39753-48	42542 • 37	45425.79	48403.76	51476 • 26
43235 • 65	46379-06	49632.76	52996.76	56471.05	60055 • 64
49412 • 17	53004.63	56723 • 15	60567.72	64538•34	68635 • 02
55588 • 69	59630-21	63813.55	68138•69	72605.63	77214•39
61765.21	66255.79	70903.94	75709.65	80672•93	85793.77
Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y _C (given
$\Phi = 34 \text{ in.})$	$\phi = 35 \text{ in.}$	$\phi = 36 \text{ in.}$	$\phi = 37 \text{ in.})$	$\phi = 38 \text{ in.}$	$\phi = 39 \text{ in.}$
1 /	T,				
9107.22	9650.81	10210-17	10785 • 28	11376 • 14	11982.77
18214•43	19301-63	20420•34	21570.55	22752 • 29	23965 • 53
27321.65	28952 • 44	30630.50	32355 • 83	34128 • 43	35948•30
36428•87	38603.26	40840 • 67	43141 • 11	45504.57	47931.06
45536 • Ø9	48254.07	51050.84	53926 • 39	56880.72	59913+83
54643•30	57904.88	61261-01	64711•67	68256 • 86	71896 • 60
63750.52	67555 • 7Ø	71471-17	75496 • 94	79633•00	33879•36
72857.74	77206.51	81681 • 34	86282 • 22	91009•15	95862•13
81964-96	86857 • 33	91891.51	97067.50	102385 • 29	107844.89
91072 • 17	96508•14	102101.68	107852.77	113761-43	119827 • 66
V /	V /	V /=:	V /:	V (-:	V (~!
Y _C (given	Y _C (given	Y _C (given	Y _C (given	Y (given	Y _C (given
$\phi = 40 \text{ in.}$	φ = 41 in.)	$\phi = 42 \text{ in.}$	$\phi = 43 \text{ in.})$	ϕ^{C} = 44 in.)	ϕ = 45 in.)
12605 • 15	13243 • 28	13897 • 17	14566 • 82	15252 • 23	15953•39
25210-29	26486.56	27794.34	29133•64	30504 • 45	31906.77
37815 • 44	39729 • 84	41691.52	43700•46	45756 • 68	47860•16
50420.58	52973•12	55588•69	58267 • 28	61008.90	63813.55
42025.73	66216.40	69485.86	72834.10	76961-13	79766.93

72834.10

87400.92

101967 • 74

116534-57

131101.39

145668+21

63025.73

75630.87

88236.02

100841 • 16

113446 • 31

126051 • 45

66216 • 40

79459.68

92702.96

105946 • 24

119189.52

132432 • 81

69485.86

83383.03

97280.21

111177.38

125074.55

138971.72

76261.13

91513.35

106765.58

122017.80

137270.03

152522 • 25

79766.93

95720.32 111673.71

127627.09

143580 • 48 159533 • 87

Table 9

TOTAL RIG COSTS FOR SOFT ROCK

AS A FUNCTION OF DEPTH AND DIAMETER#

$$Y_{RIG} = \begin{bmatrix} DH_{i}(\phi+8) \\ \hline 7,200 \end{bmatrix} (1,200 + 1,15HPR)$$
Where:

YRIG = Total rig cost; per well;

= Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3} \varphi$;

D = Depth ranging from 1,000 to 10,000 feet in our calculations; HPR = $26(\varphi - 10) + \frac{D}{5}$ - 800; 500 < HPR < 2,500 is the rig horsepower

requirement;

= Factor of the hardness of the soil equal to $\frac{3}{4}$ for soft rock.

* In these calculations, this total drilling time is the result of a ratio between total depth and the corresponding penetration rate.

Y _{RIG} (given $\phi = 10 \text{ in.}$)	YRIG (given $\phi = 11 \text{ in.}$)	Y_{RIG} (given $\phi = 12$ in.)	Y_{RIG} (given $\phi = 13$ in.)	Y_{RIG} (given $\phi = 14 \text{ in.}$)	Y_{RIG} (given $\phi = 15 \text{ in.}$)
	0075 05	0500 00	0405 55	0752 99	0075 00
2250.00	2375.00	2500.00	2625.00	2750.00	2875•00 5750•00
4500.00	4750.00	5000.00	5250.00	5500.00	8625 • ØØ
6750.00	7125.00	7500.00	7875.00	8250.00	
9000.00	9736 • 71	10498 • 33	11284 • 87	12096 • 33	12932 • 71
13406 • 25	14446 • 93	15518•75	16621.72	17755 • 83	18921-09
18675 • 00	20067 • 56	21497.50	22964•81	24469.50	26011.56
24806 • 25	26598•62	28434.58	30314•16	32237 • 33	34204 • 11
31800.00	34040.08	36330.00	38669.75	41059•33	43498,75
39656 • 25	42391.97	45183.75	48031.59	50935.50	53895 • 47
48375.00	51654.27	54995•83	58399•69	61865•83	65394•27
Y _{RIG} (given	Y _{DIC} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given
RIG (ST.	RIG (given	RIG (RIG (RIG	RIG (S)

Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y_{RIG} (given $\phi = 20 \text{ in.}$)	YRIG (given
φ = 16 in.)	φ = 17 in.)	\$\phi = 18 in.)	ϕ = 19 in.)		ϕ = 21 in.)
3000.00	3125.00	3250.00	3375.00	3500.00	1625.00
6000.00	6250.00	6500.00	6750.00	7000.00	7250.00
9000.00	9375.00	9824.75	10454.91	11103.75	11771.28
13794.00	14680.21	15591.33	16527.38	17488.33	18474.21
20117.50	21345.05	22603.75	23893.59	25214.58	26566.72
27591.00	29207.81	30862.00	32553.56	34282.50	36048.81
36214.50	38268.49	40366.08	42507.28	44692.08	46920.49
45988.00	48527.08	51116.00	53754.75	56443.33	59181.75
56911.50	59983.59	63111.75	66295.97	69536.25	72832.60
68985.00	72638.02	76353.33	80130.94	83970.83	87873.02

Y RIC (given	YRIG (given	Y _{RIG} (given	YRIG (given	Y _{RIG} (given	Y _{RIG} (given
		• = 24 in.)	$\varphi = 25 \text{ in.}$)	φ = 26 in.)	\$\phi = 27 in.)
3750.00 7500.00 12457.50 19485.00 27950.00 37852.50 49192.50 61970.00 76185.00 91837.50	3875.00 7750.00 13162.41 20520.71 29364.43 39693.56 51508.11 64808.08 79593.47 95864.27	4000.00 8000.00 13886.00 21581.33 30810.00 41572.00 53867.33 67696.00 83058.00 99953.33	4125.00 8250.00 14628.28 22666.87 32286.72 43487.81 56270.16 70633.75 86578.59	4250.00 8630.33 15389.25 23777.33 33794.58 45441.00 58716.58 73621.33 90155.25 108318.33	4375.00 9102.19 16168.91 24912.71 3533.59 47.431.56 61206.62 76658.75 93787.97 112594.27

Y _{RIG} (given	Y_{RIG} (given $\phi = 29 \text{ in.}$)	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given
ϕ = 28 in.)		φ = 30 in.)	ϕ = 31 in.)	φ = 32 in.)	φ = 33 in.)
4500.00 9586.50 16967.25 26073.00 36903.75 49459.50 63740.25 79746.00 97476.75	4625.00 10083.27 17784.28 27258.21 38505.05 51524.81 66317.49 82883.08 101221.59 121333.02	4750.00 10592.50 18620.00 28468.33 40137.50 53627.50 68938.33 86070.00 105022.50 125795.84	4875.00 11114.19 19474.41 29703.38 41801.09 55767.56 71602.78 89306.75 108879.47 130320.94	5000.00 11648.33 20347.50 30963.33 43495.83 57945.00 74310.83 92593.33 112792.50 134908.33	5125.00 12194.94 21239.28 32248.21 45221.72 60159.81 77062.49 95929.75 116761.59

Y _{RIG} (given	YRIG (given	YRIG (given	YRIG (given	YRIG (given \$\phi = 38 in.)\$	$ \begin{array}{c} Y_{RIG} \text{ (given} \\ \phi = 39 \text{ in.)} \end{array} $
$\phi = 34 \text{ in.})$	$\phi = 35 \text{ in.}$	$\phi = 36 \text{ in.}$	$\phi = 37 \text{ in.})$	$\psi = 30 \text{ m}.$	$\varphi = 37 \text{ m}.$
5370.75	5632.55	5900.58	6174.84	6455•33	6742.05
12754.00	13325 • 52	13909.50	14505.94	15114.83	15736 • 19
22149.75	23078 • 91	24026.75	24993•28	25978.50	26982 • 41
33558.00	34892 • 71	36252 • 33	37636.88	39046 • 33	40480.71
46978.75	48766.93	50586 • 25	52436.72	54318•33	56231.09
62412.00	64701.56	67028.50	69392 • 81	71794.50	74233•56
79857 • 75	82696 • 61	85579•08	88505•16	91474•83	94488 • 12
99316 • 00	102752 • 08	106238.00	109773•75	113359 • 33	116994.75
120786.75	124867 • 97	129005 • 25	133198•60	137448•00	141753 • 47
144270.00	149044-27	153880-83	158779•69	163740.83	168764.27
	<u> </u>	<u> </u>			L
Y _{RIG} (given	Y _{RIG} (given	YRIG (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given
Y _{RIG} (given ϕ = 40 in.)	YRIG (given $\varphi = 41 \text{ in.}$)	Y _{RIG} (given φ = 42 in.)	Y_{RIG} (given $\phi = 43 \text{ in.}$)	Υ _{RIG} (given φ = 44 in.)	Y _{RIG} (given ϕ = 45 in.)
φ = 40 in.)	φ = 41 in.)		$\phi = 43 \text{ in.})$		
$\phi = 40 \text{ in.}$) 7035.00		$\phi = 42 \text{ in.})$		φ = 44 in.)	φ = 45 in.)
$\phi = 40 \text{ in.}$	$\phi = 41 \text{ in.}$)	$\phi = 42 \text{ in.}$) 7639.58	$\phi = 43 \text{ in.}$) 7951.22	φ = 44 in.) 8269•08	φ = 45 in.) 8593•18
φ = 40 in.) 7035.00 16370.00	φ = 41 in.) 7334.18 17016.27	φ = 42 in.) 7639.58 17675.00	φ = 43 in.) 7951.22 18346.19	φ = 44 in.) 8269.08 19029.83	φ = 45 in.) 8593•18 19725•94
φ = 40 in.) 7035.00 16370.00 28005.00	φ = 41 in.) 7334.18 17016.27 29046.28	φ = 42 in.) 7639.58 17675.00 30106.25	φ = 43 in.) 7951.22 18346.19 31184.91	φ = 44 in.) 8269.08 19029.83 32282.25	φ = 45 in.) 8593.18 19725.94 33398.28
φ = 40 in.) 7035.00 16370.00 28005.00 41940.00	φ = 41 in.) 7334.18 17016.27 29046.28 43424.21	φ = 42 in.) 7639.58 17675.00 30106.25 44933.33	φ = 43 in.) 7951.22 18346.19 31184.91 46467.38 64193.59 84363.56	\$269.08 19029.83 32282.25 48026.33 66262.08 86989.50	φ = 45 in.) 8593.18 19725.94 33398.28 49610.21 68361.72 89652.81
φ = 40 in.) 7035.00 16370.00 28005.00 41940.00 58175.00	φ = 41 in.) 7334·18 17016·27 29046·28 43424·21 60150·05 79223·81 100645·49	φ = 42 in.) 7639.58 17675.00 30106.25 44933.33 62156.25 81775.00 103789.58	φ = 43 in.) 7951.22 18346.19 31184.91 46467.38 64193.59 84363.56 106977.28	\$269.08 19029.83 32282.25 48026.33 66262.08 86989.50 110208.58	φ = 45 in.) 8593.18 19725.94 33398.28 49610.21 68361.72 89652.81 113483.49
φ = 40 in.) 7035.00 16370.00 28005.00 41940.00 58175.00 76710.00 97545.00 120680.00	\$\phi = 41 in.\$\) 7334.18 17016.27 29046.28 43424.21 60150.05 79223.81 100645.49 124415.09	φ = 42 in.) 7639.58 17675.00 30106.25 44933.33 62156.25 81775.00 103789.58 128200.00	φ = 43 in.) 7951.22 13346.19 31184.91 46467.38 64193.59 84363.56 106977.28 132034.75	\$269.08 19029.83 32282.25 48026.33 66262.08 86989.50 110208.58 135919.33	φ = 45 in.) 8593.18 19725.94 33398.28 49610.21 68361.72 89652.81 113483.49 139853.75
φ = 40 in.) 7035.00 16370.00 28005.00 41940.00 58175.00 76710.00 97545.00	φ = 41 in.) 7334·18 17016·27 29046·28 43424·21 60150·05 79223·81 100645·49	φ = 42 in.) 7639.58 17675.00 30106.25 44933.33 62156.25 81775.00 103789.58	φ = 43 in.) 7951.22 18346.19 31184.91 46467.38 64193.59 84363.56 106977.28	\$269.08 19029.83 32282.25 48026.33 66262.08 86989.50 110208.58	φ = 45 in.) 8593 · 18 19725 · 94 33398 · 28 49610 · 21 68361 · 72 89652 · 81 113483 · 49

Table 10

TOTAL RIG COSTS FOR MEDIUM SOFT ROCK AS A FUNCTION OF DEPTH AND DIAMETER*

 $Y_{RIG} = \frac{DH_{i}(\phi+8)}{7,200} (1,200 + 1.15HPR)$

Where:

Y_{RIG} = Total rig cost; per well;

D = Depth ranging from 1,000 to 10,000 feet in our calculations;

HPR = $26(\phi = 10) + \frac{D}{5} - 800$; 500 < HPR < 2,500 is the rig horsepower requirement;

H; = Factor of the hardness of the soil equal to 1 for medium soft rock.

* In these calculations, this total drilling time is the result of a ratio between total depth and the corresponding penetration rate.

Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given
ϕ = 10 in.)	ф = 11 in.)	ϕ = 12 in.)	$\phi = 13 \text{ in.}$	ф = 14 in.)	φ = 15 in.)
3000.00 6000.00 9000.00 12000.00 17875.00 24900.00 33075.00 42400.00 52875.00 64500.00	3166.67 6333.33 9500.00 12982.28 19262.57 26756.75 35464.82 45386.78 56522.63 68872.36	3333.33 6666.67 10000.00 13997.78 20691.67 28663.33 37912.78 48440.00 60245.00 73327.78	3500.00 7000.00 10500.00 15046.50 22162.29 30619.75 40418.88 51559.67 64042.13 77866.25	3666.67 7333.33 11000.00 16128.44 23674.44 32626.00 42983.11 54745.78 67914.00 82487.78	3833·33 7666·67 11500·00 17243·61 25228·12 34682·08 45605·49 57998·33 71860·63 87192·36
YRIG (given	Y _{RIG} (given φ = 17 in.)	YRIG (given $\phi = 18 \text{ in.}$)	YRIG (given ϕ = 19 in.)	YRIG (given) \$\Phi = 20 in.)	Y _{RIG} (given ϕ = 21 in.)
4000.00 8000.00 12000.00 18392.00 26823.33 36788.00 48286.00 61317.33 75882.00 91980.00	4166.67 8333.33 12500.00 19573.61 28460.07 38943.75 51024.65 64702.78 79978.13 96850.70	4333.33 8666.67 13099.67 20788.44 30138.33 41149.32 53821.44 68154.67 84149.00	4500.00 9000.00 13939.88 22036.50 31858.13 43404.75 56676.38 71673.00 88394.62 106841.25	4666.67 9333.33 14805.00 23317.78 33619.44 45710.00 59589.45 75257.78 92715.00 111961.11	4833.33 9666.67 15695.04 24632.28 35422.29 48065.08 62560.65 78909.00 97110.13

Y _{RIG} (given $\phi = 22$ in.)	Y (given $\varphi = 23$ in.)	YRIG (given \$\phi = 24 in.)	Y _{RIG} (given \$\phi = 25 in.)	YRIG (given \$\phi = 26 in.)	$ \begin{array}{c} Y \\ RIG \\ \phi = 27 \text{ in.} \end{array} $
5000.00 10000.00 16610.00 25980.00 37266.67 50470.00 65590.00 82626.67 101580.00 122450.00	5166.67 10333.33 17549.88 27360.94 39152.57 52924.75 68677.49 86410.78 106124.62 127819.03	5333.33 10666.67 18514.67 28775.11 41080.00 55429.33 71823.11 90261.33 110744.00 133271.11	5500.00 11000.00 19504.38 30222.50 43048.96 57983.75 75026.87 94178.33 115438.13 138806.25	5666.67 11507.11 20519.00 31703.11 45059.45 60588.00 78288.78 98161.78 120207.00 144424.45	5833.33 12136.25 21558.54 33216.94 47111.46 63242.08 81608.82 102211.67 125050.63 150125.69
YRIG (given	Y _{RIG} (given	YRIG (given	Y _{RIG} (given	Y _{RIG} (given ϕ = 32 in.)	Y _{RIG} (given Φ = 33 in.)

Y _{RIG} (given φ = 28 in.)	Y _{RIG} (given φ = 29 in.)	Y_{RIG} (given $\phi = 30 \text{ in.}$)	Y_{RIG} (given $\phi = 31 \text{ in.}$)	Y_{RIG} (given $\phi = 32 \text{ in.}$)	Y_{RIG} (given $\phi = 33 \text{ in.}$)
6000.00	6166.67	6333•33	6500 • 00	6666.67	6833.33
12782.00	13444.36	14123•33	14818 • 92	15531.11	16259.92
22623.00	23712.37	24826•67	25965 • 88	27130.00	28319.04
34764.00	36344.28	37957•78	39604 • 50	41284.44	42997.61
49205.00	51340.07	53516•67	55734 • 79	57994.45	60295.63
65946.00	68699.75	71503•33	74356 • 75	77260.00	80213.08
84987.00	88423.32	91917•78	95470 • 38	99081.11	102749.99
106328.00	110510.78	114760•00	119075 • 67	123457.78	127906.33
129969.00	134962.13	140030•00	145172 • 63	150390.00	155682.13
155910.00	161777.36	167727•78	173761 • 25	179877.78	186077.36

YRIG (given $\phi = 34 \text{ in.}$)	YRIG (given $\phi = 35 \text{ in.}$)	Y _{RIG} (given φ = 36 in.)	Y _{RIG} (given φ = 37 in.)	Y _{RIG} (given φ = 38 in.)	YRIG (given P = 39 in.)
7161.00	7510.07	7867 • 44	8233 • 12	8607 • 11	8989.40
17005.33	17767.36	18546 • 00	19341 • 25	20153 • 11	20981.58
29533.00	30771.87	32035 • 67	33324 • 38	34638 • 00	35976.54
44744.00	46523.61	48336 • 44	50182 • 50	52061 • 78	53974.28
62638.33	65022.57	67448 • 33	69915 • 63	72424 • 44	74974.79
83216.00	86268.75	89371 • 33	92523 • 75	95726 • 00	98978.08
106477.00	110262.15	114105 • 45	118006 • 88	121966 • 44	125984.15
132421.33	137002.78	141650 • 67	146365 • 00	151145 • 78	155993.00
161049.00	166490.63	172007 • 00	177598 • 13	183264 • 00	189004.63
192360.00	198725.69	205174 • 45	211706 • 25	218321 • 11	225019.02
Y _{RIG} (given	YRIG (given	Y _{RIG} (given	Υ _{RIG} (given	YRIG (given	Y _{RIG} (given
\$\phi = 40 in.)	\$\Phi = 41 in.)	ϕ = 42 in.)	φ = 43 in.)	\$\Phi = 44 in.)	φ = 45 in.)

$ \begin{array}{l} Y_{RIG} & (given) \\ $	PRIG (given) φ = 4l in.)	RIG (given φ = 42 in.)	RIG (given φ = 43 in.)	RIG (given	$\phi = 45 \text{ in.}$
9380 • 00	9778 • 90	10186 • 11	10601 • 63	11025 • 44 25373 • 11	11457 • 57
21826.67 37340.00	22688•36 38728•38	23566•67 40141•67	24461 • 58 41579 • 88	43043 • 00	26301.25 44531.04 66146.94
55920 • 00 77566 • 67	57898•94 80200•07	59911•11 82875•00	61956 • 50 85591 • 46	64035 • 11 88349 • 44	91148•96 119537•08
102280 • 00 130060 • 00	105631-75	109033.33 138386.11	112484•75 142636•38	115986 • 00 146944 • 78	151311•32 186471•67
160906 • 67 194820 • 00	165886 • 78 2007 10 • 13	170933•33 206675•00	176046 • 33 212714 63	181225•77 218829•00	225018 • 13 257638 • 89
231800.00	238194•44	243055.56	247916.67	252777 •77	257638•69

Table 11

TOTAL RIG COSTS FOR MEDIUM HARD ROCK AS A FUNCTION OF DEPTH AND DIAMETER* (in dollars)

$$Y_{RIG} = \begin{bmatrix} DH_1(\phi+8) \\ 7,200 \end{bmatrix} (1,200 + 1.15HPR)$$
Where:

YRIG = Total rig cost per well;

= Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3}$ φ ;

= Depth ranging from 1,000 to 10,000 feet in our calculations; = $26(\varphi - 10) + \frac{D}{5}$ - 800; 500 < HPR < 2,500 is the rig horsepower requirement;

= Factor of the hardness of the soil equal to $\frac{\pm 3}{2.3}$ for medium hard rock/

* In these calculations, this total drilling time is the result of a ratio between total depth and the corresponding penetration rate.

Y _{RIG} (given	Y _{RIG} (given	YRIG (given	Y RIG (given	Y _{RIG} (given	Y RIG (given φ = 15 in.)
\$\phi = 10 in.)	\$\phi = 11 in.)	\$\Phi = 12 in.)	ϕ = 13 in.)	φ = 14 in.)	
3913.04	4130.43	4347 • 83	4565 • 22	4782 • 61	5000.00
7826.09	8260.87	8695 • 65	9130 • 43	9565 • 22	10000.00
11739.13	12391.30	13043 • 48	13695 • 65	14347 • 83	15000.00
15652.17	16933.41	18257 • 97	19625 • 87	21037 • 10	22491.67
23315.22	25125.09	26989 • 13	28907 • 34	3087 9 • 71	32906.25
32478.26	34900.11	37386 • 96	39938 • 80	42555 • 65	45237.50
43141.30	46258.46	49451 • 45	52720 • 27	56064 • 93	59485.42
55304.35	59200.15	63182 • 61	67251 • 74	71407 • 54	75650.00
68967.39	73725.16	78580 • 44	83533 • 21	88583 • 48	93731.25
84130.43	89833.51	95644 • 93	101564 • 67	107592 • 75	113729.17
Y RIG (given $\phi = 16 \text{ in.}$)	$Y_{RIG}^{(given)}$ $\phi = 17 in.)$	RIG (given Φ = 18 in.)	Y _{RIG} (given Φ = 19 in.)	Y _{RIG} (given φ = 20 in.)	Y RIG (given $\phi = 21 \text{ in.}$)
5217.39	5434.78	5652.17	5869.57	6086.96	6304.35
10434.78	10869.57	11304.35	11739.13	12173.91	12608.70
15652.17	16304.35	17086.52	18182.45	19310.87	20471.79
23989.57	25530.80	27115.36	28743.26	30414.49	32129.06
34986.96	37121.83	39310.87	41554.08	43851.45	46202.99
47984.35	50796.20	53673.04	56614.89	59621.74	62693.59
62981.74	66553.90	70201.88	73925.71	77725.36	81600.85
79979.13	84394.93	88897.39	93486.52	98162.32	102924.78
98976.52	104319.29	109759.56	115297.34	120932.61	126665.38
119973.91	126326.99	132788.40	139358.15	146036.23	152822.64

Y _{RIG} (given φ = 22 in.) 6521.74 13043.48	Y _{RIG} (giver Φ = 23 in.) 6739.13 13478.26			Y _{RIG} (given Φ = 26 in.) 7391.30 15009.28 26763.91	Y _{RIG} (given φ = 27 in.) 7608•70 15829•89 28119•84
6521.74	6739•13	6956 • 52	7173.91		

Y _{RIG} (given	Y _{RIG} (given	YRIG (given	Υ _{RIG} (given	Y _{RIG} (given	YRIG (given
φ = 28 in.)	ϕ = 29 in.)	\$\Phi = 30 in.)	φ = 31 in.)	φ = 32 in.)	Ф = 33 in.)
7826.09	8043.48	8260.87	8478 • 26	8695.65	8913.04
16672.17	17536.12	18421.74	19329 • 32	20257.97	21208.59
29508.26	30929.18	32382.61	33868 • 53	35386.96	36937.38
45344.35	47405.58	49510.15	51658 • 04	53849.28	56083.84
64180.44	66965.31	69804.35	72697 • 55	75644.93	78646.47
86016.52	89608.37	93265.22	96987 • 07	100773.91	104625.76
110852.61	115334.76	119892.75	124526 • 58	129236.23	134021.72
138688.69	144144.49	149686.96	155316 • 09	161031.89	166834.35
169524.78	176037.55	182647.83	189355 • 60	196160.87	203063.64
203360.37	211013.94	218775.36	226645 • 11	234623.19	242709.61

Y _{RIG} (given φ = 34 in.)	Y _{RIG} (given \$\Phi = 35 in.)	Y_{RIG} (given $\varphi = 36 \text{ in.}$)	Y_{RIG} (given $\phi = 37 \text{ in.}$)	Y _{RIG} (given φ = 38 in.)	YRIG (given $\phi = 39 \text{ in.}$)
9340 • 43 22180 • 87 38521 • 30 58361 • 74 81702 • 17 108542 • 61 138883 • 04 172723 • 48 210063 • 91 250904 • 34	9795.74	10261 • 88	10738.86	11226.67	11725 • 31
	23174.82	24190 • 43	25227.72	26286.67	27367 • 28
	40137.23	41785 • 65	43466.58	45180.00	46925 • 92
	60682.97	63047 • 54	65455.43	67906.67	70401 • 23
	84812.05	87976 • 09	91194.30	94466.67	97793 • 21
	112524.45	116571 • 31	120683.15	124860.00	129101 • 85
	143820.20	148833 • 19	153922.01	159086.67	164327 • 16
	178699.28	184761 • 74	190910.87	197146.67	203469 • 13
	217161.69	224356 • 96	231649.73	239040.00	246527 • 77
	259207.42	267618 • 84	276138.59	284766.66	293503 • 07

YRIG (given $\phi = 40 \text{ in.}$)	YRIG (given \$\phi = 41 in.)	Υ _{RIG} (given φ = 42 in.)	Y _{RIG} (given $\phi = 43 \text{ in.}$)	¥ _{RIG} (given φ = 44 in.)	Y _{RIG} (given p = 45 in.)
12234.78	12755.09	13286 • 23	13828 • 21	14381.01	14944.66
28469.57	29593.51	30739 • 13	31906 • 41	33095.36	34305.98
48704.35	50515.27	52358 • 70	54234 • 62	56143.04	58083.97
72939.13	75520.36	78144 • 93	80812 • 83	83524.06	86278.62
101173.91	104608.79	108097 • 83	111641 • 03	115238.40	118889.95
133408.70	137780.54	142217 • 39	146719 • 24	151286.08	155917.94
169643.48	175035.63	180503 • 62	186047 • 44	191667.10	197362.59
209878.26	216374.06	222956 • 52	229625 • 65	236381.44	243223.91
254113.04	261795.82	269576 • 09	277453 • 86	285429.13	293501.90
302347.82	310688.40	317028 • 98	323369 • 56	329710.14	336050.72

Table 12

TOTAL RIG COSTS FOR HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER*

$$Y_{RIG} = \sqrt{\frac{DH_1(\phi+8)}{7,200}} (\text{in dollars})$$

YRIG Total rig cost per well;

Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing $ID \approx \frac{2}{3} \varphi$;

D = Depth ranging from 1,000 to 10,000 feet in our calculations; HPR = $26(\phi - 10) + \frac{4+D}{5} - 800$; 500 > HPR > 2,500 is the rig horsepower requirement;

= Factor of the hardness of the soil equal to $\frac{43}{1.3}$ for hard rock. H_i

* In these calculations, this total drilling time is the result of a ratio between total depth and the corresponding penetration rate.

Y _{RIG} (given $\phi = 10 \text{ in.}$)	YRIG (given $\phi = 11$ in.)	Y (given φ = 12 in.)	YRIG (given \$\phi = 13 in.)	YRIG (given $\phi = 14 \text{ in.}$)	$ \begin{array}{c} Y_{RIG}(given) \\ \phi = 15 \text{ in.} \end{array} $
6923.08	7307.69	7692.31	8076.92	8461.54	8846 • 15
13846.15	14615.39	15384.62	16153.85	16923.08	17692 • 31
20769.23	21923.08	23076.92	24230.77	25384.62	26538 • 46
27692.31	29959.10	32302.56	34722.69	37219.49	39792 • 95
41250.00	44452.08	47750.00	51143.75	54633.33	58218 • 75
57461.54	61746.35	66146.15	70660.96	75290.77	80035 • 58
76326.92	81841.89	87491.03	93274.33	99191.80	105243 • 43
97846.15	104738.72	111784.62	118983.85	126336.41	133842 • 31
122019.23	130436.83	139026.93	147789.52	156724.62	165832 • 21
148846.15	158936.22	169217.95	179691.35	190356.41	201213 • 14
YRIG (given	Y _{RIG} (given	YRIG (given	YRIG (given	YRIG (given	YRIG (given $\phi = 21$ in.)
\$\phi = 16 in.)	$\phi = 17$ in.)	\$\phi = 18 in.)	\$\Phi = 19 in.)	\$\phi = 20 in.)	
9230.77	9615•38	10000.00	10384-62	10769.23	11153.85

Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	YRIG (given	Y _{RIG} (given	Y _{RIG} (given
φ = 16 in.)	ϕ = 17 in.)	$\phi = 18 \text{ in.}$)	\$\Phi = 19 in.)	φ = 20 in.)	ϕ = 21 in.)
9230.77	9615.38	10000.00	10384.62	10769.23	11153.85
18461.54	19230.77	20000.00	20769.23	21538.46	22307.69
27692.31	28846.15	30230.00	32168.94	34165.38	36219.33
42443.08	45169.87	47973.33	50853.46	53810.26	56843.72
61900.00	65677.08	69550.00	73518.75	77583.33	81743.75
84895.39	89870.19	94960.00	100164.81	105484.62	110919.42
111429.23	117749.20	124203.33	130791.64	137514.10	144370.74
141501.54	149314.10	157280.00	165399.23	173671.80	182097.70
175112.31	184564.91	194190.00	203987.59	213957.69	224100.29
212261.54	223501.60	234933.33	246556.73	258371.79	270378.53

Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	YRIG (given	YRIG (given	YRIG (given
\$\phi = 2\mathbf{z} \text{ in.})	\$\phi = 23 in.)	φ = 24 in.)	\$\Phi = 25 in.)	\$\Phi = 26 in.)	\$\Phi = 27 in.)
11538.46	11923.08	12307.69	12692.31	13076.92	13461.54
23076.92	23846.15	24615.38	25384.62	26554.87	28006.73
38330.77	40499.71	42726.15	45010.10	47351.54	49750.48
59953.85	63140.64	66404.10	69744.23	73161.03	76654.49
86000.00	90352.09	94800.00	99343.75	103983.33	108718.75
116469.23	122134.04	127913.85	133808.65	139818.46	145943.27
151361.54	158486.51	165745.64	173138.94	180666.41	188328.05
190676.92	199409.49	208295.39	217334.61	226527.18	235873.08
234415.39	244902.98	255563.08	266395.68	277400.77	288578.37
282576.92	294966.99	307548.72	320322.12	333287.18	346443.91
Y _{RIG} (given φ = 28 in.)	YRIG (given φ = 29 in.)	Y _{RIG} (given \$\phi = 30 in.)	YRIG (given $\phi = 31$ in.)	Y _{RIG} (given φ = 32 in.)	Υ _{RIG} (given φ = 33 in.)
13846 • 15	14230•77	14615•39	15000 • 00	15384•62	15769•23
29496 • 92	31025•45	32592•31	34197 • 50	35841•03	37522•88

$ \begin{array}{l} Y_{RIG} \text{ (given} \\ $	Ψ_{RIG} (given $\phi = 29 \text{ in.}$)	Y _{RIG} (given ϕ = 30 in.)	Υ_{RIG} (given $\varphi = 31 \text{ in.}$)	$ \begin{array}{l} Y_{RIG} \text{ (given} \\ \phi = 32 \text{ in.} \end{array} $	$ \begin{array}{c} Y_{RIG} \text{ (given} \\ \phi = 33 \text{ in.}) \end{array} $
13846 • 15	14230•77	14615•39	15000•00	15384 • 62	15769 • 23
29496 • 92	31025 • 45	32592•31	34197.50	35841.03	37522.88
52206 • 92	54720.87	57292.31	59921 25	62607.69	65351 • 64
80224-62	83871 • 41	87594.87	91395.00	95271.80	99225 • 26
113550 • 00	118477 • 08	123500.00	128618.75	133833 • 33	139143.75
152183.08	158537 • 88	165007 • 69	171592.50	178292 • 31	185107 • 12
196123.85	204053.82	212117.95	220316.25	228648•72	237115.35
245372 • 31	255024.87	264830 • 7.8	274790.00	284902.57	295168•46
299928 • 46	311451.06	323146 • 16	335013.76	347053.85	359266•44
359792 • 31	373332 • 37	387064-11	400987 • 50	415102.57	429409•31

Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given	YRIG (given	YRIG (given ϕ = 39 in.)
φ = 34 in.)	φ = 35 in.)	φ = 36 in.)	ϕ = 37 in.)	\$\Phi = 38 in.)	
16525.38	17330.93	18155.64	18999.52	19862.56	20744.78
39243.08	41001.60	42798.46	44633.65	46507.18	48419.04
68153.08	71012.02	73928.46	76902.40	79933.85	83022.79
103255.39	107362.18	111545.64	115805.77	120142.57	124556.03
144550.00	150052.08	155650.00	161343.75	167133.33	173018.75
192036.92	199081.73	206241.54	213516.35	220906.15	228410.96
245716.15	254451.12	263320.26	272323.56	281461.02	290732.66
305587.70	316160.26	326886.16	337765.39	348797.95	359983.85
371651.54	384209.14	396939.24	409841.83	422916.93	436164.52
443907.69	458597.75	473479.49	488552.89	503817.94	519274.68
YRIG (given	YRIG (given $\varphi = 41$ in.)	Y _{RIG} (given	YRIG (given	Ψ _{RIG} (given	Y _{RIG} (given
ϕ = 40 in.)		ϕ = 42 in.)	$\varphi = 43 \text{ in.}$)	φ = 44 in.)	ϕ = 45 in.)
21646.15	22566.70	23506 • 41	24465.29	25443.33	26440.54
50369.23	52357.76	54384 • 62	56449.81	58553.33	60695.19
86169.23	89373.17	92634 • 62	95953.56	99330.00	102763.94
129046.15	133612.95	138256 • 41	142976.54	147773.33	152646.80
179000.00	185077.09	191250 • 00	197518.75	203883.33	210343.75
236030.77	243765.58	251615 • 39	259580.19	267660.00	275854.81
300138.46	309678.43	319352 • 57	329160.87	339103.33	349179.97
371323.08	382815.65	394461 • 54	406260.77	418213.33	430319.23
449584.62	463177.22	476942 • 32	490879.91	504990.00	519272.60
534923.07	549679.49	560897 • 44	572115.38	583333.33	594551.28

Table 13

TOTAL RIG COSTS FOR VERY HARD ROCK AS A FUNCTION OF DEPTH AND DIAMETER*

— (in dollars)

(1,200 + 1.15HPR) Where:

YRIG = Total rig cost, per well;

= Diameter of the hole drilled in feet. In our calculations this variable ranges from 10 to 45 inches and the inside diameter (ID) of the casing ranges from 8 to 30 inches, given that casing ID $\approx \frac{2}{3}$ ϕ ;

D = Depth ranging from 1,000 to 10,000 feet in our calculations; HPR = $26(\varphi - 10) + \frac{D}{5}$ - 800; 500 > HPR > 2,500 is the rig horsepower requirement;

= Factor of the hardness of the soil equal to 3 for very hard rock. H_i

* In these calculations, this total drilling time is the result of a ratio between total depth and the corresponding penetration rate.

Ψ_{RIG} (given $\phi = 10 \text{ in.}$)	YRIG (given $\phi = 11 \text{ in.}$)	$ \frac{Y}{RIG} $ (given $\phi = 12 \text{ in.}$)	Υ _{RIG} (given φ = 13 in.)	YRIG (given \$\Phi = 14 \text{ in.} \text{)}	Y RIG (given ϕ = 15 in.)
9000 00	9500.00	10000.00	10500.00	11000.00	11500.00
18000 00	19000.00	20000.00	21000.00	22000.00	23000.00
27000 00	28500.00	30000.00	31500.00	33000.00	34500.00
36000 00	38946.83	41993.33	45139.50	48385.33	51730.83
53625 00	57787.71	62075.00	66486.88	71023.33	75684.37
74700 00	80270.25	85990.00	91859.25	97878.00	104046.25
99225 00	106394.46	113738.33	121256.63	128949.33	136816.46
127200 00	136160.33	145320.00	154679.00	164237.33	173995.00
158625 00	169567.88	180735.00	192126.38	203742.00	215581.88
193500 00	206617.08	219983.34	233598.75	247463.33	261577.08
YRIG (given	YRIG (given $\phi = 17 \text{ in.}$)	YRIG (given	Y _{RIG} (given	Y _{RIG} (given	Y _{RIG} (given
\$\Phi = 16 in.)		\$\Phi = 18 in.)	\$\phi = 19 in.)	ϕ = 20 in.)	ϕ = 21 in.)
12000.00 24000.00 36000.00 55176.00 80470.00 110364.00 144858.00 183952.00 227646.30	12500.00 25000.00 37500.00 58720.83 85380.21 116831.25 153073.96 194108.33 239934.38 290552.09	13000.00 26000.00 39299.00 62365.33 90415.00 123448.00 161464.33 204464.00 252447.00 305413.33	13500.00 27000.00 41819.63 66109.50 95574.37 130214.25 170029.13 215019.00 265183.87 320523.75	14000.00 28000.00 44415.00 69953.33 100858.33 137130.00 178768.33 225773.33 278145.00 335883.33	14500.00 29000.00 47085.12 73896.83 106266.88 144195.25 187681.96 236727.00 291330.38 351492.09

Y RIG (given φ = 22 in.)	Y_{RIG} (given $\phi = 23 \text{ in.}$)	Y_{RIG} (given $\phi = 24 \text{ in.}$)	$ \begin{array}{l} Y_{RIG} & \text{(given)} \\ \phi = 25 \text{ in.)} \end{array} $	$ \begin{array}{l} Y \\ RIG \\ \phi = 26 \text{ in.} \end{array} $	YRIG (given p = 27 in.)
15000 • 00 30000 • 00 49830 • 00 77940 • 00 111800 • 00 151410 • 00 196770 • 00 247880 • 00 367350 • 00	15500.00 31000.00 52649.63 82082.83 117457.71 158774.25 206032.46 259232.34 318373.88 383457.09	16000.00 32000.00 55544.00 86325.33 123240.00 166288.00 215469.33 270784.00 332232.00 399813.34	16500.00 33000.00 58513.13 90667.50 129146.87 173951.25 225080.62 282535.00 346314.38 416418.75	17000.00 34521.33 61557.00 95109.33 135178.33 181764.00 234866.34 294485.34 360621.00 433273.34	17500.00 36408.75 64675.62 99650.83 141334.37 189726.25 244826.46 306635.00 375151.88 450377.08

Y_{RIG} (given $\varphi = 28 \text{ in.}$)	$ \begin{array}{l} Y & \text{RIG} \\ \varphi = 29 \text{ in.} \end{array} $	Y RIG (given ϕ = 30 in.)	Y _{RIG} (given \$\phi = 31 in.)	Y RIG (given $\phi = 32 \text{ in.}$)	Y_{RIG} (given $\phi = 33 \text{ in.}$)
18000.00 38346.00 67869.00 104292.00 147615.00 197838.00 254961.00 318984.00 389907.00	18500 • 00 40333 • 08 71137 • 12 109032 • 83 154020 • 21 206099 • 25 265269 • 96 331532 • 33 404886 • 37 485332 • 08	19000.00 42370.00 74480.00 113873.33 160550.00 214510.00 275753.34 344280.01 420090.01 503183.34	19500.00 44456.75 77897.63 118813.50 167204.37 223070.25 286411.13 357227.00 435517.88 521283.75	20000.00 46593.33 81390.00 123853.33 173983.33 231780.00 297243.34 370373.34 451170.00 539633.34	20500.00 48779.75 84957.13 128992.83 180886.38 240639.25 308249.96 383719.00 467046.37 558232.09

Y RIG (given $\phi = 34 \text{ in.}$)	Y_{RIG} (given $\phi = 35 \text{ in.}$)	YRIG (given \$\Phi = 36 in.)	Y_{RIG} (given $\phi = 37 \text{ in.}$)	Y RIG (given φ = 38 in.)	Y_{RIG} (given $\phi = 39 \text{ in.}$)
21483.00	22530.21	23602 • 33	24699.37	25821-33	26968.21
51016.00	53302.08	55638 • 00	58023.75	60459-33	62944.75
88599.00	92315.62	96107 • 00	99973.13	103914-00	107929.63
134232.00	139570.83	145009 • 33	150547.50	156185-34	161922.83
187915.00	195067.71	202345 • 00	209746.88	217273-33	224924.37
249648.00	258806.25	268114 • 00	277571.25	287178-00	296934.25
319431.00	330786.46	342316 • 34	354020.63	365899-33	377952.46
397264.00	411008.34	424952 • 00	439095.00	453437-34	467979.00
483147.00	499471.88	516021 • 01	532794.38	549792-00	567013.87
577080.00	596177.08	615523 • 34	635118.76	654963-33	675057.08

Y _{RIG} (given	YRIG (given	Y _{RIG} (given	Υ _{RIG} (given	YRIG (given	${}^{Y}_{RIG}$ (given $\phi = 45 \text{ in.}$)
\$\phi = 40 in.)	\$\phi = 41 in.)	φ = 42 in.)	φ = 43 in.)	\$\phi = 44 in.)	
28140.00	29336.71	30558.33	31804.88	33076 • 33	34372.71
65480.00	68065.08	70700.00	73384.75	76119 • 33	78903.75
112020.00	116185.13	120425.00	124739.63	129129 • 00	133593.13
167760.00	173696.83	179733.33	185869.50	192105 • 33	198440.83
232700.00	240600.21	248625.01	256774.38	265048 • 33	273446.87
306840.00	316895.25	327100.00	337454.25	347958 • 00	358611.26
390180.00	402581.96	415158.34	427909.13	440834 • 33	453933.96
482720.00	497660.34	512800.00	528139.00	543677 • 33	559415.00
584460.01	602130.38	620025.01	638143.87	656487 • 00	675054.38
695399.99	714583.33	729166.67	743749.99	758333 • 33	772916.67

Table 14

TOTAL FIXED COSTS (in dollars)

$$Y_{FC} = Y_{MOB} + Y_{SP} + Y_{RT} + Y_{SC}$$

Where:

Y_{MOB} = 400 + 4(HPR - 500) is the mobilization and demobilization costs as a function of the rig horsepower requirement HPR = 26(\$\Phi\$ - 10)+\$\frac{D}{5}\$ - 800; 500<HPR<2,500;

 \pm 2,000 + 6.5(HPR - 500) is the site preparation cost as a function of the rig horsepower HPR = 26(φ - 10) + \underline{D} - 800; 500<HPR<2,500;

= 3,800 + 4.1(HPR - 500) is the rig-up and tear-down cost as a function of the rig horsepower HPR = 26(Φ - 10) + D/5 - 800; 500<HPR<2,500;
 = 0.025 (total variable cost) is the surface casing cost as a function of total variable costs which include costs for mud, cementing, casing,

 Y_{SC} cutter and rig.

Y _{FC} (given	Υ _{FC} (given)	Υ _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y (given
$\phi = 10 \text{ in.}$)	Φ = 11 in.)	φ = 12 in.)	\$\Phi\$ = 13 in.)	ϕ = 14 in.)	FC Ф = 15 in.)
10002.67	10046.27	10090.92	10136.63	10183.39	10231 • 21
10205.34	10292.53	10381.34	10473.25	10566.78	10662 • 41
10408.00	10538.80	10672.75	10809.88	10950.17	11093 • 62
10610.67	11174.95	11744.54	12319.43	12899.62	13485 • 12
13827.09	14442.75	15065.04	15693.96	16329.51	16971 • 69
17081.01	17750.13	18427.21	19112.24	19805.23	20506 • 18
20372.43	21097.09	21831.04	22574.28	23326.79	24088 • 58
23701.34	24483.64	25276.55	26080.06	26894.18	27718 • 91
27067.76	27909.77	28763.71	29629.59	30507.40	31397 • 14
30471.68	31375.48	32292.55	33222.87	34166.46	35123 • 30
Υ _{FC} (given φ = 16 in.)	Y (given FC $\phi = 17$ in.)	Υ _{FC} (given φ = 18 in.)	Y _{FC} (given ϕ = 19 in.)	Y _{FC} (given φ = 20 in.)	Y _{FC} (given ϕ = 21 in.)
10280.08	10330.01	10380.99	10433.03	10486.13	10540 • 27
10760.16	10860.02	10961.98	11066.06	11172.25	11280 • 55
11240.24	11390.03	11663.03	12209.84	12760.63	13315 • 39
14075.92	14672.03	15273.44	15880.15	16492.17	17109 • 49
17620.50	18275.94	18938.01	19606.71	20282.04	20964 • 00
21215.08	21931.94	22656.76	23389.53	24130.25	24878 • 93
24859.66	25640.02	26429.66	27228.59	28036.79	28854 • 28
28554.24	29400.19	30256.74	31123.90	32001.67	32890 • 05
32298.82	33212.44	34137.98	35075.46	36024.88	36986 • 23
36093.40	37076.77	38073.39	39083.28	40106.42	41142 • 82

Υ _{FC} (given Φ = 22 in.)	Υ _{FC} (given φ = 23 in.)	Y _{FC} (given φ = 24 in.)	Y _{FC} (given \$\phi = 25 in.)	Y_{FC} (given $\phi = 26 \text{ in.}$)	Y_{FC} (given $\phi = 27 \text{ in.}$)
10595.48	10651.74	10709.05	10767 • 42	10826.85	10887.33
11390.96	11503.48	11618.1	11734 • 85	12092.96	12603.17
13874.14	14436.86	15003.56	15574 • 24	16148.89	16727.53
17732.12	18360.05	18993.28	19631 • 82	20275.66	20924.80
21652.59	22347.81	23049.67	23758 • 15	24473.26	25195.00
25635.57	26400.17	27172.72	27953 • 23	28741.69	29538.11
29681.05	30517.10	31362.44	32217 • 05	33080.95	33954.13
33789.03	34698.62	35618.82	36549 • 63	37491.05	38443.08
37959.51	38944.73	39941.88	40950 • 96	41971.98	43004.93
42192.49	43255.41	44331.60	45421 • 04	46523.75	47639.71

F _C (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given
$\phi = 28 \text{ in.})$	$\phi = 29 \text{ in.}$	ϕ = 30 in.)	$\Phi = 31 \text{ in.}$	Φ = 32 in.)	$\Phi = 33 \text{ in.}$
10948.86	11011.45	11075 • 10	11139 • 80	11205.56	11272 • 37
13116-03	13631 • 54	14149•70 18487•30	14670•51 19081-85	15193.98	15720 • 10 20282 • 87
17.310 • 14 21579 • 25	17896.73 22239.01	22904.07	23574-43	24250.09	24931 • 06
25923.37	26658.37	27,400 • 00	28148.26	28903 • 15	29664-67
30342 • 48	31154-81	31975 • 10	32803•34 37539•67	33639•54 38459•26	34483•70 39388•14
34836·59 39405·71	35728•34 40378•95	36629•37 41362•80	42357 • 26	43362 • 32	44377 • 99
44049 • 82	45106.64	46175 • 40	47256 • 09	48348 • 71	49453•27
48768.94	49911•42	51067 • 16	52236 • 17	53418 • 43	54613•96

Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	YFC (given	Y _{FC} (given	Y _{FC} (given
$\dot{\Phi} = 34 \text{ in.}$	$\phi = 35 \text{ in.}$	$\dot{\phi}$ = 36 in.)	$\dot{\Phi} = 37 \text{ in.})$	φ = 38 in.)	$\phi = 39 \text{ in.})$
11695•88	12150.35	12606 • 15	13063•27	13521.72	13981 • 49
16248 • 87	16780-29	17314.37	17851 • 09	18390 • 47	18932 • 50
20889 - 35	21499.81	22114.25	22732.66	23355•06	23981 • 43
25617.34	26308 • 92	27005.80	27707 - 98	28415.47	29128-27
30432 • 82	31207 60	31989-01	32777 • 06	33571.73	34373 • 03
35335 • 81	36195 - 87	37063.90	37939•88	38823 • 81	39715.70
40326 • 29	41273.73	42230 • 45	43196 • 45	44171.73	45156 • 30
45404.28	46441 • 17	47488-66	48546.77	49615 • 48	50694.80
50569.76	51698 • 19	52838 • 55	53990-84	55155-97	56331 • 23
55822 • 74	57044•79	58280 • 10	59528 • 66	60790 • 49	62065.57
Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given

Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given	Y _{FC} (given
φ = 40 in.)	$\phi = 41 \text{ in.}$	$\phi = 42 \text{ in.})$	$\phi = 43 \text{ in.})$	φ = 44 in.)	$\phi = 45 \text{ in.} \gamma$
14442 - 59	14905 • 02	15368.77	15833•85	16300•25	16767•98
19477 • 18	20024.52	20574.50	21127 • 14	21682•43	22240 • 38
24611.78	25246 • 10	25884 • 41	26526 • 69	27172.95	27823 • 19
29846-37	30569.77	31298 • 48	32032 • 49	32771 • 80	33516 • 42
35180-96	35,995 • 52	36816 • 7.1	37644.53	38478 • 98	39320 • 06 45234 • 13
40615-55	41523-35	42439 • 11	43362 • 83 49187 • 38	44294.50	51258-61
46150 • 14	47153•27 52885•27	48165 • 68 53996 • 42	55118-17	50218•35 56250 ₂ 53	57393.50
51784.73 57519.33	58719.36	59931 • 32	61155.22	62391.05	63638-82
63353 • 92	64552 • 61	65419.85	66297 • 65	67186.00	68084.90
i	<u> </u>	I	<u> </u>	<u></u>	

Table 15

TOTAL AND AVERAGE DRILLING COSTS FOR

CASED WELLS IN SOFT ROCK AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

Y _{TC} (given	Y AVC (given
φ = 10 in.)	$\phi = 10 \text{ in}$
16125.25	16•13
22450•49	11-23
28775.74	9•59
35100.99	8.78
46556•39	9•31
58895.86	9•82
72119.39	10.30
86226 • 98	10.78
101218.63	11.25
117094•35	11.71

YTC (given	YAVC (given
φ = 11 in.)	$\Phi = 11 \text{ in.}$
17759•34	17.76
25718.68	12.86
33678.02	11-23
42259.59	10.56
55532 • 53	11-11
69738.65	11.62
84877 • 94	12•13
100950 • 41	12.62
117956 • 06	13•11
135894 • 88	13.59

Y _{TC} (given	YAVC
	(given
$\Phi = 12 \text{ in.})$	$\Phi = 12 in.$
19431•11	19•43
29062.21	14.53
38693•32	12.90
49594•42	12.40
64728•95	12.95
80845•77	13•47
97944•89	13.99
116026.30	14.50
135090.00	15•01
155135•99	15•51

Y _{TC} (given	YAVC
φ = 13 in.)	(given Φ=13in.)
21140.54	21•14
32481•09	16.24
43821•63	14.61
57105.47	14.28
74145•65	14.83
92217 • 24	15•37
111320.23	15.90
131454.63	16•43
152620•44	16•96
174817•66	17 • 48

Y _{TC} (given	YAVC
$\phi = 14 \text{ in.}$)	(given Φ=14 in.)
22887 • 65	22.89
35975.30	17•99
49062.95	16•35
64792•75	16.20
83782.63	16.76
103853•04	17•31
125003.98	17.86
147235•43	18•40
170547 • 40	18•95
194939•89	19•49

Y _{TC} (given φ = 15 in.)	YAVC (given $\Phi = 15 in.)$
24672•43	24.67
39544•86	19.77
54417•29	18•14
72656•25	18•16
93639•90	18•73
115753•19	19•29
138996 • 11	19.86
163368•67	20.42
188870•86	20.99
215502.69	21.55
	Continued

YTC (given	YAVC (given 0 = 16 in.)
Φ = 16 in.) 26494•88	26 • 49
43189•77	21.59
59884•65	19•96
80695•98	20.17
103717.45	20.74
127917 - 67	21.32
153296 • 64	21.90
179854.36	22•48
207590.83	23.07
236506 • 05	23•65

Υ _{TC} (given φ = 17 in.)	YAVC (given O=17in.)
$\psi = 17,111.7$	4 - 1 7
28355.01	28•36
46910.01	23•46·
65465•02	21.82
88911•94	22•23
114015.28	22.80
140346 • 49	23•39
167905.57	23.99
196692.51	24.59
226707 • 31	25•19
257949•98	25.79

YTC (given	YAVC (given
φ = 18 in.)	$\dot{\Phi} = 18 \text{ in.}$
30252•80	30 • 25
50705.60	25•35
71351.82	23•78
97304•12	24•33
124533•40	24.91
153039•65	25.51
182822 • 89	26.12
213883•11	26.74
246220•30	27.36
279834.47	27.98

Υ _{TC} (given φ = 19 in.)	YAVC (given $\phi = 19in.)$
	'
32188•27	32•19
54576•53	27 •29
77799•35	25•93
105872.53	26 • 47
135271•79	27.05
165997 • 15	27 • 67
198048 • 61	28•29
231426 • 15	28•93
266129.80	29.57
302159.53	30.22

YTC (given φ = 20 in.)	YAVC (given φ=20in.)
34161•41	34•16
58522 • 81	29•26
84379•06	28•13
114617 • 16	28•65
146230•48	29•25
179218•99	29.87
213582.72	30.51
249321•66	31 • 17
286435.80	31.83
324925 • 16	32 • 49

YAVC (given $\varphi = 21 \text{ in.}$)
36 • 17
31•27
30•36
30.88
31•48
32•12
32.78
33•45
34•13
34.81

Y _{TC} (given φ = 22 in.)	Y AVC (given $\Phi = 22 in.)$
T == 11107	Y 33 11/0/
38220•70	38•22
66641•39	33•32
97934•98	32•64
132635•11	33•16
168808•68	33.76
206455•69	34•41
245576•13	35.08
286170.01	35.77
328237 • 34	36 • 47
371778•10	37 • 18

Y _{TC} (given	YAVC
$\phi = 23 \text{ in.}$	$\phi = 23 \text{ in.}$
40306 • 85	40•31
70813.70	35•41
104911•19	34•97
141908•42	35•48
180428•21	36 • Ø9
220470•54	36.75
262035•44	37 • 43
305122.88	38•14
349732•87	38•86
395865 • 42	39•59

YTC (given	YAVC (given
ϕ = 24 in.)	$\phi = 24 \text{ in.}$
42430•67	42 • 43
75061.35	37•53
112019.57	37 • 3:4
151357.96	37 • 84
192268•01	38•45
234749.74	39•12
278803•13	39-83
324428•19	40.55
371624•91	41•29
420393•30	42•04

Υ _{TC} (given φ = 25 in.)	Y AVC (given $\phi = 25 \text{ in.}$)
44592•17	44.59
79384•34	39•69
119260•12	39•75
160983•72	40•25
204328•11	40•87
249293•27	41.55
295879•22	42.27
344085•95	43•Ø1
393913•46	43.77
445361.75	44.54

Y _{TC} (given	AVC
Φ = 26 in.)	$\phi = 26 \text{ in.}$
46791•34	46•79
84149.87	42 • 07
126632.84	42.21
170785.71	42.70
216608•48	43•32
264101 • 14	44.02
313263.71	44•75
364096•16	45•51
416598.51	46•29
470770.76	47 • Ø8
L	l.

Y _{TC} (given	YAVC
ϕ = 27 in.)	$\phi = 27 \text{ in.}$
49028•18	49•03
89230 • 55	44•62
134137 • 73	44.71
180763.93	45•19
229109•14	45•82
279173.36	46•53
330956.59	47 • 28
384458•83	48•06
439680•08	48•85
496620•34	49•66

•	
Y _{TC} (given Φ = 28 in.)	YAVC (given O=28in.)
<u> </u>	
51302.69	51.30
94399•34	47.20
141774.79	47 • 26
190918.37	47.73
241830.08	48•37
294509•92	49•08
348957 • 87	49•85
405173.95	50.65
463158•15	51•46
522910•49	52•29

YTC (given	YAVC (given
$\phi = 29 \text{ in.}$)	$\phi = 29 \text{ in.}$
53614.87	53•61
99656 •24	49•83
149544•02	49•85
201249.04	50.31
254771.30	50.95
310110.80	51.69
367267.53	52 • 47
426241•51	53•28
487032.73	54•11
549641•19	54•96

Y _{TC} (given	Y AVC (given
ϕ = 30 in.)	$\phi = 30 \text{ in.})$
55964•72	55.96
105001.26	52•50
157445•42	52•48
211755•94	52•94
267932•81	53•59
325976•03	54•33
385885•62	55•13
447661.54	55•96
511303.83	56.81
576812•47	57 • 68
1	l

YTC (given	Y AVC (given
ϕ = 31 in.)	$\phi = 31 \text{ in.}$
58352•25	58•35
110434•39	55•22
165478•99	55•16
222439•06	55•61
281314•59	56•26
342105.60	57.02
404812•08	57 • 83
469434•01	58•68
535971 • 43	59•55
604424•31	60•44
E .	1

Y _{TC} (given φ = 32 in.)	Y _{AVC} (given φ=32in.)
60777 • 45	60.78
115955•63	57.98
173644•73	57 • 88
233298•40	58•32
294916 • 66	58•98
358499•50	59.75
424046•93	60.58
491558•94	61 • 44
561035•53	62.34
632476•71	63•25

	·
Y _{TC} (given	YAVC
1	given
$\phi = 33 \text{ in.}$	$\Phi = 33 \text{ in.}$
63240•32	63•24
121564•99	60.78
181942•64	60.65
244333•98	61.08
308739.02	61.75
375157.75	62.53
443590 • 18	63•37
514036.32	64•25
586496 • 15	65•17
660969•69	66•10
L	I

<u> </u>	
YTC (given	Y AVC (given
$\Phi = 34 \text{ in.})$	$\Phi = 34 \text{ in.}$
66215 • 03	66•22
127262 • 46	63.63
190372 71	63•46
255545.78	63•89
322781.66	64•56
392080•34	65•35
463441.84	66.21
536866 • 16	67 • 11
612353-27	68.04
689903•23	68.99

YTC (given	Y AVC (given
$\phi = 35 \text{ in.}$	$\dot{\phi}$ = 35 in.)
69273.06	69•27
133048•04	66•52°
198934•96	66•31
266933.80	66•73
337044.56	67 • 41
409267 • 27	68•21
483601.88	69.09
560048•44	70.01
638606 • 91	70.96
719277 • 31	71.93

Y _{TC} (given	YAVC
φ = 36 in.)	(given Φ = 36 in.)
72375 • 15	72•38
138921.74	69•46
207629•38	69•21
278498•05	69•62
351527 • 76	70.31
426718•53	71.12
504070.33	72.01
583583 • 17	72.95
665257 • Ø6	73•92
749091•98	74•91

Y _{TC} (given	TAVC (given
$\phi = 37 \text{ in.}$)	Φ=37in.)
75521.30	75.52
144883•55	72.44
216455•96	72•15
290238•53	72•56
366231•25	73.25
444434•13	74-07
524847 • 16	74•98
607470.36	75.93
692303.71	76.92
779347 •21	77 -93

Υ _{TC} (given φ = 38 in.)	TAVC (given \$\Phi = 38 in.)
78711.50	78.71
150933•47	75•47
225414•71	75 • 14
302155•23	75.54
381155•01	76.23
462414-07	77 • 07
545932•39	77.99
631709.99	78•96
719746.86	79.97
810043.00	81.00

^Υ TC ^{(given} φ = 39 in.)	TAVC (given $\Phi = 39 in.)$
81945•76	81.95
157071.51	78.54
234505•64	78-17
314248•16	78•56
396299•06	79.26
480658•35	80 • 11
567326•03	81.05
656302•09	82•04
747586•53	83.07
841179•36	84•12

	Y _{TC} (given	Y AVC (given
	$\phi = 40 \text{ in.}$	$\Phi = 40 \text{ in.}$
	85224•08	85.22
	163297 •66	81•65
	243728•74	81 • 24
	326517•31	81.63
-	411663•39	82 • 33
	499166•98	83•19
	589028•06	84•15
	681246•62	85•16
	775822 • 71	86•20
	872756•28	87 •28

Y _{TC} (given	Y AVC (given
$\Phi = 41. \text{ in.})$	$\Phi = 41 \text{ in.}$
88546•45	88•55
169611•92	84•81
253084•00	84•36
338962•69	84•74
427248•00	85 • 45
517939•93	86•32
611038•47	87 •29
706543•62	88•32
804455•40	89•38
904325•17	90•43

Y _{TC} (given	YAVC
$\phi = 42 \text{ in.}$	$\Phi = 42 \text{ in.}$
91912.88	91•91
176014.29	88•01
262571.43	87 • 52
351584•30	87 • 90
443052•90	88 • 61
536977 •23	89•50
633357 •29	90•48
732193.08	91.52
833484•59	92•61
934800•05	93•48
L	L

Y _{TC} (given	YAVC
ϕ = 43 in.)	(given Φ = 43 in.)
95323•37	95•32
182504.78	91•25
272191.03	90.73
364382•14	91-10
459078•08	91•82
556278•87	92.71
655984•50	93.71
758194•98	94•77
862910•29	95•88
965651•63	96•57
	

Y _{T'C} (given φ = 44 in.)	Y AVC (given $\varphi = 44$ in.)
98777 • 91	98•78
189083•38	94•54
281942•81	93•98
377356•19	94•34
475323•54	95•06
575844•84	95•97
678920•10	96•99
784549•32	98.07
892732•50	99•19
996879•93	99•69

Y _{TC} (given φ = 45 in.)	YAVC (given Φ = 45 in.)
102276.51	102.28
195750•09	97 • 88
291826.75	97 • 28
390506•47	97 • 63
491789•28	98•36
595675•16	99•28
702164•10	100.31
811256•12	101-41
922951.22	102.55
1028484•90	102•85

Table 16

TOTAL AND AVERAGE DRILLING COSTS FOR
OASED WELLS IN MEDIUM SORT ROCK
AS A FUNCTION OF DEPTH AND DIAMETER
(in dollars)

Y _{TC} (given	Y AVC (given
φ = 10 in.)	φ = 10 in.)
17033•76	17.03
24267 • 52	12•13
31501.28	10.50
38735.04	9•68
51835.67	10.37
66115.06	11.02
81573 • 19	11.65
98210.08	12.28
116025.71	12.89
135020 • 10	13.50

Υ_{TC} (given $\Phi = 11 \text{ in.}$)	YAVC (given O=11in.)
Ψ 11 1111 /	Ψ-11116/
18739•91	18.74
27679.82	13.84
36619.74	12.21
46262.75	11.57
61314•13	12.26
77609.74	12.93
95149.59	13.59
113933•68	14.24
133962 • 00	14.88
155234•55	15.52

Y _{TC} (given	YAVC
Φ = 12 in.)	(given Φ = 12 in.)
20486•53	20•49
31173•06	15.59
41859.59	13.95
53986 • 38	13.50
71037 • 48	14.21
89398•30	14.90
109068•84	15.58
130049•11	16.26
152339•10	16.93
175938•81	17.59

Y _{TC} (given	YAVC (given
φ = 13 in.)	$\Phi = 13 \text{ in.}$
22273.62	22.27
34747 •23	17 • 37
47220.85	15•74
61905.93	15•48
81005.73	16.20
101480.74	16•91
123330.96	17.62
146556 • 39	18•32
171157.03	19•02
197132.87	19•71

YTC (given	YAVC
$\phi = 14 \text{ in.}$	(given Φ = 14 in.)
	04.10
24101.17	24•10
38402•34	19.20
52703.51	17 • 57
70021.40	17.51
91218-88	18•24
113857 • 07	18•98
137935•94	19•71
163455•51	20 • 43
190415.77	21-16
218816.73	21.88

5 • 97 1 • 07 9 • 44
9.44
9.58
0.34
1 • 09
1 • 84
2.59
3 • 35
4 • 10

YTC (given	YAVC (given
$\Phi = 16 \text{ in.})$	$\Phi = 16 \text{ in.})$
27877 • 67	27 • 88
45955•35	22.98
64033•02	21•34
86840 • 10	21.71
112379 • 89	22•48
139491•35	23•25
168174•47	24.02
198429 • 26	24.80
230255•72	25.58
263653 • 85	26•37

YTC (given	Y AVC (given
$\phi = 17_{in.}$	$\phi = 17 \text{ in.}$
29826 • 63	29•83
49853•26	24•93
69879.88	23•29
95543•33	23•89
123327 • 75	24•67
152749•31	25•46
183808•03	26.26
216503•90	27 • 06
250836 • 93	27 • 87
286807 • 11	28•68

YTC (given	YAVC (given
φ = 18 in.)	φ = 18 in.)
31816.05	31.82
53832•10	26.92
76067•10	25•36
104442•48	26.11
134520.50	26.90
166301.15	27.72
199784•45	28•54
234970.38	29.37
271858•96	30.21
310450 • 17	31.05
<u></u>	

YTC (given	YAVC (given
$\phi = 19 \text{ in.}$	φ=19in.)
33845 • 93	33•85
57891.87	28•95
82885•08	27 • 63
113537 • 55	28•38
145958•15	29•19
180146.88	30.02
216103.73	30.87
253828.70	31.73
293321.80	32.59
334583 • 03	33 • 46

Y _{TC} (given φ = 20 in.)	YAVC (given Φ=20in.)
Ψ = 50 111.7	T =/
35916•29	35•92
62032•58	31.02
89849•99	29•95
122828•54	30.71
157640.71	31.53
194286 • 49	32.38
232765.87	33•25
273078•87	34•13
315225 • 47	35.03
359205•69	35•92

Y _{TC} (given φ = 21 in.)	YAVC (given $\phi = 21 \text{ in.}$)
38027 • 11	38.03
66254•22	33•13
96961 • 85	32•32
132315 • 46	33.08
169568•16	33•91
208719•97	34.79
249770.87	35•68
292720.87	36•59
337569•96	37 • 51
384318•16	38•43

Y _{TC} (given	Y AVC (given
$\phi = 22 \text{ in.}$	$\phi = 22 \text{ in.}$
40178•40	40•18
70556.79	35•28
104220.64	34•74
141998•29	35•50
181740.52	36•35
223447 • 33	37.24
267118•73	38•16
312754.71	39•09
360355•27	40.04
409920•42	40.99

Y _{TC} (given	Y AVC (given
$\phi = 23 \text{ in.}$	$\phi = 23 \text{ in.})$
42370 • 15	42.37
74940•30	37 • 47 •
111626•38	37 • 21
151877 • 04	37 • 97
194157•77	38•83
238468•58	39.74
284809•45	40.69
333180•39	41.65
383581 • 40	42.62
436012•49	43•60

Y _{TC} (given	YAVC
φ = 24 in.)	$\phi = 24 \text{ in.}$
44602•37	44.60
79404•75	39•70
119179•05	39•73
161951•71	40•49
206819•93	41•36
253783•70	42•30
302843•03	43•26
353997•91	44•25
407248•35	45•25
462594•35	46•26
	1

Υ_{TC} (given $\Phi = 25 \text{ in.}$)	Y AVC (given Φ = 25 in.)
Ψ = 25 III.)	Ψ-25 11.)
46875.06	46•88
83950•12	41•98
126878.67	42•29
172222•31	43•06
219726.99	43•95
269392•71	44•90
321219.47	45 • 89
375207 • 28	46.90
431356 • 12	47 • 93
489666•02	48•97

Y _{TC} (given	YAVC
$\Phi = 26 \text{ in.}$	$\phi = 26 \text{ in.}$
49188•22	49•19
88988•15	44•49
134725•22	44.91
182688•81	45 • 67
232878•94	46•58
285295•59	47 • 55
339938•77	48•56
396808•47	49•60
455904•71	50•66
517227 • 47	51.72
	5

YTC (given	YAVC (given
Φ = 27 in.)	$\phi = 27 \text{ in.}$
51541•84	51.54
94378•20	47 • 19
142718•72	47 • 57
193351-25	48•34
246275.80	49•26
301492•36	50 • 2,5
359000•93	51•29
418801.53	52•35
480894•13	53•43
545278•74	54•53

Y _{TC} (given φ = 28 in.)	YAVC (given Q=28in.)
53935•93	53•94
99866•20	49•93
150859•15	50.29
204209•60	51.05
259917•56	51.98
317983.01	53.00
378405•96	54•06
441186•41	55•15
506324•36	56•26
573819.82	57 • 38

Y _{TC} (given φ = 29 in.)	YAVC (given $\Phi = 29$ in.)
56370 • 48	56•37
105452•16	52.73
159146•53	53•05
215263•88	53•82
273804•21	54•76
334767 • 53	55•79
398153•84	56•88
463963•12	58.00
532195•41	59•13
602850•67	60•29

Y _{TC} (given	Y AVC (given
ф = 30 in.)	$\phi = 30 \text{ in.}$
58845.50	58•85
111136•09	55•57
167580•84	55•86
226514•07	56•63
287935•77	57.59
351845•94	58•64
418244•58	59•75
487131•70	60•89
558507 •29	62•06
632371•35	63•24

Y _{TC} (given φ = 31 in.)	YAVC (given Φ=31 in.)
61360•99	61.36
116917•98	58•46
176162•10	58•72
237960•18	59•49
302312•23	60•46
369218•23	61.54
438678•19	62.67
510692•10	63•84
585259•98	65•03
662381•81	66•24

Υ _{TC} (given φ = 32 in.)	YAVC (given ϕ = 32 in.)
63916•95	63•92
122797•82	61-40
184890•29	61•63
249602•22	62•40
316933•58°	63•39
386884•39	64•48
459454•65	65•64
534644•35	66•83
612453•48	68•05
692882•08	69•29

Y _{TC} (given φ = 33 in.)	YAVC (given Φ=33in.)
66513•37	66•51
128775•63	64•39
193765•43	64•59
261440•17	65•36
331799•84	66•36
404844•44	67 • 47
480573•97	68•65
558988•43	69•87
640087 •83	71.12
723872•16	72•39

 ${\bf Continued}$

YTC (given	Y AVC (given
$\phi = 34 \text{ in.}$	$\phi = 34 \text{ in.}$
69665•69	69•67
134851•39	67 • 43
202787.51	67.60
273474.05	68•37
346911•00	69•38
423098•37	70.52
502036 • 16	71.72
583724•36	72.97
668162.98	74.24
755352•02	75.54

Y _{TC} (given	YAVC (given
$\phi = 35 \text{ in.})$	$\phi = 35 \text{ in.}$
72909•61	72.91
141025 • 12	70.51-
211956.53	70.65
285703.84	71.43
362267 • Ø6	72•45
441646•18	73•61
523841 • 20	74.83
608852 • 13	76•11
696678.96	77 • 41
787321•69	78.73
	

Y _{TC} (given	Y AVC (given
Φ = 36 in.)	$\phi = 36 \text{ in.}$
76202•51	76.20
147296 • 80	73•65
221272•48	73.76
298129.56	74•53
377868•02	75.57
460487 •87	76.75
545989•11	7 8•00
634371•74	79.30
725635.74	80.63
819781•16	81•98

YTC (given	TAVC (given
φ = 37 in.)	$\phi = 37 \text{ in.}$
79544•39	7 9•54
153666•45	76•83
230735•38	76•91
310751•19	77 • 69
393713.88	78.74
47 4623 • 44	79•94
568479.87	81 • 21
660283.19	82•54
755033.38	83 • 89
~85273ؕ43	85•27
I .	I

TAVC
(given Ф = 38 in.)
82•94
80.07
80•12
80•89
81•96
83•18
84•47
85 • 82
87 • 21
88•62

Υ _{TC} (given φ = 39 in.)	TAVC (given Φ = 39 in.)
86375•09	86.38
166699•62	83•35
250102•00	83•37
336582 • 22	34•15
426140•30	85•23
518776.22	86•46
614489•99	87.78
713281.60	89•16
815151 • Ø7	90.57
920098•38	92•01

Y _{TC} (given	Y AVC (given
$\phi = 40 \text{ in.}$	$\Phi = 40 \text{ in.}$
89863•91	89•86
173363•14	86•68
260005.72	86•67
349791.62	87 • 45
442720.86	88•54
538793•43	89•80
638009•33	91•14
740368•58	92.55
845871•14	93•99
954517 • 04	95•45

Y _{TC} (given	YAVC (given
$\Phi = 41. \text{ in.})$	$\Phi = 41 \text{ in.}$
93401•70	93•40
180124.63	9Ø•Ø6·
270056.37	90.02
363196.94	90•80
459546•32	91•91
559104.52	93•18
661871.54	94.55
767847•38	95•98
877032•04	97 • 45
988856•60	98•89

Υ _{TC} (given Φ = 42 in.)	YAVC (given $\Phi = 42$ in.)
96988•48	96.99
186984•07	93•49
280253•97	93•42
376798•17	94•20
476616•68	95•32
579709•49	96•62
686076•61	98•01
795718•04	99•46
908633•76	100.96
1021737•20	102 • 17

Y _{TC} (given	YAVC (given
ϕ = 43 in.)	$\Phi = 43 \text{ in.})$
100624•25	100.62
193941•48	96•97
290598•51	96•87
390595•33	97 • 65
493931•94	98•79
600608•34	100 • 10
710624.54	101.52
823980•53	103-00
940676.30	104•52
1055022 • 40	105.50

Υ _{TC} (given φ = 44 in.)	YAVC (given $\phi = 44 \text{ in.}$)
104308•98	104•31
200996•85	100.50
301089•99	100.36
404588•40	101-15
511492•11	102.30
621801.07	103.63
735515•33	105.07
852634•85	106.58
973159•66	108•13
1088712•30	108-87

YTC (given	Y AVC (given
$\phi = 45 \text{ in.})$	Ф = 45 in.)
108042•70	108•04
208150•17	104.08
311728 • 41	103•91 104•69
418777 • 40 529297 • 16	104.69
643287 • 69	107.21
760748•98	108.68
881681•01	110.21
1006083•80	111.79
1122806.80	112•28

Table 17

TOTAL AND AVERAGE DRILLING COSTS FOR
CASED WELLS IN MEDIUM HARD ROCK
AS A FUNCTION OF DEPTH AND DIAMETER
(inc dollars)

Y _{TC} (given φ = 10 in.)	YAVC (given Φ = 10 in)
18109•39	18•11
26418•78	13.21
34728•18	11.58
43037 • 57	10.76
58110.71	11.62
74721•35	12•45
92869•49	13.27
112555•13	14-07
133778•28	14.86
156538•92	15.65

YTC (given	Y AVC (given
φ = 11 in.)	$\Phi = 11 \text{ in.}$
19896 • 89	19.90
29993•77	15.00
40090•66	13.36
50989•10	12.75
68168•77	13•63
86971•36	14.50
107396.86	15•34
129445 • 28	16.18
153116.61	17.01
178410.86	17 • 84

Y _{TC} (given	YAVC (given
$\phi = 12 \text{ in.}$	$\Phi = 12 in.$
21727 • 64	21.73
33655•29	16.83
45582 • 93	15 - 19
59158•11	14.79
78498•67	15.70
99547 • 56	16.59
122304.79	17 • 47
146770•35	18•35
172944•24	19.22
200826 • 47	20.08
L	1

Y _{TC} (given φ = 13 in.)	Y _{AVC} (given Φ=13in.)
23601.66	23.60
37403•33	18.70
51204•99	17.07
67544•58	16.89
89100.40	17.82
112449.97	18.74
137593•29	19•66
164530•35	20.57
193261 • 17	21 • 47
223785.74	22•38

YTC (given	YAVC
ϕ = 14 in.)	(given Φ = 14 in.)
25518•94	25.52
41237 • 89	20.62
56956 • 83	18•99
76148•51	19-04
99973.95	19•99
125678.57	20.95
153262 • 34	21.89
182725 • 29	22 • 84
214067 • 40	23.79
247288•67	24.73

Y _{TC} (given Φ = 15 in.)	YAVC (given ϕ = 15 in.)
27479•49	27 • 48
45158•98	22.58
62838 • 46	20.95
84969•91	21.24
111119•34	22•22
139233•36	23•21
169311•96	24•19
201355 • 15	25.17
235362•92	26•15
271335•27	27•13
	Continued

YAVC
(given 0 = 16 in.)
29•48
24.58
22.95
23.50
24.51
25.52
26.53
27.55
28.57
29.59
ļ

Y _{TC} (given	Y AVC (given
$\phi = 17.in.$	$\phi = 17 \text{ in.}$
31530•36	31•53
53260.72	26•63
74991•08	25.00
103265 • 10	25.82
134225•62	26•85
167321.55	27.89
202552•90	28•94
239919•67	29•99
279421•86	31•Ø5
321059•45	32•11

YTC (given	YAVC (given
ϕ = 18 in.)	φ = 18 in.)
33620•69	33•62
57441•38	28•72
81512•12	27 • 17
112738.89	28•18
146186•50	29•24
181854•94	30.31
219744•22	31•39
259854•32	32 • 48
302185•27	33•58
346737 • Ø3	34•67

Υ _{TC} (given φ = 19 in.)	YAVC (given $\phi = 19 in.)$
35754•28	35.75
61708.56	30.85
88747•34	29•58
122430 • 15	30.61
158419•22	31•68
196714.53	32•79
237316•09	33•90
280223•91	35•03
325437 • 97	36•16
372958•28	37 • 30

Y_{TC} (given $\phi = 20 \text{ in.}$)	Y AVC (given Φ=20 in.)
1,	, , ,
37931 • 14	37•93
66062.27	33.03
96145.66	32•05
132338•88	33•08
170923•76	34•18
211900•32	35•32
255268•54	36 • 47
301028.42	37 • 63
349179•98	38.80
399723•19	39•97

Y _{TC} (given φ = 21 in.)	YAVC (given φ = 21 in.)
40151•25	40 • 15
70502.51	35.25
103707.07	34.57
142465 • 07	35•62
183700 • 14	36.74
227412.30	37.90
273601.54	39•09
322267 •87	40•28
373411.27	41•49
427031.77	42.70

Y _{TC} (given φ = 22 in.)	YAVC (given $\Phi = 22 in.)$
42414•63	42 • 41
75029•26	37 • 51
111431•59	37 • 1 4
152808•72	38•20
196748•35	39•35
243250•48	40.54
292315•11	41.76
343942•24	42.99
398131.88	44.24
454884.00	45•49

Y _{TC} (given	YAVC (given
$\phi = 23 \text{ in.}$	$\phi = 23 \text{ in.})$
44721 • 27	44.72
79642.54	39.82
119319•21	39•77
163369•84	40•84
210068.39	42.01
259414.86	43•24
311409 • 25	44•49
366051.55	45.76
423341•77	47.04
483279•90	48•33

Y _{TC} (given	YAVC (given
ϕ = 24 in.)	$\Phi = 24 \text{ in.}$
47071.17	47 • 07
84342•35	42•17
127369•92	42•46
174148•43	43•54
223660•27	44.73
275905•44	45•98
330883•94	47 • 27
388595•78	48.57
449040•96	49 • 89
512219•46	51.22

YTC (given	YAVC
φ = 25 in.)	(given Φ = 25 in.)
49464•34	49•46
89128•67	44.56
135583•73	45•19
185144•48	46 • 29
237523•97	47.50
292722.22	48•79
350739.21	50-11
411574.95	51 • 45
475229•44	52.80
541702 • 69	54•17

YTC (given	YAVC (given
φ = 26 in.)	$\phi = 26 \text{ in.}$
51900.76	51.90
94467 • 46	47 • 23
143960•64	47.99
196357•99	49 • 09
251659.50	50.33
309865 • 18	51.64
370975.03	53.00
434989•04	54.37
501907•22	55.77
571729.58	57 • 17
<u></u>	

Y _{TC} (given	YAVC (given
φ = 27 in.)	$\phi = 27 \text{ in.}$
54380•45	54•38
100201•92	50•10
152500•65	50•83
207788•97	51•95
266066 • 87	53•21
327334•35	54•56
391591•42	55•94
458838•07	57•35
529074•31	58•79
602300•13	60.23
ľ	

YAVC (given O = 28 in.)
P - 201147
56•90
53.02
53•73
54•86
56•15
57 • 52
58•94
60.39
61.86
63•34

YTC (given	YAVC (given
$\phi = 29 \text{ in.}$)	$\phi = 29 \text{ in.}$
59469•62	59•47
111997 • 03	56.00
170069.97	56•69
231303.32	57 • 83
295697 • 09	59•14
363251.28	60.54
433965•89	62.00
507840 • 91	63 • 48
584876 • 35	64•99
665072•20	66•51

Y _{TC} (given	YAVC (given
$\Phi = 30 \text{ in.}$	$\Phi = 30 \text{ in.}$
62079-09	62•08
118057 • 68	59.03
179099•28	59.70
243386•70	60•85
310919•96	62•18
381699•05	63•62
455723•97	65 • 10
532994•74	66•62
613511•33	68•17
697273•75	69•73

Y _{TC} (given	YAVC (given
φ = 31 in.)	$\dot{\Phi}$ = 31 in.)
64731.83	64•73
124227 • 07	62•11
188291•68	62.76
255687•54	63•92
326414•65	65•28
400473.02	66•75
477862.62	68•27
558583 • 47	69•82
642635.59	71-40
730018.95	73.00

Y _{TC} (given	YAVC
φ = 32 in.)	(given $\phi = 32 \text{ in.}$)
67 427 • 83	67 • 43
130505•19	65 • 25
197647•18	65 • 88
268205•84	67.05
342181•17	68•44
419573•16	69•93
500381•83	71.48
584607 • 15	73.08
672249 • 15	74•69
763307 •82	76•33

Y _{TC} (given	YAVC (given
$\Phi = 33 \text{ in.}$	Φ = 33 in.)
70167 • 09	70.17
136892 • 04	68•45
207165.79	69.06
280941 • 62	70.24
358219•53	71.64
438999•52	73•17
523281 • 60	74•75
.611065•76	76•38
702352•01	78•04
797140•35	79.71

YTC (given	Y AVC (given
$\Phi = 34 \text{ in.}$	$\Phi = 34 \text{ in.}$
73515•26	73.52
143387 • 63	71.69
216847 • 49	72•28
293894.85	73•47
374529•72	74•91
458752 • 08	76.46
546561•94	78.08
637959.30	79.74
732944•17	81 • 44
831516.52	83•15

• • • • • • • • • • • • • • • • • • • •	
Y _{TC} (given	YAVC (given
$\Phi = 35 \text{ in.}$	$ \Phi = 35 in. $
76964.51	76.96
149991.94	75.00
226692 • 29	75•56
307065.55	76•77
391111•73	78•22
478830.83	79.81
570222.84	81 • 46
665287 •77	83 • 16
764025.62	84•89
866436 • 37	86•64
	1

Y _{TC} (given	YAVC
φ = 36 in.)	(given Φ=36in.)
80468•13	80 • 47
156704.99	78•35
236700.19	78.90
320453.72	80•11
407965.58	81•59
499235•78	83•21
594264•30	84•89
693051 • 17	86•63
795596•37	88•40
901899•90	90•19

YTC (given	TAVC
$\phi = 37 \text{ in.}$	$\Phi = 37 \text{ in.}$
84026 • 11	84•03
163526•78	81.76
246871•19	82•29
334059•35	83.51
425091 • 26	85•02
519966•92	86•66
618686•33	88•38
721249.50	90•16
827656•42	91•96
937907.08	93•79
	1

Y _{TC} (given Φ = 38 in.)	TAVC (given 0 = 38 in.)
87638•46	87 • 64
170457•29	85•23
257205.28	85•74
347882 • 44	86.97
442488•77	88•50
541024•26	90 • 17
643488•93	91.93
749882•76	93•74
860205.75	95•58
97 4457 • 90	97 • 45

Y _{TC} (given φ = 39 in.)	TAVC (given $\Phi = 39 in.)$
91305•18	91•31
177496•54	88•75
267702 • 48	89•23
361923.01	90•48
460158•11	92•03
562407 • 81	93•73
668672.09	95•52
778950.95	97•37
893244•38	99•25
1011552-40	101-16

Y _{TC} (given	Y AVC
φ = 40 in.)	(given $\Phi = 40 \text{ in.}$)
95026 • 26	95•03
184644•51	92•32
278362•77	92.79
376181.03	94•Ø5
478099•29	95•62
584117.55	97•35
694235•80	99•18
808454•07	101-06
926772•33	102•97
1049190•60	104.92

	Y _{TC} (given	Y AVC (given
1	$\phi = 41. \text{ in.}$	$\phi = 41 \text{ in.}$
	98801.71	98•80
	191901-23	95•95
	289186 • 17	96.40
4	390656•52	97•66
	496312•30	99•26
	606153•49	101-03
	720180.09	102.88
	838392•12	104.80
	960789•55	106.75
	1086657 • 00	108.67

Y _{TC} (given	YAVC
$\phi = 42 \text{ in.}$	$\Phi = 42 \text{ in.}$
102631.52	102.63
199266•67	99•63
300172.66	100.06
405349•48	101.34
514797 • 14	102.96
628515•62	104.75
746504•94	106.64
868765.09	108.60
995296•09	110.59
1122214.00	112.22

Y _{TC} (given	YAVC (given
ϕ = 43 in.)	$\Phi = 43 \text{ in.}$
106515.70	106.52
206740.85	103.37
311322•25	103.77
420259•90	105.06
533553 • 81	106.71
651203.95	108-53
773210.36	110.46
899573.00	112.45
1030291.90	114-48
1158203.70	115 • 82

Υ_{TC} (given $\varphi = 44 \text{ in.}$)	YAVC (given φ = 44 in.)
110454•25	110.45
214323.76	107 - 16
322634•94	107.54
435387 • 79	108.85
552582•31	110.52
674218•47	112•37
800296•33	114•33
930815•84	116.35
1065777 •00	118.42
1194626•00	119•46

Y _{TC} (given φ = 45 in.)	YAVC (given (p = 45 in.)
114447•16	114•45
222015 • 40	111-01
334110.73	111-37
450733•14	112.68
571882 • 63	114.38
697559 • 21	116•26
827762 • 87	118•25
962493•61	120-31
1101751.50	122 • 42
1231480.90	123•15

Table 18

TOTAL AND AVERAGE DRILLING COSTS FOR

CASED WELLS IN HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER
(in dollars)

Y _{TC} (given φ = 10 in.)	YAVC (given Ф = 10 in.)
21474•20	21 • 47
33148 • 40	16•57
44822•60	14•94
56496•81	14•12
77891 • 49	15.58
102006.36	17.00
128841 • 43	18.41
158396 • 69	19.80
190672 • 14	21.19
225667 • 78	22.57

*	
Y _{TC} (given φ = 11 in.)	YAVC (given $\Phi = 11$ in.)
	
23491.80	23 • 49
37183.60	18•59
50875 • 40	16.96
65693 • 35	16•42
89670.07	17•93
116518 • 10	19•42
146237 • 46	20.89
178828 • 12	22.35
214290 • 10	23.81
252623•39	25.26

,
YAVC
(given Φ = 12 in.)
25•56
20.66
19.02
18.79
20.36
21.91
23•44
24•98
26.50
28.03

YTC (given	YAVC (given
$\phi = 13 \text{ in.}$	Φ = 13 in.)
27673.56	27 • 67
45547 • 12	22•77
63420•68	21•14
84908•41	21.23
114254•71	22.85
146774.56	24.46
182467 • 97	26.07
221334•94	27 • 67
263375•47	29•26
308589•55	30-86

YTC (given	Y AVC (given
ϕ = 14 in.)	Φ = 14 in.)
29837 • 72	29.84
49875•43	24.94
69913•15	23.30
94926 • 93	23.73
127060.76	25•41
162519.28	27.09
201302.47	28.76
243410.34	30 • 43
288842.89	32.09
337600•12	33•76

Y _{TC} (given φ = 15 in.)	YAVC (given $\varphi = 15 in.)$
32050•73	32.05
54301 • 45	27.15
76552•18	25.52
105219•45	26.30
140209•31	28.04
178674.98	29.78
220616•45	31.52
266033.72	33 • 25
314926 • 79	34•99
367295.67	36.73
L	Continued

Y AVC (given
0 = 16 in.)
34•31
29 • 41
27.78
28•95
30.74
32.54
34•34
36•15
37•96
39•77

	Y _{TC} (given	YAVC
	$\phi = 17 \text{ in.}$	(given Φ=17in.)
1	36623•31	36 • 62
١	63446 • 61	31.72
	90269•92	30.09
	126626 • 46	31.66
	167533 • 89	33•51
	212219•36	35.37
	260682.88	37•24
	312924•45	39•12
	368944•06	40.99
	428741•71	42.87
•		·

Y _{TC} (given	YAVC (given
$\phi = 18 \text{ in.}$)	$\phi = 18 in.$
38982•87	38•98
68165.75	34.08
97701 • 17	32.57
137740.96	34•44
181709•92	36•34
229608.04	38•27
281435•33	40 • 21
337191•79	42 • 15
396877 • 41	44-10
460492•20	46 • 05

Y _{TC} (given φ = 19 in.)	YAVC (given $\phi = 19 in.)$
41391•29	41 • 39
72982•59	36•49
106110•76	35•37
149129•45	37•28
196228•44	39•25
247407•71	41-23
302667•27	43•24
362007 • 12	45•25
425427•26	47 • 27
492927 • 68	49•29

YTC (given) \$\phi = 20 in. }	YAVC (given φ = 20 in.)
43848•57	43 • 85
77897 • 14	38•95
114725.84	38•24
160791•94	40•20
211089 • 45	42 • 22
265618•37	44•27
324378•70	46•34
387370•44	48•42
454593•59	50.51
526048•16	52•60

YTC (given	YAVC
ϕ = 21 in.)	(given Φ = 21 in.)
46354•69	46 • 35
82909•39	41 • 45
123546 • 41	41•18
172728•42	43•18
226292.95	45•26
284240•02	47 • 37
346569•62	49.51
413281.75	51•66
484376•42	53•82
559853.61	55•99

<u> </u>	
Y _{TC} (given Φ = 23 in.)	YAVC (given $\Phi = 23 in.)$
$\Psi = 25 \text{ In.}$	Ψ-23 1141
51513•50	51.51
93227 • 01	46•61
141804.05	47 • 27
197423•36	49•36
257727•44	51.55
322716•29	53.79
392389•92	56.06
466748•33	58•34
545791.51	60.64
629519•48	62•95

YAVC
(given Φ = 24 in.)
54•17
49•27
50•41
52•55
54•79
57 • 10
59•43
61.79
64•16
66•54

Y _{TC} (given	Y AVC (given
ϕ = 25 in.)	$\phi = 25 \text{ in.}$
56867.72	56•87
103935•45	51.97
160883.6,	53•63
223214•27	55•80
290531•89	58•11
362836•52	60 • 47
440128•18	62.88
522406.86	65•30
609672.56	67.74
701925•26	70.19

Y _{TC} (given φ = 26 in.)	YAVC (given Φ=26 in.)
59618•11	59•62
110080.88	55•04
170731.73	56•91
236520.72	59•13
307447•85	61•49
383513•12	63•92
464716•54	66 • 39
551058•10	68•88
642537 • 79	:71-39
739155•64	73.92
	

	<u> </u>
Υ _{TC} (given φ = 27 in.)	YAVC (given $\phi = 27 in.)$
62417 • 36	62.42
116758.66	58•38
180785.27	60.26
250101.16	62.53
324706•31	64•94
404600.72	67 • 43
489784•40	69•97
580257•33	72.53
676019.53	75 - 11
777071.00	77,71

YTC (given	Y AVC (given
$\Phi = 28 \text{ in.}$)	$\phi = 28 \text{ in.}$)
65265 • 45	65•27
123573•43	61.79
191044•32	63.68
263955 • 60	65.99
342307 • 26	68•46
426099•30 ·	71.02
515331.74	73.62
610004.55	76.25
710117.75	78•90
815671•34	81•57

ļ	YTC (given	YAVC (given
	$\phi = 29 \text{ in.}$)	$\phi = 29 \text{ in.}$
	68162•40	68•16
	130525•20	65 • 26
	201508•86	67 • 17
	278084•02	69•52
	360250•70	72.05
	448008•88	74.67
	541358•56	77.34
	640299•76	80•04
	744832•46	82.76
	854956•65	85•50

	·
Y _{TC} (given	YAVC (given
ф = 30 in.)	$\phi = 30 \text{ in.}$
71108•20	71-11
137613.97	68•81
212178.90	70.73
292486 • 45	73 - 12
378536•64	75.71
470329•45	78•39
567864•88	81•12
671142.96	83•89
780163.65	86•68
894926•98	89•49
L	

Y _{TC} (given	YAVC (given
φ = 31 in.)	$\phi = 31 \text{ in.}$
74102.85	74-10
144839•73	72•42
223054•43	74•35
307162.87	76•79
397165•06	79•43
493061-01	82 • 18
594850•69	84•98
702534•14	87 • 82
816111•34	90.68
935582 • 26	93•56

Y _{TC} (given φ = 32 in.)	Y _{AVC} (given φ = 32 in.)
77146•35	77 • 15
152202.50	76-10
234135•45	78.05
322113•28	80.53
416135•98	83•23
516203.55	86•03
622315.99	88•90
734473•32	91.81
852675 • 49	94•74
976922•55	97 • 69

Y _{TC} (given φ = 33 in.)	Y AVC (given Φ = 33 in.)
80238.71	80•24
159702 • 25	79•85
245421•97	81 • 81
337337 • 68	84•33
435449•39	87 • 09
539757 • 09	89•96
650260.78	92•89
766960•47	95•87
889856 • 14	98•87
1018947 • 80	101.89

Y _{TC} (given Φ = 34 in.)	YAVC (given Φ=34 in.)
84111•15	84•11
167339 • Ø1	83•67
256913•99	85•64
352836 • 09	88•21
455105 • 29	91.02
563721 •62	93.95
678685•05	96•96
799995•62	100.00
927653•28	103.07
1061658•10	106 • 17

YTC (given	YAVC (given
$\phi = 35 \text{ in.}$	$\phi = 35 \text{ in.}$
88112•26	88•11
175112.76	87 • 56
268611.50	89•54
368608 • 48	92•15
475103.68	95•02
588097 • 13	98.02
707588•82	101.08
833578•74	104.20
966066•91	107 • 34
1105053.30	110.51

Y _{TC} (given	Y AVC (given
\$\phi\$ = 36 in.)	$\phi = 36 \text{ in.}$
92181•88	92•18
183023.51	91•51
280514.51	93•50
384654•86	96•16
495444.57	99•09
612883•65	102•15
736972.07	105.28
867709.87	108-46
1005097 • 00	111.68
1149133.50	114.91

Y _{TC} (given	TAVC
$\phi = 37 \text{ in.}$)	(given Φ = 37 in.)
96319•99	96•32
191071-26	95•54
292623•01	97 • 5 4
400975.24	100-24
516127 • 96	103•23
638081 • 15	106 • 35
766834•83	109.55
902388.97	112.80
1044743.60	116.08
1193898•70	119•39

^Y TC (given φ = 38 in.)	TAVC (given (given)
100526 • 60	100.53
199256 • 00	99•63
304937 • 01	101-65
417569•61	104-39
537153.82	107 • 43
663689•64	110.61
797177•05	113.88
937616.07	117.20
1085006 • 70	120.56
1239348•90	123.93

^Y TC ^{(given} φ = 39 in.)	TAVC (given $\Phi = 39 in.)$
104801•71	104.80
207577.74	103.79
317456.50	105.82
434437 • 98	108•61
558522 • 19	111.70
689709•12	114.95
827998•78	118•29
973391 • 16	121.67
1125886 • 20	125•10
1285484•10	128•55

Y _{TC} (given	YAVC (given $\Phi = 40 \text{ in.}$)
$\phi = 40 \text{ in.})$	$\Phi = 40 \text{ in.}$
109145•32	109•15
216036•48	108.02
330181 • 49	110.06
451580•34	112.90
580233.04	116.05
716139.59	119•36
859299•98	122.76
1009714.20	126•21
1167382.30	129.71
1332304•20	133•23

Y _{TC} (given	Y _A VC
$\phi = 41.$ in.)	$\phi = 41 \text{ in.}$
113557 • 42	113•56
224632•21	112•32
343111•97	114.37
468996•69	117.25
602286 • 39	120.46
742981•06	123•83
891080•69	127 • 30
1046585•30	130-82
1209494•90	134•39 [,]
1378611•00	137 • 86

YTC (given	YAVC
$\phi = 42 \text{ in.}$	(given $\Phi = 42 \text{ in.}$)
118038•03	118-04
233364•94	116.68
356247 • 95	118.75
486687 • Ø5	121.67
624682•23	124.94
770233•50	128•37
923340•87	131.91
1084004•30	135.50
1252223•90	139•14
1421487•40	142.15

Y _{TC} (given φ = 43 in.)	YAVC (given Φ = 43 in.)
122587 • 13	122 • 59
242234•67	121•12
369589•43	123•20
504651•39	126•16
647420.57	129•48
797896•95	132•98
956080•55	136•58
1121971 • 40	140•25
1295569•40	143.95
1464852•40	146 • 49

Ϋ́ΤC (given φ = 44 in.)	YAVC (given $\varphi = 44 \text{ in.})$
127204•73	127.20
251241 • 39	125•62
383136•39	127.71
522889•72	130.72
670501.40	134•10
825971•38	137.66
989299•72	141•33
1160486•40	145 • Ø6
1339531•40	148•84
1508705.80	150.87

•	
Y _{TC} (given φ = 45 in.)	YAVC (given Ф = 45 in.)
131890 • 83	131•89
260385•11	130 • 19
396888•87	132•30
541402•05	135•35
693924•71	138•78
854456 • 82	142•41
1022998•40	146•14
1199549•40	149•94
1384109•90	153.79
1553047 • 80	155•30
1	D

Table 19

TOTAL AND AVERAGE DRILLING COSTS FOR
CASED WELLS IN VERY HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER
(in dollars)

Y _{TC} (given φ = 10 in.)	Y AVC (given Φ = 10 in)
23882.57	23.88
37965.15	18•98
52047.72	17 • 35
66130.29	16.53
91973.49	18•39
121352-94	20.23
154268•63	22.04
190720.58	23•84
230708.78	25•63
274233•23	27 • 42
1	

YTC (given	YAVC
φ = 11 in.)	$\phi = 11 \text{ in.}$
26077 • 14	26.08
42354 • 28	21.18
58631 • 43	19.54
76258.67	19•06
105030.21	21.01
137534•46	22•92
173771.42	24•82
213741.08	26.72
257443•45	28•60
304878.53	30 • 49
1	ı

Y _{TC} (given	YAVC (given
$\phi = 12 \text{ in.}$	$\Phi = 12 \text{ in.}$
28326 • 15	28•33
46852•31	23 • 43
65378•46	21.79
86706 • 98	21.68
118486 • 85	23.70
154195•87	25.70
193834•08	27.69
237401•44	29•68
284897 • 97	31•66
336323•66	33•63

YTC (given	YAVC
$\phi = 13 \text{ in.}$)	(given Φ=13in.)
30629.61	30.63
51459.22	25•73
72288•83	24-10
97 475 • 23	24•37
132343.40	26 • 47
171337 • 19	28•56
214456.61	30-64
261701.66	32 • 7 1
313072.33	34•79
368568•62	36•86
j .	ł

	YTC (given	Y AVC
	$\phi = 14 \text{ in.})$	(given Φ=14in.)
	32987 • 51	32•99
	56175.02	28•09
	79362•53	26•45
	108563•40	27 • 14
	146599•86	29•32
	188958•40	31•49
	235639•03	33•66
	286641•74	35 • 83
	341966.53	38•00
Ì	401613•41	40•16

Y _{TC} (given Φ = 15 in.)	YAVC (given $\Phi = 15 \text{ in.}$)
35399 • 85	35 • 40
60999•70	30-50
86599•55	28 • 87
119971-51	29•99
161256•24	32 • 25
207059.51	34•51
257381.32	36.77
312221-68	39.03
371580.58	41 • 29
435458 • Ø2	43•55
	Continued

Y _{TC} (given	YAVC (given
$\Phi = 16 \text{ in.}$	D = 16 in.)
37866.64	37 • 87
65933•27	32.97
93999•91	31•33
131699•54	32.92
176312.53	35•26
225640.51	37.61
279683.50	39•95
338441 • 48	42•31
401914.47	44•66
470102•46	47 • Ø1
1	ł

YTC (given	Y AVC (given
$\Phi = 17 \text{ in.})$	$\phi = 17 \text{ in.}$
40387 • 86	40•39
70975•73	35 • 49
101563•59	33 • 85
143747 • 5.1	35•94
191768.74	38•35
244701.42	40.78
302545.56	43•22
365301 • 16	45•66
432968•22	48•11
505546•73	50•55

YTC (given	YAVC
φ = 18 in.)	$\phi = 18 \text{ in.}$
42963•54	42•96
76127 • 07	38•06
109713.88	36 • 57
156115•41	39.03
207624•85	41.52
264242•21	44.04
325967 • 49	46•57
392800.68	49•10
464741.79	51•64
541790.82	54•18
,	

YTC (given	YAVC (given
φ = 19 in.)	$\phi = 19 \text{ in.}$
45593+65	45•59
81387 • 30	40.69
119029•97	39•68
168803•23	42•20
223880.88	44•78
284262•90	47 • 38
349949•30	49•99
420940.07	52•62
497235•21	55•25
578834•73	57.88
ł	

Y _{TC} (given φ = 20 in.)	YAVC (given $\phi = 20 \text{ in.}$)
48278 • 21	48•28
86756•41	43•38
128586•00	42•86
181811.00	45 • 45
240536•82	48•11
304763•49	50.79
374491.00	53.50
449719•33	56•21
530448•49	58•94
616678.49	61.67

Y _{TC} (given	YAVC (given
$\phi = 21 \text{ in.}$	$\phi = 21 \text{ in.}$
51017.21	51.02
92234•42	46•12
138381•97	46 • 13
195138•69	48.78
257592•69	51.52
325743.98	54•29
399592.56	57 • Ø8
479138•44	59•89
564381 • 61	62.71
655322.07	65•53

Υ _{TC} (given Φ = 22 in.)	YAVC (given Φ=22in.)
53810 • 65	53.81
97821•30	48•91
148417.90	49•47
208786.30	52•20
275048•46	55.01
347204•36	57 • 87
425254•01	60•75
509197 • 41	63•65
599034.57	66•56
694765•47	69•48

Y _{TC} (given Φ = 23 in.)	Y AVC (given $\Phi = 23 in.)$
$\Psi = 23 \text{ III.}$	Ψ-23114)
56658•54	56•66
103517 • 08	51.76
158693 • 78	52•90
222753•86	55•69
292904•15	58•58
369144•64	61.52
451475•34	64.50
539896 • 25	67 • 49
634407 • 38	70.49
735008.71	73•50

Y _{TC} (given	YAVC
ϕ = 24 in.)	(given Φ = 24 in.)
59560•87	59•56
109321.74	54•66
169209.60	56 • 40
237041•34	59•26
311159•75	62•23
391564•81	65•26
478256•54	68•32
571234•95	71.40
670500.01	74.50
776051.75	77•61
	j i

	Y _{TC} (given	Y AVC (given
	$\phi = 25 \text{ in.}$	$\Phi = 25 \text{ in.})$
İ	62517.64	62.52
	115235•28	57.62
	179965•38	59•99
	251648•75	62•91
	329815 • 26	65.96
	414464•88	69.08
	505597 •63	72.23
	603213•51	75•40
	707312•51	78•59
	817894•64	81.79
1		

Y _{TC} (given	YAVC (given
Φ = 26 in.)	Φ=26 in.)
65528•86	65•53
122025.68	61•01
190961•10	63•65
266576.09	66•64
348870•68	69•77
437844•84	72.97
533498•59	76.21
635831•92	79•48
744844•85	82.76
860537 • 34	86•05

YTC (given	YAVC
$\phi = 27 \text{ in.}$)	(given Φ = 27 in.)
68594•52	68•59
129446 • 20	64.72
202196.76	67.40
281823.37	70•46
368326.02	73.67
461704.71	76•95
561959.44	80•28
669090.21	83•64
783097.03	87 • Ø 1
903979.87	90 • 40

YTC (given	YAVC (given
$\Phi = 28 \text{ in.})$	$\Phi = 28 in.$
71714.62	71 - 71
137026.69	68•51
213672•38	71.22
297390•58	74•35
388181 • 28	77.64
486044•46	81•01
590980•16	84•43
702988•36	87 • 87
822069.06	91•34
948222•25	94•82
	.

YTC (given	YAVC
$\phi = 29 \text{ in.}$	$\phi = 29 \text{ in.}$
74889•16	74.89
144767•14	72•38
225387•95	75•13
313277.71	78.32
408436•43	81.69
510864•12	85•14
620560•75	88•65
737526.35	92.19
861760.91	95•75
993264•42	99•33
L	<u> </u>

Y _{TC} (given	Y AVC (given
ϕ = 30 in.)	$\Phi = 30 \text{ in.})$
78118-15	78-12
152667 • 56	76•33
237343.46	79-11
329484•78	82.37
429091.52	85 • 82
536163.67	89•36
650701.24	92.96
772704•24	96.59
902172.64	100-24
1039106.50	103-91
	!

Y _{TC} (given	YAVC
TC 10	(given
$\phi = 31 \text{ in.}$	$\Phi = 31 \text{ in.}$
81401.58	81.40
160727.94	80•36
249538•92	83•18
346011.78	86•50
450146.51	90•03
561943•13	93•66
681401•60	97 • 34
808521.96	101-07
943304•19	104-81
1085748•30	108•57
I	1

Y _{TC} (given	YAVC (given
ϕ = 32 in.)	$\phi = 32 \text{ in.})$
84739•46	84.74
168948•29	84.47
261974•33	87 • 32
362858•70	90.71
471601•42	94•32
588202•46	98•03
712661.83	101-81
844979•55	105.62
985155•59	109•46
1 133190•00	113.32
ł	

Y _{TC} (given	Y AVC (given
$\phi = 33 \text{ in.}$	$\phi = 33 \text{ in.}$
88131•78	88•13
177328.60	88•66
274649•69	91.55
380025.57	95•01
493456 • 24	98•69
614941•70	102 • 49
744481•94	106•35
882077 • 00	110.26
1027726.80	114-19
1181431•50	118-14
	j

Y _{TC} (given	Y AVC (given
$\phi = 34 \text{ in.}$)	$\Phi = 34 \text{ in.})$
92424•01	92•42
185868•88	92•93
287565•00	95•85
397512•36	99•38
515710.97	103•14
642160.84	107 - 03
776861•95	110.98
919814•32	114•98
1071017•90	119.00
1230472.80	123.05

YTC (given	YAVC (given
$\phi = 35 in.$	$\phi = 35 \text{ in.}$
96865•71	96•87
194569•12	97•28
300720•24	100-24
415319 • Ø8	103•83
538365•61	107.67
669859.86	111.64
809801.82	115•69
958191•49	119•77
1115028.90	123•89
1280313.90	128•03

Y _{TC} (given	YAVC
φ = 36 in.)	(given Φ=36in.)
101387•38	101•39
203429•33	101.71
314115•45	104.71
433445.73	108•36
561420•18	112•28
698038•80	116•34
843301.58	120 • 47
997208•52	124•65
1159759•70	128•86
1330954•90	133•10

TAVC (given
$\phi = 37 \text{ in.}$
105.99
106 • 22
109•25
112•97
116•97
121-12
125•34
129.61
133-91
138•24

Y _{TC} (given	TAVC
$\phi = 38 \text{ in.}$	(given Φ = 38 in.)
110670•68	110.67
221629•64	110-81
341625•69	113.88
470658•83	117.66
608729.03	121.75
755836•33	125•97
911980.72	130-28
1077162.20	134•65
1251380.70	139•04
1434636•30	143•46
	1

Y _{TC} (given φ = 39 in.)	TAVC (given $\Phi = 39 \text{ in.}$)
115432•30	115 • 43
230969.75	115•48
355740.74	118•58
489745.27	122 • 44
632983•34	126.60
785454•95	130•91
947160•12	135•31
1118098.80	139.76
1298271.00	144•25
1487676.80	148.77

<u> </u>	
Y _{TC} (given	YAVC
$\phi = 40 \text{ in.}$	(given $\Phi = 40 \text{ in.}$)
120273.91	120-27
240469•82	120•23
370095.73	123.37
509151•64	127 • 29
657637.55	131.53
815553•47	135•93
982899•39	140 • 41
1159675•30	144•96
1345881 •20	149•54
1541517 • 10	154•15

Y _{TC} (given φ = 41 in.)	YAVC (given $\Phi = 41$ in.)
125195.50	125•20
250129.86	125.06
384690•68	128•23
528877 • 95	132.22
682691.69	136.54
846131•88	141-02
1019198•50	145.60
1201891-60	150•24
1394211•20	154.91
1594625.70	159•46

Y _{TC} (given	YAVC
$\Phi = 42 \text{ in.})$	(given Φ = 42 in.)
130197 • 07	130-20
259949•86	129.97
399525•57	133 • 18
548924•19	137 • 23
708145•74	141-63
877190•18	146•20
1056057 •60	150.87
1244747.80	155•59
1443261•10	160•36
1643271•60	164.33
L	

Y _{TC} (given	YAVC (given
Φ = 43 in.)	$\phi = 43 \text{ in.}$
135278•63	135•28
269929•83	134•96
414600•40	138•20
569290•36	142•32
733999•68	146•80
908728•39	151 • 45
1093476•50	156•21
1288243•90	16-1 • 03
1493030.70	165.89
1692462•00	169•25

V
AVC (given
φ = 44 in.)
140.44
140.03
143.31
147 • 49
152.05
156.79
161.64
166.55
171.50
174.22

Y _{TC} (given	Υ
TC (827	AVC (given
φ = 45 in.)	Φ = 45 in.)
145681 • 68	145.68
290369•65	145•18
445469•93	148•49
610982•48	152.75
786907•34	157 • 38
973244•47	162-21
1169993•90	167 • 14
1377155.60	172 • 14
1594729.60	177 • 19
1792476•20	179•25

INTERMEDIATE SIZE CASED HOLE COST AS A FUNCTION OF THE OUTSIDE HOLE DIAMETER FOR $1,000\ to\ 10,000\ FEET\ DEPTH$

REPARTS GRAPHIC CONTROLS CORPORATION BUFFALO, NEW YORK

GRECORDING CHARTS GRAPHIC CONTROLS CORPO

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION BUFFALO, NEW YORK

PRINTED IN U.S A NO. 02

CONTROLS CORPORATION BUFFALO, NEW YORK

GRECORDING CHARTS GRAPHIC CONTROLS CORP.

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION BUFFALO, NEW YORK

'SATION BUFFALO, NEW YORK

PRINTED IN U.S

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION BUFFALC

PRINTED IN U.S.A.

GRECORDING CHARTE GRAPHIC CONTROLS CORPORATION BUFFALO, NEW YORK

INTERMEDIATE SIZE CASED HOLES

O2 GRECORDING CHAPTS GRAPHIF

INTERMEDIATE SIZE CASED HOLES AVERIAGE COST (2505) PER FUUTE HOLE LIAMETER ET AUTOCIES

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION BUFFALD, NEW YORK

INTERMEDIATE SIZE CASED HOLE COST

AS A FUNCTION OF DEPTH FOR

10 INCHES TO 45 INCHES OUTSIDE DIAMETERS

(=8 INCHES TO 30 INCHES INSIDE DIAMETERS)

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION

PRINTED IN U.S.A.

PRINTED IN U.S.A.

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION BUFFALO, NEW YORK

[&]quot; CONTROLS CORPORATION BUFFALO, NEW YORK

GRECORDING CHARTS GRAPHIC CONTROLS

GRECORDING CHARTS GRAPHIC CONTROLS CORPORATION BUFFALO, NEW YORK

Table 20

TOTAL AND AVERAGE DRILLING COSTS FOR

UNCASED WELLS IN SOFT ROCK

AS A FUNCTION OF DEPTH AND DIAMETER

(in dollars)

Y _{TU} (given φ = 10 in.)	Y _{AVU} (given Φ = 10 in)
13254•09	13•25
16708 • 18	8•35
20162•28	6.72
23616•37	5.90
32200.62	6•44
41668•93	6.94
52021 • 30	7 • 43
63257 • 74	7.91
75378•24	8•38
88382.80	8.84

Y _{TU} (given	Y AVU (given
$\phi = 11 \text{ in.}$	$\Phi = 11 \text{ in.}$
13639 • 41	13•64
17478.82	8.74
21318•23	7 • 1 1
25779.87	6 • 44
34932 • 88	6•99
45019.06	7.50
56038•43	8.01
67990•96	8•50
80876.68	8•99
94695.58	9 • 47

Y _{TU} (given	Y AVU (given
$\phi = 12 \text{ in.}$	Φ = 12 in.)
14046•64	14.05
18293•29	9•15
22539•93	7.51
28056.56	7.01
37806.63	7.56
48538•99	8•09
60253•65	8•61
72950.59	9•12
86629 • 83	9•63
101291•36	10-13
i	

Υ _{TU} (given φ = 13 in.)	YAVU (given Φ=13in.)
14475•79	14•48
19151•58	9•58
23827 • 37	7•94
30446•46	7 • 6 1
40821•89	8•16
52228•73	8 . 7Ø
64666•97	9•24
78136 • 62	9.77
92637 • 68	10.29
108170-14	10.82
1	

١	Y _{TU} (given	AVU
	Φ = 14 in.)	(given Φ = 14 in.)
	14926•85	14.93
	20053•71	10-03
	25180•56	8•39
	32949•56	8•24
	43978•65	8.80
	56088•26	9•35
	69278•40	9.90
	83549•05	10.44
	98900•22	10.99
	115331•92	11.53

Y _{TU} (given	YAVU (given
$\Phi = 15 \text{ in.})$	Φ = 15 in.)
15399•83	15 • 40
20999•67	10.50
26599•50	8 • 87
35565.86	8.89
47276.91	9 • 46
60117.60	10.02
74087•92	10.58
89187 • 88	11.15
105417 • 47	11.71
122776.70	12.28
	Continue

•	
Y _{TU} (given	Y AVU (given
$\Phi = 16 \text{ in.}$	$\Phi = 16 \text{ in.}$
15894.73	15•89
21989•45	10.99
28084•18	9•36
38295•35	9•57
50716.67	10-14
64316.73	10.72
79095•54	11.30
95053•11	11.88
112189•42	12 • 47
130504•49	13•05
1	1

Y _{TU} (given φ = 17 in.)	YAVU (given Ø=17in.)
16411.53	16•41
23023.07	11.51
29634.60	9•88
41138-05	10.28
54297 • 93	10.86
68685.67	11•45
84301.27	12.04
101144.74	12.64
119216 • 07	13.25
138515•27	13.85

Y _{TU} (given	YAVU
ϕ = 18 in.)	(given Φ = 18 in.)
16950•26	16.95
24100.52	12.05
31444.20	10.48
44093•95	11.02
58020 • 69	11.60
73224 • 40	12.20
89705 • 10	12.82
107462.77	:13•43
126497 • 42	14.06
146809•05	14•68

Y _{TU} (given φ = 19 in.)	Y AVU (given $\phi = 19 in.)$
17510 • 90	17.51
25221.80	12•61
33767 • 25	11•26
47163.05	11.79
61884.95	12•38
77932.94	12•99
95307 • 02	13•62
114007 • 20	14•25
134033 • 47	14•89
155385•84	15•54

AVU
$\phi = 20 \text{ in.}$
18.09
13•19
12.06
12.59
13.18
13.80
14.44
15•10
15.76
16•42

Y _{TU} (given φ = 21 in.)	YAVU (given $\phi = 21 \text{ in.}$)
18697 • 92	18.70
27595.84	13.80
38668•05	12•89
53640.85	13•41
70037•97	14.01
87859•41	14•64
107105•18	15.30
127775•27	15.97
149869•68	16,65
173388 • 41	17.34

Y _{TU.} (g	ven	Y AVU (given
Φ = 22	in.)	$\phi = 22 \text{ in.}$
1932	4•31	19•32
2884	8•61	14.42
4124	5 • 81	13.75
5704	9•55	14.26
7432	6•73	14.87
9307	7 • 35	15.51
11330	1 • 41	16•19
13499	8•90	16.87
15816	9•83	17.57
18281	4.20	18•28

Y _{TU} (given	Y AVU (given
	$\Phi = 23 \text{ in.}$
19972 • 61	19•97
30145•21	15.07
43908 • 46	14.64
60571 • 45	15•14
78756 99	15.75
98465•09	16 • 41
119695.73	17 - 10
142448•93	17.81
166724.69	18.52
192522•99	19•25
1	1

Y _{TU} (given Φ = 24 in.)	YAVU (given $\Phi = 24 \text{ in.}$)
20642.82	20.64
31485•64	15.74
46656 • Ø 1	15•55
64206•55	16•05
83328•76	16•67
104022 • 63	17•34
126288•16	18.04
150125.37	18•77
175534•24	19•50
202514•78	20•25

Υ _{TU} (given φ = 25 in.)	Y AVU (given Φ=25 in.)
21334•95	21.33
32869•90	16 • 43
49488•47	16•5Ø
67954•85	16.99
88042•02	17•61
109749.97	18•29
133078•69	19-01
158028•21	19.75
184598•50	20.51
212789.57	21.28

Υ _{TU} (given Φ = 26 in.)	YAVU (given Φ=26 in.)
22049.00	22.05
34665 • 18	17•33
52405 • 82	17 • 47
71816.35	17.95
92896•78	18•58
115647 • 10	19.27
140067 • 32	20.01
166157 • 44	20.77
193917 • 45	21.55
223347 • 36	22.33

Y _{TU} (given φ = 27 in.)	Y AVU (given Φ = 27 in.)
22784.96	22.78
36744•11	18•37
55408•08	18 • 47
75791.05	18•95
97893•04	19•58
121714.04	20.29
147254.05	21.04
174513.08	21.81
203491•11	22.61
234188•15	23•42

Y _{TU} (given	Y AVU (given
$\phi = 28 \text{ in.}$)	Φ = 28 in.)
23542•83	23•54
38879 • 63	19•44
58495•23	19.50
79878•96	19•97
103030 • 81	20.61
127950.78	21•33
154638•89	22.09
183095•11	22 • 89
213319•46	23.70
245311•94	24•53

Y _{TU} (given	YAVU (given
$\phi = 29 \text{ in.}$	$\phi = 29 \text{ in.}$
24322•62	24•32
41071.75	20•54
61667 • 28	20•56
84080•06	21.02
108310.07	21•66
134357•32	22+39
162221.82	23•17
191903.55	23•99
223402.52	24.82
256718•73	25•67

7	T 77
Y _{TU} (given	, AAA
4	(given
$\Phi = 30 \text{ in.}$	$\phi = 30 \text{ in.})$
25124•33	25.12
	1
43320•47	21.66
64924•24	21.64
88394 •3 6	22.10
113730.84	22.75
140933•67	23 • 49
170002.85	24.29
000000 00	05.10
200938•39	25 • 12
000748 08	25.97
233740•28	23.91
268408•53	06 94
200400003	26 • 84
	1

Y AVU (given
$\phi = 31 \text{ in.}$
25•95
22.81
22•76
23•21
23•86
24.61
25•43
26•27
27 • 15
28•04

Y _{TU} (given	YAVU (given
$\Phi = 32 \text{ in.}$	$\phi = 32 \text{ in.}$)
26793•49	26.79
47987•72	23.99
71692•85	23•90
97362•57	24•34
124996•87	25.00
154595•75	25.77
186159•22	26•59
219687 •27	27 • 46
255179•90	28•35
292637 • 12	29•26

Υ _{TU} (given φ = 33 in.)	Y AVU (given Φ = 33 in.)
27660•94	27 • 66
50406 • 24	25•20
75204.50	25•07
102016.47	25.50
130842 • 13	26.17
161681 • 49	26•95
194534•55	27•79
229401•31	28.68
266281.76	29•59
305175.91	30.52

Y _{TU} (given	YAVU
$\Phi = 34 \text{ in.}$)	(given Φ=34 in.)
29024•47	29.02
52881 • 36	26•44
78801.06	26•27
106783.57	26.70
136828.90	27 • 37
168937 • 04	28•16
203107•98	29.02
239341•75	29•92
277638•32	30.85
317997•71	31.80

	···
Y _{TU} (given	AVU
$\phi = 35 \text{ in.})$	(given Φ = 35 in.)
30455.58	30•46
55413•08	27.71
82482•52	27 • 49
111663.88	27.92
142957 • 16	28.59
176362.38	29•39
211879.52	30.27
249508•59	31.19
289249.58	32•14
331102.50	33•11

Y _{TU} (given	Y AVU
Φ = 36 in.)	(given Φ = 36 in.)
31914•98	31•91
58001 • 41	29.00
86248•87	28•75
116657 • 38	29•16
149226•93	29•85
183957•52	30•66
220849•16	31.55
259901•83	32•49
301115.55	33•46
344490•30	34•45

Y _{TU} (given φ = 37 in.)	T _{AVU} (given Φ=37in.)
33402•69	33 • 40
60646•33	30.32
90100-13	30-03
121764•09	30•44
155638•20	31•13
191722•47	31.95
230016.89	32.86
270521•47	33.82
313236 • 21	34.80
358161•11	35 • 82

Y _{TU} (given	TAVU (given
φ = 38 in.)	Φ = 38in.)
34918•69	34•92
63347 • 85	31.67
94036•29	31•35
126983•99	31.75
162190.96	32 • 44
199657 •21	33•28
239382•72	34•20
281367.51	35•17
325611.57	36•18
372114.89	37 • 21

Υ _{TU} (given φ = 39 in.)	TAVU (given Ф=39in.)
36463•00	36•46
66105•98	33•05
98057•34	32•69
132317 • 09	33.08
168885 • 23	33.78
207761.75	34.63
248946•66	35•56
292439•96	36•55
338241.63	37•58
386351•71	38•64

Y _{TU} (given	Y AVU (given
$\phi = 40 \text{ in.}$	(given $\Phi = 40 \text{ in.}$)
38035•60	38•04
68920.70	34•46
102163•30	34.05
137763•40	34•44
175721.00	35•14
216036•10	36.01
258708.70	36•96
303738.80	37 • 97
351126•40	39.01
400871.50	40•09
	*

Y _{TU} (given	Y AVU (given
$\Phi = 41. \text{ in.})$	$\phi = 41 \text{ in.}$
39636•51	39•64
71792.02	35.90
106354•16	35 • 45
143322•91	35•83
182698•27	36.54
224480 • 25	37 • 41
268668•84	38•38
315264•04	39•41
364265 • 87	40.47
415225.71	41.52

Y _{TU} (given	YAVU
ϕ = 42 in.)	$\Phi = 42 \text{ in.}$
41265•71	41 • 27
74719.95	37 • 36
110629•92	36•88
148995 • 61	37•25
189817 • Ø4	37.96
233094•19	38.85
278827.08	39•83
327015.69	40.88
377660.03	41•96
428328•33	42 • 83

Y _{TU} (given	YAVU (given
$\phi = 43 \text{ in.}$)	$\dot{\Phi}$ = 43 in.)
42923•21	42 • 92.
77704•47	38•85
114990•57	38•33
154781.52	38•70
197077•31	39•42
241877•94	40.31
289183•42	41•31
338993.73	42•37
391308•90	43•48
441650.08	44•17

Ψ _{TU} (given φ = 44 in.)	Y AVU (given $\varphi = 44 \text{ in.}$)
44609•02	44.61
80745.60	40•37
119436•13	39•81
160680.62	40 • 17
204479.08	40.90
250831.49	41.81
299737.86	42.82
351198•18	43•90
405212•47	45•02
455191.00	45•52

Y _{TU} (given φ = 45 in.)	Y AVU (given Ф = 45 in.)
46323•12	46•32
83843•32	41.92
123966•59	41•32
166692•93	41 • 67
212022.35	42•40
259954•83	43•33
310490•39	44•36
363629•03	45•45
419370•73	46•60
468951•06	46•90

Table 21

TOTAL AND AVERAGE DRILLING COSTS FOR UNCASED WELLS IN MEDIUM SOFT ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

Y _{TU} (given	Y AVU (given
Φ = 10 in.)	$\Phi = 10 in$
14162.60	14•16.
18525•21	9•26
22887 • 81	7.63
27250•42	6.81
37 479•90	7.50
48888•13	8•15
61475 • 11	8.78
75240•84	9•41
90185•32	10.02
106308.55	10.63

Y _{TU} (given φ = 11 in.)	YAVU (given Ф=llin.)
14619•98	14•62
19439•96	9•72
24259•94	8•09
29783•03	7 • 45
40714•47	8•14
52890 • 16	8•82
66310.07	9•47
80974•23	10.12
96882•62	10.76
114035 • 25	11-40

37 /	1
Y _{TU} (given	YAVU
φ = 12 in.)	(given Φ = 12 in.)
15102.07	15 • 10
20404 • 14	10.20
25706.20	8.57
32448•53	8 • 1 1
44115•16	8 • 82
57091.52	9 • 52
71377.60	10.20
86973•41	10.87
103878•93	11•54
122094•18	12.21

Y _{TU} (given	Y _A VU
ϕ = 13 in.)	(given Φ=13in.)
15608.86	15•61
21417.73	10.71
27226.59	9•08
35246•92	8 - 81
47681.97	9•54
61492•23	10-25
76677.70	10.95
93238•38	11.65
111174-26	12•35
130485.35	13•05

Υ _{TU} (given Φ = 14 in.)	YAVU (given Φ=14in.)
16140•37	16•14
22480 • 7 4 28821 • 12	9.61
38178•21 51414•90	9•54 10•28
66092•28 82210•36	11.02 11.74
99769•13 118768•60	12•47 13•20
139208•76	13.92

Y _{TU} (given φ = 15 in.)	YAVU (given Ф=15in)
16696•59	16.70
23593•18	11.80
30489.77	10.16
41242•39	10.31
55313•94	11.06
70891•68	11.82
87975•59	12.57
106565•68	13•32
126661.95	14-07
ı 48264•40	14.83
	Continued

_	
Y _{TU} (given	Y AVU (given
$\phi = 16 \text{ in.}$	$\Phi = 16 \text{ in.}$
17277 • 52	17 • 28
24755.04	12•38
32232.55	10.74
44439 • 47	11-11
59379 • 11	11.88
75890 • 41	12.65
93973•38	13•42
113628 • Ø1	14.20
134854•31	14.98
157652 • 28	15.77

Y _{TU} (given φ = 17 in.)	YAVU (given $\varphi = 17 in.)$
17883 • 16	17.88
25966•31	12.98
34049•47	11•35
47769•45	11.94
63610•39	12.72
81088•49	13•51
100203.74	14•31
120956 • 14	15•12
143345 • 69	15•93
167372•40	16•74

Y _{TU} (given	, Y _. AVU
1	(given
$\phi = 18 \text{ in.}$	$\phi = 18 in.$
18513.51	18•51
27227 • 01	13•61
36159•48	12.05
51232•31	12.81
68007.79	13.60
86485•90	14.41
106666 • 66	15•24
128550•05	16.07
152136 • Ø8	16•90
177424•75	17•74

Y _{TU} (given	YAVU (given
ϕ = 19 in.)	$\phi = 19 \text{ in.})$
19168•57	19•17
28537 • 13	14.27
38852•97	12.95
54828•08	13•71
72571.31	14.51
92082•66	15•35
113362•14	16•19
136409•75	17 • Ø5
161225•48	17.91
187809•34	18•78

Υ _{TU} (given φ: 20 in.)	Y AVU (given φ=20in.)
19848•34	19.85
29896•67	14.95
41646•13	13.88
58556•73	14.64
77300.94	15•46
97878.76	16•31
120290•20	17 • 18
144535•24	18.07
170613.90	18•96
198526 • 16	19.85

Y _{TU} (given φ = 21 in.)	YAVU (given $\varphi = 21 \text{ in.}$)
20552 • 82	20.55
31305 • 63	15•65
44538•97	14.85
62418•28	15.60
82196.70	16 • 44
103874.21	17.31
127450•82	18.21
152926.52	19•12
180301.33	20.03
209575 • 23	20.96

Y _{TU.} (given	Y AVU (given
$\Phi = 22 \text{ in.}$	$\Phi = 22 \text{ in.})$
21282.01	21•28
32764•01	16•38
47531 • 47	15•84
66412.73	16.60
87258•57	17 • 45
110068.99	18•34
134844 • 00	19•26
161583.59	20.20
190287 - 77	21•14
220956•52	22•10
l I	F

Y _{TU} (given	Y AVU (given
$\phi = 23 \text{ in.}$)	$\Phi = 23 \text{ in.})$
22035.91	22.04
34271 • 82	17 • 14 •
50623.65	16.87
70540.07	17.64
92486•56	18.50
116463•12	19•41
142469.75	20.35
170506 • 45	21.31
200573.22	22.29
232670.06	23•27

Y _{TU} (given	Y AVU (given
ϕ = 24 in.)	$\Phi = 24 \text{ in.})$
22814•52	22.81
35829•04.	17•91
53815•49	17.94
74800.30	18.70
97880•67	19•58
123056.59	20.51
150328•06	21 • 48
179695•10	22•46
211157 • 68	23•46
244715•83	24•47

Y _{TU} (given	Y AVU (given
$\phi = 25 in.$	$\phi = 25 \text{ in.}$
23617.84	23.62
37435•68	18•72
57107.01	19•04
79193•43	19•80
103440.89	20.69
129849•40	21.64
158418•94	22•63
189149•53	23•64
222041 • 16	24•67
257093•83	25.71
1	1

Y _{TU} (given	YAVU (given
ϕ = 26 in.)	$\phi = 26 \text{ in.}$
24445•87	24•45
39503•47	19•75
60498•20	20 • 17
83719•46	20.93
109167 • 24	21.83
136841.55	22•81
166742•39	23•82
198869.75	24•86
233223•65	25•91
269804•07	26•98.
I	T .

Y _{TU} (given	Y AVU (given
φ = 27 in.)	$\phi = 27 in.$
25298•62	25.30
41891•76	20•95
63989•06	21.33
88378•37	22.09
115059.70	23.01
144033•04	24.01
175298•40	25.04
208855•77	26•11
244705•16	27•19
282846•55	28•28

Y _{TU} (given	Y AVU (given
ϕ = 28 in.)	Φ = 28 in.)
26176•07	26 • 18
44346•49	22 • 17
67579•59	22•53
93170•19	23•29
121118•28	24•22
151423•88	25•24
184086•97	26•30
219107 • 57	27 • 39
256485•67	28•50
296221•27	29•62

Y _{TU} (given	YAVU (given
$\phi = 29 \text{ in.}$	$\Phi = 29 in.$
27078•24	27.08
46867 • 67	23•43
71269.79	23.76
98094.89	24•52
127342.98	25 • 47
159014-05	26.50
193108-12	27.59
229625 • 16	28.70
268565•20	29•84
309928•21	30.99

Y _{TU} (given	Y AVU (given
φ = 30 in.)	$\phi = 30 \text{ in.})$
28005•11	28•01
49455•30	24•73
7 5Ø59•66	25.02
103152•49	25•79
133733.80	26•75
166803.57	27.80
202361.82	28•91
240408•54	30.05
280943•74	31.22
323967 • 40	32•40

Y _{TU} (given	Y AVU (given
ϕ = 31 in.)	$\Phi = 31 \text{ in.}$
28956•69	28•96
52109•38	26•05
78949•21	26.32
108342.99	27 • 09
140290•73	28•06
174792•44	29•13
211848•10	30•26
251457 • 72	31•43
293621•29	32 • 62
338338 • 82	33•83

Y _{TU} (given φ = 32 in.)	YAVU (given ϕ = 32 in.)
29932•99	29.93
54829•90	27 • 41
82938•42	27 • 65
113666•38	28•42
147013.79	29.40
182980•64	30.50
221566•93	31•65
262772•67	32•85
306597•86	34•07
353042•48	35•30

Y _{TU} (given φ = 33 in.)	Y AVU (given Φ = 33 in.)
30934•00	30•93
57616.87	28•81
87027.30	29.01
119122•67	29•78
153902.96	30.78
191368•18	31•89
231518•33	33.07
274353.42	34•29
319873•43	35•54
368078.38	36•81

Y _{TU} (given	Y AVU (given
$\phi = 34 \text{ in.}$)	$\phi = 34 \text{ in.}$
32475•14	32.48
60470•29	30.24
91215•86	30 • 41
124711.84	31.18
160958•25	32•19
199955•07	33•33
241702.30	34•53
286199•96	35.77
333448•02	37.05
383446 • 51	38•34

Y _{TU} (given	Y AVU (given
$\phi = 35 \text{ in.}$	$\phi = 35 in.$
34092 • 13 63390 • 15	34.09
00070-10	31.10
95504•08	31.83
130433.92	32.61
100100172	02.01
168179.65	33•64
208741.29	34.79
200141427	34.17
252118+83	36•02
298312.28	37.29
1 2,0012.20	1 3, •2/
347321.63	38•59
399146.88	39•91

Y _{TU} (given	YAVU
φ = 36 in.)	(given Φ = 36 in.)
35742•34	35•74
66376•47	33•19
99891•98	33•30
136288•89	34.07
175567•18	35•11
217726•87	36•29
262767•94	37•54
310690•39	38•84
361494•25	40 - 17
415179•48	41•52

Y _{TU} (given	T AVU
$\phi = 37 \text{ in.}$)	$\phi = 37 \text{ in.}$
37425•78	37 • 43
69429•23	34•71
104379.55	34•79
142276.75	35•57
183120•83	36•62
226911•78	37 •82
273649.60	39•09
323334•30	40•42
375965•88	41•77
431544•33	43•15

Υ_{TU} (given $\Phi = 38 \text{ in.}$)	TAVU (given = 38in.)
39142•43	39•14
72548•43	36•27
108966•79	36•32
148397 • 51	37 • 1Ø
190840•59	38•17
236296 • Ø3	39•38
284763.83	40•68
336243•99	42.03
390736.52	43•42
448241•39	44•82

Y _{TU} (given φ = 39 in.)	TAVU (given $\Phi = 39 \text{ in.}$)
40892•32	40.89
75734•Ø8	37 • 87
113653.70	37 • 88
154651.16	38.66
198726.47	39.75
245879.62	40.98
296110.63	42.30
349419•47	43.68
405806•17	45•09
465270•71	46•53

Y _{TU} (given	Y AVU (given
$\phi = 40 \text{ in.}$	$\Phi = 40 \text{ in.}$
42675 • 43	42.68
78986•19	39•49
118440•28	39•48
161037.70	40.26
206778.47	41•36
255662•56	42.61
307689.99	43•96
362860.75	45•36
421174.84	46•80
482632•26	48•26

Y _{TU} (given Φ = 41 in.)	YAVU (given $\Phi = 41$ in.)
44491•76	44•49
82304.73	41 • 15
123326•53	41 • 11
167557 • 15	41.89
214996•58	43.00
265644•84	44•27
319501.91	45•64
376567.80	47 • 07
436842.51	48•54
499757 • 12	49.98

Y _{TU} (given	YAVU
ϕ = 42 in.)	(given Φ = 42 in.)
46341•31	46•34
85689•73	42•84
128312•45	42.77
174209•48	43•55
223380.82	44•68
275826•46	45•97
331546 • 40	47 • 36
390540.65	48•82
452809•21	50.31
515265•43	51•53

Y _{TU} (given φ = 43 in.)	YAVU (given Φ = 43 in.)
48224•09	48 • 22
89141•17	44.57
133398•05	44•47
180994.71	45•25
231931 • 17	46•39
286207 • 42	47.70
343823•46	49•12
404779•29	50.60
469074.91	52•12
531020.83	53•10

Ψ _{TU} (given φ = 44 in.)	Y AVU (given Φ = 44 in:)
50140.09	50•14
92659•06	.46 • 33
138583•31	46•19
187912•83	46•98
240647•64	48•13
296787•72	49 • 46
356333•08	50.90
419283•72	52•41
485639•63	53•96
547023•33	54•70

Υ _{TU} (given φ = 45 in.)	YAVU (given Ф = 45 in.)
52089•32	52•09
96243•40	48•12
143868+25	47•96
194963•85	48•74
249530•23	49•91
307567•37	51.26
369075•26	52.73
434053•93	54•26
502503•36	55•83
563272•95	56 • 33

Table 22

TOTAL AND AVERAGE DRILLING COSTS FOR

UNCASED WELLS IN MEDIUM HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER

(in dollars)

YAVU (given Ф = 10 in)
15.24
10.34
8.7Ø
7.89
8.75
9.58
10.40
11-20
11.99
12.78

Y _{TU} (given	AVU
φ = 11 in.)	Φ = 11 in.)
15776 • 96	15.78
21753•91	10.88
27730.87	9•24
34509•38	8•63
47569 • 12	9•51
62251.77	10.38
78557•35	11.22
96485•83	12.06
116037 •23	12•89
137211.56	13•72
i .	l i

Y _{TU} (given	Y AVU (given
ϕ = 12 in.)	Φ = 12 in.)
16343•18	16.34
22886•36	11•44
29429•54	9•81
37620.26	9•41
51576•35	10.32
67240.78	11-21
84613•55	12.09
103694•65	12.96
124484•08	13.83
146981•84	14.70
	l

Y _{TU} (given	Y AVU (given
φ = lo in.)	$\Phi = 13 \text{ in.}$
16936•91	16•94
24073.82	12•04
31210.73	10-40
40885•57	10.22
55776•64	11•16
72461.46	12.08
90940.02	12•99
111212•34	13.90
133278•41	14•81
157138•22	15.71
i	1 1

Y _{TU} (given	Y AVU
$\phi = 14 \text{ in.}$	(given Φ = 14 in.)
17558•15	17.56
25316•29	12.66
33074•44	11.02
44305 • 32	11.08
60169.97	12.03
77913.78	12.99
97536.76	13.93
119038-91	14.88
142420•22	15.82
167680.71	16.77
1	Į i

Y_{TU} (given $\phi = 15 \text{ in.}$)	YAVU (given $\Phi = 15 in.)$
18206 • 89	18.21
26613.78	13-31
35020•67	11.67
47879•51	11.97
64756•35	12.95
83597 •77	13.93
104403.77	14.91
127174.36	15.90
151909 • 53	16.88
178609•28	17 • 86
	Continued

Y _{TU} (given	YAVU
$\phi = 16 \text{ in.}$	(given O = 16 in.)
18883•14	18.88
27966•27	13•98
37049 • 41	12•35
51608-15	12.90
69535•78	13.91
89513 • 42	14.92
111541-05	15.93
135618•69	16.95
161746.33	17.97
189923•96	18•99

Y _{TU} (given	Y AVU (given Φ=17in,)
$\Phi = 17 \text{ in.})$	Ψ-1/114/
19586•89	19•59
29373•78	14•69
39160•67	13.05
55491 •22	13.87
74508.26	14.90
95660•73	15•94
118948•61	16•99
144371•90	18.05
171930-62	19.10
201624•74	20.16

Y _{TU} , (given φ = 18 in.)	YAVU (given $\Phi = 18 in.)$
20318•15	
30836•30	20.32
41604.50	13.42
59528•73	14.88
79673•79	15•93
102039•69	17.01
126626•42	18.09
153433•99	19•18
182462•39	20.27
213711•62	21.37

Y _{TU} (given	Y AVU (given
φ = 19 in.)	$\phi = 19 \text{ in.})$
21076 • 91	21.08
32353 • 83	16•18
44715.23	14-91
63720.68	15•93
85032 • 37	17 • Ø 1
108650•31	18•11
134574.51	19.22
162804•95	20•35
193341 • 64	21.48
226184•59	22•62

Y _{TU} (given φ = 20 in.)	Y _{AVU} (given φ=20in.)
21863•18	21.86
33926•37	16•96
47941.80	15.98
68067 • 07	17.02
90584•00	18•12
115492.60	19•25
142792.87	20.40
172484.80	21.56
204568•40	22.73
239043•66	23.90

Y_{TU} (given $\phi = 21 \text{ in.}$)	YAVU (given $\phi = 21 \text{ in.}$)
22676•96	22•68
35553•92	17.78
51284•20	17.09
72567•90	18•14
96328•68	19•27
122566 • 54	20•43
151281 • 49	21.61
182473.52	22.81
216142•64	24.02
252288•84	25•23

Y _{TU.} (given	Y AVU (given
$\phi = 22 \text{ in.}$)	$\phi = 22 \text{ in.}$
23518•24	23•52
37236•48	18.62
54742 • 42	18•25
77223 • 16	19•31
102266 • 40	20•45
129872•14	21.65
160040•39	22 • 86
192771-12	24•10
228064.37	25•34
265920•11	26.59

Y _{TU} (given	YAVU (given
$\Phi = 23 \text{ in.}$)	$\phi = 23 \text{ in.}$
24387 • 03	24•39
38974•06	19•49
58316 • 48	19•44
82032 • 87	20.51
108397 • 18	21.68
137409•40	22.90
169069•54	24•15
203377 • 61	25•42
240333•58	26.70
279937•48	27•99

Y _{TU} (given	Y AVU (given
ϕ = 24 in.)	$\Phi = 24 \text{ in.}$
25283•32	25•28
40766 • 64	20•38
62006 • 36	20.67
86997•02	21.75
114721.00	22•94
145178•32	24•20
178368•98	25•48
214292•96	26.79
252950•29	28•11
294340•94	29•43

Y _{TU} (given φ = 25 in.)	YAVU (given Φ=25 in.)
26207 • 12	26•21
42614•24	21•31
65812•08	21•94
92115.60	23•03
121237 • 88	24•25
153178.90	25•53
187938•68	26•85
225517 • 21	28•19
265914•48	29•55
309130•50	30•91

Y _{TU} (given	YAVU (given
Φ = 26 in.)	$\Phi = 26 \text{ in.}$
27158•42	27 • 16
44982•78	22 • 49
69733•62	23•24
97388•63	24•35
127947.80	25•59
161411•14	26.90
197778•65	28•25
237050•32	29.63
279226•16	31.03
324306•17	32•43

Y _{TU} (given φ = 27 in.)	YAVU (given Ф=27in.)
28137 •23	28•14
47715•48	23•86
73770•99	24.59
102816 • 09	25.70
134850•77	26•97
169875 • 04	28•31
207888.89	29•70
248892 • 32	31•11
292885•34	32•54
339867 • 93	33•99

Y _{TU} (given	Y AVU (given
$\phi = 28 \text{ in.}$)	$\phi = 28 \text{ in.}$
29143.55	29•14
50525 • 40	25•26
77924.20	25.97
108398.00	27.10
141946 - 80	28•39
178570.59	29.76
218269•40	31•18
261043•19	32.63
306892•00	34-10
355815.79	35.58

Y _{TU} (given φ = 29 in.)	YAVÜ (given Φ = 29 in.)
30177 • 37	30 • 18
53412•54	26.71
82193•23	27 • 40
114134.34	28•53
149235 • 86	29•85
187497 • 81	31 • 25
228920 • 17	32.70
273502•95	34•19
321246 • 14.	35.69
372149•74	37 • 21

Y _{TU} (given	Y AVU (given
$\Phi = 30 \text{ in.}$	$\phi = 30 \text{ in.}$
31238.70	31•24
56376•89	28•19
86578•09	28.86
120025 • 12	30.01
156717•99	31-34
196656•68	32.78
239841•21	34•26
286271.58	:35 .7 8
335947 • 78	37 • 33
388869•81	38•89

Υ _{TU} (given Φ = 31 in.)	Y AVU (given O = 31 in.)
T /	<u>'</u>
32327 • 53	32 • 33
59418•47	29.71
91078.78	30•36
126070.34	31•52
164393•16	32•88
206047 •22	34•34
251032.53	35•86
299349 • 09	37 • 42
350996•91	39.00
405975•96	40•60

Y _{TU} (given φ = 32 in.)	YAVU (given Φ=32 in.)
33443 • 87	33.44
62537 • 27	31.27
95695•30	31.90
132270.01	33.07
172261•38	.34•45
215669•41	.35•94
262494•11	3 7 • 5Ø
312735•48	39.09
366393•51	40 • 7 1
423468•22	42•35

Y _{TU} (given φ = 33 in.)	Y AVU (given Φ=33in.)
34587.71	34•59
65733•29	32 • 87
100427 • 66	33•48
138624•11	34•66
180322.64	36•06
225523•26	37•59
274225•97	39•18
326430.75	40.80
382137 •62	42•46
441346.58	44•13

Y _{TU} (given	Y AVU (given
$\phi = 34 \text{ in.}$	$\phi = 34 \text{ in.}$
36324.71	36 • 32
69006 • 52	34.50
105275.84	35.09
145132•65	36•28
188576.96	37.72
235608•77	39•27
286228.09	40.89
340434•90	42.55
398229•21	44•25
459611.02	45•96

Y _{TU} (given	YAVU (given
$\phi = 35 \text{ in.}$	$\phi = 35 \text{ in.}$
38147 • Ø3	38 • 15
30147.00	30.13
72356•98	36•18
110239.85	36•75
151795•63	37 • 95
197024.33	39•40
245925•94	40•99
298500•47	42•64
354747•93	44•34
414668•29	46•07
478261.57	47 • 83

Y _{TU} (given	Y AVU
φ = 36 in.)	(given Φ = 36 in.)
40007•96	40.01
75784•66	37•89
115319•69	.38 • 44
158613•05	39•65
205664•74	41•13
256474•77	42.75
311043•13	44•43
369369•83	46 • 17
431454•86	47 • 94
497298•22	49•73

Y _{TU} (given	TAVU
$\phi = 37 \text{ in.}$)	$\phi = 37 \text{ in.}$
41907.50	41.91
79289.55	39•64
120515.36	40 • 17
165584.91	41•40
214498•21	42•90
267255•26	44•54
323856 • 07	46•27
384300•62	48•04
448588•92	49•84
516720•97	51.67

Y _{TU} (given	TAVU
φ = 38 in.)	(given Ф = 38 in.)
43845•65	43•85
82871 • 67	41 • 44
125826 • 85	41•94
172711•20	43•18
223524•72	44•70
278267•40	46•38
336939•26	48•13
399540•28	49•94
466070.45	51.79
536529•81	53•65

Y _{TU} (given φ = 39 in.)	TAVU (given $\Phi = 39 \text{ in.})$
45822•41	45•82
86531.00	43•27
131254•18	43•75
179991•94	45•00
232744•29	46.55
289511•21	48•25
350292•73	50.04
415088•82	51.89
483899•49	53.77
556724•75	55•67

Y _{TU} (given	Y AVU (given
$\phi = 40 \text{ in.}$	$\Phi = 40 \text{ in.}$
47837 • 78	47 • 84
90267 • 56	45•13
136797 • 34	45•60
187427 • 12	46•86
242156•90	48•43
300986-68	50•16
363916•46	51.99
430946•24	53•87
502076.02	55•79
577305•79	57•73

Y _{TU} (given	Y AVU (given
$\Phi = 41. \text{ in.})$	$\Phi = 41 \text{ in.}$
49891•76	49•89
94081 • 33	47 • Ø4
142456•33	47 • 49
195016.73	48•75
251762.56	50•35
312693.81	52•12
377810 • 46	53•97
447112.54	55.89
520600•03	57•84
597557 • 52	59•76

T / :	T.,
Y _{TU} (given	YAVU
$\phi = 42 \text{ in.}$)	(given $\Phi = 42 in.$)
51984•35	51.98
97972.33	48•99
148231•14	49•41
202760•79	50.69
261561•27	52•31
324632•59	54•11
391974•74	56•00
463587 •72	57.95
539471•53	59•94
615742•31	61.57
L	<u> </u>

Y _{TU} (given	YAVU
ϕ = 43 in.)	(given Φ = 43 in.)
54115.55	54•12
101940•54	50.97
154121.79	51•37
210659•28	52•66
271553.03	54•31
336803•03	56•13
406409•28	58•06
480371•77	60.05
558690•52	62•08
634202 • 15	63 • 42

YAVU (given $\varphi = 44 \text{ in.})$
56•29
.52•99
53•38
54•68
56•35
58•20
60•16
62•18
64•25
65•29

Υ _{TU} (given φ = 45 in.)	YAVU (given Ф = 45 in.)
58493•77	58•49
110108•63	55•05
166250•57	55 • 42
226919•59	56•73
292115•70	58•42
361838•89	60.31
436089•16	62•30
514866.52	64•36
598170•95	66 • 46
671947 • 00	67 • 19

Table 23

TOTAL AND AVERAGE DRILLING COSTS FOR UNCASED WELLS IN HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

Y _{TU} (given	Y AVU (given
Φ = 10 in.)	Φ = 10 in)
18603.05	18•60
27406•09	13.70
36209•14	12.07
45012•19	11.25
63535•71	12.71
84779•43	14•13
108743.34	15.53
135427 • 45	16•93
164831•74	18.31
196956 • 23	19.70

Y _{TU} (given	YAVU
φ = 11 in.)	(given $\Phi = 11$ in.)
19371-87	19.37
28943.74	14•47
38515.61	12.84
49213-62	12.30
69070 • 42	13.81
91798.52	15.30
117397 • 94	16.77
145868 • 67	18•23
177210.72	19.69
211424.08	21.14

Y _{TU} (given	Y AVU (given
$\Phi = 12 \text{ in.})$	$\Phi = 12 in.$
20173.79	20-17
30547 • 58	15•27
40921 • 37	13•64
53626 • Ø3	13•41
74868•83	14.97
99134•06	16•52
126421.73	18.06
156731.83	19•59
190064•37	21.12
226419•35	22.64

Y _{TU} (given	Y AVU (given
$\Phi = 13 \text{ in.}$	$\Phi = 13 \text{ in.}$
21008•81	21.01
32217 • 61	16•11
43426 • 42	14•48
58249•40	14•56
80930•95	16•19
106786 • 05	17 • 80
135814•71	19•40
168016.93	21.00
203392•71	22.60
241942•04	24•19
I	

Y _{TU} (given	YAVU
ϕ = 14 in.)	(given Φ = 14 in.)
21876•92	21.88
33953•84	16.98
46030.76	15•34
63Ø83 •7 5	15.77
87256•78	17 • 45
114754•49	19•13
145576•89	20.80
179723•96	22 • 47
217195•72	24•13
257992•15	25.80
	ì

Y _{TU} (given	YAVU (given
Φ = 15 in.)	φ = 15 in.)
`2778•13	22.78
35756 • 26	17.88
48734•39	16.24
68129.06	17.03
93846 • 32	18.77
123039.39	20.51
155708.26	22.24
191852•93	23.98
231473.41	25.72
274569•68	27 • 46
	Continue

Y_{TU} (given $\phi = 16 \text{ in.}$)	YAVU (given Ф=16in.)
23712 • 43	23.71
37624•87	18•81
51537 • 30	17 • 18
73385•33	18•35
100699.57	20-14
131640•74	21•94
166208.82	23.74
204403•84	25•55
246225.77	27•36
291674.62	29•17
1	

Y _{TU} (given	YAVU (given
φ = 17.in.)	φ=17in.)
24679•83	24•68
39559•67	19.78
54439•50	18•15
78852•58	19•71
107816.54	21.56
140558•54	23•43
177078.59	25.30
217376.68	27 • 17
261452.82	29•05
3093,07 • 00	30•93

Y _{TU} (given	YAVU (given
$\phi = 18 \text{ in.}$	$\phi = 18 \text{ in.}$
25680.33	25•68
41560.66	20.78
57793.55	19•26
84530.79	21•13
115197 •21	23•04
149792.79	24•97
188317 • 54	26•90
230771.45	28•85
277154.53	30.79
327466.78	32•75

Y _{TU} (given	Y AVU (given
Φ = 19 in.)	φ=19in _e)
26713.93	26.71
43627 • 85	21.81
62078•65	20.69
90419.98	22•60
122841 • 59	24.57
159343.50	26•56
199925 • 69	28•56
244588 • 17	30.57
293330•93	32•59
346153•99	34.62
1	ł

Y _{TU} (given	Y AVU (given
φ = 20 in.)	φ = 20 in.)
27780.61	-27 • 78
45761-23	.22•88
66521 • 98	22•17
96520•13	24•13
130749•68	26 - 15
169210-65	28•20
211903-03	30•27
258826•82	32•35
309982•02	34•44
365368•.62	36•54

Y _{TU} (given φ = 21 in.)	YAVU (given $\phi = 21 \text{ ir.})$
28880 • 40	28•88
47960.80	23.98
71123.54	23.71
102831.25	25•71
138921 • 49	27.78
179394•26	29.90
224249•57	32.04
273487 • 41	34•19
327107.78	36•35
385110.67	38•51

Y _{TU} (given	YAVU (given
ϕ = 22 in.)	$\phi = 22 \text{ in.}$
30013•28	30-01
50226.57	25•11
75883•32	25•29
109353•33	27•34
147357 • 00	29•47
189894•32	31 • 65
236965•30	33•85
288569•92	36.07
344708•21	38•30
405380 • 14	40.54
1	

Y _{TU} (given	Y AVU (given
$\Phi = 23 \text{ in.}$	$\phi = 23 \text{ in.}$
31179•26	31•18
52558•52	26•28
80801 • 33	26•93
116086•39	29.02
156056.22	31.21
200710.83	33•45
250050•22	35•72
304074•39	38.01
362783.32	40.31
426177.04	42.62

Y _{TU} (given	Y AVU (given
ϕ = 24 in.)	$\Phi = 24 \text{ in.}$
32378•34	32•38
54956•67	27•48
85877 • 56	28•63
123030•41	30.76
165019•16	33•00
211843.80	35•31
263504•34	37•64
320000.77	40.00
381333•11	42•37
4475Ø1•35	44.75
l	1 1

Υ _{TU} (given φ = 25 in.)	YAVU (given Ф=25 in.)
33610.51	33•61
57421.01	28.71
91112•02	30.37
130185.40	32•55
174245.80	34.85
223293•22	37 • 22
277327 • 65	39•62
336349•11	42•04
400357 • 59	44•48
46,9353•08	46•94
I	•

Y _{TU} (given	YAVU
ϕ = 26 in.)	(given \$\Phi = 26 in.)
34875•77	34•88
60596.20	30.30
96504•71	32•17
137551•36	34•39
183736•15	36•75
235059.08	39•18
291520.16	41•65
353119.37	44•14
.419856•73	46•65
491732•23	49.17
I	

Y _{TU} (given	AVU
ϕ = 27 in.)	(given Φ = 27 in.)
36174•14	36•17
64272•22	32•14
102055.62	34•Ø2
145128•29	36 • 28
193490•21	38.70
247141•41	41 • 19
306081•86	43•73
370311•58	46•29
439830•56	48•87
514638•80	51•46
ľ	1

 ${\tt Continued}$

•	
Y _{TU} (given	Y AvU (given
ϕ = 28 in.)	$\phi = 28 \text{ in.}$
37505•60	37 • 51
68053•72	34.03
107764.76	35•92
152916•18	38•23
203507•99	40.70
259540•18	43•26
321012.75	45•86
387925•71	48•49
460279•06	51•14
538072.79	53•81

Y _{TU} (given	YAVU (given
$\Phi = 29 \text{ in.}$	$\Phi = 29 in$
38870 • 15	38•87
71940.71	35 • 97
113632•12	37 • 88
160915•04	40.23
213789.47	42.76
272255 • 40	45•38
336312•84	48•04
405961.79	50 .7 5
481202.24	53•47
562034.20	56.20
L	

Y _{TU} (given	Y AVU (given
$\Phi = 30 \text{ in.}$	$\phi = 30 \text{ in.}$
40267 • 80	40 • 27
75933•18	37•97
119657.71	39 • 89
169124.87	42.28
224334•66	44•87
285287 • 08	47 • 55
351982•13	50.28
424419•81	53•05
502600•11	55•84
586523•04	58.65
	1

Y _{TU} (given	Y AVU (given
φ = 31 in.)	$\phi = 31 \text{ in.}$
41698•55	41.70
80031•14	40.02
125841 • 53	41.95
177545.67	44•39
235143.57	47 • Ø3
298635 • 22	49.77
368020.61	52.57
443299.75	55•41
524472.65	58•27
611539•28	61•15

Y _{TU} (given Φ = 32 in.)	Y AVU (given ϕ = 32 in.)
43162•39	43•16
84234•58	42 • 12
132183•57	44.06
186177•44	46 • 54
246216•18	49•24
312299.79	52.05
384428•28	54.92
462601.63	57.83
546819•85	60.76
637082•95	63.71

Y _{TU} (given	Y AVU (given
ϕ = 33 in.)	$\phi = 33 \text{ in.})$
44659•33	44•66
88543•50	44•27
138683•84	46•23
195020•18	48.76
257552•50	51.51
326280•83	54•38
401205•1 <i>4</i>	57 • 32
482325•45	60•29
569641.75	63•29
663154•05	66 • 32
i	

Y _{TU} (given	Y AVU (given
$\phi = 34 \text{ in.}$)	$\dot{\Phi} = 34 \text{ in.}$
46920•60	46.92
92957•91	46•48
145342•34	48•45
204073.88	51.02
269152•54	53.83
340578•31	56•76
418351•19	59•76
502471-21	62.81
592938•33	65.88
689752•55	68•98

Y _{TU} (given	Y AVU (given
$\phi = 35 \text{ in.}$	$\phi = 35 \text{ in.}$
49294•78	49•29
97 4 77 • 80	48•74
152159•06	50 •7 2
213338•55	53+33
281016•28	56.20
355192•25	59•20
435866•45	62•27
523038•90	65•38
616709•58	68•52
716878 • 48	71.69
L	I

Y _{TU} (given	YAVU
φ = 36 in.)	(given Φ = 36 in.)
51721.71	51.72
102103•18	51.05
159134.00	53•04
222814•19	55 .7 0
293143•73	58•63
370122.64	61.69
453750.90	64•82
544028•52	68.00
640955•51	71.22
744531 • 85	74•45
l	•

Y _{TU} (given	T _{AVU} (given
$\phi = 37 \text{ in.}$)	$\Phi = 37 \text{ in.})$
54201•38	54•20
106834.04	53•42
166267 • 18	55•42
232500•80	58•13
305534•90	61•11
385369•48	64•23
472004.55	67 • 43
565440•09	70.68
665676•12	73.96
772712.62	77.27
I	I

Y _{TU} (given	TAVU
φ = 38 in.)	(given \$\Phi = 38 \text{in.})
56733•79	56.73
111670.38	55•84
173558•58	57 • 85
242398•37	60.60
318189•77	63•64
400932.78	66•82
490627 • 37	70.09
587273•59	73•41
690871•39	76•76
801420.80	80•14
Ī	l I

Y _{TU} (given	TAVU
φ = 39 in.)	(given Φ = 39 in.)
59318•94	59•32
116612.21	58•31
181008.20	60•34
252506 • 91	63•13
331108.35	66.22
416812.52	69.47
509619•41	72.80
609529.02	76 • 19
716541•36	79.62
830656•41	83 • Ø7

_	
Y _{TU.} (given	Y AVU (given
$\phi = 40 \text{ in.}$	$\Phi = 40 \text{ in.}$
61956•84	61.96
121659•52	60.83
188616•05	62•87
262826•42	65•71
344290•65	68•86
433008•72	72 • 17
528980•63	75 • 57
632206•40	79.03
742686.00	82 • 52
860419•44	86•04
	1

Y _{TU} (given	YAVU (given
$\Phi = 41 \text{ in.})$	$\phi = 41 \text{ in.})$
64647 • 48	64•65
126812•32	63•41
196382•13	65•46
273356•91	68•34
357736•65	71.55
449521 • 37	74.92
548711.05	78•39
655305•71	81.91
769305•32	85•48
889511•55	88•95

Y _{TU} (given Φ = 42 in.)	YAVU (given Φ=42 in.)
67390.85	67 • 39
132070.60	66•04
204306 • 43	68•10
284098•36	71.02
37 1446 • 38	74.29
466350 • 47	77.73
568810•66	81 • 26
678826•95	84•85
796399•33	88•49
915015.71	91.50
L	

Y _{TU} (given	YAVU (given
φ = 43 in.)	$\Phi = 43 \text{ in.})$
7Ø186•98	70•19 68•72
212388•96	70.80
295050•77	73.76
385419•79	77.08
483496 • 03	80.58
589279•48 702770•13	84•18 87•85
823968•00	91.55
940850•82	94•09
	l

Ψ _{TU} (given φ = 44 in.)	YAVU (given $\varphi = 44 in.)$
73035•84	73•04
142903.61	71.45
220629•72	73.54
306214.15	76•55
399656•92	79.93
500958•03	83•49
610117 • 47	87 • 16
727135•25	90.89
852011•36	94.67
967016.88	96•70
	B

YAVU (given Ф = 45 in.)
75•94
74.24
76.34
79.40
82•83
86•46
90•19
93•99
97 • 84
99•35

Table 24

TOTAL AND AVERAGE DRILLING COSTS FOR UNCASED WELLS IN VERY HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

Y _{TU} (given φ = 10 in.)	YAVU (given Φ = 10 in)
21011.42	21.01
32222•84	16•11
43434•25	14.48
54645•67	13•66
77617.71	15.52
104126 • 01	17.35
134170.55	19•17
167751•34	20.97
204868•39	22.76
245521.68	24.55

	Y_{TU} (given $\Phi = 11$ in.)	YAVU (given O = 11 in.)
4		¥/.
	21957 • 21	21•96
	34114•42	17 • Ø6
	46271•63	15•42
	59778•95	14•94
	84430•56	16.89
	112814.87	18.80
	144931•90	20.70
	180781.63	22.60
	220364.07	24•48
	263679•22	26•37

Y _{TU} (given	YAVU
]	(given
$\Phi = 12 \text{ in.})$	$\Phi = 12 in.$
22941•69	22.94
36083•38	18.04
49225•07	16•41
65169•13	16•29
91564.53	18•31
121889•10	20.31
156142.83	22.31
194325.73	24•29
236437 • 80	26.27
282479•04	28•25

Y _{TU} (given φ = 13 in.)	YAVU (given Φ=13in.)
23964•86	23•96
38129•72	19.06
52294•57	17 • 43
70816.22	17.70
99019•64	19.80
131348•68	21.89
167803.35	23•97
208383•64	26•05
253089•56	28•12
301921-10	30 • 19

Y _{TU} (given	Y AVU (given
φ = 14 in.)	$\phi = 14 \text{ in.}$
25026.71	25•03
40253 • 42	20-13
55480 • 14	18•49
76720.21	19•18
106795.88	21.36
141193.62	23.53
179913•45	25.70
222955•36	27 • 87
270319.36	30.04
322005 • 44	32•20

Υ _{TU} (given φ = 15 in.)	YAVU (given Q=15in)
26127 • 25	26 • 13
42454•50	21.23
58781.76	19.59
82881•11	20.72
114893•24	22.98
151423-92	25•24
192473•13	27.50
238040•90	29.76
288127 • 19	32.01
342732•03	34•27
	Continue

Y _{TU} (given	Y AVU (given
$\phi = 16 \text{ in.}$	0 = 16 in.)
27266 • 48	27 • 27
44732•96	22.37
62199•44	20.73
89298•92	22•32
123311.75	24.66
162039.58	27.01
205482•40	29•35
253640•23	31.71
306513•07	34.06
364100•89	36•41

Y _{TU} (given	Y AVU (given
φ = 17 in.)	$\phi = 17 \text{ in.}$
28444•39	28•44
47088•79	23.54
65733•18	21.91
95973.63	23•99
132051.38	26 • 41
173040.59	28•84
218941•26	31.•28
269753•39	33.72
325476.97	36 • 16
386112.01	38.61

, YAVU
$\phi = 18in$
29.66
24.76
23.27
25.73
28•22
30.74
33•26
35.80
38•34
40.88

Y _{TU} (given	Y AVU (given
$\phi = 19 \text{ in.}$)	φ=19in.)
30916•28	30•92
52032.56	26.02
74997 •86	25•00
110093.76	27.52
150494.03	30.10
196198•69	32.70
247207.71	35•32
303521 • 12	37•94
365138 • 89	40.57
432061.04	43•21
	ı

Υ _{TU} (given Φ = 20 in.)	YAVU (given $\Phi = 20 in.)$
1	
32210.25	32 • 21
54620•51	27•31
80382 • 14	26.79
117539•18	29•38
160197 • 06.	32•04
208355.77	34.73
262015.32	37•43
321175.70	40•15
385836 • 92	42.87
455998•95	45•60
l	.

Y _{TU} (given	YAVU (given
ϕ = 21 in.)	$\phi = 21 \text{ in.}$
33542•91	33.54
57285 • 83	28•64
85959•10	28•65
125241.51	31.31
170221.22	34.04
220898•22	36 • 82
277272•51	39.61
339344•Ø9	42 • 42
407112.97	45 • 23
480579•13	48.06
	<u> </u>

Y _{TU} . (given	YAVU (given
$\Phi = 22 \text{ in.})$	$\Phi = 22 \text{ in.})$
34914•26	34•91
60028.52	30.01
91728•74	30.58
133200.74	33•30
180566•51	36•11
233826 • Ø2	38•97
292979•28	41 • 85
358026•29	44•75
428967 • Ø6	47 • 66
505801.56	50.58

	
Y _{TU} (given	Y AVU (given
$\phi = 23 \text{ in.}$)	$\phi = 23 \text{ in.})$
36324•30	36•32
62848•59	31•42
97691 • 05	32.56
141416•89	35•35
191232•93	38•25
247139•18	41•19
309135.64	44•16
377222•31	47 • 15
451399•18	50.16
531666 • 27	53 • 17
L	

Y _{TU} (given	YAVU
$\phi = 24 \text{ in.})$	$\phi = 24 \text{ in.}$
37773.02	37 • 77
657 46 • 03	32.87
103846•05	34.62
149889•93	37 • 47
202220•48	40.44
260837 • 69	43•47
325741.58	46•53
396932•13	49•62
47 4409 • 34	52•71
558173•23	55•82

Y _{TU} (given	Y AVU (given
φ = 25 in.)	$\phi = 25 \text{ in.}$
39260•42	39•26
68720.85	34•36
110193.72	36•73
158619.88	39•65
213529•16	42 • 7 1
274921.57	45 • 82
342797 • 10	48•97
417155.76	52•14
497997.54	55•33
585322•44	58•53
1	1

Y _{TU} (given	YAVU (given
Φ = 26 in.)	$\dot{\phi}$ = 26 in.)
40786•52	40.79
72541.00	36•27
116734.07	38•91
167606•73	41.90
225158•97	45•03
289390•80	48•23
360302•21	51.47
437893•20	54.74
522163.78	58•02
613113•93	61•31
	<u> </u>

Y _{TU} (given	Y AVU (given
ϕ = 27 in.)	$\phi = 27 \text{ in.}$
42351•30	42 • 35
76959•76	38•48
123467•11	41•16
176850•49	44.21
237109•92	47 • 42
304245•39	50.71
378256•90	54.04
459144•45	57•39
546908•06	60.77
641547 • 68	64•15
I	I I

Y _{TU} (given φ = 28 in.)	YAVU (given Q = 28 in.)
43954•76	43•95
81506•98	40•75
130392•82	43 • 46
186351•16	46•59
249382•00	49•88
319485•34	53•25
396661•17	56 • 67
480909•51	60-11
572230 • 36	63.58
670623 • 69	67 • Ø6
ì	Ī

Y _{TU} (given	YAVU (given
$\phi = 29 \text{ in.}$	$\phi = 29 \text{ in.}$
45596•92	45 • 60
86182.65	43•09
137511 • 21	45•84
196108.72	49•03
261975.20	52 • 40
335110.64	55•85
415515•03	59•36
503188•39	62.90
598130.70	66•46
700341.96	70.03
1	

Υ _{TU} (given φ = 30 in.)	YAVU (given $\varphi = 30 in.)$
47277 • 7 6	47 • 28
90986•77	45•49
144822•28	48•27
206123•20	51•53
274889•55	54•98
351121•30	58•52
434818•48	62 • 12
525981•08	65.75
624609•09	69.40
730702.51	73.07
L	l

Y _{TU} (given	YAVU (given
φ = 31 in.)	$\phi = 31 \text{ in.}$
48997 •29	49•00
95919•34	47 • 96
152326•03	5Ø •7 8
216394•58	54•10
288125•02	57 • 63
367517 • 33	61.25
454571.51	64•94
549287 • 57	68•66
651665.51	72.41
7617Ø5•31	76 • 17
I ·	

Y _{TU} (given	YAVU
Φ = 32 in.)	(given φ = 32 in;)
50755•50	50.76
100980.37	50•49
160022•45	53•34
226922•87	56•73
301681•62	60.34
384298•70	64•05
474774•12	67.82
573107.87	71.64
679299•95	75•48
793350•37	79•34

Y _{TU} (given	Y AVU (given
$\phi = 33 \text{ in.}$)	$\phi = 33 \text{ in.}$
52552•40	52.55
106169.85	53.08
167911.56	55•97
237708.06	59•43
315559•35	63•11
401465.44	66•91
495426 • 31	70.78
597441•98	74.68
707512•44	78•61
825637 • 70	82•56
	L

Y _{TU} (given Φ = 34 in.)	YAVU (given $\Phi = 34 \text{ in.}$)
55233 • 46	55•23
111487 • 78	55.74
175993•34	58•66
248750 • 15	62•19
329758•22	65•95
419017 • 53	69•84
516528•08	73.79
622289•91	77.79
736302•97	81.81
858567 •28	85•86

Y _{TU} (given	Y AVU (given
$\phi = 35 \text{ in.}$	$\phi = 35 \text{ in.}$)
58048•23	58•05
116934•16	58•47
184267 • 80	61.42
260049•15	65•01
344278•21	68•86
436954•98	72.83
538079 • 45	76.87
647651.64	80•96
765671.54	85 • 07
892139•13	89•21

Y _{TU} (given	Y AVU (given
ϕ = 36 in.)	$\phi = 36 \text{ in.}$
60927 •21	60.93
122508.99	61•25
192734•94	64•24
271605.06	67 • 90
359119•34	71.82
455277 • 79	75•88
560080•41	80.01
673527 • 18	84•19
795618•15	88•40
926353•25	92•64
359119.34 455277.79 560080.41 673527.18 795618.15	71.82 75.88 80.01 84.19 88.40

Y _{TU} (given	TAVU (given
$\phi = 37 \text{ in.}$)	$\dot{\Phi}$ = 37 in.)
6387Ø+43	63.87
128212•28	64•11
201394•77	67 • 13
283417 • 87	7 0•85
37 4281 •60	74.86
473985•96	79.00
582530•94	83•22
699916•54	87 • 49
826142.77	91.79
961209.62	96 • 12

Υ _{TU} (given φ = 38 in.)	TAVU (given \$\Phi = 38 in.)
66877 •87	66 • 88
134044•02	67 • Ø2
210247 • 26	7 0.08
295487 • 59	73.87
389764•99	77 • 95
493079•47	82•18
605431.05	86•49
726819•71	90•85
857245•44	95•25
996708•25	99•67

Y _{TU} (given φ = 39 in.)	TAVU (given Ф=39in.)
69949•54	69•95
140004-22	70.99
219292•44	73.10
307814.20	76.95
405569•51	81.11
512558•36	85 • 43
628780.75	89•83
754236•67	94•28
888926 • 15	98•77
1032849•20	103-28

Y _{TU} (given	Y AVU (given
$\phi = 40 \text{ in.}$	$\Phi = 40 \text{ in.}$
73085 • 43	73-09
146092.86	73.05
228530•30	76•18
320397•73	80-10
421695•16	84•34
532422•59	88•74
652580 • 03	93•23
782167.46	97•77
921184.90	102.35
1069632•30	106•96

Y _{TU} (given φ = 41. in.)	YAVU (given 0 = 41 in.)
76285.55	76.29
152309•96	76.15
237960.83	79.32
333238•16	83•31
438141•95	87 • 63
552672-19	92•11
676828•90	96•69
810612.06	101.33
954021•68	106.00
1105526.20	110.55
<u> </u>	<u> </u>

Y.TII (given	Υ
TU (STITE	Given
$\phi = 42 \text{ in.}$)	$\Phi = 42 in.$
7 9549•90	79•55
158655•52	79•33
247584.05	82•53
346335•50	86•58
454909•87	90•98
573307 • 15	95•55
701527•34	100.22
839570•46	104.95
987436•50	109.72
1136799.90	113.68
	<u>i</u> _

Y _{TU} (given	YAVU (given
φ = 43 in.)	$\Phi = 43 \text{ in.})$
82878•47	82•88
165129•52	82•56
257399•94	85 • 80
359689•74	89•92
471998•91	94•40
594327 • 46	99•05
726675.37	103.81
869042•68	108•63
1021429•40	113•49
1168460.50	116•85

Ψ _{TU} (given φ = 44 in.)	YAVU (given $\Phi = 44 \text{ in.})$
86271•27	86•27
171731.97	85•87
267408•51	89•14
373300.88	93+33
489409•09	97 •88
615733•12	102.62
752273.00	107 • 47
899028.69	112-38
1056000.20	117 • 33
1200508•00	120.05
	

Υ _{TU} (given φ = 45 in.)	YAVU (given Ф = 45 in.)
89728•30	89•73
178462•88	89•23
2 77 609•77	92•54
387168.94	96•79
507140.40	101 • 43
637524•16	106 • 25
778320.20	111-19
929528•54	116•19
1091149•20	121•24
1232942•30	123•29

INTERMEDIATE SIZE OPEN HOLE COST AS A FUNCTION OF THE HOLE DIAMETER FOR $1,000\ to\ 10,000\ FEET\ DEPTH$

INTERMEDIATE SIZE OPEN HOLE COST

AS A FUNCTION OF DEPTH FOR

10 INCHES TO 30 INCHES DIAMETERS

Table 25

DIFFERENCE OF TOTAL DRILLING COSTS BETWEEN CASED AND UNCASED WELLS IN SOFT ROCK AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

 Y_{TC} = Total drilling costs for cased wells;

 Y_{TU} = Total drilling costs for uncased wells;

Y _{TC} - Y _{TU} (given Φ = 10 in.)	Y _{TC} - Y _{TU} (given $\Phi = 11 \text{ in.}$)	Y _{TC} - Y _{TU} (given Φ = 12 in.)	Y _{TC} - Y _{TU} (given Φ = 13 in.)	Y _{TC} - Y _{TU} (given $\Phi = 14 \text{ in.}$)	Υ _{TC} - Υ _{TU} (given Φ = 15 in.)
11418.34	12855.47	16206 • 16	17712.48	21245 • 37	22820.87
22836.68	25710.95	32412 • 31	35424.95	42490 • 72	45641.72
34255.01	38566.42	48811 • 89	53971.98	65910 • 37	71335.48
49039.88	54916.11	69247 • 56	75426.07	90588 • 46	97069.25
61439.28	68784.57	86726 • 77	94449.90	113430 • 79	121531.77
74084.26	82898.61	104500 • 66	113768.42	136616 91	146338.09
86974.81	97258.21	122569 • 24	133381.64	160146 • 83	171488.21
100110.93	111863.40	140932 • 52	153289.53	184020 • 56	196982.13
113492.62	126714.15	159590 • 47	173492.12	208238 • 10	222819.87
127119.39	141810.47	178543 • 11	193989.39	232799 • 42	249001.40
Y _{TC} - Y _{TU} (given $\Phi = 16 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\phi = 17 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\phi = 18 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\phi = 19 \text{ in.}$)	Y _{TC} - Y _{TU} (given Φ = 20 in.)	Y _{TC} - Y _{TU} (given Φ = 21 in.)
26535.94	28180 · 64	32077 • 92	33791.79	37871.27	39654.33
53071.90	56361 · 27	65130 • 03	69177.54	78614.36	82838.55
83935.39	89625 · 52	102693 • 53	108007.54	121270.22	126810.94
113062.61	119845 · 67	136669 • 98	143755.32	161410.59	168798.21
141551.34	150030 · 18	171088 • 45	179945.13	202042.10	211276.62
170433.01	180607 · 60	205948 • 96	216576.98	243164.75	254246.19
199707.59	211577 · 95	241251 • 49	253650.85	284778.57	297706.90
229375.08	242941 · 21	276996 • 06	291166.75	326883.51	341658.74
259435.49	274697 · 39	313182 • 66	329124.68	369479.60	386101.75
289888.81	306846 · 48	349811 • 29	367524.65	412566.84	431035.90

Y _{TC} - Y _{TU} (given φ = 22 in)	$Y_{TC} - Y_{TU}$ (given $\phi = 23$ in.)	Y _{TC} - Y _{TU} (given φ = 24 in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 25 \text{ in.}$)	$Y_{TC} - Y_{TU}$ (given = ϕ 26 in.)	$Y_{TC} - Y_{TU}$ (given = ϕ 27 in.)
43916 • 01	46242 • 42	51732.33	54186.35	59896.76	62439 • 12
92716 • 38	97 117 • 25	107436.10	112013.65	122406.33	126553 • 55
140696 • 83	146 464 • 25	160973.37	166967.49	182099.82	188320 • 66
187284 • 43	19497 4 • 33	214291.50	222283.68	242431.81	250726 • 26
234412 • 29	244024 • 67	268199.00	278189.23	303402.28	313770 • 35
282080 • 40	2936 15 • 25	322695.90	334684.16	365011.25	377452 • 94
330288 • 77	3437 46 • 11	377782.17	391768.48	427258.71	441774 • 01
379037 • 42	394417 • 24	433457.80	449442.15	490144.66	506733 • 54
428326 • 32	445628 • 58	489722.82	507705.21	553669.09	572331 • 60
478155 • 49	497 380 • 24	546577.21	566557.64	617832.00	638568 • 14

$Y_{TC} - Y_{TU}$ (given $\phi = 28 \text{ in.}$)	Y _{TC} - Y _{TU} (given φ = 29 in.)	Y _{TC} - Y _{TU} (given φ = 30 in.)
68370.05	71000.75	77152.18
137134.66	141433.03	152429.62
204076.20	210523.75	226902.51
271705.34	280302.08	302112.11
340022.09	350768.01	378058.44
409026.45	421921.55	454741.50
478718.40	493762.68	532161.25
549097.97	566291.44	610317.73
620165.13	639507.77	689210.94
689488.12	708932.91	760076.37

Table 26

DIFFERENCE OF TOTAL DRILLING COSTS BETWEEN CASED AND UNCASED WELLS IN MEDIUM SOFT ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

Y TC = Total drilling costs for cased wells;

 Y_{TU} = Total drilling costs for uncased wells;

Y _{TC} - Y _{TU} (given Φ = 10 in.)	Y _{TC} - Y _{TU} (given Φ = 11 in.)	Y _{TC} - Y _{TU} (given Φ = 12 in.)	Y _{TC} - Y _{TU} (given Φ = 13 in.)	Y _{TC} - Y _{TU} (given $\Phi = 14 \text{ in.}$)	Y _{TC} - Y _{TU} (given Φ = 15 in.)
11806.59	13257.69	16713.98	18237 • 07	21886.74	23481 • 81
23613.17	26515.39	33427.96	36474 • 14	43773.48	46963 • 61
35419.76	39773.08	50360.90	55658 • 49	68140.73	73730 • 87
51082.37	57057.07	71993.95	78290 • 63	94137.25	100755 • 90
64197.04	71665.42	90405.34	98276 • 18	118153.26	126426 • 58
77639.14	86601.19	109209.63	118654 • 65	142627.69	152555 • 65
91408.67	101864.40	128406.85	139426 • 03	167560.51	179143 • 14
105505.63	117455.03	147996.97	160590 • 32	192951.74	206189 • 03
119930.02	133373.10	167980.03	182147 • 54	218801.36	233693 • 32
134681.84	149618.60	188355.99	204097 • 68	245109.40	261656 • 02
YTC - YTU (given $\Phi = 16 \text{ in.}$)	YTC - YTU (given $\Phi = 17 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\phi = 18 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\phi = 19 \text{ in.}$)	YTC - YTU (given $\Phi = 20 \text{ in.})$	Y _{TC} - Y _{TU} (given Φ = 21 in.)
Ψ=16 in.) 27324.85 54649.71 86946.50 117512.24 147440.82 177893.29 208869.65 240369.90 272394.04 304942.07	28991.90	33028.33	34767 • 36	38997 • 16	40808 • 17
	57983.81	67151.19	71329 • 07	81239 • 42	85612 • 35
	92829.20	106559.24	112006 • 18	125934 • 71	131623 • 13
	124452.86	142118.94	149381 • 52	167957 • 34	175541 • 90
	156116.60	178268.01	187346 • 25	210634 • 83	220115 • 53
	188304.22	215006.46	225900 • 35	253967 • 18	265344 • 02
	221015.73	252334.27	265043 • 82	297954 • 38	311227 • 37
	254251.14	290251.48	304776 • 66	342596 • 46	357765 • 58
	288010.43	328758.05	345098 • 88	387893 • 39	404958 • 66
	322293.62	367853.99	386010 • 48	433845 • 19	452806 • 58

Y _{TC} - Y _{TU} (given φ = 22 in)	$Y_{TC} - Y_{TU}$ (given $\phi = 23$ in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 24$ in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 25$ in.)	Y _{TC} - Y _{TU} (given = φ26 in.)	Y _{TC} - Y _{TU} (given = φ27 in.)
45231.36	47629.78	53387 • 99 111467 • 76 167456 • 99 223329 • 26 279987 • 35 337431 • 28 395661 • 05 454676 • 65 514478 • 06 575065 • 34	55926.55	61929.22	64565.29
96011.62	100579.57		116230.77	127196.15	131471.38
146233.96	152163.86		173628.37	189603.80	196016.66
195027.44	202933.98		231557.76	252862.76	261413.25
244541.27	254424.44		290272.99	316973.06	327661.16
294775.45	306635.25		349774.04	381934.67	394760.39
345729.97	359566.41		410060.93	447747.60	462710.93
397404.84	413217.91		471133.66	514411.85	531512.81
449800.06	467589.77		532992.23	581927.42	601165.98
502915.65	522681.97		595636.60	650294.31	671670.49

$Y_{TC} - Y_{TU}$ (given $\phi = 28 \text{ in.}$)	$Y_{TC} - Y_{TU}$ (given $\phi = 29 \text{ in.}$)	Y _{TC} - Y _{TU} (given ϕ = 30 in.)
70812.41	73546.01	80037.59
142637.58	147073.81	158694.87
212674.38	219328.72	236668.75
283627.98	292500.44	315624.91
355498.40	366588.96	395563.36
428285.61	441594.29	476484.12
501989.64	517516.42	558387.16
576610.47	594355.38	641272.47
652148.09	672111.11	725140.06
725515.94	745094.19	798839.40

Table 27

DIFFERENCE OF TOTAL DRILLING COSTS BETWEEN CASED AND UNCASED WELLS IN MEDIUM HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

Y_{TC} = Total drilling costs for cased wells;

 Y_{TU} = Total drilling costs for uncased wells;

 $\phi = \text{Diameter of the hole drilled defined for uncased wells. For comparison, the diameter of the open hole of the cased well must be <math>\frac{3}{2}$ ϕ times as large.

Y _{TC} - Y _{TU} (given Φ = 10 in.)	Y _{TC} - Y _{TU} (given $\Phi = 11 \text{ in.}$)	Y _{TC} - Y _{TU} (given Φ = 12 in.)	Y _{TC} - Y _{TU} (given Φ = 13 in.)	Y _{TC} - Y _{TU} (given Φ = 14 in.)	Υ _{TC} - Υ _{TU} (given Φ = 15 in.)
12241.25	13706.33	17277.51	18817 • 37	22593.10	24207.74
24482.51	27412.68	34555.02	37634 • 74	45186.22	48415.48
36723.75	41119.01	52082.58	57536 • 61	70632.63	76410.92
53416.96	59499.39	75118.63	81544 • 58	98159.75	104929.21
67364.41	74967.45	94610.15	102642 • 58	123530.17	131992.00
81738.94	90862.59	114614.16	124253 • 07	149498.52	159652.71
96540.55	107184.80	135130.67	146376 • 07	176064.78	187911.34
111769.26	123934.11	156159.67	169011 • 57	203228.96	216767.88
127425.04	141110.51	177701.19	192159 • 56	230991.05	246222.35
143507.90	158713.97	199755.19	215820 • 06	259351.06	276274.72
Y _{TC} - Y _{TU} (given $\Phi = 16 \text{ in.}$)	YTC - YTU (given $\phi = 17 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\phi = 18 \text{ in.}$)	Y _{TC} - Y _{TU} (given $\Phi = 19 \text{ in.}$)	YTC - YTU (given Ф = 20 in.)	Y _{TC} - Y _{TU} (given Φ = 21 in.)
28188 • 03	29877 • 45	34062.30	35826 · 49	40215.91	42054.87
56376 • 08	59754 • 89	69365.62	73691 · 28	84131.31	.88673.15
90320 • 51	96423 • 06	110896.15	116488 · 53	131157.48	137007.48
1225 40 • 28	129653 • 26	148260.24	155716 · 74	175319.63	183119.64
154124 • 49	163015 • 71	186393.08	195713 · 70	220335.96	230085.77
186392 • 02	197061 • 49	225294.66	236479 · 41	266206.45	277983.48
219342 • 89	231790 • 60	264965.00	278013 · 87	312931.10	326581.13
252977 • 09	267203 • 05	305404.08	320317 · 08	360509.94	376109.95
287294 • 63	303298 • 82	346611.92	363389 · 05	408942.93	426492.95
322295 • 50	340077 • 95	388588.51	407229 · 76	458230.09	477730.11

Y _{TC} - Y _{TU} (given φ = 22 in)	$\frac{Y}{TC} - \frac{Y}{TU}$ (given $\phi = 23$ in.)	Y _{TC} - Y _{TU} ` (given ϕ = 24 in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 25$ in.)	$Y_{TC} - Y_{TU}$ (given = ϕ 26 in.)	Y _{TC} - Y _{TU} (given = \$\phi\$27 in.)
46648.85	49128 • 23	55184.81	57818.99	64146.76	66889.03
99655.56	104413 • 57	115938.35	120912.54	132513.76	136929.03
152423.37	158531 • 01	174693.83	181059.11	197968.86	204591.78
203718.46	211861 • 98	233456.70	241943.75	264534.38	273364.94
255953.13	266132 • 54	293244.58	303853.38	332210.31	343248.52
309127.38	321342 • 68	354057.46	366788.02	400996.67	414242.51
363241.21	377492 • 40	415895.31	430747.65	470893.44	486346.91
418294.64	434581 • 69	478758.21	495732.29	541900.64	559561.75
474287.64	492610 • 59	542646.08	561741.95	614018.23	633886.99
531220.24	551579 • 05	607558.96	628776.58	687246.23	709322.66

$Y_{TC} - Y_{TU}$ (given $\phi = 28$ in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 29$ in)	$Y_{TC} - Y_{TU}$ (given $\phi = 30$ in.)
73487.97	76338.33	83208 • 46
148741.27	153328.31	165638 • 51
222248.46	229129.02	247532 • 64
296951.48	306125.56	330708 • 02
372850.34	384317.95	415164 • 64
449945.03	463706.14	500902 • 53
528235.54	544290.19	587921 • 66
607721.91	626070.05	676222 • 03
688404.10	709045.76	765803 • 72
766398.21	786053.96	842611 • 10

Table 28

DIFFERENCE OF TOTAL DRILLING COSTS BETWEEN CASED AND UNCASED WELLS IN HARD ROCK AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

 Y_{TC} = Total drilling costs for cased wells;

 $\mathbf{Y}_{\mathbf{TU}}$ = Total drilling costs for uncased wells;

 ϕ = Diameter of the hole drilled defined for uncased wells. For comparison, the diameter of the open hole of the cased well must be $-\frac{3}{2}$ ϕ times as large.

	, ,				
Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}
(given	(given	(given	(given	(given	(given
$\Phi = 10 \text{ in.}$	$\phi = 11 \text{ in.}$	$\phi = 12 \text{ in.}$	$\Phi = 13 \text{ in.}$	$\Phi = 14 \text{ in.}$	$\Phi = 15 \text{ in.}$
13447 • 68	14940.72	18809 • 08	20382 • 48	24477 • 77	26131.54
26895 • 36	29881 • 44	37618 • 17	40764.98	48955 • 55	52263 08
40343.04	44822 • 16	56779.80	62684.34	77515.65	83838 • 10
60207.26		84114.93	90880.05	109644.67	116809.83
76673.60	66572•34	106841 • 09		139036 • 17	147992 • 63
	84629 • 94	· ·	115297 • 49		180233 • 27
93895 • 55	103443 • 16	130473 • 98	140621.66	169485 • 53	213531.76
111873 - 11	123011•98	155013.60	166852 • 56	200992.73	247888 • 11
130606 • 27	143336 • 42	180459 • 96	193990 • 19	233557 • 79	283302 - 31
150095.05	164416•46	206813.04	222034.55	267180.70	319774 36
170339 • 44	186252 • 12	234072 85	250985 • 64	301861.46	319114 36
	l <u> </u>		L	<u> </u>	
77 77	37 37	77 . 77	77 77	77 77	77 77
Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}
(given	(given	(given	(given	(given	(given
$\Phi = 16 \text{ in.}$	$\phi = 17 \text{ in.}$	$\phi = 18 \text{ in.}$)	$\phi = 19 \text{ in.}$	$\Phi = 20 \text{ in.}$	$\Phi = 21 \text{ in.}$
	l .				
30453.76	32187 • 89		38551 - 52	43327 • 59	
30453•76 60907•51	32187 •89 64375 •78	36737 • Ø3 75198 • ØØ	38551•52 79945•58	43327•59 91852•74	45222•45
30453•76 60907•51 99703•82		36737 • Ø3			45222•45 96878•93
60907 • 51 99703 • 82	64375.78	36737•03 75198•00	79945•58	91852•74 145656•92	45222•45 96878•93 151930•89
60907 • 51 99703 • 82 136796 • 49	64375•78 106444•17	36737 • Ø3 75198 • ØØ 122991 • 72 16557Ø • 37	79945•58 128965•67	91852•74 145656•92 195966•32	45222•45 96878•93 151930•89 204331•62
60907 • 51 99703 • 82 136796 • 49 173258 • 85	64375•78 106444•17 144361•69	36737 • 03 75198 • 00 122991 • 72 165570 • 37 209509 • 10	79945.58 128965.67 173535.62 219465.67	91852•74 145656•92 195966•32 247786•96	45222•45 96878•93 151930•89 204331•62 258243•57
60907 • 51 99703 • 82 136796 • 49 173258 • 85 210930 • 17	64375•78 106444•17 144361•69 182715•35	36737 • 03 75198 • 00 122991 • 72 165570 • 37 209509 • 10 254807 • 93	79945.58 128965.67 173535.62 219465.67 266755.80	91852.74 145656.92 195966.32 247786.96 301118.80	45222 • 45 96878 • 93 151930 • 89 204331 • 62 258243 • 57 313666 • 76
60907 • 51 99703 • 82 136796 • 49 173258 • 85 210930 • 17 249810 • 48	64375.78 106444.17 144361.69 182715.35 222277.98 263049.59	36737 • 03 75198 • 00 122991 • 72 165570 • 37 209509 • 10 254807 • 93 301466 • 86	79945 • 58 128965 • 67 173535 • 62 219465 • 67 266755 • 80 315406 • 06	91852.74 145656.92 195966.32 247786.96 301118.80 355961.86	45222 • 45 96878 • 93 151930 • 89 204331 • 62 258243 • 57 313666 • 76 370601 • 12
60907 • 51 99703 • 82 136796 • 49 173258 • 85 210930 • 17 249810 • 48 289899 • 75	64375.78 106444.17 144361.69 182715.35 222277.98 263049.59 305030.18	36737 • 03 75198 • 00 122991 • 72 165570 • 37 209509 • 10 254807 • 93 301466 • 86 349485 • 88	79945.58 128965.67 173535.62 219465.67 266755.80 315406.06 365416.38	91852.74 145656.92 195966.32 247786.96 301118.80 355961.86 412316.14	45222 • 45 96878 • 93 151930 • 89 204331 • 62 258243 • 57 313666 • 76 370601 • 12 429046 • 73
60907 • 51 99703 • 82 136796 • 49 173258 • 85 210930 • 17 249810 • 48	64375.78 106444.17 144361.69 182715.35 222277.98 263049.59	36737 • 03 75198 • 00 122991 • 72 165570 • 37 209509 • 10 254807 • 93 301466 • 86	79945 • 58 128965 • 67 173535 • 62 219465 • 67 266755 • 80 315406 • 06	91852.74 145656.92 195966.32 247786.96 301118.80 355961.86	45222 • 45 96878 • 93 151930 • 89 204331 • 62 258243 • 57 313666 • 76 370601 • 12

Y _{TC} - Y _{TU} (given φ = 22 in)	Y _{TC} - Y _{TU} (given φ = 23 in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 24$ in.)	$Y_{TC} - Y_{TU}$ (given $\phi = 25$ in.)	Y _{TC} - Y _{TU} (given = ϕ 26 in.)	$Y_{TC} - Y_{TU}$ (given = ϕ 27 in.)
50225 • 43	52931.89	59803.54	62709 • 48	69925.94	72971•18
109475 • 68	1147.80.49	128066.84	133650 • 25	146981.54	151764•26
169538 • 65	176112.66	194636.95	201510 • 99	220951.79	228125•87
227984 • 35	2367.49.70	261624.45	270789 • 84	296886.62	306452•05
288092 • 39	299049.07	330425.41	341882 • 16	374786.04	386742•83
349862 • 77	363010.79	401039.85	414787 • 93	454650.04	468998•18
413295 • 48	428634.83	473467.73	489507 • 18	536478.63	553218•13
478390 • 55	495921.23	547709.10	566039 • 86	620271.79	639402•63
545147 • 93	564869.96	623763.89	644386 • 02	706029.48	727551•74
613567 • 66	635481.05	701632.15	724545 • 63	793751.86	817665•40

$Y_{TC} - Y_{TU}$ (given $\phi = 28$ in.)	Y _{TC} - Y _{TU} (given φ = 29 in.)	Y _{TC} - Y _{TU} (given φ = 30 in.)
80532.43	83716.98	91623.03
165311.22	170293.96	184451.93
248483.19	255957.31	277231.16
333770.87	343736.35	372277.18
421174.25	433631.10	469590.05
510693.32	525641.55	569169.74
602328.12	619767.72	671016.28
696078.59	716009.62	775129.61
791944.85	814367.16	881509.79
883414.62	902818.20	966524.76

Table 29

DIFFERENCE OF TOTAL DRILLING COSTS BETWEEN CASED AND UNCASED WELLS IN VERY HARD ROCK

AS A FUNCTION OF DEPTH AND DIAMETER (in dollars)

 \mathbf{Y}_{TC} = Total drilling costs for cased wells;

 $\mathbf{Y}_{\mathbf{TU}}$ = Total drilling costs for uncased wells;

φ = Diameter of the hole drilled defined for uncased wells. For comparison, the diameter of the open hole of the cased well

must be $\frac{3}{2}$ ϕ times as large.

Ī	Y _{TC.} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	YTC - YTU
١	(given	(given	(given	(given	(given	(given
١	$\Phi = 10 \text{ in.}$	$\phi = 11 \text{ in.}$	$\Phi = 12 \text{ in.})$	$\phi = 13 \text{ in.}$	$\Phi = 14 \text{ in.})$	$\Phi = 15 \text{ in.})$
	14388 • 43	15909•43	20021.85	21628.79	25990.50	27683 • 40
ı	28776 • 86	31818 85	40043.69	43257 • 58	51981.00	55366.80
	43165 • 30	47728•28	60488 • 81	66735.40	82901.83	89636 • 14
1	65325 • 84	71920.59	90946 • 28	.97987 • 31	118418 • 48	125905 • 19
١	83638•53	91881 • 97	116060•32	124861 • 24	150796.81	160155.22
ı	102933.50	112825 • 64	142353 • 11	152914.22	184550.36	195780.44
١	123210.77	134751.60	169824.66	182145 • 95	219679 • 11	232780.88
ı	144470.34	157659 • 85	198474.95	212556 • 43	256183.08	271156.51
ı	166712.19	181550 - 40	228303.99	244145.65	294062•25	310907 • 38
١	189936 • 34	206423.24	259311.78	276913•63	333316 • 63	352033•44
1						
1		L	<u> </u>	l		<u> </u>
1	Y Y	Y_a - Y_	Ymc - Ymu	Ymc - Ymr	Ymc - Ymu	YTC - YTH
	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}	Y _{TC} - Y _{TU}
	(given	(given	(given	(given	(given	(given
			(given Ф = 18 in.)	(given Φ = 19 in.)	(given Φ = 20 in.)	(given Φ = 21 in.)
	(given	(given	(given $\phi = 18 \text{ in.}$) 38933.53	(given Φ = 19 in.) 40798•34	(given Φ = 20 in.) 45907•90	(given Φ = 21 in.) 47858•67
	(given Φ = 16 in.)	(given φ = 17 in.)	(given	(given Φ = 19 in.) 40798•34 84994•13	(given Φ = 20 in.) 45907.90 98047.05	(given Φ = 21 in.) 47858•67 103442-11
	(given Φ = 16 in.) 32294.39 64588.78	(given $\phi = 17 \text{ in.}$) 34073.25	(given Φ = 18 in.) 38933.53 79924.21 132390.51	(given Φ = 19 in.) 40798•34 84994•13 138674•52	(given Φ = 20 in.) 45907.90 98047.05 156961.32	(given Φ = 21 in.) 47858.67 103442.11 163579.82
	(given Φ = 16 in.) 32294.39 64588.78 107010.16	(given Φ = 17 in.) 34073.25 68146.49	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13	(given φ = 19 in.) 40798.34 84994.13 138674.52 187296.82	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27
	(given Φ = 16 in.) 32294.39 64588.78 107010.16 147742.42	(given Φ = 17 in.) 34073.25 68146.49 114232.20	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88	(given Φ = 19 in.) 40798.34 84994.13 138674.52 187296.82 237687.25	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27 279925.29
	(given Φ = 16 in.) 32294.39 64588.78 107010.16 147742.42 187848.00	(given Φ = 17 in.) 34073.25 68146.49 114232.20 155675.12	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88 277277.75	(given φ = 19 in.) 40798.34 84994.13 138674.52 187296.82	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46 327807.90	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27 279925.29 341044.91
	(given Φ = 16 in.) 32294·39 64588·78 107010·16 147742·42 187848·00 229525·23	(given Φ = 17 in.) 34073.25 68146.49 114232.20 155675.12 197763.88 241424.29	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88 277277.75 329109.74	(given Φ = 19 in.) 40798.34 84994.13 138674.52 187296.82 237687.25	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27 279925.29 341044.91 404129.09
	(given Φ = 16 in.) 32294·39 64588·78 107010·16 147742·42 187848·00 229525·23 272774·14	(given Φ = 17 in.) 34073.25 68146.49 114232.20 155675.12 197763.88 241424.29 286656.37	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88 277277.75 329109.74 382709.87	(given Φ = 19 in.) 40798.34 84994.13 138674.52 187296.82 237687.25 289845.77	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46 327807.90	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27 279925.29 341044.91
	(given Φ = 16 in.) 32294·39 64588·78 107010·16 147742·42 187848·00 229525·23 272774·14 317594·72	(given Φ = 17 in.) 34073.25 68146.49 114232.20 155675.12 197763.88 241424.29 286656.37 333460.12	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88 277277.75 329109.74	(given Φ = 19 in.) 40798.34 84994.13 138674.52 187296.82 237687.25 289845.77 343772.45	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46 327807.90 388685.92	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27 279925.29 341044.91 404129.09
	(given Φ = 16 in.) 32294·39 64588·78 107010·16 147742·42 187848·00 229525·23 272774·14 317594·72 363986·94	(given \$\phi = 17 \text{ in.}\$) 34073.25 68146.49 114232.20 155675.12 197763.88 241424.29 286656.37 333460.12 381835.54	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88 277277.75 329109.74 382709.87	(given Φ = 19 in.) 40798.34 84994.13 138674.52 187296.82 237687.25 289845.77 343772.45 399467.24	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46 327807.90 388685.92 451528.54	(given Φ = 21 in.) 47858.67 103442.11 163579.82 220770.27 279925.29 341044.91 404129.09 469177.87
	(given Φ = 16 in.) 32294·39 64588·78 107010·16 147742·42 187848·00 229525·23 272774·14 317594·72	(given Φ = 17 in.) 34073.25 68146.49 114232.20 155675.12 197763.88 241424.29 286656.37 333460.12	(given Φ = 18 in.) 38933.53 79924.21 132390.51 178918.13 227213.88 277277.75 329109.74 382709.87 438078.12	(given Φ = 19 in.) 40798.34 84994.13 138674.52 187296.82 237687.25 289845.77 343772.45 399467.24 456930.17	(given Φ = 20 in.) 45907.90 98047.05 156961.32 211945.60 268894.46 327807.90 388685.92 451528.54 516335.72	(given Φ = 21 in.) 47858.67 103442.11 163579.32 220770.27 27925.29 341044.91 404129.09 469177.87 536191.22

Y _{TC} - Y _{TU} (given φ = 22 in)	$Y_{TC} - Y_{TU}$ (given $\phi = 23$ in.)	$\frac{Y}{TC} - \frac{Y}{TU}$ (given $\phi = 24$ in)	$Y_{TC} - Y_{TU}$ (given $\phi = 25 \text{ in.}$)	$Y_{TC} - Y_{TU}$ (given = ϕ 26 in.)	Y _{TC} - Y _{TU} (given = ϕ 27 in.)
53217.52	56099.71	63614.36	66728.62	74645.78	77922.61
117300.08	123020.29	137683.30	143728.66	158428.75	163510.06
182920.95	189873.95	210269.40	217556.88	239006.67	246628.62
246824.83	256095.47	283555.80	293272.43	322138.54	332301.15
312889.73	324478.04	359199.70	371345.50	407824.37	420527.63
381115.68	395021.67	437201.11	451776.05	496064.15	511308.08
451502.65	467726.31	517560.00	534564.12	586857.90	604642.49
524050.71	542592.02	600276.40	619709.64	680205.60	700530.85
598759.75	619618.73	685350.37	707212.76	776107.22	798973.14
675629.95	698806.52	772781.68	797073.27	874562.87	899969.41

Y _{TC} - Y _{TU} (given ϕ = 28 in.)	Y _{TC} - Y _{TU} (given φ=29 in)	Y _{TC} - Y _{TU} (given Φ = 30 in.)
86242.31 178442.88 269132.75 362573.03 458763.74 557704.84 659396.42 763838.29 871030.74 972647.90	89681.71 183747.18 277089.19 373181.64 472024.48 573617.75 677961.47 785055.51 894900.00 992120.04	98403.92 199382.88 300647.65 404859.28 512017.79 622123.17 735175.43 851174.51 970120.50 1061773.70

Table 30 MARGINAL DRILLING COSTS FOR

CASED WELLS IN SOFT ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MC} = Y_{TC}(\phi+1) - Y_{TC}(\phi)$

Where:

Y_{MC} = Marginal drilling costs;

 $Y_{TC}(\phi+1)$ = Total drilling costs for cased wells in soft rock at a diameter of $\phi+1$;

 $Y_{TC}(\phi)$ = Total drilling cost for cased wells in soft rock at a diameter ϕ ;

Φ = Diameter of hole drilled ranging from 10 to 44 inches.

Υ _Μ ς (given φ = 10 in.)	YMC (given $\phi = 11 \text{ in.}$)	Y _{MC} (given φ = 12 in.)	Y _{MC} (given φ = 13 in.)	Y _{MC} (given φ = 14 in.)	Y _{MC} (given φ = 15 in.)
1634.09	1671.77	1709 • 43	1747.11	1784.78	1822.45
3268.19	3343.53	3418 • 88	3494.21	3569.56	3644.91
4902.28	5015.30	5128 • 31	5241.32	5354.34	5467.36
7158.60	7334.83	7511 • 05	7687.28	7863.50	8039.73
8976.14	9196.42	9416 • 70	9636.98	9857.27	10077.55
10842.79	11107.12	11371 • 47	11635.80	11900.15	12164.48
12758.55	13066.95	13375 • 34	13683.75	13992.13	14300.53
14723.43	15075.89	15428 • 33	15780.80	16133.24	16485.69
16737.43	17133.94	17530 • 44	17926.96	18323.46	18719.97
18800.53	19241.11	19681 • 67	20122.23	20562.80	21003.36
Y _{MC} (given $\phi = 16 \text{ in.}$)	Y _{MC} (given φ = 17 in.)	Y _{MC} (given φ = 18 in.)	Y _{MC} (given φ = 19 in.)	Y _{MC} (given φ = 20 in.)	Υ _{MC} (given φ = 21 in.)
1860 • 13	1897 • 79	1935.47	1973.14	2010.81	2048 • 48
3720 • 24	3795 • 59	3870.93	3946.28	4021.62	4096 • 96
5580 • 37	5886 • 80	6447.53	6579.71	6711.87	6844 • 05
8215 • 96	8392 • 18	8568.41	8744.63	8920.86	9097 • 09
10297 • 83	10518 • 12	10738.39	10958.69	11178.96	11399 • 24
12428 • 82	12693 • 16	12957.50	13221.84	13486.18	13750 • 52
14608 • 93	14917 • 32	15225.72	15534.11	15842.51	16150 • 90
16838 • 15	17190 • 60	17543.04	17895.51	18247.95	18600 • 40
19116 • 48	19512 • 99	19909.50	20306.00	20702.52	21099 • 02
21443 • 93	21884 • 49	22325.26	22765.63	23206.18	23646 • 76

Υ _{MC} (given	Y MC (given φ = 23 in.)	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
Φ'= 22 in.)		\$\Phi = 24 in.)	φ = 25 in.)	$\phi = 26 \text{ in.}$)	Φ = 27 in.)
2086 • 15	2123.82	2161.50	2199.17	2236.84	2274.51
4172 • 31	4247.65	4322.99	4765.53	5080.68	5168.79
6976 • 21	7108.38	7240.55	7372.72	7504.89	7637.06
9273 • 31	9449.54	9625.76	9801.99	9978.22	10154.44
11619 • 53	11839.80	12060.10	12280.37	12500.66	12720.94
14014 • 85	14279.20	14543.53	14807.87	15072.22	15336.56
16459 • 31	16767.69	17076.09	17384.49	17692.88	18001.28
18952 • 87	19305.31	19657.76	20010.21	20362.67	20715.12
21495 • 53	21892.04	22288.55	22685.05	23081.57	23478.07
24087 • 32	24527.88	24968.45	25409.01	25849.58	26290.15

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 28 in.)	ϕ = 29 in.)	ϕ = 30 in.)	ϕ = 31 in.)	$\phi = 32 \text{ in.}$	φ = 33 in.)
2312 • 18 5256 • 90 7769 • 23 10330 • 67 12941 • 22 15600 • 88 18309 • 66 21067 • 56 2387 4 • 58 26730 • 70	2349.85 5345.02 7901.40 10506.90 13161.51 15865.23 18618.09 21420.03 24271.10 27171.28	2387 •53 5433 •13 8033 •57 10683 •12 13381 •78 16129 •57 18926 •46 21772 •47 24667 •60 27611 •84	2425 • 20 5521 • 24 8165 • 74 10859 • 34 13602 • 07 16393 • 90 19234 • 85 22124 • 93 25064 • 10 28052 • 40	2462.87 5609.36 8297.91 11035.58 13822.36 16658.25 19543.25 22477.38 25460.62 28492.98	2974.71 5697.47 .8430.07 11211.80 14042.64 16922.59 19851.66 22829.84 25857.13 28933.55

Y_{MC} (given $\phi = 34 \text{ in.}$)	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
	φ = 35 in.)	\$\phi = 36 in.)	φ = 37 in.)	φ = 38 in.)	φ = 39 in.)
3058.03	3102.09	3146.15	3190 • 20	3234.26	3278.32
5785.58	5873.70	5961.81	6049 • 92	6138.04	6226.15
8562.25	8694.42	8826.58	8958 • 75	9090.93	9223.10
11388.02	11564.25	11740.48	11916 • 70	12092.93	12269.15
14262.90	14483.20	14703.49	14923 • 76	15144.05	15364.33
17186.93	17451.26	17715.60	17979 • 94	18244.28	18508.63
20160.04	20468.45	20776.83	21085 • 23	21393.64	21702.03
23182.27	23534.73	23887.19	24239 • 63	24592.10	24944.52
26253.64	26650.15	27046.65	27443 • 15	27839.67	28236.18
29374.08	29814.67	30255.23	30695 • 79	31136.36	31576.92

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
ϕ = 40 in.)	ϕ = 41 in.)	ϕ = 42 in.)	φ = 43 in.)	ϕ = 44 in.)
3322.37 6314.26 9355.26 12445.38 15584.61 18772.95 22010.41 25297.00 28632.69 31568.89	3366 • 43 6402 • 37 9487 • 43 12621 • 61 15804 • 90 19037 • 30 22318 • 82 25649 • 46 29029 • 20 30474 • 88	3410.49 6490.49 9619.60 12797.84 16025.18 19301.62 22627.21 26001.91 29425.70 30851.58	3454.54 6578.60 9751.78 12974.05 16245.46 19565.98 22935.60 26354.34 29822.21 31228.30	3498.60 6666.71 9883.94 13150.28 16465.74 19830.32 23244.00 26706.80 30218.72 31604.97

· Table 31

MARGINAL DRILLING COSTS FOR CASED WELLS IN MEDIUM SOFT ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MC} = Y_{TC}(\phi+1) - Y_{TC}(\phi)$

Where:

Y_{MC} = Marginal drilling costs;

 $Y_{TC}(\Phi+1)$ = Total drilling costs for cased wells in medium soft rock at a diameter of $\Phi+1$;

 $Y_{TC}(\phi)$ = Total drilling cost for cased wells in medium soft rock at a diameter ϕ ;

Φ = Diameter of hole drilled ranging from 10 to 44 inches.

YMC (given	YMC (given	Y _{MC} (given	YMC (given	Y _{MC} (given	YMC (given
$\Phi = 10 \text{ in.}$	φ = 11 in.)	$\phi = 12 \text{ in.}$	$\Phi = 13 \text{ in.}$	$\phi = 14 \text{ in.})$	$\phi = 15 \text{ in.}$
1706•15	1746.62	1787 • Ø9	1827 • 55	1868-02	1908 • 48
3412.30	3493 • 24	3574 • 17	3655 • 11	3736.04	3816 • 97
5118 • 46	5239 • 85	5361-26	5482 • 66	5604.06	5725 • 45
7527.71	7723.63	7919.55	8115.47	8311 • 39	8507 • 31
9478 • 46	9723.35	9968•25	10213-15	10458.06	10702.95
11494.68	11788.56	12082 44	12376 • 33	12670 • 20	12964.38
13576 • 40	13919 • 25	14262 • 12	14604.98	14947 • 84	15290 • 69
15723 • 60	16115.43	16507 • 28	16899 • 12	17290.96	17682.79
17936 • 29	18377 • 10	18817 • 93	19258 • 74	19699.57	20140-38
20214-45	20704.26	21194 06	21683.86	22173.66	22663•46
			T / .	T 77 / 12	

T	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
1	ϕ = 16 in.)	φ = 17 in.)	ϕ = 18 in.)	ϕ = 19 in.)	ϕ = 20 in.)	φ = 21 in.)
	1948 • 96 3897 · 91 5846 • 86 8703 • 23 10947 • 86 13257 • 96 15633 • 56 1807 4 • 64 20581 • 21	1989 • 42 3978 • 84 6187 • 22 8899 • 15 11192 • 75 13551 • 84 15976 • 42 18466 • 48 21022 • 33	2029.88 4059.77 6817.98 9095.07 11437.65 13845.73 16319.28 18858.32 21462.34	2070.36 4140.71 6964.91 9290.99 11682.56 14139.61 16662.14 19250.17 21903.67	2110.82 4221.64 7111.86 9486.92 11927.45 14433.48 17005.00 19642.00 22344.49	2151 • 29 4302 • 57 7258 · 79 9682 • 83 12172 • 36 14727 • 36 17347 • 86 20033 • 84 22785 • 31
	23153.26	23643 Ø6	24132.86	24622•66	25112 • 47	25602•26

Y _{MC} (given φ = 22 in.)	Y MC (given φ = 23 in.)	Y _{MC} (given φ = 24 in.)	Y_{MC} (given $\phi = 25 \text{ in.}$)	Y _{MC} (given Φ = 26 in.)	Y _{MC} (given Φ = 27 in.)
2191.75	2232 • 22	2272.69	2313 • 16	2353 • 62	2394.09
4383.51	4464•45	4545 • 37	5038 • 03	5390 • 05	5488•00
7405.74	7552.67	7699.62	7846.55	7993.50	8140 • 43
9878 • 75	10074-67	10270.60	10466 • 50	10662 • 44	10858 • 35
12417 • 25	12662 • 16	12907 • 06	13151.95	13396 • 86	13641.76
15021.25	15315 • 12	15609.01	15902.88	16196.77	16490.65
17690.72	18033.58	18376 • 44	18719.30	19062 • 16	19405.03
20425.68	20817.52	21209.37	21601 • 19	21993 • Ø6	22384.88
23226 • 13	23666 • 95	24107 • 77	24548.59	24989 42	25430.23
26092.07	26581.86	27071.67	27561.45	28051.27	28541.08

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
ϕ = 28 in.)	ϕ = 29 in.)	ϕ = 30 in.)	ϕ = 31 in.)	ϕ = 32 in.)	Φ = 33 in.)
2434.55 5585.96 8287.38 11054.28 13886.65 16784.52 19747.88 22776.71 25871.05 29030.85	2475.02 5683.93 8434.31 11250.19 14131.56 17078.41 20090.74 23168.58 26311.88	2515.49 5781.89 8581.26 11446.11 14376.46 17372.29 20433.61 23560.40 26752.70 30010.46	2555.96 5879.84 8728.19 11642.04 14621 35 17666.16 20776.46 23952.25 27193.50 30500.27	2596 • 42 5977 • 81 8875 • 14 11837 • 95 14866 • 26 17960 • 05 21119 • 32 24344 • 08 27634 • 34 30990 • 09	3152.32 6075.76 9022.08 12033.88 15111.16 18253.93 21462.19 24735.93 28075.16

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
ϕ = 34 in.)	ϕ = 35 in.)	$\phi = 36 \text{ in.})$	ϕ = 37 in.)	$\phi = 38 \text{ in.}$)	ϕ = 39 in.)
3243.92 6173.73 9169.02 12229.79 15356.06 18547.81 21805.04 25127.77 28515.98 31969.66	3292.90 6271.68 9315.95 12425.72 15600.96 18841.69 22147.91 25519.61 28956.78 32459.48	3341.88 6369.65 9462.90 12621.63 15845.86 19135.57 22490.76 25911.45 29397.64 32949.27	3390.85 6467.60 9609.84 12817.56 16090.75 19429.45 22833.63 26303.28 29838.41 33439.06	3439.85 6565.57 9756.78 13013.47 16335.67 19723.33 23176.50 26695.13 30279.27	3488.82 6663.52 9903.72 13209.40 16580.56 20017.21 23519.34 27086.98 30720.07 34418.66

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
ϕ = 40 in.)	ϕ = 41 in.)	ϕ = 42 in.)	ϕ = 43 in.)	φ = 44 in.)
3537.79 6761.49 10050.65 13405.32 16825.46 20311.09 23862.21 27478.80 31160.90 34339.56	3586.78 6859.44 10197.60 13601.23 17070.36 20604.97 24205.07 27870.66 31601.72 32880.60	3635.77 6957.41 10344.54 13797.16 17315.26 20898.85 24547.93 28262.49 32042.55 33285.20	3684.73 7055.37 10491.48 13993.07 17560.17 21192.73 24890.79 28654.32 32483.36	3733.72 7153.32 10638.42 14189.00 17805.05 21486.62 25233.66 29046.16 32924.14
1	1		32483•36 33689•89	32924•14 34094•50

Table 32 MARGINAL DRILLING COSTS FOR

CASED WELLS IN MEDIUM HARD ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MC} = Y_{TC}(\phi+1) - Y_{TC}(\phi)$

Where:

Y_{MC} = Marginal drilling costs;

 $Y_{TC}(\phi+1)$ = Total drilling costs for cased wells in medium hard rock at a diameter of $\phi+1$;

 $Y_{TC}(\phi)$ = Total drilling cost for cased wells in medium hard rock at a diameter ϕ ;

Φ = Diameter of hole drilled ranging from 10 to 44 inches.

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
$\phi = 10 \text{ in.}$	φ = 11 in.)	$\phi = 12 \text{ in.}$	$\phi = 13 \text{ in.}$	ϕ = 14 in.)	$\phi = 15 \text{ in.}$
1787.50	1830.75	1874-02	1917 • 28	1960.55	2003.80
3574.99	3661.52	3748•04	3834.56	3921.09	4007 • 61
5362 • 48	5492 • 27	5622 • Ø6	5751.84	5881 • 63	6011.42
7951.53	8169.01	8386 • 47	8603.93	8821 • 40	9038•86
10058 • 06	10329.90	10601.73	10873.55	11145 • 39	11417 • 23
12250 • 01	12576 • 20	12902 • 41	13228,60	13554.79	13881 • ØØ
14527 • 37	14907 • 93	15288.50	15669.05	16049.62	16430 • 19
1,6890 • 15	17325 • Ø7	17760.00	18194•94	18629.86	19064.79
19338 • 33	19827 • 63	20316.93	20806 • 23	21295.52	21784•82
21871 94	22415.61	22959.27	23502.93	24046.60	24590•26
1.					
<u> </u>		<u> </u>	1 	L	·
	1 / -		1 37 /	77 /	V (-:
Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
Y _{MC} (given φ = 16 in.)	Y _{MC} (given φ = 17 in.)	Y _{MC} (given φ = 18 in.)	Y _{MC} (given φ = 19 in.)	Y _{MC} (given φ = 20 in.)	Y _{MC} (given φ = 21 in.)
φ = 16 in.)	φ = 17 in.)	φ = 18 in.)	φ = 19 in.)	φ = 20 in.)	φ = 21 in.)
φ = 16 in.) 2047.07	φ = 17 in.) 2090.33	φ = 18 in.) 2133•59	φ = 19 in.) 2176.86	φ = 20 in.) 2220•11	1 .
φ = 16 in.) 2047.07 4094.13	φ = 17 in.) 2090.33 4180.66	φ = 18 in.) 2133.59 4267.18	φ = 19 in.) 2176.86 4353.71	φ = 20 in.) 2220•11 4440•24	φ = 21 in.) 2263•38
φ = 16 in.) 2047.07	φ = 17 in.) 2090.33	φ = 18 in.) 2133•59	φ = 19 in.) 2176.86	φ = 20 in.) 2220•11	φ = 21 in.) 2263.38 4526.75
φ = 16 in.) 2047.07 4094.13 6141.20	φ = 17 in.) 2090.33 4180.66 6521.04	φ = 18 in.) 2133.59 4267.18 7235.22	φ = 19 in.) 2176.86 4353.71 7398.32	φ = 20 in.) 2220•11 4440•24 7561•41	φ = 21 in.) 2263.38 4526.75 7724.52
φ = 16 in.) 2047.07 4094.13 6141.20 9256.33	φ = 17 in.) 2090.33 4180.66 6521.04 9473.79	φ = 18 in.) 2133.59 4267.18 7235.22 9691.26	φ = 19 in.) 2176.86 4353.71 7398.32 9908.73	φ = 20 in.) 2220•11 4440•24 7561•41 10126•19	φ = 21 in.) 2263.38 4526.75 7724.52 10343.65
φ = 16 in.) 2047.07 4094.13 6141.20 9256.33 11689.05	φ = 17 in.) 2090.33 4180.66 6521.04 9473.79 11960.88	φ = 18 in.) 2133.59 4267.18 7235.22 9691.26 12232.72	φ = 19 in.) 2176.86 4353.71 7398.32 9908.73 12504.54	φ = 20 in.) 2220•11 4440•24 7561•41 10126•19 12776•38	φ = 21 in.) 2263.38 4526.75 7724.52 10343.65 13048.21
φ = 16 in.) 2047.07 4094.13 6141.20 9256.33 11689.05 14207.19	φ = 17 in.) 2090.33 4180.66 6521.04 9473.79 11960.88 14533.39	φ = 18 in.) 2133.59 4267.18 7235.22 9691.26 12232.72 14859.59	φ = 19 in.) 2176.86 4353.71 7398.32 9908.73 12504.54 15185.79	φ = 20 in.) 2220 • 11 4440 • 24 7561 • 41 10126 • 19 12776 • 38 15511 • 98	φ = 21 in.) 2263.38 4526.75 7724.52 10343.65 13048.21 15838.18
φ = 16 in.) 2047.07 4094.13 6141.20 9256.33 11689.05 14207.19 16810.75	φ = 17 in.) 2090.33 4180.66 6521.04 9473.79 11960.88 14533.39 17191.32	φ = 18 in.) 2133.59 4267.18 7235.22 9691.26 12232.72 14859.59 17571.87	φ = 19 in.) 2176.86 4353.71 7398.32 9908.73 12504.54 15185.79 17952.45	φ = 20 in.) 2220 · 11 4440 · 24 7561 · 41 10126 · 19 12776 · 38 15511 · 98 18333 · 00	φ = 21 in.) 2263.38 4526.75 7724.52 10343.65 13048.21 15838.18 18713.57
φ = 16 in.) 2047.07 4094.13 6141.20 9256.33 11689.05 14207.19 16810.75 19499.73	φ = 17 in.) 2090.33 4180.66 6521.04 9473.79 11960.88 14533.39 17191.32 19934.65	φ = 18 in.) 2133.59 4267.18 7235.22 9691.26 12232.72 14859.59 17571.87 20369.59	φ = 19 in.) 2176.86 4353.71 7398.32 9908.73 12504.54 15185.79 17952.45 20804.51	φ = 20 in.) 2220 · 11 4440 · 24 7561 · 41 10126 · 19 12776 · 38 15511 · 98 18333 · 00 21239 · 45	φ = 21 in.) 2263.38 4526.75 7724.52 10343.65 13048.21 15838.18 18713.57 21674.37

Y _{MC} (given φ = 22 in.)	Y MC (given φ = 23 in.)	YMC (given	$_{\text{MC}}^{\text{Y}}$ (given φ = 25 in.)	Y _{MC} (given	Υ _{MC} (given φ = 27 in.)
2306 • 64	2349.90	2393.17	2436.42	2479.69	2522.95
4613 • 28	4699.81	4786.32	5338.79	5734.46	5843.19
7887 • 62	8050.71	8213.81	8376.91	8540.01	8703.11
10561 • 12	10778.59	10996.05	11213.51	11430.98	11648.45
13320 • 04	13591.88	13863.70	14135.53	14407.37	14679.20
16164 • 38	16490.58	16816.78	17142.96	17469.17	17795.37
19094 • 14	19474.69	19855.27	20235.82	20616.39	20996.96
22109 • 31	22544.23	22979.17	23414.09	23849.03	24283.96
25209 • 89	25699.19	26188.48	26677.78	27167.09	27656.38
28395 • 90	28939.56	29483.23	30026.89	30570.55	31114.21

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given φ = 30 in.)	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 28 in.)	\$\phi = 29 \text{ in.})		φ = 31 in.)	φ = 32 in.)	φ = 33 in.)
2566 • 22	2609 • 47	2652 • 74	2696.00	2739 • 26	3348 • 17
5951 • 92	6060 • 65	6169 • 39	6278.12	6386 • 85	6495 • 59
8866 • 21	9029 • 31	9192 • 40	9355.50	9518 • 61	9681 • 70
11865 • 90	12083 • 38	12300 • 84	12518.30	12735 • 78	12953 • 23
14951 • 02	15222 • 87	15494 • 69	15766.52	16038 • 36	16310 • 19
18121 • 56	18447 • 77	18773 • 97	19100.14	19426 • 36	19752 • 56
21377 • 51	21758 • 08	22138 • 65	22519.21	22899 • 77	23280 • 34
24718 • 88	25153 • 83	25588 • 73	26023.68	26458 • 61	26893 • 54
28145 • 66	28634 • 98	29124 • 27	29613.55	30102 • 86	30592 • 16
31657 • 86	32201 • 55	32745 • 20	33288.87	33832 • 53	34376 • 17

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 34 in.)	ϕ = 35 in.)	ϕ = 36 in.)	$\phi = 37 \text{ in.}$)	Φ = 38 in.)	ϕ = 39 in.)
3449.25 6604.31 9844.80 13170.70 16582.01 20078.75	3503.62 6713.05 10007.90 13388.17 16853.85 20404.95	3557 • 98 6821 • 79 1017 1 • 00 13605 • 63 17125 • 68 20731 • 14	3612.35 6930.51 10334.09 13823.09 17397.51 21057.34	3666 • 72 7039 • 25 10497 • 20 14040 • 57 17669 • 34 21383 • 55	3721.08 7147.97 10660.29 14258.02 17941.18 21709.73
23660.91 27328.48 31081.45 34919.84	24041 • 45 24041 • 45 27763 • 40 31570 • 75 35463 • 53	24422.03 28198.33 32060.05 36007.18	24802.60 28633.26 32549.33 36550.82	25183.16 29068.20 33038.63 37094.50	25563.70 29503.12 33527.95 37638.20

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
ϕ = 41 in.)	φ = 42 in.)	ϕ = 43 in.)	φ = 44 in.)
3829•81	3884•18	3938•55	3992•91
7365 • 44	7474•18	7582.91	7691 • 64
10986 49	11149.59	11312•69	11475.79
14692.96	14910.42	15127 • 89	15345 • 35
18484 • 84	18756 • 67	19028.50	19300•32
22362 • 13	22688•34	23014.52	23340.74
26324.84	26705 • 42	27,085 • 97	27,466 • 54
30372.98	30807.91	31242 • 84	31677 • 77
34506.54	34995.80	35485 • 10	35974.50
35557 • 00	35989•7Ø	36422 • 30	36854.91
	φ = 41 in.) 3829.81 7365.44 10986.49 14692.96 18484.84 22362.13 26324.84 30372.98 34506.54	φ = 41 in.) φ = 42 in.) 3829 • 81 3884 • 18 7365 • 44 747 • 18 10986 • 49 11149 • 59 14692 • 96 14910 • 42 18484 • 84 18756 • 67 22362 • 13 22688 • 34 26324 • 84 26705 • 42 30372 • 98 30807 • 91 34506 • 54 34995 • 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 33

MARGINAL DRILLING COSTS FOR

CASED WELLS IN HARD ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MC} = Y_{TC}(\phi+1) - Y_{TC}(\phi)$

Where:

Y_{MC} = Marginal drilling costs;

 $Y_{TC}(\phi+1)$ = Total drilling costs for cased wells in hard rock at a diameter of $\phi+1$;

 $Y_{TC}(\varphi) \ = \ Total \ drilling \ cost \ for \ cased \ wells \ in \ in \ hard \ rock \\ at \ a \ diameter \ \varphi;$

Φ = Diameter of hole drilled ranging from 10 to 44 inches.

ΥΜζ (given	YMC (given $\phi = 11 in.)$	Y _{MC} (given	Y _{MC} (given	Υ _{MC} (given	YMC (given
φ = 10 in.)		φ = 12 in.)	φ = 13 in.)	φ = 14 in.)	ϕ = 15 in.)
2017 • 60	2066.45	2115.31	2164.16	2213.01	2261.86
4035 • 20	4132.91	4230.61	4328.31	4426.02	4523.73
6052 • 80	6199.36	6345.92	6492.47	6639.03	6785.59
9196 • 54	9470.53	9744.53	10018.52	10292.52	10566.51
11778 • 58	12121.07	12463.57	12806.05	13148.55	13491.05
14511 • 74	14922.74	15333.72	15744.72	16155.70	16566.70
17396 • 03	17875.51	18355.00	18834.50	19313.98	19793.47
20431 • 43	20979.42	21527.40	22075.40	22623.38	23171.37
23617 • 96	24234.44	24850.93	25467.42	26083.90	26700.39
26955 • 61	27640.59	28325.57	29010.57	29695.55	30380.53
Y _{MC} (given $\phi = 16 \text{ in.}$)	Y _{MC} (given φ = 17 in.)	Y _{MC} (given φ = 18 in.)	Y _{MC} (given φ = 19 in.)	Y _{MC} (given φ = 20 in.)	Y _{MC} (given φ = 21 in.)
2310.72	2359.56	2408 • 42	2457 • 28	2506 • 12	2554.98
4621.43	4719.14	4816 • 84	4914 • 55	5012 • 25	5109.95
6932.15	7431.25	8409 • 59	8615 • 08	8820 • 57	9026.08
10840.50	11114.50	11388 • 49	11662 • 49	11936 • 48	12210.47
13833.53	14176.03	14518 • 52	14861 • 01	15203 • 50	15546.00
16977.68	17388.68	17799 • 67	18210 • 66	18621 • 65	19032.64
20272.96	20752.45	21231 • 94	21711 • 43	22190 • 92	22670.40
23719.36	24267.34	24815 • 33	25363 • 32	25911 • 31	26459.29
27316.88	27933.35	28549 • 85	29166 • 33	29782 • 83	30399.30
31065.51	31750.49	32435 • 48	33120 • 48	33805 • 45	34490.43

Y _{MC} (given	Y MC (given φ = 23 in ()	Y _{MC} (given	Y _{MC} (given	Υ _{MC} (given	Y _{MC} (given
φ = 22 in.)		φ = 24 in.)	φ = 25 in.)	φ = 26 in.)	φ = 27 in.)
2603.83	2652.69	2701.53	2750.39	2799.25	2848.09
5207.67	5305.37	5403.07	6145.43	6677.78	6314.77
9231.56	9437.07	9642.55	9848.06	10053.54	10259.05
12484.47	12758.46	13032.45	13306.45	13580.44	13854.44
15888.49	16230.98	16573.47	16915.96	17258.46	17600.95
19443.63	19854.62	20265.61	20676.60	21087.60	21498.58
23149.90	23629.38	24108.88	24588.36	25067.86	25547.34
27007.29	27555.26	28103.27	28651.24	29199.23	29747.22
31015.79	31632.27	32248.78	32865.23	33481.74	34098.22
35175.45	35860.40	36545.38	37230.38	37915.36	38600.34

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	YMC (given	YMC (given	Y _{MC} (given
φ = 28 in.)	φ = 29 in.)	ϕ = 30 in.)	ϕ = 31 in.)	φ·= 32 in.)	φ = 33 in.)
2896 • 95	2945.80	2994.65	3043.50	3092•36	3872 • 44
6951 • 77	7088.77	7225.76	7362.77	7499.75	7636•76
10464.54	10670 • 04	10875.53	11081-02	11286 • 52	11492•02
14128-42	14402 • 43	14676.42	14950 • 41	15224.40	15498•41
17943 • 44	18285 • 94	18628 • 42	18970•92	19313•41	19655 • 90
21909.58	22320.57	22731.56	23142.54	23553.54	23964.52
26026.82	26506 • 32	26985.80	27465.30	27944.79	28424 • 27
30295 • 21	30843 • 20	31391 • 18	31939•18	32487 • 15	33035 • 15
34714.71	35331 • 19	35947.70	36564•15	37180.65	37797 • 14
39285 • 31	39970.34	40655.27	41340•30	42025 • 25	42710.29

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 34 in.)	ϕ = 35 in.)	φ = 36 in.)	ϕ = 37 in.)	$\Phi = 38 \text{ in.}$)	ϕ = 39 in.)
4001 • 1 1	4069.62	4138 • 11	4296 • 61	4275 • 11	4343•61
777 3 • 75	7910.75	8047 • 75	8184 • 74	8321 • 74	8458•74
11697 • 51	11903.01	12108.50	12314.00	12519 • 49	12724 • 99
15772 • 39	16046.38	16320.38	16594.37	16868 • 37	17142 • 36
19998•39	20340 · 89	20683•39	21025.86	21368•37	21710.85
24375•52	24786 · 52	25197•50	25608.49	26019•48	26430.48
28903.77	29383.25	29862•76	30342•22	30821.73	31301 • 20
33583.13	34131.13	34679•10	35227•10	35775.09	36323 • 04
38413.63	39030.09	39646•60	40263•10	40879.50	41496 • 09
43395 • 20	44080 • 20	44765 • 20	45450.20	46135•19	46820.11

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 40 in.)	ϕ = 41 in.)	ϕ = 42 in.)	ϕ = 43 in.)	φ = 44 in.)
4412 • 10 8595 • 73 12930 • 48 17416 • 35 22053 • 35 26841 • 47 31780 • 70 36871 • 10 42112 • 61 46306 • 80	4480.61 8732.73 13135.98 17690.36 22395.84 27252.44 32260.18 37418.99 42729.00 42876.41	4549 • 10 8869 • 73 13341 • 48 17964 • 34 22738 • 34 27663 • 45 32739 • 69 37967 • 11 43345 • 50 43365 • 00	4617.60 9006.72 13546.96 18238.33 23080.83 28074.43 33219.16 38515.00 43962.00 43853.39	4686 • 10 9143 • 72 13752 • 48 18512 • 33 23423 • 31 28485 • 44 33698 • 68 39063 • 00 44578 • 50 44342 • 00

Table 34

MARGINAL DRILLING COSTS FOR

CASED WELLS IN VERY HARD ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MC} = Y_{TC}(\phi+1) - Y_{TC}(\phi)$

Where:

Y_{MC} = Marginal drilling costs;

 $Y_{TC}(\Phi+1)$ = Total drilling costs for cased wells in very hard rock at a diameter of $\Phi+1$;

 $Y_{TC}(\phi)$ = Total drilling cost for cased wells in very hard rock at a diameter ϕ ;

Φ = Diameter of hole drilled ranging from 10 to 44 inches.

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 10 in.)	ϕ = 11 in.)	φ = 12 in.)	φ = 13 in.)	φ = 14 in.)	φ = 15 in.)
2194.57	2249.01	2303 • 46	2357.90	2412.34	2466.79
4389.13	4498.03	4606 • 91	4715.80	4824.68	4933.57
6583.71	6747.03	6910 • 37	7073.70	7237.02	7400.36
10128.38	10448.31	10768 • 25	11088.17	11408.11	11728.03
13056.72	13456.64	13856 • 55	14256.46	14656.38	15056.29
16181.52	16661.41	17141 • 32	17621.21	18101.11	18581.00
19502.79	20062.66	20622 • 53	21182.42	21742.29	22302.18
23020.50	23660.36	24300 • 22	24940.08	25579.94	26219.80
26734.67	27454.52	28174 • 36	28894.20	29614.05	30333.89
30645.30	31445.13	32244 • 96	33044.79	33844.61	34644.44
Y _{MC} (given ϕ = 16 in.)	Y _{MC} (given φ = 17 in.)	Y _{MC} (given φ = 18 in.)	Y _{MC} (given φ = 19 in.)	Y _{MC} (given φ = 20 in.)	Y _{MC} (given φ = 21 in.)
2521.22	2575.68	2630 • 11	2684.56	2739.00	2793•44
5042.46	5151.34	5260 • 23	5369.11	5478.01	5586•38
7563.68	8150.29	9316 • 09	9556.03	9795.97	10035•93
12047.97	12367.90	12687 • 82	13007.77	13327.69	13647•61
15456.21	15856.11	16256 • 03	16655.94	17055.87	17,455•77
19060.91	19540.79	20020 • 69	20500.59	20980.49	21460 36
22862.06	23421.93	23981 • 81	24541.70	25101.56	25661•45
26859.68	27499.52	28139 • 39	28779.26	29419.11	30058•97
31053.75	31773.57	32493 • 42	33213.28	33933.12	34652•96
35444.27	36244.09	37043 • 91	37843.76	38643.58	39443•10

φ = 22 in.)	Y MC (given φ = 23 in.)	Y _{MC} (given φ = 24 in.)	Y _{MC} (given φ = 25 in.)	Y _{MC} (given φ = 26 in.)	Y _{MC} (given Φ = 27 in.)
2847.89 5695.78 10275.88 13967.56 17855.69 21940.28 26221.33 30698.84 35372.81	2902.33 5804.66 10515.82 14287.48 18255.60 22420.17 26781.20 31338.70 36092.63 41043.04	2956.77 5913.54 10755.78 14607.41 18655.51 22900.07 27341.09 31978.55 36812.50 41842.89	3011.22 6790.40 10995.72 14927.34 19055.42 23379.96 27900.96 32618.41 37532.34 42642.70	3065.66 7420.52 11235.66 15247.28 19455.34 23859.87 28460.84 33258.29 38252.18 43442.52	3120 • 10 7580 • 49 11475 • 62 15567 • 21 19855 • 26 24339 • 75 29020 • 73 33898 • 15 38972 • 003 44242 • 38

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 28 in.)	ϕ = 29 in.)	φ = 30 in.)	ϕ = 31 in.)	ϕ = 32 in.)	$\phi = 33 \text{ in.}$)
3174.54 7740.45 11715.57 15887.13 20255.15 24819.66 29580.59 34537.99 39691.85 45042.17	3228.99 7900.42 11955.51 16207.07 20655.09 25299.55 30140.49 35177.89 40411.73 45842.08	3283.43 8060.38 12195.46 16527.00 21054.99 25779.46 30700.36 35817.72 41131.55 46641.80	3337.88 8220.35 12435.41 16846.92 21454.91 26259.33 31260.23 36457.59 41851.41 47441.70	3392.32 8380.31 12675.36 17166.87 21854.82 26739.24 31820.11 37097.45 42571.21 48241.50	4292.23 8540.28 12915.31 17486.79 22254.73 27219.14 32380.02 37737.32 43291.10 49041.30

Y_{MC} (given $\phi = 34 \text{ in.}$)	Y_{MC} (given $\phi = 35 \text{ in.}$)	Y _{MC} (given Φ = 36 in.)	Y _{MC} (given φ = 37 in.)	Y _{MC} (given φ = 38 in.)	Y _{MC} (given
4441.70	4521.67	4601.66	4681.64	4761.62	Φ = 39 in.) 4841.61 9500.07 14354.99 19406.37 24654.20 30098.52 35739.27 41576.50 47610.20 53840.30
8700.24	8860.21	9020.18	9180.13	9340.11	
13155.24	13395.21	13635.15	13875.09	14115.05	
17806.72	18126.65	18446.58	18766.52	19086.44	
22654.64	23054.57	23454.48	23854.37	24254.31	
27699.02	28178.94	28658.82	29138.71	29618.63	
32939.87	33499.76	34059.64	34619.50	35179.40	
38377.17	39017.03	33656.88	40296.80	40936.59	
44011.00	44730.80	45450.59	46170.41	46890.30	
49841.11	50641.00	51440.80	52240.59	53040.50	

Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given	Y _{MC} (given
φ = 40 in.)	ϕ = 41 in.)	ϕ = 42 in.)	φ = 43 in.)	φ = 44 in.)
4921.59 9660.04 14594.95 19726.31 25054.14 30578.41 36299.11 42216.30 48330.00 53108.61	5001.57 9820.00 14834.89 20046.23 25454.05 31058.30 36859.09 42856.20 49049.89	5081.56 9979.97 15074.83 20366.17 25853.94 31538.21 37418.91 43496.11 49769.61	5161.53 10139.93 15314.79 20686.09 26253.87 32018.09 37978.70 44135.89 50489.59	5241.52 10299.89 15554.74 21006.03 26653.80 32497.98 38538.70 44775.80 51209.30

Table 35

MARGINAL DRILLING COSTS FOR UNCASED WELLS IN SOFT ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MUC} = Y_{TU}(\phi+1) - Y_{TU}(\phi)$

Where:

Y_{MUC} = Marginal drilling cost;

 $Y_{TU}(\Phi+1)$ = Total drilling cost for uncased wells in soft rock at a diameter $\Phi+1$;

 $\mathbf{Y}_{TU}(\varphi) = \begin{array}{ll} \text{Total drilling costs for uncased wells in soft rock} \\ \text{at a diameter } \varphi; \end{array}$

Φ = Diameter of the hole drilled ranging from 10 to 44 inches.

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	YMUC (given	YMUC (given	Y _{MUC} (given
$\phi = 10 \text{ in.}$	$\phi = 11 \text{ in.}$	$\phi = 12 \text{ in.}$	Φ = 13 in.)	$\phi = 14 \text{ in.}$	$\phi = 15 \text{ in.}$
385.32	407 • 23	429.15	451.06	472.98	494.90
770.64	814 • 47	858.29	902.13	945.96	989.78
1155.95	1221 • 70	1287.44	1353.19	1418.94	1484.68
2163.50	2276 • 69	2389.90	2503.10	2616.30	2729.49
2732.26	2873 • 75	3015.26	3156.76	3298.26	3439.76
3350.13	3519 • 93	3689.74	3859.53	4029.34	4199.13
4017.13	4215 • 22	4413.32	4611.43	4809.52	5007.62
4733.22	4959 • 63	5186.03	5412.43	5638.83	5865.23
5498.44	5753 • 15	6007.85	6262.54	6517.25	6771.95
6312.78	6595 • 78	6878.78	7161.78	7444.78	7727.79
Y _{MUC} (given	Y _{MUC} (given	Υ _{MUC} (given	Y _{MUC} (given φ = 19 in.)	Y _{MUC} (given	Υ _{MUC} (given
φ = 16 in.)	$\phi = 17 \text{ in.}$)	φ = 18 in.)		φ = 20 in.)	φ = 21 in.)
516.80	538.73	560.64	582.55	604.47	626.39
1033.62	1077.45	1121.28	1165.10	1208.94	1252.77
1550.42	1809.60	2323.05	2407.95	2492.85	2577.76
2842.70	2955.90	3069.10	3182.30	3295.50	3408.70
3581.26	3722.76	3864.26	4005.76	4147.26	4288.76
4368.94	4538.73	4708.54	4878.34	5048.13	5217.94
5205.73	5403.83	5601.92	5800.03	5998.13	6196.23
6091.63	6318.03	6544.43	6770.83	6997.24	7223.63
7026.65	7281.35	7536.05	7790.76	8045.45	8300.15
8010.78	8293.78	8576.79	8859.79	9142.78	9425.79

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given)	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 22 in.)	$\phi = 23 \text{ in.}$	$\phi = 24 \text{ in.}$)	Φ = 25 in.)	ϕ = 26 in.)	$\phi = 27 \text{ in.}$
648.30 1296.60 2662.65 3521.90 4430.26 5387.74 6394.32 7450.03 8554.86 9708.79	670 • 21 1340 • 43 2747 • 55 3635 • 10 4571 • 77 5557 • 54 6592 • 43 7676 • 44 8809 • 55 9991 • 79	692.13 1384.26 2832.46 3748.30 4713.26 5727.34 6790.53 7902.84 9064.26 10274.79	714.05 1795.28 2917.35 3861.50 4854.76 5897.13 6988.63 8129.23 9318.95 10557.79	735.96 2078.93 3002.26 3974.70 4996.26 6066.94 7186.73 8355.64 9573.66	757.87 2135.52 3087.15 4087.91 5137.77 6236.74 7384.84 8582.03 9828.35 11123.79

Y _{MUC} (given	Y _{MUC} (given	YMUC (given	Y _{MUC} (given	YMUC (given	YMUC (given
$\Phi = 28 \text{ in.}$)	ϕ = 29 in.)	$\Phi = 30 \text{ in.}$	$\Phi = 31 \text{ in.}$	$\Phi = 32 \text{ in.}$)	$\phi = 33 \text{ in.}$
779.79 2192.12 3172.05 4201.10 5279.26 6496.54 7582.93 8808.44 10083.06 11406.79	801.71 2248.72 3256.96 4314.30 5420.77 6576.35 7781.03 9034.84 10337.76 11689.80	823.62 2305.32 3341.86 4427.50 5562.26 6746.14 7979.13 9261.24 10592.46 11972.79	845.54 2361.93 3426.75 4540.71 5703.77 6915.94 8177.24 9487.64 10847.16 12255.80	867.45 2418.52 3511.65 4653.90 5845.26 7085.74 8375.33 9714.04 11101.86 12538.79	1363.53 2475.12 3596.56 4767.10 5986.77 7255.55 8573.43 9940.44 11356.56 12821.80

Y _{MUC} (given φ = 34 in.)	Y _{MUC} (given φ = 35 in.)	Y _{MUC} (given φ = 36 in.)	Y _{MUC} (given φ = 37 in.)	Y_{MUC} (given $\dot{\phi}$ = 38 in.)	Y _{MUC} (given ϕ = 39 in.)
1431.11	1459.40	1487.71	1516.00	1544.31	1572.60
2531.72	2588.33	2644.92	2701.52	2758.13	2814.72
3681.46	3766.35	3851.26	3936.16	4021.05	4105.96
4880.31	4993.50	5106.71	5219.90	5333.10	5446.31
6128.26	6269.77	6411.27	6552.76	6694.27	6835.77
7425.34	7595.14	7764.95	7934.74	8104.54	8274.35
8771.54	8969.64	9167.73	9365.83	9563.94	9762.04
10166.84	10393.24	10619.64	10846.04	11072.45	11298.84
11611.26	11865.97	12120.66	12375.36	12630.06	12884.77
13104.79	13387.80	13670.81	13953.78	14236.82	14519.79

Y _{MUC} (given	Y _{MUC} (given	YMUC (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 40 in.)	ϕ = 41 in.)	ϕ = 42 in.)	ϕ = 43 in.)	φ = 44 in.)
1600.91 2871.32 4190.86 5559.51 6977.27 8444.15 9960.14 11525.24 13139.47 14354.21	1629.20 2927.93 4275.76 5672.70 7118.77 8613.94 10158.24 11751.65 13394.16 13102.62	1657.50 2984.52 4360.65 5785.91 7260.27 8783.75 10356.34 11978.04 13648.87	1685 - 81 3041 - 13 4445 - 56 5899 - 10 7401 - 77 8953 - 55 10554 - 44 12204 - 45 13903 - 57 13540 - 92	1714.10 3097.72 4530.46 6012.31 7543.27 9123.34 10752.53 12430.35 14158.26 13760.06

Table 36

MARGINAL DRILLING COSTS FOR UNCASED WELLS IN MEDIUM SOFT ROCK AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MUC} = Y_{TU}(\phi+1) - Y_{TU}(\phi)$

Where:

Y_{MUC} = Marginal drilling cost;

 $Y_{TU}(\Phi+1)$ = Total drilling cost for uncased wells in medium soft rock at a diameter $\Phi+1$;

 $Y_{TU}(\phi)$ = Total drilling costs for uncased wells in medium soft rock at a diameter ϕ ;

Φ = Diameter of the hole drilled ranging from 10 to 44 inches.

Y _{MUC} (givên	Y _{MUC} (given				
ϕ = 10 in.)	ϕ = 11 in.)	ϕ = 12 in.)	ϕ = 13 in.)	$\phi = 14 \text{ in.}$	$\phi = 15 \text{ in.}$
457 • 38 91 4 • 75	482 • Ø9 964 • 18	506.79 1013.59	531•51 1063•01	556•22 1112•44	580•93 1161•86
1372 • 13	1446 • 26	1520 • 39	1594.53	1668 • 65	1742.78
2532 • 61 3234 • 57	2665•50 3400•69	2798•39 3566•81	2931•29 3732•93	3064•18 3899•04	3197 • Ø8 4Ø65 • 17
4002 • 03	4201.36	4400.71	4600.05	4799•40	4998•73
4834•96 5733•39	5067 • 53 5999 • 18	5300 • 10 6264 • 97	5532•66 6530•75	5765•23 6796•55	5997.79 7062.33
6697 • 30 7726 • 70	6996 • 31	7295•33 8391•17	7594•34 8723•41	7893•35 9055•64	8192•36 9387•88
1120•10	8058•93	0371 • 17	0123+41	7033*64	, , , , , , , , , , , , , , , , , , , ,
				L	J

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	YMUC (given	YMUC (given
Φ = 16 in.)	ϕ = 17 in.)	$\phi = 18 \text{ in.}$)	$\phi = 19 \text{ in.}$	φ = 20 in.)	φ = 21 in.)
605.64	630•35 1260•70	655•06 1310•12	679•77 1359•54	704•48 1408•96	729•19 1458•38
1211•27 1816•92 3329•98	2110 • 01 3462 • 86	2693 • 49 3595 • 77	2793•16 3728•65	2892 • 84 3861 • 55	2992 • 50 3994 • 45
4231 • 28	4397 • 40 5397 • 41	4563•52 5596•76	4729 • 63 5796 • 10	4895•76 5995•45	5061 • 87 6194 • 78
5198 • Ø8 6230 • 36	6462•92	6695•48	6928 • Ø6 8125 • 49	7160.62 8391.28	7393•18 8657•07
7328 • 13 8491 • 38	7593•91 8790•39	7859•70 9089•40	9388 • 42	9687 • 43	9986•44 11381•29
9720-12	10052.35	10384•59	10716.82	11049.07	11361-29

YMUC (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 22 in.)	ϕ = 23 in.)	ϕ = 24 in.)	Φ = 25 in.)	ϕ = 26 in.)	ϕ = 27 in.)
753.90 1507.81 3092.18 4127.34 5227.99 6394.13 7625.75 8922.86 0285.45	778 • 61 1557 • 22 3191 • 84 4260 • 23 5394 • 11 6593 • 47 7858 • 31 9188 • 65 10584 • 46 12045 • 77	803.32 1606.64 3291.52 4393.13 5560.22 6792.81 8090.88 9454.43 10883.48	828.03 2067.79 3391.19 4526.03 5726.35 6992.15 8323.45 9720.22 11182.49 12710.24	852.75 2388.29 3490.86 4658.91 5892.46 7191.49 8556.01 9986.02 11481.51 13042.48	877 • 45 2454 • 73 3590 • 53 4791 • 82 6058 • 58 7390 • 84 8788 • 57 10251 • 80 11780 • 51 1337 4 • 72

902.17 926.87 951.58 976.30 1541.14 2521.18 2587.63 2654.08 2720.52 2853.42 3690.20 3789.87 3889.55 3989.21 4188.56 4924.70 5057.60 5190.50 5323.39 5589.17 6224.70 6390.82 6556.93 6723.06 7055.29 7590.17 7789.52 7988.87 8188.20 8586.89	YMUC (given	YMUC (given	YMUC (given	YMUC (given	YMUC (given	YMUC (given
2521.18	ϕ = 33 in.)	$\Phi = 32 \text{ in.}$	ϕ = 31 in.)	ϕ = 30 in.)	ϕ = 29 in.)	ϕ = 28 in.)
10517.59 10783.38 11049.18 11314.95 11846.54 12079.53 12378.54 12677.55 12976.57 13574.59 13706.94 14039.19 14371.42 14703.66 15368.13	1001.01 2786.97 4088.88 5456.29 6889.17 8387.54 9951.40 11580.75 13275.57	2853.42 4188.56 5589.17 7055.29 8586.89 10183.97 11846.54	2720.52 3989.21 5323.39 6723.06 8188.20 9718.83 11314.95 12976.57	2654.08 3889.55 5190.50 6556.93 7988.87 9486.28 11049.18 12677.55	2587.63 3789.87 5057.60 6390.82 7789.52 9253.70 10783.38 12378.54	2521.18 3690.20 4924.70 6224.70 7590.17 9021.15 10517.59 12079.53

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
φ = 34 in.)	ϕ = 35 in.)	ϕ = 36 in.)	ϕ = 37 in.)	ϕ = 38 in.)	$\Phi = 39 \text{ in.}$
1616.99 2919.86 4288.22 5722.08 7221.40 8786.22 10416.53 12112.32 13873.61 15700.37	1650.21 2986.32 4387.90 5854.97 7387.53 8985.58 10649.11 12378.11 14172.62 16032.60	1683.44 3052.76 4487.57 5987.86 7553.65 9184.91 10881.66 12643.91 14471.63 16364.85	1716.65 3119.20 4587.24 6120.76 7719.76 9384.25 11114.23 12909.69 14770.64 16697.06	1749 • 89 3185 • 65 4686 • 91 6253 • 65 7885 • 88 9583 • 59 11346 • 80 13175 • 48 15069 • 65 17029 • 32	1783.11 3252.11 4786.58 6386.54 8052.00 9782.94 11579.36 13441.28 15368.67 17361.55

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 40 in.)	Φ = 41 in.)	ϕ = 42 in.)	ϕ = 43 in.)	ϕ = 44 in.)
1816.33 3318.54 4886.25 6519.45 8218.11 9982.28	1849.55 3385.00 4985.92 6652.33 8384.24 10181.62	1882.78 3451.44 5085.60 6785.23 8550.35 10380.96	1916.00 3517.89 5185.26 6918.12 8716.47 10580.30	1949 • 23 3584 • 34 5284 • 94 7051 • 02 8882 • 59
11811 • 92 13707 • 05 15667 • 67 17124 • 86	12044•49 13972•85 15966•70 15508•31	12277 • Ø6 14238 • 64 16265 • 7Ø 15755 • 4Ø	12509.62 14504.43 16564.72 16002.50	12742•18 1477ؕ21 16863•73 16249•63

Table 37

MARGINAL DRILLING COSTS FOR UNCASED WELLS IN MEDIUM HARD ROCK AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{\text{MUC}} = Y_{\text{TU}}(\phi+1) - Y_{\text{TU}}(\phi)$

Where:

Y_{MUC} = Marginal drilling cost;

 $Y_{TU}(\phi+1)$ = Total drilling cost for uncased wells in medium hard rock at a diameter $\phi+1$;

 $Y_{TU}(\varphi) = \text{ Total drilling costs for uncased wells in medium hard rock at a diameter } \varphi;$

 ϕ = Diameter of the hole drilled ranging from 10 to 44 inches.

Y _{MUC} (givên	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 10 in.)	φ = 11 in.)	ϕ = 12 in.)	$\Phi = 13 \text{ in.}$	$\phi = 14 \text{ in.}$)	ϕ = 15 in.)
538.72 1077.44 1616.16 42956.43 3814.19 4757.35 5785.94 6899.94 8099.35 9384.19	566.22 1132.45 1698.67 3110.88 4007.23 4989.01 6056.20 7208.82 8446.85 9770.28	593.73 1187.46 1781.19 3265.31 4200.29 5220.68 6326.47 7517.69 8794.33 10156.38	621 • 24 1242 • 47 1863 • 71 3419 • 75 4393 • 33 5452 • 32 6596 • 74 7826 • 57 9141 • 81 10542 • 49	648.74 1297.49 1946.23 3574.19 4586.38 5683.99 6867.01 8135.45 9489.31 10928.57	676.25 1352.49 2028.74 3728.64 4779.43 5915.65 7137.28 8444.33 9836.80 11314.68

Y _{MUC} (given	Y _{MUC} (given	YMUC (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
Φ = 16 in.)	$\phi = 17 \text{ in.}$	φ = 18 in.)	ϕ = 19 in.)	$\phi = 20 in.)$	Φ = 21 in.)
703.75	731.26	758.76	786 • 27	813.78	841.28
1407.51	1462.52	1517.53.	1572 • 54	1627.55	1682.56
2111.26	2443.83	3110.73	3226 • 57	3342.40	3458.22
3883.07	4037.51	4191.95	4346 • 39	4500.83	4655.26
4972.48	5165.53	5358.58	5551 • 63	5744.68	5937.72
6147.31	6378.96	6610.62	6842 • 29	7073.94	7305.60
7407.56	7677•81	7948•09	8218•36	8488.62	8758•90
8753.21	9062•09	9370•96	9679•85	9988.72	10297•60
10184.29	10531•77	10879•25	11226•76	11574.24	11921•73
11700.78	12086•88	12472•97	12859•07	13245.18	13631•27

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 22 in.)	$\phi = 23 \text{ in.}$)	$\phi = 24 \text{ in.}$)	Φ = 25 in.)	ϕ = 26 in.)	$\phi = 27 \text{ in.}$
868.79 1737.58 3574.06 4809.71 6130.78 7537.26 9029.15 10606.49 12269.21 14017.37	896.29 1792.58 3689.88 4964.15 6323.82 7768.92 9299.44 10915.35 12616.71 14403.46	923.89 1847.69 3805.72 5118.58 6516.88 8000.58 9569.70 11224.25 12964.19 14789.56	951.39 2368.54 3921.54 5273.03 6709.92 8232.24 9839.97 11533.11 13311.68 15175.67	978.81 2732.70 4037.37 5427.46 6902.97 8463.90 10110.24 11842.00 13659.18 15561.76	1076.32 2809.92 4153.21 5581.91 7096.03 8695.55 10380.51 12150.87 14006.66 15947.86

Y _{MUC} (given	Y _{MUC} (given	YMUC (given		YMUC (given	YMUC (given
Φ = 28 in.) 1033.82 2887.14 4269.03 5736.34 7289.06 8927.22 10650.77 12459.76 14354.14 16333.95	φ = 29 in.) 1061.33 2964.35 4384.86 5890.78 7482.13 9158.87 10921.04 12768.63 14701.64 16720.07	Φ = 30 in.) 1088 • 83 3041 • 58 4500 • 69 6045 • 22 7675 • 17 9390 • 54 11191 • 32 13077 • 51 15049 • 13 17106 • 15	φ = 31 in.) 1116.34 3118.80 4616.52 6199.67 7868.22 9622.19 11461.58 13386.39 15396.60 17492.26	φ = 32 in.) 1143.84 3196.02 4732.36 6354.10 8061.26 9853.85 11731.86 13695.27 15744.11 17878.36	φ = 33 in.) 1737.00 3273.23 4848.18 6508.54 8254.32 10085.51 12002.12 14004.15 16091.59 18264.44

Y _{MUC} (given	Y _{MUC} (given		Y _{MUC} (given	YMUC (given	YMUC (given
$\Phi = 34 \text{ in.})$	Φ = 35 in.)	φ = 36 in.)	$\Phi = 37 \text{ in.}$	Φ = 38 in.)	$\phi = 39 \text{ in.}$
1822.32 3350.46 4964.01 6662.98 8447.37 10317.17 12272.38 14313.03 16439.08 18650.55	1860.93 3427.68 5079.84 6817.42 8640.41 10548.83 12542.66 14621.90 16786.57 19036.65	1899.54 3504.89 5195.67 6971.86 8833.47 10780.49 12812.94 14930.79 17134.06 19422.75	1938.15 3582.12 5311.49 7126.29 9026.51 11012.14 13083.19 15239.66 17481.53 19808.84	1976.76 3659.33 5427.33 7280.74 9219.57 11243.81 13353.47 15548.54 17829.04 20194.94	2015.37 3736.56 5543.16 7435.18 9412.61 11475.47 13623.73 15857.42 18176.53 20581.04

Y _{MUC} (given	Y _{MUC} (given	, 1000	YMUC (given	Y _{MUC} (given
φ = 40 in.) 2053.98 3813.77 5658.99 7589.61 9605.66 11707.13 13894.00 16166.30	φ = 41 in.) 2092.59 3891.00 5774.81 7744.06 9798.71 11938.78 14164.28 16475.18	φ = 42 in.) 2131 • 20 3968 • 21 5890 • 65 7898 • 49 9991 • 76 12170 • 44 14434 • 54 16784 • 05	φ = 43 in.) 2169.80 4045.44 6006.47 8052.94 10184.81 12402.10 14704.81 17092.93	φ = 44 in.) 2208.42 4122.65 6122.31 8207.37 10377.86 12633.76 14975.07 17401.82
18524.01 20251.73	18871•5Ø 18184•79	19218•99 18459•84	19566•47 18734•90	19913•96 19009•95

Table 38

MARGINAL DRILLING COSTS FOR UNCASED WELLS IN HARD ROCK

AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{MUC} = Y_{TU}(\phi+1) - Y_{TU}(\phi)$

Where:

Y_{MUC} = Marginal drilling cost;

 $Y_{TU}(\Phi+1)$ = Total drilling cost for uncased wells in hard rock at a diameter $\Phi+1$;

 $Y_{TU}(\phi)$ = Total drilling costs for uncased wells in hard rock at a diameter ϕ ;

 ϕ = Diameter of the hole drilled ranging from 10 to 44 inches.

Y _{MUC} (given	Y _{MUC} (given	YMUC (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 10 in.)	ϕ = 11 in.)	$\phi = 12 \text{ in.}$	ϕ = 13 in.)	$\phi = 14 \text{ in.}$)	ϕ = 15 in.)
768.82	801.92	835.02	868-11	901 • 21	934•30
1537.65	1603.84	1670.03	1736-23	1802 • 42	1868•61
2306.47	2405.76	2505.05	2604-34	2703 • 63	2802•91
4201.43	4412.41	4623.37	4834-35	5045 • 31	5256•27
5534.71	5798.41	6062.12	6325-83	6589 • 54	6853•25
7019.09	7335.54	7651.99	7968-44	8284 • 90	8601•35
8654.60	9023.79	9392.98	9762-18	10131 • 37	10500•56
10441.22	10863.16	11285.10	11707-03	12128 • 97	12550•91
12378•98	12853•65	13328•34	13803•01	14277 • 69	14752•36
14467•85	14995•27	15522•69	16050•11	16577 • 53	171Ø4•94

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
$\phi = 16 \text{ in.}$	$\phi = 17 \text{ in.}$)	φ = 18 in.)	ϕ = 19 in.)	$\phi = 20 \text{ in.}$	φ = 21 in.)
967 • 40	1000.50	1033•60	1066 • 68	1099•79	1132•88
1934 • 80	2000.99	2067•19	2133 • 38	2199•57	2265•77
2902 • 20	3354•05	4285 • 10	4443•33	4601.56	4759•78
5467 • 25	5678•21	5889 • 19	6100•15	6311.12	6522•08
7116 • 97	7380 • 67	7644•38	7908.09	8171•81	8435 • 51
8917 • 80	9234 • 25	9550•71	9867.15	10183•61	10500 • 06
10869•77	11238.95	116Ø8•15	11977 • 34	12346 • 54	12715•73
12972•84		13816•72	14238 • 65	14660 • 59	15082•51
15227 • Ø5	15701.71	16176•40	16651•09	17125•76	17600•43
17632 • 38	18159.78	18687•21	19214•63	19742•05	20269•47
į.	I	!		1	

Y _{MUC} (given	Y _{MUC} (given	YMUC (given	Y _{MUC} (given	Y _{MUC} (given	YMUC (given
φ'= 22 in.)	ϕ = 23 in.)	φ = 24 in.)	Φ = 25 in.)	ϕ = 26 in.)	ϕ = 27 in.)
1165.98	1199.08	1232 • 17	1265.26	1298•37	1331 • 46
2331.95	2398 • 15	2464+34	3175.19	3676 • 02	3781.50
4918•01	5076.23	5234•46	5392.69	5550•91	5709•14
6733•06	6944•02	7154.99	7365.96	7576.93	77 87 • 89
8699•22	8962•94	9226 • 64	9490•35	9754•06	10017.78
10816.51	11132.97	11449•42	11765.86	12082•33	12398•77
13084.92	13454•12	13823•31	14192.51	14561.70	14930 • 89
15504 • 47	15926 • 38	16348.34	16770.26	17192•21	17614•13
18075 • 11	18549.79	19024 • 48	19499•14	19973.83	20448•50
20796.90	21324.31	21851.73	22379•15	22906 • 57	23433•99

Y _{MUC} (given	YMUC (given	YMUC (given	YMUC (given	YMUC (given	YMUC (given
ϕ = 28 in.)	ϕ = 29 in.)	ϕ = 30 in.)	$\Phi = 31 \text{ in.}$	$\Phi = 32 \text{ in.}$	$\phi = 33 \text{ in.})$
1364.55 3886.99 5867.36 7998.86 10281.48 12715.22 15300.09 18036.08 20923.18	1397 • 65 3992 • 47 6025 • 59 8209 • 83 10545 • 19 13031 • 68 15669 • 29 18458 • 02 21397 • 87	1430.75 4097.96 6183.82 8420.80 10808.91 13348.14 16038.48 18879.94 21872.54	1463 • 84 4203 • 44 6342 • 04 8631 • 77 11072 • 61 13664 • 57 16407 • 67 19301 • 88 22347 • 20	1496.94 4308.92 6500.27 8842.14 11336.32 13981.04 16776.86 19723.82 22821.90	2261.27 4414.41 6658.50 9053.70 11600.04 14297.48 17146.05 20145.76 23296.58
23961•41	24488•84	25016.24	25543.67	26071.09	26598•50

YMUC (given	YMUC (given	Y _{MUC} (given	YMUC (given	YMUC (given	Y _{MUC} (given
$\Phi = 34 \text{ in.}$	$\Phi = 35 \text{ in.}$)	ϕ = 36 in.)	$\Phi = 37 \text{ in.})$	$\Phi = 38 \text{ in.}$)	$\Phi = 39 \text{ in.}$
2374.18 4519.89 6816.72 9264.67 11863.74 14613.94 17515.26 20567.69 23771.25 27125.94	2426.93 4625.38 6974.94 9475.64 12127.45 14930.39 17884.45 20989.62 24245.93 27653.37	2479.67 4730.86 7133.18 9686.61 12391.17 15246.84 18253.65 21411.57 24720.61 28180.77	2532.41 4836.34 7291.40 9897.57 12654.87 15563.30 18622.82 21833.50 25195.27 28708.18	2585.15 4941.83 7449.62 10108.54 12918.58 15879.74 18992.04 22255.43 25669.97 29235.62	2637.90 5047.31 7607.85 10319.51 13182.30 16196.20 19361.22 22677.37 26144.64 29763.02

YMUC (given	Y _{MUC} (given	Y _{MUC} (given	YMUC (given	YMUC (given
ϕ = 40 in.)	Φ = 41 in.)	ϕ = 42 in.)	φ = 43 in.)	φ = 44 in.)
2690 • 64	2743•37	2796•13	2848.86	2901.60
5152.80	5258•28	5363•76	5469•25	5574.73
7766.08	7924.30	8082•53	8240.76	8398•98
10530 • 49	10741 • 45	10952•41	11163.38	11374•36
13446 • 00	13709.73	13973•41	14237 • 13	14500•85
16512.65	16829•10	17145•56	17462.00	17778 • 47
19730 • 41	20099•62	20468•82	20837 • 98	· 21207•20
23099•31	23521•24	23943•18	24365 • 12	24787.05
26619•32	27094.01	27568•67	28043•36	28518.02
29092•12	25504•16	25835•11	26166.06	26497•04

Table 39

MARGINAL DRILLING COSTS FOR UNCASED WELLS IN VERY HARD ROCK AS A FUNCTION OF DIAMETER AT A GIVEN DEPTH (in dollars)

 $Y_{\text{MUC}} = Y_{\text{TU}}(\phi{+}1) - Y_{\text{TU}}(\phi)$

Where:

Y_{MUC} = Marginal drilling cost;

 $Y_{TU}(\Phi+1)$ = Total drilling cost for uncased wells in very hard rock at a diameter $\Phi+1$;

 $\mathbf{Y}_{TU}(\varphi) = \text{ Total drilling costs for uncased wells in very hard rock at a diameter } \varphi;$

Diameter of the hole drilled ranging from 10 to 44 inches.

	Y _{MUC} (givên	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
	ϕ = 10 in.)	ϕ = 11 in.)	ϕ = 12 in.)	ϕ = 13 in.)	ϕ = 14 in.)	ϕ = 15 in.)
	945.79 1891.58 2837.38 5133.28 6812.85 8688.86 10761.35 13030.29 15495.68 18157.54	984.48 1968.96 2953.44 5390.18 7133.97 9074.23 11210.93 13544.10 16073.73 18799.82	1023.17 2046.34 3069.50 5647.09 7455.11 9459.58 11660.52 14057.91 16651.76 19442.06	1061.85 2123.70 3185.57 5903.99 7776.24 9844.94 12110.10 14571.72 17229.80 20084.34	1100.54 2201.08 3301.32 6160.90 8097.36 10230.30 12559.68 15085.54 17807.83 20726.59	1139.23 2278.46 3417.68 6417.81 8418.51 10615.66 13009.27 15599.33 18385.88 21368.86
Ī	Y _{MUC} (given ϕ = 16 in.)	Y _{MUC} (given ϕ = 17 in.)	Y _{MUC} (giv en φ = 18 in.)	Y _{MUC} (given φ = 19 in.)	Y _{MUC} (given ϕ = 20 in.)	Y _{MUC} (given φ = 21 in.)
	1177.91 2355.83 3533.74 6674.71 8739.63 11001.01 13458.86 16113.16 18963.90 22011.12	1216.60 2433.20 4073.07 6931.61 9060.76 11386.37 13908.44 16626.95 19541.94 22653.39	1255.29 2510.57 5191.61 7188.52 9381.89 11771.73 14358.01 17140.78 20119.98 23295.64	1293.97 2587.95 5384.28 7445.42 9703.03 12157.08 14807.61 17654.58 20698.03 23937.91	1332.66 2665.32 5576.96 7702.33 10024.16 12542.45 15257.19 18168.39 21276.05 24580.18	1371.35 2742.69 5769.64 7959.23 10345.29 12927.80 15706.77 18682.20 21854.09 25222.43

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
ϕ = 22 in.)	$\phi = 23 \text{ in.}$	ϕ = 24 in.)	Φ = 25 in.)	$\phi = 26 \text{ in.}$	$\phi = 27 \text{ in.}$
1410.04 2820.07 5962.31 8216.15 10666.42 13313.16 16156.36 19196.02 22432.12 25864.72	1448.72 2897.44 6155.00 8473.04 10987.55 13698.51 16605.94 19709.82 23010.16 26506.96	1487 • 40 2974 • 32 6347 • 67 8729 • 95 11308 • 68 14083 • 88 17055 • 52 20223 • 63 23588 • 20 27149 • 20	1526.10 3820.15 6540.35 8986.85 11629.81 14469.23 17505.11 20737.44 24166.24 27791.49	1564.78 4418.76 6733.04 9243.76 11950.95 14854.59 17954.69 21251.25 24744.28 28433.75	1603.46 4547.22 6925.71 9500.67 12272.08 15239.95 18404.27 21765.06 25322.30 29076.01

Y _{MUC} (given	Y _{MUC} (given	YMUC (given)	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given
φ = 28 in.)	φ = 29 in.)	$\phi = 30 \text{ in.}$)	ϕ = 31 in.)	φ = 32 in.)	φ = 33 in.)
1642.16	1680.84	1719.53	1758.21	1796.90	2681.06
4675.67	4804.12	4932.57	5061.03	5189.48	5317.93
7118.39	7311.07	7503.75	7696.42	7889.11	8081.78
9757.56	10014.48	10271.38	10528.29	10785.19	11042.09
12593.20	12914.35	13235.47	13556.60	13877.73	14198.87
15625.30	16010.66	16396.03	16781.37	17166.74	17552.09
18853.86	19303.45	19753.03	20202.61	20652.19	21101.77
22278.88	22792.69	23306.49	23820.30	24334.12	24847.93
25900.34	26478.39	27056.41	27634.45	28212.48	28790.53
29718.27	30360.55	31002.80	31645.05	32287.34	32929.58

YMUC (given	YMUC (given	Y _{MUC} (given	Y _{MUC} (given	YMUC (given	Y _{MUC} (given
Φ = 34 in.)	ϕ = 35 in.)	ϕ = 36 in.)	ϕ = 37 in.)	φ = 38 in.)	ϕ = 39 in.)
2814.77 5446.38 8274.46 11299.00 14519.99 17937.45 21551.37 25361.73 29368.57 33571.85	2878.98 5574.83 8467.14 11555.91 14841.13 18322.81 22000.96 25875.54 29946.61 34214.12	2943.22 5703.29 8659.83 11812.81 15162.26 18708.17 22450.52 26389.36 30524.63 34856.37	3007.44 5831.74 8852.49 12069.72 15483.39 19093.51 22900.11 26903.17 31102.66 35498.63	3071.67 5960.20 9045.18 12326.61 15804.52 19478.89 23349.70 27416.96 31680.71 36140.95	3135.89 6088.64 9237.86 12583.53 16125.65 19864.23 23799.28 27930.79 32258.75 36783.09

Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	Y _{MUC} (given	YMUC (given
φ = 40 in.)	ϕ = 41 in.)	ϕ = 42 in.)	ϕ = 43 in.)	$\phi = 44 \text{ in.}$
3200 • 12 6217 • 10 9430 • 53 12840 • 43 16446 • 79 20249 • 59 24248 • 87 28444 • 60 32836 • 78 35893 • 91	3264.35 6345.56 9623.22 13097.34 16767.92 20634.96 24698.45 28958.40 33414.82 31273.70	3328.57 6474.00 9815.89 13354.24 17089.04 21020.31 25148.02 29472.22 33992.90 31660.59	3392.80 6602.45 10008.57 13611.14 17410.18 21405.66 25597.63 29986.01 34570.80 32047.50	3457.03 6730.91 10201.26 13868.06 17731.31 21791.05 26047.20 30499.85 35149.00 32434.30

Table 40
ESTIMATED DRILLING TIME FUNCTION FOR GOMEZ FIELD (TEXAS)
FOR 12-1/4-INCH DIAMETER WELLS

 $Y_{DT} = 0.126(10^{-5})X^2 + 0.06X - 31$

where:

Y_{DT} = Drilling time in hours

X = Depth in feet

COEFFICIENT STANDARD ERROR T-VALUE VARIABLE MEAN SIMPLE R(Y,X)

-0.31091213E-01 0.20843568E-01 -0.14916454E 01 0.09999999E 01 0.
0.59937941E-04 0.78546197E-05 0.76309157E 01 0.60667446E 04 0.95545216E 00 0.12643326E-08 0.65738512E-09 0.19232754E 01 0.43287724E 08 0.94466193E 00

RSQ = 0.9143 R = 0.9562 F(2,228) = 1215.8740 SUMUSQ = 0.7859 DURBIN-W.= 0.1169

	OBSERVEI	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \mathbf{\hat{Y}}}{1000}$
1 2 3 4 5	821.00 1107.00 1579.00 1960.00 2340.00 2690.00	0.0182 0.0462 0.0657 0.0927 0.1147	0.0190 0.0368 0.0667 0.0912 0.1161 0.1393	-0.0007 0.0094 -0.0010 0.0015 -0.0013 -0.0033

			ESTIMATED	
	OBSERVE	D VALUES	VALUES	RESIDUAL
SAMPLE		Y	Ŷ	Y - Ŷ
NUMBER	\mathbf{x}_{1}	1000	1000	1000
NOMBBI	11	<u> </u>	<u> </u>	<u>l</u>
	20/0.00	8 1500		
7	3068.00	0.1582	0.1647	-0.0064
8	3437.00	0.1787	0.1899	-0.0111
9	3742.00	0.1977	0.2109	-0.0132
10	4234.00	0.2182	0.2454	-0.0271
11	4509.00	0.2327	0.2649	-0.0321
12	4708.00	0.2477	0.2791	-0.0314
13	4912.00	0.2595	0.2938	-0.0343
14	5146.00	0.2745	0.3108	-0.0363
15	5312.00	0.2910	0.3230	-0.0320
16	5507.00	0.3072	0.3373	-0.0301
17	5690.00	0.3202	0.3509	-0.0306
18	5872.00	0.3317	0.3645	-0.0327
19	5953.00	0.3400	0.3705	-0.0305
20	6473.00	0.3772	0 .409 9	-0.0326
21	6745.00	0.3982	0.4307	-0.0325
22	6950.00	0.4150	0.4465	-0.0315
23	7818.00	0.4792	0.5148	-0.0355
24	7998.00	0.4952	0.5292	-0.0339
25	8182.00	0.5107	0.5440	-0.0332
26	8496.00	0.5422	0.5694	-0.0272
27	8758.00	0.5682	0.5908	-0.0226
28	8934.00	0.5890	0.6053	-0.0163
29	9059.00	0.6002	0.6156	-0.0154
30	9104.00	0.6065	0.6194	-0.0129
31	9214.00	0.6205	0.6285	-0.0080
32	9371.00	0.6452	0.6416	0.0036
33	9511.00	0.6680	0.6533	0.0147
34	9540.00	0.6735	0.6558	0.0177
35	1500.00	0.0673	0.0617	0.0056
36	2500.00	0.1344	0.1267	0.0077
30	2300.00	0.1344	0.1201	0.0011

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \mathbf{\hat{Y}}}{1000}$
			<u></u>	
37	2967.00	0.1595	0.1579	0.0016
38	3060.00	0.1780	0.1642	0.0138
39	3166.00	0.1935	0.1713	0.0221
40	3386.00	0.2225	0.1864	0.0361
41	3589.00	0.2475	0.2003	0.0472
42	3735.00	0.2597	0.2104	0.0493
43	3943.00	0.2775	0.2249	0.0526
44	4321.00	0.2990	0.2515	0.0475
44 45	4690.00	0.3165	0.2778	0.0387
46	4948.00	0.3345	0.2964	0.0380
40 47	5206.00	0.3530	0.3152	0.0378
47 48	5449.00	0.3785	0.3331	0.0454
	5612.00	0.3952	0.3451	0.0501
49	5860.00	0.4202	0.3636	0.0567
50	5981.00	0.4290	0.3726	0.0564
51	6933.00	0.5345	0.4452	0.0892
52	7222.00	0.5605	0.4677	0.0928
53	7489.00	0.5822	0.4887	0.0935
54	7756.00	0.6077	0.5098	0.0979
55	8021.00	0.6262	0.5310	0.0952
56	8315.00	0.6455	0.5547	0.0908
57	8651.00	0.6735	0.5821	0.0914
58	8872.00	0.6977	0.6002	0.0975
59	9092.00	0.7182	0.6184	0.0999
60	9295.00	0.7402	0.6353	0.1050
61	9512.00	0.7645	0.6534	0.1110
62	9790.00	0.7912	0.6769	0.1143
63	10010.00	0.8130	0.6956	0.1174
64	1010.00	0.8285	0.7040	0.1245
65	558.00	0.0250	0.0027	0.0223
66	220.00	0.0270	0.000	

	OBSERVE	O VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE		Y	Ŷ	Y - Ŷ
NUMBER	\mathbf{x}_{1}	1000	1000	1000
67	1320.00	0.0555	0.0502	0.0053
68	1540.00	0.0645	0.0642	0.0003
69	1761.00	0.0800	0.0784	0.0016
70	2072.00	0.1015	0.0985	0.0030
71	2345.00	0.1205	0.1164	0.0041
72	2546.00	0.1345	0.1297	0.0048
73	2795.00	0.1475	0.1463	0.0012
74	3345.00	0.1613	0.1835	-0.0223
75	3500.00	0.1753	0.1942	-0.0189
76	3707.00	0.1898	0.2085	-0.0187
77	4150.00	0.2048	0.2394	-0.0347
78	4350.00	0.2170	0.2536	-0.0365
79	4471.00	0.2285	0.2622	-0.0336
80	4662.00	0.2448	0.2758	-0.0310
81	4872.00	0.2620	0.2909	-0.0289
82	5030.00	0.2753	0.3024	-0.0271
83	5106.00	0.2825	0.3079	-0.0254
84	5267.00	0.2990	0.3197	-0.0207
85	5390.00	0.3090	0.3287	-0.0197
86	5561.00	0.3255	0.3413	-0.0158
87	6369.00	0.4075	0.4019	0.0056
88	6467.00	0.4243	0.4094	0.0149
89	6469.00	0.4243	0.4096	0.0147
90	6623.00	0.4388	0.4213	0.0174
91	6759.00	0.4568	0.4318	0.0250
92	7555.00	0.5440	0.4939	0.0501
93	7727.00	0.5618	0.5075	0.0542
94	7962.00	0.5763	0.5263	0.0500
95	8175.00	0.5943	0.5434	0.0509
96	8380.00	0.6120	0.5600	0.0521

	OBSERVE	D VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
97	8545.00	0.6278	0.5734	0.0544
	8727.00	0.6415	0.5883	0.0533
98	9018.00	0.6608	0.6123	0.0485
99	9322.00	0.6823	0.6375	0.0448
100	9597.00	0.7060	0.6606	0.0454
101 102	1500.00	0.0673	0.0617	0.0056
102	2500.00	0.1344	0.1267	0.0077
103	3203.00	0.1722	0.1739	-0.0017
104 105	3480.00	0.1879	0.1928	-0.0049
105	3808.00	0.2039	0.2155	-0.0116
	3976.00	0.2129	0.2272	-0.0143
107 108	4583.00	0.2329	0.2702	-0.0372
109	4856.00	0.2477	0.2898	-0.0421
	4945.00	0.2534	0.2962	-0.0428
110 111	5061.00	0.2614	0.3046	-0.0432
112	5190.00	0.2687	0.3140	-0.0454
113	6610.00	0.3822	0.4203	-0.0382
114	7950.00	0.4942	0.5253	-0.0312
115	8098.00	0.5212	0.5372	-0.0160
116	8333.00	0.5422	0.5562	-0.0140
117	8357.00	0.5479	0.5581	-0.0102
118	8575.00	0.5697	0.5758	-0.0062
119	8765.00	0.5867	0.5914	-0.0047
120	8810.00	0.5907	0.5951	-0.0044
121	8995.00	0.6114	0.6103	0.0011
122	9110.00	0.6219	0.6199	0.0020
123	9265.00	0.6432	0.6328	0.0104
124	9376.00	0.6544	0.6420	0.0124
125	9595.00	0.6754	0.6604	0.0150
126	1500.00	0.0673	0.0617	0.0056

	OBSERVE	D VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE		Y	Ŷ	Y - Ŷ
NUMBER	\mathbf{x}_1	1000	1000	1000
127	2500.00	0.1344	0.1267	0.0077
128	3225.00	0.1733	0.1754	-0.0021
129	3510.00	0.2083	0.1949	0.0134
130	3890.00	0.2458	0.2212	0.0246
131	3993.00	0.2563	0.2284	0.0279
132	4201.00	0.2688	0.2430	0.0257
133	4747.00	0.2925	0.2819	0.0106
134	4952.00	0.3070	0.2967	0.0103
135	5132.00	0.3235	0.3098	0.0137
136	5407.00	0.3423	0.3300	0.0123
137	5589.00	0.3560	0.3434	0.0126
138	5764.00	0.3708	0.3564	0.0144
1 39	5926.00	0.3860	0.3685	0.0175
140	6050.00	0.3980	0.3778	0.0202
141	6149.00	0.4108	0.3853	0.0255
142	6286.00	0.4273	0.3956	0.0316
143	6678.00	0.4680	0.4256	0.0425
144	7135.00	0.5198	0.4609	0.0588
145	7251.00	0.5348	0.4700	0.0648
146	7381.00	0.5528	0.4802	0.0726
147	7696.00	0.5935	0.5051	0.0884
148	7878.00	0.6138	0.5196	0.0942
149	8040.00	0.6323	0.5325	0.0997
150	8253.00	0.6540	0.5497	0.1043
151	8345.00	0.6683	0.5571	0.1111
152	8517.00	0.6873	0.5711	0.1162
153	8751.00	0.7120	0.5902	0.1218
154	8988.00	0.7383	0.6098	0.1285
155	9178.00	0.7630	0.6255	0.1375
156	9349.00	0.7880	0.6398	0.1482

	OBSERVEI	O VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\underline{Y} - \widehat{Y}}{1000}$
157	9412.00	0.7945	0.6450	0.1495
	1500.00	0.0673	0.0617	0.0056
158	2500.00	0.1344	0.1267	0.0077
159 160	3466.00	0.1863	0.1918	-0.0055
	3552.00	0.1941	0.1978	-0.0037
161	3807.00	0.2151	0.2154	-0.0004
162	3955.00	0.2286	0.2257	0.0028
163	4201.00	0.2451	0.2430	0.0020
164	4731.00	0.2658	0.2808	-0.0150
165	4902.00	0.2773	0.2931	-0.0158
166	5862.00	0.3458	0.3637	-0.0179
167	6287.00	0.3731	0.3957	-0.0227
168	6585.00	0.3908	0.4184	-0.0276
169	7946.00	0.4621	0.5250	-0.0629
170	9264.00	0.5418	0.6327	-0.0909
171	9481.00	0.5588	0.6508	-0.0920
172	9665.00	0.5733	0.6663	-0.0930
173	1500.00	0.0673	0.0617	0.0056
174	2500.00	0.1344	0.1267	0.0077
175	3223.00	0.1732	0.1752	-0.0020
176	3820.00	0.1955	0.2163	-0.0208
177	4172.00	0.2137	0.2410	-0.0272
178	4674.00	0.2307	0.2767	-0.0459
179	5067.00	0.2515	0.3051	-0.0536
180	5460.00	0.2690	0.3339	-0.0649
181	5735.00	0.2812	0.3542	-0.0730
182	6735.00	0.2012	0.4299	-0.1035
183	7687.00	0.3752	0.5044	-0.1291
184	8405.00	0.4095	0.5620	-0.1525
185	8774.00	0.4322	0.5921	-0.1599
186	0114.00	0.4322	0.7721	551377

	OBSERVE	D VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE		Y	Ŷ	<u>Y - Ŷ</u>
NUMBER	v	1000	1000	1000
NUMBER	x ₁	1000	1000	1000
187	9047.00	0.4487	0.6147	-0.1659
188	9251.00	0.4622	0.6316	-0.1694
189	9473.00	0.4740	0.6502	-0.1762
190	9709.00	0.4915	0.6700	-0.1785
191	9919.00	0.5060	0.6878	-0.1818
192	10077.00	0.5190	0.7013	-0.1823
193	10098.00	0.5322	0.7031	-0.1708
194	1500.00	0.0673	0.0617	0.0056
195	2500.00	0.1344	0.1267	0.0077
196	3240.00	0.1744	0.1764	-0.0020
197	3557.00	0.1989	0.1981	0.0008
198	3897.00	0.2254	0.2217	0.0037
199	4490.00	0.2531	0.2635	-0.0104
200	4790.00	0.2744	0.2850	-0.0107
201	5048.00	0.2929	0.3037	-0.0108
202	5395.00	0.3159	0.3291	-0.0132
203	6710.00	0.3969	0.4280	-0.0311
204	7814.00	0.4694	0.5145	-0.0451
205	7991.00	0.4859	0.5286	-0.0427
206	8162.00	0.4999	0.5423	-0.0425
207	8392.00	0.5126	0.5609	-0.0483
208	8692.00	0.5394	0.5854	-0.0460
209	8877.00	0.5599	0.6006	-0.0407
210	9028.00	0.5801	0.6131	-0.0330
211	9166.00	0.5944	0.6245	-0.0302
212	9366.00	0.6181	0.6412	-0.0231
213	9491.00	0.6376	0.6517	-0.0140
214	1500.00	0.0673	0.0617	0.0056
215	2500.00	0.1344	0.1267	0.0077
216	3245.00	0.1744	0.1767	-0.0023

	OBSERVE	O VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	<u>Y</u> 1000	Ŷ 1000	$\frac{\mathbf{Y} - \mathbf{\hat{Y}}}{1000}$
217 218 219 220 221 222 223 224 225 226 227	3850.00 4068.00 4600.00 4916.00 5212.00 5566.00 6264.00 7411.00 7929.00 8484.00 8766.00	0.2217 0.2409 0.2614 0.2794 0.3024 0.3272 0.3797 0.4477 0.4457 0.5229	0.2184 0.2337 0.2714 0.2941 0.3157 0.3417 0.3940 0.4825 0.5236 0.5684 0.5915	0.0033 0.0073 -0.0100 -0.0147 -0.0132 -0.0145 -0.0143 -0.0349 -0.0380 -0.0455 -0.0538
228 229 230 231	9040.00 9312.00 9550.00 9692.00	0.5729 0.6094 0.6439 0.6619	0.6141 0.6367 0.6566 0.6686	-0.0412 -0.0273 -0.0127 -0.0067

Table 41
ESTIMATED DRILLING TIME FUNCTION FOR GOMEZ FIELD (TEXAS)
FOR 13-3/4-INCH DIAMETER WELLS

 $Y_{DT} = 10.45 + 0.88(10^{-2})X + 0.60(10^{-5})X^{2}$

where:

Y_{DT} = Drilling time in hours

X = Depth in feet

 COEFFICIENT
 STANDARD ERROR
 T-VALUE
 VARIABLE MEAN
 SIMPLE R(Y,X)

 0.10457873E-01
 0.17136010E-01
 0.61028636E 00
 0.099999999 01
 0.099999999 01

 0.88156084E-05
 0.64099879E-05
 0.13752925E 01
 0.60037261E 04
 0.95782527E 00

 0.60525167E-08
 0.54718440E-09
 0.11061201E 02
 0.41971324E 08
 0.97572728E 00

RSQ = 0.9526 R = 0.9760 F(2,165) = 1657.5032 SUMUSQ = 0.3135 DURBIN-W.= 0.1843

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	\mathbf{x}_1	$\frac{Y_i}{1000}$	Ŷ 1000	$\frac{\mathbf{Y} - \mathbf{\hat{Y}}}{1000}$
1 2 3 4 5	1573.00 1964.00 2512.00 2691.00 2967.00 3250.00	0.0328 0.0476 0.0651 0.0768 0.0991 0.1166	0.0393 0.0511 0.0708 0.0780 0.0899 0.1030	-0.0065 -0.0036 -0.0057 -0.0012 0.0092 0.0135

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	X ₁	Y 1000	Ŷ 1000	$\frac{\underline{Y} - \widehat{Y}}{1000}$
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	X ₁ 3458.00 3622.00 3695.00 3877.00 4136.00 4492.00 4723.00 4932.00 5411.00 5566.C0 5660.00 5855.00 5957.00 6115.00 6214.00 6592.00 7125.00 7620.00 7926.00 8033.00 8119.00		0.1133 0.1218 0.1257 0.1356 0.1505 0.1722 0.1871 0.2012 0.2354 0.2470 0.2543 0.2696 0.2778 0.2907 0.2989 0.3316 0.3805 0.4291 0.4606 0.4718 0.4810 0.5301	0.0182 0.0230 0.0239 0.0282 0.0321 0.0304 0.0325 0.0331 0.0194 0.0173 0.0211 0.0173 0.0156 0.0156 0.0156 0.0156 0.0156 0.0508 0.0542 0.0608 0.0602 0.0646 0.0755
28 29 30 31 32 33 34 35	8814.00 9032.00 9410.00 9618.00 9734.00 9911.00 10090.00	0.6253 0.6433 0.6678 0.6826 0.6931 0.7171 0.7381 0.7581	0.5584 0.5838 0.6294 0.6551 0.6697 0.6924 0.7156	0.0670 0.0595 0.0385 0.0274 0.0233 0.0247 0.0225 0.0168

	OBSERVE	D VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE		Y	Ŷ	y - Ŷ
NUMBER	v	1000	1000	1000
MOMDER	x ₁	1000	1000	1000
27	10406.00	0.7723	0.7576	0.0147
37 38	10516.CO	0.7866	0.7725	0.0147 0.0141
39	657.00	0.0150	0.0189	-0.0039
40	1893.00	0.0460	0.0488	-0.0039
40 41	2393.00	0.0665	0.0662	0.0003
42	2697.00	0.0847	0.0783	0.0003
43	3030.00	0.1002	0.0927	0.0075
44	3330.00	0.1175	0.1069	0.0106
45	3571.00	0.1367	0.1191	0.0176
46	3946.00	0.1575	0.1395	0.0180
47	4412.00	0.1782	0.1672	0.0111
48	4719.00	0.1935	0.1868	0.0067
49	5301.00	0.2165	0.2273	-0.0108
50	5557.00	0.2317	0.2463	-0.0146
51	5670.00	0.2410	9.2550	-0.0140
52	5901.00	0.2575	0.2732	-0.0157
53	5983.00	0.2685	0.2799	-0.0114
54	6090.00	0.2810	0.2886	-0.0076
55	6182.00	0.2922	0.2963	-0.0040
56	6263.00	0.3067	0.3031	0.0037
57	6307.00	0.3160	0.3068	0.0092
58	6781.00	0.3607	0.3485	0.0122
59	7283.00	0.4045	0.3957	0.0088
60	7535.00	0.4282	0.4205	0.0077
61	7728.00	0.4445	0.4401	0.0044
62	7870.00	0.4605	0.4547	0.0058
63	8111.00	0.4785	0.4801	-0.0016
64	8290.00	0.4925	0.4995	-0.0070
65	8530.00	0.5112	0.5260	-0.0148
66	8719.00	0.5242	0.5474	-0.0232

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \mathbf{\hat{Y}}}{1000}$
	9002.00	0.5427	0.5803	-0.0375
67	9502.00	0.5697	0.6407	-0.0709
68	624.00	0.0140	0.0183	-0.0043
69	2025.00	0.0367	0.0531	-0.0164
70	2646.00	0.0550	0.0762	-0.0212
71	2775.00	0.0550	0.0815	-0.0163
72	3048.00	0.0812	0.0936	-0.0123
73	3315.00	0.0012	0.1062	-0.0069
74		0.1190	0.1199	-0.0009
75	3586.00 3817.00	0.1382	0.1323	0.0060
76		0.1502	0.1523	0.0079
77	4181.00	0.1762	0.1659	0.0104
78	4391.00	0.1947	0.1832	0.0116
79	4663.00	0.2132	0.1982	0.0150
80	4889.00	0.2367	0.2309	0.0059
81	5350.00	0.2507	0.2437	0.0071
82	5522.00	0.2587	0.2557	0.0030
83	5679.00		0.2620	0.0030
84	5760.00	0.2632 0.2822	0.2885	-0.0012
85	6088.00		0.2005	-0.0002
86	6256.00	0.2932	0.3108	-0.0072
87	6354.00	0.2997	0.3340	-0.0111
88	6619.00	0.3222	0.3401	-0.0117
89	6688.00	0.3262	0.3468	-0.0159
90	6762.00	0.3302		-0.0100
91	6773.00	0.3422	0.3478	-0.0056
92	6785.00	0.3432	0.3489	0.0057
93	7128.00	0.3865	0.3808	0.0057
94	7448.00	0.4460	0.4119	0.0341
95	7539.00	0.4587	0.4209	0.0378
96	7615.00	0.4682	0.4286	0.0397

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE		Y	Ŷ	Y - Ŷ
NUMBER	\mathbf{x}_1	1000	1000	1000
97	7675.00	0.4805	0.4346	0.0459
98	7809.00	0.4962	0.4484	0.0479
99	7910.00	0.5112	0.4589	0.0524
100	7986.00	0.5220	0.4669	0.0552
101	8115.00	0.5388	0.4806	0.0583
102	8241.00	0.5528	0.4942	0.0587
103	8390.00	0.5726	0.5105	0.0622
104	8542.00	0.5906	0.5274	0.0633
105	8678.00	0.6066	0.5428	0.0639
106	8811.00	0.6216	0.5580	0.0636
107	8956.00	0.6374	0.5749	0.0625
108	9083.00	0.6519	0.5899	0.0620
109	9192.00	0.6686	0.6029	0.0658
110	9282.00	0.6846	0.6137	0.0709
111	9420.00	0.7068	0.6306	0.0763
112	9500.00	0.7173	0.6404	0.0769
113	550.00	0.0132	0.0171	-0.0039
114	1521.00	0.0327	0.0379	-0.0051
115	2108.00	0.0497	0.0559	-0.0062
116	2586.00	0.0697	0.0737	-0.0040
117	2874.00	0.0870	0.0858	0.0012
118	3092.00	0.0980	0.0956	0.0024
119	3412.00	0.1162	0.1110	0.0053
120	3852.00	0.1342	0.1342	0.0000
121	4493.00	0.1535	0.1722	-0.0187
122	4753.00	0.1677	0.1891	-0.0213
123	5278.00	0.1912	0.2256	-0.0343
124	5520.00	0.2080	0.2435	-0.0355
125	5683.00	0.2220	0.2560	-0.0340
126	5881.00	0.2320	0.2716	-0.0396

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	<u>Y</u> 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
	6133.00	0.2452	0.2922	-0.0469
127	6356.00	0.2577	0.3110	-0.0533
128	6594.00	0.2710	0.3318	-0.0608
129	6891.00	0.2870	0.3586	-0.0716
1 30	7414.00	0.3242	0.4085	-0.0843
131	7550.00	0.3332	0.4220	-0.0888
132	7702.00	0.3480	0.4374	-0.0894
133	7829.00	0.3580	0.4505	-0.0925
134	8080.00	0.3747	0.4768	-0.1021
135	8366.00	0.3917	0.5078	-0.1161
136	8712.00	0.4097	0.5466	-0.1369
137	9123.00	0.4297	0.5946	-0.1649
138	9442.00	0.4415	0.6333	-0.1918
139	720.00	0.0155	0.0199	-0.0044
140	1923.00	0.0370	0.0498	-0.0128
141	2360.00	0.0548	0.0650	-0.0102
142	2593.00	0.0656	0.0740	-0.0084
143	2742.00	0.0783	0.0801	-0.0018
144	2900.00	0.0103	0.0869	0.0004
145		0.1053	0.1011	0.0042
146	3210.00	0.1073	0.1181	0.0092
147	3552.00	0.1501	0.1366	0.0135
148	3895.00	0.1691	0.1565	0.0126
149	4238.00	0.1781	0.1699	0.0082
150	4455.00	0.1731	0.1896	0.0077
151	4761.00	0.2208	0.2276	-0.0068
152	5306.00	0.2360	0.2459	-0.0098
153	5551.00		0.2639	-0.0118
154	5783.00	0.2520	0.2884	-0.0173
155	6087.00	0.2710	0.3035	-0.0030
156	6268.00	0.3005	0.3035	0.0000

	OBSERVEI	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	<u>Y</u> 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
157 158 159 160 161 162 163 164 165 166 167	6466.00 6620.00 6688.00 6820.00 6876.00 7620.00 8469.00 8736.00 9034.00 9366.00	0.3178 0.3290 0.3352 0.3437 0.3492 0.4062 0.4774 0.4887 0.4932 0.5157 0.5379	0.3205 0.3341 0.3401 0.3521 0.3572 0.4291 0.5192 0.5404 0.5494 0.5841 0.6240 0.6404	-0.0027 -0.0051 -0.0049 -0.0084 -0.0080 -0.0229 -0.0418 -0.0517 -0.0562 -0.0684 -0.0860 -0.0935

Table 42
ESTIMATED DRILLING TIME FUNCTION FOR GOMEZ FIELD (TEXAS)
FOR 17-1/2-INCH DIAMETER WELLS

 $Y_{DT} = 0.107(10^{-2})x^2 + 0.056x - 13$

where:

Y_{DT} = Drilling time in hours

X = Depth in feet

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.56300545E-04		-0.35730784E-00 0.18235304E 01 0.17557510E 01	0.09999999E 01 0.28082075E 04 0.89652321E 07	0.84177455E 00

RSQ = 0.7171 R = 0.8468 F(2,103) = 130.5121 SUMUSQ = 0.5445 DURBIN-W.= 0.1609

	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
1 2 3 4 5	664.00 838.00 1284.00 1784.00 2101.00 2464.00	0.0310 0.0390 0.0630 0.0880 0.1190 0.1587	0.0292 0.0418 0.0771 0.1217 0.1528 0.1910	0.0018 -0.0028 -0.0141 -0.0337 -0.0338 -0.0323

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\underline{Y} - \widehat{\underline{Y}}}{1000}$
7	2678.00	0.1930	0.2149	-0.0219
7 8	2795.00	0.2102	. 0.2283	-0.0181
9	3010.00	0.2337	0.2538	-0.0201
10	3137.00	0.2497	0.2694	-0.0196
11	3325.00	0.2702	0.2930	-0.0228
12	3409.00	0.2882	0.3038	-0.0156
13	3488.00	0.3085	0.3141	-0.0056
14	3607.00	0.3315	0.3299	0.0016
15	3697.00	0.3485	0.3420	0.0065
16	103.00	0.0050	-0.0070	0.0120
17	702.00	0.0230	0.0319	-0.0089
18	1678.00	0.0537	0.1118	-0.0581
19	2192.00	0.0730	0.1621	-0.0891
20	2488.00	0.0910	0.1936	-0.1026
21	2703.00	0.1040	0.2177	-0.1137
22	2925.00	0.1075	0.2436	-0.1361
23	3073.00	0.1262	0.2615	-0.1353
24	3243.00	0.1432	0.2826	-0.1394
25	3365.00	0.1582	0.2981	-0.1399
26	3574.00	0.1797	0.3255	-0.1457
27	3768.00	0.1967	0.3517	-0.1549
28	3956.00	0.2125	0.3778	-0.1653
29	4171.00	0.2277	0.4087	-0.1810
30	4420.00	0.2390	0.4457	-0.2067
31	643.00	0.0420	0.0278	0.0142
32	1288.00	0.0755	0.0774	-0.0019
33	1752.00	0.1050	0.1187	-0.0137
34	2075.00	0.1352	0.1502	-0.0149
35	2525.00	0.1690	0.1977	-0.0287
36	2699.00	0.2137	0.2173	-0.0035

	1		ESTIMATED	RESIDUAL
	OBSERVE	D VALUES	VALUES	
SAMPLE		Y	Ŷ	y - Ŷ
ATTI CRED	v	1000	1000	1000
NUMBER	x ₁			
37	2860.00	0.2447	0.2359	0.0088
38	3045.00	0.2740	0.2581	0.0159
39	3229.00	0.2942	0.2808	0.0134
40	3368.00	0.3150	0.2985	0.0165
41	3521.00	0.3530	0.3184	0.0346
42	3657.00	0.3962	0.3366	0.0597
43	4011.00	0.4372	0.3856	0.0516
44	4240.00	0.4530	0.4188	0.0342
45	650.00	0.0344	0.0282	0.0062
46	1618.00	0.0719	0.1063	-0.0344
47	2390.00	0.1174	0.1830	-0.0656
48	3014.00	0.1716	0.2543	-0.0827
49	3178.00	0.1954	0.2745	-0.0791
50	3341.00	0.2154	0.2950	-0.0796
51	3622.00	0.2576	0.3319	-0.0742
52	3887.00	0.2784	0.3682	-0.0898
53	4239.00	0.3171	0.4187	-0.1015
54	843.00	0.0395	0.0422	-0.0027
55	1193.00	0.0615	0.0696	-0.0081
56	1312.00	0.0870	0.0795	0.0075
57	1556.00	0.1210	0.1007	0.0203
58	1936.00	0.1460	0.1364	0.0096
59	2248.00	0.1770	0.1679	0.0091
60	2444.00	0.2092	0.1888	0.0204
61	2573.00	0.2670	0.2031	0.0639
62	2890.00	0.3357	0.2395	0.0963
63	2974.00	0.3482	0.2495	0.0987
64	3071.00	0.3597	0.2613	0.0985
65	3126.00	0.3677	0.2680	0.0997
6 6	3226.00	0.3807	0.2805	0.1003
00	3220.00			

	OBSERVEI	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE	ł	Y	Ŷ	Y - Ŷ
NUMBER	\mathbf{x}_{1}	1000	1000	1000
HOMBER	1		1	1 2000
67	2211 00	0.3932	0.2912	0.1020
68	3311.00 3383.00	0.4055	0.3004	0.1051
69	3706.00	0.4352	0.3432	0.0920
70	3858.00	0.4457	0.3641	0.0816
71	4075.00	0.4662	0.3948	0.0010
72	4203.00	0.4787	0.4134	0.0654
73	825.00	0.0730	0.0409	0.0321
74	1188.00	0.1055	0.0692	0.0363
75	1702.00	0.1527	0.1140	0.0387
76	2100.00	0.1837	0.1527	0.0311
77	2500.00	0.2200	0.1950	0.0250
78	2781.00	0.2807	0.2267	0.0540
79	2993.00	0.3135	0.2518	0.0617
80	3083.00	0.3335	0.2627	0.0708
81	3223.00	0.3527	0.2801	0.0727
82	3251.00	0.3567	0.2836	0.0731
83	3281.00	0.3645	0.2874	0.0771
84	3346.00	0.3767	0.2957	0.0811
85	3354.00	0.3812	0.2967	0.0845
86	3491.00	0.4060	0.3145	0.0915
87	3848.00	0.4632	0.3627	0.1005
88	3929.00	0.4712	0.3740	0.0972
89	3960.00	0.4762	0.3784	0.0978
90	4051.00	0.4897	0.3914	0.0984
91	4161.00	0.5052	0.4073	0.0980
92	4228.00	0.5195	0.4171	0.1024
93	640.00	0.0430	0.0275	0.0155
94	1143.00	0.0785	0.0655	0.0130
95	1597.00	0.1115	0.1044	0.0071
96	2160.00	0.1440	0.1588	-0.0148

	OBSERVE	D VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x,	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
97 98 99 100 101 102 103 104 105 106	2396.00 2530.00 2918.00 3056.00 3186.00 3410.00 3581.00 3788.00 4102.00	0.1720 0.1985 0.2360 0.2495 0.2682 0.2885 0.3115 0.3350 0.3690 0.3982	0.1836 0.1983 0.2428 0.2594 0.2755 0.3039 0.3264 0.3544 0.3987 0.4496	-0.0116 0.0002 -0.0068 -0.0099 -0.0072 -0.0154 -0.0149 -0.0194 -0.0297 -0.0514

Table 43
ESTIMATED DRILLING TIME FUNCTION FOR AGGREGATED LOCKRIDGE
AND S. PYOTE (TEXAS) FOR 12-1/4-INCH DIAMETER WELLS

 $Y_{DT} = 42 + 0.02X + 0.40(10^{-3})X^2$

where:

 $Y_{\overline{DT}}$ = Drilling time in hours

X = Depth in feet

COEFFICIENT	STANDARD ERROR	T-VALUE	VARIABLE MEAN	SIMPLE R(Y,X)
0.41661263E-01	0.34418273E-01	0.12104402E 01	0.09999999E 01	0.95736743E 00
0.22388936E-04	0.12385736E-04	0.18076387E 01	0.65690298E 04	
0.40312144E-08	0.98353661E-09	0.40986928E 01	0.50860722E 08	

RSQ = 0.9339 R = 0.9664 F(2,64)= 452.1280 SUMUSQ = 0.1940 DURBIN-W.= 0.2216

	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
SAMPLE	cr ·	<u>у</u> 1000	$\frac{\widehat{\mathbf{Y}}}{1000}$	$\frac{\mathbf{Y} - \hat{\mathbf{Y}}}{1000}$
NUMBER		1000	1000	1000
1	1444.00	0.0647	0.0824	-0.0176
2	2202.00	0.1192	0.1105	0.0087
3	2593.00	0.1462	0.1268	0.0194
4	3548.00	0.1969	0.1718	0.0251
5	4328.00	0.2379	0.2141	0.0239
6	4733.00	0.2572	0.2379	0.0193

			ESTIMATED	
	OBSERVED	VALUES	VALUES	RESIDUAL
SAMPLE NUMBER	v	Y 1000	Ŷ 1000	$\frac{Y - \hat{Y}}{1000}$
NUMBER	\mathbf{x}_1	1000	1000	
7	5082.00	0.2782	0.2596	0.0187
8	5453.00	0.2975	0.2836	0.0139
9	5771.00	0.3178	0.3051	0.0127
10	5822.00	0.3228	0.3087	0.0142
11	6655.00	0.4278	0.3692	0.0587
12	7555.00	0.5211	0.4409	0.0802
13	8290.00	0.6154	0.5043	0.1111
14	9531.00	0.7384	0.6212	0.1172
15	9543.00	0.7479	0.6224	0.1255
16	9675.00	0.7632	. 0 • 6 3 5 6	0.1276
17	10002.00	0.7962	0.6689	0.1274
18	10130.00	0.8197	0.6821	0.1376
19	10198.00	0.8294	0.6892	0.1402
20	1500.00	0.0673	0.0843	-0.0171
21	2500.00	0.1344	0.1228	0.0115
22	3900.00	0.2096	0.1903	0.0193
23	4449.00	0.2353	0.2211	0.0143
24	4934.00	0.2513	0.2503	0.0011
25	5481.00	0.2708	0.2855	-0.0146
26	6123.00	0.2971	0.3299	-0.0327
27	7074.00	0.3726	0.4018	-0.0291
28	7739.00	0.4166	0.4564	-0.0397
29	8348.00	0.4509	0.5095	-0.0586
30	9180.00	0.5049	0.5869	-0.0820
31	9434.00	0.5236	0.6117	-0.0880
32	9745.00	0.5559	0.6427	-0.0867
33	9934.00	0.5716	0.6619	-0.0903
34	10120.00	0.5856	0.6811	-0.0955
35	1500.00	0.0673	0.0843	-0.0171
36	2500.00	0.1344	0.1228	0.0115

	OBSERVE	D VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x	Y 1000	Ŷ 1000	$\frac{Y - \hat{Y}}{1000}$
ROMBER	\mathbf{x}_1	1000	1000	2000
	3900.00	0.2096	0.1903	0.0193
37	4640.00	0.2389	0.2323	0.0066
38	5249.00	0.2642	0.2702	-0.0060
39	5652.00	0.2819	0.2970	-0.0050
40	6304.00	0.3346	0.3430	-0.0130
41 42	6968.00	0.3979	0.3934	0.0045
	7471.00	0.4294	0.4339	-0.0045
43 44	8091.00	0.4649	0.4867	-0.0218
44 45	8524.00	0.4952	0.5254	-0.0302
46	9332.00	0.5589	0.6017	-0.0427
47	9729.00	0.5924	0.6411	-0.0486
48	9963.00	0.6087	0.6649	-0.0561
49	10129.00	0.6202	0.6820	-0.0618
50	1371.00	0.0615	0.0799	-0.0185
51	1719.00	0.0818	0.0921	-0.0103
52	2669.00	0.1285	0.1301	-0.0017
53	3711.00	0.1810	0.1803	0.0007
54	4420.00	0.2200	0.2194	0.0006
55	4882.00	0.2365	0.2470	-0.0106
56	5440.00	0.2620	0.2828	-0.0208
57	5860.00	0.2813	0.3113	-0.0300
58	6085.00	0.2996	0.3272	-0.0276
59	6932.00	0.3746	0.3906	-0.0160
60	7459.00	0.4141	0.4329	-0.0189
61	8290.00	0.4801	0.5043	-0.0242
62	8916.00	0.5328	0.5617	-0.0290
63	9566.00	0.5968	0.6247	-0.0279
64	9717.00	0.6178	0.6398	-0.0221
65	9870.00	0.6395	0.6553	-0.0158
66	10040.00	0.6568	0.6728	-0.0160
67	10210.00	0.6725	0.6905	-0.0180

Table 44

ESTIMATED DRILLING TIME FUNCTION FOR AGGREGATED LOCKRIDGE

AND S. PYOTE (TEXAS) FOR 13-3/4-INCH DIAMETER WELLS

 $Y_{DT} = 62 + 0.24(10^{-2})X + 0.81(10^{-5})X^{2}$

where:

 $Y_{\overline{DT}}$ = Drilling time in hours

X = Depth in feet

COEFFICIENT STANDARD ERROR T-VALUE VARIABLE MEAN SIMPLE R(Y,X)

0.61847210E-01 0.37793708E-01 0.16364419E 01 0.09999999E 01 0.
0.23826724E-05 0.12467415E-04 0.19111197E-00 0.72590074E 04 0.94038161E 00 0.81051183E-08 0.94436096E-09 0.85826486E 01 0.60261369E 08 0.96225456E 00

RSQ = 0.9260 R = 0.9623 F(2,131) = 819.0731 SUMUSQ = 0.9694 DURBIN-W.= 0.0952

	OBSERVED	VALUES	ESTIMATED RESIDUA	
SAMPLE NUMBER	x ₁	1000 Ā	Ŷ 1000	$\frac{\underline{Y} - \widehat{Y}}{1000}$
1 2 3 4 5	140.00 1233.00 1909.00 2358.00 2913.00 3381.00	0.0046 0.0436 0.0788 0.1178 0.1560 0.1990	0.0623 0.0771 0.0959 0.1125 0.1376 0.1626	-0.0578 -0.0335 -0.0172 0.0052 0.0184 0.0364

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	\mathbf{x}_1	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
7	3842.00	0.2325	0.1906	0.0(1.0
8	4494.00	0.2983		0.0418
9	4835.00	0.2983	0.2362	0.0620
10	5145.00	0.3806	0.2628	0.0769
11	5420.00	0.4076	0.2887	0.0919
12	5586.00	0.4176	0.3129	0.0947
13	5818.00	0.4404	0.3281 0.3501	0.0895
14	6039.00	0.4634	0.3718	0.0903
15	6205.00	0.4824	0.3887	0.0915 0.0937
16	6465.00	0.5006	0.4160	0.0846
17	6533.00	0.5121	0.4233	0.0887
18	6683.00	0.5266	0.4398	0.0868
19	6843.00	0.5458	0.4577	0.0881
20	7069.00	0.5690	0.4837	0.0853
21	7192.00	0.5838	0.4982	0.0856
22	7225.00	0.5890	0.5022	0.0868
23	7365.00	0.6075	0.5190	0.0884
24	7508.00	0.6313	0.5366	0.0004
25	7644.00	0.6515	0.5536	0.0978
26	7779.00	0.6690	0.5708	0.0981
27	7894.00	0.6828	0.5857	0.0970
28	7985.00	0.6913	0.5977	0.0976
29	8518.00	0.7523	0.6702	0.0930
30	8818.00	0.7858	0.7131	0.0020
31	9132.00	0.8286	0.7595	0.0691
32	9210.00	0.8384	0.7713	0.0671
33	9333.00	0.8616	0.7901	0.0071
34	9478.00	0.8881	0.8125	0.0755
35	9575.00	0.9093	0.8277	0.0135
36	9703.00	0.9333	0.8480	0.0852

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	x ₁	Y 1000	Ŷ 1000	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
			.,l	
37	9792.00	0.9541	0.8623	0.0917
38	9836.00	0.9648	0.8694	0.0954
39	1300.00	0.0425	0.0786	-0.0362
40	2390.00	0.1093	0.1138	-0.0045
41	2769.00	0.1490	0.1306	0.0184
42	3496.00	0.2007	0.1692	0.0315
43	4126.00	0.2442	0.2097	0.0346
44	4726.00	0.2779	0.2541	0.0238
45	5140.00	0.3086	0.2882	0.0204
46	5481.00	0.3233	0.3184	0.0049
47	5841.00	0.3386	0.3523	-0.0137
48	6241.00	0.3553	0.3924	-0.0371
49	6551.00	0.3690	0.4253	-0.0563
50	6771.00	0.3813	0.4496	-0.0682
51	6940.00	0.3938	0.4688	-0.0749
52	7096.00	0.4055	0.4869	-0.0813
53	7167.00	0.4112	0.4953	-0.0840
54	7518.00	0.4607	0.5379	-0.0771
55	7602.00	0.4742	0.5484	-0.0741
56	7693.00	0.4869	0.5599	-0.0729
57	7900.00	0.5274	0.5865	-0.0591
58	7971.00	0.5387	0.5958	-0.0571
59	8234.00	0.5757	0.6310	-0.0553
60	8435.00	0.6052	0.6586	-0.0534
61	8690.00	0.6472	0.6946	-0.0474
62	8831.00	0.6735	0.7150	-0.0414
63	8912.00	0.6748	0.7268	-0.0520
64	9162.00	0.7248	0.7640	-0.0393
65	9202.00	0.7341	0.7701	-0.0360
	9380.00	0.7766	0.7973	-0.0207
66		3.3	· · · ·	

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE NUMBER	\mathbf{x}_1	Y 1000	Ŷ 1000	$\frac{Y - \hat{Y}}{1000}$
				
	0.00			
67	9433.00	0.7856	0.3055	-0.0199
68	9481.00	0.7929	0.8130	-0.0201
69	9665.00	0.8252	0.8420	-0.0168
70	9924.00	0.8782	0.8837	-0.0056
71	10209.00	0.9435	0.9309	0.0126
72	10412.00	0.9858	0.9653	0.0205
73	10667.00	1.0548	1.0095	0.0453
74	10735.00	1.0968	1.0215	0.0753
75	10801.00	1.1161	1.0331	0.0829
76	10850.00	1.1374	1.0419	0.0955
77	10894.00	1.1597	1.0497	0.1100
78	10998.00	1.1780	1.0684	0.1096
79	11040.00	1.1847	1.0760	0.1087
80	11100.00	1.1962	1.0869	0.1093
81	1327.00	0.0382	0.0793	-0.0410
82	2300.00	0.0950	0.1102	-0.0152
83	2977.00	0.1355	0.1408	-0.0053
84	3530.00	0.1832	0.1713	0.0033
85	4066.00	0.2282	0.2055	0.0117
86	4804.00	0.2852	0.2603	0.0227
87	5331.00	0.3149	0.3049	0.0249
88	5650.00	0.3302	0.3340	-0.0038
89	5963.00	0.3525	0.3643	-0.0038
90	6472.00	0.3758	0.4168	-0.0118
91	6801.00	0.3955	0.4529	-0.0410
92	7014.00	0.4132	0.4773	-0.0574
93	7374.00	0.4522	0.5201	
94	7791.00	0.5089	0.5724	-0.0679 -0.0635
95	8116.00	0.5449	0.5724	- -
96	8443.00	0.5979		-0.0702
70	3300	0.5319	0.6597	-0.0618

	OBSERVED	VALUES	ESTIMATED VALUES	RESIDUAL
SAMPLE		<u> Y</u>	Ŷ	<u>Y - Ŷ</u>
NUMBER	\mathbf{x}_1	1000	1000	1000
_	8790.00		0.7000	0.0500
97	9146.00	0.6561	0.7090	-0.0529 -0.0510
98	9395.00	0.7106	0.7616	
99	9520.00	0.7651	0.7996	-0.0345
100	9602.00	0.7906	0.8191	-0.0285
101	9682.00	0.8121	0.8320 0.8447	-0.0199 -0.0139
102	9799.00	0.8308		0.0130
103	9911.00	0.8765	0.8635	0.0194
104	10024.00	0.9010	0.8816 0.9001	0.0306
105	10150.00	0.9307		0.0352
106	10166.00	0.9562	0.9210 0.9237	0.0365
107	10411.00	0.9602	0.9652	0.0860
108	10638.00	1.0512 1.1149	1.0044	0.0880
109	10732.00	1.1379	1.0044	0.1170
110	10836.00	1.1632	1.0209	0.1170
111	10952.00	1.1912	1.0601	0.1311
112	1320.00	0.0453	0.0791	-0.0338
113	2139.00	0.0455	0.1040	-0.0164
114	2415.00	0.1069	0.1149	-0.0080
115	2447.00	0.1089	0.1162	-0.0080
116	2963.00	0.1522	0.1401	0.0121
117	3872.00	0.2089	0.1926	0.0163
118	4715.00	0.2566	0.2533	0.0103
119	5337.00	0.2916	0.3054	-0.0138
120	5928.00	0.3166	0.3608	-0.0442
121	6280.00	0.3293	0.3965	-0.0442
122 123	6652.00	0.3436	0.4363	-0.0927
123	6916.00	0.3631	0.4660	-0.1029
	7438.00	0.4118	0.5280	-0.1162
125 126	8132.00	0.4748	0.6172	-0.1424

SAMPLE NUMBER	OBSERVED VALUES		ESTIMATED VALUES	RESIDUAL
	x ₁	<u>Y</u> 1000	$\frac{\widehat{\mathbf{Y}}}{1000}$	$\frac{\mathbf{Y} - \widehat{\mathbf{Y}}}{1000}$
127 128 129 130 131 132 133	8542.00 8982.00 9495.00 9783.00 10299.00 10732.00 10930.00	0.5065 0.5435 0.5885 0.6395 0.7200 0.7760 0.7960 0.8043	0.6736 0.7371 0.8152 0.8609 0.9461 1.0209 1.0562	-0.1671 -0.1936 -0.2267 -0.2214 -0.2261 -0.2449 -0.2602