### Information Retrieval

CS 547/DS 547
Worcester Polytechnic Institute
Department of Computer Science
Instructor: Prof. Kyumin Lee

## Midterm Exam

max 78

min 29

avg 62

# **Upcoming Schedule**

March 17: due date of project proposal

March 21: due date of proposal presentation slides

# Recommenders

# Collaborative Recommendations

### Collaborative Recommendations

User-based recommendation

Item-based recommendation

### Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N



## User-User CF (|N|=2)

|        |   |   |   |   |   |   | user | 5 |   |   |    |    |    |
|--------|---|---|---|---|---|---|------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   |   | 5    |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4 |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    |

- rating between 1 to 5

- unknown rating

## User-User CF (|N|=2)

|        |   |   |   |   |   |   | user | S |   |   |    |    |    |
|--------|---|---|---|---|---|---|------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   | ? | 5    |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
| Ε      | 4 |   | 2 | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |      |   | 2 |   |    | 4  |    |

Neighbor selection: Identify users similar to user 5, and rated item 1

- estimate rating of movie 1 by user 5

### User-User CF (|N|=2)



### User-based CF (|K|=2)

|        |   |   |          |   |   |   | user | S |   |   |    |    |    |
|--------|---|---|----------|---|---|---|------|---|---|---|----|----|----|
|        |   | 1 | 2        | 3 | 4 | 5 | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |          | 3 |   | ? | 5    |   |   | 5 |    | 4  |    |
|        | 2 |   |          | 5 | 4 |   |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4        |   | 1 | 2 |      | 3 |   | 4 | 3  | 5  |    |
|        | 4 |   | 2        | 4 |   | 5 |      |   | 4 |   |    | 2  |    |
|        | 5 |   |          | 4 | 3 | 4 | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |          | 3 |   | 3 |      |   | 2 |   |    | 4  |    |
|        |   |   | <u> </u> |   |   |   |      | 1 |   |   |    |    |    |

**Compute similarity weights:** 

$$s_{5,3}$$
=0.21,  $s_{5,9}$ =0.47

Predict by taking weighted average:

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{xi} = \frac{\sum_{j \in K(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Similarity:-0.45

0.21

1.0 -0.15

0.47

-0.71

### User-based CF (|K|=2)

|        |   |   |   |   |   |     | user | S |   |   |    |    |    |
|--------|---|---|---|---|---|-----|------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5   | 6    | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   | 4.4 | 5    |   |   | 5 |    | 4  |    |
| (0     | 2 |   |   | 5 | 4 |     |      | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2   |      | 3 |   | 4 | 3  | 5  |    |
| _      | 4 |   | 2 | 4 |   | 5   |      |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4   | 2    |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3   |      |   | 2 |   |    | 4  |    |
|        | _ |   |   |   |   |     |      |   |   |   |    |    |    |

**Compute similarity weights:** 

$$s_{5,3}$$
=0.21,  $s_{5,9}$ =0.47

Predict by taking weighted average:

$$r_{1,5} = (0.21*3 + 0.47*5) / (0.21+0.47) = 4.4$$

$$r_{1,5} = \frac{(0.21*3 + 0.47*5)}{(0.21+0.47)} = 4.4$$

$$r_{xi} = \frac{\sum_{j \in K(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Similarity:-0.45

0.21

1.0 -0.15

0.47

-0.71

### Item-based CF

 After computing the similarity between items we select a set of k most similar items to the target item and generate a predicted value of user x's rating

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

```
s_{ij}... similarity of items i and j r_{xj}...rating of user x on item j N(i;x)... set items rated by x similar to i
```

|        |   |   |   |   |   |   | users | 5 |   |   |    |    |    |
|--------|---|---|---|---|---|---|-------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6     | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   |   | 5     |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |       | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |       | 3 |   | 4 | 3  | 5  |    |
|        | 4 |   | 2 | 4 |   | 5 |       |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2     |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |       |   | 2 |   |    | 4  |    |

- rating between 1 to 5

- unknown rating

|        |   |   |   |   |   |   | users | S |   |   |    |    |    |
|--------|---|---|---|---|---|---|-------|---|---|---|----|----|----|
|        |   | 1 | 2 | 3 | 4 | 5 | 6     | 7 | 8 | 9 | 10 | 11 | 12 |
|        | 1 | 1 |   | 3 |   | ? | 5     |   |   | 5 |    | 4  |    |
|        | 2 |   |   | 5 | 4 |   |       | 4 |   |   | 2  | 1  | 3  |
| movies | 3 | 2 | 4 |   | 1 | 2 |       | 3 |   | 4 | 3  | 5  |    |
|        | 4 |   | 2 | 4 |   | 5 |       |   | 4 |   |    | 2  |    |
|        | 5 |   |   | 4 | 3 | 4 | 2     |   |   |   |    | 2  | 5  |
|        | 6 | 1 |   | 3 |   | 3 |       |   | 2 |   |    | 4  |    |



| users  |          |   |   |   |   |   |   |   |   |   |    |    |    |             |
|--------|----------|---|---|---|---|---|---|---|---|---|----|----|----|-------------|
|        |          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m)    |
|        | 1        | 1 |   | 3 |   | ? | 5 |   |   | 5 |    | 4  |    | 1.00        |
|        | 2        |   |   | 5 | 4 |   |   | 4 |   |   | 2  | 1  | 3  | -0.18       |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    | <u>0.41</u> |
|        | 4        |   | 2 | 4 |   | 5 |   |   | 4 |   |    | 2  |    | -0.10       |
|        | 5        |   |   | 4 | 3 | 4 | 2 |   |   |   |    | 2  | 5  | -0.31       |
|        | <u>6</u> | 1 |   | 3 |   | 3 |   |   | 2 |   |    | 4  |    | <u>0.59</u> |

#### **Neighbor selection:**

Identify movies similar to movie 1, rated by user 5

#### Here we use Pearson correlation as similarity:

- 1) Subtract mean rating  $m_i$  from each movie i  $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

| users  |          |   |   |   |   |   |   |   |   |   |    |    |    |             |
|--------|----------|---|---|---|---|---|---|---|---|---|----|----|----|-------------|
|        |          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m)    |
|        | 1        | 1 |   | 3 |   | ? | 5 |   |   | 5 |    | 4  |    | 1.00        |
|        | 2        |   |   | 5 | 4 |   |   | 4 |   |   | 2  | 1  | 3  | -0.18       |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    | <u>0.41</u> |
| Ε      | 4        |   | 2 | 4 |   | 5 |   |   | 4 |   |    | 2  |    | -0.10       |
|        | 5        |   |   | 4 | 3 | 4 | 2 |   |   |   |    | 2  | 5  | -0.31       |
|        | <u>6</u> | 1 |   | 3 |   | 3 |   |   | 2 |   |    | 4  |    | <u>0.59</u> |

**Compute similarity weights:** 

s<sub>1,3</sub>=0.41, s<sub>1,6</sub>=0.59

|        | users    |   |   |   |   |     |   |   |   |   |    |    |    |             |
|--------|----------|---|---|---|---|-----|---|---|---|---|----|----|----|-------------|
|        |          | 1 | 2 | 3 | 4 | 5   | 6 | 7 | 8 | 9 | 10 | 11 | 12 | sim(1,m)    |
|        | 1        | 1 |   | 3 |   | 2.6 | 5 |   |   | 5 |    | 4  |    | 1.00        |
|        | 2        |   |   | 5 | 4 |     |   | 4 |   |   | 2  | 1  | 3  | -0.18       |
| movies | <u>3</u> | 2 | 4 |   | 1 | 2   |   | 3 |   | 4 | 3  | 5  |    | <u>0.41</u> |
|        | 4        |   | 2 | 4 |   | 5   |   |   | 4 |   |    | 2  |    | -0.10       |
|        | 5        |   |   | 4 | 3 | 4   | 2 |   |   |   |    | 2  | 5  | -0.31       |
|        | <u>6</u> | 1 |   | 3 |   | 3   |   |   | 2 |   |    | 4  |    | <u>0.59</u> |

**Predict by taking weighted average:** 

$$r_{1.5} = (0.41^2 + 0.59^3) / (0.41 + 0.59) = 2.6$$

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

### Combining Global Baseline with CF

#### Global Baseline estimate:

Joe will give The Sixth Sense 4 stars

### Local neighborhood (CF/NN):

- Joe didn't like related movie Signs
- Rated it 1 star below his average rating

### Final estimate

• Joe will rate The Sixth Sense 4 - 1 = 3 stars

# CF: Common practice $r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{i,j} s_{ij}}$

Before:
$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

- Define similarity s<sub>ii</sub> of items i and j
- Select k nearest neighbors N(i; x)
  - Items most similar to i, that were rated by x
- Estimate rating  $r_{xi}$  as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

$$b_{xi} = \mu + b_x + b_i$$

baseline estimate for  $r_{xi}$   $\mu$  = overall mean movie rating

•  $b_x$  = rating deviation of user x= (avg. rating of user  $\mathbf{x}$ ) –  $\boldsymbol{\mu}$ 

 $b_i$  = rating deviation of movie i

# Latent Factor Models

## The Netflix Prize

### Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005
- Test data
  - Last few ratings of each user (2.8 million)
  - Evaluation criterion: Root Mean Square Error (RMSE) =

$$\sqrt{\frac{1}{|R|}\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
- Competition
  - 2,700+ teams
  - \$1 million prize for 10% improvement on Netflix

## Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563

## BellKor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
  - Global:
    - Overall deviations of users/movies
  - Factorization:
    - Addressing "regional" effects
  - Collaborative filtering:
    - Extract local patterns



# **Modeling Local & Global Effects**

### Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
  - ⇒ Baseline estimation:

    Joe will rate The Sixth Sense 4 stars



- Joe didn't like related movie Signs
- Rated it 1 star below his average rating

### Final estimate

■ Joe will rate The Sixth Sense 4 - 1 = 3 stars







## **Modeling Local & Global Effects**

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for  $r_{xi}$ 

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

 $\mu$  = overall mean rating  $\mathbf{b}_{x}$  = rating deviation of user  $\mathbf{x}$ =  $(avg. rating of user \mathbf{x}) - \mu$   $\mathbf{b}_{i}$  =  $(avg. rating of movie <math>\mathbf{i}) - \mu$ 

### **Problems/Issues:**

- 1) Similarity measures are "arbitrary"
- **2)** Pairwise similarities neglect interdependencies among users
- **3)** Taking a weighted average can be restricting

**Solution:** Instead of  $s_{ij}$  use  $w_{ij}$  that we estimate directly from data

# Idea: Interpolation Weights $w_{ij}$

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- A few notes:
  - N(i; x) ... set of movies rated by user x that are similar to movie i
  - $lackbr{w}_{ij}$  is the **interpolation weight** (some real number)
    - Note, we allow:  $\sum_{j \in N(i;x)} w_{ij} \neq 1$
  - $w_{ij}$  models interaction between pairs of movies (it does not depend on user x)

# Idea: Interpolation Weights $w_{ij}$

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

- How to set  $w_{ij}$ ?
  - Remember, error metric is:

$$\sqrt{\frac{1}{|R|}}\sum_{(i,x)\in R}(\hat{r}_{xi}-r_{xi})^2$$
 or equivalently Sum of

Squared Error (SSE): 
$$\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$$

- Find w<sub>ii</sub> that minimize SSE on training data!
  - Models relationships between item i and its neighbors j
- w<sub>ij</sub> can be learned/estimated based on x and all other users that rated i

# Recommendations via Optimization

- Goal: Make good recommendations
  - Quantify goodness using RMSE:
     Lower RMSE ⇒ better recommendations



- Want to make good recommendations on items that user has not yet seen. Can't really do this!
- Let's build a system such that it works well on known (user, item) ratings
   And hope the system will also predict well the unknown ratings

# Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w<sub>ij</sub> that minimize SSE on training data!

$$J(w) = \sum_{x,i \in R} \left( \left[ b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^{2}$$
Predicted rating

Predicted rating

Think of w as a vector of numbers

# Detour: Minimizing a function

- A simple way to minimize a function f(x):
  - Compute the derivative  $\nabla f(x)$
  - Start at some point y and evaluate  $\nabla f(y)$
  - Make a step in the reverse direction of the gradient:  $y = y \nabla f(y)$
  - Repeat until converged



# Interpolation Weights

- So far:  $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$ 
  - Weights  $w_{ij}$  derived based on their role; no use of an arbitrary similarity measure  $(w_{ij} \neq s_{ij})$
  - Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model
  - Extract "regional" correlations



### Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

**Basic Collaborative filtering: 0.94** 

**CF+Biases+learned weights: 0.91** 

Grand Prize: 0.8563

### **Latent Factor Models**

Latent Factor Model on Netflix data:  $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$ 



- For now let's assume we can approximate the rating matrix R as a product of "thin"  $Q \cdot P^T$ 
  - R has missing entries but let's ignore that for now!
    - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

# Ratings as Products of Factors

How to estimate the missing rating of user x for item i?





| $\hat{r}_{xi} =$ | $q_i$ .                   | $p_x$          |
|------------------|---------------------------|----------------|
| $=\sum$          | $q_{if}$                  | $\cdot p_{xf}$ |
| -                | row <i>i</i> of<br>column |                |

|         | .1  | 4   | .2 |  |  |  |  |  |  |  |
|---------|-----|-----|----|--|--|--|--|--|--|--|
| (0      | 5   | .6  | .5 |  |  |  |  |  |  |  |
| items   | 2   | .3  | .5 |  |  |  |  |  |  |  |
| ite     | 1.1 | 2.1 | .3 |  |  |  |  |  |  |  |
|         | 7   | 2.1 | -2 |  |  |  |  |  |  |  |
|         | -1  | .7  | .3 |  |  |  |  |  |  |  |
| factors |     |     |    |  |  |  |  |  |  |  |

| _  |     |    |    |     |     | usc | 10  |     |    |                                         |     |     |
|----|-----|----|----|-----|-----|-----|-----|-----|----|-----------------------------------------|-----|-----|
| S  | 1.1 | 2  | .3 | .5  | -2  | 5   | .8  | 4   | .3 | 1.4                                     | 2.4 | 9   |
|    | 8   | .7 | .5 | 1.4 | .3  | -1  | 1.4 | 2.9 | 7  | 1.2                                     | 1   | 1.3 |
| fa | 2.1 | 4  | .6 | 1.7 | 2.4 | .9  | 3   | .4  | .8 | .7                                      | 6   | .1  |
| •  |     |    |    |     |     | -   |     |     |    | - · · · · · · · · · · · · · · · · · · · |     |     |

USERS

PT

# Ratings as Products of Factors

How to estimate the missing rating of user x for item i?





| $\hat{r}_{xi} =$ | $q_i$                         | $p_x$          |
|------------------|-------------------------------|----------------|
| $=\sum$          | $q_{if}$                      | $\cdot p_{xf}$ |
| - 1              | = row <i>i</i> of<br>= column |                |

|         | .1  | 4   | .2 |  |  |
|---------|-----|-----|----|--|--|
| (0      | 5   | .6  | .5 |  |  |
| items   | 2   | .3  | .5 |  |  |
| ite     | 1.1 | 2.1 | .3 |  |  |
|         | 7   | 2.1 | -2 |  |  |
|         | -1  | .7  | .3 |  |  |
| factors |     |     |    |  |  |

| _         |     |    |    |     |     |    |     |     |    |     |     |     |
|-----------|-----|----|----|-----|-----|----|-----|-----|----|-----|-----|-----|
| S         | 1.1 | 2  | .3 | .5  | -2  | 5  | .8  | 4   | .3 | 1.4 | 2.4 | 9   |
|           | 8   | .7 | .5 | 1.4 | .3  | -1 | 1.4 | 2.9 | 7  | 1.2 | 1   | 1.3 |
| <u>fa</u> | 2.1 | 4  | .6 | 1.7 | 2.4 | .9 | 3   | .4  | .8 | .7  | 6   | .1  |
|           |     |    |    |     |     |    |     |     |    |     |     |     |

users

PT

C

### Ratings as Products of Factors

How to estimate the missing rating of user x for item i?





| $\hat{r}_{xi} =$ | $q_i$                         | $p_x$          |
|------------------|-------------------------------|----------------|
| $=\sum$          | $q_{if}$                      | $\cdot p_{xf}$ |
|                  | = row <i>i</i> of<br>= column |                |

|       | .1  | 4     | .2 |
|-------|-----|-------|----|
| (0    | 5   | .6    | .5 |
| items | 2   | .3    | .5 |
| ite   | 1.1 | 2.1   | .3 |
|       | 7   | 2.1   | -2 |
|       | -1  | .7    | .3 |
| '     | f   | facto | rs |

| _        |     |    |    |     |     | usc | 10  |     |    |     |     |     |
|----------|-----|----|----|-----|-----|-----|-----|-----|----|-----|-----|-----|
| ors      | 1.1 | 2  | .3 | .5  | -2  | 5   | .8  | 4   | .3 | 1.4 | 2.4 | 9   |
| •<br>act | 8   | .7 | .5 | 1.4 | .3  | -1  | 1.4 | 2.9 | 7  | 1.2 | 1   | 1.3 |
| ff       | 2.1 | 4  | .6 | 1.7 | 2.4 | .9  | 3   | .4  | .8 | .7  | 6   | .1  |
| -        |     |    |    |     |     |     |     |     |    |     |     |     |

USERS

PT

G

#### **Latent Factor Models**



#### **Latent Factor Models**



### Finding the Latent Factors

#### **Latent Factor Models**

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$$



#### **Back to Our Problem**

- Want to minimize sum of the squared errors (SSE) for unseen test data
- Idea: Minimize SSE on training data
  - Want large k (# of factors) to capture all the signals
  - But, **SSE** on test data begins to rise for k > 2
- This is a classical example of overfitting:
  - With too much freedom (too many free parameters) the model starts fitting noise
    - That is it fits too well the training data and thus not generalizing well to unseen test data



### **Dealing with Missing Entries**

#### To solve overfitting we introduce regularization:



- Allow rich model where there is sufficient data
- Shrink aggressively where data is scarce

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[ \lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$  user set regularization parameters









#### Stochastic Gradient Descent



Want to find matrices P and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[ \lambda_1 \sum_{x} ||p_x||^2 + \lambda_2 \sum_{i} ||q_i||^2 \right]$$

- Gradient descent:
  - Initialize P and Q (using SVD, pretend missing ratings are 0)
  - Do gradient descent:

$$\blacksquare$$
 *P* ← *P* -  $\eta$  ·  $\nabla$  P

• 
$$\mathbf{Q} \leftarrow \mathbf{Q} - \eta \cdot \nabla \mathbf{Q}$$

How to compute gradient of a matrix?

Compute gradient of every element independently!

• where  $\nabla Q$  is gradient/derivative of matrix Q:

$$\nabla Q = [\nabla q_{if}]$$
 and  $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$ 

- Here  $q_{if}$  is entry f of row  $q_i$  of matrix Q
- Observation: Computing gradients is slow!

#### **Stochastic Gradient Descent**



- Gradient Descent (GD) vs. Stochastic GD
  - Observation:  $\nabla Q = [\nabla q_{if}]$  where

$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$$

- Here  $q_{if}$  is entry f of row  $q_i$  of matrix Q
- Idea: Instead of evaluating gradient over all ratings evaluate it for each individual rating and make a step
- GD:  $\mathbf{Q} \leftarrow \mathbf{Q} \eta \left[ \sum_{r_{xi}} \nabla \mathbf{Q}(r_{xi}) \right]$
- SGD:  $Q \leftarrow Q \mu \nabla Q(r_{xi})$ 
  - Faster convergence!
    - Need more steps but each step is computed much faster

#### SGD vs. GD

Convergence of GD vs. SGD



Iteration/step

**GD** improves the value of the objective function at every step.

**SGD** improves the value but in a "noisy" way.

**GD** takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!



# Extending Latent Factor Model to Include Biases

### **Modeling Biases and Interactions**



#### **Baseline predictor**

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition
  - $\mu$  = overall mean rating

  - $\mathbf{b}_{x}$  = bias of user  $\mathbf{x}$  $\mathbf{b}_{i}$  = bias of movie  $\mathbf{i}$

#### **User-Movie interaction**

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

### Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Mean rating user  $x$  movie  $i$ 

Moverall Bias for movie  $i$ 

User-Movie interaction

#### Example:

- Mean rating:  $\mu = 3.7$
- You are a critical reviewer: your ratings are 1 star lower than the mean:  $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie:  $b_i = +0.5$
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

### Fitting the New Model

#### Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit

$$+ \left( \frac{\lambda_{1}}{1} \sum_{i} \|q_{i}\|^{2} + \lambda_{2} \sum_{x} \|p_{x}\|^{2} + \lambda_{3} \sum_{x} \|b_{x}\|^{2} + \lambda_{4} \sum_{i} \|b_{i}\|^{2} \right)$$
regularization

 $\lambda$  is selected via grid-search on a validation set

- Stochastic gradient decent to find parameters
  - Note: Both biases  $b_x$ ,  $b_i$  as well as interactions  $q_i$ ,  $p_x$  are treated as parameters (and we learn them)

#### Performance of Various Methods

Global average: 1.1296

<u>User average: 1.0651</u>

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

### The Netflix Challenge: 2006-09

### Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
  - Improvements in Netflix
  - GUI improvements
  - Meaning of rating changed

#### Movie age

- Users prefer new movies without any reasons
- Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09



#### Temporal Biases & Factors

#### Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters  $b_x$  and  $b_i$  to depend on time
- (1) Parameterize time-dependence by linear trends
  - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i,\operatorname{Bin}(t)}$$

- Add temporal dependence to factors
  - $p_x(t)$ ... user preference vector on day t

#### Performance of Various Methods

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

**Latent factors+Biases+Time: 0.876** 

Still no prize! 
Getting desperate.

Try a "kitchen sink" approach!

Grand Prize: 0.8563

# The big picture solution of BellKor's Pragmatic Chaos



#### Standing on June 26th 2009



June 26th submission triggers 30-day "last call"

#### NETFLIX

#### **Netflix Prize**



Home

Rules

Leaderboard

Update

Progress Prize 2007 - RMSE = 0.8723 - Winning Team: KorBell

Download

#### Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 💠 leaders.

| Rank   | Team Name                           | Best Test Score      | % Improvement | Best Submit Time    |
|--------|-------------------------------------|----------------------|---------------|---------------------|
| Grand  | Prize - RMSE = 0.8567 - Winning Te  | apri BellKor's Pragn | natic Chane   |                     |
| 1      | BellKor's Pragmatic Chaos           | 0.8567               | 10.06         | 2009-07-26 18:18:28 |
| 2      | The Ensemble                        | 0.8567               | 10.06         | 2009-07-26 18:38:22 |
| 3      | Grand Prize Team                    | 0.8002               | J.9           | 000_0104:40         |
| 4      | Opera Solutions and Vandelay United | 0.8588               | 9.84          | 2009-07-10 01:12:31 |
| 5      | Vandelay Industries!                | 0.8591               | 9.81          | 2009-07-10 00:32:20 |
| 6      | PragmaticTheory                     | 0.8594               | 9.77          | 2009-06-24 12:06:56 |
| 7      | BellKor in BigChaos                 | 0.8601               | 9.70          | 2009-05-13 08:14:09 |
| 8      | Dace_                               | 0.8612               | 9.59          | 2009-07-24 17:18:43 |
| 9      | Feeds2                              | 0.8622               | 9.48          | 2009-07-12 13:11:51 |
| 10     | BigChaos                            | 0.8623               | 9.47          | 2009-04-07 12:33:59 |
| 11     | Opera Solutions                     | 0.8623               | 9.47          | 2009-07-24 00:34:07 |
| 12     | BellKor                             | 0.8624               | 9.46          | 2009-07-26 17:19:11 |
| Progre | ess Prize 2008 - RMSE = 0.8627 - W  | inning Team: BellKo  | r in BigChaos |                     |
| 13     | xiangliang                          | 0.8642               | 9.27          | 2009-07-15 14:53:22 |
| 14     | Gravity                             | 0.8643               | 9.26          | 2009-04-22 18:31:32 |
| 15     | Ces                                 | 0.8651               | 9.18          | 2009-06-21 19:24:53 |
| 16     | Invisible Ideas                     | 0.8653               | 9.15          | 2009-07-15 15:53:04 |
| 17     | Just a guy in a garage              | 0.8662               | 9.06          | 2009-05-24 10:02:54 |
| 18     | J Dennis Su                         | 0.8666               | 9.02          | 2009-03-07 17:16:17 |
| 19     | Craig Carmichael                    | 0.8666               | 9.02          | 2009-07-25 16:00:54 |
| 20     | acmehill                            | 0.8668               | 9.00          | 2009-03-21 16:20:50 |

### Million \$ Awarded Sept 21st 2009



### Acknowledgments

Some slides and plots borrowed from
 Yehuda Koren, Robert Bell and Padhraic Smyth, Jure Leskovec

#### Further reading:

- Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
- Matrix Factorization Techniques for Recommender Systems
- How the Netflix Prize was won

## **Pytorch Tutorial**