Image Processing and Computer Vision 1

Chapter 6 – Color Processing – week 13

Martin Weisenhorn

HS 2023

1 Book

1.1 Book by Gonzalez and Woods, 7.2

Consider any two valid colors c_1 and c_2 with the coordinates (x_1, y_1) and (x_2, y_2) in the chromaticity diagram of Fig. 7.5. Derive the necessary general expression(s) for computing the relative percentages of colors c_1 and c_2 composing a given color that is known to lie on the straight line joining these two colors.

Book Fig. 7.5: Chromaticity diagram

1.2 Book by Gonzalez and Woods, 7.4

In an automated assembly application, three types of parts are to be color-coded to simplify detection. However, only a monochrome TV camera is available to acquire digital images. Propose a technique for using this camera to detect the three different colors.

1.3 Book by Gonzalez and Woods, 7.10

Sketch the HSI components of the image in Problem 7.6 as they would appear on a monochrome monitor.

Image of Problem 7.6

2 Practical Exercise

Write a program, which converts RGB images to HSI images and vice versa. Now cicularly shift all hues in a given image by 0.5 and display the resulting images. Is the effect what you expected? Also try to circularly shift the saturation and intensity.

Additional Task

Try to make the above exercise run in real-time, so that you can use it with the lab's webcam. Use the built-in functions rgb2hsv (MATLAB) or matplotlib.colors.rgb_to_hsv (Python) and their counterparts. Also implement the circular shift of the HSI layers.