RNN- Recurrent Neural Networks (RNNs)

USE CASES

Issue # 1: No fixed size of neurons in a layer

Issue # 2: Too much computation

25000 words in vocabulary

how \rightarrow [0,0,0,..,1,0,0,...,0]

are \rightarrow [0, 1,0,0,0,..0,0,...,0]

you?→[0, 0,0,0,..0,0,1,0,0]

Issue # 2: Too much computation

On sunday I ate golgappa

रविवार को मैंने गोलगप्पे खाए

I ate golgappa on Sunday

Issue # 3: Parameters are not shared

Issue # 3: Parameters are not shared

3 Issues using ANN for sequence problems

Variable size of input/output neurons

Too much computation

No parameter sharing

Dhaval loves baby yoda

Dhaval loves baby yoda

Named Entity Recognition: once network is trained

Generic Representation of RNN

Training: Named Entity Recognition (NER)

X

У

Dhaval loves baby yoda

1011

Bob told Ahmed that pizza is delivered

1010000

Ironman punched on hulk's face

10011

Total Loss = Loss 1 + Loss 2 + Loss 3 + Loss 4

Training

Ironman punched on hulk's face → 10010

how are you? क्या हाल है? Language translation $a^{\langle 1 \rangle}$ how are

Language translation

how are you? क्या हाल है?

Language translation

how are you? क्या हाल है?

Deep RNN

Types of RNN

Many to Many

Sentiment Analysis

Not only the fan was expensive, but it was broken when it arrived.

→ ★☆☆☆☆

The fan works like a charm, I wasn't expecting such a good quality at this cheap price

Music Generation

One to Many

One to Many

Vanishing Gradient

$$\partial (\text{Loss})/\partial \omega_1 = \partial (\text{Loss})/\partial Awareness * \partial (Awareness)/\partial \omega_1$$

$$gradient = d1 * d2$$

$$gradient = 0.03 * 0.05$$

$$gradient = 0.0015$$

As number of hidden layers grow, gradient becomes very small and weights will hardly change. This will hamper the learning process.

Vanishing Gradients

$$\partial(\text{Loss})/\partial\omega_1 = \partial(\text{Loss})/\partial Awareness * \partial(Awareness)/\partial\omega_1$$

gradient = d1 * d2

gradient = 100 * 500

gradient = 50000

gradient = d1 * d2 * d3 * d4 * ... * dn

Vanishing gradient problem is more prominent in very deep neural networks.

Vanishing gradient problem in **RNN**

Today, due to my current job situation and family conditions, I need to take a loan. Last year, due to my current job situation and family conditions, I had to take a loan. Today, due to my current job situation and family conditions, I need to take a loan.

Solutions?

GRU

LSTM