APPENDIX A PROOF OF THEOREM 1

Theorem 1 (The Generalized Policy Gradient Theorem). The derivative of $J_s(\pi_{\theta})$ with respect to θ is the expectation of the product of the π_{θ} -induced trajectory's SOTA probability and the gradient of the log of policy π_{θ} , i.e., $\nabla_{\theta}J_s(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi}[\mathbb{P}[R(\tau) \leq T]\nabla_{\theta}\log \pi_{\theta}(\tau)]$, where τ is π_{θ} -induced trajectory, $R(\tau)$ is τ 's total travel time (an RV), and $\pi_{\theta}(\tau)$ refers to the probability of generating τ by π_{θ} .

Proof.

$$\nabla_{\boldsymbol{\theta}} J_{s}(\pi_{\boldsymbol{\theta}}) = \nabla_{\boldsymbol{\theta}} \mathbb{P}[t^{\pi}(o, d) \leq T]$$

$$= \nabla_{\boldsymbol{\theta}} \int_{\tau} \mathbb{P}[R(\tau) \leq T] \pi_{\boldsymbol{\theta}}(\tau) d\tau$$

$$= \int_{\tau} \mathbb{P}[R(\tau) \leq T] \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(\tau) d\tau$$

$$= \int_{\tau} \mathbb{P}[R(\tau) \leq T] \frac{\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(\tau)}{\pi_{\boldsymbol{\theta}}(\tau)} \pi_{\boldsymbol{\theta}}(\tau) d\tau$$

$$= \int_{\tau} \mathbb{P}[R(\tau) \leq T] \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\tau) \pi_{\boldsymbol{\theta}}(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim \pi_{\boldsymbol{\theta}}} [\mathbb{P}[R(\tau) \leq T] \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\tau)].$$

In the proof process, $\pi_{\theta}(\tau)$ refers to the probability that trajectory τ is generated by π_{θ} .

APPENDIX B PROOF OF THEOREM 2

Theorem 2 (Off-Policy Generalized Policy Gradient Theorem). The gradient of $J_s(\pi_{\theta})$ for behavior policy (μ_{θ}) generated trajectory τ can be expressed as:

$$\nabla J_s(\pi_{\theta}) = \mathbb{E}_{\tau \sim \mu_{\theta}} [\mathbb{P}[R(\tau) \le T] (\nabla_{\theta} \log \pi_{\theta}(\tau)) \rho(\tau)], \tag{14}$$

where $\rho(\tau) = \pi_{\theta}(\tau)/\mu_{\theta}(\tau)$ is the importance sampling ratio of π to μ with respect to trajectory τ .

Proof.

$$\begin{split} \boldsymbol{\nabla}_{\boldsymbol{\theta}} J_s(\boldsymbol{\pi}_{\boldsymbol{\theta}}) &= \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathbb{P}[t^{\pi}(o,d) \leq T] \\ &= \boldsymbol{\nabla}_{\boldsymbol{\theta}} \int_{\boldsymbol{\tau}} \mathbb{P}[R(\boldsymbol{\tau}) \leq T] \boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \, d\boldsymbol{\tau} \\ &= \int_{\boldsymbol{\tau}} \mathbb{P}[R(\boldsymbol{\tau}) \leq T] \boldsymbol{\nabla}_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \, d\boldsymbol{\tau} \\ &= \int_{\boldsymbol{\tau}} \mathbb{P}[R(\boldsymbol{\tau}) \leq T] \frac{\boldsymbol{\nabla}_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau})}{\boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau})} \frac{\boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau})}{\boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{\tau})} \boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \, d\boldsymbol{\tau} \\ &= \int_{\boldsymbol{\tau}} \mathbb{P}[R(\boldsymbol{\tau}) \leq T] \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \boldsymbol{\rho}(\boldsymbol{\tau}) \boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \, d\boldsymbol{\tau} \\ &= \mathbb{E}_{\boldsymbol{\tau} \sim \boldsymbol{\mu}_{\boldsymbol{\theta}}} [\mathbb{P}[R(\boldsymbol{\tau}) \leq T] \big(\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(\boldsymbol{\tau}) \big) \boldsymbol{\rho}(\boldsymbol{\tau}) \big]. \end{split}$$