What is claimed is:

1. Use of a compound of formula

(1a)
$$R_1$$
 R_2 R_3 or (1b) R_1 R_2 R_3 , wherein

R₂ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or a cyano group;

 R_4 is a cyano group; or $-Q_1-R_5$;

 Q_1 is -COO-; -CONH-; -CO-; -SO₂-; or -CONR₆-;

R₅ is C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; or unsubstituted or C₁-C₆alkyl-substituted C₆-C₂₀aryl;

R₆ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl;

the cyclohexene radical C is not substituted or substituted by one or more C₁-C₅alkyl;

n is from 2 to 4;

o is from 2 to 4;

if n = 2, in formula (1a)

R₁ is an alkylene, cycloalkylene or phenylene-radical; or R₁ and R₂ simultaneously form an alkylene, cycloalkylene or phenylene radical; and

R₃ is a cyano group or -Q₁-R₅; or R₃ and R₄ together form a 5- to 7-membered, monocyclic carbocyclic ring, which is optionally interrupted by —O- or -NR₇-;

If o = 2, in formula (1b)

R₃ is an alkylene, cycloalkylene or phenylene radical, which is optionally substituted with C₁-C₄alkyl, C₁-C₄alkoxy, -COR₆, -COOR₆ or -CONHR₆; and

R₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR₇-;

R₇ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl;

m is a number from 3 to 7;

if n = 3, in formula (1a)

WO 2005/058269 PCT/EP2004/053327

- 52 -

R₁ is a trivalent alkyl group, which is optionally interrupted by one or more –O- or -NR₇-groups; and

 R_3 is a cyano group or $-Q_1-R_5$; or R_3 and R_4 together form a 5- to 7-membered, monocyclic carbocyclic ring;

if o = 3, in formula (1b)

R₃ is an alkylidene, cycloalkylidene or phenylidene radical; and

R₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR₇-;

if n = 4, in formula (1a)

R₁ is a tetravalent alkyl group; and

R₃ is a cyano group; or -Q₁-R₅; or R₃ and R₄ together form a 5- to 7-membered, monocyclic carbocyclic ring;

if n = 4, in formula (1b)

R₃ is a tetravalent alkyl group; and

R₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR₇-;

in protecting human and animal hair and skin from UV radiation.

2. Use according claim 1, wherein in formula (1a)

R₁ is defined as in formula (1a);

R₂ is hydrogen;

R₃ is a cyano group;

R₄ is -CONHR₅; and

 R_5 is C_1 - C_{22} alkyl; or C_6 - C_{20} aryl.

3. Use according to claim 1, wherein

if n = 2,

compounds of formula

(1c)
$$R_4$$
 C R_2 R_2 R_3 are used, wherein

 R_1 is a *-(CH₂)_m* group, not substituted or substituted with one or more than one C_1 -

C₅radicals; a bivalent radical of formula (1a₁)

formula (1a₂) $(R_8)_p$; or R_1 and R_2 together with the 2 linking nitrogen atoms form

a bivalent radical of formula (1a₃) $\star -N$ $N-\star = 1$

R₈ is hydrogen; or C₁-C₅alkyl;

R₃ is a cyano group; or -Q₁-R₅;

p is a number form 0 to 3;

the cyclohexene radical C is not substituted or substituted by one or more C_1 - C_5 alkyl; and R_2 , R_4 , R_5 , Q_1 and m are defined as in claim 1.

4. Use according to claim 1, wherein compounds of formula

(1d)
$$R_1 = \begin{bmatrix} R_9 & R_{10} \\ R_2 & R_4 \end{bmatrix}$$

are used, wherein

 R_1 is a trivalent radical of formula (1d₁) *-(H₂C)_p-C-(CH₂)_p-* ; or (CH₂)_p

R₂ is hydrogen; or C₁-C₅alkyl;

R₃ and R₄, independently from each other are a cyano group; or -Q₁-R₅;

Q₁ is -COO-; -CONH-; -CO-; -SO₂-; -CONR₁₂-:

R₅ is C₁-C₅alkyl;

R₉ and R₁₀ independently from each other are C₁-C₄alkyl;

 R_{11} and R_{12} independently from each other are hydrogen; or $C_1\text{-}C_5$ alkyl; and

p is a number from 0 to 5.

5. Use according to claim 1, wherein compounds of formula

(1e)
$$R_1 - N_2 - R_4 - R_5$$

are used, wherein

R₁ and R₂ are each independently of the other C₁-C₂₂alkyl; or a cyano group; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m-ring which is optionally interrupted by -O- or by -NR₇-;

 R_4 is a cyano group; or $-Q_1-R_5$;

o is 3; or 4;

if o = 3

R₂ is a trivalent alkyl radical;

if o = 4

R₂ is a tetravalent alkyl radical;

R₅, R₇, Q₁ and m are defined as in claim 1; and

 R_9 and R_{10} are defined as in claim 4.

WO 2005/058269

- 6. Use according to any of claims 1 to 5, wherein an additional UV absorber is used.
- 7. Use according to claim 6 wherein the additional UV absorber is selected from the triazine compounds of formula

(
$$t_2$$
1)
$$R_{1}$$
 , wherein
$$R_{2}$$
 , R_{3} , R_{4} , R_{5} , R_{5} , R_{5} , R_{5} , R_{5} , R_{5} , R_{7}

R₁ and R₅ are hydrogen; C₁-C₁₈alkyl; or C₆-C₁₂aryl; and

- R₆, R₇ and R₈, independently from each other are hydrogen; hydroxy; halogen; C₁-C₁₈alkyl; C₁-C₁₈alkoxy; C₆-C₁₂aryl; biphenylyl; C₆-C₁₂aryloxy; C₁-C₁₈alkylthio; carboxy; -COOM; C₁-C₁₈-alkylcarboxyl; aminocarbonyl; or mono- or di-C₁-C₁₈alkylamino; C₁-C₁₀acylamino; or -COOH.
- 8. Use according to claim 6 or 7, wherein a UV filter combination comprising
- (t₃) the compound of formula

(MC02)
$$CN$$
 H CN ; and

- (t₄) 1,3,5-Triazine, 2,4,6-tris[1,1'-biphenyl]-4-yl- (9Cl). is used.
- Use of a momomeric, oligomeric or polymeric compound comprising structural elements of formula

(2) *
$$R_2$$
 R_4 , wherein

at least one of the asterix-marked radicals may be bound to the momomeric, oligomeric or polymeric radical;

the cyclohexene radical C is not substituted or substituted by one or more C_1 - C_5 alkyl; and R_2 and R_4 are defined as in claim 1;

as UV chromophores in protecting human and animal hair and skin from UV radiation.

10. Use according to claim 9, wherein the momomeric, oligomeric or polymeric compound corresponds to formula

(3)
$$H_2C = -R_{14} - (R_{15})_q - (R_{16})_r - Z$$
, wherein

Z is a radical of formula (2);

R₁₃ is hydrogen; halogen; or C₁-C₅alkyl;

R₁₄ is -CONH-; -COO-; or a phenylene radical;

R₁₅ is C₁-C₂₀alkylene; or C₆-C₂₀arylene;

R₁₆ is --COO-; -OCO-; -CONH-; -NH-CO-O-; -NH-CO-; -SO₂NH-; -NHSO₂-; -SO₂- or --O-;

q is 0; or an integer; and

r is 0; or an integer.

11. Compounds of formula

(1'a)
$$R'_{1} = \begin{bmatrix} C \\ R'_{2} \end{bmatrix}$$
 or (1'b) $\begin{bmatrix} C \\ R'_{1} = N \\ R'_{2} \end{bmatrix}$ or $\begin{bmatrix} C \\ R'_{4} \end{bmatrix}_{0}$

R'₂ is hydrogen; C₁-C₂₂alkyI; cyclo-C₃-C₈alkyI; unsubstituted or C₁-C₆alkyI- or C₁-C₆alkoxy-substituted C₆-C₂₀aryI; a cyano group; or R'₁ and R'₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR'₇-;

 R'_4 is $-Q'_1-R'_5$;

Q'₁ is -COO-; -CONH-; -CO-; -SO₂-; or -CONR'₆-:

 R'_{5} is C_{1} - C_{22} alkyl; cyclo- C_{3} - C_{8} alkyl; or unsubstituted or C_{1} - C_{6} alkyl-substituted C_{6} - C_{20} aryl;

- R'₆ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl;
- R'₇ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl;

the cyclohexene radical C is not substituted or substituted by one or more C₁-C₅alkyl;

- m is from 3 to 7;
- n is from 2 to 4:
- o is from 2 to 4;
- if n = 2, in formula (1'a)
- R'₁ is an alkylene, cycloalkylene or phenylene-radical; or R'₁ and R'₂ simultaneously form an alkylene, cycloalkylene or phenylene radical; and
- R'₃ is a cyano group or –Q'₁-R'₅; or R'₃ and R'₄ together form a 5- to 7-membered, monocyclic carbocyclic ring;
- If o = 2, in formula (1'b)
- R'₃ is an alkylene, cycloalkylene or phenylene radical; and
- R'₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by -NR'₇-;
- if n = 3, in formula (1'a)
- R'₁ is a trivalent alkyl group, which is optionally interrupted by one or more –O- or -NR'₇-groups; and
- R'₃ is a cyano group or –Q'₁-R'₅; or R'₃ and R'₄ together form a 5- to 7-membered, monocyclic carbocyclic ring;
- if o = 3, in formula (1'b)
- R'₃ is an alkylidene, cycloalkylidene or phenylidene radical; and
- R'₁ is hydrogen; a cyano group; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R'₁ and R'₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or by –NR'₇-;
- if n = 4, in formula (1'a)
- R'₁ is a tetravalent alkyl group; and
- R'₃ is a cyano group or –Q'₁-R'₅; or R'₃ and R'₄ together form a 5- to 7-membered, monocyclic carbocyclic ring;
- if o = 4, in formula (1'b)
- R'₃ is a tetravalent alkyl group; and

 R'_1 is hydrogen; a cyano group; C_1 - C_{22} alkyl; cyclo- C_3 - C_8 alkyl; unsubstituted or C_1 - C_6 alkyl- or C_1 - C_6 alkoxy-substituted C_6 - C_{20} aryl; or R'_1 and R'_2 together with the nitrogen atom linking them form a -(CH_2)_m- ring which is optionally interrupted by -O- or by -NR'₇- .

12. Compounds of formula

(4)
$$R_1$$
 R_2 R_2 , wherein

- R₂ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₆-C₂₀aryl; or R₁ and R₂ together with the nitrogen atom linking them form a -(CH₂)_m- ring which is optionally interrupted by -O- or -NR₃-;
- R₃ is hydrogen; C₁-C₂₂alkyl; cyclo-C₃-C₈alkyl; or unsubstituted or C₁-C₆alkyl-substituted C₆-C₂₀aryl;

m is from 3 to 7;

n is from 2 to 4;

the cyclohexene radical C is not unsubstituted or substituted by one or more C_1 - C_5 alkyl; when n=2,

 R_1 and R_2 simultaneously form an alkylene, cycloalkylene or phenylene radical; when n = 3,

R₁ is a trivalent alkyl group, which is optionally interrupted by one or more –O- or -NR₃-groups;

when n = 4,

- R₁ is a tetravalent alkyl group which is optionally interrupted by one or more –O- or -NR₃-groups.
- 13. Use of the compounds of formula (4) according to claim 12 as UV-B absorbers in protecting human and animal hair and skin from UV radiation.
- 14. Use of the compounds of formula (4) according to claim 12 as intermediates for the preparation of UV absorbers.
- 15. A cosmetic preparation comprising at least one or more compounds of formula (1a), (1b) or (4) according to claim 1 or 12 with cosmetically acceptable carriers or adjuvants.