计算机系统(3)期中考试(第1-3章)

姓名:	学号:	得分:
<u>/</u>	7 4.	11 74 •

- 1. 一个程序在一台计算机上运行时需要 100 秒, 其中 80 秒的时间用于乘法 操作,通过将乘法操作的速度改进到只需16秒,从而把程序的运行速度提 高到 5 倍。这里改进性能所使用到的是哪个伟大设计思想 C。
 - A. 通过预测提高性能

B. 通过流水线提高性能

C. 加速大概率事件

- D. 通过并行提高性能
- 2. 对某一芯片只提高工作电压,则其功耗 A:
 - A.提高: B.下降: C.不确定: D.保持不变;
- 3. 下面的图表代表的是哪条 MIPS 指令? (D)

op	Rs	rt	rd	shamt	funct
0	8	9	10	0	34

- A. sub \$t0, \$t1, \$t2 B. add \$t2, \$t0, \$t1
- C. sub \$t2, \$t1, \$t0 D. sub \$t2, \$t0, \$t1
- 4. 假设\$s1 中的值是 0xD0000000,给定下列\$s0 的值,执行下列指令是否会 产生溢出?
 - (**B**)(1)\$s0=0x70000000, 执行 add \$s0,\$s0,\$s1
 - A.会溢出
- B.不会溢出
- (B)(2)\$s0=0x80000000, 执行sub\$s0,\$s0,\$s1
- A.会溢出
- B.不会溢出
- (A)(3)\$s0=0x7FFFFFFF, 执行sub\$s0,\$s0,\$s1
- A.会溢出 B.不会溢出

- 5. 假设\$t0=0xBEADFEED, \$t1= 0xDEADFADE. 求执行下面指令后寄存器\$t2 的值。

 - (2) sll \$t2, \$t0, 4 andi \$t2, \$t2, -1 则\$t2= (_**0xEED0**)
- 6. 如果要将乘法指令结果的高 32 位保存在\$t1, 低 32 位保存在\$t2 中, 需要使用两条指令来完成,它们是 mfhi \$t1; mflo \$t2
- 7. 为了调用函数 myfunc1,应该使用指令 jal myfunc1 ,函数返回时应该使用指令 jr \$ra 返回到调用函数处的下一跳指令。
- 8. 如果指令 "beq \$t0,\$t1, 32" 指令位于 0x1000 地址, 执行该指令时 PC= 0x1004 , 若\$t0=16,\$t1=16,则下一条被执行的指令位于_ 0x1084:
- 9. 把下面的 C 代码翻译成 MIPS 代码。假设变量 f,g,h,i 和 j 分别赋值给寄存器\$s0,\$s1,\$s2,\$s3 和\$s4。假设数组 A 和 B 的基地址分别存放在\$s6 和\$s7 中。假设数组 A 和 B 中的元素均为 4 字节的字:
 - 1) B[8]=A[i]+A[i];
 - 2) f=g-A[B[4]];
 - 1) 答:

sll \$t1, \$s3, 2

sll \$t2, \$s4, 2

add \$t1, \$t1, \$s6

add \$t2, \$t2, \$s6

lw \$t1,0(\$t1)

```
lw $t2,0($t2)
   add $t1, $t1, $t2
   sw $t1, 32($s7)
   2) 答:
   lw $t1,16($s7)
   sll $t1, $t1, 2
   add $t1, $t1, $s6
   lw $t1, 0($t1)
   sub $s0, $s1, $t1
      将以下 C 语句转换为 MIPS 汇编指令序列, 假设变量 a, b, i, j分
10.
   别对应寄存器$s0, $s1, $t0, $t1, $s2 保存着数组 D的起始地址。
      a) for (i=0; i<10; i++)
           a += b;
      b) while (a<10) {
           D[a] = b + a;
          a += 1;
      }
      a) 答:
            addi $t0, $zero, 0
      Loop: slti $t2, $t0, 10
                                 // $t2 = 1 if $t0 < 10 else 0
            beq $t2, $zero, Exit // go to Exit if $t2 == 0
            add $s0, $s0, $s1
                                // a += b
                                // i++
            addi $t0,$t0,1
            j Loop
      Exit:
      b) 答:
      Loop:
          slti $t2, $s0, 10
                                // $t2 = 1 if $s0(a) < 10
                $t2, $zero, Exit // go to Exit if $t2 = 0
           beq
                $t2, $s0, $s1
                                // $t2 = b + a
           add
           sll
                $t3, $s0, 2
                $t3, $t3, $s2
                                // $t3 = D + a << 2
           add
                $t2, 0($t3)
                                // D[a] = b + a
           SW
           addi $s0, $s0, 1
                               // a+=1
```

j Loop

Exit:

11. 把下面的 MIPS 代码翻译成 C 代码。假设变量 f,g,h,i 和 j 分别赋值 给寄存器\$s0,\$s1,\$s2,\$s3 和\$s4,数组 A 和数组 B 的基地址分别存放 在\$s6 和\$s7 中。

addi \$t0,\$s6,4

add \$t1,\$s6,\$0

sw \$t1,0(\$t0)

lw \$t0,0(\$t0)

add \$s0,\$t1,\$t0

答:

A[1] = &A[0];

f = A[1] + A

12. 假定字变量 f, g, h, i, j分别对应寄存器\$s0, \$s1, \$s2, \$s3, \$s4, 并且字数组 A 和 B 的起始地址分别存放在寄存器\$s6, \$s7中, 请分别采用 MIPS 汇编指令实现其功能:

```
a) f=g+h+B[4]; b) f=g-A[B[4]];
c) f=g+h+B[1]; d) f=A[B[g]+1];
```

答:

(a)

```
lw $t0, 16($s7) // $t0 = B[4]
add $t1, $s1, $s2 // $t1 = g + h
add $s0, $t0, $t1 // f = $t0 + $t1

(b)
lw $t0, 16($s7) // $t0 = B[4]
sll $t0, $t0, 2 // $t0 = $t0 << 2
add $t0, $t0, $s6 // $t0 = $t0 + A
lw $t1, 0($t0) // $t1 = A[B[4]]
sub $s0, $s1, $t1 // f = g - A[B[4]]</pre>
```

(c)

```
lw $t0, 4(\$s7) // \$t0 = B[1]
add $t1, \$s1, \$s2 // \$t1 = g + h
add \$s0, \$t0, \$t1 // f = \$t0 + \$t1
```

(d)

13. 请画出未经优化的乘法器结构图(含部件名称、位长、是否具有移位以及移位方向,部件间的连接),假设机器字长为 4 位,并填写无符号二进制数 0101 x 1011 的计算细节步骤。

	步骤	乘数寄存器	被乘数寄存器	乘积寄存器
0	初始值	101 <mark>1</mark>	0000 0101	0000 0000
1	1a 乘积=乘积+被乘数	1011	0000 0101	0000 0101
	2 左移被乘数	1011	0000 1010	0000 0101
	3 右移乘数	0101	0000 1010	0000 0101
2	1a 乘积=乘积+被乘数	0101	0000 1010	0000 1111
	2 左移被乘数	0101	0001 0100	0000 1111
	3 右移乘数	0010	0001 0100	0000 1111
3	1 无操作	0010	0001 0100	0000 1111
	2 左移被乘数	0010	0010 1000	0000 1111
	3 右移乘数	0001	0010 1000	0000 1111
4	1a 乘积=乘积+被乘数	0001	0010 1000	0011 0111
	2 左移被乘数	0001	0101 0000	0011 0111
	3 右移乘数	0000	0101 0000	0011 0111

14. 请画出优化后的乘法器结构图(含部件名称、位长、是否具有移位以及移位方向,部件间的连接),假设机器字长为4位,并填写无符号二进制数0101 x 1011 的计算细节步骤。

	步骤	被乘数寄存器	乘积寄存器
0	初始值	0101	0000 101 <mark>1</mark>
1	1a 乘积=乘积(高位)+被乘数	0101	0101 1011
	2 右移乘积	0101	0010 110 <mark>1</mark>
2	1a 乘积=乘积(高位)+被乘数	0101	0111 1101
	2 右移乘积	0101	0011 111 <mark>0</mark>
3	1 无操作	0101	0011 1110
	2 右移乘积	0101	0001 111 <mark>1</mark>
4	1a 乘积=乘积(高位)+被乘数	0101	0110 1111
	2 右移乘积	0101	0011 0111

15. 请画出未优化的除法器结构图(含部件名称、位长、是否具有移位以及移位方向,部件间的连接),假设机器字长为4位,并填写无符号数7÷2的计算细节步骤。

	步骤	商寄存器	除数寄存器	余数寄存器
0	初始值	0000	0010 0000	0000 0111
1	1 余数=余数-除数	0000	0010 0000	1 110 0111
	2 余数<0,余数复原,商左移	0000	0010 0000	0000 0111
	3 除数右移	0000	0001 0000	0000 0111
2	1 余数=余数-除数	0000	0001 0000	1 111 0111
	2 余数<0,余数复原,商左移	0000	0001 0000	0000 0111
	3 除数右移	0000	0000 1000	0000 0111
3	1 余数=余数-除数	0000	0000 1000	1111 1111
	2 余数<0,余数复原,商左移	0000	0000 1000	0000 0111
	3 除数右移	0000	0000 0100	0000 0111
4	1余数=余数-除数	0000	0000 0100	0000 0011
	2 余数>0,商左移,最低位设	0001	0000 0100	0000 0011
	1			
	3 除数右移	0001	0000 0010	0000 0011
5	1 余数=余数-除数	0001	0000 0010	0000 0001
	2 余数>0,商左移,最低位设	0011	0000 0010	0000 0001
	1			
	3 除数右移	0011	0000 0001	0000 0001

16. 请画出优化后除法器结构图(含部件名称、位长、是否具有移位以及移位方向,部件间的连接),假设机器字长为4位,并填写无符号数7÷2的计算细节步骤。

	步骤	除数寄存器	余数寄存器
0	初始值	0010	0000 0111
1	1 余数左移	0010	0000 1110
	2 余数(高位)=余数(高位)-除数	0010	1 110 1110
	3 余数<0,余数复原	0010	0000 1110
2	1 余数左移	0010	0001 1100
	2 余数(高位)=余数(高位)-除数	0010	1 111 1100
	3 余数<0,余数复原	0010	0001 1100
3	1 余数左移	0010	0011 1000
	2 余数(高位)=余数(高位)-除数	0010	0001 1000
	3 余数>0,余数最低位置1	0010	0001 1001
4	1 余数左移	0010	0011 0010
	2 余数(高位)=余数(高位)-除数	0010	0001 0010
	3 余数>0,余数最低位置1	0010	0001 0011
5	1		
	2		
	3		

- 17. 请补充完成下面的浮点加法器的结构图,将图中数字 1~4 的部位绘制 完整。然后以下图所示的浮点加法硬件计算 0.510+(-0.4375)10,精 度为 4 位,采用 IEEE 754 单精度格式表示浮点数。请完成以下工作:
 - (1)结合图中关键部件和箭头处标明相关步骤序号并在空白处说明,重点讲明数据的变换和传输,关键部件的输入和输出。(2)相关数据转换,如十进制转换为二进制等,如对阶计算过程请在空白处详细给出。

答案:

- 0. 由于只有 4 位精度,所以 (0.510) $_{10}$ = (1.0000 × $^{2-1}$) $_{2}$; (-0.4375) $_{10}$ = (-1.11 × $^{2-2}$) $_{2}$
- 1. 对阶: $1.0000 \times 2^{-1} + -0.111 \times 2^{-1}$
- 2. 尾数相加: 0.001×2⁻¹
- 3. 规格化: 1.0000 × 2-4
- 4. 舍入: 无需舍入, 1.0000 × 2-4