Reference No.: WTS13S0907635E Page 1 of 86

FCC TEST REPORT

: WY9F-3076

Applicant : Telnova Technology Co.,Ltd

Address : F7,Block B, Jiuzhou Electronic Building, Southern No.12 Rd, High-tech

Industrial Park, Nanshan District, Shenzhen, Guangdong Province, China

Manufacturer : The same as above
Address : The same as above

Equipment Under Test (EUT):

Product Name : Bluetooth Module

Model No. : F-3076

Standards : FCC Part15.247:2012

Date of Test : Sep. 24~27, 2013

Date of Issue : Oct. 14, 2013

Test Result : PASS

Remark:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District,

Shenzhen 518105, China

Tel: +86-755-83551033 Fax: +86-755-83552400

Compiled by: Approved by:

Maikou Zhang / Project Engineer

Philo Zhong / Manager

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

^{*} The sample described above has been tested to be in compliance with the requirements of ANSI C63.4:2003. The test results have been reviewed and comply with the rules listed above and found to meet their essential requirements.

Reference No.: WTS13S0907635E Page 2 of 85

2 Test Summary

Test Items	Test Requirement	Result	
	15.205(a)		
Spurious Radiated Emissions	15.209	PASS	
	15.247(d)		
Band edge Emissions	15.247(d)	PASS	
Spurious RF Conducted Emissions from out of band	15.247(d)	PASS	
Duty Cycle	15.35	PASS	
Conducted Emissions	15.207	PASS	
20dB Bandwidth	15.215c	DACC	
20dB Bandwidth	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	1 1207/b\/1\	DACC	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

3 Contents

1 COVER PAGE	1
3 CONTENTS	
4 GENERAL INFORMATION	2
4 GENERAL INFORMATION 4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE. 4.5 TEST FACILITY. 4.6 TEST LOCATION. 5 EQUIPMENT USED DURING TEST. 5.1 EQUIPMENTS LIST. 5.2 MEASUREMENT UNCERTAINTY. 5.3 TEST EQUIPMENT CALIBRATION. 6 CONDUCTED EMISSION. 6.1 E.U.T. OPERATION. 6.2 EUT SETUP. 6.3 CONDUCTED EMISSION TEST RESULT. 7 SPURIOUS RADIATED EMISSIONS. 7.1 EUT OPERATION: 7.2 TEST SETUP. 7.3 SPECTRUM ANALYZER SETUP.	3
4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE. 4.5 TEST FACILITY. 4.6 TEST LOCATION. 5 EQUIPMENT USED DURING TEST. 5.1 EQUIPMENTS LIST. 5.2 MEASUREMENT UNCERTAINTY. 5.3 TEST EQUIPMENT CALIBRATION. 6 CONDUCTED EMISSION. 6.1 E.U.T. OPERATION. 6.2 EUT SETUP. 6.3 CONDUCTED EMISSION TEST RESULT. 7 SPURIOUS RADIATED EMISSIONS 7.1 EUT OPERATION: 7.2 TEST SETUP. 7.3 SPECTRUM ANALYZER SETUP.	5
5 EQUIPMENT USED DURING TEST	5 5 5 5
5.2 MEASUREMENT UNCERTAINTY 5.3 TEST EQUIPMENT CALIBRATION 6 CONDUCTED EMISSION 6.1 E.U.T. OPERATION 6.2 EUT SETUP 6.3 CONDUCTED EMISSION TEST RESULT. 7 SPURIOUS RADIATED EMISSIONS 7.1 EUT OPERATION: 7.2 TEST SETUP 7.3 SPECTRUM ANALYZER SETUP	
7 SPURIOUS RADIATED EMISSIONS 7.1 EUT OPERATION: 7.2 TEST SETUP 7.3 SPECTRUM ANALYZER SETUP	
7.1 EUT OPERATION:	
7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	12 13 14
8 SPURIOUS RF CONDUCTED EMISSIONS FROM OUT OF BAND	
8.1 TEST PROCEDURE 8.2 TEST RESULT 9 DUTY CYCLE 9.1 TEST PROCEDURE	23 33
9.2 TEST RESULT	
10.1 TEST PROCEDURE 10.2 TEST RESULT:	34
11 20 DB BANDWIDTH MEASUREMENT	
11.1 Test Procedure:	
12 MAXIMUM PEAK OUTPUT POWER	
12.1 TEST PROCEDURE: 12.2 TEST RESULT: 12.2	43
13 HOPPING CHANNEL SEPARATION	
13.1 TEST PROCEDURE: 13.2 TEST RESULT: 14 NUMBER OF HOPPING FREQUENCY Waltek Services (Shenzhen) Co.,Ltd.	49

	14.1	Test Procedure:	55
	14.2	TEST RESULT:	
15	DWE	LL TIME	57
	15.1	Test Procedure:	57
	15.2	Test Result:	57
16	ANTE	ENNA REQUIREMENT	73
17	RF EX	XPOSURE	74
	17.1	REQUIMENTS:	74
	17.2	THE PROCEDURES / LIMIT	
	17.3	MPE CALCULATION METHOD	75
18	PHO	TOGRAPHS – TEST SETUP	76
	18.1	CONDUCTED EMISSIONS	76
	18.2	RADIATED EMISSIONS	76
	18.3	BT MODULE INSTALLATION DIAGRAM WITH HOST(MODE:MBT80C)	78
19	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	79
	19.1	EUT - Module Photos	
	19.2	EUT – Host External View	80
	19.3	FUT - HOST INTERNAL VIEW	83

Reference No.: WTS13S0907635E Page 5 of 85

4 General Information

4.1 General Description of E.U.T.

Product Name : Bluetooth Module

Model No. : F-3076

Model Description : N/A

Operation Frequency : 2402MHz ~ 2480MHz, 79 channels in total, separated by 1MHz

Type of Modulation : GFSK, Pi/4DQPSK, 8DPSK

(Transmission Rate: 1 Mbps, 2 Mbps and 3 Mbps)

Antenna installation : PCB Printed Antenna

Antenna Gain : 0dBi

4.2 Details of E.U.T.

Technical Data : DC 3.3V

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Lower channel Middle channel		Upper channel
Transmitting	2402MHz	2441MHz	2480MHz
Receiving	2402MHz	2441MHz	2480MHz

Reference No.: WTS13S0907635E Page 6 of 85

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, July 12, 2012.

FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.6 Test Location

All the tests were performed at: Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 **Equipment Used during Test**

5.1 Equipments List

Conducted Emissions									
Item	Equipment Manufacturer Model No. Serial No. Last Calibration Date Calibration								
1.	EMI Test Receiver	R&S	ESCI	101155	Spe.21,2013	Spe.20,2014			
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Spe.21,2013	Spe.20,2014			
3. Cable LARGE RF300 EW02014-3 Spe.21,2013 Spe.20,2014									
3m Semi-anechoic Chamber for Radiation Emissions									

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer	Agilent	E7405A	MY45114943	Spe.21,2013	Spe.20,2014
2.	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Spe.21,2013	Spe.20,2014
3.	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Spe.21,2013	Spe.20,2014
4.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Spe.21,2013	Spe.20,2014
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	399	Spe.21,2013	Spe.20,2014
6.	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Spe.21,2013	Spe.20,2014
7.	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-148	Spe.21,2013	Spe.20,2014
8.	Cable	Тор	EWO2014-7	-	Spe.21,2013	Spe.20,2014
9.	Cable	Тор	TYPE16(13M)	-	Spe.21,2013	Spe.20,2014
10.	DC POWER SUPPLY	LWDQGS	PS-303D		Spe.21,2013	Spe.20,2014
11.	Humidity Chamber	GTH-225-40-1P	IAA061213		Spe.21,2013	Spe.20,2014
12.	Spectrum Analyzer	ROHDE & SCHWARZ	FSL6		Spe.21,2013	Spe.20,2014

Measurement Uncertainty 5.2

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
Bandwidth	± 1.5 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Temperature	±1 °C
DC Source	±0.05%
	± 5.03 dB
Radiated Emissions test	(Bilog antenna 30M~1000MHz)
Radiated Emissions test	± 4.74 dB
	(Horn antenna 1000M~25000MHz)

Test Equipment Calibration 5.3

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS13S0907635E Page 8 of 85

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dB_μV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-

Peak & Average if maximised peak within 6dB of Average

Limit

Test Result: PASS

6.1 E.U.T. Operation

Operating Environment:

Temperature: 26 °C Humidity: 50 % RH

Atmospheric Pressure: 1010 mbar

EUT Operation:

The EUT was tested in bluetooth linking with Bluetooth speaker(model :MBT-301, Manufacturer : Telnova Technology Co.,Ltd) mode, and the data are shown in the report.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Test mode: bluetooth linking

Live line:

Neutral line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1660	43.76	11.21	54.97	65.15	-10.18	QP	
2	0.1660	28.73	11.21	39.94	55.15	-15.21	AVG	
3	0.2060	38.43	11.30	49.73	63.36	-13.63	QP	
4	0.2060	19.73	11.30	31.03	53.36	-22.33	AVG	
5	0.2860	30.32	11.30	41.62	60.64	-19.02	QP	
6	0.2860	13.81	11.30	25.11	50.64	-25.53	AVG	
7	1.6100	19.18	11.19	30.37	56.00	-25.63	QP	
8	1.6100	11.31	11.19	22.50	46.00	-23.50	AVG	
9	4.1898	20.99	11.23	32.22	56.00	-23.78	QP	
10	4.1898	9.71	11.23	20.94	46.00	-25.06	AVG	
11	29.2380	11.29	11.49	22.78	60.00	-37.22	QP	
12	29.2380	5.97	11.49	17.46	50.00	-32.54	AVG	

Reference No.: WTS13S0907635E Page 11 of 85

7 Spurious Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705

Test Result: PASS
Measurement Distance: 3m

Limit:

F	Field Stren	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	2400/F(kHz) 300 10000 * 2400/F(kHz)		20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz) 30 100 * 24000/F(kHz)		100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30 30		100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation:

Operating Environment:

Temperature: 25.5 °C

Humidity: 51 % RH

Atmospheric Pressure:1010 mbar

EUT Operation:

The test was performance on bluetooth linking with Bluetooth speaker(model : MBT-301, Manufacturer : Telnova Technology Co.,Ltd) mode, and the test data shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Aechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

Spectrum

Analyzer

AMP

Combining

Network

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9kHz to 25000MHz.

PC

System

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10KHz
	Video Bandwidth	.10KHz
	Resolution Bandwidth	.10KHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	IF Bandwidth	.120 KHz
	Video Bandwidth	.100KHz
	Quasi-Peak Adapter Bandwidth	.120 KHz
	Quasi-Peak Adapter Mode	.Normal
	Resolution Bandwidth	.100KHz
Above 1GHz		
	Sweep Speed	. Auto
	IF Bandwidth	.120 KHz
	Video Bandwidth	.3MHz
	Quasi-Peak Adapter Bandwidth	.120 KHz
	Quasi-Peak Adapter Mode	.Normal

Resolution Bandwidth1MHz

Reference No.: WTS13S0907635E Page 14 of 85

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table,

Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

7.6 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1000MHz

Remark: the EUT was pretested at the high, middle and low channel, and the worst case was the high Channel, so the data show was the high channel only.

Antenna polarization: Vertical

Antenna polarization: Horizontal

Test Frequency: 1GHz ~ 18GHz

All the modulation modes were tested, the data of the worst mode (GFSK) were recorded in the following pages.

AV = Peak +20Log₁₀(duty cycle) =PK+(-9.5)=PK-9.5 [refer to section 9 for more detail]

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	8480.000	-9.5	30.66	54.00	-23.34	AV	
2	14787.000	-9.5	37.34	54.00	-16.66	AV	
3	17150.000	-9.5	40.29	54.00	-13.71	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	10350.000	-9.5	32.85	54.00	-21.15	AV	
2	15280.000	-9.5	38.63	54.00	-15.37	AV	
3	16691.000	-9.5	40.34	54.00	-13.66	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	9347.000	-9.5	32.47	54.00	-21.53	AV	
2	14243.000	-9.5	36.62	54.00	-17.38	AV	
3	17286.000	-9.5	40.93	54.00	-13.07	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
	` ′	(3)	,	,	V /		
1	8225.000	-9.5	29.90	54.00	-24.10	AV	
2	12407.000	-9.5	35.03	54.00	-18.97	AV	
3	17269.000	-9.5	39.07	54.00	-14.93	AV	

		Freq.	Duty Factor	Result	Limit	Margin	.	
L	No.	(MHz)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	Remark
	1	12118.000	-9.5	34.87	54.00	-19.13	AV	
Ī								
	2	14753.000	-9.5	37.07	54.00	-16.93	AV	
	3	17762.000	-9.5	40.30	54.00	-13.70	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	12118.000	-9.5	32.09	54.00	-21.91	AV	
2	14753.000	-9.5	37.08	54.00	-16.92	AV	
3	17762.000	-9.5	39.46	54.00	-14.54	AV	

Test Frequency : Above 18GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS13S0907635E Page 23 of 85

8 Spurious RF Conducted Emissions from out of band

Test Requirement: FCC Part 15.247(d) In any 100 kHz bandwidth outside the frequency band

in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter

demonstrates compliance with the peak conducted power limits.

Test Mothed: DA 00-705
Test Status: TX mode

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set to span from the lowest frequency generated in the device up to and including the tenth harmonic of the highest fundamental frequency.
- 3. Set RBW = 100kHz and VBW = 100kHz.Sweep =auto.
- 4. mark the worst point and record.

8.2 Test Result

Test Frequency: Below 30MHz

Remark: For emissions below 30MHz,no emission higher than background level, so the data does not show in the report.

Test Frequency: 30MHz ~ 25GHz

Test result plots shown as follows:

Modulation:GFSK

Lower Channel

Modulation: Pi/4DQPSK

Modulation: 8DPSK
Lower Channel

Middle Channel

Upper Channel

Reference No.: WTS13S0907635E Page 33 of 85

9 Duty Cycle

Test Requirement: FCC Part 15.35
Test Mothed: ANSI C63.4:2003

Test Status: TX mode.

9.1 Test Procedure

- 1. The EUT was placed on a turntable which is 0.8m above ground plane
- 2. Set EUT as normal working mode
- 3. Set SPA center frequency = fundamental frequency, RBW = 1000 kHz, VBW = 1000 kHz, Span = 0 Hz, Adjacent sweep time.

9.2 Test Result

Transmission period(D2) is 1.256ms Single pulse time (D1) is 0.420ms

The EUT is auto. operation for transmitter, it is declared by the manufacturer as a duty cycle ratio of less than 100%.

The EUT's work time: Ton =pulse time=0.420 ms

The EUT's work period : $T=T_{ON}+T_{OFF}=$ transmission period=1.256 ms

The EUT's duty cycle : D = $T_{on}/T = 0.420/1.256*100\% = 33.44\%$

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle)=20* Log₁₀(33.44 %)

= -9.50 dB

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTS13S0907635E Page 34 of 85

10 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: DA 00-705

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz;46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

10.1 Test Procedure

1. The EUT was placed on a turntable which is 0.8m above ground plane

2. Measurement Distance is 3m

3. Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto

Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function = AVG

Trace = max hold

4.continuous transmitting

10.2 Test Result:

All the modulation modes were tested, the data of the worst mode (GFSK) were recorded in the following pages.

Modulation: GFSK Lower Channel – Peak

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2368.844	-9.50	21.24	54.00	-32.76	AV	
2	2400.000	-9.50	48.07	54.00	-5.93	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2483.500	-9.50	20.28	54.00	-33.72	AV	
2	2488.912	-9.50	22.32	54.00	-31.68	AV	

Reference No.: WTS13S0907635E Page 37 of 85

11 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

11.2 Test Result:

Modulation	Test Channel	Bandwidth(MHz)		
	Lower	0.874		
GFSK	Middle	0.916		
	Upper	0.922		
Pi/4DQPSK	Lower	1.252		
	Middle	1.258		
	Upper	1.252		
8DPSK	Lower	1.222		
	Middle	1.228		
	Upper	1.216		

Test result plot as follows:

Modulation:GFSK

Lower Channel

Date: 27.SEP.2013 20:24:11

Middle Channel

Date: 27.SEP.2013 20:25:07

Date: 27.SEP.2013 20:26:02

Modulation: Pi/4DQPSK

Lower Channel **(** Offs 0.50 dB * RBW 30 kHz * VBW 100 kHz Att 30 dB Batt Ref 10.00 dBm -23.87 dBm 2.401353300 GHz M1[1] SWT 5ms M2[1] -3.25 dBm 2.401982000 GHz 1Pk Max 0.23 dB 1.251500000 MHz D1[1] -10 dBr -20 dBm D1 -23.250 dE -30 dBn -50 dB -60 dB -70 dBm CF 2.402 GHz Span 3.0 MHz

Date: 27.SEP.2013 20:29:19

Date: 27.SEP.2013 20:25:07

Date: 27.SEP.2013 20:27:26

Modulation: 8DPSK Lower Channel

Date: 27.SEP.2013 20:30:20

Middle Channel

Date: 27.SEP.2013 20:31:10

Date: 27.SEP.2013 20:32:11

Reference No.: WTS13S0907635E Page 43 of 85

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
	Lower	1.24	30
GFSK	Middle	1.29	30
	Upper	0.35	30
	Lower	1.88	30
Pi/4DQPSK	Middle	1.96	30
	Upper	1.21	30
	Lower	1.80	30
8DPSK	Middle	1.91	30
	Upper	1.11	30

Test result plot as follows:

Modulation:GFSK

Lower Channel **(** Offs 0.50 dB * RBW 3 MHz Att 30 dB * VBW 3 MHz -1.24 dBm M1[1] Batt Ref 10.00 dBm SWT 2.5ms 2.401808000 GHz М1 0 dBm 10 dBm -30 dBn -40 dBr -50 dBm -60 dBm -70 dBņ -80 dBr Span 6.0 MHz CF 2.402 GHz

Date: 27.SEP.2013 20:18:52

Date: 27.SEP.2013 20:19:17

Date: 27.SEP.2013 20:19:34

Modulation: Pi/4DQPSK

Date: 27.SEP.2013 20:20:41

Date: 27.SEP.2013 20:20:21

Date: 27.SEP.2013 20:19:59

Modulation: 8DPSK

Lower Channel **(** Offs 0.50 dB * RBW 3 MHz Att 30 dB * VBW 3 MHz M1[1] -1.80 dBm 2.401940000 GHz Batt Ref 10.00 dBm SWT 2.5ms 1Pk Max 0 dBm -20 dBr -30 dBn -40 dBm -60 dBr -70 dBn -80 dBm CF 2.402 GHz Span 6.0 MHz

Date: 27.SEP.2013 20:21:04

Date: 27.SEP.2013 20:21:21

Date: 27.SEP.2013 20:21:38

Reference No.: WTS13S0907635E Page 49 of 85

13 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 6MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

Modulation	Test Channel	Separation (MHz)	
	Lower	1.000	
GFSK	Middle	1.000	
	Upper	1.000	
Pi/4DQPSK	Lower	1.000	
	Middle	1.000	
	Upper	1.000	
8DPSK	Lower	1.000	
	Middle	1.000	
	Upper	1.000	

Test result plot as follows:

Modulation:GFSK

-0.12 dB

-2.37 dBm

Span 3.0 MHz

Lower Channel 1 Offs 0.50 dB * RBW 30 kHz Att 30 dB * VBW 100 kHz D1[1] Ref 10.00 dBm SWT 5ms 1.000000000 MHz M1[1] 2.401985000 GHz 1Pk Max 0 dBr -10 dBn -30 dB

CF 2.4025 GHz Date: 27.SEP.2013 20:33:49

-50 dBr -60 dBn -70 dBņ -80 dB

Middle Channel

Date: 27.SEP.2013 20:38:26

Date: 27.SEP.2013 20:39:13

Modulation: Pi/4DQPSK

Date: 27.SEP.2013 20:34:40

Date: 27.SEP.2013 20:37:57

Date: 27.SEP.2013 20:39:44

Modulation: 8DPSK

Lower Channel **(** Offs 0.50 dB * RBW 30 kHz Att 30 dB * VBW 100 kHz D1[1] 0.01 dB SWT 5ms 1.000000000 MHz Batt Ref 10.00 dBm -3.47 dBm 2.401985000 GHz M1[1] 1Pk Max 0 dBm -10 dBn -20 dBr -30 dB -40\dBr -60 dBr -70 dBr -80 dBn CF 2.4025 GHz Span 3.0 MHz

Date: 27.SEP.2013 20:35:17

Date: 27.SEP.2013 20:36:22

Date: 27.SEP.2013 20:40:17

Reference No.: WTS13S0907635E Page 55 of 85

14 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Centre Frequency = 2.441GHz, Span = 86MHz. Sweep=auto;

14.2 Test Result:

Total Channels are 79 Channels.

Date: 27.SEP.2013 20:46:06

Date: 27.SEP.2013 20:46:49

Date: 27.SEP.2013 20:47:47

Reference No.: WTS13S0907635E Page 57 of 85

15 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

15.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 1MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

15.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000
Remark	Mkr Delta is single pulse time.

Modulation	Frequency	Data Packet	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
	Lower channel	DH1	0.428	0.137	0.400
	Middle channel		0.432	0.138	0.400
	Upper channel		0.436	0.140	0.400
	Lower channel	DH3	1.704	0.273	0.400
GFSK	Middle channel		1.686	0.270	0.400
	Upper channel		1.692	0.271	0.400
	Lower channel		2.950	0.315	0.400
	Middle channel	DH5	2.958	0.316	0.400
	Upper channel		2.982	0.318	0.400
	Lower channel		0.444	0.142	0.400
	Middle channel	DH1	0.440	0.141	0.400
	Upper channel		0.440	0.141	0.400
	Lower channel	DH3	1.696	0.271	0.400
Pi/4DQPSK	Middle channel		1.684	0.269	0.400
	Upper channel		1.696	0.271	0.400
	Lower channel	DH5	2.970	0.317	0.400
	Middle channel		2.930	0.313	0.400
	Upper channel		2.938	0.313	0.400
	Lower channel	DH1	0.440	0.141	0.400
	Middle channel		0.440	0.141	0.400
8DPSK	Upper channel		0.444	0.142	0.400
	Lower channel	DH3	1.698	0.272	0.400
	Middle channel		1.716	0.275	0.400
	Upper channel		1.710	0.274	0.400
	Lower channel	DH5	2.966	0.316	0.400
	Middle channel		2.998	0.320	0.400
	Upper channel		2.982	0.318	0.400

Modulation:GFSK

200.0 μs/

CF 2.402 GHz

Data Packet: DH3, Middle channel

Data Packet: DH5, Lower channel

Data Packet: DH5, Middle channel

Data Packet: DH5, Upper channel

Modulation: Pi/4DQPSK

Data Packet: DH1, Middle channel

Data Packet: DH1, Upper channel

Data Packet: DH3, Upper channel

Data Packet: DH5, Middle channel

Data Packet: DH5, Upper channel

Modulation: 8DPSK

Data Packet:DH1,Lower channel

Data Packet: DH1, Middle channel

Data Packet: DH3, Middle channel

Data Packet: DH5, Lower channel

Data Packet: DH5, Upper channel

16 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfill the requirement of this section.

Reference No.: WTS13S0907635E Page 74 of 85

17 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

17.1 Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

17.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS13S0907635E Page 75 of 85

17.3 MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

 $\mathbf{P} = \mathsf{Peak} \; \mathsf{RF} \; \mathsf{output} \; \mathsf{power} \; (\mathsf{W})$

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Modulation	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
GFSK	1	1.29	1.346	0.0014	1
Pi/4DQPSK	1	1.96	1.570	0.0010	1
8DPSK	1	1.91	1.552	0.0008	1

$18 \quad Photographs-Test\ Setup$

18.1 Conducted Emissions

18.2 Radiated Emissions

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

18.3 BT module Installation diagram with Host(Mode:MBT80C)

19 Photographs - Constructional Details

19.1 EUT - Module Photos

19.2 EUT – Host External View

19.3 EUT – Host Internal View

