```
In [3]:
```

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [4]:

```
df=pd.read_csv(r"C:\Users\lenovo\Downloads\ionosphere.csv")
df
```

Out[4]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	 -0.51171	0.41078	-0.46168	0.21266	-0.34090	0.42267	-0.54
0	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -0.26569	-0.20468	-0.18401	-0.19040	-0.11593	-0.16626	-0.06
1	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -0.40220	0.58984	-0.22145	0.43100	-0.17365	0.60436	-0.24
2	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 0.90695	0.51613	1.00000	1.00000	-0.20099	0.25682	1.00
3	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -0.65158	0.13290	-0.53206	0.02431	-0.62197	-0.05707	-0.59
4	1	0	0.02337	-0.00592	-0.09924	-0.11949	-0.00763	-0.11824	0.14706	0.06637	 -0.01535	-0.03240	0.09223	-0.07859	0.00732	0.00000	0.00
345	1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -0.04202	0.83479	0.00123	1.00000	0.12815	0.86660	-0.10 [°]
346	1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 0.01361	0.93522	0.04925	0.93159	0.08168	0.94066	-0.00
347	1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 0.03193	0.92489	0.02542	0.92120	0.02242	0.92459	0.00
348	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -0.02099	0.89147	-0.07760	0.82983	-0.17238	0.96022	-0.03
349	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -0.15114	0.81147	-0.04822	0.78207	-0.00703	0.75747	-0.06

In [5]:

350 rows × 35 columns

```
pd.set_option('display.max_rows',10000000000)
pd.set_option('display.max_columns',10000000000)
pd.set_option('display.width',95)
```

In [6]:

```
print('The DataFrame has %d Rows and %d columns'%(df.shape))
```

The DataFrame has 350 Rows and 35 columns

In [7]:

df.head()

Out[7]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	0.85243.1	-0.17755	0.59755	-0.44945	0.60536	-0.38223	0.84356	-0
0	1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	0.50874	-0.67743	0.34432	-0.69707	-0.51685	-0.97515	0.05499	-0
1	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	0.73082	0.05346	0.85443	0.00827	0.54591	0.00299	0.83775	-0
2	1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-1.00000	0.14516	0.54094	-0
3	1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	0.52798	-0.20275	0.56409	-0.00712	0.34395	-0.27457	0.52940	-0
4	1	0	0.02337	-0.00592	-0.09924	-0.11949	-0.00763	-0.11824	0.14706	0.06637	0.03786	-0.06302	0.00000	0.00000	-0.04572	-0.15540	-0.00343	-0
4																		•

In [8]:

df.tail()

Out[8]:

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	0.85243.1	-0.17755	0.59755	-0.44945	0.60536	-0.38223	0.84356	-0
345	1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	0.89391	0.13130	0.81197	0.06723	0.79307	-0.08929	1.00000	-0
346	1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	0.96510	0.03281	0.94171	0.07330	0.94625	-0.01326	0.97173	0
347	1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	0.94124	0.01766	0.92595	0.04688	0.93954	-0.01461	0.94837	0
348	1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	0.89724	-0.03315	0.89061	-0.01436	0.90608	-0.04530	0.91381	-0
349	1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	0.78735	0.06678	0.80668	-0.00351	0.79262	-0.01054	0.85764	-0
4																		•

```
In [9]:
features_matrix=df.iloc[:,0:34]
In [10]:
target_vector=df.iloc[:,-1]
In [11]:
print('The Feature Matrix Has %d Rows and %d Column(s)'%(features_matrix.shape))
print('The Target Matrix Has %d Rows and %d Column(s)'%(np.array(target_vector).reshape(-1,1).shape))
The Feature Matrix Has 350 Rows and 34 Column(s)
The Target Matrix Has 350 Rows and 1 Column(s)
In [12]:
features_matrix_standardized=StandardScaler().fit_transform(features_matrix)
In [15]:
tercept=True,intercept_scaling=1,class_weight=None,solver='lbfgs',max_iter=100,multi_class='auto',verbose=0,warm_start=False,n_jobs=None)
In [16]:
971,-0.29674,0.36946,-0.47357,0.56811,-0.51171,0.41078000000000003,-0.4616800000000003,0.21266,-0.3409,0.42267,-0.54487,0.18641,-0.453]]
In [17]:
tercept=True,intercept_scaling=1,class_weight=None,solver='lbfgs',max_iter=100,multi_class='auto',verbose=0,warm_start=False,n_jobs=None)
In [22]:
Logistic_Regression_Model=algorithm.fit(features_matrix_standardized,target_vector)
In [23]:
observation=[[1,0,0.99539,-0.085889,0.85242999999999,0.02306,0.83397999999999,-0.37708,1.0,0.0376,0.85242999999999,-0.17755,
 0.59755, -0.44945, 0.60536, -0.38223, 0.8435600000000001, -0.38542, 0.58212, -0.32192, 0.56971, -0.29674, 0.36946, -0.47357,
  0.56811, -0.51171, 0.410780000000003, -0.461680000000003, 0.21260, -0.3409, 0.42267, -0.54487, 0.18641, -0.453] ] \\
In [24]:
predictions=Logistic_Regression_Model.predict(observation)
print("The model predicted the observation to belong to class %s"%(predictions))
The model predicted the observation to belong to class ['g']
In [25]:
print('The algorithm was Trained to predict one of the Two Classes %s'%(algorithm.classes_))
The algorithm was Trained to predict one of the Two Classes ['b' 'g']
In [26]:
("The model says the probability of the observation we passed belonging to class['b']is %s"%(algorithm.predict_proba(observation)[0][0]))
The model says the probability of the observation we passed belonging to class['b']is 0.0080428665129062
In [27]:
("The model says the probability of the observation we passed belonging to class['g']is %s"%(algorithm.predict_proba(observation)[0][1]))
The model says the probability of the observation we passed belonging to class['g']is 0.9919571334870938
In [ ]:
```