Spiegazioni

Alessio Esposito

November 14, 2022

Numeri complessi

L'insieme dei numeri complessi è così definito:

$$\mathbb{C} := \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$$

Da notare come la coppia (a,b) identifica univocamente la matrice $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, perciò se definiamo i=(0,1) e 1=(1,0) possiamo concludere che qualsiasi numero reale a può essere nella forma (a,0).

Per quanto scritto sopra, possiamo definire $\mathbb C$ come segue:

$$\mathbb{C} := \{(a, b) : a, b \in \mathbb{R}\}\$$

Questa definizione porta al seguente lemma:

Lemma

L'applicazione $\varsigma: \mathbb{R}^2 \to \mathbb{C}$ è un isomorfismo

Proof. La dimostrazione è banale basta considerare la definizione di \mathbb{R}^2 .

Bisogna precisare però il fatto che \mathbb{C} è isomorfo a \mathbb{R}^2 solo se li si considera come spazi vettoriali, infatti per costruire un isomorfismo tra algebre bisogna definire una nuova struttura come segue:

Definition 1. Il prodotto tra vettori è dato dall'operatore binario:

$$\xi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

tale che ad ogni coppia ((a,b),(c,d)) associa il vettore (ac-bd,bc+ad).

Consideriamo il numero complesso $z \in \mathbb{C}$ con z = (a, b), con l'operazione appena definita possiamo perciò costruirlo come segue:

$$a + ib = (a, 0) + (0, 1)(b, 0) = (a, 0) + (0, b) = (a, b)$$

Dotando perciò lo spazio vettoriale di questo prodotto si ottiene la capacità di dividere uno scalare per un vettore di \mathbb{R}^2 .

Infatti:

$$\frac{\alpha}{(\beta,\gamma)} = \alpha(\delta,\varepsilon) = (\alpha,0)(\delta,\varepsilon) = (\alpha\delta,\alpha\varepsilon)$$

Dove $\alpha, \beta, \gamma \in \mathbb{R}^2$ e $(\delta, \varepsilon) = (\beta, \gamma)^{-1}$.

Tale inverso esiste perchè definendo così il prodotto abbiamo reso \mathbb{R}^2 un campo. la definizione di derivata torna ad avere senso.

Topologia dei cerchi e dei rettagoli

Siano $(\mathbb{R}^n, \mathcal{T}_1)$ e $(\mathbb{R}^n, \mathcal{T}_2)$ due spazi topologici, con \mathcal{T}_1 la totalità dei cerchi di centro $c \in \mathbb{R}^n$ e di raggio $r \in \mathbb{R}_+$ e \mathcal{T}_2 la totalità dei rettangoli del tipo: $(x_1, x_2) \times \cdots \times (x_{n-1}, x_n)$ dove $x_1, \ldots, x_n \in \mathbb{R}$. segue definizione:

Proposition 1. Sia $\mathcal{B} = \{B_i\}_{i \in I}$ una base dello spazio topologico \mathcal{T}_1 con $B_i = \{B_{\frac{1}{2}}(c) : n \in \mathbb{N}, c \in \mathbb{R}^n\}$, Allora vale l'uguaglianza:

$$\bigcup_{i \in I} B_i = \bigcup_{j \in J} R_j$$

dove R_i è la totalità dei rettangoli della topologia \mathcal{T}_2 1.

Proof. (⊇) \mathcal{OSS} : cominciamo con l'osservare che la diagonale di un rettangolo si ricava in questo modo: $d = \sqrt{h^2 + b^2}$ dove b e h sono rispettivamente base e altezza. Possiamo applicare questo concetto anche a degli intervalli, infatti se un rettangolo in \mathbb{R}^2 è definito come $(a,b) \times (c,d)$ basta prendere come base |a-b| e come altezza |c-d|. Sia perciò R un rettangolo definito in questo modo: $R = (x_1, x_2) \times \cdots \times (x_{n-1}, x_n)$ tale che, fissato un cerchio della base \mathcal{B} con raggio $\frac{1}{n}$ rispetti la seguente condizione:

$$\sqrt{|x_1 - x_2|^2 + \dots + |x_{n-1} - x_n|^2} < \frac{2}{n}$$

Dove $\frac{2}{n}$ è il diametro del cerchio.

Con questa condizione possiamo concludere che ogni cerchio contiene un rettangolo. Si può concludere che $\bigcup_{i\in I} B_i \supseteq \bigcup_{j\in J} R_j$.

 (\subseteq) Analogamente al caso precedente possiamo usare concetti geometrici del genere per provare la tesi. Si noti che possiamo prendere un qualsiasi rettangolo tale che venga rispettata questa condizione:

$$|x_i - x_{i+1}| \ge \frac{2}{n}$$
 $\forall i = 1, \dots, n-1$

con queste considerazioni si può infine affermare che $\bigcup_{i\in I} B_i \subseteq \bigcup_{j\in J} R_j$ e le topologie coincidono, quindi si ha l'asserto.

 $^{^1{\}rm Ho}$ preso la totalità di tutti i rettagoli come base del secondo spazio per motivi di praticità, la definizione di base viene comunque rispettata.