

AN IMPROVED DISTRIBUTED CONSENSUS KALMAN FILTER DESIGN APPROACH

Aviv Priel and Daniel Zelazo

Faculty of Aerospace Engineering Technion

IEEE 60th Conference on Decision & Control December 13, 2021

MOTIVATION

Cooperative state estimation in sensor networks...

Cooperative Trading

Cooperative Missile Defence

1

MOTIVATION

Cooperative state estimation in sensor networks...

Cooperative Trading

Cooperative Missile Defence

- local computational loads
- energy (the amount of data shared)
- available local information
- stability
- overall system performance

PROBLEM SETUP

 N agents observing a process \mathcal{P} with observation model \mathcal{OM}

2

CENTRALIZED KALMAN FILTER

Prediction

$$\bar{x}_k = A\hat{x}_{k-1}$$
$$\bar{P}_k = A\hat{P}_{k-1}A^T + BQB^T$$

Estimation

$$K_k = P_k \mathbf{H}^T \left(\mathbf{R} + \mathbf{H} \bar{P}_k \mathbf{H}^T \right)^{-1}$$

$$\hat{P}_k = \left(I - K_k \mathbf{H} \right) \bar{P}_k \left(I - K_k \mathbf{H} \right)^T$$

$$+ K_k \mathbf{R} K_k^T$$

$$\hat{x}_k = \bar{x}_k + K_k \left(\mathbf{z}_k - \mathbf{H} \bar{x}_k \right),$$

CENTRALIZED KALMAN FILTER

Centralized estimation

Prediction

$$ar{x}_k = A\hat{x}_{k-1}$$
 $ar{P}_k = A\hat{P}_{k-1}A^T + BQB^T$
Estimation

Estimation

$$K_{k} = P_{k}\mathbf{H}^{T} \left(\mathbf{R} + \mathbf{H}\bar{P}_{k}\mathbf{H}^{T}\right)^{-1}$$

$$\hat{P}_{k} = \left(I - K_{k}\mathbf{H}\right)\bar{P}_{k} \left(I - K_{k}\mathbf{H}\right)^{T}$$

$$+K_{k}\mathbf{R}K_{k}^{T}$$

$$\hat{x}_{k} = \bar{x}_{k} + K_{k} \left(\mathbf{z}_{k} - \mathbf{H}\bar{x}_{k}\right),$$

$$\diamond~\mathbf{z}_k = \left[z_k^{1^T},...,z_k^{N^T}\right]^T \text{, } \mathbf{H} = \left[H^{1^T},...,H^{N^T}\right]^T \text{, } \mathbf{R} = \textit{diag}\{R^i\}_{i=1..N}$$

CENTRALIZED KALMAN FILTER

Centralized estimation

Prediction

$$\bar{x}_k = A\hat{x}_{k-1}$$

$$\bar{P}_k = A\hat{P}_{k-1}A^T + BQB^T$$

Estimation

$$K_k = P_k \mathbf{H}^T \left(\mathbf{R} + \mathbf{H} \bar{P}_k \mathbf{H}^T \right)^{-1}$$
$$\hat{P}_k = (I - K_k \mathbf{H}) \bar{P}_k (I - K_k \mathbf{H})^T$$
$$+ K_k \mathbf{R} K_k^T$$
$$\hat{x}_k = \bar{x}_k + K_k (\mathbf{z}_k - \mathbf{H} \bar{x}_k),$$

$$\diamond \ \mathbf{z}_k = \left[z_k^{1^T},...,z_k^{N^T}\right]^T \text{, } \mathbf{H} = \left[H^{1^T},...,H^{N^T}\right]^T \text{, } \mathbf{R} = \textit{diag}\{R^i\}_{i=1..N}$$

 \diamond Optimal Kalman gain $\longrightarrow \left[\frac{\partial \mathbb{E}\left[\left(\hat{x}-x\right)^{T}\left(\hat{x}-x\right)\right]}{\partial K_{k}}=0\right]$

DISTRIBUTED COOPERATIVE ESTIMATION

Assumption: each agent has at least one connection.

DISTRIBUTED COOPERATIVE ESTIMATION

Centralized estimation

Distributed cooperative estimation

DISTRIBUTED COOPERATIVE ESTIMATION

Centralized estimation

Distributed cooperative estimation

Distributed Consensus Kalman estimator (DCKE) 1

$$\hat{x}_k^i = \bar{x}_k^i + K_k^i \left(z_k^i - H^i \bar{x}_k \right) + \underbrace{C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{x}_k^j - \bar{x}_k^i \right)}_{\text{Consensus}},$$

¹ R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, 2007.

Distributed Consensus Kalman estimator (DCKE)

$$\hat{x}_k^i = \bar{x}_k^i + K_k^i \left(z_k^i - H^i \bar{x}_k \right) + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{x}_k^j - \bar{x}_k^i \right),$$

 K^{i} and C^{i} are the i^{th} agent's Kalman and consensus gains, respectively.

Distributed Consensus Kalman estimator (DCKE)

$$\hat{x}_k^i = \bar{x}_k^i + K_k^i \left(z_k^i - H^i \bar{x}_k \right) + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{x}_k^j - \bar{x}_k^i \right),$$

Optimal Kalman gain -

$$\frac{\partial \mathbb{E}\left[\left(\hat{x}-x\right)^{T}\left(\hat{x}-x\right)\right]}{\partial K_{k}}=0$$

Optimal consensus gain -

$$\frac{\partial \mathbb{E}\left[\left(\hat{x}-x\right)^{T}\left(\hat{x}-x\right)\right]}{\partial C_{h}}=0$$

solved -

The optimal (MSE) distributed Kalman gain ²

$$K_k^i = \left(\bar{P}_k^i H^{iT} + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{P}_k^{j,i} - \bar{P}_k^i\right) H^{iT}\right) \left(R^i + H^i \bar{P}_k^i H^{iT}\right)^{-1},$$

² R. Olfati-Saber, "Kalman-consensus filter: Optimality, sta-bility, and performance," in Proceedings of the 48h IEEEConference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 7036–7042, IEEE.2009.

The optimal (MSE) distributed Kalman gain

$$K_k^i = \left(\bar{P}_k^i H^{iT} + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{P}_k^{j,i} - \bar{P}_k^i\right) H^{iT}\right) \left(R^i + H^i \bar{P}_k^i H^{iT}\right)^{-1},$$

The corresponding update equations incorporate **two-hop neighbors information exchange!**

Sub-optimal consensus Kalman update equations:

$$\begin{cases} \textbf{Prediction} \\ \bar{x}_k^i = A\hat{x}_{k-1}^i \\ \bar{P}_k^i = A\hat{P}_{k-1}^i A^T + BQB^T \\ \textbf{Estimation} \\ K_k^i = P_k^i H^{iT} \left(R^i + H^i \bar{P}_k^i H^{iT}\right)^{-1} \\ \hat{P}_k^i = \underbrace{\left(I - K_k^i H^i\right)}_{F_k^i} \bar{P}_k^i \left(I - K_k^i H^i\right)^T + K_k^i R^i K_k^{iT} \\ \hat{x}_k^i = \bar{x}_k^i + K_k^i \left(z_k^i - H^i \bar{x}_k\right) + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{x}_k^j - \bar{x}_k^i\right). \end{cases}$$

we define the error dynamics:

$$\begin{split} \bar{\eta}_k^i &= A \eta_{k-1}^i \\ \eta_k^i &= \underbrace{(I - K_k^i H^i)}_{F_k^i} \bar{\eta}_k^i + C_k^i \sum_{j \in \mathcal{N}_j} \left(\bar{\eta}_k^j - \bar{\eta}_k^i \right). \end{split}$$

we define the error dynamics:

$$\begin{split} \bar{\eta}_k^i &= A \eta_{k-1}^i \\ \eta_k^i &= \underbrace{(I - K_k^i H^i)}_{F_k^i} \bar{\eta}_k^i + C_k^i \sum_{j \in \mathcal{N}_j} \left(\bar{\eta}_k^j - \bar{\eta}_k^i \right). \end{split}$$

we construct a Lyapunov function for the noiseless error dynamics:

$$V_{k} = \sum_{i=1}^{N} \eta_{k}^{iT} \hat{P}_{k}^{i^{-1}} \eta_{k}^{i}.$$

we obtain the Lyapunov step difference function:

$$\delta V_{k} = \sum_{i=1}^{N} \eta_{k-1}^{iT} \Psi_{k}^{i} \eta_{k-1}^{i} + 2 \sum_{i=1}^{N} \left[\eta_{k-1}^{iT} A^{T} F_{k}^{iT} \hat{P}_{k}^{i-1} C_{k}^{i} A \sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right) \right]$$

$$+ \sum_{i=1}^{N} \left[\sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right)^{T} A^{T} C_{k}^{iT} \hat{P}_{k}^{i-1} C_{k}^{i} A \sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right) \right]$$

we obtain the Lyapunov step difference function:

$$\delta V_{k} = \sum_{i=1}^{N} \eta_{k-1}^{iT} \Psi_{k}^{i} \eta_{k-1}^{i} + 2 \frac{\gamma_{k}}{\sum_{i=1}^{N}} \left[\eta_{k-1}^{iT} A^{T} \underbrace{F_{k}^{iT} \hat{P}_{k}^{i-1} C_{k}^{i}}_{I} A \sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right) \right]$$

$$+ \frac{\gamma_{k}^{2}}{\sum_{i=1}^{N}} \left[\sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right)^{T} A^{T} \underbrace{F_{k}^{i-1} \hat{P}_{k}^{i} F_{k}^{iT-1}}_{Y_{k}^{i}} A \sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right) \right]$$

 \diamond we use the consensus gain structure - $C_k^i = \gamma_k \hat{P}_k^i F_k^{iT^{-1}}$

we obtain the Lyapunov step difference function:

$$\delta V_{k} = \sum_{i=1}^{N} \eta_{k-1}^{iT} \Psi_{k}^{i} \eta_{k-1}^{i} + 2 \gamma_{k} \sum_{i=1}^{N} \left[\eta_{k-1}^{iT} A^{T} A \sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right) \right]$$

$$+ \gamma_{k}^{2} \sum_{i=1}^{N} \left[\sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right)^{T} A^{T} Y_{k}^{i} A \sum_{j \in \mathcal{N}_{j}} \left(\eta_{k-1}^{j} - \eta_{k-1}^{i} \right) \right]$$

 \diamond we use the consensus gain structure - $C_k^i = \gamma_k \hat{P}_k^i F_k^{iT^{-1}}$

 \diamond ultimately, we need to find γ_k .

LYAPUNOV STEP DIFFERENCE FUNCTION

The error dynamics:

$$\begin{split} \bar{\eta}_k^i &= A \eta_{k-1}^i \\ \eta_k^i &= F_k^i \bar{\eta}_k^i + \gamma_k \hat{P}_k^i F_k^{iT^{-1}} \sum_{j \in \mathcal{N}_j} \left(\bar{\eta}_k^j - \bar{\eta}_k^i \right). \end{split}$$

The Lyapunov step difference function:

$$\begin{split} \delta \, V_k &= -\eta_{k-1}^{\,T} \left[\varPsi_k - \gamma_k^2 \left(L \otimes A \right)^T \, Y_k \left(L \otimes A \right) + 2 \gamma_k \left(L \otimes A^T A \right) \right] \eta_{k-1} \\ &= -\eta_{k-1}^{\,T} \mathcal{K}_k \eta_{k-1}, \end{split}$$

where $\Psi_k = \mathrm{diag}\{\hat{P}_{k-1}^{i-1} - A^T F_k^{iT} \hat{P}_k^{i-1} F_k^i A\}_{i=1}^N$ and $Y_k = \mathrm{diag}\{Y_k^i\}_{i=1}^N$

CONSENSUS GAIN FACTOR

Olfati- Saber2:

$$\gamma_{k} = \sqrt{\frac{\lambda_{min} \left(\Psi_{k}\right)}{\lambda_{max} \left(\left(L \otimes A\right) Y_{k+1} \left(L \otimes A\right)\right)}},$$

This will ensure stability but...

$$\gamma_k \to 0$$
 as $k \to \infty$

² R. Olfati-Saber, "Kalman-consensus filter: Optimality, sta-bility, and performance," in Proceedings of the 48h IEEEConference on Decision and Control (CDC) held jointly with2009 28th Chinese Control Conference, pp. 7036–7042, IEEE,2009.

CONSENSUS GAIN FACTOR

We aim to extract the maximal consensus factor!

Theorem (DCKE Stability)

The noiseless estimation error for the consensus gain structure - $C_k^i = \gamma_k P_k^i F_k^{T^{-1}}$ is asymptotically stable with any $\gamma_k \in [0,\gamma_k^*] \, \forall \, k$, where γ_k^* is the solution to the following SDP:

$$\begin{aligned} & \max_{\gamma_k} \gamma_k \\ & \text{s.t.} \begin{bmatrix} \Psi_{k-1} + 2\gamma_k (L \otimes A^T A) & \gamma_k (L \otimes A)^T \\ & \gamma_k (L \otimes A) & Y_k^{-1} \end{bmatrix} \succeq 0. \end{aligned}$$

Proof

Recall:

$$\mathcal{K}_{k} = \Psi_{k} - \gamma_{k}^{2} (L \otimes A)^{T} Y_{k} (L \otimes A) + 2\gamma_{k} (L \otimes A^{T} A)$$

Using the Schur complement, we can now construct the following semi-definite program:

$$\begin{split} \max_{\gamma_k} \gamma_k \\ \text{s.t.} \begin{bmatrix} \Psi_{k-1} + 2\gamma_k (L \otimes A^T A) & \gamma_k (L \otimes A)^T \\ \gamma_k (L \otimes A) & Y_k^{-1} \end{bmatrix} \succeq 0, \end{split}$$

SIMULATION RESULTS

Communication graph

Sum of agents' MSE

True state Vs. agents' mean estimate

CENTRALIZED CONSENSUS GAIN FACTOR - DISADVANTAGES

- requires the knowledge of global network properties
- a change in network structure or noise properties would require re-calibration
- "heavy" for large scaled systems

Recall the DCKE:

$$\hat{x}_k^i = \bar{x}_k^i + K_k^i \left(z_k^i - H^i \bar{x}_k \right) + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{x}_k^j - \bar{x}_k^i \right),$$

Recall the DCKE:

$$\hat{\boldsymbol{x}}_k^i = \bar{\boldsymbol{x}}_k^i + K_k^i \left(\boldsymbol{z}_k^i - H^i \bar{\boldsymbol{x}}_k \right) + C_k^i \sum_{j \in \mathcal{N}_i} \left(\bar{\boldsymbol{x}}_k^j - \bar{\boldsymbol{x}}_k^i \right),$$

Consider now the decentralized consensus gain,

$$C_k^i = \frac{1}{|\mathcal{N}_{i,k}|} \underbrace{(I - K_k^i H^i)}_{F_i^i},$$

where $\mathcal{N}_{i,k}$ denotes the neighborhood of agent i at time step k.

Recall the DCKE:

$$\hat{\boldsymbol{x}}_k^i = \bar{\boldsymbol{x}}_k^i + K_k^i \left(\boldsymbol{z}_k^i - H^i \bar{\boldsymbol{x}}_k \right) + C_k^i \sum_{i \in \mathcal{N}} \left(\bar{\boldsymbol{x}}_k^j - \bar{\boldsymbol{x}}_k^i \right),$$

Consider now the decentralized consensus gain,

$$C_k^i = \frac{1}{|\mathcal{N}_{i,k}|} \underbrace{(I - K_k^i H^i)}_{F^i},$$

where $\mathcal{N}_{i,k}$ denotes the neighborhood of agent i at time step k. The local noiseless error dynamics are

$$\eta_{k}^{i} = F_{k}^{i} A \eta_{k-1}^{i} + \frac{1}{|\mathcal{N}_{i,k}|} F_{k}^{i} A \sum_{j \in \mathcal{N}_{j,k}} \left[\eta_{k-1}^{j} - \eta_{k-1}^{i} \right]
= \frac{1}{|\mathcal{N}_{i,k}|} F_{k}^{i} A \sum_{j \in \mathcal{N}_{j,k}} \eta_{k-1}^{j},$$

Proposition

Assume that each sensor in the network measures the process $\mathcal P$ using the same observation model

$$z_k^i = Hx_k + v_k^i, i = 1, \dots, N,$$

where v_k^i is the zero-mean Gaussian measurement noise with $\mathbb{E}[v_k^i v_l^i] = R\delta_{kl}$. Then the error dynamics, with the consensus gain $C_k^i = \frac{1}{|\mathcal{N}_{i,k}|} \bar{F}_k$, are asymptotically stable.

Proof

the augmented error dynamics can be simplified to

$$\eta_k = (I_N \otimes \bar{F}_k A) \underbrace{((I_N - (\mathcal{D}_k^{-1} L_k)) \otimes I_n)}_{\text{row stochastic}} \eta_{k-1},$$

with
$$\mathcal{D}_k = diag\{|\mathcal{N}_{i,k}|\}_{i=1}^N$$
.

Proof

the augmented error dynamics can be simplified to

$$\eta_k = (I_N \otimes \bar{F}_k A) \underbrace{((I_N - (\mathcal{D}_k^{-1} L_k)) \otimes I_n)}_{\text{row stochastic}} \eta_{k-1},$$

with
$$\mathcal{D}_k = diag\{|\mathcal{N}_{i,k}|\}_{i=1}^N$$
.

This leads to the following inequality

$$\lim_{k \to \infty} \left\| \prod_{k} \left((I_N - (\mathcal{D}_k^{-1} L_k)) \otimes \bar{F}_k A \right) \right\|$$

$$\leq \lim_{k \to \infty} \left\| \prod_{k} (\bar{F}_k A) \right\| \underbrace{\lim_{k \to \infty} \left\| \prod_{k} (I_N - (\mathcal{D}_k^{-1} L_k)) \right\|}_{<\infty} = 0.$$

Therefore, the error dynamics are asymptotically stable.

SIMULATION RESULTS

Time varying graph

Olfati-Saber and Sandell ³

$$C_k^i = \frac{\epsilon}{1 + |\hat{P}_k^i|_F} \hat{P}_k^i,$$

³ N. F. Sandell and R. Olfati-Saber, "Distributed data associ-ation for multi-target tracking in sensor networks," in 47thIEEE Conference on Decision and Control, pp. 1085–1090,IEEE, 2008.

SIMULATION RESULTS

Time varying graph

Olfati-Saber and Sandell

$$C_k^i = \frac{\epsilon}{1 + |\hat{P}_k^i|_F} \hat{P}_k^i,$$

Non-cooperative KFOlfati-Saber

Our

Our proposed gain

widely common sub-optimal Consensus Kalman filter scheme

Centralized architecture

19

- widely common sub-optimal Consensus Kalman filter scheme
- SDP for extracting an upper bound on the consensus factor

Centralized architecture

 decentralized consensus gain which does not require global knowledge of network properties

20

- decentralized consensus gain which does not require global knowledge of network properties
- performance superiority of both consensus gains over existing solutions in the literature and over the non-cooperative Kalman filter

Decentralized architecture

 \diamond event-triggered cooperative estimation

- event-triggered cooperative estimation
- CKF with partial non-observability

- event-triggered cooperative estimation
- CKF with partial non-observability
- cooperative estimation with control authorities

- event-triggered cooperative estimation
- CKF with partial non-observability
- cooperative estimation with control authorities
- expand research to account for EKF, Unscented and more...