

# Test report

# 2016 11315051 EMC FULL

Date of issue: November 29, 2016

Applicant:

MyGnar, Inc.

Product:

**Storage Device** 

Model:

**GBX128V1** 

### Specifications:

- ◆ FCC 47 CFR Part 15, Subpart B Verification
- ICES-003 Issue 6 June 2016
- ♦ EN 55032: 2015
- ♦ EN 55024: 2010
- EN 301 489-17 V2.2.1 (2012-09)
- ♦ EN 61000-3-2: 2014
- ◆ EN 61000-3-3: 2013





### Lab and test locations

| Company name | Nemko USA, Inc.             |
|--------------|-----------------------------|
| Address      | 2210 Faraday Ave, Suite 150 |
| City         | Carlsbad                    |
| Province     | California                  |
| Postal code  | 92008                       |
| Country      | USA                         |
| Telephone    | +1 760 444 3500             |
| Website      | www.nemko.com               |
| Site number  | FCC: US5058; IC: 2040B      |
| Company name | Nemko USA, Inc.             |
| Website      | www.nemko.com               |

| Tested by          | Greg Woelke, EMC Test Engineer                 |
|--------------------|------------------------------------------------|
| Reviewed by        | James Morris, EMC & Wireless Divisions Manager |
| Review date        | January 24, 2017                               |
| Reviewer signature | James & Morris                                 |

#### Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

### Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko USA Inc.



# **Table of Contents**

| Table of C | Contents                                                                          | 3        |
|------------|-----------------------------------------------------------------------------------|----------|
| Section 1  | Report summary                                                                    | 4        |
| 1.1        | Test specifications                                                               | 4        |
| 1.2        | Exclusions                                                                        | 4        |
| 1.3        | Statement of compliance                                                           | 4        |
| 1.4        | Test report revision history                                                      | 4        |
| Section 2  | Summary of test results                                                           | 5        |
| 2.1        | Radiated emissions                                                                | 5        |
| 2.2        | Conducted emissions                                                               | 5        |
| Section 3  | Equipment under test (EUT) details                                                | е        |
| 3.1        | Applicant                                                                         | 6        |
| 3.2        | Manufacturer                                                                      | 6        |
| 3.3        | Sample information                                                                | 6        |
| 3.4        | EUT information                                                                   | 6        |
| 3.5        | EUT exercise and monitoring details                                               | £        |
| 3.6        | EUT setup details                                                                 | 7        |
| Section 4  | Engineering considerations                                                        | 8        |
| 4.1        | Modifications incorporated in the EUT                                             | 8        |
| 4.2        | Technical judgment                                                                | 8        |
| 4.3        | Deviations from laboratory tests procedures                                       | 8        |
| Section 5  | Test conditions                                                                   | 9        |
| 5.1        | Atmospheric conditions                                                            | <u>9</u> |
| 5.2        | Power supply range                                                                | <u>9</u> |
| Section 6  | Measurement uncertainty                                                           | 10       |
| 6.1        | Uncertainty of measurement                                                        | 10       |
| Section 7  | Terms and definitions                                                             | 11       |
| 7.1        | Performance criterion                                                             | 11       |
| 7.2        | General definitions                                                               | 11       |
| Section 8  | Testing data                                                                      | 14       |
| 8.1        | AC mains power input/output ports                                                 | 14       |
| 8.2        | Radiated Emissions                                                                | 20       |
| 8.3        | Clause 8.5 – Harmonic current emissions (AC mains input port)                     | 24       |
| 8.4        | Clause 8.6 – Voltage fluctuations and flicker (AC mains input port)               | 30       |
| 8.5        | Clause 9.2 – Radio frequency electromagnetic field (0.08 to 1 and 1.4 to 2.7 GHz) | 33       |
| 8.6        | Clause 9.3 – Electrostatic discharge                                              |          |
| 8.7        | Clause 9.4 – Fast transients, common mode                                         | 41       |
| 8.8        | Clause 9.5 – Radio frequency, common mode                                         | 44       |
| 8.9        | Clause 9.7 – Voltage dips and interruptions                                       | 46       |
| 8.10       | Clause 9.8 – Surges                                                               | 49       |
| Section 9  | EUT photos                                                                        | 51       |
| 9.1        | External photos                                                                   | 51       |



# Section 1 Report summary

### 1.1 Test specifications

| FCC 47 CFR Part 15, Subpart B – Verification | Title 47: Telecommunication; PART 15—RADIO FREQUENCY DEVICES                                                    |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ICES-001 Issue 4 January 2016                | Information technology equipment (ITE), including digital apparatus.                                            |
| EN 55032: 2015                               | Electromagnetic compatibility of multimedia equipment – Emission requirements                                   |
| EN 55024: 2010                               | Information technology equipment, Immunity characteristics, Limits and methods of measurement                   |
| EN 301 489-17 V2.2.1 (2012-09)               | Electromagnetic compatibility and Radio spectrum Matters (ERM) ElectroMagnetic Compatibility (EMC) standard for |
|                                              | radio equipment; Part 17: Specific conditions for Broadband Data Transmission Systems                           |
| EN 301 489-1 V1.9.2 (2011-09)                | Electromagnetic compatibility and Radio spectrum Matters (ERM) ElectroMagnetic Compatibility (EMC) standard for |
|                                              | radio equipment and services; Part 1: Common technical requirements                                             |
|                                              | Special note: Utilized newer version than specified in EN 301 489-17.                                           |
| EN 61000-3-2: 2014                           | Limits for harmonic current emissions (equipment input current <= 16 A per phase)                               |
| EN 61000-3-3: 2013                           | Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for       |
|                                              | equipment with rated current <= 16 A per phase and not subject to conditional connection                        |

### 1.2 Exclusions

None

# 1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.4 Test report revision history

Table 1.4-1: Test report revision history

| Revisi | on#  | Details of changes made to test report |  |
|--------|------|----------------------------------------|--|
| 1      |      | Original report issued                 |  |
|        |      |                                        |  |
| Notes: | None |                                        |  |

Report reference ID: 2016 11315051 EMC FULL



# Section 2 Summary of test results

### 2.1 Radiated emissions

Radiated Emissions were verified during Radio Equipment testing and then verified during EMC testing.

Table 2.1-1: Requirements for radiated emissions at the frequencies up to 1 GHz for Class B equipment

| Table  | Frequency range |    | Measurement              | Class B limits dB(μV/m) | Verdict |
|--------|-----------------|----|--------------------------|-------------------------|---------|
| clause | [MHz] Distance  |    | Detector type/ bandwidth | SAC                     | verdict |
| A4.1   | 30 – 230        | 10 | Quasi Peak/120 kHz       | 30                      | Pass    |
| A4.1   | 230 – 1000      | 10 | Quasi Peak/ 120 km2      | 37                      | Pass    |
|        | 30 – 88         |    | 2 Overi Park/420 kHz     | 40                      |         |
| FCC    | 88 – 216        | 3  |                          | 43.5                    | Doce    |
| FCC    | 216 – 960       |    | Quasi Peak/120 kHz       | 46                      | Pass    |
|        | 960 – 1000      |    |                          | 54                      |         |

Notes: SAC – Semi Anechoic Chamber

Table 2.1-2: Requirements for radiated emissions at the frequencies above 1 GHz for Class B equipment

| Table  | Frequency range            |              | Measurement              | Class B limits dB(μV/m) | Verdict |
|--------|----------------------------|--------------|--------------------------|-------------------------|---------|
| clause | [MHz]                      | Distance [m] | Detector type/ bandwidth | SAC                     | verdict |
| A5.1   | 1000 – 3000<br>3000 – 6000 | 3            | Peak/1 MHz               | 70<br>74                | Pass    |
| FCC    | 1000 – 18000               | 3            | Peak/1 MHz               | 74                      | Pass    |

Notes: SAC – Semi Anechoic Chamber

### 2.2 Conducted emissions

 Table 2.2-1: Requirements for conducted emissions from the AC mains power ports of Class B equipment

| Table<br>clause | Frequency range [MHz] | Coupling device<br>(See table A.7 <sup>1</sup> ) | Detector type/ bandwidth | Class B limits dB(μV/m) | Verdict |
|-----------------|-----------------------|--------------------------------------------------|--------------------------|-------------------------|---------|
| 10.1 and        | 0.15 – 0.5            |                                                  |                          | 66 – 56                 |         |
| A9.1 and FCC    | 0.5 – 5               | AMN                                              | Quasi Peak/9 kHz         | 56                      | Pass    |
|                 | 5 – 30                |                                                  |                          | 60                      |         |
| 40.2            | 0.15 – 0.5            |                                                  |                          | 56 – 46                 |         |
| A9.2 and FCC    | 0.5 – 5               | AMN                                              | CAverage/9 kHz           | 46                      | Pass    |
|                 | 5 – 30                |                                                  |                          | 50                      |         |

Notes: <sup>1</sup> With reference to EN 55032. FCC and ICES-003 Limits are met.



# Section 3 Equipment under test (EUT) details

### 3.1 Applicant

| Company name    | MyGnar, Inc.                |
|-----------------|-----------------------------|
| Address         | 2640 Lincoln Blvd, Suite 2A |
| City            | Santa Monica                |
| Province/State  | CA                          |
| Postal/Zip code | 90404                       |
| Country         | USA                         |

### 3.2 Manufacturer

| Company name    | Express Manufacturing, Inc. |
|-----------------|-----------------------------|
| Address         | 3519 West Warner Ave.       |
| City            | Santa Ana                   |
| Province/State  | CA                          |
| Postal/Zip code | 92704                       |
| Country         | USA                         |

### 3.3 Sample information

| Receipt date           | November 15, 2016 |
|------------------------|-------------------|
| Nemko sample ID number | 315051            |

### 3.4 EUT information

| Product name                    | Storage Device                                                                          |
|---------------------------------|-----------------------------------------------------------------------------------------|
| Model                           | GBX128V1                                                                                |
| Serial number                   | none                                                                                    |
| Trade Name                      | GNARBOX                                                                                 |
| Power requirements              | 100-240V AC                                                                             |
| Description/theory of operation | Read media from USB, SD and microSD cards to backup and transfer data via WiFi hotspot. |
| Operational frequencies         | 2400-2483.5 MHz WiFi                                                                    |
| Software details                | No Software.                                                                            |

### 3.5 EUT exercise and monitoring details

EUT was set to continuously transfer data and monitored for disruption during immunity testing. Testing was performed in AC power mode with optional wall mount 5VDC USB power adapter. EUT has no stand-alone ancillary equipment. For radiated emissions test results refer to EN 300 328 test report.



# 3.6 EUT setup details

### Table 3.6-1: EUT sub assemblies

| Description | Brand name | Model/Part number | Serial number | Rev. |
|-------------|------------|-------------------|---------------|------|
| N/A         |            |                   |               |      |
|             |            |                   |               |      |

### Table 3.6-2: EUT interface ports

| Description   | Qty. |
|---------------|------|
| Micro USB     | 1    |
| USB 2.0       | 1    |
| USB 3.0       | 1    |
| Micro SD Card | 1    |
| SD Card       | 1    |

### Table 3.6-3: Support equipment

| Description             | Brand name | Model/Part number | Serial number | Rev. |
|-------------------------|------------|-------------------|---------------|------|
| Wall Mount Power Supply | Apple      | A1265             | None          | N/A  |
| USB 2.0 Thumb Drive     | Samsung    | 8GB               | None          | N/A  |
| USB 3.0 Thumb Drive     | Sandisk    | 2GB               | None          | N/A  |
| SD Memory Card          | Generic    | 2GB               | None          | N/A  |

### Table 3.6-4: Inter-connection cables

| Cable description | From | То                      | Length (m) |
|-------------------|------|-------------------------|------------|
| USB Cable         | EUT  | Wall Mount Power Supply | 1          |



Figure 3.6-1: Setup Photo



# Section 4 Engineering considerations

# 4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

# 4.2 Technical judgment

None

# 4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.



# Section 5 Test conditions

### 5.1 Atmospheric conditions

| Temperature       | 15–30 ℃    |
|-------------------|------------|
| Relative humidity | 20–75 %    |
| Air pressure      | 86–106 kPa |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.



# Section 6 Measurement uncertainty

### 6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.



# Section 7 Terms and definitions

### 7.1 Performance criterion

Performance criteria: Reference clause 6 of EN 301 489-17 2.2.1 (2012-09)

### 7.2 General definitions

### 7.2.1 EN 61000-3-2 (Harmonic emissions)

For the purpose of harmonic current limitation, equipment is classified as follows:

| Class A | <ul> <li>Balanced three-phase equipment;</li> <li>Household appliances excluding equipment identified as Class D;</li> <li>Tools excluding portable tools;</li> <li>Dimmers for incandescent lamps;</li> <li>Audio equipment.</li> </ul> Equipment not specified in one of the three other classes shall be considered as Class A equipment. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class B | – Portable tools;                                                                                                                                                                                                                                                                                                                            |
|         | <ul> <li>Arc welding equipment, which is not professional equipment.</li> </ul>                                                                                                                                                                                                                                                              |
| Class C | – Lighting equipment.                                                                                                                                                                                                                                                                                                                        |
| Class D | Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:                                                                                                                                                                                                                                   |
|         | <ul> <li>Personal computers and personal computer monitors;</li> </ul>                                                                                                                                                                                                                                                                       |
|         | – Television receivers.                                                                                                                                                                                                                                                                                                                      |

### 7.2.2 EN 61000-3-3 (Flicker)

| Voltage fluctuation               | Series of changes of r.m.s voltage evaluated as a single value for each successive half-period between zero-crossings of |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                   | the source voltage.                                                                                                      |
| Flicker                           | Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution      |
|                                   | fluctuates with time.                                                                                                    |
| Short-term flicker indicator, Pst | The flicker severity evaluated over a short period (in minutes); Pst = 1 is the conventional threshold of irritability.  |
| Long-term flicker indicator, Plt  | The flicker severity evaluated over a long period (a few hours) using successive Pst values.                             |



# 7.2 General definitions, continued

### 7.2.3 EN 61000-4-2 (Electrostatic discharge)

| Electrostatic discharge; ESD | A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact. |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Contact discharge method     | A method of testing, in which the electrode of the test generator is held in contact with the EUT, and the discharge      |
|                              | actuated by the discharge switch within the generator.                                                                    |
| Air discharge method         | A method of testing, in which the charged electrode of the test generator is brought close to the EUT, and the            |
|                              | discharge actuated by a spark to the EUT.                                                                                 |
| Direct application           | Application of the discharge directly to the EUT.                                                                         |
| Indirect application         | Application of the discharge to a coupling plane in the vicinity of the EUT, and simulation of personnel discharge to     |
|                              | objects, which are adjacent to the EUT.                                                                                   |
| Coupling plane               | A metal sheet or plate, to which discharges are applied to simulate electrostatic discharge to objects adjacent to the    |
|                              | EUT. HCP: Horizontal Coupling Plane; VCP: Vertical Coupling Plane.                                                        |

### 7.2.4 EN 61000-4-6 (Immunity to conducted disturbances, induced by radio-frequency fields)

| Clamp injection                 | Clamp injection is obtained by means of a clamp-on "current" injecting device on the cable.  |
|---------------------------------|----------------------------------------------------------------------------------------------|
| Coupling/decoupling network CDN | Electrical circuit incorporating the functions of both the coupling and decoupling networks. |
| Sweep                           | Continuous or incremental traverse over a range of frequencies.                              |

### 7.2.5 EN 61000-4-3: (Radiated, radio-frequency, electromagnetic field)

| Continuous waves (CW)     | Electromagnetic waves, the successive oscillations of which are identical under steady-state conditions, which can be interrupted or modulated to convey information.                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electromagnetic (EM) wave | Radiant energy produced by the oscillation of an electric charge characterized by oscillation of the electric and magnetic fields.                                                                                                                                 |
| Field strength            | The term "field strength" is applied only to measurements made in the far field. The measurement may be of either the electric or the magnetic component of the field and may be expressed as V/m, A/m or W/m2; any one of these may be converted into the others. |
| Sweep                     | Continuous or incremental traverse over a range of frequencies.                                                                                                                                                                                                    |



# 7.2 General definitions, continued

### 7.2.6 EN 61000-4-5 (Surge)

| Surge              | Transient wave of electrical current, voltage, or power propagating along a line or a circuit and characterized by a rapid increase followed by a slower decrease.                          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ground (reference) | Part of the Earth considered as conductive, the electrical potential of which is conventionally taken as zero, being outside the zone of influence of any earthing (grounding) arrangement. |

### 7.2.7 EN 61000-4-4 (Electrical fast transient/burst)

| Burst                  | Sequence of a limited number of distinct pulses or an oscillation of limited duration.                              |
|------------------------|---------------------------------------------------------------------------------------------------------------------|
| Common mode (coupling) | Simultaneous coupling to all lines versus the ground reference plane.                                               |
| Ground reference plane | Flat conductive surface whose potential is used as a common reference.                                              |
| Coupling clamp         | Device of defined dimensions and characteristics for common mode coupling of the disturbance signal to the circuit  |
|                        | under test without any galvanic connection to it.                                                                   |
| Transient              | Pertaining to or designating a phenomenon or a quantity which varies between two consecutive steady states during a |
|                        | time interval which is short compared with the time-scale of interest.                                              |

### 7.2.8 EN 61000-4-11 (Voltage dips, short interruptions and voltage variations)

| Voltage dip        | A sudden reduction of the voltage at a particular point of an electricity supply system below a specified dip threshold |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
|                    | followed by its recovery after a brief interval.                                                                        |
| Short interruption | A sudden reduction of the voltage on all phases at a particular point of an electric supply system below a specified    |
|                    | interruption threshold followed by its restoration after a brief interval.                                              |

Test 14 / 53

# Section 8 Testing data

# 8.1 AC mains power input/output ports

### 8.1.1 References

EN 55032: 2015

### 8.1.2 Test summary

| Verdict       | Pass                           |                   |           |
|---------------|--------------------------------|-------------------|-----------|
| Test date     | November 15, 2016              | Temperature       | 22 °C     |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1005 mbar |
| Test location | Ground Plane                   | Relative humidity | 45 %      |

### 8.1.3 Notes

None

### 8.1.4 Setup details

| Port under test         | AC Mains                                                                                                           |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| EUT setup configuration | Table top                                                                                                          |
| Measurement details     | A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or   |
|                         | above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final |
|                         | measurement.                                                                                                       |

### Receiver settings:

| Resolution bandwidth | 9 kHz                                                                  |
|----------------------|------------------------------------------------------------------------|
| Video bandwidth      | 30 kHz                                                                 |
| Detector mode        | Peak (preview measurement); Quasi-peak and Average (final measurement) |
| Trace mode           | Max Hold                                                               |
| Measurement time     | 100 ms (preview measurement); 1000 ms (final measurement)              |

Table 8.1-1: Clause 8.4 – AC mains power input/output ports equipment list

| Asset Tag | Description        | Manufacturer    | Model  | Serial # | Next Cal    |
|-----------|--------------------|-----------------|--------|----------|-------------|
| E1019     | Two Line V-Network | Rohde & Schwarz | ENV216 | 101045   | 15-Jun-2017 |
| E1026     | EMI Test Receiver  | Rohde & Schwarz | ESCI 7 | 100800   | 17-Mar-2017 |
|           |                    |                 |        |          |             |

Notes: Choose an item.

Table 8.1-2: Clause 8.4 – AC mains power input/output ports software details

| Manufact | urer of Software | Details         |
|----------|------------------|-----------------|
| R&S      |                  | EMC32 V10.00.00 |
| Notes:   | None             |                 |
| 8.1.5    | Test data        |                 |

Test 15 / 53

### Full Spectrum



 $The spectral plot has been corrected with transducer factors. (i.e.\ cable loss,\ LISN\ factors,\ and\ attenuators)$ 

Figure 8.1-1: Clause 8.4 – AC mains power input/output ports spectral plot on phase line and neutral line

Test 16 / 53

### 8.1.5 Test data, continued

 ${\it Table~8.1-3: Clause~8.4-AC~mains~power~input/output~ports~(Quasi-Peak~and~Average)~results}$ 

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) |
|--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------|
| 0.154              |                     | 31.2              | 55.7            | -24.5          | 5000                  | 9                  | L1   | ON     | 19.5          |
| 0.154              | 53.1                |                   | 65.7            | -12.6          | 5000                  | 9                  | L1   | ON     | 19.5          |
| 0.158              | 52.6                |                   | 65.5            | -12.8          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.158              |                     | 27.0              | 55.5            | -28.5          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.164              | 52.0                |                   | 65.2            | -13.1          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.164              |                     | 25.4              | 55.2            | -29.8          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.184              | 49.9                |                   | 64.2            | -14.2          | 5000                  | 9                  | L1   | ON     | 19.5          |
| 0.184              |                     | 28.4              | 54.2            | -25.8          | 5000                  | 9                  | L1   | ON     | 19.5          |
| 0.196              | 49.7                |                   | 63.7            | -14.0          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.196              |                     | 26.8              | 53.7            | -26.9          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.208              |                     | 33.4              | 53.2            | -19.8          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.208              | 48.6                |                   | 63.2            | -14.6          | 5000                  | 9                  | N    | ON     | 19.5          |
| 0.296              |                     | 31.5              | 50.3            | -18.8          | 5000                  | 9                  | L1   | ON     | 19.5          |
| 0.296              | 43.9                |                   | 60.3            | -16.3          | 5000                  | 9                  | L1   | ON     | 19.5          |

Notes:

 $<sup>^{1}\,\</sup>text{Result}$  (dBµV) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)

<sup>&</sup>lt;sup>2</sup> Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

Clause 8.4 – AC mains power input/output ports EN 301 489-17 V2.2.1 (2012-09)



### Full Spectrum



Section 8 Testing data

Test name Clause 8.4 – AC mains power input/output ports

**Specification** EN 301 489-17 V2.2.1 (2012-09)



# Final\_Result

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | Comment                  |
|--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------|--------------------------|
| 0.180              | 42.9                |                   | 64.4            | -21.4          | 5000                  | 9                  | N    | ON     | 19.5          | 10:27:56 AM - 11/15/2016 |
| 0.180              |                     | 35.8              | 54.4            | -18.6          | 5000                  | 9                  | N    | ON     | 19.5          | 10:27:56 AM - 11/15/2016 |
| 0.188              | 41.7                |                   | 64.1            | -22.3          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:16 AM - 11/15/2016 |
| 0.188              |                     | 29.7              | 54.1            | -24.3          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:16 AM - 11/15/2016 |
| 0.204              | 45.6                |                   | 63.4            | -17.8          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:26 AM - 11/15/2016 |
| 0.204              |                     | 38.4              | 53.4            | -14.9          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:26 AM - 11/15/2016 |
| 0.296              | 42.2                |                   | 60.3            | -18.1          | 5000                  | 9                  | N    | ON     | 19.5          | 10:28:06 AM - 11/15/2016 |
| 0.296              |                     | 37.5              | 50.3            | -12.7          | 5000                  | 9                  | N    | ON     | 19.5          | 10:28:06 AM - 11/15/2016 |
| 0.408              | 44.5                |                   | 57.6            | -13.0          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:36 AM - 11/15/2016 |
| 0.408              |                     | 37.9              | 47.6            | -9.7           | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:36 AM - 11/15/2016 |
| 0.432              | 43.1                |                   | 57.2            | -14.0          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:46 AM - 11/15/2016 |
| 0.432              |                     | 34.6              | 47.2            | -12.5          | 5000                  | 9                  | L1   | ON     | 19.5          | 10:27:46 AM - 11/15/2016 |
| 0.928              |                     | 28.3              | 46.0            | -17.6          | 5000                  | 9                  | N    | ON     | 19.5          | 10:28:16 AM - 11/15/2016 |
| 0.928              | 39.4                |                   | 56.0            | -16.5          | 5000                  | 9                  | N    | ON     | 19.5          | 10:28:15 AM - 11/15/2016 |

### 8.1.6 Setup photos



Figure 8.1-2: Clause 8.4 – AC mains power input/output ports setup photo





Figure 8.1-3: Clause 8.4 – AC mains power input/output ports setup photo



### 8.2 Radiated Emissions

#### 8.2.1 References

FCC Part 15B

### 8.2.2 Test summary

| Verdict       | Pass                           |                   |           |
|---------------|--------------------------------|-------------------|-----------|
| Test date     | November 15, 2016              | Temperature       | 22 °C     |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1005 mbar |
| Test location | 10 meter                       | Relative humidity | 45 %      |

### 8.2.3 Notes

None

### 8.2.4 Radiated Emissions, <1GHz

### Full Spectrum



| Frequency  | QuasiPeak | Limit    | Margin | Meas.  | Bandwidth | Height | Pol | Azimuth | Corr. | Comment                |
|------------|-----------|----------|--------|--------|-----------|--------|-----|---------|-------|------------------------|
| (MHz)      | (dBµV/m)  | (dBµV/m) | (dB)   | Time   | (kHz)     | (cm)   |     | (deg)   | (dB)  |                        |
|            |           |          |        | (ms)   |           |        |     |         |       |                        |
| 41.817000  | 22.58     | 40.00    | 17.42  | 1000.0 | 120.000   | 258.5  | ٧   | 157.0   | 14.2  | 1:03:10 PM - 8/9/2016  |
| 48.025000  | 25.23     | 40.00    | 14.77  | 1000.0 | 120.000   | 111.3  | ٧   | 250.0   | 10.9  | 1:10:53 PM - 8/9/2016  |
| 51.123000  | 27.35     | 40.00    | 12.65  | 1000.0 | 120.000   | 113.9  | ٧   | 69.0    | 9.3   | 12:59:42 PM - 8/9/2016 |
| 120.007500 | 34.94     | 43.50    | 8.56   | 1000.0 | 120.000   | 105.3  | ٧   | 164.0   | 13.5  | 1:07:11 PM - 8/9/2016  |
| 445.579500 | 28.42     | 46.00    | 17.58  | 1000.0 | 120.000   | 291.7  | Н   | 10.0    | 20.8  | 12:47:43 PM - 8/9/2016 |
| 742.122000 | 34.55     | 46.00    | 11.45  | 1000.0 | 120.000   | 363.2  | Н   | 90.0    | 26.5  | 12:55:29 PM - 8/9/2016 |
| 891.580500 | 36.49     | 46.00    | 9.51   | 1000.0 | 120.000   | 185.5  | Н   | 65.0    | 28.2  | 12:51:38 PM - 8/9/2016 |

Section 8 Testing data

Clause 8.4 – AC mains power input/output ports EN 301 489-17 V2.2.1 (2012-09) Test name

Specification



|            |     |            | Compliancy |
|------------|-----|------------|------------|
| Compliant? | Yes | Additional | N/A        |
| Compliant? |     | Comments   |            |

10:22:17 AM 11/15/2016

Testing data

Clause 8.4 – AC mains power input/output ports

EN 301 489-17 V2.2.1 (2012-09)



### 8.2.5 Radiated Emissions, >1GHz

# Full Spectrum



| Frequency   | MaxPeak  | Average  | Limit    | Margi | Meas. | Bandwidt | Heigh | Pol | Azimut | Corr | Comment               |
|-------------|----------|----------|----------|-------|-------|----------|-------|-----|--------|------|-----------------------|
| (MHz)       | (dBµV/m) | (dBµV/m) | (dBµV/m) | n     | Time  | h        | t     |     | h      |      |                       |
|             |          |          |          | (dB)  | (ms)  | (kHz)    | (cm)  |     | (deg)  | (dB) |                       |
| 1040.100000 | 30.82    |          | 73.90    | 43.08 | 1000. | 1000.000 | 156.1 | Н   | 168.0  | -3.0 | 1:51:54 PM - 8/9/2016 |
| 1040.100000 |          | 16.32    | 53.90    | 37.58 | 1000. | 1000.000 | 156.1 | Н   | 168.0  | -3.0 | 1:51:54 PM - 8/9/2016 |
| 1086.766667 | 28.13    |          | 73.90    | 45.77 | 1000. | 1000.000 | 121.9 | Н   | 224.0  | -2.4 | 1:44:36 PM - 8/9/2016 |
| 1086.766667 |          | 17.66    | 53.90    | 36.24 | 1000. | 1000.000 | 121.9 | Н   | 224.0  | -2.4 | 1:44:36 PM - 8/9/2016 |
| 1183.833333 | 30.81    |          | 73.90    | 43.09 | 1000. | 1000.000 | 147.4 | Н   | 98.0   | -1.8 | 1:42:10 PM - 8/9/2016 |
| 1183.833333 |          | 17.55    | 53.90    | 36.35 | 1000. | 1000.000 | 147.4 | Н   | 98.0   | -1.8 | 1:42:10 PM - 8/9/2016 |
| 2080.333333 |          | 19.82    | 53.90    | 34.09 | 1000. | 1000.000 | 105.5 | Н   | 166.0  | 3.0  | 1:47:04 PM - 8/9/2016 |
| 2080.333333 | 32.70    |          | 73.90    | 41.20 | 1000. | 1000.000 | 105.5 | Н   | 166.0  | 3.0  | 1:47:04 PM - 8/9/2016 |
| 2229.200000 |          | 21.32    | 53.90    | 32.58 | 1000. | 1000.000 | 103.7 | Н   | 265.0  | 2.1  | 1:49:28 PM - 8/9/2016 |
| 2229.200000 | 35.74    |          | 73.90    | 38.16 | 1000. | 1000.000 | 103.7 | Н   | 265.0  | 2.1  | 1:49:28 PM - 8/9/2016 |

Section 8 Testing data

Clause 8.4 – AC mains power input/output ports EN 301 489-17 V2.2.1 (2012-09) Test name

Specification



| 14395.80000 |       | 34.14 | 53.90 | 19.76 | 1000. | 1000.000 | 185.3 | ٧ | 278.0 | 26.5 | 1:58:39 PM - 8/9/2016 |
|-------------|-------|-------|-------|-------|-------|----------|-------|---|-------|------|-----------------------|
| 14395.80000 | 47.21 |       | 73.90 | 26.69 | 1000. | 1000.000 | 185.3 | ٧ | 278.0 | 26.5 | 1:58:39 PM - 8/9/2016 |
| 17918.40000 |       | 39.05 | 53.90 | 14.85 | 1000. | 1000.000 | 122.7 | ٧ | 18.0  | 30.9 | 1:55:16 PM - 8/9/2016 |
| 17918.40000 | 52.05 |       | 73.90 | 21.85 | 1000. | 1000.000 | 122.7 | ٧ | 18.0  | 30.9 | 1:55:16 PM - 8/9/2016 |

Section 8 Test name Specification Testing data

Clause 8.5 – Harmonic current emissions (AC mains input port)

EN 301 489-17 V2.2.1 (2012-09)



### 8.3 Clause 8.5 – Harmonic current emissions (AC mains input port)

### 8.3.1 References

EN 61000-3-2: 2014

### 8.3.2 Test summary

| Verdict       | Pass                           |                   |           |
|---------------|--------------------------------|-------------------|-----------|
| Test date     | November 16, 2016              | Temperature       | 21 °C     |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1001 mbar |
| Test location | Ground Plane                   | Relative humidity | 56 %      |

### 8.3.3 Notes

None

### 8.3.4 Setup details

| Port under test  | AC Mains |
|------------------|----------|
| Measurement time | 30 min   |

#### Table 8.2-1: Clause 8.5 – Harmonic current emissions (AC mains input port) equipment list

| Asset Tag | Description            | Manufacturer       | Model   | Serial # | Next Cal    |
|-----------|------------------------|--------------------|---------|----------|-------------|
| 1851      | IX Series Programmable | California         | 90003ix |          | 02-Jul-2017 |
|           | AC & DC Power Source   | Instruments/Ametek |         |          |             |
|           | Analyzer               |                    |         |          |             |
|           |                        | ·                  |         |          | ·           |

Notes:

N/A - not applicable

### Table 8.2-2: Clause 8.5 – Harmonic current emissions (AC mains input port) test software details

| Manufacturer of Software | Details                           |
|--------------------------|-----------------------------------|
| California Instruments   | AC Source CIGui SII Version 3.0.0 |

Notes:

None

Testing data

Clause 8.5 – Harmonic current emissions (AC mains input port) EN 301 489-17 V2.2.1 (2012-09)

mains input port)



### 8.3.5 Test data, continued

Measurement data

# Harmonics – Class-A per Ed. 4.0 (2014) (Run time)

EUT: GBX128V1 Tested by: Greg Woelke

Test category: Class-A per Ed. 4.0 (2014) (European limits)
Test date: 11/16/2016
Start time: 9:14:07 AM
End time: 9:44:29 AM

Test duration (min): 30 Data file name: H-000486.cts\_data

Comment: NEx. 315051 Customer: MyGnar, Inc.

Test Result: Pass Source qualification: Normal

### **Current & voltage waveforms**



### Harmonics and Class A limit line

### **European Limits**



Test result: Pass Worst harmonic was #17 with 7.1% of the limit.

Current Test Result Summary (Run time)

Section 8 Testing data

**Test name** Clause 8.5 – Harmonic current emissions (AC mains input port)

**Specification** EN 301 489-17 V2.2.1 (2012-09)

EUT: GBX128V1 Tested by: Greg Woelke Test category: Class-A per Ed. 4.0 (2014) (European limits) Test Margin: 100
Test date: 11/16/2016 Start time: 9:14:07 AM End time: 9:44:29 AM

Test duration (min): 30 Data file name: H-000486.cts\_data

Comment: NEx. 315051 Customer: MyGnar, Inc.

Test Result: Pass Source qualification: Normal

THC(A): 0.039 I-THD(%): 259.2 POHC(A): 0.011 POHC Limit(A): 0.251

Highest parameter values during test:

 V\_RMS (Volts):
 230.18
 Frequency(Hz):
 50.00

 I\_Peak (Amps):
 0.393
 I\_RMS (Amps):
 0.053

 I\_Fund (Amps):
 0.017
 Crest Factor:
 8.960

 Power (Watts):
 3.8
 Power Factor:
 0.363

|        | Power (Watts): | 3.8       |           | Power Factor: | 0.363     |           |        |  |
|--------|----------------|-----------|-----------|---------------|-----------|-----------|--------|--|
| Harm#  | Harms(avg)     | 100%Limit | %of Limit | Harms(max)    | 150%Limit | %of Limit | Status |  |
| 2      | 0.001          | 1.080     | N/A       | 0.002         | 1.620     | N/A       | Pass   |  |
| 3      | 0.015          | 2.300     | 0.6       | 0.016         | 3.450     | 0.5       | Pass   |  |
| 4      | 0.001          | 0.430     | N/A       | 0.002         | 0.645     | N/A       | Pass   |  |
| 5      | 0.014          | 1.140     | 1.2       | 0.016         | 1.710     | 0.9       | Pass   |  |
| 5<br>6 | 0.001          | 0.300     | N/A       | 0.002         | 0.450     | N/A       | Pass   |  |
| 7      | 0.014          | 0.770     | 1.8       | 0.015         | 1.155     | 1.3       | Pass   |  |
| 8      | 0.001          | 0.230     | N/A       | 0.002         | 0.345     | N/A       | Pass   |  |
| 9      | 0.013          | 0.400     | 3.2       | 0.014         | 0.600     | 2.4       | Pass   |  |
| 10     | 0.001          | 0.184     | N/A       | 0.002         | 0.276     | N/A       | Pass   |  |
| 11     | 0.012          | 0.330     | 3.7       | 0.013         | 0.495     | 2.7       | Pass   |  |
| 12     | 0.001          | 0.153     | N/A       | 0.002         | 0.230     | N/A       | Pass   |  |
| 13     | 0.011          | 0.210     | 5.4       | 0.012         | 0.315     | 3.9       | Pass   |  |
| 14     | 0.001          | 0.131     | N/A       | 0.002         | 0.197     | N/A       | Pass   |  |
| 15     | 0.010          | 0.150     | 6.9       | 0.011         | 0.225     | 4.9       | Pass   |  |
| 16     | 0.001          | 0.115     | N/A       | 0.002         | 0.173     | N/A       | Pass   |  |
| 17     | 0.009          | 0.132     | 7.1       | 0.010         | 0.198     | 5.0       | Pass   |  |
| 18     | 0.001          | 0.102     | N/A       | 0.002         | 0.153     | N/A       | Pass   |  |
| 19     | 0.008          | 0.118     | 7.0       | 0.009         | 0.178     | 4.9       | Pass   |  |
| 20     | 0.001          | 0.092     | N/A       | 0.002         | 0.138     | N/A       | Pass   |  |
| 21     | 0.007          | 0.107     | 6.8       | 0.008         | 0.161     | 4.7       | Pass   |  |
| 22     | 0.001          | 0.084     | N/A       | 0.002         | 0.125     | N/A       | Pass   |  |
| 23     | 0.006          | 0.098     | 6.5       | 0.007         | 0.147     | 4.5       | Pass   |  |
| 24     | 0.001          | 0.077     | N/A       | 0.002         | 0.115     | N/A       | Pass   |  |
| 25     | 0.005          | 0.090     | 6.1       | 0.006         | 0.135     | 4.2       | Pass   |  |
| 26     | 0.001          | 0.071     | N/A       | 0.002         | 0.107     | N/A       | Pass   |  |
| 27     | 0.005          | 0.083     | N/A       | 0.005         | 0.125     | N/A       | Pass   |  |
| 28     | 0.001          | 0.066     | N/A       | 0.002         | 0.099     | N/A       | Pass   |  |
| 29     | 0.004          | 0.078     | N/A       | 0.004         | 0.116     | N/A       | Pass   |  |
| 30     | 0.001          | 0.061     | N/A       | 0.002         | 0.092     | N/A       | Pass   |  |
| 31     | 0.003          | 0.073     | N/A       | 0.004         | 0.109     | N/A       | Pass   |  |
| 32     | 0.001          | 0.058     | N/A       | 0.002         | 0.086     | N/A       | Pass   |  |
| 33     | 0.003          | 0.068     | N/A       | 0.003         | 0.102     | N/A       | Pass   |  |
| 34     | 0.001          | 0.054     | N/A       | 0.001         | 0.081     | N/A       | Pass   |  |
| 35     | 0.003          | 0.064     | N/A       | 0.003         | 0.096     | N/A       | Pass   |  |
| 36     | 0.001          | 0.051     | N/A       | 0.001         | 0.077     | N/A       | Pass   |  |
| 37     | 0.002          | 0.061     | N/A       | 0.003         | 0.091     | N/A       | Pass   |  |
| 38     | 0.001          | 0.048     | N/A       | 0.001         | 0.073     | N/A       | Pass   |  |
| 39     | 0.002          | 0.058     | N/A       | 0.003         | 0.087     | N/A       | Pass   |  |
| 40     | 0.001          | 0.046     | N/A       | 0.001         | 0.069     | N/A       | Pass   |  |

Voltage Source Verification Data (Run time)

Section 8 Testing data

**Test name** Clause 8.5 – Harmonic current emissions (AC mains input port)

**Specification** EN 301 489-17 V2.2.1 (2012-09)



EUT: GBX128V1 Tested by: Greg Woelke

Test category: Class-A per Ed. 4.0 (2014) (European limits)
Test date: 11/16/2016
Start time: 9:14:07 AM
End time: 9:44:29 AM

Test duration (min): 30 Data file name: H-000486.cts data

Comment: NEx. 315051 Customer: MyGnar, Inc.

Test Result: Pass Source qualification: Normal

### Highest parameter values during test:

 Voltage (Vrms):
 230.18
 Frequency(Hz):
 50.00

 I\_Peak (Amps):
 0.393
 I\_RMS (Amps):
 0.053

 I\_Fund (Amps):
 0.017
 Crest Factor:
 8.960

 Power (Watts):
 3.8
 Power Factor:
 0.363

|       | ,               |             |            |        |  |
|-------|-----------------|-------------|------------|--------|--|
| Harm# | Harmonics V-rms | Limit V-rms | % of Limit | Status |  |
| 2     | 0.022           | 0.460       | 4.71       | ОК     |  |
| 3     | 0.520           | 2.071       | 25.10      | OK     |  |
| 4     | 0.039           | 0.460       | 8.56       | OK     |  |
| 5     | 0.018           | 0.921       | 1.91       | ОК     |  |
| 6     | 0.044           | 0.460       | 9.54       | OK     |  |
| 7     | 0.036           | 0.690       | 5.14       | OK     |  |
| 8     | 0.008           | 0.460       | 1.84       | OK     |  |
| 9     | 0.105           | 0.460       | 22.78      | OK     |  |
| 10    | 0.007           | 0.460       | 1.45       | OK     |  |
| 11    | 0.069           | 0.230       | 29.97      | OK     |  |
| 12    | 0.008           | 0.230       | 3.28       | OK     |  |
| 13    | 0.034           | 0.230       | 14.75      | ОК     |  |
| 14    | 0.004           | 0.230       | 1.69       | ОК     |  |
| 15    | 0.015           | 0.230       | 6.39       | ОК     |  |
| 16    | 0.010           | 0.230       | 4.40       | ОК     |  |
| 17    | 0.006           | 0.230       | 2.43       | OK     |  |
| 18    | 0.018           | 0.230       | 7.75       | ОК     |  |
| 19    | 0.013           | 0.230       | 5.58       | OK     |  |
| 20    | 0.014           | 0.230       | 6.03       | ОК     |  |
| 21    | 0.007           | 0.230       | 2.88       | OK     |  |
| 22    | 0.003           | 0.230       | 1.51       | OK     |  |
| 23    | 0.005           | 0.230       | 2.28       | OK     |  |
| 24    | 0.005           | 0.230       | 2.00       | OK     |  |
| 25    | 0.005           | 0.230       | 2.17       | OK     |  |
| 26    | 0.003           | 0.230       | 1.32       | OK     |  |
| 27    | 0.005           | 0.230       | 2.26       | OK     |  |
| 28    | 0.004           | 0.230       | 1.54       | OK     |  |
| 29    | 0.004           | 0.230       | 1.57       | OK     |  |
| 30    | 0.005           | 0.230       | 2.37       | OK     |  |
| 31    | 0.003           | 0.230       | 1.16       | OK     |  |
| 32    | 0.003           | 0.230       | 1.09       | OK     |  |
| 33    | 0.004           | 0.230       | 1.56       | OK     |  |
| 34    | 0.002           | 0.230       | 0.92       | OK     |  |
| 35    | 0.003           | 0.230       | 1.12       | OK     |  |
| 36    | 0.003           | 0.230       | 1.16       | OK     |  |
| 37    | 0.003           | 0.230       | 1.48       | OK     |  |
| 38    | 0.002           | 0.230       | 1.02       | OK     |  |
| 39    | 0.004           | 0.230       | 1.58       | OK     |  |
| 40    | 0.008           | 0.230       | 3.56       | OK     |  |
|       |                 |             |            |        |  |

Section 8 Test name Specification Testing data

Clause 8.5 – Harmonic current emissions (AC mains input port)

EN 301 489-17 V2.2.1 (2012-09)



# 8.3.6 Setup photos



Figure 8.2-1: Clause 8.5 – Harmonic current emissions (AC mains input port) setup photo

Section 8 Test name Specification Testing data

Clause 8.6 – Voltage fluctuations and flicker (AC mains input port)

EN 301 489-17 V2.2.1 (2012-09)



# 8.4 Clause 8.6 – Voltage fluctuations and flicker (AC mains input port)

### 8.4.1 References

EN 61000-3-3: 2013

### 8.4.2 Test summary

| Verdict       | Pass                           |                   |           |
|---------------|--------------------------------|-------------------|-----------|
| Test date     | November 16, 2016              | Temperature       | 21 °C     |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1001 mbar |
| Test location | Ground Plane                   | Relative humidity | 56 %      |

### 8.4.3 Notes

None

### 8.4.4 Setup details

| Port under test  | AC Mains |
|------------------|----------|
| Measurement time | 30 min   |

#### Table 8.3-1: Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) equipment list

| Asset Tag | Description            | Manufacturer       | Model   | Serial # | Next Cal    |
|-----------|------------------------|--------------------|---------|----------|-------------|
| 1851      | IX Series Programmable | California         | 90003ix | N/A      | 02-Jul-2017 |
|           | AC & DC Power Source   | Instruments/Ametek |         |          |             |
|           | Analyzer               |                    |         |          |             |
|           |                        |                    |         |          |             |

Notes:

N/A - not applicable

### Table 8.3-2: Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) test software details

| Manufacturer of Software | Details                           |
|--------------------------|-----------------------------------|
| California Instruments   | AC Source CIGui SII Version 3.0.0 |

Notes:

None

Testing data

Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) EN 301 489-17 V2.2.1 (2012-09)



### 8.4.5 Test data, continued

Measurement data

# Flicker Test Summary per EN/IEC61000-3-3 (Run time)

EUT: GBX128V1 Tested by: Greg Woelke Test category: All parameters (European limits) Test Margin: 100
Test date: 11/16/2016 Start time: 9:49:26 AM End time: 10:20:15 AM

Test duration (min): 30 Data file name: F-000487.cts\_data

Comment: NEx. 315051 Customer: MyGnar, Inc.

Test Result: Pass Status: Test Completed

Pst<sub>i</sub> and limit line European Limits



### Plt and limit line



Parameter values recorded during the test: Vrms at the end of test (Volt): 230.16

Highest dt (%): 0.00 Test limit (%): N/A N/A

Section 8 Testing data

**Test name** Clause 8.6 – Voltage fluctuations and flicker (AC mains input port)

**Specification** EN 301 489-17 V2.2.1 (2012-09)



| T-max (mS):                   | 0     | Test limit (mS): | 500.0 | Pass |
|-------------------------------|-------|------------------|-------|------|
| Highest dc (%):               | 0.00  | Test limit (%):  | 3.30  | Pass |
| Highest dmax (%):             | 0.06  | Test limit (%):  | 4.00  | Pass |
| Highest Pst (10 min. period): | 0.214 | Test limit:      | 1.000 | Pass |
| Highest Plt (2 hr. period):   | 0.132 | Test limit:      | 0.650 | Pass |

# 8.4.6 Setup photos



Figure 8.3-1: Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) setup photo

Clause 9.2 – Radio frequency electromagnetic field (0.8 to 1 and 1.4 to 2.7 GHz)

EN 301 489-17 V2.2.1 (2012-09)



# 8.5 Clause 9.2 – Radio frequency electromagnetic field (0.08 to 1 and 1.4 to 2.7 GHz)

#### 8.5.1 References

EN 61000-4-3: 2006 + A1: 2008 + A2: 2010

### 8.5.2 Test summary

| Verdict       | Pass                           |                   |           |  |
|---------------|--------------------------------|-------------------|-----------|--|
| Test date     | November 15, 2016              | Temperature       | 21 °C     |  |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1005 mbar |  |
| Test location | RFI Chamber                    | Relative humidity | 47 %      |  |

#### 8.5.3 Notes

None

### 8.5.4 Setup details

Table 8.4-1: Clause 9.2 – Radio frequency electromagnetic field (0.08 to 1 and 1.4 to 2.7 GHz) equipment list

| Asset Tag | Description      | Manufacturer       | Model        | Serial # | Next Cal    |
|-----------|------------------|--------------------|--------------|----------|-------------|
| 43        | RF Amplifier     | Amplifier Research | 200T1G3M3    | 19649    | N/R         |
| 728       | Microwave Horn   | Amplifier Research | AT4002A (0.8 | 23811    | N/R         |
|           | Antenna          |                    | to 5 GH      |          |             |
| 740       | RF Amplifier     | Amplifier Research | 500W1000M5   | 23680    | N/R         |
| E1014     | DRG Horn Antenna | A.H.Systems, Inc.  | SAS-570      | 174      | 12-Dec-2016 |
| E1128     | Signal Generator | ROHDE & SCHWARZ    | SMB100A      | 177768   | 09-Aug-2017 |
| 43        | RF Amplifier     | Amplifier Research | 200T1G3M3    | 19649    | N/R         |
|           |                  |                    | (800 to 28   |          |             |

Notes: N/A - not applicable

Table 8.4-2: Clause 9.2 – Radio frequency electromagnetic field (0.8 to 1 and 1.4 to 2.7 GHz) test software details

| Manufacturer of Software | Details                 |
|--------------------------|-------------------------|
| ETS-LINDGREN             | TILE! Version 6.0.4.548 |
| Notos: Nono              |                         |

Section 8 Testing data

**Test name** Clause 9.2 – Radio frequency electromagnetic field (0.8 to 1 and 1.4 to 2.7 GHz)

**Specification** *EN 301 489-17 V2.2.1 (2012-09)* 



### 8.5.5 Test data

Table 8.4-3: Clause 9.2 – Radio frequency electromagnetic field (0.8 to 1 and 1.4 to 2.7 GHz) results

| Step size increment     | 1 % |
|-------------------------|-----|
| Dwell time <sup>1</sup> | 3 s |

Antenna polarization Vertical and Horizontal

Modulation CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave

EUT setup configuration Table top

**EUT position facing antenna** Front side, back side, left side and right side

| Frequency | y range, MHz | Test level, V/m | Comments       |
|-----------|--------------|-----------------|----------------|
| 80        | 1000         | 3               | No degradation |
| 1400      | 2700         | 3               | No degradation |

Notes:

<sup>1</sup>The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

- lower limit of exclusion band = lowest allocated band edge frequency -5 %;
- upper limit of exclusion band = highest allocated band edge frequency +5 %.

<sup>&</sup>lt;sup>2</sup>The exclusion band for immunity testing shall be calculated as follows:



# 8.5.6 Setup photo



Figure 8.4-1: Clause 9.2 – Radio frequency electromagnetic field (0.8 to 1 and 1.4 to 2.7 GHz) setup photo



Figure 8.4-2: Clause 9.2 – Radio frequency electromagnetic field (0.8 to 1 and 1.4 to 2.7 GHz) setup photo

Section 8 Test name Specification Testing data

Clause 9.3 – Electrostatic discharge EN 301 489-17 V2.2.1 (2012-09)



# 8.6 Clause 9.3 – Electrostatic discharge

### 8.6.1 References

EN 61000-4-2: 2009

### 8.6.2 Test summary

| Verdict       | Pass                            |                   |            |  |
|---------------|---------------------------------|-------------------|------------|--|
| Test date     | November 17, 2016               | Temperature       | 21 °C      |  |
| Test engineer | Brian Gibson, EMC Test Engineer | Air pressure      | 100.2 mbar |  |
| Test location | ESD Room                        | Relative humidity | 38 %       |  |

### 8.6.3 Notes

None

### 8.6.4 Setup details

### Table 8.5-1: Clause 9.3 – Electrostatic discharge equipment list

| Asset Tag | Description | Manufacturer | Model   | Serial # | Last Cal    |
|-----------|-------------|--------------|---------|----------|-------------|
| 818       | ESD Gun     | Schaffner    | NSG-435 | 5111     | 03-Mar-2017 |

Notes: N/A - not applicable

Section 8 Testing data

Test nameClause 9.3 – Electrostatic dischargeSpecificationEN 301 489-17 V2.2.1 (2012-09)



### 8.6.5 Test data

# Table 8.5-2: Clause 9.3 – Electrostatic discharge results

| EUT setup configuration:                      | Table top                                   |                      |                               |
|-----------------------------------------------|---------------------------------------------|----------------------|-------------------------------|
| ESD repetition rate:                          | 1 pulse per second                          |                      |                               |
| Discharges:                                   | 10 contact discharges and 10 air discharges | ges at each polarity |                               |
| Contact discharge                             |                                             | Test voltage (±kV)   | Comments                      |
| Please refer to "Electrostatic d              | ischarge test location points" photos of    | 2.4                  | See Notes                     |
| this section                                  |                                             | 2, 4                 | See Notes                     |
| Indirect discharge                            |                                             | Test voltage (±kV)   | Comments                      |
| munectuischarge                               |                                             | rest voitage (=kv)   |                               |
| HCP (all sides)                               |                                             | 2, 4                 | No degradation                |
|                                               |                                             | 5 , ,                | No degradation No degradation |
| HCP (all sides)                               |                                             | 2, 4                 | · ·                           |
| HCP (all sides) VCP (all sides) Air discharge | ischarge test location points" photos of    | 2, 4<br>2, 4         | No degradation                |

Notes: When USB port/top aluminum cover is subjected to 4kV, EUT goes into a standby mode and requires user intervention to power cycle.



# 8.6.5 Test data, continued



Figure 8.5-1: Clause 9.3 – Electrostatic discharge location point's photo



# 8.6.5 Test data, continued



Figure 8.5-2: Clause 9.3 – Electrostatic discharge location point's photo



# 8.6.6 Setup photo



Figure 8.5-3: Clause 9.3 – Electrostatic discharge setup photo

Testing data

Clause 9.4 – Fast transients, common mode

EN 301 489-17 V2.2.1 (2012-09)



#### 8.7 Clause 9.4 – Fast transients, common mode

#### 8.7.1 References

EN 61000-4-4: 2004 + A1: 2010

#### 8.7.2 Test summary

| Verdict       | Pass                            |                   |          |
|---------------|---------------------------------|-------------------|----------|
| Test date     | November 16, 2016               | Temperature       | 22 °C    |
| Test engineer | Brian Gibson, EMC Test Engineer | Air pressure      | 999 mbar |
| Test location | Ground Plane                    | Relative humidity | 57 %     |

#### 8.7.3 Notes

None

#### 8.7.4 Setup details

#### Table 8.6-1: Clause 9.4 – Fast transients, common mode equipment list

| Asset Tag | Description | Manufacturer | Model    | Serial # | Next Cal    |
|-----------|-------------|--------------|----------|----------|-------------|
| E1124     | Main Frame  | TESEQ AG     | NSG 3060 | 1845     | 28-May-2017 |
| E1125     | CDN         | TESEQ AG     | CDN 3061 | 1584     | 28-May-2017 |
|           |             |              |          |          |             |

Notes:

N/A - not applicable

### Table 8.6-2: Clause 9.4 – Fast transients, common mode test software details

| Manufacturer of Software | Details                                       |
|--------------------------|-----------------------------------------------|
| TESEQ                    | Advanced Test Solution for EMC, Version 1.3.1 |
| Notes: None              | _                                             |

Notes: None

Section 8 Testing data

**Test name** Clause 9.4 – Fast transients, common mode

**Specification** EN 301 489-17 V2.2.1 (2012-09)



#### 8.7.5 Test data

#### Table 8.6-3: Clause 9.4 – Fast transients, common mode results

Wave shape (Tr / Td): 5/50 ns (Tr = rise time, Td= duration time)

Repetition frequency:5 kHzBurst duration:15 msBurst period:300 msTest duration:60 s

| Port                  | Test voltage (±kV) | Comments       |
|-----------------------|--------------------|----------------|
| AC input <sup>1</sup> | 1                  | No degradation |

Notes:

<sup>&</sup>lt;sup>1</sup>Transient applied asynchronous (relation to power supply)

<sup>&</sup>lt;sup>2</sup>The test voltage was applied simultaneously between a ground reference plane and all of the power supply terminals and the protective or functional earth port on the EUT cabinet

<sup>&</sup>lt;sup>3</sup>The test voltage was applied via capacitive coupling clamp

 $<sup>^4</sup>$  Applicable to DC ports of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

<sup>&</sup>lt;sup>5</sup> Applicable to signal, telecommunication and control ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m



# 8.7.6 Setup photos



Figure 8.6-1: Clause 9.4 – Fast transients, common mode setup photo

Testing data

Clause 9.5 – Radio frequency, common mode

EN 301 489-17 V2.2.1 (2012-09)



# 8.8 Clause 9.5 – Radio frequency, common mode

#### 8.8.1 References

EN 61000-4-6: 2009

#### 8.8.2 Test summary

| Verdict       | Pass                            |                   |          |
|---------------|---------------------------------|-------------------|----------|
| Test date     | November 16, 2016               | Temperature       | 22 °C    |
| Test engineer | Brian Gibson, EMC Test Engineer | Air pressure      | 999 mbar |
| Test location | Ground Plane                    | Relative humidity | 57 %     |

### 8.8.3 Notes

None.

#### 8.8.4 Setup details

#### Table 8.7-1: Clause 9.5 – Radio frequency, common mode equipment list

| Asset Tag | Description       | Manufacturer    | Model       | Serial #   | Next Cal    |
|-----------|-------------------|-----------------|-------------|------------|-------------|
| 846       | CDN               | FCC             | FCC-801-M3- | 5015       | 09-Feb-2017 |
|           |                   |                 | 25A         |            |             |
| 913       | RF Amplifier      | EIN             | 3100L       | 103        | N/R         |
| 729       | Generator, Signal | Hewlett Packard | 8656A       | 2402A05973 | 27-Apr-2017 |
|           |                   |                 |             |            |             |

Notes:

N/A - not applicable

Table 8.7-2: Clause 9.5 – Radio frequency, common mode test software details

| Manufacturer of Software | Details                 |
|--------------------------|-------------------------|
| ETS-LINDGREN             | TILE! Version 6.0.4.548 |

Notes:

None

Section 8 Testing data

**Test name** Clause 9.5 – Radio frequency, common mode

**Specification** EN 301 489-17 V2.2.1 (2012-09)



#### 8.8.5 Test data

#### Table 8.7-3: Clause 9.5 – Radio frequency, common mode results

 Frequency range:
 0.15-80 MHz

 Step size increment:
 1 %

 Dwell time¹:
 3 s

 Signal level:
 3 V<sub>RMS</sub>

Modulation: CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave

| Ports investigated | Coupling method | $50\Omega$ termination point | Comments       |
|--------------------|-----------------|------------------------------|----------------|
| AC Mains           | CDN             | CDN                          | No degradation |

Notes:

<sup>1</sup>The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

- EUT operational frequencies within specified test band were also assessed.
- Applicable to signal, telecommunication control and DC of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

### 8.8.6 Setup photo



Figure 8.7-1: Clause 9.5 – Radio frequency, common mode setup photo

Testing data

 ${\it Clause~9.7-Voltage~dips~and~interruptions}$ 

EN 301 489-17 V2.2.1 (2012-09)



# 8.9 Clause 9.7 – Voltage dips and interruptions

#### 8.9.1 References

EN 61000-4-11: 2004

### 8.9.2 Test summary

| Verdict       | Pass                           |                   |           |
|---------------|--------------------------------|-------------------|-----------|
| Test date     | November 16, 2016              | Temperature       | 21 °C     |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1001 mbar |
| Test location | Ground Plane                   | Relative humidity | 56 %      |

### 8.9.3 Notes

None

### 8.9.4 Setup details

#### Table 8.8-1: Clause 9.7 – Voltage dips and interruptions equipment list

| 1851 IX Series Programmable California 90003ix | 02-Jul-201 | 7 |
|------------------------------------------------|------------|---|
| .00.000                                        |            |   |
| AC & DC Power Source Instruments/Ametek        |            |   |
| Analyzer                                       |            |   |

Notes: N

N/A - not applicable

#### Table 8.8-2: Clause 9.7 – Voltage dips and interruptions test software details

| Manufacturer of Software | Details                           |
|--------------------------|-----------------------------------|
| California Instruments   | AC Source CIGui SII Version 3.0.0 |

Notes:

None

Testing data

Clause 9.7 – Voltage dips and interruptions

EN 301 489-17 V2.2.1 (2012-09)



### 8.9.5 Test data

# Table 8.8-3: Clause 9.7 – Voltage dips results

| Variation/dip repetition: | Sequence of thre | of three dips/interruptions with an interval of 10 seconds between each test |         |                |  |
|---------------------------|------------------|------------------------------------------------------------------------------|---------|----------------|--|
| Port                      |                  | Voltage reduction (%)                                                        | Periods | Comments       |  |
| AC Mains                  |                  | 100                                                                          | 0.5     | No degradation |  |
|                           |                  | 100                                                                          | 1       | No degradation |  |
|                           |                  | 30                                                                           | 25      | No degradation |  |

Notes: Changes occurred at the 0 crossings of the voltage waveform

#### Table 8.8-4: Clause 9.7 – Voltage interruptions results

| Variation/dip repetition: | Sequence of three dips/interruptions with an interval of 10 seconds between each test |          |                |  |
|---------------------------|---------------------------------------------------------------------------------------|----------|----------------|--|
| Port                      | Voltage reduction (%)                                                                 | Comments |                |  |
| AC Mains                  | 100                                                                                   | 250      | No degradation |  |

Notes: Changes occurred at the 0 crossings of the voltage waveform



#### 8.9.6 Setup photo



Figure 8.8-1: Clause 9.7 – Voltage dips and interruptions setup photo

10:22:17 AM 11/15/2016

Section 8 Test name Testing data Clause 9.8 – Surges

Specification EN 301 489-17 V2.2.1 (2012-09)



# 8.10 Clause 9.8 – Surges

#### 8.10.1 References

EN 61000-4-5: 2006

#### 8.10.2 Test summary

| Verdict       | Pass                           |                   |           |
|---------------|--------------------------------|-------------------|-----------|
| Test date     | November 16, 2016              | Temperature       | 21 °C     |
| Test engineer | Greg Woelke, EMC Test Engineer | Air pressure      | 1001 mbar |
| Test location | Ground Plane                   | Relative humidity | 53 %      |

#### 8.10.3 Notes

None

#### 8.10.4 Setup details

# Table 8.9-1: Clause 9.8 – Surges equipment list

| Asset Tag | Description | Manufacturer | Model    | Serial # | Next Cal    |
|-----------|-------------|--------------|----------|----------|-------------|
| E1124     | Main Frame  | TESEQ AG     | NSG 3060 | 1845     | 28-May-2017 |
| E1125     | CDN         | TESEQ AG     | CDN 3061 | 1584     | 28-May-2017 |
|           |             |              |          |          |             |

Notes:

N/A - not applicable

### Table 8.9-2: Clause 9.8 – Surges test software details

| Manufacturer of Software | Details                                       |
|--------------------------|-----------------------------------------------|
| TESEQ                    | Advanced Test Solution for EMC, Version 1.3.1 |
| Natari Nara              |                                               |

Notes: None

Section 8Testing dataTest nameClause 9.8 - Surges

**Specification** EN 301 489-17 V2.2.1 (2012-09)



### 8.10.5 Test data

#### Table 8.9-3: Clause 9.8 – Surges at input AC power ports results

Open circuit voltage (T<sub>1</sub> / T<sub>2</sub>): 1.2/50  $\mu$ s (T<sub>1</sub> = front time, T<sub>2</sub>= time to half value) Short circuit curent (T<sub>1</sub> / T<sub>2</sub>): 8/20  $\mu$ s (T<sub>1</sub> = front time, T<sub>2</sub>= time to half value)

Surge pulse interval: 30 s

**Number of pulses:** 5 positive and 5 negative

| Test port | Coupling          | Test voltage (±kV) | Comments                  |
|-----------|-------------------|--------------------|---------------------------|
|           | Phase to Neutral  | 1                  | No degradation            |
| AC Mains  | Phase to ground   | 2                  | Two wire plug, not tested |
|           | Neutral to ground | 2                  | Two wire plug, not tested |

Notes: – Phase to neutral coupling : Surge applied with generator output impedance set to 2  $\Omega$ 

- Phase/neutral to ground coupling : Surge applied with generator output impedance set to 12  $\Omega$
- Surge applied synchronous (relation to power supply): 0, 90, 180, and 270°

### 8.10.6 Setup photo



Figure 8.9-1: Clause 9.8 – Surges setup photo



# Section 9 EUT photos

# 9.1 External photos



Figure 9.1-1: Front view photo





Figure 9.1-2: Rear view photo





Figure 9.1-3: Top view photo