chapter 2 of Bernard's Notes

Quasi-linear second-order PDEs:

 $a(x,y) u_{xx} + 2b(x,y) u_{xy} + c(x,y) u_{yy}$ = $f(x,y,u,u_x,u_y)$

when the two independent variables are denoted by x, y. (can be generalized to higher dimensions)

Can it be transformed in & the canonical form Us = F?

Use on bans formation:

assume to be locally invertible, so require $\det \begin{bmatrix} \alpha_x & \alpha_y \end{bmatrix} + 0$.

becomes

A (
$$\alpha$$
, β) $u_{\alpha\alpha}$ + 28 α , β) $u_{\alpha\beta}$ + (α , β) $u_{\beta\beta}$

$$= F(x, \beta, u, u_{\alpha}, u_{\beta})$$

where

$$A = \alpha x_{\alpha}^{2} + 2b \alpha_{\alpha} x_{\beta} + c \alpha_{\beta}^{2}$$

$$C = \alpha \beta_{\alpha}^{2} + 2b \beta_{\alpha} \beta_{\beta} + c \beta_{\beta}^{2}$$

$$B = \alpha \alpha_{\alpha} \beta_{\alpha} + b(\alpha_{\alpha} \beta_{\beta} + \alpha_{\beta} \beta_{\alpha}) + c \alpha_{\beta}^{2} \beta_{\beta}^{2}$$

Because A and C are of similar form, if I and B can be chosen to satisfy a 92 2 + 26 92 94 + c 94 = 0 (i.e. two roots of the same eq.) A=0 and C=0The transformed equation will be of the canonical form: Up = F(a, B, u, ux, up)
2 B(x, B) Divide by cly & get ac $\frac{C(x)}{\varphi_y}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{C(x)}{\varphi_y}$ $\frac{2}{2}$ $\frac{C(x)}{\varphi_y}$ $\frac{C(x)}{\varphi_y}$ Let z = Pa/py, then a(2-21)(2-22)=0 2, and 22 are the roots to the quadratic quetin a22+2b2+c=0

Case 1:
$$b^2 - ac > 0$$
, "typerboliz" PDE

In this case both roots are real

 $a z^2 + 2bz + c = 0$
 $\Rightarrow z_{12} = -b \pm \sqrt{b^2 - ac}$

Assign one root to each (one to a and one to β)

 $a = z_1 a a_y$, $\beta_2 = z_2 \beta_y$
 $a = z_1 a a_y$, $\beta_3 = z_2 \beta_3$
 $a = z_1 a a_y$, $\beta_4 = z_2 \beta_3$
 $a = z_1 a a_y$, $\beta_5 = z_2 \beta_5$
 $a = z_1 a a_y$, $\beta_6 = z_2 \beta_6$
 $a = z_1 a a_y$, $\beta_6 = z_2 \beta_6$
 $a = z_1 a a_y$, $\beta_6 = z_2 \beta_6$
 $a = z_1 a a_y$
 $a = z_1 a$

In the part of the x-y plane where Z, and Zz are real and distinct, we have 2 B(d, B) UdB = F | All Hyperbolic eg into this form. det [& dy]=0 => det [Zi dy dy) to =) dy By (2,-22) + 0 => Xy By = O B= a da Ba + b (do By + dy Ba) t c dy By = 2 dy By ac-b + 0

Case 2: $b^2-ac \equiv 0$, $\mathcal{E}_1 = \mathcal{E}_2$ real

Parabolic case. Only one characteristic. $d_x = \mathcal{E}_1 d_y = -b d_y$ A = bB can be anything that in the

B can be anything that is linearly independent of a.

 $B = a \, d_{\alpha} \, \beta_{\alpha} + b \, (\alpha_{x} \, \beta_{y} + \alpha_{y} \, \beta_{z})$ $+ c \, \alpha_{y} \, \beta_{y}$ $= -b \, \alpha_{y} \, \beta_{x} + b \, (-\frac{b}{\alpha} \, \alpha_{y} \, \beta_{y} + \alpha_{y} \, \beta_{z})$ $+ c \, \alpha_{y} \, \beta_{y}$ $= -\frac{b^{2}}{a} \, \alpha_{y} \, \beta_{y} + c \, \alpha_{y} \, \beta_{y}$ $= \alpha_{y} \, \beta_{y} \, \frac{a \, c - b^{2}}{a} = 0$ $A_{y} \, C \neq 0. \quad \text{Cannot be transformed into}$

Only C to. Cannot be transformed into

Uag = F, but can be put into

| UBB = F(x, B, u, ux, uB)/C(x,B))

Case 3:
$$b^2$$
 ac < 0 . Elliptic

 $Z_2 = Z_1^*$ complex

Because the two roots are distinct, similar

 b case 1:

 $u_{\alpha\beta} = G(\alpha, \beta, u, u_{\alpha}, u_{\beta})$

were $\alpha_x = Z_1 dy$
 $\beta_x = Z_2 \beta_y$

leads to complex characteristics

 $d = \frac{1}{5} + i\eta$
 $\beta = \frac{1}{5} - i\eta$
 $d = \frac{1}{5} - i\eta$