Instructions: Problems 1 and 3: (b)-(c) are to be handed in by next Friday (as always, theoretical part on Moodle, SAGE exercises via CoCalc).

- 1. Using SAGE and results from class/homework, come up with a triple (E, q, P) such that E is an elliptic curve defined over \mathbb{F}_q and $P \in E(\mathbb{F}_q)$ is a safe base point for discrete log-based cryptographic schemes (or rather, prove it avoids the pitfalls from class). The larger the order of P, the better! (Hint: there are various ways to go about it, you could search for prime $\sharp E(\mathbb{F}_p)$ or take $q = p^r$ with r large and use the formula from the exercise on zeta functions for $\sharp E(\mathbb{F}_q)$ etc.)
- 2. Code a function LenstraEC(N) which finds a non-trivial factor of N using Lenstra's elliptic curve factorization method. Can you factor the numbers from the quadratic sieve exercise in homework 8?
- 3. In this exercise we study the use of so-called *Schreier graphs* for key exchange protocols. Let G be a group acting freely on a set X, meaning that any $g \in G$ sends $x \in X$ to some element $g \cdot x \in X$ so that the induced map

$$G \to \operatorname{Aut}(X)$$

 $g \mapsto (x \mapsto g \cdot x)$

is a group homomorphism and $g \cdot x \neq x$ holds $\forall g \neq 1_G, \forall x \in X$. Let $S \subset g$ be a symmetric subset, namely stable under inversion and not containing 1_G . The *Schreier graph* of (S, X) is the graph whose vertices are elements of X and where x, x' are connected by an edge iff $\exists g \in S$ with $g \cdot x = x'$.

- (a) We consider the following setup: let $X = (\mathbb{Z}/p\mathbb{Z})^*$ for prime p and let $D \subset G = (\mathbb{Z}/p\mathbb{Z})^*$ be a generating set satisfying $g \in D \Rightarrow g^{-1} \notin D$. Here $g \in G$ acts on X via $x \mapsto x^g$. Finally we set $S = D \cup D^{-1}$, writing $D^{-1} = \{g^{-1} | g \in D\}$. Plot the Schreier graph of (S, X) for p = 13 and $D = \{2, 3, 5\}$ in this setup.
- (b) Prove that a k-regular graph is a one-sided ε -expander for some $\varepsilon > 0$ if and only if it is connected. Deduce that the Schreier graphs (S, X) from the previous point are one-sided ε -expanders. (Hint: for the connected implies expander direction, show that the $\lambda_1 = k$ -eigenspace of the adjacency matrix is one-dimensional: the span of v = (1, ..., 1).)
- (c) Aurélie and Beat decide to use the setup from the previous points to exchange a secret key as follows:
 - i. They publicly pick X a large cyclic group of prime order and D and S as above, together with a fixed generator q of X.
 - ii. They both pick secret random walks ρ_A and ρ_B in the Schreier graph of (S, X) starting at g and publicly share their respective arrival points/vertices, which we denote by $\rho_A(g)$ and $\rho_B(g)$.
 - iii. They can then each compute their shared secret $\rho_A(\rho_B(g)) = \rho_B(\rho_A(g))$.

Explain why this has a chance of working and being secure by relating it to a known hard problem/key exchange protocol. Find one additional necessary requirement for Aurélie and Beat's setup without which their setup is easier to crack than the key exchange protocol you related it to.

- 4. Let l, p be distinct primes and consider the graph G = (V, E) of l-isogenies of supersingular curves over \mathbb{F}_{p^2} . Fix a constant C > 2. Give an estimate (in l, C) of a lower bound for the length of a random walk so that one lands in a subset $F \subset V$ of size |V|/C with probability $\geq 1/2C$.
- 5. The goal of this exercise is to be able to compute supersingular isogeny graphs. There are a couple notions/subtleties you may find useful which we include here:
 - The vertices of the graph are isomorphism classes of supersingular ellitpic curves over $\overline{\mathbb{F}_p}$. One way to keep track of iso. classes of elliptic curves is by what is called the *j-invariant* of $E: y^2 = x^3 + ax + b$. It is defined by:

$$j(E) = 1728 \cdot \frac{4a^3}{4a^3 + 27b^2}$$

and each isomorphism class has a unique j-invariant. For supersingular curves $j(E) \in \mathbb{F}_{p^2}$ and each iso. class has a representative defined over \mathbb{F}_{p^2} , so often people label the vertices by j-invariants.

• Automorphisms (isomorphisms: $E \to E$) which are not the identity exist. For $p \neq 2, 3$ they are given by changes of variable

$$x = u^2 x'$$
 and $y = u^3 y'$ for some $u \in \overline{\mathbb{F}_p^*}$

in the Weierstrass equation $y^2 = x^3 + ax + b$ which have to satisfy $u^{-4}a = a$ and $u^{-6}b = b$. One then checks there are exactly two automorphisms unless j(E) = 0 when $|\operatorname{Aut}(E)| = 6$ and j(E) = 1728 when $|\operatorname{Aut}(E)| = 4$.

- The edges of the graph between two curves E and E' are equivalence classes of isogenies of degree l, where we identify isogenies which have the same kernel as a subgroup of E or differ by an automorphism of E'. This leads via the previous remark to the exceptional situation for $j(E') \in \{0, 1728\}$ that one may identify isogenies and not their duals-in this case the graph needs to be considered as directed.
- In general, though the graph is l + 1-regular, beware there may be self-loops or multiple edges between two vertices.

Find the graph of 2-isognies of supersingular elliptic curves in $\overline{\mathbb{F}_{53}}$ (equivalently \mathbb{F}_{53^2}) and draw it, labeling each vertex with the equation of the corresponding curve. (Hint: you may use SAGE or any other resource you like.)