VI. Sequences and Series of Functions

1. Introduction

convention

함수열의 성분인 함수를 포함하여 여기서 다루는 모든 함수는 complex valued function 이다. 즉 Complete metric space (모든 Cauchy sequence가 수렴하는 space) 에서 생각한다.

Definition: Sequence of functions, Pointwise convergence

E에서 정의된 함수열 $\{f_n\}$ 이 모든 $x\in E$ 에서 수렴한다고 하자. 이 때 함수 $f(x)=\lim_{n\to\infty}f_n(x)$ 로 정의하며 " $\{f_n\}$ converges to f pointwise on E" 라 한다. $\sum f_n(x)$ 가 모든 $x\in E$ 에서 수렴하면 $f(x)=\sum f_n(x)$ 로 정의하기도 하며 이때 f를 sum of the series $\sum f_n$ 라 한다.

 $\{f_n\}$ 에서 각각의 f_n 이 연속이거나, 미분가능하거나, integrable 할 때 이들의 limit 혹은 sum으로 정의되는 함수 f에서 이런 성질들이 유지되는가가 중요한 문제이다. 또한 $\{f_n{}'\}$ 이나 $\{\int f_n\}$ 과 f', $\int f$ 의 관계도 중요하다. 이것들에 대한 예를 몇가지 보자

Example 1. For $m, n \in \mathbb{Z}_+$, define $s_{m,n} = \frac{m}{m+n}$. Fixed n에 대해 $\lim_{m \to \infty} s_{m,n} = 1$, $\lim_{n \to \infty} (\lim_{m \to \infty} s_{m,n}) = 1$ 이다. 그러나 fixed m 에 대해 $\lim_{n \to \infty} s_{m,n} = \lim_{m \to \infty} (\lim_{n \to \infty} s_{m,n}) = 0$ 이다. 즉 $\lim_{n \to \infty} (\lim_{m \to \infty} s_{m,n}) \neq \lim_{m \to \infty} (\lim_{n \to \infty} s_{m,n})$.

Example 2. $f_n(x)=\frac{x^2}{(1+x^2)^n}$, for $x\in\mathbb{R}$ and $n\in\mathbb{N}$ 이라 정의하고 $f(x)=\sum\limits_{n=0}^{\infty}f_n(x)=\sum\limits_{n=0}^{\infty}\frac{x^2}{(1+x^2)^n}$ 이라 하자. $f_n(0)=0$ for all n 이므로 f(0)=0 이다. $x\neq 0$ 일 때 $f(x)=1+x^2$ 이며 따라서 f는 0 에서 불연속이다.

Example 3. $f_m(x)=\lim_{n\to\infty}(\cos m!\pi x)^{2n}$ for $m\in\mathbb{Z}_+$ 라 정의하자. $m!x\in\mathbb{Z}\implies f_m(x)=1$. $m!x\notin\mathbb{Z}\implies f_m(x)=0$. $f(x)=\lim_{m\to\infty}f_m(x)=\lim_{m\to\infty}\lim_{n\to\infty}(\cos m!\pi x)^{2n}$ 로 정의하자. 그렇다면

$$f(x) = \left\{ egin{aligned} 0 & x = ext{irrational} \ 1 & x \in \mathbb{Q} \ . \end{aligned}
ight.$$

이다. 즉 각각의 $f_m(x)$ 는 연속함수이지만 $\lim_{m \to \infty} f_m(x)$ 는 연속함수가 아니다.

Example 4. $f_n(x)=\dfrac{\sin nx}{\sqrt{n}}$ for $x\in\mathbb{R}$ and $n\in\mathbb{Z}_+$ 로 정의하자. $f(x)=\lim_{n\to\infty}f_n(x)=0$ for all $x\in\mathbb{R}$ 이므로 f'(x)=0 for all $x\in\mathbb{R}$ 이다. 그러나 $f_n'(x)=\sqrt{n}\cos nx$ 이므로 f_n' 은 f'으로 수렴하지 않는다.

Example 5. Define $f_n(x)=n^2x(1-x^2)^n$ for $0\leq x\leq 1$ and $n\in\mathbb{Z}_+$. $f(x)=\lim_{n\to\infty}f_n(x)=0$ for all $0\leq x\leq 1$ 임은 쉽게 보일 수 있다. 그러나 $\int_0^1f_n(x)dx=n^2/(2n+2)$ 이므로 $\lim_{n\to\infty}\int_0^1f_n(x)\to\infty$ 이다.

2. Uniform convergence

Definition: Uniform convergence

E에서 정의된 함수열 $\{f_n\}$ 과 함수 f가 다음의 조건을 만족하면 $\{f_n\}$ converge uniformly on E to f 라 한다. $orall arepsilon>0, \exists N\in\mathbb{N} ext{ s.t. } n\geq N \implies |f_n(x)-f(x)|<arepsilon ext{ for all } x\in E.$

Uniformly convergence and pointwise convergence

Pointwise convergence의 경우는 N이 x, ε 에 dependent 하다. 그러나 uniform convergence 의 경우는 모든 x에서 성립하며 ε 에만 dependent한 N이 존재해야 한다.

Theorem 2.1 (Cauchy's criterion)

E에서 정의된 함수열 $\{f_n\}$ 에 대해 다음이 성립한다 : $\{f_n\}$ converges uniformly on E $\iff \forall \varepsilon > 0, \ \exists N \in \mathbb{Z}_+$ s.t. $n, \ m \geq N \implies |f_n(x) - f_m(x)| < \varepsilon$ for all $x \in E$.

 (Proof) (1) Suppose $\{f_n\}$ converges uniformly on f. Given $\varepsilon>0$ 에 대해 $N\in\mathbb{Z}_+$ s.t. $n\geq N\implies |f_n(x)-f(x)|<arepsilon/2, n,\, m\geq N$ 이라 하면 $|f_n(x)-f_m(x)|<|f_n(x)-f(x)|+|f_m(x)-f(x)|<arepsilon$.

(2) Suppose $n,\,m\geq N\implies |f_n(x)-f_m(x)|<\varepsilon.\,f$ 는 복소함수이며 복소공간에서 모든 Cauchy sequence는 수렴하므로 $\{f_n\}$ 은 모든 $x\in E$ 에서 수렴한다. 이를 f(x)라 하자. Fix n and let $m\to\infty$, then we can get uniformly convergent condition. \square

Theorem 2.2

E에서 정의된 함수열 $\{f_n\}$ 과 f가 모든 $x\in E$ 에서 $\lim_{n o\infty}f_n(x)=f(x)$ 이며, $M_n=\sup_{x\in E}|f_n(x)-f(x)|$ 라 하자. 이때, 다음이 성립한다 : $f_n o f$ uniformly iff $\lim_{n o\infty}M_n=0$.

Immediate consequence from the definition of uniform convergence

Theorem 2.3

 $\{f_n\}$ 이 E에서 정의된 함수열이고 $|f_n|\leq M_n$ ($x\in E$, $n=1,\,2,\dots$) 라 하자. $\sum M_n$ 이 수렴하면 $\sum f_n$ 은 uniformly convergent 하다.

 $(extit{Proof}) \sum M_n$ 이 수렴하므로 임의의 arepsilon > 0 에 대해 $l, \ m$ 이 충분히 크다면 $\left|\sum_{n=m}^l f_n(x)
ight| \leq \sum_{n=m}^l M_n < arepsilon.$ Cauchy criterion!. \square

Theorem 2.4

Suppose $\{f_n\} o f$ uniformly on a metric space E.x 가 E의 limit point 중 하나이며, $\lim_{t\to x}f_n(t)=A_n$ for $n=1,\,2,\ldots$ 이면 $\{A_n\}$ 은 수렴하며 $\lim_{t\to x}f(t)=\lim_{n\to\infty}A_n$ 이다. 즉 $\lim_{t\to x}\lim_{n\to\infty}f_n(t)=\lim_{n\to\infty}\lim_{t\to x}f_n(t)$.

 (Proof) (1) 임의의 $\varepsilon>0$ 에 대해 $m,\,n\geq N \implies |f_m(t)-f_n(t)|<\varepsilon$ for all $t\in E$ 인 N이 존재한다. $t\to x$ 를 생각하면 $m,\,n\geq N \implies |A_m-A_n|<\varepsilon$ 이므로 A_n 은 Cauchy sequence. 수렴하므로 $A=\lim_{n\to\infty}A_n$ 라 하면, $A=\lim_{n\to\infty}\left(\lim_{t\to x}f_n(t)\right)$.

 $(2) |f(t)-A| \leq |f(t)-f_n(t)| + |f_n(t)-A_n| + |A_n-A| \text{ 이다. } n > N_1 \implies |f(t)-f_n(t)| < \varepsilon/3 \text{ for all } t \in E \text{ 인 } N_1 \text{ 이 존재한다. } n > N_2 \implies |A_n-A| < \varepsilon/3 \text{ 인 } N_2 \text{ 가 존재한다. } N = \max\{N_1,\,N_2\} \text{ 라 할 때 이 } N \text{에 } M |f_n(t)-A_n| < \varepsilon/3 \text{ 인 } B(x,\,\delta) \cap E \text{ 가 존재한다. } \exists \text{ 로마 } C \text{ If } f(t) = A | < \varepsilon \text{ OPT.}$ 즉 $A = \lim_{t \to \infty} \left(\lim_{n \to \infty} f_n(t)\right)$. \square

Theorem 2.5

함수열 $\{f_n\}$ 의 모든 f_n 이 E에서 연속이며 $f_n \to f$ uniformly on E 이면 f는 E 에서 연속이다.

 $\textit{(Proof)} \ \text{(1) For fixed} \ x_0 \in E, \ |f(x) - f(x_0)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f(x_0) - f_n(x_0)|.$

(2) For given $\varepsilon>0$ 에 대해 $n>N \implies |f(x)-f_n(x)|<\varepsilon/3$ and $|f(x_0)-f_n(x_0)|<\varepsilon/3$ 인 $N\in\mathbb{Z}_+$ 가 존재한다. (From uniformly continuity condition). 모든 f_n 이 연속이므로 이 n 에서 $x\in B(y,\delta)$ 일 때 $|f_n(x)-f_n(y)|<\varepsilon/3$ 인 $\delta>0$ 이 존재한다. 이 조건을 모두 합치면 f가 E 에서 연속이다. \square

Theorem 2.6

K 가 compact 이고, 연속함수 f와 함수열 $\{f_n\}$ 이 다음의 조건을 만족하면 $f_n o f$ uniformly on K 이다.

- (a) 모든 f_n 이 K 에서 연속이다.
- (b) $f_n \to f$ pointwisely on K.
- (c) $f_n(x) \geq f_{n+1}(x)$ for all $x \in K$ and $n \in \mathbb{Z}_+$.

(Proof) (1) Let $g_n(x)=f_n(x)-f(x)$. (a) 조건에 의해 g_n 은 K에서 연속함수, (b) 조건에 의해 $g_n\to 0$ for all $x\in K$. (c) 조건에 의해 $g_n(x)\geq g_{n+1}(x)$ for all $x\in K$.

(2) Given $\varepsilon>0$ 에 대해 $K_n=\{x\in K:g_n(x)\geq \varepsilon\}$ 이라 하면 K_n 은 compact subset of K 이며 $K_n\supset K_{n+1}$ 이다. Let $x\in\bigcap_n K_n$ 이라 하면 $g_n\to 0$ 에 모순. 따라서 $\bigcap_n K_n=\varnothing$. 따라서 $K_n=\varnothing$ for all n>N 인 N 이 존재해야 한다. 즉 $n>N\implies 0\leq g_n(x)<\varepsilon$ for all $x\in K$. 즉 $f_n\to f$ uniformly on K.

Example. $f_n(x)=\frac{1}{nx+1}$ (0< x<1, n=1, $2,\ldots$) 라 하자. I=(0, 1) 에 대해 f_n 은 I에서 연속이며 $f_n\to 0$ pointwisely on I 이며 $f_n(x)>f_{n+1}(x)$ for all $x\in I$ and n 이다. Uniform convergence를 확인하자. $|f_n(x)|<arepsilon\implies n>1/x\cdot(1/arepsilon-1)$ 이며 $x\to 0\implies n\to\infty$ 이므로 uniform convergence 는 성립하지 않는다. 즉 Theorem 2.6 에서 compact 조건이 매우 중요하다.

Definition: $\mathscr{C}(X)$, supremum norm

Metric space X에 대해 X에서 정의되는 모든 연속이고 bounded인 complex valued function의 집합을 $\mathscr{C}(X)$ 라 하자. X가 compact metric space 이면 $\mathscr{C}(X)$ 모든 complex continuous complex valued functions 의 집합이다.

 $f\in\mathscr{C}(X)$ 일 때 $\|f\|=\sum\limits_{x\in X}|f(x)|$ 를 $\mathbf{supremum\ norm\ }$ of f 라 한다. f가 bounded 이므로 $\|f\|<\infty$ 이다. 또한 $\|f\|=0$ iff f(x)=0 for all $x\in X$ 이다.

 $f,\,g\in\mathscr{C}(X)$ 일 때 $\|f+g\|\leq\|f\|+\|g\|$ 임을 보일 수 있다. 따라서 $\|f-g\|$ 를 거리로 생각 할 수 있으며, 따라서 $\mathscr{C}(X)$ 는 metric space 이다.

Lemma 2.7

 $f, g \in \mathscr{C}(X)$ 이면 $||f + g|| \le ||f|| + ||g||$ 이다.

(Proof) $|f + g| \le |f| + |g| \le ||f|| + ||g||$.

Theorem 2.8

 $\mathscr{C}(X)$ 는 complete metric space 이다.

(Proof) Let $\{f_n\}$ be a Cauchy sequence in $\mathscr{C}(X)$. 즉 given $\varepsilon>0$ 에 대해 $n, \, m\geq N \implies \|f_n-f_m\|<\varepsilon$ for all $x\in X$ 인 $N\in\mathbb{N}$ 이 존재한다. $|f_n(x)-f_m(x)|\leq \|f_n-f_m\|<\varepsilon$ for all $x\in X$ and $n, \, m\geq N$ 이므로 Cauchy's criterion (Theorem 2.1) 에 희해 $\{f_n\}$ 이 uniformly convergent 한 함수 f가 존재한다. Theorem 2.5에 의해 이 f는 X 에서 연속이다. 큰 n 에서 $|f_n(x)-f(x)|<1$ 을 만족하며 f_n 이 bounded 이므로 f는 bounded. 따라서 $f\in\mathscr{C}(X)$. $\{f_n\}$ 이 uniformly converge to f 이므로 given $\varepsilon>0$ 에 대해 $n\geq N \Longrightarrow |f_n(x)-f(x)|<\varepsilon/2$ for all $x\in X$ 인 N 이 존재한다. 즉 $n\geq N \Longrightarrow \|f_n-f\|\leq \varepsilon/2<\varepsilon$. 따라서 $f_n\to f$ in $\mathscr{C}(X)$ 이며 $\mathscr{C}(X)$ 는 complete metric space 이다.

Theorem 2.9

lpha 는 monotonically increasing on $[a,\,b]$ 이며, $f_n\in\mathscr{R}(lpha)$ on $[a,\,b]$ and for all $n\in\mathbb{Z}_+$ 이라 하자. 이 때, $f_n o f$ uniformly on $[a,\,b]$ 이면 $f\in\mathscr{R}(lpha)$ 이며 $\int_a^b f\,dlpha=\lim_{n o\infty}\int_a^b f_n\,dlpha$ 이다.

*(Proof) 실함수에 대해 증명한다. Let $arepsilon_n=\|f_n-f\|$. Then, $f_n-arepsilon_n\leq f\leq f_n+arepsilon_n$ 이며, 따라서,

$$\int_a^b (f_n-arepsilon_n)dlpha \leq \underline{\int_a^b} f\,dlpha \leq \overline{\int_a^b} f\,dlpha \leq \int_a^b (f_n+arepsilon_n)dlpha. \ 0 \leq \overline{\int_a^b} f\,dlpha - \int_a^b f\,dlpha \leq \int_a^b arepsilon_n\,dlpha = arepsilon_n[lpha(b)-lpha(a)] \;.$$

이다.
$$n o 0\implies arepsilon_n o 0$$
 이므로 $f\in\mathscr{R}(lpha)$ and $\int_a^b f\,dlpha=\lim_{n o\infty}\int_a^b f_n\,dlpha$. $\ \Box$

Corollary 2.10

 $f_n\in\mathscr{R}(lpha)$ on $[a,\,b]$ 이고 $\{\sum_{n=1}^\infty f_n\} o f$ uniformly on $[a,\,b]$ 이면 $\int_a^b f\,dlpha=\sum_{n=1}^\infty \int_a^b f_n\,dlpha$ 이다.

Theorem 2.11

 $\{f_n\}$ 이 [a,b] 에서 미분가능한 함수들의 함수열이며, $x_0\in [a,b]$ 에 대해 $\{f_n(x_0)\}$ 가 수렴한다고 하자. $\{f_n'\}$ 이 [a,b] 에서 uniformly convergent 하면 $\{f_n\}$ 도 uniformly convergent to a function, f, on [a,b] 이며 $f'(x)=\lim_{n\to\infty}f_n{}'(x)$ for $x\in [a,b]$ 이다.

 (Proof) (1) Let arepsilon>0 be given. $\{f_n(x_0)\}$ 가 수렴하므로 어떤 $N_1\in\mathbb{N}$ 에 대해 $n,\ m\geq N_1$ 이면 $|f_n(x_0)-f_m(x_0)|<arepsilon/2$ 이다. $\{f_n{}'\}$ 이 uniformly convergent 하므로 어떤 $N_2\in\mathbb{N}$ 에 대해 $n,\ m\geq N_2$ 이면

 $|{f_n}'(t)-{f_m}'(t)|<arepsilon/2(b-a)$ for all $t\in[a,\,b]$ 이다 (*) . $N=\max\{N_1,\,N_2\}$ 라 하자.

(2) Mean value theorem을 f_n-f_m 에 적용하면 모든 $x,\,t\in[a,\,b]$ 에 대해, $f_n(x)-f_m(x)-f_n(t)+f_m(t)=(f_n{}'(s)-f_m{}'(s))(x-t)$ 인 s가 x와 t 사이에 존재한다. 따라서 모든 $x,\,t\in[a,\,b]$ 와 $n,\,M\geq N$ 에 대해

$$|f_n(x)-f_m(x)-f_n(t)+f_m(t)| \leq rac{arepsilon|x-t|}{2(b-a)} \leq rac{arepsilon}{2} \ . \ (**)$$

이다. From (*) and (**), $|f_n(x)-f_m(x)|\leq |f_n(x)-f_n(x)-f_n(x)|+|f_n(x_0)|+|f_n(x_0)-f_m(x_0)|< \varepsilon$ for all $x\in [a,\,b]$ and $n,\,m\geq N$. 즉 $\{f_n\}$ 은 uniformly convergent 하다. $f(x)=\lim_{n\to\infty}f_n(x)$ for $x\in [a,\,b]$ 라 하면, $\{f_n\}\to f$ uniformly. 이다.

(3) Fixed $x\in[a,b]$ 에 대해 $\phi_n(t)=\frac{f_n(t)-f_n(x)}{t-x}$, $\phi(x)=\frac{f(t)-f(x)}{t-x}$ 를 정의한다. 즉 $\lim_{t\to x}\phi_n(x)=f_n{}'(x)$, $\lim_{t\to x}\phi(x)=f'(x)$ 이다. (**)로 부터 $|\phi_n(t)-\phi_m(t)|<\varepsilon/(2(b-a))$ for $n,\,m\ge N$ and for all $t\in[a,b]$ 임을 알고 있다. 즉 $\{\phi_n\}$ converges uniformly to ϕ .

(4) From theorem 2.4, $\lim_{t \to x} \lim_{n \to \infty} \phi_n(t) = \lim_{n \to \infty} \lim_{t \to x} \phi_n(t)$ 이므로 $\lim_{t \to x} \phi(t) = f'(x) = \lim_{n \to \infty} f_n{}'(x)$. \square

Theorem 2.12

모든 🖫에서 연속이지만, 모든 彫에서 미분 불가능한 실함수가 존재한다.

(*Proof*) (1) Define $\phi(x)=|x|$ for $x\in[-1,\,1]$ and extend its domain to $\mathbb R$ by $\phi(x+2)=\phi(x)$. 여기서 ϕ 는 $\mathbb R$ 연속이다. $|\phi(s)-\phi(t)|\leq |s-t|$ (*) 임은 쉽게 보일 수 있다.

(2) Define $f(x)=\sum\limits_{n=0}^{\infty}\left(\frac{3}{4}\right)^n\phi(4^nx)$. $|\phi(x)|<1$ 이므로 f(x)는 모든 x 에서 수렴하며, theorem 2.3에 의해 균등수렴한다. Theorem 2.5에 의해 f(x)는 모든 $x\in\mathbb{R}$ 에서 연속이다.

(3) x 를 고정하고, $m \in \mathbb{Z}_+$ 에 대해 $\delta_m = \pm \frac{1}{2} \cdot 4^{-m}$ 이라 하자. $4^m |\delta_m| = 1/2$ 이므로 $4^m x$ 와 $4^m (x + \delta_m)$ 사이에 정수가 없도록 δ_m 의 부호를 정하자. 그리고 $\gamma_m = \frac{\phi(4^n (x + \delta_m)) - \phi(4^n x)}{\delta_m}$ 이라 정의한다.

(4) n>m 이면 $4^n\delta_m$ 은 even integer. 따라서 $\gamma_m=0$. $0\leq n\leq m$ 이면 (*)에 의해 $\gamma_m\leq 4^n$.

(5) $|\gamma_m|=|(\phi(4^m(x+\delta_m))-\phi(4^mx))\cdot 4^m/2|=4^m$, since there is no integer between 4^mx and $4^m(x+\delta_m)$. 따라서,

$$\left| rac{f(x+\delta_m) - f(x)}{\delta_m}
ight| = \left| \sum_{n=0}^n \left(rac{3}{4}
ight)^n \gamma_n
ight| \geq 3^m - \sum_{n=0}^{m-1} 3^n = rac{1}{2} (3^m+1) \; .$$

 $m o \infty \implies \delta_m o 0$. 따라서 f는 모든 $x \in \mathbb{R}$ 에서 미분 불가능 하다.

3. Equicontinuous families and Stone-Weierstrass theorem

Definition: Pointwise bounded and Uniformly bounded

 $\{f_n\}$ 이 E에서 정의된 함수열이라 하자. 어떤 finite-valued function $\phi(x)$ 에 대해 $|f_n(x)| < \phi(x)$ for all $x \in E$ and $n \in \mathbb{Z}_+$ 이면 $\{f_n\}$ 은 **pointwise bounded** 라 한다. 어떤 M>0 에 대해 $|f_n(x)| < M$ for all $x \in E$ and $n \in \mathbb{Z}_+$ 이면 $\{f_n\}$ 은 **uniformly bounded** 라 한다.

Note: 뒤에 보이겠지만 $\{f_n\}$ 이 pointwise bounded 이고 E_1 이 countably infinite subset of E 이면 어떤 subsequence $\{f_{n_k}\}$ 에서 $\{f_{n_k}(x)\}$ 가 모든 $x\in E_1$ 에서 수렴한다. 그러나 $\{f_n\}$ 이 uniformly bounded sequence of continuous functions on an compact set E 일 경우는 there need not exist a subsequence which converges pointwise on E.

Exmaple 1. Let $f_n(x)=\sin nx$ for $0\leq x\leq 2\pi$ and $n=1,\,2,\ldots$. 모든 $x\in [0,\,2\pi]$ 에서 $\{\sin n_kx\}$ 가 수렴하도록 하는 sequence $\{n_k\}$ 존재한다고 가정하자. $[0,\,2\pi]$ 는 compact subset of $\mathbb R$ 이므로 수렴하는 수열은 Cauchy sequence 이다. 즉 $\lim_{k\to\infty}(\sin n_kx-\sin n_{k+1}x)=0$ 이어야 한다. 즉 $\lim_{k\to\infty}(\sin n_kx-\sin n_{k+1}x)^2=0$ 이며 Lebesgue's theorem 에 의해 (우린 아직 안배웠다) $\lim_{k\to\infty}\int_0^{2\pi}(\sin n_kx-\sin n_{k+1}x)^2dx=0$ 이다. 그러나 우리는 $\int_0^{2\pi}(\sin n_kx-\sin n_{k+1}x)^2dx=2\pi$ for all $n_k\neq n_{k+1}$ 임을 알고 있다. 모순이므로 $\{\sin n_kx\}$ 가 수렴하도록 하는 $\{n_k\}$ 는 존재하지 않는다.

Example 2. $f_n(x)=\frac{x^2}{x^2+(1-nx)^2}$ for $x\in[0,\,1]$ and $n=1,\,2,\ldots$ 라 하자. $|f_n(x)|\leq 1$ 이므로 $\{f_n\}$ 은 uniformpy bounded on $[0,\,1]$ 이며 $\lim_{n\to\infty}f_n(x)=0$ for all $x\in[0,\,1]$ 이다. 그러나 $f_n(1/n)=1$ for all $n=1,\,2,\ldots$ 이므로 어떤 subsequence도 $x\in[0,\,1]$ 에서 uniformly converge 하지 않다.

Definition: Equicontinuous family.

 $\mathscr F$ 이 metric space X의 subspace E에서 정의된 함수의 family이며 다음 조건을 만족하면 **equicontinuous** on E라 한다. : $\forall \varepsilon>0,\ \exists \delta>0$ s.t. $d(x,y)<\delta,\ x\in E,\ y\in E,\ f\in\mathscr F\implies |f(x)-f(y)|<\varepsilon.$

Note:

- 1. 모든 equicontinuous family에 속하는 함수들은 uniformly continuous 하다.
- 2. Example 2 의 $\{f_n\}$ 은 equicontinuous family가 아니다.

Theorem 3.1

 $\{f_n\}$ 이 pointwise bounded sequence of complex function on countably infinite set E 이면 $\{f_n\}$ 은 모든 $x\in E$ 에서 convergent한 subsequence $\{f_{n_k}\}$ 를 가진다.

(Proof) (1) Sequence $\{x_i\}\subset E$ 를 생각하자. $\{f_n\}$ 이 pointwise bounded 이므로 $\{f_n(x_1)\}$ 은 bounded 이다. 따라 서