

[영역] 5.기하

5-2-1.평면도형에서의 활용(1)_직사각형의 대각선의 길이, 삼각형의 높이와 넓이

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 직사각형의 대각선의 길이

1) 직사각형의 대각선의 길이

: 가로의 길이가 a_t 세로의 길이가 b인 직사각형 ABCD에서

대각선의 길이를 l이라 하면 $l = \sqrt{a^2 + b^2}$

2) 정사각형의 대각선의 길이

: 한 변의 길이가 a인 정사각형 ABCD에서

대각선의 길이를 l이라 하면 $l = \sqrt{2}a$

1) 정삼각형의 높이와 넓이

: 한 변의 길이가 a인 정삼각형 ABC에서 높이를 h, 넓이를 S라 하면

(1) 높이:
$$h = \frac{\sqrt{3}}{2}a$$

(2) 넓이:
$$S = \frac{\sqrt{3}}{4}a^2$$

2) 이등변삼각형의 높이와 넓이

: 삼각형 ABC에서 높이를 h, 넓이를 S라 하면

(1) 높이:
$$h = \sqrt{b^2 - \left(\frac{a}{2}\right)^2}$$

(2) 넓이:
$$S = \frac{1}{2}ah$$

3) 일반삼각형의 높이와 넓이

: 삼각형 ABC에서 높이를 h, 넓이를 S라 하면

(1) 높이:
$$h = \sqrt{c^2 - x^2} = \sqrt{b^2 - (a - x)^2}$$
 (2) 넓이: $S = \frac{1}{2}ah$

*** 참고

$$h = \sqrt{a^2 - \left(\frac{a}{2}\right)^2} = \sqrt{\frac{3}{4}a^2} = \frac{\sqrt{3}}{2}a$$
$$S = \frac{1}{2}ah = \frac{1}{2}a \times \frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{4}a^2$$

◉ 이등변삼각형의 꼭지각의 꼭짓점에 서 밑변에 그은 수선은 밑변을 이등

☑ 다음 직사각형에서 x의 값을 구하여라.

1.

4.

3.

5.

6.

7.

8.

9.

10.

11.

12.

☑ 다음 직사각형의 대각선의 길이를 구하여라.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

☑ 다음 그림에서 사각형 ABCD의 넓이를 구하여라.

28.

29.

30.

31.

32.

정삼각형의 높이와 넓이

☑ 다음 그림과 같은 정삼각형 ABC의 높이와 넓이를 각각 구하여라.

33.

34.

35.

36.

38.

44.

39.

45.

40.

46.

41.

47.

☑ 다음 정삼각형의 넓이를 구하여라.

48.

43.

□ 다음 그림과 같이 높이가 주어진 정삼각형 ABC의 넓이를 구하여라.

50.

51.

52.

53.

54.

☑ 다음 그림과 같은 정삼각형에서 a의 값을 구하여라.

55.

56.

57.

- □ 다음 그림과 같이 정삼각형의 넓이가 주어질 때, a의 값을 구하여라.
- 58. 넓이: $\sqrt{3}$

59. 넓이 : $25\sqrt{3}$

☑ 다음을 구하여라.

- 60. 높이가 $2\sqrt{3}$ 인 정삼각형의 한 변의 길이
- 61. 높이가 9인 정삼각형의 한 변의 길이
- 62. 넓이가 $3\sqrt{3}$ 인 정삼각형의 한 변의 길이
- 63. 넓이가 $25\sqrt{3}$ 인 정삼각형의 한 변의 길이

☑ 다음 물음에 답하여라.

64. 다음 그림과 같이 지름이 16 cm 인 원 \bigcirc 에 내접하는 정육각 형의 넓이를 구하여라.

65. 다음 그림과 같이 한 변의 길이가 6cm 인 정육각형의 넓이 를 구하여라.

66. 다음 그림과 같이 둘레의 길이가 12 cm 인 정육각형의 넓이를 구하여라.

67. 다음과 같이 넓이가 $24\sqrt{3} \text{ cm}^2$ 인 정육각형의 둘레의 길이 를 구하여라.

68. 다음 그림의 정사각형과 정육각형은 둘레의 길이가 같다. 정사각형의 넓이가 36cm^2 일 때, 정육각형의 넓이를 구하여라.

이등변삼각형의 높이와 넓이

 \square 다음 그림에서 이등변삼각형 \square ABC의 꼭짓점 \square A에서 \square M 내린 수선의 길이를 구하여라.

69.

70.

☑ 다음 그림과 같은 이등변삼각형의 꼭지각에서 내린 수선의 길이를 구하여라.

72.

73.

74.

75.

76.

\square 다음 그림과 같은 삼각형 \triangle ABC에서 \overline{AH} 의 길이와 $\triangle ABC$ 의 넓이를 각각 구하여라.

77.

78.

☑ 다음 이등변삼각형의 넓이를 구하여라.

79.

80.

81.

☑ 다음 그림과 같은 이등변삼각형의 넓이를 구하여라.

83.

84.

85.

86.

87.

88.

B

일반삼각형의 높이와 넓이

\square 다음 그림에서 삼각형 \square ABC의 꼭짓점 \square A에서 \square MC에 내린 수선의 길이를 구하여라.

89.

90.

91.

92.

☑ 다음 삼각형 ABC의 넓이를 구하여라.

94.

95.

96.

97.

98.

☑ 직사각형 ABCD에서 $\overline{AB}=3$, $\overline{AD}=3\sqrt{3}$ 이고, 꼭짓점 A, C에서 대각선 BD에 내린 수선의 발을 각각 E, F라 할 때, \overline{EF} 의 길이를 구하는 과정이다. 다음 길이를 구하여라.

- 99. 피타고라스의 정리를 이용하여 대각선 $\overline{\mathrm{BD}}$ 의 길이
- 100 AE의 길이
- 101 EF 의 길이
- ☑ 다음 직사각형 ABCD에서 알맞은 길이를 구하여라.
- 102 직사각형 ABCD의 꼭짓점 A, C에서 대각선 BD에 내린 수선의 발을 각각 E, F라고 할 때, $\overline{\rm EF}$ 의 길이

103. 직사각형 ABCD의 꼭짓점 D에서 대각선 AC에 내린 수 선의 발을 E라고 할 때, \overline{DE} 의 길이

104 직사각형 ABCD의 꼭짓점 B에서 대각선 AC에 내린 수 선의 발을 H라고 할 때, \overline{BH} 의 길이

105. 직사각형 ABCD의 꼭짓점 A에서 대각선 BD에 내린 수 선의 발을 E라고 할 때, \overline{AE} 의 길이

106. $\overline{AB}=3$, $\overline{AD}=4$ 인 직사각형 ABCD의 두 꼭짓점 A, C 에서 대각선 BD에 내린 수선의 발을 각각 E, F라고 할 때, EF 의 길이

107 다음 그림과 같은 직사각형 ABCD의 두 꼭짓점 A, C에 서 대각선 BD에 내린 수선의 발을 각각 E, F라고 할 때, ED **의 길이**

정답 및 해설

- 1) 9
- 2) $\sqrt{61}$
- 3) 3
- 4) $2\sqrt{3}$
- 5) $2\sqrt{2}$
- 6) 5
- 7) $3\sqrt{3}$
- $\Rightarrow x = \sqrt{6^2 3^2} = 3\sqrt{3}$
- 8) 8
- $\Rightarrow x = \sqrt{10^2 6^2} = 8$
- 9) $2\sqrt{2}$
- 10) $6\sqrt{2}$
- $\Rightarrow x^2 + x^2 = 12^2, \ 2x^2 = 144, \ x^2 = 72$ $\therefore x = 6\sqrt{2} \ (x > 0)$
- 11) $4\sqrt{2}$
- $\Rightarrow x^2 + x^2 = 8^2, \ 2x^2 = 64, \ x^2 = 32$ $\therefore x = 4\sqrt{2} \ (x > 0)$
- 12) $10\sqrt{2}$
- $\Rightarrow x^2 + x^2 = 20^2, \ 2x^2 = 400$ $x^2 = 200 \qquad \therefore x = 10\sqrt{2} \ (x > 0)$
- 13) $2\sqrt{13}$ cm
- $\Rightarrow \sqrt{4^2+6^2} = 2\sqrt{13} \text{ (cm)}$
- 14) 20cm
- $\Rightarrow \sqrt{12^2 + 16^2} = 20 \text{ (cm)}$
- 15) $4\sqrt{5}$ cm
- $\Rightarrow \sqrt{4^2 + 8^2} = 4\sqrt{5} \text{ (cm)}$
- 16) $\sqrt{29}$ cm
- \Rightarrow (대각선의 길이)= $\sqrt{2^2+5^2} = \sqrt{29}$ (cm)
- 17) $4\sqrt{5}$ cm
- \Rightarrow (대각선의 길이)= $\sqrt{4^2+8^2}=4\sqrt{5}$ (cm)
- 18) 5cm

- \Rightarrow (대각선의 길이)= $\sqrt{4^2+3^2}=5$ (cm)
- 19) 2cm
- \Rightarrow (대각선의 길이)= $\sqrt{2} \times \sqrt{2} = 2$ (cm)
- 20) $2\sqrt{13}$ cm
- \Rightarrow (대각선의 길이)= $\sqrt{6^2+4^2}=2\sqrt{13}$ (cm)
- 21) 17cm
- \Rightarrow (대각선의 길이)= $\sqrt{15^2+8^2}=17$ (cm)
- 22) 8cm
- $\Rightarrow \sqrt{(\sqrt{39})^2 + 5^2} = 8 \text{ (cm)}$
- 23) $3\sqrt{2} \text{ cm}$
- 24) $5\sqrt{2}$ cm
- 25) $8\sqrt{2}$ cm
- 26) $7\sqrt{2}$ cm
- 27) $12\sqrt{2}$ cm
- 28) 120cm²
- ⇒ BC = √17²-15²=8(cm)
 ∴ (직사각형 ABCD의 넓이)=15×8=120(cm²)
- 29) 48 cm²
- □ AD = √10²-6²=8
 (직사각형 ABCD의 넓이)
 =(가로의 길이)×(세로의 길이)
 =8×6=48(cm²)
- 30) $8\sqrt{5} \text{ cm}^2$
- $ightharpoonup \overline{DC} = \sqrt{6^2 4^2} = 2\sqrt{5} \text{ (cm)}$ (직사각형 ABCD의 넓이)= $4 \times 2\sqrt{5} = 8\sqrt{5} \text{ (cm}^2)$
- 31) $32\sqrt{5}\,\text{cm}^2$
- ightharpoons ightharpoo
- 32) 49cm²
- 33) 높이: $\sqrt{3}$ cm, 넓이: $\sqrt{3}$ cm²
- \Rightarrow $(\stackrel{\sqsubseteq}{=} 0|) = \frac{\sqrt{3}}{2} \times 2 = \sqrt{3} \text{ (cm)}$
 - (넓이)= $\frac{\sqrt{3}}{4} \times 2^2 = \sqrt{3} \left(\text{cm}^2 \right)$

34) 높이:
$$2\sqrt{3}$$
 cm, 넓이: $4\sqrt{3}$ cm²

$$\Rightarrow (\pm 0 |) = \frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3} (cm)$$

(넓이)=
$$\frac{\sqrt{3}}{4} \times 4^2 = 4\sqrt{3} (\text{cm}^2)$$

35) 높이:
$$\frac{5\sqrt{3}}{2}$$
cm, 넓이: $\frac{25\sqrt{3}}{4}$ cm 2

$$\Rightarrow (\pm 0|) = \frac{\sqrt{3}}{2} \times 5 = \frac{5\sqrt{3}}{2} (cm)$$

(넓이)=
$$\frac{\sqrt{3}}{4} \times 5^2 = \frac{25\sqrt{3}}{4} (\text{cm}^2)$$

36) 높이:
$$\frac{3\sqrt{2}}{2}$$
cm, 넓이: $\frac{3\sqrt{3}}{2}$ cm²

$$\Leftrightarrow (\pm 0|) = \frac{\sqrt{3}}{2} \times \sqrt{6} = \frac{\sqrt{18}}{2} = \frac{3\sqrt{2}}{2} (cm)$$

(넓이)=
$$\frac{\sqrt{3}}{4}$$
× $(\sqrt{6})^2 = \frac{3\sqrt{3}}{2}$ (cm²)

37) 높이:
$$3\sqrt{2} \text{ cm}$$
, 넓이: $6\sqrt{3} \text{ cm}^2$

$$\Leftrightarrow (\pm 0|) = \frac{\sqrt{3}}{2} \times 2\sqrt{6} = 3\sqrt{2} \text{ (cm)}$$

(넓이)=
$$\frac{\sqrt{3}}{4}$$
× $(2\sqrt{6})^2$ = $6\sqrt{3}$ (cm²)

38) 높이:
$$3\sqrt{6}\,\mathrm{cm}$$
, 넓이: $18\sqrt{3}\,\mathrm{cm}^2$

$$\Rightarrow (\pm 0|) = \frac{\sqrt{3}}{2} \times 6\sqrt{2} = 3\sqrt{6} \text{ (cm)}$$

(넓이)=
$$\frac{\sqrt{3}}{4}$$
× $(6\sqrt{2})^2$ = $18\sqrt{3}$ (cm²)

39) 높이:
$$3 \text{cm}$$
, 넓이: $3\sqrt{3} \text{cm}^2$

$$\Rightarrow$$
 $(\pm 0|) = \frac{\sqrt{3}}{2} \times 2\sqrt{3} = 3$ (cm)

(넓이)=
$$\frac{\sqrt{3}}{4}$$
× $(2\sqrt{3})^2$ = $3\sqrt{3}$ (cm²)

40) 높이:
$$\frac{3}{2}$$
cm, 넓이: $\frac{3\sqrt{3}}{4}$ cm²

$$\Rightarrow$$
 $(\stackrel{\square}{=} 0|) = \frac{\sqrt{3}}{2} \times \sqrt{3} = \frac{3}{2} \text{ (cm)}$

(넓이)=
$$\frac{\sqrt{3}}{4}$$
× $(\sqrt{3})^2 = \frac{3\sqrt{3}}{4}$ (cm²)

41) 높이:
$$\frac{15}{2}$$
cm, 넓이: $\frac{75\sqrt{3}}{4}$ cm²

$$\Rightarrow (\pm 0|) = \frac{\sqrt{3}}{2} \times 5\sqrt{3} = \frac{15}{2} (\text{cm})$$

(넓이)=
$$\frac{\sqrt{3}}{4}$$
× $(5\sqrt{3})^2 = \frac{75\sqrt{3}}{4}$ (cm²)

42)
$$\frac{27\sqrt{3}}{4}$$
 cm²

$$\Rightarrow \frac{\sqrt{3}}{4} \times (3\sqrt{3})^2 = \frac{27\sqrt{3}}{4} (\text{cm}^2)$$

43)
$$\frac{9\sqrt{3}}{4}$$
 cm²

$$\Rightarrow \frac{\sqrt{3}}{4} \times 3^2 = \frac{9\sqrt{3}}{4} (\text{cm}^2)$$

44)
$$2\sqrt{3}$$
 cm²

$$\Rightarrow \frac{\sqrt{3}}{4} \times (2\sqrt{2})^2 = 2\sqrt{3} \text{ (cm}^2)$$

45)
$$9\sqrt{3} \text{ cm}^2$$

$$\Rightarrow \frac{\sqrt{3}}{4} \times 6^2 = 9\sqrt{3} \text{ (cm}^2)$$

46)
$$32\sqrt{3}$$
 cm²

$$\Rightarrow \frac{\sqrt{3}}{4} \times (8\sqrt{2})^2 = 32\sqrt{3} \text{ (cm}^2)$$

47)
$$8\sqrt{3} \text{ cm}^2$$

$$\Rightarrow$$
 (넓이)= $\frac{\sqrt{3}}{4} \times (4\sqrt{2})^2 = 8\sqrt{3} \text{ (cm)}^2$

48)
$$3\sqrt{3}$$

$$([] \circ]) = \frac{\sqrt{3}}{4} \times (2\sqrt{3})^2 = 3\sqrt{3}$$

49)
$$36\sqrt{3}$$
 cm²

$$\Rightarrow$$
 (넓이)= $\frac{\sqrt{3}}{4} \times 12^2 = 36\sqrt{3} \text{ (cm)}^2$

50) $64\sqrt{3}$

 \Rightarrow 정삼각형 ABC의 한 변의 길이를 a라 하면

$$\frac{\sqrt{3}}{2}a = 8\sqrt{3}$$
 $\therefore a = 16$

· (저사가형 ARC의 넓이)

$$= \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4} \times 16^2 = 64\sqrt{3}$$

51)
$$\triangle ABC = 3\sqrt{21} \text{ cm}^2$$

52)
$$\frac{9\sqrt{3}}{4}$$

 \Rightarrow 정삼각형 ABC의 한 변의 길이를 a라 하면

$$\frac{\sqrt{3}}{2}a = \frac{3\sqrt{3}}{2} \qquad \therefore \ a = 3$$

$$\therefore$$
 (정삼각형 ABC의 넓이)= $\frac{\sqrt{3}}{4} \times 3^2 = \frac{9\sqrt{3}}{4}$

53) $16\sqrt{3}$

 \Rightarrow 정삼각형 ABC의 한 변의 길이를 a라 하면

$$\frac{\sqrt{3}}{2}a = 4\sqrt{3}$$
 $\therefore a = 8$

$$\therefore$$
 (정삼각형 ABC의 넓이)= $\frac{\sqrt{3}}{4} \times 8^2 = 16\sqrt{3}$

54)
$$\frac{\sqrt{3}}{2}$$

 \Rightarrow 정삼각형 ABC의 한 변의 길이를 a라 하면 $\frac{\sqrt{3}}{2}a = \frac{\sqrt{6}}{2} \qquad \therefore a = \sqrt{2}$

$$\therefore$$
 (정삼각형 ABC의 넓이) $=\frac{\sqrt{3}}{4} \times (\sqrt{2})^2 = \frac{\sqrt{3}}{2}$

$$\Rightarrow \frac{\sqrt{3}}{2} \times a = \frac{\sqrt{3}}{2} \qquad \therefore a = 1$$

$$\Rightarrow \frac{\sqrt{3}}{2}a = \frac{7\sqrt{3}}{2} \qquad \therefore \ a = 7$$

$$\Rightarrow \frac{\sqrt{3}}{2}a = 3\sqrt{3} \qquad \therefore a = 6$$

$$\Rightarrow \frac{\sqrt{3}}{4}a^2 = \sqrt{3} \,, \ a^2 = 4 \qquad \therefore \ a = 2 \ (a > 0)$$

59) 10

$$\Rightarrow \frac{\sqrt{3}}{4}a^2 = 25\sqrt{3}, \ a^2 = 100 \qquad \therefore \ a = 10 \ (a > 0)$$

60) 4

 \Rightarrow 정삼각형의 한 변의 길이를 a라 하면 $\frac{\sqrt{3}}{2}a = 2\sqrt{3}$ $\therefore a = 4$

61) $6\sqrt{3}$

 \Rightarrow 정삼각형의 한 변의 길이를 a라 하면

$$\frac{\sqrt{3}}{2}a = 9 \qquad \therefore a = 6\sqrt{3}$$

62) $2\sqrt{3}$

 \Rightarrow 정삼각형의 한 변의 길이를 a라 하면

$$\frac{\sqrt{3}}{4}a^2 = 3\sqrt{3}, a^2 = 12$$
 $\therefore a = 2\sqrt{3} \ (\because a > 0)$

63) 10

 \Rightarrow 정삼각형의 한 변의 길이를 a라 하면

$$\frac{\sqrt{3}}{4}a^2 = 25\sqrt{3}, a^2 = 100$$
 $\therefore a = 10(\because a > 0)$

64)
$$96\sqrt{3}$$
 cm²

다 지름이
$$16\,\mathrm{cm}$$
이면 반지름은 $8\,\mathrm{cm}$ 이 되고 정육각형은 한 변의 길이가 $8\,\mathrm{cm}$ 인 정삼각형으로 6 등분된다. 이 정삼각형의 넓이는 $\frac{\sqrt{3}}{4} \times 8^2 = \frac{\sqrt{3}}{4} \times 64 = 16\,\sqrt{3}\,\,(\mathrm{cm}^2)$ 이고, 정육각형의 넓이는 정삼각형 넓이의 6 배와 같으므로 $16\,\sqrt{3} \times 6 = 96\,\sqrt{3}\,\,(\mathrm{cm}^2)$

65) $54\sqrt{3} \text{ cm}^2$

▷ 정육각형의 넓이는 한 변의 길이가 6cm인 정삼각형 6 개의 넓이와 같으므로 $6 \times \left(\frac{\sqrt{3}}{4} \times 6^2\right) = 54\sqrt{3} \text{ (cm}^2)$

66) $6\sqrt{3} \text{ cm}^2$

⇒ 둘레의 길이가 12 cm 이므로 한 변의 길이가 2 cm 인 정 육면체이다. 정육면체의 넓이는 한 변의 길이가 2cm인 6개의 넓이의 합과 $\frac{\sqrt{3}}{4} \times 2^2 \times 6 = 6\sqrt{3} \text{ (cm}^2) \text{ old}.$

⇒ 정육각형을 6등분하여 정삼각형으로 나누면 정삼각형 1개의 넓이는 $\frac{1}{6} \times 24\sqrt{3} = 4\sqrt{3} \text{ (cm}^2)$ 이므로 정삼각형의 한 변의 길이를 a라고 하면 $\frac{\sqrt{3}}{4}a^2 = 4\sqrt{3}, \ a^2 = 16$ $\therefore \ a = 4 \text{ (cm)} \ (a > 0)$ 정육각형의 한 변의 길이도 4cm가 되어서 정육각형의 둘레의 길이는 $4 \times 6 = 24$ (cm)이다.

68) $24\sqrt{3} \text{ cm}^2$

⇨ 정사각형의 넓이가 36이므로 한 변의 길이는 6이고 그 둘레의 길이는 24이다.

둘레의 길이가 24인 정육각형의 한 변의 길이는 4이다.

정육각형은 한 변의 길이가 4인 6개의 정삼각형으로 이루 어져 있으므로 정육각형의 넓이는

$$\frac{\sqrt{3}}{4} \times 4^2 \times 6 = 24\sqrt{3} \text{ OIC}.$$

69) $2\sqrt{5}$ cm

⇒ 이등변 삼각형의 꼭지각의 이등분선은 밑변을 수직이등 분한다. 꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수 선의 길이를 h cm라 하면 $\overline{BH} = 4 \text{ cm}$ 이다.

$$h^2 = 6^2 - 4^2 = 20$$
 : $h = 2\sqrt{5}$ cm

70) $\sqrt{15}$

꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이 를 h라 하면, $\overline{BH} = \frac{2}{2} = 1$ 이므로

$$h^2 = 4^2 - 1^2 = 15$$

$$\therefore h = \sqrt{15}$$

71) $4\sqrt{6}$ cm

꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이 를 h라 하면, $\overline{BH} = \frac{4}{2} = 2 \text{(cm)}$ 이다.

$$h^2 = 10^2 - 2^2 = 96$$
 $\therefore h = 4\sqrt{6} \text{ cm}$

$$\therefore h = 4\sqrt{6} \text{ cn}$$

72)
$$2\sqrt{21}$$

$$\Rightarrow \sqrt{10^2 - 4^2} = 2\sqrt{21}$$

73)
$$\sqrt{7}$$

$$\Rightarrow \sqrt{4^2-3^2} = \sqrt{7}$$

74)
$$2\sqrt{7}$$

$$\Rightarrow \sqrt{8^2-6^2}=2\sqrt{7}$$

$$\Rightarrow \sqrt{13^2 - 5^2} = 12$$

77)
$$\overline{AH} = 4 \text{cm}, \ \Delta ABC = 12 \text{cm}^2$$

⇒
$$\overline{BH} = \overline{CH} = 3 \text{ (cm)}$$
이므로 $\overline{AH} = \sqrt{5^2 - 3^2} = 4 \text{ (cm)}$
∴ $\triangle ABC = \frac{1}{2} \times 6 \times 4 = 12 \text{ (cm}^2)$

78)
$$\overline{AH} = \sqrt{2} \text{ cm. } \triangle ABC = 2\sqrt{6} \text{ cm}^2$$

$$\Rightarrow \overline{BH} = \overline{CH} = 2\sqrt{3} (cm)$$
이므로

$$\overline{AH} = \sqrt{(\sqrt{14})^2 - (2\sqrt{3})^2} = \sqrt{2} \text{ (cm)}$$

$$\therefore \triangle ABC = \frac{1}{2} \times 4\sqrt{3} \times \sqrt{2} = 2\sqrt{6} \text{ (cm}^2)$$

79)
$$2\sqrt{2} \text{ cm}^2$$

$$\Rightarrow (\pm 0|) = \sqrt{3^2 - \left(\frac{2}{2}\right)^2} = \sqrt{8} = 2\sqrt{2} \text{ (cm)}$$

$$\therefore$$
 (넓이)= $\frac{1}{2} \times 2 \times 2\sqrt{2} = 2\sqrt{2}$ (cm²)

80)
$$2\sqrt{21}$$

$$\Rightarrow \left(\frac{1}{2} \circ\right) = \sqrt{5^2 - \left(\frac{4}{2}\right)^2} = \sqrt{21}$$

$$\left(\frac{1}{24} \circ\right) = \frac{1}{2} \times 4 \times \sqrt{21} = 2\sqrt{21}$$

81)
$$9\sqrt{15} \text{ cm}^2$$

$$\Rightarrow$$
 (± 0) = $\sqrt{12^2 - \left(\frac{6}{2}\right)^2} = 3\sqrt{15}$ (cm)

$$\therefore$$
 (넓이)= $\frac{1}{2} \times 6 \times 3\sqrt{15} = 9\sqrt{15} \text{ (cm}^2)$

82)
$$42\sqrt{2} \text{ cm}^2$$

⇒ (
$$\pm$$
0|)= $\sqrt{11^2 - \left(\frac{14}{2}\right)^2} = 6\sqrt{2}$ (cm)

$$\therefore$$
 (넓이)= $\frac{1}{2} \times 14 \times 6\sqrt{2} = 42\sqrt{2}$ (cm²)

83) 60cm²

$$\Rightarrow h = \sqrt{13^2 - 5^2} = 12 \text{ (cm)}$$

$$S = \frac{1}{2} \times 10 \times 12 = 60 \text{ (cm}^2)$$

84)
$$12\sqrt{7}\,\text{cm}^2$$

$$\Rightarrow x = \sqrt{8^2 - 6^2} = 2\sqrt{7} \text{ (cm)}$$

$$\therefore S = \frac{1}{2} \times 2\sqrt{7} \times 2 \times 6 = 12\sqrt{7} \text{ (cm}^2)$$

85) 48cm²

$$\Rightarrow x = \sqrt{10^2 - 6^2} = 8 \text{ (cm)}$$

$$\therefore S = \frac{1}{2} \times 8 \times 2 \times 6 = 48 \text{ (cm}^2)$$

86)
$$18\sqrt{21}$$
 cm²

$$\Rightarrow h = \sqrt{15^2 - 6^2} = 3\sqrt{21} \text{ (cm)}$$

$$\therefore S = \frac{1}{2} \times 12 \times 3\sqrt{21} = 18\sqrt{21} \text{ (cm}^2)$$

87)
$$32\sqrt{5}$$
 cm²

$$\Rightarrow h = \sqrt{12^2 - 8^2} = 4\sqrt{5} \text{ (cm)}$$

$$\therefore S = \frac{1}{2} \times 16 \times 4\sqrt{5} = 32\sqrt{5} \text{ (cm}^2)$$

88) $6\sqrt{10}\,\text{cm}^2$

$$\Rightarrow h = \sqrt{7^2 - 3^2} = 2\sqrt{10} \text{ (cm)}$$

$$\therefore S = \frac{1}{2} \times 6 \times 2\sqrt{10} = 6\sqrt{10} \text{ (cm}^2)$$

89) 12

 \Rightarrow 꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이 를 h, $\overline{BH} = x$ 라 하면 $\overline{HC} = 14 - x$ 이다.

$$h^2 = 13^2 - x^2$$

$$h^2 = 15^2 - (14 - x)^2$$

$$13^2 - x^2 = 15^2 - (14 - x)^2$$

이 식을 정리하면 $x = 5$

$$h = \sqrt{13^2 - 5^2} = 12$$

90)
$$\frac{3\sqrt{39}}{2}$$

꼭짓점 A에서 $\overline{\rm BC}$ 에 내린 수선의 발을 H, 수선의 길이를 h라 하면, $\overline{\rm BH}=x$ 라 하면, $\overline{\rm HC}=11-x$ 이다.

$$\triangle$$
ABH에서 $h^2 = 10^2 - x^2$

$$\triangle$$
ACH에서 $h^2 = 12^2 - (11 - x)^2$

$$10^2 - x^2 = 12^2 - (11 - x)^2$$
 \therefore $x = \frac{7}{2}$

$$\therefore h = \sqrt{10^2 - \left(\frac{7}{2}\right)^2} = \frac{3\sqrt{39}}{2}$$

91)
$$\frac{3\sqrt{15}}{2}$$

꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이 를 h라 하면, $\overline{BH}=x$ 라 하면, $\overline{HC}=16-x$ 이다

$$\triangle$$
ABH에서 $h^2 = 12^2 - x^2$

$$\triangle$$
ACH에서 $h^2 = 8^2 - (16 - x)^2$

$$12^2 - x^2 = 8^2 - (16 - x)^2$$
 $\therefore x = \frac{21}{2}$

$$\therefore h = \sqrt{12^2 - \left(\frac{21}{2}\right)^2} = \frac{3\sqrt{15}}{2}$$

꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이를 h라 하면, $\overline{BH}=x$ 라 하면, $\overline{HC}=5-x$ 이다.

$$\triangle$$
ABH에서 $h^2 = 8^2 - x^2$

$$\triangle$$
ACH에서 $h^2 = 7^2 - (5-x)^2$

$$8^2 - x^2 = 7^2 - (5 - x)^2$$
 $\therefore x = 4$

$$\therefore h = \sqrt{8^2 - 4^2} = 4\sqrt{3}$$

93) 12

꼭짓점 A에서 $\overline{\rm BC}$ 에 내린 수선의 발을 $\rm H$, 수선의 길이 를 $\it h$ 라 하면, $\overline{\rm BH}=x$ 라 하면, $\overline{\rm HC}=21-x$

$$\triangle$$
ABH에서 $h^2 = 20^2 - x^2$

$$\triangle$$
ACH에서 $h^2 = 13^2 - (21 - x)^2$

$$20^2 - x^2 = 13^2 - (21 - x)^2$$
 $\therefore x = 16$

$$h = \sqrt{20^2 - 16^2} = 12$$

94)
$$\frac{15\sqrt{7}}{4}$$

꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이를 h라 하면, $\overline{BH}=x$ 라 하면, $\overline{HC}=6-x$ 이다.

$$\triangle$$
ABH에서 $h^2 = 5^2 - x^2$

$$\triangle$$
ACH에서 $h^2 = 4^2 - (6-x)^2$

$$5^2 - x^2 = 4^2 - (6 - x)^2$$
 $\therefore x = \frac{15}{4}$

$$\therefore h = \sqrt{5^2 - \left(\frac{15}{4}\right)^2} = \frac{5\sqrt{7}}{4}$$

$$\therefore$$
 (넓이)= $\frac{1}{2}$ × 6 × $\frac{5\sqrt{7}}{4}$ = $\frac{15\sqrt{7}}{4}$

95) 210

꼭짓점 A에서 \overline{BC} 에 내린 수선의 발을 H, 수선의 길이를 h라 하면, $\overline{BH}=x$ 라 하면, $\overline{HC}=28-x$ 이다.

$$\triangle$$
ABH에서 $h^2=25^2-x^2$

$$\triangle$$
ACH에서 $h^2 = 17^2 - (28 - x)^2$

$$25^2 - x^2 = 17^2 - (28 - x)^2$$
 $\therefore x = 20$

$$h = \sqrt{25^2 - 20^2} = 15$$

$$\therefore (\triangle ABC 의 넓이) = \frac{1}{2} \times 28 \times 15 = 210$$

96) 20cm²

$$ightharpoonup \overline{BH} = x \, \mathrm{cm}$$
라 하면 $\overline{CH} = 8 - x \, \mathrm{(cm)}$ 이므로 $\Delta \mathrm{ABH}$ 에서 $\overline{AH}^2 = \left(\sqrt{34}\right)^2 - x^2$ ① $\Delta \mathrm{ACH}$ 에서 $\overline{AH}^2 = \left(5\sqrt{2}\right)^2 - (8-2)^2$ ① ①, ©에서 $\left(\sqrt{34}\right)^2 - x^2 = \left(5\sqrt{2}\right)^2 - (8-x)^2$ $16x = 48$ $\therefore x = 3 \, \mathrm{(cm)}$ 따라서 $\overline{AH} = \sqrt{\left(\sqrt{34}\right)^2 - 3^2} = \sqrt{25} = 5 \, \mathrm{(cm)}$ 이므로 $\Delta \mathrm{ABC} = \frac{1}{2} \times 8 \times 5 = 20 \, \mathrm{(cm}^2)$

97) 84 cm²

⇒ 점 A에서
$$\overline{\text{BC}}$$
에 내린 수선의 발을 D라 하고, $\overline{\text{BD}} = x$ 라 하면 $\overline{\text{DC}} = 14 - x$ 이다. 직각삼각형 ABD에서 $\overline{\text{AD}}^2 = 225 - x^2$ 직각삼각형 ADC에서 $\overline{\text{AD}}^2 = 169 - (14 - x)^2$ 즉 $225 - x^2 = 169 - (14 - x)^2$ 이므로 $225 - x^2 = -27 + 28x - x^2$, $28x = 252$ ∴ $x = 9$ 직각삼각형 ABD에서 $\overline{\text{AD}} = \sqrt{15^2 - 9^2} = 12 \text{ (cm)}$ ∴ $\Delta \text{ABC} = \frac{1}{2} \times 14 \times 12 = 84 \text{ (cm}^2)$

98) $10\sqrt{3}$ cm²

$$ightharpoonup \overline{BH} = x, \ \overline{CH} = 8 - x \ \$$
라고 하자.
 $ightharpoonup \overline{ABH}$ 에서 $\overline{AH}^2 = 7^2 - x^2$ 이고
 $ightharpoonup \overline{ACH}$ 에서 $\overline{AH}^2 = 5^2 - (8 - x)^2$ 이 되어서
 $49 - x^2 = 25 - 64 + 16x - x^2, \ 16x = 88$ $\therefore x = \frac{11}{2}$ (cm)
 $\overline{AH} = \sqrt{49 - \left(\frac{11}{2}\right)^2} = \sqrt{49 - \frac{121}{4}} = \sqrt{\frac{196 - 121}{4}}$
 $= \sqrt{\frac{75}{4}} = \frac{5\sqrt{3}}{2}$ (cm)

 \therefore (\triangle ABC의 넓이)= $\frac{1}{2}$ \times 8 \times $\frac{5\sqrt{3}}{2}$ = $10\sqrt{3}$ (cm²)

99) 6

$$\triangle$$
 ABD에서
$$\overline{\mathrm{BD}} = \sqrt{(3\sqrt{3})^2 + 3^2} = \sqrt{27 + 9} = \sqrt{36} = 6$$

100)
$$\frac{3\sqrt{3}}{2}$$

$$ightharpoonup \overline{AE} imes \overline{BD} = \overline{AB} imes \overline{AD}$$
이므로 $\overline{AE} imes 6 = 3 imes 3 \sqrt{3}$ $\therefore \overline{AE} = \frac{3\sqrt{3}}{2}$

101) 3

$$Arr$$
 Arr Arr

$$\overline{EF} = \overline{BD} - \overline{BE} - \overline{DF} = 6 - \frac{3}{2} - \frac{3}{2} = 3$$

102) 4

103)
$$\frac{3\sqrt{10}}{5}$$

$$ightarrow \overline{AC} = \sqrt{6^2 + 2^2} = 2\sqrt{10}$$
 ΔACD 의 넓이를 이용하면 $\frac{1}{2} \times 2 \times 6 = \frac{1}{2} \times 2\sqrt{10} \times x$ $\therefore x = \frac{3\sqrt{10}}{5}$

104)
$$\frac{12\sqrt{13}}{13}$$

105) $\sqrt{6}$ cm

□ 직각삼각형 ABD에서
$$\overline{BD} = \sqrt{10+15} = 5 \text{ (cm)}$$
 직각삼각형 ABD에서 $\overline{AB} \times \overline{AD} = \overline{BD} \times \overline{AE}$ 이므로 $\sqrt{10} \times \sqrt{15} = 5\overline{AE}$ $\therefore \overline{AE} = \sqrt{6} \text{ (cm)}$

106) $\frac{7}{5}$

107) 9.6 cm

$$ightharpoonup$$
 직각삼각형 ABD에서 $m \overline{BD} = \sqrt{12^2 + 9^2} = 15 (cm)$ 이때 $m \overline{AD}^2 =
m \overline{ED} imes
m \overline{BD}$ 이므로 $m 12^2 = 15
m \overline{ED}$ $m \therefore \overline{ED} = rac{48}{5} = 9.6 (cm)$