Aprendizado de Máquina

Introdução

Prof. Tiago A. Almeida

Motivação

- Escrever um programa de computador que:
- Faça diagnóstico de pacientes por sintomas e exames
 - Médico: formação e experiência
- Responda a questões sobre vendas como:
 - Quais produtos são vendidos em conjunto?
 - Que produto recomendar a um cliente?
 - Como agrupar clientes para melhor marketing?

Motivação

- Escrever um programa de computador que:
- Reconheça pessoas pelo rosto
 - Problemas:
 - Diferentes expressões faciais
 - Alterações na face (ex. óculos, bigode)
 - Cortes de cabelo
 - Etc.

Que características considerar??

Seres humanos: reconhecimento de padrões, aprendizado do que deve ser observado após vários exemplos

Tia

Inteligência Artificial e AM

- IA era vista como área teórica
- Aplicações em problemas de pouco valor prático
- 1970: disseminação maior em problemas reais
- Sistemas Especialistas / baseados em conhecimento
 - Conhecimento de especialista codificado
 - Frequentemente por regras lógicas

Como codificar subjetividade/intuição de especialista? E como lidar com falta de cooperação?

Inteligência Artificial e AM

- Necessidade de ferramentas mais autônomas
- Reduzindo necessidade de intervenção humana e dependência de especialistas

Aprendizado de Máquina: técnicas capazes de criar, a partir de experiência passada, uma hipótese (função) capaz de resolver o problema

- Ex: **Se** temperatura > 37° C **e** tem dores **então** está doente
 - Regra definida a partir de prontuários médicos

Histórico de AM 1950s > 1960s > 1970s > 1980s > 1990s 2000s Redes Neurais: Perceptron (1957), Adaline (1960)1969: Minsky e Papert provam limitações do Perceptron

Histórico de AM 1950s 1960s 1970s 1980s 1990s 2000s - Sistemas Inteligentes Híbridos - Mineração de Dados (1996) e de Textos - Agentes de software adaptativos e aplicações na web - Aprendizado por Reforço - ILP (Inductive Logic Programming) - Ensembles: Bagging, Boosting e Stacking - Aprendizado por redes bayesianas - Computação Bioinspirada

O que é aprendizado?

- Essencial para comportamento inteligente
- Algumas atividades:
 - Memorizar algo
 - Observar e explorar situações para aprender fatos
 - Melhorar habilidades motoras/cognitivas por prática
 - Organizar conhecimento novo em representações apropriadas

Aprendizado de Máquina: definição

Um programa aprende a partir da experiência **E**, em relação a uma classe de tarefas **T**, com medida de desempenho **P**, se seu desempenho em **T**, medido por **P**, melhora com **E**

- Mitchell, 1997

Algoritmos de AM: induzem uma função ou hipótese capaz de resolver o problema a partir de instâncias do problema a ser resolvido

Exemplo 1

- Problema: aprender a jogar damas
 - Tarefa T: jogar damas
 - Medida de desempenho P: porcentagem de jogos vencidos contra adversários
 - Experiência E: praticar jogando

Exemplo 1

- Problema: aprender a jogar damas
 - Tarefa T: jogar damas
 - Medida de desempenho P: ?
 - Experiência E: ?

Exemplo 2

- Problema: filtrar mensagens de email
 - Tarefa T: categorizar mensagens de email como spam ou legítima
 - Medida de desempenho P: ?
 - Experiência E: ?

Exemplo 2

- Problema: filtrar mensagens de email
 - Tarefa T: categorizar mensagens de email como spam ou legítima
 - Medida de desempenho P: porcentagem de mensagens de spam corretamente identificadas
 - Experiência E: conjunto de exemplos de spams

Exemplo 3

- Problema: reconhecer escrita manual
 - Tarefa T: reconhecer e classificar dígitos manuscritos dentro de imagens
 - Medida de desempenho P: porcentagem de dígitos corretamente identificados
 - Experiência E: exemplos de dígitos manuscritos com as respectivas classificações

7210414959 0690159784 9665407401 3134727121 1244351244

Exemplo 3

- Problema: reconhecer escrita manual
 - Tarefa T: reconhecer e classificar dígitos manuscritos dentro de imagens
 - Medida de desempenho P: ?
 - Experiência E: ?

72/04/4459 0690/59784 9665407401 3/34727/21

Exemplo 4

- Problema: carro autônomo (aprender a dirigir)
 - Tarefa T: dirigir em uma rodovia pública usando sensores de visão
 - Medida de desempenho P: ?
 - Experiência E: ?

Exemplo 4

- Problema: carro autônomo (aprender a dirigir)
 - Tarefa T: dirigir em uma rodovia pública usando sensores de visão
 - Medida de desempenho P: distância média percorrida antes de um erro
 - Experiência E: sequência de imagens e comandos de direção registrados observando um motorista humano

Exemplo 5

- Problema: diagnóstico médico
 - Tarefa T: diagnosticar o estado de um paciente dado um conjunto de sintomas
 - Medida de desempenho P: porcentagem de pacientes corretamente diagnosticados
 - Experiência E: prontuários médicos de pacientes com seus diagnósticos

Exemplo 5

- Problema: diagnóstico médico
 - Tarefa T: diagnosticar o estado de um paciente dado um conjunto de sintomas
 - Medida de desempenho P: ?
 - Experiência E: ?

Exemplo 6

- Problema: detectar bons clientes
 - Tarefa T: classificar potenciais clientes como bons ou maus pagadores
 - Medida de desempenho P: ?
 - Experiência E: ?

Tiago A. Al

Exemplo 6

- Problema: detectar bons clientes
 - Tarefa T: classificar potenciais clientes como bons ou maus pagadores
 - Medida de desempenho P: porcentagem de clientes classificados corretamente
 - Experiência E: uma base de dados histórica em que os clientes já conhecidos são previamente classificados como bons ou maus pagadores

Tiago A. Almei

Inferência indutiva: exemplo

- Se eu noto que:
 - Todos pacientes com déficit de atenção atendidos em 1986 sofriam de ansiedade
 - Todos pacientes com déficit de atenção atendidos em 1987 sofriam de ansiedade
 - ..
 - ⇒ Posso inferir que pacientes que sofrem de déficit de atenção também sofrem de ansiedade

Isto pode ser ou não verdade, mas propicia uma boa generalização

Inferência Indutiva

- A Inferência Indutiva é um dos principais meios para a aquisição de novos conhecimentos
- Indução: raciocínio para obter conclusões sobre todos os membros de uma classe pelo exame de alguns membros da classe

Tiago A. A

Conjunto de dados

- Experiência pode ser provida por um conjunto de dados (de treinamento)
 - Ex. base de dados de um hospital

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

Conjunto de dados Hospital ld. Nome Idade Sexo Peso Manchas Temp. # Int. Est. Diagnóstico 4201 João 28 79 Concentradas 38 SP 67 3217 Maria 18 Inexistentes 39,5 MG Doente 4039 Luiz 49 M 92 Espalhadas 38 RS Saudável 43 MG 1920 José Inexistentes Doente 4340 Cláudia 21 52 PΕ Uniformes 37,6 Saudável 2301 22 72 38 3 RJ Ana Inexistentes Doente 1322 Marta 19 87 Espalhadas 39 AM Doente 67 3027 Paulo 34 M Uniformes 38,4 2 GO Saudável Meta: induzir hipótese para fazer diagnósticos corretos para novos pacientes

Но	spital								
ld.	Nome	Idade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	72	Inexistentes	38	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável
Ca	da objet	o é uma	a tupla	com	valores de d	caracte	rística	s (atı	ributos.

Conjunto de dados Hospital ld. Idade Nome Sexo Peso Manchas Temp. # Int. Est. Diagnóstico 4201 João 28 М 79 Concentradas 38 Doente 3217 Maria 18 67 Inexistentes 39,5 MG Doente 49 M 92 38 RS 4039 Luiz Espalhadas Saudável 1920 José 18 M Inexistentes 38,5 MG Doente 4340 Cláudia 21 52 37,6 PΕ Saudável Uniformes 22 72 38 3 RJ 2301 Ana Inexistentes Doente 1322 Marta 19 Espalhadas AM Doente 3027 Paulo 34 М 67 Uniformes 38,4 2 GO Saudável Cada linha (paciente) é um dado (amostra, objeto, exemplo, padrão ou registro)

Aprendizado supervisionado Supervisor externo Conhece saída desejada para cada exemplo Representado por conjunto de pares (x, y) Ex.: **x** = sintomas e y = diagnóstico Classificação Regressão Rótulos discretos Rótulos contínuos Ex.: diagnóstico, bom/mau Ex.: peso, altura, etc. pagador, etc.

Hierarquia de aprendizado Aprendizado indutivo Não-Supervisionado Supervisionado Classificação Regressão Sumarização Associação Agrupamento

Aprendizado não supervisionado

- Algoritmos não fazem uso de atributo de saída
- Exploram regularidades nos dados

Sumarização

Associação

Encontrar descrição compacta para dados

Encontrar padrões frequentes de associações entre atributos

Agrupamento

Dados agrupados de acordo com sua similaridade

Aprendizado por reforço

- Reforçar/recompensar ações positivas e punir ações negativas
 - Crítico externo

Aprendizado supervisionado

Aprendizado por reforço

- Supervisor
- É dito o que fazer
- Mais rápido

- Crítico
- Faz e vê o que acontece

Mais lento

Generalização

- Capacidade de generalização de uma hipótese:
- Propriedade de continuar válida para outros objetos que não fazem parte de seu conjunto de treinamento

Problemas:

Overfitting: especialização nos dados de treinamento, não generaliza

Underfitting: baixo acerto mesmo nos dados de treinamento

Viés indutivo

- Aprendizado: busca de hipótese em espaço de possíveis hipóteses
 - Que descreva relacionamentos entre os dados.
 - E se ajuste aos dados de treinamento
- Todo algoritmo de AM indutivo tem um viés
- Na escolha de uma hipótese (ou conjunto)

Sem viés, não haveria generalização (modelos seriam especializados para os exemplos individuais)

Viés indutivo

- Viés de representação ou linguagem
- Define o espaço de busca
- Restringe hipóteses que podem ser geradas

Viés indutivo

- Viés de preferência ou busca
 - Como hipóteses são pesquisadas
 - Preferência de algumas hipóteses sobre outras
 - Ex.: preferência por hipóteses curtas
 - Navalha de Occam

"Se em tudo o mais forem idênticas as várias explicações de um fenômeno, a mais simples é a melhor"

Tiago A. Alme

AM: outras motivações

- Automatizar o processo de aquisição de conhecimento
- Entender melhor os mecanismos de aprendizado humano
- Algumas tarefas são melhor definidas e/ou executadas a partir de exemplos
- Ex.: Reconhecer pessoas
- Ser humano não é capaz de explicar (e programar) sua habilidade para executar alguns tipos de tarefas
- Ex.: Dirigir

Tiago A. Almeir

Pacotes e conjuntos de dados

- UCI Machine Learning repository
 - http://archive.ics.uci.edu/ml/
- Weka
 - http://www.cs.waikato.ac.nz/ml/weka/
- Keel
- http://www.keel.es/
- R Project
 - http://www.r-project.org/

AM: outras motivações

 Quantidade de conhecimento disponível pode ser muito grande para ser descrito (e programado) por humanos

- Ex.: diagnóstico médico
- Algumas tarefas exigem cálculos complexos, possíveis apenas com computador
 - Ex.: interrelacionar/correlacionar grandes quantidades de dados
- Modelos podem se adaptar a novas situações

Tiago A. A

Referências

- Capítulo 1 do livro Inteligência Artificial: uma abordagem de Aprendizado de Máquina, 2011
- Alguns slides foram baseados em apresentações de:
 - Prof Dr André C. P. L. F. Carvalho
 - Prof Ricardo Campello
 - Profa Solange O. Rezende
 - Prof Dr Marcilio C. P. Souto