Teórico

Geometría I

September 16, 2025

1 Parcial 1

1.1 Axiomas

1.1.1 De tipo I: Incidencia

- 1. El plano es un conjunto infinito Π
- 2. $\exists \mathcal{R} \subseteq \mathcal{P}(\Pi)$ tal que cada $R \in \mathcal{R}$ es un subconjunto propio de Π que posee al menos dos elementos
- 3. Dados $a, b \in \Pi$ y $a \neq b$, existe una única $R \in \mathcal{R}$ tal que $a, b \in R$

1.1.2 De tipo II: Orden

- 1. Toda recta en Π posee un orden total estricto, ($\mathcal{R}^{-\infty}$ también lo posee), luego si en una recta A tomamos los puntos p y q con $p \neq q$, existe un orden total estricto en A tal que p < q
- 2. Dados dos puntos distintos en una recta A, existe al menos un punto de A entre ellos y, dado un punto cualquiera, siempre existe un punto que lo precede y otro que le sigue:
 - Si $p, q \in A$ con p < q entonces $\exists r \in A$ tal que p < r < q
 - Si $x \in A$ entonces $\exists y, z \in A$ tal que y < x < z para algún orden en A
- 3. Dada una recta A, su complemento A^c está dividido en dos subconjuntos convexos disjuntos, tales que si a pertenece a uno de ellos y b al otro, entocnes \overline{ab} corta a la recta A

1.1.3 De tipo III: Rígidez

- 1. La transformaciones rígidas del plano son funciones biyectivas del plano en sí mismo que mandan rectas en rectas y semirrectas en semirrectas.
- La composición de dos transformaciones rígidas es otra transformación rígida, la inversa de una transformación rígida es también una transformación rígida.
- 3. Si T es una transformación rígida entonces:

- $\overline{ab} \equiv \overline{cd}$ y sucede que $\overline{ab} \subseteq \overline{cd}$ o viceversa, entonces $\overline{ab} = \overline{cd}$
- $\hat{aob} \equiv \hat{cod}$ y sucede que $sec(\hat{aob}) \subseteq sec(\hat{cod})$ o viceversa, entonces $\hat{aob} = \hat{cod}$
- 4. Dados dos pares SR-SP (A, α) y (B, β) , existe una única transformación rígidad tal que $T(A, \alpha) = (B, \beta)$, es decir T(A) = B y $T(\alpha) = \beta$

1.2 Teorema 4

1.2.1 Enunciado

Sea A una recta, $a \in A$ y $p \notin A$ entonces $\overrightarrow{ap} \subseteq A_p$.

1.2.2 Demostración

Consideramos en \overrightarrow{ap} el orden < tal que a < p, quiero ir por el absurdo, supongo $\overrightarrow{ap} \nsubseteq A$, es decir, **existe** $q \in \overrightarrow{ap}$ **tal que** $q \notin A_p$.

Pero como $A \subset A_p$ entonces $q \in \check{A}_p$, más precisamente $q \in \check{A}_p - A$.

Por II.3 sabemos que $\overline{pq} \cap A \neq \emptyset$, pero a, p, q están alineados, entonces $\overline{pq} \subseteq \overrightarrow{ap}$.

- $\varnothing \neq \overline{pq} \cap A \subseteq \overleftrightarrow{ap} \cap A = \{a\} \text{ entonces } \overline{pq} \cap A = \{a\}$
- $\implies q < a < p$ por definición de segmento,
- pero $q \in \overrightarrow{ap} \implies a < q$ lo cual resulta absurdo

 $\therefore \overrightarrow{ap} \subseteq A_p$

1.3 Teorema 10

1.3.1 Enunciado

Si R es una recta que interseca al \triangle abc y no pasa por sus vértices, entonces R interseca a \triangle abc en exactamente dos puntos.

1.3.2 Demostración

Sea p un punto del tríangulo, supongamos R corta a \overline{ac} con $p \neq a$ y $p \neq c$, R corta a \overline{ac} únicamente en p pues si lo hiciera en otro punto, R tendría dos puntos dentro del segmento y sería la recta \overleftarrow{ac} , absurdo.

Entonces a y c están en semiplanos opuestos respecto a R, es decir $c \in \check{R_a}$. Ahora tenemos que $b \in R_a$ o $b \in \check{R_a}$ y puntualmente $b \notin R$.

 \implies Si $b \in R_a$ entonces $a, b \in R_a - R \implies \overline{ab} \cap R = \emptyset$ (esto es por ser $R_a - R$ convexo). Además $c \in \check{R_a}$ y $b \in R_a$ por II.3 $\implies \overline{bc} \cap R = \{q\}$ con $q \neq p$.

Luego R corta a $\triangle abc$ sólo en p y q.

 \Longrightarrow Si $b \in \check{R}_a$, entonces análogamente se ve que R corta a \triangle abc en \overline{ac} y \overline{ab} en sólo dos puntos.

1.4 Teorema 16

1.4.1 Enunicado

Sea R una recta y $p \notin R$. Si T es una transformación rígida y R' = T(R), p' = T(p) entonces $T(R_p) = R'_{n'}$

1.4.2 Demostración

Claramente $R' \subseteq R'_{p'}$ y $p' \in R'_{p'}$. Sea ahora $q \in R_p - R$ con $q \neq p$, entonces $\overline{pq} \cap R = \emptyset$ aplico la transformación rígida a q, ie, q' = T(q)

$$\implies T(\overline{pq}) \cap T(R) = \emptyset$$

$$\overline{p'q'} \cap R' = \emptyset$$

Por un corolario anterior podemos deducir que $q' \in R'_{p'}$, luego se probó que $T(R_p) \subseteq R'_{p'}$ esto quiere decir que $T(R_p) \subseteq T(R)_{T(p)}$, $\forall T$ transformación rígida, $\forall R$ recta y $\forall p \notin R$.

Considerando III.2, T-1 es una transformación rígida, vamos a aplicar ahora esa transformación rígida al semiplano $R'_{p'}$:

$$T^{-1}(R'_{p'}) \subseteq T^{-1}(R')_{T^{-1}(p')} \text{ con } R' = T(R), p' = T(p)$$

$$T^{-1}(R'_{p'}) \subseteq R_p \to \text{ aplico T}$$

$$R'_{p'} \subseteq T(R_p)$$

Y por la doble contención obtenida concluimos $R'_{p'} = T(R_p)$

1.5 Teorema 20

1.5.1 Enunciado

Sea (A, α) un par semirrecta-semiplano con A de origen en o y sea T la transformación rígida que cumple $T(A, \alpha) = (\check{A}, \check{\alpha})$ entonces:

- 1. T es involutiva
- 2. Si (B,β) es un par semirrecta-semiplano tal que B tiene origen en o entonces $T(B,\beta)=(\check{B},\check{\beta})$

1.5.2 Demostración

Para (1):

$$T^2(A,\alpha) = T(T(A,\alpha)) = T(\check{A},\check{\alpha}) = (T(\check{A}),T(\check{\alpha})) = (A,\alpha)$$

Por unicidad de **III.4**, debe ser $T^2 = Id$

Para (2):

• Si B = A o \check{A} entonces

$$(B,\beta) = \left\{ \begin{array}{ll} (A,\alpha) & \\ (A,\check{\alpha}) & \underline{\tau} \\ (\check{A},\alpha) & \xrightarrow{T} \\ (\check{A},\check{\alpha}) & \\ (A,\check{\alpha}) & \\ \end{array} \right. \left. \begin{array}{ll} (\check{A},\check{\alpha}) \\ (\check{A},\alpha) \\ (A,\alpha) \\ \end{array} \right.$$

• Si $B \neq A$ y $B \neq \check{A}$ entonces:

 $B \subseteq \alpha$ o $B \subseteq \check{\alpha}$ (Considero $B \subseteq \alpha$, y al otro caso análogo)

- Sea $p \in B, p \neq o \implies B = \overrightarrow{op} y p' = T(p) \in \check{\alpha} \quad (p' \neq p)$. Por **II.3** $\overrightarrow{pp'}$ corta a \overleftarrow{A} en un punto a, ahora puede ser $a \in A$ o $a \in \check{A}$:
 - * Si $a \in A \implies \{a\} = \overline{pp'} \cap A$, por ser T involutiva $\implies T(p') = T(T(p)) = p$, entonces aplicamos T

$$\{T(a)\} = T(\overline{pp'} \cap T(A)) = \overline{pp'} \cap \check{A}$$

Pero $\overline{pp'}$ corta a $\overleftrightarrow{A} = A \cup \check{A}$ en un único punto. De allí y la igualdad anterior de deduce T(a) = a y pertenecen a \check{A} y A respectivamente, $\implies T(a) = a = o$, es decir, $o \in \overline{pp'}$ luego $p' \in \check{B}$, entonces

$$T(B) = T(\overrightarrow{op}) = \overrightarrow{op'} = \widecheck{B}$$

- * Si $a \in \check{A}$ es análogo.
- Sea $q \in \beta, q \notin \overleftrightarrow{B}$, por lo probado anteriormente se tiene que: $T(\overrightarrow{oq}) = \overrightarrow{oq} \implies T(q) \in \check{\beta} \implies T(\beta) = \check{\beta}$

El teorema afirma que T no depende del par (A, α)

1.6 Teorema 25

1.6.1 Enunciado

Sea (A, α) un par semirrecta-semiplano de origen o y sea T la única transformación rígida que cumple $T(A, \alpha) = (A, \check{\alpha})$, entonces:

- 1. T es involutiva
- 2. $T(p) = p, \forall p \in A$
- 3. Si B es una semirrecta de \overleftrightarrow{A} entonces $T(B, \alpha) = (B, \check{\alpha})$

1.6.2 Demostración

Para (a): $T^2(A, \alpha) = T(T(A, \alpha)) = T(A, \check{\alpha}) = T(A, \alpha)$. Por unicidad de III.4 tenemos $T^2 = Id$

Para (b): Como T(A) = A y A tiene origen en $o \implies T(o) = o$. Y sea $p' := T(p) \in A$ por T(A) = A y

$$T(\overline{op}) = \overline{op'} \implies \overline{op} \equiv \overline{op'} \implies \overline{op} \subseteq \overline{op'} \vee \overline{op'} \subseteq \overline{op}$$

Por III.3 $\implies \overline{op} = \overline{op'} \implies p = p'$, es decir, T(p) = p

Para (c): Por (b), T(B) = B y por definición de $T \implies T(\alpha) = \check{\alpha} \implies T(B,\alpha) = T(B,\check{\alpha}).$

Este teorema asegura que T no depende de la semirrecta A, sólo de \overleftrightarrow{A}