Количественная аналитика Лекции (1-2) неделя)

Что особенно важно знать о случайных процессах

Максим Соснин

8 октября 2022 г.

Содержание

1	Случ	чайный процесс
	1.1	Определение
	1.2	Характеристики случайного процесса
		Стационарный случайный процесс
2	Случ	чайное блуждание
	2.1	Определение
	2.2	Среднее значение и дисперсия
	2.3	Отнормированное случайное блуждание
3	Вине	еровский процесс
	3.1	Винеровский процесс как предельный случай случайного блуждания
		Примеры винеровских процессов

1 Случайный процесс

1.1 Определение

• Дискретный случайный процесс – это набор случайных величин $\{X_{t_1}, X_{t_2}, ..., X_{t_n}\}$, индексированных некоторым параметром $t \in \{t_1, t_2, ..., t_n\}$.

Параметр t может быть временем, тогда t_i – это моменты времени, в которые была зарегистрирована случайная величина. Однако параметр может иметь и другие значения, например, координата. Далее будем подразумевать, что параметр – это время.

Распределения случайных величин X_{t_i} могут быть как одинаковыми, так и разными.

• **Непрерывный случайный процесс** – это случайный процесс, параметр которого изменяется непрерывно. Обозначение: ξ_t или $\xi(t)$, где t, к примеру, принимает значения из отрезка [0,T].

1.2 Характеристики случайного процесса

• Среднее значение

$$E[X_{t_i}] = \mu(t_i)$$
$$E[\xi_t] = \mu(t)$$

Среднее значение случайного процесса в общем случае зависит от времени.

• Дисперсия

$$D[\xi_t] \equiv Var[\xi_t] = E[\xi_t^2] - E[\xi_t]^2 = \sigma^2(t)$$

Дисперсия случайного процесса в общем случае также зависит от времени.

• Ковариация (autocovariance, covariance)

$$cov(\xi_t, \xi_s) = E[(\xi_t - \mu(t))(\xi_s - \mu(s))]$$

В англоязычной литературе данная характеристика случайного процесса называется autocovariance, поскольку это ковариация случайного процесса с самим собой в различные пары моментов времени. Существует путаница между русскоязычной и англоязычной терминологией, связанной с ковариацией и корреляцией. См. https://en.wikipedia.org/wiki/Autocovariance, https://en.wikipedia.org/wiki/Autocovariance.

• Корреляция (autocorrelation, correlation)

$$\operatorname{corr}(\xi_t, \xi_s) = \frac{\operatorname{cov}(\xi_t, \xi_s)}{\sqrt{\sigma_{\xi}^2(t) \cdot \sigma_{\xi}^2(s)}}$$

• Моменты – начальный, центральный, смешанный, ...

1.3 Стационарный случайный процесс

Случайный процесс называется стационарным, если его среднее значение и дисперсия (а следовательно, и все последующие моменты) не зависят от времени.

$$E[\xi_t] = \mu = const$$

 $D[\xi_t] = \sigma^2 = const$

Различают стационарность в узком смысле и стационарность в широком смысле.

2 Случайное блуждание

2.1 Определение

Рассмотрим сумму независимых и одинаково распределённых случайных величин в моменты времени t_k :

$$S_n = \sum_{k=1}^n X_{t_k}, \quad \forall i \, X_{t_i} - \text{i.i.d.}$$

Ряд $\{S_n\}$ называется **случайным блужданием**.

Случайное блуждание также можно определить следующим образом:

$$S_n = S_{n-1} + X_{t_n}$$

2.2 Среднее значение и дисперсия

• Среднее значение случайного блуждания:

$$E[S_n] = \sum_{k=1}^n E[X_{t_k}] = \sum_{k=1}^n \mu = n\mu,$$

где $\mu = E[X_{t_i}].$

• Дисперсия случайного блуждания:

$$D[S_n] = D\left[\sum_{k=1}^n X_{t_k}\right] = \sum_{k=1}^n D[X_{t_k}] = n\sigma^2,$$

где $\sigma^2 = \mathrm{D}[X_{t_i}]$. (Здесь дисперсия суммы равна сумме дисперсий, потому что X_{t_i} – независимы и одинаково распределены.)

2.3 Отнормированное случайное блуждание

Осуществим нормировку случайных величин X_{t_i} :

$$Y_{t_i} = \frac{X_{t_i} - \mu}{\sigma}.$$

Получим новое случайное блуждание

$$\widetilde{S}_n = \sum_{k=0}^n Y_{t_k}$$

со средним значением $\mathrm{E}[\widetilde{S}_n] = 0$ и дисперсией $\mathrm{D}[\widetilde{S}_n] = n.$

3 Винеровский процесс

3.1 Винеровский процесс как предельный случай случайного блуждания

Винеровский процесс можно определить как предельный случай случайного блуждания. Разобьём отрезок [0,t] точками $0=t_0 < t_1 < t_2 < ... < t_{N-1} < t_N = t$ на N равных отрезков длины $\Delta t = t/N$.

$$t_0 = 0 \quad t_1 \qquad \Delta t = \frac{t}{N} \qquad t = t_N \qquad t'$$

Пусть ε_i , $i \in [0..N]$ – независимые и одинаково распределенные случайные величины со средним значением 0 и дисперсией 1. Каждой точке t_i поставим в соответствие случайную величину ε_i .

Рассмотрим случайное блуждание

$$\widetilde{W}_t = \sum_{k=0}^{N} \varepsilon_k \cdot (\Delta t)^{\alpha},$$

где α – некоторое число, которое мы пока что не знаем. Заметим, что случайная величина $\varepsilon_k \cdot (\Delta t)^{\alpha}$ имеет среднее значение 0 и стандартное отклонение $(\Delta t)^{\alpha}$. Случайное блуждание W_t будет иметь следующие значения среднего и дисперсии (см. пункт 2.2):

$$E[\widetilde{W}_t] = 0,$$

$$D[\widetilde{W}_t] = N(\Delta t)^{2\alpha} = N\left(\frac{t}{N}\right)^{2\alpha} = \frac{t^{2\alpha}}{N^{2\alpha-1}}.$$

Если мы устремим N к ∞ , то при $\alpha > \frac{1}{2}$, $D[\widetilde{W}_t] \to 0$, а при $\alpha < \frac{1}{2}$, $D[\widetilde{W}_t] \to \infty$. Поэтому единственно возможное значение $\alpha = \frac{1}{2}$ (лектор не поясняет, почему так), при котором $D[\widetilde{W}_t] = t$. Таким образом, при $N \to \infty$, мы получаем непрерывный случайный процесс со средним 0 и дисперсией t, который называется винеровским процессом:

$$W_t = \lim_{N \to \infty} \widetilde{W}_t = \lim_{N \to \infty} \sum_{k=0}^{N} \varepsilon_k \cdot \sqrt{\Delta t} = \sqrt{t} \lim_{N \to \infty} \frac{1}{\sqrt{N}} \sum_{k=0}^{N} \varepsilon_k \stackrel{\text{IIIIT}}{=} \sqrt{t} \cdot N(0, 1),$$

где N(0,1) – стандартное нормальное распределение. В последнем равенстве переход совершён благодаря центральной предельной теореме.

Отметим, что винеровский процесс не является стационарным, поскольку $D[W_t] = t$.

Также отметим, что ковариация винеровского процесса

$$cov(W_t, W_s) = min(t, s)$$

(cm. https://en.wikipedia.org/wiki/Wiener process#Covariance and correlation).

3.2 Примеры винеровских процессов

• Стандартизированный винеровский процесс

$$W_t = \sqrt{t} \cdot N(0,1)$$

• Не стандартизированный винеровский процесс

$$W_t = \sigma \sqrt{t} \cdot N(0, 1),$$

где σ — некоторое положительное число.

• Винеровский процесс со сдвигом (with drift)

$$Y_t = \mu t + \sigma W_t$$

где μ и σ – некоторые числа ($\sigma > 0$). При этом $\mathrm{E}[Y_t] = \mu t$.