COMPREHENSIVE EXAMINATION PROBLEMS 2007 BY SACHIKO TSURUTA

E & M PROBLEM 1

A point charge \mathbf{q} is brought to a position a distance \mathbf{d} away from an infinite plane conductor held at zero potential. Using the method of images, find:

- (a) the surface-charge density induced on the plane, and plot it;
- (b) the force between the plane and the charge by using Coulomb's law for the force between the charge and its image;
- (c) the total force acting on the plane by integrating $2\pi\sigma^2$ over whole plane;
- (d) the work necessary to remove the charge q from its position to infinity;
- (e) the potential energy between the charge \mathbf{q} and its image [compare the answer to (d) and discuss].

E & M PROBLEM 2

A point charger \mathbf{q} is located in free space a distance \mathbf{d} from the center of a dielectric sphere of radius \mathbf{a} ($\mathbf{a} < \mathbf{d}$) and dielectric constant ϵ .

- (a) Find the potential at all points in space as an expansion in spherical harmonics.
- (b) Calculate the rectangular components of the electric field *near* the center of the sphere.
- (c) Verify that, in the limit of $\epsilon \to \infty$, your result is the same as that for the conducting sphere.

E & M PROBLEM 3

- (a) A spherical shell of radius a has an uniform charge density σ . The shell rotates with angular velocity Ω about a diameter. Write the scalar potential both inside and outside the shell as a sum of Legendre polynomials and apply the approximate boundary conditions to find the coefficients.
- (b) Find the magnetic field **B** and sketch it both inside and outside the shell.

- (c) Calculate the vector potential **A** for the above shell.
- (d) Calculate the magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$ inside and outside the sphere and compare with the above \mathbf{B} in (b).

MATH PHYSICS PROBLEM 1

A half cylinder of metal of length **a** and radius **a** is initially at temperature T_o . At time t=0 the metal is immersed in a bath which maintains the surface at temperature T=0. Find an approximate expression for $T(\rho,\theta,\,\mathbf{z},\,t)$ for large t.