IEMS 304 Lecture 8: Unsupervised Learning

Yiping Lu yiping.lu@northwestern.edu

Industrial Engineering & Management Sciences Northwestern University

k-means

Iteration 1: Initialization & Forced Assignment

Assignment Summary (Iteration 1):

- $\mu_1 = (1, 4.5)$ gets: all Cluster B points (6 pts) + ambiguous point (2.5, 2.5) [total 7 pts].
- $\mu_2 = (4.5, 1)$ gets: all Cluster A points (6 pts) + ambiguous point (3,3) [total 7 pts].

Updated centroids (computed as the mean):

$$\begin{split} \mu_1' &= \left(\frac{30+2.5}{7}, \frac{30+2.5}{7}\right) \approx (4.643, \, 4.643) \\ \mu_2' &= \left(\frac{6.3+3}{7}, \frac{6.3+3}{7}\right) \approx (1.329, \, 1.329) \end{split}$$

Iteration 2: Reassignment

Reassignment (Iteration 2):

- (2.5, 2.5) switches from μ_1 to μ_2' (closer to (1.329, 1.329)).
- (3,3) switches from μ_2 to μ'_1 (closer to (4.643, 4.643)).

New centroids:

$$\mu_1'' = \left(\frac{30+3}{7}, \frac{30+3}{7}\right) = \left(\frac{33}{7}, \frac{33}{7}\right) \approx (4.714, 4.714)$$

$$\mu_2'' = \left(\frac{6.3+2.5}{7}, \frac{6.3+2.5}{7}\right) = \left(\frac{8.8}{7}, \frac{8.8}{7}\right) \approx (1.257, 1.257)$$

Iteration 3: Convergence

Convergence: With centroids $\mu_1'' \approx (4.714, 4.714)$ and $\mu_2'' \approx (1.257, 1.257)$, all data points are now correctly grouped according to their true clusters.

k-means

k-means as Optimization

k-means aims to minimize the total within cluster (square) distance

$$\min_{\{C_j\},\{\mu_j\}} \sum_{j=1}^k \sum_{x \in C_j} \|x - \mu_j\|^2$$

k-means as alternating direction optimization algorithm

- **☐ Assignment:** Assign each x to its nearest μ_j (minimizes distance).
- **□ Update:** Recompute μ_j as the mean of C_j (minimizes variance).

Wrong k can be Problematic

How to Select k: Elbow Effect

We first represent data as a weighted graph G(V, E) with weights w_{ij} .

Consider the Dirichlet form,

$$\frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2 = f^T L f, \quad \text{(Why?)}$$

where L is the graph Laplacian defined as L = D - W (where D is the degree matrix).

What would happen if we minimizing this form?

Quadratic Function as a Quadratic Form

$$v^T A v = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3x^2 + 2xy + 2xy + 2y^2 = 3x^2 + 4xy + 2y^2.$$

Why is the Dirichlet Form Equal to $f^T L f$?

Consider the Dirichlet form:

$$\frac{1}{2}\sum_{i,j}w_{ij}\big(f(i)-f(j)\big)^2=\frac{1}{2}\sum_{i,j}w_{ij}\big[f(i)^2-2f(i)f(j)+f(j)^2\big].$$

 \square terms involving $f(i)^2$:

$$\frac{1}{2} \left(\sum_{i,j} w_{ij} f(i)^2 + \sum_{i,j} w_{ij} f(j)^2 \right)$$

$$= \sum_{i,j} f(i)^2 \sum_{i} w_{ij} = \sum_{i} d_i f(i)^2.$$

 $=\sum_{i}f(i)^{2}\sum_{i}w_{ij}=\sum_{i}d_{i}f(i)^{2}.$

☐ The cross term simplifies to:
$$-\sum_{i \in I} w_{ij} f(i) f(j).$$

$$\frac{1}{2}\sum_{i,j}w_{ij}(f(i)-f(j))^{2}=\sum_{i}d_{i}f(i)^{2}-\sum_{i,j}w_{ij}f(i)f(j).$$

At the same time.

$$f^T L f = \sum_i d_i f(i)^2 - \sum_{i,j} w_{ij} f(i) f(j)$$
, where $L = D - W$,

Understanding the Dirichlet Form

Definition

The Dirichlet form on a graph is defined as:

$$\frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2 = f^T L f.$$

- It sums the squared differences of the function values f(i) over every edge, weighted by w_{ii} .
- A small value of $f^T L f$ indicates that neighboring nodes (with high similarity w_{ij}) have similar function values.
- Minimizing the Dirichlet form under constraints leads to smooth functions on the graph, thus revealing inherent cluster structure.

Computing the Graph Laplacian

Step 1: Define the Matrices

- Weighted Adjacency Matrix W: For each edge (i,j), w(i,j) = 1except for the edge between C and D where w(C,D) = 0.2.
- **Degree Matrix** *D*: Diagonal with $d_A = 2$, $d_B = 2$, $d_C = 2.2$, $d_D = 2.2$, $d_E = 2$, $d_E = 2$

Step 2: Compute the Graph Laplacian

$$= \begin{pmatrix} L = D - W \\ 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2.2 & -0.2 & 0 & 0 \\ 0 & 0 & -0.2 & 2.2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix}.$$

Computing the Graph Laplacian

What is the smallest eigenvalue/eigenvectors of the graph laplacian? What would happen if we have *I*-connected component

$$\max f^{\top} L f$$
 s.t. $f^{\top} 1 = 0, ||f||_2 = 1$

Then run a k-means on the spectral clustering representation f. (homework)

Graph

Dimension Reduction

Principal Component Analysis (PCA)

Projection

- $\square x^T v \in \mathbb{R} : score$
- \square $(x^T v) v \in \mathbb{R}^p$: projection

Not All Projection are the Same

Example: $X \in \mathbb{R}^{2000 \times 3}$, and $v_1, v_2, v_3 \in \mathbb{R}^3$ are the unit vectors parallel to the coordinate axes

Not all linear projections are equal! What makes a good one?

PCA: Preserve Most Information

We have n d-dimensional data points $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ and a parameter $k \in \{1, 2, \ldots, d\}$. We assume that the data is centered, meaning that $\sum_{i=1}^n x_i = 0$. (How to do that?)

<u>AIM.</u> Find directions that maximize the information preserved The output of the method is defined as k orthonormal vectors v_1, v_2, \ldots, v_k — the "top k principal components" — that maximize the objective function:

$$\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^k (x_i\cdot v_j)^2.$$

Question: Why we want the principal components orthonormal?

Review: Projection Under Orthonormal Basis

Let $A = [v_1, \dots, v_k]$ where v_1, \dots, v_k are orthonormal. Remind. Least square solution: $A\beta \approx b$, then $\beta = (A^{\top}A)^{-1}A^{\top}b$ Then $A\beta = A(A^{\top}A)^{-1}A^{\top}b$

Review. Orthonormal means $A^{T}A = I$

Check. Project b to span $\{v_1, \dots, v_k\}$ means

$$\langle v_1, b \rangle v_1 + \langle v_2, b \rangle v_2 + \cdots + \langle v_k, b \rangle v_k$$

Matrix Formulation

Matrix Formulation: Define $V \in \mathbb{R}^{d \times k}$ with columns v_1, \dots, v_k , representing the k principal components.

The total variance captured when projecting the data onto the subspace spanned by \boldsymbol{V} is

$$\frac{1}{n}||XV||_F^2 = \operatorname{tr}\left(V^T\left(\frac{1}{n}X^TX\right)V\right) = \operatorname{tr}(V^TSV),$$

where $S = \frac{1}{n}X^TX$ is the covariance matrix.

Note that
$$||A||_F^2 = \operatorname{tr}(A^T A)$$
 For $A = XV$, we have:
$$||XV||_F^2 = \operatorname{tr}((XV)^T (XV)) = \operatorname{tr}(V^T X^T XV). \qquad \text{(for } \operatorname{tr}(AB) = \operatorname{tr}(BA))$$

$$\max_{V \in \mathbb{R}^{d \times k}} \operatorname{tr}(V^T S V) \quad \text{subject to} \quad V^T V = I_k.$$

Matrix Formulation

Covariance Matrix: Rotation on Principal Component

$$\begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix} \; = \; \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}}_{\text{rotate back } 45^\circ} \; \cdot \; \underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{stretch}} \; \cdot \; \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}}_{\text{rotate clockwise } 45^\circ}$$

PCA as Top Eigenvectors

PCA boils down to computing the k eigenvectors of the covariance matrix $X^{\top}X$ that have the largest eigenvalues.

Eigen-Face

The components ("eigenfaces") are ordered by their importance from top-left to bottom-right. We see that the first few components seem to primarily take care of lighting conditions; the remaining components pull out certain identifying features: the nose, eyes, eyebrows, etc.