MCA/D06 Discrete Mathematical Structures MCA -103

Time: 3 Hours MM:50

Note:- Attempt Five questions by selecting One Question from each unit.

UNIT-I

- 1(a) Consider the group Z of integers under addition. Let H be the subset of Z consisting of all multiples of 6. Show that H is a normal subgroup of Z. Find the quotient group Z/H.
- **(b) Ket** S_3 be a symmetric group over (1,2,3). Write elements and the multiplication table for S_3 .
- **Determine all values of x from the given field, which satisfy the given equation.**
 - (i) $x+1 = -1 \text{ over } Z_2, Z_{3 \text{ and }} Z_5$
 - (ii) $2x+1=2 \text{ over } Z_3 \text{ and } Z_5$
- 3(a) Give an example of a finite integeral domain and prove that it is field.
- (b) Ket M be the set of non-singular 2x2 matrices over the set of real numbers. Prove that M under multiplication is a non-abelian group.
- 4(a) Determine the type of the grammar G which consists of the productions, and the language defined by G respectively.
 - (i) $S \longrightarrow asb, S \longrightarrow AB, A \longrightarrow a, B \longrightarrow b$ (ii) $S \longrightarrow aB, B \longrightarrow AB, aA \longrightarrow b, A \longrightarrow b, B \longrightarrow Aa$
- (b) Define finite sate machine and construct a finite state machine which will accept the language $L=\{a^m b^n : m \text{ and } n \text{ are positive integers}\}$ over $A=\{a+b\}$

UNIT-II

5(a) Define Eulerian graph and Hamiltonian graph. Draw a graph with six vertices which is Eulerian but not Hamiltonian.

(b) Define isomorphism of graphs. Verify whether the following graphs are isomorphic or not.

6(a) Describe two methods for finding minimal spanning tree from the following graph.

- (b) Enumerate the nodes of the arithmetic tree for the expression $(x+y)^2 3x$ $(x+y) + 6x^2y$ in preorder and postorder respectively
- 7(a) consider the diagraph G= {v,E}, V={a,b,c,d}, E={(a,b), (a,d), (b,c), (b,d), (c,a), (d,c). Using a suitable method determine how many paths of length 3 exist in G and which vertices are connected by a path of length three.
 - (b) Define acyclic diagraph and prove that acylic diagraph has at least one source and one sink.

UNIT-III

- 8(a) Let N be set of natural numbers and less than or equal to be a relation R on N. Prove that R is a parital order and draw the Hasse diagram for R.
- (b) Define bounded lattice. Give an example each for bounded lattice and unbounded lattice.

9(a) Consider the Boolean expression on

$$(B2 = \{0,1\},-,+,.)$$

Y = A.b.C. + A.B.C. + A.B.

- (i) Draw the circuit (gate) diagram for Y.
- (ii) Draw the switching (on-off) circuit for Y
- (iii) Simplify Y algebraically if possible.
- (b) Static the principle of duality for Boolean Algebras and state the dual of
 - (i) $av[(bva)^b] = 1$,
 - (ii) $(a^b) ^b = av b$.
- 10(a) Define Boolean Algebra and atoms of Boolean Algebra. Give an wxample to show that atoms of Boolean Algebra. B generate the Non-zero element of B.
- (b) Consider the Boolean expression

$$(x_3 \land x_2)_{V(X_2} \land x_3) V(x_2 \land x_3)_{on [B, -v, ^], B=\{0,1\}}.$$

Find min term normal form of f.