Master Autonomes Fahren - Mathematik Zusammenfassung

Marcel Wagner

4. Oktober 2020

Inhaltsverzeichnis

1	Mat	Mathematische Symbole 1					
	1.1	Mengen					
2	Statistik						
	2.1	Arithmetisches Mittel					
	2.2	Mittlerer Abstand					
	2.3	Varianz					
	2.4	Standartabweichung					
	2.5	Kovarianz					
	2.6	Korrelationskoeffizient					
	2.7	Regressionsgerade					
	2.8	Bestimmtheitsmaß					
	2.9	Bestimmtheitsmaß					
3		nrscheinlichkeitsrechnung 2					
	3.1	Fakultät					
	3.2	Binomialkoeffizient					
	3.3	Kugeln Ziehen					
	3.4	Menge					
	3.5	Gleichheit					
	3.6	Teilmenge					
	3.7	Potenzmenge					
	3.8	Mächtigkeit					
	3.9	Vereinigung					
	3.10	Schnitt					
	3.11	Differenz					
	3.12	Komplement					
	3.13	Kartesisches Produkt					
	3.14	Zufallsexperiment					
		Ereignis					
		Disjunkte Ereignisse					
	3.17	σ -Algebra					

5	Anhang	A
	4.3 Differentialgleichungen	7
	4.2 Partielle Integration	7
	4.1 Integration	6
4		6
	3.28 Stetige Zufallsvariable	6
	3.27 Verteilungsfunktion diskreter Zufallsvariablen	6
	3.26 Wahrscheinlichkeitsfunktion	6
	3.25 Zufallsvariablen	6
	3.24 Satz von Bayes	5
	3.23 Satz der totalen Wahrscheinlichkeit	5
	3.22 Multiplikationssatz	5
	3.21 Bedingte Wahrscheinlichkeit	5
	3.20 Unabhängige Ereignisse	5
	3.19 Laplace Experiment	4
	3.18 Axiome der Wahrscheinlichkeitsrechnung	4

Abbildungsverzeichnis

Formelverzeichnis

1 Mathematische Symbole

1.1 Mengen

Symbol	Verwendung	Bedeutung
\in	$\omega \in \Omega$	Element (ω ist in Ω enthalten)
\cap	$A \cap B$	Disjunkt (Kein Teil von A ist ein Teil von B)
\cup	$A \cup B$	Kunjunktion (Ein Teil von A ist ein Teil von B)
\subseteq	$A \subseteq B$	Teilmenge (A ist eine Teilmenge von B)
\	$A \setminus B$	Differenz (Differenz der mengen A und B)
Ċ	A^{C}	Komplement (Differenz des Universums (kann eine
		größere Menge sein) und der Teilmenge)

2 Statistik

2.1 Arithmetisches Mittel

$$\overline{x} := \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$
 (1)

2.2 Mittlerer Abstand

Der mittlere Abstand wird nicht sehr häufig verwendet, da das Rechnen mit Beträgen sehr mühsam ist. Die Varianz (durchschnittliche quadratische Abweichung) eignet sich besser.

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\overline{x}|\tag{2}$$

2.3 Varianz

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$
 (3)

2.4 Standartabweichung

$$s_x = \sqrt{s_x^2} \tag{4}$$

2.5 Kovarianz

$$y_{xy} := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$\tag{5}$$

2.6 Korrelationskoeffizient

$$r_{xy} := \frac{s_{xy}}{s_x \cdot s_y} \tag{6}$$

2.7 Regressionsgerade

$$y = a + bx \tag{7}$$

$$b = \frac{s_{xy}}{s_x^2} \tag{8}$$

$$a = \overline{y} - b\overline{x} \tag{9}$$

2.8 Bestimmtheitsmaß

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
(10)

TODO: Beschreibung von y dach und y quer

2.9 Bestimmtheitsmaß

$$R^2 = r_{xy}^2 \tag{11}$$

3 Wahrscheinlichkeitsrechnung

3.1 Fakultät

$$n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 \tag{12}$$

3.2 Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \tag{13}$$

3.3 Kugeln Ziehen

	mit Reihenfolge	ohne Reihenfolge
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

3.4 Menge

Unter einer Menge verstehen wir die Zusammenfassung unterscheidbarer Elemente zu einer Gesamtheit.

3.5 Gleichheit

 $A = B :\Leftrightarrow A$ und B besitzen die gleichen Elemente.

3.6 Teilmenge

 $A \subset B :\Leftrightarrow$ wenn alle Elemente von A auch in B sind, dann ist A eine Teilmenge von B oder auch B die Obermenge von A.

Jede Menge ist Teilmenge von sich selbst.

3.7 Potenzmenge

Die Potenzmenge $\mathcal{P}(X)$ ist eine Menge welche aus allen Teilmengen von $U \subseteq X$ besteht.

3.8 Mächtigkeit

|A| := Zahl der Elemente von A.

3.9 Vereinigung

 $A \cup B :=$ Menge aus allen Elementen welche in A oder in B oder in beiden enthalten sind.

3.10 Schnitt

 $A \cap B :=$ Menge aus allen Elementen welche in A und in B enthalten sind.

3.11 Differenz

 $A \setminus B :=$ Menge aus allen Elementen welche zu A aber **nicht** zu B gehören.

3.12 Komplement

 $A^C :=$ Menge aus allen Elementen welche **nicht** zu A gehören.

3.13 Kartesisches Produkt

$$A \times B := (a, b) : a \in A, b \in B \tag{14}$$

3.14 Zufallsexperiment

- Genau festgelegte Bedingungen
- Zufälliger Ausgang
- Beliebig oft wiederholbar
- Ein Versuch bezeichnet einen Vorgang bei dem mehrere Ergebnisse (Elementarereignis) eintreten können
- Menge aller Elementarereignisse wird als Ergebnismenge (Ergebnisraum) Ω bezeichnet

3.15 Ereignis

- Eine Teilmenge $A \subset \Omega$ heißt Ereignis
- $A = \emptyset$ unmögliches Ereignis
- $A = \Omega$ sicheres Ereignis

3.16 Disjunkte Ereignisse

Zwei ereignisse sind disjunkt (unvereinbar) wenn deren Schnitt gleich der leeren Menge ist $A \cap B = \emptyset$.

3.17 σ -Algebra

Eine Teilmenge einer Potenzmenge (Menge von Teilmengen, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$) heißt σ -Algebra wenn sie folgende Bedingungen erfüllt:

- Die Teilmenge \mathcal{A} der Potenzmenge $\mathcal{P}(\Omega)$ enthält die Grundmenge Ω .
- Das Komplement $A^{\mathbb{C}}$ eines Elements der Teilmenge $A \in \mathcal{A}$ ist gleich der Differenz aus Grundmenge und Element $A^{\mathbb{C}} := \Omega \setminus A$. Stabilität des Komplements.
- Sind die Mengen in der Teilmenge der Potenzmenge $A_1, A_2, A_3, ... \in \mathcal{A}$ enthalten, so ist auch die Vereinigung aller Mengen in der Teilmenge der Potenzmenge enthalten $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- Alle vorangegangenen Mengenoperationen können auf die Teilmengen angewendet werden.

3.18 Axiome der Wahrscheinlichkeitsrechnung

Die Funktion P ordnet jedem Ereignis A eine Wahrscheinlichkeit P(A) zu.

- (I) Für jedes Ereignis $A\subset\Omega$ gilt $0\leq P(A)\leq 1$
- (I') Für das unmögliche Ereignis gilt $P(\emptyset) = 0$
- (II) Für das sichere Ereignis Ω gilt $P(\Omega)=1$
- (II') Für ein Ereignis $A \subset \Omega$ gilt $P(A^C) = 1 P(A)$
- (III) Für disjunkte Ereignisse A und B gilt $P(A \cup B) = P(A) + P(B)$
- (III') Für zwei Ereignisse $A, B \subset \Omega$ gilt $P(A \cup B) = P(A) + P(B) P(A \cap B)$

3.19 Laplace Experiment

Endlich viele Elementarereignisse welche alle gleich wahrscheinlich sind. Satz von Laplace:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl der Elementarereignisse in } A}{\text{Anzahl aller möglichen Elementarereignisse}}$$
(15)

3.20 Unabhängige Ereignisse

Zwei Ereignisse heißen unabhängig wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B) \tag{16}$$

Sie heißen abhängig wenn sie nicht unabhängig sind.

Für unabhängige Ereignisse gilt:

$$P(A) = \frac{P(A \cap B)}{P(B)} \quad \text{bzw.} \quad P(B) = \frac{P(A \cap B)}{P(A)}$$
 (17)

3.21 Bedingte Wahrscheinlichkeit

"Wahrscheinlichkeit von A gegeben B".

$$P(A|B) := \frac{P(A \cap B)}{P(B)} \tag{18}$$

Sind $A, B \subset \Omega$ unabhängige Ereignisse gilt:

$$P(A|B) = P(A) \tag{19}$$

Sind $A, B \subset \Omega$ abhängige Ereignisse gilt:

$$P(A|B) \neq P(A) \tag{20}$$

3.22 Multiplikationssatz

$$P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B) \tag{21}$$

3.23 Satz der totalen Wahrscheinlichkeit

Der Ergebnisraum ist gegeben durch $\Omega=\bigcup_{j=1}^\infty B_j$ mit $P(B_j)>0$ und alle j sind paarweise Disjunkt $B_i\cap B_j=\emptyset$ für $i\neq j$

$$P(A) = \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)$$
(22)

Für den Spezialfall $\Omega = B \cup B^C$ gilt:

$$P(A) = P(B) \cdot P(A|B) + P(B^C) \cdot P(A|B^C)$$
(23)

3.24 Satz von Bayes

Besteht aus dem Multiplikationssatz & der totalen Wahrscheinlichkeit:

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(B)} = \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(A^C) \cdot P(B|A^C)}$$
(24)

3.25 Zufallsvariablen

Eine Zufallsvariable ist eine Abbildung des Ergebnisraums auf den reellen Zahlenraum $\Omega \mapsto \mathbb{R}$. Die Zufallsvariable ordnet jedem Elementarereignis eine reelle Zahl zu. Zwei Zufallsvariablen sind **unabhängig** wenn gilt:

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$
 für alle $A, B \subset \mathbb{R}$ (25)

Die Zufallsvariablen heißen abhängig wenn sie nicht unabhängig sind.

Die Zufallsvariable wird **diskret** genannt wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Es gilt:

$$\sum_{i=1}^{\infty} P(X = x_i) = 1 \tag{26}$$

3.26 Wahrscheinlichkeitsfunktion

Für die diskrete Zufallsvariable X und ihre Ausprägungen lautet die Wahrscheinlichkeitsfunktion:

$$p_X(x) := \begin{cases} P(X = x_i), & \text{für } x = x_i \text{ mit Z\"{a}hlindex } i \in \mathbb{N} \\ 0, & \text{sonst} \end{cases}$$
 (27)

$$\sum_{x_i} p_X(x_i) = 1 = p(\Omega) \tag{28}$$

3.27 Verteilungsfunktion diskreter Zufallsvariablen

Für die diskrete Zufallsvariable X und ihre Ausprägungen lautet die Verteilungsfunktion:

$$F_X(x) := P(X \le x) = \sum_{x_i \le x} P(X = x_i) = \sum_{x_i \le x} p_X(x_i)$$
 (29)

3.28 Stetige Zufallsvariable

4 Zusatz

4.1 Integration

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
(30)

$$\int_{a}^{b} f(x) + g(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
 (31)

$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx \tag{32}$$

4.2 Partielle Integration

$$u(x) \cdot v(x) = \int u'(x) \cdot v(x) dx + \int u(x) \cdot v'(x) dx$$
 (33)

TODO: Basics Integration

4.3 Differentialgleichungen

TODO: Basics DGL Lösungen

5 Anhang