

Aug 11, 2024

ScNT-seq2: single-cell metabolically labelled new RNA tagging sequencing for time-resolved analysis of gene expression in single cells

DOI

dx.doi.org/10.17504/protocols.io.j8nlk8811l5r/v1

Qi Qiu¹, Fan Li¹, Dongming Liang¹, William Gao¹, Hao Wu¹

¹Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA

Wu Lab @ UPenn

IGVF

Fan Li

University of Pennsylvania

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.j8nlk8811l5r/v1

Protocol Citation: Qi Qiu, Fan Li, Dongming Liang, William Gao, Hao Wu 2024. scNT-seq2: single-cell metabolically labelled new RNA tagging sequencing for time-resolved analysis of gene expression in single cells. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.j8nlk8811l5r/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's
working

Created: June 05, 2024

Last Modified: August 11, 2024

Protocol Integer ID: 101225

Abstract

Single-cell metabolically labeled new RNA tagging sequencing (scNT-Seq) is a droplet microfluidics-based, time-resolved RNA-seq method for joint profiling of newly synthesized ("new") and pre-existing ("old") RNAs from the same cell by marking new transcripts with T-to-C substitutions via chemical conversion of 4-thiouridine (4sU) in new RNAs to cytidine analogs (Qiu et al., Nature Methods 17.10 (2020): 991-1001. PMID: 32868927). Here, we described the updated scNT-Seq2 method in which an optimized second-strand synthesis reaction is employed to increase the mapping rate and library complexity. This step-by-step protocol describes metabolic labeling, sample preparation, and scNT-Seq2 library preparation for Illumina sequencing.

Materials

A	В	С
Chemicals, Peptides, and Recombinant Proteins	Source	Identifier
DPBS, no calcium, no magnesium	Invitrogen	14190136
Barcoded beads	ChemGenes	MACOSKO-2011-10(V+)
1M Tris-HCl, pH 8.0	Invitrogen	15568-025
1 M Tris-HCl, pH 7.5	Invitrogen	15567-027
0.5 M EDTA, pH 8.0	Invitrogen	15575-020
NxGen RNase Inhibitor	Lucigen	30281-2
Bovine Serum Albumin	Sigma-Aldrich	A8806-5G
FicoII PM-400	GE Healthcare/Fisher Scientific	45-001-745
Sarkosyl	Sigma-Aldrich	L7414-50mL
NalO4	Sigma-Aldrich	7790-28-5
sodium acetate	Invitrogen	AM9740
Bst 3.0 DNA Polymerase	NEB	M0374
Exonuclease I	NEB	M0293L
TFEA	Sigma-Aldrich	269042-1G
SPRISelect beads	Beckman Coulter	B23318
DTT	Fermentas	R0862
QX200 Droplet Generation Oil for EvaGreen	Bio-Rad	186-4006
Perfluoro-1-octanol	Sigma-Aldrich	370533-25G
dNTPs	Clontech	639125
Critical Commercial Assays		
Maxima H Minus Reverse Transcriptase	ThermoFisher	EP0753
Nextera XT DNA sample preparation kit	Illumina	FC-131-1096
KAPA HiFi hotstart readymix	KAPA Biosystems	KK2602
Oligonucleotides		
Template Switch Oligo	AAGCAGTGGTATCAACGCAGAGTG AATrGrGrG	
TSO-PCR primer	AAGCAGTGGTATCAACGCAGAGT	
Custom Read 1 Primer	GCCTGTCCGCGGAAGCAGTGGTAT CAACGCAGAGTAC	
TSO-N3G2N4B primer	AAGCAGTGGTATCAACGCAGAGTG A (N1:25252525)(N1)(N1)GG(N1)(N 1)(N1)(N1)(N2: 00333433); N1 repr esents a mixture of A, C, G and T at a 25:25: 25:25 ratio, N2 represents a mixture	

A	В	С
	of A, C, G and T at a 0:33:34:33 ratio	
P5-TSO hybrid primer	AATGATACGGCGACCACCGAGATC TACACGCCTGTCCGCGGAAGCAGT GGTATCAACGCAGAGT*A*C	

Metabolic labeling

1 Prepare a 1 M stock solution of 4-thiouridine (4sU) by dissolving the powder in DMSO.

Note

Note: the stock is stable for a few months at -20 C. Protect the solution from light.

2 For metabolic labeling, the medium was replaced with fresh medium supplemented with nontoxic concentrations of 4sU (i.e. 100 or 200 µM).

Note

If the labeling time is longer than 4 hours, regular exchange of fresh 4sU-containing media (i.e. every three hours) can enhance 4sU incorporation.

Prepare cell suspension

- 3 After metabolic labeling, cells were rinsed once with DPBS.
- 4 Add 0.5 mL Accutase to each well of the 6-well plate and incubate at 37 C for about 5 min.
- 5 Add 1 mL culture medium to neutralize the Accutase.
- 6 Collect cell suspension in the 15 mL tube, spin down cells at 350 g, 3min.
- 7 Resuspend the cell pellet with 1 mL of DPBS (containing 0.01% BSA + 0.5%RNase-Inhibitor).
- 8 Count the cell number with Countess II.
- 9 Dilute the cell with DPBS (containing 0.01% BSA + 0.5%RNase-Inhibitor) to 100 cells/ µL (1 X 10⁵ cells/mL).

Cell and beads co-encapsulation

10 Prepare lysis buffer:

A		В	С
Reagents		Vol.(µL)	Final Concentration
H20		400	
20% Ficoll F	PM-400	300	6%
20% Sarkos	syl	10	0.2%
0.5 M EDTA	1	40	20 mM
1.0 M Tris-l	HCl, pH 7.5	200	200 mM
1.0 M DTT	(add freshly)	50	50 mM

Lysis buffer master mix

11 Prepare barcoded beads:

Wash beads once with 30 mL of 100% ethanol and twice with 30 mL of TE-TW (10 mM Tris-HCl pH 8.0, 1 mM EDTA and 0.01% Tween-20). Pass the beads through a 100 μ m cell strainer and count the number of beads. Resuspend the beads at 120 beads/ μ L concentration in 1.5 mL lysis buffer for each run (to profile 1,000~2,000 cells). Transfer 1.5 mL of bead suspension into a 3 mL Luer lock syringe. Make one more mL of lysis buffer to wash the syringe and magnetic disc.

- Draw up 7 mL of droplet generation oil (Bio-Rad) into a 10-mL Luer-lock syringe.
- 13 Connect 3 syringes (containing cells, beads, and oil, respectively) to the Aquapel-coated PDMS Microfluidic device (µFluidix) with the following flow rate setting:

A	В
Syringe Content	Flow Rate (µL/hr)
Oil	15000
Cells	4000
Beads	4000

14 Start the run in the following order: cells \rightarrow beads \rightarrow oil.

- When the flow of droplets stabilizes, collect \sim 20 μ L of aqueous flow to examine the droplet quality. Check whether the droplet size is uniform and estimate the percentage of bead doublets (the doublet rate should be less than 5%).
- Once confirming the droplet quality, collect 1.2-1.3 mL of droplets into a 50 mL conical tube (target 1,000~2,000 cells for each sample).

Droplet breakage

- 17 Remove the oil layer from the bottom of the 50 mL tube.
- Add 30 mL of room temperature 6X SSC into the tube.
- Add 1 mL of Perfluorooctanol (PFO) into the tube in a fume hood. Shake by hand to break the droplets (3-4 forceful vertical shakes, the shakes should be long distance -- from head to leg) Spin at 1,000x g for 1 min.
- Carefully remove the supernatant on top and then add 25 mL of 6X SSC to kick up the beads into the solution. Wait a few seconds to allow the majority of the oil to sink to the bottom.

 Transfer the supernatant to a new 50 mL tube.
- Add 25 mL of 6X SSC to kick up the beads into the solution again. Transfer and combine the supernatant.
- 22 Spin at 1,000x g for 1 min to pellet the beads.
- The beads are now pelleted to the bottom of the tube. Carefully remove all but ~1 mL of liquid. Resuspend the beads with the remaining liquid and transfer them to a 1.5 mL Low Binding tube.
- Spin at 1,000x g for 1 min. Remove the supernatant. Wash beads once with 1 mL of 6X SSC.

Chemical conversion of mRNAs on beads

- Wash beads once with 450 μ L reaction buffer (without TFEA and NaIO₄).
- Incubate beads in 474 μ L Reaction-mix + 26 μ L NaIO₄ at 45 C for 1 hr with rotation.

А	В
Reagents	Volume (µL)
3 M sodium acetate (pH 5.2)	8
0.5 M EDTA (pH 8.0)	2
H20	214
TFEA	13
Sub-total	237
192 mM NaIO4	13

Master mix for chemical conversion

- 27 Wash the beads once with 0.7 mL TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5).
- 28 Incubate the beads in 0.7 mL Reducing Buffer at 37 C for 30 min with rotation. Add 2% RNase inhibitor (20 μ L/1 mL) to the reducing buffer before use.

	Α	В
	Reagents	For 1mL (µL)
	1 M Tris-HCl (pH7.5)	10
	1M DTT	10
	5M NaCl	20
Г	0.5M EDTA	2
	RNase Inhibitor	20
	DEPC-H2O	958

Reducing Buffer

Reverse transcription

29 Prepare RT mix:

A	В
Reagents	Vol. (μL)
H20	80
Maxima 5X RT buffer	40

A	В
20% Ficoll PM-400	40
10 mM dNTPs	20
100 μM Template Switch Oligo	5
RNase Inhibitor	5
Maxima H Minus Reverse Transcriptase	10

- 30 Wash the beads once with 1 mL Tris-HCl buffer (10 mM, pH 7.5).
- 31 Wash the beads once with 0.3 mL 2X RT buffer.
- 32 Add 220 μ L of RT mix to the beads.
- 33 Incubate beads at room temperature for 30 min with rotation, then 120 min at 42 C with rotation.
- 34 Wash beads once with 1 mL TE-SDS (10 mM Tris-HCl pH 8.0, 1 mM EDTA, and 0.5% SDS), twice with 1 mL TE-TW, then store the beads at 4°C over-night (in TE-TW buffer). [This is a Stop point. Store at 4C overnight (in TE-Tw buffer).]

Exonuclease I treatment

35 Prepare Exonuclease mix (makes 200 µL):

A	В
Reagents	Vol. (µL)
10X Exonuclease I buffer	20
H20	170
Exonuclease I	10

- 36 Wash beads once with 1 mL 10mM Tris-HCl pH 8.0, re-suspend in 190 µL of exonuclease mix.
- 37 Incubate beads at 37 C for 45 min with rotation.

38 Wash beads once with 1 mL TE-SDS, and twice with 1 mL TE-TW. [This is a Stop point. Store at 4C overnight (in TE-Tw buffer).]

Run 1st round of TSO-PCR using 6,000-beads as templates

- 39 Wash beads once with 1 mL H_2O . Spin at 1,000x g for 1 min.
- 40 Remove supernatant and re-suspend the beads with 1 mL of H2O. Quickly transfer 2 µL of beads into a well of a 96-well plate (containing 198 µL of H20) and count the number of beads. Repeat bead counting three times and take the average.
- 41 Transfer an aliquot of 6,000 beads (corresponding to ~100 cells) into a PCR tube. Spin down and remove the supernatant, then re-suspend the beads with 50 µL PCR mix:

A	В
Reagents	Vol. (μL)
KAPA HiFi HS Readymix	25
100 μM TSO-PCR primer	0.4
H20	24.6

TSO-PCR master mix

42 Run 1st round of TSO-PCR. PCR program:

> Very important: run 1st round of TSO-PCR to determine the exact number of amplification cycles. Over-amplification of the cDNA library will lead to fewer detected nuclei in the end).

95 C for 3 minutes

4 cycles of:

98 C for 20 seconds

65 C for 45 s

72C for 3 min

9 cycles of:

98 C for 20 s

67 C for 20 s

72 C for 3 min

Then:

72 C for 5 min

4 C forever

- 43 Purify PCR products once with 0.7X (35 μL) SPRI beads once and elute in 15 μL Elution buffer.
- 44 Measure the concentration of PCR products by Qubit.
- 45 Perform real-time PCR to determine the additional number of PCR cycles needed for optimal cDNA amplification.

A	В
Reagents	Vol. (µL)
Purified cDNA	1
25 μM TSO-PCR primer	0.2
2X KAPA FAST qPCR Readymix	5
H2O	3.8

Real-time PCR master mix

46 Run real-time PCR with the following program, and determine the optimal PCR cycle number 95 C for 3 min

25 cycles of:

95 C for 15 s

63 C for 30 s

72 C for 30 s

Second strand synthesis

47 Prepare second strand synthesis mix:

A	В
Reagents	Vol. (µL)
10X Isothermal Amplification Buffer II	10
20% FicoII PM-400	20
10 mM dNTPs	14
Bst 3.0 DNA Polymerase (NEB)	5
TSO-N3G2N4B primer (100 μM)	10
MgSO4 (100 mM)	6
H20	35

Second strand synthesis master mix

- 48 After aspiration of TE-TW buffer, resuspend beads in 500 µL 0.1 M NaOH.
- 49 Incubate beads at room temperature for 5 min with rotation.
- 50 Add 500 µL 0.2M Tris-HCl (pH 7.5) to neutralize the solution.
- 51 Wash beads once with TE-TW and once with 10 mM Tris-HCl (pH 8.0).
- 52 Add 200 µL second strand synthesis mix to the beads. [Add Bst3 enzyme right before the reaction.
- 53 Incubate beads at 15 min at 60 C with rotation.
- 54 Wash beads once with 1 mL TE-SDS, and twice with 1 mL TE-TW and twice with H2O.

Large-scale TSO-PCR

55 After determining the optimal PCR cycle number (usually an additional 0-4 cycles), perform large-scale TSO-PCR with the remaining beads. Wash the remaining beads twice with 1 mL H₂O. Apportion 6,000 beads for each PCR reaction. Spin down and remove the supernatant, then resuspend the beads with 50 µL PCR mix. PCR program:

95 C for 3 min

4 cycles of:

98 C for 20 s

65 C for 45 s

72 C for 3 min

X plus additional cycles of:

98 C for 20 s

67 C for 20 s

72 C for 3 min

Then:

72 C for 5 min

4 C forever

- Combine the PCR product for a given sample into a 1.5 mL Low Binding tube and purify **twice** with SPRI-select beads (0.6X Volume for the 1st & 0.7X Volume for the 2nd purification).
- 57 Elute the cDNA with 40 μL Low-EDTA TE.
- Quantify the cDNA library by Qubit and run the bioanalyzer to check the average fragment size of the purified cDNA library (the expected average size of cDNA library is 800-1,500 bp).

Tagmentation (Nextera® XT DNA Sample Preparation kit)

- 59 Preheat the thermocycler to 55 C. For each sample, take out 1 ng of purified cDNA with H_2O in a total volume of 5 μ L to a PCR tube.
- Add 10 μ L of Nextra TD buffer and 5 μ L of Amplicon Tagmentation enzyme to each reaction. Mix by pipetting ~5 times.
- 61 Incubate at 55 C for 5 min.
- Add 5 μ L of Neutralization Buffer to each reaction. Mix by pipetting ~5 times. Spin down and incubate at room temperature for 5 min.
- Add to each PCR tube in the following order:

A	В
Reagents	Vol. (μL)
Nextra PCR mix	15
2 μM P5-TSO hybrid primer	5
2 μM Nextera N70X oligo	5

64 PCR program:

95 C for 30 s

12 cycles of:

95 C for 10 s

55 C for 30 s

72 C for 30 s

Then:

72 C for 5 min

4 C forever

- Purify PCR product twice with 0.6X SPRI beads. Elute the cDNA in 12 μ L H₂O.
- Quantify the concentration of cDNA library by Qubit and check the average fragment size of the purified cDNA library by Bioanalyzer (the expected fragment size is 500-700 bp).

Sequencing

Dilute the library to 2 nM and pool the libraries according to the estimated cell numbers (100 cells/6000 beads).

Protocol references

- 1. Hu, Peng, et al. "Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq." *Molecular cell* 68.5 (2017): 1006-1015.
- 2. Qiu, Qi, et al. "Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq." *Nature methods* 17.10 (2020): 991-1001.