ho-orderings and valuative capacity in ultrametric spaces

Anne Johnson

January 28, 2019

Ultrametric basics

Definition

A p-ordering of an infinite set, $S \subseteq \mathbb{Z}_p$, is a sequence in S such that for n > 0, a_n minimizes

$$v_p((x-a_{n-1})\dots(x-a_0))$$

Definition-Proposition

The *p*-sequence of *S* is the sequence whose 0^{th} -term is 1 and whose n^{th} term, for n > 0, is $v_p((a_n - a_{n-1}) \dots (a_n - a_0)$.

ρ -orderings, ρ -sequences, and valuative capacity

In what follows, let S be a compact subset of an ultrametric space (M, ρ) .

Definition

[2] A ρ -ordering of S is a sequence $\{a_i\}_{i=0}^{\infty} \subseteq S$ such that $\forall n > 0$, a_n maximizes $\prod_{i=0}^{n-1} \rho(s, a_i)$ over $s \in S$.

ρ -orderings, ρ -sequences, and valuative capacity

Definition-Proposition

[2] Let $\gamma(n)$ be the ρ -sequence of S. The **valuative capacity** of S is

$$\omega(S) := \lim_{n \to \infty} \gamma(n)^{1/n}$$

valuative capacity: quick results

Proposition

(translation invariance) Let (M, ρ) be a compact ultrametric space and suppose M is also a topological group. If ρ is (left) invariant under the group operation, then so is ω . That is, if $\rho(x,y)=\rho(gx,gy)$, $\forall g,x,y\in M$, then $\omega(gS)=\omega(S)$, for $S\subseteq M$.

Proposition

(scaling) Let (V, N) be a normed vector space and suppose N satisfies the strong triangle identity. Then if N is multiplicative, so is ω . That is, if $N(gx) = N(g)N(x), \forall g, x \in V$, then $\omega(gS) = N(g)\omega(S)$, for $g \in V$ and $S \subseteq M$.

valuative capacity: subadditivity

Proposition

[2](subadditivity) If $diam(S) := \max_{x,y \in S} \rho(x,y) = d$ and $S = \bigcup_{i=1}^{n} A_i$ for A_i compact subsets of M with $\rho(x_i, x_j) = d$, $\forall x_i \in A_i$, $\forall x_j \in A_j$ and $\forall i, j$, then

$$\frac{1}{\log(\omega(S)/d)} = \sum_{i=1}^{n} \frac{1}{\log(\omega(A_i)/d)}$$

Corollary

Suppose $S = \cup_i^n S_i$ with $\rho(S_i, S_j) = d = diam(S)$ and also $\omega(S_i) = \omega(S_j)$, $\forall i, j$. Let $r \in \mathbb{R}$ be such that $\omega(S_i) = r\omega(S)$, $\forall i$. Then $\omega(S) = r^{\frac{1}{n-1}} \cdot d$. In particular if $S = \mathbb{Z}$ and $(M, \rho) = (\mathbb{Z}, |\cdot|_p)$ then $\omega(S) = (\frac{1}{p})^{1/p-1}$ for any prime p.

Setup:

- Let $S \subseteq M$ be a compact subset of an ultrametric space (M, ρ) .
- ▶ Let $\Gamma_S = \{\gamma_0, \gamma_1, \dots, \gamma_\infty = 0\}$ be the set of distances in S.
- Note that for each $k \in \mathbb{N}$, the closed balls of radius γ_k partition S. That is,

$$S = S_{\gamma_k} := \cup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$$

where both n and the x_i 's depend on k.

Setup, continuted:

Fix a $k \in \mathbb{N}$.

- ▶ Let $S_{\gamma_k} = \bigcup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$ be a partition of S, as above.
- Note that we can construct $S_{\gamma_{k+1}}$ by partitioning each of the $\overline{B_{\gamma_k}(x_i)}$, i.e.,

$$S = S_{\gamma_{k+1}} = \bigcup_{i=1}^{n} \bigcup_{j=1}^{l_i} \overline{B_{\gamma_{k+1}}(x_{i,j})}$$

where $1 \leq I_i \leq n$ and $\bigcup_{j=1}^{I_i} \overline{B_{\gamma_{k+1}}(x_{i,j})} = \overline{B_{\gamma_k}(x_i)}$, $\forall i$.

- We denote by $x_{i,j}$ the centre of a ball of radius γ_{k+1} partitioning the ball $B_{\gamma_k}(x_i)$.
- ▶ Without loss of generality, when j = 1, assume $x_{i,j} = x_i$, $\forall i$.

We now make the following observation due to [3],

Lemma

For each $k \in \mathbb{N}$, the elements of S_{γ_k} , that is, the closed balls of radius γ_k , themselves form an ultrametric space, where

$$\rho_k \overline{(B_{\gamma_k}(x), \overline{B_{\gamma_k}(y)})} = \begin{cases} \rho(x, y), & \text{if } \rho(x, y) > \gamma_k \\ 0, & \text{if } \rho(x, y) \leq \gamma_k, \text{ i.e., } \overline{B_{\gamma_k}(x)} = \overline{B_{\gamma_k}(y)} \end{cases}$$

We make the following observations:

- ▶ Since S is compact, S_{γ_k} is a finite metric space $\forall k < \infty$ and $S_{\gamma_{\infty}} = \bigcup_{x \in S} \overline{B_0(x)} = \bigcup_{x \in S} x = S$ and $\rho_{\infty} = \rho$.
- View S_{γ_k} , for fixed $k < \infty$ as a finite ultrametric space with n elements. Let us denote an element of S_{γ_k} , that is a $\overline{B_{\gamma_k}(x_i)}$, by its centre, x_i .
- Without loss of genearlity, we can reindex the x_i 's so that they give the first n terms of a ρ_k -ordering of S_{γ_k} .

Setup, revisited:

- Let $S_{\gamma_k} = \bigcup_{i=1}^n \overline{B_{\gamma_k}(x_i)}$ be the finite metric space describe above, and suppose the x_i are indexed according to a ρ_k -ordering of S_{γ_k} .
- Let $S_{\gamma_{k+1}}$ be the finite metric space formed by partitioning each of the $B_{\gamma_k}(x_i)$, so that $S_{\gamma_{k+1}} = \bigcup_{i=1}^n \bigcup_{j=1}^{l_i} \overline{B_{\gamma_{k+1}}(x_{i,j})}$ and $x_{i,j}$ is a point in the ball $B_{\gamma_k}(x_i)$ with the convention that $x_{i,1} = x_i$, $\forall i$.

Consider the matrix A_k , whose $(i,j)^{th}$ -entry is $x_{i,j}$ (or * if $l_i < j$).

$$A_{k} = \begin{pmatrix} x_{1,1} & x_{2,1} & \dots & x_{n,1} \\ x_{1,2} & x_{2,2} & \dots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,l_{1}} & x_{2,l_{2}} & \dots & x_{n,l_{n}} \end{pmatrix}$$

Consider the matrix A_k , whose $(i,j)^{th}$ -entry is $x_{i,j}$ (or * if $I_i < j$).

$$A_{k} = \begin{pmatrix} x_{1,1} & x_{2,1} & \dots & x_{n,1} \\ x_{1,2} & x_{2,2} & \dots & x_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1,l_{1}} & x_{2,l_{2}} & \dots & x_{n,l_{n}} \end{pmatrix}$$

A ρ_{k+1} -ordering of $S_{\gamma_{k+1}}$ can be found by concatenating the rows of A_k (and ignoring *'s).

Some corollaries

Corollary

Interweaving the bottown row of the lattice of closed balls for a set S gives a ρ -ordering of S. In particular, the natural ordering on the integers gives a ρ_P -ordering for every prime p.

Corollary

Suppose S and T are compact subsets of an ultrametric space M with $\Gamma_S = \Gamma_T$ and $\mid S_{\gamma_k} \mid = \mid T_{\gamma_k} \mid$, $\forall k$. Then $\omega(S) = \omega(T)$.

references

- Alain M. Robert, A course in p-adic analysis.
- Keith Johnson, P-orderings and Fekete sets
- Nate Ackerman, Completeness in Generalized Ultrametric Spaces