

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 150V,20A, $R_{DS(on),max} = 56m\Omega@V_{GS} = 10V$
- ♦ Improved dv/dt capability
- Fast switching
- Green device available

Applications

- Motor Drives
- UPS
- DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 150V \\ R_{DS(on),max} @ V_{GS} = 10V & 56m\Omega \\ I_D & 20A \end{array}$

Pin Configuration

TO-252

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	150	V
Continuous drain current (T _C = 25°C)	ID	20	Α
(T _C = 100°C)		12	A
Pulsed drain current ¹⁾	I _{DM}	60	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	0.45	mJ
Power Dissipation	P _D	52	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	2.4	°C/W
Thermal Resistance Junction-to-Ambient	Reja	55	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Reel	
VST15N560-T2	TO-252	VST15N560-T2	2500	

Electrical Characteristics T₁ = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	150			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.2	1.7	2.5	V
Drain-source leakage current	I _{DSS}	V _{DS} =150 V, V _{GS} =0V			1	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance		V _{GS} =10 V, I _D =10 A		45	56	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =10 A		50	68	mΩ
Forward transconductance	g fs	V _{DS} =5V , I _D =10A		25.2		S
Dynamic characteristics						
Input capacitance	Ciss	V 05V V 0V		1092		pF
Output capacitance	Coss	$V_{DS} = 25V, V_{GS} = 0 V,$		94		
Reverse transfer capacitance	Crss	- F = 1MHz		6		
Turn-on delay time	t _{d(on)}			18.2		ns
Rise time	t _r	V _{DD} = 75V,V _{GS} =10V, I _D = 10A		5.9		
Turn-off delay time	t _{d(off)}	R _G =3.3Ω		26.5		
Fall time	t _f			4.3		
Gate charge characteristics						
Gate to source charge	Q _{gs}	\\ 75\\ I 404		4.4		
Gate to drain charge	Q _{gd}	V _{DS} =75V, I _D =10A,		2.7		nC
Gate charge total	Qg	- V _{GS} = 10 V		14.9		
Drain-Source diode characteris	tics and Maxi	mum Ratings				
Continuous Source Current	Is				20	А
Pulsed Source Current ³⁾	Іѕм				60	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =10A, T _J =25°C ⁵⁾			1.2	V

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =23V, V_{GS} =10V, L=0.1mH, I_{AS} =3A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width ${\leqslant}300\,\mu\,\text{s},$ Duty Cycle ${\leqslant}2\%.$

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature

Figure 8. V_{GS(th)}-Junction Temperature

Figure 9. On-Resistance vs. Gate-to-Source voltage

Figure 10: Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

