Interrogation de données structurées en Spark

Master DAC – Bases de Données Large Echelle Mohamed-Amine Baazizi

> mohamed-amine.baazizi@lip6.fr 2021-2022

High-level data pipelines

- The RDD algebra is not well-suited
 - Unfriendly programming, unreadable code
 - Misses the opportunity of logical optimization
- Most data pipelines contain
 - Analytical queries
 - Well-defined transformations (ex. aggregation, feature extraction)
- Most data is structured and have an implicit schema
- Adopt a declarative approach
 - SQL queries
 - Dataframe expressions: inspired from Data Science libraries
- The RDD algebra serves as a physical layer

Spark Dataframe

- Abstraction on top of RDDs
 - RDD[Row], Row = sequence of values with a fixed schema
- Several operators
 - Relational operator
 - User Defined and built-in functions
 - Maps each element to another element
 - E.g. in IMBD, extract year from title based on a regexp
- Distinction between transformations and actions
 - Some useful actions
 - printSchema(), show(), read(), write()
- Support for different formats
 - Tabular (CSV, TSV), nested (JSON, Parquet), Text
 - Specific formats (libsvm for ML)

Data model

- Base types
 - boolean, numeric family (integer, decimal, ...), String, null, timestamp
- Complex types
 - Arrays : (type of element, containsNull) → homogenous
 - Structure :
 - [StructField, ..., StructField]
 - StructField(name, type, nullable) → name is a <u>string</u> and is <u>unique</u>
 - Maps:
 - (keyType, valueType, valueContainsNull) → key of any type and is unique
- Support for user-defined types (UDT)
 - Application-specific data
 - Object-oriented databases style
 - Data and methods Dataset
 - Dataset with Scala

containsNull, nullable and valueContainsNull indicate the presence of null, but are always set to true

Tabular data

```
movies = spark.read.format("csv"). ...
```

movies.show(truncate=False)

```
|movieId|title
                                             genres
        |Toy Story (1995)
                                             |Adventure|Animation|Children|Comedy|Fantasy|
12
        |Jumanji (1995)
                                             |Adventure|Children|Fantasy
13
        |Grumpier Old Men (1995)
                                             |Comedy|Romance
4
        |Waiting to Exhale (1995)
                                             |Comedy|Drama|Romance
        |Father of the Bride Part II (1995)|Comedy
5
                                             |Action|Crime|Thriller
6
        |Heat (1995)
        |Sabrina (1995)
                                             |Comedy | Romance
```

movies.printSchema()

```
root
|-- movieId: long (nullable = true)
|-- title: string (nullable = true)
|-- genres: string (nullable = true)
```

Useful Dataframe operators

- Relational algebra
 - Unary : select, where
 - Binary: join, intersect, subtract, union
- Schema
 - drop: removes a column
 - withColumn: adds a column
 - withColumnRenamed: renames a column
- Grouping
 - groupBy(col*)
 - groups on a set of columns
 - Produces a *GroupedDataset*
- Sorting
- Aggregation

GroupedDataset operators

- Partition-wise single aggregation
 - min(col), max(col), sum(col), count()
 - return type = Dataframe with <u>one</u> column
- Partition-wise multiple aggregations
 - agg(min(col), max(col), ...)
 - return type = Dataframe with <u>many</u> columns
- Pivoting
 - Pivot(col) -> Dataframe(rcol_1, ..., rcol_n)
 - For i in [1, #values(col)] : name(rcol_i) = value(col_i)

Built-in functions

- Array/maps manipulation
 - Arrays: containment, distinct, intersect, except, max/min, search, size, sort,...
 - Maps: concatenation, filtering, size,...
- General-purpose
 - Math: descriptive stats, trigonometry, skewness
 - Summary: countDistinct, sumDistinct, ...
 - Elements to Collections and vice-versa
 - Nesting: collect_list, collect_set
 - Flattening: explode, explode outer
 - Temporal:
 - current date, date arithmetic, day/month/year extraction, conversion
 - Data transformation
 - Json/csv parsing
 - Timestamp extraction/encoding
 - Strings: length, distance, trim, regexp extraction, splitting, case conversion, ...
- Fully-documented online

Illustration: Building and flattening lists

```
movieId|title
                                             genres
        |Toy Story (1995)
                                             |Adventure|Animation|Children|Comedy|Fantasy
                                                                                               root
        |Jumanji (1995)
                                             |Adventure|Children|Fantasy
                                                                                                 -- movieId: long
        |Grumpier Old Men (1995)
                                             |Comedy | Romance
                                                                                                 -- title: string
        |Waiting to Exhale (1995)
                                             |Comedy|Drama|Romance
                                                                                                 -- genres: string
        |Father of the Bride Part II (1995)|Comedy
        [Heat (1995)
                                             Action|Crime|Thriller
        |Sabrina (1995)
                                             Comedy | Romance
```

from pyspark.sql.functions import col, split, explode

genres_list = movies.select(split(movies.genres,'\|').alias('genre_list')) Size \rightarrow 7

genres = genres_list.select(explode(col('genre_list')).alias('genre')).distinct()

genres.count()

10

Illustration: Pivoting rows to columns

```
movieId|title
                                              genres
        |Toy Story (1995)
                                             |Adventure|Animation|Children|Comedy|Fantasy
                                                                                                root
        |Jumanji (1995)
                                              |Adventure|Children|Fantasy
                                                                                                 |-- movieId: long
        |Grumpier Old Men (1995)
                                              |Comedy | Romance
                                                                                                 -- title: string
        |Waiting to Exhale (1995)
                                             |Comedy|Drama|Romance
                                                                                                  -- genres: string
        |Father of the Bride Part II (1995)|Comedy
        [Heat (1995)
                                              |Action|Crime|Thriller
        |Sabrina (1995)
                                              |Comedy | Romance
```

movies_genre = movies.select('movield',explode(split(movies.genres,'\|')).alias('genre'))\
.groupBy('movield').pivot('genre').count().orderBy('movield')

movie	eId Actio	n Adventure	Animation	Children	+ Comedy +	+ Crime +	 Drama	 Fantasy	Romance	H Thriller
1	null	1	1	1	1	null	null	1	null	null
[2	null	1	null	1	null	null	null	1	null	null
3	null	null	null	null	1	null	null	null	1	null

• • •

Illustration: applying built-in functions

from pyspark.sql.functions import from unixtime, year, month, dayofmonth

ratings_date = ratings.select(**from_unixtime**('timestamp').alias('datetime'))\
.select('datetime', **dayofweek**('datetime').alias('day'))

User-defined Functions

- Express non-relational operations
 - Ex. map rating to categories, compute user similarity
- Supported in most database systems
- Executed out of the SQL context
 - No automatic optimisation but
 - Possibility of adding a new optimisation rules (for experts)
 - If not carefully designed, performance degradation
- Only use when no available built-in function can do the work
- Two possibilities in Spark
 - Standard: invoke on each row → costly
 - Vectorized: invoke on a vector (batch of rows) → more efficient
 Benefit from memory columnar storage (Arrow format)

Row-at-time vs vectorized UDFs

std(v00)	
v00v01	
v10 v11 std(v10)	
v20 v21 std(v20)	

@udf()
def std(): ...
select(std(col1))

col1	col2	•••
v00	v01	
v10 – –	-v 1 1	
v20	v21	

Panda([v00,v10,v20])

@pandas_udf ()
def panda(): ...
select(panda(col1))

panda() must preserve the input size
and be independent of the data partitioning

Illustration:

applying a standard UDF

movi	eId title	genres	
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	
2	Jumanji (1995)	Adventure Children Fantasy	
[3	Grumpier Old Men (1995)	Comedy Romance	root
14	Waiting to Exhale (1995)	Comedy Drama Romance	movieId: long
5	Father of the Bride Part II (1995)	Comedy	title: string
6	Heat (1995)	Action Crime Thriller	genres: string
17	Sabrina (1995)	Comedy Romance	

from pyspark.sql.functions import udf

```
@udf('string')
def nb_genres(I):
return str(len(I))+' genres(s)'
```

select('movield', 'title', nb_genres('genre_list').alias('nb_genres'))

movi	eId title	nb_genres
1	Toy Story (1995)	5 genres(s)
12	Jumanji (1995)	3 genres(s)
3	Grumpier Old Men (1995)	2 genres(s)

Illustration: applying a vectorized UDF

```
movieId|title
                                              genres
        |Toy Story (1995)
                                              |Adventure|Animation|Children|Comedy|Fantasy
        |Jumanii (1995)
                                              |Adventure|Children|Fantasy
2
        |Grumpier Old Men (1995)
                                              |Comedy | Romance
                                                                                               root
                                                                                                 -- movieId: long
        |Waiting to Exhale (1995)
                                              |Comedy|Drama|Romance
4
                                                                                                 -- title: string
        |Father of the Bride Part II (1995)|Comedy
15
                                                                                                 -- genres: string
                                              |Action|Crime|Thriller
        |Heat (1995)
        |Sabrina (1995)
                                              |Comedy | Romance
```

import pandas as pd from pyspark.sql.functions import col, pandas_udf from pyspark.sql.types import ArrayType

def nb_genres(s:pd.Series) -> pd.Series:
return s.str.split('\|')

panda_nb_genres = pandas_udf(nb_genres, returnType=ArrayType(StringType()))

movies.select('movield', 'title', panda_nb_genres('genres').alias('nb_genres'))

```
root
|-- movieId: long (nullable = true)
|-- title: string (nullable = true)
|-- nb_genres: array (nullable = true)
| -- element: string (containsNull = true)
```

Data reading and writing

- Reading / Writing
 - Several sources (local files, HDFS), batch or streaming
 - Many database connectors: JDBC or system-specific (eg. Mongo, Couchbase)
 - Guided by a schema
 - Schema is either provided or inferred
- Reading/writing options
 - Fully documented (see API reference)
 - Format, encoding, separators, compression
- Side effect free by default
 - Modify a copy of the data
- Potential solution: Delta Lake
 - ACID support: insert, Update, delete operations
 - Data versioning and schema evolution
 - Metadata management

Schema management

- Option 1: passed as argument
 - Plain text
 'attr_name type, ..., attr_nametype'
 - Dataframe object
 - StructType(), ArrayType(), LongType(), ...
 - Basic schema enforcement
 - Type compatibility, Nullity
 - Failure raises an exception

```
f1 = StructField('f1', IntegerType(), True)
f2 = StructField('f2', IntegerType(), True)
df_sch = StructType([f1,f2])

df = spark.createDataFrame(data, df_sch)
```

```
root
|-- f1: integer (nullable = true)
|-- f2: integer (nullable = false)
```

Schema management

- Option 2: inferred from the data
 - Sample of the data, usually 10%
 - Useful when not shipped with the data, or when data is nested (JSON)
 - Type promotion rules
 - Triggered to solve conflicting types
 - Lossy transformation

Beyond Spark schema management

- Schema enforcement strategy
 - Only valid data or mix between non-valid and valid?
 - Discard tuples, substitute with default?
- Support integrity constraints (IC)
 - Primary key foreign key
 - Domain constraints
 - Assertions
- Data quality issues
 - Missing values
- Potential solution: Delta Live Tables
 - Automatic support for schema evolution
 - IC specification and validation
 - Metadata collection at scale
 - → Hassle-free ETL

Managing nested data

- Schema inference, data loading
 - Automatic, on a sample of the data
 - Data is shredded using the schema
 - Shredding rules
 - JSON Object → Dataframe Struct
 - JSON Arrays → Dataframe Array
 - JSON Basic types → corresponding Dataframe basic types
 - Missing fields indicated with null
 - Conflict resolution using type promotion rules

JSON and irregularity

Input: 2 documents

```
{
    "person" : {
        "firstname" : "Melena",
        "lastname" : "ABCD",
        "role" : "reported",
        "rank" : 1,
        "organization" : "abc"
    }
}

    "person" : {
        "firstname" : "other",
        "lastname" : "ABCD",
        "rank" : 1,
        "organization" : "OO"
    }
}
```

spark.read.json()

root

firstname	lastname	organization	rank	role
Melena	RYZIK	abc	1	reported
other	ABCD	00	1	

Missing role

schema

data

JSON and irregularity

Input: 3 documents

```
{
    "first" : "al",
    "coord" : [],
    "last" : "jr"
}
```

```
{
    "first" : "al",
    "coord" : null,
    "last" : "jr"
}
```

```
{
    "email" : "abc@ef",
    "first" : "li",
    "coord" : {
        "lat" : 45,
        "long" : 12
    },
    "last" : null
}
```

spark.read.json()

root

```
|-- coord: string (nullable = true)
|-- email: string (nullable = true)
|-- first: string (nullable = true)
|-- last: string (nullable = true)
```

coord	email	first	last
[]	null	al	jr
null	null	al	jr
{"long":12,"lat":45}	abc@ef	li	null

schema

Object stored as a string!!

data

Querying nested data

- Navigating the hierarchy of objects
 - Dot-notation
 - select ('level1.level2.)
 - Traversing arrays is not allowed using the dot-notation!!
- Accessing the content of arrays
 - Flatten then navigate
 - explode(), explode_outer()
 - Use existing (built-in) array functions
 - E.g. array_exist(), array_contains()
 - Performance issues:
 - Flattening allows for standard logical optimization to be applied
 - Many research effort on how to rewrite queries to take advantage of logical optimization

Navigating structures

```
"firstname": "Melena",
       "lastname" : "RYZIK",
       "role": "reported",
       "rank": 1,
       "organization": ""
root
 |-- person: struct (nullable = true)
    -- firstname: string (nullable = true)
    -- lastname: string (nullable = true)
    |-- organization: string (nullable = true)
    |-- rank: long (nullable = true)
    -- role: string (nullable = true)
```

"person" : {

```
{
   "person" : {
     "firstname" : "other",
     "lastname" : "ABCD",
     "rank" : 1,
     "organization" : "OO"
}
```

select("person.*")

firstname	lastname	organization	rank	role
Melena	RYZIK		1	reported
other	ABCD	00	1	null

Accessing Arrays

```
{
    "person" : [
        {
             "firstname" : "other",
            "lastname" : "ABCD",
            "rank" : 1,
            "organization" : "OO"
        }
    ]
}
```

select(col("person"),explode(col("person")))

root

person	col
[[Melena, RYZIK, , 1, reported], [derba, OKYZ, , 1, reported]]	[Melena, RYZIK, , 1, reported]
[[Melena, RYZIK, , 1, reported], [derba, OKYZ, , 1, reported]]	[derba, OKYZ, , 1, reported]
[[other, ABCD, OO, 1,]]	[other, ABCD, OO, 1,]

Closing remarks

- Dataframes
 - a full-fledged API for building complex ETL and analytics
 - many room for physical optimization
 - Disk and memory columnar storage (following lectures), indexing
- Interesting topics
 - The Delta Lake approach
 - Code versioning
- 2 lab sessions
 - Querying Tabular data: gain familiarity with the Dataframe algebra, use functions
 - Querying Nested data: deal with irregularity and incompleteness, real-world data
- Next 30': Zennea presentation on how to manage metadata at an entreprise level