Customer lifetime value in CRM

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Verena Pflieger

Data Scientist at INWT Statistics

Customer lifetime value (CLV)

- Predicted future net-profit
- Identify promising customers
- Prioritize customers according to future margins
- No further customer segmentation

Predicting the Margin of Year 2

Predicting the Future Margin


```
str(clvData1, give.attr = FALSE)
```

```
Classes 'tbl_df', 'tbl' and 'data.frame': 4191 obs. of 15 variables:
 $ customerID
                    : int 2 3 4 5 6 7 8 9 10 11 ...
$ nOrders
                    : int 4 3 12 16 1 2 3 15 16 1 ...
 $ nItems
                    : int 7 4 25 29 2 8 4 20 18 2 ...
 $ daysSinceLastOrder: int 4 272 12 32 47 19 63 23 75 193 ...
 $ margin
                    : num 35.8 25.7 63.3 53.7 35.9 ...
 $ returnRatio
                           0.25 0.44 0.15 0.03 0 0.18 0 0.01 0.02 1 ...
                    : num
 $ shareOwnBrand
                    : num 0.67 0.33 0.86 0.96 1 0 0.33 0.53 0.27 0 ...
 $ shareVoucher
                    : num 0.17 0 0.38 0.17 0 0.86 0.33 0.12 0.6 0 ...
 $ shareSale
                           0 0.67 0.29 0.33 1 0.14 0 0.12 0.2 1 ...
                    : num
 $ gender
                          "female" "male" "female" ...
                    : chr
$ age
                    : int 56 37 32 43 48 31 27 30 50 50 ...
 $ marginPerOrder
                    : num 8.94 8.58 5.28 3.36 35.85 ...
 $ marginPerItem
                    : num 5.11 6.43 2.53 1.85 17.93 ...
 $ itemsPerOrder
                          1.75 1.33 2.08 1.81 2 4 1.33 1.33 1.12 2 ....
                    : num
 $ futureMargin
                    : num 57.6 29.7 56.3 58.8 29.3 ...
```


Correlations

```
library(corrplot)
clvData1 %>%
    select(nOrders, nItems, margin, futureMargin) %>%
    cor() %>% corrplot()
```


Let's practice!

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Simple linear regression

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Verena Pflieger

Data Scientist at INWT Statistics


```
Call:
lm(formula = futureMargin ~ margin, data = clvData1)
Residuals:
   Min 1Q Median 3Q Max
-56.055 -9.258 0.727 10.060 49.869
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.63068 0.49374 25.58 <2e-16 ***
margin 0.64543 0.01467 43.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.24 on 4189 degrees of freedom
Multiple R-squared: 0.3159, Adjusted R-squared: 0.3158
F-statistic: 1935 on 1 and 4189 DF, p-value: < 2.2e-16
```

simpleLM <- lm(futureMargin ~ margin, data = clvData1)</pre>

summary(simpleLM)

```
ggplot(clvData1, aes(margin, futureMargin)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE) +
  xlab("Margin year 1") +
  ylab("Margin year 2")
```


Assumptions of Simple Linear Regression Model

- Linear relationship between x and y
- No measurement error in x (weak exogeneity)
- Independence of errors
- Expectation of errors is 0
- Constant variance of prediction errors (homoscedasticity)
- Normality of errors

Time to practice!

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Multiple linear regression

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Verena Pflieger

Data Scientist at INWT Statistics

Omitted variable bias

The more effort, the less success?

The more effort, the more success!


```
multipleLM <- lm(
   futureMargin ~ margin + nOrders + nItems + daysSinceLastOrder +
   returnRatio + shareOwnBrand + shareVoucher + shareSale +
   gender + age + marginPerOrder + marginPerItem +
   itemsPerOrder, data = clvData1)
summary(multipleLM)</pre>
```

```
Call:
lm(formula = futureMargin ~ margin + ..., data = clvData1)
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 22.528666 1.435062 15.699 < 2e-16 ***
                            0.027298 14.755 < 2e-16 ***
marqin
                 0.402783
nOrders
                 -0.031825 0.122980 -0.259 0.79581
itemsPerOrder 0.102576 0.540835 0.190 0.84958
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.85 on 4177 degrees of freedom
Multiple R-squared: 0.3547, Adjusted R-squared: 0.3527
F-statistic: 176.6 on 13 and 4177 DF, p-value: < 2.2e-16
```


Multicollinearity

Variance Inflation Factors

```
library(rms)
vif(multipleLM)
```

margin	n0rders	nItems
3.658257	11.565731	13.141486
daysSinceLastOrder	returnRatio	shareOwnBrand
1.368208	1.311476	1.363515
shareVoucher	shareSale	gendermale
1.181329	1.148697	1.003452
age	marginPerOrder	marginPerItem
1.026513	8.977661	7.782651
itemsPerOrder		
6.657435		

New model

margin	n0rders	daysSinceLastOrder	
3.561828	2.868060	1.354986	
returnRatio	shareOwnBrand	shareVoucher	
1.305490	1.353513	1.176411	
shareSale	gendermale	age	
1.146499	1.003132	1.021518	
marginPerItem	itemsPerOrder		
1.686746	1.550524		

summary(multipleLM2)

```
Call:
lm(formula = futureMargin ~ margin + nOrders + ..., data = clvData1)
Residuals:
   Min
            10 Median
                            30
                                   Max
-55.659 -8.827
                 0.483
                         9.561 50.118
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  22.798064
                             1.287806 17.703 < 2e-16 ***
marqin
                   0.404200
                             0.026983 14.980 < 2e-16 ***
n0rders
                   0.220255
                             0.061347
                                        3.590 0.000334 ***
daysSinceLastOrder -0.017180
                             0.002675 -6.422 1.49e-10 ***
returnRatio
                  -1.992829
                            0.601214 -3.315 0.000925 ***
                  7.568686
                             0.677572 11.170 < 2e-16 ***
shareOwnBrand
shareVoucher
                  -1.750877
                             0.669017 -2.617 0.008900 **
                             0.691108 -4.258 2.11e-05 ***
shareSale
                  -2.942525
                   0.203813
                              0.430136
                                        0.474 0.635643
gendermale
                             0.017245 -0.879 0.379462
                  -0.015158
age
                            0.051160 -3.856 0.000117 ***
marginPerItem
                  -0.197277
itemsPerOrder
                  -0.270260
                              0.261458 -1.034 0.301354
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Let's practice!

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Model validation, model fit, and prediction

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

Verena Pflieger

Data Scientist at INWT Statistics

Coefficient of Determination ${\cal R}^2$

R^2 and F-test

summary(multipleLM2)

```
Residual standard error: 13.87 on 4179 degrees of freedom
```

Multiple R-squared: 0.3522, Adjusted R-squared: 0.3504

F-statistic: 206.5 on 11 and 4179 DF, p-value: < 2.2e-16

Overfitting

Methods to avoid overfitting

- AIC() from stats package
- stepAIC() from MASS package
- Out-of-sample model validation
- Cross-validation

•

AIC(multipleLM2)

33950.45

New dataset clvData2

head(clvData2)

```
# A tibble: 6 x 14
 customerID nOrders nItems daysSinceLastOrder margin returnRatio
            <int> <int>
                                     <int> <dbl>
                                                      <dbl>
      <int>
                16
                                                 0.18
                                         2 57.62
                                                 1.00
                                      124 29.69
                                      68 56.26
                                                 0.16
                                       103 58.84
                                                 0.03
                                       104 29.31
                                                       0.00
                      10
                                      41 35.72
                                                       0.06
#... with 8 more variables: shareOwnBrand <dbl>, shareVoucher <dbl>,
  shareSale <dbl>, gender <chr>, age <int>, marginPerOrder <dbl>,
  marginPerItem <dbl>, itemsPerOrder <dbl>
```

Prediction

 1
 2
 3
 4
 5
 6

 51.10204
 31.63335
 51.90008
 52.62200
 36.65194
 33.84383

```
mean(predMargin, na.rm = TRUE)
```

33.95147

Learnings linear regression

	Learnings Linear Regression	
You have learned	to predict the future customer lifetime value	
	to use a linear regression to model a continuous variable	
	that the variables for modelling and prediction have to carry the same names	

Learnings from the model

	Learnings from the Model	
You have learned	that the margin in one year is a good predictor for the margin in the following year	
	the longer the time since last order, the smaller the expected margin	
	characteristics like gender and age don't seem to play a role for the prediction of margin	
	etc	

Alright, hands on!

MACHINE LEARNING FOR MARKETING ANALYTICS IN R

