Identifying the best places to open a French restaurant in Nagoya

Business Approach

- Japan : French restaurants are popular
- □ Nagoya : one of the largest cities in Japan
 - > Nagoya = attractive place to open new French restaurant

▶Where?

Popularity = Income = Interest

Data Description Data Source

- Data source = Foursquare API
 - All venues in Nagoya with positions (including French restaurants)
- Problem : No data about venue popularity
- Data: Inside python pandas dataframes

Data Description Data

- Data collected:
 - > French restaurants
 - > Food-related restaurants
 - > Transport-related venues
 - > Long stay venues (Residence, Work, Education related venue)
 - > Short stay venues (Shops, Art, Nightlife, Recreation related venues)
- Data cleaning
 - > Remove duplicates

Methodology

- Fundamental Hypothesis:
 - ► Past shop owners chose the best places to open French restaurants
 - ► French restaurants are situated in areas suited for them
 - Finding areas like areas with French restaurants = finding good places to open new French restaurants

Model

Quantity to measure similarity = Similarity Distance:

```
similarity\ distance_i =
```

$$\sum_{j} a_1 (pfood_{fr,j} - pfood_{a,i})^2 + a_2 (ptrans_{fr,j} - pfood_{a,i})^2$$

- + $a_3 (plgstay_{fr,j} plgstay_{a,i})^2 + a_4 (pshstay_{fr,j} pshstay_{a,i})^2$
- + $a_5 (nvenues_{fr,j} nvenues_{a,i})^2$

Grid of Nagoya

- □ 30 * 30 grid
- One small circle ~ 330 meters
- Big red circle =
 encompasses all French
 restaurants (6
 kilometers)

Coordinate System

- □ For more speed without losing accuracy:
 - > New local cartesian coordinate system

$$x = R * (lgt - lgt_0) * cos lat_0$$
$$y = R * (lat - lat_0)$$

- □ R = Earth's radius
- \Box lgt = longitude of the point
- \Box $lgt_0 =$ longitude of the center of the system
- \Box *lat* = latitude of the point
- \Box $lat_0 = latitude$ of the center of the system

F1 Score

- ► For each area, calculate similarity distance
- Get number of areas with at least one French restaurant = nb_areas_with_fr
- Sort the areas by smallest similarity distance
- ► The *nb_areas_with_fr* areas with the smallest distances are predicted to have at least one French restaurants
- Compare reals and predicted French restaurants
- ► F1 score

Result

Vector

- \square Optimization algorithm to find best vector (a_1 , a_2 , a_3 , a_4 , a_5)
 - Least square method
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS) (scipy)
- Initial vector: (1, 1, 1, 1, 0.01)
 - □ Failed to obtain a better vector
 - □ Similarity distance function too complex (~80*5 + 900*5 independent variables)

Result Complete set, zoom

- Green = True Positive
- □ Red = False Positive
- Yellow = False Negative
- □ Blue = True Negative

Result Maps

Training Set F1 = 0.40625

Test Set F1 = 0.1212

Discussion

- true positive + false positive = real number of areas with French restaurant
- true negative + false negative = real number of areas without French restaurant
- F1 score ~ 0.4
 - Model is inaccurate
- Average F1 score of random model ~ 0.1
 - Model still far better than random
- Recommended areas to open French restaurants = areas with consecutive False
 Positives and without True Positives or False Negatives.

Conclusion

- Best areas for new French restaurants
 - > Look for areas like areas with French restaurants
- Data using Foursquare and pandas (python)
 - > French restaurant, food, transport, long stay, short stay
- Similarity distance
 - Bad : F1 score = ~0.4
 - But good enough for pedagogic purposes
- Improvements
 - Data about popularity, visits
 - Different radius, different initial vector, model

Thank you for reading this presentation