답 러닝을 활용한 음악 Beat Note 자동생성 서비스가 있는 VR 리듬게임 Beat Make & Crush Team VRR

VR rhythm game with Beat Note automatic generation service using deep learning

박영준

01 필요한 기술 Requirement

무엇이 필요할까?

input – 음원 output - 게임에 필요한 Beat Note

딥러닝

02 딥러닝 라이브러리 Deep Learning Library - Keras

케라스(Keras)란?

Keras: The Python Deep Learning library

케라스는 파이썬으로 구현된 쉽고 간결한 딥러닝 라이브러리

내부적으로는 텐서플로우(TensorFlow), 티아노(Theano), CNTK 등의 딥러닝 전용 엔진이 구동되지만 케라스 사용자는 복잡한 내부 엔진을 알 필요는 없습니다. 직관적인 API로쉽게 다층퍼셉트론 모델, 컨볼루션 신경망 모델, 순환 신경망 모델 또는 이를 조합한 모델은 물론 다중 입력 또는 다중 출력 등 다양한 구성을 할 수 있습니다.

케라스 기본 개념

케라스의 핵심적인 데이터 구조는 모델

케라스에서 제공하는 시퀀스 모델로 원하는 레이어를 쉽게 순차적으로 쌓을 수 있습니다. 다중 출력이 필요하는 등 좀 더 복잡한 모델을 구성하려면 케라스 함수 API를 사용하면 됩니다

데이터셋 생성하기 모델 구성하기

모델 학습과정 설정하기

모델 학습 시키기

학습과정 살펴보기

모델 평가하기

모델 사용하기

케라스 기본 개념

케라스에서 제공하는 시퀀스 모델 필요하는 등 좀 더 복잡한 모델을

데이터셋 생성하기 구성하기

도 학습 설정

```
# 0. 사용할 패키지 불러오기
from keras.utils import np utils
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Activation
(x train, y train), (x test, y test) = mnist.load data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255.0
x_{\text{test}} = x_{\text{test.reshape}}(10000, 784).astype('float32') / 255.0
y train = np utils.to categorical(y train)
y_test = np_utils.to_categorical(y_test)
model = Sequential()
model.add(Dense(units=64, input dim=28*28, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
hist = model.fit(x_train, y_train, epochs=5, batch_size=32)
print('## training loss and acc ##')
print(hist.history['loss'])
```


02

데이터 셋

자료의 집합 – 모델을 학습시키기 위한 자료들

학습 셋 vs 테스트 셋

과적합(Over Fitting)

모델이 학습 데이터셋 안에서는 일정 수준 이상의 예측 정확도를 보이지만 새로운 데이터에 적용하면 잘 맞지 않는 것

두 그룹 정확히 나누기 불가능!

데이터 셋을 학습셋과 테스트셋으로 분리

학습 데이터 셋만으로 평가한 예측 성공률이 높아 져도 테스트 셋에서 효과가 없음 -> 과적합

02

데이터 셋

VRR 지도 학습(Supervised Learning) Flow Chart

Directory structure

- -Cover.jpg
- -info.dat
- -Normal.dat
- -Hard.dat
- -Expert.dat
- -song.egg

🧐 Hard.dat - 메모장 파일(F) 편집(E) 서식(O) 보기(V) 도움말(H) {" version":"2.0.0"," BPMChanges":[]," events":[{" time":0," type":4," value":3},{" time":1," ty {"_time":28,"_type":4,"_value":3},{"_time":28.75,"_type":1,"_value":7},{"_time":29.5,"_type":1,"_value":7}, _value":3},{"_time":60.75,"_type":0,"_value":3},{"_time":61.5,"_type":0,"_value":3},{"_time":61.5, 5,"_type":1,"_value":7},{"_time":76,"_type":1,"_value":7},{"_time":76,"_type":9,"_value":0},{"_time 94,"_type":1,"_value":7},{"_time":94.75,"_type":1,"_value":7},{"_time":95.5,"_type":1,"_value":7}, " value":7},{" time":116," type":9," value":0},{" time":116," type":8," value":0},{" time":120," }{" time":138," type":3," value":2},{" time":138.25," type":2," value":2},{" time":138.25," type type":3," value":5},{"_time":156,"_type":0,"_value":1},{"_time":156,"_type":1,"_value":1},{"_time _value":0},{"_time":176,"_type":3,"_value":0},{"_time":176,"_type":0,"_value":0},{"_time":176,"_ ,"_value":0},{"_time":192,"_type":9,"_value":0},{"_time":192,"_type":0,"_value":1},{"_time":192,"_ 1,"_value":3},{"_time":210,"_type":0,"_value":7},{"_time":210,"_type":1,"_value":7},{"_time":210."

Mormal.dat - 메모장

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)

{"_version":"2.0.0","_BPMChanges":[],"_events":[{"_time":0,"_type":4,"_value":3},{"_time":1,"_ty {"_time":28,"_type":4,"_value":3},{"_time":28.75,"_type":1,"_value":7},{"_time":29.5,"_type":1,"_v value":3},{" time":60.75," type":0," value":3},{" time":61.5," type":0," value":3},{" time":61.5, 5,"_type":1,"_value":7},{"_time":76,"_type":1,"_value":7},{"_time":76,"_type":8,"_value":0},{"_time":76,"_type 94,"_type":1,"_value":7},{"_time":94.75,"_type":1,"_value":7},{"_time":95.5,"_type":1,"_value":7}, " value":0},{" time":116," type":9," value":0},{" time":116," type":1," value":7},{" time":120," },{"_time":138,"_type":3,"_value":2},{"_time":138.25,"_type":1,"_value":6},{"_time":138.25,"_type _type":0,"_value":1},{"_time":156,"_type":3,"_value":5},{"_time":156,"_type":2,"_value":5},{"_time " value":0},{" time":176," type":2," value":0},{" time":176," type":1," value":2},{" time":176,"

 \times

Beat Saber note 분석

```
강남스타일 expart.dat 분석
" version":"2.0.0",
/*배경 효과 이벤트*/
"_events":[{"_time":0,"_type":0,"_value":1}....]
          시간
time
    배경변화 유형
type
          배경 값
value
/*배치된 비트 노트에 관한 데이터*/
" notes":[{" time":5," lineIndex":2," lineLayer":0," type":1," cutDire
ction":1}.....]
           시간
time
lineindex 좌우위치 (왼쪽부터 0123)
lineLayer 상하위치 (밑에서부터 012)
type 노트 색 (빨: 0, 파: 1)
cutdirection 자르는 방향
           (아래 : 0 위 : 1 오른쪽 : 2 왼쪽 : 3 대각선 : 4, 5, 6, 7)
```

```
/*장애물에 관한 데이터*/
"_obstacles":[{"_time":39.75, "_lineIndex":2, "_type":0,
"_duration":1.5, "_width":2}….]
time 시간
lineindex 시작위치
type 장애물 유형
duration 지속시간
width 장애물 넓이
```

Next beat Prediction (다음 비트 예측)

[(문제):

(Current Rhythm, 현재 비트, Next Rhythm) 그렇다면, 다음 비트 값은?

(정답): 다음 비트]

Beat Legend ((time), lineIndex, lineLayer, type, cutDirection)

VR Rhythm game beat maker using deep learning