

Niels Henrik Abels matematikkonkurranse 2010–2011. *Løsninger*

Første runde 4. november 2010

Oppgave 1. Alle tallene er mindre enn 1/2, unntatt 1/(3/2) = 2/3. **D**

Oppgave 3. Hvis linjestykker trekkes fra sentrum til hvert hjørne, deles sekskantene inn i likesidede trekanter med sidelengde 1. Linjestykket som går mellom sentrene, og tre av sidene i trekantene, danner en rettvinklet trekant med hypotenus av lengde 2 og katet av lengde 1

(se figur). Pytagoras' setning gir avstand $\sqrt{2^2-1^2}=\sqrt{3}$ mellom sentrene. **E**

Oppgave 8. La S og S' være sentrene i sirklene og A og B skjæringspunktene. Firkanten ASBS' er en rombe med sidelengde 1, og fordi diagonalen SS' har lengde $\sqrt{2} = \sqrt{1^2 + 1^2}$, følger det av Pytagoras' setning at romben er et kvadrat (diagonalen ville ha vært kortere eller lengre hvis vinkelen A ikke hadde vært rett). Summen av arealene av kvartsirklene ASB og AS'B er summen

Oppgave 9. La de små rettvinklede, likebeinte trekantene som dannes, ha kateter av lengde x. Ved Pytagoras' setning har hypotenusen lengde $\sqrt{2}x$. Sidene i kvadratene deles inn i linjestykker som består av to kateter og en hypotenus, slik at $1=2x+\sqrt{2}x$, som gir $x=1/(2+\sqrt{2})=(2-\sqrt{2})/(4-2)=1-\sqrt{2}/2$. Arealet av stjernen er arealet av et enhetskvadrat pluss arealet av fire trekanter, $1+4\cdot\frac{1}{2}x^2=1+2(1-\sqrt{2}/2)^2=1+2(1-\sqrt{2}+\frac{1}{2})=4-2\sqrt{2}$.

Oppgave 10. Vi har $a/c = (a/b)(b/c) = 2 \cdot 5 = 10$. Da er $(a^2 + b^2 + c^2)/(ac) = a/c + b^2/(ac) + c/a = a/c + (b/c)/(a/b) + 1/(a/c) = 10 + 5/2 + 1/10 = 12,6$.

Oppgave 13. Det kan være 1, 2 eller 3 styremedlemmer i komiteen. Disse kan velges på henholdsvis 3 måter, 3 måter eller 1 måte. De øvrige medlemmene kan velges på henholdsvis $7 \cdot 6/2 = 21$ måter (den ene kan velges blant de 7 som ikke er styremedlemmer, den andre blant de 6 resterende, men da har vi telt alle par to ganger – derfor deler vi med 2), 7 måter eller 1 måte (nemlig ingen øvrige medlemmer). Til sammen kan komiteen settes sammen

på $3 \cdot 21 + 3 \cdot 7 + 1 = 85$ måter. (Vi kan også tenke slik: Det er $10 \cdot 9 \cdot 8/6$
mulige komiteer, der vi har delt med 6 fordi 6 ulike rekkefølger av valg av de
tre gir samme komité, og $7 \cdot 6 \cdot 5/6$ mulige komiteer valgt blant de som ikke
er styremedlemmer. Differansen er 85.)

Oppgave 14. Hvis n(n-1) er delelig med $2010 = 2 \cdot 3 \cdot 5 \cdot 67$, er n eller n-1 delelig med 67, siden 67 er et primtall. De minste mulighetene for n er derfor n = 67, 68, 134 eller 135. Men på samme måte er n eller n - 1 delelig med 5, så det utelukker de tre første mulighetene. Derimot er $135 \cdot 134 =$ $(5 \cdot 3 \cdot 9) \cdot (67 \cdot 2) = 9 \cdot 2010.$

Oppgave 15. Vi kan velge den felles siden på 16 måter. De to siste hjørnene i firkanten kan velges blant 12 hjørner (vi kan ikke velge de to hjørnene i kanten vi allerede har valgt, eller de to nabohjørnene på hver side av kanten). Dette kan gjøres på $12 \cdot 11/2 = 66$ måter (vi deler med 2 fordi to ordnede par av hjørner definerer samme kant). Men da har vi fått med 11 par av hjørner der begge hjørnene hører til samme kant i 16-kanten. Så det totale antall firkanter med nøyaktig én side felles med 16-kanten er $16 \cdot (66-11) = 880$. E

Oppgave 16. Bokstavene eimm kan oppta 4 av 10 plasser. Det er 10 muligheter for plassering av e. For hver av disse mulighetene er det 9 muligheter for i, til sammen 10.9 muligheter. Videre er det 8 og 7 muligheter for m-ene, til sammen $10 \cdot 9 \cdot 8 \cdot 7/2 = (10 \cdot 7/2) \cdot (9 \cdot 8) = 35 \cdot 72$ muligheter (vi har delt med 2 fordi to plasseringer av første og andre m gir samme ord). Resten av bokstavene, aakktt, plasseres i denne rekkefølgen på de ledige plassene. ...c

Oppgave 17. Sentrum i sirklene, det ene ytre hjørnet i kvadratet og midtpunktet på den ytre siden av kvadratet er hjørnene i en rettvinklet trekant. Hvis siden i kvadratet har lengde x, har katetene

lengder 1 + x og x/2, mens hypotenusen har lengde $\sqrt{2}$. Pytagoras' setning gir $(1+x)^2 + x^2/4 = 2$, eller $5x^2 + 8x - 4 = 0$, som har positiv løsning x = 2/5. Arealet av kvadratet er $x^2 = 4/25$

Oppgave 18. Hvis de deler med 2, 10 og 30, får de 1005, 201 og 67, som har sum 1273. Hvis de deler med 3, 5 og 10, får de 670, 402 og 201, som også har sum 1273. Summen av de tre tallene de deler med blir 42 i det første tilfellet og 18 i det andre. Så ut fra opplysningene i oppgaven er det umulig å avgjøre

Oppgave 19. Pyramiden består av en bakre trekant, to sidetrekanter, en fremre trekant og en bunnflate. Den bakre trekanten har grunnlinje og høyde 1, og areal 1/2. Sidetrekantene har grunnlinje 1, og høyden er lengden av sidekanten i den bakre, likebeinte trekanten, $\sqrt{5}/2$ ved Pytagoras' setning, slik at arealet av de to sidetrekantene til sammen er $\sqrt{5}/2$. Den fremre trekanten har grunnlinje 1 og

Oppgave 20. La a, b, c, d og e være antall sopper henholdsvis Anne, Bjørn, Celine, Dag og Erik plukker. Da sier opplysningene i oppgaven at a+b=c+d, b+d>a+c, a+c>d+e og e+c>d+a. Likningen og første ulikhet kan skrives som d-a=b-c>-(d-a), og dermed er d-a>0 (hvis x>-x, er x>0), slik at b>c og d>a. Ved å sette sammen første og andre ulikhet, får vi også b>e. Så b eller d er størst (eller b og d er like store). Addisjon av likningen og siste ulikhet, sammen med b>e, gir 2b>b+e>2d, slik at b>d.

Fasit

	 i		
1	D	11	В
2	С	12	D
3	E	13	D
4	С	14	D
5	С	15	E
6	D	16	С
7	В	17	В
8	В	18	E
9	Α	19	В
10	E	20	В

Hvis denne sida kopieres over på en transparent, så fungerer tabellen til venstre som en rettemal.