Модуль №5. Инновации в технологии устройства инженерных систем и сетей. Показатели и критерии качества устройства инженерных систем и сетей

5.1 Устройство внутренних инженерных систем и оборудования зданий и сооружений

Монтаж внутренних санитарно-технических систем и котельных необходимо выполнять индустриальными методами из узлов трубопроводов, воздуховодов и оборудования, поставляемых комплектно крупными блоками.

При монтаже покрытий промышленных зданий из крупных блоков вентиляционные и другие санитарно-технические системы следует монтировать в блоках до установки их в проектное положение.

Монтаж санитарно-технических систем следует производить при строительной готовности объекта (захватки) в объеме:

- -для промышленных зданий все здание при объеме до 5000 куб.м и часть здания при объеме свыше 5000 куб.м, включающая по признаку расположения отдельное производственное помещение, цех, пролет и т. д. или комплекс устройств (в том числе внутренние водостоки, тепловой пункт, систему вентиляции, один или несколько кондиционеров и т. д.);
- -для жилых и общественных зданий до пяти этажей отдельное здание, одна или несколько секций; свыше пяти этажей 5 этажей одной или нескольких секций.

До начала монтажа внутренних санитарно-технических систем генеральным подрядчиком должны быть выполнены следующие работы:

- -монтаж междуэтажных перекрытий, стен и перегородок, на которые будет устанавливаться санитарно-техническое оборудование;
- -устройство фундаментов или площадок для установки котлов, водоподогревателей, насосов, вентиляторов, кондиционеров, дымососов, калориферов и другого санитарнотехнического оборудования;
 - -возведение строительных конструкций вентиляционных камер приточных систем;
- -устройство гидроизоляции в местах установки кондиционеров, приточных вентиляционных камер, мокрых фильтров;
- -устройство траншей для выпусков канализации до первых от здания колодцев и колодцев с лотками, а также прокладка вводов наружных коммуникаций санитарно-технических систем в здание;
- -устройство полов (или соответствующей подготовки) в местах установки отопительных приборов на подставках и вентиляторов, устанавливаемых на пружинных виброизоляторах, а также "плавающих" оснований для установки вентиляционного оборудования;
- -устройство опор для установки крышных вентиляторов, выхлопных шахт и дефлекторов на покрытиях зданий, а также опор под трубопроводы, прокладываемые в подпольных каналах и технических подпольях;
- -подготовка отверстий, борозд, ниш и гнезд в фундаментах, стенах, перегородках, перекрытиях и покрытиях, необходимых для прокладки трубопроводов и воздуховодов;
- -нанесение на внутренних и наружных стенах всех помещений вспомогательных отметок, равных проектным отметкам чистого пола плюс 500 мм;
 - -установка оконных коробок, а в жилых и общественных зданиях подоконных досок;
- -оштукатуривание (или облицовка) поверхностей стен и ниш в местах установки санитарных и отопительных приборов, прокладки трубопроводов и воздуховодов, а также оштукатуривание поверхности борозд для скрытой прокладки трубопроводов в наружных стенах;
- –подготовка монтажных проемов в стенах и перекрытиях для подачи крупногабаритного оборудования и воздуховодов;
- -установка в соответствии с рабочей документацией закладных деталей в строительных конструкциях для крепления оборудования, воздуховодов и трубопроводов;
- -обеспечение возможности включения электроинструментов, а также электросварочных аппаратов на расстоянии не более 50 м один от другого;
 - -остекление оконных проемов в наружных ограждениях, утепление входов и отверстий.

Общестроительные, санитарно-технические и другие специальные работы следует выполнять в санитарных узлах в следующей очередности:

- -подготовка под полы, оштукатуривание стен и потолков, устройство маяков для установки трапов;
- -установка средств крепления, прокладка трубопроводов и проведение их гидростатического или манометрического испытания;
 - -гидроизоляция перекрытий;
 - -огрунтовка стен, устройство чистых полов;
 - -установка ванн, кронштейнов под умывальники и деталей крепления смывных бачков;
 - -первая окраска стен и потолков, облицовка плитками;
 - -установка умывальников, унитазов и смывных бачков;
 - -вторая окраска стен и потолков;
 - -установка водоразборной арматуры.

Строительные, санитарно-технические и другие специальные работы в вентиляционных камерах необходимо выполнять в следующей очередности:

- -подготовка под полы, устройство фундаментов, оштукатуривание стен и потолков;
- -устройство монтажных проемов, монтаж кран-балок;
- -работы по устройству вентиляционных камер;
- -гидроизоляция перекрытий;
- -установка калориферов с обвязкой трубопроводами;
- -монтаж вентиляционного оборудования и воздуховодов и другие санитарно-технические, а также электромонтажные работы;
 - -испытание наливом водой поддона камеры орошения;
 - -изоляционные работы (тепло- и звукоизоляция);
- -отделочные работы (в том числе заделка отверстий в перекрытиях, стенах и перегородках после прокладки трубопроводов и воздуховодов);
 - -устройство чистых полов.

При монтаже санитарно-технических систем и проведении смежных общестроительных работ не должно быть повреждений ранее выполненных работ.

Размеры отверстий и борозд для прокладки трубопроводов в перекрытиях, стенах и перегородках зданий и сооружений принимаются в соответствии с рекомендуемым приложением 5, если другие размеры не предусмотрены проектом.

Сварку стальных труб следует производить любым способом, регламентированным стандартами.

Типы сварных соединений стальных трубопроводов, форма, конструктивные размеры сварного шва должны соответствовать требованиям ГОСТ 16037-80.

Сварку оцинкованных стальных труб следует осуществлять самозащитной проволокой марки Св-15ГСТЮЦА с Се по ГОСТ 2246-70 диаметром 0,8-1,2 мм или электродами диаметром не более 3 мм с рутиловым или фтористо-кальциевым покрытием, если применение других сварочных материалов не согласовано в установленном порядке.

Соединение оцинкованных стальных труб, деталей и узлов сваркой при монтаже и на заготовительном предприятии следует выполнять при условии обеспечения местного отсоса токсичных выделений или очистки цинкового покрытия на длину 20 - 30 мм со стыкуемых концов труб с последующим покрытием наружной поверхности сварного шва и околошовной зоны краской, содержащей 94 % цинковой пыли (по массе) и 6 % синтетических связующих веществ (полистерина, хлорированного каучука, эпоксидной смолы).

При сварке стальных труб, деталей и узлов следует выполнять требования ГОСТ 12.3.003-75.

Соединение стальных труб (неоцинкованных и оцинкованных), а также их деталей и узлов диаметром условного прохода до 25 мм включительно на объекте строительства следует производить сваркой внахлестку (с раздачей одного конца трубы или безрезьбовой муфтой). Стыковое соединение труб диаметром условного прохода до 25 мм включительно допускается

выполнять на заготовительных предприятиях.

При сварке резьбовые поверхности и поверхности зеркала фланцев должны быть защищены от брызг и капель расплавленного металла.

В сварном шве не должно быть трещин, раковин, пор, подрезов, незаваренных кратеров, а также пережогов и подтеков наплавленного металла.

Отверстия в трубах диаметром до 40 мм для приварки патрубков необходимо выполнять, как правило, путем сверления, фрезерования или вырубки на прессе.

Диаметр отверстия должен быть равен внутреннему диаметру патрубка с допускаемыми отклонениями +1 мм.

Монтаж санитарно-технических систем в сложных, уникальных и экспериментальных зданиях следует выполнять по требованиям настоящих правил и особым указаниям рабочей документации.

Изготовление узлов и деталей трубопроводов из стальных труб

Изготовление узлов и деталей трубопроводов из стальных труб следует производить в соответствии с техническими условиями и стандартами. Допуски на изготовление не должны превышать величин, указанных в табл. 1 СНиП 3.05.01-85.

Соединение стальных труб, а также деталей и узлов из них следует выполнять на сварке, резьбе, накидных гайках и фланцах (к арматуре и оборудованию).

Оцинкованные стальные трубы, узлы и детали должны соединяться, как правило, на резьбе с применением оцинкованных стальных соединительных частей или неоцинкованных из ковкого чугуна, на накидных гайках и фланцах (к арматуре и оборудованию).

Для резьбовых соединений стальных труб следует применять цилиндрическую трубную резьбу, выполняемую по ГОСТ 6357-81(класс точности В) накаткой на легких трубах и нарезкой на обыкновенных и усиленных.

При изготовлении резьбы методом накатки на трубе допускается уменьшение ее внутреннего диаметра до 10 % по всей длине резьбы.

Повороты трубопроводов в системах отопления и теплоснабжения следует выполнять путем изгиба труб или применения бесшовных приварных отводов из углеродистой стали по ГОСТ 17375-83.

В системах холодного и горячего водоснабжения повороты трубопроводов следует выполнять путем установки угольников по ГОСТ 8946-75, отводов или изгиба труб. Оцинкованные трубы следует гнуть только в холодном состоянии.

Для труб диаметром 100 мм и более допускается применение гнутых и сварных отводов. Минимальный радиус этих отводов должен быть не менее полуторного условного прохода трубы.

При гибке сварных труб сварной шов следует располагать с наружной стороны трубной заготовки и под углом не менее 45 град. к плоскости гиба.

Подварка сварного шва на изогнутых участках труб в нагревательных элементах отопительных панелей не допускается.

При сборке узлов резьбовые соединения должны быть уплотнены.

В качестве уплотнителя для резьбовых соединений при температуре перемещаемой среды до 378 К (105° С) включительно следует применять ленту из фторопластового уплотнительного материала (Φ УМ) или льняную прядь, пропитанную свинцовым суриком или белилами, замешенными на олифе.

В качестве уплотнителя для резьбовых соединений при температуре перемещаемой среды выше 378 К (105°С) и для конденсационных линий следует применять ленту ФУМ или асбестовую прядь вместе с льняной прядью, пропитанные графитом, замешенным на олифе.

Лента ФУМ и льняная прядь должны накладываться ровным слоем по ходу резьбы и не выступать внутрь и наружу трубы.

В качестве уплотнителя для фланцевых соединений при температуре перемещаемой среды не более 423 К (150град.С) следует применять паронит толщиной 2-3 мм или фторопласт-4, а при температуре не более 403 К (130°С) - прокладки из термостойкой резины.

Для резьбовых и фланцевых соединений допускаются и другие уплотнительные материалы, обеспечивающие герметичность соединений при проектной температуре теплоносителя и согласованные в установленном порядке.

Фланцы соединяются с трубой сваркой.

Отклонение от перпендикулярности фланца, приваренного к трубе, по отношению к оси трубы допускается до 1 % наружного диаметра фланца, но не более 2 мм.

Поверхность фланцев должна быть гладкой и без заусенцев.

Головки болтов следует располагать с одной стороны соединения.

На вертикальных участках трубопроводов гайки необходимо располагать снизу.

Концы болтов, как правило, не должны выступать из гаек более чем на 0,5 диаметра болта или 3 шага резьбы.

Конец трубы, включая шов приварки фланца к трубе, не должен выступать за зеркало фланца.

Прокладки во фланцевых соединениях не должны перекрывать болтовых отверстий.

Установка между фланцами нескольких или скошенных прокладок не допускается.

Отклонения линейных размеров собранных узлов не должны превышать ± 3 мм при длине до 1 м и ± 1 мм на каждый последующий метр.

Узлы санитарно-технических систем должны быть испытаны на герметичность на месте их изготовления.

Узлы трубопроводов систем отопления, теплоснабжения, внутреннего холодного и горячего водоснабжения, в том числе и предназначенные для заделки в отопительные панели, вентили, краны, задвижки, грязевики, воздухосборники, элеваторы и т. п. необходимо подвергать испытанию гидростатическим (гидравлическим) или пузырьковым (пневматическим) методом в соответствии с ГОСТ 25136-82 и ГОСТ 24054-80.

Если при испытании на трубопроводе появилась роса, то испытание следует продолжить после ее высыхания или вытирания.

Узлы канализации из стальных труб и смывные трубы к высокорасполагаемым бачкам следует выдерживать под пробным избыточным давлением $0,2\,\mathrm{M\Pi a}$ (2 кгс/кв.см) в течение не менее 3 мин.

Падение давления при испытаниях не допускается.

Выдержавшими испытание считаются узлы из стальных труб санитарно-технических систем, на поверхности и в местах соединения которых не появятся капли, пятна воды и не произойдет падения давления.

Выдержавшими испытание считаются вентили, задвижки и краны, если на поверхности и в местах уплотнительных устройств после двукратного поворота регулирующих устройств (перед испытанием) не появятся капли воды.

При пузырьковом методе испытания на герметичность узлы трубопровода заполняют воздухом с избыточным давлением $0,15\,$ МПа $(1,5\,$ кгс/кв.см), погружают в ванну с водой и выдерживают не менее $30\,$ с.

Выдержавшими испытание считаются узлы, при испытании которых не появятся пузырьки воздуха в ванне с водой.

Обстукивание соединений, поворот регулирующих устройств и устранение дефектов во время испытаний не допускаются.

Наружная поверхность узлов и деталей из неоцинкованных труб, за исключением резьбовых соединений и поверхности зеркала фланца, на заводе-изготовителе должна быть покрыта грунтовкой, а резьбовая поверхность узлов и деталей - антикоррозионной смазкой в соответствии с требованиями ТУ 36-808-85.

Изготовление узлов систем канализации

Перед сборкой в узлы следует проверить качество чугунных канализационных труб и фасонных частей путем внешнего осмотра и легкого обстукивания деревянным молотком.

Отклонение от перпендикулярности торцов труб после обрубки не должно превышать 3

град.

На концах чугунных труб допускаются трещины длиной не более 15 мм и волнистость кромок не более 10 мм.

Перед заделкой стыков концы труб и раструбы должны быть очищены от грязи.

Стыки чугунных канализационных труб должны быть уплотнены пропитанным пеньковым канатом по ГОСТ 483-75 или пропитанной ленточной паклей по ГОСТ 16183-77 с последующей заливкой расплавленной комовой или молотой серой по ГОСТ 127-76 с добавлением обогащенного каолина по ГОСТ 19608-84, или гипсоглиноземистым расширяющимся цементом по ГОСТ 11052-74, или другими уплотнительными и заполняющими стык материалами, согласованными в установленном порядке.

Раструбы труб, предназначенных для пропуска агрессивных сточных вод, следует уплотнять просмоленным пеньковым канатом или пропитанной ленточной паклей с последующей заливкой кислотоупорным цементом или иным материалом, стойким к агрессивному воздействию, а в ревизиях - устанавливать прокладки из тепломорозокислотощелочестойкой резины марки ТМКЩ по ГОСТ 7338-77.

Отклонения линейных размеров узлов из чугунных канализационных труб от деталировочных чертежей не должны превышать ± 10 мм.

Узлы системы канализации из пластмассовых труб следует изготовлять в соответствии с CH 478-80.

Изготовление металлических воздуховодов

Воздуховоды и детали вентиляционных систем должны быть изготовлены в соответствии с рабочей документацией и утвержденными в установленном порядке техническими условиями.

Воздуховоды из тонколистовой кровельной стали диаметром и размером большей стороны до 2000 мм следует изготовлять спирально-замковыми или прямошовными на фальцах, спирально-сварными или прямошовными на сварке, а воздуховоды, имеющие размер стороны более 2000 мм, - панельными (сварными, клеесварными).

Воздуховоды из металлопласта следует изготовлять на фальцах, а из нержавеющей стали, титана, а также из листового алюминия и его сплавов - на фальцах или на сварке.

Стальные листы толщиной менее 1,5 мм следует сваривать внахлестку, а толщиной 1,5-2 мм внахлестку или встык. Листы толщиной свыше 2 мм должны свариваться встык.

Для сварных соединений прямых участков и фасонных частей воздуховодов из тонколистовой кровельной и нержавеющей стали следует применять следующие способы сварки: плазменную, автоматическую и полуавтоматическую дуговую под слоем флюса или в среде углекислого газа, контактную, роликовую и ручную дуговую.

Для сварки воздуховодов из листового алюминия и его сплавов следует применять следующие способы сварки:

- -аргонодуговую автоматическую плавящимся электродом;
- -аргонодуговую ручную неплавящимся электродом с присадочной проволокой;
- -газовую.

Для сварки воздуховодов из титана следует применять аргонодуговую сварку плавящимся электродом.

Воздуховоды из листового алюминия и его сплавов толщиной до 1,5 мм следует выполнять на фальцах, толщиной от 1,5 до 2 мм - на фальцах или сварке, а при толщине листа более 2 мм - на сварке.

Продольные фальцы на воздуховодах из тонколистовой кровельной и нержавеющей стали и листового алюминия диаметром или размером большей стороны 500 мм и более должны быть закреплены в начале и конце звена воздуховода точечной сваркой, электрозаклепками, заклепками или кляммерами.

Фальцы на воздуховодах при любой толщине металла и способе изготовления должны осуществляться с отсечкой.

Концевые участки фальцевых швов в торцах воздуховодов и в воздухораспределительных

отверстиях воздуховодов из металлопласта должны быть закреплены алюминиевыми или стальными заклепками с оксидным покрытием, обеспечивающим эксплуатацию в агрессивных средах, определенных рабочей документацией.

Фальцевые швы должны иметь одинаковую ширину по всей длине и быть равномерно плотно осажены.

В фальцевых воздуховодах, а также в картах раскроя не должно быть крестообразных соединений швов.

На прямых участках воздуховодов прямоугольного сечения при стороне сечение более 400 мм следует выполнять жесткости в виде зигов с шагом 200-300 мм по периметру воздуховода или диагональные перегибы (зиги). При стороне более 1000 мм, кроме того, нужно ставить наружные или внутренние рамки жесткости, которые не должны выступать внутрь воздуховода более чем на 10 мм. Рамки жесткости должны быть надежно закреплены точечной сваркой, электрозаклепками или заклепками.

На воздуховоды из металлопласта рамки жесткости должны устанавливаться с помощью алюминиевых или стальных заклепок с оксидным покрытием, обеспечивающим эксплуатацию в агрессивных средах, определенных рабочей документацией.

Элементы фасонных частей следует соединять между собой на зигах, фальцах, сварке, заклепках.

Элементы фасонных частей из металлопласта следует соединять между собой на фальцах.

Зиговые соединения для систем, транспортирующих воздух повышенной влажности или с примесью взрывоопасной пыли, не допускаются.

Соединение участков воздуховодов следует выполнять бесфланцевым способом или на фланцах. Соединения должны быть прочными и герметичными.

Закрепление фланцев на воздуховодах следует выполнять отбортовкой с упорным зигом, на сварке, точечной сваркой или на заклепках диаметром 4-5 мм, размещаемых через 200-250 мм, но не менее чем четырьмя заклепками.

Закрепление фланцев на воздуховодах из металлопласта следует выполнять отбортовкой с упорным зигом.

В воздуховодах, транспортирующих агрессивную среду, закрепление фланцев с помощью зигов не допускается.

При толщине стенки воздуховода более 1 мм фланцы допускается насаживать на воздуховод без отбортовки закреплением прихватками электродуговой сваркой с последующей герметизацией зазора между фланцем и воздуховодом.

Отбортовку воздуховодов в местах установки фланцев следует выполнять с таким расчетом, чтобы отогнутый борт не закрывал отверстий для болтов во фланцах.

Фланцы устанавливаются перпендикулярно оси воздуховода.

Регулирующие приспособления (шиберы, дроссель-клапаны, заслонки, регулирующие органы воздухораспределителей и др.) должны легко закрываться и открываться, а также фиксироваться в заданном положении.

Движки шиберов должны плотно прилегать к направляющим и свободно перемещаться в них.

Ручка управления дроссель-клапана должна устанавливаться параллельно его полотну.

Воздуховоды, изготовленные из неоцинкованной стали, их соединительные крепежные детали (включая внутренние поверхности фланцев) должны быть огрунтованы (окрашены) на заготовительном предприятии в соответствии с проектом (рабочим проектом).

Окончательная окраска наружной поверхности воздуховодов производится специализированными строительными организациями после их монтажа.

Вентиляционные заготовки должны быть укомплектованы деталями для их соединения и средствами крепления.

Комплектация и подготовка к установке санитарно-технического оборудования, отопительных приборов, узлов и деталей трубопроводов

Узлы и детали из труб для санитарно-технических систем должны транспортироваться на

объекты в контейнерах или пакетах и иметь сопроводительную документацию.

К каждому контейнеру и пакету должна быть прикреплена табличка с маркировкой упакованных узлов в соответствии с действующими стандартами и техническими условиями на изготовление изделий.

Не установленные на деталях и в узлах арматура, приборы автоматики, контрольноизмерительные приборы, соединительные части, средства крепления, прокладки, болты, гайки, шайбы и т. п. должны упаковываться отдельно, при этом в маркировке контейнера должны указываться обозначения или наименования этих изделий.

Чугунные секционные котлы следует поставлять на строительные объекты блоками или пакетами, предварительно собранными и испытанными на заводах-изготовителях или на заготовительных предприятиях монтажных организаций.

Водоподогреватели, калориферы, насосы, центральные и индивидуальные тепловые пункты, водомерные узлы следует поставлять на строящиеся объекты транспортабельными монтажно-комплектными блоками со средствами крепления, трубной обвязкой, с запорной арматурой, прокладками, болтами, гайками и шайбами.

Секции чугунных радиаторов следует собирать в приборы на ниппелях с применением уплотняющих прокладок:

-из термостойкой резины толщиной 1,5 мм при температуре теплоносителя до 403 К (130°C);

-из паронита толщиной от 1 до 2 мм при температуре теплоносителя до 423 К (150° C).

Перегруппированные чугунные радиаторы или блоки чугунных радиаторов и ребристых труб должны быть испытаны гидростатическим методом давлением 0,9 МПа (9 кгс/кв.см) или пузырьковым методом давлением 0,1 МПа (1 кгс/кв.см). Результаты пузырьковых испытаний не являются основанием для предъявления рекламаций по качеству заводам - изготовителям чугунных отопительных приборов.

Блоки стальных радиаторов должны быть испытаны пузырьковым методом давлением 0,1 МПа (1 кгс/кв.см).

Блоки конвекторов должны быть испытаны гидростатическим методом давлением 1,5 МПа (15 кгс/кв.см) или пузырьковым методом давлением 0,15 МПа (1,5 кгс/кв.см).

Порядок испытания должен соответствовать требованиям пп. 2.9-2.12 СНиП 3.05.01-85.

После испытания вода из блоков отопительных приборов должна быть удалена.

Отопительные панели после гидростатического испытания должны быть продуты воздухом, а их присоединительные патрубки закрыты инвентарными заглушками.

Монтажные работы

Соединение оцинкованных и неоцинкованных стальных труб при монтаже следует выполнять в соответствии с требованиями разделов 1 и 2 СНиП 3.05.01-85.

Разъемные соединения на трубопроводах следует выполнять у арматуры и там, где это необходимо по условиям сборки трубопроводов.

Разъемные соединения трубопроводов, а также арматура, ревизии и прочистки должны располагаться в местах, доступных для обслуживания.

Вертикальные трубопроводы не должны отклоняться от вертикали более чем на 2 мм на 1м длины.

Неизолированные трубопроводы систем отопления, теплоснабжения, внутреннего холодного и горячего водоснабжения не должны примыкать к поверхности строительных конструкций.

Расстояние от поверхности штукатурки или облицовки до оси неизолированных трубопроводов при диаметре условного прохода до 32 мм включительно при открытой прокладке должно составлять от 35 до 55 мм, при диаметрах 40-50 мм - от 50 до 60 мм, а при диаметрах более 50 мм - принимается по рабочей документации.

Расстояние от трубопроводов, отопительных приборов и калориферов с температурой теплоносителя выше 378 К (105 °C) до конструкций зданий и сооружений из горючих (сгораемых) материалов, определяемых проектом (рабочим проектом) по ГОСТ 12.1.044-84, должно быть не

менее 100 мм.

Средства крепления не следует располагать в местах соединения трубопроводов.

Заделка креплений с помощью деревянных пробок, а также приварка трубопроводов к средствам крепления не допускаются.

Расстояние между средствами крепления стальных трубопроводов на горизонтальных участках необходимо принимать в соответствии с размерами, указанными в табл. 2 СНиП 3.05.01-85, если нет других указаний в рабочей документации.

Средства крепления стояков из стальных труб в жилых и общественных зданиях при высоте этажа до 3 м не устанавливаются, а при высоте этажа более 3 м средства крепления устанавливаются на половине высоты этажа.

Средства крепления стояков в производственных зданиях следует устанавливать через 3 м.

Расстояния между средствами крепления чугунных канализационных труб при их горизонтальной прокладке следует принимать не более 2 м, а для стояков - одно крепление на этаж, но не более 3 м между средствами крепления.

Средства крепления следует располагать под раструбами.

Подводки к отопительным приборам при длине более 1500 мм должны иметь крепление.

Санитарные и отопительные приборы должны быть установлены по отвесу и уровню.

Санитарно-технические кабины должны устанавливаться на выверенное по уровню основание.

Перед установкой санитарно-технических кабин необходимо проверить, чтобы уровень верха канализационного стояка нижележащей кабины и уровень подготовительного основания были параллельны.

Установку санитарно-технических кабин следует производить так, чтобы оси канализационных стояков смежных этажей совпадали.

Присоединение санитарно-технических кабин к вентиляционным каналам должно производиться до укладки плит перекрытия данного этажа.

Гидростатическое (гидравлическое) или манометрическое (пневматическое) испытание трубопроводов при скрытой прокладке трубопроводов должно производиться до их закрытия с составлением акта освидетельствования скрытых работ по форме обязательного приложения 6 СНиП 3.01.01-85.

Испытание изолируемых трубопроводов следует осуществлять до нанесения изоляции.

Системы отопления, теплоснабжения, внутреннего холодного и горячего водоснабжения, трубопроводы котельных по окончании их монтажа должны быть промыты водой до выхода ее без механических взвесей.

Испытание внутренних санитарно-технических систем

Общие положения по испытанию систем холодного и горячего водоснабжения, отопления, теплоснабжения, канализации, водостоков и котельных

По завершении монтажных работ монтажными организациями должны быть выполнены:

- -испытания систем отопления, теплоснабжения, внутреннего холодного и горячего водоснабжения и котельных гидростатическим или манометрическим методом с составлением акта согласно обязательному приложению 3, а также промывка систем в соответствии с требованиями п. 3.10 СНиП 3.05.01-85;
 - -испытания систем внутренней канализации и водостоков с составлением акта;
 - -индивидуальные испытания смонтированного оборудования с составлением акта;
 - -тепловое испытание систем отопления на равномерный прогрев отопительных приборов.

Испытания систем с применением пластмассовых трубопроводов следует производить с соблюдением требований СН 478-80.

Испытания должны производиться до начала отделочных работ.

Применяемые для испытаний манометры должны быть поверены в соответствии с ГОСТ 8.002-71.

При индивидуальных испытаниях оборудования должны быть выполнены следующие

работы:

 –проверка соответствия установленного оборудования и выполненных работ рабочей документации и требованиям настоящих правил;

-испытание оборудования на холостом ходу и под нагрузкой в течение 4 ч непрерывной работы. При этом проверяются балансировка колес и роторов в сборе насосов и дымососов, качество сальниковой набивки, исправность пусковых устройств, степень нагрева электродвигателя, выполнение требований к сборке и монтажу оборудования, указанных в технической документации предприятий-изготовителей.

Испытания гидростатическим методом систем отопления, теплоснабжения, котлов и водоподогревателей должны производиться при положительной температуре в помещениях здания, а систем холодного и горячего водоснабжения, канализации и водостоков - при температуре не ниже 278 К (5 °C). Температура воды должна быть также не ниже 278 К (5 °C).

Внутреннее холодное и горячее водоснабжение

Высоту установки водоразборной арматуры (расстояние от горизонтальной оси арматуры до санитарных приборов, мм) следует принимать:

- -водоразборных кранов и смесителей от бортов раковин на 250, а от бортов моек на 200;
- -туалетных кранов и смесителей от бортов умывальников на 200.

Высота установки кранов от уровня чистого пола, мм:

- –водоразборных кранов в банях, смывных кранов унитазов, смесителей инвентарных моек в общественных и лечебных учреждениях, смесителей для ванн 800;
 - -смесителей для видуаров с косым выпуском 800, с прямым выпуском -1000;
- -смесителей и моек клеенок в лечебных учреждениях, смесителей общих для ванн и умывальников, смесителей локтевых для хирургических умывальников 1100;
 - -кранов для мытья полов в туалетных комнатах общественных зданий 600;
 - -смесителей для душа 1200.

Душевые сетки должны устанавливаться на высоте 2100-2250 мм от низа сетки до уровня чистого пола, в кабинах для инвалидов - на высоте 1700-1850 мм, в детских дошкольных учреждениях - на высоте 1500 мм от днища поддона. Отклонения от размеров, указанных в настоящем пункте, не должны превышать 20 мм.

Для раковин со спинками, имеющими отверстия для кранов, а также для моек и умывальников с настольный арматурой высота установки кранов определяется конструкцией прибора.

В душевых кабинах инвалидов и в детских дошкольных учреждениях следует применять душевые сетки с гибким шлангом.

В помещениях для инвалидов краны холодной и горячей воды, а также смесители должны быть рычажного или нажимного действия.

Смесители умывальников, раковин, а также краны смывных бачков, устанавливаемых в помещениях, предназначенных для инвалидов с дефектами верхних конечностей, должны иметь ножное или локтевое управление.

Испытание системы внутреннего холодного и горячего водоснабжения

Системы внутреннего холодного и горячего водоснабжения должны быть испытаны гидростатическим или манометрическим методом с соблюдением требований ГОСТ 24054-80, ГОСТ 25136-82 и настоящих правил.

Величину пробного давления при гидростатическом методе испытания следует принимать равной 1,5 избыточного рабочего давления.

Гидростатические и манометрические испытания систем холодного и горячего водоснабжения должны производиться до установки водоразборной арматуры.

Выдержавшими испытания считаются системы, если в течение 10 мин нахождения под пробным давлением при гидростатическом методе испытаний не обнаружено падения давления более 0,05 МПа (0,5 кгс/кв.см) и капель в сварных швах, трубах, резьбовых соединениях, арматуре

и утечки воды через смывные устройства.

По окончании испытаний гидростатическим методом необходимо выпустить воду из систем внутреннего холодного и горячего водоснабжения.

Манометрические испытания системы внутреннего холодного и горячего водоснабжения следует производить в следующей последовательности: систему заполнить воздухом пробным избыточным давлением 0,15 МПа (1,5 кгс/кв.см); при обнаружении дефектов монтажа на слух следует снизить давление до атмосферного и устранить дефекты; затем систему заполнить воздухом давлением 0,1 МПа (1 кгс/кв.см), выдержать ее под пробным давлением в течение 5 мин.

Система признается выдержавшей испытание, если при нахождении ее под пробным давлением падение давления не превысит 0,01 МПа (0,1 кгс/кв.см).

Внутренняя канализация и водостоки

Раструбы труб и фасонных частей (кроме двухраструбных муфт) должны быть направлены против движения воды.

Стыки чугунных канализационных труб на монтаже должны быть уплотнены просмоленным пеньковым канатом или пропитанной ленточной паклей с последующей зачеканкой цементным раствором марки не ниже 100 или заливкой раствора гипсоглиноземистого расширяющегося цемента или расплавленной и нагретой до температуры 403-408 К (130-135°C) серой с добавлением 10% обогащенного каолина по ГОСТ 19608-84 или ГОСТ 19607-74.

Допускается применение других уплотнительных и заполняющих стык материалов, согласованных в установленном порядке.

В период монтажа открытые концы трубопроводов и водосточные воронки необходимо временно закрывать инвентарными заглушками.

К деревянным конструкциям санитарные приборы следует крепить шурупами.

Выпуск унитаза следует соединять непосредственно с раструбом отводной трубы или с отводной трубой с помощью чугунного, полиэтиленового патрубка или резиновой муфты.

Раструб отводной трубы под унитаз с прямым выпуском должен быть установлен заподлицо с полом.

Унитазы следует крепить к полу шурупами или приклеивать клеем. При креплении шурупами под основание унитаза следует устанавливать резиновую прокладку.

Приклеивание должно производиться при температуре воздуха в помещении не ниже 278 K (5°C).

Для достижения необходимой прочности приклеенные унитазы должны выдерживаться без нагрузки в неподвижном положении до набора прочности клеевого соединения не менее 12 ч.

Высота установки санитарных приборов от уровня чистого пола должна соответствовать размерам, указанным в табл. 3 СНиП 3.05.01-85.

Допускаемые отклонения высоты установки санитарных приборов для отдельно стоящих приборов не должны превышать ± 20 мм, а при групповой установке однотипных приборов ± -5 мм.

Смывная труба для промывки писсуарного лотка должна быть направлена отверстиями к стене под углом 45° вниз.

При установке обшего смесителя для умывальника и ванны высота установки умывальника 850 мм до верха борта.

Высота установки санитарных приборов в лечебных учреждениях должна приниматься следующей, мм:

- -мойка инвентарная чугунная (до верха бортов) 650;
- -мойка для клеенок 700;
- -видуар (до верха) 400;
- -бачок для дезинфицирующего раствора (до низа бачка) 1230.

Расстояния между осями умывальников следует принимать не менее 650 мм, ручных и ножных ванн, писсуаров - не менее 700 мм.

В помещениях для инвалидов умывальники, раковины и мойки следует устанавливать на

расстоянии от боковой стены помещения не менее 200 мм.

В бытовых помещениях общественных и промышленных зданий установку группы умывальников следует предусматривать на общей подставке.

До испытаний систем канализации в сифонах в целях предохранения их от загрязнения должны быть вывернуты нижние пробки, а у бутылочных сифонов - стаканчики.

Испытание систем внутренней канализации и водостока

Испытания систем внутренней канализации должны выполняться методом пролива воды путем одновременного открытия 75 % санитарных приборов, подключенных к проверяемому участку в течение времени, необходимого для его осмотра.

Выдержавшей испытание считается система, если при ее осмотре не обнаружено течи через стенки трубопроводов и места соединений.

Испытания отводных трубопроводов канализации, проложенных в земле или подпольных каналах, должны выполняться до их закрытия наполнением водой до уровня пола первого этажа.

Испытания участков систем канализации, скрываемых при последующих работах, должны выполняться проливом воды до их закрытия с составлением акта освидетельствования скрытых работ согласно обязательному приложению 6 СНиП 3.01.01-85.

Испытание внутренних водостоков следует производить наполнением их водой до уровня наивысшей водосточной воронки. Продолжительность испытания должна составлять не менее 10 мин.

Водостоки считаются выдержавшими испытание, если при осмотре не обнаружено течи, а уровень воды в стояках не понизился.

Отопление. Теплоснабжение и котельные

Уклоны подводок к отопительным приборам следует выполнять от 5 до 10 мм на длину подводки в сторону движения теплоносителя. При длине подводки до 500 мм уклон труб выполнять не следует.

Присоединение подводок к гладким стальным, чугунным и биметаллическим ребристым трубам следует производить с помощью фланцев (заглушек) с эксцентрично расположенными отверстиями для обеспечения свободного удаления воздуха и стока воды или конденсата из труб.

Для паровых подводок допускается концентрическое присоединение.

Радиаторы всех типов следует устанавливать на расстояниях, мм, не менее: 60 - от пола, 50 - от нижней поверхности подоконных досок и 25 - от поверхности штукатурки стен.

В помещениях лечебно-профилактических и детских учреждений радиаторы следует устанавливать на расстоянии не менее 100 мм от пола и 60 мм от поверхности стены.

При отсутствии подоконной доски расстояние 50 мм следует принимать от верха прибора до низа оконного проема.

При открытой прокладке трубопроводов расстояние от поверхности ниши до отопительных приборов должно обеспечивать возможность прокладки подводок к отопительным приборам по прямой линии.

Конвекторы должны устанавливаться на расстоянии:

- -не менее 20 мм от поверхности стен до оребрения конвектора без кожуха;
- -вплотную или с зазором не более 3 мм от поверхности стены до оребрения нагревательного элемента настенного конвектора с кожухом;
 - -не менее 20 мм от поверхности стены до кожуха напольного конвектора.

Расстояние от верха конвектора до низа подоконной доски должно быть не менее 70 % глубины конвектора.

Расстояние от пола до низа настенного конвектора с кожухом или без кожуха должно быть не менее 70 % и не более 150 % глубины устанавливаемого отопительного прибора.

При ширине выступающей части подоконной доски от стены более 150 мм расстояние от ее низа до верха конвекторов с кожухом должно быть не менее высоты подъема кожуха, необходимой для его снятия.

Присоединение конвекторов к трубопроводам отопления следует выполнять на резьбе или на сварке.

Гладкие и ребристые трубы следует устанавливать на расстоянии не менее 200 мм от пола и подоконной доски до оси ближайшей трубы и 25 мм от поверхности штукатурки стен. Расстояние между осями смежных труб должно быть не менее 200 мм.

При установке отопительного прибора под окном его край со стороны стояка, как правило, не должен выходить за пределы оконного проема. При этом совмещение вертикальных осей симметрии отопительных приборов и оконных проемов не обязательно.

В однотрубной системе отопления с односторонним присоединением отопительных приборов открыто прокладываемый стояк должен быть расположен на расстоянии 150±50 мм от кромки оконного проема, а длина подводок к отопительным приборам должна быть не более 400 мм.

Отопительные приборы следует устанавливать на кронштейнах или на подставках, изготовляемых в соответствии со стандартами, техническими условиями или рабочей документацией.

Число кронштейнов следует устанавливать из расчета один на 1 кв.м поверхности нагрева чугунного радиатора, но не менее трех на радиатор (кроме радиаторов в две секции), а для ребристых труб - по два на трубу. Вместо верхних кронштейнов разрешается устанавливать радиаторные планки, которые должны быть расположены на 2/3 высоты радиатора.

Кронштейны следует устанавливать под шейки радиаторов, а под ребристые трубы - у фланцев.

При установке радиаторов на подставках число последних должно быть 2 - при числе секций до 10 и 3 - при числе секций более 10. При этом верх радиатора должен быть закреплен.

Число креплений на блок конвектора без кожуха следует принимать:

- -при однорядной и двухрядной установке 2 крепления к стене или полу;
- -при трехрядной и четырехрядной установке 3 крепления к стене или 2 крепления к полу.

Для конвекторов, поставляемых в комплекте со средствами крепления, число креплений определяется заводом-изготовителем согласно стандартам на конвекторы.

Кронштейны под отопительные приборы следует крепить к бетонным стенам дюбелями, а к кирпичным стенам - дюбелями или заделкой кронштейнов цементным раствором марки не ниже 100 на глубину не менее 100 мм (без учета толщины слоя штукатурки).

Применение деревянных пробок для заделки кронштейнов не допускается.

Оси соединяемых стояков стеновых панелей со встроенными нагревательными элементами при установке должны совпадать.

Соединение стояков следует выполнять на сварке внахлестку (с раздачей одного конца трубы или соединением безрезьбовой муфтой).

Присоединение трубопроводов к воздухонагревателям (калориферам, отопительным агрегатам) должно выполняться на фланцах, резьбе или сварке.

Всасывающие и выхлопные отверстия отопительных агрегатов до пуска их в эксплуатацию должны быть закрыты.

Вентили и обратные клапаны должны устанавливаться таким образом, чтобы среда поступала под клапан.

Обратные клапаны необходимо устанавливать горизонтально или строго вертикально в зависимости от их конструкции.

Направление стрелки на корпусе должно совпадать с направлением движения среды.

Шпиндели кранов двойной регулировки и регулирующих проходных кранов следует устанавливать вертикально при расположении отопительных приборов без ниш, а при установке в нишах - под углом - 45° вверх.

Шпиндели трехходовых кранов необходимо располагать горизонтально.

Манометры, устанавливаемые на трубопроводах с температурой теплоносителя до 378 К (105 град.С), должны присоединяться через трехходовой кран.

Манометры, устанавливаемые на трубопроводах с температурой теплоносителя выше 378 К

(105 град.С), должны присоединяться через сифонную трубку и трехходовой кран.

Термометры на трубопроводах должны быть установлены в гильзах, а выступающая часть термометра должна быть защищена оправой.

На трубопроводах с условным проходом до 57 мм включительно в месте установки термометров следует предусматривать расширитель.

Для фланцевых соединений мазутопроводов следует применять прокладки из паронита, смоченного в горячей воде и натертого графитом.

Испытание системы отопления и теплоснабжения

Испытание водяных систем отопления и теплоснабжения должно производиться при отключенных котлах и расширительных сосудах гидростатическим методом давлением, равным 1,5 рабочего давления, но не менее 0,2 МПа (2 кгс/кв.см) в самой нижней точке системы.

Система признается выдержавшей испытание, если в течение 5 мин нахождения ее под пробным давлением падение давления не превысит 0,02 МПа (0,2 кгс/кв.см) и отсутствуют течи в сварных швах, трубах, резьбовых соединениях, арматуре, отопительных приборах и оборудовании.

Величина пробного давления при гидростатическом методе испытания для систем отопления и теплоснабжения, присоединенных к теплоцентралям, не должна превышать предельного пробного давления для установленных в системе отопительных приборов и отопительновентиляционного оборудования.

Манометрические испытания систем отопления и теплоснабжения следует производить в последовательности, указанной в п. 4.5 СНиП 3.05.01-85.

Системы панельного отопления должны быть испытаны, как правило, гидростатическим методом.

Манометрическое испытание допускается производить при отрицательной температуре наружного воздуха.

Гидростатическое испытание систем панельного отопления должно производиться (до заделки монтажных окон) давлением 1 МПа ($10~\rm krc/kb.cm$) в течение 15 мин, при этом падение давления допускается не более $0,01~\rm M\Pi a$ ($0,1~\rm krc/kb.cm$).

Для систем панельного отопления, совмещенных с отопительными приборами, величина пробного давления не должна превышать предельного пробного давления для установленных в системе отопительных приборов.

Величина пробного давления систем панельного отопления, паровых систем отопления и теплоснабжения при манометрических испытаниях должна составлять 0,1 МПа (1 кгс/кв.см). Продолжительность испытания - 5 мин. Падение давления должно быть не более 0,01 МПа (0,1 кгс/кв.см).

Паровые системы отопления и теплоснабжения с рабочим давлением до $0.07~\rm M\Pi a$ $(0.7~\rm krc/kb.cm)$ должны испытываться гидростатическим методом давлением, равным $0.25~\rm M\Pi a$ $(2.5~\rm krc/kb.cm)$ в нижней точке системы; системы с рабочим давлением более $0.07~\rm M\Pi a$ $(0.7~\rm krc/kb.cm)$ гидростатическим давлением, равным рабочему давлению плюс $0.1~\rm M\Pi a$ $(1~\rm krc/kb.cm)$, но не менее $0.3~\rm M\Pi a$ $(3~\rm krc/kb.cm)$ в верхней точке системы.

Система признается выдержавшей испытание давлением, если в течение 5 мин нахождения ее под пробным давлением падение давления не превысит 0,02 МПа (0,2 кгс/кв.см) и отсутствуют течи в сварных швах, трубах, резьбовых соединениях, арматуре, отопительных приборах.

Системы парового отопления и теплоснабжения после гидростатических или манометрических испытаний должны быть проверены путем пуска пара с рабочим давлением системы. При этом утечки пара не допускаются.

Тепловое испытание систем отопления и теплоснабжения при положительной температуре наружного воздуха должно производиться при температуре воды в подающих магистралях систем не менее 333 К (60° C). При этом все отопительные приборы должны прогреваться равномерно.

При отсутствии в теплое время года источников теплоты тепловое испытание систем отопления должно быть произведено по подключении к источнику теплоты.

Тепловое испытание систем отопления при отрицательной температуре наружного воздуха должно производиться при температуре теплоносителя в подающем трубопроводе, соответствующей температуре наружного воздуха во время испытания по отопительному температурному графику, но не менее 323 К (50°С), и величине циркуляционного давления в системе согласно рабочей документации.

Тепловое испытание систем отопления следует производить в течение 7 ч, при этом проверяется равномерность прогрева отопительных приборов (на ощупь).

Котельные

Котлы должны испытываться гидростатическим методом до производства обмуровочных работ, а водоподогреватели - до нанесения тепловой изоляции. При этих испытаниях трубопроводы систем отопления и горячего водоснабжения должны быть отключены.

По окончании гидростатических испытаний необходимо выпустить воду из котлов и водоподогревателей.

Котлы и водоподогреватели должны испытываться гидростатическим давлением вместе с установленной на них арматурой.

Перед гидростатическим испытанием котла крышки и люки должны быть плотно закрыты, предохранительные клапаны заклинены, а на ближайшем к паровому котлу фланцевом соединении выкидного приспособления или обвода у водогрейного котла поставлена заглушка.

Величина пробного давления гидростатических испытаний котлов и водоподогревателей принимается в соответствии со стандартами или техническими условиями на это оборудование.

Пробное давление выдерживается в течение 5 мин, после чего оно снижается до величины максимального рабочего давления, которое и поддерживается в течение всего времени, необходимого для осмотра котла или водоподогревателя.

Котлы и водоподогреватели признаются выдержавшими гидростатическое испытание, если:

- -в течение времени нахождения их под пробным давлением не наблюдалось падения давления;
 - -не обнаружено признаков разрыва, течи и потения поверхности.

Мазутопроводы следует испытывать гидростатическим давлением $0,5\,$ МПа $(5\,$ кгс/кв.см). Система признается выдержавшей испытание, если в течение $5\,$ мин нахождения под пробным давлением падение давления не превысит $0,02\,$ МПа $(0,2\,$ кгс/кв.см).

Вентиляция и кондиционирование воздуха

Воздуховоды должны монтироваться вне зависимости от наличия технологического оборудования в соответствии с проектными привязками и отметками. Присоединение воздуховодов к технологическому оборудованию должно производиться после его установки.

Воздуховоды, предназначенные для транспортирования увлажненного воздуха, следует монтировать так, чтобы в нижней части воздуховодов не было продольных швов.

Участки воздуховодов, в которых возможно выпадение росы из транспортируемого влажного воздуха, следует прокладывать с уклоном 0,01-0,015 в сторону дренирующих устройств.

Прокладки между фланцами воздуховодов не должны выступать внутрь воздуховодов.

Прокладки должны быть изготовлены из следующих материалов:

- —поролона, ленточной пористой или монолитной резины толщиной 4-5 мм или полимерного мастичного жгута (ПМЖ) для воздуховодов, по которым перемещаются воздух, пыль или отходы материалов с температурой до 343 К (70 °C); асбестового шнура или асбестового картона с температурой выше 343 К (70 °C);
- -кислотостойкой резины или кислотостойкого прокладочного пластика для воздуховодов, по которым перемещается воздух с парами кислот.

Для герметизации бесфланцевых соединений воздуховодов следует применять:

- —герметизирующую ленту "Герлен" для воздуховодов, по которым перемещается воздух с температурой до 313 К (40 °C) ;
 - -мастику "Бутепрол" для воздуховодов круглого сечения с температурой до 343 К (70° C);

—термоусаживающиеся манжеты или ленты - для воздуховодов круглого сечения с температурой до 333 К (60° С) и другие герметизирующие материалы, согласованные в установленном порядке.

Болты во фланцевых соединениях должны быть затянуты, все гайки болтов должны располагаться с одной стороны фланца. При установке болтов вертикально гайки, как правило, должны располагаться с нижней стороны соединения.

Крепление воздуховодов следует выполнять в соответствии с рабочей документацией.

Крепления горизонтальных металлических неизолированных воздуховодов (хомуты, подвески, опоры и др.) на бесфланцевом соединении следует устанавливать на расстоянии не более 4 м одно от другого при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения менее 400 мм и на расстоянии не более 3 м одно от другого - при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения 400 мм и более.

Крепления горизонтальных металлических неизолированных воздуховодов на фланцевом соединении круглого сечения диаметром до 2000 мм или прямоугольного сечения при размерах его большей стороны до 2000 мм включительно следует устанавливать на расстоянии не более 6 м одно от другого. Расстояния между креплениями изолированных металлических воздуховодов любых размеров поперечных сечений, а также неизолированных воздуховодов круглого сечения диаметром более 2000 мм или прямоугольного сечения при размерах его большей стороны более 2000 мм должны назначаться рабочей документацией.

Хомуты должны плотно охватывать металлические воздуховоды.

Крепления вертикальных металлических воздуховодов следует устанавливать на расстоянии не более 4 м одно от другого.

Чертежи нетиповых креплений должны входить в комплект рабочей документации.

Крепление вертикальных металлических воздуховодов внутри помещений многоэтажных корпусов с высотой этажа до 4 м следует выполнять в междуэтажных перекрытиях.

Крепление вертикальных металлических воздуховодов внутри помещений с высотой этажа более 4 м и на кровле здания должно назначаться проектом (рабочим проектом).

Крепление растяжек и подвесок непосредственно к фланцам воздуховода не допускается. Натяжение регулируемых подвесок должно быть равномерным.

Отклонение воздуховодов от вертикали не должно превышать 2 мм на 1 м длины воздуховода.

Свободно подвешиваемые воздуховоды должны быть расчалены путем установки двойных подвесок через каждые две одинарные подвески при длине подвески от 0,5 до 1,5 м.

При длине подвесок более 1,5 м двойные подвески следует устанавливать через каждую одинарную подвеску.

Воздуховоды должны быть укреплены так, чтобы их вес не передавался на вентиляционное оборудование.

Воздуховоды, как правило, должны присоединяться к вентиляторам через виброизолирующие гибкие вставки из стеклоткани или другого материала, обеспечивающего гибкость, плотность и долговечность.

Виброизолирующие гибкие вставки следует устанавливать непосредственно перед индивидуальными испытаниями.

При монтаже вертикальных воздуховодов из асбестоцементных коробов крепления следует устанавливать через 3-4 м. При монтаже горизонтальных воздуховодов следует устанавливать по два крепления на каждую секцию при муфтовых соединениях и по одному креплению - при раструбных соединениях. Крепление следует выполнять у раструба.

В вертикальных воздуховодах из раструбных коробов верхний короб должен вставляться в раструб нижнего.

Раструбные и муфтовые соединения в соответствии с типовыми технологическими картами следует уплотнять жгутами из пеньковой пряди, смоченными в асбестоцементном растворе с добавкой казеинового клея.

Свободное пространство раструба или муфты следует заполнить асбестоцементной мастикой.

Места соединения после отвердения мастики должны быть оклеены тканью. Ткань должна плотно прилегать к коробу по всему периметру и должна быть окрашена масляной краской.

Транспортирование и складирование в монтажной зоне асбестоцементных коробов, соединяемых на муфтах, должно производиться в горизонтальном положении, а раструбных - в вертикальном.

Фасонные части при перевозке не должны свободно перемещаться, для чего их следует закреплять распорками.

При переноске, укладке, погрузке и разгрузке коробов и фасонных частей запрещается бросать их и подвергать ударам.

При изготовлении прямых участков воздуховодов из полимерной пленки допускаются изгибы воздуховодов не более 15°.

Для прохода через ограждающие конструкции воздуховод из полимерной пленки должен иметь металлические вставки.

Воздуховоды из полимерной пленки должны подвешиваться на стальных кольцах из проволоки диаметром 3-4 мм, расположенных на расстоянии не более 2 м одно от другого.

Диаметр колец должен быть на 10% больше диаметра воздуховода.

Стальные кольца следует крепить с помощью проволоки или пластины с вырезом к несущему тросу (проволоке) диаметром 4-5 мм, натянутому вдоль оси воздуховода и закрепленному к конструкциям здания через каждые 20-30 м.

Для исключения продольных перемещений воздуховода при его наполнении воздухом полимерную пленку следует натянуть до исчезновения провисов между кольцами.

Вентиляторы радиальные на виброоснованиях и на жестком основании, устанавливаемые на фундаменты, должны закрепляться анкерными болтами.

При установке вентиляторов на пружинные виброизоляторы последние должны иметь равномерную осадку. Виброизоляторы к полу крепить не требуется.

При установке вентиляторов на металлоконструкции виброизоляторы следует крепить к ним. Элементы металлоконструкций, к которым крепятся виброизоляторы, должны совпадать в плане с соответствующими элементами рамы вентиляторного агрегата.

При установке на жесткое основание станина вентилятора должна плотно прилегать к звукоизолирующим прокладкам.

Зазоры между кромкой переднего диска рабочего колеса и кромкой входного патрубка радиального вентилятора как в осевом, так и в радиальном направлении не должны превышать 1 % диаметра рабочего колеса.

Валы радиальных вентиляторов должны быть установлены горизонтально (валы крышных вентиляторов - вертикально), вертикальные стенки кожухов центробежных вентиляторов не должны иметь перекосов и наклона.

Прокладки для составных кожухов вентиляторов следует применять из того же материала, что и прокладки для воздуховодов этой системы.

Электродвигатели должны быть точно выверены с установленными вентиляторами и закреплены. Оси шкивов электродвигателей и вентиляторов при ременной передаче должны быть параллельными, а средние линии шкивов должны совпадать.

Салазки электродвигателей должны быть взаимно параллельны и установлены по уровню. Опорная поверхность салазок должна соприкасаться по всей плоскости с фундаментом.

Соединительные муфты и ременные передачи следует ограждать.

Всасывающее отверстие вентилятора, не присоединенное к воздуховоду, необходимо защищать металлической сеткой с размером ячейки не более 70X70 мм.

Фильтрующий материал материатых фильтров должен быть натянут без провисов и морщин, а также плотно прилегать к боковым стенкам. При наличии на фильтрующем материале начеса последний должен быть расположен со стороны поступления воздуха.

Воздухонагреватели кондиционеров следует собирать на прокладках из листового и

шнурового асбеста. Остальные блоки, камеры и узлы кондиционеров должны собираться на прокладках из ленточной резины толщиной 3-4 мм, поставляемой в комплекте с оборудованием.

Кондиционеры должны быть установлены горизонтально. Стенки камер и блоков не должны иметь вмятин, перекосов и наклонов.

Лопатки клапанов должны свободно (от руки) поворачиваться. При положении "Закрыто" должна быть обеспечена плотность прилегания лопаток к упорам и между собой.

Опоры блоков камер и узлов кондиционеров должны устанавливаться вертикально.

Гибкие воздуховоды следует применять в соответствии с проектом (рабочим проектом) в качестве фасонных частей сложной геометрической формы, а также для присоединения вентиляционного оборудования, воздухораспределителей, шумоглушителей и других устройств, расположенных в подшивных потолках, камерах.

Испытания системы вентиляции и кондиционирования воздуха

Завершающей стадией монтажа систем вентиляции и кондиционирования воздуха являются их индивидуальные испытания.

К началу индивидуальных испытаний систем следует закончить общестроительные и отделочные работы по вентиляционным камерам и шахтам, а также закончить монтаж и индивидуальные испытания средств обеспечения (электроснабжения, теплохолодоснабжения и др.). При отсутствии электроснабжения вентиляционных установок и кондиционирования воздуха по постоянной схеме подключение электроэнергии по временной схеме и проверку исправности пусковых устройств осуществляет генеральный подрядчик.

Монтажные и строительные организации при индивидуальных испытаниях должны выполнить следующие работы:

- -проверить соответствие фактического исполнения систем вентиляции и кондиционирования воздуха проекту (рабочему проекту) и требованиям настоящего раздела;
- -проверить на герметичность участки воздуховода, скрываемые строительными конструкциями, методом аэродинамических испытаний по ГОСТ 12.3.018-79, по результатам проверки на герметичность составить акт освидетельствования скрытых работ по форме обязательного приложения 6 СНиП 3.01.01-85;
- -испытать (обкатать) на холостом ходу вентиляционное оборудование, имеющее привод, клапаны и заслонки, с соблюдением требований, предусмотренных техническими условиями заводов-изготовителей.

Продолжительность обкатки принимается по техническим условиям или паспорту испытываемого оборудования. По результатам испытаний (обкатки) вентиляционного оборудования составляется акт по форме обязательного приложения 1 СНиП 3.05.01-85.

При регулировке систем вентиляции и кондиционирования воздуха до проектных параметров с учетом требований ГОСТ 12.4.021-75 следует выполнить:

- -испытание вентиляторов при работе их в сети (определение соответствия фактических характеристик паспортным данным: подачи и давления воздуха, частоты вращения и т. д.);
- –проверку равномерности прогрева (охлаждения) теплообменных аппаратов и проверку отсутствия выноса влаги через каплеуловители камер орошения;
- -испытание и регулировку систем с целью достижения проектных показателей по расходу воздуха в воздуховодах, местных отсосах, по воздухообмену в помещениях и определение в системах подсосов или потерь воздуха, допустимая величина которых через неплотности в воздуховодах и других элементах систем не должна превышать проектных значений в соответствии со СНиП 2.04.05-85;
 - -проверку действия вытяжных устройств естественной вентиляции.

На каждую систему вентиляции и кондиционирования воздуха оформляется паспорт в двух экземплярах по форме обязательного приложения 2 СНиП 3.05.01-85.

Отклонения показателей по расходу воздуха от предусмотренных проектом после регулировки и испытания систем вентиляции и кондиционирования воздуха допускаются:

 $-\pm$ 10% - по расходу воздуха, проходящего через воздухораспределительные и

воздухоприемные устройства общеобменных установок вентиляции и кондиционирования воздуха при условии обеспечения требуемого подпора (разрежения) воздуха в помещении;

-+10% - по расходу воздуха, удаляемого через местные отсосы и подаваемого через душирующие патрубки.

При комплексном опробовании систем вентиляции и кондиционирования воздуха в состав пусконаладочных работ входят:

- -опробование одновременно работающих систем;
- -проверка работоспособности систем вентиляции, кондиционирования воздуха и теплохолодоснабжения при проектных режимах работы с определением соответствия фактических параметров проектным; выявление причин, по которым не обеспечиваются проектные режимы работы систем, и принятие мер по их устранению;
 - -опробование устройств защиты, блокировки, сигнализации и управления оборудования;
 - -замеры уровней звукового давления в расчетных точках.

Комплексное опробование систем осуществляется по программе и графику, разработанным заказчиком или по его поручению наладочной организацией и согласованным с генеральным подрядчиком и монтажной организацией.

Порядок проведения комплексного опробования систем и устранения выявленных дефектов должен соответствовать СНиП III-3-81.

СНиП 3.05.01-85 «Внутренние санитарно-технические системы» п.1.2-п.1.7, п.2.1-п.2.37, п.3.1-п.3.56, п.4.1-п.4.20

5.2 Устройство наружных сетей водоснабжения и канализации

При перемещении труб и собранных секций, имеющих антикоррозионные покрытия, следует применять мягкие клещевые захваты, гибкие полотенца и другие средства, исключающие повреждение этих покрытий.

При раскладке труб, предназначенных для хозяйственно-питьевого водоснабжения, не следует допускать попадания в них поверхностных или сточных вод. Трубы и фасонные части, арматура и готовые узлы перед монтажом должны быть осмотрены и очищены изнутри и снаружи от грязи, снега, льда, масел и посторонних предметов.

Монтаж трубопроводов должен производиться в соответствии с проектом производства работ и технологическими картами после проверки соответствия проекту размеров траншеи, крепления стенок, отметок дна и при надземной прокладке - опорных конструкций. Результаты проверки должны быть отражены в журнале производства работ.

Трубы раструбного типа безнапорных трубопроводов следует, как правило, укладывать раструбом вверх по уклону.

Предусмотренную проектом прямолинейность участков безнапорных трубопроводов между смежными колодцами следует контролировать просмотром "на свет" с помощью зеркала до и после засыпки траншеи. При просмотре трубопровода круглого сечения видимый в зеркале круг должен иметь правильную форму.

Допустимая величина отклонения от формы круга по горизонтали должна составлять не более 1/4 диаметра трубопровода, но не более 50 мм в каждую сторону. Отклонения от правильной формы круга по вертикали не допускаются.

Максимальные отклонения от проектного положения осей напорных трубопроводов не должны превышать ± 100 мм в плане, отметок лотков безнапорных трубопроводов - ± 5 мм, а отметок верха напорных трубопроводов - ± 30 мм, если другие нормы не обоснованы проектом.

Прокладка напорных трубопроводов по пологой кривой без применения фасонных частей допускается для раструбных труб со стыковыми соединениями на резиновых уплотнителях с углом поворота в каждом стыке не более чем на 2° для труб условным диаметром до 600 мм и не более чем на 1° для труб условным диаметром свыше 600 мм.

При монтаже трубопроводов водоснабжения и канализации в горных условиях кроме требований настоящих правил следует соблюдать также требования разд. 9 СНиП III-42-80.

При прокладке трубопроводов на прямолинейном участке трассы соединяемые концы смежных труб должны быть отцентрированы так, чтобы ширина раструбной щели была одинаковой по всей окружности.

Концы труб, а также отверстия во фланцах запорной и другой арматуры при перерывах в укладке следует закрывать заглушками или деревянными пробками.

Резиновые уплотнители для монтажа трубопроводов в условиях низких температур наружного воздуха не допускается применять в промороженном состоянии.

Для заделки (уплотнения) стыковых соединений трубопроводов следует применять уплотнительные и "замковые" материалы, а также герметики согласно проекту.

Фланцевые соединения фасонных частей и арматуры следует монтировать с соблюдением следующих требований:

- -фланцевые соединения должны быть установлены перпендикулярно оси трубы;
- -плоскости соединяемых фланцев должны быть ровными, гайки болтов должны быть расположены на одной стороне соединения; затяжку болтов следует выполнять равномерно крестнакрест;
- -устранение перекосов фланцев установкой скошенных прокладок или подтягиванием болтов не допускается;
- -сваривание стыков смежных с фланцевым соединением следует выполнять лишь после равномерной затяжки всех болтов на фланцах.

При использовании грунта для сооружения упора опорная стенка котлована должна быть с ненарушенной структурой грунта.

Зазор между трубопроводом и сборной частью бетонных или кирпичных упоров должен

быть плотно заполнен бетонной смесью или цементным раствором.

Защиту стальных и железобетонных трубопроводов от коррозии следует осуществлять в соответствии с проектом и требованиями СНиП 3.04.03-85 и СНиП 2.03.11-85.

На сооружаемых трубопроводах подлежат приемке с составлением актов освидетельствования скрытых работ по форме, приведенной в СНиП 3.01.01-85* следующие этапы и элементы скрытых работ: подготовка основания под трубопроводы, устройство упоров, величина зазоров и выполнение уплотнений стыковых соединений, устройство колодцев и камер, противокоррозионная защита трубопроводов, герметизация мест прохода трубопроводов через стенки колодцев и камер, засыпка трубопроводов с уплотнением и др.

Стальные трубопроводы

Способы сварки, а также типы, конструктивные элементы и размеры сварных соединений стальных трубопроводов должны соответствовать требованиям ГОСТ 16037-80.

Перед сборкой и сваркой труб следует очистить их от загрязнений, проверить геометрические размеры разделки кромок, зачистить до металлического блеска кромки и прилегающие к ним внутреннюю и наружную поверхности труб на ширину не менее 10 мм.

По окончании сварочных работ наружная изоляция труб в местах сварных соединений должна быть восстановлена в соответствии с проектом.

При сборке стыков труб без подкладного кольца смещение кромок не должно превышать 20% толщины стенки, но не более 3 мм. Для стыковых соединений, собираемых и свариваемых на остающемся цилиндрическом кольце, смещение кромок изнутри трубы не должно превышать 1 мм.

Сборку труб диаметром свыше 100 мм, изготовленных с продольным или спиральным сварным швом, следует производить со смещением швов смежных труб не менее чем на 100 мм. При сборке стыка труб, у которых заводской продольный или спиральный шов сварен с двух сторон, смещение этих швов можно не производить.

Поперечные сварные соединения должны быть расположены на расстоянии не менее чем:

- -0.2 м от края конструкции опоры трубопровода;
- -0.3 м от наружной и внутренней поверхностей камеры или поверхности ограждающей конструкции, через которую проходит трубопровод, а также от края футляра.

Соединение концов стыкуемых труб и секций трубопроводов при величине зазора между ними более допускаемого следует выполнять вставкой "катушки" длиной не менее 200 мм.

Расстояние между кольцевым сварным швом трубопровода и швом привариваемых к трубопроводу патрубков должно быть не менее 100 мм.

Сборка труб для сварки должна выполняться с помощью центраторов; допускается правка плавных вмятин на концах труб глубиной до 3,5% диаметра трубы и подгонка кромок с помощью домкратов, роликовых опор и других средств. Участки труб с вмятинами свыше 3,5% диаметра трубы или имеющие надрывы следует вырезать. Концы труб с забоинами или задирами фасок глубиной свыше 5 мм следует обрезать.

При наложении корневого шва прихватки должны быть полностью переварены. Применяемые для прихваток электроды или сварочная проволока должны быть тех же марок, что и для сварки основного шва.

Перед допуском к работе по сварке стыков трубопроводов каждый сварщик должен сварить допускной стык в производственных условиях (на объекте строительства) в случаях:

- –если он впервые приступил к сварке трубопроводов или имел перерыв в работе свыше 6 месяцев;
- -если сварка труб осуществляется из новых марок сталей, с применением новых марок сварочных материалов (электродов, сварочной проволоки, флюсов) или с использованием новых типов сварочного оборудования.

На трубах диаметром 529 мм и более разрешается сваривать половину допускного стыка. Допускной стык подвергается:

-внешнему осмотру, при котором сварной шов должен удовлетворять требованиям

настоящего раздела и ГОСТ 16037-80;

- -радиографическому контролю в соответствии с требованиями ГОСТ 7512-82;
- -механическим испытаниям на разрыв и изгиб в соответствии с ГОСТ 6996-66.

В случае неудовлетворительных результатов проверки допускного стыка производятся сварка и повторный контроль двух других допускных стыков. В случае получения при повторном контроле неудовлетворительных результатов хотя бы на одном из стыков сварщик признается не выдержавшим испытаний и может быть допущен к сварке трубопровода только после дополнительного обучения и повторных испытаний.

Каждый сварщик должен иметь присвоенное ему клеймо. Сварщик обязан выбивать или наплавлять клеймо на расстоянии 30 - 50 мм от стыка со стороны, доступной для осмотра.

Сварку и прихватку стыковых соединений труб допускается производить при температуре наружного воздуха до минус 50° С. При этом сварочные работы без подогрева свариваемых стыков допускается выполнять:

-при температуре наружного воздуха до минус 20° С - при применении труб из углеродистой стали с содержанием углерода не более 0.24% (независимо от толщины стенок труб), а также труб из низколегированной стали с толщиной стенок не более 10 мм;

-при температуре наружного воздуха до минус 10° С - при применении труб из углеродистой стали с содержанием углерода свыше 0,24%, а также труб из низколегированной стали с толщиной стенок свыше 10 мм.

При температуре наружного воздуха ниже вышеуказанных пределов сварочные работы следует производить с подогревом в специальных кабинах, в которых температуру воздуха следует поддерживать не ниже вышеуказанной, или осуществлять подогрев на открытом воздухе концов свариваемых труб на длину не менее 200 мм до температуры не ниже 200°C.

После окончания сварки необходимо обеспечить постепенное понижение температуры стыков и прилегающих к ним зон труб путем укрытия их после сварки асбестовым полотенцем или другим способом.

При многослойной сварке каждый слой шва перед наложением следующего шва должен быть очищен от шлака и брызг металла. Участки металла шва с порами, раковинами и трещинами должны быть вырублены до основного металла, а кратеры швов заварены.

При ручной электродуговой сварке отдельные слои шва должны быть наложены так, чтобы замыкающие участки их в соседних слоях не совпадали один с другим.

При выполнении сварочных работ на открытом воздухе во время осадков места сварки должны быть защищены от влаги и ветра.

При контроле качества сварных соединений стальных трубопроводов следует выполнять:

- -операционный контроль в процессе сборки и сварки трубопровода в соответствии с требованиями СНиП 3.01.01-85*;
- -проверку сплошности сварных стыков с выявлением внутренних дефектов одним из неразрушающих (физических) методов контроля радиографическим (рентгено- или гаммаграфическим) по ГОСТ 7512-82 или ультразвуковым по ГОСТ 14782-86.

Применение ультразвукового метода допускается только в сочетании с радиографическим, которым должно быть проверено не менее 10% общего числа стыков, подлежащих контролю.

При операционном контроле качества сварных соединений стальных трубопроводов следует проверить соответствие стандартам конструктивных элементов и размеров сварных соединений, способа сварки, качества сварочных материалов, подготовки кромок, величины зазоров, числа прихваток, а также исправности сварочного оборудования.

Внешнему осмотру подлежат все сварные стыки. На трубопроводах диаметром 1020 мм и более сварные стыки, сваренные без подкладного кольца, подвергаются внешнему осмотру и измерению размеров снаружи и изнутри трубы, в остальных случаях - только снаружи. Перед осмотром сварной шов и прилегающие к нему поверхности труб на ширину не менее 20 мм (по обе стороны шва) должны быть очищены от шлака, брызг расплавленного металла, окалины и других загрязнений.

Качество сварного шва по результатам внешнего осмотра считается удовлетворительным,

если не обнаружено:

- -трещин в шве и прилегающей зоне;
- -отступлений от допускаемых размеров и формы шва;
- -подрезов, западаний между валиками, наплывов, прожогов, незаваренных кратеров и выходящих на поверхность пор, непроваров или провисаний в корне шва (при осмотре стыка изнутри трубы);
 - -смещений кромок труб, превышающих допускаемые размеры.

Стыки, не удовлетворяющие перечисленным требованиям, подлежат исправлению или удалению и повторному контролю их качества.

Проверке качества сварных швов физическими методами контроля подвергаются трубопроводы водоснабжения и канализации с расчетным давлением: до 1 МПа (10 кгс/кв.см) в объеме не менее 2% (но не менее одного стыка на каждого сварщика); 1-2 МПа (10-20 кгс/кв.см) - в объеме не менее 5% (но не менее двух стыков на каждого сварщика); свыше 2 МПа (20 кгс/кв.см) в объеме не менее 10% (но не менее трех стыков на каждого сварщика).

Сварные стыки для контроля физическими методами отбираются в присутствии представителя заказчика, который записывает в журнале производства работ сведения об отобранных для контроля стыках (местоположение, клеймо сварщика и др.).

Физическим методам контроля следует подвергать 100% сварных соединений трубопроводов, прокладываемых на участках переходов под и над железнодорожными и трамвайными путями, через водные преграды, под автомобильными дорогами, в городских коллекторах для коммуникаций при совмещенной прокладке с другими инженерными коммуникациями. Длину контролируемых участков трубопроводов на участках переходов следует принимать не менее следующих размеров:

- -для железных дорог расстоянию между осями крайних путей и по 40 м от них в каждую сторону;
- -для автомобильных дорог ширине насыпи по подошве или выемки по верху и по 25 м от них в каждую сторону;
- -для водных преград в границах подводного перехода, определяемых разд. 6 СНиП 2.05.06-85;
- -для других инженерных коммуникаций ширине пересекаемого сооружения, включая его водоотводящие устройства плюс не менее чем по 4 м в каждую сторону от крайних границ пересекаемого сооружения.

Сварные швы следует браковать, если при проверке физическими методами контроля обнаружены трещины, незаваренные кратеры, прожоги, свищи, а также непровары в корне шва, выполненного на подкладном кольце.

При проверке сварных швов радиографическим методом допустимыми дефектами считаются:

- -поры и включения, размеры которых не превышают максимально допустимых по ГОСТ 23055-78 для 7-го класса сварных соединений;
- -непровары, вогнутость и превышение проплава в корне шва, выполненного электродуговой сваркой без подкладного кольца, высота (глубина) которых не превышает 10% номинальной толщины стенки, а суммарная длина 1/3 внутреннего периметра соединения.

При выявлении физическими методами контроля недопустимых дефектов в сварных швах эти дефекты следует устранить и произвести повторный контроль качества удвоенного числа швов по сравнению с указанным в п. 3.37 СНиП 3.05.04-85*. В случае выявления недопустимых дефектов при повторном контроле должны быть проконтролированы все стыки, выполненные данным сварщиком.

Участки сварного шва с недопустимыми дефектами подлежат исправлению путем местной выборки и последующей подварки (как правило, без переварки всего сварного соединения), если суммарная длина выборок после удаления дефектных участков не превышает суммарной длины, указанной в ГОСТ 23055-78 для 7-го класса.

Исправление дефектов в стыках следует производить дуговой сваркой.

Подрезы должны исправляться наплавкой ниточных валиков высотой не более 2 - 3 мм. Трещины длиной менее 50 мм засверливаются по концам, вырубаются, тщательно зачищаются и завариваются в несколько слоев.

Результаты проверки качества сварных стыков стальных трубопроводов физическими методами контроля следует оформлять актом (протоколом).

Чугунные трубопроводы

Монтаж чугунных труб, выпускаемых в соответствии с ГОСТ 9583-75, следует осуществлять с уплотнением раструбных соединений пеньковой смоляной или битуминизированной прядью и устройством асбестоцементного замка, или только герметиком, а труб, выпускаемых в соответствии с ТУ 14-3-12 47-83, резиновыми манжетами, поставляемыми комплектно с трубами без устройства замка.

Состав асбестоцементной смеси для устройства замка, а также герметика определяется проектом.

Величину зазора между упорной поверхностью раструба и торцом соединяемой трубы (независимо от материала заделки стыка) следует принимать, мм: для труб диаметром до 300 мм - 5, свыше 300 мм - 8-10.

Размеры элементов заделки стыкового соединения чугунных напорных труб должны соответствовать величинам, приведенным в табл. 1 СНиП 3.05.04-85*.

Асбестоцементные трубопроводы

Величину зазора между торцами соединяемых труб следует принимать, мм: для труб диаметром до 300 мм - 5, свыше 300 мм - 10.

Перед началом монтажа трубопроводов на концах соединяемых труб в зависимости от длины применяемых муфт следует сделать отметки, соответствующие начальному положению муфты до монтажа стыка и конечному - в смонтированном стыке.

Соединение асбестоцементных труб с арматурой или металлическими трубами следует осуществлять с помощью чугунных фасонных частей или стальных сварных патрубков и резиновых уплотнителей.

После окончания монтажа каждого стыкового соединения необходимо проверить правильность расположения муфт и резиновых уплотнителей в них, а также равномерность затяжки фланцевых соединений чугунных муфт.

Железобетонные и бетонные трубопроводы

Величину зазора между упорной поверхностью раструба и торцом соединяемой трубы следует принимать, мм:

- -для железобетонных напорных труб диаметром до 1000 мм 12-15, диаметром свыше 1000 мм 18-22;
- -для железобетонных и бетонных безнапорных раструбных труб диаметром до 700 мм 8-12, свыше 700 мм 15-18;
 - -для фальцевых труб не более 25.

Стыковые соединения труб, поставляемых без резиновых колец, следует уплотнять пеньковой смоляной или битуминизированной прядью, или сизальской битуминизированной прядью с заделкой замка асбестоцементной смесью, а также полисульфидными (тиоколовыми) герметиками. Глубина заделки приведена в табл. 2 СНиП 3.05.04-85*, при этом отклонения по глубине заделки пряди и замка не должны превышать ± 5 мм.

Зазоры между упорной поверхностью раструбов и торцами труб в трубопроводах диаметром 1000 мм и более следует изнутри заделывать цементным раствором. Марка цемента определяется проектом.

Для водосточных трубопроводов допускается раструбную рабочую щель на всю глубину заделывать цементным раствором марки B7,5, если другие требования не предусмотрены проектом.

Герметизацию стыковых соединений фальцевых безнапорных железобетонных и бетонных труб с гладкими концами следует производить в соответствии с проектом.

Соединение железобетонных и бетонных труб с трубопроводной арматурой и металлическими трубами следует осуществлять с помощью стальных вставок или железобетонных фасонных соединительных частей, изготовленных согласно проекту.

Трубопроводы из керамических труб

Величину зазора между торцами укладываемых керамических труб (независимо от материала заделки стыков) следует принимать, мм: для труб диаметром до 300 мм - 5 - 7, при больших диаметрах - 8 - 10.

Стыковые соединения трубопроводов из керамических труб следует уплотнять пеньковой или сизальской битуминизированной прядью с последующим устройством замка из цементного раствора марки В7,5, асфальтовой (битумной) мастикой и полисульфидными (тиоколовыми) герметиками, если другие материалы не предусмотрены проектом. Применение асфальтовой мастики допускается при температуре транспортируемой сточной жидкости не более 40°С и при отсутствии в ней растворителей битума.

Основные размеры элементов стыкового соединения керамических труб должны соответствовать величинам, приведенным в табл. 3 СНиП 3.05.04-85*.

Заделка труб в стенках колодцев и камер должна обеспечивать герметичность соединений и водонепроницаемость колодцев в мокрых грунтах.

Трубопроводы из пластмассовых труб

Соединение труб из полиэтилена высокого давления (ПВД) и полиэтилена низкого давления (ПНД) между собой и с фасонными частями следует осуществлять нагретым инструментом методом контактно-стыковой сварки встык или враструб. Сварка между собой труб и фасонных частей из полиэтилена различных видов (ПНД и ПВД) не допускается.

Для сварки следует использовать установки (устройства), обеспечивающие поддержание параметров технологических режимов в соответствии с ОСТ 6-19-505-79 и другой нормативнотехнической документацией, утвержденной в установленном порядке.

К сварке трубопроводов из ПВД и ПНД допускаются сварщики при наличии документов на право производства работ по сварке пластмасс.

Сварку труб из ПВД и ПНД допускается производить при температуре наружного воздуха не ниже минус 10°С. При более низкой температуре наружного воздуха сварку следует производить в утепленных помещениях.

При выполнении сварочных работ место сварки необходимо защищать от воздействия атмосферных осадков и пыли.

Соединение труб из поливинилхлорида (ПВХ) между собой и с фасонными частями следует осуществлять методом склеивания враструб (с применением клея марки ГИПК-127 в соответствии с ТУ 6-05-251-95-79) и с использованием резиновых манжет, поставляемых комплектно с трубами.

Склеенные стыки в течение 15 мин не должны подвергаться механическим воздействиям. Трубопроводы с клеевыми соединениями в течение 24 ч не должны подвергаться гидравлическим испытаниям.

Работы по склеиванию следует производить при температуре наружного воздуха от 5 до 35°С. Место работы должно быть защищено от воздействия атмосферных осадков и пыли.

Переходы трубопроводов через естественные и искусственные преграды

Строительство переходов напорных трубопроводов водоснабжения и канализации через водные преграды (реки, озера, водохранилища, каналы), подводные трубопроводы водозаборов и канализационных выпусков в пределах русла водоемов, а также подземных переходов через овраги, дороги (автомобильные и железные, включая линии метрополитена и трамвайные пути) и городские проезды должно быть осуществлено специализированными организациями в соответствии с требованиями СНиП 3.02.01-87, СНиП III-42-80 (разд. 8) и СНиП 3.05.04-85*.

Способы прокладки трубопроводных переходов через естественные и искусственные преграды определяются проектом.

Прокладку подземных трубопроводов под дорогами следует осуществлять при постоянном маркшейдерско-геодезическом контроле строительной организации за соблюдением предусмотренного проектом планового и высотного положений футляров и трубопроводов.

Отклонения оси защитных футляров переходов от проектного положения для самотечных безнапорных трубопроводов не должны превышать:

- -по вертикали 0,6% длины футляра при условии обеспечения проектного уклона;
- -по горизонтали 1% длины футляра.

Для напорных трубопроводов эти отклонения не должны превышать соответственно 1 и 1,5% длины футляра.

Сооружения для забора поверхностной воды

Строительство сооружений для забора поверхностной воды из рек, озер, водохранилищ и каналов должно осуществляться, как правило, специализированными строительными и монтажными организациями в соответствии с проектом.

До начала устройства основания под русловые водоприемники должны быть проверены их разбивочные оси и отметки временных реперов.

Водозаборные скважины

В процессе бурения скважин все виды работ и основные показатели (проходка, диаметр бурового инструмента, крепление и извлечение труб из скважины, цементация, замеры уровней воды и другие операции) следует отражать в журнале по производству буровых работ. При этом следует отмечать наименование пройденных пород, цвет, плотность (крепость), трещиноватость, гранулометрический состав пород, водоносность, наличие и величину "пробки" при проходке плывунов, появившийся и установившийся уровень воды всех встреченных водоносных горизонтов, поглощение промывочной жидкости. Замер уровня воды в скважинах при бурении следует производить перед началом работ каждой смены. В фонтанирующих скважинах уровни воды следует измерять путем наращивания труб или замером давления воды.

В процессе бурения в зависимости от фактического геологического разреза допускается в пределах установленного проектом водоносного горизонта корректировка буровой организацией глубины скважины, диаметров и глубины посадки технических колонн без изменения эксплуатационного диаметра скважины и без увеличения стоимости работ. Внесение изменений в конструкцию скважины не должно ухудшать ее санитарного состояния и производительности.

Образцы следует отбирать по одному из каждого слоя породы, а при однородном слое - через 10 м.

По согласованию с проектной организацией образцы пород допускается отбирать не из всех скважин.

Изолирование эксплуатируемого водоносного горизонта в скважине от неиспользуемых водоносных горизонтов следует выполнять при способе бурения:

- -вращательном путем затрубной и межтрубной цементации колонн обсадных труб до отметок, предусмотренных проектом;
- -ударном задавливанием и забивкой обсадной колонны в слой естественной плотной глины на глубину не менее 1 м или проведением подбашмачной цементации путем создания каверны расширителем или эксцентричным долотом.

Для обеспечения предусмотренного проектом гранулометрического состава материала обсыпки фильтров скважин глинистые и мелкопесчаные фракции должны быть удалены отмывкой, а перед засыпкой отмытый материал следует продезинфицировать.

Обнажение фильтра в процессе его обсыпки следует проводить путем поднятия колонны обсадных труб каждый раз на 0,5 - 0,6 м после обсыпки скважины на 0,8 - 1 м по высоте. Верхняя граница обсыпки должна быть выше рабочей части фильтра не менее чем на 5 м.

Водозаборные скважины после окончания бурения и установки фильтра должны быть

испытаны откачками, производимыми непрерывно в течение времени, предусмотренного проектом.

Перед началом откачки скважина должна быть очищена от шлама и прокачана, как правило, эрлифтом. В трещиноватых скальных и гравийно-галечниковых водоносных породах откачку следует начинать с максимального проектного понижения уровня воды, а в песчаных породах - с минимального проектного понижения. Величина минимального фактического понижения уровня воды должна быть в пределах 0,4 - 0,6 максимального фактического.

При вынужденной остановке работ по откачке воды, если суммарное время остановки превышает 10% общего проектного времени на одно понижение уровня воды, откачку воды на это понижение следует повторить. В случае откачки из скважин, оборудованных фильтром с обсыпкой, величину усадки материала обсыпки следует замерять в процессе откачки один раз в сутки.

Дебит (производительность) скважин следует определять мерной емкостью с временем ее заполнения не менее 45 с. Допускается определять дебит с помощью водосливов и водомеров.

Уровень воды в скважине следует замерять с точностью до 0,1% глубины замеряемого уровня воды.

Дебит и уровни воды в скважине следует замерять не реже чем через каждые 2 ч в течение всего времени откачки, определенного проектом.

Контрольные промеры глубины скважины следует производить в начале и в конце откачки в присутствии представителя заказчика.

В процессе откачки буровая организация должна производить замер температуры воды и отбор проб воды в соответствии с ГОСТ 18963-73 и ГОСТ 4979-49 с доставкой их в лабораторию для проверки качества воды согласно ГОСТ 2874-82.

Качество цементации всех обсадных колонн, а также местоположение рабочей части фильтра следует проверять геофизическими методами. Устье самоизливающейся скважины по окончании бурения необходимо оборудовать задвижкой и штуцером для манометра.

По окончании бурения водозаборной скважины и испытания ее откачкой воды верх эксплуатационной трубы должен быть заварен металлической крышкой и иметь отверстие с резьбой под болт-пробку для замера уровня воды. На трубе должны быть нанесены проектный и буровой номера скважины, наименование буровой организации и год бурения.

Для эксплуатации скважина в соответствии с проектом должна быть оборудована приборами для замера уровней воды и дебита.

По окончании бурения и испытания откачкой водозаборной скважины буровая организация должна передать ее заказчику в соответствии с требованиями СНиП 3.01.04-87, а также образцы пройденных пород и документацию (паспорт), включающую:

- -геолого-литологический разрез с конструкцией скважины, откорректированный по данным геофизических исследований;
 - -акты на заложение скважины, установку фильтра, цементацию обсадных колонн;
- -сводную каротажную диаграмму с результатами ее расшифровки, подписанную организацией, выполнившей геофизические работы;
 - -журнал наблюдений за откачкой воды из водозаборной скважины;
- -данные о результатах химических, бактериологических анализов и органолептических показателей воды по ГОСТ 2874-82 и заключение санитарно-эпидемиологической службы.

Документация до сдачи заказчику должна быть согласована с проектной организацией.

Емкостные сооружения

При монтаже бетонных и железобетонных монолитных и сборных емкостных сооружений кроме требований проекта следует выполнять также требования СНи Π 3.03.01-87 и СНи Π 3.05.04-85*.

Обратную засыпку грунта в пазухи и обсыпку емкостных сооружений необходимо производить, как правило, механизированным способом после прокладки коммуникаций к емкостным сооружениям, проведения гидравлического испытания сооружений, устранения выявленных дефектов, выполнения гидроизоляции стен и перекрытия.

После окончания всех видов работ и набора бетоном проектной прочности производится гидравлическое испытание емкостных сооружений в соответствии с требованиями разд. 7 СНиП 3.05.04-85*.

Монтаж дренажно-распределительных систем фильтровальных сооружений допускается производить после проведения гидравлического испытания емкости сооружения на герметичность.

Круглые отверстия в трубопроводах для распределения воды и воздуха, а также для сбора воды следует выполнять сверлением в соответствии с классом, указываемым в проекте.

Отклонения от проектной ширины щелевых отверстий в полиэтиленовых трубах не должны превышать 0.1 мм, а от проектной длины щели в свету ± 3 мм.

Отклонения в расстояниях между осями муфт колпачков в распределительных и отводящих системах фильтров не должны превышать ± 4 мм, а в отметках верха колпачков (по цилиндрическим выступам) - ± 2 мм от проектного положения.

Отметки кромок водосливов в устройствах для распределения и сбора воды (желоба, лотки и др.) должны соответствовать проекту и должны быть выровнены по уровню воды.

При устройстве переливов с треугольными вырезами отклонения отметок низа вырезов от проектных не должны превышать ± 3 мм.

На внутренней и внешней поверхностях желобов и каналов для сбора и распределения воды, а также для сбора осадков не должно быть раковин и наростов. Лотки желобов и каналов должны иметь заданный проектом уклон в сторону движения воды (или осадка). Наличие на них участков с обратным уклоном не допускается.

Укладку фильтрующей загрузки в сооружения для очистки воды фильтрованием допускается производить после гидравлического испытания емкостей этих сооружений, промывки и прочистки подключенных к ним трубопроводов, индивидуального опробования работы каждой из распределительных и сборных систем, измерительных и запорных устройств.

Материалы фильтрующей загрузки, укладываемой в сооружения для очистки воды, в том числе в биофильтры, по гранулометрическому составу должны соответствовать проекту или требованиям СНиП 2.04.02-84 и СНиП 2.04.03-85.

Отклонение толщины слоя каждой фракции фильтрующей загрузки от проектной величины и толщины всей загрузки не должно быть свыше ± 20 мм.

После окончания работ по укладке загрузки фильтровального сооружения питьевого водоснабжения должна быть произведена промывка и дезинфекция сооружения, порядок проведения которых представлен в рекомендуемом приложении 5 СНиП 3.05.04-85*.

Монтаж возгораемых элементов конструкций деревянных оросителей, водоуловительных решеток, воздухонаправляющих щитов и перегородок вентиляторных градирен и брызгальных бассейнов следует осуществлять после завершения сварочных работ.

СНиП 3.05.04-85* «Наружные сети и сооружения водоснабжения и канализации» п.3.1- п.3.64, п.4.1-п.4.4, п.5.1-п.5.26