Sieci komputerowe

Wykład 2 Warstwa fizyczna, Ethernet

Rola warstwy fizycznej

- Określa rodzaj medium transmisyjnego (np. światłowód lub skrętka)
- Określa sposób kodowania bitów (np. zakres napięć odpowiadających wartości logicznej 1)
- Definiuje złącza (rodzaj użytych złącz, ilość pinów itd.)

Media transmisyjne

- Okablowanie miedziane
 - linie transmisyjne są to zwykle tzw. linie długie
 - rodzaje linii transmisyjnych
 - symetryczne (np. skrętka)
 - współosiowe (np. kabel koncentryczny)
 - w liniach transmisyjnych występują zjawiska falowe
- Światłowody
 - wielomodowe (MM)
 - jednomodowe (SM)

Propagacja sygnału w liniach miedzianych

- Przekazywany sygnał podlega zjawiskom falowym i jest narażony na:
 - Tłumienie
 - Jest związane z parametrami konstrukcyjnymi kabla, np. rezystancją (opornością), upływnością dielektryka
 - Tłumienie rośnie wraz z częstotliwością, np. wskutek zjawiska naskórkowości
 - Dyspersja, opóźnienie
 - Składowe sygnału o różnych częstotliwościach rozchodzą się w linii długiej z różną prędkością, powoduje to zniekształcenie sygnału
 - Odbicia
 - Zakłócenia

- Sygnał cyfrowy
 Do kodowania bitów najczęściej używany jest sygnał cyfrowy
- V to wartości napięć oznaczające wartości logiczne 0 i 1

Sygnał cyfrowy - harmoniczne

 Sygnał cyfrowy okresowy można rozłożyć na sumę sygnałów harmonicznych

Tłumienie

 Tłumienie powoduje spadek amplitudy sygnału, jest związane z m. in. z opornością przewodu oraz jakością użytego do budowy przewodu dielektryka

Dyspersja

 Składowe sygnału o różnych częstotliwościach rozchodzą się z różną prędkością, powoduje to "rozciągnięcie"

Kodowanie

- Kodowanie to przypisanie bitom np. wartości napięć lub wydarzenia związanego ze zmianą napięcia
- Manchester był stosowany w sieciach 10Mb
- MLT3 (np. 100BASE-TX)

Sieć Ethernet

- Ethernet to zbiór reguł budowy sieci lokalnych publikowany przez IEEE jako standardy oznaczane następująco: 802.3, np. 802.3u
- Standard Ethernet określa własności warstw fizycznej oraz łącza danych

Warstwa fizyczna sieci Ethernet

Okablowanie

- skrętki UTP (Unshielded Twisted Pair) i STP (Shielded Twisted Pair)
- światłowody wielomodowe (multimode MM) i jednomodowe (singlemode - SM)

Złącza

- RJ45 (dla skrętki)
- SC, LC i starszy ST (dla światłowodów)

Przepustowości

- 10Mb, 100Mb, 1Gb, 10Gb

Okablowanie – skretka miedziana

- UTP (ang. Unshielded Twisted Pair) na rysunku - nieekranowana
- STP (ekranowane pary)
- FTP (ang. Foiled Twisted Pair) ekranowana całość

Złącze RJ-45

1: TX +

3: RX+

2: TX -

6: RX -

Kabel, kolory, połączenia między urządzeniami

 Końcówki kabla należy zaciskać wg jednego z poniższych sposobów:

PIN	T568A	T568B
1	j. zielony	j. pomarańczowy
2	zielony	pomarańczowy
3	j. pomarańczowy	j. zielony
4	niebieski	niebieski
5	j. niebieski	j. niebieski
6	pomarańczowy	zielony
7	j. brązowy	j. brązowy
8	brązowy	brązowy

Kabel crossover

- Aby wykonać kabel crossover, należy zacisnąć końcówki:
 - jedną wg **T568A**
 - drugą wg **T568B**
- Dla Gigabit Ethernetu (1000BaseT) używane są 4 pary, kabel crossover musi być więc inny (jaki?)
- Kabel crossover służy do łączenia dwóch kart sieciowych Ethernet, lub dwóch przełączników Ethernet
- Niektóre przełączniki i karty sieciowe obsługują tzw. auto MDIX – można stosować dowolny typ kabla

PoE

- PoE (ang. Power over Ethernet), 802.3af
 - umożliwia zasilanie urządzeń za pomocą skrętki
 - bardzo wygodne np. dla urządzeń AP WIFI
 - j. niebieski oraz niebieski +
 - j. brązowy oraz brązowy -
 - 48V, 350mA
 - w wyniku wykorzystania dość wysokiego napięcia (granica bezpieczeństwa dla napięć stałych) można uzyskać sporą moc
 - konieczność zastosowania wysokiej wartości napięcia wynika z małego przekroju żyły miedzianej w skrętce UTP/STP/FTP

Kategorie skrętek

Kategoria	Częstotliwość	Przepustowość	Opis
5	100MHz	100Mb	Fast Ethernet
5e	125MHz	1Gb	Fast Ethernet, Gigabit Ethernet
6	250MHz	>1Gb	Fast Ethernet, Gigabit Ethernet
6a (augmented)	500MHz	10GB	Ethernet 10G

 Podział na kategorie został zaproponowany w celu łatwego określania przydatności okablowania telekomunikacyjnego dla danego typu transmisji

Przewody koncentryczne

 Standardów Ethernet opartych o przewody koncentryczne obecnie się nie stosuje, choć takie instalacje czasem jeszcze można spotkać

Światłowody - budowa

Figure 11-10 Components of a Fiber-Optic Cable

- Ważnymi parametremi są średnice rdzenia i płaszcza:
 - $-9/125 \mu m (SM)$
 - $-62,5/125 \mu m (MM)$
 - $-50/125 \mu m (MM)$

Światłowody wielo- i jednomodowe

- Wielomodowe:
 - występuje dyspersja międzymodowa oraz chromatyczna
- Jednomodowe (stosowane przy dużych odległościach)
 - występuje tylko dyspersja chromatyczna

Złacze światłowodowe SC

Złącze LC

Złącze ST

Zalety i wady światłowodów

Zalety:

- Są niewrażliwe na zakłócenia EMI
- Nie powodują zakłóceń EMI
- Można uzyskać duże przepustowości i odległości transmisji
- Bezpieczeństwo transmisji

Wady:

- Drogie urządzenia (szczególnie SM)
- Trudny i kosztowny montaż złącz i osprzętu
- Mała odporność na uszkodzenia mechaniczne

Standardy Ethernetu

Ethernet 802.3

Standard	Okablowanie	Odległość
10BASE5	Kabel współosiowy gruby (RG-213)	500m
10BASE2	Kabel współosiowy cienki (RG-58)	185m
10BASET	Skrętka UTP, od kat. 3 w górę	100m

Ethernet 802.3u

Standard	Okablowanie	Odległość
100BASE-FX	Światłowód MM	400m
100BASE-TX	Skrętka UTP, od kat. 5 w górę	100m

Standardy Ethernet c.d.

Ethernet 802.3z (optyczny), 802.3ab (elektryczny)

Standard	Okablowanie	Odległość
1000BASE-SX	Światłowód MM	550m
1000BASE-LX	Światłowód MM lub SM	3km lub 10km
1000BASE-LH	Światłowód SM	100km
1000BASE-T	Skrętka UTP od kat. 5e w	100m
	górę (4 pary)	

802.3ae (optyczny), 802.3ak (elektryczny), 802.3an (elektryczny)

Standard	Okablowanie	Odległość
10GBASE-SR	Światłowód MM	300m
10GBASE-LR	Światłowód SM	10km
10GBASE-ER	Światłowód SM	40km
10GBASE-CX4	Przewód miedziany CX4	15m
10GBASE-T (wymaga	Skrętka UTP cat 6, 6a	55, 100m odpowiednio
500Mhz)		

Autonegocjacja

- Ethernet używa technologii tzw. autonegocjacji, aby zapewnić możliwość współpracy urządzeń różnych standardów.
- Współczesne przełączniki (ang. switch) i karty sieciowe (NIC) zwykle są w stanie pracować w którymś z trybów 10/100/1000
- Nie wszystkie jednak urządzenia będą współpracować
 - np. 1000BASE-SX z 100BASE-FX
- Autonegocjacja jest realizowana w warstwie fizycznej

Okablowanie strukturalne LAN,

- X krosownice (panele krosowe, ang. patch panele)
- CD, BD, FD punkty dystrybucyjne: kampusu, budynku, piętra

Osprzęt sieci LAN

Patch panel, przełączniki Ethernet:

Osprzęt sieciowy LAN c.d.

Patch panel światłowodowy

Osprzęt sieciowy LAN c.d.

