Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk

Peter Christoffersen , Mathieu Fournier , Kris Jacobs and Mehdi Karoui

Berna Polat, Lian Jin, Mykola Subtelnyi, Oleksandra Knüsel

University of Liechtenstein

Master of Science (MSc) in Finance

Investment Strategies and Asset Management WS22

13.12.2022

Table of Content

- 1. Introduction
- 2. Main findings of Christofferson et al. 2021
- 3. Coding Process
- Figure 1. Option-based price of co-skewness risk
- Table 1. Time series for option-based estimates of the price of co-skewness risk
- Table 2. Regression-based price of co-skewness risk.
- Table 3. Comparing predictive performance.
- 7. Conclusion
- 8. Discussion

1. Introduction

Paper stands for:

- ➤ Alternative option-based approach to measuring the price of co-skewness and co-kurtosis risk for the nonlinear exposure.
- ➤ Empirical results for co-skewness risk and comparison of the pricing performance of the new approach with regression-based estimates.
- Assess predictive performance of the new estimates.
- Option-based estimates of the prices of risk lead to reasonable values of the associated risk premia and improve the models' performance compared with regression-based estimates.

Table 1 Price of Co-Skewness; descriptive analysis

$$\widehat{\lambda_{OI,t}}^{COSK} = \widehat{E}_t^P(R_{m,t+1}^2) - \widehat{E}_t^Q(R_{m,t+1}^2)$$
 TABLE 1 Option-Based Price of Coskewness Risk
$$\frac{\text{Physical Second Moment}}{\text{Option-Based Price of Coskewness Risk}} = \frac{\text{Price of Coskewness Risk}}{\text{Mean}}$$
 Mean 0.3034 0.4499 -0.1464 Std. dev. 0.2168 0.4133 0.2289 Skewness 8.9863 3.4318 -2.2645 Kurtosis 109.6172 19.1077 12.8347 First-order autocorrelation 0.4996 0.7525 0.4352

Consistent with theory: -0.1464

- KL (1976); Regression gives the value -0.212
- HS(2000); Regression gives the value -0.305

FIGURE 1
Option-Based Estimates of the Price of Coskewness Risk

Co-skewness price of risk is negative for almost all months

Table 2 Regression-Based Estimates of the Price of Coskewness Risk

TABLE 2
Regression-Based Estimates of the Price of Coskewness Risk

		25 Size/BM			25 Size/MOM			25 Size/STR			25 Size/LTR	
Variable	1	_ 2	3	4	5	6	7	8	9	10	11	12
Panel A. 198	6–2012											
λ ⁰	1.338	1.408	0.849	0.182	0.008	0.592	0.574	0.471	0.369	0.389	0.490	-0.208
	2.85	2.63	2.32	0.53	0.02	1.56	1.74	1.26	0.80	1.41	1.68	-0.54
λ ^{MKT}	-0.637	-0.742	-0.231	0.472	0.585	0.089	0.073	0.206	0.218	0.370	0.236	0.829
	-1.27	-1.37	-0.56	1.11	1.33	0.22	0.17	0.44	0.46	1.12	0.68	1.92
λ ^{HML}			0.017			0.069			-0.034			0.033
			0.10			0.35			-0.18			0.15
SMB			0.333			0.200			0.497			0.542
			1.81			0.66			1.38			2.29
МОМ			0.436			0.570			-0.459		_	-0.055
			0.89			2.01			-0.96			-0.13
₂ COSK		-0.051	-0.073		-0.108	0.010		0.015	0.076		-0.080	-0.157
		-0.65	-1.13		-1.61	0.18		0.10	1.19		-1.12	2.20
Adj. R ²	16.01	31.14	44.99	13.78	27.26	56.22	14.37	32.73	51.11	7.84	21.86	43.75

FIGURE 2

Various Option-Implied Estimates of the Price of Coskewness Risk Using Alternative Models for Physical and Risk Neutral Variance (1996–2012)

❖ For **Physical Variance**

- -> HAR of Corsi (2009)
- -> Henston (1993)
- \rightarrow AR

❖ For **Risk-Neutral Variance**

- -> VIX SQUARED (CBOE)
- -> Bakshi et al. (BKM) (2003)
- Estimates negative regardless of the model used

Descriptive Analysis & Regression Based Analysis

Test Assets

- Regression based estimates depend on test assets
- Approach design is independent of the test asset

Large λ^{cosk}

- Unconditional estimate -0.146
- Large in absolute terms, magnitude compared to regression-based estimates

Negative Estimates

- Consistently negative estimates of the price of conditional co-skewness in their approach
- Not the case in regression-based approaches

Our results – Figure 1

Graph A. Physical Second Moment

Graph B. Risk-Neutral Second Moment

Graph C. Price of Coskewness Risk

Comparison - Figure 1

Our results - Table 1

	Physical Second Moment	Risk-Neutral Second Moment	Price of Coskewness Risk
mean	0.035	0.0481	-0.0131
sd	0.0321	0.0482	0.0337
skew	6.8878	3.4817	-2.2494
kurtosis	67.0802	16.4571	23.1601
Autocorrelation	0.6893	0.7383	0.4764

	Physical	Risk Neutral	Price of
	Second Moment	Second Moment	Co-Skewness Risk
mean	0.3034	0.4499	-0.1464
std	0.2168	0.4133	0.2289
skew	8.9863	3.4318	-2.2645
kurt	109.6172	19.1077	12.8347
ρ (1)	0.4996	0.7525	0.4352

- risk-neutral variance is > the physical variance
- price of co-skewness risk is negative

^{--&}gt; Bakshi and Madan (2006), Bollerslev, Tauchen & Zhou (2009), Carr and Wu (2009), Jackwerth and Rubinstein (1996)

Our results – Table 2

	Size-to-Book 1	Size-to-Book 2	Size-to-Book 3	Size-to-Momentum 1	Size-to-Momentum 2	Size-to-Momentum 3
<i>I_0</i>	1.435	1.412	1.3	1.093	0.9	1.178
I_MKT	-0.394	-0.439	-0.356	-0.034	0.084	-0.2
I_HML			0.063			-0.108
I_SMB			0.145			0.252
I_MOM			0.426			0.327
I_COSK		-3.564	-3.775		-9.53	-1.736
Adj.R.sq	0.155	0.266	0.478	0.181	0.287	0.591

	Size-to-STR 1	Size-to-STR 2	Size-to-STR 3	Size-to-LTR 1	Size-to-STR 2	Size-to-STR 3
I_0	0.846	0.917	0.884	1.045	1.021	0.625
I_MKT	0.173	0.091	0.032	0.045	0.032	0.299
I_HML			0.269			0.136
I_SMB			0.074			0.247
I_MOM			-0.201			0.486
I_COSK		-5.067	7.452		-7.598	-3.773
Adj.R.sq	0.16	0.294	0.519	0.143	0.255	0.48

5. Comparing predictive performance. Table 3.

$$\varepsilon_{t+1}^{p,k} = R_{p,t+1} - \lambda_{\mathsf{RB},t}^{\mathsf{MKT}} \beta_{p,t}^{\mathsf{MKT}} - \lambda_{k,t}^{\mathsf{COSK}} \beta_{p,t}^{\mathsf{COSK}}, \qquad \Delta \mathsf{MSE}_t = \left(\frac{1}{25} \sum_{p=1}^{25} \left(\varepsilon_t^{p,\mathsf{RB}}\right)^2 - \left(\varepsilon_t^{p,\mathsf{OI}}\right)^2\right) \times 12 \times 100.$$

- > ΔMSE difference in mean squared error
- We multiply the cross-sectional average of the monthly difference in mean squared errors by 12 to annualize and by 100 to express it as a percentage.
- Positive \triangle MSE indicates a superior forecast performance of the option-implied estimate versus the regression-based estimate.

	25 Size/BM	25 Size/MOM	25 Size/STR	25 Size/LTR	All
Panel A. Difference in Mean Squ	ared Error				
ΔMSE	0.325	0.134	0.233	0.081	0.193
NW p-value	0.30%	5.35%	0.30%	15.61%	0.40%
BS p-value	0.15%	3.37%	0.14%	13.58%	0.16%
BS 5th-percentile bound	0.171	0.015	0.112	-0.040	0.091
BS 95th-percentile bound	0.492	0.255	0.359	0.202	0.298

MSE_SB	MSE_SM	MSE_SS	MSE_SL
-40.0341124507312	10.2708850921419	26.9686956644452	-24.0533985108649

6. Conclusion

- 1. Given the results of the replication we can confirm the results of original paper of Christoffersen:
- → price of co-skewness risk has the theoretically expected negative sign in most cases and price of co-kurtosis risk has theoretically expected positive sign in most cases.
- alternative option-based strategy for estimating the price of co-skewness and co-kurtosis risk is a better estimation compared to the regression-based estimates.
- 2. Our results deviate from the paper's ones and can provide different conclusions *We assume it may be due to:*
- Different data set /newer / larger time-frame (but only to have small deviations in the means)
- We observe some differences in the data of S&P500
- Mistake in HAR model to estimate the physical second moment
- Ordinary mistake

Thank you for your attention!

Now it is time for questions!

Comparison - Figure 1

Table 1

	Physical Second Moment	Risk-Neutral Second Moment	Price of Coskewness Risk
mean	0.035	0.0481	-0.0131
sd	0.0321	0.0482	0.0337
skew	6.8878	3.4817	-2.2494
kurtosis	67.0802	16.4571	23.1601
Autocorrelation	0.6893	0.7383	0.4764

	Physical Second Moment	Risk Neutral Second Moment	Price of Co-Skewness Risk
mean	0.3034	0.4499	-0.1464
std	0.2168	0.4133	0.2289
skew	8.9863	3.4318	-2.2645
kurt	109.6172	19.1077	12.8347
ρ(1)	0.4996	0.7525	0.4352

Table 2

	Size-to-Book 1	Size-to-Book 2	Size-to-Book	3 Size-to-Mor	mentum 1 Size	-to-Momentum 2	Size-to-Momentum 3
1_0	1.435	1.412	1.3	1.09	3	0.9	1.178
I_MKT	-0.394	-0.439	-0.356	-0.03	34	0.084	-0.2
I_HML			0.063				-0.108
I_SMB			0.145				0.252
I_MOM			0.420				0.021
I_COSK		-3.564	-3.775			-9.53	-1.736
Adj.R.sq	0.155	0.266	0.478	0.18	1	0.287	0.591
	Size-to-STR 1	Size-to-STR 2	Size-to-STR 3	Size-to-LTR 1	Size-to-STR 2	Size-to-STR 3	
<i>I_</i> 0	Size-to-STR 1 0.846	Size-to-STR 2 0.917	Size-to-STR 3 0.884	Size-to-LTR 1 1.045	Size-to-STR 2	2 Size-to-STR 3 0.625	
I_0 I_MKT							
	0.846	0.917	0.884	1.045	1.021	0.625	
I_MKT	0.846	0.917	0.884 0.032	1.045	1.021	0.625 0.299	
I_MKT I_HML	0.846	0.917	0.884 0.032 0.269	1.045	1.021	0.625 0.299 0.136	
I_MKT I_HML I_SMB	0.846	0.917	0.884 0.032 0.269 0.074	1.045	1.021	0.625 0.299 0.136	

		25 Size/BM			25 Size/MOM			25 Size/STR			25 Size/LTR	
Variable	_1_	2	3	4	5	6	7	8	9	10	11	12
Panel A. 198	6-2012											
λ ⁰	1.338	1.408	0.849	0.182	0.008	0.592	0.574	0.471	0.369	0.389	0.490	-0.208
	2.85	2.63	2.32	0.53	0.02	1.56	1.74	1.26	0.80	1.41	1.68	-0.54
λ ^{MKT}	-0.637	-0.742	-0.231	0.472	0.585	0.089	0.073	0.206	0.218	0.370	0.236	0.829
	-1.27	-1.37	-0.56	1.11	1.33	0.22	0.17	0.44	0.46	1.12	0.68	1.92
λ ^{HML}			0.017			0.069			-0.034			0.033
			0.10			0.35			-0.18			0.15
λ ^{SMB}			0.333			0.200			0.497			0.542
			1.81			0.66			1.38			2.29
λ ^{MOM}			0.436			0.570			-0.459			0.055
			0.89			2.01			-0.96			-0.13
λ ^{COSK}		-0.051	-0.073		-0.108	0.010		0.015	0.076		-0.080	-0.157
		-0.65	-1.13		-1.61	0.18		0.19	1.19		-1.12	
Adj. R ²	16.01	31.14	44.99	13.78	27.26	56.22	14.37	32.73	51.11	7.84	21.86	43.75

17

Table 3

	25 Size/BM	25 Size/MOM	25 Size/STR	25 Size/LTR	All
Panel A. Difference in Mean So	quared Error				
ΔMSE	0.325	0.134	0.233	0.081	0.193
NW p-value	0.30%	5.35%	0.30%	15.61%	0.40%
BS <i>p</i> -value	0.15%	3.37%	0.14%	13.58%	0.16%
BS 5th-percentile bound	0.171	0.015	0.112	-0.040	0.091
BS 95th-percentile bound	0.492	0.255	0.359	0.202	0.298

MSE_SB	MSE_SM	MSE_SS	MSE_SL
-40.0341124507312	10.2708850921419	26.9686956644452	-24.0533985108649

