# 自行选择两个数据集进行探索性分析

# 分析报告一

# 一、数据

#### 1.1 数据集选择

```
Wine Reviews: winemag-data_first150k.csv
Wine Reviews: winemag-data-130k-v2.csv(用于对比数据缺失处理的原始数据集使用)
```

1.2 编程语言: python

#### 1.3 导入所需各类依赖包

```
In [ ]: import pandas as pd
   import numpy as np
   from scipy import stats
   import matplotlib.pyplot as plt
   from sklearn.ensemble import RandomForestClassifier
```

# 二、数据分析要求

#### 2.1 数据可视化及摘要

\* 数据摘要

2.1.1 标称属性、给出每个可能取值的频数

该数据集中标称属性有: country、disignation、province、region\_1、region\_2、variety、winery 由于属性值较多,这里我们以country为例作展示,其余标称属性可能取值的频数运行代码后可查看

Name: country, dtype: int64

```
In [ ]: wine = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv'))
    print(wine['country'].value_counts())
```

| country      | 频数    | country                | 频数 |
|--------------|-------|------------------------|----|
| US           | 62397 | Lebanon                | 37 |
| Italy        | 23478 | Cyprus                 | 31 |
| France       | 21098 | Brazil                 | 25 |
| Spain        | 8268  | Macedonia              | 16 |
| Chile        | 5816  | Serbia                 | 14 |
| Argentina    | 5631  | Morocco                | 12 |
| Portugal     | 5322  | England                | 9  |
| Australia    | 4957  | Luxembourg             | 9  |
| New Zealand  | 3320  | Lithuania              | 8  |
| Austria      | 3057  | India                  | 8  |
| Germany      | 2452  | Czech Republic         | 6  |
| South Africa | 2258  | Ukraine                | 5  |
| Greece       | 884   | Switzerland            | 4  |
| Israel       | 630   | Bosnia and Herzegovina | 4  |
| Hungary      | 231   | South Korea            | 4  |
| Canada       | 196   | Egypt                  | 3  |
| Romania      | 139   | China                  | 3  |
| Slovenia     | 94    | Slovakia               | 3  |
| Uruguay      | 92    | Albania                | 2  |
| Croatia      | 89    | Montenegro             | 2  |
| Bulgaria     | 77    | Tunisia                | 2  |
| Moldova      | 71    | Japan                  | 2  |
| Mexico       | 63    | US-France              | 1  |
| Turkey       | 52    |                        |    |
| Georgia      | 43    |                        |    |

## 2.1.2 数值属性, 给出数值属性的五数概括及缺失值的个数

该数据集中数值属性有: price、points

Name: price, dtype: float64

```
In [ ]: wine = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv'))
    print(wine['price'].describe())
```

| price |             |
|-------|-------------|
| count | 137235.0000 |
| mean  | 33.1315     |
| std   | 36.3225     |
| min   | 4.0000      |
| 25%   | 16.0000     |
| 50%   | 24.0000     |
| 75%   | 40.0000     |
| max   | 2300.0000   |

# Name: points, dtype: float64

```
In [ ]: wine = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv'))
    print(wine['points'].describe())
```

| points |             |
|--------|-------------|
| count  | 150930.0000 |
| mean   | 87.8884     |
| std    | 3.2224      |
| min    | 80.0000     |
| 25%    | 86.0000     |
| 50%    | 88.0000     |
| 75%    | 90.0000     |
| max    | 100.0000    |

## 该数据集的缺省值情况为

```
In [ ]: print(wine.isna().sum())
```

| 缺失值         |       |
|-------------|-------|
| country     | 5     |
| description | 0     |
| designation | 45735 |
| points      | 0     |
| price       | 13695 |
| province    | 5     |
| region_1    | 25060 |
| region_2    | 89977 |
| variety     | 0     |
| winery      | 0     |

#### \* 数据可视化

2.1.3 使用直方图、盒图等检查数据分布及离群点

(这里给出price和points属性的可视化展示)

#### (1)、 price属性直方图

```
In []: #price属性直方图
plt.hist(x=wine['price'], bins=100, edgecolor='black')
# 添加x轴和y轴标签
plt.xlabel('price')
plt.ylabel('frequency')
# 添加标题
plt.title('Wine-Price distribution')
plt.savefig('./wineResult/price_distribution_hist.png')
plt.show()
```

#### Out[11]:



#### price属性盒图

```
In []: #price属性盒图(不丢弃缺失值情况)
priceNa = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv').price)
priceNa.boxplot(sym='o')
plt.boxplot(wine['price'], sym='o')
plt.ylabel('price')
plt.title('Wine-Price Boxplot')
#plt.legend()
plt.savefig('./wineResult/price_box.png')
plt.show()
```

```
In [8]: from IPython.display import Image
Image(filename = 'price_box.png', width=500, height=500)
```

#### Out[8]:



#### price属性Q-Q图

```
In []: #price属性QQ图(不丢弃缺失值)
    sorted_ = np.sort(wine['price'])
    yvals = np.arange(len(sorted_))/float(len(sorted_))
    x_label = stats.norm.ppf(yvals)
    plt.scatter(x_label, sorted_)
    stats.probplot(wine['price'], dist="norm", plot=plt)
    plt.savefig('./wineResult/price_qq.png')
    plt.show()
```

#### Out[7]:



#### (2)、points属性直方图

```
In []: #points属性直方图
plt.hist(x=wine['points'], bins=100, edgecolor='black')
# 添加x轴和y轴标签
plt.xlabel('points')
plt.ylabel('frequency')
# 添加标题
plt.title('Wine-Points distribution')
plt.savefig('./wineResult/points_distribution_hist.png')
plt.show()
```

```
In [6]: from IPython.display import Image
Image(filename = 'points_distribution_hist.png', width=500, height=500)
```

#### Out[6]:



#### points属性盒图

```
In []: #points属性盒图(不丢弃缺失值情况)
priceNa = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv').points)
priceNa.boxplot(sym='o')
plt.ylabel('points')
plt.title('Wine-Points Boxplot')
plt.savefig('./wineResult/points_box.png')
plt.show()
```

```
In [5]: from IPython.display import Image
Image(filename = 'points_box.png', width=500, height=500)
```

#### Out[5]:



```
In []: #points属性QQ图(不丢弃缺失值)
    sorted_ = np.sort(wine['points'])
    yvals = np.arange(len(sorted_))/float(len(sorted_))
    x_label = stats.norm.ppf(yvals)
    plt.scatter(x_label, sorted_)
    stats.probplot(wine['points'], dist="norm", plot=plt)
    plt.savefig('./wineResult/points_qq.png')
    plt.show()
```

# points属性Q-Q图

```
In [4]: from IPython.display import Image
Image(filename = 'points_qq.png', width=500, height=500)
```

#### Out[4]:



#### 2.2 数据缺失的处理

观察数据集中缺失数据,分析其缺失的原因。分别使用下列四种策略对缺失值进行处理:

由于属性值较多,这里我们以price数值属性为例,price属性值缺失的原因可能为:红酒数据收集是数据缺失

2.2.1 将缺失部分剔除(这里直接展示剔除缺失值之后与原数据集的对比可视化)

price直方图 (左为丢弃数据后直方图,右为原始数据直方图)

```
#原始数据集(去重处理后)
In [ ]:
        wineV2 = pd.DataFrame(pd.read_csv('winemag-data-130k-v2.csv'))
        #删除
        #直方图
        plt.hist(wine['price'].dropna(), bins=100, edgecolor='black')
        #添加x轴和y轴标签
        plt.xlabel('price')
        plt.ylabel('frequency')
        # 添加标题
        plt.title('Wine-Price distribution')
        plt.savefig('./wineResult/price_delete_hist.png')
        plt.show()
        #原始直方图
        plt.hist(wineV2['price'], bins=100, edgecolor='black')
        #添加x轴和y轴标签
        plt.xlabel('price')
        plt.ylabel('frequency')
        #添加标题
        plt.title('Wine-Price distribution')
        plt.savefig('./wineResult/priceCom_hist.png')
        plt.show()
```

```
In [3]:
             from IPython.display import Image
              Image(filename = 'price hist.png')
Out[3]:
                                   Wine-Price distribution
                                                                                               Wine-Price distribution
                80000
                                                                            80000
                70000
                                                                            70000
                60000
                                                                            60000
                50000
                                                                            50000
                40000
                                                                            40000
                30000
                                                                            30000
                20000
                                                                            20000
                10000
                                                                            10000
                               500
                                        1000
                                                1500
                                                         2000
                                                                                        500
                                                                                              1000
                                                                                                    1500
                                                                                                                 2500
                                                                                                                       3000
                                                                                                      price
```

#### price盒图 (左为丢弃数据后盒图,右为原始数据盒图)

```
In [ ]: #盒图
    priceNa = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv').price).dr
    opna()
    priceNa.boxplot(sym='o')
    plt.ylabel('price')
    plt.savefig('./wineResult/price_delete_box.png')
    plt.show()

#原始数据盒图
    priceNa = pd.DataFrame(pd.read_csv('winemag-data-130k-v2.csv').price)
    priceNa.boxplot(sym='o')
    plt.ylabel('price')
    plt.title('Wine-Price Boxplot')
    plt.savefig('./wineResult/priceCom_box.png')
    plt.show()
```

# In [4]: from IPython.display import Image Image(filename = 'price\_box2.png')



```
In [ ]: #Q-Q图
        sorted = np.sort(wine['price'].dropna())
        yvals = np.arange(len(sorted ))/float(len(sorted ))
        x label = stats.norm.ppf(yvals)
        plt.scatter(x label, sorted )
        stats.probplot(wine['price'].dropna(), dist="norm", plot=plt)
        plt.savefig('./wineResult/price delete qq.png')
        plt.show()
        #原始数据Q-Q图
        sorted = np.sort(wineV2['price'].dropna())
        yvals = np.arange(len(sorted ))/float(len(sorted ))
        x label = stats.norm.ppf(yvals)
        plt.scatter(x label, sorted )
        stats.probplot(wineV2['price'].dropna(), dist="norm", plot=plt)
        plt.savefig('./wineResult/priceCom_qq.png')
        plt.show()
```



#### 2.2.2 用最高频率值来填补缺失值

price直方图 (左为利用众数填充缺失值后直方图,右为原始数据直方图)

```
In [10]:
              from IPython.display import Image
               Image(filename = 'price mode hist.png')
Out[10]:
                                    Wine-Price distribution
                                                                                              Wine-Price distribution
                                                                           80000
                 70000
                                                                           70000
                 60000
                                                                           60000
                 50000
                                                                           50000
                 40000
                                                                          ਰੂ
40000
                 30000
                                                                            30000
                 20000
                                                                           20000
                 10000
                                                                           10000
                                        1000
                                500
                                                1500
                                                         2000
                                                                                             1000
                                                                                       500
                                                                                                   1500
                                                                                                        2000
                                                                                                               2500
                                                                                                                     3000
```

#### price盒图 (左为利用众数填充缺失值后盒图,右为原始数据盒图)

```
#盒图
 In [ ]:
          priceNa = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv').price).fi
          llna(wine['price'].interpolate(missing_values='NaN', strategy='mode',
                                                                           axis=0, verbose
          =0, copy=True))
          priceNa.boxplot(sym='o')
          plt.ylabel('price')
          plt.savefig('./wineResult/price mode box.png')
          plt.show()
In [11]:
          from IPython.display import Image, display, HTML
          Image(filename = 'price mode box.png')
Out[11]:
                                                                  Wine-Price Boxplot
                                                    3000
            2000
            1500
                                                    2000
           1000
                                                   افِ
1500
                                                    1000
             500
                                                     500
```

priceQ-Q图 (左为利用众数填充缺失值后Q-Q图,右为原始数据Q-Q图)

```
In [ ]: #Q-Q图
          sorted = np.sort(wine['price'].fillna(wine['price'].interpolate(missing v
          alues='NaN', strategy='mode', axis=0, verbose=0, copy=True)))
          yvals = np.arange(len(sorted ))/float(len(sorted ))
          x label = stats.norm.ppf(yvals)
          plt.scatter(x label, sorted )
          stats.probplot(wine['price'], dist="norm", plot=plt)
          plt.savefig('./wineResult/price mode qq.png')
          plt.show()
In [131:
          from IPython.display import Image
          Image(filename = 'price mode qq.png')
Out[13]:
                           Probability Plot
                                                                     Probability Plot
                                                      3000
             2000
                                                      2500
           Ordered Values
                                                      2000
                                                     ered
                                                      1500
                                                      1000
             500
                                                       500
```

#### 2.2.3 通过属性的相关关系来填补缺失值

这部分缺失值本来打算用KNN(K近邻算法)来实现,即距离越近关系越好,但是代码实现有点问题就暂时用了中位数插值

Theoretical quantiles

price直方图 (左为利用中位数填充缺失值后直方图,右为原始数据直方图)

Theoretical quantiles

```
In [15]:
              from IPython.display import Image
               Image(filename = 'price median hist.png')
Out[15]:
                                    Wine-Price distribution
                                                                                             Wine-Price distribution
                                                                           80000
                  80000
                  70000
                                                                           70000
                  60000
                                                                           60000
                 50000
                 40000
                                                                           40000
                  30000
                                                                           30000
                  20000
                                                                           20000
                  10000
                                                                           10000
                                        1000
                                500
                                                1500
                                                         2000
                                                                                      500
                                                                                            1000
                                                                                                  1500
                                                                                                              2500
                                                                                                                    3000
```

#### price盒图 (左为利用中位数填充缺失值后盒图,右为原始数据盒图)

```
#盒图
 In [ ]:
          priceNa = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv').price).fi
          llna(wine['price'].interpolate(missing_values='NaN', strategy='median',
          axis=0, verbose=0, copy=True))
          priceNa.boxplot(sym='o')
          plt.ylabel('price')
          plt.savefig('./wineResult/price_median_box.png')
          plt.show()
In [17]:
          from IPython.display import Image
          Image(filename = 'price median box.png')
Out[17]:
                                                                   Wine-Price Boxplot
                                                      3000
             2000
                                                     2500
             1500
                                                     2000
           1000
                                                    <u>5</u> 1500
                                                     1000
             500
                                                      500
```

priceQ-Q图 (左为利用中位数填充缺失值后Q-Q图,右为原始数据Q-Q图)

```
In [ ]: #Q-Q图
          sorted = np.sort(wine['price'].interpolate(missing values='NaN', strategy
          ='median', axis=0, verbose=0, copy=True))
          yvals = np.arange(len(sorted ))/float(len(sorted ))
          x label = stats.norm.ppf(yvals)
          plt.scatter(x label, sorted )
          stats.probplot(wine['price'].interpolate(missing_values = 'NaN', strategy=
          'median', axis=0, verbose=0, copy=True), dist="norm", plot=plt)
          plt.savefig('./wineResult/price median qq.png')
          plt.show()
In [20]:
          from IPython.display import Image
          Image(filename = 'price median qq.png')
Out[20]:
                          Probability Plot
                                                                  Probability Plot
            2000
                                                    2500
            1500
                                                    2000
                                                    1500
            1000
                                                    1000
             500
```

Theoretical quantiles

#### 2.2.4 通过数据对象之间的相似性来填补缺失值

利用随机森林预测值来填充缺失值

price直方图 (左为利用随机森林预测值填充缺失值后直方图,右为原始数据直方图)

Theoretical quantiles

```
In [ ]: #通过数据对象之间的相似性来填补缺失值
        wine = pd.DataFrame(pd.read csv('winemag-data first150k.csv'))
        known price = wine[wine['price'].notnull()]
        unknown_price = wine[wine['price'].isnull()]
        x = known_price[['points']]
        y = known_price[['price']]
        t_x = unknown_price[['points']]
        fc = RandomForestClassifier()
        fc.fit(x, y.values.ravel())
        pr = fc.predict(t_x)
        wine.loc[wine.price.isnull(), 'price'] = pr
        plt.hist(wine['price'], bins=100, edgecolor='black')
        #添加x轴和y轴标签
        plt.xlabel('price')
        plt.ylabel('frequency')
        # 添加标题
        plt.title('Wine-Price distribution')
        plt.savefig('./wineResult/price_relative_hist.png')
        plt.show()
```

```
In [22]:
              from IPython.display import Image
               Image(filename = 'price relative hist.png')
Out[22]:
                                   Wine-Price distribution
                                                                                             Wine-Price distribution
                 80000
                                                                           70000
                 70000
                                                                           60000
                 60000
                                                                           50000
                 50000
                 40000
                                                                           40000
                 30000
                                                                           30000
                 20000
                 10000
                                                                           10000
                               500
                                        1000
                                                1500
                                                         2000
                                                                                      500
                                                                                            1000
                                                                                                  1500
                                                                                                             2500
                                                                                                                   3000
```

#### price盒图 (左为利用随机森林预测值填充缺失值后盒图,右为原始数据盒图)

```
In [ ]: #盒图
          priceNa = pd.DataFrame(pd.read_csv('winemag-data_first150k.csv').price)
          priceNa.boxplot(sym='o')
          plt.ylabel('price')
          plt.savefig('./wineResult/price relative box.png')
          plt.show()
          from IPython.display import Image
In [24]:
          Image(filename = 'price_relative_box.png')
Out[24]:
                                                                    Wine-Price Boxplot
                                                      3000
             2000
                                                      2500
             1500
                                                      2000
           1000
                                                     7500
1500
                                                      1000
             500
                                                       500
```

#### priceQ-Q图 (左为利用随机森林预测值填充缺失值后Q-Q图,右为原始数据Q-Q图)

```
In []: #Q-QE
sorted_ = np.sort(wine['price'])
yvals = np.arange(len(sorted_))/float(len(sorted_))
x_label = stats.norm.ppf(yvals)
plt.scatter(x_label, sorted_)
stats.probplot(wine['price'])
plt.savefig('./wineResult/price_relative_qq.png')
plt.show()
```



