Problem Set #1 Solutions

Propositional Logic

Rosen, Section 1.1:

Rosen, Section 1.2:

8d)
$$[(p \ v \ q) \land (p -> r) \land (q -> r)] -> r$$

р	q	r	(pvq)	(p->r)	(q->r)	^	٨	->
Ť	Ť	T	Ť	Ť	Ť	T	T	T
T	F	T	T	T	T	T	T	T
F	T	T	T	T	T	T	T	T
F	F	T	F	T	T	F	T	T
T	T	F	T	F	F	F	F	T
T	F	F	T	F	T	T	F	T
F	T	F	T	T	F	T	F	T
F	F	F	F	T	T	F	F	T
		*					*	

18) \sim (p q) and p <-> q are logically equivalent: The first of these expressions is T when p and q both have the same truth value (both T or both F); remember we are taking the " \sim " of XOR. The exact same thing is true for p <-> q.

36) Show that {|} forms a functionally complete set: The truth table for the Sheffer stroke is

From this truth table, we can see that $p \mid p$ is logically equivalent to $\sim p$. We can also see that $((p \mid p) \mid (q \mid q))$ is logically equivalent to $(p \mid q)$. The solution to exercise 29 (in the Student Solutions Guide) proves that any compound proposition is logically equivalent to one that uses only \sim and v. Our observations above indicate that we can get rid of all the negations and disjunctions by using NANDs. Thus, every compound proposition can be converted into a logically equivalent compound proposition involving only NANDs.

40) Show that if $p \le q$ and $q \le r$, then $p \le r$.

To say that p <=> q is to say that the truth tables are identical; similarly to say q <=> r is to say that the truth tables are identical. If the truth tables for p <=> q and the truth tables for q <=> r are identical, then the truth tables for p <=> r are identical (this is a fundamental axiom of the notion of equality). Therefore, p <=> r.

Propositional Logic Proofs

1) L: Fred lives in France

S: Fred speaks French

D: Fred drives a Miata

B: Fred rides a bike.

1) ~L	> ~S	given

2) S -> L contrapositive

3) L -> B given
4) S -> B syllogism
5) S v D given
6) ~D given

7) S disjunctive syllogism 8) B S is true (see (4))

2) not valid: Let the statements have the following truth values. Then the premises are true, but the conclusion is false.

$$p = T$$

$$q = F$$

$$w = T$$

$$r = F$$

$$t = T$$

$$\sim t = F$$

Predicate Logic

```
Rosen, Section 1.3:
```

```
12a) x F(x, Fred)

12b) y F(Evelyn, y)

12c) x y F(x, y)

12d) \sim x y F(x, y)

12e) y x F(x, y)

12f) \sim x [F(x, Fred) \wedge F(x, Jerry)]

12g) y1 y2 [F(Nancy, y1) \wedge F(Nancy, y2) \wedge y1 != y2 \wedge y (F(Nancy, y) -> (y = y1 v y = y2))]

12h) y [x F(x, y) \wedge z (x F(x, z) -> z = y)]

12i) \sim x F(x, x)

12j) x y [x != y \wedge F(x, y) \wedge z ((F(x, z) \wedge z != x) -> z = y)]
```

18) Let P(s,c,m) be the statement that student s has class standing c and is majoring in m. The variable s ranges over students in the class; c ranges over the four class standings; and, m ranges over all possible majors.

```
18a) s m P(s, junior, m) true

18b) s c P(s, c, CS) false (there are some math majors)

18c) s c m (P(s,c,m) ^ (c != junior) ^ (m != math)) true (there is a sophomore CS major)

18d) s ( c P(s, c, CS) v m P(s, sophomore, m)) false (there is a freshman math major)

18e) m c s P(s, c, m) false (It cannot be that m is math since there is no senior math major; it cannot be that m is CS since there is no freshman CS major. Nor, can m be any other major.)
```

42) We need to show that each of these propositions implies the other. Suppose that x P(x) v x Q(x) is true. We want to show that x y(P(x) v Q(y)) is true. By our hypothesis, one of two things must be true: either P is universally true or Q is universally true. In the first case, x y(P(x) v Q(y)) is true since the first expression in the disjunction is true, no matter what x and y are; in the second case, x y(P(x) v Q(y)) is true since the second expression in the disjunction is true, no matter what x and y are. Now we need to prove the converse. Suppose x y(P(x) v Q(y)) is true. Wa want to show that x P(x) v x Q(x) is true. If x P(x) is true then we are done. Otherwise, P(x0) must be false for some x0 in the domain of discourse. For this x0, the hypothesis tells us that P(x0) v Q(y) is true, no matter what y is. Since P(x0) is false, Q(y) must be true for each y. In other words, y Q(y) is true or to change the name of the meaningless quantified variable, x Q(x) is true. This implies that x P(x) v x Q(x) is true, as desired.

Resolution

1)
$$(q -> r)$$
, $(p -> q)$, $(p v q) |- r$

```
1) ~q v r
2) ~p v q
```

4) ~r negation of the conclusion 5) q resolution of (2) and (3) 6) r resolution of (1) and (5) 7) false resolution of (4) and (6)

2)
$$[(p \land q) -> r], (r -> \sim p), (\sim q -> \sim p), (\sim r -> p) |- r|$$