A

北京航空航天大学 2014-2015 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

구뉴 []	N/. 🖂	Lil. 🗁	小子	
班号	学号	姓名	成绩	
MI J	于了	XL 1 1	カメンツ	

题 号	_	 11	四	五.	六	七	总分
成绩							
阅卷人							
校对人							

2015年07月10日

选择(每小题4分,共20分)

- 1. 向量场 $\vec{F} = (x z, x^3 + yz, -3xy^2)$ 的旋度为 (
- A. $(-6xy y, 3y^2 1, 3x^2)$; B. $(-6xy y, 3y^2 + 1, 3x^2)$;
- C. $(-6xy + y, 3y^2 1, -3x^2)$; D. $(-6xy y, 3y^2 1, 3x^2 + 1)$.
- 2. 己知 f(x, y, z) 为连续函数,则极限 $\lim_{r \to 0^+} \frac{1}{\pi r^3} \iiint_{x^2 + y^2 + z^2 < r^2} f(x, y, z) dx dy dz = ($

- A. f(0,0,0); B. $\frac{4}{3}f(0,0,0)$; C. 4f(0,0,0); D. $\frac{3}{4}f(0,0,0)$.
- 3. 改变积分次序: $\int_0^1 dy \int_{1-\sqrt{1-y^2}}^{2-y} f(x,y) dx = ($
- A. $\int_{0}^{1} dx \int_{0}^{\sqrt{2x-x^2}} f(x,y)dy + \int_{0}^{2} dx \int_{0}^{2-x} f(x,y)dy$;
- B. $\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy;$
- C. $\int_0^1 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy + \int_1^2 dx \int_0^{2-x} f(x,y) dy;$
- D. $\int_{0}^{1} dx \int_{0}^{\sqrt{2x-x^{2}}} f(x,y) dy + \int_{0}^{2} dx \int_{1}^{2-x} f(x,y) dy.$
- 己知 $I_1 = \iint (x+y) dx dy$, $I_2 = \iint \ln(x+y) dx dy$, $I_3 = \iint [\ln(x+y)]^2 dx dy$ 其中D是三角形闭区域,三顶点各为(1,0),(1,1),(2,0),则大小顺序为(
- $\text{A.} \quad I_1 > I_2 > I_3 \; ; \qquad \quad \text{B.} \quad I_1 > I_3 > I_2 \; ; \qquad \quad \text{C.} \quad I_2 > I_1 > I_3 \; ; \qquad \quad \quad \text{D.} \quad I_3 > I_2 > I_1 \; .$

- 5. 设L是上半平面(y > 0)有向分段光滑曲线,如果积分 $\int_{L} \frac{(x+ay)dx+ydy}{x^2+y^2}$ 与路 径无关,则a的值为(
- A. -1;
- B. 0;
- C. 1;
- D. 2.

二、计算(每小题 5分,满分 30分)

1. 已知椭圆型区域 $D = \{(x,y) \stackrel{x^2}{\cancel{4}} + {}^2y \le 1 \}$ 利用广义极坐标变换计算积分 $I = \iint_D (x^2 + 4y^2) dx dy.$

2. 计算曲面积分 $\iint_{\Sigma} z dS$, 其中曲面 Σ 为锥面 $z = 1 - \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$.

3. 利用对称性计算三重积分 $\iint_{\Omega} [(xy^3\cos z - x^3e^{-z^2}) + 5] dxdydz$, 其中 是上半球面 $x^2 + y^2 + z^2 = 4(z \ge 0)$ 和旋转抛物面 $x^2 + y^2 = 3z$ 所围成的区域.

4. 计算第一型曲面积分 $\iint_{\Sigma} [(2x^2+y^2)+3xyz]dS$,其中 Σ 为球面 $x^2+y^2+z^2=a^2$,其中 a>0 . (可利用对称性)

Σ

A

5. 计算第一型曲线积分 $\int_{\Gamma} xyz \ ds$, 其中 $\Gamma: x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2\pi$.

6. 计算第二型曲面积分 $\iint_{\Sigma} z^2 dy dz + dz dx - y^2 dx dy$,其中 Σ 为 $z = x^2 + y^2$ 介于平面 z = 0, z = 4之间的部分,取下侧。

A

 Ξ (1)、(本题 8 分) 求方程 $y'' - 2y' - 3y = e^{-x}$ 的通解.

- Ξ (2)、(本题 10 分) 已知 $I = \int_{\Gamma} (y+z)dx + (z+x)dy + (x+y)dz$,
 - (1) 证明曲线积分I 与路径无关;
 - (2) 设曲线 Γ 为从点 到点 的有向曲线,求曲线积分I.

四、(本题 12分)(利用 Green 公式)

计算 $\int_L \frac{ydx - xdy}{x^2 + y^2}$, 其中 是上半椭圆: $\frac{(x-1)^2}{9} + y^2 = 1 \ (y \ge 0)$, 方向为逆时针方向.

五 、(10分) (利用 Gauss 公式)

计算
$$\iint_{\Sigma} (x-y) dy dz + (y-z) dz dx + (z-x) dx d$$
,其中 是锥面 $z = \sqrt{x^2 + y^2}$ 介于

z=0, z=h(h>0)之间的部分,取下侧.

六、(10分) (利用 Stokes 公式)

计算 $\oint_{\Gamma} (y+x)dx + (z-\sin y)dy + 2xdz$, 其中 为柱面 $x^2 + y^2 = 1$ 与平面 x+y+z=1的 交线,从z轴正向看 为顺时针方向.

七、附加题(本题10分)

已知平面区域 $D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的正向边界,试证明:

(1)

(2)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx \ge \frac{5}{2}\pi^2.$$