Exploratory Data Analysis and visualisation.

By Ketul Gupta Software Engineer.

The Data science life cycle.

BUSINESS UNDERSTANDING 02 **DATA MINING DATA SCIENCE LIFECYCLE** 06 03 sudeep.co PREDICTIVE **DATA CLEANING** Fix the inconsistencies within the data and handle the missing values. **DATA EXPLORATION FEATURE ENGINEERING** Form hypotheses about your defined problem by visually analyzing the data.

EDA=FIRST LOOK AT DATA!

Introduction

- Exploratory Data Analysis (EDA) and Visualization are important (necessary?) steps in any analysis task.
- get to know your data!
 - distributions (symmetric, normal, skewed)
 - data quality problems
 - outliers
 - correlations and inter-relationships
 - subsets of interest
 - suggest functional relationships
- Sometimes EDA or viz might be the goal!

Why EDA?

- Goal: get a general sense of the data means, medians, quantiles, histograms, boxplots
- You should always look at every variable you will learn something!
- data-driven (model-free)
- Think interactive and visual
 - Humans are the best pattern recognizers
 - You can use more than 2 dimensions!
 x,y,z, space, color, time....
- especially useful in early stages of data mining detect outliers (e.g. assess data quality)
- test assumptions (e.g. normal distributions or skewed?)
- identify useful raw data & transforms (e.g. log(x))

Bottom line: It's always well worth looking at your DATA!

What data scientists spend the most time doing?

Methods in EDA

Exploratory Data Analysis is majorly performed using the following methods:

- Univariate visualization provides summary statistics for each field in the raw data set.
- Bivariate visualization is performed to find the relationship between each variable in the dataset and the target variable of interest.
- Multivariate visualization is performed to understand interactions between different fields in the dataset.
- Dimensionality reduction helps to understand the fields in the data that account for the most variance between observations and allow for the processing of a reduced volume of data.

Examples.

Visualization

Various visualisations

- For numerical data:
- For categorical data:
- For correlation between various attributes:
- Dimensionality reduction:
- Univariate analysis
- Bivariate analysis
- Multivariate analysis

Thank you!