Class- 6 and 7: Matrix Decomposition Gram-Schmidt process and the Singular Value Decomposition

August 26, 2025

Orthogonal vectors

Two vectors u and v in \mathbb{R}^n are **orthogonal** if $u \cdot v = 0$

Orthogonal vectors

Two vectors u and v in \mathbb{R}^n are **orthogonal** if $u \cdot v = 0$

1. Check whether
$$u = \begin{bmatrix} \frac{4}{3} \\ -1 \\ \frac{2}{3} \end{bmatrix}$$
 and $v = \begin{bmatrix} 5 \\ 6 \\ -1 \end{bmatrix}$ are orthogonal vectors.

2. Determine which pair of vectors are orthogonal

$$a = \begin{bmatrix} 8 \\ -5 \end{bmatrix} \text{ and } b = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

2. Determine which pair of vectors are orthogonal

$$a = \begin{bmatrix} 8 \\ -5 \end{bmatrix} \text{ and } b = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

$$y = \begin{bmatrix} 3 \\ 2 \\ -5 \\ 0 \end{bmatrix} \text{ and } z = \begin{bmatrix} -4 \\ 1 \\ -2 \\ 6 \end{bmatrix}$$

Orthogonal sets

A set of vectors $\{u_1, u_2, \dots, u_p\}$ in \mathbb{R}^n are orthogonal if each pair of distinct vectors in the set are orthogonal, that is $u_i \cdot u_j = 0$ for $i \neq j$.

Orthogonal sets

A set of vectors $\{u_1, u_2, \dots, u_p\}$ in \mathbb{R}^n are orthogonal if each pair of distinct vectors in the set are orthogonal, that is $u_i \cdot u_i = 0$ for $i \neq j$.

Example

Check if
$$u_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$ and $u_3 = \begin{bmatrix} \frac{-1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}$ are orthogonal.

Orthonormal vectors

Definition

Two vectors u and v in \mathbb{R}^n are orthonormal if u.v = 0 and ||u|| = ||v|| = 1.

Orthonormal vectors

Definition

Two vectors u and v in \mathbb{R}^n are orthonormal if u.v = 0 and ||u|| = ||v|| = 1.

Example

Check if
$$u = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
 and $v = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ are orthonormal.

Orthonormal sets

A set of vectors $\{u_1, u_2, \dots, u_p\}$ in \mathbb{R}^n are orthonormal if each pair of distinct vectors in the set are orthogonal and $||u_i|| = 1$ for all $1 \le i \le p$.

Orthonormal sets

A set of vectors $\{u_1, u_2, \dots, u_p\}$ in \mathbb{R}^n are orthonormal if each pair of distinct vectors in the set are orthogonal and $||u_i|| = 1$ for all $1 \le i \le p$.

Example

Show that
$$\{v_1, v_2, v_3\}$$
 is an orthonormal set in \mathbb{R}^3 , where $v_1 = \begin{bmatrix} \overline{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{11}} \end{bmatrix}$,

$$v_2 = \begin{bmatrix} \frac{-1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \text{ and } v_3 = \begin{bmatrix} \frac{-1}{\sqrt{66}} \\ \frac{-4}{\sqrt{66}} \\ \frac{7}{\sqrt{66}} \end{bmatrix}$$

Theorem

An $m \times n$ matrix U has orthonormal column if and only if $U^T U = I$. If a matrix has orthonormal columns, then the matrix is **orthogonal matrix**.

Theorem

An $m \times n$ matrix U has orthonormal column if and only if $U^T U = I$. If a matrix has orthonormal columns, then the matrix is **orthogonal matrix**.

Example

Check if
$$U$$
 is orthogonal matrix, where $U=\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$

The Gram-Schmidt Process

The Gram-Schmidt Process is a simple algorithm for producing an orthogonal or orthonormal set in \mathbb{R}^n .

Gram-Schmidt orthonormalization process

Consider the vectors as columns of the matrix A. That is,

$$A = [a_1 \mid a_2 \mid \cdots \mid a_n].$$

Gram-Schmidt orthonormalization process

Consider the vectors as columns of the matrix A. That is,

$$A = \begin{bmatrix} a_1 \mid a_2 \mid \cdots \mid a_n \end{bmatrix}.$$

Then,

$$\begin{split} \textbf{u}_1 &= \textbf{a}_1, \quad \textbf{e}_1 = \frac{\textbf{u}_1}{\|\textbf{u}_1\|}, \\ \textbf{u}_2 &= \textbf{a}_2 - (\textbf{a}_2 \cdot \textbf{e}_1)\textbf{e}_1, \quad \textbf{e}_2 = \frac{\textbf{u}_2}{\|\textbf{u}_2\|}, \\ \textbf{u}_3 &= \textbf{a}_3 - (\textbf{a}_3 \cdot \textbf{e}_1)\textbf{e}_1 - (\textbf{a}_3 \cdot \textbf{e}_2)\textbf{e}_2, \quad \textbf{e}_3 = \frac{\textbf{u}_3}{\|\textbf{u}_3\|}, \\ & . \end{split}$$

÷

$$\mathbf{u}_{k+1} = \mathbf{a}_{k+1} - (\mathbf{a}_{k+1} \cdot \mathbf{e}_1)\mathbf{e}_1 - \cdots - (\mathbf{a}_{k+1} \cdot \mathbf{e}_k)\mathbf{e}_k, \quad \mathbf{e}_{k+1} = \frac{\mathbf{u}_{k+1}}{\|\mathbf{u}_{k+1}\|}.$$

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

The vector x is then called an *eigenvector* corresponding to λ .

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

The vector \mathbf{x} is then called an *eigenvector* corresponding to λ .

For example, consider
$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} =$$

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

The vector \mathbf{x} is then called an *eigenvector* corresponding to λ .

For example, consider
$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} =$$

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

The vector \mathbf{x} is then called an *eigenvector* corresponding to λ .

For example, consider
$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

A real number λ is an *eigenvalue* of an $n \times n$ square matrix A if there exists a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
.

The vector \mathbf{x} is then called an *eigenvector* corresponding to λ .

For example, consider
$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Therefore, $\lambda=2$ is an eigenvalue corresponding to the eigenvector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

10 / 18

Equivalently, λ is an eigenvalue iff $det(A - \lambda I) = 0$.

Equivalently, λ is an eigenvalue iff $det(A - \lambda I) = 0$.

Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
.

Equivalently, λ is an eigenvalue iff $det(A - \lambda I) = 0$.

Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
.

Compute the characteristic polynomial and equate it to zero:

$$\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & 2 - \lambda \end{bmatrix} = 0.$$

Equivalently, λ is an eigenvalue iff $det(A - \lambda I) = 0$.

Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
.

Compute the characteristic polynomial and equate it to zero:

$$\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & 2 - \lambda \end{bmatrix} = 0.$$

so the eigenvalues are $\lambda \in \{0, 2, 4\}$.

For rectangular (or square) matrices, *singular values* play a role analogous to eigenvalues.

For rectangular (or square) matrices, *singular values* play a role analogous to eigenvalues.

Definition: Let A be an $m \times n$ matrix. A scalar λ is called a *singular* value of A if there exist nonzero vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$ such that

$$A\mathbf{v} = \lambda \mathbf{u}$$
 and $A^T \mathbf{u} = \lambda \mathbf{v}$.

For rectangular (or square) matrices, *singular values* play a role analogous to eigenvalues.

Definition: Let A be an $m \times n$ matrix. A scalar λ is called a *singular* value of A if there exist nonzero vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$ such that

$$A\mathbf{v} = \lambda \mathbf{u}$$
 and $A^T \mathbf{u} = \lambda \mathbf{v}$.

The vectors \mathbf{u} and \mathbf{v} are a singular vector pair corresponding to λ .

For rectangular (or square) matrices, *singular values* play a role analogous to eigenvalues.

Definition: Let A be an $m \times n$ matrix. A scalar λ is called a *singular* value of A if there exist nonzero vectors $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$ such that

$$A\mathbf{v} = \lambda \mathbf{u}$$
 and $A^T \mathbf{u} = \lambda \mathbf{v}$.

The vectors \mathbf{u} and \mathbf{v} are a singular vector pair corresponding to λ .

Equivalently: the singular values are the positive square roots of the eigenvalues of A^TA or AA^T .

Finding singular values: Example (i)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
. Then

$$A^T A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}.$$

Finding singular values: Example (i)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
. Then

$$A^T A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}.$$

The eigenvalues of $\begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$ are 9 and 1.

Finding singular values: Example (i)

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
. Then

$$A^T A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}.$$

The eigenvalues of $\begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$ are 9 and 1.

Therefore the singular values of A are $\boxed{3 \text{ and } 1}$.

Finding singular values: Example (ii)

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
. Then

$$AA^T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 12 \end{bmatrix}.$$

Finding singular values: Example (ii)

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
. Then

$$AA^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 12 \end{bmatrix}.$$

Characteristic polynomial: $\det \begin{bmatrix} 3-\lambda & 6 \\ 6 & 12-\lambda \end{bmatrix} = \lambda(\lambda-15).$

Finding singular values: Example (ii)

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
. Then

$$AA^T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 12 \end{bmatrix}.$$

Characteristic polynomial: det $\begin{vmatrix} 3-\lambda & 6 \\ 6 & 12-\lambda \end{vmatrix} = \lambda(\lambda-15)$.

Eigenvalues: 15 and 0.

Finding singular values: Example (ii)

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
. Then

$$AA^T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 12 \end{bmatrix}.$$

Characteristic polynomial: det $\begin{vmatrix} 3-\lambda & 6 \\ 6 & 12-\lambda \end{vmatrix} = \lambda(\lambda-15)$.

Eigenvalues: 15 and 0.

Singular values: $\sqrt{15}$ and 0.

The Singular Value Decomposition (SVD)

Theorem (SVD)

Let A be an $m \times n$ matrix and let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ be the nonzero singular values. Then

$$A = U \Sigma V^T$$

where U is $m \times m$ orthogonal, V is $n \times n$ orthogonal, and

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}, \quad D = \operatorname{diag}(\sigma_1, \ldots, \sigma_r).$$

The Singular Value Decomposition (SVD)

Theorem (SVD)

Let A be an $m \times n$ matrix and let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ be the nonzero singular values. Then

$$A = U \Sigma V^T$$
,

where U is $m \times m$ orthogonal, V is $n \times n$ orthogonal, and

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}, \quad D = \operatorname{diag}(\sigma_1, \ldots, \sigma_r).$$

Columns of U are orthonormal eigenvectors of AA^T (left singular vectors).

The Singular Value Decomposition (SVD)

Theorem (SVD)

Let A be an $m \times n$ matrix and let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ be the nonzero singular values. Then

$$A = U \Sigma V^T$$
,

where U is $m \times m$ orthogonal, V is $n \times n$ orthogonal, and

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}, \quad D = \operatorname{diag}(\sigma_1, \ldots, \sigma_r).$$

Columns of U are orthonormal eigenvectors of AA^T (left singular vectors). Columns of V are orthonormal eigenvectors of A^TA (right singular vectors).

• Determine an orthonormal set of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of $A^T A$ corresponding to eigenvalues $\lambda_1 \geq \dots \geq \lambda_r > 0$ and $0, \dots, 0$ (n-r) times).

- **1** Determine an orthonormal set of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of $A^T A$ corresponding to eigenvalues $\lambda_1 \geq \dots \geq \lambda_r > 0$ and $0, \dots, 0$ (n-r) times).

- Determine an orthonormal set of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of $A^T A$ corresponding to eigenvalues $\lambda_1 \ge \dots \ge \lambda_r > 0$ and $0, \dots, 0$ (n-r) times).

- **①** Determine an orthonormal set of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of $A^T A$ corresponding to eigenvalues $\lambda_1 \ge \dots \ge \lambda_r > 0$ and $0, \dots, 0$ (n-r) times).

- **4** Choose u_{r+1}, \ldots, u_m to complete $\{u_1, \ldots, u_m\}$ to an orthonormal basis of \mathbb{R}^m .

- **①** Determine an orthonormal set of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of $A^T A$ corresponding to eigenvalues $\lambda_1 \ge \dots \ge \lambda_r > 0$ and $0, \dots, 0$ (n-r) times).

- **4** Choose u_{r+1}, \ldots, u_m to complete $\{u_1, \ldots, u_m\}$ to an orthonormal basis of \mathbb{R}^m .
- **5** $Form <math>U = [\mathbf{u}_1 \cdots \mathbf{u}_m].$

- Determine an orthonormal set of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of $A^T A$ corresponding to eigenvalues $\lambda_1 \geq \dots \geq \lambda_r > 0$ and $0, \dots, 0$ (n-r) times).

- **①** Choose u_{r+1}, \ldots, u_m to complete $\{u_1, \ldots, u_m\}$ to an orthonormal basis of \mathbb{R}^m .
- **5** $Form <math>U = [\mathbf{u}_1 \cdots \mathbf{u}_m].$
- **1** Let Σ have diagonal entries $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le r$, zeros otherwise. Then $A = U\Sigma V^T$.

Suppose A is $m \times n$ matrix with $m \leq n$

• Determine the largest order matrix between A^TA and AA^T which is $L=A^TA$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0$ (n-r) times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.

- ① Determine the largest order matrix between A^TA and AA^T which is $L=A^TA$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0$ (n-r) times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

- Determine the largest order matrix between A^TA and AA^T which is $L=A^TA$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0$ (n-r) times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

- **1** Determine the largest order matrix between A^TA and AA^T which is $L = A^T A$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \ge \cdots \ge \lambda_r > 0$ and $0, \cdots, 0 \ (n-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and possibly 0 as well.
- 2 Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\mathbf{v}_1, \dots, \mathbf{v}_n$.

- Determine the largest order matrix between A^TA and AA^T which is $L=A^TA$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0$ (n-r) times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- $\bullet \ \, \mathsf{For} \,\, 1 \leq i \leq r, \,\, \mathsf{set} \,\, \boldsymbol{u}_i := \frac{A \boldsymbol{v}_i}{\|A \boldsymbol{v}_i\|}.$
- **5** Choose u_{r+1}, \ldots, u_m to complete $\{u_1, \ldots, u_m\}$ to an orthonormal vectors in \mathbb{R}^m .

- ① Determine the largest order matrix between A^TA and AA^T which is $L=A^TA$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0$ (n-r) times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- $\bullet \text{ For } 1 \leq i \leq r \text{, set } \boldsymbol{u}_i := \frac{A\boldsymbol{v}_i}{\|A\boldsymbol{v}_i\|}.$
- **5** Choose u_{r+1}, \ldots, u_m to complete $\{u_1, \ldots, u_m\}$ to an orthonormal vectors in \mathbb{R}^m .

- Determine the largest order matrix between A^TA and AA^T which is $L=A^TA$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0$ (n-r) times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\mathbf{v}_1, \ldots, \mathbf{v}_n$.
- $\bullet \text{ For } 1 \leq i \leq r \text{, set } \boldsymbol{u}_i := \frac{A\boldsymbol{v}_i}{\|A\boldsymbol{v}_i\|}.$
- **5** Choose u_{r+1}, \ldots, u_m to complete $\{u_1, \ldots, u_m\}$ to an orthonormal vectors in \mathbb{R}^m .
- $\bullet \quad \mathsf{Form} \ \ U = [\mathbf{\textit{u}}_1 \ \cdots \ \mathbf{\textit{u}}_m].$
- **②** Let Σ have diagonal entries $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le r$, zeros otherwise. Then $A = UΣV^T$.

Suppose A is $m \times n$ matrix with $m \ge n$

① Determine the largest order matrix between A^TA and AA^T which is $L = AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.

- ① Determine the largest order matrix between A^TA and AA^T which is $L = AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): u_1, \ldots, u_m .

- ① Determine the largest order matrix between A^TA and AA^T which is $L = AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): u_1, \ldots, u_m .

- **1** Determine the largest order matrix between A^TA and AA^T which is $L = AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 > \cdots > \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and possibly 0 as well.
- Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): $\boldsymbol{u}_1, \dots, \boldsymbol{u}_m$.

- ① Determine the largest order matrix between A^TA and AA^T which is $L = AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): u_1, \ldots, u_m .
- For $1 \le i \le r$, set $\mathbf{v}_i := \frac{A^T \mathbf{u}_i}{\|A^T \mathbf{u}_i\|}$.
- **5** Choose $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ to complete $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ to an orthonormal vectors in \mathbb{R}^n .

- Determine the largest order matrix between A^TA and AA^T which is $L=AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): u_1, \ldots, u_m .
- For $1 \le i \le r$, set $\mathbf{v}_i := \frac{A^T \mathbf{u}_i}{\|A^T \mathbf{u}_i\|}$.
- **5** Choose $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ to complete $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ to an orthonormal vectors in \mathbb{R}^n .

- Determine the largest order matrix between A^TA and AA^T which is $L=AA^T$ in this case. Find the eigenvalues L and arrange in decreasing order: $\lambda_1 \geq \cdots \geq \lambda_r > 0$ and $0, \cdots, 0 \ (m-r)$ times. Singular values are the nonnegative square root of these eigenvalues say $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and possibly 0 as well.
- ② Find the orthonormal set of eigenvectors of L corresponding to each eigenvalue (taken in decreasing order): u_1, \ldots, u_m .
- For $1 \le i \le r$, set $\mathbf{v}_i := \frac{A^T \mathbf{u}_i}{\|A^T \mathbf{u}_i\|}$.
- **5** Choose $\mathbf{v}_{r+1}, \dots, \mathbf{v}_n$ to complete $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ to an orthonormal vectors in \mathbb{R}^n .
- **②** Let Σ have diagonal entries $\sigma_i = \sqrt{\lambda_i}$ for $1 \le i \le r$, zeros otherwise. Then $A = UΣV^T$.