

Longitudinal Data Spring 2013

January 24

Chapter 1 Notation

Instructors

Alan Hubbard

(hubbard@berkeley.edu)

Reuben Thomas

<u>GSI</u>

Katia Eliseeva

Why have so much notation?

- So many things (random variables, random vectors, regression coefficients, variance and co-variance parameters,...) so little time.
- If one could explain a statistical model, estimation procedure, etc. simply and efficiently in English every time, we would not need notation.
- Every little detail of notation has meaning (telling you some part of the statistical story)

Notation, cont.

- However, we have complicated data and models and we need a shared language that efficiently translates what we're talking about.
- One goal of this course is to translate a scientific hypothesis regarding longitudinal data into a specific statistical model that yields the parameters of interest. This starts with notation.

Typical Symbols Commonly Used for Different types of Objects

- Parameters
- Random Variables, Random Vectors, Random Matrices
 - Measured Variables
 - Latent Variables
- Constants
- Operations (expectations, sums, logs, etc.)

Random Variable

- Say, one collects an outcome, Y, and a covariate, X on a randomly sampled set of n subjects out of a much larger target population.
- We could represent this experiment as random draws of O=(Y,X).
- We could more explicitly say we have for each individual, i, $O_i=(Y_i,X_i)$, i=1,...n.
- We could talk about the mean of the outcome in certain subgroups defined by a specific value of the covariate, X, or E(Y|X=x).
- We could talk about defining a function that converts the random variable X into the mean given that X, or E(Y|X) which is a random function of X.

Latent Variables, Parameters

- Simplest case is the normal linear model, or
 - O=(Y,X), i.i.d. (independent and identically distributed)
 - Statistical Model for Y is:

$$Y=\beta_0+\beta_1X+\varepsilon$$
, ε i.i.d $N(0,\sigma)$

- ε is a latent variable that helps to define the model.
- What are the random variables?
- What are the parameters?
- What does the equation imply about the distribution of Y?

Vectors (of Random Variables, Parameters)

- It's convenient to represent longitudinal data not just as single numbers, but also vectors and matrices.
- A random vector is a set of random variables (e.g., the set of cholesterol measurements made on a subject).
- Another random vector could be the covariates (explanatory variables) measured on the subject at a single time (e.g., age, race, weight, ...).
- A parameter vector is a set of parameters (e.g., the set of predicted mean cholesterol for each of the measurement times).

Matrices

- For this course, matrices are often a convenient way to display both data and parameters.
- An example of representing data is the matrix being simply a set of vectors (e.g., each row of the matrix is a different observation).
- Set of measurements of explanatory variables made on a subject longitudinally can be represented as a matrix where every row contains all the measurements made on that subject at a specific time point— much like spreadsheet.
- Also, matrices are a convenient way to display certain sets of parameters, such as the set of all correlations of outcomes measured on the same subject.

Typical rules regarding random variables vectors, etc.

Because we have more flexibility in written documents than on the blackboard, we need different rules.

In documents

- Random Variables capitalized, realizations small,
 e.g., P(Y=y).
- Vectors in bold: $P(Y=y)=P(Y_1=y_1, Y_2=y_2,...)$
- Matrices in capital or bold (need the context to tell the difference).

Typical rules regarding random variables vectors, etc.

On Board

- Random Variables capitalized, realizations small,
 e.g., P(Y=y) (same)
- Vectors with arrow over top:

$$P(\vec{Y} = \vec{y}) = P(Y_1 = y_1, Y_2 = y_2,...)$$

Matrices underlined or more likely in context.

Outcomes and Explanatory variables

Y_{ij} will represent a response variable, the jth measurement of unit i.

$$\mathbf{X}_{ij}^{T} = (1, X_{ij1}, X_{ij2}, ..., X_{ijp})$$
 or: $X_{ij} = \begin{bmatrix} X_{ij1} \\ X_{ij2} \\ X_{ij3} \\ ... \end{bmatrix}$

Will (typically) be a vector of length p+1 of explanatory variables observed at the jth measurement (note, the 1 is included to allow for an intercept) – the superscript *T* means transpose (so untransposed is a column vector).

Numbers of observations on one individual and number of individuals

 $j = 1, n_i$. i=1, m - so the number of longitudinal observations for person i is n_i , number of subjects is m.

$$\mathbf{X}_{ij} = \begin{pmatrix} 1 \\ X_{ij1} \\ X_{ij2} \\ \dots \\ X_{in_ip} \end{pmatrix}$$

Parameters of Interest

- We will discuss estimates of parameters related to means (like regression coefficients) and those related to variances and covariances.
- For example, $E(Y_{ij})$ or $E(Y_{ij}|\boldsymbol{X}_{ij}) = \mu_{ij}$, $Var(Y_{ij})$ or $Var(Y_{ij}|\boldsymbol{X}_{ij}) = v_{ijj}$

Nesting Observations (measurement within individual)

- Set of repeated measures for unit i are collected into a ni-vector $\mathbf{Y}_{i}^{T} = (Y_{i1}, Y_{i2}, ..., Y_{in_{i}})$.
- Y_i has mean, $E(Y_i) = \mu_i$ and $n_i \times n_i$ covariance matrix $Var(Y_i) = V_i$.
- The jk element of V_i is the covariance between Y_{ij} and Y_{ik} , that is $cov(Y_{ij}, Y_{ik}) = v_{ijk}$.

Nesting Observations (measurement within individual)

- Note, that $cov(Y_{ij}, Y_{ij}) = var(Y_{ij}) = v_{ijj}$
- To represent how observations co-vary on a subject, we will sometimes use correlation: R_i will be the n_i x n_i correlation matrix of Y_i.

Combining all observations into a big data set.

We will lump the responses of all units into one big vector $\mathbf{Y} = (\mathbf{Y}_1, ..., \mathbf{Y}_m)$ which is an N-vector (total number of observations):

$$N = \sum_{i=1}^{m} n_i$$

Most of the course will focus on regression models of the sort:

$$Y_{ij} = B_0 + B_1 X_{ij1} + ... + B_p X_{ijp} + e_{ij}$$
$$= \mathbf{X}_{ij}^T \beta + e_{ij}$$

Combining, cont.

We can write the model for the data on the ith person as

$$\mathbf{Y}_{i}_{n_{i}x1} = X_{i} \boldsymbol{\beta} + \mathbf{e}_{i}_{n_{i}x(p+1)(p+1)x1} \boldsymbol{\beta}_{n_{i}+1}$$

and for the entire data as:

$$\mathbf{Y}_{Nx1} = X \mathbf{\beta}_{Nx(p+1)(p+1)x1} + \mathbf{e}_{Nx1}$$

Example: Sex and drug/alcohol use

i	X_{ij1}	X_{ij2}	\mathbf{Y}_{ij}
ID	date	Sex	Drug/Alch
10123	3-Nov-98	no	no
10123	4-Nov-98	no	no
10123	5-Nov-98	no	no
10123	6-Nov-98	no	no
10123	7-Nov-98	no	no
10123	8-Nov-98	no	no
10123	9-Nov-98	no	no
10123	10-Nov-98	no	no
10123	11-Nov-98	no	no
10123	12-Nov-98	no	no
10125	7-Oct-98	no	no
10125	8-Oct-98	yes	no
10125	9-Oct-98	no	yes
10125	10-Oct-98	yes	no
10125	11-Oct-98	yes	no
10125	12-Oct-98	no	no