Isomorephism in greaph:

Defn - same no of elements despite different structure

* A property preserved by graph isomorphism --- graph

Identifying isomorphie greaphs -

1. same no of vertices

2. same no of edges

3. same no of vertices with same degree

Adjacency Matrix:

$$C \longrightarrow d$$

$$d \longrightarrow V$$

$$h \longrightarrow z$$

$$q \longrightarrow y$$

only 4 similardities.

: properties of isomorphism is not process rived.

f e e Q

Connectivity: path simple path → circuit starts - ends ~ same verdex connected greaphs Directe d

Theorems related to Eulers < paths (FP)

circuits (FC)

#Theorem - 1:

A connected multigraph has an Eulere path and no EC if and only if there are exactly two vertices of odd degree.

Theorem - 2:

A connected multigraph with at least two vertices has an EC if and only if each vertices vertex has a even degree.

Dirac's Theorem ;

If G is a simple grouph with no vertices where n>3 such that the degree of each vertex is at least [n/2], then G has HC.

Orre's Theorem :.

If G is a simple graph with n vertices cohere n>3 such that for every pair of non-adjacent vertices (u,v)

deg(u) + deg(v) > n

is true , then G has HC

Chromatic No:

The min's number of colors needed to colors the veretices of a graph such that no two adjacent verifices have the same colors.

non-connected:
$$\{b,d\}$$
 $\{a,d\}$ $\{c,e\}$

$$\chi(G) = 3$$

$$R$$

$$\chi(A) = 4$$