Material Selection and Analysis

 After your last lecture on parachutes and descent control mechanisms, we will now be telling you how to select appropriate materials and manufacture your SATCAN!

Material Selection

There are several types of materials available to us for manufacturing various CANSAT components, such as:

- Thermoplastics ABS, PVC
- Composites Glass Fiber, Carbon Fiber
- Metals and Metal alloys
- Balsa wood
- Monokote

Factors Affecting Material Selection

Manufacturing Process

Functional Requirements Cost Considerations Operating Parameters

- Plasticity
- Malleability
- Ductility
- Machinability
- Casting Properties
- Weldability
- Heat
- Tooling
- Surface Finish

- Strength
- Hardness
- Rigidity
- Toughness
- Thermal Conductivity
- Fatigue
- Electrical Treatment
- Creep
- Aesthetic Look

- Raw Material
- Processing
- Storage
- Manpower
- Special Treatment
- Inspection
- Packaging
- Inventory
- Taxes & Duties

- · Pressure
- Temperature
- Flow
- · Type of Material
- Corrosion
- Environment
- Fire Protection
- Weathering
- Biological

Things to evaluate in a material:

- Processing and manufacturing requirements
- Applicability of material in problem statement
- Technical properties (Mechanical, electrical, chemical, thermal, etc.)
- Availability and cost of material

Steps for the Material Selection Process:

- Identify the design requirements
- Identify the materials selection criteria
- Identify candidate materials
- Evaluate candidate materials
- Select suitable material

Previous Year Example: Payload

Key trade issues and materials considered for Payload mechanical layout

S. NO	COMPONENT	TRADE ISSUES	MATERIAL CONSIDERED
1	Auto-gyro blades	StrengthSmoothnessWeightFabrication capabilityCost	BalsaABSPLA
2	Mounting rods	WeightFabrication capabilityStructural strengthCost	Carbon fibre Glass fibre
3	Battery case	 Weight Structural strength Fabrication capability Ease of assembly and disassembly Cost 	• ABS • PLA

S. NO	COMPONENT	TRADE ISSUES	MATERIAL CONSIDERED
4	Shaft	Structural StrengthWeightFabrication capabilityCost	BalsaABSPLA
5	Suspension mechanism	WeightShock absorptionCost	Carbon fibre Glass fibre
6	Servo base	 Weight Structural strength Fabrication capability Ease of assembly and disassembly Cost 	• ABS • PLA

1. Auto-gyro blades:

MATERIAL	PROS	CONS
ABS	High resistanceMore durableLighter than PLA	Weaker than PLAExpensive
Balsa	Light weight	FabricationLow strength
PLA	High strength and stiffness Cheap	Low melting temperaturePoor impact resistanceSusceptible to moisture

2. Mounting rods:

MATERIAL	PROS	CONS
Carbon fibre	High stiffnessHigh tensile strengthLight	Expensive
Glass fibre	Better durability Cheaper	Low stiffnessHeavier than carbon fibre

3. Battery case:

MATERIAL	PROS	CONS
ABS	 High impact and heat resistance More durable Lighter than PLA 	Less rigid than PLA Expensive
PLA	High strength and stiffness Cheap	Low melting temperaturePoor impact resistancePoor durability

4. Shaft:

MATERIAL	PROS	CONS
Carbon fibre	High stiffnessHigh tensile strengthLight	Expensive
Balsa	Light weight	Low stiffness and strength
ABS	High impact resistance	Less strength than carbon fibreHeavier

5. Suspension mechanism:

COMPONENT	PROS	CONS
Syringe	Convert shock energy to work done by friction and rubber cap Some energy is utilized to compress air Light weight Commercially available	• Integration
Polyurethane foam	CheapEasily availableDamping effectShock absorption	Heavier Requires more space
Bent PVC pipes	Easy to fabricate	Transmit some of the shock to the Payload
Springs	Commercially available	Heavy The Payload can rebound after landing

6. Servo base (X-plate):

MATERIAL	PROS	cons
ABS	 Can be hard mounted More fabrication freedom Ease of fabrication 	Heavier than BalsaExpensive
PLA	Can be hard mountedMore fabrication freedom	Heavier than Balsa or ABS
Balsa	High strength to weight ratioEasily available	Fabrication Need to use external mechanism to mount it as super glue weakens the structure

Previous Year Example: Container

Trade selection for container mechanical layout

1. Container:

MATERIAL	PROS	CONS
ABS	High impact and heat resistance More durable Lighter than PLA	Weaker than PLA Expensive Susceptible to moisture
Nylon	LightMore durableLess expensive	Susceptible to moisture
PLA	High strength and stiffness Cheap	Low melting temperature Poor impact resistance Susceptible to moisture

2. Supporting rods:

MATERIAL	PROS	CONS
Carbon fibre	High stiffnessHigh tensile strengthLight	Expensive
Glass fibre	Better durability Cheaper	Low stiffnessHeavier than carbon fibre

3. Covering film:

MATERIAL	PROS	CONS
Solite	Light weight	Low tear strength
PLA	High tear strength	High shrink rateHeavierRequires more heat

4. Container protrusions:

MATERIAL	PROS	CONS
ABS	 High impact and heat resistance More durable Can be incorporated with the container 	 Weaker than PLA Expensive Susceptible to moisture
Carbon fibre	High stiffnessHigh tensile strengthLight	Expensive
Balsa	• Lightest	May not able to handle the stress exerted by the blades

5. Supports to prevent payload rotation:

MATERIAL	PROS	CONS
Carbon fibre	High stiffnessHigh tensile strengthLight	Expensive
ABS	High impact and heat resistance Less expensive	Difficult to integrateStructurally weakerSusceptible to moisture

Another Example

THANK YOU