D10

AutoPore IV 9500

Operator's Manual

AutoPore IV 9500

Operator's Manual

Pop-ur	Menus
F	or Tabular Reports
F	or Graphs
Zoom	Feature
Axis C	Cross Hair
Sample Reports	
Graphs	
Cumu	lative Intrusion vs. Pressure
Log T	Differential Intrusion vs. Pore Size
Tabular Re	ports
Cavity to	Chroat Size Ratio
Material C	ompressibility
Fractal Dis	nension
Summary	
Juninary ,	
8. TROUE	BLESHOOTING AND MAINTENANCE
773 13 1 4	9.1
Troubleshooting	8-1
Preventive Mai	ntenance
Maintaining Mercury Level	
Draining Spilled Mercury Dish	
Maintainin	g High Pressure Fluid Level 8-10
Maintainin	g Vacuum Pump Fluid Level
Greasing Low Pressure Ports	
Replacing	Chamber Plug Seals
Changing	High Pressure Fluid and Cleaning the High Pressure Chambers 8-13
Maintainir	g Hydraulic Pump Fluid Level
Changing	Vacuum Pump Fluid
Replacing	Vacuum Pump Exhaust Filter
Checking	the Valves for Leaks
Cleaning '	Valves
Removing	Moisture from the System
Replacing	the Banana Plug
High	Pressure Chamber
Low	Pressure Capacitance Detector
9. ORDE	RING INFORMATION
<u> </u>	
Appendix A:	Forms
Appendix B:	Theory
Appendix C:	Proper Handling of Mercury
Appendix D:	Data Reduction
Appendix E:	Exported Data Format
Appendix F:	Use of the Maximum Intrusion volume Option
Appendix G:	Blank and Sample Compression Correction
	for Mercury Porosimetry

Feb 01

APPENDIX D DATA REDUCTION

DATA REDUCTION

Data for presentation in tabular and plot form is calculated in the following manner:

P_i = head-corrected pressure as stored

V_{ri} = intrusion volume as stored θ = user-entered contact angle γ = user-entered surface tension W_s = user-entered sample weight

W_p = user-entered weight for penetrometer

W_{psm} = user-entered weight for penetrometer + sample + mercury

V_p = user-entered volume for penetrometer V_c = user-entered volume for capillary (stem)

Y_m = user-entered density for mercury

WASHCON=Washburn constant = $\frac{10^4 \,\mu\text{m/cm}}{68947.6 \,\text{dynes/cm}^2 - \text{psia}} = 0.145038$

For all calculations requiring interpolation between collected data points, an Akima* method semi-spline is used.

Diameter for the ith point is:

$$D_i = \frac{WASHCON \gamma (-4 \cos \theta)}{P_i}$$

Radius for the ith point is:

$$R_i = \frac{D_i}{2}$$

Cumulative specific intrusion volume for the ith point is:

$$I_i = \frac{V_i}{W_o}$$

Mean diameter for the ith point is:

$$Dm_i = \frac{D_i + D_{i-1}}{2}$$

^{* &}quot;A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures," Journal of the Association of Computing Machinery, 17(4) 1970, 589-602.

Incremental specific intrusion volume for the ith point is:

$$Ii_1 = I_i - I_{i-1}$$

Incremental specific pore area for the ith point is:

$$Ai_i = \frac{4 \times Ii_i}{Dm_i}$$

Cumulative specific pore area for the ith point is:

$$A_i = Ai_i + Ai_{i-1} + ... + Ai_1$$

If more than 8 data points are available, differential and log differential specific intrusion volume are calculated as follows.

Differential and log differential data are the 1st derivative of the cumulative specific intrusion volume (all) data as a function of calculated log diameter, normalized by the diameter or log diameter interval. This derivation is comprised of four transformations.

- Interpolation of cumulative specific intrusion volume vs. log diameter is made to get cumulative specific intrusion volume corresponding to evenly spaced log diameters.
- 2. The uniform cumulative specific intrusion volume data are then subjected to a 1st derivative calculation, using a 9-point smoothing method. This gives the desired differential data in terms of uniform intervals of collected data.
- 3. Log differential data are normalized by dividing by the log diameter interval between points. Since the points are evenly log spaced, this interval is the same for all points. Differential data are normalized by dividing by the diameter interval between points. Since the points are evenly log spaced, this interval is larger for larger diameters.
- 4. Interpolation of the differential or log differential data vs. log diameter is made to get data corresponding to collected data points.

If 8 or fewer data points are available, differential and log differential specific intrusion volume are calculated as follows.

Differential specific intrusion volume by diameter for the ith point is:

$$Id_i = \frac{-Ii_i}{D_i - D_{i-1}}$$

Log differential specific intrusion volume by diameter is:

$$Ild_{i} = \frac{-Ii_{i}}{logD_{i} - logD_{i-1}}$$

Differential specific intrusion volume by radius for the ith point is:

$$Ir_i = \frac{-Ii_i}{R_i - R_{i-1}}$$

Log differential specific intrusion volume by radius is:

$$Ilr_i = \frac{-Ii_l}{logR_i - logR_{i-1}}$$

Total intrusion volume is:

$$V_{tot} = V_i$$

where the jth point is the first such that:

$$P_{j+1} \le P_j - 10$$
 and $P_{j+1} \le P_j \times 0.995$

Total specific intrusion volume is:

$$I_{tot} = \frac{V_{tot}}{W_s}$$

Percent of total specific intrusion volume for the ith point is:

$$Ip_i = \frac{100 \times I_i}{I_{tot}}$$

Total specific pore area is:

$$A_{tot} = A_j$$

for point j as defined above.

Median diameter by volume is:

$$D_{mv} = D_k$$

where

$$I_k = \frac{I_{tot}}{2}$$

and P_k is interpolated from I_k and the collected data, and D_k is calculated from $P_k. \label{eq:polarization}$

Median diameter by area is:

$$D_{ma} = D_k$$

where

$$A_k = \frac{A_{tot}}{2}$$

and P_k is interpolated from \boldsymbol{A}_k and the collected data, and \boldsymbol{D}_k is calculated from $\boldsymbol{P}_k.$

Average diameter is:

$$D_{av} = \frac{4 \times I_{tot}}{A_{tot}}$$

Blank Correction by Formula:

For equilibration time 6 seconds: $X = log(\frac{T}{6})$

SHIMADZU CORPORATION

SHIMADZU CORPORATION, international Marketing Division

3. Kanda-Wahikisho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan

Phone 81(3)3219-5841 Fax.81(3)3219-5710

Cable Add: SHIMADZU TOKYO

SHIMADZU SCIENTIFIC INSTRUMENTS, INC. 7102 Riverwood Drive, Columbia, Maryland 21046, U.S.A.

Phone: 1(410)381-1227 Fex. 1(410)381-1222 Toll Free 1(800)477-1227

SHIMADZU EUROPA GmbH

Albert-Hahn-Strasse 6-10, 0-47269 Duschurg, F.R. Germany

Phone: 49(203)7687-0 Fax. 49(203)766625

SHIMADZU (ASIA PACIFIC) PYE LTD.

16 Science Park Orive #01-01 Singapore Science Park, Singapore 118227, Republic of Singapore

Phone: 65-6778 8280 Fex. 65-6779 2935 SHIMADZU SCIENTIFIC INSTRUMENTS (OCEANA) PTY, LTD.

Units F, 10-16 South Street, Rydalmera N.S.W. 2116, Australia

Phone: 61(2)9684-4260 Fam #1/230084 40FF

SHIMADZU DO BRASIL COMERCIO LIDA.

Avenida Marques de Sao Vicente,1771,Barra Funda CEP:01139-003-Sao Paulo-SP, Brasil

Phone: (55)11-3611-1688 Fax, (55)11-3611-2209

SHIMADZU (HONG KONG)LIMITED

Suite 1028 Ocean Center, Harbour City, Talm, Sha Taut, Kowloon HONG KONG

Phone: (852)2375-4979 Fax. (852)2199-7438

SHIMADZU INTERNATIONAL TRADING (SHANGHAD COLLTD. PUX! BRANCH

Block E.No.570 West Huaihai Road, Shanghai, 200052 P.R. of China

Phone: 86(21)2201-3888 Fax. 86(21)2201-3666

Overseas Offices istantuk Moscow

URL http://www.shimadzu.com

