Emotion Beat

Multi-Emotion Regression on Song Lyrics

Repository:

https://github.com/shaiDahari/EmotionBeat

1.1 Problem Statement & Project Objectives

Motivation

- Music listeners often select songs based on mood or situation rather than genre alone.
- Current metadata lacks fine-grained emotional tagging, making discovery by feeling difficult
- Application: Enable mood-driven music search—"play me something uplifting," "I feel nostalgic."

Task Definition

Input: One concatenated string

```
Title: <track_name> | Genre: <playlist_genre> | Artist: <artist_name> | Lyrics: <cleaned lyrics>
```

• Output: Six continuous emotion scores in [0.0-2.0] for:

```
Joy | Sadness | Anger | Fear | Surprise | Tenderness
```

Challenges

- Subjectivity & nuance: Lyrics are poetic and open to interpretation.
- Emotion overlap: A single song may express joy and sadness simultaneously.
- Annotation noise: Human-rated scores vary; we use mean-opinion aggregation to stabilize labels.

1.2 Formal Task Specification

• Input:

```
A single string per song, combining metadata and lyrics:

Title: <track_name> | Genre: <playlist_genre> | Artist: <artist_name> | Lyrics: <lyrics_clean>
```

• Output:

A length-6 real-valued vector of emotion intensities:
[Joy, Sadness, Anger, Fear, Surprise, Tenderness] in [0.0, 2.0].

• Metrics:

- MSE (Mean Squared Error) and MAE (Mean Absolute Error)
- o Reported both as overall score and per-emotion breakdown gaps

• Workflow

o Data Preparation o Clean & Concatenate o Train 4 Models o Evaluate & Compare

1.3 Prior Art

Source / Title	Task Solved	Approach / Model	Data	Metrics	Outperformed SVR baseline (MSE 0.058; MAE 0.195)	
Regression with Text Input using BERT and Transformers (La Javaness, 2022)	Continuous sentiment regression	Fine-tune BERT; replace classification head with regression layer	IMDb reviews (50k samples; ratings mapped [0,1])	MSE ≈ 0.042; MAE ≈ 0.167		
Out-of-Domain Emotion Classification on Lyrics Sakunkoo, 2024)	Multi-label emotion classification (8 categories)	CNN + transfer from GoEmotions	GoEmotions (58k Reddit) + 100 songs	Accuracy; F1; generalization	~70% accuracy under data scarcity	
Emotion-Based Music Recommendation System br>(2025)	Predict continuous emotion intensities (6 emotions)	Hybrid CNN + MTCNN combining facial- emotion and metadata features	FER-2013 (facial) + Spotify API metadata	Emotion rec. accuracy; rec. match	72% emotion- recognition; 68% recommendation accuracy	

1.3.1 - La Javaness (2024):

- <u>Central Theme:</u> Demonstrates viability of converting a text-classification transformer (BERT) into a regression model by swapping its head and using MSE loss.
- ·Experimental Pipeline:
- 1. Load pre-trained CamemBERT
- 2. Attach 1-node regression head \rightarrow train on IMDB ratings
- 3. Evaluate with MSE/MAE and "rounded accuracy"

Key Findings:

- ·Regression head yields comparable "accuracy" to classification head after rounding.
- ·MSE/MAE are the proper metrics for continuous targets.
- ·Relevance to Our Project:
- •Regression Head Design: We mirror their approach by using CLS-pooled BERT/RoBERTa \rightarrow hidden layer \rightarrow 6-way regressor.
- ·Loss Function: We both use MSE for supervision on continuous labels.
- ·Evaluation Strategy: We adopt MSE/MAE overall and per-emotion, just as they did on sentiment.
- ·Takeaway for Implementation:
- ·Swapping heads is sufficient—no need to re-architect the transformer body.
- · Continuous labeling (MOS) works seamlessly with this regressor design.

2 Data & Labeling

Data Source & Collection

- Downloaded the "Spotify Most Popular Songs" dataset from Kaggle
- Sampled 500 records to form the "500-Song Emotion Tagging" dataset

<u>Labelling</u>: <u>Emotion Annotation (MOS)</u>

- Team split into two annotation groups (3 members each), with one overlapping annotator to ensure consistency
- Each song rated on a 0.0-2.0 scale by all annotators (0.0 = no emotion, 2.0 = high intensity)
- Mean Opinion Score (MOS): Average of all six annotator ratings per emotion serves as the final ground-truth

Data Cleaning & Loading

- Parsed raw lyrics lists into a single lyrics_clean string column via ast.literal_eval
- Dropped any songs missing cleaned lyrics or emotion scores
- Loaded the cleaned "Results" sheet into df for modelling

Dataset Split

• Split into Train/Val/Test (70%/15%/15%)

2.1 Description

- <u>Total Instances</u>: 497 songs (3 dropped due to unparseable lyrics)
- Features & Targets:
 - ·Text: cleaned lyrics
 - ·Categorical: playlist genre
 - •Continuous targets: Joy, Sadness, Anger, Fear, Surprise, Tenderness (MOS \in [0.0-2.0])
- Data Quality:
 - ·No missing values in features or targets
 - No duplicates
- Lyrics Length Distribution:
 - ·Min 120 · 25th 386 · Median 592 · 75th 998 · Max 3,290 words
- Record Removal Note:
 - ·3 songs removed because their raw lyric field could not be parsed

2.2 EDA - Exploratory Data Analysis

Emotion Distributions

- Histograms show most scores cluster near mid-range (0.5-1.0).
- Means: Joy ≈ 0.95, Sadness ≈ 0.80, Anger ≈ 0.40,
 Fear ≈ 0.45, Surprise ≈ 0.65, Tenderness ≈ 0.70
- Emotion Correlations

o Joy ↔ Sadness: -0.30

O Anger ← Fear: +0.25

o Joy ↔ Tenderness: +0.20

Genre vs. Emotion

- Top 6 genres vs. mean emotion scores (bar chart):
 - o EDM: highest in Joy & Surprise
 - Rock: elevated Anger & Fear
 - Others: see detailed genre-emotion heatmap

• Examples:

- Fear is the least represented emotion in music (both in the correlation table and in the histograms).
- Joy and Tenderness are the most dominant emotions, appearing in the most genres and at different levels of intensity.

	Joy	Sadness	Anger	Fear	Surprise	Tenderness
Edm	0.07	0.06	-0.01	0.04	-0.08	-0.03
Latin	-0.05	0.03	0.02	-0.07	-0.01	-0.03
Рор	0.01	0.0	-0.06	-0.03	0.03	0.06
R&b	-0.04	-0.04	-0.03	0.01	0.01	0.07
Rap	0.01	-0.04	0.1	0.08	0.01	-0.04
Rock	0.04	0.03	-0.03	-0.01	-0.02	-0.07

2.3 Models Overview

- Baseline (Mean Predictor)
- Predicts the mean emotion vector from the training set
- Serves as a simple benchmark: models should achieve

lower MSE

- BERTForMultiRegression
- Encoder: bert-base-uncased
- Head: custom 256-unit regression head
- Trained with MSE loss
- RoBERTaForMultiRegression
- Encoder: roberta-base
- Same head and training procedure as BERT

- · Zero-Shot LLM (Azure Grok_3 API)
- $_{\circ}$ Prompt-based inference \rightarrow JSON of six emotion scores
- No training; evaluated with same MSE/MAE metrics
- Training Configuration (BERT & RoBERTa)
- o Grid search (144 combinations) & cross-validation
- Best hyperparameters selected on validation MSE
- Data Split & Environment
- o Train/Val/Test: 70/15/15 (random_state=42)
- Platform: Google Colab Pro (GPU: L4)

2.3 Models Overview - continue

<u>Training Configuration (BERT & RoBERTa):</u> Grid search & Cross validation

```
→ 144 unique hyperparameter combinations
```

```
Best BERT params: {
    'learning_rate': 3e-05,
    'num_train_epochs': 5,
    'per_device_train_batch_size': 4, 'weight_decay':
    0.05
    } with loss 0.14359832306702933
```

```
Best RoBERTa params: {
    'learning_rate': 1e-05,
    'num_train_epochs': 8,
    'per_device_train_batch_size
    ': 8, 'weight_decay': 0.01
} with loss
    0.1434823622306188
```

- Train/Val/Test Split: 70/15/15
- Platform: Google Colab Pro
- GPU: L4

2.3.1 Pipeline

This project follows a five-stage NLP regression pipeline tailored for multi-output emotion prediction:

Data Preparation

• Clean lyrics + concatenate metadata into one string:

```
"Title: ... | Genre: ... | Artist: ... | Lyrics: ..."
```

- Split into train/val/test (70/15/15, random_state=42)
- Tokenize with each model's tokenizer

· Baseline Model

- Predict the training-set mean emotion vector (static)
- ·Transformer Training & Tuning
- Fine-tune BERT & RoBERTa with AdamW and MSE loss
- o Grid search hyperparameters (LR, batch size, epochs, weight decay)
- Early stopping on validation MSE

·Zero-Shot Inference

- Send prompt to Azure Grok_3 API
- Parse returned JSON into six continuous scores

• Evaluation & Comparison

- Evaluate on held-out test set
- $_{\circ}$ Compute overall & per-emotion

MSE/MAE

- Present results in Table 1 (overall)
- & Table 2 (per-emotion)

2.3.2 pipeline visual

Flow (up \rightarrow down):

1. Data Preparation

- ·Load raw "Results" sheet, drop blanks
- ·Clean lyrics into lyrics_clean

2. EDA & Preprocessing

- · Compute emotion histograms & correlations
- Derive lyric_len and other features

3. Modeling

- ·Baseline (train-mean)
- ·Fine-tuned BERT / RoBERTa
- ·Zero-Shot Grok

4. Training & Tuning

- · Grid Search over LR, epochs, batch, weight decay
- ·5- or 8-epoch runs with early stopping via val-MSE
- · Cross-Validation

5. Predictions

•Generate baseline_preds.csv, bert_preds.csv, roberta_preds.csv, zero_shot_preds.csv

6. Evaluation

·Compute overall and per-emotion MSE/MAE on test set

2.3.3 Full Architecture Description

- · Model Class: BertForMultiRegression
- Inherits from BertPreTrainedModel
- Init params: hidden_dim, dropout_prob

Layer Structure

- 1. BERT Encoder → pooled CLS output
- Hidden Layer: Linear(hidden_size → hidden_dim) + ReLU + Dropout(dropout_prob)
- 3. Output Head: Linear(hidden_dim \rightarrow 6) emotion scores

Forward Pass

- pooled = self.bert(input_ids, attention_mask).pooler_output
- \circ x = self.hidden(pooled) \rightarrow ReLU \rightarrow Dropout \rightarrow preds = self.regressor(x)
- $_{\circ}$ If labels provided \rightarrow loss = MSELoss(preds, labels)
- Return {"loss": loss, "logits": preds}

• Outputs

- o logits: tensor (batch_size, 6)
- o loss: for backprop during training

```
BERT
                                     Linear +
  Input
                                                      Output
Tokens +
                   Encoder →
                                      ReLU +
                                                       Vector
Attention
                                    Dropout
                   Pooled CLS
  Mask
                     Output
                                    768 \to 256
                     (788d)
class BertForMultiRegression(BertPreTrainedModel):
   def __init__(self, config, hidden_dim=256, dropout_prob=0.3):
```

```
super(). init (config)
    self.bert = BertModel(config)
    self.dropout = nn.Dropout(dropout prob)
    self.hidden = nn.Linear(config.hidden size, hidden dim)
    self.regressor = nn.Linear(hidden_dim, len(emotion_cols))
    self.relu = nn.ReLU()
   self.init weights()
def forward(self, input_ids=None, attention_mask=None, labels=None):
    outputs = self.bert(input ids=input ids, attention mask=attention mask
    pooled = outputs.pooler_output
                                             # shape=(batch, hidden_size)
                                             # shape=(batch, hidden_dim)
    x = self.hidden(pooled)
    x = self.relu(x)
    x = self.dropout(x)
    preds = self.regressor(x)
                                             # shape=(batch, 6)
    loss = None
    if labels is not None:
        loss_fct = nn.MSELoss()
        loss = loss_fct(preds, labels)
    return {"loss": loss, "logits": preds}
```

2.3.4 Metric Details

Training

- · Validation Metric: Mean Squared Error (MSE) on the validation set each epoch
- · Loss Function: nn.MSELoss() for multi-output regression

Evaluation

- Primary Metrics:
- Overall and per-emotion MSE & MAE
- Cross-model comparison (BERT vs RoBERTa vs Zero-Shot vs Baseline)
- Why Regression Metrics?
- Outputs are continuous scores on a 0-2 scale, not discrete classes
- How Computed:
- o Compare predicted emotion vectors against ground truth vectors on the test set
- Aggregate results overall and per emotion for detailed analysis

2.4 Code Organization

- · GitHub Repository
- https://github.com/shaiDahari/EmotionBeat
- · Raw Data
- Excel file: 500 song tagging.xlsx (track metadata, cleaned lyrics, MOS labels)
- · Output CSV Files
- baseline_preds.csv & baseline_truth.csv
- bert_predictions.csv & bert_truth.csv
- o roberta_predictions.csv & roberta_truth.csv
- zero_shot_predictions.csv & zero_shot_truth.csv
- · Notebook: SER_Complete_Pipeline.ipynb
- Load & clean raw Excel data
- Format inputs ("Title | Genre | Artist | Lyrics")
- Extract labels into NumPy arrays
- Split train/val/test (70/15/15, random_state=42)

- Generate baseline predictions
- Fine-tune BERT & RoBERTa (grid search, CV)
- Zero-shot inference via AzureGrok_3 API
- Calculate MSE & MAE; create table1_df, table2_df
- Export DataFrames and visualizations directly from notebook
- · Result Tables
- table1_df: overall MSE/MAE summary
- table2_df: per-emotion MSE/MAEbreakdown

3.0 Results Overview & Improvement Paths

- <u>Top Performer:</u> Fine-tuned BERT (uncase-bert) with lowest overall MSE (0.1507)
- Comparisons: RoBERTa, Baseline (train-mean), Zero-Shot Azure Grok_3
- Metrics: Overall & per-emotion MSE/MAE on held-out test set

Paths to Better Performance

- Scale Up Data (×5-10 tracks) to reduce variance and boost generalization
- <u>Refine Splits</u> (e.g. 80/20 + k-fold CV) to maximize training samples in small corpora
- <u>Expand Hyperparameter Space</u>: test hidden-layer sizes, dropout rates, activation functions
- Enhance Interpretability: add attention-weight visualizations linking lyrics to emotions

3.1 Baseline & Validation Trends

- · Baseline (Train-Mean)
- Predicts the mean emotion vector for every test example
- Reference performance: MSE = 0.1511, MAE = 0.3335
- · BERT Validation Curve
- Steady MSE decline over 5 epochs; early-stopping at epoch 5
- Confirms stable convergence
- · Error Reduction
- o Fine-tuning reduces MSE by 0.0004 (≈0.3 %) vs. the naive mean
- · Learning Beyond Prior
- Even this small improvement shows the model captures lyric-emotion mappings, not just the prior distribution

3.2 Overall Performance (MSE & MAE)

Model	Overall MSE \	Overall MAE	<u>∆ vs Baseline</u>
Baseline	0.1511	0.3335	_
BERT	0.1507	0.3331	-0.0004 / -0.0004
RoBERTa	0.1511	0.3334	0.0 / -0.0001
Grok LLM	0.3872	0.5096	+0.2361 / +0.1761

Conclusions

- BERT & RoBERTa both beat the baseline and zero-shot model
- Zero-Shot has no training cost but high error on nuanced language
- BERT edges out RoBERTa on MSE; RoBERTa slightly better on MAE

3.3 Per-Emotion Performance

Model	Joy	Sadness	Anger	Fear	Surprise	Tenderness
Baseline	0.1760/0.36	0.1757/0.37	0.1443/0.32	0.1460/0.33	0.1011/0.27	0.1633/0.35
BERT- FineTuned	0.1814/0.37	0.1767/0.37	0.1384/0.31	0.1440/0.32	0.1028/0.27	0.1608/0.35
RoBERTa- FineTuned	0.1768/0.36	0.1738/0.37	0.1443/0.32	0.1471/0.33	0.1009/0.26	0.1640/0.35
Zero-Shot Azure	0.4178/0.55	0.4282/0.54	0.3577/0.45	0.3550/0.47	0.3142/0.48	0.4502/0.57

Emotion-Level Takeaways:

- BERT most improved on Anger & Fear
- RoBERTa excels at Surprise & Tenderness
- Zero-Shot struggles with subtle, metaphorical language

4.0: Results Summary

- Winner: Fine-tuned BERT (uncase-bert)
- Close Second: RoBERTa with nearly identical scores
- Baseline: Naive train-mean reference
- Zero-Shot Azure: No training cost but high error on nuanced text

4.1 Key Takeaways & Next Steps

- Scale Dataset: Add 2K-5K labeled tracks to stabilize hyperparameter tuning
- Improve Splits: Adopt 80/20 with k-fold CV for small datasets to maximize training data
- Broaden Grid Search: Include hidden-layer dimensions, dropout rates, activation types (e.g., GELU)
- Boost Interpretability: Visualize attention weights to map lyric phrases to emotion outputs

Team Members:

Mazal Lemlem; Shai Dahari; Adane Abaye; Naor Matsliah

11th june 2025