PLP - 30 TOPIC 30—INTEGERS MODULO *n*

Demirbaş & Rechnitzer

INTEGERS MODULO n

PARTITION AND EQUIVALENCE CLASSES

• The equivalence relation " $\equiv \pmod{n}$ " gives a partition of \mathbb{Z} :

$$\{[0],[1],[2],\ldots,[n-1]\}$$

- These equivalence classes are called the integers mod n
- They have nice arithmetic properties

THEOREM:

Let $n \in \mathbb{N}$ and let $a,b \in \{0,\overline{1,\ldots,n-1}\}$.

If $x \in [a]$ and $y \in [b]$ then

$$x+y\in [a+b]$$
 and $x\cdot y\in [a\cdot b]$

$$x \cdot y \in [a \cdot b]$$

ARITHMETIC MODULO n

$$(x \in [a]) \land (y \in [b]) \implies (x + y \in [a + b]) \land (x \cdot y \in [a \cdot b])$$

Scratch work

• Since $x \in [a], y \in [b]$ we know that $n \mid (x-a)$ and $n \mid (y-b)$, so

$$x = a + nk$$

$$x=a+nk$$
 and $y=b+n\ell$

This means that

$$x+y=a+b+n(k+\ell)$$

$$x+y=a+b+n(k+\ell)$$
 $xy=ab+n(bk+a\ell)+n^2k\ell$

Which gives

$$n\mid ((x+y)-(a+b))$$
 and $n\mid (x\cdot y-a\cdot b)$

$$n \mid (x \cdot y - a \cdot b)$$

PROOF

PROOF.

Let n,a,b,x,y be as stated. Then since $x\in [a]$ and $y\in [b]$, we know that

$$x = a + nk$$

$$y=b+n\ell$$

x=a+nk and $y=b+n\ell$ for some $k,\ell\in\mathbb{Z}$

From this we have

$$x+y=a+b+n(k+\ell)$$

$$x+y=a+b+n(k+\ell)$$
 $xy=ab+n(bk+a\ell)+n^2k\ell$

and so

$$n \mid ((x+y)-(a+b))$$
 and $n \mid (x \cdot y - a \cdot b)$

$$n \mid (x \cdot y - a \cdot b)$$

This shows that $x+y\in [a+b]$ and $x\cdot y\in [a\cdot b]$ as required.

MODULAR ARITHMETIC

DEFINITION:

Let $n \in \mathbb{N}$ and consider the equivalence classes of congruence modulo n.

The integers modulo n is the set

$$\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$$

The elements of \mathbb{Z}_n can be added and multiplied by the rule

$$[a]+[b]=[a+b]$$
 $[a]\cdot[b]=[a\cdot b]$

$$0 [2]_{1} \text{ and } [5]_{2}$$

$$b \text{ cas } [a]_{n} + [b]_{n} = [0]_{n}$$

$$[a+b]_{n} = [0]_{1}$$

$$[a+s]_{1} = [0]_{2}$$

$$[7]_{2} = [0]_{2}$$

$$[7]_{3} = [0]_{1}$$

$$[a\cdot b]_{n} = [1]_{n}$$

$$[a\cdot b]_{n} = [1]_{n}$$

$$[a\cdot b]_{1} = [1]_{2}$$

$$[36]_{1} = [1]_{3}$$

$$[4\cdot 4]_{5} = [1]_{5}$$

$$[16]_{5} = [1]_{5}$$