Bizonyítással kért tételek a megajánlott vizsgajegyhez az 1. zh-n

Analízis II. A-B (BSc)

Programtervező informatikus szak

- 1. A deriválhatóság ekvivalens átfogalmazása lineáris közelítéssel.
- 2. A szorzatfüggvény deriválása.
- 3. A hányadosfüggvény deriválása.
- 4. A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel.
- 5. A Rolle-féle középértéktétel.
- 6. A Lagrange-féle középértéktétel.
- 7. A Cauchy-féle középértéktétel.
- 8. Nyílt intervallumon értelmezett deriválható függvények esetében a monotonitás és a derivált kapcsolata.
- 9. A lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel.
- 10. A konvexitás jellemzése a deriváltfüggvénnyel.
- **11.** A véges pontbeli $\frac{0}{0}$ határérték esetre vonatkozó L'Hospital-szabály.
- 12. A Taylor-formula a Lagrange-féle maradéktaggal.

1. A deriválhatóság ekvivalens átfogalmazása lineáris közelítéssel.

4. Lineáris közelítés

Tétel.

Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \operatorname{int} \mathcal{D}_f$. Ekkor $f \in D\{a\}$ \iff

$$\begin{cases} \exists A \in \mathbb{R} & \text{\'es} \quad \exists \varepsilon : \mathcal{D}_f \to \mathbb{R}, \ \lim_a \varepsilon = 0 : \\ f(x) - f(a) = A \cdot (x - a) + \varepsilon(x)(x - a) \ (x \in \mathcal{D}_f), \end{cases}$$

és A = f'(a).

Bizonyítás.

На

$$\varepsilon(x) := \frac{f(x) - f(a)}{x - a} - f'(a) \quad (x \in \mathcal{D}_f \setminus \{a\}),$$

akkor $\lim_{a} \varepsilon = 0$ és

$$f(x) - f(a) = f'(a) \cdot (x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f),$$

ezért a feltétel az A = f'(a) választással teljesül.

$$\blacksquare$$
 T.f.h. $\exists A \in \mathbb{R}$ és $\exists \varepsilon : \mathcal{D}_f \to \mathbb{R}$, $\lim_a \varepsilon = 0$, hogy

$$f(x) - f(a) = A \cdot (x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f).$$

Ebből

$$\frac{f(x) - f(a)}{x - a} = A + \varepsilon(x) \longrightarrow A, \text{ ha } x \longrightarrow a$$

adódik, ami azt jelenti, hogy $f \in D\{a\}$ és f'(a) = A.

2. A szorzatfüggvény deriválása.

T.f.h. $f, g \in D\{a\}$ valuatilyen $a \in \text{int } (\mathcal{D}_f \cap \mathcal{D}_g)$ pontban. Ekkor

3°
$$f \cdot g \in D\{a\}$$
 és
$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a),$$

Bizonyítás.

A közös **ötlet**: $\frac{f(x) - f(a)}{x - a}$ és $\frac{g(x) - g(a)}{x - a}$ "kialakítása".

 3^o A szorzatfüggvény deriválása. Világos, hogy $a \in \text{int } \mathcal{D}_{f \cdot g}$. Az $f \cdot g$ függvény különbségihányados-függvénye az a pontban

$$\frac{(fg)(x) - (fg)(a)}{x - a} = \frac{f(x) \cdot g(x) - f(a) \cdot g(a)}{x - a} \stackrel{!}{=} \frac{f(x) \cdot g(x) - f(a) \cdot g(x) - f(a) \cdot g(a) + f(a) \cdot g(x)}{x - a} = \frac{f(x) - f(a)}{x - a} \cdot g(x) + f(a) \cdot \frac{g(x) - g(a)}{x - a} \quad (x \in \mathcal{D}_{f \cdot g} \setminus \{a\}).$$

Mivel $g \in D\{a\}$, ezért $g \in C\{a\}$, tehát $\lim_{x \to a} g(x) = g(a)$. Így

$$\lim_{x \to a} \frac{(fg)(x) - (fg)(a)}{x - a} =$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} g(x) + f(a) \cdot \lim_{x \to a} \frac{g(x) - g(a)}{x - a} =$$

$$= f'(a) \cdot g(a) + f(a) \cdot g'(a).$$

Ez azt jelenti, hogy $f \cdot g \in D\{a\}$ és

$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a). \blacksquare$$

3. A hányadosfüggvény deriválása.

T.f.h. $f, g \in D\{a\}$ valamilyen $a \in \text{int } (\mathcal{D}_f \cap \mathcal{D}_g)$ pontban. Ekkor

$$\mathbf{4}^{\mathbf{o}}$$
 ha még a $g(a) \neq 0$ feltétel is teljesül, akkor

$$\frac{f}{g} \in D\{a\} \quad \text{\'es}$$

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}.$$

4º A hányadosfüggvény deriválása.

Először azt igazoljuk, hogy $a \in \operatorname{int} \mathcal{D}_{\underline{f}}$.

Valóban: $g \in D\{a\} \implies g \in C\{a\}$. Tehát $g(a) \neq 0 \implies$

$$\exists K(a) \subset \mathcal{D}_f: g(x) \neq 0 \ (\forall x \in K(a)) \implies a \in \operatorname{int} \mathcal{D}_{\frac{f}{a}}.$$

Az $\frac{f}{g}$ hányadosfüggvény különbségihányados-függvényea-ban

$$\frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a} =$$

$$= \frac{1}{g(a)g(x)} \cdot \frac{f(x) \cdot g(a) - f(a) \cdot g(x)}{x - a} =$$

$$= \frac{1}{g(a)g(x)} \left(\frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \cdot \frac{g(x) - g(a)}{x - a}\right)$$

$$\lim_{x \to a} \frac{f(x)}{g(a)g(x)} = \lim_{x \to a} \frac{f(x)}{g(a)g(x)} \cdot \frac{g(x) - g(a)}{x - a}$$

Mivel $g \in C\{a\} \Longrightarrow \lim_{x \to a} g(x) = g(a) \neq 0$, ezért

$$\lim_{x \to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} =$$

$$= \frac{1}{g(a) \lim_{x \to a} g(x)} \left(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \cdot \lim_{x \to a} \frac{g(x) - g(a)}{x - a}\right) =$$

$$= \frac{1}{g^2(a)} \left(f'(a)g(a) - f(a)g'(a)\right).$$

Ez azt jelenti, hogy $\frac{f}{g} \in D\{a\}$ és

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}. \blacksquare$$

4. A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel.

Tétel: Elsőrendű szükséges feltétel a lok. szé-re.

T.f.h. az f függvénynek az $a \in \text{int } \mathcal{D}_f$ pontban lokális szélsőértéke van és $f \in D\{a\}$. Ekkor

$$f'(a) = 0.$$

Biz. T.f.h. f-nek a-ban lokális maximuma van, azaz $\exists r > 0$:

$$\forall x \in (a-r, a+r): \ f(x) \le f(a) \implies f(x) - f(a) \le 0.$$

Tek. az f fv. a-hoz tartozó különbségihányados-függvényét:

$$\frac{f(x) - f(a)}{x - a} \quad (x \in \mathcal{D}_f \setminus \{a\}).$$

Ha $a < x < a + r \implies x - a > 0$ és $f(x) - f(a) \le 0 \implies$

$$\frac{f(x) - f(a)}{x - a} \le 0 \implies \lim_{x \to a + 0} \frac{f(x) - f(a)}{x - a} = f'_{+}(a) \le 0.$$

Ha $a - r < x < a \implies x - a < 0$ és $f(x) - f(a) \le 0 \implies$

$$\frac{f(x) - f(a)}{x - a} \ge 0 \implies \lim_{x \to a \to 0} \frac{f(x) - f(a)}{x - a} = f'_{-}(a) \ge 0.$$

Mivel $f \in D\{a\}$, ezért

$$\underbrace{f'_{-}(a)}_{\geq 0} = \underbrace{f'_{+}(a)}_{\leq 0} = f'(a) = 0.$$

A bizonyítás hasonló akkor is, ha f-nek a-ban <u>lokális minimuma</u> van. \blacksquare

5. A Rolle-féle középértéktétel.

4. Középértéktételek

Tétel: A Rolle-féle k.é.t. Legyen $a, b \in \mathbb{R}$ és a < b. Ekkor

$$\bullet f \in C[a,b],
\bullet f \in D(a,b),
\bullet f(a) = f(b)$$

$$\exists \xi \in (a,b), hogy
f'(\xi) = 0.$$

Biz. $f \in C[a, b] \implies (\text{Weierstrass-tétel}) \ \exists \ \alpha, \ \beta \in [a, b]:$

$$f(\alpha) = \min_{[a,b]} f =: m \quad \text{\'es} \quad f(\beta) = \max_{[a,b]} f =: M.$$

 1. eset: $m = M$. Ekkor f állandó, így $\forall \ \xi \in (a,b)$: $f'(\xi) = 0$.

2. eset: $m \neq M$. Mivel f(a) = f(b), ezért α és β közül legalább az egyik (pl. α) (a,b)-be esik. Ekkor $\xi := \alpha \in \operatorname{int} \mathcal{D}_f = (a,b)$, és f-nek ξ -ben lokális minimuma van. Mivel $f \in D\{\xi\} \implies (az)$ elsőrendű szükséges feltétel) $f'(\xi) = 0$.

6. A Lagrange-féle középértéktétel.

Tétel: A Lagrange-féle k.é.t. Legyen $a, b \in \mathbb{R}$ és a < b. Ekkor

$$\bullet f \in C[a,b],
\bullet f \in D(a,b)$$

$$\Rightarrow f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Biz. Az (a, f(a)) és a (b, f(b)) pontokon átmenő szelő egyenesének az egyenlete:

$$y = h_{a,b}(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Igazoljuk, hogy az

$$F(x) := f(x) - h_{a,b}(x) \quad (x \in [a,b])$$

függvény kielégíti a Rolle-féle középértéktétel feltételeit. Valóban, f és $h_{a,b}$ mindketten folytonosak [a,b]-n és deriválhatók (a,b)-n, ezért a különbségük, F szintén rendelkezik ezekkel a tulajdonságokkal. Továbbá

$$F(a) = f(a) - h_{a,b}(a) = f(a) - f(a) = 0,$$

$$F(b) = f(b) - h_{a,b}(b) = f(b) - \left(\frac{f(b) - f(a)}{b - a}(b - a) + f(a)\right) = 0,$$

tehát F(a) = F(b) is teljesül. A Rolle-tétel alapján tehát van olyan $\xi \in (a,b)$ pont, amelyre

$$F'(\xi) = f'(\xi) - h'_{a,b}(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0,$$

következésképpen

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}. \blacksquare$$

7. A Cauchy-féle középértéktétel.

Tétel: A Cauchy-féle k.é.t. Legyen $a, b \in \mathbb{R}$ és a < b. Ekkor

$$\bullet f, g \in C[a, b],
\bullet f, g \in D(a, b),
\bullet \forall x \in (a, b) : g'(x) \neq 0$$

$$\exists \xi \in (a, b), hogy
\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Biz. A Rolle-tételből következik, hogy $g(a) \neq g(b)$. Valóban, g(a) = g(b)-ből az következne, hogy g deriváltja nulla az (a,b) intervallum legalább egy pontjában, amit kizártunk. Legyen

$$F(x) := f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) \quad (x \in [a, b]).$$

Az F függvény folytonos [a,b]-n, deriválható (a,b)-n és F(a)=F(b)=0. Így a Rolle-tétel szerint létezik olyan $\xi\in(a,b)$, amelyre $F'(\xi)=0$. Ekkor

$$0 = F'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi).$$

Mivel a feltételeink szerint $g'(\xi) \neq 0$, ezért azt kapjuk, hogy

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}. \blacksquare$$

8. Nyílt intervallumon értelmezett deriválható függvények esetében a monotonitás és a derivált kapcsolata.

Tétel: A monotonitás és a derivált kapcsolata. Legyen $(a,b) \subset \mathbb{R}$ egy nyílt intervallum. T.f.h. $f \in D(a,b)$. Ekkor

$$\mathbf{1}^{o} f \nearrow [\searrow] (a,b)-n \iff f' \ge 0 [f' \le 0] (a,b)-n;$$

$$\mathbf{2}^{o}$$
 ha $f' > 0$ $[f' < 0]$ $(a,b)-n \Longrightarrow f \uparrow [\downarrow] (a,b)-n$.

Bizonyítás.

$$\frac{f(x) - f(t)}{x - t} \ge 0 \quad (t < x < b),$$

hiszen x-t>0 és a monotonitás miatt $f(x)-f(t)\geq 0$. Mivel $f\in D\{t\},$ így

$$f'(t) = f'_{+}(t) = \lim_{x \to t+0} \frac{f(x) - f(t)}{x - t} \ge 0.$$

Ha $\forall x \in (a,b)$: $f'(x) \geq 0$, akkor legyen $x,y \in (a,b)$, x < y két tetszőleges pont. Ekkor $f \in C[x,y]$, $f \in D(x,y)$, és így a Lagrange-féle középértéktétel szerint

$$\exists \xi \in (x,y) \colon \frac{f(y) - f(x)}{y - x} = f'(\xi) \ge 0 \implies f(x) \le f(y).$$

Ezért $f \nearrow (a, b)$ -n.

Az állítás hasonlóan igazolható monoton csökkenő függvények esetében is.

 $\mathbf{2^o}$ Alkalmazzunk "éles" egyenlőtlenségeket $\mathbf{1^o}$ -ben a æirányban. \blacksquare

9. A lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel.

Tétel: Elsőrendű elégséges feltétel a lokális szélsőértékekre.

Legyen $-\infty < a < b < +\infty$ és $f:(a,b) \to \mathbb{R}$. Tegyük fel, hogy

- $f \in D(a,b)$,
- $egy \ c \in (a, b) \ pontban \ f'(c) = 0 \ és$
- az f' deriváltfüggvény előjelet vált c-ben.

Ekkor,

1º ha az f' függvénynek c-ben (-,+) előjelváltása van, akkor c az f függvénynek szigorú **lokális minimumhelye**;

2º ha az f' függvénynek c-ben (+,-) előjelváltása van, akkor c az f függvénynek szigorú **lokális maximumhelye**.

Bizonyítás. Az állítás azonnal következik a monotonitás és a derivált kapcsolatáról szóló tételből, hiszen ha az f függvénynek c-ben (-,+) előjelváltása van, akkor $\exists \, \delta > 0$ úgy, hogy f' < 0 $(c-\delta,c)$ -n és f' > 0 $(c,c+\delta)$ -n. Ezért $f \downarrow (c-\delta,c]$ -n és $f \uparrow [c,c+\delta)$ -n. Emiatt $\forall \, x \in (c-\delta,c+\delta)$: f(x) > f(c), tehát c az f függvénynek szigorú lokális minimumhelye.

Az állítás hasonlóan igazolható (+,-) előjelváltás esetén. \blacksquare

10. A konvexitás jellemzése a deriváltfüggvénnyel.

Tétel. T.f.h. $I \subset \mathbb{R}$ nyílt intervallum és $f \in D(I)$. Ekkor

$$f \quad konvex \quad I-n \iff f' \nearrow I-n.$$

Bizonyítás.

 \implies Legyen $u, v \in I$, u < v tetszőleges és $x \in (u, v)$ is tetszőleges. T.f.h. f konvex I-n. Ekkor

$$f(x) \le \frac{f(v) - f(u)}{v - u}(x - u) + f(u) \text{ és}$$
$$f(x) \le \frac{f(v) - f(u)}{v - u}(x - v) + f(v).$$

Egyszerű átrendezésekkel azt kapjuk, hogy

$$\frac{f(x) - f(u)}{x - u} \le \frac{f(v) - f(u)}{v - u} \le \frac{f(x) - f(v)}{x - v}.$$

Vegyük itt az $x \to u$, ill. az $x \to v$ határátmenetet:

$$f'(u) \le \frac{f(v) - f(u)}{v - u} \le f'(v).$$

Tehát f' monoton növekedő I-n.

 \sqsubseteq T.f.h. f' monoton növekedő I-n. Legyen $u, v \in I$, u < v tetszőleges és $x \in (u, v)$ is tetszőleges. Ekkor a Lagrange-féle k.é.t. szerint $\exists \xi_1 \in (u, x)$ és $\exists \xi_2 \in (x, v)$:

$$f'(\xi_1) = \frac{f(x) - f(u)}{x - u}$$
 és $f'(\xi_2) = \frac{f(v) - f(x)}{v - x}$.

Mivel $f' \nearrow I$ -n, ezért $f'(\xi_1) \le f'(\xi_2)$, vagyis

$$\frac{f(x) - f(u)}{x - u} \le \frac{f(v) - f(x)}{v - x}.$$

Ezt átrendezve (a részleteket mellőzve) azt kapjuk, hogy

$$f(x) \le \frac{f(v) - f(u)}{v - u}(x - u) + f(u).$$

Ez azt jelenti, hogy az f függvény konvex I-n.

11. A véges pontbeli $\frac{0}{0}$ határérték esetre vonatkozó L'Hospital-szabály.

Tétel: L'Hospital-szabály a $\frac{0}{0}$ esetben.

Legyen $-\infty \le a < b < +\infty$ és $f, g \in D(a, b)$. T.f.h.

(a)
$$\exists \lim_{a \to 0} f = \lim_{a \to 0} g = 0$$
,

(b)
$$g(x) \neq 0$$
 és $g'(x) \neq 0$ $\forall x \in (a, b)$,

(c)
$$\exists \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}.$$

Ekkor

$$\exists \lim_{a \to 0} \frac{f}{g} \in \overline{\mathbb{R}} \quad \text{\'es} \quad \lim_{a \to 0} \frac{f}{g} = \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}.$$

Bizonyítás. 1. eset: $a > -\infty$ (véges).

Legyen $A := \lim_{a \to 0} \frac{f'}{g'} \in \overline{\mathbb{R}}$, azaz

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0 : \forall y \in (a, a+\delta) \subset (a,b) : \frac{f'(y)}{g'(y)} \in K_{\varepsilon}(A).$

Azt kell igazolni, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0 : \forall x \in (a, a + \delta) \subset (a, b) : \frac{f(x)}{g(x)} \in K_{\varepsilon}(A).$

Értelmezzük f-et és g-t az a pontban úgy, hogy

$$f(a) := 0$$
 és $g(a) := 0$.

Ekkor a $\lim_{a\to 0} f = \lim_{a\to 0} g = 0$ feltételből következik, hogy $f,g \in C[a,a+\delta)$.

Legyen most $x \in (a, a + \delta)$ tetszőleges pont. A Cauchy-féle középértéktétel feltételei az f és a g függvényre az [a, x] intervallumon teljesülnek. Így $\exists \xi_x \in (a, x)$, amelyre

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi_x)}{g'(\xi_x)} \in K_{\varepsilon}(A).$$

Ez azt jelenti, hogy a $\lim_{a \to 0} \frac{f}{g}$ határérték létezik, és $\lim_{a \to 0} \frac{f}{g} = A$.

2. eset: $a = -\infty$. Nem bizonyítjuk.

12. A Taylor-formula a Lagrange-féle maradéktaggal.

Tétel: Taylor-formula a Lagrange-féle maradéktaggal.

Legyen $n \in \mathbb{N}$, és t.f.h. $f \in D^{n+1}(K(a))$. Ekkor $\forall x \in K(a)$ ponthoz \exists olyan a és x közé eső ξ szám, hogy

$$f(x) - T_{a,n}f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Bizonyítás. A Cauchy-féle középértéktételt fogjuk felhasználni. Legyen

$$F(x) := f(x) - T_{a,n}f(x) \qquad (x \in K(a)).$$

A $T_{a,n}f$ polinom definíciójából következik, hogy

$$F^{(i)}(a) = f^{(i)}(a) - (T_{a,n}f)^{(i)}(a) = 0 (i = 0, 1, ..., n).$$

Továbbá, $F^{(n+1)}(x) = f^{(n+1)}(x)$, hiszen $(T_{n,a}f)^{(n+1)} \equiv 0$, mert $T_{a,n}f$ egy legfeljebb n-edfokú polinom.

Másrészt, legyen $G(x) := (x-a)^{n+1} \ (x \in K(a))$. Ekkor minden $x \in K(a)$ esetén

$$G'(x) = (n+1)(x-a)^n$$
, $G''(x) = n(n+1)(x-a)^{n-1}$, ...,
 $G^{(n)}(x) = (n+1)!(x-a)$,

amiből következik, hogy $G^{(i)}(a) = 0$ (i = 0, 1, ..., n), és $G^{(n+1)}(x) = (n+1)!$.

Tegyük fel, hogy $x \in K(a)$ és például x > a. (Az x < a eset hasonlóan vizsgálható.) Az F és a G függvényekre az [a, x] intervallumon alkalmazható a Cauchy-féle középértéktétel, következésképpen

$$\exists \xi_1 \in (a,x) \colon \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F(x)}{G(x)} = \frac{f(x) - T_{a,n}f(x)}{(x-a)^{n+1}}.$$

A Cauchy-féle középértéktételt most az F' és a G' függvényekre az $[a, \xi_1]$ intervallumon alkalmazzuk:

$$\exists \xi_2 \in (a, \xi_1) \subset (a, x) \colon \frac{F''(\xi_2)}{G''(\xi_2)} = \frac{F'(\xi_1) - F'(a)}{G'(\xi_1) - G'(a)} = \frac{F'(\xi_1)}{G'(\xi_1)}.$$

Ha a fenti gondolatmenetet n-szer megismételjük, akkor a k-dik lépésben $(k = 1, 2 \dots, n)$:

$$\exists \xi_{k+1} \in (a, \xi_k) \subset (a, x) :$$

$$\frac{F^{(k+1)}(\xi_{k+1})}{G^{(k+1)}(\xi_{k+1})} = \frac{F^{(k)}(\xi_k) - F^{(k)}(a)}{G^{(k)}(\xi_k) - G^{(k)}(a)} = \frac{F^{(k)}(\xi_k)}{G^{(k)}(\xi_k)}.$$

Az n számú lépés során kapott egyenlőségeket egybevetve azt kapjuk, hogy

$$\frac{f(x) - T_{a,n}(f,x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F'(\xi_1)}{G'(\xi_1)} = \dots = \frac{F^{(n)}(\xi_n)}{G^{(n)}(\xi_n)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!},$$

hiszen minden $x \in K(a)$ esetén $F^{(n+1)}(x) = f^{(n+1)}(x)$ és $G^{(n+1)}(x) = (n+1)!$. A konstrukcióból látható, hogy ξ_{n+1} az a pont és x között van, ezért a $\xi := \xi_{n+1}$ választással a bizonyítandó állítást kapjuk.