HW1 Report

Jensen Davies

January 27th, 2021

Problem 1

Proof. On one hand, since A is an upper-triangular matrix, we know that the inverse of A is also upper-triangular. But on the other hand, since A is unitary, we know

$$A^*A = I \implies A^{-1} = A^*$$

We then know $A^* = A^{-1}$ is a lower-triangular matrix, and hence diagonal (upper and lower triangular at the same time implies diagonal). Thus, $A = (A^*)^*$ is diagonal as well. The same holds for lower-triangular matrices following the same logic.

Problem 2

a)

Proof. Since $\lambda \neq 0$ is an eigenvalue of A, we know $Ax = \lambda x$. We know A is invertible, hence

$$x = \lambda A^{-1}x \implies A^{-1}x = \frac{1}{\lambda}x,$$

i.e., $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

b)

Proof. If λ is an eigenvalue of AB, then $ABx = \lambda x$. Let y = Bx, giving us $Ay = \lambda x$. If we left multiply by B, we have

$$BAy = \lambda Bx = \lambda y.$$

Thus AB and BA share the same eigenvalues.

c)

Proof. We want to show that $\det(A - \lambda I) = \det(A^* - \lambda I) = \det(A^T - \lambda I)$, since $A \in \mathbb{R}^{n \times n}$. Consider

$$\det(A^T - \lambda I) = \det(A^T - \lambda I^T) = \det[(A - \lambda I)^T].$$

Since $det(X) = det(X^T)$, we can conclude that

$$\det(A^T - \lambda I) = \det[(A - \lambda I)^T] = \det(A - \lambda I).$$

Hence, A and A^T share the same eigenvalues. Note, if $A \in \mathbb{C}^{n \times n}$, then the eigenvalues of A^* are the complex conjugates of the eigenvalues of A.

Problem 3

a)

Proof. If x is an eigenvector of Hermitian A, then we know

$$\langle Ax, x \rangle = \langle \lambda x, x \rangle = \langle x, A^*x \rangle = \langle x, \lambda x \rangle.$$

Hence, we have that

$$\lambda \langle x, x \rangle = \bar{\lambda} \langle x, x \rangle \implies \lambda = \bar{\lambda},$$

implying that $\mathbf{Im}(\lambda) = 0$.

b)

Proof. We have that $Ax = \lambda_1 x$ and $Ay = \lambda_2 y$, with $\lambda_1 \neq \lambda_2$. We want to show that $\langle x, y \rangle = 0$. Notice that

$$\langle \lambda_1 x, y \rangle = \langle Ax, y \rangle = x^* Ay = x^* \lambda_2 y = \langle \lambda_2 x, y \rangle$$

This implies that

$$\langle \lambda_1 x, y \rangle - \langle \lambda_2 x, y \rangle = \lambda_1 x^* y - \lambda_2 x^* y = (\lambda_1 - \lambda_2) x^* y = 0.$$

Since λ_1 , λ_2 are distinct, it must be that $x^*y = \langle x, y \rangle = 0$.

Problem 4

a)

Proof. Consider the chain of equalities

$$\langle x,x\rangle = \langle A^*Ax,Ax\rangle = \langle Ax,Ax\rangle = \langle \lambda x,\lambda x\rangle = |\lambda|^2\langle x,x\rangle \implies |\lambda|^2 = 1.$$

Hence,
$$|\lambda| = 1$$
.

b)

Proof. For unitary $A \in \mathbb{C}^{n \times n}$, we have that

$$||A||_F = \sqrt{\mathbf{trace}(A^*A)} = \sqrt{\mathbf{trace}(I)} = \sqrt{n} \neq 1.$$

Problem 5

a)

Proof. Let x be an eigenvector for skew-Hermitian A. Then, we have that

$$\langle Ax, x \rangle = \langle \lambda x, x \rangle = \langle x, A^*x \rangle = \langle x, -Ax \rangle = \langle x, -\bar{\lambda}x \rangle.$$

Thus, we have that

$$\lambda \langle x, x \rangle = -\bar{\lambda} \langle x, x \rangle \implies \lambda = -\bar{\lambda}.$$

Hence, $\mathbf{Re}(\lambda) = 0$.

b)

Proof. In order to show that I-A is nonsingular, it suffices to show it fails to have $\lambda=0$ as an eigenvalue. Let λ be an eigenvalue of A. Consider

$$(I - A)x = (I + A)x = Ax + Ix = Ax + x = \lambda x + x = (\lambda + 1)x.$$

This chain of equalities shows us that $(I-A)x = (\lambda+1)x$, that is, $\lambda+1$ is an eigenvalue of I-A. Since λ is an eigenvalue of A and A is skew-symmetric, from part a), we know that λ is purely imaginary. Hence, $1+\lambda$ is nonzero. Thus I-A is nonsingular.

c)

Proof. We have that

$$BB^* = (I - A)^{-1}(I + A)(I - A)(I + A)^{-1}$$
$$= (I - A)^{-1}(I - A)(I + A)(I + A)^{-1}$$
$$= I$$

since (I + A)(I - A) = (I - A)(I + A).

Problem 6

Proof. We want to show that

$$\rho(A) = \lambda_{max}(A) \le ||A|| = \sup_{||x||=1} ||Ax||.$$

Let v be the unit-eigenvector associated with the maximal eigenvalue $\lambda_{max}(A)$. Then, by definition of supremum, we have that

$$\begin{split} \|Av\| &= \|\lambda_{max}(A)v\| \leq \sup_{\|x\|=1} \|Ax\| \\ &= |\lambda_{max}(A)| \|v\| \leq \sup_{\|x\|=1} \|Ax\| \\ &= |\lambda_{max}(A)| = \rho(A) \leq \sup_{\|x\|=1} \|Ax\| = \|A\|. \end{split}$$

7

a)

Proof. We have that

$$||A||_{2} = \sqrt{\lambda_{max}(A^{*}A)} = \sqrt{\lambda_{max}[(uv^{*})^{*}(uv^{*})]}$$
$$= \sqrt{||u||_{2}^{2}\lambda_{max}(vv^{*})}$$
$$= ||u||_{2}\sqrt{\lambda_{max}(vv^{*})}$$

Now, consider the other outer product matrix $B = vv^*$. Notice that

$$Bv = (vv^*)v = ||v||_2^2 v,$$

which implies that v is an eigenvector of vv^* with eigenvalue $||v||_2^2$. Also notice that

$$B = [\bar{v_1}v \mid \bar{v_2}v \mid \dots \mid \bar{v_n}v],$$

showing us that every column of B is dependent on v. Hence, $\mathbf{rank}(B) = \mathbf{rank}(vv^*) = 1$, implying that $\lambda = ||v||_2^2$ is the only, and maximal, eigenvalue of vv^* . Therefore,

$$||A||_2 = ||u||_2 \sqrt{\lambda_{max}(vv^*)} = ||u||_2 ||v||_2.$$

b)

Proof. By definition, we have that

$$\begin{split} \|A\|_F &= \sqrt{\mathbf{trace}(A^*A)} = \sqrt{\mathbf{trace}[(uv^*)^*(uv^*)]} \\ &= \sqrt{\mathbf{trace}(\|u\|_2^2 vv^*)} \\ &= \|u\|_2 \sqrt{\mathbf{trace}(vv^*)} \end{split}$$

As shown in part a), the only eigenvalue of vv* is $\lambda = ||v||_2^2$. Since the trace of a matrix is equal to the sum of its eigenvalues, $\mathbf{trace}(vv^*) = ||v||_2^2$.

Hence

$$||A||_F = ||u||_2 \sqrt{\mathbf{trace}(vv^*)} = ||u||_2 ||v||_2.$$

Problem 8

a)

Proof. We know that A and B are unitarily equivalent, hence $A=QBQ^*$ for unitary $Q\in\mathbb{C}^{m\times m}$. The SVD of B is $B=U\Sigma V^*$, where Σ contains the singular values of B along the diagonal and U,V are unitary. Thus,

$$A = (QU)\Sigma(V^*Q).$$

Since the product of two unitary matrices is also unitary, the SVD of A is the above, notably with the same Σ .

b)

Proof. Assume that A is unitarily equivalent to B. Let B be the identity matrix and choose A to be any other unitary matrix such that $A \neq B$. Then, we know that $A^*A = I$, meaning A shares the same singular values as B. But $A = QBQ^* = I$. Hence we have A = I, and $A \neq B = I$. This is a contradiction.

Problem 9

a)

We have $f(x_1, x_2) = x_1 + x_2$. Since $f \in C^{(1)}$,

$$K(x) = \frac{\|J(x)\|_{\infty} \|x\|_{\infty}}{\|f(x)\|_{\infty}} = \frac{2\max(|x_1|, |x_2|)}{|x_1 + x_2|}.$$

Thus, as $x_1 \to -x_2$ or $x_2 \to -x_1$, our relative condition number $K(x) \to \infty$.

b)

Let $x_1 = \alpha x_2$. Then, we can write f as a univariate function,

$$g(x) = \alpha x^2$$
.

Calculating the condition number for g gives us:

$$K(x) = \frac{2|\alpha||x|^2}{|\alpha||x|^2} = 2.$$

c)

We have $f(x) = (x-2)^9$. Hence,

$$K(x) = \frac{|9(x-2)^8||x|}{|(x-2)^9|} = \frac{9(x-2)^8|x|}{(x-2)^8|x-2|} = \frac{9|x|}{|x-2|}.$$

As $x \to 2$, we see that $K(x) \to \infty$.

Problem 10

a)

Submitted separately as Matlab code.

b)

Submitted separately as Matlab code.

c)

We see that around x=2, the two curves do not coincide by (what I found to be) a surprisingly large variance. This makes sense, since our relative condition number for f is extremely large around x=2.