Lecture 18: 10 June, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Mixture models

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it
 - Outcome: N_1 tosses of c_1 interleaved with N_2 tosses of c_2 , $N_1 + N_2 = N$
 - \blacksquare Can we estimate p_1 and p_2 ?

Mixture models ...

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of *N* interleaved coin tosses *H T H H · · · · H H T*
- If the sequence is labelled, we can estimate p_1 , p_2 separately
 - \blacksquare H T T H H T
 - $p_1 = 8/12 = 2/3$, $p_2 = 3/8$
- What the observation is unlabelled?
- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr-Jul 2021

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- \blacksquare HTTHHTHTHHTHTHTHTHTHT
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2, Pr(c_2 = T) = q_2 = 3/4.$

4/14

Madhavan Mukund Lecture 18: 10 June. 2021

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters
 - НТТННТНТННТНТНТНТНТ
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2, Pr(c_2 = T) = q_2 = 3/4,$
 - For each H, likelihood it was c_i , $Pr(c_i \mid H)$, is $p_i/(p_1 + p_2)$

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr-Jul 2021 4 / 14

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2, Pr(c_2 = T) = q_2 = 3/4,$
 - For each H, likelihood it was c_i , $Pr(c_i \mid H)$, is $p_i/(p_1 + p_2)$
 - For each T, likelihood it was c_i , $Pr(c_i \mid T)$, is $q_i/(q_1+q_2)$

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- \blacksquare H T T H H T H T H T H T H T H T H T
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2, Pr(c_2 = T) = q_2 = 3/4,$
 - For each H, likelihood it was c_i , $Pr(c_i \mid H)$, is $p_i/(p_1 + p_2)$
 - For each T, likelihood it was c_i , $Pr(c_i \mid T)$, is $q_i/(q_1 + q_2)$
 - Assign fractional count $Pr(c_i \mid H)$ to each $H: 2/3 \times c_1, 1/3 \times c_2$

4/14

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr-Jul 2021

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

initial guess:
$$p_1 = 1/2$$
, $p_2 = 1/4$

$$Pr(c_1 = T) = q_1 = 1/2, Pr(c_2 = T) = q_2 = 3/4,$$

- For each H, likelihood it was c_i , $Pr(c_i \mid H)$, is $p_i/(p_1 + p_2)$
- For each T, likelihood it was c_i , $Pr(c_i \mid T)$, is $q_i/(q_1+q_2)$
- Assign fractional count $Pr(c_i \mid H)$ to each $H: 2/3 \times c_1, 1/3 \times c_2$
- Likewise, assign fractional count $Pr(c_i \mid T)$ to each $T: 2/5 \times c_1, 3/5 \times c_2$

- \blacksquare H T T H H T H T H T H T H T H T H T
- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$

Madhayan Mukund Lecture 18: 10 June. 2021 DMML Apr-Jul 2021 5 / 14

- *HTTHHTHTHTHTHTHTHT* 20 < 11 4
- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$
- Add up the fractional counts
 - c_1 : $11 \cdot (2/3) = 22/3$ heads, $9 \cdot (2/5) = 18/5$ tails
 - c_2 : $11 \cdot (1/3) = 11/3$ heads, $9 \cdot (3/5) = 27/5$ tails

5/14

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr-Jul 2021

- \blacksquare H T T H H T H T H T H T H T H T H T
- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$
- Add up the fractional counts
 - c_1 : 11 · (2/3) = 22/3 heads, 9 · (2/5) = 18/5 tails
 - c_2 : $11 \cdot (1/3) = 11/3$ heads, $9 \cdot (3/5) = 27/5$ tails

 $\frac{h}{N} = \frac{0.32}{0.3370.4}$

5/14

Re-estimate the parameters

- \blacksquare HTTHHTHTHHTHTHTHTHTHT
- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$
- Add up the fractional counts
 - c_1 : $11 \cdot (2/3) = 22/3$ heads, $9 \cdot (2/5) = 18/5$ tails
 - c_2 : $11 \cdot (1/3) = 11/3$ heads, $9 \cdot (3/5) = 27/5$ tails
- Re-estimate the parameters

■
$$p_2 = \frac{11/3}{11/3 + 27/5} = 55/136 = 0.40$$
, $q_2 = 1 - p_2 = 0.60$

■ Repeat until convergence

Lecture 18: 10 June, 2021

■ Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$

6/14

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr-Jul 2021

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$

6/14

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr-Jul 2021

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- Expectation step
 - Compute likelihoods $Pr(M_i|o_i)$ for each M_i , o_i

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- Expectation step
 - Compute likelihoods $Pr(M_i|o_j)$ for each M_i , o_j
- li

- Maximization step
 - Recompute MLE for each M_i using fraction of O assigned using likelihood

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- Expectation step
 - Compute likelihoods $Pr(M_i|o_j)$ for each M_i , o_j
- Maximization step
 - **Recompute MLE** for each M_i using fraction of O assigned using likelihood
- Repeat until convergence
 - Why should it converge?
 - If the value converges, what have we computed?

Two biased coins, choose a coin and toss 10 times, repeat 5 times

Two biased coins, choose a coin and toss 10 times, repeat 5 times

If we know the breakup, we can separately compute MLE for each coin

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H 6 T	9 H 11 T

$$\hat{\theta}_A = \frac{24}{24 + 6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$$

Expectation-Maximization

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6$, $\theta_B = 0.5$

- Expectation-Maximization
- Initial estimates. $\theta_{A} = 0.6, \, \theta_{B} = 0.5$
- Compute likelihood of each sequence:

		Coin A	Coin B
(O	0.55 x	≈ 2.2 H, 2.2 T	≈ 2.8 H, 2.8 T
0	0.20 x	≈ 7.2 H, 0.8 T	≈ 1.8 H, 0.2 T
0	0.27 x	≈ 5.9 H, 1.5 T	≈ 2.1 H, 0.5 T
0	0.65 x	≈ 1.4 H, 2.1 T	= 2.6 H, 3.9 T
0	0.35x	≈ 4.5 H, 1.9 T	= 2.5 H, 1.1 T
_		≈ 21.3 H, 8.6 T	≈ 11.7 H, 8.4 T

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6$, $\theta_B = 0.5$
- Compute likelihood of each sequence: $\theta^{n_H}(1-\theta)^{n_T}$
- Assign each sequence proportionately

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6$, $\theta_B = 0.5$
- Compute likelihood of each sequence: $\theta^{n_H}(1-\theta)^{n_T}$
- Assign each sequence proportionately
- Converge to $\theta_A = 0.8$, $\theta_B = 0.52$

■ Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- lacksquare Make an initial guess for each μ_j

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- lacksquare Make an initial guess for each μ_j
- $Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i \mu_j)^2)$

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- *N* sample points $z_1, z_2, ..., z_N$
- lacksquare Make an initial guess for each μ_j

•
$$Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i - \mu_j)^2)$$

$$Pr(\mu_j \mid z_i) = c_{ij} = \frac{Pr(z_i \mid \mu_j)}{\sum_k Pr(z_i \mid \mu_k)}$$

■ Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$

- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- lacksquare Make an initial guess for each μ_j
- $Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i \mu_j)^2)$
- $Pr(\mu_j \mid z_i) = c_{ij} = \frac{Pr(z_i \mid \mu_j)}{\sum_k Pr(z_i \mid \mu_k)}$
- MLE of μ_j is sample mean, \sum_{j}

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- lacksquare Make an initial guess for each μ_j

•
$$Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i - \mu_j)^2)$$

$$Pr(\mu_j \mid z_i) = c_{ij} = \frac{Pr(z_i \mid \mu_j)}{\sum_k Pr(z_i \mid \mu_k)}$$

- MLE of μ_j is sample mean, $\frac{\sum_i c_{ij} z_i}{\sum_i c_{ij}}$
- Update estimates for μ_i and repeat

Theoretical foundations of EM

■ Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$

10 / 14

Madhavan Mukund Lecture 18: 10 June, 2021 DMML Apr–Jul 2021

Theoretical foundations of EM

■ Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$

Observation

$$O = o_1 o_2 \dots o_N$$

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation

$$O = o_1 o_2 \dots o_N$$

■ EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$

10 / 14

- Mixture of probabilistic models (M_1, M_2, \ldots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_i)$ log-likelihood function, $\ln Pr(O \mid \Theta_i)$

10 / 14

- Mixture of probabilistic models (M_1, M_2, \ldots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Observation $Q = Q_1 Q_2 \dots Q_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_i)$ log-likelihood function, $\ln Pr(O \mid \Theta_i)$
- Want to extend the sequence with Θ_{n+1} such that $L(\Theta_{n+1}) > L(\Theta_n)$

10 / 14

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with Θ_{n+1} such that $L(\Theta_{n+1}) > L(\Theta_n)$

■ EM performs a form of gradient descenct

Madhavan Mukund

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with Θ_{n+1} such that $L(\Theta_{n+1}) > L(\Theta_n)$

- EM performs a form of gradient descenct
- If we update Θ_n to Θ' we get an new likelihood $L(\Theta_n) + \Delta(\Theta', \Theta_n)$ which we call $\ell(\Theta' \mid \Theta_n)$

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with Θ_{n+1} such that $L(\Theta_{n+1}) > L(\Theta_n)$

- EM performs a form of gradient descenct
- If we update Θ_n to Θ' we get an new likelihood $L(\Theta_n) + \Delta(\Theta', \Theta_n)$ which we call $\ell(\Theta' \mid \Theta_n)$
- Choose Θ_{n+1} to maximize $\ell(\Theta' \mid \Theta_n)$

Madhavan Mukund Lecture 18: 10 June. 2021 DMML Apr-Jul 2021 10 / 14

Supervised learning requires labelled training data

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
 - Use available training data to assign initial probabilities

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
 - Use available training data to assign initial probabilities
 - Label the rest of the data using this model fractional labels

11 / 14

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
 - Use available training data to assign initial probabilities
 - Label the rest of the data using this model fractional labels
 - Add up counts and re-estimate the parameters

11 / 14

■ Each document is a multiset or bag of words over a vocabulary

$$V = \{w_1, w_2, \dots, w_m\}$$

12 / 14

■ Each document is a multiset or bag of words over a vocabulary

$$V = \{w_1, w_2, \dots, w_m\}$$

■ Each topic c has probability Pr(c)

12 / 14

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$, for $c_j \in C$
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$

Madhayan Mukund Lecture 18: 10 June. 2021 DMML Apr-Jul 2021 12 / 14

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$, for $c_j \in C$
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$
- Assume document length is independent of the class

12 / 14

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$, for $c_j \in C$
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$
- Assume document length is independent of the class
- Only a small subset of documents is labelled
 - Use this subset for initial estimate of $P_r(c)$, $P_r(w_i \mid c_j)$

12 / 14

■ Current model Pr(c), $Pr(w_i | c_j)$

- Current model Pr(c), $Pr(w_i | c_j)$
- Compute $Pr(c_i \mid d)$ for each unlabelled document d
 - Normally we assign the maximum among these as the class for d
 - Here we keep fractional values

13 / 14

- Current model Pr(c), $Pr(w_i \mid c_i)$
- Compute $Pr(c_i \mid d)$ for each unlabelled document d
 - Normally we assign the maximum among these as the class for d
 - Here we keep fractional values
- Recompute $Pr(c_j) = \frac{\sum_{d \in D} Pr(c_j \mid D)}{|D|}$
 - For labelled d, $Pr(c_i \mid d) \in \{0, 1\}$

Pr(w/c)

■ For unlabelled d, $Pr(c_i \mid d)$ is fractional value computed from current parameters

13 / 14

- Current model Pr(c), $Pr(w_i | c_j)$
- Compute $Pr(c_j \mid d)$ for each unlabelled document d
 - Normally we assign the maximum among these as the class for d
 - Here we keep fractional values
- Recompute $Pr(c_j) = \frac{\sum_{d \in D} Pr(c_j \mid D)}{|D|}$
 - For labelled d, $Pr(c_j \mid d) \in \{0, 1\}$
 - For unlabelled d, $Pr(c_i \mid d)$ is fractional value computed from current parameters
- Recompute $Pr(w_i \mid c_j)$ fraction of occurrences of w_i in documents labelled c_j
 - n_{id} occurrences of w_i in d
 - $Pr(w_i \mid c_j) = \frac{\sum_{d \in D} n_{id} Pr(c_j \mid d)}{\sum_{t=1}^{m} \sum_{d \in D} n_{td} Pr(c_j \mid d)}$

13 / 14

 Data points from a mixture of Gaussian distributions

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution
- Assign each point to "best"
 Gaussian

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution
- Assign each point to "best"
 Gaussian
- Can tweak the shape of the clusters by constraining the covariance matrix

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution
- Assign each point to "best"
 Gaussian
- Can tweak the shape of the clusters by constraining the covariance matrix
- Outliers are those that are outside $k\sigma$ for all the Gaussians

