2022

27 / 10 / 2022

Resumen sesión teoría 27/10 Tema 5 parte 2

SISTEMAS INTELIGENTES
ADRIAN UBEDA TOUATI 50771466R

RESUMEN SESIÓN TEORÍA 27/10 TEMA 5 PARTE 2

Contenido

edes Bayesinas	2
·	
	edes Bayesinas Cobertura de Márkov La regla de inferencia general Muestreo Muestreo directo Muestreo por rechazo

Redes Bayesinas

Una red bayesiana es:

 Un grafo acíclico dirigido para representar dependencias entre variables y mostrar una descripción escueta de cualquier distribución de probabilidad conjunta completa

Esta formada por

- Un conjunto de variables aleatorias que forman los nodos de la red. Cada nodo X tendrá adjunta una distribución P(X|Padres(X))
- Un conjunto de enlaces que determinan la influencia (dependencia) entre nodos. Si X se conecta con Y se dice que X influencia a Y

Red Bayesiana, la podemos montar con los eventos y las dependencias que se producen en ese sistema de dentro.

Para calcular la probabilidad de alarma en la red bayesiana

P(T,R,A,J,M) =

$$\begin{array}{l} P(T) \cdot P(R) \cdot P(A|T,\!R) \cdot P(J|A) \cdot \\ P(M|A) \end{array}$$

Sin contener la cuenta la red bayesiana (sin independencias condicional) tendríamos 32 casos

$$2^5 = 32$$

Pero teniendo en cuenta la red bayesiana (con independencia condicional=

Sin tener la dependencia, el número de casos puede subir exponencialmente mientras que con la dependencia bayesiana se mantiene bajo

Cobertura de Márkov

- Cobertura de Markov
 - Un nodo A es condicionalmente independiente de todos los nodos de la red dados:
 - Sus padres
 - Sus hijos
 - Los padres de sus hijos

La red de distribución conjunta sirve para contestar a las preguntas relativas a la red

La regla de inferencia general

Regla de inferencia general

$$P(B \mid C) = \alpha \cdot \sum_{D} P(B, D, C)$$

Ejemplo de inferencia exacta

 ¿Cuál es la probabilidad de que suene la alarma si llama María?

$$P(B \mid C) = \alpha \cdot \sum_{D} P(B, D, C)$$

• P(R,T,A,J,M) == $P(R)\cdot P(T)\cdot P(A|R,T)\cdot P(J|A)\cdot P(M|A)$

De esta manera tenemos que:

$$\begin{split} &P(A \mid M) = \alpha \cdot \sum_{R} \sum_{T} \sum_{J} P(R, T, A, J, M) = \\ &= \alpha \cdot \sum_{R} \sum_{T} \sum_{J} P(R) \cdot P(T) \cdot P(A \mid R, T) \cdot P(J \mid A) \cdot P(M \mid A) = \\ &= \alpha \cdot P(M \mid A) \cdot \sum_{R} \left(P(R) \sum_{T} \left(P(T) \cdot P(A \mid R, T) \cdot \sum_{J} P(J \mid A) \right) \right) \end{split}$$

En este caso tenemos 8 términos ya que cada sumatorio anidado tiene 2 casos, las multiplicados entre si 2*2*2 = 8

Ejemplo 2

¿P(R|J+,M+)? Si sabemos que:

P(T) = 0,001

P(R) = 0,002

RESUMEN SESIÓN TEORÍA 27/10 TEMA 5 PARTE 2

Distribución conjunta de alarma y robo, siempre habrá un índice de error, en este caso es de 0,001, podría ser que el movimiento de alguna mascota sea confundido por un acto de robo

$$P(R \mid J, M) = \alpha \sum_{T} \sum_{A} P(R, T, A, J, M) =$$

$$\alpha \sum_{T} \sum_{A} P(R) \cdot P(T) \cdot P(A \mid R, T) \cdot P(J \mid A) \cdot P(M \mid A) =$$

$$\alpha \cdot P(R) \cdot \sum_{T} \left(P(T) \cdot \sum_{A} \left(P(A \mid R, T) \cdot P(J \mid A) \cdot P(M \mid A) \right) \right)$$

Este sumatorio tendrá 4 términos

Para calcularlo lo descomponemos en un árbol

$$\alpha \cdot P(R) \cdot \sum_{T} P(T) \cdot \sum_{A} P(A \mid R, T) \cdot P(J \mid A) \cdot P(M \mid A)$$

RESUMEN SESIÓN TEORÍA 27/10 TEMA 5 PARTE 2

Es importante normalizar después los valores, para normalizar valores de divide uno por la suma de los 2, si se normaliza un valor normalizado, dará el mismo valor

Muestreo

Muestreo directo

Si el numero de nodos es demasiado grande, el calculo computacional es demasiado grande, por lo que debemos utilizar muestreos

Se generan 10 000 muestras según las probabilidades y que sean compatibles con la red de Bayes. Una vez las muestras realizadas es tan fácil como hacer la división de favorables/ totales

Muestreo por rechazo Solo se realiza con los compatibles