Aughdon Breslin and Isabella Cruz Problem Set 9

"I pledge my honor that I have abided by the Stevens Honor System"

Problem 1

Show that the following language is decidable by giving a high-level description of a TM that decides the language.

 $L_{inf} = \{ \langle M \rangle : M \text{ is a PDA and } L(M) \text{ is an infinite language} \}$

A:

Let TM N decide Linf.

Idea: if L(M) is infinite, N(<M>) accepts, else N(<M>) rejects. Strategy: Need to decide if M accepts an iterable input w.

L_{PDA} = {<M, w>: M is a PDA that accepts input w}

If there are p states in M, then we can find out if the language is infinite by checking if any w, where $w \in L(M)$, follows $|w| \ge p$. If $|w| \ge p$, by the Pigeonhole Principle, while reading input w, some state in M will have to be visited more than once, creating a loop.

This loop means that there will exist valid $w \in L(M)$ where the loop can be taken arbitrarily many times, creating an infinite language L(M). If there are no such inputs, then there will be a finite number of accepted inputs, and L(M) will be a finite language.

Let
$$L_{loop} = \{ w: w \in L(M) \text{ and } |w| \ge p \}$$

If L_{loop} contains any elements at all, that is L_{loop} does not equal Φ , then N(<M>) accepts and the language is infinite, else N(<M>) rejects and the language is finite.

Problem 2

Let G be a context-free grammar that generates strings over the alphabet $\Sigma = \{a, b\}$. Show that the problem of determining if G generates a string in a* is decidable. In other words, show that the following language is decidable:

$$F = {\langle G \rangle : G \text{ is a CFG over } \{a, b\} \text{ and } a^* \cap L(G) \neq \Phi}$$

A:

First, we will define a TM R to decide the language E where:

 $E = {<G>: G \text{ is a CFG and } L(G) = \Phi}$

TM R to decide E:

On input <G>:

- 1. Mark every terminal symbol in G
- 2. Repeat until no new variable is marked:

If $A \rightarrow a$ is a rule such that every variable in A is marked, then mark A

3. If the Start variable is not marked, ACCEPT; otherwise REJECT. (TM from Lecture 25 slides)

Using TM R, we will define a TM Q that will decide the language F.

First, let's define a language A where $A = a^* \cap L(G)$. Since A is a CFL, there is a CFG B that outlines its ruleset.

```
TM Q to decide F:

On input <B>:

1. Run R(<B>)

If R(<B>) rejects, ACCEPT;

otherwise REJECT
```

Explanation: TM R accepts a language if it is equal to Φ and rejects if it doesn't. To decide the language F, you must accept when $a^* \cap L(G) \neq \Phi$ and reject otherwise. By running the CFG (B) of the CFL (A = $a^* \cap L(G)$) through TM R, we are able to learn if B is empty or not. Thus, if R rejects that means the language A is not empty meaning we would want TM Q to accept. If R accepts, that means A *is* empty, meaning we would want TM Q to reject.

Thus, since a decider can be created for the language $F = \{ <G > : G \text{ is a CFG over } \{a, b\} \text{ and } a^* \cap L(G) \neq \Phi \}$, it is decidable.

Problem 3

Let A be a TM-recognizable language of strings that encode TMs that are deciders. Prove that there is a decidable language which is not decided by any TM in A. (Hint: start with an enumerator for A.)

Strat: Create a language that is defined by the following: There must exist a word in L(D) so that one of the words \notin M₁, one of the words \notin M₂, and so on for each of the strings in A that encode decidable-TMs. (Diagonalization)

The decider: accepts if some word is not in some M, rejects otherwise, the language can be 'built' following this format.

A:

Since A is TM-recognizable, there must exist an enumerator E for A. E will enumerate all decidable-TMs in the form of their binary encodings.

Let D be a TM that decides a language that isn't decided by any TM in A. Rules of D:

On input w:

- 1. If w is not a combination of 0s and 1s, reject
- 2. Since w is a combination of 0s and 1s, let w be the nth possible combination in {0,1}*
- 3. Enumerate E up until the $\langle M_n \rangle$ output.
- 4. Run M_n on w, and accept if M_n rejects; reject if M_n accepts. (This would mean this input is a part of M_n's language and thus does not differ. We need a language where at least one input ∉ each of the other TM's languages to ensure distinctness.)

D is a decider since it will always accept if $w \in L(D)$, and reject if $w \notin L(D)$. The enumerator always stops after the nth output, where n is a finite number, and so stops in a finite amount of time. M_n is defined to be a decider, and so by definition will not run forever. Thus D will never run forever.

Therefore, the language of D, L(D), is a decidable language that differs from every TM in A by at least one element in its language. Therefore, there is a decidable language which is not decided by any TM in A.

Problem 4

Consider the problem of determining whether a TM M on input w ever attempts to move its head left when its head is on the leftmost tape cell.

a) Formulate this problem as a decision problem for a language, and

 E_{LEFT} = { <M,w> The tapehead of TM M will attempt to move left on the leftmost tape cell of input w }

b) Show that the language is undecidable.

Theorem: ELEFT is undecidable

<u>Proof:</u> We will show that $A_{TM} \leq E_{LEFT}$

Assume that E_{LEFT} is decidable and let R be a TM to decide it We will use R to construct a TM S that decides A_{TM} :

S: On input <M,w>:

Construct a TM C
 Run R(<C,w>)
 If R accepts, ACCEPT
 If R rejects, REJECT

C: On input x

If x != w, REJECT

Copy x into a second input tape w# such the leftmost cell is \$ followed by x

Run M on w# starting at the second leftmost cell (beginning of w)

If the tape head ever points at the symbol \$, move one

cell to the right

If M enters an accept state, move left until the tape head points to the \$ symbol and ACCEPT Else REJECT

This, however, is a contradiction. A_{TM} is provably undecidable, so no decider can exist for it. This implies that our assumption that E_{LEFT} is decidable was false. Thus, E_{LEFT} must be undecidable.