EXAMEN

CUESTIONES (1 punto cada una)

- 1°) a) ¿Qué puede generar un campo eléctrico en la Naturaleza?
 - b) ¿Y uno magnético?
 - c) ¿Cuándo lo elétrico y lo magnético no están relacionados?
- 2^a) a) ¿De qué depende la capacidad de un condensador?
 - b) ¿Y la autoinducción de una bobina?
 - c) Si dos conductores, cada uno con un determinado exceso de carga eléctrica, se conectan con un conductor, ¿qué tiende a equilibrarse?

PROBLEMAS (2 puntos cada uno)

1°) ¿En qué punto del eje X el campo eléctrico es nulo? Razonar primero en qué zona estará (I, II, III o IV) y luego obtenerlo.

$$q = 4 \mu C \mid a = 1 \text{ m} \mid Q = 36 \mu C$$

 $K = 9 \cdot 10^9 \text{ N m}^2 \text{ C}^{-2}$

2°) Una partícula con carga q se desplaza con una velocidad v. La partícula penetra entre las placas de un condensador plano, siendo d la distancia entre las placas y V la tensión entre ellas. Determinar el campo magnético mínimo que se debe aplicar sobre la carga para que no se desvíe de su trayectoria inicial (paralela a las placas).

- 3°) En el circuito de la figura, obtener:
- a) La resistencia equivalente, R_{eq} , entre los puntos A y T.
- b) La intensidad y la caída de potencial en cada resistencia.
- c) Verificar que tanto la potencia consumida por la resistencia equivalente, como la potencia consumida por las resistencias del circuito, coinciden con la potencia suministrada por el generador.
- d) El potencial en A, B, D, E, F y G, si T está conectado a tierra (V_T = 0 V).

Datos:
$$\varepsilon = 54 \text{ V}$$
 | $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = 20 \Omega$ | $R_8 = R_9 = 30 \Omega$

4°) Datos:
$$V = 24 V$$
 | Zéner: $V_Z = 10 V$, $P_{máx} = 1 W$
LED: $V_U = 2 V$, $I_{máx} = 20 \text{ mA}$

Determinar:

- a) El valor mínimo de R_{\circ} para que el zéner no se funda si se extrae el LED.
- b) El valor de R_1 para que circule por el LED una intensidad igual al 80 % de $I_{m\acute{a}x}$.
- c) Con ese valor de R₁, el valor de R_o para que el punto de trabajo del zéner corresponda a tensión de ruptura sin conducción.
- d) ¿Qué ocurriría si V crece ligeramente?¿Y si decrece un poco?