Math 415 - Lecture 20

Fundamental Theorem of Linear algebra, orthogonal complement of fundamental subspaces of a matrix

Monday October 12th 2015

Textbook reading: Chapter 3.1

Suggested practice exercises: Chapter 2.6, 5,6,7,36,37

Khan Academy video: Orthogonal complements

Strang lecture: Lecture 14: Orthogonal vectors and subspaces

1 Review

1.1 Orthogonality and FTLA

- $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are **orthogonal** iff $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = v_1 w_1 \cdots + v_n w_n = 0$.
 - This simple criterion is equivalent to Pythagoras' theorem.
 - Non-zero orthogonal vectors are independent.
- If V is a subspace of \mathbb{R}^n then the orthogonal complement of V is

$$V^{\perp} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{v} \cdot \mathbf{x} = 0, \text{for all } \mathbf{v} \in V\}$$

- If $W = V^{\perp}$ then $W^{\perp} = V$.
- In other words $(V^{\perp})^{\perp} = V$.
- $\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$

• Is it true that W is orthogonal to V?
• Is W the orthogonal complement of V ?
• What is the orthogonal complement of V ?
Solution.
Theorem 1 (Fundamental Theorem of Linear Algebra). Let A be a $m \times n$ -matrix. Then
• $Nul(A)$ is the orthogonal complement of $Col(A^T)$ (in \mathbb{R}^n). Also, dim $Nul(A)$ + $dim\ Col(A^T) = (n-r) + r = n$.
• $Col(A)$ is the orthogonal complement of $Nul(A^T)$ (in \mathbb{R}^m).
Solution.

Example 1. Let V be the horizontal x-y-plane in \mathbb{R}^3 and W the vertical y-z-plane.

Example 2. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$. What is the orthogonal complement of Nul(A)?				
Solution.				
Example 3. Find all vectors orthogonal to $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$.				
Solution.				

Alternative solution. way!	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed
	The FLTA is not magic!	You can do this the old-fashione	ed

Example 4. Let $V = \begin{cases} 1 & \text{otherwise} \\ 1 & \text{otherwise} \end{cases}$	$\begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b = 2c $.	Find a basis for the orthogonal comple-
ment of V .		
Solution.		

Example 5. Let $V = \left\{ \begin{bmatrix} 2a+b\\-b\\a+b \end{bmatrix} : a,b \in \mathbb{R} \right\}$. Find the orthogonal complement of V. Solution.

2 A new perspective on Ax = b

To see if $A\mathbf{x} = \mathbf{b}$ has a solution, check that Direct approach: $b \in Col(A)$ Indirect approach: b $\perp Nul(A^T)$ The indirect approach means: Example 6. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which **b** does A**x** = **b** have a solution? Solution (old).

Solution (new).

Why do we care about orthogonality? Not all linear systems have solutions. For example, $A\mathbf{x}=\mathbf{b}$ with

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

has no solution: $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ is not in $Col(A) = span\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$

Idea. Instead of giving up, we want the \mathbf{x} which makes $A\mathbf{x}$ and \mathbf{b} as close as possible. Such \mathbf{x} is characterized by $A\mathbf{x}$ being **orthogonal** to the error $\mathbf{b} - A\mathbf{x}$.

3 Application: Directed graphs

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- Arrow indicates direction of flow
- No edges from a node to itself

Definition 7. Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix A with

$$A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j \\ +1, & \text{if edge } i \text{ enters node } j \\ 0, & \text{otherwise} \end{cases}$$

Example 8. Give the edge-node incidence matrix of our graph.

Solution.