

7.5 Algorithms for Decomposition

- BCNF decomposition
- 3NF decomposition

7.5.1 BCNF Decomposition

- A decomposition algorithm that gives *lossless* schema in BCNF is shown in Fig.7.11
 - F^+ is computed at first to determine whether or not α is the superkey of subschema R_i
 - if other methods can be used to determine whether or not α is the superkey of subschema R_i , then F^+ need not be computed

 An alternative easily-understood and straight-forward description of BCNF decomposition is given below Given: R, F holding on R

$$result := \{R\};$$
 $done := false;$

 R_i 中分解为2部分—公共 属性 α ,其中 α \rightarrow β组成 单独的BCNF模式

while (not done) do

if (there is a non-BCNF subschema R_i in result) then begin

let $\alpha \to \beta$ be a nontrivial functional dependency that holds on R_i , such that

 R_i is non-BCNF because of $\alpha \rightarrow \beta$

(1) α is not the superkey for R_i , i.e. $\alpha \to \beta$ is not in F^+ , with respect to the restriction F_i of F to R_i !!!

(2)
$$\alpha \cap \beta = \emptyset$$
; /* $\alpha \to \beta$ 中无冗余属性*/

result := $(result - R_i) \cup \{(R_i - \beta)\} \cup \{(\alpha, \beta')\};$ end

else done := true;

 α remains in R_i

BCNF Decomposition (cont.)

- Note
 - to determine whether or not R_i is in BCNF, the restriction of F to R_i and the candidate keys of R_i should be computed !!!
 - R_i is not in BCNF, because with respect to $\alpha \to \beta$ that holds on R_i , α is not the super key of R_i
 - the algorithm replaces non-BCNF R_i with $(R_i \beta)$ and (α, β)
 - non-BCNF R_i is decomposed into $(R_i \beta)$ and BCNF (α, β)
 - the restriction of F to the schema (α, β) is $\alpha \to \beta$ holds, α is the superkey for (α, β) , so (α, β) is in BCNF

Example 1

■
$$R = (A, B, C)$$

 $F = \{A \rightarrow B$
 $B \rightarrow C\}$
 $Key = \{A\}$

- $\blacksquare R$ is not in BCNF ($B \to C$ but B is not superkey)
- Decomposition

$$R_1 = (B, C)$$

$$R_2 = (A,B)$$

Example 2

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - course_id→ title, dept_name, credits
 - building, room_number→capacity
 - course_id, sec_id, semester, year→building, room_number, time_slot_id
- A candidate key { course_id, sec_id, semester, year }.
- BCNF Decomposition:
 - course_id→ title, dept_name, credits holds
 - but course_id is not a superkey.
 - We replace *class* by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
 - How do we know this?
- building, room_number→capacity holds on class-1
 - but {building, room_number} is not a superkey for class-1.
 - We replace *class-1* by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

Example 3.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

$$R = (J, K, L)$$

$$F = \{JK \to L$$

$$L \to K\}$$

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \rightarrow L$$

This implies that testing for $JK \rightarrow L$ requires a join

Example 4 BCNF Decomposition

- Considering the schema R(C, T, H, R, S, G), and $F = \{CS \rightarrow G, C \rightarrow T, TH \rightarrow R, HR \rightarrow C, HS \rightarrow R\}$, give a decomposition of R into BCNF
- Step1. With respect to *R* and *F*, the unique candidate key is HS, and *R* is not in BCNF
- Step2. Initially, $result := \{R\} = \{CTHRSG\}$
 - R is not in BCNF, because there is $CS \rightarrow G$ in F, and CS is not the candidate key of R
 - R(CTHRSG) is decomposed into $R_1(CSG)$ and $R_2(CTHRS)$
 - $R_1(CSG)$ is in BCNF, $F_1 = \{CS \rightarrow G\}$

Example 4 BCNF Decomposition (cont.)

- Step3. With respect to $R_2(CTHRS)$
 - !!!the restriction of F to $R_2(CTHRS)$ is $F_2 = \{C \rightarrow T, TH \rightarrow R, HR \rightarrow C, HS \rightarrow R\}$
 - !!the candidate key is HS
 - R_2 (CTHRS) is not in BCNF, because there is C \rightarrow T in F_2 , and C is not the candidate key of R_2
 - $R_2(CTHRS)$ is decomposed into $R_{21}(CT)$ and $R_{22}(CHRS)$
 - $R_{21}(CT)$ is in BCNF, $F_{21} = \{C \rightarrow T\}$

Example 4

BCNF Decomposition (cont.)

- Step4. With respect to $R_{22}(CHRS)$
 - !!the restriction of F to $R_{22}(CHRS)$ is $F_{22} = \{HR \rightarrow C, HS \rightarrow R, CH \rightarrow R\} / *CH \rightarrow TH, TH \rightarrow R$
 - !!the candidate key is HS
 - $R_{22}(CHRS)$ is not in BCNF, because there is HR \rightarrow C in F_{22} , and HR is not candidate key of R_{22}
 - $R_{22}(CHRS)$ is decomposed into $R_{221}(HRC)$ and $R_{222}(HRS)$
 - \blacksquare $R_{221}(HRC)$ is in BCNF
- Step5. With respect to $R_{222}(HRS)$,
 - the restriction of F to $R_{222}(HRS)$ is $F_{222} = \{HS \rightarrow R\}$, and the candidate key is HS
 - \blacksquare $R_{222}(HRS)$ is in BCNF

Example 4 BCNF Decomposition (cont.)

 $lackbox{\textbf{R}}_{1}(CSG)$, $R_{21}(CT)$, $R_{221}(HRC)$, $R_{222}(HRS)$

Third Normal Form: Motivation

- There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
- Solution: define a weaker normal form, called Third Normal Form (3NF)
 - Allows some redundancy (with resultant problems; we will see examples later)
 - But functional dependencies can be checked on individual relations without computing a join.
 - There is always a lossless-join, dependency-preserving decomposition into 3NF.

3NF Example

- Relation dept_advisor:
 - $dept_advisor$ (s_ID , i_ID , $dept_name$) $F = \{s_ID, dept_name \rightarrow i_ID, i_ID \rightarrow dept_name\}$
 - Two candidate keys: s_ID, dept_name, and i_ID, s_ID
 - *R* is in 3NF
 - $s_ID, dept_name \rightarrow i_ID$
 - s_ID, dept_name is a superkey
 - $i_ID \rightarrow dept_name$
 - dept_name is contained in a candidate key

Redundancy in 3NF

- There is some redundancy in this schema
- Example of problems due to redundancy in 3NF

$$R = (J, K, L)$$

$$F = \{JK \to L, L \to K\}$$

J	L	K
j_1	l_1	k_1
j_2	l_1	k_1
j_3	l_1	k_1
null	l_2	k_2

repetition of information (e.g., the relationship l_1, k_1)

• (i_ID, dept_name)

Testing for 3NF

- Optimization: Need to check only FDs in F, need not check all FDs in F^+ .
- Use attribute closure to check for each dependency $\alpha \to \beta$, if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
 - this test is rather more expensive, since it involve finding candidate keys
 - testing for 3NF has been shown to be NP-hard
 - Interestingly, decomposition into third normal form (described shortly) can be done in polynomial time

3NF Decomposition

A decomposition algorithm that gives <u>lossless</u> and <u>dependency</u> <u>preserving</u> schemas in 3NF is shown in Fig.7.12

- Note:
 - all candidate keys should be founded out
 - only one F_c should be computed at first

- **0.** Find out *all* candidate keys for R
- 1. Find out a canonical cover $\vec{F_c}$ for F;

$$i := 0; /*R_0 \text{ is null*}/$$

求最简FD: 去除掉传递依 赖和冗余属性

2. for each functional dependency $\alpha \to \beta$ in F_c do

if none of the schemas R_i , $1 \le j \le i$ contains $\alpha \beta$

$$i := i + 1;$$

$$R_i := \alpha \beta$$

then begin $\forall F_c$ 中<u>每一个未包括在已有</u> i:=i+1; <u>子模式</u>中的函数依赖,构造 $R_i := \alpha \beta$ 一个BCNF/3NF子模式

end

3. if none of the schemas R_i , $1 \le i \le i$ contains a candidate key for R

then begin

$$i:=i+1$$
; 对 R 的候选健单独构 $i:=i+1$; 造一个关系模式 $R_i:=$ any candidate key for R ;

end

4. return $(R_1, R_2, ..., R_i)$

Recap:

■定理。如果属性A只出现在F中函数依赖的左部,则A一定是主属性,必然出现在候选键中

■输入: 关系模式R及其函数依赖集F

•输出: R的所有候选关键字

■ 方法:

• step1.将R的所有属性分为四类:

L类: 仅出现在F中函数依赖左部的属性

R类: 仅出现在F中函数依赖右部的属性

N类: 在F中函数依赖左右两边均未出现的属性

LR类: 在F中函数依赖左右两边均出现的属性

Computing of Candidate Keys (cont.)

- 并令X_set代表L、N类, Y_set代表LR类;
- step2. 求X_set +, 若包含了R的所有属性,则X_set即为R的唯一候选 关键字,转step5;

否则转step3

■ step3. 在Y_set中取一属性A, 求(X_set U A)+,若它包含了R的所有属性,则转step4;

否则,调换一属性反复进行这一过程,直到试完所有Y_set中的属性

- step4. 如果已找出所有的候选关键字,则转step5; 否则,在Y_set中依此取两个、三个,...,求他们的属性闭包,直 到其闭包包含R的所有的属性
- step5. 停止,输出结果

Computing of Candidate Keys (cont.)

- ■L类: Y, W
- R、N: 空
- LR: X, Z
- $X_{set}=\{Y, W\}$
- $Y_set=\{X, Z\}$
- (YW)+=R, so YW is the candidate key

北京都電大學

Computing of Candidate Keys (cont.)

E.g.2. R(B, D, I, O, Q, S), and

$$F = \{B \rightarrow Q, I \rightarrow S, IS \rightarrow Q, S \rightarrow D\}$$

- ■L类: B, I
- R类: D, Q
- N类: O
- ■LR类: S
- $X_{set}=\{B, I, O\}$
- Y_set={S}
- (BIO)+=R, so BIO is a candidate key

Example 1 3NF Decomposition

■ Consider schema R(X, Y, Z, W), and $F = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow XZ, W \rightarrow XZ\}$ that holds on R. Give the lossless, dependency-preserving decomposition of this schema into 3NF

The solution is as follows:

- Step1. $\{YW\}^+ = R$, $\{YW\}$ is the unique candidate key
- Step2. With respect to $F = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow XZ, W \rightarrow XZ\},$
 - considering X in Y→XZ and Z in W→XZ, $\{X\to Z, Z\to X, Y\to Z, W\to X\}$ implies F, so X in Y→XZ and Z in W→XZ are all extraneous attributes, and one of *canonical covers* for F is

$$F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow Z, W \rightarrow X\}$$

Example 1

• the other *canonical covers* for *F* are

$$F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow X, W \rightarrow X\}, \text{ or } F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow X, W \rightarrow Z\}, \text{ or } F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow Z, W \rightarrow Z\}$$

- Step3. As far as $F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow Z, W \rightarrow X\}$ is concerned,
 - on the basis of 3NF decomposition algorithm, the subschema responding to each functional dependency in F_c are

$$R_1 = \{XZ\}, R_2 = \{YZ\}, R_3 = \{XW\}$$

• for the candidate key $\{YW\}$, $R_4 = \{YW\}$ is generated, so one of the 3NF decomposition is

Example 1 3NF Decomposition (cont.)

• With respect to the other canonical covers

$$F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow X, W \rightarrow X\}, \text{ or }$$

$$F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow X, W \rightarrow Z\}, \text{ or }$$

$$F_c = \{X \rightarrow Z, Z \rightarrow X, Y \rightarrow Z, W \rightarrow Z\}$$
and the candidate key $\{YW\},$

the corresponding 3NF decomposition are

```
{ XZ, YX, WX, YW}
{ XZ, YX, WZ, YW}
{ XZ, YZ, WZ, YW}
```

4

Example 2 3NF Decomposition (cont.)

- Assume there is a schema S (Sno, Cno, Tname, Taddr, Grade).
 - each student has only one grade for each course he/she took;
 - each course is taught by only one teacher;
 - each teacher has only one address. (Suppose duplication of name is not allowed for teachers)
 - 1. Write down three instances of functional dependency of the schema S mentioned above.

 $(Sno, Cno) \rightarrow Grade$

Cno→Tname

Tname→Taddr

Example 2 3NF Decomposition (cont.)

2. Write down the candidate keys of schema S.

Sno, Cno

由于{Sno, Cno}+= (Sno, Cno, Tname, Taddr, Grade)

■ 3. Decompose the schema S into the third normal form.

S1(Sno, Cno, Grade)

S2(Cno, Tname)

S3(Tname, Taddr)

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 - the decomposition is lossless
 - it may not be possible to preserve dependencies.

Design Goals

- Goal for a relational database design is:
 - BCNF.
 - Lossless join.
 - Dependency preservation.
- If we cannot achieve this, we accept one of
 - Lack of dependency preservation
 - Redundancy due to use of 3NF

Appendix B 本章习题类型

- 给定关系表r(R)和若干函数依赖 $\alpha \to \beta$,判断r 是否满足 $\alpha \to \beta$
- ■判断关于函数依赖的一些公式是否成立
 - ■例如,如果 $A \rightarrow B, B \rightarrow C, 则A \rightarrow C$ (根据Amstron公理系统)
- ■根据文字描述,抽象出函数依赖关系
- ■求候选健(算法)
- ■计算属性闭包α+
- ■计算函数依赖集F的最小正则集F。

Appendix G 本章习题类型 (续)

- ■给定关系模式R和定义在R上的函数依赖集F,判断 R属于第几范式,为什么?
 - 只考虑1NF, 2NF, 3NF, BCNF
- ■判断一个模式分解是否为无损连接、函数依赖保持
- ■给定非3NF的关系模式R和定义在R上的函数依赖 集F,将R分解为第三范式
- 给定非BCNF的关系模式R和定义在R上的函数依赖 集F,将R分解为BCNF范式

7.6 Compute the closure of the following set F of functional dependencies for relation schema R = (A, B, C, D, E).

$$A \to BC$$

$$CD \to E$$

$$B \to D$$

$$E \to A$$

List the candidate keys for R.

- 7.7 Using the functional dependencies of Exercise 7.6, compute the canonical cover F_c .
- 7.21 Give a lossless decomposition into BCNF of schema R of Exercise 7.1.
- **7.22** Give a lossless, dependency-preserving decomposition into 3NF of schema *R* of Exercise 7.1.
- 7.28 Using the functional dependencies of Exercise 7.6, compute B^+ .

7.30 Consider the following set F of functional dependencies on the relation schema (A, B, C, D, E, G):

$$A \to BCD$$

$$BC \to DE$$

$$B \to D$$

$$D \to A$$

- a. Compute B^+ .
- b. Prove (using Armstrong's axioms) that AG is a superkey.
- c. Compute a canonical cover for this set of functional dependencies F; give each step of your derivation with an explanation.
- d. Give a 3NF decomposition of the given schema based on a canonical cover.
- e. Give a BCNF decomposition of the given schema using the original set *F* of functional dependencies.

7.32 Consider the schema R = (A, B, C, D, E, G) and the set F of functional dependencies:

$$A \to BC$$

$$BD \to E$$

$$CD \to AB$$

- a. Find a nontrivial functional dependency containing no extraneous attributes that is logically implied by the above three dependencies and explain how you found it.
- b. Use the BCNF decomposition algorithm to find a BCNF decomposition of R. Start with $A \rightarrow BC$. Explain your steps.
- c. For your decomposition, state whether it is lossless and explain why.
- d. For your decomposition, state whether it is dependency preserving and explain why.

7.33 Consider the schema R = (A, B, C, D, E, G) and the set F of functional dependencies:

$$AB \rightarrow CD$$

 $ADE \rightarrow GDE$
 $B \rightarrow GC$
 $G \rightarrow DE$

Use the 3NF decomposition algorithm to generate a 3NF decomposition of R, and show your work. This means:

- A list of all candidate keys
- b. A canonical cover for F, along with an explanation of the steps you took to generate it
- c. The remaining steps of the algorithm, with explanation
- d. The final decomposition

Have a break