Class 17 - Covid

Sarah Tareen

Getting Started

```
# Import vaccination data
  vax <- read.csv("covid19vaccinesbyzipcode_test (1).csv")</pre>
  head(vax)
  as\_of\_date \ zip\_code\_tabulation\_area \ local\_health\_jurisdiction
                                                                         county
1 2021-01-05
                                  93704
                                                             Fresno
                                                                        Fresno
2 2021-01-05
                                  95684
                                                         El Dorado El Dorado
3 2021-01-05
                                  92273
                                                          Imperial
                                                                      Imperial
4 2021-01-05
                                  93662
                                                             Fresno
                                                                        Fresno
5 2021-01-05
                                  95673
                                                        Sacramento Sacramento
6 2021-01-05
                                                                        Fresno
                                  93668
                                                             Fresno
  vaccine_equity_metric_quartile
                                                    vem_source
1
                                 1 Healthy Places Index Score
2
                                 2 Healthy Places Index Score
3
                                 1 Healthy Places Index Score
4
                                 1 Healthy Places Index Score
5
                                 2 Healthy Places Index Score
                                      CDPH-Derived ZCTA Score
  age12_plus_population age5_plus_population tot_population
1
                 24803.5
                                         27701
                                                         29740
2
                  2882.9
                                          3104
                                                          3129
3
                  1633.1
                                          1763
                                                          2010
4
                 24501.3
                                         28311
                                                         30725
5
                 13671.7
                                         15453
                                                         16636
6
                  1013.4
                                          1199
                                                          1219
  persons_fully_vaccinated persons_partially_vaccinated
                         NA
1
                                                        NA
2
                                                        NA
                         NA
```

```
3
                          NA
                                                          NA
4
                          NA
                                                          NA
5
                          NA
                                                          NA
6
                          NA
                                                          NA
  percent_of_population_fully_vaccinated
1
2
                                         NA
                                         NA
3
4
                                         NA
5
                                         NA
6
                                         NA
  percent_of_population_partially_vaccinated
1
2
                                              NA
3
                                              NA
4
                                              NA
5
                                              NA
6
                                              NA
  percent_of_population_with_1_plus_dose booster_recip_count
1
                                         NA
                                                               NA
2
                                                               NA
                                         NA
3
                                         NA
                                                               NA
4
                                                               NA
                                         NA
5
                                         NA
                                                               NA
6
                                         NA
                                                               NA
  bivalent_dose_recip_count eligible_recipient_count
1
                           NA
2
                                                        0
                           NA
3
                           NA
                                                        1
4
                           NA
                                                        1
5
                                                        3
                           NA
6
                           NA
                                                        0
  eligible_bivalent_recipient_count
1
                                     5
2
                                     0
3
                                     0
4
                                     1
5
                                     3
6
                                     0
                                                                     redacted
1 Information redacted in accordance with CA state privacy requirements
```

2 Information redacted in accordance with CA state privacy requirements 3 Information redacted in accordance with CA state privacy requirements

- 4 Information redacted in accordance with CA state privacy requirements
- 5 Information redacted in accordance with CA state privacy requirements
- 6 Information redacted in accordance with CA state privacy requirements
 - Q1. What column details the total number of people fully vaccinated? persons_fully_vaccinated
 - **Q2.** What column details the Zip code tabulation area?
 - zip_code_tabulation_area
 - **Q3.** What is the earliest date in this dataset?

```
min(vax$as_of_date)
```

- [1] "2021-01-05"
 - **Q4.** What is the latest date in this dataset?

```
vax[nrow(vax),1]
```

[1] "2023-05-30"

Let's take a look at the data.

```
library(skimr)
skimr::skim_without_charts(vax)
```

Table 1: Data summary

Name	vax
Number of rows	222264
Number of columns	19
Column type frequency:	
character	5
numeric	14
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_{_}$	_rate	min	max	empty	n_unique	whitespace
as_of_date	0		1	10	10	0	126	0
local_health_jurisdiction	0		1	0	15	630	62	0
county	0		1	0	15	630	59	0
vem_source	0		1	15	26	0	3	0
redacted	0		1	2	69	0	2	0

Variable type: numeric

skim_variable	n_miss	i ng mplete_	matæn	sd	p0	p25	p50	p75	p100
zip_code_tabulation_ar	ea 0	1.00	93665	.11817.3	89000	192257.	79 3658	.595380	.5 97 635.0
vaccine_equity_metric_e	qu l 199612	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0
age12_plus_population	0	1.00	18895	.048993.	87 0	1346.9	513685	.101756	.1 8 8556.7
age5_plus_population	0	1.00	20875	.2 2 1105.	96 0	1460.5	015364	.0 6 4877	.0001902.
tot_population	10836	0.95	23372	.7 2 2628.	5012	2126.0	018714	.0 6 8168	.0011165.
persons_fully_vaccinated	d 17848	0.92	14299	.495281.	9411	957.00	9034.0	0023818	.0 07 721.0
persons_partially_vaccin	na t#8 48	0.92	1712.0	082075.0	3 11	164.00	1204.0	002551.0	0043152.0
percent_of_population_	fu lly7 20ra	ccina deM	0.58	0.25	0	0.44	0.62	0.75	1.0
percent_of_population_	р 22720 у	_vac@i@ate	d0.08	0.09	0	0.05	0.06	0.08	1.0
percent_of_population_	w 26883 _	plus <u>0.</u> 80se	0.65	0.24	0	0.50	0.68	0.82	1.0
booster_recip_count	74543	0.66	6417.2	227795.1	3 11	331.00	3135.0	0010344	.0 6 0058.0
bivalent_dose_recip_cou	ın t 60089	0.28	3438.2	224034.6	1 11	225.00	1863.0	005532.0	029593.0
eligible_recipient_count	0	1.00	13145	.145144.	22 0	537.00	6691.0	0022558	.0 07 442.0
eligible_bivalent_recipie	nt_co 0 nt	1.00	13038	.2 4 5218.	39 0	263.00	6583.0	0022550	.0 07 442.0

Q5. How many numeric columns are in this dataset?

14 numeric columns as we can see from the skim result.

check how the data frame is structured
str(vax)

```
'data.frame':
               222264 obs. of 19 variables:
$ as_of_date
                                             : chr "2021-01-05" "2021-01-05" "2021-01-05" ":
$ zip_code_tabulation_area
                                             : int 93704 95684 92273 93662 95673 93668 9226
$ local_health_jurisdiction
                                             : chr "Fresno" "El Dorado" "Imperial" "Fresno"
                                             : chr "Fresno" "El Dorado" "Imperial" "Fresno"
$ county
$ vaccine_equity_metric_quartile
                                             : num 1 2 1 1 2 1 2 4 3 2 ...
                                             : chr "Healthy Places Index Score" "Healthy Places
$ vem_source
$ age12_plus_population
                                             : num 24804 2883 1633 24501 13672 ...
```

```
27701 3104 1763 28311 15453 1199 27406 4
$ age5_plus_population
                                           : int
                                                29740 3129 2010 30725 16636 ...
$ tot_population
                                           : num
$ persons_fully_vaccinated
                                                NA NA NA NA NA NA 12 NA NA ...
                                           : num
$ persons_partially_vaccinated
                                                 NA NA NA NA ...
                                           : num
$ percent_of_population_fully_vaccinated
                                           : num
                                                NA NA NA NA NA NA NA O.000278 NA NA ...
$ percent_of_population_partially_vaccinated: num NA NA NA NA NA ...
$ percent_of_population_with_1_plus_dose
                                                NA NA NA NA ...
                                           : num
$ booster_recip_count
                                           : num NA NA NA NA NA NA NA NA NA ...
$ bivalent_dose_recip_count
                                           : num NA NA NA NA NA NA NA NA NA ...
$ eligible_recipient_count
                                           : int 5 0 1 1 3 0 3 12 0 1 ...
$ eligible_bivalent_recipient_count
                                           : int 50013031201...
$ redacted
                                           : chr "Information redacted in accordance with
```

#check a specific column
class(vax\$persons_fully_vaccinated)

[1] "numeric"

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

```
sum(is.na(vax$persons_fully_vaccinated))
```

[1] 17848

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

```
(17711 / 220500)*100
```

[1] 8.0322

Q8. [Optional]: Why might this data be missing?

Individual data points are not perfect and working with a huge amount of data has outliers which are not super important to the overall trend.

Working with dates

```
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
    date, intersect, setdiff, union
What is today's date?
  today()
[1] "2023-05-31"
  # Specify that we are using the year-month-day format
  vax$as_of_date <- ymd(vax$as_of_date)</pre>
  today() - vax$as_of_date[1]
Time difference of 876 days
     Q9. How many days have passed since the last update of the dataset?
  today() - vax$as_of_date[nrow(vax)]
Time difference of 1 days
     Q10. How many unique dates are in the dataset (i.e. how many different dates are
     detailed)?
  length(unique(vax$as_of_date))
[1] 126
```

Working with ZIP codes

library(lubridate)

```
library(zipcodeR)
  geocode_zip('92037')
# A tibble: 1 x 3
  zipcode
            lat
                  lng
  <chr>
          <dbl> <dbl>
1 92037
           32.8 -117.
We can find the distance between the centers of any two ZIP codes in miles.
  zip_distance('92037','92109')
  zipcode_a zipcode_b distance
      92037
                92109
                           2.33
We can find information about specific zip codes.
  reverse zipcode(c('92037', "92109") )
# A tibble: 2 x 24
  zipcode zipcode_type major_city post_office_city common_city_list county state
          <chr>
                       <chr>
                                   <chr>
                                                               <blob> <chr> <chr>
1 92037
          Standard
                       La Jolla
                                   La Jolla, CA
                                                           <raw 20 B> San D~ CA
2 92109
                       San Diego San Diego, CA
                                                           <raw 21 B> San D~ CA
          Standard
# i 17 more variables: lat <dbl>, lng <dbl>, timezone <chr>,
    radius_in_miles <dbl>, area_code_list <blob>, population <int>,
   population_density <dbl>, land_area_in_sqmi <dbl>,
    water_area_in_sqmi <dbl>, housing_units <int>,
   occupied_housing_units <int>, median_home_value <int>,
   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
   bounds_north <dbl>, bounds_south <dbl>
  # Pull data for all ZIP codes in the dataset
  #zipdata <- reverse_zipcode( vax$zip_code_tabulation_area )</pre>
```

Focus on the San Diego area

```
There are two ways to focus on the San Diego area:
```

We can use base R functions.

```
# Subset to San Diego county only areas
  sd <- vax[ vax$"county" == "San Diego",]</pre>
Or we can use the dplyr package.
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  sd <- filter(vax, county == "San Diego")</pre>
  nrow(sd)
[1] 13482
dplyr is useful when you want multiple filters...
  sd.10 <- filter(vax, county == "San Diego" &
                    age5_plus_population > 10000)
     Q11. How many distinct zip codes are listed for San Diego County?
```

length(unique(sd\$zip_code_tabulation_area))

[1] 107

107 unique zip codes for San Diego county.

Q12. What San Diego County Zip code area has the largest population in this dataset?

Γ1] NA 92154

92154 has the largest San Diego population.

Q13. What is the overall average (with 2 decimal numbers) "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2023-05-23"?

```
sd_recent <- filter(sd, as_of_date == "2023-05-23")
mean(sd_recent$percent_of_population_fully_vaccinated, na.rm = TRUE)</pre>
```

[1] 0.7419992

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2023-05-23"?

Vaccination Rates Across San Diego County on May 23, 2023

Percent of population fully vaccinated

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 8 rows containing non-finite values (`stat_bin()`).

Vaccination Rates

Across San Diego County on May 23, 2023

Focus on UCSD/La Jolla

Let's filter to the UC San Diego in the 92037 ZIP code area and with an age 5+ population size of 36,144.

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

Comparing to similar sized areas

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-05-23". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                       county
1 2023-05-23
                                 90805
                                                      Long Beach Los Angeles
2 2023-05-23
                                 93257
                                                           Tulare
                                                                       Tulare
3 2023-05-23
                                 90004
                                                     Los Angeles Los Angeles
4 2023-05-23
                                 90808
                                                      Long Beach Los Angeles
5 2023-05-23
                                95355
                                                      Stanislaus Stanislaus
6 2023-05-23
                                 90802
                                                      Long Beach Los Angeles
                                                  vem_source
  vaccine_equity_metric_quartile
1
                                1 Healthy Places Index Score
```

```
2
                                 1 Healthy Places Index Score
3
                                 1 Healthy Places Index Score
4
                                 4 Healthy Places Index Score
5
                                 2 Healthy Places Index Score
6
                                 1 Healthy Places Index Score
  age12_plus_population age5_plus_population tot_population
                 77165.9
                                         88279
2
                 61519.8
                                         70784
                                                         76519
3
                 52412.5
                                         57024
                                                         60541
4
                 33952.3
                                         37179
                                                         39330
5
                 50941.6
                                         56248
                                                         59621
6
                 35238.1
                                         37017
                                                         38962
  persons_fully_vaccinated persons_partially_vaccinated
                      62829
1
                                                      6949
2
                      45117
                                                      5629
3
                      47272
                                                      5963
4
                      30283
                                                      2375
5
                      39616
                                                      3210
6
                      28152
                                                      3711
  percent_of_population_fully_vaccinated
1
                                  0.654503
2
                                  0.589618
3
                                  0.780826
4
                                  0.769972
5
                                  0.664464
6
                                  0.722550
  percent_of_population_partially_vaccinated
1
                                      0.072389
2
                                      0.073563
3
                                      0.098495
4
                                      0.060386
5
                                      0.053840
6
                                      0.095247
  percent_of_population_with_1_plus_dose booster_recip_count
                                  0.726892
1
                                                          33175
2
                                  0.663181
                                                          22223
3
                                  0.879321
                                                          29130
4
                                  0.830358
                                                          20463
5
                                  0.718304
                                                          22873
                                                          17033
6
                                  0.817797
  bivalent_dose_recip_count eligible_recipient_count
                       10919
1
                                                  62713
2
                        5297
                                                  45104
```

```
3
                                                    47148
                        12081
4
                         9676
                                                    30203
5
                         8291
                                                    39588
6
                         7169
                                                    28107
  eligible_bivalent_recipient_count redacted
1
                                 62713
                                              No
2
                                 45104
                                              No
3
                                 47148
                                              No
4
                                 30203
                                              No
5
                                 39588
                                              No
6
                                              No
                                 28107
```

mean(vax.36\$percent_of_population_fully_vaccinated)

[1] 0.7226674

plot_92037 + geom_hline(yintercept=0.7226674, linetype="dashed", color="red")

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-05-23"?

summary(vax.36\$percent_of_population_fully_vaccinated)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3815 0.6470 0.7208 0.7227 0.7923 1.0000
```

Q18. Using ggplot generate a histogram of this data.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Vaccination Rate Across ZIP codes with a population as large as 92037 (La Jolla)

Shown for 2023-05-23

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
vax %>% filter(as_of_date == "2023-05-23") %>%
filter(zip_code_tabulation_area=="92040") %>%
```

The percentage of people fully vaccinated for the 92109 and 92040 ZIP code areas are below the average value of the ZIP code areas with a population as large as 92037 (La Jolla).

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
   aes(x=as_of_date,
        y=percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="violetred2") +
   ylim(c(0,1)) +
   labs(x="Date", y="Percent Vaccinated",
        title="Vaccination Rate Across California",
        subtitle= "Only areas with a population above 36k are shown.") +
   geom_hline(yintercept = 0.7225892, linetype= "dashed")
```

Warning: Removed 185 rows containing missing values (`geom_line()`).

Vaccination Rate Across California

Only areas with a population above 36k are shown.

