Theoretische Physik (Hebecker)

Robin Heinemann

October 25, 2016

Contents

1	Kine	ematik	des Massenpunktes	2
	1.1	Kinem	atik der Massenpunktes in <u>einer</u> Dimension	2
		1.1.1	Graphik	2
		1.1.2	Üben dieser Logik an unserem Beispiel	3
	1.2	Grund	begriffe der Differenzial und Integralrechung	3
		1.2.1	Funktion	3
		1.2.2	Differentiation oder Ableitung	3
		1.2.3	Integrieren	4
	1.3	Kinem	natik in mehreren Dimensionen	5
		1.3.1	Zweidimensionale Bewegung	5
		1.3.2		6
	1.4	Vektor	räume	6
		1.4.1	Einfachstes Beispiel	7
		1.4.2	Unser Haupt-Beispiel	7
	1.5	Kinem	atik in $d > 1$	7
		1.5.1	Beispiel für 3-dimensionale Trajketorie	8
	1.6	Skalar	produkt	8
		1.6.1	Symmetrische Bilinearform	9
		1.6.2	Norm (Länge) eines Vektors	9
	1.7	Abstai	nd zwischen Raumpunkten	9
		1.7.1		10
		1.7.2	-	10
	1.8	Bogen		10
		1.8.1		11
	1.9	Vektor	=	12
	1.10	-		
				12

Einleitung:

- Webseite: www.thphys.uni-heidelberg.de/hebecker/TP1/tp1.html
- Bartelman skripte

1 Kinematik des Massenpunktes

Massenpunkt / Punktmasse - (selbstevidente) Abstraktion Kinematik: Bescheibung der Bewegung (Ursachen der Bewegung \rightarrow Dynamik)

1.1 Kinematik der Massenpunktes in einer Dimension

1.1.1 Graphik

- Ort: *x*
- zu Zeit t: x(t)
- Geschwindigketi: $v(t) \equiv \frac{\mathrm{d}x(t)}{\mathrm{d}t} \equiv \dot{x}(t)$
- Beschleunigung: $a(t) \equiv \dot{v}(t) = \ddot{x}(t)$
- Beispiel: $x(t) \equiv x_0 + v_0 t + \frac{a_0}{2}, \ t^2, \ v(t) = v_0 + a_0 t, \ a(t) = a_0$
- Umgekehrt: Integration, z.B. von Geschwindigkeit zu Trajektorie: Anfangsposition muss gegeben sein, z.B. $x(t_0) \equiv x_0$

$$x(T) = x_0 + \int_{t_0}^t v(t) dt$$

Man prüft leicht $\dot{x}(t) = v(t)$

– Es gibt keine andere Funktion $\tilde{x}(t)$ mit $\dot{\tilde{x}}(t)=v(t)$ und $\tilde{x}(t_0)=x_0$

Analog: Von Beschleunigung zur Geschwindigkeit, und dann weiter zur Trajektorie

1.1.2 Üben dieser Logik an unserem Beispiel

Gegeben: $a(t) = a_0, t_0 = 0, v_0, x_0$

$$\Rightarrow v(t) = v_0 + \int_0^t a_0 dt' = v_0 + a_0 t$$
$$x(t) = x_0 + \int_0^t (v_0 + a_0 t') dt' = x_0 + v_0 t + \frac{a_0}{2} t^2$$

1.2 Grundbegriffe der Differenzial und Integralrechung

1.2.1 Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x)$$

1.2.2 Differentiation oder Ableitung

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

df bezeichnet den in Δx linearen Anteil des Zuwaches $\Delta f \equiv f(x + \Delta x) - f(x)$.

- Aus $\Delta f = f'(x)\Delta(x) + O(\Delta x^2)$ folgt $df = f'(x)\Delta x$
- Anwendung auf die Identitätabbildung: $x \mapsto x \Rightarrow dx = \Delta x$

$$\Rightarrow df = f'(x)dx \text{ oder } \frac{df(x)}{dx} = f'(x)$$

Dies ist eigentlich nur eine Schreibweise für f'(x), <u>aber</u> nützlich, weil bei kleinen Δx d $f \simeq \Delta f$ (Schreibweise beinhaltet intuitiv die Grenzwertdefinition)

- f'(x) wieder Funktion \Rightarrow analog: $f''(x), f'''(x), \dots, f^{(n)}(x)$
- Praxis

$$(f \cdot g)' = f'g + g'f$$
 (Produkt/Leibnizregel)
$$(f \circ g)'(x) = f'(g(x))g'(x)$$
 (Kettenregel)
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 (Ableitung der Inversen Funktion)

- Begründung (nur zum letzen Punkt)

$$(f^{-1})'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}(f(y))} = \frac{\mathrm{d}y}{f'(y)\mathrm{d}y} = \frac{1}{f'(f^{-1}(x))}$$

- Schöne Beispiele

$$(x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)$$

 $\arctan'(x) \equiv (\tan^{-1}(x)) = \frac{1}{\tan^{-1}(y)}$ wobei $y = \tan^{-1}(x)$

Besser:

$$\tan^{-1}(y) = (\sin y \frac{1}{\cos y})' = \cos y \frac{1}{\cos y} + \sin y (\frac{1}{\cos y})' = 1 + \sin y (-\frac{1}{\cos^2 y})(-\sin y) = 1 + \tan^2 y$$

• Verknüpfung

$$f \circ g : x \mapsto f(g(x))$$

• Inverse

$$f^{-1}: x = f(y) \mapsto y$$

- Grenzwerte:
 - nützliche Regel: l'Hôpital ("0") Falls $\lim_{x\to x_0} f, g=0$ und $\lim_{x\to x_0} \frac{f'}{g'}$ existiert, so gilt $\lim_{x\to x_0} \frac{f}{g}=\lim_{x\to x_0} \frac{f'}{g'}$
 - weitere nützliche Regel

$$\lim \frac{\text{Beschränkt}}{\text{Unbeschränkt und monoton wachsend}} = 0$$

* Beispiel:

$$\lim_{y \to 0} \frac{\sin \frac{1}{y}}{\frac{1}{y}}$$

- Kürzen unter lim
 - * Beispiel:

$$\lim_{x \to \infty} \frac{x}{2x + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{2 + \frac{1}{\sqrt{x}}} = \frac{1}{2}$$

1.2.3 Integrieren

1. Fundamentalsatz der Analysis

$$\int_{-\infty}^{y} f(x) dx = F(y) \& F'(y) = f(y)$$

$$\int f(x)dx = F(x) + C$$
$$\int_a^b f(x)dx = F(b) - F(a)$$

 $(\rightarrow \text{ saubere Definition "uber Riemansches Integral"})$

- 2. Praxis
 - (a) Partielle Integration

$$\int_{-\infty}^{y} f(x)g'(x)dx = f(y)g(y) - \int_{-\infty}^{y} f'(x)g(x)dx$$

(b) Substitution Unter Annahme einer invertierbaren Funktion $x: y \mapsto x(y)$

$$\int f(x)dx = \int f(x)\frac{dx}{dy}dy = \int f(x(y))x'(y)dy$$

Andere Formulierung:

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Substitution y = g(x)

(c) Klassiker

$$\int \ln x dx = \int \ln x 1 dx = \ln x - \int \frac{1}{x} x dx = x(\ln x - 1)$$
$$\int x e^{x^2} dx = \int e^{x^2} \frac{1}{2} d(x^2) = \frac{1}{2} \int e^y dy = \frac{1}{2} e^y = \frac{1}{2} e^{x^2}$$

1.3 Kinematik in mehreren Dimensionen

1.3.1 Zweidimensionale Bewegung

Zweidimensional \rightarrow Bewegung in der Ebene. Trajektorie: x(t), y(t)

1. Bespiel

$$x(t) = v_0 t \sin \omega t$$

$$y(t) = v_0 t \cos \omega t$$

- (a) TODO Skizze der Trajektorie (Bahnkurve)
- (b) Raumkurve Menge aller Punkte $\{x,y\},$ die das Teilchen durchläuft
- (c) **TODO** Skizze Nichtriviale Darstellung <u>nur</u> im Raum (Raumkurve)

1.3.2 Dreidimensionale Bewegung

Die Darstellung der Tranjektorie istr erschwert, denn man bräuchte 4 Dimensionen: 3 für Raum und 1 für Zeit Formal keim Problem: Trajektorie ist

•

•

$$x^{1}(t), x^{2}(t), x^{3}(t)$$

•

$$\{x^i(t)\}, i = 1, 2, 3$$

Dementsprechend:

$$v^{i}(t) = \dot{x}^{i}(t); a^{i}(t) = \dot{v}^{i}(t); i = 1, 2, 3$$

1.4 Vektorräume

Eine Menge V heißt Vektorraum, wenn auf ihr zwei Abbildungen

- die Addition (+)
- die Multiplikation mit reellen Zahlen (*)

definiert sind.

$$x: V \times V \to V$$

 $Multiplikation: \mathbb{R} \times V \to V$

 $V \times V$ - Produktmenge \equiv Menge aller Pa
are so dass gilt:

$$v + (w + u) = (v + w) + u \quad u, v, w \in V$$

Assoziativität

$$v + w = w + v$$

Kommutativität

$$\exists 0 \in V : v + 0 = v \, \forall \, v \in V \qquad \qquad \text{Null}$$

$$\alpha(v + w) = \alpha v + \alpha w \qquad \qquad \text{Distributivit\"at}$$

$$(\alpha + \beta)v = \alpha v + \beta v \quad \alpha, \beta \in \mathbb{R} \qquad \qquad \text{Distributivit\"at}$$

$$\alpha(\beta v) = (\alpha \beta)v \qquad \qquad \text{Assoziativit\"at der Multiplikation}$$

$$1v = v \qquad \qquad \text{Multiplikation mit Eins}$$

1.4.1 Einfachstes Beispiel

 $V \equiv \mathbb{R}$ (mit der gewöhnlichen Addition und Multiplikation und mit $0 \in \mathbb{R}$ als Vektorraumnull)

1.4.2 Unser Haupt-Beispiel

Zahlentupel aus n-Zahlen:

$$V \equiv \mathbb{R}^n = \{(x^1, x^2, \dots, x^n), x^i \in \mathbb{R}\}\$$

Notation:

$$\vec{x} = \begin{pmatrix} x^1 & x^2 & \dots & x^n \end{pmatrix}, \vec{y} = \begin{pmatrix} y^1 & \dots & y^n \end{pmatrix}$$

Man definiert:

$$\vec{x} + \vec{y} \equiv (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n)$$
$$\vec{0} \equiv (0, \dots, 0)$$
$$\alpha \vec{x} \equiv (\alpha x^1, \dots, \alpha x^n)$$

1. **TODO** (Maybe) Skizze 3D Vektor \rightarrow übliche Darstellung durch "Pfeile"

1.5 Kinematik in d > 1

Trajektorie ist Abbildung: $\mathbb{R} \to \mathbb{R}^3, t \to \vec{x}(t))(x^1(t), x^1(t), x^3(t))$

$$\vec{v} = \dot{\vec{x}}(t), \vec{a(t)} = \dot{\vec{v}}(t) = \ddot{\vec{x}}(t)$$

Setzt allgemeine Definition der Ableitun voraus:

$$\frac{\mathrm{d}\vec{y}(x)}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\vec{y}(x + \Delta x) - \vec{y}(x)}{\Delta x} \Rightarrow \vec{y}'(x) = (y^{1'}(x), \dots, y^{n'}(x))$$

1.5.1 Beispiel für 3-dimensionale Trajketorie

Schraubenbahn:

$$\vec{x}t = (R\cos\omega t, R\sin\omega t, v_0 t)$$
$$\vec{v} = (-R\omega\sin\omega t, R\omega\cos\omega t, v_0)$$
$$\vec{a} = (-R\omega^2\cos\omega t, -R\omega^2\sin\omega t, 0)$$

1. **TODO** Skizze (Raumkurve) **Kommentar:**

 $\vec{x}, \vec{v}, \vec{a}$ leben in verschiedenen Vektorräumen! allein schon wegen [x] =m, [v] =m s $^{-1}$

Wir können wie in d=1 von \vec{a} zu \vec{v} zu \vec{x} gelangen!

$$\vec{v}(t) = \vec{v_0} + \int_{t_0}^t \mathrm{d}t' \vec{a}(t') = (v_0^1 + \int_{t_0}^t \mathrm{d}t' a^1(t'), v_0^2 + \int_{t_0}^t \mathrm{d}t' a^2(t'), v_0^3 + \int_{t_0}^t \mathrm{d}t' a^2(t'))$$

2. Üben: Schraubenbahn; $t_0 = 0$, $\vec{x_0} = (R, 0, 0)$, $v_0 = (0, R\omega, v_0)$ Es folgt:

$$\vec{v}(t))(0, R\omega, v_0) + \int_0^t dt'(-R\omega^2)(\cos \omega t', \sin \omega t', 0)$$
 (1)

$$= (0, R\omega, v_0) + (-R\omega^2)(\frac{1}{\omega}\sin\omega t', -\frac{1}{\omega}\cos\omega t', 0) \mid_0^t$$
 (2)

$$= (0, R\omega, v_0) - R\omega(\sin \omega t, -\cos \omega t, 0) - (0, -1, 0)$$
(3)

$$= (-R\omega\sin\omega t, R\omega + R\omega\cos\omega t - R\omega, v_0) \tag{4}$$

$$= (-R\omega\sin\omega t, R\omega\cos\omega t, v_0) \tag{5}$$

3. Bemerkung Man kann Integrale über Vektoren auch durch Riemansche Summen definieren:

$$\int_{t_0}^t \vec{v}(t')dt' = \lim_{n \to \infty} (v(t_0)\Delta t + \vec{v}(t_0 + \Delta t)\Delta t + \dots + \vec{v}(t - \Delta t)\Delta t)$$
mit $\Delta t = \frac{t - t_0}{N}$

1.6 Skalarprodukt

Führt von Vektoren wieder zu nicht-vektoriellen (Skalaren) Größen.

1.6.1 Symmetrische Bilinearform

 $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ "linear" Abbildung von $V \times V \to \mathbb{R}$, $(v, w) \mapsto v \cdot w$ mit den Eigenschaften

- $v \cdot w = w \cdot v$
- $(\alpha u + \beta v) \cdot w = \alpha u \cdot w + \beta v \cdot w$

Sie heißt positiv-semidefinit, falls $v\cdot v\geq 0$, Sie heißt positiv-definit, falls $v\cdot v=0 \Rightarrow v=0$ Hier : Skalarprodukt \equiv positiv definite symmetrische Bilinearform

1.6.2 Norm (Länge) eines Vektors

$$|v| = \sqrt{v \cdot v} = \sqrt{v^2}$$

 \mathbb{R}^n : Wir definieren

$$\vec{x} \cdot \vec{y} = x^1 y^1 + \ldots + x^n y^n \equiv \sum_{i=1}^n x^i y^i \equiv \underbrace{x^i y^i}_{\text{Einsteinsche Summenkonvention}}$$

$$|\vec{x}| = \sqrt{(x^1)^2 + \ldots + (x^n)^2}$$

Wichtig: oben euklidiesches Skalarprodukt! Anderes Skalarprodukt auf \mathbb{R}^2 : $\vec{x} \cdot \vec{y} = 7x^1y^2 + x^2y^2$ anderes Beispiel:

$$\vec{x} \cdot \vec{y} \equiv x^1 y^1 - x^2 y^2$$

symmetrische Bilinearform, <u>nicht</u> positiv, semidefinit! Frage: Beispiel für Bilinearform die positiv-semidefinit ist, aber nicht positiv definit

$$\vec{x}\vec{y} = x^1y^1$$

1.7 Abstand zwischen Raumpunkten

Der anschauliche Abstand zweichen Raumpunkten \vec{x}, \vec{y} :

$$|\vec{x} - \vec{y}| = \sqrt{(\vec{x} - \vec{y})(\vec{x} - \vec{y})} = \sqrt{(\vec{x} - \vec{y})^2} = \sqrt{\sum_{i=1}^{3} (x^i - y^i)^2} = \sqrt{(x^i - y^i)(x^i - y^i)}$$

$$= \sqrt{\vec{x}^2 + \vec{y}^2 - 2\vec{x}\vec{y}} = \sqrt{|\vec{x}|^2 + |\vec{y}|^2 - 2|\vec{x}||\vec{y}|}\cos\theta$$

Haben benutzt: $\vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta$

1.7.1 Spezialfall

$$\vec{x} = (x^1, 0, 0), \vec{y} = (y^1, y^2, 0)$$

$$\vec{x} \cdot \vec{y} = x^1 \cdot y^1; \cos \theta = \frac{y^1}{|\vec{y}|}; |\vec{x}| = x^1$$

1. TODO Skizze

$$\Rightarrow \vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta$$

Dass dies für beliebige Vektoren gilt, wird später klar werden.

1.7.2 Infinisetimaler Abstand

Speziell wird der infinitesimale Abstand wichtig sein:

$$d\vec{x} = (dx^1, dx^2, dx^3)$$

$$\begin{split} \mathrm{d}\vec{x} &= (\frac{\mathrm{d}x^1}{\mathrm{d}t}\mathrm{d}t, \frac{\mathrm{d}x^2}{\mathrm{d}t}\mathrm{d}t, \frac{\mathrm{d}x^3}{\mathrm{d}t}\mathrm{d}t) = (v^1\mathrm{d}t, v^2\mathrm{d}t, v^3\mathrm{d}t) = (v^1, v^2, v^3)\mathrm{d}t = \vec{v}\mathrm{d}t, \text{ oder: } \vec{v} = \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \\ (\mathrm{d}\vec{x} \text{ analog zu d}f \text{ vorher}); \\ \mathrm{d}\vec{x}^2 &= |\mathrm{d}\vec{x}|^2 = |\vec{v}|^2\mathrm{d}t^2 \end{split}$$

$$d\vec{x}^2 = |d\vec{x}|^2 = |\vec{v}|^2 dt^2$$
$$|dx| = |\vec{v}| dt.$$

Bogenlänge und begleitendes Dreibein

 $|d\vec{x}|$ entlang $\vec{x}(t)$ aufaddieren \rightarrow Bogenlänge.

$$s(t) = \int_{t_0}^t |d\vec{x}| = \int_{t_0}^t dt' \left| \frac{d\vec{x}}{dt'} \right| = \int_{t_0}^t dt' \sqrt{\dot{\vec{x}}(t')^2} = \int_{t_0}^t \sqrt{\vec{v}(t')^2}$$

Infinitesimale Version:

$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| = |\vec{v}|$$

Man kann (im Prinzip) s(t) = s nach t auflösen.

$$\Rightarrow t = t(s) \Rightarrow \underbrace{\vec{x}(s)}_{\text{Parametrisierung der Trajektorie durch die Weglänge } s} \equiv \vec{x}(t(s))$$

Nützlich, zum Beispiel für die Definition des Tangentenvektors:

$$\vec{T}(s) = \frac{\mathrm{d}\vec{x}(s)}{\mathrm{d}s}$$

Es gilt

$$\vec{T} \parallel \vec{v}; \left| \vec{T} \right| = \left| \frac{\vec{v} dt}{|\vec{v}| dt} \right| = 1 \Rightarrow \vec{T} \cdot \vec{T} = 1$$

Ableiten nach s:

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}(1) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}(\vec{T} \cdot \vec{T}) = \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} \cdot \vec{T} + \vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = 2\vec{T} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}s}$$

Nutze

$$\vec{T}\cdot\vec{T}=T^iT^i$$

 \Rightarrow Ableitung des Tangentenvektors ist ortogonal zum Tangentenvektor. Krümmungsradius der Bahn:

$$\rho \equiv \frac{1}{\left|\frac{\mathbf{d}\vec{T}}{\mathbf{d}s}\right|}$$

Normalenvektor:

$$\vec{N} = \frac{\frac{d\vec{T}}{ds}}{\left|\frac{d\vec{T}}{ds}\right|} = \rho \frac{d\vec{T}}{ds}$$

1.8.1 Beispiel in d=2

$$\vec{x}(t) = R(\cos \omega t, \sin \omega t)$$

$$\vec{v}(t) = R\omega(-\sin(\omega t), \cos \omega t)$$

$$|\vec{v}| = \sqrt{(R\omega)^2(\sin^2 \omega + \cos^2 \omega t)} = R\omega$$

$$s(t) = \int_{t_0=0}^t dt' |\vec{v}| = R\omega t; \ t(x) == \frac{s}{R\omega}$$

$$\Rightarrow \vec{x}(s) = R(\cos \frac{s}{R}, \sin \frac{s}{R}), \vec{T} = \frac{d\vec{x}}{ds} = (-\sin \frac{s}{R}, \cos \frac{s}{R})$$

$$\frac{d\vec{T}}{ds} = -\frac{1}{R}(\cos \frac{s}{R}, \sin \frac{s}{R}) \Rightarrow \rho = R; \ \vec{N} = -(\cos \frac{s}{R}, \sin \frac{s}{R})$$

1. TODO Skizze

1.9 Vektorprodukt

$$V \times V \mapsto V; \ (\vec{a}, \vec{b}) \mapsto \vec{c} = \vec{a} \times \vec{b}$$

mit

$$c^{i} = (\vec{a} \times \vec{b})^{i} \equiv \sum_{i,k=1}^{3} \epsilon^{ijk} a^{j} b^{k} = \epsilon^{ijk} a^{j} b^{k}$$

dabei:

• $\epsilon^{123} = \epsilon^{231} = \epsilon^{321} = 1$

• $\epsilon^{213} = \epsilon^{132} = \epsilon^{321} = -1$

• sonst 0 ($\$\epsilon^{ijk} = 0$, falls zwei Indizes gleich)

Alternativ:

•

$$|\vec{c}| = |\vec{a}| |\vec{b}| |\sin \theta|$$

- Richtung von \vec{c} definiert durch $\vec{c} \perp \vec{a} \wedge \vec{c} \perp \vec{c}$
- Vorzeichen von \vec{c} ist so, dass $\vec{a}, \vec{b}, \vec{c}$ ein "Rechtssystem" bilden

1. **TODO** Skizze

1.10 Binormalenvektor

$$= \vec{T} \times \vec{N}$$

 \vec{T},\vec{N},\vec{B} heißen "begleitendes Dreibein" und bilden ein Rechtssystem. alle haben Länge 1 \vec{T},\vec{N} spannen die "Smiegeebene" auf

1.10.1 Zur Information

$$\frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = \frac{1}{\rho}\vec{N}; \ \frac{\mathrm{d}\vec{B}}{\mathrm{d}s} = -\frac{1}{\rho}\vec{B}; \ \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = \frac{1}{\rho}\vec{B} - \frac{1}{\rho}\vec{T}$$