Варианты обобщения геометрического распределения

Есипенко Евгений Вячеславович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Алексеева Н.П. Рецензент: к.ф.-м.н., мл. науч. сотр. Ананьевская П.В.

Санкт-Петербург 2014г

Цель работы

Анализ четырех моделей обобщения геометрического распределения, констукция которых основана на операции частичного обращения по Барту А. Г.

- Исследование обобщенного геометрического распределения $\beta_{\alpha}^{-}(p)$ [Барт, 1987], оценка параметров, свойства оценок, свойства распределения.
- Вывод законов обобщенных распределений с различной формой параметризации частично обратных к реализациям испытаний Бернулли, оценка параметров.
- Сравнение моделей при $\alpha=\frac{2}{2k+1},\ k\in N$ с приложением в лингвистике и использованием критерия Cramer-von Mises(CVM) и процедуры bootstrap.

Обобщение геометрического распределения (GGD) по Барту А. Г.

Крайние частично обратные функции к числу успехов $\xi(n)$ из n испытаний Бернулли с вероятностью успеха p:

$$\begin{array}{ll} \xi_0^-(k)=\min\{n:\xi(n)\geqslant k\} & \text{левая},\\ \xi_1^-(k)=\max\{n:\xi(n)\leqslant k\} & \text{правая}. \end{array}$$

Утверждение (Барт, 2003)

- 1. $\xi_0^-(0) = 0$ с вероятностью 1.
- $2. \ \xi_1^-(0)$ имеет геометрическое распределение.
- 3. $\eta = \lfloor \alpha \xi_1^-(0) \rfloor$ имеет обобщенное геометрическое распределение $\beta_\alpha^-(p)$ при $0 , <math>0 < \alpha \leqslant 1$

$$\mathsf{P}(\eta = j) = (1 - p)^{\lceil \frac{j}{\alpha} \rceil} - (1 - p)^{\lceil \frac{j+1}{\alpha} \rceil}, \ j = 0, 1, 2, \dots$$

Обобщение по Алексеевой Н. П.

Изменение правила усечения числа неудач до первого успеха приводит к разным видам обобщения.

Утверждение (Алексеева, 2012)

$$\begin{split} &\eta_0 = \lceil \alpha \xi_1^-(0) \rceil \sim {}_{\alpha}\beta^-(p) \\ &\mathsf{P}(\eta_0 = j) = (1-p)^{\lfloor \frac{j-1}{\alpha} \rfloor + 1} - (1-p)^{\lfloor \frac{j}{\alpha} \rfloor + 1}, j = 1, 2, \dots \\ &\mathsf{P}(\eta_0 = 0) = p, \end{split}$$

Рис. 1: Вероятности распределений, p = 0.1, $\alpha = 0.6$

Варианты обобщения, введённые в данной работе

Утверждение (Законы распределений)

$$\begin{array}{l} \bullet \quad \eta_1 = [\alpha \xi_1^-(0)] \sim \xi_R^-(p,\alpha) \text{, считаем } [0.5] = 1, \\ \mathsf{P}(\eta_1 = 0) = 1 - (1-p)^{\lceil \frac{1}{2\alpha} \rceil} \\ \mathsf{P}(\eta_1 = j) = (1-p)^{\lceil \frac{j-0.5}{\alpha} \rceil} - (1-p)^{\lceil \frac{j+0.5}{\alpha} \rceil}, j \geqslant 1 \end{array}$$

$$\begin{array}{ll} \textbf{Q} & \eta_2 = \sum\limits_{i=0}^r \zeta_i, \ \tau \sim & \textit{Geom}(p), \ \zeta_i \sim & \textit{Bern}(\alpha), \\ & \eta_2 \sim & \textit{Geom}(\frac{p}{1-(1-p)(1-\alpha)}) \end{array}$$

Рис. 2 : Вероятности распределений, p=0.1, $\alpha=0.6$

ОМП для параметров $eta_{lpha}^-(p)$ при $lpha=rac{2}{2k+1}$, $k\in N$

Пусть $q=1-p,\; n_z$ — число элементов выборки, равных z $(z=0,1,\ldots).$

Если k известно, то $\hat{q} = \left(1 - \frac{2C}{A}\right)^{\frac{1}{k}}$, иначе ОМП имеют вид

$$\begin{cases} \hat{q} = \frac{A^2}{(A+2B)(A-2C)} \\ \hat{k} = \log_{\hat{q}} \left(1 - \frac{2C}{A}\right) \end{cases}$$

$$A = \sum_z n_z z + \sum_{\text{He He TH. Z}} n_z$$

$$B = \sum_{\text{He TH. Z}} n_z$$

$$C = \sum_{\text{He He TH. Z}} n_z$$

Результаты оценивания параметров

Рис. 3: ОМП

Утверждение (Свойства оценок)

- **①** Оценки \hat{p} , $\hat{\alpha}$ состоятельны при $\alpha = \frac{2}{2t+1}$, где $t \in N$.
- ② Пусть $lpha=rac{2}{2t+1}$, $t\in N$, $\hat{p}=\hat{p}_n$ и $\hat{lpha}=\hat{lpha}_n$, где n объем выборки. Тогда при $n o \infty$ оценки $\hat{p}_n > 0$ и $\hat{\alpha}_n > 0$.
- **3** Если $(A \frac{2BC}{R})(B C)(A 2C) < 0$, то $\hat{p} < 0$, $\hat{\alpha} < 0$.

Расширение области определения параметров $eta_{lpha}^-(p)$

Пусть I и J — интервалы; $\beta^-(I\times J)\stackrel{\mathrm{def}}{=}\{\beta^-_\alpha(p)\}_{p\in I,\alpha\in J}$. Доказаны следующие свойства:

Утверждение (Расширение области определения параметров)

- между $\beta^-([0,1)\times[0,+\infty))$ и $\beta^-((-\infty,0]\times(-\infty,0])$ существует биекция, полностью сохраняющая значения вероятностей, она задается следующим образом: $\beta^-_{\alpha}(p)\sim\beta^-_{-\alpha}(\frac{-p}{1-p})$
- ② пусть $\xi \sim \beta_{\alpha}^{-}(p)$, пусть $\{k_i\}_{i=0,1,...}$ такая что:

$$k_i=j$$
 такое, что $\mathrm{P}(\xi=j)>0$ и $\#\{z:z< j$ и $\mathrm{P}(\xi=z)>0\}=i,$

тогда при $|\alpha| > 1$

$$P(\xi = k_i) = p(1-p)^i$$
.

Распределение eta_{lpha}^- при $lpha=1/k, k\in N$

Известно, что для распределения β_{α}^- при $\alpha=1/k, k\in N$, выполняется: $\beta_{\alpha}^-(p)\sim Geom(1-(1-p)^k)$. Отсюда видно, что при $\alpha=1,\ \beta_{\alpha}^-\sim Geom(p)$. Исходя из этого свойства, были найдены пары значений параметров, задающие совпадающие распределения:

Утверждение (Классы совпадающих распределений)

Пусть зафиксировано p_g , $p_g \in [0,1]$, тогда все пары точек (p,α) , удовлетворяющие соотношениям:

$$\mathbf{0}$$
 $\alpha = 1/k, k \in N$

$$p = 1 - (1 - p_g)^{\alpha}$$

при различных k будут задавать одно и то же распределение $eta_{lpha}^-(p) \sim Geom(p_g)$

Другие свойства распределения eta_{α}^-

O распределении eta_{lpha}^- были доказаны следующие утверждения:

Утверждение (Переодичнось вероятностей и неоднозначность выбора распределения)

ullet Пусть $\xi \sim eta_{lpha}^-(p)$, $lpha = rac{m}{r}$, где $m,r \in N$; m < r; r = cm + z; $c, z \in Z$: z < m. Тогда

$$P(\xi = k_i + nm) = P(\xi = k_i)(q^{cm+z})^n,$$

где
$$k_i = 0, 1, \dots, m-1; n \in N$$
.

ullet Пусть $lpha=rac{2}{2t+1}$, $t\in N$. Тогда для фиксированного k и \forall $n < k, \forall 0 < l < \frac{2}{(2t+1)(k-1+2t)}$:

$$P(\xi = n) = P(\eta = n),$$

где
$$\xi \sim \beta_{\alpha}^{-}(p)$$
, $\eta \sim \beta_{\alpha+l}^{-}(p)$.

Оценка параметров ${}_{lpha}eta^-$ и ${}_{lpha}eta^-$ при $lpha=rac{2}{2k+1}$, $k\in N$

OMП $_{lpha}eta^{-}$ была получена в виде решения системы уравнений:

$$\begin{cases} \frac{n_0}{x-y} + \frac{A+B+D}{x} - \frac{C}{1-x} = 0\\ \frac{n_0 x}{y(y-x)} + \frac{A+B-C-D}{y} - \frac{D}{1-y} = 0, \end{cases}$$

$$A=rac{1}{2}\sum_{ extsf{qeth. z}}n_zz$$
 $B=rac{1}{2}\sum_{ extsf{heqeth. z}}n_z(z-1)$ $C=\sum_{ extsf{qeth. z}}n_z$ $D=\sum_{ extsf{heqeth. z}}n_z$

где n_z — число элементов выборки, равных z $(z=0,1,\ldots)$, $x=\hat{q}^{\hat{k}+1}$, $y=\hat{q}^{\hat{k}}$.

Для распределения β_R^- ОМП были найдены в виде решения одной из двух систем, лучшего по принципу правдоподобия, чем решение второй системы.

Критерий CVM

Рис. 4 : Функция распределения p-value, верная гипотеза, $\beta_{0.6}^-(0.1)$

Рис. 5 : Мощность, $H_0: \beta_{0.6}^-(0.1)$,

 $H_1: Geom(p)$, уровень

значимости = 0.2

Мощность CVM

Проблема различимости обобщённых распределений.

Рис. 6: Мощность,

 $H_0: \beta_{0.6}^-(0.1),$

 $H_1: \beta_{0.61}^{-1}(0.11), n = 100$

Рис. 7: Мощность,

 $H_0: \beta_{0.6}^-(0.1),$

 $H_1: {}_{0.6}\beta^-(0.1)$

Параметрический bootstrap тест

Алгоритм вычисления модифицированного значения p-value. Для выборки выполняются следующие действия:

- ullet получаются оценки параметров $\hat{ heta}$
- ullet проверяется гипотеза согласия для параметров $\hat{ heta}$ (с помощью критерия CVM), получено p-value P
- ullet с оцененными параметрами $\hat{ heta}$ моделируется 100 выборок
- ullet для них оцениваются параметры $ilde{ heta}$ и проверяется гипотеза согласия для параметров $ilde{ heta}$, получаются $p-value\ P^*$
- ullet строится эмпирическая функция распределения P^*
- ullet по P и функции распределения P^* для выборки получается модифицированное значение p-value

Мощность и применимость bootstrap

Рис. 8 : Мощность, $H_0: \beta_{0.6}^-(0.1)$,

 $H_1: Geom(p), n = 416$

Рис. 9 : Функция распределения p-value, верная гипотеза, $\beta_{0.6}^-(0.1)$

Результаты применения описанных алгоритмов и критериев к лигвистическим данным

Таблица 1: Результаты проверки гипотезы

Распределение	β_{α}^{-}	$_{\alpha}\beta^{-}$	β_R^-	Geom
Число не отверженных	145	125	62	113
гипотез из 200, CVM				
Число не отверженных	108	60	109	68
гипотез из 200, CVM с				
bootstrap				

После применения процедуры bootstrap были сосчитаны модифицированные значения p-value, и число слов, подходящих под все распределения кроме eta_{R}^{-} , уменьшилось. В итоге модели с наибольшим числом удовлетворяющих им слов - β_{α}^{-} и β_{R}^{-} . Проверка гипотез выполнялась для уровня значимости 0.2.