$$k \frac{5+3}{5} \rightarrow k \frac{5+3}{5+p}$$
 (p<3) $\leftarrow lag compensation.$

Lag compensation does not give perfect tracking (indeed, it does not change system type), but we can get as good a tracking as we want by playing with K, z, p. On the other hand, unlike PI, lag compensation gives a stable controller.

Pole Placement Via RL

Let
$$G_p(s) = \frac{1}{s-1}$$
, $G_c(s) = K \frac{s+z}{s+p}$

Problem: given p=2, find K and z to place poles at $-2\pm 3j$.

Desired characteristic polynomial:

$$(s+2)^2+9=s^2+4s+13, \qquad \text{damping ratio } \zeta=\frac{2}{\sqrt{13}}\approx 0.555$$

Must have

$$\frac{\psi}{\text{angle from }\atop s \text{ to zero}} - \sum_{i} \frac{\varphi_{i}}{\text{angles from }\atop s \text{ to poles}} = 180^{\circ}$$
So, we want $\psi = 180^{\circ} + \sum_{i} \varphi_{i}$

So, we want
$$\psi = 180^{\circ} + \sum_{i} \varphi_{i}$$

We have $\varphi_1 = 135^{\circ},$ $\varphi_2 = 90^{\circ}$

We want
$$\psi = 180^{\circ} + \sum_{i} \varphi_{i}$$

Must have

$$\psi = 180^{\circ} + 135^{\circ} + 90^{\circ}$$

= 405°
= $45^{\circ} \mod 360^{\circ}$

Thus, we should have z = -5

▶ resulting characteristic polynomial:

$$(s-1)(s+2) + K(s+5)$$
$$s^{2} + (K+1)s + 5K - 2$$

compare against desired characteristic polynomial:

$$s^2 + 4s + 13$$
 \implies $K + 1 = 4, 5K - 2 = 13$

so we need K=3

 $\left| \frac{1}{1 - \frac{Kz}{T}} \right| = \frac{1}{6.5} \approx 15\%$ ▶ compute s.s. tracking error:

Summary: PI & PD			
•			
	PD control:		
	 provides stability, allows to shape tra replace noncausal D-controller Ks with 		
	lead controller $K \frac{s+z}{s+p}$, where $p>z$	tii a causai, stable	
	s + p, this introduces a zero in LHP (at $-z$) pulls the root locus	
	into LHP	,, pans the root locus	
	▶ shape of RL differs depending on how	v large p is	
	PI control:		
	 ▶ provides stability and perfect steady-state tracking of constant references ▶ replace unstable I-controller K/s with a stable lag controller K s + z / s + p, where p < z 		
	▶ this does not change the shape of RL	compared to PI	
Frequency Response Desi	gn Method		
60 Al:			
OSIMISOIDEN.	set s=jw.		
OSimsoidel: Sin(wt) -> G(s)	set s=jw. → M sin(wtfd).		
\ -			
Derivation: $1 u(t) = e^{st} \longrightarrow u(t) = t$	C(e)est		
1. $u(t) = e^{st} \longmapsto y(t) = 0$			
2. Euler's formula: sin(ω	$t) = {2j}$		
3. By linearity, $G(i\omega)e^{j\omega t}$	$-C(-i\omega)e^{-j\omega t}$		
$\sin(\omega t) \longmapsto \frac{G(j\omega)e^{\omega}}{2}$	$\frac{-G(-j\omega)e^{-j\omega t}}{2j} G(j\omega) = M(\omega)e^{j\phi(\omega)}$		
	$\frac{\phi(\omega)) - M(\omega)e^{-j(\omega t + \phi(\omega))}}{2i}$		
$=M(\omega)\sin(\omega t)$	$+ \phi(\omega)$		
D 2001 - 2-100 - 100 - 100			
G(S) =	$\frac{\omega_n}{\omega_n}$		
S ⁺ z	5 Wn 2 + W3		
=> M(w)= G (j)	$= \sqrt{\left[1 - \left(\frac{W}{W_N}\right)^2\right]^2 + 4\zeta^2 \left(\frac{W}{W_N}\right)^2}$		

Frequency Response Magnitude Plot.

 ω_r – resonant frequency

 M_r – resonant peak

 $\omega_{\rm BW}$ – bandwidth

We can get the following formulas using calculus:

$$\begin{cases} \omega_r = \omega_n \sqrt{1 - 2\zeta^2} \\ M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}} - 1 \end{cases}$$
 (valid for $\zeta < \frac{1}{\sqrt{2}}$; for $\zeta \ge \frac{1}{\sqrt{2}}$, $\omega_r = 0$)

$$\omega_{\text{BW}} = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{(1 - 2\zeta^2)^2 + 1}}$$

— so, if we know ω_r , M_r , $\omega_{\rm BW}$, we can determine ω_n , ζ and hence the time-domain specs (t_r, M_p, t_s)

5=0 => no damping

Scale Convention for Bode Plots.

	magnitude	phase
horizontal scale	log	log
vertical scale	log	linear

Bode Form. const. term in each factor = 1, i.e. lump all DC gains into one number in the fount

$$KG(s) = K \frac{s+3}{s(s^2 + 2s + 4)}$$

rewrite as
$$\begin{aligned} \frac{3K\left(\frac{s}{3}+1\right)}{4s\left(\left(\frac{s}{2}\right)^2+\frac{s}{2}+1\right)}\bigg|_{s=j\omega} \\ &=\frac{3K}{\underbrace{\frac{j\omega}{3}+1}} \\ &\underbrace{\frac{j\omega}{3}+1}_{j\omega}\left(\left(\frac{j\omega}{2}\right)^2+\frac{j\omega}{2}+1\right) \end{aligned}$$