

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Processamento paralelo: Clusterização.

Introdução

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Como já visto anteriormente, desde da última década observa-se um crescente número de aplicações que exigem cada vez mais "poder" computacional.

A demanda por poder computacional cresce em uma velocidade maior que os sistemas tradicionais conseguem acompanhar.

Uma alternativa para suprir esta necessidade é a implantação de sistemas "fracamente acoplados", como cluster de computadores.

Definição

ECM 245

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 16

Como já verificado na aula anterior, o Cluster (aglomerado) é um sistema interligando no mínimo dois computadores, cujo objetivo é fazer com que todo o processamento da aplicação seja distribuído entre os processadores, de uma forma transparente, ou seja, aparentando um único processador.

Quando começou a utilização?

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

A tecnologia Cluster é mais antiga do que se imagina. Ela começou com as máquinas de alto desempenho (supercomputadores). O desenvolvimento dessa tecnologia para PC's foi motivada devido ao alto custo dos supercomputadores, começando em 1994 com o desenvolvimento do cluster *Beowulf* pela NASA.

AULA 16

Configuração Cluster

ECM 245

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20

Sala: H204

AULA 16

Um Cluster pode possuir vários tipos de configuração diferentes, seja com hardware ou software. Os tipos mais comuns de Clusters Linux são:

Cluster de processamento paralelo Cluster de disponibilidade

Cluster de processamento paralelo

ECM 245

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 16

Cada vez que o Cluster recebe uma tarefa para executar (por exemplo, a renderização de um filme), já previamente preparada para "rodar" em processamento paralelo, o Cluster divide os "pedaços" da tarefa que cada uma das máquinas deve realizar. Um Cluster paralelo é ideal para executar poucas tarefas, mas que exigem grande quantidade de processamento.

Cluster de disponibilidade

ECM 245

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 16

Esse tipo de Cluster funciona como um gerenciador de tarefas, ou seja, cada máquina trabalha sozinha, porém a distribuição das tarefas é realizada de tal forma que os processadores estejam sempre trabalhando na capacidade máxima. Nesse tipo de Cluster é vital a implementação de um **sistema de filas** com vários níveis de prioridade diferentes. Esse tipo de cluster é ideal para trabalhar com grande quantidades de tarefas que necessitam de pequenas ou médias capacidades de processamento.

Beowulf

ECM 245

Arquitetura e Organização de Computadores

5ª-feira 07h40-09h20 Sala: H204

AULA 16

O primeiro Cluster Beowulf foi criado em 1994 na CESDIS, uma subsidiária da NASA. Ele era formado por 16 PCs 486 DX-100 ligados em rede. Para manter a independência do sistema e baixar os custos, os desenvolvedores optaram por utilizar o Linux. Diferente de outros tipos de Cluster, ele não exige uma arquitetura específica tão pouco máquinas homogêneas.

OpenMosix

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Este Cluster trabalham com distribuição de processos, que ao detectar o alto volume de processamento, migram as instâncias entre as máquinas do cluster, sendo processadas simultaneamente, sem a necessidade de adequação do código. (principio da elasticidade)

INSTITUTO MAUÁ DE TECNOLOGIA

ECM 245

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR , Dell EMC Texas Advanced Computing Center/Univ. of Texas United States	448,448	23,516.4	38,745.9	
6	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384
7	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States	979,072	20,158.7	41,461.2	7,578
8	AI Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR, Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,68	19,880.0	32,576.6	1,649
9	SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path , Lenovo Leibniz Rechenzentrum Germany	305,856	19,476.6	26,873.9	
10	Lassen - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100 , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	288,288	18,200.0	23,047.2	

Exemplos Reais

https://www.top500.org/lists/2019/06/

https://www.top500.org/

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband

Site:	DOE/SC/Oak Ridge National Laboratory			
System URL:	http://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/			
Manufacturer:	IBM			
Cores:	2,414,592			
Memory:	2,801,664 GB			
Processor:	IBM POWER9 22C 3.07GHz			
Interconnect:	Dual-rail Mellanox EDR Infiniband			
Performance				
Linpack Performance (Rmax)	148,600 TFlop/s			
Theoretical Peak (Rpeak)	200,795 TFlop/s			
Nmax	16,473,600			
HPCG [TFlop/s]	2,925.75			
Power Consumption				
Power:	10,096.00 kW (Submitted)			
Power Measurement Level:	3			
Measured Cores:	2,397,824			
Software				
Operating System:	RHEL 7.4			
Compiler:	XLC, nvcc			
Math Library:	ESSL, CUBLAS 9.2			
MPI:	Spectrum MPI			

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Vantagens

Expansibilidade

Baixo custo

Alta disponibilidade

Balanceamento de carga

Arquitetura e Organização de Computadores

5ª-feira

07h40-09h20

Sala: H204

AULA 16

Desvantagens

Manutenção de equipamento Monitoração dos nós Gargalos de troca de informações