MCV4U1	K&U	сом	APP	TIPS	
Test on			17	8	Name: Dorsa Rohan
Derivatives II	22	8	17	8	Date:

Knowledge & Understanding

1. Solve for x and state your solutions in exact value.

1. Solve	for x and state your s
a) e^{-3x+}	⁻⁸ = 12
Ine ⁻³	+8 = ln12
-3×	+8 : In12/
	x=1/12-8 -3

b)
$$\ln (\ln(7x-5)) = -4$$
e
 $\ln(7x-5) = -4$
e
 $7x-5 = 2$

2. For each of the following functions in the first column, find the <u>simplified</u> expression for $\frac{dy}{dx}$ and place your answer in the second column.

No need to show your work. [12] ----->

3. At what value(s) of x does $f(x) = (x + 2)^3 e^{-x} \text{ have horizontal}$ tangents? \bullet

$$f'(x) = [3(x+2)^{2}]e^{-x} + (x+2)^{3}e^{-x}(-1)$$

$$= 3(x+2)^{2}e^{-x} - (x+2)^{3}e^{-x}$$

$$= e^{-x}(x+2)^{2}[3-(x+2)]$$

$$0 = e^{-x}(x+2)^{2}(-x+1)$$

$$e^{-x} = 0 \quad (x+2)^{2} = 0 \quad (-x+1)^{2}e^{-x}$$

$$= 0 \quad (x+2)^{2} = 0 \quad (-x+1)^{2}e^{-x}$$

$$= 0 \quad (x+2)^{2} = 0 \quad (-x+1)^{2}e^{-x}$$

$$= 0 \quad (x+2)^{2} = 0 \quad (-x+1)^{2}e^{-x}$$

Function	$\frac{dy}{dx}$ (simplified)
a) $y = e^{-\sin x}$. dy = e (-cosx)
b) $y = \frac{-x}{\cos^2 x}$	$\frac{dy}{dx} = \frac{\cos 3x + 2x3inx}{\cos^3 x}$
c) $y = \pi x^{\pi}$	dy = T2 TE-1
d) $y = 3 \ln(\sin(x))$	dy = 3co+x
e) $y = \ln x^3$	dy = 3 ×
f) $y = \sin\left(\frac{x}{2}\right)\cos\left(3x\right)$	1 = \frac{1}{2} cos\frac{1}{2} cos\f
g) $y = \ln(\ln(3x^2))$	1x = 2 1x = 1x3x2(x)
h) $y = log_5(x^2 - 1)$	$\frac{dy}{dx} = \frac{2x}{(x^2-1)1n5}$
i) $y=3^{e^x}$	$\frac{dv}{dx} = e^{x} \ln 3 (3^{e})$
$j) y = \ln\left(\frac{3}{x}\right)$	$\frac{dy}{dx} = -\frac{1}{x}$
$k) y = [\sin(x)]^x$	dy = (sinx) [In(sinx)+x co+x]
1) $y^2x - 3y^3 + x = 1$	$\frac{dy}{dx} = \frac{-(y^2+1)}{y(2x-2y)}$

COMMUNICATION

Neat and complete solutions are required for full marks. [8]

- 4. Let $f(x) = a^x$, where 0 < a < 1, and let $g(x) = \frac{f(x)}{f'(x)}$.
- a) Predict the equation and the shape of the graph of g(x) by giving one example.

= a is a constant and g(x) = ma = g(x) is a straight line -

b) For what value of a will g(x) = e?

Example: 9(2) = -	m2 = 693
-------------------	----------

 $\frac{g(x) = e}{\ln \alpha} = \frac{\ln \alpha = e^{-1}}{\alpha = e^{-1}}$ $1 = e \ln \alpha$ $= e^{-1}$

a) What was the temperature of the water after 0.5 hours? Round to 2 decimal places.

b) Determine $\lim_{t\to\infty} 80e^{-0.057t} + 20$ and explain what does this mean about the temperature of pot of water? \odot

$$\lim_{t\to\infty} 80e^{-0.057t} + 20$$

$$= \lim_{t\to\infty} \left(\frac{80}{e^{-0.057t}} \right) + 20$$

Temp will approach, but rever touch, 20°C

the room temp./eventual

temperature of the water

i= 20° degrees after being

removed from the stove

- Application
- 1. Find the **equation** of the tangent line to the graph of $f(x) = e^{\frac{-x}{2}}$ that is **perpendicular** to the line x 2y 6 = 0. Express your answer in **EXACT** value.

$$S'(x) = e^{-\frac{1}{2}x} \left(-\frac{1}{a}\right)$$

$$x - 6 = 2y$$

$$y = \frac{x - 6}{a}$$

$$y = \frac{1}{4}x - 3$$

$$m = -2$$

$$-2 = -\frac{1}{4}e^{-\frac{1}{3}x}$$

$$4 = e^{-\frac{1}{3}x}$$

In (4) = Ine==>

In(4) = - 5x

$$A+ = -2\ln(4)$$

$$5(-2\ln(4)) = e^{-\ln(4)(d)}$$

$$= 44$$

$$(-2\ln(4), 4)$$

$$y = -2x + 6$$

$$4 = -2(-2\ln(4)) + 1$$

4 = 4107(4) + 4

2. Given
$$\ln(x-y^2)=y$$
, determine $\frac{dy}{dx}$ in simplified form. Determine $\frac{dy}{dx}$ when $y=1$

$$\frac{d}{dx} \left[\ln(x-y^{2}) \right] = \frac{d}{dx} \left[y \right]$$

$$y = 1,$$

$$\ln(x-y^{2}) = 1,$$

$$\frac{1}{x-y^{2}} \left(1-2yy' \right) = y'$$

$$\frac{1}{x-y^{2}} - \frac{2yy'}{x-y^{2}} = y'$$

$$\frac{1}{x-y^{2}} = \frac{1}{x-y^{2}} - \frac{2yy'}{x-y^{2}} = y'$$

$$\frac{1}{x-y^{2}} = y' + \frac{2yy'}{x-y^{2}}$$

$$\frac{dy}{dx} = \frac{1}{-y^{2}+2y+x}$$

$$\frac{1}{x-y^{2}} = y' + \frac{2yy'}{x-y^{2}}$$

$$\frac{dy}{dx} = \frac{1}{-y^{2}+2y+x}$$

$$\frac{1}{x-y^{2}} = y' + \frac{2yy'}{x-y^{2}}$$

$$\frac{dy}{dx} = \frac{1}{-y^{2}+2y+x}$$

3. Determine for what value(s) of x on the interval $-\pi \le x \le 2\pi$ where the slope of the tangent to the function $y = -\cot(x)$ is equal to 2. Use **exact** radian measure.

$$y' = \frac{1}{\tan x}$$

$$y' = \frac{1}{\sin^{2}x}$$

$$= -\tan x$$

$$y' = \tan x^{2} \left(\sec^{2}x \right)$$

$$= \frac{1}{\sin^{2}x}$$

$$= \frac{\sec^{2}x}{\tan^{2}x}$$

$$= \frac{1}{\cos^{2}x} \left(\frac{\cos^{2}x}{\sin^{2}x} \right)$$

$$= \frac{1}{\sin^{2}x}$$

4. Show that $y = \frac{1-\cos(x)}{\sin(x)}$ has **no horizontal** tangent within its domain.

$$y' = (1-\cos x)'\sin x - (1-\cos x)\sin x'$$

$$= \sin^2 x$$

$$= \sin^2 x - (1-\cos x)\cos x$$

$$= \sin^2 x$$

$$= \sin^2 x - \cos x + \cos^2 x$$

$$= \sin^2 x$$

$$= -\cos x + 1$$

$$= \sin^2 x$$

$$= \frac{1 - \cos x}{\sin^2 x} \left(\frac{1 + \cos x}{1 + \cos x} \right)$$

$$= \frac{1 - \cos^2 x}{\sin^2 x \left(1 + \cos x \right)}$$

$$= \frac{9 \sin^2 x}{2 \sin^2 x \left(1 + \cos x \right)}$$

$$= \frac{1}{1 + \cos x}$$
Page | 3

Thinking & Problem Solving

6. At what **point(s)** on the curve $y=2^{-\sqrt{3}\sin x+\cos x}$, $-2\pi \le x \le 2\pi$ is the tangent line horizontal? Express the coordinates of the points in exact values where

$$y' = 2^{-\sqrt{3}\sin x + \cos x} (\ln 2) (\sqrt{3}\sin x + \cos x)'$$

 $y' = 0 \rightarrow 0 = 2^{-\sqrt{3}\sin x + \cos x} (\ln 2) (-\sqrt{3}\cos x - \sin x)$

$$2^{-\sqrt{3}\sin x + \cos x} = 0 \qquad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

$$100 \quad \ln 2 = 0 \qquad -\overline{3}\cos x - \sin x = 0$$

二(雪, 山), (雪, 山), (雪, 山) State the <u>exact</u> value of the $\lim_{h\to 0} \frac{5e^{-1+h}-5e^{-1}}{h}$? What is the graphical significance of this quantity or what is the geometrical representation of this limit?

 $x = \pi - tan'(J_3) = \frac{2\pi}{3}$ $x = 2\pi - tan'(J_3) = \frac{5\pi}{3}$

x=-21 + tan'(53) = - 41

x = - 1 + + 9 n (U3) = - 15

Page | 4

It is the slope of the tangent sine (derivative) of
the function
$$y = 5e^{\times}$$
 at $x = +1$

=
$$\lim_{h \to 0} \frac{5e^{-1}(e^{h}-1)}{h}$$

