CS F214 Homework 1

(b)

2. (a) $(p_1 \lor p_3 \lor p_5 \lor p_6 \lor \neg p_3) \land (p_2 \lor p_4 \lor p_5 \lor p_6 \lor \neg p_2 \lor p_8) \land (p_1 \lor p_2 \lor p_6 \lor p_7 \lor \neg p_6)$ In the first term, i.e. $(p_1 \lor p_3 \lor p_5 \lor p_6 \lor \neg p_3)$, there is a p_3 and a $\neg p_3$ in disjunction. For any valuation, the entire term will result to true because of LEM $(p_3 \lor \neg p_3)$.

In the second term, i.e. $(p_2 \lor p_4 \lor p_5 \lor p_6 \lor \neg p_2 \lor p_8)$, there is a p_2 and a $\neg p_2$ in disjunction. For any valuation, the entire term will result to true because of LEM $(p_2 \lor \neg p_2)$.

In the third term, i.e. $(p_1 \lor p_2 \lor p_6 \lor p_7 \lor \neg p_6)$, there is a p_6 and a $\neg p_6$ in disjunction. For any valuation, the entire term will result to true because of LEM $(p_6 \lor \neg p_6)$.

Since the whole expression is a conjunction of the above three terms, and since we have shown that each term valuates to true, no matter what valuation we take, we arrive at $T \wedge T \wedge T$ which results to T.

This shows that the propositional formula

 $(p_1 \vee p_3 \vee p_5 \vee p_6 \vee \neg p_3) \wedge (p_2 \vee p_4 \vee p_5 \vee p_6 \vee \neg p_2 \vee p_8) \wedge (p_1 \vee p_2 \vee p_6 \vee p_7 \vee \neg p_6)$ is valid.

(b) $(p_1 \lor p_2 \lor p_3 \lor p_6 \lor \neg p_3) \land (p_1 \lor p_3 \lor p_5 \lor p_6 \lor \neg p_2 \lor p_8) \land (p_1 \lor p_2 \lor p_6 \lor p_7 \lor p_8)$ If we can find a valuation such that atleast one of the terms in conjunction is F, then the entire propositional logic formula will be F because $F \land \phi$ results to F.

Take the term $(p_1 \lor p_2 \lor p_6 \lor p_7 \lor p_8)$. If we take p_1 as F, p_2 as F, p_6 as F, p_7 as F and p_8 as F, we will get $F \lor F \lor F \lor F \lor F$, which results to F. Hence, we have atleast one valuation where the entire propositional formula valuates to false.

This shows that the propositional formula

 $(p_1 \lor p_2 \lor p_3 \lor p_6 \lor \neg p_3) \land (p_1 \lor p_3 \lor p_5 \lor p_6 \lor \neg p_2 \lor p_8) \land (p_1 \lor p_2 \lor p_6 \lor p_7 \lor p_8)$ is not valid.

3.	(a)			
	p	q	r	ϕ
	1	1	1	1
	1	1	0	1
	1	0	1	1
	1	0	0	0
	0	1	1	1
	0	1	0	0
	0	0	1	1
	0	0	0	0
				•

Looking at the truth table given above, there are three valuations for which ϕ evaluates to F.

These are:

$$p = 1, q = 0, r = 0$$

$$p = 0, q = 1, r = 0$$

$$p = 0, q = 0, r = 0$$

We can represent the above valuations in propositional logic as given below respectively:

$$\neg p \vee q \vee r$$

$$p \vee \neg q \vee r$$

$$p \lor q \lor r$$

CNF of ϕ will hence be $(\neg p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$

p	q	r	s	ψ
1	1	1	1	0
1	1	1	0	1
1	1	0	1	1
1	1	0	0	1
1	0	1	1	1
1	0	1	0	1
1	0	0	1	0
1	0	0	0	1
0	1	1	1	1
0	1	1	0	1
0	1	0	1	1
0	1	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	0	1	1
0	0	0	0	1

Looking at the truth table given above, there are three valuations for which ϕ evaluates to F. These are :

$$p = 1, q = 1, r = 1, s = 1$$

$$p = 1, q = 0, r = 0, s = 1$$

$$p = 0, q = 0, r = 1, s = 1$$

We can represent the above valuations in propositional logic as given below respectively:

$$\neg p \lor \neg q \lor \neg r \lor \neg s$$

$$\neg p \lor q \lor r \lor \neg s$$

$$p \lor q \lor \neg r \lor \neg s$$

CNF of ϕ will hence be $(\neg p \lor \neg q \lor \neg r \lor \neg s) \land (\neg p \lor q \lor r \lor \neg s) \land (p \lor q \lor \neg r \lor \neg s)$

4. We have $F_{(n+1)} = F_n + F_{(n-1)}$, where $F_1 = 1$, $F_2 = 1$. We wish to prove F_{3n} is even for $n \ge 1$ using mathematical induction. In any proof by mathematical induction, we first have a base case to show it is true for n = 1, then an induction hypothesis to assume it is true for n = k, then the induction step to show it is true for n = k + 1 if it is true for n = k. Let us assume M(n) is the statement that " F_{3n} is even"

BASE CASE:
$$F_3 = F_1 + F_2$$

= 1 + 1 = 2 (is even)

Hence we have M(1) is true.

INDUCTION HYPOTHESIS: Assume M(k) is true. This means that we assume F_{3k} is even.

$$\begin{split} \underline{\textbf{INDUCTIVE STEP}} : F_{3(k+1)} &= F_{3k+3} \\ &= F_{3k+3-1} + F_{3k+3-2} \\ &= F_{3k-1} + F_{3k-2} \\ &= F_{3k-1} + F_{3k-1} + F_{3k} \\ &= 2 \cdot F_{3k-1} + F_{3k} \end{split}$$

 $2 \cdot F_{3k-1}$ will be even because any number multiplied with an even number will be an even number. From our induction hypothesis, we have F_{3k} is even. The sum of two even numbers will be even.

PROOF: Let
$$x$$
 and y be two even numbers such that $x=2a$ and $y=2b$ $(a,b\in\mathbb{N})$. $x+y=2a+2b$ $=2(a+b)$ (is even)

Hence, M(k + 1) is true, i.e. $F_{3(k+1)}$ will be even.

Hence, we have used mathematical induction to prove that F_{3n} is even for $n \ge 1$.

- **5.** We wish to prove that the semantic entailment $\models p \land q \rightarrow p$ holds. The semantic entailment $\models p \land q \rightarrow p$ holds, hence the sequent $\vdash p \land q \rightarrow p$ must be valid, by the completeness theorem. We have two propositional atoms in the above sequent, p and q. Hence, we need $2^2 = 4$ different valuations where we need to show that $p \land q \rightarrow p$ results to T. We go about by using the Law of Excluded Middle (LEM) to arrive at each and every possible valuation, since LEM implies a tautology.
- 1 $p \lor \neg p$ LEM

2 p assumption	13 $\neg p$ assumption		
3 q∨¬q LEM	14 $q \lor \neg q$ LEM		

24 $p \land q \rightarrow p \lor e 1, 2-12, 13-23$

Hence, we have showed that the sequent $\vdash p \land q \rightarrow p$ is valid.

The semantic entailment $\models p \land q \rightarrow p$ holds.