jDMR: a heuristic DMR caller for WGBS data

Rashmi Hazarika, Y.Shahryary & Frank Johannes

2022-02-17

Contents

1	Inp	ut files	2
	1.1	Methimpute files:	2
	1.2	A metadata file containing description about samples	2
2	Ger	nerate cytosine region calls from genome	2
	2.1	Run jDMR on cytosine clusters extracted from genome	3
		2.1.1 Output files of jDMR Regions approach	3
	2.2	Run jDMR on a binned genome	4
		2.2.1 Output files of jDMR Grid approach	4
3	Ger	nerate DMR matrix	4
	3.1	Run "makeDMRmatrix"	4
	3.2	Output files of DMRmatrix function	
4	Filt	er DMR matrix	Ę
	4.1	Filter the DMR matrix with the following options	Ē
	4.2	Filtered Output	6
5	Anı	notate DMRs	6
	5.1	Output files after annotation	7
6	R c	ossion info	-

1 Input files

For generation of region-level calls, jDMR requires the following inputs.

1.1 Methimpute files:

Base-level methylome outputs (generated using the R package "Methimpute")

1.2 A metadata file containing description about samples

For population data-sets without replicates, listfiles.fn should have the structure below.

```
file: full PATH of file.

sample: a sample name
```

```
samplefile1 <- system.file("extdata", "listFiles1.fn", package = "jDMR")
fread(samplefile1, header = TRUE)</pre>
```

```
file sample

1: methimpute-out/methylome_A_All.txt methylomeA

2: methimpute-out/methylome_B_All.txt methylomeB

3: methimpute-out/methylome_C_All.txt methylomeC

4: methimpute-out/methylome_D_All.txt methylomeD

5: methimpute-out/methylome_E_All.txt methylomeE

6: methimpute-out/methylome_F_All.txt methylomeF
```

For pairwise control-treatment data-sets with replicates, an additional column "replicate" should be provided. See structure below.

```
file: full PATH of filesample: a sample namereplicate: label for replicates
```

```
samplefile2 <- system.file("extdata", "listFiles2.fn", package = "jDMR")
fread(samplefile2, header = TRUE)</pre>
```

2 Generate cytosine region calls from genome

jDMR detects DMRs using two approaches a) finding cytosine clusters in the genome (section 2.1) b) using a binning approach (section 2.2). You can use either of the methods to obtain the region calls. The remaining steps, makeDMRmatrix, filterDMRmatrix annotateDMRs are the same for both methods.

2.1 Run jDMR on cytosine clusters extracted from genome

fasta.file: PATH to FASTA file

samplefiles: PATH to file containing description about the samples

genome: a string containing name of the genome

out.dir: PATH to output directory

contexts: sequence contexts of the cytosine. By default this option is set to c("CG", "CHG", "CHH"). If you want to run for a single context such as CG, set it as "CG".

library(jDMR)

```
out.dir <- "/myfolder/DMR-results"
myfasta <- system.file("extdata", "TAIR10_chr_all.fa", package = "jDMR")
samplefile <- system.file("extdata", "listFiles1.fn", package = "jDMR")

runjDMRregions(fasta.file = myfasta, samplefiles = samplefile, genome = "Arabidopsis",
    out.dir = out.dir)</pre>
```

2.1.1 Output files of jDMR Regions approach

Rdata files containing coordinates of Cytosine clusters will be generated for each chromosome and cytosine context.

Output file "Arabidopsis_regions_chr1_CG.Rdata" contains coordinates of cytosine clusters

```
regionfile <- dget(system.file("extdata", "min.C_5/fp0.01/Arabidopsis_regions_chr1_CG.Rdata",
    package = "jDMR"))</pre>
```

head(regionfile\$reg.obs)

```
chr start
           end cluster.length region
   1 3696 3856
1
                  160
                                reg1
   1 12100 12155
                           55
                                reg2
   1 20991 21026
                           35
                                reg3
   1 21257 21293
                           36
                                reg4
5
   1 29966 30008
                           42
                                reg5
   1 46099 46141
                           42
                                reg6
```

Region files containing state calls and methylation levels will be generated for each sample and each cytosine context.

	seqnames	start	end	${\tt context}$	${\tt posteriorMax}$	status	rc.meth.lvl
1:	1	3696	3856	CG	0.99999	U	0.01732
2:	1	12100	12155	CG	0.99999	U	0.01732
3:	1	20991	21026	CG	0.99999	U	0.01732
4:	1	21257	21293	CG	0.99999	U	0.01732
5:	1	29966	30008	CG	0.99999	M	0.87383
6:	1	46099	46141	CG	0.99999	U	0.01732

seqnames, start and end: Chromosome coordinates

context: Sequence context of cytosine i.e CG,CHG,CHH

posteriorMax: Posterior value of the methylation state call

status: Methylation status

rc.meth.lvl: Recalibrated methylation level calculated from the posteriors and fitted parameters

2.2 Run jDMR on a binned genome

A non-sliding window approach will be used to bin the genome. The bin and step size will be determined automatically using the min.C parameter.

fasta.file: PATH to FASTA file

samplefiles: PATH to file containing description about the samples

genome: a string containing name of the genome

out.dir: PATH to output directory

contexts: sequence contexts of the cytosine. By default this option is set to c("CG", "CHG", "CHH"). If you want to run for a single context such as CG, set it as "CG".

min.C: minimum number of cytosines in a bin. bins lower than specified the shold will be dropped.

2.2.1 Output files of jDMR Grid approach

Region files containing state calls and methylation levels will be generated for each sample and for each context.

	seqnames	start	end	context	posteriorMax	status	rc.meth.lvl
1:	1	1	500	CG	0.99999	M	0.74660
2:	1	501	1000	CG	0.99999	M	0.74660
3:	1	1001	1500	CG	0.99999	U	0.03057
4:	1	1501	2000	CG	0.99999	U	0.03057
5:	1	2001	2500	CG	0.99999	U	0.03057
6:	1	2501	3000	CG	0.99999	U	0.03057

segnames, start and end: Chromosome coordinates

context: Sequence context of cytosine i.e CG,CHG,CHH

posteriorMax: Posterior value of the methylation state call

status: Methylation status

rc.meth.lvl: Recalibrated methylation level calculated from the posteriors and fitted parameters

3 Generate DMR matrix

3.1 Run "makeDMRmatrix"

"makeDMRmatrix" function generates matrix of state calls, rc.meth.lvls and posterior probabilities for all samples in one dataframe.

samplefiles: PATH to file containing description about the samples

input.dir: PATH to directory containing region files.

out.dir: PATH to output directory.

contexts: sequence contexts of the cytosine. By default this option is set to c("CG", "CHG", "CHH"). If you want to run for a single context such as CG, set it as "CG".

```
input.dir <- "/myfolder/DMR-results"
out.dir <- "/myfolder/DMRmatrix-results"
samplefile <- system.file("extdata", "listFiles1.fn", package = "jDMR")
makeDMRmatrix(samplefiles = samplefile, input.dir = myinput, out.dir = out.dir)</pre>
```

3.2 Output files of DMRmatrix function

"CG_StateCalls.txt" has the following structure. "0" in the output matrix denotes "Unmethylated" and "1" stands for "Methylated".

```
statecalls <- fread(pasteO(out.dir, "CG_StateCalls.txt", sep = ""), header = TRUE)
head(statecalls)</pre>
```

```
seqnames start end WT_rep1 mutantA_rep1 mutantB_rep1
             1 500
1:
         1
                           1
                                        1
2:
         1
             501 1000
                            1
                                        1
                                                     1
                                       0
                                                     0
3:
         1 1001 1500
4:
         1 1501 2000
                            0
                                       0
                                                     0
5:
         1 2001 2500
                            0
                                        0
                                                     0
6:
         1 2501 3000
                            0
                                        0
                                                     0
```

"CG_rcMethlvl.txt" has the following structure. The output matrix contains recalibrated methylation levels for each sample and for the specific region.

```
rcmethlvls <- fread(pasteO(out.dir, "CG_rcMethlvl.txt", sep = ""), header = TRUE)
head(rcmethlvls)</pre>
```

```
seqnames start end WT_rep1 mutantA_rep1 mutantB_rep1
       1
           1 500 0.74660 0.67491
1:
                                             0.71563
         1 501 1000 0.74660
                               0.67491
                                             0.71563
         1 1001 1500 0.03057
                               0.01907
                                            0.02159
3:
         1 1501 2000 0.03057
                                 0.01907
                                             0.02159
4:
         1 2001 2500 0.03057
5:
                                 0.01907
                                             0.02159
         1 2501 3000 0.03057
                                 0.01907
                                             0.02159
```

"CG_postMax.txt" has the following structure. The output matrix contains posterior probabilities for each sample and for the specific region.

```
postMax <- fread(paste0(out.dir, "CG_postMax.txt", sep = ""), header = TRUE)
head(postMax)</pre>
```

```
seqnames start end WT_rep1 mutantA_rep1 mutantB_rep1
       1
             1 500 0.99999
                           1
1:
                                        0.99999
2:
        1
          501 1000 0.99999
                                   1
                                         0.99999
3:
        1 1001 1500 0.99999
                                   1
                                         0.99999
4:
        1 1501 2000 0.99999
                                  1
                                         0.99999
        1 2001 2500 0.99999
                                   1
                                        0.99999
5:
6:
        1 2501 3000 0.99999
                                          0.99999
```

4 Filter DMR matrix

4.1 Filter the DMR matrix with the following options

This function filters the DMR matrix for non-polymorphic patterns.

gridDMR: set this option to TRUE if Grid approach was used otherwise set to FALSE. The output will contain merged regions.

data.dir: PATH to folder containing DMR matrix

epiMAF.cutoff: Applicable for calling calling population DMRs. This option can be used to filter for Minor Epi-Allele frequency as specified by user. By default, this option is set to NULL.

replicate.consensus: Applicable for control-treatment data-sets with replicates. Users can specify the percentage of concordance in methylation states in samples with multiple replicates. For datasets with just 2 replicates, replicate.consensus should be set as 1 (means 100% concordance). By default, this option is set to NULL.

rc.methlyl.out: Output filtered matrix containing recalibrtated methylation levels. By default, this option is set to FALSE.

context.specific.DMRs: Output context specific DMRs i.e CG-only, CHG-only, CHH-only, non-CG and multi-context DMRs. By default, this option is set to TRUE.

4.2 Filtered Output

"CG_StateCalls-filtered.txt" has the following structure.

```
statecallsFiltered <- fread(paste0(out.dir, "CG_StateCalls-filtered.txt", sep = ""),
    header = TRUE)
head(statecallsFiltered)</pre>
```

	seqnames	start	end	width	WT_rep1	mutantA_rep1	mutantB_rep1
1:	1	32001	32500	500	0	1	0
2:	1	35501	36000	500	1	0	0
3:	1	44501	45000	500	1	0	0
4:	1	93001	93500	500	0	1	1
5:	1	95001	95500	500	0	1	1
6:	1	133001	133500	500	1	0	1

Additionally, the following files viz, CG-only-DMRs.txt, CHG-only-DMRs.txt, CHH-only-DMRs.txt, nonCG-DMRs.txt and multi-context-DMRs.txt will be generated.

5 Annotate DMRs

Multiple gff3 annotation files can be supplied as a vector with the gff option. Single/multiple files containing filtered DMR matrix should be provided with the file.list option.

gff.files: Multiple gff3 annotation files can be supplied as a vector

annotation: specify annotation categories

input.dir: path to folder containing only files to be annotated. Any file containing 3 columns (chr, start, stop) can be annotated using the annotateDMRs function.

gff3.out: whether to output annotated files in gff3 format

out.dir: path to output folder

```
# annotation files
gff.AT <- "/Annotations/Arabidopsis_thaliana.TAIR10.47.gff3"
gff.TE <- "/Annotations/TAIR10_TE.gff3"
gff.pr <- "/Annotations/TAIR10_promoters.gff3"</pre>
```

5.1 Output files after annotation

Mapped files are output in .txt and/or .gff3 format. Additionally, a DMR count table is generated.

```
DMRcounts <- fread(paste0(out.dir, "annotate_DMRs/DMR-counts.txt", sep = ""), header = TRUE)
DMRcounts</pre>
```

	sample	total.DMRs	gene	promoters	TE	multiple.overlaps
1:	CG-only-DMRs	7238	4551	118	262	2122
2:	CHG-only-DMRs	729	42	47	303	208
3:	CHH-only-DMRs	41292	9809	3082	13082	9260
4:	multi-context-DMRs	1235	59	145	305	608
5:	nonCG-DMRs	10389	193	481	2138	2583

6 R session info

[49] XVector_0.30.0

```
sessionInfo()
 R version 4.0.1 (2020-06-06)
 Platform: x86_64-apple-darwin17.0 (64-bit)
 Running under: macOS 10.16
 Matrix products: default
          /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
 LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
 locale:
  [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
  attached base packages:
  [1] parallel stats4
                          stats
                                    graphics grDevices utils
                                                                   datasets methods
                                                                                        base
  other attached packages:
   [1] jDMR_0.1.0
                            R.utils_2.11.0
                                                  R.oo 1.24.0
                                                                       R.methodsS3 1.8.1
                                                                                             GenomicRanges_1.42.
   [6] GenomeInfoDb_1.26.7 IRanges_2.24.1
                                                  S4Vectors_0.28.1
                                                                       BiocGenerics_0.36.1
                                                                                             data.table_1.14.2
  loaded via a namespace (and not attached):
   [1] Rcpp_1.0.8
                                   lattice_0.20-45
                                                                tidyr_1.1.4
                                                                                             Rsamtools_2.6.0
                                   assertthat_0.2.1
   [5] Biostrings_2.58.0
                                                                digest_0.6.29
                                                                                             utf8_1.2.2
   [9] R6_2.5.1
                                   plyr_1.8.6
                                                                evaluate_0.14
                                                                                             ggplot2_3.3.5
                                   zlibbioc_1.36.0
                                                                rlang_1.0.0
  [13] pillar_1.6.5
                                                                                             rstudioapi_0.13
                                                                BiocParallel_1.24.1
  [17] Matrix_1.4-0
                                   rmarkdown_2.11
                                                                                             stringr_1.4.0
  [21] RCurl_1.98-1.5
                                   munsell_0.5.0
                                                                DelayedArray_0.16.3
                                                                                             compiler_4.0.1
  [25] rtracklayer_1.50.0
                                   xfun_0.29
                                                                pkgconfig_2.0.3
                                                                                             htmltools_0.5.2
  [29] tidyselect_1.1.1
                                   SummarizedExperiment_1.20.0 tibble_3.1.6
                                                                                             GenomeInfoDbData_1.
  [33] matrixStats_0.61.0
                                   XML_3.99-0.8
                                                                fansi_1.0.2
                                                                                             crayon_1.4.2
  [37] dplyr_1.0.7
                                   GenomicAlignments_1.26.0
                                                                bitops_1.0-7
                                                                                             grid_4.0.1
  [41] gtable_0.3.0
                                   lifecycle_1.0.1
                                                                DBI_1.1.2
                                                                                             magrittr_2.0.2
  [45] formatR 1.11
                                   scales 1.1.1
                                                                cli 3.1.1
                                                                                             stringi 1.7.6
```

ellipsis_0.3.2

generics_0.1.1

reshape2_1.4.4

[53] vctrs_0.3.8 [57] glue_1.6.1 [61] yaml_2.2.2 methimpute_1.12.0 purrr_0.3.4 colorspace_2.0-2 tools_4.0.1
MatrixGenerics_1.2.1
minpack.lm_1.2-1

Biobase_2.50.0 fastmap_1.1.0 knitr_1.37