UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02214 - Estatística Geral 1

ÁREA 1

FORMULÁRIO

Tabela de Frequências

- Frequências absolutas e relativas: seja F_j a frequência absoluta do valor/classe j e n o total de elementos do conjunto de dados. A frequência relativa é dada por $f_j = F_j/n$.
- Número de classes (k): $k = \sqrt{n}$ (regra empírica); $k = 1 + 3,32 \log(n)$, em que k é número de classes e n o número de observações. Ainda, $i = a_t/k$, em que i é a amplitude do intervalo, $a_t = x_{(n)} x_{(1)}$ é a amplitude total, e $x_{(1)}, x_{(n)}$ são os extremos inferior e superior do conjunto de dados.

Gráficos

• **Histograma:** a densidade de frequência é dada pela razão entre a frequência relativa da classe e a base (comprimento do intervalo) da classe.

Medidas Descritivas

Medidas de localização

- A média amostral (aritmética simples) é dada por $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$.
- Suponha que para os dados x_1, x_2, \ldots, x_n possuem os seguintes pesos p_1, p_2, \ldots, p_n , então **a média** aritmética ponderada é dada por $\bar{x}_p = \frac{\sum_{i=1}^n x_i p_i}{\sum_{i=1}^n p_i}$.
 - A média aritmética para dados **agrupados por intervalo de classe** é dada por $\bar{x} = \frac{\sum_{j} c_{j} F_{j}}{n}$ em que, c_{j} é o ponto médio do intervalo de classe.
- A posição da mediana é dada por $p = \frac{n+1}{2}$. A **mediana** é dada por $Md = x_{(p)}$, quando n é par, e $Md = [x_{(p_1)} + x_{(p_1)}]/2$, quando n é impar. As posições dos **quartis** são dadas por $p_1 = \frac{n+1}{4}$; $p_2 = \frac{2(n+1)}{4}$; $p_3 = \frac{3(n+1)}{4}$, se n é impar, e $p_1 = \frac{n+2}{4}$; $p_2 = \frac{2n+2}{4}$; $p_3 = \frac{3n+2}{4}$. Os quartis são dados por $Q_i = x_{(p_i)}$. Se p_i não for um número inteiro, então $Q_i = (x_{(\lceil p_i \rceil)} + x_{(\lfloor p_i \rfloor)})/2$, em que $\lceil p_i \rceil, \lfloor p_i \rfloor$ são o menor e o maior inteiro de p_i .

Medidas de variação ou dispersão

- A amplitude total é $a_t = x_{(n)} x_{(1)}$, em que $x_{(1)}, x_{(n)}$ são os extremos inferior e superior do conjunto de dados.
- A variância amostral é dada por $s^2=\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}=\frac{\sum_{i=1}^nx_i^2-n\bar{x}^2}{n-1}.$
 - A variância amostral para dados **agrupados por intervalo de classe** é dada por $s^2 = \frac{\sum_j F_j (c_j \bar{x})^2}{n-1}$ em que, c_j é o ponto médio do intervalo de classe.
- O desvio padrão amostral é igual a raiz quadrada da variância amostral: $s=\sqrt{s^2}$.
- O coeficiente de varição é $CV = s/\bar{x}$.

Medidas de formato

- O coeficiente de assimetria é $a_3 = m_3/(m_2\sqrt{m_2})$, em que $m_2 = \sum_{i=1}^n (x_i \bar{x})^2/n$ e $m_3 = \sum_{i=1}^n (x_i \bar{x})^3/n$.
- O coeficiente de curtose é $a_4 = m_4/(m_2)^2$, em que $m_2 = \sum_{i=1}^n (x_i \bar{x})^2/n$ e $m_4 = \sum_{i=1}^n (x_i \bar{x})^4/n$.

Medidas de associação

- A covariância amostral entre X e Y é dado por $cov(X,Y) = \frac{s_{xy}}{n}$, em que $s_{xy} = \sum_i (x_i \overline{x})(y_i \overline{y}) = \sum_i x_i y_i [(\sum_i x_i)(\sum_i y_i)]/n$.
- O coeficiente de correlação linear amostral entre X e Y é dado por $r = corr(X, Y) = \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$, em que

$$- s_{xx} = \sum_{i} (x_i - \overline{x})^2 = \sum_{i} x_i^2 - (\sum_{i} x_i)^2 / n,$$

$$- s_{yy} = \sum_{i} (y_i - \overline{y})^2 = \sum_{i} y_i^2 - (\sum_{i} y_i)^2 / n \text{ e}$$

$$- s_{xy} = \sum_{i} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i} x_i y_i - [(\sum_{i} x_i)(\sum_{i} y_i)] / n;$$

ou

$$r = corr(X, Y) = \frac{cov(X, Y)}{\sqrt{\frac{S_{XX}}{n} \frac{S_{YY}}{n}}}$$