ON THE FOUNDATIONS OF *n*-ALITY THEORIES

PU JUSTIN SCARFY YANG

1. Introduction

The concept of duality appears throughout mathematics, capturing fundamental symmetries between pairs of mathematical objects. We generalize this idea to n-ality, whereby we establish similar relationships among n-objects in a coherent, structured manner. This paper outlines the foundational definitions, structures, and theorems of n-ality theories.

2. FOUNDATIONAL DEFINITIONS

Definition 2.0.1 (n-Ality Structure). Let S be a mathematical structure (e.g., a group, vector space, or category) and let n be a positive integer. An <u>n-ality structure</u> on S consists of a collection of n objects, (O_1, O_2, \ldots, O_n) , along with a set of transformations $T_{i,j}: O_i \rightarrow O_j$ for each $i, j = 1, \ldots, n$, such that:

- For each pair (i, j), there exists an inverse transformation $T_{j,i}: O_j \to O_i$ with $T_{i,j} \circ T_{j,i} = id_{O_i}$.
- The transformations satisfy an n-ary symmetry property under composition, extending classical duality.

Definition 2.0.2 (Tri-Ality Structure). A <u>tri-ality structure</u> is a specific case of n-ality where n=3. Let (O_1, O_2, O_3) be a set of objects with transformations $T_{i,j}$ for $i, j \in \{1, 2, 3\}$ satisfying the triality property:

$$T_{1,2}\circ T_{2,3}\circ T_{3,1}=id_{O_1},\quad T_{2,3}\circ T_{3,1}\circ T_{1,2}=id_{O_2},\quad T_{3,1}\circ T_{1,2}\circ T_{2,3}=id_{O_3}.$$

Definition 2.0.3 (Quater-Ality Structure). A quater-ality structure is an extension of duality with n=4. Let (O_1,O_2,O_3,O_4) be a set of objects with transformations $T_{i,j}$ for $i,j \in \{1,2,3,4\}$ satisfying the quater-ality property:

$$T_{1,2} \circ T_{2,3} \circ T_{3,4} \circ T_{4,1} = id_{O_1},$$

and similar identities hold for cyclic permutations.

3. Properties of N-Ality

Theorem 3.0.1 (Existence of Symmetric Transformations in n-Ality). Let (O_1, O_2, \ldots, O_n) be an n-ality structure with transformations $T_{i,j}$. Then each transformation $T_{i,j}$ is part of a cyclic symmetry under composition, generalizing the concept of dual pairs.

Proof. We proceed by induction on n. For n=2, this reduces to classical duality. Assume the property holds for n=k and extend to n=k+1. This results in a cyclic permutation of compositions, preserving the identity.

4. EXAMPLES AND APPLICATIONS OF N-ALITY

Example 4.0.1 (Tri-Ality in Vector Spaces). Consider vector spaces V_1, V_2, V_3 over a field \mathbb{F} . Define linear maps $T_{i,j}: V_i \to V_j$ that satisfy the tri-ality condition. This structure could be used to study symmetry relations in spaces with triple tensor products or in higher-dimensional representations.

Example 4.0.2 (Quater-Ality in Algebraic Geometry). In the context of algebraic varieties X_1, X_2, X_3, X_4 , define morphisms $T_{i,j}: X_i \to X_j$ that maintain a quater-ality relation. This could lead to a new class of reciprocity laws in arithmetic geometry, extending duality theorems.

5. ADVANCED DEFINITIONS IN n-ALITY

5.1. Generalized *n*-Ality Transformation Groups.

Definition 5.1.1 (n-Ality Transformation Group). Let $\mathcal{O} = \{O_1, O_2, \dots, O_n\}$ be a set of mathematical objects, and let $T_{i,j}: O_i \to O_j$ denote transformations between pairs in \mathcal{O} such that:

- (a) $T_{i,j}$ is invertible with inverse $T_{j,i}$, satisfying $T_{i,j} \circ T_{j,i} = id_{O_i}$ for all $i, j \in \{1, \dots, n\}$.
- (b) The transformations form a group $\mathcal{T} \subset Aut(\mathcal{O})$ under composition, which we call the n-ality transformation group of \mathcal{O} .

5.2. Cyclic Symmetry Condition.

Definition 5.2.1 (Cyclic Symmetry Condition for n-Ality). *An n-ality structure satisfies the* <u>cyclic</u> symmetry condition if, for any cyclic permutation σ of $\{1, \ldots, n\}$, we have:

$$T_{\sigma(1),\sigma(2)} \circ T_{\sigma(2),\sigma(3)} \circ \cdots \circ T_{\sigma(n-1),\sigma(n)} \circ T_{\sigma(n),\sigma(1)} = id_{O_{\sigma(1)}}.$$

6. THEOREMS IN GENERALIZED *n*-ALITY THEORY

6.1. Existence and Uniqueness Results.

Theorem 6.1.1 (Existence of n-Ality Structures). Given a set $\{O_1, \ldots, O_n\}$ of objects and a collection of transformations satisfying the cyclic symmetry condition, there exists an n-ality structure on $\{O_1, \ldots, O_n\}$.

Proof. To construct the n-ality structure, define the transformation set $T_{i,j}$ for i, j = 1, ..., n and assume $T_{i,j}$ satisfies invertibility and the cyclic symmetry condition. By the properties of the group \mathcal{T} , we have that the identity map is preserved under cyclic compositions, which completes the structure by ensuring closure and associativity. Thus, \mathcal{O} forms an n-ality structure.

6.2. Properties of n-Ality Transformation Groups.

Lemma 6.2.1 (Associativity in n-Ality Transformation Groups). The set of transformations $\{T_{i,j}\}_{i,j=1}^n$ under composition forms an associative group.

Proof. Since each $T_{i,j}$ is invertible and satisfies closure under composition, the group axioms of identity, inverses, and associativity are met. Specifically, the cyclic symmetry condition implies that for any permutation σ on $\{1, \ldots, n\}$, compositions of transformations return to the identity.

7. Examples of Generalized N-Ality Structures

Example 7.0.1 (Quater-Ality in Complex Numbers). Consider four complex numbers $\{z_1, z_2, z_3, z_4\}$ on the unit circle in the complex plane. Define transformations $T_{i,j}(z) = \overline{z} \cdot \omega^{(i-j)}$ where $\omega = e^{2\pi i/4}$. These transformations form a quater-ality structure with cyclic symmetry.

8. DIAGRAMS FOR N-ALITY STRUCTURES

FIGURE 1. Diagram of transformations in a quater-ality structure

9. APPLICATIONS OF N-ALITY IN NUMBER THEORY

Example 9.0.1 (Tri-Ality in Modular Forms). Consider modular forms f, g, h with transformations $T_{f,g}, T_{g,h}, T_{h,f}$ such that $T_{f,g} \circ T_{g,h} \circ T_{h,f} = id$. This tri-ality structure reveals interconnections in modular form spaces, potentially offering insights into L-functions.

10. ACADEMIC REFERENCES

For further reading, the following references provide foundational material for duality theories, modular forms, and symmetry in mathematics, upon which our generalized *n*-ality theory builds.

REFERENCES

- [1] A. Borel, Automorphic Forms and Representations, Cambridge University Press, 1980.
- [2] S. Lang, Algebraic Number Theory, Springer, 1990.
- [3] J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.
- [4] S. Mac Lane, Categories for the Working Mathematician, Springer, 1998.

11. ADVANCED STRUCTURAL PROPERTIES OF *n*-ALITY

11.1. Symmetric *n*-Ality Structures.

Definition 11.1.1 (Symmetric *n*-Ality Structure). An *n*-ality structure (O_1, O_2, \dots, O_n) is <u>symmetric</u> if there exists a permutation group S_n acting on $\{O_1, \dots, O_n\}$ such that:

$$T_{\sigma(i),\sigma(j)} = T_{i,j} \quad \forall \, \sigma \in S_n.$$

This property ensures that the transformations between objects are invariant under the action of any permutation in S_n .

Theorem 11.1.2 (Invariance in Symmetric *n*-Ality Structures). Let $\{O_1, \ldots, O_n\}$ be a symmetric *n*-ality structure with transformations $T_{i,j}$. Then for any permutation $\sigma \in S_n$, the cyclic composition of transformations is invariant:

$$T_{\sigma(1),\sigma(2)} \circ T_{\sigma(2),\sigma(3)} \circ \cdots \circ T_{\sigma(n),\sigma(1)} = T_{1,2} \circ T_{2,3} \circ \cdots \circ T_{n,1}.$$

Proof. This follows directly from the definition of a symmetric n-ality structure, where the transformations are permutation invariant. For any cyclic composition, applying a permutation σ preserves the transformation order and hence the identity in the cycle.

11.2. Dual Group Structures in *n*-Ality Theory.

Definition 11.2.1 (Dual Group Structure in *n*-Ality). Let $\mathcal{O} = \{O_1, \dots, O_n\}$ be an *n*-ality structure. Define two groups:

- The transformation group $\mathcal{T} = \langle T_{i,j} \rangle$,
- The dual group $\mathcal{T}^* = \{T_{j,i} \mid T_{i,j} \in \mathcal{T}\}.$

The structure is a <u>dual group structure</u> if \mathcal{T} and \mathcal{T}^* are isomorphic under the mapping $T_{i,j} \mapsto T_{j,i}$.

Theorem 11.2.2 (Isomorphism Between Dual Groups in n-Ality). If (O_1, \ldots, O_n) has a dual group structure, then there exists an isomorphism $\phi : \mathcal{T} \to \mathcal{T}^*$ such that $\phi(T_{i,j}) = T_{j,i}$.

Proof. Define ϕ by $\phi(T_{i,j}) = T_{j,i}$. Since $T_{i,j}$ is invertible, $T_{j,i}$ exists and belongs to \mathcal{T}^* . Moreover, ϕ preserves the group operation because $T_{i,j} \circ T_{j,k} = T_{i,k}$, so $\phi(T_{i,j} \circ T_{j,k}) = T_{k,i}$.

12. ALGEBRAIC EXTENSIONS OF *n*-ALITY: RING AND FIELD STRUCTURES

Definition 12.0.1 (n-Ality Ring). An <u>n-ality ring</u> is a ring R with n-elements $\{r_1, r_2, \ldots, r_n\}$ that satisfy:

$$r_i \cdot r_j = r_{(i+j) \bmod n},$$

where $i, j \in \{1, ..., n\}$, and the operation \cdot defines a multiplication in R.

Proposition 12.0.2 (Commutativity in n-Ality Rings). Every n-ality ring R is commutative if the elements satisfy $r_i \cdot r_j = r_j \cdot r_i$.

Proof. For all $i, j \in \{1, ..., n\}$, we have $r_i \cdot r_j = r_{(i+j) \bmod n}$ by the definition of R. Since the addition operation in $\mathbb{Z}/n\mathbb{Z}$ is commutative, it follows that $r_{(i+j) \bmod n} = r_{(j+i) \bmod n}$.

Definition 12.0.3 (n-Ality Field). An n-ality field F extends the concept of an n-ality ring, requiring that every non-zero element $r_i \in F$ has a multiplicative inverse r_i^{-1} in F such that:

$$r_i \cdot r_i^{-1} = r_1,$$

where r_1 is the multiplicative identity.

13. Examples and Diagrams for Algebraic N-Ality Structures

Example 13.0.1 (Tri-Ality Field Structure). Consider the field $\mathbb{F}_3 = \{0, 1, 2\}$ under modular arithmetic. Define a tri-ality field structure with elements $\{1, \omega, \omega^2\}$, where $\omega = e^{2\pi i/3}$ satisfies:

$$\omega^3 = 1$$
 and $\omega \cdot \omega^2 = 1$.

This structure satisfies the properties of a tri-ality field.

FIGURE 2. Diagram of transformations in a symmetric quater-ality structure

14. Applications in Category Theory

14.1. n-Ality Functoriality.

Definition 14.1.1 (n-Ality Functor). Let C_1, C_2, \ldots, C_n be categories. An n-ality functor F is a collection of functors $F_{i,j}: C_i \to C_j$ for each $i, j \in \{1, \dots, n\}$, satisfying:

$$F_{i,j} \circ F_{j,k} = F_{i,k}$$
 and $F_{i,i} = id_{C_i}$.

Example 14.1.2 (Tri-Ality Functor in Homotopy Theory). Consider three categories $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ representing different homotopy categories. Define functors $F_{i,j}: \mathcal{H}_i \to \mathcal{H}_j$ preserving homotopy equivalences and satisfying the tri-ality functor conditions. This setup models cyclic relationships between homotopy types.

15. References for Advanced N-Ality Theory

The following references provide additional foundational materials relevant to the algebraic structures, fields, and categorical theory applications of n-ality.

REFERENCES

- [1] N. Jacobson, Basic Algebra II, W.H. Freeman and Company, 1985.
- [2] S. Mac Lane, Categories for the Working Mathematician, Springer, 1998.
- [3] S. Lang, Algebra, Springer, 2002.
- [4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.

16. COHOMOLOGICAL N-ALITY STRUCTURES

16.1. n-Ality Cohomology Groups.

Definition 16.1.1 (n-Ality Cohomology Group). Let X be a topological space, and let $\{C_1, C_2, \dots, C_n\}$ be a collection of coefficient groups. The n-ality cohomology group $H_n^k(X; \{C_i\})$ in degree k with coefficients in $\{C_i\}$ is defined as:

$$H_n^k(X; \{C_i\}) = \bigoplus_{i=1}^n H^k(X; C_i),$$

where each $H^k(X; C_i)$ is the classical cohomology group of X with coefficients in C_i .

Theorem 16.1.2 (Direct Sum Decomposition of n-Ality Cohomology). For any topological space X and n-set of coefficient groups $\{C_1, \ldots, C_n\}$, the n-ality cohomology group $H_n^k(X; \{C_i\})$ decomposes as:

$$H_n^k(X; \{C_i\}) \cong H^k(X; C_1) \oplus H^k(X; C_2) \oplus \cdots \oplus H^k(X; C_n).$$

Proof. By the definition of $H_n^k(X; \{C_i\})$, each component $H^k(X; C_i)$ is independent of the others, hence $H_n^k(X; \{C_i\})$ is naturally isomorphic to the direct sum of the classical cohomology groups with coefficients in C_i for each i.

16.2. Cup Product in n-Ality Cohomology.

Definition 16.2.1 (Cup Product in n-Ality Cohomology). Let $\alpha_i \in H^p(X; C_i)$ and $\beta_j \in H^q(X; C_j)$ for $i, j \in \{1, ..., n\}$. The cup product in $H_n^{p+q}(X; \{C_i\})$ is defined by:

$$\alpha_i \smile \beta_j = \begin{cases} \alpha_i \smile \beta_i, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases}$$

where \smile on the right side denotes the classical cup product in $H^*(X; C_i)$.

Proposition 16.2.2 (Associativity of the Cup Product in n-Ality Cohomology). The cup product in $H_n^*(X; \{C_i\})$ is associative, i.e., for any $\alpha_i, \beta_i, \gamma_i \in H^*(X; C_i)$, we have:

$$(\alpha_i \smile \beta_i) \smile \gamma_i = \alpha_i \smile (\beta_i \smile \gamma_i).$$

Proof. This follows directly from the associativity of the cup product in classical cohomology, since the product is defined componentwise for each $H^*(X; C_i)$.

17. TOPOLOGICAL N-ALITY STRUCTURES AND FUNDAMENTAL GROUPS

17.1. n-Ality Fundamental Group.

Definition 17.1.1 (n-Ality Fundamental Group). Let X be a topological space with n distinguished base points $\{x_1, x_2, \ldots, x_n\}$. The <u>n-ality fundamental group</u> $\pi_1^n(X)$ is defined as the product of fundamental groups at each base point:

$$\pi_1^n(X) = \pi_1(X, x_1) \times \pi_1(X, x_2) \times \cdots \times \pi_1(X, x_n).$$

Theorem 17.1.2 (Homotopy Invariance of n-Ality Fundamental Group). Let X and Y be homotopy equivalent spaces with n base points. Then $\pi_1^n(X) \cong \pi_1^n(Y)$.

Proof. Since homotopy equivalences induce isomorphisms on fundamental groups, and $\pi_1^n(X)$ is defined as the product of these groups, the homotopy invariance follows from the homotopy invariance of each $\pi_1(X, x_i)$ individually.

17.2. n-Ality Covering Spaces.

Definition 17.2.1 (n-Ality Covering Space). An <u>n-ality covering space</u> of X is a collection of covering spaces $\{\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n\}$ such that each \tilde{X}_i covers X with a covering map $p_i : \tilde{X}_i \to X$.

Proposition 17.2.2 (Lifting Property of n-Ality Covering Spaces). Let $\{\tilde{X}_i\}$ be an n-ality covering space of X. Then for any path $\gamma:[0,1]\to X$ starting at x_i , there exists a unique lift $\tilde{\gamma}_i:[0,1]\to \tilde{X}_i$ such that $p_i\circ\tilde{\gamma}_i=\gamma$.

Proof. This follows from the classical path lifting property for covering spaces, applied independently to each \tilde{X}_i .

18. DIAGRAMS FOR COHOMOLOGICAL AND TOPOLOGICAL N-ALITY STRUCTURES

FIGURE 3. Diagram of n-ality covering spaces and path lifting

19. ADVANCED EXAMPLES OF COHOMOLOGICAL AND TOPOLOGICAL N-ALITY

Example 19.0.1 (Tri-Ality Cohomology of the Circle). Consider the circle S^1 with coefficient groups $C_1 = \mathbb{Z}$, $C_2 = \mathbb{Q}$, $C_3 = \mathbb{R}$. The tri-ality cohomology groups of S^1 are:

$$H_3^0(S^1; \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}) = \mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{R}, \quad H_3^1(S^1; \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}) = \mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{R}.$$

Example 19.0.2 (Quater-Ality Fundamental Group of a Bouquet of Circles). Let X be a bouquet of circles with four base points x_1, x_2, x_3, x_4 . The quater-ality fundamental group is:

$$\pi_1^4(X) = \pi_1(X, x_1) \times \pi_1(X, x_2) \times \pi_1(X, x_3) \times \pi_1(X, x_4).$$

Each component $\pi_1(X, x_i)$ is a free group on generators corresponding to loops around the circles.

20. ADDITIONAL REFERENCES FOR COHOMOLOGICAL AND TOPOLOGICAL N-ALITY THEORY

REFERENCES

- [1] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- [2] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1981.
- [3] G. E. Bredon, Topology and Geometry, Springer, 1993.

21. HOMOLOGICAL N-ALITY STRUCTURES

21.1. n-Ality Homology Groups.

Definition 21.1.1 (n-Ality Homology Group). Let X be a topological space, and let $\{A_1, A_2, \ldots, A_n\}$ be a collection of abelian coefficient groups. The <u>n-ality homology group</u> $H_k^n(X; \{A_i\})$ in degree k with coefficients in $\{A_i\}$ is defined as:

$$H_k^n(X; \{A_i\}) = \bigoplus_{i=1}^n H_k(X; A_i),$$

where each $H_k(X; A_i)$ is the classical homology group of X with coefficients in A_i .

Theorem 21.1.2 (Exact Sequence of n-Ality Homology Groups). For any pair of topological spaces (X,Y) and collection of coefficient groups $\{A_1,\ldots,A_n\}$, there exists a long exact sequence of n-ality homology groups:

$$\cdots \to H_k^n(Y; \{A_i\}) \to H_k^n(X; \{A_i\}) \to H_k^n(X; \{A_i\}) \to H_{k-1}^n(Y; \{A_i\}) \to \cdots$$

Proof. This follows by applying the long exact sequence in classical homology to each component $H_k(X; A_i)$, then taking their direct sum. Each connecting homomorphism respects the direct sum structure, preserving exactness.

21.2. Cup and Cap Products in n-Ality Homology.

Definition 21.2.1 (Cap Product in n-Ality Homology). Let $\alpha_i \in H^k(X; A_i)$ and $\beta_j \in H_k(X; A_j)$ for $i, j \in \{1, ..., n\}$. The <u>cap product</u> in $H^n_{k-n}(X; \{A_i\})$ is defined as:

$$\alpha_i \frown \beta_j = \begin{cases} \alpha_i \frown \beta_i, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases}$$

where \frown on the right side denotes the classical cap product in $H_*(X; A_i)$.

Proposition 21.2.2 (Associativity of the Cap Product in n-Ality Homology). The cap product in $H_n^*(X; \{A_i\})$ is associative: for any $\alpha_i, \beta_i, \gamma_i \in H^*(X; A_i)$,

$$(\alpha_i \frown \beta_i) \frown \gamma_i = \alpha_i \frown (\beta_i \frown \gamma_i).$$

22. SPECTRAL SEQUENCES IN N-ALITY THEORY

Definition 22.0.1 (n-Ality Spectral Sequence). An <u>n-ality spectral sequence</u> $\{E_r^{p,q}\}$ is a sequence of pages $E_r^{p,q}$, each of which is a direct sum of classical spectral sequences:

$$E_r^{p,q} = \bigoplus_{i=1}^n E_{r,i}^{p,q},$$

where $E_{r,i}^{p,q}$ is the r-th page of a spectral sequence for each coefficient group A_i .

Theorem 22.0.2 (Convergence of n-Ality Spectral Sequences). Let X be a filtered topological space with n coefficient groups $\{A_1, \ldots, A_n\}$. Then the n-ality spectral sequence $E_r^{p,q}$ converges to the associated n-ality homology groups $H_k^n(X; \{A_i\})$ as $r \to \infty$:

$$E^{p,q}_{\infty} \cong H^n_{p+q}(X; \{A_i\}).$$

Proof. Each spectral sequence $\{E_{r,i}^{p,q}\}$ converges to $H_{p+q}(X;A_i)$ individually. Since the *n*-ality spectral sequence is defined as a direct sum, convergence follows componentwise.

23. FIBER BUNDLES IN N-ALITY THEORY

23.1. n-Ality Fiber Bundle Structure.

Definition 23.1.1 (n-Ality Fiber Bundle). An <u>n-ality fiber bundle</u> over a base space B with fiber F consists of n fiber bundles $\{E_i, p_i, B\}_{i=1}^n$, each with projection $p_i : E_i \to B$ and typical fiber F, satisfying:

$$E_i \cong B \times F_i \quad \forall i = 1, \dots, n.$$

Example 23.1.2 (Tri-Ality Fiber Bundle). Consider three fiber bundles $\{E_1, E_2, E_3\}$ over S^1 with fiber $F = \mathbb{R}^2$. Each bundle E_i has structure group SO(2) and satisfies the tri-ality condition $E_i \cong S^1 \times \mathbb{R}^2$.

FIGURE 4. Diagram of n-ality fiber bundles with projection maps

- 24. DIAGRAMS FOR SPECTRAL SEQUENCES AND FIBER BUNDLES IN N-ALITY THEORY
 - 25. Examples of N-Ality Spectral Sequences and Fiber Bundles

Example 25.0.1 (Quater-Ality Spectral Sequence on a Torus). Let $X = T^2$ be the torus with coefficient groups $\{A_1 = \mathbb{Z}, A_2 = \mathbb{Q}, A_3 = \mathbb{R}, A_4 = \mathbb{Z}/2\mathbb{Z}\}$. The quater-ality spectral sequence $E_r^{p,q}$ converges to $H_*^4(T^2; \{A_i\})$.

Example 25.0.2 (Tri-Ality Fiber Bundle Over S^2). Consider a tri-ality fiber bundle with base S^2 and fibers $F_i = \mathbb{R}P^2$ for i = 1, 2, 3. Each bundle E_i has projection $p_i : E_i \to S^2$, forming a tri-ality structure.

26. Further References for Advanced N-Ality Theory in Homology and Fiber Bundles

REFERENCES

- [1] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer, 1982.
- [2] J. McCleary, A User's Guide to Spectral Sequences, Cambridge University Press, 2001.
- [3] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.

27. HIGHER HOMOTOPY THEORY IN n-ALITY

27.1. n-Ality Homotopy Groups.

Definition 27.1.1 (n-Ality Homotopy Group). Let X be a topological space and $\{x_1, x_2, \ldots, x_n\}$ be n chosen base points in X. The <u>n-ality k-th homotopy group</u> $\pi_k^n(X)$ of X is defined as the product:

$$\pi_k^n(X) = \pi_k(X, x_1) \times \pi_k(X, x_2) \times \cdots \times \pi_k(X, x_n).$$

Theorem 27.1.2 (n-Ality Homotopy Invariance). Let X and Y be homotopy equivalent spaces with n chosen base points. Then $\pi_k^n(X) \cong \pi_k^n(Y)$ for all $k \geq 1$.

Proof. The result follows from the homotopy invariance of each individual homotopy group $\pi_k(X, x_i)$, since homotopy equivalence preserves the group structure for each base point independently.

27.2. n-Ality Fibrations.

Definition 27.2.1 (n-Ality Fibration). An <u>n-ality fibration</u> is a collection of fibrations $\{F_i \to E_i \to B\}_{i=1}^n$, where each E_i is a fiber bundle over the base B with fiber F_i and projection $p_i : E_i \to B$.

Theorem 27.2.2 (Homotopy Lifting Property for n-Ality Fibrations). Let $\{F_i \to E_i \to B\}_{i=1}^n$ be an n-ality fibration. For any homotopy $H: X \times I \to B$ and map $\tilde{f}: X \to E_i$ with $p_i \circ \tilde{f} = H(x, 0)$, there exists a homotopy $\tilde{H}: X \times I \to E_i$ such that $p_i \circ \tilde{H} = H$.

Proof. This follows from the homotopy lifting property in each individual fibration $F_i \to E_i \to B$, applied independently for each i.

28. HIGHER-CATEGORY THEORY IN n-ALITY

28.1. n-Ality Higher Categories.

Definition 28.1.1 (n-Ality k-Category). An <u>n-ality k-category</u> C_k^n consists of n k-categories $\{C_i\}_{i=1}^n$, along with functors $F_{i,j}: C_i \to C_j$ for each $i, j \in \{1, \ldots, n\}$, such that:

- $F_{i,i} = id_{\mathcal{C}_i}$,
- $F_{i,j} \circ F_{j,k} = F_{i,k}$.

Example 28.1.2 (Tri-Ality 2-Category of Homotopy Types). Consider three categories $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ of homotopy types. Define functors $F_{i,j}: \mathcal{H}_i \to \mathcal{H}_j$ that preserve homotopy equivalences and satisfy the conditions of a tri-ality 2-category.

28.2. n-Ality Natural Transformations.

Definition 28.2.1 (n-Ality Natural Transformation). Let $F_{i,j}, G_{i,j} : C_i \to C_j$ be two functors in an n-ality k-category C_k^n . A <u>natural transformation of n-ality</u> $\eta_{i,j} : F_{i,j} \Rightarrow G_{i,j}$ is a collection of morphisms $\{\eta_{i,j}(X) : F_{i,j}(X) \to G_{i,j}(X)\}_{X \in Ob(C_i)}$ such that:

$$\eta_{i,j}(f) \circ F_{i,j}(f) = G_{i,j}(f) \circ \eta_{i,j}(f),$$

for all morphisms $f: X \to Y$ in C_i .

Proposition 28.2.2 (Composition of n-Ality Natural Transformations). Let $\eta_{i,j}: F_{i,j} \Rightarrow G_{i,j}$ and $\theta_{i,j}: G_{i,j} \Rightarrow H_{i,j}$ be natural transformations of n-ality. Then the composition $\theta_{i,j} \circ \eta_{i,j}: F_{i,j} \Rightarrow H_{i,j}$ is also a natural transformation of n-ality.

Proof. For any morphism $f: X \to Y$ in C_i , we have:

$$(\theta_{i,j} \circ \eta_{i,j})(f) = \theta_{i,j}(f) \circ \eta_{i,j}(f),$$

which respects the naturality condition by associativity of morphism composition.

29. DIAGRAMS FOR HIGHER HOMOTOPY AND N-ALITY CATEGORIES

30. Examples of Advanced Homotopy and Category Theory in n-Ality

Example 30.0.1 (Quater-Ality Homotopy Types for Loop Spaces). Let ΩX denote the loop space of a topological space X, and let $\Omega^n X$ denote the n-fold loop space. Define four categories $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4$ of loop spaces with functors $F_{i,j}: \mathcal{L}_i \to \mathcal{L}_j$ induced by suspension maps. These form a quater-ality structure in the homotopy category of loop spaces.

Example 30.0.2 (Tri-Ality Natural Transformations in Representations of Lie Algebras). *Consider the categories* $\mathcal{R} \mid_{\sqrt{1}}, \mathcal{R} \mid_{\sqrt{2}}, \mathcal{R} \mid_{\sqrt{3}}$ of representations of three Lie algebras $\mathfrak{g}_1, \mathfrak{g}_2, \mathfrak{g}_3$. Define functors $F_{i,j}: \mathcal{R} \mid_{\sqrt{i}} \to \mathcal{R} \mid_{\sqrt{j}}$ based on tensor product operations. Natural transformations between these functors yield a tri-ality structure in the category of representations.

FIGURE 5. Diagram of an n-ality k-category with functors between categories

31. FURTHER REFERENCES FOR ADVANCED HOMOTOPY AND HIGHER CATEGORY THEORY IN N-ALITY

REFERENCES

- [1] P. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser, 1999.
- [2] T. Leinster, Higher Operads, Higher Categories, Cambridge University Press, 2004.
- [3] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.

32. Derived Category Extensions in *n*-Ality

32.1. n-Ality Derived Categories.

Definition 32.1.1 (n-Ality Derived Category). Let $A = \{A_1, A_2, \dots, A_n\}$ be a collection of abelian categories. The <u>n-ality derived category</u> $D^n(A)$ is defined as the direct product of derived categories:

$$D^n(\mathcal{A}) = D(A_1) \times D(A_2) \times \cdots \times D(A_n),$$

where $D(A_i)$ denotes the derived category of A_i .

Theorem 32.1.2 (Triangulated Structure of n-Ality Derived Categories). The n-ality derived category $D^n(A)$ inherits a triangulated structure from each component $D(A_i)$, with the direct sum of distinguished triangles forming distinguished triangles in $D^n(A)$.

Proof. Since each $D(A_i)$ is triangulated, the category $D^n(A)$ inherits a triangulated structure by componentwise application of distinguished triangles, ensuring that for any triangle $(X_i, Y_i, Z_i) \in D(A_i)$, $(X, Y, Z) = \bigoplus_{i=1}^n (X_i, Y_i, Z_i)$ is a distinguished triangle in $D^n(A)$.

32.2. n-Ality Functors in Derived Categories.

Definition 32.2.1 (n-Ality Derived Functor). Let $F_i: A_i \to B_i$ be a family of functors between abelian categories $\{A_i\}$ and $\{B_i\}$. The n-ality derived functor R^nF is defined as:

$$R^n F = \bigoplus_{i=1}^n RF_i,$$

where RF_i is the right derived functor of F_i .

Proposition 32.2.2 (Exactness of n-Ality Derived Functors). *If each* F_i *is exact on injectives, then* R^nF *is exact in the derived category* $D^n(A)$.

Proof. Since F_i is exact on injectives, each derived functor RF_i is well-defined and exact. Therefore, R^nF preserves exactness by applying the direct sum to the exact derived functors RF_i .

33. Infinity-Categories and n-Ality

33.1. n-Ality Infinity-Categories.

Definition 33.1.1 (n-Ality ∞ -Category). An <u>n-ality ∞ -category</u> \mathcal{C}_{∞}^n consists of $n \infty$ -categories $\{\mathcal{C}_i\}_{i=1}^n$ with functors $F_{i,j}: \mathcal{C}_i \to \mathcal{C}_j$ for each $i,j \in \{1,\ldots,n\}$, satisfying:

- $F_{i,i} = id_{\mathcal{C}_i}$,
- $\bullet \ F_{i,j} \circ F_{j,k} = F_{i,k},$
- Homotopy coherence conditions for higher morphisms.

Theorem 33.1.2 (Homotopy Equivalence in n-Ality Infinity-Categories). For any homotopy equivalences $F_{i,j}: \mathcal{C}_i \to \mathcal{C}_j$ in \mathcal{C}_{∞}^n , there exists an equivalence of ∞ -categories $\mathcal{C}_{\infty}^n \cong \mathcal{C}_{\infty}^m$ for any m-ality structure containing homotopy equivalent components.

Proof. By the homotopy coherence conditions, the functors $F_{i,j}$ induce equivalences at all levels of the ∞ -category structure, preserving homotopy types across the n-ality categories.

34. Diagrams for Derived Categories and Infinity-Categories in n-Ality Theory

$$D(A_1) \xrightarrow{F_{1,2}} D(A_2) \xrightarrow{F_{2,n}} D(A_n)$$

$$RF_1 \downarrow RF_2 \downarrow \downarrow RF_n$$

$$G_{1,2} \downarrow G_{2,n} \downarrow RF_n$$

$$D(B_1) \xrightarrow{F_{2,n}} D(B_2) \xrightarrow{F_{2,n}} D(B_n)$$

FIGURE 6. Diagram of derived functors in an n-ality structure

35. Examples of Derived and Infinity-Categories in n-Ality

Example 35.0.1 (Tri-Ality Derived Categories for Sheaf Cohomology). Consider three sheaf cohomology categories $D(Sh(X_1))$, $D(Sh(X_2))$, $D(Sh(X_3))$ on spaces X_1, X_2, X_3 . Define derived functors R^nF_i on each category, forming a tri-ality derived structure for computing sheaf cohomology over multiple spaces.

Example 35.0.2 (Quater-Ality Infinity-Categories for Higher Topoi). Let $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4$ represent four higher topoi. Define functors $F_{i,j}: \mathcal{T}_i \to \mathcal{T}_j$ satisfying coherence conditions. This setup provides a quater-ality structure in the infinity-category of higher topoi.

36. Further References for Derived and Infinity-Category Theory in n-Ality

REFERENCES

- [1] M. Kashiwara and P. Schapira, Categories and Sheaves, Springer, 2006.
- [2] J. Lurie, <u>Higher Topos Theory</u>, Princeton University Press, 2009.
- [3] S. I. Gelfand and Y. I. Manin, Methods of Homological Algebra, Springer, 2000.

37. Spectral Sequences in n-Ality Theory

37.1. n-Ality Spectral Sequence Constructions.

Definition 37.1.1 (n-Ality Filtration on Complexes). Let $\{C_i^{\bullet}\}_{i=1}^n$ be a collection of cochain complexes, and let each C_i^{\bullet} have a filtration $\{F^pC_i^{\bullet}\}_{p\in\mathbb{Z}}$. An <u>n-ality filtration</u> on $\bigoplus_{i=1}^n C_i^{\bullet}$ is defined by:

$$F^p\left(\bigoplus_{i=1}^n C_i^{\bullet}\right) = \bigoplus_{i=1}^n F^p C_i^{\bullet}.$$

Definition 37.1.2 (n-Ality Spectral Sequence). Given an n-ality filtered complex $F^p(\bigoplus_{i=1}^n C_i^{\bullet})$, the <u>n-ality spectral sequence</u> $\{E_r^{p,q}\}_{r\geq 0}$ is defined as:

$$E_r^{p,q} = \bigoplus_{i=1}^n E_{r,i}^{p,q},$$

where $E_{r,i}^{p,q}$ is the r-th page of the spectral sequence for each complex C_i^{\bullet} .

Theorem 37.1.3 (Convergence of n-Ality Spectral Sequences). Let $F^p(\bigoplus_{i=1}^n C_i^{\bullet})$ be an n-ality filtered complex. Then the n-ality spectral sequence $\{E_r^{p,q}\}$ converges to the cohomology of the total complex:

$$E^{p,q}_{\infty} \cong H^{p+q} \left(\bigoplus_{i=1}^{n} C_{i}^{\bullet} \right).$$

Proof. The convergence follows from the componentwise convergence of each spectral sequence $\{E_{r,i}^{p,q}\}$ to $H^{p+q}(C_{i}^{\bullet})$ and the direct sum structure of the total complex.

37.2. Applications of n-Ality Spectral Sequences in Derived Categories.

Proposition 37.2.1 (Exactness of n-Ality Spectral Sequence Functors). Let $F_i: C_i^{\bullet} \to D_i^{\bullet}$ be a family of exact functors on cochain complexes. The induced n-ality spectral sequence functor $E_r^{p,q}(F) = \bigoplus_{i=1}^n E_{r,i}^{p,q}(F_i)$ preserves exactness at each stage.

Proof. Since each F_i is exact, each spectral sequence $\{E_{r,i}^{p,q}(F_i)\}$ preserves exactness. The direct sum of exact spectral sequences is exact at each page, preserving the overall exactness of $E_r^{p,q}(F)$.

38. HIGHER COHOMOLOGY THEORIES IN *n*-ALITY

38.1. n-Ality Sheaf Cohomology.

Definition 38.1.1 (n-Ality Sheaf Cohomology Group). Let X be a topological space and $\{\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_n\}$ be a collection of sheaves on X. The n-ality sheaf cohomology group $H_n^k(X; \{\mathcal{F}_i\})$ is defined as:

$$H_n^k(X; \{\mathcal{F}_i\}) = \bigoplus_{i=1}^n H^k(X; \mathcal{F}_i),$$

where each $H^k(X; \mathcal{F}_i)$ is the classical sheaf cohomology of \mathcal{F}_i .

Theorem 38.1.2 (Exact Sequence in n-Ality Sheaf Cohomology). Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be a short exact sequence of sheaves on X. Then there exists a long exact sequence in n-ality sheaf cohomology:

$$\cdots \to H_n^k(X; \mathcal{F}_1) \to H_n^k(X; \mathcal{F}_2) \to H_n^k(X; \mathcal{F}_3) \to H_n^{k+1}(X; \mathcal{F}_1) \to \cdots$$

Proof. This follows from the long exact sequence in classical sheaf cohomology applied to each component sheaf, which together form a direct sum that preserves exactness. \Box

38.2. n-Ality Čech Cohomology.

Definition 38.2.1 (n-Ality Čech Cohomology). Let X be a topological space with an open cover $\{U_{\alpha}\}$. For each sheaf \mathcal{F}_i on X, define the Čech cohomology group $\check{H}^k(X, \mathcal{F}_i)$. The <u>n-ality Čech</u> cohomology group $\check{H}^k_n(X; \{\mathcal{F}_i\})$ is defined as:

$$\check{H}_n^k(X; \{\mathcal{F}_i\}) = \bigoplus_{i=1}^n \check{H}^k(X; \mathcal{F}_i).$$

Theorem 38.2.2 (Comparison Theorem for n-Ality Čech and Sheaf Cohomology). Let X be a paracompact space with sheaves $\{\mathcal{F}_i\}_{i=1}^n$. Then there is an isomorphism between the n-ality Čech cohomology and n-ality sheaf cohomology groups:

$$\check{H}_n^k(X; \{\mathcal{F}_i\}) \cong H_n^k(X; \{\mathcal{F}_i\}).$$

Proof. This isomorphism follows from the comparison theorem for classical Čech and sheaf cohomology, applied componentwise in the n-ality setting.

39. Diagrams for Spectral Sequences and Higher Cohomology in n-Ality Theory

$$E_1^{p,q} \qquad E_2^{p,q} \qquad E_{\infty}^{p,q}$$

$$\bigoplus_{i=1}^n E_{1,i}^{p,q} \xrightarrow{d_1} \bigoplus_{i=1}^n E_{2,i}^{p,q} \xrightarrow{d_2} \bigoplus_{i=1}^n E_{\infty,i}^{p,q}$$

FIGURE 7. Diagram of n-ality spectral sequence pages

40. EXAMPLES OF N-ALITY SPECTRAL SEQUENCES AND HIGHER COHOMOLOGY

Example 40.0.1 (Tri-Ality Spectral Sequence in Sheaf Cohomology). Consider three sheaves $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ on a space X with filtration on the corresponding Čech complexes. The tri-ality spectral sequence $E_r^{p,q} = \bigoplus_{i=1}^3 E_{r,i}^{p,q}$ converges to $H^*(X; \mathcal{F}_1 \oplus \mathcal{F}_2 \oplus \mathcal{F}_3)$.

Example 40.0.2 (Quater-Ality Čech Cohomology on a Cover of S^1). Let $X = S^1$ with an open cover $\{U_1, U_2\}$ and four sheaves $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4$. The quater-ality Čech cohomology $\check{H}_n^*(X; \{\mathcal{F}_i\})$ computes cohomology classes of S^1 using the Čech complexes associated with each sheaf.

41. Further References for Spectral Sequences and Higher Cohomology in $n ext{-}\mathrm{ALity}$

REFERENCES

- [1] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer, 1982.
- [2] B. Iversen, Cohomology of Sheaves, Springer, 1986.
- [3] J. McCleary, A User's Guide to Spectral Sequences, Cambridge University Press, 2001.

42. Hypercohomology in *n*-Ality Theory

42.1. n-Ality Hypercohomology Complexes.

Definition 42.1.1 (n-Ality Hypercohomology Complex). Let X be a topological space and $\{\mathcal{F}_1^{\bullet}, \mathcal{F}_2^{\bullet}, \dots, \mathcal{F}_n^{\bullet}\}$ be a collection of bounded below complexes of sheaves on X. The <u>n-ality hypercohomology</u> complex $\mathbb{H}_n^*(X; \{\mathcal{F}_i^{\bullet}\})$ is defined as:

$$\mathbb{H}_n^k(X; \{\mathcal{F}_i^{\bullet}\}) = \bigoplus_{i=1}^n \mathbb{H}^k(X; \mathcal{F}_i^{\bullet}),$$

where $\mathbb{H}^k(X; \mathcal{F}_i^{\bullet})$ is the classical hypercohomology of \mathcal{F}_i^{\bullet} .

Theorem 42.1.2 (Spectral Sequence of n-Ality Hypercohomology). Let $\{\mathcal{F}_i^{\bullet}\}_{i=1}^n$ be a collection of complexes of sheaves on X with an associated filtration. Then there exists an n-ality hypercohomology spectral sequence:

$$E_2^{p,q} = \bigoplus_{i=1}^n H^p(X; \mathcal{H}^q(\mathcal{F}_i^{\bullet})) \Rightarrow \mathbb{H}_n^{p+q}(X; \{\mathcal{F}_i^{\bullet}\}),$$

where $\mathcal{H}^q(\mathcal{F}_i^{\bullet})$ denotes the q-th cohomology sheaf of \mathcal{F}_i^{\bullet} .

Proof. The spectral sequence arises from the hypercohomology spectral sequence for each complex \mathcal{F}_i^{\bullet} , applied componentwise. The direct sum structure allows the n-ality spectral sequence to converge to the hypercohomology of the total complex.

43. DERIVED FUNCTORS IN *n*-ALITY THEORY

43.1. n-Ality Derived Functors of Sheaf Cohomology.

Definition 43.1.1 (n-Ality Right Derived Functor). Let $F_i : A_i \to B_i$ be a family of left-exact functors between abelian categories A_i and B_i . The <u>n-ality right derived functor</u> R^nF is defined as:

$$R^n F = \bigoplus_{i=1}^n RF_i,$$

where RF_i is the classical right derived functor of F_i .

Theorem 43.1.2 (Exactness of n-Ality Right Derived Functors). Let $0 \to A \to B \to C \to 0$ be a short exact sequence in A_i for each i. Then there exists a long exact sequence of n-ality derived functors:

$$\cdots \to R^n F_k(A) \to R^n F_k(B) \to R^n F_k(C) \to R^n F_{k+1}(A) \to \cdots$$

Proof. The long exact sequence of derived functors is obtained by taking the classical long exact sequence of each RF_i and combining them into a direct sum, preserving exactness in the n-ality setting.

44. DIAGRAMS FOR HYPERCOHOMOLOGY AND DERIVED FUNCTORS IN n-ALITY THEORY

$$E_2^{p,q} \xrightarrow{d_2} E_3^{p,q} \xrightarrow{d_3} \mathbb{H}_n^{p+q}(X; \{\mathcal{F}_i^{\bullet}\})$$

FIGURE 8. Diagram of the n-ality hypercohomology spectral sequence

45. Examples of n-Ality Hypercohomology and Derived Functors

Example 45.0.1 (Tri-Ality Hypercohomology of Complexes of Sheaves). Let X be a topological space and $\{\mathcal{F}_1^{\bullet}, \mathcal{F}_2^{\bullet}, \mathcal{F}_3^{\bullet}\}$ be three complexes of sheaves. The tri-ality hypercohomology spectral sequence $E_2^{p,q} = \bigoplus_{i=1}^3 H^p(X; \mathcal{H}^q(\mathcal{F}_i^{\bullet}))$ converges to $\mathbb{H}_n^{p+q}(X; \{\mathcal{F}_i^{\bullet}\})$.

Example 45.0.2 (Quater-Ality Derived Functors in Sheaf Cohomology). Consider four sheaves $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4$ on a space X. Define the right derived functors $R^n F = \bigoplus_{i=1}^4 RF_i$ where F_i are sheaf cohomology functors. The quater-ality derived functor sequence gives long exact sequences for cohomology groups across the four sheaves.

46. Further References for Hypercohomology and Derived Functors in $n ext{-}\mathrm{ALity}$

REFERENCES

- [1] R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann, 1973.
- [2] J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, 1993.
- [3] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.

47. HYPER-DERIVED FUNCTORS IN *n*-ALITY THEORY

47.1. n-Ality Hyper-Derived Functors.

Definition 47.1.1 (n-Ality Hyper-Derived Functor). Let $F_i : A_i \to B_i$ be a family of functors between abelian categories A_i and B_i . The n-ality hyper-derived functor $\mathbb{R}^n F$ is defined as:

$$\mathbb{R}^n F = \bigoplus_{i=1}^n \mathbb{R} F_i,$$

where $\mathbb{R}F_i$ denotes the total derived functor of F_i , capturing higher derived functors in a single complex.

Theorem 47.1.2 (Exactness of n-Ality Hyper-Derived Functors). For a short exact sequence $0 \to A \to B \to C \to 0$ in A_i , there exists a long exact sequence of n-ality hyper-derived functors:

$$\cdots \to \mathbb{R}^n F_k(A) \to \mathbb{R}^n F_k(B) \to \mathbb{R}^n F_k(C) \to \mathbb{R}^n F_{k+1}(A) \to \cdots$$

Proof. This long exact sequence arises from combining the hyper-derived sequences for each $\mathbb{R}F_i$, with each derived functor preserving the exactness property.

47.2. Hyper-Tor Functors in n-Ality Theory.

Definition 47.2.1 (n-Ality Hyper-Tor Functor). Let A_i be an abelian category with objects M_i , N_i for each i = 1, ..., n. Define the classical Tor functor $\operatorname{Tor}_k^{A_i}(M_i, N_i)$ for each pair (M_i, N_i) . The n-ality hyper-Tor functor is given by:

$$\operatorname{Tor}_{k}^{n}(M,N) = \bigoplus_{i=1}^{n} \operatorname{Tor}_{k}^{\mathcal{A}_{i}}(M_{i},N_{i}).$$

Proposition 47.2.2 (Associativity in n-Ality Hyper-Tor). The n-ality hyper-Tor functor $\operatorname{Tor}_k^n(M, N)$ is associative with respect to the tensor product in each category A_i .

Proof. Since each Tor functor $\operatorname{Tor}_k^{\mathcal{A}_i}(M_i, N_i)$ is associative in \mathcal{A}_i , the direct sum structure preserves this associativity in the n-ality hyper-Tor functor.

48. TORSION THEORY IN *n*-ALITY THEORY

48.1. n-Ality Torsion Pairs.

Definition 48.1.1 (n-Ality Torsion Pair). Let A_i be an abelian category with a torsion pair $(\mathcal{T}_i, \mathcal{F}_i)$, where \mathcal{T}_i is the torsion subcategory and \mathcal{F}_i is the torsion-free subcategory. The <u>n-ality torsion pair</u> $(\mathcal{T}, \mathcal{F})$ is defined as:

$$\mathcal{T} = \bigoplus_{i=1}^n \mathcal{T}_i, \quad \mathcal{F} = \bigoplus_{i=1}^n \mathcal{F}_i.$$

Theorem 48.1.2 (Properties of n-Ality Torsion Pairs). *If* $(\mathcal{T}_i, \mathcal{F}_i)$ *is a torsion pair for each i, then* $(\mathcal{T}, \mathcal{F})$ *is a torsion pair in the n-ality abelian category* $\mathcal{A} = \bigoplus_{i=1}^n \mathcal{A}_i$.

Proof. The properties of torsion pairs are preserved in each component category A_i , hence the direct sum structure of A preserves the torsion pair properties in n-ality.

48.2. n-Ality Torsion Functors.

Definition 48.2.1 (n-Ality Torsion Functor). Let $T_i: A_i \to T_i$ be the torsion functor for each abelian category A_i . The n-ality torsion functor T^n is defined by:

$$T^n = \bigoplus_{i=1}^n T_i.$$

Proposition 48.2.2 (Exactness of n-Ality Torsion Functor). The n-ality torsion functor T^n is left-exact, as each T_i is left-exact in A_i .

Proof. Since each T_i is left-exact, the direct sum structure of T^n preserves exactness at the left end, making T^n left-exact in n-ality.

49. Non-Abelian Cohomology in *n*-Ality Theory

49.1. n-Ality Non-Abelian Cohomology Sets.

Definition 49.1.1 (n-Ality Non-Abelian Cohomology Set). Let X be a topological space, and let $\{\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_n\}$ be a collection of sheaves of non-abelian groups on X. The <u>n-ality non-abelian</u> cohomology set $H_n^1(X; \{\mathcal{G}_i\})$ is defined as:

$$H_n^1(X; \{\mathcal{G}_i\}) = \bigoplus_{i=1}^n H^1(X; \mathcal{G}_i),$$

where $H^1(X; \mathcal{G}_i)$ is the first non-abelian cohomology set of \mathcal{G}_i .

Theorem 49.1.2 (n-Ality Non-Abelian Cocycle Description). The elements of $H_n^1(X; \{\mathcal{G}_i\})$ can be represented by collections of 1-cocycles $\{\alpha_i\}_{i=1}^n$, where each α_i is a 1-cocycle in $Z^1(X, \mathcal{G}_i)$ modulo coboundaries.

Proof. Each $H^1(X; \mathcal{G}_i)$ can be represented by 1-cocycles modulo coboundaries, so $H^1_n(X; \{\mathcal{G}_i\})$ consists of direct sums of these classes, preserving the cocycle structure in n-ality.

50. DIAGRAMS FOR HYPER-DERIVED FUNCTORS AND NON-ABELIAN COHOMOLOGY IN n-ALITY THEORY

$$\mathbb{R}^n F_k(A) \longrightarrow \mathbb{R}^n F_k(B) \longrightarrow \mathbb{R}^n F_k(C) \longrightarrow \mathbb{R}^n F_{k+1}(A)$$

FIGURE 9. Diagram of the n-ality hyper-derived functor exact sequence

51. Examples of Hyper-Derived Functors and Non-Abelian Cohomology in n-Ality Theory

Example 51.0.1 (Tri-Ality Hyper-Derived Functor for Sheaf Cohomology). Let $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ be three sheaves on a space X with associated derived functors $\mathbb{R}F_i$. The tri-ality hyper-derived functor \mathbb{R}^3F yields an exact sequence for cohomology groups across these sheaves.

Example 51.0.2 (Quater-Ality Non-Abelian Cohomology for Principal Bundles). Let X be a topological space with four sheaves of non-abelian groups $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \mathcal{G}_4$. The quater-ality non-abelian cohomology $H_n^1(X; \{\mathcal{G}_i\})$ classifies principal bundles over X for each group \mathcal{G}_i .

52. FURTHER REFERENCES FOR HYPER-DERIVED FUNCTORS AND NON-ABELIAN COHOMOLOGY IN *n*-ALITY

REFERENCES

- [1] P. Deligne, Cohomologie Étale, Springer, 1970.
- [2] J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser, 1993.
- [3] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.

53. TRIANGULATED FUNCTORS IN *n*-ALITY DERIVED CATEGORIES

53.1. n-Ality Triangulated Functors.

Definition 53.1.1 (n-Ality Triangulated Functor). Let $D(A_i)$ and $D(B_i)$ be derived categories of abelian categories A_i and B_i , for each i = 1, ..., n. A functor $F_i : D(A_i) \to D(B_i)$ is called triangulated if it commutes with the shift functor and preserves distinguished triangles. The <u>n-ality</u> triangulated functor F^n is defined by:

$$F^n = \bigoplus_{i=1}^n F_i,$$

where each F_i is a triangulated functor.

Theorem 53.1.2 (Exactness of n-Ality Triangulated Functors). *If each* F_i *is an exact triangulated functor, then* F^n *is an exact triangulated functor on* $D^n(A) = \bigoplus_{i=1}^n D(A_i)$.

Proof. The exactness and triangulated nature of each F_i imply that F^n preserves exact sequences and distinguished triangles componentwise, preserving these properties in n-ality.

53.2. n-Ality Distinguished Triangles.

Definition 53.2.1 (n-Ality Distinguished Triangle). Let $X_i, Y_i, Z_i \in D(A_i)$ form a distinguished triangle for each i. An n-ality distinguished triangle in $D^n(A)$ is given by:

$$(X, Y, Z) = \bigoplus_{i=1}^{n} (X_i, Y_i, Z_i),$$

where each (X_i, Y_i, Z_i) is a distinguished triangle.

Proposition 53.2.2 (Uniqueness of n-Ality Distinguished Triangles). Every distinguished triangle in $D^n(A)$ is unique up to isomorphism, given that each component triangle in $D(A_i)$ is unique.

Proof. Since each (X_i, Y_i, Z_i) is unique up to isomorphism in $D(A_i)$, the direct sum preserves this uniqueness property in the n-ality distinguished triangles.

54. HIGHER STACKS IN *n*-ALITY THEORY

54.1. n-Ality Higher Stacks.

Definition 54.1.1 (n-Ality Higher Stack). Let $\{X_1, X_2, \dots, X_n\}$ be a collection of higher stacks over a base site C. The <u>n-ality higher stack</u> X^n is defined as:

$$\mathcal{X}^n = \bigoplus_{i=1}^n \mathcal{X}_i,$$

where each \mathcal{X}_i is a stack that satisfies descent with respect to covers in \mathcal{C} .

Theorem 54.1.2 (Descent for n-Ality Higher Stacks). Let $\{U_{\alpha} \to U\}_{\alpha \in A}$ be a cover in \mathcal{C} . Then for each n-ality higher stack \mathcal{X}^n , the descent data is given by:

$$\mathcal{X}^n(U) \cong \varprojlim_{\alpha} \mathcal{X}^n(U_{\alpha}),$$

where $\mathcal{X}^n(U)$ denotes the global sections over U.

Proof. The descent property for each higher stack \mathcal{X}_i implies that $\mathcal{X}_i(U) \cong \varprojlim_{\alpha} \mathcal{X}_i(U_{\alpha})$. Thus, the direct sum \mathcal{X}^n satisfies descent for U.

54.2. n-Ality Stack Morphisms.

Definition 54.2.1 (n-Ality Stack Morphism). Let $f_i: \mathcal{X}_i \to \mathcal{Y}_i$ be a morphism between higher stacks \mathcal{X}_i and \mathcal{Y}_i for each i. The n-ality stack morphism f^n is defined as:

$$f^n = \bigoplus_{i=1}^n f_i.$$

Theorem 54.2.2 (Exactness of n-Ality Stack Morphisms). If each f_i is an exact morphism of stacks, then f^n is exact in the category of n-ality higher stacks.

Proof. The exactness of each f_i implies that f^n is exact componentwise in n-ality, preserving exactness across all higher stacks.

55. APPLICATIONS OF *n*-ALITY STACKS IN DESCENT THEORY

55.1. n-Ality Descent Data for Sheaves.

Definition 55.1.1 (n-Ality Descent Data). Let $\{U_{\alpha} \to U\}_{\alpha \in A}$ be a cover in \mathcal{C} and let \mathcal{F}_i be a sheaf on each U_{α} . The n-ality descent data for a collection of sheaves $\{\mathcal{F}_1, \ldots, \mathcal{F}_n\}$ is given by:

$$\mathcal{F}^n(U) = \varprojlim_{\alpha} \bigoplus_{i=1}^n \mathcal{F}_i(U_{\alpha}).$$

Theorem 55.1.2 (n-Ality Descent Condition). The sheaf \mathcal{F}^n on U is determined uniquely by its values on each U_{α} if each \mathcal{F}_i satisfies descent on U_{α} .

Proof. The descent condition follows from the fact that each sheaf \mathcal{F}_i satisfies descent. The direct sum construction ensures that $\mathcal{F}^n(U)$ is determined by its componentwise descent data on $\{U_{\alpha}\}_{{\alpha}\in A}$.

56. Diagrams for Triangulated Functors and Higher Stacks in n-Ality Theory

FIGURE 10. Diagram of n-ality distinguished triangles in derived categories

57. EXAMPLES OF N-ALITY HIGHER STACKS AND DESCENT THEORY

Example 57.0.1 (Tri-Ality Higher Stack for Moduli of Vector Bundles). *Consider three higher stacks* $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$ *representing the moduli of vector bundles over different base schemes. The triality higher stack* $\mathcal{X}^3 = \mathcal{X}_1 \oplus \mathcal{X}_2 \oplus \mathcal{X}_3$ *represents a moduli stack for vector bundles across these schemes.*

Example 57.0.2 (Quater-Ality Descent for Line Bundles). Let X be a scheme with a covering $\{U_{\alpha}\}$ and four line bundles $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{L}_4$ defined over each U_{α} . The quater-ality descent data $\mathcal{L}^4(U)$ combines these line bundles and satisfies descent for line bundle classes across U.

58. FURTHER REFERENCES FOR TRIANGULATED FUNCTORS, HIGHER STACKS, AND DESCENT THEORY IN n-ALITY

REFERENCES

- [1] M. Kashiwara and P. Schapira, Categories and Sheaves, Springer, 2006.
- [2] J. Lurie, Higher Topos Theory, Princeton University Press, 2009.
- [3] S. I. Gelfand and Y. I. Manin, Methods of Homological Algebra, Springer, 2000.

59. HIGHER LIMITS AND COLIMITS IN n-ALITY THEORY

59.1. n-Ality Limits and Colimits in Higher Categories.

Definition 59.1.1 (n-Ality Limit). Let $\{C_i\}_{i=1}^n$ be a collection of higher categories, each equipped with a diagram $D_i: I \to C_i$. The n-ality limit is defined by:

$$\lim_{i \to 1}^{n} D = \bigoplus_{i=1}^{n} \lim_{i \to 1} D_{i},$$

where $\lim_{i \to \infty} D_i$ denotes the limit of D_i in C_i .

Definition 59.1.2 (n-Ality Colimit). Let $\{C_i\}_{i=1}^n$ be a collection of higher categories with diagrams $D_i: I \to C_i$. The n-ality colimit is given by:

$$\varinjlim_{I} D = \bigoplus_{i=1}^{n} \varinjlim_{I} D_{i},$$

where $\underline{\lim}_{I} D_{i}$ is the colimit of D_{i} in C_{i} .

Theorem 59.1.3 (Exactness of n-Ality Limits and Colimits). *If each* D_i *is exact in* C_i , *then* $\varprojlim_I^n D$ and $\varinjlim_I^n D$ are exact in the n-ality higher category $C^n = \bigoplus_{i=1}^n C_i$.

Proof. Since each $\varprojlim_I D_i$ and $\varinjlim_I D_i$ are exact in C_i , their direct sum preserves exactness in the n-ality structure of \overleftarrow{C}^n .

59.2. n-Ality Products and Coproducts in Higher Categories.

Definition 59.2.1 (n-Ality Product). Let $X_i, Y_i \in C_i$ be objects in each higher category C_i . The <u>n-ality product</u> $X \times^n Y$ is defined as:

$$X \times^n Y = \bigoplus_{i=1}^n (X_i \times Y_i),$$

where $X_i \times Y_i$ denotes the product of X_i and Y_i in C_i .

Definition 59.2.2 (n-Ality Coproduct). Let $X_i, Y_i \in C_i$. The <u>n-ality coproduct</u> $X \coprod^n Y$ is defined as:

$$X \coprod_{i=1}^{n} Y = \bigoplus_{i=1}^{n} (X_i \coprod_{i=1}^{n} Y_i).$$

Proposition 59.2.3 (Associativity of n-Ality Products and Coproducts). *The n-ality product and coproduct are associative operations, inheriting associativity from each* C_i .

Proof. Since each $X_i \times Y_i$ and $X_i \coprod Y_i$ are associative in C_i , the direct sum structure preserves associativity in n-ality.

60. INFINITY-CATEGORICAL N-ALITY COLIMITS AND APPLICATIONS IN SPECTRAL TOPOI

60.1. Infinity-Categorical n-Ality Colimits.

Definition 60.1.1 (n-Ality ∞ -Categorical Colimit). Let $\{C_i\}_{i=1}^n$ be ∞ -categories with diagrams $D_i: I \to C_i$. The n-ality ∞ -categorical colimit is defined by:

$$\lim_{n \to \infty} D = \bigoplus_{i=1}^{n} \lim_{n \to \infty} D_i,$$

where $\varinjlim_{I}^{\infty} D_{i}$ denotes the ∞ -categorical colimit of D_{i} .

Theorem 60.1.2 (Exactness of n-Ality ∞ -Categorical Colimits). *If each diagram* D_i *is exact in* C_i , then $\varinjlim_I^{\infty,n} D$ is exact in $C^n = \bigoplus_{i=1}^n C_i$.

Proof. The exactness of each ∞ -categorical colimit $\varinjlim_I^{\infty} D_i$ in C_i implies that $\varinjlim_I^{\infty,n} D$ is exact in C^n .

60.2. n-Ality in Spectral Topoi.

Definition 60.2.1 (n-Ality Spectral Topos). Let $\{\mathcal{T}_i\}_{i=1}^n$ be spectral topoi, each of which is an ∞ -category of sheaves of spectra. The n-ality spectral topos \mathcal{T}^n is defined as:

$$\mathcal{T}^n = \bigoplus_{i=1}^n \mathcal{T}_i.$$

Theorem 60.2.2 (n-Ality Descent in Spectral Topoi). Let $\{U_{\alpha} \to U\}_{\alpha \in A}$ be a cover in a site \mathcal{C} . For each n-ality spectral topos \mathcal{T}^n , descent holds in the sense that:

$$\mathcal{T}^n(U) \cong \varprojlim_{\alpha} \mathcal{T}^n(U_{\alpha}).$$

Proof. Each spectral topos \mathcal{T}_i satisfies descent, so their direct sum \mathcal{T}^n preserves this descent property.

61. Diagrams for Higher Limits, Colimits, and Spectral Topoi in n-Ality Theory

FIGURE 11. Diagram of the n-ality coproduct in higher categories

62. Examples of Infinity-Categorical Colimits and Spectral Topoi

Example 62.0.1 (Tri-Ality ∞ -Categorical Colimit in Sheaf Categories). *Consider three* ∞ -categories C_1, C_2, C_3 of sheaves on a site C. The tri-ality colimit $\varinjlim_I^{\infty,3} D$ is computed by the colimits in each sheaf category, preserving sheaf conditions.

Example 62.0.2 (Quater-Ality Spectral Topos for Sheaves of Spectra). Let X be a topological space with four spectral topoi $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4$ representing categories of sheaves of spectra on covers of X. The quater-ality spectral topos $\mathcal{T}^4 = \bigoplus_{i=1}^4 \mathcal{T}_i$ satisfies descent over each cover of X.

63. Further References for Higher Limits, Colimits, and Spectral Topoi in n-Ality Theory

REFERENCES

- [1] J. Lurie, Higher Topos Theory, Princeton University Press, 2009.
- [2] A. Joyal and M. Tierney, An Introduction to Spectral Topoi, Cambridge University Press, 2002.
- [3] S. Mac Lane, Categories for the Working Mathematician, Springer, 1971.

64. HIGHER HOMOTOPY COLIMITS IN *n*-ALITY THEORY

64.1. n-Ality Homotopy Colimits.

Definition 64.1.1 (n-Ality Homotopy Colimit). Let $\{C_i\}_{i=1}^n$ be higher categories, each equipped with a diagram $D_i: I \to C_i$. The n-ality homotopy colimit hocolimⁿ D is defined as:

$$\operatorname{hocolim}_{I}^{n} D = \bigoplus_{i=1}^{n} \operatorname{hocolim}_{I} D_{i},$$

where $\operatorname{hocolim}_I D_i$ denotes the homotopy colimit of D_i in C_i .

Theorem 64.1.2 (Exactness of n-Ality Homotopy Colimits). *If each* D_i *is an exact diagram in* C_i , then hocolimⁿ D is exact in the n-ality higher category $C^n = \bigoplus_{i=1}^n C_i$.

Proof. Since each $\operatorname{hocolim}_I D_i$ is exact in C_i , their direct sum preserves exactness in the n-ality structure of C^n .

64.2. n-Ality Fiber Sequences in Homotopy Theory.

Definition 64.2.1 (n-Ality Fiber Sequence). Let $f_i: X_i \to Y_i$ be a collection of morphisms in higher categories C_i with fiber sequences $F_i \to X_i \to Y_i$. The <u>n-ality fiber sequence</u> $F \to X \to Y_i$ is defined as:

$$F = \bigoplus_{i=1}^{n} F_i, \quad X = \bigoplus_{i=1}^{n} X_i, \quad Y = \bigoplus_{i=1}^{n} Y_i,$$

where each $F_i \to X_i \to Y_i$ is a fiber sequence.

Theorem 64.2.2 (Stability of n-Ality Fiber Sequences). If each $F_i \to X_i \to Y_i$ is a stable fiber sequence, then the n-ality fiber sequence $F \to X \to Y$ is stable in \mathbb{C}^n .

Proof. The stability of each component sequence $F_i \to X_i \to Y_i$ in C_i implies that the direct sum $F \to X \to Y$ is stable in C^n .

65. N-ALITY DERIVED TOPOI AND SIMPLICIAL STRUCTURES

65.1. n-Ality Derived Topoi.

Definition 65.1.1 (n-Ality Derived Topos). Let $\{\mathcal{D}_i\}_{i=1}^n$ be derived topoi associated with higher categories. The n-ality derived topos \mathcal{D}^n is defined by:

$$\mathcal{D}^n = \bigoplus_{i=1}^n \mathcal{D}_i.$$

Theorem 65.1.2 (Descent in n-Ality Derived Topoi). Let $\{U_{\alpha} \to U\}_{\alpha \in A}$ be a cover in a site C. Then for each n-ality derived topos \mathcal{D}^n , descent holds in the sense that:

$$\mathcal{D}^n(U) \cong \varprojlim_{\alpha} \mathcal{D}^n(U_{\alpha}).$$

Proof. Since each derived topos \mathcal{D}_i satisfies descent, the direct sum \mathcal{D}^n inherits this descent property.

65.2. n-Ality Simplicial and Cosimplicial Objects.

Definition 65.2.1 (n-Ality Simplicial Object). Let $\{X_i^{\bullet}\}_{i=1}^n$ be simplicial objects in categories C_i . The n-ality simplicial object $X^{\bullet,n}$ is defined by:

$$X^{\bullet,n} = \bigoplus_{i=1}^n X_i^{\bullet},$$

where each X_i^{\bullet} is a simplicial object in C_i .

Definition 65.2.2 (n-Ality Cosimplicial Object). Let $\{Y_i^{\bullet}\}_{i=1}^n$ be cosimplicial objects in categories C_i . The n-ality cosimplicial object $Y^{\bullet,n}$ is defined as:

$$Y^{\bullet,n} = \bigoplus_{i=1}^{n} Y_i^{\bullet}.$$

Proposition 65.2.3 (n-Ality Simplicial and Cosimplicial Morphisms). For morphisms $f_i: X_i^{\bullet} \to Y_i^{\bullet}$ in C_i , the n-ality morphism f^n on simplicial or cosimplicial objects is defined by:

$$f^n = \bigoplus_{i=1}^n f_i,$$

and preserves the simplicial or cosimplicial structure.

Proof. The direct sum preserves the simplicial or cosimplicial structure of f_i in each C_i .

66. APPLICATIONS IN HOMOTOPY THEORY WITH SIMPLICIAL STRUCTURES

Definition 66.0.1 (n-Ality Homotopy Limit in Simplicial Spaces). Let $\{X_i^{\bullet}\}_{i=1}^n$ be a collection of simplicial spaces with homotopy limits $\operatorname{holim}_I X_i^{\bullet}$. The <u>n-ality homotopy limit</u> is defined by:

$$\operatorname{holim}_{I}^{n} X^{\bullet} = \bigoplus_{i=1}^{n} \operatorname{holim}_{I} X_{i}^{\bullet}.$$

Theorem 66.0.2 (Exactness of n-Ality Homotopy Limits in Simplicial Spaces). *If each* X_i^{\bullet} *is an exact simplicial space, then* holimⁿ X^{\bullet} *is exact in the n-ality homotopy category.*

Proof. Since each homotopy limit $\operatorname{holim}_I X_i^{\bullet}$ is exact, their direct sum preserves exactness in n-ality.

67. DIAGRAMS FOR HOMOTOPY COLIMITS, DERIVED TOPOI, AND SIMPLICIAL STRUCTURES IN n-ALITY THEORY

FIGURE 12. Diagram of the n-ality homotopy colimit in homotopy theory

68. Examples of Homotopy Colimits and Simplicial Structures in n-Ality Theory

Example 68.0.1 (Tri-Ality Simplicial Object in Derived Categories). Consider three simplicial objects $X_1^{\bullet}, X_2^{\bullet}, X_3^{\bullet}$ in derived categories $D(\mathcal{A}_1), D(\mathcal{A}_2), D(\mathcal{A}_3)$. The tri-ality simplicial object $X^{\bullet,3} = \bigoplus_{i=1}^3 X_i^{\bullet}$ allows for simplicial operations across these derived categories.

Example 68.0.2 (Quater-Ality Cosimplicial Object in Cohomology Theory). Let X be a topological space with four cosimplicial objects $Y_1^{\bullet}, Y_2^{\bullet}, Y_3^{\bullet}, Y_4^{\bullet}$ representing cohomology complexes. The quater-ality cosimplicial object $Y^{\bullet,4} = \bigoplus_{i=1}^4 Y_i^{\bullet}$ provides a framework for higher cohomology computations.

69. Further References for Homotopy Colimits, Derived Topoi, and Simplicial Structures in n-Ality Theory

REFERENCES

- [1] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Springer, 1972.
- [2] J. Lurie, Higher Topos Theory, Princeton University Press, 2009.
- [3] P. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser, 1999.

70. Derived Stacks in n-Ality Theory

70.1. n-Ality Derived Stacks.

Definition 70.1.1 (n-Ality Derived Stack). Let $\{X_i\}_{i=1}^n$ be derived stacks on a base site C, where each X_i is an infinity-stack enhanced with derived structures. The <u>n-ality derived stack</u> X^n is defined as:

$$\mathcal{X}^n = \bigoplus_{i=1}^n \mathcal{X}_i.$$

Theorem 70.1.2 (Descent for n-Ality Derived Stacks). For a covering $\{U_{\alpha} \to U\}_{\alpha \in A}$ in the site C, the n-ality derived stack \mathcal{X}^n satisfies descent, given by:

$$\mathcal{X}^n(U) \cong \varprojlim_{\alpha} \mathcal{X}^n(U_{\alpha}),$$

where $\mathcal{X}^n(U)$ denotes the global sections over U.

Proof. Since each derived stack \mathcal{X}_i satisfies descent, their direct sum \mathcal{X}^n inherits this descent property by componentwise application of the descent condition.

70.2. Morphisms of n-Ality Derived Stacks.

Definition 70.2.1 (n-Ality Morphism of Derived Stacks). Let $f_i : \mathcal{X}_i \to \mathcal{Y}_i$ be morphisms between derived stacks \mathcal{X}_i and \mathcal{Y}_i for each i. The n-ality morphism of derived stacks f^n is defined by:

$$f^n = \bigoplus_{i=1}^n f_i,$$

preserving the derived structure on each \mathcal{X}_i .

Theorem 70.2.2 (Exactness of n-Ality Morphisms of Derived Stacks). If each morphism f_i is exact, then f^n is exact in the category of n-ality derived stacks.

Proof. The exactness of each f_i implies that f^n preserves exact sequences and derived structure componentwise.

71. HIGHER ALGEBRAIC STRUCTURES IN *n*-ALITY

71.1. **n-Ality** E_n -**Algebras.**

Definition 71.1.1 (n-Ality E_n -Algebra). Let $\{A_i\}_{i=1}^n$ be a collection of E_n -algebras, where each A_i is an E_n -algebra over a commutative ring R. The n-ality E_n -algebra A^n is defined by:

$$A^n = \bigoplus_{i=1}^n A_i.$$

Theorem 71.1.2 (Associativity and Commutativity in n-Ality E_n -Algebras). If each A_i satisfies the E_n -algebra conditions (associativity and commutativity up to homotopy), then A^n also satisfies the E_n -algebra structure.

Proof. The homotopy associative and commutative structure of each A_i in the E_n -algebra is preserved componentwise, allowing A^n to inherit these properties in the n-ality setting.

71.2. n-Ality Operadic Structures.

Definition 71.2.1 (n-Ality Operad). Let $\{\mathcal{O}_i\}_{i=1}^n$ be operads, where each \mathcal{O}_i is a collection of operations parameterized by a topological space or simplicial set. The <u>n-ality operad</u> \mathcal{O}^n is defined as:

$$\mathcal{O}^n = \bigoplus_{i=1}^n \mathcal{O}_i.$$

Theorem 71.2.2 (Exactness of n-Ality Operadic Functors). *If each operad* \mathcal{O}_i *induces an exact functor, then the n-ality operad* \mathcal{O}^n *also induces an exact functor.*

Proof. The exactness of each \mathcal{O}_i implies that the functor induced by \mathcal{O}^n preserves exactness in the direct sum structure.

72. GENERALIZED COHOMOLOGY IN *n*-ALITY THEORY

72.1. n-Ality Generalized Cohomology Theories.

Definition 72.1.1 (n-Ality Generalized Cohomology Theory). Let $\{E_i\}_{i=1}^n$ be a collection of generalized cohomology theories, each defined by a spectrum E_i . The <u>n-ality generalized cohomology</u> theory E^n is defined by:

$$E^n(X) = \bigoplus_{i=1}^n E_i(X),$$

where $E_i(X)$ denotes the cohomology groups of X associated with the spectrum E_i .

Theorem 72.1.2 (Exact Sequence in n-Ality Generalized Cohomology). If each E_i satisfies the Eilenberg-Steenrod axioms, then E^n satisfies an exact sequence in n-ality cohomology:

$$\cdots \to E^n(X) \to E^n(Y) \to E^n(Z) \to \cdots$$

for any cofibration sequence $X \to Y \to Z$.

Proof. The exactness of each cohomology sequence in E_i ensures that the direct sum E^n preserves the exact sequence structure.

72.2. n-Ality K-Theory.

Definition 72.2.1 (n-Ality K-Theory). Let $\{K_i\}_{i=1}^n$ denote collections of K-theory spectra for rings or spaces. The n-ality K-theory $K^n(X)$ for a space X is given by:

$$K^n(X) = \bigoplus_{i=1}^n K_i(X),$$

where each $K_i(X)$ denotes the K-theory group associated with X and the spectrum K_i .

Theorem 72.2.2 (Exactness of n-Ality K-Theory). If each K_i satisfies the axioms of K-theory, then K^n satisfies a long exact sequence in n-ality K-theory.

Proof. Each K_i satisfies exactness in the K-theory sequence, so K^n inherits this structure by taking the direct sum over all K_i .

73. DIAGRAMS FOR DERIVED STACKS, HIGHER ALGEBRAS, AND GENERALIZED COHOMOLOGY IN n-ALITY THEORY

Morphism in *n*-ality derived stacks

FIGURE 13. Diagram of morphism in n-ality derived stacks

74. Examples of Derived Stacks, Higher Algebras, and Generalized Cohomology in *n*-Ality Theory

Example 74.0.1 (Tri-Ality Derived Stack for Moduli Spaces). Consider derived stacks $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$ representing moduli of sheaves on different varieties. The tri-ality derived stack $\mathcal{X}^3 = \bigoplus_{i=1}^3 \mathcal{X}_i$ represents a combined moduli space over multiple base varieties.

Example 74.0.2 (Quater-Ality Generalized Cohomology Theory for Cobordism). Let $\{MU, MO, MSU, MSpin\}$ be spectra for complex, oriented, special unitary, and spin cobordism theories. The quater-ality cobordism theory MU^4 combines these spectra into a single generalized cohomology theory.

75. FURTHER REFERENCES FOR DERIVED STACKS, HIGHER ALGEBRAIC STRUCTURES, AND GENERALIZED COHOMOLOGY IN *n*-ALITY THEORY

REFERENCES

- [1] J. Lurie, Higher Topos Theory, Princeton University Press, 2009.
- [2] A. Jacob and D. Roy, Derived Algebraic Geometry and Moduli Stacks, Springer, 2004.
- [3] M. Hovey, Model Categories, American Mathematical Society, 1999.

76. FORMAL SCHEMES IN n-ALITY THEORY

76.1. n-Ality Formal Schemes.

Definition 76.1.1 (n-Ality Formal Scheme). Let $\{X_i\}_{i=1}^n$ be a collection of formal schemes, where each X_i is equipped with a structure sheaf \mathcal{O}_{X_i} over a base ring R. The <u>n-ality formal scheme</u> X^n is defined as:

$$\mathcal{X}^n = \bigoplus_{i=1}^n \mathcal{X}_i,$$

with structure sheaf $\mathcal{O}_{\mathcal{X}^n} = \bigoplus_{i=1}^n \mathcal{O}_{\mathcal{X}_i}$.

Theorem 76.1.2 (Exactness of n-Ality Formal Schemes). *If each* \mathcal{X}_i *is an exact formal scheme with respect to a given topology, then* \mathcal{X}^n *is also an exact formal scheme under the same topology.*

Proof. The exactness of each \mathcal{X}_i ensures that \mathcal{X}^n , formed by direct sum, inherits this exactness property componentwise.

76.2. n-Ality Morphisms of Formal Schemes.

Definition 76.2.1 (n-Ality Morphism of Formal Schemes). Let $f_i: \mathcal{X}_i \to \mathcal{Y}_i$ be morphisms between formal schemes \mathcal{X}_i and \mathcal{Y}_i for each i. The <u>n-ality morphism of formal schemes</u> f^n is given by:

$$f^n = \bigoplus_{i=1}^n f_i,$$

preserving the formal structure of each X_i .

Theorem 76.2.2 (Exactness of n-Ality Morphisms of Formal Schemes). *If each* f_i *is exact, then* f^n *is exact in the category of n-ality formal schemes.*

Proof. The exactness of each morphism f_i implies that the direct sum f^n is exact, preserving formal scheme structures in n-ality.

77. DERIVED MOTIVIC COHOMOLOGY IN *n*-ALITY THEORY

77.1. n-Ality Derived Motivic Cohomology.

Definition 77.1.1 (n-Ality Derived Motivic Cohomology Theory). Let $\{M_i\}_{i=1}^n$ be derived motivic cohomology theories, where each M_i is a motivic spectrum associated with a base scheme X. The n-ality derived motivic cohomology theory M^n is defined by:

$$M^n(X) = \bigoplus_{i=1}^n M_i(X),$$

where $M_i(X)$ denotes the motivic cohomology groups associated with X and the spectrum M_i .

Theorem 77.1.2 (Exact Sequence in n-Ality Derived Motivic Cohomology). If each M_i satisfies the axioms of derived motivic cohomology, then M^n satisfies an exact sequence in n-ality motivic cohomology:

$$\cdots \to M^n(X) \to M^n(Y) \to M^n(Z) \to \cdots$$

for any distinguished triangle $X \to Y \to Z$ in the derived category.

Proof. Since each M_i satisfies exactness in the motivic cohomology sequence, the direct sum M^n preserves this structure componentwise.

78. ENRICHED CATEGORIES IN *n*-ALITY THEORY

78.1. n-Ality Enriched Categories.

Definition 78.1.1 (n-Ality Enriched Category). Let $\{V_i\}_{i=1}^n$ be a collection of closed symmetric monoidal categories, each serving as the base of enrichment for a category C_i . The <u>n-ality enriched</u> category C^n is defined by:

$$\mathcal{C}^n = \bigoplus_{i=1}^n \mathcal{C}_i,$$

with each C_i enriched over V_i .

Theorem 78.1.2 (Exactness of n-Ality Enriched Functors). *If each functor* $F_i : C_i \to D_i$ *is exact as a* V_i -enriched functor, then the induced n-ality enriched functor $F^n : C^n \to D^n$ is exact.

Proof. The exactness of each F_i in V_i -enriched context implies that the direct sum F^n preserves enriched exactness in C^n .

78.2. n-Ality Hom Objects in Enriched Categories.

Definition 78.2.1 (n-Ality Hom Object). Let $\operatorname{Hom}_{\mathcal{V}_i}(X_i, Y_i)$ be the hom-object in \mathcal{V}_i for objects $X_i, Y_i \in \mathcal{C}_i$. The n-ality hom-object $\operatorname{Hom}_{\mathcal{V}^n}(X, Y)$ for $X, Y \in \mathcal{C}^n$ is given by:

$$\operatorname{Hom}_{\mathcal{V}^n}(X,Y) = \bigoplus_{i=1}^n \operatorname{Hom}_{\mathcal{V}_i}(X_i,Y_i).$$

Theorem 78.2.2 (Associativity of n-Ality Hom Objects). The n-ality hom-object $\operatorname{Hom}_{\mathcal{V}^n}(X,Y)$ inherits associativity from each hom-object $\operatorname{Hom}_{\mathcal{V}_i}(X_i,Y_i)$.

Proof. Since each $\operatorname{Hom}_{\mathcal{V}_i}(X_i, Y_i)$ is associative, the direct sum structure of $\operatorname{Hom}_{\mathcal{V}^n}(X, Y)$ preserves associativity in n-ality.

79. DIAGRAMS FOR FORMAL SCHEMES, DERIVED MOTIVIC COHOMOLOGY, AND ENRICHED CATEGORIES IN *n*-ALITY THEORY

Morphism in n-ality formal schemes

FIGURE 14. Diagram of morphism in n-ality formal schemes

80. Examples of Derived Motivic Cohomology and Enriched Categories in n-Ality Theory

Example 80.0.1 (Tri-Ality Formal Schemes for Deformation Theory). Consider formal schemes $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$ representing deformations of smooth varieties. The tri-ality formal scheme $\mathcal{X}^3 = \bigoplus_{i=1}^3 \mathcal{X}_i$ provides a framework for studying deformations across multiple settings.

Example 80.0.2 (Quater-Ality Derived Motivic Cohomology in Algebraic K-Theory). Let M_1, M_2, M_3, M_4 be motivic spectra associated with K-theory and cobordism. The quater-ality derived motivic cohomology M^4 provides a combined cohomology theory to study algebraic cycles across different motivic settings.

Example 80.0.3 (Tri-Ality Enriched Category in Representation Theory). Consider categories C_1, C_2, C_3 of representations over different fields, each enriched over a base category of vector spaces. The tri-ality enriched category C^3 offers a unified structure for representations over multiple base fields.

81. Further References for Formal Schemes, Derived Motivic Cohomology, and Enriched Categories in *n*-Ality Theory

REFERENCES

- [1] P. Berthelot, Cohomology Theories for Formal Schemes, Springer, 1996.
- [2] V. Voevodsky, Axiomatic Motivic Homotopy Theory, Documenta Mathematica, 2000.
- [3] G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University Press, 1982.

82. Higher Deformation Theory in n-Ality

82.1. n-Ality Higher Deformation Functors.

Definition 82.1.1 (n-Ality Higher Deformation Functor). Let $\{Def_i\}_{i=1}^n$ be a collection of deformation functors defined over a formal base scheme \mathcal{X} , where each Def_i describes infinitesimal deformations of an object X_i . The n-ality higher deformation functor Def^n is defined by:

$$\operatorname{Def}^n = \bigoplus_{i=1}^n \operatorname{Def}_i.$$

Theorem 82.1.2 (Exactness of n-Ality Higher Deformation Functors). *If each deformation functor* Def_i *is exact, then the n-ality deformation functor* Def^n *is also exact.*

Proof. Since each Def_i preserves exactness, the direct sum structure of Def^n ensures that exactness is preserved in n-ality.

82.2. n-Ality Obstruction Theory in Deformation Contexts.

Definition 82.2.1 (n-Ality Obstruction Class). Let $\operatorname{Obs}_i \in H^2(X_i, T_{X_i})$ represent obstruction classes in the second cohomology group associated with the tangent sheaf T_{X_i} of each X_i . The n-ality obstruction class Obs^n is defined by:

$$\mathrm{Obs}^n = \bigoplus_{i=1}^n \mathrm{Obs}_i \in \bigoplus_{i=1}^n H^2(X_i, T_{X_i}).$$

Theorem 82.2.2 (Vanishing of n-Ality Obstruction Classes). If each $Obs_i = 0$, then $Obs^n = 0$, indicating that deformations in n-ality are unobstructed.

Proof. Since each obstruction class Obs_i vanishes, the direct sum Obs^n also vanishes, implying unobstructed deformations in n-ality.

83. DERIVED CATEGORIES OF COHERENT SHEAVES IN *n*-ALITY

83.1. n-Ality Derived Category of Coherent Sheaves.

Definition 83.1.1 (n-Ality Derived Category of Coherent Sheaves). Let $\{D^b(\operatorname{Coh}(\mathcal{X}_i))\}_{i=1}^n$ denote bounded derived categories of coherent sheaves over a collection of schemes \mathcal{X}_i . The <u>n-ality derived category of coherent sheaves</u> $D^b(\operatorname{Coh}(\mathcal{X}^n))$ is defined by:

$$D^b(\operatorname{Coh}(\mathcal{X}^n)) = \bigoplus_{i=1}^n D^b(\operatorname{Coh}(\mathcal{X}_i)).$$

Theorem 83.1.2 (Exact Sequences in n-Ality Derived Categories of Coherent Sheaves). If each $D^b(\operatorname{Coh}(\mathcal{X}_i))$ satisfies exactness, then $D^b(\operatorname{Coh}(\mathcal{X}^n))$ also satisfies exactness in the derived category structure.

Proof. The exactness of each component category $D^b(\operatorname{Coh}(\mathcal{X}_i))$ implies that the direct sum $D^b(\operatorname{Coh}(\mathcal{X}^n))$ is exact in n-ality.

83.2. n-Ality Fourier-Mukai Transforms.

Definition 83.2.1 (n-Ality Fourier-Mukai Transform). Let $\Phi_i: D^b(\operatorname{Coh}(\mathcal{X}_i)) \to D^b(\operatorname{Coh}(\mathcal{Y}_i))$ be Fourier-Mukai transforms associated with kernels $\mathcal{K}_i \in D^b(\operatorname{Coh}(\mathcal{X}_i \times \mathcal{Y}_i))$. The <u>n-ality Fourier-Mukai transform</u> Φ^n is defined by:

$$\Phi^n = \bigoplus_{i=1}^n \Phi_i,$$

with kernel $\mathcal{K}^n = \bigoplus_{i=1}^n \mathcal{K}_i$.

Theorem 83.2.2 (Exactness of n-Ality Fourier-Mukai Transforms). *If each* Φ_i *is exact, then* Φ^n *is an exact functor in the category of n-ality derived categories of coherent sheaves.*

Proof. The exactness of each Fourier-Mukai transform Φ_i implies that Φ^n , formed by their direct sum, preserves exactness in n-ality.

84. DERIVED FUNCTOR COHOMOLOGY IN ENRICHED n-ALITY CATEGORIES

84.1. n-Ality Enriched Derived Functor Cohomology.

Definition 84.1.1 (n-Ality Enriched Derived Functor). Let $\operatorname{Ext}_{\mathcal{V}_i}^k(X_i, Y_i)$ be the k-th derived functor in an enriched category \mathcal{V}_i for objects $X_i, Y_i \in \mathcal{C}_i$. The n-ality enriched derived functor $\operatorname{Ext}_{\mathcal{V}^n}^k(X,Y)$ is given by:

$$\operatorname{Ext}_{\mathcal{V}^n}^k(X,Y) = \bigoplus_{i=1}^n \operatorname{Ext}_{\mathcal{V}_i}^k(X_i,Y_i).$$

Theorem 84.1.2 (Exactness of n-Ality Enriched Derived Functor Cohomology). *If each* $\operatorname{Ext}_{\mathcal{V}_i}^k$ satisfies exactness, then the n-ality enriched derived functor $\operatorname{Ext}_{\mathcal{V}^n}^k$ is also exact.

Proof. Since each $\operatorname{Ext}_{\mathcal{V}_i}^k$ preserves exactness, the direct sum structure of $\operatorname{Ext}_{\mathcal{V}^n}^k$ ensures that exactness is preserved in n-ality.

85. DIAGRAMS FOR HIGHER DEFORMATION THEORY, DERIVED CATEGORIES, AND ENRICHED COHOMOLOGY IN *n*-ALITY THEORY

n-Ality Fourier-Mukai Transform Diagram

FIGURE 15. Diagram of the n-ality Fourier-Mukai transform

86. Examples of Higher Deformation Theory, Derived Categories, and Enriched Cohomology in *n*-Ality Theory

Example 86.0.1 (Tri-Ality Deformation Theory for Complex Varieties). Consider deformation functors Def_1 , Def_2 , Def_3 describing deformations of three complex varieties. The tri-ality deformation functor $Def^3 = \bigoplus_{i=1}^3 Def_i$ provides a framework for studying deformations in a combined context.

Example 86.0.2 (Quater-Ality Derived Category of Coherent Sheaves for Moduli Spaces). Let $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3, \mathcal{X}_4$ be varieties with derived categories of coherent sheaves. The quater-ality derived category $D^b(\operatorname{Coh}(\mathcal{X}^4)) = \bigoplus_{i=1}^4 D^b(\operatorname{Coh}(\mathcal{X}_i))$ enables the study of coherent sheaves across multiple moduli spaces.

Example 86.0.3 (Tri-Ality Enriched Derived Functor Cohomology in Representation Theory). Let C_1, C_2, C_3 be categories of representations, each enriched over a monoidal category of modules. The tri-ality enriched derived functor $\operatorname{Ext}_{\mathcal{V}^3}^k(X,Y)$ combines derived functor cohomology for these categories.

87. Further References for Higher Deformation Theory, Derived Categories, and Enriched Cohomology in n-Ality Theory

REFERENCES

- [1] L. Illusie, Complexe Cotangent et Déformations I, Springer, 1971.
- [2] D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford University Press, 2006.
- [3] G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University Press, 1982.

88. HIGHER DERIVED CATEGORIES IN n-ALITY THEORY

88.1. n-Ality Higher Derived Categories.

Definition 88.1.1 (n-Ality Higher Derived Category). Let $\{D^+(A_i)\}_{i=1}^n$ be collections of derived categories of bounded below complexes of objects in abelian categories A_i . The <u>n-ality higher</u> derived category $D^+(A^n)$ is defined by:

$$D^+(\mathcal{A}^n) = \bigoplus_{i=1}^n D^+(\mathcal{A}_i).$$

Theorem 88.1.2 (Exactness of n-Ality Higher Derived Categories). If each $D^+(A_i)$ satisfies exactness in the derived category structure, then $D^+(A^n)$ also satisfies exactness in the n-ality higher derived category.

Proof. The exactness of each $D^+(A_i)$ implies that the direct sum $D^+(A^n)$ inherits this exact structure, preserving exactness in n-ality.

88.2. n-Ality Grothendieck Spectral Sequence.

Theorem 88.2.1 (n-Ality Grothendieck Spectral Sequence). Let $F_i: D^+(A_i) \to D^+(B_i)$ and $G_i: D^+(B_i) \to D^+(C_i)$ be two functors between derived categories. Then, for each derived category $D^+(A_i)$, there exists a Grothendieck spectral sequence. The n-ality Grothendieck spectral sequence for $D^+(A^n)$ is given by:

$$E_2^{p,q} = \bigoplus_{i=1}^n H^p(F_i H^q(G_i)) \Rightarrow H^{p+q}(G^n \circ F^n),$$

where
$$F^n = \bigoplus_{i=1}^n F_i$$
 and $G^n = \bigoplus_{i=1}^n G_i$.

Proof. The existence of a Grothendieck spectral sequence for each F_i and G_i implies the existence of a direct sum spectral sequence in n-ality.

89. ENRICHED HOMOTOPY LIMITS IN *n*-ALITY

89.1. n-Ality Enriched Homotopy Limits.

Definition 89.1.1 (n-Ality Enriched Homotopy Limit). Let $\operatorname{holim}_{I,\mathcal{V}_i} X_i$ denote the homotopy limit in an enriched category \mathcal{V}_i with respect to a diagram $X_i: I \to \mathcal{V}_i$. The <u>n-ality enriched homotopy limit $\operatorname{holim}_{I,\mathcal{V}^n} X$ is given by:</u>

$$\operatorname{holim}_{I,\mathcal{V}^n} X = \bigoplus_{i=1}^n \operatorname{holim}_{I,\mathcal{V}_i} X_i.$$

Theorem 89.1.2 (Exactness of n-Ality Enriched Homotopy Limits). *If each* holim_{I,V_i} X_i *is exact* in V_i , then holim_{I,V^n} X is exact in V^n .

Proof. The exactness of each $\operatorname{holim}_{I,\mathcal{V}_i} X_i$ implies that the direct sum $\operatorname{holim}_{I,\mathcal{V}^n} X$ preserves exactness in n-ality.

90. N-ALITY TENSOR STRUCTURES IN DERIVED CATEGORIES

90.1. n-Ality Tensor Product of Complexes.

Definition 90.1.1 (n-Ality Tensor Product). Let $K_i, L_i \in D^+(A_i)$ be bounded below complexes of objects in categories A_i , with a derived tensor product $K_i \otimes^L L_i$. The <u>n-ality tensor product</u> $K \otimes^L L_i$ is defined as:

$$K \otimes^L L = \bigoplus_{i=1}^n (K_i \otimes^L L_i).$$

Theorem 90.1.2 (Exactness of n-Ality Tensor Products). *If each* $K_i \otimes^L L_i$ *is exact, then* $K \otimes^L L$ *is exact in the* n-ality tensor structure.

Proof. The exactness of each derived tensor product $K_i \otimes^L L_i$ implies that the direct sum $K \otimes^L L$ is exact in n-ality.

90.2. n-Ality Derived Functor of Tensor Products.

Definition 90.2.1 (n-Ality Tor Functor). Let $\operatorname{Tor}_{i}^{p}(K_{i}, L_{i})$ denote the p-th derived functor of the tensor product in A_{i} . The n-ality Tor functor $\operatorname{Tor}^{p}(K, L)$ is given by:

$$\operatorname{Tor}^p(K, L) = \bigoplus_{i=1}^n \operatorname{Tor}_i^p(K_i, L_i).$$

Theorem 90.2.2 (Exactness of n-Ality Tor Functors). *If each* $\operatorname{Tor}_i^p(K_i, L_i)$ *satisfies exactness, then* $\operatorname{Tor}^p(K, L)$ *satisfies exactness in the n-ality context.*

Proof. Since each Tor_i^p is exact, the direct sum construction $\operatorname{Tor}^p(K,L)$ maintains exactness in n-ality.

91. DIAGRAMS FOR HIGHER DERIVED CATEGORIES, ENRICHED HOMOTOPY LIMITS, AND TENSOR STRUCTURES IN *n*-ALITY THEORY

Diagram of n-Ality Enriched Homotopy Limit

FIGURE 16. Diagram of the n-ality enriched homotopy limit

92. Examples of Higher Derived Categories, Tensor Structures, and Enriched Homotopy Limits in *n*-Ality Theory

Example 92.0.1 (Tri-Ality Derived Category for Coherent Sheaves). Consider derived categories $D^+(\operatorname{Coh}(\mathcal{X}_1)), D^+(\operatorname{Coh}(\mathcal{X}_2)), D^+(\operatorname{Coh}(\mathcal{X}_3))$ for coherent sheaves. The tri-ality higher derived category $D^+(\operatorname{Coh}(\mathcal{X}^3)) = \bigoplus_{i=1}^3 D^+(\operatorname{Coh}(\mathcal{X}_i))$ provides a framework for derived complexes across these spaces.

Example 92.0.2 (Quater-Ality Tensor Structure in Representation Theory). Let K_1, K_2, K_3, K_4 be complexes of representations over different fields. The quater-ality tensor product $K \otimes^L L = \bigoplus_{i=1}^4 (K_i \otimes^L L_i)$ allows for simultaneous tensor operations across the four fields.

Example 92.0.3 (Tri-Ality Enriched Homotopy Limit in Topological Spaces). Consider homotopy limits $\operatorname{holim}_{I,\mathcal{V}_1} X_1$, $\operatorname{holim}_{I,\mathcal{V}_2} X_2$, and $\operatorname{holim}_{I,\mathcal{V}_3} X_3$ in different enriched categories of topological spaces. The tri-ality enriched homotopy limit $\operatorname{holim}_{I,\mathcal{V}_3} X = \bigoplus_{i=1}^3 \operatorname{holim}_{I,\mathcal{V}_i} X_i$ enables a unified homotopy limit across the spaces.

93. FURTHER REFERENCES FOR HIGHER DERIVED CATEGORIES, ENRICHED HOMOTOPY LIMITS, AND TENSOR STRUCTURES IN n-ALITY THEORY

REFERENCES

- [1] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.
- [2] M. Hovey, Model Categories, American Mathematical Society, 1999.
- [3] A. K. Bousfield and D. M. Kan, <u>Homotopy Limits, Completions and Localizations</u>, Springer, 1972.

94. Spectral Sequences in *n*-Ality Theory

94.1. n-Ality Spectral Sequences.

Definition 94.1.1 (n-Ality Spectral Sequence). Let $\{E_r^{p,q}(i)\}_{i=1}^n$ be a collection of spectral sequences converging to cohomology groups $H^*(X_i)$. The <u>n-ality spectral sequence</u> $E_r^{p,q}(n)$ is defined by:

$$E_r^{p,q}(n) = \bigoplus_{i=1}^n E_r^{p,q}(i),$$

which converges to the direct sum cohomology $H^*(X^n) = \bigoplus_{i=1}^n H^*(X_i)$.

Theorem 94.1.2 (Convergence of n-Ality Spectral Sequences). If each spectral sequence $E_r^{p,q}(i)$ converges to $H^*(X_i)$, then the n-ality spectral sequence $E_r^{p,q}(n)$ converges to $H^*(X^n)$.

Proof. Since each $E_r^{p,q}(i)$ converges, the direct sum $E_r^{p,q}(n)$ also converges to the cohomology $H^*(X^n)$.

95. HIGHER K-THEORY IN *n*-ALITY THEORY

95.1. n-Ality Higher K-Theory Groups.

Definition 95.1.1 (n-Ality K-Theory Group). Let $K_i^p(X)$ denote the p-th higher K-theory group of a scheme X with respect to a category C_i . The <u>n-ality higher K-theory group</u> $K^p(X^n)$ is defined by:

$$K^{p}(X^{n}) = \bigoplus_{\substack{i=1\\25}}^{n} K_{i}^{p}(X).$$

Theorem 95.1.2 (Exact Sequence in n-Ality Higher K-Theory). *If each* $K_i^p(X)$ *satisfies the axioms of higher K-theory, then* $K^p(X^n)$ *satisfies an exact sequence:*

$$\cdots \to K^p(X) \to K^p(Y) \to K^p(Z) \to \cdots$$

for any distinguished triangle $X \to Y \to Z$.

Proof. The exactness of each $K_i^p(X)$ implies that the direct sum $K^p(X^n)$ inherits this exact sequence structure in n-ality.

95.2. n-Ality Chern Character in Higher K-Theory.

Definition 95.2.1 (n-Ality Chern Character). Let $\operatorname{ch}_i: K_i^p(X) \to H^{2p}(X,\mathbb{Q})$ be the Chern character associated with the *i*-th higher K-theory group. The <u>n-ality Chern character</u> ch^n is defined by:

$$\operatorname{ch}^{n} = \bigoplus_{i=1}^{n} \operatorname{ch}_{i} : K^{p}(X^{n}) \to \bigoplus_{i=1}^{n} H^{2p}(X_{i}, \mathbb{Q}).$$

Theorem 95.2.2 (Exactness of n-Ality Chern Character). *If each* ch_i *is exact, then the n-ality Chern character* ch^n *is exact in* n*-ality.*

Proof. The exactness of each ch_i implies that ch^n maintains exactness for the higher K-theory groups in n-ality.

96. DERIVED FUNCTORS IN HOMOTOPICAL *n*-ALITY CONTEXTS

96.1. n-Ality Derived Functor Homology.

Definition 96.1.1 (n-Ality Derived Functor Homology). Let R_i F denote the right-derived functor of a functor F_i on a category A_i . The n-ality derived functor homology R^n F is defined by:

$$R^n F = \bigoplus_{i=1}^n R_i F.$$

Theorem 96.1.2 (Exactness of n-Ality Derived Functor Homology). *If each* R_i *F is exact, then* R^n *F is exact in n-ality.*

Proof. The exactness of each $R_i F$ ensures that the direct sum $R^n F$ preserves exactness in n-ality.

97. DIAGRAMS FOR SPECTRAL SEQUENCES, HIGHER K-THEORY, AND DERIVED FUNCTORS IN n-ALITY THEORY

Diagram of n-Ality Spectral Sequence Convergence

FIGURE 17. Diagram of the n-ality spectral sequence convergence

98. Examples of Spectral Sequences, Higher K-Theory, and Derived Functors in n-Ality Theory

Example 98.0.1 (Tri-Ality Spectral Sequence for Derived Categories). Consider spectral sequences $E_r^{p,q}(1), E_r^{p,q}(2), E_r^{p,q}(3)$ converging to cohomology groups of three derived categories. The triality spectral sequence $E_r^{p,q}(3) = \bigoplus_{i=1}^3 E_r^{p,q}(i)$ converges to the direct sum cohomology groups.

Example 98.0.2 (Quater-Ality Higher K-Theory for Algebraic Varieties). Let $K_1^p(X)$, $K_2^p(X)$, $K_3^p(X)$, $K_4^p(X)$ be higher K-theory groups for four algebraic varieties. The quater-ality higher K-theory group $K^p(X^4) = \bigoplus_{i=1}^4 K_i^p(X)$ enables combined K-theory computations.

Example 98.0.3 (Tri-Ality Derived Functor Homology in Homotopy Theory). Consider right-derived functors $R_1 F$, $R_2 F$, $R_3 F$ for functors in homotopy theory. The tri-ality derived functor homology $R^3 F = \bigoplus_{i=1}^3 R_i F$ combines the derived homologies across homotopical contexts.

99. Further References for Spectral Sequences, Higher K-Theory, and Derived Functors in n-Ality Theory

REFERENCES

- [1] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.
- [2] R. W. Thomason, Higher Algebraic K-Theory of Schemes and of Derived Categories, Springer, 1990.
- [3] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Springer, 1972.
 - 100. DERIVED CATEGORIES OF D-MODULES IN n-ALITY THEORY

100.1. n-Ality Derived Category of D-Modules.

Definition 100.1.1 (n-Ality Derived Category of D-Modules). Let $\{D^b(\operatorname{Mod}(\mathcal{D}_{X_i}))\}_{i=1}^n$ be the bounded derived categories of \mathcal{D}_{X_i} -modules on smooth varieties X_i , where \mathcal{D}_{X_i} denotes the sheaf of differential operators. The <u>n-ality derived category of D-modules</u> $D^b(\operatorname{Mod}(\mathcal{D}_{X^n}))$ is defined by:

$$D^b(\operatorname{Mod}(\mathcal{D}_{X^n})) = \bigoplus_{i=1}^n D^b(\operatorname{Mod}(\mathcal{D}_{X_i})).$$

Theorem 100.1.2 (Exactness in n-Ality Derived Categories of D-Modules). *If each* $D^b(\text{Mod}(\mathcal{D}_{X_i}))$ *is exact, then* $D^b(\text{Mod}(\mathcal{D}_{X^n}))$ *is also exact in the n-ality derived category structure.*

Proof. Since each derived category $D^b(\operatorname{Mod}(\mathcal{D}_{X_i}))$ is exact, their direct sum $D^b(\operatorname{Mod}(\mathcal{D}_{X^n}))$ inherits exactness, maintaining it in n-ality.

100.2. n-Ality D-Module Functors.

Definition 100.2.1 (n-Ality D-Module Functor). Let $F_i: D^b(\operatorname{Mod}(\mathcal{D}_{X_i})) \to D^b(\operatorname{Mod}(\mathcal{D}_{Y_i}))$ denote functors on D-modules. The <u>n-ality D-module functor</u> F^n is defined by:

$$F^n = \bigoplus_{i=1}^n F_i.$$

Theorem 100.2.2 (Exactness of n-Ality D-Module Functors). *If each functor* F_i *is exact, then* F^n *is exact in the category of* n-ality D-modules.

Proof. The exactness of each F_i implies that the direct sum F^n is also exact in the n-ality D-module structure.

101. Derived Categories of Quasi-Coherent Sheaves in n-Ality Theory

101.1. n-Ality Derived Category of Quasi-Coherent Sheaves.

Definition 101.1.1 (n-Ality Derived Category of Quasi-Coherent Sheaves). Let $\{D^+(\operatorname{QCoh}(\mathcal{X}_i))\}_{i=1}^n$ denote the bounded below derived categories of quasi-coherent sheaves on schemes \mathcal{X}_i . The <u>n-ality</u> derived category of quasi-coherent sheaves $D^+(\operatorname{QCoh}(\mathcal{X}^n))$ is defined by:

$$D^+(\operatorname{QCoh}(\mathcal{X}^n)) = \bigoplus_{i=1}^n D^+(\operatorname{QCoh}(\mathcal{X}_i)).$$

Theorem 101.1.2 (Exact Sequences in n-Ality Derived Categories of Quasi-Coherent Sheaves). If each $D^+(\operatorname{QCoh}(\mathcal{X}_i))$ satisfies exactness, then $D^+(\operatorname{QCoh}(\mathcal{X}^n))$ satisfies exactness in n-ality.

Proof. The exactness of each component category $D^+(\operatorname{QCoh}(\mathcal{X}_i))$ implies that the direct sum $D^+(\operatorname{QCoh}(\mathcal{X}^n))$ is exact in n-ality.

101.2. n-Ality Pushforward and Pullback Functors.

Definition 101.2.1 (n-Ality Pushforward Functor). Let $f_i: \mathcal{X}_i \to \mathcal{Y}_i$ be morphisms of schemes, with pushforward functors $f_{i*}: D^+(\operatorname{QCoh}(\mathcal{X}_i)) \to D^+(\operatorname{QCoh}(\mathcal{Y}_i))$. The <u>n-ality pushforward</u> functor f_*^n is defined by:

$$f_*^n = \bigoplus_{i=1}^n f_{i*}.$$

Theorem 101.2.2 (Exactness of n-Ality Pushforward Functors). *If each* f_{i*} *is exact, then* f_{*}^{n} *is exact in* n-ality.

Proof. Since each f_{i*} is exact, their direct sum f_{*}^{n} preserves exactness in n-ality.

102. DERIVED DEFORMATION QUANTIZATION IN *n*-ALITY THEORY

102.1. n-Ality Deformation Quantization Modules.

Definition 102.1.1 (n-Ality Deformation Quantization Module). Let \mathcal{O}_{\hbar,X_i} denote a deformation quantization of the structure sheaf \mathcal{O}_{X_i} of a smooth scheme X_i , where \hbar represents a formal parameter. The n-ality deformation quantization module \mathcal{O}_{\hbar,X^n} is defined by:

$$\mathcal{O}_{\hbar,X^n} = \bigoplus_{i=1}^n \mathcal{O}_{\hbar,X_i}.$$

Theorem 102.1.2 (Existence of n-Ality Deformation Quantization). *If each* \mathcal{O}_{\hbar,X_i} *exists as a deformation quantization, then* \mathcal{O}_{\hbar,X^n} *exists as a deformation quantization in* n-ality.

Proof. The existence of each \mathcal{O}_{\hbar,X_i} as a deformation quantization implies that their direct sum \mathcal{O}_{\hbar,X^n} also exists in the n-ality context.

102.2. n-Ality Star Product.

Definition 102.2.1 (n-Ality Star Product). Let \star_i denote the star product for deformation quantization on X_i associated with \mathcal{O}_{\hbar,X_i} . The n-ality star product \star^n on X^n is defined by:

$$f \star^n g = \bigoplus_{i=1}^n (f_i \star_i g_i),$$

where $f = \bigoplus_{i=1}^{n} f_i$ and $g = \bigoplus_{i=1}^{n} g_i$.

Theorem 102.2.2 (Associativity of n-Ality Star Product). *If each* \star_i *is associative, then* \star^n *is associative in n-ality.*

Proof. The associativity of each \star_i implies that the direct sum \star^n is associative in *n*-ality.

103. DIAGRAMS FOR D-MODULES, QUASI-COHERENT SHEAVES, AND DEFORMATION QUANTIZATION IN n-ALITY THEORY

Diagram of n-Ality Pushforward Functor

FIGURE 18. Diagram of the n-ality pushforward functor in quasi-coherent sheaves

104. Examples of D-Modules, Quasi-Coherent Sheaves, and Deformation Quantization in *n*-Ality Theory

Example 104.0.1 (Tri-Ality D-Module Categories on Algebraic Varieties). Consider derived categories of D-modules $D^b(\operatorname{Mod}(\mathcal{D}_{X_1}))$, $D^b(\operatorname{Mod}(\mathcal{D}_{X_2}))$, $D^b(\operatorname{Mod}(\mathcal{D}_{X_3}))$. The tri-ality derived category $D^b(\operatorname{Mod}(\mathcal{D}_{X_3})) = \bigoplus_{i=1}^3 D^b(\operatorname{Mod}(\mathcal{D}_{X_i}))$ provides a framework for analyzing differential operators on these varieties.

Example 104.0.2 (Quater-Ality Derived Category of Quasi-Coherent Sheaves). Let $D^+(\operatorname{QCoh}(\mathcal{X}_1))$, $D^+(\operatorname{QCoh}(\mathcal{X}_2))$ be derived categories of quasi-coherent sheaves on schemes. The quater-ality derived category $D^+(\operatorname{QCoh}(\mathcal{X}^4))$ provides a comprehensive framework for quasi-coherent sheaf theory across multiple schemes.

Example 104.0.3 (Tri-Ality Deformation Quantization for Symplectic Varieties). Consider deformation quantizations \mathcal{O}_{\hbar,X_1} , \mathcal{O}_{\hbar,X_2} , \mathcal{O}_{\hbar,X_3} on symplectic varieties X_1,X_2,X_3 . The tri-ality deformation quantization $\mathcal{O}_{\hbar,X^3} = \bigoplus_{i=1}^3 \mathcal{O}_{\hbar,X_i}$ provides a unified setting for deformation quantization across these varieties.

105. Further References for D-Modules, Quasi-Coherent Sheaves, and Deformation Quantization in n-Ality Theory

REFERENCES

- [1] A. Beilinson and J. Bernstein, Localization of g-Modules, Springer, 1981.
- [2] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Springer, 1994.
- [3] M. Kontsevich, Deformation Quantization of Poisson Manifolds, Letters in Mathematical Physics, 2003.

106. DERIVED CATEGORIES OF PERVERSE SHEAVES IN *n*-ALITY THEORY

106.1. n-Ality Derived Category of Perverse Sheaves.

Definition 106.1.1 (n-Ality Derived Category of Perverse Sheaves). Let $\{D^b(\operatorname{Perv}(X_i))\}_{i=1}^n$ be the bounded derived categories of perverse sheaves on stratified varieties X_i . The <u>n-ality derived</u> category of perverse sheaves $D^b(\operatorname{Perv}(X^n))$ is defined by:

$$D^b(\operatorname{Perv}(X^n)) = \bigoplus_{i=1}^n D^b(\operatorname{Perv}(X_i)).$$

Theorem 106.1.2 (Exactness in n-Ality Derived Categories of Perverse Sheaves). *If each* $D^b(\text{Perv}(X_i))$ *is exact, then* $D^b(\text{Perv}(X^n))$ *is also exact in the* n-ality structure.

Proof. Since each $D^b(\operatorname{Perv}(X_i))$ is exact, the direct sum $D^b(\operatorname{Perv}(X^n))$ inherits this exactness in n-ality.

106.2. n-Ality Intersection Complexes.

Definition 106.2.1 (n-Ality Intersection Complex). Let IC_{X_i} denote the intersection complex associated with a stratified variety X_i . The <u>n-ality intersection complex</u> IC_{X^n} is defined by:

$$IC_{X^n} = \bigoplus_{i=1}^n IC_{X_i}$$
.

Theorem 106.2.2 (Exactness of n-Ality Intersection Complexes). *If each* IC_{X_i} *is exact, then* IC_{X^n} *is exact in* n-ality.

Proof. The exactness of each IC_{X_i} implies that the direct sum IC_{X^n} maintains exactness in the n-ality context.

107. HIGHER CHOW GROUPS IN *n*-ALITY THEORY

107.1. n-Ality Higher Chow Groups.

Definition 107.1.1 (n-Ality Higher Chow Group). Let $\{CH_i^p(X,q)\}_{i=1}^n$ denote the higher Chow groups associated with codimension p cycles on varieties X_i and dimension q. The <u>n-ality higher Chow group</u> $CH^p(X^n,q)$ is defined by:

$$CH^p(X^n, q) = \bigoplus_{i=1}^n CH_i^p(X, q).$$

Theorem 107.1.2 (Exactness in n-Ality Higher Chow Groups). *If each* $CH_i^p(X,q)$ *satisfies exactness in the higher Chow group structure, then* $CH^p(X^n,q)$ *is exact in n-ality.*

Proof. Since each $CH_i^p(X,q)$ is exact, the direct sum $CH^p(X^n,q)$ maintains exactness in n-ality.

107.2. n-Ality Cycle Class Map.

Definition 107.2.1 (n-Ality Cycle Class Map). Let $\operatorname{cl}_i: \operatorname{CH}_i^p(X,q) \to H^{2p-q}(X_i,\mathbb{Q})$ denote the cycle class map associated with the *i*-th higher Chow group. The <u>n-ality cycle class map</u> cl^n is given by:

$$\operatorname{cl}^n = \bigoplus_{i=1}^n \operatorname{cl}_i : \operatorname{CH}^p(X^n, q) \to \bigoplus_{i=1}^n H^{2p-q}(X_i, \mathbb{Q}).$$

Theorem 107.2.2 (Exactness of n-Ality Cycle Class Maps). *If each* cl_i *is exact, then* cl^n *is exact in* n-ality.

Proof. The exactness of each cycle class map cl_i implies that the direct sum cl^n preserves exactness in n-ality.

108. DERIVED CATEGORIES OF DG-ALGEBRAS IN n-ALITY THEORY

108.1. n-Ality Derived Category of dg-Algebras.

Definition 108.1.1 (n-Ality Derived Category of dg-Algebras). Let $\{D^b(dg(\mathcal{A}_i))\}_{i=1}^n$ be the bounded derived categories of differential graded (dg) algebras \mathcal{A}_i . The <u>n-ality derived category of dg-algebras</u> $D^b(dg(\mathcal{A}^n))$ is defined by:

$$D^b(\mathrm{dg}(\mathcal{A}^n)) = \bigoplus_{i=1}^n D^b(\mathrm{dg}(\mathcal{A}_i)).$$

Theorem 108.1.2 (Exactness in n-Ality Derived Categories of dg-Algebras). *If each* $D^b(dg(\mathcal{A}_i))$ *satisfies exactness, then* $D^b(dg(\mathcal{A}^n))$ *also satisfies exactness in* n-ality.

Proof. Since each component category $D^b(dg(\mathcal{A}_i))$ is exact, the direct sum $D^b(dg(\mathcal{A}^n))$ inherits exactness in n-ality.

108.2. n-Ality Derived Functor of Tensor Products in dg-Algebras.

Definition 108.2.1 (n-Ality Tor Functor in dg-Algebras). Let $\operatorname{Tor}_i^p(K_i, L_i)$ denote the *p*-th derived functor of the tensor product in the category of dg-algebras A_i . The <u>n-ality Tor functor</u> $\operatorname{Tor}^p(K, L)$ is defined by:

$$\operatorname{Tor}^p(K, L) = \bigoplus_{i=1}^n \operatorname{Tor}_i^p(K_i, L_i).$$

Theorem 108.2.2 (Exactness of n-Ality Tor Functor in dg-Algebras). *If each* $\operatorname{Tor}_i^p(K_i, L_i)$ *satisfies exactness, then* $\operatorname{Tor}^p(K, L)$ *is exact in the n-ality context.*

Proof. The exactness of each derived functor Tor_i^p ensures that the direct sum $\operatorname{Tor}^p(K,L)$ maintains exactness in n-ality.

- 109. Diagrams for Perverse Sheaves, Higher Chow Groups, and dg-Algebras in n-Ality Theory
- 110. Examples of Perverse Sheaves, Higher Chow Groups, and dg-Algebras in n-Ality Theory

Example 110.0.1 (Tri-Ality Perverse Sheaves on Stratified Varieties). Consider derived categories of perverse sheaves $D^b(\operatorname{Perv}(X_1)), D^b(\operatorname{Perv}(X_2)), D^b(\operatorname{Perv}(X_3))$ on three stratified varieties.

Diagram of n-Ality Cycle Class Map in Higher Chow Groups

FIGURE 19. Diagram of the n-ality cycle class map in higher Chow groups

The tri-ality derived category $D^b(\operatorname{Perv}(X^3)) = \bigoplus_{i=1}^3 D^b(\operatorname{Perv}(X_i))$ combines the perverse sheaf structures across the varieties.

Example 110.0.2 (Quater-Ality Higher Chow Groups for Algebraic Cycles). Let $\operatorname{CH}_1^p(X,q)$, $\operatorname{CH}_2^p(X,q)$, $\operatorname{CH}_3^p(X,q)$ represent higher Chow groups of algebraic cycles. The quater-ality higher Chow group $\operatorname{CH}^p(X^4,q) = \bigoplus_{i=1}^4 \operatorname{CH}_i^p(X,q)$ provides a unified framework for cycles across varieties.

Example 110.0.3 (Tri-Ality dg-Algebras in Derived Categories). Consider derived categories $D^b(\mathrm{dg}(\mathcal{A}_1)), D^b(\mathrm{dg}(\mathcal{A}_2)), D^b(\mathrm{dg}(\mathcal{A}_3))$ of dg-algebras. The tri-ality derived category $D^b(\mathrm{dg}(\mathcal{A}^3)) = \bigoplus_{i=1}^3 D^b(\mathrm{dg}(\mathcal{A}_i))$ offers a combined setting for dg-algebraic computations.

111. Further References for Perverse Sheaves, Higher Chow Groups, and DG-Algebras in n-Ality Theory

REFERENCES

- [1] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux Pervers, Astérisque, 1982.
- [2] S. Bloch, Algebraic Cycles and Higher K-Theory, Advances in Mathematics, 1986.
- [3] B. Keller, Deriving dg Categories, Annales Scientifiques de l'École Normale Supérieure, 1994.