

Learning Rules Explaining Interactive Theorem Proving Tactic Prediction

Liao Zhang, David M. Cerna, and Cezary Kaliszyk

by Yuzhe Zhou

2024-10-21

Authors

University of Innsbruck, Innsbruck, Austria

David M. Cerna

Czech Academy of Sciences, Prague, Czechia

artificial intelligence, automated reasoning, unification, anti-unification, computational logic, and proof theory.

Cezary Kaliszyk

University of Melbourne, Melbourne, Australia

formal verification, interactive theorem proving, automated reasoning, and the application of machine learning to mathematics

Interactive Theorem Provers

Automated Theorem Proving (ATP) attempts to fully automate the process of proving mathematical theorems.

Limitations: Complex proofs often exceed the capabilities of fully automated systems.

ITP Combines **human expertise** with **automated reasoning tools** to ensure the correctness of proofs in mathematics and computer science.

Humans provide insight and intuition where automation fails, guiding the proof process.

Coq

Theorem add_assoc : forall n m p : nat, (n + m) + p = n + (m + p).

proof.

1 subgoal n, m, p : nat (n + m) + p = n + (m + p) (1/1)

induction n.

```
2 subgoals

m, p : nat

(1/2)

(0 + m) + p = 0 + (m + p)

n' : nat

IHn' : forall m p : nat, (n' + m) + p = n' + (m + p)

m, p : nat

(2/2)

((S n') + m) + p = S n' + (m + p)
```

simpl.

```
1 subgoal

m, p : nat

_____(1/1)

m + p = m + p
```

reflexivity.

No more subgoals.

• • •

Coq

tactic:

Input: proof state

Output: proof state

Numerous investigations have focused on providing the user with guidance through tactic suggestion.

k-NN method

k-NN method take a goal g, select a goal g' most similar to g, and rank the particular tactics relevant for solving g' based on their likelihood of solving g.

Weaknesses:

Cannot be used in **new** theory.

It lack interpretability.

This work combines **k-NN** with **ILP** to provide tactics.

Learned Rules

```
tac(A,"simpl") :-
  goal_node(const,A,B,C), goal_node(construct,A,D,E),
  goal_above(A,B,D), goal_node(construct,A,F,E),dif(F,D),
  goal_above(A,B,F).
```

x, y: nat

$$Sx - Sy = x - y$$

The goal may be simplified if its AST contains a constant above two constructors with different positions.

use tactic "simpl"

x, y: nat

$$x - y = x - y$$

Abstract Syntax Tree (AST)

ILP Problem

For a **specific** tactic tac,

$$B \cup H \models E$$

H: Rules about the tactic

E:

Positive examples: The proof states to which it is applied are regarded as the positive examples

Negative examples: The proof states to which the tactics different from tac are applied are regarded as the negative examples

B: User-defined background knowledge

Background Knowledge

Representation Predicates: Nodes in the AST in the proof state. (e.g. goal_node/3)

Feature Predicates:

left, above, equality between terms, dif, root

Anonymous Predicates:

for generalization

goal_node(A, B, C) -> goal_node(const, A, B, C)

Learning Framework

Prediction

k-NN

Reorder k-NN predictions

Learning Framework

Optimization

Reason: To remove some low-quality rules to increase the overall performance of rules

If a rule is overly general $\rightarrow FPs >> TPs \rightarrow$ Remove it

They use *precision* as the metric of the quality of a single rule

$$precision = \frac{TP}{TP + FP}$$

Experiments

Dataset: Coq standard library. It consists of 41 theories and 151,678 proof states.

ILP: Aleph

They conducted the experiments in the transfer-theory setting, which means different Coq theories are used for training, validation, and testing.

Parameter Optimization

Hyperparameters:

- 1. The number of positive examples and negative examples
- 2. Background knowledge
- Filter threshold of rules

AF: anonymous feature predicates **AR:** anonymous representation predicates

OF: original feature predicates

OR: original representation predicates

Testing

PARAMETER	AF	AR	OF	OR
PRECISION	0.18	0.12	0.18	0.12
Positive	1	16	4	1
NEGATIVE	32	1	1	1

Conclusion

Pros

First application of ILP to ITP.

New feature predicates, allowing us to calculate features in learning if necessary.

Empirically show improvement over the non-filtering approaches.

Cons

Can not use modern ILP approach

The usage of some tactics such as induction is inherently complicated