Module 1 Examination Solutions January 2014

Instructions

All questions must be attempted. Books and lecture notes may be referred to. Help from others is not permitted.

You may assume throughout this examination that dX_t is an increment in a standard Brownian motion X_t and up to Mean Square Convergence

$$\mathbb{E}\left[dX^2\right] = dt$$

Detailed working must be presented to obtain maximum credit. If a question asks for a <u>particular</u> method to be used, any other technique employed will result in the loss of marks.

Submitted work should be neat and easy to read by the tutor. Where a spreadsheet has been used, please submit this together with the relevant graphical results.

1. Using the expansion of $\sin(kx)$ when x is small, show that

$$\lim_{x \longrightarrow 0} \left(\frac{\alpha \sin(\beta x) - \beta \sin(\alpha x)}{x^2 \sin(\alpha x)} \right) \longrightarrow \frac{\beta}{6} \left(\alpha^2 - \beta^2 \right)$$

Note: You are <u>not</u> permitted to use L'Hospital's Rule at any stage. You may use any expansions without proof

$$\frac{\alpha \sin(\beta x) - \beta \sin(\alpha x)}{x^2 \sin(\alpha x)} = \frac{\alpha \left(\beta x - \frac{\beta^3 x^3}{3!} + \dots\right) - \beta \left(\alpha x - \frac{\alpha^3 x^3}{3!} + \dots\right)}{x^2 \left(\alpha x - \frac{\alpha^3 x^3}{3!} + \dots\right)}$$
$$= \frac{\beta \frac{\alpha^3 x^3}{3!} - \alpha \frac{\beta^3 x^3}{3!}}{x^2 \left(\alpha x - \frac{\alpha^3 x^3}{3!}\right)} = \frac{1}{6} \frac{\beta \alpha^3 - \alpha \beta^3}{\left(\alpha - \frac{\alpha^3 x^2}{3!}\right)}$$

Now take limits

$$\frac{1}{6} \lim_{x \to 0} \frac{\beta \alpha^3 - \alpha \beta^3}{\left(\alpha - \frac{\alpha^3 x^2}{3!}\right)} = \frac{1}{6\alpha} \left(\beta \alpha^3 - \alpha \beta^3\right)$$
$$= \frac{\beta}{6} \left(\alpha^2 - \beta^2\right)$$

- 2. Consider the function $z(x,y) = (x+y) \ln \left(\frac{x}{y}\right)$, where x and y are independent variables.
 - a. Show (by substitution) that

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z.$$

Easier to write as $z(x, y) = (x + y) (\ln x - \ln y)$

$$\frac{\partial z}{\partial x} = (\ln x - \ln y) + (1 + y/x)$$

$$\frac{\partial z}{\partial y} = (\ln x - \ln y) - (x/y + 1)$$

Now

$$x\frac{\partial z}{\partial x} = x(\ln x - \ln y) + (x+y)$$
$$y\frac{\partial z}{\partial y} = y(\ln x - \ln y) - (x+y)$$

Adding the two expressions

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = x(\ln x - \ln y) + y(\ln x - \ln y)$$
$$= (x + y)(\ln x - \ln y) = z$$

b. By differentiating the expression in **a**., find a relationship between $\frac{\partial^2 z}{\partial x^2}$ and $\frac{\partial^2 z}{\partial y^2}$.

$$\frac{\partial}{\partial x}(\mathbf{i})$$
:

$$x\frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x} + y\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial x} \Rightarrow \frac{\partial^2 z}{\partial y \partial y x} = -\frac{x}{y}\frac{\partial^2 z}{\partial x^2}$$

$$\frac{\partial}{\partial y}\left(\mathbf{i}\right)$$
:

$$x\frac{\partial^2 z}{\partial y \partial y x} + \frac{\partial z}{\partial y} + y\frac{\partial^2 z}{\partial y^2} = \frac{\partial z}{\partial y} \Rightarrow \frac{\partial^2 z}{\partial y \partial y x} = -\frac{y}{x}\frac{\partial^2 z}{\partial y^2}$$

but since the mixed partial derivatives are equal, we have $\frac{x}{y}\frac{\partial^2 z}{\partial x^2} = \frac{y}{x}\frac{\partial^2 z}{\partial y^2}$ and

$$x^2 \frac{\partial^2 z}{\partial x^2} = y^2 \frac{\partial^2 z}{\partial y^2}$$

3. Consider the partial differential equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + a \frac{\partial u}{\partial x} + bu,$$

for the function u(x,t); where a and b are constants. By using a substitution of the form

$$u\left(x,t\right) = e^{\alpha x + \beta t}v\left(x,t\right),\,$$

and suitable choice of constants α and β , show that the PDE can be reduced to the heat equation

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}.$$

From the suggested substitution we have

$$\begin{array}{lcl} \frac{\partial u}{\partial t} & = & \left(\beta v + \frac{\partial v}{\partial t}\right) e^{\alpha x + \beta t}; \\ \frac{\partial^2 u}{\partial x^2} & = & \left(\alpha^2 v + 2\alpha \frac{\partial v}{\partial x} + \frac{\partial^2 v}{\partial x^2}\right) e^{\alpha x + \beta t} \end{array}$$

Subst into the PDE above gives

$$\beta v + \frac{\partial v}{\partial t} = \left(\alpha^2 v + 2\alpha \frac{\partial v}{\partial x} + \frac{\partial^2 v}{\partial x^2}\right) + a\left(\alpha v + \frac{\partial v}{\partial x}\right) + bv$$

Rearrange

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} + (2\alpha + a)\frac{\partial v}{\partial x} + (\alpha^2 + a\alpha + b - \beta).$$

Choose α such that

$$2\alpha + a = 0.$$

to eliminate the v term. We must therefore choose

$$\alpha = -a/2; \ \beta = b - a^2/4.$$

4. The integral I_n is defined, for positive integers n, as

$$I_n = \int_0^\infty \left(1 + x^2\right)^{-n} dx.$$

Deduce that

$$I_n = 2n\left(I_n - I_{n+1}\right).$$

Hence or otherwise show that

$$I_4 = \int_0^\infty (1+x^2)^{-4} dx = \frac{5\pi}{32}$$

To get the recurence relation write the integral as

$$I_n = \int_0^\infty 1 \cdot (1+x^2)^{-n} dx$$

$$v = (1+x^2)^{-n} \quad u' = 1$$

$$v' = -2nx (1+x^2)^{-n-1} \quad u = x$$

$$\frac{x}{(1+x^2)^n} \Big|_0^\infty + 2n \int_0^\infty \frac{x^2}{(1+x^2)^n} dx = 0 + 2n \left(\int_0^\infty \frac{x^2+1-1}{(1+x^2)^{n+1}} dx \right)$$

$$2n \left(\int_0^\infty \frac{x^2+1}{(1+x^2)^{n+1}} dx - \int_0^\infty \frac{1}{(1+x^2)^{n+1}} \right) = 2n \left(I_n - I_{n+1} \right)$$

Rearrange this by writing as

$$I_{n+1} = \frac{2n-1}{2n}I_n$$

To obtain I_4 put n=3 in the above

$$I_4 = \frac{5}{6}I_3 = \frac{5}{6}.\frac{3}{4}I_2 = \frac{5}{6}.\frac{3}{4}.\frac{1}{2}I_1$$

where

$$I_1 = \int_0^\infty \frac{dx}{1+x^2} = \arctan x|_0^\infty = \frac{\pi}{2}$$

Hence $I_4 = \frac{5}{32}\pi$

5. A spot rate r, evolves according to the popular form

$$dr = u(r) dt + \nu r^{\beta} dX_t, \tag{*}$$

where ν and β are constants.

Suppose such a model has a steady state transition probability density function $p_{\infty}(r)$ that satisfies the forward Fokker Planck Equation.

Show that this implies that the drift structure of (*) is given by

$$u(r) = \nu^2 \beta r^{2\beta - 1} + \frac{1}{2} \nu^2 r^{2\beta} \frac{d}{dr} (\log p_{\infty}).$$

The forward F.P equation for dr = u(r, t) dt + w(r, t) dX is

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^{2}}{\partial r^{2}} \left(w^{2} \left(r, t \right) p \left(r, t \right) \right) - \frac{\partial}{\partial r} \left(u \left(r, t \right) p \left(r, t \right) \right)$$

for the probability density p(r,t). The steady state equation for our model becomes

$$\frac{1}{2}\nu^{2}\frac{d^{2}}{dr^{2}}\left(r^{2\beta}p_{\infty}\left(r\right)\right) - \frac{d}{dr}\left(u\left(r\right)p_{\infty}\left(r\right)\right) = 0$$

This can be simply integrated once to give

$$\frac{1}{2}\nu^{2}\frac{d}{dr}\left(r^{2\beta}p_{\infty}\left(r\right)\right) - \left(u\left(r\right)p_{\infty}\left(r\right)\right) = \text{const}$$

$$\frac{1}{2}\nu^{2}\left(r^{2\beta}\frac{dp_{\infty}}{dr}\right) + \nu^{2}\beta r^{2\beta-1}p_{\infty}\left(r\right) - \left(u\left(r\right)p_{\infty}\left(r\right)\right) = \text{const}$$

The constant of integration is zero because as r becomes large

$$\left.\begin{array}{c} p_{\infty}\left(r\right) \\ \frac{dp_{\infty}}{dr} \end{array}\right\} \longrightarrow 0$$

$$u(r) p_{\infty}(r) = \frac{1}{2} \nu^{2} r^{2\beta} \frac{dp_{\infty}}{dr} + \nu^{2} \beta r^{2\beta - 1} p_{\infty}(r)$$
$$u(r) = \frac{1}{2} \nu^{2} r^{2\beta} \frac{1}{p_{\infty}(r)} \frac{dp_{\infty}}{dr} + \nu^{2} \beta r^{2\beta - 1}$$

We can write $\frac{1}{p_{\infty}} \frac{dp_{\infty}}{dr}$ as $\frac{d}{dr} (\log p_{\infty})$

$$u(r) = \frac{1}{2}\nu^2 r^{2\beta} \frac{d}{dr} (\log p_{\infty}) + \nu^2 \beta r^{2\beta - 1}.$$

6. Consider the following Stochastic Differential Equation for the volatility σ ,

$$d\sigma = a(\sigma, t)dt + b(\sigma, t)dX_t$$
.

The drift and diffusion will be abbreviated to a and b respectively. The Forward Kolmogorov Equation, for the transition pdf $p = p(\sigma, t; \sigma', t')$ is

$$\frac{\partial p}{\partial t'} = \frac{1}{2} \frac{\partial^2}{\partial {\sigma'}^2} (b^2 p) - \frac{\partial}{\partial \sigma'} (ap) ,$$

where the primed variables refer to future states. Derive the steady state solution given by

$$p_{\infty}(\sigma') = \frac{C}{b^2} \exp\left(\int \frac{2a}{b^2} d\sigma'\right),$$

where C is a constant. Any conditions used should be stated. At steady state $\frac{\partial p}{\partial t}=0$. So the FKE is

$$\frac{1}{2}\frac{d^2}{d\sigma^2}(b^2p) - \frac{d}{d\sigma}(ap) = 0$$

Integrating once we have

$$\frac{1}{2}\frac{d}{d\sigma}(b^2p) = ap + C$$

Now using the condition $\sigma \longrightarrow \infty; p \longrightarrow 0; \frac{\partial p}{\partial \sigma} \to 0$, we note that C = 0, so

$$\frac{1}{2}\frac{d}{d\sigma}(b^2p) = ap$$

Now writing the above equation in the following way

$$\frac{d(b^2p)}{b^2p} = \frac{2a}{b^2}d\sigma$$

Integrating once again

$$\ln(b^2 p) - b^2 \ln B = \int \frac{2a}{b^2} d\sigma$$

Taking exponentials

$$p(\sigma') = \frac{A}{b^2} e^{\int \frac{2a}{b^2} d\sigma}$$

7. The Ornstein-Uhlenbeck process is given by

$$dU_t = -\gamma U_t dt + \sigma dX_t, \ U_0 = u,$$

where γ , σ are constants. Solve this equation for U_t and hence write down $\mathbb{E}[U_t]$ in its simplest form. This can solved by an integrating factor or by treating as an Itô integral

$$U_{t} = u \exp(-\gamma t) + \sigma \left(X_{t} - \gamma \int_{0}^{t} \exp(\gamma (s - t)) X_{s} ds\right)$$

Then taking expectations

$$\mathbb{E}\left[U_{t}\right] = \mathbb{E}\left[u\exp\left(-\gamma t\right)\right] + \mathbb{E}\left[\sigma\left(X_{t} - \gamma \int_{0}^{t} \exp\left(\gamma\left(s - t\right)\right) X_{s} \, ds\right)\right]$$

$$= u\exp\left(-\gamma t\right) + \sigma \mathbb{E}\left[X_{t}\right] - \gamma \mathbb{E}\left[\int_{0}^{t} \exp\left(\gamma\left(s - t\right)\right) X_{s} \, ds\right]$$

$$= u\exp\left(-\gamma t\right) - \gamma \int_{0}^{t} \exp\left(\gamma\left(s - t\right)\right) \mathbb{E}\left[X_{s}\right] ds$$

$$= u\exp\left(-\gamma t\right)$$

8. Show that the following process is a martingale

$$e^{aX_t-\frac{1}{2}a^2t}$$

where a is a constant.

Easiest way to show that this is a driftless process so look at Itô

$$df = \left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial X^2}\right)dt + \frac{\partial f}{\partial X}dX$$

$$= \left(\left(-\frac{1}{2}a^2\right)e^{aX_t - \frac{1}{2}a^2t} + \frac{1}{2}\left(a^2e^{aX_t - \frac{1}{2}a^2t}\right)\right)dt + ae^{aX_t - \frac{1}{2}a^2t}dX$$

$$= ae^{aX_t - \frac{1}{2}a^2t}dX$$

Hence it is a martingale.

- 9. Implement the multi-step **Binomial Method** computationally to price a European put with the following parameters: strike K = 100 and maturity T = 1. Asset price level $S_0 = 100$ and interest rate r = 0.05. The preferred solution method is writing a function in VBA but excel spreadsheets with Binomial trees will be accepted if the plots are correct. For simplicity, use the compound rate as a substitute to simple (discrete) rate.
 - (a) For the constant number of time steps in the tree <u>NTS = 4</u>, calculate the value of the option for a range of volatilities and plot the result.
 - With increasing vol, option price increases. The relationship is near flat for low levels of vol $\sigma < 0.05$ and can be linearly approximated when $\sigma > 0.2$. Such a spline is linked by a curve, convexity of which depends on moneyness. S/K

Put option price vs. range of Volatilities, 4 time steps binary tree

(b) Then, fix the volatility at $\sigma=0.2$ and plot the value of the option as a function of the number of time steps in the tree, $\mathbf{NTS}=1,2,\ldots,50$. You will need a different tree for each NTS value. Increasing the amount of time steps will lead to decaying oscillatory behaviour that converges around the theoretical (Black-Scholes) option price

