Final Project Traffic Sign Detection

蔡昀芸 A061054

Data Processing

Get cleaned data

Alex Net With 2 class

Alex Net With 9 class

Vgg16 with 9 class

Evaluation Implement mAP

Compare with Tensorflow Object Detection API

Data Set

- Single Shot MultiBox Detector (SSD) in TensorFlow
- > Use LISA Traffic Sign Dataset 47 distinct traffic sign class
- > 10 class
- > 1,stop
- > 2,pedestrianCrossing
- > 3,keepRight
- > 4,laneEnds
- > 5,merge
- > 6,signalAhead
- > 7,speedLimit25
- > 8,speedLimit35
- > 9,yield

Table 3.1: The content of the LISA Traffic Sign Dataset broken down by sign type.

294	addedLane	34	slow
37	curveLeft	11	speedLimit15
50	curveRight	349	speedLimit25
35	dip	140	speedLimit30
23	doNotEnter	538	speedLimit35
9	doNotPass	73	speedLimit40
2	intersection	141	speedLimit45
331	keepRight	48	speedLimit50
210	laneEnds	2	speedLimit55
266	merge	74	speedLimit65
47	noLeftTurn	132	${\bf speedLimit} {\bf Urdbl}$
26	noRightTurn	1821	stop
1085	pedestrianCrossing	168	stopAhead
11	${\rm rampSpeedAdvisory20}$	5	thruMergeLeft
5	${\rm rampSpeedAdvisory35}$	7	thruMergeRight
3	${\rm rampSpeedAdvisory40}$	19	thruTrafficMergeLeft
29	${\rm rampSpeedAdvisory45}$	60	truckSpeedLimit55
16	${\tt rampSpeedAdvisory50}$	32	turnLeft
3	${\rm rampSpeedAdvisoryUrdbl}$	92	turnRight
77	${\bf right Lane Must Turn}$	236	yield
53	roundabout	57	yieldAhead
133	school	21	zoneAhead25
105	${\it schoolSpeedLimit} 25$	20	zoneAhead45
925	signalAhead		
In total: 7855 sign annotations			

Object Detection: SSD

- > Single Shot Multibox Detector
- › 直接預測Bounding Box座標 和 類別
- > 沒有生成proposal的過程
- › 在每一個convolution layer 產生的feature map加入default box
- > 根據feature map的大小去scale若干個相對應大小的Default box

Data Preprocessing

- > Split Data : Train => 95 Test => 5
- > Scale to Gray scale
- > Resized into 400 * 260
- > Find matching default box
- > Sign_Class & Box Coordinates
- > Stop.png {Class: 1, Coords: [100,140,105,135]}

Data Preprocessing

Alex Net

AP for 1 = 0.0225 AP for 2 = 0.0000 AP for 3 = 0.2969 AP for 4 = 0.2267 AP for 5 = 0.0055 AP for 6 = 0.0746 AP for 7 = 0.0588 AP for 8 = 0.0293 AP for 9 = 0.0909 Mean AP = 0.0895

VGG16 +SSD

Vgg 400 * 260 *64 (2) 200 * 130 *128 (2) 100 * 65 * 256 (3) 50 * 33 * 512 (3) 25 * 17 * 512 (3)

Figure 1

Epoch: 90

Epoch : 100

AP for 1 = 0.4092 AP for 2 = 0.0000 AP for 3 = 0.6024 AP for 4 = 0.7667 AP for 5 = 0.6308 AP for 6 = 0.4113 AP for 7 = 0.8603 AP for 8 = 0.6553 AP for 9 = 0.1515 Mean AP = 0.4986

Compare: Tensorflow ObjectDetection API

```
AP for 1 = 0.4554

AP for 2 = 0.0000

AP for 3 = 0.6024

AP for 4 = 0.6709

AP for 5 = 0.7063

AP for 6 = 0.3541

AP for 7 = 0.8603

AP for 8 = 0.6638

AP for 9 = 0.2471

Mean AP = 0.5067
```


AlexNet Epoch:100

AlexNet Epoch:100

Vgg16 Epoch:100

