1 Tema 1. Els gasos i el seu comportament

Exercici 1

Un conductor comprova la pressió dels pneumàtics pel matí aviat, quan la temperatura és de 15° C, i és de 1.3×10^{5} Pa. Al migdia la temperatura és 15 graus més elevada. Quina és la pressió dels pneumàtics ara?

Les dades són:

- Pressió inicial: $P_1 = 1.3 \times 10^5 \, \mathrm{Pa}$

• Temperatura final: $T_2 = 30 \,^{\circ}\text{C} = 303 \,\text{K}$

• Suposem que el volum dels pneumàtics es manté constant.

Com que el volum no canvia, podem utilitzar la llei de Gay-Lussac per determinar la pressió final:

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Aïllant P_2 :

$$P_2 = P_1 \times \frac{T_2}{T_1} = (1.3 \times 10^5 \,\mathrm{Pa}) \times \frac{303 \,\mathrm{K}}{288 \,\mathrm{K}} = (1.3 \times 10^5 \,\mathrm{Pa}) \times 1.0521 = 1.37 \times 10^5 \,\mathrm{Pa}$$

Exercici 2

Dalt de l'Everest, la pressió atmosfèrica és de 0.33 atm i la temperatura de 50 sota zero. Quina és la densitat de l'aire si en CN és de 1.29g dm⁻³?.

Sabem que la densitat de l'aire en condicions normals (CN) és:

$$\rho_{\rm CN} = 1.29 \, {\rm g \, dm^{-3}}$$

Les condicions a dalt de l'Everest són:

• Pressió atmosfèrica: P = 0.33 atm

• Temperatura: $T = -50 \,^{\circ}\text{C} = 223 \,\text{K}$

• Condicions normals (CN):

– Pressió normal: $P_{\text{CN}} = 1 \text{ atm}$

– Temperatura normal: $T_{\rm CN}=273\,{\rm K}$

Sabem que la densitat d'un gas està relacionada amb la pressió i la temperatura segons l'expressió:

$$\frac{\rho}{\rho_{\rm CN}} = \frac{P}{P_{\rm CN}} \times \frac{T_{\rm CN}}{T}$$

Aïllant ρ :

$$\rho = \rho_{\rm CN} \times \frac{P}{P_{\rm CN}} \times \frac{T_{\rm CN}}{T}$$

Substituïm els valors donats:

$$\rho = (1.29\,\mathrm{g\,dm^{-3}}) \times \frac{0.33\,\mathrm{atm}}{1\,\mathrm{atm}} \times \frac{273\,\mathrm{K}}{223\,\mathrm{K}} = 0.52\,\mathrm{g\,dm^{-3}}$$

Exercici 3

Calcular el volum molar d'un gas ideal a condicions normals (1 atm i 0°C).

Les condicions normals (CN) per a un gas ideal són:

• Pressió: P = 1 atm

• Temperatura: T = 0 °C = 273.15 K

- Constant dels gasos: $R = 0.0821 \,\mathrm{L\,atm\,mol^{-1}\,K^{-1}}$

L'equació dels gasos ideals és:

$$PV = nRT$$

Aïllem el volum molar V_m , considerant n=1 mol:

$$V_m = \frac{RT}{P}$$

Substituïm les dades:

$$V_m = \frac{(0.0821 \,\mathrm{L\,atm\,mol^{-1}\,K^{-1}}) \times (273.15 \,\mathrm{K})}{1 \,\mathrm{atm}} \approx 22.4 \,\mathrm{L\,mol^{-1}}$$

Exercici 4

Quant gas hi ha en una mostra de volum $0.5\,\mathrm{dm^3}$, a $80\,\mathrm{^{\circ}C}$ i $800\,\mathrm{Torr}$ de pressió?

Exercici 5

Pots calcular el volum ocupat per molècula en un gas ideal a CN?. Es troben dues molècules molt frequentment en un gas a baixa pressió?

Exercici 6

Si a CN la densitat d'un gas ideal és de $2.62\,\mathrm{g\,dm^{-3}}$, quina és la seva massa molar? i quina densitat tindrà a 300 K i $2.4\times10^5\,\mathrm{Pa}$ $2.4\times10^5\,\mathrm{Pa}$?

Exercici 7

Què passa segons l'Equació de van der Waals si la pressió es fa propera a zero o bé la temperatura es fa molt gran per a un gas real? La figura mostra el factor de compressibilitat per a un mateix gas a diferents temperatures

Es prepara una mescla de gasos d'hidrogen (H₂) i heli (He) tal que les molècules de cada gas produeixin el mateix nombre de col·lisions amb la paret per unitat de temps. Determinem quin gas té la concentració més alta.

Consideració com a gasos ideals

L'energia cinètica translacional d'un mol de gas és

$$\langle E_c \rangle = N_0 \frac{m \langle c^2 \rangle}{2} = \frac{3}{2} RT$$

on $M = N_0 m$ és la massa molecular del gas en kg mol⁻¹.

Per tant, la velocitat quadràtica mitjana és:

$$c_{\rm rms} = \sqrt{\frac{3RT}{M}} \tag{1}$$

Com que la taxa de col·lisions amb la paret és proporcional a $nv_{\rm rms}$, imposem la condició d'igualtat:

$$n_{\rm H} \cdot \sqrt{\frac{3RT}{M_{\rm H}}} = n_{\rm He} \cdot \sqrt{\frac{3RT}{M_{\rm He}}} \tag{2}$$

Substituint masses moleculars $M_{\rm H}=2~{\rm g/mol}$ i $M_{\rm He}=4~{\rm g/mol}$:

$$n_{\rm H} \cdot \sqrt{\frac{1}{2}} = n_{\rm He} \cdot \sqrt{\frac{1}{4}} \tag{3}$$

$$n_{\rm H} \cdot \frac{1}{\sqrt{2}} = n_{\rm He} \cdot \frac{1}{2} \tag{4}$$

Resolent per $n_{\rm H}$:

$$n_{\rm H} = \frac{n_{\rm He}}{\sqrt{2}} \tag{5}$$

Per tant, la concentració de H₂ ha de ser més alta que la de He.

Consideració com a gasos no ideals

Si considerem gasos reals, hem de corregir la velocitat mitjana tenint en compte el factor de compressibilitat Z:

$$v_{\rm rms} = \sqrt{\frac{3ZRT}{M}} \tag{6}$$

A pressions altes, $Z_{\rm H_2} > Z_{\rm He}$ per les interaccions intermoleculars més fortes d'hidrogen, la qual cosa redueix la seva velocitat i altera la relació de concentracions calculada abans.

Amb l'equació de van der Waals:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{7}$$

On $a_{\rm H}>a_{\rm He}$, la densitat efectiva de $\rm H_2$ serà menor que en el cas ideal, cosa que, novament, fa necessari afegir més partícules de $\rm H_2$ que d'He per a assolir la mateixa taxa de col·lisions.

Exercici 9

La composició percentual, en massa, de l'aire sec al nivell del mar és, aproximadament, $N_2/O_2/Ar=75.5/23.2/1.3$. Quina és la pressió parcial de cada component quan la pressió total és 1.20 atm?.

En 100gr d'aire tindrem 75.5, 23.2 i 1.3 gr de N₂, O₂ i Ar, respectivament. Podem calcular la seva fracció molar calculant el número de mols de cadascun i dividint pel total. Després, només cal multiplicar per la pressió corresponent i sabrem la pressió parcial de cada component:

$$\begin{split} n_{\mathrm{N_2}} &= 75.5 \text{g} \cdot \frac{1 mol}{28.02 \text{g}} = 2.69 mol \\ n_{\mathrm{O_2}} &= 23.2 \text{g} \cdot \frac{1 mol}{32.00 \text{g}} = 0.725 mol \\ n_{\mathrm{Ar}} &= 1.3 \text{g} \cdot \frac{1 mol}{39.95 \text{g}} = 0.033 mol \end{split}$$

	N_2	O_2	Ar
Fracció molar	0.780	0.210	0.0096
Pressió parcial (nivell del mar)/atm	0.780	0.210	0.0096
Pressió parcial $(P_T = 1.20 \text{atm}))/\text{atm}$	0.936	0.252	0.012

Una barreja de metà $\mathrm{CH_4}$ i d'acetilè $\mathrm{C_2H_2}$ ocupava un cert volum a una pressió total de 63 mmHg. La mostra es va cremar a $\mathrm{CO_2}$ i $\mathrm{H_2O}$. Se'n va recollir el $\mathrm{CO_2}$ en el mateix volum inicial i la mateixa temperatura inicial, i es va veure que la seva pressió era de 96 mmHg. Quina era la fracció de metà a la mescla de gasos inicials?

Definim x com la fracció molar de metà (CH_4) i y com la fracció molar d'acetilè (C_2H_2) :

$$x + y = 1$$

Les reaccions de combustió són:

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$
 (1 mol de CH_4 produeix 1 mol de CO_2)
(8)

$$C_2H_2 + \frac{5}{2}O_2 \longrightarrow 2CO_2 + H_2O$$
 (1 mol de C_2H_2 produeix 2 mols de CO_2)
$$(9)$$

Si tenim un nombre total de mols n, llavors:

- Mols de metà: xn
- Mols d'acetilè: yn

Els mols de CO₂ formats són:

$$n_{\text{CO}_2} = xn + 2yn$$

Com que el volum i la temperatura es mantenen constants, segons la llei dels gasos ideals la pressió és directament proporcional als mols:

Així:

$$P_{\text{CO}_2} = (xn + 2yn) \cdot \frac{P_{\text{total}}}{n}$$

Substituint els valors donats:

$$96 = (x + 2y) \cdot 63$$

Exercicis resolts

d'on

$$x + 2y = \frac{32}{21}$$

Ara ja podem resoldre el sistema:

$$x + y = 1 \tag{10}$$

$$x + 2y = \frac{32}{21} \tag{11}$$

i obtenim

$$x = 1 - \frac{11}{21} = \frac{10}{21}$$

Per tant, la fracció de metà en la mescla inicial és:

$$\frac{10}{21} \approx 0.476$$
 o 47.6%

Exercici 11

Un compost gasós que se sap que conté només carboni, hidrogen i nitrogen es barreja amb el volum d'oxigen exactament necessari per a la seva combustió completa a CO_2 , H_{20} i N_2 . La combustió de 9 volums de la mescla gasosa produeix 4 volums de CO_2 , 6 volums de vapor d'aigua i 2 volums de N_2 , tots a la mateixa temperatura i pressió.

Quants volums d'oxigen es necessiten per a la combustió? Quina és la fórmula molecular del compost?

El compost gasós conté carboni (C), hidrogen (H) i nitrogen (N). Es barreja amb oxigen suficient per a la combustió completa, donant com a productes diòxid de carboni (CO_2), aigua (H_2O) i nitrogen molecular (N_2).

Es donen les següents dades:

• Volum de la mescla gasosa: 9 volums

• Volum de CO₂ produït: 4 volums

• Volum de H₂O produït: 6 volums

• Volum de N₂ produït: 2 volums

Sigui la fórmula del compost:

$$C_x H_y N_z$$

L'equació de combustió és:

$$C_x H_y N_z + O_2 \rightarrow aCO_2 + bH_2O + cN_2$$

Per la conservació dels àtoms:

- Carboni: $x=a=4 \Rightarrow x=4$ - Hidrogen: $y=2b=6 \Rightarrow y=6$ - Nitrogen: $z=2c=2 \Rightarrow z=2$

Així, la fórmula del compost és:

$$C_4H_6N_2$$

Per trobar el volum d'oxigen utilitzat, considerem la combustió completa:

$$C_4H_6N_2 + O_2 \rightarrow 4CO_2 + 3H_2O + N_2$$

L'oxigen es consumeix en la formació de CO_2 i H_2O :

$$O_2$$
 necessari = $\frac{(4 \times 2) + (3 \times 1)}{2} = \frac{8+3}{2} = 5.5$ volums

Per tant, el volum d'oxigen necessari és **5.5 volums**.

Exercici 12

Una mostra de PCl₅, que pesa 2.69 g, es va col·locar en un flascó d'1.00 L i es va evaporar completament a una temperatura de 25 °C. La pressió observada a aquesta temperatura va ser 1.00 atm. Existeix la possibilitat que una part del PCl₅ s'hagi dissociat d'acord amb l'equació:

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$
 [R1]

Quines són les pressions parcials del PCl_5 , PCl_3 i Cl_2 en aquestes condicions experimentals? (Adaptat de [2])

La solució d'aquest problema implica diverses etapes. Per determinar si s'ha dissociat una part del PCl_5 , calculem primerament la pressió que s'hauria observat si no s'hagués dissociat el PCl_5 . Això es pot calcular a partir del nombre de mols de PCl_5 utilitzats, juntament amb el volum i la temperatura del flascó. Com que el pes molecular del PCl_5 és $208 \,\mathrm{g}\,\mathrm{mol}^{-1}$, el nombre de mols de PCl_5 inicialment presents en el flascó és:

$$n = 2.69 \,\mathrm{g} \cdot \frac{1 \,\mathrm{mol}}{208 \,\mathrm{g}} = 0.0129 \,\mathrm{mol}.$$

La pressió corresponent a aquest nombre de mols seria:

$$P = \frac{nRT}{V} = \frac{(0.0129 \text{mol})(0.082 \text{ L atm mol}^{-1} \text{ K}^{-1})(523.15 \text{ K})}{1.00 \text{ L}} = 0.553 \text{ atm.}$$

Com que la pressió observada és superior a aquesta, s'ha de produir certa dissociació del PCl₅. Aplicant la llei de les pressions parcials, podem escriure:

$$P_{\text{PCl}_5} + P_{\text{PCl}_3} + P_{\text{Cl}_2} = P_t = 1.00 \text{ atm.}$$
 (12)

Ara observem que:

Atès que es produeix un mol de PCl_3 i un mol de Cl_2 per cada mol de PCl_5 dissociat,

$$P_{\text{Cl}_2} = P_{\text{PCl}_3}, \quad P_{\text{PCl}_5} = 0.553 \,\text{atm} - P_{\text{Cl}_2}.$$

i podem reescriure l'Equació 12 com:

$$0.553\,{\rm atm} - P_{{\rm Cl}_2} + P_{{\rm Cl}_2} + P_{{\rm Cl}_2} = 1.00\,{\rm atm}.$$

Resolent, obtenim:

$$P_{\text{Cl}_2} = 0.447 \,\text{atm},$$

i

$$P_{\text{PCl}_3} = 0.447 \, \text{atm}, \quad P_{\text{PCl}_5} = 0.106 \, \text{atm}.$$

Perquè hi ha diferències entre els quocients de capacitat calorífica (C_P/C_V) de gasos monoatòmics respecte els diatòmics? (Adona't que si un gas monoatòmic ideal, pel fet d'estar només augmentant la seva energia cinètica translacional té una $C_V = \frac{3}{2}R$, es pot entendre que per a cada component (eix) necessita $\frac{1}{2}R$)

Els quocients de la capacitat calorífica dels gasos diatòmics són molt menors que 1,67, i hem d'esbrinar la raó d'aquestes desviacions.

Primerament, notem que C_V , la capacitat calorífica deguda al moviment de translació de les molècules, és igual a $\frac{3}{2}R$, i que hi ha tres components independents de velocitat associats amb el moviment de translació. Per tant, podem inferir que cadascun dels tres moviments de translació independents contribueix amb $\frac{1}{2}R$ a la capacitat calorífica molar. Sobre aquesta base, podríem esperar que, si algun altre tipus de moviment fos accessible a les molècules de gas, hi hauria més contribucions a la capacitat molar i aquestes entrarien en unitats de $\frac{1}{2}R$.

A més de tenir els tres moviments de translació, una molècula diatòmica pot rotar al voltant del seu centre de massa segons dos modes mútuament perpendiculars i independents. Assignant $\frac{1}{2}R$ com la contribució de cadascun d'aquests moviments a la capacitat calorífica, tenim:

$$C_V = \underbrace{\frac{3}{2}R}_{\text{traslació}} + \underbrace{\frac{1}{2}R + \frac{1}{2}R}_{\text{rotació}} = \frac{5}{2}R,$$

$$C_P = C_V + R = \frac{7}{2}R,$$

$$\frac{C_P}{C_V} = \frac{\frac{7}{2}R}{\frac{5}{2}R} = \frac{7}{5} = 1,40.$$

Exercici 14

Qui es mou més ràpid, una molècula d'oxigen o una de nitrogen en dues mostres d'aquests gasos a la mateixa temperatura? Pots explicar perquè la pressió és independent de la natura de les molècules?

Calcula la velocitat mitjana de les molècules d'hidrògen a 25°C.

La velocitat mitjana de les molècules d'un gas es pot calcular a partir de la distribució de Maxwell-Boltzmann. Utilitzant la distribució de Maxwell com a distribució de probabilitats, es pot determinar la velocitat mitjana molecular en una mostra de gasos:

$$\langle v \rangle = \int_{-\infty}^{\infty} v f(v) dv$$

Substituint la funció de distribució de Maxwell-Boltzmann:

$$\langle v \rangle = \int_{-\infty}^{\infty} v \cdot 4\pi \left(\frac{m}{2\pi k_B T} \right)^{\frac{3}{2}} v^2 \exp\left(-\frac{mv^2}{2k_B T} \right) dv$$

Aplicant la següent integral coneguda de les taules d'integrals:

$$\int_0^\infty x^{2n+1}e^{-ax^2}dx = \frac{n!}{2a^{n+1}}$$

i agafant n = 1, s'obté:

$$\langle v \rangle = 4\pi \left(\frac{m}{2\pi k_B T} \right)^{\frac{3}{2}} \cdot \frac{1}{2} \left(\frac{m}{2k_B T} \right)^{-2}$$

Finalment, simplificant,

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}} \tag{13}$$

Substituint les dades a l'Eq. 13::

$$R = 8.314 \text{ J/mol·K}, \quad T = 298 \text{ K}, \quad M = 2.016 \times 10^{-3} \text{ kg/mol}$$
 (14)

$$v_{mitjana} = \sqrt{\frac{8 \times 8.314 \times 298}{\pi \times 2.016 \times 10^{-3}}} \tag{15}$$

$$v_{mitjana} \approx 1.57 \times 10^3 \text{ m/s}$$
 (16)

Considerant que no es comporta idealment, calcula la temperatura de $10 \,\mathrm{mol}$ de monòxid de carboni (CO) sotmesos a una pressió de $5 \,\mathrm{kPa}$ en un volum de $2 \,\mathrm{m}^3$.

L'equació de Van der Waals per gasos reals és:

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

on a i b són constants que depenen de la naturalesa del gas. En el nostre cas:

- Nombre de mols: n = 10 mol
- Pressió: $P = 5 \,\mathrm{kPa} \cdot \frac{1 \,\mathrm{atm}}{101.325 \,\mathrm{kPa}} = 0.0493 \,\mathrm{atm}$
- Volum: $V = 2 \,\mathrm{m}^3 = 2000 \,\mathrm{L}$
- Constants de Van der Waals per CO:
 - $-a = 1.4850 \,\mathrm{L}^2 \,\mathrm{atm} \,\mathrm{mol}^{-2}$
 - $-b = 0.03985 \,\mathrm{L}\,\mathrm{mol}^{-1}$
- Constant dels gasos: $R = 0.0821 \,\mathrm{Latm} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$

Calculem el terme de correcció de la pressió:

$$P + \frac{an^2}{V^2} = 0.0493 + \frac{(1.4850)(10)^2}{(2000)^2} = 0.0493 \text{ atm}$$

Calculem el volum corregit:

$$V - nb = 2000 - (10 \times 0.03985) = 2000 - 0.3985 = 1999.6 \,\mathrm{L}$$

Es pot veure com l'efecte de la no idealitat en aquest gas és molt reduït. Substituïm a l'equació:

$$(0.0493)(1999.6) = (10)(0.0821)T$$

$$T = \frac{98.57}{0.821} = 120 \,\mathrm{K}$$

Perquè CO_2 i O_2 tenen una desviació negativa respecte al comportament del gas ideal a pressions i temperatures moderades, mentres que l'He i el H_2 presenten una deviació positiva en les mateixes condicions?

Els gasos CO_2 i O_2 presenten una desviació negativa respecte al comportament ideal perquè tenen interaccions intermoleculars atractives significatives. Aquestes forces atractives fan que, a pressions i temperatures moderades, les molècules s'acostin més del que prediu l'equació del gas ideal, reduint així el volum efectiu i fent que el factor de compressibilitat $z = \frac{PV}{RT}$ sigui menor que 1.

D'altra banda, els gasos com l'heli (He) i l'hidrogen ($\rm H_2$) presenten una desviació positiva perquè tenen interaccions intermoleculars molt febles i, a mesura que augmenta la pressió, dominen els efectes de repulsió a causa del volum finit de les molècules. Això fa que el gas ocupi un volum lleugerament superior al que prediu el model ideal, fent que z>1 en aquestes condicions.

Exercici 18

Els coixins de seguretat (airbag) dels cotxes s'inflen mitjançant una sèrie de reaccions químiques ràpides que produeixen gas en menys de $0.04\,\mathrm{s}$. En les seves primeres versions, la reacció es basava en la descomposició de NaN_3 (extremadament tòxic), seguida de dues reaccions addicionals per neutralitzar els subproductes perillosos. Les equacions químiques d'aquest procés són:

$$2 \operatorname{NaN}_3 \longrightarrow 2 \operatorname{Na} + 3 \operatorname{N}_2(g)$$
 [R2]

$$10 \text{ Na} + 2 \text{ KNO}_3 \longrightarrow \text{K}_2\text{O} + 5 \text{ Na}_2\text{O} + \text{N}_2(g)$$
 [R3]

$$K_2O + Na_2O + 2SiO_2 \longrightarrow K_2SiO_3 + Na_2SiO_3$$
 [R4]

Un coixí de seguretat de conductor té un volum aproximat de 65 L i la pressió final dins del coixí és de 1.35 atm. La temperatura dins del coixí

just després de la reacció és 300 °C (573 K). Suposem que s'utilitzen 65 g de $\rm NaN_3.$

- 1. Quina quantitat de nitrogen gas (N_2) es genera en mols només en la primera reacció?
- 2. Quin volum ocuparà aquest gas dins del coixí de seguretat segons la llei dels gasos ideals? És suficient aquest volum per inflar completament el coixí de seguretat?
- 3. Si considerem també la segona reacció, que genera més nitrogen gas, com afectaria això el volum total de gas produït?
- 4. Quan el gas s'expandeix a l'exterior a través dels orificis del coixí, la seva pressió baixa de 1.35 atm a 1.00 atm. Quin percentatge de reducció de temperatura es produeix durant aquesta expansió?

(Adaptat de [1]).

Quantitat de nitrogen gas (N₂) generada a R2:
 La reacció de descomposició de NaN₃ és:

$$2 \operatorname{NaN}_3 \longrightarrow 2 \operatorname{Na} + 3 \operatorname{N}_2(g)$$

Primer, calculem el nombre de mols de NaN₃ disponibles:

$$n_{\text{NaN}_3} = \frac{65 \,\text{g}}{65.019 \,\text{g mol}^{-1}} = 1.00 \,\text{mol}$$
 (17)

De l'estequiometria de la reacció, per cada 2 mol de NaN3, es formen 3 mol de N2:

$$n_{\rm N_2} = 1.00 \,\text{mol} \times \frac{3}{2} = 1.50 \,\text{mol}$$
 (18)

2. Volum ocupat pel gas segons la llei dels gasos ideals: Utilitzem l'equació dels gasos ideals:

$$V = \frac{nRT}{P} \tag{19}$$

On:

- $n = 1.50 \, \text{mol}$
- $R = 0.0821 \,\mathrm{L} \,\mathrm{atm} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$
- $T = 573 \, \text{K}$
- $P = 1.35 \, \text{atm}$

$$V = \frac{1.50\,\mathrm{mol} \times 0.0821\,\mathrm{L\,atm\,mol}^{-1}\,\mathrm{K}^{-1} \times 573\,\mathrm{K}}{1.35\,\mathrm{atm}} = 52.3\,\mathrm{L} \qquad (20)$$

El volum necessari per inflar el coixí de seguretat és d'uns $65\,\mathrm{L}$. Atès que només la primera reacció genera $52.3\,\mathrm{L}$, sembla que no és suficient. No obstant això, la segona reacció també genera gas N_2 , augmentant el volum total.

3. Contribució de la segona reacció al volum total de gas:

La reacció R3 genera gas addicional:

$$10 \operatorname{Na} + 2 \operatorname{KNO}_3 \longrightarrow \operatorname{K}_2 \operatorname{O} + 5 \operatorname{Na}_2 \operatorname{O} + \operatorname{N}_2(g) \tag{21}$$

Cada $10 \,\text{mol}$ de Na reacciona per produir $1 \,\text{mol}$ de N₂. Sabem que la primera reacció va generar $1.00 \,\text{mol}$ de Na. Per tant, la segona reacció produeix:

$$n_{\rm N_{2,2}} = 1.00 \,\text{mol} \times \frac{1}{10} = 0.10 \,\text{mol}$$
 (22)

Afegint aquest nitrogen al total:

$$n_{\rm N_2,total} = 1.50 \,\text{mol} + 0.10 \,\text{mol} = 1.60 \,\text{mol}$$
 (23)

El nou volum total serà:

$$V_{\text{total}} = \frac{1.60 \,\text{mol} \times 0.0821 \,\text{L} \,\text{atm} \,\text{mol}^{-1} \,\text{K}^{-1} \times 573 \,\text{K}}{1.35 \,\text{atm}} = 55.7 \,\text{L} \quad (24)$$

Aquest volum segueix estant lleugerament per sota del mínim requerit $(65\,\mathrm{L})$, però cal recordar que les reaccions són fortament exotèrmiques, la qual cosa elevarà la temperatura i, en conseqüència, augmentarà el volum de gas.

4. Refredament del gas en expandir-se fora del coixí: Segons la llei de Gay-Lussac:

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \tag{25}$$

On:

- $P_1 = 1.35 \, \text{atm}, T_1 = 573 \, \text{K}$
- $P_2 = 1.00$ atm, T_2 és la temperatura final

$$T_2 = T_1 \times \frac{P_2}{P_1} = 573 \,\mathrm{K} \times \frac{1.00 \,\mathrm{atm}}{1.35 \,\mathrm{atm}} = 424 \,\mathrm{K}$$
 (26)

El percentatge de reducció de temperatura és:

$$\frac{T_1 - T_2}{T_1} \times 100 = \frac{573 \,\mathrm{K} - 424 \,\mathrm{K}}{573 \,\mathrm{K}} \times 100 = 25.9\% \tag{27}$$

Així, la temperatura del gas disminueix aproximadament un $26\,\%$ quan s'expandeix fora del coixí de seguretat, ajudant a evitar cremades als passatgers.

Referències

- [1] Geoffrey M. Bowers i Ruth A. Bowers. *Understanding Chemistry through Cars.* en. 0a ed. CRC Press, nov. de 2014. ISBN: 978-1-4665-7184-6. DOI: 10.1201/b17581. URL: https://www.taylorfrancis.com/books/9781466571846.
- [2] Bruce H. Mahan. QUIMICA Curso Universitario. Español. 1977.