Теоретические ("малые") домашние задания

Теория типов, ИТМО, М3235-М3239, весна 2020 года

Домашнее задание №1: «вводная лекция для TT и ФП»

1. Напомним определения с лекций:

Обозначение	лямбда-терм	название
\overline{T}	$\lambda a.\lambda b.a$	истина
F	$\lambda a. \lambda b. b$	ЛОЖЬ
Not	$\lambda x.x F T$	отрицание
And	$\lambda x.\lambda y.x \ y \ F$	конъюнкция

Проредуцируйте следующие выражения и найдите нормальную форму:

- (a) T F
- (b) $(T \ Not \ (\lambda t.t)) \ F$
- (c) And F T
- (d) And T T
- 2. Постройте лямбда-выражения для следующих булевских выражений:
 - (а) Дизъюнкция
 - (b) Штрих Шеффера («и-не»)
 - (с) Исключающее или
- 3. Напомним определения с лекций:

$$f^{(n)} X ::= \begin{cases} X, & n = 0 \\ f^{(n-1)} (f X), & n > 0 \end{cases}$$

Обозначение	лямбда-терм	название
\overline{n}	$\lambda f.\lambda x.f^{(n)}$ x	чёрчевский нумерал
(+1)	$\lambda n.\lambda f.\lambda x.n \ f \ (f \ x)$	прибавление 1
IsZero	$\lambda n.n \; (\lambda x.F) \; T$	проверка на 0

Используя данные определения, постройте выражения для следующих операций над числами:

- (а) Сложение
- (b) Умножение на 2 (Mul2)
- (с) Умножение
- (d) Возведение в степень
- (е) Проверка на чётность
- (f) Деление на 3
- (g) Сравнение двух чисел (IsLess) истина, если первый аргумент меньше второго
- 4. Проредуцируйте выражение и найдите его нормальную форму:
 - (a) $\overline{2}$ $\overline{2}$
 - (b) $\overline{2} \overline{2} \overline{2}$
 - (c) $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$
- 5. Напомним определения с лекций:

Обозначение	лямбда-терм	название
MkPair	$\lambda a.\lambda b.(\lambda x.x \ a \ b)$	создание пары
PrL	$\lambda p.p T$	левая проекция
PrR	$\lambda p.p F$	правая проекция
Case	$\lambda l.\lambda r.\lambda c.c\ l\ r$	case для алгебраического типа
InL	$\lambda l.(\lambda x.\lambda y.l \ x \ y)$	левая инъекция
InR	$\lambda r.(\lambda x.\lambda y.r \ x \ y)$	правая инъекция

- (a) Убедитесь, что PrL $(MkPair\ a\ b) \rightarrow_{\beta} a$.
- (b) Убедитесь, что $Case\ (\lambda x.T)\ (\lambda y.y)\ (InR\ p) \twoheadrightarrow_{\beta} p.$
- (с) Постройте операцию вычитания 1 из числа
- (d) Постройте операцию вычитания чисел
- (е) Постройте опреацию деления чисел
- 6. Напомним определение Y-комбинатора: $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x)).$
 - (a) Покажите, что выражение $Y\ f$ не имеет нормальной формы;
 - (b) Покажите, что выражение $Y(\lambda f.\overline{0})$ имеет нормальную форму.
 - (c) Покажите, что выражение $Y(\lambda f.\lambda x.(IsZero\ x)\ \overline{0}\ (f\ Minus1\ x))\ 2$ имеет нормальную форму.
 - (d) Какова нормальная форма выражения Y ($\lambda f.\lambda x.(IsZero\ x)\ \overline{0}\ ((+1)\ (f\ Minus1\ x)))$ \overline{n} ?
 - (e) Какова нормальная форма выражения $Y(\lambda f.\lambda x.(IsZero\ x)\ \overline{1}\ (Mul2\ (f\ Minus1\ x)))\ \overline{n}?$
 - (f) Определите с помощью Y-комбинатора функцию для вычисления n-го числа Фибоначчи.
- 7. Пусть $\eta = (\alpha \to \alpha) \to (\alpha \to \alpha)$. Покажите (т.е. постройте соответствующее доказательство в исчислении по Карри), что:
 - (a) $\vdash \overline{2} : \eta$.
 - (b) \vdash (+1) : $\eta \to \eta$.
 - (c) $\vdash Plus : \eta \to \eta$.
 - (d) $\vdash Mul: \eta \to \eta$ (не каждая реализация умножения будет удовлетворять этому свойству; вам требуется найти нужную)
- 8. Определим на языке Хаскель следующую функцию: show_church n = show (n (+1) 0) Убедитесь, что show_church (\f -> \x -> f (f x)) вернёт 2. Пользуясь данным определением и его идеей, реализуйте следующие функции:
 - (a) int_to_church возвращает чёрчевский нумерал (т.е. функцию от двух аргументов) по целому числу. Каков точный тип результата этой функции?
 - (b) сложение двух чёрчевских нумералов.
 - (с) умножение двух чёрчевских нумералов.
 - (d) можно ли определить вычитание 1 и вычитание? Что получается, а что нет?
- 9. Типы для конъюнкции и дизъюнкции на Хаскеле. Списки.

Заметим, что список (например, целых чисел) — это алгебраический тип:

```
List = Nil | Cons Integer List.
```

Можно сконструировать значение данного типа: Cons 3 (Cons 5 Nil). Можно, например, вычислить его длину:

```
length Nil = 0
length (Cons _ tail) = length tail + 1
```

Определим $Nil = InL\ 0$, а $Cons\ a\ b = InR\ (MkPair\ a\ b)$. Заметим, что теперь списки могут быть впрямую перенесены в лямбда выражения. Тогда, используя данную идею, реализуйте в Хаскеле:

- (a) определите конструкции mkpair, prl, prr на Хаскеле какой тип у данных конструкций? Сравните его с типом конъюнкции с лекции.
- (b) определите конструкции case, inl, inr какой тип у данных конструкций? Сравните его с типом дизъюнкции с лекции.
- (с) постройте список целых чисел из данных конструкий.
- (d) определите функцию вычисления длины списка целых чисел с помощью данных конструкций (к сожалению, скомпилировать это выражение на Хаскеле не получится поэтому достаточно написать исходный код).