Architectures & RF Circuits for Miniature Wireless Transceivers

Asad A. Abidi

Electrical Engineering Department University of California, Los Angeles

(310) 825 9490 (Phn) (310) 825 7 28 (Fax) abidi@icsl.ucla.edu

Outline

- ICs in Broadcast Radio Receivers
- ICs in Wireless Paging Receivers
- ICs in TV Tuners
- ICs in Cellular Telephone Transceivers
- ICs in Spread-Spectrum Wireless Transceivers
- ICs to Enable Future Transceivers

Examples of Miniature Radios

- ✓ Broadcast Receivers (FM at 100 MHz RF), such as the Walkman personal entertainment device
- ✓ Paging Receivers (150 MHz to 900 MHz RF) such as the Motorola Bravo
- ✓ GPS Receivers (2 GHz RF), such as the Sony Pyxis
- ✓ Cellular Telephone Transceiver Handsets (900 MHz RF) such as the Motorola MicroTac
- ✓ Wireless LAN Transceivers (900 MHz or 2 GHz RF), such as the Proxim or Plessey card

Early Preoccupations with ICs for Radio Receivers

- Potential of applying IC technology to radio receivers has occupied companies since mid-1960's
- Motorola's classic series of textbooks on IC design suggest these concerns:
 - "Integrated Circuit Design: Principles & Fabrication" (Warner & Fordemwalt, eds., 1965) discusses difficulty of making spiral inductors on silicon substrate.
 - "Analysis and Design of Integrated Circuits" (Meyer, Lynn, and Hamilton, eds., 1968) contains chapters on tuned amplifiers and gyrator filters
- Technology limits did not permit application of silicon ICs to RF sections until 1970s. Radios were built with discrete VHF/UHF bipolar transistors, FETs, and discrete passive components.

Dynamic Range in a Receiver

Early Uses of ICs in FM Receivers

- Peil, McFadyen, GE, 1977
- Integration of transistors in IF amplifier strip, FM demodulator and power amp. Off-chip inductors, capacitors, ceramic resonators.
- Leads to reduction in parts count, lowered power dissipation, and miniaturization.
- Some circuits only possible in monolithic IC form:

High gain, direct-coupled differential limiting amplifiers Double-balanced (analog multiplier) mixers

On-chip AM front-end

Off-chip FM RF amplifier and mixer

7 off-chip tuned circuits

1.9-V operation

Thermal feedback on-chip

Coupling through on-chip power supplies

Parasitic coupling between IC pins at high frequencies

Frequency Allocation Plan Example Siemens Wideband TV Tuner IC

- One GaAs IC tunes all TV bands, from VHF to UHF
- Upconversion serves two functions:
 Avoids image frequency reception, because antenna cannot tune 5 GHz
 Reduces fractional tuning range of first VCO to cover entire TV band

Conventional FM Receiver Front-End

Keys to Greater Integration

- Reduce amount of RF filtering
- Reduce number of tuned components
- Bring RF amplifier on-chip (use off-chip tuned load if necessary)
- Filters for greater selectivity and image-rejection should be on-chip

- ✓ Choice of high IF suppresses image frequency
- X But, difficult to make on-chip active filters, particularly with high dynamic range and low power. Need 10.7 MHz bandpass with 150 kHz passband

Low IF FM Receiver

- Kasperkovitz, Philips, 1981 & 1983
- v. Dooremolen & Hufschmidt, Philips, 1983

- ✓ Lower the IF so that on-chip lowpass filters may define channel bandwidth
- X Zero IF has no image, but cannot use limiting amplifier to remove AM noise
- √ 70 kHz IF means that image lies in inter-channel band; only contributes extra noise!

- Negative feedback in frequency-locked loop compresses FM swing to ±15 kHz
- First LPF acts as channel filter; 4th order active-RC implementation with 100 kHz cutoff frequency
- 15 capacitors, 2 inductors, 8 mA drain from 4.5V

Single-Chip FM Radio

- Negative feedback in frequency-locked loop compresses FM swing to ±15 kHz
- First LPF acts as channel filter; 4th order active-RC implementation with 100 kHz cutoff frequency
- 15 capacitors, 2 inductors, 8 mA drain from 4.5V

The Image-Cancellation Mixer

- Complex mixing eliminates need for image-cancellation filter
- Image suppression depends on exactness of quadrature; 1° error gives about 40 dB suppression
- Phase-shift in IF path usually obtained with delays or allpass filters
- Quadrature LO outputs from ÷2, RC-CR network, or inherently from oscillator

Alternative Single-Chip FM Receiver

Okanobu, et al., Sony, 1992

- Complex mixing eliminates need for image-cancellation filter
- Image suppression depends on exactness of quadrature;
 1° error gives about 40 dB suppression
- High IF affords better image rejection
- Single off-chip BPF covering entire FM band
- Image-rejection mixer suppresses unintended channel captured by 150 kHz second IF
- Channel filter and phase-shift networks are on-chip active-RC

Circuits for Low-Voltage Operation

Performance of Low-Voltage Receiver

Current Drain	16 mA
FM Selectivity	40 dB at 400 kHz
Image Rejection	39 dB
FM Max SNR	60 dB
Sensitivity for quieting	10 μV
THD	0.1%

DBS TV Receivers

Transmission at 12 GHz

Conversion to first IF (900 MHz to 2 GHz) in receiver antenna

ICs have been developed for first IF onwards -- miniature DBS receivers in TV sets and VCRs

Front-End RF Amplifiers

Yamamoto, et al., IEEE Trans. on CE, Aug. 1989 Yamamoto, et al., IEEE Trans. on CE, Aug. 1992

Gain	> 9 dB
Noise Figure	8 dB
Input VSWR	< 2
3rd-order IM	< -58 dBc at max input
Reverse isolation	> 25 dB
Power dissipation	120 mW from 5 V
Technology	1-µm MESFET

Receive more than 20 DBS channels, with more than 50 dB dynamic range

Radio Paging Receivers

- Importance of paging people on the move with miniature radio receivers recognized in the late 1950's
- Bellboy Trials at AT&T in early 1960's. Local area paging by FM of 150 MHz with three tone set. Receiver contains vibrating reeds tuned to recognize its own code.
- Small size and long battery life recognized as keys to success
- Modern pagers use digital signalling at 500 b/s
- Paging receivers are perhaps the most highly evolved, widely used RF device. High functionality / unit volume, long battery life.

Features of the Bellboy Receiver

- Operates on 4-V supply
- Uses ten transistors in entire receiver
- Single-conversion superheterodyne with 6 kHz IF
 - Circuits operate at low currents
 - Capacitively-coupled 10 kHz lowpass filter for channel selection

- Mitchell & van Wynen, Bell Labs, 1961
- Kerwein & Steiff, Bell Labs, 1963

Digital Pager Signalling

- POCSAG signalling standards used
- RF is 150 MHz in Japan, 450 MHz to 900 MHz in US and Europe
- Binary FSK suppressed-carrier spectrum contains information at ±4.5 kHz around center frequency
- Early paging receivers used conventional double-superheterodyne architectures, off-chip bandpass filters, and a frequency discriminator to detect the two tones. Too complex.
- Solution was required to radically simplify the receiver by exploiting the features of the signalling

Direct Conversion Reception

- Zero IF is the simplest possible receiver
 - ✓ Lowpass channel filters only
 - ✓ Minimum processing at high frequencies
 - ✓ No image response to worry about!
- Potential problems of Zero IF
 - X DC and flicker noise add to converted signal
 - X Local oscillator (at RF) can leak out of antenna

Direct Conversion Paging Receiver

Vance, ITT Standard Telecommunications Labs, 1980, 1982

- Extremely simple receiver
- Very simple detector in principle; only a flip-flop!
- RF amp and LO are the only high frequency blocks on chip
- AC coupling eliminates DC offsets; seek energy only at ±4.5 kHz
- Naturally suggests a single-chip implementation!

Paging Receiver Prototype

 Off-chip capacitors required for AC coupling of IF signal, and for channel lowpass filters

Single-Chip Paging Receivers

- Two-chip pagers are now standard. One IC for receiver, one for user interface.
- Only off-chip components are inductor load for RF tuned amplifier, quadrature phase-shift network, and crystal
- Low-frequency active filters (e.g 7th order lowpass filter with 15 kHz cutoff) require large on-chip capacitance

Burt, GEC-Plessey, 1992

Cellular Telephones

- The first widespread *two-way* wireless communications devices
- Success in the market depends on small volume handset, long battery life
 - ⇒ Integration is the key!
- Most cellular telephones today are double superheterodyne transceivers, receiving and transmitting in separate frequency bands
- High frequency ICs used therein are building blocks. Relatively small levels of integration in RF portions.

Analog FM Cellular Phone Front-End

IF ICs in Cellular Telephones

 Medium-scale integration used in 100 MHz first IF blocks (typically silicon bipolar)
 Include mixers, IF amplifier chain, signal strength indicators

RF ICs in Cellular Telephones

- Small-scale integration, predominantly as GaAs MESFET ICs, for operation at 900 MHz to 2 GHz. This is the "low-end" of the economically feasible frequency range for this technology.
- Effort in recent years to reduce current drain of these ICs, and to increase power conversion efficiency
- Scaled discrete transistors in miniature packages continue to compete, although at disadvantage of higher assembly costs

Typical SSI RF-ICs LNA (Low Noise Amplifier) ICs

LNA-Mixer Pairs

Power Amplifier Modules

GaAs ICs for Receiver Front End

Imai, et al., NTT, 1991

Gain	11.5-13 dB
Noise Figure	2.5-3 dB
3rd-order IM	-60 dBc at -30 dBm input
Frequency Band	1.5-1.7 GHz
Power dissipation	10 mW from 3 V
Technology	0.3-μm SA MESFET

Conversion Gain	12.5 dB
Noise Figure	12.6 dB
Intercept Point	-7 dBm
Frequency Band	1.5-1.7 GHz
Power Dissipation	10 mW from 3-V
Technology	0.3-μm SA MESFET

GaAs ICs for Transceiver

Sakai, et al., Matsushita, 1992

Gain	21 dB
Noise Figure	3.5 dB
3rd-order IM	-30 dBc at -30 dBm input
Frequency Band	0.9 GHz
Power dissipation	15 mW from 3 V
Technology	1-µm Dual-Gate MESFET

Conversion Gain	13 dB
Spurious Level	-80 dBc
Frequency Band	0.9 GHz
Power dissipation	27 mA from 3 V
Technology	1-μm Dual-Gate MESFET

GaAs ICs for Receiver Front-Ends

Hara, et al., Sharp, 1993

3		7.

Noise Figure	3 dB
3rd-order Intercept	6.5 dBm
Frequency Band	1.5-1.7 GHz
Power dissipation	1.8 mA from 3 V
Technology	0.6-μm MESFET

15 to 3 dB

(controllable)

Gain

Kermarrec, et al., M/A-Com, 1992

Gain	14.5 dB
Noise Figure	1.7 dB
3rd-order IM	-55 dBc at -30 dBm input
Frequency Band	1.9 GHz
Power dissipation	3.2 mA from 4 V
Technology	1-μm E/D MESFET

GaAs ICs for Receiver Front-Ends

Gain	18 dB
Noise Figure	2.8 dB
Intercept Point	7 dBm (output)
Frequency Band	2 GHz
Reverse Isolation	21 dB
Power Dissipation	4 mA from 3 V
Technology	0.5-μm GaAs JFET

Conversion Gain	5.7 dB
Noise Figure	10.8 dB
Intercept Point	8 dBm (output)
Frequency Band	2 GHz
LO-RF Isolation	13 dB
Power Dissipation	4 mA from 3 V
Technology	0.5-µm GaAs JFET

Key Components in Cellular Telephone

Upconversion Mixer

Woo, et al., Pacific Monolithics, 1992

Transmitter VCO

Beyer & Lipperer, Siemens, 1992

- VCO usually discrete, tuned by ceramic resonator for high Q ⇒ low phase noise
 - Varactor adjusts oscillation frequency

Power Amplifier

- Almost always a separate module with heat-sink package
- Designed for high power conversion efficiency
- Class-C operation, followed by impedance-matching circuits and filter to remove harmonics
- Typically a cascade of single FET stages, appropriately biased

Power Amplifier

- Almost always a separate GaAs module with heat-sink package
- Designed for high power conversion efficiency
- Class-C operation, followed by impedance-matching circuits and filter to remove harmonics
- Typically a cascade of single FET stages, appropriately biased

Smaller Telephone Handsets

- Handsets are attaining smallest practical size: 150 cc, 230 g, distance between human mouth and ear
- Miniaturization comes from reduction in size of *passive components* and their *packages*, not from greater integration of the electronics!

Discrete Bipolar Transistors in Low-Power RF Applications

ICs in Television Tuners

Input Frequency Range spans 4 octaves!

- ✓ Mixers
- ✓ LNA and Variable Gain Amplifier
- ✓ Local Oscillator

Mixers and LO for Upconversion TV Tune

RF Range	40-900 MHz
IF	2500 MHz / 36 MHz
Conversion Gain	20 dB
Noise Figure	6-8 dB
In-channel signal causing 1% cross-modulation	20 mV

Low-Voltage TV Tuner

Clapp Local Oscillator

IF Amplifier

Silicon TV Tuner ICs

Fenk & Tauber, Siemens, 1986

RF Amplifier & Mixer

SAW Filter Driver

- Conventional singleconversion frequency plan
- Covers 54 MHz to 438 MHz (5 GHz bipolar process) in two separate sub-sections of IC

RF Range	175-462 MHz
IF	60 MHz
Conversion Gain	34 dB
Noise Figure	8.3-9 dB
In-channel signal causing 1% modulation	70 mV

Highly Integrated TV Tuner

RF Range	48-860 MHz
Conversion Gain	18 dB
Noise Figure	12 dB
Input signal level for 1% cross-modulation	5.6 mV
Technology	0.7-μm GaAs MESFET

- Eliminates all RF passive components!
- 1st IF filter is a GaAs tuned amplifier (4 dB down at Δf =70 MHz)
- On-chip RC-CR network to generate quadrature LO gives 60 dB image rejection, 70 dB after trim (channel independent)

RF ICs in Digital Cellular Telephones

- Fenk, et al., Siemens, 1990
- 🗐 Badura, Siemens, 1991

Receiver IC

- Implemented in 7.5 GHz silicon bipolar technology
- Fully balanced signal path on IC
- 15 dB mixer conversion gain + 70 dB AGC range (implemented by cascade of four amplifiers with controlled degeneration resistance)
- 7 dB Noise Figure
- 27 mA drain from 4.5 to 5.5 V; 10 μA in standby

RF ICs in Digital Cellular Telephones

- Fenk, et al., Siemens, 1990
- Badura, Siemens, 1991

Transmitter IC

- One-step upconversion of complex baseband signal GSM ⇒ phase-shift modulation (GSM)
- I-Q matching on-chip good enough (<2° error) for: Carrier suppression of 45 dB
 SSB rejection of 45 dB
 Intermod products less than 42 dB
- 40 mA drain from 4.5 to 5.8 V; 10 μA standby
- 0 dBm drive into power amplifier
- Good isolation at 900 MHz on-chip; small leakage of intended sideband remodulates carrier to produce -57 dBc spur

RF ICs in Digital Cellular Telephones

- Zero IF eliminates bandpass filters
- LNA has 17 dB gain, 3 dB NF
- Rcv mixer must withstand large (-6 dBm) blocking signals 6 MHz away from carrier
- Degenerated Gilbert cell used

 14 dB NF + 3
 dB due to image noise in SSB rcvd signal

- Quadrature LO generated with RC/CR to reduce power dissipation; this needs adjustment to meet specs
- 9 GHz silicon bipolar IC (2.5 mm sq)
- Drains 25 mA in RX, 45 mA in TX from 5V supply
- Image suppression of 40 dB

RF IC for a Spread-Spectrum Radio

- Monolithic GaAs transceiver IC for operation in the 2.4 2.48 GHz band
- For use in double-conversion architecture (thus 350 MHz first IF to reject image)
- Requires off-chip (dielectric resonator) passive bandpass filters
- On-chip switching for two-antenna diversity

Details of Spread-Spectrum IC

- Noise matching with series feedback inductor
- Two cascaded gain stages share bias current

Voltage–Controlled Clapp Oscillator

- Varactor affords tuning range of 150 MHz
- Phase noise is -122 dBc/Hz at a 1 MHz offset from carrier

Mixer in TX and RX

- High Linearity
- 6 dB conversion loss

Chip Performance

Transmit Level	Up to 21 dBm
Transmitter Gain	38 dB
Phase noise	-122 dBc/Hz at 1 MHz off carrier
Current Drain	220 mA from 5 V in transmit mode 30 mA in receive mode 0.5 mA in standby
Receiver Gain	14 dB
Net Noise Figure	4 dB (DSB)

More than 20 spiral inductors on-chip!

Power Amplifiers

•	Narrowband power amplifiers:
	Usually single transistors biased close
	to cutoff (for high power-conversion
	efficiency)
	Followed by filters to remove
	harmonics

• Efficiency at high frequencies determined by transistor f_{τ} and parasitic capacitances

Signal Strength Indication Circuits

- Received signal-strength indication (RSSI) required for AGC and transmitted power control
- Logarithmic amplifiers with full IF bandwidth provide RSSI over 70 dB or more
- Approximate logarithm with cascade of AC coupled high-speed limiting amplifiers

The UCLA CMOS Frequency-Hopped Spread-Spectrum Transceiver

- Mixed analog-digital design, appropriate for CMOS
- Direct-conversion receiver eliminates off-chip filtering

- Binary FSK modulation may be detected with limiting, no AGC
- No high-speed equalization
- No high chip rate

On-Chip CMOS Tuned Amplifiers

- 1 GHz front-end possible in 1-µm CMOS!
- High linearity, low noise (3 dB NF), low current drain (~8mA) from 3-V
- Suspended inductor requires no extra masks

Frequency Synthesizer

- DDFS-DAC shows worst-case
 –58 dBc spectral impurity,
 while dissipating 40 mW
- Fixed-frequency LO locked to 20 MHz crystal has –82 dBc/ Hz phase noise at 100 kHz offset (10 mW)

Power Amplifier

- Unique CMOS method to digitally select transmitted power level
- Good efficiency for low transmitted power levels
- Preamp with inductor load swings above power supply

Frequency Mixers

- MOSFETs are much better suited to linear, continuous-time commutating mixers than BJTs!
- Alternative approach: Downconversion by direct sub-sampling of RF carrier (very high linearity, high NF)
- Subsampling mixer well-suited to direct-conversion receiver
- IIP3 of >20 dBm routinely possible, at typically10 mW dissipation, in 1-μm CMOS

Four-FET commutating switch well-suited to upconversion mixers