Contents

1	Intr	oduction	4					
	1.1	Motivation	4					
	1.2	Research Question and Goals	4					
2	Ron	omansh						
	2.1	Rhaeto-Romance	6					
	2.2	Romansh	7					
	2.3	Rumantsch Grischun	8					
		2.3.1 Lia Rumantscha	8					
		2.3.2 Rumantsch Grischun	8					
		2.3.3 Properties	8					
		2.3.4 Today	9					
3	Con	Compiling the Corpus 10						
	3.1	Introduction	10					
	3.2	Collecting the Data	10					
	3.3	Web Scraping	10					
	3.4	Building the Corpus	12					
		3.4.1 HTML Parsing	12					
		3.4.2 Document Alignment	13					
	3.5							
	3.6	SQLite database						
	3.7	Summary	16					
4	Sent	tence Alignment	18					
	4.1	Introduction	18					
		4.1.1 Formal definition	18					
	4.2	Method Overview	19					
		4.2.1 Length Based	19					
			19					
		4.2.3 Translation based	20					
			20					
		•	20					
	43	•	21					

		4.3.1	Bleualign	21		
		4.3.2	Vecalign			
	4.4		ce alignment pipeline	22		
		4.4.1	Tool of choice			
		4.4.2	Pipeline	23		
		4.4.3	Sentence segmentation	23		
		4.4.4	Aligning language pairs	24		
		4.4.5	Filtering and tokenizing	25		
	4.5	Results	3	25		
5	Wor	d Align	ment	27		
	5.1	Introdu	action	27		
	5.2	Overvi	ew of Methods	28		
		5.2.1	IBM Model 1	28		
		5.2.2	Higher IBM Models	29		
	5.3	Word E	Embeddings	30		
		5.3.1	Excursion: Words	30		
		5.3.2	Word Embeddings	31		
		5.3.3	Word Similarity	32		
		5.3.4	Multilingual Word Embeddings	32		
		5.3.5	Summary	33		
	5.4	Similar	rity Based Word Alignment	33		
		5.4.1	Method	33		
		5.4.2	Summary	35		
6	Gold	l standa	ard	36		
	6.1	Introdu	iction	36		
	6.2	Sure ar	nd Possible Alignments	36		
	6.3	Evalua	tion Metrics	37		
	6.4	Gold st	tandard for German-Romansh	37		
		6.4.1	Annotation tool	37		
		6.4.2	Guidelines	38		
		6.4.3	General priniciples	38		
		6.4.4	Examples	39		
	6.5	Flaws		41		
7	Resu	ılts		43		
	7.1	Baselin	ne System	43		
8	Sum	mary		44		
Lie	List of Tables					
				46		
Lis	t of F	igures		47		

Bibliography 48

Chapter 7

Results

After having created a gold standard (see Chapter 6) for evaluating the quality of the alignments, I compared the alignments computed by SimAlign with the alignments computed by a baseline system. I shall now proceed present the results of the experiment.

7.1 Baseline System

As a baseline system, I chose fast_align (Dyer, Chahuneau, and Smith 2013). fast_align is a re-parameterization of the IBM Model 2. It has become a popular seccessor to Giza++, serves as a baseline system in other works, and is even recommended by WHO? as an alternative for Giza++ for computing the word alignments for Moses SMT. It outperforms Giza++ in many scenarios.

fast_align is extremely fast—computing the word alignments for the around 80,000 sentence pairs took around 50 seconds. It is well documented and is extremely easy to compile and to operate. All of this makes fast_align the most attractive system to use as a baseline system.

Some more text.

	Method	Dataset Size	Percision	Recall	F1	AER
	fast_align	79,109	0.625	0.786	0.696	0.304
ē	,,	50k	0.622	0.775	0.69	0.31
elin	**	25k	0.602	0.751	0.668	0.332
Baseline	,,	10k	0.58	0.725	0.644	0.355
Щ	,,	5k	0.565	0.709	0.629	0.371
	,,	600	0.515	0.644	0.572	0.427

Table 7.1: Evaluation metrics for word alignments with the baseline model (fast_align) for different dataset sizes. "Dataset Size" refers to number of sentence pairs.

Glossary

Graubünden The Canton of Grisons. 7

Acronyms

AER Average Error Rate. 35

List of Tables

2.1	Examples for choosing the forms for Rumanstch Grischun, based on liver1999	9
4.1	Parallel corpus in numbers	25
6.1	Translation examples of German compounds into Romansh	39
7.1	Evaluation metrics for word alignments with the baseline model (fast_align) for different dataset sizes. "Dataset Size" refers to number of sentence pairs	43

List of Figures

2.1	Distribution of Rhaeto-Romance, taken from haiman1992	7
3.1	Directory tree of corpus_builder	11
3.2	Directory scheme for saving the HTML files	11
3.3	Portion of automatically aligned press releases up to 2009	14
4.1	Sentence alignment pipeline	22
5.1	Word alignment example	27
5.2	Similarity matrix	34
5.3	Alignment matrix	34
5.4	The resulting word alignment	34
6.1	Aligning German perfect to Romansh perfect	40
6.2	Alignment of German preterite to Romansh perfect	40
6.3	Aligning German present participles to Romansh relative clauses	41

Bibliography

Dyer, Chris, Victor Chahuneau, and Noah A. Smith (June 2013). "A Simple, Fast, and Effective Reparameterization of IBM Model 2". In: *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. Atlanta, Georgia: Association for Computational Linguistics, pp. 644–648. URL: https://aclanthology.org/N13–1073.