Relatório Galvanómetro

David Cristino (96518), Duarte Marques (96523), João Marques (96542), Rodrigo Pereira (96563)

29 de setembro e 1 de outubro

Grupo B2, Terça e Quinta-feira

Mestrado Integrado em Engenharia Física e Tecnológica Laboratório de Mecânica Oscilações e Ondas Profs. Pedro Sebastião e António Ferraz

Resumo

Com esta atividade experimental, tencionou-se estudar o funcionamento de um galvanómetro e determinar as suas constantes características. Assim, calcularam-se os ângulos de desvio do quadro móvel do mesmo, recorrendo ao método de Poggendorf, nos vários regimes de movimento, dependentes das condições iniciais: estático, oscilatório amortecido, aperiódico limite e aperiódico. Assim, obtiveram-se os seguintes resultados: $S_i = (5.8 \pm 0.1) \times 10^5 rad.A^{-1}, \ A_1 = (3.4 \pm 0.4) \times 10^{-9} kgm^2 s^{-1}, \ nA_qB = (0.018 \pm 0.002)Tm^2, \ C = (3.0 \pm 0.3) \times 10^{-8} Nm$ e $I_{zz} = (5.0 \pm 0.6) \times 10^{-8} kgm^2$.

I Introdução teórica

O galvanómetro é um aparelho constituído por um quadro móvel suspenso por um fio, por um íman permanente em ferradura e por um cilindro de ferro macio. O quadro móvel tem n espiras que, quando sujeitas a uma corrente elétrica, criam um campo magnético que interage com o íman e resulta num movimento oscilatório do quadro.

Figura 1: Esquema da corrente no galvanómetro e forças no quadro móvel

O módulo da força exercida no quadro é calculado, pela Lei de Laplace, através de

$$f = inlB \tag{1}$$

Sendo i a corrente elétrica, n o número de espiras e B a intensidade do campo magnético. A força exercida na zona interior do quadro é muito reduzida, pelo que se

considera que a força exercida no quadro é um binário composto por duas forças perpendiculares ao quadro, de igual módulo e sentido oposto, como pode ser visto na figura 1. O momento do binário é obtido por

$$N_l = n2RliB = A_q niB \tag{2}$$

em que A_q é a área do quadro. A oscilação resulta na torção do fio que suporta o quadro, o que leva ao aparecimento de um novo binário com tendência para levar o quadro à posição inicial, dado por

$$N_2 = -C\alpha \tag{3}$$

Com C o coeficiente de torção do fio e α o ângulo de desvio em relação à posição inicial. Na posição em que os binários se equilibram tem-se:

$$nA_q iB = C\alpha \tag{4}$$

ou seja,

$$\alpha = \frac{nA_qBi}{C} = S_i i \tag{5}$$

onde S_i representa a sensibilidade do galvanómetro.

I Oscilações do quadro móvel

O quadro móvel é um corpo rígido que apenas oscila em torno de um eixo, portanto tem um só grau de liberdade, o ângulo α . Assim, é importante estudar o seu movimento em função de α . Com o circuito fechado e corrente a passar no galvanómetro, este tende

para uma nova posição de equilíbrio. Do mesmo modo, ao interromper a corrente, o quadro móvel oscila até regressar ao equilíbrio inicial. A equação que descreve um sistema a rodar em torno do seu eixo é:

$$I_{zz}\frac{d^2\alpha}{dt^2} = \sum N_i \tag{6}$$

Os binários que atuam no quadro móvel são o binário causado pela corrente (N_1) , o de torção do fio (N_2) e por fim o de amortecimento causado pelo atrito do ar:

$$N_3 = -A_1 \frac{d\alpha}{dt} \tag{7}$$

Substituindo na equação 6, a expressão de cada binário obtém-se

$$I_{zz}\frac{d^2\alpha}{dt^2} + A_1\frac{d\alpha}{dt} + C\alpha = nA_q iB \tag{8}$$

Os sinais dos binários dependem de uns favorecerem o movimento e outros não.

II Atrito eletromagnético

Habitualmente, liga-se uma resistência (R_S) em paralelo ao galvanómetro de forma a criar um circuito fechado para que, ao abrir o interruptor que alimenta o galvanómetro, a corrente que o percorre não se anule instantaneamente. Segundo a lei de indução de Faraday, a variação temporal do fluxo B induz no circuito uma força eletromotriz, ϵ , que se opõe à variação do fluxo:

$$\epsilon = -\frac{d\phi}{dt} \tag{9}$$

O fluxo, ϕ , criado pelo íman é, por sua vez, dado por

$$\phi = \alpha A_q n B \tag{10}$$

Retirando a corrente, o quadro que ocupava uma posição fixa, começa a oscilar, causando uma variação no α que por sua vez resulta numa força eletromotriz dada por

$$\epsilon^{\phi} = -A_q n B \frac{d\alpha}{dt} \tag{11}$$

O quadro do galvanómetro também apresenta um coeficiente de auto indução L_g , que também contribui para a força eletromotriz na forma

$$\epsilon^i = -L_g \frac{di}{dt} \tag{12}$$

No entanto, L_g é geralmente muito baixo e a sua contribuição é desprezável, resultando na equação

$$\epsilon^{\phi} \approx -A_q n B \frac{d\alpha}{dt} = (R_S + R_g)i$$
 (13)

da qual se obtém

$$i \approx -\frac{A_q n B}{R_S + R_g} \frac{d\alpha}{dt} \tag{14}$$

Substituindo i na equação 8:

$$I_{zz}\frac{d^2\alpha}{dt^2} + A_1\frac{d\alpha}{dt} + C\alpha = -\frac{(nA_qB)^2}{R_S + R_q}\frac{d\alpha}{dt}$$
 (15)

Considerando $A_2=\frac{(nA_qB)^2}{R_S+R_g}$ e dividindo tudo por I_{zz} , manipula-se a equação para chegar à equação do movimento

$$\frac{d^2\alpha}{dt^2} + 2\lambda \frac{d\alpha}{dt} + \omega_0^2 \alpha = 0 \tag{16}$$

com

$$2\lambda = \frac{A_1 + A_2}{I_{zz}} = 2(\lambda_1 + \lambda_2) \tag{17}$$

$$\omega_0^2 = \frac{C}{I_{zz}} \tag{18}$$

onde λ_1 é o coeficiente de amortecimento mecânico e λ_2 o coeficiente de amortecimento electromagnético.

Assim, o movimento do quadro do galvanómetro pode ser equiparado a um sistema de oscilações mecânicas livres (por exemplo, o sistema massa-mola). As suas soluções dependem de ω_0 e λ .

Caso $\omega_0 > \lambda$:

$$\alpha = ae^{-\lambda t}\cos(\omega t + \delta) \tag{19}$$

Caso $\omega_0 = \lambda$:

$$\alpha = (a_1 + a_2 t)e^{-\lambda t} \tag{20}$$

Caso $\omega_0 < \lambda$:

$$\alpha = e^{-\lambda t} \left(a_1 e^{\sqrt{\lambda^2 - \omega_0^2 t}} + a_2 e^{-\sqrt{\lambda^2 - \omega_0^2 t}} \right)$$
 (21)

III Método de Poggendorf

O galvanómetro utilizado é um galvanómetro de espelho (com o espelho no mesmo plano do quadro móvel). Ilumina-se o espelho com uma fonte luminosa e observa-se a imagem refletida numa escala graduada colocada a uma certa distância do espelho, paralelamente ao mesmo quando na posição inicial de equilíbrio.

Figura 2: Relação entre α , d e o desvio a

A relação entre o valor do ângulo e o valor medido na escala será

$$\alpha = \frac{1}{2} \arctan\left(\frac{a}{d}\right) \tag{22}$$

II Montagem

Seguindo o procedimento, começou-se por confirmar a presença de todo o material necessário para a realização da experiência. De seguida, confirmou-se os valores dos parâmetros físicos do material a utilizar, como por exemplo as resistências incluídas no sistema elétrico. Este passo é especialmente importante dada a sensibilidade do galvanómetro, dado que a diferença de potencial no galvanómetro não deve ultrapassar os $6\mu V$, evitando assim danificar o aparelho. Ao verificar que os valores físicos de todos os aparelhos correspondiam aos previstos, efetuou-se a montagem do circuito elétrico de acordo com o esquema elétrico abaixo.

Figura 3: Esquema elétrico do circuito

Após a montagem, ligou-se a fonte luminosa, para que se alinhasse o alvo - escala graduada - com o espelho do galvanómetro, de forma a ficarem paralelos. Tentouse ainda fazer corresponder o zero da escala com a incidência da luz refletida, contudo tal não foi possível. De forma a confirmar o ajuste inicial feito a "olho", mediu-se a distância de cada extremo da escala graduada à parede em frente, esperando obter valores iguais. Mediu-se ainda a distância da escala ao espelho do galvanómetro, sendo esta $d = (92, 5 \pm 5)cm$. De notar que a incerteza é de 5 cm e não metade da menor divisão da escala como seria habitual, já que não se sabe com certeza a posição do espelho do galvanómetro, uma vez que não se pode mexer no aparelho, dada a sensibilidade referida anteriormente. Isto dificulta a medição e aumenta a incerteza da mesma. Montou-se também um suporte para telemóvel, para que se filmasse a escala graduada ao longo da experiência, de forma a obter uma amostra de dados para tratar no Tracker.

III Procedimento

I Preparação do trabalho

Previamente, foram deduzidas as equações que relacionam a tensão nos terminais do galvanómetro, U_g , a tensão medida no voltímetro, U_V , e a tensão do gerador, U_B . Foram também deduzidas as expressões que permitem calcular I_{zz} , nA_qB , C e A_1 , sendo elas

$$U_V = U_B \frac{R_2}{R_1 + R_2} \tag{23}$$

$$U_g = U_V \frac{R_S R_g}{R(R_3 + \frac{R_S R_g}{R})} \tag{24}$$

onde $R = R_S + R_g$. No limite $R_S \to \infty$, obtém-se

$$U_g = U_V \frac{R_g}{R_3 + R_g} \tag{25}$$

Para os restantes valores, demonstra-se que

$$I_{zz} = \frac{2\lambda_2 R}{S_i^2 \omega_0^4} \tag{26}$$

$$nA_q B = \frac{2\lambda_2 R}{S_i \omega_0^2} \tag{27}$$

$$C = \frac{2\lambda_2 R}{S_i^2 \omega_0^2} \tag{28}$$

$$A_1 = \frac{4\lambda_1 \lambda_2 R}{S_i^2 \omega_0^4} \tag{29}$$

As fórmulas de propagação de incertezas utilizadas foram obtidas recorrendo aos módulos das derivadas parciais e às incertezas de cada variável, sendo elas:

$$\epsilon_{\alpha} = \frac{1}{2} \frac{d\epsilon_x + |x|\epsilon_d}{d^2 + x^2} \tag{30}$$

$$\epsilon_{\omega} = \frac{2\pi\epsilon_T}{T^2} \tag{31}$$

$$\epsilon_{\omega_0} = \frac{\omega \epsilon_\omega + \lambda \epsilon_\lambda}{\omega_0} \tag{32}$$

$$\epsilon_{\lambda_2} = \epsilon_{\lambda_1} + \epsilon_{\lambda} \tag{33}$$

$$\epsilon_{A_{1}} = \frac{4\lambda_{2}R}{\omega_{0}^{4}S_{i}^{2}} \epsilon_{\lambda_{1}} + \frac{4\lambda_{1}R}{\omega_{0}^{4}S_{i}^{2}} \epsilon_{\lambda_{2}} + \frac{4\lambda_{1}\lambda_{2}}{\omega_{0}^{4}S_{i}^{2}} \epsilon_{R} + \frac{16\lambda_{1}\lambda_{2}R}{\omega_{0}^{5}S_{i}^{2}} \epsilon_{\omega_{0}} + \frac{8\lambda_{1}\lambda_{2}R}{\omega_{0}^{4}S_{i}^{3}} \epsilon_{S_{i}}$$
(34)

$$\epsilon_{nA_qB} = \frac{2R}{\omega_0^2 S_i} \epsilon_{\lambda_2} + \frac{2\lambda_2}{\omega_0^2 S_i} \epsilon_R + \frac{4\lambda_2 R}{\omega_0^3 S_i} \epsilon_{\omega_0} + \frac{2\lambda_2 R}{\omega_0^2 S_i^2} \epsilon_{S_i}$$
(35)

$$\epsilon_C = \frac{2R}{\omega_0^2 S_i^2} \epsilon_{\lambda_2} + \frac{2\lambda_2}{\omega_0^2 S_i^2} \epsilon_R + \frac{4\lambda_2 R}{\omega_0^3 S_i^2} \epsilon_{\omega_0} + \frac{4\lambda_2 R}{\omega_0^2 S_i^3} \epsilon_{S_i}$$

$$(36)$$

$$\epsilon_{I_{zz}} = \frac{2R}{\omega_0^4 S_i^2} \epsilon_{\lambda_2} + \frac{2\lambda_2}{\omega_0^4 S_i^2} \epsilon_R + \frac{8\lambda_2 R}{\omega_0^5 S_i^2} \epsilon_{\omega_0} + \frac{4\lambda_2 R}{\omega_0^4 S_i^3} \epsilon_{S_i}$$
(37)

Tentou-se também ajustar cuidadosamente a fonte luminosa de forma a que a posição de equilíbrio correspondesse ao zero da escala, embora se tenha acabado por escolher como posição de equilíbrio um ponto diferente do zero da escala.

II Regime Estático

Nesta parte do trabalho, o objetivo foi determinar a sensibilidade, S_i , do galvanómetro. Para isso, mediu-se o desvio, x, na escala graduada, em função da tensão, U_V , medida no multímetro, impondo-se $R_S \to \infty$. Assim, o galvanómetro foi desconectado do circuito, utilizando o inversor de cavilhas. Começou-se com $U_V = 6mV$, sendo que, através do anulamento da resistência imposta pelo reóstato, R_2 , (sem alterar o valor da tensão no gerador), se foi diminuindo U_V até 3mV, em intervalos de cerca de 0.5mV. Esta diferença de potencial media-se nos terminais do voltímetro. Simultaneamente, registavam-se as medições de x.

III Regime oscilante amortecido pelo ar

Nesta parte do trabalho experimental, estudaramse as oscilações "livres" do galvanómetro, só com atrito do ar

Ainda com $R_S \to \infty$ (e $U_V = 6mV$), de modo a que não atuasse atrito de cariz eletromagnético no sistema, procedeu-se à análise das oscilações do quadro móvel do galvanómetro. Para tal, fechou-se o circuito com o inversor de cavilhas, de modo a que o ponto luminoso se deslocasse até à posição extrema, e, depois de estabilizar, retirou-se uma das cavilhas, fazendo a tensão aplicada cair para zero. O galvanómetro, em seguida, começou a oscilar livremente no ar. Foram efetuados dois ensaios e, de seguida, inverteu-se o sentido da corrente, recorrendo ao inversor de cavilhas, e foram efetuados mais dois. Obteve-se, para cada ensaio, os valores do desvio x, na escala graduada, ao longo do tempo, filmando o movimento do ponto luminoso na escala e recorrendo ao software Tracker. Com estes mesmos vídeos, foi posteriormente medido o tempo correspondente a 3 períodos, isto é, 3 oscilações em torno da posição de equilíbrio, recorrendo a um cronómetro digital. Com estes valores, foi calculada uma média e determinado o período, T. Este processo foi repetido para cada vídeo (cada ensaio).

IV Regime oscilante amortecido também pelo atrito eletromagnético

Com a montagem anterior, efetuou-se apenas uma alteração, de modo a estudar o comportamento do galvanómetro quando sujeito a um efeito adicional de atrito eletromagnético: alterou-se o valor da resistência de "shunt", R_S , primeiro para $50k\Omega$ e, de seguida, para $100k\Omega$. Para cada um destes valores, efetuaram-se medições tal como descritas para o regime anterior: novamente dois ensaios para cada sentido da corrente.

V Regime aperiódico limite

Este regime, também denominado de "criticamente amortecido", dá-se quando o valor de R_S é baixo o suficiente para que $\omega_0 = \lambda$, situação em que o movimento do sistema é descrito através da equação 20. Neste caso, observa-se que o quadro não oscila, mas apenas tende para uma nova posição de equilíbrio.

Para encontrar o valor de R_S crítico que satisfizesse estas condições, considerou-se um valor inicial de $50k\Omega$, o qual se foi diminuindo gradualmente até ser possível observar o fenómeno descrito, e registou-se o valor de $R_{S_{critico}}$ em questão, o valor designado por "resistência crítica de "shunt.

VI Regime aperiódico

Com o mesmo setup que os ensaios anteriores, procurou-se estudar o comportamento do sistema quando o valor de R_S se encontrava abaixo do valor crítico encontrado no ensaio anterior. Neste caso, sabese que o movimento do quadro móvel é descrito pela equação 21, já que $\omega_0 < \lambda$.

IV Exposição dos resultados

De modo a tornar esta secção mais apresentável, optou-se por apenas colocar os gráficos correspondentes aos primeiros ensaios, sendo que os restantes ajustes se encontram em anexo.

É importante também salientar que se decidiu não contabilizar os valores dos segundos ensaios com corrente negativa para $R_S = 50k\Omega$ e $R_S = 100k\Omega$. Isto deve-se ao facto de os resultados obtidos serem absurdos face ao esperado e aos anteriores, sendo que os ajustes correspondentes tinham elevados valores do quiquadrado, causando enormes incertezas relativas. Não se sabe ao certo o que causou estes erros, no entanto pensa-se que pode ter sido o facto de não se ter dado tempo suficiente para a luz estabilizar, ou que se tenha começado a filmar um pouco tarde demais, ou, talvez, se tenha dado uma pequena pancada no sistema, perturbando-o.

I Regime Estático

Com o objetivo de determinar experimentalmente a sensibilidade do galvanómetro, efetuou-se um ajuste gráfico dos valores de α em função de i, com o método dos quadrados mínimos e a ferramenta fitteia, à equação 5. Estes valores foram calculados a partir das medições de x e U_V , recorrendo às equações 22 e 25, respetivamente. As fórmulas de propagação de erros encontram-se em anexo. O ajuste correspondente ao primeiro ensaio apresenta-se em baixo.

Figura 4: Ajuste gráfico dos valores de α em função de i para a corrente de valor positivo

O valor obtido neste ensaio para S_i foi de $(5.9 \pm 0.1) \times 10^5$ rad/A, com uma incerteza relativa percentual de 1.7% e, para o segundo ensaio (com a corrente no sentido inverso), foi de $(5.6 \pm 0.1) \times 10^5$ rad/A, com uma incerteza relativa percentual de 1.8%.

O valor tabelado fornecido no guia é de ≈ 4600 mm/A (desvio medido a 1 metro de distância). Logo, sendo a = 4.6m e $\alpha = \frac{1}{2} arctan\left(\frac{a}{d}\right)$ (d = 1m), $S_{i_{te\acute{o}rico}} \approx 0.678 \ rad/\mu A = 6.78 \times 10^5 \ rad/A$.

Fazendo a média dos dois valores de S_i , obtemos $S_i = (5.8 \pm 0.1) \times 10^5 \text{ rad/A}$, com uma incerteza relativa percentual de 1.7%. Assim, o erro experimental é de aproximadamente 14.4%.

II Regime oscilante amortecido pelo atrito do ar

Com o objetivo de determinar o período de oscilação do galvanómetro, foram realizados vários ensaios, tal como descrito no procedimento experimental.

Medindo-se com o cronómetro, obteve-se um período médio, para os quatro ensaios, de $T=(7.905\pm0.186)s$, com uma incerteza relativa percentual de 2.4%. A incerteza absoluta associada às medições do período T calculou-se fazendo uma média do tempo de reação humana, para 5 ensaios, multiplicando por 2 e, por fim, dividindo por 3 (multiplicou-se por 2 para contabilizar o efeito da reação humana no começo e no fim da contagem do tempo; divide-se por 3 porque foram medidos 3 períodos). Portanto, obtém-se um valor para a frequência de $\omega=(0.7948\pm0.0187)rad/s$, com incerteza relativa percentual de 2.4%.

A equação a utilizar para os ajustes gráficos é $\alpha = a_0 e^{-\lambda t} cos(\omega t + \delta) + a_1$ (o termo a_1 permite detetar possíveis erros sistemáticos e está presente também porque a posição de equilíbrio estabelecida não era o zero da escala graduada). Através da equação 22,

calcularam-se os valores de α a partir dos desvios, x. O objetivo destes ajustes foi obter o valor de λ_1 , ainda desconhecido, mas também obter o valor de ω , de modo a comparar com o valor obtido através da medição do período com o cronómetro. A figura 5 mostra o ajuste obtido para este movimento e para um valor positivo da corrente.

Figura 5: Evolução de α no tempo sob a ação de atrito do ar, no primeiro ensaio com corrente de valor positivo

Obteve-se $T=(7.979\pm0.003)s$, sendo o respetivo erro relativo percentual 0.04%, e $\lambda_1=(0.0347\pm0.0004)rad/s$, de erro relativo percentual 1.2%. Daqui, é possível retirar um valor de $\omega=\frac{2\pi}{T}=(0.7875\pm0.0003)rad/s$, com erro relativo percentual de 0.04%.

A figura 6 mostra o ajuste obtido para este movimento e para um valor negativo da corrente.

Figura 6: Evolução de α no tempo sob a ação de atrito do ar, no primeiro ensaio com corrente invertida

Tem-se que $T=(7.978\pm0.003)s$, de erro relativo 0.04%, e $\lambda_1=(0.0365\pm0.0004)rad/s$, de erro relativo 1.1%. É possível retirar um valor de $\omega=(0.7876\pm0.0003)rad/s$, de erro relativo 0.04%.

Para os quatro ensaios, obtém-se o valor médio seguinte: $\omega=(0.7875\pm0.0002)rad/s$, de incerteza relativa 0.02%. Para o cronómetro, o valor obtido foi de $\omega=(0.7948\pm0.0187)rad/s$, de incerteza relativa 2.4%. Dado que o valor obtido para a frequência usando o Tracker teve uma incerteza bastante menor, conclui-se que o método do cronómetro é substancialmente pior, o que já seria de esperar, pois o erro associado a uma máquina costuma ser sempre menor do que o erro humano. Esta é uma das razões referidas pela qual se optou por estudar todos os movimentos com ajuda de software.

Para a média do coeficiente de amortecimento mecânico obteve-se $\lambda_1=(0.035\pm0.001)rad/s$, de incerteza relativa 2.8%.

III Regime oscilante amortecido também pelo atrito eletromagnético

Considerou-se, de seguida, o atrito eletromagnético no sistema, sendo $R_S=50k\Omega$ e, de seguida, $R_S=100k\Omega$. Recorrendo novamente ao método dos quadrados mínimos, no software fitteia, fez-se o ajuste, com a mesma equação utilizada na secção anterior, aos dados obtidos. Procedeu-se, tal como descrito para o regime anterior, ao cálculo dos valores de α através dos desvios x. Para o primeiro ensaio com $R_S=50k\Omega$, obteve-se o gráfico apresesentado na figura 7, abaixo apresentada.

Figura 7: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, no primeiro ensaio com corrente de valor positivo e $R_S=50k\Omega$

Obteve-se assim, que $T=(8.03\pm0.02)s$, de incerteza relativa percentual 0.2%, e $\lambda=(0.099\pm0.002)rad/s$, de incerteza relativa 2.0%. Deste modo, $\omega=(0.782\pm0.002)rad/s$, de incerteza relativa 0.2%.

Efetuando as médias dos valores obtidos para os 3 ensaios, ficou-se com os seguintes resultados: $\lambda = (0.100 \pm 0.003) rad/s$, sendo a incerteza relativa percentual 3.0%, e $\omega = (0.781 \pm 0.002) rad/s$, sendo a incerteza

relativa percentual 0.2%.

É possível, então obter: $\lambda_2 = \lambda - \lambda_1 = (0.065 \pm 0.004) rad/s$, sendo a incerteza relativa 6.2% e $\omega_0 = \sqrt{\omega^2 + \lambda^2} = (0.787 \pm 0.002) rad/s$. A incerteza relativa associada é 0.2%.

Para o primeiro ensaio com $R_S = 100k\Omega$, obtém-se o gráfico apresentado na figura 8.

Figura 8: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, no primeiro ensaio com corrente de valor positivo e $R_S=100k\Omega$

Para esta amostra, obtém-se que $T=(8.004\pm0.008)s$, sendo a incerteza relativa percentual 0.1%, e $\lambda=(0.0663\pm0.0008)rad/s$, de incerteza relativa 1.2%. Deste modo, $\omega=(0.7850\pm0.0008)rad/s$, com incerteza relativa 0.1%.

Efetuando as médias de todos valores obtidos para $R_S = 100k\Omega$, obtêm-se os seguintes valores: $\lambda = (0.0667 \pm 0.0008) rad/s$, sendo a incerteza relativa percentual 1.2% e $\omega = (0.7849 \pm 0.0008) rad/s$, sendo a incerteza relativa percentual 0.1%.

É possível, então, obter: $\lambda_2 = (0.0317 \pm 0.0018) rad/s$, sendo a incerteza relativa 5.7%, e $\omega_0 = (0.7878 \pm 0.0009) rad/s$. A incerteza relativa é 0.1%.

Assim, obtêm-se os seguintes valores finais para as grandezas características do galvanómetro:

Para $R_S = 50k\Omega$:

Variável	Valor	Inc. rel.($\%$)
A_1	$(3.5 \pm 0.5) \times 10^{-9} kgm^2 s^{-1}$	14.3
nA_qB	$(0.018 \pm 0.002)Tm^2$	11.1
\overline{C}	$(3.1 \pm 0.3) \times 10^{-8} Nm$	9.7
I_{zz}	$(5.0 \pm 0.6) \times 10^{-8} kgm^2$	12.0

Para $R_S = 100k\Omega$:

Variável	Valor	Inc. rel.($\%$)
A_1	$(3.4 \pm 0.4) \times 10^{-9} kgm^2 s^{-1}$	11.8
nA_qB	$(0.018 \pm 0.001)Tm^2$	5.6
\hat{C}	$(3.0 \pm 0.3) \times 10^{-8} Nm$	10.0
I_{zz}	$(4.9 \pm 0.5) \times 10^{-8} kgm^2$	10.2

Fazendo a média, obtêm-se:

Variável	Valor	Inc. rel.($\%$)
A_1	$(3.4 \pm 0.4) \times 10^{-9} kgm^2 s^{-1}$	11.8
nA_qB	$(0.018 \pm 0.002)Tm^2$	11.1
\hat{C}	$(3.0 \pm 0.3) \times 10^{-8} Nm$	10.0
I_{zz}	$(5.0 \pm 0.6) \times 10^{-8} kgm^2$	12.0

IV Regime aperiódico limite

Seguindo o procedimento experimental descrito, determinou-se que $R_S = (5280 \pm 20)\Omega$, com incerteza relativa percentual de 0.4%.

Com o intuito de obter possíveis novas informações acerca do sistema em estudo, fez-se um ajuste aos dados obtidos aquando da determinação da resistência crítica de "shunt". Para esse valor de R_S determinado, eis o gráfico obtido:

Figura 9: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, com $R_S=R_{S_{crítico}}$

Assim, obteve-se o seguinte valor para o coeficiente de atrito: $\lambda = (1.14 \pm 0.04)$, com incerteza relativa de 3.5%.

Para se aplicar a equação 20, ter-se-ia de verificar a igualdade $\lambda = \omega_0$. Porém, obteve-se $\omega_0 = (0.7878 \pm 0.0009) rad/s$. Considerando este valor como "verdadeiro", o erro experimental de λ é 44.7%. Sendo $\lambda > \omega_0$, deveria ter-se aplicado a equação 21. O valor da resitência crítica de "shunt" será, na verdade, superior ao valor encontrado. Este resultado será discutido na análise de dados.

V Regime aperiódico

Ao diminuir $R_{S_{critico}}$ em 280Ω , verificou-se que o ponto luminoso adotou um movimento bastante mais lento e não atingiu a posição extrema à qual chegara no regime aperiódico limite, tendo aparentemente estabilizado num ponto anterior na escala graduada.

V Análise de dados e conclusão

No geral, não existiam valores tabelados das grandezas a medir indiretamente, o que impediu a determinação de erros experimentais. Pôde-se, contudo, determinar a exatidão associada à sensibilidade do galvanómetro: 14.4%, um valor bastante aceitável tendo em conta o baixo número de pontos experimentais, assim como a elevada incerteza associada à medição da distância do galvanómetro à escala graduada e todos os outros possíveis erros (sistemáticos e aleatórios) a que as medidas se encontraram sujeitas.

Verificou-se, também, que as precisões eram maiores para o regime oscilatório no qual apenas existe o atrito do ar, em oposição aos valores obtidos para o regime de amortecimento com atrito eletromagnético, embora também estes últimos tenham sido bastante precisos, sobretudo os valores de ω . Deste modo, poder-se-á concluir que o adicional atrito torna os dados menos fiáveis.

Os valores obtidos para ω , ω_0 , λ_1 , λ_2 e λ são bastante precisos, apresentando incertezas relativas inferiores a 10%. Todavia, as incertezas relativas para os valores finais de A_1 , nA_qB , C e I_{zz} foram todas superiores ou iguais a 10%. Tal poder-se-á justificar tendo em conta a dependência destes valores finais de inúmeras medidas indiretas calculadas anteriormente, inclusive calculadas em regimes diferentes de oscilação e em diferentes dias da semana: não se tendo terminado todas as medições no primeiro dia do laboratório, foi necessário efetuar de novo a montagem experimental.

Verifica-se também que as incertezas relativas dos valores λ , λ_2 , ω e ω_0 obtidos para $R_S=100k\Omega$ são inferiores às correspondentes incertezas para $R_S=50k\Omega$. Ora, isto vem corroborar ainda mais a conclusão de que o atrito adicional afeta a precisão dos resultados obtidos: com R_S inferior, o atrito ao qual o galvanómetro está sujeito é superior.

Relativamente à determinação de $R_{S_{critico}}$, verificou-se que o valor de λ correspondente é bastante superior ao valor de ω_0 calculado. Assim, obteve-se um valor de R_S para o qual já existia regime aperiódico. Isto permite concluir que deveria ter sido aplicada outra metodologia para determinar este valor. Considerou-se este regime limite quando o ponto luminoso não oscilava perto da posição final. Possivelmente, deveria ter-se considerado a situação na qual o ponto luminoso

passava duas e só duas vezes pela posição de equilíbrio, algo que pode acontecer quando $\lambda = \omega_0$.

Por fim, analisando o regime aperiódico, concluise que quanto maior for λ , ou seja, quanto maior for o atrito, mais lentamente ocorre o movimento e mais tarde o ponto luminoso estabiliza próximo da posição de equilíbrio.

Com intuito de melhorar o procedimento experimental, como já foi referido, recorreu-se à ferramenta computacional *Tracker*, de modo a obter um maior número de pontos experimentais, sendo estes, em geral, mais exatos comparativamente a medidas obtidas por leitura direta da escala. Acredita-se que, tendo mais dados experimentais, possibilitou-se a obtenção de ajustes mais precisos, o que dimanou resultados mais precisos.

Concluindo, considera-se que se cumpriram os objetivos propostos para esta atividade experimental, sendo que os valores finais obtidos apresentam precisões bastante satisfatórias, que sustentam a fiabilidade dos resultados obtidos. Foi, porém, difícil de caraterizar a exatidão destas medidas, dada a inexistência dos respetivos valores tabelados. Além disso, deveriam ter sido aplicados outros critérios na determinação da resistência crítica de "shunt".

Referências

[1] Sebastião P., Estudo das Oscilações de um Galvanómetro (T3), *Guia dos Trabalhos Experimentais*, Departamento de Física (IST), Lisboa, 2016.

VI Anexos

I Gráficos de outros ensaios

Figura 10: Ajuste gráfico dos valores de α em função de i para a corrente de valor negativo

Figura 11: Evolução de α no tempo sob a ação de atrito do ar, no segundo ensaio com corrente de valor positivo

Figura 12: Evolução de α no tempo sob a ação de atrito do ar, no segundo ensaio com corrente de valor negativo

Figura 13: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, no segundo ensaio com corrente de valor positivo e $R_S=50k\Omega$

Figura 14: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, no primeiro ensaio com corrente de valor negativo e $R_S=50k\Omega$

Figura 15: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, no segundo ensaio com corrente de valor positivo e $R_S=100k\Omega$

Figura 16: Evolução de α no tempo sob a ação de atrito do ar e atrito eletromagnético, no primeiro ensaio com corrente de valor negativo e $R_S=100k\Omega$