Análise de Algoritmos

CLRS 2.3, 3.2, 4.1 e 4.2

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Problema: Dada uma permutação p[1..n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Duas opções: o MERGESORT e o HEAPSORT.

Qual deles parece mais adequado?

Problema: Dada uma permutação p[1...n], determinar o número de inversões em p.

Queremos um algoritmo $O(n \lg n)$ para o problema.

O número de inversões pode ser $\Theta(n^2)$.

Portanto, não podemos contar de uma em uma as inversões, como faz o algoritmo anterior.

Idéia: Vamos ordenar e contar ao mesmo tempo!

A ordenação ajuda a contar várias inversões de uma só vez.

Que algoritmo de ordenação usaremos?

Duas opções: o MERGESORT e o HEAPSORT. Qual deles parece mais adequado?

Resposta: o MERGESORT.

Merge-Sort

Rearranja A[p ... r], com $p \le r$, em ordem crescente.

```
MERGESORT (A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT (A, p, q)

4 MERGESORT (A, q+1, r)

5 INTERCALA (A, p, q, r)
```

Método: Divisão e conquista.

Intercalação

Problema: Dados A[p ... q] e A[q+1...r] crescentes, rearranjar A[p...r] de modo que ele fique em ordem crescente.

Para que valores de *q* o problema faz sentido?

Entra:

	p				q				r
A	22	33	55	77	99	11	44	66	88

Intercalação

Problema: Dados A[p ...q] e A[q+1...r] crescentes, rearranjar A[p...r] de modo que ele fique em ordem crescente.

Para que valores de *q* o problema faz sentido?

Entra:

Sai:

Intercalação

```
INTERCALA (A, p, q, r)
        \triangleright B[p ...r] é um vetor auxiliar
        para i \leftarrow p até q faça
               B[i] \leftarrow A[i]
 3
        para j \leftarrow q + 1 até r faça
               B[r+q+1-j] \leftarrow A[j]
 5
        i \leftarrow p
 6
       j \leftarrow r
        para k \leftarrow p até r faça
 8
               se B[i] \leq B[j]
 9
                     então A[k] \leftarrow B[i]
10
                               i \leftarrow i + 1
                     senão A[k] \leftarrow B[j]
12
                                j \leftarrow j-1
```

Adaptação do Merge-Sort

Conta o número de inversões de A[p ...r], com $p \le r$, e rearranja A[p ...r] em ordem crescente.

```
CONTA-E-ORDENA (A, p, r)

1 se p \ge r

2 então devolva 0

3 senão q \leftarrow \lfloor (p+r)/2 \rfloor

4 c \leftarrow \text{CONTA-E-ORDENA}(A, p, q) +

5 CONTA-E-ORDENA (A, q+1, r) +

6 CONTA-E-INTERCALA (A, p, q, r)

7 devolva c
```

Método: Divisão e conquista.

Contagem na intercalação

```
CONTA-E-INTERCALA (A, p, q, r)
        para i \leftarrow p até q faça
               B[i] \leftarrow A[i]
        para j \leftarrow q + 1 até r faça
              B[r+q+1-j] \leftarrow A[j]
 5
      i \leftarrow p
 6 \quad j \leftarrow r
 7 c \leftarrow 0
                                                           > inicializa o contador
 8
        para k \leftarrow p até r faça
 9
               se B[i] \leq B[j]
10
                     então A[k] \leftarrow B[i]
11
                               i \leftarrow i + 1
12
                     senão A[k] \leftarrow B[j]
13
                                j \leftarrow j-1
14
                                c \leftarrow c + (q - i + 1) \triangleright conta inversões
15
        devolva c
```


$$c = 0$$

$$c = 0$$

$$c = 0 + 5 = 5$$

$$c = 5$$

$$c = 5$$

$$c = 5 + 3 = 8$$

$$c = 8$$

$$c = 8 + 2 = 10$$

$$c = 10$$

$$c = 10 + 1 = 11$$

$$c = 11$$

Contagem na intercalação

```
CONTA-E-INTERCALA (A, p, q, r)
        para i \leftarrow p até q faça
               B[i] \leftarrow A[i]
        para j \leftarrow q + 1 até r faça
              B[r+q+1-j] \leftarrow A[j]
 5
      i \leftarrow p
 6 \quad j \leftarrow r
 7 c \leftarrow 0
                                                           > inicializa o contador
 8
        para k \leftarrow p até r faça
 9
               se B[i] \leq B[j]
10
                     então A[k] \leftarrow B[i]
11
                               i \leftarrow i + 1
12
                     senão A[k] \leftarrow B[j]
13
                                j \leftarrow j-1
14
                                c \leftarrow c + (q - i + 1) \triangleright conta inversões
15
        devolva c
```

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha	consumo de todas as execuções da linha
1	$\mathrm{O}(n)$
2	$\mathrm{O}(n)$
3	$\mathrm{O}(n)$
4	$\mathrm{O}(n)$
5–7	O(1)
8	O(n)
9	$\mathrm{O}(n)$
10–14	$\mathrm{O}(n)$
15	O(1)

total
$$O(7n+2) = O(n)$$

Conclusão

O algoritmo CONTA-E-INTERCALA consome O(n) unidades de tempo.

Também escreve-se

O algoritmo CONTA-E-INTERCALA consome tempo O(n).

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA.

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA. Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + O(n)$$

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA. Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + O(n)$$

Solução: $T(n) = O(n \lg n)$.

Prova?

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA.

Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$$

Solução: $T(n) = O(n \lg n)$.

Prova?

Considera-se a recorrência simplificada

$$T(n) = 2T(n/2) + n$$

definida apenas para n potência de 2.

Seja T(n) o tempo consumido pelo CONTA-E-ORDENA.

Vale a seguinte recorrência para T(n):

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n)$$

Solução: $T(n) = O(n \lg n)$.

Prova?

Considera-se a recorrência simplificada

$$T(n) = 2T(n/2) + n$$

definida apenas para n potência de 2.

Prova-se por indução em n que $T(n) = n + n \lg n = O(n \lg n)$.

Prova

Afirmação: A recorrência

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{se } n=1 \\ 2\,T(n/2) + n & \text{se } n \geq 2 \text{, } n \text{ potência de } 2 \end{array} \right.$$
 tem como solução $T(n) = n + n \lg n$.

Prova

Afirmação: A recorrência

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{se } n=1 \\ 2\,T(n/2) + n & \text{se } n \geq 2 \text{, } n \text{ potencia de } 2 \end{array} \right.$$

tem como solução $T(n) = n + n \lg n$.

Prova: Por indução em n.

Base:
$$n=1$$

$$T(1) = 1 = 1 + 1 \cdot 0 = 1 + 1 \lg 1.$$

Prova

Afirmação: A recorrência

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{se } n=1 \\ 2\,T(n/2) + n & \text{se } n \geq 2 \text{, } n \text{ potencia de } 2 \end{array} \right.$$

tem como solução $T(n) = n + n \lg n$.

Prova: Por indução em n.

Base:
$$n=1$$

$$T(1) = 1 = 1 + 1 \cdot 0 = 1 + 1 \lg 1.$$

Passo: $n \ge 2$

$$T(n) = 2T(n/2) + n$$

= $2(n/2 + (n/2)\lg(n/2)) + n$ por indução
= $2n + n\lg(n/2)$
= $2n + n(\lg n - 1)$
= $n + n\lg n$.

Mas como descobrimos que $T(n) = n + n \lg n$?

Mas como descobrimos que $T(n) = n + n \lg n$? No chute!

Mas como descobrimos que $T(n) = n + n \lg n$? No chute! Uma maneira de se obter um "chute" de solução de recorrência é desenrolando a recorrência.

Mas como descobrimos que $T(n) = n + n \lg n$? No chute! Uma maneira de se obter um "chute" de solução de recorrência é desenrolando a recorrência.

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/2^{2}) + n/2) + n = 2^{2}T(n/2^{2}) + 2n$$

$$= 2^{2}(2T(n/2^{3}) + n/2^{2}) + 2n = 2^{3}T(n/2^{3}) + 3n$$

$$= 2^{3}(2T(n/2^{4}) + n/2^{3}) + 3n = 2^{4}T(n/2^{4}) + 4n$$

$$= \cdots$$

$$= 2^{k}T(n/2^{k}) + kn,$$

onde $k = \lg n$. Disso concluímos que

$$T(n) = n + n \lg n.$$