ОЦЕНКА ПОЖАРНОЙ ОБСТАНОВКИ ПРИ ВЗРЫВЕ

Под пожарной обстановкой понимается совокупность последствий воздействия поражающих факторов ЧС, в результате которых возникают пожары, оказывающие негативное влияние на нормальную жизнедеятельность людей. Для оценки пожарной обстановки необходимо провести ряд мероприятий:

- -определить вид, масштаб и характер пожара;
- -провести анализ влияния пожара на устойчивость работы отдельных элементов и объектов в целом, а также на жизнедеятельность населения;
- -выбрать наиболее рациональные действия по локализации и тушению пожара, по эвакуации при необходимости людей и материальных ценностей из зоны пожара.

Ниже приводится распространенный аналитический метод оценки очага поражения при взрывах топливно-воздушной и газо-воздушной сред.

1. Определение радиуса зоны бризантного действия взрыва ($\Delta P_{\Phi} = 1700 \text{ к}\Pi a$) проводится по формуле

$$R_1 = 17.5 \cdot \sqrt[3]{Q}$$
, M,

- где Q масса газа или топлива в резервуаре; (Q = 0.5M одиночный резервуар, Q = 0.9M групповое хранение); M ёмкость резервуара, т.
- 2. Определение радиуса зоны действия продуктов взрыва (осколков) и огненного шара объёмного взрыва рассчитывается по формуле

$$R_2 = R_{OIII} = 1.7 \cdot R_0$$
, M.

Избыточное давление в этой зоне определяется по формуле

$$\Delta P_{\Phi 2} = 1300 \cdot \left(\frac{R_1}{R_2}\right)^3 + 50$$
, кПа.

3. Определение избыточного давления в зоне действия воздушной ударной волны: при $\Psi=0,24\cdot\frac{R_3}{R_1}\leq 2$ избыточное давление в зоне R3 определяется по формуле:

$$\Delta P_{\phi_3} = \frac{700}{3 \cdot \left(\sqrt{1 + 29, 8 \cdot \Psi^3} - 1 \right)}.$$

при $\Psi > 2$

$$\Delta P_{\phi_3} = \frac{22}{\Psi \cdot \sqrt{\lg \Psi + 0.158}}.$$

4. Определение интенсивности теплового излучения взрыва на расстоянии R_3 :

$$J = Q_0 \cdot F \cdot T$$
, $\kappa BT/M^2$,

где Q_0 — удельная теплота пожара; T — прозрачность воздуха $(T=1-0.058 \cdot \ln(R_3)); F$ — угловой коэффициент, характеризующий взаимное расположение источника и объекта $F = \frac{R_2^2 \cdot R_3}{\sqrt{\left(R_2^2 + R_3^2\right)^3}}$.

5. Определение продолжительности существования огненного шара:

$$t_{CB} \cong 4.5 \cdot \sqrt[3]{Q}$$
, c.

6. Определение теплового импульса:

$$U = J \cdot t_{CR} (\kappa \prod \kappa / M^2)$$

7. Определение безвозвратных потерь людей:

$$N = 3 \cdot P \cdot O^{0.666}$$

где P — плотность населения.

Поражающее действие теплового импульса определяют, сравнивая $U_{\scriptscriptstyle T}$ с данными табл. 1.

Пример решения задач

Задача

На объекте взорвалась цистерна с бензином массой 100 тонн (одиночное хранение). Определить характер разрушения цеха с лёгким каркасом, пожарную обстановку на объекте и потери людей. Цех находится на расстоянии 500 метров от цистерны. Плотность населения в районе аварии 2 тысячи человек на километр квадратный, удельная теплота пожара бензина 280 кДж/м².

Решение

1. Определим радиус бризантного действия взрыва:

$$R_1 = 17.5 \cdot \sqrt[3]{50} \approx 65 \text{ M}.$$

2. Определим радиус бризантного действия продуктов взрыва (огненного шара):

$$R_2 = R_{OIII} = 1.7 \cdot 65 = 110$$
 M.

3. Определим избыточное давление в зоне огненного шара:

$$\Delta P_{\hat{O}2} = 1300 \cdot \left(\frac{65}{110}\right)^3 + 50 = 318,3 \text{ кПа.}$$

4. Вычислим избыточное давление в районе цеха:

$$\Psi = 0,24 \cdot \frac{500}{65} = 1,8 < 2,$$

$$\Delta P_{\Phi 3} = \frac{700}{3 \cdot \left(\sqrt{1 + 29,8 \cdot 1,8^3} - 1\right)} = 19 \text{ K}\Pi a.$$

- 5. Определим интенсивность теплового излучения взрыва на расстоянии $R_3 = 500$ м. $J = 280 \cdot 0.045 \cdot 0.64 = 8.1$, кBт/м².
- 6. Вычислим продолжительность существования огненного шара:

$$t_{ce} = 4.5 \cdot \sqrt[3]{50} = 18.5 \text{ c.}$$

7. Определим значение теплового импульса на $R_3 = 500$ м:

$$U_T = 8,1 \cdot 18,5 = 150 \text{ кДж/м}^2.$$

- 8. Определим поражающее действие взрыва цистерны с бензином:
- –цех получит лёгкие разрушения (ΔP_{Φ} ≈ 20 кПа);
- -число погибших людей $N = 3 \cdot 2 \cdot 50^{0.666} = 81$ человек;
- -люди в районе цеха получат ожоги II-й степени (волдыри, потеря трудоспособности).

Поражающее действие тепловых импульсов

Таблица 1

Степень	Тепловой	Материал	Воспламеняющий
ожога	импульс		тепловой импульс
Лёгкая	80-100	Доски тёмные,	250-400
		резина	
Средняя	100-400	Стружка, бумага	330-500
Тяжёлая	400-600	Брезент	420-500
Смертельная	Свыше 600	Дерево сухое	500-670

Кроны деревьев	500-750
Кровля (рубероид)	580-810
Древесностружечн	a 150-200
я плита	

Таблица 2 Варианты задач о взрыве цистерны с бензином

Вариант	Масса, т	Расстоян	Плотнос	Вариант	Масса, т	Расстоян	Плотнос
		ие, м	ТЬ			ие, м	ТЬ
			населени				Населен
			я, тыс.				ия, тыс.
			чел.				чел.
1	120	500	2	13	200	700	1
2	110	450	3	14	130	500	2
3	100	400	4	15	120	400	1
4	90	350	5	16	110	450	2
5	80	300	4	17	180	550	3
6	70	250	2	18	160	500	4
7	60	200	1	19	170	550	2
8	50	150	2	20	100	400	1
9	140	600	1	21	90	350	3
10	150	650	3	22	80	300	4
11	160	700	1	23	70	250	2
12	180	750	2	24	60	200	1

Степень разрушения здания цеха

Таблица 3

	Степень разрушения в зависимости от ΔP_{Φ} , к Π а			
Цех с лёгким	слабые	средние	сильные	
каркасом	10-20	20-30	30-40	