Chapter 4 Logical Database Design and the Relational Model

Objectives

- Define terms for the relational data model
- Transform EE-R diagrams to relations
- Create tables with entity and relational integrity constraints

Steps in Database Problem Solving

3

Logical Model: Relational Model

- Can represent all kinds of information
- Based on Math (relations)
- Natural to people
- Relatively simple
- We know how to implement it fast

Components of Relational Model

- Data structure
 - Tables (relations), rows, columns
- Data manipulation
 - Powerful SQL operations for retrieving and modifying data
- Data integrity
 - Mechanisms for implementing business rules that maintain integrity of manipulated data

5

Motivating Example

• Make a list of students in the class, keeping their ID, name and phone number

Motivating Example

- Make a list of students in the class, keeping their ID, name and phone number
- You'd probably come up with something like this:

	ID	Name	Phone	
<	XX	Mike	111	Tuple
	уу	Elisa	222	(Record, Row)

• This is the basic structure of the relational model, a table or relation

7

Extra Assumptions

- You would not repeat the same row twice
- No two rows have the same ID, but they may have the same name and phone number

	ID	Name	Phone		
(XX	Mike	111		SET
	уу	Elisa	222		(no duplicates)
		!		ı	

• ID would be the *PRIMARY KEY (PK)*.

Now add emails ... (many!)

- Now you need to add the emails of each student, but you do not know how many emails
- Can you come up with a solution? Try it ...

9

Many Fields

• Could come up with something like this

ID	Name	Phone	Email1	Email2	
XX	Mike	111	bad	idea ©	
уу	Elisa	222	bad	idea ©	

- Above would not work very well. How many fields?
 - Wasted space
 - What if a student has more emails?
 - How to access the emails?

Un-Normalized

• Could also try this:

ID	Name	Phone	Email		
XX	Mike	111	mk@ad.com		
XX	Mike	111	mk@vu.edu		
уу	Elisa	222	eli@vu.edu		

- Problem is duplication, we are repeating the name and phone number in the second row
 - What if Mike changes his phone?
- Later we will study normalization to solve this.

11

Now add emails ... (many!)

• A much better way:

Student

ID	Name	Phone		
XX	Mike	111		
уу	Elisa	222		

Email

StudentID	Email
XX	mk@ad.com
XX	mk@vu.edu
уу	eli@vu.edu

- Every StudentID on the second table needs a matching ID on the first table: StudentID is a *FOREIGN KEY*
- In a way, StudentID in the second table is a *pointer* or *reference* to the first table

Formalizing: Relations

- Definition: A *relation* is a **named table** of data
 - Table is made up of rows (records or tuples), and columns (attributes or fields)
- Requirements for a table to be a relation:
 - 1. Has a unique name.
 - 2. Every attribute value is atomic (not multivalued or composite)
 - 3. Every row is unique
 - 4. Attributes (columns) in tables have unique names
 - 5. The order of the columns is irrelevant
 - 6. The order of the rows is irrelevant

By definition, all relations are in 1st Normal Form (1NF).

13

Correspondence with ER Model

- Relations (tables) correspond to entity types and to many-to-many relationship types
- Rows correspond to entity instances and to many-tomany relationship instances
- Columns correspond to attributes
- NOTE: The word *relation* (in relational database) is NOT the same as the word *relationship* (in ER model)

Formalizing Key Fields

- Primary key (PK)
 - Minimal set of attributes that uniquely identifies a row, chosen for referencing
 - This is how we can guarantee that all rows are unique
- Foreign key (FK)
 - Set of attributes in a table that serves as a reference to the primary key of another table
- Keys can be simple or composite
- Used as indexes to speed up queries

8 1

15

Figure 4-3 Schema for four relations (Pine Valley Furniture Company)

Key Constraints

- Entity Integrity Constraint
 - No attribute of the PK may be null
- Referential Integrity Constraint
 - For a FK, either all attributes are null, or the values appear in the PK of a row of the referred table

17

Figure 4-5
Referential integrity constraints (Pine Valley Furniture)

Figure 4-6 SQL table definitions

Referential integrity constraints are implemented with foreign key to primary key references.

19

Key Constraints – Example

Delete Rules

- Restrict don't allow delete of "parent" side if related rows exist in "dependent" side
- Cascade automatically delete "dependent" side rows that correspond with the "parent" side row to be deleted
- Set-to-Null set the foreign key in the dependent side to null if deleting from the parent side → not allowed for weak entities

From E-R Diagrams to Relations (Tables)

21

Transforming E-R Into Relations

- Use a rectangle for each entity (table), with attributes inside rectangles, too
 - Can be vertical or horizontal
 - Primary key is underlined
- Use arrows from Foreign key to Primary key

E-R vs. Relational

- Entities are represented by tables
 - But tables may also represent relationships, or multivalued attributes
- Foreign Keys used to relate table rows
 - Similar to relationships in E-R, but lower level
- Relational model is more concrete, lower level
 - Usually many more tables than entities
 - Harder to understand by non-technical people
 - Directly implementable

23

Six Cases of Transforming E-R Diagrams into Relations

- 1. Map Regular Entities
- 2. Map Binary Relationships
- 3. Map Weak Entities
- 4. Map Associative Entities
- 5. Map Unary Relationships
- 6. Map Ternary (and n-ary) Relationships

1. Mapping Regular Entities

- Create a new table for each entity
- Remember to underline the <u>identifier</u>
- For composite attributes, map only the basic pieces
- Derived attributes disappear
- For multivalued attributes we need a new table
- We may need to create several tables for independent multivalued attributes

25

You Try ...

BOOK

ISBN

Title

{Authors]

Format (Binding, NumPages, Dimensions, [Weight])

Six Cases of Transforming E-R Diagrams into Relations

- 1. Map Regular Entities
- 2. Map Binary Relationships
- 3. Map Weak Entities
- 4. Map Associative Entities
- 5. Map Unary Relationships
- 6. Map Ternary (and n-ary) Relationships

29

Mapping Binary Relationships

- · One-to-Many
 - Primary key on the one side becomes a foreign key on the many side (Fig. 4-12).
- One-to-One
 - Primary key on the mandatory side becomes a foreign key on the optional side (Fig. 4-14).
- Many-to-Many
 - Create a *new relation* with the primary keys of the two entities as its primary key (Fig. 4-13).

Fig. 4-12: Example of mapping a 1:M relationship

(a) Relationship between customers and orders

Fig. 4-12: (b) Mapping the relationship

[Primary key on the one side becomes a foreign key on the many side]

31

You Try – 1:M Relationship

NURSE
Nurse ID
Nurse Name
Nurse Birth Date

NURSE
NurseID
Nurse Birth Date

NURSE
Nurse Birth Date

Nurse Name
Nurse Birth Date

Nurse Name
Nurse Nurs

Figure 4-14 Example of mapping a binary 1:1 relationship

Foreign key goes in the relation on the optional side, matching the primary key on the mandatory side

NurseInCharge

DateAssigned

CenterLocation

CARE CENTER

CenterID

34

Many-to-Many Relationship

- For a many-to-many, we need a new table representing the relationship.
- This table has Foreign Keys to both entities.

Figure 4-13 Example of mapping an M:N relationship

a) Completes relationship (M:N)

The Completes relationship will need to become a separate relation

36

Figure 4-13 Example of mapping an M:N relationship (cont.)

b) Three resulting relations

You Try ...

38

Six Cases of Transforming E-R Diagrams into Relations

- 1. Map Regular Entities
- 2. Map Binary Relationships
- 3. Map Weak Entities
- 4. Map Associative Entities
- 5. Map Unary Relationships
- 6. Map Ternary (and n-ary) Relationships

3. Mapping Weak Entities

- A weak entity becomes a separate relation with a foreign key taken from the strong entity
- Primary key composed of:
 - Partial identifier of weak entity
 - Primary key of identifying relation (strong entity)

41

Weak Entities

- Transform the strong entity normally
- For the weak entity, the PK becomes the identifier, plus the PK of the identifying entity

You Try ...

43

Six Cases of Transforming E-R Diagrams into Relations

- 1. Map Regular Entities
- 2. Map Binary Relationships
- 3. Map Weak Entities
- 4. Map Associative Entities
- 5. Map Unary Relationships
- 6. Map Ternary (and n-ary) Relationships

4. Mapping Associative Entities

- Identifier Not Assigned
 - Default primary key for the association relation is composed of the primary keys of the two entities (as in M:N relationship)
- Identifier Assigned
 - It is natural and familiar to end-users
 - Default identifier may not be unique

46

[Default primary key

for the association relation is NOT

Figure 4-15: Mapping an associative entity (a) Associative entity (ORDER LINE)

[Default primary key Figure 4-16: Mapping an associative entity for the association (a) Associative entity (SHIPMENT) relation is assigned] **CUSTOMER** SHIPMENT **VENDOR** Shipment ID Vendor ID **Customer ID** Customer Name Shipment Date Vendor Address Shipment Amount (b) Three resulting relations CUSTOMER CustomerID CustomerName Primary key differs from foreign keys SHIPMENT ShipmentID CustomerID VendorID ShipmentDate ShipmentAmount VENDOR \ VendorID VendorAddress 48

Six Cases of Transforming E-R Diagrams into Relations

- 1. Map Regular Entities
- 2. Map Binary Relationships
- 3. Map Weak Entities
- 4. Map Associative Entities
- 5. Map Unary Relationships
- 6. Map Ternary (and n-ary) Relationships

51

5. Mapping Unary Relationships

- Same as other relationships, except that the FK may go to the same table.
- For one-to-many, the table has a reference to other rows of the same table.
- For many-to-many, an extra table has two FKs, both to the same table (Fig. 4-18).

Figure 4-17 Mapping a unary 1:N relationship

(a) EMPLOYEE entity with unary relationship

(b) EMPLOYEE relation with recursive foreign key

Figure 4-18: Mapping a unary M:N relationship

You Try – 1:M Unary

55

You Try – M:N Unary

Six Cases of Transforming E-R Diagrams into Relations

- 1. Map Regular Entities
- 2. Map Binary Relationships
- 3. Map Weak Entities
- 4. Map Associative Entities
- 5. Map Unary Relationships
- 6. Map Ternary (and n-ary) Relationships

59

6. Mapping Ternary Relationships

- One relation for each entity and one for the associative entity.
- Associative entity has foreign keys to each entity in the relationship

Figure 4-19 Mapping a ternary relationship a) PATIENT TREATMENT Ternary relationship with associative entity

Figure 4-19 Mapping a ternary relationship (cont.)

b) Mapping the ternary relationship PATIENT TREATMENT

(A patient may receive a treatment once in the morning, then the same treatment in the afternoon.)

From EE-R Diagrams to Relations (Tables)

63

EE-R to Relations

- Mapping Supertype/Subtype Relationships
- One relation for supertype and for each subtype
- Supertype attributes (including identifier and subtype discriminator) go into supertype relation
- Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation
- 1:1 relationship established between supertype and each subtype, with supertype as primary table

EMPLOYEE Employee Number Employee Name Employee Address Employee DateHired **Employee Type** Employee Type = d "H" "C" "S" CONSULTANT HOURLY SALARIED **EMPLOYEE EMPLOYEE** Annual Salary Hourly Rate Contract Number Stock Option Billing Rate

Figure 4-20 Supertype/subtype relationship

65

Figure 4-21 Mapping supertype/subtype relationships to relations

These are implemented as one-to-one relationships.

Relational Model Practice Exercises

67

#2

Next Topic

- Next topic is considered the most important theory in database management.
- What is it?
- Normalization

74

Table 4-6: Preview of Normalization

Below is a list of parking tickets issued by the Public Safety office to vehicles parked illegally on campus.

How would you organize such data into relations?

TABLE 4-6									
Parking Ticket Table									
St ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
						16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
						16293	11/18/10	1	\$15
						17892	12/13/10	2	\$25