16 mas. $1. L(x) = \sin x$ $x^{\frac{2}{3}}$ 12 (R, 2): $\begin{cases} \sin^2 x \, dx - 2 \end{cases} \int \sin^2 x \, dx$ sin a da $= 2 \int \sin^2 x \, dx + 2$ 11 00 $\frac{1}{x^{\frac{3}{2}}} dx = -3x^{\frac{1}{3}}$ => I ox. L(x) € L (12,2): $T = \int |\sin x|^2 = 2 \int |\sin x|^2 = 2 \int |\cos x|^2$ = 6 x \$ 1 + 00 pacx.

=> I pacx. 2. $x_n(\xi) = \begin{cases} 1, & 0 \leq \xi \leq 1 \\ \xi & n \end{cases}$ x(t)=t-3-nnegeronal 90-2 $(\| \alpha_n(t) - \alpha(t) \|_p) = \int (\alpha_n(t) - \alpha(t))^p dt =$ = 1 (1 + E = 3) r d E + f (E = 3 - E = 3) r d E = = (1+E-3) POLE < I = 1 (£ - 3 - 1) p dt ~ ft - 5 dE = = £ - \(\frac{1}{3} + 1 \) \(\left(- \frac{1}{3} + 1 \right) \) \(\alpha \times - \alpha \tau \quad \text{npa} \quad \text{p} \times \leq 3 \) => $\int cx-ce$ rpu $\rho \leq 3$ Morga $\int (t^{-\frac{1}{3}}-1)^{\rho}dt \rightarrow 0$, cax260em I beliege ocaclor morre 0. => 2cn(t) -> 2ct = 3 ma 15p 53

esssup $|x_n(\xi) - \alpha(\xi)| \neq 0 = 3$ npg $p = +\infty$ 3. Pn(x) - 1 dn(x²-1)n a) $P_{\alpha}(x) = 1$ $P_1(x) = 12x = 2$ $P_2(x) = \int_{\mathcal{E}} dx 2(x^2 - 1) \cdot 2x$ $= \frac{1}{8} \cdot 4 \left(3x^2 - 1\right) = \frac{1}{9} \left(3x^2 - 1\right)$ $P_3(x) = 1 d^2 3(x^2 - 1)^2 \cdot 2x =$ = \(\frac{6}{\pi} \) \(\pi^2 \) \(\pi \) \(\pi^3 + \pi \) = = 6 d (5x4-6x2+1)= $= \frac{6(20x^3 - 12x)}{48(5x^3 - 3x)}$ 6) & Pa(x). Pa(x) dx= $=\int_{\mathbb{R}^{n+m}} \frac{1}{n} \left(\left(x^{2} - 1 \right)^{n} \right) \left(x^{2} - 1 \right)^{m} \left(x^{2} - 1 \right)^{m} \right) \left(x^{2} - 1 \right)^{m} \right) \left(x^{2} - 1 \right)^{m} \right) \left(x^{2} - 1 \right)^{m} \left(x^$ Co (f) = (f, Po) (f, Po) = | sin x . / dx = 0-cosx (=1-cos/ $\|P_0\|^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |O(x)|^2$ co(f) = cost 1-cos1 C((1) = (1 P) $(l, P_1) = \int x \sin x dx = -x \cos x (l + \int \cos x dx)$ $= -\cos x + \sin t$ $||P_1||^2 = \int x^2 c x = 3x^3 / t = 1$ C,(L) = -3 cos (+ 3 sin 1 Ce (f) = (P3) $(L, P_2) = \int_{0}^{\infty} \frac{1}{3} (3x^2 - 1) \sin x dx =$

= $\frac{3}{2}\int x^2 \sin x \, dx + (-1) \cdot \cos 1$ = $\frac{3}{2}\int x^2 \sin x \, dx$ = $\frac{3}{2}\int x^2 \sin x \, dx$ = 8 sen(1) + 4 cos(1) - 9 11 P2 112 = 1 1 (3x2-1)2 d2 = $\frac{1}{4}\int (9x^4 - 6x^2 + 1) dx =$ $\frac{1}{\pi}\left(\frac{9}{5}x^5-2x^3+x\right)\Big|^2=\frac{1}{5}$ 1) = 15 sent + 10 cos1 - 35 Praca Pm (x) dx 0-1 $(x^2-1)^n$, $(x^2-1)^m$, $(x^2-1)^m$ $\overline{I} = \int ((x^2 - 1)^n) \frac{(n)}{x} \cdot ((x^2 - 1)^m) \frac{(m)}{x} dx$ Dox - u, rono T = 0. $T = (5c^2 - 1)^m)(m-1)(5c^2 - 1)^m (n) 11$

 $-\int ((x^{2}-1)^{m})^{(m-1)} ((x^{2}-1)^{n})^{(n+1)} dx =$ $= ((x^{2}-1)^{m})^{(m-1)}(x^{2}-1)^{n})^{(n+1)}dx =$ M.R. ((x2-1) m) (m-1) = 0, be now x = ±1, mr. x=+1 - ropku (202-1) m (npu gup-u краткоеть коркей дмек. $(2 - 1)^m$ $(2 - 1)^m$ $m > n = > m + n > 2n = > ((2^2 - 1)^n) (m + n) = 0 = >$ a) Z(x) = Co(f) Po + C(f)P1 + C2(f)P2= = 1-cos1 + (3sin1-3cos1)xc+ + (15 sin 1 + 10 cos 1 - 35) 1 (322-1) $||f(x) - Z(x)||^2 = ||f(x) - Z(x)||^2 dx =$ = [(-955 + 759 sin(1) +245 sin(2)+657cos(1)+ + 33 cos(2)) => 1/2(x)-2(x)11=0,517732