WSI

Ćwiczenie 3

Prowadzący: mgr inż. Mikołaj Markiewicz

Wykonał: Jan Kaniuka

Numer indeksu: 303762

Treść zadania – dwuosobowe gry deterministyczne

Zaimplementować grę w kółko i krzyżyk na planszy 3x3 (choć warto NxM) z użyciem <u>algorytmu Minimax</u> oraz przycinania α - β . Grać powinny ze sobą dwa AI z ustawianymi oddzielnie parametrami:

- głębokość przeszukiwania D,
- czy włączone przycinanie,
- czy losuje swój ruch (przeprowadzić taką rozgrywkę: AI vs AI-losujący swój ruch).

Uruchomić program wielokrotnie dla różnych konfiguracji zbierając wyniki:

- liczba przeszukanych stanów gry każdego z graczy
- liczba remisów, zwycięstw/porażek gracza nr. 1

Raport z przeprowadzonych eksperymentów (konfiguracje uruchamiano n=10 razy)

(strzałki pokazują spadek liczby przeszukanych stanów pomiędzy konfiguracjami o tej samej głębokości przeszukiwania, ale po włączeniu przycinania α-β)

Konfiguracja CPU1 vs. CPU2	Liczba przeszukanych stanów gry gracza 1	Liczba przeszukanych stanów gry gracza 2	Liczba zwycięstw/remisów gracza 1
(D=9, ab=False) vs (D=9,ab=False)	81320	62596	0/10
(D=9, ab=False) vs (D=9,ab=True)	88158	40568	0/10
(D=9, ab=False) vs (D=3,ab=False)	78144	5721	10/0
(D=3, ab=False) vs (D=9,ab=True)	3554	38345	0/8
(D=3, ab=False) vs (D=3,ab=False)	3506	5860	5/0
(D=3, ab=False) vs (D=3,ab=True)	3539	1741	5/0
(D=1, ab=False) vs (D=0,ab=False)	166	0	10/0

Komentarz do wyników z tabeli, obserwacje oraz wnioski:

- Przycinanie α - β nie wpływa na wybór optymalnego ruchu, ma wpływ jedynie na liczbę sprawdzonych stanów w drzewie gry. Liczba stanów rzeczywiście ulegała zmniejszeniu.
- Jeżeli oba AI są "równie mądre" (ta sama głębokość przeszukiwania) to szanse na wygraną rozkładają się po równo między graczy.
- Gra *AI* vs. *AI* z maksymalną głębokością przeszukiwania zawsze będzie nierozstrzygnięta. Każdy ruch jest optymalny "globalnie", co wpasowuje się w założenia algorytmu *Minimax* i prowadzi do jego prawidłowego działania.

Al vs Al-losujący swój ruch:

W tym eksperymencie nie skupiałem się już na liczbie przeszukiwanych stanów – parametrem algorytmu była jedynie głębokość przeszukiwania *AI1*, którą stopniowo zmniejszałem. Element losowy sprawił, że zaczęło dochodzić do remisów. Zmniejszanie głębokości D, skutkuje wyrównywaniem się szans między AI, a graczem *random*, co pokazuje poniższa tabela.

Głębokość D	Wygrane Al1	Przegrane AI1	! Remisy
9	95	0	5
8	85	0	15
•••	•••		
3	93	4	3
2	86	11	3
1	82	14	4
0	58	23	19

Odpowiedzi na pytania

1) Czy zaczynając zawsze tak samo (i z tymi samymi ustawieniami) przebieg rozgrywki jest deterministyczny?

Tak, przebieg rozgrywki jest deterministyczny, jeżeli AI zawsze będzie wybierać swój pierwszy ruch algorytmem *minimax*, a nie losując dowolne miejsce na początkowo pustej planszy.

2) Czy można wygrać z komputerem? Jeżeli tak to kiedy?

Tak, można wygrać z komputerem, jeżeli głębokość przeszukiwania nie jest zbyt duża. Człowiekowi jest trudniej "przeszukać w głowie" rozrośnięte drzewo gry i wybrać optymalny ruch w stosunkowo krótkim czasie. Nasze decyzje na ogół nie będą optymalne w dalszej perspektywie gry, co pogorszy jakość działania algorytmu AI.

3) Jeżeli wiemy, że przegramy/zremisujemy (nie wygramy) to czy taka gra może sprawiać przyjemność?

Tak, taka gra jak najbardziej może sprawiać nam dużo przyjemności − widzimy, że algorytm który zaimplementowaliśmy działa poprawnie, co daje programiście sporą satysfakcję ⑤.