ANALYSIS OF EEG-BASED DEPRESSION BIOMARKERS

USING MACHINE LEARNING

MIROSLAV KOVÁŘ

FJFI

MARCH 5, 2019

PROBLEM STATEMENT AND APPROACH

DEPRESSION DIAGNOSIS AND PROGNOSIS IS EXPENSIVE

- MDD has high prevalence and impact [2, 3]
- Diagnosis requires time of trained professionals [3]
- EEG may be
 - accessible diagnosis-aid tool
 - also effective at prognosis? studied very little!

Research into effective analysis techniques is ongoing...

OUR GOALS

2 | 14

OUR DATASET

Relatively large:

- 133 patients
- EEG recordings
 - ▶ 19 channels
 - ▶ 250 Hz or 1000 Hz
 - Various duration
- Metadata
 - ► Depression scores
 - Week o
 - Week 4
 - ► Age, gender, drugs

3 | 14

OUR APPROACH

OUR APPROACH

NONLINEAR ANALYSIS APPROACH

NONLINEAR MEASURES

EMBEDDING PARAMETER ESTIMATION

Parameters

- Embedding dimension
- Time delay
- Scaling regions
- **.**.

Methods

- Literature review
- Estimation algorithms (FNN, AFN, ADFD, ILD, ...)
- Statistical tests

-> automated procedure

RESULTS

Measure	Classifier	Accuracy
LLE, CD	SVM (lin.)	0.74 \pm 0.04
LLE, SE	SVM (lin.)	0.75 ± 0.10
LLE, HE	SVM (lin.)	0.73 ± 0.06
LLE, SE, DFA	SVM (lin.)	0.73 ± 0.09
CD, HD	LR	0.73 ± 0.10
LLE	SVM (lin.)	0.72 ± 0.04
CD	SVM (lin.)	0.71 ± 0.05
SE	LR	0.68 ± 0.12
HD	SVM (rbf)	0.67 ± 0.11
DFA	LR	0.67 ± 0.16
HE	LR	0.67 ± 0.17

(a) Depression

Measure	Classifier	Accuracy	
LLE, CD	SVM (lin.)	0.75 ± 0.11	
LLE, SE	SVM (lin.)	0.75 ± 0.10	
LLE	LR	0.71 ± 0.08	
CD	LR	0.67 ± 0.09	
HD	LR	0.66 ± 0.05	
SE	LR	0.66 ± 0.09	
DFA	SVM (lin.)	0.64 \pm 0.15	
HE	SVM (rbf)	0.63 ± 0.09	

(b) Remission

DEEP LEARNING APPROACH

INPUT REPRESENTATION

ARCHITECTURE DESIGN - SHALLOW

ARCHITECTURE DESIGN - DEEP

RESULTS

Lab.	Freq.	Arch.	Accuracy
DEP	$o-f_{fin}$	SHAL	0.85 ± 0.13
	4 – f _{fin}	SHAL	0.84 \pm 0.11
	$o-f_{fin}$	DEEP	0.86 ± 0.01
	4 – f _{fin}	DEEP	0.85 ± 0.02
REM	$o-f_{fin}$	SHAL	0.94 ± 0.02
	4 – f _{fin}	SHAL	0.94 ± 0.03
	$o-f_{fin}$	DEEP	0.88 ± 0.01
	4 – f _{fin}	DEEP	0.86 ± 0.02

Lab.	Freq.	Meth.	Accuracy
DEP	$o-f_{fin}$	RP	0 . 63 ± 0.02
	$4-f_{\mathrm{fin}}$	RP	0.61 ± 0.01
	$o-f_{fin}$	CS	0.59 ± 0.02
	4 – f _{fin}	CS	0.58 ± 0.01
REM	$o-f_{fin}$	RP	0.61 ± 0.03
	$4-f_{\mathrm{fin}}$	RP	0.65 ± 0.02
	$o-f_{fin}$	CS	0.55 ± 0.02
	$4-f_{fin}$	CS	0.63 ± 0.01

(a) Raw data

(b) Image-encoded data

CONCLUSION

SUMMARY

- 1. NL measures are potentially effective methods for depression diagnosis and prognosis (despite nonstationarity)
- 2. CD and LLE seem most discriminative (out of evaluated)
- FBCSP-inspired CNN models seem more effective than common models
- 4. ILD seems most effective embedding parameters estimation algorithm (out of evaluated)
- 5. RP and CS do not seem effective data encoding methods for EEG analysis

SUMMARY

Limitations

- Binary output
- Most patients in remission

NL approach

- Nonstationarity (windowing?)
- Spatially local
- Temporally global
- Inconclusive surrogate tests
- "Theoretically too ambitious"

DL approach

- Short samples
- Simple models

Future Work

- Implement application to aid treatment
- Generalization to other datasets (sample bias)
- Output depression severity measure
- Ensemble of models combining (neuroimaging) modalities
- Incorporate information about treatment details (drugs,...)

NL approach

- Compare with spatial embedding
- New (spatiotemporal) measures

DL approach

- Model interpretation
- Compare with FBCSP
- Dimensionality reduction techniques

REFERENCES

ASANGI.

ELECTRODE LOCATIONS OF INTERNATIONAL 10-20 SYSTEM FOR EEG (ELECTROENCEPHALOGRAPHY) RECORDING.

https://commons.wikimedia.org/wiki/File: 21_electrodes_of_International_10-20_system_for_ EEG.svg, 2010. [Online: accessed 18-March-2019].

SEBASTIAN OLBRICH AND MARTIJN ARNS.

EEG BIOMARKERS IN MAJOR DEPRESSIVE DISORDER: DISCRIMINATIVE POWER AND PREDICTION OF TREATMENT RESPONSE.

International Review of Psychiatry, 25(5):604-618, 2013.

WORLD HEATLH ORGANIZATION.

DEPRESSION.

http://www.who.int/en/news-room/fact-sheets/
detail/depression, 2018.

[Online; accessed 18-August-2018].

BACKUP SLIDES