

Mathematical Foundations of Computer Science

Graphs and Linear Algebra

Announcements

• In question 1 part (ii), assume $k \ge 2$.

• In question 4, Δ = maximum degree of a vertex in the graph.

Planar Graphs

A graph is planar if it can be drawn (represented) on the plane without any crossing edges (no edges intersect).

Which are planar?

Faces

An embedding of planar graph splits the plane into disjoint faces

Face: A region bounded by a set of edges, vertices in embedding

- When $n \ge 4$, each face borders at least 3 edges.
- One "outside" face (do not forget the outside face).

Euler's Formula

Thm. If G is a connected planar graph G with vertex set V (size n), edges E (m of them) and faces F (f of them), then |V| - |E| + |F| = n - m + f = 2

Recall total (2) possible edges
$$3n-6=o(\binom{n}{2})$$

Average degree of a planar graph ≤ 6

Thm. In a connected planar graph G(V, E) on $n \ge 4$ vertices, the number of edges $m \le 3n - 6$.

Proof. By Euler's formula, n-2=m-f.

Want to bound f in terms of m. Count #(edge,face) incidences

Every face has how many edges? ≥ 3

How many faces can an edge belong to? <2

$$3f \le \# \text{edge-face incidences} \le 2m \Rightarrow 3f \le 2m =) f \le 2m$$

$$n-2 = m-f \ge m-\frac{2m}{3} = \frac{1}{3}m =) \quad 3(n-2) \ge m$$

[Aside] Non planar graphs

How do you say when a graph is non-planar? If m = 3n-6

It clearly should not contain K_5 and $K_{3,3}$

Thm [Wagner]. Any graph that does not "contain" K_5 and $K_{3,3}$ is a planar graph.

"Contain": graph minor.

Linear algebra and graphs

Which Vertex is most important?

Intro to Linear algebra

Vectors and Inner Products

Vector $x \in \mathbb{R}^n$ usually refers to a n-dimensional column vector $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

Inner product: $x, y \in \mathbb{R}^n \Rightarrow \langle x, y \rangle = \sum_{\ell=1}^n x_\ell y_\ell$

$$\langle x, y \rangle = x^T y = (x_1, x_2, \dots, x_n) \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_n \end{cases} = \sum_{\ell=1}^n x_\ell y_\ell$$

Inner products give geometry!

Vector $x \in \mathbb{R}^n$ usually refers to a n-dimensional column vector

Inner product:
$$x, y \in \mathbb{R}^n \Rightarrow \langle x, y \rangle = \sum_{\ell=1}^n x_\ell y_\ell$$

 $x, y \in \mathbb{R}^n$ are orthogonal iff $\langle x, y \rangle = 0$

Length of
$$x \in \mathbb{R}^n$$
 is $\sqrt{\langle x, x \rangle}$

$$\left\langle \binom{1}{1}, \binom{1}{1} \right\rangle = |\cdot|+|\cdot(-1)|$$

$$= 0$$

Inner Products vs Rank-1 matrices

Inner product:
$$x, y \in \mathbb{R}^n \Rightarrow \langle x, y \rangle = \sum_{\ell=1}^n x_\ell y_\ell$$

$$\langle x, y \rangle = x^T y = (x_1, x_2, \dots, x_n)_{1 \times n} \quad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{n \times 1} = \sum_{\ell=1}^n x_\ell y_\ell$$

$$x, y \in \mathbb{R}^n \text{ are orthogonal iff} \quad \langle x, y \rangle = 0$$

$$y_1 \mapsto x_\ell y_\ell$$

$$x, y \in \mathbb{R}^n \text{ are orthogonal iff} \quad \langle x, y \rangle = 0$$

$$y_1 \mapsto x_\ell y_\ell$$
Outer product or Rank-1 matrix product:
$$xy^T = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} \quad (y_1, y_2, \dots, y_n)_{1 \times n}$$

$$xy^T = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} \quad (y_1, y_2, \dots, y_n)_{1 \times n}$$

$$xy^T = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{n \times 1} \quad (y_1, y_2, \dots, y_n)_{1 \times n}$$

Mij is in the entry of M Matrix vector multiplication

Matrix vector multiplication: $M \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \Rightarrow Mx \in \mathbb{R}^m$ The ith entry of Mx is $Z M_{ij} X_{j}$

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} m_{11}x_1 + m_{12}x_2 + m_{13}x_3 \\ m_{21}x_1 + m_{22}x_2 + m_{23}x_3 \\ m_{31}x_1 + m_{32}x_2 + m_{33}x_3 \end{pmatrix}$$

Matrix vector as linear maps

• Matrix vector multiplication: $M \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \Rightarrow Mx \in \mathbb{R}^m$

$$\begin{pmatrix} 1 & -2 \\ 1 & l \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot l + (-2)(1) \\ 1 \cdot l + 1 \cdot l \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 \\ 1 & l \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \cdot l + (-2)(-1) \\ 1 \cdot l + 1 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

Matrices multiplication

- Matrix vector multiplication: $M \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \Rightarrow Mx \in \mathbb{R}^m$
- Matrix-matrix multiplication: $C_{m \times p} = A_{m \times n} \times B_{n \times p}$

Matrices multiplication

- Matrix vector multiplication: $M \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \Rightarrow Mx \in \mathbb{R}^m$
- Matrix-matrix multiplication: $C_{n\times n} = A_{n\times n} \times B_{n\times n}$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

$$C_{ij} = \sum_{\ell=1}^{n} A(i,\ell) \times B(\ell,j) = \langle A_{i}^{T}, \beta_{j} \rangle$$

$$C_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{23} \qquad \text{ith fow of } A \\ \beta_{j} \text{ is jth column}$$
of β

Matrices: A Refresher

- Matrix vector multiplication: $M \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \Rightarrow Mx \in \mathbb{R}^m$
- Matrix-matrix multiplication: $C_{n \times n} = A_{n \times n} \times B_{n \times n}$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

$$A[B_1 \ B_2 \ B_3] = [AB_1 \ AB_2 \ AB_3]$$

Transpose

• Transpose of a matrix: Given $M \in \mathbb{R}^{m \times n}$, the transpose

 $M^T \in \mathbb{R}^{n \times m}$ has i, j entry equal to the j, i entry of M

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^T = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

• M is symmetric if $M = M^T$