Gradient similarity in antigemination: evidence from allomorph selection

Aljoša Milenković aljosamilenkovic@g.harvard.edu

OCP 22, Universiteit van Amsterdam February 05, 2025

Antigemination (AG)

avoidance of adjacent identical consonants

- PROCEDURAL: restrictions on application of phonological processes (McCarthy 1986; Borowsky 1987; Yip 1988)
- 2 STATIC/PHONOTACTIC: domain-internal cooccurrence restrictions (Pierrehumbert 1993; Frisch et al. 2004)

This talk: Type 1, procedural AG

Near identity avoidance

- AG not limited to fully identical consonants (1)
- sufficiently similar nonidentical consonants also avoided (2)

English:

- (1) r-epenthesis to break up /d-d/: /flad-d/ \rightarrow [fladid] flooded
- (2) also in /t-d/ (not a geminate): $/\text{pet-d}/ \rightarrow [\text{petid}] \ petted$

Baković 2005: AG and assimilation

- features "ignored" for determination of identity **trigger** assimilation (Baković, 2005, 2006, 2017; Pajak and Baković, 2010)
- LOOKAHEAD EFFECT: AG targets sequences that could become a geminate by assimilation (Adler and Zymet, 2021)
- Formal OT (Prince and Smolensky, 2004) account: partial identity avoidance as a joint effect of NoGem and Agree constraints (Baković, 2005, 2006)

Near identity AG: NoGem-Agree interaction

Works well in strict-ranking OT:

(3)	/pɛt-d/			<i>\$</i> 0€	EM ACR	DEP.	DEN	, voi
	a.		petd		*!			
	b.		pett	*!	l		*	
	c.	r@F	petid		 	*		

MaxEnt HG: original vs. derived geminates

Baković (2005)'s model in MaxEnt HG (Goldwater and Johnson, 2003; Hayes and Wilson, 2008)

(4)	AO BERT DER DER DER CONTROL								
] 40	>C,	1 DE	1000			
			2	2	1	1	\mathscr{H}	$e^{\mathscr{H}}$	p
	/dd/	a. dd	-1				-2	.14	.27
		b. did			-1		-1	.37	.73
	/td/	a. dd	-1			-1	-3	.05	.12
		b. tid			-1		-1	.37	.88

Prediction: greater cumulative penalty of derived compared to original geminates \rightarrow stronger avoidance

This talk

- Is this prediction a desirable one? B/C/S data suggest otherwise
- Phonologically-conditioned allomorph selection; not regular phonology
- Mobile *a*-morphemes: free variation between C# and CV# allomprphs
- (5) Mobile a-morphemes
 - a. s to:rto:m \sim sa to:rto:m 'with a cake'
 - b. k tərrpu \sim ka tərrpu 'toward the tower'
 - c. dəbrəzg ~ dəbrəzga 'good-gen.sg.m/n'
- [sa] strongly preferred over [s] before words starting with [s], [ʃ], [z], or [ʒ] (Stevanović, 1991; Barić et al., 1997)

BCS obstruent inventory

7	voiceless	р	t	k	f	S	\int	X	ts	ţſ	tç
	voiced	b	d	g		\mathbf{Z}	3			ф	dz

```
[+anterior] fricatives/affricates
[-anterior] fricatives/affricates
```

Avoidance of the [s] allomorph before [s], [f], [z], and [3]initial words in line with Baković (2005)'s theory, given that B/C/S display voicing and anteriority assimilation in sandhi

Voicing assimilation

Both word-internally and in sandhi:

(6)
$$\begin{bmatrix} -\sin \\ \alpha \text{ voi} \end{bmatrix} \rightarrow [\beta \text{ voi}] / - \begin{bmatrix} -\sin \\ \beta \text{ voi} \end{bmatrix}$$

/iz-/ 'out of, from':

- (7) a. iz-ra:diti 'work out' (izraditi)
 - b. iz rata 'from the war' $\langle iz rata \rangle$
- (8) a. is-kupiti 'gather' $\langle iskupiti \rangle$
 - b. is kutçe: 'from the house' (iz kuće)

Anteriority assimilation

Both word-internally and in sandhi:

(9)
$$\begin{bmatrix} \text{CORONAL} \\ + \text{cont} \\ + \text{ant} \end{bmatrix} \rightarrow [-\text{ ant}] / - \begin{bmatrix} \text{CORONAL} \\ - \text{ ant} \end{bmatrix}$$

/iz-/ 'out of, from':

- (10) a. if-tfupati 'pull out' $\langle i \check{s} \check{c} u p a t i \rangle$ b. if tfega 'from what' $\langle i z \check{c} e g a \rangle$
- (11) a. iz-dzikńati 'grow' (iždžikljati)
 - b. iz dzepa 'out of the pocket' $\langle iz\ d\check{z}epa \rangle$

Extracted bigrams with s/sa and the following word from the {bs,hr,sr}WaC corpora (Ljubešić and Klubička, 2014):

Bosnian: bsWacCroatian: hrWaCSerbian: srWaC

	N bigrams	N unique lemmas
bsWaC	1,749,389	77,536
hrWac	8,420,018	216,275
srWaC	3,301,108	117,278

All corpora lemmatized and morphosyntactically tagged

Corpus survey

Corpus search excluded (via regex):

- **1 acronyms** (discrepancy between spelling and pronunciation):
 - (12) $\langle s \text{ SAD-om} \rangle$ [s $\underline{\varepsilon} s \text{ a d} \varepsilon s s m$] 'with the USA'
- 2 spelling errors (diacritic omission)
 - (13) $\langle s \text{ cijim} \rangle$ [$\int f \text{ fijim}$] 'with whose'
- **3** lexicalized expressions (invariable realization, not governed by the phonological grammar):
 - (14) [sa mnzm] *[s mnzm] 'with me'

Segmental effects on [s]/[sa] realization

- s more disfavored before **voiced obstruents** than elsewhere:
 - (15) AGREE_{voi} Assess a violation for every pair of obstruents that disagree in voice.
- s more disfavored before **posterior coronals** than elsewhere:
 - (16)AGREEant Assess a violation for every pair of coronal obstruents that disagree in anteriority.
- AG: [s] avoided before $\{s, z, \int, 3\}$:
 - (17) NoGeminate Assess a violation for adjacent identical consonants.

violation profile	environment	[s] violates
baseline		no violation
	$=$ #{p, t, k, 1, x, B},	
voice mismatch	_#{b, d, g}	Agree _{voi}
anteriority mismatch	_#{tʃ, tɕ}	AGREEant
geminate	_#s	NoGem

Results: independent constraint contributions

Figure 1: Proportion of s/sa (y-axis) by violation profile (x-axis).

Logistic regression analysis

cbind(sa, s) ~ agree_voi * agree_ant * no_gem

			atian			$\underline{\operatorname{Sert}}$	oian_	
	β	$_{ m SE}$	z	p	β	$_{ m SE}$	z	p
(Intercept)	-1.34	.00	-1355	.000	1.52	.00	907	.000
Agree _{voi} :1	.17	.00	61	.000	.44	.01	77	.000
AGREE _{ant} :1	.62	.01	83	.000	.72	.02	40	.000
NoGem:1	5.37	.01	698	.000	4.25	.03	150	.000
AGREE _{voi} :1* AGREE _{ant} :1	2	.03	-6	.000	61	.05	-13	.000
AGREE _{voi} :1* NoGem:1	-1.1	.01	-80	.000	95	.06	-17	.000
AGREE _{ant} :1* NoGem:1	-1.8	.02	-83	.000	-2.03	.07	-29	.000
AGREE _{voi} :1* AGREE _{ant} :1* NOGEM:1	.66	.04	15	.000	87	.11	-8	.000

See Appendix 1 for more details & data.

Aljoša Milenković aljosamilenkovic@g.harvard.edu

Interpretation of regression results

Main effects:

- positive main effect of AGREE_{voi} → likelihood of [sa] increases in AGREE_{voi}-violating environments
- positive main effect of AGREE_{ant} → likelihood of [sa] increases in AGREE_{ant}-violating environments
- strong positive main effect of NoGem \rightarrow AG: likelihood of [sa] increases substantially before [s] (full identity pair)

Interaction effects \rightarrow partial identity pairs:

- negative interaction effect of AGREE_{voi} and NoGEM \rightarrow likelihood of [sa] before [z] and [3] drops relative to [s#s]
- negative interaction effect of Agree_{ant} and NoGem \rightarrow likelihood of [sa] before [f] and [3] drops relative to [s#s]

Degree of feature overlap \Leftrightarrow strength of avoidance

- SUBLINEARITY (at the level of data): negative interaction effects between both AGREE constraints and NoGEM
 - (18) Avoidance scale (strongest to weakest) $s\#s > s\#z > s\#\int > s\#3$
- additional verification: logistic regression with stepwise difference coded comparisons (only Croatian reported).

$ext{realization} \sim ext{context_recoded}$

	β	SE	z	p
(Intercept) [s#s] ("0")	3.1	.01	453.4	.000***
[s#z] ("1") vs. [s#s] ("0")	93	.01	-69.2	.000***
[s#ʃ] ("2") vs. [s#z] ("1")	22	.02	-10.4	.000***
[s#3] ("3") vs. [s#ʃ] ("2")	47	.02	-19.95	.000***

MaxEnt model (Croatian): overall model fit

Aljoša Milenković aljosamilenkovic@g.harvard.edu

Zooming in: $s\sim sa\#\{s, z, \int, 3\}$

(b) Predicted probability of [sa]

Flattening (and slight reversal) in the MaxEnt model (!)

Conclusion

- Implemented in MaxEnt HG, Baković (2005)'s constraint model predicts more robust avoidance of derived geminates compared to original geminates, or no difference
- Impossible pattern: original geminates avoided more robustly than derived ones; attested in BCS
- **generalization**: degree of avoidance gradiently proportional to feature overlap:
 - \blacksquare full overlap \rightarrow strongest avoidance
 - \blacksquare more feature mismatches \rightarrow less robust avoidance

Conclusion

- MaxEnt model employing constraints à la Baković (2005):
 - overestimates the strength of avoidance in partial identity pairs
 - 2 slightly underestimates the strength of avoidance in the s#s pair
- * not problematic if phonologically-conditioned allomorph selection is external to phonology proper

Acknowledgments

- Special thanks to Michael Becker and Kevin Ryan for continuous support
- This project has been partly funded from the Harvard linguistics research fund

- ▲ Data & analysis script
- ▲ MaxEnt model files

References I

- Adler, J. and Zymet, J. (2021). Irreducible parallelism in phonology. NLLT, 39(2):367-403.
- Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge university press.
- Baković, E. (2005). Antigemination, assimilation and the determination of identity. Phonology, 22(3):279-315.
- Baković, E. (2006). Partial identity avoidance as cooperative interaction. WECOL 2004.
- Baković, E. (2017). Apparent 'sufficiently similar' degementation in catalan is due to coalescence. Proceedings of the Linguistic Society of America, pages 1-9.
- Barić, E., Lončarić, M., Malić, D., Pavešić, S., Peti, M., Zečevic, V., and Znika, M. (1997). Hrvatska gramatika. Školska knjiga.
- Borowsky, T. (1987). Antigemination in english phonology. *Linguistic* Inquiry, 18(4):671–678.

References

References II

- Breiss, C. (2020). Constraint cumulativity in phonotactics: Evidence from artificial grammar learning studies. *Phonology*, 37(4):551–576.
- Flemming, E. (2021). Comparing maxent and noisy harmonic grammar. Glossa, 6.
- Frisch, S. A., Pierrehumbert, J. B., and Broe, M. B. (2004). Similarity avoidance and the ocp. Natural language & linguistic theory. 22(1):179–228.
- Goldwater, S. and Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. In J. Spenader, A. E. and Östen Dahl, editors, Proceedings of the Stockholm workshop on Variation within Optimality Theory, pages 111–120.
- Hayes, B. (2022). Deriving the wug-shaped curve: A criterion for assessing formal theories of linguistic variation. Annual Review of Linguistics, 8(1):473-494.
- Hayes, B. and Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. LI, 39(3):379–440.

References III

- Ljubešić, N. and Klubička, F. (2014). {bs, hr, sr} wac-web corpora of bosnian, croatian and serbian. In Proceedings of the 9th web as corpus workshop (WaC-9), pages 29–35.
- Mayer, C., Tan, A., and Zuraw, K. R. (2024). Introducing maxent. ot: an r package for maximum entropy constraint grammars. Phonological Data and Analysis, 6(4):1-44.
- McCarthy, J. (1986). OCP effects: Gemination and antigemination. LI, 17(2):207-263.
- Pajak, B. and Baković, E. (2010). Assimilation, antigemination, and contingent optionality: the phonology of monoconsonantal proclitics in polish. Natural Language & Linguistic Theory, 28:643–680.
- Pierrehumbert, J. (1993). Dissimilarity in the arabic verbal roots. In Proceedings of the Northeast Linguistics Society, volume 23, pages 367 - 381.
- Prince, A. and Smolensky, P. (1993/2004). Optimality Theory: Constraint Interaction in Generative Grammar. Blackwell. Technical Report, Rutgers University and University of Colorado at Boulder, 1993. Revised version Blackwell, 2004.

References

- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Smith, B. and Pater, J. (2020). French schwa and gradient cumulativity. Glossa: a journal of general linguistics, 5(1).
- Stevanović, M. (1991). Savremeni srpskohrvatski jezik:(gramatički sistemi i književnojezička norma).. Uvod, fonetika, morfologija, volume 1. Naučna knjiga.
- Yip, M. (1988). The obligatory contour principle and phonological rules: A loss of identity. Linguistic inquiry, 19(1):65–100.
- Zuraw, K. and Hayes, B. (2017). Intersecting constraint families: an argument for Harmonic Grammar. Lg, 93(3):497–548.

Regression model: data set

Number of instances of each allomorph by the following lemma:

^	lemma +	context [‡]	sa [‡]	s [‡]	log_frequency
87	pun	р	1754	7172	9.096724
88	netko	n	4053	4837	9.092682
89	voda	v	1846	6939	9.080801
90	lakoća	I	764	7851	9.061260
91	slika	S	8340	168	9.048762
92	broj	b	2124	6263	9.034438
93	supruga	S	8251	40	9.022926
94	razlog	r	825	7445	9.020390
95	nizak	n	1436	6688	9.002578
96	ime	i	1811	6310	9.002209
97	ponos	р	831	7200	8.991064
98	međunarodni	m	1040	6943	8.985070

Regression model: variables

Logistic regression implemented in R (R Core Team, 2021)

Dependent variable: counts of each allomorph's realization aggregated by lemma: cbind(sa,s) (see Baayen, 2008, 197 for the method)

Fixed predictors:

- Agree_voi: coded "1" for voicing mismatch between [s] and the following sound, "0" elsewhere;
- 2 Agree_ant: "1" for anteriority mismatch between [s] and the following sound, "0" elsewhere
- NoGem: "1" if the following sound is [s], [z], [∫], or [ʒ], "0" elsewhere

and interactions between the fixed predictors

Data

Available in a GitHub repository

Background

- MaxEnt HG shown to be superior to other constraint-based frameworks that accommodate variation (Zuraw and Hayes, 2017; Breiss, 2020; Smith and Pater, 2020; Flemming, 2021; Hayes, 2022)
- Only Croatian data
- MaxEnt models for the Bosnian and Serbian data will be provided in the foreseeable future
- Implemented in R, using the maxent.ot package (Mayer et al., 2024)

Constraints #1

(19) *Mobile a
Assess a violation for every occurrence of mobile a.

Rationale: strong synchronic dispreference for mobile a: mobile a-allomorphs strongly dispreferred in all three languages, virtually unavailable in modern language in prepositions that are larger than a single consonant (e.g., $nad \sim nada$ 'above' is almost invariably realized as [nad])

(20) HAVE-μ Assess a violation for every word (accentful or clitic) that contains no moras.

Function: to penalize vowel-less realizations [s]/[k]

Constraints #2

(21) Nogeminate

Assess a violation for adjacent identical consonants.

Function: penalizes true geminates: [s#s], but not e.g. [s#f]

(22) Agree_{voi}

Assess a violation for every pair of obstruents that disagree in voice.

Function: triggers voicing assimilation

(23) Ident_{voi}

Assess a violation for every output segment which has a different voicing specification from its input correspondent.

Function: opposes anteriority assimilation

Constraints #3

(24) Agree_{ant}

Assess a violation for every pair of coronal obstruents that disagree in anteriority.

Function: triggers anteriority assimilation

(25) IDENT_{ant}

Assess a violation for every output segment which has a different anteriority specification from its input correspondent.

Function: opposes anteriority assimilation

Learned weights

constraint	learned weight
*Mobile a	4.07
$\mathrm{Have}\mu$	2.75
NoGem	4.92
Agree _{voi}	21.83
Ident _{voi}	.11
AGREEant	16.05
AGREEvoi	.28

Data

Simulation files & analysis script available in a GitHub repository