8 Sorting in Linear Time

We have now introduced several algorithms that can sort n numbers in $O(n \lg n)$ time. Merge sort and heapsort achieve this upper bound in the worst case; quicksort achieves it on average. Moreover, for each of these algorithms, we can produce a sequence of n input numbers that causes the algorithm to run in $\Omega(n \lg n)$ time.

These algorithms share an interesting property: the sorted order they determine is based only on comparisons between the input elements. We call such sorting algorithms comparison sorts. All the sorting algorithms introduced thus far are comparison sorts.

In Section 8.1, we shall prove that any comparison sort must make $\Omega(n \lg n)$ comparisons in the worst case to sort n elements. Thus, merge sort and heapsort are asymptotically optimal, and no comparison sort exists that is faster by more than a constant factor.

Sections 8.2, 8.3, and 8.4 examine three sorting algorithms—counting sort, radix sort, and bucket sort—that run in linear time. Of course, these algorithms use operations other than comparisons to determine the sorted order. Consequently, the $\Omega(n \lg n)$ lower bound does not apply to them.

8.1 Lower bounds for sorting

In a comparison sort, we use only comparisons between elements to gain order information about an input sequence $\langle a_1, a_2, \ldots, a_n \rangle$. That is, given two elements a_i and a_j , we perform one of the tests $a_i < a_j$, $a_i \le a_j$, $a_i = a_j$, $a_i \ge a_j$, or $a_i > a_j$ to determine their relative order. We may not inspect the values of the elements or gain order information about them in any other way.

In this section, we assume without loss of generality that all the input elements are distinct. Given this assumption, comparisons of the form $a_i = a_j$ are useless, so we can assume that no comparisons of this form are made. We also note that the comparisons $a_i \le a_i$, $a_i \ge a_j$, $a_i > a_j$, and $a_i < a_j$ are all equivalent in that

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node annotated by i:j indicates a comparison between a_i and a_j . A leaf annotated by the permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$; the permutation $\langle 3, 1, 2 \rangle$ at the leaf indicates that the sorted ordering is $a_3 = 5 \leq a_1 = 6 \leq a_2 = 8$. There are 3! = 6 possible permutations of the input elements, and so the decision tree must have at least 6 leaves.

they yield identical information about the relative order of a_i and a_j . We therefore assume that all comparisons have the form $a_i \le a_j$.

The decision-tree model

We can view comparison sorts abstractly in terms of decision trees. A *decision tree* is a full binary tree that represents the comparisons between elements that are performed by a particular sorting algorithm operating on an input of a given size. Control, data movement, and all other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree corresponding to the insertion sort algorithm from Section 2.1 operating on an input sequence of three elements.

In a decision tree, we annotate each internal node by i:j for some i and j in the range $1 \le i, j \le n$, where n is the number of elements in the input sequence. We also annotate each leaf by a permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$. (See Section C.1 for background on permutations.) The execution of the sorting algorithm corresponds to tracing a simple path from the root of the decision tree down to a leaf. Each internal node indicates a comparison $a_i \le a_j$. The left subtree then dictates subsequent comparisons once we know that $a_i \le a_j$, and the right subtree dictates subsequent comparisons knowing that $a_i > a_j$. When we come to a leaf, the sorting algorithm has established the ordering $a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$. Because any correct sorting algorithm must be able to produce each permutation of its input, each of the n! permutations on n elements must appear as one of the leaves of the decision tree for a comparison sort to be correct. Furthermore, each of these leaves must be reachable from the root by a downward path corresponding to an actual

execution of the comparison sort. (We shall refer to such leaves as "reachable.") Thus, we shall consider only decision trees in which each permutation appears as a reachable leaf.

A lower bound for the worst case

The length of the longest simple path from the root of a decision tree to any of its reachable leaves represents the worst-case number of comparisons that the corresponding sorting algorithm performs. Consequently, the worst-case number of comparisons for a given comparison sort algorithm equals the height of its decision tree. A lower bound on the heights of all decision trees in which each permutation appears as a reachable leaf is therefore a lower bound on the running time of any comparison sort algorithm. The following theorem establishes such a lower bound.

Theorem 8.1

Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof From the preceding discussion, it suffices to determine the height of a decision tree in which each permutation appears as a reachable leaf. Consider a decision tree of height h with l reachable leaves corresponding to a comparison sort on n elements. Because each of the n! permutations of the input appears as some leaf, we have $n! \leq l$. Since a binary tree of height h has no more than 2^h leaves, we have

$$n! \le l \le 2^h ,$$

which, by taking logarithms, implies

```
h \ge \lg(n!) (since the lg function is monotonically increasing)
= \Omega(n \lg n) (by equation (3.19)).
```

Corollary 8.2

Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The $O(n \lg n)$ upper bounds on the running times for heapsort and merge sort match the $\Omega(n \lg n)$ worst-case lower bound from Theorem 8.1.

Exercises

8.1-1

What is the smallest possible depth of a leaf in a decision tree for a comparison sort?