EDA & Predicting Prices for Airbnb Sinem Y. Polat 31 Nov 2017

Overview

- Dataset overview & Problem Definition
- Exploratory Visualization
- The ML algorithms & Evaluation
- Conclusions

Dataset Overview & Problem Definition

Raw Data: 53,904 data points, 95 features

36,092 data points, 30 features

36,092 data points, 109 features

- Manually eliminating some redundant features (links, city, street, pictures etc.)
- Controlling for null or 0 values for the output column (price)
- Converting 'f' and 't' values to 0 and 1
- Replacing \$ signs for price columns
- ➤ Converting null values to 0. (security deposit, cleaning fee...)
- Eliminating rows including null. (bedrooms, rating...)
- Filter out outliers (1% of dataset)

 Converting text columns (amenities, locations) to individual columns to get the data ready for modeling

Features Affecting Price

- Most house prices are between \$0 and \$200 per day in London.
- Being entire home is one the most important features.

Differences between Entire Place and Private Room

accommodates

Bathroom & Bedroom Effects

Average House Prices (\$ per day)

Location Effects

(See the dynamic map on Jupyter)

Algorithms

	Decision Tree	K-Nearest Neighbours	Linear Regression
Mean Squared Error (MSE)	1478	1775	1170
Root of MSE	38	42	34
R ² Score	0.61	0.53	0.69
After optimizing modeling parameters (GridSearchCV)			
MSE	1387	1709	1170
Root of MSE	37	41	34
R ² Score	0.63	0.55	0.69
Comparison Plots		500 526 500 500 500 500 500 500 500 50	200 200 200 200 200 200 200 200 200 200

Conclusions

- Regression models are used to predict house price:
 - 70% Training
 - 15% Validation
 - 15% Test
- Model can be trained to predict house price with a RMSE \$34.
- Most important features are :
 - Location
 - Entire home
 - Some amenities (air conditioning, tv/cable tv, elevator, free parking on street)
 - o Bathroom and bedroom numbers
 - Replying requests within a day or few days
 - Number of people accommodating