REX House Discovery

Milestone 1

Weiru Chen, Nikhil Vanderklaauw, Zhenwei (Selina) Wu, Wanxi (Cecilia) Yang

Problem Statement

REX wants to improve users' experience in buying and homes.

Goal: Develop an application that serves open minded house-hunters with personalized matches for discovering their perfect home

Scope of Work

Focusing on

- Generate a user taste profile
- Utilize and improve upon REX's pre-existing tagging algorithms (NLP, CV)
- Build custom recommendation system (CF), stretch goal, Dynamic updates based on user-feedback

Not focusing on

- Application building
- UI design
- New user experience study

Note: In Milestone 1, all EDA and modeling are based on general structured data.

Team

Zhenwei Nikhil Weiru Wanxi House market EDA on csv Join house Assessor Transaction market list files list Data analysis Baseline model

Learning goals

Techniques

- Do exploratory data analysis on real-world datasets
- Learn about recommendation models
 - Content-based filtering
 - Collaborative filtering
- Integrate models into working product

Others

- Understand the most important aspects in home-selecting and real estate transactions
- Communicate with the client and understand their needs to improve their product/business

Relevant Knowledge

- Collaborative Filtering
 - Build a Recommendation Engine With Collaborative Filtering
 - (https://realpython.com/build-recommendationengine-collaborative-filtering/)

	i,	i ₂	i ₃	i ₄	i ₅
u ₁	5		4	1	
u ₂		3		3	
u ₃		2	4	4	1
u ₄	4	4	5		
u ₅	2	4		5	2

Rating Matrix

- Content-based Filtering
 - Recommendation Systems with Python:
 Content-Based Filtering
 - (<u>https://heartbeat.fritz.ai/recommender-system</u>
 <u>s-with-python-part-i-content-based-filtering-5df</u>
 <u>4940bd831</u>)

Relevant Knowledge

- Content-based Filtering with ML/DL models
 - Creating a Hybrid Content-Collaborative Movie Recommender Using Deep Learning
 - (https://towardsdatascience.com/creating-a-hybridcontent-collaborative-movie-recommender-using-d eep-learning-cc8b431618af)
- Collaborative Filtering with ML/DL models
 - How to Implement a Recommendation System with Deep Learning and PyTorch
 - (https://medium.com/coinmonks/how-to-implement -a-recommendation-system-with-deep-learning-an d-pytorch-2d40476590f9)
- Hybrid of Collaborative & Content-based Filtering with ML/DL models

Project Ideas

Step 1: Explore the datasets we have

Step 2: Create a model to link similar homes with key features

Step 3: Improve the model with real user data, NLP, and image processing

Step 4: Integrate the model

Data Available

Focus on Suffolk County (FIPS 25025) - Boston, Allston, Brighton, JP etc.

- First American Assessor data (162 features, 20k items)
 - Census of raw building data
 - Standardized across counties
- House_market_listing_property (83 features, 42k items)
 - Multiple Listing Service (MLS) + proprietary

Data Filtering Funnel

- 1. Property Type
- 2. Multiple units
- 3. Duplicate addresses
- 4. 0 Rooms

How to treat missing values?

We drop columns with more than 30% missing values. Remove all rows with no bedroom and bathroom information

For some variables, could replace "missing" with proxy columns

Frequency of NAs by Feature **Number of Features** 100 NA Percentage

Fig. Missing value histogram for table: house_market_listing_property

Exploratory Data Analysis: What kind of houses do we have in Suffolk County?

Exploratory Data Analysis: What kind of houses do we have in Suffolk County?

Home Features

Other sought after amenities:

- 33 have pools
- 99 have garages

What kind of houses do we have in Suffolk County?

Year Built & Bedroom Count

We have different levels of geo-data:

- 1. Exact-level:
 - a. Address 10 Brinton St.
 - b. Longitude, Latitude
- 2. Zip Code-level: 02119
- 3. City-level: Boston
- 4. State-level: MA

How we treat categorical features? E.g. cooling, property type.

Case study on Cooling columns:

- 1. Merge categories based on (subjective) domain knowledge
- 2. Apply one-hot encoding
 - a. User case: prefer no central AC

Baseline Model

- Data Preprocessing
 - Normalization of Features
- Model
 - Content-Based Filtering
 - Similarity Metric Cosine Similarity

Small angle Cosine Similarity ≈ 1 Near perpendicular Cosine Similarity ≈ 0 Opposite directions Cosine Similarity ≈ -0.8

Use Case Validation: What homes are similar to 56683068?

(cc_list_id	original_list_date	current_list_price	current_status
1	56683068	2020-09-04	474900.0	4
0	145525704	2020-07-07	474900.0	4
5405	56683877	2020-02-26	449900.0	6
5404	137981366	2020-04-17	449900.0	1
3619	56683070	2020-02-07	469900.0	6

144 Orvis Rd (1954) - 1486 sqft 145525704 56683877

34 Grand View Ave (1960) - 1638 sqft 56683877 137981366

134 Orvis Rd (1950) - 1080 sqft 56683070

Future Work

- Improve the baseline model with information in text and images
- Explore user data from REX website

- Use user data to improve and validate our recommendation model
- Potential user testing using AWS Mechanical Turk (suggested by Andy)
- Integrate our model into REX's current system

Project Timeline

Project Setting + M1

- Understand the features in selecting an ideal house
- Define the top k primary features that affect customer house selection

M2: advanced model

- Develop a CF model that can recommend housing using features that can be extracted from REX's current models.
- Update the model using feedback from the customer.

M3: build our model

- Extract our own features: image processing and NLP
- Add in new features to the CF model from M2 (hopes an improvement quality)
- [Stretch Goal] If time permit, plan for model deployment with REX

M3: wrap-up + Project Summary

- Offer final deliveries
- Prepare final report and presentations
- Collect feedbacks from REX
- Code review