Astrokurz 2023 - Seminární práce - Michal Struna

April 7, 2023

1 Zadání

Systém dvou hvězd hlavní posloupnosti s oběžnou drahou v rovině kolmé k pozorovateli je pozorován relativně k primární složce. Ta se tedy nachází v ohnisku oběžné dráhy sekundární složky. Hlavní poloosa této dráhy je pozorována pod úhlem $\alpha=4.5$ " a vedlejší poloosa b pod úhlem $\beta=3.5$ ". Relativní magnituda primární složky je $M_{r1}=3.9$ a sekundární složky $M_{r2}=5.3$. Sekundární složka urazí za 11 let trajektorii vyznačenou na obrázku v zadani.pdf.

Cílem je spočítat (i) oběžnou periodu soustavy T, (ii) vzdálenost soustavy d, (iii) absolutní magnitudu M každé ze složek a (iv) hmotnost m každé ze složek za pomocí metody dynamické paralaxy.

2 Výsledek

Tabulka 1: Vypracované otázky ze zadání:

#	Veličina	Primární složka	Sekundární složka
i	Oběžná perioda T [rok]	95.6	95.6
ii	Vzdálenost od pozorovatele d [pc]	23.1	23.1
iii	Absolutní magnituda M	5.27	6.67
iv	Hmotnost m [m Slunce]	0.89	0.62

3 Postup vypracování

Seminární práce byla vypracována v programovacím jazyce *Python* s využitím software *Jupyter Notebook*. Ten umožňuje zdrojový kód rozdělit do buněk, jež lze spouštět nezávisle na sobě a dokumentovat je ve značkovacím jazyce *Markdown* a *LaTeX*. Jupyter Notebook je přiložen pod názvem *sem.ipynb* (ten identický je ale i vyexportován v PDF jako tento soubor). Surový zdrojový kód pak v souboru *sem.py*.

Tabulka 2: Přiložené soubory a jejich popis:

Přiložený soubor	Popis
sem.pdf	Text práce a dokumentace zdrojového kódu
sem.ipynb	Jupyter Notebook se zdrojovým kódem
sem.py	Surový zdrojový kód
zadani.pdf	Původní zadání práce

3.1 Vstupní údaje

Ze všeho nejdřív si do proměnných uložíme vstupní údaje ze zadání jakožto i všechny potřebné fyzikální a matematické konstanty.

```
[]: import matplotlib.pyplot as plt
    from math import pi, sqrt, acos, log, tan
    G = 6.6742e-11 \# Gravitační konstanta [m^3/s^2/kg]
    m_s = 1.989e30 # Hmotnost Slunce [kg]
    M_s = 4.83 # Absolutní magnituda Slunce
    lum_s = 3.846e26
                      # Zářivý výkon Slunce [W]
    PC_TO_AU = 206265 # Převod parsecu na au
    RAD_TO_S = 206265 # Převod radiánu na vteřiny
    AU_TO_M = 1.496e+11  # Převod au na metry
    Y_TO_S = 31556926 # Převod roku na sekundy
    M_r1 = 3.9 # Relativní magnituda primární složky
    M_r2 = 5.3 # Relativní magnituda sekundární složky
    alpha = 4.5 / RAD_TO_S # Velká poloosy dráhy [rad]
    beta = 3.4 / RAD_TO_S # Malá poloosy dráhy [rad]
    T_1 = 11 * Y_TO_S # Část periody sekundární složky [s]
```

3.2 Výpočet oběžné periody soustavy

Nejprve spočítejme absolutní excentricitu dráhy h z hlavní a vedlejší poloosy.

$$h = \sqrt{\alpha^2 - \beta^2}$$

```
[]: h = sqrt(alpha**2 - beta**2) # Absolutní excentricita dráhy [°]
h
```

[]: 1.4291715000590186e-05

Poté využijme skutečnosti, že sekundární složce trvalo 11 let, než její průvodič opsal plochu S_1 danou vztahem mezi absolutní excentricitou h a velkou poloosou a.

$$S_1 = \alpha\beta \left(\arccos\frac{h}{\alpha} - \frac{h}{\alpha^2}\sqrt{\alpha^2 - h^2}\right)$$

```
[]: S_1 = alpha * beta * (acos(h / alpha) - (h / alpha**2) * sqrt(alpha**2 - → h**2)) # Obsah plochy opsané průvodičem sekundární složky za 11 let [° ^2] S_1
```

[]: 1.300192002539296e-10

Následně můžeme spočítat plochu celé oběžné dráhy S.

$$S = \pi \alpha \beta$$

[]: 1.1297704760396395e-09

Protože z 2. Keplerova zákona víme, že plochy opsané průvodičem tělesa jsou za stejný čas stejně velké, přes trojčlenku vypočítáme oběžnou periodu soustavy.

$$T = \frac{S}{S_1} T_1$$

[]: 95.5818464670216

Oběžná perioda soustavy je T = 95.6 let.

3.3 Výpočet vzdálenosti soustavy

Nejdříve předpokládejme, že každá složka má hmotnost jednoho Slunce. Celá soustava bude mít tedy hmotnost dvou Sluncí.

Z 3. Keplerova zákona pak můžeme vypočítat velkou poloosu a.

$$\frac{a^3}{T^2} = \frac{G(m_1 + m_2)}{4\pi^2} \implies a = \sqrt[3]{\frac{T^2 G(m_1 + m_2)}{4\pi^2}}$$

[]: 26.340048139775057

To znamená, že pozorujeme vzdálenost 26.3 au pod úhlem 4.5". Goniometrickým vztahem můžeme dojít k výpočtu vzdálenosti d od pozorovatele.

$$d = \frac{a}{\tan \alpha}$$

```
[]: calc_distance = lambda: a / tan(alpha)
d = calc_distance() # Vzdálenost soustavy od pozorovatele [m]
d / AU_TO_M / PC_TO_AU
```

[]: 5.853344030132464

Vzdálenost soustavy od pozorovatele je d = 5.9 pc.

3.4 Výpočet absolutní magnitudy

Pro výpočet absolutní magnitudy M každé ze složek využijeme vztahu mezi absolutní magnitudou, relativní magnitudou M_r a vzdáleností od pozorovatele d.

$$M = M_r + 5 - 5\log d$$

[]: (5.062979747447844, 6.462979747447845)

Absolutní magnituda primární složky je M = 5.1, sekudární složky M = 6.5.

3.5 Výpočet hmotnosti

Nejdříve musíme zjistit zářivý výkon obou složek s využitím Pogsonovy rovnice.

$$M-M_s=-2.5\log\frac{L}{L_s} \implies L=L_s10^{-\frac{M-M_s}{2.5}}$$

[]: (0.8068784211605293, 0.22223277076645107)

Protože jsou obě hvězdy hlavní posloupnosti, můžeme pro odhad jejich hmotnosti využít vztah

$$L \sim m^{3.5} \implies m \sim \sqrt[3.5]{L}$$

[]: (0.9405323614061032, 0.6506894167722643)

Hmotnost primární složky je $\mathbf{m1} = \mathbf{0.94}$, té sekundární pak $\mathbf{m2} = \mathbf{0.65}$ relativně vůči Slunci.

3.6 Iterace

Dynamická paralaxa je iteračním algoritmem - zméřené kroky opakujeme stále dokola, přičemž vypočítané veličiny by měly konvergovat k nějaké hodnotě. My budeme kroky opakovat až do doby, kdy se veličiny budou lišit o méně než 1 %. Pro možnost zobrazení grafu s konvergencí všech měřených veličin budeme ukládat všechny hodnoty každé iterace do proměnné H (history).

```
[]: H = { "M_1": [M_1], "M_2": [M_2], "m_1": [m_1], "m_2": [m_2], "a": [a], "d": [a], "d":
```

Po 4 iteracích jsme došli k výsledku.

```
[]: a / AU_TO_M
```

[]: 23.988947235818326

Velká poloosa oběžné dráhy je a = 24 au.

```
[ ]: d / AU_TO_M / PC_TO_AU
```

[]: 5.330877162669417

Vzdálenost soustavy od pozorovatele je d = 5.3 pc.

```
[]: M_1, M_2
```

[]: (5.2660066231934834, 6.666006623193484)

Absolutní magnituda obou složek je M1 = 5.2 a M2 = 6.7.

```
[]: m_1 / m_s, m_2 / m_s
```

[]: (0.8916012560721098, 0.616837362660911)

Hmotnost složek je m1 = 0.89 a m2 = 0.62 relativně vůči Slunci. Jedná se tak o hvězdy o něco menší, než je Slunce.

Graf 1: Konvergence veličin v jednotlivých iteracích:

```
[]: rescale = lambda vals, x: list(map(lambda val: round(val * x, 3), vals))
     def plot(ax, name, label, both=False, scale=1):
             name1, name2 = (f''(name)_1'', f''(name)_2'') if both else (name, name)
             vals1, vals2 = rescale(H[name1], scale), rescale(H[name2], scale)
             ax.plot(vals1)
             ax.set_xlabel("Iterace"), ax.set_ylabel(label), ax.grid()
             for i in range(len(vals1)):
                     ax.text(i, vals1[i], vals1[i]), ax.text(i, vals2[i], vals2[i])
             if both:
                     ax.plot(vals2)
                     ax.legend(["Primární složka", "Sekundární složka"])
     fig, axs = plt.subplots(2, 2, figsize=(10, 6))
     plot(axs[0, 0], "a", "Velká poloosa [au]", scale=1/AU_TO_M)
     plot(axs[0, 1], "d", "Vzdálenost [pc]", scale=1/PC_T0_AU/AU_T0_M)
     plot(axs[1, 0], "M", "Absolutní magnituda", both=True)
     plot(axs[1, 1], "m", "Hmotnost [m]", both=True, scale=1/m_s)
```

