# Introduction to Data Science

**DSA1101** 

Semester 1, 2018/2019 Week 4

- We have studied the *k*-nearest neighbor algorithm as an example of a classifier
- However, there is a need to evaluate the performance of the classifiers

- *k*-nearest neighbor is often used as a classifier to assign class labels to a person, item, or transaction.
- In general, for two class labels, C and  $\neg C$ , where  $\neg C$  denotes "not C," some working definitions and formulas follow:
- True Positive: Predict C, when actually C
- True Negative: Predict  $\neg C$ , when actually  $\neg C$
- False Positive: Predict C, when actually  $\neg C$
- False Negative: Predict  $\neg C$ , when actually C

- We will study the confusion matrix which is a specific table layout that allows visualization of the performance of a classifier.
- In a two-class classification, a preset threshold may be used to separate positives from negatives (e.g. we used the majority rule,  $\hat{Y} < 0.5$ , in the k-nearest neighbor example).

•

|                       |          | Predicted Class      |                     |  |
|-----------------------|----------|----------------------|---------------------|--|
|                       |          | Positive             | Negative            |  |
| Actual Class Positive |          | True Positives (TP)  |                     |  |
| ACLUAI CIASS          | Negative | False Positives (FP) | True Negatives (TN) |  |
|                       |          |                      |                     |  |

- TP and TN are the correct guesses.
- A good classifier should have large TP and TN and small (ideally zero) numbers for FP and FN.

•

|                 |          | (Predicted Class)    |                      |  |
|-----------------|----------|----------------------|----------------------|--|
|                 |          | Positive Negativ     |                      |  |
| // ctual ( lacc |          | ( /                  | False Negatives (FN) |  |
|                 | Negative | False Positives (FP) | True Negatives (TN)  |  |

Result + Predicted Answer

- A testing set of 100 emails (with their spam or non-spam label known)
- Example confusion matrix of a *k*-nearest neighbor classifier to predict if each email is spam or not

|              |          | Predicted Class |                 |       |
|--------------|----------|-----------------|-----------------|-------|
|              |          | Spam            | Non-Spam        | Total |
| Actual Class | Spam     | 3               | 8               | 11    |
| ACLUAI CIASS | Non-Spam | 2               | <mark>87</mark> | 89    |
| Total        |          | 5               | 95              | 100   |

- The accuracy (or the overall success rate) is a metric defining the rate at which a model has classified the records correctly.
- It is defined as the sum of TP and TN divided by the total number of instances:

$$\frac{TP + TN}{TP + TN + FP + FN} \times 100\%$$

- A good model should have a high accuracy score, but having a high accuracy score alone does not guarantee the model is well established.
- We will introduce more fine-grained measures better evaluate the performance of a classifier.

• The true positive rate (TPR) shows the proportion of positive instances the classifier correctly identified:

$$\mathsf{TPR} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

|                       |          | Predicted Class      |                     |  |
|-----------------------|----------|----------------------|---------------------|--|
|                       |          | Positive Negati      |                     |  |
| Actual Class Positive |          | True Positives (TP)  |                     |  |
| Actual Class          | Negative | False Positives (FP) | True Negatives (TN) |  |

- The false positive rate (FPR) shows what percent of negatives the classifier marked as positive.
- The FPR is also called the false alarm rate or the type I error rate

$$\mathsf{FPR} = \frac{\mathit{FP}}{\mathit{FP} + \mathit{TN}}$$

|              |          | Predicted Class      |                      |  |
|--------------|----------|----------------------|----------------------|--|
|              |          | Positive             | Negative             |  |
|              |          |                      | False Negatives (FN) |  |
| Actual Class | Negative | False Positives (FP) | True Negatives (TN)  |  |

- The false negative rate (FNR) shows what percent of positives the classifier marked as negatives.
- It is also known as the miss rate or type II error rate.

$$\mathsf{FNR} = \frac{\mathsf{FN}}{\mathsf{TP} + \mathsf{FN}}$$

|                       |          | Predicted Class      |                     |  |
|-----------------------|----------|----------------------|---------------------|--|
|                       |          | Positive             | Negative            |  |
| Actual Class Positive |          | True Positives (TP)  |                     |  |
| Actual Class          | Negative | False Positives (FP) | True Negatives (TN) |  |
|                       |          |                      |                     |  |

 Precision is the percentage of instances marked positive that really are positive:

$$\frac{TP}{TP + FP}$$

|               |                     | Predicted Class      |                     |  |  |
|---------------|---------------------|----------------------|---------------------|--|--|
|               |                     | Positive Negative    |                     |  |  |
| Actual ( lace | True Positives (TP) | False Negatives (FN) |                     |  |  |
|               | Negative            | False Positives (FP) | True Negatives (TN) |  |  |

- A well-performed model should have a high TPR that is ideally 1 and a low FPR and FNR that are ideally 0.
- In reality, it is rare to have TPR = 1, FPR = 0, and FNR = 0, but these measures are useful to compare the performance of multiple models that are designed for solving the same problem.
- Note that in general, the model that is more preferable may depend on the business situation.

- During the discovery phase of the data analytics lifecycle, the team should have learned from the business what kind of errors can be tolerated.
- Some business situations are more tolerant of type I errors, whereas others may be more tolerant of type II errors.

Type 1: dư thừa Type 2: thiếu sót

- Consider the example of e-mail spam filtering.
- Some people (such as busy executives) only want important e-mail in their inbox and are tolerant of having some less important e-mail end up in their spam folder as long as no spam is in their inbox.
- In this case, a higher false positive rate (FPR) or type I error can be tolerated.

- Other people may not want any important or less important e-mail to be specified as spam and are willing to have some spam in their inboxes as long as no important e-mail makes it into the spam folder.
- In this case, a higher false negative rate (FNR) or type II error can be tolerated.

- Another example involves medical screening during an infectious disease outbreak.
- The cost of having a person, who has the disease, to be instead diagnosed as disease-free is extremely high, since the disease may be highly contagious.
- Therefore, the false negative rate (FNR) or type II error needs to be low.
- A higher false positive rate (FPR) or type I error can be tolerated.

- Third example involves security screening at the airport.
- The cost of a false negative in this scenario is extremely high (not detecting a bomb being brought onto a plane could result in hundreds of deaths) whilst the cost of a false positive is relatively low (a reasonably simple further inspection)
- Therefore, a higher false positive rate (FPR) or type I error can be tolerated, in order to keep the false negative rate (FNR) or type II error low.

Accuracy = 
$$\frac{TP + TN}{TP + TN + FP + FN} \times 100\%$$
  
=  $\frac{3 + 87}{3 + 87 + 2 + 8} \times 100\% = 90\%$ 

|              |          | Predicted Class |          |       |
|--------------|----------|-----------------|----------|-------|
|              |          | Spam            | Non-Spam | Total |
| Actual Class | Spam     | 3               | 8        | 11    |
| Actual Class | Non-Spam | 2               | 87       | 89    |
| Total        |          | 5               | 95       | 100   |

$$\mathsf{TPR} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} = \frac{3}{3+8} \approx 0.273$$

|              |          | Predicted Class |          |       |
|--------------|----------|-----------------|----------|-------|
|              |          | Spam            | Non-Spam | Total |
| Actual Class | Spam     | 3               | 8        | 11    |
| ACLUAI CIASS | Non-Spam | 2               | 87       | 89    |
| Total        |          | 5               | 95       | 100   |

$$\mathsf{FPR} = \frac{\mathit{FP}}{\mathit{FP} + \mathit{TN}} = \frac{2}{2 + 87} \approx 0.022$$

|              |          | Predicted Class |          |       |
|--------------|----------|-----------------|----------|-------|
|              |          | Spam            | Non-Spam | Total |
| Actual Class | Spam     | 3               | 8        | 11    |
| Actual Class | Non-Spam | 2               | 87       | 89    |
| Total        |          | 5               | 95       | 100   |

$$FNR = \frac{FN}{TP + FN} = \frac{8}{3+8} \approx 0.727$$

|              |          | Predicted Class |          |       |
|--------------|----------|-----------------|----------|-------|
|              |          | Spam            | Non-Spam | Total |
| Actual Class | Spam     | 3               | 8        | 11    |
| Actual Class | Non-Spam | 2               | 87       | 89    |
| Total        |          | 5               | 95       | 100   |

Precision = 
$$\frac{TP}{TP + FP} = \frac{3}{3+2} = 0.6$$

|              |          | Predicted Class |          |       |
|--------------|----------|-----------------|----------|-------|
|              |          | Spam            | Non-Spam | Total |
| Actual Class | Spam     | 3               | 8        | 11    |
| ACLUAI CIASS | Non-Spam | 2               | 87       | 89    |
| Total        |          | 5               | 95       | 100   |

- We have studied a number of measures that can be used to evaluate the performance of a classifier.
- In practice, when we are presented with a dataset, how should we go about estimating these performance measures?
- A common practice is to perform **N-Fold Cross-Validation**

- The entire dataset is randomly split into N datasets of approximately equal size.
- N-1 of these datasets are treated as the training dataset, while the remaining one is the test dataset. A measure of the model error is obtained.
- This process is repeated across the various combinations of N datasets taken N-1 at a time.
- ullet The observed N models errors are averaged across the N folds.



## Example: Anti-spam techniques



- Let us illustrate N-Fold Cross-Validation with an example with the k-nearest neighbor classfier for spams, where we specify k=1.
- Suppose our dataset consists of 10 data points.

• For 2-fold cross validation, we randomly split the whole dataset of 10 points into two datasets of 5 points each

## Example: Anti-spam techniques



• For the first iteration, we use the first dataset as the training set and the second dataset as the testing set.

#### Example: Anti-spam techniques



#### Example: Anti-spam techniques



• In this iteration, we estimate the accuracy of the 1-nearest neighbor algorithm to be equal to  $\frac{4}{5}$ 

• For the second iteration, we use the second dataset as the training set and the first dataset as the testing set.

## Example: Anti-spam techniques



## Example: Anti-spam techniques



• In this iteration, we estimate the accuracy of the 1-nearest neighbor algorithm to be equal to  $\frac{3}{5}$ 

- Therefore, based on 2-fold cross validation, the accuracy of the 1-nearest neighbor algorithm is estimated to be  $(\frac{4}{5} + \frac{3}{5})/2 = \frac{7}{10}$ .
- We will continue with more examples next week to ground ideas.