

ARMAX Lecture: Events and Forecast

Dr. Goutam Chakraborty

Note some of these slides are copyrighted by SAS \circledR and used with permission. Reuse or redistribution is prohibited

1

Events

- An *event* is anything that changes the underlying process that generates time series data.
- The analysis of events includes two activities:
 - exploration to identify the functional form of the effect of the event
 - inference to determine whether the event has a statistically significant effect
- Other names for the analysis of events are the following:
 - intervention analysis
 - interrupted time series analysis

Intervention Analysis

- Intervention analysis can be defined as follows:
 - special case of *transfer function modeling* in which the predictor variable is a deterministic categorical variable
 - derived from the concept of a public policy intervention having an effect on a socio-economic variable
 - Example: Raising the minimum wage increases the unemployment rate.
 - Example: Implementing a severe drunk-driving law reduces automobile fatalities.

Event and Intervention Analysis Practices

- In retail sales, the term *event* is often used and includes the following:
 - promotional events: discounts, sales, featured displays, and so on
 - advertising events: broadcast, internet, and print media advertising campaigns, sponsored events, celebrity spokespersons, and so on
- In economics and the social sciences, the term *intervention* is often used and includes these:
 - catastrophic events
 - events related to a key player (CEO, spokesperson): imprisonment, scandal, illness, injury, or death
 - public policy changes

Primary Event Variables

$$J_{t} = \begin{cases} 1 & \text{for } t = t_{\text{event}} \\ 0 & \text{for } t \neq t_{\text{event}} \end{cases}$$

Step
$$I_{t} = \begin{cases} 1 & \text{for } t \geq t_{\text{event}} \\ 0 & \text{for } t < t_{\text{event}} \end{cases}$$

Ramp
$$R_{t} = \begin{cases} t - t_{\text{event}} & \text{for } t \geq t_{\text{event}} \\ 0 & \text{for } t < t_{\text{event}} \end{cases}$$

In-Sample versus Out-of-Sample Forecasts

In-Sample Forecasts	Out-of-Sample Forecasts
The forecasted sample was part of the calibration sample.	Forecasted sample was <i>not</i> part of the training sample.
It can be obtained using the LEAD=k and BACK=k options in PROC ARIMA.	It can be obtained using data preparation before using PROC ARIMA.
Accuracy measures using these forecasts do <i>not</i> reflect <i>Honest Assessment</i> .	Accuracy measures using these forecasts reflect Honest Assessment.

The Stochastic Input Variable Conundrum

- Future values of the input variable are either of the following:
 - deterministic (known)
 - stochastic (unknown, and therefore, estimated)
- A stochastic input, X_t , must be forecast for T periods so that Y_t can be forecast for T periods.
- The forecast accuracy of Y_t depends, in part, on the forecast accuracy of the stochastic input variable.

8

Examples of This Conundrum

To accurately forecast future _____ for the next year, you need to first accurately forecast

- crop yields : rainfall or precipitation amount
- gasoline prices : the price of crude oil per barrel
- solar power generation : cloud cover
- Can you accurately forecast rainfall or precipitation, the price of oil per barrel, or cloud cover over the next *T* time periods?

9

Scenario Analysis or What-If Analysis

- Choose future values of the stochastic input variable to generate different forecasts for Y_t.
- Run the same model, and replace the chosen future values each time.
 This reduces a complex process into a series of simple Boolean conditional statements.
 - For example, for period *t*+2:
 - If $X_{t+2} = X_1$, then $Y_{t+2} = Y_1$
 - If $X_{t+2} = X_2$, then $Y_{t+2} = Y_2$
 -
 - If $X_{t+2} = X_k$, then $Y_{t+2} = Y_k$
 - For k, chosen future values of X_{t+2}

10

Example of A Scenario

Suppose the cost of oil per barrel (X_t) is \$85 at period t. The forecast for the cost of oil per barrel in one future time period (X_{t+1}) is \$88. Running the ARMAX(1,0) model and forecasting one period ahead produces a forecast for Y_{t+1} . Because X_{t+2} cannot be accurately forecast, different scenarios can be run in its place.

The chart on the right runs five scenarios for X_{t+2} . Based on the forecast from X_{t+1} , the scenarios for X_{t+2} were whether the cost of oil per barrel does the following:

- drops by \$4 from *t*+1 to *t*+2
- drops by \$2 from *t*+1 to *t*+2
- stays the same from *t*+1 to *t*+2
- rises by \$2 from *t*+1 to *t*+2
- rises by \$4 from *t*+1 to *t*+2

Period	Х	Υ
<i>t</i> +1	\$88	Y _{t+1} forecast
t+2	\$84	Y _{t+2} forecast if X drops \$4 from t+1 to t+2
	\$86	Y _{t+2} forecast if X drops \$2 from t+1 to t+2
	\$88	Y _{t+2} forecast if X remains the same from t+1 to t+2
	\$90	Y _{t+2} forecast if X increases \$2 from t+1 to t+2
	\$92	Y _{t+2} forecast if X increases \$4 from t+1 to t+2

11