Ejemplos de Modelización

Planificación de la producció:

	Consum unitari mà obra (h)	Consum unitari fusta (kg)	Consum plastic (kg)	Benefici unitari (€)	(kg)
Producte A	1	3	2	300	50
Producte B	2	2	-	250	50
Disponibilitat	150h/dia	300kg/dia	100kg/dia		

Construir un modelo de Programación Matemática

Datos (Parámetros)

Modelo Optimización

	Producte A	Producte B	Disponibilitat
Consum unitari mà obra (h)	1	2	150h/dia
Consum unitari fusta (kg)	3	2	300kg/dia
Consum plastic (kg)	2	-	100kg/dia
Benefici unitari (€)	300	250	

Variables de decisión: x_i : cantidad fabricada de producto j (en Kg), $j \in J = \{A, B\}$

Restricciones:
$$x_A + 2 x_B \le 150$$
 (disp. mano obra)

$$3 x_A + 2 x_B \le 300$$
 (disp. madera)
 $2 x_A \le 100$ (disp. pástico)

$$\sum_{j \in J} a_{ij} x_j \le b_i \ i \in Recursos$$

Dominio de las variables: x_A , $x_B \ge 0$

Función Objetivo: Max
$$300 x_A + 250 x_B$$
 Max $\sum_{j \in J} p_j x_j$

Modelo Optimización:

Variables de decisión: x_j : cantidad fabricada de producto j (en Kg), $j \in J = \{A, B\}$

Restricciones:

$$\sum_{j\in J} a_{ij} x_j \le b_i$$
, $i \in Recursos$

Dominio de las variables: $x_A, x_B \ge 0$

Función Objetivo:

$$ext{Max} \sum_{j \in J} p_j x_j$$

MODELO AMPL?

Problema de mezcla

		Disolv	ventes		
	1	2 3 4 0			Contenido mezcla (ml/l)
Cloro (ml/l)	180	120	90	60	≥ 90
Amoniaco (ml/l)	3	2	6	5	≤ 4
Coste (€/I)	16	12	10	11	

Construir un modelo de Programación Matemática

Modelo Optimización

	Disol	ventes			
	1 2 3 4 0				Contenido mezcla (ml/l)
Cloro (ml/l)	180	120	90	60	≥ 90
Amoniaco (ml/l)	3	2	6	5	≤ 4
Coste (€/I)	16	12	10	11	

Variables de decisión: x_j : proporción de disolvente j en la mezcla, $j \in \{1, 2, 3, 4\}$ cantidad (en litros) disolvente j en un litro de mezcla

Dominio: $x_i \ge 0$, $j \in \{1, 2, 3, 4\}$

Restricciones:
$$180 x_1 + 120 x_2 + 90 x_3 + 60 x_4 \ge 90$$
 (Cloro) $3 x_1 + 2 x_2 + 6 x_3 + 5 x_4 \le 4$ (Amoniaco) $x_1 + x_2 + x_3 + x_4 = 1$ (CANTIDAD DE MEZCLA PRODUCIDA)

Función Objetivo: Min 16 $x_1 + 12 x_2 + 10 x_3 + 11 x_4$

Modelo Parametrizado?

Modelo AMPL?

Problema de la dieta

	Vitamines (ui)	Hidrats de Carboni (u.i.)	Oligoelements (u.i.)	Proteines (u.i.)	Preu (€/kg)	<i>x</i> * (kg)
Carn	25	20	10	150	8	
Peix	200	50	10	200	10	
Cereals	300	300	10	50	2	
Fruita	-	160	50	20	1.5	
Pa	-	120	100	20	0.5	
Aportació minima diaria	60u.i./dia	40u.i./dia	100u.i./dia	100 u.i./dia		

Construir un modelo de Programación Matemática

Modelo Parametrizado?

Modelo AMPL?

Modelo Optimización (papel)

	Contingut per kg de menjar								
	Vitamines	Hidrats de	Oligoelements	Proteines	Preu				
	(ui)	Carboni (u.i.)	(u.i.)	(u.i.)	(€/kg)				
Carn	25	20	10	150	8				
Peix	200	50	10	200	10				
Cereals	300	300	10	50	2				
Fruita	-	160	50	20	1.5				
Pa	-	120	100	20	0.5				
Aportació dia	60u.i./dia	40u.i./dia	100u.i./dia	100 u.i./dia					

Variables de decisión: x_i : Kg de alimento j consumida al día, $j \in J=\{1, 2, 3, 4, 5\}$

Dominio : $x_j \ge 0$, $j \in J$

Restricciones:
$$25 x_1 + 200 x_2 + 300 x_3$$
 ≥ 60 (Vitaminas) $20 x_1 + 50 x_2 + 300 x_3 + 160 x_4 + 120 x_5 \geq 40$ (Hidratos Carbono) $10 x_1 + 10 x_2 + 10 x_3 + 50 x_4 + 100 x_5 \geq 100$ (Oligoelementos) $150 x_1 + 200 x_2 + 50 x_3 + 20 x_4 + 20 x_5 \geq 100$ (Proteinas) $\sum_{i \in I} a_{ij} x_i \geq b_i \ i \in Nutrientes$

Función Objetivo: Min 8 x_1 + 10 x_2 + 2 x_3 + 1. x_4 + 0.5 x_3 Min $\sum_{j \in I} c_j x_j$

Problema de transporte

c_{ij} ($10^6 \in /Hm^3$)		Merc			
Refineries	1	2	3	4	Producció refineria (<i>Hm</i> ³)
1	4	7	9	10	6
2	6	4	3	6	10
3	9	6	4	8	4
Demanda (Hm^3)	5	3	8	4	

Construir un modelo de Programación Matemática

Modelo Parametrizado?

Modelo AMPL?

Modelo Optimización (papel)

c_{ij} ($10^6 \in /Hm^3$)		Me	rcats		
Refineries	1	2	3	4	Producció refineria ($m{Hm^3}$)
1	4	7	9	10	6
2	6	4	3	6	10
3	9	6	4	8	4
Demanda (Hm^3)	5	3	8	4	

Variables de decisión: x_{ij} : cantidad de producto (Hm³) enviado desde refinería i a mercado j, $i \in I=\{1, 2, 3\}, j \in J=\{1, 2, 3, 4\}$

Dominio: $x_{ij} \ge 0$, $i \in I$, $j \in J$

Restricciones: $x_{i1} + x_{i2} + x_{i3} + x_{i4} \le b_i$ (Refinería *i*) $\sum_{j \in I} x_{ij} \le b_i$, $i \in I$

 $x_{1j} + x_{2j} + x_{3j} \geq d_j$ (Mercado j) $\sum_{i \in I} x_{ij} \geq d_j$, $j \in J$

Función Objetivo: Min $\sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}$

Hospital del mar

- 5 tipus diferents de mostres fluids.
- Cada màquina pot ser usada per a analitzar qualsevol tipus de mostra
- el temps (minuts) que triga cadascuna depèn del tipus de mostra
- Cada màquina es pot usar un màxim de 8h al dia

	Màqı	iina			
Temps de processat (minuts/ml)	А	В	С	Volu	m (ml)
Mostra 1	3	5	2	80	
Mostra 2	4	3	5	75	
Mostra 3	4	5	3	80	
Mostra 4	5	4	3	12	
Mostra 5	3	5	4	60	

Construir un modelo de Programación Matemática

Modelo Parametrizado?

Modelo AMPL?

Hospital del mar:

Modelo Optimización (papel)

	Màqı	uina			
Temps de processat	Α	В	С	Volu	ım
(minuts/ml)				(ml)	
Mostra 1	3	5	2	80	
Mostra 2	4	3	5	75	
Mostra 3	4	5	3	80	
Mostra 4	5	4	3	12	
Mostra 5	3	5	4	60	

isión: x_{ij} : cantidad (volumen en m/) de muestra i asignada a máquina j, $i \in I = \{1, 2, 3, 4, 5\}, j \in J = \{A, B, C\}$ $x_{ij} \ge 0, i \in I, j \in J$ Variables de decisión:

Dominio:

 $\sum_{j \in I} t_{ij} x_{ij} \ge v_i, i \in I$ (Muestra *i*) **Restricciones:**

 $\sum_{i \in I} t_{ij} x_{ij} \le d_j, \ j \in J$ (Máquina j)

 d_i : tiempo disponible máquina j (8 horas)

 $Min \sum_{i \in I} \sum_{j \in I} t_{ij} x_{ij}$ **Función Objetivo:**

Hospital del mar: Limitacions addicionals

• Cap mostra pot ocupar més del 50% del temps total de funcionament d'una màquina.

en aquest exemple α = 0.5

Cap màquina pot realitzar més del 40% de volum total de les proves

en aquest exemple β = 0.4

Coalco

Cada client pot rebre carbó d'una única mina o de totes dues, mesclant, en aquest últim cas, els dos tipus de carbó rebut. En tot cas, la composició del carbó rebut, ja sigui d'una única mina o per mescla de totes dues, no pot contenir més d'un 8% de cendres i d'un 7% de sulfur.

Cost de	Client 1	Client 2	Cost de	Capacitat	Contingut	Contingut
transport			producció	(Tm)	en cendra	en sulfur
(€/Tm)			(€/Tm)		(Tm/Tm carbó)	(Tm/Tm carbó)
Mina 1	4	6	50	120	0.1	0.04
Mina 2	9	6	55	100	0.05	0.09
Demanda (Tm)	90	110				

Coalco: Modelo Optimización (papel)

