

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9510000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                           = 72000 \text{ N/mm}^2
          = 180000 N
Ν
                                                                                                                                                                 G
                                                                                                                      = 200000 \text{ N/mm}^2
          = 13300000 Nmm
                                                                = -9280000 Nmm
M_t
                                                     M_{v}
                                                                                                           Ε
                                                                                                           \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                           \tau(M_t) =
y_{G}
                                                                                                                                                                 \sigma_{\text{st.ven}}=
                                                                                                           σ
                                                                                                           \sigma_{\text{I}}
\boldsymbol{J}_{xx}
                                                     \sigma(N) =
                                                                                                           \sigma_{\text{II}}
                                                     \sigma(M_x)=
                                                                                                           \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 191000 N	M _×	= 6420000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13500000 Nmm	M_{v}	= -10000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	$r_{\rm u}$	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7970000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                               = 72000 \text{ N/mm}^2
Ν
          = 223000 N
                                                                                                                                                                     G
                                                                                                                        = 200000 \text{ N/mm}^2
          = 11000000 Nmm
                                                                 = -11700000 Nmm
M_t
                                                                                                             Ε
                                                                                                             \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                             \tau(M_t) =
y_{G}
                                                                                                                                                                     \sigma_{\text{st.ven}}=
                                                                                                             σ
                                                                                                             \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                      \sigma(N) =
                                                                                                             \sigma_{\text{II}}
                                                      \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8050000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 158000 N
Ν
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 11400000 Nmm
                                                            = -12400000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8620000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 162000 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 10900000 Nmm
                                                           = -6600000 Nmm
M_t
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{l}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 171000 N
Ν
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 11100000 Nmm
                                                            = -7110000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7220000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                 = 72000 \text{ N/mm}^2
         = 201000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 9040000 Nmm
                                                            = -8340000 Nmm
M_t
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 142000 N	M _×	= 7270000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9410000 Nmm	M_{v}^{γ}	= -8810000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{\text{st.v}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7300000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 163000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10700000 Nmm
                                                          = -7770000 Nmm
M_t
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
J_{xx}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5050000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 177000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 11200000 Nmm
                                                            = -8530000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                  α
                                                                                                    \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 195000 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8530000 Nmm
                                                           = -9510000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
J_{xx}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6110000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
         = 141000 N
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9100000 Nmm
                                                           = -10200000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{\text{I}}
J_{xx}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6700000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 151000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 9170000 Nmm
                                                          = -5950000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -4620000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 163000 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 9590000 Nmm
                                                           = -6520000 Nmm
M_t
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{l}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5410000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 180000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 7270000 Nmm
                                                          = -7300000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5580000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 72000 \text{ N/mm}^2
          = 130000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
          = 7750000 Nmm
                                                             = -7830000 Nmm
M₊
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                      \tau(M_t) =
y_{\mathsf{G}}
                                                                                                      σ
                                                                                                      \sigma_{l}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = 8290000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 167000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 12200000 Nmm
                                                         = -9520000 Nmm
M_t
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{\text{I}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5570000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                  = 72000 \text{ N/mm}^2
Ν
          = 177000 N
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 12400000 Nmm
                                                            = -10200000 Nmm
                                                  M_{v}
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_G
                                                                                                                                                        \sigma_{\text{st.ven}}=
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 206000 N	M _×	= 6960000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10100000 Nmm	M_y	= -12000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	ren=
u_o	=	J_{v}	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 147000 N	M _×	= 7000000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10500000 Nmm	M_{v}	= -12700000 Nmm	E	= 200000 N/mm ²		
x_G	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$,) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7510000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                            = 72000 \text{ N/mm}^2
          = 150000 N
Ν
                                                                                                                                                                  G
                                                                                                                      = 200000 \text{ N/mm}^2
          = 10100000 Nmm
                                                                = -6950000 Nmm
                                                     M_{v}
M₊
                                                                                                           Ε
                                                                                                           \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                           \tau(M_t) =
y_{G}
                                                                                                           σ
                                                     α
                                                                                                           \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                     \sigma(N) =
                                                                                                           \sigma_{\text{II}}
                                                     \sigma(M_x)=
                                                                                                            \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5040000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                                = 72000 \text{ N/mm}^2
          = 159000 N
Ν
                                                                                                                                                                     G
                                                                                                                         = 200000 \text{ N/mm}^2
          = 10300000 Nmm
                                                                 = -7490000 Nmm
M_t
                                                       M_{v}
                                                                                                              Ε
                                                                                                              \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                              \tau(M_t) =
y_{G}
                                                                                                                                                                     \sigma_{\text{st.ven}}=
                                                                                                              σ
                                                                                                              \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                       \sigma(N) =
                                                                                                              \sigma_{\text{II}}
                                                       \sigma(M_x)=
                                                                                                              \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 186000 N	M_{x}	= 6300000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 8460000 Nmm	M_{v}	= -8780000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_G	=	J_{u}	=	τ(M	t) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N	•	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 131000 N	M _×	= 6330000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 8760000 Nmm	M_{y}^{2}	= -9280000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -12200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 207000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 15500000 Nmm
                                                          = -8930000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8460000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 224000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 16300000 Nmm
                                                           = -9800000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9850000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 247000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 12300000 Nmm
                                                          = -10900000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 179000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 13200000 Nmm
                                                           = -11700000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 194000 N	M _x	= -11300000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13100000 Nmm	M_{v}	= -6800000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.v}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7870000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 209000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 13700000 Nmm
                                                          = -7440000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9170000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 232000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10400000 Nmm
                                                          = -8350000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9470000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 167000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11100000 Nmm
                                                          = -8940000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 181000 N	M _×	= 9590000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13600000 Nmm	M_{v}^{γ}	= -9800000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M)$	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 192000 N	M _x	= 6470000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13800000 Nmm	M_{v}	= -10600000 Nmm		= 200000 N/mm ²		
x_G	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$,) =	$\sigma_{\text{st.}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 224000 N	M _x	= 8040000 Nmm		$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 11200000 Nmm	M_{y}	= -12300000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 159000 N	M _x	= 8120000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11700000 Nmm	M_{v}	= -13100000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8710000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                   = 72000 \text{ N/mm}^2
          = 163000 N
Ν
                                                                                                                                                         G
                                                                                                                = 200000 \text{ N/mm}^2
          = 11200000 Nmm
                                                             = -7080000 Nmm
M_t
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                      \tau(M_t) =
y_{G}
                                                                                                      σ
                                                                                                      \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 5860000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                           = 72000 \text{ N/mm}^2
          = 172000 N
Ν
                                                                                                                                                                 G
                                                                                                                      = 200000 \text{ N/mm}^2
          = 11400000 Nmm
                                                                = -7640000 Nmm
M₊
                                                                                                           Ε
                                                                                                           \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                           \tau(M_t) =
y_{G}
                                                                                                                                                                 \sigma_{\text{st.ven}}=
                                                                                                           σ
                                                                                                           \sigma_{\text{I}}
\boldsymbol{J}_{xx}
                                                     \sigma(N) =
                                                                                                           \sigma_{\text{II}}
                                                     \sigma(M_x)=
                                                                                                           \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7300000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                  = 72000 \text{ N/mm}^2
          = 201000 N
Ν
                                                                                                                                                        G
                                                                                                               = 200000 \text{ N/mm}^2
          = 9320000 Nmm
                                                            = -8930000 Nmm
M_t
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_G
                                                                                                     σ
                                                                                                     \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 7350000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                              = 72000 \text{ N/mm}^2
          = 143000 N
Ν
                                                                                                                                                                   G
                                                                                                                       = 200000 \text{ N/mm}^2
          = 9680000 Nmm
                                                                 = -9440000 Nmm
M_t
                                                                                                             Ε
                                                                                                             \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                             \tau(M_t) =
y_{G}
                                                                                                             σ
                                                                                                             \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                      \sigma(N) =
                                                                                                             \sigma_{\text{II}}
                                                      \sigma(M_x)=
                                                                                                             \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 202000 N	M _×	= -12500000 Nmm	σ_{a}	= 260 N/mm ²	G	= 72000 1	N/mm ²
M_t	= 15800000 Nmm	M_{v}^{λ}	= -9200000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =			
@ A	dolfo Zavelani Rossi, F	olitec	nico di Milano, vers.27	.03.13	}			20.05.19

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8700000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
Ν
         = 219000 N
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 16700000 Nmm
                                                           = -10100000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10100000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                 = 72000 \text{ N/mm}^2
Ν
         = 242000 N
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 12600000 Nmm
                                                            = -11200000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 175000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 13500000 Nmm
                                                            = -12100000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 190000 N	M _×	= -11700000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13500000 Nmm	M_{v}	= -7110000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8130000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 205000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 14200000 Nmm
                                                          = -7790000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 227000 N	M _×	= -9450000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10700000 Nmm	M_{v}	= -8720000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

20.05.19

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 164000 N	M _×	= -9790000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 11500000 Nmm	M_{v}^{γ}	= -9350000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_{v}	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	$r_{\rm u}$	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

20.05.19

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 10600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 180000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 13900000 Nmm
                                                         = -9200000 Nmm
M_t
                                                M_{v}
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_G
                                                                                                                                                  \sigma_{\text{st.ven}}=
                                                                                                 σ
                                                                                                 \sigma_{\text{I}}
\mathsf{J}_{\mathsf{x}\mathsf{x}}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
                                                                                                 \sigma_{tresca} =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                                              20.05.19
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 191000 N	M _×	= 7210000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14300000 Nmm	M_{v}	= -9980000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8940000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                                      = 72000 \text{ N/mm}^2
          = 221000 N
Ν
                                                                                                                                                            G
                                                                                                                  = 200000 \text{ N/mm}^2
          = 11500000 Nmm
                                                              = -11500000 Nmm
M_t
                                                                                                       Ε
                                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                       \tau(M_t) =
y_G
                                                                                                                                                            \sigma_{\text{st.ven}}=
                                                                                                       σ
                                                                                                       \sigma_{\text{I}}
J_{xx}
                                                   \sigma(N) =
                                                                                                       \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                        \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 157000 N	M _×	= 9090000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12000000 Nmm	M_{v}	= -12200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$	·) =	$\sigma_{\text{st.v}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 9570000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 164000 N
Ν
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 11400000 Nmm
                                                            = -6640000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 6460000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                 = 72000 \text{ N/mm}^2
         = 174000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 11700000 Nmm
                                                            = -7190000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
J_{xx}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8090000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                   = 72000 \text{ N/mm}^2
          = 201000 N
Ν
                                                                                                                                                          G
                                                                                                                = 200000 \text{ N/mm}^2
          = 9460000 Nmm
                                                             = -8290000 Nmm
M_t
                                                                                                      Ε
                                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                          \sigma_{\text{mises}} =
                                                                                                      \tau(M_{\star}) =
y_{G}
                                                                                                      σ
                                                                                                      \sigma_{\text{I}}
                                                   \sigma(N) =
                                                                                                      \sigma_{\text{II}}
                                                   \sigma(M_x)=
                                                                                                      \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8160000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 143000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 9890000 Nmm
                                                           = -8800000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8730000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 174000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12200000 Nmm
                                                           = -8210000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
J_{xx}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5990000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 188000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12700000 Nmm
                                                           = -8980000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
J_{xx}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7040000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 208000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9710000 Nmm
                                                           = -10000000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                 α
                                                                                                   \sigma_{l}
J_{xx}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7210000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                 = 72000 \text{ N/mm}^2
         = 150000 N
Ν
                                                                                                                                                       G
                                                                                                               = 200000 \text{ N/mm}^2
         = 10200000 Nmm
                                                            = -10700000 Nmm
M₊
                                                                                                     Ε
                                                                                                     \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{\mathsf{G}}
                                                                                                     σ
                                                  α
                                                                                                     \sigma_{l}
J_{xx}
                                                  \sigma(N) =
                                                                                                     \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

20.05.19

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8060000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 162000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 10400000 Nmm
                                                           = -6310000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5520000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 174000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10800000 Nmm
                                                           = -6890000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6490000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 193000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8270000 Nmm
                                                           = -7740000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

20.05.19

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6630000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 139000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8770000 Nmm
                                                           = -8260000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
J_{xx}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 202000 N	M _×	= 14100000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 17500000 Nmm	M_{v}^{λ}	= -10600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 216000 N	M _×	= 9690000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 18200000 Nmm	M_{v}	= -11600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =	_	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 247000 N	M _×	= 11800000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14400000 Nmm	M_{v}	= -13300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 177000 N	M _×	= 12100000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 15200000 Nmm	M_{v}	= -14200000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M)$	_t) =	$\sigma_{st.v}$	_{ren} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	$r_{\rm u}$	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =	_	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 186000 N	M _x	= 12800000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14500000 Nmm	M_{v}	= -7900000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 199000 N	M _×	= 8800000 Nmm	$\sigma_{\rm a}$	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 15000000 Nmm	M_{v}	= -8590000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M)$	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 228000 N	M _×	= 10800000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11900000 Nmm	M_{v}	= -9830000 Nmm	E	= 200000 N/mm ²		
X_G	=	J_{xy}	=	σ(M	l _v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	, i = (i,	$\sigma_{\text{st.}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 11000000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 163000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12600000 Nmm
                                                           = -10400000 Nmm
M_t
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                  \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10900000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 189000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 13900000 Nmm
                                                          = -8180000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7600000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 204000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 14600000 Nmm
                                                           = -8960000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{\text{I}}
J_{xx}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 225000 N	M _×	= -8860000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11100000 Nmm	M_{v}	= -10000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{\text{st.}}$	_{ven} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9160000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 162000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 11800000 Nmm
                                                           = -10700000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                  \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -10200000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 176000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11800000 Nmm
                                                          = -6240000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7060000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 190000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 12300000 Nmm
                                                          = -6820000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8230000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 211000 N
Ν
                                                                                                                                   G
                                                                                               = 200000 \text{ N/mm}^2
        = 9360000 Nmm
                                                    = -7670000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            20.05.19
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 152000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10000000 Nmm
                                                          = -8200000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 13400000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 185000 N
Ν
                                                                                                                                                      G
                                                                                                              = 200000 \text{ N/mm}^2
         = 16200000 Nmm
                                                           = -9810000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 199000 N	M _×	= 9220000 Nmm	σ_{a}	$= 260 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 16800000 Nmm	M_{v}	= -10700000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{st.v}$	_{ven} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	$r_{\rm u}$	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 227000 N	M _x	= 11200000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13300000 Nmm	M_{v}	= -12200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M)$,) =	$\sigma_{\text{st.v}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 163000 N	M _×	= 11500000 Nmm	$\sigma_{\rm a}$	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14100000 Nmm	M_{v}	= -13000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M)$	t) =	$\sigma_{st.v}$	_{ven} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 172000 N	M _×	= 12200000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13400000 Nmm	M_{v}	= -7280000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 8380000 \text{ Nmm} \sigma_{a} = 260 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 183000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 13900000 Nmm
                                                          = -7930000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 210000 N	M _x	= 10300000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11000000 Nmm	M_{y}	= -9040000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 150000 N	M _x	= 10500000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11700000 Nmm	M_{v}	= -9650000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 171000 N	M _×	= -10000000 Nmm	σ_a	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12400000 Nmm	M_{y}^{2}		Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	, ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7010000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 185000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 13200000 Nmm
                                                          = -8270000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8120000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 205000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 9940000 Nmm
                                                           = -9290000 Nmm
M_t
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8510000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 148000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10700000 Nmm
                                                           = -9980000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                 α
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                  \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

20.05.19

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9280000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 160000 N
Ν
                                                                                                                                   G
                                                                                               = 200000 \text{ N/mm}^2
        = 10500000 Nmm
                                                    = -5810000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            20.05.19
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6500000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                          = 72000 \text{ N/mm}^2
        = 173000 N
Ν
                                                                                                                                  G
                                                                                               = 200000 \text{ N/mm}^2
        = 11100000 Nmm
                                                    = -6360000 Nmm
M₊
                                                                                      Ε
                                                                                      \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                           α
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                      \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                           20.05.19
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7530000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 192000 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 8370000 Nmm
                                                    = -7180000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            20.05.19
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7880000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 139000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 9040000 Nmm
                                                          = -7700000 Nmm
M_t
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 13700000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                                = 72000 \text{ N/mm}^2
         = 180000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 16400000 Nmm
                                                           = -9880000 Nmm
M_t
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 193000 N	M _×	= 9480000 Nmm	σ_{a}	= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 17000000 Nmm	M_{v}	= -10700000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 222000 N	M _x	= 11400000 Nmm		= 260 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13500000 Nmm	M_{y}	= -12300000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = 11800000 \text{ Nmm} \sigma_a = 260 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 159000 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 14300000 Nmm
                                                           = -13200000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                    \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                    \sigma_{tresca} =
```