## 1

## NCERT 12.8 8

## EE23BTECH11054 - Sai Krishna Shanigarapu

## **Question 8**

Suppose that the electric field amplitude of an electromagnetic wave is  $E_0 = 120$ N/C and that its frequency is f = 50.0 MHz.

- (a) Determine,  $B_0, \omega, k$  and  $\lambda$
- (b) Find expressions for  ${\bf E}$  and  ${\bf B}$

 $c = \frac{\omega}{k} \tag{1}$ 

 $c = f\lambda \tag{2}$ 

 $\lambda = \frac{c}{f} \tag{3}$ 

Solution:

TABLE I Input Parameters

| Symbol                      | Description                   | value                   |
|-----------------------------|-------------------------------|-------------------------|
| f                           | frequency of source           | 50.0 MHz                |
| $E_0$                       | Electric field am-<br>plitude | 120 N/C                 |
| С                           | speed of light                | 3 x 10 <sup>8</sup> m/s |
| $\mathbf{e}_2,\mathbf{e}_3$ | Standard Basis vectors        | N/A                     |

TABLE III
OUTPUT PARAMETERS

| Symbol | Value                                             |  |
|--------|---------------------------------------------------|--|
| E      | $120\sin[1.05x - 3.14x10^8t]\mathbf{e}_2$         |  |
| В      | $(4x10^{-7})\sin[1.05x - 3.14x10^8t]\mathbf{e_3}$ |  |
| $B_0$  | 400nT                                             |  |
| ω      | $3.14 \times 10^8 \text{m/s}$                     |  |
| k      | 1.05rad/s                                         |  |
| λ      | 6.0m                                              |  |

TABLE II Formulae

| Symbol | Description                   | Formula                           |
|--------|-------------------------------|-----------------------------------|
| E      | Electric<br>field vector      | $E_0\sin(kx-2\pi ft)\mathbf{e_2}$ |
| В      | Magnetic field vector         | $B_0\sin(kx-2\pi ft)\mathbf{e_3}$ |
| $B_0$  | Magnetic<br>field<br>strength | $B_0 = \frac{E_0}{c}$             |
| ω      | Angular frequency             | $\omega = 2\pi f$                 |
| k      | Propagation constant          | $k = \frac{2\pi f}{c}$            |
| λ      | Wavelength                    | $\lambda = \frac{c}{f}$           |

Fig. 1. Graph of E



Fig. 2. Graph of B

