If you are using a jupyter notebook (recommended), then keep all your programs in a single notebook. A good programming style is to define a function for one task with clearly defined input (arguments) and output. For plots you may use matplotlib (if you are using python) or gnuplot (if you are using c or fortran) or LsqFit module if you are using Julia.

If you are planning to submit separate programs, then please follow the guideline below:

- Keep all files of a worksheet in a single folder.
- Follow a systematic naming convention. You may name the program files as Q1.py or Q1a.py, Q1b.py for question 1 (if you have created multiple files for a single question). The data file should be named as Q1-data-a.dat and so on.
- Finally compress the entire folder as a single .zip or .tgz (using tar cvfz archive.tgz folder-name/, and submit the file in WeLearn.

1. Cooling a Hot Rod with Fixed-End Temperatures

(a) Physical Setup:

A metal rod of length L is held at both ends (x=0 and x=L) at a fixed, lower temperature $T_0=100$ K. The initial temperature of the rod is uniformly higher, say $T_{\rm init}=300{\rm K}>T_0$. Let the thermal diffusivity be $\alpha=10^{-4}$. Thus, you have

$$u(0,t) = T_0, \quad u(L,t) = T_0, \quad u(x,0) = T_{\text{init}}.$$

(b) (7 points) Implementation:

Implement a solver that

- Sets up the tridiagonal system $A \mathbf{u}^{n+1} = B \mathbf{u}^n$ at each time step.
- Uses the *Thomas algorithm* for efficient solving.
- Enforces $u(0,t) = T_0$ and $u(L,t) = T_0$ at every step.

(c) (3 points) Plot and Analyze:

- Plot the initial temperature distribution (t = 0) and the final distribution after some time t_{final} .
- Observe how the rod cools down to T_0 at both ends.
- Discuss the long-term solution as $t \to \infty$.

2. Heating with Different Dirichlet Temperatures at Each End

(a) Physical Setup:

Consider the same rod of length L, but now the left end is held at $T_{\rm left} = 200$ K and the right end at $T_{\rm right} = 400$ K, where $T_{\rm left} \neq T_{\rm right}$. The rod starts from an initial condition $u(x,0) = T_{\rm init}(x) = 300 + exp(-(x-L/2)^2/2\sigma^2)$ with $\sigma = 0.05$, and the thermal diffusivity is still $\alpha = 10^{-4}$.

(b) Dirichlet Boundary Conditions:

You have

$$u(0,t) = T_{\text{left}}, \quad u(L,t) = T_{\text{right}}, \quad u(x,0) = T_{\text{init}}(x).$$

(c) (7 points) Numerical Scheme:

- Write down the Crank–Nicolson update for interior points i = 1, ..., N 1.
- Form the matrices A and B, and describe how the boundary temperatures appear in the right-hand side.
- Solve repeatedly from t^n to t^{n+1} until some final time t_{final} .

(d) (3 points) Results and Steady State:

- Plot the temperature profiles at several time steps (e.g. t_1, t_2, \ldots).
- Show that eventually the solution approaches a *linear* steady state from $T_{\rm left}$ to $T_{\rm right}$.
- Investigate the effect of different Δt , Δx , or α on the convergence speed.