Neural Networks

We implemented a simple 2-layer regularized neural network, trained it using gradient descent, and used it on the provided toy datasets and MNIST handwritten digits datasets.

We choose to use the softmax formulation as described by Bishop for our loss function. Please note that although this is a different loss function than we were asked to use in our assignment description, there was a follow-up discussion on Piazza (see note @504 if not familiar) which clarified that softmax is actually the correct formulation for 1-of-K classification.

The likelihood according to softmax is:

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}) = \prod_{k=1}^{K} \prod_{n=1}^{N} y_k(\mathbf{x}_n, \mathbf{w})^{t_{nk}}$$
(1)

And taking the negative log likelihood we have our unregularized loss function:

$$l(\mathbf{w}) = -\sum_{k=1}^{K} \sum_{n=1}^{N} t_{nk} \ln y_k(\mathbf{x}_n, \mathbf{w})$$
 (2)

We note that w can be considered a vector that represents all of the weights of the neural network, but it is preferable to think of the weights as being organized into two matrices, which we denote $W^{(1)}$ and $W^{(2)}$ and explain later in the context of forward propagation. The matrix representation, however, is useful for including regularization in our final cost function, which is formulated via the Frobenius norm:

$$J(w) = l(w) + \lambda(||W^{(1)}||_F^2 + ||W^{(2)}||_F^2)$$
 (3)

Gradient Calculation

Having defined our cost function, we are now able to describe how the gradients $\nabla_{W^{(1)}}J(\mathbf{w})$ and $\nabla_{W^{(1)}}J(\mathbf{w})$ are calculated analytically. Before this derivation, however, we note each of these terms are matrices whose elements are simply the partial derivative of the cost function with respect to that element itself (a scalar).

In order to calculate the gradients, we will use error backpropagation, for which we will follow Bishop's nice explanation and follow these sequence of steps:

- 1. Forward propagation
- 2. Evaluate δ_k for the output units
- 3. Backpropagation of the δ 's for each hidden unit

4. Evaluate derivatives with $\frac{\partial E_n}{\partial w_{ij}}$

1. Forward propagation

With the weights represented as matrices, we can vectorize the computation of the unit activations, for example for the first layer:

$$A^{(1)} = W^{(1)} X_{auq} (4)$$

Where X_{aug} is a $(D+1)\times N$ augmented matrix for the input data, for the purpose of including the bias input unit in the vectorized computation. If we consider the original input data to be X, of dimension $D\times N$, where D is the dimensionality of each sample input and N is the number of sample inputs, then we form X_{aug} by augmenting X with a $1\times N$ vector of 1s $(X_{aug}=\begin{bmatrix}1_{N\times 1} & X^T\end{bmatrix}^T)$. $W^{(1)}$ is then a $M\times (D+1)$ matrix that contains all of the weights from every input to every hidden unit, except the bias unit of course, and $a^{(1)}$ is a $M\times N$ matrix where each column vector is individually the weights for all of the unit activations, given one sample input. The "output" of each unit is computed simply by applying the sigmoid function g() element-wise to the matrix $A^{(1)}$:

$$Z_{ij}^{(1)} = g(A_{ij}^{(1)}) \tag{5}$$

Where as requested in the assignment, we use the logistic sigmoid function as our sigmoid function:

$$g(z) = \frac{1}{1 + e^{-z}} \tag{6}$$

To forward propagate through the second layer to the output units, we similarly use $A^{(2)}=W^{(2)}Z^{(1)}_{aug}$, where $Z^{(1)}$ has been augmented with a vector of 1s to include the bias unit, and so we have $W^{(2)}$ of dimension $K\times (M+1)$. At this point we also note that in order to do our 1-of-K classification, we have to transform the output from the form they were given in the assigned datasets, from a scalar k to \mathbf{e}_k where \mathbf{e}_k is a vector of length $K=k_{max}$ and contains a 0 for every element except k, for example $e_3=[0\ 0\ 1]$. Thus we consider t to be an $N\times K$ matrix. Applying $Z^{(2)}_{ij}=g(A^{(2)}_{ij})$, we have our outputs and have completed forward propagation.

2. Evaluate δ_k for the output units

With our softmax formulation....

... we end up with:

$$\delta_{nk} = y_{nk} - t_{nk}$$

Which is simply vectorized by element-wise subtraction to give an $N \times K$ matrix

3. Backpropagation of the δ 's for each hidden unit

Having calculated the δ 's for the output unit, we have only one step of backpropagation to perform, since we have only a 2-layer neural network. We first provide the backpropagation formula, unvectorized:

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k \tag{7}$$

And note that we may vectorize this computation by

Implementing 2-Layer Neural Network

Stochastic Gradient Descent

Testing the Neural Network Code

Testing the Neural Network Code

MNIST Data (Parts 5 and 6)