《概率论与数理统计》期末速通

5. 大数定律与中心极限定理

5.1 大数定律

[**定义5.1.1**] 设 $\{X_n\}$ $(n=1,2,\cdots)$ 是一列随机变量序列. 对常数 a , 若对 $\forall \varepsilon>0$, 有 $\lim_{n\to +\infty} P\{|X_n-a|<\varepsilon\}=1$, 即事件 $|X_n-a|<\varepsilon$ 几乎必然发生, 则称 $\{X_n\}$ 依概率收敛于 a , 记作 $X_n\overset{P}{\to}a$.

[定理5.1.1] 对随机变量序列 $\{X_n\}$, $\{Y_n\}$ 和常数 a,b,若 $X_n\overset{P}{ o}a,Y_n\overset{P}{ o}b$,则对 \forall 二元连续函数,随机变量序列 $g(X_n,Y_n)\overset{P}{ o}g(a,b)$.

[注] 本定理将用于讨论未知参数估计量的一致性(或相合性)

[**定理5.1.2**] [**弱大数定律**, Khinchin大数定理] 设随机变量 X_1, X_2, \cdots 独立同分布, 且存在数学期望

$$E(X_k)=\mu \ \ (k=1,2,\cdots)$$
 . 对 n 个变量的算术平均值 $rac{1}{n}\sum_{i=1}^n X_i$, 对 $orall arepsilon>0$, 有

$$\lim_{n o +\infty} P\left\{\left|rac{1}{n}\sum_{i=1}^n X_i - \mu
ight| < arepsilon
ight\} = 1$$
 或 $\lim_{n o +\infty} P\left\{\left|rac{1}{n}\sum_{i=1}^n X_i - \mu
ight| \geq arepsilon
ight\} = 0$, 或记作 $rac{1}{n}\sum_{k=1}^n X_k \overset{P}{ o} \mu = E(X_k) \ \ (n o +\infty)$.

[**证**] 下面在这些随机变量的方差 $D(X_k)=\sigma^2$ $(k=1,2,\cdots)$ 存在的条件下证明.

因
$$E\left(rac{1}{n}\sum_{k=1}^n X_k
ight) = rac{1}{n}E\left(\sum_{k=1}^n X_k
ight) = rac{1}{n}\sum_{i=1}^n E(X_i) = \mu$$
 , $D\left(rac{1}{n}\sum_{i=1}^n X_k
ight) = rac{1}{n^2}D\left(\sum_{i=1}^n X_k
ight) = rac{4\pi^2}{n^2}\cdot n\sigma^2 = rac{\sigma^2}{n}$,

由Chebyshev不等式 $P\{|X-E(X)|<arepsilon\}\geq 1-rac{D(X)}{arepsilon^2}$:

$$1-rac{rac{\sigma^2}{n}}{arepsilon^2} \leq P\left\{\left|rac{1}{n}\sum_{k=1}^n X_k - \mu
ight| < arepsilon
ight\} \leq 1$$
 . 令 $n o + \infty$ 即证.

[**定理5.1.3**] [Bernoulli大数定理,弱大数定律的推论] 设 f_A 为 n 次独立重复试验中事件 A 发生的次数,p 为 A 在每次试验中发生的概率,则对 $\forall \varepsilon > 0$,有 $\lim_{n \to +\infty} P\left\{\left|\frac{f_A}{n} - p\right| < \varepsilon\right\} = 1$ 或 $\lim_{n \to +\infty} P\left\{\left|\frac{f_A}{n} - p\right| \ge \varepsilon\right\} = 0$,或记作 $\frac{f_A}{n} \overset{P}{\to} p$.

[**证**] 设随机变量 $X_k=[$ [第k次试验中A发生] $(k=1,\cdots,n)$, 则 X_1,\cdots,X_n 相互独立, 且都服从(0-1)分布. 因 $f_A\sim b(n,p)$, 则 $f_A=X_1+\cdots+X_n$.

由弱大数定律:
$$rac{f_A}{n}=rac{1}{n}\sum_{k=1}^n X_k \stackrel{P}{
ightarrow} E(X_k)=p \;\;(k=1,\cdots,n)$$
 .

[**注1**] 频率的稳定性: 对 $\forall \varepsilon>0$, 当试验次数 n 充分大时, 事件"频率 $\dfrac{f_A}{n}$ 与概率 p 的偏差 $<\varepsilon$ "几乎必然发生.

[注2] 由实际推断原理: 实际应用中, 试验次数很大时, 可用事件的频率代替其概率.

5.2 中心极限定理

[**定理5.2.1**] [**独立同分布的中心极限定理**] 若随机变量 X_1, \cdots, X_n, \cdots 独立同分布, 且期望

$$E(X_k)=\mu \ \ (k=1,2,\cdots)$$
 , 方差 $D(X_k)=\sigma^2 \ \ (k=1,2,\cdots)$, 则随机变量 $\displaystyle\sum_{k=1}^n X_k$ 的标准化变量

$$Y_n = rac{\displaystyle\sum_{k=1}^n X_k - E\left(\displaystyle\sum_{k=1}^n X_k
ight)}{\sqrt{D\left(\displaystyle\sum_{k=1}^n X_k
ight)}} = rac{\displaystyle\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma}$$
 的分布函数 $F_n(x)$ 对 $orall x$ 满足

$$\lim_{n o +\infty}F_n(x)=\lim_{n o +\infty}P\left\{rac{\displaystyle\sum_{k=1}^nX_k-n\mu}{\sqrt{n}\sigma}\leq x
ight\}=\int_{-\infty}^xrac{1}{\sqrt{2\pi}}\mathrm{e}^{-rac{t^2}{2}}\mathrm{d}t=arPhi(x)$$
 , Et $Y_n\stackrel{ ext{if }(\mathbb{N})}{\sim}N(0,1)$.

[**注1**] 实际应用中有很多随机变量 X 由大量的相互独立的随机因素综合影响而成, 其中每个因素在总的影响中所起的作用很小, 这样的 X 往往服从正态分布. 本定理表明: 独立的随机变量的个数不断增大时, 其和的分布趋于正态分布.

[**注2**] 一般 $\sum_{k=1}^n X_k$ 的分布函数不易求, n 充分大时, 可用 $\Phi(x)$ 给出其近似分布.

[注3] 本定理的另一形式:
$$\dfrac{\displaystyle\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} = \dfrac{\displaystyle\frac{1}{n} \displaystyle\sum_{k=1}^n X_k - \mu}{\displaystyle\frac{\sigma}{\sqrt{n}}} = \dfrac{\overline{X} - \mu}{\displaystyle\frac{\sigma}{\sqrt{n}}} \overset{\text{近似}}{\sim} N(0,1)$$
 , 其中 $\overline{X} = \dfrac{1}{n} \displaystyle\sum_{k=1}^n X_k$ 为

 X_1, \dots, X_n 的算术平均值.

因
$$Z=rac{\overline{X}-\mu}{rac{\sigma}{\sqrt{n}}}\stackrel{ iny M}{\sim} N(0,1)$$
 , 则 $\overline{X}=rac{\sigma}{\sqrt{n}}Z+\mu\stackrel{ iny M}{\sim} N\left(\mu,rac{\sigma^2}{n}
ight)$.

[**定理5.2.2**] [**De Moivre-Laplace定理**] 若随机变量 $\eta_n \sim b(n,p) \ (n=1,2,\cdots;0 , 则对 <math>\forall x$, 有 $\lim_{n \to +\infty} P\left\{ \dfrac{\eta_n - np}{\sqrt{np(1-p)}} \leq x \right\} = \int_{-\infty}^x \dfrac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{t^2}{2}} \mathrm{d}t = \varPhi(x)$.

[**证**] 设随机变量 $X_k=[ar{\pi}k$ 次试验中A发生] $(k=1,\cdots,n)$, 则 X_1,\cdots,X_n 相互独立, 且都服从(0-1)分布.

因
$$E(X_k)=p, D(X_k)=p(1-p)$$
 $(k=1,\cdots,n)$, 且 $\eta_n=\sum_{k=1}^n X_k$,

由独立同分布的中心极限定理:
$$\dfrac{\eta_n-np}{\sqrt{np(1-p)}}=\dfrac{\displaystyle\sum_{k=1}^n X_k-np}{\sqrt{n}\cdot\sqrt{p(1-p)}}\overset{ ilde{ ilde{L}}}{\sim}N(0,1)$$
 .

[注1] 本定理是独立同分布的中心极限定理的特例

[注2] 本定理表明: 二项分布的极限分布是正态分布

随机变量 $X \sim b(n, p)$ 的概率的计算:

① $n \leq 5$ 时, 直接计算: $P\{X=k\} = C_n^k \cdot p^k \cdot (1-p)^{n-k} \ (k=0,1,\cdots,n)$.

②
$$n$$
 很大, p 很小, 且 $\lambda=np<10$ 时, 由Poisson定理: $P\{X=k\}pproxrac{\lambda^k\mathrm{e}^{-\lambda}}{k!}\ \ (k=0,1,\cdots,n)$.

③
$$n \geq 50$$
 , p 不是很小时, 由**De Moivre-Laplace定理**: $\dfrac{\eta_n - np}{\sqrt{np(1-p)}} \overset{$ 近似 $\sim N(0,1)$.

[**例5.2.1**] 设 V_1,\cdots,V_{20} 是相互独立的随机变量,且都在区间 (0,10) 上服从均匀分布.设随机变量 $V=\sum_{k=1}^{20}V_k$,估计概率 $P\{V>105\}$.

[解]
$$E(V_k) = \frac{0+10}{2} = 5, D(V_k) = \frac{(10-0)^2}{12} = \frac{100}{12}$$
.

由独立同分布的中心极限定理: $\dfrac{\displaystyle\sum_{k=1}^{20}V_k-20\cdot 5}{\sqrt{20}\cdot\sqrt{\dfrac{100}{12}}}\stackrel{$ 近似 \sim N(0,1) .

$$P\{V>105\} = P\left\{\sum_{k=1}^{20} V_k > 105\right\} = P\left\{\frac{\sum_{k=1}^{20} V_k - 100}{\sqrt{20} \cdot \sqrt{\frac{100}{12}}} > \frac{105 - 100}{\sqrt{20} \cdot \sqrt{\frac{100}{12}}}\right\}$$

$$=1-P\left\{\frac{\displaystyle\sum_{k=1}^{20}V_k-100}{\sqrt{20}\cdot\sqrt{\frac{100}{12}}}\leq \frac{5}{\sqrt{\frac{2000}{12}}}\right\}=1-\varPhi\left(\frac{5}{\sqrt{\frac{2000}{12}}}\right).$$

[**例5.2.2**] 某船每遭受一次冲击时,角度有 $p=\frac{1}{3}$ 的概率偏移.若该船遭受了 90000 次冲击,估计其中角度有 $29500\sim30500$ 次偏移的概率.

[解] 将每次冲击视为一次试验, 且各试验相互独立.

设 90000 次冲击中有 X 次角度偏移, 则随机变量 $X \sim b\left(90000, \frac{1}{3}\right)$.

由De Moivre-Laplace定理:

$$\begin{split} P\{29500 \leq X \leq 30500\} &= P\left\{\frac{29500 - 90000 \cdot \frac{1}{3}}{\sqrt{90000 \cdot \frac{1}{3} \cdot \frac{2}{3}}} \leq \frac{X - 90000 \cdot \frac{1}{3}}{\sqrt{90000 \cdot \frac{1}{3} \cdot \frac{2}{3}}} \leq \frac{30500 - 90000 \cdot \frac{1}{3}}{\sqrt{90000 \cdot \frac{1}{3} \cdot \frac{2}{3}}}\right\} \\ &= P\left\{-\frac{5}{\sqrt{2}} \leq \frac{X - 30000}{100\sqrt{2}} \leq \frac{5}{\sqrt{2}}\right\} \approx \varPhi\left(\frac{5}{\sqrt{2}}\right) - \varPhi\left(-\frac{5}{\sqrt{2}}\right) = 2\varPhi\left(\frac{5}{\sqrt{2}}\right) - 1. \end{split}$$

[**例5.2.3**] 设每个学生来参加家长会的人数是随机变量, 其中无家长、1 名家长、2 名家长参会的概率分别为 0.05, 0.8, 0.15, 各学生参会的家长数独立. 若有 400 名学生, 估计:

- (1) 参加会议的家长总数 X > 450 的概率.
- (2) 有 1 名家长参会的学生人数 ≤ 340 的概率.

[解]

(1) 设第 k $(k=1,\cdots,400)$ 个学生参会的家长数为 X_k , 则 X_1,\cdots,X_{400} 独立同分布, 其分布律为:

X_k	0	1	2
p	0.05	0.8	0.15

则
$$E(X_k)=1.1, D(X_k)=0.19$$
 , 且 $X=\sum_{k=1}^{400} X_k$.

由独立同分布的中心极限定理:

$$\begin{split} P\{X>450\} &= P\left\{\sum_{k=1}^{400} X_k > 450\right\} = P\left\{\frac{\sum_{k=1}^{400} X_k - 440}{\sqrt{400} \cdot \sqrt{0.19}} > \frac{450 - 440}{\sqrt{400} \cdot \sqrt{0.19}}\right\} \\ &= 1 - P\left\{\frac{\sum_{k=1}^{400} X_k - 440}{\sqrt{400} \cdot \sqrt{0.19}} \le \frac{1}{2 \cdot \sqrt{0.19}}\right\} \approx 1 - \varPhi\left(\frac{1}{2 \cdot \sqrt{0.19}}\right). \end{split}$$

(2) 设有 1 名家长参会的学生人数为 Y, 则 $Y \sim b(400, 0.8)$.

由De Moivre-Laplace定理:

$$P\{Y \le 340\} = P\left\{\frac{Y - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} \le \frac{340 - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}}\right\} = P\left\{\frac{Y - 400 \cdot 0.8}{\sqrt{400 \cdot 0.8 \cdot 0.2}} \le 2.5\right\} \approx \Phi(2.5)$$

No. 4/4