Exercice 1:

Soit A, B, C trois points de l'espace affine \mathcal{E} .

1. Déterminer l'ensemble \mathcal{D} des points M de \mathcal{E} tels que les vecteurs $3\overrightarrow{MA} + 2\overrightarrow{MB} - \overrightarrow{MC}$ et $2\overrightarrow{MA} - 3\overrightarrow{MB} + \overrightarrow{MC}$ soient colinéaires.

On distinguera deux cas selon que $2\overrightarrow{BA} + \overrightarrow{BC}$ est nul ou non.

- 2. Dans cette question, \mathcal{E} est muni d'un repère orthonormé et $A=(1,1,0),\,B=(1,2,1),\,C=(3,0,1).$ On note \mathcal{P} le plan d'équation 4y+4x=3.
 - (a) Déterminer une représentation paramétrique de \mathcal{D} puis des équations cartésiennes de \mathcal{D} .
 - (b) Montrer que \mathcal{D} coupe le plan \mathcal{P} en un point Q que l'on déterminera.
 - (c) Montrer que $R = \left(\frac{3}{2}, -\frac{1}{4}, -\frac{3}{4}\right)$ appartient à \mathcal{D} et calculer RQ.
 - (d) Calculer les coordonnées du projeté orthogonal H de R sur \mathcal{P} . En déduire des calculs de HR (distance de R à \mathcal{P}) et HQ.
 - (e) Calculer d'une autre façon HQ à partir de RQ et HR.

Exercice 2:

- 1. Dans cette question, \mathcal{A} est le plan affine euclidien muni d'un repère orthonormé, et A, B, C sont trois points de \mathcal{A} .
 - (a) Déterminer l'ensemble E_1 des points M de \mathcal{A} tels que

$$\left\| -\overrightarrow{MA} + 3\overrightarrow{MB} - 2\overrightarrow{MC} \right\| = \left\| \overrightarrow{MA} + 3\overrightarrow{MB} + 2\overrightarrow{MC} \right\|.$$

En donner une description géométrique.

(b) Déterminer l'ensemble E_2 des points M de \mathcal{A} tels que :

$$\left\| 4\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right\| = \left\| \overrightarrow{MA} + 3\overrightarrow{MB} + 2\overrightarrow{MC} \right\|.$$

En donner une description géométrique.

- 2. (a) Dans cette question, A = (2, 1), B = (1, 1), C = (1, 2).

 Montrer que E_1 est un cercle dont on déterminera les coordonnées du centre et le rayon.
 - (b) Dans cette question, \mathcal{A} est l'**espace** affine euclidien muni d'un repère orthonormé et $A=(1,1,1),\ B=(1,0,1),\ C=(2,1,1).$

On définit E_2 comme à la question 1) b).

Montrer dans ce cas que E_2 est un plan dont on déterminera une équation cartésienne.

Exercice 3:

Ici, $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

On pose
$$F_1 = \{(x, y, z, t) \in \mathbb{K}^4, x - 2y + 3z + t = 0\}$$
 et $F_2 = Vect((1, 0, 1, -1), (2, 1, 3, 1), (-1, 2, 2, 1))$.

- 1. Déterminer une (ou des) équation(s) cartésienne(s) décrivant F_2 .
- 2. Montrer que F_1 est un sous-espace vectoriel de \mathbb{K}^4 et déterminer sa dimension.
- 3. Montrer que $F_1 \cap F_2$ est un sous-espace vectoriel de \mathbb{K}^4 et en déterminer une base. Quelle est la dimension de $F_1 \cap F_2$?
- 4. Déterminer une base $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d})$ de \mathbb{K}^4 telle que $(\overrightarrow{a}, \overrightarrow{b})$ soit une base de $F_1 \cap F_2$ et $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ soit une base de F_2 .