NPTEL MOOC, JAN-FEB 2015 Week 8, Module 2

DESIGN AND ANALYSIS OF ALGORITHMS

LP modelling: Production planning

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Linear programming

- * Optimization problem where constraints and quantity to be optimized are linear functions
 - * Constraints: $ax + by + \le K$, $ax + by + \ge K$
 - * Quantity (objective function): ax + by + ...

Solving linear programs

Simplex Algorithm

- * Start at any vertex, evaluate objective function
- * If an adjacent vertex has a better value, move
- * If current vertex is better than all neighbours, stop
- * Can be exponential, but efficient in practice
- * Theoretically efficient algorithms exist

LP duality

- * Can always construct a combination of constraints that tightly captures upper bound on objective function
- * Dual LP problem
 - * Minimize linear combination of constraints
 - * Variables are the multipliers
 - Optimum solution solves both original (primal) and dual LP

Production planning

Handwoven carpets

- * 30 employees, each produces 20 carpets a month, salary Rs 20,000
 - * Labour cost is Rs 1000 per carpet
- * Monthly demand is seasonal
 - * Ranges from 440 to 920
 - * d₁...d₁₂ from January to December

Coping with varying demand

- * Overtime
 - * Pay 80% extra, overtime limit 30% per worker
- * Hiring and firing
 - * Costs Rs 3200 and Rs 4000 per worker
- * Store surplus
 - * Costs Rs 80 per carpet per month

Formulate a linear program

- * w_i : workers in month i, $w_0 = 30$
- * xi: carpets made in month i
- * oi: carpets made in overtime in month i
- * hi: number of workers hired at start of month i
- * fi: number of workers fired at start of month i
- * s_i : surplus carpets after month i, $s_0 = 0$
- 72 variables, plus w₀, s₀

Constraints

- * All variables are nonnegative
 - * W_i, X_i, O_i, h_i, f_i, S_i \geq 0, for i in 1..12
- * Carpets made = regular production + overtime
 - $* x_i = 20w_i + o_i$
- * Number of workers match hiring/firing numbers
 - $* W_i = W_{i-1} + h_i f_i$

Constraints ...

* Number of stored carpets connected to earlier stock, production, demand

$$* S_i = S_{i-1} + X_i - d_i$$

* Overtime production is at most 6 carpets per worker (30% of regular production)

* $O_i \leq 6W_i$

Objective function

* Minimize the cost

```
* 20000 (w_1 + w_2 + ... + w_{12}) + 3200 (h_1 + h_2 + ... + h_{12}) + 4000 (f_1 + f_2 + ... + f_{12}) + 80 (s_1 + s_2 + ... + s_{12}) + 1800 (o_1 + o_2 + ... + o_{12})
```

Solve

- * Run Simplex and find a solution
- * Are we done?
- * Optimum may have fractional values
 - * Hire 10.6 workers in March

Fractional solutions

- * Hire 10.6 workers in March
 - * Round off to 10 or 11 and reevaluate total cost
 - * Values are "large", rounding does not affect quality of solution that much
 - * Values are "small", rounding requires more care
- * Insisting on integer solutions makes the problem computational intractable!
 - * Integer Linear Programming