Experiment 7

Aim: To study the stability of a system in the presence of disturbance in MATLAB.

- 1. Unit step input without presence of disturbance
- 2. Unit step disturbance in the absence of input
- 3. Unit step input and unit step disturbance

Also Calculate $%M_P$, t_s and t_P .

Fig 1: Given System

Software: Matlab 2018a

<u>Theory:</u> To study the response of a system in the presence of a disturbance, we apply superposition theorem to the system. The superposition theorem for electrical circuits states that for a linear system the response (voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, where all the other independent sources are replaced by their internal impedances.

Matlab Code:

```
clc;
close all;
clear all;
k = [10 \ 20 \ 50 \ 100];
s = tf('s');
G = 1/(s*(s+1));
G1 = 11*s;
for i=1:4
    t = parallel(G1, k(i));
    Y = feedback(series(t,G),1);
    subplot(3,4,i), step(Y);
    str = sprintf('K = %d', k(i));
    result(i) = stepinfo(Y);
    title(str);
end
for i=1:4
    t = parallel(G1, k(i));
    YY = feedback(G,t);
    subplot(3,4,4+i), step(YY);
    str = sprintf('K = %d', k(i));
```

```
title(str);
  result2(i) = stepinfo(YY);
end
for i=1:4
  YYY = parallel(Y(i),YY(i));
  subplot(2,2,i),step(YYY);
  str = sprintf('K = %d',k(i));
  title(str);
  stepinfo(YYY)
end
```

Calculations:

	Response without disturbance			Response with only disturbance			Response with disturbance		
	Tr	Ts	Overshoot	Tr	Ts	Overshoot	Tr	Ts	Overshoot
K = 10	0.204	0.38	0	2.45	4.436	0.09	0.328	1.869	0
K = 20	0.169	0.913	3.86	1.136	2.06	0.1	0.192	0.30	1.55
K = 50	0.126	0.718	12.89	0.376	0.59	0.648	0.129	0.715	12.113
K = 100	0.097	0.665	22.016	0.185	0.594	9.473	0.098	0.661	21.72

Table 1: Values obtained from plot

Result:

Fig 2: Response without disturbance

Fig 3:Response with only disturbance

Fig 1: Response with disturbance

Conclusion:

- On increasing the value of k, system response system shows more ideal properties (in presence of noise). This however increases overshoot, which can be overcome by tuning the K_d of the PID controller.
- Best possible value of k if found to be 100 for this case.