# Forecasting disease from univariate time series using naive, ARMIA, exponential smoothing, additive regression, and LSTM models

Client summary

Capstone for Springboard's data science bootcamp

Mike Pierovich June 18, 2020

## Challenge: Create a multi-year forecast of dengue fever





### Data: Univariate time series of weekly cases

## **DRIVENDATA**



San Juan, Puerto Rico



Iquitos, Peru

## Explore: Spikes, slight downward trend and strong seasonality







### Explore: Time-series statistics

- Strong autocorrelation
- Lack of stationarity



Autocorrelation of weekly cases with 95% confidence interval in San Juan



Partial autocorrelation of weekly cases with 95% confidence interval in San Juan

## Models: Additive regression on log-transformed data is best

Performance of top-10 models and variations, ranked by MAE, for San Juan

Actual and forecast of an additive model using Facebook Prophet with "stabilized trend" arguments on log-transformed test data for San Juan

| Approach                     | Summary                                  | Transform | RMSE  | MAE   | Rank |
|------------------------------|------------------------------------------|-----------|-------|-------|------|
| Additive Regression          | Stabilized Trend                         | Log (x+1) | 28.70 | 14.59 | 1    |
| Additive Regression          | Cap and Floor                            | Log (x+1) | 29.94 | 14.64 | 2    |
| <b>Exponential Smoothing</b> | Seasonal ES, a=.5, b=.1, g=0, optimized  | Log (x+1) | 26.54 | 15.54 | 3    |
| ARIMA                        | SARIMAX (2, 1, 2) x (2, 0, 1, 52)        | Log (x+1) | 26.61 | 15.85 | 4    |
| Exponential Smoothing        | Seasonal ES, a=.9, b=.8, g=.1, optimized | None      | 28.60 | 17.14 | 5    |
| ARIMA                        | SARMIAX (3, 1, 2) x (0, 0, 0, 52)        | None      | 29.48 | 18.71 | 6    |
| Exponential Smoothing        | Simple ES, a=0                           | None      | 34.12 | 19.09 | 7    |
| Additive Regression          | Stabilized Trend                         | None      | 29.20 | 20.05 | 8    |
| Naive                        | Seasonal Naive Method                    | None      | 35.95 | 21.34 | 9    |
| LSTM                         | ConvLSTM                                 | Log (x+1) | 34.29 | 21.36 | 10   |



#### Final forecast



Facebook Prophet's visualization of the final forecast on a log(x+1) scale for San Juan

#### Example forecast value:

- Week of August 19, 2008, which is 6 months into forecast period
- Forecast value is 26 cases
- An 80% constant confidence interval
  - Lower bound is 9 cases
  - Upper bound is 72 cases

#### Lessons and improvements

#### Lessons from modeling:

- Importance of well-transformed data
- Connection between data and model
- Limits of univariate data
- LSTM's lack of success

#### Improvements:

- Better understand business context and domain
- Refine forecast horizon
- Explore additional time-series models
- Leverage multivariate data
- Explicitly predict spikes