Chapter 1

Gauss-Seidel and SOR Method for Systems of Linear Equations

1.1Gauss-Seidel Method

$$x_i^{(k)} = \frac{-\sum_{j=1}^{i-1} \left(a_{ij} x_j^{(k)}\right) - \sum_{j=i+1}^{n} \left(a_{ij} x_j^{(k-i)}\right) + b_i}{a_{ij}}$$

for each $i=1,2,3,\ldots,n$ is called the Gauss-Seidel iterative technique.

Example. The linear system

$$10x_{1} - x_{2} + 2x_{3} = 6$$

$$-x_{1} + 11x_{2} - x_{3} + 3x_{4} = 25$$

$$2x_{1} - x_{2} + 10x_{3} - x_{4} = -11$$

$$3x_{2} - x_{3} + 8x_{4} = 15$$

can be written

$$\begin{split} x_1^{(k)} &= & \frac{1}{10} x_2^{(k-1)} &- \frac{1}{5} x_3^{(k-1)} &+ \frac{3}{5} \\ x_2^{(k)} &= & \frac{1}{11} x_1^{(k)} &+ \frac{1}{11} x_3^{(k-1)} - \frac{3}{11} x_4^{(k-1)} + \frac{25}{11} \\ x_3^{(k)} &= & -\frac{1}{5} x_1^{(k)} + \frac{1}{10} x_2^{(k)} &+ \frac{1}{10} x_4^{(k-1)} - \frac{11}{10} \\ x_4^{(k)} &= & -\frac{3}{8} x_2^{(k)} &+ \frac{1}{8} x_3^{(k)} &+ \frac{15}{8} \end{split}$$

Letting $x^{(0)} = (0, 0, 0, 0)^t$, we generate the iterates in the table below.

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.0300	1.0065	1.0009	1.0001
$x_{2}^{(k)}$	0.0000	2.3272	2.0370	2.0036	2.0003	2.0000
$x_{3}^{(k)}$	0.0000	-0.9873	-1.0140	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Since

$$\frac{\left\|x^{(5)} - x^{(4)}\right\|_{\infty}}{\left\|x^{(5)}\right\|_{\infty}} = \frac{0.0008}{0.2000} = 4 \times 10^{-4}$$

 $x^{(5)}$ is accepted as a reasonable approximation to the solution.

Comment: Jacobi method for this example require twice the iterations for the same degree of accuracy. So the Gauss-Seidel method is superior to the Jacobi method. This is generally but not always true. There

are linear systems for which Jacobi method is convergent but not Gauss-Seidel and others for which Gauss-Seidel method converges and the Jacobi method does not.

Definition 1. Suppose $\tilde{x} \in \mathbb{R}^n$ is an approximation to the solution of the linear system defined by Ax = b. The residual vector for \tilde{x} with respect to this system is $r = b - A\tilde{x}$.

1.2 Successive Over Relaxation

Gauss-Seidel procedure can be modified as follows

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}} \tag{1.1}$$

for certain choices of positive ω reduces the norm of the residual vector and leads to significantly faster convergence. Where,

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)}$$

Methods involving equation (1.1) are called relaxation methods. For choices of ω with $0 < \omega < 1$, the procedures are called under-relaxation methods and can be used to obtain convergence of some systems that are not convergent by the Gauss-Seidel method. For choices of ω with $\omega > 1$, the procedures are called over-relaxation methods, which are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique.

These methods are called Successive Over-Relaxation (SOR) method and are particularly useful for solving the linear systems that occur in the numerical solution of certain partial-differential equations.

Note.

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right]$$

Example. The linear system Ax = b given by

$$4x_1 + 3x_2 = 24$$
$$3x_1 + 4x_2 - x_3 = 30$$
$$-4x_2 + 4x_3 = -24$$

has the solution $(3, 4, -5)^t$.

We want to solve the above system by Gauss-Seidel and SOR (with $\omega = 1.25$) method using $x^{(0)} = (1, 1, 1)^t$ for both methods.

Gauss-Seidel method:

$$x_1^{(k)} = -0.75x_2^{(k-1)} + 6$$

$$x_2^{(k)} = -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5$$

$$x_3^{(k)} = 0.25x_2^{(k)} - 6$$

SOR method with $\omega = 1.25$:

$$x_1^{(k)} = -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5$$

$$x_2^{(k)} = -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375$$

$$x_3^{(k)} = 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5$$

The first 7 iterations are listed in the tables below. To obtain 7 digit accuracy Gauss-Seidel needs 34 and SOR required 14 iterations.

\overline{k}	0	1	2	3	4	5	6	7
							3.0214577	
							3.9821186	
$x_3^{(k)}$	1	-5.046875	-5.0292969	-5.0183105	-5.0114441	-5.0071526	-5.0044703	-5.0027940

Table 1.1: Gauss-Seidel

\overline{k}	0	1	2	3	4	5	6	7
			2.6223145					
			3.9585266					
$x_3^{(k)}$	1	-6.6501465	-4.6004238	-5.0966863	-4.9734897	-5.0057135	-4.9982822	-5.0003486

Table 1.2: SOR method with $\omega = 1.25$

Note. There is no any general answer to know perfect choice of the values of ω for solving a linear system of equation.

For certain situations we can follow the following theorems:

Theorem 1.2.1 (Kahan). If $a_{ii} \neq 0$ for each i = 1, 2, ..., n, then $\rho(T_{\omega}) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem 1.2.2 (Ostrowski-Reich). If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $x^{(0)}$.

Theorem 1.2.3. If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$

with this choice of ω we have $\rho(T_{\omega}) = 1 - \omega$.

Problem 1.1 (H.W.). Find the first four iterations by Jacobi and Gauss-Seidel method using $\mathbf{x}^{(0)} = 0$, and check the relations

$$\frac{\|x^{(4)} - x^{(3)}\|_{\infty}}{\|x^{(4)}\|_{\infty}}$$

for the all systems.

 $3x_1 - x_2 + x_3 = 1$

1.
$$3x_1 + 6x_2 + 2x_3 = 0$$

 $3x_1 + 3x_2 + 7x_3 = 4$
 $10x_1 - x_2 = 9$
2. $-x_1 + 10x_2 - 2x_3 = 7$
 $-2x_2 + 10x_3 = 6$
 $10x_1 + 5x_2 = 6$
3. $5x_1 + 10x_2 - 4x_3 = 25$
 $-4x_2 + 8x_3 - x_4 = -11$
 $-x_3 + 5x_4 = -11$
 $4x_1 + x_2 - x_3 + x_4 = -2$
4. $-x_1 - x_2 + 5x_3 + x_4 = 0$

1.2.1 The SOR Method

 $x_1 - x_2 + x_3 + 3x_4 = 1$

Problem 1.2. Consider a linear system Ax = b, where

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix} \quad b = \begin{bmatrix} -1 \\ 7 \\ -7 \end{bmatrix}$$

- (i) Check that the SOR method with $\omega = 1.25$ of the relaxation parameter can be used to solve this system.
- (ii) Compute the first four iteration by the SOR method starting at the point $x^{(0)} = (0,0,0)^t$

Solution.

(i) Let us verify the sufficient condition for using the SOR method. We have to check if matrix A is symmetric, positive definite.

(spd): A is symmetric, so let us check positive definiteness:

$$det(3) = 3 > 0$$
, $det\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} = 8 > 0$, $det(A) = 20 > 0$

All the leading principal minors are positive and so the matrix A is positive definite. We know that for spd matrices the SOR method converges for values of the relaxation ω from the interval $0 < \omega < 2$.

Conclusion: The SOR method with the value $\omega = 1.25$ can be used to solve this system.

(ii) The iterations of the SOR method are easier to compute by elements than in the vector form. Write the system as equations:

$$3x_1 - x_2 + x_3 = -1$$
$$-x_1 + 3x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -7$$

First we write down the equations for the Gauss-Seidel (GS) iterations:

$$x_1^{(k+1)} = \frac{\left(-1 + x_2^{(k)} - x_3^{(k)}\right)}{3}$$

$$x_2^{(k+1)} = \frac{\left(7 + x_1^{(k+1)} + x_3^{(k)}\right)}{3}$$

$$x_3^{(k+1)} = \frac{\left(-7 - x_1^{(k+1)} + x_2^{(k+1)}\right)}{3}$$

Now multiply the RHS by the parameter $\omega = 1.25$ and add to it the vector $x^{(k)}$ from the previous iteration multiplied by the factor of $(1 - \omega)$:

$$x_1^{(k+1)} = (1 - \omega)x_1^{(k)} + \frac{\omega\left(-1 + x_2^{(k)} - x_3^{(k)}\right)}{3}$$
$$x_2^{(k+1)} = (1 - \omega)x_2^{(k)} + \frac{\omega\left(7 + x_1^{(k+1)} + x_3^{(k)}\right)}{3}$$
$$x_3^{(k+1)} = (1 - \omega)x_3^{(k)} + \frac{\omega\left(-7 - x_1^{(k+1)} + x_2^{(k+1)}\right)}{3}$$

For $k = 0, 1, 2, \ldots$ compute $x^{(k+1)}$ from these equations, starting by the first one.

Computation for k = 0:

$$x_1^{(1)} = (1 - \omega)x_1^{(0)} + \frac{\omega\left(-1 + x_2^{(0)} - x_3^{(0)}\right)}{3}$$

$$= (1 - 1.25) \times 0 + \frac{1.25(-1 + 0 - 0)}{3}$$

$$= -0.41667$$

$$x_2^{(1)} = (1 - \omega)x_2^{(0)} + \frac{\omega\left(7 + x_1^{(1)} + x_3^{(0)}\right)}{3} = 2.7431$$

$$x_3^{(1)} = (1 - \omega)x_3^{(0)} + \frac{\omega\left(-7 - x_1^{(1)} + x_2^{(1)}\right)}{3} = -1.6001$$

Similarly, the next three iterations are presented in the following table:

\overline{k}	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
2	1.4972	2.1880	-2.2288
3	1.0494	1.8782	-2.0141
4	0.9128	2.0007	-1.9723

Note. 1. The spectral radius $\rho(A)$ of a matrix A is defined by $\rho(A) = \max |\lambda|$, λ is an eigen value of A.

- 2. The $n \times n$ matrix A is said to be strictly diagonally dominant when $|a_{ii}| > \sum_{j=1 \neq i}^{n} |a_{ij}|$ holds for each i = 1, 2, ..., n.
- 3. A matrix A is positive definite if it is symmetric and if x'Ax > 0 for every n-dimensional column vector $x \neq 0$. Here,

$$x'Ax = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Theorem 1.2.4. If A is an $n \times n$ positive definite matrix, then

- (i) A is non-singular;
- (ii) $a_{ii} > 0$ for each i = 1, 2, ..., n;
- (iii) $\max_{1 \le k, j \le n} |a_{kj}| \le \max_{1 \le i \le n} |a_{ii}|;$
- (iv) $(a_{ij})^2 < a_{ii}a_{jj}$ for each $i \neq j$.

Theorem 1.2.5. A symmetric matrix A is positive definite iff each of its leading principal sub matrices has a positive determinant.

Example.
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$\det A_1 = \det \begin{bmatrix} 2 \end{bmatrix} = 2, \qquad \det A_2 = \det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 3 > 0, \qquad \det A_3 = \det A = 4 > 0$$

Problem 1.3 (H.W.). Find the first 3 iterations of the SOR method with $\omega = 1.1$ for the following linear systems, using $x^{(0)} = 0$:

$$3x_1 - x_2 + x_3 = 1$$

(i) $3x_1 + 6x_2 + 2x_3 = 0$

$$3x_1 + 3x_2 + 7x_3 = 4$$

$$10x_1 - x_2 = 9$$

(ii)
$$-x_1 + 10x_2 - 2x_3 = 7$$

 $-2x_2 + 10x_3 = 6$

$$4x_1 + x_2 - x_3 + x_4 = -2$$

(iv)
$$x_1 + 4x_2 - x_3 - x_4 = -1$$
$$-x_1 - x_2 + 5x_3 + x_4 = 0$$
$$x_1 - x_2 + x_3 + 3x_4 = 1$$