HW 2

1.6 Contractible sets and hence convex sets are connected.

Proof. Suppose not. Then there exists a contractible space X and a disconnection $X = U \cup V$. Let x be a point for which $1_X \simeq c_x$. WLOG $x \in U$. Let $F: X \times I \to X$ be a homotopy from 1_x to c_x .

Pick $y \in V$. Let f(t) = F(y,t). Then by considering $f(I) \cap U$ and $f(I) \cap V$, we see that f(I) is disconnected. Hence I is disconnected, a contradiction. \square

1.8

- (i) Give an example of a continuous image of a contractible space that is not contractible.
- (ii) Show that a retract of a contractible space is contractible.

Proof. For (i), the circle is the image of the line under the winding map.

For (ii), let X be contractible and $r: X \to Y$ be a retraction. Pick any $y \in Y$. Since X is contractible, there exists $x \in X$ and a homotopy $F: 1_X \simeq c_x$.

Define $G: Y \times I \to Y$ by $G = r \circ F$. Then G(y,0) = r(F(y,0)) = r(y) = y, and G(y,1) = r(F(y,1)) = r(x). Hence G is a homotopy from Y to $1_{r(x)}$.

1.9 If $f: X \to Y$ is nullhomotopic and if $g: Y \to Z$ is continuous, then $g \circ f$ is null-homotopic.

Proof. Since f is nullhomotopic there exists a homotopy $F: f \simeq c_x$ for some constant map $c_x: X \to Y$. Define $G: X \times I \to Z$ by $G = g \circ F$. Then G(x,0) = g(F(x,0)) = g(f(x)) and $G(x,1) = g(F(x,1)) = g(c_x)$ is a constant map. Thus $g \circ f$ is nullhomotopic.

1.10 Let $f: X \to Y$ be an identification, and let $g: Y \to Z$ be a continuous surjection. Then g is an identification iff gf is an identification.

Proof. Suppose g is an identification. Then gf is a continuous surjection. Suppose $U \subset Z$ with $(gf)^{-1}(U) = f^{-1}g^{-1}(U)$ open. Since f, g are identifications, we have $g^{-1}(U)$ is open and then U is open. Hence gf is an identification.

For the converse, suppose gf is an identification. Suppose $U \subset Z$ with $g^{-1}(U)$ open. Then $(gf)^{-1}(U) = f^{-1}g^{-1}(U)$ is open since f is continuous. Hence U is open since gf is an identification. Since g is already a continuous surjection, g is an identification.

1.11 Let X and Y be spaces with equivalence relations \sim and \square , respectively, and let $f: X \to Y$ be a continuous map preserving the relations (if $x \sim x'$, then $f(x) \square f(x')$). Prove that the induced map $\overline{f}: X/\sim \to Y/\square$ is continuous; moreover, if f is an identification, then so is \overline{f} .

Proof. Let ψ and π be the identification maps for \sim and \square , respectively. Suppose $U \subset Y/\square$ is open. Then $(\overline{f})^{-1}(U) = \psi f^{-1}\pi^{-1}(U)$ is open since ψ, π are identifications and f is continuous. Hence \overline{f} is continuous.

If f is an identification, then \overline{f} is surjection since f is a surjection. Suppose $(\overline{f})^{-1}(U) = \psi f^{-1}\pi^{-1}(U)$ is open. Then since ψ, f, π are identifications, we have that U is open. Hence, \overline{f} is an identification.