Continuity

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Continuous functions

Definition

A real valued function f(x) is said to be continuous at x = c if

- (i) f(c) is defined,
- (ii) $\lim_{x \to c} f(x)$ exists,
- (iii) $\lim_{x \to c} f(x) = f(c)$.

Example

Show that
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is continuous at 0.

Solution: Let $\epsilon > 0$. Then $|f(x) - f(0)| \le |x^2|$. So it is enough to choose $\delta = \sqrt{\epsilon}$.

Continuous functions

Theorem (Sequential criteria of continuity)

A function f is continuous at c if and only if for every sequence $x_n \to c$, we must have $f(x_n) \to f(c)$ as $n \to \infty$.

Example

Show that
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is continuous at 0.

Solution: We note that $|f(x)| \le |x^2|$. Therefore, $f(x_n) \to f(0)$ whenever $x_n \to 0$. This proves that f is continuous at x = 0.

Example

Show that
$$f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is not continuous at 0.

Solution: Choose $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$. Then $\lim_{n \to \infty} x_n = 0$ and $f(x_n) = \frac{1}{x_n} \to \infty$.

Continuous functions

Theorem

Suppose f and g are continuous at c. Then

- $f \pm g$ is also continuous at c.
- \bigcirc fg is continuous at c.
- |f| is also continuous at c and $\lim_{x \to c} |f(x)| = |f(c)|$.
- A function which is not continuous is called discontinuous function.

Properties of continuous functions

Theorem

Let f(x) be a continuous function on \mathbb{R} and let f(a)f(b) < 0 for some a, b. Then there exits $c \in (a,b)$ such that f(c) = 0.

Example

Show that $f(x) = x^2 - 2$ has at least one root in (1, 2).

Properties of Continuous Functions

Intermediate Value Theorem

Let f(x) be a continuous function on [a,b] and let f(a) < y < f(b). Then there exists $c \in (a,b)$ such that f(c) = y.

Remark

From the IVT, we can conclude that A continuous function assumes all values between its maximum and minimum.

Fixed point theorem

Let f(x) be a continuous function from [0,1] into [0,1]. Then show that there is a point $c \in [0,1]$ such that f(c) = c.

