

Low energy Electron Cooler for the NICA Booster

A. Bubley[#], M. Bryzgunov, V. Chekavinskiy, A.Goncharov, K. Gorchakov, I. Gusev, V. Panasyuk, V. Parkhomchuk, V. Reva, D. Senkov (BINP SB RAS), A.Smirnov (JINR, Dubna)

Main parameters of the system

Parameter	Value
Ion type	¹⁹⁷ Au ³¹⁺
Electron energy, E	1.5÷60 keV
Electron beam current, I	0.2÷1.0 A
Energy stability, ΔE/E	<10 ⁻⁵
Electron current stability, ΔI/I	<10 ⁻⁴
Longitudinal magnetic field, B	0.1÷0.2 T
Electron current loses, I _{leak} /I	<3·10 ⁻⁵
Inhomogeneity of magnetic field, $\Delta B/B$	<3·10 ⁻⁵
Transverse electron temperature, T	<0.3 eV
Vacuum pressure, P	≈10 ⁻¹¹ mbar

Cooling section

Homogeneity of magnetic field is very important for cooling force.

Solenoid consists of separate coils. Each coil can be rotated in two direction

Toroids

Electrostatic plates are used in toroid. Recuperation efficiency increases to

$$\frac{I_{leak}}{I} \approx 10^{-6}$$

$$F = \frac{mV^2}{R} = eE + e\frac{[V \times B]}{c} = const$$

E=0 magnet bending B=pc/eR
B=0 electrostatic bending E=pV/eR

Electron gun

The gun is based on construction from HV COSY cooler.

4-sector control electrode

Voltage is applied to one sector

Different values of magnetic field

Different regimes of gun work

Electron collector

BPMs

2 electrostatic bends shift beam in horizontal direction 2 times.

BPMs

Current-voltage characteristic of the gun

The rescale allows to compare measures with different U_{anode}.

Because of problems with cathode activation, emission ability is not enough for high current.

Comparison with COSY gun shows, that there is small difference in gun construction.

Electron beam recuperation

Dependence of leakage current on U_{grid} .

Dependence of recuperation efficiency on electron beam current. The value is $\approx 10^{-6}$.

Vacuum system

Ion – getter pup.

Titanium sublimation pump

NEG pup.

Influence of electron beam on vacuum

Vertical component of the magnetic field at different longitudinal field.

Vertical correction.

Residual field distribution

Mechanical adjustment system

Residual field compensation

In-vacuum measurements

High voltage system

Transformer: 5 kV, 15 kW. (right))

power supply: 60 kV 10 mA

Collector power supply

The transformer is based on UNICORE core.

The transformer also contains winding to feed power supplies which control gun and collector.

influence of the residual gases released during NEGs regeneration on oxide cathode

Thank you for your attention!

- ○ • Ufill=12.1 V
- □ □ Ufill=14 V
- ♦ Ufill=15 V
- $\triangle \triangle$ Ufill=11.9 V