$$15 = \sqrt{9 + 16 + 25} \sqrt{4 + 1 + 1} \cos(\theta)$$

$$0 = \cot^{-1} \left(\frac{15}{\sqrt{50}\sqrt{6}} \right) = \cot^{-1} \left(\frac{3}{\sqrt{12}} \right) = \cot^{-1} \left(\frac{3}{2\sqrt{3}} \right) = \cot^{-1} \left(\frac{\sqrt{3}}{2} \right) = \frac{11}{6}$$

(c)
$$A = \|\dot{a} \times \ddot{b}\| = \|\dot{a}\|\|\ddot{b}\|\sin(\theta) = \sqrt{50}\sqrt{6}\sin(\frac{\pi}{6})$$

= $10\sqrt{3}\frac{1}{2} = 5\sqrt{3}$

(d)
$$comp_{a}\vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|} = \frac{15}{\sqrt{50}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$

āxī is facing pointing upwards.

(a)
$$\vec{b} = \langle b_1, b_2, b_3 \rangle$$

$$0 = \vec{a} \cdot \vec{b} = \alpha b_1 - \alpha b_2 + 3 \alpha b_3 = \alpha (b_1 - b_2 + 3 b_3)$$

(b)
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \widehat{a} & \widehat{j} & \widehat{k} \\ \alpha & -\alpha & 3\alpha \\ 1 & 1 & 0 \end{vmatrix} = \langle -3\alpha, 3\alpha, 2\alpha \rangle$$

ter

$$\vec{v} = \vec{PQ}$$

Parametric
$$\begin{cases} x(t)=1-t \\ y(t)=2+t \end{cases}$$
 Equations
$$\begin{cases} z(t)=3-4t \\ z(t)=3-4t \end{cases}$$

Symmetric
$$\frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{-4}$$

$$\vec{r}(t) = \langle 1-t, 2+t, 3-4t \rangle$$
, $t \in \mathbb{R}$

#6
$$P(6,-1,3)$$
 , $\frac{x}{3} = y + 4 = \frac{7}{2}$

NEED: OPont /

@ Normal Vector/

Is Need two rectors "in" the plane.

$$\vec{V} = \langle 3, 1, 2 \rangle$$
 $Q(0, -4, 0)$

$$\vec{n} = \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \hat{k} \\ \vec{G} & \vec{3} & \vec{3} \\ \vec{3} & 1 & 2 \end{vmatrix} = \langle 3, -3, -3 \rangle$$

$$3(x-6)-3(y+1)-3(7-3)=0$$

NEED: @ Pont/

2 Vector/

Parametric
$$(x(t)=1+t)$$

Equations $(y(t)=0-t)$, $t \in \mathbb{R}$
 $(t)=1-t$

Symmetric $\frac{x-1}{1} = \frac{y-0}{-1} = \frac{z-1}{-1}$

Vector

 $\vec{n} = (1,0,1)$ x-y-z=2 $\vec{n} = (1,-1,-1)$

Clearly V, and V, are NOT PARALLEL!

$$2+t=3+5$$
 $3-2t=-4+5$ $1-3t=2-75$ $1+t=5$ 1

$$3-2t = -4 - 1 + t$$

$$8 = 3t$$

$$\frac{8}{3} = t$$

$$1 - 3\left(\frac{8}{3}\right)^{\frac{7}{2}} = 2 - 7\left(\frac{5}{3}\right)^{\frac{7}{3}}$$
$$-7 \neq -\frac{29}{3}$$

SKEW!

#9
$$f(t) = \left\langle e^t, h(t+1), \frac{1}{t-1} \right\rangle$$

$$\frac{1}{t-1}$$
: $(-\infty, 1) \cup (1, \infty)$

5/5

(b)
$$\vec{r}'(t) = \left\langle e^{t}, \frac{1}{t+1}, \frac{-1}{(t-1)^{2}} \right\rangle$$

$$\vec{T}(0) = \left\langle \frac{1}{13}, \frac{1}{13}, \frac{-1}{13} \right\rangle$$