

Calculs d'intégrales

Fiche d'Arnaud Bodin, soigneusement relue par Chafiq Benhida

1 Utilisation de la définition

Exercice 1

Soit f la fonction définie sur [0,4] par

$$f(x) = \begin{cases} -1 & \text{si } x = 0\\ 1 & \text{si } 0 < x < 1\\ 3 & \text{si } x = 1\\ -2 & \text{si } 1 < x \le 2\\ 4 & \text{si } 2 < x \le 4. \end{cases}$$

- 1. Calculer $\int_0^4 f(t) dt$.
- 2. Soit $x \in [0,4]$, calculer $F(x) = \int_0^x f(t) dt$.
- 3. Montrer que F est une fonction continue sur [0,4]. La fonction F est-elle dérivable sur [0,4]?

Correction ▼ Vidéo ■ [002081]

Exercice 2

Soient les fonctions définies sur \mathbb{R} ,

$$f(x) = x$$
, $g(x) = x^2$ et $h(x) = e^x$,

Justifier qu'elles sont intégrables sur tout intervalle fermé borné de \mathbb{R} . En utilisant les sommes de Riemann, calculer les intégrales $\int_0^1 f(x)dx$, $\int_1^2 g(x)dx$ et $\int_0^x h(t)dt$.

Indication ▼ Correction ▼ Vidéo ■ [002082]

Exercice 3

Soit $f : [a,b] \to \mathbb{R}$ une fonction continue sur [a,b] (a < b).

- 1. On suppose que $f(x) \ge 0$ pour tout $x \in [a,b]$, et que $f(x_0) > 0$ en un point $x_0 \in [a,b]$. Montrer que $\int_a^b f(x) dx > 0$. En déduire que : «si f est une fonction continue positive sur [a,b] telle que $\int_a^b f(x) dx = 0$ alors f est identiquement nulle».
- 2. On suppose que $\int_a^b f(x)dx = 0$. Montrer qu'il existe $c \in [a,b]$ tel que f(c) = 0.
- 3. Application : on suppose que f est une fonction continue sur [0,1] telle que $\int_0^1 f(x)dx = \frac{1}{2}$. Montrer qu'il existe $d \in [0,1]$ tel que f(d) = d.

Indication ▼ Correction ▼ Vidéo ■ [002085]

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} et $F(x) = \int_0^x f(t)dt$. Répondre par vrai ou faux aux affirmations suivantes :

- 1. F est continue sur \mathbb{R} .
- 2. F est dérivable sur \mathbb{R} de dérivée f.
- 3. Si f est croissante sur \mathbb{R} alors F est croissante sur \mathbb{R} .
- 4. Si f est positive sur \mathbb{R} alors F est positive sur \mathbb{R} .
- 5. Si f est positive sur \mathbb{R} alors F est croissante sur \mathbb{R} .
- 6. Si f est T-périodique sur \mathbb{R} alors F est T-périodique sur \mathbb{R} .
- 7. Si f est paire alors F est impaire.

Correction ▼

Vidéo 📕

[002091]

2 Calculs de primitives

Exercice 5

Calculer les primitives suivantes par intégration par parties.

- 1. $\int x^2 \ln x dx$
- 2. $\int x \arctan x dx$
- $\int (\ln x)^2 dx$ 3. $\int \ln x dx$ puis
- 4. $\int \cos x \exp x dx$

Indication \blacktriangledown

Correction ▼

Vidéo 📕

[006864]

Exercice 6

Calculer les primitives suivantes par changement de variable.

- 1. $\int (\cos x)^{1234} \sin x \, dx$
- 2. $\int \frac{1}{x \ln x} dx$
- 3. $\int \frac{1}{3 + \exp(-x)} dx$
- 4. $\int \frac{1}{\sqrt{4x-x^2}} dx$

Indication ▼ Correction ▼

Vidéo 📕

[006865]

Exercice 7

Calculer les primitives suivantes, en précisant si nécessaire les intervalles de validité des calculs :

- 1. $\int \frac{x+2}{x^2-3x-4} dx$
- $2. \int \frac{x-1}{x^2+x+1} \, dx$
- 3. $\int \sin^8 x \cos^3 x dx$
- 4. $\int \frac{1}{\sin x} dx$

Indication ▼

Correction ▼

Vidéo

[006866]

3 Calculs d'intégrales

Exercice 8

Calculer les intégrales suivantes :

- 1. $\int_0^{\frac{\pi}{2}} x \sin x dx$ (intégration par parties)
- 2. $\int_0^1 \frac{e^x}{\sqrt{\rho^x+1}} dx$ (à l'aide d'un changement de variable simple)

- 3. $\int_0^1 \frac{1}{(1+x^2)^2} dx$ (changement de variable $x = \tan t$)
- 4. $\int_0^1 \frac{3x+1}{(x+1)^2} dx$ (décomposition en éléments simples)
- 5. $\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \arctan x \, dx$ (changement de variable $u = \frac{1}{x}$)

Indication ▼ Correction ▼ Vidéo ■

[006867]

Exercice 9

Calculer les intégrales suivantes :

$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx \quad \text{ et } \quad \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} dx.$$

Indication ▼

Correction ▼

Vidéo 📕

[002095]

Exercice 10 Intégrales de Wallis

Soit
$$I_n = \int_0^{\frac{\pi}{2}} (\sin x)^n dx$$
 pour $n \in \mathbb{N}$.

- 1. Montrer que $I_{n+2} = \frac{n+1}{n+2}I_n$. Expliciter I_n . En déduire $\int_{-1}^{1} (1-x^2)^n dx$.
- 2. Montrer que $(I_n)_n$ est positive décroissante. Montrer que $I_n \sim I_{n+1}$
- 3. Simplifier $I_n \cdot I_{n+1}$. Montrer que $I_n \sim \sqrt{\frac{\pi}{2n}}$. En déduire $\frac{1 \cdot 3 \cdots (2n+1)}{2 \cdot 4 \cdots (2n)} \sim 2\sqrt{\frac{n}{\pi}}$.

Indication \mathbf{V}

Correction ▼

[002096]

Exercice 11

Soit
$$I_n = \int_0^1 \frac{x^n}{1+x} dx$$
.

- 1. En majorant la fonction intégrée, montrer que $\lim_{n\to+\infty} I_n = 0$.
- 2. Calculer $I_n + I_{n+1}$
- 3. Déterminer $\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \right)$.

Indication \blacktriangledown

Correction ▼

Vidéo

[002097]

Applications : calculs d'aires, calculs de limites

Exercice 12

Calculer l'aire de la région délimitée par les courbes d'équation $y = \frac{x^2}{2}$ et $y = \frac{1}{1+x^2}$.

Indication \bigvee

Correction ▼

Vidéo

[002099]

Exercice 13

Calculer l'aire intérieure d'une ellipse d'équation :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Indications. On pourra calculer seulement la partie de l'ellipse correspondant à $x \ge 0$, $y \ge 0$. Puis exprimer y en fonction de x. Enfin calculer une intégrale.

Indication ▼

Correction ▼

Vidéo

[006863]

Exercice 14

Calculer la limite des suites suivantes :

1.
$$u_n = n \sum_{k=0}^{n-1} \frac{1}{k^2 + n^2}$$

2.
$$v_n = \prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)^{\frac{1}{n}}$$

Indication ▼ Correction ▼ Vidéo ■ [002100]

Indication pour l'exercice 2

Les fonctions continues ne seraient-elles pas intégrables ?

Il faut se souvenir de ce que vaut la somme des n premiers entiers, la somme des carrés des n premiers entiers et la somme d'une suite géométrique. La formule générale pour les sommes de Riemann est que $\int_a^b f(x)dx$ est la limite (quand $n \to +\infty$) de

$$S_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$$

Indication pour l'exercice 3 \(\text{\(\)}

- 1. Revenir à la définition de la continuité en x_0 en prenant $\varepsilon = \frac{f(x_0)}{2}$ par exemple.
- 2. Soit f est tout le temps de même signe (et alors utiliser la première question), soit ce n'est pas le cas (et alors utiliser un théorème classique...).
- 3. On remarquera que $\int_0^1 f(x) dx \frac{1}{2} = \int_0^1 (f(x) x) dx$.

Indication pour l'exercice 5

- 1. Pour $\int x^2 \ln x \, dx$ poser $v' = x^2$, $u = \ln x$.
- 2. Pour $\int x \arctan x \, dx$ poser v' = x et $u = \arctan x$.
- 3. Pour les deux il faut faire une intégration par parties avec v' = 1.
- 4. Pour $\int \cos x \exp x dx$ il faut faire deux intégrations par parties.

Indication pour l'exercice 6 ▲

- 1. $\int \cos^{1234} x \sin x dx = -\frac{1}{1235} \cos^{1235} x + c$ (changement de variable $u = \cos x$)
- 2. $\int \frac{1}{x \ln x} dx = \ln |\ln x| + c$ (changement de variable $u = \ln x$)
- 3. $\int \frac{1}{3 + \exp(-x)} dx = \frac{1}{3} \ln(3 \exp x + 1) + c \text{ (changement de variable } u = \exp x)$
- 4. $\int \frac{1}{\sqrt{4x-x^2}} dx = \arcsin\left(\frac{1}{2}x-1\right) + c$ (changement de variable $u = \frac{1}{2}x-1$)

Indication pour l'exercice 7

- 1. $\int \frac{x+2}{x^2-3x-4} dx = -\frac{1}{5} \ln|x+1| + \frac{6}{5} \ln|x-4| + c$ (décomposition en éléments simples)
- 2. $\int \frac{x-1}{x^2+x+1} dx = \frac{1}{2} \ln|x^2+x+1| \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}} \left(x+\frac{1}{2}\right)\right) + c$
- 3. $\int \sin^8 x \cos^3 x \, dx = \frac{1}{9} \sin^9 x \frac{1}{11} \sin^{11} x + c$
- 4. $\int \frac{1}{\sin x} dx = \frac{1}{2} \ln \left| \frac{1 \cos x}{1 + \cos x} \right| + c = \ln \left| \tan \frac{x}{2} \right| + c$ (changement de variable $u = \cos x$ ou $u = \tan \frac{x}{2}$)
- 5. $\int \frac{3-\sin x}{2\cos x+3\tan x} dx = -\frac{1}{5} \ln|2-\sin x| + \frac{7}{5} \ln|1+2\sin x| + c$ (changement de variable $u = \sin x$)

Indication pour l'exercice 8 ▲

- 1. $\int_0^{\frac{\pi}{2}} x \sin x dx = 1$ (intégration par parties $v' = \sin x$, u = x)
- 2. $\int_0^1 \frac{e^x}{\sqrt{e^x+1}} dx = 2\sqrt{e+1} 2\sqrt{2}$ (à l'aide du changement de variable $u = e^x$)
- 3. $\int_0^1 \frac{1}{(1+x^2)^2} dx = \frac{\pi}{8} + \frac{1}{4} \text{ (changement de variable } x = \tan t, dx = (1+\tan^2 t)dt \text{ et } 1 + \tan^2 t = \frac{1}{\cos^2 t}$
- 4. $\int_0^1 \frac{3x+1}{(x+1)^2} dx = 3 \ln 2 1$ (décomposition en éléments simples de la forme $\frac{3x+1}{(x+1)^2} = \frac{\alpha}{x+1} + \frac{\beta}{(x+1)^2}$)

5

5. $\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \arctan x \, dx = \frac{3\pi}{4}$ (changement de variables $u = \frac{1}{x}$ et $\arctan x + \arctan \frac{1}{x} = \pm \frac{\pi}{2}$)

Indication pour l'exercice 9 A

$$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx = 1 \text{ (changement de variables } t = \tan \frac{x}{2} \text{)}.$$

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\sin x} dx = \frac{\pi}{2} - 1 \text{ (utiliser la précédente)}.$$

Indication pour l'exercice 10 ▲

- 1. Faire une intégration par parties afin d'exprimer I_{n+2} en fonction de I_n . Pour le calcul explicite on distinguera le cas des n pairs et impairs.
- 2. Rappel : $u_n \sim v_n$ est équivalent à $\frac{u_n}{v_n} \to 1$. Utiliser la décroissance de I_n pour encadrer $\frac{I_{n+1}}{I_n}$.

Indication pour l'exercice 11 ▲

- 1. Majorer par x^n .
- 2.
- 3. On pourra calculer $(I_0 + I_1) (I_1 + I_2) + (I_2 + I_3) \cdots$

Indication pour l'exercice 12 ▲

Un dessin ne fait pas de mal ! Il faut ensuite résoudre l'équation $\frac{x^2}{2} = \frac{1}{x^2+1}$ puis calculer deux intégrales.

Indication pour l'exercice 13 ▲

Il faut se ramener au calcul de $\int_0^a b\sqrt{1-\frac{x^2}{a^2}}dx$.

Indication pour l'exercice 14 ▲

On pourra essayer de reconnaître des sommes de Riemann, puis calculer des intégrales. Pour le produit composer par la fonction ln, afin de transformer le produit en une somme.

Correction de l'exercice 1

- 1. On trouve ∫₀⁴ f(t) dt = +7. Il faut tout d'abord tracer le graphe de cette fonction. Ensuite la valeur d'une intégrale ne dépend pas de la valeur de la fonction en un point, c'est-à-dire ici les valeurs en x = 0, x = 1, x = 2 n'ont aucune influence sur l'intégrale. Ensuite on revient à la définition de ∫₀⁴ f(t) dt : pour la subdivision de [0,4] définie par {x₀ = 0,x₁ = 1,x₂ = 2,x₃ = 3,x₄ = 4}, on trouve la valeur de l'intégrale (ici le sup et l'inf sont atteints et égaux pour cette subdivision et toute subdivision plus fine). Une autre façon de faire est considérer que f est une fonction en escalier (en «oubliant» les accidents en x = 0, x = 1, x = 2) dont on sait calculer l'intégrale.
- 2. C'est la même chose pour $\int_0^x f(t) dt$, mais au lieu d'aller jusqu'à 4 on s'arrête à x, on trouve

$$F(x) = \begin{cases} x & \text{si } 0 \leqslant x \leqslant 1\\ 3 - 2x & \text{si } 1 < x \leqslant 2\\ 4x - 9 & \text{si } 2 < x \leqslant 4. \end{cases}$$

3. Les seuls points à discuter pour la continuité sont les points x = 1 et x = 2, mais les limites à droite et à gauche de F sont égales en ces points donc F est continue. Par contre F n'est pas dérivable en x = 1 (les dérivées à droite et à gauche sont distinctes), F n'est pas non plus dérivable en x = 2.

Correction de l'exercice 2 A

Les fonctions sont continues donc intégrables!

- 1. En utilisant les sommes de Riemann, on sait que $\int_0^1 f(x)dx$ est la limite (quand $n \to +\infty$) de $\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})$. Notons $S_n = \frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})$. Alors $S_n = \frac{1}{n}\sum_{k=0}^{n-1} \frac{k}{n} = \frac{1}{n^2}\sum_{k=0}^{n-1} k = \frac{1}{n^2}\frac{n(n-1)}{2}$. On a utilisé que la somme des entiers de 0 à n-1 vaut $\frac{n(n-1)}{2}$. Donc S_n tend vers $\frac{1}{2}$. Donc $\int_0^1 f(x)dx = \frac{1}{2}$.
- 2. Même travail : $\int_{1}^{2} g(x) dx$ est la limite de $S'_{n} = \frac{2-1}{n} \sum_{k=0}^{n-1} g(1+k\frac{2-1}{n}) = \frac{1}{n} \sum_{k=0}^{n-1} (1+\frac{k}{n})^{2} = \frac{1}{n} \sum_{k=0}^{n-1} (1+2\frac{k}{n}+\frac{k^{2}}{n^{2}})$. En séparant la somme en trois nous obtenons : $S'_{n} = \frac{1}{n} (n+\frac{2}{n} \sum_{k=0}^{n-1} k + \frac{1}{n^{2}} \sum_{k=0}^{n-1} k^{2}) = 1 + \frac{2}{n^{2}} \frac{n(n-1)}{2} + \frac{1}{n^{3}} \frac{(n-1)n(2n-1)}{6}$. Donc à la limite on trouve $S'_{n} \to 1 + 1 + \frac{1}{3} = \frac{7}{3}$. Donc $\int_{1}^{2} g(x) dx = 7/3$. Remarque : on a utilisé que la somme des carrés des entiers de 0 à n-1 est $\frac{(n-1)n(2n-1)}{6}$.
- 3. Même chose pour $\int_0^x h(t)dt$ qui est la limite de $S_n'' = \frac{x}{n} \sum_{k=0}^{n-1} g(\frac{kx}{n}) = \frac{x}{n} \sum_{k=0}^{n-1} e^{\frac{kx}{n}} = \frac{x}{n} \sum_{k=0}^{n-1} (e^{\frac{x}{n}})^k$. Cette dernière somme est la somme d'une suite géométrique (si $x \neq 0$), donc $S_n'' = \frac{x}{n} \frac{1 (e^{\frac{x}{n}})^n}{1 e^{\frac{x}{n}}} = \frac{x}{n} \frac{1 e^{x}}{1 e^{\frac{x}{n}}} = (1 e^x) \frac{\frac{x}{n}}{1 e^{\frac{x}{n}}}$ qui tend vers $e^x 1$. Pour obtenir cette dernière limite on remarque qu'en posant $u = \frac{x}{n}$ on a $\frac{x}{1 e^{\frac{x}{n}}} = -1/\frac{e^u 1}{u}$ qui tend vers $e^x 1$ lorsque $e^x 1$ lorsque $e^x 1$ (ce qui est équivalent à $e^x 1$).

Correction de l'exercice 3 A

1. Écrivons la continuité de f en x_0 avec $\varepsilon = \frac{f(x_0)}{2} > 0$: il existe $\delta > 0$ tel que pour tout $x \in [x_0 - \delta, x_0 + \delta]$ on ait $|f(x) - f(x_0)| \le \varepsilon$. Avec notre choix de ε cela donne pour $x \in [x_0 - \delta, x_0 + \delta]$ que $f(x) \ge \frac{f(x_0)}{2}$. Pour évaluer $\int_a^b f(x) dx$ nous la coupons en trois morceaux par linéarité de l'intégrale :

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0} - \delta} f(x) dx + \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx + \int_{x_{0} + \delta}^{b} f(x) dx.$$

Comme f est positive alors par positivité de l'intégrale $\int_a^{x_0-\delta} f(x)dx \geqslant 0$ et $\int_{x_0+\delta}^b f(x)dx \geqslant 0$. Pour le terme du milieu on a $f(x)\geqslant \frac{f(x_0)}{2}$ donc $\int_{x_0-\delta}^{x_0+\delta} f(x)dx\geqslant \int_{x_0-\delta}^{x_0+\delta} \frac{f(x_0)}{2}dx=2\delta\frac{f(x_0)}{2}$ (pour la dernière équation on calcule juste l'intégrale d'une fonction constante!). Le bilan de tout cela est que $\int_a^b f(x)dx\geqslant 2\delta\frac{f(x_0)}{2}>0$.

Donc pour une fonction continue et positive f, si elle est strictement positive en un point alors $\int_a^b f(x) dx > 0$. Par contraposition pour une fonction continue et positive si $\int_a^b f(x) dx = 0$ alors f est identiquement nulle.

- 2. Soit f est tout le temps positive, soit elle tout le temps négative, soit elle change (au moins un fois) de signe. Dans le premier cas f est identiquement nulle par la première question, dans le second cas c'est pareil (en appliquant la première question à -f). Pour le troisième cas le théorème des valeurs intermédiaires affirme qu'il existe c tel que f(c) = 0.
- 3. Posons g(x) = f(x) x. Alors $\int_0^1 g(x) dx = \int_0^1 \left(f(x) x \right) dx = \int_0^1 f(x) dx \frac{1}{2} = 0$. Donc par la question précédente, g étant continue, il existe $d \in [0,1]$ tel que g(d) = 0, ce qui est équivalent à f(d) = d.

Correction de l'exercice 4 A

- 1. Vrai.
- 2. Vrai.
- 3. Faux ! Attention aux valeurs négatives par exemple pour f(x) = x alors F est décroissante sur $]-\infty,0]$ et croissante sur $[0,+\infty[$.
- 4. Faux. Attention aux valeurs négatives par exemple pour $f(x) = x^2$ alors F est négative sur $]-\infty,0]$ et positive sur $[0,+\infty[$.
- 5. Vrai.
- 6. Faux. Faire le calcul avec la fonction $f(x) = 1 + \sin(x)$ par exemple.
- 7. Vrai.

Correction de l'exercice 5

1. $\int x^2 \ln x dx$

Considérons l'intégration par parties avec $u = \ln x$ et $v' = x^2$. On a donc $u' = \frac{1}{x}$ et $v = \frac{x^3}{3}$. Donc

$$\int \ln x \times x^2 dx = \int uv' = \left[uv\right] - \int u'v$$

$$= \left[\ln x \times \frac{x^3}{3}\right] - \int \frac{1}{x} \times \frac{x^3}{3} dx$$

$$= \left[\ln x \times \frac{x^3}{3}\right] - \int \frac{x^2}{3} dx$$

$$= \frac{x^3}{3} \ln x - \frac{x^3}{9} + c$$

2. $\int x \arctan x dx$

Considérons l'intégration par parties avec $u = \arctan x$ et v' = x. On a donc $u' = \frac{1}{1+x^2}$ et $v = \frac{x^2}{2}$. Donc

$$\int \arctan x \times x \, dx = \int uv' = \left[uv \right] - \int u'v$$

$$= \left[\arctan x \times \frac{x^2}{2} \right] - \int \frac{1}{1+x^2} \times \frac{x^2}{2} \, dx$$

$$= \left[\arctan x \times \frac{x^2}{2} \right] - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2} \right) \, dx$$

$$= \frac{x^2}{2} \arctan x - \frac{1}{2}x + \frac{1}{2} \arctan x + c$$

$$= \frac{1}{2} (1+x^2) \arctan x - \frac{1}{2}x + c$$

3. $\int \ln x dx$ puis $\int (\ln x)^2 dx$

Pour la primitive $\int \ln x \, dx$, regardons l'intégration par parties avec $u = \ln x$ et v' = 1. Donc $u' = \frac{1}{x}$ et v = x.

$$\int \ln x dx = \int uv' = [uv] - \int u'v$$

$$= [\ln x \times x] - \int \frac{1}{x} \times x dx$$

$$= [\ln x \times x] - \int 1 dx$$

$$= x \ln x - x + c$$

Par la primitive $\int (\ln x)^2 dx$ soit l'intégration par parties définie par $u = (\ln x)^2$ et v' = 1. Donc $u' = 2\frac{1}{x}\ln x$ et v = x.

$$\int (\ln x)^2 dx = \int uv' = [uv] - \int u'v$$
$$= [x(\ln x)^2] - 2 \int \ln x dx$$
$$= x(\ln x)^2 - 2(x\ln x - x) + c$$

Pour obtenir la dernière ligne on a utilisé la primitive calculée précédemment.

4. Notons $I = \int \cos x \exp x dx$.

Regardons l'intégration par parties avec $u = \exp x$ et $v' = \cos x$. Alors $u' = \exp x$ et $v = \sin x$. Donc

$$I = \int \cos x \exp x \, dx = \left[\sin x \exp x \right] - \int \sin x \exp x \, dx$$

Si l'on note $J = \int \sin x \exp x dx$, alors on a obtenu

$$I = \left[\sin x \exp x \right] - J \tag{1}$$

Pour calculer J on refait une deuxième intégration par parties avec $u = \exp x$ et $v' = \sin x$. Ce qui donne

$$J = \int \sin x \exp x dx = \left[-\cos x \exp x \right] - \int -\cos x \exp x dx = \left[-\cos x \exp x \right] + I$$

Nous avons ainsi une deuxième équation :

$$J = \left[-\cos x \exp x \right] + I \tag{2}$$

Repartons de l'équation (1) dans laquelle on remplace J par la formule obtenue dans l'équation (2).

$$I = [\sin x \exp x] - J = [\sin x \exp x] - [-\cos x \exp x] - I$$

D'où

$$2I = \left[\sin x \exp x\right] + \left[\cos x \exp x\right]$$

Ce qui nous permet de calculer notre intégrale :

$$I = \frac{1}{2}(\sin x + \cos x) \exp x + c.$$

1. $\int (\cos x)^{1234} \sin x \, dx$

En posant le changement de variable $u = \cos x$ on a $x = \arccos u$ et $du = -\sin x dx$ et on obtient

$$\int (\cos x)^{1234} \sin x \, dx = \int u^{1234} (-du) = -\frac{1}{1235} u^{1235} + c = -\frac{1}{1235} (\cos x)^{1235} + c$$

Cette primitive est définie sur \mathbb{R} .

2. $\int \frac{1}{x \ln x} dx$

En posant le changement de variable $u = \ln x$ on a $x = \exp u$ et $du = \frac{dx}{x}$ on écrit :

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{\ln x} \frac{dx}{x} = \int \frac{1}{u} du = \ln|u| + c = \ln|\ln x| + c$$

Cette primitive est définie sur]0,1[ou sur $]1,+\infty[$ (la constante peut être différente pour chacun des intervalles).

3. $\int \frac{1}{3 + \exp(-x)} dx$

Soit le changement de variable $u = \exp x$. Alors $x = \ln u$ et $du = \exp x dx$ ce qui s'écrit aussi $dx = \frac{du}{u}$.

$$\int \frac{1}{3 + \exp(-x)} dx = \int \frac{1}{3 + \frac{1}{u}} \frac{du}{u} = \int \frac{1}{3u + 1} du = \frac{1}{3} \ln|3u + 1| + c = \frac{1}{3} \ln(3 \exp x + 1) + c$$

Cette primitive est définie sur \mathbb{R} .

 $4. \int \frac{1}{\sqrt{4x-x^2}} dx$

Le changement de variable a pour but de se ramener à quelque chose de connu. Ici nous avons une fraction avec une racine carrée au dénominateur et sous la racine un polynôme de degré 2. Ce que l'on sait intégrer c'est

$$\int \frac{1}{\sqrt{1-u^2}} du = \arcsin u + c,$$

car on connaît la dérivée de la fonction $\arcsin(t)$ c'est $\arcsin'(t) = \frac{1}{\sqrt{1-t^2}}$. On va donc essayer de s'y ramener. Essayons d'écrire ce qu'il y a sous la racine, $4x - x^2$ sous la forme $1 - t^2 : 4x - x^2 = 4 - (x - 2)^2 = 4\left(1 - \left(\frac{1}{2}x - 1\right)^2\right)$. Donc il est naturel d'essayer le changement de variable $u = \frac{1}{2}x - 1$ pour lequel $4x - x^2 = 4(1 - u^2)$ et dx = 2du.

$$\int \frac{1}{\sqrt{4x-x^2}} dx = \int \frac{1}{\sqrt{4(1-u^2)}} 2du = \int \frac{du}{\sqrt{1-u^2}} = \arcsin u + c = \arcsin \left(\frac{1}{2}x - 1\right) + c$$

La fonction $\arcsin u$ est définie et dérivable pour $u \in]-1,1[$ alors cette primitive est définie sur $x \in]0,4[$.

Correction de l'exercice 7

 $1. \int \frac{x+2}{x^2-3x-4} \, dx$

Pour calculer cette intégrale on décompose la fraction $\frac{x+2}{x^2-3x-4}$ en éléments simples, le dénominateur n'étant pas irréductible. On sait que cette fraction rationnelle se décompose avec des dénominateurs de degré 1 et des constantes aux numérateurs :

$$\frac{x+2}{x^2-3x-4} = \frac{x+2}{(x+1)(x-4)} = \frac{\alpha}{x+1} + \frac{\beta}{x-4}$$

Il ne reste plus qu'à calculer α et β à l'aide de votre méthode favorite :

$$\frac{x+2}{x^2-3x-4} = \frac{-\frac{1}{5}}{x+1} + \frac{\frac{6}{5}}{x-4}$$

Chacune de ces fractions est du type $\frac{1}{u}$ qui s'intègre en $\ln |u|$, d'où :

$$\int \frac{x+2}{x^2 - 3x - 4} \, dx = -\frac{1}{5} \int \frac{1}{x+1} \, dx + \frac{6}{5} \int \frac{1}{x-4} \, dx = -\frac{1}{5} \ln|x+1| + \frac{6}{5} \ln|x-4| + c$$

Cette primitive est définie sur $\mathbb{R} \setminus \{-1,4\}$

2.
$$\int \frac{x-1}{x^2+x+1} dx$$

Le dénominateur $u = x^2 + x + 1$ est irréductible, la fraction est donc déjà décomposée en éléments simples. On fait apparaître artificiellement une fraction du type $\frac{u'}{u}$ qui s'intégrera à l'aide du logarithme :

$$\frac{x-1}{x^2+x+1} = \frac{1}{2} \frac{2x+1}{x^2+x+1} - \frac{3}{2} \frac{1}{x^2+x+1}$$

Chacune de ces fractions s'intègre, la première est du type $\frac{u'}{u}$ dont une primitive sera $\ln |u|$, la deuxième sera du type $\frac{1}{1+v^2}$ dont une primitive est arctan v.

En détails cela donne :

$$\int \frac{x-1}{x^2+x+1} dx = \int \frac{1}{2} \frac{2x+1}{x^2+x+1} dx - \frac{3}{2} \int \frac{1}{x^2+x+1} dx$$

$$= \frac{1}{2} \left[\ln|x^2+x+1| \right] - \frac{3}{2} \int \frac{1}{\frac{3}{4}} \frac{1}{1+\left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right)^2} dx$$

$$= \frac{1}{2} \left[\ln|x^2+x+1| \right] - 2 \int \frac{1}{1+v^2} \frac{\sqrt{3}}{2} dv \quad \text{en posant } v = \frac{2}{\sqrt{3}} \left(x + \frac{1}{2} \right)$$

$$= \frac{1}{2} \left[\ln|x^2+x+1| \right] - \sqrt{3} \left[\arctan v \right]$$

$$= \frac{1}{2} \ln|x^2+x+1| - \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right) + c$$

Cette primitive est définie sur \mathbb{R} .

3. $\int \sin^8 x \cos^3 x dx$

Lorsque l'on a une fonction qui s'exprime comme un polynôme (ou une fraction rationnelle), on peut tester un des changements de variable $u = \cos x$, $u = \sin x$ ou $u = \tan x$. Soit vous essayez les trois, soit vous appliquez les règles de Bioche. Ici, si l'on change x en $\pi - x$ alors $\sin^8 x \cos^3 x dx$ devient $\sin^8 (\pi - x) \cos^3 (\pi - x) d(\pi - x) = \sin^8 x (-\cos^3 x) (-dx) = \sin^8 x \cos^3 x dx$. Donc le changement de variable adéquat est $u = \sin x$.

Posons $u = \sin x$, $du = \cos x dx$.

$$\int \sin^8 x \cos^3 x \, dx = \int \sin^8 x \cos^2 x (\cos x \, dx) = \int \sin^8 x (1 - \sin^2 x) (\cos x \, dx)$$
$$= \int u^8 (1 - u^2) \, du = \int u^8 \, du - \int u^{10} \, du$$
$$= \left[\frac{1}{9} u^9 \right] - \left[\frac{1}{11} u^{11} \right] = \frac{1}{9} \sin^9 x - \frac{1}{11} \sin^{11} x + c$$

Cette primitive est définie sur \mathbb{R} .

4. $\int \frac{1}{\sin x} dx$

Comme $\frac{1}{\sin(-x)}(-dx) = \frac{1}{\sin x} dx$ la règle de Bioche nous indique le changement de variable $u = \cos x$. Donc $du = -\sin x dx$.

Donc

$$\int \frac{1}{\sin x} dx = \int \frac{-1}{\sin^2 x} (-\sin x dx)$$
$$= \int \frac{-1}{1 - \cos^2 x} (-\sin x dx)$$
$$= -\int \frac{1}{1 - u^2} du$$

On décompose cette fraction en éléments simples : $\frac{1}{1-u^2} = \frac{1}{2} \frac{1}{1+u} + \frac{1}{2} \frac{1}{1-u}$. Donc

$$\int \frac{1}{\sin x} dx = -\frac{1}{2} \int \frac{1}{1+u} du - \frac{1}{2} \int \frac{1}{1-u} du$$

$$= -\frac{1}{2} \left[\ln|1+u| \right] - \frac{1}{2} \left[\ln|1-u| \right]$$

$$= -\frac{1}{2} \ln|1+\cos x| - \frac{1}{2} \ln|1-\cos x| + c$$

Cette primitive est définie sur tout intervalle du type $]k\pi,(k+1)\pi[$, $k\in\mathbb{Z}$. Elle peut se réécrire sous différentes formes :

$$\int \frac{1}{\sin x} dx = \frac{1}{2} \ln \frac{1 - \cos x}{1 + \cos x} + c = \ln \left| \tan \frac{x}{2} \right| + c$$

Un autre changement de variable possible aurait été $t = \tan \frac{x}{2}$.

 $5. \int \frac{3-\sin x}{2\cos x+3\tan x} \, dx$

La règle de Bioche nous indique le changement de variable $u = \sin x$, $du = \cos x dx$.

$$\int \frac{3 - \sin x}{2 \cos x + 3 \tan x} dx = \int \frac{3 - \sin x}{2 \cos x + 3 \tan x} \frac{1}{\cos x} (\cos x dx)$$

$$= \int \frac{3 - \sin x}{2 \cos^2 x + 3 \sin x} (\cos x dx)$$

$$= \int \frac{3 - \sin x}{2 - 2 \sin^2 x + 3 \sin x} (\cos x dx)$$

$$= \int \frac{3 - u}{2 - 2u^2 + 3u} du$$

Occupons nous de la fraction que l'on réduit en éléments simples :

$$\frac{3-u}{2-2u^2+3u} = \frac{u-3}{(u-2)(2u+1)} = \frac{\alpha}{u-2} + \frac{\beta}{2u+1}$$

On trouve $\alpha = -\frac{1}{5}$ et $\beta = \frac{7}{5}$.

Ainsi

$$\int \frac{3 - \sin x}{2 \cos x + 3 \tan x} dx = \int \frac{\alpha du}{u - 2} + \int \frac{\beta du}{2u + 1}$$
$$= \alpha \ln|u - 2| + \beta \ln|2u + 1| + c$$
$$= -\frac{1}{5} \ln|2 - \sin x| + \frac{7}{5} \ln|1 + 2 \sin x| + c$$

Cette primitive est définie pour les x vérifiant $1+2\sin x>0$ donc sur tout intervalle du type $\left]-\frac{\pi}{6}+2k\pi,\frac{7\pi}{6}+2k\pi\right[$, $k\in\mathbb{Z}$.

Correction de l'exercice 8 A

1. $\int_0^{\frac{\pi}{2}} x \sin x dx$

Par intégration par parties avec $u = x, v' = \sin x$:

$$\int_0^{\frac{\pi}{2}} x \sin x dx = \left[uv \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} u'v$$

$$= \left[-x \cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x dx$$

$$= \left[-x \cos x \right]_0^{\frac{\pi}{2}} + \left[\sin x \right]_0^{\frac{\pi}{2}}$$

$$= 0 - 0 + 1 - 0$$

$$= 1$$

 $2. \int_0^1 \frac{e^x}{\sqrt{e^x+1}} dx$

Posons le changement de variable $u = e^x$ avec $x = \ln u$ et $du = e^x dx$. La variable x varie de x = 0 à x = 1, donc la variable $u = e^x$ varie de u = 1 à u = e.

$$\int_{0}^{1} \frac{e^{x} dx}{\sqrt{e^{x} + 1}} dx = \int_{1}^{e} \frac{du}{\sqrt{u + 1}}$$
$$= \left[2\sqrt{u + 1}\right]_{1}^{e}$$
$$= 2\sqrt{e + 1} - 2\sqrt{2}$$

3. $\int_0^1 \frac{1}{(1+x^2)^2} dx$

Posons le changement de variable $x = \tan t$, alors on a $dx = (1 + \tan^2 t)dt$, $t = \arctan x$ et on sait aussi que $1 + \tan^2 t = \frac{1}{\cos^2 t}$. Comme x varie de x = 0 à x = 1 alors t doit varier de $t = \arctan 0 = 0$ à $t = \arctan 1 = \frac{\pi}{4}$.

$$\int_0^1 \frac{1}{(1+x^2)^2} dx = \int_0^{\frac{\pi}{4}} \frac{1}{(1+\tan^2 t)^2} (1+\tan^2 t) dt$$

$$= \int_0^{\frac{\pi}{4}} \frac{dt}{1+\tan^2 t}$$

$$= \int_0^{\frac{\pi}{4}} \cos^2 t \, dt$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{4}} (\cos(2t) + 1) \, dt$$

$$= \frac{1}{2} \left[\frac{1}{2} \sin(2t) + t \right]_0^{\frac{\pi}{4}}$$

$$= \frac{1}{4} + \frac{\pi}{8}$$

4. $\int_0^1 \frac{3x+1}{(x+1)^2} \, dx$

Commençons par décomposer la fraction en éléments simples :

$$\frac{3x+1}{(x+1)^2} = \frac{\alpha}{x+1} + \frac{\beta}{(x+1)^2} = \frac{3}{x+1} - \frac{2}{(x+1)^2}$$

où l'on a trouvé $\alpha = 3$ et $\beta = -2$. La première est une intégrale du type $\int \frac{1}{u} = [\ln |u|]$ et la seconde $\int \frac{1}{u^2} = [-\frac{1}{u}]$.

$$\int_0^1 \frac{3x+1}{(x+1)^2} dx = 3 \int_0^1 \frac{1}{x+1} dx - 2 \int_0^1 \frac{1}{(x+1)^2} dx$$
$$= 3 \left[\ln|x+1| \right]_0^1 - 2 \left[-\frac{1}{x+1} \right]_0^1$$
$$= 3 \ln 2 - 0 + 1 - 2$$
$$= 3 \ln 2 - 1$$

5. Notons $I = \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \arctan x \, dx$.

Posons le changement de variable $u = \frac{1}{x}$ et on a $x = \frac{1}{u}$, $dx = -\frac{du}{u^2}$. Alors x variant de $x = \frac{1}{2}$ à x = 2, u varie lui de u = 2 à $u = \frac{1}{2}$ (l'ordre est important!).

$$I = \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^{2}} \right) \arctan x \, dx$$

$$= \int_{\frac{1}{2}}^{\frac{1}{2}} \left(1 + u^{2} \right) \arctan \frac{1}{u} \left(-\frac{du}{u^{2}} \right)$$

$$= \int_{\frac{1}{2}}^{2} \left(\frac{1}{u^{2}} + 1 \right) \arctan \frac{1}{u} \, du$$

$$= \int_{\frac{1}{2}}^{2} \left(\frac{1}{u^{2}} + 1 \right) \left(\frac{\pi}{2} - \arctan u \right) \, du \quad \text{car} \quad \arctan u + \arctan \frac{1}{u} = \frac{\pi}{2}$$

$$= \frac{\pi}{2} \int_{\frac{1}{2}}^{2} \left(\frac{1}{u^{2}} + 1 \right) \, du - \int_{\frac{1}{2}}^{2} \left(\frac{1}{u^{2}} + 1 \right) \arctan u \, du$$

$$= \frac{\pi}{2} \left[-\frac{1}{u} + u \right]_{\frac{1}{2}}^{2} - I$$

$$= \frac{3\pi}{2} - I$$

Conclusion : $I = \frac{3\pi}{4}$.

Correction de l'exercice 9 ▲

1. Notons $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx$. Le changement de variable $t = \tan \frac{x}{2}$ transforme toute fraction rationnelle de sinus et cosinus en une fraction rationnelle en t (que l'on sait résoudre !).

En posant $t = \tan \frac{x}{2}$ on a $x = \arctan \frac{t}{2}$ ainsi que les formules suivantes :

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
, $\sin x = \frac{2t}{1 + t^2}$, $\tan x = \frac{2t}{1 - t^2}$, $dx = \frac{2dt}{1 + t^2}$

Ici, on a seulement à remplacer $\sin x$. Comme x varie de x=0 à $x=\frac{\pi}{2}$ alors $t=\tan\frac{x}{2}$ varie de t=0 à t=1.

$$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sin x} dx = \int_0^1 \frac{1}{1 + \frac{2t}{1 + t^2}} \frac{2dt}{1 + t^2}$$
$$= \int_0^1 \frac{2}{1 + t^2 + 2t} dt = \int_0^1 \frac{2}{(1 + t)^2} dt$$
$$= \left[\frac{-2}{1 + t} \right]_0^1 = 1$$

2. Notons $J = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} dx$. Alors

$$I+J=\int_0^{\frac{\pi}{2}}\frac{1}{1+\sin x}dx+\int_0^{\frac{\pi}{2}}\frac{\sin x}{1+\sin x}dx=\int_0^{\frac{\pi}{2}}\frac{1+\sin x}{1+\sin x}dx=\int_0^{\frac{\pi}{2}}1\,dx=\left[x\right]_0^{\frac{\pi}{2}}=\frac{\pi}{2}.$$

Donc $J = \frac{\pi}{2} - I = \frac{\pi}{2} - 1$.

Correction de l'exercice 10

1. (a)

$$I_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+1} x \cdot \sin x \, dx.$$

En posant $u(x) = \sin^{n+1} x$ et $v'(x) = \sin x$ et en intégrant par parties nous obtenons

$$I_{n+2} = \left[-\cos x \sin^{n+1} x \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \cos^2 x \sin^n x \, dx$$
$$= 0 + (n+1) \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) \sin^n x \, dx$$
$$= (n+1)I_n - (n+1)I_{n+2}.$$

Donc $(n+2)I_{n+2} = (n+1)I_n$. Conclusion

$$I_{n+2} = \frac{n+1}{n+2}I_n.$$

(b) Nous avons donc une formule de récurrence pour I_n qui s'exprime en fonction de I_{n-2} qui a son tour s'exprime en fonction de I_{n-4} , etc. On se ramène ainsi à l'intégrale de I_0 (si n est pair) ou bien de I_1 (si n est impair). Un petit calcul donne $I_0 = \frac{\pi}{2}$ et $I_1 = 1$. Par récurrence nous avons donc pour n pair :

$$I_n = \frac{1 \cdot 3 \cdots (n-1)}{2 \cdot 4 \cdots n} \frac{\pi}{2},$$

et pour n impair :

$$I_n = \frac{2 \cdot 4 \cdots (n-1)}{1 \cdot 3 \cdots n}.$$

(c) Pour calculer $\int_{-1}^{1} (1-x^2)^n dx$ nous allons nous ramener à une intégrale de Wallis. Avec le changement de variable $x = \cos u$, on montre assez facilement que :

$$\int_{-1}^{1} (1 - x^{2})^{n} dx = 2 \int_{0}^{1} (1 - x^{2})^{n} dx$$

$$= 2 \int_{\frac{\pi}{2}}^{0} (1 - \cos^{2} u)^{n} (-\sin u du) \quad \text{avec } x = \cos u$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} u du$$

$$= 2I_{2n+1}$$

2. (a) Sur $[0, \frac{\pi}{2}]$ la fonction sinus est positive donc I_n est positive. De plus, sur ce même intervalle $\sin x \le 1$ donc $(\sin x)^{n+1} \le (\sin x)^n$. Cela implique

15

$$I_{n+1} = \int_0^{\frac{\pi}{2}} (\sin x)^{n+1} dx \le \int_0^{\frac{\pi}{2}} (\sin x)^n dx = I_n.$$

- (b) Comme (I_n) est décroissante alors $I_{n+2} \leqslant I_{n+1} \leqslant I_n$, en divisant le tout par $I_n > 0$ nous obtenons $\frac{I_{n+2}}{I_n} \leqslant \frac{I_{n+1}}{I_n} \leqslant 1$. Mais nous avons déjà calculé $\frac{I_{n+2}}{I_n} = \frac{n+1}{n+2}$ qui tend vers 1 quand n tend vers l'infini. Donc $\frac{I_{n+1}}{I_n}$ tend vers +1 donc $I_n \sim I_{n+1}$.
- 3. (a) Nous allons calculer $I_n \cdot I_{n+1}$. Supposons par exemple que n est pair, alors par les formules obtenues précédemment :

$$I_n \times I_{n+1} = \frac{1 \cdot 3 \cdots (n-1)}{2 \cdot 4 \cdots n} \frac{\pi}{2} \times \frac{2 \cdot 4 \cdots n}{1 \cdot 3 \cdots (n+1)} = \frac{\pi}{2} \times \frac{1}{n+1}.$$

Si *n* est impair nous obtenons la même fraction. On en déduit que pour tout $n: I_n \cdot I_{n+1} = \frac{\pi}{2(n+1)}$

(b) Maintenant

$$I_n^2 = I_n \cdot I_n \sim I_n \cdot I_{n+1} = \frac{\pi}{2(n+1)} \sim \frac{\pi}{2n},$$

donc

$$I_n \sim \sqrt{\frac{\pi}{2n}}$$
.

(c) $\frac{1 \cdot 3 \cdots (2n+1)}{2 \cdot 4 \cdots (2n)} = I_{2n} \cdot (2n+1) \cdot \frac{2}{\pi} \sim \sqrt{\frac{\pi}{4n}} \cdot (2n+1) \cdot \frac{2}{\pi} \sim 2\sqrt{\frac{n}{\pi}}.$

Correction de l'exercice 11

1. Pour x > 0 on a $\frac{x^n}{1+x} \leqslant x^n$, donc

$$I_n \leqslant \int_0^1 x^n dx = \left[\frac{1}{n+1} x^{n+1} \right]_0^1 = \frac{1}{n+1}.$$

Donc $I_n \to 0$ lorsque $n \to +\infty$

- 2. $I_n + I_{n+1} = \int_0^1 x^n \frac{1+x}{1+x} dx = \int_0^1 x^n dx = \frac{1}{n+1}$.
- 3. Soit $S_n = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Par la question précédente nous avons $S_n = (I_0 + I_1) (I_1 + I_2) + (I_2 + I_3) \dots + (I_{n-1} + I_n)$. Mais d'autre part cette somme étant télescopique cela conduit à $S_n = I_0 \pm I_n$. Alors la limite de S_n et donc de $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}$ (quand $n \to +\infty$) est I_0 car $I_n \to 0$. Un petit calcul montre que $I_0 = \int_0^1 \frac{dx}{1+x} = \ln 2$. Donc la somme alternée des inverses des entiers converge vers $\ln 2$.

Correction de l'exercice 12 ▲

La courbe d'équation $y = x^2/2$ est une parabole, la courbe d'équation $y = \frac{1}{1+x^2}$ est une courbe en cloche. Dessinez les deux graphes. Ces deux courbes délimitent une région dont nous allons calculer l'aire. Tout d'abord ces deux courbes s'intersectent aux points d'abscisses x = +1 et x = -1: cela se devine sur le graphique puis se vérifie en résolvant l'équation $\frac{x^2}{2} = \frac{1}{x^2+1}$.

Nous allons calculer deux aires :

- L'aire \mathcal{A}_1 de la région sous la parabole, au-dessus de l'axe des abscisses et entre les droites d'équation (x = -1) et (x = +1). Alors

$$\mathscr{A}_1 = \int_{-1}^{+1} \frac{x^2}{2} dx = \left[\frac{x^3}{6} \right]_{-1}^{+1} = \frac{1}{3}.$$

- L'aire \mathcal{A}_2 de la région sous la cloche, au-dessus de l'axe des abscisses et entre les droites d'équation (x = -1) et (x = +1). Alors

$$\mathcal{A}_2 = \int_{-1}^{+1} \frac{1}{x^2 + 1} dx = [\arctan x]_{-1}^{+1} = \frac{\pi}{2}.$$

$$\mathscr{A} = \mathscr{A}_2 - \mathscr{A}_1 = \frac{\pi}{2} - \frac{1}{3}.$$

Correction de l'exercice 13 A

Calculons seulement un quart de l'aire : la partie du quadrant $x \ge 0, y \ge 0$. Pour ce quadrant les points de l'ellipse ont une abscisse x qui vérifie $0 \le x \le a$. Et la relation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ donne $y = b\sqrt{1 - \frac{x^2}{a^2}}$.

Nous devons donc calculer l'aire sous la courbe d'équation $y = b\sqrt{1 - \frac{x^2}{a^2}}$, au-dessus de l'axe des abscisses et entre les droites d'équations (x = 0) et (x = a) (faites un dessin!).

Cette aire vaut donc : $\int_0^a b\sqrt{1-\frac{x^2}{a^2}}dx$. Nous allons calculer cette intégrale à l'aide du changement de variable $x=a\cos u$ qui donne $dx=-a\sin u du$. La variable x variant de x=0 à x=a alors la nouvelle variable u varie du $u=\frac{\pi}{2}$ (pour lequel on a bien $a\cos\frac{\pi}{2}=0$) à $u=\frac{\pi}{2}$ (pour lequel on a bien $a\cos 0=a$). Autrement dit la fonction $u\mapsto a\cos u$ est une bijection de $\left[\frac{\pi}{2},0\right]$ vers $\left[0,a\right]$.

$$\int_0^a b\sqrt{1 - \frac{x^2}{a^2}} dx = \int_{\frac{\pi}{2}}^0 b\sqrt{1 - \cos^2 u} (-a\sin u \, du) \quad \text{en posant } x = a\cos u$$

$$= \int_{\frac{\pi}{2}}^0 b\sin u (-a\sin u \, du)$$

$$= ab \int_0^{\frac{\pi}{2}} \sin^2 u \, du$$

$$= ab \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2u)}{2} \, du$$

$$= ab \left[\frac{u}{2} - \frac{\sin(2u)}{4} \right]_0^{\frac{\pi}{2}}$$

$$= \frac{\pi ab}{4}$$

L'aire d'un quart d'ellipse est donc $\frac{\pi ab}{4}$.

Conclusion : l'aire d'une ellipse est πab , où a et b sont les longueurs des demi-axes. Si a=b=r on retrouve que l'aire d'un disque de rayon r est πr^2 .

Correction de l'exercice 14

1. Soit

$$u_n = n \sum_{k=0}^{n-1} \frac{1}{k^2 + n^2} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1 + \left(\frac{k}{n}\right)^2}.$$

En posant $f(x) = \frac{1}{1+x^2}$ nous venons d'écrire la somme de Riemann correspondant à $\int_0^1 f(x) dx$. Cette intégrale se calcule facilement :

$$\int_0^1 f(t)dt = \int_0^1 \frac{dx}{1+x^2} = \left[\arctan x\right]_0^1 = \frac{\pi}{4}.$$

La somme de Riemann u_n convergeant vers $\int_0^1 f(x)dx$ nous venons de montrer que (u_n) converge vers $\frac{\pi}{4}$.

2. Soit $v_n = \prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)^{\frac{1}{n}}$, notons

$$w_n = \ln v_n = \sum_{k=1}^n \ln \left(\left(1 + \frac{k^2}{n^2} \right)^{\frac{1}{n}} \right) = \frac{1}{n} \sum_{k=1}^n \ln \left(1 + \frac{k^2}{n^2} \right).$$

En posant $g(x) = \ln(1+x^2)$ nous reconnaissons la somme de Riemann correspondant à $I = \int_0^1 g(x) dx$. Calculons cette intégrale :

$$I = \int_0^1 g(x)dx = \int_0^1 \ln(1+x^2)dx$$

$$= \left[x\ln(1+x^2)\right]_0^1 - \int_0^1 x \frac{2x}{1+x^2}dx \quad \text{par intégration par parties}$$

$$= \ln 2 - 2 \int_0^1 1 - \frac{1}{1+x^2}dx$$

$$= \ln 2 - 2 \left[x - \arctan x\right]_0^1$$

$$= \ln 2 - 2 + \frac{\pi}{2}.$$

Nous venons de prouver que $w_n = \ln v_n$ converge vers $I = \ln 2 - 2 + \frac{\pi}{2}$, donc $v_n = \exp w_n$ converge vers $\exp(\ln 2 - 2 + \frac{\pi}{2}) = 2e^{\frac{\pi}{2} - 2}$. Bilan (v_n) a pour limite $2e^{\frac{\pi}{2} - 2}$.