

Universidade Federal de Sergipe Departamento de Computação Programa de Pós-Graduação em Ciência da Computação Disciplina: Visão Computacional Orientador: Dr. Daniel Oliveira Dantas Mestrando: Artur Santos Nascimento

Índice

- 1. Introdução
 - a. Objetivo
 - b. Contextualização
 - c. Estudos que ajudaram
- 2. Metodologia
 - a. O Dataset
 - b. Pré-Processamento
 - c. Classificação
 - d. Segmentação
 - i. Métrica Intersection over Union (IoU)
 - e. Treinamento
 - f. Sistema de execução
- 3. Resultados
- 4. Conclusões

1. INTRODUÇÃO

Introdução a. Objetivo

- Segmentar imagens de ultrassom
 - Tireoide completa

Introdução a. Objetivo

- Classificar nódulos
 - o Maligno
 - o Benigno
 - Classificação TI-RADS (não é necessário)
 - 1: Negativo;
 - 2: Positivo, benigno;
 - 3: Positivo, benigno, sem características suspeitas;
 - 4A: Positivo, uma característica, baixa suspeita;
 - 4B: Positivo, média suspeita, 2 características suspeitas;
 - 4C: suspeita moderada, 3 ou 4 características suspeitas;
 - 5: Positivo, alta suspeita, 5 características suspeitas;
 - 6: Positivo, maligno comprovado e conhecido.

1. Introdução b. contextualização

- Tireoide
 - Aspecto gelatinoso
 - Produz hormônios
 - Metabolismo
 - Tiroxina (T4)
 - Tri-iodotironina (T3)
 - TSH
 - Hipotiroidismo e Hipertiroidismo
 - Nódulos na tireoide
 - Câncer
 - Remoção

S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S. X. Li, D. Ni, and T. Wang, "Deep learning in medical ultrasound analysis: A review," Engineering, vol. 5, no. 2, pp. 261 – 275, 2019. [Online]

PRÓS

- Diversas técnicas de segmentação;
- Segmentações envolvendo tireóide;
- Estudos que relacionam nódulos de tireóide com nódulos em mama:
- Estudos que relacionam classificação de nódulos de tireóide com nódulos de próstata.

CONTRAS

- Apenas dois estudos envolvendo segmentação de tireóide
 - Apenas aos nódulos;
 - Nódulos já conhecidos como malignos;
 - Ponto de obtenção semelhante.

S. Liu, Y. Wang, X. Yang, B. Lei, L. Liu, S. X. Li, D. Ni, and T. Wang, "Deep learning in medical ultrasound analysis: A review," Engineering, vol. 5, no. 2, pp. 261 – 275, 2019. [Online]

J. Chen, H. You, and K. Li, "A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images," Computer Methods and Programs in Biomedicine, vol. 185, p. 105329, 2020. [Online].

PRÓS

- 13 estudos apenas com segmentação de tireoide.
- Classifica os parâmetros utilizados para segmentação da tireoide
- Mostra que métodos usando Deep Learning ou Machine Learning são os mais promissores para o caso deste estudo.

CONTRAS

- Os estudos levam em consideração exclusivamente ou formato, ou contorno ou a posição da tireoide.
- Datasets homogêneos
- Estudo encontrado não descreve bem a CNN.

O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," CoRR, vol. abs/1505.04597, 2015. [Online].

F. Milletari, N. Navab, and S. Ahmadi, "V-net: Fully convolutional neural networks for volumetric medical image segmentation," CoRR, vol. abs/1606.04797, 2016. [Online].

A. Lou, S. Guan, and M. Loew, "Dc-unet: Rethinking the u-net architecture with dual channel efficient cnn for medical images segmentation,"

PRÓS

- Criadas pensando em imageamento médico
- Alta adesão na comunidade científica

- G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, "Self-normalizing neural networks," in Advances in neural information processing systems, 2017, pp. 971–980.
- S. loffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", 2015.
 - PRÓS
 - Propõe que seja feita normalização dos estímulos entre as camadas convolucionais.
 - Ativador SELU
 - Camada de Normalização

2. METODOLOGIA

2. Metodologia a. O Dataset

Metodologiab. Pré-processamento

- Contrast-Limited Adaptative
 Histogram Equalization (CLAHE)
- Redimensionamento e escala

Metodologiac. Classificação

- Redes Neurais utilizadas
 - o VGG16
 - o VGG19
 - MobileNet
 - MobileNetV2
 - GoogleNet
 - InceptionV3
 - Inception-ResNetV2 (InceptionV4)
 - ResNet101V2
- Resultados foram comparados

2. Metodologia d. Segmentação [1/6]

- Redes Neurais utilizadas
 - o U-Net
 - VGG16+Unet
 - o DC-UNet
 - MultiResNet-UNet
- Resultados foram comparados

2. Metodologia d. Segmentação [2/6]

U-Net

- Fases contração e expansão
- Substitui pooling por upsample
- Muitos canais no upsampling
- O contexto ausente é extrapolado espelhando a imagem de entrada.

2. Metodologia d. Segmentação [3/6]

- VGG16+U-Net
 - Expansão do U-Net

2. Metodologia d. Segmentação [4/6]

- MultiResNet-UNet
 - Especialização da UNet

2. Metodologia d. Segmentação [5/6]

- DC-UNet
 - Especialização da MultiResNet-UNet

2. Metodologiad. Segmentação [6/6]i. Intersection over Union (IoU)

- É a divisão entre a interseção e a união de duas áreas
- Assuma:
 - A = Mascara
 - o B = Predição

Metodologiae. Treinamento

- Compilador Adam
- Parada Prematura (EarlyStopping)
 - o 10 epochs sem evolução
- Salva estado da rede
 - A cada *epoch*, se tiver melhorado *loss* ou *acc*.
- 10% do dataset separado para evaluation
 - validation_split=0.1

Metodologia f. Sistema de execução

Hardware

- o AMD Ryzen 7 2700X @ 3.70Ghz [8/16]
- o RAM 16GB DDR4 @ 2400Mhz
- NVIDIA GeForce GTX 1660 Super 6GB GDDR6
- Motherboard Asus Prime B350-PLUS

Software

- Ubuntu 20.02 LTS 65bits
 - Update [03/07/2020]
- Python 3.8.5
- TensorFlow 2.3.0
 - Versão para GPU
- o CUDA 11.1
- o cuDNN 8.0
- TensorRT 7.0

Rede Neural	Epochs	Accuracy final	Loss Final
VGG16	16	0,555555582046508	0,68769490718841500
VGG19	16	0,555555582046508	0,68761032819747900
<u>MobileNet</u>	<u>14</u>	<u>0,657777786254882</u>	<u>0,63968139886856000</u>
MobileNetV2	14	0,533333361148834	0,69500839710235600
InceptionV3	26	0,649999976158142	0,64381855726242000
Inception-ResNetV2	13	0,538888871669769	0,69902861118316600
ResNet101V2	23	0,618888914585113	0,65847283601760800

CLASSIFICAÇÃO, TABELA

Rede Neural	Epochs	Mean IoU final	Loss Final
U-Net	30	0,453261166810989	0,29353949427604600
<u>VGC16+UNet</u>	<u>49</u>	<u>0,453655689954757</u>	<u>0,08626227825880050</u>
DC-UNet	20	0,453261166810989	0,32426497340202300
MultiRes-UNet	13	0,453261166810989	0,32428786158561700

ALGUMAS SEGMENTAÇÕES

SEGMENTAÇÕES COM ALTERAÇÕES NO MODELO U-Net

SELU

3. CONCLUSÕES

4. CONCLUSÕES

- A natureza do dataset dificultou o trabalho das redes neurais empregadas
- VGG16+UNet se mostrou a melhor para segmentação
 - Diferença de menos de 0,1% para os demais
- MobileNet teve melhor resultado para classificação
 - o InceptionV3 está menos de 1% atrás no MobileNet.
 - ResNet101V2 está 3% atrás do InceptionV3.
- Trabalhos futuros
 - Revisão sobre segmentação e classificação com uso de datasets heterogêneos
 - o Buscar pela abordagem vencedora do desafio e aplicar com conjunto com a revisão

OBRIGADO!

ABERTO A PERGUNTAS.