Prova scritta di Calcolo Scientifico

Udine, 9 luglio 2019

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, e_{\min}, e_{\max})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi t, e_{max} , e_{min} in modo che $e_{\text{max}} = e_{\text{min}} + 2$, realmin = 1/32 e realmax = 62.
 - Quanti sono i numeri di F?
 - Definisci i numeri denormalizzati. Quanti sono i numeri denormalizzati relativi a F?
 - Definisci in generale la precisione di macchina u e determina quella di \mathcal{F} .
 - Sia $x=(1.\overline{0111})_2$ e $y=(11.\overline{0111})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F},\,\tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{x}fl(+)\tilde{y}\in\mathcal{F}$.
 - Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
- 2. Si vuole calcolare la funzione y = f(x).
 - Definisci l'errore inerente e il concetto di condizionamento.
 - Studia il condizionamento della funzione $f(x) = \sqrt{x^2 1}$ al variare di x nel campo di esistenza della funzione.
 - Definisci l'errore algoritmico e il concetto di stabilità.
 - Assumi che √x sia ottenuto con un errore relativo maggiorato dalla precisione di macchina. Studia la stabilità dell'algoritmo al variare di x..
- 3. Sia $f(x) = -\frac{1}{4}x^4 + x^3 4x + 4$.
 - Disegna il grafico di f. Determina le radici $\alpha, \beta, \cos \alpha < \beta$.
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -1.5$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
 - Studia la convergenza a β del metodo di Newton. La successione ottenuta con $x_0 = 1$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.

Sia $g(x) = x - \frac{f(x)}{m}$. Verifica che α, β sono punti fissi di g.

- Sia m=32. Studia la convergenza ad α del metodo iterativo $x_{k+1}=g(x_k), k=0,1,\ldots$ La successione ottenuta con $x_0=-1.5$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- Sia m=-32. Studia la convergenza a β del metodo iterativo $x_{k+1}=g(x_k), k=0,1,\ldots$ La successione ottenuta con $x_0=1$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- Definisci il concetto di ordine di convergenza per una generica successione $x_k \to \alpha$ per $k \to +\infty$.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} -3 & \alpha & -2 \\ \alpha & 1 & -1 \\ -2 & -1 & 0 \end{array} \right).$$

- Calcola la fattorizzazione LU di A. Per quale scelta del parametri α esiste tale fattorizzazione?
- Disegna il grafico della funzione $\alpha \to ||A||_1$.
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro α il metodo di Gauss con il pivot parziale al primo passo scambia la prima con la seconda riga di A?
- Nota la fattorizzazione PA = LU con quali algoritmi risolvi in generale il sistema lineare Ax = b? Qual' è il costo computazionale?
- 5. Sia $f(x) = 3\log_2(x^2)$. Dati i punti $P_0 = (1/4, f(1/4)), P_1 = (1/2, f(1/2)), P_2 = (1, f(1))$.
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x) p(x) e determina una limitazione di $\max_{x \in [1/4,1]} |f(x) p(x)|$.
 - Dato l' ulteriore punto $P_3=(2,f(2))$, determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei tre punti P₀, P₁, P₂ nel senso dei minimi quadrati.
 - Determina il polinomio r di primo grado di miglior approssimazione dei tre punti P_1, P_2, P_3 nel senso dei minimi quadrati.
- 6. Si vuole risolvere il sistema lineare Ax = b..
 - ullet Scrivi la pseudocodifica del metodo di eliminazione di Gauss senza pivot parziale per calcolare x.
 - Modifica la pseudocodifica del metodo di eliminazione di Gauss per implementare la tecnica del pivot parziale in maniera efficiente.
 - Proponi un algoritmo efficiente per calcolare un generico polinomio $p_n(x) = \sum_{i=0}^n a_i x^i$ in un punto x assegnato ed analizza la sua complessità computazionale.