# Principal Component Analysis Made Simple: Eigenvalues and Eigenvectors

#### 1. Introduction

This document demonstrates Principal Component Analysis (PCA), a key method in machine learning for dimensionality reduction, using linear algebra concepts of eigenvalues and eigenvectors. It focuses on the mathematical process of finding principal components to project high-dimensional data into a lower-dimensional space while preserving variance.

Using an example of predicting a student's grade based on hours studied and practice problems solved, we will show the PCA process with calculations, eigenvalue/eigenvector computations, and visualizations. The content aligns with the topic 'Linear Algebra in Machine Learning'.

#### 2. PCA Overview

PCA is a technique to reduce the dimensionality of data while retaining most of its variance. It transforms the data into a new coordinate system defined by principal components, which are directions (eigenvectors) of maximum variance, scaled by their importance (eigenvalues).

For our example, we have data with two features:

- $x_1$ : hours studied
- $x_2$ : practice problems solved

Our goal is to reduce this 2D data to 1D by finding the principal component using eigenvalues and eigenvectors of the data's covariance matrix.

#### 3. Variance and Covariance

Variance measures how much a feature varies, and covariance measures how two features vary together. PCA finds directions (eigenvectors) where the data has the most variance, indicated by eigenvalues.

The covariance matrix for two features  $x_1$  and  $x_2$  is:

$$\mathbf{C} = \begin{bmatrix} \operatorname{Var}(x_1) & \operatorname{Cov}(x_1, x_2) \\ \operatorname{Cov}(x_2, x_1) & \operatorname{Var}(x_2) \end{bmatrix}$$

where:

- $Var(x_i) = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x}_i)^2$
- $Cov(x_1, x_2) = \frac{1}{n} \sum_{i=1}^{n} (x_{1i} \bar{x}_1)(x_{2i} \bar{x}_2)$

# 4. Eigenvalues and Eigenvectors

The principal components are the eigenvectors of the covariance matrix, and their corresponding eigenvalues indicate the amount of variance they capture. For a matrix  $\mathbf{C}$ , we solve:

$$\mathbf{C}\mathbf{v} = \lambda\mathbf{v}$$

where:

- v: eigenvector
- $\lambda$ : eigenvalue

The eigenvector with the largest eigenvalue is the first principal component, capturing the most variance.

# 5. Example Dataset

Here is our data (hours studied, practice problems solved, and grade for reference):

| Hours Studied $(x_1)$ | Practice Problems $(x_2)$ | Grade $(y)$ |
|-----------------------|---------------------------|-------------|
| 1                     | 2                         | 2.1         |
| 2                     | 3                         | 2.9         |
| 3                     | 5                         | 4.2         |

We'll use only  $x_1$  and  $x_2$  for PCA to reduce from 2D to 1D. The grade (y) is included for context but not used in PCA calculations.

# 6. Step-by-Step PCA Calculation

### Step 1: Center the Data

Subtract the mean of each feature to center the data around the origin:

$$\bar{x}_1 = \frac{1+2+3}{3} = 2, \quad \bar{x}_2 = \frac{2+3+5}{3} = \frac{10}{3} \approx 3.333$$

Centered data:

$$(1-2, 2-3.333) = (-1, -1.333)$$
  
 $(2-2, 3-3.333) = (0, -0.333)$   
 $(3-2, 5-3.333) = (1, 1.667)$ 

# Step 2: Compute the Covariance Matrix

Calculate variances and covariance:

$$Var(x_1) = \frac{(-1)^2 + 0^2 + 1^2}{3} = \frac{1 + 0 + 1}{3} = \frac{2}{3} \approx 0.667$$

$$Var(x_2) = \frac{(-1.333)^2 + (-0.333)^2 + (1.667)^2}{3} = \frac{1.777 + 0.111 + 2.778}{3} = \frac{4.666}{3} \approx 1.555$$

$$Cov(x_1, x_2) = \frac{(-1)(-1.333) + (0)(-0.333) + (1)(1.667)}{3} = \frac{1.333 + 0 + 1.667}{3} = \frac{3}{3} = 1$$

Covariance matrix:

$$\mathbf{C} = \begin{bmatrix} 0.667 & 1\\ 1 & 1.555 \end{bmatrix}$$

#### Step 3: Find Eigenvalues

Solve the characteristic equation  $det(\mathbf{C} - \lambda \mathbf{I}) = 0$ :

$$\mathbf{C} - \lambda \mathbf{I} = \begin{bmatrix} 0.667 - \lambda & 1\\ 1 & 1.555 - \lambda \end{bmatrix}$$
$$\det \begin{bmatrix} 0.667 - \lambda & 1\\ 1 & 1.555 - \lambda \end{bmatrix} = (0.667 - \lambda)(1.555 - \lambda) - (1)(1)$$
$$= \lambda^2 - (0.667 + 1.555)\lambda + (0.667 \cdot 1.555 - 1)$$
$$= \lambda^2 - 2.222\lambda + (1.037 - 1) = \lambda^2 - 2.222\lambda + 0.037$$

Solve the quadratic equation:

$$\lambda = \frac{2.222 \pm \sqrt{2.222^2 - 4 \cdot 1 \cdot 0.037}}{2} = \frac{2.222 \pm \sqrt{4.937 - 0.148}}{2} = \frac{2.222 \pm \sqrt{4.789}}{2}$$
$$\sqrt{4.789} \approx 2.188, \quad \lambda_1 \approx \frac{2.222 + 2.188}{2} = 2.205, \quad \lambda_2 \approx \frac{2.222 - 2.188}{2} = 0.017$$

Eigenvalues:  $\lambda_1 \approx 2.205$ ,  $\lambda_2 \approx 0.017$ .

### Step 4: Find Eigenvectors

For  $\lambda_1 = 2.205$ :

$$\mathbf{C} - 2.205\mathbf{I} = \begin{bmatrix} 0.667 - 2.205 & 1\\ 1 & 1.555 - 2.205 \end{bmatrix} = \begin{bmatrix} -1.538 & 1\\ 1 & -0.650 \end{bmatrix}$$

Solve (C - 2.205I)v = 0:

$$\begin{bmatrix} -1.538 & 1\\ 1 & -0.650 \end{bmatrix} \begin{bmatrix} v_1\\ v_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$
$$-1.538v_1 + v_2 = 0 \implies v_2 = 1.538v_1$$

Choose  $v_1 = 1$ , then  $v_2 = 1.538$ . Normalize:

$$\|\mathbf{v}\|^2 = 1^2 + 1.538^2 = 1 + 2.365 = 3.365, \quad \|\mathbf{v}\| \approx 1.834$$

$$\mathbf{v}_1 \approx \begin{bmatrix} \frac{1}{1.834} \\ \frac{1.834}{1.834} \end{bmatrix} \approx \begin{bmatrix} 0.545 \\ 0.838 \end{bmatrix}$$

For  $\lambda_2 = 0.017$ , repeat similarly (omitted for brevity, as we focus on the first principal component).

#### Step 5: Project Data

Project the centered data onto the first principal component  $\mathbf{v}_1 \approx [0.545, 0.838]$ :

Projection = 
$$(x_1 - \bar{x}_1) \cdot 0.545 + (x_2 - \bar{x}_2) \cdot 0.838$$

For each point:

$$(-1, -1.333)$$
:  $(-1) \cdot 0.545 + (-1.333) \cdot 0.838 \approx -0.545 - 1.117 = -1.662$   
 $(0, -0.333)$ :  $0 \cdot 0.545 + (-0.333) \cdot 0.838 \approx -0.279$   
 $(1, 1.667)$ :  $1 \cdot 0.545 + 1.667 \cdot 0.838 \approx 0.545 + 1.397 = 1.942$ 

The 1D projections are approximately -1.662, -0.279, and 1.942.

# 7. Variance Explained

The proportion of variance explained by the first principal component:

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{2.205}{2.205 + 0.017} \approx \frac{2.205}{2.222} \approx 0.992$$

This means 99.2% of the variance is captured by the first principal component, indicating effective dimensionality reduction.

#### 8. Visualizations

This plot shows:

- Blue circles: centered data points.
- Black line: direction of the first principal component.
- Red dots: projected points on the principal component.



## 9. Final Results

| Original $(x_1, x_2)$ | Centered $(x_1 - \bar{x}_1, x_2 - \bar{x}_2)$ | Projected Value |
|-----------------------|-----------------------------------------------|-----------------|
| (1, 2)                | (-1, -1.333)                                  | -1.662          |
| (2, 3)                | (0, -0.333)                                   | -0.279          |
| (3, 5)                | (1, 1.667)                                    | 1.942           |

- The first principal component is  $\mathbf{v}_1 \approx [0.545, 0.838]$  with eigenvalue  $\lambda_1 \approx 2.205$ .
- The projected values represent the data in 1D, capturing 99.2% of the variance.
- This 1D representation can be used for further analysis, such as regression, with reduced complexity.

# 10. Summary

- PCA reduces dimensionality by finding eigenvectors (principal components) of the covariance matrix.
- Eigenvalues indicate the variance captured by each component.
- The first principal component maximizes variance, allowing effective data compression.
- The process involves centering data, computing the covariance matrix, finding eigenvalues/eigenvectors, and projecting data.