Dillerence Array Concepts & Ons

(>)otivation :-

Whatever people say about you, don't let it effect you.

Stay silent, grind alone.

Let your success answer those people ...

3356. Zero Array Transformation II

You are given an integer array [nums] of length [n] and a 2D array [queries] where $[queries[i] = [l_i, r_i, val_i]$.

Each queries[i] represents the following action on nums:

- Decrement the value at each index in the range $[l_i, r_i]$ in nums by at most val_i
- The amount by which each value is decremented can be chosen **independently** for each index.

A Zero Array is an array with all its elements equal to 0.

Return the minimum possible non-negative value of k, such that after processing the first k queries in sequence, nums becomes a Zero Array. If no such k exists, return -1.

Example :- noms =
$$[2,0,2]$$

queries = $[(0,2,1),(0,2,1),(1,1,3)]$
output :- $[2,0,2]$

Thought Process

Nums =
$$\begin{bmatrix} 3, & 7, & 5, & 6, & 4, & 2, & 5, & 3, & 1 \end{bmatrix}$$

Queries =
$$[0,4,3), (1,4,4), (3,8,5), (4,7,4)]$$
, $[0,4,2,3,1,2,5,3,1]$

$$i=1$$
 (1.4.4) - $\begin{bmatrix} 0, & 0 & 0 & 0 & 2 & 5 & 3 & 1 \end{bmatrix}$

Range -> Decement

Difference array:

length =
$$\Gamma$$

queries = $\left[(0, 2, 1), (1, 2, 2), (1, 2, -1) \right]$
 $\left[(1, 2, 2, 2), (1, 2, -1) \right]$
 $\left[(1, 2, 2), (1, 2, -1) \right]$

$$\frac{\text{Comsom}}{N} \rightarrow \frac{\text{Consom}}{N} \rightarrow \frac{\text{Consom}}{N}$$

Num =
$$\begin{bmatrix} 2, 4, 5, 5 \end{bmatrix}, n = 4$$

Quaries = $\begin{bmatrix} (0, 2, 1), (1, 2, 2), (1, 2, -1) \end{bmatrix}$

Air $\begin{bmatrix} 1, 2, -1 \\ 2 \end{bmatrix}, n = 4$

Simbon =

Add Dec (Subtract).

Nums = [2, 3)
$$\%$$
, 5], $n = 4$

Quanta = [2, 1, 3, 5]

Com · Sum

Little Improvement

Nums =
$$[2,0,2]$$

Quexieu = $[(0,2,1),(0,2,1),(1,1,3),0,0,0]$

while $(1<=1)$ {

for (int i = $(1+1)$) {

while $(1<=1)$ {

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ {

for (int i = $(1+1)$) }

while $(1<=1)$ }

while