Project 1 - Mercedes-Benz Greener Manufacturing

Objective: To develop a machine learning model

that can accurately predict the time a car will spend on the test bench based on the vehicle configuration.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings('ignore')
# Dataset :- train.csv and test.csv
df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('test.csv')
print(df_train.shape)
print(df_test.shape)
#print(df_train.dtypes)
#print(df_test.dtypes)
[→ (4209, 378)
     (4209, 377)
df_train.head()
```

₽		ID	у	X0	X1	X2	Х3	X4	X5	Х6	X8	X10	X11	X12	X13	X14	X15	X16	X17
	0	0	130.81	k	٧	at	а	d	u	j	0	0	0	0	1	0	0	0	0
	1	6	88.53	k	t	av	е	d	у	I	0	0	0	0	0	0	0	0	0
	2	7	76.26	az	W	n	С	d	Х	j	Х	0	0	0	0	0	0	0	1
	3	9	80.62	az	t	n	f	d	Х	I	е	0	0	0	0	0	0	0	0
	4	13	78.02	az	٧	n	f	d	h	d	n	0	0	0	0	0	0	0	0

5 rows × 378 columns

```
df_test.head()
```

С⇒

	ID	Х0	X1	X2	Х3	Х4	X5	Х6	X8	X10	X11	X12	X13	X14	X15	X16	X17	X18	X
0	1	az	٧	n	f	d	t	а	W	0	0	0	0	0	0	0	0	0	
1	2	t	b	ai	а	d	b	g	у	0	0	0	0	0	0	0	0	0	
2	3	az	٧	as	f	d	а	j	j	0	0	0	0	1	0	0	0	0	
3	4	az	I	n	f	d	Z	1	n	0	0	0	0	0	0	0	0	0	
4	5	W	s	as	С	d	у	i	m	0	0	0	0	1	0	0	0	0	

5 rows × 377 columns

```
# check missing value/NULL in training data
df_train.isnull().sum()
```

```
ID
Гэ
            0
    У
    X0
            0
    X1
            0
    X2
    X380
    X382
    X383
            0
    X384
            0
    X385
    Length: 378, dtype: int64
```

check missing value/NULL in testing data
df_test.isnull().sum()

```
☐ ID 0 X0 0 X1 0 X2 0 X3 0 ... X380 0 X382 0 X383 0 X384 0 X385 0
```

Length: 377, dtype: int64

```
# descriptive analysis
df_train.describe()
```

С→

	ID	У	X10	X11	X12	X13	
count	4209.000000	4209.000000	4209.000000	4209.0	4209.000000	4209.000000	4209.000
mean	4205.960798	100.669318	0.013305	0.0	0.075077	0.057971	0.428
std	2437.608688	12.679381	0.114590	0.0	0.263547	0.233716	0.494
min	0.000000	72.110000	0.000000	0.0	0.000000	0.000000	0.000
25%	2095.000000	90.820000	0.000000	0.0	0.000000	0.000000	0.000
50%	4220.000000	99.150000	0.000000	0.0	0.000000	0.000000	0.000
75%	6314.000000	109.010000	0.000000	0.0	0.000000	0.000000	1.000
max	8417.000000	265.320000	1.000000	0.0	1.000000	1.000000	1.000

8 rows × 370 columns

```
# we will create a new target column (same as training) in testing dataset
# and then append testing dataset after training dataset
df_test['y'] = np.nan
df_test.shape
df_test.isnull().sum()
[→ ID
    X0
                0
    X1
    X2
               0
    Х3
    X382
                0
    X383
                0
    X384
                0
    X385
             4209
    Length: 378, dtype: int64
```

· Check for null values for test and train sets.

```
# append testing dataset after training dataset
df_appended = df_train.append(df_test)
df_appended.shape
df_appended.isnull().sum()
df_appended.head()
```

С→

	ID	у	Х0	X1	X2	Х3	Х4	X5	Х6	X8	X10	X11	X12	X13	X14	X15	X16	X17
0	0	130.81	k	٧	at	а	d	u	j	0	0	0	0	1	0	0	0	0
1	6	88.53	k	t	av	е	d	у	I	0	0	0	0	0	0	0	0	0
2	7	76.26	az	W	n	С	d	Х	j	Χ	0	0	0	0	0	0	0	1
3	9	80.62	az	t	n	f	d	Х	I	е	0	0	0	0	0	0	0	0
4	13	78.02	az	٧	n	f	d	h	d	n	0	0	0	0	0	0	0	0

5 rows × 378 columns

```
# NULL value checking. Replace NULL/Nan with mean value
df_appended.fillna(df_appended.mean(),inplace = True)
df_appended.isnull().sum()
#df_appended.head()
F⇒ ID
             0
     У
     X0
             0
     X1
             0
     X2
             0
    X380
            0
     X382
    X383
     X384
     X385
     Length: 378, dtype: int64
```

· Check for unique values for test and train sets.

• If for any column(s), the variance is equal to zero, then you need to remove those variable(s).

```
# check variance :
# variance is the expectation of the squared deviation of a random
# variable from its mean. Informally, it measures how far a set of (random)
# numbers are spread out from their average value.
df_appended.var()
```

```
5.905928e+06
С⇒
   ID
            8.037380e+01
    X10
            1.589673e-02
    X11
            1.187931e-04
    X12
            6.914585e-02
    X380
            8.013627e-03
    X382
            8.130501e-03
   X383
            1.068121e-03
    X384
            5.936830e-04
    X385
            1.542108e-03
    Length: 370, dtype: float64
```

· Apply label encoder.

Гэ

```
# Apply Label Encoder on below category columns :
# ['X0','X1','X2','X3','X4','X5','X6','X8']
le = LabelEncoder()
df_appended['X0'] = le.fit_transform(df_appended['X0'])
df_appended['X1'] = le.fit_transform(df_appended['X1'])
df_appended['X2'] = le.fit_transform(df_appended['X2'])
df_appended['X3'] = le.fit_transform(df_appended['X3'])
df_appended['X4'] = le.fit_transform(df_appended['X4'])
df_appended['X5'] = le.fit_transform(df_appended['X5'])
df_appended['X6'] = le.fit_transform(df_appended['X6'])
df_appended['X8'] = le.fit_transform(df_appended['X8'])
df_appended
```

•		ID	у	Х0	X1	X2	Х3	X4	X5	Х6	X8	X10	X11	X12	X13	X14	X15
	0	0	130.810000	37	23	20	0	3	27	9	14	0	0	0	1	0	0
	1	6	88.530000	37	21	22	4	3	31	11	14	0	0	0	0	0	0
	2	7	76.260000	24	24	38	2	3	30	9	23	0	0	0	0	0	0
	3	9	80.620000	24	21	38	5	3	30	11	4	0	0	0	0	0	0
	4	13	78.020000	24	23	38	5	3	14	3	13	0	0	0	0	0	0
	4204	8410	100.669318	9	9	19	5	3	1	9	4	0	0	0	0	1	0
	4205	8411	100.669318	46	1	9	3	3	1	9	24	0	0	0	0	0	0
	4206	8413	100.669318	51	23	19	5	3	1	3	22	0	0	0	0	1	0
	4207	8414	100.669318	10	23	19	0	3	1	2	16	0	0	0	1	1	0
	4208	8416	100.669318	46	1	9	2	3	1	6	17	0	0	0	0	0	0

8418 rows × 378 columns

```
# remove unnecessary column ID and target column 'y'
PCA_df1 = df_appended
PCA_df1.isnull().sum()
PCA_df1 = PCA_df1.drop(['ID','y'],axis = 1)
PCA_df1
```

₽		Х0	X1	X2	Х3	Х4	X5	Х6	X8	X10	X11	X12	X13	X14	X15	X16	X17	X18	X1
	0	37	23	20	0	3	27	9	14	0	0	0	1	0	0	0	0	1	
	1	37	21	22	4	3	31	11	14	0	0	0	0	0	0	0	0	1	
	2	24	24	38	2	3	30	9	23	0	0	0	0	0	0	0	1	0	
	3	24	21	38	5	3	30	11	4	0	0	0	0	0	0	0	0	0	
	4	24	23	38	5	3	14	3	13	0	0	0	0	0	0	0	0	0	
	4204	9	9	19	5	3	1	9	4	0	0	0	0	1	0	0	0	0	
	4205	46	1	9	3	3	1	9	24	0	0	0	0	0	0	0	0	0	
	4206	51	23	19	5	3	1	3	22	0	0	0	0	1	0	0	0	0	
	4207	10	23	19	0	3	1	2	16	0	0	0	1	1	0	0	0	0	
	4208	46	1	9	2	3	1	6	17	0	0	0	0	0	0	0	0	0	

8418 rows × 376 columns

Perform dimensionality reduction.

```
# Perform dimensionality reduction - we are using PCA
# n_components : Number of components to keep.
# if n_components is not set all components are kept.
from sklearn.decomposition import PCA
```

Model Building - Regression

- 1. We will try Ridge Regression
- 2. We will try Lasso Regression
- 3. We will try ElasticNet regression

Predict your test_df values using XGBoost.

```
# Ridge Regression :
# Ridge Regression (L2) is used when there is a problem of multicollinearity.
# By adding a degree of bias to the regression estimates, ridge regression reduces the sta
from sklearn.metrics import mean_squared_error
from sklearn import metrics
from sklearn.linear_model import Ridge
import math
ridgeReg = Ridge(alpha=0.001, normalize=True)
ridgeReg.fit(X_train_transformed,Y_train)
mse ridge1 = metrics.mean squared error(Y train, ridgeReg.predict(X train transformed))
sqrt mse ridge1 = math.sqrt(mse ridge1)
#print('Square root of MSE Ridge 1 : ',sqrt_mse_ridge1)
mse_ridge2 = metrics.mean_squared_error(Y_test, ridgeReg.predict(X_test_transformed))
sqrt_mse_ridge2 = math.sqrt(mse_ridge2)
#print('Square root of MSE Ridge 2 : ',sqrt_mse_ridge2)
Y_predict_ridge = ridgeReg.predict(X_test_transformed)
#print('R2 Value/Coefficient of Determination: ',ridgeReg.score(X_test_transformed , Y_tes
RMSE ridge = math.sqrt(mean squared error(Y predict ridge,Y test))
print('RMSE of Ridge Regression : ',RMSE ridge)
```

RMSE of Ridge Regression: 8.401881121922498

```
# Lasso Regression :
# Lasso Regression (L1) is similar to ridge, but it also performs feature selection.
from sklearn.linear_model import Lasso
lassoreg = Lasso(alpha=0.001, normalize=True)
lassoreg.fit(X_train_transformed,Y_train)
mse_lassoreg1 = metrics.mean_squared_error(Y_train, lassoreg.predict(X_train_transformed))
sqrt_mse_lassoreg1 = math.sqrt(mse_lassoreg1)
#print('Square root of MSE Lassoreg 1 : ',sqrt_mse_lassoreg1)
mse_lassoreg2 = metrics.mean_squared_error(Y_test, lassoreg.predict(X_test_transformed))
sqrt_mse_lassoreg2 = math.sqrt(mse_lassoreg2)
Y_predict_lasso = lassoreg.predict(X_test_transformed)
#print('Square root of MSE Lassoreg 2 : ',sqrt_mse_lassoreg2)
#print('R2 Value/Coefficient of Determination: ',lassoreg.score(X_test_transformed , Y_tes
RMSE_lasso = math.sqrt(mean_squared_error(Y_predict_lasso,Y_test))
print('RMSE of Lasso Regression : ',RMSE_lasso)
 # ElasticNet Regression :
# ElasticNet Regression combines the strength of lasso and ridge regression
# If you are not sure whether to use lasso or ridge, use ElasticNet
from sklearn.linear_model import ElasticNet
elasticnetreg = ElasticNet(alpha=0.001, normalize=True)
elasticnetreg.fit(X_train_transformed,Y_train)
mse_elasticnetreg1 = metrics.mean_squared_error(Y_train, elasticnetreg.predict(X_train_train_train)
sqrt mse elasticnetreg1 = math.sqrt(mse elasticnetreg1)
#print('Square root of MSE Elasticnetreg 1 : ',sqrt_mse_elasticnetreg1)
mse_elasticnetreg2 = metrics.mean_squared_error(Y_test, elasticnetreg.predict(X_test_trans
sqrt_mse_elasticnetreg2 = math.sqrt(mse_elasticnetreg2)
Y_predict_elasticnet = elasticnetreg.predict(X_test_transformed)
#print('Square root of MSE Elasticnetreg 2 : ',sqrt_mse_elasticnetreg2)
#print('R2 Value/Coefficient of Determination: ',elasticnetreg.score(X_test_transformed ,
RMSE_elasticnet = math.sqrt(mean_squared_error(Y_predict_elasticnet,Y_test))
print('RMSE of ElasticNet Regression : ',RMSE_elasticnet)
```

```
RMSE of ElasticNet Regression: 8.45150514394438
# Predict your test_df values using XGBoost
# XGBOOST will give the lowest RMSE
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score
xgbreg = XGBRegressor()
xgbreg.fit(X_train_transformed,Y_train)
Y_predict_XGBoost = xgbreg.predict(X_test_transformed)
Y_predict_XGBoost
RMSE_XGBoost = math.sqrt(mean_squared_error(Y_predict_XGBoost,Y_test))
print("Predicted test_df values using XGBoost :")
print(Y_predict_XGBoost)
print('\n')
print('RMSE of XGBoost Regression : ',RMSE_XGBoost)
 [11:45:01] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now
     Predicted test df values using XGBoost :
     [101.20722 104.238304 97.63646 ... 101.285286 97.48313
                                                                 98.85301 ]
     RMSE of XGBoost Regression: 7.718938076728523
```

Summary:

RMSE of Ridge Regression: 8.401881121922498

RMSE of Lasso Regression: 8.398928318540479

RMSE of ElasticNet Regression: 8.45150514394438

RMSE of XGBoost Regression: 7.718938076728523

The aboove output shows XGBoost Regression gives slightly better result than the other regression model.

NOTE: Lower values of RMSE indicate better fit.