Exercice 1

On note la fonction ϕ définie par :

$$\phi: [0; 1] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = 2x^3 - x^2 + x - 1.$$

- 1. Justifier précisément que la fonction ϕ est continue sur [0; 1].
- 2. Calculer $\phi(0)$ et $\phi(1)$. Donner
 - l'énoncé précis que l'on peut déduire de cette information sur l'équation $\phi(x)=0$;
 - la justification précise de ce résultat.
- 3. Après avoir cité les conditions permettant d'appliquer l'algorithme de dichotomie pour résoudre numériquement $\phi(x)=0$, donner la trace de l'algorithme en complétant le tableau suivant :

\overline{n}	a_n	p_n	b_n	$\phi(a_n)$	$\phi(p_n)$	$\phi(b_n)$
1						
2						
:						
•						
10						

- 4. À la lecture de ce tableau, la suite (p_n) est-elle monotone?
- 5. On suppose qu'une valeur approchée à 10^{-6} près de la solution de $\phi(x)=0$ est 0.738984. La précision $|p_n-p^*|$ s'améliore—t—elle toujours d'une itération à l'autre?
- 6. Calculer le nombre d'itérations à réaliser si on veut une approximation à 10^{-6} près.

Exercice 2 (Nombre d'or)

Le nombre d'or, noté x^* est l'unique solution positive de l'équation

$$x^2 - x - 1 = 0$$
.

On cherche à déterminer une valeur numérique du nombre d'or par l'algorithme de dichotomie.

- 1. Donner l'expression analytique du nombre d'or en résolvant l'équation du second degré.
- 2. Justifier précisément et complètement le fait que l'on puisse appliquer l'algorithme de dichotomie sur l'intervalle [1; 2]. En particulier,
 - définir précisément la fonction utilisée;
 - donner ses propriétés utile en justifiant précisément;
 - citer clairement les théorèmes utilisés et justifier qu'ils s'appliquent.
- 3. Donner alors la trace des 5 premières itérations de l'algorithme.
- 4. Calculer le nombre d'itérations à réaliser pour obtenir une précision à 10^{-8} près.

Exercice 3

On note la fonction ϕ définie par :

$$\phi: [-1; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = -2x^3 + 2x^2 + 2x - 1,$$

et on cherche à résoudre numériquement l'équation $\phi(x) = 0$.

- 1. Calculer la valeur de ϕ pour tous les points entiers de l'intervalle [-1 ; 2] et en déduire un résultat **précis** et **soigneusement justifié** sur le nombre de solutions à l'équation $\phi(x) = 0$.
- 2. On cherche à déterminer numériquement une solution négative de cette équation en utilisant l'algorithme de dichotomie. Justifier que c'est possible et donner le nombre d'itérations à réaliser pour obtenir une approximation à 3.10^{-5} près.

3. Coder sur la grille ci-dessous la valeur de p_5 .

Exercice 4 (*)

$$\phi: [0; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = \frac{x^3 - 2x^2}{x + 1} + \frac{1}{4}.$$

- 1. Calculer $\phi(0)$, $\phi(1)$ et $\phi(2)$. En déduire **en justifiant précisément** qu'il existe au moins 2 solutions à l'équation $\phi(x)=0$.
- 2. Après avoir justifié, donner la trace des 4 premières étapes de l'algorithme de dichotomie appliqué à l'intervalle [1; 2].

\overline{n}	a_n	p_n	b_n	$\phi(a_n)$	$\phi(p_n)$	$\phi(b_n)$
1						
2						

3. En notant x^* la limite de la suite $(p_n)_{n\in\mathbb{N}}$ de l'algorithme précédent, déterminer un nombre suffisant d'itérations pour garantir

$$|p_n - x^*| < 0.0005$$
.

4. Étudier le comportement de l'algorithme de dichotomie appliqué à l'intervalle [0; 1].

Exercice 5 (*)

On veut déterminer une valeur approchée de $\sqrt{3}$ à 10^{-3} près. Déterminer une équation simple dont $\sqrt{3}$ est solution, puis utiliser l'algorithme de recherche par dichotomie pour en donner une valeur approchée. On justifiera soigneusement toute la démarche.

Exercice 6 (*)

La fonction définie sur \mathbb{R} par $\phi(x) = \sin(\pi x)$ s'annule uniquement si x est un entier. On choisit $a \in]-1$; 0[et $b \in]2$; 3[.

- 1. Donner les limites possibles pour l'algorithme de recherche par dichotomie.
- 2. Montrer que

$$\lim_{n \uparrow \infty} p_n = \begin{cases} 0 & \text{si } a + b < 2\\ 1 & \text{si } a + b = 2\\ 2 & \text{si } a + b > 2 \end{cases}.$$

Exercice 7

On cherche résoudre numériquement l'équation $3\,x^4-4\,x^3=-\frac{1}{2}$. Peut—on appliquer l'algorithme de dichotomie (à une fonction à définir) sur l'intervalle $[0\,;\,2]$? $[0\,;\,1]$? $[1\,;\,2]$? Que peut—on dire sur le nombre de solution ?

Exercice 8 (**)

L'algorithme de dichotomie peut être légèrement modifié : au lieu de choisir le point $p=\frac{a+b}{2}$ comme point de coupure de l'intervalle $[a\,;\,b]$, on choisit l'abscisse du point d'intersection de la droite passant par $\begin{pmatrix} a \\ \phi(a) \end{pmatrix}$

et $inom{b}{\phi(b)}$ avec l'axe des abscisses. Le reste de la procédure est identique ainsi que la majoration de l'erreur. Cette méthode est appelée méthode de la fausse position.

- 1. Tracer la représentation graphique d'une fonction satisfaisant les conditions pour appliquer l'algorithme de dichotomie et illustrer graphiquement la méthode de la fausse position.
- 2. Déterminer l'expression analytique du point de coupure p pour un intervalle [a; b] fixé.
- 3. Donner la trace des 4 premières itérations de l'algorithme de la fausse position pour trouver une solution numérique à 10^{-3} près à l'équation $\phi(x)=0$ où la fonction ϕ est définie par

$$\phi: [1; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = \frac{x^3 - 2x^2}{x + 1} + \frac{1}{4}.$$

Comparer avec l'exercice 4, sachant qu'une solution approchée est 1,7807.

Exercice 9

Soit ϕ la fonction

$$\phi: [0; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = 4x + 3 - x^4.$$

Dresser le tableau de variation de ϕ et en déduire le nombre de solutions respectives des équations $\phi(x)=0$ et $\phi(x)=3$. On justifiera la réponse.

Exercice 10

On note ϕ la fonction définie par

$$\phi: [0; 4] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = x^4 - 4x^3 + 4x^2 + 1.$$

Montrer que l'équation $\phi(x)=\sqrt{2}$ a exactement deux solutions dans $[0\,;\,2].$

Exercice 11

Soit ϕ la fonction

$$\phi: [-1; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = \frac{3x^2 + 1}{x^2 + 2}.$$

Dresser le tableau de variation de ϕ et en déduire le nombre de solutions respectives des équations $\phi(x)=2$ et $\phi(x)=1$. On justifiera la réponse.

Exercice 12 (*)

Soit ϕ la fonction

$$\phi: [0; 3] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = \sqrt{x^2 - 4x + 5}.$$

Dresser le tableau de variation de ϕ et en déduire le nombre de solutions respectives des équations $\phi(x)=0$ et $\phi(x)=\sqrt{2}$. On justifiera la réponse.

Exercice 13

Soit ϕ une fonction définie sur l'intervalle [-1;2], continue et dérivable sur cet intervalle et telle que la dérivée ϕ' :

- s'annule uniquement en 0 et en 1;

- est strictement négative sur l'intervalle]0; 1[;
- est strictement positive en dehors de l'intervalle [0; 1];

$$-\phi(-1)=\frac{1}{4}, \phi(0)=\frac{1}{2}, \phi(1)=-\frac{1}{2}$$
 et $\phi(2)=1$

À l'aide de ces données, est-il possible d'affirmer que

1. L'équation

$$\phi(x) = 0$$

admet une unique solution sur l'intervalle [-1; 2]

- 2. L'équation $\phi(x)=0$ admet exactement deux solutions sur l'intervalle [-1;2]
- 3. L'équation $\phi(x)=0$ admet une unique solution sur l'intervalle [0;1]
- 4. ϕ est strictement positive sur l'intervalle [-1;0]
- 5. ϕ est strictement positive sur l'intervalle [0; 2]
- 6. L'équation $\phi(x) = 0$ admet une unique solution sur l'intervalle [0;2]

Exercice 14

Soit ϕ , la fonction

$$\phi: [-1; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = -2x^3 + 2x^2 + 2x - 1.$$

À l'aide du tableau de variation, donner le nombre de solutions de l'équation $\phi(x)=0$, ainsi que des intervalles disjoints contenant chacun une solution unique (justifier).

Exercice 15

Le graphe d'une fonction ϕ est donné sur la figure suivante :

- 1. Utiliser graphiquement la méthode de Newton pour trouver une approximation d'une solution de l'équation $\phi(x)=0$, en prenant $x_0=2$ comme condition initiale. Faire figurer x_1 et x_2 sur le graphique.
- 2. La méthode converge-t-elle si on choisit maintenant $x_0 = 9$? Pour quelle raison?

Exercice 16

On veut obtenir une approximation de $\sqrt[3]{2}$ en résolvant l'équation $x^3 - 2 = 0$ sur l'intervalle [1; 2].

- 1. Écrire la fonction ϕ utilisée et vérifier, en justifiant soigneusement, que les conditions pour utiliser la méthode de Newton sont satisfaites.
- 2. Compléter la définition de la suite donnée par la méthode de Newton :

$$\begin{cases} x_0 \in [1; 2] \\ x_n = \dots, & n \geqslant 1. \end{cases}$$

3. On choisit $x_0=2$. À l'aide d'une calculatrice, donner la trace de l'algorithme jusqu'à l'obtention d'une valeur approchée à 10^{-4} près, sachant que $\sqrt[3]{2} \simeq 1{,}25992$.

4

- 4. Montrer que la suite converge vers $\sqrt[3]{2}$ si $x_0 = 2$.
- 5. Peut–on garantir la convergence si $x_0=1$? Calculer x_1 et montrer que la suite converge vers $\sqrt[3]{2}$ si $x_0=1$.

Exercice 17 (*)

On veut résoudre numériquement l'équation $x^3 + 4x^2 - 10 = 0$.

- 1. Montrer qu'il existe une unique solution à cette équation dans l'intervalle [1; 2]. On définira soigneusement la fonction utilisée et on justifiera l'application des théorèmes.
- 2. Compléter la définition de la suite donnée par la méthode de Newton :

$$\begin{cases} x_0 \in [1; 2] \\ x_n = \dots, & n \geqslant 1, \end{cases}$$

et calculer les premiers termes pour $x_0=2$. La suite semble-t-elle converger?

- 3. Montrer que la suite converge vers x^* si $x_0=2$.
- 4. Étudier la convergence de la suite pour $x_0 = 1$?

Exercice 18 (**)

Résoudre numériquement l'équation :

$$\frac{x^3 - 2x^2}{x + 1} = -\frac{1}{4} \qquad \text{ où } x \ge 0 \ ,$$

en utilisant la méthode de Newton pour trouver une solution $x^* \in [1; 2]$. On détaillera soigneusement la démarche et on étudiera la convergence. On suggère de suivre la démarche suivante :

- 1. Existence et unicité de la solution.
- 2. Écriture précise de la suite.
- 3. Détermination des valeurs de x_0 pour lesquelles le critère suffisant de convergence s'applique.
- 4. Calcul des premiers termes et commentaires sur la vitesse de convergence apparente (comparer avec Exercices 4 et 8).
- 5. Étude du comportement de la suite pour les autres valeurs de x_0 .

On pourra prendre des valeurs approchées au centièmes dans les calculs si nécessaires.

Exercice 19 (Extrait partiel 2021)

On veut résoudre numériquement l'équation $3x^4-2x^2+x-2=0$, pour laquelle on suppose (on peut aussi le démontrer) qu'il existe une solution unique a dans l'intervalle $[0\,;\,2]$. On souhaite utiliser une méthode de point fixe au moyen de la suite

$$\begin{cases} u_0 = 1 \\ u_n = f(u_{n-1}), \qquad \text{pour } n \geq 1 \;, \end{cases}$$

En supposant que la suite converge, pour lesquelles des fonctions f suivantes la limite pourra-t-elle être a?

5

1.
$$3x^4 - 2x^2 + 2x - 2$$

2.
$$x^2(2-3x^2)+2$$

3.
$$\sqrt{\frac{x(1+3x^3)}{2}-1}$$

4.
$$\frac{2x^2+x+2}{3x^3}$$

5.
$$\frac{2}{3}\left(1+\frac{1}{x^2}\right)+\frac{1}{3x}$$

Exercice 20 (*Extrait partiel 2021)

On note f la fonction définie sur l'intervalle $[-2\,;\,2]$ par

$$f(x) = 1 - \frac{x^3 - 3x + 1}{\sqrt{x^3 - 3x + 3}}.$$

On admet (on peut aussi le démontrer) que f est dérivable sur $[-2\,;\,2]$ et que le tableau de signe de f' est donné ci-dessous.

	x	-2		-1		1		2
f'	(x)		_	0	+	0	_	

Parmi les intervalles suivants, lesquels sont stables par f?

- 1. [-2; 2]
- 2. [-1; 2]
- 3. $\left[1-\frac{3}{\sqrt{5}}; 2\right]$
- 4. [-1; 1]
- **5**. [1; 2]
- 6. [-2; -1]

Exercice 21 (*Extrait partiel 2021)

On cherche une valeur approchée à $\sqrt{3}$. Soit f la fonction définie sur l'intervalle $[1\,;\,2]$ par $f(x)=2+x-\sqrt{x^2+1}$. On suppose (on peut aussi le démontrer) que f est dérivable et que pour tout $x\in[1\,;\,2]$ on a

$$f'(x) = 1 - \frac{x}{\sqrt{x^2 + 1}} \,.$$

Mener à bien tous les calculs nécessaires pour décider des affirmations qui sont vraies :

- 1. f est croissante sur [1; 2]
- 2. L'intervalle [1; 2] est stable par f
- 3. L'équation f(x) = x admet au moins une solution dans l'intervalle [1; 2]
- 4. f n'est pas monotone sur [1; 2]
- 5. f est décroissante sur [1; 2]
- 6. f s'annule au moins une fois sur $[1\,;\,2]$

Exercice 22 (Nombre d'or, suite)

On considère la suite $(u_n)_{n\geq 0}$ définie par

$$\begin{cases} x_0 \in [1\,;\,2] \\ x_n = f(x_{n-1}), \qquad \text{pour } n \geq 1\,, \end{cases}$$

οù

$$f: [1; 2] \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \sqrt{x+1}$.

6

- 1. À l'aide d'une calculatrice, calculer les 5 premiers termes de la suite pour $x_0 = 1$.
- 2. Montrer que le seul point fixe de f dans [1; 2] est le nombre d'or x^* .
- 3. Montrer que [1; 2] est un intervalle stable par f.

4. Montrer que f est dérivable sur $[1\,;\,2]$ et que sa dérivée f' vérifie

$$\forall x \in [1; 2], \qquad |f'(x)| \le \frac{1}{2\sqrt{2}}.$$

- 5. Déduire des questions précédentes que la suite $(x_n)_{n\geq 0}$ converge vers x^* . On citera avec précision les théorèmes utilisés.
- 6. Donner un nombre d'itération suffisant pour garantir une approximation à 10^{-8} près.

Exercice 23 (Extrait partiel 2021)

On note f une fonction dérivable sur l'intervalle [-1;1], telle que f' soit croissante sur [-1;1], $f'(-1)=-\frac{1}{2}$ et $f'(1)=\frac{1}{4}$. Parmi les affirmations suivantes, lesquelles peuvent être déduites de ces données?

- 1. $\forall x \in]-1$; $1[f, |f'(x)| \leq \frac{1}{4}$
- 2. f est continue en 0
- 3. $\forall x \in]-1; 1[f, |f'(x)| \leq \frac{1}{2}$
- **4.** $\forall x \in]-1$; $1[f, |f'(x)| \leq -\frac{1}{2}]$
- 5. $f'(\frac{1}{2}) > 0$

Exercice 24

Soit f une fonction continue sur l'intervalle [-2; 3] et telle que l'image par f de l'intervalle [-2; 3] soit l'intervalle [-1; 1]. Avec ces données du problème, on peut affirmer sans calcul supplémentaire que :

- 1. L'équation f(x) = 0 a au moins une solution dans l'intervalle [-2; 3]
- 2. f est dérivable et |f| est majorée par k < 1 sur l'intervalle [-2; 3]
- 3. f est strictement monotone sur l'intervalle [-2; 3]
- 4. Il existe au moins un point fixe pour f dans l'intervalle [-2; 3]
- 5. Si de plus f est dérivable et si |f'| est majorée par $\frac{1}{2}$, alors il existe un unique point fixe pour f dans l'intervalle [-2; 3].

Exercice 25 (*)

Soit f la fonction définie sur l'intervalle $[1\,;\,2]$ par $f(x)=3+x-\sqrt{x^2+2\,x+2}$. On suppose (ou pas) qu'on a démontré que l'intervalle $[1\,;\,2]$ est stable par f. On suppose de plus (ou pas) que f est dérivable, que f' l'est aussi et que pour tout $x\in[1\,;\,2]$ on a

$$f'(x) = 1 - \frac{x+1}{\sqrt{x^2 + 2x + 2}}$$
$$f''(x) = -\frac{1}{\left(\sqrt{x^2 + 2x + 2}\right)^3}$$

Mener à bien tous les calculs nécessaires pour décider des affirmations qui sont vraies :

- 1. f' n'est pas monotone sur [1; 2]
- 2. f' est décroissante sur [1; 2]
- 3. $\forall x \in [1; 2], |f'(x)| \leq f'(1)$
- 4. $\forall x \in [1; 2], |f'(x)| \leq f'(2)$
- 5. f' est négative ou nulle sur [1; 2]
- 6. f admet un unique point fixe dans [1; 2]

Exercice 26 (Extrait partiel 2021)

Soit f une fonction continue sur l'intervalle [-1; 2]. On suppose qu'on a démontré les résultats suivants :

- l'image de l'intervalle $[-1\,;\,2]$ par f est l'intervalle $[0\,;\,1]$
- f est dérivable et $\forall x \in [-1; 2] |f'(x)| \leq \frac{1}{2}$.

On définit la suite $(x_n)_{n\geq 0}$ par la formule

$$\begin{cases} x_0 = -\frac{1}{2} \\ x_n = f(x_{n-1}), \qquad \text{pour } n \geq 1 \ , \end{cases}$$

À l'aide de ces données du problème, on peut affirmer sans calcul supplémentaire que

- 1. La suite $(x_n)_{n\geq 0}$ est décroissante
- **2.** $(\forall n \ge 1), \quad 0 \le x_n \le 1$
- 3. Pour tout $n \ge 0$, on a $f(x_n) \ge \frac{1}{2} x_{n-1}$
- 4. La suite $(x_n)_{n\geq 0}$ converge vers l'unique point fixe de f dans l'intervalle $[-1\,;\,2]$
- 5. f est strictement monotone sur l'intervalle [-1; 2]

Exercice 27 (Extrait partiel 2021)

Soit f une fonction continue sur l'intervalle [0; 3]. On suppose que f est dérivable, que

$$\forall x \in [-1; 2] |f'(x)| \le \frac{1}{5}$$

et que l'intervalle $[0\,;\,3]$ est stable par f. On construit la suite $(x_n)_{n\geq 0}$ par la formule

$$\begin{cases} x_0 = 1 \\ x_n = f(x_{n-1}), & \text{pour } n \ge 1 \,, \end{cases}$$

et on admet que cette suite converge vers une limite notée x^* . Parmi les affirmations suivantes, laquelle suffitelle à garantir que l'erreur d'approximation $|x_n-x^*|$ soit inférieure à 10^{-4} ?

1.
$$n < \frac{-4 \ln(10) - \ln(3)}{\ln(\frac{1}{5})}$$

2.
$$n > \frac{-4 \ln(10) - \ln(3)}{\ln(\frac{1}{5})}$$

3.
$$n > \frac{-4 \ln(10)}{\ln(\frac{1}{5})}$$

4.
$$n < \frac{-4 \ln(10)}{\ln(\frac{1}{5})}$$

Exercice 28 (**)

On cherche à résoudre numériquement l'équation :

$$\frac{x^3 - 2x^2}{x+1} + \frac{1}{4} = 0 \qquad \text{ où } x \ge 0 \ . \tag{1}$$

On pose

$$g: [1; 2] \longrightarrow \mathbb{R}$$

$$x \longmapsto g(x) = \frac{x^3 - 2x^2}{x + 1} + \frac{1}{4},$$

ainsi que

$$\phi: [1; 2] \longrightarrow \mathbb{R}$$
$$x \longmapsto \phi(x) = 4x^3 - 8x^2 + x + 1.$$

1. Dresser le tableau de variation de la fonction ϕ sur l'intervalle [1; 2].

2. Montrer que $\phi(x)=4\,(x+1)\,g(x)$. En déduire que les solutions sur l'intervalle $[1\,;\,2]$ de l'équation (1) et de l'équation

$$\phi(x) = 0 \tag{2}$$

sont les mêmes.

- 3. À l'aide du tableau de variation de ϕ , montrer qu'il existe une unique solution notée α à l'équation (2) dans l'intervalle [1; 2].
- 4. Calculer $\phi(\frac{3}{2})$ et en déduire que $\alpha \in [\frac{3}{2}; 2]$.
- 5. On pose:

$$f: [1; 2] \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \frac{8x^2 - x - 1}{4x^2}.$$

- (a) Montrer que les points fixes de f sont les solutions de (2) sur l'intervalle [1; 2].
- (b) Montrer que l'intervalle $[1\,;\,2]$ est stable par f.
- (c) Montrer que

$$\forall x \in [-1; 2] \quad |f'(x)| \leqslant k$$

où k < 1 est une constante que l'on déterminera.

(d) Déduire des questions précédentes la limite de la suite

$$\begin{cases} x_0 = 2 \\ x_n = f(x_{n-1}) & n \ge 1 \end{cases}$$

en justifiant clairement toute l'argumentation.

(e) Calculer les premiers termes de la suite et comparer avec les exercices 4, 8 et 18.

1 Kit de survie de calcul général

1.1 Inégalités

Si	$a \leqslant b$	et	$b \leqslant c$	alc	ors	$a \leqslant c$
Si	$a \leqslant b$			alc	ors	$a+c\leqslant b+c$
Si	$a \leqslant b$	et	$c \geqslant 0$	alc	ors	$c a \leqslant c b$
Si	$a \leqslant b$	et	$c \leqslant 0$	alc	ors	$c a \geqslant c b$
Si	$0 \leqslant a \leqslant$	$\leqslant b$	$ \text{et} 0 \leqslant$	$c \leqslant d$ alo	ors	$a c \leq b d$
Si	$0 \leqslant a \leqslant$	$\leqslant b$		alc	ors	$a^2 \leqslant b^2$
Si	$a \leqslant b \leqslant$	€ 0				$b^2 \leqslant a^2$
Si	$0 < a \le$	$\leqslant b$		alc	ors	$\frac{1}{a} \geqslant \frac{1}{b}$ $\frac{1}{a} \geqslant \frac{1}{b}$
Si	$a \leqslant b <$	< 0		alc	ors	$\frac{1}{a} \geqslant \frac{1}{b}$

1.2 Valeur absolue

Pour a > 0,

$$\begin{aligned} |x| &= h &\iff & x &= h & \text{ou} & x &= -h \\ |x| &\leqslant h &\iff & -h &\leqslant x &\leqslant h \\ |x| &\geqslant h &\iff & x &\leqslant -h & \text{ou} & x \geqslant h \end{aligned}$$

1.3 Identités remarquables, factorisations

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$a^2 - b^2 = (a-b)(a+b)$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

1.4 Puissances et racines

$$x^{m} x^{n} = x^{m+n}$$

$$x^{-n} = \frac{1}{x^{n}}$$

$$x^{\frac{m}{n}} = x^{m-n}$$

$$(xy)^{n} = x^{n} y^{n}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^{m}} = (\sqrt[n]{x})^{m}$$

$$\sqrt[n]{x} = \sqrt[n]{x}$$

$$\sqrt[n]{x} = \sqrt[n]{x} = \sqrt[n]{x}$$

$$\sqrt[n]{x} = \sqrt[n]{x} = \sqrt[n]{x} = \sqrt[n]{x}$$

1.5 Logarithme et exponentielle

Pour a et b réels quelconques et c > 0 et d > 0

$$e^{0} = 1$$

$$e^{a+b} = e^{a} e^{b}$$

$$\ln e = 1$$

$$\ln 1 = 0$$

$$\ln (c d) = \ln c + \ln d$$

$$\ln c^{d} = d \ln c$$

$$\ln \frac{1}{c} = -\ln c$$

$$\ln \frac{c}{d} = \ln c - \ln d$$

1.6 Signe des polynômes du second degré

$$a \neq 0$$
 $\Delta = b^2 - 4 a c$

Si $\Delta>0$, deux racines :

$$x_1, x_2 = \frac{-b \pm \sqrt{\Delta}}{2 \, a} \qquad \text{avec } x_1 < x_2$$

x	$-\infty$	x_1		x_2		$+\infty$
$a x^2 + b x + c$	signe(a)	0	-signe(a)	0	signe(a)	

 $\operatorname{Si} \Delta = 0$

$$x_0 = \frac{-b}{2 a}$$

x	$-\infty$	x_0		$+\infty$
$a x^2 + b x + c$	sign	ne(a) = 0	signe(a)	

 $\operatorname{Si}\Delta<0$

x	$-\infty$	$+\infty$
$a x^2 + b x + c$	signe(a)	

Dérivées usuelles

Fonction	Dérivée	Valide sur
$x\mapsto a$, où $a\in\mathbb{R}$	$x \mapsto 0$	\mathbb{R}
$x\mapsto x^n$, où $n\in\mathbb{N}$	$x \mapsto n x^{n-1}$	\mathbb{R}
$x\mapsto rac{1}{x^n}$, où $n\in\mathbb{N}$	$x \mapsto -\frac{n}{x^{n+1}}$	$]-\infty;0$ [ou $]0;+\infty$ [
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$	$]0;+\infty[$
$x \mapsto e^x$	$x \mapsto e^x$	\mathbb{R}
$x \mapsto \ln x$	$x\mapsto \frac{1}{x}$	$]0;+\infty[$

Si \boldsymbol{u} et \boldsymbol{v} sont deux fonctions dérivables sur le même intervalle \boldsymbol{I} ,

	Fonction	Dérivée
Produit par c	c u(x)	c u'(x)
Somme	u(x) + v(x)	u'(x) + v'(x)
Produit	u(x) v(x)	u'(x) v(x) + u(x) v'(x)
Puissance	$[u(x)]^n$	$n u'(x) [u(x)]^{n-1}$
Racine	$\sqrt{u(x)}$ où $u(x)>0$ sur I	$\frac{u'(x)}{2\sqrt{u(x)}}$
Inverse	$\dfrac{1}{v(x)}$, où v ne s'annule pas sur I	$-\frac{v'(x)}{v^2(x)}$
Quotient	$\dfrac{u(x)}{v(x)}$, où v ne s'annule pas sur I	$\frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}$