Deep learning in more details

Hung-Hsuan Chen

Many are adopted from Aurelien Geron's book

A summary of key component selections in DNN

Task	# input neurons	# output neurons	Hidden activation	Output activation	Loss
Regression	# features	1	ReLULeaky- ReLURReLUPReLU	 None ReLU/softplus (if positive outputs) Logistic/tanh (if bounded outputs) 	MSEMAEHuber
Binary classification		1	• ELU • SELU	• Logistic	Cross entropy
Multi-class classification		# classes		• Softmax	
Multi-label binary classification		# labels		• Logistic	

The vanishing gradient problem

- Vanishing gradient problem in sigmoid and tanh
 - When z is outside [-4,4], $f'_{sigmoid}(z) \approx 0$ and $f'_{tanh}(z) \approx 0$ → new information cannot be backpropagated

The exploding gradient problem

Xavier (a.k.a., Glorot) initialization

- Xavier Glorot and Yosha Bengio discussed the vanishing/exploding gradient issue in [1]
- Xavier initialization: randomly initialize the link weights by one of the following (useful when using logistic activation)
 - $w \sim N(\mu = 0, \sigma^2 = 1/fan_{ava})$
 - $fan_{avg} = \frac{1}{2}(fan_{in} + fan_{out})$
 - fan_{in} and fan_{out} are the # inputs and # neurons of a layer
 - $w \sim Unif(-r,r)$

•
$$r = \sqrt{\frac{3}{fan_{avg}}}$$

 Such initialization may accelerate the training of deep networks

[1] Xavier Glorot and Yosha Bengio, "Understanding the difficulty of training deep feedforward neural networks", AIStat 2001.

Intuition of why Xavier initializer works

- If $z_i = w_0 + w_1 x_{i1} + \dots + w_d x_{id}$, we don't want $\sigma(z)$ getting "saturated", i.e., $w_0 + w_1 x_{i1} + \dots + w_d x_{id}$ should not be too large or too small
- For x_{i1}, \dots, x_{id} , we can scale or normalize them (e.g., $x_{ij} = \frac{x_{ij} x_{*j}}{\operatorname{std}(x_{*j})}$) such that $E[x_{*j}] = 0$, $Var(x_{*j}) = 1$
- If each $w_j x_{ij}$ is uncorrelated and has the same variance, then $Var(z_i) = Var(w_0 + w_1 x_{i1} + \dots + w_d x_{id}) \approx dVar(w_i x_{ij})$
- Assuming $E[w_j] = E[x_{ij}] = 0$: $dVar(w_j x_{ij}) = d[(E[w_j])^2 Var(x_{ij}) + (E[x_{ij}])^2 Var(w_j) + Var(w_j) Var(x_{ij})]$ $= d[Var(w_j) Var(x_{ij})] = dVar(w_j)$
- In order to make $Var(z_i) \approx 1$, each $Var(w_j) \approx \frac{1}{d}$
- Likewise, for "backprop" signal, $Var(w_j) \approx \frac{1}{n_{out}}$
- As a compromise, set $w \sim N(\mu = 0, \sigma^2 = \frac{1}{0.5(fan_{in} + fan_{out})})$

Famous weight initializers

Name	Activation function	Initialized by random normal	Initialized by random uniform
Xavier/ Glorot	Logistic, softmax,	$N\left(\mu=0,\sigma^2=\frac{1}{fan_{avg}}\right)$	$U(-r,+r), r = \sqrt{\frac{3}{fan_{avg}}}$
	tanh	$N\left(\mu=0,\sigma^2=\frac{16}{fan_{avg}}\right)$	$U(-r,+r), r = 4\sqrt{\frac{3}{fan_{avg}}}$
He	ReLU, ELU, and variants	$N\left(\mu=0,\sigma^2=\frac{2}{fan_{in}}\right)$	$U(-r,+r), r = \sqrt{\frac{6}{fan_{in}}}$
Lecun	Logistic, softmax, tanh	$N\left(\mu = 0, \sigma^2 = 1 \atop fan_n\right)$	$U(-r,+r), r = \sqrt{\frac{3}{fan_{in}}}$

la pa

In prete output the number of input neuron

2

Non-saturating activation functions

- Rectified Linear Unit (ReLU)
- LeakyReLU
- Randomlized leaky ReLU (RReLU)
- Parametric Leaky ReLU (PReLU)
- Exponential Linear Unit (ELU)
- Scaled ELU (SELU)

Non-saturating activation functions

• ReLU:
$$f(z) = \max(z, 0) = \begin{cases} z, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

- It does not saturate for positive values
- Problem: dying ReLU, a neuron "dies" when the weighted sum of the inputs are negative for all instances
 - Although sometimes a dead neuron may "awake", it takes a long time
- Leaky ReLU: $f_{\alpha}(z) = \max(z, \alpha z)$
 - A neuron may not really "dead" because the gradient is at least α

Non-saturating activation functions

- RReLU: $f(z) = \max(z, \alpha z)$
 - $\alpha \sim Unif(\ell, u)$ during training
 - $\alpha = \frac{\ell + u}{2}$ (averaged) during testing
- PReLu: $f(z) = \max(z, \alpha z)$
 - α is learned via backprop

• ELU:
$$f_{\alpha}(z) = \begin{cases} z, & z \ge 0 \\ \alpha(e^z - 1), & z < 0 \end{cases}$$

• SELU:
$$f_{\alpha}(z) = \lambda \begin{cases} z, & z \ge 0 \\ \alpha(e^z - 1), & z < 0 \end{cases}$$
 where

- $\alpha = 1.6732632423543772848170429916717$
- $\lambda = 1.0507009873554804934193349852946$

```
21  # (2) use SELUs
22  def selu(x):
23  with ops.name_scope('elu') as scope:
24      alpha = 1.6732632423543772848170429916717
25      scale = 1.0507009873554804934193349852946
26      return scale*tf.where(x>=0.0, x, alpha*tf.nn.elu(x))
```

Source of SELU:

https://github.com/bioinfjku/SNNs/blob/master/selu.py

Ref of SELU paper: https://arxiv.org/pdf/1706.02515.pdf

When to use which activation function (in the hidden layer)?

- ReLU is still popular, probably because many libraries provide ReLU-specific optimizations
- In general, SELU > ELU > (Variants of) Leaky
 ReLU > ReLU > tanh > logistic
 - But may still need experiments to decide
- If the network architecture prevents it from self-normalizing, ELU > SELU
- If run-time latency is crucial, use LeayReLU
- If having huge training data, try PReLU

Batch normalization (1/2)

- Adding operations before and after activation function (in hidden layer)
- For every batch:
 - Zero-center and normalize inputs
 - Scale and shift (so that mean and standard deviation can beyond 0 and 1)

Batch norm training

1.
$$\mu_B = \frac{1}{m_B} \sum_{i=1}^{m_B} x^{(i)}$$

2.
$$\sigma_B^2 = \frac{1}{m_B} (x^{(i)} - \mu_B)^2$$

3.
$$\widehat{\boldsymbol{x}}^{(i)} = \frac{\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_B}{\sqrt{\boldsymbol{\sigma}_B^2 + \boldsymbol{\epsilon}}}$$
4.
$$\boldsymbol{z}^{(i)} = \boldsymbol{\gamma} \odot \widehat{\boldsymbol{x}}^{(i)} + \boldsymbol{\beta}$$

4.
$$\mathbf{z}^{(i)} = \boldsymbol{\gamma} \odot \hat{\boldsymbol{x}}^{(i)} + \boldsymbol{\beta}$$

- γ and β are learned by backprop
- μ_B and σ_B are estimated during training

Batch normalization (2/2)

· Batch norm testing

- Given a new test instance, how to perform batch norm?
 - There is no "batch", so how to compute μ_B and σ_B^2 ?
- Estimate μ_B and σ_B^2 by visit entire training dataset again?
 - Usually too costly
- Estimate μ_B and σ_B^2 by moving average
 - At training step t

$$\widehat{\boldsymbol{\mu}}_{B}[t] = \widehat{\boldsymbol{\mu}}_{B}[t-1] \times \text{momentum} + \widehat{\boldsymbol{\mu}}_{B}[t] \times (1 - \text{momentum})$$

$$\widehat{\boldsymbol{\sigma}}_{B}^{2}[t] = \widehat{\boldsymbol{\sigma}}_{B}^{2}[t-1] \times \text{momentum} + \widehat{\boldsymbol{\sigma}}_{B}^{2}[t] \times (1 - \text{momentum})$$

Momentum, a.k.a., decay, is usually set to 0.9

-) previous

mvent

- For RNN, it could be tricky to apply Batch norm
- Manually clip the gradient when it is too large or too small
- Example: set upper bound to 1, lower bound to -1
 - If gradient is larger than 1, output 1
 - If gradient is smaller than -1, output -1

Transfer learning via pretrained layers

Layer-wise pretraining

- Used to be a popular method in ~2010
- May still be useful when # training instances is limited

Various optimizers

- SGD
- Momentum
- Nesterov Accelerated Gradient
- AdaGrad
- RMSProp
- Adam
- Nadam

SGD

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

• η : learning rate, usually a small positive value, e.g., 0.001

 A parameter's next value is the current value shifted toward the opposite direction of the gradient

Momentum

$$m \leftarrow \beta m - \eta \nabla_{\theta} J(\theta)$$

 $\theta \leftarrow \theta + m$

- β : momentum, usually set to 0.9
 - Large β : no friction
 - Small β : high friction
 - $\beta = 0$: SGD

Nesterov Accelerated Gradient (NAG)

- Look ahead: measure the gradient of $J(\theta)$ slight ahead the current θ
 - It works probably because the momentum vector usually points to the right direction

$$m \leftarrow \beta m - \eta \nabla_{\theta} J(\theta + \beta m)$$

 $\theta \leftarrow \theta + m$

• β : momentum, usually set to 0.9

AdaGrad (1/2)

$$s \leftarrow s + \nabla_{\theta} J(\theta) \odot \nabla_{\theta} J(\theta)$$
$$\theta \leftarrow \theta - \eta \frac{\nabla_{\theta} J(\theta)}{\sqrt{s + \epsilon}}$$

- ϵ : smoothing term to avoid divide-by-zero, usually set to 10^{-9}
- If $\partial J(\theta)/\partial \theta_i$ is large for certain i, square the value will make the the corresponding S_i larger
- AdaGrad decays the learning rate faster for the steep dimensions and gentler for the others
- In practice, AdaGrad usually works well on shallow networks, but less satisfactory on deep networks
 - Probably because learning rate is scaled down too much

AdaGrad (2/2)

RMSProp

 Instead of accumulating all previous gradients to decay the learning rate (as in Adagrad), RMSProp only accumulates recent gradients

$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \odot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})}{\sqrt{\mathbf{s} + \epsilon}}$$

• β : decay rate, usually set to 0.9

Adaptive moment estimation (Adam)

- Combines momentum and RMSProp
 - Track exponentially decaying average gradients
 - Track exponentially decaying average squared gradients

1.
$$m \leftarrow \beta_1 m - (1 - \beta_1) \nabla_{\theta} J(\theta)$$

2.
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta) \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \odot \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

3.
$$\widehat{\boldsymbol{m}} \leftarrow \frac{\boldsymbol{m}}{1-\beta_1^t}$$

5.
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \eta \frac{\hat{m}}{\sqrt{\hat{s} + \epsilon}}$$

- t: iteration count
- Step 3 and 4 are used to boost the value of m and s when t is small
- β_1 and β_2 are usually set to 0.9 and 0.999

NADAM

• Adam optimization + Nesterov "look-ahead" trick (i.e., measuring the gradient of $J(\theta)$ slight ahead the current θ)

Summary of optimizer selection

- Adaptive optimization methods (e.g., RMSProp, Adam, Nadam) usually perform well
- However, study also showed that occasionally SGD or Nesterov Accelerated Gradient perform better
- Probably try adaptive optimization first
- How about Hessian (i.e., second-order partial derivatives) methods?
 - Requires n^2 computation time (n: # parameters)
 - Too costly for deep learning

Learning rate scheduling

- Exponential scheduling: $\eta(t) = \eta_0 r^{t/s}$
 - t: iteration count; s:step number; r: decay rate
- Power scheduling: $\eta(t) = \eta_0/(1+t/s)^c$
- Piecewise constant scheduling: use a constant learning rate for some epochs, and a smaller rate for another number of epochs, and so on
- Performance scheduling: measure the validation error every c steps and reduce the learning rate when error stops dropping

Regularization techniques

- Weight penalty
- Data augmentation
- Early stopping
- Dropout

() prevent overfitely

les est tran est y 28

Regularization – weight penalty

- Similar to what we've used in linear regression and logistic regression
- L2-norm
 - Penalize the squared values of the weights
 - Tend to shrink large weights to smaller values
- L1-norm
 - Penalize the absolute values of the weights
 - Tend to shrink some weights to zero; while other weights may still be large
- A combination of both (e.g., elastic-net)

Regularization – data augmentation

- More data leads to less variance
 - Less likely to overfitting
- Collect more data
- Add synthetic data
 - E.g., to increase the synthetic training data for object recognition from images, popular techniques include
 - Rotate images
 - Scale image
 - Translating a few pixels
 - Injecting random negatives pictures
 - Seems no principle way to generate synthetic data across different domains

Regularization – early stopping

- Training the model based on training data
- Validate the performance of the current model based on validation data
 - Assume that validation data are representative of future (unseen) data
- Once the validation performance starts get worse, stop training
 - Although training performance continues improving, the model may starts learning the "noise" in the training data

Regularization – dropout

- Randomly remove some nodes and their incoming and outgoing connections
- If randomly remove certain neurons the model can still learn something, the model is probably more robust and more resilient to noise

Summary

- When networks become "deep", simple SGD may be problematic, because of vanishing and exploding gradient
- Many techniques were proposed to (partially) solve the problem to accelerate learning
 - Weight initialization
 - Activation function design
 - Optimizer design

— ...