

Documents et calculatrices interdits. Durée : 1 heure 30. La qualité de la rédaction sera prise en compte dans la notation. Toute réponse doit être soigneusement justifiée.

Exercice 1 Questions de cours

- 1. (a) Rappeler la définition d'une suite croissante.
 - (b) Rappeler la définition d'une suite majorée.
 - (c) Soit (u_n) une suite croissante majorée. Démontrer que (u_n) converge vers $\alpha = \sup_{n \in \mathbb{N}} u_n$.
- 2. Soit (u_n) définie par : $\forall n \in \mathbb{N}, \quad u_n = 1 \sqrt{5n}$.
 - (a) Déterminer le plus petit entier n_0 tel que, pour tout $n \ge n_0$, $u_n < -99$.
 - (b) Montrer, à l'aide de la définition, que (u_n) a pour limite $-\infty$.

Exercice 2

Déterminer la limite, si celle-ci existe, des suites (u_n) suivantes :

(a)
$$u_n = \frac{\sqrt{2}n^3 - 4n + 1}{3 + n^2 - 3n^3}$$
.

(d)
$$u_n = \sqrt{4n^2 - n + 2} - \sqrt{4n^2 + n + 2}$$

(b)
$$u_n = \sum_{k=1}^n \frac{n}{\sqrt{n+k}}$$
.

(e)
$$u_n = \frac{5^n - 3^n}{5^n + 3^n}$$
.

(c)
$$u_n = \sum_{k=1}^{2n+1} \frac{n}{n^2 + k}$$
.

(f)
$$u_n = \frac{n^3 + 5n}{4n^2 + \sin(n) + 1}$$
.

Exercice 3 | Suite itérative

Soit (u_n) définie par

$$u_0 = -1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = 2\sqrt{u_n + 3}.$

Pour $x \in [-3, +\infty[$, on pose $f(x) = 2\sqrt{x+3}$.

- 1. Étudier les variations de f sur l'intervalle $[-2, +\infty[$.
- 2. Démontrer que la suite (u_n) est croissante.
- 3. Démontrer par récurrence que pour tout $n \in \mathbb{N}, -1 \leq u_n \leq 6$.
- 4. Justifier que (u_n) converge vers un réel ℓ , puis déterminer ℓ .

Exercice 4 Suites croisées

Soient (u_n) et (v_n) deux suites définies par $u_0 = 1$, $v_0 = 2$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{2u_n + v_n}{3} \quad \text{ et } \quad v_{n+1} = \frac{u_n + 2v_n}{3}.$$

- 1. Démontrer que $(v_n u_n)$ est une suite géométrique de raison $\frac{1}{3}$. En déduire que $(v_n u_n)$ converge et déterminer sa limite.
- 2. Pour $n \in \mathbb{N}$, on définit la proposition \mathcal{P}_n : $u_n \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n$. On suppose dans cette question que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.
 - (a) Montrer que les suites (u_n) et (v_n) convergent et ont la même limite.
 - (b) Montrer que la suite $(u_n + v_n)$ est constante.
 - (c) En déduire la limite des suites (u_n) et (v_n) .
- 3. Question bonus : Démontrer par récurrence que pour tout $n \in \mathbb{N}$, \mathcal{P}_n est vraie.