# E-cyanobacterium.org

## David Šafránek

with M. Troják, J. Hrabec, J. Šalagovič, F. Romanovská and J. Červený



Systems Biology Laboratory Masaryk University Brno

CMSB 2016, University of Cambridge, UK

23 September 2016

# E-cyanobacterium.org



CyanoTeam, Reg. No. CZ.1.07/2.3.00/20.0256 National Infrastructure for Systems Biology, C4SYS



## Background

#### **Domain-Specific Modelling Platform**

- systems biology consortium focused on a specific problem
  - cyanobacteria in various environments
- collaborative development of models
  - identify the processes at a sufficient level of abstraction
  - collect existing and create new dynamical models
  - project models onto the unified biochemical space
- supply experimental data for model validation
- generally aimed tools do not give satisfactory support (Biomodels.net, Opencell.org, JWS Online,...)



# E-cyanobacterium.org

Web-based Platform for Systems Biology of Cyanobacteria

- interactive online platform for cyanobacteria processes
- unified standard format (SBML) supplied with uniform annotation that is executable
- full understanding, re-using, and comparing of models
- storage, maintenance and presentation of experimental data
- content visualisation



## **Overview**

- modular design
- aim to make the integration tighter





# Biochemical Space (BCS)

- rule-based
- acompanied with process hierarchy
- formal description







# Biochemical Space (BCS)

**Compositional Chemical Entities** 

### **Full composition** $\rightarrow$ structure of a complex

- KaiBC == KaiC.KaiB
- KaiC6 == KaiC.KaiC.KaiC.KaiC.KaiC.KaiC

## $\textbf{Partial composition} \rightarrow \text{inner structure of an entity}$

- KaiC(S{u}|T{p})
- cytb6f(f{-}|bl{n}|bhc{2-})
- $\bullet \ ps2(qb\{2-\}|qa\{n\}|chl\{*\}|p680\{+\}|pheo\{-\}|oec\{4+\}|yz\{n\}) \\$



# Model repository

- collection of implemented models
- embedded in the process hierarchy
- online simulation with custom parameter settings

→ models are related to BCS which gives them biological sense





# **Experiments repository**

 storage of time-series data from wet-lab experiments

- $\rightarrow$  experiments are related to BCS
- $\rightarrow$  relate an experiment to relevant models





## Visualisation

- $\rightarrow$  static schemes showing particular parts of BCS
- → automatically generated visualisation of reactions/rules
- $\rightarrow$  simulation charts





# **Analysis**

- ightarrow static analysis of models
  - Matrix analysis
  - Conservation analysis
  - Elementary flux modes analysis





# **DEMO**



## Future work

- new design
- compartmental hierarchy
- interactive reaction networks visualisation tool
- SBGN visualisation of reaction details
- monitoring and model checking
   ⇒ e.g. passing the model to online BioCham
- improve experiment model relating







#### Fifth International Workshop on Hybrid Systems Biology

Grenoble, France, October 20-21, 2016

#### Themes

HSB is a systems biology conference series with emphasis on hybrid approaches in a general sense. Hybrid modelling as well as other dynamic modelling approaches are within the scope of the workshop.

#### Invited speakers

Dennis Bray, University of Cambridge
Albert Goldbeter, Université Libre de Bruxelles
Linda Petzold, University of California

#### **Program Chairs**

o Cinquemani, INRIA, Grenoble e Donzé, University of California

#### General Chair

Oded Maler, VERIMAG/CNRS, Grenoble

#### Registration and contacts:

Early bird registration deadline: September 25th

http://hsb2016.imag.fr



# **Biochemical Space**





# Model repository





# **Experiments repository**



time [s]



Highcharts.com

## Visualisation

# KaiA2C6 complex formation and dissociation Formation of complex from KaiA dimer and KaiC hexamer and its dissociation. KaiA2::cyt + KaiC6::cyt <=> KaiA2C6::cyt KaiA dimer KaiA dimer and KaiC6 hexamer complex formation and dissociation Annotations Entities Processes External links doi:10.1093/embol/18.5.1137



# **Analysis**

#### Stoichiometry matrix of Müller et al. 2016 (in prep)

|          | (Rcells_HCO3_m) | (Rcells_CO2) | (RkLa) | (RB) | (RW) | (R2_m) | (R2_p) | (R1_m) | (R1_p) |
|----------|-----------------|--------------|--------|------|------|--------|--------|--------|--------|
| HCO3_m   | 1               | 0            | 0      | 0    | 0    | -1     | -1     | 1      | 1      |
| H_p      | 0               | 0            | 0      | 1    | 1    | 0      | 1      | 0      | 1      |
| dCO2     | 0               | 1            | 1      | 0    | 0    | 0      | 0      | -1     | -1     |
| $OH_m$   | 0               | 0            | 0      | 0    | 1    | -1     | 0      | -1     | 0      |
| A_m      | 0               | 0            | 0      | 1    | 0    | 0      | 0      | 0      | 0      |
| $CO3_2m$ | 0               | 0            | 0      | 0    | 0    | 1      | 1      | 0      | 0      |
| HA       | 0               | 0            | 0      | -1   | 0    | 0      | 0      | 0      | 0      |

Analysis data: SBRMI

