

Ferienkurs Experimentalphysik 2

Sommersemester 2015

Gabriele Semino, Alexander Wolf, Thomas Maier

Probeklausur

Aufgabe 1: Kupfermünze (4 Punkte)

Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem Kupfer und hatte eine Masse von m=3,10 g (Moderne 'Kupfermünzen' werden aus einer Kupfer-Zink-Legierung (US-Penny) geprägt oder bestehen aus einem Stahlkern mit Kupferummantelung (Euro-Cent)). Wie groß ist die Gesamtladung aller Elektronen in einer solchen Münze?

Hinweis: Kupfer hat eine Kernladungszahl von Z=29 und eine Molare Masse von M=63,55 g/mol. Die Avogadro-Konstante beträgt $N_A=6,022\cdot 10^{23}$ Atome/mol.

Lösung

$$n_{Cu} = m \frac{N_A}{M} = 3,10g \cdot \frac{6,022 \cdot 10^{23} \frac{Atome}{mol}}{63,55 \frac{g}{mol}}$$
 (1)

$$=2,94\cdot 10^{22} Atome\tag{2}$$

$$\Rightarrow n_e = Z \cdot n_{Cu} = 29 \frac{Elektronen}{Atom} \cdot 2,94 \cdot 10^{22} Atome$$
 (3)

$$= 8,53 \cdot 10^{23} Elektronen \tag{4}$$

$$\Rightarrow Q = (-e) \cdot n_e = \left(-1,60 \cdot 10^{-19} \frac{C}{Elektron}\right) \cdot 8,53 \cdot 10^{23} Elektronen \tag{5}$$

$$= -1,37 \cdot 10^5 C \tag{6}$$

Aufgabe 2: Kugel mit Hohlraum (6 Punkte)

Das Feld einer homogenen geladenen Kugel hat die Form:

$$\vec{E}(\vec{r}) = \begin{cases} \frac{Q}{4\pi\epsilon_0 R^3} \vec{r} & \text{für } r < R\\ \frac{Q}{4\pi\epsilon_0 r^3} \vec{r} & \text{für } r > R \end{cases}$$
 (7)

Hierbei ist R der Radius der Kugel und Q ihre Ladung. Benutzen Sie dies, um das folgende Problem zu bearbeiten:

Eine Kugel mit Radius R war positiv geladen mit einer einheitlichen Ladungsdichte ρ . Dann wurde eine kleinere Kugel mit dem Radius R/2 ausgeschnitten und entfernt (siehe Skizze). Welche Richtung und welchen Betrag hat das Feld in den Punkten A und B?

Lösung

Dieses Problem lässt sich mit Hilfe des Superspositionsprinzips leicht lösen. Denn die Kugel mit dem Loch lässt sich darstellen als Überlagerung von

- Kugel 1 mit Radius R und Mittelpunkt im Ursprung mit homogener Ladungsdichte ρ .
- Kugel 2 mit Radius R/2 und Mittelpunkt bei $(R/2)\vec{e}_z$ mit homogener Ladungsdichte $-\rho$.

Dann gilt das Superpositionsprinzip: Das Feld der kombinierten Ladungsverteilung ist die Summe der Felder der einzelnen Ladungsverteilungen. Also in Punkt A

$$\vec{E}(A) = \vec{E}_1(A) + \vec{E}_2(A)$$
 (8)

wobei gilt

$$\vec{E}_1(A) = 0 \tag{9}$$

$$\vec{E}_2(A) = \frac{Q_2}{4\pi\epsilon_0 (R/2)^3} \left(-\frac{R}{2}\vec{e}_z \right)$$
 (10)

$$= -\frac{Q_2}{\pi \epsilon_0 R^2} \vec{e}_z \tag{11}$$

mit

$$Q_2 = -\rho \frac{4\pi}{3} \left(\frac{R}{2}\right)^3 = -\frac{\pi \rho R^3}{6} \tag{12}$$

also erhält man als Gesamtfeld in A

$$\vec{E}(A) = \frac{\rho R}{6\epsilon_0} \vec{e}_z \tag{13}$$

Entsprechend in Punkt B:

$$\vec{E}_1(B) = \frac{Q_1}{4\pi\epsilon_0 R^3} (-R\vec{e}_z) \quad \text{mit } Q_1 = \rho \frac{4}{3}\pi R^3$$
 (14)

$$\vec{E}_2(B) = \frac{Q_2}{4\pi\epsilon_0 (3R/2)^3} \left(-\frac{3R}{2} \vec{e}_z \right) \quad \text{mit } Q_2 = -\frac{\pi \rho R^3}{6}$$
 (15)

also

$$\vec{E}(B) = \vec{E}_1(B) + \vec{E}_2(B) \tag{16}$$

$$= -\frac{\rho R}{3\epsilon_0}\vec{e}_z + \frac{\rho R}{54\epsilon_0}\vec{e}_z = -\frac{17\rho R}{54\epsilon_0}\vec{e}_z \tag{17}$$

D.h. das Feld zeigt also im Punkt A nach oben und im Punkt B nach unten, in beiden Fällen also von der Ladungsverteilung weg, was klar ist, da es sich ja um eine positive Ladung handelt. Die Feldstärke im Punkt B ist etwa doppelt so groß wie die in Punkt A, was ebenfalls anschaulich ist, da in Punkt B die gesamte abstoßende Kraft der gelöcherten Kugel nach unten zeigt, während in Punkt A die nach oben gerichtete Abstoßung durch die untere Halbkugel teilweise von der nach unten gerichteteten Absoßung durch den Rest der oberen Halbkugel kompensiert wird.

Aufgabe 3: Magnetfeld einer Stromschicht (5 Punkte)

Gegeben sei eine unendlich breite Schicht der Höhe 2a, welche von einer konstanten Stromdichte $\vec{j}=j_0$ \vec{e}_y durchflossen wird (siehe Skizze). Berechnen Sie das magnetische Feld $\vec{B}(\vec{r})$ ober, unter und in der Schicht mithilfe des Ampere'schen Gesetzes.

Lösung

Aufgrund der Symmetrie gilt

$$\vec{B}(\vec{r}) = \begin{cases} B(z)\vec{e}_x & \text{für } z > 0\\ -B(z)\vec{e}_x & \text{für } z < 0 \end{cases}$$
(18)

Das Ampere'sche Gesetz lautet

$$\oint_{\partial A} \vec{B} \cdot d\vec{s} = \mu_0 \int_A \vec{j} \cdot d\vec{A} \tag{19}$$

Wir wählen als Integrationsfläche A ein Rechteck der Höhe 2z und Breite l. Das Linienintegral auf

der rechten Seite über den Rand der Oberfläche (Umlaufrichtung mit dem Uhrzeigersinn, sodass die Rechte-Hand-Regel mit der Flächennormalen erfüllt ist) ergibt sich zu:

$$\oint_{\partial A} \vec{B} \cdot d\vec{s} = \int_0^l B(z) \ dx + \int_l^0 -B(z) \ dx \tag{20}$$

$$= B(z)l + (-B(z))(-l) = 2lB(z)$$
(21)

Für das Oberflächenintegral auf der linken Seite ergibt sich wegen $d\vec{A} = \vec{e}_y dA$ zu:

$$\mu_0 \int_A \vec{j} \cdot d\vec{A} = \mu_0 \int_A j \ dA = \mu_0 \begin{cases} j_0 2al & \text{für } 2z > 2a \\ j_0 2zl & \text{für } 2z < 2a \end{cases}$$
 (22)

Nach Gleichsetzen erhält man also:

$$B(z) = \begin{cases} \mu_0 j_0 z & \text{für } z < a \\ \mu_0 j_0 a & \text{für } a < z \end{cases}$$
 (23)

Aufgabe 4: Widerstandsnetzwerk (7 Punkte)

Betrachten Sie das abgebildete Widerstandsnetzwerk. Bestimmen Sie das Verhältnis der beiden Eingangsspannungen U_1 und U_2 , sodass durch den oberen Widerstand kein Strom fließt.

Lösung

Die beiden oberen Widerstände lassen sich zu 2R zusammenfassen. Zunächst definiert man eine positive Stromrichtung und zeichnet relevante Potentialpunkte ein und erhält folgende Abbildung: Für die äußere Masche gilt:

$$\phi_1 - \phi_3 = 2RJ_1 \tag{24}$$

$$\phi_3 - 0 = RJ_3 \tag{25}$$

$$0 - \phi_1 = -U_1 \tag{26}$$

$$\Rightarrow 0 = 2RJ_1 + RJ_3 - U_1 \tag{27}$$

Für die innere Masche gilt:

$$\phi_3 - \phi_2 = RJ_2 \tag{28}$$

$$\phi_3 - 0 = RJ_3 \tag{29}$$

$$0 - \phi_2 = -U_2 \tag{30}$$

$$\Rightarrow 0 = RJ_2 + RJ_3 - U_2 \tag{31}$$

Zusätzlich gilt die Knotenregel am Verzweigungspunkt:

$$J_1 + J_2 = J_3 (32)$$

Zusammen erhält man 3 Gleichungen für 3 Unbekannte. Jedoch ist man an der Bedingung Interessiert, dass $J_1 = 0$. Eingesetzt in die Gleichungen erhält man:

$$J_2 = J_3 \tag{33}$$

$$RJ_3 = U_1 (34)$$

$$RJ_2 + RJ_3 = U_2 (35)$$

Woraus folgt:

$$\frac{U_2}{U_1} = 2\tag{36}$$

Aufgabe 5: Lenz Beschleunigung (6 Punkte)

Ein Metalldraht mit der Masse m und dem Widerstand R liegt auf zwei parallelen leitenden Schienen mit dem Abstand l. Der Draht kann auf den Schienen reibungsfrei gleiten. Senkrecht zur Schienenebene liegt ein homogenes Magnetfeld \vec{B} .

- a) Zwischen beiden Schienen liefert ein Stromgenerator einen konstanten Strom I_0 . Bestimmen Sie die Geschwindigkeit v des Metalldrahts als Funktion der Zeit, wenn er zum Zeitpunkt t = 0 am Ort x = 0 ruht.
- b) Welchen Endwert erreicht die Geschwindigkeit des Metalldrahts, wenn der Stromgenerator durch eine Batterie mit konstanter Spannung U_0 ersetzt wird?

Lösung

a) Es wirkt eine Lorentzkraft:

$$\vec{F}_L = l\vec{I} \times \vec{B} \quad \text{mit } \vec{I} \perp \vec{B} \tag{37}$$

$$\Rightarrow F_L = lIB = m\ddot{x} \tag{38}$$

$$\Rightarrow \ddot{x} = \frac{IIB}{m} \tag{39}$$

$$\Rightarrow \dot{x} = v(t) = \frac{lIB}{m}t\tag{40}$$

b) Mit den Formeln zur Induktion:

$$U_{\rm ind} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t} \int \vec{B} \cdot \mathrm{d}\vec{A} = -Bl\frac{\mathrm{d}x}{\mathrm{d}t} = -Blv \tag{41}$$

$$I(t) = \frac{U(t)}{R} = \frac{U_0 - Blv(t)}{R}$$

$$F_L = lIB = l\frac{U_0 - Blv(t)}{R}B = m\ddot{x}$$

$$(42)$$

$$F_L = lIB = l\frac{U_0 - Blv(t)}{R}B = m\ddot{x} \tag{43}$$

Damit ist

$$\ddot{x} + \frac{l^2 B^2}{Rm} \dot{x} - \frac{lBU_0}{Rm} = 0 \tag{44}$$

die Bewegungsgleichung des Systems. Dies hat einen stationären Zustand $\ddot{x}(t) = a = 0$. Damit ergibt sich

$$\frac{l^2 B^2}{Rm} \dot{x} - \frac{lBU_0}{Rm} = 0 {45}$$

$$\Rightarrow \dot{x} = v_{\rm End} = \frac{U_0}{lB} \tag{46}$$

Dies geht auch einfacher: Für den stationären Zustand gilt:

$$U_{\rm ind} = -U_0 = -Blv_{\rm End} \tag{47}$$

$$\Rightarrow v_{\rm End} = \frac{U_0}{lB} \tag{48}$$

Aufgabe 6: Komplexe Widerstände (6 Punkte)

Gegeben sei eine Parallelschaltung einer Induktivität L=4 H und einer Kapazität $C=25~\mu\mathrm{F}$, die mit der Generatorspannung $U=U_0\cdot\cos(\omega t)$ mit $U_0=100$ V betrieben wird.

- a) Wie groß sind in jedem Zweig der Schaltung die maximale Amplitude des Stromes und der Phasenwinkel zwischen Strom und Spannung?
- b) Berechnen sie die Kreisfrequenz ω , bei der die Generatorstromstärke gleich null ist.
- c) Wie groß sind bei diesem Resonanzfall die maximale Stromstärke in der Spule und im Kondensator?
- d) Zeichnen Sie ein Zeigerdiagramm, aus dem die Beziehung zwischen angelegter Spannung, Generatorstrom, Kondensatorstrom und Spulenstrom hervorgeht. Hierbei sei der induktive Blindwiderstand größer als der kapazitive.

Lösung

a) Bei der Parallelschaltung ist die Spannung am Kondensator und der Spule gleich der Generatorspannung.

Für den Blindwiderstand des Kondensators gilt $Z_C = \frac{1}{\omega C}$. Daraus ergibt sich für den Strom durch den Kondensator

$$I_C = \frac{U_0}{Z_C} = U_0 \omega C. \tag{49}$$

Der Strom eilt der Spannung um 90° voraus.

Für den Blindwiderstand der Spule gilt $Z_L = \omega L$. Daraus ergibt sich für den Strom durch die Spule

$$I_L = \frac{U_0}{Z_L} = \frac{U_0}{\omega L} \tag{50}$$

Der Strom eilt der Spannung um 90° nach.

b) I_C und I_L sind 180° phasenverschoben, d.h. der Generatorstrom ist null, wenn die beiden Ströme gleich groß sind, also

$$U_0 \omega C = \frac{U_0}{\omega L} \tag{51}$$

Dies bedeutet

$$\omega = \sqrt{\frac{1}{LC}} = 100Hz \tag{52}$$

c) Die Blindwiderstände bei Resonanzfrequenz sind

$$Z_C = \frac{1}{\omega C} = \frac{1}{100Hz \cdot 25 \cdot 10^{-6}F} = 400\Omega \tag{53}$$

$$Z_L = \omega L = 100Hz \cdot 4H = 400\Omega \tag{54}$$

Damit

$$I = 100V \cdot 100Hz \cdot 25 \cdot 10^{-6}F = 0,25A \tag{55}$$

d) Da der induktive Blindwiderstand größer ist als der kapazitive, ist der Strom durch die Spule kleiner.

Aufgabe 7: Protonenstrom (6 Punkte)

Eine Astronomin beobachtet, dass ein Protonenstrom (Teil des Sonnenwinds) die Erde zum Zeitpunkt t_1 passiert. Später entdeckt sie, dass Jupiter zum Zeitpunkt $t_2 = t_1 + \Delta t$ ($\Delta t = 900$ s) einen Ausbruch hochfrequenten Rauschens emittiert. Eine zweite Astronomin S' reist in einem Raumschiff von der Erde zum Jupiter. Das Raumschiff hat die Geschwindigkeit v = 0, 5c. Diese Astronomin beobachtet dieselben zwei Ereignisse. Nehmen Sie an, dass sich die Erde direkt zwischen der Sonne und Jupiter befindet und dass die Entfernung zwischen der Erde und dem Jupiter $6, 3 \cdot 10^8$ km beträgt.

- a) Berechnen Sie das von Beobachterin S' im Raumschiff gemessene Zeitintervall $\Delta t'$ zwischen den zwei Ereignissen.
- b) Mit welcher Geschwindigkeit (und in welche Richtung) müsste ein Raumschiff fliegen, damit die zwei Ereignisse für ein Besatzungsmitglied zeitgleich erschienen?
- c) Angenommen das Rauschen wird vom Protonenstrom verursacht, berechnen Sie die Begrenzung, die sich aus dieser Bedingung für Δt ergibt.

Lösung

a) Ereignis E_1 ist das Eintreffen des Protonenstroms bei der Erde zum Zeitpunkt t_1 . Ereignis E_2 ist der Ausbruch des hochfrequenten Rauschens. Der zeitliche Abstand der beiden Ereignisse ist Δt . Der räumliche Abstand der beiden Ereignisse ist

$$\Delta x \equiv x_2 - x_1 \tag{56}$$

Um vom Zeitintervall Δt in S zum Zeitintervall $\Delta t'$ in S' zu kommen, verwendet man die Lorentz-Transformation

$$\Delta t' \equiv t_2' - t_1' \tag{57}$$

$$= \gamma \left(\Delta t - \beta \frac{\Delta x}{c} \right) \tag{58}$$

mit

$$\beta = \frac{v}{c} = \frac{1}{2} \quad , \quad \gamma = \frac{2}{\sqrt{3}} \tag{59}$$

Daraus ergibt sich

$$\Delta t' = \frac{2}{\sqrt{3}} \left(900s - \frac{1}{2} \frac{6.3 \cdot 10^{11} \text{m}}{3 \cdot 10^8 \text{m/s}} \right) = -173s \tag{60}$$

b) Die beiden Ereignisse sind zeitgleich für einen mit Geschwindigkeit v^* reisenden Beobachter, wenn

$$\Delta t^* = \gamma^* \left(\Delta t - \beta^* \frac{\Delta x}{c} \right) = 0 \tag{61}$$

Mit den gegebenen Zahlenwerten für Δx und Δt ergibt sich daraus

$$\frac{v^*}{c} = \frac{c\Delta t}{\Delta x} = \frac{3}{7} \tag{62}$$

Also sind die Ereignisse zeitgleich für einen Beobachter, der mit einer Geschwindigkeit $v^* = \frac{3}{7}c$ von der Erde zum Jupiter reist.

c) Damit der Protonenstrom das Rauschen des Jupiters überhaupt verursachen kann, darf das Zeitintervall zwischen den Ereignissen E_1 und E_2 in allen bewegten Bezugsystemen mit v < c nicht negativ sein. Also

$$\Delta t' = \gamma \left(\Delta t - \beta \frac{\Delta x}{c} \right) \ge 0 \qquad \forall v < c$$
 (63)

Im Grenzfall v=c erhält man

$$\Delta t - \frac{\Delta x}{c} \ge 0 \tag{64}$$

$$\Delta t - \frac{\Delta x}{c} \ge 0$$

$$\Rightarrow \Delta t \ge \frac{\Delta x}{c} = 2, 1 \cdot 10^3 s$$
(64)

Falls der Protonenstrom also das Rauschen verursacht haben kann, muss das Rauschen im ruhenden Bezugsystem mindestens 2100 s nachdem die Protonen die Erde passiert haben, emittiert werden.