توزیع های توام، شرطی و استقلال متغیرهای تصادفی

فردوس گرجی

(Joint Probability distribution) توزیع احتمال توأم

گاهی اوقات در یک فضای نمونهای میخواهیم همزمان چند متغیر تصادفی را بررسی کنیم. مثلا در یک آزمایش شیمیایی، حجم گاز متصاعد شده و دمای واکنش را با هم در نظر می گیریم. در چنین حالتی، مثلا متغیر تصادفی X ، حجم گاز متصاعد شده و متغیر تصادفی Y، دمای واکنش را نشان می دهد. در اغلب موارد، بررسی تک تک این متغیرها اطلاعات کافی بدست نمیدهد. زیرا به یکدیگر وابسته بوده و روی هم اثر دارند. در این حالت از تابع احتمال توام دو متغیر تصادفی X و Y استفاده می کنیم که آن را به صورت f(X,Y) نشان می دهیم.

قسمت هاشورخورده پیشآمد A را نشان میدهد که در آن همزمان حجم گاز متصاعد شده بین ۱۵ تا ۳۰ لیتر و دمای واکنش بین ۱- تا ۳ درجه سانتی گراد میباشد.

تابع احتمال توأم

تعریف: تابع f(x,y) را توزیع احتمال توأم یا تابع جرم احتمال توأم متغیرهای تصادفی گسسته X و Y گویند اگر:

1)
$$\forall (x,y) \in \mathbb{R}^2$$
 : $f(x,y) \ge 0$

$$2) \sum_{x} \sum_{y} f(x,y) = 1$$

$$3)P(X = x, Y = y) = f(x,y) \qquad (\forall (x,y) \in \mathbb{R}^2)$$

به این ترتیب داریم:

$$\forall A \subseteq \mathbb{R}^2$$
 : $P((x,y) \in A) = \sum \sum_{(x,y) \in A} f(x,y)$

> جدول توزیع احتمال توأم متغیرهای تصادفی گسسته X و Y :

X	b_1	b_2		b_r	
a_1	$f(a_1,b_1)$	$f(a_1,b_2)$		$f(a_1,b_r)$	
a_2	$f(a_2, b_1)$	$f(a_2,b_2)$		$f(a_2,b_r)$	
		• •		· .	
a_k	$f(a_k, b_1)$	$f(a_k, b_2)$	••••	$f(a_k,b_r)$	
					1

توزيع احتمال حاشيهاي

تعریف: توزیعهای حاشیهای متغیرهای تصادفی گسسته X و Y عبارت است از:

$$f_X(x) = \sum_y f(x, y)$$

$$f_Y(y) = \sum_x f(x, y)$$

۲ وزیع احتمال توأم متغیرهای تصادفی گسسته X و Y:

X	b_1	b_2		b_r	$f_X(x)$
a_1	$f(a_1, b_1)$	$f(a_1,b_2)$	••••	$f(a_1,b_r)$	$f_X(a_1)$
a_2	$f(a_2, b_1)$	$f(a_2,b_2)$		$f(a_2,b_r)$	$f_X(a_2)$
			•		
a_k	$f(a_k, b_1)$	$f(a_k, b_2)$	••••	$f(a_k, b_r)$	$f_X(a_k)$
$f_Y(y)$	$f_Y(b_1)$	$f_Y(b_2)$	••••	$f_Y(b_r)$	1

$$f_{Y}(y) = \sum_{x} f(x, y)$$

$$= f(x_{1}, y) + f(x_{2}, y) + \dots + f(x_{k}, y)$$

$$= P(X = x_{1}, Y = y) + P(X = x_{2}, Y = y) + \dots$$

$$+P(X = x_{k}, Y = y)$$

$$= P(\{X = x_{1}\} \cap \{Y = y\}) + P(\{X = x_{2}\} \cap \{Y = y\})$$

$$+ \dots + P(\{X = x_{k}\} \cap \{Y = y\})$$

$$= P((\{X = x_{1}\} \cup \dots \cup \{X = x_{k}\}) \cap \{Y = y\})$$

تابع توزیع تجمعی توأم:

$$F(X,Y) = P(X \le x, Y \le y) = \sum_{t \le x} \sum_{s \le y} f(t,s)$$

مثال 1: عدد X را به تصادف از بین اعداد 0 و 1 و 1 و 1 و 1 انتخاب می کنیم و سپس عدد 1 را به تصادف از بین اعداد 1 و 1 و 1 انتخاب می کنیم. تابع احتمال توأم 1 را بیابید. توزیعهای حاشیه 1 و 1 را حساب کنید.

راهحل:

$$f(X = 1, Y = 1) = \frac{1}{5} \times 1 = \frac{1}{5}$$

$$f(X = 1, Y = 2) = \frac{1}{5} \times 0 = 0$$

$$f(X = 2, Y = 1) = \frac{1}{5} \times \frac{1}{2} = \frac{1}{10}$$

$$f(X = 2, Y = 2) = \frac{1}{5} \times \frac{1}{2} = \frac{1}{10}$$

$$f(X=2, Y=3) = \frac{1}{5} \times 0 = 0$$

X	1	2	3	4	5	
1	<u>1</u> 5	0	0	0	0	
2	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	
3	$\frac{1}{15}$	1 15	1 15	0	0	
4	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	0	
5	1 25	$\frac{1}{25}$	$\frac{1}{25}$	1 25	1 25	
						1

н

X	1	2	3	4	5	$f_X(x)$
1	<u>1</u> 5	0	0	0	0	<u>1</u> 5
2	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	<u>1</u> 5
3	1 15	1 15	1 15	0	0	<u>1</u> 5
4	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	0	<u>1</u> 5
5	1 25	<u>1</u> 25	<u>1</u> 25	<u>1</u> 25	0	<u>1</u> 5
$f_Y(y)$	137 300	77 300	47 300	9 100	<u>1</u> 25	1

◄ مثال ۲: در مثال ۱، احتمال اینکه ۲ کمتر از نصف X باشد چقدر است؟

X	1	2	3	4	5	$f_X(x)$
1	<u>1</u> 5	0	0	0	0	<u>1</u> 5
2	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	<u>1</u> 5
3	1 15	1 15	1 15	0	0	<u>1</u> 5
4	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	0	<u>1</u> 5
5	1 25	<u>1</u> 25	<u>1</u> 25	1 25	$\frac{1}{25}$	<u>1</u> 5
$f_Y(y)$	137 300	77 300	47 300	$\frac{9}{100}$	<u>1</u> 25	1

$$P(Y < \frac{1}{2}x) = \sum_{x=1}^{5} \sum_{y=1}^{\left[\frac{1}{2}(X+1)-1\right]} f(x,y)$$

$$= f(X = 3, Y = 1) + f(X = 4, Y = 1) + f(X = 5, Y = 1) + f(X = 5, Y = 2)$$

$$= \frac{1}{15} + \frac{1}{20} + \frac{1}{25} + \frac{1}{25} = \frac{59}{300}$$

مثال Y: دوتاس سالم را همزمان پرتاب می کنیم. اگر X تعداد Yها و Y تعداد Yهای ظاهرشده باشد، تابع توزیع احتمال Y توأم Y و Y را بیابید. با فرض Y و نام بیابید و Y را بیابید. با فرض Y و نام بیابید. با فرن Y و نام بیابید و نام بیابید. با فرن Y و نام بیابید و نام بیابید و نام بیابی و نام بیابید و نام بیابید و نام بیابید و نام بیابید و نام بیابی و نام بیابید و نام

$$f(0,0) = \frac{4}{6} \times \frac{4}{6}$$

$$f(0,1) = \frac{1}{6} \times \frac{4}{6} + \frac{4}{6} \times \frac{1}{6} = \frac{8}{36}$$

$$f(0,2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{3x6}$$

$$f(1,0) = \frac{8}{36}$$

	1	1	1	1	2
f(1,1) =	$\frac{-}{6}$ X	$\frac{1}{6}$	<u> </u>	< - =	$=\frac{1}{36}$

$$f(1,2) = 0$$

$$f(2,0) = \frac{1}{36}$$

$$f(2,1) = 0$$

$$f(2,2)=0$$

X	0	1	2	$f_X(x)$
0	<u>16</u> 36	<u>8</u> 36	<u>1</u> 36	<u>25</u> 36
1	<u>8</u> 36	$\frac{2}{36}$	0	10 36
2	$\frac{1}{36}$	0	0	<u>1</u> 36
$f_Y(y)$	25 36	10 36	<u>1</u> 36	1

$$P(2X + Y < 3) = P(Y < 3 - 2X)$$

X	0	1	2	$f_X(x)$
0	16 36	<u>8</u> 36	<u>1</u> 36	<u>25</u> 36
1	<u>8</u> 36	$\frac{2}{36}$	0	10 36
2	$\frac{1}{36}$	0	0	<u>1</u> 36
$f_Y(y)$	<u>25</u> 36	<u>10</u> 36	$\frac{1}{36}$	1

$$P(2X + Y < 3) = P(Y < 3 - 2X) = \sum_{x=0}^{2} \sum_{y=0}^{3-2x-1} f(x, y)$$

$$= f(0,0) + f(0,1) + f(0,2) + f(1,0) = \frac{16}{36} + \frac{8}{36} + \frac{1}{36} + \frac{8}{36} = \frac{33}{36}$$

تابع چگالی احتمال توأم:

تابع f(x,y) را تابع چگالی توأم متغیرهای تصادفی پیوسته X و Y گوییم هرگاه:

$$1)\forall (x,y) \in \mathbb{R}^2 : f(x,y) \ge 0$$

$$2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1$$

3)
$$P((X,Y) \in A) = \iint_A f(x,y) dxdy \quad \forall A \in \mathbb{R}^2$$

3)
$$P((X,Y) \in A) = \iint_A f(x,y) dxdy \quad \forall A \in \mathbb{R}^2$$

مثال Υ : فرض کنید X زمان انجام یک واکنش شیمیایی و Y درجه حرارتی باشد که در آن واکنش شروع میشود و تابع چگالی توأم X و Y به صورت زیر باشد:

$$f(x,y) = \begin{cases} axy & 0 < x < 1; \ 0 < y < 1 \\ o.w \end{cases}$$
 الف) مقدار a را بیابید.

ب)احتمال P(X < Y) را بیابید.

ج) احتمال
$$P(0 \le X \le \frac{1}{2}, \frac{1}{4} \le Y \le 1)$$
 را بيابيد.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx dy = 1 \quad \Rightarrow \quad \int_{0}^{1} \int_{0}^{1} axy \, dx dy = 1 \quad \Rightarrow \quad \int_{0}^{1} \left[ay \frac{x^{2}}{2} \Big|_{0}^{1} \right] dy = 1 \quad \Rightarrow \quad \int_{0}^{1} \frac{ay}{2} \, dy = 1 \quad \Rightarrow \quad \frac{ay^{2}}{4} \Big|_{0}^{1} = 1$$

$$\Rightarrow \frac{a(1)}{4} - 0 = 1 \quad \Rightarrow \quad \mathbf{a} = \mathbf{4}$$

$$f(x,y) = \begin{cases} 4xy & 0 < x < 1; \ 0 < y < 1 \\ 0 & o.w \end{cases}$$

ادامه مثال ۴:

$$P(X < Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x, y) \, dx dy = \int_{0}^{1} \int_{0}^{y} 4xy \, dx dy = \int_{0}^{1} \left[4y \frac{x^{2}}{2} \, \middle|_{0}^{y} \right] dy$$
$$= \int_{0}^{1} 2y^{3} \, dy = \frac{2y^{4}}{4} \, \middle|_{0}^{1} = \frac{2}{4} - 0 = \frac{1}{2}$$

$$= \int_0^1 2y^3 dy = \frac{2y^4}{4} \Big|_0^1 = \frac{2}{4} - 0 = \frac{1}{2}$$

$$f(x,y) = \begin{cases} 4xy & 0 < x < 1; \ 0 < y < 1 \\ 0 & o.w \end{cases}$$

🗦 ادامه مثال ۴:

$$P\left(0 \le X \le \frac{1}{2}, \frac{1}{4} \le Y \le 1\right) = \int_{\frac{1}{4}}^{1} \int_{0}^{\frac{1}{2}} f(x, y) \, dx dy = \int_{\frac{1}{4}}^{1} \int_{0}^{\frac{1}{2}} 4xy \, dx dy$$

$$= \int_{\frac{1}{4}}^{1} \left[4y \frac{x^2}{2} \middle| \frac{1}{2} \right] dy = \int_{\frac{1}{4}}^{1} \frac{y}{2} dy$$
$$= \frac{y^2}{4} \middle| \frac{1}{\frac{1}{4}} = \frac{1}{4} - \frac{1}{64} = \frac{15}{64}$$

مثال Δ : فرض کنید تابع چگالی توأم متغیرهای تصادفی X و Y به صورت زیر باشد:

$$f(x,y) = \begin{cases} \frac{x}{5} + cy & 0 < x < 1; \ 1 < y < 5 \\ 0 & o.w \end{cases}$$
 ابایید.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1 \quad \Rightarrow \quad \int_{1}^{5} \int_{0}^{1} \left(\frac{x}{5} + cy\right) \, dx \, dy = 1 \quad \Rightarrow \quad \int_{1}^{5} \left[\frac{x^{2}}{10} + cxy \, \Big|_{0}^{1}\right] \, dy = 1 \quad \Rightarrow \quad \int_{1}^{5} (cy + \frac{1}{10}) \, dy = 1 \quad \Rightarrow \quad \frac{cy^{2}}{2} + \frac{y}{10} \, \Big|_{1}^{5} = 1 \quad \Rightarrow \quad \frac{25c}{2} + \frac{5}{10} - \frac{c}{2} - \frac{1}{10} = 1 \quad \Rightarrow \quad c = 0.05$$

کنید تابع چگالی توأم X و Y به صورت زیر باشد: کالی کالی توانم X و X به صورت زیر باشد:

$$f(x,y) = \begin{cases} kxy & x > 0 , y > 0 , x^2 + y^2 \le 1 \\ 0 & o.w \end{cases}$$
 مقدار k را بیابید.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx dy = 1 \qquad \Rightarrow \qquad \int_{0}^{1} \int_{0}^{\sqrt{1 - y^{2}}} kxy \, dx dy = 1 \qquad \Rightarrow \qquad \int_{0}^{1} \left[ky \frac{x^{2}}{2} \middle| \sqrt{1 - y^{2}} \middle| dy = 1 \qquad \Rightarrow \qquad \int_{0}^{1} \frac{1}{2} (ky - ky^{3}) \, dy = 1 \qquad \Rightarrow \qquad \frac{ay^{2}}{4} \middle|_{0}^{1} = 1$$

$$\Rightarrow \left(\frac{ky^{2}}{4} - \frac{ky^{4}}{8} \right) \middle|_{0}^{1} = 1 \qquad \Rightarrow \qquad \mathbf{k} = \mathbf{8}$$

$$\Rightarrow \left(\frac{ky^2}{4} - \frac{ky^4}{8}\right)\Big|_0^1 = 1 \qquad \Rightarrow \qquad \mathbf{k} = \mathbf{k}$$

را بیابید. P(X<Y<2X) اگر تابع چگالی توأم متغیرهای تصادفی P(X<Y<2X) و P(X>Y<2X) را بیابید.

$$f(x,y) = \begin{cases} 4xye^{-(x^2+y^2)} & x > 0, y > 0 \\ 0 & o.w \end{cases}$$

$$P(X < Y < 2X) = \int_{-\infty}^{\infty} \int_{x}^{2x} f(x,y) \, dy dx = \int_{0}^{\infty} \int_{x}^{2x} 4xy e^{-(x^{2}+y^{2})} \, dy dx$$

$$= \int_{0}^{\infty} \int_{x}^{2x} (-2x)(-2y) e^{-(x^{2}+y^{2})} \, dy dx = \int_{0}^{\infty} (-2x) \left[e^{-(x^{2}+y^{2})} \left| \frac{2x}{x} \right| dx$$

$$= \int_{0}^{\infty} (-2x) (e^{-(x^{2}+4x^{2})} - e^{-(x^{2}+x^{2})}) dx = \int_{0}^{\infty} (-2x) (e^{-(5x^{2})} - e^{-(2x^{2})}) dx$$

$$= \int_{0}^{\infty} -2x e^{-5x^{2}} dx - \int_{0}^{\infty} -2x e^{-2x^{2}} dx = \frac{1}{5} e^{-5x^{2}} \left| \frac{\infty}{0} - \frac{1}{2} e^{-2x^{2}} \right| \frac{\infty}{0} = \frac{-1}{5} + \frac{1}{2} = \frac{3}{10}$$

کالی حاشیهای:

توابع چگالی حاشیهای متغیرهای تصادفی پیوسته X و Y عبارتند از:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

تابع توزیع تجمعی توأم متغیرهای تصادفی پیوسته X و Y:

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(t,s)dtds$$

مثال Λ : در مثال Υ ، چگالیهای حاشیهای X و Y و تابع توزیع تجمعی توأم را بیابید.

$$f(x,y) = \begin{cases} 4xy & 0 < x < 1; \ 0 < y < 1 \\ 0 & o.w \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \int_{0}^{1} 4xydy = \frac{4xy^2}{2} \Big|_{0}^{1} = 2x$$
; $0 < x < 1$

$$f_Y(y) = \int_0^1 f(x,y)dx = \int_0^1 4xydx = \frac{4x^2y}{2} \Big|_0^1 = 2y$$
; $0 < y < 1$

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(t,s) dt ds = \int_{0}^{y} \int_{0}^{x} 4ts dt ds = \int_{0}^{y} (2t^{2}s \begin{vmatrix} x \\ 0 \end{vmatrix}) ds = \int_{0}^{y} 2x^{2}s ds$$
$$= x^{2}s^{2} \begin{vmatrix} y \\ 0 \end{vmatrix} = x^{2}y^{2}$$

مثال \mathbf{Y} در مثال \mathbf{X} ، چگالیهای حاشیهای \mathbf{X} و \mathbf{Y} را بیابید.

$$f(x,y) = \begin{cases} \frac{x}{5} + 0.05y & 0 < x < 1; \ 1 < y < 5 \\ 0 & o.w \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \int_{1}^{5} (\frac{x}{5} + 0.05y)dy = \left(\frac{xy}{5} + \frac{0.05y^2}{2}\right) \begin{vmatrix} 5\\1 \end{vmatrix}$$

$$= x + 0.62 - \frac{x}{5} - 0.025 = \frac{4}{5}x + 0.6 \qquad ; \qquad 0 < x < 1$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx = \int_{0}^{1} (\frac{x}{5} + 0.05y)dx = \left(\frac{x^2}{10} + 0.05xy\right) \begin{vmatrix} 1\\0 \end{vmatrix}$$

$$= \mathbf{0.05}y + \mathbf{0.1} \qquad ; \qquad 1 < y < 5$$

ک مثال ۱۰: در مثال ۶، چگالیهای حاشیهای X و ۲ را بیابید.

$$f(x,y) = \begin{cases} 8xy & x > 0 , y > 0 , x^2 + y^2 \le 1 \\ 0 & o.w \end{cases}$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{\sqrt{1 - x^2}} 8xy dy = \frac{8xy^2}{2} \begin{vmatrix} \sqrt{1 - x^2} \\ 0 \end{vmatrix} = 4x(1 - x^2) \quad ; \quad 0 < x < 1$$

$$f_Y(y) = \int_0^\infty f(x,y) dx = \int_0^{\sqrt{1-y^2}} 8xy dx = \frac{8x^2y}{2} \begin{vmatrix} \sqrt{1-y^2} \\ 0 \end{vmatrix} = 4y(1-y^2) \quad ; \quad 0 < y < 1$$

: (Conditional distribution) توزیع شرطی

تعریف: فرض کنید X و Y دو متغیر تصادفی پیوسته یا گسسته باشند. توزیع شرطی متغیر متصادفی Y به شرط X=x عبارت است از:

$$f(y|x) = \frac{f(x,y)}{f_X(x)}$$
 ; $f_X(x) > 0$

همچنین توزیع شرطی متغیر تصادفی X ، به فرض Y=y عبارت است از :

$$f(x|y) = \frac{f(x,y)}{f_Y(y)}$$
 ; $f_Y(y) > 0$

$$P(a < X < b \mid Y = y) = \sum_{x \in (a,b)} f(x|y)$$
 در حالت گسسته:

$$P(a < X < b \mid Y = y) = \int_a^b f(x|y)dx$$
 در حالت پیوسته:

X	1	2	3	4	5	$f_X(x)$
1	<u>1</u> 5	0	0	0	0	<u>1</u> 5
2	$\frac{1}{10}$	$\frac{1}{10}$	0	0	0	<u>1</u> 5
3	1 15	1 15	1 15	0	0	<u>1</u> 5
4	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	0	<u>1</u> 5
5	<u>1</u> 25	$\frac{1}{25}$	$\frac{1}{25}$	$\frac{1}{25}$	0	<u>1</u> 5
$f_Y(y)$	137 300	77 300	47 300	9 100	<u>1</u> 25	1

و P(Y < 3|X = 3) در مثال ۱ ، توزیع شرطی Y به شرط X = X را بیابید. همچنین Y = Xا ساسد. f(x|4)

$$f(y|3) = \frac{f(3,y)}{f_X(3)} = \frac{\frac{1}{15}}{\frac{1}{5}} = \frac{1}{3} \qquad ; \qquad y = 1,2,3$$

$$P(Y < 3|X = 3) = \sum_{X=1}^{2} f(y|3) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

$$P(Y < 3|X = 3) = \sum_{v=1}^{2} f(y|3) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

$$f(x|4) = \frac{f(x,4)}{f_Y(4)} = \frac{f(x,4)}{9/100} = \begin{cases} \frac{5}{9} & ; & x = 4\\ \frac{4}{9} & ; & x = 5\\ 0 & ; & o.w \end{cases}$$

را بیابید. f(y|x) و f(x|y) و توزیع شرطی f(y|x) و را بیابید.

$$f(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{4xy}{2y} = 2x \qquad ; 0 < x < 1$$

$$f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{4xy}{2x} = 2y \qquad ; 0 < y < 1$$

مثال ۱۲ در مثال ۶، توزیع شرطی f(x|y) و مقدار احتمال $P(X>rac{1}{2}|Y=rac{1}{4})$ را حساب کنید.

$$f(x|y) = \frac{f(x,y)}{f_V(y)} = \frac{8xy}{4y(1-y^2)} = \frac{2x}{1-y^2} \qquad ; \qquad 0 < x < \sqrt{1-y^2}$$

$$P\left(X > \frac{1}{2} \middle| Y = \frac{1}{4}\right) = \int_{\frac{1}{2}}^{\sqrt{1 - (\frac{1}{4})^2}} f(x|\frac{1}{4}) dx = \int_{\frac{1}{2}}^{\sqrt{\frac{15}{16}}} \frac{2x}{1 - \frac{1}{16}} dx = \frac{16}{15}x^2 \left| \frac{\sqrt{\frac{15}{16}}}{\frac{1}{2}} \right| = 1 - \frac{4}{15} = \frac{11}{15}$$

➤ استقلال آماری:

. $f(x|y) = f_X(x)$ به y ربطی نداشته باشد، آنگاه $f(x|y) = f_X(x)$

. $f(x,y) = f(x|y) f_Y(y)$ و لذا $f(x|y) = \frac{f(x,y)}{f_Y(y)}$ داريم داريم $f(x,y) = \frac{f(x,y)}{f_Y(y)}$ و لذا $f(x,y) = f_X(x) f_Y(y)$ بنابراين خواهيم داشت: $f(x,y) = f_X(x) f_Y(y)$

.در این حالت f(y|x) نیز به x ربطی ندارد و داریم $f(y|x)=f_Y(y)$ و باز هم نتیجه فوق بدست می آید

تعریف: فرض کنید X و Y دو متغیر تصادفی گسسته و یا پیوسته، با توزیع احتمال توأام f(x,y) و به ترتیب دارای توزیعهای حاشیهای $f_X(x)$ و $f_X(x)$ باشند. متغیرهای تصادفی $f_X(x)$ و $f_X(x)$ تمام مقادیر $f_X(x)$ در دامنه شان مستقل آماری گویند اگر و فقط اگر:

$$f(x,y) = f_X(x)f_Y(y)$$

≺ مثال۱۳:

* در مثال ۱ و ۳ ، متغیرهای X و Y مستقل نیستند.

* در مثال ۴ ، متغیر های X و Y مستقلند:

$$f(x,y) = 4xy = (2x)(2y) = f_X(x)f_Y(y)$$

X در مثال Ω و Y ، متغیرهای X و Y مستقل نیستند.

X_n , ... , X_1 متغیر تصادفی n

فرض کنید متغیرهای تصادفی X_n , ..., X_1 دارای تابع احتمال توأم $f(x_1, ..., x_n)$ باشند. تابع احتمال حاشیه ای هر متغیر تصادفی با جمع زدن یا انتگرال گرفتن تابع احتمال توام روی بقیه متغیرها به دست می آید. به عنوان مثال داریم:

$$f_{X_1}(x) = \sum_{x_2} ... \sum_{x_n} f(x_1, ..., x_n)$$
 در حالت گسسته: $f_{X_1}(x) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_2 ... dx_n$ در حالت پیوسته:

و برای توزیعهای حاشیهای توأم به عنوان مثال داریم:

$$f_{(X_1,X_2)}(x_1,x_2) = \sum_{x_3} \dots \sum_{x_n} f(x_1,\dots,x_n)$$
 در حالت گسسته: $f_{(X_1,X_2)}(x_1,x_2) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1,\dots,x_n) dx_3 \dots dx_n$ در حالت پیوسته:

و برای توزیعهای شرطی توأم به عنوان مثال داریم:

$$f(x_1, x_2, x_3 \mid x_4, \dots, x_n) = \frac{f(x_1, \dots, x_n)}{f_{(x_4, \dots, x_n)}(x_4, \dots, x_n)}$$

$$X_{1}, X_{2}, X_{3} \text{ in the proof of the proof$$

تعریف: فرض کنید X_n , ..., X_n متغیرهای تصادفی گسسته یا پیوسته با تابع توزیع احتمال توأم $f(x_1,\ldots,x_n)$ و به ترتیب دارای توابع توزیع حاشیهای $f_{X_n}(x_n),\ldots,f_{X_1}(x_n)$ باشند.

متغیرهای تصادفی X_n , ..., X_n را به طور آماری دو به دو مستقل گوییم اگر و فقط اگر به ازای تمام مقادیر داشته باشیم:

$$f(x_1, x_2, ..., x_n) = f_{X_1}(x_1) f_{X_2}(x_2) ... f_{X_n}(x_n)$$

کمث**ال۱۵:** طول عمر لامپهای تولیدشده توسط کارخانهای دارای تابع چگالی احتمال زیر است:

$$f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & o.w \end{cases}$$

فرض کنید X₁,X₂,X₃ طول عمر سه لامپ از تولیدات این کارخانه هستند که به طور مستقل انتخاب شدهاند. احتمال اینکه لامپ اول در کمتر از یک روز بسوزد و دو لامپ دیگر حداقل سه روز کار کنند چقدر است؟

چون X_1, X_2, X_3 از هم مستقلند، داریم:

$$f(x_{1}, x_{2}, x_{3}) = f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) f_{X_{3}}(x_{3}) = \begin{cases} e^{-x_{1}} e^{-x_{2}} e^{-x_{3}} & x_{1}, x_{2}, x_{3} > 0 \\ 0 & o.w \end{cases}$$

$$= \begin{cases} e^{-(x_{1} + x_{2} + x_{3})} & x_{1}, x_{2}, x_{3} > 0 \\ 0 & o.w \end{cases}$$

$$P(X_{1} < 1, X_{1} \ge 3, X_{1} \ge 3) = \int_{0}^{1} \int_{3}^{\infty} \int_{3}^{\infty} e^{-(x_{1} + x_{2} + x_{3})} dx_{3} dx_{2} dx_{1}$$

$$= \int_{0}^{1} \int_{3}^{\infty} e^{-(x_{1} + x_{2})} (-e^{-x_{3}} \Big|_{3}^{\infty}) dx_{2} dx_{1} = e^{-6} (1 - \frac{1}{e}) = \mathbf{0.002}$$