CET 323 LAB Date October 29th, 2020.

Dr. Park Class CET 323_01

Name Van Nguyen

LAB_07

Operation Amplifiers:

Inverting Vs. Noninverting Configurations

Reading

Floyd, Electronic Devices, Ninth Edition, Chapter 12 and review Section 6-7, The Differential Amplifier.

Key Objectives

Part 2: Construct voltage follower using 741C Op-amp, and measure Slew rate for a 741C op-amp.

<u>Part 3</u>: Construct and test inverting and noninverting amplifiers using Op-amp.

Part 2: Voltage Follower.

Voltage Follower is a special kind of simple configuration shown in Figure 12-8.

The slew rate can be measured by observing the change in voltage divided by the change in time at any two points on the rising output waveform as shown in Figure 12_9.

- ❖ In time at any two points on the rising output waveform and measuring them we have:
 - $V_2 = 9.0165 V$

and
$$t_2 = 27.8043 \,\mu\text{s}$$
 (Cursor 2: Vert and Horz)

•
$$V_1 = 999.2 \ mV = 0.9992 \ V$$
 and $t_1 = 3.1058 \ \mu s$ (Cursor 1: Vert and Horz)

• We have Slew rate =
$$\frac{V_2 - V_1}{t_2 - t_1} = \frac{9.0165 V - 0.9992 V}{27.8043 \mu s - 3.1058 \mu s} = 0.3246 V/\mu s$$

Slew rate = $0.324 6 \text{ V/}\mu\text{s}$

Part 3: Basic Op-Amp Circuits

4 Inverting Amplifier.

1)- Connect the circuit shown in Figure 12-10. Set the input for a 500 mV_{pp} SINE wave at 1.0 kHz. Add more a resistor $R_1 = 1.0 \text{ k}\Omega$ (input), and a resistor $R_f = 10 \text{ k}\Omega$ (feedback) as Figure 12_10. Compute and Record the measured Table 12_9.

Figure 12-10

Table 12_9

Parameter	Computed	Measured
	Value	Value
V _{in}	500 mV	249.53 mV
$\mathbf{A_{cl(I)}}$	10	
Vout	5 V	2.506 6 V
V ₍₋₎		3.535 3 mV
R _{IN}		

Compute Table 12_9.

1)- Compute value of Ac(NI): Appy formula The closed-loop voltage gain is

We have

$$\bullet \qquad A_{\mathbf{cl(I)}} = \frac{R_f}{R_1} = \frac{10 \, k\Omega}{1.0 \, k\Omega} = 10 \quad \Rightarrow$$

$$A_{Cl(I)} = 10$$

- 2)- Compute value of V_{out} :
 - **❖** Appy formula

$$\stackrel{\checkmark}{=} \frac{V_{out}}{V_{in}} = \frac{R_f}{R_1} = > V_{out} = \frac{R_f}{R_1} V_{in}$$

$$\mathbf{V_{out}} = \frac{10 k\Omega}{1.0 k\Omega}$$
 500 mV = 5 V =>

$$V_{out} = 5 V$$

Measured Value of $V_{in} = 2.506 6 V$.

Measured Value of $V_{out} = 2.506 6 V$.

\blacksquare Measured Value of V(-) = 3.535 3 mV.

♣ Noninverting Amplifier:

The circuit for this step is the noninverting amplifier shown in Figure 12-11.

Compute and Record the measured Table 12_10

Figure 12-11

Table 12-10

Parameter	Computed	Measured
	Value	Value
V _{in}	500 mV	248.8 mV
A _{cl(NI)}	10	
Vout	5.5 V	2.755 9 V
V ₍₋₎		250.25 mV
R _{IN}		

Compute Table 12_10.

1)- Compute value of Ac(NI): Appy formula The closed-loop voltage gain is

We have

•
$$A_{\text{cl(NI)}} = 1 + \frac{R_f}{R_1} = 1 + \frac{10 \, k\Omega}{1.0 \, k\Omega} = 11 =>$$

$$A_{Cl(NI)} = 11$$

- 2)- Compute value of V_{out} :
 - **❖** Appy formula

$$riangleq rac{v_{out}}{v_{in}} = A_{CI} => V_{out} = A_{CI} V_{in}$$

↓
$$V_{out} = 11 \times 500 \, mV = 5.5 \, V =>$$
 $V_{out} = 5.5 \, V$

Measured Value of $V_{in} = 248.8 \text{ mV}$

Measured Value of $V_{out} = 2.755 9 V$.

♣ Measured Value of V(-) = 250.25 mV.

Change R_f to 150 k Ω and reduce the input signal to 50 mV_{rms} (141 mV_{pp}) as show in Figure 12-12. Check the gain at 1.0 kHz. Then raise the frequency to 10 kHz. Describe your observations. The gain change is due to the higher frequency.

Compare: Frequency from 1 kHz to 10 kHz Vs 141 mVpp.

• Frequency 1 kHz

• Frequency 10 kHz

Compare: Circuit 741_Voltage_Follower, Circuit 741_Inveting_Amp, and Circuit 741_Noninverting Amp.

