Statistics

Week 11: Single Factor Experiments (Chapters 12)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

A summary of ANOVA

Regression

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0.$$

If k=1 (only 1 predictor): simple linear regression, easy to test ${\cal H}_0$.

If k > 1, use ANOVA.

If H_0 is rejected, need to find a good subset of predictors: r_{adj}^2 , standardized data, AIC, . . .

Single factor experiment

 $H_0: \mu_1 = \mu_2 = \dots = \mu_k.$

If k=2 (only 2 groups): independent samples design, easy to test H_0 .

If k > 2, use ANOVA.

If H_0 is rejected, need to find which groups are different: Bonferroni method, Tukey method, . . .

ANOVA table

Obtained in Excel under Data Analysis o Anova: Single Factor.

	SS	df	MS	F	p-value of ${\cal F}$
Between	SSA	k-1	MSA	MSA/MSE	1-F.DIST()
Within	SSE	N-k	MSE		
Total	SST	N-1			

This is very similar to ANOVA for regression. In regression, SSA and MSA are replaced by SSR and MSR; the df's are replaced by $k,\ n-k-1$ and n-1.

An informal argument

Why does MSA/MSE follow an F distribution?

We argue informally that regardless to whether H_0 is true,

$$\frac{\mathsf{MSE}}{\sigma^2} = \frac{1}{N-k} \sum_{i,j} \left(\frac{y_{ij} - \bar{y}_i}{\sigma} \right)^2 \sim \frac{\chi_{N-k}^2}{N-k}.$$

When H_0 is true, another informal argument gives

$$\frac{\mathsf{MSA}}{\sigma^2} = \frac{1}{k-1} \sum_i \left(\frac{\bar{y}_i - \bar{\bar{y}}}{\sigma / \sqrt{n_i}} \right)^2 \sim \frac{\chi_{k-1}^2}{k-1}.$$

Their ratio follows a $F_{k-1,N-k}$ distribution; their values should be comparable, and a smaller ratio supports H_0 while a larger one supports H_1 .

Once H_0 is rejected...

If $H_0: \mu_1=\mu_2=\dots=\mu_k$ is rejected, we wish to find which treatments have different means. Suppose we naïvely tested each pair: for all $i\neq j$, test a new $H_0: \mu_i=\mu_j$ by checking if

$$|\bar{y}_i - \bar{y}_j| > t_{N-k, 1-\alpha/2} \sqrt{\frac{s^2}{n_i} + \frac{s^2}{n_j}},$$

where $s^2 = \mathsf{MSE}$ (this is based on independent samples design).

The results would be *incorrect*, because there can be many different pairs, amplifying the probability of observing rare events.

This is another example of the multiple testing problem.

Multiple testing problem

If we test across many parameters, then by random chance at least one parameter might show a difference; we are likely to observe coincidences not specified in advance.

Although testing for many things at once is fine as an exploratory method, one must use follow-up studies to confirm or refute any patterns that emerge.

Many poorly designed studies fall victim to multiple testing.

Bonferroni method

Because there are $m:=\binom{k}{2}$ pairs involved in multiple testing , if the type I error for each test is α (and α is small enough), then the overall error is about $m\alpha$.

To fix this, we insist that the error for *each* test has to be α/m , so that the overall error is about α .

This approach is known as the *Bonferroni method*: we reject $H_0: \mu_i = \mu_j$ if

$$|\bar{y}_i - \bar{y}_j| > t_{N-k, 1-\alpha/(2m)} \sqrt{\frac{s^2}{n_i} + \frac{s^2}{n_j}}.$$

There are other methods to check whether two treatments are different (textbook, Section 12.2); no method is perfect. Bonferroni works well for small k but can be too conservative.

ANOVA – further information

ANOVA is very widely used, but also widely abused.

ANOVA is reasonably robust against violations of its assumptions, namely,

$$Y_{ij} = \mu_i + \epsilon_{ij},$$

where ϵ_{ij} are iid $N(0, \sigma^2)$ random variables.

The *residuals* $e_{ij}:=y_{ij}-\bar{y}_i$ can be used to test for normality, via a Q-Q plot.

There are tests to check if the variances are equal, and methods to transform the data if they are not (Section 12.1.3).

Exercise

Check the normality assumption for the 'anorexia' example.

Use the Bonferroni method to determine which treatment is better.