Algoritmo para disminuir el tráfico urbano asignando rutas de vehículos compartido a los empleados de una empresa

Juan Camilo Guerrero Alarcón Juan Jose Escudero Valencia Santiago Pulgarín Vásquez

Medellín, Antioquia

Mayo 16, 2019

Estructuras de Datos Diseñada

MATRIZ

Grafica 1: Implementación de la matriz para guardar el grafo

Grafica 1.1: Implementación del array como estructura de datos

Explicación del algoritmo y su complejidad

Método	Complejidad
Adición en matriz	O(1)
Adición en arreglo	O(1)
Obtención de matriz	O(1)
Obtención de arreglo	O(1)
Ordenamiento de arreglo	O(nlogn)
Asignación de vehículos	O(n^2)

Gráfico 2: Inserción de los nodos en un array llamado Nodos por Distancia

Tabla 1: Complejidad del algoritmo para el peor de los casos, el mejor y el caso promedio

Explicación del algoritmo

Gráfico 3: Ordenamiento descendente de los nodos en el array con respecto a su distancia a la Universidad

Explicación del algoritmo

Gráfico 4: Escogencia de la ruta más corta y asignación a un carro

Explicación del algoritmo

Gráfico 5: Escogencia de la ruta más corta con el nodo disponible y asignación a un carro

Complejidad

Sub problema	Complejidad
Leer el dataset y crear la estructura de datos	O(n)
Ordenar el arreglo de sucesores	O(nlogn)
Llenar los carros	O(n²)
Complejidad Total	O(n ²)

Tabla 2: Complejidad del algoritmo para el peor de los casos, el mejor y el caso promedio

Criterios de Diseño del Algoritmo

El algoritmo se diseñó de esta manera debido a que almacenar el grafo mediante una matriz de adyacencia le brinda alta eficiencia en tiempo y memoria, además el hecho de que el algoritmo escoja a los nodos más distantes de la universidad como posibles candidatos a ser conductores en donde posteriormente centrado en el nodo conductor buscara cual es el más cercano a él, revisando en todos los casos que no exceda el tiempo máximo permitido para ese nodo y que cada vez se esté acercando más a la universidad nos asegura una alta precisión en el número optimo total de vehículos y en el tiempo de ejecución del algoritmo.

Consumo de Tiempo

	Constante (p) = 1,1	Constante (p) = 1,2	Constante (p) = 1,3
Mejor caso	0,76 ms	0,77 ms	1,23 ms
Caso promedio	2,43 ms	2,74 ms	2,74 ms
Peor caso	23,2 ms	32,1 ms	38,7 ms

Tabla 3: consumo de tiempo del algoritmo con 205 usuarios.

Consumo de Memoria

	Constante (p) = 1,1	Constante (p) = 1,2	Constante (p) = 1,3
Consumo de memoria	16,7 MB	16,6 MB	16,1 ms

Tabla 4: consumo de tiempo del algoritmo con 205 usuarios.

Resultados

Dataset	Resultados
U = 5 y P = 1,2	3 carros
U = 5 y P = 1,7	2 carros
U = 11 y P = 1,1	6 carros
U = 11 y P = 1,2	6 carros
U = 11 y P = 1,3	5 carros
U = 205 y P = 1,1	56 carros
U = 205 y P = 1,2	52 carros
U = 520 y P = 1,3	51 carros

Tabla 5: Resultados obtenidos.

Conclusiones

Mediante la implementación del algoritmo se dejaron de emitir mas del 50% de gases contaminantes.

Mediante la implementación del algoritmo se redujo el trafico en mas del 50%.

Software en funcionamiento

Gráfico 5: Software implementado en funcionamiento

