Lecture 11: Kinematics

Legistics: - HW4 du tomorrew

- HW5 posked boday

Last times - Equilibrium Equs

- [[Q]=0 > [[Q] is independent of Z

Today: - New topie

Kivematics - description of deformation

Kinematics

Study of the geometry of motion without the consideration of mass or stress.

→ Quantify strain and rate of strain

Deformation Happing

Bo = body reference, initial, material, undeformed configuration

P is material point (atom)

X = is location of plu Bo

Be = body in current, spatial er deformed eaufiguration

= is location Piu Bt

P(X) = déformation mapping

u(x) = displace ment

{e;}= ref. Siance

Couvention

Upper case quantities \rightarrow ref. eoufig \times $lew \leftarrow case$ quantities \rightarrow current coupig \times $X = X_{\pm} e_{\pm}$ $e_{\pm} = e_{\pm}$ use just one $x = x_{\pm} e_{\pm}$ frame

Definition of deformation mapping $z = \varphi(x) = \varphi(x) = \varphi(x) = \varphi(x)$

Definition of displace ment $u(X) = \varphi(X) - X = u_i(X) e_i$

Example: Sheching cube

quality and have have a series of the series of

deformation map:
$$x_1 = \lambda_1 X_1 + v_1$$

 $x_2 = \lambda_2 X_2 + v_2$
 $x_3 = \lambda_3 X_3 + v_3$

$$\lambda_i =$$
 Shredu ratios
 $v =$ brawslaution (only impostant in presence
 $v = 0$ of ferr body (os a)

$$\overset{\triangle}{=} = \begin{cases} 0 & y^{2} & y^{3} \\ y^{2} & y^{3} \\ y^{2} & y^{3} \end{cases}$$

$$\overset{\triangle}{=} = \begin{cases} 0 & y^{2} & y^{3} \\ y^{2} & y^{3} \\ y^{3} & y^{3} \\ y^{3} & y^{3} \\ y^{3} & y^{3} \\ y^{4} & y^{5} \\ y^{5} &$$

Inverse Happing

If \$\mathbb{q}\$ is admissible => well defined inverse \$\mathbb{q}^{-1}\$ $z = \varphi(x)$

Inverse def-map:
$$X = \varphi^{-1}(x) = \varphi^{-1}(x) = I$$

Measurs of strain

lu ID we have simple measures:

engineering strain: e = AL = L-L sheck ration: $\lambda = \frac{L}{1}$ $\alpha = \lambda - 1$

Descripion of deformation is not unique ?

Find general 3D approach that does not assume that deformation is small.

Deformation gradient

Natural way to quantify local strain $\frac{F(X) = \nabla \varphi(X)}{F_{ij}} = \frac{2\varphi_i}{2X_j}$

Expand around X.

$$\varphi(\underline{X}) = \varphi(\underline{X}_{\bullet}) + \nabla \varphi(\underline{X}_{\bullet}) (\underline{X} - \underline{X}_{\bullet}) + h.o.t.$$

$$= \varphi(\underline{X}_{\bullet}) - \nabla \varphi(\underline{X}_{\bullet}) \underline{X}_{\bullet} + \nabla \varphi(\underline{X}_{\bullet}) \underline{X}$$

$$\underline{F}(\underline{X}_{\bullet})$$

Locally me approximate q as $\varphi(x) \approx c + \underline{F}(x) x$

F(X) characterizes local deformation around X.

Homogeneous def. >> I is constant

Mapping of live someut

IdX | # 1 10/20/40/

 $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$ + $\frac{1}{2}$ = $\frac{1}{2}$ + $\frac{1}{2}$

 $\frac{dx}{dx} = \underline{F}(X) \frac{dX}{dX}$ \underline{F} waps material $dx_i = \overline{F}_{i,j} dX_j$ vectors into spatial I maps material vectors.

Example: Shear de joinnah'on

shewing a deck

$$\varphi(x) = \left[\underbrace{X_1 + \alpha}_{x_1} X_2^2, X_2 \right]^T$$

$$\nabla \varphi = \underline{F} = \begin{bmatrix} \varphi_{111} & \varphi_{112} \\ \varphi_{211} & \varphi_{222} \end{bmatrix} = \begin{bmatrix} 1 & 2\alpha x_2 \\ 0 & 1 \end{bmatrix}$$

$$e_1$$
: $f_2 = \begin{bmatrix} 1 & 2 \times x_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

$$e_2$$
: $f_2 = \begin{bmatrix} 2x x_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2x \\ 1 \end{bmatrix}$ rotated and strecture

Strectuc

Transletion

$$\mathcal{L}$$
 is a translation if $\mathbf{E} = \mathbf{I}$ so that $\mathbf{z} = \mathbf{c} + \mathbf{I} \mathbf{X} = \mathbf{c} + \mathbf{X}$

Each point in Bo is shifted along e

Fixed point

Deformation hos a fixed

point at y if

$$\varphi(\underline{x}) = \underline{y} + \underline{F}(\underline{x} - \underline{y})$$

so that y= \$(\frac{y}{y}) = \frac{y}{y}

Note: Fixed point & must not be in Ba

Volume danges.

Volumes:
$$dV_{x} = (\underline{dX}_{1} \times \underline{dX}_{2}) \cdot \underline{dX}_{3}$$

$$dV_{x} = (\underline{dx}_{1} \times \underline{dx}_{2}) \cdot \underline{dx}_{3}$$

$$= det([\underline{dx}_{1}, \underline{dx}_{2}, \underline{dx}_{3}])$$

substitute: doci = F dXI

$$dV_{c} = dit([\underline{F}dX_{1}, \underline{E}dX_{2}, \underline{F}dX_{3}]) \quad \underline{d}X = [\underline{d}X_{1}dX_{2}dX_{3}]$$

$$= dit(\underline{F}dX_{1}) = det(\underline{F}) dit(\underline{d}X_{3})$$

$$= dit(\underline{F})(\underline{d}X_{1} \times \underline{d}X_{2}) \cdot \underline{d}X_{3}$$

$$dV_{xe} = det(\underline{F})dV_{x}$$

The field $J(\underline{X}) = det(\underline{F}(\underline{X})) = \frac{dV_{2e}}{dV_{X}}$ is called the Jacobian of φ and measures the

dV.

volume strain

volume increases dVx > dVx $\Im(x) > i$:

volume decreases] (<u>×)</u> د۱:

no volume drange Z (x) = 1 :

Admissible deformation

1) \$: Bo → Be is one to one and onto

2) det (89) >0

body cannot be deformed luto its ultror imagl