Lecture Notes for Neural Networks and Machine Learning

Practical Transformers
Vision Transformers

Logistics and Agenda

- Logistics
 - Grading update
- Agenda
 - Paper Presentation
 - Decoder Transformers
 - Vision Transformers
 - Town Hall

Paper Presentation

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff

fschroff@google.com Google Inc. Dmitry Kalenichenko

dkalenichenko@google.com Google Inc. James Philbin

jphilbin@google.com Google Inc.

Encoder+Decoder Xformer

Transformer: Encoders and Decoders

Transformer: Putting it all together

Decoding time step: 1(2)3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS** DECODERS **EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS** PREVIOUS étudiant suis le INPUT OUTPUTS

Auto-regressive Transformer

- Decoder only, text encoding

Radford, et al. Improving Language Understanding by Generative Pre-Training, ArXiV 20

Fine Tuning

 Supervised tasks after pre-training, make transformer better through various tasks, trained simultaneously

Radford, et al. Improving Language Understanding by Generative Pre-Training, ArXiV 20

How to label a decoder model?

Training Dataset

Training Dataset

Fine Tune with "Action" Tokens and training examples.

Size of GPT

GPT-4

8000 (+) tokens 1.7 Trillion parameters $h_I = 20,000$ Neurons embedding **Input Images**

A Variant on Attention, long sequences

Many works look to make attention more efficient, BigBird

$$\operatorname{ATTN}_D(\boldsymbol{X})_i = \boldsymbol{x}_i + \sum_{h=1}^H \sigma\left(Q_h(\boldsymbol{x}_i) K_h(\boldsymbol{X}_{N(i)})^T\right) \cdot V_h(\boldsymbol{X}_{N(i)})$$

Three levels of attention: global, local, random

(a) Random attention

Choose a random subset of nodes to calculate attention

(b) Window attention Choose neighborhood for locally dense attention

(c) Global Attention

(d) BIGBIRD

BigBird Results

Model	HotpotQA		NaturalQ		TriviaQA		WikiHop	
1110001	Ans	Sup	Sup Joint	LA	SA	Full	Verified	MCQ
HGN [26]	82.2	88.5	74.2	-	-	-	-	-
GSAN	81.6	88.7	73.9	-	-	-	-	-
ReflectionNet [32]	-	-	-	77.1	64.1	-	-	-
RikiNet-v2 [61]	-	-	-	76.1	61.3	-	-	-
Fusion-in-Decoder [39]	-	-	-	-	-	84.4	90.3	-
SpanBERT [42]	-	-	-	-	-	79.1	86.6	-
MRC-GCN [87]	-	-	-	-	-	-	-	78.3
MultiHop [14]	-	-	-	-	-	-	-	76.5
Longformer [8]	81.2	88.3	73.2	-	-	77.3	85.3	81.9
BIGBIRD-ETC	81.2	89.1	73.6	77.8	57.9	84.5	92.4	82.3

Table 3: Fine-tuning results on **Test** set for QA tasks. The Test results (F1 for HotpotQA, Natural Questions, TriviaQA, and Accuracy for WikiHop) have been picked from their respective leaderboard. For each task the top-3 leaders were picked not including BIGBIRD-etc. **For Natural Questions Long Answer (LA), TriviaQA, and WikiHop, BIGBIRD-ETC is the new state-of-the-art**. On HotpotQA we are third in the leaderboard by F1 and second by Exact Match (EM).

ONA Sequence Bits per character Encoding

Model BPC

SRILM [58] 1.57

BERT (sqln. 512) 1.23

BIGBIRD (sqln. 4096) 1.12

Table 5: MLM BPC

± 3	Model	F1
⊽ □ Ū	CNNProm [90]	69.7 95.6
SS	BIGBIRD	99.9

☐ ☐ ☐ Table 6: Comparison.

Model	TF	HM	DHS
gkm-SVM [30]	89.6	-	
DeepSea [109]	95.8	85.6	92.3
BIGBIRD	96.1	88.7	92.1

Table 7: Chromatin-Profile Prediction

Predict non-coding

We only have skimmed the surface...

Vision Transformers

Vision Transformers

- Divide image into patches
 - Treat each patch as something to encode separately
 - Flatten each patch
 - Put through dense layer
- Add positional encoding based on position of patch
 - for 7x7 patch, there are 49 positions
- Put into transformer. Same as text transformers ...
- But you need a lot of data
 - 14M or more images seems to be sweet spot

Vision Transformers Video

ViT Architectures

- D is size of patch embedding
- Uses skip connections (all size D)

- $egin{aligned} \mathbf{z}_0 &= [\mathbf{x}_{ ext{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \ \mathbf{z'}_\ell &= \mathrm{MSA}(\mathrm{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \ \mathbf{z}_\ell &= \mathrm{MLP}(\mathrm{LN}(\mathbf{z'}_\ell)) + \mathbf{z'}_\ell, \ \mathbf{y} &= \mathrm{LN}(\mathbf{z}_L^0) \end{aligned}$
- Multi-headed self attention (MSA) takes
 D input patch_embed + pos_embed
- Main difference in architectures
 - L blocks used (i.e., "layers")
 - H heads in each layer (i.e., "heads")
 - MLP head is final classifier

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

ResNet50: 23M

What is the learnable class embedding?

Pre-training for ViT

Fine tuning: Do they work?

- Yes, but you need to do some work
- Less than 14M images for pre-training? Use ResNet.

Transfer Learning From Huge ViT

	VIT-H	Previous SOTA
ImageNet	88.55	88.5
lmageNet-ReaL	90.72	90.55
Cifar-10	99.50	99.37
Cifar-100	94.55	93.51
Pets	97.56	96.62
Flowers	99.68	99.63

Many Variants of the ViT

One example: DETR (Detection Transformer)

- ViT is still an ongoing area of research
- Input Patch Structure (overlap)
- Efficient Attention, Cross Attn.
- Methods or SSL
- Image/text generation

Transformer Town Hall

Hugging Face Text transformers: https://huggingface.co/transformers/v3.3.1/pretrained_models.html

Hugging Face ViT: https://huggingface.co/docs/transformers/model-doc/vit

Keras text Transformers: https://keras.io/guides/keras_nlp/transformer_pretraining/

Keras ViT: https://github.com/faustomorales/vit-keras

