Translating Embeddings for Modeling Multi-relational Data

배지환

Translating Embeddings for Modeling Multi-relational Data

What is Translation?

Type of transformation that takes each point in a figure and slides it the same distance in the same direction.

What is Translation?

$$(x,y) \rightarrow (x+3,y+2)$$

Translating Embeddings for Modeling Multi-relational Data

Word Embedding

	Man	Woman	King	Queen
Man	1	0	0	0
Woman	0	1	0	0
King	0	0	1	0
Queen	0	0	0	1

Word Embedding

2	

	Royalty	Femineity
Man	0	0
Woman	0	1
King	1	0
Queen	1	1

Translating Embeddings for Modeling Multi-relational Data

Multi-Relational Data

Introduction

Set of triplet

Given a training set S of triplets (h, l, t) composed of two entities h, $t \in E$ (the set of entities) and a relationship $I \in L$ (the set of relationships), our model learns vector embeddings (value in R^k) of the entities and the relationships.

$$S'_{(h,\ell,t)} = \{(h',\ell,t)|h' \in E\} \cup \{(h,\ell,t')|t' \in E\}$$

Corrupted Set

Algorithm Of TransE

```
Algorithm 1 Learning TransE
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                      \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                      \mathbf{e} \leftarrow \operatorname{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
  4: loop
          \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
           S_{batch} \leftarrow \text{sample}(S, b) // \text{ sample a minibatch of size } b
          T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
          for (h, \ell, t) \in S_{batch} do
              (h', \ell, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}
  9:
              T_{batch} \leftarrow T_{batch} \cup \{((b \ell t) (b' \ell t'))\}
10:
          end for
11:
                                                                          \nabla [\gamma + d(\mathbf{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\mathbf{h'} + \boldsymbol{\ell}, \boldsymbol{t'})]_{+}
           Update embeddings w.
13: end loop
```

Loss Function

$$Loss = \sum_{(h,r,t) \in S} d(h+r,t)$$
 dissimilarity function $\in \{\text{L1 norm, L2 norm}\}$

$$Loss = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'} [d(h+r,t) - d(h'+r,t')]_{+}$$

$$Loss = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'} [\gamma + d(h+r,t) - d(h'+r,t')]_{+}$$

Why is the margin term included?

$$Loss = \sum_{(h,r,t) \in S} \sum_{(h',r,t') \in S'} [d(h+r,t) - d(h'+r,t')]_+$$

CORRUPTED

 $Loss = \sum\limits_{(h,r,t) \in S} \sum\limits_{(h',r,t') \in S'} [\gamma + d(h+r,t) - d(h'+r,t')]_+$

Related Works

Structured Embeddings

SE embeds entities into R^k , and relationships into two matrices $L_1 \in R^{k \times k}$ and $L_2 \in R^{k \times k}$ such that $d(L_1h, L_2t)$ is large for corrupted triplets (h, l, t) (and small otherwise).

L₁ Embedding matrix

L₂ Embedding matrix

Affine Transformation

$$d(L_1h, L_2t) VS d(h + l, t)$$

 SE TransE

$$\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+1 \\ y \end{bmatrix}$$

Affine Transformation

$$\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Affine Transformation

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+1 \\ y \\ 1 \end{bmatrix}$$

Translated by increasing dimension

Related Works

When L_1 reproduce translation and L_2 = Identity Matrix,

Structured Embeddings = TransE

Structured Embedding has greater expressiveness than TransE

Neural Tensor Model

'Learning score' Score is lower scores for for special case corrupted triplet of this model

If we consider TransE with the squared Euclidean distance as dissimilarity function, we have:

$$d(\mathbf{h} + \mathbf{\ell}, \mathbf{t}) = \|\mathbf{h}\|_{2}^{2} + \|\mathbf{t}\|_{2}^{2} + \|\mathbf{\ell}\|_{2}^{2} - 2(\mathbf{h}^{T}\mathbf{t} + \mathbf{\ell}^{T}(\mathbf{t} - \mathbf{h}))$$

 $\| \boldsymbol{h} \|_2^2 = \| \boldsymbol{t} \|_2^2 = 1$ does not play any role in comparing

(Due to normalization)

corrupted triplets

Neural Tensor Model Score, where L is the identity matrix, and $I = I_1 = I_2$

Experiments

Data sets

Wordnet Freebase

Experiments

Evaluation protocol

Hits@K Hits@K denotes the ratio of the test triples that have been ranked among the top k triples, i.e.,

$$Hits@k = \frac{|\{t \in \mathcal{K}_{test} \mid rank(t) \leq k\}|}{|\mathcal{K}_{test}|}$$

Larger values indicate better performance.

Experiments

Baselines

Unstructured, RESCAL, SE, SME(linear)/SME(bilinear) and LFM

Link Prediction Result

DATASET	WN			FB15K				FB1M		
METRIC	MEAN	RANK	NK HITS@10 (%)		MEAN RANK HITS@10 (%)		10 (%)	MEAN RANK	HITS@10 (%)	
Eval. setting	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Raw
Unstructured [2]	315	304	35.3	38.2	1,074	979	4.5	6.3	15,139	2.9
RESCAL [11]	1,180	1,163	37.2	52.8	828	683	28.4	44.1	-	=
SE [3]	1,011	985	68.5	80.5	273	162	28.8	39.8	22,044	17.5
SME(LINEAR) [2]	545	533	65.1	74.1	274	154	30.7	40.8	-	-
SME(BILINEAR) [2]	526	509	54.7	61.3	284	158	31.3	41.3	-	- 1
LFM [6]	469	456	71.4	81.6	283	164	26.0	33.1	_	2
TransE	263	251	75.4	89.2	243	125	34.9	47.1	14,615	34.0

Table 4: **Detailed results by category of relationship.** We compare Hits@10 (in %) on FB15k in the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK	PREDICTING head				PREDICTING tail			
REL. CATEGORY	1-то-1	1-то-М.	Мто-1	Мто-М.	1-то-1	1-то-М.	Мто-1	Мто-М.
Unstructured [2]	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE [3]	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(LINEAR) [2]	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(BILINEAR) [2]	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

Table 5: **Example predictions** on the FB15k test set using **TransE**. **Bold** indicates the test triplet's true tail and *italics* other true tails present in the training set.

INPUT (HEAD AND LABEL)	PREDICTED TAILS
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
200	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,
	BFCA Critics' Choice Award for Best Comedy,
	MTV Movie Award for Best On-Screen Duo,
	MTV Movie Award for Best Breakthrough Performance,
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
	Screen Actors Guild Award for Best Actor - Motion Picture
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,
	Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,
	Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre	Animations, Computer Animation, Comedy film,
2570	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

Learning new relationships with few examples


```
print(f"max : {max(head)}")
print(f"length : {len(head)}")
print(f"unique_head : {np.unique(head)}")
print(f"unique_length : {len(np.unique(head))}")
```

```
max : 14540
length : 620232
unique_head : [ 0 1 2 ... 14538 14539 14540]
unique_length : 14541
```

unique_head is arithmetic sequence with step size = 1

```
def prepare_neg_entity(head, tail, label):
    rel_matrix = np.zeros((len(np.unique(head)), len(np.unique(head))))
    for h,t,l in zip(head, tail, label):
        rel_matrix[h,t] = l

rel_matrix[rel_matrix>0] = -1
    rel_matrix[rel_matrix==0] = 1
    series = torch.arange(np.max(head)+1)
```

rel_matrix is an adjacent matrix filled with relationship 'l' if 'l' exists for the head and tail pair. Filled with zero otherwise.

```
def prepare neg entity(head, tail, label):
    rel matrix = np.zeros((len(np.unique(head)), len(np.unique(head))))
    for h,t,l in zip(head, tail, label):
        rel matrix[h,t] = 1
                                                                                      Head and tail pair with relationships
                                                                                      (correct pair)
    rel matrix[rel matrix>0] = -1
    rel matrix[rel matrix==0] = 1
                                                                                      Potential corrupted set
    series = torch.arange(np.max(head)+1)
    head neg = \{\}
    for h in np.unique(head):
      temp = np.multiply(series, rel matrix[h, :])
                                                                                      Element-wise multiplication of the series
      temp = temp[(temp >= 0)]
                                                                                      by the relation matrix of the particular head
      head neg[h] = deepcopy(temp)
                                                                                      Only the potential corrupted set pairs left
    tail neg = {}
    for t in np.unique(tail):
      temp = np.multiply(series, rel_matrix[:, t])
      temp = temp[(temp >= 0)]
      tail neg[t] = deepcopy(temp)
    return head neg, tail neg
```

```
69 #여기서부터 model
70 class TransE(nn.Module):
71
      def init (self, num entity, num label, embed dim, gamma, configure):
72
           super(). init ()
           self.embed label = nn.Embedding(num_label, embed_dim)
           nn.init.uniform (self.embed label.weight,
           -6/torch.sqrt(torch.tensor(embed_dim)),
           6/torch.sqrt(torch.tensor(embed dim)))
77
78
           self.embed entity = nn.Embedding(num entity, embed dim)
79
           nn.init.uniform (self.embed entity.weight,
80
           -6/torch.sqrt(torch.tensor(embed dim)),
81
           6/torch.sqrt(torch.tensor(embed dim)))
82
83
           self.gamma = gamma
84
           self.embed dim = embed dim
           self.configure = configure
85
```

Xavier Initialization

```
def forward(self, batch):
   head, label, tail = batch['head'], batch['label'], batch['tail']
   head p, tail p = batch['head p'], batch['tail p']
   batch size = head.size(0)
   head = self.embed entity(head) # (batch size, embed dim)
    tail = self.embed entity(tail) # (batch size, embed dim)
   rel = self.embed label(label) # (batch size, embed dim)
   head prime = torch.tensor(head p).to(self.configure.device).long()
   #to match the input data type
    tail prime = torch.tensor(tail p).to(self.configure.device).long()
   #to match the input data type
   head prime = self.embed_entity(head_prime)
    # (batch size, neg sample, embed dim)
    tail prime = self.embed entity(tail prime)
    # (batch size, neg sample, embed dim)
   dsm correct = torch.norm(head + rel - tail, 2, dim=1) # (batch_size
   dsm corrupt 1 = torch.norm(head prime + rel.unsqueeze(1)
                              - tail.unsqueeze(1), 2, dim=2)
    # (batch size, neg sample)
    dsm_corrupt 2 = torch.norm((head + rel).unsqueeze(1)
                              - tail prime, 2, dim=2)
    # (batch size neg sample)
   loss = torch.max(torch.sum(0*dsm correct), torch.sum(self.gamma
           + 2*self.configure.neg sample*torch.sum(dsm correct)
            - torch.sur (dsm corrupt 1 + dsm corrupt 2)))
   return loss
```

Unsqueezed to match the dimension and calculated norm along the embed_dim axis

 $\max(0,b)$ function to implement the function of returning only the positives as the paper states : where $[x]_+$ denotes the positive part of x,

For each positive set, there are 2 corrupted set(h_p, t_p) each with configure.neg_sample # of neg samples. Thus, 2 x #neg_sample

```
#여기서부터 dataset
class KgDataset(Dataset):
   def init (self, head, tail, label, neg sample k, head neg, tail neg):
       super(). init ()
       self.head = head
       self.tail = tail
       self.label = label
       self.neg sample k = neg sample k
       self.head neg = head neg
       self.tail neg = tail neg
   def len (self):
       return len(self.head)
   def getitem (self, idx):
       head, tail, label = self.head[idx], self.tail[idx], self.label[idx]
       tail prime = np.random.choice(self.head neg[head], self.neg sample k)
       head prime = np.random.choice(self.tail neg[tail], self.neg sample k)
       return {'head':head, 'label':label, 'tail':tail, 'tail p':tail prime, 'head p':head prime}
```

```
for epoch in range(configure.epochs):
     losses = []
     model.train()
     for batch data in dataloader:
         optimizer.zero grad()
         batch data = {k:v.to(configure.device) for k,v in batch data.items()}
         loss = model(batch data)
         losses.append(loss.item())
         loss.backward()
         optimizer.step()
     print(f'EPOCH {epoch+1} : Loss {np.mean(losses):.1f}')
     history['train'].append(np.mean(losses))
 plt.plot(history['train'], label =
  f'lr: {np.format float scientific(configure.learning rate, unique=False, precision=3)}, gamma: {configure.gamma}, embed dim: {configure.embed dim}')
 plt.xlabel('Epochs')
 plt.ylabel('Loss')
 plt.legend(bbox to anchor=(1.02, 1), loc='upper left', borderaxespad=0)
  return losses[-1]
sampler = optuna.samplers.TPESampler()
study = optuna.create study(direction="minimize")
study.optimize(train mnist, n trials=6)
df = study.trials dataframe()
df.head(3)
trial = study.best trial
print('Accuracy: {}'.format(trial.value))
print("Best hyperparameters: {}".format(trial.params))
```

Hyperparameter Tuning

Summary&Conclusion

TransE is an approach to learn embeddings of KBs, focusing on the minimal parametrization of the model to primarily represent hierarchical relationships.

TransE is highly scalable model, as shown through the application of a very large-scale chunk of data

Even in complex and heterogeneous multi-relational domains simple yet appropriate modeling assumptions can lead to better trade-offs between accuracy and scalability.

The greater expressivity of these models comes at the expense of substantial increases in model complexity which results in modeling assumptions that are hard to interpret, and in higher computational costs.

