A. Calculo de Médias

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

Considere as seguintes opções:

- 1. Média aritmética;
- 2. Média ponderada;
- 3. Média harmônica;
- 4. Média geométrica;

Com base em uma das opções, calcule a média correspondente de três valores. Para a média ponderada, deve-se assumir pesos 1 para o primeiro valor, 2 para o segundo e 3 para o terceiro.

Input

A primeira linha da entrada possui um inteiro O ($1 \le O \le 4$), que indica a opção escolhida, sendo 1 para a média aritmética, 2 para a ponderada, 3 para a harmônica e 4 para a geométrica.

A segunda linha possui três reais V_1 , V_2 e V_3 , ($0 \le V_i \le 10^9$), separados por um espaço, que correspondem aos valores cuja média será baseada.

Output

Imprima em uma linha o valor da média calculada.

Examples

input 1 6.53 3.42 10.00 output 6.650000

6.53 3.42 10.00 output 7.228333

input 6.53 3.42 10.00 output 5.499169

input 6.53 3.42 10.00 output 6.067081

Note

Para cada caso de teste, se sua resposta é um valor y e a do juiz é o valor z, sua resposta será considerada correta se $|y-z| \le 10^{-5}$.

B. Área de Figuras

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

Considere as seguintes opções de cálculo de área:

- 1. Círculo;
- 2. Triângulo retângulo;
- 3. Retângulo;
- 4. Losango;

Leia a opção do usuário e calcule a área da figura correspondente.

Input

A primeira linha da entrada possui um inteiro O ($1 \le O \le 4$), que indica a opção escolhida para o cálculo da área de uma figura específica, sendo 1 para o círculo, 2 para o triângulo retângulo, 3 para o retângulo e 4 para o losango.

A segunda linha da entrada depende do valor da opção lido:

- Para o círculo, haverá um real R ($0 \le R \le 10^9$), indicando ao tamanho do raio.
- Para o triângulo retângulo, haverá dois reais, C_1 e C_2 ($0 \le C_i \le 10^9$) indicando os tamanhos dos catetos.
- Para o retângulo, haverá dois reais, B e H ($0 \le B, H \le 10^9$), indicando os tamanhos da base e altura.
- Para o losango, haverá dois reais, D_1 e D_2 ($0 \le D_1, D_2 \le 10^9$), indicando os tamanhos das diagonais.

Em todos os casos, os valores estão separados por um espaço.

Output

Imprima a área da figura correspondente.

Examples

nput	
.50	
utput	
9.63495	

nput
.53 4.72
utput
.33080

input

3 10.00 20.00	
output	
200.00000	

input

8.71 9.39

output

40.89345

Note

Para cada caso de teste, se sua resposta é um valor y e a do juiz é o valor z, sua resposta será considerada correta se $|y-z| \le 10^{-5}$.

C. FizzBuzz

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Implemente um programa que leia um número inteiro e:

- Imprima "FizzBuzz", caso esse número seja múltiplo de 3 e 5 simultaneamente.
- Imprima "Fizz", caso esse número seja apenas múltiplo de 3.
- Imprima "Buzz", caso esse número seja apenas múltiplo de 5.
- Imprima "BuzzFizz", caso contrário.

Input

A entrada possui uma única linha com um inteiro N ($1 \le N \le 10^9$).

Output

Imprima uma linha com a mensagem conforme o enunciado do problema.

Examples

input
15
output
FizzBuzz
input
20
output
Buzz
input
21
output
Fizz
input
22
output
BuzzFizz

D. Ordenação de Três

time limit per test: 1 second memory limit per test: 256 megabytes

> input: standard input output: standard output

Elabore um programa que leia três inteiros e os imprima em ordem crescente.

Input

A entrada consiste de uma linha com três inteiros A, B e C ($0 \le A, B, C \le 10^9$) separados por um espaço.

Output

Imprima uma linha com os três inteiros lidos em ordem crescente e separados por um espaço.

Examples

input		
1 2 3		
output		
1 2 3		

input	
2 3 1	
output	
1 2 3	

input	
3 2 1	
output	
1 2 3	

E. Condição de Existência de um Triângulo

time limit per test: 1 second memory limit per test: 256 megabytes

> input: standard input output: standard output

Leia três números reais que correspondem ao comprimento de três segmentos de reta e verifique se eles podem formar um triângulo.

Input

A entrada possui uma única linha com três reais, A, B e C (0 < A, B, $C \le 10^9$), separados por um espaço, que descrevem o comprimento de cada um dos segmentos de reta.

Output

Imprima "Sim" se é possível formar o triângulo com os segmentos de comprimento *A*, *B* e *C* e "Nao" caso contrário.

Examples

input
1.00 2.00 3.00
output
Nao

input
1.50 2.50 3.50
output
Sim

input	
3.14 4.71 5.00	
output	
Sim	

F. Tipo de um Triângulo

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Leia três números reais que correspondem ao comprimento de três segmentos de reta e verifique se eles podem formar um triângulo e, em caso afirmativo, qual o tipo deste triângulo.

Input

A entrada possui uma única linha com três reais, A, B e C (0 < A, B, $C \le 10^9$), separados por um espaço, que descrevem o comprimento de cada segmento de reta.

Output

Imprima uma linha com:

- "equilatero": caso seja possível formar um triângulo equilátero.
- "isosceles": caso seja possível formar um triângulo isósceles.
- "retangulo": caso seja possível formar um triângulo retângulo que não seja isósceles.
- "escaleno": caso seja possível formar um triângulo escaleno que não seja retângulo.
- "impossivel": caso seja impossível formar um triângulo.

Examples

input
2.55 2.55 2.55
output
equilatero
input
1.51 2.13 1.51
output
isosceles
input
3.00 4.00 5.00

input

output

retangulo

3.00 4.00 4.50

Out	nut
out	μuι

escaleno

input

3.00 4.00 7.00

output

impossivel

G. Bhaskara

time limit per test: 1 second

memory limit per test: 256 megabytes

input: standard input output: standard output

A forma geral de uma equação do segundo grau é:

$$f(x) = ax^2 + bx + c$$

Dados os coeficientes a,b e c, determine, se houver, as raízes de uma equação do segundo grau.

Input

A entrada possui três números rais, separados por um espaço, que correspondem, respectivamente, aos coeficientes a, b e c ($-100 \le a, b, c \le 100$).

Output

Caso a equação possua duas raízes reais, imprima uma linha com às duas raízes (em qualquer ordem), separadas por um espaço. Se a equação possuir apenas uma raiz real, imprima uma linha com a única raiz. Se a equação não possuir raízes reais, imprima "Sem raiz".

Examples

input

2 -4 2

output

input

2 4 4

output

sem raiz

input

1 6 2.25

output

-0.4019237886 -5.598076211

Note

Para cada caso de teste, se sua resposta possui um valor y e a do juiz é o valor z, sua resposta será considerada correta se $|y-z| \le 10^{-5}$.

Tome cuidado com as comparações entre números ponto-flutuante. Caso $|\Delta| < 10^{-5}$ deve ser considerado que a equação só possui uma raiz.

H. Aposentadoria

time limit per test: 1 second memory limit per test: 256 megabytes

> input: standard input output: standard output

Implemente um programa que receba a idade e o tempo de contribuição de um trabalhador e informe se ele pode se aposentar de acordo com os seguintes critérios:

- Ter pelo menos 65 anos;
- Ou ter contribuído por pelo menos 30 anos;
- Ou ter ao menos 60 anos e contribuído ao menos por 25 anos;

Input

A entrada possui uma linha com dois inteiros, I e T ($0 \le T \le I \le 100$), separados por um espaço, que indicam, respectivamente, a idade e o tempo de contribuição de um trabalhador.

Output

Imprima uma linha com a mensagem "Sim" caso o trabalhador esteja elegível para se aposentar, ou "Nao" caso contrário.

Examples

input
65 20
output
Sim
input
48 30
output
Sim
input
55 25

I. Ano Bissexto

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

Crie um programa que verifique se um ano é bissexto.

Input

output

Nao

A entrada possui uma única linha com um inteiro A ($0 \le A \le 10^9$), o qual representa um ano.

Output

Imprima uma linha com a mensagem "Sim" caso o ano seja bissexto e "Nao" caso contrário.

Examples

input
2000
output
Sim
input
1998
output
Nao
input
2002
output
Nao

J. Reajuste Salarial

time limit per test: 1 second memory limit per test: 256 megabytes

> input: standard input output: standard output

Os funcionários de uma empresa sofrerão um reajuste salarial conforme a seguinte tabela:

Sa	alário	Reajuste
M	lenos de 2000.00	15%
E	ntre 2000.00 e 5000.00	10%

Mais que 5000.00	5%

Faça um programa que leia o salário de um funcionário e calcule o novo salário reajustado.

Input

A entrada possui uma linha com um real S ($500 \le S \le 10^5$), o valor do salário.

Output

Imprima o salário reajustado.

Examples

input	
500.99	
output	
576.14	

input	
15000.75	
output	
15750.79	

input	
4500.25	
output	
4950.28	

Note

Para cada caso de teste, se sua resposta é um valor y e a do juiz é o valor z, sua resposta será considerada correta se $|y-z| \leq 10^{-2}$.

K. Despertador

5/3/23, 7:57 PM

Statements time limit per test: 1 second

memory limit per test: 256 megabytes

input: standard input output: standard output

João resolveu configurar o seu celular para despertar em um determinado horário. Dados a hora e minuto que João configurou o celular e a hora e o minuto em que ele deseja que o celular toque, faça um programa que determine quantas horas e minutos faltam para que o celular de João dispare o alarme. Note que o horário programado para despertar pode estar no dia posterior ao da programação por João, por exemplo: João pode desejar que o celular toque às 17 horas, sendo que o momento em que ele configurou o despertador foi às 18h30, o que nos dá uma diferença de 22h30 horas.

Input

A entrada possui duas linhas, cada uma com dois inteiros separados por um espaço. A primeira possui a hora HH_1 e o minuto MM_1 em que João configurou o despertador. A segunda linha possui a hora HH_2 e o minuto MM_2 com o horário do despertador. Temos que $(0 \le HH_1, HH_2 \le 23)$ e $(0 \le MM_1, MM_2 \le 59)$. É garantido que os dois horários estão com menos de um dia de diferença e que os dois horários não são os mesmos.

Output

Imprima uma linha com dois inteiros HH_3 e MM_3 , separados por um espaço, que indicam as horas e minutos restantes para o despertador tocar.

Examples

put	
5 45 9 20	
utput	
35	

nput	
0	
output	
23 59	

input			

19 23 10 15	
output	
14 52	

L. Data Válida

time limit per test: 1 second memory limit per test: 256 megabytes

> input: standard input output: standard output

Faça um programa que leia uma data informada pelo usuário (dia, mês e ano) e determine se aquela data é válida ou não. Uma data é considerada válida quando:

- O valor do ano está entre 0 e 3000;
- O valor do mês está entre 1 e 12;
- · O valor do dia:
 - Está entre 1 e 28 no mês de fevereiro em anos não bissextos.
 - Está entre 1 e 29 no mês de fevereiro em anos bissextos.
 - Está entre 1 e 30 nos meses de abril, junho, setembro e novembro.
 - Está entre 1 e 31 nos demais casos.

Input

A entrada possui uma linha com três inteiros, separados por um espaço, D ($1 \le D \le 50$), M ($1 \le M \le 24$), A ($1 \le A \le 3000$).

Output

Imprima uma linha com a mensagem "Sim" caso a data seja válida e "Nao" caso contrário.

Examples

input	
31 12 2022	
output	
Sim	

*
input
29 2 2002
29 2 2002 output
Nao
input
31 6 1994
output
Nao