

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Wire

July 30, 2002

The Wire

schematics

physical

Interconnect Impact on Chip

Wire Models

All-inclusive model

Capacitance-only

Impact of Interconnect Parasitics

- Interconnect parasitics
 - reduce reliability
 - affect performance and power consumption
- Classes of parasitics
 - Capacitive
 - Resistive
 - Inductive

Nature of Interconnect

Source: Intel

INTERCONNECT

Canacitance

Capacitance of Wire Interconnect

Simplified Model

Fanout

Capacitance: The Parallel Plate Model

Permittivity

Material	ϵ_r
Free space	1
Aerogels	~1.5
Polyimides (organic)	3-4
Silicon dioxide	3.9
Glass-epoxy (PC board)	5
Silicon Nitride (Si ₃ N ₄)	7.5
Alumina (package)	9.5
Silicon	11.7

Fringing Capacitance

$$c_{wire} = c_{pp} + c_{fringe} = \frac{w \varepsilon_{di}}{t_{di}} + \frac{2\pi \varepsilon_{di}}{\log(t_{di}/H)}$$

(b)

Fringing versus Parallel Plate

(from [Bakoglu89])

Interwire Capacitance

Impact of Interwire Capacitance

(from [Bakoglu89])

Wiring Capacitances (0.25 µm CMOS)

	Field	Active	Poly	Al1	Al2	Al3	Al4
Poly	88						
	54						
Al1	30	41	57				
	40	47	54				
Al2	13	15	17	36			
	25	27	29	45			
Al3	8.9	9.4	10	15	41		
	18	19	20	27	49		
Al4	6.5	6.8	7	8.9	15	35	
	14	15	1.5	18	27	45	
Al5	5.2	5.4	5.4	6.6	9.1	14	38
	12	12	12	14	19	27	52

INTERCONNECT

Possiance

Wire Resistance

Interconnect Resistance

Material	ρ (Ω-m)
Silver (Ag)	1.6×10^{-8}
Copper (Cu)	1.7×10^{-8}
Gold (Au)	2.2×10^{-8}
Aluminum (Al)	2.7×10^{-8}
Tungsten (W)	5.5×10^{-8}

Dealing with Resistance

- Selective Technology Scaling
- Use Better Interconnect Materials
 - reduce average wire-length
 - e.g. copper, silicides
- More Interconnect Layers
 - reduce average wire-length

Polycide Gate MOSFET

Silicides: WSi ₂, TiSi ₂, PtSi ₂ and TaSi

Conductivity: 8-10 times better than Poly

Sheet Resistance

Material	Sheet Resistance (Ω/□)	
n- or p-well diffusion	1000 - 1500	
n^+ , p^+ diffusion	50 - 150	
n^+ , p^+ diffusion with silicide	3 – 5	
n^+ , p^+ polysilicon	150 - 200	
n^+ , p^+ polysilicon with silicide	4 – 5	
Aluminum	0.05 - 0.1	

Modern Interconnect

Example: Intel 0.25 micron Process

5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon dielectric

LAYER	PITCH	THICK	A.R.
Isolation	0.67	0.40	-
Polysilicon	0.64	0.25	-
Metal 1	0.64	0.48	1.5
Metal 2	0.93	0.90	1.9
Metal 3	0.93	0.90	1.9
Metal 4	1.60	1.33	1.7
Metal 5	2.56	1.90	1.5
	μm	μm	

Layer pitch, thickness and aspect ratio

INTERCONNECT

Interconnect Modeling

The Lumped Model

The Lumped RC-Model The Elmore Delay

$$R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \to i) \cap path(s \to k)])$$

$$\tau_{Di} = \sum_{k=1}^{N} C_k R_{ik}$$

The Ellmore Delay RC Chain

$$\tau_{N} = \sum_{i=1}^{N} R_{i} \sum_{j=i}^{N} C_{j} = \sum_{i=1}^{N} C_{i} \sum_{j=1}^{N} R_{j}$$

Wire Model

Assume: Wire modeled by N equal-length segments

$$\tau_{DN} = \left(\frac{L}{N}\right)^2 (rc + 2rc + \dots + Nrc) = (rcL^2) \frac{N(N+1)}{2N^2} = RC \frac{N+1}{2N}$$

For large values of N:

$$\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}$$

The Distributed RC-line

Step-response of RC wire as a function of time and space

RC-Models

Voltage Range	Lumped RC- network	Distributed RC-network
0→50% (t _p)	0.69 RC	0.38 RC
0 → 63 % (7)	RC	0.5 RC
$10\% \rightarrow 90\% \ (t_r)$	2.2 RC	0.9 RC

Step Response of Lumped and Distributed RC Networks:
Points of Interest.

Driving an RC-line

$$\tau_D = R_s C_w + \frac{R_w C_w}{2} = R_s C_w + 0.5 r_w c_w L^2$$

$$t_p = 0.69R_s C_w + 0.38R_w C_w$$

Design Rules of Thumb

 $^{\square}$ rc delays should only be considered when t_{pRC} >> t_{pgate} of the driving gate

Lcrit >>
$$\sqrt{t_{\text{pgate}}}/0.38\text{rc}$$

rc delays should only be considered when the rise (fall) time at the line input is smaller than RC, the rise (fall) time of the line

$$t_{\rm rise} < RC$$

when not met, the change in the signal is slower than the propagation delay of the wire