Progammazione e Algoritmica

Angelo Passarelli

April 26, 2022

Sommario

1	\mathbf{Alg}	oritmi di Ordinamento						
	1.1	Analisi Complessità						
	1.2	Insertion Sort						
		1.2.1 Descrizione						
		1.2.2 Invariante di Ciclo						
	1.3	Selection Sort						
		1.3.1 Descrizione						
		1.3.2 Invariante di Ciclo						
	1.4	Merge Sort						
		1.4.1 Descrizione						
		1.4.2 Descrizione Merge()						
		1.4.3 Invariante di Ciclo						
	1.5	QuickSort						
		1.5.1 Descrizione						
		1.5.2 Descrizione Partiziona()						
		1.5.3 Invariante di Ciclo						
		1.5.4 Costo						
		1.5.5 Dimostrazione Costo al Caso Medio						
	1.6	HeapSort						
		1.6.1 Descrizione						
		1.6.2 Descrizione Max_Heapify()						
		1.6.3 Descrizione Build_Max_Heap()						
		1.6.4 Invariante di Ciclo Build_Max_Heap() 10						
		1.6.5 Descrizione HeapSort()						
		1.6.6 Invariante di Ciclo						
	1.7	Counting Sort						
		1.7.1 Descrizione						
	1.8	Radix Sort						
		1.8.1 Descrizione						
	1.9	Ordinamento per Confronti - Lower Bound						
	1.0	oramomorphic commonly bound						

2	Din	nostrazione Master Theorem	15
	2.1	Caso 1	16
	2.2	Caso 2	17
	2.3	Caso 3	
3	Alg	oritmi di Ricerca	18
	3.1	Ricerca Lineare	18
	3.2	Ricerca Binaria	18
4	Tab	pelle Hash	19
	4.1	Gestione delle Collisioni	19
	4.2	Liste di Trabocco	19
	4.3	Open Hash	20
5	2-3	Alberi	22
6		grammazione Dinamica	23
	6.1	LCS	23
7	Gra	afi	24
	7.1	Dimostrazione Calcolo Cammino Minimo BFS	24
	7.2	DFS - Visita in Profondità	25
		7.2.1 Proprietà Foresta DF	25
	7.3	Teoremi Principali	
	7.4	Archi	
	7.5	Ordinamento Topologico	

1 Algoritmi di Ordinamento

1.1 Analisi Complessità

	Complessità			
Algoritmo	Caso Migliore	Caso Peggiore	Caso Medio	
Insertion Sort	O(n)	$O(n^2)$	$O(n^2)$	
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$	
Merge Sort	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	
QuickSort	$\Theta(n \log n)$	$\Theta(n^2)$	$\Theta(n \log n)$	
HeapSort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	
Counting Sort	$O(max\{n,k\})$	$O(max\{n,k\})$	$O(max\{n,k\})$	
Radix Sort	O(d(n+k))	O(d(n+k))	O(d(n+k))	

1.2 Insertion Sort

1.2.1 Descrizione

- 1. All'inizio dell'algoritmo l'insieme ordinato è vuoto ([]).
- 2. Il primo elemento dell'array (A[0]) risulta già ordinato rispetto alla sottosequenza che prendiamo in considerazione (infatti il for parte da j = 1).
- 3. L'elemento successivo (key) viene confrontato dall'elemento precedente a j fino all'ultima cella dell'array, solo fino a quando key risulta più piccolo dei sui elementi precedenti.
- 4. Nel caso in cui key deve occupare la cella già occupata da un altro elemento, occorre shiftare tutti gli elementi più grandi di key alla sua destra (riga 6).
- 5. Si ripete dal punto 3. per tutti gli n elementi.

1.2.2 Invariante di Ciclo

All'inizio, durante e alla fine del ciclo for la porzione dell'array [0, j-1] risulta ordinata.

```
1
   function InsertionSort(A) {
2
        for(let j = 1; j < A.length; j++){</pre>
3
            let key = A[j];
4
            i = j - 1;
            while(i >= 0 && A[i] > key){
5
                 A[i + 1] = A[i];
8
            A[i + 1] = key;
10
        }
11
   }
```

code/insertion.js

1.3 Selection Sort

1.3.1 Descrizione

- Si cerca il minimo dell'array nella sottoporzione [i, n-1] con i che parte da 0.
- Alla fine della ricerca, l'elemento minimo viene posto all'inizio della sottoporzione.
- 3. Si ritorno al punto 1. fino a n-1.

1.3.2 Invariante di Ciclo

All'inizio, durante e alla fine del primo ciclo for la porzione dell'array [0, i] risulta ordinata.

```
function SelectionSort(A) {
   for(let i = 0; i < A.length - 1; i++){
      let min = i;
      for(let j = i + 1; j < A.length; j++){
            if(A[j] < A[min]) min = j;
      }
      Swap(A[i], A[min]);
   }
}</pre>
```

code/selection.js

1.4 Merge Sort

1.4.1 Descrizione

- 1. L'array viene prima diviso in 2 parti ricorsivamente fino a quando la sottoporzione da dividere non raggiunge dimensione 1.
- 2. Successivamente, a partire dall'ultima scomposizione (quindi all'inizio avremo tutte le celle di lunghezza 1 che per definizione sono già ordinate) viene effettuata la procedura di Merge() che prende due porzioni di array già ordinate e le fonde in un unico array in modo da mantenere l'ordinamento.

1.4.2 Descrizione Merge()

- 1. All'inizio vengono prima calcolate le dimensioni delle 2 sottosequenze.
- 2. Successivamente vengono creati due array di appoggio dove saranno copiati i valori delle 2 sottoporzioni.
- 3. Nell'ultima cella dei due array di appoggio viene posto un valore sentinella (in questo caso $+\infty$) in modo tale che quando avremo terminato di inserire nell'array principale i valori di una delle due sottosequenze, potremo continuare a copiare gli elementi dell'altra sottoporzione in modo corretto dato che verranno sempre confrontati con $+\infty$.

- 4. L'idea di base del Merge() si trova all'interno del ciclo for. Infatti i due array essendo già ordinati, per trovare il valore più piccolo della loro unione basterà confrontare i valori minimi corrispettivi che all'inizio si troveranno nella cella 0.
- 5. Nel caso in cui il valore minimo si trovi in L, il suo valore sarà copiato in A[k] (con k che parte da p) e l'indice corrispondente a L sarà incrementato di 1, invece se il valore minimo è contenuto in R, l'indice incrementato sarà i.
- 6. Quindi alla fine di ogni ciclo for saranno sempre confrontati gli elementi più piccoli dei due array che non sono stati ancora copiati in A.
- 7. Il ciclo termina quando vengono copiati tutti gli r elementi. In questo modo preveniamo anche che non vengano copiati i valori sentinella.

1.4.3 Invariante di Ciclo

All'inizio di ogni iterazione del for il sottorray A[p...k-1] contiene i k-p elementi più piccoli di L e R già ordinati.

Inoltre L[i] e R[j] contengono i più piccoli elementi che non sono stati ancora copiati in A.

```
function MergeSort(A, p, r) {
        if(p < r){
2
3
            let q = (p + r) / 2;
            MergeSort(A, p, q);
4
5
            MergeSort(A, q + 1, r);
6
            Merge(A, p, q, r);
7
8
   }
9
10
   function Merge(A, p, q, r) {
        let n1 = q - p + 1;
let n2 = r - q;
11
12
        let L = new Array(n1 + 1);
13
14
        let R = new Array(n2 + 1);
15
        for(let i = 0; i < n1; i++) L[i] = A[p + i - 1];
        for(let j = 0; j < n2; j++) R[j] = A[q + j];
16
        L[n1] = +Infinity;
17
18
        R[n2] = +Infinity;
19
        let i = 0;
20
        let j = 0;
        for(let k = p; k < r; k++){
21
            if(L[i] <= R[j]){</pre>
22
                 A[k] = L[i];
23
24
                 i = i + 1;
25
            }
26
            else{
27
                 A[k] = R[j];
28
                 j = j + 1;
29
            }
30
        }
31 | }
```

1.5 QuickSort

1.5.1 Descrizione

- 1. Viene scelto un elemente chiamato pivot (nel codice q) e vengono spostati a sinistra tutti gli elementi di piccoli del pivot e a destra tutti gli elementi più grandi (funzione Partiziona()).
- 2. Successivamente viene richiamato il QuickSort() ricorsivamente sulla partizione a sinistra del pivot e su quella a destra.

1.5.2 Descrizione Partiziona()

- 1. Come pivot viene scelto x che rappresenta l'ultima cella della sottoporzione.
- 2. Il funzionamento si base su due indici i e j, in modo tale che alla fine tra p e i avremo gli elementi più piccoli di x e tra i+1 e j avremo i più grandi.
- 3. In questo modo, nel ciclo for ogni volta che troviamo un elemento minore di x incrementiamo di 1 la dimensione della sottosequenza [p, i] e ci spostiamo l'elemento in considerazione nell'ultima posizione.
- 4. Al termine del for scambiamo il pivot con il primo degli elementi più grandi di esso e restituiamo la posizione del pivot.
- 5. In questo modo il l'elemento corrispondente al pivot si troverà nella posizione corretta per ottenere l'array ordinato.

1.5.3 Invariante di Ciclo

All'inizio di ogni iterazione del for preso qualsiasi indice k della sottoporzione:

- Se $p \le k \le i$, allora $A[k] \le x$.
- Se $i+1 \le k \le j-1$, allora A[k] > x.
- Se k = r, allora A[k] = x.

Gli indici tra j
 e ${\tt r-1}$ non ci interessano perchè sono ancora da confrontare.

1.5.4 Costo

Il costo del QuickSort() dipende dal bilanciamento delle 2 sottoporzioni. Infatti se il pivot si trova sempre al centro della sottosequenza allora la complessità sarà $\Theta(n \log n)$ (caso migliore).

Invece il caso peggiore si verifica quando Partiziona() produce una sottosequenza lunga n-1 e l'altra quindi lunga 0.

In questo caso la complessità è uguale a $\sum_{i=1}^{n} (n-i) = \Theta(n^2)$.

1.5.5 Dimostrazione Costo al Caso Medio

- Per randomizzare la procedura devo fare in modo che il pivot venga scelto in modo casuale tra p ed r.
- Definiamo due eventi con la stessa probabilità che possano verificarsi: ovvero che il pivot finisca nella zona esterna della sequenza o che finisca nella zona interna.

- Nel caso in cui il pivot finisca nella zona esterna, il caso peggiore si verifica quando esso si trova nella prima posizione, nel caso della sezione gialla di sinistra, o nell'ultima nel caso di quella di destra.
- Quindi in questo caso la complessità sarà: T(n) = T(n-1) + O(n).
- Invece, nel caso in cui il pivot finisca nella zona interna, il caso peggiore si verifica quando esso si trova o all'inizio di B quindi in posizione $\frac{n}{4}$ o alla fine di B, in posizione $\frac{3}{4}n$.
- Quindi la complessità dell'algoritmo al caso peggiore sarà: T(n) = T(n/4) + T(3/4 n) + O(n).
- Adesso occorre combinare la situazione A con B, e dato che, come già detto, hanno la stessa probabilità di verificarsi:

$$T(n) \le A/2 + B/2 = \frac{1}{2}(A+B)$$

$$= \frac{1}{2}[T(n-1) + T(n/4) + T(3/4 n) + O(n)]$$

$$\le \frac{1}{2}[T(n) + T(n/4) + T(3/4 n) + O(n)]$$

• Adesso moltiplico per 2 a destra e a sinistra e porto il T(n) nel secondo membro nel primo:

$$2T(n) \le T(n) + T(n/4) + T(3/4 n) + O(n)$$

$$T(n) \le T(n/4) + T(3/4 n) + O(n)$$

• Ora per risolvere questa equazione utilizziamo l'albero di ricorrenza:

- Qui possiamo notare come l'altezza del ramo più a sinistra sarà $\log_4 n$ mentre quella del ramo più a destra è $\log_{\frac43} n$.
- Inoltre possiamo dire che se facciamo la somma dei nodi su ogni livello, fino a quando ogni livello è completo, questa sarà sempre uguale a cn.
- Invece dal livello in cui l'albero inizia a diventare sbilenco, fino all'ultimo livello, possiamo limitare superiormente la somma sempre con *cn*.
- Quindi in conclusione possiamo dire che la complessità del QuickSort() al caso medio è $O(n \log n)$.

```
function QuickSort(A, p, r) {
 2
         if (p < r) {
3
              q = Partiziona(A, p, r);
 4
              QuickSort(a, p, q - 1);
5
              QuickSort(a, q + 1, r);
6
7
    }
8
    function Partiziona(A, p ,r) {
9
10
         let x = A[r];
         let i = p - 1;
for(let j = p; j <= r - 1; j++){
    if(A[j] <= x){</pre>
11
12
13
```

code/quicksort.js

1.6 HeapSort

1.6.1 Descrizione

- L'HeapSort() si basa su una struttura dati chiamata Heap, ovvero un albero binario quasi completo, quindi dove tutti i livelli tranne l'ultimo sono completi e le foglie sull'ultimo livello vengono inserite da sinistra a destra.
- L'implementazione dell'Heap avviene tramite un array, in questo modo dato un nodo interno di indice i, il figlio a sinistra si trova in posizione 2 · i e quello a destra in (2 · i) + 1 (se l'array parte da 1, nel caso dovesse partire da 0 il figlio a sinistra si troverebbe in posizione (2 · i) + 1, mentre quello a destra in (2 · i) + 2).
- Invece il genitore di i si trova in posizione $\lfloor \frac{i-1}{2} \rfloor$.
- Nell'array la prima foglia si trova in posizione $\frac{n}{2}$.

1.6.2 Descrizione Max_Heapify()

- L'idea della procedura di Max_Heapify() è quella di avere un albero con radice i dove il sottoalbero sinistro e il sottoalbero destro sono già degli alberi di Max-Heap, in questo modo la funzione fà scorrere i nell'albero fino a quando non raggiunge la posizione corretta.
- All'inizio viene prima verificato se A[i] è minore del suo figlio sinistro o
 del suo figlio destro, nel caso in cui questo non si verifica vuol dire che
 l'albero è già un Max-Heap, altrimenti viene assegnato a max il valore di
 1 o di r a seconda del caso.
- Quindi, a questo punto, se l'elemento maggiore è proprio A[i] la funzione termina, altrimeni vengono scambiati A[i] e A[max] e viene richiamata ricorsivamente la Max_Heapify() sul sottoalbero sinistro o destro (a seconda se il valore massimo si trova in A[1] o in A[r]).

Costo al Caso Peggiore

• Nel caso peggiore l'albero avrà l'ultimo livello tutto pieno solo a sinistra, questo perchè la differenza tra i nodi dei due sottoalberi è massima.

- Dato che nell'ultimo livello avrò k + 1 nodi, i nodi totali dell'albero saranno n = (2k + 1) + (k + 1) = 3k + 2.
- Dato che il caso peggiore avviene quando si procede verso sinistra dove abbiamo 2k + 1 nodi, occorre scrivere questo valore in funzione di n.
- Quindi dato che n = 3k + 2, allora k = (n 2)/3.
- Adesso sostituisco k nel numero di nodi a sinistra e ottengo: $2(n-2)/3 + 1 = \frac{2}{3}n \frac{1}{3} < \frac{2}{3}n$.
- Quindi dato che a sinistra c'è un numero di nodi inferiore a $\frac{2}{3}n$, l'equazione di ricorrenza al caso peggiore sarà:

$$T(n) = T(2/3n) + \Theta(1)$$

• Applicando il Master Theorem otteniamo $O(\log n)$.

1.6.3 Descrizione Build_Max_Heap()

- La procedura Build_Max_Heap() consente di trasformare un array A in un albero di Max-Heap.
- Dato che le foglie, se prese singolarmente, sono già degli alberi di Max-Heap, questa funzione chiama la Max-Heapify su tutti i nodi interni a partire dall'ultimo nodo non foglia fino alla radice dell'albero generale.

1.6.4 Invariante di Ciclo Build_Max_Heap()

All'inizio di ogni iterazione del for, ogni nodo $x \in \{i+1,\ldots,n\}$ è radice un Max-Heap.

La proprietà viene sempre soddisfatta, anche prima della prima iterazione, perchè i nodi presi in considerazione sono tutte delle foglie che per definizione sono già dei Max-Heap.

Costo

- Quando chiamiamo la Max-Heapify(), il suo costo è proporzionale all'altezza del nodo su cui la invochiamo.
- Quindi per determinare il costo della Build-Max-Heap() occorre calcolare una somma pesata del valore dell'altezza su ogni nodo:

$$T(n) = \sum_{i=0}^{h} n_i \cdot h_i$$

- In questa sommatoria, h rappresenta l'altezza dell'albero e quindi il numero di livelli che ha, mentre n_i è il numero di nodi al livello i, i quali, dato che avranno la stessa altezza possiamo moltiplicare il valore dell'altezza al livello i (h_i) per il numero di nodi su quel livello.
- Ora dato che il numero di nodi su un dato livello i è uguale a 2^i e l'altezza di un nodo è uguale all'altezza dell'albero meno il livello a cui si trova il nodo $(h_i = h i)$, possiamo sostituire:

$$T(n) = \sum_{i=0}^{h} 2^{i} \cdot (h-i)$$

• Adesso scrivo 2^i come $\frac{1}{2^{-i}}$ e moltiplico numeratore e denominatore per 2^h :

$$T(n) = \sum_{i=0}^{h} \frac{h-i}{2^h \cdot 2^{-i}} 2^h = \sum_{i=0}^{h} \frac{h-i}{2^{h-i}} 2^h$$

• Ora cambio variabile k = h - i e porto 2^h fuori dalla sommatoria:

$$T(n) = 2^{h} \sum_{i=0}^{h} \frac{k}{2^{k}}$$

$$\leq n \sum_{i=0}^{\infty} \frac{k}{2^{k}}$$

$$= n \cdot 2$$

$$= O(n)$$

• Negli ultimi passaggi abbiamo posto un limite superiore della sommatoria facendola iterare fino ad infinito, quella essendo una sommatoria notevole, il suo valore è 2 e quindi T(n) = O(n).

1.6.5 Descrizione HeapSort()

- 1. All'inizio l'array A viene trasformato in un albero di Max-Heap.
- 2. Successivamente dato che l'elemento più grande si trova nella radice viene posto alla fine dell'array.
- 3. La lunghezza dell'Heap (n) viene decrementata di 1 perchè nell'ultima cella abbiamo già l'elemento in posizione corretta.
- 4. Data che abbiamo inserito in A[0] un valore che non sappiamo essere più grande dei suoi sottoalberi, occorre richiamare la Max_Heapify di nuovo sull'array ma questa volta solo fino ad n-1.
- 5. Questa procedura viene eseguita iterativamente fino a quando i non raggiunge il valore di 1 (non fino a 0 dato che non ha senso ordinare una porzione di array con solo un elemento).

1.6.6 Invariante di Ciclo

All'inizio di ogni for la sottoporzione A[0,...,i] è un Max-Heap che contiene gli i elementi più piccoli di A e il sottoarray A[i+1,...,n] contiene gli n-1 elementi più grandi di A ordinati.

```
function HeapSort(A) {
1
2
        let n = A.length - 1;
        Build_Max_Heap(A, n);
3
        for(let i = A.length - 1; i <= 1; i--){
4
            Swap(A[0], A[i]);
5
6
            n = n - 1;
7
            Max_Heapify(A, 0, n);
8
9
   }
10
11
   function Max_Heapify(A, i, n) {
12
        let 1 = 2 * i;
        let r = 2 * i + 1;
13
14
        let max;
        if (1 <= n && A[1] > A[i]) {
15
16
            max = 1;
17
        } else {
            max = i:
18
19
        }
20
        if(r <= n && A[r] > A[max]){
21
            max = r;
22
        if(max != i){
23
24
            Swap(A[i], A[max]);
25
            Max_Heapify(A, max, n);
26
   }
27
28
29
   function Build_Max_Heap(A, n) {
30
        for(let i = (n / 2); i \le 0; i \longrightarrow \{
31
            Max_Heapify(A, i, n);
```

```
32 | }
33 |}
```

code/heapsort.js

1.7 Counting Sort

1.7.1 Descrizione

- L'idea è quella di ordinare un array A di n elementi dove ogni A[i] $\in \{0, 1, 2, \dots, k\}$.
- Inizialmente viene istanziato un array C di lunghezza k dove in posizione i saranno contate il numero di occorrenze del numero i in A.
- Infine ogni numero $\mathbf{z} \in \{0,\dots,k\}$ viene inserito nell'array ordinato B per v volte.

```
function CountingSort(A, B, k) {
       let C = [];
2
3
       for(let i = 0; i <= k; i++) C[i] = 0;
       for(let j = 0; j < A.length; j++) C[A[j]] += 1; //O(n)
4
5
       let j = 0;
       for(let z = 0; z \le k; z++){
                                         //O(n) -> il nr. di scritture
6
       su B e' per 'n' volte
            for(let v = 0; v < C[z]; v++){
8
                B[j] = z;
9
                j++;
10
           }
11
       }
12
```

code/counting.js

1.8 Radix Sort

1.8.1 Descrizione

- L'idea si basa sull'ordinare i numeri decimali per cifre, partentendo dalla meno alla più significativa.
- In questo caso conviene utilizzare il CountingSort() come algoritmo di ordinamento stabile da che k ∈ {0,...,9} (ogni cifra è sempre compresa tra 0 e 9).

```
function RadixSort(A, d) {
  for(let i = 0; i < d; i++){
    StableSort(A) //sulla cifra 'i', in questo caso usiamo il
    Counting Sort
  }
}</pre>
```

code/radix.js

1.9 Ordinamento per Confronti - Lower Bound

- Dati n elementi, il loro ordine corretto di trova in una delle loro n! permutazioni.
- Gli ordinamenti per confronti possono essere visti come degli alberi di decisioni, ovvero alberi binari pieni dove ogni nodo contiene una coppia di numeri e a seconda di chi è più grande dell'altro si procede verso destra o verso sinistra.

- Nell'albero ogni foglia rappresenta una permutazione degli n elementi.
- La lunghezza del cammino dalla radice fino alla permutazione che rappresenta l'ordine corretto della sequenza, rappresenta il numero di confronti effettuati dall'algoritmo.
- Nel caso peggiore il numero di confronti, e quindi la lunghezza del cammino, è uguale all'altezza h dell'albero binario.
- $\bullet\,$ Quindi considerando un albero di decisione di altezza h con l foglie.
- Poichè ciascuna delle n! deve comparire in una foglia si ha che $n! \leq l$.
- Dato che un un albero di altezza h non ha più di 2^h foglie vale la seguente disuguaglianza: $n! \leq l \leq 2^h$.
- Applicando la funzione logaritmica a tutti i termini abbiamo che log $n! \leq \log l \leq h.$
- Quindi abbiamo che $h \ge \log n!$.
- Per la formula di Stirling $h = \Omega(n \log n)$.

2 Dimostrazione Master Theorem

Ipotesi: n è una potenza esatta di b.

$$T(n) = aT(n/b) + f(n) \tag{1}$$

Data l'equazione di ricorrenza descritta in precedenza, possiamo dire che:

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$
 (2)

Per dimostrare questa uguaglianza occorre utilizzare l'albero di ricorsione associato all'equazione presa in considerazione.

- Quindi la radice dell'albero ha costo f(n), e ci sono ogni volta a chiamate ricorsive (a sottoproblemi, ognuno dal costo di f(n/b)).
- Generalizzando possiamo dire che ogni livello ha costo $a^{j} f(n/b^{j})$.
- L'altezza dell'albero è ovviamente $\log_b n,$ e il numero di foglie sarà uguale a $a^{\log_b n}.$
- Utilizzando le proprietà dei logaritmi abbiamo che $a^{\log_b n} = n^{\log_b a}$.
- Quindi se vogliamo calcolare il costo complessivo dell'albero, possiamo sommare il costo delle foglie che hanno tutte costo $\Theta(1)$. Quindi $\Theta(1)$ · $\Theta(n^{\log_b a}) = \Theta(n^{\log_b a})$.

• E a questo valore possiamo sommare il costo di ogni livello, a partire dalla radice (j=0) fino al penultimo livello dell'albero $(\log_b n - 1)$.

Adesso occorre dimostrare i 3 casi del Master Theorem.

2.1 Caso 1

Dimostrare che:

$$f(n) = O(n^{\log_b a - \epsilon}) \Rightarrow g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j) = O(n^{\log_b a})$$

- Quindi se sappiamo che $f(n) = O(n^{\log_b a \epsilon})$, allora $f(n/b^j) = O((n/b^j)^{\log_b a \epsilon})$.
- g(n) quindi diventa: $g(n) = O(\sum_{j=0}^{\log_b n-1} a^j (n/b^j)^{\log_b a-\epsilon}).$
- Adesso posso tirare tutto ciò che non dipende da j fuori dalla sommatoria:

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j (\frac{n}{b^j})^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n - 1} a^j (\frac{1}{b^j})^{\log_b a - \epsilon}.$$

- Ora utilizzando le proprietà delle potenze possiamo portare j fuori dalle parentesi e portiamo dentro l'esponente che si trova fuori dalle parentesi e lo spezziamo, dividendo il logaritmo con ϵ : $g(n) = n^{\log_b a \epsilon} \sum_{j=0}^{\log_b n 1} a^j (\frac{b^\epsilon}{b^{\log_b a}})^j$.
- Adesso possiamo semplificare il denominatore all'interno della sommatoria: $g(n) = n^{\log_b a \epsilon} \sum_{j=0}^{\log_b n 1} a^j (\frac{b^{\epsilon \cdot j}}{a^j}).$
- A questo punto semplifichiamo a^j : $g(n) = n^{\log_b a \epsilon} \sum_{j=0}^{\log_b n 1} (b^{\epsilon})^j$.
- Per semplificare la sommatoria possiamo utilizzare la seguente serie geometrica: $\sum_{k=0}^n x^k = \frac{x^{n+1}-1}{x-1}.$
- Quindi: $g(n) = n^{\log_b a \epsilon} \left(\frac{b^{\epsilon \log_b n} 1}{b^{\epsilon} 1} \right)$.
- Ora di nuovo applicando le proprietà dei logaritmi abbiamo che: $g(n)=n^{\log_b a-\epsilon}(\frac{n^\epsilon-1}{b^\epsilon-1}).$
- Adesso dato che b ed ϵ sono costanti possiamo riscrivere l'equazione in questo modo: $g(n) = n^{\log_b a \epsilon} O(n^{\epsilon})$.

- Come ultimo passaggio possiamo portare tutto dentro l'*O*-grande ed eliminare ϵ : $g(n) = O(n^{\log_b a \epsilon + \epsilon}) = O(n^{\log_b a})$.
- Quindi $g(n) = O(n^{\log_b a})$.

Adesso effettuando le opportune sostituzioni abbiamo che:

$$T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a})$$

2.2 Caso 2

Dimostrare che:

$$f(n) = \Theta(n^{\log_b a}) \Rightarrow g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j) = \Theta(n^{\log_b a} \lg n)$$

- Se sappiamo che $f(n) = \Theta(n^{\log_b a})$, allora $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$.
- g(n) quindi diventa: $g(n) = \Theta(\sum_{j=0}^{\log_b n-1} a^j (\frac{n}{b^j})^{\log_b a}).$
- Ora portiamo fuori ciò che non dipende da j: $g(n) = n^{\log_b a} \sum_{j=0}^{\log_b n-1} (\frac{a}{b^{\log_b a}})^j$.
- Adesso applicando le proprietà delle potenze abbiamo che: $g(n) = n^{\log_b a} \sum_{j=0}^{\log_b n-1} 1$.
- Quindi calcolando la serie abbiamo che: $g(n) = \Theta(n^{\log_b a} \log_b n)$.

Adesso effettuando le opportune sostituzioni abbiamo che:

$$T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n)$$

2.3 Caso 3

Dimostrare che:

$$af(n/b) \le cf(n) \Rightarrow g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) = \Theta(f(n))$$

- Riscriviamo f(n) dividendo la disequazione per a: $f(n/b) \le (c/a)f(n)$.
- Successivamente iteriamo la disequazione per j volte: $f(n/b^j) \leq (c/a)^j f(n)$.
- Adesso moltiplichiamo per a^j : $a^j f(n/b^j) \le c^j f(n)$.

- A questo punto possiamo effettuare il passaggio alla serie: $g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) \le \sum_{j=0}^{\log_b n-1} c^j f(n) + O(1).$
- Possiamo riscrivere la disequazione in questo modo: $g(n)=\sum_{j=0}^{\log_b n-1}a^jf(n/b^j)\leq \sum_{j=0}^{\infty}c^jf(n)+O(1).$
- Adesso è possibile calcolare il valore della serie: $g(n)=\sum_{j=0}^{\log_b n-1}a^jf(n/b^j)\leq f(n)(\frac{1}{1-c})+O(1).$
- Dato che c è una costante: $g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) = O(f(n)).$

Adesso effettuando le opportune sostituzioni abbiamo che:

$$T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n))$$

Questo perchè nelle ipotesi del Caso 3 abbiamo che $f(n) = \Omega(n^{\log_b a + \epsilon})$.

3 Algoritmi di Ricerca

3.1 Ricerca Lineare

```
function Ricerca_Lineare(A, k) {
    for(let i = 0; i < A.lenngth; i++){
        if(A[i] == k) return i;
}
return -1;
}</pre>
```

code/linear_search.js

3.2 Ricerca Binaria

```
function Ricerca_Binaria(A, k, sx, dx) {
   if(sx > dx) return -1;
   c = (sx + dx) / 2;
   if(A[c] == k) return c;
   if(k < A[c]) Ricerca_Binaria(A, k, sx, c - 1);</pre>
```

```
6 | else Ricerca_Binaria(A, k, c + 1, dx); 7 |}
```

code/binary_search.js

4 Tabelle Hash

4.1 Gestione delle Collisioni

	Operazione			
Gestione	Inserimento	Ricerca con successo	Ricerca senza successo	
Liste di Trabocco	O(1)	$\Theta(1+\alpha)$	$\Theta(1 + (1 + \frac{\alpha}{2} - \frac{\alpha}{2n}))$	
Open Hash	$T_{ottimo} = \Theta(1)$ $T_{pessimo} = \Theta(n) = \Theta(m)$ $T_{medio} = O(\frac{1}{1-\alpha})$	$O(\frac{1}{\alpha}\ln(\frac{1}{1-\alpha}))$	$O(\frac{1}{1-\alpha})$	

4.2 Liste di Trabocco

Teorema 4.1 (Ricerca senza Successo - Caso Medio). In una tabella hash con concatenamento la ricerca senza successo richiede al caso medio $\Theta(1+\alpha)$, dove $\alpha = \frac{n}{m}$.

Dimostrazione.

- Definiamo $\alpha = \frac{|S|}{\dim T} = \frac{n}{m}$ come il fattore di carico.
- Data la chiave k, effettuo l'hashing h(k) e verifico se in testa alla lista T[h(k)] è presente la chiave cercata.
- Se in testa non è presente, occerrerà scorrere tutta la lista.
- Se gli n elementi sono distribuiti uniformemente sulle liste, ogni lista conterrà α elementi.
- Quindi $T_{medio}(n, m) = \Theta(1 + \alpha)$, dove l'1 è dovuto al calcolo di h(k) e α al numero di ispezioni nella lista.
- Se α è costante allora: $T_{medio}(n, m) = \Theta(1)$.

Teorema 4.2 (Ricerca con Successo - Caso Medio). In una tabella hash con concatenamento la ricerca con successo richiede al caso medio $\Theta(1+(1+\frac{\alpha}{2}-\frac{\alpha}{2n}))=\Theta(1+\alpha)$, dove $\alpha=\frac{n}{m}$.

Dimostrazione.

- Il numero di ispezioni per trovare k è dovuto dal numero di elementi che precedono k nella lista T[h(k)]. Essendoci l'inserimento in testa, questi sono gli elementi inseriti dopo k.
- Se x è l'i-esimo elemento, quelli inseriti dopo sono n i elementi.
- Gli elementi, invece, che avranno lo stesso valore hash h(k) saranno in media $\lfloor \frac{n-i}{m} \rfloor$.
- Quindi gli elementi ispezionati durante la ricerca di i sono $1 + \frac{n-i}{m}$.
- A questo punto occorre fare una media su tutte le posizioni che può assumere i nella lista; quindi supponiamo che stiamo cercando uno degli elementi con la stessa probabilità 1/n.
- Quindi il numero di ispezioni al caso medio è uguale a:

$$\frac{1}{n}\sum_{i=1}^{n}(1+\frac{n-i}{m})=\frac{1}{n}\sum_{i=1}^{n}1+\frac{1}{n}\sum_{i=1}^{n}\frac{n-i}{m}=$$

• La prima sommatoria è uguale a n e possiamo portare fuori dalla seconda sommatoria m:

$$= \frac{n}{n} + \frac{1}{n \cdot m} \sum_{i=1}^{n} (n-i) =$$

• Adesso possiamo notare che la sommatoria rimasta corrisponde alla somma dei primi n numeri interi (formula di Gauss), quindi:

$$=1+\frac{1}{n\cdot m}\cdot \frac{n(n-1)}{2}=1+\frac{n-1}{2m}=1+\frac{n}{2m}-\frac{1}{2m}=$$

• Dato che $\alpha = \frac{n}{m}$ e $m = \frac{n}{\alpha}$:

$$=1+\frac{\alpha}{2}-\frac{\alpha}{2n}$$

4.3 Open Hash

Ipotesi:

1. $\alpha = \frac{n}{m} < 1$.

2. Non sono previste cancellazioni.

3. Deve valere l'ipotesi di Hashing Uniforme (la sequenza di ispezione deve essere una permutazione generata con pari probabilità).

Teorema 4.3 (Ricerca senza Successo - Caso Medio). In una tabella hash a indirizzamento aperto, la ricerca senza successo effettua, al caso medio, un numero di accessi $\leq \frac{1}{1-\alpha}$.

Dimostrazione.

- Poniamo X come il numero di accessi alla tabella per effettuare la nostra ricerca.
- Il valore medio di X è uguale alla somma di tutti i valori che può assumere, moltiplicato per la probabilità che X assuma quel valore:

$$\sum_{i=1}^{\infty} i \cdot Prob[x=i] = \sum_{i=1}^{\infty} Prob[x \ge i]$$

- Nel passaggio precedente la serie è stata semplificata, e a questo punto ci ritroviamo con la probabilità che X effettui almeno i accessi:
 - Se i = 1, $Prob[x \ge 1] = 1$.
 - Se i=2, $Prob[x \geq 2]=\alpha$. Essenzialmente è la probabilità di trovare la prima cella già occupata da una chiave diversa ma con lo stesso h(k).
 - Se i=3, $Prob[x\geq 3]=\frac{n}{m}\cdot\frac{n-1}{m-1}\leq \alpha^2$. Quindi la probabilità di avere sia la prima che la seconda cella già occupata).
- Quindi generalizzando:

$$\sum_{i=1}^m Prob[x \geq i] = \sum_{i=1}^m \alpha^{i-1} = \sum_{i=0}^{m-1} \alpha^i \leq \sum_{i=1}^\infty \alpha^i =$$

• L'ultima sommatoria è una serie geometrica, quindi essendo $\alpha \leq 1$:

$$=\frac{1}{1-\alpha}$$

Teorema 4.4 (Ricerca con Successo - Caso Medio). In una tabella hash a indirizzamento aperto, la ricerca con successo effettua, al caso medio, un numero di accessi $\leq \frac{1}{\alpha} \cdot \ln(\frac{1}{1-\alpha})$.

Dimostrazione.

- $\bullet\,$ Chiamiamo k la chiave che stiamo cercando; k è l'i-esimo elemento inserito nella tabella.
- Se chiamiamo α_i il fattore di carico nella tabella prima dell'inserimento di k:

$$\alpha_i = \frac{i}{m}$$

• Quindi il numero di accessi fatti per inserire ${\tt k}$ è uguale al numero di accessi per una ricerca senza successo:

$$\leq \frac{1}{1-\alpha_i} = \frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$$

• Quindi il valore medio del numero di accessi è:

$$\frac{1}{n}\sum_{i=0}^{n-1}\alpha_i = \frac{1}{n}\sum_{i=0}^{n-1}\frac{m}{m-i} = \frac{m}{n}\sum_{i=0}^{n-1}\frac{1}{m-i} =$$

• Adesso per calcolare il valore della serie possiamo applicare il Criterio dell'Integrale:

$$= \frac{1}{\alpha} \sum_{i=0}^{n-1} \frac{1}{m-i} \le \frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} \, dx = \frac{1}{\alpha} \cdot \ln(\frac{m}{m-n}) =$$

• A questo punto occorre solo dividere il numeratore e il denominatore del logaritmo per m:

$$= \frac{1}{\alpha} \cdot \ln(\frac{1}{1-\alpha})$$

5 2-3 Alberi

Lemma 5.1. Dato un 2-3 Albero alto h, con n nodi e con f foglie, vale che:

$$2^{h+1} - 1 \le n \le (3^{h+1} - 1)/2$$
$$2^h \le f \le 3^h$$

Dimostrazione. Poniamo T come un albero alto h+1, e T' come l'albero alto h ottenuto eliminando da T tutte le foglie.

Adesso dimostriamo la seguente Ipotesi Induttiva:

$$2^{h+1} - 1 \le n' \le (3^{h+1} - 1)/2$$
$$2^h \le f' \le 3^h$$

Dato che ogni foglia in T' ha o 2 o 3 figli in T risulta che:

$$2\cdot 2^h \leq f \leq 3\cdot 3^h$$

$$2^{h+1} \le f \le 3^{h+1}$$

Come ultimo passo sappiamo che il numero di nodi in T è uguali al numero di nodi in T' più il numero di foglie in T, quindi:

$$2^{h+1} - 1 + 2^{h+1} \le n' + f \le (3^{h+1} - 1)/2 + 3^{h+1}$$

$$2^{h}(2+2) - 1 \le n \le (3^{h+1} - 1 + 2 \cdot 3^{h+1})/2$$

$$2^{h+2} - 1 \le n \le [3^{h}(3+2\cdot 3) - 1]/2$$

$$2^{h+2} - 1 \le n \le (3^{h+2} - 1)/2$$

6 Programmazione Dinamica

6.1 LCS

Teorema 6.1 (Sottostruttura ottima delle LCS). Date due stringhe $X = x_1, \dots, x_m$ $e \ Y = y_1, \dots, y_n \ e \ una \ stringa \ Z = z_1, \dots, z_k \ tale \ che \ Z = LCS(X,Y)$:

- 1. $x_m = y_m \Rightarrow z_k = x_m = y_n \ e \ Z_{k-1} \ \dot{e} \ LCS(X_{m-1}, Y_{n-1}).$
- 2. $x_m \neq y_m \Rightarrow z_k \neq x_m \ e \ Z \ \hat{e} \ LCS(X_{m-1}, Y_n)$.
- 3. $x_m \neq y_m \Rightarrow z_k \neq y_n \ e \ Z \ \dot{e} \ LCS(X_m, Y_{n-1}).$

Dimostrazione.

- 1. Se per assurdo $z_k \neq x_m$ ma $x_m = y_n$ allora possiamo accodare x_m a Z per ottenere una sottosequenza comune di X e Y lunga k+1 contraddicendo l'ipotesi che Z sia una LCS di X e Y.
 - Ora dimostriamo che $Z_{k-1} = LCS(x_{m-1}, y_{n-1})$ lunga k-1. Supponiamo che esista una stringa chiamata W che è una sottosequenza comune di X_{m-1} e Y_{n-1} di lunghezza maggiore di k-1. Allora accodando $x_m = y_n$ a W si otterrebbe una sottosequenza di lunghezza maggiore di k, ma questo contraddice l'ipotesi Z = LCS(X,Y).
- 2. Se esistesse una stringa W sottosequenza comune di X_{m-1} e Y di lunghezza maggiore di k, allora W sarebbe anche una sottosequenza comune di X e Y (questo perchè $x_m \neq y_n$), ma questo contraddice l'ipotesi Z = LCS(X,Y).
- 3. La dimostrazione è simmetrica al punto 2.

7 Grafi

7.1 Dimostrazione Calcolo Cammino Minimo BFS

Lemma 7.1. Dato un grafo G = (V, E) e una sorgente $s \in V$, per ogni arco $(u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + 1$, questo perchè la distanza tra s e v è sicuramente minore o uguale a qualsiasi altro cammino da s a v; in questo caso un cammino che da s va in u e tramite l'arco (u, v) arriva in v.

Lemma 7.2. Al termine dell'algoritmo BFS(G, s), per ogni vertice $v \in V$, $v.d \geq \delta(s, v)$.

Dimostrazione. Poniamo la seguente Ipotesi Induttiva: $v.d \ge \delta(s, v)$.

1) Caso Base

```
s.d = 0 = \delta(s, s)

v.d = \infty \ge \delta(s, v) per ogni v \in V \setminus \{s\}
```

Queste uguaglianze ovviamente sono vere dopo la Enqueue(Q, s) nella BFS(G, s).

2) Passo Induttivo

Se v è un vertice bianco scoperto da u, dimostriamo che l'ipotesi Induttiva è sempre valida:

```
v.d = u.d + 1 (Questo è l'assegnamento che esegue l'algoritmo).

\geq \delta(s,u) + 1 (per Ipotesi Induttiva).

\geq \delta(s,v) (Per il Lemma 7.1).
```

A questo punto questa disuguaglianza è sempre verificata dato che v.d non cambia più perchè il vertice diventa grigio.

Lemma 7.3. Durante la BFS, se $Q = [v_1, v_2, \dots, v_r]$, allora:

1. $v_r.d \leq v_1.d + 1$ (la differenza tra v_1 e v_r è 1).

2.
$$v_i d \le v_{i+1} d \ \forall \ i \in \{1, 2, \dots, r-1\}.$$

Questo significa che, in ogni istante, nella coda ci sono al più 2 valori diversi della distanza dalla sorgente, e i campi distanza formano una successione crescente.

Corollario 7.1. I valori delle distanze dalla sorgente, dei vertici inseriti nella coda, sono monotoni crescenti, quindi se v_i è inserito nella coda prima di v_j , allora $v_i.d \leq v_j.d$.

Teorema 7.1. La BFS scopre tutti i vertici $v \in V$ raggiungibili dalla sorgente s e alla fine dell'algoritmo, $v.d = \delta(s, v)$ per ogni $v \in V$.

Inoltre per ogni $v \neq s$, raggiungibile da s, uno dei cammini minimi da s a v è un cammino minimo da s a $v.\pi$ seguito dall'arco $(v.\pi, v)$.

Dimostrazione. Supponiamo che ci sia un vertice v che è il nodo più vicino alla sorgente che ha il campo "d" diverso dalla sua distanza dalla sorgente.

Per il Lemma 7.2, $v.d \geq \delta(s, v)$, e dato che abbiamo appena posto che v.d deve essere diverso dalla distanza, allora $v.d > \delta(s, v)$.

Inoltre v deve essere per forza raggiungibile dalla sorgente, altrimenti $\delta(s,v)=\infty\geq v.d.$

Poi, sia u il nodo che precede v in un cammino minimo da s a v, quindi:

- $\delta(s, v) = \delta(s, u) + 1$.
- $\delta(s,u) \leq \delta(s,v)$ e $u.d = \delta(s,u)$. Quest'ultima uguaglianza è vera perchè abbiamo posto che v è il nodo più vicino alla sorgente con il campo v.d errato, quindi il campo u.d sarà corretto perchè u si trova prima di v.

Dunque mettendo insieme i pezzi possiamo dire che: $v.d > \delta(s,v) = \delta(s,u) + 1 = u.d + 1$ e quindi v.d > u.d + 1.

Quando u viene estratto dalla coda, v può essere di colore bianco, grigio o nero:

- 1. Se v è bianco, allora l'algoritmo assegna v.d = u.d + 1. 4
- 2. Se v è nero, allora v era stato già rimosso dalla coda e per il Corollario 7.1 $v.d \leq u.d.$ 4
- 3. Se v è grigio, allora v è stato scoperto da un vertice w estrato dalla coda Q prima di u e quindi v.d = w.d + 1. Per il Corollario 7.1 $w.d \le u.d$, quindi $v.d = w.d+1 \le u.d+1$, $\underline{v.d \le u.d+1}$.

Quindi
$$v.d = \delta(s, v)$$
.

Infine, tutti i vertici raggiungibili da s devono essere scoperti, altrimenti $\infty = v.d > \delta(s, v)$.

7.2 DFS - Visita in Profondità

7.2.1 Proprietà Foresta DF

- 1. u è il padre di v in un albero della foresta DF \Leftrightarrow v è stato scoperto esaminando la lista di adiacenza di u.
- 2. v è discendente di u nella foresta DF \Leftrightarrow v è stato scoperto quando u era Grigio.

7.3 Teoremi Principali

Teorema 7.2 (Teorema delle Parentesi). Dati gli intervalli $I_u = [u.d, u.f]$ e $I_v = [v.d, v.f], \forall u, v \in V$ è soddisfatta una sola delle seguenti tre condizioni:

- 1. $I_u \cap I_v = \emptyset \Rightarrow u \ e \ v \ non \ sono \ discendenti \ uno \ dell'altro.$
- 2. $I_v \subset I_u \Rightarrow v \ \dot{e} \ discendente \ di \ u$.
- 3. $I_u \subset I_v \Rightarrow u \ e \ discendente \ di \ v$.

Dimostrazione. Per ipotesi poniamo u.d < v.d. Ci possono essere 2 casi:

- 1. $u.f < v.d \Rightarrow u.d < u.f < v.d < v.f \Rightarrow I_u \cap I_v = \emptyset$.
- 2. $u.f > v.d \Rightarrow$ v è stato scoperto quando quando u era Grigio, quindi v è un discendente di u \Rightarrow la visita di v termina prima di quella di u $\Rightarrow I_v \subset I_u$.

La dimostrazione è speculare nel caso v.d < u.d.

Corollario 7.2 (Corollario di Annidamento degli Intervalli). v è discendente di u nella foresta DF ($u \neq v$) $\Leftrightarrow I_v \subset I_u$.

Teorema 7.3 (Teorema del Cammino Bianco). v è un discendente di u nella foresta $DF \Leftrightarrow al$ tempo u.d, v può essere raggiunto da u lungo un cammino di soli vertici Bianchi.

Dimostrazione.

 \Rightarrow

- v=u In questo caso il cammino $u \leadsto v$ contiene solo il nodo u che è Bianco al tempo u.d.
- $v \neq u$ v è un discendente diretto di u. Per il Corollario 7.2 se $I_v \subset I_u$ allora u.d < v.d. Quindi v è scoperto dopo u, e per questo v è Bianco all'istante u.d. Se v non è un discendente diretto di u, applicando in modo induttivo il ragionamento precedente su tutti i vertici lungo l'unico cammino nella foresta DF da u a v, essi saranno tutti Bianchi al tempo u.d.
- \Leftarrow Per assurdo diciamo che esiste un cammino Bianco $u \leadsto v$ al tempo u.d, ma che v non è discendente di u. Scegliamo v come il vertice più vicino a u che non è discendente di u. Inoltre scegliamo w come il vertice che precede direttamente v sul cammino. w è discendente di u, quindi $I_w \subseteq I_u$ e $w.f \le u.f$ (w e u possono essere lo stesso vertice). Inoltre sappiamo che v è Bianco al tempo u.d. Quindi:

 $u.d < v.d < w.f \le u.f$. Il primo '<' è vero perchè v è Bianco al tempo u.d. Il secondo '<', invece, è vero perchè $v \in Adj[w]$, quindi la visita di w è ancora in corso quando v viene scoperto. Il terzo ' \le ' è vero perchè w è discendente di u.

Per il Teorema delle Parentesi, dato che v.f < u.f, allora $I_v \subset I_u$ e v è discendente di u. 4

7.4 Archi

Teorema 7.4. In una DFS su un grafo non orientato, gli archi sono solo archi d'albero e archi all'indietro.

Dimostrazione. $(u,v) \in E$. Supponiamo che sia stato scoperto prima u, allora u.d < v.d. Quindi v diventa Grigio e successivamente Nero, invece u è Grigio. Ci sono 2 casi:

- 1. (u, v) è esplorato la prima volta da u verso v, allora v è Bianco e (u, v) diventa arco d'albero.
- 2. (u, v) è esplorato la prima volta da v verso u, allora u è Grigio e (u, v) è un arco all'indietro.

Teorema 7.5. Un grafo G è ciclico \Leftrightarrow G contiene almeno un arco all'indietro. Dimostrazione.

- \Leftarrow (u, v) è un arco all'indietro di un grafo orientato o non orientato e v è un antenato di u. Il cammino $v \leadsto u$ in un albero DF, unito all'arco (u, v) forma un ciclo.
- \Rightarrow Se il grafo non è orientato, gli archi di un ciclo non possono tutti essere d'albero, quindi ci dev'essere almeno un arco all'indietro. Se il grafo è orientato, poniamo v come il primo vertice di un ciclo ad essere scoperto e che diventa Grigio, allora quando si scopre v, gli altri nodi sono Bianchi. Poniamo u, invece, come il nodo che precede v nel ciclo. Al tempo v.d tutti i vertici sul cammino $v \rightsquigarrow u$ sono Bianchi. Per il Teorema del Cammino Bianco, u diventa un discendente di v, quindi v è un antenato di u e (u, v) è un arco all'indietro.

7.5 Ordinamento Topologico

Teorema 7.6. \forall $(u,v) \in E$, se u precede v nell'ordinamento, allora u deve precedere v nella lista; quindi u deve essere inserito in lista dopo v. Affinchè questo avvenga, u.f > v.f.

Dimostrazione. Quando si ispeziona l'arco (u, v), (u è Grigio), ci sono 3 casi:

- 1. Se v è Bianco, allora (u, v) è un arco d'albero, quindi v è discendente di u e v.f < u.f.
- 2. Se v è Nero, allora la visita di v è già finita, mentre quella di u è ancora in corso, quindi v.f < u.f.
- 3. Se v è Grigio, allora G contiene un ciclo, ma questo è impossibile perchè G deve essere un DAG.