Métodos Numéricos - TP3

Aviones, delays y Cuadrados Mínimos

Cerrando el TP2

Entrega de premios

Ganadores Kaggle

grupo	score	usuario	puesto
Mena, Frachtenberg G., Tarrio, Szperling	0.97771	itarrio	857
Hosen, Palladino, Rajngewerc, Silvani	0.97585	munshkr	898
Feliu, Yan, Ingaramo, Rios	0.97571	sfeliu	903
Seijo, De Bortoli, Penas, Grings	0.97542	jonnojs	916
Ctedra MN	0.97514	metnum17	925

Hasta ahora

- Ranking en competencias. SDP.
- Ruido en imágenes. Diferencias Finitas, EG/LU.
- Reconocimiento dígitos manuscritos. kNN, PCA, PLS-DA, SVD.
- Clasificación de noticias. Métricas y metodología básica ML.
- Ranking de páginas web. Autovalores y Método de la Potencia.

Motivación

Servicios de transporte

- Transporte de carga.
- Transporte de pasajeros.
- Gran impacto a nivel económico y social.
- Cada tipo tiene sus características particulares.

Servicios de transporte

Estratégica. Decisiones a largo plazo.
 Ejemplo: infraestructura, equipamiento costoso.

Táctica. Decisiones a mediano plazo. Ejemplo: planificación estacional en base a demanda.

Operacional. Lo que ocurre en el día, tiempo real. Ejemplo: Como responder ante una cancelación o errores en las estimaciones.

Servicios de transporte

El caso de las aerolíneas

- Negocio complejo.
- Altos costos operativos.
- Altos costos de inversión.
- Estrictas regulaciones (seguridad, mantenimiento)
- Producto (i,e. asientos) perecedero.
- Interacción constante con otros agentes (aerolíneas, aeropuertos, controladores, etc.)
- Administración del uso intensivo de recursos escasos.

Analytics: Etapas

O Big-Data, o Data Science, como quieran llamarlo...

Recordando lo que mencionamos en la primera clase...

Imagen tomada de IT Best Kept Secret is Optimization, Marzo 2014

Indicadores de performance (KPIs)

Qué son?

Métricas asociadas a actividades particulares dentro de organizaciones complejas.

Para qué sirven?

- Establecer metas generales e identificar puntos de conflicto.
- Realizar evaluaciones periódicas respecto al funcionamiento.

Algunas características

- Distintos tipos depenidiendo del aspecto a analizar (financiero, operativo, producción, QoS, etc).
- ▶ Ejemplos: Customer satisfaction, Rework, Cycle time.
- Disponer de KPIs no es garantía. Pueden ser mal utilizados.

Indicadores de performance (KPIs)

No tan buenos indicadores

Ejemplo: Desarrollo de software

- Líneas de código. Motiva al C&P.
- Número de bugs corregidos. Código original defectuoso.

Ejemplo: Academia

- Cantidad de papers publicados. Incentiva refritos.
- Cantidad de citas.
 Autocitado, citas no relevantes.

Indicadores de performance (KPIs)

KPI: On Time Performance (OTP)

- Definición: un vuelo se considera demorado si su arribo (partida) se produce más de 15 minutos despues de su horario planificado.
- OTP: ¿Cuál es el porcentaje de vuelos demorados más de 15 minutos?
- Importancia: afecta distintos aspectos (utilización de recursos del aeropuerto, incremento de costos operativos, mala percepción de usuarios, etc)

TP3 El problema

- Tomando como punto del partida el indicador OTP, nos proponemos analizar datos reales de vuelos realizados en USA estudiando aspectos (no necesariamente limitados a) delays y cancelaciones.
- Buscamos utilizar Cuadrados Mínimos Lineales (CML) identificar modelos que describan algunos comportamientos y evaluar su eficacia para realizar predicciones.
- Que cada grupo proponga ejes de estudio y los evalúe experimentalmente.
- Aplicar no solo los métodos, sino también las metodologías aprendidas durante el cuatrimestre.
- ► El TP es abierto y enfocado a la experimentación, con poca carga de implmentación e informe acotado.

Los datos

- Tomada de la Data Expo '09, competencia orientada a visualización.
- 120M de registros, separados por aõs, con información de delays (aprox. 12Gb).
- Aprox. 20 campos por cada registro.
- 9 participantes, posters disponibles, usarlos para tomar ideas.
- No es necesario usarlos todos, se pueden recortar dependiendo del eje en estudio.

thedata

http://stat-computing.org/dataexpo/2009/

Objetivos y disparadores

Cada grupo debe reportar los resultados obtenidos sobre dos ejes de estudio. Uno puede ser sobre los propuestos por la cátedra, el otro debe ser original.

- ¿Cómo varía la cantidad de vuelos cancelados por mes a través de los años? ¿Y la magnitud de los retrasos?
- ¿Es posible caracterizar la cantidad de vuelos cancelados y/o magnitud de los delays en función del da/mes? ¿Qué nivel de granularidad en función del tiempo es conveniente tomar?
- ¿Todos los aeropuertos se comportan de la misma manera? ¿Y las compañias aéreas? ¿Y entre pares de ciudades en particular?
- ¿Es importante diferenciar efectos estacionales (clima, temporada alta, fechas particulares con picos de demanda, etc.)?
- ¿El tipo/antigüedad en los aviones es importante?
- Las condiciones y requerimientos mínimos de seguridad produjeron cambios significativos luego del 9/11. ¿Cómo afecta esto a los modelos predictivos?

Ejemplo de eje de estudio: # cancelaciones por mes

Sugerencia: no restringirse a polinomios. Considerar funciones periódicas, sobre todo para datos *temporales*

Métricas de evaluación (1/2)

- ▶ N observaciones $(x_{(i)}, y_{(i)})$, con $x_{(i)} \in \mathbb{R}^k$ el vector de *features* e $y_{(i)} \in \mathbb{R}$ nuestra variable dependiente.
- ▶ Suponemos $y_{(i)} = f(x_{(i)}) + \epsilon_i$, i = 1, ..., N, donde ϵ_i es el error de la medición i-ésima.
- ▶ Dado un modelo \hat{f} de f y $(x_{(i)}, y_{(i)})$, definimos $\hat{y}_{(i)} = \hat{f}(x_{(i)})$ y $e_{(i)} = y_{(i)} \hat{y}_{(i)}$. Con estas definiciones, podemos calcular el MSE del modelo \hat{f} como

$$MSE(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} e_{(i)}^{2}.$$

Para evaluar como se comporta como modelo predictivo, podemos usar Cross-Validation combinado con MSE:

Métricas de evaluación (1/2)

- ► Es posible que existan dependencias temporales en los datos.
- Para ello, consideramos que cada observación está asociada a un determinado período de tiempo t, con $t=1,\ldots,T$, $(x_{(i)}^t,y_{(i)}^t)$, y asumimos que al menos K períodos de tiempo son necesarios para poder conformar el conjunto de *training*. Para evaluar los resultados de la predicción en el período $\tau \in [K,T]$ se puede:
 - 1. Tomar los conjuntos de observaciones correspondientes a períodos $1, \ldots, \tau-1$ como training.
 - 2. Calcular las métricas correspondientes tomando como test el período τ .
 - 3. Al finalizar, reportar alguna medida sobre los resultados parciales obtenidos.

Experimentos, librerías e informe acotado

- ► El TP se puede hacer en MATLAB, Python y/ C++. Se pueden usar librerías con los métodos implementados.
- El informe debe seguir el formato habitual, pero usando un template (Electornic Notes in Discrete Mathematics, ENDM) y con un máximo de 10 páginas.
- Ésto no siginifica que hay que hacer pocos experimentos. Todo lo contrario: mucha experimentación, pero bien resumida y presentada.
- Dado que hay muchos datos, se adjuntan con el informe una serie de scripts (bash) para filtrar y preprocesar los datos.

Simulacro de congreso/defensa de tesis

- El trabajo será expuesto en una presentación oral frente a un subconjunto de docentes.
- Para ello, haran una presentación mostrando lo que hicieron. Vamos a dar soporte y ayuda para prepararla.
- La exposición contará con 30 minutos totales: 15 minutos para presentar, 15 minutos de preguntas y respuestas. La nota de aprobación es individual.
- Para poder presentar en primera fecha, se deberá tener la aprobación previa por parte de los docentes correctores.
- Recomendación: Aprovechen las 4 clases de consulta (2 prácticas, 2 labo). Ida y vuelta con docentes, discusión de ideas.

Recomendaciones

Importante

El TP no es solamente código. Hay que experimentar. Discutir. Volver a experimentar. Y escribir un reporte detallado y diapositvas para defenderlo.

Sugerencia de avance

- Miércoles 8/11: Estudio de los datos. Propuestas de ejes de análisis. Códigos básicos de preproc./CML.
- Viernes 10/11: Primeros resultados y gráficos. Nuevas ideas de experimentos. Métricas de evaluación definidas.
- Miércoles 15/11: Informe básico. Ejes de experimentación definidos. Métricas de evaluación implementadas.
- Viernes 20/11: Validación ejes y resultados.

Trabajo Práctico

Fecha de entrega

- Formato Electrónico: Lunes 20/11 (feriado), hasta las 23:59 hs.
- Confirmación presentación oral: Viernes 24/11, por correo electrónico.
- Presentación oral: Lunes 27/11 de 17 a 21hs. En horario a determinar luego de la confirmación.

Importante

El horario es estricto. Los correos recibidos después de la hora indicada serán considerados re-entrega.