

CÁLCULO NUMÉRICO

Aula: Raízes de Funções - Parte 2.

ENG. MECÂNICA - IFPE (RECIFE) Prof. Frederico Duarte de Menezes Contato: fredericomenezes@recife.ifpe.edu.br

- Necessitam de apenas um valor inicial para fazer a busca...
 - Podem divergir das soluções desejadas
 - Porém, se houver uma convergência, esta tende a ser mais rápida do que nos métodos intervalares.

INSTITUTO FEDERAL Pernambuco Campus Recife

- Iteração de ponto fixo
 - Suponha uma função f(x) = 0;
 - Reajustamos para x = g(x), desta forma conseguimos aplicar o método;
 - Ex.:

$$x^2 - 2x + 3 = 0 \qquad \qquad x = \frac{x^2 + 3}{2}$$

- Iteração de ponto fixo
 - A aproximação g(x) = x permite obter um x "novo", a partir de um x "velho".

$$x_{i+1} = g(x_i)$$

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%$$

Métodos Abertos:

- Iteração de ponto fixo
 - Ex.:

$$f(x) = e^{-x} - x$$

$$x_{i+1} = e^{-x_i}$$

i	Xi	ε _α (%)	ε _t (%)
0	0		100,0
1	1,000000	100,0	76,3
2	0,367879	171,8	35,1
3	0,692201	46,9	22,1
4	0,500473	38,3	11,8
5	0,606244	17,4	6,89
6	0,545396	11,2	3,83
7	0,579612	5,90	2,20
8	0,560115	3,48	1,24
9	0,571143	1,93	0,705
10	0,564879	1,11	0,399

0,56714329

- Iteração de ponto fixo
 - Convergência
 - A iteração de ponto fixo tende a ter uma convergência linear;
 - Uma abordagem gráfica pode ser utilizada para avaliar o ponto de convergência (raiz).

- Iteração de ponto fixo

• Ex.:
$$f(x) = e^{-x} - x$$

y 1	y ₂	
0.0	1.000	
0,2	0,819	
0,4	0,670	
0,6	0,549	
0,8	0,449	
1,0	0,368	
	0,0 0,2 0,4 0,6 0,8	0,0 1,000 0,2 0,819 0,4 0,670 0,6 0,549 0,8 0,449

- Iteração de ponto fixo
 - Convergência X Divergência

- Newton-Raphson
 - Considere uma função f(x) contínua e diferenciável em [a,b];
 - Para cada ponto f(x), pode-se estender apenas uma tangente que através do ponto [x,f(x)];
 - O valor onde a reta tangente corta o eixo dos x é uma estimativa melhorada da raiz de f(x).

Métodos Abertos:

Newton-Raphson

Métodos Abertos:

- Newton-Raphson
- Fundamento do algoritmo:

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}} \qquad \qquad \mathbf{x}_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Fórmula de Newton-Raphson

- Newton-Raphson
- Estimativa do erro:
 - Baseando-se na expansão de Taylor:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(\xi)}{2!}(x_{i+1} - x_i)^2$$

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

Métodos Abertos:

- Newton-Raphson
- Estimativa do erro:
 - Baseando-se na expansão de Taylor:

$$0 = f(x_i) + f'(x_i)(x_r - x_i) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$$

$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$0 = f'(x_i)(x_r - x_{i+1}) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$$

$$E_{t,i+1} = x_r - x_{i+1}$$

$$E_{t,i+1} = \frac{-f''(x_r)}{2f'(x_r)} E_{t,i}^2$$

Erro

Métodos Abertos:

- Newton-Raphson
- Estimativa do erro:
 - Exemplo:

$$f(x) = e^{-x} - x$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$E_{t,i+1} = \frac{-f''(x_r)}{2f'(x_r)} E_{t,i}^2$$

i	$\boldsymbol{x_i}$	ε _α (%)	ε _t (%)
0	0		100,0
1	1,000000	100,0	76,3
2	0,367879	171,8	35,1
3	0,692201	46,9	22,1
4	0,500473	38,3	11,8
5	0,606244	17,4	6,89
6	0,545396	11,2	3,83
7	0,579612	5,90	2,20
8	0,560115	3,48	1,24
9	0,571143	1,93	0,705
10	0,564879	1,11	0,399

0,56714329

- Newton-Raphson
- Armadilhas:
 - Convergência lenta pela natureza da função ($f(x) = x^{10}-1$);
 - Pontos de inflexão na curva (f"(x) = 0) na vizinhança;
 - Inclinação nula na curva (f'(x)=0);
 - Etc.

- Newton-Raphson
- Armadilhas:

- Secante
- Problema de Newton-Raphson → Cálculo de derivada;
 - Solução:
 - Aproximação da primeira derivada:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

- Secante
- Problema de Newton-Raphson → Cálculo de derivada;
 - Solução:
 - Aproximação da primeira derivada:

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

- Secante
- Embora precisemos de dois valores iniciais, estes n\u00e3o necessitam gerar f(x_i)f(x_{i-1})<0

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

INSTITUTO FEDERAL Pernambuco Campus Recife

Secante X Falsa Posição:

Convergência dos Métodos:

