

实验名称: 霍尔元件测量磁场

学院: 信息与通信工程学院

班 级: 20[82]1]28

姓 名: 吴辉强

学号: 2018213487

任课教师: 王鑫老师

实验日期: 2019. 9.27

成 绩: ______

实验目的

- 1. 了解霍尔元件测磁场的原理
- 2. 学会用霍尔元件测磁场和测量霍尔元件的电导率
- 3. 学习用"对称测量法"消除附加效应的影响

实验仪器名称【型号、主要参数】

霍尔效应实验仪、霍尔效应测试仪

实验原理和操作步骤 基本物理思想、设计原理、主要公式及其意义、电路图或光路图等;操作步骤

霍尔效应

霍尔元件是一块矩形半导体薄片、长度上,宽度上,厚度水,将其放入与薄片相垂直的磁场中。若在半导体薄片上沿垂直于磁场多的方向通从恒定电流工。,这时磁场对半导体薄片中定向迁移的裁流于(电域空穴)就产生了海险的 于后的作用。根据 节= 9 以京 可确定洛仑兹力的太双方向。在洛伦兹力作用下,载流于运动方向发生偏转,侧面出现电势差(从(霍尔电压)

电荷在侧面的聚集不会无限地进行了去,因为侧面聚焦的电荷在 薄片中形成横向电场,电场力与各亿益力的方向相反。最后载流于 所受的电场力和洛伦兹力相等,侧面的电荷不再增加,达到平衡

状态, 半导体中将形成个稳定的电场, 两侧面的霍尔电压UH也过 到一个稳定值 载流于受力平衡: qVB=q-4 电流的微观表达: Is = ng bdv② 联立00月 UH = mad ISB=KHISB=RH ISB 式中 RH = ng = Und (電影數) (翻元件的灵敏度) 老KH已测定,可用B= 以最高感应强度B. 2.附加电压 Un不等位电势 Uo=Is R > 可通过改变 町的 方向予以消除 2) Etinghausen 交流(温差电效应), VEL ISB 马不能通过改变 Is和 B的方向予以消除。但其引起的误差小,可忽略 (3) Nernst效应(热磁效应), UN的顶台的有关,与了方向无关》 可通过改变限的方向予从消除 (4) Righi-Leduc 交达(热磁效应产生的温盖): Un的现在多的有关,为工方向 天美与可通过改变数B的方向予以消除 3 電流件的电导率6的测量 尺= 生= 方· 前 子 6 = 下。 操作步骤 1. 测量電流件的Un-Is及B-In特性曲线 2. 测量电磁每铁的磁场分布B-X曲线 3.以量電流件的电导率分的值 3.全意事项: 罗尔教应测试仪的汉才接线柱应分别与实验仪的双刀双向形正确连接 2.开关机前应将了、工厂旋钮逆时针旋到底(使电流起手的), 实验前状态 ルが 3. 调节 Is. Im 不可过大

实验数据处理与讨	论 [实验	金数据计算	、不确定度	E公式推导与	5计算、结果	表示与讨论	企等]					
L. UH-Is												
Is (mA)	0-25	0.50	0.75	1.00	125	1.50	1751	2.00				
U, (mV) +B,+Is	9.0	17.7	26.3	35.2	44.1	53.4	63.0	72,8				
U2 (mV) +B,-Is	-9.0	-17.8	-26.9	-35.8	-44.7	8.8	-62.8	-71.9				
U3(mV) -B,-Is	7.9	15.6	3.5	3/5	39.2	46.9	54.6	62.4				
U4(mV) -B,+Is	-7.9	-15.9	-23.9	-32,2	40.1	-47,8	+47	-61.5				
UH 3 (U1-U2+U3-U4)/4												
UH (MV)	8.45	16.75	25.15	33.675	42.03	50.4	58.78	67.15				
利用坐标纸作	H UH	-15图	永并对其	进行线	性拟后	可以认	为:	,9				
当防磁电流In不变时, Un与Is成正也.												
> B-Tm												

	2. B-T	m /	Is=>.	00 mA	, Ku;	= 174.8	(mV/T.n	nA).	_	1
ı	IN	(A)					0.500	0.600	0-700	0.800
	UI (mV)	tB,+Is	17.5	28.6	39.7	50.9	61.9	72.9	84.0	94.6
	Uz(mV)	+B,-Is	16.5	-47.5	-38.7	-49.8	-60.8	-71.8	-82.7	-93.4
		-B, -Is				40.2	51.2	62.2	73.2	,84.0
	U4(mV)	-B,+Is	to	-17.0	-28.1	-39.3	-50.3	-61.7	-72.1	-82.9
ĺ	11.	11 11 41		11.	b .1	10 9			/ ^	

UH = U1-U2+U3-U4)/4. B=UH/KH·Is.

UH (MV) 11.7 22.7 33.88 45.05 56.05 67.15 78 88.72 B(T) 0.033 0.065 0.097 0.129 0.160 0.192 0.223 0.254

B(T) 0.033 0.065 0.097 0.129 0.160 0.192 0.223 0.254 131. 进行作图、当霍尔电流Is不变时、石兹威拉强度多B与历磁电流In成时

B= UH/KH.IS

BCT) 0.105 0.112 0.176 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.178 0.18 0.082 0.057 0.048

和国外主人作业数点回关四义是的人人为连续各点经外行横线领面的身)
和用坐标纸作出散点图并用光滑曲线依次连结各点(运到大横、蜡、便观察).
电磁铁中央磁场变化不大,近似匀强;外两端, B 快速衰减;
<u></u> 量对称6布.
4. L=300 m, b=300 m, d=260 m.
Is(mA) 0.50 1.00 1.50 2.00 2.50 3.00 3.50
Vo(V) 0.619 1.219 1.817 2.43 3.055 3.723 4.659
0= Is. L NG = bd Is
(S/m) 3.107 3.755 3.166 3.147 3.099 2.889
6 = 25 or S/m
利用最小一架去花厅设计从后直线成为以=kx+b.(k=xy-xy
由数据得出火,全火=甘西,得万).
$\overline{xy} = \overline{I_5 U_6} = 6.318 \times 10^{-3}$. $\overline{y} = 2 \times 10^{-3}$. $\overline{y} = 2.50$
$\frac{\chi^{2} = 5\chi_{10}^{-6}}{6.318\chi_{10}^{-5} - 2\chi_{10}^{-3}\chi_{2} + 503} - 12\chi_{2}^{2} - \frac{12}{12}\chi_{2}^{2} = \frac{5}{12}\chi_{10}^{-6}$
$= \frac{5 \times 10^{-6} - 4 \times 10^{-6}}{5 \times 10^{-6} - 4 \times 10^{-6}} = 1312 = 550$
= 73/26d = 300x10-6 x260x10-6 = 2.93 Sm.
The Principle of the Control of the
THE RESIDENCE OF THE PARTY OF T
THE RESERVE THE PERSON NAMED IN PROPERTY OF THE PERSON NAMED IN PARTY OF T
THE RESERVE OF THE PARTY OF THE

回答问题与实验总结
1. 根据UH=ngd IsB, UH以前,n为载流子浓度,使用导体的话,n过大,
导致UH很小不易测量;使用绝缘体对Is=0,UH=O无法测量,所
以选用半导体材料制作霍尔元件.
2.根据UH=modsB,UH×n; 做成小而薄的片状,d减小使UH
工智大, 更容易测得(H) 同时片状元件更容易调整与 B的相对方向,
保持相互垂直.
コ、石川 コエノウィアノナ 子井・カフ Charb米 (エリントフ Dimy サナイ・ウェ
了. 由电流流向与载流了流向关系、正负电荷鱼的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
洛伦兹力作用规律知同一例积累了相反的
电荷、从而产发拥方向相质的电场、如图。放当Is与In 告告正值时、
霍尔电压VA为正则为P型,为负则为N型。
4 UH = ISH 的条件部为之一有電路法线前与磁场方同向,若不同向,
有实角的,这时作用在智尔元件上的有效的认为是其在可方向上的分量
Buso,使得测量时需尔电压(从偏心. 同时,元件位置应尽量放在效场
冲央,以保证垂 B近似匀强.
实验总结:是紧张而有趣的第一次大物实验,通过课前认真预测、课上
严重操作与询问同学师、课后如此作图的析,从旅贸多。同时,体会到智能
在生活中的应用以及为证经理的对实践的指导作用,我对智尔效应的理解也更加作赅与深刻
任课教师指导意见
- King King King King King King King King

北京邮电大学物理实验要求及原始数据表格

实验 3.4 霍尔元件测量磁场

姓名吴光子强合作者_____班级2018教师王金老师验时间2019.9、实验组号_17

- 2. 霍尔效应产生的机理和霍尔灵敏度的定义;
- 3. 霍尔电压与磁感应强度、霍尔电流等相关物理量之间的关系(大小及正负);
- 4. 测量霍尔电压时附加效应的产生和消除。

二、实验注意事项

- 1. 霍尔效应测试仪面板上 " I_S 输出"、" V_H 输入"和 " I_M 输出"三对接线柱分别与霍尔效应实验仪上的三对相应的标有 " I_S 输入 (或工作电流)"、" V_H 输出(或霍尔电压)"和 " I_M 输入 (或励磁电流)"的双刀双向开关正确连接;
- 2. 开机和关机前将测试仪的"Is调节"和"IM调节"旋钮逆时针旋到底,使输出电流趋于零。

三、实验内容

- 1. 测量霍尔元件的 $U_H I_S$ 及 $B I_M$ 特性曲线;
- 2. 测量电磁铁的磁场分布 B x 曲线;
- 3. 测量霍尔元件的电导率 σ 的值。

四、原始数据表格

1. 采用消除附加电压的方法,测霍尔元件的 $U_H - I_S$ 曲线

将霍尔元件置于磁铁空气隙中间的位置,保持励磁电流 I_M 的大小为 0. **8**00A 不变,改变霍尔电流 I_S 的大小,测量 U_1 , U_2 , U_3 和 U_4 。

	$I_{\rm S}$ (mA)	N/KC	0.25	0.58	1.36	2.00	2.50	3.00	3.55	4.00
	U_1 (mV)	+B, +Is	9.0	7.7	26.3	35,2	44.1	53.4	63.0	72.8
1	U_2 (mV)	4B, −Is	-9.0	-17.8	-26.9	-35.8	-44.7	-53.8	-62.8	-71.9
	U ₃ (mV)	-B, -Is	7.9	15.6	23.5	31.5	39,2	46.9	54.6	62.4
1	$U_4(\mathrm{mV})$	-B, +Is	-7.9	-15.9	23,9	-32,2	40.1	47.5	-54.7	-61.5

2. 用消除附加电压的方法,测电磁铁的励磁特性 $B - I_M$ 曲线:将霍尔元件置于磁铁空气隙中间的位置,保持霍尔电流 I_S 大小为 C_0 00mA 不变,按照数据表中的要求,测量 U_1 , U_2 ,

 U_3 和 U_4 ,并记录霍尔元件的灵敏度 $K_H = 174.8$ (mV/T·mA)

I _M (A)	747 71762	0. 100	0. 200	0, 300	0.400			0.700	0.800
$U_1 \text{ (mV)}$		14		41	50.9	61.9	到	120	9436
U_2 (mV)	+B, -I _s	10,5	-27.5	-38.7	-49.8	-60.8	-71.8	-82.7	93.4
U_3 (mV)	-B, -Is	6.8	17.7	29.0	40.2	51,2	62.2	73,2	84.0
U_4 (mV)	-B, +I _s	-6.0	-17.0	-28.1	-39.3	50.3	-61.7	-72.1	-82.9

北京邮电大学物理实验要求及原始数据表格

3. 测量电磁铁的磁场分布 B-x 曲线; 其中 $I_M=0.$ 800A, $I_S=2.00$ mA。沿铁芯的空气隙中心水平线方向移动霍尔元件至铁芯的一端,测量不同位置的霍尔电压 U_H (忽略附加电压)。

x (mm)	50.0	480	46.0	44.0	42.0	40.0	35.0	30,0	ods	20,0
$U_{ m H}({ m mV})$	16.9	19.8	28.7	41.3	55.4	6/12	62.5	62.5	62.5	62.5
x (mm)	18.0	16.0	14.0	12-0	10.0	8,0	6.0	4,0	2.0	0.0
$U_{\mathrm{H}}(\mathrm{mV})$	62.5	62.5	62.5	62.6	62.6	62.6	62.5	61.4	础	36.8

4. 当磁场为零时,改变霍尔电流 Is 的大小,用万用表测量霍尔元件两端的 Us;并记录霍尔

片尺寸:长L= 300 mm, 宽b= 300 mm, 高d= 260 mm。(选作)

Is (mA)	0.50	1.00	1.50	2.00	2, 50	3.00	3.50	4.00
$U_{\sigma}(V)$	0,619	1-219	1.817	2.43	3,055	3.723	4.659	2-20

教师签字

五、数据处理要求

- 1. 霍尔电压为 $U_H \approx \frac{U_1 U_2 + U_3 U_4}{4}$,在坐标纸上作霍尔元件的 $U_H = I_S$ 曲线;
- 2. 磁感应强度为 $B = \frac{U_H}{K_H \cdot I_S}$,在坐标纸上作电磁铁的励磁特性 $B I_M$ 曲线:
- 3. 在坐标纸上分别作磁场分布B—x曲线;
- 4. 根据所作曲线, 给出实验结论;
- 5. 利用最小二乘法, 计算霍尔元件的电导率。(选作)

六、思考题

- 1. 为什么霍尔元件要选用半导体材料制作?
- 2. 为什么霍尔元件通常做成薄片状?
- 3. 如何判断实验中所用的霍尔元件是 N型还是 P型半导体材料?
- 4. 霍尔元件的摆放方向和位置对霍尔效应测磁场的结果会有何影响等