AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A polymer comprising a phenolic monomeric unit wherein the H atom of the hydroxy group of the phenolic monomeric unit is replaced by a N-imide group Q having the structure

wherein L is a linking group, wherein k is 0 or 1, wherein L is covalently bound to the O atom of the polymer when k is 1, or wherein the N atom of the N-imide group is covalently bound to the O atom of the polymer when k is 0, wherein X or Y are independently selected from O or S, and wherein T^1 and T^2 represent a terminal group.

- 2. (Original) A polymer according to claim 1 wherein the terminal groups T^1 and T^2 are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein T^1 and T^2 together with the N-imide group represent the necessary atoms to form a cyclic structure, or wherein T^1 and T^2 represent the following structures $-L^1-R^1$ and $-L^2-R^2$, wherein L^1 and L^2 represent independently a linking group, wherein R^1 and R^2 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -CN, or $-NO_2$, or therein two groups selected from each L^1 , L^2 , R^1 and R^2 together represent the necessary atoms to form a cyclic structure.
- 3. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

$$--(L) = \mathbb{N} \underbrace{\prod_{Y}^{X}}_{G^{2}}$$

wherein G^1 and G^2 are independently selected from O, S, NR^3 or CR^4R^5 , with the limitation that G^1 is not O or S when G^2 is O and that G^1 is not O or S when G^2 is NR^3 , wherein R^4 and

 R^5 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^3-R^6$, wherein L^3 is a linking group, wherein R^3 and R^6 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^3 , R^4 , R^5 , R^6 and L^3 together represent the necessary atoms to form a cyclic structure.

4. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

$$-(F) \stackrel{k}{=} H \xrightarrow{\chi} G_3$$

wherein G³ to G⁵ are independently selected from O, S, NR7 or CR8R9, with the limitation that at least one group, selected from G³ to G⁵, is CR8R9 and that two neighboring groups, selected from G³ to G⁵, are not represented by O and S, by O and NR7, by S and NR7 or by O and O, or wherein G⁴ is a linking group, wherein R8 and R9 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁴-L¹0, wherein L⁴ is a linking group, wherein R7 and R¹0 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroarl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R7, R8, R9, R¹0 and L⁴ together represent the necessary atoms to form a cyclic structure.

5. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

$$-(L) \frac{1}{k} \mathbb{R}^{15}$$

wherein G⁶ is a group selected from O, S, NR¹¹ or CR¹²R¹³, wherein m is o or 1, wherein R¹² to R¹⁵ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁵-R¹⁶,

wherein L^5 is a linking group, wherein R^{11} and R^{16} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{15} together represent the necessary atoms to form a cyclic structure.

6. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

$$--(L) \frac{\mathbb{E}^{\frac{1}{2}}_{\mathbb{F}} \mathbb{R}^{20}}{\mathbb{E}^{\frac{2}{2}}_{\mathbb{q}} \mathbb{R}^{21}}$$

wherein E^1 and E^2 are independently selected from O, S, NR^{17} or $CR^{18}R^{19}$, wherein p and q are independently 0 or 1, wherein R^{18} to R^{21} are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^6-R^{22}$, wherein L^6 is a linking group, wherein R^{17} and R^{22} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

$$-\left(L\right)_{k}^{k}N$$

$$-(L)_{k} = \mathbb{R}^{24} \int_{b}$$

$$\mathbb{R}^{25} \int_{c}$$

$$\mathbb{R}^{25} \int_{c}$$

wherein each R²³ to R²⁶ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁷, -NH-SO₂-R³⁰, -CO-NR²⁷-R²⁸, -NR²⁷-CO-R³⁰, -NR²⁷-CO-NR²⁸-R²⁹, -NR²⁷-CS-NR²⁸-R²⁹, -NR²⁷-CO-O-R²⁸, -O-CO-NR²⁷-R²⁸, -O-CO-R³⁰, -CO-O-R²⁷, - $CO-R^{27}$, $-SO_3-R^{27}$, $-O-SO_2-R^{30}$, $-SO_2-R^{27}$, $-SO-R^{30}$, $-P(=O)(-O-R^{27})(-O-R^{28})$, $-O-P(=O)(-O-R^{27})(-O-R^{28})$, $-O-P(=O)(-O-R^{27})(-O-R^{28})$, $-O-P(=O)(-O-R^{28})$ R²⁷)(-O-R²⁸), -NR²⁷-R²⁸, -O-R²⁷, -S-R²⁷, -CN, -NO₂, -N(-CO-R²⁷)(-CO-R²⁸), -Nphthalimidyl, -M-N-phthalimidyl, or -M-R²⁷, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R²⁷ to R²⁹ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R³⁰ is selected from an optionally substituted alkyl. alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4, wherein b and c are independently 0, 1, 2 or 3, wherein E³ is selected from O, S, NR³¹ or CR³²R³³, wherein R³² and R³³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or -L⁷ -R³⁴, wherein L⁷ is a linking group, wherein R³¹ and R³⁴ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

wherein R³⁵ to R⁴⁴ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R⁴⁵, -NH-SO²-R⁴⁸, -CO-NR⁴⁵-R⁴⁶, -NR⁴⁵-CO-R⁴⁸, -NR⁴⁵-CO-NR⁴⁶-R⁴⁷, -NR⁴⁵-CS-NR⁴⁶-R⁴⁷, -NR⁴⁵-CO-O-R⁴⁶, -O-CO-NR⁴⁵-R⁴⁶, -O-CO-R⁴⁸, -CO-O-R⁴⁵, -CO-R⁴⁵, -SO₃-R⁴⁵, -O-SO₂-R⁴⁸, -SO₂-R⁴⁵, -SO-R⁴⁸, -P(=O)(O-R⁴⁵)(-O-R⁴⁶), -O-P(=O)(-O-R⁴⁵)(-O-R⁴⁶), -NR⁴⁵-R⁴⁶, -O-R⁴⁵, -S-R⁴⁵, -CN, -N(-CO-R⁴⁵)(-CO-R⁴⁶), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R⁴⁵, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R⁴⁵ to R⁴⁷ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, and wherein R⁴⁸ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

wherein R^{49} to R^{56} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, and wherein R^{57} and R^{58} are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

- 11. (Previously Presented) A polymer according to claim 1, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 12. (Previously Presented) A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and an oleophilic coating [[,]] provided on the hydrophilic surface, said coating comprising an infrared light absorbing agent and a polymer comprising a phenolic monomeric unit wherein the H atom of the hydroxy group of the phenolic monomeric unit is replaced by a N-imide group Q having the structure

wherein L is a linking group, wherein k is 0 or 1, wherein L is covalently bound to the O atom of the polymer when k is 1, or wherein the N atom of the N-imide group is covalently bound to the O atom of the polymer when k is 0, wherein X or Y are independently selected from O or S, and wherein T^1 and T^2 represent a terminal group.

- 13. (Original) A lithographic printing plate precursor according to claim 12, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 14. (Previously Presented) A lithographic printing plate precursor according to claim 13, wherein said dissolution inhibitor is selected from the group consisting of an organic compound which comprises at least one aromatic group and a hydrogen

an organic compound which comprises at least one aromatic group and a hydroger bonding site,

a polymer or surfactant comprising siloxane orperfluoroalkyl units, and mixtures thereof.

15. (Canceled)

16. (Previously Presented) A lithographic printing plate precursor according to claim 12, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

17. (Canceled)

18. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

$$--\{I_{L}\}\underset{k}{\overset{X}{\underset{k}\longrightarrow N}} \bigcup_{G^{2}}^{G^{2}}$$

wherein G¹ and G² are independently selected from O, S, NR³ or CR⁴R⁵, with the limitation that G¹ is not O or S when G² is O and that G¹ is not O or S when G² is NR³, wherein R⁴ and R⁵ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L³-R⁶, wherein L³ is a linking group, wherein R³ and R⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R³, R⁴, R⁵, R⁶ and L³ together represent the necessary atoms to form a cyclic structure.

19. (Previously Presented) A polymer according to claim 2 wherein the N-imide group O has the following formula

$$-(\Gamma) \stackrel{k}{=} M \stackrel{2}{\underset{X}{\longrightarrow}} \mathbb{Q}_{3}$$

wherein G^3 to G^5 are independently selected from O, S, NR⁷ or CR⁸R⁹, with the limitation that at least one group, selected from G^3 to G^5 , is CR⁸R⁹ and that two neighbouring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR⁷, by S and NR⁷ or by O and O, or wherein G^4 is a linking group, wherein R⁸ and R⁹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl,

heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^4-L^{10}$, wherein L^4 is a linking group, wherein R^7 and R^{10} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroarl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^7 , R^8 , R^9 , R^{10} and L^4 together represent the necessary atoms to form a cyclic structure.

20. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

$$-(1,) = \mathbb{R}^{15}$$

wherein G^6 is a group selected from O, S, NR^{11} or $CR^{12}R^{13}$, wherein m is o or 1, wherein R^{12} to R^{15} are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^5-R^{16}$, wherein L^5 is a linking group, wherein R^{11} and R^{16} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{16} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and R^{15} together represent the necessary atoms to form a cyclic structure.

21. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

$$--(L) = N \frac{\mathbb{Z}^{\frac{1}{2}} \mathbb{R}^{20}}{\mathbb{Z}^{\frac{2}{2}} \mathbb{R}^{21}}$$

wherein E¹ and E² are independently selected from O, S, NR¹⁷ or CR¹⁸R¹⁹, wherein p and q are independently 0 or 1, wherein R¹⁸ to R²¹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁶-R²², wherein L⁶ is a linking group, wherein R¹⁷ and R²² are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

22. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has one of the following formula:

$$-\left(L\right)^{\frac{k}{k}}\mathbb{N}\left[\mathbb{R}^{23}\right]^{\frac{k}{k}}$$

$$-(L)_{\overline{k}} = \mathbb{R}^{24} \Big]_{b}$$

$$(L)_{x} = \mathbb{R}^{26}$$

wherein each R²³ to R²⁶ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁷, -NH-SO₂-R³⁰, -CO-NR²⁷-R²⁸, -NR²⁷-CO-R³⁰, -NR²⁷-CO-NR²⁸-R²⁹, -NR²⁷-CS-NR²⁸-R²⁹, -NR²⁷-CO-O-R²⁸, -O-CO-NR²⁷-R²⁸, -O-CO-R³⁰, -CO-O-R²⁷, - $CO-R^{27}$, $-SO_3-R^{27}$, $-O-SO_2-R^{30}$, $-SO_2-R^{27}$, $-SO-R^{30}$, $-P(=O)(-O-R^{27})(-O-R^{28})$, $-O-P(=O)(-O-R^{27})(-O-R^{28})$, $-O-P(=O)(-O-R^{27})(-O-R^{28})$, $-O-P(=O)(-O-R^{28})$ R²⁷)(-O-R²⁸), -NR²⁷-R²⁸, -O-R²⁷, -S-R²⁷, -CN, -NO₂, -N(-CO-R²⁷)(-CO-R²⁸), -Nphthalimidyl, -M-N-phthalimidyl, or -M-R²⁷, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R²⁷ to R²⁹ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R³⁰ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4, wherein b and c are independently 0, 1, 2 or 3, wherein E³ is selected from O, S, NR³¹ or CR³²R³³, wherein R³² and R³³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or $-L^7 - R^{34}$, wherein L^7 is a linking group, wherein R³¹ and R³⁴ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

23. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has one of the following formula:

wherein R³⁵ to R⁴⁴ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R⁴⁵, -NH-SO²-R⁴⁸, -CO-NR⁴⁵-R⁴⁶, -NR⁴⁵-CO-R⁴⁸, -NR⁴⁵-CO-NR⁴⁶-R⁴⁷, -NR⁴⁵-CS-NR⁴⁶-R⁴⁷, -NR⁴⁵-CO-O-R⁴⁶, -O-CO-NR⁴⁵-R⁴⁶, -O-CO-R⁴⁸, -CO-O-R⁴⁵, -CO-R⁴⁵, -SO₃-R⁴⁵, -O-SO₂-R⁴⁸, -SO₂-R⁴⁵, -SO-R⁴⁸, -P(=O)(O-R⁴⁵)(-O-R⁴⁶), -O-P(=O)(-O-R⁴⁵)(-O-R⁴⁶), -NR⁴⁵-R⁴⁶, -O-R⁴⁵, -S-R⁴⁵, -CN, -N(-CO-R⁴⁵)(-CO-R⁴⁶), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R⁴⁵, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R⁴⁵ to R⁴⁷ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R⁴⁸ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl group.

wherein R^{49} to R^{56} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, and wherein R^{57} and R^{58} are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

- 26. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the terminal groups T¹ and T² are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein T¹ and T² together with the N-imide group represent the necessary atoms to form a cyclic structure, or wherein T¹ and T² represent the following structures -L¹-R¹ and -L²-R², wherein L¹ and L² represent independently a linking group, wherein R¹ and R² are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -CN, or -NO₂, or therein two groups selected from each L¹, L², R¹ and R² together represent the necessary atoms to form a cyclic structure.
- 27. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

$$-(\Gamma)^{\frac{k}{2}} = \mathbb{R}^{\frac{3}{2}} \mathbb{R}^{\frac{4}{2}}$$

wherein G³ to G⁵ are independently selected from O, S, NR7 or CR8R9, with the limitation that at least one group, selected from G³ to G⁵, is CR8R9 and that two neighboring groups, selected from G³ to G⁵, are not represented by O and S, by O and NR7, by S and NR7 or by O and O, or wherein G⁴ is a linking group, wherein R8 and R9 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁴-L¹¹0, wherein L⁴ is a linking group, wherein R7 and R¹¹0 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroarl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R7, R8, R9, R¹¹0 and L⁴ together represent the necessary atoms to form a cyclic structure.

28. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

$$--(r)\stackrel{F}{=}_{H} \stackrel{g_{2}}{\longrightarrow}_{G_{3}}$$

wherein G³ to G⁵ are independently selected from O, S, NR7 or CR8R9, with the limitation that at least one group, selected from G³ to G⁵, is CR8R9 and that two neighboring groups, selected from G³ to G⁵, are not represented by O and S, by O and NR7, by S and NR7 or by O and O, or wherein G⁴ is a linking group, wherein R8 and R9 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁴-L¹0, wherein L⁴ is a linking group, wherein R7 and R¹0 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroarl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R7, R8, R9, R¹0 and L⁴ together represent the necessary atoms to form a cyclic structure.

29. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

$$-(1,) = \mathbb{N}$$

$$\mathbb{R}^{14}$$

$$\mathbb{R}^{15}$$

wherein G^6 is a group selected from O, S, NR^{11} or $CR^{12}R^{13}$, wherein m is o or 1, wherein R^{12} to R^{15} are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^5-R^{16}$, wherein L^5 is a linking group, wherein R^{11} and R^{16} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} and L^5 together represent the necessary atoms to form a cyclic structure.

30. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

$$--(1) \frac{1}{k-N} \frac{\mathbb{E}^{\frac{1}{2}} \mathbb{R}^{20}}{\mathbb{E}^{\frac{2}{2}} \mathbb{R}^{21}}$$

wherein E¹ and E² are independently selected from O, S, NR¹⁷ or CR¹⁸R¹⁹, wherein p and q are independently 0 or 1, wherein R¹⁸ to R²¹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁶-R²², wherein L⁶ is a linking group, wherein R¹⁷ and R²² are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

31. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

$$-(L)_{g} = \begin{bmatrix} R^{23} \\ R^{23} \end{bmatrix}_{a}$$

$$-(L)_{g} = \begin{bmatrix} R^{24} \\ R^{25} \end{bmatrix}_{c}$$

$$-(L)_{g} = \begin{bmatrix} R^{26} \\ R^{25} \end{bmatrix}_{c}$$

wherein each R^{23} to R^{26} are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, $-SO_2$ -NH- R^{27} , $-NH-SO_2$ - R^{30} , $-CO-NR^{27}-R^{28}$, $-NR^{27}$ -CO- R^{30} , $-NR^{27}$ -CO- R^{28} , $-R^{29}$, $-R^{$

containing 1 to 8 carbon atoms, wherein R²⁷ to R²⁹ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R³⁰ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4, wherein b and c are independently 0, 1, 2 or 3, wherein E³ is selected from O, S, NR³¹ or CR³²R³³, wherein R³² and R³³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or -L⁷ -R³⁴, wherein L⁷ is a linking group, wherein R³¹ and R³⁴ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

32. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

$$-- (I_{1}) \frac{X}{k} = N \frac{R^{35}}{R^{37}} R^{37}$$

wherein R³⁵ to R⁴⁴ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R⁴⁵, -NH-SO²-R⁴⁸, -CO-NR⁴⁵-R⁴⁶, -NR⁴⁵-CO-R⁴⁸, -NR⁴⁵-CO-NR⁴⁶-R⁴⁷, -NR⁴⁵-CS-NR⁴⁶-R⁴⁷, -NR⁴⁵-CO-O-R⁴⁶, -O-CO-NR⁴⁵-R⁴⁶, -O-CO-R⁴⁸, -CO-O-R⁴⁵, -CO-O-R⁴⁵, -SO₃-R⁴⁵, -O-SO₂-R⁴⁸, -SO₂-R⁴⁵, -SO-R⁴⁸, -P(=O)(O-R⁴⁵)(-O-R⁴⁶), -O-P(=O)(-O-R⁴⁵)(-O-R⁴⁶), -NR⁴⁵-R⁴⁶, -O-R⁴⁵, -S-R⁴⁵, -CN, -N(-CO-R⁴⁵)(-CO-R⁴⁶), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R⁴⁵, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R⁴⁵ to R⁴⁷ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl

group, wherein R⁴⁸ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

33. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

wherein R⁴⁹ to R⁵⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

and wherein R⁵⁷ and R⁵⁸ are independently selected from an optionally substituted alkyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

34. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

$$-\langle \mathbf{b} \rangle_{\frac{1}{k}}$$

- 35. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 26, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 36. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 27, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 37. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 28, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 38. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 29, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 39. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 30, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 40. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 31, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

- 41. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 32, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 42. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 33, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 43. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 34, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 44. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 26, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 45. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 27, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 46. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 28, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 47. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 29, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

- 48. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 30, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 49. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 31, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 50. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 32, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 51. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 33, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 52. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 34, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

This listing of claims replaces all prior versions, and listings, of claims in the application.