Basic manoeuvres with sets

• Union (OR):

$$A \cup B = \{ \omega : \omega \in A \text{ or } \omega \in B \}$$

 $\omega \text{ is in } A \text{ or in } B \text{ (or both)}$

• Union (OR):

$$A \cup B = \{ \omega : \omega \in A \text{ or } \omega \in B \}$$

 $\omega \text{ is in } A \text{ or in } B \text{ (or both)}$

• Intersection (AND):

$$A \cap B = \{ \omega : \omega \in A \text{ and } \omega \in B \}$$
 $\omega \text{ is in both } A \text{ and } B$

• Union (OR):

$$A \cup B = \{ \omega : \omega \in A \text{ or } \omega \in B \}$$

 $\omega \text{ is in } A \text{ or in } B \text{ (or both)}$

• Intersection (AND):

$$A \cap B = \{ \omega : \omega \in A \text{ and } \omega \in B \}$$
 $\omega \text{ is in both } A \text{ and } B$

• Complement (NOT):

$$A^{c} = \{ \omega : \omega \notin A \}$$
 $\omega \text{ is not in } A$

• Union (OR):

$$A \cup B = \{ \omega : \omega \in A \text{ or } \omega \in B \}$$

 $\omega \text{ is in } A \text{ or in } B \text{ (or both)}$

• Intersection (AND):

$$A \cap B = \{ \omega : \omega \in A \text{ and } \omega \in B \}$$
 $\omega \text{ is in both } A \text{ and } B$

• Complement (NOT):

$$A^{c} = \{ \omega : \omega \notin A \}$$

$$\omega \text{ is not in } A$$

What is the set $(A^{\mathfrak{g}})^{\mathfrak{g}}$ obtained by complementing the complement of A? Identify it on the Venn diagram.

$$A \setminus B = \{ \omega : \omega \in A \text{ and } \omega \notin B \} = A \cap B^{C}$$

$$\omega \text{ is in } A \text{ and not in } B$$

$$A \setminus B = \{ \omega : \omega \in A \text{ and } \omega \notin B \} = A \cap B^{c}$$

$$\omega \text{ is in } A \text{ and not in } B$$

What is the set $B \setminus A$? Identify it on the Venn diagram.

$$A \setminus B = \{ \omega : \omega \in A \text{ and } \omega \notin B \} = A \cap B^{C}$$

$$\omega \text{ is in } A \text{ and not in } B$$

What is the set $B \setminus A$? Identify it on the Venn diagram.

• Symmetric Difference (XOR): $A \triangle B = \{ \omega : \omega \in A \setminus B \text{ or } \omega \in B \setminus A \} = (A \setminus B) \cup (B \setminus A)$ ω is in precisely one of A and B

$$A \setminus B = \{ \omega : \omega \in A \text{ and } \omega \notin B \} = A \cap B^{C}$$

$$\omega \text{ is in } A \text{ and not in } B$$

What is the set $B \setminus A$? Identify it on the Venn diagram.

• Symmetric Difference (XOR): $A \triangle B = \{ \omega : \omega \in A \setminus B \text{ or } \omega \in B \setminus A \} = (A \setminus B) \cup (B \setminus A)$ ω is in precisely one of A and B

If A and B are disjoint, verify that $A \triangle B = A \cup B$.