Problems Time Series

Exercise 1 Indicate whether each of the following statements is true or false, by circling your answer.

Let $\mathbf{X} = (X_t)_{t \in \mathbb{Z}}$ be a stochastic process. If \mathbf{X} is a stationary process we denote by $h \mapsto \gamma(h)$ the autocovariance of (X_t) .

- TRUE FALSE 1. If $\mu(t) = E(X_t)$, $\forall t$, then the autocovariance function of \mathbf{X} is $\gamma(s,t) = \mathbb{E}(X_t X_s) \mu(t)\mu(s)$.
- TRUE FALSE 2. If X is a stationary process, then the correlation between X_0 and X_1 is equal to $\frac{\gamma(0)}{\gamma(1)}$
- TRUE FALSE 3. Assume that \mathbf{X} is a sequence of independent variables such that of t is even $X_t \sim Exp(1)$ and if t is odd $X_t \sim \mathcal{N}(1,1)$. Then \mathbf{X} is strongly stationary.
- TRUE FALSE 4. If X is a weakly stationary Gaussian stochastic process, then X is strongly stationary.
- TRUE FALSE 5. Assume that **X** is a white noise, then $Y_t = X_{t+1} + 0.5X_t 0.3X_{t-1}$ is a causal process.
- TRUE FALSE 6. Autoregressive processes, AR(p), are invertible processes.
- TRUE FALSE 7. Assume that **X** is a white noise and assume that there exists $\alpha \in l^1(\mathbb{Z})$ such that $F_{\alpha}X_t = X_t \frac{1}{2}X_{t-20}$, then $\alpha_1 = 0$ and $\alpha_{20} = \frac{1}{2}$.
- TRUE FALSE 8. The sum of two uncorrelated stationary processes is a stationary process.
- TRUE FALSE 9. Assume that X satisfies the following equation $X_t = .3X_{t-1} + Z_t + 0.1Z_{t-1}$, then X is a stationary causal process but non-invertible.
- TRUE FALSE 10. Assume that **X** is an AR(p) then $\gamma(h) \xrightarrow[h \to \infty]{} 0$.

Exercise 2 Prove the following result: Let **Z** be a WN(0, σ^2), and let α , $\beta \in l^1(\mathbb{Z})$.

If
$$F_{\alpha}\mathbf{Z} = F_{\beta}\mathbf{Z} \implies \alpha = \beta$$

Exercise 3 Let $(X_t)_{t \in \mathbb{Z}}$ be a moving-average model of order 1, MA(1):

$$X_t = Z_t + \theta Z_{t-1}$$

Prove that

1.
$$\mu_X(t) = 0, \forall t$$

2.
$$\gamma_X(s,t) = \begin{cases} 0 & \text{if } |s-t| > 1 \\ \theta \sigma^2 & \text{if } |s-t| = 1 \\ (\theta^2 + 1)\sigma^2 & \text{if } |s-t| = 0 \end{cases}$$

Exercise 4 Moving Average processes

Let $(X_t)_{t \in \mathbb{Z}}$ be a moving-average model of order 1, MA(1):

$$X_t = Z_t + 0.3Z_{t-1} + 0.1Z_{t-2}$$

Compute the ACF of $(X_t)_{t\in\mathbb{Z}}$

Exercise 5 Let $(X_t)_{t\in\mathbb{Z}}$ and $\varphi\in\mathbb{R}$.

- 1. Find a stationary solution of the AR(1) equation $X_t = \varphi X_{t-1} + Z_t$;
- 2. Express the ACF of the solution when $|\varphi| < 1$;
- 3. Solve the ARMA(1, 1) equation $2X_t = X_{t-1} + 2Z_t + Z_{t-1}$;
- 4. Show that there exists $0 \le \rho < 1$ and C > 0 such that

$$\forall h \in \mathbb{Z}, \ |\gamma_X(h)| \le C\rho^{|h|}, \ \forall h \in \mathbb{Z};$$

Exercise 6 ARMA processes

Let us consider the ARMA(2,1) equation

$$X_t - \frac{1}{4}X_{t-2} = Z_t - Z_{t-1}$$

- 1. Compute a stationary solution.
- 2. Is this solution causal? Justify?
- 3. Is this solution invertible? Justify?
- 4. Compute the ACF γ_X of X;
- 5. Compute $proj(X_s, H_{t-1,1})$ for (s, t) = (100, 3)

Exercise 7 Let $(Z_k)_{k\in\mathbb{Z}}$ be i.i.d. r.v. of normal law $\mathcal{N}(0,1)$, and let a,b be two reals.

- 1. Compute the process $\Delta_3 S_t$ where $S_t = \cos\left(\frac{2\pi}{3}t\right) + Z_t$ and where $\Delta_3 = 1 B^3$.
- 2. Is a white noise? Justify your answer and precise weak or strong;
- 3. If $p \in \mathbb{N}$, $(Z_k^p)_{k \in \mathbb{Z}}$ a white noise? Justify your answer, precise weak or strong, and compute if possible the mean and autocovariance;
- 4. Compute the autocovariance of $(X_k)_{k\in\mathbb{Z}}$ where $X_k = aZ_{k-1} + bZ_{k+1}$;
- 5. In which case $(X_k)_{k\in\mathbb{Z}}$ is causal? invertible? (justify your answers).

Exercise 8 *Let us consider the following ARMA equation:*

$$X_t - 2X_{t-1} = Z_t - \frac{5}{2}Z_{t-1} + Z_{t-2}$$

- 1. Compute the rational fraction of the equation, prove that it admits a unique stationary solution; and compute it;
- 2. Find $\alpha \in l^1(\mathbb{Z})$ such that $Z = F_{\alpha}X$ and $\alpha_k = 0$ for any $k \notin \mathbb{N}$.