

Constrained Flyby Solution

Planetary Flyby With Constraints

There can be many objectives for the flyby mission.

In cases when it is just a **one-time** flyby, actual heliocentric **trajectory** after flyby is of no **value** and we can **enter** planet SOI at any **point.**

Planetary Flyby With Constraints

However, if **flyby** is to go **somewhere**, then it is used to **position** the exit suitably for the planned **destination**.

This requires accurate determination of the planetary positions so that spacecraft can enter at the right point and exit at the right point during the flyby.

Destination Driven Flyby Solutions

Voyager Flyby Manoeuvres

Trajectories that enabled NASA's twin Voyager spacecrafts to tour four giant planets & achieve velocity to escape Solar System, were a result of flybys.

Other Planetary Flyby Scenarios

Planetary probes generally fly by Venus on way to mercury and fly by mars or Jupiter on way to outer planets and Asteriods.

A flyby of Jupiter can also be used to execute a large plane change out of the ecliptic to place spacecraft in a polar orbit around the sun.

Other Planetary Flyby Scenarios

A mercury flyby produces the largest energy changes because of its closeness to sun, while a Jupiter flyby gives the largest trajectory deflection due to its mass.

VEGA is flyby that uses Earth also for flyby.

Planetary Capture Solutions

Planetary Capture

Capture is an important aspect of interplanetary travel, wherein spacecraft forms an orbit around another planet.

Since, the **spacecraft** crosses the planet **SOI** with a non-zero ' \mathbf{v}_{∞} ', it will always be on a **hyperbolic** path, with respect to the **planet**.

Thus, to **avoid** impact and form an **orbit**, we need to reduce **velocity** sufficiently so that **planeto-centric** eccentricity is < 1.

Planetary Capture

One way to **achieve** capture is to **allow** spacecraft to **reach** its periapsis and then **impulsively** reduce velocity to enable the **capture**, as shown schematically below.

The desirable orbit generally is a circular one.

Planetary Capture Solution

Given below is the **minimum** ΔV required for **capture** in a **circular** orbit.

$$\begin{split} &v_c = \sqrt{\frac{\mu_p}{r_{periopsis}}}; \quad \varepsilon = \frac{1}{2} \, v_{\infty}^2 - \frac{\mu_{pi}}{r_{sol}} \approx \frac{1}{2} \, v_{\infty}^2; \quad v_1 = \sqrt{v_{\infty}^2 + \frac{2 \, \mu_{pi}}{r_{periopsis}}} \\ &\Delta V = v_1 - v_c = \sqrt{v_{\infty}^2 + \frac{2 \, \mu_{pi}}{r_{periopsis}}} - \sqrt{\frac{\mu_{pi}}{r_{periopsis}}}; \quad \text{Optimal radius: } \frac{d\Delta V}{dr_{periopsis}} = 0 \\ &\frac{d}{dr_{periopsis}} \, \Delta V = - \left(v_{\infty}^2 + \frac{2 \, \mu_{pi}}{r_{periopsis}} \right)^{-\frac{1}{2}} \times \mu_{pi} r_{periopsis}^{-2} + \frac{1}{2} \, \sqrt{\mu_{pi} \cdot r_{periopsis}^{-\frac{3}{2}}} = 0 \\ &4 \, \mu_{pi}^2 = \mu_{pi} v_{\infty}^2 r_{periopsis} + 2 \, \mu_{pi}^2 \rightarrow r_{periopsis} = \frac{2 \, \mu_{pi}}{v_{\infty}^2}; \quad \Delta V_{\min} = \frac{v_{\infty}}{\sqrt{2}} \quad \text{(for circular orbit)} \end{split}$$

In reality, lowest ΔV is when the capture is parabolic.

Planet Motion Implication

Planet Motion during Capture/Flyby

An **important** aspect that is to be considered for **capture** is the fact that all planets are **moving** in their orbits.

If the spacecraft is to intercept the **SOI** of a planet at a designated point, the **departure** & arrival must have the appropriate **angular** relationships.

This **relationship** is called **'lead angle'**, which is an angle between **origin** & **target** planets at departure, which depends on target planet 'n' & Δt for the spacecraft.

Planet Motion Model

Given below is an example of **intercept** with Mars along Hohmann **Transfer** ellipse.

$$n_{M} = \frac{2\pi}{P_{M}} = \frac{2\pi}{687} = 0.524^{\circ} / day$$

$$TOF = \frac{P_{t-Ellipse}}{2} = 259 days$$

$$\theta = n_{M} \cdot TOF = 135.7^{\circ}; \quad \psi = 44.3^{\circ}$$

Synodic Time Period Concept

In case a particular **time** slot is **missed**, either we need to compute a **new** trajectory with a **different** lead angle, or **wait** for the next **window** to appear.

This **requires** knowing the **return** period of **window** for the calculated **lead** angle, which is called the **synodic** time period. In case of Mars, this value is **2.135 years**.

Thus, if we are **planning** a return trip to **mars**, we would need around **971** days (or 2.66 years) to **complete** the mission, including a **wait** period of 454 days (**1.24** years).

Planetary Synodic Time Periods

Synodic time period of other planets with respect to earth can be obtained through the following relation.

Summary

In **summary**, planetary capture requires **reduction** in object velocity and is **generally** on an elliptic path.

Synodic time period is an important **concept** that helps in synchronizing the **arrival** and departure instants.