Листок 6

Семинарские задачи

Задача 6.1. Докажите следующие соотношения:

a)
$$o(o(f)) = o(f);$$

6)
$$O(o(f)) = o(f);$$

B)
$$O(O(f)) = O(f);$$

r)
$$O(f) + o(f) = O(f);$$

д)
$$o(f) = O(f)$$

Задача 6.2. Какие из следующих утверждений справедливы при $x \to 0$:

(a)
$$o(x^3) = O(x^3)$$
:

5)
$$O(x^3) = o(x^3)$$
;

B)
$$O(x^3) = o(x^2);$$

$$(x + x^2 + o(x^2))^2 =$$

$$= x^2 + o(x^2)$$
:

а)
$$o(x^3) = O(x^3)$$
; б) $O(x^3) = o(x^3)$; в) $O(x^3) = o(x^2)$; г) $(x + x^2 + o(x^2))^2 = x^2 + o(x^2)$; д) $(x + x^2 + o(x^2))^2 = x^2 + o(x^3)$?

При решении предыдущего листка были получены соотношения:

$$1) \sin x = x + o(x);$$

2)
$$\cos x = 1 - \frac{x^2}{2} + o(x^2);$$

3)
$$e^x = 1 + x + o(x)$$
;

4)
$$\ln(1+x) = x + o(x);$$

5)
$$(1+x)^{\alpha} = 1 + \alpha x + o(x)$$
.

Задача 6.3. Вычислите пределы: a)
$$\lim_{x\to 0} \frac{(\cos x-1)\arcsin^2\left((e^x)^2-1\right)}{\ln^2(1+x^2)};$$
 б) $\lim_{x\to 1} \frac{(\cos(x-1)-1)^{\frac{2}{3}}}{\ln(x)\cdot(5x-5)^{\frac{1}{3}}}.$

6)
$$\lim_{x \to 1} \frac{(\cos(x-1)-1)^{\frac{2}{3}}}{\ln(x) \cdot (5x-5)^{\frac{1}{3}}}$$

Задача 6.4. Вычислите пределы:

a)
$$\lim_{x \to 7} \frac{\sqrt{x+2} - \sqrt[3]{x+2}}{\sqrt[4]{x+9} - 2}$$

$$\mathbf{6)} \lim_{x \to 0} \frac{\ln(x^2 + e^x)}{\ln(1 + xe^x)}$$

B)
$$\lim_{x\to 0} \frac{\ln(1+x+x^2) + \arcsin 5x - 3x}{\sin 3x + \tan^2 x + (e^x - 1)^{10}}$$

$$\Gamma$$
) $\lim_{x\to 0} \frac{e^{ax} - e^{bx}}{\sin(ax) - \sin(bx)}$

e)
$$\lim_{x\to 0} \frac{(1+x)^x-1}{1-\cos x}$$

а)
$$\lim_{x \to 7} \frac{\sqrt{x+2} - \sqrt[3]{x+20}}{\sqrt[4]{x+9} - 2}$$
 б) $\lim_{x \to 0} \frac{\ln(x^2 + e^x)}{\ln(1+xe^x)}$ в) $\lim_{x \to 0} \frac{\ln(1+x+x^2) + \arcsin 5x - 3x^3}{\sin 3x + \lg^2 x + (e^x - 1)^{10}}$ г) $\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{\sin(ax) - \sin(bx)}$. д) $\lim_{x \to 0} \left(\frac{\cos x}{\cos 2x}\right)^{1/x^2}$; е) $\lim_{x \to 0} \frac{(1+x)^x - 1}{1-\cos x}$ ж) $\lim_{x \to +\infty} \left(\frac{\ln(10+e^x)}{x}\right)^{\sqrt{e^{2x}+5}}$ з) $\lim_{x \to 1} \left(\ln(e^x + x - 1)\right)^{\frac{1}{\sqrt[3]{x}-1}}$.

3)
$$\lim_{x \to 1} \left(\ln \left(e^x + x - 1 \right) \right)^{\frac{1}{\sqrt[3]{x} - 1}}$$

Задача 6.5. Найдите пределы:

a)
$$\lim_{n\to\infty} n^{3/2} (\sqrt{n + \arctan(1/n)} - \sqrt{n})$$

a)
$$\lim_{n \to \infty} n^{3/2} (\sqrt{n + \arctan(1/n)} - \sqrt{n});$$
 6) $\lim_{n \to \infty} n^{p-1} \left((n^p - 1)^{1/p} - n \right), p > 0.$

Домашние задачи

Задача 6.6 (ДЗ). Какие из следующих утверждений справедливы при $x \to 0$:

a)
$$o(x^2) + o(x) = o(x)$$
 6) $o(x) + x^2 = o(x)$

6)
$$o(x) + x^2 = o(x)$$

B)
$$(x + o(x))(2x^2 + o(x^2)) = 2x^3 + o(x^3)$$
 r) $o(1) - o(1) = 0$?

$$(\mathbf{r}) \ o(1) - o(1) = 0$$

Задача 6.7 (ДЗ). Вычислите пределы:

a)
$$\lim_{x \to 0} \frac{\arcsin^2(\operatorname{tg} x)}{(\cos(2\sin 2x) - 1)}$$

a)
$$\lim_{x \to 0} \frac{\arcsin^2(\operatorname{tg} x)}{(\cos(2\sin 2x) - 1)};$$
 6) $\lim_{x \to 1} \frac{(1 - \cos(x - 1))((2x)^2 - 4)}{\ln(x) \cdot \left(x^{\frac{2}{5}} - 1\right)^2}.$

Задача 6.8 (ДЗ). Вычислите пределы:

a)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}$$

5)
$$\lim_{x\to 0} \frac{\cos(a+2x)-2\cos(a+x)+\cos a}{x^2}$$

дача 6.8 (Д3). Вычислите пределы:
a)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}$$
; б) $\lim_{x\to 0} \frac{\cos (a+2x) - 2\cos (a+x) + \cos a}{x^2}$; в) $\lim_{x\to +\infty} \left(\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x}\right)$;
г) $\lim_{x\to a} \frac{a^x - x^a}{x - a}$, $\alpha > 0$ д) $\lim_{x\to a} \frac{\ln x - \ln a}{x - a}$ е) $\lim_{x\to 0} \frac{\ln (x^2 + e^x)}{\ln (x^4 + e^{2x})}$. ж) $\lim_{x\to 0} (1 + \operatorname{tg}^2 x)^{\frac{1}{\ln \cos x}}$
з) $\lim_{x\to 1} \left(x^2 + \sin^2(\pi x)\right)^{\frac{1}{\ln x}}$ и) $\lim_{x\to \pi} \left(\frac{\cos x}{\cos 3x}\right)^{\frac{1}{(\sqrt{\pi x} - \pi)^2}}$; к) $\lim_{x\to 1} x^{\operatorname{tg}\left(\frac{\pi x}{2}\right)}$.

$$\Gamma$$
) $\lim_{x\to a} \frac{a^x - x^a}{x - a}, \alpha > 0$

e)
$$\lim_{x\to 0} \frac{\ln(x^2+e^x)}{\ln(x^4+e^{2x})}$$
.

ж)
$$\lim_{x\to 0} (1+tg^2 x)^{\frac{1}{\ln\cos x}}$$

3)
$$\lim_{x \to 1} \left(x^2 + \sin^2(\pi x) \right)^{\frac{1}{\ln x}}$$

u)
$$\lim_{x\to\pi} \left(\frac{\cos x}{\cos 3x}\right)^{\frac{1}{(\sqrt{\pi x}-\pi)^2}};$$

$$\mathbf{K}$$
) $\lim_{x\to 1} x^{\operatorname{tg}\left(\frac{\pi x}{2}\right)}$

Дополнительные задачи

- а) Пусть $b_n > 0$ и $\frac{b_n}{b_{n+1}} = 1 + \beta_n$, причем ряд $\sum_{k=1}^{\infty} |\beta_k|$ сходится. Докажите, что существует предел $\lim_{n \to \infty} b_n > 0$.
 - **б)** Докажите, что $n! \sim c\sqrt{n} \left(\frac{n}{e}\right)^n, c > 0.$

Задача 6.10 (Доп.). Пусть $a_{n+1}=a_n-a_n^2, a_1=1/2$. Докажите, что

a)
$$a_n \sim \frac{1}{2}$$
:

a)
$$a_n \sim \frac{1}{n}$$
;
6) $*a_n = \frac{1}{n} - \frac{\ln n}{n^2} + o\left(\frac{\ln n}{n^2}\right)$.