Introduction to Machine Learning

Fall 2025

University of Science and Technology of China

Lecturer: Zhihui Li, Xiaojun Chang

Homework 1
Posted: Sep. 28th, 2025

Due: Oct. 16th, 2025

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Limit and Limit Points

- 1. Show that $\{\mathbf{x}_n\}$ in \mathbb{R}^n converges to $\mathbf{x} \in \mathbb{R}^n$ if and only if $\{\mathbf{x}_n\}$ is bounded and has a unique limit point \mathbf{x} .
- 2. (Limit Points of a Set). Let C be a subset of \mathbb{R}^n . A point $\mathbf{x} \in \mathbb{R}^n$ is called a limit point of C if there is a sequence $\{\mathbf{x}_n\}$ in C such that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{x}_n \neq \mathbf{x}$ for all positive integers n. If $\mathbf{x} \in C$ and \mathbf{x} is not a limit point of C, then \mathbf{x} is called an isolated point of C. Let C' be the set of limit points of the set C. Please show the following statements.
 - (a) If $C = (0,1) \cup \{2\} \subset \mathbb{R}$, then C' = [0,1] and x = 2 is an isolated point of C.
 - (b) The set C' is closed.

Solution 1: Limit and Limit Points

1. ①Necessity:

 $\lim_{n\to\infty}x_n=x\Longrightarrow\forall\;\epsilon>0,\;\exists\;N>0,\;\text{s.t. when}\;n\geq N,\;\|x_n-x\|<\epsilon\Longrightarrow\|x_n\|<\|x\|+\epsilon.$ Set

$$M = \max\{\|x_1\|, \|x_2\|, \cdots, \|x_{N-1}\|, \|x\| + \epsilon\}.$$

Clearly, $||x_n|| \le M$, $\forall n > 0$, i.e., sequence $\{x_n\}$ is bounded.

Besides, $\lim_{n\to\infty} x_n = x \Longrightarrow$ all subsequences $\{x_{n_k}\}$ also converge to $x \Longrightarrow$ limit point x is unique.

2Sufficiency:

Suppose, for the sake of contradiction, that $\lim_{n\to\infty} x_n \neq x$. Then $\exists \epsilon_0 > 0$ and a subsequence $\{x_{n_k}\}$ such that

$$||x_{n_k} - x|| \ge \epsilon_0, \ \forall \ k > 0$$

According to Bolzano-Weierstrass Theorem, $\{x_{n_k}\}$ is bounded \Longrightarrow there is a further convergent subsequence $\{x_{n_{k_j}}\}$ with $\lim_{j\to\infty}x_{n_{k_j}}=y\in\mathbb{R}^n$. By the uniqueness of limit points, y=x. Therefore, $\|x_{n_{k_j}}-x\|\to 0$, which contradicts $\|x_{n_k}-x\|\ge \epsilon_0$, $\forall \ k>0$. Hence our supposition was false and $x_n\to x$.

2. (a) For any $x \in [0,1]$, take $x_n = x + \frac{1}{n}$ if x < 1; $x_n = x - \frac{1}{n}$ if x > 0. Then it is clear that $x_n \neq x$, $\forall n > 0$ and $x_n \to x$. Thus, x is a limit point of C.

If $x \notin [0,1]$, $dist(x,(0,1)) > 0 \Longrightarrow \exists \epsilon > 0$, s.t. $B(x,\epsilon) \setminus \{x\} \cap C = \emptyset \Longrightarrow x$ is not a limit point of C.

Thus C' = [0, 1]. Correspondingly, x = 2 is an isolated point of C.

(b) To prove C' is closed \iff to prove $C' = \overline{C'} \iff$ to prove all of the limit points of C' belong to C'

Set x as any limit point of $C' \Longrightarrow$ there exists a sequence $\{x_n\} \subset C' \setminus \{x\}$ with $x_n \to x$.

For each n, since $x_n \in C'$, there exists a sequence $\{x_{n,m}\} \subset C \setminus \{x_n\}$ with $x_{n,m} \to x_n$.

 $\forall \ \epsilon > 0, \ \exists N > 0, \ \text{s.t.}$ when $n \geq N, \ \|x_n - x\| < \frac{\epsilon}{2}$. Let m be large enough, then $\|x_{n,m} - x_n\| < \frac{\epsilon}{2}$. By triangle inequality,

$$||x_{n,m} - x|| \le ||x_{n,m} - x_n|| + ||x_n - x|| \le \epsilon$$

Therefore, $x_{n,m} \in C$ implies $x \in C'$.

In conclusion, the set C' is closed.

Exercise 2: Norms

In this exercise, we will give some examples of norms and a useful theorem related to norms in **finite** dimensional vector space.

1. l_p norm: The l_p norm is defined by

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $p \ge 1$.

- (a) Please show that the l_p norm is a norm.
- (b) Please show that the following equality.

$$\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

The l_{∞} norm is defined as above.

- 2. **Operator norms:** Suppose that $\mathbf{A} \in \mathbb{R}^{m \times n}$, which can be viewed as a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Please show the following operator norms' equality.
 - (a) Let $\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$. Please show that

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

(b) Let $\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$. Please show that

$$\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

3. (Optional) Dual norm: Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The dual norm of $\|\cdot\|$ is defined by

$$\|\mathbf{x}\|_* = \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\| \le 1} \mathbf{y}^\top \mathbf{x}.$$

(a) Please show that the dual of the Euclidean norm is the Euclidean norm itself. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_2.$$

(b) Please show that the dual of the l_1 norm is the l_{∞} norm. i.e.,

$$\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_1 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_{\infty}.$$

Solution 2: Norms

1. (a) ① Positive Definiteness:

$$|x_i| \ge 0 \Longrightarrow \|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \ge 0$$

where the equality holds if and only if $x_i = 0$, $\forall 1 \le i \le n \iff \mathbf{x} = \mathbf{0}$. ② Homogeneity: $\forall \alpha \in \mathbb{R}$,

$$\|\alpha \mathbf{x}\|_p = \left(\sum_{i=1}^n |\alpha x_i|^p\right)^{1/p} = |\alpha| \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = |\alpha| \|\mathbf{x}\|_p$$

③ Triangle Inequality: Let $q = \frac{p}{p-1}$ to satisfy $\frac{1}{p} + \frac{1}{q} = 1$. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, according to Hölder inequality,

$$\|\mathbf{x} + \mathbf{y}\|_{p}^{p} = \sum_{i=1}^{n} |x_{i} + y_{i}|^{p}$$

$$\leq \sum_{i=1}^{n} |x_{i}| \cdot |x_{i} + y_{i}|^{p-1} + \sum_{i=1}^{n} |y_{i}| \cdot |x_{i} + y_{i}|^{p-1}$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \cdot \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{(p-1)q}\right)^{1/q}$$

$$+ \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{1/p} \cdot \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{(p-1)q}\right)^{1/q}$$

$$= (\|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}) \cdot \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{1/q}$$

$$\Longrightarrow \|\mathbf{x} + \mathbf{y}\|_{p} = \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{1/p} = \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}\right)^{1-1/q} \leq \|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}$$

(b) It is clear that

$$\|\mathbf{x}\|_{\infty}^p \le \|\mathbf{x}\|_p^p \le n\|\mathbf{x}\|_{\infty}^p \iff \|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_p \le n^{1/p}\|\mathbf{x}\|_{\infty}$$

By the Squeeze Theorem,

$$\lim_{p \to \infty} n^{1/p} = 1 \Longrightarrow \lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty}$$

2. When $\mathbf{A} = \mathbf{0}$, the conclusion is trivial. Thus, the following discussion is based on $\mathbf{A} \neq \mathbf{0}$.

Divide matrix **A** into blocks by columns as (a_1, a_2, \dots, a_n) and let $||a_{j_0}||_1 = \max_{1 \leq j \leq n} ||a_j||_1$.

Then $\forall \mathbf{x} \in \mathbb{R}^n$ that satisfies $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = 1$,

$$\|\mathbf{A}\mathbf{x}\|_1 = \|\sum_{j=1}^n x_j a_j\|_1 \le \sum_{j=1}^n |x_j| \|a_j\|_1 \le \left(\sum_{i=1}^n |x_i|\right) \max_{1 \le j \le n} \|a_j\|_1 = \|a_{j_0}\|_1$$

Besides, $\|\mathbf{Ae_{j_0}}\|_1 = \|a_{j_0}\|_1$. In conclusion,

$$\|\mathbf{A}\|_1 = \max_{\|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1 = \max_{1 \le j \le n} \|a_j\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

(b) $\forall \mathbf{x} \in \mathbb{R}^n \text{ that satisfies } ||\mathbf{x}||_{\infty} = 1,$

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| |x_j| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Set
$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = \sum_{j=1}^{n} |a_{kj}|$$
. Then let $\tilde{\mathbf{x}} = (\operatorname{sgn}(a_{k1}), \dots, \operatorname{sgn}(a_{kn}))^T$.

$$\mathbf{A} \neq \mathbf{0} \Longrightarrow \|\tilde{\mathbf{x}}\|_{\infty} = 1$$
 and it is clear that $\|\mathbf{A}\tilde{\mathbf{x}}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$.

3. (a) By Cauchy-Schwarz Inequality,

$$\mathbf{y^T}\mathbf{x} \leq \|\mathbf{y}\|_2 \|\mathbf{x}\|_2 \leq \|\mathbf{x}\|_2 \Longrightarrow \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \leq 1} \mathbf{y}^\top \mathbf{x} \leq \|\mathbf{x}\|_2.$$

If $\mathbf{x} = \mathbf{0}$, the target equality is trivial; if not, choose $\mathbf{y_0} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2}$, which satisfies $\|\mathbf{y_0}\|_2 = 1$. Then $\mathbf{y_0^T}\mathbf{x} = \frac{\mathbf{x^T}\mathbf{x}}{\|\mathbf{x}\|_2} = \|\mathbf{x}\|_2$.

In conclusion, $\sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_2 \le 1} \mathbf{y}^\top \mathbf{x} = \|\mathbf{x}\|_2$.

(b) For any $\mathbf{y} = (y_1, \dots, y_n)^T$ with $||y||_1 \le 1$,

$$\mathbf{y}^{\mathbf{T}}\mathbf{x} = \sum_{i=1}^{n} x_i y_i \le \sum_{i=1}^{n} |x_i| |y_i| \le \max_{1 \le i \le n} |x_i| \sum_{i=1}^{n} |y_i| \le \|\mathbf{x}\|_{\infty}$$
$$\implies \sup_{\mathbf{y} \in \mathbb{R}^n, \|\mathbf{y}\|_1 \le 1} \mathbf{y}^{\top} \mathbf{x} \le \|\mathbf{x}\|_{\infty}.$$

If $\mathbf{x} = \mathbf{0}$, the target equality is trivial; if not, let $k = \arg\max_{1 \le i \le n} |x_i|$ and choose $\mathbf{y_0} = \operatorname{sgn}(x_k)\mathbf{e_k}$ so that $||y_0||_1 = 1$. Then $\mathbf{y_0^T}\mathbf{x} = \operatorname{sgn}(\mathbf{x_k})\mathbf{x_k} = ||\mathbf{x}||_{\infty}$. In conclusion, $\sup_{\mathbf{y} \in \mathbb{R}^n, ||\mathbf{y}||_1 \le 1} \mathbf{y}^{\mathsf{T}}\mathbf{x} = ||\mathbf{x}||_{\infty}$.

Exercise 3: Open and Closed Sets

The norm ball $\{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\|_2 < r, \mathbf{x} \in \mathbb{R}^n\}$ is denoted by $B_r(\mathbf{x})$.

- 1. Given a set $C \subset \mathbb{R}^n$, please show the following are equivalent.
 - (a) The set C is closed; that is $\mathbf{cl}\ C = C$.
 - (b) The complement of C is open.
 - (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$, then $\mathbf{x} \in C$.
- 2. Given $A \subset \mathbb{R}^n$, a set $C \subset A$ is called open in A if

$$C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$$

A set C is said to be closed in A if $A \setminus C$ is open in A.

- (a) Let $B = [0,1] \cup \{2\}$. Please show that [0,1] is not an open set in \mathbb{R} , while it is both open and closed in B.
- (b) Please show that a set $C \subset A$ is open in A if and only if $C = A \cap U$, where U is open in \mathbb{R}^n .

Solution 3: Open and Closed Sets

1. (a) \Longrightarrow (b):

Suppose, for the sake of contradiction, that C^c is not open. Then $\exists \mathbf{x} \in C$, s.t. $\forall \epsilon > 0$, $B_{\epsilon}(\mathbf{x}) \not\subset C^c \Longrightarrow \text{take } \mathbf{x_n} \subset B_{\epsilon}(\mathbf{x}) \setminus C^c \subset C$ for $\epsilon_n > 0$. Without generality, set $\epsilon_1 > \epsilon_2 > \cdots > \epsilon_n \to 0$, then it is clear that sequence $\{\mathbf{x_n}\}$ satisfies $\lim_{n \to \infty} \mathbf{x_n} = \mathbf{x}$. Therefore, $\mathbf{x} \in \mathbf{cl} \ C = C$, which contradicts $\mathbf{x} \in C^c$.

 $(b) \Longrightarrow (c)$:

Suppose, for the sake of contradiction, that $\exists \mathbf{x} \in C^c$, s.t. $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$. Because C^c is open, $\exists \delta > 0$, s.t. $B_{\delta}(\mathbf{x}) \subset C^c \Longrightarrow B_{\delta}(\mathbf{x}) \subset C \cap C^c = \emptyset$. So this is a contradiction.

 $(c) \Longrightarrow (a)$:

Suppose, for the sake of contradiction, that \exists a sequence $\{\mathbf{x_n}\} \subset C$, which satisfies $\mathbf{x_n} \to \mathbf{x} \in C^c$, i.e., $\forall \epsilon > 0$, $\exists N > 0$, s.t. when $n \geq N$, $\|\mathbf{x_n} - \mathbf{x}\| < \epsilon$. Therefore, $B_{\epsilon}(\mathbf{x}) \cap C \supset \{x_n\} \neq \emptyset \Longrightarrow \mathbf{x} \in C$, which contradicts $\mathbf{x} \in C^c$.

In summary, these three hypothesis are equivalent.

2. (a) $\forall \epsilon > 0, -\frac{\epsilon}{2} \notin [0,1] \Longrightarrow B_{\epsilon}(0) = (-\epsilon, \epsilon) \not\subset [0,1] \Longrightarrow [0,1]$ is not an open set in \mathbb{R} .

If $\mathbf{x} \in (0,1)$, take $\epsilon = \min\{\mathbf{x}, \mathbf{1} - \mathbf{x}\} > 0$. Then $B_{\epsilon}(\mathbf{x}) \subset [0,1] \Longrightarrow B_{\epsilon}(\mathbf{x}) \cap B = B_{\epsilon}(\mathbf{x}) \subset [0,1]$.

If $\mathbf{x} = 0$, take $\epsilon = \frac{1}{2} > 0$. Then $B_{\epsilon}(0) = (-\frac{1}{2}, \frac{1}{2}) \Longrightarrow B_{\epsilon}(0) \cap B = [0, \frac{1}{2}] \subset [0, 1]$. In the same way, if $\mathbf{x} = 1$, take $\epsilon = \frac{1}{2} > 0$. Then $B_{\epsilon}(1) = (\frac{1}{2}, \frac{3}{2}) \Longrightarrow B_{\epsilon}(1) \cap B = [\frac{1}{2}, 1] \subset [0, 1]$.

In conclusion, [0,1] is open in B.

Beside, if $\mathbf{x} = 2$, take $\epsilon = \frac{1}{2} > 0$. Then $B_{\epsilon}(2) = (\frac{3}{2}, \frac{5}{2}) \Longrightarrow B_{\epsilon}(2) \cap B = \{\frac{1}{2}\} \subset \{\frac{1}{2}\} \Longrightarrow \{2\} = B \setminus [0, 1] \text{ is open in } B$.

In summary, [0,1] is both open and closed in B.

(b) ① Necessity:

 $C \subset A$ is open in $A \Longrightarrow \forall \mathbf{x} \in C, \exists \epsilon_x > 0, \text{ s.t. } B_{\epsilon_x}(\mathbf{x}) \cap A \subset C \Longrightarrow$

$$\bigcup_{\mathbf{x} \in C} \left(B_{\epsilon_x}(\mathbf{x}) \cap A \right) = \left(\bigcup_{\mathbf{x} \in C} B_{\epsilon_x}(\mathbf{x}) \right) \cap A \subset C.$$

Set $U = \bigcup_{\mathbf{x} \in C} B_{\epsilon_x}(\mathbf{x})$. Then $U \cap A \subset C$ and it is clear that U is open in \mathbb{R}^n .

$$\forall \mathbf{x} \in C, \mathbf{x} \in B_{\epsilon_x}(\mathbf{x}) \text{ and } \mathbf{x} \in C \subset A \Longrightarrow$$

$$\mathbf{x} \in B_{\epsilon_x}(\mathbf{x}) \cap A \subset \bigcup_{\mathbf{x} \in C} (B_{\epsilon_x}(\mathbf{x}) \cap A) = \left(\bigcup_{\mathbf{x} \in C} B_{\epsilon_x}(\mathbf{x})\right) \cap A = U \cap A.$$

$$\Longrightarrow C\subset U\cap A.$$

In conclusion, $C = U \cap A$ and U is open in \mathbb{R}^n .

2 Sufficiency:

U is open in $\mathbb{R}^n \Longrightarrow \forall \mathbf{x} \in U \supset C$, $\exists \epsilon_x > 0$, s.t. $B_{\epsilon_x}(\mathbf{x}) \subset U \Longrightarrow B_{\epsilon_x}(\mathbf{x}) \cap A \subset U \cap A = C$. Thus $C \subset A$ is open in A.

Exercise 4: Projection

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^m$. Define

$$\mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^m} \{ \|\mathbf{x} - \mathbf{z}\|_2 : \mathbf{z} \in \mathcal{C}(\mathbf{A}) \}.$$

We call $P_{\mathbf{A}}(\mathbf{x})$ the projection of the point \mathbf{x} onto the column space of \mathbf{A} .

- 1. Please show that $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ is unique for any $\mathbf{x} \in \mathbb{R}^m$.
- 2. Let $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, \dots, d$ with $d \leq n$, which are linearly independent.
 - (a) For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$, which is the projection of \mathbf{w} onto the subspace spanned by \mathbf{v}_1 .
 - (b) Please show $\mathbf{P}_{\mathbf{v}_1}(\cdot)$ is a linear map, i.e.,

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}),$$

where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^n$.

(c) Please find the projection matrix corresponding to the linear map $\mathbf{P}_{\mathbf{v}_1}(\cdot)$, i.e., find the matrix $\mathbf{H}_1 \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{H}_1 \mathbf{w}.$$

- (d) Let $V = (v_1, ..., v_d)$.
 - i. For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P_V}(\mathbf{w})$ and the corresponding projection matrix \mathbf{H} .
 - ii. Please find **H** if we further assume that $\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \forall i \neq j$.
- 3. (a) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

(b) Suppose that

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}.$$

What are the coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} for any $\mathbf{x} \in \mathbb{R}^2$? Are the coordinates unique?

4. A matrix **P** is called a projection matrix if **Px** is the projection of **x** onto $C(\mathbf{P})$ for any **x**.

- (a) Let λ be the eigenvalue of **P**. Show that λ is either 1 or 0. (*Hint: you may want to figure out what the eigenspaces corresponding to* $\lambda = 1$ *and* $\lambda = 0$ *are, respectively.*)
- (b) Show that **P** is a projection matrix if and only if $\mathbf{P}^2 = \mathbf{P}$ and **P** is symmetric.
- 5. Let $\mathbf{B} \in \mathbb{R}^{m \times s}$ and $\mathcal{C}(\mathbf{B})$ be its column space. Suppose that $\mathcal{C}(\mathbf{B})$ is a proper subspace of $\mathcal{C}(\mathbf{A})$. Is $\mathbf{P}_{\mathbf{B}}(\mathbf{x})$ the same as $\mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$? Please show your claim rigorously.

Solution 4: Projection

1. ① Strict Convexity:

Define

$$f(\mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|_2^2 = \|\mathbf{z}\|_2^2 + 2\langle \mathbf{x}, \mathbf{z} \rangle + \|\mathbf{x}\|_2^2$$

Then $\nabla^2 f(\mathbf{z}) = 2\mathbf{I_m} > 0 \Longrightarrow f$ is strictly convex.

The column space $C(\mathbf{A})$ is convex $\Longrightarrow \forall \mathbf{a}, \mathbf{b} \in C(\mathbf{A}), \forall t \in (0,1), t\mathbf{a} + (1-t)\mathbf{b} \in C(\mathbf{A}).$

Suppose $\mathbf{z_1}, \mathbf{z_2} \in \mathcal{C}(\mathbf{A})$ are both minimizers of f over $\mathcal{C}(\mathbf{A})$. Then according to the convexity of f,

$$f(t\mathbf{z_1} + (1-t)\mathbf{z_2}) < tf(\mathbf{z_1}) + (1-t)f(\mathbf{z_2}) = f(\mathbf{z_1}) = f(\mathbf{z_2})$$

contradicting the minimality of z_1 and z_2 . Therefore, the minimizer $P_A(x)$ is unique.

2 Orthogonality:

Suppose $\mathbf{z_0}$ is a minimizer of f over $\mathcal{C}(\mathbf{A})$. For any $\mathbf{y} \in \mathcal{C}(\mathbf{A})$ and $t \in \mathbb{R}$, define

$$\Phi(t) = \|\mathbf{x} - (\mathbf{z_0} + t\mathbf{y})\|_2^2 = \|\mathbf{x} - \mathbf{z_0}\|_2^2 - 2t\langle\mathbf{x} - \mathbf{z_0}, \mathbf{y}\rangle + t^2\|\mathbf{y}\|_2^2$$

Notice that $\mathbf{z_0} + t\mathbf{y} \in \mathcal{C}(\mathbf{A})$.

Since $\mathbf{z_0}$ minimizes f over $\mathcal{C}(\mathbf{A})$, $\Phi(t)$ achieves its minimum at $t = 0 \Longrightarrow \Phi'(0) = -2\langle \mathbf{x} - \mathbf{z_0}, \mathbf{y} \rangle = 0 \Longrightarrow \mathbf{x} - \mathbf{z_0} \perp \mathcal{C}(\mathbf{A})$, i.e., $\mathbf{x} - \mathbf{z_0} \in \mathcal{C}(\mathbf{A})^{\perp}$.

Furthermore, if $\mathbf{x} - \mathbf{z_0} \perp \mathcal{C}(\mathbf{A})$, then for any $\mathbf{y} \in \mathcal{C}(\mathbf{A})$,

$$\|\mathbf{x} - \mathbf{y}\|_{2}^{2} = \|\mathbf{x} - \mathbf{z_{0}} + \mathbf{z_{0}} - \mathbf{y}\|_{2}^{2} = \|\mathbf{x} - \mathbf{z_{0}}\|_{2}^{2} + \|\mathbf{z_{0}} - \mathbf{y}\|_{2}^{2} \ge \|\mathbf{x} - \mathbf{z_{0}}\|_{2}^{2}$$

 $\Longrightarrow \mathbf{z_0}$ is a minimizer of f over $\mathcal{C}(\mathbf{A})$.

If $\mathbf{z_1}$, $\mathbf{z_2}$ both satisfy $\mathbf{x} - \mathbf{z_i} \perp \mathcal{C}(\mathbf{A})$ (i = 1, 2), then $\mathbf{z_1} - \mathbf{z_2} \in \mathcal{C}(\mathbf{A})$ and $\mathbf{z_1} - \mathbf{z_2} = (\mathbf{x} - \mathbf{z_2}) - (\mathbf{x} - \mathbf{z_1}) \perp \mathcal{C}(\mathbf{A}) \Longrightarrow \mathbf{z_1} - \mathbf{z_2} = \mathbf{0} \Longrightarrow \mathbf{z_1} = \mathbf{z_2}$, i.e. the minimizer $\mathbf{P_A}(\mathbf{x})$ is unique.

2. (a)

$$\begin{aligned} \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) &= \underset{\alpha \in \mathbb{R}, \mathbf{v}_1 \in \mathbb{R}^n}{\operatorname{argmin}} \ \|\mathbf{w} - \alpha \mathbf{v}_1\|_2 \\ \frac{\mathrm{d}}{\mathrm{d}\alpha} \|\mathbf{w} - \alpha \mathbf{v}_1\|_2^2 &= \frac{\mathrm{d}}{\mathrm{d}\alpha} (\mathbf{w} - \alpha \mathbf{v}_1)^\top (\mathbf{w} - \alpha \mathbf{v}_1) = -2\mathbf{v}_1^\top (\mathbf{w} - \alpha \mathbf{v}_1) = 0 \\ \Longrightarrow \alpha^* &= \frac{\mathbf{v}_1^T \mathbf{w}}{\mathbf{v}_1^T \mathbf{v}_1} \Longrightarrow \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \frac{\mathbf{v}_1^T \mathbf{w}}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 \end{aligned}$$

(b) According to the result in (a),

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \frac{\mathbf{v}_1^{\mathbf{T}}(\alpha \mathbf{u} + \beta \mathbf{w})}{\mathbf{v}_1^{\mathbf{T}} \mathbf{v}_1} \mathbf{v}_1 = \alpha \frac{\mathbf{v}_1^{\mathbf{T}} \mathbf{u}}{\mathbf{v}_1^{\mathbf{T}} \mathbf{v}_1} \mathbf{v}_1 + \beta \frac{\mathbf{v}_1^{\mathbf{T}} \mathbf{w}}{\mathbf{v}_1^{\mathbf{T}} \mathbf{v}_1} \mathbf{v}_1$$
$$= \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$$

(c)

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \frac{\mathbf{v}_1^T\mathbf{w}}{\mathbf{v}_1^T\mathbf{v}_1}\mathbf{v}_1 = \left(\frac{\mathbf{v}_1\mathbf{v}_1^T}{\mathbf{v}_1^T\mathbf{v}_1}\right)\mathbf{w} := \mathbf{H}_1\mathbf{w}$$

(d) i.

$$\mathbf{P}_{\mathbf{V}}(\mathbf{w}) = \mathop{\mathbf{argmin}}_{\mathbf{V}\mathbf{y}} \|\mathbf{w} - \mathbf{V}\mathbf{y}\|_2$$

 $\mathbf{y} \in \mathbb{R}^d, \mathbf{V} \in \mathbb{R}^{n \times d}$

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{y}}\|\mathbf{w} - \mathbf{V}\mathbf{y}\|_2^2 = \frac{\mathrm{d}}{\mathrm{d}\mathbf{y}}(\mathbf{w} - \mathbf{V}\mathbf{y})^\top(\mathbf{w} - \mathbf{V}\mathbf{y}) = -2\mathbf{V}^\top(\mathbf{w} - \mathbf{V}\mathbf{y}) = 0$$

 $\mathbf{v_i}, i = 1, \dots, d$ are linearly independent $\Longrightarrow \mathbf{V}$ has full column rank $\Longrightarrow \mathbf{V}^{\top} \mathbf{V}$ is invertible.

$$\implies \mathbf{y}^* = (\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top \mathbf{w} \implies \mathbf{P}_{\mathbf{V}}(\mathbf{w}) = \mathbf{V}(\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top \mathbf{w}$$
$$\implies \mathbf{H} = \mathbf{V}(\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top$$

ii.

$$\mathbf{v_i^T v_j} = 0, \forall i \neq j \Longrightarrow \mathbf{V}^{\top} \mathbf{V} = \begin{bmatrix} \mathbf{v_1^T v_1} & 0 & \cdots & 0 \\ 0 & \mathbf{v_2^T v_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{v_d^T v_d} \end{bmatrix}$$
$$\Longrightarrow (\mathbf{V}^{\top} \mathbf{V})^{-1} = \begin{bmatrix} \frac{1}{\mathbf{v_1^T v_1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\mathbf{v_2^T v_2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\mathbf{v_d^T v_d}} \end{bmatrix}$$
$$\Longrightarrow \mathbf{H} = \sum_{i=1}^{d} \frac{\mathbf{v_i v_i^T}}{\mathbf{v_i^T v_i}}$$

3. (a)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Longrightarrow \mathbf{x} \in \mathcal{C}(\mathbf{A}) = \mathbb{R}^2 \Longrightarrow \mathbf{P}_{\mathbf{A}}(\mathbf{x}) = \mathbf{x} = \mathbf{A} \cdot \mathbf{x}$$

The coordinates of $P_A(x)$ with respect to the column vectors in A are unique and equal to x itself.

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \Longrightarrow \mathcal{C}(\mathbf{A}) = \{\alpha(1, 1)^T : \alpha \in \mathbb{R}\}$$

$$\mathbf{P_A}(\mathbf{x}) = \underset{\substack{\alpha(1, 1)^T \\ \alpha \in \mathbb{R}}}{\mathbf{argmin}} \|\mathbf{x} - \alpha(1, 1)^T\|_2$$

$$\xrightarrow{\frac{2.(a)}{\alpha}} \mathbf{P_A}(\mathbf{x}) = \frac{(1, 1)\mathbf{x}}{(1, 1)(1, 1)^T} (1, 1)^T = \frac{x_1 + x_2}{2} (1, 1)^T = \mathbf{A} \cdot (c_1, c_2)^T$$

 \Longrightarrow The set of all coordinates of $\mathbf{P}_{\mathbf{A}}(\mathbf{x})$ with respect to the column vectors in \mathbf{A} is the affine line:

$$\left\{ (c_1, c_2)^T \in \mathbb{R}^2 : c_1 + 2c_2 = \frac{x_1 + x_2}{2} \right\}$$

Thus the coordinates are not unique.

4. (a) Let λ be an eigenvalue of \mathbf{P} and \mathbf{v} be the corresponding eigenvector. Then $\mathbf{P}\mathbf{v} = \lambda\mathbf{v}$. Since \mathbf{P} is a projection matrix, $\mathbf{P}\mathbf{v}$ is the projection of \mathbf{v} onto $\mathcal{C}(\mathbf{P})$ $\implies \mathbf{v} = \mathbf{P}\mathbf{v} + (\mathbf{v} - \mathbf{P}\mathbf{v})$, where $\mathbf{P}\mathbf{v} \in \mathcal{C}(\mathbf{P})$ and $\mathbf{v} - \mathbf{P}\mathbf{v} \in \mathcal{C}(\mathbf{P})^{\perp}$.

$$\Longrightarrow \|\mathbf{v}\|_2^2 = \|\mathbf{P}\mathbf{v}\|_2^2 + \|\mathbf{v} - \mathbf{P}\mathbf{v}\|_2^2 \xrightarrow{\mathbf{P}\mathbf{v} = \lambda\mathbf{v}} (\lambda^2 - \lambda) \|\mathbf{v}\|_2^2 = 0 \Longrightarrow \lambda \in \{0, 1\}$$

(b) ① Necessity:

 $\forall \mathbf{x} \in \mathbb{R}^m, \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P}).$ We need to prove that $\mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})^{\perp}.$ $\forall \mathbf{y} \in \mathcal{C}(\mathbf{P}), \exists \mathbf{z} \in \mathbb{R}^m, \text{ s.t. } \mathbf{y} = \mathbf{P}\mathbf{z}.$ Then

$$\langle \mathbf{x} - \mathbf{P} \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x} - \mathbf{P} \mathbf{x}, \mathbf{P} \mathbf{z} \rangle = \langle \mathbf{P}^{\mathbf{T}} (\mathbf{x} - \mathbf{P} \mathbf{x}), \mathbf{z} \rangle$$

$$\xrightarrow{\mathbf{P}^{\mathbf{T}} = \mathbf{P}} \langle \mathbf{P} (\mathbf{x} - \mathbf{P} \mathbf{x}), \mathbf{z} \rangle$$

$$\xrightarrow{\mathbf{P}^{2} = \mathbf{P}} \langle \mathbf{P} \mathbf{x} - \mathbf{P}^{2} \mathbf{x}, \mathbf{z} \rangle = 0$$

 $\Longrightarrow \mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})^{\perp} \Longrightarrow \mathbf{P}$ is a projection matrix.

2 Sufficiency:

 \mathbf{P} is a projection matrix $\Longrightarrow \forall \mathbf{x} \in \mathbb{R}^m, \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})$

$$\implies \mathbf{P}(\mathbf{P}\mathbf{x}) = \mathbf{argmin}_{\mathbf{z} \in \mathcal{C}(\mathbf{P})} \|\mathbf{P}\mathbf{x} - \mathbf{z}\|_2 = \mathbf{P}\mathbf{x} \implies \mathbf{P}^2 = \mathbf{P}.$$

 \mathbf{P} is a projection matrix $\Longrightarrow \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^m, \mathbf{x} = \mathbf{P}\mathbf{x} + (\mathbf{x} - \mathbf{P}\mathbf{x}), \text{ where } \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})$ and $\mathbf{x} - \mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})^{\perp}$. Since $\mathbf{P}\mathbf{y} \in \mathcal{C}(\mathbf{P})$, we have

$$\langle \mathbf{P}\mathbf{x}, \mathbf{y} - \mathbf{P}\mathbf{y} \rangle = 0 \Longrightarrow \langle \mathbf{P}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{P}\mathbf{x}, \mathbf{P}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{P}\mathbf{y} \rangle = \langle \mathbf{P}^{\mathbf{T}}\mathbf{x}, \mathbf{y} \rangle$$

$$\Longrightarrow \mathbf{P}^{\mathbf{T}} = \mathbf{P}.$$

5. $\forall \mathbf{x} \in \mathbb{R}^m$,

 $\mathcal{C}(\mathbf{B})$ is a proper subspace of $\mathcal{C}(\mathbf{A}) \Longrightarrow \forall \mathbf{z} \in \mathcal{C}(\mathbf{P}), z \in \mathcal{C}(\mathbf{A}) \Longrightarrow \mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z} \in \mathcal{C}(\mathbf{A})$

$$\mathbf{x} - \mathbf{P}_{\mathbf{A}}(\mathbf{x}) \in \mathcal{C}(\mathbf{A})^{\perp} \Longrightarrow \|\mathbf{x} - z\|_{2}^{2} = \|(\mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z}) + (\mathbf{x} - \mathbf{P}_{\mathbf{A}}(\mathbf{x}))\|_{2}^{2}$$

= $\|\mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z}\|_{2}^{2} + \|\mathbf{x} - \mathbf{P}_{\mathbf{A}}(\mathbf{x})\|_{2}^{2}$

$$\Longrightarrow \mathop{\mathrm{argmin}}_{\mathbf{z} \in \mathcal{C}(\mathbf{B})} \|\mathbf{x} - \mathbf{z}\|_2 = \mathop{\mathrm{argmin}}_{\mathbf{z} \in \mathcal{C}(\mathbf{B})} \|\mathbf{P}_{\mathbf{A}}(\mathbf{x}) - \mathbf{z}\|_2 \Longrightarrow \mathbf{P}_{\mathbf{B}}(\mathbf{x}) = \mathbf{P}_{\mathbf{B}}(\mathbf{P}_{\mathbf{A}}(\mathbf{x}))$$

Exercise 5: Derivatives with matrices

Definition 1 (Differentiability). [?] Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, $\mathbf{x}_0 \in \mathbb{R}^n$ be a point, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. We say that f is differentiable at \mathbf{x}_0 with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

We denote this derivative by $f'(\mathbf{x}_0)$.

- 1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Consider the functions as follows. Please show that they are differentiable and find $f'(\mathbf{x})$.
 - (a) $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$.
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$.
- 2. Consider a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$. The **Jacobian Matrix with denominator layout** is defined by:

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_1} \\
\frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1(\mathbf{x})}{\partial x_n} & \frac{\partial f_2(\mathbf{x})}{\partial x_n} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n}
\end{bmatrix}.$$

Please show that

$$L(\mathbf{x} - \mathbf{x}_0) = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top} (\mathbf{x} - \mathbf{x}_0),$$

where $L: \mathbb{R}^n \to \mathbb{R}^m$ is the derivative in Definition 1.

- 3. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}$.
- 4. Let $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.
- 5. (Optional) Let $f(\mathbf{X}) = \det(\mathbf{X})$, where $\det(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of f rigorously according to your definition in the last part. If f is differentiable, please find $f'(\mathbf{X})$.
- 6. (Optional) Let \mathbf{S}_{++}^n be the space of all positive definite $n \times n$ matrices. Please show the function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ defined by $f(\mathbf{X}) = \operatorname{tr} \mathbf{X}^{-1}$ is differentiable on \mathbf{S}_{++}^n . (Hint: Expand the expression $(\mathbf{X} + t\mathbf{Y})^{-1}$ as a power series.)

Solution 5: Derivatives with matrices

1. (a) Let $L(\mathbf{h}) = \mathbf{a}^{\top} \mathbf{h}$, $\forall \mathbf{h} \in \mathbb{R}^n$, then L is a linear transformation from \mathbb{R}^n to \mathbb{R} . For any $\mathbf{x}_0 \in \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{x}_0$,

$$\frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2} = \frac{|\mathbf{a}^\top \mathbf{x} - \mathbf{a}^\top \mathbf{x}_0 - \mathbf{a}^\top (\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \frac{0}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0$$

 $\implies f$ is differentiable at \mathbf{x}_0 with derivative L and $f'(\mathbf{x}) = \mathbf{a}^{\top}$.

(b) Let $L(\mathbf{h}) = 2\mathbf{x}_0^{\top}\mathbf{h}$, $\forall \mathbf{h} \in \mathbb{R}^n$, then L is a linear transformation from \mathbb{R}^n to \mathbb{R} . For any $\mathbf{x}_0 \in \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{x}_0$,

$$\frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2} = \frac{|\mathbf{x}^\top \mathbf{x} - \mathbf{x}_0^\top \mathbf{x}_0 - 2\mathbf{x}_0^\top (\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \frac{|(\mathbf{x} - \mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \frac{\|\mathbf{x} - \mathbf{x}_0\|_2^2}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \|\mathbf{x} - \mathbf{x}_0\|_2$$

 $\implies \lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0 \implies f \text{ is differentiable at } \mathbf{x}_0 \text{ with derivative } L \text{ and } f'(\mathbf{x}) = 2\mathbf{x}^\top.$

Key point: Observe the linear term of $\mathbf{x} - \mathbf{x_0}$ in $f(\mathbf{x}) - f(\mathbf{x_0})$.

2. Denote $\{\mathbf{e_1}, \dots, \mathbf{e_n}\}$ as the standard basis of \mathbb{R}^n .

For a fixed $i \in \{1, \dots, n\}$, we have

$$\lim_{t\to 0} \frac{f(\mathbf{x_0} + t\mathbf{e_i}) - f(\mathbf{x_0})}{t} = \left(\frac{\partial f_1}{\partial x_i}(\mathbf{x_0}), \frac{\partial f_2}{\partial x_i}(\mathbf{x_0}), \cdots, \frac{\partial f_m}{\partial x_i}(\mathbf{x_0})\right)^{\top} = L\mathbf{e_i}$$

which is the *i*-th column of

$$\frac{\partial f}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_1} \\
\frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_1(\mathbf{x})}{\partial x_n} & \frac{\partial f_2(\mathbf{x})}{\partial x_n} & \dots & \frac{\partial f_m(\mathbf{x})}{\partial x_n}
\end{bmatrix}.$$

For any $\mathbf{h} = \sum_{i=1}^{n} h_i \mathbf{e_i}$, we have

$$L\mathbf{h} = L\left(\sum_{i=1}^{n} h_{i}\mathbf{e_{i}}\right) = \sum_{i=1}^{n} h_{i}L\mathbf{e_{i}} = \sum_{i=1}^{n} h_{i}\left[\left(\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x_{0}})\right)^{\top}\right]_{:,i} = \left(\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x_{0}})\right)^{\top}\mathbf{h}$$

Let $\mathbf{h} = \mathbf{x} - \mathbf{x_0}$, we conclude

$$L(\mathbf{x} - \mathbf{x}_0) = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top} (\mathbf{x} - \mathbf{x}_0).$$

3. Let $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a function, $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$ be a point, and let $L: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a linear transformation. We say that f is differentiable at \mathbf{X}_0 with derivative L if we have

$$\lim_{\mathbf{X} \to \mathbf{X}_0; \mathbf{X} \neq \mathbf{X}_0} \frac{|f(\mathbf{X}) - f(\mathbf{X}_0) - L(\mathbf{X} - \mathbf{X}_0)|}{\|\mathbf{X} - \mathbf{X}_0\|_2} = 0.$$

We denote this derivative by $f'(\mathbf{X}_0)$.

4. $\forall \alpha, \beta > 0 \text{ and } \mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times m}$,

$$f(\alpha \mathbf{X} + \beta \mathbf{Y}) = \operatorname{tr}\left(\mathbf{A}^{\top} \left(\alpha \mathbf{X} + \beta \mathbf{Y}\right)\right) = \alpha \operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{X}\right) + \beta \operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{Y}\right) = \alpha f(\mathbf{X}) + \beta f(\mathbf{Y})$$

 $\implies f$ is linear \implies let $L(\mathbf{H}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{H})$. It is clear that $f(\mathbf{X}) - f(\mathbf{X_0}) - L(\mathbf{X} - \mathbf{X_0}) = 0$ $\implies f$ is differentiable and $f'(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$.

5.

6.

Exercise 6: Linear Space

- 1. Let $P_n[x]$ be the set of all polynomials on \mathbb{R} with degree at most n. Show that $P_n[x]$ is a linear space.
- 2. A real symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called *positive definite*, written $\mathbf{A} \succ \mathbf{0}$, if for all $\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$,

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0.$$

Let the set of all positive definite matrices be

$$\mathbb{S}^n_{++} := \Big\{ \mathbf{A} \in \mathbb{R}^{n \times n} : \mathbf{A} = \mathbf{A}^\top, \ \mathbf{x}^\top \mathbf{A} \mathbf{x} > 0 \text{ for all } \mathbf{x} \neq \mathbf{0} \Big\}.$$

Is \mathbb{S}^n_{++} a linear subspace of $\mathbb{R}^{n\times n}$? Please show your conclusion in detail.

Solution 6: Linear Space

1.
$$\forall p(x) = \sum_{k=0}^{m} a_k x^k, \ q(x) = \sum_{k=0}^{m} b_k x^k, \ r(x) = \sum_{k=0}^{m} c_k x^k, \ a_k, \ b_k, \ c_k \in \mathbb{R}, \ 0 \le k \le n, \ \forall \ \alpha, \beta \in \mathbb{R}$$
:

(a) Closure under addition:

$$p(x) + q(x) = \sum_{k=0}^{m} (a_k + b_k) x^k \in P_n[x]$$

(b) Associativity of addition:

$$(p+q) + r = \sum_{k=0}^{m} [(a_k + b_k) + c_k] x^k = \sum_{k=0}^{m} [a_k + (b_k + c_k)] x^k = p + (q+r)$$

(c) Commutativity of addition:

$$p(x) + q(x) = \sum_{k=0}^{m} (a_k + b_k)x^k = \sum_{k=0}^{m} (b_k + a_k)x^k = q(x) + p(x)$$

(d) Additive identity:

$$0 \in P_n[x] \text{ and } p + 0 = 0 + p$$

(e) Additive Inverse:

$$-p = \sum_{k=0}^{m} (-a_k)x^k \in P_n[x] \text{ and } p + (-p) = 0$$

(f) Closure under scalar multiplication:

$$\alpha p = \sum_{k=0}^{m} (\alpha a_k) x^k \in P_n[x]$$

(g) Distributivity of scalar over vector addition:

$$\alpha(p+q) = \sum_{k=0}^{m} [\alpha(a_k + b_k)]x^k = \sum_{k=0}^{m} (\alpha a_k + \alpha b_k)x^k = \alpha p + \alpha q$$

(h) Distributivity of scalar addition over vector:

$$(\alpha + \beta)p = \sum_{k=0}^{m} [(\alpha + \beta)a_k]x^k = \sum_{k=0}^{m} (\alpha a_k + \alpha b_k)x^k = \alpha p + \beta p$$

(i) Compatibility of scalar multiplication:

$$\alpha(\beta p) = \sum_{k=0}^{m} [\alpha(\beta a_k)] x^k = \sum_{k=0}^{m} [(\alpha \beta) a_k] x^k = (\alpha \beta) p$$

(j) Unit scalar:

$$1 \in P_n[x]$$
 and $1 \cdot p = p \cdot 1 = p$

2. No.

(a)
$$\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top \mathbf{0} \mathbf{x} = 0 \Longrightarrow \mathbf{0} \notin \mathbb{S}^n_{++}$$

(b)
$$\forall \alpha < 0, \mathbf{A} \in \mathbb{S}_{++}^{n}, \mathbf{x}^{\top}(\alpha A)\mathbf{x} < 0 \Longrightarrow \alpha \mathbf{A} \notin \mathbb{S}_{++}^{n}$$

Exercise 7: Basis and Coordinates

Suppose that $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of an *n*-dimensional vector space V.

- 1. Show that $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is also a basis of V for nonzero scalars $\lambda_1, \lambda_2, \dots, \lambda_n$.
- 2. Let $V = \mathbb{R}^n$, $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \in \mathbb{R}^{n \times n}$ and $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) \in \mathbb{R}^{n \times n}$. $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)\mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_i \in \mathbb{R}^n$, for any $i \in \{1, \dots, n\}$. Show that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is also a basis of V for any invertible matrix \mathbf{P} .
- 3. Suppose that the coordinate of a vector \mathbf{v} under the basis $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is $\mathbf{x} = (x_1, x_2, \dots x_n)$.
 - (a) What is the coordinate of **v** under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$?
 - (b) What are the coordinates of $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$ under $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ and $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$? Note that $\lambda_i \neq 0$ for any $i \in \{1, \dots, n\}$.
- 4. Suppose $\mathbf{a}=(1,0)$, $\mathbf{b}=(0,1)$ and $\mathbf{c}=(-1,0)$ are three unit vectors in two-dimensional space. $\mathbf{v}=(x,y)$ is a vector in two-dimensional space.
 - (a) Please find the coordinate of \mathbf{v} under basis $\{\mathbf{c},\mathbf{b}\}$? Is the coordinate unique?
 - (b) Please find all the possible combination coefficients of **v** under vectors **a**, **b** and **c**, i.e., $\mathbf{v} = x'\mathbf{a} + y'\mathbf{b} + z'\mathbf{c}$.
 - (c) (**Bonus**) Each set of combination coefficients (x', y', z') in (b) forms a vector in \mathbb{R}^3 . Please find the combination coefficients with minimum ℓ_1 -norm.

Solution 7: Basis and Coordinates

1. Suppose $\sum_{i=1}^{n} c_i(\lambda_i \mathbf{a_i}) = \sum_{i=1}^{n} (c_i \lambda_i) \mathbf{a_i} = 0$. Because $\{\mathbf{a_i}\}_{i=1}^{n}$ is linear independent, we must have $c_i \lambda_i = 0 \xrightarrow{\lambda_i \neq 0} c_i = 0$ for all i, i.e., $\{\lambda_i \mathbf{a_i}\}$ is linear independent.

 $\forall \mathbf{v} \in \mathbf{V}, \{\mathbf{a_i}\}\$ is a basis \Longrightarrow there exists unique scalars $\{\alpha_i\}$ such that

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{a_i} = \sum_{i=1}^{n} \left(\frac{\alpha_i}{\lambda_i} \right) (\lambda_i \alpha_i).$$

Thus \mathbf{v} is a linear combination fo the vectors in $\{\lambda_i \mathbf{a_i}\}$.

In conclusion, $\{\lambda_i \mathbf{a_i}\}$ is also a basis of an *n*-dimensional vector space V.

2. ① $|\mathbf{B}| = |\mathbf{AP}| = |\mathbf{A}| \cdot |\mathbf{P}| \neq 0 \Longrightarrow \mathbf{B}$ is invertible \Longrightarrow the columns $\mathbf{b_i}$, $1 \leq i \leq n$ are linearly independent. Being n independent vectors in \mathbb{R}^n , they span \mathbb{R}^n , i.e., $\{\mathbf{b_i}\}$, $1 \leq i \leq n$ is also a basis of V for any invertible matrix \mathbf{P} .

② $\forall \mathbf{x} \in \mathbb{R}^n$, there exists a unique $\mathbf{c} \in \mathbb{R}^n$ with $\mathbf{x} = \mathbf{A}\mathbf{c} \xrightarrow{\mathbf{P} \text{ is invertible}} \mathbf{x} = \mathbf{A}\mathbf{c} = \mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{c} = \mathbf{B}\left(\mathbf{P}^{-1}\mathbf{c}\right) \Longrightarrow \{\mathbf{b_i}\}, \ 1 \leq i \leq n \text{ is also a basis of } V \text{ for any invertible matrix } \mathbf{P}.$

3. (a) Set $\mathbf{y} = (y_1, y_2, \dots, y_n)$ as the coordinate of \mathbf{v} under $\{\lambda_i \mathbf{a_i}\}, 1 \leq i \leq n$.

$$\mathbf{v} = \sum_{i=1}^{n} y_i(\lambda_i \mathbf{a_i}) = \sum_{i=1}^{n} x_i \mathbf{a_i} \Longrightarrow y_i = \frac{x_i}{\lambda_i}$$

Therefore, the coordinate of **v** under $\{\lambda_i \mathbf{a_i}\}$, $1 \leq i \leq n$ is $\mathbf{y} = \left(\frac{x_1}{\lambda_1}, \frac{x_2}{\lambda_2}, \cdots, \frac{x_n}{\lambda_n}\right)$.

- (b) It is clear that $\mathbf{x} = (1, 1, \dots, 1)^{\top}$ and $\mathbf{y} = \left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}\right)$.
- 4. (a) It is clear that the coordinate of **v** under basis $\{\mathbf{c}, \mathbf{b}\}$ is (-x, y). And the coordinate is unique because $\{\mathbf{c}, \mathbf{b}\}$ is a basis of \mathbb{R}^2 .
 - (b) $\mathbf{v} = x'\mathbf{a} + y'\mathbf{b} + z'\mathbf{c} = (x' z', y') = (x, y) \Longrightarrow (x', y', z') = (x + t, y, t), \forall t \in \mathbb{R}.$

$$\min \|(x', y', z')\|_1 = \min |x'| + |y'| + |z'| = \min |x'| + |z'| = \min |x + t| + |t|$$

$$\begin{cases} |x + t| + |t| \ge |x + t - t| = |x| \\ |x + t| + |t| = |x| \text{ when } t \in [-x, 0] \text{ and } x \ge 0 \text{ or } t \in [0, -x] \text{ and } x < 0 \end{cases}$$

In conclusion, $\min \|(x', y', z')\|_1 = |x| + |y|$.

Exercise 8: Rank of matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}) = \operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{\top});$
 - (b) $\mathbf{rank}(\mathbf{AB}) \leq \mathbf{rank}(\mathbf{A});$ (please give an example when the equality holds)
- 2. The *column space* of \mathbf{A} is defined by

$$C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.$$

The $null\ space\ of\ \mathbf{A}$ is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of A is the dimension of the column space of A.

Please show that

- (a) $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A}));$
- (b) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$
- 3. Given that

$$rank(AB) = rank(B) - dim(C(B) \cap N(A)).$$
 (1)

Please show the results in 1.(b) by Eq. (1).

Solution 8: Rank of matrices

1. (a) The column rank of a matrix equals its row rank $\Longrightarrow \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$. For $\mathbf{x} \in \mathbb{R}^n$,

$$\begin{cases} (\mathbf{A}\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{0}) \Longrightarrow \mathcal{N}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) \supset \mathcal{N}(\mathbf{A}) \\ (\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{0} \Longrightarrow \|\mathbf{A}\mathbf{x}\|_{2}^{2} = \mathbf{x}^{\mathbf{T}}\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{A}\mathbf{x} = \mathbf{0}) \Longrightarrow \mathcal{N}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) \subset \mathcal{N}(\mathbf{A}) \\ \Longrightarrow \mathcal{N}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) = \mathcal{N}(\mathbf{A}) \\ \Longrightarrow \mathbf{rank}(\mathbf{A}^{\mathbf{T}}\mathbf{A}) = n - \dim \mathbf{A}^{\mathbf{T}}\mathbf{A} = n - \dim \mathbf{A} = \mathbf{rank}(\mathbf{A}) \end{cases}$$

In the same way, $rank(AA^T) = rank(A)$.

In conclusion, $rank(\mathbf{A}) = rank(\mathbf{A}^{\top}) = rank(\mathbf{A}^{\top}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{\top})$.

(b) $\operatorname{Im}(\mathbf{AB}) = \mathbf{A}(\operatorname{Im}(\mathbf{B})) \subset \operatorname{Im}(\mathbf{A}) \Longrightarrow \operatorname{rank}(\mathbf{AB}) = \dim(\operatorname{Im}(\mathbf{AB})) \leq \dim(\operatorname{Im}(\mathbf{A})) = \operatorname{rank}(\mathbf{A}).$ E.g.:

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} = I_n$. Then $\mathbf{AB} = \mathbf{A} \Longrightarrow \mathbf{rank}(\mathbf{AB}) = \mathbf{rank}(\mathbf{A})$.

- 2. (a) By definition, $\operatorname{rank}(\mathbf{A})$ is the maximal number of linearly independent columns of \mathbf{A} and the dimension of the span of a finite set of vectors equals the maximal size of a linearly independent subset of that set. Therefore, $\operatorname{rank}(\mathbf{A}) = \dim(\mathcal{C}(\mathbf{A}))$.
 - (b) Let $\{\mathbf{v_1}, \dots, \mathbf{v_k}\}$ be a basis of $\mathcal{N}(\mathbf{A})$, where $k = \dim(\mathcal{N}(\mathbf{A}))$. We can extend this basis to a basis of \mathbb{R}^n , i.e., there exist vectors $\{\mathbf{w_1}, \dots, \mathbf{w_{n-k}}\}$ such that $\{\mathbf{v_1}, \dots, \mathbf{v_k}, \mathbf{w_1}, \dots, \mathbf{w_{n-k}}\}$ is a basis of \mathbb{R}^n .

We claim that $\{Aw_1, \cdots, Aw_{n-k}\}$ is a basis of C(A).

Spanning: $\forall \mathbf{y} \in \mathcal{C}(\mathbf{A})$, there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Since $\{\mathbf{v_1}, \dots, \mathbf{v_k}, \mathbf{w_1}, \dots, \mathbf{w_{n-k}}\}$ is a basis of \mathbb{R}^n , there exist scalars $\{\alpha_i\}_{i=1}^k$ and $\{\beta_j\}_{j=1}^{n-k}$ such that

$$\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{v_i} + \sum_{j=1}^{n-k} \beta_j \mathbf{w_j}$$

$$\implies \mathbf{y} = \mathbf{A}\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{A} \mathbf{v_i} + \sum_{j=1}^{n-k} \beta_j \mathbf{A} \mathbf{w_j} = \sum_{j=1}^{n-k} \beta_j \mathbf{A} \mathbf{w_j}$$

 $\Longrightarrow y \ {\rm is \ a \ linear \ combination \ of \ } \{Aw_1, \cdots, Aw_{n-k}\}.$

Linear independence: Suppose $\sum_{j=1}^{n-k} \gamma_j \mathbf{A} \mathbf{w_j} = \mathbf{0}$. Then $\mathbf{A}(\sum_{j=1}^{n-k} \gamma_j \mathbf{w_j}) = \mathbf{0}$

 $\sum_{j=1}^{n-k} \gamma_j \mathbf{w_j} \in \mathcal{N}(\mathbf{A}). \text{ Since } \{\mathbf{v_1}, \cdots, \mathbf{v_k}, \mathbf{w_1}, \cdots, \mathbf{w_{n-k}}\} \text{ is a basis of } \mathbb{R}^n, \text{ the vectors } \{\mathbf{w_1}, \cdots, \mathbf{w_{n-k}}\} \text{ are linearly independent and none of them can be expressed as a linear combination of } \{\mathbf{v_1}, \cdots, \mathbf{v_k}\}. \text{ Therefore, } \sum_{j=1}^{n-k} \gamma_j \mathbf{w_j} = \mathbf{0} \Longrightarrow \gamma_j = 0 \text{ for all } j.$

In conclusion,
$$\{\mathbf{A}\mathbf{w_1}, \cdots, \mathbf{A}\mathbf{w_{n-k}}\}\$$
is a basis of $\mathcal{C}(\mathbf{A}) \Longrightarrow \dim(\mathcal{C}(\mathbf{A})) = n-k = n-\dim(\mathcal{N}(\mathbf{A})) \Longrightarrow \mathbf{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n.$

3.

$$\begin{aligned} \mathbf{rank}(\mathbf{AB}) & \xrightarrow{1.(a)} \mathbf{rank}(\mathbf{B^TA^T}) & \xrightarrow{1.(b)} \mathbf{rank}(\mathbf{A^T}) - \dim(\mathcal{C}(\mathbf{A^T}) \cap \mathcal{N}(\mathbf{B^T})) \\ & \leq \mathbf{rank}(\mathbf{A^T}) & \xrightarrow{1.(a)} \mathbf{rank}(\mathbf{A}) \end{aligned}$$

Exercise 9: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue and maximum singular value of a given symmetric matrix $\mathbf{A} \in S^n$ are denoted by $\lambda_{\max}(\mathbf{A})$ and $\lambda_{\min}(\mathbf{A})$, respectively. Please show that

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

- 2. (**Optional**) Suppose $\mathbf{B} = (b_{ij}) \in \mathbb{R}^{m \times n}$ with maximum singular value $\max \sigma_{\max}(\mathbf{B})$.
 - (a) Let $\|\mathbf{B}\|_2 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$. Please show that

$$\sigma_{\max}(\mathbf{B}) = \|\mathbf{B}\|_2.$$

(b) Please show that

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^\top \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

Solution 9: Properties of Eigenvalues and Singular Values

1. Define Rayleigh quotient:

$$R(x) = \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$$

Note that $R(\alpha \mathbf{x}) = R(\mathbf{x})$ for any nonzero scalar α . Hence

$$\sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} R(x) = \max_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^\top \mathbf{A} \mathbf{x}, \qquad \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} R(x) = \min_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^\top \mathbf{A} \mathbf{x}$$

Because $\mathbf{x} \mapsto \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ is continuous and the unit sphere is compact, both extrema are attained.

By the spectral theorem, there exists an orthogonal matrix \mathbf{Q} and a diagonal matrix $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with real eigenvalues λ_i such that $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$.

Without generality, order the eigenvalues so that $\lambda_{\min} = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n = \lambda_{\max}$. For any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top} \mathbf{x} := \mathbf{y}^{\top} \mathbf{\Lambda} \mathbf{y} = \sum_{i=1}^{n} \lambda_{i} y_{i}^{2}, \qquad \mathbf{x}^{\top} \mathbf{x} = (\mathbf{Q} \mathbf{y})^{\top} (\mathbf{Q} \mathbf{y}) = \mathbf{y}^{\top} \mathbf{y}$$

$$\Longrightarrow R(x) = \frac{\sum\limits_{i=1}^{n} \lambda_i y_i^2}{\sum\limits_{i=1}^{n} y_i^2} \in [\lambda_{\min}, \lambda_{\max}]$$

Let \mathbf{v}_{max} be a unit eigenvector of **A** associated with λ_{max} , then

$$R(\mathbf{v}_{\text{max}}) = \frac{\mathbf{v}_{\text{max}}^{\top} \mathbf{A} \mathbf{v}_{\text{max}}}{\mathbf{v}_{\text{max}}^{\top} \mathbf{v}_{\text{max}}} = \lambda_{\text{max}}.$$

Similarly, let \mathbf{v}_{\min} be a unit eigenvector associated with λ_{\min} , then $R(\mathbf{v}_{\min}) = \lambda_{\min}$. In conclusion,

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

2. (a)
$$\|\mathbf{B}\|_2 = \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{B}\mathbf{x}\|_2 = \max_{\|\mathbf{x}\|_2 = 1} [(\mathbf{B}\mathbf{x})^\top \mathbf{B}\mathbf{x}]^{\frac{1}{2}} = \max_{\|\mathbf{x}\|_2 = 1} [\mathbf{x}^\top (\mathbf{B}^T \mathbf{B})\mathbf{x}]^{\frac{1}{2}}$$

Notice that ${\bf B^TB}$ is symmetric and positive semi-definite. Without generality, let its eigenvalues be

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0.$$

and let their corresponding orthogonal normalized eigenvectors be $\mathbf{v_1}, \dots, \mathbf{v_n} \in \mathbb{R}^n$. Then for any $\mathbf{x} \in \mathbb{R}^n$ with $\|\mathbf{x}\|_2 = 1$, there exist scalars $\alpha_1, \dots, \alpha_n$ such that

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{v_i}, \qquad \sum_{i=1}^{n} \alpha_i^2 = 1$$

$$\Longrightarrow \mathbf{x}^{\top}(\mathbf{B}^{\mathbf{T}}\mathbf{B})\mathbf{x} = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \leq \lambda_{1} \sum_{i=1}^{n} \alpha_{i}^{2} = \lambda_{1}$$

Besides, let $\mathbf{x} = \mathbf{v_1}$, then $\mathbf{x}^{\top}(\mathbf{B^TB})\mathbf{x} = \lambda_1$. In conclusion, $\|\mathbf{B}\|_2 = \sqrt{\lambda_1} = \sigma_{\max}(\mathbf{B})$.

(b) By Cauchy-Schwarz inequality,

$$\mathbf{x}^{\top}\mathbf{B}\mathbf{y} \leq \|\mathbf{x}\|_2 \|\mathbf{B}\mathbf{y}\|_2 \leq \|\mathbf{x}\|_2 \|\mathbf{B}\|_2 \|\mathbf{y}\|_2 = \|\mathbf{x}\|_2 \sigma_{\max}(\mathbf{B}) \|\mathbf{y}\|_2$$

Let $\mathbf{x} = \mathbf{u_1}$ and $\mathbf{y} = \mathbf{v_1}$, where $\mathbf{u_1}$ and $\mathbf{v_1}$ are the left and right singular vectors of \mathbf{B} associated with $\sigma_{\max}(\mathbf{B})$. Then

$$\mathbf{x}^{\top}\mathbf{B}\mathbf{y} = \mathbf{u_1}^{\top}\mathbf{B}\mathbf{v_1} = \sigma_{\max}(\mathbf{B}) = \|\mathbf{u_1}\|_2\sigma_{\max}(\mathbf{B})\|\mathbf{v_1}\|_2$$

In conclusion,

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

Exercise 10: Matrix SVD Decomposition and Pseudoinverse

1. For any real matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$, the **Moore-Penrose generalized inverse** (or pseudoinverse) of \mathbf{A} , denoted by $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$, is a matrix that satisfies the following four conditions:

(a) $\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}$ (Consistency condition)

(b) $\mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+} = \mathbf{A}^{+}$ (Reflexivity condition)

(c) $(\mathbf{A}\mathbf{A}^+)^{\top} = \mathbf{A}\mathbf{A}^+$ (Symmetry condition 1)

 $(d) (\mathbf{A}^{+}\mathbf{A})^{\top} = \mathbf{A}^{+}\mathbf{A}$ (Symmetry condition 2)

Suppose that the matrix **A** can be decomposed via Singular Value Decomposition (SVD) as $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$, Please show that $\mathbf{A}^{+} = \mathbf{V} \mathbf{\Sigma}^{+} \mathbf{U}^{\top}$, where $\mathbf{\Sigma}^{+} \in \mathbb{R}^{m \times n}$ is defined by:

$$\Sigma_{ij}^{+} = \begin{cases} \frac{1}{\Sigma_{ii}} & \text{if } i = j \text{ and } \Sigma_{ii} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

- 2. (Optional) Please show that \mathbf{A}^+ is unique for any matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$.
- 3. Consider the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{x} \in \mathbb{R}^m$, and $\mathbf{b} \in \mathbb{R}^n$. Please show that if the system has no solution (i.e., \mathbf{b} is not in the column space of \mathbf{A}), the least squares solution to the system

$$\arg\min_{\mathbf{x}\in\mathbb{R}^m} \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

is given by $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$, where $\mathbf{A}^+ \in \mathbb{R}^{m \times n}$ is the Moore-Penrose generalized inverse of matrix \mathbf{A} defined above.

(**Hint**: For any orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and vector $\mathbf{x} \in \mathbb{R}^n$, then $\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$)

Solution 10: Matrix SVD Decomposition and Pseudoinverse

1. (a)
$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{V}\boldsymbol{\Sigma}^{+}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{+}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{A}$$

(b)

$$\mathbf{A}^+\mathbf{A}\mathbf{A}^+ = \mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^\top\mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{V}\boldsymbol{\Sigma}^+\boldsymbol{\Sigma}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{A}^+$$

(c)
$$(\mathbf{A}\mathbf{A}^+)^\top = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^\top\mathbf{V}\boldsymbol{\Sigma}^+\mathbf{U}^\top)^\top = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^+\mathbf{U}^\top = \mathbf{A}\mathbf{A}^+$$

(d)
$$(\mathbf{A}^{+}\mathbf{A})^{\top} = (\mathbf{V}\boldsymbol{\Sigma}^{+}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top} = \mathbf{V}\boldsymbol{\Sigma}^{+}\boldsymbol{\Sigma}\mathbf{V}^{\top} = \mathbf{A}^{+}\mathbf{A}$$

2. Assume that there exist two pseudoinverses \mathbf{B} and \mathbf{C} of \mathbf{A} . Set $\mathbf{X} = \mathbf{B} - \mathbf{C}$. Given that \mathbf{B} and \mathbf{C} satisfy the four Moore-Penrose conditions:

$$\mathbf{A}\mathbf{B}\mathbf{A} = \mathbf{A}, \qquad \mathbf{B}\mathbf{A}\mathbf{B} = \mathbf{B}, \qquad (\mathbf{A}\mathbf{B})^{\top} = \mathbf{A}\mathbf{B}, \qquad (\mathbf{B}\mathbf{A})^{\top} = \mathbf{B}\mathbf{A}$$

$$\mathbf{A}\mathbf{C}\mathbf{A} = \mathbf{A}, \qquad \mathbf{C}\mathbf{A}\mathbf{C} = \mathbf{C}, \qquad (\mathbf{A}\mathbf{C})^{\top} = \mathbf{A}\mathbf{C}, \qquad (\mathbf{C}\mathbf{A})^{\top} = \mathbf{C}\mathbf{A}$$

Then

$$\begin{aligned} \mathbf{A}\mathbf{X}\mathbf{A} &= \mathbf{A}\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{C}\mathbf{A} = \mathbf{A} - \mathbf{A} = \mathbf{0} \\ \mathbf{A}\mathbf{X} &= \mathbf{A}\mathbf{B} - \mathbf{A}\mathbf{C} = (\mathbf{A}\mathbf{B})^\top - (\mathbf{A}\mathbf{C})^\top = (\mathbf{A}\mathbf{B} - \mathbf{A}\mathbf{C})^\top = (\mathbf{A}\mathbf{X})^\top \\ \mathbf{X}\mathbf{A} &= \mathbf{B}\mathbf{A} - \mathbf{C}\mathbf{A} = (\mathbf{B}\mathbf{A})^\top - (\mathbf{C}\mathbf{A})^\top = (\mathbf{B}\mathbf{A} - \mathbf{C}\mathbf{A})^\top = (\mathbf{X}\mathbf{A})^\top \\ \Longrightarrow \begin{cases} \|\mathbf{A}\mathbf{X}\|_2^2 = \operatorname{tr}\left((\mathbf{A}\mathbf{X})^\top \mathbf{A}\mathbf{X}\right) = \operatorname{tr}\left(\mathbf{A}\mathbf{X}\mathbf{A}\mathbf{X}\right) = \operatorname{tr}\left((\mathbf{A}\mathbf{X}\mathbf{A})\mathbf{X}\right) = \operatorname{tr}\left(\mathbf{0}\mathbf{X}\right) = 0 \\ \|\mathbf{X}\mathbf{A}\|_2^2 = \operatorname{tr}\left((\mathbf{X}\mathbf{A})^\top \mathbf{X}\mathbf{A}\right) = \operatorname{tr}\left(\mathbf{X}\mathbf{A}\mathbf{X}\mathbf{A}\right) = \operatorname{tr}\left(\mathbf{X}(\mathbf{A}\mathbf{X}\mathbf{A})\right) = \operatorname{tr}\left(\mathbf{X}\mathbf{0}\right) = 0 \\ \Longrightarrow \begin{cases} \mathbf{A}\mathbf{X} = \mathbf{0} \\ \mathbf{X}\mathbf{A} = \mathbf{0} \end{cases} \end{aligned}$$

$$\Rightarrow X = B - C = BAB - CAC$$

$$= BAB - CAB + CAB - CAC$$

$$= (B - C)AB + CA(B - C)$$

$$= XAB + CAX = 0B + C0 = 0$$

$$\Rightarrow B = C$$

In conclusion, the pseudoinverse A^+ is unique.

3. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ be the SVD of \mathbf{A} , where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{R}^{m \times m}$ are orthogonal matrices, and $\mathbf{\Sigma} \in \mathbb{R}^{n \times m}$ is a diagonal matrix with singular values $\sigma_1, \sigma_2, \ldots, \sigma_r$ on the diagonal (where $r = \text{rank}(\mathbf{A})$).

Then

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \|\mathbf{U}^\top (\mathbf{A}\mathbf{x} - \mathbf{b})\|_2^2 = \|\mathbf{\Sigma}\mathbf{V}^\top \mathbf{x} - \mathbf{U}^\top \mathbf{b}\|_2^2$$

Let $\mathbf{y} = \mathbf{V}^{\top} \mathbf{x}$ and $\mathbf{c} = \mathbf{U}^{\top} \mathbf{b}$. Then the problem reduces to

$$\min_{\mathbf{y} \in \mathbb{R}^m} \|\mathbf{\Sigma} \mathbf{y} - \mathbf{c}\|_2^2 = \min_{\mathbf{y} \in \mathbb{R}^m} \sum_{i=1}^r (\sigma_i y_i - c_i)^2 + \sum_{i=r+1}^n c_i^2$$

Note that the second term $\sum_{i=r+1}^{n} c_i^2$ is constant with respect to **y**. Therefore, we only need to minimize the first term, which is minimized when $y_i = \frac{c_i}{\sigma_i}$ for i = 1, 2, ..., r and y_i can be any value for i = r + 1, r + 2, ..., m.

Hence, the set of least squares minimizers is

$$\mathbf{x} = \mathbf{V}\mathbf{y}, \quad \mathbf{y} = (\frac{c_1}{\sigma_1}, \frac{c_2}{\sigma_2}, \dots, \frac{c_r}{\sigma_r}, y_{r+1}, \dots, y_m)^\top, y_{r+1}, \dots, y_m \in \mathbb{R}$$

Let $y_i = 0$, $i = r + 1, r + 2, \dots, m$. Then the least-norm solution is

$$\mathbf{x} = \mathbf{V}(\frac{c_1}{\sigma_1}, \frac{c_2}{\sigma_2}, \dots, \frac{c_r}{\sigma_r}, 0, \dots, 0)^\top = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^\top \mathbf{b} = \mathbf{A}^+ \mathbf{b}$$