Sobre anéis e módulos Noetherianos e Artinianos

Ailton Ribeiro de Assis ra: 134713 Leandro da Silva Tavares ra: 134710 Leandro Morgado ra:133569 Steve da Silva Vicentim ra:134717

Universidade Estadual de Campinas - UNICAMP

Instituto de Matemática, Estatística e Computação Científica - IMECC

Julho de 2012

1 Aneis Noetherianos

Definição 1.1. Seja A um anel. Então as seguintes condições são equivalentes:

- i) A é Noetheriano.
- ii) Toda cadeia ascendente $I_1\subset I_2\subset \ldots I_n\subset I_{n+1}\subset \ldots$ de ideais de A é finita, isto é, existe $r\geq 1$ tal que $I_r=I_{r+1}=I_{r+2}=\ldots$
- iii) Todo conjunto não vazio de ideais de A tem elemento maximal.

Exemplo 1.2. Todo o domínio de ideais principais é noetheriano. De fato, para estes anéis todo o ideal, sendo principal, é de tipo finito, e a definição se aplica. Em particular, \mathbb{Z} e $\mathbb{K}[X]$ são anéis noetherianos.

Teorema 1.3 (Teorema da Base de Hilbert). Seja A anel Noetheriano, então A[X] é anel Noetheriano.

Demonstração. [1] Theorem 7.5.

Corolário 1.4. Seja A Noetheriano, então $A[X_1, ..., X_n]$ é Noetheriano.

Demonstração. Vamos fazer a prova por indução sobre n. Para n=1 o resultado é válido pelo teorema anterior. Por hipótese de indução temos que $A[X_1, \ldots, X_{n-1}]$ é Noetheriano. Como $A[X_1, \ldots, X_n] = A[X_1, \ldots, X_{n-1}][X_n]$, pela hipótese de indução e pelo teorema da base de Hilbert, concluímos que $A[X_1, \ldots, X_n]$ é Noetheriano.

Corolário 1.5. Seja B uma A-álgebra finitamente gerada. Se A é Noetheriano, então B é Noetheriano. Em particular, todo anel finitamente gerado e toda álgebra finitamente gerada sobre um corpo são Noetherianos.

Demonstração. Basta notar que B é a imagem homomórfica de um anel de polinômios $A[X_1, \ldots, X_n]$, que é Noetheriano por (1.4).

Teorema 1.6. Em um anel noetheriano, cada ideal tem uma decomposição primária.

Demonstração. [1] Theorem 7.13.

Proposição 1.7. Em um anel noetheriano A, cada ideal contém uma potência de seu radical.

Demonstração. [1] Theorem 7.14.

Corolário 1.8. Em um anel noetheriano o nilradical é nilpotente.

Demonstração. [1] Theorem 7.5.

Proposição 1.9. Sejam A um anel e $0 \to M^{'} \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} M^{''} \to 0$ uma sequência exata de A-módulos. Então:

- i) M é noetheriano $\Leftrightarrow M'$ e M'' são noetherianos.
- i) M é artiniano $\Leftrightarrow M'$ e M'' são artinianos.

Demonstração. [1] Theorem 6.3.

Corolário 1.10. Sejam A um anel e $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ ideais maximais de A (não necessariamente distintos) tal que $\mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n = (0)$. Então A é artiniano se, e somente se, A é noetheriano.

Demonstração. Consideremos a cadeia

$$A = \mathfrak{m}_0 \supset \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \cdots \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = 0$$

de ideais de A. Seja $M_i = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i$, para $i = 1, 2, \ldots, n$. Então, cada M_i é um A/\mathfrak{m}_i -módulo, isto é, um espaço vetorial sobre A/\mathfrak{m}_i . Daí, M_i é artiniano se, e somente se, é Noetheriano. Para $i = 1, 2, \ldots, n$ temos a sequência exata:

$$0 \longrightarrow \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i \longrightarrow \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1} \longrightarrow M_i \longrightarrow 0.$$

Decorre da Proposição (1.9) que $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_i$ e M_i são artinianos (noetheriano) se, e somente se, $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{n-1}$ é artiniano, (noetheriano). Para indução (decrescente) em i, começando com $M_n=\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_{n-1}$, obtemos que o módulo $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n$ é artiniano se, e somente se, é Noetheriano. Para i=0, obtemos que A é artiniano se, e somente se, é noetheriano.

2 Aneis Artinianos

Definição 2.1. Um anel artiniano A é um anel que satisfaz a condição de cadeia descendente de ideais, ou seja, toda cadeia descendente de ideais estabiliza, isto é, dada uma cadeia de ideais

$$\mathfrak{a}_0 \supset \mathfrak{a}_1 \supset \mathfrak{a}_2 \supset \mathfrak{a}_3 \supset \cdots$$

então $\mathfrak{a}_i = \mathfrak{a}_{i+1}$ para *i* suficientemente grande.

Proposição 2.2. Em um anel Artiniano todo ideal primo é maximal.

Demonstração. Sejam $\mathfrak p$ um ideal primo de um anel artiniano A, e $B=A/\mathfrak p$. Então, B é um domínio integral artiniano. Para todo elemento não nulo $x\in B$, pela condição de cadeia descendente, temos que $(x^n)=(x^{n+1})$ para algum n, por tanto $x^n=x^{n+1}y$ para algum $y\in B$. Como B é um domínio de integridade e $x\neq 0$, podemos simplificar x^n , obtendo xy=1. Concluímos que todo elemento x tem inverso em B, portanto B é um corpo, e $\mathfrak p$ é um ideal máximal.

Corolário 2.3. Em um anel Artiniano o nilradical é igual ao radical de Jacobson.

Proposição 2.4. Um anel Artiniano tem somente um número finito de ideais maximais.

Demonstração. Seja $\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n$ o elemento minimal do conjunto de todas as intercessão finitas de ideais maximais do anel artiniano A. Então, para cada ideals maximal \mathfrak{m} temos que $\mathfrak{m} \cap \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n = \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n$, e portanto $\mathfrak{m} \supseteq \mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n$. Em virtude de (1.11), temos que $\mathfrak{m} \supseteq \mathfrak{m}_i$ para algum i, por tanto $\mathfrak{m} = \mathfrak{m}_1$, pois \mathfrak{m}_1 é maximal.

Proposição 2.5. Em um anel Artiniano o nilradical é nilpotente.

Demonstração. [1] Theorem 8.4.

A definição seguinte possibilitará estabelecer uma equivalência entre anéis Artinianos e Noetherianos.

Definição 2.6. Seja A um anel. Uma cadeia de ideais primos de A é uma sequência finita estritamente crescente $\mathfrak{p}_0 \supset \mathfrak{p}_1 \supset \mathfrak{p}_2 \supset \cdots \supset \mathfrak{p}_n$ de ideais primos de A. Neste caso, o comprimento da cadeia é n. Definimos a dimensão de Krull de A como o supremo dos comprimentos de todas as cadeias de ideais primos de A, que é um inteiro não negativo ou $+\infty$ (supondo $A \neq \{0\}$).

Notação: $dim_{Krull}A$.

Exemplo 2.7. 1. Um corpo K tem dimensão zero. De fato, se K é um corpo, seus únicos ideais são $\{0\}$ e K e o único que é primo é $\{0\}$. Logo, há apenas uma cadeia $\mathfrak{p}_0 = \{0\}$, a qual tem comprimento n = 0.

2. Se A é um domínio principal (DP) mas não é corpo, então $dim_{Krull}A = 1$. Com efeito, os ideais primos $\mathfrak{p} \neq \{0\}$ de A são os ideais $\mathfrak{p} = (p)$ onde p é um elemento primo e, assim, irredutível. Portanto, (p) é maximal. Assim, as cadeias de ideais primos de A são da forma $\{0\} \subset (p), p$ primo.

Em particular, $dim_{Krull}\mathbb{Z} = 1$ e $dim_{Krull}K[x] = 1$ onde K é um corpo.

3. O anel $A = K[x_1, x_2, \ldots], K$ corpo, tem dimensão ∞ , pois

$$\{0\} \supset (x_1) \supset (x_1, x_2) \supset (x_1, x_2, x_3) \supset \cdots$$

é uma cadeia infinita de ideais primos.

Finalmente, podemos relacionar aneis Artinianos e Noetherianos.

Teorema 2.8. Um anel A é Artiniano se, e somente se, A é Noetheriano e cada ideal primo de A é maximal.

Demonstração. (⇒) Suponha que A é artiniano. Então, segue, da proposição (2.2), que cada ideal primo de A é maximal. Mais ainda, existe um número finito $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ de ideais maximais de A. Como $\cap_{i=1}^n \mathfrak{m}_i = \mathfrak{R}$ e da proposição (2.5) existe $k \in \mathbb{N}$ tal que $\mathfrak{R}^k = \{0\}$, segue que

$$\{0\} = \mathfrak{R}^k = (\bigcap_{i=1}^n \mathfrak{m}_i)^k \supseteq \prod_{i=1}^n \mathfrak{m}_i^k, \text{ ou seja}, \prod_{i=1}^n \mathfrak{m}_i^k = \{0\}.$$

Logo, do corolário (1.10), temos que A é noetheriano.

(\Leftarrow) Suponha agora que A é um anel noetheriano e que cada ideal primo de A é maximal. Então, do fato de que cada ideal primo de A ser maximal, segue que os ideais primos de A são ideais primos minimais. Sabemos que $\mathfrak{R} = \bigcap_{i=1}^n \mathfrak{m}_i$ e, pelo corolário (1.8), temos que $\mathfrak{R}^k = 0$, portanto $\prod_{i=1}^n \mathfrak{m}_i^k = 0$. Logo, pelo corolário (1.10), segue que A é artiniano.

3 Exercícios de Qualificação

Aqui desenvolveremos alguns exercícios referentes a teoria de anéis e módulos Noetherianos e Artinianos. Quando nos referirmos a um anel A, tomaremos que A é um anel comutativo com unidade.

Exercício 3.1. a) Definir módulo Noetheriano. Sejam N_1 e N_2 dois submódulos de um módulo M. Mostrar que se M/N_1 e M/N_2 são Noetherianos, então $M/(N_1 \cap N_2)$ é Noetheriano. b) Seja A um anel Noetheriano, local com ideal maximal I e $J = \bigcap_{k \ge 1} I^k$. Mostrar que IJ = J e J = 0.

Demonstração. a) Um A-módulo M é Noetheriano se toda cadeia de submódulos de M da forma $M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots$ é estacionária.

Considere $\phi: M \to (M/N_1) \times (M/N_2)$ dada por $\phi(m) = (m + N_1, m + N_2)$. Então ϕ é homeomorfismo sobrejetor de módulos com ker $\phi = N_1 \cap N_2$.

Logo, segue imediatamente que $M/(N_1 \cap N_2) \simeq M/N_1 \times M/N_2$ é Noetheriano, considerando que produto finito de módulos Noetherianos é Noetheriano.

b) Como J é ideal (pois interseção de ideais é ideal), temos claramente $IJ \subseteq J$. Se IJ = A, então:

$$A \subset IJ \subset J \subset A \Rightarrow IJ = J = A.$$

Suponha agora que IJ está contido propriamente em A. Como A é Noetheriano, IJ tem decomposição primária, digamos:

$$IJ = \bigcap_{i=1}^{n} Q_i,$$

onde Q_i é P_i -primário. Basta mostrar que $J \subseteq Q_i$ para todo $i \in \{1, \ldots, n\}$.

Dado $i \in \{1, ..., n\}$, suponha $I \subseteq P_i$. Como A é Noetheriano, todo ideal contém uma potência do seu radical. Logo, existe m > 0 tal que $P_i^m \subseteq Q_i$. Assim:

$$J = \bigcap_{k>1} I^k \subseteq I^m \subseteq P_i^m \subseteq Q_i.$$

Por outro lado, se I não está contido em P_i , tome $a \in I \setminus P_i$. Suponhamos, por absurdo, que J não está contido em P_i . Escolha também $b \in J \setminus Q_i$. Assim, temos que:

$$ab \in IJ \subseteq Q_i$$
 e $b \notin Q_i \Rightarrow a \in P_i$,

o que é absurdo.

Logo, temos $J \subseteq Q_i$, para todo $i \in \{1, ..., n\}$, e assim, J = IJ. Finalmente, como A é Noetheriano, temos que A é finitamente gerado. Além disso, I = J(A). Logo, pelo Lema de Nakayama:

$$IJ = J \Rightarrow J = 0.$$

Exercício 3.2. Mostre que se M é um A-módulo não nulo tal que $\forall m \in M$ não nulo, tem-se $M/\langle m \rangle$ é um A-módulo Noetheriano, então M é Noetheriano.

Demonstração. Mostremos que todo A-submódulo de M é finitamente gerado.

Seja N um A-submódulo de M. Se $N = \{0\}$, então é claro que N é finitamente gerado $(N = \langle 0 \rangle)$.

Podemos, então, supor que $N \neq \{0\}$. Tome $m \in N \setminus \{0\}$, então $N/\langle m \rangle \subseteq M/\langle m \rangle$ é um A-submódulo.

Por hipótese $M/\langle m \rangle$ é Noetheriano, então $N/\langle m \rangle$ é finitamente gerado. Digamos que $N/\langle m \rangle = \langle \overline{m_1}, ..., \overline{m_k} \rangle$, onde, sem perda de generalidade, podemos assumir $m_1, ..., m_k \in N$.

Afirmamos que $N = \langle m_1, ..., m_k, m \rangle$, e portanto finitamente gerado.

De fato, como $m_1, ..., m_k, m \in N$, temos $\langle m_1, ..., m_k, m \rangle \subseteq N$. Seja agora $n \in N$, então para certos $a_1, ..., a_k \in A$, temos:

$$\overline{n} = a_1 \overline{m_1} + ... + a_k \overline{m_k}, \text{ em } N/\langle m \rangle.$$

Então $n - (a_1m_1 + ... + a_km_k) \in \langle m \rangle$, logo existe $a \in A$ tal que $n - (a_1m_1 + ... + a_km_k) = am$. Donde temos $n = a_1m_1 + ... + a_km_k + am$, e portanto $N \subseteq \langle m_1, ..., m_k, m \rangle$.

Exercício 3.3. Sejam A um anel Noetheriano e M um A-módulo finitamente gerado. Mostre que se $\phi: M \to M$ é um homomorfismo sobrejetor de A-módulos, então ϕ é isomorfismo.

Demonstração. Como A é Noetheriano e M é A-módulo finitamente gerado, segue que M é Noetheriano. Observe também que como $\phi: M \to M$ é sobrejetora, temos $\phi^n: M \to M$ sobrejetora, para todo $n \ge 1$.

Além disso:

$$x \in \ker \phi^n \Rightarrow \phi^n(x) = 0 \Rightarrow \phi^{n+1}(x) = 0 \Rightarrow \phi(\phi^n(x)) = 0 \Rightarrow x \in \ker \phi^{n+1}.$$

Logo, temos a sequência ascendente de submódulos de M:

$$\ker \ \phi \subseteq \ker \ \phi^2 \subseteq \ker \ \phi^3 \subseteq \ldots \subseteq \ker \ \phi^n \subseteq \ker \ \phi^{n+1} \subseteq \ldots$$

Como M é Noetheriano, existe $n_0 \in \mathbb{N} \setminus \{0\}$ tal que ker $\phi^n = \ker \phi^{n_0}$ para todo $n \geq n_0$. Em particular, ker $\phi^{n_0+1} = \ker \phi^{n_0}$.

Agora, dado $x \in \ker \phi$, como ϕ^{n_0} é sobrejetora, existe $y \in M$ tal que:

$$\phi^{n_0}(y) = x \Rightarrow \phi^{n_0+1}(y) = \phi(x) = 0 \Rightarrow y \in \ker \ \phi^{n_0+1} = \ker \ \phi^{n_0} \Rightarrow x = \phi^{n_0}(y) = 0.$$

Portanto, temos que ϕ é injetora, logo ϕ é isomorfismo.

Exercício 3.4. Sejam A um anel e M um A-módulo. Mostre que se $\varphi: M \to M$ é um homomorfismo injetor de A-módulos e M é Artiniano, então φ é um isomorfismo. Dê um exemplo de que tal resultado não é verdade se M não for Artiniano.

Demonstração. Observemos inicialmente que se $n \in \mathbb{N}$, então:

$$m \in \operatorname{Im}(\varphi^{n+1}) \Rightarrow \exists m_1 \in M \text{ tal que } \varphi^{n+1}(m_1) = m \Rightarrow \varphi^n(\varphi(m_1)) = m \Rightarrow m \in \operatorname{Im}(\varphi^n).$$

Assim

$$\operatorname{Im}(\varphi) \supseteq \operatorname{Im}(\varphi^2) \supseteq \operatorname{Im}(\varphi^3) \supseteq \dots$$

é uma cadeia descendente de A-submódulos de M.

Como M é Artiniano, existe $n_0 \in \mathbb{N}$ tal que $\operatorname{Im}(\varphi^n) = \operatorname{Im}(\varphi^{n_0}), \forall n \geq n_0$. Em particular, $\operatorname{Im}(\varphi^{n_0+1}) = \operatorname{Im}(\varphi^{n_0})$. Observemos também que φ^n é injetor para todo $n \in \mathbb{N}$, pois φ é injetor por hipótese.

Agora seja $m \in M$, então $\varphi^{n_0}(m) \in \operatorname{Im}(\varphi^{n_0}) = \operatorname{Im}(\varphi^{n_0+1})$. Logo, existe $m_1 \in M$ tal que $\varphi^{n_0+1}(m_1) = \varphi^{n_0}(m)$, e temos $\varphi^{n_0}(\varphi(m_1) - m) = 0$. Donde concluímos que $\varphi(m_1) = m$ (pela injetividade de φ^{n_0}), e temos $m \in \operatorname{Im}(\varphi)$.

Assim, $M \subseteq \text{Im}(\varphi)$ e portanto $M = \text{Im}(\varphi)$. Logo φ é sobrejetor, e portanto isomorfismo.

Para o exemplo, considere $A=M=\mathbb{Z}$. Tome a cadeia descendente: $(2)\supsetneq (2^2)\supsetneq (2^3)\supsetneq (2^4)\supsetneq ...$, como tal cadeia não é estacionária, temos que \mathbb{Z} não é \mathbb{Z} -módulo Artiniano. Defina o homomorfirmo de módulos $\varphi:n\in\mathbb{Z}\mapsto 2n\in\mathbb{Z}$. A injeção de φ é clara, pois \mathbb{Z} é domínio de integridade, mas φ não é sobrejetor, e portanto não é isomorfismo.

Exercício 3.5. Justificar se a afirmação a seguir é verdadeira ou falsa:

Sejam A e B dois anéis. Se A é anel Artiniano e B é um domínio que não contém um corpo então não existe um homomorfismo φ do anel A no anel B. (lembre que por definição $\varphi(1) = 1$)

Demonstração. Abaixo provaremos que a afirmação é verdadeira. Como A é Artiniano , então todo ideal primo de A é maximal. Suponha que exista um homomorfismo $\varphi:A\to B$. Como $\varphi(1)=1$, temos $\varphi\neq 0$, logo ker $\varphi\subseteq A$.

Além disso, como B é domínio, $\ker \varphi$ é ideal primo pois

$$a_1 a_2 \in \ker \varphi \Rightarrow \varphi(a_1 a_2) = 0$$

 $\Rightarrow \varphi(a_1) \varphi(a_2) = 0$
 $\Rightarrow \varphi(a_1) = 0 \text{ ou } \varphi(a_2) = 0$
 $\Rightarrow a_1 \in \ker \varphi \text{ ou } a_2 \in \ker \varphi.$

Portanto $\ker \varphi$ é um ideal maximal de A. Assim Im $\varphi \simeq A/\ker \varphi$ é corpo e Im φ é subanel de B, logo B contém um corpo. Temos um absurdo.

Exercício 3.6. Seja R um anel que satifaz a seguinte condição :

"para todo
$$x \in R$$
 existe $n \in \mathbb{N}, n > 1$ tal que $x^n = x$ "

- (a) Mostre que: todo ideal primo de R é maximal.
- (b) Mostre que: o nilradical de R é nulo e que se R é Noetheriano então R é isomorfo a um produto finito de corpos, isto é, existem corpos $K_1, ..., K_n$ tais que $R \simeq K_1 \times ... \times K_n$.

Exercício 3.7. Seja R um anel que satifaz a seguinte condição :

"para todo
$$x \in R$$
 existe $n \in \mathbb{N}, n > 1$ tal que $x^n = x$ "

- (a) Mostre que: todo ideal primo de R é maximal.
- (b) Mostre que: o nilradical de R é nulo e que se R é Noetheriano então R é isomorfo a um produto finito de corpos, isto é, existem corpos $K_1, ..., K_n$ tais que $R \simeq K_1 \times ... \times K_n$.

Demonstração. (a) Seja P um ideal primo em R. Então R/P é domínio. Mostremos que R/P é corpo. Seja $\overline{x} \neq \overline{0}$ em R/P. Por hipótese, existe $n \in \mathbb{N}$, $n \geq 2$ tal que $x^n = x$. Temos as implicações

$$\overline{x}^n = \overline{x} \Rightarrow \overline{x}(\overline{x}^{n-1} - \overline{1}) = \overline{0} \Rightarrow \overline{x}^{n-1} - \overline{1} = \overline{0} \Rightarrow \overline{x} \ \overline{x}^{n-2} = \overline{1}.$$

Logo \overline{x} é unidade em R/P. Portanto R/P é corpo, logo P é maximal.

(b) Seja $x\in \mathrm{nil}(R)$. Então existe m>0 tal que $x^m=0$. Por hipótese, existe $n\in\mathbb{N}$, $n\geq 2$ tal que $x^n=x$.

Se $m \le n$, então $x = x^n = x^{n-m}x^m = 0$.

Se m > n, então existe um $s \in \mathbb{N}$, $1 \le s \le n-1$ tal que $x^m = x^s$. Assim,

$$0 = x^m = x^s \Rightarrow x = x^n = x^{n-s}x^s = 0.$$

Portanto nil(R) = 0.

Agora, como todo primo é maximal, $dim_{Krull}R = 0$. Assim, se R é Noetheriano, então R é Artiniano e entao Spec(R) é finito. Considere $P_1, ..., P_n$ os primos distinto de R.

Defina

$$\varphi: R \to R/P_1 \times ... \times R/P_n$$

 $a \mapsto (a + P_1, ..., a + P_n)$

Como cada ideal primo P_i é maximal, temos $K_i := R/P_i$ corpos , i=1,...,k. Claramente φ é homomorfismo de anéis. Como $P_1,...,P_n$ são ideais maximais distintos, temos que $P_1,...,P_n$ são dois a dois co-maximais. Então, pelo teorema Chinês dos Restos, φ é sobrejetora. Além disso, $Ker\varphi = P_1 \cap ... \cap P_n = nil(R) = 0$. Portanto φ é isomorfismo.

Referências

- [1] Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
- [2] Kunz, E., Introduction to Commutative Algebra and Algebric Geometry, Birkhüser, Boston, 1985.
- [3] Lang, S., Algebra, Addison-Wesley, New York, 1969.