Feuille de TD 3 : Espaces Vectoriels et Applications Linéaires

Espaces Vectoriels

Exercice 1. On définit sur $E = \mathbb{R}^2$ les lois \oplus et \otimes de la manière suivante :

- $(x,y) \oplus (x',y') = (x+x',y+y')$, pour $x,x',y,y' \in \mathbb{R}$, et
- $\lambda \otimes (x,y) = (\lambda x, \lambda^2 y)$, pour $\lambda, x, y \in \mathbb{R}$.

L'espace (E, \oplus, \otimes) est-il un \mathbb{R} -espace vectoriel? Donner deux lois "naturelles" (canoniques) qui font de E un \mathbb{R} -espace vectoriel.

Exercice 2. Soient E un K-espace vectoriel et $U, V \subset E$ deux sous-espaces vectoriels. Montrer que l'intersection de U et V est encore un sous-espace vectoriel de E. Montrer que $U \cup V$ est un sous-espace vectoriel de E si et seulement si $U \subset V$ ou $V \subset U$.

Exercice 3. Montrer que le K-espace vectoriel K n'admet pas d'autre sous-espace vectoriel que $\{0\}$ et K.

Exercice 4. Quels sont les sous-espaces vectoriels de \mathbb{C} vu comme \mathbb{C} -espace vectoriel puis comme \mathbb{R} -espace vectoriel?

Exercice 5. Déterminer si les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^2 :

$$A_1 = \{(x,y) \in \mathbb{R}^2 : y = x\}, \quad A_2 = \{(x,y) \in \mathbb{R}^2 : y = x^2\}, \quad A_3 = \{(x,y) \in \mathbb{R}^2 : y \ge x\}$$

Exercice 6. Déterminer si les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3 :

$$A_{1} = \{(x, y, 0) : x, y \in \mathbb{R}\}, \qquad A_{2} = \{(x, y, z) \in \mathbb{R}^{3} : x + y + z = 0\},$$

$$A_{3} = \{(x, y, z) \in \mathbb{R}^{3} : x + y + z = 1\}, \quad A_{4} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} = z^{2}\},$$

$$A_{5} = \{(x, y, z) \in \mathbb{R}^{3} : 3x = 2y + 5z\}, \quad A_{6} = \mathbb{Q}^{3}.$$

Exercice 7. Soit $\mathcal{A}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel sur \mathbb{R} des applications de \mathbb{R} dans \mathbb{R} . Les ensembles suivants sont-ils des sous-espaces vectoriels de $\mathcal{A}(\mathbb{R}, \mathbb{R})$?

- 1. L'ensemble des fonctions continues sur \mathbb{R} .
- 2. L'ensemble des fonctions paires.
- 3. L'ensemble des fonctions impaires.
- 4. L'ensemble des fonctions croissantes.
- 5. L'ensemble des fonctions monotones.
- 6. L'ensemble des fonctions positives.
- 7. L'ensemble des fonctions bornées.
- 8. L'ensemble des fonctions dérivables.
- 9. L'ensemble des fonctions nulles en 1.
- 10. L'ensemble des fonctions égales à 1 en 0.
- 11. L'ensemble $\{f \in \mathcal{A}(\mathbb{R}, \mathbb{R}) : \forall x \in \mathbb{R}, f(x+1) = 2f(x)\}.$
- 12. L'ensemble $\{f \in \mathcal{C}^2(\mathbb{R}) : f'' = 0\}$.
- 13. L'ensemble des fonctions 2π -périodiques.

Exercice 8. On désigne par E l'espace des applications q de \mathbb{R} dans \mathbb{R} que l'on peut écrire sous la forme

$$q: x \mapsto a\cos(2x) + b\cos(x) + c$$

avec a, b et c dans \mathbb{R} .

1. Montrer que E est un espace vectoriel sur \mathbb{R} .

- 2. Soient f et k définies par $f(x) = \sin^2 x$ et $k(x) = \cos^2 x + \sin^2(x/2)$. Les fonctions f et k appartiennent-elles à E? Quel est le sous-espace engendré par f?
- 3. Montrer que l'espace

$$\{a\cos^2 x + b\sin^2(x/2) : a, b \in \mathbb{R}\}\$$

est un sous-espace de E. Quel est son intersection avec Vect(f)?

Exercice 9. Soit

$$E = \{ f_{a,b}(: x \mapsto (ax+b)e^{2x}) \in \mathcal{F}(\mathbb{R}, \mathbb{R}) : a, b \in \mathbb{R} \}.$$

- 1. Démontrer que E est un \mathbb{R} -espace vectoriel.
- 2. Démontrer que l'ensemble F des fonctions $f_{a,b}$ monotones sur \mathbb{R} est un sous-espace vectoriel de E. Le décrire.

Exercice 10. Dire si les sous-espaces vectoriels suivants de \mathbb{R}^3 sont supplémentaires :

$$\begin{split} F_1 &= \{(x,x,x) \ : \ x \in \mathbb{R}\} \\ F_2 &= \{(x,y,z) \in \mathbb{R}^3 \ : \ x + 2y + z = 0\} \\ F_3 &= \{(x,y,x+y) \ : \ (x,y) \in \mathbb{R}^2\} \\ F_4 &= \{(x,y,x+y) \ : \ (x,y) \in \mathbb{R}^2\} \\ F_5 &= \{(x,y,z) \in \mathbb{R}^3 \ : \ x + 2y + z = 0\} \\ \end{split} \qquad \begin{array}{ll} et & G_1 &= \{(0,x,y) \ : \ (x,y) \in \mathbb{R}^2\}, \\ et & G_2 &= \{(x,y,z) \in \mathbb{R}^3 \ : \ x - 2y + z = 0\}, \\ et & G_3 &= \{(x,-x,0) \ : \ x \in \mathbb{R}\}, \\ et & G_4 &= \{(x,x,0) \ : \ x \in \mathbb{R}\}, \\ F_5 &= \{(x,y,z) \in \mathbb{R}^3 \ : \ x + y + z = 0\} \\ \end{array} \qquad \begin{array}{ll} et & G_5 &= \{(x,y,x) \ : \ (x,y) \in \mathbb{R}^2\}. \\ \end{array}$$

Exercice 11. On considère les sous-espaces vectoriels F_1 , F_2 et F_3 des fonctions de \mathbb{R} dans \mathbb{R} qui sont respectivement paires, impaires et nulles en 0.

- 1. Déterminer les sous-espaces vectoriels $F_1 + F_2$, $F_2 + F_3$ et $F_1 + F_3$.
- 2. Quels couples de sous-espaces vectoriels sont en somme directe?

Applications Linéaires

Exercice 12. Montrer qu'une application $f: \mathbb{R}^2 \to \mathbb{R}$ est \mathbb{R} -linéaire si et seulement si elle est de la forme f(x,y) = ax + by avec $a, b \in \mathbb{R}$.

Exercice 13. Soit E un espace vectoriel de dimension finie sur le corps commutatif K, et soit u un endomorphisme de E. Montrer que les conditions suivantes sont équivalentes

- 1. Ker u = Im u
- 2. $u^2 = 0$ et dim Ker $u = \dim \operatorname{Im} u = \dim E/2$.

Exercice 14. Soit E_1 et E_2 deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Soit $f: E_1 \times E_2 \mapsto E$ l'application définie par $f(x_1, x_2) = x_1 + x_2$.

- 1. Montrer que f est linéaire.
- 2. Montrer que Ker $f = \{(x, -x) : s \in E_1 \cap E_2\}.$
- 3. Montrer que Ker f et $E_1 \cap E_2$ sont isomorphes.
- 4. Montrer que f a pour image $E_1 + E_2$.
- 5. Déduire de ce qui précède la formule :

$$\dim (E_1 + E_2) + \dim (E_1 \cap E_2) = \dim E_1 + \dim E_2.$$

Exercice 15. Soit E un espace vectoriel sur un corps commutatif K. On appelle **projecteur** de E tout endomorphisme p de E tel que $p \circ p = p$. On désigne par I_E l'application identité de E (on notera que c'est un projecteur de E).

- 1. Montrer que p est un projecteur si et seulement si $I_E p$ est un projecteur de E. Quelles relations y a-t-il entre les images et les noyaux de p et $I_E p$?
- 2. Montrer que si p est un projecteur de E, alors $E = \operatorname{Im} p \oplus \operatorname{Ker} p$.
- 3. Montrer que si p est un projecteur de E et si f est un endomorphisme de E tel que $f(\operatorname{Im} p) = \operatorname{Im} p$ et $f(\operatorname{Ker} p) = \operatorname{Ker} p$, alors $f \circ p = p \circ f$.