Fourth Semester B. Tech. (Computer Science and Engineering) Examination

OPERATING SYSTEMS

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :—

- (1) Attempt all questions.
- (2) All question carry marks as indicated against them.
- (3) Due credit will be given to neatness and adequate dimensions.
- 1. (A) Describe with a neat schematic the microkernel approach to designing an operating system. Bring out the specific merits and limitations of this approach.

 5(CO1)
 - (B) Bring out the differences between symmetric and asymmetric multiprocessing. State advantages and disadvantage of multiprocessor systems. 5(CO1)
- 2. (A) Consider the OS snapshot executing 5 processes in a single-processor system as mentioned below –

Process #	Burst Time	Arrival Time	Priority
P1	10	5	3
P2	4	3	1
Р3	2	0	3
P4	3	1	4
P5	5	2	2

A lower priority number implied a higher priority.

Compute the average waiting time, average turnaround time and average response time for the mentioned OS snapshot.

KQLR/RS-24 / 1055 Contd.

Apply following algorithms -

- (1) Preemptive Priority Scheduling.
- (2) SRTF Scheduling.

Use Gantt chart representation, individual tabular representation for each scheduling method and show representative intermediate calculations. 6(CO2)

- (B) Contrast between the user thread and kernel thread. Discuss benefits of multithreading. 4(CO2)
- 3. (A) Is it possible to have concurrency but not parallelism? Explain.

 What is busy waiting? Can busy waiting be avoided altogether? Explain with the help of pseudocode. 6(CO3)
 - (B) Illustrate how a binary semaphore can be used to implement mutual exclusion among N processes. 4(CO3)
- 4. Consider the following snapshot of a system:

P#	Allocation				
1 17	A	В	С	D	
$\mathbf{P_0}$	2	0	0	1	
P ₁	3	1	2	1	
P ₂	1	3	1	2	
P ₃	2	1	0	3	
P ₄	1	4	3	2	

Max					
A	В	С	D		
4	2	1	2		
5	2	5	2		
1	4	2	4		
2	3	1	6		
3	6	6	5		

- (i) Given that Available = {3, 3, 2, 1}, illustrate that the system is in a safe state by demonstrating an order in which the processes may complete. (step-by-step manner).
- (ii) If a request from process P1 arrives for (1, 1, 0, 0), can the request be granted immediately?

- 5. (A) Draw a neat sketch and describe paging hardware with TLB. 4(CO4)
 - (B) Consider the following page reference string:

Assuming demand paging with three frames. How many page faults would occur for following page replacement algorithms ?

- (i) FIFO Algorithm.
- (ii) LRU Algorithm.
- (iii) OPT Algorithm.

6(CO4,3)

- 6. (A) Discuss the approaches to handle bad blocks in disk storage. 4(CO4)
 - (B) Suppose a disk has 256 cylinders numbered from 0 to 255. The drive is currently serving a request at cylinder 40 and the previous request was at cylinder 90. The queue of pending request in FIFO order is:

Starting from the current head position, what is the total distance (in cylinders) that the disk moves to satisfy all pending request for —

- (i) LOOK algorithm.
- (ii) C-SCAN algorithm.
- (iii) SSTF algorithm.

6(CO4)

