MSO 202A: Complex Variables

August-September 2022

Assignment-0

Exercises marked (T) are to be discussed in the tutorials.

1. (T)Let P(z) be a polynomial with real coefficients. Show that if z_0 is a root of P then so is \overline{z}_0 .

2. Solve the following equations in polar form and locate the roots in the complex plane:

(a)
$$z^4 = -1$$

(b)
$$(\mathbf{T})z^4 = -1 + \sqrt{3}\iota$$

3. Simplify $(1 + \iota)^{17}$ into the form $a + b\iota$.

4. Show that if two integers can be expressed as the sum of two squares, then so can their product.

5. (**T**)Show that the *n*-th roots of 1 (aside from 1) satisfy the cyclotomic equation $z^{n-1} + z^{n-2} + \cdots + z + 1 = 0$

6. (T)Consider the n-1 diagonals of a regular n-gon inscribed in a unit circle obtained by connecting one vertex with all the others. Show that the product of their lengths is n.

7. Let ω be a p-th root of unity. Define

$$\chi(p) = \sum_{n=0}^{p-1} \omega^{n^2}.$$

Verify that $\chi(3)^2 = -3$, $\chi(5)^2 = 5$, $\chi(7)^2 = -7$.

(Remark: The expression $\chi(p)$ is known as Gauss Sum. For odd prime p it can be shown that $\chi(p)^2=(-1)^{\frac{p-1}{2}}p$.)

8. For each of the following equations, give a geometric description of the set of complex numbers. (a) $(\mathbf{T})|z-z_1|=|z-z_2|$ (b) $|z-z_1|+|z-z_2|=c$ (c) $|z-2+3\iota|<1$ (d) $(\mathbf{T})0 \le z < \pi/4$ (e) $|z-4| \ge |z|$ (f) $|\operatorname{Re} z| \ge a > 0$

9. In each following functions f(z), compute the limit $\lim_{z\to 0} f(z)$. Hence conclude whether the functions can be defined at z=0 to become continuous.

$$(\mathbf{T})(\mathbf{a}) \ 2z \frac{\operatorname{Re} z}{|z|} \quad (\mathbf{T})(\mathbf{b}) \ \frac{\iota z}{|z|} \quad (\mathbf{c}) \ 3\frac{\operatorname{Re} z}{z}$$

10. (**T**)Let

$$f(z) = \frac{\{(1-\iota)z + (1+\iota)\overline{z}\}^2}{z\overline{z}}.$$

Show that $\lim_{x\to 0} \lim_{y\to 0} f(z) = \lim_{y\to 0} \lim_{x\to 0} f(z)$ but $\lim_{z\to 0} f(z)$ does not exist.