$\mathbf{TD}\ \mathbf{n}^{\circ}\mathbf{1}:$ Nombres complexes

Exercice 1:

- 1. Soit le nombre complexe z=-1/2+i/2, représenter graphiquement $z,\,-z,\,\bar{z}$ et $-\bar{z}$.
- 2. Comparer $\arg(z)$, $\arg(-z)$, $\arg(\bar{z})$ et $\arg(-\bar{z})$.
- 3. Retrouver le résulat à l'aide de la notation exponentielle : $z=re^{i\theta}.$

Exercice 2:

Donner la forme cartésienne (z = a + ib) des nombres complexes suivants :

1.
$$z = \frac{1+i}{1-i}$$

2.
$$z = \frac{-2+3i}{4i}$$

3.
$$z = \frac{1-2i}{-2+3i}$$

Exercice 3:

Donner le module et l'argument des nombres complexes suivants :

1.
$$z = 1 + \sqrt{3}i$$

2.
$$z = \sqrt{2}(-1+i)$$

3.
$$z = -3\frac{\sqrt{3}}{2} + \frac{3}{2}i$$

$$4. \ z = \left(\frac{1-i}{1+i}\right)$$

$$5. \ z = \left(\frac{1+i}{\sqrt{2}+\sqrt{2}i}\right)^3$$

Exercice 4:

Trouver de deux façons différentes l'inverse des nombres complexes suivants :

1.
$$z = -1 + i$$

2.
$$z = \sqrt{3} - 3i$$

Exercice 5:

Linéariser les quantités suivantes, θ étant un réel.

Linéariser signifie réécrire l'expression comme une somme de termes de la forme $a\cos(k\theta)$ et $b\sin(k\theta)$.

- 1. $(\sin(\theta))^2$
- 2. $(\cos(2\theta))^2$
- 3. $(\cos(\theta))^3$
- 4. $(\sin(\theta))^4$

Exercice 6:

Calculer les racines des polynômes suivants :

1.
$$z^2 - 3 + 4i$$

2.
$$z^2 - i$$

3.
$$z^2 - 2z + 2$$

4.
$$z^2 - (2+2i)z - 3 + 6i$$

5.
$$z^4 - 4iz^2 - 4$$

6.
$$z^4 - 81$$

7.
$$z^3 - z^2 - z - 2$$