

Bridge-Finding Game

In the Generic Group Model

$$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$$

$$(x_1, x_2, x_3)$$

$$\tau(1) \qquad (0,0,0)$$

 $\tau(x_1)$

 $\tau(x_2)$

 $\tau(x_3)$

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

0

0

0

$\mathtt{Mult}(\tau(x_1), \tau(x_2))$

$$\tau(x_1 + x_2) \tag{1,1,0}$$

$$\operatorname{Inv}(\tau(x_1+x_2))$$

$$\tau(-x_1-x_2)$$

$$\tau(-x_1 - x_2) \qquad (-1, -1, 0) \qquad 0$$

$\tau(\tau(x_1), \tau(1))$

$$\tau(x_1 + 1) \qquad (1, 0, 0) \qquad 1$$

$$\mathtt{Mult}(au(x_2), \mathfrak{y})$$

$$\tau(x_2 + 7) \qquad (0, 1, 0) \qquad 7$$

$y = \vec{a} \cdot \vec{x} + b$

Bridge-Finding Game

In the Generic Group Model

$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$
$\mathtt{Mult}(au(x_1), au(x_2))$
$\tau(x_1+x_2)$
$\operatorname{Inv}(au(x_1+x_2))$
$\tau(-x_1-x_2)$
$\mathtt{Mult}(au(x_1), au(1))$
$\tau(x_1+1)$
$\mathtt{Mult}(au(x_2), \mathfrak{y})$
$\tau(x_2+7)$

 (x_1, x_2, x_3)

$$y = \vec{a} \cdot \vec{x} + b$$

 \mathcal{L}

Restricted
Discrete-Log
Oracle

au(y)	$ec{a}$	b
au(1)	(0, 0, 0)	1
$ au(x_1)$	(1, 0, 0)	0
$ au(x_2)$	(0, 1, 0)	0
$ au(x_3)$	(0, 0, 1)	0
$\tau(x_1+x_2)$	(1, 1, 0)	0
$\tau(-x_1-x_2)$	(-1, -1, 0)	0
$\tau(x_1 + 1)$	(1, 0, 0)	1
ŋ	(0, 0, 0)	7
$\tau(x_2+7)$	(0, 1, 0)	7
• • •	• • •	• • •

Bridge-Finding Game

in the Generic Group Model

$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$
$\mathtt{Mult}(au(x_1), au(x_2))$
$\tau(x_1+x_2)$
$\operatorname{Inv}(au(x_1+x_2))$
$\tau(-x_1-x_2)$

Bridge event since $\tau(-x_1 - x_2) = \tau(x_2 + 7) = 01101101$ but $((-1, -1, 0), 0) \neq ((0, 1, 0), 7)$

Then we learned

$$-x_1 - x_2 = x_2 + 7$$

Theorem (informal).
$$\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q^2+qN}{p}\right)$$
.

au(y)	$ec{a}$	b
au(1)	(0, 0, 0)	1
$ au(x_1)$	(1, 0, 0)	0
$\tau(x_2)$	(0, 1, 0)	0
$\tau(x_3)$	(0, 0, 1)	0
$\tau(x_1+x_2)$	(1, 1, 0)	0
τ (01101101 ₂)	(-1, -1, 0)	0
$\tau(x_1 + 1)$	(1, 0, 0)	1
ŋ	(0, 0, 0)	7
01101101	(0, 1, 0)	7
• • •	• • •	