Final Project

Time Varying Linear Regression on Price of Apartment in Korea

1. Motivation

Paint a picture for you and me on the days when we were young

■ Forecasting price of apartment

- Personal interest
- Increasing trend in average housing price
- Goal: Predicting accurate housing price of future time point.

■ Changing Relationship

- People's preference
- Economic or social circumstance

2. Model

Paint a picture for you and me on the days when we were young

■ Model structure

$$Y_t = X_t \beta_t + \epsilon_t \quad where \ \epsilon_t \sim N(0, \nu_t I_{O_t})$$

$$\beta_t = F \theta_t$$

$$\theta_t = G \theta_{t-1} + w_t \quad where \ w_t \sim N(0, \frac{\nu_t}{s_{t-1}} W)$$

Description

 Y_t : Log(price) vector X_t : Predictor variable matrix β_t : current regression coefficients θ_t : vector of coefficients p-1 \sim t G: VAR(p) coefficient matrix of θ F: Matrix select current β

Dimension

 $O_t \times 1$ $O_t \times q$ $q \times 1$ $pq \times 1$ $pq \times pq$ $q \times pq$

■ Graphical model

3. Assessment

Paint a picture for you and me on the days when we were young

■ Model comparison

$$\theta_t = \theta$$
 (static)

 $\theta_t = \theta_{t-1} + w_t$ (random walk - time varying)

 $\theta_t = G\theta_{t-1} + w_t$ (VAR(1) model)

■ Criterion

Model quality

$$AIC = -2 deviance + 2q$$

Prediction performance

MSE =
$$\sum_{h=1}^{3} (Y_{t+h} - X_{t+h} m_{t+h})^2 / O_{t+h}$$

Coverage = $Pr(Y_{t+h} \in (L_{t+h}, U_{t+h}))$

■ Future topic

Dynamic Latent factor model

Macroeconomic factors

Hierarchical Dynamic linear model

Q&A