

Revision Notes

Class 9 Maths

Chapter 6 - Lines and Angles

Geometrical Concepts Point:

- It is a precise position.
- It is a small dot with no length, width, or thickness, but it does have location, i.e. no magnitude.
- It is denoted by capital letters A, B, C, O etc.

Line Segment:

- A line segment AB is a straight path that connects two points A and B.
- It has a **defined length** and **end points**. (There is no width or thickness)

Ray:

A ray is a **line segment** that can only be **extended in one direction**.

Line:

A line is formed when a line segment is stretched in both directions indefinitely.

Collinear Points:

Collinear points are defined as two or more points that are on the same line.

Non-collinear Points:

- Non-collinear points are those that do not lie on the same line.
- Example: A, B, C, D, E

Intersecting Lines:

- Intersecting lines are two lines that have a common point.
- The common point is called as the point of intersection.

Concurrent Lines:

Concurrent lines are defined as two or more lines intersecting at the same point.

Plane:

- A plane is a surface on which every point of a line connecting any two points lies on that line.
- Surface of a smooth wall, surface of a paper.

Angles:

• An angle is formed when two straight lines intersect at a point.

- It can be represented as ∠AOB or AOB.
- OA and OB are the arms of ∠AOB.
- The vertex of the angle (O) is defined as the place where the arms meet.
- The amount of turning from one arm OA to other OB is called the measure of the angle ∠AOB and written as m∠AOB.
- Degrees, minutes, and seconds are used to calculate an angle.
- If a ray spins in an anticlockwise direction around its initial position and returns to its original position after one complete rotation, it has turned 360°.

1 complete rotation is divided into 360 equal parts. Each part is 1°.

Each part (1°) is divided into 60 equal parts where, each part measures 1 minute (1').

1' is divided into 60 equal parts where, each part measures 1 second (1") Degrees \rightarrow minutes \rightarrow seconds

 $1^{\circ} = 60'$

1' = 60"

By recalling that the union of two rays forms an angle.

By observing the different type of angles in below figure, we conclude that

- AOB is an **acute** angle $(0^{\circ} < AOB < 90^{\circ})$
- AOC is a **right** angle (an angle equal to 90°)
- AOD is an **obtuse** angle $(90^{\circ} < AOD < 180^{\circ})$
- AOE is a **straight** angle (an angle equal to 180°)
- AOF (measured in anti-clock wise direction) is a reflex angle $(180^{\circ} < AOF < 360^{\circ})$

Right Angle:

An angle whose measure is 90° known as a **right** angle.

Acute Angle:

An angle whose measure is less than one right angle (that is, less than 90°), known as an **acute** angle.

Obtuse Angle:

An angle whose measure is more than one right angle and less than two right angles (that is less than 180° and more than 90°) known as an **obtuse** angle.

Straight Angle:

An angle whose measure is 180° known as a **straight** angle.

Reflex Angle:

An angle whose measure is more than 180° and less than 360° is called a **reflex** angle.

It can be written as ref. ∠AOB.

Complete Angle:

An angle whose measure is 360° called a **complete** angle.

Equal Angles:

When two angles have the same measure, they are said to be equal.

Adjacent angles:

Adjacent angles are two angles that share a common vertex and a common arm and have their other arms on opposite sides of the common arm.

O is the common vertex.

AOB and BOC are adjacent angles.

Arm BO separates the two angles.

Complementary Angles:

Complementary angles are those in which the total of the two angles is one right angle (that is 90°).

If the measure of

$$AOC = a^{\circ}$$

 $COB = b^{\circ}$, then
 $a^{\circ} + b^{\circ} = 90^{\circ}$

Therefore, AOC and COB are complementary angles.

AOC is **complement** of COB.

Supplementary Angles:

If the sum of two angles' measurements is 180°, they are said to be supplementary.

Example:

Angles measuring 130° and 50° are supplementary angles. Two supplementary angles are mutually beneficial.

Vertically Opposite Angles:

Vertically opposing angles are generated when two straight lines intersects each other at a point and form pairs of opposite angles.

Angles $\angle 1$ and $\angle 3$, and angles $\angle 2$ and $\angle 4$ are vertically opposite angles. Vertically opposite angles are always equal.

Bisector of an Angle

• A ray or a straight line passing through the vertex of an angle is known as the **Bisector of that angle** if it divides the angle into two equal-sized angles.

BOC = COA and,
 BOC + COA = AOB and.
 AOB = 2BOC = 2COA

Parallel Lines

- Even if they are extended on each side, two lines are **parallel** if they are coplanar and do not overlap.
- There are, however, lines that don't intersect yet aren't parallel.

- They're **skew lines**, as the name implies. Lines that are not **coplanar** and do not intersect are referred to as skew lines.
- The lines AE and HG are skewed.

Transversal

- Observe the three lines 'l', 'm' and 't'.
- In the diagram 'l' and 'm' are two parallel lines. 't' intersects 'l' at two distinct points 'A' and 'B' and 'm' at 'C' and 'D'. Line t is known as transversal.
- A **transversal** is a line that at different points intersects (or slices) two or more parallel lines.

Angles Formed by a Transversal

- In the diagram \overrightarrow{AB} and \overrightarrow{CD} are two parallel lines.

 PQRS is a transversal intersecting \overrightarrow{AB} at Q and \overrightarrow{CD} at R.

 There are total eight angles formed.
- Some of the angles can be grouped together due to their placements. Special names are given to the **paired angles** (apart from adjacent angles and vertical angles).

Interior Angles which are on the same side of the Transversal

From the below figure,
 AQR (∠4) and QRC (∠5) and BQR (∠3) and QRD (∠6) form two
 pairs of interior angles on the same side of the transversal.

Alternate Angles

- A pair of angles are said to be alternate angles if
 - 1) both angles are internal angles,
 - 2) they're on opposing sides of the transversal axis, and
 - 3) they are not adjacent angles, they are said to be alternate angles.
- Alternate interior angles are another name for alternate angles.

• In the above figure,

AQR and QRD ($\angle 4$ and $\angle 6$)

BQR and QRC ($\angle 3$ and $\angle 5$) are the two pairs of alternate angles.

Corresponding Angles

- A pair of angles are said to be corresponding angles if
- One is an interior angle and the other is an exterior angle
- They are in the same transverse plane and
- They are not adjacent angles.

The four pairs of corresponding angles are given as follows;

AQP and CRQ ($\angle 1$ and $\angle 5$)

AQR and CRE ($\angle 4$ and $\angle 8$)

BQR and DRE ($\angle 3$ and $\angle 7$)

Parallel Lines - Theorem 1

• Statement:

Each pair of alternating angles is equal when a transversal intersects two parallel lines.

• Given:

 $\triangle ABC$, side BC is produced to D and ACD is the exterior angle formed. AB \parallel CD and EFGH is a transversal.

• To prove:

AFD = FGD (One pair of interior alternate angles)

BFG = FGC (Another pair of interior alternate angles)

• Proof:

AFG = EFB (Vertically opposite angles)

But

EFB = FGD (Corresponding angles)

 \therefore AFG = FGD

Now,

 $BFG + AFG = 180^{\circ}....(i)(Linear Pair)$

 $FGC + FGD = 180^{\circ}....(ii)(Linear Pair)$

From (i) and (ii),

BFG + AFG = FGC + FGD

But

AFG = FGD (Proved)

 \therefore BFG = FGC

Converse of Theorem 1

• Statement:

If a transversal intersects two lines in such a way that a pair of alternate interior angles are equal, then the two lines are parallel.

• Given:

Transversal EFGH intersects lines AB and CD such that a pair of alternate angles are equal.

$$(AFD = FGD)$$

To prove:

AB || CD

• Proof:

$$AFG = FGD$$
 (Given)

But

AFG = EFB (Vertically opposite angles)

 \therefore EFB = FGD (Corresponding angles)

Therefore,

AB || CD (Corresponding angles axiom)

Parallel Lines - Theorem 2

• Statement:

Each set of consecutive interior angles is additional or supplementary when a transversal connects two parallel lines.

• Given:

AB || CD and EFGH is a transversal.

• To prove:

$$BFG + FGD = 180^{\circ}$$

$$AFG + FGC = 180^{\circ}$$

• Proof:

$$EFB + BFG = 180^{\circ}$$
 (Linear Pair)

But

EFB = FGD (Corresponding angles axiom)

$$\therefore$$
 BFG + FGD = 180° (Substitute FGD for EFB)

Similarly, we can prove that

$$AFG + FGC = 180^{\circ}$$

Converse of Theorem 2

• Statement:

If a transversal intersects two lines in such a way that a pair of consecutive interior angles are supplementary, then the two lines are parallel.

• Given:

Transversal EFGH intersects lines AB and CD at F and G such that BFG and FGD are supplementary.

That is
$$\left(BFG + FGD = 180^{\circ}\right)$$

• To prove:

AB || CD

• Proof:

EFB + BFG = 180°.....(i) [Linear pair (ray FB stands on EFGH)]

(Corresponding angles postulate)

$$BFG + FGD = 180^{\circ}....(ii)$$
 (Given)

$$EFB + BFG = BFG + FGD$$

Therefore.

EFB = FGD (Subtract BFG from both sides)

Since these are corresponding angles,

Therefore, AB || CD

Interior and Exterior Angles of a Triangle

- When we talk about an angle in a triangle, we're talking about the angle formed by the two sides.
- The three angles are located in the triangle's interior. These angles are known as the **triangle's inner angles**.

- Now look at the triangle that the sides are formed in.
- In the fig, is extended to O. An angle OXZ is formed.
 XZ is produced to P forming an angle YZP.
- Similarly, ZY is formed to M forming angle MYX.
- These angles OXZ, YZP and MYXX are called exterior angles of ABC
- There can be three external angles because the triangle has three sides.
- The interior angles opposite to the vertices where the exterior angles are formed, are called the interior opposite angles.
- From the figure, at X, the exterior angle OXZ is formed and angles XYZ and XZY are interior opposite angles of it.

From above figure,

For exterior angle 1; the interior opposite angles are BAC and ABC.

For exterior angle 2; the interior opposite angles are ABC and ACB.

For exterior angle 3; the interior opposite angles are BAC and ACB.

Triangles - Theorem 1:

• Statement:

If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the interior opposite angles.

• Given:

In triangle, $\triangle ABC$, side BC is produced to D and ACD is the exterior angle formed.

ABC and BAC are the interior opposite angles.

• To prove:

$$ACD = ABC + BAC$$

• Proof:

$$ABC + BAC + ACB = 180^{\circ}....(i)$$
 (Theorem)

$$ACB + ACD = 180^{\circ}....(ii)(Linear pair)$$

$$ABC + BAC + ACB = ACB + ACD$$

Subtract ACB from both sides, we get

$$ABC + BAC = ACD$$

Angle Sum Property

Three line segments unite three non-collinear points to make a triangle, which is a plane closed geometric figure.

Triangles - Theorem 2:

• Statement:

The sum of the three angles of a triangle is 180°.

• Given:

A triangle MNS.

• To prove:

$$M + N + \hat{S} = 180^{\circ}$$

• Construction:

By using a scale through the vertex M, draw a line \overrightarrow{AB} parallel to the base \overrightarrow{NS} .

• Proof:

NS || AB

MN is a transversal.

Therefore,

 $AMN = MNS \dots (1)$ Alternate angles

Similarly, $\overrightarrow{AB} \parallel \overrightarrow{NS}$ and MN

Therefore,

BMS = \hat{MSN} (2) Alternate angles

From the figure,

 $AMN + NMS + BMS = 180^{\circ}$

Since, \overrightarrow{AB} is a **straight line** and sum of the angles at M = 180°

From (1) and (2),

MNS + NMS + $\hat{MSN} = 180^{\circ}$ - By substituting MNS and \hat{MSN} Thus it is proved that sum of the measures of the three angles of a triangle is equal to 180° or two right angles.

