Cours MP2I

Alexandre

Table des matières

1	Notes	1
2	Rappels : relations d'équivalence	1
3	Anneaux	2
	3.1 Remarques	2
	3.2 Idéaux	2

1 Notes

Nullstellensatz : (démo?)

- Idéaux
- Algébriquement clos
- Bézout?

Topologie de Zariski:????

— Lemme de Zorn (AC)

Dimension:?
Projectif/Affine:?

2 Rappels : relations d'équivalence

Soit E un ensemble et \sim une relation sur E.

Définition 1 (relation d'équivalence)

Une relation d'équivalence \sim vérifie les propriétés suivantes sur E:

- \sim réfléxive : $\forall x \in E, x \sim x$
- ∼ symétrique
- \sim transitive

Définition 2 (classe d'équivalence)

Soit $x \in E$. L'ensemble $\tilde{x} = \{y \in E, x \sim y\}$ est la classe d'équivalence de x.

Définition 3 (partition)

Une partition d'un ensemble E est définie par :

- $-- \biguplus_{i \in I} X_i = X$
- $-\forall i \in I, X_i \neq \emptyset$
- $-\forall i,j \in I, i \neq j \Rightarrow X_i \cap X_j \neq \emptyset$

Lemme 4

Soient $x,y \in E$. On a:

$$x \sim y \iff x = y$$

Démonstration. tkt

Théorème 5 (parition formée par les classes d'équivalence)

L'ensemble des classes d'équivalences sous \sim forme une parition de E.

 $D\acute{e}monstration.$

Définition 6 (ensemble quotient)

TODOf

<application canonique>

3 Anneaux

3.1 Remarques

Définition 7 (anneau quotient)

Soient A un anneau et I un idéal bilatère (idéal à gauche et à droite) de A. On définit la relation d'équivalence $\mathscr R$ suivante :

$$\forall x, y \in A, x \mathcal{R} y \iff x - y \in I$$

On dit aussi alors que x et y sont congrus modulo $I: x \equiv y \mod I$

On peut munir l'ensemble quotient A/I (càd l'ensemble des classes d'équivalence sur A) des lois induites par I :

$$+: t \longrightarrow a \text{ et } \cdot: t \longrightarrow a$$
 $e \longmapsto f$
 $e \longmapsto f$

A/I est muni d'une structure d'anneau.

3.2 Idéaux

Définition 8 (idéal d'un anneau)

Soit A un anneau. Un sous-ensemble $I\subseteq A$ est un idéal de A si :

- -(I,+) est un sous groupe de (A,+)
- $\forall a \in A, \forall b \in I, ab = ba \in I$

lien avec les noyeaux de morphismes etc>

Définition 9 (idéal premier)

Soit A un anneau, I un idéal de A, I est premier si et seulement si l'anneau A/I est intègre. Cela revient au même d'imposer :

- $-A \neq I$
- $\forall a, b \in A, ab \in I \Longrightarrow a \in I \text{ ou } b \in I$

Définition 10 (idéal maximal)

Un idéal I de A est dit maximal si $I \neq A$ et si pour tout idéal J de A tel que $I \subseteq J$ et $J \neq A$, on a J = I. (I est l'élément maximal pour l'inclusion)

Proposition 11

Soit I un idéal de A. On a donc :

I maximal $\iff A/I$ est un corps $\implies A/I$ intègre $\iff I$ premier