

Subject Code: 12054 Summer-2013 Page No: 1/22

Model Answers	
Important Instructions to examiners:	
1) The answers should be examined by key words and not as word-	
to-word as given in the model answer scheme.	
2) The model answer and the answer written by candidate may vary	
but the examiner may tryto assess the understanding level of the	
candidate.	
3) The language errors such as grammatical, spelling errors should	
not be given more importance (Not applicable for subject English	
and Communication Skills).	
4) While assessing figures, examiner may give credit for principal	
components indicated in the figure. The figures drawn by candidate	
and model answer may vary. The examiner may give credit for any	
equivalent figure drawn.	
5) Credits may be given step wise for numerical problems. In some	
cases, the assumed constant values may vary and there may be	
some difference in the candidate's answers and model answer.	
6) In case of some questions credit may be given by judgement on	
part of examiner of relevant answer based on candidate's	
understanding.	
7) For programming language papers, credit may be given to any	
other program based on equivalent concept.	

Subjec	ct Code:	(ISO/IEC - 27001 - 2005 Certified) Summer-2013	Pa	ge No: 2/
Que.	Sub. Que.	Model answers	Marks	Total Marks
1)		Attempt any ten of the following:		
	a)	Evaluate: $\int e^{\log x} dx$		
	Ans	$\int e^{\log x} dx$		
		$= \int x dx \qquad \qquad \dots e^{\log f(x)} = f(x)$	1	
		$\int e^{\log x} dx$ $= \int x dx \qquad \qquad \dots e^{\log f(x)} = f(x)$ $= \frac{x^2}{2} + c$	1	02
		In the above solution, each term of last step carries ½ marks.		
		Note: In the above solution of any integration problems, if the		
		constant c is not added, ½ marks may be deducted.		
	b)	Evaluate: $\int \left[\frac{1}{1+x^2} - \frac{\cos x}{\sin^2 x} \right] dx$		
Ans	Ans	$= \int \left[\frac{1}{1+x^2} - \frac{\cos x}{\sin x \sin x} \right] dx$		
		$= \int \left[\frac{1}{1+x^2} - \cot x \cos ecx \right] dx$	1	
		$= \tan^{-1} x + \cos e c x + c$	1	02
	c)	Evaluate: $\int e^{\tan x} \sec^2 x dx$		
	Ans	$\tan x = t$		
		$\therefore \sec^2 x dx = dt$		
		$=\int e^t dt$	1/2	
		$=e^t+c$	1 1/2	02
	d)	$=e^{\tan x}+c$	/2	02
	, A	Evaluate: $\int \log x dx$		
	Ans	$= \int \log x \cdot 1 dx$		
		Integrating by part		

Subject Code: 12054 **Summer-2013** Page No: 3/22

Buoje		12034 Summer-2015	age No. 3	,
Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
1)		$= \log x \int 1 dx - \int \left(\frac{d}{dx} \log x \int 1 dx\right) dx$	1/2	
		$=\log x.x-\int \frac{1}{x}.xdx$	1/2	
		X	1	
		$= \log x \cdot x - x + c$		02
		$OR = x(\log x - 1) + c$		
	e)	Find order and degree of differential equation		
		$\frac{d^3y}{dx^3} = \left[k + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$		
	Ans	$\left(\left(d^{3}v \right)^{2} \right)^{2} \left[\left(dv \right)^{2} \right]^{3}$	1	
		$\left[\left(\frac{d^3 y}{dx^3} \right)^2 = \left[k + \left(\frac{dy}{dx} \right)^2 \right]^3$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	02
		Order=3 Degree=2	1	02
	f)	Solve: $xdy - ydx = 0$		
	Ans	xdy - ydx = 0	1/2	
		$\therefore xdy = ydx$		
		$\therefore \frac{dy}{y} = \frac{dx}{x} dx$		
			1/2	
		$\therefore \int \frac{dy}{y} = \int \frac{dx}{x}$		
		$\therefore \log y = \log x + c$	1	02
	g)	Find the equation of the curve whose slope is $(x-3)$		
	8)			
		And which passes through $(2,0)$		
	Ans	$\frac{dy}{dx} = x - 3$		
		$dy = (x-3)dx$ $\int dy = \int (x-3)dx$ $y = \frac{x^2}{2} - 3x + c$	1/2	
		$\int uy - \int (x - 3)ux$		
		$y = \frac{x}{2} - 3x + c$	1	

Subject Code: 12054 Summer-2013 Page No: 4/22

Que.	Sub.	Model answers	Marks	Total
No.	Que.	1/10401 4115 1/1015	17141115	Marks
1)		x = 0, y = 0		
		$\therefore 0 = \frac{2^2}{2} - 3(2) + c$		
		c = 4	1/2	02
		$\therefore y = \frac{x^2}{2} - 3x + 4$	72	02
	h)	Find $L[\sin 2t \sin 3t]$		
	Ans	$L[\sin 2t \sin 3t]$		
		$= L \left\{ \frac{1}{2} \left[\cos \left(2t - 3t \right) - \cos \left(2t + 3t \right) \right] \right\}$	1/2	
		$=L\left\{\frac{1}{2}\left[\cos\left(-t\right)-\cos 5t\right]\right\}$		
		$=\frac{1}{2}\big\{L\big[\cos t\big]-L\big[\cos 5t\big]\big\}$		
		$= \frac{1}{2} \left\{ \frac{s}{\left(s^2 + 1\right)} - \frac{s}{s^2 + 25} \right\}$	1	
		$=\frac{12s}{\left(s^2+1\right)\left(s^2+25\right)}$	1/2	02
	i)	$\operatorname{Find} Ligl[te^tigr]$		
	Ans	$L[t] = \frac{1}{s^2}$	1	
		$\therefore L[te^t] = \frac{1}{(s-1)^2}$ by first shifting property	1	02
	j)	Find $L^{-1}\left[\frac{3s+12}{s^2+8}\right]$		
	Ans	$=L^{-1}\left[\frac{3s}{s^2+8}\right]+L^{-1}\left[\frac{12}{s^2+8}\right]$	1/2	
		$=3L^{-1} \left[\frac{s}{s^2 + \left(\sqrt{8}\right)^2} \right] + L^{-1} \left[\frac{12}{s^2 + \left(\sqrt{8}\right)^2} \right]$	1	

Subject Code: 12054 Summer-2013 Page No: 5/22

Que.	Sub.	Model engagers	Marks	Total
No.	Que.	Model answers	Marks	Marks
1)		$=3\cos\sqrt{8}t + \frac{12}{\sqrt{8}}\sin\sqrt{8}t$	1/2	02
	k)	Evaluate: $\int e^{-x} dx$		
		$= \left[\frac{e^{-x}}{-1}\right]_0^{\infty}$	1	
		$= \left[-\frac{1}{e^x} \right]_0^{\infty}$	1/2	
		$= -\left[\frac{1}{e^{\infty}} - \frac{1}{e^0}\right]_0^{\infty}$		
		= -[0-1] $= 1$	1/2	02
	1)	Form the Differential equation from $y^2 = ax^2$		
	Ans	Let $y^2 = ax^2$		
		Let $y^2 = ax^2$ $\therefore 2y \frac{dy}{dx} = 2ax$ $\therefore y \frac{dy}{dx} = ax$	1	
		$\therefore y \frac{dy}{dx} = ax$		
		$\therefore y \frac{dy}{dx} = \frac{y^2}{x^2} x$	1	02
2)		$\therefore x \frac{dy}{dx} - y = 0$		
		Attempt any four of the following:		
	a)	Verify that $y = \sin(\log x)$ solution of D.E. differential equation		
		$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$		
	Ans	$y = \sin(\log x)$		
		$\therefore \frac{dy}{dx} = \frac{\cos(\log x)}{x}$	1	
		$\therefore x \frac{dy}{dx} = \cos(\log x)$	1/2	

Subject Code: 12054 **Summer-2013** Page No: 6/22

Sasjee	i Coue.	12034 Summer-2013	rage No. C	, <u></u>
Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
2)		$\therefore x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = \frac{-\sin(\log x)}{x}$	1	
		$\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$ $\therefore x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	1/2	04
	b)	Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$		
	Ans	$\frac{dy}{dx} = e^{3x}e^{-2y} + x^2e^{-2y}$	1/2	
		$\therefore \frac{dy}{dx} = e^{-2y} \left(e^{3x} + x^2 \right)$	1/2	
		$\therefore \frac{dy}{e^{-2y}} = \left(e^{3x} + x^2\right)$	1	
		$\therefore \int e^{2y} dy = \int \left(e^{3x} + x^2\right) dx$	1	0.4
		$\therefore \frac{e^{2y}}{2} = \frac{e^{3x}}{3} + \frac{x^3}{3} + c$	1	04
	c)	Solve $ydx = xdy + \sqrt{xy}dx$		
	Ans	$y = x\frac{dy}{dx} + \sqrt{xy}$		
		$\therefore x \frac{dy}{dx} - y = -\sqrt{x} \sqrt{y}$ 1. $dy = \sqrt{y}$		
		$\therefore \frac{1}{\sqrt{y}} \frac{dy}{dx} - \frac{\sqrt{y}}{x} = -\frac{1}{\sqrt{x}}$ Put $\sqrt{y} = t$	1/2	
		Put $\sqrt{y} = t$ $\therefore \frac{1}{2\sqrt{y}} \frac{dy}{dx} = \frac{dt}{dx}$		
		$\frac{1}{\sqrt{y}}\frac{dy}{dx} = \frac{2dt}{dx}$	1	
		$\therefore 2\frac{dt}{dx} - \frac{t}{x} = -\frac{1}{\sqrt{x}}$		
		$\frac{dt}{dx} + \left(\frac{-1}{2x}\right)t = -\frac{1}{2\sqrt{x}}$	1/2	

Subject Code: 12054 Summer-2013 Page No: 7/22

3	i Couc.		age 110. 7	
Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
2)	d) Ans	$I.F = e^{\int \frac{-1}{2x} dx}$ $= e^{\frac{-1}{2} \log x}$ $= e^{\frac{1}{2} \log \frac{1}{x}} = \frac{1}{\sqrt{x}}$ $\therefore t \frac{1}{\sqrt{x}} = \int -\frac{1}{2\sqrt{x}} \frac{1}{\sqrt{x}} dx + c$ $\therefore \frac{\sqrt{y}}{\sqrt{x}} = \frac{-1}{2} \int \frac{1}{x} dx + c$ $\therefore \sqrt{\frac{y}{x}} = \frac{-1}{2} \cdot \log x + c$ A resistance of 100Ω and inductance of 0.1 henries are connected in series with a battery of 20 volts. Find the current in the circuit at any instant, if the relation between L,R and E is $L \frac{di}{dt} + Ri = E$ $L \frac{di}{dt} + Ri = E$ $\therefore \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$ $P = \frac{R}{L} and Q = \frac{E}{L}$	1/2	04
		$\therefore IF = e^{\int pdt} = e^{\int \frac{R}{L}dt} = e^{\frac{R}{L}t}$	1/2	
		$i \cdot IF = \int Q \cdot IF \cdot dt + c$ $\therefore i \cdot e^{\frac{R}{L}t} = \int \frac{E}{L} \cdot e^{\frac{R}{L}t} \cdot dt + c$	1/2	
		$\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{L} \cdot \frac{e^{\frac{R}{L}t}}{\frac{R}{L}} + c$	1	
			1/2	
		$\therefore 0 = \frac{E}{R} \cdot e^0 + c$ $\therefore c = -\frac{E}{R}$	1/2	

Subject Code: 12054 Summer-2013 Page No: 8/22

Buojec	i Couc.	12034 Summer-2015 F	age No. 8	122
Que.	Sub. Que.	Model answers	Marks	Total Marks
2)	d)		1	04
	e)	solved as illustrated below. Solve: $(e^x + 2xy^2 + y^3)dx + (a^y + 2x^2y + 3xy^2)dy = 0$		
	Ans	$M = e^{x} + 2xy^{2} + y^{3}$ $N = a^{y} + 2x^{2}y + 3xy^{2}$ $\frac{\partial M}{\partial y} = 4xy + 3y^{2}$		
		$\frac{\partial N}{\partial x} = 4xy + 3y^{2}$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ $\therefore \text{ Given D.E. is exact.}$	2	
		Solution is, $\int_{y-cons \tan t} Mdx + \int_{terms \ not \ containing'x'} Ndy = c$ $\int_{y-const} \left(e^x + 2xy^2 + y^3\right) dx + \int a^y dy = c$	1/2	
	f)	$e^{x} + x^{2}y^{2} + xy^{3} + \frac{a^{y}}{\log a} = c$ Obtain Fourier coefficient a_{0} for $f(x) = 2x - x^{2}$ over $(0,3)$	1½	04
	Ans	$a_0 = \frac{1}{l} \int_0^{2l} f(x) dx$ $= \frac{2}{3} \int_0^3 (2x - x^2) dx$		
		$= \frac{2}{3} \int_{0}^{3} (2x - x^{2}) dx$	1	

Subject Code: 12054 Summer-2013 Page No: 9/22

Model answers Marks	Subject Co	Jouc.	12034 Summer-2015 P	age No. 9	122
No. Que. 1 2) f) = $\frac{2}{3} \left[x^2 - \frac{x^3}{3} \right]_0^3$ 1 $= \frac{2}{3} \left[(9-9) - (0) \right]$ 1 $= 0$ 1 Attempt any four of the following: a) Attempt any four of the following: $= \frac{s \cos b}{s^1 + a^2} - \frac{a \sin b}{s^2 + a^2}$ 1 $= \frac{s \cos b - a \sin b}{s^2 + a^2}$ 1 $= \frac{s \cos b - a \sin b}{s^2 + a^2}$ 1 Ans $ \because L[\sin t] = \frac{1}{s^2 + 1}$ 1 $L[t \sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1} \right)$ 1 $= -\left(\frac{-2s}{s^2 + 1} \right)$ 1 $= \left(\frac{2s}{s^2 + 1} \right)$ 1 $= \frac{2s}{s^2 + 1}$ 1 Ans $ \vdash \frac{1}{s^2 - 2s + 17} $ 1 $= L^1 \left[\frac{1}{s^2 - 2s + 17 - 1} \right]$ 1 $= L^1 \left[\frac{1}{s^2 - 2s + 17 - 1} \right]$ 1	Que. Su	Sub.	Model answers	Marks	Total
3) $\begin{vmatrix} = 0 \\ \text{Attempt any four of the following:} \\ \text{Find } L\{\cos(at+b)\} \\ \text{Ans} L\{\cos(at+b)\} = L(\cos at.\cos b - \sin at.\sin b) \\ = \frac{s\cos b}{s^2 + a^2} - \frac{a\sin b}{s^2 + a^2} \\ = \frac{s\cos b - a\sin b}{s^2 + a^2} \\ \text{b)} \text{Find } L[t\sin t] \\ \text{Ans} \because L[\sin t] = \frac{1}{s^2 + 1} \\ L[t\sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right) \\ = -\left(\frac{-2s}{s^2 + 1}\right) \\ \text{c)} \text{Find } L^{-1} \left[\frac{1}{s^2 - 2s + 17}\right] \\ \text{Ans} L^{-1} \left[\frac{1}{s^2 - 2s + 17}\right] \\ = L^{-1} \left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right] \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	No. Qu	Que.	Model will work	TVICE IN	Marks
3) $\begin{vmatrix} = 0 \\ \text{Attempt any four of the following:} \\ \text{Find } L\{\cos(at+b)\} \\ \text{Ans} L\{\cos(at+b)\} = L(\cos at.\cos b - \sin at.\sin b) \\ = \frac{s\cos b}{s^2 + a^2} - \frac{a\sin b}{s^2 + a^2} \\ = \frac{s\cos b - a\sin b}{s^2 + a^2} \\ \text{b)} \text{Find } L[t\sin t] \\ \text{Ans} \because L[\sin t] = \frac{1}{s^2 + 1} \\ L[t\sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right) \\ = -\left(\frac{-2s}{s^2 + 1}\right) \\ \text{c)} \text{Find } L^{-1} \left[\frac{1}{s^2 - 2s + 17}\right] \\ \text{Ans} L^{-1} \left[\frac{1}{s^2 - 2s + 17}\right] \\ = L^{-1} \left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right] \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	2) f))	$= \frac{2}{3} \left[x^2 - \frac{x^3}{3} \right]_0^3$		
3) Attempt any four of the following: a) Find $L\{\cos(at+b)\}$ Ans $L\{\cos(at+b)\}=L(\cos at.\cos b-\sin at.\sin b\}$ $=\frac{s\cos b}{s^2+a^2}-\frac{a\sin b}{s^2+a^2}$ $=\frac{s\cos b-a\sin b}{s^2+a^2}$ 1 Ans $\therefore L[\sin t] = \frac{1}{s^2+1}$ $L[t\sin t] = -\frac{d}{ds}\left(\frac{1}{s^2+1}\right)$ $=-\left(\frac{-2s}{s^2+1}\right)$ 1 c) Find $L^1\left[\frac{1}{s^2-2s+17}\right]$ Ans $L^1\left[\frac{1}{s^2-2s+17}\right]$ $=L^1\left[\frac{1}{s^2-2s+1+17-1}\right]$ 1 Attempt any four of the following: 1 1 04				1	
a) Find $L\{\cos(at+b)\}$ = $L[\cos(at+b)]$	2)			1	
Ans $L\{\cos(at+b)\} = L\{\cos at.\cos b - \sin at.\sin b\}$ 2 $= \frac{s\cos b}{s^2 + a^2} - \frac{a\sin b}{s^2 + a^2}$ 1 $= \frac{s\cos b - a\sin b}{s^2 + a^2}$ 1 b) Find $L[t\sin t]$ 1 $L[t\sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right)$ 1 $= -\left(\frac{-2s}{s^2 + 1}\right)$ 1 $= \left(\frac{2s}{s^2 + 1}\right)$ 1 c) Find $L^1\left[\frac{1}{s^2 - 2s + 17}\right]$ 1 Ans $L^1\left[\frac{1}{s^2 - 2s + 17}\right]$ 1 $L^1\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ 1	3)		Attempt any four of the following:		
$ \begin{aligned} &= \frac{s \cos b}{s^2 + a^2} - \frac{a \sin b}{s^2 + a^2} & 1 \\ &= \frac{s \cos b - a \sin b}{s^2 + a^2} & 1 \\ &= \frac{s \cos b - a \sin b}{s^2 + a^2} & 1 \end{aligned} $ b) Find $L[t \sin t] = \frac{1}{s^2 + 1}$ $ L[t \sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1} \right) & 1 \end{aligned} $ $ = -\left(\frac{-2s}{s^2 + 1} \right) & 1 $ $ = \left(\frac{2s}{s^2 + 1} \right) & 1 \end{aligned} $ c) Find $L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right]$ Ans $ L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right] & 1 $	a))	Find $L\{\cos(at+b)\}$		
$= \frac{s \cos b - a \sin b}{s^2 + a^2}$ b) Find $L[t \sin t]$ $L[\sin t] = \frac{1}{s^2 + 1}$ $L[t \sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right)$ $= -\left(\frac{-2s}{s^2 + 1}\right)$ 1 $= \left(\frac{2s}{s^2 + 1}\right)$ 1 c) Find $L^1 \left[\frac{1}{s^2 - 2s + 17}\right]$ $L^1 \left[\frac{1}{s^2 - 2s + 17}\right]$ $= L^1 \left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ 1 1 04	Ar	ans		2	
b) Find $L[t \sin t]$ $\therefore L[\sin t] = \frac{1}{s^2 + 1}$ $L[t \sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right)$ $= -\left(\frac{-2s}{s^2 + 1}\right)$ $= \left(\frac{2s}{s^2 + 1}\right)$ 1 c) Find $L^{-1}\left[\frac{1}{s^2 - 2s + 17}\right]$ $L^{-1}\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ $= L^{-1}\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ 1			$=\frac{s\cos b}{s^2+a^2}-\frac{a\sin b}{s^2+a^2}$	1	
Ans $: L[\sin t] = \frac{1}{s^2 + 1} $ $ L[t \sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1} \right) $ $ = -\left(\frac{-2s}{s^2 + 1} \right) $ $ = \left(\frac{2s}{s^2 + 1} \right) $ $ 1$ $ 04$ $ C) \text{Find } L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right] $ $ Ans L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right] $ $ = L^{-1} \left[\frac{1}{s^2 - 2s + 1 + 17 - 1} \right] $			$=\frac{s\cos b - a\sin b}{s^2 + a^2}$	1	04
Ans $\because L[\sin t] = \frac{1}{s^2 + 1}$ $L[t \sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right)$ $= -\left(\frac{-2s}{s^2 + 1}\right)$ $= \left(\frac{2s}{s^2 + 1}\right)$ 1 c) Find $L^{-1} \left[\frac{1}{s^2 - 2s + 17}\right]$ Ans $L^{-1} \left[\frac{1}{s^2 - 2s + 17}\right]$ $= L^{-1} \left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ 1	b))	Find $L[t \sin t]$		
$= -\left(\frac{-2s}{s^2 + 1}\right)$ $= \left(\frac{2s}{s^2 + 1}\right)$ $= \left(\frac{1}{s^2 - 2s + 17}\right)$ $= L^{-1}\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ $= L^{-1}\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ $= 1$	Ar	ans	$\therefore L[\sin t] = \frac{1}{s^2 + 1}$	1	
$= -\left(\frac{-2s}{s^2 + 1}\right)$ $= \left(\frac{2s}{s^2 + 1}\right)$ $= \left(\frac{1}{s^2 - 2s + 17}\right)$ Ans $L^{-1}\left[\frac{1}{s^2 - 2s + 17}\right]$ $= L^{-1}\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$ 1			$L[t\sin t] = -\frac{d}{ds} \left(\frac{1}{s^2 + 1}\right)$	1	
c) Find $L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right]$ Ans $L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right]$ $= L^{-1} \left[\frac{1}{s^2 - 2s + 1 + 17 - 1} \right]$			$= -\left(\frac{-2s}{s^2 + 1}\right)$	1	
Ans $L^{-1}\left[\frac{1}{s^2 - 2s + 17}\right]$ $= L^{-1}\left[\frac{1}{s^2 - 2s + 1 + 17 - 1}\right]$			$= \left(\frac{2s}{s^2 + 1}\right)$	1	04
$L^{-1} \left[\frac{1}{s^2 - 2s + 17} \right]$ $= L^{-1} \left[\frac{1}{s^2 - 2s + 1 + 17 - 1} \right]$	c))	Find $L^{-1}\left[\frac{1}{s^2-2s+17}\right]$		
	Ar		$L^{-1}\left[\frac{1}{s^2 - 2s + 17}\right]$		
$= L^{-1} \left[\frac{1}{(s-1)^2 + 16} \right] == L^{-1} \left[\frac{1}{(s-1)^2 + 4^2} \right]$ 1+1			$=L^{-1}\left[\frac{1}{s^2-2s+1+17-1}\right]$	1	
			$= L^{-1} \left[\frac{1}{(s-1)^2 + 16} \right] == L^{-1} \left[\frac{1}{(s-1)^2 + 4^2} \right]$	1+1	

Subjec	ct Code:	(ISO/IEC - 27001 - 2005 Certified) 12054 Summer-2013	Page No: 1	0/22
Que.	Sub. Que.	Model answers	Marks	Total Marks
3)		$=\frac{1}{4}\sin 4t.e^{t}$	1	04
	d)	Apply convulation thm to evaluate $L^{-1}\left(\frac{1}{s^2(s+1)}\right)$		
	Ans	Let $L^{-1}\left[\frac{1}{s^2}\right] = t = f(t)$		
		$L^{-1}\left[\frac{1}{s+1}\right] = e^{-t} = g\left(t\right)$	1	
		$\therefore f(u) = u \text{ and } g(t-u) = e^{-(t-u)}$		
		$L^{-1}\left(\frac{1}{s^2(s+1)}\right)$ $=\int_0^t f(u).g(t-u)du$		
		$= \int_{0}^{t} f(u).g(t-u)du$	1/2	
		$= \int_{0}^{t} u e^{(u-t)} du$ $= \int_{0}^{t} u e^{u} e^{-t} du$		
		$=\int_{0}^{t}ue^{u}e^{-t}du$		
		$=e^{-t}\int_{0}^{t}ue^{u}du$		
		$=e^{-t}\left[u\int e^{u}du-\int\left(\frac{d}{du}u\int e^{u}du\right)du\right]_{0}^{t}$	1/2	
		$=e^{-t}\left[ue^{u}-\int e^{u}du\right]_{0}^{t}$		
	\	$= e^{-t} \left[ue^{u} - e^{u} \right]_{0}^{t}$ $= e^{-t} \left[e^{u} \left(u - 1 \right) \right]_{0}^{t}$	1	
		$= e^{-t} \left[e^{t} \left(t - 1 \right) \right]_{0}$ $= e^{-t} \left[e^{t} \left(t - 1 \right) - e^{0} \left(0 - 1 \right) \right]$	1/2	
		$=e^{-t}\left[e^{t}\left(t-1\right)+1\right]$		0.4
	e)	$= t - 1 + e^{-t}$ Solve $\frac{dy}{dt} - y = 3e^{-2t}$ if $y(0) = -1$	1/2	04
	-/	dt dt		

ubject	Code:	(ISO/IEC - 27001 - 2005 Certified) 12054 Summer-2013	Pag	ge No: 11
Que. No.	Sub. Que.	Model answers	Marks	Total Marks
3)	Ans	$\frac{dy}{dt} - y = 3e^{-2t}$		Warks
		$\therefore sY(s) - Y(0) - Y(s) = \frac{3}{s+2}$	1	
		$\therefore sY(s) + 1 - Y(s) = \frac{3}{s+2}$		
		$\therefore Y(s)(s-1) = \frac{3}{s+2} - 1$	1	
		$Y(s) = \frac{(1-s)}{(s+2)(s-1)}$		
		$=-\frac{1}{s+2}$	1	
		$\therefore y(t) = L^{-1} \left[\frac{-1}{s+2} \right]$ $= -e^{-2t}$	1	04
	f)	Find L ⁻¹ $\left[\frac{s^2 + 1}{s^3 + 3s^2 + 2s} \right]$		
	Ans	$\frac{s^2 + 1}{s^3 + 3s^2 + 2s} = \frac{s^2 + 1}{s(s+2)(s+1)}$	1/2	
		$\therefore \frac{s^2+1}{s(s+2)(s+1)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+1}$		
		$\therefore s^2 + 1 = A(s+2)(s+1) + Bs(s+1) + Cs(s+2)$		
		$A = \frac{1}{2}$	1/2	
		$\therefore B = \frac{5}{5}$	1/2	
		$\therefore A = \frac{1}{2}$ $\therefore B = \frac{5}{2}$ $\therefore C = -2$	1/2	
			1	
		$= \frac{1}{2} + \frac{5}{2}e^{-2t} - 2e^{-t}$	1	04

Subject Code: 12054 Summer-2013 Page No: 12/22

3		12034 Summer-2013	age 110. 1	
Que.	Sub. Que.	Model answers	Marks	Total Marks
4)	a)	Attempt any four of the following: Evaluate $\int \frac{1}{x \cos^2(\log x)} dx$		
	Ans	Put $\log x = t$		
		$\therefore \frac{1}{x} dx = dt$	1	
		$=\int \frac{dt}{\cos^2 t}$	1	
		$= \int \sec^2 t dt$ $= \tan t + c$	1	
		$= \tan(\log x) + c$	1	04
	b)	Evaluate $\int x \tan^{-1} x dx$		
	ans	$\int x \tan^{-1} x dx$		
		$= \tan^{-1} x \int x dx - \int \left(\frac{d}{dx} \tan^{-1} x \int x dx \right) dx$	1/2	
		$= \tan^{-1} x \cdot \frac{x^2}{2} - \int \frac{1}{1+x^2} \frac{x^2}{2} dx$	1	
		$= \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \frac{x^2 + 1 - 1}{x^2 + 1} dx$	1/2	
		$= \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \left[\int dx - \int \frac{1}{x^2 + 1} dx \right]$	1	
		$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \left[x - \tan^{-1} x \right] + c$	1	04
	c)	Evaluate $\int \frac{dx}{5 + 4\cos x}$		
	Ans	Put $t = \tan \frac{x}{2}$		
		$\therefore dx = \frac{2dt}{1+t^2} \cos x = \frac{1-t^2}{1+t^2}$	1/2	

Subject Code: 12054 Summer-2013 Page No: 13/22

Subjec	i Couc.	12034 Summer-2015	rage No. 1	3122
Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
4)		$= \int \frac{\frac{2dt}{1+t^2}}{5+4\left(\frac{1-t^2}{1+t^2}\right)}$ $=2\int \frac{dt}{5+5t^2+4-4t^2}$	1/2	
		$=2\int \frac{dt}{5+5t^2+4-4t^2}$	1/2	
		$=2\int \frac{dt}{t^2+9}$	1	
		$=2\frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right)+c$	1	
		$= \frac{2}{3} \tan^{-1} \left(\frac{\tan \frac{x}{2}}{3} \right) + c$	1/2	04
	d)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx$		
	Ans	Let $I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx$ (1)		
		$= \int_{0}^{\frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\cos\left(\frac{\pi}{2} - x\right) + \sin\left(\frac{\pi}{2} - x\right)} dx \qquad \dots \text{by property}$	1/2	
		$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx \qquad \dots (2)$ $\therefore (1) + (2)$	1/2	
		$\therefore 2I = \int_0^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sin x + \cos x} dx$	1/2	
		$\therefore 2I = \int_0^2 dx = \left[x\right]_0^{\frac{\pi}{2}}$	1	
		$2I = \frac{\pi}{2} - 0$ $I = \frac{\pi}{4}$	1	04
		$I=\frac{\pi}{4}$	1/2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subje	ect Code	(ISO/IEC - 27001 - 2005 Certified) e: 12054 Summer-2013	Page	No: 14/2
Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4)	e)	Find the area enclosed by the curve $y = 4x - x^2$ and x axis.		
	Ans	$y = 4x - x^2$		
		$\therefore 0 = 4x - x^2$		
		$y = 4x - x^{2}$ $\therefore 0 = 4x - x^{2}$ $\therefore 0 = x(4 - x)$		
		$\therefore x = 0 \text{ or } x = 4$	1	
		$\therefore Area = \int_{0}^{4} \left(4x - x^{2}\right) dx$		
		$=\left[2x^2-\frac{x^3}{3}\right]_0^4$	1	
		$=2(4)^2-\frac{4^3}{3}-0$	1	04
		$=\frac{32}{3}$ or 10.66	1	
	f)	Find the mean value of $I = 10\sin 100\pi t$ over a complete peroid.		
	Ans	$\operatorname{Let} f(t) = 10\sin 100\pi t$		
		$T = \frac{2\pi}{100\pi} = \frac{1}{50}$	1	
		$\therefore a = 0, b = \frac{1}{50}$	1	
		$\therefore \text{ mean value } \overline{y} = \frac{1}{b-a} \int_{a}^{b} f(t) dt$		
		$= \frac{1}{\frac{1}{50} - 0} \int_{0}^{\frac{1}{50}} 10 \sin 100 \pi t dt$	1/2	
		$=500 \left[\frac{-\cos 100\pi t}{100\pi} \right]_0^{\frac{1}{50}}$	1	
		$=\frac{-500}{100\pi}\left[\cos 2\pi - \cos 0\right]$	1	
		$=-\frac{5}{\pi}\big[1-1\big]=0$	1/2	04
5)		Attempt any four of the following:		
	a)	Find the positive root of the equation $x = e^{-x}$ using bisection method.		
	Ans	Let $f(x) = x - e^{-x}$ $\therefore f(0) = -1$		
	1			

Subject Code: 12054 Summer-2013 Page No: 15/22

z wejet	i Code.	12034 Summer-2015 F	age No. 1	C7
Que.	Sub. Que.	Model answers	Marks	Total Marks
5)		$\therefore f(1) = 0.63$ Root lies in $(0,1)$	1	
		$\therefore a = 0 b=1$ $\chi_1 = \frac{a+b}{2}$ $= \frac{0+1}{2} = 0.5$	1	
		$f(0.5) = -0.10 < 0$ ∴ root lies in (0.5,1) $∴ x_2 = \frac{0.5 + 1}{2} = 0.75$ $f(0.75) = 0.27 > 0$	1	
		∴ root lies in $(0.5,0.75)$ $x_3 = \frac{0.5 + 0.75}{2} = 0.625$ OR	1	04
		Let $f(x) = x - e^{-x}$ $\therefore f(0) = -1 < 0$ $\therefore f(1) = 0.63 > 0$ $\text{root lies in } (0,1)$ $\therefore a = 0 b = 1$	1	
		a b $x = \frac{a+b}{2}$ $f(x)$ 0 1 0.5 -0.10 0.5 1 0.75 0.27 0.5 0.75 0.625	1+1+1	
	b)	Obtain the root of the equation by Regula-Falsi method $x^3 - 2x - 5 = 0$ (three iterations only).		04
	Ans	Let $f(x) = x^3 - 2x - 5$ f(2) = -1 f(3) = 16	1	

Subject Code: 12054

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 16/22

Que. Sub. Model answers No. Que. $ x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{2(16) - 3(-1)}{16 - (-1)} = 2.058 $		Marks 1½	Total Marks 04
5) ∴ root lies in (2,3)		1½	
		1½	04
$x_1 = \frac{df(b) - bf(a)}{f(b) - f(a)} = \frac{2(16) - 3(-1)}{16 - (-1)} = 2.058$		1½	
		1/2	
(2050) 0000 0			
f(2.058) = -0.399 < 0			
∴ root lies in (2.058,3)			
$x_2 = \frac{x_1 f(b) - b f(x_1)}{f(b) - f(x_1)} = \frac{2.058(16) - 3(-0.399)}{16 - (-0.399)} = 2.08$	8	1½	04
OR			
Let $f(x) = x^3 - 2x - 5$			
f(2) = -1		1	
f(2) = -1 $f(3) = 16$			
a b $f(a)$ $f(b)$ $x = \frac{af(b) - bj}{f(b) - f}$	$\frac{f(a)}{f(a)}$ $f(x)$		
2 3 -1 16 2.058	-0.399	11/2	04
2.058 3 -0.399 16 2.08		$+1\frac{1}{2}$	04
Using Newton-Raphson method, find an approximate	e value of the		
equation $x^3 - 3x - 5 = 0$ which lies near to $x = 2$ (Car	ry out two		
iterations only)			
Ans $x^3 - 3x - 5 = 0$			
$f(x) = x^3 - 3x - 5$			
Ans $x^{3} - 3x - 5 = 0$ $f(x) = x^{3} - 3x - 5$ $f'(x) = 3x^{2} - 3$		1	
\therefore Initial root $x_0 = 2$			
$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{(-3)}{9} = 2.33$		11/2	
$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.33 - \frac{0.659}{13.28} = 2.28$		1½	04
d) Solve using Gauss elimination method:			
Ans $x+y+z=6, 3x-y+3z=10, 5x+5y-4z=3$			

Subject Code: 12054

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 17/22

Que.	Sub.	Model answers	Marks	Total
No.	Que.	NASCET WILL WELL	TVICE IS	Marks
		Given $x + y + z = 6$ $3x - y + 3z = 10$ $5x + 5y - 4z = 3$ $x + y + z = 6$ $+ 3x - y + 3z = 10$ $4x + 4z = 16$ $\therefore x + z = 4$ $20x + 20z = 80$ $20x + 11z = 53$ $ 9z = 27$ $\therefore z = 3$ $y = 2$ $x = 1$ Solve using Jacobi's method. (three iterations only) $20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25$ $x = \frac{1}{20}(17 - y + 2z)$ $y = \frac{1}{20}(-18 - 3x + z)$ $z = \frac{1}{20}(25 - 2x + 3y)$ Starting with $x_0 = y_0 = z_0 = 0$ $x_1 = 0.85$ $y_1 = -0.9$ $z_1 = 1.25$ $x_2 = 1.02$ $y_2 = -0.965$ $z_2 = 1.03$ $x_3 = 1.001$	Marks 1+1 1 1 1	
		$x_3 = 1.001$ $y_3 = -1.001$ $z_3 = 1.003$	1	04

Page No: 18/22

Subject Code: 12054 Summer-2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
6)	a)	Attempt any four of the following:		
	i)	Obtain Furier expansion for e^x in the interval $-\pi < x < \pi$		
	Ans	Let $f(x) = e^x$		
		$1^{\frac{\pi}{6}}$		
		$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x dx$	1	
		$=rac{1}{\pi}igl[e^xigr]_{-\pi}^\pi$	1	
		$=\frac{1}{\pi}\Big[e^{\pi}-e^{-\pi}\Big]$	1	
		$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos nx dx$		
		$= \frac{1}{\pi} \left[\frac{e^x}{1+n^2} \left(\cos nx + n \sin nx \right) \right]_{-\pi}^{\pi}$	1	
		$= \frac{1}{\pi} \left[\frac{e^{\pi}}{1+n^2} \left(\cos n\pi + n \sin n\pi \right) - \frac{e^{-\pi}}{1+n^2} \left(\cos n\pi - n \sin n\pi \right) \right]$		
		$= \frac{1}{\pi} \left[\frac{e^{\pi}}{1+n^2} (-1)^n - \frac{e^{-\pi}}{1+n^2} (-1)^n \right]$	1/2	
		$= \frac{\left(-1\right)^{n}}{\pi(1+n^{2})} \left[e^{\pi} - e^{-\pi} \right]$	1	
		$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin nx dx$		
		$= \frac{1}{\pi} \left[\frac{e^x}{1+n^2} \left(\sin nx - n \cos nx \right) \right]_{-\pi}^{\pi}$	1	
		$= \frac{1}{\pi} \left[\frac{e^{\pi}}{1+n^2} \left(\sin n\pi - n \cos n\pi \right) - \frac{e^{-\pi}}{1+n^2} \left(-\sin n\pi - n \cos n\pi \right) \right]$	1	
		$= \frac{1}{\pi} \left[-\frac{ne^{\pi}}{1+n^2} (-1)^n + \frac{ne^{-\pi}}{1+n^2} (-1)^n \right]$	1/2	
		$= \frac{n(-1)^n}{\pi(1+n^2)} \left[-e^{\pi} + e^{-\pi} \right]$	1	
		$\therefore f(x) = \frac{1}{2\pi} (e^{\pi} - e^{-\pi}) + \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{\pi (1+n^2)} \cdot (e^{\pi} - e^{-\pi}) - \frac{n(-1)^n}{\pi (1+n^2)} \cdot (e^{\pi} - e^{-\pi}) \right]$	1	08

Subject Code: 12054

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 19/22

Que.	Sub.	25.11	3.5.1	Total
No.	Que.	Model answers	Marks	Marks
6)	a)	Find F-series for the function 1		
	ii)	$f(x) = x - x^2, 1 < x < 1$		
	Ans	Given $f(x) = x - x^2$		
		$a_0 = \frac{1}{1} \int_{-1}^{1} (x - x^2) dx$	1/2	
		$= \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_{-1}^{1}$	1	
		$= \left[\left(\frac{1}{2} - \frac{1}{3} \right) - \left(\frac{1}{2} - \frac{1}{3} \right) \right]$		
		$=\frac{-2}{3}$	1/2	
		$a_n = \frac{1}{1} \int_{-1}^{1} \left(x - x^2 \right) \cos nx dx$	1/2	
		$= \left[\left(x - x^2 \right) \frac{\sin nx}{n} - \left(1 - 2x \right) \frac{\left(-\cos nx \right)}{n^2} + \left(-2 \right) \frac{\left(-\sin nx \right)}{n^3} \right]_{-1}^{1}$	1	
		$= \left[2\sin n \left(\frac{1}{n} + \frac{2}{n^3} \right) - \frac{4\sin n}{n^3} \right]$	1	
		$b_n = \frac{1}{1} \int_{-1}^{1} (x - x^2) \sin nx dx$	1/2	
		$= \left[\left(x - x^2 \right) \frac{\left(-\cos nx \right)}{n} - \left(1 - 2x \right) \frac{\left(-\sin nx \right)}{n^2} + \left(-2 \right) \frac{\left(\cos nx \right)}{n^3} \right]_{-1}^{1}$	1	
		$= \left[\sin n \left(\frac{-1}{n^2} + \frac{3}{n^3}\right)\right]$	1	
		$\therefore f(x) = -\frac{1}{3} + \sum_{n=1}^{\infty} \left[\left(\frac{1}{n} + \frac{2}{n^3} \right) 2 \sin n \cdot \cos nx + \left(\frac{-1}{n^2} + \frac{3}{n^3} \right) \sin n \cdot \sin nx \right]$	1	08
6)	b)	Attempt any two of the following:		
	i)	Evaluate: $\int_{4}^{5} \frac{\sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$		
	Ans	Let $I = \int_{4}^{5} \frac{\sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$ (1)		
		$I = \int_{4}^{5} \frac{\sqrt{5 - (9 - x)}}{\sqrt{(9 - x) - 4} + \sqrt{5 - (9 - x)}} dx$	1/2	

Subject Code: 12054

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 20/22

	~ .		1	I
	Sub. Que.	Model answers	Marks	Total Marks
6)		$I = \int_{4}^{5} \frac{\sqrt{x-4}}{\sqrt{5-x} + \sqrt{x-4}} dx $	1/2	
		$2I = \int_{4}^{5} dx$	1/2	
		$2\mathbf{I} = \left[x\right]_4^5$	1	
		2I = 5-4=1		
		$I = \frac{1}{2}$	1/2	04
	Ans	Evaluate: $\int \frac{dx}{\sin x + \sin 2x}$ $\int \frac{dx}{\sin x + \sin 2x}$ $= \int \frac{dx}{\sin x + 2\sin x \cdot \cos x}$ Put $\tan \frac{x}{2} = t$ $dx = \frac{2dt}{1 + t^2}$ $\cos x = \frac{1 - t^2}{1 + t^2} \sin x = \frac{2t}{1 + t^2}$ $\int \frac{1}{\frac{2t}{1 + t^2} + 2 \cdot \frac{2t}{1 + t^2} \cdot \frac{1 - t^2}{1 + t^2} \cdot \frac{2dt}{1 + t^2}}$ $= 2\int \frac{1 + t^2}{2t(1 + t^2) + 4t - 4t^3} dt = 2\int \frac{1 + t^2}{2t - 2t^3 + 4t} dt$ $= \int \frac{1 + t^2}{3t - t^3} dt = \int \frac{1 + t^2}{t(3 - t^2)} dt$	1/2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Subject Code	(ISO/IEC - 27001 - 2005 Certified) e: 12035 Summer-2013	Pag	ge No: 21/
Que. Sub.	Model answers	Marks	Total Marks
6)	$= \int \frac{1+t^2}{t(3-t^2)} dt$ $\frac{1+t^2}{t(\sqrt{3}-t)(\sqrt{3}+t)} = \frac{A}{t} + \frac{B}{\sqrt{3}-t} + \frac{c}{\sqrt{3}+t}$ $\therefore 1+t^2 = (\sqrt{3}-t)(\sqrt{3}+t)A + t(\sqrt{3}+t)B + t(\sqrt{3}-t)C$ $A = \frac{1}{3}$ $B = \frac{2}{3}$ $C = \frac{-2}{3}$ $\int \frac{1+t^2}{t(\sqrt{3}-t)(\sqrt{3}+t)} dt = \int \left[\frac{1/3}{t} + \frac{2/3}{\sqrt{3}-t} + \frac{-2/3}{\sqrt{3}+t}\right] dt$	1/2 1/2 1/2	
	$= \frac{1}{3}\log t - \frac{2}{3}\log\left(\sqrt{3} - t\right) - \frac{2}{3}\log\left(\sqrt{3} + t\right) + c$ $= \frac{1}{3}\log\tan\frac{x}{2} - \frac{2}{3}\log\left(\sqrt{3} - \tan\frac{x}{2}\right) - \frac{2}{3}\log\left(\sqrt{3} - \tan\frac{x}{2}\right) + c$ Find P.M.S velves of invitors $i = L\sin xt$	1 1/2	04
iii) Ans	Find R.M.S. values of i where $i = I \sin pt$ Given $i = I \sin pt$ $R.M.S. value = \sqrt{\frac{1}{b-a} \int_{a}^{b} i^{2} dt}$	1/	
	$a = 0, b = 2\pi$ $= \sqrt{\frac{1}{2\pi - 0}} \int_{0}^{2\pi} I^{2} \sin^{2} pt dt$ $= \sqrt{\frac{1}{2\pi}} \int_{0}^{2\pi} I^{2} \left[\frac{1 - \cos 2pt}{2} \right] dt$	1/2	
	$\begin{vmatrix} \sqrt{2\pi} \cdot \frac{3}{0} & \boxed{2} \\ = \frac{I}{2} \sqrt{\frac{1}{\pi}} \left[t - \frac{\sin 2pt}{2p} \right]_0^{2\pi} \\ = \frac{I}{2} \sqrt{\frac{1}{\pi}} \left[2\pi - \frac{\sin 4p\pi}{2p} - 0 \right]$	1 1/2	

Subject Code: 12054 **Summer-2013** Page No: 22/22

	r couc.			C 110. 22/
Que.	Sub. Que.	Model answers	Marks	Total Marks
6)		$= \frac{I}{2} \sqrt{\frac{1}{\pi} [2\pi]}$ $= \frac{I\sqrt{2}}{2} \text{ or } \frac{I}{\sqrt{2}}$	1 1/2	04
		$= \frac{\sqrt{2}}{2} \text{ or } \frac{1}{\sqrt{2}}$ <u>Important Note:</u> In the solution of the question paper, wherever	/2	04
		possible all the possible alternative methods of solution are given		
		for the sake of convenience. Still student may follow a method		
		other than the given herein. In such case, first see whether the		
		method falls within the scope of the curriculum, and then only		
		give appropriate marks in accordance with the scheme of marking.		