1.7- BASE DE UM ESPAÇO VETORIAL

Def.: Um conjunto B = $\{v_1, v_2, ..., v_n\} \subset V$ é uma base do espaço vetorial V se:

- I) B é LI;
- II) B gera V.

Exemplos:

1- Sejam o conjunto de vetores $S = \{(1, 1), (1, -1)\}$ e o conjunto $T = \{(1, 1), (1, -1), (1, 0)\}$, ambos geram o IR^2 . Escreva os vetores dos conjuntos acima como combinação linear do vetor (2, 4).

- 2- Verifique se os conjuntos a abaixo são base do IR^2 :
- a) $B = \{(1, 1), (-1, 0)\}.$
- b) $B = \{(1, 0), (0, 1)\}.$
- c) $B = \{(1, 2), (2, 4)\}.$
- d) $B = \{(1, 0), (0, 1), (3, 4)\}.$
- e) $B = \{(2, -1)\}.$

3- Mostre que B = $\{(1, 2, 1), (-1, -3, 0)\}$ não é uma base do IR^3 .

4- Sejam os vetores $e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1)$ e um conjunto $B = \{e_1, e_2, ..., e_n\}$. Mostre que B é uma base do IR^n .

5- Verifique se o conjunto B = $\{1, x, x^2, ..., x^n\}$ é uma base do espaço vetorial P_n .

- 6- Dê a base canônica dos espaços vetoriais abaixo:
- a) *IR*⁴:
- b) *IR*³:
- c) IR^2 :
- d) *IR*:
- e) M(2, 2):

Curso de Álgebra Linear Prof^a Mara Freire

Teorema: Se B = $\{v_1, v_2, ..., v_n\}$ for uma base de um espaço vetorial V, então qualquer conjunto com mais de n vetores será linearmente dependente.

Dem.: Seja B'= $\{w_1, w_2, ..., w_n\}$ um conjunto qualquer de m vetores de V, com m > n.

Quero mostrar que B'é LD. Para isso, basta mostrar que existem escalares $\lambda_1, \lambda_2, ..., \lambda_n$ não todos nulos, tais que

$$\lambda_1 w_1 + \lambda_2 w_2 + \ldots + \lambda_m w_n = 0 \tag{1}$$

Como B é uma base de V, cada vetor $w_i \in B$ ' é uma combinação linear dos vetores de B, isto é existem números α_i , β_i , ..., δ_i tais que:

$$w_{1} = \alpha_{1}v_{1} + \alpha_{2}v_{2} + \dots + \alpha_{n}v_{n}$$

$$w_{2} = \beta_{1}v_{1} + \beta_{2}v_{2} + \dots + \beta_{n}v_{n}$$

$$\vdots$$

$$w_{m} = \delta_{1}v_{1} + \delta_{2}v_{2} + \dots + \delta_{n}v_{n}$$
(2)

Substituindo (2) em (1), temos:

$$\lambda_1(\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n) + \lambda_2(\beta_1v_1 + \beta_2v_2 + \ldots + \beta_nv_n) + \ldots + \lambda_m(\delta_1v_1 + \delta_2v_2 + \ldots + \delta_nv_n) = 0$$

ou ordenando os termos convenientemente:

$$(\alpha_1\lambda_1+\beta_1\lambda_2+\ldots+\delta_1\lambda_m)v_1+(\alpha_2\lambda_1+\beta_2\lambda_2+\ldots+\delta_2\lambda_m)v_2+\ldots+(\alpha_n\lambda_1+\beta_n\lambda_2+\ldots+\delta_n\lambda_m)v_n=0$$

Tendo em vista que $v_1, v_2, ..., v_n$ são LI, os coeficientes dessa combinação linear são nulos:

$$\begin{cases} \alpha_1 \lambda_1 + \beta_1 \lambda_2 + \dots + \delta_1 \lambda_m = 0 \\ \alpha_2 \lambda_1 + \beta_2 \lambda_2 + \dots + \delta_2 \lambda_m = 0 \\ \vdots \\ \alpha_n \lambda_1 + \beta_n \lambda_2 + \dots + \delta_n \lambda_m = 0 \end{cases}$$

Esse sistema linear homogêneo possui m variáveis $\lambda_1, \lambda_2, \ldots, \lambda_m$ e n equações. Como m > n, existem soluções não-triviais, isto é, existe $\lambda_2 \neq 0$. Logo, B' = $\{w_1, w_2, ..., w_n\}$ é LD.

Corolário: Duas bases quaisquer de um espaço vetorial têm o mesmo número de vetores.

Exemplos:

- 1- A base canônica do IR^3 tem três vetores. Logo, qualquer outra base do IR^3 terá também três vetores.
- 2- A base canônica de M(2, 2) tem quatro vetores. Portanto, toda base de M(2, 2) terá quatro vetores.

Curso de Álgebra Linear Prof" Mara Freire

1.8- DIMENSÃO DE UM ESPAÇO VETORIAL

Def.: Se uma base S tem n vetores, então a dimensão de V é n, e escreve-se dim (V) = n, e nesse caso dizemos que V é de dimensão finita. Em particular, V é chamado como um espaço vetorial n-dimensional quando a base para V tem n vetores.

Exemplos:

- $1 dim (IR^2) =$
- $2-dim(IR^n) =$
- $3-dim\ M(2,2) =$
- 4- dim M(m, n) =
- 5- $dim P_n =$
- $6- dim \{0\} =$

A dimensão de qualquer subespaço S do IR^3 só poderá ser 0, 1, 2 ou 3. Portanto, temos os seguintes casos:

- I) dim S = 0, então $S = \{0\}$ é a origem.
- II) dim S = 1, então S é uma reta que passa pela origem.
- III) dim S = 2, então S é um plano que passa pela origem.
- IV) dim S = 3, então S é o próprio IR^3 .

Teorema: Seja V um espaço vetorial. Qualquer conjunto de vetores LI em V é parte de uma base, isto é, pode ser completado até formar uma base de V.

Exemplo: Dados os vetores $v_1 = (1, -1, 1, 2)$ e $v_2 = (-1, 1, -1, 0)$. Complete o conjunto $\{v_1, v_2\}$ de modo a formar uma base do IR^4 .

Teorema: Se U e W são subespaços de um espaço vetorial V que tem dimensão finita, então $\dim U \le \dim V$ e $\dim W \le \dim V$. Além disso,

$$dim(U + W) = dim U + dim W - dim(U \cap W)$$

Exemplo: Considere $V = \{(x, y, z) \mid x + y - z = 0\}$ e $W = \{(x, y, z) \mid x = y\}$. Determine V + W.

Curso de Álgebra Linear Profa Mara Freire

1.9- COMPONENTES DE UM VETOR

Def.: Seja B = $\{v_1, v_2, ..., v_n\}$ uma base de um espaço vetorial V. Tomando $v \in V$ sendo: $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$. Os números $\lambda_1, \lambda_2, \ldots, \lambda_n$ são chamadas *componentes* ou *coordenadas* de *v* em relação à base B e se representa por:

$$v_{\rm B} = (\lambda_1, \lambda_2, \dots, \lambda_n)$$
 ou na notação matricial: $v_{\rm B} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$

A *n-upla* $(\lambda_1, \lambda_2, \dots, \lambda_n$ é chamada de vetor-coordenada de v em relação à base B, e o vetor

coluna
$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$$
 é chamado de matriz-coordenada de v em relação à base B.

Exemplo: Determinar o vetor coordenada de v = (8, 6) em relação às seguintes bases do IR^2 :

a)
$$A = \{(1, 0), (0, 1)\}$$

b)
$$B = \{(2, 0), (1, 3)\}$$

b) B =
$$\{(2, 0), (1, 3)\}$$
 c) C = $\{(1, -3), (2, 4)\}$

1.10- MUDANÇA DE BASE

Em alguns problemas práticos existe a necessidade de se mudar a base e calcular as componentes de um vetor arbitrário correspondente a uma nova base. Em geral, nesse processo de resolução de problemas, aparecem matrizes complicadas (relacionadas as bases) e devemos simplificar as mesmas. Em um espaço vetorial, saber realizar mudanças de bases nos ajuda a simplificar certos problemas.

Uma vez obtida a matriz de mudança de base, representada por $[I]_{B}^{B'}$, pode-se encontrar as coordenadas de qualquer vetor v em relação à base B, multiplicando a matriz pelas coordenadas de v na base B' (supostamente conhecidas).

Exemplo: Sejam B = $\{(2, -1), (3, 4)\}$ e B' = $\{(1, 0), (0, 1)\}$ bases coordenadas do IR^2 . Encontrar a matriz de mudança de base $[I]_R^{B'}$.

Curso de Álgebra Linear Prof^a Mara Freire

Exercícios

1- Sejam os vetores $v_1 = (1, 2, 3)$, $v_2 = (0, 1, 2)$ e $v_3 = (0, 0, 1)$. Mostrar que o conjunto $B = \{v_1, v_2, v_3\}$ é uma base do IR^3 .

- 2- Considerando B = $\{(1, 2, 3), (0, 1, 2), (0, 0, 1)\}$ uma base do IR^3 dada no exercício anterior. Determinar:
- a) o vetor-coordenada e a matriz-coordenada de v = (5, 4, 2) em relação à base B do exercício anterior.
- b) o vetor $v \in IR^3$ cujo vetor-coordenada em relação a B é $v_B = (2, -3, 4)$.
- 3- Considere os seguintes subespaços de IR^4 : $S_1 = \{(a, b, c, d)/a + b + c = 0\}$ e $S_2 = \{(a, b, c, d)/a 2b = 0 \text{ e } c = 3d\}$.
- a) dim S_1 e uma base de S_1 .
- b) dim S_2 e uma base de S_2 .
- 4- Seja S o subespaço vetorial de $P_2 = \{at^2 + bt + c/a, b, c \in IR\}$ gerado pelos vetores $v_1 = t^2 2t + 1$, $v_2 = t + 2$ e $v_3 = t^2 3t 1$. Determinar:
- a) Uma base de *S* e dim *S*.
- b) Uma base de P_2 com a presença de v_1 e v_2 .
- 5- Determinar uma base e a dimensão do espaço solução do sistema homogêneo

$$\begin{cases} x + 2y - 4z + 3t = 0 \\ x + 2y - 2z + 2t = 0 \\ 2x + 4z - 2z + 3t = 0 \end{cases}$$

6- Determinar o vetor coordenada de v = (6, 2) em relação às seguintes bases:

- a) $\alpha = \{(3, 0), (0, 2)\}$
- b) $\beta = \{(1, 2), (2, 1)\}$
- c) $\gamma = \{(1, 0), (0, 1)\}$
- d) $\delta = \{(0, 1), (1, 0)\}$
- 7- Sejam B = $\{(1, 0), (0, 1)\}$ e B' = $\{(-1, 1), (1, 1)\}$ bases coordenadas do IR^2 . Encontrar a matriz de mudança de base $[I]_R^{B'}$ e as coordenadas do vetor v = (3, -2) em relação a base B.

RESPOSTAS

2- a)
$$v_{\rm B} = (5, -6, 1)$$
; b) $v = (2, 1, 4)$. 3- a) dim $S_1 = 3$ e B = {(-1, 1, 0, 0), (-1, 0, 1, 0), (0, 0, 0, 1)}; b) dim $S_2 = 2$ e B = {(2, 1, 0, 0), (0, 0, 3, 1)}. 4- a) dim $S = 2$ e B = { v_1, v_2 }; b) { $t^2 - 2t + 1, t + 2, t^2$ }. 5- B = {(-2, 1, 0, 0), (-2, 0, 1, 2)}. 6- a) $v_{\alpha} = (2, 1)$; b) $v_{\beta} = (-2/3, 10/3)$; c) $v_{\gamma} = (3, 2)$; d) $v_{\delta} = (2, 6)$. 7- a) $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$; b) $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$.