VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Modelování a simulace Elektromobilita v Brně

Obsah

1	Úvo	od .	2								
2 Cíle projektu											
3	3 Rozbor tématu a použitých metod/technologií										
	3.1	Elektromotor	2								
	3.2	Baterie	3								
	3.3	Typy nabíjení	3								
	3.4	Elektronabíjecí stanice	4								
		3.4.1 Jak je na tom s elektrno stanicemi Brno?	4								
		3.4.2 Zpracování datasetu	4								
	3.5	Modelování elektromobility v Brně	5								
		3.5.1 Petriho síť elektromobility v Brně	5								
4	Záv	·ěr	5								
	4.1	Výstup programu	5								
		4.1.1 Momentální stav elektromobility v Brně	5								
		4.1.2 Stav v roce 2030 elektromobility v Brně	5								

1 Úvod

Jako téma našeho projektu jsme si zvolili modelování elektromobility v Brně. Elektromobilita je v posledních aktuálním trendem, který se v posledních letech stává stále populárnějším a je pravděpodné, že tomu bude tak i nadále. V rámci projektu se zaměříme na modelování elektromobily v Brně elektromobility v Brně s cílem určit zda je Brno, připraveno na budoucnost.[1]

2 Cíle projektu

Cílem projektu je vytvořit model, který bude schopen simulovat chování elektromobilů v Brně. Model bude zahrnovat informace o elektromobilech, nabíjecích stanicích a o cestách, kterými se elektromobily v Brně pohybují. Model bude schopen simulovat chování elektromobilů v Brně v závislosti na různých parametrech, jako je například počet elektromobilů, počet nabíjecích stanic, dostupnost nabíjecích stanic, atd. Model bude sloužit k analýze a optimalizaci elektromobility v Brně.

3 Rozbor tématu a použitých metod/technologií

Pro korektní modelování elektromobility je potřeba si nejprve uvědomit, jak elektromobily fungují, jaké jsou jejich vlastnosti/parametry, které v modelu budou definovat transakce. Mezi hlavní aspekty, ovlivňující chování elektromobilů, patří v prvé řadě jejich motor a akumulátor/baterie.

3.1 Elektromotor

U každého vozidla je nejdůležitější jeho pohon a palivo. Pro elektromobily je pohon zajištěn elektromotorem, který je základní součástí elektrického hnacího systému. Elektromotor přeměňuje elektrickou energii z baterie na mechanickou energii potřebnou pro pohyb vozidla a skládá se primárně ze dvou hlavních částí – rotoru a statoru. [2]

Rotor je pohyblivá část elektromotoru. Jedná se o součást, která se otáčí a přenáší mechanickou energii na hnací ústrojí vozidla. Pohyb rotoru je vyvolán magnetickými silami, které vznikají mezi ním a statorem. Rotor může být vyroben z permanentních magnetů (v motorech s permanentními magnety) nebo z vodivých materiálů, které reagují na elektromagnetické pole statoru (v asynchronních motorech). [3]

Stator je naopak pevná část elektromotoru, která obklopuje rotor. Obsahuje sady cívek, které jsou napájeny elektrickým proudem z baterie. Když těmito cívkami prochází proud, vytváří elektromagnetické pole. Toto pole interaguje s magnetickým polem rotoru a vytváří točivý moment, který pohání rotor. [3]

Obrázek 1: Schéma synchronního elektromotoru [3]

3.2 Baterie

Baterie je další důležitou součástí elektromobilu. Stejně jako existuje více typů elektromotorů, liší se i baterie, používané jednotlivými výrobci. V zásadě se ale jedná o lithium-iontové baterie (varianty LIB a Li-NMC), poskytující přijatelný poměr mezi kapacitou, hmotností a prostorem, který zabírají.[4] Liší se však v použitelné kapacitě této baterie, které se pohybuje v rozmezí od 123 kWh, po 21.3 kWh na základě dat z webové stránky www.ev-database.org[5], poskytující databázi o elektromobilech.

3.3 Typy nabíjení

Elektromobil, lze nabíjet hned několika způsoby, faktorů je mnoho, výkon elektrostanice, typ proudu, konektor,... My jsme se v našem modelu rozhodli zachovat pouze podstatné parametry, které v našem případě budou mít největší vliv na chování elektromobilů a to nabíjecí výkon a druh proudu. Elektromobil, zde obvykle nabíjet jak stejnosměrným proudem, tak střídavým proudem.

Obrázek 2: Rozdíl mezi nabíjením střídavým a stejnosměrným proudem [6]

Rozdíl ale je v jejich efektivitě, u nabíjení střídavým proudem nezáleží pouze na výkonu nabíjecí stanice, ale také na samotném vozidle. Baterie elektromobilu je schopna pracovat pouze se stejnosměrným proudem, proto je potřeba mít v elektromobilu vestavěný měnič (palubní nabíječka), který

střídavý proud převede na stejnosměrný. Palubní nabíječka obvykle pracuje s výkonem 3,6 kW, 7,2 kW, 11 kW nebo 22 kW, který obvykle limituje nabíjení elektromobilu, daleko víc než výkon nabíjecí stanice. [7] Zato nabíjení stejnosměrným proudem je mnohem efektivnější, nemusí se měnit typ proud a nabíjení není limitováno vůbec výkonem palubní nabíječky. Tyto nabíjecí stanice obvykle poskytují výkon 50 kW, 150 kW nebo až 350 kW.[7, 8]

U nabíjení stejnosměrným proudem se standardně cyklus nabíjení skládá ze tří fází (tzv. SoC – State of Charge), první fáze se pohybuje v rozmezí 0 až 20% kapacity baterie, zde pomalu výkon narůstá, tato fáze je omezena komunikací mezi nabíjecí stanicí a elektromobilem a také teplotou baterie. Druhá fáze začíná na 20% až 80% zde se na začátku stavu dosáhne maximální výkon stanice (většínou stanice jelikož elektromobily mají zpravidla povolený větší maximální výkon než dnešní stanice standardně nabízejí) a následně začíná pokles, tento sestupný trend nastává jak se baterie plní a zároveň se přehřívá. Poslední fází je rozsah mezi 80% až 100%, zde se výkon nabíjení opět snižuje, jelikož dochází k protekci před přebitím baterie a i chemický proces, ke kterému dochází v baterii je méně efektivní při vyšších úrovních nabití, což má za následek že stejný nabíjecí proud má menší dopad na zvýšení kapacity.[9]

Obrázek 3: Efektivita AC a DC nabíjení [10]

U nabíjení na střídavý proud je situace jiná, tím, že je výkon primárně limitován elektromobilem – tedy palubní nabíječkou (OBC - On-Board Charger), výrobce automobilu zaručuje, že baterie je schopna pracovat s určitým výkonem, který externí nabíjecí stanice schopna poskytnout.

3.4 Elektronabíjecí stanice

3.4.1 Jak je na tom s elektrno stanicemi Brno?

V Brně je celkem 102 veřejných nabíjecích stanic, vyplývající z dat z webu www.data.brno.cz[8], na této stránce je i vytvořený dataset s mapou, kde jsou všechna data zaznamenána a zpřístupněna veřejnosti. My jsme tento dataset využili a zpracovaná data, lze najít ve složce data/ v souboru brno_charging_stations.xl. V zásadě Brno poskytuje nabíjecí stanice s výkonem od 3.7 kW (AC) až po 108 kW (DC), a nabíjecích bodů je celkově 130.

3.4.2 Zpracování datasetu

Data z datasetu poskytnutého portálem www.data.brno.cz [8], bylo třeba nejprve zpracovat a určit aktuální situaci v Brně. Zpracovaný dataset nacházející se v souboru brno_charging_stations.xl, obsahuje tedy roztřízené elektrostanice podle typu proudu (stejnosměrný/střídavý) a výkonu nabíjení.

Jak již bylo řečeno Brno poskytuje nabíjecí stanice s výkonem od 3.7 kW (AC) až po 108 kW (DC), a nabíjecích bodů je celkově 130, do úvahy jsme však vybrali pouze stanice s nabíjecím výkonem od 12 kW, jelikož systému s výkonem 3.7 kW se dnes již neimplementují do veřejných nabíjecích stanic, jelikož nabíjení by trvalo příliš dlouho a zároveň by bylo neefektivní. Takový elektromobil s průměrnou kapacitou baterie 71.6 kWh by se z 0 na 100 procent nabíjel 19.43 hodin. 1.

stanice	výkon stanice	typ stanice	počet stanic
12kWh AC	12kWh	střídavý proud	12
22kWh AC	22kWh	střídavý proud	58
50kWh DC	50kWh	stejnosměrný proud	22
108kWh DC	108kWh	stejnosměrný proud	10

3.5 Modelování elektromobility v Brně

Prumerny nabijeci vykon nabijecky

	0 - 20 [%]	20 - 80 [%]	80 - 100 [%]
12kWh AC	12kWh	12kWh	9kWh
22kWh AC	22kWh	22kWh	16.5kWh
50kWh DC	26kWh	42kWh	17kWh
108kWh DC	54kWh	90kWh	36.72Kwh

	0 - 20 [%]	20 - 80 [%]	80 - 100 [%]
12kWh AC	0 - 2.387h.	0 - 5.728h.	0 - 3.509h.
22kWh AC	0 - 1.302h.	0 - 3.096h.	0 - 1.914h.
50kWh DC	0 - 0.573h.	0 - 1.364h.	0 - 0.842h.
108kWh DC	0 - 0.159h.	0 - 0.636h.	0 - 0.390h.

3.5.1 Petriho síť elektromobility v Brně

4 Závěr

4.1 Výstup programu

4.1.1 Momentální stav elektromobility v Brně

4.1.2 Stav v roce 2030 elektromobility v Brně

 $^{^1\}mathrm{V}$ první fázi z 0 do 20 procent za 3.9, v druhé fázi od 20 do 80 procent by to trvalo 11.93 a poslední fáze z 80 do 100 procent by opět trvala 3.9 hodiny

Reference

- [1] SIMLIB/C++. Simulation library for c++. [online], 2024. [cit. 2024-11-18].
- [2] Auto.cz. Přehledně: Všechny typy elektromotorů! Čím se liší? a jaké mají výhody/nevýhody? [online], 2024. [cit. 2024-11-18].
- [3] Mgr. Magda Králová. Techmania: Elektromotory. [online], 2024. [cit. 2024-11-18].
- [4] Wikipedia. Electric vehicle battery. [online], 2024. [cit. 2024-11-21].
- [5] Electric Vehicle Database. Useable battery capacity of full electric vehicles. [online], 2024. [cit. 2024-11-18].
- [6] wallbox. Ev charging current: What's the difference between ac and dc? [online], 2024. [cit. 2024-11-20].
- [7] Jan Strmiska. Ac vs. dc nabíjecí stanice elektromobilů. [online], 2024. [cit. 2024-11-18].
- [8] Datový portál města Brna. Elektrické nabíjecí stanice pro auta / ev charging points. [online], 2024. [cit. 2024-11-18].
- [9] eStation. Understanding the charging curve and the 80 [online], 2024. [cit. 2024-11-21].
- [10] Reccurent. Is your ev battery getting all the energy you pay for? [online], 2024. [cit. 2024-11-20].