Programme de colle : Semaine 6 Lundi 4 Novembre

1 Cours

- 1. Une étude de fonction en début de colle peut être demandée pendant toute l'année par les colleurs!
- 2. Complexes
 - (a) Forme algébrique, trigonométrique, exponentielle.
 - (b) Conjugué.
 - (c) Module, argument.
 - (d) Interprétation géométrique.
 - (e) Résolution des équations polynomiales avec discriminant négatif
 - (f) Appliquation à la trigo (linéarisation et délinéarisation, formules de Moivre et d'Euler)
- 3. Suites usuelles:
 - (a) Suite arithmétique
 - (b) Suite géométrique
 - (c) Suite arithmético-géométrique
 - (d) Suite récurrente linéaire d'ordre 2 à coefficients constants
- 4. Python:
 - (a) Instruction conditionnelle (if/else)
 - (b) Fonction
 - (c) Boucle for

2 Exercices Types

1. Écrire les nombres suivants sous forme exponentielle :

$$z = -1$$
 et $z = i$ et $z = \frac{1+i}{1-i}$ et $z = (1+i)^{2024}$

- 2. On note $j = e^{\frac{2i\pi}{3}}$.
 - (a) Calculer j^3 et $1 + j + j^2$.
 - (b) Simplifier les expressions $(1+j)^5$, $\frac{1}{(1+j)^4}$.
 - (c) Linéariser (écrire en somme de $\sin(nx)$ et $\cos(mx)$) $\sin^4(x)$
 - (d) Délinéariser (écrire en polynome de sin et cos) $\sin(4x)$
 - (e) Calculer $\sum_{k=0}^{n} e^{ikx}$ En déduire $\sum_{k=0}^{n} \sin(kx)$
 - (f) Résoudre $z^2 + z + 1 = 0$
 - (g) Résoudre $z^2 = 1 + i$
 - (h) Résoudre $z^4 = i$
 - (i) Résoudre $(z-1)^n = z^n$ (limite HP)
 - (j) Donner le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1$$

(k) Donner le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\,u_1=2$ et

$$\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - u_n$$

- 3. Ecrire une fonction Python qui prend en argument un entier la valeur de la somme $\sum_{k=1}^{n} k^7$
- 4. Ecrire une fonction Python qui prend en argument un entier et retourne True si l'entier est plus grand que 100 et False sinon.
- 5. Ecrire une fonction Python qui prend en argument un entier n et retourne n/2 si il est pair, et 3n+1 sinon.