Model-Based Goal Recognition with Unknown Domain Models

Diego Aineto¹, Sergio Jiménez¹, Eva Onaindia¹ and , Miquel Ramírez²

¹Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València. Valencia, Spain ²School of Computing and Information Systems. The University of Melbourne. Melbourne, Victoria. Australia

{dieaigar,serjice,onaindia}@dsic.upv.es, miquel.ramirez@unimelb.edu.au

Abstract

The paper shows how to relax one key assumption of the *plan recognition as planning* for *goal recognition* that is knowing the action model of the observed agent. The paper introduces a novel formulation that fits together the *learning of planning action models* with the *plan recognition as planning* approach. The empirical evaluation evidences that our novel formulation allows to solve standard goal recognition benchmarks without having knowing the action model of the observed agent.

1 Introduction

Goal recognition is a particular classification task in which each class represents a different goal and each example is an observation of an agent acting to achieve one of that goals. Despite there is a wide range of different approaches for goal recognition, plan recognition as planning [Ramírez and Geffner, 2009; Ramírez, 2012] is one of the most popular since it is at the core of several interesting tasks such as, goal recognition design [Keren et al., 2014], deceptive planning [Masters and Sardina, 2017], planning for transparency [MacNally et al., 2018] or counterplanning [Pozanco et al., 2018].

Plan recognition as planning leverages the action model of the observed agent and an off-the-shelf classical planner to compute the most likely goal of the agent. In this paper we show that we can relax the key assumption of plan recognition as planning for Goal recognition that is knowing the action model of the observed agent. In particular, the paper introduces a novel formulation that fits together the learning of planning action models with the plan recognition as planning approach. The evaluation of our formulation evidences that it allows to solve goal recognition tasks, even when the action model of the observed is unknown.

2 Background

This section formalizes the *planning model* we follow as well as the kind of *observations* that are given as classification examples for the *goal recognition* task.

2.1 Classical planning with conditional effects

Let F be the set of *fluents* or *state variables* (propositional variables) describing a state. A *literal* l is a valuation of a fluent $f \in F$; i.e. either l = f or $l = \neg f$. A set of literals L represents a partial assignment of values to fluents (without loss of generality, we will assume that L does not contain conflicting values). Given L, let $\neg L = \{\neg l : l \in L\}$ be its complement. We use $\mathcal{L}(F)$ to denote the set of all literal sets on F; i.e. all partial assignments of values to fluents. A *state* s is a full assignment of values to fluents; |s| = |F|.

A classical planning frame is a tuple $\Phi = \langle F, A \rangle$, where F is a set of fluents and A is a set of actions. Each classical planning action $a \in A$ has a precondition $pre(a) \in \mathcal{L}(F)$, a set of effects eff(a) $\in \mathcal{L}(F)$, and a positive action cost cost(a). The semantics of actions $a \in A$ is specified with two functions: $\rho(s,a)$ denotes whether action a is applicable in a state s and $\theta(s,a)$ denotes the successor state that results of applying action a in a state s. Then, $\rho(s, a)$ holds iff $pre(a) \subseteq s$, i.e. if its precondition holds in s. The result of executing an applicable action $a \in A$ in a state s is a new state $\theta(s, a) = (s \setminus \neg \mathsf{eff}(a)) \cup \mathsf{eff}(a)$. Subtracting the complement of eff(a) from s ensures that $\theta(s, a)$ remains a well-defined state. The subset of action effects that assign a positive value to a state fluent is called positive effects and denoted by $eff^+(a) \in eff(a)$ while $eff^-(a) \in eff(a)$ denotes the *negative effects* of an action $a \in A$.

A classical planning problem is a tuple $P=\langle F,A,I,G\rangle$, where I is the initial state and $G\in\mathcal{L}(F)$ is the set of goal conditions over the state variables. A plan π is an action sequence $\pi=\langle a_1,\ldots,a_n\rangle$, with $|\pi|=n$ denoting its plan length and $cost(\pi)=\sum_{a\in\pi}cost(a)$ its plan cost. The execution of π on the initial state I of P induces a trajectory $\tau(\pi,s_0)=\langle s_0,a_1,s_1,\ldots,a_n,s_n\rangle$ such that $s_0=I$ and, for each $1\leq i\leq n$, it holds $\rho(s_{i-1},a_i)$ and $s_i=\theta(s_{i-1},a_i)$. A plan π solves P iff the induced trajectory $\tau(\pi,s_0)$ reaches a final state $G\subseteq s_n$, where all goal conditions are met. A solution plan is optimal iff it minimizes the sum of action costs.

An action with conditional effects $a_c \in A$ is defined as a set of preconditions $\operatorname{pre}(a_c) \in \mathcal{L}(F)$ and a set of conditional effects $\operatorname{cond}(a_c)$. Each conditional effect $C \rhd E \in \operatorname{cond}(a_c)$ is composed of two sets of literals: $C \in \mathcal{L}(F)$, the condition, and $E \in \mathcal{L}(F)$, the effect. An action a_c is applicable in a state s if $\rho(s, a_c)$ is true, and the result of applying action a_c in state s is $\theta(s, a_c) = \{s \setminus \neg\operatorname{eff}_c(s, a) \cup \operatorname{eff}_c(s, a)\}$ where

 $eff_c(s, a)$ are the *triggered effects* resulting from the action application (conditional effects whose conditions hold in s):

$$\mathsf{eff}_c(s,a) = \bigcup_{C \rhd E \in \mathsf{cond}(a_c), C \subseteq s} E,$$

2.2 The observation model

Given a planning problem $P = \langle F, A, I, G \rangle$, a plan π and a trajectory $\tau(\pi, P)$, we define the *observation of the trajectory* as an interleaved combination of actions and states that represents the observation from the execution of π in P. Formally, $\mathcal{O}(\tau) = \langle s_0^o, a_1^o, s_1^o, s_1^o, \ldots, a_l^o, s_m^o \rangle$, $s_0^o = I$, and:

- The **observed actions** are consistent with π , which means that $\langle a_1^o, \dots, a_l^o \rangle$ is a sub-sequence of π . Specifically, the number of observed actions, l, can range from 0 (fully unobservable action sequence) to $|\pi|$ (fully observable action sequence).
- The **observed states** $\langle s_0^o, s_1^o, \dots, s_m^o \rangle$ is a sequence of possibly partially observable states, except for the initial state s_0^o , which is fully observable. A partially observable state s_i^o is one in which $|s_i^o| < |F|$; i.e., a state in which at least a fluent of F is not observable. Note that this definition also comprises the case $|s_i^o| = 0$, when the state is fully unobservable. Whatever the sequence of observed states of $\mathcal{O}(\tau)$ is, it must be consistent with the sequence of states of $\tau(\pi, P)$, meaning that $\forall i, s_i^o \subseteq s_i$. In practice, the number of observed states, τ , range from 1 (the initial state, at least), to $|\tau| + 1$, and the observed intermediate states will comprise a number of fluents between [1, |F|].

We assume a bijective monotone mapping between actions/states of trajectories and observations [Ramírez and Geffner, 2009], thus also granting the inverse consistency relationship (the trajectory is a superset of the observation). Therefore, transiting between two consecutive observed states in $\mathcal{O}(\tau)$ may require the execution of more than a single action $(\theta(s_i^o, \langle a_1, \dots, a_k \rangle) = s_{i+1}^o$, where $k \geq 1$ is unknown but finite. In other words, having $\mathcal{O}(\tau)$ does not imply knowing the actual length of π .

2.3 Model-Based Goal Recognition

We formalize the *goal recognition* task following the standard formalization of Ramírez and Geffner for plan recognition [Ramírez, 2012].

The *model-based goal recognition* is a classification task defined by a tuple $\langle P, \mathcal{O} \rangle$, where:

- $P = \langle F, A, I, G[\cdot] \rangle$ is a planning problem where $G[\cdot]$ is a set of possible goals.
- $\mathcal{O}(\tau)$ is an observation of a trajectory $\tau(\pi, P)$ produced by the execution of an unknown plan π that solves the planning problem P.

Following the *naive Bayes classifier*, the *solution* to the *model-based goal recognition* task is the subset of goals in $G[\cdot]$ that maximizes this expression.

$$argmax_{g \in G[\cdot]} P(\mathcal{O}|g) P(g).$$
 (1)

The Plan recognition as planning approach shows how to compute estimates of the $P(\mathcal{O}|g)$ likelyhood using an off-the-shelf classical planner. Recent works show that faster, but less accurate estimates, of this $P(\mathcal{O}|g)$ likelyhood can also be computed using relaxations of the classical planning task.

3 Model-Based Goal Recognition with Unknown Domain Models

3.1 Well-defined STRIPS action schemata

STRIPS action schemata provide a compact representation for specifying classical planning models. A STRIPS action schema ξ is defined by four lists: A list of parameters $pars(\xi)$, and three list of predicates (namely $pre(\xi)$, $del(\xi)$ and $add(\xi)$) that shape the kind of fluents that can appear in the preconditions, negative effects and positive effects of the actions induced from that schema.

Let be Ψ the set of predicates that shape the propositional state variables F, and a list of $parameters\ pars(\xi)$. The set of elements that can appear in $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of the STRIPS action schema ξ is given by FOL interpretations of Ψ over the parameters $pars(\xi)$ and is denoted as $\mathcal{I}_{\Psi,\xi}$. For instance, in the blocksworld the $\mathcal{I}_{\Psi,\xi}$ set contains five elements for a pickup (v_1) schemata, $\mathcal{I}_{\Psi,pickup} = \{\text{handempty}, \text{holding}(v_1), \text{clear}(v_1), \text{ontable}(v_1), \text{on}(v_1,v_1)\}$ while it contains eleven elements for a stack (v_1,v_2) schemata, $\mathcal{I}_{\Psi,stack} = \{\text{handempty}, \text{holding}(v_1), \text{holding}(v_2), \text{clear}(v_1), \text{clear}(v_2), \text{ontable}(v_1), \text{ontable}(v_2), \text{on}(v_1,v_1), \text{on}(v_1,v_2), \text{on}(v_2,v_1), \text{on}(v_2,v_2)\}.$

Despite any element of $\mathcal{I}_{\Psi,\xi}$ can *a priori* appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of schema ξ , the space of possible STRIPS schemata is bounded by a set of constraints \mathcal{C} of three kinds:

- 1. Syntactic constraints. STRIPS constraints require $del(\xi) \subseteq pre(\xi)$, $del(\xi) \cap add(\xi) = \emptyset$ and $pre(\xi) \cap add(\xi) = \emptyset$. Considering exclusively these syntactic constraints, the size of the space of possible STRIPS schemata is given by $2^{2\times |\mathcal{I}_{\Psi,\xi}|}$. Typing constraints are also of this kind [McDermott *et al.*, 1998].
- 2. Domain-specific constraints. One can introduce domain-specific knowledge to constrain further the space of possible schemata. For instance, in the blocksworld one can argue that on (v_1, v_1) and on (v_2, v_2) will not appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ lists of an action schema ξ because, in this specific domain, a block cannot be on top of itself. State invariants are also constraints of this kind [Fox and Long, 1998].
- 3. Observation constraints. An observations $\mathcal{O}(\tau)$ depicts semantic knowledge that constraints further the space of possible action schemata.

Definition 1 (Well-defined STRIPS action schemata)

Given a set of predicates Ψ , a list of action parameters $pars(\xi)$, and set of FOL constraints C, ξ is a **well-defined STRIPS action schema** iff its three lists $pre(\xi) \subseteq \mathcal{I}_{\Psi,\xi}$, $del(\xi) \subseteq \mathcal{I}_{\Psi,\xi}$ and $add(\xi) \subseteq \mathcal{I}_{\Psi,\xi}$ only contain elements in $\mathcal{I}_{\Psi,\xi}$ and they satisfy all the constraints in C.

We say a planning model \mathcal{M} is well-defined if all its STRIPS action schemata are well-defined.

3.2 Edit distances for STRIPS planning models

First, we define the two edit *operations* on a schema ξ that belongs to a STRIPS model $\mathcal{M} \in M$:

- Deletion. Given $\xi \in \mathcal{M}$, an element from any of the lists $pre(\xi)/del(\xi)/add(\xi)$ is removed such that the result is a well-defined STRIPS action schema.
- Insertion. Given ξ ∈ M, an element in I_{Ψ,ξ} is added to
 any of the lists pre(ξ)/del(ξ)/add(ξ) such that the result
 is a well-defined action schema.

Second, let us define when to action models are comparable. For instance, we claim that the stack(?v1,?v2) and unstack(?v1,?v2) actions schemata from a four operator blocksworld [Slaney and Thiébaux, 2001] are comparable while, the stack(?v1,?v2) and pick-up(?v1) schemata are not. Last but not least, we say that two STRIPS models \mathcal{M} and \mathcal{M}' are comparable iff there exists a bijective function $\mathcal{M} \mapsto \mathcal{M}^*$ that maps every action schema $\xi \in \mathcal{M}$ to a comparable schemata $\xi' \in \mathcal{M}'$ and vice versa.

Definition 2 (Comparable STRIPS action schemata)

Two STRIPS schemata ξ and ξ' are **comparable** iff $pars(\xi) = pars(\xi')$, i.e, both share the same list of parameters.¹

We are now ready to formalize an *edit distance* that quantifies how similar two given STRIPS models are. The distance is symmetric and meets the *metric axioms* provided that the two edit operations, *deletion* and *insertion*, have the same positive cost.

Definition 3 (Edit distance) *Let* \mathcal{M} *and* \mathcal{M}' *be two* comparable *and* well-defined STRIPS *planning models within the same set of predicates* Ψ . *The* **edit distance** $\delta(\mathcal{M}, \mathcal{M}')$ *is the minimum number of* edit operations *that is required to transform* \mathcal{M} *into* \mathcal{M}' .

Since $\mathcal{I}_{\Psi,\xi}$ is a bounded set, the maximum number of edits that can be introduced to an action schema is bounded as well. The **maximum edit distance** of a STRIPS model \mathcal{M} built with predicates Ψ is $\delta(\mathcal{M},*) = \sum_{\xi \in \mathcal{M}} 3 \times |\mathcal{I}_{\Psi,\xi}|$ (note that if we consider the set of syntactic constraints then $\delta(\mathcal{M},*) = \sum_{\xi \in \mathcal{M}} 2 \times |\mathcal{I}_{\Psi,\xi}|$).

An observation of the execution of a plan generated with \mathcal{M} further constraints the space of possible action schemata of \mathcal{M} . The *semantic knowledge* included in the observations introduce a third type of constraints, that we will call *observation constraints*, and that can be added to the set \mathcal{C} . In addition, *observation constraints* allow us to define an edit distance to elicit the value of $P(\mathcal{O}|\mathcal{M})$. It can be argued that the shorter this distance the better the given model explains the given observation.

Definition 4 (Observation edit distance) Given a planning problem P, an observation $\mathcal{O}(\tau)$ of the execution of a plan that solves P and a STRIPS planning model \mathcal{M} (all defined within the same set of predicates Ψ). The **observation edit distance**, $\delta^o(\mathcal{M}, \mathcal{O})$, is the minimal edit distance from \mathcal{M} to any comparable and well-defined model \mathcal{M}' s.t. \mathcal{M}' produces a trajectory $\tau(\pi, P)$ that reaches the goals in P and is consistent with $\mathcal{O}(\tau)$;

$$\delta^{o}(\mathcal{M}, \mathcal{O}) = \min_{\forall \mathcal{M}' \to \mathcal{O}} \delta(\mathcal{M}, \mathcal{M}')$$

 $\delta^o(\mathcal{M},\mathcal{O})$ can also be defined through the edition that the observation $\mathcal{O}(\tau)$ requires to fit \mathcal{M} . This implies defining *edit operations* that modify the observation $\mathcal{O}(\tau)$ instead of the model \mathcal{M} [Yang *et al.*, 2007; Sohrabi *et al.*, 2016]. Our definition of *observation edit distance* is more practical since the size of $\mathcal{I}_{\Psi,\xi}$ is usually much smaller than F (the number of variables in the action schemata should normally be lower than the number of objects in a planning problem).

Definition 5 (Closest consistent models) Given a model \mathcal{M} , the set M^* of the closest consistent models is the set of models \mathcal{M}' that: (1) produce a trajectory $\tau(\pi, P)$ that reaches the goals in P and is consistent with $\mathcal{O}(\tau)$ and (2) their edit distance to \mathcal{M} is minimal;

$$\underset{\forall \mathcal{M}' \to \mathcal{O}}{\arg\min} \ \delta(\mathcal{M}, \mathcal{M}')$$

4 Evaluation

5 Conclusions

References

[Fox and Long, 1998] Maria Fox and Derek Long. The automatic inference of state invariants in tim. *Journal of Artificial Intelligence Research*, 9:367–421, 1998.

[Keren *et al.*, 2014] Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recognition design. In *International Conference on Automated Planning and Scheduling, (ICAPS-14)*, pages 154–162, 2014.

[MacNally et al., 2018] Aleck M MacNally, Nir Lipovetzky, Miquel Ramirez, and Adrian R Pearce. Action selection for transparent planning. In *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*, pages 1327–1335. International Foundation for Autonomous Agents and Multiagent Systems, 2018.

[Masters and Sardina, 2017] Peta Masters and Sebastian Sardina. Deceptive path-planning. In *IJCAI 2017*, pages 4368–4375. AAAI Press, 2017.

[McDermott *et al.*, 1998] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL – The Planning Domain Definition Language, 1998.

[Pozanco et al., 2018] Alberto Pozanco, Yolanda E.-Martín, Susana Fernández, and Daniel Borrajo. Counterplanning using goal recognition and landmarks. In *International Joint Conference on Artificial Intelligence, (IJCAI-18)*, pages 4808–4814, 2018.

¹In STRIPS models, $pars(\xi) = pars(\xi')$ implies the number of parameters must be the same. For other planning models that allow object typing, the equality implies that parameters share the same type

- [Ramírez and Geffner, 2009] Miquel Ramírez and Hector Geffner. Plan recognition as planning. In *International Joint conference on Artifical Intelligence*, (*IJCAI-09*), pages 1778–1783. AAAI Press, 2009.
- [Ramírez, 2012] Miquel Ramírez. *Plan recognition as plan-ning*. PhD thesis, Universitat Pompeu Fabra, 2012.
- [Slaney and Thiébaux, 2001] John Slaney and Sylvie Thiébaux. Blocks world revisited. *Artificial Intelligence*, 125(1-2):119–153, 2001.
- [Sohrabi et al., 2016] Shirin Sohrabi, Anton V. Riabov, and Octavian Udrea. Plan recognition as planning revisited. In *International Joint Conference on Artificial Intelligence*, (*IJCAI-16*), pages 3258–3264, 2016.
- [Yang et al., 2007] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples using weighted MAX-SAT. *Artificial Intelligence*, 171(2-3):107–143, 2007.