# ACTIVIDAD 2. Transformaciones e Inferencia Estadística

Instituto Tecnológico y de Estudios Superiores de Mty

Grace Aviance Silva Aróstegui A01285158

Concentración TC3006C:

Inteligencia Artificial Avanada para Ciencia de Datos

Módulo: Estadística Prof: Ramiro Zermeño Díaz

Fecha, 23 de agosto del 2024.

Campus Guadalajara, Zapopan.

# Problema 1

Una pequeña empresa de manufactura estableció un sistema de incentivos para sus empleados basado en diferentes variables tanto de desempeño como de costo para la empresa. La empresa desea conocer cuál sería el ranking de los empleados tomando en cuenta todas las variables. A continuación, se presenta una tabla con los resultados obtenidos por cada empleado en cada uno de los rubros y si "más es mejor" o "menos es mejor":

|             | Menos   | Menos                  | Más      | Más              | Más       | Menos      |
|-------------|---------|------------------------|----------|------------------|-----------|------------|
|             | Salario | Costo de Producción Sa |          | Satisfacción del | Ventas    | Ausentismo |
|             | Salario | Capacitación           | Generada | Cliente Interna  | Generadas | Ausentismo |
| Empleado 1  | 4620    | 354                    | 10001    | 7                | 80014     | 5          |
| Empleado 2  | 5100    | 499                    | 9800     | 8                | 75000     | 6          |
| Empleado 3  | 4550    | 450                    | 9500     | 6                | 69000     | 4          |
| Empleado 4  | 4751    | 470                    | 9999     | 9                | 71000     | 3          |
| Empleado 5  | 4848    | 380                    | 9750     | 7                | 76500     | 2          |
| Empleado 6  | 4932    | 370                    | 9680     | 6                | 79814     | 5          |
| Empleado 7  | 5040    | 330                    | 9786     | 8                | 77658     | 4          |
| Empleado 8  | 4671    | 350                    | 9650     | 5                | 78500     | 2          |
| Empleado 9  | 4699    | 415                    | 10100    | 9                | 73000     | 2          |
| Empleado 10 | 4914    | 394                    | 10050    | 10               | 74000     | 3          |

Previamente, y con apoyo de la junta directiva, se aplicó la metodología AHP para definir los pesos de cada una de las variables y se obtuvieron los siguientes porcentajes:

|             | Salario | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción del<br>Cliente Interna | Ventas<br>Generadas | Ausentismo |
|-------------|---------|--------------------------|------------------------|-------------------------------------|---------------------|------------|
| Importancia | 6%      | 3%                       | 16%                    | 25%                                 | 40%                 | 10%        |

- (a) Haga un análisis exploratorio de estos datos:
  - a) Calcular e interpretar estadísticas descriptivas de los datos: media, mediana, moda, desviación estándar, coeficiente de variación.

## **Statistics**

| Variable                        | Mean   | StDev | CoefVar | Median | Mode       |
|---------------------------------|--------|-------|---------|--------|------------|
| Salario                         | 4812.5 | 183.5 | 3.81    | 4799.5 | *          |
| Costo de Capacitación           | 401.2  | 56.0  | 13.97   | 387.0  | *          |
| Producción Generada             | 9831.6 | 197.8 | 2.01    | 9793.0 | *          |
| Satisfacción del Cliente Intern | 7.500  | 1.581 | 21.08   | 7.500  | 6, 7, 8, 9 |
| Ventas Generadas                | 75449  | 3725  | 4.94    | 75750  | *          |
| Ausentismo                      | 3 600  | 1 430 | 39 72   | 3 500  | 2          |

- b) ¿Cuál de las variables tiene mayor variabilidad? ¿Cuál tiene menor variabilidad? Explique, ¿cuáles estadísticas son relevantes para ello? y ¿por qué?
  - → Mayor variabilidad: 'Ausentismo' y 'Satisfacción del cliente Interna'
  - → Menor variabilidad: 'Produccion generada' y 'Salario'
  - → Lo podemos apreciar por su coeficiente de variación. Es el único que no tiene unidades, es decir, es un porcentaje. Es la desviación estándar entre el promedio y multiplicado por 100. Entonces determina la dispersión del conjunto de datos respecto a su media.
- (b) Suponga que se quiere utilizar los datos proporcionados y una regresión lineal para predecir cuáles serían las ventas generadas por 3 empleados nuevos con los siguientes valores:

| Empleados<br>Nuevos | Salario | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción del<br>Cliente Interna | Ventas<br>Generadas | Ausentismo |
|---------------------|---------|--------------------------|------------------------|-------------------------------------|---------------------|------------|
| Empleado 11         | 4700    | 420                      | 9800                   | 8                                   | ?                   | 3          |
| Empleado 12         | 4900    | 450                      | 9600                   | 7                                   | ?                   | 5          |
| Empleado 13         | 4850    | 380                      | 10000                  | 8                                   | ?                   | 4          |

- Tip 1: Utilizar la transformación MinMax Scaler para las variables predictoras antes de realizar la regresión.
- Tip 2: Transformar los datos de los nuevos empleados con los mismos parámetros de las variables originales para después meterlos en la ecuación de regresión.
- → Empleado 11: 71178.6497, Empleado 12: 72703.5438, Empleado 13: 78412.0961

```
# REGRESIÓN

# Escalamos las variables del dataset inicial

x = df[['Salario', 'Costo de Capacitación', 'Producción Generada', 'Satisfacción del Cliente Interna', 'Ausentismo']]

y = df['Ventas Generadas']

scaler = MinMaxScaler()

x_scaled = scaler.fit_transform(x)

# Escalamos las variables del dataset con los nuevos empleados

x_new = df_NewEmployes[['Salario', 'Costo de Capacitación', 'Producción Generada', 'Satisfacción del Cliente Interna', 'Ausentismo']]

x_new_scaled = scaler.transform(x_new)

# Modelo de regresión

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(x_scaled, y)

# Predicción de Ventas Generadas para los Nuevos empleados

y_prediction = model.predict(x_new_scaled)

y_prediction

v 0.0s

Python
```

- (c) Utilizando la Técnica de Análisis Multifactor, obtener cuál debería ser el ranking de cada uno de los empleados para poder definir el reparto de los incentivos.
  - $\longrightarrow$  El orden de los empleados de mejor a peor es: 9, 10, 5, 4, 7, 8, 1, 2, 6, 3. Solución:
  - 1 Primeramente identificamos por cada columna cual es el valor más pequeño o grande (dependiendo de que es mejor para cada columna como se indica arriba de cada una de ellas con "Menos"ó "Más")

|             | Menos   | Menos                    | Más                    | Más                                    | Más                 | Menos      |
|-------------|---------|--------------------------|------------------------|----------------------------------------|---------------------|------------|
|             | Salario | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción<br>del Cliente<br>Interna | Ventas<br>Generadas | Ausentismo |
| Empleado 1  | 4620    | 354                      | 10001                  | 7                                      | 80014               | 5          |
| Empleado 2  | 5100    | 499                      | 9800                   | 8                                      | 75000               | 6          |
| Empleado 3  | 4550    | 450                      | 9500                   | 6                                      | 69000               | 4          |
| Empleado 4  | 4751    | 470                      | 9999                   | 9                                      | 71000               | 3          |
| Empleado 5  | 4848    | 380                      | 9750                   | 7                                      | 76500               | 2          |
| Empleado 6  | 4932    | 370                      | 9680                   | 6                                      | 79814               | 5          |
| Empleado 7  | 5040    | 330                      | 9786                   | 8                                      | 77658               | 4          |
| Empleado 8  | 4671    | 350                      | 9650                   | 5                                      | 78500               | 2          |
| Empleado 9  | 4699    | 415                      | 10100                  | 9                                      | 73000               | 2          |
| Empleado 10 | 4914    | 394                      | 10050                  | 10                                     | 74000               | 3          |

2 - Vamos a dividir cada columna por el valor elegido como menor o mayor.

Si es valor mínimo, será divisior.

Si el valor es el máximo, será dividendo.

|             | Menos     | Menos                    | Más                    | Más                                    | Más                 | Menos      |
|-------------|-----------|--------------------------|------------------------|----------------------------------------|---------------------|------------|
|             | Salario   | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción<br>del Cliente<br>Interna | Ventas<br>Generadas | Ausentismo |
| Empleado 1  | 4550/4620 | 330/354                  | 10001/10100            | 7/10                                   | 80014/80014         | 2/5        |
| Empleado 2  | 4550/5100 | 330/499                  | 9800/10100             | 8/10                                   | 75000/80014         | 2/6        |
| Empleado 3  | 4550/4550 | 330/450                  | 9500/10100             | 6/10                                   | 69000/80014         | 2/4        |
| Empleado 4  | 4550/4751 | 330/470                  | 9999/10100             | 9/10                                   | 71000/80014         | 2/3        |
| Empleado 5  | 4550/4848 | 330/380                  | 9750/10100             | 7/10                                   | 76500/80014         | 2/2        |
| Empleado 6  | 4550/4932 | 330/370                  | 9680/10100             | 6/10                                   | 79814/80014         | 2/5        |
| Empleado 7  | 4550/5040 | 330/330                  | 9786/10100             | 8/10                                   | 77658/80014         | 2/4        |
| Empleado 8  | 4550/4671 | 330/350                  | 9650/10100             | 5/10                                   | 78500/80014         | 2/2        |
| Empleado 9  | 4550/4699 | 330/415                  | 10100/10100            | 9/10                                   | 73000/80014         | 2/2        |
| Empleado 10 | 4550/4914 | 330/394                  | 10050/10100            | 10/10                                  | 74000/80014         | 2/3        |

3 - Desplegamos los resultados de las divisiones. Además sumamos cada columna.

|             | Menos       | Menos                    | Más                    | Más                                    | Más                 | Menos       |
|-------------|-------------|--------------------------|------------------------|----------------------------------------|---------------------|-------------|
|             | Salario     | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción<br>del Cliente<br>Interna | Ventas<br>Generadas | Ausentismo  |
| Empleado 1  | 0.984848485 | 0.93220339               | 0.99019802             | 0.7                                    | 1                   | 0.4         |
| Empleado 2  | 8/9         | 0.661322645              | 0.97029703             | 0.8                                    | 0.937335966         | 0.33333333  |
| Empleado 3  | 1           | 0.733333333              | 0.940594059            | 0.6                                    | 0.862349089         | 0.5         |
| Empleado 4  | 0.957693117 | 0.70212766               | 0.99                   | 0.9                                    | 0.887344715         | 0.666666667 |
| Empleado 5  | 0.938531353 | 0.868421053              | 0.965346535            | 0.7                                    | 0.956082686         | 1           |
| Empleado 6  | 0.922546634 | 0.891891892              | 0.958415842            | 0.6                                    | 0.997500437         | 0.4         |
| Empleado 7  | 0.902777778 | 1                        | 0.968910891            | 0.8                                    | 0.970555153         | 0.5         |
| Empleado 8  | 0.974095483 | 0.942857143              | 0.955445545            | 0.5                                    | 0.981078311         | 1           |
| Empleado 9  | 0.968291126 | 0.795180723              | 1                      | 0.9                                    | 0.91234034          | 1           |
| Empleado 10 | 0.925925926 | 0.837563452              | 0.995049505            | 1                                      | 0.924838153         | 0.666666667 |
| Suma        | 9.466866764 | 8.36490129               | 9.734257426            | 7.5                                    | 9.429424851         | 6.46666667  |

4 - Los valores que anteriormente obtuvimos de la suma de cada columna lo utilizaremos para dividir cada valor de su respectiva columna. Observamos que si se hace correctamente, la suma de cada columna será 1

|             | Menos   | Menos                    | Más                    | Más                                    | Más                 | Menos      |
|-------------|---------|--------------------------|------------------------|----------------------------------------|---------------------|------------|
|             | Salario | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción<br>del Cliente<br>Interna | Ventas<br>Generadas | Ausentismo |
| Empleado 1  | 0.1040  | 0.1114                   | 0.1017                 | 0.1                                    | 0.1061              | 0.0619     |
| Empleado 2  | 0.0942  | 0.0791                   | 0.0997                 | 0.1                                    | 0.0994              | 0.0515     |
| Empleado 3  | 0.1056  | 0.0877                   | 0.0966                 | 0.1                                    | 0.0915              | 0.0773     |
| Empleado 4  | 0.1012  | 0.0839                   | 0.1017                 | 0.1                                    | 0.0941              | 0.1031     |
| Empleado 5  | 0.0991  | 0.1038                   | 0.0992                 | 0.1                                    | 0.1014              | 0.1546     |
| Empleado 6  | 0.0975  | 0.1066                   | 0.0985                 | 0.1                                    | 0.1058              | 0.0619     |
| Empleado 7  | 0.0954  | 0.1195                   | 0.0995                 | 0.1                                    | 0.1029              | 0.0773     |
| Empleado 8  | 0.1029  | 0.1127                   | 0.0982                 | 0.1                                    | 0.1040              | 0.1546     |
| Empleado 9  | 0.1023  | 0.0951                   | 0.1027                 | 0.1                                    | 0.0968              | 0.1546     |
| Empleado 10 | 0.0978  | 0.1001                   | 0.1022                 | 0.1                                    | 0.0981              | 0.1031     |
| Suma        | 1.0000  | 1.0000                   | 1.0000                 | 1.0                                    | 1.0000              | 1.0000     |

5 - Multiplicaremos cada columna por el respectivo peso de importancia que definieron en la junta directiva

| Importancia | 0.06    | 0.03                     | 0.16                   | 0.25                                   | 0.4                 | 0.1        |
|-------------|---------|--------------------------|------------------------|----------------------------------------|---------------------|------------|
|             | Menos   | Menos                    | Más                    | Más                                    | Más                 | Menos      |
|             | Salario | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción<br>del Cliente<br>Interna | Ventas<br>Generadas | Ausentismo |
| Empleado 1  | 0.0062  | 0.0033                   | 0.0163                 | 0.023                                  | 0.0424              | 0.0062     |
| Empleado 2  | 0.0057  | 0.0024                   | 0.0159                 | 0.027                                  | 0.0398              | 0.0052     |
| Empleado 3  | 0.0063  | 0.0026                   | 0.0155                 | 0.020                                  | 0.0366              | 0.0077     |
| Empleado 4  | 0.0061  | 0.0025                   | 0.0163                 | 0.030                                  | 0.0376              | 0.0103     |
| Empleado 5  | 0.0059  | 0.0031                   | 0.0159                 | 0.023                                  | 0.0406              | 0.0155     |
| Empleado 6  | 0.0058  | 0.0032                   | 0.0158                 | 0.020                                  | 0.0423              | 0.0062     |
| Empleado 7  | 0.0057  | 0.0036                   | 0.0159                 | 0.027                                  | 0.0412              | 0.0077     |
| Empleado 8  | 0.0062  | 0.0034                   | 0.0157                 | 0.017                                  | 0.0416              | 0.0155     |
| Empleado 9  | 0.0061  | 0.0029                   | 0.0164                 | 0.030                                  | 0.0387              | 0.0155     |
| Empleado 10 | 0.0059  | 0.0030                   | 0.0164                 | 0.033                                  | 0.0392              | 0.0103     |
| Suma        | 0.0600  | 0.0300                   | 0.1600                 | 0.2500                                 | 0.4000              | 0.1000     |

6 - Resuelta las multiplicaciones, creamos la columna "Promedio Ponderado", en el que se suma cada renglón. Esta columna la filtramos para ordenarla de mayor a menor y así obtener el ranking de empleados

|             | Salario | Costo de<br>Capacitación | Producción<br>Generada | Satisfacción<br>del Cliente<br>Interna | Ventas<br>Generadas | Ausentismo | Promedio Ponderado |
|-------------|---------|--------------------------|------------------------|----------------------------------------|---------------------|------------|--------------------|
| Empleado 9  | 0.0061  | 0.0029                   | 0.0164                 | 0.030                                  | 0.0387              | 0.0155     | 0.1096             |
| Empleado 10 | 0.0059  | 0.0030                   | 0.0164                 | 0.033                                  | 0.0392              | 0.0103     | 0.1081             |
| Empleado 5  | 0.0059  | 0.0031                   | 0.0159                 | 0.023                                  | 0.0406              | 0.0155     | 0.1043             |
| Empleado 4  | 0.0061  | 0.0025                   | 0.0163                 | 0.030                                  | 0.0376              | 0.0103     | 0.1028             |
| Empleado 7  | 0.0057  | 0.0036                   | 0.0159                 | 0.027                                  | 0.0412              | 0.0077     | 0.1008             |
| Empleado 8  | 0.0062  | 0.0034                   | 0.0157                 | 0.017                                  | 0.0416              | 0.0155     | 0.0990             |
| Empleado 1  | 0.0062  | 0.0033                   | 0.0163                 | 0.023                                  | 0.0424              | 0.0062     | 0.0978             |
| Empleado 2  | 0.0057  | 0.0024                   | 0.0159                 | 0.027                                  | 0.0398              | 0.0052     | 0.0956             |
| Empleado 6  | 0.0058  | 0.0032                   | 0.0158                 | 0.020                                  | 0.0423              | 0.0062     | 0.0933             |
| Empleado 3  | 0.0063  | 0.0026                   | 0.0155                 | 0.020                                  | 0.0366              | 0.0077     | 0.0887             |

# Problema 2

En la elaboración de envases de plástico es necesario garantizar que cierto tipo de botella en posición vertical tenga una resistencia mínima de 20kg de fuerza. Para garantizar esto, se aplica fuerza a la botella hasta que ésta cede, y el equipo registra la resistencia que alcanzó la botella. Se obtuvieron los siguientes datos de la resistencia máxima alcanzada de cada botella mediante pruebas destructivas:

| 28.3 | 26.8 | 26.6 | 26.5 | 28.1 | 24.8 | 27.4 | 26.2 | 29.4 | 28.6 | 24.9 | 25.2 | 30.4 | 27.7 | 27.0 | 26.1 | 28.1 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 26.9 | 28.0 | 27.6 | 25.6 | 29.5 | 27.6 | 27.3 | 26.2 | 27.7 | 27.2 | 25.9 | 26.5 | 28.3 | 26.5 | 29.1 | 23.7 | 29.7 |
| 26.8 | 29.5 | 28.4 | 26.3 | 28.1 | 28.7 | 27.0 | 25.5 | 26.9 | 27.2 | 27.6 | 25.5 | 28.3 | 27.4 | 28.8 | 25.0 | 25.3 |
| 27.7 | 25.2 | 28.6 | 27.9 | 28.7 |      |      |      |      |      |      |      |      |      |      |      |      |

- (a) ¿Qué tipo de variable se está midiendo? ¿Discreta o continua? Explique.
  - → Son variables Discretas ya que son listables. Si fueran continuas sería imposible listarlas todas.
- (b) Haga un análisis exploratorio de estos datos.
  - a) Realice un histograma con al menos 2 reglas para definir el número de clases (No utilizar regla empírica). Describa la forma y analice el comportamiento de los datos.
    - $\longrightarrow$  La regla de Sturges es una fórmula utilizada para determinar el número óptimo de bins (intervalos) que se deben usar en un histograma. La fórmula es:

$$k = 1 + \log_2(n)$$

```
df2 = pd.read_csv('DF Problema2.csv')

# Aplicar la regla de Sturges
n = len(df2)
k = int(np.ceil(1 + np.log2(n))) # número de bins según la regla de Sturges

# Crear el histograma
plt.hist(df2, bins-k, edgecolor='black')
plt.title(f'Histograma con {k} bins (Regla de Sturges)')
plt.xlabel('Valor')
plt.ylabel('Frecuencia')
plt.show()
```



→ La regla de Scott determina el ancho óptimo de cada bin en función de la desviación estándar de los datos y el tamaño de la muestra. La fórmula para calcular el ancho del bin según la regla de Scott es:

$$h = 3.49\sigma n^{-1/3}$$

```
# Calcular la desviación estándar y el tamaño de la muestra

n = len(df2)
sigma = np.std(df2)

# Aplicar la regla de Scott
bin_width = 3.49 * sigma / (n ** (1/3))

# Calcular el número de bins
range_min, range_max = np.min(df2), np.max(df2)
num_bins = int(np.ceil((range_max - range_min) / bin_width))

# Crear el histograma
plt.hist(df2, bins=num_bins, edgecolor='black')
plt.title(f'Histograma con {num_bins} bins (Regla de Scott)')
plt.xlabel('Valor')
plt.ylabel('Frecuencia')
plt.show()

> 0.1s
```



Observamos que el histograma de Sturges no es de distribución normal y es asimético hacia la izquierda. Por otra parte en el de la regla de Scott con un intervalo menos se ve mucho mejor la distribución, más centrada pero no perfectamente normal.

- b) Realice un diagrama de caja y bigotes. Analice el comportamiento de los datos. ¿Existen datos atípicos? ¿Qué se debería hacer al respecto?
  - → En el diagrama no se muestran datos atípicos. Por lo tanto no hay algo que se pueda hacer al respecto con ellos. Respecto al comportamiento de los datos se aprecia que tienen una distribución balanceada y tiene a ser simétrica, mas no perfectamente.



- (c) Estime, con una confianza de 94 %, ¿cuál sería la resistencia promedio de los envases?
  - $\longrightarrow$  El intervalo de confianza de la resistencia promedio es (26.879, 27.614) y promedio 27.246

## **Descriptive Statistics**

| Ν  | Mean   | StDev | SE Mean | 94% CI for μ     |
|----|--------|-------|---------|------------------|
| 56 | 27.246 | 1.430 | 0.191   | (26.879, 27.614) |

μ: population mean of Resistencia Máxima

- (d) Antes del estudio se suponía que la resistencia promedio era de 25kg. Dada la evidencia de los datos, ¿tal supuesto es correcto? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.
  - $\longrightarrow$  El supuesto inicial es incorrecto ya que está fuera del intervalo de la resistencia promedio . El tipo de prueba estadística para corroborarlo fue la *prueba t* porque no conocemos la varianza de la población.

si se cumple el requisito minnimo

- (e) Con los datos anteriores estime, con una confianza del 98%, ¿cuál es la desviación estándar poblacional (del proceso)?
  - $\longrightarrow$  El intervalo de confianza de la desviación estándar es (26.788, 27.704)

#### **Descriptive Statistics**

| Ν | Mean | StDev | SE Mean | 98% CI for μ    |
|---|------|-------|---------|-----------------|
|   |      |       |         | (26 700 27 704) |

μ: population mean of Resistencia Máxima

## Problema 3

En un laboratorio bajo condiciones controladas, se evaluó, para 10 hombres y 10 mujeres, la temperatura que cada persona encontró más confortable. Los resultados en grados Fahrenheit fueron los siguientes:

| I | Mujer  | 75 | 77 | 78 | 79 | 77 | 73 | 78 | 79 | 78 | 80 |
|---|--------|----|----|----|----|----|----|----|----|----|----|
|   | Hombre | 74 | 72 | 77 | 76 | 76 | 73 | 75 | 73 | 74 | 75 |

- (a) ¿Las muestras son dependientes o independientes? Explique.
  - → Independientes, ya que la temperatura de uno no le afecta en absoluto al otro.
- (b) ¿La temperatura promedio más confortable es igual para hombre que para mujeres? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.
  - $\longrightarrow$  El tipo de prueba estadística que debemos realizar es la prueba t de 2 medias.

Planteamiento de hipótesis:

 $\mu_1$ : population mean of Mujer

 $H_0: \mu_1 = \mu_2$ 

 $\mu_2$ :: population mean of Hombre

 $H_a: \mu_1 \neq \mu_2$ 

## **Descriptive Statistics**

| Sample | Ν  | Mean  | StDev | SE Mean |
|--------|----|-------|-------|---------|
| Mujer  | 10 | 77.40 | 2.07  | 0.65    |
| Hombre | 10 | 74.50 | 1.58  | 0.50    |

#### **Estimation for Difference**

|            | 95% CI for     |
|------------|----------------|
| Difference | Difference     |
| 2 900      | (1.156. 4.644) |

#### Test

Null hypothesis  $H_0$ :  $\mu_1 - \mu_2 = 0$ Alternative hypothesis  $H_1$ :  $\mu_1 - \mu_2 \neq 0$ 

T-Value DF P-Value

- $\therefore$  Dado que el valor P  $<\alpha$ , rechazamos  $H_0$ , es decir, no es igual la temperatura promedio de hombre y mujer.
- (c) Los datos poseen la misma variabilidad? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.
  - → El tipo de prueba estadística que se realizaría en este caso es la prueba f de desviación estándar.

Planteamiento de hipótesis:

 $\sigma_1$ : standard deviation of Mujer

 $H_0: \sigma_1/\sigma_2 = 1$ 

 $\sigma_2$ :: standard deviation of Hombre

 $H_a: \sigma_1/\sigma_2 \neq 1$ 

Ratio :  $\sigma_1/\sigma_2$ 

### **Descriptive Statistics**

| Variable | Ν  | StDev | Variance | 95% CI for $\sigma$ |
|----------|----|-------|----------|---------------------|
| Mujer    | 10 | 2.066 | 4.267    | (1.064, 4.986)      |
| Hombre   | 10 | 1.581 | 2.500    | (1.120, 2.776)      |

#### **Ratio of Standard Deviations**

| Estimated | 95% Cl for Ratio | 95% Cl for Ratio |
|-----------|------------------|------------------|
| Ratio     | using Bonett     | using Levene     |
| 1.30639   | (0.401, 2.560)   | (0.264, 2.308)   |

#### Toct

 $\begin{array}{ll} \mbox{Null hypothesis} & \mbox{$H_0$: $\sigma_1 / \sigma_2 = 1$} \\ \mbox{Alternative hypothesis} & \mbox{$H_1$: $\sigma_1 / \sigma_2 \neq 1$} \\ \mbox{Significance level} & \mbox{$\alpha = 0.05$} \end{array}$ 

|        | lest      |     |     |         |
|--------|-----------|-----|-----|---------|
| Method | Statistic | DF1 | DF2 | P-Value |
| Bonett | 0.39      | 1   |     | 0.530   |
| Levene | 0.03      | 1   | 18  | 0.860   |

∴ El radio es de 1.3 por lo que se puede concluir que prácticamente puede decirse que es 1. Por otra parte, los p value de ambos métodos son mayores a alpha=0.05. Siendo así que no hay información suficiente para rechazar H0, entonces se considera que ambas varianzas son iguales.

# Problema 4

La prueba actual de un solo disco se tarda 2 minutos. Se supone un nuevo método de prueba que consiste en medir solamente los radios 24 y 57, donde casi es seguro que estará el valor mínimo buscado. Si el método nuevo resulta igual de efectivo que el método actual se podrá reducir en 60 % el tiempo de prueba. Se plantea un experimento donde se mide la densidad mínima de metal en 18 discos usando tanto el método actual como el método nuevo. Los resultados están ordenados horizontalmente por disco. Así 1.88 y 1.87 es el resultado para el primer disco con ambos métodos.

| Método<br>Actual | 1.88 | 1.84 | 1.83 | 1.90 | 2.19 | 1.89 | 2.27 | 2.03 | 1.96 | 1.98 | 2.00 | 1.92 | 1.83 | 1.94 | 1.94 | 1.95 | 1.93 | 2.01 |
|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Método<br>Nuevo  | 1.87 | 1.90 | 1.85 | 1.88 | 2.18 | 1.87 | 2.23 | 1.97 | 2.00 | 1.98 | 1.99 | 1.89 | 1.78 | 1.92 | 2.02 | 2.00 | 1.95 | 2.05 |

- (a) ¿Las muestras son dependientes o independientes? Explique.
  - → Dependientes, porque se utilizan los mismos discos al mismo tiempo. De haber sido 36 discos los de prueba entonces seria independiente.
- (b) ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.
  - $\longrightarrow$  Como prueba estadística de realizaría una prueba t pareada.

Planteamiento de hipótesis:

 $\mu$ : population mean of (Método Actual - Método Nuevo)

 $H_0: \mu = 0$ 

 $H_a: \mu \neq 0$ 

| Descriptive | Statistics |
|-------------|------------|
|-------------|------------|

| Sample        | Ν  | Mean   | StDev  | SE Mean |
|---------------|----|--------|--------|---------|
| Método Actual | 18 | 1.9606 | 0.1150 | 0.0271  |
| Método Nuevo  | 18 | 1.9628 | 0.1124 | 0.0265  |

**Estimation for Paired Difference** 

|          |         |         | 33 /6 CI 101        |
|----------|---------|---------|---------------------|
| Mean     | StDev   | SE Mean | $\mu_difference$    |
| -0.00222 | 0.03949 | 0.00931 | (-0.02186, 0.01742) |
|          |         |         |                     |

 $\mu\_difference$ : population mean of (Método Actual - Método Nuevo)

95% Cl for



- $\therefore$  Dado que el valor P  $> \alpha$ , rechazamos  $H_a$ , es decir, en promedio son iguales ambos métodos.
- (c) ¿Recomienda la adopción del nuevo método? Argumente su respuesta.
  - $\longrightarrow$  No hay diferencia significativa entre el método actual y el nuevo. Cualquiera esta bien.