ARKUSZ OBLICZENIOWY	Dokument Ref:	SX001a-EN-EU	Strona	1	z	8		
access \$ C	Tytuł	Przykład: Belka swobodnie podparta bez stężeń bocznych						
Eurocodes made easy	Dot. Eurokodu	EN 1993-1-1						
* *	Wykonał	Alain Bureau		Data		grudzi	ień 2004	
	Sprawdził	Yvan Galéa		Data		grudzi	ień 2004	

Przykład: Belka swobodnie podparta bez stężeń bocznych

Przykład ilustruje zasady weryfikacji nośności swobodnie podpartej belki stalowej, obciążonej w sposób równomierny. Belka posiada stężenia boczne jedynie na podporach.

Zakres

Przykład obejmuje zakresem sprawdzenie nośności belki wykonanej z kształtownika walcowanego na gorąco, zginanego względem "mocniejszej" osi przekroju, posiadającej stężenia boczne jedynie na podporach. Przykład zawiera:

- Klasyfikację przekroju,
- Obliczenie nośności przy zginaniu, włączając w to wyznaczenie momentu krytycznego przy zwichrzeniu sprężystym,
- Obliczenie nośności przy ścinaniu,
- Obliczenie ugięcia w stanie granicznym użytkowalności.

Przykład nie uwzględnia utraty stateczności środnika przy ścinaniu.

Obciążenie

Obciążenie równomiernie rozłożone uwzględnia:

- Ciężar własny belki
- Ciężar płyty stropowej
- Obciążenia użytkowe

1: Boczne stężenia

Częściowe współczynniki bezpieczeństwa

•	$\gamma_{\rm G} = 1.35$	(oddziaływania stałe)

• $\gamma_Q = 1,50$ (oddziaływania zmienne)

• $\gamma_{M0} = 1.0$

• $\chi_{M1} = 1.0$

PN-EN 1990

PN-EN 1993-1-1

§ 6.1 (1)

ARKUSZ OBLICZENIOWY

Dokument Ref:	SX001a-EN-EU	Strona	2	z	8			
Tytuł	Przykład: Belka swobodnie podparta bez stężeń bocznych							
Dot. Eurokodu	EN 1993-1-1							
Wykonał	Alain Bureau		Data		grudzi	eń 2004		
Sprawdził	Yvan Galéa		Data		grudzi	eń 2004		

Dane podstawowe

Projektowanie drugorzędnej belki stropowej w budynku wielokondygnacyjnym jest oparte o dane podane poniżej. Założono, że belka posiada stężenia boczne jedynie na podporach.

• Rozpiętość przęsła: 5,70 m

• Rozstaw belek: 2,50 m

• Grubość płyty stropowej: 12 cm

• Ciężar ścianek działowych: 0,75 kN/m²

• Obciążenie użytkowe: 2,50 kN/m²

• Ciężar objętościowy betonu: 24 kN/m³

• Gatunek stali: S235

Ciężar płyty stropowej: $0.12 \times 24 \text{ kN/m}^3 = 2.88 \text{ kN/m}^2$

Dobrano IPE 330 – gatunek stali S235

Wysokość h = 330 mm

Szerokość b = 160 mm

Grubość środnika $t_w = 7.5 \text{ mm}$

Grubość stopki $t_{\rm f} = 11,5 \ {\rm mm}$

Promień wyokrąglenia r = 18 mm

Masa jednostkowa 49,1 kg/m

Euronorm

19-57

Pole przekroju poprzecznego $A = 62,6 \text{ cm}^2$

Moment bezwładności przekroju wzgl. osi y-y $I_y = 11770 \text{ cm}^4$

Moment bezwładności przekroju wzgl. osi z-z $I_z = 788,1 \text{ cm}^4$

Moment bezwładności przy skręcaniu $I_t = 28,15 \text{ cm}^4$

Wycinkowy moment bezwładności $I_{\rm w} = 199100 \text{ cm}^6$

Sprężysty wskaźnik wytrzymałości $W_{\rm el,y} = 713,1 \, {\rm cm}^3$

Wskaźnik oporu plastycznego $W_{\text{pl.y}} = 804,3 \text{ cm}^3$

ARKUSZ OBLICZENIOWY

7	Dokument Ref:	SX001a-EN-EU	Strona	3	Z	8	
	Tytuł	Przykład: Belka swobo	dnie pod	lparta	bez s	tężeń bo	cznych
	Dot. Eurokodu	EN 1993-1-1					
	Wykonał	Alain Bureau		Data		grudzi	eń 2004
	Sprawdził	Yvan Galéa		Data		grudzi	eń 2004

Ciężar własny belki: $(49,1 \times 9,81) \times 10^{-3} = 0,482 \text{ kN/m}$

Oddziaływania stałe:

$$G = 0.482 + (2.88 + 0.75) \times 2.50 = 9.56 \text{ kN/m}$$

Oddziaływania zmienne (obciążenie użytkowe):

$$Q = 2.5 \times 2.5 = 6.25 \text{ kN/m}$$

Kombinacja oddziaływań w SGN:

 $\gamma_G G + \gamma_O Q = 1,35 \times 9,56 + 1,50 \times 6,25 = 22,28 \text{ kN/m}$

PN-EN 1990

§ 6.4.3.2

Wykres momentu zginającego

Największy moment zginający w środku rozpiętości przęsła:

$$M_{\rm y,Ed} = 0.125 \times 22.28 \times 5.70^2 = 90.48 \text{ kNm}$$

Wykres siły poprzecznej

Największa siła poprzeczna przy podporze:

$$V_{z,Ed} = 0.5 \times 22,28 \times 5,70 = 63,50 \text{ kN}$$

Granica plastyczności

Gatunek stali S235

PN-EN

1993-1-1

Największa grubość ścianki wynosi 11,5 mm < 40 mm, więc: $f_{\rm v} = 235 \; {\rm N/mm}^2$

Tablica 3.1

 $\underline{\mathbf{Uwaga}}$: Załącznik krajowy może narzucić wartości $f_{\mathbf{v}}$ z Tablicy 3.1 lub wartości z norm wyrobu.

ARKUSZ OBLICZENIOWY Tytuł Przykład: Belka swobodnie podparta bez stężeń bocznych Dot. Eurokodu Sprawdził Wykonał Alain Bureau Data grudzień 2004 Sprawdził Yvan Galéa EN 1993-1-1 Wykonał Sprawdził Yvan Galéa PN-EN 1993-1-1 Tablica 5.12 Wspornikowa część pasa: stopka ściskana w sposób równomierny $c = (b - t_w - 2 \ r) / 2 = (160 - 7, 5 - 2 \times 18) / 2 = 58,25 \ mm$ $c/t_f = 58,25 / 11,5 = 5,07 \le 9 \ \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana: środnik zginany $c = h - 2 \ t_f - 2 \ r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \ mm$ $c / t_w = 271 / 7,5 = 36,1 < 72 \ \varepsilon = 72$ Klasa 1
Dot. Eurokodu EN 1993-1-1 Wykonał A lain B Bureau Sprawdził Y van G aléa EN 1993-1-1 Wyspółczynnik ε jest uzależniony od granicy plastyczności stali: $\varepsilon = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$ Wspornikowa część pasa: stopka ściskana w sposób równomierny $c = (b - t_w - 2 \ r) \ / \ 2 = (160 - 7.5 - 2 \times 18) \ / \ 2 = 58.25 \ \text{mm}$ $c/t_f = 58.25 \ / \ 11.5 = 5.07 \le 9 \ \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana: środnik zginany $c = h - 2 \ t_f - 2 \ r = 330 - 2 \times 11.5 - 2 \times 18 = 271 \ \text{mm}$ Data g
WykonałAlain BureauDatagrudzień 2004SprawdziłYvan GaléaDatagrudzień 2004Klasyfikacja przekroju:Współczynnik ε jest uzależniony od granicy plastyczności stali:PN-EN 1993-1-1 $\varepsilon = \sqrt{\frac{235}{f_y}[N/mm^2]} = 1$ Tablica 5.12Wspornikowa część pasa: stopka ściskana w sposób równomierny $c = (b - t_w - 2 r) / 2 = (160 - 7,5 - 2 \times 18)/2 = 58,25 \text{ mm}$ $c/t_f = 58,25 / 11,5 = 5,07 \le 9 \varepsilon = 9$ Klasa 1Wewnętrzna część ściskana: środnik zginany $c = h - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{ mm}$ PN-EN 1993-1-1 Tablica 5.2
Sprawdził Yvan Galéa Data grudzień 2004 Klasyfikacja przekroju: Współczynnik ε jest uzależniony od granicy plastyczności stali: $\varepsilon = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$ Wspornikowa część pasa: stopka ściskana w sposób równomierny $c = (b - t_w - 2 r) / 2 = (160 - 7, 5 - 2 \times 18) / 2 = 58,25 \text{mm}$ $c/t_f = 58,25 / 11,5 = 5,07 \leq 9 \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana: środnik zginany $c = h - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{mm}$ PN-EN 1993-1-1 Tablica 5.2
Klasyfikacja przekroju:PN-EN $\varepsilon = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$ PN-EN 1993-1-1 Tablica 5.12Wspornikowa część pasa: stopka ściskana w sposób równomierny $c = (b - t_w - 2 r) / 2 = (160 - 7, 5 - 2 \times 18) / 2 = 58,25 \text{mm}$ $c/t_f = 58,25 / 11,5 = 5,07 \le 9 \varepsilon = 9$ Klasa 1(arkusz 2 z 3)Wewnętrzna część ściskana: środnik zginany $c = h - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{mm}$ PN-EN 1993-1-1 Tablica 5.2
Współczynnik ε jest uzależniony od granicy plastyczności stali: $\varepsilon = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$ Tablica 5.12 Wspornikowa część pasa: stopka ściskana w sposób równomierny $c = (b - t_\text{w} - 2 r) / 2 = (160 - 7, 5 - 2 \times 18) / 2 = 58,25 \text{mm}$ $c/t_\text{f} = 58,25 / 11,5 = 5,07 \leq 9 \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana: środnik zginany $c = h - 2 t_\text{f} - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{mm}$ PN-EN 1993-1-1 Tablica 5.2
$\varepsilon = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$ $V = \sqrt{\frac{235}{f_y [\text{N/mm}^2]}} = 1$ $c = (b - t_w - 2 r) / 2 = (160 - 7.5 - 2 \times 18) / 2 = 58.25 \text{mm}$ $c / t_f = 58.25 / 11.5 = 5.07 \le 9 \varepsilon = 9$ $c = h - 2 t_f - 2 r = 330 - 2 \times 11.5 - 2 \times 18 = 271 \text{mm}$ $V = \frac{235}{f_y [\text{N/mm}^2]}} = 1$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$ $V = \frac{1993 - 1 - 1}{2 \text{Tablica 5.12}}$
Wspornikowa część pasa : stopka ściskana w sposób równomierny $c = (b - t_w - 2 r) / 2 = (160 - 7,5 - 2 \times 18) / 2 = 58,25 \text{ mm}$ $c/t_f = 58,25 / 11,5 = 5,07 \le 9 \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana : środnik zginany $c = h - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{ mm}$ (arkusz 2 z 3) PN-EN 1993-1-1 Tablica 5 2
Wewnętrzna część ściskana : środnik zginany $c = (b - t_w - 2 r) / 2 = (160 - 7,5 - 2 \times 18)/2 = 58,25 \text{ mm}$ $c/t_f = 58,25 / 11,5 = 5,07 \le 9 \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana : środnik zginany $c = h - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{ mm}$
$c/t_{\rm f} = 58,25 \ / \ 11,5 = 5,07 \ \le \ 9 \ \varepsilon = 9$ Klasa 1 Wewnętrzna część ściskana : środnik zginany $c = h - 2 \ t_{\rm f} - 2 \ r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \ {\rm mm}$ PN-EN 1993-1-1 Tablica 5 2
Wewnętrzna część ściskana: środnik zginany $c = h - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{ mm}$ PN-EN 1993-1-1 Tablica 5.2
$c = h - 2 t_{\rm f} - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 271 \text{ mm}$ 1993-1-1 Tablica 5.2
$c = n - 2 t_f - 2 r = 330 - 2 \times 11,5 - 2 \times 18 = 2/1 \text{ mm}$ Tablica 5.2
$c / t_{\rm w} = 271 / 7.5 = 36.1 < 72 \varepsilon = 72$ Klasa 1
Klasa przekroju jest najwyższą (tj. najmniej korzystną) z klas przekroju wyznaczonych dla stopki i środnika. W rozpatrywanym przypadku – Klasa 1.
Tak więc, weryfikacja nośności w SGN może zostać przeprowadzona przy użyciu plastycznej nośności przekroju.
Nośność przy zginaniu
Obliczeniowa nośność przekroju przy zginaniu jest określona jako: PN-EN
$M_{\text{c,Rd}} = M_{\text{pl,Rd}} = W_{\text{pl,y}} f_{\text{y}} / \gamma_{\text{M0}} = (804.3 \times 235 / 1.0) / 1000$
$M_{\text{c.Rd}} = 189,01 \text{ kNm}$
$M_{\rm y,Ed} / M_{\rm c,Rd} = 90,48 / 189,01 = 0,479 < 1 OK$

ARKUSZ OBLICZENIOWY

Dokument Ref:	SX001a-EN-EU	Strona	5	z	8				
Tytuł	Przykład: Belka swo	Przykład: Belka swobodnie podparta bez stężeń bocznych							
Dot. Eurokodu	EN 1993-1-1								
Wykonał	Alain Bureau		Data		grudzi	eń 2004			
Sprawdził	Yvan Galéa		Data		grudzi	eń 2004			

Współczynnik zwichrzenia

W celu wyznaczenia obliczeniowej nośności na zwichrzenie belki nie zabezpieczonej przed zwichrzeniem, należy wyznaczyć współczynnik zwichrzenia. Rachunek taki uwzględnia wyznaczenie momentu krytycznego przy zwichrzeniu sprężystym.

Moment krytyczny przy zwichrzeniu sprężystym

Moment krytyczny może zostać obliczony z następującej zależności:

$$M_{\rm cr} = C_1 \frac{\pi^2 E I_z}{(k L)^2} \left\{ \sqrt{\left(\frac{k}{k_{\rm w}}\right)^2 \frac{I_{\rm w}}{I_z} + \frac{(k L)^2 G I_{\rm t}}{\pi^2 E I_z} + (C_2 z_{\rm g})^2} - C_2 z_{\rm g} \right\}$$

E jest modułem sprężystości

 $E = 210000 \text{ N/mm}^2$

G jest modułem sprężystości przy ścinaniu: $G = 80770 \text{ N/mm}^2$

L jest rozpiętością przesła (rozstawem stężeń bocznych): L = 5.70 m

W wyrażeniu określającym M_{cr} , należy rozważyć następujące założenia:

jeśli pas ściskany ma możliwość obrotu względem "słabej" osi przekroju poprzecznego,

 $k_{\rm w} = 1$ jeśli nie istnieją warunki przeciwdziałające spaczeniu przekroju na końcach belki.

 z_g jest odległością pomiędzy punktem przyłożenia obciążenia a środkiem ścinania:

$$z_g = h / 2 = +165 \text{ mm}$$

(z_g przyjmuje wartość dodatnią, jeśli obciążenie działa w kierunku środka ścinania)

Współczynniki C_1 oraz C_2 zależą od rozkładu momentu zginającego. W przypadku obciążenia równomiernie rozłożonego oraz dla k = 1, mają one wartość:

$$C_1 = 1,127$$

$$C_2 = 0.454$$

Patrz SN003

Patrz SN003

Dokument Ref: Strona SX001a-EN-EU ARKUSZ OBLICZENIOWY Tytuł Przykład: Belka swobodnie podparta bez stężeń bocznych Dot. Eurokodu EN 1993-1-1 Wykonał Data Alain Bureau grudzień 2004 Data Sprawdził Yvan Galéa grudzień 2004 Zatem: $\frac{\pi^2 E I_z}{(k L)^2} = \frac{\pi^2 \times 210000 \times 788, 1 \times 10^4}{(5700)^2} \times 10^{-3} = 502,75 \text{ kN}$ $C_2 z_g = 0.454 \times 165 = +74.91 \,\mathrm{mm}$ $M_{\rm cr} = 1,127 \times 502,75 \times ...$ $\left\{\sqrt{\frac{199100}{788,1}\times100 + \frac{80770\times281500}{502750} + (74,91)^2} - 74,91\right\}.10^{-3}$ $M_{\rm cr} = 113.9 \; \rm kNm$ Smukłość względna Smukłość względną wyznacza się z zależności: PN-EN 1993-1-1 $\overline{\lambda}_{LT} = \sqrt{\frac{W_{\text{pl.y}} f_{\text{y}}}{M}} = \sqrt{\frac{804300 \times 235 \times 10^{-6}}{113.9}} = 1,288$ § 6.3.2.2 (1) W wypadku dwuteowników walcowanych, $\overline{\lambda}_{LT,0} = 0.4$ PN-EN 1993-1-1 **Uwaga**: wartość $\overline{\lambda}_{LT,0}$ może zostać określona w Załączniku krajowym. § 6.3.2.3(1) Wartościa zalecana jest 0,4. $\overline{\lambda}_{\rm LT} = 1.288 > \overline{\lambda}_{\rm LT0}$ Wiec Współczynnik zwichrzenia W przypadku dwuteowników walcowanych współczynnik zwichrzenia jest PN-EN wyznaczony z zależności: 1993-1-1 § 6.3.2.3 (1) $\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} \quad \text{lecz} \quad \begin{cases} \chi_{LT} \le 1.0 \\ \chi_{LT} \le \frac{1}{\overline{\lambda}_{LT}^2} \end{cases}$

gdzie: $\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \overline{\lambda}_{LT}^2 \right]$

				T		1
ARKUSZ OBLICZENIOWY	Dokument Ref:	SX001a-EN-EU	Strona	7 z	8	
access	Tytuł	Przykład: Belka swo	obodnie po	dparta bez s	stężeń bo	ocznych
Eurocodes made easy	Dot. Eurokodu	EN 1993-1-1				
* *	Wykonał	Alain Bureau		Data	grudzi	ień 2004
	Sprawdził	Yvan Galéa		Data	grudzi	ień 2004
α_{LT} jest parametrem impedwuteowników walcowar Tablicy 6.5:		<u> </u>		•	PN-E 1993	
Dla $h/b = 330 / 1$	60 = 2,06 >	2 → Krzywa c	$(\alpha_{LT}=0,$	49)		ca 6.3
$\overline{\lambda}_{\rm LT,0} = 0.4$ and λ	$\beta = 0.75$					
<u>Uwaga</u> : Wartości $\overline{\lambda}_{LT,0}$ o Wartościami zale		yć określone w Zała $_{\text{LT},0}$ =0,4 oraz β =0,75		rajowym.		
Otrzymano: $\phi_{LT} = 0$,	5 [1+0,49 (1,2	$(88 - 0.4) + 0.75 \times (3)$	[,288) ²] =	=1,340		
oraz: $\chi_{\text{LT}} = \frac{1}{1}$	$\sqrt{340 + \sqrt{(1,340)}}$	$\frac{1}{(0)^2 - 0.75 \times (1,288)}$	= 0,480			
Następnie należy sprawdz	zić: $\chi_{LT} = 0,4$	80 < 1,0 OK				
oraz: $\chi_{LT} = 0$,	$480 < 1/\overline{\lambda}^2$	$_{LT}^{2} = 0,603$ OK				
Wpływ rozkładu moment obliczeniową przy zwichr współczynnika zwichrzen	zeniu można	•		ść	PN-E 1993	
$f = 1 - 0.5 (1 - k_c)$	_	$(0.8)^2$ lecz ≤ 1			§ 6.3 PN-E	<u>.2.3</u> (2) EN
gdzie: $k_c = 0.94$					1993	-1-1
Wiec: $f = 1 - 0.5 (1 - 0)$,94) [1 – 2 (1,	$288 - 0.8)^2] = 0.984$	4		Tabli	ca 6.6
Otrzymano: $\chi_{LT,mod} = \chi_{LT}$	/f=0,480/0),984 = 0,488				
Obliczeniowa nośność na	a zwichrzenie	<u>e</u>				
$M_{\rm b,Rd} = \chi_{\rm LT,mod} W$	$V_{\mathrm{pl,y}}f_{\mathrm{y}}$ / γ_{M1}				PN-E	EN
	1	$5/1,0) \times 10^{-6} = 92,2$	24 kNm		1993	
,		0,981 < 1 OK			<u>§ 6.3</u>	.2.1
Nośność przekroju przy	ścinaniu					
W przypadku braku skręc pola przekroju czynnego				eży od		
$A_{\text{VZ}} = A - 2 b t_{\text{f}} +$. •	-			PN-E	
1,52	(" / 1	$(7.5 \pm 2 \times 19) \times 11$	5 2000	2	1993	-1-1

 $A_{\text{v,z}} = 6260 - 2 \times 160 \times 11,5 + (7,5 + 2 \times 18) \times 11,5 = 3080 \text{ mm}^2$

<u>§ 6.2.6</u> (3)

			1	I	I			
ARKUSZ OB	BLICZENIOWY	Dokument Ref:	SX001a-EN-EU	Strona	8 z	8		
STE	cess	Tytuł	Przykład: Belka swobo	Przykład: Belka swobodnie podparta bez				
Eurocode	es made easy	Dot. Eurokodu	EN 1993-1-1					
*	*	Wykonał	Alain Bureau	grudzień 2004				
		Sprawdził	Yvan Galéa	Yvan Galéa Data				
	astyczna przy		(225 / 52)			PN-E		
V_{n}	$A_{v,z} = \frac{A_{v,z} (f_{y})}{A_{v,z}}$	$=\frac{3080\times}{1000}$	$\frac{(235/\sqrt{3})}{1,0} = 417,9 \text{kB}$	N		1993-	-1-1	
P	$\gamma_{ m M0}$		1,0			<u>§ 6.2.</u>	<u>6</u> (2)	
$V_{z,}$								
1 -	e warunku sta nagane, gdy:	teczności środi	nika przy działaniu si	ły popr	zecznej			
$h_{ m w}$	$/ t_{\rm w} \leq 72 \ \varepsilon / \eta$					PN-E 1993-		
n_1	noże być kons	erwatywnie pr	zyjęte jako 1.0					
1	•	• •	$=40.9 < 72 \times 1 / 1,$	0 = 72		§ 6.2.	<u>0</u> (0)	
Uwaga : Nie rozważano interakcji <i>M-V</i> ponieważ największy moment pojawia się w środku rozpiętości przęsła, zaś największa siła poprzeczna przy podporze. Ogólnie, w wypadku rozpatrywania zginania ze ścinaniem patrz PN-EN1993-1-1 § 6.2.8.								
	<u>ne stanu gran</u> ja oddziaływa		owalności (SGU)			PN-F	N 1990	
		6,25 = 15,81 kN	V/m			§ 6.5.		
Ugięcie pov	wstałe pod dzia	ałaniem $G+Q$:						
$w = \frac{5(G + \frac{1}{384})}{384}$	$\frac{Q)L^4}{EI_y} = \frac{52}{384 \times 2}$	×15,81×(5700 210000×11770	0.000 = 8,8 mm					
Strzałka ug	ięcia wynosi <i>L</i>	/648 – OK						
	Zamawiająceg	o. Załącznik	owinny zostać o krajowy może o u wynik można uz	kreślić	wartości		-1-1	
	krajowy może	określić warur rym przykładz	ość drgań własnych, ż iki z wartościami gra ie ugięcie jest tak nie	nicznyn	ni.	PN-E 1993- § 7.2.	-1-1	

Protokół jakości

Tytuł zasobu	Przykład: Belka swobodnie podparta bez stężeń bocznych							
Odniesienie								
ORIGINAŁ DOKUMENTU								
	lmię i nazwisko	Instytucja	Data					
Stworzony przez	Alain Bureau	СТІСМ						
Zawartość techniczna sprawdzone przez	Yvan Galéa	СТІСМ						
Zawartość redakcyjna sprawdzona przez	D C Iles	SCI	2/3/05					
Zawartość techniczna zaaprobowana przez:								
1. Wielka Brytania	G W Owens	SCI	1/3/05					
2. Francja	A Bureau	СТІСМ	1/3/05					
3. Szwecja	A Olsson	SBI	1/3/05					
4. Niemcy	C Mueller	RWTH	1/3/05					
5. Hiszpania	J Chica	Labein	1/3/05					
Zasób zatwierdzony przez Koordynatora Technicznego	G W Owens	SCI	21/05/06					
TŁUMACZENIE DOKUMENTU	TŁUMACZENIE DOKUMENTU							
Tłumaczenie wykonał i sprawdził:		L. Ślęczka						
Tłumaczenie zatwierdzone przez:								