Ispit iz Diskretne matematike 1 13. 7. 2021.

- 1. (8 bodova) Bacamo 5 različitih igraćih kocaka. Na koliko načina zbroj dobivenih brojeva može biti 18?
- 2. (8 bodova) Nađite homogenu linearnu rekurzivnu relaciju s konstantnim koeficijentima za niz realnih brojeva $(a_n)_{n\geq 0}$ čije je opće rješenje dano sa

$$a_n = \alpha + \beta(-1)^n - \gamma n(-1)^n.$$

Odredite konstante α , β i γ ako još vrijedi:

$$a_0 = 7$$
, $a_1 = 6$, $a_2 = -3$.

- 3. (8 bodova) Iskažite i dokažite Eulerov teorem koji karakterizira postojanje zatvorene staze koja prolazi svakim bridom zadanog grafa.
- 4. (8 bodova) Ispitajte je li graf sa slike planaran. Ako je, odredite mu broj strana u nekom planarnom prikazu. Ako nije, pronađite neki njegov podgraf koji je homeomorfan s K_5 ili $K_{3,3}$.

- 5. (8 bodova) Neka je G zadan kao kocka dimenzije 2021, Q_{2021} . Odredite kromatski broj $\chi(G)$ i kromatski indeks $\chi'(G)$ te dokažite svoje tvrdnje.
- **6.** (8 bodova) Definirajte usmjerivi graf. Iskažite neki teorem koji karakterizira usmjerive grafove. Ispitajte koji su od sljedećih grafova usmjerivi:
 - (a) kotač W_{10} ,
 - (b) potpuni bipartitni graf $K_{3,8}$,
 - (c) stable s Prüferovim kodom (2,3,2,4,4,2).

Obrazložite sve svoje odgovore.

Rješenja

1. Pripadna funkcija izvodnica problema glasi

$$f(x) = \left(x + x^2 + x^3 + x^4 + x^5 + x^6\right)^5 = x^5 \left(\frac{1 - x^6}{1 - x}\right)^5 = x^5 \left(1 - x^6\right)^5 (1 - x)^{-5}$$
$$= x^5 \left(1 - 5x^6 + 10x^{12} - 10x^{18} + 5x^{24} - x^{30}\right)^5 \sum_{k=0}^{\infty} {k+4 \choose k} x^k.$$

Tražimo

$$\langle x^{18} \rangle f(x) = \binom{13+4}{4} - 5\binom{7+4}{7} + 10\binom{1+4}{1} = 780.$$

2. Uočimo da iz uvjeta zadatka za pripadnu karakterističnu jednadžbu tražene rekurzivne relacije vrijedi da je $x_1 = 1$ njena nultočka kratnosti 1, a $x_2 = -1$ je nultočka kratnosti 2. Zato karakteristična jednadžba glasi $(x-1)(x+1)^2 = 0$ pa je tražena rekurzivna relacija

$$a_{n+3} + a_{n+2} - a_{n+1} - a_n = 0, \ n \in \mathbb{N}_0.$$

Nadalje, uvrštavanjem zadanih vrijednosti u opće rješenje te rekurzije dobivamo sustav jednadžbi

$$\begin{cases} \alpha + \beta & = 7 \\ \alpha - \beta + \gamma = 6 \\ \alpha + \beta - 2\gamma = -3 \end{cases}$$

čijim rješavanjem slijedi $\alpha=4,\,\beta=3,\,\gamma=5$

- 3. Skripta, str. 89, teorem 4.6.
- 4. Zadani graf je planaran i jedan planarni prikaz tog grafa je dan na sljedećoj slici.

Budući da taj graf ima n=12 vrhova i $m=6\cdot 5-4=26$ bridova, prema Eulerovoj formuli slijedi da taj graf u planarnom prikazu ima f=m-n+2=16 strana.

- 5. Budući da je Q_{2021} bipartitan graf, za kromatski broj tog grafa vrijedi $\chi(Q_{2021})=2$. Nadalje, budući da je taj graf i 2021-regularan, prema Königovom teoremu je njegov kromatski indeks jednak $\chi'(Q_{2021})=2021$.
- 6. Za definiciju i karakterizaciju usmjerivog grafa: skripta, str. 175, definicija 9.8 i teorem 9.1. Prema tom teoremu slijedi da W_{10} i $K_{3,8}$ jesu usmjerivi grafovi, dok graf iz (c) podzadatka nije usmjeriv (niti jedan brid tog grafa nije sadržan u nekom ciklusu jer je taj graf stablo).