

Algoritmos

Couto Rosa

Algoritmos

Thierson Couto Rosa

Definição de Algoritmo

Algoritmos

Thierson Couto Ros

- Um algoritmo é uma solução correta de um problema, escrita como uma sequência finita de instruções.
- Para que a sequência de instruções seja considerada um algoritmo, sua execução também deve ser finita, i. e. deve terminar em algum momento.
- Logo, um algoritmo sempre termina e apresenta a resposta correta para um problema.

Algoritmos

I hierson Couto Ros

Problema

Calcule a média aritmética de dois números

Algoritmos

I hierson Couto Ros

Problema

Calcule a média aritmética de dois números

Algoritmos

i nierson Couto Ros

Problema

Calcule a média aritmética de dois números

Algoritmo:

Obter os dois números.

Algoritmos

Couto Ro

Problema

Calcule a média aritmética de dois números

- Obter os dois números.
- 2 Somar os dois números e guardar o resultado da soma.

Algoritmos

Thierson Couto Ros

Problema

Calcule a média aritmética de dois números

- Obter os dois números.
- 2 Somar os dois números e guardar o resultado da soma.
- 3 Dividir o valor da soma por dois e guardar o resultado.

Algoritmos

Thierson Couto Ros

Problema

Calcule a média aritmética de dois números

- Obter os dois números.
- 2 Somar os dois números e guardar o resultado da soma.
- 3 Dividir o valor da soma por dois e guardar o resultado.
- Mostrar o resultado da divisão.

Algoritmos

Thierson
Couto Rosa

Porque a solução anterior é um algoritmo?

Algoritmos

Thierson Couto Ros

Porque a solução anterior é um algoritmo?

• Porque é uma sequencia finita (quatro) de instruções.

Algoritmos

Thierson Couto Ros

Porque a solução anterior é um algoritmo?

- Porque é uma sequencia finita (quatro) de instruções.
- Porque se forem executadas na ordem em que foram escritas produzem a resposta correta para o problema

Algoritmos

Thierson
Couto Rosa

Porque a solução anterior é um algoritmo?

- Porque é uma sequencia finita (quatro) de instruções.
- Porque se forem executadas na ordem em que foram escritas produzem a resposta correta para o problema

Quais são as instruções?

Obter os dois números.

Algoritmos

Thierson Couto Ros

Porque a solução anterior é um algoritmo?

- Porque é uma sequencia finita (quatro) de instruções.
- Porque se forem executadas na ordem em que foram escritas produzem a resposta correta para o problema

- Obter os dois números.
- Somar dois números.

Algoritmos

Thierson
Couto Ros

Porque a solução anterior é um algoritmo?

- Porque é uma sequencia finita (quatro) de instruções.
- Porque se forem executadas na ordem em que foram escritas produzem a resposta correta para o problema

- Obter os dois números.
- Somar dois números.
- 3 Dividir um valor por outro.

Algoritmos

Thierson Couto Ros

Porque a solução anterior é um algoritmo?

- Porque é uma sequencia finita (quatro) de instruções.
- Porque se forem executadas na ordem em que foram escritas produzem a resposta correta para o problema

- Obter os dois números.
- Somar dois números.
- 3 Dividir um valor por outro.
- Mostrar um valor.

Algoritmos

Thierson

• Uma criança que está iniciando sua alfabetização consegue executar as quatro instruções?

Algoritmos

Thierson

- Uma criança que está iniciando sua alfabetização consegue executar as quatro instruções?
- conclusão: uma instrução é um comando que o agente executor é capaz de efetuar sem maiores explicações.

Algoritmos

Thierson Couto Ros

- Uma criança que está iniciando sua alfabetização consegue executar as quatro instruções?
- conclusão: uma instrução é um comando que o agente executor é capaz de efetuar sem maiores explicações.
- Então o conceito de instrução depende do agente executor do algoritmo (pessoa, robô, linguagem de programação, etc).

Algoritmos

Thierson Couto Rosa

- Uma criança que está iniciando sua alfabetização consegue executar as quatro instruções?
- conclusão: uma instrução é um comando que o agente executor é capaz de efetuar sem maiores explicações.
- Então o conceito de instrução depende do agente executor do algoritmo (pessoa, robô, linguagem de programação, etc).
- Para escrevermos um algoritmo temos que conhecer bem o conjunto de instruções que o agente executor é capaz de realizar.

Algoritmos

Thierson Couto Ros

- Uma criança que está iniciando sua alfabetização consegue executar as quatro instruções?
- conclusão: uma instrução é um comando que o agente executor é capaz de efetuar sem maiores explicações.
- Então o conceito de instrução depende do agente executor do algoritmo (pessoa, robô, linguagem de programação, etc).
- Para escrevermos um algoritmo temos que conhecer bem o conjunto de instruções que o agente executor é capaz de realizar.
- Assim, o algoritmo passa a ser uma explicação de uma solução para um problema, escrita como uma sequência de comandos que o agente é capaz de executar.

Algoritmos

Thierson Couto Ros

Exemplo do Conceito de Instrução

 O produto e a divisão de números são, cada um, uma instrução para um aluno com ensino fundamental.

Algoritmos

Thierson
Couto Ros

- O produto e a divisão de números são, cada um, uma instrução para um aluno com ensino fundamental.
- Calcular espaço percorrido por um objeto de massa m ao ser solto de uma altura h após dois segundos de queda livre, isso é uma instrução para esse aluno?

Algoritmos

Thierson Couto Ros

- O produto e a divisão de números são, cada um, uma instrução para um aluno com ensino fundamental.
- Calcular espaço percorrido por um objeto de massa m ao ser solto de uma altura h após dois segundos de queda livre, isso é uma instrução para esse aluno?
 - Possivelmente não. Esse não é um assunto tratado no ensino fundamental.

Algoritmos

Thierson Couto Ros

- O produto e a divisão de números são, cada um, uma instrução para um aluno com ensino fundamental.
- Calcular espaço percorrido por um objeto de massa m ao ser solto de uma altura h após dois segundos de queda livre, isso é uma instrução para esse aluno?
 - Possivelmente não. Esse não é um assunto tratado no ensino fundamental.
 - O aluno pode computar essa distância assim mesmo?

Algoritmos

Thierson Couto Ros

- O produto e a divisão de números são, cada um, uma instrução para um aluno com ensino fundamental.
- Calcular espaço percorrido por um objeto de massa m ao ser solto de uma altura h após dois segundos de queda livre, isso é uma instrução para esse aluno?
 - Possivelmente não. Esse não é um assunto tratado no ensino fundamental.
 - \bullet O aluno pode computar essa distância assim mesmo? Sim. Você descreve a sequência do cálculo ($h=\frac{gt^2}{2}$) para ele:
 - multiplique o tempo dado em segundos por ele mesmo (t^2) :
 - multiplique o resultado do produto anterior por g = 9, 8;
 - divida o resultado do produto anterior por dois.
 - mostre o resultado.

Executor das Instruções - I

Algoritmos

Thierson Couto Ros

O processador como executor

- Queremos escrever algoritmos que possam ser executados por computadores. Logo, teríamos que escreve-los em instruções executáveis por um processador digital.
- O problema é que as instruções inteligíveis por um processador digital não são fáceis para os seres humanos entenderem. São codificadas em sequências de zeros e uns!
- O conjunto de instruções executáveis por um processador digital é denominado *Linguagem de Máquina*.
- Outro problema: o conjuntos de instruções que um processador entende é muito limitado!

Executor das Instruções - II

Algoritmos

Thierson Couto Ros

Ser humano como executor

- Por outro lado, é importante que um algoritmo seja de fácil leitura por um ser humano, principalmente para simular a execução do mesmo no cérebro.
- Então, poderíamos pensar em escrever algoritmos em português e escrever um outro algoritmo que traduza da língua portuguesa para a linguagem de máquina do processador.
- O problema estaria resolvido: todo algoritmo seria escrito em português. O algoritmo tradutor traduz o algoritmo em português para a linguagem de máquina.

Problema de Linguagem entre Processador e Cérebro.

Algoritmos

Thierson

Linguagem Humana muito Complexa

- A última solução é inviável porque a linguagem humana possui uma série de recursos que tornam a tradução imprecisa (figuras de linguagem, sintaxe imprecisa, etc), portanto não existe mapeamento direto entre vários recursos da linguagem humana e a linguagem de máquina (que comporta um conjunto finito de instruções distintas).
- Qual é então o problema para a comunicação entre o cérebro e o processador ?

Problema de Linguagem entre Processador e Cérebro.

Algoritmos

Thierson

Linguagem Humana muito Complexa

- A última solução é inviável porque a linguagem humana possui uma série de recursos que tornam a tradução imprecisa (figuras de linguagem, sintaxe imprecisa, etc), portanto não existe mapeamento direto entre vários recursos da linguagem humana e a linguagem de máquina (que comporta um conjunto finito de instruções distintas).
- Qual é então o problema para a comunicação entre o cérebro e o processador ? É um problema de linguagem!

Algoritmos

Thierson Couto Ros

Linguagem Intermediária

- A solução se dá a partir das seguintes constatações:
 - Todas as instruções executadas por um processador digital são compreendidas pelo cérebro humano (instruções aritméticas e lógicas simples).
 - Contudo, o cérebro tem dificuldade em identificar instruções escritas em linguagem de máquina.

Algoritmos

Thierson
Couto Ros

Linguagem Intermediária

- A solução se dá a partir das seguintes constatações:
 - Todas as instruções executadas por um processador digital são compreendidas pelo cérebro humano (instruções aritméticas e lógicas simples).
 - Contudo, o cérebro tem dificuldade em identificar instruções escritas em linguagem de máquina.
- Solução: definir uma linguagem intermediária, com um conjunto de comando próximos ao que o processador consegue executar, porém escritos em linguagem humana.

Algoritmos

Thierson Couto Ros

Linguagem Intermediária

- A solução se dá a partir das seguintes constatações:
 - Todas as instruções executadas por um processador digital são compreendidas pelo cérebro humano (instruções aritméticas e lógicas simples).
 - Contudo, o cérebro tem dificuldade em identificar instruções escritas em linguagem de máquina.
- Solução: definir uma linguagem intermediária, com um conjunto de comando próximos ao que o processador consegue executar, porém escritos em linguagem humana.
- As construções obedecem a formatos rígidos para que possam ser automaticamente traduzidas para a linguagem de máquina.

Algoritmos

Thierson

Linguagem Algorítmica ou Linguagem de Programação

Algoritmos

Thierson
Couto Rosa

Linguagem Algorítmica ou Linguagem de Programação

 Essa linguagem intermediária na qual escrevemos os algoritmos é comumente denominada linguagem algorítmica ou linguagem de programação

Algoritmos

Thierson Couto Ros

Linguagem Algorítmica ou Linguagem de Programação

- Essa linguagem intermediária na qual escrevemos os algoritmos é comumente denominada linguagem algorítmica ou linguagem de programação
- Existem diversas linguagens de programação, das quais você já deve ter ouvido falar: C, C++, Java, Pascal, Pyton, etc.

Algoritmos

Thierson Couto Ros

Linguagem Algorítmica ou Linguagem de Programação

- Essa linguagem intermediária na qual escrevemos os algoritmos é comumente denominada linguagem algorítmica ou linguagem de programação
- Existem diversas linguagens de programação, das quais você já deve ter ouvido falar: C, C++, Java, Pascal, Pyton, etc.
- Nesta disciplina trabalharemos com a linguagem C.
- O programa que faz a tradução da linguagem de programação para a linguagem de máquina é denominado compilador.

Algoritmos

Thierson Couto Ros

O papel do Compilador

- O compilador tem um papel colateral importante. Sob o ponto de vista de quem escreve o algoritmo ele pode ser visto como um *Processador Virtual!* Ou seja, temos a impressão de que o algoritmo escrito na linguagem de programação é executado pelo compilador.
- Porém, sabemos que ele de fato não executa o algoritmo.
 Ele traduz cada comando escrito em linguagem de programação em um conjunto de instruções em linguagem de máquina.
- O processador digital é quem realmente executa o algoritmo dentro do computador.

Algoritmos

Thierson Couto Ros

O que temos que saber para escrever programas?

Algoritmos

Thierson

O que temos que saber para escrever programas?

- Podemos supor que o agente executor é o compilador.
 Logo, vamos escrever algoritmos na linguagem de programação que o compilador é capaz de traduzir.
- O que temos que aprender então para escrever algoritmos?

Algoritmos

Thierson

O que temos que saber para escrever programas?

- Podemos supor que o agente executor é o compilador.
 Logo, vamos escrever algoritmos na linguagem de programação que o compilador é capaz de traduzir.
- O que temos que aprender então para escrever algoritmos?
 - Temos que aprender as estruturas básicas de uma linguagem de programação. Pois elas funcionarão como "instruções"para o "processador virtual"(compilador).

Algoritmos

Thierson Couto Ros

Estruturas Básicas de Uma Linguagem de Programação

- As estruturas básicas são as seguintes:
 - Declaração de variáveis.
 - 2 Comando de entrada de dados.
 - 3 Comando de saída de dados.
 - Expressões (aritméticas e lógicas).
 - 6 Comando de atribuição.
 - 6 Comando de Decisão ou de Seleção.
 - Comando de repetição.
- Nova definição de algoritmo: uma solução de um problema escrita como uma sequência formada por construções básicas de uma linguagem de programação.

Estruturas Básicas

Algoritmos

Thierson Couto Ros

Ocorrência nas linguagens de Programação

- As sete estruturas básicas listadas acima compõem quase todas as linguagens de programação.
- Há variações quanto ao formato (sintaxe) dos comandos e expressões entre uma linguagem e outra, mas a maioria das estruturas básicas ocorrem em todas linguagens de programação.
- Por isso, uma vez que se aprende a utilizar uma linguagem de programação, fica mais fácil aprender outras!

Algoritmos

Thierson
Couto Ros

Cálculo do Fatorial de um Número Natural n

• Dado um número natural n, qual o fatorial de n?

Algoritmos

Thierson

Cálculo do Fatorial de um Número Natural n

- Dado um número natural n, qual o fatorial de n?
- A resposta depende do valor de n:

Algoritmos

Thierson

Cálculo do Fatorial de um Número Natural n

- Dado um número natural n, qual o fatorial de n?
- A resposta depende do valor de *n*:
 - Se n=0 ou n=1 o fatorial de $n \in 1$.

Algoritmos

Thierson Couto Ros

Cálculo do Fatorial de um Número Natural n

- Dado um número natural n, qual o fatorial de n?
- A resposta depende do valor de *n*:
 - Se n=0 ou n=1 o fatorial de $n \in 1$.
 - Se n>0 então o fatorial de $n=n\times n-1\times n-2\cdots \times 1$

Exemplo de Algoritmo

Algoritmos

Thierson Couto Ros

Algoritmo para o cálculo do fatorial de um número

```
1 #include <stdio.h>
 2 int main(){
     int n. multiplicador, fatorial:
     printf("Digite um numero natural\n");
     scanf("%d", &n);
     if(n<0){
            printf("Um numero natural nao pode ser negativo\n"):
 8
     else{
 9
10
            if (n==0 || n==1)√
11
                    printf("fatorial de %d e: 1\n");
12
13
           else{ //n > 1
14
                    multiplicador=n-1;
15
                    fatorial=n;
                    while(multiplicador > 1){
16
17
                            fatorial= fatorial * multiplicador:
18
                            multiplicador = multiplicador -1;
19
20
                    printf("O fatorial de %d e: %d\n", n, fatorial):
21
22
23 }
```


Identificação dos Componentes de um Algoritmo no Exemplo

Algoritmos

Thierson

Quais linhas correspondem a declarações de variáveis?

Identificação dos Componentes de um Algoritmo no Exemplo

Algoritmos

Thiersor Couto Ro

Quais linhas correspondem a declarações de variáveis?

- Linha 3: int n, multiplicador, fatorial;
- Uma declaração de variáveis é formada por um tipo e uma lista de nomes de variáveis que são daquele tipo.
- Será explicado posteriormente o que significa uma variável em algoritmos.
- Por enquanto você pode assumir que uma variável é uma caixa que armazena apenas um valor em um dado instante.
- Também será explicado posteriormente o que é um tipo de dado em linguagem algorítmica.

Algoritmos

Thierson Couto Ros

Quais linhas correspondem a comandos de entrada de dados?

Algoritmos

Thiersor Couto Ro

Quais linhas correspondem a comandos de entrada de dados?

- Linha 5. scanf("%d", &x);
- O comando de entrada de dados também é denominado comando leitura e é um comando que permite que um valor seja armazenado em uma variável através de um dispositivo de entrada acoplado ao computador.
 Geralmente (e neste caso) o dispositivo é o teclado.
- Existem duas formas de colocar valor em uma variável.
 Uma delas é o comando de leitura, a outra é através de um comando de atribuição que será estudado posteriormente.

Algoritmos

Thierson Couto Ros

Algoritmos

Thierson Couto Ros

Quais linhas correspondem a comandos de saída?

• Linha 4: printf("Digite um numero natural\n");

Algoritmos

Thierson Couto Ros

- Linha 4: printf("Digite um numero natural\n");
- Linha 7:
 printf("Um numero natural nao pode ser negativo\n");

Algoritmos

Thierson
Couto Ros

- Linha 4: printf("Digite um numero natural\n");
- Linha 7: printf("Um numero natural nao pode ser negativo\n");
- Linha 11: printf("fatorial de %d e: 1\n");
- Linha 20: printf("O fatorial de %d e: %d\n", n, fatorial);
- O comando de saída serve para

Algoritmos

Thierson
Couto Ros

- Linha 4: printf("Digite um numero natural\n");
- Linha 7: printf("Um numero natural nao pode ser negativo\n");
- Linha 11: printf("fatorial de %d e: 1\n");
- Linha 20: printf("O fatorial de %d e: %d\n", n, fatorial);
- O comando de saída serve para imprimir um texto ("o fatorial de") ou um valor constante (ex. 1), o valor de uma variável (fatorial), ou de uma expressão (ex. 2+fatorial).
- O valor é emitido a um dispositivo de saída. Geralmente a tela do computador.

Algoritmos

Thiersor Couto Ro

```
Quais linhas possuem expressões aritméticas?
```


Algoritmos

Thierson Couto Ros

Quais linhas possuem expressões aritméticas?

 Uma expressão aritmética corresponde a um número, uma variável numérica, ou a um conjuntos de números e variáveis numéricas operados por operadores aritméticos:
 +, -, / (divisão), * (multiplicação), %(resto da divisão)

Algoritmos

Thiersor Couto Ro

Quais linhas possuem expressões aritméticas?

- Uma expressão aritmética corresponde a um número, uma variável numérica, ou a um conjuntos de números e variáveis numéricas operados por operadores aritméticos:
 +, -, / (divisão), * (multiplicação), %(resto da divisão)
- Linha 6: o n e o 0 em if (n<0)

Algoritmos

Thiersor Couto Ro

Quais linhas possuem expressões aritméticas?

- Uma expressão aritmética corresponde a um número, uma variável numérica, ou a um conjuntos de números e variáveis numéricas operados por operadores aritméticos: +, -, / (divisão), * (multiplicação), %(resto da divisão)
- Linha 6: o n e o 0 em if (n<0)
- Linha 10: o 0 e o 1 em if (n=0 | | n==1) são expressões aritméticas

Algoritmos

Thiersor

Quais linhas possuem expressões aritméticas?

- Uma expressão aritmética corresponde a um número, uma variável numérica, ou a um conjuntos de números e variáveis numéricas operados por operadores aritméticos: +, -, / (divisão), * (multiplicação), %(resto da divisão)
- Linha 6: o n e o 0 em if (n<0)
- Linha 10: o 0 e o 1 em if (n=0 | | n==1) são expressões aritméticas
- Linha 11: a constante 1 em printf("fatorial de %d e: 1\n"); é uma expressão aritmética.

Algoritmos

Thierson Couto Ros

Quais linhas possuem expressões aritméticas? - Cont.

Algoritmos

Thierson Couto Ros

Quais linhas possuem expressões aritméticas? - Cont.

 Linhas 14, 15, 16, 17, 18 e 20 : todas as variáveis (multiplicador, fatorial, n), constantes, operadores aritméticos e as combinações destes são expressões aritméticas.

Algoritmos

Thierson Couto Ros

Quais linhas possuem expressões lógicas?

Algoritmos

Thiersor Couto Ro

Quais linhas possuem expressões lógicas?

- Expressões lógicas são expressões que assume um entre dois valores possíveis: verdadeiro ou falso.
- Onde ocorrem as expressões lógicas no programa?
 - Linha 6: a expressão n < 1 em **if** (n<0).
 - Linha 10: a expressão n == 0 || n == 1 em: if (n=0 || n==1)
 - Linha 16: a expressão multiplicador > 1 em
 while (multiplicador > 1)

Algoritmos

Thierson Couto Ros

Quais linhas possuem comandos de atribuição?

 Um comando de atribuição armazena o valor de uma expressão em uma variável.

Algoritmos

Thierson
Couto Ros

Quais linhas possuem comandos de atribuição?

- Um comando de atribuição armazena o valor de uma expressão em uma variável. Onde isso ocorre?
 - Linha 14: multiplicador=n-1;- o resultado da expressão n-1 é armazenado na variável multiplicador.
 - Linha 15: fatorial=n; o valor armazenado em n é armazenado na variável fatorial.
 - Linha 17: fatorial= fatorial * multiplicador;
 - Linha 18: multiplicador = multiplicador −1;

Algoritmos

Thierson
Couto Ros

Quais linhas possuem comandos de atribuição?

- Um comando de atribuição armazena o valor de uma expressão em uma variável. Onde isso ocorre?
 - Linha 14: multiplicador=n-1;- o resultado da expressão n-1 é armazenado na variável multiplicador.
 - Linha 15: fatorial=n; o valor armazenado em n é armazenado na variável fatorial.
 - Linha 17: fatorial= fatorial * multiplicador;
 - Linha 18: multiplicador = multiplicador -1;
- Atenção! Na nossa linguagem algorítmica, o comando de atribuição é representado por "=" e o sinal de igual corresponde a "==" (dois sinais de igual juntos)

Algoritmos

Thierson Couto Ros

Quais linhas possuem comandos de decisão?

- Linhas 4 a 20 e Linhas 8 a 19.
- Um comando de decisão é formado por:
 - Palavra-chave **if** ("se" em Portugês), seguida por uma expressão lógica entre parênteses: se **if** (expr).
 - 2 Um conjunto de um ou mais comandos entre "{" e "}" que serão executados se a expressão for verdadeira.
 - 3 Um componente contendo a palavra-chave else ("senão" em Português) que pode estar presente no comando ou não.
 - 4 Se o componente "senão" estiver presente, o conjunto de comandos entre "{" e "}" logo após a palavra "else" é executado se a expressão for falsa.

Algoritmos

Thiersor Couto Ro

Quais linhas possuem comandos de repetição?

- O comando "enquanto" é um comando de repetição formado por:
 - A palavra-chave "while" (enquanto) seguida por uma expressão lógica entre parênteses
 - Uma lista de comandos entre "{" e "}"
- Você tem idéia de como funciona esse comando?
 - O que ocorre se a expressão lógica for verdadeira?
 - O que ocorre se a expressão lógica for falsa?
- Linhas 16 a 19.

Sequência de Instruções

Algoritmos

Thierson Couto Ros

Sequência de Comandos do Algoritmo Fatorial

- Repare que o algoritmo que calcula o fatorial é formado por uma sequência de três comandos:
 - Um comando de saída (linha 4).
 - Um comando de entrada (linha 5);
 - Um comando de decisão (linha 6);
- Veja que a maioria do texto do algoritmo está dentro do comando "if" que se inicia na linha 6!
- Dentro do comando "if" há vários outros comandos, inclusive outro comando "if"!
- O mesmo ocorre com o comando de repetição (while). Há duas linhas de comandos dentro do comando while.

Sequência de Instruções

Algoritmos

Thierson Couto Ros

Comandos Simples e Compostos

- Vemos no exemplo que alguns comandos envolvem uma única ação (atribuição, leitura, escrita). Esses comandos são denominados comandos simples e terminam com um ";".
- Por outro lado os dois comandos: decisão (if) e repetição (while), podem ser compostos por blocos de outros comandos. A execução ou não de um bloco de comando é definida a partir da avaliação de expressão lógica colocada no inícios desse comandos.
- Um comando dentro de um bloco pode também ser composto (como ocorre no exemplo).

Revisão das Estruturas de Uma linguagem Algorítmica

Algoritmos

Thierson Couto Ro

- Declaração de variáveis.
- 2 Expressões (aritméticas e lógicas).
- Comandos Simples:
 - Comando de entrada de dados.
 - Comando de saída de dados.
 - Comando de atribuição.
- Comandos Compostos:
 - Comando de Decisão ou de Seleção.
 - Comando de repetição.

Revisão dos Componentes de Uma linguagem Algorítmica

Algoritmos

Thierson

- A classificação dos comandos em simples e compostos tem grande importância didática:
 - Os comandos simples são facilmente compreendidos pelos iniciantes em programação.
 - Os comandos compostos são um pouco mais complicados.
 Além disso, em último nível são compostos por comandos simples.
 - Logo, iremos começar a disciplina pelo que é mais fácil: declarações de variáveis e, em seguida, comandos simples.
 Logo em seguida, estudaremos os comandos compostos.

IMPORTANTE

Algoritmos

Thierson
Couto Ros

IMPORTANTE!

Algoritmos

Couto Ros

IMPORTANTE!

Algoritmos

Couto Ros

IMPORTANTE!!

Algoritmos

Thierson

Quanto mais rápido você aprender as sete construções básicas de uma linguagem algorítmica mais rápido você se torna um programador.

São apenas sete componentes!!!