Class12-Maths-CBSE-Exam-Formulas

October 18, 2025

Chapter	Concept	Formula / Key Point
Relations and Functions	Types of Relations	Reflexive, Symmetric, Transitive, Equivalence
	Types of Functions	One-one, Onto, Bijective
	Inverse of Function	$f^{-1}(f(x)) = x$
Inverse Trigonometric Functions	— Principal Values	$\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \cos^{-1} x \in [0, \pi]$
	Identities	$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
Matrices	Matrix Operations	$(A+B)^T = A^T + B^T, (AB)^T = B^T A^T$
	Inverse of Matrix	$A^{-1} = \frac{1}{ A } \cdot \operatorname{adj}(A) \text{ if } A \neq 0$
Determinants	Properties —	$ AB = A B , A^T = A $
	Area of Triangle	Area = $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$
	Cramer's Rule	$x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{D_z}{D}$
Continuity and Differentiabil- ity	Continuity	$\lim\nolimits_{x\to a^-}f(x)=\lim\nolimits_{x\to a^+}f(x)=f(a)$
	— Derivatives	$(uv)' = u'v + uv' (f(g(x)))' = f'(g(x)) \cdot g'(x)$
	— Implicit Differentiation	Differentiate both sides of equation w.r.t. x

Chapter	Concept	Formula / Key Point
Applications of Derivatives	— Tangent & Normal	Slope of tangent: $f'(x)$ Equation: $y - y_1 = m(x - x_1)$
	Increase/Decrease	f'(x) > 0 Increasing $f'(x) < 0$ Decreasing
	Maxima & Minima	Use $f'(x) = 0$ and second derivative test
Integrals	Basic Integration	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1 \ \int e^x dx = e^x + C$
	Integration by Parts	$\int u \cdot v dx = u \int v dx - \int \left(\frac{du}{dx} \int v dx\right) dx$
	Definite Integral	$\int_{a}^{b} f(x) dx = F(b) - F(a) \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$
Applications of Integrals	Area Under Curve	Area = $\int_{a}^{b} [f(x) - g(x)] dx$
	Area Between Curve and Axis	Area = $\int_a^b f(x)dx$
Differential Equations	Order and Degree	Order = highest derivative, Degree = power of highest derivative (if polynomial)
	Variable Separable Method	$\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx$
Vector Algebra	Dot Product	$\vec{A} \cdot \vec{B} = \vec{A} \vec{B} \cos \theta$
	Cross Product	$\vec{A} imes \vec{B} = \vec{A} \vec{B} \sin\theta \hat{n}$
	Scalar Triple Product	$\vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$
Three- Dimensional Geometry	Line Equation	Vector: $\vec{r} = \vec{a} + \lambda \vec{b}$ Cartesian: $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$
	Plane Equation	$ax + by + cz + d = 0 \text{ Vector: } \vec{r} \cdot \hat{n} = d$
	Distance Between Point & Plane	$\frac{-ax_1 + by_1 + cz_1 + d }{\sqrt{a^2 + b^2 + c^2}}$

Chapter	Concept	Formula / Key Point
	_	_
Linear Programming	Constraints & Feasible Region	Convert word problems to inequalities Graph feasible region
	Objective Function	Z = ax + by Max/Min at corner points of feasible region
Probability	— Conditional Probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
	Bayes' Theorem	$ P(E_i A) = \frac{P(E_i) \cdot P(A E_i)}{\sum P(E_j) \cdot P(A E_j)} $
	Independent Events	$P(A \cap B) = P(A) \cdot P(B)$