Department of Mathematics

Assignment 4, MA2020 Differential Equations

Solve the following problems near $x_0 = 0$, using Frobeneous method

(1) 9x(1-x)y'' - 12y' + 4y = 0

(2)
$$2x^2y'' + xy' - (x^2 + 1)y = 0$$

(3)
$$xy'' + y' - xy = 0$$

(4)
$$x(x+1)y'' + 3xy' + y = 0$$

(5)
$$x^2y'' + 6xy' + (6+x^2)y = 0$$

Problems on Bessel's function & Sturm-Liouvellie Equations

(1) Show that, for integer values of n, $J_{-n}(x) = (-1)^n J_n(x)$ and $J_n(-x) = (-1)^n J_n(x)$.

(2) Show that

(a)
$$\sqrt{\frac{\pi x}{2}} J_{-1/2}(x) = \cos x$$

(b)
$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x)$$
.

(c)
$$\frac{d}{dx}[x^p J_p(x)] = x^p J_{p-1}(x)$$

(c)
$$\frac{d}{dx}[x^{p}J_{p}(x)] = x^{p}J_{p-1}(x)$$

(d) $\frac{d}{dx}[x^{-p}J_{p}(x)] = -x^{-p}J_{p+1}(x)$

(e)
$$J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x}J_p(x)$$

(f)
$$J'_p(x) = \frac{-p}{r}J_p(x) + J_{p-1}(x)$$

(g)
$$\int_{0}^{\infty} J_1(x) dx = 1$$

(h)
$$\int_{0}^{1} x J_{p}(ax) J_{p}(bx) dx = \begin{cases} 0, & a \neq b \\ \frac{1}{2} J_{p+1}^{2}(a) = \frac{1}{2} J_{p-1}^{2}(a) = \frac{1}{2} (J_{p}'(a))^{2}, & a = b \end{cases}$$
 where a and b are zeros of $J_{p}(x)$.

(i)
$$J_0'(x) = -J_1(x)$$

(j)
$$J_1'(x) = J_0(x) - \frac{1}{x}J_1(x)$$

(k)
$$J_2'(x) = \frac{1}{2} [J_1(x) - J_3(x)]$$

(1)
$$\int x^{\nu} J_{\nu-1} dx = x^{\nu} J_{\nu}(x) + c$$

(m)
$$\int x^{-\nu} J_{\nu+1} dx = -x^{-\nu} J_{\nu}(x) + c$$

(n)
$$\int J_{\nu+1}dx = \int J_{\nu-1}(x)dx - 2J_{\nu}(x)$$

(3) Prove that the positive zeros of $J_p(x)$ and $J_{p+1}(x)$ occur alternately. That is, between each pair of the consecutive zeros of either, there is exactly one zero of the other.

(4) Express $J_2(x)$, $J_3(x)$ and $J_4(x)$ in terms of $J_0(x)$, $J_1(x)$.

(5) Solve each of the following, using the indicated transformation, in terms of Bessel functions

(a)
$$y'' + 4xy = 0$$
, $(y = 4\sqrt{x}, \frac{4}{3}x^{3/2} = z)$

(b)
$$x^2y'' + xy' + (4x^2 - \nu^2)y = 0,$$
 $(2x = z)$

(c)
$$x^2y'' - 3xy' + 4(x^4 - 3)y = 0$$
, $(y = x^2u, x^2 = z)$

(d)
$$x^2y'' + xy' + (x^2 - \frac{1}{16})y = 0$$

(6) Find the eigenvalues and eigenfunctions of the following Sturm-Liouville equations

(a)
$$y'' + \lambda y = 0;$$
 $y(0) = 0, y'(1) = 0.$

(b)
$$y'' + \lambda y = 0;$$
 $y(0) = y(2\pi), y'(0) = y'(2\pi).$

(c)
$$(xy')' + (\frac{\lambda}{x})y = 0;$$
 $y(1) = 0, y(e) = 0.$

(d)
$$(e^{2x}y')' + e^{2x}(\lambda + 1)y = 0;$$
 $y(0) = 0, y(\pi) = 0.$

Solve the following First Order Partial Differential Equations

(1)
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 2 - z$$
, $z(x, 0) = \sin(x)$

(2)
$$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = y - z, \quad z(x,0) = x^2$$

(3)
$$x\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$$
, $z(1,y) = e^{-y}$

(4)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z, \quad z(1,y) = y^2$$

(5)
$$x \frac{\partial z}{\partial x} + y^{-1} \frac{\partial z}{\partial y} = 1$$
, $z(x,0) = 5 - x$

(6)
$$\frac{\partial z}{\partial x} + \frac{1}{2y} \frac{\partial z}{\partial y} = 2$$
, $z(x,0) = \sin x - 2$