Problem |

(a)
$$E = \lim_{t \to \infty} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |e^{-at} \cdot u(t)|^2 dt = \frac{\pi}{2a}$$
 does not equal to infinity

not power signal

 $P = \lim_{t \to \infty} \frac{1}{t} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |e^{-at} \cdot u(t)|^2 dt = 0$

energy signals

(b) $x_2[u] = e^{\int_{-\infty}^{\infty} 4\pi t u(t)} |x_2[u]| = |x_2[u]| = |x_2[u]| = |x_2[u]|$
 $P = \lim_{n \to \infty} \frac{1}{2nt} = |x_2[u]| = |x_2[u]| = |x_2[u]|$

Problem 2

Problem 3
(a)
$$\gamma[N] - \alpha \gamma[n-1] = \chi[n]$$

$$\gamma(e^{jw}) = \sum_{k=0}^{k=M} b_k - e^{jwk}$$

(b)
$$H(e^{ju}) = \frac{1}{1-a \cdot e^{-ju}}$$

if $a < 0$ $a \cdot e^{-ju} < 0$ low pass filter
if $a > 0$ $a \cdot e^{-ju} > 0$ high pass filter

Problem 4

(a) $H(e^{iy}) = 1 + 2e^{-iy} + 2e^{-i2y} + e^{-i3y}$ $= e^{-i\frac{3}{2}w} \left(e^{i\frac{3}{2}w} + e^{i\frac{3}{2}w} \right) + (2 - e^{i\frac{1}{2}w} + 2 - e^{i\frac{1}{2}w}) \right]$ We have $H(e^{iy}) = e^{-i\frac{3}{2}w} \cdot (2\cos(\frac{3}{2}w) + 4\cos(\frac{1}{2}w))$ which has linear phase

(b) frequency response is said to be linear phase if
the obefficient of the frequency response are symmetrical
h[n] = h[n-1-n]
h[o] = h[4-1] = h[3]
h[j] = h[4-1-1] = h[2]
so it's linear phase

Problem 5

(a)
$$j_{u} Y(j_{u}) + 4 Y(j_{u}) = \chi(j_{u})$$

 $H(j_{u}) = \frac{\chi(j_{u})}{\chi(j_{u})} = \frac{1}{4+j_{u}}$

(b)
$$\frac{1}{dt dt w} \Rightarrow e^{-at} u(t)$$
 $a=4$
 $h(t) = e^{-4t}u(t)$

(c) when
$$W=0$$
 $H(jw)=4$
 $W=0$ $H(jw)=0$
low pass filter

(d)
$$h_1(t) = h(t) \times u(t)$$

 $H_1(jw) = \frac{1}{2\pi}H(jw) \cdot (\frac{1}{2\pi}S(w) + \frac{1}{jw})$
 $= \frac{1}{2}(H(jw) + \frac{H(jw)}{jw})$