ENGG 5781: Matrix Analysis and Computations

2016-17 Second Term

Lecture 2: Linear Representations and Least Squares

Instructor: Wing-Kin Ma

1 Proof of Linear Independence of Vandemonde Matrices

Let k be any positive integer, and consider the following matrix

$$\mathbf{B} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{k-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{k-1} \\ \vdots & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{k-1} \end{bmatrix} \in \mathbb{C}^k,$$

with $z_1, \ldots, z_k \in \mathbb{C}$. We will show that **B** is nonsingular if z_i 's are distinct. For now, let us assume this to be true and focus on showing the linear independence of **A**. If $m \geq n$, we can represent **A** by

$$\mathbf{A}^T = [\mathbf{B} \times]$$

with k = n; here, "×" means parts that do not matter. By the rank definition, we have rank(\mathbf{A}) = rank(\mathbf{A}^T) \geq rank(\mathbf{B}) = n. Since we also have rank(\mathbf{A}) $\leq n$, we obtain the result rank(\mathbf{A}) = n. Moreover, if $m \leq n$ we can represent \mathbf{A} by

$$\mathbf{A} = [\ \mathbf{B}^T \ \times \]$$

with k=m. Following the same argument as above, we obtain rank(\mathbf{A}) = m. Thus we have established the result that \mathbf{A} has full rank.

Now, we show that **B** is nonsingular if z_i 's are distinct. Observe that

$$\mathbf{B}\alpha = \mathbf{0} \iff p(z_i) = 0, \ i = 1, \dots, k$$
 (1)

where

$$p(z) = \alpha_1 + \alpha_2 z + \alpha_3 z^2 + \ldots + \alpha_k z^{k-1}$$

denotes a polynomial of degree k-1. On one hand, the condition on the R.H.S. of (1) implies that z_1, \ldots, z_k are the roots of p(z). On the other hand, it is known that a polynomial of degree k-1 has k-1 roots, and no more. Consequently, the above two statements contradict to each other if we have $z_i \neq z_j$ for all i, j with $i \neq j$. Hence, we have shown that **B** must be nonsingular if z_i 's are distinct.