On the Role of Style in Parsing Speech with Neural Models

Trang Tran, Mari Ostendorf – University of Washington Jiahong Yuan, Yang Liu – LAIX Inc.

Results

ELECTRICAL & COMPUTER ENGINEERING

Data

Overview	Questions	Data	Style	Available Material	Split	# Sentences	Used in
	<u> </u>	WSJ	news text	(gold) parses	train, dev	40k	Q1
 Parsing: core technology for intermediate 	1. Do contextualized word representations learned	SWBD	conversational speech (C)	audio, (gold) parses	train, dev, test	96k	Q1, Q2, Q3
language understanding	for written text also benefit spontaneous speech	CSR	read news (R)	audio, (silver) parses	train (tune), dev	8k	Q2, Q3
 Focus of parsing research & resources: written text 	parsers? [Yes!] 2. Does prosody improve further on top of the rich	GT-N	read news/article (R)	audio, (gold) parses	test	6k (3k unique)	Q3
 Problem: many applications (dialog systems, 		GT-SW	read version of SWBD (RC)	audio, (gold) parses	test, analysis	31 (13 unique)	Q3
		•	•				

Train	Embedding	F1
WSJ (W)	BERT	77.5
SWBD (S)	Learned	91.0
	GloVe (Fisher)	91.0
	GloVe (Gword)	91.2
	ELMo	92.7
	BERT	93.2
S+W	BERT	93.4

- Training with text alone doesn't work, even with BERT embeddings
- Pretraining on large written text benefits parsing speech
- Training on both (SWBD+WSJ) gives marginal gain

Model disfluent fluent 91.5 94.6 ELMo text BERT 94.9 94.9* +prosody

 SWBD test sentences: 3823 disfluent (with EDITED, INTJ), 2078 fluent

95.2*

• (*): statistically significant at p<0.05

BERT

- Using prosody:
- helps in disfluent and long sentences
- further improves performance over strong text-only parsers: current best SWBD parsing result
- reduces edit errors, 19% fewer VP attachment errors

- speech? [Yes!]
- 3. How is the use of prosody affected by mismatch between read and spontaneous speech styles? [Read on...]

Background

assistive devices, translation, ...) involve

• This work studies impact of **style** difference

Spontaneous speech ≠ Read speech

Written text ≠ spontaneous speech

- Parsing: identify syntactic structure
- Speech vs. text:

spoken language

(wording)

(prosody)

- lacks conventional written cues (case, punctuations); has disfluent components
- has <u>prosody</u>: characteristics beyond words; acoustic correlates (intonation, energy, timing) signal structure

- Recent advances:
- 2018: prosody benefits neural parsing on spontaneous speech
- 2018, 2019: contextual embeddings give significant benefit in neural text parsers (SOTA on WSJ Treebank)

Approach

- Input representation
- word-level features $[x_1, x_2, ...]$
- $x_i = [e_i, s_i, \phi_i]$
- e_i : word embeddings
- s_i : acoustic feature embeddings
- ϕ_i : pause, duration features
- Output:
 - Set of labeled spans $[(a_i, b_i, l_i), ...]$
- $(a_i, b_i, l_i) = (\text{start_idx}, \text{end_idx}, \text{label})$
- Self-attentive encoder + chart decoder (self-attn) (Kitaev & Klein, 2018)
- Integrate prosody into via a convolutional neural network (CNN) (Tran et al., 2018)
- Metric: Parseval F1 (label and span)

<u>Q</u>	<u>3</u>

Train/Tune	Model	SWBD (C)	GT-N (R)	GT-SW (RC)	
SWBD (C)	text	92.9 —	→ 92.4	98.0	
CSR (R)	text	80.6 ←	93.9	91.4	
SWBD (C)	+prosody	93.0*—	→ 92.6*	98.0	
CSR (R)	+prosody	80.4 ←	- 94.2*	90.3	

- Training on conversational (C) speech: minimal degradation on read (R) speech
- Training on (R): significant degradation on (C) → (C) more useful for general training
- Use of prosody differs in (R) vs. (C): style mismatch is both in terms of words and acoustic cues

Conclusion

- Pretrained contextualized word embeddings on text helps constituency parsing of speech
- Using prosody gives further gains, especially in long and disfluent sentences; reducing attachment errors
- Conversational prosody ≠ read prosody Conversational prosody is more general, better for training
- Acknowledgements: NSF Grant IIS-1617176; opinions our own
- Code: github.com/trangham283/prosody nlp/

tree/master/code/self_attn_speech_parser