STAT 525

Chapter 8 Quantitative and Qualitative Predictors

Dr. Qifan Song

Polynomial Regression

- Multiple regression using X_i^2 , X_i^3 , etc as additional predictors to fit/approximate a nonlinear regression
- Hierarchical approaching to fitting (model selection); usually no more than the third polynoial degree
- Generates quadratic, cubic polynomial relationships
- Can often lead to a multicollinearity problem
- Possible solution: centralize the predictors
 - Centering

$$\tilde{X}_{ij} = X_{ij} - \overline{X}_j,$$

where $\overline{X}_j = \sum_i X_{ij}/n$

Example: Power Cell (p.300)

- Response variable is the life (in cycles) of a power cell
- Explanatory variables are
 - Charge rate (3 levels)
 - Temperature (3 levels)
- This is a designed experiment
 - Notice $\sum_{i} (X_{i1} \overline{X}_1)(X_{i2} \overline{X}_2) = 0 \rightarrow cor(X_1, X_2) = 0$
 - Notice $cor(X_i, X_i^2)$ is a large value.
- Standardizing the explanatory variables
 - For example, we code the values of predictors as $x_{ij}=0,\pm 1$
 - Notice $\sum x_{i1}x_{i1}^2 = 0 \to cor(x_1, x_1^2) = 0$
 - Notice $\sum x_{i2}x_{i2}^2 = 0 \rightarrow cor(x_2, x_2^2) = 0$

```
options nocenter;
data a1;
    infile 'U:\.www\datasets525\Ch07ta09.txt';
    input cycles chrate temp;

proc print data=a1;
run;

data a1; set a1;
    chrate2=chrate*chrate;
    temp2=temp*temp;
    ct=chrate*temp;

proc reg data=a1;
    model cycles=chrate temp chrate2 temp2 ct;
run;
```

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	s Square	F Value	Pr > F
Model	5	55366	11073	10.57	0.0109
Error	5	5240.43860	1048.08772		
Corrected Total	10	60606	3		
Root MSE	3	2.37418	R-Square	0.9135	
Dependent Mean	_	2.00000	Adj R-Sq	0.8271	
Coeff Var	1	8.82220			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	337.72149	149.96163	2.25	0.0741
chrate	1	-539.51754	268.86033	-2.01	0.1011
temp	1	8.91711	9.18249	0.97	0.3761
chrate2	1	171.21711	127.12550	1.35	0.2359
temp2	1	-0.10605	0.20340	-0.52	0.6244
ct	1	2.87500	4.04677	0.71	0.5092

• MULTICOLLINEARITY? Overall significant model but no individual variables significant

proc corr data=a1;
 var chrate temp chrate2 temp2 ct;
run; quit;

Pearson Correlation Coefficients, N = 11 Prob > |r| under HO: Rho=0 chrate2 chrate temp2 temp ct 0.00000 0.00000 chrate 1.00000 0.99103 0.60532 1.0000 <.0001 1.0000 0.0485 temp 0.00000 1.00000 0.00000 0.98609 0.75665 1.0000 1.0000 <.0001 0.0070 chrate2 0.99103 0.00000 1.00000 0.00592 0.59989 0.9862 <.0001 1.0000 0.0511 0.00000 0.98609 0.00592 0.74613 temp2 1.00000 1.0000 <.0001 0.9862 0.0084 ct 0.60532 0.75665 0.59989 0.74613 1.00000 0.0485 0.0070 0.0511 0.0084

ullet As anticipated, high correlation between X_1 and X_1^2 as well as X_2 and X_2^2

• SAS Codes: Standardizing

```
data a2; set a1;
    schrate=chrate; stemp=temp;
    keep cycles schrate stemp;
proc standard data=a2 out=a3 mean=0 std=1;
    var schrate stemp;
proc print data=a3;
run;
data a3; set a3;
    schrate2=schrate*schrate;
    stemp2=stemp*stemp;
    sct=schrate*stemp;
proc reg data=a3;
    model cycles=schrate stemp schrate2 stemp2 sct;
run; quit;
```

Note that this standardizes values so the mean is zero and variance 1.
 The key aspect is centering to remove the collinearity.

	Analysis of Variance						
			Sum of	:	Mean		
Source		DF	Square	s	Square	F Value	Pr > F
Model		5	5536	66	11073	10.57	0.0109
Error		5 5	5240.4386	0 104	8.08772		
Corrected	Total	10	6060	6			
Root MSE		32	2.37418	R-Sq	uare	0.9135	
Dependent	Mean	172	2.00000	Adj :	R-Sq	0.8271	
Coeff Var		18	3.82220				
Parameter Estimates							
		Paramet	ter St	andard			
Variable	DF	Estima	ate	Error	t Value	Pr >	t
Intercept	1	162.842	211 16	6.60761	9.81	0.00	002
schrate	1	-43.248	331 10	.23762	-4.22	0.00	083
stemp	1	58.482	205 10	.23762	5.71	0.00	023
schrate2	1	16.436	584 12	.20405	1.35	0.23	359
stemp2	1	-6.363	316 12	2.20405	-0.52	0.62	244
sct	1	6.900	000	.71225	0.71	0.50	092

Remarks

- If we only care the final fitting with all polynomial terms, the two models are exactly the same. As a consequence, the overall F test/statistics are the same.
- But the individual coefficient estimator and inferences are completely different. After centralization, the two "main" effects are significant, implying that a linear model appears reasonable. Could do a general linear test (test schrate2, stemp2, sct;).
- Another possible way of handling the multicollinearity in polynomial regression is using orthogonal polynomial (STAT 514).

Interaction Models

- With several explanatory variables, we need to consider the possibility that the effect of one variable depends on the value of another variable
- Model this relationship as the product of predictors
- Special Cases:
 - One binary (Y/N) and one continuous
 - Two continuous predictors

Interaction Models: Special Case #1

- $X_1 = 0$ or 1 identifying two groups
- \bullet X_2 is a continuous variable

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

• When $X_1 = 0$ (Group 1)

$$Y_i = \beta_0 + \beta_2 X_{i2} + \varepsilon_i$$

• When $X_1 = 1$ (Group 2)

$$Y_i = (\beta_0 + \beta_1) + (\beta_2 + \beta_3)X_{i2} + \varepsilon_i$$

- Results in two regression lines
- β_2 is the slope for Group 1
- $\beta_2 + \beta_3$ is the slope for Group 2
- Similar relationship for the intercepts
- Three Hypotheses of Interest
 - H_0 : $\beta_1 = \beta_3 = 0$: regression lines are the same
 - $H_0: \beta_1 = 0$: intercepts are the same
 - $H_0: \beta_3 = 0:$ slopes are the same

Example: Insurance Innovation (p.316)

- ullet Y is the number of months for an insurance company to adopt an innovation
- X_1 is the size of the firm
- X_2 is the type of firm
 - $-X_2 = 0 \rightarrow \text{mutual fund firm}$
 - $-X_2 = 1 \rightarrow \text{stock firm}$
- Do stock firms adopt innovation faster? Is this true regardless of size?

```
data a1;
  infile 'U:\.www\datasets525\Ch8ta02.txt';
  input months size stock;
```

```
/* Scatterplot */
symbol1 v=M i=sm70 c=black l=1; symbol2 v=S i=sm70 c=black l=3;
proc sort data=a1; by stock size;
proc gplot data=a1;
    plot months*size=stock/frame;
run;
```


- Investigate the model: months = size stock size*stock
- Test whether different types of firms adopt innovation at different paces regardless of size

```
data a1; set a1;
    sizestoc=size*stock;

proc reg data=a1;
    model months=size stock sizestoc;
    test stock, sizestock;
run;
```

Analysis of Variance

		A	narysis	OI	variand	ce					
			Sum	of		Mea	an				
Source		DF	Squa	res	Sc	quar	re .	F V	alue	Pr	> F
Model		3	1504.41	904	501.4	1 730)1	4	5.49	<.(0001
Error		16	176.38	096	11.0)238	31				
Corrected	Total	19	1680.80	000							
Root MSE			3.32021		R-Squa	are		0.8	8951		
Dependent	Mean		19.40000		Adj R-	-Sq		0.8	3754		
Coeff Var			17.11450								
			Paramet	er l	Estimat	tes					
		Pa	rameter	Sta	andard						
Variable	DF	Ε	stimate		Error	t	Valu	е	Pr >	t	
Intercept	1	3	3.83837	2	.44065		13.8	6	<.00)01	
size	1	-	0.10153	0	.01305		-7.7	8	<.00)01	
stock	1		8.13125	3	65405		2.2	3	0.04	108	

1 8.13125 3.65405 2.23 0.0408

1 -0.00041714 0.01833 -0.02 0.9821

Test 1 Results for Dependent Variable months

Mean

Source	DF	Square	F Value	Pr > F
Numerator	2	158.12584	14.34	0.0003
Denominator	16	11.02381		

stock

sizestoc

• Investigate the model: months = size stock

```
proc reg data=a1;
    model months=size stock;
run;
```

Analysis of Variance						
		Sum of	Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	2	1504.41333	752.20667	72.50	<.0001	
Error	17	176.38667	10.37569			
Corrected Total	19	1680.80000				
Root MSE		3.22113	R-Square	0.8951		
Dependent Mean	1	19.40000	Adj R-Sq	0.8827		
Coeff Var	1	16.60377				

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	33.87407	1.81386	18.68	<.0001
size	1	-0.10174	0.00889	-11.44	<.0001
stock	1	8.05547	1.45911	5.52	<.0001

• No apparent interaction here. The slope of the line does not depend on the type of firm.

```
/* Constant Slope */
symbol1 v=M i=rl c=black; symbol2 v=S i=rl c=black;
proc gplot data=a1;
    plot months*size=stock/frame;
run; quit;
```


Interaction Models: Special Case #2

 \bullet X_1 and X_2 are continuous variables

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

Can be written

$$Y_i = \beta_0 + (\beta_1 + \beta_3 X_{i2}) X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{i1} + (\beta_2 + \beta_3 X_{i1}) X_{i2} + \varepsilon_i$$

- The coefficient of one explanatory variable depends on the value of the other explanatory variable
- Cannot discuss each predictor individually
- Use contour plot for visual interpretation:

Contour plot in SAS

```
/* Contour plot for Y=10+X1-3*X2+5X1*X2 */
data a1;
    do x1=0 to 1 by 0.1;
        do x2=0 to 1 by 0.1;
            y=10+1*x1-3x2+5x1*x2;
            output;
        end;
    end;
proc gcontour data=a1;
    plot x1*x2=y;
run;
```

Qualitative Predictors

Coding a Variable with Two Classes

- The "Insurance Innovation" example: $X_1 = \text{size of firm}$
- ullet Either stock firm or mutual fund firm in the study \Longrightarrow a qualitative predictor with two classes,

$$X_2 = \begin{cases} 1 \text{ , if stock firm} \\ 0 \text{ , otherwise} \end{cases} \quad X_3 = \begin{cases} 1 \text{ , if mutual fund} \\ 0 \text{ , otherwise} \end{cases}$$

- Cannot include both indicators in the model
- The model below contains perfectly collinear columns

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$$

- SAS will drop the last column
- The additive model below is appropriate

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

– interpretation:

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1}$$
 if mutual fund $E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1}$ if stock firm

Alternative Coding of a Two-Class Variable

An alternative coding

$$X_2 = \left\{ \begin{array}{l} 1 & \text{, if stock firm} \\ -1 & \text{, if mutual fund} \end{array} \right.$$

• The additive model is still appropriate

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

– interpretation:

$$E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1}$$
 if stock firm $E\{Y_i\} = (\beta_0 - \beta_2) + \beta_1 X_{i1}$ if mutual fund

- $-\beta_0$ is an "average" intercept of regression line
- will use this coding for Analysis of Variance

Coding a Variable with Three Classes

First option: extend the indicator

$$X_2 = \begin{cases} 0, & \text{if mutual fund} \\ 1, & \text{if stock firm} \\ 2, & \text{if foreign firm} \end{cases}$$

• The model below is still appropriate

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

— interpretation: enforces an equal change in $E\{Y\}$ for each extra indicator

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1}$$
 if mutual fund $E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1}$ if stock firm $E\{Y_i\} = (\beta_0 + 2\beta_2) + \beta_1 X_{i1}$ if foreign firm

- may be too restrictive

Alternative Coding of a Three-Class Variable

• Second option:

$$X_2 = \begin{cases} 1 \text{ , if stock firm} \\ 0 \text{ , otherwise} \end{cases}$$
 $X_3 = \begin{cases} 1 \text{ , if foreign firm} \\ 0 \text{ , otherwise} \end{cases}$

The model below contains two indicators

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$$

– interpretation:

$$E\{Y_i\} = \beta_0 + \beta_1 X_{i1}$$
 if mutual fund $E\{Y_i\} = (\beta_0 + \beta_2) + \beta_1 X_{i1}$ if stock firm $E\{Y_i\} = (\beta_0 + \beta_3) + \beta_1 X_{i1}$ if foreign firm

- also more flexibility in presence of interactions X_1X_2 and X_1X_3

Constrained Regression

 At times may want to put constraints on regression coefficients

$$-\beta_1 = 5$$
$$-\beta_1 = \beta_2$$

- Can do this in SAS by redefining explanatory variables
 - Page 268, redefine so model is \tilde{Y} vs X_2
- Can also use RESTRICT statement in PROC REG

```
PROC REG DATA=test;

MODEL Y=X1 X2 X3;

RUN; QUIT;

- Restrict \beta_1=5: RESTRICT X1=5;

- Restrict \beta_1 = \beta_2: RESTRICT X1=X2;
```

Chapter Review

- Polynomial Regression
- Interaction Models
- Qualitative Predictors
- Constrained Regression