Managing and Controlling the Kubernetes Scheduler

Anthony E. Nocentino
ENTERPRISE ARCHITECT @ CENTINO SYSTEMS
@nocentino www.centinosystems.com

Course Overview

Configuring and Managing Storage in Kubernetes

Configuration as Data - Environment Variables, Secrets, and ConfigMaps

Managing and Controlling the Kubernetes Scheduler

Overview

Scheduling in Kubernetes
Controlling scheduling in Kubernetes

Control Plane Node

Kubernetes has one job... starting Pods on Nodes

Scheduling in Kubernetes

Selecting a Node to start a Pod on

kube-scheduler

Scheduling in Kubernetes

Policy

Scheduling Process

Watches the API
Server for
Unscheduled Pods

Node selection

Update nodeName in the Pod object

Nodes' kubelets watch API Server for work

Signal container runtime to start container(s)

Node Selection

Filtering

Scoring

Binding

From all Nodes

Scoring functions

Selected Nodes List

Ties are broken

Filtered Nodes

Policy constraints

Update API Object

Pod

nodeName: c1-node1

Resource Requests

Setting requests will cause the scheduler to find a Node to fit the workload/Pod

requests are guarantees

CPU

Memory

Allocatable resources per Node

Pods that need to be scheduled but there not enough resources available will go Pending

Demo

Scheduling in action

Scheduling Pods with requests

Controlling Scheduling

Node Selector

Affinity

Taint and Tolerations

Node Cordoning

Manual Scheduling

Node Selector

nodeSelector - assign Pods to Nodes using Labels and Selectors

Apply Labels to Nodes

Scheduler will assign Pods a to a Node with a matching Label

Simple key/value check based on matchLabels

Often used to map Pods to Nodes based on...

Special hardware requirements

Workload isolation

Managing Kubernetes API Server and Pods

Scheduling - Node Selector

Assigning Pods to Nodes using Node Selectors

```
kubectl label node c1-node3 hardware=local_gpu

spec:
   containers:
   - name: hello-world
    image: gcr.io/google-samples/hello-app:1.0
   ports:
   - containerPort: 8080
   nodeSelector:
     hardware: local_gpu
```

Affinity and Anti-Affinity

nodeAffinity - uses Labels on Nodes to make a scheduling decision with matchExpressions

requiredDuringSchedulingIgnoredDuringExecution preferredDuringSchedulingIgnoredDuringExecution

podAffinity - schedule Pods onto the same Node, Zone as some other Pod

podAntiAffinity - schedule Pods onto the different Node, Zone as some other Pod

Managing Kubernetes API Server and Pods

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

Scheduling - Pod Affinity/Anti-Affinity

Using Affinity to Control Pod Placement

```
spec:
  containers:
  - name: hello-world-cache
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
      - labelSelector:
          matchExpressions:
          - key: app
            operator: In
            values:
            - hello-world-web
        topologyKey: "kubernetes.io/hostname"
```

Taints and Tolerations

Taints - ability to control which Pods are scheduled to Nodes

Tolerations - allows a Pod to ignore a Taint and be scheduled as normal on Tainted Nodes

Useful in scenarios where the cluster administrator needs to influence scheduling without depending on the user

key=value:effect

kubectl taint nodes c1-node1 \
key=MyTaint:NoSchedule

Scheduling - Taints and Tolerations

Adding a Taint to a Nodes and a Toleration to a Pod

```
kubectl taint nodes c1-node1 key=MyTaint:NoSchedule
spec:
  containers:
  - name: hello-world
    image: gcr.io/google-samples/hello-app:1.0
    ports:
    - containerPort: 8080
  tolerations:
  - key: "key"
    operator: "Equal"
    value: "MyTaint"
    effect: "NoSchedule"
```

Demo

Using Affinity and Anti-Affinity to schedule Pods to Nodes

Controlling Pod placement with Taints and Tolerations

Node Cordoning

Marks a Node as unschedulable

Prevents new Pods from being scheduled to that Node

Does not affect any existing Pods on the Node

This is useful as a preparatory step before a Node reboot or maintenance

kubectl cordon c1-node3

If you want to gracefully evict your Pods from a Node...

kubectl drain c1-node3 --ignore-daemonsets

Manually Scheduling a Pod

Scheduler populates nodeName

If you specify nodeName in your Pod definition the Pod will be started on that node

Node's name must exist

Still subject to Node resource constraints

Configuring Multiple Schedulers

Implement your own scheduler

Run multiple schedulers concurrently

Define in your Pod Spec which scheduler you want

Deploy your scheduler as a system Pod in the cluster

https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/

Demo

Node Cordoning

Manually scheduling a Pod

Review

Scheduling in Kubernetes
Controlling scheduling in Kubernetes

Thank You!

@nocentino

www.centinosystems.com