$$P_{ij}(X, Z; \beta, \mu, \sigma) = \int \frac{\exp(X_i(\beta_j - \beta_J) + \gamma_i(Z_{ij} - Z_{iJ}))}{\sum_{i} \exp(X_i(\beta_{i} - \beta_J) + \gamma_i(Z_{ij} - Z_{iJ}))} f(\gamma_i; \mu, \sigma) d\gamma_i$$

$$P_{ij}(X, Z; \beta, \mu, \sigma) = \int \frac{\exp(X_i(\beta_j - \beta_J) + \gamma_i(Z_{ij} - Z_{iJ}))}{\sum_{i} \exp(X_i(\beta_k - \beta_J) + \gamma_i(Z_{ik} - Z_{iJ}))} f(\gamma_i; \mu, \sigma) d\gamma_i$$

This integral has no closed form \rightarrow must approximate numerically

$$P_{ij}(X,Z;\beta,\mu,\sigma) = \int \frac{\exp(X_i(\beta_j - \beta_J) + \gamma_i(Z_{ij} - Z_{iJ}))}{\sum_k \exp(X_i(\beta_k - \beta_J) + \gamma_i(Z_{ik} - Z_{iJ}))} f(\gamma_i;\mu,\sigma) d\gamma_i$$

This integral has no closed form o must approximate numerically

Classical approach: Quadrature or simulation-based methods

$$P_{ij}(X, Z; \beta, \mu, \sigma) = \int \frac{\exp(X_i(\beta_j - \beta_J) + \gamma_i(Z_{ij} - Z_{iJ}))}{\sum_k \exp(X_i(\beta_k - \beta_J) + \gamma_i(Z_{ik} - Z_{iJ}))} f(\gamma_i; \mu, \sigma) d\gamma_i$$

This integral has no closed form \rightarrow must approximate numerically

Classical approach: Quadrature or simulation-based methods

Problem: Maximization can be difficult (local maxima, slow convergence, ...)

Instead of finding $\max_{\theta} \ell(\theta)$, calculate $E[\theta|\text{data}]$

Instead of finding $\max_{\theta} \ell(\theta)$, calculate $E[\theta|\text{data}]$

Key insight: Treat individual γ_i as parameters alongside μ, σ

Instead of finding $\max_{\theta} \ell(\theta)$, calculate $E[\theta|\text{data}]$

Key insight: Treat individual γ_i as parameters alongside μ, σ

Use data augmentation via posterior distribution instead of integrating:

- Classical: $\int L(y_i|\gamma_i)dF(\gamma_i;\mu,\sigma)$ inside likelihood
- ullet Bayesian: Draw γ_i directly, condition on it

Instead of finding $\max_{\theta} \ell(\theta)$, calculate $E[\theta|\text{data}]$

Key insight: Treat individual γ_i as parameters alongside μ, σ

Use data augmentation via posterior distribution instead of integrating:

- Classical: $\int L(y_i|\gamma_i)dF(\gamma_i;\mu,\sigma)$ inside likelihood
- Bayesian: Draw γ_i directly, condition on it

No simulation of choice probabilities needed o just evaluate logit formula at drawn γ_i

Bayesian Gibbs sampling is like EM with continuous types

Both treat γ_i as latent o fill in γ_i instead of integrating it out

EM (you know this): Bayesian Gibbs (new):

E-step: $E[\gamma_i|y_i, \mu^{(m)}, \sigma^{(m)}]$ Draw $\gamma_i \sim p(\gamma_i|y_i, \mu, \sigma)$

M-step: Maximize using expectations Draw $\mu, \sigma \sim p(\mu, \sigma | \{\gamma_i\})$

ightarrow MLE ightarrow Posterior mean pprox MLE in limit

Bayesian Gibbs sampling is like EM with continuous types

Both treat γ_i as latent \rightarrow fill in γ_i instead of integrating it out

EM (you know this): Bayesian Gibbs (new):

E-step: $E[\gamma_i|y_i, \mu^{(m)}, \sigma^{(m)}]$ Draw $\gamma_i \sim p(\gamma_i|y_i, \mu, \sigma)$

M-step: Maximize using expectations Draw $\mu, \sigma \sim p(\mu, \sigma | \{\gamma_i\})$

ightarrow MLE ightarrow Posterior mean pprox MLE in limit

Difference: EM integrates analytically, Gibbs samples via MCMC

- 1. Draw each γ_i from posterior distribution $p(\gamma_i|\mu,\sigma,y_i)$
 - Just evaluate logit likelihood at current μ, σ
 - No integral needed

- 1. Draw each γ_i from posterior distribution $p(\gamma_i|\mu,\sigma,y_i)$
 - Just evaluate logit likelihood at current μ, σ
 - No integral needed
- 2. Draw μ from $p(\mu|\sigma, \{\gamma_i\})$
 - Essentially: average of the γ_i 's

- 1. Draw each γ_i from posterior distribution $p(\gamma_i|\mu,\sigma,y_i)$
 - Just evaluate logit likelihood at current μ, σ
 - No integral needed
- 2. Draw μ from $p(\mu|\sigma, \{\gamma_i\})$
 - ullet Essentially: average of the γ_i 's
- 3. Draw σ from $p(\sigma|\mu, \{\gamma_i\})$
 - Essentially: variance of the γ_i 's around μ

Gibbs sampling - iteratively draw from conditional posteriors:

- 1. Draw each γ_i from posterior distribution $p(\gamma_i|\mu,\sigma,y_i)$
 - Just evaluate logit likelihood at current μ, σ
 - No integral needed
- 2. Draw μ from $p(\mu|\sigma, \{\gamma_i\})$
 - Essentially: average of the γ_i 's
- 3. Draw σ from $p(\sigma|\mu, \{\gamma_i\})$
 - Essentially: variance of the γ_i 's around μ

Repeat until convergence \rightarrow posterior mean of draws = estimates

How do we know the posterior distributions?

Bayes' rule:

$$p(\theta|\mathsf{data}) \propto L(\mathsf{data}|\theta) \times \pi(\theta)$$

How do we know the posterior distributions?

Bayes' rule:

$$p(\theta|\mathsf{data}) \propto L(\mathsf{data}|\theta) \times \pi(\theta)$$

For γ_i :

- $p(\gamma_i|\mu,\sigma,y_i) \propto L(y_i|\gamma_i) \times \pi(\gamma_i|\mu,\sigma)$
- ullet No closed form o sample via Metropolis-Hastings (accept/reject)

How do we know the posterior distributions?

Bayes' rule:

$$p(\theta|\mathsf{data}) \propto L(\mathsf{data}|\theta) imes \pi(\theta)$$

For γ_i :

- $p(\gamma_i|\mu,\sigma,y_i) \propto L(y_i|\gamma_i) \times \pi(\gamma_i|\mu,\sigma)$
- ullet No closed form o sample via Metropolis-Hastings (accept/reject)

For μ, σ :

- Conjugate priors → closed form posteriors
- $p(\mu|\sigma, \{\gamma_i\}) \sim \text{Normal}$
- $p(\sigma|\mu, \{\gamma_i\}) \sim \text{Inverse Wishart}$
- Direct sampling (no M-H needed)
- (though usually use M-H for all parameters)

Advantages	of	Bayesian	approach:	
------------	----	----------	-----------	--

ullet No maximization o no convergence issues, starting values less critical

Advantages	of	Bavesian	approach.
Auvantages	Oi	DayColan	approacii.

ullet No maximization o no convergence issues, starting values less critical

• Number of simulation draws R need not grow with sample size

Advantages of Bayesian approach:

- No maximization \rightarrow no convergence issues, starting values less critical
- Number of simulation draws R need not grow with sample size
- Naturally provides full posterior distribution of γ_i (not just point estimates)

Advantages of Bayesian approach:

- ullet No maximization o no convergence issues, starting values less critical
- Number of simulation draws R need not grow with sample size
- ullet Naturally provides full posterior distribution of γ_i (not just point estimates)
- Asymptotically equivalent to MLE (Bernstein-von Mises theorem)

Advantages of Bayesian approach:

- ullet No maximization o no convergence issues, starting values less critical
- Number of simulation draws R need not grow with sample size
- Naturally provides full posterior distribution of γ_i (not just point estimates)
- Asymptotically equivalent to MLE (Bernstein-von Mises theorem)

Disadvantages:

- Different convergence issue: to posterior distribution (burn-in)
- Slower for some specifications (fixed coefficients, bounded distributions)