

Universidad de las Fuerzas Armadas ESPE

Departamento: Ciencias de la computacion

Carrera: Ingeniería en Tecnologías de la Informacion

Taller Na: 1 – Parcial 2

1. Información General

- Asignatura: Metodologia de Desarrollo de Software
- Apellidos y nombres de los estudiantes: Sandoval Espinosa José

María, Pinto Segovia Diego Xavier, Peñaherrera Rojas Jhaldry Santiago

- **Grupo:** 1
- NRC: 20967
- Fecha de realización: 11/06/2025

2. Objetivo del Taller y Desarrollo

Objetivo del Taller:

En base a la información mencionada en clases y la investigada, responder a las siguientes preguntas, justificar el porque de cada respuesta.

Desarrollo:

1. Junte los objetivos con la correspondiente fase del Proceso Unificado de Desarrollo.

1.	Lograr versiones útiles (alfa, beta y	A.	Inicio/Elaboración/Construcción/
	otras versiones de prueba) tan		Transición
	rápido como sea práctico		
2.	2. Lograr que las partes interesadas		Inicio/Elaboración/Construcción/
	estén de acuerdo en que las líneas		Transición
	de base de implementación están		
	completas		
3.	Discriminar los casos de uso	C.	Inicio/Elaboración/Construcción/
	críticos del sistema, que son los		Transición
	escenarios principales de operación		
	que impulsarán las principales		
	compensaciones de diseño		
4.	Lograr la autosuficiencia del	D.	Inicio/Elaboración/Construcción/
	usuario.		Transición

Respuesta: 1; Construccción

Se escogió esta opción ya que cumple con las caracteristicas que tiene el proceso de construcción, es decir se logran versiones útiles que se van refinando.

2; Elaboración

Se elige esta opción ya que antes de proceder a la contrucción, es necesario que todas las partes interesadas esten de acuerdo con el diseño propuesto.

3; Inicio

Se consideró esta opción puesto que antes de realizar una presentación a todas las partes interesadas e inclusive la construcción es necesario indentificar los problemas y realizar un diagrma de casos.

4; Transición

Una vez que todas las partes interesadas esten de acuerdo y el prograa ha logrado una funcionalidad completa es necesario que el programa permita que el usuario sea autosuficiente.

- 2. Seleccione la opción correcta. El Proceso Unificado de Desarrollo es. Seleccione una:
 - A. Metodología para el desarrollo de software que define claramente: quién, cómo, cuándo y qué debe hacerse en el proyecto
 - B. Programa para desarrollar software con poca documentación, que permite el cambio ágil dentro del proyecto
 - C. Herramienta que permite el desarrollo de software avanzado, sin necesidad de datos específicos.
 - D. Metodología ágil para el desarrollo de software

Respuesta: A

El Proceso Unificado de Desarrollo (RUP) no es una herramienta ni un programa, sino una metodología estructurada.

- 3. Seleccione las opciones correctas. El Proceso Unificado de Desarrollo se basa en las siguientes características fundamentales: Seleccione una o más de una:
 - A. Exige poca documentación
 - B. Dirigido por casos de uso
 - C. Proceso secuencial
 - D. Iterativo e incremental
 - E. Centrado en la arquitectura
 - F. Centrado en el diseño

Respuestas: B, D, E

RUP se enfoca en identificar y desarrollar los casos de uso más importantes desde el inicio. Estos guían los requerimientos, diseño, pruebas, etc.

RUP no sigue un enfoque secuencial rígido como el modelo en cascada. Se basa en ciclos donde se desarrollan partes del sistema de forma incremental.

Desde la fase de Elaboración, RUP define una arquitectura robusta como base del sistema, asegurando estabilidad a medida que el desarrollo progresa.

. Una metodología de desarrollo de software es un conjunto de técnicas yen			
fases para el desarrollo de	, de manera eficaz, y abarca el	del	
mismo. Es una colección	_ para la resolución de una clase de pro	oblemas. Las	
metodologías de desarrollo de sof	tware descomponen el proceso en activ	idades.	

- A. Procedimientos organizados
- B. Productos software
- C. Ciclo de vida
- D. Métodos

Respuesta: A, B, C, D

Esta combinación de términos presenta la definición de lo que es una metodología de desarrollo.

5. En las siguientes oraciones complete con el término correspondiente:
es un conjunto de técnicas y procedimientos organizados en fases para el
desarrollo de productos software, de manera eficaz, y abarca el ciclo de vida del mismo
es una técnica repetible para la resolución de un problema específico.
es un conjunto de reglas gráficas o textuales para representar un modelo
A. Proceso
B. Metodología
C. Notación
D. Método
Respuesta: B, D, C

Cada concepto cumple con la definición que plantea cada literal.

6. Seleccione los términos correctos. RUP tiene dos dimensiones:

1.	El eje representa	A. Horizontal/el tiempo/ ciclo de
	y muestra los aspectos	vida/
	del del proceso a medida	
	que se desarrolla en iteraciones.	
2.	1. El eje representa	B. Vertical/las disciplinas/las
	como requisitos, análisis	actividades/
	y diseño, implementación, que	
	lógicamente agrupan	
	por afinidad	

Justificación: 1.

El eje horizontal permite representar gráficamente cómo el proceso de desarrollo evoluciona en el tiempo, incorporando mejoras continuas a través de iteraciones dentro del ciclo de vida del software.

Justificación: 2.

El eje vertical muestra el tipo de actividades agrupadas en disciplinas, indicando qué se hace.

7. Empareje las disciplinas con su definición.

1	Pone el sistema a	Λ	Entrega/Implementación/Modelamiento/Gestión
1.		A.	de Proyecto/Prueba/Entorno/Entrega/Gestión de
	disposición de los usuarios finales		•
	Administrar el	D	la configuración.
2.		В.	Entrega/Implementación/Modelamiento/Gestión
	acceso a los		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	artefactos del		la configuración
	proyecto y controla		
	y gestiona los		
	cambios		
3.	Comprende el	C.	Entrega/Implementación/Modelamiento/Gestión
	negocio y el		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	dominio del		la configuración.
	problema y presenta		
	una solución viable		
4.	Gestionar riesgos y	D.	Entrega/Implementación/Modelamiento/Gestión
	dirige y coordinar		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	personas		la configuración
5.	Asegura la calidad	E.	Entrega/Implementación/Modelamiento/Gestión
	verifica que los		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	requisitos se		la configuración
	cumplan		
6.	Asegurar que el	F.	Entrega/Implementación/Modelamiento/Gestión
	equipo cuente con		de Proyecto/Prueba/Entorno/Entrega/Gestión de
	lo necesario,		la configuración
	orientación y		-
	herramientas		
	adecuados		
7.	Transforma los	G.	Implementación/Modelamiento/Gestión de
	modelos en código		Proyecto/Prueba/Entorno/Entrega/Gestión de la
	fuente		configuración.
L			

Justificaciones:

Entrega: Se encarga de poner el sistema listo y disponible para los usuarios finales, asegurando que el software sea desplegado correctamente.

Gestión de la configuración: Su función principal es administrar los artefactos del proyecto, controlar el acceso y gestionar los cambios para mantener la integridad del sistema a lo largo del desarrollo. Esto se ajusta a la definición que habla de administrar el acceso y controlar cambios.

Modelamiento: Esta disciplina comprende el negocio y el dominio del problema para generar una solución adecuada y viable, utilizando diagramas, modelos y análisis. Por eso, la definición sobre entender el negocio y presentar soluciones se asigna aquí.

Gestión de Proyecto: Su responsabilidad es planificar, coordinar, gestionar riesgos y dirigir al equipo para cumplir con los objetivos, plazos y calidad. La definición que menciona la gestión de riesgos y coordinación del equipo corresponde a esta disciplina.

Prueba (QA): Garantiza que el sistema cumple con los requisitos y que la calidad es adecuada, mediante pruebas sistemáticas y verificaciones, lo que corresponde con la definición sobre asegurar la calidad y verificar requisitos.

Entorno: Se enfoca en proveer las herramientas, recursos y condiciones necesarias para que el equipo pueda trabajar eficientemente, lo que está reflejado en la definición que menciona asegurar que el equipo cuente con lo necesario.

Implementación: Es la fase donde se traduce el modelo o diseño en código fuente funcional, desarrollando efectivamente el sistema. Por eso, la definición sobre transformar modelos en código fuente está relacionada con esta disciplina.

3. Referencias (Norma APA 7.0)

Anónimo. (2017). *ScienceDirect*. Obtenido de https://www.sciencedirect.com/topics/computer-science/unified-process

Anónimo. (22 de Mayo de 2024). *geeksforgeeks*. Obtenido de https://www.geeksforgeeks.org/rup-and-its-phases/

Fernandez, L. (11 de Abril de 2017). *Youtube*. Obtenido de MDW. Proceso Unificado. Introducción. Proceso Unificado: https://www.youtube.com/watch?v=lhciVR8b038