

Panorama simples das comunicações sem fios

Comunicações sem fios: aspetos de segurança

Comunicação efetuada em Broadcast

- Difícil de controlar a propagação física
- Limitações físicas são pouco eficientes contra:
 - Interferência com as comunicações legítimas
 - Interceção das comunicações

Mitigação

- Mecanismos de redução e interceção e interferência
 - No nível físico (PHY)
 - No nível dos dados (MAC)

Phy: Redução de interferência e interceção

- Prevenir que os atacantes descodifiquem o canal
 - Codificação do canal necessita de usar uma chave secreta
- Exemplo: Bluetooth FHSS (Frequency Hopping Spread Spectrum)
 - Frequência alterada segundo um padrão conhecido para emissor e recetor
 - Dados são divididos em pacotes e transmitidos sobre 79 frequências, segundo um padrão pseudo-aleatório.
 - Apenas emissores e recetores que conhecem o padrão de alteração de frequência conseguem aceder aos dados transmitidos.
 - FHSS aparece como um impulso de ruído de curta duração
 - Transmissor altera frequência 1600 vezes por segundo!

Phy: Redução de interferência e interceção

- Evita que o canal seja monopolizado por transmissores
 - Políticas de acesso ao meio físico

Exemplos

- Bluetooth FHSS: transmissores não sincronizados raramente colidem
- Wi-Fi: Cada rede utiliza uma frequência específica
- GSM: Cada terminal transmite numa frequência/instante distinto

Interferência ainda é possível devido a emissores externos ou sobreposição de canais

MAC: Redução de interferência e interceção

- Evita que atacantes identifiquem os participantes numa comunicação
 - Cabeçalhos das tramas são cifrados
 - Utilização de endereços temporários
- Evita que atacantes compreendam os dados
 - Conteúdo das tramas é cifrado
 - Não implica cifra dos cabeçalhos
- Evita que atacantes forjem tramas válidas
 - Tramas necessitam de ser autenticadas
 - Autenticação do emissor e garantia de frescura

IEEE 8902.11: Arquitetura em Redes Estruturadas

Estação (STA)

- Dispositivo que se liga a uma rede sem fios
- Possui um identificador único
 - Endereço MAC (Media Access Control)

Ponto de Acesso (AP)

- Dispositivo que permite e ligação de dispositivos sem fios
- Pode permitir a interligação a outras redes com fios

Rede sem fios

 Conjunto formato por um conjunto de STAs e APs associados entre si e comunicando

IEEE 8902.11: Terminologia

Basic Service Set (BSS)

 Rede formada por estações associadas a um AP

Extended Service Set (ESS)

 Rede formada por várias BSS interligadas por um Distribution System (DS)

Service Set ID (SSID)

- Identificador de uma rede sem fios servida por uma BSS por ESS)
- Um AP pode fornecer vários SSIDs

Terminologia

```
$ airport -s
        SSID BSSID RSSI CHANNEL
      MEO-WiFi 9e:97:26:f1:65:3e -87 11
FON ZON FREE INTERNET 00:05:ca:d3:32:f9 -86 11
      ZON-22D0 00:05:ca:d3:32:f8 -90 11
   Cabovisao-BB20 c0:ac:54:f8:fe:dc -84 6
FON ZON FREE INTERNET 84:94:8c:ae:74:a9 -81 6
      ZON-6E50 84:94:8c:ae:74:a8 -81 6
FON ZON FREE INTERNET 84:94:8c:ad:23:99 -86 2
      ZON-ED50 84:94:8c:ad:23:98 -87 2
FON ZON FREE INTERNET bc:14:01:9b:d0:c9 -88 1
      ZON-D030 bc:14:01:9b:d0:c8 -88 1
```

Autenticação e Associação

Tipos de Mensagens

- Mensagens de Gestão
 - Beacon
 - Probe Request & Response
 - Authentication Request & Response
 - Deauthentication
 - Association Request & Response
 - Reassociation Request & Response
 - Disassociation
- Mensagens de Controlo
 - Request to Send (RTS)
 - Clear to Send (CTS)
 - Acknowledgment (ACK)
- Mensagens de Dados

Segurança do Meio Físico

Tipo de Rede		pre-RSN	RSN (Robust Security Network)			
Funcionalidade		WEP	WPA	802.11	li (ou WPA2)	WPA3
Autenticação		Unilateral (STA)	Bilateral com 802.1X (STA, AP enetwork)			Bilateral com 802.1x
Distribuição de Chaves			EAP ou PSK, 4-Way Handshake			WP2 + OWE e SAE
Política de Gestão de IVs			TKIP		AES-CCMP	AES-GCM
Cifra dos Dados		RC4		AES-CTR	AES-GCM e EC	
Controlo de Integridade	Cabeçalhos		Mich	ael	AES	SHA-384
	Corpo	CRC-32	CRC-32, I	Michael	CBC-MAC	НМАС

Outros

- Ocultação do SSID
- Filtro dos endereços MAC autorizados
- Aleatoriedade dos endereços MAC (na descoberta)
- Contra-medidas

WEP (Wired Equivalent Privacy)

Autenticação Unilateral e Facultativa

• AP pode suportar vários modos em simultâneo

OSA: Open System Authentication

Sem qualquer autenticação

SKA: Shared Key Authentication

- Desafio resposta entre STA e AP
- Chave distinta por cliente (Endereço MAC) ou rede
- Autenticação unilateral da STA
 - AP não é autenticado

Dados (corpo da mensagem):

- cifrados com RC4, chaves de 40 ou 104 bits
- autenticados usando um CRC-32

WEP (Wired Equivalent Privacy)

WEP é completamente inseguro, mesmo com SKA

- Atacante pode obter a informação necessária para se fazer passar por uma vítima
- APs de atacantes n\u00e3o podem ser detetados
- A mesma chave para autenticação e confidencialidade
 - Sem distribuição de chaves, chaves sobre-usadas
- Controlo de integridade fraco
 - CRC-32 é fraco, e linear
 - Modificação determinística de tramas é trivial
- Fraca gestão de IVs
 - IV é demasiado pequeno (24 bits), repetições frequentes
 - Mesmo IV = Mesma Chave => mesma Keystream
 - IVs não geridos, podendo existir duplicação

CRC

Mitigação dos problemas do WEP: WPA

WPA faz uso do WEP de uma forma mais segura

- Usa uma chave RC4 diferente por mensagem
- Chaves RC4 fracas são evitadas
- Controlo de integridade mais robusto (Michael)
- Controlo dos IVs (uso sequencial)

Implementado inicialmente a nível do driver

- depois no firmware
- Importante: teria de ser suportado por dispositivos "legados" (WEP)

Alinhado com a especificação IEEE 802.11i

- IEEE 802.11i define a atual arquitetura de segurança do 802.11
- WPA pode também ser usado com 802.1x para autenticação forte e mútua

WPA (Wi-Fi Protected Access): TKIP

Chaves temporais:

evitar ataques por engenharia social

Sequenciação de mensagens

evitar repetição/injeção

Mistura de chaves

- evitar colisões de IVs
- evitar chaves fracas

Controlo de integridade melhorado (MIC)

Evitar manipulação de pacotes

Contra-medidas

Resistir a fraquezas do TKIP MIC

WPA TKIP (Temporal Key Integrity Protocol)

WPA TKIP (Temporal Key Integrity Protocol)

WPA TKIP: Formato das mensagens

Ataque Beck-Tews

Condições

- O endereço de rede é parcialmente conhecido (ex 192.168.x.x)
- A rede suporta QoS (IEEE 802.11e) com 8 canais (TID)
- O período de renovação TKIP é longo (3600 segundos)
- Ataque chop-chop: decifrar m bytes de um pacote, enviando m * 128 pacotes, usando força bruta no ICV

Ataque

- Capturar um pacote ARP (texto conhecido)
 - quase todos os campos são conhecidos exceto endereços IP, MIC e ICV
- Enviar pacotes "adivinhando" o texto: limite de 1 pacote/TID/min
- Força bruta sobre o endereço IP (2 bytes)
- Reverter o MIC e encontrar a chave
 - MICHAEL não é estritamente unidirecional
- Impacto: Obter a keystream válida para um qualquer TSC

IEEE 802.11i: WPA2

- Define uma Robust Security Network (RSN)
 - Redes que suportam WPA e 802.11i

- Usa mecanismos avançados para proteção de mensagens
 - AES para cifra dos dados e controlo de integridade

- Usa 802.1x para autenticação de clientes
 - Modo simplificado WPA-PSK para SOHO
 - Modo WPA-Enterprise para ambientes de maior dimensão

WEP vs AES-CCMP: Mensagens

IEEE 802.11i: WPA2

- AES-CCMP AES com CBC-MAC
 - modo de cifra autenticado usando chaves de 128bits

http://2014.kes.info/archiv/online/04-5-036.htm

IEEE 802.1i: WPA

PTK: Pairwise Transient Key

- PRF(PMK | ANonce | SNonce | AP MAC address | STA MAC address)
- PRF: Pseudo Random Function
- PMK = PSK = PBKDF2(HMAC-SHA1, password, ssid, 4096, 256)

GTK: Group Temporal Key

Utilizado para tráfego broadcast

IEEE 802.1X: Autenticação por Portas

- Modelo de autenticação para todas as redes IEEE 802
 - Autenticação mútua a nível MAC (L2)

- Originalmente desenhado para grandes redes
 - Campus Universitários, Empresas, ...
 - Modelo foi expandido para redes sem fios

- Foco: Distribuição de Chaves
 - Apenas!
 - Outros protocolos focam-se nos restantes processos de segurança

IEEE 802.1x: Arquitetura

IEEE 802.1x: Fases

IEEE 802.1x: Fase 1 - Descoberta

- Depois deste ponto a STA APENAS conseguiu acesso ao AP
 - Portas controladas por 802.1x continuam fechadas (não há dados do utilizador)

IEEE 802.1x: Fase 2 - Autenticação

•

- No final desta fase o AP e a STA partilham informação criptográfica
 - PMK (Pairwise Master Key)
- Portos controlados (de dados) continuam fechados

IEEE8 802.1x: Fase 3 - 4 Way Handshake

- No final, o AP e a STA partilham informação criptográfica recente
 - PTK (Pairwise Transient Key)
 - GTK (Group Transient Key)
- Ambos acreditam que o outro conhece a PMK e PTK
 - Através do uso de MICs
- Portas controladas permitem tráfego Unicast

IEEE 802.1x: Opções Arquiteturais

IEEE 802.1x: Hierarquia de Chaves

• MSK

- Resultado direto de um processo com EAP
- Arquitetura Enterprise

PSK

- Longo termo partilhada entre AP-STA
- Arquitetura SOHO

PMK

- Chave recente usada para autenticação mútua da AP-STA
- Usada no 4WH

PTK

- Chave para proteger interações entre AP-STA
- CKC / KEK: protocolo 4WH
 - TK: mesagens de dados do 802.11

EAP (Extensible Authentication Protocol)

Inicialmente desenhado para o PPP

Adaptado para o IEEE 802.1x

AP não é envolvido

- Reencaminha tráfego EAP
- Alteração dos protocolos EAP não implicam alteração do AP

Não concebido para redes sem fios

- Tráfego não é protegido
- Autenticação mútua não é obrigatória
 - Uma STA pode ser levada a ligar-se a um AP de um atacante

EAP: Alguns protocolos 802.1x

	EAP-MD5	LEAP	EAP-TLS	EAP-TTLS	PEAP
AS	N/A	H(desafio, senha)	Chave Pública (certificado)		
Autenticação Gestão de	H(desafio, senha) Não	H(desafio, senha)	Chave Pública (certificado) Sim	EAP, Chave Pública (certificado)	PAP, CHAP, MS-CHAP, EAP
Chaves	- Exposição de identidade - Ataques por Dicionário - Host-in-the-Middle - Roubo de ligações	- Exposição de identidade - Ataques por Dicionário - Host-in-the-Middle	- Exposição de identidade		- Exposição de identidade (fase 1)

eduroam: 802.1x, PEAP, MS-CHAPv2

IEEE 802.11: Segurança resolvida?

- Ataques por dicionário ainda são possíveis
 - E irão continuar a existir por algum tempo (... senhas)

- Apenas os dados são protegidos
 - Mensagens de gestão não são protegidos
 - Atacantes podem desautenticar/desassociar STAs vitimas

- Problemas a nível do meio de acesso (CSMA)
 - Escolha da janela de contenção permite que um atacante tenha mais tempo de acesso

WPA2: Vulnerabilidades

- Falta de Segurança Futura
- Descoberta de senhas (WPA-PSK)
- Descoberta do PIN WPS
- Reinstalação de Chaves
- ... outros

WPA2: Ataques: Segurança Futura

- Segurança Futura remete para a reutilização de chaves
 - Um sistema possui segurança futura se a descoberta de uma chave não permitir aceder a sessões no passado

- WPA-PSK não possui:
 - Descoberta da PMK/PSK permite decifrar sessões anteriores
- WPA-Enterprise pode possuir
 - Se a PMK for diferente a cada autenticação

WPA2: Descoberta de senhas

Durante o 4WH o atacante consegue obter:

ssid, ANonce, SNonce, AP MAC Address, STA MAC address

Chaves:

- PMK = PBKDF2(HMAC-SHA1, senha, ssid, 4096, 256)
- PTK = PRF(PMK | ANonce | SNonce | AP MAC | STA MAC)

Ataque:

- Atacante espera por uma associação
- ou... injeta uma mensagem de desassociação a uma vítima
 - Não consegue realizar ataque sem clientes
- Atacante captura SSID, Nonces, endereços MAC
- Offline: força bruta ou dicionário para calcular PTK
 - Usar MIC capturado na autenticação para validar senhas usadas
 - >400KH/s para um GPU

WPA2: Descoberta de senhas

- APs enviam um valor para acelerar processo de autenticação
 - PMKID=HMAC-SHA1-128(PMK, "PMK Name" | MAC_AP | MAC_STA)
 - Enviado em algumas mensagens de controlo
 - Ataque: Força bruta/dicionário, mas mais eficiente que 4HW

```
Frame 29: 203 bytes on wire (1624 bits), 203 bytes captured (1624 bits)
▶ Radiotap Header v0, Length 44
▶ 802.11 radio information
▶ IEEE 802.11 QoS Data, Flags: .....F.C
▶ Logical-Link Control
▼ 802.1X Authentication
   Version: 802.1X-2004 (2)
   Type: Key (3)
   Length: 117
   Key Descriptor Type: EAPOL RSN Key (2)
   [Message number: 1]
  ▶ Key Information: 0x008a
   Key Length: 16
   Replay Counter: 0
   WPA Key Nonce: 3c3d1564b3ab70839dae7fdc63138acc1382ad7ddf4132fe...
   WPA Key RSC: 00000000000000000
   WPA Key ID: 00000000000000000
   WPA Key Data Length: 22
 ▼ WPA Key Data: dd14000fac044a276c2c4fb3b221599f2add3eaf5fef
   ▼ Tag: Vendor Specific: Ieee 802.11: RSN
       Tag Number: Vendor Specific (221)
       Tag length: 20
       OUI: 00:0f:ac (Ieee 802.11)
       Vendor Specific OUI Type: 4
       RSN PMKID: 4a276c2c4fb3b221599f2add3eaf5fef
```

WPA2: Reinstalação de chaves

- Objetivo: Forçar a vítima a reutilizar chaves
- Vulnerabilidade: Suplicant processa sempre a Msg3
 - Mesmo que a PTK já esteja instalada
 - Na primeira mensagem, NONCE=1

Ataque:

- Bloquear Msg4
- AP irá retransmitir Msg3
- Chave é reinstalada
- Pacote de dados volta a usar NONE=1

WPA2: Reinstalação de chaves

- Objetivo: Forçar a vítima a reutilizar chaves
- Vulnerabilidade: Suplicant processa sempre a Msg3
 - Mesmo que a PTK já esteja instalada
 - Na primeira mensagem, NONCE=1

Ataque:

- Bloquear Msg4
- AP irá retransmitir Msg3
- Chave é reinstalada
- Pacote de dados volta a usar NONE=1

