Chapter 5

Stability

It may be urged that change in language is due ultimately to the deviations of individuals from the rigid system. But it appears that even here individual variations are ineffective; whole groups of speakers must, for some reason unknown to us, coincide in a deviation, if it is to result in a linguistic change.

– Leonard Bloomfield (1927:445)

Distinguishing between the formal and functional Jespersen cycles simplifies the task of explanation. It allows us to disentangle two phenomena that overwhelmingly co-occur, and address them separately. For example, in the previous chapter we showed that the functional cycle in English can be explained in terms of the difficulty speakers have in keeping track of private versus common knowledge. Crucially, this explanation of the transition from pre-verbal *ne* to embracing *ne...not* rests on the way our pragmatic competence shapes the use and interpretation of linguistic signals over time.

However, it is important to distinguish between the logical relationship between the two cycles and the explanation of a particular historical change. That is, the functional cycle can occur independently of the formal cycle, so we need an explanation for cases

where it does occur independently. But, in the case of English, and many other languages, the functional cycle coincides with the first transition of the formal cycle. There is no guarantee that the model we described to address the functional cycle is the only or even the best explanation of the observed transitions of the formal cycle. That is, in any given case, pragmatic pressures might not explain the first transition of the formal cycle.

Here we consider other potential explanations for both of the transitions of the formal cycle. In particular, we examine the possible role of acquisition. The facts to be explained are the transition from pre-verbal *ne* to embracing *ne...not* and the transition from embracing *ne...not* to post-verbal *not*. Our goal is to understand whether the process of acquisition offers any insights into why the formal cycle takes place. More broadly, we want to test whether grammatical competence and the process by which it is formed are sufficient to explain the observed changes.

First, we present a model of syntactic acquisition that has several desirable theoretical properties. Second, we determine the dynamics of the model in a population over time. In particular, we show the conditions under which the acquisition dynamics lead to change or stable variation. Third, we outline the syntactic structures at various stages of the formal cycle. These structures allow us to explicitly state the conditions for the acquisition dynamics to lead to either of the transitions of the formal cycle. Finally, we fit the model of the acquisition dynamics to data from the formal cycle in Middle English and discuss the implications of the fitted parameters.

Acquisition can be taken as a cause of the formal cycle if only if the following qualitative and quantitative criteria are met. First, given the acquisition dynamics and grammatical structures underlying the formal cycle, we should predict the qualitative occurrence of both transitions. Second, if the acquisition dynamics predict the transitions, then the quantitative parameters of the dynamics fit to corpus data should be consistent with our theoretical assumptions. That is, the parameters of the model have some falsifiable empirical content

that can be tested using corpus data. If neither of these criteria are met, then acquisition cannot explain the transitions of the formal cycle.

In fact, we show that neither of the transitions of the formal cycle observed in the history of English can be explained by acquisition. First, for the grammatical structures posited to underly the formal cycle the acquisition dynamics predict stability rather than change. So, the first criterion cannot be met. Second, this also means that the second criterion cannot be met either; given that both transitions do occur, the parameters of the fitted model necessarily differ. In fact, it would seem that the only way acquisition could lead to either of the transitions would be, in Bloomfield's terms, a mass coincidence of deviation from the current system.

The main contributions of this chapter are twofold. First, we offer a general analysis of the acquisition dynamics, which clearly delineates the conditions for stability and change under certain kinds of parametric variation. Second, we make explicit the conditions for acquisition to play a role in either of the transitions of the formal cycle. In particular, one must show not only that acquisition predicts both transitions qualitatively, but that it also matches the quantitative trajectory of the change. It is important to note that these hold for any set of syntactic structures posited to underly the formal cycle. Demonstrating the role of acquisition requires demonstrating how the acquisition dynamics leads from one state to another.

5.1 Acquisition

In the most general sense, the process of language acquisition is some mapping from the initial state of the learner and the linguistic evidence provided to the learner to some terminal state, which is taken to be the grammatical competence of the speaker. We begin by introducing a model that can be used to describe this process. We then note some of the

properties that make it an appealing model of acquisition.

The *variational learning* model of acquisition (Yang 2000, 2002) consists of three basic components. First, there is a finite set of grammars that vary in a parametric fashion, in the sense of the *Principles and Parameters* framework (Chomsky 1981, 1995, Chomsky and Lasnik 1993). Second, a learner keeps track of a probability distribution over grammars, which we can think of as the weights of evidence the learner has for the various grammars. Third, a learner updates her distribution over grammars according to a learning scheme as she receives input from the linguistic environment.

To see this in detail, suppose that a learner is presented with sentences from the linguistic environment. The learner selects a grammar $G_i \in G = \{G_1, ..., G_n\}$ with probability p_i to analyze a sentence. There are two possible outcomes: either the grammar can analyze the sentence or it cannot. That is, the sentence is grammatical with respect to the selected grammar or it is not. The learner updates her distribution over grammars in the following manner, where $0 < \gamma \ll 1$ is a small learning parameter.

If
$$G_i \to s$$
 then
$$\begin{cases} p'_i = (1 - \gamma)p_i + \gamma \\ p'_j = (1 - \gamma)p_j & \text{for } j \neq i \end{cases}$$
 (5.1)

If
$$G_i \nrightarrow s$$
 then
$$\begin{cases} p'_i = (1 - \gamma)p_i \\ p'_j = (1 - \gamma)p_j + \frac{\gamma}{n - 1} & \text{for } j \neq i \end{cases}$$
 (5.2)

This is a linear reward-punishment scheme (Bush and Mosteller 1955):1 grammars that are

¹This learning scheme is similar to the linear reward-inaction scheme that yields the replicator dynamics (Börgers and Sarin 1997). It differs in that failures are not ignored, but rather punished. One compelling reason for treating learning differently across the domains of meaning and structure is the hypothesis space of each: the grammatical hypothesis space is heavily constrained, whereas the semantic hypothesis space, even under the Fodorian (1975) conception, is constrained but arguably unbounded. That is, even a finite set of innate concepts can be combined in the appropriate manner without end. Given this quantitative, if not qualitative difference between the domains, it is not clear how a learner would decide what aspects of a given hypothesized meaning to punish (cf. Quine 1960). But, see Smith and Yu (2008), Medina et al. (2011), Smith et al. (2011), Trueswell et al. (2013) for experimental evidence, and Yu and Smith (2007), Frank et al. (2009), Stevens et al. (2013) for computational approaches to the problem of learning meaning.

compatible with a sentence drawn from the linguistic environment are rewarded, whereas grammars that are not compatible with the sentence are punished. Both of these actions are reflected in the first line of the two possible outcomes. If the grammar can analyze the sentence, then its probability is bumped up by some small amount determined by the learning parameter. If the grammar cannot analyze the sentence, then its probability is knocked down by some small amount determined by the learning parameter. The second conditions allow for the weights over grammars to be redistributed while guaranteeing that all probabilities always sum to one.

Now, the probability that a learner attributes to a grammar changes according to how successful that grammar is in dealing with the linguistic environment. In fact, the long term distribution over grammars can be determined from the probability that a grammar will not be able to analyze a sentence and will thus be penalized. For two grammars, G_1 and G_2 , let the *penalty probabilities* be c_1 and c_2 , respectively. It can be shown that the expected value of the probabilities of the two grammars converge to the following limit values (Narendra and Thathachar 2012:111).

$$\lim_{t \to \infty} E[p_1(t)] = \frac{c_2}{c_1 + c_2}$$

$$\lim_{t \to \infty} E[p_2(t)] = \frac{c_1}{c_1 + c_2}$$
(5.3)

We should note that this result is about the expected behavior of an individual, rather than the actual behavior of that individual. So, while the expected value of the probabilities converges to these values, the actual probability in the mind of a given learner does not. As we will see below, the actual values in the mind of an individual are close to, but not necessarily equal to these values. This distinction has important implications for the dynamics of acquisition, which we return to in the next section. In particular, it requires us to make certain assumptions about the size of the population.

Figure 5.1: Two partially incompatible grammars

So, we know the expected behavior of a learner given the penalty probabilities of the grammars in question. We can determine the penalty probabilities in the following manner. First, suppose that the linguistic environment is composed of the output of two partially incompatible grammars. Let α_1 be the proportion of sentences generated at random by the first grammar G_1 that the second grammar G_2 cannot analyze; likewise let α_2 be the proportion of sentences generated at random by the second grammar G_2 that the first grammar G_1 cannot analyze. Note that while the assumptions underlying them are theoretical both α_1 and α_2 empirical estimates of both can be calculated from a corpus (e.g. Ingason et al. 2013:94-95). We can represent the relationship between the two grammars visually as in Figure 5.1 where the overlap of the two grammars indicate the sentences that are jointly analyzable by both grammars. Second, let the linguistic environment be composed of some distribution over the two grammars, call it $L = p_1G_1 + p_2G_2$. From this we can calculate the penalty probabilities as $c_1=p_2\alpha_2$ and $c_2=p_1\alpha_1$. The likelihood that the first grammar will not be able to analyze a sentence depends on the prevalence of the second grammar in the environment and the likelihood a sentence generated by that second grammar will be incompatible with the first grammar. The same reasoning holds for the second grammar.

We can get a sense for the learning process by simulating individual trajectories. This can be seen in Figure 5.2 where the horizontal axis represents time as additional sentences drawn from the environment and presented to the learner. The vertical axis represents the

Figure 5.2: Probability of G_2 over time for various individual trajectories and expected motion of trajectories, where $L = \frac{1}{2}G_1 + \frac{1}{2}G_2$, $\alpha_1 = .1$, $\alpha_2 = .5$, $\gamma = .1$

weight of G_2 in the learner's mind. We can compare the expected motion averaged across several hundred individual trajectories in bold to several individual trajectories. Where the expected motion smoothly approaches the value predicted by the model, shown by the dotted line, individual trajectories continue to move around the value. Again, we return to this important distinction in the next section when we turn to the dynamics of the model.

However, before doing so, there are several important properties that are evident from the simulations presented in Figure 5.2. First, this learning model allows for the gradual adjustment of learners to the linguistic environment rather than abrupt changes (cf. Gibson and Wexler 1994, Hyams and Wexler 1993). Second, it allows learners to converge to distributions over grammars, rather than a single grammar (Kroch 1989). Third, the expected value of the probability of a grammar is directly proportional to its penalty probability (Narendra and Thathachar 2012:117), which means that learning is reasonably robust. These properties, along with the overall simplicity of the model make it an appealing starting point for investigating how acquisition might lead to change over time.

5.2 Dynamics

We showed the properties of the variational learning model at the level of the individual; we now turn to the dynamics of learning in a population over time. First, we show how the expected change from one point in time to the next gives rise to a particular dynamics under particular assumption. Second, we show that the stable rest points of the dynamics are single grammars, with an important exception. We also show how these dynamics are closely related to the logistic model often taken as a proxy for changes in competing grammars.

Under the variational model, for the case of two grammars, we denote the expected value of the weight accorded to the grammar G_2 by a learner to be the following. That is, the average behavior of a learner converges to a probability determined by penalty probabilities and the prevalence of the two grammars in the linguistic environment.

$$p_2' = \frac{p_2 \alpha_2}{p_1 \alpha_1 + p_2 \alpha_2} \tag{5.4}$$

Now, suppose that this distribution in turn serves as the linguistic environment for the next generation of learners. We can determine the expected change in the average weight of p_2 from one generation of learners to the next as the following.

$$\dot{p}_2 = p_2' - p_2 = \frac{p_2 \alpha_2}{p_1 \alpha_1 + p_2 \alpha_2} - p_2 = p_2 (1 - p_2) \frac{\alpha_2 - \alpha_1}{p_1 \alpha_1 + p_2 \alpha_2}$$
 (5.5)

This *mean dynamics* follows the expected motion of the distribution over grammars in the population. Note that we are talking about the change in the expected behavior in the population. This means that we are modeling a fact about the population as a whole, which ultimately derives from individual learning. However, justifying the mean dynamics requires two important assumptions about the population.

Figure 5.3: Distribution over p_2 for population of learners

The first assumption that must be made is about the size of the population. As we noted in the previous section, learners converge to the limit values only in expectation. In fact, an individual learner is almost always either slightly above or slightly below this expected value, as can be seen in Figure 5.2. But, the distribution over these values in a population of learners at a given point in time is roughly normally-distributed around the limit value, as can be seen in Figure 5.3. In this case, the expected value in the population is close to the limit value. As the population grows, the expected value in the population gets closer and closer to the limit value. In the limit of an infinite population, the linguistic environment for the next generation of learners is the limit value.²

The second assumption that must be made is about the structure of the population. Namely, the continuous-time form of the dynamics requires that we assume that there are continuously overlapping generations of learners that contribute to the linguistic environ-

²This is often a necessary assumption for studying the mean dynamics of what is undoubtedly a stochastic process. See Chapter 10 of Sandholm (2010) for a detailed derivation of the mean dynamics as the limit of a stochastic process in infinite population. In the next chapter we relax the assumption of an infinite population, allowing for stochasticity in the change in the population over time.

ment.³ Together these assumptions guarantee that the dynamics track the expected weights over the grammars in the minds of learners over time. Thus, the solutions to this *mean dynamics* is a model of the expected behavior in the population.

For the case of two grammars, we can simplify the dynamics in the following manner. Let $s=\frac{\alpha_2-\alpha_1}{\alpha_2}$ and $p_2=p$, then we have the following. In population genetics s is referred to as the *selection coefficient* of α_1 . For cases where s>0, α_2 has a selective advantage and α_1 is selected against. For s=0, α_1 and α_2 are selectively *neutral*.

$$\dot{p} = p(1-p)\frac{s}{1-s(1-p)} \tag{5.6}$$

We can read the rest points off the resulting acquisition dynamics. There are two important cases that we will consider. First, if there is only a single grammar, then the weight over grammars is stable. That is, if p=0 or p=1, then the dynamics are, so to speak, at rest. This makes intuitive sense, a grammar cannot be considered if there is no evidence for it. Second, if there is a perfectly balanced amount of independent evidence for both grammars s=0, then any distribution over grammars is a rest point. This also makes intuitive sense, if the balance of evidence is equally in favor of both grammars, then things should not change. We determine the stability of these sets of rest points in turn.

For the first set of rest points, we can evaluate the stability of a single grammar as a function of the selection coefficient, which captures the ratio of independent evidence in favor of one or the other grammar. To do so we evaluate the derivative of the dynamics at the two rest points constituted by a single grammar. If the derivative evaluated at the rest point is negative, then the rest point is *asymptotically stable*. That is, the dynamics will carry the population to the rest point. If the derivative evaluated at the rest point is positive, then the rest point is *unstable*. That is, the dynamics will carry the population away from

³A discrete-time dynamics might be more appropriate in allowing for a lag between when learners converge on a grammar and contribute to the linguistic environment, but this distinction does not affect the subsequent results.

the rest point. We can express these conditions as a function of the selection coefficient, s.

$$\frac{\partial \dot{p}}{\partial p}\Big|_{p=0} = \frac{s}{1-s} \tag{5.7}$$

$$\frac{\partial \dot{p}}{\partial p}\big|_{p=1} = -s \tag{5.8}$$

Note that for $s \neq 0$, only one of these rest points can be asymptotically stable. The rest point p=0 is asymptotically stable if and only if s<0. That is, the population will eventually use grammar G_1 exclusively if only if there is more evidence for it than there is G_2 . The rest point p=1 is stable if and only if s>0. That is, the population will eventually use grammar G_2 exclusively if and only if there is more evidence in favor of it.

In fact, these conditions for the stability of both rest points are rather general. If we assume that the selection coefficient is not zero, then there are no other rest points. So, these conditions amount to conditions for *global asymptotic stability*. Importantly, this means that no matter the initial distribution over grammars, if s>0 then grammar G_2 will take over in the population. Thus, the acquisition dynamics are a kind of frequency-independent selection. We can get a sense for this fact by visualizing trajectories from the same low starting state of p for various values of s as in Figure 5.4. No matter how small the initial proportion or slim the margin of evidence, it is guaranteed to eventually go to completion.

Interestingly, the acquisition dynamics in these cases are closely related to the logistic models originally posited by Altmann et al. (1983) and Kroch (1989) to underly competing grammars. While there was no specific learning mechanism underlying the logistic model, it has both connections with the notion of biological competition as well as a straightforward application in terms of logistic regression (cf. Kroch 1989:4). However, it is obvious that the variational model provides some justification for this conception when we com-

Figure 5.4: Proportion of G_2 over time for various ratios of evidence s > 0

pare the dynamics of logistic growth with the acquisition dynamics, where s is taken as the growth rate in the logistic model.

$$\dot{p} = p(1-p)s\tag{5.9}$$

In fact, the only difference is that the acquisition dynamics exhibits a varying growth rate as a function of the distribution over grammars in the population. We show the solution for the acquisition dynamics and the logistic model from the same starting point with the same growth rate in Figure 5.5. The solution to the acquisition dynamics predicts a faster initial rate of growth, but slows down to the same rate as the logistic as $p \approx 1$.

In many cases the predictions of the two underlying models may not be distinguishable. But, it is certainly possible that we might detect quantitative evidence for the acquisition dynamics. For example for selection coefficients $s \approx 1$ the acquisition dynamics are asymmetric, unlike the logistic, which is perfectly symmetric. This can be seen in the first few solutions in Figure 5.4. In the context of regression this could potentially lead to quanti-

Figure 5.5: Solution to acquisition dynamics and logistic model (dashed) from same starting point with s=.4

tative patterns such as heteroscedastic residuals. For example, if we take the acquisition dynamics as a generative model, then fit of the logistic model may systematically under or overestimate the rate of change at different points. We leave investigating this possibility for future research.

For the second set of rest points, where both grammars have equal independent evidence s=0, all distributions over grammars are rest points. All states are *weakly* or *lyupanov stable* in the sense that though the dynamics do not carry the population to a state, the also do not carry the population away from it. Now, we might wonder whether these seemingly knife-edge cases are likely if even possible. However, these cases have a natural interpretation and one that will be particular relevant to the formal cycle. That is, they describe cases where the difference between two grammars hinges on the expression of a single syntactic position. If two grammars correspond to two ways of expressing that position, then the output of each will be incompatible with the other. That is, they will be totally mutually incompatible grammars, rather than only partially incompatible grammars.

Figure 5.6: Two totally incompatible grammars

This can be visualized as in Figure 5.6, which stands in contrast with Figure 5.1. In other words, where two grammars vary parametrically at the appropriate level, the dynamics predict a kind of weak stability.

So, we determined the acquisition dynamics resulting from the variational model and showed how it exhibits a kind of frequency-independent selection. That is, in most cases only a single grammar is stable. We showed how the resulting dynamics resembles the logistic model of growth. We also noted a crucial exception to this rather robust behavior that leads to a weak kind of stability. With this in mind, we now turn to an analysis of the syntactic structures underlying the formal cycle.

5.3 Syntactic Structure

There are a range of ways of analyzing the syntactic structures underlying the formal cycle.⁴ Here we focus on the analysis presented in Frisch (1997), which treats the formal cycle as the result of two independent morphological changes. First, we present the theoretical details of the analysis. We then note corpus evidence in favor of this treatment.

⁴For example, different analyses have suggested varying levels of detail in the number and realization of stages, ranging from three stages (Burridge 1983, Bernini and Ramat 1996, Haspelmath 1997, Frisch 1997, Zanuttini 1997, Horn 1989, Hoeksma 1997, Horn 2001, Roberts and Roussou 2003, van der Auwera and Neuckermans 1997, Mazzon 2004, Willis 2005, Lucas 2007, Jäger 2008, Wallage 2008), to four stages (Dahl 1979, Schwegler 1988, 1990, Schwenter 2005, 2006), up to five stages (Honda 2000, Beukema 1999, van der Auwera and Neuckermans 1997, Zeijlstra 2004).

Figure 5.7: The structure of the Negative Phrase

Figure 5.8: Stage one of the formal cycle according to morphological analysis

Frisch (1997) takes Pollock's (1989) analysis of negation as a starting point, assuming that negation constitutes its own phrase, with a fully projected structure like that in Figure 5.7: Neg⁰ is the head of the phrase, Spec is its specifier, and XP is a sister phrase such as a verb phrase. In particular, Frisch assumes that this underlying structure is always present (Haegeman 1995). The formal cycle simply consists in changes to how the positions in this underlying structure are expressed.⁵

At the first stage of the formal cycle the negative head is expressed as ne whereas the specifier is a phonologically null operator \varnothing . The syntactic structure according to this morphological analysis can be seen in Figure 5.8. Sentential structure at stage one of the formal cycle in Old English is illustrated in Figure 5.9, where a strikethrough indicates successively upwards head movement. The result is purely pre-verbal negation.

The transition to the second stage in the formal cycle stems from a change in the realization of the specifier of the negative phrase. Namely, the specifier is no longer expressed

⁵This is a more localized version of the *cartographic approach* advocated by Rizzi (1997), which posits a universal syntactic structure. The locus of variation between languages under this conception is how that universal structure is expressed.

Figure 5.9: Sentential structure at stage one of the formal cycle according to morphological analysis

Figure 5.10: Stage two of the formal cycle according to morphological analysis

by a null operator, but instead by *not*, as can be seen in Figure 5.10. Sentential structure at the second stage of the formal cycle in Middle English is illustrated in Figure 5.11, which results in pre- and post-verbal negative elements.

The transition from the second stage to the third and final stage of the formal cycle is simply a a matter of whether the negative head is expressed via lexical content or by some null head \varnothing . The structure of the negative phrase at the third stage is shown in Figure 5.12, and sentential structure at this final stage in Late Middle English is shown in Figure 5.13.

Similar morphological approaches to the formal cycle are adopted by Roberts and Roussou (2003) and Zeijlstra (2004). The shared aspect of these morphological analyses is the assumption that the underlying syntactic structure remains stable, but the realizations of particular positions within that structure changes. Importantly, since this is the only locus

Figure 5.11: Sentential structure at stage two of the formal cycle according to morphological analysis

Figure 5.12: Stage three of the formal cycle according to morphological analysis

Figure 5.13: Sentential structure at stage three of the formal cycle according to morphological analysis

of change, the transitions that constitute the cycle are independent of each other. That is, the fact that both *ne* and *not* show up in the embracing *ne...not* form is simply the coincidental product of two forms waxing and waning at the same time.

Frisch (1997) tests this theoretical prediction using the trajectory of negation in Middle English in the Helsinki corpus of Middle English. He notes that if the two transitions are independent of each other, then the co-occurrence of *ne* and *not* in the negative phrase should be the product of the probabilities of each occurring.

$$P(ne...not) = P(ne)P(not)$$
 (5.10)

That is, the probability of *ne...not* is the probability of two independent events *ne* and *not*. This is in fact what Frisch finds.⁶ So the formal cycle can be conceived of as two changes in the expression of positions within an underlying structure. In what follows, we will assume that grammatical knowledge is represented as in Figures 5.8, 5.10, and 5.12. That is, under the assumption of a constant underlying structure, a grammar is characterized by the mapping from the syntactic positions in the negative phrase to lexical items. With these definitions in place, we turn to the actual trajectories of the transitions of the formal cycle in English.

5.4 Modeling

Now that we have stated the grammars underlying the stages of the formal cycle we can turn to modeling the transitions of the formal cycle. First, we note that given the structure of the grammars posited to underly the formal cycle, we can treat each of the transitions separately. Second, we note that given the composition of the grammars we should ex-

⁶Calculating these probabilities requires some adjustment for things like instances of adverbial *not* among others. See Frisch (1997:32-47) for the details.

pected stability under the acquisition dynamics. Finally, we fit the acquisition model for the two transitions of the formal cycle and note that the parameters are indeed not what the acquisitions dynamics predict. However, we note what a successful explanation of the formal cycle would have to do.

The grammars underlying the formal cycle differ only in the expression of two syntactic positions. This has two important implications. First, if the two changes in how these positions are expressed are independent of each other, then we can treat them as such. That is, we can treat the two transitions of the formal cycle as independent events of competition between two grammars for expressing those positions. In what follows we take this approach, treating both the first and second transitions as cases of the acquisition dynamics with two grammars. Second, if the grammars involved in each transition differ only in the expression of one position, then they are totally mutually incompatible s=0. This means that the acquisition dynamics predict stability in the case of both transitions, but this is certainly not what we observe. In fact, this alone suffices as a demonstration that acquisition as we have modeled it here cannot account for either of the transitions of the formal cycle. That is, given the description of the grammars underlying the stages of the formal cycle, acquisition cannot cause the transitions between them. This means that the qualitative criterion for acquisition serving as a cause of the formal cycle is not met.

However, it is useful to note what would have to be the case for acquisition to explain the empirical trajectories of the two transitions. That is, if we fit the acquisition dynamics to data, the fitted parameters tell us what we would need to find in order to take acquisition as the cause of the formal cycle. We fit the acquisition dynamics to the trajectory of the first transition modeled as the competition of two grammars for the specifier of the negative phrase. In this case we take G_1 as G_{\varnothing} and G_2 as G_{not} to be grammars that determine how the specifier of the negative phrase is expressed. We take instances of ne to be compatible with G_{\varnothing} and instances of ne...not and not to be compatible with G_{not} . The parameters to fit

are the initial state of the second grammar in the population and the selection coefficient s that captures the ratio of evidence in favor of the second grammar.

The last thing that needs to be specified is the notion of time. The solution to the acquisition dynamics is in abstract time units, but how these correspond to the actual time in days, months, or years is unspecified. We could fit this relationship as another parameter in the model, but this would be problematic if we were to find different values for the second transition. Instead, we stipulate a ratio between the units of the dynamics and years where one abstract time unit corresponds to five years. We take this to be a rough approximation of the time between when a learner is born an starts contributing to the linguistic environment, but leave it to further research to gain a better estimate the actual value.

The results of fitting the acquisition dynamics can be seen in Figure 5.14.⁷ It is important to note, however, that regardless of how well the fitted model approximates the actual trajectory of the first transition, the parameters are not possible. That is, the second grammar cannot have an advantage over the first given that they differ only in the expression of a single syntactic position, yet this is exactly what would be required for acquisition to explain the first transition. This means that the quantitative criterion for acquisition serving as a cause of the formal cycle is not met. However, for another description of the grammars underlying the stages of the formal cycle, this parameter would need to match our theoretical predictions. That is, if the grammars were specified differently, the selection coefficient \hat{s} would still have empirical content. We should be able to look at a corpus and use the grammatical descriptions to see if it is consistent.

We also fit the acquisition dynamics to the trajectory of the second transition modeled as the competition of two grammars for the head of the negative phrase. In this case we treat G_1 as G_{ne} and G_2 as G_{\varnothing} . We take instances of ne and ne...not to be compatible with G_{ne} and instances of not to be compatible with G_{\varnothing} . The results of fitting the acquisition

⁷See Appendix C for details.

Figure 5.14: Proportion of G_{not} over time for the first transition of the formal cycle, $\hat{s} = 0.10291529$

dynamics can be seen in Figure 5.15.8 Again, this means that our second criterion for acquisition serving as a cause of the formal cycle is not met. So, neither of the criteria for acquisition serving as a cause of the formal cycle have been met. That is, the acquisition dynamics do not predict either of the transitions, nor do the parameters of the fitted models agree with the corpus evidence predicted by the grammars.

It bears emphasis that these criteria are not specific to the acquisition dynamics we specified nor to the grammatical structures posited to underly the stages of the formal cycle. We could just as well adopt another model of acquisition or the grammatical description of the formal cycle (cf. Niyogi 2006). But, abandoning the appealing theoretical properties of the variational model and its acquisition dynamics seems a bit hasty. This is especially true given that we need some model to provide any explanation at all. There are, however, a wealth of options when it comes to grammatical descriptions of the formal cycle, as we noted above.

⁸We only fit the dynamics to data from the point where there are instances of *not* in all subsequent years, from 1300 CE onwards. Again, see Appendix C for details.

Figure 5.15: Proportion of G_{\varnothing} over time for the first transition of the formal cycle, $\hat{s}=0.34128455$

For example, Wallage (2008) makes a compelling corpus-driven argument for the treatment of the formal cycle as two interdependent morphosyntactic changes. In particular, Wallage treats the first transition as the addition of the post-verbal *not* as well as the change in the formal features of pre-verbal *ne* from an interpretable to an uninterpretable feature (Chomsky 1995). This more articulated approach would likely face the same problem regarding the first transition, but might offer insight into the second transition. But, it would also offer an interesting alternative insofar as it takes the locus of variation to be the properties and features of functional categories, according to the so-called *Chomsky-Borer conjecture*, (Baker 2008).

But, regardless, for acquisition to explain the formal cycle, both of the criteria we described above have to be met. Not only must both of the transitions be predicted, they must also be modeled in an empirically and theoretically consistent manner. To perhaps belabor the point, we can use the parameters of the fitted models of the transitions to predict the proportion of the different forms of the formal cycle in English over time. The result can

Figure 5.16: Proportion of *ne*, *ne...not*, and *not* predicted by the fitted parameters of the acquisition dynamics

be seen in Figure 5.16, and indeed the predicted forms are a close match to the empirical trajectories that we observe. It is tempting to take this as a reasonably good result. But, the parameter values that generate this result are on their face not compatible with the grammatical structures posited to underly the formal cycle. If we want to explain, rather than just describe historical changes we need models that get the picture right while simultaneously being self-consistent. That is, we not only need to be able to fit parameters, but also to make sure those parameters make sense given our theoretical assumptions about the grammatical knowledge that speakers acquire.

Summary

In this chapter we presented a model of syntactic acquisition, determined its predicted dynamics in a population over time, and fitted it to data from the formal cycle in Middle English. We found that neither the qualitative nor quantitative criteria for taking acquisition as the cause of the formal cycle were met. All together then, it seems that acquisition cannot be taken as a cause of the formal cycle. If this is indeed the case, then it has important consequences for our understanding of the two transitions of the formal cycle.

Regarding the first transition from *ne* to *ne...not*, if acquisition cannot explain it, then use can. That is, given that this transition coincides with the functional cycle, then the explanation of the functional cycle put forward in the previous chapter is the only and necessarily the best explanation of the observed transition. Alternative analyses of the grammars underlying the formal cycle may change this, they must be both qualitatively and quantitatively accurate and consistent.

Regarding the second transition from *ne...not* to *not*, neither acquisition nor use can explain it. The transition does not coincide with another functional cycle, *not* is not restricted to specific contexts. This leaves us in the strange position of observing a change without an obvious cause. Absent some mass coincidence, what are we to make of the second transition of the formal cycle? One possibility is that this second transition is not the result of one mass coincidence, but rather the accumulation of many much smaller coincidences.

To see how this might be the case, consider the fact that the acquisition dynamics only predict a weak form of stability in the expected change of the expected behavior of learners in a population. For example, if we relaxed the assumption regarding the size of the population, then the linguistic environment provided to learners would differ slightly from the limit value. For the second transition, suppose that the proportion of G_{\varnothing} in the actual linguistic environment is slightly higher than expected due to sampling errors. Now, suppose that it is slightly higher in the next generation as well due to sampling errors. If enough of these small coincidences compound over time, one grammar may replace another without ever having more evidence in favor of it.

Indeed, this possibility has been extensively studied in population genetics in terms of genetic drift. That is, when the selection coefficient is zero s=0, as is the case in the

second transition of the formal cycle, change can come about due to random sampling. Or, in this case, random changes in the probabilities over grammars learned over time. This means that we the second transition might be the result of a series of small coincidences rather than a single improbable one. In the next chapter we turn to means of testing this possibility.

Bibliography

Altmann, Gabriel, Haro von Buttlar, Walter Rott, and Udo Strauss. 1983. A law of change in language. In *Historical linguistics*, ed. Brian Brainard, 104–115.

van der Auwera, Johan, and Annemie Neuckermans. 1997. Jespersen's cycle and the interaction of predicate and quantifier negation. In *Dialectology meets typology. Dialect grammar from a cross-linguistic perspective*, ed. Bernd Kortmann, 453–478. Mouton de Gruyter.

Baker, Mark. 2008. The macroparameter in a microparametric world. In *The limits of syntactic variation*, vol. 132, 351. John Benjamins Publishing.

Bernini, Giuliano, and Paolo Ramat. 1996. *Negative sentences in the languages of Europe:*A typological approach. Mouton de Gruyter.

Beukema, Frits. 1999. Five ways of saying no: the development of sentential negation in English in a Government and Binding perspective. In *Negation in the history of English*, ed. Ingrid Tieken-Boon van Ostade, Gunnell Tottie Ostade, and Wim van der Wurff, 9–26. Mouton de Gruyter.

Bloomfield, Leonard. 1927. Review of Jespersen's, The philosophy of grammar. *Journal of English and Germanic Philology* 26:444–446.

Börgers, Tilman, and Rajiv Sarin. 1997. Learning through reinforcement and replicator dynamics. *Journal of Economic Theory* 77(1):1–14.

Burridge, Kate. 1983. On the development of Dutch negation. In *Linguistics in the Nether-lands 1983*, ed. Hans Bennis and W.U.S. van Lessen Kloeke, 31–40. Dordrecht: Foris.

Bush, Robert, and Frederick Mosteller. 1955. Stochastic models for learning. Wiley.

Chomsky, Noam. 1981. *Lectures on government and binding: The pisa lectures*. 9, Walter de Gruyter.

——. 1995. *The minimalist program*. Cambridge University Press.

Chomsky, Noam, and Howard Lasnik. 1993. The theory of principles and parameters. In *Syntax: An international handbook of contemporary research*, ed. Joachim Jacobs, Arnim Von Stechow, and Wolfgang Sternefeld, 506–569. Mouton de Gruyter.

Dahl, Osten. 1979. Typology of Sentence Negation. *Linguistics* 17(1-2):79–106.

Fodor, Jerry A. 1975. The language of thought, vol. 5. Harvard University Press.

Frank, Michael C, Noah D Goodman, and Joshua B Tenenbaum. 2009. Using speakers' referential intentions to model early cross-situational word learning. *Psychological Science* 20(5):578–585.

Frisch, Stefan. 1997. The change in negation in Middle English: a NEGP licensing account. *Lingua* 101(1):21–64.

Gibson, Edward, and Kenneth Wexler. 1994. Triggers. *Linguistic Inquiry* 407–454.

Haegeman, Liliane. 1995. The syntax of negation. 75, Cambridge University Press.

Haspelmath, Martin. 1997. *Indefinite pronouns*. Clarendon Press.

- Hoeksma, Jacob. 1997. Negation and negative concord in Middle Dutch. In *Negation and polarity: Syntax and Semantics*, ed. Danielle Forget, Paul Hirschbuller, France Martineau, and Maria-Luisa Rivero, 139–156. John Benjamins.
- Honda, Isao. 2000. Negation: a cross-linguistic study. Ph.D. thesis, State University of New York at Buffalo.
- Horn, Laurence. 2001. Flaubert triggers, squatitive negation, and other quirks of grammar. In *Perspectives on negation and polarity items*, ed. Jack Hoeksma, Hotze Rullmann, Victor Sanchez-Valencia, and Ton Van der Wouden, 173–200. John Benjamins.
- Horn, Laurence R. 1989. A natural history of negation. University of Chicago Press.
- Hyams, Nina, and Kenneth Wexler. 1993. On the grammatical basis of null subjects in child language. *Linguistic Inquiry* 421–459.
- Ingason, Anton Karl, Julie Anne Legate, and Charles Yang. 2013. The evolutionary trajectory of the icelandic new passive. *University of Pennsylvania Working Papers in Linguistics* 19(2):11.
- Jäger, Agnes. 2008. History of german negation. John Benjamins.
- Kroch, Anthony S. 1989. Reflexes of grammar in patterns of language change. *Language* variation and change 1(03):199–244.
- Lucas, Christopher. 2007. Jespersens cycle in arabic and berber1. *Transactions of the Philological Society* 105(3):398–431.
- Mazzon, Gabriella. 2004. A history of english negation. Pearson Longman.
- Medina, Tamara Nicole, Jesse Snedeker, John C Trueswell, and Lila R Gleitman. 2011. How words can and cannot be learned by observation. *Proceedings of the National Academy of Sciences* 108(22):9014–9019.

Narendra, Kumpati S, and Mandayam AL Thathachar. 2012. *Learning automata: an introduction*. Dover.

Niyogi, Partha. 2006. *The computational nature of language learning and evolution*. MIT press Cambridge, MA:.

Pollock, Jean-Yves. 1989. Verb movement, universal grammar, and the structure of ip. *Linguistic inquiry* 365–424.

Quine, Willard V. 1960. Word and object. MIT Press.

Rizzi, Luigi. 1997. The fine structure of the left periphery. In *Elements of grammar*, 281–337. Springer.

Roberts, Ian, and Anna Roussou. 2003. *Syntactic change: A minimalist approach to gram-maticalization*. Cambridge University Press.

Sandholm, William H. 2010. Population games and evolutionary dynamics. MIT press.

Schwegler, Armin. 1988. Word-order changes in predicate negation strategies in romance languages. *Diachronica* 5(1-2):21–58.

———. 1990. Analyticity and syntheticity: A diachronic perspective with special reference to romance languages. Mouton de Gruyter.

Schwenter, Scott A. 2005. The pragmatics of negation in Brazilian Portuguese. *Lingua* 115(10):1427–1456.

———. 2006. Fine-tuning Jespersen's cycle. In *Drawing the boundaries of meaning:* Neo-Gricean studies in pragmatics and semantics in honour of Laurence R. Horn, ed. Betty T. Birner and Gregory Ward, 327–344. John Benjamins.

- Smith, Kenny, Andrew DM Smith, and Richard A Blythe. 2011. Cross-situational learning: An experimental study of word-learning mechanisms. *Cognitive Science* 35(3):480–498.
- Smith, Linda, and Chen Yu. 2008. Infants rapidly learn word-referent mappings via cross-situational statistics. *Cognition* 106(3):1558–1568.
- Stevens, Jon, John Trueswell, Charles Yang, and Lila Gleitman. 2013. The pursuit of word meanings.
- Trueswell, John C, Tamara Nicol Medina, Alon Hafri, and Lila R Gleitman. 2013. Propose but verify: Fast mapping meets cross-situational word learning. *Cognitive psychology* 66(1):126–156.
- Wallage, Phillip. 2008. Jespersen's cycle in Middle English: parametric variation and grammatical competition. *Lingua* 118(5):643–674.
- Willis, David. 2005. A minimalist approach to Jespersens Cycle in Welsh. In *Grammatical Change: Origins, Nature, Outcomes*, ed. Dianne Jonas, John Whitman, and Andrew Garrett, 93–119. Oxford University Press.
- Yang, Charles. 2000. Internal and external forces in language change. *Language variation* and change 12(03):231–250.
- ———. 2002. *Knowledge and learning in natural language*. Oxford University Press.
- Yu, Chen, and Linda B Smith. 2007. Rapid word learning under uncertainty via cross-situational statistics. *Psychological Science* 18(5):414–420.
- Zanuttini, Raffaella. 1997. Negation and clausal structure. Oxford University Press.
- Zeijlstra, Hedde. 2004. Sentential negation and negative concord. Ph.D. thesis, Netherlands Graduate School of Linguistics.