Aufgabe 1 (4 Punkte). Wir nehmen an, dass $Q \ll P$ auf \mathscr{F} mit Dichte φ und $\mathscr{F}_0 \subseteq \mathscr{F}$. Dann gilt für jedes \mathscr{F} -messbare X, dass

$$E_Q[X|\mathscr{F}_0] = \frac{1}{E_P[\varphi|\mathscr{F}_0]} E_P[X\varphi|\mathscr{F}_0].$$

Das ist Proposition A.16 in [HF16]. $\frac{1}{E_P[\varphi|\mathscr{F}_0]}E_P[X\varphi|\mathscr{F}_0]$ ist als Kombination von \mathscr{F}_0 -messbaren Funktionen \mathscr{F}_0 -messbar. Wir müssen noch zeigen, dass für alle \mathscr{F}_0 -messbaren Y gilt

$$E_Q[YX] = E_Q \left[Y \frac{1}{\varphi_0} E[X\varphi|\mathscr{F}_0] \right] . \tag{1}$$

Wir bringen die linke und die rechte Seite auf die gleiche Form und sehen dadurch, dass sie gleich sind. Mit dem Satz von Radon-Nikodym haben wir für die linke Seite

$$E_Q[YX] = E[YX\varphi]$$
.

Mit der Turmeigenschaft können wir auch schreiben, dass

$$= E[E[YX\varphi|\mathscr{F}_0]],$$

und da Y \mathcal{F}_0 -messbar ist, dass

$$= E[YE[X\varphi|\mathscr{F}_0]]. \tag{2}$$

Für die rechte Seite gilt mit dem Satz von Radon-Nikodym

$$E_Q\left[Y\frac{1}{\varphi_0}E[X\varphi|\mathscr{F}_0]\right]=E\left[\varphi Y\frac{1}{\varphi_0}E[X\varphi|\mathscr{F}_0]\right]\;.$$

Mit der Turmeigenschaft können wir schreiben

$$= E\left[E\Big[\varphi Y \frac{1}{\varphi_0} E[X\varphi|\mathscr{F}_0] \Big| \mathscr{F}_0 \Big] \right] \,.$$

Da $Y,\,\frac{1}{\varphi_0}$ und $E[X\varphi|\mathscr{F}_0]$ $\mathscr{F}_0\text{-messbar}$ sind, erhalten wir

$$= E\left[E[\varphi|\mathscr{F}_0]Y\frac{1}{\varphi_0}E[X\varphi|\mathscr{F}_0]\right]\,.$$

Mit der Definition von φ_0 kriegen wir dann, dass

$$= E\left[\varphi Y \frac{1}{\varphi_0} E[X\varphi|\mathscr{F}_0]\right]. \tag{3}$$

In Gleichung (2) und Gleichung (3) kommt jeweils das Gleiche raus, was Gleichung (1) zeigt.

Aufgabe 2 (4 Punkte). Zeigen Sie, dass die Menge der arbitragefreien Preise nicht leer ist und gegeben ist durch

$$\Pi(H) = \{ E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty \}.$$

Zeigen Sie weiter, dass

$$\pi_{\inf} := \inf \Pi(H) = \inf_{Q \in \mathcal{M}_e} E_Q[H], \quad \pi_{\sup} := \sup \Pi(H) = \sup_{Q \in \mathcal{M}_e} E_Q[H].$$

Das ist Theorem 5.29 in [HF16]. Zunächst wollen wir zeigen, dass für jeden Arbitragefreien Preis π^H gilt, dass $\pi^H = E_Q[H] < \infty$ mit $Q \in \mathcal{M}_e$. Wenn π^H ein arbitragefreier Preis ist, so ist der Markt mit dem Prozess $(X^0, X^1, \dots, X^d, X^{d+1})$ arbitragefrei. Nach dem Fundamental Theorem of Asset Pricing gibt es dann ein $Q \in \mathcal{M}_e$, sodass $X_t^i = E_Q[X_T^i|\mathscr{F}_t]$. Insbesondere gilt dann für i = 0, dass $\pi^H = E_Q[H]$, also ist $\Pi(H) \subset \{E_Q[H] \mid Q \in \mathcal{M}_e, E_Q[H] < \infty\}$.

Sei nun andersherum $\pi^H = E_Q[H]$ für ein $Q \in \mathcal{M}_e$. Wir können dann X durch $X_t^{d+1} := E_Q[H|\mathscr{F}_t]$ erweitern. Für den erweiterten Prozess gilt dann mit $\mathscr{F}_0 = \{\emptyset, \frac{1}{2}\}$, dass $X_0^{d+1} = \pi^H$. Weiterhin ist $H \geq 0$, sodass $X_t^{d+1} \geq 0$. Schließlich ist H replizierbar, also $H = V_T$ für irgendeinen Wertprozess V_T . Somit ist H \mathscr{F}_T -messbar und $H = E_Q[H|\mathscr{F}_T]$.

Literatur

[HF16] HANS FÖLLMER, Alexander S.: Stochastic Finance: An Introduction in Discrete Time. 4th REV. ed. de Gruyter, 2016 (de Gruyter Textbook). – ISBN 311046344X; 9783110463446