

WEEK 11HYPOTHESIS TESTING – ANSWERING QUESTIONS ABOUT YOUR DATA

Confidence Intervals for Estimating Means

- introduce confidence intervals as a way to quantify sampling error
- define and interpret margin of error
- how we can use confidence intervals to determine the sample size
 - targeting desired level of precision
- · see applications of this to monitoring blood sugar in diabetics

Example: Diabetes

Diabetes (especially type 2) is one of the major epidemics of modern living...

- about 1 in every 10 adults suffers from diabetes (approximately 26M in the US)
- about 90-95% of diabetes is type 2 (which is more easily treatable / preventable)
- significant side effects
- diagnosed diabetes cases cost roughly \$300B / annually in the US alone
- there is a genetic component but mostly related to lifestyle (diet, weight, activity)

Monitoring Blood Sugar Levels

- diabetes is diagnosed via blood sugar levels (blood works)
- there are effectively two tests:
 - a localized measurement of blood glucose level if > 130 mg/dl (fasting) or > 160 mg/dl (2h after ingestion) then suspect diabetes
 - a time-averaged test based on A1C (if > 6.5 % then suspect diabetes
- the blood glucose level is a measure at a particular point in time
- the A1C test is the average glucose level over the past 2-3 months
 - it measures an estimate of the average percent of blood sugar (glucose)
 - -6.5% for A1C is about 140 mg/dl in the standard blood sugar measurement...

Monitoring Blood Sugar Levels

- monitor over two weeks (n = 56 observations)
- results:

– sample mean
$$\bar{X}=135$$
 and standard deviation stdev = 25

Q. is this person diabetic?

paraphrase: what is the likelihood that his/her true blood sugar level is above 140?

the 6.5% A1C equivalent threshold...

Testing for Diabetes - Formulation

formulation:

- ullet patients true blood sugar level μ unknown
 - can only assess using continuous monitoring (not practical...)
- would like to know whether μ > 140.
- have estimator of this using sample mean equal to 135
 - it is less than 140...

what confidence do we have to rule out diabetes?

Testing for Diabetes - Mechanics

– or Error =
$$\bar{X} - \mu ~\sim N(0, \sigma^2/n)$$

- we don't know population σ but we know the sample stdev is 25
- what's the likelihood that X̄ is within an error of 5 of the true mean μ?

$$\mathbb{P}\{-5 \leq \bar{X} - \mu \leq 5\} = \mathbb{P}\{-5 \leq \mathsf{Error} \leq 5\}$$

and standardizing

$$\mathbb{P}\left\{\frac{-5}{\sigma/\sqrt{n}} \le Z \le \frac{5}{\sigma/\sqrt{n}}\right\} = |-2| \mathbb{P}\left\{\frac{2}{25/56}\right\}$$

$$= |-2| \mathbb{P}\left\{\frac{2}{25/56}\right\}$$
e of σ which is stdev = 25 and $n = 56...$

with Z being standard normal

$$ullet$$
 so we can plug in our estimate of σ which is stdev $=$ 25 and $n=56...$

we get that this likelihood is

Testing for Diabetes - Mechanics

• now we turn this around and say that:

(mult.) (Stdenor)

"we are 95% confident that the true mean is contained within the interval"

$$\left(\bar{X} - \left(1.96\right) \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right)$$

- if we repeat the experiment 100 times, 95 times the true mean will lie in that interval....
- · we usually write this as

$$\bar{X} \pm 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$

the **standard error** is stderror $=(\sigma/\sqrt{n})$ = $25/\sqrt{5}$ (

+ 1.96 Sflumors

the confidence level is 95%

rather than fix the margin of error (5 in our example) and find the probability, we fix the confidence level and find the margin of error

Ninety Percent Confidence

Nine out of ten times, the true parameter would fall within the interval.

Ninety Percent Confidence

Recipe: CI for the Population Mean μ

setup: sample X_1,\ldots,X_n , taken from a population with mean μ and variance σ^2

- 1. compute estimator (sample mean) $ar{X} = (X_1 + \dots + X_n)/n$
- 2. choose α (i.e., confidence level to achieve)
- 3. find $z_{\alpha/2}$
- 4. the $(1-\alpha)$ CI if we know σ is

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

5. in practice, use sample standard deviation (stdev) in place of (typically) unknown σ

$$ar{X}\pm z_{lpha/2}rac{s}{\sqrt{n}}$$

$$s = STDEV(...)$$
 in EXCEL

T-Tables and T-Multipliers

Issue: when we replaced the true (and unknown) standard deviation σ (for the full population) with the sample standard deviation s = STDEV(...) from our sample, we introduce an additional error

- we can compensate for this by using a larger multiplier in our confidence intervals
- instead of the Z-value, from the normal table, we use the value from the t distribution
 - for sample size n we use n-1 degrees of freedom
- general rules of thumb:
 - can ignore this correction if sample size is at least 30 [see table], but...
 - ...in regression we will always use t-tables
 - correction not valid if original data is discrete/ordinal (like polls)

Comparing Normal and Distribution and T-Distribution

Interpretation of CIs

$$CI = point estimate \pm multiplier \times Stderror$$

what determines the margin of error?

How do we choose the sample size n in order to tighten our $(1-\alpha)$ CI?

(margin error) =
$$\frac{\sigma}{\sqrt{\eta}}$$
. $\frac{2}{4/2}$ (Stdam). (Mult).

Sample Size Determination

- the A1C test reports results that are with 95% confidence $\pm 0.5\%$ (about ± 10 mg/dl)
 - so if you receive a result of 6.5% the actual A1C may be 6%... below threshold
 - **Q.** how many samples n of blood glucose level do we need to take to get a margin of error of ± 10 (at 95% confidence), which would correspond to the accuracy of the A1C measurement?
- $1.96 \cdot 25/\sqrt(n) = 10$ [10 mg/dl is the std error in the A1C test]
- solving for n gives $n=(1.96\cdot 25/10)^2=25$ (we had 56 in our sample...)
- more generally, at 95% confidence

required sample size
$$n = \left(\frac{1.96 \cdot \sigma}{\text{Margin of Error}}\right)^2$$

- squaring means the required sample size grows quickly if we want very precise results
- \bullet we also need an estimate for σ (stdev) or small pilot study...

Summary: Confidence Intervals

We would like to complement our point estimate \bar{X} or \hat{p} with an interval

"We are 95% confident that the true parameter (μ or p) lies in a certain interval"

Method:

all Cls are computed in the same way:

```
CI = point estimate \pm margin of error
= point estimate \pm multiplier \times Stderror
```

ullet Stderror is the Stdev of the estimator $(ar{X} \text{ or } \hat{p})$

Summary: Confidence Levels

- confidence intervals for difference in means and proportions
- statistical significance
- p-value
- A/B testing

- statistical significance measures "strength of statistical evidence" in support of some claim
- p-value as a measure of statistical significance
- the smaller the p-value the stronger the statistical significance of the evidence
- the opposite of "statistically significant" is "due to chance" (spurious/ fluke)
- statistically significant does not (necessarily) mean "important"

- is there an upward trend?
- has the mean shifted over time?
- is the apparent increase in mean statistically significant given the high degree of variability?

	1869-1968	1969-2015	1969-2014	Full History
Mean	35.0	38.1	37.8	36.0
Median	34.8	38.4	38.4	35.9
Stdev	3.8	4.4	4.0	4.3

- is the observed increase in average temperature statistically significant?
- paraphrasing: is the difference in means "large" relative to the variability in the data?

Differentiation in mean

	1869-1968	1969-2015	1969-2014	Full History
Mean	35.0	38.1	37.8	36.0
Median	34.8	38.4	38.4	35.9
Stdev	3.8	4.4	4.0	4.3

- \bullet Y_1,\ldots,Y_{100} are the observations (years) for the earlier data [n=100]
- X_1, \ldots, X_{47} are the observations for the more recent data [m=47]

the difference in means is: $\bar{X} - \bar{Y} = 38.1 - 35.0 = 3.1$

how do we construct a confidence interval for this?

• the standard error for the difference in means

$$\begin{array}{rcl} \operatorname{stderror}[\bar{X} - \bar{Y}] &=& \sqrt{\operatorname{stderror}[\bar{X}]^2 + \operatorname{stderror}[\bar{Y}]^2} \\ &=& \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}} \end{array}$$

• the 95% confidence interval is:

$$\left(\bar{X} - \bar{Y}\right) \pm 1.96 \cdot \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

- $-s_X = \mathsf{STDEV}(X_1,\ldots,X_n)$, the recent years sample standard deviation
- $-s_Y = \mathsf{STDEV}(Y_1,\ldots,Y_m)$, the earlier years sample standard deviation

- Q. what happens if the confidence interval would straddle zero?
- A. in that case the true difference in means could be zero

we can't tell the two means apart!

• in that case the evidence that Central Park is getting warmer is not statistically significant

- Q. when will this happen in our case?
 - what if we up the confidence level to 98%? the z-multiplier will be 2.33 and the CI will be $3.1\pm2.33\cdot0.75=3.1\pm1.75$
 - what if we up the confidence level to 99%? the z-multiplier will be 2.57 and the CI will be $3.1\pm2.57\cdot0.75=3.1\pm1.93$
 - what if we up the confidence level to 99.99%? the z-multiplier will be 3.27 and the CI will be $3.1\pm3.27\cdot0.75=3.1\pm2.45$
 - \bullet what if we up the confidence level to 99.997%? [it's not even in your z-tables...] the z-multiplier will be 4.2 and the CI will be $3.1\pm4.2\cdot0.75=3.1\pm3.15$

finally the CI straddles zero!

 \bullet we report this as a p-value of 0.003%

Q. when will this happen in our case?

- 3.1 ~ 4.15 Stdem
- what if we up the confidence level to 98%? the z-multiplier will be 2.33 and the CI will be $3.1\pm (2.33)\cdot 0.75=3.1\pm 1.75$
- what if we up the confidence level to 99%? the z-multiplier will be 2.57 and the CI will be $3.1\pm2.57\cdot0.75=3.1\pm1.93$
- what if we up the confidence level to 99.99%? the z-multiplier will be 3.27 and the CI will be $3.1\pm3.27\cdot0.75=3.1\pm2.45$
- what if we up the confidence level to 99.997%? [it's not even in your z-tables...] the z-multiplier will be 4.2 and the CI will be $3.1\pm4.2\cdot0.75=3.1\pm3.15$

finally the CI straddles zero!

ullet we report this as a p-value of 0.003%

At 99.997/2 level we can no longer conclude that

99.997/3

p-value (in %): is 100 - (level of confidence) where the confidence interval straddles zero

interpretation of p-value:

- smaller p-value means more statistically significant
 - usually the threshold for saying something is "statistically significant" is p-value of 0.05
 - anything below 0.05 means statistically significant
- p-value is the probability that the difference we see in sample means is due to chance

Q. what about the central park data?

our p-value says that the likelihood the 3.1 degree increase in recent years is due to where random chance (i.e., Central Park isn't getting warmer) is 0.003%

we conclude that ""

• we conclude that it's extremely unlikely that Central Park isn't getting warmer...

Computing P-Values: Simpler Way

- playing around with the confidence dial is a cumbersome way to compute the p-value...
- finding the point where the confidence interval straddles zero is equivalent to

$$ar{X} - ar{Y} = (\mathsf{z}\text{-value}) \cdot \mathsf{stderror}[ar{X} - ar{Y}]$$

• we solve this for the z-value and call it the test statistic or t-stat

$$extbf{[(z-value) =]} \quad extbf{t-stat} = rac{ar{X} - ar{Y}}{\sqrt{rac{s_X^2}{n} + rac{s_Y^2}{m}}}$$

• then we see how much area lies in the two tails of the normal table and this is the p-value

$$p$$
-value = $2\mathbb{P}\{Z \ge |\mathsf{t\text{-stat}}|\}$

• in the Central Park data we had a difference of means of 3.1 and stderror of 0.75 so:

$$-z$$
-value = $3.1/0.75 = 4.133$

$$-p$$
-value = $2\mathbb{P}\{Z \ge 4.133\} = 0.00003$ [or 0.003%]

Impact of Online Ad Analysis

- Click-through rate (CTR) of the Citibank ad?
- \bullet CTR = $\frac{\text{number of clicks}}{\text{number of impressions}} = 0.01\%$
 - CTR = 0.05%
 - Clearly 0.01% < 0.05%, but is this a "systematic" difference in proportions, or a difference likely due to chance? But first of all, can we even compare these numbers?

Correlation and Causation

- · Correlation is not causation!
 - Think of unobserved variables that can be confounding the effect of the ad

· Above, we are not comparing "apples to apples"

- What can we do about it?
 - Run a randomized experiment!

Why Experiments

- Random assignment of subjects to treatment and control guarantees that the treatment and control groups are comparable in every way except in the reception of the treatment
- As a result, we can safely attribute differences in the outcomes to differences in the treatment as opposed to differences in other unobserved factors
- In simple words, the flip of a fair coin knows nothing about the characteristics of a subject,
 so it tends to be equitable: it tends to produce treatment and control groups that are similar
- For this reason, randomization is the cornerstone of modern experimentation with human subjects
 - Think about clinical trials
 - In the Internet settings, think about A/B tests

A/B Testing

- A/B testing has been referred to as a fundamental change in strategy for business decision-making
 - A turn towards evidence-based decision-making
 - For example, at Facebook data scientists run over 1000 experiments each day
- What has driven this change?
 - On the Internet, small improvements can translate into massive profits given its large scale
 - Running A/B tests is cheap
- A/B testing is a term for a randomized experiment with two "treatments" or variants
 - A "bake-off" between competing variants
 - A/B tests can be extended to three or more variants

E-Mail Campaign Efficacy

- Want to email customer base to increase sales through its webpage
- Script two emails —identical in every way— except in the following wording:
 - Email 1: "Limited time offer! Use promo code: ABC123"
 - Email 2: "Offer expires on Sunday! Use promo code: 123ABC"
- Send each of the emails to 50,000 different recipients and measure response.
 - Email 1: 1% visit rate; 0.05% buy rate
 - Email 2: 0.5% visit rate; 0.03% buy rate

Questions:

- -1% > 0.5%, but is this difference statistically significant? In other words, is this a systematic difference, not due to random chance?
- Is the difference between the buy rates statistically significant?
- What sample size would allow to detect differences of size 0.02% with 95% confidence?

Confidence Intervals for Difference in Proportions

• Remember the basic structure of a confidence interval

```
confidence interval = point estimate \pm margin of error
= point estimate \pm multiplier \times stderror[estimator]
```

10,000 + .005 (1-.005)

- Here
 - point estimate $=\hat{p}_1-\hat{p}_2$
 - multiplier = 1.96 (for 95% confidence)

$$-$$
 stderror[estimator] $=\sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1}+rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$

• In this way, the confidence intervals for difference in two proportions is

Statistical Difference: Rate of Visit

Results: - Email 1: $n_1 = 50,000$; 1% visit rate; 0.05% buy rate - Email 2: $n_2 = 50,000$; .5% visit rate; 0.03% buy rate (.01-.005) + 1.96 \[\frac{01(1-.01)}{50000} + \frac{.005(1-.005)}{50000} \] × .005 ± 1.96 \.015 ~ .5/3 ± .1/3 95% Conf. that the CTR with enail 1 5.

Statistical Difference: Rate of Visit

Interpretation

- \bullet The confidence interval for the difference in visit rates is 0.5% \pm 0.11% or [0.39%, 0.61%]
- This implies the difference in *population* proportions $p_1 p_2$ is contained in the interval [0.39%, 0.61%] with 95% confidence
- The confidence interval does not contain zero: p_1 is greater than p_2 by at least 0.39 percentage points

In this case we say that "the difference between the two proportions is **statistically significant** at the 5% level"

The meaning of this statement is:

"There is only a 5% chance that the difference of 0.5 percentage points is caused by chance, and there is 95% likelihood the two population proportions are different."

 Conclusion: visit rates are significantly higher with Email 1 than with Email 2 at the 5% level

Statistical Difference: Buying

• Results:

- Email 1: $n_1=50{,}000;$ 1% visit rate; 0.05% buy rate
- Email 2: $n_2 = 50,000$; 0.5% visit rate, 0.03% buy rate

Interpretation

- \bullet 95% CI for the difference in buy rates is 0.02% \pm 0.025% or [-0.005%, 0.045%]
- ullet ...the difference in population proportions p_1-p_2 is contained in the interval [-0.005%, 0.045%] with 95% confidence
- Now the confidence interval contains zero!

In this case, we say that "the difference between the two proportions is **not** statistically significant at the 5% level"

- In simple words, the true difference in proportions could be zero. We can't tell the two
 proportions apart!
- Conclusion: the buy rates for the two emails are not significantly different at the 5% level

Market Segmentation

• Now consider the following results by gender

	Ge	nder		
	Men	Women	Total	
Email 1	0.47%	0.53%	1.00%	
Email 2	0.24%	0.27%	0.50%	

• And now by gender and age group

Email 1				Email 2 Gender				
Gender								
Age group	Men	Women	Total	Age group	Men	Women	Total	
18-24	0.028%	0.032%	0.060%	18-24	0.012%	0.013%	0.025%	
25-34	0.056%	0.064%	0.120%	25-34	0.026%	0.029%	0.055%	
35-44	0.080%	0.090%	0.170%	35-44	0.042%	0.048%	0.090%	
45-54	0.103%	0.117%	0.220%	45-54	0.054%	0.061%	0.115%	
55-64	0.089%	0.101%	0.190%	55-64	0.042%	0.048%	0.090%	
65-74	0.066%	0.074%	0.140%	65-74	0.033%	0.037%	0.070%	
75 or older	0.047%	0.053%	0.100%	75 or older	0.026%	0.029%	0.055%	

Sample Size of Segments

• Sample sizes by gender and age group

Email 1				Email 2				
Gender				Gender				
Age group	Men	Women	Total	Age group	Men	Women	Total	
18-24	1,410	1,590	3,000	18-24	1,175	1,325	2,500	
25-34	2,820	3,180	6,000	25-34	2,585	2,915	5,500	
35-44	3,995	4,505	8,500	35-44	4,230	4,770	9,000	
45-54	5,170	5,830	11,000	45-54	5,405	6,095	11,500	
55-64	4,465	5,035	9,500	55-64	4,230	4,770	9,000	
65-74	3,290	3,710	7,000	65-74	3,290	3,710	7,000	
75 or older	2,350	2,650	5,000	75 or older	2,585	2,915	5,500	
Total	23,500	26,500	50,000	Total	23,500	26,500	50,000	

Not sufficient data size

- Imagine segmenting on more variables such as city, race, web browsing history...
- Clearly, for targeting very specific segments we need very large data sets
- Or to rely on a model (e.g., linear regression)

Key Takeaways

Confidence interval for a difference in means:

$$\bar{X} - \bar{Y} \pm 1.96 \times \sqrt{\frac{s_X^2}{n_1} + \frac{s_Y^2}{n_2}}$$

Confidence interval for a difference in proportions:

$$\hat{p}_1 - \hat{p}_2 \pm 1.96 \times \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

- Statistical significance measures the "strength of statistical evidence" in support of some claim
- The p-value is a measure of statistical significance
 - The p-value is the smallest value of α such that the confidence interval does not include 0 or another hypothesized value
 - The smaller the p-value, the stronger the evidence that our estimate is different to the hypothesized value

www.emeritus.org