Math 300 NTI Lesson 6

group_by, mutate, and arrange

Professor Bradley Warner

June, 2022

Contents

Objectives	
Reading	
Lesson	
Documenting software	٤

Objectives

- 1. Use the group_by() function to create aggregated data frames to use with other functions, in particular summarize(), to explore, explain, and visualize.
- 2. Use the mutate() function to create new variables in a data frame to use to explore, explain, and visualize.
- 3. Use the arrange() function to sort data frames to explore, explain, and visualize.

Reading

Chapter 3.4 - 3.6

Lesson

Remember that you will be running this more like a lab than a lecture. You want them using R and answering questions. Have them open the notes rmd and work through it together.

Work through the learning checks LC3.5 - LC3.12.

- We changed the scaffolded code method. We have eval=FALSE so that R does not try to evaluate the code chunk. They have to remove this and then complete the code.
- It is important to note that the <code>group_by()</code> function doesn't change data frames by itself. Rather it changes the meta-data, or data about the data, specifically the grouping structure. It is only after we apply the <code>summarize()</code> function that the data frame changes. The book does a good job explaining meta-data.

- The group_by() can be used on more than two variables but they must be in the same call to group_by().
- Using arrange() is straight forward expect the use of desc() within the arrange() call to sort in decreasing order.
- As a rough rule of thumb, as long as you are not losing original information that you might need later, it's acceptable practice to overwrite existing data frames with updated ones.
- LC 3.6 is difficult. Let them explore and wrestle with this question. The warning can be ignored. We will not experiment with the .groups option.
- LC 3.12 is more difficult as we combined code. The default use of geom_boxplot() works for exploring data but we provided code on how to clean up the x-axis. Discuss this code if you want and have time.
- The use of kable() is only to have the output printed in a form that looks good. This is not something we need to present to the students.

Setup

```
library(nycflights13)
library(ggplot2)
library(dplyr)
```

LC 3.5 (Objective 1)

(LC3.5) Recall from Chapter 2 when we looked at plots of temperatures by months in NYC. What does the standard deviation column in the summary_monthly_temp data frame, which we need to create from the code at the section 3.4, tell us about temperatures in New York City throughout the year?

Solution:

```
# Code from the book
summary_temp_by_month <- weather %>%
group_by(month) %>%
summarize(
   mean = mean(temp, na.rm = TRUE),
   std_dev = sd(temp, na.rm = TRUE)
)
```

Output

 $\verb"summary_temp_by_month"$

```
## # A tibble: 12 x 3
##
      month mean std_dev
##
      <int> <dbl>
                    <dbl>
          1 35.6
##
                    10.2
   1
##
   2
          2 34.3
                     6.98
   3
          3 39.9
                     6.25
##
##
   4
          4 51.7
                     8.79
##
   5
         5 61.8
                     9.68
##
   6
          6 72.2
                     7.55
         7 80.1
                     7.12
##
   7
```

```
##
              74.5
                        5.19
##
    9
              67.4
                        8.47
           9
          10
## 10
              60.1
                        8.85
              45.0
                       10.4
## 11
          11
## 12
              38.4
                        9.98
```

The standard deviation is a quantification of **spread** and **variability**. We see that the period in November, December, and January has the most variation in weather, so you can expect very different temperatures on different days in those months.

LC 3.6 (Objective 1)

(LC3.6) What code would be required to get the mean and standard deviation temperature for each day in 2013 for NYC?

Solution:

summary(weather)

```
##
       origin
                              year
                                             month
                                                                 day
##
    Length: 26115
                                :2013
                                                 : 1.000
                                                                   : 1.00
                         Min.
                                         Min.
                                                           Min.
                         1st Qu.:2013
                                         1st Qu.: 4.000
                                                           1st Qu.: 8.00
##
    Class : character
    Mode :character
##
                         Median:2013
                                         Median : 7.000
                                                           Median :16.00
##
                         Mean
                                :2013
                                         Mean
                                                 : 6.504
                                                           Mean
                                                                   :15.68
##
                         3rd Qu.:2013
                                         3rd Qu.: 9.000
                                                           3rd Qu.:23.00
##
                         Max.
                                :2013
                                         Max.
                                                 :12.000
                                                           Max.
                                                                   :31.00
##
##
         hour
                           temp
                                             dewp
                                                             humid
##
    Min.
            : 0.00
                     Min.
                             : 10.94
                                        Min.
                                                :-9.94
                                                         Min.
                                                                 : 12.74
##
    1st Qu.: 6.00
                     1st Qu.: 39.92
                                        1st Qu.:26.06
                                                         1st Qu.: 47.05
##
    Median :11.00
                     Median: 55.40
                                        Median :42.08
                                                         Median: 61.79
            :11.49
                                               :41.44
                                                                 : 62.53
##
    Mean
                     Mean
                             : 55.26
                                        Mean
                                                         Mean
##
    3rd Qu.:17.00
                     3rd Qu.: 69.98
                                        3rd Qu.:57.92
                                                         3rd Qu.: 78.79
                                               :78.08
##
    Max.
            :23.00
                     Max.
                             :100.04
                                        Max.
                                                         Max.
                                                                 :100.00
##
                     NA's
                             :1
                                        NA's
                                               :1
                                                         NA's
                                                                 :1
##
       wind_dir
                                            wind_gust
                        wind_speed
                                                                precip
##
           : 0.0
                                 0.000
                                                  :16.11
                                                                   :0.000000
    Min.
                     Min.
                                          Min.
                                                           Min.
##
    1st Qu.:120.0
                                 6.905
                                          1st Qu.:20.71
                                                           1st Qu.:0.000000
                     1st Qu.:
##
    Median :220.0
                     Median:
                                10.357
                                          Median :24.17
                                                           Median : 0.000000
##
            :199.8
                                                  :25.49
    Mean
                     Mean
                                10.518
                                          Mean
                                                           Mean
                                                                   :0.004469
##
    3rd Qu.:290.0
                     3rd Qu.:
                                13.809
                                          3rd Qu.:28.77
                                                           3rd Qu.:0.000000
##
            :360.0
                             :1048.361
                                                  :66.75
    Max.
                     Max.
                                          Max.
                                                           Max.
                                                                   :1.210000
##
    NA's
            :460
                     NA's
                             :4
                                          NA's
                                                  :20778
##
       pressure
                           visib
                                           time_hour
##
    Min.
            : 983.8
                      Min.
                              : 0.000
                                         Min.
                                                 :2013-01-01 01:00:00
##
    1st Qu.:1012.9
                      1st Qu.:10.000
                                         1st Qu.:2013-04-01 21:30:00
##
    Median :1017.6
                      Median :10.000
                                         Median :2013-07-01 14:00:00
##
    Mean
            :1017.9
                      Mean
                              : 9.255
                                         Mean
                                                 :2013-07-01 18:26:37
##
    3rd Qu.:1023.0
                      3rd Qu.:10.000
                                         3rd Qu.:2013-09-30 13:00:00
##
    Max.
            :1042.1
                      Max.
                              :10.000
                                         Max.
                                                 :2013-12-30 18:00:00
    NA's
##
            :2729
```

There is only one year 2013 so we don't need to group by it, we could but it would not change anything.

```
summary_temp_by_day <- weather %>%
group_by(month, day) %>%
summarize(
   mean = mean(temp, na.rm = TRUE),
   std_dev = sd(temp, na.rm = TRUE)
)
```

 $\mbox{\tt \#\#}$ 'summarise()' has grouped output by 'month'. You can override using the $\mbox{\tt \#\#}$ '.groups' argument.

head(summary_temp_by_day)

```
## # A tibble: 6 x 4
## # Groups: month [1]
    month day mean std_dev
##
    <int> <int> <dbl>
                    <dbl>
## 1
      1 1 37.0
                     4.00
## 2
      1
           2 28.7
                     3.45
           3 30.0
## 3
      1
                     2.58
           4 34.9
       1
## 4
                     2.45
## 5
      1
          5 37.2
                     4.01
                      4.40
## 6
      1
            6 40.1
```

Note: group_by(day) is not enough, because day is a value between 1-31. We need to group_by(year, month, day) or group_by(month, day).

LC 3.7 (Objective 1)

(LC3.7) Recreate by_monthly_origin, but instead of grouping via group_by(origin, month), group variables in a different order group_by(month, origin). What differs in the resulting dataset?

Solution:

```
by_origin_monthly <- flights %>%
  group_by(origin, month) %>%
  summarize(count = n())
```

'summarise()' has grouped output by 'origin'. You can override using the
'.groups' argument.

head(by_origin_monthly)

```
## # A tibble: 6 x 3
## # Groups: origin [1]
##
    origin month count
    <chr> <int> <int>
##
## 1 EWR
            1 9893
## 2 EWR
             2 9107
## 3 EWR
             3 10420
             4 10531
## 4 EWR
## 5 EWR
             5 10592
             6 10175
## 6 EWR
```

```
by_monthly_origin <- flights %>%
  group_by(month, origin) %>%
  summarize(count = n())
## 'summarise()' has grouped output by 'month'. You can override using the
## '.groups' argument.
head(by monthly origin)
## # A tibble: 6 x 3
## # Groups:
               month [2]
     month origin count
##
     <int> <chr>
                  <int>
         1 EWR
## 1
                   9893
         1 JFK
## 2
                   9161
## 3
         1 LGA
                   7950
## 4
         2 EWR
                   9107
## 5
         2 JFK
                   8421
## 6
         2 LGA
                   7423
```

In by_monthly_origin the month column is now first and the rows are sorted by month instead of origin. If you compare the values of count in by_origin_monthly and by_monthly_origin using the View() function, you'll see that the values are actually the same, just presented in a different order.

LC 3.8 (Objective 1)

(LC3.8) How could we identify how many flights left each of the three airports for each carrier?

Solution: We could summarize the count from each airport and carrier using the n() function, which *counts rows*.

```
count_flights_by_airport <- flights %>%
  group_by(origin, carrier) %>%
  summarize(count = n())
```

head(count_flights_by_airport,n=10)

```
## # A tibble: 10 x 3
## # Groups:
               origin [1]
##
      origin carrier count
##
      <chr>
            <chr>
                      <int>
##
    1 EWR
             9E
                       1268
##
    2 EWR
             AA
                       3487
##
   3 EWR
             AS
                       714
##
   4 EWR
             B6
                       6557
## 5 EWR
             DL
                       4342
##
  6 EWR
             EV
                      43939
##
  7 EWR
             MQ
                       2276
##
  8 EWR
             00
                          6
## 9 EWR
             UA
                      46087
## 10 EWR
             US
                       4405
```

Note: the n() function counts rows, whereas the $sum(VARIABLE_NAME)$ function sums all values of a certain numerical variable $VARIABLE_NAME$.

LC 3.9 (Objective 1)

(LC3.9) How does the filter operation differ from a group_by followed by a summarize?

Solution:

- filter picks out rows from the original dataset without modifying them, whereas
- group_by %>% summarize computes summaries of numerical variables, and hence reports new values.

LC 3.10 (Objective 2)

(LC3.10) What do positive values of the gain variable in flights correspond to? What about negative values? And what about a zero value?

Solution:

- Say a flight departed 20 minutes late, i.e. dep_delay = 20
- Then arrived 10 minutes late, i.e. arr delay = 10.
- Then gain = dep_delay arr_delay = 20 10 = 10 is positive, so it "made up/gained time in the air."
- 0 means the departure and arrival delay times were the same, so no time was made up in the air. We see in most cases that the gain is near 0 minutes.

LC 3.11 (Objective 2)

(LC3.11) Could we create the dep_delay and arr_delay columns by simply subtracting dep_time from sched_dep_time and similarly for arrivals? Try the code out and explain any differences between the result and what actually appears in flights.

Solution: No because you can't do direct arithmetic on times. The difference in time between 12:03 and 11:59 is 4 minutes, but 1203–1159 = 44. Plus there are time zones, departure and arrival times are in the local timezone, which cause problems with simple subtraction.

```
LC3.11<- flights %>%
  mutate(time_gain=dep_time-arr_time,gain = dep_delay - arr_delay) %>%
  select(air_time,dep_time,arr_time,time_gain,dep_delay,arr_delay, gain)
```

head(LC3.11)

```
## # A tibble: 6 x 7
     air_time dep_time arr_time time_gain dep_delay arr_delay gain
##
##
        <dbl>
                  <int>
                            <int>
                                       <int>
                                                  <dbl>
                                                            <dbl> <dbl>
          227
                              830
                                        -313
                                                      2
                                                                11
## 1
                    517
                                                                      -9
## 2
          227
                    533
                              850
                                        -317
                                                      4
                                                                20
                                                                     -16
                                                      2
## 3
          160
                    542
                              923
                                        -381
                                                                33
                                                                     -31
## 4
          183
                    544
                             1004
                                        -460
                                                     -1
                                                               -18
                                                                      17
## 5
          116
                    554
                              812
                                        -258
                                                     -6
                                                               -25
                                                                      19
                                        -186
## 6
          150
                              740
                                                     -4
                                                                12
                    554
                                                                     -16
```

LC 3.12 (Objective 2)

(LC3.12) What can we say about the distribution of gain? Describe it in a few sentences using a boxplot and the gain_summary data frame values.

Solution: We must create the data frame from the notes. We copied the code from the book, we had to copy and combine two chunks of code.

```
gain_summary <- flights %>%
  mutate(gain = dep_delay - arr_delay) %>%
  summarize(
    min = min(gain, na.rm = TRUE),
    q1 = quantile(gain, 0.25, na.rm = TRUE),
    median = quantile(gain, 0.5, na.rm = TRUE),
    q3 = quantile(gain, 0.75, na.rm = TRUE),
    max = max(gain, na.rm = TRUE),
    mean = mean(gain, na.rm = TRUE),
    sd = sd(gain, na.rm = TRUE),
    missing = sum(is.na(gain))
)
```

gain_summary

theme_classic()

```
## # A tibble: 1 x 8
       min
             q1 median
                           q3 max mean
                                              sd missing
     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                   <int>
## 1 -196
                      7
                           17
                                109 5.66 18.0
                                                    9430
flights %>%
  mutate(gain = dep_delay - arr_delay) %>%
  ggplot(aes(x=1,y=gain)) +
  geom_boxplot() +
  scale_x_continuous(breaks = NULL) +
  theme(axis.title.x = element_blank()) +
```


Most of the time the gain is a little above zero (the median is 7, meaning gain is above 0 at least 50% of the time) and between -50 and 50 minutes. There are some extreme cases however!

Documenting software

File creation date: 2022-06-04
R version 4.1.3 (2022-03-10)
ggplot2 package version: 3.3.6
dplyr package version: 1.0.9

• nycflights13 package version: 1.0.2