NAME	MATH 611, Fall 200)7
	Midterm Exam 2	

Remember to justify your answers to receive full credit.

1. Let $A \in \mathbb{C}^{m \times m}$, $b \in \mathbb{C}^m$, and k be a positive integer. To solve the linear system $A^k x = b$, you could form the matrix $C = A^k$ and then use pivoted LU factorization on C. Describe another algorithm starting with pivoted LU factorization on A. (You **may** express your algorithm as MATLAB code, but do not have to.) Which of these two methods is faster?

- 2. (a) Prove that if X is a hermitian positive definite $m \times m$ matrix such that $X^2 = I$, then X = I. (Hint: Use an SVD.)
 - (b) Prove that if A is any real SPD matrix, then there is another real SPD matrix X such that $X^2 = A$. (Hint: Use an SVD.)

3. Suppose A is a real symmetric matrix with eigenvalues -4, -1, 2, 12. In each column below are eigenvalue estimates that result from running one of these four iterations on A: power iteration, inverse iteration, shifted inverse iteration, or Rayleigh quotient iteration. In each case state which iteration was used, explaining **quantitatively** why your answer is the most reasonable one.

(a)	(b)	(c)
8.310261519629201	11.993354154339482	-2.411923455369100
10.586563234632390	11.999262069508562	-3.996594223136526
11.958782543542418	11.999918025646743	-3.999996465301037
11.999999316281780	11.999990892287636	-3.999999996325349
12.00000000000000000	11.999998988047848	-3.999999999996177

4. Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
.

- (a) Use symmetric pivoting to find a symmetric tridiagonal *T* that is unitarily similar to *A*. (The standard Hessenberg reduction method is not necessary.)
- (b) Describe what happens when the "pure" (unshifted) *QR* iteration is applied to *A*. Explain this convergence behavior in terms of eigenvalues.