Data Augmentation

Bhagyesh Gaikwad.

Used learning rate of 0.001, batch size of 32 and ran it for 100 epochs(32,000 iterations in code) 200 epochs(64,000 iterations in code).

Report of Final Test Accuracy with 100 and 200 epochs respectively:

1) Resnet model without augmentation: 64.27, 64.84

2) Mixup with alpha = 0.2: 66.03, 67.12

3) Mixup with alpha = 0.4: 66.22, 67.73

4) Cutout with K = 16: 66.79, 66.74

5) Standard with K = 4: 75.73, 76.35

6) All Combined (as stated in assignment): 75.02, 76.91

Applying standard and cutout augmentations on the training images and then apply mixup to blend them:

- Chose alpha = 0.4 is for are combined augmentation as it performed better than 0.2.
- Combining all methods certainly gave better results than mixup and cutout, but performance is similar to standard for 100 epochs, and a little better for 200 epochs.

Role of data augmentation:

For 100 epochs:

For 200 epochs:

- We can see from the above graph that training loss converges slowly for implementations with augmentations than with no augmentation.
 - Adam optimizer also plays a part in spikes that we see in the loss graph
- Eventually every implementation reaches 99% train accuracy (except for combined, but the trend in both graphs suggests with more epochs we can get it to 99%).
 - Additionally as seen in the graph, implementation with augmentation needs more epochs to reach better accuracy.
 - This intuitively makes sense since augmentation makes it difficult to overfit and would eventually give better results.
- Test accuracy is lower than training by a good margin. But here we can see that implementations with augmentations have performed better than no augmentation.
 - 'Combined' augmentation has performed better than others with max test accuracy in 200 epochs.