GRÄNSVÄRDEN FÖR FUNKTIONER AV FLERA VARIABLER

Definition 1. Avståndet d(P,Q) mellan två punkter i R^n , $P(x_1,...,x_n)$ och $Q(y_1,...,y_n)$ definieras som

$$d(P,Q) = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$

Definition 2. Låt $f(x_1,...,x_n)$ vara en reell funktion av n-variabler med definitionsmängden D. Låt A vara ett reellt tal och $P_0(a_1,...,a_n)$ en punkt ligger i D eller i randen till D. Vi säger att funktionen $f(x_1,...,x_n)$ har **gränsvärdet** A, då $P(x_1,...,x_n)$ går mot $P_0(a_1,...,a_n)$ om följande gäller:

Till varje $\varepsilon > 0$ (oavsett hur litet är ε) finns det ett tal $\delta > 0$ så att

$$\{P \in D, d(P, P_0) < \delta \text{ och } P \neq P_0 \} \Rightarrow |f(P) - A| < \varepsilon$$

Vi skriver då $\lim_{P \to P_0} f(P) = A$ (eller $f(P) \to A$ då $P \to P_0$)

Anmärkning1: Vid beräkning av gränsvärdena då $P \rightarrow P_0$, för funktioner f(x,y) av **två** variabler använder vi oftast **polära koordinater**

$$x = r \cos \theta$$
, $y = r \sin \theta$ och därmed $x^2 + y^2 = r^2$, om $P_0 = (0,0)$

Eller, om $P_0 = (a,b)$, modifierade polära koordinater.

$$x-a=r\cos\theta$$
, $y-b=r\sin\theta$, dvs $x=a+r\cos\theta$, $y=b+r\sin\theta$.

Då är $P \rightarrow P_0$, ekvivalent med r går mot 0^+ .

Anmärkning2: Om vi närmar oss punkten P_0 längs två vägar väg1, väg2 och får olika resultat, då **existerar INTE** $\lim_{P\to P} f(P)$.

Uppgift 1.

Avgör om följande gränsvärden existerar och beräkna de i förekommande fall.

a)
$$\lim_{(x,y)\to(0,0)} \frac{\arctan(\sqrt{x^2+y^2})}{4\sqrt{x^2+y^2}}$$
 b) $\lim_{(x,y)\to(0,0)} \frac{\ln(1+x^2+y^2)}{x^2+y^2}$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$
 d) $\lim_{(x,y)\to(1,2)} \frac{3\sin[(x-1)^2+(y-2)^2]}{(x-1)^2+(y-2)^2}$

e)
$$\lim_{(x,y)\to(0,0)} \frac{5x^4 - 4x^2y^2}{3x^2 + 3y^2 + xy}$$
 f) $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{4x^2 + 4y^2}$ g) $\lim_{(x,y)\to(0,0)} \frac{y^2 - x^2}{2x^2 + 2y^2}$

Tips: Byta till polära koordinat

Lösning:

a)
$$\lim_{(x,y)\to(0,0)} \frac{\arctan(\sqrt{x^2+y^2})}{4\sqrt{x^2+y^2}}$$

Låt
$$f(x, y) = \frac{\arctan(\sqrt{x^2 + y^2})}{4\sqrt{x^2 + y^2}}$$

Vi använder polära koordinater $x = r \cos \theta$, $y = r \sin \theta$ och betraktar

$$f(x,y) = \frac{\arctan(\sqrt{x^2 + y^2})}{4\sqrt{x^2 + y^2}} = \frac{\arctan(r)}{4r} \text{ då } r \text{ går mot } 0^+.$$

Notera att
$$\frac{\lim}{r \to 0} \frac{\arctan(r)}{4r} = \left[\frac{0}{0}, L' Hospital\right] = \frac{\lim}{r \to 0} \frac{\frac{1}{1+r^2}}{4} = \frac{1}{4}$$
.

Eftersom $\frac{\arctan(r)}{4r} \rightarrow \frac{1}{4}$ oberoende av θ , då r går mot 0^+ , får vi att

$$\lim_{(x,y)\to(0,0)} \frac{\arctan(\sqrt{x^2+y^2})}{4\sqrt{x^2+y^2}} = \frac{1}{4}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{\ln(1+x^2+y^2)}{x^2+y^2}$$

Låt
$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$$
.

Vi använder $x = r \cos \theta$, $y = r \sin \theta$ och betraktar

$$f(x, y) = \frac{\ln(1 + x^2 + y^2)}{x^2 + y^2} = \frac{\ln(1 + r^2)}{r^2}$$
 då r går mot 0⁺.

Eftersom $\frac{\ln(1+r^2)}{r^2} \to 1$ oberoende av θ , då r går mot 0^+ , får vi att

$$\lim_{(x,y)\to(0,0)} \frac{\ln(1+x^2+y^2)}{x^2+y^2} = 1.$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$

Låt
$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}}$$
.

Metod 1. Vi använder polära koordinater $x = r \cos \theta$, $y = r \sin \theta$ och undersöker

$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{r \cos \theta}{r} = \cos \theta$$

Om punkten P(x, y) närmar sig (0,0) beror resultat ($\cos \theta$) av θ , med andra ord får vi olika resultat om vi använder olika vägar mot (0,0).

Därför **existerar INTE** $\lim_{(x,y)\to>(0,0)} \frac{x}{\sqrt{x^2+y^2}}$.

Metod 2. Vi närmar oss punkten (0,0) längs två vägar,

väg 1, y=x, x>0, x går mot 0^+ och väg 2 : y=2x, x>0, x går mot 0^+

Längs väg 1 får vi $f(x,y) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{2x^2}} = \frac{1}{\sqrt{2}}$ (konstant och därmed går mot $\frac{1}{\sqrt{2}}$ då x går mot 0.)

Längs väg 2 får vi
$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{5x^2}} = \frac{1}{\sqrt{5}} \ (\neq \frac{1}{\sqrt{2}})$$

Om vi närmar oss punkten (0,0) längs vägarna väg1, väg2 får vi olika resultat; därför existerar INTE

$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}.$$

d)
$$\lim_{(x,y)\to(1,2)} \frac{3\sin[(x-1)^2+(y-2)^2]}{(x-1)^2+(y-2)^2}$$

Vi använder variabelbyte

$$x-1=r\cos\theta$$
, $y-2=r\sin\theta$ dvs $x=1+r\cos\theta$, $y=2+r\sin\theta$,

Notera att
$$(x-1)^2 + (y-2)^2 = r^2$$
 och att

$$(x, y) \rightarrow (1,2)$$
 är nu ekvivalent med $r \rightarrow 0^+$.

Vi använder nya variabler och undersöker funktionen då $r \rightarrow 0^+$.

$$f(x,y) = \frac{3\sin[(x-1)^2 + (y-2)^2]}{(x-1)^2 + (y-2)^2} = \frac{3\sin[r^2]}{r^2} \text{ går mot 3 oberoende av } \theta \text{ , då } r \to 0^+ \text{ .}$$

Därför
$$\lim_{(x,y)\to(1,2)} \frac{3\sin[(x-1)^2+(y-2)^2]}{(x-1)^2+(y-2)^2} = 3$$

e)
$$\lim_{(x,y)\to(0,0)} \frac{5x^4 - 4x^2y^2}{3x^2 + 3y^2 + xy}$$

Om vi använder polära koordinater får vi

$$f(x,y) = \frac{5x^4 - 4x^2y^2}{3x^2 + 3y^2 + xy} = \frac{5r^4\cos^4\theta - 4r^4\cos^2\theta\sin^2\theta}{3r^2\cos^2\theta + 3r^2\sin^2\theta + r^2\cos\theta\sin\theta}$$

$$= r^2 \cdot \frac{5\cos^4 \theta - 4\cos^2 \theta \sin^2 \theta}{3 + \cos \theta \sin \theta} \quad (*)$$

Här har vi två faktorer:

Faktor 1: r^2 som går mot 0 (oberoende θ) av då r går mot 0 och

Faktor 2:
$$\frac{5\cos^4\theta - 4\cos^2\theta\sin^2\theta}{3 + \cos\theta\sin\theta}$$
 (**) som innehåller θ .

Om vi visar att (**) är begränsad får vi från (*) att funktionen går mot 0 då r går mot 0.

$$\text{Vi har } |\frac{5\cos^4\theta - 4\cos^2\theta\sin^2\theta}{3 + \cos\theta\sin\theta}| \leq \frac{9}{2} \quad \text{,} \quad \text{[Notera |A-B| } \leq |A| + |B| \text{ och at n\"amnaren N}$$

$$N \ge 2 \Rightarrow \frac{1}{N} \le \frac{1}{2}$$
] och därför, från (*), får vi

 $|f(x,y)| \le r^2 \cdot \frac{9}{2}$, som går mot 0 **oberoende av** θ , då r går mot 0.

Därför
$$\lim_{(x,y)\to>(0,0)} \frac{5x^4 - 4x^2y^2}{3x^2 + 3y^2 + x} = 0$$
.

f)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{4x^2+4y^2}$$

$$f(x, y) = \frac{x^2 y^3}{4x^2 + 4y^2} = \text{(polära koordinater)}$$

$$\frac{r^5\cos^2\theta\sin^3\theta}{4r^2} = \frac{r^3}{4}\cos^2\theta\sin^3\theta \le \frac{r^3}{4} \text{ går mot 0 oberoende av } \theta \text{ , då r går mot 0.}$$

Därför
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{4x^2+4y^2} = 0$$

g) $\lim_{(x,y)\to(0,0)} \frac{y^2-x^2}{2x^2+2y^2}$ existerar inte eftersom vi får olika gränsvärden längs två vägar:

väg1: y=x, x>0, x går mot 0^+ och väg 2 väg1: y=2x, x>0, x går mot 0^+ .

Längs väg 1 har vi
$$\lim_{x\to 0} \frac{x^2 - x^2}{2x^2 + 2x^2} = 0$$

Längs väg 2 har vi
$$\lim_{x \to 0} \frac{4x^2 - x^2}{2x^2 + 8x^2} = \frac{3}{10}$$

Uppgift 2.

Avgör om följande funktioner kan utvidgas så att de blir kontinuerliga i hela R²:

a)
$$f(x, y) = (x^2 + y^2) \ln(x^2 + y^2)$$
 b) $f(x, y) = \frac{3y}{\sqrt{x^2 + y^2}}$

Lösning:

a) Funktionen $f(x, y) = (x^2 + y^2) \ln(x^2 + y^2)$ är definierad om $x^2 + y^2 > 0$ dvs i alla punkter (x,y) förutom i punkten (0,0).

Vi undersöker om gränsvärdet $\lim_{(x,y)\to (0,0)} (x^2+y^2) \ln(x^2+y^2)$ existerar genom att använda polära koordinater.

$$f(x,y) = (x^2+y^2)\ln(x^2+y^2) = r^2\ln r^2 = 2r^2\ln r \text{ går mot 0 oberoende av }\theta\text{ , då }r \rightarrow 0^+\text{ .}$$

{ Anmärkning:
$$\lim_{r\to 0} 2r^2 \ln r = \lim_{r\to 0} 2\frac{\ln r}{r^{-2}} = [\frac{-\infty}{\infty} \text{ L' Hospital}] = \lim_{r\to 0} 2\frac{1/r}{-2r^{-3}} = \lim_{r\to 0} (-r^2) = 0 \text{ } }$$

Alltså
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2) = 0$$

Därmed kan vi utvidga f(x, y) till F(x, y) genom att definiera

$$F(x,y) = \begin{cases} 0 & \text{om} \quad (x,y) = (0,0) \\ f(x,y) = (x^2 + y^2) \ln(x^2 + y^2) & \text{om} \quad (x,y) \neq (0,0) \end{cases}$$

Då är F(x, y) en kontinuerlig funktion i hela R^2 .

Svar a) Ja Svar b) Nej (Tipps
$$\lim_{(x,y)\to(0,0)} \frac{3y}{\sqrt{x^2+y^2}}$$
 existerar inte)