BCAR/M-14 COMPUTER -ORIENTED STATISTICAL METHODS Paper: BCA-123 (For Reappear Candidates)

Time : Three Hours] [Maximum Marks : 80

Note: Attempt five questions in all. Select one question from each unit in addition to compulsory Question No. 1.

compulsory Question No. 1.							
	Compulsory (Question					
1. (a) State demerits of Median.					2.5		
(b) State any four characteristics of Normal distribution.							
(c) Distinguish between Positive and	Negative correla	ation.			2.5		
(d) What is the - significance of Leas	t square method	1?			2.5		
(e) Specify conditions for Chi-square	method.				3		
(f) State Cochran's theorem.					3		
	UNIT—	-I					
2. (a) Calculate mode, median, first quar	tile, third quarti	le and Bowley's	Coefficient of				
skewness from the following data:					10		
Class: 0-10 10-20	20-30	30-40 40-50	50-60				
Frequency: 3 9	5	30	18		5		
(b) Find the missing frequency from the	following data:						
Marks: 0-10 10-20	20-30	30-40	40-50	50-60			
Frequency: 5 15	20	_	20	10			
Given that arithmetic mean is 34.					6		
3. (a) First four moments of a distributio	n about 4 are —	1.5, 17, 30 and	108. Find the				
moments about the mean. Also find	d 131 and 132.				8		
(b) The mean of 5 observations is 4.4 a	and the variance	is 8.24. If the t	hree of five				
observations are 1, 2 and 6, find th	e other two obse	ervations.			8		

UNIT—II

- 4. (a) Given that 1% of the blades manufactured by a company are defective. Use Poisson distribution to find the probability that a packet of 100 blades contains
 - (i) No defective blade.
 - (ii) One defective blade.
 - (iii) Two or more defective blades. 8
 - (b) The screw produced by a machine were checked b examining sample of 12. The following table shows the distribution of 128 samples according to the number of defective items they contained:

No.of defectives in a sample of 12	0	1	2	3	4	5	6	7
No. of Samples	7	6	19	35	30	23	7	1

fit a binomial distribution and find the expected frequencies if the chance of machine being defective is 1/2.

5. (a) Find the regression equation of X and Y from the following data:

Age of Husband (X)	18	19	20	21	22	23	24	25	26	27
Age of Wife (Y)	17	17	18	18	19	19	19	20	21	22
										10

(h) In a correlation study, the following values are obtained:

 X
 Y

 Mean:
 65
 67

 Standard deviation:
 2.5
 3.5

and Coefficient of correlation 0.8.

Find two regression equations that are associated with the above values.

6

8

6. (a) A stud	ly of the heights	of 18 pairs of	husbands and the	ir wives shows t	hat		
coefficien	t of correlation	is 0.52. Apply	t -test to find whe	ether correlation	is significant.		
[Given th	nat for 16 degree	e of freedom a	t 5% level of signi	ficance, the tabl	e value of		
t = 2.12] 8						
(b) A set of	5 coins is tossed	d 3200 times a	nd the number of l	heads appearing	each time is		
noted. Th	ne results are as	follows:					
No. of he	eads: 0	1	2	3	4	5	
Frequency	y: 80	570	1100	900	50	50	
Test the hypothesis that the coins are unbiased							
7. (a) •Fit a	straight line to t	he following o	lata: 8				
Year:	1977	1978	1979	1980	1981	1982	
Sale:	10	12	15	16	18	19	
(b) Fit a cur	ve y = aebx to	the following	data:				
x:	0	1	2	3			
y:	5	8	15	32		8	
			UNIT—IV				
8. (a) Briefly	y discuss signifi	cance of ANC	OVA.				
(b) What	is Forecasting?	Briefly descri	be Opinion polling	g technique of fo	precasting.		
(c) What are the limitations while using forecasting techniques?							
9. (a) State and prove baye's theorem.							
(b) In a bo	olt factory, mac	hine A, B and	C manufacture res	spectively 20%,	30% and 45%		
of total	production. Of	their output, r	respectively 5%, 49	% and 2% bolts	are defective.		
A bolt i	is drawn at rand	lom from the f	actory and is four	nd to be defective	e. What is the		
probab	oility that it was	manufactured	by machine C?			8	