Datenkommunikation

Internet und IP-Protokoll

Wintersemester 2011/2012

Überblick

1	Grundlagen von Rechnernetzen, Teil 1
2	Grundlagen von Rechnernetzen, Teil 2
3	Transportzugriff
4	Transportschicht, Grundlagen
5	Transportschicht, TCP (1)
6	Transportschicht, TCP (2) und UDP
7	Vermittlungsschicht, Grundlagen
8	Vermittlungsschicht, Internet
9	Vermittlungsschicht, Routing
10	Vermittlungsschicht, Steuerprotokolle und IPv6
11	Anwendungsschicht, Fallstudien
12	Mobile IP und TCP

Überblick

1. Überblick

- Internet-Vermittlungsschicht
- Autonome Systeme (AS)
- Organisation
- IPv4: Überblick und Aufgaben

2. IPv4-Adressierung

- IPv4: Adressierung und Adressenknappheit
- IPv4-Subnetting
- VLSM und CIDR

3. IPv4-PDU

- Aufbau und Felder

4. Fragmentierung

Überblick: Die Internet-Vermittlungsschicht

Überblick über das Internet

- Das Internet ist eine hierarchische Organisation des Netzwerks
- Große Backbones sind über Leitungen mit hoher Bandbreite und schnellen Routern verbunden
- An den Backbones hängen regionale Netze
- An den regionalen Netzen hängen die Netze von Unternehmen, Universitäten, Internet Service Providern (ISP),...
- Der Zugriff über das Internet von Deutschland aus auf einen Server in den USA wird über mehrere IP-Router geroutet

Überblick über das Internet, Backbone

Das Internet heute, AS

- Autonome Systeme haben sich unterschiedlich entwickelt → z.B. verschiedene Routing-Strategien
- Es gibt derzeit mehr als 110.000 autonome Systeme weltweit
- Jedes AS hat eine eindeutige Nummer
 - 11, Harward-University
 - 1248, Nokia
 - 2022, Siemens
 - 3680, Novell
 - 4183, Compuserve
 - 6142, Sun
 - 12816, MWN

ARPANET-IMP

Das Internet heute, Begriffe

- Autonome Systeme = AS
- Internet-Provider = Provider
- Tier-1-AS, Tier-2-AS, Tier-3-AS (andere Bezeichnung: Tier-x-Netzwerke)
 - Edge-Networks = Tier-1-AS
- Internet-Knoten
 - = IX (Internet Exchange) = IXP (Internet Exchange Point)
 - = NAP (Network Access Point) → USA
- Public und private Peering-Points
- Peering-Agreement = Peering-Vereinbarung:
 - Übertragung ohne Gebühr bei gleichberechtigten Peers
- Transit-Vereinbarung:
 - Gebühr nach vereinbarter Bandbreite

Das Internet heute, Verbindungen zwischen AS

Das Internet heute: AS-Kategorien

- Tier-3: Kleine, lokale Provider, Endkundengeschäft
 - M-net in Bayern (Hauptgesellschafter: Münchner Stadtwerke)
 - Hansenet (Hamburg, Tochter der Telecom Italia)
 - Versatel (Berlin)
- Tier-2: Betreiber großer, überregionaler Netze
 - Deutsche Telekom
 - France Telecom und France Telecom
 - Tiscali (Telekom-Unternehmen, Italien)
- Tier-1: Betreiber von globalen Internet-Backbones
 - AT&T (US-amerikanischer Telekoanbieter)
 - AOL (US-amerikanischer Online-Dienst)
 - NTT (Nippon Telegraph and Telephone Corporation)
 - Verizon Communications (US-amerikanischer Telekomanbieter)

Das Internet heute, Kunden – Provider - Peers

- Rollen: Kunden Provider Peers
- Peering-Abkommen zwischen AS (Tier-1, Tier-2, Tier-3)
- Tier-1-Provider "peeren" kostenlos miteinander, die anderen je nach Vereinbarung

Das Internet heute, Links

Begriffe:

- Stub AS (sollte es nicht geben)
- Multihomed Stub AS
- Multihomed AS

Das Internet heute, Typische Verbindungen

Das Internet heute, physikalische Sicht

- DE-CIX Management GmbH: Betreibt DE-CIX international Internet Exchange ("IX") in Frankfurt
- Einer der größten IX weltweit (http://www.de-cix.de)
- Top-80 in Europa: http://www.alrond.com/de

Das Internet heute, physikalische Sicht

Tier-x-Hierarchie

AS-Routing-Sicht

Quelle: http://www.heise.de/netze/artikel/print/115741

Das Internet heute, öffentliche Peering-Punkte (1)

Top-80 in Europa: http://www.alrond.com/de (2008)

Pos.	IX	Max Gbit/s	Avg Gbit/s	Internet Exchange Name	Country
1	AMS-IX	453,04	293,17	Amsterdam Internet Exchange	NL
2	DE-CIX	432	236,4	German Internet Exchange	<u>DE</u>
					ĞВ
3	LINX	293,05	215,69	London Internet Exchange	GB
4	EQUINIX	233,27	181,46	EQUINIX (6 US-Points)	<u>US</u>
5	JPNAP	221,99	175,87	Japan Network Access Point	<u>JP</u>
					=
6	NETNOD	126,16	78	Netnod Internet Exchange i Sverige	<u>SE</u>
7	ESPANIX	103,5	83,7	España Internet Exchange	<u>ES</u>
					ID.
8	JPIX	101,01	64,42	Japan Internet Exchange	<u>JP</u>

Das Internet heute, öffentliche Peering-Punkte (2)

- AMS-IX im September 2011
- Quelle: http://www.ams-ix.net/

Vergleich: November 2010

Vergleich: November 2009

**Topic States Cutzut **Topic States Cut

Das Internet heute, öffentliche Peering-Punkte (3)

- DE-CIX im September 2011, mittlerweile der Größte
- Quelle: http://www.de-cix.net/, siehe auch: Statistiken zu Internet-Knoten in Wikipedia/Internet-Knoten

last update: Mon Nov 23 17:00:03 UTC 2000

1.4 T

1.4 T

1.7 T

1.7 T

1.8 T

1.7 T

1

Vergleich: November 2010

Das Internet heute: IAB

 Zuständig für die Weiterentwicklung des Internet ist das IAB (Internet Activity (heute: Architecture) Board), das bereits
 1983 gegründet und 1989 umorganisiert wurde.

Das Internet heute, IAB

- Das IAB (Board) bestimmt die Richtlinien der Politik
- Die IETF kümmert sich in verschiedenen Bereichen (areas) um kurz- und mittelfristige Probleme
- Die IESG koordiniert die IETF Working Groups
- Die IRTF ist ein Forschungsbereich, der die TCP/IP-Forschungsthemen koordiniert
- Die **IRSG** koordiniert die Forschungsaktivitäten der einzelnen Gruppen

Seite 20

 Die Working Groups setzen sich aus freiwilligen Mitarbeitern zusammen

Das Internet heute, NIC und DENIC

- Das NIC (Network Information Center, gesprochen NICK), ist zuständig für
 - die Dokumentation und
 - die Verwaltung der umfangreichen Information über
 - Protokolle,
 - Standards,
 - Services, usw.
- Das NIC verwaltet das Internet, z.B. auch die Domänennamen (<u>www.nic.net</u>)
- In Deutschland ist die DENIC (<u>www.denic.de</u>) als nationale Vertretung eingerichtet (Frankfurt)

Das Internet heute, Dokumentation, RFCs

- Die Dokumentation und die Standards werden als technische Reports gesammelt und heißen RFCs (Request for Comments)
- RFCs durchlaufen w\u00e4hrend ihrer Lebenszeit verschiedene Stati (Proposed Standard →Draft Standard →Internet Standard)
- Manche RFCs werden auch nie zum Internet Standard
- RFCs sind frei verfügbar (z.B. unter <u>www.rfc-</u> <u>editor.org</u>)

Internet Protocol: Hauptaufgaben

- Paketvermitteltes (datagramm-orientiertes) und verbindungsloses Protokoll der Vermittlungsschicht
- IP dient der Beförderung von Datagrammen von einer Quelle zu einem Ziel evtl. über verschiedene Zwischenknoten (IP-Router)
- Routing-Unterstützung ist eine zentrale Aufgabe von IP (Routingprotokoll basiert auf diversen Protokollen)
- Datagramme werden während des Transports zerlegt und am Ziel wieder zusammengeführt, bevor sie der Schicht 4 übergeben werden = Fragmentierung

Internet Protocol: Hauptaufgaben

- IP stellt einen ungesicherten verbindungslosen Dienst zur Verfügung
 - Es existiert keine Garantie der Paketauslieferung
 - Die Übertragung erfolgt nach dem Best-Effort-Prinzip
 - "Auslieferung nach bestem Bemühen"
 - Jedes Paket des Datenstroms wird isoliert behandelt
 - Das IP-Paket wird in einem Rahmen der zugrundeliegenden Schicht 2 transportiert, für den Längenrestriktionen bestehen:
 - bei Ethernet ist eine Länge von 1500 Bytes üblich
 - MTU = Maximum Transfer Unit

Überblick

1. Überblick

- Internet-Vermittlungsschicht
- Autonome Systeme (AS)
- Organisation
- IPv4: Überblick und Aufgaben

2. IPv4-Adressierung

- IPv4: Adressierung und Adressenknappheit
- IPv4-Subnetting
- VLSM und CIDR

3. IPv4-PDU

- Aufbau und Felder
- 4. Fragmentierung

Adressierung im Internet, IP-Adressen

- IP-Adressen sind 32 Bit lange Adressen
 - Tupel aus (Netzwerknummer, Hostnummer)
- IP-Adresse von Quelle und Ziel werden in allen IP-Paketen mit übertragen
- Es gibt verschiedene Adressformate
 - man unterscheidet die Klassen A, B, C, D und E
- Schreibweise für IP-Adressen in gepunkteten Dezimalzahlen, jeweils ein Byte als Dezimalzahl zwischen 0 und 255
 - Beispiel:

Hexformat: 0xC0290614

Dezimalzahl: 192.41.6.20

Adressierung im Internet, IP-Adressformate

Alle Adressen der Form 127.xx.yy.zz sind Loopback-Adressen!

Adressierung im Internet, IP-Adressen

- Die niedrigste IP-Adresse ist 0.0.0.0
- Die höchste IP-Adresse ist 255.255.255.255
- Die Adresse 0.0.0.0 hat die besondere Bedeutung "ein bestimmtes Netz" oder "ein bestimmter Host"
- Die Adresse 255.255.255.255 (-1) wird als Broadcast-Adresse verwendet
 - Limited Broadcast → im lokalen Netz
- Weiterer Broadcast-Typ:
 - Directed Broadcast → Broadcast an anderes Netzwerk

Ziel-IP-Adresse: **130.6.255.255**

► Physikalische Verteilung des Broadcast

Adressierung im Internet

- Netznummern werden vom NIC bzw. in Deutschland von der DENIC zugewiesen!
- Adressenknappheit wird erwartet:
 - Neue Version **IPv6** soll hier Abhilfe schaffen

Klasse	Anzahl Netze	Max. Anzahl Hosts je Netz	Anteil am IP- Adressraum	Adressen insgesamt
A (/8)	126 (2 ⁷)	$16.777.214 (2^{24} - 2)$	50 %	2.147.483.638 (2 ³¹)
B (/16)	16.384 (214)	$65.534 (2^{16} - 2)$	25 %	1.073.741.824 (2 ³⁰)
C (/24)	$2.097.152 (2^{21})$	$254(2^8-2)$	12,5 %	536.870.912 (2 ²⁹)

Adressierung im Internet, Subnetting

 Die Hostadresse kann zu besseren organisatorischen Gliederung noch mal zur **Subnetz**-Bildung in zwei Teile zerlegt werden:

- Teilnetznummer

Hostnummer

Beispiel mit Klasse B

10 Netz Subnetz Ho	st
--------------------	----

- Außerhalb des Teilnetzes ist die Aufgliederung nicht sichtbar
- IP-Router in einem Teilnetz berücksichtigen die Subnetzadresse
- Netzwerkmaske wird als Bitmaske verwendet, um die Bits der Subnetzwerknummer zu identifizieren

Adressierung im Internet, Subnetting

- Der lokale Administrator besitzt alle Freiheiten zur Bildung von Subnetzen, ohne die Komplexität auf den Internet-Router zu übertragen
- Bei einer Klasse B-Adresse wäre folgende Struktur denkbar:
 - 3. Byte gibt die Organisationseinheit im Unternehmen an (Subnetz-Adresse)
 - 4. Byte erlaubt die Nummerierung der Geräte: (Stationsadresse)
 - Netzkomponenten (Switch, Hub, etc.): 1 9
 - Arbeitsplätze: 10 249
 - Server: 250 254

Adressierung, Beispiel

• Hier handelt es sich um eine Klasse B-Adresse, warum?

Logische Und-Verknüpfung der IP-Adresse mit der Netzmaske

Die Netzwerkadresse ist demnach: 180.41.0.0 Netzwerkmaske in dotted decimal: 255.255.0.0

Adressierung, Beispiel mit Subnetzadressierung

Subnetz mit zwei Byte für Netzwerknummer und ein Byte für Subnetzwerknummer Die Netzmaske ist hier: 255.255.255.0

CIDR und VLSM

Problem:

- Vergeudung von vielen IP-Adressen durch die Aufteilung des Adressraums in Klassen (siehe Klasse-B-Adressen)
- Aber die Routing-Tabellen der Router sind schon sehr groß und sollten nicht weiter wachsen
- VLSM und CIDR helfen, die Adressproblematik etwas abzumildern
- VLSM = Variable Length Subnet Mask
- CIDR = Classless InterDomain Routing
- CIDR ist VLSM im öffentlichen Internet!

CIDR und VLSM

- Konzept von VLSM/CIDR:
 - Restliche Klasse-C-Netze (ca. 2 Millionen) werden in Blöcken variabler Länge vergeben → Vergabe durch ISP
 - Beispiel: Braucht ein Standort 2000 Adressen erhält er acht aufeinanderfolgende Klasse-C-Netze zugewiesen, kann also auf eine B-Adresse verzichten
- Weitere Verbesserung für das Routing durch Zuordnung der Klasse-C-Adressenbereiche zu Zonen, z.B.
 - Europa: 194.0.0.0 bis 195.255.255.255
 - Nordamerika: 198.0.0.0 bis 199.255.255.255
 - Europäischer Router erkennt anhand der Zieladresse, ob ein Paket in Europa bleibt oder z.B. zu einem amerikanischen Router weitergeleitet werden soll

CIDR und VLSM: Netzwerkpräfix-Notation

- Netzwerkpräfix-Notation (NP-Notation) ermöglicht die Angabe der Netz-Id-Bits in der IP-Adresse
- Notationsbeispiel: 194.24.19.25/20
 - IP-Adresse binär:
 - **110**00010.00011000.00010011.00011001 -> Klasse C
 - Die Präfixlänge (hier 20) gibt die Anzahl der fortlaufenden Einsen in der Netzwerkmaske an:
 - Netzwerkmaske der IP-Adresse:
 - **11111111. 11111111.1111**0000. 00000000 = 255.255.240.000
 - Klasse A = /8
 - Klasse B = /16
 - Klasse C = /24

CIDR und VLSM: Beispiel (vgl. Tanenbaum)

- Cambridge University benötigt 2000 (fast 2¹¹) öffentliche IP-Adressen
 - Klasse-C-Netz mit max. 256 (28) Adressen reicht nicht aus
 - Alternative ist ein Klasse-B Netz mit 65536 (2¹⁶) Adressen
 - -> 63488 öffentliche IP-Adressen werden nicht benötigt und somit verschwendet! (über 95% der bereitgestellten Adressen!!!)
 - Besser: Nutzung mehrerer zusammenhängender Klasse-C Netze
 - Für den Hostanteil der Adresse werden zusätzlich 3 Bit benötigt (2¹¹ Adressen)
 - Cambridge University wird folgender Adressbereich zugewiesen:

```
194.24.0.0/21 -> 194.24.0.0 bis 194.24.7.255 (Netzwerkmaske 255.255.248.0)
```

oder

11000010.00011000.00000000.00000000 bis

11000010.00011000.00000111.11111111 mit

CIDR und VLSM: Beispiel (vgl. Tanenbaum)

- Nach dem gleichen Verfahren werden auch den Universitäten Oxford und Edinburgh mehrere Klasse-C Netze zugewiesen
 - Oxford benötigt 4000 (fast 2¹²) öffentliche IP-Adressen
 - Edinburgh benötigt 1000 (fast 2¹⁰) öffentliche IP-Adressen
- Folgende Adressbereiche werden zugewiesen:
 - Cambridge: 194.24.0.0/21 194.24.0.0 bis 194.24.7.255 - Edinburgh: 194.24.8.0/22 194.24.8.0 bis 194.24.11.255
 - Verfügbar: 194.24.12.0/22 194.24.12.0 bis 194.24.12.255
 - Oxford: 194.24.16.0/20 194.24.16.0 bis 194.24.31.255

CIDR und VLSM: Beispiel (vgl. Tanenbaum)

- Ein Standard IP-Router kann die mittels VLSM zusammengefassten Klasse-C-Netze nicht erkennen
- Das Routing muss um CIDR erweitert werden

Routingtabelle ohne CIDR

194.24.0.0 -> Cambridge 194.24.1.0 -> Cambridge ... 194.24.7.255 -> Cambridge 194.24.8.0 -> Edinburgh ... 194.24.11.255 -> Edinburgh 194.24.16.0 -> Oxford ... 194.24.31.255 -> Oxford

Routingtabelle mit CIDR

194.24.0.0/21	-> Cambridge
194.24.8.0/22	-> Edinburgh
194.24.16.0/20	-> Oxford

Nur 3 statt 28 Einträge!!!

CIDR und VLSM: Beispiel LRZ - Hochschule München - Fakultät 07 (1)

 Das Leibnitz-Rechenzentrum (LRZ) organisiert den privaten IP-Adressbereich 10.0.0.0/8 und ordnet der Hochschule München den Adressbereich 10.28.0.0/16 zu

```
10.20.0.0 -> Lothstraße 34
10.21.0.0 -> Lothstraße 21
10.22.0.0 -> Karlstraße 6
10.23.0.0 -> Infanteriestraße 13/14
...
10.26.0.0 -> Pasing
...
10.28.0.0 -> Hesstraße (Informatik)
...
```

Kein Zugriff von außen möglich, nur über VPN

CIDR und VLSM: Beispiel LRZ - Hochschule München - Fakultät 07 (2)

- Die Fakultät untergliedert den Adressbereich derzeit weiter in vier /18-Subnetze
- Beispiel: Netz 0
 - 10.28.0.0/18 mit 18 Bit Netzwerkanteil und 2¹⁴ 2 Hostadressen
- Beispiel: Netz 1
 - 10.28.64.0/18 mit 18 Bit Netzwerkanteil und 2¹⁴ 2 Hostadressen
 - Binär: 0000 1010 0001 1100 **01**xx xxxx xxxx xxxx

Alle Netze

```
10.28.0.0/18 -> Netz 0: Wird im Münchner Hochschulnetz geroutet
```

10.28.64.0/18 -> Netz 1: Wird innerhalb der Hochschule München geroutet

10.28.128/18 -> Netz 2: wie Netz 1, aber DHCP-Adressvergabe

10.28.192.0/18 -> Netz 3: kein Routing

• Welche IP-Adressen repräsentiert die CIDR-Adresse 180.41.214.192/28 (Netzwerkpräfix-Notation)?

Lösung:

- Insgesamt 4 Bit für Hosts
- Adressbereich von 180.41.214.192 bis 180.41.214.207
- Also von 1011 0100 . 0010 1001 . 1101 0110 . 1100 **0000** bis 1011 0100 . 0010 1001 . 1101 0110 . 1100 **1111**
- Das sind 16 IP-Adressen, 14 davon sind nutzbar

- Ein Unternehmen besitzt die Klasse-C-Adresse 193.1.1.0 und hat 8 Abteilungen
- Jede Abteilung hat 25 Rechner
- Jede Abteilung soll einen eigenen Adressbereich erhalten
- Teilen Sie das Klasse-C-Netzwerk in 8 Subnetze auf und verwenden Sie dabei CIDR-Adressen!
 - Hinweis: Für 8 Subnetze braucht man 3 Bit

Ergänzen Sie die CIDR-Formate (Werte x1 – x8 und y1 – y8)!

Netz	Adresse in Bitdarstellung	CIDR-Format	Rechner
Basisnetz	11000001.00000001.00000001.00000000	193.1.1.0/24	254
Subnetz 0	11000001.00000001.00000001 .000 000000	193.1.1.x1/y1	30
Subnetz 1	11000001.00000001.00000001. 001 00000	193.1.1.x2/y2	30
Subnetz 2	11000001.00000001.00000001. 010 00000	193.1.1.x3/y3	30
Subnetz 3	11000001.00000001.00000001. 011 00000	193.1.1.x4/y4	30
Subnetz 4	11000001.00000001.00000001. 100 00000	193.1.1.x5/y5	30
Subnetz 5	11000001.00000001.00000001. 101 00000	193.1.1.x6/y6	30
Subnetz 6	11000001.00000001.00000001. 110 00000	193.1.1.x7/y7	30
Subnetz 7	11000001.00000001.00000001. 111 00000	193.1.1.x8/y8	30

Ergänzen Sie die CIDR-Formate (Werte x1 – x8 und y1 – y8)!

Netz	Adresse in Bitdarstellung	CIDR-Format	Rechner
Basisnetz	11000001.00000001.00000001.00000000	193.1.1.0/24	254
Subnetz 0	11000001.00000001.00000001 .000 000000	193.1.1.0/27	30
Subnetz 1	11000001.00000001.00000001. 001 00000	193.1.1.32/27	30
Subnetz 2	11000001.00000001.00000001. 010 00000	193.1.1.64/27	30
Subnetz 3	11000001.00000001.00000001. 011 00000	193.1.1.96/27	30
Subnetz 4	11000001.00000001.00000001. 100 00000	193.1.1.128/27	30
Subnetz 5	11000001.00000001.00000001. 101 00000	193.1.1.160/27	30
Subnetz 6	11000001.00000001.00000001. 110 00000	193.1.1.192/27	30
Subnetz 7	11000001.00000001.00000001. 111 00000	193.1.1.224/27	30

Überblick

1. Überblick

- Internet-Vermittlungsschicht
- Autonome Systeme (AS)
- Organisation
- IPv4: Überblick und Aufgaben

2. IPv4-Adressierung

- IPv4: Adressierung und Adressenknappheit
- IPv4-Subnetting
- VLSM und CIDR

3. IPv4-PDU

- Aufbau und Felder
- 4. Fragmentierung

Headerlänge: 20 – 60 Byte

Version	IHL	Type of Service	Paketlänge (in Bytes)
---------	-----	-----------------	-----------------------

- Version: Spezifiziert die genutzte IP-Version; z.Zt. Wechsel von IPv4 auf IP Next Generation (IPv6)
- IHL: Gibt die Länge des Paket-Headers an, gemessen in 32-Bit-Worten; ist aufgrund der variablen Länge des Optionsfeldes nötig (mind. 5 → keine Option, max. 15 Worte → 60 Byte)
- Type of Service: Dieses 8-Bit-Feld ist wiederum aufgeteilt in:
 - Priorität (3 Bit): 000=Standard, 001=Priorität, ..., 101=kritisch, ...
 - ToS-Spezifikation (3 Bit): Flags zur Angabe von Servicetypen (hoher Durchsatz, niedrige Verzögerung, ...)
 - 2 unbenutzte Bit, **IPv4 nutzt** *Type of Service* **nicht**
- Paketlänge: Gesamtlänge des Datenpaketes inkl. Header; gemessen in 8-Bit-Worten
 - max. 65.535 Byte

Identifikation	Flags	Fragment Offset
----------------	-------	-----------------

- Identifikation: Alle Fragmente eines Datagramms erhalten hier den gleichen Wert
- Flags: (3 Bit) Dient der Kontrolle der Fragmentierung
 - Geben an, ob das Feld geteilt werden muss und weitere Pakete folgen oder ob das aktuelle Paket das letzte ist
 - Drei Flags, erstes unbenutzt: 0|DF|MF
 - DF=1 → Fragmentierung ist nicht erlaubt
 - More Fragments=0 → letztes Fragment; MF=1 weitere folgen
- Fragment Offset: Dient der korrekten Herstellung der Ursprungssequenz, da Pakete das Ziel in unterschiedlicher Reihenfolge erreichen können, gemessen in 8-Byte-Worten
 - Dient der Ermittlung der relativen Lage des Fragments im Datagram
 - 13 Bit

Time to Live Protokoll	Header Prüfsumme
------------------------	------------------

- Time to live (TTL): Gibt an, wie lange ein Datagramm im Internet verbleiben darf
 - Es dient dazu, zu alte Pakete vom Netz zu nehmen, bei 0 wird Paket verworfen und eine ICMP-Nachricht zum Quellhost gesendet
 - War gedacht als Zeit in Sekunden (max. 255 s)
 - Wird aber als Hop-Count genutzt, jeder Router subtrahiert 1
- Protokoll: Definiert das darüberliegende Protokoll, an das IP die Daten des Pakets weiterreicht (6=TCP, 89=OSPF,...)
- Header-Prüfsumme: Header-Absicherung
 - 16-Bit-Wörter aufsummieren und Einerkomplement bilden
 - Prüft also **nur** den Header, Daten in höheren Protokollen prüfen!
 - Wird für jede Teilstrecke neu berechnet werden, warum?

Quell-IP-Adresse	
Ziel-IP-Adresse	

• Quell-IP-Adresse und Ziel-IP-Adresse:

- Jeweils 32 Bits
- Identifikation der einzelnen Endsysteme (Hosts)
- Hier stehen die IP-Adressen von Sender- und Empfängerhost

Optionen	Padding
Daten	

- Optionen: Zusätzliche, optionale Angaben:
 - Loose Source Routing → Möglichkeit, den Weg eines Paketes durch das Internet partiell vorgeben; RFC 791
 - Strict Source Routing → die Pakete müssen die Pfadvorgabe einhalten (max. 9 Knoten in der Route), RFC 791
 - Record Routing → Jeder durchlaufene Router trägt seine Adresse ein, ...
 - Wird selten verwendet!!
- Padding: Wenn eine Option genutzt wird, ist das Datagramm bis zur nächsten 32-Bit-Grenze mit Nullen aufzufüllen
- Daten: Die Nutzdaten der h\u00f6heren Schicht

Überblick

1. Überblick

- Internet-Vermittlungsschicht
- Autonome Systeme (AS)
- Organisation
- IPv4: Überblick und Aufgaben

2. IPv4-Adressierung

- IPv4: Adressierung und Adressenknappheit
- IPv4-Subnetting
- VLSM und CIDR

3. IPv4-PDU

- Aufbau und Felder

4. Fragmentierung

← 32 Bit				
Version	IHL	Type of Service	Paketlänge (in Bytes)	
Identifikation Flags Fragment Offset		Fragment Offset		
Time t	o Live	Protokoll	Header Prüfsumme	
Quell-IP-Adresse				
Ziel-IP-Adresse				
Optionen (0 oder mehr Wörter) Padding				
Daten				

- Wenn ein IP-Paket von einem Netzknoten zum anderen weitergeleitet wird, muss es
 - evtl. verschiedene physikalische Netze durchqueren
 - in unterschiedlich zulässige Paketgrößen aufgeteilt werden
- Daher besteht die Notwendigkeit, IP-Datagramme zu zerlegen und am Ziel wieder zusammenzusetzen
 - Fragmentierung und Defragmentierung
 - Alle Router müssen Fragmente der Größe 576 Byte oder kleiner akzeptieren
- Sobald eine Fragmentierung einsetzt, laufen in einem Knoten mehrere Schritte ab

- Das **DF**-Flag wird überprüft, um festzustellen, ob eine Fragmentierung erlaubt ist. Ist das Bit auf "1" gesetzt und es wäre eine Fragmentierung notwendig, wird das Paket verworfen
- Ansonsten wird entspr. der zulässigen Paketgröße das Datenfeld des Ur-Paketes in mehrere Teil zerlegt
- Alle neu entstandenen Pakete weisen mit Ausnahme des letzten Paketes - eine Länge mit einem Vielfachen von 8 Byte auf
- Alle Datenteile werden in neu erzeugte IP-Pakete eingebettet. Die Header dieser Pakete sind Kopien des Ursprungskopfes mit einigen Modifikationen

- Header-Modifikation bei der Fragmentierung:
 - Das MF-Flag wird in allen Fragmenten mit Ausnahme des letzten auf "1" gesetzt
 - Das Fragment-Offset-Feld enthält Angaben darüber, wo das Datenfeld in Relation zum Beginn des nicht fragmentierten Ur-Paketes platziert ist
 - Enthält das Ur-Paket Optionen, wird abhängig vom Type-Byte entschieden, ob die Option in jedes Paketfragment aufgenommen wird (z.B. Protokollierung der Route)
 - Die Headerlänge (IHL) und die Paketlänge sind jeweils neu zu bestimmen
 - Die **Headerprüfsumme** wird neu berechnet

- Ablauf der Defragmentierung:
 - Die Zielstation setzt die Fragmente eines Datagramms wieder zusammen
 - Die Zusammengehörigkeit entnimmt sie dem Identifikationsfeld
 - Die ankommenden Fragmente werden zunächst gepuffert
 - Bei Eintreffen des ersten Fragments wird ein **Timer** gestartet
 - Ist der **Timer** abgelaufen bevor alle Fragmente eingetroffen sind, wird alles **verworfen**
 - Im anderen Fall wird das Datagramm am N-SAP zur Transportschicht hochgereicht

MTU = Maximum Transfer Unit

Fragment 1

Fragment 2

Fragment 3

Fragment 1

Rest des Headers			
Identifikation=120 Flags: $MF = 1$ $FO = 0$			
Datenbyte 0 375			

Fragment 1

Rest des Headers			
Identifikation=120 Flags: $\mathbf{MF} = 1$ $\mathbf{FO} = 0$			
Datenbyte 0 375			

Fragment 2 376 / 8 = 47

Rest des Headers

Identifikation=120 Flags:MF = 1 FO = 47

Datenbyte 376 ... 751

Fragment 1

Tragificite 1			
Rest des Headers			
Identifikation=120 Flags: MF = 1		FO = 0	
Date	enbyte 0 375		
Fragment 2 376 / 8 = 47			
Rest des Headers			
Identifikation=120	Flags:MF = 1	FO = 47	
Datenbyte 376 751			
Fragment 3		752 / 8 = 94	
Rest des Headers			
Identifikation=120	Flags: $\mathbf{MF} = 0$	FO = 94	
Datenbyte 752 999			

Rückblick

1. Überblick

- Internet-Vermittlungsschicht
- Autonome Systeme (AS)
- Organisation
- IPv4: Überblick und Aufgaben

2. IPv4-Adressierung

- IPv4: Adressierung und Adressenknappheit
- IPv4-Subnetting
- VLSM und CIDR

3. IPv4-PDU

- Aufbau und Felder
- 4. Fragmentierung