

Machine Learning for Large-Scale Data Analysis and Decision Making (MATH80629A) Winter 2022

Week #2 - Summary

Announcement

- Class will most likely be online throughout this semester, but final exam will be in person.
- Office hour is right after the class on Wednesdays 11:30-12:30 dfdJoin Zoom Meeting: https://hecmontreal.zoom.us/j/81836582494?
 pwd=VVhvWk1rYVFLdGJzTldLZzYyc0VvQT09

Meeting ID: 818 3658 2494

Passcode: 379543

- Office hour (Pravish) will be on Fridays. He will announce the details on Piazza
- Student Introduction suvery, due January 26, 2022.
- Team Registration, due: January 26, 2022.

Class statistics

Student Introduction Survey form due tonight

Today

- First Quiz on Gradescope!
- **BE PREPARED** for next week! We will have a quiz almost every week at the beginning of the class. You can check the schedule on the website.
- Summary of Machine learning fundamental
- Q&A
- Hands-on session

Quiz 0

Login to your Gradescope account

Machine Learning Problem

The three components of an ML problem:

- 1. Task. What is the problem at hand?
 - Model. How are you parametrizing your solution.
- 2. Performance. How well you are doing?
- 3. Experience. What kind of data do you have access to?

Types of Experiences

- Supervised {(x,y)}. e.g., regression, classification. f: X -> Y
- Unsupervised {(x)}. e.g., clustering, dim. reduction, density estimation
- Reinforcement learning. Agent takes actions in an environment.

Model Evaluation

• Given:

- A performance measure
- A train dataset
- A model

• Can calculate:

- Train error: used to learn (to train).
- Train error cannot be used to evaluate your model
- Must use a separate dataset for evaluation

Regularization

Can be thought of as way to limit a model's capacity

Validation set

- How do we choose the right model and set its hyper parameters (e.g. λ)?
 - Use a validation set
 - Split the original data into two:
 - Train set
 - 2. Validation set
 - Proxy to the test set

Train

Validation

- Train different models/hyper-parameter settings on the train set
- Pick the best according to their performance on the validation set

Bias / Variance

- The goal is to hit the bull's eye
- Each blue dot represents the "performance" of a fixed model on different data from the same distribution

