Exercise 1

1.

Instruction	RegDst	ALUSrc	Memto- Reg				Branch	ALUOp1	ALUOp0
R-format	1	0	0	1	0	0	0	1	0
1 w	0	1	1	1	1	0	0	0	0
SW	X	1	Х	0	0	1	0	0	0
beg	X	0	Х	0	0	0	1	0	1

Instr								
R-type	Write/read PC (2ns)	Instruction memory (15ns)	Control (4ns)	Mux (ALUScr) (2ns)	ALU (10n s)	Mux (MemtoReg) (2ns)	Register write (5ns)	
		Add (PC) (8ns)	Register read (7ns)	ALU Control (2ns)		Gate (1ns) + Mux branch (2ns)		
Load	Write/read PC (2ns)	Instruction memory (15ns)	Control (4ns)	Mux (ALUScr) (2ns)	ALU (10n s)	Data memory access (15ns)	Mux (MemtoReg) (2ns)	Register write (5ns)
		Add (PC) (8ns)	Register read (7ns)	ALU Control (2ns)		Gate (1ns) + Mux branch (2ns)	Mux(RegDst) (2ns)	
			Sign extend (3ns)					
Store	Write/read PC (2ns)	Instruction memory (15ns)	Control (4ns)	Mux (ALUScr) (2ns)	ALU (10n s)	Data memory access (15ns)		
		Add (PC) (8ns)	Register read (7ns)	ALU Control (2ns)		Gate (1ns) + Mux branch (2ns)		
			Sign extend (3ns)					
Branch	Write/read PC (2ns)	Instruction memory (15ns)	Control (4ns)	Mux (ALUScr) (2ns)	ALU (10n s)	Gate (1ns) + Mux branch (2ns)		
		Add (PC) (8ns)	Register read (7ns)	ALU Control (2ns)	Add (PC + bran ch offse t) (8ns)			
			Sign extend (3ns)	Shift left 2 (3ns)				

2.

R-type critical path latency = 2+15+7+2+10+1+2+5=44 ns Load critical path latency = 2+15+7+2+10+15+2+5=58 ns Store critical path latency = 2+15+7+2+10+15=51 ns Branch critical path latency = 2+15+7+3+10+1+2=40 ns

3. Clock frequency should account for the longest critical path

4. The latency of each of the five stages is:

IF: t = max(PC + ADD, PC + Instruction mem) = max(2+8, 2+15) = 17 nsID: t = max(Register file read, Sign extend) = max(7, 3) = 7 nsEX: t = max(mux (ALUSrc) + ALU, ALU control + ALU, shift left + Add, mux (RegDst)) = max(2 + 10, 2 + 10, 3 + 8, 2) = 12 nsMEM: t = max(Data memory access, gate+mux (PCSrc)) = max(15, 1+2) = 15 nsWB: t = max(mux + write register) = max(2+5) = 7 ns

Longest stage is IF with 17 ns. But also taking 10% overhead into account gives: So $T_max = 17$ ns * 1,1 = 18,7 ns

So F_clk = 1 / T_max = 1 / (18,7 ns) = 53,48 MHz

Exercise 2

1.

Q1		1	2	3		4	5	6	7	8	9	10	11	12	13
	lw R1, 0(R3)	F	D	Ε	М		W								
	lw R2, 0(R4)		F	D	Е		М	W							
	beq R1, R2,														
	target			F	D		Ε	М	W						
	add R3, R3, R4														
	addi R4, R3, 4														
	exit														
target:	lw R5, 0(R4)							F	D	Ε	М	W			
	add R5, R5, R6								F	D	E	М	W		

2

<u> </u>														
Q2		1	2	3	4	5	6	7	8	9	10	11	12	13
	lw R1, 0(R3)	F	D	Ε	М	W								
	lw R2, 0(R4)		F	D	E	М	W							
	beq R1, R2,				D									
	target			F	(A2')	**	Ε	М	W					
	add R3, R3, R4													
	addi R4, R3, 4													
	exit													
target:	lw R5, 0(R4)							F	D	Е	М	W		
										D				
	add R5, R5, R6								F	(A2")	**	Ε	М	

3.

Q3		1	2	3	4	5	6	7	8	9	10	11	12	13
	lw R1, 0(R3)	F	D	Ε	М	W								
	lw R2, 0(R4)		F	D	E	М	W							
	beq R1, R2,				D									
	target			F	(A2''')	**	Ε	М	W					
					F									
	add R3, R3, R4				(A3''')									
	addi R4, R3, 4													
	exit													
target:	lw R5, 0(R4)					F	D	E	М	W				
								D						
	add R5, R5, R6						F	(A2''')	**	E	М			

4.

Possible branch delay slot usage:

From before: Not possible because of data dependencies from load words

From target: Move "lw R5, 0(R4)" up. So it becomes "beq" followed by "lw" followed by "add R3, R3, R4"

From not-taken fall-through: You can keep it as it is, the "add R3, R3, R4" is possible for the branch-delay slot