Description d'article

Armand Fouquiau, Romany Stéphane

Université Paris-Sud

Octobre 2017

Cette article a pour but de de combler le vide littéraire concernant une famille de programmes stochastique : Stochastic Mixed-Integer Convexe Programs.

Toutes les décisions prises pour chaques scénarios à l'instant t-1 sont prises en compte à l'instant t. La fonction d'association $X(\xi_s) = x_s$ implique que x_s dépend des variables aléatoires de la distribution ξ .

La prise de décision se fait suivant des scénarios des sous problèmes de la forme : $f(x_s, \xi_s) = min \{f_s(x_s) \mid x_s \in C_s, x_s \in \mathbb{R}^{n_r} \times \mathbb{Z}^{n_z}\}$ Avec $n = n_r + n_z$, la taille du vecteur x_s

Etat de l'art

L'algorithme Progressive Hedging (Haies progressive) a été inventer en 1991 par R. Rockafellar et West,

Etat de l'art

L'algorithme Progressive Hedging (Haies progressive) a été inventer en 1991 par R. Rockafellar et West,

Problématique Etat de l'art Approches/Méthodes Etudiées Résultats

Si on relaxe l'ensemble des contraintes de nonaticipativité noté ici \mathcal{N} , On peut convertir le problème P en problème convexe.

Problématique Etat de l'art Approches/Méthodes Etudiées Résultats

Accordingly, letting $\mathcal Y$ represent the set of feasible dual multipliers, the ordinary Lagrangian, achieved through the dualization of the constraint $X-\hat X=0$.

On introduit des multiplicateurs Lagrangiens $\lambda_s \, \forall s=1\dots S$ En multipliant ces multiplicateurs par les probabilités p_s pour chaque scénario s, on obtient $p_s \lambda_s$. Ces valeurs doivent être interpretées comme les multiplicateurs duals des contraintes de nonanticipativité accocié au scénario s.

La somme de tous les coefficients $p_s \cdot \lambda_s = 0$

On interprète l'équation (1) comme une extention du Lagrangien $\mathcal{L}(X,\hat{X},\Lambda)$.

Avec les termes :

 $\|x_s - \hat{x}_s\|_2^2$ qui permet une meilleur prise de décision, $\|\lambda_s - \hat{x}_s^{-1}\|_2^2$ avec k, un itération de l'algorithme PH, ρ , une constante positive qui accumule l'impacte des deux précédentes quantités, au fil des itérations de l'algorithme PH.

Problématique Etat de l'art Approches/Méthodes Etudiées Résultats

L'algorithme PH règle certains problèmes de séparabilités due à la présence des termes \hat{x}_s

Les optimisations peuvent être faites pour chaque scénario indépendant, au regard de chaque variable (X, \hat{X}, Λ)

Progressive hedging

On instaure \hat{x}^0 en tant que minimum de la fonction objective $f(x_s, \Xi_s)$. Cela leur permet d'obtenir une borne inférieure.

Description de l'algorithme Progressive hedging

Ici mettre le code de l'algo.

L'heuristque PH peut trouver des valerus qui ne respecte pas les contraintes de nonanticipativité, alors que l'algorithme PH-BAB écarte les solutions ne respectant pas ses dernières.

Pour chaque nouveaux noeuds crées, σ^+ , σ^- on garde la même contrainte de réalisabilité : $Q^{\sigma} = Q^{\sigma^+} = Q^{\sigma^-}$

Les meilleurs solvers du marché peuvent détecter la consistance de C_s^{σ} c'est à dire calculer en temps fini $\mathcal{N} \cap (\times_{s=1}^s C_s^{\sigma})$ pour déterminer la réalisabilité de chaque relaxations de la fonction objective $z(\sigma)$ Avec $C_s^{\sigma} \Leftrightarrow C_s \cap Q_s^{\sigma}$: l'ensemble des x_s réalisables pour chaque scénario individuel.

Conclusion/Perspective