The density of mobile electrons in copper metal is  $8.4 \times 10^{28} \text{ m}^{-3}$ . Suppose that  $i = 4.2 \times 10^{18}$  electrons/s are drifting through a copper wire. (This is a typical value for a simple circuit.) The diameter of the wire is 3.6 mm. In this case, about how many minutes would it take for a single electron in the electron sea to drift from one end to the other end of a wire 34 cm long?

| I=nApE                   |  |  |  |
|--------------------------|--|--|--|
|                          |  |  |  |
| I=NAVariet               |  |  |  |
| Variet = I               |  |  |  |
|                          |  |  |  |
| Nym = t                  |  |  |  |
|                          |  |  |  |
| $f = \frac{1}{\sqrt{d}}$ |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
| NA                       |  |  |  |
| <sub>2</sub> JnA         |  |  |  |
|                          |  |  |  |
| =69.215e3 s              |  |  |  |
|                          |  |  |  |
| = 1.154e3 m              |  |  |  |
|                          |  |  |  |

In the previous chapter you calculated the drift speed in a copper wire to be  $2.00 \times 10^{-5}$  m/s for a typical electron current. Calculate the magnitude of the electric field E inside the copper wire. The mobility of mobile electrons in copper is shown below.

$$u = 4.5 \text{ x } 10^{-3} \frac{\frac{m}{s}}{\frac{N}{C}}$$

(Note that though the electric field in the wire is very small, it is adequate to push a sizeable electron current through the copper wire.)

 $E = \frac{V}{V}$  = C.00444 %

|                              | wire leads into ano<br>be equal to the nun  |                   |                                   |                |                 |                        | he cross  | sectional | area. In t | he "stead | y state," t | he numbe | er of elect | rons per s | econd flo | wing thro | ugh the th | ıick    |
|------------------------------|---------------------------------------------|-------------------|-----------------------------------|----------------|-----------------|------------------------|-----------|-----------|------------|-----------|-------------|----------|-------------|------------|-----------|-----------|------------|---------|
|                              | rift speed $\overline{\mathrm{v}}_1$ in the |                   |                                   |                |                 |                        | thinner w | vire?     |            |           |             |          |             |            |           |           |            |         |
| (b) If the electric $E_2 = $ | ectric field $E_1$ in th                    | e thick wire is   | $6 \times 10^{-3} \text{ N/C, v}$ | vhat is the e  | electric fiel   | ld E <sub>2</sub> in t | he thinne | r wire?   |            |           |             |          |             |            |           |           |            |         |
| Part                         | One                                         |                   |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           | _         |            |         |
|                              |                                             |                   |                                   |                |                 |                        |           |           |            | _         |             |          |             |            | 2         |           |            |         |
| J                            | 2 = ]                                       |                   |                                   |                |                 |                        |           |           |            |           |             | ?        |             |            |           |           |            |         |
|                              |                                             |                   |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            |         |
| 1                            | , A ,V <sub>d</sub>                         | rika l            | = M,                              | $A_2$          | $\bigvee_{dri}$ | <b>r</b> +             | 2         |           |            |           |             |          |             |            |           |           |            |         |
|                              |                                             |                   |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            | _       |
|                              | N,=                                         | NZ                |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            | _       |
|                              | A4                                          |                   |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            | _       |
|                              | A <sub>2</sub> =                            | $=\frac{1}{2}A_1$ |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            | _       |
|                              |                                             |                   |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            | _       |
| <u> </u>                     | MAIV                                        | dnir!             | = W1                              | $\frac{1}{2}F$ | 1               | / <sub>dri</sub>       | KF 2      | •         |            |           |             |          |             |            |           |           |            | <u></u> |
|                              |                                             |                   |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            | _       |
| (                            | /                                           | 11                |                                   |                |                 |                        |           |           |            |           |             |          |             |            |           |           |            |         |



| E             | 2 -                     | 2E          | •          |            |             |            |           |            |                              |            |           |             |            |           |            |            |           |            |          |     |
|---------------|-------------------------|-------------|------------|------------|-------------|------------|-----------|------------|------------------------------|------------|-----------|-------------|------------|-----------|------------|------------|-----------|------------|----------|-----|
|               |                         | ì           |            |            |             |            |           |            |                              |            |           |             |            |           |            |            |           |            |          |     |
|               | =                       | 120         | -2         | <b>N</b>   | 1/0         |            |           |            |                              |            |           |             |            |           |            |            |           |            |          |     |
|               |                         |             |            |            |             |            |           |            |                              |            |           |             |            |           |            |            |           |            |          |     |
| Suppose wire  | A and w                 | ire B are i | made of di | ifferent m | etals, an   | d are sub  | jected to | the same   | electric fie                 | eld in two | different | circuits. V | Vire B has | 5 times t | he cross-  | sectional  | area, 1.2 | times as i | many mob | ile |
| electrons per | cubic cer<br>electrons, |             | and 2 time | es the mo  | bility of v | vire A. In | the stead | y state, 3 | <b>x</b> 10 <sup>18</sup> el | ectrons er | nter wire | A every se  | econd. Ho  | w many e  | lectrons e | enter wire | B every s | econd?     |          |     |
|               |                         |             |            |            |             |            |           |            |                              |            |           |             |            |           |            |            |           |            |          |     |
| T             | •                       | 1           | 1 /        | . +        | -           |            |           |            |                              |            |           |             |            |           |            |            |           |            |          |     |

| electrons per cubic centimeter, and 2 times     | s the mobility of wire A. In the st | teady state, $3 \times 10^{18}$ e | lectrons enter wire A | every second. How | many electrons e | nter wire B every s | second? |
|-------------------------------------------------|-------------------------------------|-----------------------------------|-----------------------|-------------------|------------------|---------------------|---------|
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| I = NA                                          | nF                                  |                                   |                       |                   |                  |                     |         |
| T + 10 11/4                                     | YAL                                 |                                   |                       |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| IB= NAB                                         | No F                                |                                   |                       |                   |                  |                     |         |
| 17 19 13                                        | 13 -                                |                                   |                       |                   |                  |                     |         |
| - IA                                            |                                     |                                   |                       |                   |                  |                     |         |
| E = LA<br>AANAVA                                |                                     |                                   |                       |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| E = IB<br>ABNGUB                                |                                     |                                   |                       |                   |                  |                     |         |
| ABNB UB                                         |                                     |                                   |                       |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| T T                                             |                                     |                                   |                       |                   |                  |                     |         |
| $\frac{J_A}{A_A N_A N_A} = \frac{J_B}{A_B N_A}$ |                                     |                                   |                       |                   |                  |                     |         |
| AAVIANA ABV                                     | IBNB                                |                                   |                       |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| Ap = 5                                          | Á,                                  |                                   |                       |                   |                  |                     |         |
| 7 15                                            |                                     |                                   |                       |                   |                  |                     |         |
| 10 12                                           | 1.                                  |                                   |                       |                   |                  |                     |         |
| NB=1.2                                          | NA                                  |                                   |                       |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| $\mu_{\rm B} = 2\nu$                            |                                     |                                   |                       |                   |                  |                     |         |
| 10 13 - 10                                      | A                                   |                                   |                       |                   |                  |                     |         |
| Λ . h .                                         | TT                                  | <b>A</b>                          | N I                   |                   |                  |                     |         |
| ABNBNB                                          | LA = 1B                             | AANA                              | NA                    |                   |                  |                     |         |
|                                                 |                                     |                                   |                       |                   |                  |                     |         |
| (5A)(1.2                                        | 2 10 3 ( 7 1 L                      | AT:                               | = T_ 1                | /1/1              | V                |                     |         |
|                                                 |                                     | A / 4 A                           | 13 7                  | A VA              | OA               |                     |         |

