Layer-Adaptive State Pruning for Deep State Space Models

Background and Objective

State space models are efficient alternatives to attention models, offering strong representational capacity for long sequences. The objective of this research is **to optimize trained state space models** by removing insignificant system parameters with minimal accuracy loss. The proposed method performs multi-system approximation, further enhancing the efficiency of overparameterized state space models.

Methods

• Structured pruning with the state pruning granularity, layer-adaptive pruning ratios, and H_{∞} norm-based pruning criteria

$$\underset{p(l) \subset S^{(l)}}{\text{minimize}} \ \left\| f_{\sigma}\left(\mathbf{u}^{(1)}; \Sigma^{(1:L)}\right) - f_{\sigma}\left(\mathbf{u}^{(1)}; \widehat{\Sigma}^{(1:L)}\right) \right\|_{2}^{2} \implies \frac{\mathcal{H}_{\infty}\left(x_{i}^{(l)}; \Sigma^{(l)}\right)}{\sum_{j \leq i} \mathcal{H}_{\infty}\left(x_{j}^{(l)}; \Sigma^{(l)}\right)}$$

By minimizing output energy distortion caused by removing a state, we can derive an importance of each state based on the maximum gain of its corresponding subsystem.

20%

Random guess line

15 10 5 2

State dimension

Image

Pathfinder

Path-X

100%

Random guess line

250 200 150 100 50 2

State dimension

Results

1. Smaller model size (-33% params)

ListOps

- Strong insignificant state identification performance (<1% accuracy loss)
- 3. Faster inference (x1.7, max) and lower memory usage (x0.6, max)

Average accuracy loss ↓
29.53 (32.82)
22.03 (24.48)
17.49 (19.43)
18.07 (20.07)
4.32 (4.80)
7.51 (8.35)
0.52 (0.58)

Retrieval

Minseon Gwak