

Outline

- GCFP에 대비한 Graph convolutional neural network의 개선점
- Fast approximate convolutions on graphs (algorithm)
- Semi-supervised node classification
- Graph classification
- Result and Discussion

GCFP에 대비한 graph convolutional network의 개선점

- GCFP에 비해 많은 수의 parameter를 포함할 수 있기 때문에 더 크고 복잡한 graph를 표현할 수 있다.
- 네트워크 layer를 쌓을(stack) 수 있기 때문에 더 깊은 (deeper) 모델을 구현할 수 있다.
- fixed length가 아닌 variable length를 사용하기 때문에 더 유연한 모델을 만들 수 있다.
- 거대한 네트워크에서 지역적인 이웃 구조에 의한 과적합(overfitting) 문제를 완화할 수 있다.

adjacency matrix 변환

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\tilde{A} = A + I$$

$$\psi(A,X)=\sigma(AXW)$$
 regularization term $\psi(ilde{A},X)=\sigma(ilde{ar{D}}^{-1/2} ilde{A} ilde{ar{D}}^{-1/2}XW)$ degree matrix

$$H^{(k)} = \sigma({ ilde D}^{-1/2} { ilde A} { ilde D}^{-1/2} H^{(k-1)} W^{(k)})$$

Semi-supervised node classification

- Assume research citation problem (major of researcher)
- Assume some simple architecture for node classification
 - have just 1 hidden layer
 - no regularization term

prediction
$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

Loss function for semi-supervised learning

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$
 back-propagation

- label을 가지고 있는 이웃 노드들 모두!
- label 없는 node들 빼고!
- 이웃들은 같은 class에 속할 확률이 높음

Graph classification

Graph classification

Result and Discussion

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$ K = 2	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8	79.5	74.4
Chebyshev filter (Eq. 5) $K=2$		69.6	81.2	73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1 st -order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

