Import Python Libraries

Libraries Used

Pandas

Data manipulation and analysis

MatPlotLib Pyplot ¶

2D plotting

Numpy

Supports large, multi-dimensional arrays and matrix manipulation and high level mathematical functions on these arrays

Scipy Stats

Hypothesis testing

```
In [1]: # Perform library imports
   import pandas as pd
   import matplotlib.pyplot as plt
   import numpy as np
   import scipy.stats as stats
```

Import Data Dictionaries to Convert Codes to Descriptions

Sources

Non-Profit Data - NCSS Data Archive: https://nccs-data.urban.org/dd2.php?close=1&form=BMF+08/2016 (https://nccs-data.urban.org/dd2.php?close=1&form=BMF+08/2016)

Region Data - https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf (https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf)

Non-Profit Method

- Created text files in json format within Visual Studio for each Data Dictionary
- · Saved files to Resources folder
- · Used pandas library to read the files into dataframes

```
In [2]: # Import Level1 Data Dictionary and display : NOTE - This is only a break out
    of Public Charities
    file_Level1 = "./Resources/NCSSDataDictLevel1.txt"
    dict_Level1 = pd.read_json(file_Level1)
    dict_Level1
```

Out[2]:

Description1

O Other Nonprofits

PC Public Charity

PF Private Foundation

U Unknown

```
In [3]: # Import Region csv file
    region_csv = './Resources/State_region.csv'
    df_region = pd.read_csv(region_csv)
    df_region
```

Out[3]:

	STATE	REGION	STATE_POP	REGION_POP
0	AK	WEST	737438	77993663
1	AL	SOUTH	4887871	124753948
2	AR	SOUTH	3013825	124753948
3	AZ	WEST	7171646	77993663
4	CA	WEST	3955704	77993663
5	СО	WEST	5695564	77993663
6	СТ	NORTHEAST	3572665	5611079
7	DE	SOUTH	967171	124753948
8	FL	SOUTH	21299325	124753948
9	GA	SOUTH	10519475	124753948
10	HI	WEST	1420491	77993663
11	IA	MIDWEST	3156145	68308744
12	ID	WEST	1754208	77993663
13	IL	MIDWEST	12741080	68308744
14	IN	MIDWEST	66918178	68308744
15	KS	MIDWEST	2911505	68308744
16	KY	SOUTH	4468402	124753948
17	LA	SOUTH	4659978	124753948
18	MA	NORTHEAST	6902149	5611079
19	MD	SOUTH	6042718	124753948
20	ME	NORTHEAST	1338404	5611079
21	MI	MIDWEST	9995915	68308744
22	MN	MIDWEST	5611179	68308744
23	МО	MIDWEST	6126452	68308744
24	MS	SOUTH	2986530	124753948
25	MT	WEST	1062305	77993663
26	NC	SOUTH	10383620	124753948
27	ND	MIDWEST	760077	68308744
28	NE	MIDWEST	1929268	68308744
29	NH	NORTHEAST	1356458	5611079
30	NJ	NORTHEAST	8908520	5611079
31	NM	WEST	2095428	77993663
32	NV	WEST	3034392	77993663
33	NY	NORTHEAST	19542209	5611079
34	ОН	MIDWEST	11689442	68308744

	STATE	REGION	STATE_POP	REGION_POP
35	OK	SOUTH	3943079	124753948
36	OR	WEST	4190713	77993663
37	PA	NORTHEAST	12807060	5611079
38	RI	NORTHEAST	1057315	5611079
39	SC	SOUTH	5084127	124753948
40	SD	MIDWEST	882235	68308744
41	TN	SOUTH	6770010	124753948
42	TX	SOUTH	28701845	124753948
43	UT	WEST	3161105	77993663
44	VA	SOUTH	8517685	124753948
45	VT	NORTHEAST	626299	5611079
46	WA	WEST	7535591	77993663
47	WI	MIDWEST	5813568	68308744
48	WV	SOUTH	1805832	124753948
49	WY	WEST	577737	77993663

```
In [4]: # Import Category name data
gov_data_ntmaj10_csv = "./Resources/ntmaj10_values.csv"
gov_data_ntmaj10_df = pd.read_csv(gov_data_ntmaj10_csv)
gov_data_ntmaj10_df
```

Out[4]:

	NTMAJ10	Long_Name
0	AR	Arts
1	ED	Education
2	EN	Environment
3	HE	Health
4	HU	Human Services
5	IN	International
6	PU	Public Benefit
7	RE	Religion
8	MU	Mutual Benefit
9	UN	Unknown

Import IRS Business Master Files

Source

NCSS Data Archive https://nccs-data.urban.org/data.php?ds=bmf (https://nccs-data.urban.org/data.php?ds=bmf)

File

bmf.bm1812.csv

```
In [5]: # specify file name
gov_data_file = "./Resources/2018_BMF.csv"

# import file
gov_data = pd.read_csv(gov_data_file, low_memory=False)

# Display resulting dataframe header
gov_data.head()
```

Out[5]:

	EIN	SEC_NAME	FRCD	SUBSECCD	TAXPER	ASSETS	INCOME	NAME	ADDRESS
0	19818	3514	60	3	NaN	NaN	NaN	PALMER SECOND BAPTIST CHURCH	10 THORNDII
1	29215	NaN	60	3	NaN	NaN	NaN	ST GEORGE CATHEDRAL	523 BROADW
2	260049	NaN	60	3	NaN	NaN	NaN	CORINTH BAPTIST CHURCH	РО ВОХ
3	490336	NaN	60	3	NaN	NaN	NaN	EASTSIDE BAPTIST CHURCH	PO BOX 2
4	587764	NaN	60	3	NaN	NaN	NaN	IGLESIA BETHESDA INC	1 ANDOVI

5 rows × 40 columns

Data Cleaning Phase

```
In [6]:
         gov_data.count()
Out[6]: EIN
                      1499450
         SEC NAME
                       404909
         FRCD
                      1499450
        SUBSECCD
                      1499450
        TAXPER
                      1240366
         ASSETS
                      1223112
         INCOME
                      1223112
        NAME
                      1499450
        ADDRESS
                      1499450
        CITY
                      1499450
         STATE
                      1498426
        NTEECONF
                         4518
                      1499450
        NTEEFINAL
        NAICS
                      1495191
        ZIP5
                      1499353
        OUTNCCS
                      1499450
        OUTREAS
                         3021
                      1499450
        RULEDATE
        FIPS
                      1496643
         FNDNCD
                      1499450
        PMSA
                       506362
        MSA_NECH
                      1175676
        CASSETS
                       542418
        CFINSRC
                       542418
        CTAXPER
                       542418
        CTOTREV
                       542418
        ACCPER
                      1240366
        RANDNUM
                      1499450
        NTEECC
                      1499450
        NTEE1
                      1499450
         LEVEL4
                      1499450
         LEVEL1
                      1499450
        NTMAJ10
                      1499450
        MAJGRPB
                      1499450
         LEVEL3
                      1499450
         LEVEL2
                      1499450
        NTMAJ12
                      1499450
        NTMAJ5
                      1499450
        FILER
                      1499450
         ZFILER
                      1499450
         dtype: int64
        # Select only the columns of data we need for analysis
In [7]:
         gov_data = gov_data[["EIN", "CTOTREV", "CASSETS", "NAME", "CITY", "STATE", "NT
         MAJ10", "LEVEL1", "OUTNCCS"]]
```

```
In [8]: # check the number of data rows per column
gov_data.count()
```

Out[8]: EIN 1499450 CTOTREV 542418 CASSETS 542418 NAME 1499450 CITY 1499450 STATE 1498426 NTMAJ10 1499450 1499450 LEVEL1 OUTNCCS 1499450

dtype: int64

In [9]: # display the data read in
gov_data

Out[9]:

	EIN	CTOTREV	CASSETS	NAME	CITY	STATE	NTMAJ10	LE
0	19818	NaN	NaN	PALMER SECOND BAPTIST CHURCH	PALMER	MA	RE	
1	29215	NaN	NaN	ST GEORGE CATHEDRAL	SOUTH BOSTON	MA	RE	
2	260049	NaN	NaN	CORINTH BAPTIST CHURCH	HOSFORD	FL	RE	
3	490336	NaN	NaN	EASTSIDE BAPTIST CHURCH	LABELLE	FL	RE	
4	587764	NaN	NaN	IGLESIA BETHESDA INC	LOWELL	MA	RE	
1499445	996089401	NaN	NaN	TOYO SAKUMOTO CHARITABLE TR	HONOLULU	ні	PU	
1499446	996165005	NaN	NaN	INDEPENDENT ORDER OF ODD FELLOWS	CUPERTINO	CA	MU	
1499447	998010224	NaN	NaN	HAWAII FOUNDATION FOR THE BLIND	HONOLULU	НІ	HU	
1499448	998997790	NaN	NaN	CHAMPAIGN COUNTY EXTENSION EDUCATION FOUNDATION	TAYLORVILLE	IL	ED	
1499449	999009356	25283.0	44346.0	NATIONAL ASSOCIATION OF LETTER CARRIERS	HONOLULU	НІ	HU	

1499450 rows × 9 columns

```
In [10]: indexNames = gov_data[gov_data["OUTNCCS"]!="IN"].index
len(indexNames)
```

Out[10]: 3021

Out[11]:

		EIN	CTOTREV	CASSETS	NAME	CITY	STATE	NTMAJ10	LEVEL1	OUTNCCS
-	0	19818	NaN	NaN	PALMER SECOND BAPTIST CHURCH	PALMER	MA	RE	PC	11
	1	29215	NaN	NaN	ST GEORGE CATHEDRAL	SOUTH BOSTON	MA	RE	РС	AI.
	2	260049	NaN	NaN	CORINTH BAPTIST CHURCH	HOSFORD	FL	RE	PC	IV
	3	490336	NaN	NaN	EASTSIDE BAPTIST CHURCH	LABELLE	FL	RE	PC	11
	4	587764	NaN	NaN	IGLESIA BETHESDA INC	LOWELL	MA	RE	PC	11

```
In [12]: gov_data.count()
```

Out[12]: EIN 1496429 CTOTREV 541062 CASSETS 541062 NAME 1496429 CITY 1496429 STATE 1496305 NTMAJ10 1496429

> LEVEL1 1496429 OUTNCCS 1496429

dtype: int64

In [13]: # identify the indices of rows we want to eliminate and display how many rows are found

indexNames = gov_data[gov_data["LEVEL1"]=="0"].index
len(indexNames)

Out[13]: 348758

Out[14]:

	EIN	CTOTREV	CASSETS	NAME	CITY	STATE	NTMAJ10	LEVEL1	OUTNCCS
0	19818	NaN	NaN	PALMER SECOND BAPTIST CHURCH	PALMER	MA	RE	PC	IV
1	29215	NaN	NaN	ST GEORGE CATHEDRAL	SOUTH BOSTON	MA	RE	PC	IN
2	260049	NaN	NaN	CORINTH BAPTIST CHURCH	HOSFORD	FL	RE	PC	IV.
3	490336	NaN	NaN	EASTSIDE BAPTIST CHURCH	LABELLE	FL	RE	PC	IV.
4	587764	NaN	NaN	IGLESIA BETHESDA INC	LOWELL	MA	RE	PC	11

In [15]: # identify the indices of rows we want to eliminate and display how many rows
indexNames = gov_data[gov_data["LEVEL1"]=="U"].index
len(indexNames)

Out[15]: 30

In [16]: # drop the rows identified and show the resulting dataframe
gov_data.drop(indexNames, inplace=True)
gov_data.head()

Out[16]:

	EIN	CTOTREV	CASSETS	NAME	CITY	STATE	NTMAJ10	LEVEL1	OUTNCCS
0	19818	NaN	NaN	PALMER SECOND BAPTIST CHURCH	PALMER	MA	RE	PC	IN
1	29215	NaN	NaN	ST GEORGE CATHEDRAL	SOUTH BOSTON	MA	RE	PC	11
2	260049	NaN	NaN	CORINTH BAPTIST CHURCH	HOSFORD	FL	RE	PC	IN
3	490336	NaN	NaN	EASTSIDE BAPTIST CHURCH	LABELLE	FL	RE	PC	IN
4	587764	NaN	NaN	IGLESIA BETHESDA INC	LOWELL	MA	RE	PC	II.

```
In [17]: # Determine if rows are even yet
         gov_data.count()
Out[17]: EIN
                    1147641
         CTOTREV
                     401062
         CASSETS
                     401062
         NAME
                    1147641
         CITY
                    1147641
         STATE
                    1147542
         NTMAJ10
                    1147641
         LEVEL1
                    1147641
         OUTNCCS
                    1147641
         dtype: int64
```

In [18]: # drop invalid rows and display
gov_data.dropna(axis=0, how='any', inplace=True)
gov_data

Out[18]:

	EIN	CTOTREV	CASSETS	NAME	CITY		NTMAJ10	L
20	10015091	109998.0	57145.0	HANOVER SOCCER CLUB INC	CEDAR KNOLLS	NJ	HU	
21	10017496	110522.0	235622.0	AGAMENTICUS YACHT CLUB OF YORK	YORK HARBOR	ME	HU	
36	10024645	1032510.0	1947235.0	BANGOR SYMPHONY ORCHESTRA	BANGOR	ME	AR	
102	10130427	52152619.0	57577945.0	BRIDGTON HOSPITAL	LEWISTON	ME	HE	
113	10133442	393145.0	824589.0	OXFORD COUNTY AGRICULTURAL SOCIETY	NORWAY	ME	HU	
1499429	996064620	3893395.0	259000997.0	PARKER RANCH FOUNDATION TR 091092	KAMUELA	НІ	PU	
1499434	996074970	16088.0	280096.0	HONOLULU FIRE DEPARTMENT FIREMANS FUND FOUNDAT	HONOLULU	HI	ED	
1499436	996078202	0.0	1.0	JOSEPH CAMPBELL FOUNDATION ENDOWMENT TRUST	NEW YORK	NY	PU	
1499437	996078252	568256.0	3843893.0	DAVID C AI CRAT 05051996	HONOLULU	НІ	PU	
1499442	996086871	2123617.0	36960599.0	WATERHOUSE CHARITABLE TR	HONOLULU	НІ	PU	

401031 rows × 9 columns

```
In [19]: # Determine the remaining count of rows and ensure our data set is full (no un
         even row counts)
         gov_data.count()
Out[19]: EIN
                    401031
         CTOTREV
                    401031
         CASSETS
                    401031
         NAME
                    401031
         CITY
                    401031
         STATE
                    401031
         NTMAJ10
                    401031
         LEVEL1
                    401031
         OUTNCCS
                    401031
         dtype: int64
```

Merge Region Data

```
In [20]: # Merge Region and gov_data
gov_data = pd.merge(gov_data, df_region, on= "STATE", how="inner")
gov_data
```

Out[20]:

EIN		CTOTREV CASSETS NAME		NAME	CITY STAT		NTMAJ10
0	10015091	109998.0	57145.0	HANOVER SOCCER CLUB INC	CEDAR KNOLLS	NJ	HU
1	10494871	57370.0	30265.0	NORTHEAST AGRICULTURAL- AVIATION ASSOCIATION	WILLIAMSTOWN	NJ	HU
2	10553431	1598747.0	1476724.0	AMERICAN FRIENDS OF YESHIVAT HESDDER SDEROT INC	PASSAIC	NJ	RE
3	10553478	4578318.0	2157398.0	EAST MOUNTAIN HOSPITAL INC	BELLE MEAD	NJ	HE
4	10554061	562209.0	5238304.0	MOUNT EPHRAIM SENIOR HOUSING INITIATIVE INC	MOUNT EPHRAIM	NJ	HU
396700	911806767	298889.0	2039505.0	MOUNTAIN VISTA RETIREMENT RESIDENCE	LANDER	WY	HU
396701	912052088	48941.0	35108.0	WHIT PRESS	JACKSON	WY	AR
396702	916413193	17148.0	3853059.0	SPENCE FOUNDATION	JACKSON	WY	PU
396703	916470560	3883816.0	16184459.0	NEWTON FOUNDATION	JACKSON	WY	PU
396704	930793885	362609.0	367048.0	SEXUAL ASSAULT AND FAMILY VIOLENCE TASK FORCE	EVANSTON	WY	HU

396705 rows × 12 columns

Save file

```
In [21]: gov_data.to_csv(index=False, path_or_buf="./Resources/gov_data.csv")
```

Create the data sets for Asset testing amongst regions

Create the data sets for Revenue testing amongst regions

```
In [23]: # Create a new datafram for testing revenue
    revenue = pd.DataFrame(gov_data[["REGION", "CTOTREV", "LEVEL1"]]).set_index("R
    EGION")

# Now split the data by Public Charity vs Private Foundation (LEVEL1)
    rev_pc = revenue.loc[(revenue["LEVEL1"] == "PC"), "CTOTREV"].reset_index()
    rev_pf = revenue.loc[(revenue["LEVEL1"] == "PF"), "CTOTREV"].reset_index()

# Finally split the data by region
    rev_pf_ne = rev_pf.loc[(rev_pf["REGION"] == "NORTHEAST"), "CTOTREV"]
    rev_pf_s = rev_pf.loc[(rev_pf["REGION"] == "SOUTH"), "CTOTREV"]
    rev_pf_mw = rev_pf.loc[(rev_pf["REGION"] == "MIDWEST"), "CTOTREV"]
    rev_pf_w = rev_pf.loc[(rev_pc["REGION"] == "NORTHEAST"), "CTOTREV"]
    rev_pc_ne = rev_pc.loc[(rev_pc["REGION"] == "SOUTH"), "CTOTREV"]
    rev_pc_s = rev_pc.loc[(rev_pc["REGION"] == "SOUTH"), "CTOTREV"]
    rev_pc_mw = rev_pc.loc[(rev_pc["REGION"] == "MIDWEST"), "CTOTREV"]
    rev_pc_w = rev_pc.loc[(rev_pc["REGION"] == "MIDWEST"), "CTOTREV"]
    rev_pc_w = rev_pc.loc[(rev_pc["REGION"] == "MIDWEST"), "CTOTREV"]
```

Review Basic Statistics of the Remaining Data

Run basic statistics on the numeric columns

```
In [24]: gov_data.describe()
```

Out[24]:

	EIN	CTOTREV	CASSETS	STATE_POP	REGION_POP
count	3.967050e+05	3.967050e+05	3.967050e+05	3.967050e+05	3.967050e+05
mean	4.444691e+08	4.822967e+06	9.086742e+06	1.097046e+07	7.431519e+07
std	2.475034e+08	1.132784e+08	2.236824e+08	1.083852e+07	4.343714e+07
min	1.001509e+07	-7.906811e+07	-3.057337e+07	5.777370e+05	5.611079e+06
25%	2.600430e+08	4.017400e+04	2.553300e+04	3.955704e+06	6.830874e+07
50%	4.162965e+08	1.233240e+05	1.330810e+05	7.171646e+06	7.799366e+07
75%	5.925408e+08	5.319560e+05	8.420830e+05	1.280706e+07	1.247539e+08
max	9.960869e+08	4.846638e+10	7.351824e+10	6.691818e+07	1.247539e+08

Beth's section - Visualization 1-3

```
In [25]: bethdf=pd.read_csv("./Resources/gov_data.csv")
    medians=bethdf.groupby(["REGION","LEVEL1"]).agg({'median'}).reset_index()
    medians.values.tolist()
    medians
```

Out[25]:

	REGION	LEVEL1	EIN	CTOTREV	CASSETS	STATE_POP	REGION_POP
			median	median	median	median	median
0	MIDWEST	PC	381303843.0	130995.0	174064.0	9995915	68308744
1	MIDWEST	PF	384807179.0	31793.5	227734.0	11689442	68308744
2	NORTHEAST	PC	223236840.0	128860.0	162787.0	12807060	5611079
3	NORTHEAST	PF	256788940.0	35650.5	103147.5	12807060	5611079
4	SOUTH	PC	541459968.0	117983.0	116135.0	10383620	124753948
5	SOUTH	PF	465294746.0	21794.0	20009.0	10383620	124753948
6	WEST	PC	680564956.5	121792.5	104885.0	3955704	77993663
7	WEST	PF	464271920.5	27515.5	30479.5	3955704	77993663

```
In [26]: df_medians = pd.DataFrame(medians)
    df_medians
```

Out[26]:

REGION		LEVEL1	EIN	CTOTREV	CASSETS	STATE_POP	REGION_POP
			median	median	median	median	median
0	MIDWEST	PC	381303843.0	130995.0	174064.0	9995915	68308744
1	MIDWEST	PF	384807179.0	31793.5	227734.0	11689442	68308744
2	NORTHEAST	PC	223236840.0	128860.0	162787.0	12807060	5611079
3	NORTHEAST	PF	256788940.0	35650.5	103147.5	12807060	5611079
4	SOUTH	PC	541459968.0	117983.0	116135.0	10383620	124753948
5	SOUTH	PF	465294746.0	21794.0	20009.0	10383620	124753948
6	WEST	PC	680564956.5	121792.5	104885.0	3955704	77993663
7	WEST	PF	464271920.5	27515.5	30479.5	3955704	77993663

```
In [28]: ein_df = df[["REGION", "LEVEL1", "EIN"]].pivot(index="REGION", columns="LEVEL
1", values="EIN")
    ctotrev_df = df[["REGION", "LEVEL1", "CTOTREV"]].pivot(index="REGION", columns
    ="LEVEL1", values="CTOTREV")
    cassets_df = df[["REGION", "LEVEL1", "CASSETS"]].pivot(index="REGION", columns
    ="LEVEL1", values="CASSETS")
```

In [29]: ctotrev_df

I EVEL 1

Out[29]:

LEVELI	PC	PF	
REGION			
MIDWEST	130582.0	32055.0	
NORTHEAST	128860.0	35650.5	
SOUTH	117983.0	21784.0	
WEST	120796.0	28673.0	

DE

Out[30]: Text(0.5, 1.0, 'Revenue vs Region')


```
In [31]: asset_chart = cassets_df.plot(kind='bar')
    asset_chart.set_xlabel("Region")
    asset_chart.set_ylabel("Total Asset")
    plt.title("Asset vs Region")
```

Out[31]: Text(0.5, 1.0, 'Asset vs Region')

In [32]: # df_medians["CASSETS"],df_medians["CTOTREV"]

```
In [33]: | # df_medians.dtypes,df_medians.info()
In [34]: | # df medians.rename(columns={'EIN, median':'EIN','CTOTREV, median':'Revenu
          e','CASSETS, median':'Assets'})
In [35]: |# df_medians.pivot_table(index=['REGION','LEVEL1'],values=['']
In [36]: # assets = [171237.5, 233340.5, 162787.0, 103147.5, 116135.0, 20009.0, 103491.
          0, 29364.5]
          # revenues = [130582.0, 32055.0, 128860.0, 35650.5, 117983.0, 21794.0, 120796.
          0. 28673.01
          # # types = ['PC', 'PF', 'PC', 'PF', 'PC', 'PF']
          # index = ["MidwestPC","MidwestPF","NortheastPC","NortheastPF","SouthPC","Sout
          hPF", "WestPC", "WestPF"]
          # assets df = pd.DataFrame(assets, index=index)
          \# ax = df medians.plot.bar(rot=0)
In [37]: # df medians["REGION"] = df medians["REGION"].str.replace('/','')
          # df medians["LEVEL1"] = df medians["LEVEL1"].str.replace('/','')
          # df medians.dtypes
In [38]: \# d = \{"REGION": ["MIDWEST", "NORTHEAST", "SOUTH", "WEST"], \}
                 'colors': ['red', 'black', 'blue', 'dog']}
          # keys = [k for k in d.keys() for v in d[k]]
          # values = [v \text{ for } k \text{ in d.keys}() \text{ for } v \text{ in d}[k]]
          # pd.DataFrame.from dict({'index': keys, 'values': values})
In [39]: # assets_bar=(bethdf.groupby(["REGION", "LEVEL1"]).agg({"CASSETS":['media
          n']})).reset index()
          # assets bar
In [40]: # print(df medians.index)
In [41]: | # print(bethdf.groupby(["REGION","LEVEL1"]).agg({"CTOTREV":['median']}))
          # print(bethdf.groupby(["REGION","LEVEL1"]).agg({"EIN":['count']}))
```

Emile's section - Visualization 4

```
In [ ]:
```

Scott's section - Visualization 5

```
In [ ]:
```

Deanna section - Visualization 6-7

```
In [42]: # Create pie charts, for comparison purposes for the number of NTMAJ10 organiz
    ation categories for
    # public charities and for the private foundations

#List unique values in the gov_data['NTMAJ10'] column

gov_data.NTMAJ10.unique()

#Create dataframe to use for pie chart creation from original datasource
    gov_data_ntmaj10 = gov_data
```

In [43]: # Merge NTMAJ10 to include the long name of the NTMAJ10 column
gov_data_ntmaj10_merged = pd.merge(gov_data, gov_data_ntmaj10_df, on= "NTMAJ1
0", how="inner")
gov_data_ntmaj10_merged

Out[43]:

EIN		CTOTREV	CASSETS	NAME	CITY	STATE	NTMAJ10
0	10015091	109998.0	57145.0	HANOVER SOCCER CLUB INC	CEDAR KNOLLS	NJ	HU
1	10494871	57370.0	30265.0	NORTHEAST AGRICULTURAL- AVIATION ASSOCIATION	WILLIAMSTOWN	NJ	HU
2	10554061	562209.0	5238304.0	MOUNT EPHRAIM SENIOR HOUSING INITIATIVE INC	MOUNT EPHRAIM	NJ	HU
3	10562775	189485.0	162076.0	NEW JERSEY EMERGENCY PREPAREDNESS ASSOCIATION	MAYS LANDING	NJ	HU
4	10562891	863976.0	131478.0	ATLANTIC CAPE FAMILY SERVICE ORGANIZATION	NORTHFIELD	NJ	HU
396700	320312957	159790.0	86919.0	RAILYARD PARK CONSERVANCY	SANTA FE	NM	UN
396701	464417223	54975.0	4291.0	ALEXAS HUGS INC	BOSQUE FARMS	NM	UN
396702	452759984	109082.0	48007.0	DISCERNING HEARTS	ОМАНА	NE	UN
396703	470842819	445.0	14625.0	TUSKEEGEE AIRMEN INC ALFONZA W DAVIS CHAPTER	OFFUTT AFB	NE	UN
396704	205674859	378947.0	163952.0	YELLOWSTONE QUAKE	CODY	WY	UN

396705 rows × 13 columns

Public Charity - NTEE Major Category Breakdown

```
In [44]: # Apply filter where Level 1 is PC
gov_data_level1_pc = gov_data_ntmaj10_merged[gov_data_ntmaj10_merged.LEVEL1 ==
    "PC"]

# count NTMAJ10 values for PC group level 1
pc_ntmaj10_count = gov_data_ntmaj10_merged["Long_Name"].value_counts()
pc_ntmaj10_count
```

Out[44]: Human Services 133531 Education 68793 Public Benefit 47232 Health 45386 Arts 43129 Religion 28315 Environment 19749 International 8705 Mutual Benefit 1099 Unknown 766 Name: Long_Name, dtype: int64

```
In [45]: #create pie chart
         # set colors
         colors = ["#845D7D","#6A6E91","#8F4F62","#298B8C","#477E96","#379576","#5F9B5
         C","#8B9C46","#B89840","#E09151"]
         # set labels
         ntmaj10_labels_pc = ["Human Services", "Education", "Public Benefit", "Health"
         , "Arts", "Religion", "Environment", "International", "Mutual Benefit", "Unkno
         wn"]
         # create pie chart
         plt.pie(pc_ntmaj10_count, labels = ntmaj10_labels_pc, labeldistance = None, sh
         adow = False, colors = colors, explode=(0,0,0,0,0,0,0,0,0,0), startangle = 90,
         autopct='%1.1f%%')
         plt.axis("equal")
         # add legend, title, size
         plt.legend(labels=ntmaj10_labels_pc, fontsize=14, loc="center right", bbox_to_
         anchor=(1, 0, .5, 1)
         plt.title("Public Charity - NTEE Major Category Breakdown", y=1, weight='bold'
         , size=14)
         fig = plt.gcf()
         fig.set size inches(6,6)
         plt.show()
```

Public Charity - NTEE Major Category Breakdown

Private Foundation - NTEE Major Category Breakdown

```
In [46]: # Apply filter whereLevel 1 is PF
         gov_data_level1_pf = gov_data_ntmaj10_merged[gov_data_ntmaj10_merged.LEVEL1 ==
         "PF"]
         # count NTMAJ10 values for PF group level 1
         pf_ntmaj10_count = gov_data_level1_pf["Long_Name"].value_counts()
         pf_ntmaj10_count
Out[46]: Public Benefit
                           439
         Human Services
                           313
         Education
                           224
         Arts
                           143
         Health
                           123
         Religion
                           104
         Environment
                            66
         International
                            26
         Mutual Benefit
                            15
         Unknown
                              1
         Name: Long_Name, dtype: int64
```

```
In [47]: # set colors
         colors = ["#8F4F62","#845D7D","#6A6E91","#477E96","#298B8C","#379576","#5F9B5
         C","#8B9C46","#B89840","#E09151"]
         # set Labels
         ntmaj10_labels_pf = ["Public Benefit", "Human Services", "Education", "Arts",
         "Health", "Religion", "Environment", "International", "Mutual Benefit", "Unkno
         wn"]
         # create pie chart
         plt.pie(pf ntmaj10 count, labels = ntmaj10 labels pf, labeldistance = None, sh
         adow = False, colors = colors, explode=(0,0,0,0,0,0,0,0,0,0,0), startangle = 90,
         autopct='%1.1f%%')
         plt.axis("equal")
         # add legend, title, size
         plt.legend(labels=ntmaj10 labels pf, fontsize=14, loc="center right", bbox to
         anchor=(1, 0, .5, 1)
         plt.title("Private Foundation - NTEE Major Category Breakdown", y=1, weight='b
         old', size=14)
         fig = plt.gcf()
         fig.set_size_inches(6,6)
         plt.show()
```

Private Foundation - NTEE Major Category Breakdown

Katherine's section - Hypothesis Testing

Create a function to compare four populations (Northeast, South, Midwest, West)

Inputs

- Four series (populations)
- Title
- · yAxis label

Displays

- Boxplot
- ANOVA
- · Kruskal Wallis tests

Create a function to plot four regional boxplots, perform ANOVA and Kruskal hypothesis tests

```
In [48]: # Function comparing four populations by Boxplots
         def boxPlotCompare(northeast, south, midwest, west, title, y label):
             # Set the figure size
             fig = plt.figure(figsize=(20,8))
             axBox = fig.add_subplot()
             # Show box plots of the data
             box plot data=[northeast, south, midwest, west]
             plt.boxplot(box_plot_data)
             plt.title(title, color='k', size=24, weight='bold')
             plt.xticks([1, 2, 3, 4], ['Northeast', 'South', 'Midwest', 'West'])
             # KEY! Set the scale to logrithmic
             axBox.set yscale('log')
             plt.xlabel("Region", size=14, weight='bold')
             plt.ylabel(y label, size=14, weight='bold')
             plt.show()
             # Perform an ANOVA test assuming populations are not equal
             print('\033[1m' + '\nANOVA test' + '\033[0m')
             print(stats.f_oneway(northeast, south, midwest, west))
             # Perforn a Kruskal test assuming population medians are not equal
             print('\033[1m' + '\nKruskal test' + '\033[0m')
             print(stats.kruskal(northeast, south, midwest, west))
             # Because we found many differences, compare 1 to 1
             print('\033[1m' + '\nKruskal test - NE to S' + '\033[0m')
             print(stats.kruskal(northeast, south))
             print('\033[1m' + '\nKruskal test - NE to MW' + '\033[0m')
             print(stats.kruskal(northeast, midwest))
             print('\033[1m' + \nKruskal test - NE to W' + \033[0m')
             print(stats.kruskal(northeast, west))
             print('\033[1m' + '\nKruskal test - S to MW' + '\033[0m')
             print(stats.kruskal(south, midwest))
             print('\033[1m' + '\nKruskal test - S to W' + '\033[0m')
             print(stats.kruskal(south, west))
             print('\033[1m' + '\nKruskal test - MW to W' + '\033[0m')
             print(stats.kruskal(midwest, west))
             return
```

Null Hypothesis: Private foundation assets are equal across regions.

ANOVA test

F_onewayResult(statistic=1.5991297876338924, pvalue=0.18774699235546738)

Kruskal test

KruskalResult(statistic=65.64098672556152, pvalue=3.657966313635066e-14)

Kruskal test - NE to S

KruskalResult(statistic=21.19949192533357, pvalue=4.138742128024859e-06)

Kruskal test - NE to MW

KruskalResult(statistic=4.89198782908695, pvalue=0.02698160306364065)

Kruskal test - NE to W

KruskalResult(statistic=10.257981013090541, pvalue=0.0013609454059984938)

Kruskal test - S to MW

KruskalResult(statistic=54.034001360720005, pvalue=1.9705004004839034e-13)

Kruskal test - S to W

KruskalResult(statistic=2.0482479275156438, pvalue=0.15238146336062583)

Kruskal test - MW to W

KruskalResult(statistic=32.36860784507243, pvalue=1.2753012446444715e-08)

Null Hypothesis: Public Charity assets are equal across regions.

ANOVA test

F onewayResult(statistic=9.977841999540356, pvalue=1.4259678934716717e-06)

Kruskal test

C:\Users\katro\Anaconda3\envs\PythonData\lib\site-packages\scipy\stats\stats.
py:5879: RuntimeWarning: overflow encountered in long_scalars
h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
KruskalResult(statistic=114460436.28216954, pvalue=0.0)

Kruskal test - NE to S

KruskalResult(statistic=-28972976.542478856, pvalue=1.0)

Kruskal test - NE to MW

KruskalResult(statistic=14806747.063532323, pvalue=0.0)

Kruskal test - NE to W

KruskalResult(statistic=-20512143.057604466, pvalue=1.0)

Kruskal test - S to MW

KruskalResult(statistic=-14120448.973866025, pvalue=1.0)

Kruskal test - S to W

KruskalResult(statistic=49750023.46017419, pvalue=0.0)

Kruskal test - MW to W

KruskalResult(statistic=-10120503.307078624, pvalue=1.0)

Null Hypothesis: Private foundation revenue is equal across regions.

ANOVA test

F_onewayResult(statistic=1.5507443368076232, pvalue=0.1995987426944119)

Kruskal test

KruskalResult(statistic=16.3435183471287, pvalue=0.0009641398152239498)

Kruskal test - NE to S

KruskalResult(statistic=9.771525006709846, pvalue=0.0017723538365773932)

Kruskal test - NE to MW

KruskalResult(statistic=0.06461297087045435, pvalue=0.7993481455202777)

Kruskal test - NE to W

KruskalResult(statistic=5.4236502854815125, pvalue=0.01986578517512666)

Kruskal test - S to MW

KruskalResult(statistic=11.048889346975777, pvalue=0.000887403434323604)

Kruskal test - S to W

KruskalResult(statistic=0.4832721144020404, pvalue=0.4869439097118484)

Kruskal test - MW to W

KruskalResult(statistic=4.850456641237852, pvalue=0.027638814287329096)

Null Hypothesis: Public Charity revenue is equal across regions.

ANOVA test

F_onewayResult(statistic=6.2903816751459045, pvalue=0.00029075250150393985)

Kruskal test

KruskalResult(statistic=114267593.1077235, pvalue=0.0)

Kruskal test - NE to S

C:\Users\katro\Anaconda3\envs\PythonData\lib\site-packages\scipy\stats\stats.
py:5879: RuntimeWarning: overflow encountered in long_scalars
 h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)

KruskalResult(statistic=-28938166.555687387, pvalue=1.0)

Kruskal test - NE to MW

KruskalResult(statistic=14806634.997257186, pvalue=0.0)

Kruskal test - NE to W

KruskalResult(statistic=-20476338.68960117, pvalue=1.0)

Kruskal test - S to MW

KruskalResult(statistic=-14099540.75095499, pvalue=1.0)

Kruskal test - S to W

KruskalResult(statistic=49751272.29590349, pvalue=0.0)

Kruskal test - MW to W

KruskalResult(statistic=-10098602.69915487, pvalue=1.0)

Based on results, look at means and medians for populations

```
In [53]: # Create means
    asset_pc_means = assets_pc.groupby(["REGION"]).mean()
    asset_pf_means = assets_pf.groupby(["REGION"]).mean()
    rev_pc_means = rev_pc.groupby(["REGION"]).mean()
    rev_pf_means = rev_pf.groupby(["REGION"]).mean()

# Create medians
    asset_pc_medians = assets_pc.groupby(["REGION"]).median()
    asset_pf_medians = assets_pf.groupby(["REGION"]).median()
    rev_pc_medians = rev_pc.groupby(["REGION"]).median()
    rev_pf_medians = rev_pf.groupby(["REGION"]).median()
```

Create a function to plot means and medians

```
In [54]: | def plotbyRegion(series1, series2, ylabel, title, series_label1, series_label2
         ):
             # Set the figure size
             plt.figure(figsize=(4,4))
             # plot the values
             plt.plot(series1, label=series label1, color='b', marker='o')
             plt.plot(series2, label=series label2, color='g', marker='o')
             # add labels, etc.
             plt.title(title, weight='bold', size=14)
             plt.xlabel("Region")
             plt.ylabel(ylabel)
             plt.grid(alpha=0.5)
             plt.legend(loc='best')
             # save the graph
             plt.savefig('./Output/' + title.replace(" ", "") + '.png')
             return
```

Compare medians (Kruskal Wallis results)

Compare means (ANOVA results)

In []: