PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

1. Determine condiciones sobre α, β de modo que

$$\begin{bmatrix} \alpha - \beta \\ \alpha + \beta \\ 2\alpha - \beta \end{bmatrix} \text{ pertenezca a } Gen \left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} \right\}.$$

Solución: El problema es equivalente a determinar condiciones en α , β de modo que el sistema lineal $A\vec{x} = \vec{b}$ con matriz ampliada

$$[A|b] = \begin{bmatrix} -1 & 1 & 1 & \alpha - \beta \\ -1 & 2 & 3 & \alpha + \beta \\ 1 & 1 & 3 & 2\alpha - \beta \end{bmatrix}$$

sea consistente. Realizando operaciones fila llevamos [A|b] a una forma escalonada

$$\begin{bmatrix} -1 & 1 & 1 & \alpha - \beta \\ -1 & 2 & 3 & \alpha + \beta \\ 1 & 1 & 3 & 2\alpha - \beta \end{bmatrix} \xrightarrow{F_2 \leftarrow F_2 - F_1} \begin{bmatrix} -1 & 1 & 1 & \alpha - \beta \\ 0 & 1 & 2 & 2\beta \\ 0 & 2 & 4 & 3\alpha - 2\beta \end{bmatrix} \xrightarrow{F_3 \leftarrow F_3 - 2F_2} \begin{bmatrix} -1 & 1 & 1 & \alpha - \beta \\ 0 & 1 & 2 & 2\beta \\ 0 & 0 & 0 & 3\alpha - 6\beta \end{bmatrix}$$

El sistema es consistente sii $3\alpha - 6\beta = 0$

- Por establecer la equivalencia del problema con la consistencia de un sistema de ecuaciones [2.5 pts.]
- Por reducir la matriz ampliada del sistema a una forma escalonada [2.5 pts.]
- Por determinar a partir de la escalonada la condición de consistencia [1 pts.]

- 2. a) Si $A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$ es una matriz de $n \times 3$ con columnas $\vec{v}_i \neq \vec{0}$ y $\vec{v}_2 = \vec{v}_1 + 3\vec{v}_3$, determine infinitas soluciones de $A\vec{x} = -\vec{v}_1 + 3\vec{v}_2$. Justifique.
 - b) Sea $S \subset \mathbb{R}^3$ el plano de ecuación cartesiana x y z = 0. Determine justificadamente si $A(S) = \{A\vec{x}: \vec{x} \in S\}$ es un plano o una recta en \mathbb{R}^3 , donde

$$A = \left[\begin{array}{rrr} 0 & -1 & 1 \\ 1 & -2 & 0 \\ -1 & 1 & 1 \end{array} \right] .$$

Solución:

a) Puesto que $Ax = x_1\vec{v}_1 + x_2\vec{v}_2 + x_3\vec{v}_3$ tenemos que $\vec{v}_2 = \vec{v}_1 + 3\vec{v}_3 \Leftrightarrow \vec{v}_1 - \vec{v}_2 + 3\vec{v}_3 = \vec{0} \Leftrightarrow A \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} = \vec{0}$. De la misma manera $A \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} = -\vec{v}_1 + 3\vec{v}_2$.

Para la familia de vectores

$$\vec{x}(\alpha) = \alpha \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} \quad \alpha \in \mathbb{R},$$

tenemos

$$A(\vec{x}(\alpha)) = A\left(\alpha \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix} + \begin{bmatrix} -1\\ 3\\ 0 \end{bmatrix}\right)$$

$$= \alpha A \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix} + A \begin{bmatrix} -1\\ 3\\ 0 \end{bmatrix}$$

$$= \alpha \vec{0} + -\vec{v}_1 + 3\vec{v}_2$$

$$= -\vec{v}_1 + 3\vec{v}_2$$

y hemos encontrado infinitas soluciones $\vec{x}(\alpha)$ con $\alpha \in \mathbb{R}$. Puntos:

- Por la idea de usar infinitas soluciones de $A\vec{x} = \vec{0}$ más una solución particular de $A\vec{x} = \vec{b}$ [1 pts.]
- Por encontrar una solución de $A\vec{x} = \vec{0}$, [1 pts.]
- Por encontrar una solución particular de $A\vec{x} = -\vec{v_1} + 3\vec{v_2}$ [1 pts.]

Otra alternativa de solución es la siguiente: $Ax = x_1\vec{v}_1 + x_2\vec{v}_2 + x_3\vec{v}_3 = -\vec{v}_1 + 3\vec{v}_2$ es equivalente a (usando la relación $\vec{v}_2 = \vec{v}_1 + 3\vec{v}_3$) a $(x_1 + x_2)\vec{v}_1 + (3x_2 + x_3)\vec{v}_3 = 2\vec{v}_1 + 9\vec{v}_3$ [1 pts.] . Puesto que el sistema

$$x_1 + x_2 = 2$$

 $3x_2 + x_3 = 9$ [1pts.]

tiene infinitas soluciones, $x_1=2-x_2,\,x_3=9-3x_2$ [1 pts.] obtenemos que $A\vec{x}=-\vec{v}_1+\vec{v}_2$ tiene infinitas soluciones

$$\vec{x} = \begin{bmatrix} 2 - x_2 \\ x_2 \\ 9 - 3x_2 \end{bmatrix} \qquad x_2 \in \mathbb{R}$$

.

b) Los vectores del plano x - y - z = 0 son de la forma

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} y+z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad y, z \in \mathbb{R}$$

Entonces

$$A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = yA\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + zA\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$= y\begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} + z\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$= (z - y)\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad y, z \in \mathbb{R}$$

Entonces la imagen del plano bajo A es la recta por el origen generada por el vector $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

- Por escribir en forma paramétrica vectorial el plano [1 pts.]
- Por aplicar la linealidad de A y por realizar las multplicaciones de A por vector [1.5 pts.]
- Por concluir que es una recta [0.5 pts.]

3. a) Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que

$$F(\hat{e}_1) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad F(\hat{e}_2) = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad F(\hat{e}_3) = \begin{bmatrix} \alpha \\ -1 \\ \alpha \end{bmatrix},$$

donde $\hat{e}_1, \hat{e}_2, \hat{e}_3$ son los vectores canónicos de \mathbb{R}^3 . Determine los valores de α para los cuáles la transformación F tiene inversa y determine F^{-1} .

b) Si PA = LU donde

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix},$$

determine usando directamente esta factorización (sin calcular A ni A^T) la tercera fila de A^{-1} .

a) Puesto que F es una transformación lineal

$$F(\vec{x}) = [F(\hat{e}_1) \ F(\hat{e}_2) \ F(\hat{e}_3)]\vec{x} = A\vec{x} = \begin{bmatrix} 1 & 1 & \alpha \\ 2 & 2 & -1 \\ 3 & 2 & \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

F tiene inversa sii A tiene inversa y $F^{-1}(\vec{x}) = A^{-1}\vec{x}$. Se calcula la inversa de A por medio de operaciones elementales fila llevando [A|I] a su forma escalonada reducida. Obtenemos que para $1+2\alpha \neq 0$

$$\begin{bmatrix} 1 & 1 & \alpha & 1 & 0 & 0 \\ 2 & 2 & -1 & 0 & 1 & 0 \\ 3 & 2 & \alpha & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{rref}()} \begin{bmatrix} 1 & 0 & 0 & -2\frac{1+\alpha}{1+2\alpha} & -\frac{\alpha}{1+2\alpha} & 1 \\ 0 & 1 & 0 & \frac{3+2\alpha}{1+2\alpha} & 2\frac{\alpha}{1+2\alpha} & -1 \\ 0 & 0 & 1 & \frac{2}{1+2\alpha} & -\frac{1}{1+2\alpha} & 0 \end{bmatrix}$$

Entonces

$$A^{-1} = \begin{bmatrix} -2\frac{1+\alpha}{1+2\alpha} & -\frac{\alpha}{1+2\alpha} & 1\\ \frac{3+2\alpha}{1+2\alpha} & 2\frac{\alpha}{1+2\alpha} & -1\\ \frac{2}{1+2\alpha} & -\frac{1}{1+2\alpha} & 0 \end{bmatrix}$$

- Por establecer que $F(\vec{x}) = A\vec{x}$ [**0.5 pts.**]
- Por establecer que $F^{-1}(\vec{x}) = A^{-1}\vec{x}$ [0.5 pts.]
- Por calcular la inversa de A [1.5 pts.]
- Por la condición $1 + 2\alpha \neq 0$ [**0.5 pts.**]

b) La tercera fila de A^{-1} es la tercera columna transpuesta de $(A^T)^{-1}$, que es la solución de $A^T\vec{x}=\hat{e}_3$, con \hat{e}_3 el tercer vector canónico en \mathbb{R}^3 . Pero PA=LU implica $A^TP^T=U^TL^T$ y entonces $A^T=U^TL^TP$. De esta manera el sistema $A^T\vec{x}=\hat{e}_3$ es equivalente a $U^TL^TP\vec{x}=\hat{e}_3$. Resolvemos

i)
$$U^T \vec{y} = \hat{e}_3 \Leftrightarrow \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \vec{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
, cuya solución es $\vec{y} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$

ii)
$$L^T \vec{z} = \vec{y} \Leftrightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \vec{z} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$
 cuya solución es $\vec{z} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

iii)
$$P\vec{x} = \vec{z} \Leftrightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 cuya solución es $\vec{x} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

Entonces la tercera fila de A^{-1} es el vector fila [-1,1,1]. **Puntos:**

- Por el método correcto [1 pts.]
- Por i) [**0.5 pts.**]
- Por ii) [**0.5 pts.**]
- Por iii) [**0.5 pts.**]
- Por la tercera fila de A^{-1} [0,5 pts.]

- 4. Determine si la afirmación es VERDADERA o FALSA y justifique demostrando su respuesta.
 - a) Si A es una matriz de 4×3 entonces la transformación $\vec{x} \to A\vec{x}$ no puede ser 1-1.
 - b) Si A es matriz de $n \times n$ y \vec{u} , \vec{v} , \vec{w} son vectores en \mathbb{R}^n linealmente dependientes entonces $A\vec{u}$, $A\vec{v}$, $A\vec{w}$ son linealmente dependientes.
 - c) Si A, B son matrices de $n \times n$ y A es la inversa de B^3 entonces AB es la inversa de B^2 y AB = BA.
 - d) Si \vec{u}_1 , \vec{u}_2 son vectores linealmente independientes en \mathbb{R}^n entonces

$$\vec{v}_1 = a_{1,1}\vec{u}_1 + a_{2,1}\vec{u}_2$$

 $\vec{v}_2 = a_{1,2}\vec{u}_1 + a_{2,2}\vec{u}_2$

son linealmente independientes si y sólo si la matriz $A=\left[\begin{array}{cc}a_{1,1}&a_{1,2}\\a_{2,1}&a_{2,2}\end{array}\right]$ de 2×2 tiene inversa.

Solución:

a) FALSA: Un contraejemplo es la matriz

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

de 4×3 , tiene columnas que son linealmente independientes en \mathbb{R}^4 y entonces A es 1-1.

Puntos:

- [1 pts.] por el matriz contraejemplo
- [0.5 pts.] por la justificación
- b) VERDADERA: Si \vec{u} , \vec{v} , \vec{w} son vectores en \mathbb{R}^n linealmente dependientes entonces existen x_1, x_2, x_3 no todos nulos tal que $x_1\vec{u} + x_2\vec{v} + x_3\vec{w}$, $= \vec{0}$. Multiplicado por A esta igualdad, y usando que $\vec{x} \to A\vec{x}$ es una transformación lineal, obtenemos que $A(x_1\vec{u} + x_2\vec{v} + x_3\vec{w}) = x_1A(\vec{u}) + x_2A(\vec{v}) + x_3A(\vec{w}) = A(\vec{0}) = \vec{0}$. Por lo tanto una combinación no trivial de los vectores $A\vec{u}$, $A\vec{v}$, $A\vec{w}$ es igual al vector nulo y entonces ellos son linealmente dependientes.

Puntos:

• Por establecer correctamente la condición de dependencia lineal para los vectores $vu, \vec{v}.\vec{w}$ [0.5 pts.] [pts.]

- Pos multiplicar por A esta condición y justificadamente llegar a la condición de linealidad de $A\vec{u}, A\vec{v}, A\vec{w}$ [1 pts.]
- c) VERDADERA: Si A es la inversa de B^3 , entonces $A(B^3) = I$. Por la asociatividad de la multiplicación $AB^3 = A(BBB) = (AB)(B^2) = I$ y como las matrices son cuadradas, $AB = (B^2)^{-1}$. Similarmente, A es la inversa de B^3 implica $I = B^3A = B^2(BA)$; y por lo tanto BA es también la inversa de B^2 , y entonces BA = AB.

Puntos:

- [0.5 pts.] por usar que para matrices cuadradas A, X la matriz X es la inversa de A sii AX = I o XA = I
- [0.5 pts.] por demostrar que AB es la inversa de B^2
- [0.5 pts.] por demostrar que BA es la inversa de B^2
- d) Notamos primero que

$$\vec{0} = x_1 \vec{v}_1 + x_2 \vec{v}_2
= x_1 (a_{1,1} \vec{u}_1 + a_{2,1} \vec{u}_2) + x_2 (a_{1,2} \vec{u}_1 + a_{2,2} \vec{u}_2)
= (a_{1,1} x_1 + a_{1,2} x_2) \vec{u}_1 + (a_{2,1} x_1 + a_{2,2} x_2) \vec{u}_2
= y_1 \vec{u}_1 + y_2 \vec{u}_2$$
(*)

donde

Sean \vec{u}_1, \vec{u}_2 vectores linealmente independientes y A invertible. Entonces $x_1\vec{v}_1 + x_2\vec{v}_2 = \vec{0}$ implica (por(*)) $y_1\vec{u}_1 + x_2\vec{v}_2 = \vec{0}$. Por la independencia lineal de \vec{u}_1, \vec{u}_2 se tiene que $y_1 = y_2 = 0$. Como A tiene inversa, $\vec{x} = A^{-1}\vec{y} = A^{-1}\vec{0} = \vec{0}$ y por lo tanto $x_1 = x_2 = 0$ y \vec{v}_1, \vec{v}_2 son LI.

De la misma manera, si \vec{v}_1, \vec{v}_2 son linealmente independientes, y $\vec{y} = A\vec{x} = \vec{0}$, entonces por (*) y la independencia lineal de \vec{v}_1, \vec{v}_2 se tiene $x_1 = x_2 = 0$ y entonces $\vec{y} = A\vec{x} = \vec{0} \Rightarrow \vec{x} = \vec{0}$ y por lo tanto A tiene inversa.

- [0.5 pts.] por establecer la relación entre las combinaciones lineales de los \vec{v}_1 con lo \vec{u}_i .
- [0.5 pts.] por demostrar que si A es invertible y \vec{u}_1, \vec{u}_2 son LI entonces \vec{v}_1, \vec{v}_2 son L
- [0.5 pts.] por demostrar que si y \vec{u}_1, \vec{u}_2 son LI y \vec{v}_1, \vec{v}_2 son LI entonces A es invertible