3.1 Set Definitions and Operations

3.1.1 Common Sets

Common sets we will see in this chapter:

N, the set of natural numbers These numbers are "counting

numbers". This set contains 0 and

positive integers.

 \mathbb{Z} , the set of integers This set contains all integers:

positive, negative, and zero.

Q, the set of rational numbers This set contains all numbers that can

be characterized as ratios, such as $\frac{1}{2}$,

 $\frac{-17}{4}$, or even $\frac{3}{1}$.

 \mathbb{R} , the set of all real numbers These can be thought of as decimal

numbers with possibly unending

strings of digits after the decimal point.

Question 1

For the following numbers, which set(s) do they belong to?

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
10				
-5				
12/6				
π				
2.40				

Question 2

Give examples for each of the following types of sets:

- a. List three numbers that are in the set of all integers, \mathbb{Z} , but are NOT in the set of natural numbers, \mathbb{N} .
- b. List three numbers that are in the set of rational numbers, \mathbb{Q} , but are NOT in the set of integers, \mathbb{Z} .
- c. List three numbers that are in the set of all real numbers \mathbb{R} , but are NOT in the set of rational numbers, \mathbb{Q} .

Writing out sets

When we are building a discrete (finite) set, we usually give the set a capital letter as its identifier. Then, the elements of the set are written within curly-braces, like this:

$$A = \{2, 4, 6, 8\}$$

The elements here are 2, 4, 6, and 8. The index of the element 2 is 1 - it is at position 1 of the set - so $A_1 = 2$.

Question 3

Create sets that meet the following criteria. Give the sets any letter identifier that you want.

- a. All elements of the set are odd integers.
- b. All elements of the set are fractions such that, when divided, they result in an infinite string of numbers to the right of the decimal place (e.g., 3.3333333...)
- c. Create two sets of integers, where the two sets have exactly two elements in common.
- d. Create two sets of natural numbers, where the two sets have NO elements in common.
- e. Create a set that is empty.

3.1.2Subsets

Subsets and existence within sets:

The notation $x \in A$ means "x is an element of A" x exists in A

which means that x is one of the member elements

of A.

A is a subset of BA is a subset of B (written as $A \subseteq B$) if

every element in A is also an element in B.

Formally, this means that for every x, if $x \in A$,

then $x \in B$.

A is equal to BA is equal to B (written A = B) means that

A and B have exactly the same members. This is

expressed formally by saying, $A \subseteq B$ and $B \subseteq A$.

An Empty set A set that contains no elements is called an empty

set, and it is denoted by $\{\}$ or \emptyset .

The Universal set For any given discussion, all the sets will be subsets

of a larger set called the universal set (or universe) We commonly use the letter U to denote this set.

Question 4

Given these sets:
$$U = \{-2, -1, 1, 2, 3, 4, 5, 6\}$$
 $A = \{1, 1, 2, 2, 2, 4, 4\}$ $B = \{-2, 2\}$ $C = \{1, 2, 4, 5, 6\}$ $D = \{6, 5, 4, 2, 1\}$ $E = \{1, 4\}$

a. Which of these statements are true? Mark with a \checkmark

- a. $B \subseteq A$ ____ b. $B \subseteq E$ ___ c. $E \subseteq A$ ____
- d. $A \subseteq U$ ____ e. $D \subseteq C$ ____ f. $C \subseteq D$ ____
- g. $B \subseteq \mathbb{N}$ ____ h. $E \subseteq \mathbb{Z}$ ____ i. $A \subseteq C$ ____

b. Fill in the blanks with either \subseteq (is a subset of), or $\not\subseteq$ (is not a subset of), or = (is equal to) for the following:

a. $C \longrightarrow D$ b. $B \longrightarrow U$ c. $A \longrightarrow E$

3.1.3 Intersections, unions, and differences

Intersection of A and B, $A \cap B$ Is the set that contains those

> elements common to both A and B. In set-builder notation, we write:

 $A \cap B = \{x \in U : x \in A \land x \in B\}$

Union of A and B, $A \cup B$ Is the set that contains those

elements in either set A or B. In set-builder notation, we write: $A \cup B = \{x \in U : x \in A \lor x \in B\}$

Difference of A and B, A - BIs the set that contains those elements

> in A which are NOT in B. In setbuilder notation, we write:

 $A - B = \{ x \in U : x \in A \land x \notin B \}$

Disjoint sets Sets A and B are disjoint if

 $A \cap B = \emptyset$.

Complement of A, A'Given a set A with elements from the

universe U, the complement of A(written A') is the set that contains those elemnets of the universal set U

which are not in A. That is,

A' = U - A.

Venn diagrams are used to visually represent relationships between sets. Set A and set B (or more) are drawn as overalpping circles, and the shaded-in region is the resulting set based on the *intersection*, union, complement, or difference operations.

 $A \cap B$

 $A \cup B$

A - B

Question 5

For the following set operations, color in the Venn diagrams.

Question 6

Given the following sets, compute the set operations and prove the following statements.

$$\overset{\smile}{U} = \{1,2,3,4,5,6,7,8\} \quad A = \{1,3,5\} \quad B = \{1,2,3,4\} \quad C = \{1,2,5,6,8\}$$

a.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b.
$$(A \cup B)' = A' \cap B'$$

c.
$$A \cap (A \cup B) = A$$

3.1.4 Set-builder notation

It is impractical to try to list every element of a set. We use set-builder notation to describe most sets. There are two different forms of setbuilder notation:

A **Property Description** is of the form, "The set of all x in u, such that x is _______." The blank is some *property* of x, which determines whether an element of U is or is not in the set.

- The set of even integers: $\{x \in \mathbb{Z} : x = 2y \text{ for some } y \in \mathbb{Z}\}$
- The set of real numbers bigger than 10: $\{x \in \mathbb{R} : x > 10\}$

A **Form Description** is of the form, "All numbers of the form _____, where x is in the set D." The first part will be some equation (like "2x" for even).

- The set of even integers: $\{2k : k \in \mathbb{Z}\}$
- The set of perfect square integers: $\{m^2 : m \in \mathbb{Z}\}$

Question 7

Write the following in **property description** set-builder notation, using the steps given to help you figure it out.

"The set of all odd integers"

Step 4. For the **Property Description**,

it should be in the form $(\{ set : property \})$. Fill out the following: $\{x \in \underline{\hspace{1cm}} : \underline{\hspace{1cm}} \text{ for some } \underline{\hspace{1cm}} \in \underline{\hspace{1cm}} \text{ Step 1 set }$

(The 2nd variable is part of the equation in Step 3.)

Question 8

Write the following in **form description** set-builder notation, using the steps given to help you figure it out.

"The set of all integers divisible by 3"

Step 1. Using x as the variable, what set does x belong in? $x \in$

Step 2. In English, how would you describe x? x is _______

Step 3. How would you write Step 2 symbolically? x =

Step 4. For the Form Description,

it should be in the form $(\{form : set \})$. Fill out the following: $\{\underbrace{------}_{Step \ 3 \ RHS} : \underbrace{------}_{Step \ 3 \ RHS} \ \}$ Step 3 RHS variable Step 1 set

(Here, you don't use the full equation from Step 3; you remove the x.)