(0) Calculate equilibrium solution with regards to rigid body modes	$oldsymbol{\lambda_{ extsf{N}0}} = extsf{AG}(extsf{G}^T extsf{AG})^{-1} extsf{e}$
(0) Projector to natural subspace	$\mathbf{P} = \mathbf{I} - \mathbf{A}\mathbf{G}(\mathbf{G}^T\mathbf{A}\mathbf{G})^{-1}\mathbf{G}^T$
(0) Preconditioner	$\tilde{\mathbf{S}} = \sum_{s} \tilde{\mathbf{B}}^{(s)} \tilde{\mathbf{S}}^{(s)} \tilde{\mathbf{B}}^{(s)} T$
(1) Calculate residual(gap) in natural subspace	$\mathbf{r}_0 = \mathbf{P}^T (\mathbf{d} - \mathbf{F} \boldsymbol{\lambda}_{\mathbf{N}0})$
(2) Calculate resulting forces (preconditioning)	$\mathbf{z} = \tilde{\mathbf{S}}\mathbf{r}_0,$
(3) Remove rigid body-components of forces	$\mathbf{w}_0 = \mathbf{P} \mathbf{z}_0$
(4) Initialize	$\lambda_{F0} = 0, i = 0$
(5) While not converged	$\sqrt{\mathbf{r}_i^T \mathbf{z}_i} > \epsilon$
(6) Compute gap-change due to forces \mathbf{w}_i	$q = Fw_i$
(7) Energy of???	$\delta_i = \mathbf{q}_i^{\ T} \mathbf{w}_i$
(8) Energy of???	$\gamma_i = \mathbf{r}_i^T \mathbf{z}_i$
(9) Step in the new direction	$oldsymbol{\lambda_{F}}_{i+1} = oldsymbol{\lambda_{F}}_i + (\gamma_i/\delta_i) \mathbf{w}_i$
(10) Gap after force step	$\mathbf{r}_{i+1} = \mathbf{r}_i - (\gamma_i/\delta_i)\mathbf{P}^T\mathbf{q}_i$
(11) Calculate resulting forces (precondition	$coning) \; \mathbf{z}_{i+1} = ilde{\mathbf{S}} r_{i+1}$
(12) Remove rigid body-components of for	$\mathbf{ces} \mathbf{w}_{i+1} = \mathbf{Pz}_{i+1}$
(13) Loop over previous iterations	for: $0 \le j \le i$
(14) Compute factor	$\phi_{i,j} = \mathbf{q}_j^T \mathbf{w}_{i+1}$
(15) Orhorgonalize to direction j	$\mathbf{w}_{i+1} \leftarrow \mathbf{w}_{i+1} - (\phi_{i,j}/\delta_j)\mathbf{w}_j$
(16) Increase iteration counter	$i \leftarrow i + 1$
(17) Compute total interface forces	$oldsymbol{\lambda} = oldsymbol{\lambda}_{ extsf{N}0} + oldsymbol{\lambda}_{ extsf{F}i}$