Rob J Hyndman George Athanasopoulos

# FORECASTING PRINCIPLES AND PRACTICE



# 5. The forecaster's toolbox

5.3 Fitted values and residuals
OTexts.org/fpp3/

#### Fitted values

- $\hat{y}_{t|t-1}$  is the forecast of  $y_t$  based on observations  $y_1, \dots, y_{t-1}$ .
- We call these "fitted values".
- Sometimes drop the subscript:  $\hat{y}_t \equiv \hat{y}_{t|t-1}$ .
- Often not true forecasts since parameters are estimated on all data.

#### For example:

- $\hat{y}_t = \bar{y}$  for average method.
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$  for drift method.

# **Forecasting residuals**

**Residuals in forecasting:** difference between observed value and its

fitted value:  $e_t = y_t - \hat{y}_{t|t-1}$ .

# Forecasting residuals

Residuals in forecasting: difference between observed value and its

fitted value:  $e_t = y_t - \hat{y}_{t|t-1}$ .

#### **Assumptions**

- $\{e_t\}$  uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$  have mean zero. If they don't, then forecasts are biased.

### Forecasting residuals

Residuals in forecasting: difference between observed value and its

fitted value:  $e_t = y_t - \hat{y}_{t|t-1}$ .

#### **Assumptions**

- $\{e_t\}$  uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$  have mean zero. If they don't, then forecasts are biased.

**Useful properties** (for distributions & prediction intervals)

- ${\bf e}_t$  have constant variance.
- $\{e_t\}$  are normally distributed.