Projet Logiciel Transversal

Pierre CHABAUD - Alexandre CHAMINAS

FIGURE 1 – Capture d'écran du jeu robostrike.com

Table des matières

1 Objectif	3
1.1 Présentation générale	3
1.2 Règles du jeu	3
1.3 Conception Logiciel	3
2 Description et conception des états	4
2.1 Description des états	4
2.2 Conception logiciel	4
2.3 Conception logiciel: extension pour le rendu	4
2.4 Conception logiciel : extension pour le moteur de jeu	4
2.5 Ressources	
3 Rendu : Stratégie et Conception	6
3.1 Stratégie de rendu d'un état	6
3.2 Conception logiciel	
3.3 Conception logiciel : extension pour les animations	6
3.4 Ressources	
3.5 Exemple de rendu	6
4 Règles de changement d'états et moteur de jeu	8
4.1 Horloge globale	8
4.2 Changements extérieurs	8
4.3 Changements autonomes	8
4.4 Conception logiciel	
4.5 Conception logiciel : extension pour l'IA	
4.6 Conception logiciel : extension pour la parallélisation	8
5 Intelligence Artificielle	10
5.1 Stratégies	
5.1.1 Intelligence minimale	
5.1.2 Intelligence basée sur des heuristiques	
5.1.3 Intelligence basée sur les arbres de recherche	
5.2 Conception logiciel	
5.3 Conception logiciel : extension pour l'IA composée	
5.4 Conception logiciel : extension pour IA avancée	
5.5 Conception logiciel: extension pour la parallélisation	
6 Modularisation	
6.1 Organisation des modules	
6.1.1 Répartition sur différents threads	
6.1.2 Répartition sur différentes machines	
6.2 Conception logiciel	
6.3 Conception logiciel: extension réseau	
6.4 Conception logiciel : client Android	11

1 Objectif

1.1 Présentation générale

L'objectif de ce projet consiste en la réalisation du jeu multijoueur robostrike(Figure 1) lui même inspiré du jeu de société RoboRally(1994). Les joueurs doivent manœuvrer de manière stratégique un robot sur un quadrillage comprenant obstacles, pièges et bonus afin d'atteindre en premier des balises.

1.2 Règles du jeu

Lors d'une manche, les joueurs choisissent six actions ordonnées (avancer, reculer, droite, gauche, attaquer, ...) avant la fin du temps imparti. Une fois que les joueurs ont tous entré leurs ordres ou que le temps est écoulé, le jeu exécute les actions des joueurs tour par tour.

Les manches s'enchaînent jusqu'à la victoire finale de l'un des joueurs. Le gagnant est le joueur qui atteint le premier tous les objectifs ou qui est le dernier survivant.

A l'exception du départ, plusieurs joueurs ne peuvent pas se trouver sur la même case. Si deux joueurs se retrouvent sur une même case, une collision a lieu et le joueur présent initialement sur la case disputée se fait pousser sur une case adjacente.

Chaque joueur commence la partie avec cinq points de vie et toute attaque entraîne la perte d'un point de vie pour le joueur touché.

Les joueurs obtiennent des bonus tels que des soins, des pièges ou des améliorations d'attaque en passant sur des cases bonus.

1.3 Conception Logiciel

Les dépendances et paquets utilisés sont communs à tous les projets 3IS et sont disponibles sur le dépôt github « github.com/cbares/plt ». La bibliothèque graphique retenue est la SFML. Le schéma ci dessous (Figure 2) montre l'aspect final du projet avec une partie serveur et une partie client. Le serveur sera basé sur micro_httpd qui est un serveur HTTP minimaliste.

FIGURE 2 – Schéma de la structure logicielle du projet

2 Description et conception des états

2.1 Description des états

Un état du jeu est formée par un ensemble d'éléments fixes (la carte de jeu) et d'éléments mobiles (les robots). Tous les éléments possèdent les propriétés suivantes :

- Coordonnées (x,y) dans la grille
- Identifiant de type d'élément : ce nombre indique la nature de l'élément (ie classe)

2.1.1 État éléments fixes

Le terrain de jeu est formé par un ensemble d'éléments « tuiles » composant la carte de jeu. La taille de cette carte est fixée au démarrage du niveau et ne changera pas au cours de la partie. Les types de tuiles sont :

Tuile « Normale ». Les tuiles « normales » sont des éléments neutres et donc franchissable sans risque par les robots.

Tuile « Objectif ». Les tuiles « objectif » correspondent aux objectifs que le joueur doit atteindre en totalité pour gagner la partie. Ces éléments sont numérotés de 1 à N. La tuile objectif dont le numéro est le plus élevé sert de point de réapparition après la mort d'un joueur et le départ de la partie est donné sur l'objectif n°1. De manière purement esthétique, le joueur voit les objectifs d'une couleur différente une fois qu'il est passé dessus.

Tuile « Trou ». Les tuiles « trou » sont des éléments franchissable qui causent la mort instantanée du robot qui s'y est engagé ou qui a été poussé dedans.

Tuile « Mur ». Les tuiles « mur » sont des éléments infranchissable pour les éléments mobiles.

Tuile « Bonus ». Les tuiles « bonus » sont des éléments franchissables pour les éléments mobiles. Cette tuile peut contenir :

- Une bombe : explose à la fin de la manche en infligeant deux points de dégât aux joueurs touchés dans un rayon de deux cases et les immobilise pour le tour suivant
- Une trousse de soin : régénère toute la vie de vie dès utilisation
- Un tir en croix : inflige deux points de dégât aux joueurs les plus proches dans les directions Nord, Sud Est et Ouest dès utilisation.
- Un bouclier : protège le joueur dès activation et jusqu'à la fin de la manche
- Une attaque automatique : inflige un point de dégât au joueur en face a chaque action de manière automatique et augmente d'un point la puissance des attaques de face et en croix jusqu'à la fin de la manche

Tuile « Rotation ». Les tuiles « rotation » sont des éléments franchissables pour les éléments mobiles et on pour capacité de modifier l'orientation du robot d'un quart de tour dans le sans horaire ou anti-horaire selon le type.

Tuile « Tapis roulant ». Les tuiles « tapis roulant » sont des éléments franchissables pour les éléments mobiles et on pour capacité de modifier l'orientation du robot ainsi que sa position sur la grille.

2.1.2 État éléments mobiles

Dans ce projet un seul type d'élément mobile est nécessaire : le type « Robot ». Il possède une orientation (nord, sud, est, ouest), une couleur, une liste d'objectifs visités, un nombre de points de vie, un nombre de vies et des indicateurs de possession et d'utilisation de bonus.

Élément mobile « Robot ». Cet élément est dirigé par les joueurs ou une IA, qui commande la propriété de déplacement, d'attaque et d'utilisation des bonus. De plus il possède la propriété « couleur », qui est purement esthétique et dont la seule règle est qu'elle est unique. On utilise également une propriété que l'on nommera « ActionStatus », et qui peut prendre les valeurs suivantes :

- Status « normal » : cas le plus courant, où le robot peut se déplacer sur la carte et cherche à atteindre les objectifs
- Status « paralysé » : cas où le robot à été touché par l'explosion d'une bombe à la toute fin de la manche précédente. Il est alors incapable de faire des actions et subit l'influence des éléments de jeu de la carte et les attaques des autres joueurs
- Status « mort » : cas où le robot est tombé dans un piège ou a perdu son dernier point de vie. Cet état intervient entre deux manches avant la réapparition ou dans l'attente de la partie n'a plus de vies mais que des adversaire sont toujours en jeu

2.1.3 État général

A l'ensemble des éléments statiques et mobiles, nous ajoutons les propriétés suivantes :

- Epoque : représente « l'heure » correspondant à l'état, ie c'est le nombre de « tic » de l'horloge globale depuis le début de la partie
- Timer : représente le nombre de « tic » de l'horloge globale depuis le début de la manche afin de donner la priorité de jeu au joueur ayant validé ses actions le premier. Dans un premier temps l'ordre sera établi en fonction de l'identifiant du robot.

2.2 Conception logiciel

Le diagramme des classes pour les états est présenté en Figure 3, dont nous pouvons mettre en évidence les groupes de classes suivants :

Classes Element. Toute la hiérarchie des classes filles d'Element (en jaune) permettent de représenter les différentes catégories et types d'élément. Nous n'avons pas utilisé le polymorphisme pour faire de l'introspection ne maîtrisant pas encore parfaitement ce concept. Cependant la méthode isStatic() ou isReachable() s'y prêterait tout à fait et nous travaillons activement à leur implémentation.

Conteneurs d'élément. La classes State permet de contenir des ensembles d'éléments. A partir cette classe nous pouvons accéder à toutes les données de l'état. Par exemple, « twoDTab » est un tableau à deux dimensions d'éléments de type « MapTile » permettant de contenir la carte de jeu.

Fabrique d'élements. Dans le but de pouvoir fabriquer facilement des instances d'Element et plus particulièrement de « MapTile » (« Robot » étant créé une seule au début de la partie et de manière simple) nous utilisons la classe MapFactory. Cette classe permet de créer n'importe quelle instance non abstraite à partir d'un caractère. L'idée est de l'utiliser, entre autres, pour créer un niveau à partir d'un fichier texte.

Observateurs de changements. La conception de ces classes suit le Design Pattern Observer. Le but de la classe Observable dont hérite « State » est d'enregistrer des observateurs puis de les notifier à chaque changement d'état. Par exemple la classe StateLayer (render.dia) est un observateur et met à jour les textures/sprites à chaque action d'un personnage

2.3 Conception logiciel: extension pour le rendu

2.4 Conception logiciel : extension pour le moteur de jeu

2.5 Ressources

Les ressources graphiques comprennent trois packs de textures de 64 par 64 pixels (figures 2, 3 et 4) ainsi que sur un fichier de police d'écriture « roboto.ttf ».

FIGURE 2 – Textures pour les tuiles du décor

FIGURE 3 – Textures pour les robots

FIGURE 4 – Textures pour les commandes de déplacement et d'attaque

3 Rendu : Stratégie et Conception

3.1 Stratégie de rendu d'un état

Le rendu de la carte de jeu est effectué sous forme de tuiles carrée générées à l'aide de la bibliothèque SFML.

La fenêtre de jeu est divisée en deux parties distinctes. L'aire de jeu se trouve à gauche et comporte les différentes tuiles. Un zoom est appliqué pour rester dans des valeurs de fenêtre raisonnables en cas de map trop grande ou trop petite. A droite est affichée la partie commande ainsi que les informations en textes sur les statistiques de la partie (niveau de vie des joueurs et nombre de vie des joueurs restants).

La grille de la carte est créée à partir d'unfichier texte « map.txt » situé dans les ressources et dont de choix de la taille est laissée à l'appréciation du joueur. Un tableau stocké dans « MapFactory » permettant de relier un entier présent dans le fichier « map.txt », un type d'élément et un nombre permettant de choisir la position du sprite sur l'image « map.png ». Cela est réalisé à l'aide d'un std::map qui associe à chaque code de tuile un ID de terrain spécifique.

La méthode initMap de la classe State (package state) permet de fabriquer pour chaque code tuile du fichier « map.txt » le terrain correspondant, de créer un pointeur unique vers cet objet et de l'ajouter à la grille (tableau à deux dimensions contenant des pointeurs de Terrain).

Le reste de l'affichage est codé en « dur » car ne sera pas modifié d'une partie à l'autre (seul le nombre d'objet varie).

3.2 Conception logiciel

Classe TileMap: cette classe possède deux attributs: une texture et un tableau de Vertex (quads) contenant la position des éléments et leurs coordonnées dans la texture (map.png). Elle possède les méthodes loadGrille, loadPersonnage et loadCurseur lui permettant d'initialiser ses attributs à partir d'un tableau de Terrain, d'une liste de Personnage ou d'un Curseur. La méthode Draw a pour but de dessiner une texture pour ensuite permettre son affichage dans une fenêtre. Elle est codés en virtuelle pour surcharger la fonction *draw* de la SFML.

Classe TileSet: Cette classe possède plusieurs attributs: un id de type TileSetID, des entiers cellWidth et cellHeight (qui représentent respectivement la largeur et la longueur en pixel d'une tuile) et une chaîne de caractères imageFile (chemin vers un « fichier.png »). L'ID peut prendre différentes valeurs:

- MAP TILESET
- COMMAND TILSET
- PAWN TILESET

En fonction de l'ID passé en TileMap addapte ses attributs cellWidt, cellHeight ainsi que l'arborescence imageFile. La classe possède deux attributs : une texture et un tableau de Vertex (quads) contenant la position des éléments et leurs coordonnées dans la texture (map.png).

Classe StateLayer: Cette classe est la classe principale du moteur de rendu et centralise les informations au de la même manière que la classe « State » pour le moteur d'états. Cette classe prend en paramètre une référence à une instance de « State ». Elle possède également un tableau de pointeurs de TileSet et un autre de pointeurs de Surface. Le but de cette classe est de créer deux surfaces grâce à la méthode initSurface (grille de jeu et joueurs) et d'initialiser leurs textures. Cette classe est un observateur, elle implémente l'interface IObserver pour être avertie des changements d'état. Elle réagit ensuite en actualisant les textures.

3.3 Conception logiciel: extension pour les animations

3.4 Ressources

3.5 Exemple de rendu

4 Règles de changement d'états et moteur de jeu

Dans cette section, il faut présenter les événements qui peuvent faire passer d'un état à un autre. Il faut également décrire les aspects lié au temps, comme la chronologie des événements et les aspects de synchronisation. Une fois ceci présenté, on propose une conception logiciel pour pouvoir mettre en œuvre ces règles, autrement dit le moteur de jeu.

- 4.1 Horloge globale
- 4.2 Changements extérieurs
- 4.3 Changements autonomes
- 4.4 Conception logiciel
- 4.5 Conception logiciel: extension pour l'IA
- 4.6 Conception logiciel: extension pour la parallélisation