Bike Sharing System Analytics (Washington D. C.)

-Diane Avila, Sukanya Ghosh, Suhas Nadiga, Jinwei Wang, Ming Zhu

Agenda

- Description of Business Problem
- Visualizations
- Data Transformation
- Modeling
- Recommendations

Description of Business Problem Team4 | OPIM5894

1.1 Business Problem

- 1) Hourly forecast demand of bike sharing usage in Washington D.C.
- 2) Hourly forecast casual demand of bike sharing usage in Washington D.C.

1.2 Motivation

- Analyzing the factors affect city ridership.
- Measure the level of "Go Green and Healthy" in the City.
- Temporal ridership change pattern exploration –potential market growth and inventory management.

Source:

- <u>'Effects of Built Environment and Weather on Bike Sharing Demand: Station</u> <u>Level Analysis of Commercial Bike Sharing in Toronto';</u>
- <u>'Demand Forecasting on Bay Area BikeShare'</u>.
- <u>'Forecasting Bike Sharing Demand'</u>

1.3 Data Overview

- Washington DC, spanning over two years with hourly rental data
- Training set first 19 days of each month
- Test set is the 20th to the end of the month.

Data Features

- Date Time
- Season
- Weather | Temperature | Humidity | Wind Speed
- Holiday | Working Day
- Casual or Registered User

1.3 Data Overview

Independent Variables:

-Categorical:
weather,season,holiday,
workingday
-Continuous:
datetime,temp,atemp,
humidity,windspeed,

Dependent Variables:

casual,registered

-Hourly count of bike

Dataset Instances

Train 10,886

```
In [63]: missing=sum(bikes.isnull().values.ravel())
In [64]: missing
Out[64]: 0
```

In [47]: bikes.describe()						
Out[47						
	season	holiday	workingday	weather	temp	
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	
mean	2.506614	0.028569	0.680875	1.418427	20.23086	
std	1.116174	0.166599	0.466159	0.633839	7.79159	
min	1.000000	0.000000	0.000000	1.000000	0.82000	
25%	2.000000	0.000000	0.000000	1.000000	13.94000	
50%	3.000000	0.000000	1.000000	1.000000	20.50000	
75%	4.000000	0.000000	1.000000	2.000000	26.24000	
max	4.000000	1.000000	1.000000	4.000000	41.00000	
	atemp	humidity	windspeed	casual	registered	
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	
mean	23.655084	61.886460	12.799395	36.021955	155.552177	
std	8.474601	19.245033	8.164537	49.960477	151.039033	
min	0.760000	0.000000	0.000000	0.000000	0.000000	
25%	16.665000	47.000000	7.001500	4.000000	36.000000	
50%	24.240000	62.000000	12.998000	17.000000	118.000000	
75%	31.060000	77.000000	16.997900	49.000000	222.000000	
max	45.455000	100.000000	56.996900	367.000000	886.000000	
	total	dayofweek	hour	month	year	
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	
mean	191.574132	3.013963	11.541613	6.521495	2011.501929	
std	181.144454	2.004585	6.915838	3.444373	0.500019	
min	1.000000	0.000000	0.000000	1.000000	2011.000000	
25%	42.000000	1.000000	6.000000	4.000000	2011.000000	
50%	145.000000	3.000000	12.000000	7.000000	2012.000000	
	977.000000	6.000000	23.000000	12.000000	2012.000000	
50% 75% max	284.000000	5.000000	18.000000	10.000000	2012.000000	

Variables DataType Count

variableTypeariable Type

Data Visualization - Year

Record Count - Year

2011	49.8%
2012	50.2%

- Bike Sharing nearly doubled in a year
- A sign of exponential growth
- A contender for Time-Series Forecasting

Data Visualization – Holiday & Working Day

Record Count - Holiday

WorkingDay	97.1%
Holiday	2.9%

Record Count - Working Day

Holiday	31.9%
Weekday	68.1%

Bikes Rented

Only 3% of Holiday records – not a strong predictor, biased towards Working Day

Data Visualization – Season & Weather

Record Count - Season

Spring	24.7%
Summer	25.1%
Fall	25.1%
Winter	25.1%

Record Count - Weather

Clear	66.07%
Cloudy	26.03%
Snow	7.89%
Rain	0.01%

Avg. Bikes Rented

Avg. Bikes Rented

Data Visualization - Temperature

Box Plot - Temperature

Box Plot – Feels Like

Histogram - Temperature

- Feels like temp is slightly higher than temp
- Feels like temp can be influenced by a number of factors like windspeed, humidity etc.

Data Visualization - Humidity

Box Plot - Humidity

Histogram - Humidity

Data Visualization - Windspeed

Box Plot - Windspeed

Histogram - Windspeed

Correlation Analysis

- Temperature has a +ve correlation with Count
- Humidity has a -ve correlation with Count
- Multicollinearity can be observed between Temp & Atemp
- No correlation between Windspeed and Count variable

Avg. Bike Rentals over the months

- Low renting of bikes from Dec to Feb because of winter.
- An average of over 200 bikes were rented every hour in June & July

Avg. Bike Rentals over the week

Avg. Bike Rental Spread over a day

- Peak sharing for registered users at 8 AM and 5 PM
- Casual users rented more bikes in the weekends
- A curious case for predicting casual users

Data Transformation(Pandas)

Team4 | OPIM5894

I COLLIS OF INJOOS

3.1 Feature Engineering

'datetime' to 'month', 'hour', 'year'

Define Categorical and Numerical

```
categoricalFeatureNames = ["season","holiday","workingday","weather","month","year","hour","weekday"]
numericalFeatureNames = ["temp","humidity","windspeed","atemp",]
```

3.2 Drop Multicollinearity and Redundant Variables

3.3 Clear Outliers for the "windspeed"

```
...: import numpy as np
...: train df=pd.read csv('hour2.csv')
...: train df.datetime = pd.to_datetime(train_df.datetime)
...: #remove outliers of windspeed
...: from datetime import datetime
...: q1 = train df['windspeed'].quantile(0.25)
...: q3 = train df['windspeed'].quantile(0.75)
...: iqr = q3-q1 #Interquartile range
\dots: fence low = q1-1.5*iqr
...: fence high = q3+1.5*iqr
...: mask = (train df['windspeed'] > fence low) & (train df['windspeed'] < fence high)
...: df out = train df.loc[mask]
...: df out['casual2'] = np.log1p(df out['casual'])
...: data = df out
```


4.1 Literature References

In Common:

Models Applied:

Random Forest Regressor, Gradient Boost, Time Series Analysis etc.

Metrics Employed: RMSLE

RMSLE is suitable for our problem because RMSLE penalises an underprediction more than an over prediction. The bike sharing company would lose revenue if the number of bikes will be less than the demand for the bikes.

In Difference:

Our modeling: Explored in deep learning: Tensorflow and Neural Network

Source:

- <u>'Effects of Built Environment and Weather on Bike Sharing Demand: Station Level Analysis of Commercial Bike Sharing in Toronto';</u>
- 'Demand Forecasting on Bay Area BikeShare'.
- <u>'Forecasting Bike Sharing Demand'</u>

4.2 Model Fitting: For looping To Synthesize The Result:

```
[7]: #modeling
 \dots: n folds = 6
 ...: model br = BayesianRidge()
 ...: model lr = LinearRegression()
 ...: model etc = ElasticNet()
 ...: model svr = SVR()
 ...: model gbr = GradientBoostingRegressor()
 ...: model rf =RandomForestRegressor()
 ...: model_names = ['BayesianRidge', 'LinearRegression', 'ElasticNet', 'SVR', 'GBR', 'RF']
 ...: model_dic = [model_br, model_lr, model_etc, model_svr, model_gbr, model_rf]
 ...: cv_score_list = []
 ...: pre y list = []
 ...: for model in model dic:
 scores = cross val score(model, x train, y train, cv=n folds)
 ...: cv_score_list.append(scores)
 pre y list.append(model.fit(x train, y train).predict(x train))
...: model metrics name = [rmsle, mean absolute error, mean squared error, r2 score]
...: model metrics list = []
...: for i in range(6):
...: tmp_list = []
...: for m in model_metrics name:
            tmp_score = m(y_train, pre_y_list[i])
            tmp list.append(tmp score)
...: model metrics list.append(tmp list)
```

4.2 Model Fitting

'Sklearn' & 'Numpy' :'BayesianRidge', 'LinearRegression', 'ElasticNet', 'SVR', 'GBR','RF'

```
cross validation result:
                         0
                                              2
BavesianRidge
                 -0.609746
                            0.693791 0.634383
                                                6.755831e-01
inearRegression -0.619357
                                      0.632062
                                               -3.434417e+16
                                                               0.640505
FlasticNet
                 -0.557119
                                      0.351370
                                                  .212503e-01
                                                              0.338040
                                      0.276478
SVR
                 -0.548532
                            0.237292
                                                3.144154e-02 -0.193004
                 -0.214820
                            0.845135
                                      0.808219
                                                7.725227e-01
                                                              0.798142
                 -0.182532
                           0.880132 0.858520
                                                6.940084e-01 0.892200
BayesianRidge
                  0.642755
LinearRegression
                 0.643590
ElasticNet
                 0.248526
                 -0.169742
SVR
GBR
                 0.758468
                  0.833851
regression metrics:
                     rmlse
                                                             r2
                                   mae
                                                 mse
BayesianRidge
                  1.115382
                             74.427630
                                                      0.693369
                                        10060.655381
LinearRegression
                 1.105990
                             74.650377
                                        10065.174720
                                                      0.693231
ElasticNet
                  1.227738
                            102.496689
                                        19154.306019
                                                      0.416211
SVR
                  1.202922
                            108.086857
                                        26062.076203
                                                      0.205674
GBR
                  0.706672
                             47.343728
                                         4738.600931
                                                      0.855576
                  Ø.175767
                            11.509406
                                          385.864961 0.988240
                full name
short name
        root mean square logarithmic error
rmsle
        mean absolute error
mae
        mean squared error
mse
        r2
```

- Cross-Validation:6 folds
- Validation Metrics:
 RMLSE,
 MAE,
 MSE,
 R2

Outcome Prediction Vs. True Y Value

4.3 Statistical Transformation On The Y-Variables:

Y in Squared Root:

Y in Logarithm

4.4 Compare with Kaggle-Base Case (Top 10 Percentile)

Kaggle Case:

```
regression metrics:
                     rmlse
                                                      r2
                                 mae
                                           mse
BayesianRidge
                  0.978241
                           0.800255
                                      1.032940
inearRegression
                 0.978240
                            0.800259
                                                0.487303
ElasticNet
                           0.832484
                  1.013156
                                      1.110526
                                                0.448779
                  0.409906
                           0.245153
                                      0.202378
                                                0.899548
                  0.353146
                           0.276657
                                      0.137952
                                                0.931526
                  0.133898 0.090968
                                      0.020325
                                                0.989912
```

Ours(6-Folds):

4.5 Prediction Using The Best Model:

Kaggle Base Case

Our Model

4.6.1 Fitting Model for 'Casual':

Raw Data

```
regression metrics:
                     rmlse
                                                           r2
                                  mae
                                                mse
BayesianRidge
                  1.275335
                            23.452117
                                        1178.754663
                                                     0.440934
inearRegression 1.284229
                            23.456218
                                       1178.777465
                                                     0.440923
ElasticNet
                  1.429756
                            27.456823
                                       1720.158023
                                                     0.184155
SVR
                  0.646716
                           13.090897
                                        733.301022
                                                    0.652206
                  0.594399
KNN
                            10.096663
                                         298.858228
                                                    0.858256
GBR
                  0.838207
                            12.054156
                                        405.884006
                                                     0.807495
                  0.537747
                             8.751098
                                         212.583055
                                                     0.899175
```

Y in Squared Root

```
regression metrics:
                    rmlse
                                                         r2
                                 mae
                                              mse
BayesianRidge
                                                   0.425388
                 1.334212 24.359849
                                      1289.057044
inearRegression 1.308310
                                      1288,752373
                                                   0.425524
                          24.372991
ElasticNet
                 1.464476 27.626707
                                     1787.619402
                                                   0.203148
SVR
                 0.651753
                           13,241749
                                       810.687243 0.638627
                 0.587349
                            9.627465
                                       297.224038
                                                   0.867509
                 0.828001
                           12.068556
                                       425.398057
                             8.832952
```

4.6.1 Fitting Model for 'Casual':

Y in Log Shape

```
egression metrics:
                    rmlse
                                                          r2
                                  mae
                                               mse
BayesianRidge
                           21.037863
                                       1666.115064
inearRegression 0.849410
                                       1667.613136
ElasticNet
                 1.164606
                                       2439.721616 -0.087533
                           27.704291
SVR
                 0.445502
                            9.015922
                                        289.902731
                 0.462232
                            9.634476
                                        338.377503
                                                    0.849164
                 0.459998
                           10.509177
                                        429.463586
                                                    0.808562
                0.437514
                            8.618932
                                        234.340680
                                                    0.895540
```

Add Quadratic Function for continuous variables: Humidity, Windspeed, Temp

```
regression metrics:
                     rmlse
                                                           r2
                                  mae
                                               mse
BayesianRidge
                  1.053747
                            19.714371
                                       1215.313931
LinearRegression
                 1.053808
                            19.713401
                                       1215.065198
                                                    0.458371
ElasticNet
                  1.353550
                            27.398011
                                       2178.950674
                                                    0.028708
                  0.554822
SVR
                             9.832069
                                        385.820828
                                                    0.828016
KNN
                  0.557049
                             9.568785
                                        318.446308
                                                    0.858049
GBR
                  0.576497
                            10.332912
                                        395.359313
                                                    0.823764
                  0.541660
                             8.830216
                                        251.073483
```

4.6.2 Parameter Tuning:

```
In [20]: from sklearn.grid_search import GridSearchCV
...:
...: param_test1 = {
...: 'n_estimators': [200,900]
...: }
...: gsearch1 = GridSearchCV(estimator = model_rf, param_grid = param_test1, scoring='neg_mean_squared_log_error')
...: gs = gsearch1.fit(x_test,y_test)
...:
In [21]: gsearch1.best_params_
Out[21]: ({'n_estimators': 900})
```

Feature Significance Of The Parameters

4.6.3 Learning Curve: Random Forest

Conclusion:

- -Logarithm combine with random forest improved the base model.
- -Cross-Validation prevent overfitting.
- -More data needed to avoid the variance.

4.7.1 Deep Learning: Neural Network

```
[2]: # define base model
...: def baseline model():
        # create model
        model = Sequential()
        model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu'))
        model.add(Dense(1, kernel_initializer='normal'))
        # Compile model
        model.compile(loss='mean squared error', optimizer='adam')
        return model
    # fix random seed for reproducibility
\dots: seed = 7
...: numpy.random.seed(seed)
...: # evaluate model with standardized dataset
    estimator = KerasRegressor(build fn=baseline model, nb epoch=100, batch size=5, verbose=0)
...: kfold = KFold(n_splits=10, random_state=seed)
...: results = cross val score(estimator, x, y, cv=kfold)
...: print("Results: %.2f (%.2f) mse" % (results.mean(), results.std()))
```

4.7.2 Learning Curve: Neural Network (Metric: M.S.E)

Conclusion:

- -Compare with Random Forest, Neural Network is more advanced in performance of accuracy and case generalization.
- -the trend indicated that with more data, the performance may be even better.

4.8 Time Series: What makes Time Series Special?

		count	
datetime			
2011-01-01	00:00:00	16	
2011-01-01	01:00:00	40	
2011-01-01	02:00:00	32	
2011-01-01	03:00:00	13	
2011-01-01	04:00:00	1	

- 1. It is time dependent.
- 2. Seasonality trends is variations specific to a particular time frame

4.8 Time Series: How to Check Stationarity of a Time Series?

plt.plot(ts)

- 1. Constant Mean
- 1. Constant Variance
- 1. An autocovariance that does not depend on time

4.8 Time Series: How to Check Stationarity of a Time Series?

Plotting Rolling Statistics

- Constant Mean
- Constant Variance
- An autocovariance that does not depend on time

Dickey-Fuller Test

```
Test Statistic
                               -6.419976e+00
p-value
                               1.801620e-08
#Lags Used
                               3.600000e+01
Number of Observations Used
                               1.084900e+04
Critical Value (1%)
                              -3.430953e+00
Critical Value (5%)
                              -2.861806e+00
Critical Value (10%)
                              -2.566912e+00
dtype: float64
Strong evidence against the null hypothesis, reject the null hypothesis. Data has no unit root, hence it is stationary
```

4.8 Time Series: Estimating & Eliminating Trend

- Estimating & Eliminating Trend:
 Transformation
- Eliminating Trend and Seasonality

Differencing – taking the difference with a particular time lag

Decomposition – modeling both trend and seasonality and removing them from the model

```
ts_log_diff = ts_log - ts_log.shift()
plt.plot(ts_log_diff)
```

Differencing: Dickey-Fuller Test

Differencing: Plotting Rolling Statistics

4.8 Time Series: Decomposing

Decomposing : Plotting Rolling Statistics

Decomposing : Dickey-Fuller Test

4.8 Time Series: Forecasting a Time Series: ACF,PACF

ARIMA: Auto-Regressive Integrated Moving Averages.

In this plot, the two dotted lines on either sides of 0 are the confidence interevals. These can be used to determine the 'p' and 'q' values as:

- **1.p** The lag value where the **PACF** chart crosses the upper confidence interval for the first time. If you notice closely, in this case p=2.
- 2.q The lag value where the ACF chart crosses the upper confidence interval for the first time. If you notice closely, in this case q=2.

4.8 Time Series: Forecasting a Time Series

Validating

```
In [54]: pred = results.get_prediction(start = 10880,end = 10886, dynamic=False)^M
    ...: pred_ci = pred.conf_int()^M
    ...: pred_ci.head()
    ...:

Out[54]:
    lower count upper count

10880    5.295345    7.056084

10881    5.124588    6.885327

10882    4.530270    6.291009

10883    4.203593    5.964332

10884    3.786981    5.547720
```

The Mean Squared Error (MSE) of the forecast is 4.09

Statespace Model Results									
 Dep. Variab Model:		MAV/2 1 2			======= Observations: Likelihood		10886 -6746.927		
Date:	LANC	MAX(2, 1, 2	ri, 23 Feb		LIKEIIIIOOU		13511.854		
Time:		ı		53:09 BIC			13577.511		
Sample:			01-01				13533.985		
Janipic.			- 12-19				10000.000		
Covariance	Tyne:		12 17	opg					
	coef	std err	Z	P> z	[0.025	0.975]			
ar.L1	1.4434	0.015	97.891	0.000	1.415	1.472			
ar.L2	-0.6612	0.011	-61.377	0.000	-0.682	-0.640			
ma.L1	-1.4969	0.017	-88.834	0.000	-1.530	-1.464			
ma.L2	0.4977	0.017	29.515	0.000	0.465	0.531			
ar.S.L12	-0.8602	0.013	-67.917	0.000	-0.885	-0.835			
ar.S.L24	0.1289	0.012	10.362	0.000	0.105	0.153			
ma.S.L12	-0.2311	0.005	-47.661	0.000	-0.241	-0.222			
ma.S.L24	-0.9009	0.008	-115.338	0.000	-0.916	-0.886			
sigma2	0.1757	0.002	104.293	0.000	0.172	0.179			
						=======	====		
Ljung-Box ((Q):		818.05	Jarque-Bera	(JB):	11526			
Prob(Q):			0.00	Prob(JB):			0.00		
	sticity (H):		0.54	Skew:			0.36		
Prob(H) (tw	wo-sided):		0.00	Kurtosis:		{	3.00		

4.8 Time Series: Forecasting a Time Series

Theoretical Quantiles

Residual plot

Recommendations

- Better distribution of bikes
- Improve bike sharing service & customer satisfaction
- Friendly to environment and personal health
- Data collection

Modeling Fitting Results: LASSO

2.4.2 Using Random Forest To Predict "Windspeed = 0"

```
from sklearn.ensemble import RandomForestRegressor
...: dataWind0 = data[data["windspeed"]==0]
...: dataWindNot0 = data[data["windspeed"]!=0]
...: rfModel wind = RandomForestRegressor()
...: windColumns = ["season", "weather", "humidity", "month", "temp", "year", "atemp"]
...: rfModel wind.fit(dataWindNot0[windColumns], dataWindNot0["windspeed"])
...: wind0Values = rfModel wind.predict(X= dataWind0[windColumns])
...: dataWind0["windspeed"] = wind0Values
...: data = dataWindNot0.append(dataWind0)
...: data.reset index(inplace=True)
...: data.drop('index',inplace=True,axis=1)
```

2.4.2 Using Random Forest To Predict "Windspeed = 0"

```
from sklearn.ensemble import RandomForestRegressor
...: dataWind0 = data[data["windspeed"]==0]
...: dataWindNot0 = data[data["windspeed"]!=0]
...: rfModel wind = RandomForestRegressor()
...: windColumns = ["season", "weather", "humidity", "month", "temp", "year", "atemp"]
...: rfModel wind.fit(dataWindNot0[windColumns], dataWindNot0["windspeed"])
...: wind0Values = rfModel wind.predict(X= dataWind0[windColumns])
...: dataWind0["windspeed"] = wind0Values
...: data = dataWindNot0.append(dataWind0)
...: data.reset index(inplace=True)
...: data.drop('index',inplace=True,axis=1)
```


EVALUATION OF MODEL

We will be evaluating our model on the basis of Root Mean Square Log Error (RMSLE). RMSLE is calculated as:

$$\varepsilon = \sqrt{(1/n) \sum_{i=1}^{n} (log(p_i + 1) - log(a_i + 1))^2}$$

Where, p_i is the predicted value, a_i is the actual value and n is the total number of samples.

RMSLE is suitable for our problem because RMSLE penalises an underprediction more than an over prediction. The bike sharing company would lose revenue if the number of bikes will be less than the demand for the bikes.

tensorflow

```
x = sm.add\_constant(x)
x = tf. Variable(x, dtype=tf.float32, name= "x")
y = tf.Variable(y.reshape(-1,1),dtype=tf.float32, name=
"y")
xt = tf.transpose(x)
theta =
tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(xt,x)),xt)
,y)
init = tf.global_variables_initializer()
with tf.Session() as sess:
  init.run()
  theta_value = theta.eval()
theta value
```

Keras Neural Network

```
# define base model
def baseline_model():
           # create model
           model = Sequential()
           model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu'))
           model.add(Dense(1, kernel initializer='normal'))
           # Compile model
           model.compile(loss='mean squared error', optimizer='adam')
           return model
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# evaluate model with standardized dataset
estimator = KerasRegressor(build_fn=baseline_model, nb_epoch=100, batch_size=5, verbose=0)
kfold = KFold(n_splits=10, random_state=seed)
results = cross_val_score(estimator, x, y, cv=kfold)
print("Results: %.2f (%.2f) mse" % (results.mean(), results.std()))
```