

SRINIVASA INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC - Autonomous Institution)

(Approved by AICTE, Permanently affiliated to JNTUK, Kakinada, ISO 9001: 2015 certified Institution) (Accredited by NAAC with 'A' Grade; Recognised by UGC under sections 2(f) & 12(B)) NH-216, Amalapuram-Kakinada Highway, Cheyyeru (V), AMALAPURAM -533216.

DEEP LEARNING

A.Y: 2024-25

YEAR: III

SEMESTER: II

COURSE SCHEDULE - AT A GLANCE

Name of the Faculty : K VIJAY BABU

Name of the Course : DEEP LEARNING

Course Code ::21P61602

Branch : AIML

The Schedule for the whole Course is: 23/12/2024 To 26/04/2025

Unit	Description	Duratio	n (Date)	Total No.
Ullit	Description	From	То	of Periods
1	Fundamentals of Deep Learning: Artificial Intelligence, History of Machine learning: Probabilistic Modelling, Early Neural Networks, Kernel Methods, Decision Trees, Random forests and Gradient Boosting Machines, Fundamentals of Machine Learning: Four Branches of Machine Learning, Evaluating Machine learning Models, Overfitting and Underfitting	24/12/2024	21/01/2025	14
2	Introducing Deep Learning: Biological and Machine Vision, Human and Machine Language, Artificial Neural Networks, Training Deep Networks, Improving Deep Networks.	22/01/2025	12/02/2025	17
3	Neural Networks: Anatomy of Neural Network, Introduction to Keras: Keras, TensorFlow, Theano and CNTK, setting up Deep Learning Workstation, Classifying Movie Reviews: Binary Classification, Classifying newswires: Multiclass Classification.	13/02/2025	11/03/2025	14
4	Convolutional Neural Networks: Nerual Network and Representation Learing, Convolutional Layers, Multichannel Convolution Operation, Recurrent Neural Networks: Introduction to RNN, RNN Code, PyTorch Tensors: Deep Learning with PyTorch, CNN in PyTorch.	12/03/2025	03/04/2025	17
5	Interactive Applications of Deep Learning: Machine Vision, Natural Language processing, Generative Adversial Networks, Deep Reinforcement Learning. Deep Learning Research: Autoencoders, Deep Generative Models: Boltzmann Machines Restricted Boltzmann Machines, Deep Belief Networks.	04/04/2025	25/04/2025	16

Total No. of Instructional periods available for the course: 78

LESSON PLAN

COURSE: DEEP LEARNING

	Topic	Plan		Actual		Teaching	Signature
Unit No.		No of hours	Date	No of hours	Date	Methodo logy	of the faculty
	Introduction to Deep Learning Overview of artificial intelligence (AI) How deep learning fits within AI	1	24/12/24			Chalk & Talk	
	History of Machine Learning Early developments and key milestones Evolution of machine learning techniques over time	1	26/12/24			Chalk & Talk	
	Probabilistic Modelling in Machine Learning Introduction to probabilistic models Importance of probability in machine learning	1	27/12/24			Chalk & Talk	
	Early Neural Networks Development of early neural networks (e.g., perceptron, multi-layer perceptron) Limitations of early models	1	31/12/24			Chalk & Talk	
	Kernel Methods in Machine Learning Understanding kernel methods and their significance and Popular algorithms using kernel methods (e.g., Support Vector Machines)	1	02/01/24			Chalk & Talk	
UINIT-1	Decision Trees Basic structure and working of decision trees And How decision trees are used in machine learning	1	03/01/24			Chalk & Talk	
	Random Forests Introduction to random forests and how they improve upon decision trees and their advantages	1	07/01/25			Chalk & Talk	
	Gradient Boosting Machines (GBM) Overview of boosting techniques Introduction to gradient boosting and its applications Fundamentals of Machine Learning The four primary branches of machine learning: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning and How each branch is applied in various contexts	2	08/01/25			Chalk & Talk	

	Supervised Learning			CI 11 0
	Explanation of supervised learning	_	00/04/5=	Chalk &
	techniques and Examples of algorithms:	1	09/01/25	Talk
	Linear Regression, SVM, Neural Networks			
	Unsupervised Learning			Chalk &
	Introduction to unsupervised learning	1	10/01/25	Chaik &
	methods and Key algorithms like K-means,	1	10/01/25	Talk
	hierarchical clustering, and PCA			
	Evaluating Machine Learning Models			
	Importance of evaluation metrics (e.g.,			
	accuracy, precision, recall, F1 score) and	1	16/01/25	PPT
	Cross-validation and other evaluation			
	techniques			
	Overfitting in Machine Learning			Chalk &
	What is overfitting and how it occurs and	1	17/01/25	Chaix &
	Methods to prevent overfitting (e.g.,	1	11/01/23	Talk
	regularization, dropout)			
	Underfitting in Machine Learning			Chalk &
	What is underfitting and its causes and	1	21/01/25	
	Techniques to address underfitting (e.g.,	1	21/01/23	Talk
	increasing model complexity)			
	Introduction to Deep Learning			
	Overview of deep learning and its			
	significance in AI and Differences between			Chalk &
	deep learning and traditional machine	2	22/01/25	Talk
	learning			
	Biological Vision: Human Perception			
	How human vision works biologically			
	Key features of the human visual system			C1110
	Machine Vision: How machines interpret and	1	22/01/25	Chalk &
	process images and The role of computer vision	1	23/01/25	Talk
	in deep learning			
	Linking Biological Vision to Machine			
	Vision : Comparison between human vision	1	24/01/25	PPT
UNIT-2	and machine vision and How deep learning models attempt to mimic biological vision	1	21/01/23	
	models attempt to minife biological vision			
	Introduction to Human Language			
	Processing			Chalk &
	Basics of human language understanding	1	28/01/25	Talk
	How humans process and understand			Taik
	language			
	Human vs. Machine Language			
	Differences between human language			
	processing and machine language processing			Chalk &
	How machine learning models handle	2	29/01/25	Talk
	language data			
	Overview of Artificial Neural Networks			
	(ANNs)			

Basic structure of ANNs and Neurons, layers, and activation functions Types of Neural Networks Different types of neural networks (e.g., feedforward, convolutional, recurrent) and How each type is suited for specific tasks Training Neural Networks Basics of training and and network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., simpoid, Rel.U, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., mormalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/1.2 regularization, dropout) and How regularization belps in improving model generalization Improving Deep Networks: Batch Normalization; Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robusness and generalization Fine-Tuning Deep Networks Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its advantages		1	T	I I		
Types of Neural Networks Different types of neural networks (e.g., feedforward, convolutional, recurrent) and How each type is suited for specific tasks Training Neural Networks Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, Rel.U, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2, regularization, dropout) Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks: Fine-tuning Deep Networks Fine-tuning per-trained models and Techniques for transfer learning and its	Basic structure of ANNs and Neurons,					
Different types of neural networks (e.g., feedforward, convolutional, recurrent) and How each type is suited for specific tasks Training Neural Networks Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges (e.g., vanishing gradients, overfitting) and Techniques (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., normalization), dropout) Improving Deep Networks: Regularization Functions (e.g., totalia, and totalization) Improving Deep Networks: Batch Normalization: Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks: Fine-tuning pre-trained models and Techniques for transfer learning and its	-					
Different types of neural networks (e.g., feedforward, convolutional, recurrent) and How each type is suited for specific tasks Training Neural Networks Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) and How regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Talk 1 1/02/25 Talk Chalk & Talk Chalk & Talk Talk					Chalk &	
feedforward, convolutional, recurrent) and How each type is suited for specific tasks Training Neural Networks Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/1.2 regularization, dropout) and How regularization to regularization methods (e.g., L1/1.2 regularization, dropout) and How regularization Popularization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	-	1	30/01/25			
Training Neural Networks Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Improving Deep Networks: Batch Normalization : Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	feedforward, convolutional, recurrent) and	_	30/01/23		Talk	
Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 2 12/02/25 Talk Chalk & Talk	How each type is suited for specific tasks					
Basics of training a neural network (backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	Training Neural Networks				Challe &	
(backpropagation and gradient descent) and Importance of training data and labels Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 2 12/02/25 Talk Talk Chalk & 11/02/25 Talk Chalk & 11/02/25 Talk Chalk & 11/02/25 Talk Chalk & 11/02/25 Talk Talk Chalk & 11/02/25 Talk Talk Talk	Basics of training a neural network	1	21/01/25		Chair &	
Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization fropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 1 1 11/02/25 Talk PPT 1 04/02/25 PPT Obi/02/25 Talk Chalk & Talk Obi/02/25 Talk Obi/02/25 Talk Chalk & Talk Chalk & Talk Talk Chalk & Talk Talk	(backpropagation and gradient descent) and	1	31/01/25		Talk	
Activation Functions in Neural Networks Role of activation functions in neural networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization fropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 1 1 11/02/25 Talk PPT 1 04/02/25 PPT Obi/02/25 Talk Chalk & Talk Obi/02/25 Talk Obi/02/25 Talk Chalk & Talk Chalk & Talk Talk Chalk & Talk Talk	Importance of training data and labels					
networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 1 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 Talk Chalk & Talk Chalk & Talk						
networks and Popular activation functions (e.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 1 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 1 11/02/25 Talk Chalk & Talk Chalk & Talk	Role of activation functions in neural				DDT	
Ce.g., sigmoid, ReLU, tanh) Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization : Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Augmentation Chalk & Talk Talk		1	04/02/25		LLI	
Loss Functions in Deep Learning Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training 2 05/02/25 Talk	_					
Introduction to loss functions (e.g., mean squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its						
squared error, cross-entropy) and How loss functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-Tuning Deep Networks Fine-Tuning Deep Networks 1 105/02/25 Chalk & Talk Chalk & Talk Chalk & Talk Chalk & Talk Talk Chalk & Talk	2					
functions influence model training Optimizing Deep Networks Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its 1 05/02/25 Talk 1 06/02/25 Talk Chalk & Chalk & Talk Chalk & Talk Chalk & Talk						
Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 2 12/02/25 Talk Talk Talk Chalk & Talk Chalk & Talk Talk Talk Talk Talk Talk					Chalk &	
Optimization algorithms (e.g., stochastic gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	_	2	05/02/25		TD 11	
gradient descent, Adam) and How optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its					1 alk	
optimization improves model performance Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk Chalk & Talk Chalk & Talk						
Overcoming Challenges in Training Deep Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	1 -					
Networks Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks 1 06/02/25 Talk Chalk & Talk Chalk & Talk Talk Chalk & Talk Talk Talk Talk Talk Talk						
Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its						
Common challenges (e.g., vanishing gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its 1 06/02/25 Talk 06/02/25 Talk	Networks				Chalk &	
gradients, overfitting) and Techniques to overcome these challenges (e.g., normalization, dropout) Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	Common challenges (e.g., vanishing	1	06/02/25			
Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Talk Chalk & Chalk & Talk Chalk & Talk Talk	gradients, overfitting) and Techniques to	1	00/02/23		Talk	
Improving Deep Networks: Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its 1 07/02/25 Talk Chalk & Chalk & Talk Chalk & Talk	overcome these challenges (e.g.,					
Regularization Techniques Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its O7/02/25 Talk Chalk & Talk Chalk & Talk Chalk & Talk Talk Talk	normalization, dropout)					
Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	Improving Deep Networks:					
Introduction to regularization methods (e.g., L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its	Regularization Techniques				Challe 0	
L1/L2 regularization, dropout) and How regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Talk Chalk & Chalk & Talk Chalk & Talk Talk	Introduction to regularization methods (e.g.,	1	07/02/25		Chaik &	
regularization helps in improving model generalization Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk Talk	_	1	07/02/25		Talk	
Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk Chalk & Talk Talk	_					
Improving Deep Networks: Batch Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk Chalk & Talk Talk						
Normalization: Role of batch normalization in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its I 1/02/25 Talk Talk Talk						
in speeding up training and How it helps in stabilizing deep network training Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Talk Talk Talk Talk					Chalk &	
Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its		1	11/02/25		Talk	
Improving Deep Networks: Data Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Talk					1 uiii	
Augmentation Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk						
Overview of data augmentation techniques and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk						
and How augmenting data improves model robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & Talk						
robustness and generalization Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Chalk & 12/02/25 Talk						
Fine-Tuning Deep Networks Fine-tuning pre-trained models and Techniques for transfer learning and its Talk					Challe &	
Fine-tuning pre-trained models and Techniques for transfer learning and its	_	2	10/00/05		Chair &	
Techniques for transfer learning and its		2	12/02/25		Talk	
advantages						
	advantages					

	Introduction to Neural Networks Overview of neural networks and their role in machine learning and Basic principles and applications of neural networks	1	13/02/25	Chalk & Talk	
	Anatomy of a Neural Network Components of a neural network: neurons, layers, weights, and biases and How data flows through a neural network and the role of activation functions	1	14/02/25	PPT	
	Types of Neural Networks Overview of different types of neural networks: feedforward, convolutional, recurrent and Use cases and differences in architecture	1	18/02/25	Chalk & Talk	
	Introduction to Keras Overview of Keras and its role as a high-level neural network API and Key features and advantages of Keras for building deep learning models Introduction to TensorFlow Overview of TensorFlow and its ecosystem for deep learning and Key features and why it's popular in production environments	2	19/02/25	Chalk & Talk	
UNIT-3	Introduction to Theano Overview of Theano and its role in deep learning and Differences between Theano and TensorFlow	1	20/02/25	Chalk & Talk	
	Introduction to CNTK (Microsoft Cognitive Toolkit) Overview of CNTK and its advantages for deep learning tasks and Key differences between CNTK, TensorFlow, and Keras	1	21/02/25	Chalk & Talk	
	Setting up a Deep Learning Workstation Step-by-step guide to setting up the hardware and software for deep learning and installing essential tools (e.g., Python, TensorFlow, Keras, GPU setup)	1	25/02/25	Chalk & Talk	
	Introduction to Binary Classification What binary classification is and how it is used in machine learning and Examples and real-world applications of binary classification	1	04/03/25	Chalk & Talk	
	Classifying Movie Reviews: Binary Classification Example Step-by-step guide to classifying movie reviews as positive or negative using neural networks and preprocessing the data and implementing a binary classification model	2	05/03/25	PPT	

	Introduction to Multiclass Classification					
	What multiclass classification is and how it					
	differs from binary classification and					
	Common techniques for multiclass					
	classification					
	Classifying Newswires: Multiclass					
	Classification Example					
	Step-by-step guide to classifying news				Chalk &	
	articles into categories using neural networks	1	06/03/25		Talk	
	and Data preprocessing, model creation, and					
	evaluation for multiclass classification					
	Evaluating Binary Classification Models					
	Metrics for evaluating binary classification				Chalk &	
	models (e.g., accuracy, precision, recall, F1-	1	07/03/25			
	score) and how to assess the performance of	1	017 027 22		Talk	
	a binary classification model					
	Evaluating Multiclass Classification					
	Models					
	Metrics for evaluating multiclass				Chalk &	
	classification models (e.g., confusion matrix,	1	11/03/25			
	accuracy, precision, recall) and how to assess	•	11,00,20		Talk	
	the performance of a multiclass classification					
	model					
	Introduction to Convolutional Neural					
	Networks (CNNs)					
	Overview of CNNs and their significance in		12/03/25			
	deep learning and Key applications of CNNs				Chalk &	
	in image recognition, computer vision, etc					
	Neural Networks and Representation	2				
	Learning					
	Understanding how neural networks learn					
	representations of data and The role of					
	neural networks in feature extraction					
	Convolutional Layers in CNNs				Chalk &	
	Explanation of convolutional layers and	1	12/02/25		Chair &	
UNIT-4	their function and How convolutions help	1	13/03/25		Talk	
01111-4	extract spatial features from images					
	Activation Functions in CNNs					
	Overview of activation functions commonly				Chalk &	
	used in CNNs (e.g., ReLU, Sigmoid) and How	1	18/03/25		Talk	
	activation functions affect the learning				laik	
	process in CNNs					
	Pooling Layers in CNNs					
	Understanding max pooling and average					
	pooling layers and The purpose of pooling in				Chalk &	
	CNNs to reduce spatial dimensions	2	19/03/25		Talk	

		ı	T	T	1
Fully Connected Layers in CNNs					
The role of fully connected layers after convolutional layers and How they help in classification tasks					
Multichannel Convolution Operation					
Understanding how convolution operations work on multiple channels (e.g., RGB channels) and How multichannel convolution captures different features	1	20/03/25		Chalk & Talk	
Understanding Feature Maps in CNNs				Chalk &	
Explanation of feature maps produced by convolution layers and The role of feature maps in detecting patterns	1	21/03/25		Talk	
Introduction to Recurrent Neural Networks (RNNs)					
Overview of RNNs and their differences from traditional feedforward networks and Key applications of RNNs in sequence data, such as text and time-series analysis	1	25/03/25		PPT	
The Working Mechanism of RNNs					
How RNNs process sequential data using hidden states and Explanation of vanishing gradients problem in RNNs	2	26/03/25		Chalk &	
Building an RNN Model: Code Example	2	20/03/23		Talk	
Step-by-step guide to implementing a simple RNN model using code and Explanation of the code structure and model training					
Introduction to PyTorch Tensors					
Understanding tensors and their importance in deep learning and How PyTorch uses tensors for storing and manipulating data	1	27/03/25		Chalk & Talk	
Deep Learning with PyTorch					
Introduction to PyTorch as a deep learning framework and Key features and advantages of using PyTorch for building models	1	28/03/25		Chalk & Talk	
PyTorch Basics: Autograd and Optimization					
Understanding PyTorch's autograd feature for automatic differentiation and Introduction to optimization in PyTorch, including the use of optimizers like SGD	1	01/04/25		Chalk & Talk	
Building Neural Networks in PyTorch					
Step-by-step guide to creating a simple neural network model using PyTorch and Explanation of model layers, forward passes, and backward passes	2	02/04/25		Chalk & Talk	

	Convolutional Neural Networks in PyTorch				
	Implementing CNNs using PyTorch and Practical code example for building and training a CNN in PyTorch				
	Training and Evaluating CNNs in PyTorch				
	Guide to training a CNN model in PyTorch and Techniques for evaluating the performance of CNNs (e.g., accuracy, loss, confusion matrix)	1	03/04/25	PPT	
	Introduction to Interactive Applications of Deep Learning				
	Overview of deep learning's applications in real-world interactive systems and Key areas of impact: machine vision, natural language processing, reinforcement learning	1	04/04/25	Chalk & Talk	
	Machine Vision in Deep Learning				
	Applications of deep learning in computer vision and How deep learning models are used for image recognition, object detection, and scene segmentation	1	08/04/25	Chalk & Talk	
	Object Detection and Classification with Deep Learning				
	Deep learning models for detecting and classifying objects within images and Common techniques: Convolutional Neural Networks (CNNs) for image processing	2	20/04/27	Chalk &	
	Natural Language Processing (NLP) with Deep Learning		09/04/25	Talk	
UNIT-5	Overview of NLP and its use in deep learning models and Common NLP tasks: sentiment analysis, machine translation, text summarization				
	Speech Recognition and Deep Learning				
	Deep learning techniques for speech recognition and Applications in voice assistants, transcription, and audio analysis	1	10/04/25	Chalk & Talk	
	Generative Adversarial Networks (GANs)				
	Introduction to GANs and their architecture (generator vs discriminator) and Applications of GANs in image generation, art creation, and data augmentation	1	11/04/25	Chalk & Talk	
	Applications of GANs in Deep Learning				
	Practical applications of GANs, such as generating realistic images, videos, and synthetic data and Use of GANs in entertainment, gaming, and simulation	1	15/04/25	Chalk & Talk	

2	16/04/25		Chalk &	
			Talk	
1	15/04/25		Chalk & Talk	
1	18/04/25		Chalk & Talk	
1	22/04/25		Chalk & Talk	
2	23/04/25		Chalk & Talk	
1	24/04/25		Chalk & Talk	
1	25/04/25		Chalk & Talk	
	1 2	1 15/04/25 1 18/04/25 1 22/04/25 1 24/04/25	1 15/04/25 1 18/04/25 1 22/04/25 1 24/04/25	1 15/04/25 Chalk & Talk 1 18/04/25 Chalk & Talk 1 22/04/25 Chalk & Talk 2 23/04/25 Chalk & Talk 1 24/04/25 Chalk & Talk 1 24/04/25 Chalk & Talk

Text Books:

- 1. Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press, 2016
- 2. Deep Learning with Python Francois Chollet, Released December 2017, Publisher(s): Manning Publications, ISBN: 9781617294433
- 3. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence Jon Krohn, Grant Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s): Addison-Wesley Professional, ISBN: 9780135116821

Reference Books:

- 1. Deep Learning from Scratch Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc.,ISBN: 9781492041412
- 2. Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009.
- 3. Matrix Computations, Golub, G.,H., and Van Loan,C.,F, JHU Press,2013 4. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004.

Faculty HOD Dean-Academics Principal