数学练习题(一)

- 一、单项选择题(每题3分共30分)
- 1. $\lim_{x\to 0} \frac{3\sin x}{2x} = ()$
 - A. 2/3
- B. 1
- C. 1.5
- D. 3
- 2. 如果 $f'(x_0) = 0$, 则 x_0 一定是 ()
 - A. 极值点
- B. 拐点
- C. 驻点
- D. 凹凸区间分界点
- 3. 设函数 $f(x) = e^{2x}$, 则不定积分 $\int f\left(\frac{x}{2}\right) dx$ 等于 ()
- A. $2e^{x} + c$ B. $e^{x} + c$ C. $2e^{2x} + c$ D. $e^{2x} + c$

- 4. 函数 $z = \frac{1}{\sqrt{xv}}$ 的定义域是 ()
 - A. $\{(x,y)|x \neq 0, y \neq 0\}$ B. $\{(x,y)|x > 0, y > 0\}$
- 5. 设 f'(0) = 2, 则当 $x \to 0$ 时, f(x) f(0) 是 x 的 ()
 - A. 低阶无穷小

B. 同阶无穷小

C. 高阶无穷小

- D. 等价无穷小
- 6. 设函数 $f(x) = \frac{kx^4 + 5x^2 1}{x^4 x^3 + 8x}$, 且 $\lim_{x \to \infty} f(x) = \frac{1}{3}$, 则 k= (
 - A. 0

- B. -0.5
- C. 1/3
- D. 0.5

- 7. $rac{1}{3} \int_{0}^{\frac{\pi}{2}} 2 \sin x dx = ()$
 - A. 0.5
- B. 1
- D. 3
- 8. 设函数 $y = \frac{x}{\tan x}$, 则 $x = \frac{\pi}{2}$ 是该函数的 ()
 - A. 连续点

B. 第一类跳跃间断点

- C. 第一类可去间断点
- D. 第二类间断点
- 9. 下列说法中正确的是()
 - A. 若f(x) 在 $x = x_0$ 点连续,则 f(x) 在 $x = x_0$ 点可导
 - B. 若f(x) 在 $x = x_0$ 点不可导,则f(x) 在 $x = x_0$ 点不连续
 - C. 若f(x) 在 $x = x_0$ 点不可微,则f(x) 在 $x = x_0$ 点极限不存在
 - D. 若f(x) 在 $x = x_0$ 点不连续,则f(x) 在 $x = x_0$ 点不可导
- 10. 设 $z = x^2 \sin y$, 则 dz = ()
 - A. $2x \sin y dx + x^2 \cos y dy$
- B. $x^2 \cos y dx + 2x \sin y dy$

C. $2xdx + \cos ydy$

- 二、填空题(每题3分,共30分)
- C. $\{(x,y)|x \ge 0, y \ge 0\}$ D. $\{(x,y)|x > 0, y > 0$ 或 $x < 0, y < 0\}$ 1、设 $\vec{a} = \{1,2,3\}, \vec{b} = \{1,3,7\}$,则 $\vec{a} \cdot \vec{b} = \underline{\qquad}$
 - 2、设 $z = (x^2 + y^2)\sin(x^2 + y^2)$,则 dz =______
 - $3 \cdot \Re \int_{a}^{a} (x^3 + \sin^3 x) dx = \underline{\hspace{1cm}}$
 - 4、设 $z=x^{\sin y}$,则 $\frac{\partial z}{\partial r}=$ _____
 - 5、过点 $M_0(1,2,3)$ 且垂直于 $\frac{x-5}{1} = \frac{y-4}{7} = \frac{z-1}{3}$ 的平面方程为
 - 6、若 f(x) 在 x_0 点可导,则 $\lim_{x\to 0} \frac{f(x_0+2x)-f(x_0)}{x} =$ _
 - 7. $\int_{-1}^{1} \left(xe^{e^{x^2}} \right) dx =$

8、设函数 $f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$, x=0 是函数的第_____类间断点。

- 9、曲线 $y = \cos x$ 上点 $\left(\frac{\pi}{3}, \frac{1}{2}\right)$ 处的切线方程为_____
- 10、曲线 $y = x^3 x^2 x + 1$ 的极大值点为_____
- 三、解答题 (每题 10 分, 共 60 分)
- 1、设 $z = \ln x^2 y^3 + \arctan xy$ 求 $\frac{\partial^2 z}{\partial x \partial y}$

5、 求由 $y = e^x$, x = 0, y = 3 曲线所围成的图形的面积,

- 2、 设平面图形由曲线 xy=3 和 x+y=4 围成, 求此图形绕 x 轴旋转而成立体的体积
- 6、判断函数 $f(x) = \begin{cases} x \sin \frac{1}{x^3}, x \neq 0 \\ 0, x = 0 \end{cases}$ 在 x=0 处的连续性与可导性

3、求函数 $z = 3xy - x^3 - y^3$ 的极值点