

Peatükk 1

Üldise algebra põhimõisteid ja põhikonstruktsioonid

Meenutusi varasemast

Olgu A mittetühi hulk ehk $A \neq \emptyset$. Olgu n suvaline naturaalarv, hulga A n-ndaks otseastmeks nimetatakse hulga A elementidest koosnevate järjestatud vektorite hulka.

$$A^n = A \times A \times ... \times A = \{(a_1, \cdots, a_n) | a_i \in A\}.$$

Inglise keelses kirjanduses kasutatakse tähist n-tuple. Märgime veel, et $A^0 = \{\emptyset\}$, seega $|A^0| = 1$. Kujututust

$$\omega:A^n\to A$$

nimetatakse n-naarseks ehk n-kohaliseks algebraliseks tehteks hulgal A. Levinumad n-aarsete tehete nimetused:

- 1. n=2: binaarne tehe, paneb kahele kindlas järjekorras võetud elemendile vastavusse elemendi samast hulgast.
- 2. n=1: unaarne tehe, paneb hulga elemendile vastavasse mingi selle sama hulga elemendiga.
- 3. n=0: nullarne tehe, tõlgendatav kui ühe kindla elemendi fikseerimine

1.1 Ω -algebra

Definitsioon 1.1.1. Hulka Ω nimetakse **tüübiks** ehk **signatuuriks** kui ta on esitatud mittelõikuvate alamhulkade $\Omega_0, \Omega_1, \Omega_2, ...$ ühendina.

Definitsioon 1.1.2. Olgu Ω tüüp. Mittetühja hulka A nimetatakse Ω -algebraks, kui iga a korral igale $\omega \in \Omega_n$ vastab n-aarne tehe hulgal A, mida tähistatakse sama sümboliga ω .

Ehk, kui A on Ω -algebra, siis iga $\omega \in \Omega_n$ ja suvaliste $a_1, a_2, ..., a_n \in A$ korral on üheselt määratud element ω $(a_1, a_2, ..., a_n) \in A$.

Kui tahetakse rõhutada, mis tüüpi algebraga on tegemist, siis tähistatakse Ω algebrad paarina $(A; \Omega)$.

Meenutusi varasemast

Algebralised põhistruktuurid.

- I Rühmoid mittetühi hulk, millel defineeritud kahekohaline tehe.
- II Poolrühm rühmoid, mille tehe on assotsiatiivne.
- III Monoid poolrühm, milles leidub ühikelement.
- IV Rühm monoid, mille igal elemendil leidub pöördelement.
- V Abeli rühm rühm on Abeli rühm, kui tema tehe on kommutatiivne.
- VI Ring hulka R nimetatatkse ringiks, kui tal on defineeritud liitmine ja korrutamine, kusjuures R on liitmiise suhtes Abeli rühm ja liitmine ja korrutamine on distributiivsed. Tihti lisatakse ka nõue ühikelemende olemasoluks.
- VII Korpus ring, mille nullist erinevad elemendid moodustavad rühma korrutamise suhtes.

Näited

- I Rühmoid hulk ühe binaarse tehtega, see tähendab $\Omega = \Omega_2 = \{*\}.$
- II Poolrühm signatuur analoogne rühmoidi signatuuriga.

- III Monoid ühikelemendiga poolrühm, vaatame seda tihti laiema signatuuriga, $\Omega = \Omega_0 \cup \Omega_2$, kus $\Omega_0 = \{1 \text{ (\"uhikelemendi fikseerimine)}\}$ ja $\Omega_2 = \{*\}.$
- IV Rühm saab kirjeldada eelnevate signatuuride kaudu, aga parem kirjeldada järgnevalt: $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$, kus $\Omega_0 = \{1\}$, $\Omega_1 = \{^{-1} \text{ (pöördelemendi leidmine)}\}$ ja $\Omega_2 = \{*\}$.
- V Ring algebraline struktuur signatuuriga: $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$, kus $\Omega_2 = \{+, *\}$, $\Omega_1 = \{-\text{ vastandelemendi leidmine}\}$ ja $\Omega_0 = \{0 \text{ (nullelemendi fikseerimine)}, 1\}$.
- VI Vektorruum üle korpuse \mathbb{K} struktuur signatuuriga: $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$, kus $\Omega_2 = \{+\}$, $\Omega_1 = \{-\} \cup \{\alpha * | \alpha \in \mathbb{K}\}$, $\Omega_0 = \{0\}$. Paneme tähele, et kui oleme sisse toonud skalaariga korrutamise ei ole rangelt võttes vaja ei nullelemendi fikseerimist ega vastandelemendi leidmist need tehted võime defineerida läbi skalaariga korrutamise. Ehk alternatiivne signatuur oleks järgmine: $\Omega = \Omega_1 \cup \Omega_2$, kus $\Omega_2 = \{+\}$, $\Omega_1 = \{\alpha * | \alpha \in \mathbb{K}\}$.

1.2 Morfismid

Definitsioon 1.2.1. Olgu meil Ω -algebra A ja Ω -algebra B. Kujutust ϕ nimetatakse homomorfismiks, kui iga n, iga $\omega \in \Omega_n$ ja suvaliste $a_1, ..., a_n \in A$ korral kehtib võrdus

$$\phi(\omega(a_1,...,a_n)) = \omega(\phi(a_1),...,\phi(a_n)).$$

Defineerime kõikide A ja B vaheliste homomorfismide hulga järgnevalt - $\{\phi|\phi \text{ on homoformism algebrast A algebrasse B }\}$, sellist hulka tähistatakse sümboliga Hom(A,B).

Näited

I Olgu A ja B rühmad. Meenutame, et rühma saab kirjeldada järgneva signatuuri abil: $\Omega = \{1\} \cup \{^{-1}\} \cup \{*\}$. Olgu meil järgnev kujutus:

$$\phi: A \to B$$

Veendumaks, et ϕ on homomorfism tuleb veenduda selles, et ϕ säilitab kõik tehted. Teisisõnu:

$$\phi$$
 on homomorfism $\iff \begin{cases} \phi(1) = 1 \\ \phi(x^{-1}) = \phi(x)^{-1} \\ \phi(xy) = \phi(x)\phi(y) \end{cases}$

Tõestame, et rühmade A ja B vaheline kujutus on homomorfism siis ja ainult siis kui kehtib kolmas tingimus $(\phi(xy) = \phi(x)\phi(y))$.

 $T\tilde{o}estus$. Kehtigu kolmas tingimus, see tähendab $\phi(xy) = \phi(x)\phi(y)$. Veendume, et sellest järeldub esimese kahe tingimuse kehtivus.

$$\phi(1) = \phi(1*1) = \phi(1)\phi(1) \implies \phi(1)\phi(1)^{-1} = \phi(1)\phi(1)\phi(1)^{-1} \implies 1 = \phi(1)*1 = \phi(1)$$

$$\phi(x^{-1}x) = \phi(x^{-1})\phi(x) = \phi(1) = 1 \implies \phi(x)^{-1} = \phi(x^{-1})$$

Niisiis taandub kujutuse homomorfismiks olemise kontroll kolmanda omanduse kehtimise kontrollimisele.

- II Lineaarkujutis on vektorruumide isomorfism.
- III Olgu meil Ω -algebrad A, B ja C ning nende homomorfismid $\phi: A \to B$, $\psi: B \to C$. Defineerime kujutuse $v: A \to C$ järgnevalt: $v = (\psi \phi) = \psi(\phi(x)), x \in A$. Siis see kompositsioon on samuti homoformism (kui teda saab nii defineerida). Veendume selle väite paikapidavuses.

Tõestus. Peame veenduma sellest, et $(\psi\phi)(\omega(a_1,\dots,a_n)) = \omega((\psi\phi)(a_1,\dots,a_n))$. See on samaväärne sellega, te $\psi(\phi(\omega(a_1,\dots,a_n))) = \omega(\psi(\phi(a_1)),\dots,\psi(\phi(a_n)))$. Kuna ϕ on homomorfism, siis kehtib $\psi(\phi(\omega(a_1,\dots,a_n))) = \psi(\omega(\phi(a_1),\dots,\phi(a_n)))$. Kuna ka ψ on homomorfism, siis saame kirjutada: $\omega(\psi(\phi(a_1)),\dots,\psi(\phi(a_n)))$.

Definitsioon 1.2.2. Homomorfismis mingist Ω -algebrast iseendasse nimetatakse selle algebra endomorfismiks. Kõikide endomorfismide hulka Hom(A, A) tähistame sümboliga End(A).

Lause 1.2.3. Iga Ω -algebra A korral on hulk End(A) monoid kujutuste korrutamise (järjest rakendamise) suhtes.

 $T\~oestus$. Tõestuseks piisab veenduda, et leidub ühikelement ja kujutuste järjest rakendamine on assotsiatiivne. Veendume huikelemendi olemasolus, selleks sobib kujutus $id_A: A \to A, id_A(x) = x, x \in A$. On selge, et selline kujutus on ka homomorfism, mistõttu ta kuulub hulka $\operatorname{End}(A)$. Assotatiivsuses veendumiseks piisab tähele panna, et $(\phi\psi) x$ on defineeritud kui $\phi(\psi(x))$. Seega $(\phi\psi) v(x) = \phi(\psi(v(x))) = \phi(\psi v)(x)$.

Def 1.2.3 Bijektiivne homomorfismi nimetatakse isomorfismiks.

Lause 1.2.3 Isomorfism on ekvivalentsiseos kõigi Ω -algebrade klassis, ehk ta on reflektsiivne, sümmeetriline ja transitiivne.

Tõestus:

- 1. Refleksiivsus, st. A isom A, $id_A: A \to A$
- 2. Sümmeetria. Olgu $\phi: A \to B$ isomorfism. Vaja $\psi: B \to A$ mis oleks isomorfism. Valime selleks ϕ^{-1} Vaja näidata, et iga $b_1, \dots, b_n \in B$ korral $\phi^{-1}(\omega(b_1, \dots, b_n)) = \omega(\phi^{-1}(b_1), \dots, \phi^{-1}(b_2))$ Rakendame mõlemale poole ϕ . $\phi(\omega(b_1, \dots, b_n)) = \phi\omega(\phi^{-1}(b_1), \dots, \phi^{-1}(b_2))...$
- 3. Transitiivsus ise!

Isomorfismi tähtsus. Kui meid huvitab tehe ja tema omadused, siis need jäävad samaks isomorfismi klassi täpsusega.

```
Aut(A)
```

Lause 1.2.4 Aut(A) on rühm.

```
Tõestus: \phi, \psi \in AutA,
```

$$\psi \phi \in End(A)$$
,

$$\phi\psi \in AutA$$

$$id_a \in AutA$$

$$\phi inAutA \implies \phi^{-1} \in AutA$$

Näited:

C kompleksarue korpus $\phi: C \to C, \phi(\alpha) = \overline{\alpha}$

G suvaline rühm

$$g \in G$$

$$\phi:G\to\dots$$

$$\phi(x) = q^{-1}xq$$

1.2.1 Alamalgebra

def 1.3.1. Mõte : $B \subset A, b_1, \dots, b_n : \omega^B(b_1, \dots, b_n) = \omega^A(b_1, \dots, b_n) (\in B)$. Algebra alamhulk, mis on kinnine tehete suhtes on alamalgebra.

Näide: (A;*) poolrühm. $B \subset A, x, y \in B \implies xy \in B$, kui $B = \emptyset$, siis ei ole alamalgebra aga rahuldab definitsiooni. Täiendame: Algebra **mittethi** alamhulk, mis on kinnine tehete suhtes on alamalgebra.

 $B \leq A \iff BonAalamalgebra$ $B \leq A, \tau : B \to A$ $\tau(x) = x, x \in B$ $\tau \in Hom(B, A), \tau \text{ üksühene.}$ 1.3.1 tõestus: $\phi \in Hom(B, A) \text{ ϕ üksühene. } \phi(B) \subset A \text{ } B \to \phi(B) = \{\phi(x) | x \in B\}$ $phi \in Hom(A, B) \text{ } C \leq A, D \leq B$ $\phi(C) \leq B, \phi^{-1}(B) \leq A$ Esimese ise. Teine: $\phi^{-1}(B) \leq A$ $a_1, \cdots, a_n \in \phi^{-1}(D), \omega \in \Omega_N$ $\omega(a_1, \cdots, a_t...)$

1.3 loeng II

Lause 1.3.3 Olgu antud ω -algebra A alamalgebrate sisteem B_i , $i \in I$, kujsuures $B = yhisosa_{i \in I}B_i \neq \emptyset$ Siis $B \leq A$.

Tõestus ...

Vaatleme alamhulka $X: \emptyset \neq X \subset A$ Vaatleme hulka $yhisosa\{B|X \leq B \leq A\} \neq \emptyset$. Vastavalt lausele 1.3.3 on tegemist alamalgebraga. Sellist alamalgebrad tähistatakse < X >Kui < X > = Aehk X on A moodustajate süsteem.

1.3.1 Faktoralgebra

Eesmärgiks on tükeldada ω -algebra mittelõikuvateks osadeks, nii et nende osade hulgal saaks loomulikul viisil defineerida ω -algebra struktuuri. $\rho \in Eqv(A), \rho \subset AxA$, vastab kolmele tingimusele:

1. refleksiivne

- 2. transitiivne
- 3. sümmeetriline

```
a \in A, \ \{x \in A | a\rho x\} = a\rho, \ a \in a\rho \ \text{Faktorhulgaks} \ A\rho = \{a\rho | a \in A\}
a_1\rho = a_2\rho \iff a_1\rho a_2
Võtame \omega \in \Omega_n, \ a_1/\rho, \cdots, a_n/\rho \in A/\rho.
\omega(a_1/\rho, \cdots, a_n/\rho) = \omega(a_1, \cdots, a_n)/\rho
Lisame \omega-le lisatingimiuse : (x_1, y_i), \cdots, (x_n, y_n) \in \rho \iff (\omega(x_1, \cdots, x_n), \omega(y_1, \cdots, y_n)) \in \rho
Olgu \rho \in Eqv(a). Eksisteerib kujutis \pi : A \to A/\rho, \ \pi(a) = a/\rho - loomulik kujutus faktorhulgale, projektsioon.
Võtame \omega \in \Omega_n, a_1, \cdots, a_n \in A
\pi(\omega(a_1, \cdots, a_n)) = \omega(a_1, \cdots, a_n)/\rho = \omega(a_1/\rho, \cdots, a_n/\rho) = \dots
```

1.3.2 Def - tuum

1.3.3 Lause 1.4.3

Tõestus

Olgu $\phi: A \to B$ homoformism. $\rho - \phi$ tuum . Valime $\omega \in \Omega_n, a_1, \dots, a_n, a_1, \dots, a_n$. Kas $\omega(a_1, \dots, a_n) \rho \omega(a_1, \dots, a_n)$ kehtib ? ...

Homomorfismiteoreem

Tõestus Olgu $\psi: A/\rho \to B, \psi(a/\rho) := \phi(a)$. Kas on üheselt määratud? Ehk kas $a_1/\rho = a_2/\rho \iff \phi(a_1) = \phi(a_2)$. Siit saaksime kätte ka injektiivsuse. Piisab arvesse võtta, et eelnev tähendab, et $a_1\rho a_2$, nin kun ρ on ϕ tuum. siis on tulemus selge. Sürjektiuuvses tuleb sellest, et ϕ sürjektiivne. Kas ψ on homoformism? Olgu $\omega \in \Omega_n, a_1, \dots, a_n \in A$. Siis $\psi(\omega(a_1/\rho, \dots, a_n/\rho) = \psi(\omega(a_1, \dots, a_n)/\rho) = \phi(w(a_1, \dots, a_n)) = \omega(\phi(a_1), \dots, \phi(a_n)) = \omega(\psi(a_1/\rho, \dots, a_s/\rho))$.

Lause 1.4.4 Olgu ρ Ω -algebra A kongruents, $D \leq A/\rho$ ning π kongurgentsi ρ tuum. Siis $DisomeetrilineC/\rho|_C$, $kusC = \pi^{-1}(D)$.

Tõestus Olgu $\pi^{-1}(D) = C \leq A$. Olgu α π ahend C-le $(\alpha = \pi|_C)$. Siis $\alpha : C \to D$, α on homomorfism. Väidame, et α on sürjektiinve. Kuna π oli sürjektiinve, siis $\forall x \in A\pi(x) = y$. Seega $\alpha(x) = y$.

Küsimus : kui kaks korda faktoriseerime, mis siis juhtub, kas me saame midagi uut ? Võimalik asendada isomorfismi täpsuseni üks kord faktoriseerimisega. Olgu antud ρ ja σ Ω -algebra A kongurentsid, kusjuures $\rho \leq \sigma$, $(x,y) \in \rho \Longrightarrow (x,y) \in \sigma$. Defineerime faktoralgebral A/ρ binaarse seos: $\sigma/\rho = \{(x/\rho, y/\rho | (x,y) \in a\sigma\}$

Võime veenduda, et nii defineertus seos σ/ρ on faktoralgebra A/ρ kongurents.

Teoreem 1.4.2 Olgu $\rho \in Con(A), \tau \in Con(A/\rho)$. $\pi : A \to A/\rho$. Olgu $x, y \in A$. Defineerime $\sigma : (x, y) \in \sigma \iff \pi(x)\tau\pi(x)$ Väide: $\sigma \in Con(A)$. Veendume, et $\sigma \in Eqv(A)$. Olgu $x, y, z \in A, (x, y), (y, z) \in \tau$, st. $(\pi(x), \pi(y)), (\pi(y), \pi(z)), (\pi(x), \pi(z)) \in \tau$.

1.4 loeng IV

1.4.1 Lagrange'i teoreem

Lõpliku rühma järk(elementide arv) jagub tema iga alamhulga järguga.

1.4.2 Ω -algebrate otsekorrutis

Viis kuidas saada mitmest algebrast uus algebra.

Võime defineerida funktsioonid, mis kirjeldavad jadasid. $\phi : \mathbb{N} \to \bigcup_{i \in \mathbb{N}} A_i$, mis rahuldab tingimust $\phi(i) \in A_i$, iga $i \in \mathbb{N}$ korral.

Projektsioonid - seavad jadale vastavuse mingi kindla elemendi. Tähistame π_i .

1.6.1

Tõestus $\omega \in \Omega_n, a^1 = (a_i^1)_{i \in I}, ..., a^n = (a_i^n)_{i \in I}...$

1.4.3 Võred

(Osaliselt) Järjestatud hulk Binaarne seas, mis on reflektsiivne, transitiivne ja antismeetriline. Lineaarselt järjestatud hulk on selline, kus iga

element on mingis seoses iga teisega.

Teoreem 2.2.1

Tõestus 4) Neeldevus (absorbtion) Tarvilikkus: $x \le y \iff x = xaluminerajay$

1.5 Loeng V

$$[a,b] = \{x \in L | a \le x \le b\}$$
$$Con(A/\rho) \longleftrightarrow \{\sigma \in Con(A) | \rho \le \sigma\}$$

Teoreem 2.2.2 Distributiivsed võred.

Lause 2.3.1 Ahelad on distributiivsed võred.

Lause 2.3.2 Tähtis distributiivne võre (P(A); intersection; union) Isendega duaalsus.

Lause 2.3.3

Järeldus 2.3.1

Teoreem 2.3.1 Võre on modulaarne parajasti siis, kui ta ei oma võrega N_5 isomorfset alamvõret. Modulaarne võre on distributiivne parajasti siis, kui ta ei oma võrega M_3 isomorfset alamvõret.

Tõestus Riina esitab seminaris.

Teorem 2.4.1 Võre on distributiivne parajasti siis, kui ta on isomorfne mingi hulga kõigi alamhulkade võre mingi alamvõrega.

Definitsioon 2.4.1 Võre mittetühja alamhulka F nimetatakse filtriks, kui ta on kinnine alumise raja võtmise suhtes ja koos iga elemendiga a sisaldab ka võre L kõik elemendist a suuremad elemendid.

Märkus Filtri ja algfiltri duaalsed mõisted on vastavalt ideaal ja algideal.

Definitsioon 2.4.2 Võre L filtrit F nimetatakse algfiltriks, kui sellest, et $aVb \in F$, kus $a, b \in L$, järjeldub $a \in F$ või $b \in F$. Algfilter $F \neq L$.

Zorni lemma Olgu meil järjestatud hulk A. Eeldame, et iga hulga A alamhulk omab ülemist tõket hulgas A. Siis sellest järeldub, et A omab vähemalt ühte maksimaalset elementi. $C \subset Aalamhulk : x, y \in C \implies x \le y \lor y \le x$.

Lause 2.4.1 Distributiivse võre iga kahe erivena elemendi jaoks leidub algfilter, mis sisaldab täpselt ühte neist kahest.

Tõestus

Teoreem 2.4.1 Võre on distributiivne parajasti siis, kui ta on isomorfne mingi hulga kõigi alamhulkade võre mingi alamvõrega

Selgitus Olgu L distributiivne võre. Vaja ledia hulk A ja üksühene homomorfism $\Phi: L \to P(A), \Phi(L) \leq P(A), Lisomm\Phi(L)$.

Tõestus

1.6 Rühmad

1.6.1 Faktorrühma faktoriseerimine

Isomorfismiteoreem Olgu H rühma G normaalne alamrühm, B rühma G alamrühm ning A rühma B normaalne alamrühm. Siis BH/AHisomB/(A(ByhisosaH)).

Järeldus 3.2.1. Olgu H rühma G normaalne alamrühm ja A rühma G alamrühm. Siis BH/HisomB/(ByhisosaH).

Teoreem 3.2.2. (Zassenhausi lemma) Kui H, H', K ja K' on rühma G alamrühmad, kusjuures H' on normaalne alamrühm rühmas H ja K' on normaalne alamrühm rühmas K, siis (HyhisK)H'/(HyhisK')H'isom(KyhisH)K'/(KyhisH')K'.

Tõestus Idee: näitame, et mõlemad on isomorfsed HyhisK/(H'yhisK)(HyhisK'). H'(HyhisK)/H'(HyhisK')isomHyhisK/(H'yhisK)(HyhisK'). Kasutame isomorfismiteoreemi. Võtame B rolli HyhisK, H rolli sobib H', A rolli võtame HyhisK'. Lisaks vaatama G rollis H-d. Kas hyhisK'normaalnealamryhmHyhisK?

1.6.2 Normaal- ja kompositsioonijadad

Schreieri teoreem Antud rühmas suvalised kaks normaaljada omavad ekvivalentseid tihedusi.

```
Tõestus \{1\} = H_0 < dH_1 < dH_2...H_m = G
\{1\}]K_0 < dK_1 < dK_2... < dH_n = G
Defineerime H_{ij} = H_i(H_{i+1}yhisosaK_j) ja K_{ji} = K_j(K_{j+1}yhisosaH_i).
Miks H_{ij} < dH_{i,j+1}?
Miks H_i(H_{i+1}yhisosaK_j) < dH_i(H_{i+1}yhisosaK_{j+1})?
```

Näide Olgu m=2, n=3. Siis peavad eelneva põhjal ekvivalentsed olema $H_0=H_{00}\leq H_{01}\leq H_{02}\leq H_{03}=H_1=H_{10}\leq H_{11}\leq H_{12}\leq H_{13}=H_2=G$ ja $K_0=K_{00}\leq K_{01}\leq K_{02}=K_1=K_{10}\leq K_{11}\leq K_{12}=K_2=K_2=K_{20}\leq K_{21}\leq K_{22}=K_3=G.$

Veenduda Sachenhausi lemma põhjal.

 $H_{01}/H_{00} isomorfne K_{01}/K_{00}$ $H_{02}/H_{01} isomorfne K_{11}/K_{10}$

 $H_{03}/H_{02} isomorfne K_{21}/K_{20}$

 $H_{11}/H_{10} isomorfne K_{02}/K_{01}$

 $H_{12}/H_{11} isomorfne K_{12}/K_{11}$

 $H_{13}/H_{12} isomorfe K_{22}/K_{12}$

1.7 Lihtsad rühmad

Lause 3.4.1 Abeli rühm on lihtne siis ja ainult siis, kui tema järk on algarv

Tõestus Kuna alamrühma järk jagab rühma järke, siis algarvulise järguga rühmal saab olla ainult 2 alamrühma - kogu rühm ja 1 elemendiline rühm. Teistpidi, olgu A lihtne Abeli rühm. $(A, +), 0 \neq a \in A, \{na|n \in \mathbb{Z}\}$. Kusjuures, kui n > 0 siis na = a + a + + a, kui n = 0 siis 0a = 0. Ja kui n < 0 siis

(-n) * a = -(na). Elemendi A poolt tektitatdu tsükliline alamrühm. Abeli rühma alamrühm on lihte, seega A = < a >.

Teoreem 3.4.1 Kui n = 3 või $n \ge 5$, siis rühm A_n on lihtne

Teoreem 3.4.2 Kui n > 2 või n = 2 ja |K| > 3, siis projektiivne spetsiaalne lineaarrühm PSL(n,K) on lihtne.

1.8 Lahenduvad rühmad

Definitsioon 3.5.1. Rühma, mis omab normaaljada, mille kõik faktorid on Abeli rühmad, nimetatakse lahenduvaks.

Teoreem 3.5.1 Lahenduva rühma alamrühmad ja faktorrühmad on lahenduvad.

Tõestus Olgu meil lahenduv rühm G. Kehtigu $\{1\} = H_0 < dH_1 < dH_2 < d... < dH_m = G$. H_{i+1}/H_i on Abeli rühm i = 0, ..., n-1. $A \leq G$, $A_i = AyhiosaH_i$, $A_0 = Ayhisosa\{1\} = \{1\}$, $A_n = AyhisosaG = A$, $i \leq j \implies A_i \leq A_j$.

Teoreem X Iga paaritu arvulise järguga rühm on lahenduv

Tõestus Olgu |G| paaritu. $\{1\} = H_0 < dH_1 < dH_2 < d... < dH_n = G$. Kõik jada faktorit lihtsad lõplikud rühmad. Alamrühma järk jagab rühma järku \Longrightarrow alamrühmade järgud on paaritud.

1.9 Faktorringi faktoriseerimine

Lause 4.1.1 Kõik korpused on lihtsad ringid. Iga lihtne kommutatiivne ring on korpus.

Tõestus $\{0\} \neq I < dK$. I - ideaal. ...

Lause 4.1.2 Täielik maatriksring $Mat_n(K)$ on lihtne iga naturaalarve n ja korpuse K korral.