V minulé přednášce

- •<u>Hnací síla Δ *G*</u> se musí získat tím, že soustavu přivedeme <u>do stavu dočasné nerovnováhy</u>.
- •Termodynamická <u>hnací síla</u> Δ*G* < 0 je pro uskutečnění přeměny podmínkou <u>nutnou, nikoliv</u> však <u>postačující</u>. O tom, zda k přeměně skutečně dojde, <u>rozhodnou</u> <u>parametry kinetické</u>.

•Fázové složení systému podle jeho složení a teploty je možné zanést do fázového diagramu

V této přednášce:

- Kinetická podmínka termodynamické reakce
- Difúze jako tepelně aktivovaný kinetický děj
- Fázové diagramy s invariantními reakcemi

Kromě hnací síly (v podobě ΔG) potřebuje termodynamický systém ještě další podmínku, aby umožnila reakci (tavení, změnu mřížky...)

Popisem této druhé podmínky se zabývá

Kinetika

Termodynamické hledisko – je reakce vůbec možná??

Kontrolujeme, zda pro reakci platí, že $\Delta G < 0$

-Přehřátí

<u>Vztah mezi termodynamikou a</u> kinetiko<u>u</u>

Krystalizace a tavení čisté látky (analogicky i alotropické přeměny v čisté látce).

Základní pojmy kinetiky

- Energetická bariéra je energetická překážka mezi výchozím a konečným stavem soustavy.
- Aktivační energie přeměny (děje) je energie potřebná k překonání energetické bariéry mezi oběma stavy; určuje se pomocí Arrheniovy rovnice pro daný děj – kombinací experimentů a výpočtů
- Fluktuace energie je proměnlivá a krátkou dobu trvající kladná nebo záporná odchylka energie jednotlivých částic od průměrné hodnoty energie, která charakterizuje soustavu jako celek.
- Energetickou bariéru překonávají jednotlivé částice postupně vlivem fluktuace své energie. Je-li fluktuace energie (aktivační energie) kladná a větší než energetická bariéra, částice se vlivem termodynamické hnací síly přeměny přemístí, přejde z původní do nově vznikající fáze.

Základní pojmy kinetiky

- Přeměny probíhají postupně tvorba zárodků nové fáze a jejich růst
- V závislosti na teplotě probíhají přeměny různou rychlostí a trvají různou dobu; (rozeznáváme rychlost nukleace, rychlost růstu a celkovou rychlost přeměny); obecná rychlost přeměny je popsána Arrheniovou rovnicí
- Postupný vznik nové a zánik staré fáze při dané teplotě znázorňuje kinetická křivka
- Kinetický (transformační) diagram ukazuje časový průběh dané přeměny při různých teplotách

Vývoj nové fáze od nukleace přes růst, popis tohoto děje kinetickou křivkou bude v přednášce o fázových reakcích (za dva týdny)

Arrheniova rovnice

 Arrheniova rovnice vyjadřuje obecnou <u>rychlost</u> libovolného izotermického (difuzního) <u>děje</u> v <u>závislosti</u> na teplotě

$$y' = A \cdot \exp\left(-\frac{Q}{R \cdot T}\right)$$

Born Svante August Arrhenius 19 February 1859 Wik Castle, Sweden

Died 2 October 1927 (aged 68) Stockholm, Sweden

Fields Physics, chemistry
Institutions Royal Institute of Technology

a mater Uppsala University Stockholm University

Kde: y' – rychlost sledovaného děje, fyzikální rozměr je různý podle děje (např. frekvence přeskoků [s⁻¹], rychlost růstu průměru zrna [m.s⁻¹], rychlost růstu plochy zrna [m²s⁻¹] apod.;

A – rychlostní konstanta sledovaného děje, fyzikální rozměr stejný jako y´

Q – aktivační energie sledovaného děje [J.mol⁻¹]

R – molární plynová konstanta; R = 8,314 [J.mol⁻¹K⁻¹]

T – teplota děje [K]

 $\exp\left(-\frac{Q}{R \cdot T}\right)$ statistická pravděpodobnost, že soustava má k dispozici aktivační energii Q k uskutečnění děje

Čím větší jsou hodnoty A a T, a čím menší je hodnota Q, tím rychleji daný děj probíhá.

Arrheniova rovnice

- Arrheniova rovnice slouží k určení číselné hodnoty konstanty A a aktivační energie Q uvažovaného děje. Vychází se z experimentálního zjištění jeho rychlosti y´ za různých teplot, následné grafické analýzy a závěrečných výpočtů
- Pro usnadnění grafické a regresní analýzy se Arrheniova rovnice převede logaritmováním do lineárního tvaru

$$\ln y' = \ln A - \frac{Q}{R} \cdot \frac{1}{T}$$

což je úsekový tvar rovnice přímky v souřadnicích ln y' -1/T.

 Do souřadného systému ln y´ - 1/T se vynesou experimentálně určené hodnoty rychlostí děje

Výpočet parametrů Arrheniovy rovnice z experimentálních bodů

$$y' = A \cdot \exp\left(-\frac{Q}{R \cdot T}\right)$$

$$\ln y' = \ln A - \frac{Q}{R} \cdot \frac{1}{T}$$

- schematicky výpočet veličin A a Q
- Konstanta A určuje výškovou polohu regresní přímky, aktivační energie Q její směrnici (strmost), tj. sílu závislosti rychlosti děje na teplotě
- Arrheniovuy rovnici použijeme při dalším studiu vícekrát (nejdříve např. v kapitole " Difuze")

$$-\frac{Q}{R} = \tan \alpha = \frac{\Delta \ln y}{\Delta \frac{1}{T}}$$

Příkladem velmi důležitého děje, kde je kinetická podmínka zásadní je

Difuze

Podstata difúze

- Difúze je přenosový děj, při němž dochází k přemístění difundující látky základním materiálem - většinou z míst, kde je difundující látky více do míst, kde je jí méně (koncentrační spád)
- Difúze se uskutečňuje pomocí velkého počtu náhodných přeskoků atomů nebo iontů, jejichž výsledkem je statistické zmenšení koncentračních rozdílů
- Difúze je děj samovolný (spontánní), nevratný, tepelně aktivovaný (Arrheniova rovnice)
- Cíl (konec) přenosového děje = vyrovnání rozdílů v koncentraci, dosažení rovnováhy

Difúze - vliv skupenství

- u plynů a kapalin probíhá přemístění látky snadno, kromě toho se může uskutečnit i jinak než difúzí (např. mechanickým mícháním)
- difúze látkou v tuhém stavu je obtížná, časově náročná a je jediným možným způsobem přenosu látky – proto je významným dějem

vliv druhu materiálu

- v kovových a keramických materiálech probíhá difúze obdobným způsobem
- difúze v polymerech má jinou podstatu a charakter, vy

Neuspořádaný tepelný pohyb atomů, iontů a vakancí

- Atomy a ionty jsou vlivem tepelné energie v neustálém neuspořádaném pohybu (např. z uzlové polohy do vedlejší vakance, z jedné intersticiální polohy do druhé, apod.)
- Rychlost pohybu atomů a iontů se vyjadřuje jako frekvence jejich přeskoků z jedné polohy do druhé, $f[s^{-1}]$
- Rychlost difuze popisuje Arrheniova rovnice uvádí do souvislosti rychlost pohybu atomů s aktivační energií – tj. s dodatečnou energií částice, která její přeskoky umožní
- ↑ Aktivační energie ⇒ ↓ rychlost děje

Mechanismus difúze

<u>Vakantní</u>

$$f = z \cdot v \cdot exp \left(-\frac{\Delta G_m + \Delta G_v}{R \cdot T} \right)$$

$$f = z \cdot v \cdot \exp\left(-\frac{\Delta G_m}{R \cdot T}\right)$$

z – počet nejbližších míst, do nichž může atom přeskočit

 ν – frekvence kmitavého pohybu atomů kolem uzlových poloh

 DG_m = práce vynaložená na překonání meziatomové vazebné energie DG_v = práce vynaložená na přeskok vakance

Náročnost mechanismů difúze

 Aktivační energie intersticiální difuze Qi je menší než aktivační energie vakantní Qv (samodifuze)

$$egin{aligned} oldsymbol{Q_i} &= \Delta oldsymbol{G_m} \ oldsymbol{Q_v} &= \Delta oldsymbol{G_m} + \Delta oldsymbol{G_v} \end{aligned} \qquad egin{aligned} oldsymbol{Q_i} \left\langle egin{aligned} oldsymbol{Q_v} &\Rightarrow oldsymbol{D_i}
ight
angle oldsymbol{D_v} \end{aligned}$$

- Difuze intersticiálních atomů (intersticiální mechanismus difuze) je energeticky méně náročná a probíhá rychleji než difuze substitučních atomů (vakantní mechanismus difuze)
- Intersticiálním mechanismem se v materiálu pohybují intersticiální atomy
- Vakantním mechanismem probíhá samodifuze a difuze cizích prvků (nečistot, legur) = heterodifuze

Difuze stacionární a nestacionární

stacionární

Koncentrace se s časem nemění

$$\frac{\partial \mathbf{c}}{\partial \boldsymbol{\tau}} = \mathbf{0}$$

nestacionární

Koncentrace se s časem mění – sycení nebo ochuzování

$$\frac{\partial \mathbf{c}}{\partial \boldsymbol{\tau}} \neq 0$$

Stacionární difúze - 1. Fickův zákon

$$J_{\mathbf{A}} = -D_{\mathbf{A}} \cdot \frac{\partial c_{\mathbf{A}}}{\partial x}$$

Adolf Eugen Fick (1829-1901) 3 September 1829 Kassel, Electorate of 21 August 1901 (aged 71) -množství látky A [kg] přenesené za Physiology jednotku času d**t** =1 [s] jednotkovou Riophysics University of Zurich plochou průřezu vzorku **S**=1[m²] kolmou na směr difuze v místě, kde gradient koncentrace má příslušnou hodnotu

• D_A [m²s⁻¹] je koeficient difúze (difuzivita) látky A; má význam rychlostní konstanty difúze

je gradient koncentrace látky A; geometricky je to směrnice tečny ke křivce koncentračního profilu v daném místě x; z hlediska 1FZ je to hybná síla difuze (ve skutečnosti není hybnou silou koncentrace, ale chemický potenciál – může totiž nastat i obrácená difuze)

- $-c_{A}$ [kg.m⁻³] je okamžitá objemová koncentrace látky A
- -x [m] je polohová souřadnice ve směru osy x, který je směrem difúze

18

Nestacionární difuze - 2. Fickův zákon

 $\frac{\partial \boldsymbol{c}}{\partial \boldsymbol{\tau}}$ změna koncentrace v závislosti na čase

$$\frac{\partial \mathbf{c}}{\partial \boldsymbol{\tau}} = \mathbf{D} \cdot \frac{\partial^2 \mathbf{c}}{\partial \mathbf{x}^2}$$

P²c křivost koncentračního profilu v daném místě *x*

Uvažujeme **D = konst**, reálně se s koncentrací mírně mění

Nasycování povrchu tělesa

Nestacionární difúze - Difuzní článek

čas = 0100 Schodový profil dvou velmi těsně přiblížených materiálů Distance x s různým složením 100 Postupně dojde k vyrovnání koncentračního profilu zdroj i cíl difundujících 100 atomů jsou konečné 100 čas = ∞ čas = ∝ Distance x

Interface

distribuce atomů B

Interface

2. Fickův zákon, příklad použití

- Jakou dobu nasycování volíme při dané teplotě
- Jakou teplotu zvolit abychom v určité hloubce pod povrchem dosáhli určité koncentrace c (vliv teploty se projevuje přes hodnotu koeficientu difuze).

Cementování

 Uhlík difunduje do povrchu cementované součásti

 Zvýšená koncentrace uhlíku vytváří na povrchu pevnější ocel, schopnou navíc i tepelného zpracování –zušlechtění

Příklad využití difúze

Růst velikosti zrna

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

Příklad využití difúze

Slinování keramiky

Compacted product

Partly sintered product

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.

Příklad využití difúze

Difuzní spojování

Difúze v polymerech

- U polymerů je nejdůležitější difúze atomů nebo malých molekul mezi dlouhými polymerními řetězci. Proto z inženýrského hlediska se častěji zvažuje propustnost polymerů než difúzní koeficienty
- Propustnost se udává pomocí objemu plynu nebo páry, který projde při dané teplotě a vlhkosti za jednotku času jednotkovou plochou a jednotkovou tloušťkou uvažovaného materiálu
- Obecně platí: čím kompaktnější je struktura polymeru, tím menší je jeho propustnost; např. high-density polyethylen (HDPE) vykazuje nižší propustnost než low-density polyethylen (LDPE)
- Propustnost polymerů je rozdílná pro různé difundující látky; např. polymery s polárními skupinami (jako ethylen vinyl alcohol – EVA) propouštějí snadněji vodní páru než kyslík; polyetylén se chová výrazně opačně

Máme k dispozici několik základních nástrojů pro popis stavu a popis změn v materiálech v závislosti na jejich složení a vnějších podmínkách

- * Gibbsův zákon fází
- * Gibbsovu energii jako kritérium rovnováhy
- * Aktivační energii jako kritérium kinetické možnosti reakcí a
- * **Difuzi** jako mechanismus **pohybu atomů** v tuhé látce všechny je nutné mít na zřeteli, když se pracuje s
- * fázovými diagramy

první jednoduché již byly v minulé přednášce, nyní zavedeme několik dalších základních tvarů

Rovnovážné diagramy

zobrazují koncentrační rozsah existence fází, které jsou za daných vnějších podmínek (teplota T a tlak p) v rovnováze

- vynáší se v osách teplota T chemické složení c_i
- diagramy jsou izobarické (p = konst.) při atmosférickém tlaku
- udávají kvalitativní i kvantitativní popis existence daných fází
- popis diagramů: fázový, strukturní
- rovnovážné diagramy:
 - soustav o dvou složkách (A,B) binární diagramy
 - soustav o třech složkách (A,B,C) ternární diagramy

Základní binární rovnovážné diagramy

Předpoklady:

- složky jsou v tekutém stavu dokonale rozpustné
- složky v tuhém stavu neprodělávají překrystalizaci (nepolymorfní)

Rozdělení diagramů dle vzájemné rozpustnosti složek v tuhém stavu:

- * s úplnou rozpustností Rooseboom I (ukázán již na minulé přednášce)
 - 💠 s úplnou rozpustností a s minimem Rooseboom II
 - 💠 s úplnou rozpustností a s maximem Rooseboom III
- ❖ s úplnou nerozpustností a **eutektickou reakcí** Rooseboom V
- s částečnou rozpustností a eutektickou reakcí Rooseboom Va
- 💠 s částečnou rozpustností a **peritektickou reakcí** Rooseboom 🛚

BRD podle vzájemné rozpustnosti obou komponent

úplně rozpustné eutektická reakce peritektická reakce bez změny rozpustnosti rozpustnost klesající v tuhém stavu rozpustnost rostoucí rozpustnost

<u>úplně nerozpustné</u>

BRD s úplnou rozpustností

Např.: Ni – Cu, Au – Pt, Au – Ag, Bi – Sb MgO – FeO, MgO – NiO

BRD s úplnou nerozpustností a eutektickou reakcí

- Např.: Sn-Zn, Bi-Cd

Eutektická reakce

$$v = 0$$
 $L_E \rightarrow (A + B)$
 $(A + B)$ eutektikum

BRD s částečnou rozpustností a eutektickou reakcí

Eutektická reakce v = 0 $L_E \rightarrow (\alpha_F + \beta_G)$ $(\alpha_F + \beta_G)$ eutektikum

BRD <u>s částečnou rozpustností a peritektickou</u> reakcí

Peritektická reakce

$$v = 0$$

$$\alpha_F + L_E \rightarrow \beta_G$$

 β_G peritektikum

Binární rovnovážné diagramy se změnou rozpustnosti v tuhém stavu

- složky jsou v tekutém stavu dokonale rozpustné
- složky neprodělávají překrystalizaci v tuhém stavu
- Varianty diagramů dle způsobu krystalizace a změny rozpustnosti:
 - s eutektickou reakcí s oboustrannou částečnou klesající nebo vzrůstající rozpustností v tuhém stavu
 - s peritektickou reakcí s oboustrannou částečnou klesající nebo vzrůstající rozpustností v tuhém stavu

BRD s eutektickou reakcí se změnou rozpustnosti v tuhém stavu

s oboustrannou částečnou klesající rozpustností v tuhém stavu

Eutektická reakce v = 0 $L_E \rightarrow (\alpha_F + \beta_G)$ $(\alpha_F + \beta_G)$ eutektikum

BRD s peritektickou reakcí se změnou rozpustnosti v tuhém stavu

s oboustrannou částečnou klesající rozpustností v tuhém stavu

Peritektická reakce v = 0 $\alpha_F + L_E \rightarrow \beta_G$ β_G peritektikum

Binární rovnovážné diagramy s intermediární fází

Předpoklady:

- složky jsou v tekutém stavu dokonale rozpustné
- složky jsou v tuhém stavu vzájemně nerozpustné
- * při určité koncentraci složek se tvoří intermediární fáze

Rozdělení diagramů:

- s intermediární fází o neproměnném složení
- s intermediární fází o **proměnném** složení

Binární rovnovážné diagramy s intermediární fází

s intermediární fází o **neproměnném** složení

s intermediární fází o **proměnném** složení

Informace, které nesou fázové diagramy

Mimo fázové složení a možnost odhadnout mikrostrukturu.

Diagramy udávají informativní průběhy některých vlastností (tvrdost, pevnost, elektrický odpor)

Vícesložkové soustavy

Ternární slitiny

- způsob zobrazování složení slitin v rovnostranném trojúhelníku
- rovnovážný diagram je prostorový, teplota se zobrazuje v prostoru

Vícesložkové soustavy

Ternární slitiny

řezy ternárními diagramy: horizontální pro konstantní teplotu vertikální pro daná složení (pseudobinární diagram)

Voda - sůl

Salt and Water

Voda – glykol; metastabilní, tvoří hydrát

Atomic percent nickel

Туре	Temperature	Composition
Pure Metal Melting Point (INVARIENT)	1670C	0wt%Ni
Pure Metal Crystal Structure Change (INVARIENT)	882C	0wt%Ni
Eutectoid	786C	5wt%Ni
Eutectic	942C	28wt%Ni
Peritectic	984C	38wt%Ni
Eutectoid	630C	55wt%Ni
Congruent Melting Point	1310C	55wt%Ni
Eutectic	1118C	67wt%Ni
Congruent Melting Point	1380C	78wt%Ni
Eutectic	1300C	85wt%Ni
Pure Metal Melting Point (INVARIENT)	1455C	100wt%Ni

Příští přednáška se bude zabývat fázovými diagramy kde složky jsou polymorfní, většinu přednášky věnujeme systému Fe-Fe₃C