SELECTING AN APPROACH

- Unstructured Data (text, images, Video, sound)
- Tabular Data: classical ML methods
 - · do you know the functional form? GLM
 - · do you need a simple model? Decision trees
 - · are you interested in inference? GILM
 - · are you interested in Prediction? ensembles

But, always start simply.

- More flexible, data driven
- Don't depend on a functional form w/a fixed number of parameters y= BotBIX, t...
- need more data
- ex: decision trees, RF, GBM

PLE	Ask: What If I knew
Price	the fi ² , but not the
\$ M	price, how can I
\$ 1.2M	predict it?
	ft=1100
t 211	f+2= 1070
	\$ 1.1M \$ 1.2M \$ 1.15M \$ 1.25M

x x=3

avg of

3 NN

Choose K NN Using Euclidean distance.

- · Reg + Class.
- · Need lots of data
- . Show to fit
- · Normalize features
- · Find suitable K

Don't extrapolate well.

- Segmented our data into regions using features and distance.

What if we partition our data using a loss function?

DECISION TREES

- Partition our data into high-dimensional rectangular regions.
- If an obs. falls in a region, use training Set y-value to make a prediction. (y or mode(y))
- Not using distance => features can be unnormalized.
- Handle categorical features.

RULE-BASED SYSTEMS

If borns < 3

And buth < 2

And city = Pacifica

Then Price = \$ 900k

1\$ ···

- Choose splits s.t. 4-values in a region are as alike as possible.

X,

If you keep going you might overfit.

High Variance.

FINDING THE BEST SPLITS

For each feature: For each value in the region:

Split the data + calculate the loss

Return feature and split point w/smallest

Do this recursively until some stopping Criteria.

MSE = 2

MSE = 1.8