Exercise. 3.29

Suppose we fit a ridge regression with a given shrinkage parameter $\lambda\in\mathbb{R}^+$ on a single variable x_1 . (Notice that x_1 is a $N\times 1$ vector.)

- 1. (Essential) Show that the coefficient must be $rac{X^Ty}{X^TX+\lambda}$ where $X=x_1$
- 2. (Essential) We now include an exact copy $x_2=x_1$, so our new design matrix would be $X=[x_1|x_2]$. Using this matrix, re-fit our ridge regression. Show that both coefficients are identical, and derive their value.
- 3. (Extra) Show in general that if m copies of a variable x_j , are included in a ridge regression, so X would be $[x_1|x_2|\cdots|x_m]$, their coefficients are all the same

1.
$$\hat{g}^{R} = \underset{p}{\operatorname{argmin}} \sum_{i=1}^{N} (y_{i} - y_{i} - y_{i} - y_{i} + y_{i})^{2} + \lambda \cdot y_{i}^{R} + \lambda \cdot$$

$$-2\chi'(y-\chi\beta)+2\chi\beta=0$$

$$\chi'y=\chi'\chi\beta+\lambda\cdot\mathbf{I}\cdot\beta=(\chi'\chi+\lambda\mathbf{I})\cdot\beta$$

$$pxp Identity watrix$$

ा जिल्ला का स्थानिक भी देशह भी

$$\beta_{1}(2x'x+\lambda) = x'x$$

$$\beta_{1} = \beta_{2} = \frac{x'x}{2x'x+\lambda} \qquad \beta_{1} = \beta_{2}$$

李例哪种光光地