#### Algorithm Design Approaches1

ESC108A Elements of Computer Science and Engineering B. Tech. 2017

#### **Course Leaders:**

Roopa G.

Ami Rai E.

Chaitra S.



#### Objectives

- At the end of this lecture, student will be able to
  - list the important algorithmic approaches
  - Understand and apply Dijikstra's Algorithm
  - Understand and apply Prim's Algorithm
  - Understand and apply Kruskal's Algorithm



#### Contents

- Dijikstra's Algorithm
- Prims Algorithm
- Kruskal's Algorithm



#### Dijkstra's algorithm

- <u>Dijkstra's algorithm</u> a solution to the single-source shortest path problem in graph theory
- Works on both directed and undirected graphs
- However, all edges must have nonnegative weights
- Approach: Greedy
- Input: Weighted graph G={E,V} and source vertex v∈V, such that all edge weights are nonnegative
- Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices



#### DIJKSTRA'S ALGORITHM - WHY USE IT?

- As mentioned, Dijkstra's algorithm calculates the shortest path to every vertex from a given vertex
- However, it is as computationally expensive to calculate the shortest path from vertex u to every vertex using Dijkstra's as it is to calculate the shortest path to some particular vertex v
- Therefore, anytime we want to know the optimal path to some other vertex from a determined origin, we can use Dijkstra's algorithm



# Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

From Computer Desktop Encyclopedia

3 1998 The Computer Language Co. Inc.





# Example-Walk-Through



#### Initialize array

|   | K | $d_v$ | $p_{v}$  |
|---|---|-------|----------|
| A | F | 8     | _        |
| В | F | 8     | _        |
| C | F | 8     | _        |
| D | F | 8     |          |
| E | F | 8     | <u> </u> |
| F | F | 8     | _        |
| G | F | 8     | _        |
| Н | F | 8     | _        |





Start with G

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| С |   |       |         |
| D |   |       |         |
| E |   |       |         |
| F |   |       |         |
| G | Т | 0     | _       |
| Н |   |       |         |





Update unselected nodes

|         | K | $d_v$ | $p_{v}$ |
|---------|---|-------|---------|
| A       |   |       |         |
| В       |   |       |         |
| C       |   |       |         |
| D       |   | 2     | G       |
| E       |   |       |         |
| ${f F}$ |   |       |         |
| G       | Т | 0     | _       |
| Н       |   | 3     | G       |





Select minimum distance

|   | K | $d_v$ | $p_{\nu}$ |
|---|---|-------|-----------|
| A |   |       |           |
| В |   |       |           |
| C |   |       |           |
| D | T | 2     | G         |
| E |   |       |           |
| F |   |       |           |
| G | Т | 0     | _         |
| Н |   | 3     | G         |





Update unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   |       |         |
| D | T | 2     | G       |
| E |   | 27    | D       |
| F |   | 20    | D       |
| G | T | 0     | _       |
| Н |   | 3     | G       |





Select minimum distance

|              | K | $d_v$ | $p_{v}$ |
|--------------|---|-------|---------|
| A            |   |       |         |
| В            |   |       |         |
| С            |   |       |         |
| D            | Т | 2     | G       |
| E            |   | 27    | D       |
| $\mathbf{F}$ |   | 20    | D       |
| G            | Т | 0     | _       |
| Н            | Т | 3     | G       |





Update unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 7     | Н       |
| В |   | 12    | Н       |
| C |   |       |         |
| D | T | 2     | G       |
| E |   | 27    | D       |
| F |   | 20    | D       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Select minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В |   | 12    | Н       |
| C |   |       |         |
| D | T | 2     | G       |
| E |   | 27    | D       |
| F |   | 20    | D       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Update unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В |   | 12    | Н       |
| C |   |       |         |
| D | T | 2     | G       |
| E |   | 27    | D       |
| F |   | 17    | A       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Select minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В | T | 12    | Н       |
| C |   |       |         |
| D | T | 2     | G       |
| E |   | 27    | D       |
| F |   | 17    | A       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Update unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В | T | 12    | Н       |
| C |   | 16    | В       |
| D | T | 2     | G       |
| E |   | 22    | В       |
| F |   | 17    | A       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Select minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В | T | 12    | Н       |
| C | Т | 16    | В       |
| D | T | 2     | G       |
| E |   | 22    | В       |
| F |   | 17    | A       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Update unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В | T | 12    | Н       |
| C | Т | 16    | В       |
| D | T | 2     | G       |
| E |   | 22    | В       |
| F |   | 17    | A       |
| G | T | 0     | _       |
| H | T | 3     | G       |





Select minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В | T | 12    | Н       |
| C | T | 16    | В       |
| D | T | 2     | G       |
| E |   | 22    | В       |
| F | T | 17    | A       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Update unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 7     | Н       |
| В | T | 12    | Н       |
| C | Т | 16    | В       |
| D | T | 2     | G       |
| E |   | 19    | F       |
| F | T | 17    | A       |
| G | T | 0     | _       |
| Н | T | 3     | G       |





Select minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | Т | 7     | Н       |
| В | T | 12    | Н       |
| C | Т | 16    | В       |
| D | Т | 2     | G       |
| E | T | 19    | F       |
| F | Т | 17    | A       |
| G | Т | 0     | _       |
| Н | Т | 3     | G       |

**Done** 



#### Minimum Spanning Tree

- A Minimum Spanning Tree (MST)
  - a subgraph of an undirected graph such that the subgraph spans (includes) all nodes, is connected, is acyclic, and has minimum total edge weight



#### Prim's and Kruskal's Algorithms

- Both Prim's and Kruskal's Algorithms work with undirected graphs
- Both work with weighted and unweighted graphs but are more interesting when edges are weighted
- Both are greedy algorithms that produce optimal solutions



#### Some Applications

- Taxonomy
- Clustering Analysis
- Traveling Salesman Problem Approximation
- In the design of electronic circuitry



#### Prim's Algorithm

• Similar to Dijkstra's Algorithm except that  $d_v$  records edge weights, not path lengths



# Walk-Through



#### Initialize array

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | F | 8     | _       |
| В | F | 8     | _       |
| C | F | 8     | _       |
| D | F | 8     | _       |
| E | F | 8     | _       |
| F | F | 8     | _       |
| G | F | 8     | _       |
| Н | F | 8     | _       |





Start with any node, say D

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| С |   |       |         |
| D | T | 0     | _       |
| E |   |       |         |
| F |   |       |         |
| G |   |       |         |
| Н |   |       |         |





Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   | 3     | D       |
| D | Т | 0     | _       |
| E |   | 25    | D       |
| F |   | 18    | D       |
| G |   | 2     | D       |
| Н |   |       |         |





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   | 3     | D       |
| D | Т | 0     | 1       |
| E |   | 25    | D       |
| F |   | 18    | D       |
| G | T | 2     | D       |
| Н |   |       |         |





Update distances of adjacent, unselected nodes

|         | K | $d_v$ | $p_{v}$ |
|---------|---|-------|---------|
| A       |   |       |         |
| В       |   |       |         |
| C       |   | 3     | D       |
| D       | Т | 0     | _       |
| E       |   | 7     | G       |
| ${f F}$ |   | 18    | D       |
| G       | Т | 2     | D       |
| Н       |   | 3     | G       |





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E |   | 7     | G       |
| F |   | 18    | D       |
| G | T | 2     | D       |
| H |   | 3     | G       |





Update distances of adjacent, unselected nodes

|              | K | $d_v$ | $p_{v}$ |
|--------------|---|-------|---------|
| A            |   |       |         |
| В            |   | 4     | C       |
| C            | Т | 3     | D       |
| D            | T | 0     |         |
| E            |   | 7     | G       |
| $\mathbf{F}$ |   | 3     | C       |
| G            | Т | 2     | D       |
| Н            |   | 3     | G       |





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E |   | 7     | G       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н |   | 3     | G       |





Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E |   | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н |   | 3     | G       |





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | C       |
| C | Т | 3     | D       |
| D | T | 0     | _       |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н |   | 3     | G       |





Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | C       |
| C | Т | 3     | D       |
| D | Т | 0     | _       |
| E | Т | 2     | F       |
| F | Т | 3     | С       |
| G | Т | 2     | D       |
| Н |   | 3     | G       |

Table entries unchanged





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н | T | 3     | G       |





Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 4     | Н       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н | Т | 3     | G       |





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 4     | Н       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н | Т | 3     | G       |





Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | Т | 4     | Н       |
| В |   | 4     | C       |
| С | Т | 3     | D       |
| D | Т | 0     |         |
| E | Т | 2     | F       |
| F | Т | 3     | С       |
| G | Т | 2     | D       |
| Н | Т | 3     | G       |

Table entries unchanged





Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 4     | Н       |
| В | T | 4     | C       |
| C | Т | 3     | D       |
| D | T | 0     | _       |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н | T | 3     | G       |





Cost of Minimum Spanning Tree =  $\sum d_v = 21$ 

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | Т | 4     | Н       |
| В | Т | 4     | C       |
| C | Т | 3     | D       |
| D | Т | 0     | _       |
| E | Т | 2     | F       |
| F | Т | 3     | C       |
| G | Т | 2     | D       |
| Н | Т | 3     | G       |

**Done** 

#### Kruskal's Algorithm

- Work with edges, rather than nodes
- Two steps:
  - Sort edges by increasing edge weight
  - Select the first |V| 1 edges that do not generate a cycle



## Walk-Through



Consider an undirected, weight graph



Sort the edges by increasing edge weight

| edge  | $d_v$ |  |
|-------|-------|--|
| (D,E) | 1     |  |
| (D,G) | 2     |  |
| (E,G) | 3     |  |
| (C,D) | 3     |  |
| (G,H) | 3     |  |
| (C,F) | 3     |  |
| (B,C) | 4     |  |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |



| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     |   |
| (E,G) | 3     |   |
| (C,D) | 3     |   |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |





| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | V |
| (E,G) | 3     |   |
| (C,D) | 3     |   |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |



Select first |V|-1 edges which do not generate a cycle



| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | √ |
| (D,G) | 2     | √ |
| (E,G) | 3     | χ |
| (C,D) | 3     |   |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |

Accepting edge (E,G) would create a cycle



| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | √ |
| (D,G) | 2     | V |
| (E,G) | 3     | х |
| (C,D) | 3     | V |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |





| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | √ |
| (D,G) | 2     | V |
| (E,G) | 3     | х |
| (C,D) | 3     | √ |
| (G,H) | 3     | V |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |





| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | √ |
| (E,G) | 3     | χ |
| (C,D) | 3     | √ |
| (G,H) | 3     | √ |
| (C,F) | 3     | √ |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |
|       | •     |  |





| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | √ |
| (E,G) | 3     | х |
| (C,D) | 3     | V |
| (G,H) | 3     | 1 |
| (C,F) | 3     | V |
| (B,C) | 4     | V |

| $d_v$ |                            |
|-------|----------------------------|
| 4     |                            |
| 4     |                            |
| 4     |                            |
| 5     |                            |
| 6     |                            |
| 8     |                            |
| 10    |                            |
|       | 4<br>4<br>4<br>5<br>6<br>8 |





| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | V        |
| (D,G) | 2     | V        |
| (E,G) | 3     | χ        |
| (C,D) | 3     | V        |
| (G,H) | 3     | V        |
| (C,F) | 3     | V        |
| (B,C) | 4     | <b>√</b> |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     |   |
| (B,H) | 4     |   |
| (A,H) | 5     |   |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |





| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | V |
| (E,G) | 3     | х |
| (C,D) | 3     | √ |
| (G,H) | 3     | V |
| (C,F) | 3     | V |
| (B,C) | 4     | √ |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     | χ |
| (B,H) | 4     |   |
| (A,H) | 5     |   |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |





| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | V        |
| (D,G) | 2     | V        |
| (E,G) | 3     | х        |
| (C,D) | 3     | V        |
| (G,H) | 3     | V        |
| (C,F) | 3     | V        |
| (B,C) | 4     | <b>√</b> |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     | χ |
| (B,H) | 4     | χ |
| (A,H) | 5     |   |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |





| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | V        |
| (D,G) | 2     | √        |
| (E,G) | 3     | χ        |
| (C,D) | 3     | √        |
| (G,H) | 3     | √        |
| (C,F) | 3     | <b>√</b> |
| (B,C) | 4     | V        |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     | χ |
| (B,H) | 4     | χ |
| (A,H) | 5     | 1 |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |



Select first |V|-1 edges which do not generate a cycle



| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | V        |
| (D,G) | 2     | V        |
| (E,G) | 3     | χ        |
| (C,D) | 3     | V        |
| (G,H) | 3     | V        |
| (C,F) | 3     | V        |
| (B,C) | 4     | <b>√</b> |

| edge  | $d_v$ |   |                   |
|-------|-------|---|-------------------|
| (B,E) | 4     | X |                   |
| (B,F) | 4     | X |                   |
| (B,H) | 4     | X |                   |
| (A,H) | 5     | 1 |                   |
| (D,F) | 6     |   | not               |
| (A,B) | 8     |   | not<br>considered |
| (A,F) | 10    |   | J                 |

**Done** 

Total Cost =  $\sum d_v = 21$ 

#### Summary

- Greedy approach is a powerful technique to solve problem of finding optimal solutions
- Greedy approaches lead to efficient algorithms
- The general greedy technique involves step wise selection of the best possible alternatives available
- Dijkstra's algorithm is a solution to the single-source shortest path problem in graph theory
- Both Prim's and Kruskal's Algorithms work with undirected graphs



#### References

- Dromey, R. (1982) *How To Solve it By Computer.* Noida: Pearson Education Inc.
- Goodrich, M. T., and Tomasia, R. (2001) Algorithm Design: Foundations, Analysis, and Internet Examples. Wiley
- Levitin, A. (2003) *Introduction to the Design and Analysis of Algorithms*. Addison-Wesley

