Introduction to Machine Learning

Alessandro Rudi, Umut Simsekli Notes by Antoine Groudiev

29th February 2024

Contents

1	An overview of Machine Learning				
	1.1	What	is ML?	1	
	1.2	Topics	in Machine Learning	2	
		1.2.1	Supervised Learning	2	
		1.2.2	Probabilistic approach	2	
		1.2.3	Unsupervised Learning	3	
2 Linear Least Squares Regression			3		
3	Logic regression and convex analysis				
	3.1			3	

Introduction

1 An overview of Machine Learning

1.1 What is ML?

Considering a problem, such as image classification: given an input image of a dog or a cat, the program is asked to determine whether the image is a dog or a cat. Conventional programming would hardcode the solution to this problem. But this process takes time and is not easily generalisable. Instead, an ML model is trained on a dataset to produce a program to solve the problem.

Many successful applications of Machine Learning are:

- Face recognition
- Spam filtering
- Speech recognition
- Self-driving systems; pedestrian detection

1.2 Topics in Machine Learning

1.2.1 Supervised Learning

Example (Classification). Features $x \in \mathbb{R}^d$, labels $y \in \{1, \dots, k\}$

Definition (Regression). Features $x \in \mathbb{R}^d$, labels $y \in \mathbb{R}$. To tackle such problem, we look for a parametrized function $f_{\theta}(x_i) \simeq y_i$ for some f_{θ} in a function space

$$\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \}$$

Our goal is therefore to find the best function in \mathcal{F} such that f "fits" the training data. For example, we can say that f "fits" the training data when

$$\frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

is "small". Such a function is not interesting in general, like for classification.

Definition (Loss function). Assums that the features are in \mathcal{X} and the labels are in \mathcal{Y} . We introduce the more general *loss function* notion:

$$l: \mathcal{Y}^2 \to \mathbb{R}_+$$

For a regression task, we can use $l(\hat{y}, y) = (\hat{y} - y)^2$. For a classification task, $l(\hat{y}, y) = \mathbb{1}_{\hat{y}=y}$.

Therefore, for a regression problem, we might choose:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$$

In the parametric case, when $\mathcal{F} = \{f_{\theta} : \theta \in \Theta\}$, we might minimize with respect to θ :

$$\theta^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n l(f(x_i), y_i)$$

1.2.2 Probabilistic approach

Let $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ be the feature space. Let D be a distribution on \mathcal{Z} ; we make the assumption that the training data is iid from D:

$$(x_i, y_i) \sim D$$

and the same thing hold for the test data:

$$(\tilde{x_i}, \tilde{y_i}) \sim D$$

According to the Strong Law of Large Numbers, the test loss converges almost surely:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} l(f_{\theta}(\tilde{x}_i), \tilde{y}_i) = \mathbb{E}_{(x,y) \sim D}[l(f_{\theta}(x), y)] =: R(\theta) = R(f_{\theta})$$

where $R(\theta)$ is the population risk.

Definition (Risk minimization).

1.2.3 Unsupervised Learning

Example (Clustering).

Example (Dimensionnality reduction). We are given features $x \in \mathbb{R}^d$ and labels $y \in \{0,1\}$ which form a "training" dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$. We assume that d >> 1; our goal is to find d' << d such that (x_1, y_1, \dots, y_n)

2 Linear Least Squares Regression

Consider an input space X and an output space Y. We consider a function $f: X \to Y$ unknown to us, that we want to recover. We are given samples $D_N = [(x_1, y_1), \dots, (x_N, y_N)]$. Our goal is to produce \hat{f}_D such that \hat{f}_D "converges" to f when $|D| \to +\infty$.

3 Logic regression and convex analysis

Recap of important notions and notations

We are given an input space X and an output space Y. We want to learn the relationship between input and output, modelised by a probability distribution $\rho \in \mathbb{P}(X \times Y)$. Thus, we try to find the best function $f_{\star}: X \to Y$, given a loss function $l: Y \times Y \to \mathbb{R}$. Therefore, f_{\star} is often defined by:

$$f_{\star} = \operatorname*{argmin}_{f:X \to Y} \mathbb{E}_{X,Y}[l(f(X), Y)]$$

where

$$\mathbb{E}_{X,Y}[g(X,Y)] = \int_{\mathbb{R}^2} g(x,y) \cdot d\rho(x,y)$$

In practice, you only know some samples $D_N = [(x_1, y_1), \dots, (x_N, y_N)]$ with $(x_i, y_i) \sim \rho$, making it impossible to choose such an f_* . Therefore, we try to find a good model \hat{f}_{D_N} , such that

$$\lim_{N \to +\infty} \mathcal{E}(\hat{f}_{D_N}) - \mathcal{E}(f) = 0$$

Such a result will often be given by a learning rate function c(N), with

$$\mathbb{E}_{D_N}[\mathcal{E}(\hat{f}_{D_N}) - \mathcal{E}(f)] \leqslant c(N) = o(1)$$

The function \hat{f}_{D_N} can be chosen such that it minimizes the empirical error:

$$\hat{f}_{D_N} = \operatorname*{argmin}_{f \in \mathcal{H}} \hat{\mathcal{E}}(f) = \operatorname*{argmin}_{f \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^{N} l(f(x_i), y_i)$$

3.1

We consider the case where $X = \mathbb{R}^d$ and $Y = \mathbb{R}$. We define the loss l to be the least squares, $l(y, y') = (y - y')^2$, and we choose our functions to be of the form of $f_{\star} = \theta_{\star}^T X$. In this case, ERM is OLS:

$$\hat{\theta}_N = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N (\theta^T x_i - y_i)^2$$

We can also define $\hat{\theta}_{N,\lambda}$ to be:

$$\hat{\theta}_{N,\lambda} = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (\theta^T x_i - y_i)^2 + \lambda ||\theta||^2$$

This allows to regulate the "complexity" of the function to avoid overfitting. This is called Tikhonov regularization. In this case, we have

$$\mathbb{E}_{\hat{Y}}[\hat{\theta}_{\mathcal{N}} - \mathcal{E}(\theta_{\star})] = \frac{\sigma^2 d}{N}$$

and therefore the optimal function is

$$\hat{f}_{N,\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \hat{\mathcal{E}}(f) + \lambda R(f)$$

We define $X \in \mathbb{R}^{N \times d} := (x_1^T, \dots, x_N^T)$, and $\hat{Y} = (\hat{y}_1, \dots, \hat{y}_n)$. We this notation, we have

$$\hat{\theta}_{N,\lambda} = \frac{1}{N} ||X\theta - \hat{Y}||^2 + \lambda ||\theta||^2$$

Thus, we have

$$\nabla \mathcal{L}(\theta) := \frac{2}{N} X^T X \theta - 2 \frac{X^T \hat{Y}}{N} + 2\lambda \theta = 0$$
$$(\frac{X^T X}{N} + \lambda) \theta = X^T \hat{Y}$$

therefore,

$$\hat{\theta}_{N,\lambda} = \left(\frac{X^T X}{N} + \lambda I\right)^{-1} \frac{X^T \hat{Y}}{N} = \left(X^T X + \lambda N I\right)^{-1} X^T \hat{Y}$$

We introduce the singular value decomposition of X:

$$X = U\Sigma V^T$$

where $U^TU=UU^T=I_N,\,V^TV=VV^T=I_d,$ and Σ is diagonal with $\forall i,\,\Sigma_{i,i}\geqslant 0.$ In this case,

$$X^{T}X + \lambda NI_{d} = V \Sigma U^{T} U \Sigma V^{T} + \lambda NI_{d}$$
$$= V (\underline{\Sigma^{2} + \lambda NI}) V^{T}$$
invertible