San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Regular Expressions

(Part 2)

Lecture 19 Day 22/31

CS 154
Formal Languages and Computability
Spring 2018

1

Agenda of Day 22

- Collecting Quiz 7
- About Midterm 2
- Solution and Feedback of Quiz 6
- Summary of Lecture 18
- Lecture 18: Teaching ...
 - Regular Expression (Part 2)

About Midterm 2

Midterm #2 (aka Quiz++)

Date: Thursday 04/12

- Value: 15%

Topics: Everything covered from the beginning of the semester

Type: Closed y ∈ Material

Material = {Book, Notes, Electronic Devices, Chat, . . . }

The cutoff for midterm #2 is the end of this lecture.

Solution and Feedback of Quiz 6 (Out of 25)

Metrics	Section 1	Section 2	Section 3
Average	23	20	22
High Score	25	25	25
Low Score	19	7	6

Summary of Lecture 18: We learned ...

Nondeterministic TMs

- There are two possible violations in standard TMs:
 - λ-transition
 - When δ is multifunction
- If we put λ in the condition place, we make a λ-transition.

 In practice, the following λ-transition is used:

Formal Definition

 A nondeterministic TM M is defined by the septuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$$

$$\delta: Q \times (\Gamma \cup \{\lambda\}) \rightarrow 2^{Q \times (\Gamma \cup \{\lambda\}) \times \{L, R, S\}}$$

$$\delta \text{ might be total xor partial.}$$

- We concluded the fact that:
 - A nondeterministic TM is a collection of standard TMs.
 - Nondeterminism does not add power.
 - It just speed up the computation.

Any Question?

Summary of Lecture 18: We learned ...

Basic Concepts of Computation

- The "algorithm" for a problem is ...
 - the structure of the TM that solves it.
- The "program" of a TM is ...
 - ... the transition function of the TM.

Any Question?

Summary of Lecture 18: We learned ...

Regular Expressions (REGEXs)

- REGEXs are another way to represent formal languages.
- We like REGEXs because ...
 - they represent formal languages in a more compact way.
 - They are shorthand for some formal languages.
 - They have practical applications in OS's and programming languages.
- We don't have a standard REGEX.
- This course introduces the mathematical base of them.

- The elements of REGEXs are:
 - φ, λ, Σ
 - ()
 - Operators:
 - + (union)
 - . (dot or concatenation)
 - * (star-closure)
- Every REGEX represents a language.
- Does every language have a REGEX?
 - We don't know yet but we'll shortly!
- Associated language to a REGEX is ...
 - ... the language that it represents.

Any Question?

Formal Definition of REGEXs

Formal Definition of REGEXs

- 1. ϕ , λ , and symbols of Σ are all REGEXs.
 - -These are called primitive REGEXs.
- 2. If r₁ and r₂ are REGEXs, then the following expressions are REGEXs too:

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)
Regular Expressions

3. A string is REGEX iff it can be derived from the primitive REGEXs by a finite number of applications of the rule #2.

REGEXs Validation

Example 9

- Is r a valid REGEX?
- $r = (a + bc)^* \cdot (c + \phi)$
- Yes, because it has been derived from the rules.

Example 10

- Is r a valid REGEX?
- r = (a + b +) . c
- No, it cannot be derived by application of the rules.

REGEX Definition

Repeated

- 1. ϕ , λ , and $a \in \Sigma$ are all REGEXs.
- 2. If r₁ and r₂ are REGEXs, then the following expressions are REGEXs too:

$$r_{1} + r_{2}$$
 $r_{1} \cdot r_{2}$
 r_{1}^{*}
 (r_{1})

3. A string is REGEX iff it can be derived from the primitive REGEXs by a finite number of applications of the rule #2.

REGEXs - Languages Correspondence

Introduction

The following REGEX is given:

$$r = a (a + b)*$$

- How can we mathematically calculate what language it is representing?
- In other words, how can we calculate L(r)?

$$L(r) = L(a (a + b)*) = ?$$

We need some mathematical rules!

REGEXs-Languages Correspondence Rules

- If r₁ and r₂ are REGEXs, then the following rules hold recursively:
 - 1. $L(\phi) = \{ \}$
 - 2. $L(\lambda) = \{\lambda\}$
 - 3. $L(a) = \{a\}$ for all $a \in \Sigma$
 - 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
 - 5. $L(r_1 . r_2) = L(r_1) . L(r_2)$
 - 6. $L((r_1)) = L(r_1)$
 - 7. $L(r_1^*) = (L(r_1))^*$

- 1. **þ**
- 2. λ
- 3. $a \in \Sigma$
- 4. $r_1 + r_2$
- 5. r₁ . r₂
- 6. (r₁)
- 7. r₁*
- The first 3 rules are the termination conditions for the recursion.
- The last 4 rules are used to reduce L(r) to simpler components recursively.

Example 11

- Given r = b.
- L(r) = ?

- $L(r) = L(b) = \{b\}$
- We used rule #3.

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 12

- Given r = b.a.
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 13

- Given r = a + b.
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 14

- Given r = a + b.a.
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 15

- Given r = a*.
- L(r) = ?

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

Example 16

- Given $r = (a + b)^*$.
- L(r) = ?

L(r) = L[(a + b)*]
= [L(a + b)]* (rule #7)
= [L(a)
$$\cup$$
 L(b)]* (rule #4)
= {a, b}* (rule #3)
= {w : w \in Σ *} (any string over Σ)

1.
$$L(\phi) = \phi$$

2.
$$L(\lambda) = \{\lambda\}$$

3.
$$L(a) = \{a\}$$
 for all $a \in \Sigma$

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 . r_2) = L(r_1) . L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

REGEX → **Language**

Summary

REGEX	Language		
b	{b}		
b.a	{ba}		
a + b	{a, b}		
a + b.a	{a, ba}		
a*	${a^n:n\geq 0}$		
(a + b)*	{a, b}*		

Example 17

- Given r = a (a + b)*.
- L(r) = ?

Example 18

- Given $r = a^* (a + b)$.
- L(r) = ?

Homework

- Find a REGEX for the following languages.
 - 1. $L(r) = \{w \in \{a, b\}^* : w \text{ contains no a} \}$
 - 2. $L(r) = \{w \in \{a, b\}^* : w \text{ contains exactly two a's} \}$
 - 3. $L(r) = \{a^{2n} : n \ge 0\}$ over $\Sigma = \{a\}$
 - 4. $L(r) = \{a^{2n+1} : n \ge 0\}$ over $\Sigma = \{a\}$

Example 19

- Given $r = (aa)^*$.
- L(r) = ?

Example 20

- Given r = (bb)* b.
- L(r) = ?

Example 21

- Given $r = (a + b)^* (a + bb)$.
- L(r) = ?

Equivalency of REGEXs

Definition

 Two regular expressions r₁ and r₂ are equivalent iff both represent the same language.

$$r_1 = r_2 \leftrightarrow L(r_1) = L(r_2)$$

Equivalency of REGEXs

Example 22

- Given r₁ and r₂ as:
- $r_1 = (a + b)* a$
- $r_2 = (a + b)^* (a + b)^* a$
- Are r₁ and r₂ equivalent?
- Both of these REGEXs are expressing a language containing any string of 'a' and 'b' terminated by an 'a'.
- For a given language L, how many REGEX we can make?
 - Infinite

Identities

Identities

- If r, s, and t are REGEXs, and a, b $\in \Sigma$, then:
 - 1. r(s + t) = rs + rt
 - 2. (s + t)r = sr + tr
 - 3. $(a^*)^* = a^*$
 - 4. $(a ... a)^* a = a (a ... a)^*$
 - 5. $a^* (a + b)^* = (a + b)^* a^* = (a + b)^*$
- We can use the seven mathematical rules mentioned before to prove the above identities.
- Obviously, we should show both sides represent the same language.
- For example, for the first one, we should show:

$$L(r(s + t)) = L(rs + rt)$$

Identities Examples

Example 23

$$a b^* + bb^*$$

= $(a + b) b^*$

Example 24

$$b^* + b^* a$$

= $b^* (\lambda + a)$

Example 25

Homework

- Given $r = (aa)^* (\lambda + ab) (bb)^*$
- L(r) = ?

Homework

- Find a REGEX for the following languages.
 - 1. $L(r) = \{w \in \{a, b\}^* : w \text{ contains at least two a's}\}$
 - 2. $L(r) = \{w \in \{a, b\}^* : w \text{ begins with an 'a' and ends with a 'b'}\}$
 - 3. $L(r) = \{w \in \{a, b\}^* : w \text{ begins and ends with the same symbol}\}$

33

More Complex Languages

Example 26

- $L = \{a^nb^n : n \ge 0\} \text{ over } \Sigma = \{a, b\}$
- r = ?

- Struggling?
- Let's forget about this, and take another example!

Example 27

- L = {ww^R : w $\in \Sigma^*$ } over Σ = {a, b}
- r = ?
- After some struggling, we realize that we cannot represent such languages by REGEXs! Why?

REGEXs and Regular Languages

 The following theorem shows that REGEXs are another way to represent regular languages.

Theorem

A language is regular iff at least one REGEX represents it.

Set of Languages Described by REGEXs

=

Set of Regular Languages

REGEXs and Languages Association

- We've already known that "every REGEX represents a language".
- Now we know that:
 - Those languages are regular.

And there is no association between non-regular Languages and REGEXs.

What is the Next Step?

- We started this topic to look for a compact way to represent formal languages.
- We introduced REGEXs and experienced their usefulness.
- But the theorem showed their limitations.
 - REGEXs are just for regular languages.
- So, the next step would be looking for ...
 a practical compact way to represent non-regular languages.

Homework

- Fill out the following tables.
- For example, $\phi + a = \phi + a = a$ or a. a = aa
 - Note that '+' and '.' are binary operations and need two operands but '*' is unary operation and needs one operand.

+	Ø	λ	a
Ø			a
λ			
a	a		

	Ø	λ	a
Ø			
λ			
a			aa

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790