Estimating Causal Mediation Effects from a Single Regression Model

Jeffrey D. Blume, PhD

Joint work with, and slides courtesy of,

Christina T. Saunders, PhD
Berry Consultants

Noevember, 2019

Slide Appendix

System congruency

Suppose one believes ${\cal M}$ depends on ${\cal X}$ quadratically and writes the following system:

$$\mathbb{E}[Y|X, M] = \beta_0 + \beta_X X + \beta_M M$$

$$\mathbb{E}[M|X] = \alpha_0 + \alpha_X X + \alpha_{X^2} X^2$$

$$\mathbb{E}[Y|X] = \beta_0^* + \beta_X^* X$$

- ullet This system is not congruous because marginalizing over the Full outcome model $\mathbb{E}_{M|X}[Y|X,M]$ does not yield the specified marginal model $\mathbb{E}[Y|X]$
- \bullet A properly specified system of equations would include an X^2 term in the third equation
- The difference and product approaches are not comparable because they are actually using *different systems* to estimate mediation effects

Usefulness of natural direct and indirect effects

Suppose we are interested in estimating the mediating role of screening mammography in the relation between HRT and breast cancer.

- More breast cancer is observed among women taking hormone replacement therapy (HRT).
- Some portion of the excess cases is due to increased detection.
 But how much?

Usefulness of natural direct and indirect effects

The NIE tells us the breast cancer risk for a woman receiving HRT under the mammographic screening she received under HRT versus the risk under the screening she would have had under no HRT.

The controlled direct effect (CDE) and portion eliminated (PE)

- The CDE = $Y(x,m) Y(x_o,m)$ corresponds to the effect of HRT on breast cancer that would remain after an intervention that sets mammography screening to a specific level m.
- The PE corresponds to the effect of HRT on breast cancer that would be eliminated after an intervention that sets mammography screening to a specific level.

From the Full model,

$$\begin{bmatrix} \hat{\beta}_{X} \\ \hat{\beta}_{M} \end{bmatrix} \sim \mathsf{MVN}_{k} \left(\begin{bmatrix} \beta_{X} \\ \beta_{M} \end{bmatrix}, \begin{bmatrix} V_{X} & V_{XM} \\ V_{MX} & V_{M} \end{bmatrix} \right)$$

From the Full model,

$$\begin{bmatrix} \hat{\beta}_{X} \\ \hat{\beta}_{M} \end{bmatrix} \sim \mathsf{MVN}_{k} \left(\begin{bmatrix} \beta_{X} \\ \beta_{M} \end{bmatrix}, \begin{bmatrix} V_{X} & V_{XM} \\ V_{MX} & V_{M} \end{bmatrix} \right)$$

From multivariate normal theory,

$$\begin{split} (\hat{\boldsymbol{\beta}}_{\boldsymbol{X}}|\hat{\boldsymbol{\beta}}_{\boldsymbol{M}} = 0) \sim \mathsf{MVN}_p(\boldsymbol{\beta}_{\boldsymbol{X}}^*, \boldsymbol{V}_{\boldsymbol{X}}^*) \\ \boldsymbol{\beta}_{\boldsymbol{X}}^* = \boldsymbol{\beta}_{\boldsymbol{X}} - \boldsymbol{V}_{\boldsymbol{X}\boldsymbol{M}}\boldsymbol{V}_{\boldsymbol{M}}^{-1}\boldsymbol{\beta}_{\boldsymbol{M}} \end{split}$$

From the Full model,

$$\begin{bmatrix} \hat{\beta}_{X} \\ \hat{\beta}_{M} \end{bmatrix} \sim \mathsf{MVN}_{k} \left(\begin{bmatrix} \beta_{X} \\ \beta_{M} \end{bmatrix}, \begin{bmatrix} V_{X} & V_{XM} \\ V_{MX} & V_{M} \end{bmatrix} \right)$$

From multivariate normal theory,

$$\begin{split} (\hat{\beta}_{\boldsymbol{X}}|\hat{\beta}_{\boldsymbol{M}} = 0) \sim \mathsf{MVN}_p(\beta_{\boldsymbol{X}}^*, V_{\boldsymbol{X}}^*) \\ \beta_{\boldsymbol{X}}^* = \beta_{\boldsymbol{X}} - V_{\boldsymbol{X}\boldsymbol{M}}V_{\boldsymbol{M}}^{-1}\beta_{\boldsymbol{M}} \\ \Delta = \beta_{\boldsymbol{X}}^* - \beta_{\boldsymbol{X}} = -V_{\boldsymbol{X}\boldsymbol{M}}V_{\boldsymbol{M}}^{-1}\beta_{\boldsymbol{M}} \end{split}$$

From the Full model,

$$\begin{bmatrix} \hat{\beta}_{X} \\ \hat{\beta}_{M} \end{bmatrix} \sim \mathsf{MVN}_{k} \left(\begin{bmatrix} \beta_{X} \\ \beta_{M} \end{bmatrix}, \begin{bmatrix} V_{X} & V_{XM} \\ V_{MX} & V_{M} \end{bmatrix} \right)$$

From multivariate normal theory,

$$\begin{split} (\hat{\boldsymbol{\beta}}_{\boldsymbol{X}}|\hat{\boldsymbol{\beta}}_{\boldsymbol{M}} = 0) \sim \mathsf{MVN}_p(\boldsymbol{\beta}_{\boldsymbol{X}}^*, \boldsymbol{V}_{\boldsymbol{X}}^*) \\ \boldsymbol{\beta}_{\boldsymbol{X}}^* = \boldsymbol{\beta}_{\boldsymbol{X}} - \boldsymbol{V}_{\boldsymbol{X}\boldsymbol{M}}\boldsymbol{V}_{\boldsymbol{M}}^{-1}\boldsymbol{\beta}_{\boldsymbol{M}} \\ \boldsymbol{\Delta} = \boldsymbol{\beta}_{\boldsymbol{X}}^* - \boldsymbol{\beta}_{\boldsymbol{X}} = -\boldsymbol{V}_{\boldsymbol{X}\boldsymbol{M}}\boldsymbol{V}_{\boldsymbol{M}}^{-1}\boldsymbol{\beta}_{\boldsymbol{M}} \end{split}$$

Using properties of the sampling distribution, we see that the difference of coefficients Δ equals some product of coefficients.

Empiric vs implied total effect

Once the Full outcome model and the Mediator model are specified, there is one theoretical Reduced model; however, there can be several mediator models that imply *the same form* for the Reduced model.

$$\begin{array}{lll} \text{(F)} & \mathbb{E}[Y|X,M,W] & = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW \\ \text{(M)} & \text{(a)} \ \mathbb{E}[M|X,W] & = \alpha_0 + \alpha_X X + \alpha_W W \\ & \text{(b)} \ \mathbb{E}[M|X,W] & = \delta_0 + \delta_X X + \delta_W W + \delta_{XW} XW \\ \text{(R)} & \mathbb{E}[Y|X,W] & = \gamma_0 + \gamma_X X + \gamma_W W + \gamma_{XW} XW \\ \end{array}$$

Both marginal models have the same form. As a result, the fitted estimates of the marginal model effects $\hat{\gamma}$ will be the same.

The implied coefficients from the two marginal models are different:

(a):
$$(\beta_0 + \alpha_0 \beta_M) + (\beta_X + \alpha_X \beta_M)X + (\beta_W + \alpha_W \beta_M)W + \beta_{XW}XW$$

(b):
$$(\beta_0 + \delta_0 \beta_M) + (\beta_X + \delta_X \beta_M)X + (\beta_W + \delta_W \beta_M)W + (\beta_{XW} + \delta_{XW} \beta_M)XW$$

The mediation formula

$$\begin{split} \mathsf{NDE} &= \mathbb{E}[Y(x,M(x_\circ)) - Y(x_\circ,M(x_\circ))] \\ &= \Sigma_{c,m} \left(\mathbb{E}[Y|x,m,c] - \mathbb{E}[Y|x_\circ,m,c] \right) \mathsf{P}[m|x_\circ,c] \mathsf{P}[c] \\ \\ \mathsf{NIE} &= \mathbb{E}[Y(x,M(x)) - Y(x,M(x_\circ)] \\ &= \Sigma_{c,m} \mathbb{E}[Y|x,m,c] \left(\mathsf{P}[m|x,c] - \mathsf{P}[m|x_\circ,c] \right) \mathsf{P}[c] \\ \\ \mathsf{TE} &= \mathbb{E}[Y(x) - Y(x_\circ)] \\ &= \Sigma_c \left(\mathbb{E}[Y|x,c] - \mathbb{E}[Y|x_\circ,c] \right) \mathsf{P}[c] \end{split}$$

Nomenclature

SEM Name	PO Name(s)	PO Definition
Direct Effect of X	$(\beta_X + \beta_{XM}M)(x - x_\circ)$	
a) set $M = m$	Controlled direct effect	$Y(x,m) - Y(x_{\circ},m)$
b) set $M = E[M x_{\circ}, c]$	Natural direct effect [†]	$Y(x, M(x_\circ)) - Y(x_\circ, M(x_\circ))$
	Pure direct effect §	
	Average direct effect (control) *	
c) set $M = E[M x,c]$	Total direct effect §	$Y(x, M(x)) - Y(x_0, M(x))$
	Average direct effect (treatment) *	
Indirect Effect of X		
a) set $X = x_{\circ}$	Pure indirect effect §	$Y(x_{\circ}, M(x)) - Y(x_{\circ}, M(x_{\circ}))$
	Average causal mediation effect (control) *	
b) set $X = x$	Natural indirect effect [†]	$Y(x, M(x)) - Y(x, M(x_{\circ}))$
	Total indirect effect §	
	Average causal mediation effect (treat) *	

[†]VanderWeele

[§]Robins and Greenland

^{*}Imai et al.

Causal Mediation Models*

$$\mathrm{E}[Y|X,M] = eta_0 + eta_X X + eta_M M$$

$$E[M|X] = \alpha_0 + \alpha_X X$$

$$\overline{\mathrm{E}[Y|X,M,C]} = eta_0 + eta_X X + eta_M M + eta_C C$$

$$E[M|X,C] = \alpha_0 + \alpha_X X + \alpha_C C$$

$$\overline{\mathrm{E}[Y|X,M,C]} = eta_0 + eta_X X + eta_M M + eta_C C + eta_{XC} X C$$

$$E[M|X,C] = \alpha_0 + \alpha_X X + \alpha_C C + \alpha_{XC} X C$$

$$\mathrm{E}[Y|X,M_1,M_2] = eta_0 + eta_X X + eta_{M_1} M_1 + eta_{M_2} M_2$$

$$E[M_1|X] = \alpha_{01} + \alpha_1 X$$

$$E[M_2|X] = \alpha_{02} + \alpha_2 X$$

$$\overline{\mathrm{E}[Y|X,M_{1},M_{2},C]} = eta_{0} + eta_{X}X + eta_{M_{1}}M_{1} + eta_{M_{2}}M_{2} + eta_{C}C$$

$$E[M_1|X,C] = \alpha_{01} + \alpha_1 X + \alpha_{C1} C$$

$$E[M_2|X,C] = \alpha_{02} + \alpha_2 X + \alpha_{C2} C$$

$$\overline{\mathrm{E}[Y|X,M_1,M_2]} = eta_0 + eta_X X + eta_{M_1} M_1 + eta_{M_2} M_2 + eta_{M_1 M_2} M_1 M_2$$

$$E[M_1|X] = \alpha_{01} + \alpha_1 X$$

$$E[M_2|X] = \alpha_{02} + \alpha_2 X$$

$$E[M_1M_2|X] = \alpha_{03} + \alpha_3X$$

* Bolded equation represents the fitted model used in the proposed framework

Illustration: $h(X) = [X, X^2]$

$$\mathbb{E}[Y|X, M, C] = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_M M + \beta_C C$$
$$\mathbb{E}[Y|X, C] = \beta_0^* + \beta_1^* X + \beta_2^* X^2 + \beta_C^* C$$

$$\begin{aligned} &\mathsf{TE} = \beta_1^*(x - x_\circ) + \beta_2^*(x^2 - x_\circ^2) = [\boldsymbol{h}(x) - \boldsymbol{h}(x_\circ)] \boldsymbol{\beta}_{\boldsymbol{X}}^* \\ &\mathsf{CDE} = \beta_1(x - x_\circ) + \beta_2(x^2 - x_\circ^2) = [\boldsymbol{h}(x) - \boldsymbol{h}(x_\circ)] \boldsymbol{\beta}_{\boldsymbol{X}} \\ &\mathsf{PE} = [x - x_\circ, x^2 - x_\circ^2] \begin{bmatrix} \beta_1^* - \beta_1 \\ \beta_2^* - \beta_2 \end{bmatrix} = [\boldsymbol{h}(x) - \boldsymbol{h}(x_\circ)] \Delta \end{aligned}$$

$$\mathsf{EMCs}\ \Delta = -V_{XM}V_M^{-1}\beta_M = -\begin{bmatrix} \mathsf{cov}(\beta_1,\beta_M) \\ \mathsf{cov}(\beta_2,\beta_M) \end{bmatrix} \mathsf{var}(\beta_M)^{-1}\beta_M$$

What if there is moderated mediation?

$$\mathbb{E}[Y|X,M,W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW$$
 (F)

$$\mathbb{E}[Y|X,W] = \beta_0^* + \beta_X^* X + \beta_W^* W + \beta_{XW}^* XW \tag{R}$$

$$\mathbb{E}[Y|X,M,W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW \tag{F}$$

$$\mathbb{E}[Y|X,W] = \beta_0^* + \beta_X^* X + \beta_W^* W + \beta_{XW}^* XW \tag{R}$$

• h(X) = [X, XW]

$$\mathbb{E}[Y|X,M,W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW \tag{F}$$

$$\mathbb{E}[Y|X,W] = \beta_0^* + \beta_X^* X + \beta_W^* W + \beta_{XW}^* X W \tag{R}$$

• h(X) = [X, XW]

$$\bullet \ \Delta = \begin{bmatrix} \beta_X^* - \beta_X \\ \beta_{XW}^* - \beta_{XW} \end{bmatrix}$$

$$\mathbb{E}[Y|X,M,W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW$$
 (F)

$$\mathbb{E}[Y|X,W] = \beta_0^* + \beta_X^* X + \beta_W^* W + \beta_{XW}^* X W \tag{R}$$

• h(X) = [X, XW]

$$\mathbb{E}[Y|X,M,W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW \tag{F}$$

$$\mathbb{E}[Y|X,W] = \beta_0^* + \beta_X^* X + \beta_W^* W + \beta_{XW}^* XW \tag{R}$$

• h(X) = [X, XW]

•
$$\Delta = \begin{bmatrix} \beta_X^* - \beta_X \\ \beta_{XW}^* - \beta_{XW} \end{bmatrix} = -V_{XM}V_M^{-1}\beta_M$$

• PE = $[h(x) - h(x_\circ)]\Delta$

$$\mathbb{E}[Y|X, M, W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW$$

$$\mathbb{E}[Y|X, W] = \beta_0^* + \beta_Y^* X + \beta_W^* W + \beta_{YW}^* XW$$
(R)

• h(X) = [X, XW]

•
$$\Delta = \begin{bmatrix} \beta_X^* - \beta_X \\ \beta_{XW}^* - \beta_{XW} \end{bmatrix} = -V_{XM}V_M^{-1}\beta_M$$

• PE = $[h(x) - h(x_0)]\Delta = [1, w]\Delta$

$$\mathbb{E}[Y|X, M, W] = \beta_0 + \beta_X X + \beta_M M + \beta_W W + \beta_{XW} XW$$

$$\mathbb{E}[Y|X, W] = \beta_0^* + \beta_Y^* X + \beta_W^* W + \beta_{YW}^* XW$$
(R)

•
$$h(X) = [X, XW]$$

•
$$\Delta = \begin{bmatrix} \beta_X^* - \beta_X \\ \beta_{XW}^* - \beta_{XW} \end{bmatrix} = -V_{XM}V_M^{-1}\beta_M$$

• PE = $[h(x) - h(x_0)]\Delta = [1, w]\Delta$

ullet The TE, CDE, and PE are functions of w

Exposure-moderator interaction: example

Multiple mediators

Consider the Full model that contains j mediators

$$\mathbb{E}[Y|X, M, C] = \beta_0 + h(X)\beta_X + \sum_{i=1}^{j} \beta_{M_i} M_i + \beta_C C$$

The total PE through $M = [h(x) - h(x_o)][-V_{XM}V_M^{-1}\beta_M]$

The mediator-specific PE = $[h(x) - h(x_{\circ})][-V_{XM_i}V_{M_i}^{-1}\beta_{M_i}]$

Multiple mediators: parallel model

$$E[Y|X, \mathbf{M}] = \beta_0 + \beta_X X + \beta_1 M_1 + \beta_2 M_2 + \dots + \beta_j M_j$$

$$E[M_i|X] = \alpha_{0i} + \alpha_i X, i = 1, \dots, j$$

$$E[Y|X] = \beta_0^* + \beta_Y^* X$$

Multiple mediators: serial model

$$E[Y|X, \mathbf{M}] = \beta_0 + \beta_X X + \beta_1 M_1 + \beta_2 M_2 + \dots + \beta_j M_j$$

$$E[M_i|X] = \alpha_{0i} + \alpha_i X + \sum_{k=1}^{i-1} \delta_{ik} M_k, i = 2, \dots, j$$

$$E[M_1|X] = \alpha_{01} + \alpha_1 X$$

$$E[Y|X] = \beta_0^* + \beta_V^* X$$

Table of total effect decompositions 😡

Total Effect					
Controlled Direct Effect	Reference Interaction	Mediated Interaction	Pure Indirect Effect		
Controlled Direct Effect	Portion Attributed to Interaction		Pure Indirect Effect		
Pure Direct Effect		Mediated Interaction	Pure Indirect Effect		
Total Direct Effect			Pure Indirect Effect		
Pure Direct Effect		Total Indirect Effect			
Controlled Direct Effect	Reference Interaction	Total Indirect Effect			
Controlled Direct Effect	Portion Eliminated				

Table of total effect decompositions 😡

Total Effect					
Controlled Direct Effect	Reference Interaction	Mediated Interaction	Pure Indirect Effect		
Controlled Direct Effect	Portion Attributed to Interaction		Pure Indirect Effect		
Pure Direct Effect		Mediated Interaction	Pure Indirect Effect		
Total Direct Effect			Pure Indirect Effect		
Pure Direct Effect		Total Indirect Effect			
Controlled Direct Effect	Reference Interaction	Total Indirect Effect			
Controlled Direct Effect	Portion Eliminated				

The **pure indirect effect** attributes the interaction effect to the direct effect of the exposure.

Specify a Global model under which the Full and Reduced models are nested

- Specify a Global model under which the Full and Reduced models are nested
- ${\bf 2}$ Use formula for $\hat{\Delta}$ to estimate $\Delta_{\rm RG}$ between the Reduced model and the Global model

- Specify a Global model under which the Full and Reduced models are nested
- ${\bf 2}$ Use formula for $\hat{\Delta}$ to estimate Δ_{RG} between the Reduced model and the Global model
- $\mbox{\bf @}$ Use formula for $\hat{\Delta}$ to estimate $\Delta_{\mbox{FG}}$ between the Full model and the Global model

- Specify a Global model under which the Full and Reduced models are nested
- 2 Use formula for $\hat{\Delta}$ to estimate Δ_{RG} between the Reduced model and the Global model
- $\mbox{\bf 3}$ Use formula for $\hat{\Delta}$ to estimate $\Delta_{\mbox{\scriptsize FG}}$ between the Full model and the Global model
- **4** Subtract the corresponding Δs : $\Delta_{PE} = \Delta_{RG} \Delta_{FG}$.

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2$$
 (G)

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

 $\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2$$
 (G)

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\Delta_{\mathsf{RG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix}$$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2$$
 (G)

$$\mathbb{E}[Y|X, M, C] = \beta_0 + \frac{\beta_X X}{\lambda} + \beta_M M + \beta_{XM} X M + \beta_C C$$
 (F)

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\Delta_{\mathsf{RG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} \text{ and } \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix}$$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2 \quad (G)$$

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\Delta_{\mathsf{RG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} \text{ and } \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix} \longleftarrow \begin{array}{c} \mathsf{Use\ formula} \\ \mathsf{for}\ \hat{\Delta} \end{array}$$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2 \quad (G)$$

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\Delta_{\mathsf{RG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} \text{ and } \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix}$$

$$\Delta_{\mathsf{RG}} - \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} - \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix}$$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2$$
 (G)

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\Delta_{\mathrm{RG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} \text{ and } \Delta_{\mathrm{FG}} = \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix}$$

$$\Delta_{\mathsf{RG}} - \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} - \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix} = \begin{bmatrix} \beta_X^* - \beta_X \\ \beta_{X^2}^* - 0 \end{bmatrix} \longleftarrow \Delta_{\mathsf{PE}}$$

$$\mathbb{E}[Y|X,M,C] = \gamma_0 + \gamma_X X + \gamma_M M + \gamma_{XM} X M + \gamma_C C + \gamma_{X^2} X^2 \quad (G)$$

$$\mathbb{E}[Y|X,M,C] = \beta_0 + \beta_X X + \beta_M M + \beta_{XM} X M + \beta_C C \tag{F}$$

$$\mathbb{E}[Y|X,C] = \beta_0^* + \beta_X^* X + \beta_{X^2}^* X^2 + \beta_C^* C \tag{R}$$

$$\Delta_{\mathsf{RG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} \text{ and } \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix}$$

$$\Delta_{\mathsf{RG}} - \Delta_{\mathsf{FG}} = \begin{bmatrix} \beta_X^* - \gamma_X \\ \beta_{X^2}^* - \gamma_{X^2} \end{bmatrix} - \begin{bmatrix} \beta_X - \gamma_X \\ 0 - \gamma_{X^2} \end{bmatrix} = \begin{bmatrix} \beta_X^* - \beta_X \\ \beta_{X^2}^* - 0 \end{bmatrix} \longleftarrow \Delta_{\mathsf{PE}}$$

Even for non-nested mediation systems, we can estimate the PE from the fit of one (Global) outcome model.

PE on link scale

Let g=logit link.

$$\begin{split} (\beta_X^* - \beta_X)(x - x_\circ) &= \text{logit E}[Y|x,c] - \text{logit E}[Y|x_\circ,c] \\ &- (\text{logit E}[Y|x,m,c] - \text{logit E}[Y|x_\circ,m,c]) \\ &= \log \frac{\text{odds E}[Y|x,c]}{\text{odds E}[Y|x_\circ,c]} - \log \frac{\text{odds E}[Y|x,m,c]}{\text{odds E}[Y|x_\circ,m,c]} \\ &= \log \frac{\text{odds E}[Y|x,c]/\text{odds E}[Y|x_\circ,c]}{\text{odds E}[Y|x,m,c]/\text{odds E}[Y|x_\circ,m,c]} \\ &= \log \frac{\text{OR}^{\text{TE}}}{\text{OR}^{\text{CDE}}} \\ &\Rightarrow e^{(\beta_X^* - \beta_X)(x - x_\circ)} = \frac{\text{OR}^{\text{TE}}}{\text{OR}^{\text{CDE}}} = \text{OR}^{\text{PE}} \end{split}$$

PE on expected value scale

$$g(\mathsf{E}[Y|X,M,C]) = \beta_0 + h(X)\beta_X + \beta_M M + \beta_C C$$
$$g(\mathsf{E}[Y|X,C]) = \beta_0^* + h(X)\beta_X^* + \beta_C^* C$$

$$E[Y|x, m, c] = g^{-1}(\eta_F(x, m, c))$$
$$E[Y|x, c] = g^{-1}(\eta_R(x, c))$$

$$\begin{split} \mathsf{PE} &= \mathsf{E}[Y|x,c] - \mathsf{E}[Y|x_{\circ},c] - (\mathsf{E}[Y|x,m,c] - \mathsf{E}[Y|x_{\circ},m,c]) \\ &= \frac{e^{\eta_R(x,c)}}{1 + e^{\eta_R(x,c)}} - \frac{e^{\eta_R(x_{\circ},c)}}{1 + e^{\eta_R(x_{\circ},c)}} - \left(\frac{e^{\eta_F(x,m,c)}}{1 + e^{\eta_F(x,m,c)}} - \frac{e^{\eta_F(x_{\circ},m,c)}}{1 + e^{\eta_F(x_{\circ},m,c)}}\right) \end{split}$$

Visualizations for GLMs

PE on probability scale

Interpretation at a particular SNP

The exposure is increasing copies of the minor allele (i.e., $x - x_0 = 1$).

The **total effect** $OR^{TE} = \frac{\text{odds } E[Y(1)|c]}{\text{odds } E[Y(1)|c]}$ is the odds ratio for lung cancer comparing those with and without an additional copy of the minor allele.

The **controlled direct effect** $OR^{CDE} = \frac{\text{odds } E[Y(1,m)|c]}{\text{odds } E[Y(0,m)|c]}$ is the odds ratio for lung cancer comparing those with and without an additional copy of the minor allele if pack-years were fixed at a certain level m.

The **portion eliminated** $OR^{PE} = OR^{TE}/OR^{CDE}$ is the portion of the total effect of increasing copy of the minor allele on lung cancer that would be eliminated if we were to fix pack-years to the same value m for all persons.

Interpretation at a particular SNP

The **natural direct effect** $OR^{NDE} = \frac{\text{odds } E[Y(1,M(0))|c]}{\text{odds } E[Y(0,M(0))|c]}$ is the odds ratio for lung cancer comparing those with and without an additional copy of the minor allele *if pack-years were what it would have been without an additional copy of the minor allele.*

The **natural indirect effect** $OR^{NIE} = \frac{\text{odds } E[Y(1,M(1))|c]}{\text{odds } E[Y(1,M(0))|c]}$ is the odds ratio for lung cancer for those with an additional copy of the minor allele comparing what would happen if pack-years were set to what it would have been with and without the additional copy of the minor allele.

Comparison of approaches for logistic regression

	Fitted Models	PE=TE-CDE
Diff. of coefs	logit $E[Y X, M] = \beta_0 + \beta_X X + \beta_M M$ logit $E[Y X] = \beta_0^* + \beta_X^* X$	$\beta_X^* - \beta_X$
KHB method	logit $E[Y X, M] = \beta_0 + \beta_X X + \beta_M M$ $E[M X] = \alpha_0 + \alpha_X X \to \varepsilon_{M X}$ logit $E[Y X, M] = \tilde{\beta}_0 + \tilde{\beta}_X X + \tilde{\beta}_M \varepsilon_{M X}$	$ \tilde{\beta}_X - \beta_X \\ = \alpha_X \beta_M $
Mediation formula	logit $E[Y X, M] = \beta_0 + \beta_X X + \beta_M M$ $E[M X] = \alpha_0 + \alpha_X X$	$lpha_Xeta_M$
Our formula	logit $E[Y X, M] = \beta_0 + \beta_X X + \beta_M M$ $E[M X] = \alpha_0 + \alpha_X X, w = \hat{p}(1 - \hat{p})$	$-V_{XM}V_M^{-1}\beta_M$ $=\alpha_{X.WLS}\beta_M$

KHB and product approach

$$\tilde{\beta}_{X} - \beta_{X} = \frac{\tilde{\gamma}_{X}}{\tilde{\sigma}_{F}} - \frac{\gamma_{X}}{\sigma_{F}} = \frac{\gamma_{X}^{*}}{\sigma_{F}} - \frac{\gamma_{X}}{\sigma_{F}} = \frac{\gamma_{X}^{*} - \gamma_{X}}{\sigma_{F}}$$
$$\tilde{\beta}_{X} - \beta_{X} = \frac{\tilde{\gamma}_{X} - \gamma_{X}}{\sigma_{F}} = \frac{\alpha_{X}\gamma_{M}}{\sigma_{F}} = \alpha_{X}\beta_{M}$$

Extension to GLMs

$$g(\mathsf{E}[Y|X, M, C]) = \beta_0 + h(X)\beta_X + \beta_M M + \beta_C C$$

$$g(\mathsf{E}[Y|X, C]) = \beta_0^* + h(X)\beta_X^* + \beta_C^* C$$

ullet Interpretation of Δ changes

•
$$-\hat{V}_{XM}\hat{V}_M^{-1}\hat{\beta}_M \approx \hat{\beta}_X^* - \hat{\beta}_X$$

• $E[M|X,C] = \alpha_0 + h(X)\alpha_X + \alpha_C C$, $w = \hat{p}(1-\hat{p})$

Extension to GLMs

$$g(E[Y|X, M, C]) = \beta_0 + h(X)\beta_X + \beta_M M + \beta_C C$$

Things to consider:

- Mediation effects defined on link scale or expected value scale
- What is the true marginal model? Marginalizing over logistic doesn't necessarily yield another logistic
- Collapsibility

Working solution:

• Hold the error variance constant by splitting M into the amount that depends on X and the residuals $\varepsilon_{M|X}$ (generalization of the "KHB approach")

• Use Global model idea