Nelinearni upori - senzorji

Med nelinearne upore sodijo tudi upori, katerih upornost se spreminja v odvisnosti od neke fizikalne količine. Tako poznamo tudi upore, katerih upornost se spreminja v odvisnosti od:

- osvetljenosti (npr.: fotoupor).
- temperature (termistorji)

NALOGA: FOTOUPOR

Sestavite vezje, ki ga prikazuje sl. 1 - levo. Nato spreminjajte osvetljenost elementa in opazujte kako se spreminja električni tok skozi element. Ugotovitev tudi napišite.

Nato na podlagi teh ugotovitev utemeljite kako se spreminja upornost elementa glede na njegovo osvetljenost.

Slika 1: Priključitev fotoupora in termistorja.

NALOGA: TERMISTOR

Sestavite vezje, ki ga prikazuje sl. 1 - desno. Nato spreminjajte temperaturo elementa in opazujte kako se spreminja električni tok skozi element. Ugotovitev tudi napišite.

Nato na podlagi teh ugotovitev utemeljite kako se spreminja upornost elementa glede na njegovo temperaturo.

Umeritev senzorja

Senzor je elektronski element, katerega izhodna električna količina je odvisna od neke fizikalne količine. V našem primeru bomo sestavili senzor temperature. V delilnik napetosti bomo vezali termistor in upor s konstantno upornostjo, kot prikazuje sl. 2.

Slika 2: Sestava preprostega temperaturnega senzorja.

Premislimo, kako lahko razumemo delovanje senzorja:

- 1. Če se temperatura poveča, se bo upornost termistorja R_{NTC} zmanjšala.
- 2. Ker se skupna upornost $(R_{NTC} + R_1)$ zmanjša, bo tok, ki teče po tem vezju večji $(I' = \frac{U_B}{R'})$.
- 3. Ker je sedaj tok skosi vezje večji in le-ta teče tudi skozi upor R_1 bo na njem napetost večja $U_{R_1}=R_1I'.$
- 4. Prav to napetost pa tudi merimo z volt-metrom $VM1. \ \ \,$
- 5. Zaključimo lahko, da se napetostni potencial na izhodnem priključku poveča, če se je tudi temperatura povečala.

NALOGA: UMERITEV SENZORJA TEMPERATURE

Sestavite senzor temperature, kot je predstavljen na sl. 2. Spreminjajte temperaturo termistorja in beležite izhodno napetost. Meritve uredite tudi v tabeli. Nato iz dobljenih meritev lahko narisali graf $U_{izh}(T)$.

Nato iz dobljenih meritev izračunajte upornost R_{NTC} za vsako izmerjeno situacijo in narišite še graf $R_{NTC}(T)$.