Polynomial Kernels for Traveling Salesperson

Václav Blažej, Pratibha Choudhary, Dušan Knop, Šimon Schierreich, Ondřej Suchý, and Tomáš Valla

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

Traveling Salesperson Problem (TSP)

Input: Simple **weighted** undirected graph $G = (V, E, \omega)$, where $\omega: E \to \mathbb{N}$ and a **budget** $B \in \mathbb{N}$.

Output: Is there a closed walk R that visits all vertices and has the total weight at most B?

- TSP is an NP-hard problem
- it is FPT with respect to treewidth

Vertex Cover Number

• vertices outside of the vertex cover M have a cheapest way to connect to M

connect u with v using a total weight 2

- connecting all vertices in the cheapest way may not give a connected solution
- "pay" an additional fee to some vertices to change their connections so that the solution is connected

pay 1 or pay 3 to connect w with v

- retain M and a polynomial number of such vertices for each (v, w)pair
- $\bullet \rightarrow \text{polynomial kernel}$

Our results

Vertex Cover Number

Remove k vertices to obtain an independent set. TSP has $\mathcal{O}(k^{16})$ kernel.

Mod. to Const. Paths

Remove k vertices to obtain contant-length paths kernel from ↓ result

Mod. to Const. Comps.

TSP has $k^{\mathcal{O}(r)}$ kernel where r is size of left connected components.

Fractioning Number

Remove k vertices so that components of size $\leq k$ remain. no polynomial kernel

Treewidth

Feedback Edge Set No.

Remove k edges so that no cycles are left.

Feedback Vertex Set No.

Remove k vertices so that

no cycles are left.

Mod. to Disjoint Cycles

Remove k vertices so that

disjoint cycles are left.

Feedback Edge Set No.

- leaves always have a clear solution
- chains of degree 2 vertices have the number of possibilities small and can be modelled with smaller subgraphs
- similar reductions also work for the generalized TSP (see box at the bottom)
- exhaustive application gives a polynomial kernel

Negative results

- no polynomial kernel for TSP with respect to the **fractioning** number unless polynomial hierarchy collapses
- no polynomial kernel with respect to the combined parameter treewidth and maximum degree unless polynomial hierarchy collapses
- unweighted Subset TSP with respect to the modulator to dis**joint cycles** is WK[1]-hard \Rightarrow no polynomial kernel

The authors acknowledge the support of the OP VVV MEYS funded project $CZ.02.1.01/0.0/0.0/16_019/0000765$ "Research Center for Informatics" and the Grant Agency of the Czech Technical University in Prague funded grant

Generalizations

Subset TSP

• has a set of waypoints $W \subseteq V$ (full) that need to be traversed

- enough vertices neighbor $v \notin W \to \text{reroute the solution through it}$
- polynomial kernel w.r.t. the modulator to constant paths

WAYPOINT ROUTING PROBLEM

• has a capacity $c: E \to \mathbb{N}$ for every edge

- WRP can be reduced to capacities 1 (thin) and 2 (thick)
- polynomial kernel with respect to the vertex cover number