# **Quaternion Algebras**

Release 9.7

**The Sage Development Team** 

# **CONTENTS**

| 1                   | Quaternion Algebras             | 1  |
|---------------------|---------------------------------|----|
| 2                   | Elements of Quaternion Algebras | 29 |
| 3                   | Indices and Tables              | 37 |
| Python Module Index |                                 |    |
| In                  | dev                             | 41 |

**CHAPTER** 

ONE

# **QUATERNION ALGEBRAS**

#### **AUTHORS:**

- Jon Bobber (2009): rewrite
- William Stein (2009): rewrite
- Julian Rueth (2014-03-02): use UniqueFactory for caching
- Peter Bruin (2021): do not require the base ring to be a field

This code is partly based on Sage code by David Kohel from 2005.

# class sage.algebras.quatalg.quaternion\_algebra.QuaternionAlgebraFactory

Bases: sage.structure.factory.UniqueFactory

Construct a quaternion algebra.

#### INPUT:

There are three input formats:

- QuaternionAlgebra(a, b), where a and b can be coerced to units in a common field K of characteristic different from 2.
- QuaternionAlgebra(K, a, b), where K is a ring in which 2 is a unit and a and b are units of K.
- QuaternionAlgebra(D), where  $D \ge 1$  is a squarefree integer. This constructs a quaternion algebra of discriminant D over  $K = \mathbf{Q}$ . Suitable nonzero rational numbers a, b as above are deduced from D.

#### **OUTPUT:**

The quaternion algebra  $(a, b)_K$  over K generated by i, j subject to  $i^2 = a$ ,  $j^2 = b$ , and ji = -ij.

# **EXAMPLES:**

QuaternionAlgebra(a, b) – return the quaternion algebra  $(a,b)_K$ , where the base ring K is a suitably chosen field containing a and b:

(continues on next page)

```
Quaternion Algebra (I, sqrt(-3)) with base ring Symbolic Ring
sage: QuaternionAlgebra(1r,1)
Quaternion Algebra (1, 1) with base ring Rational Field
sage: A.<t> = ZZ[]
sage: QuaternionAlgebra(-1, t)
Quaternion Algebra (-1, t) with base ring Fraction Field of Univariate Polynomial

Ring in t over Integer Ring
```

Python ints and floats may be passed to the QuaternionAlgebra(a, b) constructor, as may all pairs of nonzero elements of a domain not of characteristic 2.

The following tests address the issues raised in trac ticket #10601:

```
sage: QuaternionAlgebra(1r,1)
Quaternion Algebra (1, 1) with base ring Rational Field
sage: QuaternionAlgebra(1,1.0r)
Quaternion Algebra (1.00000000000000, 1.0000000000000) with base ring Real Field
→with 53 bits of precision
sage: QuaternionAlgebra(0,0)
Traceback (most recent call last):
ValueError: defining elements of quaternion algebra (0, 0) are not invertible in.
→Rational Field
sage: QuaternionAlgebra(GF(2)(1),1)
Traceback (most recent call last):
ValueError: 2 is not invertible in Finite Field of size 2
sage: a = PermutationGroupElement([1,2,3])
sage: QuaternionAlgebra(a, a)
Traceback (most recent call last):
ValueError: a and b must be elements of a ring with characteristic not 2
```

QuaternionAlgebra (K, a, b) – return the quaternion algebra defined by (a,b) over the ring K:

```
sage: QuaternionAlgebra(QQ, -7, -21)
Quaternion Algebra (-7, -21) with base ring Rational Field
sage: QuaternionAlgebra(QQ[sqrt(2)], -2,-3)
Quaternion Algebra (-2, -3) with base ring Number Field in sqrt2 with defining
→polynomial x^2 - 2 with sqrt2 = 1.414213562373095?
```

QuaternionAlgebra (D) -D is a squarefree integer; return a rational quaternion algebra of discriminant D:

```
sage: QuaternionAlgebra(1)
Quaternion Algebra (-1, 1) with base ring Rational Field
sage: QuaternionAlgebra(2)
Quaternion Algebra (-1, -1) with base ring Rational Field
sage: QuaternionAlgebra(7)
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: QuaternionAlgebra(2*3*5*7)
Quaternion Algebra (-22, 210) with base ring Rational Field
```

If the coefficients a and b in the definition of the quaternion algebra are not integral, then a slower generic type is used for arithmetic:

Make sure caching is sane:

```
sage: A = QuaternionAlgebra(2,3); A
Quaternion Algebra (2, 3) with base ring Rational Field
sage: B = QuaternionAlgebra(GF(5)(2),GF(5)(3)); B
Quaternion Algebra (2, 3) with base ring Finite Field of size 5
sage: A is QuaternionAlgebra(2,3)
True
sage: B is QuaternionAlgebra(GF(5)(2),GF(5)(3))
True
sage: Q = QuaternionAlgebra(2); Q
Quaternion Algebra (-1, -1) with base ring Rational Field
sage: Q is QuaternionAlgebra(QQ,-1,-1)
True
sage: Q is QuaternionAlgebra(-1,-1)
sage: Q.<ii,jj,kk> = QuaternionAlgebra(15); Q.variable_names()
('ii', 'jj', 'kk')
sage: QuaternionAlgebra(15).variable_names()
('i', 'j', 'k')
```

```
create_key(arg0, arg1=None, arg2=None, names='i,j,k')
```

Create a key that uniquely determines a quaternion algebra.

```
create_object(version, key, **extra_args)
```

Create the object from the key (extra arguments are ignored). This is only called if the object was not found in the cache.

Bases: sage.algebras.quatalg.quaternion\_algebra.QuaternionAlgebra\_abstract

A quaternion algebra of the form  $(a, b)_K$ .

See QuaternionAlgebra for many more examples.

#### INPUT:

- base\_ring a commutative ring *K* in which 2 is invertible
- a, b units of K
- names string (optional, default 'i,j,k') names of the generators

# **OUTPUT**:

The quaternion algebra (a, b) over K generated by i and j subject to  $i^2 = a$ ,  $j^2 = b$ , and ji = -ij.

```
sage: QuaternionAlgebra(QQ, -7, -21) # indirect doctest
Quaternion Algebra (-7, -21) with base ring Rational Field
```

# discriminant()

Given a quaternion algebra A defined over a number field, return the discriminant of A, i.e. the product of the ramified primes of A.

# **EXAMPLES**:

```
sage: QuaternionAlgebra(210,-22).discriminant()
210
sage: QuaternionAlgebra(19).discriminant()
19

sage: F.<a> = NumberField(x^2-x-1)
sage: B.<i,j,k> = QuaternionAlgebra(F, 2*a,F(-1))
sage: B.discriminant()
Fractional ideal (2)

sage: QuaternionAlgebra(QQ[sqrt(2)],3,19).discriminant()
Fractional ideal (1)
```

# gen(i=0)

Return the  $i^{th}$  generator of self.

# INPUT:

• i - integer (optional, default 0)

#### **EXAMPLES:**

```
sage: Q.<ii,jj,kk> = QuaternionAlgebra(QQ,-1,-2); Q
Quaternion Algebra (-1, -2) with base ring Rational Field
sage: Q.gen(0)
ii
sage: Q.gen(1)
jj
sage: Q.gen(2)
kk
sage: Q.gens()
[ii, jj, kk]
```

# ideal(gens, left\_order=None, right\_order=None, check=True, \*\*kwds)

Return the quaternion ideal with given gens over **Z**.

Neither a left or right order structure need be specified.

# INPUT:

- gens a list of elements of this quaternion order
- check bool (default: True)
- left\_order a quaternion order or None
- right\_order a quaternion order or None

```
sage: R = QuaternionAlgebra(-11,-1)
sage: R.ideal([2*a for a in R.basis()])
Fractional ideal (2, 2*i, 2*j, 2*k)
```

# inner\_product\_matrix()

Return the inner product matrix associated to self, i.e. the Gram matrix of the reduced norm as a quadratic form on self. The standard basis 1, i, j, k is orthogonal, so this matrix is just the diagonal matrix with diagonal entries 1, a, b, ab.

# **EXAMPLES:**

```
sage: Q.\langle i,j,k \rangle = QuaternionAlgebra(-5,-19)
sage: Q.inner_product_matrix()
[ 2
       0
           0
               0]
           0
               07
  0
     10
  0
          38
               07
0
           0 190]
sage: R.<a,b> = QQ[]; Q.<i,j,k> = QuaternionAlgebra(Frac(R),a,b)
sage: Q.inner_product_matrix()
     2
           0
0
        -2*a
                 0
                        07
-2*b
0
           0
                        0]
0 2*a*b]
```

#### invariants()

Return the structural invariants a, b of this quaternion algebra: self is generated by i, j subject to  $i^2 = a$ ,  $j^2 = b$  and ji = -ij.

#### **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(15)
sage: Q.invariants()
(-3, 5)
sage: i^2
-3
sage: j^2
5
```

# maximal\_order(take\_shortcuts=True)

Return a maximal order in this quaternion algebra.

The algorithm used is from [Voi2012].

# INPUT:

• take\_shortcuts – (default: True) if the discriminant is prime and the invariants of the algebra are of a nice form, use Proposition 5.2 of [Piz1980].

# **OUTPUT**:

A maximal order in this quaternion algebra.

#### **EXAMPLES:**

(continues on next page)

```
sage: QuaternionAlgebra(-1,-11).maximal_order().basis()
(1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)
sage: QuaternionAlgebra(-1,-3).maximal_order().basis()
(1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)
sage: QuaternionAlgebra(-3,-1).maximal_order().basis()
(1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
sage: QuaternionAlgebra(-2,-5).maximal_order().basis()
(1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k)
sage: QuaternionAlgebra(-5,-2).maximal_order().basis()
(1/2 + 1/2*i - 1/2*k, 1/2*i + 1/4*j - 1/4*k, i, -k)
sage: QuaternionAlgebra(-17,-3).maximal_order().basis()
(1/2 + 1/2*j, 1/2*i + 1/2*k, -1/3*j - 1/3*k, k)
sage: QuaternionAlgebra(-3,-17).maximal_order().basis()
(1/2 + 1/2*i, 1/2*j - 1/2*k, -1/3*i + 1/3*k, -k)
sage: QuaternionAlgebra(-17*9,-3).maximal_order().basis()
(1, 1/3*i, 1/6*i + 1/2*j, 1/2 + 1/3*j + 1/18*k)
sage: QuaternionAlgebra(-2, -389).maximal_order().basis()
(1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k)
```

If you want bases containing 1, switch off take\_shortcuts:

```
sage: QuaternionAlgebra(-3,-89).maximal_order(take_shortcuts=False)
Order of Quaternion Algebra (-3, -89) with base ring Rational Field with basis.
\rightarrow (1, 1/2 + 1/2*i, j, 1/2 + 1/6*i + 1/2*j + 1/6*k)
sage: QuaternionAlgebra(1,1).maximal_order(take_shortcuts=False)
                                                                        # Matrix_
⊶rina
را. Order of Quaternion Algebra (1, 1) with base ring Rational Field with basis
\rightarrow 1/2 + 1/2*i, j, 1/2*j + 1/2*k)
sage: QuaternionAlgebra(-22,210).maximal_order(take_shortcuts=False)
Order of Quaternion Algebra (-22, 210) with base ring Rational Field with basis.
\rightarrow (1, i, 1/2*i + 1/2*j, 1/2 + 17/22*i + 1/44*k)
sage: for d in ( m for m in range(1, 750) if is_squarefree(m) ):
                                                                             # long_
\rightarrowtime (3s)
          A = QuaternionAlgebra(d)
. . . . . .
          R = A.maximal_order(take_shortcuts=False)
          assert A.discriminant() == R.discriminant()
```

We do not support number fields other than the rationals yet:

```
sage: K = QuadraticField(5)
sage: QuaternionAlgebra(K,-1,-1).maximal_order()
```

(continues on next page)

```
Traceback (most recent call last):
...
NotImplementedError: maximal order only implemented for rational quaternion
→algebras
```

# modp\_splitting\_data(p)

Return mod p splitting data for this quaternion algebra at the unramified prime p.

This is  $2 \times 2$  matrices I, J, K over the finite field  $\mathbf{F}_p$  such that if the quaternion algebra has generators i, j, k, then  $I^2 = i^2$ ,  $J^2 = j^2$ , IJ = K and IJ = -JI.

**Note:** Currently only implemented when p is odd and the base ring is  $\mathbf{Q}$ .

#### INPUT:

• p – unramified odd prime

#### **OUTPUT**:

• 2-tuple of matrices over finite field

#### **EXAMPLES:**

```
sage: Q = QuaternionAlgebra(-15, -19)
sage: Q.modp_splitting_data(7)
[0 6] [6 1] [6 6]
[1 0], [1 1], [6 1]
sage: Q.modp_splitting_data(next_prime(10^5))
     0 99988] [97311
4]
                             [99999 59623]
           0], [13334 2692], [97311
sage: I,J,K = Q.modp_splitting_data(23)
sage: I
[0 8]
[1 0]
sage: I^2
[8 8]
[0 8]
sage: J
[19 2]
[17 4]
sage: J^2
[4 \ 0]
[0 4]
sage: I*J == -J*I
True
sage: I*J == K
True
```

The following is a good test because of the asserts in the code:

```
sage: v = [Q.modp_splitting_data(p) for p in primes(20,1000)]
```

Proper error handling:

```
sage: Q.modp_splitting_data(5)
Traceback (most recent call last):
...
NotImplementedError: algorithm for computing local splittings not implemented.

in general (currently require the first invariant to be coprime to p)

sage: Q.modp_splitting_data(2)
Traceback (most recent call last):
...
NotImplementedError: p must be odd
```

# modp\_splitting\_map(p)

Return Python map from the (p-integral) quaternion algebra to the set of  $2 \times 2$  matrices over  $\mathbf{F}_p$ .

#### INPUT:

• p – prime number

#### **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(-1, -7)
sage: f = Q.modp_splitting_map(13)
sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k
sage: f(a*b)
[12  3]
[10  5]
sage: f(a)*f(b)
[12  3]
[10  5]
```

# quaternion\_order(basis, check=True)

Return the order of this quaternion order with given basis.

# INPUT:

- basis list of 4 elements of self
- check bool (default: True)

#### **EXAMPLES:**

We test out check=False:

# ramified\_primes()

Return the primes that ramify in this quaternion algebra.

Currently only implemented over the rational numbers.

**EXAMPLES**:

```
sage: QuaternionAlgebra(QQ, -1, -1).ramified_primes()
[2]
```

# class sage.algebras.quatalg.quaternion\_algebra.QuaternionAlgebra\_abstract

```
Bases: sage.rings.ring.Algebra
```

# basis()

Return the fixed basis of self, which is 1, i, j, k, where i, j, k are the generators of self.

**EXAMPLES**:

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2)
sage: Q.basis()
(1, i, j, k)

sage: Q.<xyz,abc,theta> = QuaternionAlgebra(GF(9,'a'),-5,-2)
sage: Q.basis()
(1, xyz, abc, theta)
```

The basis is cached:

```
sage: Q.basis() is Q.basis()
True
```

# free\_module()

Return the free module associated to self with inner product given by the reduced norm.

**EXAMPLES:** 

# inner\_product\_matrix()

Return the inner product matrix associated to self.

This is the Gram matrix of the reduced norm as a quadratic form on self. The standard basis 1, i, j, k is orthogonal, so this matrix is just the diagonal matrix with diagonal entries 2, 2a, 2b, 2ab.

```
sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19)
sage: Q.inner_product_matrix()
[ 2
     0
          0
             07
     10
          0
             0]
  0
  0
     0 38 0]
0 190]
  0
      0
```

#### is\_commutative()

Return False always, since all quaternion algebras are noncommutative.

#### **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3,-7)
sage: Q.is_commutative()
False
```

# is\_division\_algebra()

Return True if the quaternion algebra is a division algebra (i.e. every nonzero element in self is invertible), and False if the quaternion algebra is isomorphic to the 2x2 matrix algebra.

#### **EXAMPLES:**

```
sage: QuaternionAlgebra(QQ,-5,-2).is_division_algebra()
True
sage: QuaternionAlgebra(1).is_division_algebra()
False
sage: QuaternionAlgebra(2,9).is_division_algebra()
False
sage: QuaternionAlgebra(RR(2.),1).is_division_algebra()
Traceback (most recent call last):
...
NotImplementedError: base field must be rational numbers
```

# is\_exact()

Return True if elements of this quaternion algebra are represented exactly, i.e. there is no precision loss when doing arithmetic. A quaternion algebra is exact if and only if its base field is exact.

# **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7)
sage: Q.is_exact()
True
sage: Q.<i,j,k> = QuaternionAlgebra(Qp(7), -3, -7)
sage: Q.is_exact()
False
```

# is\_field(proof=True)

Return False always, since all quaternion algebras are noncommutative and all fields are commutative.

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7)
sage: Q.is_field()
False
```

# is\_finite()

Return True if the quaternion algebra is finite as a set.

Algorithm: A quaternion algebra is finite if and only if the base field is finite.

#### **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7)
sage: Q.is_finite()
False
sage: Q.<i,j,k> = QuaternionAlgebra(GF(5), -3, -7)
sage: Q.is_finite()
True
```

# is\_integral\_domain(proof=True)

Return False always, since all quaternion algebras are noncommutative and integral domains are commutative (in Sage).

# **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7)
sage: Q.is_integral_domain()
False
```

# is\_matrix\_ring()

Return True if the quaternion algebra is isomorphic to the 2x2 matrix ring, and False if self is a division algebra (i.e. every nonzero element in self is invertible).

#### **EXAMPLES:**

```
sage: QuaternionAlgebra(QQ,-5,-2).is_matrix_ring()
False
sage: QuaternionAlgebra(1).is_matrix_ring()
True
sage: QuaternionAlgebra(2,9).is_matrix_ring()
True
sage: QuaternionAlgebra(RR(2.),1).is_matrix_ring()
True
sage: QuaternionAlgebra(RR(2.),1).is_matrix_ring()
Traceback (most recent call last):
...
NotImplementedError: base field must be rational numbers
```

# is\_noetherian()

Return True always, since any quaternion algebra is a noetherian ring (because it is a finitely generated module over a field).

# **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7)
sage: Q.is_noetherian()
True
```

#### ngens()

Return the number of generators of the quaternion algebra as a K-vector space, not including 1.

This value is always 3: the algebra is spanned by the standard basis 1, i, j, k.

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ,-5,-2)
sage: Q.ngens()
3
sage: Q.gens()
[i, j, k]
```

#### order()

Return the number of elements of the quaternion algebra, or +Infinity if the algebra is not finite.

#### **EXAMPLES**:

```
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -3, -7)
sage: Q.order()
+Infinity
sage: Q.<i,j,k> = QuaternionAlgebra(GF(5), -3, -7)
sage: Q.order()
625
```

# random\_element(\*args, \*\*kwds)

Return a random element of this quaternion algebra.

The args and kwds are passed to the random\_element method of the base ring.

#### **EXAMPLES**:

```
sage: g = QuaternionAlgebra(QQ[sqrt(2)], -3, 7).random_element()
sage: g.parent() is QuaternionAlgebra(QQ[sqrt(2)], -3, 7)
True
sage: g = QuaternionAlgebra(-3, 19).random_element()
sage: g.parent() is QuaternionAlgebra(-3, 19)
True
sage: g = QuaternionAlgebra(GF(17)(2), 3).random_element()
sage: g.parent() is QuaternionAlgebra(GF(17)(2), 3)
True
```

Specify the numerator and denominator bounds:

```
sage: g = QuaternionAlgebra(-3,19).random_element(10^6, 10^6)
sage: for h in g:
....:    assert h.numerator() in range(-10^6, 10^6 + 1)
....:    assert h.denominator() in range(10^6 + 1)

sage: g = QuaternionAlgebra(-3,19).random_element(5, 4)
sage: for h in g:
....:    assert h.numerator() in range(-5, 5 + 1)
....:    assert h.denominator() in range(4 + 1)
```

# vector\_space()

Alias for free\_module().

# **EXAMPLES:**

```
sage: QuaternionAlgebra(-3,19).vector_space()
Ambient quadratic space of dimension 4 over Rational Field
Inner product matrix:
```

(continues on next page)

```
2
          0
                0
                      07
0
          6
                0
                      0]
Ε
    0
          0
             -38
                      0]
Γ
    0
          0
                0 -1147
```

Bases: sage.rings.ideal.Ideal\_fractional

class sage.algebras.quatalg.quaternion\_algebra.QuaternionFractionalIdeal\_rational(Q, basis,

left\_order=None, right\_order=None, check=True)

Bases: sage.algebras.quatalg.quaternion\_algebra.QuaternionFractionalIdeal

A fractional ideal in a rational quaternion algebra.

# INPUT:

- left\_order a quaternion order or None
- right\_order a quaternion order or None
- basis tuple of length 4 of elements in of ambient quaternion algebra whose Z-span is an ideal
- check bool (default: True); if False, do no type checking.

# basis()

Return a basis for this fractional ideal.

OUTPUT: tuple

EXAMPLES:

```
sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis()
(1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
```

# basis\_matrix()

Return basis matrix M in Hermite normal form for self as a matrix with rational entries.

If Q is the ambient quaternion algebra, then the **Z**-span of the rows of M viewed as linear combinations of Q.basis() = [1,i,j,k] is the fractional ideal self. Also, M \* M.denominator() is an integer matrix in Hermite normal form.

OUTPUT: matrix over Q

**EXAMPLES:** 

```
sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis_matrix()
[1/2 1/2 0 0]
[ 0 1 0 0]
[ 0 0 1/2 1/2]
[ 0 0 0 1]
```

# conjugate()

Return the ideal with generators the conjugates of the generators for self.

OUTPUT: a quaternionic fractional ideal

```
sage: I = BrandtModule(3,5).right_ideals()[1]; I
Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
sage: I.conjugate()
Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
```

# cyclic\_right\_subideals(p, alpha=None)

Let I = self. This function returns the right subideals J of I such that I/J is an  $\mathbf{F}_p$ -vector space of dimension 2.

#### INPUT:

- p prime number (see below)
- alpha (default: None) element of quaternion algebra, which can be used to parameterize the order of the ideals J. More precisely the J's are the right annihilators of  $(1,0)\alpha^i$  for i=0,1,2,...,p

#### **OUTPUT**:

• list of right ideals

**Note:** Currently, p must satisfy a bunch of conditions, or a NotImplementedError is raised. In particular, p must be odd and unramified in the quaternion algebra, must be coprime to the index of the right order in the maximal order, and also coprime to the normal of self. (The Brandt modules code has a more general algorithm in some cases.)

```
sage: B = BrandtModule(2,37); I = B.right_ideals()[0]
sage: I.cyclic_right_subideals(3)
[Fractional ideal (2 + 2*i + 10*j + 90*k, 4*i + 4*j + 152*k, 12*j + 132*k]
444*k), Fractional ideal (2 + 2*i + 2*j + 150*k, 4*i + 8*j + 196*k, 12*j +
\hookrightarrow 132*k, 444*k), Fractional ideal (2 + 2*i + 6*j + 194*k, 4*i + 8*j + 344*k,
4^{2} + 132*k, 444*k), Fractional ideal (2 + 2*i + 6*j + 46*k, 4*i + 4*j + 4*k,
\rightarrow 12*j + 132*k, 444*k)]
sage: B = BrandtModule(5,389); I = B.right_ideals()[0]
sage: C = I.cyclic_right_subideals(3); C
[Fractional ideal (2 + 10*j + 546*k, i + 6*j + 133*k, 12*j + 3456*k, 4668*k), ...
\rightarrowFractional ideal (2 + 2*j + 2910*k, i + 6*j + 3245*k, 12*j + 3456*k, 4668*k),...
\rightarrowFractional ideal (2 + i + 2295*k, 3*i + 2*j + 3571*k, 4*j + 2708*k, 4668*k),
\rightarrowFractional ideal (2 + 2*i + 2*j + 4388*k, 3*i + 2*j + 2015*k, 4*j + 4264*k, ...
→4668*k)]
sage: [(I.free_module()/J.free_module()).invariants() for J in C]
[(3, 3), (3, 3), (3, 3), (3, 3)]
sage: I.scale(3).cyclic_right_subideals(3)
[Fractional ideal (6 + 30*j + 1638*k, 3*i + 18*j + 399*k, 36*j + 10368*k]
→14004*k), Fractional ideal (6 + 6*j + 8730*k, 3*i + 18*j + 9735*k, 36*j + ...
→10368*k, 14004*k), Fractional ideal (6 + 3*i + 6885*k, 9*i + 6*j + 10713*k, ...
→12*j + 8124*k, 14004*k), Fractional ideal (6 + 6*i + 6*j + 13164*k, 9*i + 6*j
\rightarrow+ 6045*k, 12*j + 12792*k, 14004*k)]
sage: C = I.scale(1/9).cyclic_right_subideals(3); C
[Fractional ideal (2/9 + 10/9*j + 182/3*k, 1/9*i + 2/3*j + 133/9*k, 4/3*j + 10/9*j + 1/9*i + 1/9*j +
\rightarrow 384*k, 1556/3*k), Fractional ideal (2/9 + 2/9*j + 970/3*k, 1/9*i + 2/3*j +
→3245/9*k, 4/3*j + 384*k, 1556/3*k), Fractional ideal (2/9 + 1/9*i + 255*k, 1/
 \Rightarrow3*i + 2/9*j + 3571/9*k, 4/9*j + 2708/9*k, 1556/3*k), Fractional ideal (2/9
\rightarrow 2/9 * i + 2/9 * j + 4388/9 * k, 1/3 * i + 2/9 * j + 2015/9 * k, 4/9 * j + 4264/9 * k, 1556/9 * k
 \rightarrow 3*k)]
```

The general algorithm is not yet implemented here:

#### free\_module()

Return the underlying free **Z**-module corresponding to this ideal.

#### **OUTPUT:**

Free **Z**-module of rank 4 embedded in an ambient  $\mathbf{Q}^4$ .

#### **EXAMPLES:**

```
sage: X = BrandtModule(3,5).right_ideals()
sage: X[0]
Fractional ideal (2 + 2*j + 8*k, 2*i + 18*k, 4*j + 16*k, 20*k)
sage: X[0].free_module()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[2028]
[ 0 2 0 18]
[ 0 0 4 16]
[ 0 0 0 20]
sage: X[0].scale(1/7).free_module()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[ 2/7
        0 2/7 8/7]
   0 2/7
             0 18/7]
        0 4/7 16/7]
             0 20/7]
sage: QuaternionAlgebra(-11,-1).maximal_order().unit_ideal().basis_matrix()
[1/2 1/2
[ 0
      1
          0
              0]
0
      0 1/2 1/2]
0
          0
              1]
```

The free module method is also useful since it allows for checking if one ideal is contained in another, computing quotients I/J, etc.:

```
sage: X = BrandtModule(3,17).right_ideals()
sage: I = X[0].intersection(X[2]); I
Fractional ideal (2 + 2*j + 164*k, 2*i + 4*j + 46*k, 16*j + 224*k, 272*k)
sage: I.free_module().is_submodule(X[3].free_module())
False
sage: I.free_module().is_submodule(X[1].free_module())
True
sage: X[0].free_module() / I.free_module()
Finitely generated module V/W over Integer Ring with invariants (4, 4)
```

This shows that the issue at trac ticket #6760 is fixed:

```
sage: R.<i,j,k> = QuaternionAlgebra(-1, -13)
sage: I = R.ideal([2+i, 3*i, 5*j, j+k]); I
Fractional ideal (2 + i, 3*i, j + k, 5*k)
sage: I.free_module()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[2 1 0 0]
[0 3 0 0]
[0 0 1 1]
[0 0 0 5]
```

# gram\_matrix()

Return the Gram matrix of this fractional ideal.

OUTPUT:  $4 \times 4$  matrix over **Q**.

**EXAMPLES:** 

```
sage: I = BrandtModule(3,5).right_ideals()[1]; I
Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
sage: I.gram_matrix()
[ 640  1920  2112  1920]
[ 1920  14080  13440  16320]
[ 2112  13440  13056  15360]
[ 1920  16320  15360  19200]
```

# intersection(J)

Return the intersection of the ideals self and J.

**EXAMPLES:** 

```
sage: X = BrandtModule(3,5).right_ideals()
sage: I = X[0].intersection(X[1]); I
Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
```

# $is_equivalent(I, J, B=10)$

Return True if I and J are equivalent as right ideals.

INPUT:

- I a fractional quaternion ideal (self)
- J a fractional quaternion ideal with same order as I
- B a bound to compute and compare theta series before doing the full equivalence test

**OUTPUT:** bool

#### **EXAMPLES:**

```
sage: R = BrandtModule(3,5).right_ideals(); len(R)
2
sage: R[0].is_equivalent(R[1])
False
sage: R[0].is_equivalent(R[0])
True
sage: 00 = R[0].left_order()
sage: S = 00.right_ideal([3*a for a in R[0].basis()])
sage: R[0].is_equivalent(S)
True
```

#### left\_order()

Return the left order associated to this fractional ideal.

OUTPUT: an order in a quaternion algebra

#### **EXAMPLES:**

We do a consistency check:

# multiply\_by\_conjugate(J)

Return product of self and the conjugate Jbar of J.

#### INPUT:

• J – a quaternion ideal.

OUTPUT: a quaternionic fractional ideal.

# **EXAMPLES:**

```
sage: R = BrandtModule(3,5).right_ideals()
sage: R[0].multiply_by_conjugate(R[1])
Fractional ideal (8 + 8*j + 112*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k)
sage: R[0]*R[1].conjugate()
Fractional ideal (8 + 8*j + 112*k, 8*i + 16*j + 136*k, 32*j + 128*k, 160*k)
```

# norm()

Return the reduced norm of this fractional ideal.

OUTPUT: rational number

```
sage: M = BrandtModule(37)
sage: C = M.right_ideals()
sage: [I.norm() for I in C]
[16, 32, 32]
sage: (a,b) = M.quaternion_algebra().invariants()
         # optional - magma
sage: magma.eval('A<i,j,k> := QuaternionAlgebra<Rationals() | %s, %s>' % (a,b))_
          # optional - magma
sage: magma.eval('0 := QuaternionOrder(%s)' % str(list(C[0].right_order().
→basis())))
               # optional - magma
sage: [ magma('rideal<0 | %s>' % str(list(I.basis()))).Norm() for I in C]
         # optional - magma
[16, 32, 32]
sage: A.\langle i, j, k \rangle = QuaternionAlgebra(-1,-1)
sage: R = A.ideal([i,j,k,1/2 + 1/2*i + 1/2*j + 1/2*k]) # this is actually_
→an order, so has reduced norm 1
sage: R.norm()
sage: [ J.norm() for J in R.cyclic_right_subideals(3) ]
                                                             # enumerate maximal_
→right R-ideals of reduced norm 3, verify their norms
[3, 3, 3, 3]
```

#### quadratic\_form()

Return the normalized quadratic form associated to this quaternion ideal.

OUTPUT: quadratic form

**EXAMPLES:** 

```
sage: I = BrandtModule(11).right_ideals()[1]
sage: Q = I.quadratic_form(); Q
Quadratic form in 4 variables over Rational Field with coefficients:
[ 18 22 33 22 ]
[ * 7 22 11 ]
[ * * 22 0 ]
[ * * * 22 ]
sage: Q.theta_series(10)
1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + 0(q^4 + 10)
sage: I.theta_series(10)
1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^7 + 36*q^8 + 36*q^9 + 0(q^4 + 10)
```

# quaternion\_algebra()

Return the ambient quaternion algebra that contains this fractional ideal.

OUTPUT: a quaternion algebra

```
sage: I = BrandtModule(3,5).right_ideals()[1]; I
Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 34*k, 8*j + 32*k, 40*k)
sage: I.quaternion_algebra()
Quaternion Algebra (-1, -3) with base ring Rational Field
```

#### quaternion\_order()

Return the order for which this ideal is a left or right fractional ideal.

If this ideal has both a left and right ideal structure, then the left order is returned. If it has neither structure, then an error is raised.

OUTPUT: QuaternionOrder

### **EXAMPLES:**

# right\_order()

Return the right order associated to this fractional ideal.

OUTPUT: an order in a quaternion algebra

#### **EXAMPLES:**

The following is a big consistency check. We take reps for all the right ideal classes of a certain order, take the corresponding left orders, then take ideals in the left orders and from those compute the right order again:

```
sage: B = BrandtModule(11,19); R = B.right_ideals()
sage: O = [r.left_order() for r in R]
sage: J = [0[i].left_ideal(R[i].basis()) for i in range(len(R))]
sage: len(set(J))
18
sage: len(set([I.right_order() for I in J]))
1
sage: J[0].right_order() == B.order_of_level_N()
True
```

# ring()

Return ring that this is a fractional ideal for.

The *ring()* method will be removed from this class in the future. Calling *ring()* will then return the ambient quaternion algebra. This is consistent with the behaviour for number fields.

#### **EXAMPLES:**

```
sage: R = QuaternionAlgebra(-11,-1).maximal_order()
sage: R.unit_ideal().ring() is R
doctest:...: DeprecationWarning: ring() will return the quaternion algebra in_
_the future, please use left_order() or right_order()
See https://trac.sagemath.org/31583 for details.
True
```

### scale(alpha, left=False)

Scale the fractional ideal self by multiplying the basis by alpha.

# INPUT:

- $\alpha$  element of quaternion algebra
- left bool (default: False); if true multiply  $\alpha$  on the left, otherwise multiply  $\alpha$  on the right

#### **OUTPUT:**

· a new fractional ideal

#### **EXAMPLES:**

# theta\_series(B, var='q')

Return normalized theta series of self, as a power series over Z in the variable var, which is 'q' by default.

The normalized theta series is by definition

$$\theta_I(q) = \sum_{x \in I} q^{\frac{N(x)}{N(I)}}.$$

# INPUT:

- B positive integer
- var string (default: 'q')

**OUTPUT**: power series

# **EXAMPLES:**

```
sage: I = BrandtModule(11).right_ideals()[1]; I
Fractional ideal (2 + 6*j + 4*k, 2*i + 4*j + 2*k, 8*j, 8*k)
sage: I.norm()
32
```

(continues on next page)

```
sage: I.theta_series(5)
1 + 12*q^2 + 12*q^3 + 12*q^4 + 0(q^5)
sage: I.theta_series(5,'T')
1 + 12*T^2 + 12*T^3 + 12*T^4 + 0(T^5)
sage: I.theta_series(3)
1 + 12*q^2 + 0(q^3)
```

# theta\_series\_vector(B)

Return theta series coefficients of self, as a vector of B integers.

#### INPUT:

• B – positive integer

#### **OUTPUT**:

Vector over **Z** with B entries.

#### **EXAMPLES:**

```
sage: I = BrandtModule(37).right_ideals()[1]; I
Fractional ideal (2 + 6*j + 2*k, i + 2*j + k, 8*j, 8*k)
sage: I.theta_series_vector(5)
(1, 0, 2, 2, 6)
sage: I.theta_series_vector(10)
(1, 0, 2, 2, 6, 4, 8, 6, 10, 10)
sage: I.theta_series_vector(5)
(1, 0, 2, 2, 6)
```

### **class** sage.algebras.quatalg.quaternion\_algebra.**QuaternionOrder**(A, basis, check=True)

Bases: sage.structure.parent.Parent

An order in a quaternion algebra.

# **EXAMPLES:**

# basis()

Return fix choice of basis for this quaternion order.

#### **EXAMPLES:**

```
sage: QuaternionAlgebra(-11,-1).maximal_order().basis()
(1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
```

# discriminant()

Return the discriminant of this order.

This is defined as  $\sqrt{\det(Tr(e_i\bar{e}_j))}$ , where  $\{e_i\}$  is the basis of the order.

OUTPUT: rational number

```
sage: QuaternionAlgebra(-11,-1).maximal_order().discriminant()
11
sage: S = BrandtModule(11,5).order_of_level_N()
sage: S.discriminant()
55
sage: type(S.discriminant())
<... 'sage.rings.rational.Rational'>
```

# free\_module()

Return the free **Z**-module that corresponds to this order inside the vector space corresponding to the ambient quaternion algebra.

OUTPUT:

A free **Z**-module of rank 4.

**EXAMPLES:** 

```
sage: R = QuaternionAlgebra(-11,-1).maximal_order()
sage: R.basis()
(1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
sage: R.free_module()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[1/2 \ 1/2]
         0
             07
     1
          0
              0]
[ 0
0
     0 1/2 1/2]
0 0
            17
```

#### gen(n)

Return the n-th generator.

# INPUT:

• n - an integer between 0 and 3, inclusive.

# **EXAMPLES:**

# gens()

Return generators for self.

```
sage: QuaternionAlgebra(-1,-7).maximal_order().gens()
(1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)
```

# intersection(other)

Return the intersection of this order with other.

#### INPUT:

• other - a quaternion order in the same ambient quaternion algebra

OUTPUT: a quaternion order

#### **EXAMPLES:**

We intersect various orders in the quaternion algebra ramified at 11:

# left\_ideal(gens, check=True)

Return the ideal with given gens over **Z**.

# INPUT:

- gens a list of elements of this quaternion order
- check bool (default: True)

# **EXAMPLES:**

```
sage: R = QuaternionAlgebra(-11,-1).maximal_order()
sage: R.left_ideal([2*a for a in R.basis()])
Fractional ideal (1 + i, 2*i, j + k, 2*k)
```

# ngens()

Return the number of generators (which is 4).

#### **EXAMPLES:**

```
sage: QuaternionAlgebra(-1,-7).maximal_order().ngens()
4
```

# one()

Return the multiplicative unit of this quaternion order.

```
sage: QuaternionAlgebra(-1,-7).maximal_order().one()
1
```

#### quadratic\_form()

Return the normalized quadratic form associated to this quaternion order.

**OUTPUT**: quadratic form

**EXAMPLES:** 

```
sage: R = BrandtModule(11,13).order_of_level_N()
sage: Q = R.quadratic_form(); Q
Quadratic form in 4 variables over Rational Field with coefficients:
[ 14 253 55 286 ]
[ * 1455 506 3289 ]
[ * * 55 572 ]
[ * * * 1859 ]
sage: Q.theta_series(10)
1 + 2*q + 2*q*4 + 4*q*6 + 4*q*8 + 2*q*9 + O(q*10)
```

# quaternion\_algebra()

Return ambient quaternion algebra that contains this quaternion order.

**EXAMPLES:** 

```
sage: QuaternionAlgebra(-11,-1).maximal_order().quaternion_algebra()
Quaternion Algebra (-11, -1) with base ring Rational Field
```

# random\_element(\*args, \*\*kwds)

Return a random element of this order.

The args and kwds are passed to the random\_element method of the integer ring, and we return an element of the form

$$ae_1 + be_2 + ce_3 + de_4$$

where  $e_1, \ldots, e_4$  are the basis of this order and a, b, c, d are random integers.

**EXAMPLES:** 

```
sage: QuaternionAlgebra(-11,-1).maximal_order().random_element() # random
-4 - 4*i + j - k
sage: QuaternionAlgebra(-11,-1).maximal_order().random_element(-10,10) # random
-9/2 - 7/2*i - 7/2*j - 3/2*k
```

# right\_ideal(gens, check=True)

Return the ideal with given gens over **Z**.

INPUT:

- gens a list of elements of this quaternion order
- check bool (default: True)

```
sage: R = QuaternionAlgebra(-11,-1).maximal_order()
sage: R.right_ideal([2*a for a in R.basis()])
Fractional ideal (1 + i, 2*i, j + k, 2*k)
```

# ternary\_quadratic\_form(include\_basis=False)

Return the ternary quadratic form associated to this order.

#### INPUT:

• include\_basis – bool (default: False), if True also return a basis for the dimension 3 subspace G

#### **OUTPUT**:

- · QuadraticForm
- optional basis for dimension 3 subspace

This function computes the positive definition quadratic form obtained by letting G be the trace zero subspace of  $\mathbf{Z} + 2^*$  self, which has rank 3, and restricting the pairing  $QuaternionAlgebraElement\_abstract.pair()$ :

```
(x,y) = (x.conjugate()*y).reduced_trace()
```

to G.

APPLICATIONS: Ternary quadratic forms associated to an order in a rational quaternion algebra are useful in computing with Gross points, in decided whether quaternion orders have embeddings from orders in quadratic imaginary fields, and in computing elements of the Kohnen plus subspace of modular forms of weight 3/2.

# **EXAMPLES:**

```
sage: R = BrandtModule(11,13).order_of_level_N()
sage: Q = R.ternary_quadratic_form(); Q
Quadratic form in 3 variables over Rational Field with coefficients:
[ 5820 1012 13156 ]
[ * 55 1144 ]
[ * * 7436 ]
sage: factor(Q.disc())
2^4 * 11^2 * 13^2
```

The following theta series is a modular form of weight 3/2 and level 4\*11\*13:

```
sage: Q.theta_series(100)
1 + 2*q^23 + 2*q^55 + 2*q^56 + 2*q^75 + 4*q^92 + 0(q^100)
```

#### unit\_ideal()

Return the unit ideal in this quaternion order.

# **EXAMPLES:**

```
sage: R = QuaternionAlgebra(-11,-1).maximal_order()
sage: I = R.unit_ideal(); I
Fractional ideal (1/2 + 1/2*i, 1/2*j - 1/2*k, i, -k)
```

sage.algebras.quatalg.quaternion\_algebra.basis\_for\_quaternion\_lattice(gens, reverse=False)
Return a basis for the **Z**-lattice in a quaternion algebra spanned by the given gens.

# INPUT:

- gens list of elements of a single quaternion algebra
- reverse when computing the HNF do it on the basis (k, j, i, 1) instead of (1, i, j, k); this ensures that if gens are the generators for an order, the first returned basis vector is 1

#### **EXAMPLES:**

sage.algebras.quatalg.quaternion\_algebra.intersection\_of\_row\_modules\_over\_ZZ( $\nu$ ) Intersect the **Z**-modules with basis matrices the full rank  $4\times 4$  **Q**-matrices in the list  $\nu$ .

The returned intersection is represented by a  $4 \times 4$  matrix over  $\mathbf{Q}$ . This can also be done using modules and intersection, but that would take over twice as long because of overhead, hence this function.

#### **EXAMPLES:**

```
sage: a = matrix(QQ, 4, [-2, 0, 0, 0, 0, -1, -1, 1, 2, -1/2, 0, 0, 1, 1, -1, 0])
sage: b = matrix(QQ,4,[0, -1/2, 0, -1/2, 2, 1/2, -1, -1/2, 1, 2, 1, -2, 0, -1/2, -2,
sage: c = matrix(QQ, 4, [0, 1, 0, -1/2, 0, 0, 2, 2, 0, -1/2, 1/2, -1, 1, -1, -1/2, 0])
sage: v = [a,b,c]
sage: from sage.algebras.guatalg.guaternion_algebra import intersection_of_row_
→modules_over_ZZ
sage: M = intersection_of_row_modules_over_ZZ(v); M
  2
         0
            – 1
                  -17
             1
                  -37
Γ
  -4
         1
[ -3 \ 19/2 \ -1 ]
                  -4]
      -3
           -8
                   41
sage: M2 = a.row_module(ZZ).intersection(b.row_module(ZZ)).intersection(c.row_
→module(ZZ))
sage: M.row_module(ZZ) == M2
True
```

 ${\tt sage.algebras.quatalg.quaternion\_algebra.is\_QuaternionAlgebra} (A)$ 

Return True if A is of the QuaternionAlgebra data type.

# **EXAMPLES:**

 $\verb|sage.algebras.quatalg.quaternion_algebra.maxord_solve_aux_eq(a,b,p)|$ 

Given a and b and an even prime ideal p find (y,z,w) with y a unit mod  $p^{2e}$  such that

$$1 - av^2 - bz^2 + abw^2 \equiv 0modp^{2e}.$$

where e is the ramification index of p.

Currently only p = 2 is implemented by hardcoding solutions.

INPUT:

- a integer with  $v_n(a) = 0$
- b integer with  $v_p(b) \in \{0, 1\}$
- p even prime ideal (actually only p=ZZ(2) is implemented)

# **OUTPUT:**

• A tuple (y, z, w)

#### **EXAMPLES:**

```
sage: from sage.algebras.quatalg.quaternion_algebra import maxord_solve_aux_eq
sage: for a in [1,3]:
....:    for b in [1,2,3]:
....:         (y,z,w) = maxord_solve_aux_eq(a, b, 2)
....:         assert mod(y, 4) == 1 or mod(y, 4) == 3
....:         assert mod(1 - a*y^2 - b*z^2 + a*b*w^2, 4) == 0
```

Compute a (at p) normalized basis from the given basis e of a **Z**-module.

The returned basis is (at p) a  $\mathbb{Z}_p$  basis for the same module, and has the property that with respect to it the quadratic form induced by the bilinear form B is represented as a orthogonal sum of atomic forms multiplied by p-powers.

If  $p \neq 2$  this means that the form is diagonal with respect to this basis.

If p=2 there may be additional 2-dimensional subspaces on which the form is represented as  $2^e(ax^2+bxy+cx^2)$  with  $0=v_2(b)=v_2(a)\leq v_2(c)$ .

# INPUT:

- e list; basis of a **Z** module. WARNING: will be modified!
- p prime for at which the basis should be normalized
- B (default: QuaternionAlgebraElement\_abstract.pair()) a bilinear form with respect to which to normalize

# **OUTPUT**:

• A list containing two-element tuples: The first element of each tuple is a basis element, the second the valuation of the orthogonal summand to which it belongs. The list is sorted by ascending valuation.

# **EXAMPLES:**

```
sage: from sage.algebras.quatalg.quaternion_algebra import normalize_basis_at_p
sage: A.<i,j,k> = QuaternionAlgebra(-1, -1)
sage: e = [A(1), i, j, k]
sage: normalize_basis_at_p(e, 2)
[(1, 0), (i, 0), (j, 0), (k, 0)]

sage: A.<i,j,k> = QuaternionAlgebra(210)
sage: e = [A(1), i, j, k]
sage: normalize_basis_at_p(e, 2)
[(1, 0), (i, 1), (j, 1), (k, 2)]

sage: A.<i,j,k> = QuaternionAlgebra(286)
```

(continues on next page)

```
sage: e = [A(1), k, 1/2*j + 1/2*k, 1/2 + 1/2*i + 1/2*k]
sage: normalize_basis_at_p(e, 5)
[(1, 0), (1/2*j + 1/2*k, 0), (-5/6*j + 1/6*k, 1), (1/2*i, 1)]

sage: A.<i,j,k> = QuaternionAlgebra(-1,-7)
sage: e = [A(1), k, j, 1/2 + 1/2*i + 1/2*j + 1/2*k]
sage: normalize_basis_at_p(e, 2)
[(1, 0), (1/2 + 1/2*i + 1/2*j + 1/2*k, 0), (-34/105*i - 463/735*j + 71/105*k, 1), (-34/105*i - 463/735*j + 71/105*k, 1)]
```

sage.algebras.quatalg.quaternion\_algebra.unpickle\_QuaternionAlgebra\_v0(\*key) The 0th version of pickling for quaternion algebras.

```
sage: Q = QuaternionAlgebra(-5,-19)
sage: t = (QQ, -5, -19, ('i', 'j', 'k'))
sage: sage.algebras.quatalg.quaternion_algebra.unpickle_QuaternionAlgebra_v0(*t)
Quaternion Algebra (-5, -19) with base ring Rational Field
sage: loads(dumps(Q)) == Q
True
sage: loads(dumps(Q)) is Q
True
```

# **ELEMENTS OF QUATERNION ALGEBRAS**

Sage allows for computation with elements of quaternion algebras over a nearly arbitrary base field of characteristic not 2. Sage also has very highly optimized implementation of arithmetic in rational quaternion algebras and quaternion algebras over number fields.

class sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_abstract
 Bases: sage.structure.element.AlgebraElement

# coefficient\_tuple()

Return 4-tuple of coefficients of this quaternion.

#### **EXAMPLES**:

#### conjugate()

Return the conjugate of the quaternion: if  $\theta = x + yi + zj + wk$ , return x - yi - zj - wk; that is, return theta.reduced\_trace() - theta.

# **EXAMPLES:**

The "universal" test:

```
sage: K.<x,y,z,w,a,b> = QQ[]
sage: Q.<i,j,k> = QuaternionAlgebra(a,b)
sage: theta = x+y*i+z*j+w*k
sage: theta.conjugate()
x + (-y)*i + (-z)*j + (-w)*k
```

#### is\_constant()

Return True if this quaternion is constant, i.e., has no i, j, or k term.

**OUTPUT:** 

bool

**EXAMPLES:** 

```
sage: A.<i,j,k> = QuaternionAlgebra(-1,-2)
sage: A(1).is_constant()
True
sage: A(1+i).is_constant()
False
sage: A(i).is_constant()
False
```

### matrix(action='right')

Return the matrix of right or left multiplication of self on the basis for the ambient quaternion algebra.

In particular, if action is 'right' (the default), returns the matrix of the mapping sending x to x\*self.

# INPUT:

• action – (default: 'right') 'right' or 'left'.

# OUTPUT:

· a matrix

#### **EXAMPLES:**

```
sage: Q.<i,j,k> = QuaternionAlgebra(-3,-19)
sage: a = 2/3 - 1/2*i + 3/5*j - 4/3*k
sage: a.matrix()
[ 2/3 -1/2
              3/5 -4/3]
[ 3/2 2/3
              4
                   3/5]
[-57/5 -76/3 2/3
                    1/2]
  76 -57/5 -3/2
                    2/3]
sage: a.matrix() == a.matrix(action='right')
True
sage: a.matrix(action='left')
[ 2/3 -1/2
              3/5 - 4/3
[ 3/2
       2/3
              -4 -3/5]
[-57/5 76/3
              2/3 - 1/2
   76 57/5 3/2
                   2/3]
sage: (i*a,j*a,k*a)
(3/2 + 2/3*i + 4*j + 3/5*k, -57/5 - 76/3*i + 2/3*j + 1/2*k, 76 - 57/5*i - 3/2*j
\rightarrow+ 2/3*k)
sage: a.matrix(action='foo')
Traceback (most recent call last):
ValueError: action must be either 'left' or 'right'
```

We test over a more generic base field:

```
sage: K.<x> = QQ['x']
sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2)
```

(continues on next page)

```
sage: a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k
sage: type(a)
<class 'sage.algebras.quatalg.quaternion_algebra_element.</pre>
→QuaternionAlgebraElement_generic'>
sage: a.matrix()
[1/2*x^2]
           2/3*x
                    -3/4
                              5/7]
[-10/3*x 1/2*x^2]
                 -25/7
                            -3/4]
            10/7 \ 1/2*x^2 \ -2/3*x
     3/2
             3/2 10/3*x 1/2*x^2]
  -50/7
```

# pair(right)

Return the result of pairing self and right, which should both be elements of a quaternion algebra. The pairing is  $(x,y) = (x.conjugate()*y).reduced_trace()$ .

#### INPUT:

• right - quaternion

# **EXAMPLES:**

```
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2)
sage: (1+i+j-2*k).pair(2/3+5*i-3*j+k)
-26/3
sage: x = 1+i+j-2*k; y = 2/3+5*i-3*j+k
sage: x.pair(y)
-26/3
sage: y.pair(x)
-26/3
sage: (x.conjugate()*y).reduced_trace()
-26/3
```

# reduced\_characteristic\_polynomial(var='x')

Return the reduced characteristic polynomial of this quaternion algebra element, which is  $X^2 - tX + n$ , where t is the reduced trace and n is the reduced norm.

# INPUT:

• var – string (default: 'x'); indeterminate of characteristic polynomial

# **EXAMPLES:**

```
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2)
sage: i.reduced_characteristic_polynomial()
x^2 + 1
sage: j.reduced_characteristic_polynomial()
x^2 + 2
sage: (i+j).reduced_characteristic_polynomial()
x^2 + 3
sage: (2+j+k).reduced_trace()
4
sage: (2+j+k).reduced_characteristic_polynomial('T')
T^2 - 4*T + 8
```

# reduced\_norm()

Return the reduced norm of self: if  $\theta = x + yi + zj + wk$ , then  $\theta$  has reduced norm  $x^2 - ay^2 - bz^2 + abw^2$ .

```
sage: K.<x,y,z,w,a,b> = QQ[]
sage: Q.<i,j,k> = QuaternionAlgebra(a,b)
sage: theta = x+y*i+z*j+w*k
sage: theta.reduced_norm()
w^2*a*b - y^2*a - z^2*b + x^2
```

#### reduced\_trace()

Return the reduced trace of self: if  $\theta = x + yi + zj + wk$ , then  $\theta$  has reduced trace 2x.

**EXAMPLES:** 

```
sage: K.<x,y,z,w,a,b> = QQ[]
sage: Q.<i,j,k> = QuaternionAlgebra(a,b)
sage: theta = x+y*i+z*j+w*k
sage: theta.reduced_trace()
2*x
```

class sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_generic

Bases: sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_abstract

#### class

sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_number\_field

 $Bases: sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_abstract$ 

**EXAMPLES:** 

```
sage: K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K,-a,a+1)
sage: Q([a,-2/3,a^2-1/2,a*2]) # implicit doctest
a + (-2/3)*i + (a^2 - 1/2)*j + 2*a*k
```

# class

sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_rational\_field
Bases: sage.algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebraElement\_abstract

# coefficient\_tuple()

Return 4-tuple of rational numbers which are the coefficients of this quaternion.

**EXAMPLES:** 

```
sage: A.<i,j,k> = QuaternionAlgebra(-1,-2)
sage: (2/3 + 3/5*i + 4/3*j - 5/7*k).coefficient_tuple()
(2/3, 3/5, 4/3, -5/7)
```

#### conjugate()

Return the conjugate of this quaternion.

**EXAMPLES:** 

(continues on next page)

```
sage: b = 1 + 1/3*i + 1/5*j - 1/7*k
sage: b.conjugate()
1 - 1/3*i - 1/5*j + 1/7*k
```

# denominator()

Return the lowest common multiple of the denominators of the coefficients of i, j and k for this quaternion.

# **EXAMPLES:**

```
sage: A = QuaternionAlgebra(QQ, -1, -1)
sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1, -1)
sage: a = (1/2) + (1/5)*i + (5/12)*j + (1/13)*k
sage: a
1/2 + 1/5*i + 5/12*j + 1/13*k
sage: a.denominator()
780
sage: lcm([2, 5, 12, 13])
780
sage: (a * a).denominator()
608400
sage: (a + a).denominator()
390
```

# denominator\_and\_integer\_coefficient\_tuple()

Return 5-tuple d, x, y, z, w, where this rational quaternion is equal to (x + yi + zj + wk)/d and x, y, z, w do not share a common factor with d.

**OUTPUT**:

5-tuple of Integers

**EXAMPLES:** 

```
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2)
sage: (2 + 3*i + 4/3*j - 5*k).denominator_and_integer_coefficient_tuple()
(3, 6, 9, 4, -15)
```

### integer\_coefficient\_tuple()

Return the integer part of this quaternion, ignoring the common denominator.

**OUTPUT**:

4-tuple of Integers

**EXAMPLES:** 

```
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2)
sage: (2 + 3*i + 4/3*j - 5*k).integer_coefficient_tuple()
(6, 9, 4, -15)
```

# is\_constant()

Return True if this quaternion is constant, i.e., has no i, j, or k term.

**OUTPUT**:

bool

```
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2)
sage: A(1/3).is_constant()
True
sage: A(-1).is_constant()
True
sage: (1+i).is_constant()
False
sage: j.is_constant()
False
```

# reduced\_norm()

Return the reduced norm of self.

Given a quaternion x + yi + zj + wk, this is  $x^2 - ay^2 - bz^2 + abw^2$ .

# **EXAMPLES:**

```
sage: K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2)
sage: i.reduced_norm()
sage: j.reduced_norm()
2
sage: a = 1/3 + 1/5*i + 1/7*j + k
sage: a.reduced_norm()
22826/2205
```

#### reduced\_trace()

Return the reduced trace of self.

This is 2x if self is x + iy + zj + wk.

# **EXAMPLES:**

```
sage: K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2)
sage: i.reduced_trace()
0
sage: j.reduced_trace()
0
sage: a = 1/3 + 1/5*i + 1/7*j + k
sage: a.reduced_trace()
2/3
```

sage.algebras.quatalg.quaternion\_algebra\_element.unpickle\_QuaternionAlgebraElement\_generic\_v0(\*args)
EXAMPLES:

sage.algebras.quatalg.quaternion\_algebra\_element.unpickle\_QuaternionAlgebraElement\_number\_field\_v0(\*args
EXAMPLES:

sage.algebras.quatalg.quaternion\_algebra\_element.unpickle\_QuaternionAlgebraElement\_rational\_field\_v0(\*an EXAMPLES:

# **CHAPTER**

# **THREE**

# **INDICES AND TABLES**

- Index
- Module Index
- Search Page

# **PYTHON MODULE INDEX**

# а

sage.algebras.quatalg.quaternion\_algebra, 1
sage.algebras.quatalg.quaternion\_algebra\_element,
29

40 Python Module Index

# **INDEX**

| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ${\tt discriminant()} \ (sage. algebras. quatalg. quaternion\_algebra. Quaternion\_algebras. qua$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| basis() (sage.algebras.quatalg.quaternion_algebra.Quate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ernionAlgeBrethastract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| method), 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ${\tt basis()} \ (sage. algebras. quatalg. quaternion\_algebra. Quatalg. quatalg. quaternion\_algebra. Quatalg. quatalg$                                                                                          | ernionFractionalIdeal_rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| method), 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ${\tt free\_module()} \ (sage.algebras.quatalg.quaternion\_algebra.QuaternionAlgebras.quaternion\_algebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quaternionAlgebras.quate$                                                                                             |
| ${\tt basis()} \ (sage. algebras. quatalg. quaternion\_algebra. Quaternion\_algebras. Quaternion$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | free_module() (sage.algebras.quatalg.quaternion_algebra.QuaternionFi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| basis_for_quaternion_lattice() (in module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | method), 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| sage.algebras.quatalg.quaternion_algebra), 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | free_module() (sage.algebras.quatalg.quaternion_algebra.QuaternionO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| basis_matrix() (sage.algebras.quatalg.quaternion_alge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bra.Quater <b>moniov</b> antionalideal_rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gen() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <pre>coefficient_tuple()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | method), 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (sage.aigebras.quataig.quaternion_aigebra_eien<br>method), 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne <b>92.Qualso grouls by the tologiquotarnio</b> n_algebra.QuaternionOrder<br>method), 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <pre>coefficient_tuple()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ${\tt gens()} \ (sage. algebras. quatalg. quaternion\_algebra. QuaternionOrder$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $(sage. algebras. quatalg. quaternion\_algebra\_elemater) algebra\_elemater (sagebra\_elemater) algebra\_e$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>gram_matrix() (sage.algebras.quatalg.quaternion_algebra.QuaternionFr</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\verb conjugate()  (sage. algebras. quatalg. quaternion\_algebra. \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quaternion <b>Fetholo</b> nalIdeal_rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| method), 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\verb conjugate()  (sage. algebras. quatalg. quaternion\_algebra\_ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| method), 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ideal() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\verb conjugate()  (sage.algebras.quatalg.quaternion\_algebra\_) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>inner_product_matrix()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| create_key() (sage.algebras.quatalg.quaternion_algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a.Quaternio <b>(Algehrgeโพสม</b> านุนatalg.quaternion_algebra.QuaternionAlgebra_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| method), 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | method), 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| create_object() (sage.algebras.quatalg.quaternion_alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <pre>cyclic_right_subideals()</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | method), 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (sage.algebras.quatalg.quaternion_algebra.Quat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (sage.algebras.quatalg.quaternion_algebra_element.Quaternion_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | method), 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | intersection() (sage.algebras.quatalg.quaternion_algebra.Quaternion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| denominator() (sage.algebras.quatalg.quaternion_algeb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>intersection() (sage.algebras.quatalg.quaternion_algebra.Quaternion@<br/>method), 22</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| denominator_and_integer_coefficient_tuple()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | memoa), 22<br>neim Qaraerti in Algebra Evernoriul as on Negre Le () (in mod-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iem: улкнетнопындеоги вчетвета гапонак-зыгар ( in moa-<br>ule sage.algebras.quatalg.quaternion_algebra),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <pre>method), 33 discriminant() (sage.algebras.quatalg.quaternion_alge</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| method), 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ora.QuatermonAtgeora_ab<br>invariants()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| memou), 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | method), 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

```
is_commutative() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_abstract
                                method), 10
method), 10 ngens() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_a is_constant() (sage.algebras.quatalg.quaternion_algebra_element_QuaternionAlgebraElement_abstract
meinoa), 29

ngens() (sage.algebras.quatalg.quaternion_algebra.QuaternionOrder
is_constant() (sage.algebras.quatalg.quaternion_algebra_element_QuaternionAlgebraElement_rational_field
                                method), 33
                                                                                                                                                                                                    norm() (sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalle
is_division_algebra()
                                                                                                                                                                                                                                     method), 17
                                 (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_basis_at_p()
                                method), 10
                                                                                                                                                                                                                                    sage.algebras.quatalg.quaternion_algebra), 27
is_equivalent() (sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalIdeal_rational
                                 method), 16
is_exact() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_abstract one() (sage.algebras.quatalg.quaternion_algebra.QuaternionOrder
                                 method), 10
                                                                                                                                                                                                                                  method), 23
Algebra_abstract
(sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_a
is_field() (sage.algebras.quatalg.quaternion_algebra.Quaternion_order()
                                 method), 10
method), 12 is_finite() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_abstract
                                 method), 10
                                                                                                                                                                                                    Р
is_integral_domain()
                                 (sage.algebras.quatalg.quaternion\_algebra.Quate label{eq:pair} Algebra\_algebras.quatalg.quaternion\_algebra\_element.QuaternionAlgebras.quatalg.quaternion
                                                                                                                                                                                                                                    method), 31
\verb|is_matrix_ring()| (sage.algebras.quatalg.quaternion\_algebra\_QuaternionAlgebra\_abstract|) \\
                                method), 11
is_noetherian() (sage.algebras.quatalg.quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quaternion_algebrae.Quatern
                                                                                                                                                                                                                                    method), 18
                                method), 11
                                                                                                                                                                                                    quadratic_form() (sage.algebras.quatalg.quaternion algebra.Quaternio
is_QuaternionAlgebra()
                                                                                                                                                                    module
                                                                                                                                                                                                                                    method), 24
                                sage.algebras.quatalg.quaternion_algebra), 26
                                                                                                                                                                                                    quaternion_algebra()
                                                                                                                                                                                                                                     (sage.algebras.quatalg.quaternion_algebra.QuaternionFractional
left_ideal() (sage.algebras.quatalg.quaternion_algebra.QuaternioMethod), 18
                                                                                                                                                                                                    q̃uaternion_algebra()
                                 method), 23
{\tt left\_order()}\ (sage. algebras. quatalg. quaternion\_algebra. Quaterniori Fraction algebras. quatalg. quaternion\_algebra. Quaterniori Fraction algebras. quatalg. quaternion\_algebras. Quaterniori Fraction algebras. Quater
                                                                                                                                                                                                                                    method), 24
                                 method), 17
                                                                                                                                                                                                    quaternion_order() (sage.algebras.quatalg.quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternion_algebra.Quaternio
M
                                                                                                                                                                                                                                    method), 8
matrix() (sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract
                                 method), 30
maximal_order() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_ab
                                                                                                                                                                                                                                                                                                                                (class
                                                                                                                                                                                                                                                                                                                                                                                         in
                                                                                                                                                                                                                                     sage.algebras.quatalg.quaternion_algebra), 3
                                method), 5
                                                                                                                                                                                                    QuaternionAlgebra_abstract
                                                                                                                                                                                                                                                                                                                                            (class
maxord_solve_aux_eq()
                                                                                                                                                                    module
                                                                                                                                                                                                                                    sage.algebras.quatalg.quaternion_algebra), 9
                                sage.algebras.quatalg.quaternion_algebra), 26
                                                                                                                                                                                                    QuaternionAlgebraElement_abstract (class
modp_splitting_data()
                                (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_aberas.quatalg.quaternion_algebra_element),
                                 method), 7
                                                                                                                                                                                                    QuaternionAlgebraElement_generic
modp_splitting_map()
                                 (sage. algebras. quatalg. quaternion\_algebra. QuaternionAlgebra\_algebras. quatalg. quaternion\_algebra\_element), \\
                                 method), 8
                                                                                                                                                                                                    QuaternionAlgebraElement_number_field (class in
module
                                                                                                                                                                                                                                    sage.algebras.quatalg.quaternion_algebra_element),
                 sage.algebras.quatalg.quaternion_algebra,
                                                                                                                                                                                                                                     32
                {\tt sage.algebras.quatalg.quaternion\_algebra\_element}. \\ {\tt QuaternionAlgebraElement\_rational\_field} ({\it class}) \\ {\tt constant} ({\tt class}) \\ {\tt constant} 
                                                                                                                                                                                                                                    in sage.algebras.quatalg.quaternion_algebra_element),
multiply_by_conjugate()
                                 (sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalfdeql_rational, sage.algebras.quatalg.quaternion_algebra), 1
                                                                                                                                                                                                                                                                                                                                                                                         in
                                method), 17
```

42 Index

```
QuaternionFractionalIdeal
                                     (class
                                                      unpickle_QuaternionAlgebra_v0()
         sage.algebras.quatalg.quaternion_algebra), 13
                                                               sage.algebras.quatalg.quaternion_algebra), 28
                                                      unpickle_QuaternionAlgebraElement_generic_v0()
QuaternionFractionalIdeal_rational (class
                                                               (in module sage.algebras.quatalg.quaternion_algebra_element),
         sage.algebras.quatalg.quaternion_algebra), 13
QuaternionOrder
                               (class
                                                  in
        sage.algebras.quatalg.quaternion algebra), 21
                                                      unpickle_QuaternionAlgebraElement_number_field_v0()
                                                               (in module sage.algebras.quatalg.quaternion algebra element),
R
ramified_primes()(sage.algebras.quatalg.quaternion_almonic.blauchaternionAlgebraElement_rational_field_v0()
                                                               (in module sage.algebras.quatalg.quaternion_algebra_element),
         method), 9
random_element() (sage.algebras.quatalg.quaternion_algebra.QuaternionAlgebra_abstract
        method), 12
random_element() (sage.algebras.quatalg.quaternion_algebra.QuaternionOrder
                                                      vector_space() (sage.algebras.quatalg.quaternion_algebra.QuaternionA
         method), 24
                                                               method), 12
reduced_characteristic_polynomial()
         (sage.algebras.quatalg.quaternion algebra element.QuaternionAlgebraElement abstract
         method), 31
reduced_norm() (sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract
         method), 31
reduced_norm() (sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field
         method), 34
reduced_trace() (sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract
         method), 32
reduced_trace() (sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field
         method), 34
right_ideal() (sage.algebras.quatalg.quaternion_algebra.QuaternionOrder
        method), 24
right_order() (sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalIdeal_rational
         method), 19
ring() (sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalIdeal_rational
        method), 19
S
sage.algebras.quatalg.quaternion_algebra
    module, 1
sage.algebras.quatalg.quaternion_algebra_element
    module, 29
scale() (sage.algebras.quatalg.quaternion_algebra.QuaternionFractionalIdeal_rational
         method), 20
Т
ternary_quadratic_form()
         (sage.algebras.quatalg.quaternion_algebra.QuaternionOrder
        method), 24
theta_series() (sage.algebras.quatalg.quaternion algebra.QuaternionFractionalIdeal rational
        method), 20
theta_series_vector()
         (sage.algebras.quatalg.quaternion\_algebra.QuaternionFractionalIdeal\_rational)
        method), 21
U
unit\_ideal() (sage.algebras.quatalg.quaternion\_algebra.QuaternionOrder
         method), 25
```

Index 43