Inteligência Artificial – ACH2016 Aula 12 – Resolução e Forward Chaining em Lógica de Primeira Ordem

Norton Trevisan Roman (norton@usp.br)

9 de abril de 2019

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

Regra de inferência para resolução

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

Regra de inferência para resolução

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

Como em lógica proposicional, unifica literais complementares

Regra de inferência para resolução

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

Literais complementares em LPO: se um pode ser unificado à negação do outro

Regra de inferência para resolução

$$\frac{\alpha \vee \phi}{\neg \psi \vee \beta} \quad UMG(\phi, \psi) = \theta$$
$$\frac{\neg \psi \vee \beta}{(\alpha \vee \beta)\theta}$$

Literais complementares em LPO: se um pode ser unificado à negação do outro

• Se tivermos $\alpha \lor \phi$ e $\neg \psi \lor \beta$, e pudermos unificar ϕ e ψ com θ , então podemos concluir $\alpha \lor \beta$ com a substituição θ aplicada a eles

Regra de inferência para resolução

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$
$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

Literais complementares em LPO: se um pode ser unificado à negação do outro

- Se tivermos $\alpha \lor \phi$ e $\neg \psi \lor \beta$, e pudermos unificar ϕ e ψ com θ , então podemos concluir $\alpha \lor \beta$ com a substituição θ aplicada a eles
- Ambas cláusulas devem estar padronizadas

Regra de inferência para resolução

$$\frac{\alpha \vee \phi}{\neg \psi \vee \beta} \quad UMG(\phi, \psi) = \theta$$
$$\frac{\neg \psi \vee \beta}{(\alpha \vee \beta)\theta}$$

Literais complementares em LPO: se um pode ser unificado à negação do outro

- Se tivermos $\alpha \lor \phi$ e $\neg \psi \lor \beta$, e pudermos unificar ϕ e ψ com θ , então podemos concluir $\alpha \lor \beta$ com a substituição θ aplicada a eles
- Ambas cláusulas devem estar padronizadas
 - Ou seja, sem variáveis em comum

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x)$

Regra de inferência: Exemplo

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x)$

Lembre que há um quantificador universal implícito em cada cláusula

$$\forall x, y \ P(x) \lor Q(x, y)$$
$$\forall x \ \neg P(A) \lor R(B, x)$$

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x)$

Regra de inferência: Exemplo

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x)$

universal implícito em cada cláusula $\forall x, y \ P(x) \lor Q(x, y)$

$$\forall x, y \ P(x) \lor Q(x, y)$$
$$\forall x \neg P(A) \lor R(B, x)$$

Lembre que há um quantificador

Os x's nas duas cláusulas são diferentes

$$\forall x, y \ P(x) \lor Q(x, y)$$
$$\forall x_1 \ \neg P(A) \lor R(B, x_1)$$

Regra de inferência: Exemplo

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x)$

Lembre que há um quantificador universal implícito em cada cláusula

$$\frac{\forall x, y \ P(x) \lor Q(x, y)}{\forall x \ \neg P(A) \lor R(B, x)}$$

Os x's nas duas cláusulas são diferentes

$$\forall x, y \ P(x) \lor Q(x, y)$$

 $\forall x_1 \ \neg P(A) \lor R(B, x_1)$

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x_1)$

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x_1)$

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x_1)$

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

Regra de inferência: Exemplo

$$\frac{P(x) \vee Q(x,y)}{\neg P(A) \vee R(B,x_1)}$$

Buscamos dois literais que neguem um o outro

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

$$P(x) \lor Q(x,y)$$

$$\neg P(A) \lor R(B,x_1)$$
E tentamos unificá-los

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

$$P(x) \lor Q(x, y)$$

 $\neg P(A) \lor R(B, x_1)$
E tentamos unificá-los

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$
$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

$$\frac{P(x) \vee Q(x,y)}{\neg P(A) \vee R(B,x_1)} \theta = \frac{\neg P(A) \vee R(B,x_1)}{(Q(x,y) \vee R(B,x_1))\theta}$$

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x_1)$
E tentamos unificá-los

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$
$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

$$\frac{P(x) \vee Q(x,y)}{\neg P(A) \vee R(B,x_1)} \theta = \{x/A\}$$
$$\frac{(Q(x,y) \vee R(B,x_1))\theta}{(Q(x,y) \vee R(B,x_1))\theta}$$

$$P(x) \lor Q(x,y)$$

 $\neg P(A) \lor R(B,x_1)$
E tentamos unificá-los

$$\frac{\alpha \lor \phi}{\neg \psi \lor \beta} \quad UMG(\phi, \psi) = \theta$$

$$\frac{\neg \psi \lor \beta}{(\alpha \lor \beta)\theta}$$

$$\frac{P(x) \vee Q(x,y)}{\neg P(A) \vee R(B,x_1)}$$
$$\frac{(Q(x,y) \vee R(B,x_1))\theta}{(Q(x,y) \vee R(B,x_1))\theta}$$

$$\theta = \{x/A\}$$

$$\frac{P(x) \vee Q(x,y)}{\neg P(A) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee R(B,x_1)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad Q(A,y) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,x_1)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y) \vee R(B,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)} \theta = \{x/A\} \qquad P(A) \vee Q(A,y) \\ \frac{\neg P(A) \vee Q(A,y)}{Q(A,y)}$$

Resolução: Exemplo

• Imagine que temos a seguinte base:

João tem um cachorro

Quem tem um cachorro é um amante dos animais

Amantes dos animais não os matam

João matou Bolão ou a curiosidade o fez

Bolão é um gato

Todo gato é um animal

Resolução: Exemplo

• Imagine que temos a seguinte base:

João tem um cachorro

Quem tem um cachorro é um amante dos animais

Amantes dos animais não os matam

João matou Bolão ou a curiosidade o fez

Bolão é um gato

Todo gato é um animal

- Queremos então saber:
 - A curiosidade matou Bolão?

Exemplo: Construindo a base

Exemplo: Construindo a base

João tem um cachorro $\exists x \ Cão(x) \land Ter(João, x)$ $Cão(Totó) \land Ter(João, Totó)$

Exemplo: Construindo a base

```
João tem um cachorro \exists x \ C\~ao(x) \land Ter(Jo\~ao, x) C\~ao(Tot\'o) \land Ter(Jo\~ao, Tot\'o)
```

```
Quem tem um cachorro é um amante dos animais \forall x \, (\exists y \, C\widetilde{ao}(y) \land Ter(x,y)) \Rightarrow AmaAnimais(x) \forall x \, (\neg \exists y \, C\widetilde{ao}(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \, \neg (C\widetilde{ao}(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \, \neg C\widetilde{ao}(y) \lor \neg Ter(x,y) \lor AmaAnimais(x) \neg C\widetilde{ao}(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)
```

Exemplo: Construindo a base

```
João tem um cachorro \exists x \ C\~ao(x) \land Ter(Jo\~ao, x) C\~ao(Tot\'o) \land Ter(Jo\~ao, Tot\'o)
```

```
Quem tem um cachorro é um amante dos animais \forall x \, (\exists y \, C \widetilde{ao}(y) \land Ter(x,y)) \Rightarrow AmaAnimais(x) \forall x \, (\neg \exists y \, C \widetilde{ao}(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \, \neg (C \widetilde{ao}(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \, \neg C \widetilde{ao}(y) \lor \neg Ter(x,y) \lor AmaAnimais(x) \neg C \widetilde{ao}(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)
```

```
Amantes dos animais não os matam  \forall x \ AmaAnimais(x) \Rightarrow (\forall y \ Animal(y) \Rightarrow \neg Matar(x,y))   \forall x \ \neg AmaAnimais(x) \lor (\forall y \ Animal(y) \Rightarrow \neg Matar(x,y))   \forall x \ \neg AmaAnimais(x) \lor (\forall y \ \neg Animal(y) \lor \neg Matar(x,y))   \neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)
```

Exemplo: Construindo a base

```
João tem um cachorro
\exists x \ C\~ao(x) \land Ter(Jo\~ao, x)
C\~ao(Tot\'o) \land Ter(Jo\~ao, Tot\'o)
```

João matou Bolão ou a curiosidade o fez *Matar(João, Bolão)* ∨ *Matar(Curiosidade, Bolão)*

```
Quem tem um cachorro é um amante dos animais \forall x \, (\exists y \, C \tilde{a} o(y) \land Ter(x,y)) \Rightarrow AmaAnimais(x) \forall x \, (\neg \exists y \, C \tilde{a} o(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \, \neg (C \tilde{a} o(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \, \neg C \tilde{a} o(y) \lor \neg Ter(x,y) \lor AmaAnimais(x) \neg C \tilde{a} o(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)
```

```
Amantes dos animais não os matam  \forall x \, AmaAnimais(x) \Rightarrow (\forall y \, Animal(y) \Rightarrow \neg Matar(x,y))   \forall x \, \neg AmaAnimais(x) \lor (\forall y \, Animal(y) \Rightarrow \neg Matar(x,y))   \forall x \, \neg AmaAnimais(x) \lor (\forall y \, \neg Animal(y) \lor \neg Matar(x,y))   \neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)
```

Exemplo: Construindo a base

```
João tem um cachorro
\exists x \ C\~ao(x) \land Ter(Jo\~ao, x)
C\~ao(Tot\'o) \land Ter(João, Tot\'o)
```

João matou Bolão ou a curiosidade o fez Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)

```
Quem tem um cachorro é um amante dos animais \forall x (\exists y \ C\widetilde{ao}(y) \land Ter(x,y)) \Rightarrow AmaAnimais(x) \forall x (\neg \exists y \ C\widetilde{ao}(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \neg (C\widetilde{ao}(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \neg C\widetilde{ao}(y) \lor \neg Ter(x,y) \lor AmaAnimais(x) \neg C\widetilde{ao}(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)
```

Bolão é um gato Gato(Bolão)

Exemplo: Construindo a base

```
João tem um cachorro
\exists x \ Cão(x) \land Ter(João, x)
Cão(Totó) \land Ter(João, Totó)
```

João matou Bolão ou a curiosidade o fez Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)

```
Quem tem um cachorro é um amante dos animais \forall x (\exists y \ C\~ao(y) \land Ter(x,y)) \Rightarrow AmaAnimais(x) \forall x (\neg \exists y \ C\~ao(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \neg (C\~ao(y) \land Ter(x,y)) \lor AmaAnimais(x) \forall x \forall y \neg C\~ao(y) \lor \neg Ter(x,y) \lor AmaAnimais(x) \neg C\~ao(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)
```

Amantes dos animais não os matam $\forall x \ AmaAnimais(x) \Rightarrow (\forall y \ Animal(y) \Rightarrow \neg Matar(x,y))$ $\forall x \ \neg AmaAnimais(x) \lor (\forall y \ Animal(y) \Rightarrow \neg Matar(x,y))$ $\forall x \ \neg AmaAnimais(x) \lor (\forall y \ \neg Animal(y) \lor \neg Matar(x,y))$ $\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)$

Bolão é um gato Gato(Bolão)

```
Todo gato é um animal \forall x \ Gato(x) \Rightarrow Animal(x) \forall x \ \neg Gato(x) \lor Animal(x) \neg Gato(x) \lor Animal(x)
```

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma

A curiosidade matou Bolão?

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma

- A curiosidade matou Bolão?
 - Se queremos provar isso, incluímos sua negação na base (ou seja, assumimos o oposto disso)

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação

- A curiosidade matou Bolão?
 - Se queremos provar isso, incluímos sua negação na base (ou seja, assumimos o oposto disso)

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~{a}o}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação

 Podemos então aplicar a regra da resolução a quaisquer pares de linhas que contenham literais unificáveis

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação

• Lembrando que a resolução prova que $BC \models \alpha$ através da prova de que $BC \land \neg \alpha$ é insatisfatível, ou seja, derivando a cláusula vazia (*falso*)

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação

 Podemos começar usando a Heurística do conjunto de suporte: envolvemos a negação da conclusão na prova.
 Resolvemos então 5 e 8

Exemplo: Inferência

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8

 Podemos começar usando a Heurística do conjunto de suporte: envolvemos a negação da conclusão na prova.
 Resolvemos então 5 e 8

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x,y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8
10	Animal(Bolão)	6,7 { <i>x/Bolão</i> }

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8
10	Animal (Bolão)	6,7 { <i>x</i> / <i>Bolão</i> }
11	¬AmaAnimais(João) ∨ ¬Animal(Bolão)	$4,9 \{x/João, y/Bolão\}$

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	\neg $C\~ao(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8
10	Animal (Bolão)	6,7 { <i>x</i> / <i>Bolão</i> }
11	¬AmaAnimais(João) ∨ ¬Ánimal(Bolão)	4,9 {x/João, y/Bolão}
12	¬AmaAnimais(João)	10,11

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	\neg $C\~{a}o(y) \lor \neg Ter(x,y) \lor AmaAnimais(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8
10	Animal(Bolão)	6,7 { <i>x/Bolão</i> }
11	¬AmaAnimais(João) ∨ ¬Animal(Bolão)	$4,9 \{x/João, y/Bolão\}$
12	¬AmaAnimais(João)	10,11
13	$\neg C\widetilde{a}o(y) \lor \neg Ter(Jo\widetilde{a}o, y)$	3,12 { <i>x/João</i> }

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~{a}o(y)} \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8
10	Animal(Bolão)	6,7 {x/Bolão}
11	¬AmaAnimais(João) ∨ ¬Animal(Bolão)	$4,9 \{x/João, y/Bolão\}$
12	¬AmaAnimais(João)	10,11
13	$\neg C\~ao(y) \lor \neg Ter(Jo\~ao, y)$	3,12 { <i>x/João</i> }
14	¬Cão(Totó)	13,2 { <i>y</i> / Totó}

	Sentença	Ação
1	Cão(Totó)	Axioma
2	Ter(João, Totó)	Axioma
3	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(x,y) \lor extit{AmaAnimais}(x)$	Axioma
4	$\neg AmaAnimais(x) \lor \neg Animal(y) \lor \neg Matar(x, y)$	Axioma
5	Matar(João, Bolão) ∨ Matar(Curiosidade, Bolão)	Axioma
6	Gato(Bolão)	Axioma
7	$\neg Gato(x) \lor Animal(x)$	Axioma
8	¬Matar(Curiosidade, Bolão)	Negação
9	Matar(João, Bolão)	5,8
10	Animal(Bolão)	6,7 { <i>x/Bolão</i> }
11	¬AmaAnimais(João) ∨ ¬Animal(Bolão)	4,9 {x/João, y/Bolão}
12	¬AmaAnimais(João)	10,11
13	$\neg extit{C\~ao}(y) \lor \neg extit{Ter}(extit{Jo\~ao}, y)$	3,12 { <i>x/João</i> }
14	¬Cão(Totó)	13,2 { <i>y/Totó</i> }
15	falso	1,14

Resolução Binária

• É a regra da resolução vista até agora

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida
- Problema: não é completa

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida
- Problema: não é completa
 - Há conjuntos de cláusulas insatisfatíveis (falsas em todas as interpretações) que não gerarão contradição através da aplicação sucessiva da regra

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida
- Problema: não é completa
 - Há conjuntos de cláusulas insatisfatíveis (falsas em todas as interpretações) que não gerarão contradição através da aplicação sucessiva da regra
- Exemplo:

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida
- Problema: não é completa
 - Há conjuntos de cláusulas insatisfatíveis (falsas em todas as interpretações) que não gerarão contradição através da aplicação sucessiva da regra
- Exemplo:
 - Podemos obter uma contradição a partir dessas cláusulas?

$$P(x) \vee P(y)$$

$$\neg P(v) \lor \neg P(w)$$

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida
- Problema: não é completa
 - Há conjuntos de cláusulas insatisfatíveis (falsas em todas as interpretações) que não gerarão contradição através da aplicação sucessiva da regra
- Exemplo:
 - Podemos obter uma contradição a partir dessas cláusulas?

$$P(x) \lor P(y) \leftarrow$$
 Base $\neg P(v) \lor \neg P(w)$

- É a regra da resolução vista até agora
 - Envolve apenas dois literais, um de cada cláusula resolvida
- Problema: não é completa
 - Há conjuntos de cláusulas insatisfatíveis (falsas em todas as interpretações) que não gerarão contradição através da aplicação sucessiva da regra
- Exemplo:
 - Podemos obter uma contradição a partir dessas cláusulas?

$$P(x) \lor P(y)$$
 Negação do que queremos $\neg P(v) \lor \neg P(w)$ provar $(P(v) \land P(w))$

Resolução Binária

 Deveríamos, pois não há interpretação que faça ambas as cláusulas serem verdadeiras. Lembre que elas significam:

$$\forall x, y \ P(x) \lor P(y)$$
$$\forall v, w \ \neg P(v) \lor \neg P(w)$$

Resolução Binária

 Deveríamos, pois não há interpretação que faça ambas as cláusulas serem verdadeiras. Lembre que elas significam:

$$\forall x, y \ P(x) \lor P(y)$$
$$\forall v, w \ \neg P(v) \lor \neg P(w)$$

• Então para ambas serem verdadeiras, seria necessário que P(x) e $\neg P(x)$ fossem verdadeiros, para todo x

Resolução Binária

 Deveríamos, pois não há interpretação que faça ambas as cláusulas serem verdadeiras. Lembre que elas significam:

$$\forall x, y \ P(x) \lor P(y)$$
$$\forall v, w \ \neg P(v) \lor \neg P(w)$$

- Então para ambas serem verdadeiras, seria necessário que P(x) e $\neg P(x)$ fossem verdadeiros, para todo x
- Contudo, aplicando resolução binária, obtemos, por exemplo

$$P(x) \vee \neg P(w), \ \theta = \{y/v\}$$

Resolução Binária

 Deveríamos, pois não há interpretação que faça ambas as cláusulas serem verdadeiras. Lembre que elas significam:

$$\forall x, y \ P(x) \lor P(y)$$
$$\forall v, w \ \neg P(v) \lor \neg P(w)$$

- Então para ambas serem verdadeiras, seria necessário que P(x) e $\neg P(x)$ fossem verdadeiros, para todo x
- Contudo, aplicando resolução binária, obtemos, por exemplo $P(x) \vee \neg P(w), \ \theta = \{y/v\}$
- E repetindo o procedimento com uma das orações originais, voltamos a elas novamente

Resolução Generalizada

 Há no entanto uma extensão à resolução binária que é completa: a resolução generalizada

Resolução Generalizada

- Há no entanto uma extensão à resolução binária que é completa: a resolução generalizada
 - Nela, buscamos subconjuntos de literais em uma cláusula que possam ser unificados com a negação de um subconjunto de literais na outra cláusula

Resolução Generalizada

- Há no entanto uma extensão à resolução binária que é completa: a resolução generalizada
 - Nela, buscamos subconjuntos de literais em uma cláusula que possam ser unificados com a negação de um subconjunto de literais na outra cláusula
- Exemplo:

Resolução Generalizada

- Há no entanto uma extensão à resolução binária que é completa: a resolução generalizada
 - Nela, buscamos subconjuntos de literais em uma cláusula que possam ser unificados com a negação de um subconjunto de literais na outra cláusula
- Exemplo:
 - Em " $P(x) \lor P(y)$ " e " $\neg P(v) \lor \neg P(w)$ ", cada literal (P) em uma cláusula pode ser unificado com sua negação na outra

Resolução Generalizada

- Há no entanto uma extensão à resolução binária que é completa: a resolução generalizada
 - Nela, buscamos subconjuntos de literais em uma cláusula que possam ser unificados com a negação de um subconjunto de literais na outra cláusula

• Exemplo:

- Em " $P(x) \lor P(y)$ " e " $\neg P(v) \lor \neg P(w)$ ", cada literal (P) em uma cláusula pode ser unificado com sua negação na outra
- Gerando assim a contradição necessária (falso) para a demonstração

Fatoração

 Uma alternativa mais simples é introduzir uma nova regra de inferência, a ser usada com a resolução binária:

Fatoração

 Uma alternativa mais simples é introduzir uma nova regra de inferência, a ser usada com a resolução binária:

$$\frac{\alpha \vee \beta \vee \gamma}{(\alpha \vee \gamma)\theta} \theta = UMG(\alpha, \beta)$$

Fatoração

 Uma alternativa mais simples é introduzir uma nova regra de inferência, a ser usada com a resolução binária:

$$\frac{\alpha \vee \beta \vee \gamma}{(\alpha \vee \gamma)\theta} \theta = UMG(\alpha, \beta)$$

 Se pudermos unificar dois literais na mesma cláusula, então podemos eliminar um deles (não importa qual), e então aplicar o unificador à cláusula inteira

Fatoração

 Uma alternativa mais simples é introduzir uma nova regra de inferência, a ser usada com a resolução binária:

$$\frac{\alpha \vee \beta \vee \gamma}{(\alpha \vee \gamma)\theta} \theta = UMG(\alpha, \beta)$$

- Se pudermos unificar dois literais na mesma cláusula, então podemos eliminar um deles (não importa qual), e então aplicar o unificador à cláusula inteira
- Essa alternativa é chamada de Fatoração

Fatoração: Exemplo

$$Q(y) \vee P(x,y) \vee P(v,A)$$

Fatoração: Exemplo

Fatoração: Exemplo

• Note que se trata da remoção de literais duplicados

Fatoração: Exemplo

- Note que se trata da remoção de literais duplicados
- Agora a resolução binária pode ser usada

Fatoração: Exemplo

- - Note que se trata da remoção de literais duplicados
- Agora a resolução binária pode ser usada
- A combinação de resolução binária com fatoração é completa

Fatoração: Exemplo

- - Note que se trata da remoção de literais duplicados
- Agora a resolução binária pode ser usada
- A combinação de resolução binária com fatoração é completa
 - Toda vez que a base levar a S, poderemos provar S a partir dela

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:
 - "Quem matou Bolão?"

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:
 - "Quem matou Bolão?"
 - "Matar(w, Bolão)"? (Olhando a substituição $\{w/???\}$)

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:
 - "Quem matou Bolão?"
 - "Matar(w, Bolão)"? (Olhando a substituição $\{w/???\}$)
- Como?

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:
 - "Quem matou Bolão?"
 - " $Matar(w, Bol\~ao)$ "? (Olhando a substituição $\{w/???\}$)
- Como? Truque de (Cordell) Green:

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:
 - "Quem matou Bolão?"
 - "Matar(w, Bolão)"? (Olhando a substituição $\{w/???\}$)
- Como? Truque de (Cordell) Green:
 - Adicione à negação do objetivo um literal de resposta

- Até agora respondemos questões do tipo:
 - "A curiosidade matou Bolão?"
- Resolução pode, contudo, ser usada para responder perguntas mais gerais:
 - "Quem matou Bolão?"
 - "Matar(w, Bolão)"? (Olhando a substituição $\{w/???\}$)
- Como? Truque de (Cordell) Green:
 - Adicione à negação do objetivo um literal de resposta
 - Ex: ¬Matar(w, Bolão) ∨ Resposta(w)

Respondendo Perguntas: Exemplo

• Quem é mortal?

	Sentença	Ação	
1	$\neg Homem(x) \lor Mortal(x)$	Axioma	
2	Homem(Sócrates)	Axioma	

Respondendo Perguntas: Exemplo

• Quem é mortal?

1. Negamos a conclusão (de que existem mortais)

	Sentença	Ação
1	$\neg Homem(x) \lor Mortal(x)$	Axioma
2	Homem(Sócrates)	Axioma
3	$\neg Mortal(x) \lor Resposta(x)$	Neg

Respondendo Perguntas: Exemplo

• Quem é mortal?

1. Negamos a conclusão (de que existem mortais)

		Sentença	Ação
	1	$\neg Homem(x) \lor Mortal(x)$	Axioma
	2	Homem(Sócrates)	Axioma
	3	$\neg Mortal(x) \lor Resposta(x)$	← Neg

 O truque é adicionar o literal Resposta(x)

Respondendo Perguntas: Exemplo

• Quem é mortal?

		Sentença	Açao
1. Negamos a conclusão	1	$\neg Homem(x) \lor Mortal(x)$	Axioma
(de que existem mortais)	2	Homem(Sócrates)	Axioma
	3	$\neg Mortal(x) \lor Resposta(x)$	← Neg
3. Fazemos a resolução -	4	→ Mortal(Sócrates)	1.2

2. O truque é adicionar o literal Resposta(x)

Ação Axioma

Axioma

1,2

Respondendo Perguntas: Exemplo

• Quem é mortal?

		Sentença	Ação
1. Negamos a conclusão	1	$\neg Homem(x) \lor Mortal(x)$	Axioma
(de que existem mortais)	2	Homem(Sócrates)	Axioma
	3	$\neg Mortal(x) \lor Resposta(x)$	← Neg
3. Fazemos a resolução -	4	→ Mortal(Sócrates)	1,2
	5	, Resposta(Sócrates)	3,5
4. Quando chegamos a uma cláusula com apenas < o literal Resposta, paramos			

2. O truque é adicionar o literal Resposta(x)

Respondendo Perguntas: Exemplo

• Quem é mortal?

		_
	Sentença Ação	
1. Negamos a conclusão	1 $\neg Homem(x) \lor Mortal(x)$ Axioma	
(de que existem mortais)	2 Homem(Sócrates) Axioma	2. O truque é adicionar o literal
	$3 \neg Mortal(x) \lor Resposta(x) \leftarrow Neg$	Resposta(x)
3. Fazemos a resolução -	$-4 \rightarrow Mortal(S\'{o}crates)$ 1,2	-
	5 Resposta(Sócrates) 3,5	-
4. Quando chegamos a 5. A resposta será o que estiver ligado à variável x nesse literal		

Igualdade

 Nenhum dos métodos de inferência até agora lidam com x = y

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?
 - Adicione uma regra extra paramodulação (não veremos)

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?
 - Adicione uma regra extra paramodulação (não veremos)
 - Usada em provadores de teoremas

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?
 - Adicione uma regra extra paramodulação (não veremos)
 - Usada em provadores de teoremas
 - Estenda o algoritmo de unificação (não veremos)

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?
 - Adicione uma regra extra paramodulação (não veremos)
 - Usada em provadores de teoremas
 - Estenda o algoritmo de unificação (não veremos)
 - Usada em provadores de teoremas

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?
 - Adicione uma regra extra paramodulação (não veremos)
 - Usada em provadores de teoremas
 - Estenda o algoritmo de unificação (não veremos)
 - Usada em provadores de teoremas
 - Trate a igualdade como qualquer outro predicado

- Nenhum dos métodos de inferência até agora lidam com x = y
- O que fazer quando a prova contém um '='?
 - Adicione uma regra extra paramodulação (não veremos)
 - Usada em provadores de teoremas
 - Estenda o algoritmo de unificação (não veremos)
 - Usada em provadores de teoremas
 - Trate a igualdade como qualquer outro predicado
 - Restrinja sua semântica via axiomas

Axiomatizando Igualdade

 Aproximamos a igualdade por equivalência, tomando por base suas propriedades

- Aproximamos a igualdade por equivalência, tomando por base suas propriedades
 - $\forall x \; Igual(x,x) \; (reflexividade)$

- Aproximamos a igualdade por equivalência, tomando por base suas propriedades
 - $\forall x \; Igual(x,x) \; (reflexividade)$
 - $\forall x, y \ \textit{Igual}(x, y) \Rightarrow \textit{Igual}(y, x) \ (\text{simetria})$

- Aproximamos a igualdade por equivalência, tomando por base suas propriedades
 - $\forall x \; Igual(x,x) \; (reflexividade)$
 - $\forall x, y \; lgual(x, y) \Rightarrow lgual(y, x)$ (simetria)
 - $\forall x, y, z \; lgual(x, y) \land lgual(y, z) \Rightarrow lgual(x, z)$ (transitividade)

- Aproximamos a igualdade por equivalência, tomando por base suas propriedades
 - $\forall x \; Igual(x,x) \; (reflexividade)$
 - $\forall x, y \ \textit{Igual}(x, y) \Rightarrow \textit{Igual}(y, x) \ (\text{simetria})$
 - $\forall x, y, z \ lgual(x, y) \land lgual(y, z) \Rightarrow lgual(x, z)$ (transitividade)
- Permitimos então substituição, em qualquer predicado ou função, de termos iguais:

- Aproximamos a igualdade por equivalência, tomando por base suas propriedades
 - $\forall x \; Igual(x,x) \; (reflexividade)$
 - $\forall x, y \ \textit{Igual}(x, y) \Rightarrow \textit{Igual}(y, x) \ (\text{simetria})$
 - $\forall x, y, z \ lgual(x, y) \land lgual(y, z) \Rightarrow lgual(x, z)$ (transitividade)
- Permitimos então substituição, em qualquer predicado ou função, de termos iguais:
 - $\forall x, y \ lgual(x, y) \Rightarrow (P_i(x) \Leftrightarrow P_i(y))$, para todo P_i

- Aproximamos a igualdade por equivalência, tomando por base suas propriedades
 - $\forall x \; Igual(x,x)$ (reflexividade)
 - $\forall x, y \ \textit{Igual}(x, y) \Rightarrow \textit{Igual}(y, x) \ (\text{simetria})$
 - $\forall x, y, z \ lgual(x, y) \land lgual(y, z) \Rightarrow lgual(x, z)$ (transitividade)
- Permitimos então substituição, em qualquer predicado ou função, de termos iguais:
 - $\forall x, y \ lgual(x, y) \Rightarrow (P_i(x) \Leftrightarrow P_i(y))$, para todo P_i
 - Para cada P_i (e função) precisamos incluir um axioma assim

Lógica de Primeira Ordem – Inferência

Forward Chaining

L.P.O. – Forward Chaining

Características

Como na lógica proposicional:

L.P.O. – Forward Chaining

Características

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas
 - ullet Antecedentes \Rightarrow Consequente

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas
 - Antecedentes ⇒ Consequente
 - A partir de sentenças atômicas, aplica Modus Ponens progressivamente, adicionando novas sentenças atômicas

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas
 - Antecedentes ⇒ Consequente
 - A partir de sentenças atômicas, aplica Modus Ponens progressivamente, adicionando novas sentenças atômicas
- Utilidade

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas
 - Antecedentes ⇒ Consequente
 - A partir de sentenças atômicas, aplica Modus Ponens progressivamente, adicionando novas sentenças atômicas
- Utilidade
 - Sistemas que fazem inferência em resposta a informações recém-chegadas

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas
 - Antecedentes ⇒ Consequente
 - A partir de sentenças atômicas, aplica Modus Ponens progressivamente, adicionando novas sentenças atômicas
- Utilidade
 - Sistemas que fazem inferência em resposta a informações recém-chegadas
 - Sistemas baseados em regras, do tipo Situação ⇒ Resposta

- Como na lógica proposicional:
 - Funciona apenas com cláusulas definidas
 - Antecedentes ⇒ Consequente
 - A partir de sentenças atômicas, aplica Modus Ponens progressivamente, adicionando novas sentenças atômicas
- Utilidade
 - Sistemas que fazem inferência em resposta a informações recém-chegadas
 - Sistemas baseados em regras, do tipo Situação ⇒ Resposta
 - Mais eficiente que resolução, nesses casos

Relembrando Cláusulas Definidas

 Disjunções de literais, dos quais exatamente um é positivo

- Disjunções de literais, dos quais exatamente um é positivo
 - $\neg P(x) \lor \neg Q(x) \lor \neg R(x) \lor K(x)$, ou

- Disjunções de literais, dos quais exatamente um é positivo
 - $\neg P(x) \lor \neg Q(x) \lor \neg R(x) \lor K(x)$, ou
 - $P(x) \land Q(x) \land R(x) \Rightarrow K(x)$ (Conjunção de literais positivos \Rightarrow único literal positivo)

- Disjunções de literais, dos quais exatamente um é positivo
 - $\neg P(x) \lor \neg Q(x) \lor \neg R(x) \lor K(x)$, ou
 - $P(x) \land Q(x) \land R(x) \Rightarrow K(x)$ (Conjunção de literais positivos \Rightarrow único literal positivo)
- Ou uma sentença atômica

- Disjunções de literais, dos quais exatamente um é positivo
 - $\neg P(x) \lor \neg Q(x) \lor \neg R(x) \lor K(x)$, ou
 - $P(x) \land Q(x) \land R(x) \Rightarrow K(x)$ (Conjunção de literais positivos \Rightarrow único literal positivo)
- Ou uma sentença atômica
 - \bullet P(x)

- Disjunções de literais, dos quais exatamente um é positivo
 - $\neg P(x) \lor \neg Q(x) \lor \neg R(x) \lor K(x)$, ou
 - $P(x) \land Q(x) \land R(x) \Rightarrow K(x)$ (Conjunção de literais positivos \Rightarrow único literal positivo)
- Ou uma sentença atômica
 - \bullet P(x)
 - Gato(Bolão)

Bases de Conhecimento com Cláusulas Definidas

• Cada entrada na base é uma cláusula definida

- Cada entrada na base é uma cláusula definida
 - \bullet P(x)

- Cada entrada na base é uma cláusula definida
 - \bullet P(x)
 - $P(x) \wedge Q(x) \wedge R(x) \Rightarrow K(x)$

- Cada entrada na base é uma cláusula definida
 - \bullet P(x)
 - $P(x) \wedge Q(x) \wedge R(x) \Rightarrow K(x)$
 - Traz implícita, em cada entrada, o quantificador universal

- Cada entrada na base é uma cláusula definida
 - $\bullet \ \forall x \ P(x)$
 - $\forall x \ P(x) \land Q(x) \land R(x) \Rightarrow K(x)$
 - Traz implícita, em cada entrada, o quantificador universal

- Cada entrada na base é uma cláusula definida
 - $\bullet \ \forall x \ P(x)$
 - $\forall x \ P(x) \land Q(x) \land R(x) \Rightarrow K(x)$
 - Traz implícita, em cada entrada, o quantificador universal
- Também aqui precisamos eliminar o quantificador existencial (skolemização)

- Cada entrada na base é uma cláusula definida
 - $\bullet \ \forall x \ P(x)$
 - $\forall x \ P(x) \land Q(x) \land R(x) \Rightarrow K(x)$
 - Traz implícita, em cada entrada, o quantificador universal
- Também aqui precisamos eliminar o quantificador existencial (skolemização)
- Além de padronizar as variáveis das entradas que serão unificadas (como na Resolução)

Funcionamento

 Começando com os fatos conhecidos, verifique todas as regras cujas premissas são satisfeitas

- Começando com os fatos conhecidos, verifique todas as regras cujas premissas são satisfeitas
 - Modus Ponens

$$\begin{array}{c} \alpha \Rightarrow \beta & \textit{UMG}(\alpha, \psi) = \theta \\ \hline (\beta) \theta & \end{array}$$

$$P(x) \Rightarrow Q(x)$$

$$P(A)$$

$$Q(A) \{x/A\}$$

Funcionamento

- Começando com os fatos conhecidos, verifique todas as regras cujas premissas são satisfeitas
 - Modus Ponens

$$\begin{array}{ccc} \alpha \Rightarrow \beta & \mathit{UMG}(\alpha, \psi) = \theta & & P(x) \Rightarrow Q(x) \\ \psi & & P(A) \\ \hline (\beta) \theta & & Q(A) \{x/A\} \end{array}$$

Adicione suas conclusões aos fatos conhecidos

- Começando com os fatos conhecidos, verifique todas as regras cujas premissas são satisfeitas
 - Modus Ponens

$$\alpha \Rightarrow \beta \quad UMG(\alpha, \psi) = \theta$$
 $\beta \quad P(x) \Rightarrow Q(x)$
 $\beta \quad P(A)$
 $\beta \quad Q(A) \{x/A\}$

- Adicione suas conclusões aos fatos conhecidos
- Repita o procedimento até que a query seja respondida (assumindo que uma resposta apenas baste), ou nenhum novo fato puder ser adicionado

Funcionamento

 Um fato não será novo se for apenas uma renomeação de um fato conhecido

- Um fato não será novo se for apenas uma renomeação de um fato conhecido
 - Ou seja, se ambos significados forem idênticos

- Um fato não será novo se for apenas uma renomeação de um fato conhecido
 - Ou seja, se ambos significados forem idênticos
- Uma sentença é uma renomeação de outra se forem idênticas, exceto pelos nomes de suas variáveis

- Um fato não será novo se for apenas uma renomeação de um fato conhecido
 - Ou seja, se ambos significados forem idênticos
- Uma sentença é uma renomeação de outra se forem idênticas, exceto pelos nomes de suas variáveis
 - Ex: Gosta(x, Sorvete) e Gosta(y, Sorvete)

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?
- 1. $\forall x, y, z \; Compatriota(x) \land Vender(x, y, z) \land Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$ $Compatriota(x) \land Vender(x, y, z) \land Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?
- 1. $\forall x, y, z \; Compatriota(x) \land Vender(x, y, z) \land Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$ $Compatriota(x) \land Vender(x, y, z) \land Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$
 - 2. Inimigo(Pit)

Exemplo

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?
- 1. $\forall x, y, z \; Compatriota(x) \land Vender(x, y, z) \land Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$ $Compatriota(x) \land Vender(x, y, z) \land Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$
 - 2. Inimigo(Pit)

3. $\exists x \; M(ssil(x) \land Ter(Pit, x) \\ M(ssil(M) \land Ter(Pit, M)$

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

```
4. \forall x \; \textit{Missil}(x) \land \textit{Ter}(\textit{Pit}, x) \Rightarrow \textit{Vender}(\textit{Os}, x, \textit{Pit})
\textit{Missil}(x) \land \textit{Ter}(\textit{Pit}, x) \Rightarrow \textit{Vender}(\textit{Os}, x, \textit{Pit})
```

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

4.
$$\forall x \; \textit{Missil}(x) \land \textit{Ter}(\textit{Pit}, x) \Rightarrow \textit{Vender}(\textit{Os}, x, \textit{Pit})$$

 $\textit{Missil}(x) \land \textit{Ter}(\textit{Pit}, x) \Rightarrow \textit{Vender}(\textit{Os}, x, \textit{Pit})$

```
5. Mísseis são armas \forall x \; Míssil(x) \Rightarrow Arma(x) Míssil(x) \Rightarrow Arma(x)
```

Exemplo

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

4.
$$\forall x \; \textit{Missil}(x) \land \textit{Ter}(\textit{Pit}, x) \Rightarrow \textit{Vender}(\textit{Os}, x, \textit{Pit})$$

 $\textit{Missil}(x) \land \textit{Ter}(\textit{Pit}, x) \Rightarrow \textit{Vender}(\textit{Os}, x, \textit{Pit})$

```
5. Mísseis são armas
\forall x \; \textit{Missil}(x) \Rightarrow \textit{Arma}(x) \mid \longleftarrow \text{ está no texto} \rightarrow \text{faz parte}
   Missil(x) \Rightarrow Arma(x)
```

Note que essa sentença não do conhecimento comum

Exemplo

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

```
6. Inimigos são hostis \forall x \; Inimigo(x) \Rightarrow Hostil(x) Inimigo(x) \Rightarrow Hostil(x)
```

Exemplo

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

```
6. Inimigos são hostis \forall x \; Inimigo(x) \Rightarrow Hostil(x) Inimigo(x) \Rightarrow Hostil(x) Inimigo(x) \Rightarrow Hostil(x)
```

Exemplo

- Base:
 - É um crime para um compatriota vender armas a nações hostis. Pitbulândia, um inimigo nosso, tem alguns mísseis, e todos seus mísseis foram vendidos a eles por um compatriota: Osmar
- Osmar é criminoso?

```
6. Inimigos são hostis \forall x \; Inimigo(x) \Rightarrow Hostil(x) Inimigo(x) \Rightarrow Hostil(x) Hostil(x)
```

7. Compatriota(Os)

Exemplo

	Sentença	Obs
1	$Compatriota(x) \land Vender(x, y, z) \land$	axioma
	$Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$	
2	Inimigo(Pit)	axioma
3	Míssil(M)	axioma
4	Ter(Pit, M)	axioma
5	M íssil $(x) \land Ter(Pit, x) \Rightarrow Vender(Os, x, Pit)$	axioma
6	M issil $(x) \Rightarrow A$ rma (x)	axioma
7	$Inimigo(x) \Rightarrow Hostil(x)$	axioma
8	Compatriota(Os)	axioma

Exemplo

	Sentença	Obs
1	Compatriota(x) \land Vender(x, y, z) \land	axioma
	$Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$	
2	Inimigo(Pit)	axioma
3	Míssil(M)	axioma
4	Ter(Pit, M)	axioma
5	M íssil $(x) \land Ter(Pit, x) \Rightarrow Vender(Os, x, Pit)$	axioma
6	M íssil $(x) \Rightarrow Arma(x)$	axioma
7	$Inimigo(x) \Rightarrow Hostil(x)$	axioma
8	Compatriota(Os)	axioma
9	Arma(M)	3,6 {x/M}

Exemplo

	Sentença	Obs
1	Compatriota(x) \land Vender(x, y, z) \land	axioma
	$Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$	
2	Inimigo(Pit)	axioma
3	Míssil(M)	axioma
4	Ter(Pit, M)	axioma
5	M issil $(x) \land Ter(Pit, x) \Rightarrow Vender(Os, x, Pit)$	axioma
6	M íssil $(x) \Rightarrow A$ rma (x)	axioma
7	$Inimigo(x) \Rightarrow Hostil(x)$	axioma
8	Compatriota(Os)	axioma
9	Arma(M)	3,6 {x/M}
10	Hostil(Pit)	2,7 {x/Pit}

Exemplo

	C ,	01
	Sentença	Obs
1	$Compatriota(x) \land Vender(x, y, z) \land$	axioma
	$Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$	
2	Inimigo(Pit)	axioma
3	Míssil(M)	axioma
4	Ter(Pit, M)	axioma
5	$Missil(x) \land Ter(Pit, x) \Rightarrow Vender(Os, x, Pit)$	axioma
6	M íssil $(x) \Rightarrow Arma(x)$	axioma
7	$Inimigo(x) \Rightarrow Hostil(x)$	axioma
8	Compatriota(Os)	axioma
9	Arma(M)	3,6 { <i>x</i> / <i>M</i> }
10	Hostil(Pit)	2,7 {x/Pit}
11	Vender(Os, M, Pit)	3,4,5 $\{x/M\}$

Exemplo

	Sentença	Obs
1	$Compatriota(x) \land Vender(x, y, z) \land$	axioma
	$Arma(y) \land Hostil(z) \Rightarrow Criminoso(x)$	
2	Inimigo(Pit)	axioma
3	Míssil(M)	axioma
4	Ter(Pit, M)	axioma
5	$Missil(x) \land Ter(Pit, x) \Rightarrow Vender(Os, x, Pit)$	axioma
6	M issil $(x) \Rightarrow A$ rma (x)	axioma
7	$Inimigo(x) \Rightarrow Hostil(x)$	axioma
8	Compatriota(Os)	axioma
9	Arma(M)	3,6 {x/M}
10	Hostil(Pit)	2,7 {x/Pit}
11	Vender(Os, M, Pit)	3,4,5 { <i>x</i> / <i>M</i> }
12	Criminoso(Os)	1,8,9,10,11
		$\{x/Os, y/M, z/Pit\}$

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
    repita
        novo \leftarrow \{\}
        para cada sentença s em BC faça
             (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
             para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
               algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                 se q' não se unificar a alguma sentença em BC ou novo então
                     Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                    se \phi não for falha então retorna \phi
        Adicione novo a BC
```

até que novo esteja vazio

retorna falso

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
    repita
                                                                  Base de Conhecimento
        novo \leftarrow \{\}
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                     Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                    se \phi não for falha então retorna \phi
        Adicione novo a BC
    até que novo esteja vazio
```

retorna falso

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
    repita
                                                                Query (sentença atômica)
        novo \leftarrow \{\}
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                     Adicione q' a novo
                   \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
    até que novo esteja vazio
    retorna falso
```

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
    repita
                                                              Conjunto de novas sentenças
        novo \leftarrow \{\}
                                                                 inferidas a cada iteração
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                     Adicione q' a novo
                     \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
    até que novo esteja vazio
```

retorna falso

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
                                                             PadronizaVar troca todas as
   repita
                                                            variáveis em seus argumentos
        novo \leftarrow \{\}
                                                            por variáveis ainda não usadas
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                    Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
   até que novo esteja vazio
```

retorna falso

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
                                                             Comecando dos fatos conhe-
   repita
                                                              cidos, ativa todas as regras
        novo \leftarrow \{\}
                                                            cujas premissas são satisfeitas
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                    Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
   até que novo esteja vazio
   retorna falso
```

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
    repita
                                                                   Adicionando sua con-
        novo \leftarrow \{\}
                                                               clusão aos fatos conhecidos
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                     Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
    até que novo esteja vazio
```

retorna falso

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
                                                          Mas somente se o fato for desco-
   repita
                                                           nhecido \rightarrow se não é apenas uma
        novo \leftarrow \{\}
                                                            renomeação de um conhecido
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                    Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
   até que novo esteja vazio
   retorna falso
```

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
                                                                Uma sentença é uma re-
   repita
                                                                 nomeação de outra se
        novo \leftarrow \{\}
                                                                 forem idênticas exceto
        para cada sentença s em BC faça
                                                                 pelo nome das variáveis
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                    Adicione q' a novo
                    \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
```

retorna falso

até que novo esteja vazio

Algoritmo

```
Função Forward-Chaining(BC,\alpha): substituição
                                                             O processo repete até que a
   repita
                                                         query seja respondida ou nenhum
        novo \leftarrow \{\}
                                                           fato extra possa ser adicionado
        para cada sentença s em BC faça
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow PadronizaVar(s)
            para cada \theta tal que (p_1 \wedge \ldots \wedge p_n) \theta = (p'_1 \wedge \ldots \wedge p'_n) \theta para
              algum p'_1, \ldots, p'_n em BC faça
                q' \leftarrow (q) \theta
                se q' não se unificar a alguma sentença em BC ou novo então
                    Adicione q' a novo
                   \phi \leftarrow Unifica(q', \alpha)
                   se \phi não for falha então retorna \phi
        Adicione novo a BC
   até que novo esteja vazio
   retorna falso
```

Algoritmo: Problemas

ullet Busca todos os unificadores possíveis heta

- Busca todos os unificadores possíveis θ
 - É problema se para cada variável houver várias constantes que possam ser substituídas

- ullet Busca todos os unificadores possíveis heta
 - É problema se para cada variável houver várias constantes que possam ser substituídas
 - Solução: Olhe primeiro a variável que tem menos substituições possíveis (variável com mais restrições – PSR)

- ullet Busca todos os unificadores possíveis heta
 - É problema se para cada variável houver várias constantes que possam ser substituídas
 - Solução: Olhe primeiro a variável que tem menos substituições possíveis (variável com mais restrições – PSR)
- A cada iteração, verifica cada regra novamente

- ullet Busca todos os unificadores possíveis heta
 - É problema se para cada variável houver várias constantes que possam ser substituídas
 - Solução: Olhe primeiro a variável que tem menos substituições possíveis (variável com mais restrições – PSR)
- A cada iteração, verifica cada regra novamente
 - Mesmo que poucas adições tenham sido feitas à base em cada iteração

- ullet Busca todos os unificadores possíveis heta
 - É problema se para cada variável houver várias constantes que possam ser substituídas
 - Solução: Olhe primeiro a variável que tem menos substituições possíveis (variável com mais restrições – PSR)
- A cada iteração, verifica cada regra novamente
 - Mesmo que poucas adições tenham sido feitas à base em cada iteração
 - Todo fato novo inferido na iteração t deveria ser derivado de pelo menos um fato novo inferido na t-1

Algoritmo: Problemas

• Isso porque toda inferência que não necessita de um fato novo da iteração t-1 poderia ter sido feita em iterações anteriores

- Isso porque toda inferência que não necessita de um fato novo da iteração t-1 poderia ter sido feita em iterações anteriores
- Solução: forward chaining incremental

- Isso porque toda inferência que não necessita de um fato novo da iteração t-1 poderia ter sido feita em iterações anteriores
- Solução: forward chaining incremental
 - Na iteração t, verificamos uma regra somente se sua premissa incluir um p_i que se unifica com um fato p_i' recém inferido na iteração t-1

- Isso porque toda inferência que não necessita de um fato novo da iteração t-1 poderia ter sido feita em iterações anteriores
- Solução: forward chaining incremental
 - Na iteração t, verificamos uma regra somente se sua premissa incluir um p_i que se unifica com um fato p_i' recém inferido na iteração t-1
 - Ou seja, case toda regra cuja premissa contiver um literal recém adicionado, permitindo, no entanto, que os demais componentes casem com fatos de iterações anteriores

- Isso porque toda inferência que não necessita de um fato novo da iteração t-1 poderia ter sido feita em iterações anteriores
- Solução: forward chaining incremental
 - Na iteração t, verificamos uma regra somente se sua premissa incluir um p_i que se unifica com um fato p_i' recém inferido na iteração t-1
 - Ou seja, case toda regra cuja premissa contiver um literal recém adicionado, permitindo, no entanto, que os demais componentes casem com fatos de iterações anteriores
- Pode gerar muitos fatos irrelevantes ao objetivo

- Isso porque toda inferência que não necessita de um fato novo da iteração t-1 poderia ter sido feita em iterações anteriores
- Solução: forward chaining incremental
 - Na iteração t, verificamos uma regra somente se sua premissa incluir um p_i que se unifica com um fato p_i' recém inferido na iteração t-1
 - Ou seja, case toda regra cuja premissa contiver um literal recém adicionado, permitindo, no entanto, que os demais componentes casem com fatos de iterações anteriores
- Pode gerar muitos fatos irrelevantes ao objetivo
 - Solução: Use backward chaining

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach. Prentice
 Hall. 3a ed.
 - Slides do livro: http://aima.eecs.berkeley.edu/slides-pdf/
- Hiż, A. (1957): Inferential Equivalence and Natural Deduction. The Journal of Symbolic Logic, 22(3). pp. 237-240.
- http://ocw.mit.edu/OcwWeb/Electrical-Engineeringand-Computer-Science/6-034Spring-2005/LectureNotes/index.htm
- http://jmvidal.cse.sc.edu/talks/learningrules/first-orderlogicsdefs.xml
- https: //www.sciencedirect.com/topics/computer-science/unification-algorithm
- http://logic.stanford.edu/intrologic/secondary/notes/chapter_12.html