|                 | ECE 4620/5620 [Qz; 5P2013], NO: []                                                                                                                                                                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prob 1          | Consider the Power system shown below.                                                                                                                                                                                                                               |
| $\frac{10}{20}$ | transmission  line  Xe  Sync. Generator  Sync. Motor                                                                                                                                                                                                                 |
|                 | The ratings of the components are:  Generator 100 MVA, 20 KV 20 KV X=0.25  Xd=0.25                                                                                                                                                                                   |
|                 | Where the line impedance in P.u. is  given assuming S=100 MVA, V=20 KV.  The motor is taking 100 MVA at 20 KV with power factor 1.  Assume a 3-phase short circuit  fault at the motor terminal.  Find the transient currents for both  the generator and the motor. |
| P10b? (10) 20)  | 2: In Plats 1, assume the motor is fault not receiving any power for the same find both subtranient and transient currents of the motor and the generals assuming $\chi'_{1} = 0.1^{p.u.}$ for both machines.                                                        |





$$I' = \frac{E'_{G}}{J(X'_{G} + X_{Q})} = \frac{1}{J(0.25 + 0.2)}$$

$$= \frac{1}{J(0.25 + 0.2)}$$

$$= \frac{1}{J(0.45)} = -J(0.25 + 0.2)$$

$$= \frac{E'_{G}}{J(X''_{G} + X_{Q})} = \frac{X''_{G} = X''_{G} = 0.1 \text{ was given}}{J(X''_{G} + X_{Q})}$$

$$= \frac{1}{J(0.1 + 0.2)}$$

$$= \frac{1}{J(0.25 + 0.2)} = \frac$$