DEVOIR SURVEILLÉ 14/06/2018

Second session

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 3 exercices qu'il comporte sont indépendants.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.

Exercice 1. (8 points)

Soit $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 . Soit $f_1 = [1, 1, 2]$, $f_2 = [0, 2, 1]$ et $f_3 = [1, -2, 1]$ trois vecteurs de \mathbb{R}^3 .

1. (a) Soit $(c_1, c_2, c_3) \in \mathbb{R}^3$ et soit (s) le système suivant :

$$\begin{cases} x_1 + x_3 = c_1 \\ x_1 + 2x_2 - 2x_3 = c_2 \\ 2x_1 + x_2 + x_3 = c_3 \end{cases}$$

Écrire (s) sous forme matricielle.

- (b) Déterminer le <u>nombre</u> de solutions (x_1, x_2, x_3) du système (s). (Suggestion : il n'est pas nécessaire de calculer la ou les solutions).
- (c) En déduire que la famille $\mathcal{B}' = \{f_1, f_2, f_3\}$ est une base de \mathbb{R}^3 .
- (d) Écrire la matrice de passage de \mathcal{B} à \mathcal{B}' et calculer son déterminant.
- (e) Calculer l'inverse de la matrice de passage.

Soit u l'endomorphisme de \mathbb{R}^3 tel que :

$$u(f_1) = f_1,$$
 $u(f_2) = -f_2,$ $u(f_3) = -f_3$

- 2. (a) Écrire la matrice D de u dans la base \mathcal{B}' .
 - (b) Calculer la matrice A de u dans la base \mathcal{B} .
 - (c) Calculer D^{-1} et en déduire A^{-1} .

Exercice 2. (6 points)

Soit

$$h(x,y) = \begin{cases} \frac{x^4 - 3y^4}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- 1. Calculer le gradient de h en $(x,y) \neq (0,0)$ et en (x,y) = (0,0)
- 2. La fonction h est-elle de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$? Sur \mathbb{R}^2 tout entier? Justifiez.
- 3. Calculer les dérivées partielles mixtes d'ordre 2 de h.
- 4. La fonction h est-elle de classe C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$? Sur \mathbb{R}^2 tout entier? Justifiez.

Exercice 3. (6 points)

On considère la courbe paramétrée γ de composantes : $\begin{cases} x(t) = \frac{1}{1-t^2} \\ y(t) = \frac{t^3}{1-t^2} \end{cases}$

- 1. Donner le domaine de définition de la courbe γ .
- 2. La courbe γ possède-t-elle des symétries ? Si oui, les déterminer.
- 3. La courbe γ possède-t-elle des points singuliers ? Si oui, les déterminer.
- 4. La courbe γ possède-t-elle des tangentes ? Si oui, les déterminer.
- 5. Donner une représentation approximative de la courbe γ .