MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2013 SOLUTION KEY

Round 1

- A) Since 7 must be the length of the hypotenuse, $x = 4\sqrt{3}$. Since A is the larger acute angle, it must be opposite the longer side. SOHCAHTOA $\Rightarrow \tan(\angle A) = 4\sqrt{3}$.
- B) BP : PC = 16 : 5 and $BC = 42 \Rightarrow BC = 32$, CP = 10. Using special Pythagorean triples of 3-4-5 and 5-12-13, we have in $\triangle PCD$, $(10, 24, ?) = 2(5, 12, ?) \Rightarrow PD = 26$ in $\triangle ABP$, $(24, 32, ?) = 8(3, 4, ?) \Rightarrow AP = 40$ In $\triangle PCD$, $\cos(\angle 1) = \frac{24}{26} = \frac{12}{13}$

Angles 1 and 2 are complementary, so $\sin(\angle 2) = \cos(\angle 1) = \frac{12}{13}$.

Using the Law of Sines in $\triangle APD$,

$$\frac{\sin \theta}{42} = \frac{\sin \angle 2}{40} \Rightarrow \sin \theta = \frac{42}{40} \cdot \frac{12}{13} = \frac{63}{65}.$$

C) Let the three sides have lengths 4k, 5k and 6k. The smallest angle θ will be opposite the side of length 4k. Using the law of Cosines, $16k^2 = 25k^2 + 36k^2 - 60k^2 \cos \theta^{\circ}$.

$$k \neq 0 \implies 60\cos\theta = (25 + 36 - 16) = 45 \implies \cos\theta = \frac{3}{4} \implies \sin\theta = +\frac{\sqrt{7}}{4}$$
 (since θ must be acute)

The area of any triangle can be computed as $\frac{1}{2}ab\sin C$, where C is the included angle.

Thus, the area of
$$\triangle ABC$$
 is $\frac{1}{2}(5k)(6k)\left(\frac{\sqrt{7}}{4}\right) = 375\sqrt{7} \implies 15k^2 = 4(375)$.

 $\Rightarrow k = 10$ and the perimeter is **150**.