

Analog IC Design

Lecture 08 Frequency Response (1)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

Outline

- Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- \square Always in saturation ($V_{DS} = V_{GS} > V_{ov}$)
- \square Body effect: $g_m \rightarrow g_m + g_{mb}$ (if G is ac gnd)

Why GmRout?

$$R_{in} = v_{in}/i_{in}$$

$$R_{out} = v_x/i_x @ v_{in} = 0$$

$$G_m = i_{out,sc}/v_{in}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out and Gm
 - We can quickly and easily get Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D v_{in} R_S	R_D v_{out} R_S	R_D $v_{in} \circ v_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Outline

- ☐ Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

Frequency Response

Y-axis: magnitude of frequency response, x-axis: frequency

Poles and Zeros

☐ Transfer function

$$H(s) = \frac{N(s)}{D(s)}$$

- \square Zeros: roots of numerator => N(s)
- \square Poles: roots of denominator => D(s)
- \square Frequency response: $s \Rightarrow j\omega$

$$H(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)} = |H(j\omega)|e^{j\phi}$$

$$Im \, \uparrow$$

- $\Box \quad \mathsf{Phase}(a+jb) = \theta = \tan^{-1}\frac{b}{a}$

1st Order LPF

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC} = \frac{1}{1 + s\tau}$$

$$H(j\omega) = \frac{v_{out}}{v_{in}} = \frac{1/j\omega C}{R + 1/j\omega C} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + \frac{j\omega}{\omega_C}}$$

- \Box $\tau = RC$: time constant
- \square $\omega_c = \frac{1}{\tau} = \frac{1}{RC}$: cutoff/corner frequency
- \square Poles: $s_p = -\frac{1}{\tau} = -\omega_c$, Zeros: ?
- $|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_C}\right)^2}}$
- $\Box P(H(j\omega)) = -\tan^{-1}\frac{\omega}{\omega_c}$

Bode Plot Rules

	Pole	Zero
Magnitude	-20 dB/decade Actual Mag @ pole: -3 dB	+20 dB/decade Actual Mag @ zero: +3 dB
Phase	-90° Actual Phase @ pole: -45°	LHP zero: +90° Actual Phase @ zero: +45°
		RHP zero: -90° Actual Phase @ zero: -45°

 \rightarrow RHP: Right-half plane ($Re\{s\} > 0$)

 \rightarrow LPH: Left-half plane ($Re\{s\} < 0$)

1st Order LPF Bode Plot

1st Order HPF

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{R}{R + 1/sC} = \frac{sRC}{1 + sRC} = \frac{s\tau}{1 + s\tau}$$

$$H(j\omega) = \frac{v_{out}}{v_{in}} = \frac{R}{R + 1/j\omega C} = \frac{j\omega RC}{1 + j\omega RC} = \frac{\frac{j\omega}{\omega_c}}{1 + \frac{j\omega}{\omega_c}}$$

- \Box Poles: $s_p = -\frac{1}{\tau} = -\omega_c$
- \Box Zeros: $s_z = 0$

$$|H(j\omega)| = \frac{\frac{\omega}{\omega_c}}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}}$$

Bode Plot Rules

	Pole	Zero
Magnitude	-20 dB/decade Actual Mag @ pole: -3 dB	+20 dB/decade Actual Mag @ zero: +3 dB
Phase	-90° Actual Phase @ pole: -45°	LHP zero: +90° Actual Phase @ zero: +45°
		RHP zero: -90° Actual Phase @ zero: -45°

 \rightarrow RHP: Right-half plane ($Re\{s\} > 0$)

 \rightarrow LPH: Left-half plane ($Re\{s\} < 0$)

1st Order HPF Bode Plot

Outline

- ☐ Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

Where are the Capacitors?

- \square Coupling capacitors: C_{C1} and $C_{C2} \rightarrow$ act as HPF (affect LFR)
- lacksquare Bypass capacitor: $\mathcal{C}_{\mathcal{S}}$
- \Box Usually quite large $\sim \mu F$

Effect of Bypass Capacitor

- \square Does C_S act as a LPF or a HPF?
 - By intuition, at high frequency C_S will increase the gain \rightarrow HPF

$$G_{m}(s) = \frac{g_{m}}{1 + g_{m}Z_{S}} \qquad Z_{S} = \frac{1}{1/R_{S} + sC_{S}} = \frac{R_{S}}{1 + sR_{S}C_{S}}$$

$$G_{m}(s) = \frac{g_{m}(1 + sR_{S}C_{S})}{(1 + g_{m}R_{S})\left(1 + \frac{sR_{S}C_{S}}{1 + g_{m}R_{S}}\right)}$$

$$s_z = -\frac{1}{R_S C_S}$$
 and $s_p = -\frac{1 + g_m R_S}{R_S C_S} \Rightarrow \omega_p > \omega_z \Rightarrow HPF$

Where are the Capacitors?

- \Box Gate capacitance ($C_{gg} = C_{gb} + C_{gs} + C_{gd}$)
 - Intrinsic part fundamental to MOSFET operation
 - Parasitic part due to the overlap between gate and S/D (C_{ov})
- \square S/D capacitance (C_{sb} and C_{db})
 - Parasitic capacitances due to reverse biased pn-junctions
 - Bottom-plate (C_i) and side-wall components (C_{isw})
- lacksquare Usually quite small $\sim fF$

MOSFET Capacitance

 \square C_{ov} per unit width, C_j per unit area, and C_{jsw} per unit perimeter

	Cutoff	Triode	Saturation
C_{gb}	$< WLC_{ox}$	0	0
C_{gs}	WC_{ov}	$\frac{1}{2}WLC_{ox} + WC_{ov}$	$\frac{2}{3}WLC_{ox}+WC_{ov}$
C_{gd}	WC_{ov}	$\frac{1}{2}WLC_{ox} + WC_{ov}$	WC_{ov}
C_{sb}	$A_S C_j + P_S C_{jsw}$	$\left(A_S + \frac{WL}{2}\right)C_j + P_SC_{jsw}$	$(A_S + WL)C_j + P_SC_{jsw}$
C_{db}	$A_D C_j + P_D C_{jsw}$	$\left(A_D + \frac{WL}{2}\right)C_j + P_DC_{jsw}$	$A_DC_j + P_DC_{jsw}$

High Frequency Small Signal Model

- MOSFET capacitances act as LPF (affect HFR)
- In pinch-off saturation
 - $C_{qb} \approx 0$ (for SI only)
 - $C_{gs} \gg C_{gd}$ (not valid for $L \downarrow \downarrow$, why?)
 - $C_{sb} > C_{db}$

N-Well Capacitance

- ☐ There is an additional junction cap between n-well and p-sub
- If the n-well is tied to VDD this cap is ac shorted (why?)
- ☐ But if n-well is floating (e.g., PMOS S and B connected) this cap is not ac shorted
 - Usually not modeled in SPICE
 - Must be added manually $\sim 0.05 fF/\mu m^2$

Outline

- Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

Frequency Response

08: Frequency Response (1) [Sedra/Smith, 2015]

29

SCTC and OCTC Techniques

- ☐ Low-frequency range (LFR) => Not common in Analog IC design
 - Only consider one cap at a time \rightarrow Assume other caps are s.c. \rightarrow s.c. time constant (SCTC) technique
 - $\omega_{L,3dB} \approx \omega_{L1} + \omega_{L2} + \cdots$
 - Highest pole dominates (L.I.N. dominates)
- ☐ High-frequency range (HFR) => More important in Analog ICs
 - Only consider one cap at a time \rightarrow Assume other caps are o.c. \rightarrow o.c. time constant (OCTC) technique
 - $\omega_{H,3dB} \approx \omega_{H1}//\omega_{H2}//\cdots$
 - Lowest pole dominates (H.I.N. dominates)
- ☐ Both SCTC and OCTC provide good approx if one pole is dominant and poles are real

Dominant Pole Approximation

 \square Assume the poles are real and widely separated: $\omega_{p1} \ll \omega_{p2}$

$$A_{v}(s) \approx \frac{A_{o}}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)} = \frac{A_{o}}{1 + \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right)s + \frac{1}{\omega_{p1}\omega_{p2}}s^{2}}$$

$$\approx \frac{A_{o}}{1 + \left(\frac{1}{\omega_{p1}}\right)s + \frac{1}{\omega_{p1}\omega_{p2}}s^{2}} = \frac{A_{o}}{1 + b_{1}s + b_{2}s^{2}}$$

$$\omega_{p1} \approx \frac{1}{b_{1}} \quad \text{and} \quad \omega_{p2} \approx \frac{1}{b_{2}\omega_{p1}} = \frac{b_{1}}{b_{2}}$$

- ☐ OCTC provides an approx value for dominant pole only
- Dominant pole approx provides an approx value for both dominant and non-dominant poles

08: Frequency Response (1)

31

Outline

- ☐ Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

IC Amplifier Frequency Response

- \square A_o is the low-frequency gain (or DC gain) of the amplifier
- $oldsymbol{\Box}$ ω_{p1} is the dominant pole $(\omega_{pd}) \approx 3$ dB bandwidth $= BW = \omega_{3dB}$
- $oxedsymbol{\square}$ $oldsymbol{\omega_{p2}}$ is the non-dominant pole (ω_{pnd})
- \Box Unity gain frequency (UGF, ω_u) is the frequency at which gain is unity (1 = 0dB)
- \Box Gain-Bandwidth Product (GBW) = $Gain \times BW \approx A_o \omega_{p1}$
- lacksquare Usually, we design the amplifier such that ω_{p2} and $\omega_z>\omega_u$

$$A_{v}(s) = \frac{A_{o}\left(1 + \frac{s}{\omega_{z}}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)} \qquad A_{o}$$

$$OdB$$

UGF and GBW

 \square At UGF $\omega = \omega_u$: $\omega \gg \omega_{p1}$ and $\omega \ll \omega_{p2}$, ω_z

$$|A_{v}(\omega_{u})| = \left| \frac{A_{o} \left(1 + \frac{j\omega_{u}}{\omega_{z}} \right)}{\left(1 + \frac{j\omega_{u}}{\omega_{p1}} \right) \left(1 + \frac{j\omega_{u}}{\omega_{p2}} \right)} \right| \approx \left| \frac{A_{o}}{j\omega_{u}/\omega_{p1}} \right| = 1 = 0 dB$$

$$UGF = \omega_u \approx A_o \omega_{p1} \approx Gain \times BW = GBW$$

$$A_{v}(s) = \frac{A_{o}\left(1 + \frac{s}{\omega_{z}}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)} \qquad A_{o}$$

Outline

- ☐ Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

Calculating Zeros by Inspection

- 1. Find the value $s = s_z$ that makes $H(s) = 0 \Rightarrow v_{out} = 0$
- \Box Ex1: C: $v_o = 0$ if $Z_C = \infty$
 - $Z_C = \frac{1}{sC}$
 - $\blacksquare \Rightarrow s_z = 0$
- \Box Ex2: C_{c1} : $v_o = 0$ if $Z_{C_1} = \infty$
 - $Z_{C_1} = \frac{1}{sC_1}$
 - $\blacksquare \Rightarrow s_{z1} = 0$
- \square Ex3: C_S : $v_o = 0$ if $Z_S = \infty$
 - $Z_S = \frac{R_S}{1 + sR_SC_S}$
 - $\bullet \Rightarrow S_{Z2} = -\frac{1}{R_S C_S}$

Calculating Poles by Inspection

- 1. Set $v_{sig} = 0$ (deactivate independent sources)
- 2. Calculate Thevenin resistance $(R_{th,i})$ seen by each cap (C_i)

$$3. \quad s_{p,i} = -\frac{1}{R_{th,i}C_i}$$

- \square Ex1: $C: R_{th} = R$
 - $\bullet \Rightarrow s_p = -\frac{1}{RC}$
- $\square \quad \text{Ex2: } C_{c1} : R_{th} = R_{sig} + R_G$

$$\bullet \Rightarrow s_{p1} = -\frac{1}{(R_{sig} + R_G)C_{c1}}$$

- \square Ex3: C_S : $R_{th} \approx R_S / / \frac{1}{g_m}$
 - $\bullet \Rightarrow s_{p2} = -\frac{1}{\left(\frac{R_S}{\frac{1}{a_m}\right)C_S}}$

Associating Poles with Nodes

- 1. Set $v_{sig} = 0$ (deactivate independent sources)
- 2. Calculate Thevenin resistance $(R_{th,i})$ seen by each cap (C_i)
- $3. \quad s_{p,i} = -\frac{1}{R_{th,i}C_i}$
- \square Example: Ignore MOSFET r_o and capacitance
 - Each node is associated with a pole
 - H.I.N. dominates

$$H(s) = \frac{(g_{m1}R_{D1})(g_{m2}R_{D2})}{(1 + sR_{sig}C_{in})(1 + sR_{D1}C_{L1})(1 + sR_{D2}C_{L2})}$$

Outline

- ☐ Recapping previous key results
- Bode plot review
- Where are the capacitors?
- Approximate analysis techniques
 - Short-circuit time constant (SCTC) and open-circuit time constant (OCTC) techniques
 - Dominant pole approximation
- ☐ IC amplifier frequency response
 - Unity gain frequency (UGF) and gain-bandwidth product (GBW)
- Calculating zeros and poles by inspection
 - Associating poles with nodes
- Miller's theorem

Miller's Theorem

$$A_{v} = \frac{V_{Y}}{V_{X}}$$

$$\frac{V_{X} - V_{Y}}{Z_{F}} = \frac{V_{X}}{Z_{1}}$$

$$Z_{1} = \frac{Z_{F}}{1 - \frac{V_{Y}}{V_{X}}} = \frac{Z_{F}}{1 - A_{v}}$$

$$\frac{V_{Y} - V_{X}}{Z_{F}} = \frac{V_{Y}}{Z_{2}}$$

$$Z_{2} = \frac{Z_{F}}{1 - \frac{V_{X}}{V_{Y}}} = \frac{Z_{F}}{1 - \frac{1}{A_{v}}}$$

 \square Note: Miller's Theorem cannot be used for Z_{out} calculation (why?)

Miller Effect

 \square Miller Effect: Capacitance multiplication if $Z_F = 1/sC_F$

$$Z_1 = \frac{Z_F}{1 + A_v} \approx \frac{Z_F}{A_v} = \frac{1}{sA_vC_F} \Rightarrow C_{in} = A_vC_F$$

$$Z_2 = \frac{Z_F}{1 + \frac{1}{A_D}} \approx Z_F = \frac{1}{sC_F} \Rightarrow C_{out} \approx C_F$$

Miller's Approximation

$$Z_1 = \frac{Z_F}{1 - A_v} \& Z_2 = \frac{Z_F}{1 - \frac{1}{A_v}}$$

- \square But A_v is a function of frequency!
- ☐ Miller's Approximation: Substitute with the low frequency gain
 - $A_v(s) \approx A_o$
 - Gives good approx for the dominant pole ONLY (why?)
 - It does not tell about the feedforward zero (next slide)

The Feedforward Zero

$$s_z = -\frac{G_m}{C_F}$$

- \square LHP zero if G_m is +ve (e.g. CD)
- \square RHP zero if G_m is –ve (e.g. CS)
 - Mag inc and phase drops
 - Very bad for FB loop stability
 - More on this when we study op-amp design

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," 7th ed., Oxford University Press, 2015
- ☐ B. Razavi, "Fundamentals of Microelectronics," 2nd ed., Wiley, 2014
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017
- N. Weste and D. Harris, "CMOS VLSI Design," 4th ed., Pearson, 2010
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012
- R. J. Baker, "CMOS circuit design," 3rd ed., Wiley, 2010
- ☐ B. Murmann, EE214 Course Reader, Stanford University