임베디드 시스템 실험 5

목표

- ◆ Joystick을 이용하여 CAN통신을 통해 DC, Servo Motor 제어
 - CAN통신
 - ✓ CAN통신 이론 및 내용 이해
 - ✓ CAN통신 코드구현
 - Joystick값을 받아, PWM을 이용하여 Motor제어
 - ✓ Joystick의 원리 파악
 - ✓ 하나의 Node에서 다른 Node로 Data 전송 CAN통신 구현

◆ CAN통신 이란?

- 1986년 자동차 내부의 서로 다른 3개의 ECU(electronic control unit) 간의 통신을 벤츠(Benz)의 요구로 독일 보쉬(Bosch)가 최초 개발
- UART는 일대일(point-to-point) 통신이므로 서로 다른 3개의 ECU 간의 통신방식으로 적합하지 않아 다중통신(multi-master communication) 방식이 요구되어 CAN 프로토콜 개발
- 최초의 집적화된 CAN 부품은 1987년 인텔(Intel) 생산
- 최근 반도체 및 마이크로프로세서 제조사에서 CAN 프로토콜을 채용한 프로세서를 출시 및 활용

◆ CAN통신 역사

- 1986 : 독일 BOSCH사 CAN 발표
- 1987 : CAN Chip 상용화(Intel 82526/Philips 82C200)
- 1989 : SAAB Training Target Control에 적용
- 1991 : Extended CAN 발표 / Mercedes S model에 적용
- 1992 : CiA (CAN in Automation) 결성 / CAN Kingdom 발표
- 1993 : ISO 11898 제정
- 1994 : DeviceNet (FA용) 발표
- 1995 : CANOpen (embedded network용) 발표
- 2000 : CAN device 판매량 1억개 돌파
- CAN 적용 차량 : Mercedes-Benz, Volvo, Volkswagen, BMW, Renault, Fiat 등

◆ CAN통신의 특징

- 경제적 솔루션
 - ✓ 우수한 가격 대비 성능
 - ✓ 자동차와 같은 대량 생산에 사용될 수 있는 저가 디바이스 풍부
- 우수한 신뢰성
 - ✓ 정교한 오류 검출과 오류 처리 구조 ⇒ 높은 전송 신뢰성
 - ✓ 오류 메시지는 반복 재전송
 - ✓ 심각한 오류 발생 노드는 버스 상에서 자동 방출
 - ✓ 모든 노드에 오류가 알려지므로 시스템의 전체 데이터 일관성 유지
 - ✓ differential line ⇒ 전자파 간섭에 대한 강한 내성
- 표준화
 - ✓ ISO 11898(고속 애플리케이션)
 - ✓ ISO 11519-2(저속 애플리케이션 : < 125Kbps)</p>

- 실시간성
 - ✓ 최대 데이터 전송률 1M[bps] @ 25[m] bus length
 - ✓ 전송 요청과 실제 전송 시작 사이의 짧은 지연 시간
 - ✓ CSMA/CD 방식 버스 액세스 ⇒ 시간 손실 없이 우선 순위 순서로 메시지 전송
- 유연성
 - ✓ Multi-Master 구조 가능 : 모든 노드들이 독립적으로 bus access
 - ✓ 노드 연결/분리 용이(Plug & Play)
- 다중 전송/방송 성능
 - ✓ 노드 지향형이 아닌 메시지 지향형
 - ✓ 메시지 식별자가 메시지 내용과 우선순위 지정
 - ✓ 메시지는 동시에 모든 노드들로 보내지고, 모든 노드들은 공통 데이터를 동시에 수신하고 작업 가능

◆ CAN프로토콜

- CAN 메시지에 있는 식별자(ID, identifier)의 길이에 따라 2가지 모드로 구분된다
 - ✓ 표준 CAN 2.0A 버전 : 11 비트 식별자
 - ✓ 표준 CAN 2.0B 버전 : 29 비트 식별자
- ISO 규격에 따라 두 종류의 통신 속도로 구분되며 물리계층에서 차이가 있다.
 - ✓ ISO11898 : 1Mbps 이상의 고속 통신
 - ✓ ISO11519 : 125kbps 까지의 저속 통신

◆ CAN 계층구조

ISO 11898 Specification

Implementation

ISO/OSI Reference Model

◆ CAN 계층별 상호 작용

- Bus Length
 - Maximum 1M[bps] @ 25[m] bus length
 - Maximum 650[m] bus length @ 100K[bps]

Bus Length [m]	MAX. Rate [Kbps]	Bit Time [usec.]	
25	1,000	1	
50	800	1.25	ュ
100	500	2	
250	250	4	속
500	125	8	
650	100	10	
1k	50	20	저
2.5k	20	50	
5k	10	100	속

◆ Data Frame 구조

CAN Standard Data Frame(CAN 2.0 A)

CAN Extended Data Frame(CAN 2.0 B)

- ◆ Data Frame 구조
 - Start of Frame
 - ✓ 우성 Bit로 Frame 시작을 알림
 - IDentifier Field
 - √ 11 Bit(CAN 2.0A) / 29 Bit(CAN 2.0B)
 - ✓ 메시지의 우선순위와 내용을 반영
 - ✓ Arbitration 수행
 - RTR(Remote Transmit Request) Bit
 - ✓ 원격전송요청 Bit
 - ✓ Data Frame(RTR = 0)과 Remote Frame(RTR = 1)을 구분
 - IDE(IDentifier Extension) Bit
 - ✓ 우성 Bit ⇒ Standard Frame
 - ✓ 열성 Bit ⇒ Extended Frame

- ◆ Data Frame 구조
 - DLC(Data Length Code)
 - ✓ 데이터 사이즈: 0~8 Byte
 - CRC(Cyclic Redundancy Code)
 - ✓ 전송오류 탐색을 위한 Checksum
 - CRC Delimiter : 열성 Bit로써 CRC Field를 구분
 - ACK. Slot
 - ✓ 전송 노드는 열성 Bit 송신
 - ✓ 수신 노드에서 오류 없으면 우성 Bit 송신
 - ACK. Delimiter: 열성 Bit로써 ACK. Slot을 구분
 - End of Frame: 7개의 열성 Bit로 구성

◆ CAN 통신 방식

◆ 5-pin Mini-C: DeviceNet 규격 (No Standard)

Pin	Function	DeviceNet Color
1	Drain	Bare
2	V+	Red
3	V-	Black
4	CAN_H	White
5	CAN_L	Blue

Male (pins)

◆ 9-pin D-sub (CiA 추천)

Pin	Function	Description
1	-	Reserved
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	CAN Ground
4	-	Reserved
5	(CAN_SHLD)	Optional CAN shield
6	(GND)	Optional CAN ground
7	CAN_H	CAN_H bus line (dominant high)
8	-	Reserved (error line)
9	CAN_V+	Optional power

The identifier with the lowest binary number has the highest priority.

Message Objects(MObs)

- CAN 프레임 서술자(descriptor)이다.
- CAN 프레임을 처리할 모든 정보를 포함한다.
- 객체(object)처럼 CAN Message를 서술할 수 있다.
- MOb 세트는 MailBox 에서 전단에 있다.
- Mob는 독립적이며 우선순위가 잇다.
- Mob 개수는 15개이다.

◆ MOb 동작 모드

- 불가 모드(Disable mode)
- 전송 모드(Transmit mode)
- 수신 모드(Receive mode)
- 자동응답 모드(Automatic reply)
- 프레임 버퍼 수신 모드(Frame buffer receive mode)

Operating Modes

Mob conf	Mob configuration		RTR Tag	Operation Mode
0	0	Х	Х	Disable
	1	X	0	Tx Data Frame
	l	X	1	Tx Remote Frame
		X	0	Rx Data Frame
1	0	0		Rx Remote Frame
	-	1	1	Rx Remote Frame Tx Data Frame(reply)
1	1	x	X	Frame Buffer Receive Mode

 There is no default mode after RESET. Before enabling the CAN peripheral, each MOb must be configured (ex: disabled mode- CONMOB=00).

♦ General Registers

- CANGCON- CAN General Control Register
- CANGSTA- CAN General Status Register
- CANGIT- CAN General Interrupt Register
- CANGIE- CAN General Interrupt Enable Register
- CANEN2, CANEN1- CAN Enable MOb Register
- CANIE2, CANIE1- CAN Enable Interrupt MOb Register
- CANSIT2, CANSIT1- CAN Status Interrupt MOb Register
- CANBT1- CAN Bit Timing Register 1
- CANBT2- CAN Bit Timing Register 2
- CANBT3- CAN Bit Timing Register 3
- CANTCON- CAN Timer Control Register
- CANTIML, CANTIMH- CAN Timer Register
- CANTTCL, CANTTCH- CAN TTC Timer Register
- CANTEC- CAN Transit Error Counter Register
- CANREC- CAN Receive Error Counter Register
- CANHPMOB- CAN Highest Priority MOb Register
- CANPAGE- CAN Page MOb Register

Mob Registers

- CANSTMOB- CAN Mob Status Register
- CANCDMOB- CAN Mob Control and DLC Register
- CANIDT1, CANIDT2, CANIDT3, CANIDT4- CAN Identifier Tag Register
- CANIDM1, CANIDM2, CANIDM3, CANIDM4- CAN Identifier Mask Register
- CANSTML, CANSTMH- CAN Time Stamp Register

Embedded System Experiment

CAN Register

◆ CAN Frame과 Register

CAN 2.0A Data Frame

◆ CAN General Control Register, CANGCON

Bit	7	6	5	4	3	2	1	0
CANGCON	ABRQ	OVRQ	TTC	SYNTTC	LISTEN	TEST	ENA/STB	SWRES
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

- Bit 7 ABRQ, Abort request
- Bit 6 OVRQ, overload frame request
- Bit 5 TTC, time trigger communication
- Bit 4 SYNTTC, synchronization of TTC
- Bit 3 Listen, Listening mode
- Bit 2 Test, Test mode
- Bit 1 ENA/STB, enable(1) /standby(0) mode
- Bit 0 SWRES, software reset request

◆ CAN General Status Register, CANGSTA

Bit	7	6	5	4	3	2	1	0
CANGSTA	-	OVFG	-	TXBSY	RXBSY	ENFG	BOFF	ERRP
R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0

- Bit 7 reserved
- Bit 6 OVFG, overload Frame flag
- Bit 5 reserved
- Bit 4 TXBSY, Transmitter Busy
- Bit 3 RXBSY, Receiver Busy
- Bit 2 ENFG, enable flag
- Bit 1 BOFF, bus off mode
- Bit 0 ERRP, error passive mode

◆ CAN Page MOb Register, CANPAGE

Bit	7	6	5	4	3	2	1	0
CANPAGE	MOBNB3	MOBNB2	MOBNB1	MOBNB0	AINC	INDX2	INDX1	INDX0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0

- Bit 7:4 MOBNB3:0, Mob number
 - ✓ Selection of Mob number 0~ 14(15)
- Bit 3 AINC, auto increment of FIFO CAN Data Buffer Index(Active Low)
 - \checkmark 0 auto increment of the index, 1 no auto increment
- Bit 2:0 INDX2:0, FIFO CAN Data Buffer Index
- Byte location of the CAN Data

◆ CAN Mob Control and DLC Register, CANSTMOB

Bit	7	6	5	4	3	2	1	0
CANCDMOB	DLCW	тхок	RXOK	BERR	SERR	CERR	FERR	AERR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	-	-	-	-	-	-	-	-

- Bit 7 DLCW: Data Length Code Warning
- Bit 6 TXOK: Transmit OK
- Bit 5 RXOK: Receive OK
- Bit 4 BERR: Bit Error (Only in Transmission)
- Bit 3 SERR: Stuff Error
- Bit 2 CERR: CRC Error
- Bit 1 FERR: Form Error
- Bit 0 AERR: Acknowledgment Error

◆ CAN Mob Control and DLC Register, CANCDMOB

Bit	7	6	5	4	3	2	1	0
CANCDMOB	CONMOB1	CONMOB0	RPLV	IDE	DLC3	DLC2	DLC1	DLC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	-	-	-	-	-	-	-	-

- Bit 7:6 CONMOB1:0, Configuration of Message Object
 - √ 00 disable, 01 enable transmission
 - √ 10 enable reception, 11 enable frame buffer reception
- Bit 5 RPLV, Reply Valid
 - √ 0 reply not ready, 1 reply ready and valid
- Bit 4 IDE: Identifier extension
 - √ 0 CAN Standard rev 2.0A
 - √ 1 CAN standard rev 2.0 B
- Bit 3:0 DLC 3:0, Data Length Code

◆ General Register 설정

1. Reset

```
    CANGCON=0x03
```

```
    ✓ Bit 1- ENA/STB: Enable / Standby Mode

            (0- standby mode, 1- enable mode)

    ✓ Bit 0- SWRES: Software Reset Request

            (0- no reset, 1- reset: reset "Ored" with hardware reset
```

2. Baud rate 설정

- CANBT1=0x06
 - ✓ Bit6:1- baud rate pre-scaler
- CANBT2=0x0c
 - ✓ Bit3:1- propagation time segment
- CANBT3=0x37
 - ✓ Bit6:4- phase segment 2, Bit3:1- phase segment 1, Bit 0- sample point
- ※ 다음과 같은 설정하게 되면 Baud rate는 8 MHz, 125 kbps이 된다.

MOb Register 설정

1. CAN Page MOB설정

- MOB 선택, CANPAGE = I << 4
- 상태레지스터 초기화 CANSTMOB=0
- 제어레지스터 초기화 CANCDMOB=0
- ID 초기화, CANIDTn=0
- Mask 초기화, CANIDMn=0
- Message 초기화, CANMSG=0

2. CAN enable

CANGCON=1<<ENASTB

CAN 통신

CAN 송신

1.초기화(Initializing)

- Identifier tag(IDT)
- Identifier extension(IDE)
- Remote transmission request(RTRTAG)
- Data length code(DLC)
- Reserved bit(s) tag(RBnTAG)
- Data bytes of message(MSG)

2.MOb 설정(Mob Configuration)

CONMOB

3.채널 스캔(Channel scan)

- 송신으로 설정된 Mob 중에서 가장 높은 우선권을 가진 MOb를 찾는다.
- 해당 Mob의 메시지를 전송한다.

4.전송완료 인터럽트 발생(Set Transmission Flag and Interrupt)

■ 송신이 정상적으로 완료되면 TXOK 플래그를 1로 설정(set)

5.대기(waiting)

■ 새로운 Mob 초기화가 있을 때까지 모든 파라메터와 데이터를 사용할 수 있다

CAN 통신

CAN 수신

1.초기화(Initializing)

- Identifier tag(IDT)/Identifier mask(IDMSK)
- Identifier extension(IDE)/Identifier extension mask(IDEMSK)
- Remote transmission request(RTRTAG)/Remote transmission request mask(RTRMSK)
- Data length code(DLC)
- Reserved bit(s) tag(RBnTAG)

2.MOb 설정(Mob Configuration)

CONMOB

3.채널 스캔(Channel scan)

- 수신으로 설정된 Mob 중에서 가장 높은 우선권을 가진 MOb를 찾는다.
- 해당 Mob의 메시지를 수신한다.

4.MOb 갱신(update MOb)

■ IDT, IDE, DLC 일치하면 수신 프레임값으로 갱신한다.

5.수신완료 인터럽트 발생(Set Reception Flag and Interrupt)

■ 수신이 정상적으로 완료되면 RXOK 플래그를 1로 설정(set)

6.대기(waiting)

■ 새로운 Mob 초기화가 있을 때까지 모든 파라메터와 데이터를 사용할 수 있다.

Acceptance Filtering

■ 전체 필터링:

: CAN 표준 프레임에서 ID=0x317 만 수용함

: ID MSK = 111 1111 1111

: ID TAG = 011 0001 0111

■ 부분 필터링:

: CAN 표준 프레임에서 ID 0x310부터 0x317까지 수용함

: ID MSK = 111 1111 1000

: ID TAG = 011 0001 0xxx

■ 필터링 없음:

: CAN 표준 프레임에서 ID 0x000부터 0x7FF까지 모두 수용함

: ID MSK = 000 0000 0000

: ID TAG = xxx xxxx xxxx

Acceptance Filtering

보드 이해

◆ CAN 송신 파트 Node1 연결 방법

보드 이해

◆ CAN 수신 파트 Node2 연결 방법

CAN통신 회로도

- ◆ CAN Node1에서 조이스틱을 이용하여 데이터를 송신 파트
 - Instruction에 첨부된 보드 회로도 참조

CAN통신 회로도

- ◆ CAN Node2에서 수신 후 모터 동작 파트
 - Instruction에 첨부된 보드 회로도 참조

실험5

- ◆ 실험 내용
 - 실험 자료에 주어진 문제 해결
 - 실험 자료는 실험 전날 공지
 - 아래의 내용을 진행할 예정

실험1. CAN송신부에서 조이스틱을 이용하여 X축, Y축으로 CAN통신을 구현한다실험2. CAN수신부에서 수신된 값을 받아 X축값을 Servo Motor, Y축 값을 DC Motor를 Control 한다.

※각 단계를 완료할 때 마다 조교에게 검사를 받아야 함- 실험을 한번에 다해서 한번에 검사 받지 말고, 한 단계씩 검사

예비 보고서

- ◆ 실험6에 대한 예비보고서 준비 (7장 이내, 넘어가면 감점)
 - Encoder Motor 구동 원리 예습
 - ✓ Encoder Motor를 구동하기 위한 예습
 - ✓ Encoder에서 나오는 Hall Sensor의 값으로 속도 및 방향 측정하는 방법 예습