Analisi Matematica II Serie di Fourier

Virginia De Cicco

Sapienza Univ. di Roma

Serie di Fourier

In questa lezione introduciamo le serie di Fourier.

Dapprima introduciamo le funzioni generalmente continue e sommabili.

Diciamo che una funzione f è generalmente continua in un intervallo [a, b] se ha al più un numero finito di discontinuità in [a, b].

Notiamo che esistono funzioni che non sono generalmente continue: basta considerare la funzione

$$f(x) = \frac{1}{\operatorname{sen}\frac{1}{x}}$$

che è discontinua in 0 e nei punti del tipo $x=\frac{1}{k\pi}$, con $k\in\mathbb{Z}\setminus\{0\}$, dove \mathbb{Z} denota l'insieme degli interi relativi.

Diciamo che una funzione f generalmente continua è sommabile in un intervallo [a,b] se

$$\int_{a}^{b} |f(x)| dx < +\infty. \tag{1}$$

Osserviamo che una funzione generalmente continua potrebbe non essere sommabile. Basta considerare la funzione

$$f(x) = \begin{cases} \frac{1}{|x|^{\beta}} & x \in [-\pi, \pi] \setminus \{0\} \\ 1 & x = 0, \end{cases}$$
 (2)

che non è sommabile per $\beta \geq 1$ (si noti che per $\beta < 1$ tale funzione è invece sommabile).

Funzioni periodiche

Una funzione $f:\mathbb{R}\to\mathbb{R}$ si dice periodica di periodo T (o T-periodica) se per ogni $x\in\mathbb{R}$ si ha

$$f(x+T)=f(x). (3)$$

Ovviamente se una funzione è periodica con periodo T>0, allora è anche periodica con periodo $2T,3T,\ldots,kT$, con $k\in\mathbb{N}$.

Nel seguito intenderemo per periodo il più piccolo numero T tale che (3) valga.

Monomi trigonometrici

Fissati $k \in \mathbb{N}$ e $a, b \in \mathbb{R}$ la funzione seguente ottenuta come combinazione di $\cos kx$ e $\sec kx$

$$f(x) = a \cos kx + b \sin kx$$

è periodica di periodo 2π .

In realtà il suo periodo minimo è $\frac{2\pi}{k}$, essendo

$$cos\left(k\left(x+\frac{2\pi}{k}\right)\right) = cos\left(kx+2\pi\right) = cos kx$$

е

$$sen\left(k\left(x+\frac{2\pi}{k}\right)\right) = sen\left(kx+2\pi\right) = sen kx.$$

Polinomi trigonometrici

Le somme finite

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sec kx$$
, a_0 , a_k , $b_k \in \mathbb{R}$.

di funzioni del tipo precedente si dicono *polinomi trigonometrici di ordine n* e sono funzioni 2π -periodiche.

Esempi di tali funzioni sono:

$$\cos x + \sin x$$
, $2\sin 8x - 3\cos 5x + 4\sin 2x$.

Serie trigonometriche

Supponiamo che la successione di funzioni $S_n(x)$ converga per ogni $x \in \mathbb{R}$ ad una funzione S(x).

Ciò equivale a dire che la serie seguente

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

converge puntualmente e ha per somma la funzione S(x).

Tale somma è necessariamente una funzione 2π -periodica.

Tale serie è detta serie trigonometrica di coefficienti $a_0, a_k, b_k \in \mathbb{R}$.

Serie trigonometriche e sviluppabilità in serie di Fourier

Ci si può chiedere il viceversa:

data una funzione f(x) 2π -periodica, essa è *sviluppabile in serie trigonometrica*, i.e. è possibile costruire una serie trigonometrica che converga ad f(x) per ogni $x \in \mathbb{R}$?

O equivalentemente, è possibile determinare dei coefficienti a_0, a_k, b_k in modo che la serie trigonometrica con essi costruita converga ad f(x)?

Vedremo successivamente delle condizioni sufficienti per la sviluppabilità in serie trigonometrica. Cominciamo con le condizioni necessarie.

Coefficienti di Fourier

Nella seguente proposizione diamo la forma che i coefficienti devono necessariamente avere perché tale sviluppo possa valere.

Proposizione

Sia f sviluppabile in serie trigonometrica, i.e.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx.$$

Supponiamo inoltre che la serie converga uniformemente in $[-\pi,\pi]$.

Allora necessariamente i coefficienti hanno la seguente forma:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$
 $k = 0, 1, 2, ...$

е

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{sen} kx \, dx \qquad k = 1, 2, \dots .$$

Coefficienti di Fourier

I coefficienti a_k e b_k della precedente proposizione prendono il nome di coefficienti di Fourier e la serie con essi costruita è detta serie di Fourier di f.

Perchè tali coefficienti siano ben definiti basta che f sia 2π -periodica e sommabile in $[-\pi,\pi]$.

Notiamo che grazie all'ipotesi di sommabilità i coefficienti sono ben definiti. Infatti per ogni $k=0,1,2,\ldots$ si ha

$$|a_k| \le \int_{-\pi}^{\pi} |f(x)| |\cos kx| \, dx \le \int_{-\pi}^{\pi} |f(x)| \, dx < +\infty$$

e per ogni $k = 1, 2, \ldots$ si ha

$$|b_k| \leq \int_{-\pi}^{\pi} |f(x)| |\operatorname{sen} kx| \, dx \leq \int_{-\pi}^{\pi} |f(x)| \, dx < +\infty.$$

Coefficienti di Fourier

Si osservi che il coefficiente

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

è il valor medio di f sull'intervallo di periodicità .

Infine si noti che, grazie alla periodicità di f, nella definizione di tali coefficienti si potrebbe prendere, anzichè l'intervallo $[-\pi,\pi]$, un qualunque altro intervallo di ampiezza 2π (spesso negli esercizi useremo per esempio l'intervallo $[0,2\pi]$).

Banale, ... ma non troppo

Esame del 21 - 9 - 2011

Domanda a risposta multipla

Il coefficiente di Fourier a_2 della funzione $f(x) = 9 + \cos 4x + 3 \sin 2x$ è

a)
$$a_2 = 1$$
 b) $a_2 = 3$ c) $a_2 = 2$ d) $a_2 = 0$.

Soluzione: d)

Esercizio

Scrivere lo sviluppo in serie di Fourier delle seguenti funzioni periodiche.

(a)
$$f(x) = \sin(3x) - 5\cos(7x)$$

(b)
$$f(x) = 5\sin(7x)\cos(7x) - 8$$

Soluzioni

(a) La funzione assegnata

$$f(x) = \sin(3x) - 5\cos(7x)$$

coincide con il suo sviluppo in serie di Fourier

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right).$$

Infatti, basta osservare che

$$a_7 = -5, \qquad a_n = 0 \qquad \forall n \neq 7$$

$$a_7 = -5,$$
 $a_n = 0$ $\forall n \neq 7$ $b_3 = 1,$ $b_n = 0$ $\forall n \neq 3.$

(b) La funzione assegnata

$$f(x) = 5\sin(7x)\cos(7x) - 8$$

coincide con il suo sviluppo in serie di Fourier. Infatti, utilizzando le proprietà delle funzioni trigonometriche, f(x) può essere riscritta come

$$f(x) = \frac{5}{2} \cdot 2\sin(7x)\cos(7x) - \frac{16}{2} = \frac{5}{2}\sin(14x) - \frac{16}{2}$$

da cui segue che

$$a_0=-16, \qquad a_n=0 \qquad \forall n>0$$

$$b_{14}=\frac{5}{2}, \qquad b_n=0 \qquad \forall n \neq 14.$$

Coefficienti di Fourier di funzioni pari e dispari

Andiamo a considerare due casi particolari: quello in cui f sia una funzione pari e quello in cui f sia una funzione dispari.

Supponiamo che f sia 2π -periodica e pari (i.e. f(x) = f(-x) per ogni $x \in \mathbb{R}$). Allora ricordando che anche il coseno è pari, mentre il seno è dispari, si ha che $f(x) \cos kx$ risulta una funzione pari e $f(x) \sin kx$ dispari e quindi

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos kx \, dx \qquad k = 0, 1, 2, \dots$$

е

$$b_k=rac{1}{\pi}\int_{-\pi}^{\pi}f(x)\operatorname{sen}kx\,dx=0\qquad k=1,2,\ldots\;.$$

Coefficienti di Fourier di funzioni pari e dispari

In maniera analoga, supponiamo che f sia 2π -periodica e dispari (i.e. f(x) = -f(-x) per ogni $x \in \mathbb{R}$). Allora si ha che $f(x) \cos kx$ risulta una funzione dispari e $f(x) \sin kx$ pari e quindi

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = 0$$
 $k = 0, 1, 2, ...$

e

$$b_k = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = rac{2}{\pi} \int_{0}^{\pi} f(x) \sin kx \, dx \qquad k = 1, 2, \dots \; .$$

Esercizi

Delle seguenti funzioni definite in $(-\pi,\pi]$ e prolungate per periodicità in tutto \mathbb{R} , si calcolino i coefficienti dello sviluppo in serie di Fourier a fianco indicati.

(a)
$$f(x) = 2\sin(3x) - |x|, x \in (-\pi, \pi]$$
 b_3

(b)
$$f(x) = \begin{cases} \frac{x^3}{\cos x} & \text{se } |x| < \frac{\pi}{4} \\ 0 & \text{se } -\pi \le x \le -\frac{\pi}{4} \lor \frac{\pi}{4} \le x \le \pi \end{cases}$$

(c)
$$f(x) = \begin{cases} 1 & \text{se } x \in [0, \pi) \\ -1 & \text{se } x \in [-\pi, 0) \end{cases}$$
 a_2

(d)
$$f(x) = \begin{cases} |\sin x| & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{se } -\pi \le x \le -\frac{\pi}{2} \lor \frac{\pi}{2} \le x \le \pi \end{cases}$$
 a_0, b_0, b_1, b_2

(e)
$$f(x) = \begin{cases} x^4 & \text{se } |x| < \frac{\pi}{4} \\ 0 & \text{se } -\pi \le x \le -\frac{\pi}{4} \lor \frac{\pi}{4} \le x \le \pi \end{cases}$$
 a_0, b_0, b_1, b_2

Soluzioni

(a)

$$f(x) = 2\sin(3x) - |x|, \quad x \in (-\pi, \pi]$$

Si ha che $f(x) = f_1(x) + f_2(x)$, dove $f_1(x) = 2\sin(3x)$ e $f_2(x) = -|x|$ e dunque, per linearità , il coefficiente b_3 di f è dato dalla somma dei coefficienti $b_3^{(1)}$ di f_1 e $b_3^{(2)}$ di f_2 . Si ha, per definizione, che $b_3^{(1)} = 2$, mentre $b_3^{(2)} = 0$ perché f_2 è pari. Pertanto

$$b_3 = 2 + 0 = 2.$$

(b)
$$f(x) = \begin{cases} \frac{x^3}{\cos x} & \text{se } |x| < \frac{\pi}{4} \\ 0 & \text{se } -\pi \le x \le -\frac{\pi}{4} \lor \frac{\pi}{4} \le x \le \pi \end{cases} \quad a_1$$

Poiché $\frac{(-x)^3}{\cos(-x)}=-\frac{x^3}{\cos x}$ la funzione assegnata è una funzione dispari. Ne segue che $a_1=0$.

(c)
$$f(x) = \begin{cases} 1 & \text{se } x \in [0,\pi) \\ -1 & \text{se } x \in [-\pi,0) \end{cases} \quad a_2$$

La funzione assegnata è una funzione dispari. Ne segue che

$$a_2 = 0$$
.

(d)

$$f(x) = \begin{cases} |\sin x| & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{se } -\pi \le x \le -\frac{\pi}{2} \lor \frac{\pi}{2} \le x \le \pi \end{cases} \quad a_0, b_0, b_1, b_2$$

Poiché $|\sin(-x)| = |\sin x|$ la funzione assegnata è una funzione pari. Ne segue che

$$b_0=b_1=b_2=0.$$

Infine, per definizione,

$$a_0 = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin x| dx = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin x dx = \frac{2}{\pi}.$$

(e)

$$f(x) = \begin{cases} x^4 & \text{se } |x| < \frac{\pi}{4} \\ 0 & \text{se } -\pi \le x \le -\frac{\pi}{4} \lor \frac{\pi}{4} \le x \le \pi \end{cases} \quad a_0, b_0, b_1, b_2$$

Poiché $(-x)^4 = x^4$ la funzione assegnata è una funzione pari. Ne segue che

$$b_0 = b_1 = b_2 = 0.$$

Infine, per definizione,

$$a_0 = \frac{1}{\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^4 dx = \frac{2}{\pi} \int_0^{\frac{\pi}{4}} x^4 dx = \frac{\pi^4}{5 \cdot 2^9} = \frac{\pi^4}{2 \cdot 560}.$$

Domanda d'esame

Domanda a risposta multipla

Il coefficiente di Fourier b_2 della funzione f(x) = |sen x| è

a)
$$b_2 = 1$$
 b) $b_2 = 3$ c) $b_2 = 22$ d) $b_2 = 0$.

Soluzione: d) poichè tale funzione è pari.

Esame del 17 - 9 - 2012

Si scriva la serie di Fourier della funzione 2π -periodica definita in $[-\pi,\pi[$ da

$$f(x) = |x|$$

calcolandone esplicitamente i coefficienti. La funzione assegnata è illustrata in figura.

Essa ha periodo $T=2\pi$ ed è una funzione pari. Quindi $b_n=0 \ \forall n\in\mathbb{N}$, mentre

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$$

ed inoltre

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{2}{\pi} \left[\frac{x}{n} \sin(nx) \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin(nx) dx \right] = \frac{2}{\pi n^2} \cos(nx) \Big|_{0}^{\pi} = \frac{2}{\pi n^2} \left[(-1)^n - 1 \right]$$

$$= \begin{cases} \frac{-4}{\pi n^2} & \text{se } n = 2k + 1 \\ 0 & \text{se } n = 2k. \end{cases}$$

Quindi la serie di Fourier è

$$\frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n^2} [(-1)^n - 1] \cos(nx) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \cos((2k+1)x).$$

Alcune classi di funzioni

Definiamo ora alcune classi di funzioni che useremo in seguito.

Diciamo che una funzione f definita su un intervallo [a, b] è continua a tratti in [a, b] se esiste una suddivisione dell'intervallo [a, b] del tipo

$$a = x_0 < x_1 < \cdots < x_n = b$$

tale che

- per ogni $i=0,1,2,\ldots,n-1$ la funzione f(x) è continua negli intervalli aperti (x_i,x_{i+1})
- nei punti x_i ha al più discontinuità eliminabili o di tipo salto.

Alcune classi di funzioni

Diciamo che una funzione f definita su un intervallo [a,b] è C^1 a tratti in [a,b] (o regolare a tratti in [a,b]) se esiste una suddivisione dell'intervallo [a,b] del tipo

$$a = x_0 < x_1 < \cdots < x_n = b$$

tale che

- per ogni $i=0,1,2,\ldots,n-1$ la funzione f(x) è C^1 (i.e. derivabile e con derivata continua) negli intervalli aperti (x_i,x_{i+1})
- \bullet nei punti x_i ha al più discontinuità eliminabili o di tipo salto
- in tali punti ha derivata destra e sinistra finita.

Alcune classi di funzioni

Diciamo che una funzione f definita in $\mathbb R$ è continua a tratti in $\mathbb R$ (o C^1 a tratti in $\mathbb R$) se lo è in ogni intervallo $[a,b]\subset\mathbb R$.

Osserviamo che

- Le funzioni continue sono anche continue a tratti.
- Le funzioni C^1 sono anche C^1 a tratti.
- Le funzioni continue a tratti in $[-\pi, \pi]$ (e quindi in particolare le continue e anche le C^1 a tratti) sono sommabili.
- Ma non vale il viceversa (si veda l'esempio $\frac{1}{|\mathsf{x}|^\beta}$ con $\beta < 1$, funzione sommabile, ma non continua a tratti) .

Classi di funzioni

Convergenza della serie di Fourier

Poter scrivere la serie di Fourier di f, basta che f sia sommabile e periodica.

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

Per ottenere la convergenza

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = f(x)$$

di tale serie a f bisogna richiedere delle ipotesi più forti.

Nei seguenti teoremi daremo delle condizioni sufficienti ad assicurare la convergenza puntuale, uniforme e totale.

Convergenza della serie di Fourier

Teorema sulla convergenza puntuale della serie di Fourier

Sia f una funzione 2π -periodica e regolare a tratti in \mathbb{R} .

Allora per ogni $x \in \mathbb{R}$ la serie di Fourier di f converge a

$$\frac{1}{2}[f(x+)+f(x-)],$$

cioè alla media tra il limite destro e sinistro in x

$$f(x+) = \lim_{y \to x^+} f(y)$$
 $f(x-) = \lim_{y \to x^-} f(y)$.

In particolare converge a f(x) nei punti di continuità , cioè dove f(x+) = f(x-).

Convergenza della serie di Fourier

Proposizione

Sotto le stesse ipotesi del teorema precedente, la serie di Fourier di f converge uniformemente in ogni sottointervallo [a, b] in cui f(x) è continua.

Teorema sulla convergenza totale della serie di Fourier

Sia f una funzione 2π -periodica, continua e regolare a tratti in $\mathbb R$. Allora la serie di Fourier di f converge totalmente in $\mathbb R$ (e quindi uniformemente) alla funzione f.

Teorema sull'integrazione termine a termine per una serie di Fourier

Sia f una funzione 2π -periodica e regolare a tratti in $\mathbb R$. Allora fissati $x_0,x\in[-\pi,\pi]$ si ha

$$\int_{x_0}^x f(t) dt = \frac{a_0}{2} (x - x_0) + \sum_{k=1}^{\infty} \int_{x_0}^x (a_k \cos kt + b_k \sin kt) dt.$$

Questo teorema afferma che una serie di Fourier di una funzione regolare a tratti in $\mathbb R$ si può integrare termine a termine anche senza la convergenza uniforme della serie stessa.

Esame del 21 - 6 - 2012

Domanda a risposta multipla

- (i) Si dia la definizione dei coefficienti di Fourier e di serie di Fourier.
- (ii) Si enuncino i teoremi sulla convergenza puntuale ed uniforme per una serie di Fourier.

Data la funzione

$$f(x) = \sin(3x) - 5\cos(7x),$$

- (iii) si calcolino i suoi coefficienti di Fourier;
- (iv) la serie di Fourier ad essa associata converge puntualmente? converge uniformemente?
- Soluzione: (iii) $b_3=1$, $b_k=0$ per ogni $k\neq 3$ e $a_7=-5$, $a_k=0$ per ogni $k\neq 7$. Converge uniformemente su tutto \mathbb{R} , poichè è C^1 .

Esempio

Sia f(x) la funzione, periodica di periodo 2π , definita in $[-\pi,\pi[$ da

$$f(x) = \begin{cases} -1 & |x| < 2\\ 0 & \text{altrove.} \end{cases}$$

Calcoliamo esplicitamente i coefficienti di Fourier di f(x). Osservando che la funzione è pari, si ha

$$a_0=-rac{4}{\pi}\,,$$

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos kx \, dx = -\frac{2}{\pi} \int_0^2 \cos kx \, dx = -\frac{2}{k\pi} \sin 2k \qquad \forall k = 1, 2, \dots$$

е

$$b_k = 0 \quad \forall k = 1, 2, \dots$$

Esempio

Quindi lo sviluppo di Fourier è

$$-\frac{2}{\pi} - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{sen} 2k \cos kx.$$

Usando il teorema sulla convergenza puntuale, si ha che la serie di Fourier di f(x) converge nel punto di discontinuità x=2 a

$$-\frac{1}{\pi} - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} sen 2k \cos 2k = \frac{1}{2} [f(2+) + f(2-)] = -\frac{1}{2},$$

mentre nel punto di continuità $x=3\pi$ la serie di Fourier di f(x) converge a $f(3\pi)=0$.

Esame del 17 gennaio 2013

Data la funzione f(t), periodica di periodo 2π , definita per $t \in [0, 2\pi]$ da $f(t) = t - 2\pi$ (senza calcolare i suoi coefficienti di Fourier) la somma della sua serie di Fourier per $t=2\pi$ vale uno dei seguenti valori

- a) $-\pi$ b) π c) 2π d) -2π .

Soluzione: a)

Riepilogo sui diversi tipi di convergenza per la serie di Fourier

Data una funzione f 2π -periodica:

se f è continua e C^1 a tratti, allora la convergenza è totale (e quindi uniforme), la serie converge ad f(x) e dunque f è sviluppabile in serie di Fourier;

se f è C^1 a tratti, allora la convergenza è puntuale, la somma della serie è $\frac{f(x+)+f(x-)}{2}$ e la convergenza è uniforme in ogni intervallo in cui f(x) è continua.

Testo d'esame

(i) Si dia la definizione di serie di Fourier di f(x), con f(x) periodica di periodo 2π e tale che

$$\int_0^{2\pi} |f(x)| dx < +\infty.$$

(ii) Data la funzione

$$f(x) = |\cos(x/2)|,$$

si dica, senza calcolarne i coefficienti di Fourier, se la sua serie di Fourier converge totalmente in $\mathbb R$.

Soluzione

(ii) La serie converge totalmente perché la funzione è regolare a tratti e continua in $\mathbb R$.

Testo d'esame

- (i) Data una funzione f(t), regolare a tratti e periodica di periodo 2π , si definisca la serie di Fourier di f(t), si dica quanto vale la sua somma S(t) e dove converge uniformemente.
- (ii) Data la funzione f(t), periodica di periodo π , definita da

$$f(t) = e^{2t}, t \in [0, \pi[,$$

si calcoli $S(5\pi)$ (cioè il valore della somma della serie di Fourier nel punto $t=5\pi$) e $f(5\pi)$.

Soluzione

(ii) Il punto $t=5\pi$ è un punto di discontinuità per la funzione periodica f(t) e dunque si ha

$$S(5\pi) = \frac{f(5\pi^-) + f(5\pi^+)}{2} = \frac{e^{2\pi} + 1}{2}.$$

Inoltre $f(5\pi) = f(0) = 1$.

Esercizio

Si scriva lo sviluppo in serie di Fourier delle seguenti funzioni prolungate per periodicità su tutto $\mathbb R$ e, ove a fianco indicata, utilizzare tale sviluppo per calcolare la somma della serie numerica.

(a)
$$f(x) = |x|, x \in (-\pi, \pi)$$

$$\textstyle\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

(b)
$$f(x) = x^2, x \in (-\pi, \pi)$$

$$\textstyle\sum_{k=1}^{+\infty} \frac{1}{k^2}$$

(c)
$$f(x) = \begin{cases} 1 & \text{se } x \in (0, \pi] \\ 0 & \text{se } x \in (-\pi, 0] \end{cases}$$

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$$

(d)
$$f(x) = \begin{cases} x & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{se } -\pi \le x \le \frac{\pi}{2} \lor \frac{\pi}{2} \le x \le \pi \end{cases}$$

Soluzioni

$$f(x) = |x|, \quad x \in (-\pi, \pi)$$

La funzione assegnata è illustrata in figura.

Essa ha periodo $T=2\pi$ ed è una funzione pari. Quindi $b_n=0 \ \forall n \in \mathbb{N}$, mentre

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$$

ed inoltre

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{2}{\pi} \left[\frac{x}{n} \sin(nx) \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin(nx) dx \right] = \frac{2}{\pi n^2} \cos(nx) \Big|_{0}^{\pi} = \frac{2}{\pi n^2} \left[(-1)^n - 1 \right]$$

$$= \begin{cases} \frac{-4}{\pi n^2} & \text{se } n = 2k + 1 \\ 0 & \text{se } n = 2k. \end{cases}$$

In definitiva

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \cos[(2k+1)x].$$

Poiché f è continua la serie di Fourier converge puntualmente (ed anche uniformemente) ad f $\forall x \in \mathbb{R}$. In particolare, per x = 0, si ha che

$$f(0) = 0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

da cui segue che

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

(b)
$$f(x) = x^2, \quad x \in (-\pi, \pi)$$

Essa ha periodo $T=2\pi$ ed è una funzione pari. Quindi $b_n=0 \ \forall n\in\mathbb{N}$, mentre

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{3} \pi^2$$

ed inoltre

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos(nx) dx$$

$$= \frac{2}{\pi} \left[\frac{x^{2}}{n} \sin(nx) \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} x \sin(nx) dx \right] = -\frac{4}{\pi} \frac{1}{n} \int_{0}^{\pi} x \sin(nx) dx$$

$$= \frac{4}{\pi} \frac{1}{n} \left[\frac{x}{n} \cos(nx) \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \cos(nx) dx \right] = \frac{4}{\pi} \frac{1}{n} \left[\frac{x}{n} \cos(nx) \Big|_{0}^{\pi} \right]$$

$$= 4 \frac{(-1)^{n}}{n^{2}}$$

Poiché f è continua la serie di Fourier converge puntualmente (ed anche uniformemente) ad f $\forall x \in \mathbb{R}$. In definitiva, grazie al teorema sulla convergenza puntuale, abbiamo che

$$f(x) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx).$$

In particolare, per $x = \pi$, si ha che

$$\pi^2 = f(\pi) = \frac{\pi^2}{3} + 4\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(n\pi)$$

da cui, essendo $\cos(n\pi) = (-1)^n$, segue che

$$4\sum_{n=1}^{+\infty}\frac{(-1)^n}{n^2}(-1)^n=\frac{2\pi^2}{3}$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

In particolare, per x = 0, si ha che

$$0 = f(0) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$

da cui segue che

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}.$$

(c)
$$f(x) = \begin{cases} 1 & \text{se } x \in (0, \pi] \\ 0 & \text{se } x \in (-\pi, 0] \end{cases}$$

La funzione assegnata è illustrata in figura.

Essa ha periodo $T=2\pi$, ma non ha particolari simmetrie. È quindi comodo effettuare anticipatamente la traslazione $\tilde{f}(x)=f(x)-\frac{1}{2}$, in modo tale che la nuova funzione $\tilde{f}(x)$ risulti ora dispari. Di conseguenza $\tilde{a}_n=0 \ \forall n\in\mathbb{N}$, mentre

$$\tilde{b}_{n} = \frac{1}{\pi} \int_{-\pi}^{0} \left(-\frac{1}{2}\right) \sin(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{1}{2}\right) \sin(nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \sin(nx) dx = -\frac{1}{\pi n} \cos(nx) \Big|_{0}^{\pi} = \frac{1}{\pi n} (1 - (-1)^{n})$$

$$= \begin{cases} \frac{2}{\pi n} & \text{se } n = 2k + 1 \\ 0 & \text{se } n = 2k, \end{cases}$$

da cui segue che

$$\tilde{f}(x) = \frac{2}{\pi} \sum_{k=0}^{+\infty} \frac{1}{2k+1} \sin[(2k+1)x].$$

Di conseguenza

$$f(x) = \tilde{f}(x) + \frac{1}{2} = \frac{1}{2} + \frac{2}{\pi} \sum_{k=0}^{+\infty} \frac{1}{2k+1} \sin[(2k+1)x].$$

La funzione è continua in un intorno di $x=\frac{\pi}{2}$, per cui la serie di Fourier converge puntualmente ad $f\left(\frac{\pi}{2}\right)$ in tale punto (ed anche uniformemente in tale intorno). Pertanto, osservando che

$$\sin\left[(2k+1)\frac{\pi}{2}\right] = (-1)^k,$$

si ha che

$$f\left(\frac{\pi}{2}\right) = 1 = \frac{1}{2} + \frac{2}{\pi} \sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$$

da cui segue che

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}.$$

$$f(x) = \begin{cases} x & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{se } -\pi \le x \le \frac{\pi}{2} \lor \frac{\pi}{2} \le x \le \pi \end{cases}$$

Essa ha periodo $T=2\pi$ ed è una funzione dispari. Da ciò segue che $a_n=0$ $\forall n\in\mathbb{N}$, mentre

$$b_n = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} x \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi/2} x \sin(nx) dx$$

$$= \frac{2}{\pi} \left[-\frac{x}{n} \cos(nx) \Big|_{0}^{\pi/2} + \frac{1}{n} \int_{0}^{\pi/2} \cos(nx) dx \right]$$

$$= \frac{2}{\pi} \left[-\frac{\pi}{2n} \cos\left(n\frac{\pi}{2}\right) + \frac{1}{n^2} \sin(nx) \Big|_{0}^{\pi/2} \right]$$

$$= -\frac{1}{n} \cos\left(n\frac{\pi}{2}\right) + \frac{2}{\pi n^2} \sin\left(n\frac{\pi}{2}\right).$$

Osservando che

$$\cos\left(n\frac{\pi}{2}\right) = \begin{cases} (-1)^k & \text{se } n = 2k\\ 0 & \text{se } n = 2k+1 \end{cases}$$

e che

$$\sin\left(n\frac{\pi}{2}\right) = \begin{cases} (-1)^k & \text{se } n = 2k+1\\ 0 & \text{se } n = 2k \end{cases}$$

segue, in definitiva, che

$$f(x) = \frac{2}{\pi} \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)^2} \sin\left[(2k+1)x\right] - \sum_{k=0}^{+\infty} \frac{(-1)^k}{2k} \sin\left(2kx\right).$$

(e)
$$f(x) = \begin{cases} |x| & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{se } -\pi \le x \le \frac{\pi}{2} \lor \frac{\pi}{2} \le x \le \pi \end{cases}$$

La funzione assegnata è illustrata in figura.

