

拓扑空间与连续映射

1.1 拓扑空间的定义

度量公理:

设X是非空集合, $d: X \times X \to \mathbb{R}, \forall x, y, z \in X$,有

- (1) (正定性) $d(x,y) \geq 0, d(x,y) = 0 \Leftrightarrow x = y$
- (2) (对称性) d(x, y) = d(y, x)
- (3) (三角不等性) $d(x,y) \le d(x,z) + d(y,z)$

则称d为X的一个度量。

开集公理:

设X是一个非空集合, $\mathcal{J} \subset X$,如果:

- $(1) X, \varnothing \in \mathcal{J}$
- (2) $A,B\in \mathcal{J}$,则 $A\cap B\in \mathcal{J}$
- (3)设 $\mathcal{J}_1\subset\mathcal{J}$,则 $\cup_{A\in\mathcal{J}_1}A\in\mathcal{J}$

则称 \mathcal{J} 为X的一个拓扑。

拓扑空间与开集的定义:

设X是一个非空集合, $\mathcal{J}\subset X$,如果 \mathcal{J} 满足开集公理,则称 \mathcal{J} 为 X 的一个拓扑, \mathcal{J} 中的元是 X上的开集, (X,\mathcal{J}) 是拓扑空间。

问题1.1.1: 对于一个非空集合X,只有一个拓扑吗?(答案显然是NO)

例:设X是一个非空集合:

- (1) $\mathcal{J}=2^X($ 幂集) \rightarrow 离散拓扑空间
- (2) $\mathcal{J}=\{\varnothing,X\} o$ 平凡拓扑空间
- $(3) \mathcal{J} = \{\varnothing, A, A^c, X\} (A \subset X, A \neq \varnothing)$

一些拓扑的符号: \mathcal{J}_e (欧氏拓扑), \mathcal{J}_d (度量拓扑)

1.2 拓扑空间中的点集

由开集诱导出的一系列定义

设 (X,\mathcal{J}) 是拓扑空间,

领域: $x \in X$, $U \subset X$, 如果存在开集V, 使得 $x \in V \subset U$, 则称 $U \neq x$ 的领域。

内点: $x \in X$, 如果存在 x 的领域U, 使得 $U \cap X^c = \varnothing$, 则称 $x \in X$ 的内点。

内部: 全体内点构成的集合,记作 int(E)。

聚点: $x \in X$, 如果任取 x 的领域U, 使得 $U \cap (X - \{x\}) \neq \emptyset$, 则称 $x \in X$ 的聚点。

导集: 全体聚点构成的集合,记作 d(E)。

孤立点: $x \in X$, 如果存在 x 的领域U, 使得 $U \cap (X - \{x\}) = \emptyset$, 则称 $x \in X$ 的孤立

点。

边界点: $x\in X$, 如果任取 x 的领域U, 使得 $U\cap X\neq\varnothing$ 且 $U\cap X^c\neq\varnothing$, 则称 x 是 X

的聚点。

边界: 全体边界点构成的集合,记作 $\partial(E)$ 。

闭包:集合和其导集的并,记作 \overline{E} 。

闭集: 补集是开集的集合。

点集的一些性质:

(1) $V \in \mathcal{J} \Leftrightarrow \forall x \in V$, $V \in \mathbb{Z}$ 的领域。

- (2) E 是闭集 $\Leftrightarrow d(E) \subset E$ 。
- (3) 集合的内部是含于集合最大的开集,集合的闭包是包含集合的最大闭集。

由拓扑空间中的点集,可以定义以下两种拓扑:

有限补拓扑

设X是非空集合,设X的子集 $\mathcal{J}=\{\varnothing\}\cup\{A\subset X:A^c$ 是有限集 $\}$,易证 \mathcal{J} 是X的拓扑,称 \mathcal{J} 为X的有限补拓扑,称 (X,\mathcal{J}) 为有限补拓扑空间。

可数补拓扑

设X是非空集合,设X的子集 $\mathcal{J}=\{\varnothing\}\cup\{A\subset X:A^c$ 是有限可数集 $\}$,易证 \mathcal{J} 是X的拓扑,称 \mathcal{J} 为X的可数补拓扑,称 (X,\mathcal{J}) 为可数补拓扑空间。

连续映射的定义:

设X和Y是两个拓扑空间, $f:X\to Y$,如果Y中每一个开集U的原像 $f^{-1}(U)$ 是中X的开集,则称f连续.

同胚的定义:

设X和Y是两个拓扑空间,如果 $f:X\to Y$ 是一个双射,并且f和 f^{-1} 连续,则称f是一个同胚映射,称X和Y同胚.

同胚是一个等价关系.

由此提出拓扑学的研究内容:

- (1) 判断两个拓扑空间是否同胚
- (2) 可度量化空间

1.3 映射诱导拓扑

由连续映射,我们可以诱导出以下拓扑:

- (1) 设X是一个非空集合,Y是一个拓扑空间, $f:X\to Y$,给X定义一个极小拓扑, $\mathcal{J}=\{f^{-1}(V):V\in\mathcal{J}_Y\}$,使得f连续.
- (2) 设X是一个拓扑空间,Y是一个非空集合, $f:X\to Y$,给Y定义一个极大拓扑 $\mathcal{J}=\{V:f^{-1}(V)\in\mathcal{J}_X\}$,使得f连续.

以上两个命题易证,由此可引出以下空间的拓扑:

子空间拓扑

设X是一个拓扑空间, $A \subset X$,定义包含映射:

 $i:A o X, i(x)=x, x\in A.$

则使i连续的A的极小拓扑为 $\mathcal{J}=\{i^{-1}(V):V\in\mathcal{J}_X\}=\{V\cap A:V\in\mathcal{J}_X\},$ 则称 (A,\mathcal{J}) 为X的拓扑子空间, \mathcal{J} 为A关于X的子空间拓扑.

子空间拓扑的性质:

- $(1)U \in \mathcal{J}_A \Leftrightarrow \exists \ V \in \mathcal{J}_X, s.t. \ U = V \cap A.$
- (2)U是A的闭子集 $\Leftrightarrow \exists X$ 的闭子集 $V, s.t. \ U = V \cap A$.
- (3)(遗传性质)设 $A\subset B\subset X$,则A关于X的子空间拓扑 =A 关于的B子空间拓扑.

证明: (1),(2)由子空间拓扑的定义易得.

 $(3): \mathcal{J}_{A}^{B} = \{V \cap A : V \in \mathcal{J}_{B}\} = \{V \cap B \cap A : V \in \mathcal{J}_{X}\} = \{V \cap A : V \in \mathcal{J}_{X}\} = \mathcal{J}_{A}^{X}.$

乘积空间拓扑

设 X_1 和 X_2 是两个拓扑空间,投影映射 $\rho_i=X_1\times X_2\to X_i, i=1,2.$ 则使投影映射 ρ_1,ρ_2 连续的极小拓扑的拓扑子基为 $\mathscr{S}=\{U\times V:U\in\mathcal{J}_{X_1},V\in\mathcal{J}_{X_2}\}.$

命题 1.3.1:

设X,Y,Z为拓扑空间,则f:X o Y imes Z连续 $\Leftrightarrow
ho_1\circ f,
ho_2\circ f$ 连续

命题 1.3.2

设X, Y, Z为拓扑空间,则 $(X \times Y) \times Z$ 与 $X \times Y \times Z$ 同胚.

商空间拓扑

设X拓扑空间, \sim 为X上的一个等价关系, $X/_{\sim}$ 是商集,映射 $\pi:X\to X/_{\sim}$,则使映射 π 连续的极大拓扑为 $\mathcal{J}=\{V\in X/_{\sim}:\pi^{-1}\in\mathcal{J}_X\}$.

命题 1.3.3

设X和Y为拓扑空间,映射 $f:X\to Y$ 满射,由此定义等价关系 \sim ,则 $X/_\sim$ 与Y同胚.

1.4 拓扑基与拓扑子基

拓扑基的定义:

设X是拓扑空间, $\mathscr{B} \subset X$,如果:

- $(1) \cup_{B \in \mathscr{B}} B = X.$
- (2)岁 $B_1,B_2\in\mathscr{B},$ 岁 $x\in B_1\cap B_2,$ ∃ $B\in\mathscr{B},s.t.$ $x\in B\subset B_1\cap B_2.$ 则称 \mathscr{B} 为X的一个拓扑基.

(2)的等价描述:

 $\forall B_1, B_2 \in \mathscr{B}, \exists \mathscr{B}_1 \subset \mathscr{B}, s.t. \ B_1 \cap B_2 = \cup_{B \in \mathscr{B}_1} B.$

生成拓扑:

设X是非空集合, \mathscr{B} 为X的一个拓扑基,设X的子集 $\mathcal{J}=\{\varnothing\}\cup\{A\subset X:\exists\mathscr{B}_A\subset\mathscr{B},s.t.\ A=\cup_{B\in\mathscr{B}_A}B\}$,易证 \mathcal{J} 是X的拓扑,称 \mathcal{J} 为 \mathscr{B} 生成的拓扑。

拓扑子基的定义

设X是拓扑空间, $\mathscr{S}\subset X$,如果: $\cup_{S\in\mathscr{S}}S=X$. 则称 \mathscr{S} 为X的一个拓扑子基.

生成拓扑基:

设X是非空集合, \mathcal{S} 为X的一个拓扑子基,设X的子集 $\mathcal{S}=\{S_1\cap S_2\cap\cdots\cap S_n:\ S_j\in\mathcal{S},0\leq j\leq n\}$,易证 \mathcal{S} 是X的拓扑基,称 \mathcal{S} 为 \mathcal{S} 生成的拓扑基,由 \mathcal{S} 生成的拓扑。

命题1.4.1:

设X和Y是两个拓扑空间,Y的拓扑由子基 \mathscr{S} 生成, $f:X\to Y$,则f连续 $\Leftrightarrow \forall V\in \mathscr{S}, f^{-1}(V)\in \mathcal{J}_X$.

证明:

"⇒:" 由连续的定义,易证.

" \Leftarrow :" $\forall U \in \mathcal{J}_Y$, $\exists \mathscr{B}_U \subset \mathscr{B}_Y$, s.t. $U = \cup_{B \in \mathscr{B}_U} B$. $\forall B \in \mathscr{B}_U$,又 \mathcal{J}_Y 由 \mathscr{S} 生成,则 $\exists \{S_i\}_{0 \leq i \leq n} \subset \mathscr{S}$, s.t. $\cap_{i=0}^n S_i = B$. 又 $f^{-1}(S_i) \in \mathcal{J}_X$,则 $f^{-1}(B) = f^{-1}(\cap_{i=0}^n S_i) \in \mathcal{J}_X$,则 $f^{-1}(U) = f^{-1}(\cup_{B \in \mathscr{B}_U} B) \in \mathcal{J}_X$. 所以f连续.

1.5 拓扑空间中的序列

定义 1.5.1:

设X是一个拓扑空间, $\{x_n\}_{n=1}^\infty$ 是X的一个点列, $x_0\in X$,如果 $\forall x_0$ 的领域U, $\exists N$, $\forall n>N$,有 $x_n\in U$,则称 $\{x_n\}_{n=1}^\infty$ 收敛于 x_0 ,记为 $x_n\to x_0$ $(n\to\infty)$.

同一点列收敛的点不唯一(例:平凡拓扑空间)

命题 1.5.2:

设X是一拓扑空间, $x \in X, X - \{x\}$ 中有一点列收敛于x,则x是聚点.

命题 1.5.3:

设X是不可数集 给X定义可数补拓扑,则 $\exists x_0\in X, s.t.\ x_n\to x_0(n\to\infty)\iff \{x_n\}_{n=1}^\infty$.是最终常点列.

推论:在这个空间中,若A是不可数集,则每个点 $x \in A$ 都是聚点.

命题 1.5.4:

设X是拓扑空间, $x_0 \in X$, f连续,若f在 x_0 连续,则 $\forall x_n \to x_0$,有 $f(x_n) \to f(x_0)$.

逆命题不一定成立.