线性代数-5

主讲: 吴利苏

wulisu@sdust.edu.cn

2025年9月23日

本次课内容

1. 矩阵的定义

2. 特殊矩阵

3. 矩阵的应用

4. 矩阵的运算

矩阵

定义 (矩阵 Matrix)

由 $m \times n$ 个数 a_{ij} , $(i = 1, \dots, m; j = 1, \dots, n)$, 排成的 m 行 n 列的数表称为 m 行 n 列的矩阵, 简称 $m \times n$ 矩阵, 表示为

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \implies \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

通常可记为大写字母的 A、 $A_{m \times n}$ 、 (a_{ij}) 、 $(a_{ij})_{m \times n}$.

理解矩阵——4个视角

• 一个矩阵 $(m \times n)$ 可以被视为 1 个矩阵, mn 个数, n 个列和 m 个行.

图: 从四个角度理解矩阵

• 实矩阵、复矩阵、0-1 矩阵: a_{ij} 取实数、复数、0 或 1 的矩阵.

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \pi \end{pmatrix}, \qquad B = \begin{pmatrix} i & -1 \\ -1 & i \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

● 实矩阵、复矩阵、0-1 矩阵: aij 取实数、复数、0 或 1 的矩阵.

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \pi \end{pmatrix}, \qquad B = \begin{pmatrix} i & -1 \\ -1 & i \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• 零矩阵: $a_{ij} = 0, \forall i, j$, 元素全为零的矩阵, 记为 O.

$$O_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \qquad O_{2\times 3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• 行矩阵(行向量): m=1, 即只有一行的矩阵,

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

为避免书写混肴, 行矩阵也记为

$$A=(a_1,a_2,\cdots,a_n).$$

● 行矩阵 (行向量): m=1, 即只有一行的矩阵,

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

为避免书写混看, 行矩阵也记为

$$A=(a_1,a_2,\cdots,a_n).$$

• 列矩阵 (列向量): n=1, 即只有一列的矩阵,

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}.$$

为书写方便, 列矩阵常写为 $A = (a_1, a_2, \dots, a_n)^T$.

• 方阵.

m=n, 即行数和列数相同的矩阵, 称为 n 阶方阵. 此时可记为 A_n .

$$A_3 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

● 上 (下) 三角矩阵.

 $a_{ij} = 0, i > j$, 即主对角线下方元素全为零的方阵, 称为上三角矩阵. 换句话说. 非零元只可能出现在主对角线上方.

$$A_{\pm} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$$

• 上(下)三角矩阵.

 $a_{ij} = 0, i > j$, 即主对角线下方元素全为零的方阵, 称为上三角矩阵. 换句话说, 非零元只可能出现在主对角线上方.

$$A_{\perp} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$$

 $a_{ij} = 0, i < j$, 即主对角线上方元素全为零的方阵, 称为下三角矩阵. 换句话说, 非零元只可能出现在主对角线下方.

$$A_{\mathcal{T}} = \begin{pmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

• 对角矩阵.

 $a_{ij} = 0, i \neq j$, 即除对角线外的元素全为零的方阵, 称为对角矩阵.

$$\Lambda = egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & \ & & \ddots & \ & & & \lambda_n \end{pmatrix}$$

对角阵可简记为 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

• 对角矩阵.

 $a_{ij}=0, i\neq j$, 即除对角线外的元素全为零的方阵, 称为对角矩阵.

$$\Lambda = egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}$$

对角阵可简记为 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

• 单位矩阵.

$$E = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

即对角元全为 1 的对角阵, 称为单位阵. 记为 E_n 或 E.

• 对称矩阵.

 $a_{ij} = a_{ji}, \forall i, j$, 即沿着对角线对称元素相等的方阵, 称为对称阵.

$$A_{\Re m} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

• 对称矩阵.

 $a_{ij} = a_{ji}, \forall i, j$, 即沿着对角线对称元素相等的方阵, 称为对称阵.

$$A_{\Re m} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

• 反对称矩阵.

 $a_{ij} = -a_{ji}, \forall i, j$, 即沿着对角线对称元素互为相反数的方阵, 称为反对称阵.

$$A_{\cancel{\uprightarpoonup}} A_{\cancel{\uprightarpoonup}} = \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ -a_{12} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{1n} & -a_{2n} & \cdots & 0 \end{pmatrix}$$

行阶梯形矩阵

- 行阶梯形矩阵:
 - 可画出一条阶梯线, 线的下方全是 0;
 - 每个台阶只有一行;
 - 阶梯线的竖线后面是非零行的第一个非零元素.

$$\begin{pmatrix}
\frac{1}{0} & 1 & 2 & 2 & -3 \\
0 & 2 & -1 & 0 & -4 \\
0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

行阶梯形矩阵

- 行阶梯形矩阵:
 - 可画出一条阶梯线, 线的下方全是 0:
 - 每个台阶只有一行:
 - 阶梯线的竖线后面是非零行的第一个非零元素.

$$\begin{pmatrix} 1 & 1 & 2 & 2 & -3 \\ 0 & 2 & -1 & 0 & -4 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• 反例:

$$\begin{pmatrix} 1 & 1 & 2 & 2 & -3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 2 & 2 & -3 \\ \hline 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

行最简形矩阵、标准形矩阵

- 行最简形矩阵:
 - 行阶梯形;
 - 非零行的首个非零元为1;
 - 这些1所在的列其他元素都为 0.

$$\begin{pmatrix} 1 & 0 & 2 & 0 & -3 \\ 0 & 1 & -1 & 0 & -4 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

行最简形矩阵、标准形矩阵

- 行最简形矩阵:
 - 行阶梯形;
 - 非零行的首个非零元为1;
 - 这些1所在的列其他元素都为 0.

$$\begin{pmatrix}
1 & 0 & 2 & 0 & -3 \\
0 & 1 & -1 & 0 & -4 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

• 标准形矩阵:

$$F = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix}_{m \times n}, \begin{pmatrix} E_m \\ O \end{pmatrix}_{m \times n}, \begin{pmatrix} E_n & O \end{pmatrix}_{m \times n}, E_n.$$

行最简形矩阵、标准形矩阵

- 行最简形矩阵:
 - 行阶梯形:
 - 非零行的首个非零元为1;
 - 这些1所在的列其他元素都为 0.

$$\begin{pmatrix}
1 & 0 & 2 & 0 & -3 \\
0 & 1 & -1 & 0 & -4 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

• 标准形矩阵:

$$F = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix}_{m \times n}, \begin{pmatrix} E_m \\ O \end{pmatrix}_{m \times n}, \begin{pmatrix} E_n & O \end{pmatrix}_{m \times n}, E_n.$$

● 行阶梯形矩阵 ⊃ 行最简形矩阵 ⊃ 标准形矩阵.

矩阵的应用-矩阵和线性方程组

例 (线性方程组的矩阵表示)

m 个方程 n 个未知量的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$\dots \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

$$B = (A \ \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \beta$.

令

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \ \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \beta$.

A 称为线性方程组的系数矩阵;

令

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \ \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \beta$.

- A 称为线性方程组的系数矩阵;
- B 称为线性方程组的增广矩阵;

令

$$A = (a_{ij}), \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$B = (A \ \beta) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

则线性方程组 (1) 的矩阵表示可写为 $AX = \beta$.

- A 称为线性方程组的系数矩阵;
- B 称为线性方程组的增广矩阵;
- X和β分别称为线性方程组的未知量矩阵和常数项矩阵.

矩阵的应用-矩阵和线性变换

例 (线性变换和矩阵)

给定一个
$$n$$
 维向量 $X = (x_1, x_2, \dots, x_n)^T$, 取线性变换如下,

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$
(2)

则得到 n 维向量 $Y = (y_1, y_2, \dots, y_n)^T$. 矩阵 $A = (a_{ij})_{n \times n}$ 表示上面 线性变换. 则有

$$Y = AX$$
.

矩阵的应用-矩阵和线性变换

例 (线性变换和矩阵)

给定一个
$$n$$
 维向量 $X = (x_1, x_2, \dots, x_n)^T$, 取线性变换如下,

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$

$$(2)$$

则得到 n 维向量 $Y = (y_1, y_2, \dots, y_n)^T$. 矩阵 $A = (a_{ij})_{n \times n}$ 表示上面 线性变换. 则有

$$Y = AX$$
.

- 线性变换和 n 阶方阵一一对应.
- 若 $A = (a_{ij})_{m \times n}$,则 Y = AX 称为线性映射(书中不同).

伸缩、投影、旋转、反射

• 设线性变换

$$Y = AX$$
.

A 分别取

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}, \quad \frac{\alpha \alpha^T}{|\alpha|^2} = \frac{1}{x_0^2 + y_0^2} \begin{pmatrix} x_0^2 & x_0 y_0 \\ x_0 y_0 & y_0^2 \end{pmatrix};$$

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad E - 2\alpha \alpha^T = \begin{pmatrix} 1 - 2x_0^2 & -2x_0y_0 \\ -2x_0y_0 & 1 - 2y_0^2 \end{pmatrix}$$

则分别对应伸缩变换、在 $\alpha = (x_0, y_0)^T$ 方向上的投影变换、逆时针旋转 θ 的旋转变换、关于以单位向量 $\alpha = (x_0, y_0)^T$ 为法向量的平面的反射变换.

14/38

矩阵的应用-矩阵和图

例 (图的关联矩阵)

● 图 (Graph).

$$a_{ij} = \begin{cases} 1, & \text{if } v_i, v_j \geq 0 \text{ in } j, \\ 0, & \text{if } v_i, v_j \geq 0 \text{ in } j. \end{cases}$$

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

例 (图的矩阵表示)

• 加权图 (Weighted Graph).

$$\begin{pmatrix} 0 & w_{12} & w_{13} & 0 \\ w_{12} & 0 & w_{23} & 0 \\ w_{13} & w_{23} & 0 & w_{34} \\ 0 & 0 & w_{34} & 0 \end{pmatrix}$$

例 (图的矩阵表示)

● 有向图 (Direct Graph).

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 (图的矩阵表示)

• 有向加权图 (Direct Weighted Graph).

$$\begin{pmatrix}
0 & w_{12} & w_{13} & 0 \\
0 & 0 & w_{23} & 0 \\
0 & 0 & 0 & w_{34} \\
0 & 0 & 0 & 0
\end{pmatrix}$$

矩阵的应用-矩阵和数字图像

例 (数字图像的存储和处理)

- 数字图像在计算机等电子设备中都是以矩阵的形式存储和显示的.
 - 比如,一张 1600*1000 像素的图像在计算机中就是一个 1600×1000 的矩阵.
 - 二值图像的矩阵的 aij 取值为 0 和 1;
 - 灰度图像的矩阵的 a_{ij} 取值为 0-255(即一字节 8 位二进制数的范围);
 - 彩色图像的矩阵的 a_{ij} 取值为一个三原色向量 (R,G,B).
- 对图像的处理和编辑就是对矩阵的处理.
 - 算法思想一般是:用一个低阶方阵(称为模板或者算子)去改变图像矩阵的每一个像素值.

• 不同方向的二阶 Laplace 检测算子:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4_{\triangle} & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & -4_{\triangle} & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8_{\triangle} & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

图: 边缘提取

矩阵的运算

- \bullet A = B
- \bullet A+B
- \bullet $\lambda \cdot A$
- AB
- $A^k \& f(A)$
- \bullet A^T
- |A|
- \bullet tr(A)
- A* 和 A⁻¹ (下次课)

矩阵的相等

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

• 如果 m = m', n = n', 则称 A 和 B 是同型矩阵.

矩阵的相等

谟
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

- 如果 m = m', n = n', 则称 A 和 B 是同型矩阵.
- 对于同型矩阵 A, B,

$$A = B \Leftrightarrow a_{ij} = b_{ij}, \forall i, j$$

矩阵的相等

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

- 如果 m = m', n = n', 则称 A 和 B 是同型矩阵.
- 对于同型矩阵 A, B,

$$A = B \Leftrightarrow a_{ij} = b_{ij}, \forall i, j$$

• 例:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

- 性质:
 - 交換律: A + B = B + A
 - 结合律: (A+B)+C=A+(B+C)

谟
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

- 性质:
 - 交換律: A + B = B + A
 - 结合律: (A+B)+C=A+(B+C)
- 负矩阵:

$$-A \stackrel{\triangle}{=} (-a_{ij})$$

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

● 若 A, B 同型,则

$$A + B \stackrel{\Delta}{=} (a_{ij} + b_{ij})_{m \times n}$$

- 性质:
 - 交換律: A + B = B + A
 - 结合律: (A+B)+C=A+(B+C)
- 负矩阵:

$$-A \stackrel{\Delta}{=} (-a_{ij})$$

● 矩阵减法: A, B 同型

$$A - B \stackrel{\Delta}{=} A + (-B) = (a_{ij} - b_{ij})$$

矩阵的数乘

设
$$A = (a_{ij})_{m \times n}$$
.

矩阵的数乘

误
$$A = (a_{ij})_{m \times n}$$
.

$$\lambda A \stackrel{\triangle}{=} (\lambda a_{ij})_{m \times n}$$

矩阵的数乘

谈
$$A = (a_{ij})_{m \times n}$$
.

_

$$\lambda A \stackrel{\Delta}{=} (\lambda a_{ij})_{m \times n}$$

- 性质:
 - 结合律: $(\lambda \mu)A = \lambda(\mu A)$
 - 矩阵对数的分配律: $(\lambda + \mu)A = \lambda A + \mu A$
 - 数对矩阵的分配律: $\lambda(A+B) = \lambda A + \lambda B$

矩阵的线性运算

对于同型矩阵 A, B 和数 k, l, 称 kA + lB 为矩阵 A, B 的线性运算.

例

已知

$$A = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

求解矩阵方程 2A + 5X - B = 0.

矩阵的乘法

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

矩阵的乘法

设
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

• 如果 n=m', 则

$$AB \stackrel{\Delta}{=} (c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj})_{m \times n'}$$

 c_{ij} 为 A 的第 i 行与 B 的第 j 列的内积.

矩阵的乘法

读
$$A = (a_{ij})_{m \times n}$$
, $B = (b_{ij})_{m' \times n'}$.

• 如果 n=m',则

$$AB \stackrel{\Delta}{=} (c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj})_{m \times n'}$$

 c_{ij} 为 A 的第 i 行与 B 的第 j 列的内积.

- 性质:
 - 不满足交换律: AB 和 BA 可能不相等.
 - 结合律: (AB)C = A(BC)
 - 数乘和矩阵乘法可交换: $\lambda(AB) = (\lambda A)B = A(\lambda B)$
 - 分配律: A(B+C) = AB + AC, (B+C)A = BA + CA
 - EA=AE=A

• 行向量乘同阶列向量是一个数

$$(a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$$

• 行向量乘同阶列向量是一个数

$$(a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{k=1}^n a_k b_k$$

• 列向量乘同阶行向量是一个任意两行(列)成比例的方阵.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} = \begin{pmatrix} b_1 a_1 & b_1 a_2 & \cdots & b_1 a_n \\ b_2 a_1 & b_2 a_2 & \cdots & b_2 a_n \\ \vdots & \vdots & & \vdots \\ b_n a_1 & b_n a_2 & \cdots & b_n a_n \end{pmatrix}$$

• 行向量乘同阶列向量是一个数

$$(a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$$

• 列向量乘同阶行向量是一个任意两行(列)成比例的方阵.

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} = \begin{pmatrix} b_1 a_1 & b_1 a_2 & \cdots & b_1 a_n \\ b_2 a_1 & b_2 a_2 & \cdots & b_2 a_n \\ \vdots & \vdots & & \vdots \\ b_n a_1 & b_n a_2 & \cdots & b_n a_n \end{pmatrix}$$

AB 和 BA 可能不同型(i.e. 不相等).

例

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

求 AB和 BA.

解:

例

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

求 AB和 BA.

解:

$$AB = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} \qquad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

例

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

求 AB和 BA.

解:

$$AB = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} \qquad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

• AB 和 BA 同型当且仅当 A 和 B 是同阶方阵, 但即使 AB 和 BA 同型也可能 $AB \neq BA$.

例

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

求 AB和 BA.

$$AB = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} \qquad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- AB 和 BA 同型当且仅当 A 和 B 是同阶方阵, 但即使 AB 和 BA 同型也可能 $AB \neq BA$.
- 特别地, 对两个 n 阶方阵 A, B, 若 AB = BA, 则称方阵 A 和 B 是可交换的.

矩阵乘法不满足消去律

例

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ -2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} -7 & 1 \\ 1 & 2 \end{pmatrix},$$

但

$$AB = AC = \begin{pmatrix} -5 & 5\\ -10 & 10 \end{pmatrix}$$

 $\mathbb{L} A \neq O, B \neq C.$

矩阵乘法不满足消去律

例

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ -2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} -7 & 1 \\ 1 & 2 \end{pmatrix},$$

但

$$AB = AC = \begin{pmatrix} -5 & 5\\ -10 & 10 \end{pmatrix}$$

 $\mathbb{L} A \neq O, B \neq C.$

- 消去律不成立. AB = AC, $A \neq O \Rightarrow B = C$;
- $AB = 0 \Rightarrow A = 0 \neq B = 0$.

 \bullet 设 A 为 n 阶方阵, 定义矩阵的幂

$$A^k = A \cdot A \cdots A \quad (k \uparrow A)$$

 \circ 设 A 为 n 阶方阵, 定义矩阵的幂

$$A^k = A \cdot A \cdots A \quad (k \uparrow A)$$

•
$$A^{k+l} = A^k A^l$$
, $(A^k)^l = A^{kl}$

 \bullet 设 A 为 n 阶方阵,定义矩阵的幂

$$A^k = A \cdot A \cdots A \quad (k \uparrow A)$$

•
$$A^{k+l} = A^k A^l$$
, $(A^k)^l = A^{kl}$ 下面等式成立?

- $\bullet (AB)^k = A^k B^k,$
- $(A \pm B)^2 = A^2 \pm 2AB + B^2$,
- $(A+B)(A-B) = A^2 B^2$,

 \bullet 设 A 为 n 阶方阵, 定义矩阵的幂

$$A^k = A \cdot A \cdots A \quad (k \ ^ A)$$

- $A^{k+l} = A^k A^l$, $(A^k)^l = A^{kl}$
- 当 AB = BA 时,下面等式成立.
 - $\bullet (AB)^k = A^k B^k,$
 - $(A \pm B)^2 = A^2 \pm 2AB + B^2$,
 - $(A+B)(A-B) = A^2 B^2$,

证明 $A^k = \lambda^{k-1} A$

例

$$A = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \quad \lambda = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

31/38

矩阵多项式

• 矩阵多项式: 将一元多项式

$$\varphi(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的 x 换为方阵 A,

$$\varphi(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E.$$

注: 规定 $A^0 = E$.

矩阵多项式

• 矩阵多项式: 将一元多项式

$$\varphi(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的 x 换为方阵 A,

$$\varphi(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E.$$

注: 规定 $A^0 = E$.

• 设对角阵 $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, 则

矩阵的转置

• 令 $A = (a_{ij})_{m \times n}$, 定义 A 的转置

$$A^T \stackrel{\Delta}{=} (a_{ii})_{n \times m}$$

- 性质:
 - $(A^T)^T = A$
 - $(A+B)^T = A^T + B^T$
 - $\bullet (\lambda A)^T = \lambda A^T$

例

计算 $(AB)^T$, 其中

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}.$$

转置和对称矩阵

- A 为对称阵 $\Leftrightarrow A^T = A$.
- A 为反对称阵 $\Leftrightarrow A^T = -A$.

例

设
$$X = (x_1, x_2, \dots, x_n)^T$$
, $X^T X = 1$,

$$H = E - 2XX^{T}.$$

证明 H 为对称阵, 且 $HH^T = E$.

证明:

方阵的行列式

- A 为 n 阶方阵,则可以给出 A 的行列式,记为 $\det A$ 或 |A|.
- 性质:
 - $|A^T| = |A|$
 - $\bullet |\lambda A| = \lambda^n |A|$
 - $\bullet |AB| = |A| \cdot |B|$
 - $|A + B| \neq |A| + |B|$

例

已知 A, B, C 为四阶方阵, $|A| = 2, |B| = -3, |C| = 3, 求 |-3AB^TC|$.

方阵的迹

• $A = (a_{ij})$ 为 n 阶方阵, A 的迹 trA 定义为对角线元素之和.

$$tr A = a_{11} + a_{22} + \cdots + a_{nn}.$$

- 性质:
 - $\operatorname{tr} A^T = \operatorname{tr} A$
 - $\operatorname{tr}(\lambda A) = \lambda \cdot \operatorname{tr} A$
 - $\bullet \ \operatorname{tr}(A+B) = \operatorname{tr}A + \operatorname{tr}B$

小结

- \bullet A = B
- \bullet A + B
- \bullet $\lambda \cdot A$
- AB
- $A^k \& f(A)$
- \bullet A^T
- |A|
- \bullet trA

小结

- \bullet A = B
- \bullet A+B
- \bullet $\lambda \cdot A$
- AB
- $A^k \& f(A)$
- \bullet A^T
- |A|
- \bullet trA
- A* 和 A⁻¹ (下次课)

作业

- Page₄₄. 2; 3-(2 注意线性变换对应的矩阵为方阵); 5
- Page₅₈-Page₅₉ 1; 2; 3-(1,2,5); 4; 6; 7; 8; 10
- Page₆₅-Page₆₆ 3-(2,4); 4; 5-(1); 7; 8; 11

欢迎提问和讨论

吴利苏(http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2025年9月23日

附录

向量乘以向量——2个视角

点积 $(a \cdot b)$ 是一个数,用矩阵的语言可以表示为 $a^{T}b$.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 + 2x_2 + 3x_3$$

 ab^{T} 是一个矩阵 $(ab^{T} = A)$. 如果 a, b 都不为 0,则结果 A 是秩为 1 的矩阵.

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x & y \\ 2x & 2y \\ 3x & 3y \end{bmatrix}$$

矩阵乘以向量——2个视角

• 一个矩阵乘以一个向量将产生三个点积组成的向量 (Mv1) 和一种 A 的列向量的线性组合.

A 的行向量乘以向量 x 得到的 Ax, 是以点积为元素的列向量.

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (x_1 + 2x_2) \\ (3x_1 + 4x_2) \\ (5x_1 + 6x_2) \end{bmatrix}$$

乘积Ax是A的列向量的线性组合。

$$Ax = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

向量乘以矩阵——2个视角

$$\mathbf{y}A = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} (y_1 + 3y_2 + 5y_3) & (2y_1 + 4y_2 + 6y_3) \end{bmatrix}$$

行向量y乘以A的列向量得到的yA是以点积为元素的行向量.

Γ1 21

L5 6J

乘积yA是A的行向量的线性

矩阵乘以矩阵——4个视角

每个元素为行向量和列向量的点积.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} (x_1 + 2x_2) & (y_1 + 2y_2) \\ (3x_1 + 4x_2) & (3y_1 + 4y_2) \\ (5x_1 + 6x_2) & (5y_1 + 6y_2) \end{bmatrix}$$

乘积矩阵的每一行是第一个矩阵行的线性组合.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2^* \\ a_3^* \end{bmatrix} X = \begin{bmatrix} a_1 \\ a_2^* X \\ a_3^* X \end{bmatrix}$$

Ax 和 Ay 是A 的列向量的线性组合。

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = A[\mathbf{x} \quad \mathbf{y}] = [A\mathbf{x} \quad A\mathbf{y}]$$

乘积矩阵 AB 是秩为 1 矩阵的和.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{24} & b_{22} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} b_1^* \\ b_2^* \end{bmatrix} = a_1 b_1^* + a_2 b_2^*$$

$$= \begin{bmatrix} 3 \\ 5 \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \end{bmatrix} + \begin{bmatrix} 4 \\ 6 \end{bmatrix} \begin{bmatrix} b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 3b_{11} & 3b_{12} \\ 5b_{11} & 5b_{12} \end{bmatrix} + \begin{bmatrix} 4b_{21} & 4b_{22} \\ 6b_{21} & 6b_{22} \end{bmatrix}$$

下面展示一些实用的模式。

Operations from the right act on the columns of the matrix. This expression can be seen as the three linear combinations in the right in one formula.

rows of the matrix. This expression can be seen as the three linear combinations in the right in one formula.

Applying a diagonal matrix from the right scales each column.

Applying a diagonal matrix from the left scales each row.

$$DB = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{b}_1^* \\ \boldsymbol{b}_2^* \\ \boldsymbol{b}_3^* \end{bmatrix} = \begin{bmatrix} d_1 \boldsymbol{b}_1^* \\ d_2 \boldsymbol{b}_2^* \\ d_3 \boldsymbol{b}_3^* \end{bmatrix}$$

图: 模式 1', 2' - (P1'), (P2')

This pattern makes another combination of columns. You will encounter this in differential/recurrence equations.

$$XDc = [x_1 \quad x_2 \quad x_3] \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = c_1 d_1 x_1 + c_2 d_2 x_2 + c_3 d_3 x_3$$

图: 模式 3 - (P3)

A matrix is broken down to a sum of rank 1 matrices, as in singular value/eigenvalue decomposition.

$$U\Sigma V^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1^{\mathrm{T}} \\ \boldsymbol{v}_2^{\mathrm{T}} \\ \boldsymbol{v}_3^{\mathrm{T}} \end{bmatrix} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathrm{T}} + \sigma_3 \boldsymbol{u}_3 \boldsymbol{v}_3^{\mathrm{T}}$$