课程编号: 100076204 北京理工大学 2022~2023 学年第一学期

计算机组成与体系结构试题

班级	学号	姓名	成绩
/ ·// •	· · ·	<i>/</i> — —	// * / / .

考试说明

- 一、在每张答题纸上均要写明班级、学号和姓名。
- 二、 所有答案请写在答题纸上,<u>只写题号,手写对应题目的计算过程和答案</u>。考试结束后 5 分钟内, 对答题纸拍照、生成 PDF 文件, 使用 i 北理---课程群的文件 收集功能上传答卷。
- 三、保持答题纸整洁,因答题纸字迹不清楚造成误判,责任自负。
- 四、考试时间为90分钟。

- 一. (10 分) 某浮点数 x 按 IEEE 754 标准表示,其十六进制存储格式为(C1360000), 则其十进制数值是多少?写出计算过程。
- 二.(10分)设某机为定长指令字结构,指令长度 12位,每个地址码占 3位,试提出一种分配方案,使该指令系统包含:4条三地址指令,16条二地址指令,64条单地址指令和 16条零地址指令。
- 三. (12分)假定部分主存单元中的内容见下表:

主存地址	内 容				
1200H	120CH				
120CH	38B8H				
38B8H	88F9H				

在以下各情况下,操作数的有效地址和操作数各是多少?

- (1)操作数采用变址寻址,变址寄存器中的值为 12,指令中给出的形式地址为 1200H。
 - (2) 操作数采用一次间接寻址,指令中给出的地址码为120CH。
- (3) 操作数采用寄存器间接寻址,指令中给出的寄存器编号为8,8号寄存器的内容为1200H。
- 四. (12分) 定点除法运算需要几个寄存器? 它们各自的作用如何? 设:

$$X = -\frac{9}{16}, Y = \frac{11}{16}, \ \ \text{$x:$} \ \ X \div Y_{\circ}$$

要求采用补码加减交替法进行运算,写出运算的中间过程。

五.(12 分)某机器中,已知有一个地址空间为 0000~1FFFH 的 ROM 区域,现再用 RAM 芯片($8K\times4$)形成一个 $16K\times8$ 的 RAM 区域,起始地址为 2000H,假设 RAM 芯片有 $\overline{\text{CS}}$ 和 $\overline{\text{WE}}$ 信号控制端,CPU 地址总线为 A15~A0,数据总线为 D7~D0,控制信号为 R/ $\overline{\text{W}}$ (读/写), $\overline{\text{MREQ}}$ (当存储器进行读或写时,该信号为指示地址总线的地址是有效的)。要求画出主存的逻辑图。(假设 ROM 由一片 ROM 芯片组成)。

六. (12 分) CPU 执行一段程序时, Cache 完成存的次数为 5000 次, 主存完成存的次数为 200 次。已知 Cache 存取周期为 40ns, 主存存取周期为 160ns,, 问:

- (1) Cache 的命中率是多少?
- (2) CPU 访存的平均访问时间是多少?
- (3) Cache-主存系统的效率是多少?

七. (12分)设有8条微指令,每条微指令所含的微命令控制信号如下表所示:

94 13 0 7	4 1 1/2 14	- · ·	4 /4 1	17741	• // ,	7 11 4 1/2	* * 1 * *			· · ·		
		微命令信号										
微指令	a	b	c	d	e	f	g	h	i	j		
I_1	\checkmark					√	√		√	√		
I_2	√				√			√				
I_3		√										
I_4							√	√				
I_5				√		√				√		
I_6	√		√		√							
I_7				√			√	√				
I_8	√			√					√			

a~j 分别代表 10 种不同性质的微命令信号,假设一条微指令的操作控制字段为 8 位,请安排微指令的操作控制字段的格式,并分别将 8 条微指令代码化。

八. $(10 \, \text{分})$ 假设数据序列为 101010111000001,试分别用不归零-1 制(NRZ-1)、调相 制(PE)、调频制(FM)和改进的改进型调频制 (M^2FM) 画出写电流波形。

九. $(10 \, \text{分})$ 某机的中断系统有 5 个中断源,每个中断源对应一个屏蔽码,中断响应的优先次序为 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$,现要使中断处理次序改为 $1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 3$,请写出其对应的中断屏蔽码。("0"表示开放,"1"表示屏蔽)。