

Análisis Avanzado - Espacios Métricos

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Tenemos una noción intuitiva de distancia.

Tenemos una noción intuitiva de distancia. Cuando estudiamos espacios métricos, aprendemos que hay muchas maneras de medir distancias.

Tenemos una noción intuitiva de *distancia*. Cuando estudiamos espacios métricos, aprendemos que hay muchas maneras de medir distancias.

Los *espacios* donde medimos las distancias pueden ser muy distintos.

Tenemos una noción intuitiva de distancia.

Cuando estudiamos espacios métricos, aprendemos que hay muchas maneras de medir distancias.

Los *espacios* donde medimos las distancias pueden ser muy distintos.

Hay conceptos que dependen de la noción de distancia: <u>límite</u>, <u>continuidad</u> y convergencia de sucesiones.

Tenemos una noción intuitiva de distancia.

Cuando estudiamos espacios métricos, aprendemos que hay muchas maneras de medir distancias.

Los *espacios* donde medimos las distancias pueden ser muy distintos.

Hay conceptos que dependen de la noción de distancia: límite, continuidad y convergencia de sucesiones. Si tenemos distancias en espacios abstractos, vamos a poder entender, por ejemplo, continuidad de funciones definidas espacios abstractos.

Sea E un conjunto. Una función $d: E \times E \to \mathbb{R}$ se llama una *métrica* o una *distancia* sobre E si se cumple:

Sea E un conjunto. Una función $d: E \times E \to \mathbb{R}$ se llama una métrica o una distancia sobre E si se cumple:

(i)
$$d(x,y) \ge 0$$
 para todo $x, y \in E$, $y d(x,y) = 0$ si y sólo si $x = y$:

$$(1)$$
 $u(x,y) \ge 0$ para todo $x,y \in E$, $y u(x,y) = 0$ si y solo $x = y$;

Sea E un conjunto. Una función $d: E \times E \to \mathbb{R}$ se llama una *métrica* o una *distancia* sobre E si se cumple:

- (i) $d(x,y) \ge 0$ para todo $x, y \in E$, y d(x,y) = 0 si y sólo si x = y;
 - (ii) d(x,y) = d(y,x) para todo $x,y \in E$;
 - (iii) $d(x,y) \le d(x,z) + d(z,y)$ para todo $x,y,z \in E$.

Al par (E, d) lo llamaremos un espacio métrico.

Sea E un conjunto. Una función $d: E \times E \to \mathbb{R}$ se llama una *métrica* o una *distancia* sobre E si se cumple:

(i)
$$d(x,y) \ge 0$$
 para todo $x,y \in E$, $y d(x,y) = 0$ si y sólo si $x = y$;

- (ii) d(x,y) = d(y,x) para todo $x,y \in E$;
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ para todo $x,y,z \in E$.

Al par (E, d) lo llamaremos un espacio métrico.

Notemos que para todo
$$x, y \in E$$
, $d(x,y) \in d(x,y) = 2d(x,y)$.

Sea E un conjunto. Una función $d: E \times E \to \mathbb{R}$ se llama una *métrica* o una *distancia* sobre E si se cumple:

- (i) $\underline{d(x,y) \ge 0}$ para todo $x,y \in E$, y d(x,y) = 0 si y sólo si x = y;
- (ii) d(x,y) = d(y,x) para todo $x,y \in E$;
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ para todo $x,y,z \in E$.

Al par (E, d) lo llamaremos un espacio métrico.

Notemos que para todo $x, y \in E$,

$$d(x,x) \leq d(x,y) + d(y,x) = 2d(x,y).$$

Entonces, si sólo supiéramos que d(x,x) = 0, podríamos deducir que $d(x,y) \ge 0$ para todo $x,y \in E$.

Sean $x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)$ elementos de \mathbb{R}^n

Sean $x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)$ elementos de \mathbb{R}^n

Definimos la distancia euclídea como

$$d_{2}(x,y) = \left(\sum_{i=1}^{n} (x_{i} - y_{i})^{2}\right)^{1/2} = \|x - y\|_{2}$$

$$(3,3)$$

$$(3,3)$$

$$(4,3)$$

$$(4,3)$$

Sean $x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)$ elementos de \mathbb{R}^n

Definimos la distancia euclídea como

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} = \left(\|x - y\|_2\right).$$

La distancia 1 está dada por

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i| = \sqrt{|x - y||_1}.$$

Sean $x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n)$ elementos de \mathbb{R}^n

Definimos la distancia euclídea como

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} = \|x - y\|_2.$$

La distancia 1 está dada por

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i| = ||x - y||_1.$$

La distancia infinito está dada por

$$d_{\infty}(x,y) = \sup_{i=1,...,n} |x_i - y_i| = ||x - y||_{\infty}.$$

Ejemplo
$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i| = \|x - y\|_1$$
 es una distancia.
$$\lim_{n \to \infty} |x_i - y_i| = \|x - y\|_1$$

(i)
$$d_1(x_1y) = 0$$
 $d_1(x_1y) = 0$ $d_1(x_1y$

Dado un intervalo cerrad $\phi[a,b] \subset \mathbb{R}$, llamaremos C([a,b]) al conjunto de todas las funciones $f:[a,b] \to \mathbb{R}$ continuas.

Dado un intervalo cerrado $[a,b] \subset \mathbb{R}$, llamaremos C([a,b]) al conjunto de todas las funciones $f:[a,b] \to \mathbb{R}$ continuas.

La métrica natural en este conjunto es:

$$d_{\infty}(x,y) = \sup_{a \le t \le b} |x(t) - y(t)|.$$

Dado un intervalo cerrado $[a,b] \subset \mathbb{R}$, llamaremos C([a,b]) al conjunto de todas las funciones $f:[a,b] \to \mathbb{R}$ continuas.

La métrica natural en este conjunto es:

$$d_{\infty}(x,y) = \sup_{a \le t \le b} |x(t) - y(t)|.$$

Las dos primeras propiedades de una distancia son inmediatas. Veamos la desigualdad triangular:

te [a,b] = (x(t)-y(t))
$$\leq$$
 (x(t)-Z(t)) + (Z(t)-y(t)) \leq sup [x(t)-Z(t)] + (Z(t)-y(t)) \leq sup [x(t)-y(t)] \leq doo(x,Z) + doo(Z,Z) \leq doo(x,Z) + doo(Z,Z) \leq te [a,b)

Dado un intervalo cerrado $[a,b] \subset \mathbb{R}$, llamaremos C([a,b]) al conjunto de todas las funciones $f:[a,b] \to \mathbb{R}$ continuas.

La métrica natural en este conjunto es:

$$d_{\infty}(x,y) = \sup_{a < t < b} |x(t) - y(t)|.$$

Las dos primeras propiedades de una distancia son inmediatas. Veamos la desigualdad triangular:

 $(C([a,b]),d_{\infty})$ es un espaco métrico.

Otra métrica posible en C([a, b]) es la siguiente:

Otra métrica posible en C([a, b]) es la siguiente:

$$d_1(x,y) = \int_a^b |x(t) - y(t)| dt.$$

 $(C([a,b]),d_1)$ es un espaco métrico.

Las dos distancias que definimos en C([a,b]) son muy distintas.

Las dos distancias que definimos en C([a,b]) son muy distintas.

$$d_{\infty}(x,y) = \sup_{a \le t \le b} |x(t) - y(t)|$$

$$d_{1}(x,y) = \int_{a}^{b} |x(t) - y(t)| dt.$$

$$(a_{1}b) = (a_{1})$$

$$(a_{2}b) = (a_{1})$$

$$(a_{2}b) = (a_{2}b)$$

$$(a_{3}b) = (a_{4}b)$$

$$(a_{4}b) = (a_{1}b)$$

$$(a_{4}b) = (a_{4}b)$$

$$(a$$

Distancia discreta

Definición

Sea <u>E un conjunto cualquie</u>ra. Definimos la distancia discreta en <u>E</u> como

$$\widehat{\mathcal{S}}(x,y) = \begin{cases} 0, & \text{si } x = y; \\ 1, & \text{si } x \neq y. \end{cases}$$

(i)
$$\delta(x_1y) = 0$$
 depart. $x = y$ $\delta(x_1y) \in \{0, 1\}$
(ii) $\delta(x_1y) = 1 = \delta(y_1x)$
(iii) $\delta(x_1y) \leq \delta(x_1z) + \delta(z_1y)$
(iii) $\delta(x_1y) \leq \delta(x_1z) + \delta(z_1y)$
(oso xoso.

Topología en espacios métricos

De ahora en adelante, (E, d) es un espacio métrico.

Topología en espacios métricos

De ahora en adelante, (E, d) es un espacio métrico.

Definición

Dados $x \in E$ y r > 0, la bola abierta de centro x y radio r > 0 es el conjunto

Topología en espacios métricos

De ahora en adelante, (E, d) es un espacio métrico.

Definición

Dados $x \in E$ y r > o, la bola abierta de centro x y radio r > o es el conjunto

$$B(x,r) = \{ y \in E : d(x,y) < r \}.$$

Definición

Dados $x \in E$ y r > o, la bola cerrada de centro x y radio r > o es el conjunto

$$\overline{B}(x,r) = \{y \in E : d(x,y) \le r\}.$$

DefiniciónSea $A \subset E$. Decimos que x es un punto interior de A si existe algún r > 0 tal que $B(x, r) \subset A$.

Sea $A \subset E$. Decimos que x es un punto interior de A si existe algún r > 0 tal que $B(x, r) \subset A$.

Definición

Sea $A \subset E$. Decimos que x es un punto interior de A si existe algún r > 0 tal que $B(x, r) \subset A$.

Definición

Sea $A \subset E$. El interior de A es el conjunto de todos los puntos interiores de A, y lo notamos A° .

Definición

Un conjunto $G \subset E$ se dice abierto si cada punto de G es un punto interior de G (análogamente, si $G = G^{\circ}$).

Sea $A \subset E$. Decimos que x es un punto interior de A si existe algún r > 0 tal que $B(x, r) \subset A$.

Definición

Sea $A \subset E$. El interior de A es el conjunto de todos los puntos interiores de A, y lo notamos A° .

Definición

Un conjunto $G \subset E$ se dice abierto si cada punto de G es un punto interior de G (análogamente, si $G = G^{\circ}$).

Observación

Un conjunto $G \subset E$ es abierto <u>si y sólo</u> si para todo $x \in G$ existe algún r > 0 tal que $B(x, r) \subset G$.

Observación

→ El conjunto *E* es abierto.

Observación

El conjunto E es abierto. El conjunto \emptyset es abierto.

E:
$$E=R$$
 $d=1.1$ $A=[0,1)$ dA° ?

 $O \notin A^{\circ}$.

 $C(0,8)$
 $C($