High Performance Computing and Data Infrastructure

Recap on HPC hardware

2024-2025 @ Università di Trieste

Agenda

HPC is parallel

Serial Computers

Moore law/Dennard Scaling

Parallel computers

HPC infrastructure

ORFEO HPC infrastructure

CPU are multicore processor

- Because of power, heat dissipation, creasing tendency to actually lower clock frequency but pack more computing cores onto a chip.
- These cores will share some resources, e.g. memory, network, disk, etc but are still capable of independent calculations

Comments

	HW level	SW level	
SISD	A Von Neumann CPU	no parallelism at all	
MISD	On a superscalar CPU, different ports executing different <i>read</i> on the same data	ILP os same data;Multiple tasks or threads operating on the same data	
SIMD	Any vector-capable hardware, the vector registers on a core, a GPU, a vector processor, an FPGA,	data parallelism through vector instructions and operations	
MIMD	Every multi-core/processor system; on a superscalar CPUs, different ports executing different ops on different data	 ILP on different data; Multiple tasks or threads executing different code on different data. 	

Essential component of a HPC cluster

- Several computers (nodes)
 - often in special cases (1U) for easy mounting in a rack
- One or more networks (interconnects) to hook the nodes together
- Some kind of storage
- A login/access node..

The hardware behind HPC

interconnected racks of connected nodes

le nodes

single cpu

Single CPU topology

Modern
CPUS
are multi- (or many-) cores

Core: definition

 A core is the smallest unit of computing, having one or more (hardware/software) threads and is responsible for executing instructions.

Single CPU topology

Cache hierarch can have different topologies

Modern CPU layout

Node topology

Modern 1U computing nodes

What does one node contain exactly?

The overall topology

CLUSTER OF COMPUTING NODES

Note: there are many different topologies for the interconnection network.

Shared memory: UMA

Uniform memory access (UMA): Each processor has uniform access to memory. Also known as symmetric multiprocessors (SMP)

Shared memory: NUMA

Non-uniform memory access (NUMA): Time for memory access depends on location of data. Local access is faster than non-local access.

Memory wall problem

Challenges for multicore

- Relies on effective exploitation of multiplethread parallelism
 - Need for parallel computing model and parallel programming model
- Aggravates memory wall problem
 - Memory bandwidth
 - Way to get data out of memory banks
 - Way to get data into multi-core processor array
 - Memory latency
 - Cache sharing

a little bit of jargon..

- Multiprocessor = server with more than 1 CPU
- Multicore = a CPU with more than 1 core
- Processor = CPU = socket

BUT SOMETIME:

- Processor = core
- a process for each processor (i.e. each core)

Parallellism within a HPC node

Parallel resources

- ILP/SIMD units (1)
- Cores (2)
- Inner cache levels(3)
- Socket/ccNuma domains (4)
- Multiple accelerator (5)

Discovering a Numa topology

numact1 tool
 it also controls the Linux NUMA policy

• /proc/cpuinfo

hwloc (by OpenMPI)

ORFEO HPC nodes...

TYPE OF NODE	RAM x nodo	CORES x nodo	GPU x nodo	Peak performance (Tflops)
10 THIN intel nodes	768 GB	24	-	1,997
2 FAT intel nodes	1536 GB	36	-	3,456
4 GPU intel nodes	256 GB	24	2 V100 (32GB)	2,073 +2x 7
8 EPYC AMD nodes (EPYC 7H12 64-Core Processor)	512 GB	128	_	?
2 DGX Nvidia Station	2048GB	128 (EPYC)	8 A100	?
TOTALE 16	~ 15 Terabyte	1688	24	~ ?

Network cluster classification

- HIGH SPEED NETWORK
 - parallel computation
 - low latency /high bandwidth
 - Usual choices: Infiniband...
- I/O NETWORK
 - I/O requests (NFS and/or parallel FS)
 - latency not fundamental/ good bandwidth
 - GIGABIT could be ok/10Gb and/or Infiniband better
- In band Management network
 - management traffic of all services (LRMS/NFS/software etc..)
- Out of band Management network:
 - Remote control of nodes and any other device

Some link to check together

- Introduction to the NVIDIA DGX A100 System
 NVIDIA DGX A100 User Guide 1
 documentation
- NVIDIA Hopper Architecture In-Depth
 NVIDIA Technical Blog