Chris Agia

christopher.agia@mail.utoronto.ca | 416.836.5422 | agiachris.github.io | linkedin.com/in/agiachris

EDUCATION

B.A.Sc in Engineering Science, University of Toronto

(exp.) May 2021

Robotics Major, Artificial Intelligence Minor, Professional Experience Year (2020) President's Scholarship Program, Dean's Honour List, NSERC USRA Grant

EXPERIENCE

Google | Software Engineering Intern

May 2020 - Aug 2020

Extending service mesh proxy solutions, Istio Networking Team, Google Cloud

 Architected a Proxy-Wasm ABI test harness and simulator to enable proxy extensions written in any language (delivered as WebAssembly modules) to be tested in a safe and controlled environment

Noah's Ark Lab, Huawei Canada | Deep Learning Research Intern

May 2019 - May 2020

Research and development for Autonomous Vehicles, Perception and Localization Team

- Project lead for a novel sparse CNN based on the Minkowski Engine achieving state-of-the-art performance for 2D/3D Semantic Scene Completion. Patent pending, paper accepted [2], CoRL2020
- Designed an F-CNN model that learns (end-to-end) to segment roads and predict surface elevation from sequential LiDAR scans at real-time speeds with over 95% accuracy. Patent pending, 2020
- Supported the development of a dynamic semantic-enhanced LiDAR localization system that outperforms traditional non-semantic methods by a 20% margin. Patent pending, under review [3], 2020
- Created a custom PyTorch pipeline to construct, modify and train virtually any encoder/decoder deep CNN on three open source data sets. Used to improve over 10 leading LiDAR segmentation networks

aUToronto | Autonomy Engineer

Aug 2019 - May 2020

UofT Self-Driving Vehicle Group, Object Detection Team, SAE/GM AutoDrive Challenge

- Lead the development of a PointPillars 3D LiDAR detection pipeline (vehicle-pedestrian)
- Worked collaboratively in deploying computer vision systems to reach standard level-4 autonomy

RESEARCH

Vector Institute & University of Toronto | Robotics / ML Researcher

May 2020 - Present

Advised by Prof. Florian Shkurti, Robot Vision and Learning Group

- Thesis on task-driven perception; learning scene graph (hierarchical map) representations suited for downstream robot planning and control tasks with graph neural networks
- Investigated the use of attention state representations in Deep Reinforcement Learning architectures (DDPG, DQN) for optimal self-driving control. Under review [1], 2021

Mila AI Institute & McGill University | Robotics / ML Research Intern

Jan 2020 - May 2020

Co-Supervised by Prof. David Meger & Prof. Gregory Dudek, Mobile Robotics Lab

• Explored the benefit of dense depth prediction for direct visual odometry. Paper accepted [4], CRV2020

University of Toronto | Robotics Research Intern

May 2018 - Aug 2018

Advised by Prof. Goldie Nejat, Autonomous Systems and Biomechatronics Lab

• Worked with a team of graduate researchers to bridge the Simulation-to-Reality gap in Deep Reinforcement Learning (A3C) for autonomous rough terrain navigation. Under review [5], 2020

PROJECTS

SfMLearner on Mars | Space and Terrestrial Autonomous Robotics

Dec 2020

• Adapted the Unsupervised Learning of Depth and Ego-motion from Video framework (SfMLearner) for autonomous rover tracking in low-textured martian environments from monochrome image sequences

IntelliCare | Ontario Engineering Competition (OEC)

Feb 2019

• Full hospital ER software suite including a deep neural network for prediction of patient triage score, algorithms for allocation of resources to patients, and tracking of key hospital performance metrics

eBotics | University of Toronto Engineering Competition (UTEK)

Jan 2019

• Created a logistics planning algorithm that assigns mobile robots to efficiently retrieve warehouse packages - approximated solution to Travelling Salesman Problem with A* Path Planning, Clustering

Autonomous Packing Robot | Engineering Science Robotics Competition

May 2018

• Designed, fabricated and programmed a robot that systematically sorts and packs up to 50 pills/minute to assist those suffering from dementia. Features an efficient UI for inputting packing instructions

PUBLICATIONS

- [1] **C. Agia**, R. Cheng, D. Meger, F. Shkurti, G. Dudek, "Attention-based Representations in Deep Reinforcement Learning for Autonomous Driving," *Paper under review*, 2021
- [2] C. Agia, R. Cheng, Y. Ren, B. Liu, "S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point Clouds," *Conference on Robot Learning (CoRL)*, Massachusetts, BOS, US, 2020
- [3] Y. Ren, R. Cheng, C. Agia, B. Liu, "Lightweight Semantic-aided Localization with Spinning LiDAR Sensor," Manuscript under review at IEEE Transactions on Intelligent Vehicles (T-IV), 2020
- [4] R. Cheng, C. Agia, D. Meger, G. Dudek, "Depth Prediction for Monocular Direct Visual Odometry," *IEEE 17th Conference on Computer and Robot Vision (CRV)*, Ottawa, ON, Canada, 2020
- [5] K. Zhang, H. Hu, A.H. Tan, M. Ruan, C. Agia, G. Nejat, "A Sim-to-Real Pipeline for Deep Reinforcement Learning for Autonomous Robot Navigation in Cluttered Rough Terrain," *Under review*, 2020

HONOURS / AWARDS

Dean's Honour List, 2018-2020

1st Place Programming, Ontario Engineering Competition (\$2,500), 2019

1st Place Programming, University of Toronto Engineering Competition, 2019

NSERC Undergraduate Student Research Award (\$6,000), 2018

3rd/50 Place, Engineering Science Robotics Competition, 2018

President's Scholarship Program (\$6,000), 2016

Patents

- 1. "A Sparse Convolution based Semantic Scene Completion method for LiDAR Point Clouds," 2020
- 2. "Road Surface Semantic Segmentation from LiDAR Point Clouds," 2020

SKILLS

Programming (*Proficient*) Python, Rust, C/C++, MATLAB, LaTeX- (*Working*) Java, Assembly, Bash **Software Tools** Git, Linux/Unix, Docker, Wasmtime (WebAssembly), Kubernetes **Libraries** PyTorch, TensorFlow, ROS, NumPy, PCL, OpenCV, SciPy, scikit-learn, Pandas, Jupyter

INTERESTS

Initiatives ML4Good, Sustainability. Building an open source, machine learning powered tool that provides practitioners with carbon footprint estimates associated with training their ML/AI models

Extracurricular NSight Student Mentorship Program, Academic Teaching/Counselling, Reading (Philosophy & Finance), Health and Fitness, Music (Guitar, Bass, Drums)