第9章 数模模数转换

Digital Analog Conversions

D/A, A/D; DAC, ADC; Digital Analog Interfacing

自然界的许多量为连续变化的模拟量,如: voltage, temperature, pressure, time, rate of flow, displace, speech and velocity etc.

要对这些量进行自动控制,需要通过传感器把这些非电学量转化成电学量(V,I,R,C),然后送入计算机或数字系统进行信号处理,再返回测试系统,并对物理量进行调整。这期间,需要进行模数转换(A/D)和数模转换(D/A)。

§ 9.1 数模转换电路 (DAC)

9.1.1 D/A 转换关系 Relationships of D/A conversions

3-位 DAC

DAC 特点:

1) 一一对应

每个二进制数转换 成满刻度值的一个确 定的分数.

2) 归一化

将数字量表示成满刻度(FSR)模拟量的一个分数值.

$$001 \rightarrow \frac{1}{8} \text{ FSR}$$

$$011 \rightarrow \frac{3}{8} FSR$$

$$111 \rightarrow \frac{7}{8} \text{FSR}$$

001 对应的 $\frac{1}{23}$ FSR 称为最低有效位 LSB (least significant bit)

$$LSB = \frac{1}{2^n}FSR$$
 练习:

$$1001 \rightarrow \frac{9}{2^4} FSR$$

$$0011 \longrightarrow \frac{3}{2^4} FSR$$

9.1.2 权电阻DAC Binary-Weighted DAC

Weighted-Resistance DAC

电路 (3位)

 $V_{\rm ref}$:参考电压

S_i: 模拟电子开关

X_i:3位数字

 S_i 由 X_i 决定

 $X_{\rm i} = 1$, $S_{\rm i} \rightarrow V_{\rm ref}$

 $X_i = 0, S_i \rightarrow \mathfrak{W}$

A: Amplifier 求和运放 一端为虚地

支路电阻值:

 $2^{0}R$, $2^{1}R$, $2^{2}R$...

 R_f 反馈电阻

分析: 输入数字量 $X_1X_2X_3$ \Longrightarrow 输出模拟量 V_0

叠加 定理

$$egin{aligned} X_1 & \text{单独作用} & (X_1=1,X_2=X_3=0): & i_1=X_1 rac{V_{ref}}{R} \ X_2 & \text{单独作用} & (X_2=1,X_1=X_3=0): & i_2=X_2 rac{V_{ref}}{2R} \ X_3 & \text{单独作用} & (X_3=1,X_1=X_2=0): & i_3=X_3 rac{V_{ref}}{4R} \end{aligned}$$

 X_1 的权是 X_2 的2 倍,与二进制数的权相对应,称为权电阻网络.

输出总电流: $I_0 = i_1 + i_2 + i_3 =$

$$X_1 \frac{V_{ref}}{R} + X_2 \frac{V_{ref}}{2R} + X_3 \frac{V_{ref}}{4R} = \frac{2V_{ref}}{R} \cdot \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$

模拟输出电压: $V_{\rm O} = i_{\rm f} R_{\rm f} = -I_0 R_{\rm f}$

$$V_{O} = -\frac{2V_{ref}}{R}R_{f}\frac{X_{1}2^{2} + X_{2}2^{1} + X_{3}2^{0}}{2^{3}}$$

$$V_{\rm O} \propto X_1 X_2 X_3$$

n 位 权电阻 DAC 模拟输出电压 V_0 :

$$V_0 = -\frac{2V_{ref}}{R}R_f \cdot \frac{X_1 2^{n-1} + X_2 2^{n-2} + \dots + X_n 2^0}{2^n}$$

FSR

优点:简单 直观

缺点: 电阻值太多不易准确

$$V_O = -\frac{2V_{ref}}{R}R_f \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3} = -FSR \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$

$$V_{o\min} = -\frac{2V_{ref}}{R} R_f \cdot \frac{1}{2^n}$$

$$V_{o \max} = -\frac{2V_{ref}}{R} R_f . \frac{2^n - 1}{2^n}$$

Resolution
$$S = |V_{O \min}| = \frac{1}{2^3} FSR$$

(不考虑0输出)

例: 3位权电阻

DAC,
$$V_{ref} = 8 \text{ V}$$
,

$$R_f = R = 2 k\Omega$$
.

$$\stackrel{\text{def}}{=} X_1 X_2 X_3 = 011,$$

110,
$$V_0 = ?$$

$$FSR = \frac{2V_{ref}}{R}R_f = \frac{2 \times 8 \times 2 \times 10^3}{2 \times 10^3} = 16 \text{ V}$$

011
$$V_o = -FSR \cdot \frac{3}{2^3} = -16 \times \frac{3}{8} = -6 \text{ V}$$

110
$$V_o = -16 \times \frac{6}{8} = -12 \text{ V}$$

9.1.3 R-2R 梯形DAC (Ladder)

电路

注意: X_1 MSB X_3 LSB 位置与权电阻相反.

特点:

- 1)整个网络只有 2 种电阻。网络由相同的电路环节组成,每节有 2 个电阻,一个开关,每节对应二进制一位数。
- 2)每个节点 (C.B.A) 对地等效电阻都是 R.

分析

Thevenin's theorem

戴维南定理

 X_1 单独作用 $(X_1 X_2 X_3 = 100)$

X_2 单独作用: $(X_1X_2X_3=010)$

 X_3 单独作用: $(X_1X_2X_3=001)$

从左端开始,每右移一个节点,等效电路中电源电压便衰减为它的一半,而串联电阻仍为R. 位数越低,电压衰减越厉害.(即离A越远,在A处引起的电流越小)

叠加:总电压

$$V_{i} = X_{1} \frac{V_{ref}}{2} + X_{2} \frac{V_{ref}}{4} + X_{3} \frac{V_{ref}}{8} = V_{ref} \frac{X_{1} 2^{2} + X_{2} 2^{1} + X_{3} 2^{0}}{2^{3}}$$

从图中有

$$I_0 = -i_f$$

$$\frac{V_i}{R} = -\frac{V_o}{R_f}$$

$$\therefore V_o = -\frac{V_i}{R} R_f$$

R-2R 梯形 DAC 模拟输出电压:

$$\therefore V_o = -\frac{V_i}{R} R_f$$

$$V_o = -\frac{V_{ref}}{R} R_f \cdot \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$

FSR

$$FSR = \frac{V_{ref}}{R} R_f$$

$$V_{o \max} = -\frac{V_{ref}}{R} R_f \cdot \frac{7}{2^3} = -\frac{7}{2^3} FSR$$

$$V_{o \min} = -\frac{V_{ref}}{R} R_f \cdot \frac{1}{2^3} = -\frac{1}{2^3} FSR$$

$$s = \left| V_{O \min} \right| = \frac{1}{2^3} FSR$$

例: 3 位 R-2R 梯形 DAC, $V_{ref} = 4$ V, $R_f = 2$ KΩ, R = 1 KΩ

求: (1) FSR; (2) 当 $X_1X_2X_3 = 010$ 和 100时, V_0 的值;

(3) 分辨率; (4) V_{omax} ;

#: (1) **FSR**
$$FSR = \frac{V_{ref}}{R}R_f = \frac{4 \times 2 \times 10^3}{1 \times 10^3} = 8 \text{ V};$$

(2) 010
$$V_o = -FSR\frac{2}{2^3} = -\frac{8 \times 2}{8} = -2 \text{ V}$$

100
$$V_o = -\frac{8 \times 4}{8} = -4 \text{ V};$$

(3) 分辨率
$$|V_{o \min}| = \left| -\frac{1}{2^3} FSR \right| = \frac{1}{8} \times 8 = 1 \text{ V}$$

(4)
$$V_{o \max} = -\frac{7}{2^3} FSR = -\frac{7}{8} \times 8 = -7 \text{ V}$$

R-2R 梯形 DAC 优点:

与权电阻DAC比,电阻种类少,易集成; 开关工作条件相同.

缺点:工作速度慢 (开关接1、0换向时,开关分布电容充放电,有动态尖峰电流,影响工作速度)

9.1.4 R-2R 倒梯形DAC (Inverted Ladder)

所有节点等效电阻为R, 等效于

R-2R 梯形 DAC

V_{ref} ⟨⇒⇒ 运放A 换位

此网络是电流输 出型,开关1端经 运放和R_f,把电流 转换成电压输出.

$$I = \frac{V_{ref}}{R}$$

倒梯形网络和梯形网络在工作原理,模拟输出电压公式,分辨率等都相同.

$$V_o = -\frac{V_{ref}}{R} R_f \cdot \frac{X_1 2^{n-1} + X_2 2^{n-2} + \dots + X_n 2^0}{2^n}$$

优点: 开关位置改换时电压变化很小,各支路电流不改变,初态尖峰电流小,转换速度快。

(是因为它的两个输出端都接地 x=1 运放虚地 x=0 运放实地

由开关两端分布电容的充放电所造成的工作速度下降得到克服)

练习

三位倒梯形电阻DAC电路中,已知 $V_{ref} = 6$ V,R = 20 k Ω , $X_1X_2X_3 = 110$,求当 $V_0 = -1.5$ V 时反馈电阻 R_f 的值。

解:

$$V_O = -\frac{V_{ref}R_f}{R} \square \frac{X_1 2^2 + X_2 2^1 + X_3 2^0}{2^3}$$
$$= -\frac{6R_f}{20 \times 10^3} \times \frac{6}{2^3} = -1.5 \text{ V}$$

$$\therefore \mathbf{R}_f = 6.67 \text{ k}\Omega$$

§ 9.1.6 集成 DAC (Integrated DAC)

双极性码

正负数

3种 DAC: 二进制有权码 单极性 $V_0 > 0$

有的物理量需要表示方向,即正负.需要双极性码.

正数: +13 → 0,1101

负数: -13 → -(1101)

负数

原码表示 1,1101 反码表示 1,0010 补码表示 1,0011

另一种常用的双极性码为偏移码

实际应用中偏移码是最容易实现的双极性码.

常用的双极性码表 (三位)

FSR	十进制分数	原码表示	补码表示	偏移码表示
$+\frac{1}{2}FSR$	+ 3/4	0 11	0 11	1 11
	+ 2/4	0 10	0 10	1 10
	+ 1/4	0 01	0 01	1 01
	+ 0	0 00	0 00	1 00
$-\frac{1}{2}FSR$	- 0	1 00	(0 00)	(1 00)
	- 1/4	1 01	1 11	0 11
	- 2/4	1 10	1 10	0 10
	- 3/4	1 11	1 01	0 01
	- 4/4		1 00	0 00

偏移码的构成: 补码的符号位取反

偏移码是自然加权二进制码偏移而得名

用偏移码时,输 出模拟电压的动态 ¹FSR FSR 范围不变.

 V_0 : 范围不变

单极性码: 0~10V,

双极性码: -5~+5V.

双极性码:

$$FSR_{(bi)} = \frac{1}{2} FSR_{(mono)}$$

用双极性码时,满 刻度值为单极性输出 时的 1/2.

数字量 00...0 ,输出为 $-\frac{1}{2}FSR$, 数字量 11...1 ,输出为 $(\frac{1}{2}FSR - LSB)$, 数字量 10...0,输出 为 0

例:

4位DAC系统, FSR=8 V, 输入数字量 $X_1X_2X_3X_4$ =1011, 当使用下列 4 种码时,归一化模拟输出是多少?

- a) 1011 为自然加权二进制
- b) 1011 为补码
- c) 1011 为偏移码
- d) 1011 为原码

无符号位

有符号位

解: 1011
$$V_0 = FSR \frac{X_1 2^3 + X_2 2^2 + X_3 2^1 + X_4 2^0}{2^4}$$
 不考虑倒向

a) 二进制码 1011 为 (11)₁₀
$$V_0 = FSR\frac{11}{2^4} = 8 \times \frac{11}{16} = 5.5 \text{ V}$$

$$V_0 = \frac{1}{2}FSR \frac{-5}{2^3} = \frac{8 \times (-5)}{2 \times 2^3} = -2.5 \text{ V}$$

c) 偏移码 补码为 0011, 正数 (+3)

$$V_0 = \frac{1}{2}FSR\frac{3}{2^3} = \frac{1}{2} \times 8 \times \frac{3}{8} = 1.5 \text{ V}$$

d) 原码 负数, (-3)
$$V_0 = \frac{1}{2}FSR\frac{-3}{2^3} = \frac{1}{2} \times 8 \times \frac{-3}{8} = -1.5 \text{ V}$$

得到双极性模拟输出 (电路仍是4位)

10位 CMOS集成DAC --- AD7533

1. AD7533结构

10位数字量: X₁X₂X₃X₄X₅X₆X₇X₈X₉X₁₀

与 R-2R 梯形 DAC相似: 等效电阻 R (10 kΩ)

AD7533:两个互补电流输出 I_{out1} 和 I_{out2}

$$X_i=1$$
,开关向左侧, I_{out1} $I_{out1}=X_1\frac{I_{ref}}{2}+X_2\frac{I_{ref}}{2^2}+...+X_{10}\frac{I_{ref}}{2^{10}}$

$$X_i$$
=0, 开关向右侧, I_{out2} $I_{out2} = \overline{X}_1 \frac{I_{ref}}{2} + \overline{X}_2 \frac{I_{ref}}{2^2} + ... + \overline{X}_{10} \frac{I_{ref}}{2^{10}}$

$$I_{out1} + I_{out2} = \frac{I_{ref}}{2^{1}} + \frac{I_{ref}}{2^{2}} + \dots + \frac{I_{ref}}{2^{10}} = I_{ref} \frac{2^{10} - 1}{2^{10}} = \frac{1023}{1024} I_{ref} \approx I_{ref}$$

灌入电流 I_{ref}

2. AD7533 接收自然加权二进制码

AD7533使用说明:

- 1) I_{out1} 和 I_{out2} 可以用一个或两个. 使用一个时,另一端接地。
- 2) 通过接运放,可得到模拟输出电压 V_0

$$\begin{split} V_0' &= i_f R_{FB} = -I_{out1} R = -(X_1 \frac{I_{ref}}{2} + X_2 \frac{I_{ref}}{2^2} + \dots + X_{10} \frac{I_{ref}}{2^{10}}) R \\ &= -I_{ref} R \frac{X_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0}{2^{10}} \end{split}$$

AD7533接收自 然加权二进制码 的模拟输出电压

$$V_0 = -V_0' = V_{ref} \frac{X_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0}{2^{10}}$$

$$V_{ref} = I_{ref}R = FSR$$

3. AD7533 接收偏移码电路

偏移电路,形成偏移电流,可直接接收偏移码

偏移电路:

外接一个负参考电源,产生一个与最高权电流数量相等,极性相反的电流 (I_{ref} /2). 由运放得到双极性模拟输出。

$$V_0' = i_f R_{FB}^{=} - (I_{out1} - \frac{I_{ref}}{2})R_{FB} = - (I_{out1} - \frac{I_{ref}}{2})R$$

$$V_0 = -V_0' = (I_{ou1} - \frac{I_{ref}}{2})R = (X_1 \frac{I_{ref}}{2} + X_2 \frac{I_{ref}}{2^2} + \dots + X_{10} \frac{I_{ref}}{2^{10}} - \frac{I_{ref}}{2})R$$

AD7533 接收偏移码:

$$V_0 = V_{ref} \frac{X_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0 - 2^9}{2^{10}}$$

$$V_{ref} = I_{ref} R$$

分子前部分是十位二进制数按权展开,不再考虑符号位(已在偏移电流中考虑了)。

例: AD7533 接收偏移码, $V_{\text{ref}} = 10$ V. 当输入数字量 $X_1...X_{10}$ 为下列值时求相应的模拟输出 V_0 .

$$X_1$$
--- X_{10} =0111111111 $V_0 = 10 \times \frac{2^9 - 1 - 2^9}{2^{10}} = 10 \times \frac{-1}{1024} = -0.01 \text{ V}$

补码: 1111111111 → 原码 1000000001 → -1

$$X_1$$
--- X_{10} =1000000000 $V_0 = 10 \times \frac{2^9 - 2^9}{2^{10}} = 0 \text{ V}$

$$X_1$$
--- X_{10} =0000000000 $V_0 = 10 \times \frac{0-2^9}{2^{10}} = -5 \text{ V}$

$$X_1$$
--- X_{10} =0000010111 $V_0 = 10 \times \frac{23 - 2^9}{2^{10}} = 10 \times \frac{-489}{1024} = -4.78 \text{ V}$

4. AD7533 接收补码

将偏移码电路的符号位取反,就可以接收补码。

模拟输出 V_0

$$V_0 = V_{ref} \frac{\overline{X}_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0 - 2^9}{2^{10}}$$

注意: X₁

例: AD7533 接收补码, $V_{\text{ref}} = 10$ V. 当输入数字量 $X_1...X_{10}$ 为下列值时求相应的模拟输出 V_0 。 保留2位小数。

$$V_0 = V_{ref} \frac{\overline{X}_1 2^9 + X_2 2^8 + \dots + X_{10} 2^0 - 2^9}{2^{10}}$$

$$X_1$$
--- X_{10} =0111111111 $V_0 = 10 \times \frac{2^{10} - 1 - 2^9}{2^{10}} = \frac{10 \times (2^9 - 1)}{2^{10}} = 4.99 \text{ V}$
 X_1 ---- X_{10} =0000000000 $V_0 = 10 \times \frac{2^9 - 2^9}{2^{10}} = 0 \text{ V}$

§ 9.3 模数转换电路 ADC

模数转换关系

3位ADC

ADC 特点

1)不一一对应:

一段连续量 → 一个数

$$\begin{pmatrix}
\frac{1}{8} \pm \frac{1}{2} LSB \end{pmatrix} \longrightarrow \mathbf{001}$$

$$\begin{pmatrix}
\frac{5}{8} \pm \frac{1}{2} LSB \end{pmatrix} \longrightarrow \mathbf{101}$$
有含

2) 转换误差:

也称固有误差

9.3.1 ADC 工作原理 ADC Operation

模拟: 连续变化的量

ADC

数字: 分立码

A/D 转换过程包括:

采样、保持

采样一保持电路

量化编码

ADC 电路

例:

模拟输入电压

采样脉冲到 来时采出一系 列分散的值 (模拟量),并 保持

采样脉冲

采样频率不能太低

量化: 经采样-保持电路得到的模拟电压值按照某 种方式归化到相应的离散电平上,这一过 程称为数值量化。

编码:量化后的数值用代码表示出来。

量化: 量化阶梯 s: 量化过程中所采取的最小数量单位。 单位。 量化误差: 量化方式不同,误差不同。

量化方式有两种:

四舍五入方式 Rounding-off 只舍不入 No-carry

1. 四舍五入法

(误差小)

为了使FSR与最大数字输出对应,取分母 $(2^3-1)=7$

$$2^3 = 8$$
 量化阶梯 (0s ~ 7s).

阶梯:

$$s = \frac{1}{2^n - 1}$$

两阶梯之间为比较电平:

$$\frac{1}{14}$$
, $\frac{3}{14}$, ... $\frac{13}{14}FSR$

2. 只舍不入方式

(误差大)

 $2^3 = 8$ 个量化阶梯。

阶梯:

$$s = \frac{1}{2^n}$$

模拟输入
$$\begin{cases} (0 \sim \frac{1}{8}FSR) \longrightarrow \mathbf{0} \mathbf{s} \longrightarrow \mathbf{000} \\ (\frac{1}{8} \sim \frac{2}{8}FSR) \longrightarrow \mathbf{1} \mathbf{s} \longrightarrow \mathbf{001} \end{cases}$$

9.3.2 并行比较 ADC (Flash ADC) **Simultaneous ADC**

1. 有舍有入并行比较ADC

✓ 参考电压 V_{ref}8 个电阻: 7 R (值)

分压出比较电平: $\frac{1}{14}V_{ref}\cdots\frac{13}{14}V_{ref}$

8个阶梯 (0s~7s)

模拟输入电压 V_{in} (与 V_{ref} 比较)

电路

输入信号 V_{in} 在不同范围内转换成对应的数字量, 真值表如下:

输入模拟信号 $V_{ m in}$	阶梯	等价模 拟输入 $\overline{V_{\rm in}}$	l l	输出 1 异或门	输出 X ₁ X ₂ X ₃	量化误差
$0 \le V_{in} < \frac{1}{14} V_{ref}$	0s	0	0 0 0 0 0 0 0	No	000	$+rac{1}{14}V_{ref}$
$\frac{1}{14}V_{ref} \le V_{in} < \frac{3}{14}V_{ref}$	1s	$\frac{1}{7}FSR$	0 0 0 0 0 0 1	1	001	$\pm \frac{1}{14} V_{ref}$
$\frac{3}{14}V_{ref} \le V_{in} < \frac{5}{14}V_{ref}$	2s	$\frac{2}{7}FSR$	0 0 0 0 0 1 1	2	010	$\pm rac{1}{14} V_{ref}$
$\frac{5}{14}V_{ref} \le V_{in} < \frac{7}{14}V_{ref}$	3s	$\frac{3}{7}FSR$	0 0 0 0 1 1 1	3	011	$\pm rac{1}{14} V_{ref}$
$\frac{7}{14}V_{ref} \le V_{in} < \frac{9}{14}V_{ref}$	4s	$\frac{4}{7}FSR$	0 0 0 1 1 1 1	4	100	$\pm \frac{1}{14} V_{ref}$
$\frac{9}{14}V_{ref} \le V_{in} < \frac{11}{14}V_{ref}$	5 s	$\frac{5}{7}FSR$	0 0 1 1 1 1 1	5	101	$\pm rac{1}{14} V_{ref}$
$\frac{11}{14}V_{ref} \le V_{in} < \frac{13}{14}V_{ref}$	6s	$\frac{6}{7}$ FSR	0 1 1 1 1 1 1	6	110	$\pm rac{1}{14} V_{ref}$
$\frac{13}{14} V_{ref} \le V_{in} < V_{ref}$	7s	V_{ref}	1 1 1 1 1 1 1	7	111	$\pm rac{1}{14} V_{ref}$

看出: V_{in} 在第几号阶段内,输出数字就是几.

例: 5位有舍有入ADC, $V_{ref} = 46.5$ V, R=1 kΩ. 求:

1)
$$V_{\text{in}} = 34.9 \text{ V}, \quad X_1 X_2 X_3 X_4 X_5 = ?$$

2)
$$V_{\text{in}} = 28.1 \text{ V}, \quad X_1 X_2 X_3 X_4 X_5 = ?$$

3) 若
$$X=10101$$
, $\overline{V_{in}}=?V_{in}$ 取值范围。

解: 量化阶梯 $s = \frac{V_{ref}}{2^5 - 1} = \frac{46.5}{31} = 1.5 \text{ V}$

1)
$$V_{\text{in}} = 34.9 \text{ V}, \quad \frac{V_{in}}{s} = \frac{34.9}{1.5} = 23.3 \longrightarrow 23s \quad X_1 X_2 X_3 X_4 X_5 = 10111$$

2)
$$V_{\text{in}} = 28.1 \text{ V}, \quad \frac{28.1}{1.5} = 18.7 \quad \longrightarrow \quad 19s \quad X_1 X_2 X_3 X_4 X_5 = 10011$$

3)
$$X=10101$$
, (21) \longrightarrow 21s $\overline{V_{in}} = 21 \times 1.5 \text{ V} = 31.5 \text{ V}$

$$V_{i} = (31.5 - \frac{1}{2} \times 1.5) \square (31.5 + \frac{1}{2} \times 1.5) \square (\overline{V_{in}} \pm \frac{1}{2} s)$$

2. 只舍不入并行比较ADC

电路

电路其他部分与有舍有入 电路相同

8 个电阻: 阻值 8R

分压,比较电平: $\frac{1}{8}V_{ref} \sim \frac{7}{8}V_{ref}$

阶梯: 0s~7s

输入模拟电压 V_{in} ,与比较电平相比较,转换成数字量.

3位 只舍不入并行比较 ADC真值表

V _{in}	阶梯	$\overline{V_{\scriptscriptstyle in}}$	$X_1X_2X_3$	误差
$0 \le V_{in} < \frac{1}{8}V_{ref}$	0 s	0	0 0 0	$rac{1}{8}V_{ref}$
$\frac{1}{8}V_{ref} \le V_{in} < \frac{2}{8}V_{ref}$	1s	$\frac{1}{8}V_{ref}$	0 0 1	$\frac{1}{8}V_{ref}$
$\frac{2}{8}V_{ref} \le V_{in} < \frac{3}{8}V_{ref}$	2 s	$\frac{2}{8}V_{ref}$	0 1 0	$\frac{1}{8}V_{ref}$
$\frac{3}{8}V_{ref} \le V_{in} < \frac{4}{8}V_{ref}$	3 s	$\frac{3}{8}V_{ref}$	0 1 1	$\frac{1}{8}V_{ref}$
$\frac{4}{8}V_{ref} \le V_{in} < \frac{5}{8}V_{ref}$	4 s	$\frac{4}{8}V_{ref}$	1 0 0	$\frac{1}{8}V_{ref}$
$\frac{6}{8}V_{ref} \le V_{in} < \frac{7}{8}V_{ref}$	5 s	$\frac{5}{8}V_{ref}$	1 0 1	$\frac{1}{8}V_{ref}$
$\frac{6}{8}V_{ref} \le V_{in} < \frac{7}{8}V_{ref}$	6s	$\frac{6}{8}V_{ref}$	1 1 0	$\frac{1}{8}V_{ref}$
$\frac{7}{8}V_{ref} \le V_{in} < V_{ref}$	7 s	$\frac{7}{8}V_{ref}$	1 11	$\frac{1}{8}V_{ref}$

例: 4 位只舍不入并行比较ADC, $V_{ref} = 32$ V, R = 1 k Ω . 求:

1)
$$V_{\text{in}} = 8.9 \text{ V}, X_1 X_2 X_3 X_4 = ?$$

2)
$$V_{\text{in}} = 25.6 \text{ V}, X_1 X_2 X_3 X_4 = ?$$

3) If
$$X_1X_2X_3X_4=1001$$
, $\overline{V_{in}}=?$ V_{in} 范围

解: 量化阶梯
$$s = \frac{V_{ref}}{2^4} = \frac{32}{16} = 2 \text{ V}$$

1)
$$V_{\text{in}} = 8.9 \text{ V}, \qquad \frac{V_{in}}{S} = \frac{8.9}{2} = 4.45 \longrightarrow A_{\text{S}} \longrightarrow X_{1}X_{2}X_{3}X_{4} = 0100$$

2)
$$V_{\text{in}} = 25.6 \text{ V}, \qquad \frac{25.6}{2} = 12.8 \longrightarrow 12s \longrightarrow X_1 X_2 X_3 X_4 = 1100$$

3)
$$X=1001$$
, (9) \rightarrow 9s $\overline{V_{in}} = 9 \times 2 = 18 \text{ V}$

$$V_{\text{in}} = 18 \sim 20 \text{ V}$$
 $\overline{V}_{in} \sim (\overline{V}_{in} + s)$

并行比较 ADC (flash ADC)

优点:速度快(并行)

缺点: 硬件庞大

8位 flash ADC
$$2^8 = 256$$
 个电阻 $2^8 - 1 = 255$ 个比较器 255 D-FFs $2^8 - 2 = 254$ 个异或门 8 个或门

9.3.3 并/串型ADC

以8-bit 并/串型ADC为例,是用两个4位并行ADC串接

过程: 1) V_{in} <u>高 4 位 ADC</u> $X_1X_2X_3X_4$

$$X_1X_2X_3X_4$$

 $V_{\rm in}$ 先进入高 4 位比较, 得到高 4 位的二进制数

(只舍不入)
$$S_1 = \frac{V_{ref}}{2^n}$$

- 2) $X_1X_2X_3X_4$ DAC V_{in} 把得到的 4 位二进制数经 DAC 转换成模拟量 V_{in}
- 3) $(V_{\text{in}}, \overline{V_{\text{in}}}) = V_{\text{in}}$ 延迟后的信号与模拟量相减
- 4) V_{in}' 低4位ADC X₅X₆X₇X₈ 差值送入低4位并行ADC、(有舍有入) 得到4位二进制数

$$S_2 = \frac{V_{ref}}{2^n - 1}$$

5) 输出 8位: X₁X₂X₃X₄X₅X₆X₇X₈

例: 8位并/串ADC, V_{in} 范围0-8.27 V, 若 V_{in} =5.58 V, 求输出8位二进制数 $X_1X_2X_3X_4X_5X_6X_7X_8$ (各步计算取小数点后两位)

解:

高 4 位只舍不入, $V_{\text{ref}} = 8.27 \text{ V}$, $(V_{\text{in}} 范围 0 \sim 8.27 \text{ V})$

量化阶梯
$$s_1 = \frac{V_{ref}}{2^4} = \frac{8.27}{16} = 0.52 \text{ V}$$

$$\frac{V_{in}}{s_1} = \frac{5.58}{0.52} = 10.73 \longrightarrow 10s \longrightarrow 1010$$
 (**\overline{\overline{1}} 4 \overline{\overline{1}}\overline{1}**)

$$\overline{V_{in}} = 10 \times s_1 = 10 \times 0.52 = 5.20 \text{ V}$$

$$V_{in} = V_{in} - \overline{V_{in}} = 5.58 - 5.20 = 0.38 \text{ V}$$

$$X_1X_2X_3X_4 = 1010$$

低4位需要量化的部分 V'_{in}

低 4 位,有舍有入
$$V_{ref} = S_1 = 0.52 \text{ V}$$

阶梯
$$s_2 = \frac{V'_{ref}}{2^4 - 1} = \frac{0.52}{15} = 0.03 \text{ V}$$

$$\frac{V'_{in}}{s_2} = \frac{0.38}{0.03} = 12.67 \longrightarrow 13s \longrightarrow 1101$$
 (低 4 位)

8位数字输出码:

$$X_1X_2X_3X_4X_5X_6X_7X_8 = 1010 \ 1101$$

9.3.4 逐次逼近型ADC (逐位比较型 ADC) Successive Approximation ADC

用天平称物体重量

从最重的砝码开始试放,与被称物体进行比较。

同样思路,逐次比较型A/D转换器将输入模拟信号与不同的参考电压做多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量对应值。

逐次逼近型ADC框图

首先,寄存器清0.

数字输出: 0...0.

寄存器高位(MSB)置1

寄存器输出:10...0

$$egin{array}{|c|c|c|c|} \hline D/A & V_{\mathbf{0}} & (模拟) \\ \hline V_{\mathbf{0}} & & 比较 \\ \hline V_{\mathbf{i}} & & \end{array}$$

若 V_O≥ V_i 去掉 "1"; 若 V_O< V_i 保留 "1"。

同样方法处理后面每一位数字,直到最低位比较完为止。这时寄存器里所存的数码就是所求的输出数字量。

只舍不入 ADC

3位逐次逼近ADC 电路

 $FF_1\sim FF_5$ 环形寄存器 (右移) 逻辑门 $G_1\sim G_9$ 」控制逻辑电路

首先,

 F_A, F_B, F_C 置 0

 $FF_1 \sim FF_5$ 置 $Q_1Q_2Q_3Q_4Q_5$ = 10000

 $X_1X_2X_3 = 000$

F_A, F_B, F_C: 同步 RS-FF↑ S=R=0, Q: 保持

 $S \neq R, Q^{n+1} = S$

转换控制信号 V_L 变成高电平以后,转换开始。

寄存器右移一位, $Q_1Q_2Q_3Q_4Q_5 = 01000$

同时移位寄存器右移一位,变为00100。

$Q_1 Q_2 Q_3 Q_4 Q_5 = 00100$

这时
$$F_A \begin{cases} S = 0 \\ R = 0 \end{cases}$$

$$F_B \begin{cases} S = 0 \\ R = V \end{cases} \qquad F_C \begin{cases} S = 1 \\ R = 0 \end{cases}$$

3rd CLK F_A : 保持; $F_C = 1$

如果原来 $V = 1 (V_{O} \ge V_{i})$,

 $F_{\rm B}$ 置 0, $Q_{\rm B}=0$;

如果原来 V = 0 ($V_O < V_i$), F_B 的1保留, $Q_B = 1$.

同时,寄存器右移一位,变成00010。

$Q_1Q_2Q_3Q_4Q_5 = 00010$

这时
$$F_A \begin{cases} S = 0 \\ R = 0 \end{cases}$$

$$F_B \begin{cases} S = 0 \\ R = 0 \end{cases} F_C \begin{cases} S = 0 \\ R = V \end{cases}$$

4th CLK FA、FB: 保持

如果原来 V = 1, $Q_C = 0$; 如果原来 V = 0, $Q_C = 1$.

这时 F_A 、 F_B 、 F_C 的状态就是所要的转换结果。

同时移位寄存器右移一位,变为00001状态。

$Q_1Q_2Q_3Q_4Q_5 = 00001$

由于 $Q_5 = 1$,于是 F_A 、 F_B 、 F_C 的状态通过门 G_6 、 G_7 、 G_8 送到了输出端。

5th CLK

寄存器右移一位,变成 $Q_1Q_2Q_3Q_4Q_5=10000$ 。

寄存器回到初始状.

同时, $Q_5=0$, 门 G_6 , G_7 , G_8 都锁住,停止输出.

转换时间

$$t = (n+2)T_{CLK}$$
 $n \text{ bit ADC}$

n 个脉冲n 次比较,第(n+1)个脉冲,状态送到输出端,第(n+2)个脉冲,电路恢复原状态。

电路特点

- 1) 速度低于并行比较A/D
- 2)输出位数较多时,逐次逼近型A/D转换器的 电路规模比并行比较A/D小得多

逐次逼近型A/D转换器是目前集成A/D转换器产品中用的最多的一种.

- 例: 逐位逼近ADC中的10位DAC的输出电压最大值 $V_{\text{omax}}=12.276$ V, 时钟脉冲的频率 $f_{\text{CLK}}=500$ kHz. 试解答下列问题:
- 1)若输入电压 V_{in} = 4.32 V, 转换后输出数字量 $X_1X_2...X_{10}$ =?
- 2) 完成这次转换所需要的时间 t 为多少?

解: 1) ADC: 只舍不入, V_{ref} =12.276 V

$$s = \frac{V_{ref}}{2^n} = \frac{12.276}{2^{10}} = 0.012 \text{ V}$$

$$\frac{V_{in}}{s} = \frac{4.32}{0.012} = 360 \quad \longrightarrow \quad X_1 X_2 ... X_{10} = 0101101000$$

2) n个脉冲n次比较,第(n+1)个脉冲,状态送到输出端,第(n+2)个脉冲,电路恢复原状态。

转换所需要的时间:

$$t = (n+2)T_{CLK} = (10+2)\frac{1}{500 \times 10^3} = 24 \ \mu s$$

9.3.5 双积分ADC (Dual-Slop ADC)

工作原理:

1. 采样阶段 (定时积分)

闭合 K_2 , C 放电. K_2 断开

计数器清 $0, Q=0, K_1 \rightarrow V_{in}$

第一次积分开始,积分器在固定时间间隔 $(0 \sim t_1)$ 内对 V_{in} 积分

C 充电.

若 $V_{\rm in}$ 为常数 $(\overline{V}_{\rm in})$ (输入) $V_{\rm o}$ 常数 $(\overline{w}_{\rm in})$

 V_0 从 0 开始减小

$$\because V_{\text{O}} < 0$$
, $\therefore V_{\text{C}} = 1$ 与门开

CLK= CLK', 开始计数

当
$$t=t_1$$
,

计数器收到第 (2^n-1) 个 CLK, $Q_{n-1} \sim Q_0$ 从 0...0 到 1...1,

$$T = 1 (Co = 1)$$

当第n个CLK到来,计数器清0, Q_n 从0到1.

$$V_{
m i}$$
 = - $V_{
m ref}$

由积分原理,得到输出 V_0 公式:

$$V_{O} = -\frac{1}{RC} \int_{0}^{t_{1}} V_{in} dt = -\frac{1}{RC} \overline{V_{in}} 2^{n} T_{C}$$

采样点绝对值

 $2^{n}T_{C} = (t_{1} - 0)$ 2^{n} : 计数器模 V_{in} 越大, 采样点的绝对值越大.

$$|V_{\rm O}| \propto V_{\rm in}$$

这一段积分也称定时积分, 在固定时间($2^nT_{\rm C}$) 积分, 电路确定,时间间隔确定.

在 $t = t_1$ 时,采样结束, 开关 K_1 接相反极性的参 考电源 $-V_{ref}$

$$K_1 \rightarrow -V_{ref}$$

$$V_{\rm i} = -V_{\rm ref}$$

积分器开始第二轮积分

比较阶段(定压积分) C 放电

积分器 A_1 : 对- V_{ref} 积分,

将已采样的信号,与参考电压相比较 V_{0} : 从采样点 $\frac{\overline{V_{in}}}{RC}$ $2^{n}T_{c}$,以一个固定的斜率增大 $(R, C, V_{ref}$ 具有确定值)

 V_0 仍然 < 0, $V_C = 1$, 与门开门, CLK = CLK'

计数器第二圈计数

当 C 放电结束, $V_0 = 0$ (电容上电压为0)

 $\therefore V_{\rm C} = 0$,与门锁住.

$t = t_2$, 计数器停止计数

$N \uparrow CLK$ N: 第二圈计数器计的 $CLK \uparrow CLK$ 个数, 十进制

$$V_O$$
: $V_O(t_2 - t_1) = -\frac{1}{RC} \int_{t_1}^{t_2} (-V_{ref}) dt - \frac{1}{RC} \int_{0}^{t_1} V_{in} dt = 0$

$$\frac{1}{RC}V_{ref}NT_C = \frac{1}{RC}\overline{V_{in}}2^nT_C$$

$$N = \frac{\overline{V_{\text{in}}}}{V_{\text{ref}}} \times 2^n$$

n: n位计数器, 二进制

2":计数器模值

N: 第二圈计数器计的 CLK 个数。十进制

结论:

1. 输入 $|V_{in}|$ 越大, 采样点越高, 数字越大。

$$N$$
 (十进制) $\sim |V_{\rm in}|$

- 2. $|V_{\rm in}| < |V_{\rm ref}|$,确保 $N < 2^n$.
- $3. V_{in}$ 和 V_{ref} 必须反向,才能使 V_{o} 回到零点

也可以
$$-V_{in}$$
, $+V_{ref}$, 或门. C=1封门.

4. N是整数.

练习: 一个双积分ADC电路包含两个计数器74160, $V_{\text{ref}} = 8 \text{ V.}$ 当输入 $V_{\text{in}} = 2.55 \text{ V}$ 时,求其二进制输出值。

解: 两个 74160 — M-100

 $(31)_{10} \longrightarrow (11111)_2$

例:双积分ADC电路,若二进制计数器位数 n=10, $V_{\text{ref}}=12$ V, 时钟脉冲频率 $f_{\text{CLK}}=10^3$ Hz, 完成一次转换最长需要多少时间?若输入模拟电压 $V_{\text{in}}=5$ V,求输出数字量 $X_1 \sim X_{10}$ 是多少?

解: 当第二圈积分时间 T_2 等于第一圈积分时间 T_1 时,完成转换的时间最长

$$T_{\text{max}} = T_1 + T_2 = 2T_1 = 2 \times 2^n T_C = (2 \times 2^{10}) \times \frac{1}{10^3} = 2.048 \text{ s}$$

当 $V_{\rm in} = 5$ V 时,输出的数字量:

$$N = \frac{\overline{V_{in}}}{V_{ref}} 2^n = \frac{5}{12} \times 2^{10} = 426.67 \qquad 426 = (0110101010)_2$$

习题 9.26

某双积分ADC电路中,计数器为4位十进制计数,其最大计数值为(3000)₁₀,已知计数时钟频率 f_{CLK} =30 kHz,积分器中R=100 kΩ, C= 5μF,输入电压 V_{in} 的变化范围为 0~5 V, 试求:

(1) 第一次最大积分时间 t_1 = ?

$$t_1 = 3000T_C = 3000 \times \frac{1}{30k} = 100ms$$

(2) 求积分器的最大输出电压 $|V_{\text{omax}}|=?$

采样点

$$|V_{O \max}| = \frac{V_{in \max}}{RC} t_1 = \frac{5 \times 100 \times 10^{-3}}{100 \times 10^3 \times 5 \times 10^{-6}} = 1 \text{ V}$$

(3) 若 V_{ref} = 10 V,第二次积分计数器计数值 N=(1500) $_{10}$ 时,输入电压 V_{in} 的平均值 \overline{V}_{in} = ?

$$N = \frac{\overline{V_{in}}}{V_{ref}} \times 3000$$
 $\overline{V_{in}} = \frac{N \cdot V_{ref}}{3000} = \frac{1500 \times 10}{3000} = 5 \text{ V}$

Homeworks

9.4 9.18

9.5 9.20

9.9 9.21

9.10 9.23

9.26