

$$4. \quad \frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + u f\left(\frac{u}{w}\right), \quad \frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + w g\left(\frac{u}{w}\right).$$

Suppose u = u(x, t), w = w(x, t) is a solution of the system. Then the functions

$$u_1 = Au(\pm x + C_1, t + C_2),$$
 $w_1 = Aw(\pm x + C_1, t + C_2);$

$$u_2 = \exp(\lambda x + a\lambda^2 t)u(x + 2a\lambda t, t), \quad w_2 = \exp(\lambda x + a\lambda^2 t)w(x + 2a\lambda t, t),$$

where A, C_1, C_2 , and λ are arbitrary constants, are also solutions of this equations.

1°. Multiplicative separable solution:

$$u = [C_1 \sin(kx) + C_2 \cos(kx)]\varphi(t),$$

$$w = [C_1 \sin(kx) + C_2 \cos(kx)]\psi(t),$$

where C_1 , C_2 , and k are arbitrary constants, and the functions $\varphi = \varphi(t)$ and $\psi = \psi(t)$ are determined by the system of ordinary differential equations

$$\varphi'_t = -ak^2\varphi + \varphi f(\varphi/\psi),$$

$$\psi'_t = -ak^2\psi + \psi g(\varphi/\psi).$$

2°. Multiplicative separable solution:

$$u = [C_1 \exp(kx) + C_2 \exp(-kx)]U(t),$$

 $w = [C_1 \exp(kx) + C_2 \exp(-kx)]W(t),$

where C_1 , C_2 , and k are arbitrary constants, and the functions U = U(t) and W = W(t) are determined by the system of ordinary differential equations

$$U'_t = ak^2U + Uf(U/W),$$

$$W'_t = ak^2W + Wq(U/W).$$

3°. Degenerate solution:

$$u = (C_1x + C_2)U(t),$$

 $w = (C_1x + C_2)W(t),$

where C_1 and C_2 , and the functions U = U(t) and W = W(t) are determined by the system of ordinary differential equations

$$U'_t = Uf(U/W),$$

$$W'_t = Wg(U/W).$$

This autonomous system can be integrated, since it is reduced, on eliminating t, to a homogeneous first-order equation (the corresponding systems of Items 1° and 2° can be integrated likewise).

4°. Multiplicative separable solution:

$$u = e^{-\lambda t} y(x), \quad w = e^{-\lambda t} z(x),$$

where λ is an arbitrary constant and the functions y = y(x) and z = z(x) are determined by the system of ordinary differential equations

$$ay_{xx}'' + \lambda y + yf(y/z) = 0,$$

$$az_{xx}'' + \lambda z + zg(y/z) = 0.$$

5°. Solution(generalizes the solution of Item 3°):

$$u = e^{kx - \lambda t}y(\xi), \quad w = e^{kx - \lambda t}z(\xi), \quad \xi = \beta x - \gamma t,$$

where k, λ , β , and γ are arbitrary constants, and the functions $y = y(\xi)$ and $z = z(\xi)$ are determined by the system of ordinary differential equations

$$a\beta^{2}y_{\xi\xi}'' + (2ak\beta + \gamma)y_{\xi}' + (ak^{2} + \lambda)y + yf(y/z) = 0,$$

$$a\beta^{2}z_{\xi\xi}'' + (2bk\beta + \gamma)z_{\xi}' + (bk^{2} + \lambda)z + zg(y/z) = 0.$$

To the special case $k=\lambda=0$ there corresponds a traveling-wave solution. The case of $k=\gamma=0$ and $\beta=1$ corresponds to the solution of Item 3° .

6°. Solution of point-source type:

$$u = \exp\left(-\frac{x^2}{4at}\right)\varphi(t), \quad w = \exp\left(-\frac{x^2}{4at}\right)\psi(t),$$

where the functions $\varphi = \varphi(t)$ and $\psi = \psi(t)$ are determined by the system of ordinary differential equations

$$\varphi_t' = -\frac{1}{2t}\varphi + \varphi f\left(\frac{\varphi}{\psi}\right),$$
$$\psi_t' = -\frac{1}{2t}\psi + \psi g\left(\frac{\varphi}{\psi}\right).$$

7°. Functional separable solution:

$$\begin{split} u &= \exp\left(kxt + \frac{2}{3}ak^2t^3 - \lambda t\right)y(\xi), \\ w &= \exp\left(kxt + \frac{2}{3}ak^2t^3 - \lambda t\right)z(\xi), \end{split} \quad \xi = x + akt^2, \end{split}$$

where k and λ are arbitrary constants, and the functions $y = y(\xi)$ and $z = z(\xi)$ are determined by the system of ordinary differential equations

$$ay_{\xi\xi}'' + (\lambda - k\xi)y + yf(y/z) = 0,$$

$$az_{\xi\xi}'' + (\lambda - k\xi)z + zg(y/z) = 0.$$

 8° . Let k is a root of the algebraic (transcendental) equation

$$f(k) = g(k). (1)$$

Solution:

$$u = ke^{\lambda t}\theta$$
, $w = e^{\lambda t}\theta$, $\lambda = f(k)$,

where the function $\theta = \theta(x, t)$ satisfies the linear heat equation

$$\frac{\partial \theta}{\partial t} = a \frac{\partial^2 \theta}{\partial x^2}.$$

9°. Periodic solution:

$$u = Ak \exp(-\mu x) \sin(\beta x - 2a\beta \mu t + B),$$

$$w = A \exp(-\mu x) \sin(\beta x - 2a\beta \mu t + B),$$

$$\beta = \sqrt{\mu^2 + \frac{1}{a}f(k)},$$

where A, B, and μ are arbitrary constants, and k is a root of the algebraic (transcendental) equation (1).

10°. Solution:

$$u = \varphi(t) \exp\left[\int g(\varphi(t)) dt\right] \theta(x, t), \quad w = \exp\left[\int g(\varphi(t)) dt\right] \theta(x, t),$$

where the function $\varphi = \varphi(t)$ is determined by the separable nonlinear first-order ordinary differential equation

$$\varphi_t' = [f(\varphi) - g(\varphi)]\varphi, \tag{2}$$

and the function $\theta = \theta(x, t)$ satisfies the linear heat equation

$$\frac{\partial \theta}{\partial t} = a \frac{\partial^2 \theta}{\partial x^2}.$$

To the particular solution $\varphi = k = \text{const}$ of equation (2) there corresponds the solution of Item 8°. The general solution of equation (2) is written out in implicit form as

$$\int \frac{d\varphi}{[f(\varphi) - g(\varphi)]\varphi} = t + C.$$

11°. The transformation

$$u = a_1 U + b_1 W, \quad w = a_2 U + b_2 W,$$

where a_n and b_n are arbitrary constants (n = 1, 2), leads to an equation of the similar form for U and W

Reference

Polyanin, A. D., Exact solutions of nonlinear systems of reaction-diffusion equations and mathematical biology equations, *Theor. Found. Chem. Eng.*, Vol. 37, No. 6, 2004.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/syspde/spde2104.pdf