Microchip transponder manufacturing method has chip module carrier band combined with antenna carrier band with chip module terminals coupled to antenna

Patent number:

DE10120269

Publication date:

2002-07-25

Inventor:

BROD VOLKER (DE); OVERMEYER LUDGER (DE)

Applicant:

MUEHLBAUER AG (DE)

e ŝ)

Classification:

- international:

H04B1/59; H01L21/60; H01R43/02; H01R43/048

- european:

G06K19/077T

Application number: DE20011020269 20010425 Priority number(s): DE20011020269 20010425

The invention relates a method for connecting microchip modules (4) to an antenna on a first (1) support Abstract of DE10120269 strip for producing a transponder. The method is characterised in that the microchips are packed with electric connections in an upstream bond-process to form a chip module (4) and are applied to a second support strip (5). Both of the support strips are unwound from the roll and placed on top of each other. The chip modules (4) are removed from the second support strip (5) and are disposed at a predetermined point on the first support strip (1). Said method enables a continuous production process to take place, which is particularly economical and fast.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

® Patentschrift

[®] DE 101 20 269 C 1

② Aktenzeichen:

101 20 269.5-35

② Anmeldetag:

25. 4. 2001

Offenlegungstag:

45 Veröffentlichungstag.

der Patenterteilung: 25. 7. 2002

(5) Int. Cl.⁷: H 04 B 1/59

H 01 L 21/60 H 01 R 43/02 H 01 R 43/048

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Mühlbauer AG, 93426 Roding, DE

Wertreter:

Grünecker, Kinkeldey, Stockmair & Schwanhäusser, 80538 München

(72) Erfinder:

Overmeyer, Ludger, Dr., 93128 Regenstauf, DE; Brod, Volker, 93077 Bad Abbach, DE

(5) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 199 16 781 A1 DE 199 15 765 A1

- Werfahren zum Verbinden von Mikrochips mit auf einem Trägerband angeordneten Antennen zum Herstellen eines Transponders
- Die Erfindung bezieht sich auf ein Verfahren zum Verbinden von Mikrochipmodulen mit auf einem ersten Trägerband angeordneten Antennen zum Herstellen eines Transponders. Das Verfahren zeichnet sich dadurch aus, daß die Mikrochips in einem vorgeschalteten Bond-Prozess zu einem Chipmodul mit elektrischen Anschlüssen verpackt und auf ein zweites Trägerband aufgebracht werden. Die beiden Trägerbänder werden von der Rolle abgewickelt und übereinander gebracht, wobei die Chipmodule von dem zweiten Trägerband abgenommen und auf eine vorbestimme Stelle des ersten Trägerbandes aufgesetzt werden. Dieses Verfahren erlaubt eine kontinuierlichen Herstelungsprozess, der besonders wirtschaftlich und besonders schnell ist.

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren zum Verbinden von Mikrochips mit auf einem ersten Trägerband angeordneten Antennen zum Herstellen eines Transponders. [0002] Derartige Transponder, die z. B. für sog. smart-labels oder smart-cards verwendet werden, weisen eine flächige Antennenspule auf, die mit zwei Anschlüssen versehen ist. Die Antennen können aus verschiedenen Materialien hergestellt sein, wie z. B. Kupfer, Aluminium, Silber- 10 leitpaste oder dgl. Die Größe der Antennen kann je nach Anwendung unterschiedlich sein. Bei den derzeitigen Herstellungsverfahren sind die flächigen Antennenspulen auf einem Trägerband aufgebracht, welches auf eine Rolle aufgewickelt angeliefert wird. Bislang werden die Mikrochips durch einen aufwendigen Bond-Prozess mit den Antennen auf dem Trägerband verbunden. Hierzu ist es erforderlich, daß das die Antennen aufweisende Trägerband über einen Indexer läuft und während des Bond-Prozesses stillsteht. Abgesehen davon, daß der Bond-Prozess aufwendige Ma- 20 schine und ausgesprochen präzises Areiten erfordert, benötigt der Bond-Vorgang derzeit bis zu 15 Sekunden. Dieser verhältnismäßig hohe Zeitaufwand steht einer wirtschaftlichen Herstellung der Transponder entgegen. Ein Verfahren zum Herstellen von Transpondern ist beispielsweise in der DE-A 199 15 765 beschrieben, bei dem Halbleiterchips und Antenne auf die Flächenseite einer thermoplastischen Folie aufgebracht werden, wobei die Folie zu einem endlosen Folienband verbunden ist. Aus der DE-A 199 16 781 ist ferner bekannt, einzelne Chips auf Laminatbögen aufzubringen. [0003] Aufgabe der vorliegenden Erfindung ist es, ein Verfahren der eingangs genannten Art weiter zu entwickeln, das es erlaubt, Transponder einfacher, schneller und vor allen Dingen wirtschaftlicher herzustellen.

[0004] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Mikrochips in einem vorgeschalteten Bond-Prozess in einem Chipmodul mit elektrischen Anschlüssen verpackt und auf ein zweites Trägerband aufgebracht werden, daß die beiden Trägerbänder von der Rolle abgewickelt und übereinander gebracht werden, wobei die Chipmodule von dem zweiten Trägerband abgenommen und auf eine vorbestimmte Stelle des ersten Trägerbands aufgesetzt werden. Zumindest im Zeitpunkt des Aufsetzens des Chipmoduls wird die Bandgeschwindigkeit des zweiten Trägerbandes an die Bandgeschwindigkeit des ersten Trägerbandes angepaßt.

[0005] Das Verlagern des Bond-Prozesses in einen vorgeschalteten Prozess hat den Vorteil, daß das auf diese Art und Weise erzeugte Chipmodul wesentlich schneller und einfacher auf das mit den Antennen versehene erste Trägerband aufgebracht werden kann. Es ist möglich, das Chipmodul mit der Antenne zu verlöten oder zu crimpen, was zum einen wesentlich schneller geht und zum anderen weniger Präzision als ein Bond-Prozess erfordert. Die Herstellungsgeschwindigkeit wird bei dem erfindungsgemäßen Verfahren 55 weiter dadurch erhöht, daß beide Trägerbänder von der Rolle abgewickelt und übereinander gebracht werden und zum Zeitpunkt des Aufsetzens des Chipmoduls auf das erste Trägerband die Geschwindigkeiten beider Trägerbänder angepaßt sind. Deshalb ist es nicht erforderlich, daß beim Verbinden des Chipmoduls mit einer Antenne die Trägerbänder stillstehen. Der Prozess kann somit kontinuierlich durchlaufen, was eine erhebliche Erhöhung der Herstellungsgeschwindigkeit zur Folge hat. Dabei ist es auch nicht so, daß der vorgeschaltete Bond-Prozess an einer anderen Stelle zu 65 einer Verlangsamung des Herstellungsverfahrens insgesamt führt. Es ist vielmehr so, daß das Verpacken des Mikrochips in ein Chipmodul im Rahmen eines vorgeschalteten Bond-

Prozesses wesentlich einfacher zu bewerkstelligen ist als das Bonden eines Mikrochips auf eine Antenne. Ferner kann das Verpacken des Mikrochips in ein Chipmodul an einer zentralen Stelle, nämlich beispielsweise bei dem Mikrochiphersteller erfolgen, so daß bei dem Hersteller des Transponders die Anschaffung eines teuren Bonders, der dazu hochqualifiziertes Bedienungspersonal erfordert, entfällt. [0006] Gemäß einer bevorzugten Ausführungsform läuft das erste, die Antennen tragende Trägerband mit einer kontinuierlichen Geschwindigkeit, während das zweite Trägerband im Takt der vorbeilaufenden Antennenabstände über einen Indexsatz läuft, das im ersten Trägerband geführt wird. Dabei wird das zweite Trägerband zum Aufsetzen des Chipmoduls auf das erste Trägerband kurzfristig auf die Bandgeschwindigkeit des ersten Trägerbandes beschleunigt. Das auf diese Weise an der richtigen Stelle plazierte Chipmodul kann unmittelbar nach dem Aufsetzen auf das erste Trägerband mit der zugehörigen Antenne durch Löten oder Crimpen elektrisch verbunden werden. Unmittelbar nach dem Verbinden des Chipmoduls kann der auf diese Weise hergestellte Transponder mit üblichen Verfahren getestet werden.

[0007] Besonders bevorzugt wird, wenn das Chipmodul beim Aufsetzen auf das erste Trägerband von einem mit gleicher Geschwindigkeit wie das erste Trägerband endlos umlaufenden Transportband an dem ersten Trägerband gehalten wird, bis das Chipmodul fest mit der zugehörigen Antenne verbunden ist. Das Transportband übernimmt sozusagen das von dem zweiten Trägerband abgegebene Chipmodul und sorgt dafür, daß das Chipmodul während des Weiterlaufens des ersten Trägerbandes an der richtigen Position zu der Antenne gehalten wird.

[0008] Von Vorteil ist, wenn das Anlöten des Chipmoduls an die Antenne mittels eines Laserstrahls erfolgt.

[0009] Die auf diese Weise hergestellten Transponder können nach Fertigstellung und eventuellen Testvorgang mit dem ersten Trägerband wieder aufgerollt werden.

[0010] Im folgenden wird die Erfindung beispielhaft anhand einer Zeichnung näher erläutert. Es zeigen:

[0011] Fig. 1 ein erstes, antennentragendes Trägerband, [0012] Fig. 2 ein zweites, mit Chipmodulen bestücktes Trägerband,

[0013] Fig. 3 das erste Trägerband aus Fig. 1 mit aufgesetzten und an die Antennenanschlüsse angeschlossenen Chipmodulen,

[0014] Fig. 4 in einer schematischen Darstellung eine Vorrichtung zum Verbinden der Chipmodule des zweiten Trägerbandes mit den Antennen des ersten Trägerbandes.

[0015] Fig. 1 zeigt ein erstes Trägerband 1, auf dem Spulen 2 als Antennen aufgebracht sind. Es handelt sich hierbei um durch galvanisches Abscheiden hergestellte Antennen. Die Spulen 2 weisen zwei Anschlüsse 3 für ein Chipmodul auf.

[0016] Derartige Chipmodule 4 sind in Fig. 2 dargestellt. Sie sind dicht hintereinander auf einem zweiten Trägerband 5 gehalten. Die Chipmodule sind durch einen vorgeschalteten Bond-Prozess in ein in Fig. 2 gezeigtes Chipgehäuse verpackt. Dieses Gehäuse weist zwei bereits verzinkte Anschlußflächen 6 auf, deren Abstand mit den Anschlüssen der Rechteckspulen 2 korrespondiert.

[0017] Fig. 3 zeigt ein Trägerband 1 mit einer Rechteckspule 2, die bereits mit einem Chipmodul 4 komplettiert wurde. Das Chipmodul 4 wurde mit seinen Anschlußflächen 6 an die Anschlüsse 3 angelötet.

55 [0018] Im folgenden wird das Herstellungsverfahren anhand der Fig. 4 n\u00e4her erl\u00e4utert.

[0019] Das erste Trägerband 1 ist auf einer Eingangsspule 7 aufgerollt und wird von dieser abgespult und nach dem

Verbindungsprozeß auf einer Fertigspule 8 aufgewickelt. [0020] Das zweite Trägerband 5, welches die Chipmodule 4 trägt, wird von einer Spule 9 für Chipmodule abgewickelt, an einer Umlenkrolle 10 umgelenkt und an einer Restbandspule 11 wieder aufgewickelt.

3

[0021] Auf Höhe der Umlenkrolle 10 beginnt ein umlaufendes Transportband 12, genaugenommen die erste Umlenkrolle 13 des Transportbandes 12. Das Transportband 12 erstreckt sich oberhalb des ersten Trägerbandes 1 bis zu einer Antriebsrolle 14. Zwischen der Umlenkrolle 13 und der 10 Antriebsrolle 14 ist eine Laserlöteinheit 15 vorgesehen. Hinter der Antriebsrolle 14 ist ein Testchipmodul 16 vorgesehen. Die Funktionsweise der Vorrichtung ist wie folgt:

Das erste Trägerband 1 wird mit kontinuierlicher Geschwindigkeit von der Eingangsspule 7 abgezogen und auf die Fer- 15 tigspule 8 aufgewickelt. Das die Chipmodule 4 tragende zweite Trägerband 5 wird von der Spule 9 im Takt der Antennenabstände auf dem ersten Trägerband 1 geindext abgezogen und um die Umlenkrolle 10 herumgeführt. An der Umlenkrolle 10 erfolgt das Ablösen der Chipmodule 4, bei- 20 spielsweise durch Erwärmen des Trägerbandes 5. Beim Ablösen des Chipmoduls 4 wird dieses zugleich von dem ersten Trägerband 1 und dem mit der gleichen Geschwindigkeit wie das erste Trägerband 1 umlaufende Transportband 12 erfaßt. Das Chipmodul wird dabei mit seinen Anschlußflä- 25 chen 6 genau an den Anschlüssen 3 der Rechteckspule 2 aufgesetzt. Das Transportband 12 fixiert das Chipmodul 4 an dieser Position, während es sich mit der gleichen Geschwindigkeit wie das erste Trägerband 1 kontinuierlich fortbewegt. Währenddessen werden die Anschlußflächen 6 30 mit den Anschlüssen 3 mithilfe der Laserlöteinheit 15 verlötet, wobei der Laserstrahl sich mit der Bandgeschwindigkeit des Trägerbandes 1 mitbewegt. Die so komplettierten Transponder werden mithilfe des hinter dem Transportband 12 angeordneten Testchipmoduls 16 getestet, wonach dann das 35 erste Trägerband auf die Fertigspule aufgewickelt wird. Auf der Fertigspule befinden sich somit komplettierte und bereits getestete Transponder. Bei den hier verwendeten Chipmodulen handelt es sich um RFID (Radio Frequency Identification)-Chipmodule. Das sind besonders flachbauende 40 Chipmodule, die sich zusammen mit den Flachspulantennen insbesondere für smart-label-Anwendungen eignen. Smartlabels sind Etiketten, die die soeben beschriebenen Transponder beinhalten und die auf beliebige Produkte oder Bauteile aufgeklebt werden können und zu deren Kennzeich- 45 nung dienen.

[0022] Anstelle des Laserverlötens ist es auch möglich, daß die Anschlußflächen 6 der Chipmodule 4 mit den Anschlüssen 3 der Rechteckspulen 2 vercrimpt werden können.

Patentansprüche

1. Verfahren zum Verbinden von Mikrochips mit auf einem ersten Trägerband angeordneten Antennen zum Herstellen eines Transponders, dadurch gekennzeich- 55 net, daß die Mikrochips in einem vorgeschalteten Bond-Prozess zu einem Chipmodul (4) mit elektrischen Anschlüssen (6) verpackt und auf ein zweites Trägerband (5) aufgebracht werden, daß die beiden Trägerbänder (1, 5) von einer Rolle (7, 9) abgewickelt 60 und übereinander gebracht werden, wobei die Chipmodule (4) von dem zweiten Trägerband (5) abgenommen und auf eine vorbestimmte Stelle des ersten Trägerbandes (1) aufgesetzt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeich- 65 net, daß das erste Trägerband (1) mit einer kontinuierlichen Geschwindigkeit läuft, während das zweite Trägerband (5) im Takt der vorbeilaufenden Antennenabstände über einen Indexer zum ersten Trägerband (1)

Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Chipmodul (4) unmittelbar nach dem Aufsetzen auf das erste Trägerband (1) mit der zugehörigen Antenne (2) durch Löten oder Crimpen elektrisch verbunden wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Transponder unmittelbar nach dem Verbinden des Chipmoduls (4) mit der Antenne (2) getestet wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Chipmodul (4) beim Aufsetzen auf das erste Trägerband (1) von einem mit gleicher Geschwindigkeit wie das erste Trägerband (1) endlos umlaufenden Transportband (12) an dem ersten Trägerband (1) gehalten wird, bis das Chipmodul (4) fest mit der zugehörigen Antenne (2) verbunden ist.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das elektrische Verbinden des Chipmoduls (4) mit der Antenne (2) durch Laserlöten erfolgt.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁷:

Int. Cl./: Veröffentlichungstag: DE 101 20 269 C1 H 04 B 1/59 25. Juli 2002

BEST AVAILABLE COPY

(43) Internationales Veröffentlichungsdatum 12. April 2001 (12.04.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/24988 A1

- (51) Internationale Patentklassifikation7: 35/08, 41/00, 33/46
- B29C 37/00,
- (21) Internationales Aktenzeichen:
- PCT/EP00/09563
- (22) Internationales Anmeldedatum:
 - 29. September 2000 (29.09.2000)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 47 350.1

1. Oktober 1999 (01.10.1999)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): ADVANCED PHOTONICS TECHNOLO-GIES AG [DE/DE]; Bruckmühler Strasse 27, 83052 Bruckmühl-Heufeld (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BÄR, Kai, K., O. [DE/DE]; Bruckmühler Strasse 27, 83052 Bruckmühl-Heufeld (DE). GAUS, Rainer [DE/DE]; Bruckmühler Strasse 27, 83052 Bruckmühl-Heufeld (DE).
- (74) Anwälte: BOHNENBERGER, Johannes usw.; Meissner, Bolte & Partner, Postfach 86 06 24, 81633 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD OF PRODUCING SURFACE-STRUCTURED MOLDED ARTICLES
- (54) Bezeichnung: HERSTELLUNG VON OBERFLÄCHENSTRUKTURIERTEN FORMTEILEN

(57) Abstract: The invention relates to the production of molded articles (1) that are characterized by a structured surface, especially the dashboard paneling for motor vehicles. According to the inventive method, a raw material (3) is placed against the surface (4) of a mold (2), said surface (4) of the mold (2) having a negative structure of the structured surface to be produced. The raw material (3) is heated so as to model the surface structure by contacting the raw material with the negative structure. The surface material is at least partially heated by absorption of infrared radiation emitted by a radiation source (5).

[Fortsetzung auf der nächsten Seite]

WO 01/24988 A1

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— Mit internationalem Recherchenbericht.

 Vor Ablauf der f
ür Änderungen der Anspr
üche geltenden Frist; Ver
öffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 01/24988 PCT/EP00/09563

Herstellung von oberflächenstrukturierten Formteilen

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Herstellen von Formteilen mit einer Oberflächenstruktur, insbesondere von Armaturenverkleidungen für Kraftfahrzeuge, wobei ein Rohmaterial in eine Form eingebracht wird, wobei eine Oberfläche der Form eine Negativstruktur der zu erzeugenden Oberflächenstruktur aufweist und wobei das Rohmaterial erwärmt wird, so daß es in Anlage an der Negativstruktur die Oberflächenstruktur bildet. Die Erfindung betrifft weiterhin die Verwendung eines Mittels zur Erwärmung des Rohmaterials.

Insbesondere bei Armaturenverkleidungen im Cockpit von Kraftfahrzeugen werden Formteile verwendet, die eine strukturierte, insbesondere genarbte, Oberfläche haben. Die einzelnen
Elemente der Oberflächenstruktur sind beispielsweise linienartige oder flächige Vertiefungen.

Zur Herstellung der Formteile ist es bekannt, die Form auf etwa 300° C aufzuheizen, das Rohmaterial, insbesondere ein Kunstharzpulver, in die aufgeheizte Form einzustreuen und die Form zu rütteln, so daß sich das Rohmaterial über die negativ strukturierte Oberfläche der Form und ggf. über nicht strukturierte Bereiche der Formoberfläche verteilt. Beim Auftreffen des Rohmaterials auf die Formoberfläche schmilzt es und verbindet sich zu dem Formteil. Dabei paßt es sich an die Negativstruktur der Formoberfläche an, so daß die positiv strukturierte Oberfläche des Formteils entsteht.

20

Bei dem bekannten Verfahren wird das Rohmaterial durch Wärmeleitung von der Form in das Rohmaterial hinein erwärmt. Da die treibende Kraft für die Wärmeleitung der Temperaturunterschied zwischen der Form und dem Rohmaterial ist, muß die Temperatur der Form erhöht werden, wenn das Rohmaterial schneller erwärmt werden soll. Je nach Material gibt es andererseits eine mehr oder weniger hohe Höchsttemperatur, über die hinaus das Rohmaterial oder das bereits teilweise miteinander verschmolzene Material nicht erwärmt werden darf.

10

30

35

Da das Rohmaterial sehr teuer ist, beträgt die Dicke der nach dem bekannten Verfahren hergestellten Formteile in der Regel nicht mehr als 0,3 mm.

Andererseits muß bei dem bekannten Verfahren eine ausreichende Menge Rohmaterial auf die Oberfläche der Form aufgebracht werden, damit sich das Rohmaterial so gleichmäßig verteilen kann, daß das fertiggestellte Formteil überall eine ausreichende Dicke hat. Dabei bleibt überschüssiges, nicht vollständig verschmolzenes Rohmaterial übrig, das wieder entfernt werden muß. Typischerweise muß etwa 2/3 des aufgebrachten Rohmaterials wieder entfernt werden. Dieses Rohmaterial ist nur eingeschränkt wiederverwendbar, da zumindest teilweise bereits eine Erwärmung und Verformung stattgefunden hat.

Schließlich wird bei dem bekannten Verfahren die Form abgekühlt, um das hergestellte Formteil ablösen und entnehmen zu können. Die in der Form gespeicherte Wärme geht dabei verloren.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, die eine möglichst schnelle und Rohmaterial sparende Serienfertigung der Formteile erlauben. Eine weitere Aufgabe der ErfinWO 01/24988 PCT/EP00/09563

3

dung besteht darin, ein geeignetes Mittel zur Erwärmung des Rohmaterials anzugeben.

Die Aufgaben werden durch ein Verfahren mit den Merkmalen des Anspruchs 1, durch eine Vorrichtung mit den Merkmalen des Anspruchs 9 und durch eine Verwendung mit den Merkmalen des Anspruchs 16 gelöst. Weiterbildungen sind Gegenstand der jeweils abhängigen Ansprüche.

Ein Kerngedanke der vorliegenden Erfindung besteht darin, das Rohmaterial zumindest teilweise durch Infrarotstrahlung zu erwärmen. Die Erwärmung des Rohmaterials wird zumindest teilweise durch Absorption der Infrarotstrahlung bewirkt. Für die Vorrichtung zum Herstellen der Formteile wird vorgeschlagen, eine Strahlungsquelle zur Erzeugung von Infrarotstrahlung vorzusehen, die derart angeordnet ist, daß die Infrarotstrahlung in das zu erwärmende Rohmaterial einstrahlbar ist.

20

25

30

35

Die Erfindung hat den Vorteil, daß eine Durchwärmung des Rohmaterials zumindest teilweise ohne den langsamen Prozeß der Wärmeleitung stattfindet. Weiterhin kann das Rohmaterial zuerst in die Form eingebracht werden bzw. im Bereich der negativ strukturierten Oberfläche der Form angeordnet werden und erst danach mit der Erwärmung des Rohmaterials begonnen werden. Somit kann ohne die Gefahr einer zu früh beginnenden Verschmelzung des Rohmaterials dieses in der gewünschten Weise verteilt werden. Es wird daher nur so viel Rohmaterial benötigt, wie zur Bildung des gewünschten Formteils erforderlich ist. Jedoch ist die Erfindung nicht darauf beschränkt, mit der Erwärmung des Rohmaterials erst nach dem Aufbringen auf die Oberfläche der Form zu beginnen. Vielmehr kann mit einer Infrarotbestrahlung des Rohmaterials schon begonnen werden, bevor das gesamte benötigte Rohmaterial an der Oberfläche der Form angeordnet ist. Insbesondere ist auch das schichtweise Aufbringen und Erwärmen des Rohmaterials in

10

20

25

30

35

mehreren Schritten möglich. Vor allem, wenn die Bestrahlung des Rohmaterials von derselben Seite der Form her wie das Aufbringen des Rohmaterials vorgenommen wird, ist das schichtenweise Aufbringen und Verschmelzen des Rohmaterials von Vorteil, da die Erwärmungswirkung der Infrarotstrahlung mit zunehmender Eindringtiefe abnimmt.

Bei einer bevorzugten Ausgestaltung der Erfindung wird die Infrarotstrahlung durch das Material der Form hindurch in das Rohmaterial eingestrahlt. Damit kann eine räumliche Trennung der Bestrahlungseinrichtung und der Einrichtung zum Aufbringen des Rohmaterials erreicht werden. Dies erleichtert einerseits die Konstruktion der Vorrichtung zum Herstellen der Formteile und verringert andererseits die Gefahr, daß Rohmaterial mit Teilen der Einrichtung zum Bestrahlen des Rohmaterials in Kontakt tritt. Jedoch ist die Erfindung nicht darauf beschränkt, das Rohmaterial nur von einer Seite her zu bestrahlen. Vielmehr kann das Rohmaterial aus mehreren Richtungen bestrahlt werden. Dabei kann insbesondere eine Mehrzahl von Infrarot-Strahlungsquellen und/oder eine Einrichtung zum Umlenken der Infrarotstrahlung eingesetzt werden. Die Bestrahlung des Rohmaterials aus mehreren Richtungen hat den Vorteil, daß auch Rohmaterial mit größeren Schichtdicken schnell durchwärmt werden kann, z. B. Schichtdicken von mehr als 1 mm.

Unter dem Ausdruck "anordnen des Rohmaterials an einer Oberfläche der Form" wird verstanden, daß eine Relativbewegung des Rohmaterials und der Form stattfindet, wobei das Rohmaterial und/oder die Form bewegt werden kann.

Bei einer Weiterbildung des Verfahrens wird das Rohmaterial mittels elektrischer Feldkräfte in Anlage an die Negativstruktur gebracht. Insbesondere bei Verwendung eines Pulvers und/oder Granulates als Rohmaterial können somit an sich

bekannte Verfahren zum Auftragen von Rohmaterial an einer Oberfläche angewendet werden. Dabei kann auf schnelle und gleichmäßige Weise exakt die gewünschte Verteilung des Rohmaterials erreicht werden. Ein Vorteil dieser Weiterbildung besteht darin, daß auch dann überschüssiges Rohmaterial vermieden wird, wenn die Erwärmung des Rohmaterials schon vor dem Aufbringen des vollständigen Rohmaterials begonnen wird.

Vorzugsweise wird das aus dem Rohmaterial hergestellte Form-10 teil von der Negativstruktur abgelöst, indem ein Fluid, insbesondere ein Gas, durch Öffnungen in der Form hindurch gegen die Oberflächenstruktur geleitet wird. Diese Vorgehensweise ist besonders schonend für das hergestellte Formteil und sie vereinfacht das Ablösen des Formteils von der Form. Sofern auch ein Wärmeübertrag von der Form auf das zu erwärmende Rohmaterial ausgenutzt werden soll und die Form daher eine bestimmte Temperatur haben soll, ist weiterhin von Vorteil, daß die Form nicht abgekühlt werden muß, um das Formteil abzulösen. Das Rohmaterial für das nächste herzustellende 20 Formteil kann daher früher an der Oberfläche der Form angeordnet werden und eine vorherige Erwärmung der Form ist nicht oder nur geringfügig erforderlich.

Vorzugsweise liegen zumindest wesentliche, die Erwärmung des Rohmaterials bewirkende, Strahlungsanteile der Infrarotstrahlung im Wellenlängenbereich des nahen Infrarot. Unter nahem Infrarot wird der Wellenlängenbereich verstanden, der zwischen dem sichtbaren Wellenlängenbereich und 1,2 µm Wellenlängen liegt. Insbesondere wird die Infrarotstrahlung von einer Temperatur-Strahlungsquelle emittiert, die eine Emissionstemperatur von 2500 K oder höher hat, insbesondere von 2900 K oder höher. Strahlungsquellen dieser Art sind besonders gut steuerbar und emittieren elektromagnetische Strahlung hoher Strahlungsflußdichte. Daher ist eine schnelle

10

15

20

30

35

und zeitlich exakt steuerbare Erwärmung des Rohmaterials möglich. Weiterhin können bestimmte Bereiche, etwa Bereiche mit größerer Schichtdichte des Rohmaterials mit höherer oder niedrigerer Strahlungsflußdichte bestrahlt werden. Vor allem aber lassen sich innerhalb weniger Sekunden Formteile mit fast beliebigen Schichtdicken herstellen.

Strahlungsanteile, die von dem zu erwärmenden Rohmaterial nicht absorbiert wurden, werden vorzugsweise in Richtung des Rohmaterials zurück reflektiert. Zur Reflexion kann die Form selbst beitragen, etwa Ränder oder andere, nicht durch Rohmaterial abgedeckte, Teile der Form und es können zusätzliche, separate Reflektoren verwendet werden.

Vorzugsweise wird das Material der Form derart ausgewählt oder vorbereitet, daß sein Absorptionsgrad im nahen Infrarot Werte kleiner als 0,4, insbesondere kleiner als 0,2 hat. Wenn die Infrarotstrahlung durch das Material der Form hindurch in das Rohmaterial eingestrahlt wird, findet nur eine geringe Schwächung der Infrarotstrahlung statt. Andererseits nimmt die Form abhängig von der Dauer und Leistung der Bestrahlung eine bestimmte Temperatur an, die vorteilhaft für die Serienfertigung der Formteile ist. Zu Beginn der Erwärmung des Rohmaterials überträgt die Form Wärme auf das Rohmaterial durch Wärmeleitung. Je nach Höhe der Formtemperatur und je nach Höhe der für die Herstellung der Form erforderliche Temperatur des Rohmaterials, findet mit fortschreitender Erwärmung des Rohmaterials entweder ein weiterer Wärmeübertrag von der Form auf das Rohmaterial statt, oder verliert das Rohmaterial zumindest weniger Wärme an die Form als bei kalter Form.

Bei einer Weiterbildung der Vorrichtung weist diese eine Einrichtung zur Erzeugung elektrischer Feldkräfte auf, um das Rohmaterial an der Formoberfläche anzuordnen. Insbesondere

ist die Form an der Oberfläche elektrisch leitfähig. Als geeignetes Material für die Form, um die Infrarotstrahlung durch die Form hindurch in das Rohmaterial einzustrahlen, wird Quarzglas vorgeschlagen.

5

10

15

20

25

30

Bei einer Weiterbildung weist die Form Öffnungen auf, um ein Fluid, insbesondere ein Gas, an die Oberfläche mit der Negativstruktur zu leiten und ein anliegendes Formteil abzulösen. Insbesondere sind die Öffnungen ventilartig ausgebildet, um einen Fluidstrom in umgekehrte Richtung zu blockieren und/oder um die Oberfläche der Form zumindest annähernd vollständig zu schließen.

Weiterhin wird die Verwendung einer Infrarot-Strahlungsquelle zur Strahlungserwärmung eines Rohmaterials vorgeschlagen, um aus dem an einer Negativform anliegenden Rohmaterial ein oberflächenstrukturiertes Formteil zu bilden, wobei zumindest ein Teil der zum Erwärmen des Rohmaterials erforderlichen Energie durch elektromagnetische Strahlung von der Infrarot-Strahlungsquelle in das Rohmaterial übertragen wird.

Vorzugsweise wird zumindest ein Teil der Infrarotstrahlung durch das Material der Negativform hindurch in das Rohmaterial eingestrahlt.

Bevorzugtermaßen weist die Infrarot-Strahlungsquelle einen Temperaturstrahler auf, der bei Emissionstemperaturen von 2500 K oder höher, insbesondere von 2900 K oder höher, betreibbar ist.

Vorzugsweise ist die Infrarot-Strahlungsquelle eine Halogenlampe.

In weiterer Ausgestaltung weist die Infrarot-Strahlungsquelle einen Röhrenstrahler mit einem sich in einer strahlungsdurchlässigen Röhre, insbesondere in einer Quarzglasröhre, erstreckenden Glühfaden auf.

5

Die Infrarot-Strahlungsquelle kann mit einem Reflektor zur Reflexion von emittierter Strahlung in Richtung des zu erwärmenden Rohmaterials kombiniert sein.

- 10 Ausführungsbeispiele der vorliegenden Erfindung werden nun anhand der Zeichnung näher erläutert. Die Erfindung ist jedoch nicht auf diese Ausführungsbeispiele beschränkt. Die einzelnen Figuren der Zeichnung zeigen:
- 15 Fig. 1 Eine Vorrichtung zum Herstellen von Formteilen mit einer Oberflächenstruktur in schematischer Schnittdarstellung,
- Fig. 2 eine Ansicht der Oberflächenstruktur eines in der Vorrichtung nach Fig. 1 hergestellen Formteils und
 - Fig. 3 einen Querschnitt durch eine Infrarot-Strahlungsquelle zur Bestrahlung von Röhmaterial.
- Die in Fig. 1 dargestellte Vorrichtung weist eine Form 2 mit einer Strukturoberfläche 4 auf zur Herstellung von Formteilen 1 mit der in Fig. 2 dargestellten Oberflächenstruktur. Die Strukturoberfläche 4 ist dabei ein Negativ der in Fig. 2 gezeigten strukturierten Oberfläche 11 des Formteils 1. Die strukturierte Oberfläche 11 weist linienartige Vertiefungen 12 auf, die sich teilweise kreuzen und eine sogenannte genarbte Oberfläche bilden. Dementsprechend weist die Strukturoberfläche 4 der Form 2 in Fig. 1 nicht dargestellte linienartige Erhebungen auf.

10

15

20

25

30

35

Eine Pulvereinrichtung 6 mit Pulvervorrat 7 enthält einen Vorrat von Kunstharzpulver 3. Um ein Formteil 1 herzustellen, wird mittels der Pulvereinrichtung 6 das Kunstharzpulver 3 in der gewünschten Dicke und Verteilung auf die Strukturoberfläche 4 aufgebracht. Um darzustellen, daß es sich bei der auf der Strukturoberfläche 4 der Form 2 angeordneten Schicht sowohl um Kunstharzpulver 3 als auch um ein bereits fertiggestelltes Formteil 1, oder um beliebige Zwischenstufen handeln kann, ist diese Schicht in Fig. 1 sowohl mit dem Bezugszeichen 1 als auch mit dem Bezugszeichen 3 bezeichnet.

Die in Fig. 1 dargestellte Vorrichtung weist weiterhin eine Einrichtung zum Erzeugen elektrischer Feldkräfte auf, um das Kunstharzpulver 3 von der Pulvereinrichtung 6 auf der Strukturoberfläche 4 zu deponieren. Die Einrichtung zum Erzeugen von elektrischen Feldkräften weist eine Hochspannungsquelle 8 auf. Der positive Pol der Hochspannungsquelle 8 ist über eine elektrische Leitung mit der Pulvereinrichtung 6 verbunden. Der andere Pol der Hochspannungsquelle 8 ist über eine elektrische Leitung 10 mit Erde 9 und mit der Form 2 verbunden. Die Polung der Hochspannungsquelle kann auch umgekehrt sein.

Weiterhin ist unterhalb, d. h. auf der gegenüberliegenden Seite der Form 2, eine Infrarot-Strahlungsquelle 5 vorgesehen.

Zur Herstellung eines Formteils 1 wird zunächst das Kunstharzpulver 3 aufgrund der elektrischen Feldkräfte des Hochspannungsfeldes von der Pulvereinrichtung 6 auf der Strukturoberfläche 4 angeordnet. Insbesondere mit Ausstoßen einer vorgegebenen Menge des Kunstharzpulvers 3 oder durch Steuerung der Ausstoßmenge abhängig von einem Meßwert der auf die Strukturoberfläche 4 aufgebrachten Pulverdicke oder -menge wird das Kunstharzpulver 3 in der gewünschten Verteilung an der Strukturoberfläche 4 angeordnet.

15

20

Bereits während des Aufbringens des Kunstharzpulvers 3 oder danach wird das Kunstharzpulver 3 mit Infrarotstrahlung aus der Infrarot-Strahlungsquelle 5 bestrahlt. Dabei tritt Infrarotstrahlung durch das Material der Form 2 hindurch in das Kunstharzpulver 3 ein und wird dort absorbiert. Durch das Kunstharzpulver 3 hindurch tretende Infrarotstrahlung kann mittels in Fig. 1 nicht dargestellter Reflektoren in Richtung des Kunstharzpulvers 3 zurück reflektiert werden. Aufgrund der Bestrahlung erwärmt sich das Kunstharzpulver 3, schmilzt 10 und bildet einen Materialverbund, so daß das Formteil 1 entsteht. Abhängig von der Art des Kunstharzes findet unter Umständen eine Vernetzung des Kunstharzmaterials statt. Während der beschriebenen thermoplastischen Verformung paßt sich das Kunstharz der Negativstruktur der Strukturoberfläche 4 an, so daß die strukturierte Oberfläche 11 gebildet wird.

Anstelle der in Fig. 1 dargestellten Einrichtung zur Erzeugung des elektrischen Hochspannungsfeldes können auch andere an sich bekannte, gleich wirkende Einrichtungen eingesetzt werden. Beispielsweise kann das sogenannte "Tribo"-Verfahren angewendet werden, wobei die Pulverteilchen ausschließlich durch reibungselektrische Vorgänge beim turbulenten Durchströmen eines Kunststoffkanals in einem Sprühorgan der Pulvereinrichtung 6 aufgeladen werden.

Nach der thermoplastischen Verformung des Kunstharzes zu dem Formteil 1 wird das Formteil 1 von der Strukturoberfläche 4 abgelöst. Hierzu wird durch nicht dargestellte Leitungen Druckluft zugeführt. Diese Leitungen enden an der Unterseite der Form 2 an den dort beginnenden ventilartigen Öffnungen 15. Durch die Öffnungen 15 hindurch trifft die Druckluft auf die strukturierte Oberfläche 11 des Formteils 1 und hebt dieses von der Strukturoberfläche 4 ab. Die Anzahl und der Durchmesser der ventilartigen Öffnungen 15 ist abhängig von

WO 01/24988 PCT/EP00/09563

11

der Stabilität der Formteile 1, die mittels der Form 2 hergestellt werden. Die Ausgestaltung der einzelnen ventilartigen Öffnungen ist an sich bekannt und wird hier nicht näher beschrieben. Bevorzugt wird die Verwendung solcher ventilartigen Öffnungen, deren Ventil zusammen mit der Strukturoberfläche 4 der Form 2 eine nahezu ununterbrochene durchgehende Oberfläche bilden. Dadurch wird eine Nachbearbeitung des Formteils 1 vermieden, beispielsweise das Entfernen von Vorsprüngen der strukturierten Oberfläche 11, die sich durch Eindringen des Kunstharzes in die ventilartigen Öffnungen 15 bilden könnten.

Ein spezielles Ausführungsbeispiel der Infrarot-Strahlungsquelle 5 ist in Fig. 3 dargestellt. Sie weist zwei Röhrenstrahler 20 auf, die jeweils einen Wolfram-Faden 22 aufweisen. Die Wolfram-Fäden 22 sind Glühfäden, die sich etwa in der Zentrumslinie einer langgestreckten Quarzglasröhre 21 erstrecken (in Fig. 3 senkrecht zur Bildebene). Die Röhrenstrahler 20 sind in Ausnehmungen eines Reflektorkörpers 23 angeordnet, wobei die Ausnehmungen ebenfalls, entsprechend den Röhrenstrahlern 20, langgestreckt sind und jeweils ein parabolisches Querschnittsprofil aufweisen. Anstelle eines parabolischen Querschnittsprofils können auch andere Querschnittsprofile verwendet werden, beispielsweise trapezförmige und/oder andere Querschnittsprofile, insbesondere zur Einstellung einer definierten Strahlungsverteilung in dem Kunstharz.

Die Oberflächen der in Fig. 3 gezeigten Ausnehmungen und die sich in horizontaler Richtung erstreckenden Oberflächen-bereiche an der Unterseite des Reflektorkörpers 23 sind als Reflektorflächen 24 zur Reflexion der Infrarotstrahlung ausgebildet. In der Anordnung von Fig. 1 läge die Unterseite des Reflektorkörpers 23 oben.

30

10

15

20

Durch Variation des elektrischen Stromes, der durch die Wolfram-Fäden 22 fließt, wird die Temperatur der Wolfram-Fäden 22 und damit die spektrale Lage des Strahlungsfluß-dichte-Maximums und die Gesamt-Strahlungsleistung der emittierten Strahlung eingestellt. Die Wolfram-Fäden 22 weisen eine geringe thermische Trägheit auf, da ihre Masse und damit auch ihre Wärmekapazität gering ist. Innerhalb von Sekundenbruchteilen kann die volle Strahlungsleistung durch Einschalten des elektrischen Stromes erreicht werden und kann umgekehrt durch Abschalten des elektrischen Stromes die Emission von Strahlung gestoppt werden. Durch geeignete, an sich bekannte elektronische Steuerungseinrichtungen wird beim Einschalten des Stromes schnell ein zeitlich konstanter Temperaturwert der Wolfram-Fäden 22 erreicht.

15

10

Um eine Erwärmung des Reflektorkörpers 23 zu vermeiden, ist dieser vorzugsweise aktiv kühlbar, d. h. beispielsweise flüssigkeitsgekühlt. Somit erwärmt sich die Reflektor-oberfläche 24 höchstens geringfügig und trägt nicht nennenswert zu einer Totzeit der Regelung der Strahlungsflußdichte bei. Auf diese Weise kann die auf das Kunstharzmaterial eingestrahlte Infrarotstrahlung als Funktion der Zeit bei der Herstellung jedes einzelnen Formteils 1 exakt reproduziert werden.

25

Bezugszeichenliste

- 1 Formteil
- 2 Form
- 30 3 Kunstharzpulver
 - 4 Strukturoberfläche
 - 5 Infrarot-Strahlungsquelle
 - 6 Pulvereinrichtung
 - 7 Pulvervorrat
- 35 8 Hochspannungsquelle

WO 01/24988 PCT/EP00/09563

13

	9	Erde
	10	elektrische Leitung
	11	strukturierte Oberfläche
	12	linienartige Vertiefunger
5	15	ventilartige Öffnung
	20	Röhrenstrahler
	21	Quarzglasröhre
	22	Wolfram-Faden
	23	Poflaktorkörner

10 24 Reflektoroberfläche

14

Patentansprüche

- 1. Verfahren zum Herstellen von Formteilen (1) mit einer Oberflächenstruktur (12), insbesondere von

 Armaturenverkleidungen für Kraftfahrzeuge, wobei ein Rohmaterial (3) an einer Oberfläche (4) einer Form (2) angeordnet wird, wobei die Oberfläche (4) der Form (2) eine Negativstruktur der zu erzeugenden Oberflächenstruktur (12) aufweist, wobei das Rohmaterial (3) erwärmt wird, so daß es in Anlage an der Negativstruktur die Oberflächenstruktur (12) bildet, und wobei die Erwärmung des Rohmaterials (3) zumindest teilweise durch Absorption von Infrarotstrahlung bewirkt wird.
- Verfahren nach Anspruch 1, wobei zumindest ein Teil der Infrarotstrahlung durch das Material der Form (2) hindurch in das Rohmaterial (3) eingestrahlt wird.
- 20 3. Verfahren nach Anspruch 1 oder 2,
 wobei das Rohmaterial (3) mittels elektrischer
 Feldkräfte in Anlage an die Negativstruktur gebracht
 wird.
- 25 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Rohmaterial (3) ein Pulver oder Granulat aus thermoplastisch verformbarem Material aufweist.
- 5. Verfahren nach einem der Ansprüche 1 bis 4,
 wobei das aus dem Rohmaterial (3) hergestellte Formteil
 (1) von der Negativstruktur abgelöst wird, indem ein
 Fluid, insbesondere ein Gas, durch Öffnungen (15) in der
 Form (2) hindurch gegen die Oberflächenstruktur (12)
 geleitet wird.

5

10

35

- 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei zumindest wesentliche, die Erwärmung des Rohmaterials (3) bewirkende, Strahlungsanteile der Infrarotstrahlung im Wellenlängenbereich des nahen Infrarot liegen.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Infrarotstrahlung von einer Temperatur-Strahlungsquelle (5) emittiert wird, die eine Emissionstemperatur von 2.500 K oder höher hat, insbesondere von 2.900 K oder höher.
- 8. Verfahren nach einem der Ansprüche 1 bis 7,
 wobei das Material der Form (2) derart ausgewählt oder
 vorbereitet wird, daß sein Absorptionsgrad im nahen
 Infrarot Werte kleiner als 0,4, insbesondere kleiner als
 0,2 hat.
- Vorrichtung zum Herstellen von Formteilen (1) mit einer 9. Oberflächenstruktur (12), insbesondere von Armaturen-20 verkleidungen für Kraftfahrzeuge, mit einer Form (2), wobei eine Oberfläche (4) der Form eine Negativstruktur der zu erzeugenden Oberflächenstruktur (12) aufweist und mit einer Strahlungsquelle (5) zur Erzeugung von 25 Infrarotstrahlung, wobei die Strahlungsquelle (5) derart angeordnet ist, daß die Infrarotstrahlung in zu erwärmendes, an der Negativstruktur anordenbares Rohmaterial (3) 30 einstrahlbar ist.
 - 10. Vorrichtung nach Anspruch 9,
 wobei die Form (2) für Infrarotstrahlung durchlässig ist
 und wobei die Strahlungsquelle (5) derart angeordnet
 ist, daß die Infrarotstrahlung von einer der

25

Negativstruktur gegenüberliegenden Seite der Form (2) durch die Form (2) hindurch in das zu erwärmende Rohmaterial (3) einstrahlbar ist.

- 11. Vorrichtung nach Anspruch 9 oder 10, mit einer Einrichtung (8, 9, 10) zur Erzeugung elektrischer Feldkräfte zum Anordnen des Rohmaterials (3) an der Oberfläche (4) der Form (2).
- 10 12. Vorrichtung nach Anspruch 11,
 wobei die Form (2) an der Oberfläche (4) mit der
 Negativstruktur elektrisch leitfähig ist.
- 13. Vorrichtung nach einem der Ansprüche 9 bis 12,
 wobei die Form (2) zumindest teilweise aus Quarzglas
 besteht.
- 14. Vorrichtung nach einem der Ansprüche 9 bis 13, wobei die Form (2) Öffnungen (15) aufweist, um ein Fluid, insbesondere ein Gas, an die Oberfläche mit der Negativstruktur zu leiten und um ein anliegendes Formteil (1) abzulösen.
 - 15. Vorrichtung nach Anspruch 14, wobei die Öffnungen (15) ventilartig ausgebildet sind.
- 16. Verwendung einer Infrarot-Strahlungsquelle (5) zur
 Strahlungserwärmung eines Rohmaterials (3), um aus dem
 an einer Negativform (2, 4) anliegenden Rohmaterial (3)

 ein oberflächenstrukturiertes Formteil (1) zu bilden,
 wobei zumindest ein Teil der zum Erwärmen des
 Rohmaterials (3) erforderlichen Energie durch
 elektromagnetische Strahlung von der InfrarotStrahlungsquelle (5) in das Rohmaterial (3) übertragen
 wird.

5

10

15

20

- 17. Verwendung nach Anspruch 16,
 wobei zumindest ein Teil der Infrarotstrahlung durch das
 Material der Negativform (2, 4) in das Rohmaterial (2)
 eingestrahlt wird.
- 18. Verwendung nach Anspruch 16 oder 17,
 wobei die Infrarot-Strahlungsquelle (5) einen Temperaturstrahler (22) aufweist, der bei Emissionstemperaturen von 2.500 K oder höher, insbesondere von 2.900 K
 oder höher betreibbar ist.
- 19. Verwendung nach einem der Ansprüche 16 bis 19, wobei die Infrarot-Strahlungsquelle (5) eine Halogenlampe ist.
- 20. Verwendung nach einem der Ansprüche 16 bis 19, wobei die Infrarot-Strahlungsquelle (5) einen Röhrenstrahler (20) mit einem sich in einer strahlungsdurchlässigen Röhre (21), insbesondere in einer Quarzglasröhre, erstreckenden Glühfaden (22) aufweist.
- Verwendung nach einem der Ansprüche 16 bis 20, wobei die Infrarot-Strahlungsquelle (5) mit einem Reflektor (22, 24) zur Reflexion von emittierter Strahlung in Richtung des zu erwärmenden Rohmaterials (3) kombiniert ist.

Fig. 3

INTERNATIONAL SEARCH REPORT

Inten nal Application No PCT/EP 00/09563

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B29C37/00 B29C35/08 B29C33/46 B29C41/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\label{lem:minimum documentation searched (classification system followed by classification symbols)} IPC \ 7 \ \ 829C$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

Category •	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Х	FR 1 246 355 A (PATRICIAN PLASTIC CORPORATION) 10 February 1961 (1961-02-10) page 2 -page 3; figures 1-3	1,6	
Y	GB 1 383 602 A (ICI LTD) 12 February 1974 (1974-02-12) page 1, line 29 - line 37 page 2, line 44 - line 83	1-18,21	
Y	US 5 002 476 A (KERR ANDRE B) 26 March 1991 (1991-03-26) column 2, line 9 - line 68 column 3, line 28 - line 46; figure 2 -/	1,2,4, 6-10,13, 16-18,21	

Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.		
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report		
24 January 2001	31/01/2001		
Name and mailing address of the ISA	Authorized officer		
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Fageot, P		

3

INTERNATIONAL SEARCH REPORT

Interr. nal Application No PCT/EP 00/09563

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No.					
Y	DE 14 79 115 B (PETER DEREK JOHN DICKS AND WILLIAM MELVILLE HILL) 8 July 1971 (1971-07-08) column 1, line 57 -column 4, line 13; figures 1-3	3,5,11, 12,14,15			
A	US 3 823 324 A (WATABE K) 9 July 1974 (1974-07-09) column 2, line 27 - line 68	1,2,9, 10,16,17			
A	WO 99 47276 A (SEDLMEYR MARTIN; INDUSTRIESERVIS GES FUER INNOV (DE)) 23 September 1999 (1999-09-23) page 3, line 37 -page 4, line 16 page 7, line 9 - line 33; figure 2	6,7,12, 18-21			

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inten and Application No PCT/EP 00/09563

Patent document cited in search repo		Publication date	Patent family member(s)	Publication date
FR 1246355	Α	10-02-1961	NONE	
GB 1383602	A	12-02-1974	DE 2351415 A ES 419569 A FR 2202768 A IT 1009531 B JP 49097084 A	30-05-1974 16-04-1976 10-05-1974 20-12-1976 13-09-1974
US 5002476	Α	26-03-1991	NONE	
DE 1479115	В	08-07-1971	NONE	
US 3823324	A	09-07-1974	JP 1035676 C JP 48100205 A JP 55026463 B AU 5376373 A DE 2316401 A	26-02-1981 18-12-1973 14-07-1980 26-09-1974 18-10-1973
WO 9947276	Α	23-09-1999	DE 19831781 A AU 3035299 A BR 9908843 A EP 1062053 A	27-01-2000 11-10-1999 21-11-2000 27-12-2000

INTERNATIONALER RECHERCHENBERICHT

Inten nales Aktenzeichen PCT/EP 00/09563

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 B29C37/00 B29C35/08

B29C41/00

B29C33/46

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 B29C

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

	SENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
Kategorie®	Bezeichnung der Veronemitichung, soweit entotdenten unter Angabe der at berracht könntenden 1020	
X	FR 1 246 355 A (PATRICIAN PLASTIC CORPORATION) 10. Februar 1961 (1961-02-10) Seite 2 -Seite 3; Abbildungen 1-3	1,6
Υ	GB 1 383 602 A (ICI LTD) 12. Februar 1974 (1974-02-12) Seite 1, Zeile 29 - Zeile 37 Seite 2, Zeile 44 - Zeile 83	1-18,21
Υ	US 5 002 476 A (KERR ANDRE B) 26. März 1991 (1991-03-26) Spalte 2, Zeile 9 - Zeile 68 Spalte 3, Zeile 28 - Zeile 46; Abbildung 2 -/	1,2,4, 6-10,13, 16-18,21

Weitere Veröffentlichungen sind der Fortsetzung von Fei entnehmen	a C zu	
* Besondere Kategorien von angegebenen Veröffentlichungen	:	

Siehe Anhang Patentfamilie

- Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- 'E' ätteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist
- 'X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- *&* Veröffentlichung, die Mitglied derseiben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

24. Januar 2001

31/01/2001

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bedlensteter

Fageot, P

INTERNATIONALER RECHERCHENBERICHT

Interi nales Aktenzeichen
PCT/EP 00/09563

PCI/EP 00/09563					
.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN ategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.					
ategorie°	Bezeichnung der Veronentlichung, sowalt enforderlich unter Angabe der in Beitzeit Kontinenden Fol				
1	DE 14 79 115 B (PETER DEREK JOHN DICKS AND WILLIAM MELVILLE HILL) 8. Juli 1971 (1971-07-08) Spalte 1, Zeile 57 -Spalte 4, Zeile 13; Abbildungen 1-3	3,5,11, 12,14,15			
4	US 3 823 324 A (WATABE K) 9. Juli 1974 (1974-07-09) Spalte 2, Zeile 27 - Zeile 68	1,2,9, 10,16,17			
A	WO 99 47276 A (SEDLMEYR MARTIN; INDUSTRIESERVIS GES FUER INNOV (DE)) 23. September 1999 (1999-09-23) Seite 3, Zeile 37 -Seite 4, Zeile 16 Seite 7, Zeile 9 - Zeile 33; Abbildung 2	6,7,12, 18-21			
		7			

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intern. iales Aktenzeichen
PCT/EP 00/09563

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
FR 12463	55	A	10-02-1961	KEINE	
GB 13836	502	Α	12-02-1974	DE 2351415 A ES 419569 A FR 2202768 A IT 1009531 B JP 49097084 A	30-05-1974 16-04-1976 10-05-1974 20-12-1976 13-09-1974
US 50024	176	A	26-03-1991	KEINE	
DE 14791	115	В	08-07-1971	KEINE	
US 3823	324	A	09-07-1974	JP 1035676 C JP 48100205 A JP 55026463 B AU 5376373 A DE 2316401 A	26-02-1981 18-12-1973 14-07-1980 26-09-1974 18-10-1973
WO 9947	276	Α	23-09-1999	DE 19831781 A AU 3035299 A BR 9908843 A EP 1062053 A	27-01-2000 11-10-1999 21-11-2000 27-12-2000