PREDICTIVE MAINTENANCE ALGORITHM FOR ROB	OT COMPONENTS

PREDICTIVE MAINTENANCE ALGORITHM F

PROPRIETARY & CONFIDENTIAL DOCUMENTATION

NaviFloor Robotics, Inc.

Document Version: 2.3

Last Updated: January 11, 2024

1. OVERVIEW AND SCOPE

1. This document describes the proprietary predictive maintenance al

2. The Algorithm constitutes protected intellectual property of the Con
2. ALGORITHM SPECIFICATIONS
1. Core Components
a) Real-time sensor data collection system
b) Machine learning model based on gradient-boosted decision trees
c) Component wear prediction engine
d) Maintenance scheduling optimization module
e) Integration with NaviFloor Fleet Management Platform v4.2
O. Data Callastian Barranatana
2. Data Collection Parameters
a) Vibration frequency analysis (0.1-1000 Hz range)
b) Temperature variations (0.1 C precision)

- c) Motop current draw patterns
- d) Wheel torque measurements
- e) LiDAR system performance metrics
- f) Battery charge/discharge cycles

3. PROPRIETARY METHODOLOGIES

- 1. The Algorithm employs the following proprietary methodologies:
- a) Multi-modal sensor fusion using Company's patented NaviSense(T
- b) Adaptive threshold determination based on operational environmer
- c) Component-specific wear pattern recognition
- d) Environmental factor compensation algorithms
- e) Fleet-wide learning distribution system

- 2. Protected Elements
- a) Sensor calibration coefficients
- b) Neural network architecture
- c) Training datasets and parameters
- d) Failure prediction models
- e) Maintenance optimization algorithms

4. IMPLEMENTATION REQUIREMENTS

- 1. Hardware Requirements
- a) NaviFloor Sensor Package v3.0 or higher
- b) Minimum processor specifications: ARM Cortex-A72 or equivalent
- c) Dedicated FPGA for real-time processing
- d) Minimum 8GB RAM for local processing

- 2. Software Requirements
- a) NaviFloor Core Operating System v4.5+
- b) Real-time monitoring module v2.3
- c) Secure data transmission protocol implementation
- d) Local edge processing capabilities

5. CONFIDENTIALITY AND SECURITY

- 1. All aspects of the Algorithm, including but not limited to its architect
- 2. Access Requirements
- a) Minimum security clearance level: L3
- b) Signed confidentiality agreement
- c) Need-to-know basis authorization

d) Contiguous access monitoring

6. INTELLECTUAL PROPERTY PROTECTION

-U.S. Patent No. 11,234,567

1. Patent Protection

PCT Application No. PCT/US2023/012345

European Patent Application No. EP21234567

2. Copyright Registration

US Copyright Registration No. TX-9-876-543

Source code protection under DMCA

7. USAGE RESTRICTIONS

- 1. The Algorithm may only be implemented in Company-authorized has
- 2. Any modification, reverse engineering, or unauthorized access to the
- 3. Usage monitoring and audit trails are automatically maintained.

8. MAINTENANCE AND UPDATES

- 1. Algorithm updates are pushed quarterly through secure channels.
- 2. Version control and change management procedures must follow 0

9. LEĞAL NOTICES

- 1. PROPRIETARY INFORMATION: This document contains proprieta
- 2. COPYRIGHT (C) 2024 NaviFloor Robotics, Inc. All rights reserved.

10. DOCUMENT CONTROL

Document ID: IP-ALG-2024-001

Classification: Confidential

Distribution: Authorized Personnel Only

Review Cycle: Annual

Approved by:

/s/ Dr. Elena Kovacs

Chief Research Officer

NaviFloor Robotics, Inc.

Date: January 11, 2024

/s/ Marcus Depth

Chief Technology Officer

NaviFloor Robotics, Inc.

Date: January 11, 2024

