DS203: Exercise 9

Nirav Bhattad

Last updated November 8, 2024

Task 1

Task: 1

Do a manual review of the table **nsedata** and describe its contents

The table nsedata contains daily stock market data for various companies. Each row in the table represents a stock identified by its symbol, detailing the performance during a specific trading session. The columns in the table are as follows:

Column Name	Data Type	Description
symbol	varchar(50)	Unique identifier for the stock/company (e.g., AAPL).
series	varchar(50)	Indicates the type of equity, all entries marked as EQ (common equity).
open	decimal(20,6)	The price at the start of the trading session.
high	decimal(20,6)	The highest price the stock reached during the day.
low	decimal(20,6)	The lowest price recorded during the day.
close	decimal(20,6)	The price at the end of the trading session.
last	decimal(20,6)	The last traded price, which may differ from the closing price.
prevclose	decimal(20,6)	The closing price from the previous trading session.
tottrdqty	int	The total traded quantity of the stock.
tottrdval	decimal(20,6)	The total traded value of the stock.
timestamp	varchar(50)	The timestamp of when the data was recorded.
anum	mediumint	An additional numeric field that may be used for internal purposes (nullable).
isin	varchar(50)	The International Securities Identification Number (nullable).
extra	varchar(50)	Any extra information related to the stock (nullable).

Constraints:

- All columns, except anum, isin, and extra, are required to have non-null values.
- None of the columns are marked as keys.
- No default values have been set for any column.

Task: 2

Select the database **stockdata** using SQL

USE stockdata;

Listing 1: Selecting the Database

Figure 1: Output of Task 2

Task 3

Task: 3

Get a schema dump of the table nsedata using SQL

SHOW CREATE TABLE nsedata;

Listing 2: Schema Dump of Table nsedata

```
CREATE TABLE `nsedata` (
     `symbol` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
     'series' varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
     `open` decimal(20,6) NOT NULL,
      `high` decimal(20,6) NOT NULL,
     `low` decimal(20,6) NOT NULL,
     `close` decimal(20,6) NOT NULL,
     `last` decimal(20,6) NOT NULL,
     `prevclose` decimal(20,6) NOT NULL,
     `tottrdqty` int NOT NULL,
`tottrdval` decimal(20,6) NOT NULL,
11
     `timestamp` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL,
12
13
     `anum` mediumint DEFAULT NULL,
     `isin` varchar(50) DEFAULT NULL,
14
      extra varchar(50) DEFAULT NULL
15
   ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='Table containing stock
       data obtained from NSE'
```

Listing 3: Schema Dump of Table nsedata

Task: 4

Get a count of the total number of records in nsedata

SELECT COUNT(*) FROM nsedata;

Listing 4: Counting the Total Number of Records

Figure 2: Output of Task 4

Task 5

Task: 5

Get the total count of the records for the month "October 2012"

```
SELECT COUNT(*)
FROM nsedata
WHERE STR_TO_DATE(timestamp,'%d-%b-%Y')
BETWEEN '2012-10-01'
AND '2012-10-31';
```

Listing 5: Counting the Total Number of Records for October 2012

Figure 3: Output of Task 5

Task: 6

Repeat '4', but only for the stock with symbol "GEOMETRIC"

```
SELECT COUNT(*)
FROM nsedata
WHERE symbol = 'GEOMETRIC';
```

Listing 6: Counting the Total Number of Records for GEOMETRIC

Figure 4: Output of Task 6

Task 7

Task: 7

Repeat '6', but only display the first 10 records

```
SELECT *
FROM nsedata
WHERE symbol = 'GEOMETRIC'
LIMIT 10;
```

Listing 7: Displaying the First 10 Records for GEOMETRIC

Figure 5: Output of Task 7

Task: 8

Totally, how many records of "INFY" does the table contain?

```
SELECT COUNT(*)
FROM nsedata
WHERE symbol = 'INFY';
```

Listing 8: Counting the Total Number of Records for INFY

Figure 6: Output of Task 8

Task 9

Task: 9

Get a listing of the first 10 records of "3IINFOTECH", but the listing should contain only the following columns: symbol, open, high, low, close, and timestamp

```
SELECT symbol, open, high, low, close,
Timestamp
FROM nsedata
WHERE symbol = '3IINFOTECH'
LIMIT 10;
```

Listing 9: Displaying the First 10 Records for 3IINFOTECH

Figure 7: Output of Task 9

Task: 10

Repeat '9', but this time use the results to create a table ${\bf t1}$ in the ${\bf stockdata}$ database

```
CREATE TABLE t1 AS

SELECT symbol, open, high, low, close, timestamp

FROM nsedata

WHERE symbol = '3IINFOTECH'

LIMIT 10;

SHOW TABLES;
```

Listing 10: Creating Table t1

Figure 8: Output of Task 10

Figure 9: Output of Task 10

Task: 11

Using t1 find out the following for the column close: max, min, mean. standard deviation and variance

```
SELECT MAX(close) AS max_close, MIN(close) AS min_close, AVG(close) AS mean_close, STDDEV(close) AS stddev_close, VARIANCE(close) AS variance_close
FROM t1;
```

Listing 11: Finding Statistics for the close Column

Figure 10: Output of Task 11

Task 12

Task: 12

How will you find out the value of the median, if that is also required?

Listing 12: Finding the Median for the close Column

Figure 11: Output of Task 12

Figure 12: Output of Task 12

Task: 13
Delete table t1

DROP TABLE t1; SHOW TABLES;

Listing 13: Deleting Table t1

Figure 13: Output of Task 13

Figure 14: Output of Task 13

Task: 14

Switch back to using nsedata. Using the GROUP BY functionality of SQL create a table **t2** containing the average value of **close** for every symbol in the table. Hint: the table will have the columns: **symbol**, **average**

```
CREATE TABLE t2 AS
SELECT symbol, AVG(close) AS average_close
FROM nsedata
GROUP BY symbol;
SELECT * FROM t2;
```

Listing 14: Creating Table t2

Figure 15: Output of Task 14

Figure 16: Output of Task 14

Task: 15

Create a table **t3** such that it contains the following columns: symbol, open, close, "average of open and close". Fill up this table for the company GEOMETRIC, for the month of October 2012

```
CREATE TABLE t3 AS

SELECT symbol, open, close, (open + close) / 2 AS avg_open_close

FROM nsedata

WHERE symbol = 'GEOMETRIC'

AND STR_TO_DATE(timestamp, '%d-%b-%Y')

BETWEEN '2012-10-01' AND '2012-10-31';

SELECT * FROM t3;
```

Listing 15: Creating Table t3

Figure 17: Output of Task 15

Figure 18: Output of Task 15

Task: 16

It is required to create a table **t4** such that it contains the data for two companies **GEOMETRIC** and **TCS**. The columns of this table should be as follows: timestamp, close_tcs, close_geometric. Hint: use JOIN

```
CREATE TABLE t4 AS

SELECT tab1.timestamp, tab1.close AS close_tcs, tab2.close AS close_geometric

FROM nsedata tab1

JOIN nsedata tab2

ON tab1.timestamp = tab2.timestamp

WHERE tab1.symbol = 'TCS'

AND tab2.symbol = 'GEOMETRIC';

SELECT * FROM t4;
```

Listing 16: Creating Table t4

Figure 19: Output of Task 16

Figure 20: Output of Task 16

Task: 17

Find out the maximum and minimum difference in the daily closing prices of these two companies.

```
SELECT MAX(ABS(close_tcs - close_geometric)) AS max_diff, MIN(ABS(close_tcs - close_geometric)) AS min_diff
FROM t4;
```

Listing 17: Finding the Maximum and Minimum Difference in Closing Prices

Figure 21: Output of Task 17

Task 18

Task: 18

Based on **t4** can you identify those days on which the difference in their closing price was more than the average of the minimum and maximum differences of their closing prices.

```
SELECT timestamp, close_tcs, close_geometric, ABS(close_tcs - close_geometric) AS daily_diff
FROM t4
WHERE ABS(close_tcs - close_geometric) > (SELECT (MAX(ABS(close_tcs - close_geometric)) + MIN(ABS(close_tcs - close_geometric)) / 2
FROM t4
);
```

Listing 18: Identifying Days with Closing Price Difference More than Average

Figure 22: Output of Task 18

Task: 19

Based on **nsedata**, create table **t5** such that it contains the average **close** price of each company traded in the month of April 2012. The table should be sorted in descending order of the average close price.

```
CREATE TABLE t5 AS

SELECT symbol, AVG(close) AS average_close

FROM nsedata

WHERE STR_TO_DATE(timestamp, '%d-%b-%Y')

BETWEEN '2012-04-01' AND '2012-04-30'

GROUP BY symbol

ORDER BY average_close DESC;

SELECT * FROM t5;
```

Listing 19: Creating Table t5

Figure 23: Output of Task 19

Figure 24: Output of Task 19

Task: 20

Not all companies are traded every day. It is required to create a table that contains a count of the days each company has been traded in a selected year - say 2012. The table should be sorted in descending order of the count.

```
CREATE TABLE trade_count AS

SELECT symbol, COUNT(DISTINCT DATE(STR_TO_DATE(timestamp, '%d-%b-%Y'))) AS trade_days

FROM nsedata

WHERE YEAR(STR_TO_DATE(timestamp,'%d-%b-%Y')) = 2012

GROUP BY symbol

ORDER BY trade_days DESC;

SELECT * FROM trade_count;
```

Listing 20: Creating Table trade_count

Figure 25: Output of Task 20

Figure 26: Output of Task 20