Class 10: Structural Bioinformatics Pt 1

What is the PDB database

The main repository of biomolecular structure info is the PDB <www.rcsb.org>

Let's see what this database contains:

```
stats <- read.csv(url("https://raw.githubusercontent.com/bioboot/bggn213_W24/gh-pages/class-material/p
stats</pre>
```

```
NMR Multiple.methods Neutron Other
                        X.ray
                                 ΕM
Protein (only)
                      161,663 12,592 12,337
                                                       200
                                                               74
                                                                     32
Protein/Oligosaccharide 9,348 2,167
                                                        8
                                                                2
                      8,404 3,924
                                                        7
Protein/NA
                                       286
                                                                0
                                                                      0
Nucleic acid (only)
                      2,758 125 1,477
                                                       14
Other
                        164
                                9 33
                                                        0
                                                                0
                                                                     0
Oligosaccharide (only)
                          11
                                  0
                                         6
                                                        1
                                                                0
                                                                      4
                        Total
Protein (only)
                      186,898
Protein/Oligosaccharide 11,559
Protein/NA
                       12,621
Nucleic acid (only)
                      4,378
                          206
0ther
Oligosaccharide (only)
                          22
```

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy?

We have to get rid of the commas

```
x <- stats$X.ray
sum( as.numeric(gsub(",", "", x)) )</pre>
```

[1] 182348

I am going to turn this unto a function and then use apply() to work on the entire table of data

```
sumcomma <- function(x) {
  sum( as.numeric(gsub(",", "", x)) )
}
sumcomma(stats$X.ray)</pre>
```

[1] 182348

```
n.total <- sumcomma(stats$Total)
n.total</pre>
```

[1] 215684

```
sumcomma(stats$EM)
```

[1] 18817

apply(stats, 2, sumcomma)

X.ray	EM	NMR	Multiple.methods
182348	18817	14173	230
Neutron	Other	Total	
79	37	215684	

apply(stats, 2, sumcomma) / sumcomma(stats\$Total)

X.ray	EM	NMR	Multiple.methods
0.8454405519	0.0872433746	0.0657118748	0.0010663749
Neutron	Other	Total	
0.0003662766	0.0001715473	1.0000000000	

Q2. What proportion of structures in the PDB are protein?

Q3. Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

248,805,733 - 186,898

```
186898/248805733 * 100
```

[1] 0.07511804

Visualizing the HIV-1 protease structure

Mol* ("mol-star") viewer is now everywhere. The homepage is here: https://molstar.org/viewer/

I want to insert my image from Mol* here.

My first molecular image

A version that's easier to look at

Working with the bio3d package

```
library(bio3d)

pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file

pdb</pre>
```

```
Call: read.pdb(file = "1hsg")

Total Models#: 1
   Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
```

```
Protein sequence:
      PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
 head(pdb$atom)
  type eleno elety alt resid chain resno insert
                                                            у
1 ATOM
           1
                 N <NA>
                         PRO
                                 Α
                                           <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
               CA <NA>
                         PRO
                                 Α
                                       1 <NA> 30.307 38.663 5.319 1 40.62
               C <NA>
                         PRO
                                       1 <NA> 29.760 38.071 4.022 1 42.64
3 ATOM
                                 Α
                0 <NA>
                         PRO
                                       1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
                                 Α
5 ATOM
                CB <NA>
                         PRO
                                 Α
                                       1 <NA> 30.508 37.541 6.342 1 37.87
                         PRO
                                 Α
                                       1 <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
                CG <NA>
  segid elesy charge
  <NA>
                <NA>
1
   <NA>
               <NA>
3 <NA>
            C
              <NA>
   <NA>
            0 <NA>
            C
5
   <NA>
              <NA>
   <NA>
            C
                <NA>
 pdbseq(pdb)[25]
 25
"D"
Predicting functional motions of a single structure
```

Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

We can do a bioinformatucs prediction of functional motions

Total Models#: 1

Non-protein/nucleic Atoms#: 172 (residues: 128)

Non-protein/nucleic resid values: [HOH (127), MK1 (1)]

```
adk <- read.pdb("6s36")
 Note: Accessing on-line PDB file
  PDB has ALT records, taking A only, rm.alt=TRUE
adk
Call:
       read.pdb(file = "6s36")
```

Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 244 (residues: 244)

Non-protein/nucleic resid values: [CL (3), HOH (238), MG (2), NA (1)]

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

m <- nma(adk)

Building Hessian... Done in 0.03 seconds. Diagonalizing Hessian... Done in 0.38 seconds.

plot(m)

