\sim -	1		15EE-217	
• ^	A A	•	15H H-/1	
V	uc			L

Register				
Number				

II Semester Diploma Examination, Nov./Dec. 2016

ELECTRICAL CIRCUITS

Tim	e : 3	3 Hours] [Max. Mark	s:100
Note •		 (i) Answer any six questions from Part – A. Each question carries 5 marks. (ii) Answer any seven questions from Part – B. Each question carries 10 ma 	ırks.
		PART – A	
1.	Exp	olain :	5
	(i)	Closed Circuit	
	(ii)	Open Circuit	
	With	th neat circuit diagrams	
2.		te Kirchoff's voltage law. With a neat circuit diagram, write the equation choff's voltage law.	for 5
3.	Defi	fine the followings with SI units:	5
	(i)	Magnetic flux	
	(ii)	Flux density	
	(iii)	Absolute permeability	
	(iv)	Relative permeability	
	(v)	Reluctance	
4.	State	te and explain Fleming's right hand thumb rule.	5
5.	Writ	ite a sinusoidal wave form and mark	5
	(i)	Maximum value	
	(ii)	Time period	
	(iii)	Cycle	
	(iv)	Instantaneous value	
5.	Con	mpute an equation for RMS value of an alternating current.	5
		[1 of 4] [Tur	n over

15EE-21T

[2 of 4]

1278

- 7. Explain with a neat circuit diagram, a pure resistive circuit and write its
 - (i) Waveform
 - (ii) Vector diagram
 - (iii) Power consumption

5

8. Define resonance and explain condition for series resonance.

5

9. Show that line voltage = $\sqrt{3}$ phase voltage in 3- ϕ star connected system.

5

PART - B

10. (a) Define:

4

- (i) Active circuit
- (ii) Passive circuit
- (b) Calculate magnitude and show the direction of current through the battery for the given circuit by applying Kirchoff's laws

11. (a) State and explain super position theorem.

4

(b) Calculate the total resistance and current for the circuit given below using stardelta transformation

6

6

12. (a) Apply reciprocity theorem for the circuit given below:

(b) Define:

4

- (i) Linear circuit
- (ii) Unilateral circuit
- 13. (a) Compare magnetic circuit with electric circuit.

5

- (b) An air-cored coil has 3000 turns and carries a current of 0.12 amps. The cross sectional area of the coil is 5 cm² and length of magnetic circuit is 18 cm, find the
 - (i) Magnetic field strength
 - (ii) Flux density
 - (iii) Total flux in the coil

5

14. (a) Compute an expression for energy stored in a magnetic field.

- 5
- (b) A coil of 70 cm length and 2.5 sq cm area of cross section has 1000 turns on it. Calculate inductance of the coil when
 - (i) The core is air core
 - (ii) The core is iron core of $\mu_r = 1000$

5

15. (a) Define:

5

- (i) Self Inductance
- (ii) Faraday's laws of electromagnetic induction
- (b) Define the followings:

5

- (i) RMS value
- (ii) Average value

Turn over

16. (a)		Compute an equation for instantaneous value of an voltage and current.	4		
	(b)	A sinusoidal alternating current is represented by i = 120 sin 377 t.			
		Calculate:			
		(i) Maximum value			
		(ii) Current when $t = 0.002$ sec passing through zero in +ve direction.			
		(iii) RMS value of current	6		
17.	(a)	Two vectors are given in rectangular form $I_1 = 2 + i3$ and $I_2 = 5 + i6$. Calculate:	5		
		(i) $I_1 + I_2$			
		(ii) $I_1 \times I_2$			
	(b)	Explain with diagram R-L series circuit and compute an equation for power consumption.	er 5		
18. (a)	(a)	Define the following:	5		
		(i) Impedance (Z)			
		(ii) Capacitive reactance (X _C)			
		(iii) Inductive reactance (X _L)			
	(b)	A circuit consists of resistance 20 Ω and an inductance of 0.3 h	5		
		Calculate:			
		(i) Inductive reactance (X _L)			
		(ii) Impedance of circuit (Z) at 50 Hz frequency			
19.	(a)	A resistance of 10 Ω , an inductive reactance of 30 Ω and capacitive reactance of 60 Ω are connected in series across 200 V, 50 Hz supply. Calculate: (i) Impedance	e 5		
		(ii) Current taken			
		(iii) Voltage a/c each element			
		(iv) P.f. of the circuit			
	(b)	Explain with diagram two watt meter method of measurement of 3-φ power.	5		