

Sequential Monte Carlo methods

Lecture 6 – Auxiliary particle filters

Fredrik Lindsten, Uppsala University 2017-08-25

Summary of day 1

Outline – Lecture 6

Aim: Show how we can improve the proposals for the particle filter by using auxiliary variables.

Outline:

- 1. Summary of day 1
- 2. Auxiliary variables
- 3. Ancestor indices as auxiliary variables
- 4. Improving the proposal distributions

1/11

Summary of day 1

A state space model can be expressed using probability densities as.

$$X_{t+1} | (X_t = x_t) \sim p(x_{t+1} | x_t),$$

 $Y_t | (X_t = x_t) \sim p(y_t | x_t),$
 $X_0 \sim p(x_0).$

The filtering problem amounts to computing the filter PDF $p(x_t | y_{1:t})$.

Solution conceptually given by,

$$p(x_t \mid y_{1:t}) = \frac{p(y_t \mid x_t)p(x_t \mid y_{1:t-1})}{p(y_t \mid y_{1:t-1})},$$

$$p(x_t \mid y_{1:t-1}) = \int p(x_t \mid x_{t-1})p(x_{t-1} \mid y_{1:t-1})dx_{t-1}.$$

2/11

Summary of day 1

Monte Carlo: approximate an unknown distribution of interest by

$$\pi(\mathbf{x}) \approx \widehat{\pi}^N(\mathbf{x}) = \sum_{i=1}^N w^i \delta_{\mathbf{x}^i}(\mathbf{x}).$$

Importance sampling: For i = 1, ..., N,

- 1. Sample $x^i \sim q(x)$,
- 2. Compute $\widetilde{w}^i = \widetilde{\pi}(x^i)/q(x^i)$,
- 3. Normalize $w^i = \frac{\widetilde{w}^i}{\sum_{j=1}^N \widetilde{w}^i}$.

3/11

Auxiliary variables

Summary of day 1

Bootstrap particle filter: sequentially using importance sampling to approximate the filter update equations, with proposal distribution at time t given by

$$q(x_t \mid y_{1:t}) = \sum_{i=1}^{N} w_{t-1}^i p(x_t \mid x_{t-1}^i).$$

The resulting importance weights are,

$$\widetilde{w}_t^i = p(y_t \mid x_t^i).$$

- 1. Simulate particles according to the system dynamics
- 2. Compute weights according to the measurement likelihood

Under forgetting conditions, errors **do not** accumulate unboundedly with time — the bootstrap particle filter is **stable**

4/11

Auxiliary variables

Target distribution: $\pi(x)$, difficult to sample from

Idea: Introduce another variable U with conditional distribution $\pi(u|x)$

The joint distribution $\pi(x, u) = \pi(u \mid x)\pi(x)$ admits $\pi(x)$ as a marginal by construction, i.e., $\int \pi(x, u) du = \pi(x)$.

Sampling from the joint $\pi(x, u)$ may be easier than directly sampling from the marginal $\pi(x)$!

The variable U is an auxiliary variable. It may have some "physical" interpretation (an unobserved measurement, unknown temperature, ...) but this is not necessary.

ex) Auxiliary variables

Importance sampling setting with target $\pi(x)$ and proposal q(x). We assume $\widetilde{\pi}(x) \leq q(x)$.

To sample from $\pi(x)$, introduce an auxiliary variable

$$U \mid (X = x) \sim \mathcal{U}(0, \widetilde{\pi}(x)).$$

Joint target: $\pi(u,x) = \pi(u \mid x)\pi(x) = \mathcal{U}(u \mid 0, \widetilde{\pi}(x))\pi(x)$ Joint proposal: $g(u,x) = g(u \mid x)g(x) = \mathcal{U}(u \mid 0, g(x))g(x)$

The weights are,

$$\frac{\mathcal{U}(u \mid 0, \widetilde{\pi}(x))}{\mathcal{U}(u \mid 0, q(x))} \frac{\widetilde{\pi}(x)}{q(x)} = \mathbb{1}(u \leq \widetilde{\pi}(x)) \frac{q(x)}{\widetilde{\pi}(x)} \frac{\widetilde{\pi}(x)}{q(x)} = \mathbb{1}(u \leq \widetilde{\pi}(x))$$

In fact, conditionally on $w^i=1$, a sample x^i is an exact draw from $\pi(x)$ — referred to as **rejection sampling.**

6/11

Auxiliary particle filter

Sampling from the joint proposal

Sampling from the **joint proposal** $q(x_t, a_t | y_{1:t}) = \nu_{t-1}^{a_t} q(x_t | x_{t-1}^{a_t}, y_t)$:

1. Sample the auxiliary variable (resampling),

$$a_t^i \sim \mathcal{C}(\{\nu_{t-1}^j\}_{i=1}^N).$$

2. Sample x_t conditionally on the auxiliary variable (propagation),

$$x_t^i \sim q(x_t | x_{t-1}^{a_t^i}, y_t).$$

Repeat *N* times for i = 1, ..., N.

Algorithmically, sampling from the proposal is done exactly in the same way as before!

Computing the weights

The importance weights are given by the ratio between the **joint** target and **joint** proposal,

$$\widetilde{w}_{t}^{i} = \frac{w_{t-1}^{a_{t}^{i}}}{\nu_{t-1}^{a_{t}^{i}}} \frac{p(y_{t} \mid x_{t}^{i})p(x_{t}^{i} \mid x_{t-1}^{a_{t}^{i}})}{q(x_{t}^{i} \mid x_{t-1}^{a_{t}^{i}}, y_{t})}, \qquad i = 1, \ldots, N.$$

The weights can be computed in O(N) computational time for quite arbitrary choices of $\{\nu_{t-1}^i\}_{i=1}^N$ and $q(\cdot)$.

Note that the resampling weights $\{\nu_{t-1}^i\}_{i=1}^N$

- can be different from the importance weights $\{w_{t-1}^i\}_{i=1}^N$,
- may depend on $\{x_{t-1}^i\}_{i=1}^N$ as well as on y_t .

Auxiliary particle filter

Algorithm 1 Auxiliary particle filter (for i = 1, ..., N)

1. Initialization (t = 0):

(a) Sample $x_0^i \sim p(x_0)$.

(b) Set initial weights: $w_0^i = 1/N$.

2. for t = 1 to T do

(a) Resample: sample ancestor indices $a_t^i \sim \mathcal{C}(\{\nu_{t-1}^j\}_{i=1}^N)$.

(b) **Propagate:** sample $x_t^i \sim q(x_t \mid x_{t-1}^{a_t^i}, y_t)$.

(c) Weight: compute

$$\widetilde{w}_{t}^{i} = rac{w_{t-1}^{a_{t}^{i}}}{
u_{t-1}^{a_{t}^{i}}} rac{p(y_{t} \,|\, x_{t}^{i})p(x_{t}^{i} \,|\, x_{t-1}^{a_{t}^{i}})}{q(x_{t}^{i} \,|\, x_{t-1}^{a_{t}^{i}}, y_{t})}$$

and normalize $w_t^i = \widetilde{w}_t^i / \sum_{i=1}^N \widetilde{w}_t^j$.

Selecting the proposals

9/11

How do we select the proposals?

There is freedom in selecting the resampling weights $\{\nu_{t-1}^i\}_{i=1}^N$ and proposal $q(\cdot)$. How are they chosen in practice?!

With $\nu_{t-1}^i = w_{t-1}^i$ and $q(x_t | x_{t-1}, y_t) = p(x_t | x_{t-1})$ we recover exactly the bootstrap particle filter.

Is it possible to select the proposals so that $w_t^i \equiv \frac{1}{N}$?

A few concepts to summarize lecture 6

Auxiliary variable: a variable by which the target distribution is extended to improve efficiency or enable sampling from the target.

Ancestor index: auxiliary variable used in the particle filter, representing one of the components in the mixture target distribution.

Auxiliary particle filter: particle filter explicitly using the ancestor indices as auxiliary variables.

10/11

11/11