201C, Spring '16, Thomases Homework 3 due 4/19/16

1. If $u \in L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$, and $u^{\varepsilon} = \eta_{\varepsilon} * u$, for η_{ε} the standard mollifier. Show that

$$u^{\varepsilon} \to u$$

in $L^p(\mathbb{R}^n)$ as $\varepsilon \to 0$.

- 2. Let Ω denote an open and smooth subset of \mathbb{R}^n . Prove that $\mathcal{C}_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$ for $1 \leq p < \infty$.
- 3. Prove that if $u \in L^1_{loc}(\Omega)$ satisfies $\int_{\Omega} u(x)v(x)dx = 0$ for all $v \in \mathcal{C}^{\infty}_{c}(\Omega)$, then u = 0 a.e. in Ω .
- 4. Let $u \in L^{\infty}(\mathbb{R}^n)$ and let η_{ε} be a standard mollifier. For $\varepsilon > 0$ consider the sequence $\psi_{\varepsilon} \in L^{\infty}(\mathbb{R}^n)$ such that

$$\|\psi_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^n)} \leq 1 \ \forall \ \varepsilon > 0 \ \text{and} \ \psi_{\varepsilon} \to \psi \text{ a.e. in } \mathbb{R}^n,$$

define

$$v^{\varepsilon} = \eta_{\varepsilon} * (\psi_{\varepsilon} u)$$
 and $v = \psi u$.

- (a) Prove that $v^{\varepsilon} \stackrel{*}{\rightharpoonup} \text{ in } L^{\infty}(\mathbb{R}^n)$.
- (b) Prove that $v^{\varepsilon} \to v$ in $L^1(B)$ for every ball $B \subseteq \mathbb{R}^n$.
- 5. For $u \in \mathcal{C}^0(\mathbb{R}^n; \mathbb{R})$, $\operatorname{spt}(u)$ is the closure of the set $\{x \in \mathbb{R}^n : u(x) \neq 0\}$, but this definition may not make sense for functions $u \in L^p(\Omega)$. For example what is the support of $\mathbf{1}_{\mathbb{Q}}$, the indicator over the rationals?

Let $u: \mathbb{R}^n \to \mathbb{R}$, and let $\{\Omega_{\alpha}\}_{{\alpha} \in A}$ denote the collection of all open sets on \mathbb{R}^n such that for each ${\alpha} \in A$, u=0 a.e. on Ω_{α} . Define $\Omega = \bigcup_{{\alpha} \in A} \Omega_{\alpha}$. Prove that u=0 a.e. on Ω .

The support of u, $\operatorname{spt}(u)$ is Ω^c , the complement of Ω . Notice that if v = w a.e. on \mathbb{R}^n , then $\operatorname{spt}(v) = \operatorname{spt}(w)$; furthermore, if $u \in \mathcal{C}^0(\mathbb{R}^n)$, then $\Omega^c = \overline{\{x \in \mathbb{R}^n | u(x) \neq 0\}}$. (Hint: Since A is not necessarily countable, it is not clear that f = 0 a.e. on Ω , so find a countable family U_n of open sets in \mathbb{R}^n such that every open set on \mathbb{R}^n is the union of some of the sets from $\{U_n\}$.)

6. Prove that if $f \in L^1(\mathbb{R}^n)$ and $v \in L^p(\mathbb{R}^n)$ for $1 \leq p \leq \infty$, then

$$\operatorname{spt}(u * v) \subseteq \overline{\operatorname{spt}(u) + \operatorname{spt}(v)}.$$

7. Suppose that $1 . If <math>\tau_y f(x) = f(x - y)$, show that f belongs to $W^{1,p}(\mathbb{R}^n)$ if and only if $\tau_y f$ is a Lipschitz function of y with values in $L^p(\mathbb{R}^n)$; that is,

$$\|\tau_y f - \tau_z f\|_{L^p(\mathbb{R}^n)} \le C|y - z|.$$

What happens in the case p = 1?

- 8. If $u \in W^{1,p}(\mathbb{R}^n)$ for some $p \in [1,\infty)$ and $\frac{\partial u}{\partial x_j} = 0$, j = 1,...,n, on a connected open set $\Omega \subseteq \mathbb{R}^n$, show that u is equal a.e. to a constant on Ω . (Hint: approximate u using that $\eta_{\varepsilon} * u \to u$ in $W^{1,p}(\mathbb{R}^n)$, where η_{ε} is a sequence of standard mollifiers. Show that $\frac{\partial}{\partial x_j}(\eta_{\varepsilon} * u) = 0$ on $\Omega_{\varepsilon} \subset\subset \Omega$ where $\Omega_{\varepsilon} \nearrow \Omega$ as $\varepsilon \to 0$.)
 - More generally, if $\frac{\partial u}{\partial x_j} = f_j \in C(\Omega)$, $1 \leq j \leq n$, show that u is equal a.e. to a function in $C^1(\Omega)$.