Case Study Bank Loan Default Risk Analysis

Exploratory Data Analysis

Content

- Load the data
- Check the data
 - Glimpse the data
 - Check missing data
 - Check data unbalance
- Explore the data
 - Deleting the columns where null values are more than 50%
 - Identifying outliers
 - Univariate, Bivariate and Segmented Univariate analysis

Analysing Application_data.csv file

Load the data

df_	_application	.head()							
	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CRE
0	100002	1	Cash loans	М	N	Υ	0	202500.0	40659
1	100003	0	Cash loans	F	N	N	0	270000.0	129350
2	100004	0	Revolving loans	M	Υ	Υ	0	67500.0	13500
3	100006	0	Cash loans	F	N	Υ	0	135000.0	31268
4	100007	0	Cash loans	М	N	Υ	0	121500.0	51300

Loading the data is the first step of any analysis

Check the data

Glimpse the data

Loading data and finding the shape of the data frame which has <u>307511</u> rows and <u>122</u> columns

Check missing data

```
missing data(df application).head(10)
In [6]:
Out[6]:
                                      Total
                                             Percent
                  COMMONAREA_MEDI 214865 69.872297
                  COMMONAREA_AVG 214865 69.872297
                 COMMONAREA_MODE 214865 69.872297
         NONLIVINGAPARTMENTS MODE 213514 69.432963
          NONLIVINGAPARTMENTS_MEDI 213514 69.432963
          NONLIVINGAPARTMENTS_AVG 213514 69.432963
              FONDKAPREMONT MODE 210295 68.386172
             LIVINGAPARTMENTS_MEDI 210199 68.354953
             LIVINGAPARTMENTS_MODE 210199 68.354953
              LIVINGAPARTMENTS_AVG 210199 68.354953
```

Checking the total null values and percent of null values column wise

Check data unbalance

We are checking the data unbalance for the **TARGET** variable.

This is to find the ratio between the clients having difficulty in paying the loan versus all the other cases.

Target 1 means clients having payment difficulties

Target 0 means all the other cases

Ratio between both the cases is 11.39

Explore the data

Deleting the columns where null values are more than 50%
 After deleting above columns, the number of columns remained are given as:

```
In [6]: missing_data(df_app).head()
Out[6]:
                                         Total
                                                 Percent
                        FLOORSMAX_AVG 153020 49.760822
                       FLOORSMAX_MEDI 153020
                                               49.760822
                      FLOORSMAX MODE 153020 49.760822
          YEARS_BEGINEXPLUATATION_AVG 150007
                                               48.781019
         YEARS_BEGINEXPLUATATION_MEDI 150007
                                               48.781019
In [7]:
         df_app.shape
Out[7]:
         (307511, 81)
```

Identifying Outliers

2

These are the outliers representation of various numerical variables using Box plot.

The various variables shown in the left are:

- 1. CNT_CHILDREN
- 2. AMT_INCOME_ TOTAL
- 3. AMT_CREDIT
- 4. AMT_ANNUITY

3

4.

Univariate, Bivariate and Segmented Univariate analysis

Univariate Analysis

- Univariate analysis is the simplest form of analyzing data. "Uni" means "one", so in other words your data has only one variable. It doesn't deal with causes
 or relationships (unlike regression) and it's major purpose is to describe; it takes data, summarizes that data and finds patterns in the data.
- · Analysing the particular column is called Univariate Analysis. Which either have
 - Categorical variables
 - Quntitative or numerical variables
- · We can get summary metrics of the particular column.

Bivariate Analysis

- Bivariate analsis means the relationship between two variables. We need to perform Bivariate Analysis on
 - · Continous variables
 - Categorical variables

Segmented Univariate

Segmented univariate analysis allows you to compare subsets of data,it helps you understand how a relevant metric varies across different segments.In
the segmented univariate analysis useful insights are extracted by conducting univariate analysis on segments on data.

Dividing into two sets based on Target variable i.e., into Target 0 and Target 1 and doing **bivariate** analysis on continuous(numerical) variables.

Finding correlation between numerical columns of both dataset (Target 0 and Target 1)

Correlation between columns of Target 0

Top **10 correlation** of Target 1 dataset:

Top Absolute Correlations		
DAYS_EMPLOYED	FLAG_EMP_PHONE	0.999702
OBS_30_CNT_SOCIAL_CIRCLE	OBS_60_CNT_SOCIAL_CIRCLE	0.998269
FLOORSMAX_AVG	FLOORSMAX_MEDI	0.997187
YEARS_BEGINEXPLUATATION_AVG	YEARS_BEGINEXPLUATATION_MEDI	0.996124
FLOORSMAX_MODE	FLOORSMAX_MEDI	0.989195
FLOORSMAX_AVG	FLOORSMAX_MODE	0.986594
AMT_CREDIT	AMT_GOODS_PRICE	0.983103
YEARS_BEGINEXPLUATATION_AVG	YEARS_BEGINEXPLUATATION_MODE	0.980466
YEARS_BEGINEXPLUATATION_MODE	YEARS_BEGINEXPLUATATION_MEDI	0.978073
REGION_RATING_CLIENT	REGION_RATING_CLIENT_W_CITY	0.956637
dtype: float64		

Top **10 correlation** of Target 0 dataset:

Top Absolute Correlations		
DAYS_EMPLOYED	FLAG_EMP_PHONE	0.999758
OBS_30_CNT_SOCIAL_CIRCLE	OBS_60_CNT_SOCIAL_CIRCLE	0.998508
FLOORSMAX_AVG	FLOORSMAX_MEDI	0.997018
YEARS_BEGINEXPLUATATION_AVG	YEARS_BEGINEXPLUATATION_MEDI	0.993582
FLOORSMAX_MODE	FLOORSMAX_MEDI	0.988153
AMT_CREDIT	AMT_GOODS_PRICE	0.987250
FLOORSMAX_AVG	FLOORSMAX_MODE	0.985603
YEARS_BEGINEXPLUATATION_AVG	YEARS_BEGINEXPLUATATION_MODE	0.971032
YEARS_BEGINEXPLUATATION_MODE	YEARS_BEGINEXPLUATATION_MEDI	0.962064
REGION_RATING_CLIENT	REGION_RATING_CLIENT_W_CITY	0.950149
dtype: float64		

Checking how each column is affecting the client and finding which client is more likely to default and fall under category Target 1 by doing univariate and segmented univariate analysis.

First bar plot shows how many Cash loans and Revolving loans are there in NAME_CONTRACT_TYPE

Second bar plot shows Cash loans and Revolving loans are behaving percent

Second bar plot shows Cash loans and Revolving loans are behaving percentage wise in Target 1 category

In [54]: plot_stats('CODE_GENDER')

In [56]: plot_stats('NAME_FAMILY_STATUS',True, True)

The graphs show the different Occupation Type of the clients.

Conclusion

- · Contract type Revolving loans are less when compared to the Revolving loans
- The number of female clients are more, almost double the number of male clients. The percentage of males have a higher chance of not returning their loans '10%' when compared with women '7%'.
- The number of clients having cars were half than the number of clients dont have cars. Both of them having 8% chance of not returning the lone amount.
- The clients that owns real estate are more than double of the ones that doesn't own real estate. Both categories have not-repayment rates less than '8%'.
- Among all the income types Pensioner, State Servent '6%' having more chance of not repaying the lone, when compared to other income types
- Majority of the clients have Secondary/secondary special education, followed by Higher education clients. The people with Academic degree have less than '2%' not-repayment rate. The Lower secondary category have the largest rate of not returning the loan '11%'.
- Most of clients are married, followed by Single/not married and civil marriage. Civil marriage has the highest percent of not repayment '10%', with Widow having the lowest percent of not repaying the lone '6%'.
- The people who are staying in Rented apartment and With parents has higher chance '10%' of not-repaying the lones.
- Laborers taken more number of lones, followed by Sales staff. The category with highest percent of not repaid loans are Low-skill Laborers '17%', followed
 by Drivers and Waiters/barmen staff, Security staff, Laborers and Cooking staff.
- Transport: type 3 (16%), Industry: type 13 (13.5%), Industry: type 8 (12.5%) and Restaurant (less than 12%) are the organisations which does not pay the
 lone amount.
- Clients with family size of 11 and 13 have not payed the lones at all. Families having 10 or 8 members having the percentage of not repaying of loans is
 over 30%. Families with 6 or less members have repayment rates close to the 10%.

Analysing Previous_application.csv file

Load the data

SK_I	ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOWN_PAYMENT	AMT_GOODS_PRICE	WEEKDAY_AF	PPR_PROCESS_STAR	T HOUR_APPR_PROCESS_ST	TAF
2	2030495	271877	Consumer loans	1730.430	17145.0	17145.0	0.0	17145.0		SATURDA	Y	
2	2802425	108129	Cash loans	25188.615	607500.0	679671.0	NaN	607500.0		THURSDA	Y	
2	2523466	122040	Cash loans	15060.735	112500.0	136444.5	NaN	112500.0		TUESDA	Υ	
2	2819243	176158	Cash loans	47041.335	450000.0	470790.0	NaN	450000.0		MONDA	Υ	
1	1784265	202054	Cash loans	31924.395	337500.0	404055.0	NaN	337500.0		THURSDA	Y	
rgin	ng two da	ta sets for a	nalysis :									
da		cation_data.m	nalysis: erge(previous_data, lef	t_on='SK_ID_CUI	RR', right_on='SK_I	D_CURR', how=':	inner')					
da	ata=applic ata.head()	cation_data.m	erge(previous_data, lef					T_INCOME_TOTAL AM	T_CREDIT_X	AMT_ANNUITY_X .	NAME_SELLER_INDUSTRY	,
da	ata=applic ata.head() SK_ID_0	cation_data.m	erge(previous_data, lef	CODE_GENDER	FLAG_OWN_CAR FL		CNT_CHILDREN AM	T_INCOME_TOTAL AM 202500.0	T_CREDIT_X 406597.5		NAME_SELLER_INDUSTRY Auto technology	
da da	sata=applic sata.head() SK_ID_0	cation_data.m) CURR TARGET	erge(previous_data, lef NAME_CONTRACT_TYPE_) Cash loans	CODE_GENDER	FLAG_OWN_CAR FL	.AG_OWN_REALTY	CNT_CHILDREN AM			24700.5		/
da da	sk_ID_6 1 100	cation_data.m) CURR TARGET 0002 1	erge(previous_data, lef NAME_CONTRACT_TYPE_) Cash loans Cash loans	C CODE_GENDER M F	FLAG_OWN_CAR FL N N	.AG_OWN_REALTY	CNT_CHILDREN AM	202500.0	406597.5	24700.5 35698.5	Auto technology	/
da da	SK_ID_0 0 100 1 100 2 100	CURR TARGET 0002 1 0003 0	NAME_CONTRACT_TYPE_; Cash loans Cash loans	CODE_GENDER M F	FLAG_OWN_CAR FL N N	.ag_own_realty Y N	CNT_CHILDREN AM	202500.0 270000.0	406597.5 1293502.5	24700.5 35698.5 35698.5	Auto technology	/ A

Loading the data is the first step of any analysis and merging it with application_data.csv file

Check the data

Glimpse the data and deleting unnecessary columns

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_X	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT_X	AMT_ANNUITY_x	 NAME_SELLER_INDUSTRY
0	100002	1	Cash loans	M	N	Υ	0	202500.0	406597.5	24700.5	 Auto technology
1	100003	0	Cash loans	F	N	N	0	270000.0	1293502.5	35698.5	 XNA
2	100003	0	Cash loans	F	N	N	0	270000.0	1293502.5	35698.5	 Furniture
3	100004	0	Revolving loans	М	Υ	Υ	0	67500.0	135000.0	6750.0	 Connectivity
4	100006	0	Cash loans	F	N	Υ	0	135000.0	312682.5	29686.5	 XNA

Dropping unnecessary columns:

```
'FLAG_DOCUMENT_11','FLAG_DOCUMENT_12','FLAG_DOCUMENT_13','FLAG_DOCUMENT_14','FLAG_DOCUMENT_15',
           'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17', 'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20',
           'FLAG_DOCUMENT_21','FLAG_EMP_PHONE','ÓBS_30_CNT_SOCIAL_CÍRCLE', OBS_60_CNT_SOCIAL_CIRCLE',
            'DEF 30 CNT SOCIAL CIRCLE', DEF 60 CNT SOCIAL CIRCLE', YEARS BEGINEXPLUATATION MODE',
            'YEARS_BEGINEXPLUATATION_MÉDI', EXT_SOURCE_1', EXT_SOURCE_2', EXT_SOURCE_3', 'APARTMENTS_AVG',
            'BASEMENTAREA_AVG', 'YEARS_BEGINEXPLUATATION_AVG', 'YEARS_BUILD_AVG', 'COMMONAREA_AVG', 'ELEVATORS AVG',
            'ENTRANCES_AVG', 'FLOORSMAX_AVG', 'FLOORSMIN_AVG', 'LANDAREA_AVG',
            'LIVINGAPARTMENTS_AVG','LIVINGAREA_AVG','NONLIVINGAPARTMENTS_AVG','NONLIVINGAREA_AVG',
            'APARTMENTS MODE', 'BASEMENTAREA MODE', 'YEARS BUILD MODE', 'COMMONAREA MODE',
            'ELEVATORS_MODE', 'ENTRANCES_MODE', 'FLOORSMAX_MODE', 'FLOORSMIN_MODE',
            'LANDAREA MODE', 'LIVINGAPARTMENTS_MODE', 'LIVINGAREA_MODE', 'NONLIVINGAPARTMENTS_MODE',
            'NONLIVINGAREA_MODE','APARTMENTS_MEDI','BASEMENTAREA_MEDI','YEARS_BUILD_MEDI', COMMONAREA_MEDI','ELEVATORS_MEDI', 'ENTRANCES_MEDI'
            'fLOORSMAX_MEDĪ','FLOORSMIN_MEDI<sup>T</sup>,'LANDAREA_MEDI','LĪVINGAPARTMENTS_MEDĪ','LIVINGAREA_MEDĪ','NONLIVINGAPARTMENTS_MEDI',
            'NONLIVINGAREA MEDI', 'FONDKAPREMONT MODE', 'HOUSETYPE MODE', 'TOTALARE'A MODE', 'WALLSMATERIAL MODE',
            'EMERGENCYSTATE_MODE','FLAG_MOBIL', 'FLAG_WORK_PHONE',
'FLAG_CONT_MOBILE', 'FLAG_PHONE', 'FLAG_EMAIL','REGION_RATING_CLIENT', 'REGION_RATING_CLIENT_W_CITY',],axis=1,inplace=True)
```

Check missing data

Finding out columns which are having null values more than 50% and dropping:

```
[ ] total = data.isnull().sum().sort_values(ascending = False)
    percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending = False)
    missing_data=pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
    missing_data
[ ] df=data[missing_data[missing_data['Percent']>=50].index]
    data.drop(df,axis=1,inplace=True)
```

Checking the total null values and percent of null values column wise

Explore the data

Analysing the data column wise

- Among the three types of contracts i.e., Cash loans, Consumer loans, Revolving loans. Cash loans and Consumer loans are almost the same '600K' and Revolving loans are almost equal to '150K'.
- The percent of defaults in Revolving loans is 10% and then 9.5% for Cash loans and 8% for Consumer loans.

• The percent of defaults for cash loan are more by the name of Hobby which is 2*% followed by Car repairs 19% and Payments on other loans 17%

Most previous applications contract status are Approved 850K, Canceled and Refused status is 240K. There are only 20K in Unused offer.

In terms of percent of defaults for current applications, clients with history of previous applications have largest percents of defaults when in their history contract statuses are Refused 12%, followed by Canceled 9%, Unused offer 8% and then Approved which is less than 8%.

graph('NAME_CLIENT_TYPE')

- Most of the previous application data have client type of Repeater(1M), 200K are New and nearly 100K are Refreshed.
- In terms of default the percentage of current applications of clients having defaults ranging from from 8.5%, 8.25% and 7% for New, Repeater and Refreshed respectivelly.

• Finding out to reduce the Defaulters

Conclusion

The following are the cases where there are High approval of loans having more defaulters

- The client having Secondary special, Higher education as education
- The client having Family Status as Married
- Whose Occupation is Labour, Core staff and Sales staff
- By reducing the loans approved for the above category of people there might be a change of having less defaulters which helps the organisation to gain profit