Partie 1 : Analyse

Exercice 1 : (04 pts)
On considère la fonction

$$f(t) = \begin{cases} \cos t & si & -\pi \le t \le \pi \\ 0 & sinon. \end{cases}$$

- 1 Calculer la transformée de Fourier de f.
- 2 Donner l'expression de la transformée inverse.
- 3 En déduire la valeur des intégrales suivantes

$$A = \int_0^{+\infty} \frac{x \sin(\pi x)}{x^2 - 1} dx \; ; \qquad B = \int_0^{+\infty} \frac{x \sin(\pi x) \cos(\pi x)}{x^2 - 1} dx ; \qquad C = \int_0^{+\infty} \frac{x^2 \sin^2(\pi x)}{(x^2 - 1)^2} dx .$$

Rappel: $\cos a \cos b = \frac{\cos(a+b) + \cos(a-b)}{2}$.

Exercice 2: (04 pts)

On considère la série de fonctions $\left(\sum_{n\geqslant 0}f_n\right)$ définies par : $f_n(x)=\frac{1}{1+x^n}; \quad x\in]1,+\infty[$

Montrer que la série $\left(\sum_{n\geqslant 0}f_n\right)$ est simplement convergente dans $]1,+\infty[$

f. Montrer que la convergence est normale dans $[a, +\infty[$; $\forall a > 1$.

3. On pose $f(x) = \sum_{n=0}^{+\infty} f_n(x); x \in [a, +\infty[.$

Etudier la continuité et la dérivabilité de f dans $[a, +\infty[$

Partie 2 : Algèbre

Exercice (07 pts) Soit $s \in \mathbb{R}$ un paramètre, et soit f_s l'endomorphisme de \mathbb{R}^3 défini dans la base canonique $B = \{e_1, e_2, e_3\}$ par la matrice

$$A_{s} = \begin{pmatrix} s & 2s - 1 & 1 - 2s \\ -1 & s & 1 \\ -1 & 2s - 1 & 2 - s \end{pmatrix}$$

 \checkmark . Vérifier que $det(A_s) = -s(s^2 - 1)$.

 \mathcal{Z} . Calculer en fonction de $s \in \mathbb{R}$, le rang de f_s .

3. Posons s = 0. Montrer que l'endomorphisme f_0 est diagonalisable, et diagonaliser le en précisant les matrices de passage.

Partie 3 : Logique Mathématique

Exercice 1. (2.5 pts)

Formaliser en langage de calcul des prédicats les assertions suivantes :

- A. Chaque malade autre que le malade Zéro a eté infecté par un autre malade.
- 2. Une personne morte ou guérie ne peut infecter ni être infectée par personne.
- 2. Certains malades sont guéris et certains sont morts.

Exercice 2. (2.5 pts)

Soit l'ensemble des clauses suivantes :

$$\Gamma = \{d+c+e, e+d+\bar{c}+a, e+d+\bar{c}+\bar{a}, \bar{d}+b+\bar{c}, \bar{d}+b+c, \bar{d}+\bar{b}+a, \bar{d}+\bar{b}+\bar{a}, \bar{e}+d\}$$

Vérifier la satisfaisabilité de l'ensemble Γ par résolution propositionnelle.