MICROCONTROLLER APPLICATONS /

ENGINEERING DESIGN & BUSINESS PROJECT II

2018/2019 SEMESTER TWO MID-SEMESTER TEST

SAS code:

ET1010

Diploma in Aerospace Electronics (DASE)

Diploma in Energy Systems and Management (DESM)

Diploma in Computer Engineering (DCPE)

Diploma in Electrical & Electronic Engineering (DEEE)

Diploma in Mechatronics and Robotics (DMRO)

ET1216

Diploma in Engineering with Business (DEB)

2nd Year Full-Time

Time Allowed: 1.5 Hours

Instructions to Candidates

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of TWO sections:
 - Section A 10 Multiple Choice Questions, 3 marks each.
 - Section B 5 Questions, 14 marks each.
- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the Answer Booklet. Start each question in Section B on a new page.
- 5. This paper consists of 10 pages (including 2 pages in the Appendix).

SECTION A

MULTIPLE CHOICE QUESTIONS [3 marks each]

- Please tick your answers in the MCQ box provided on the second page of the answer booklet.
- No marks will be deducted for wrong answers.
- **A1**. What is a microcontroller?
- (a) A microcontroller is any device that can provide intelligent control in a system.
- (b) A microcontroller is an integrated circuit with a fixed program running in it.
- (c) A microcontroller is small computer on a single integrated circuit.
- (d) A microcontroller is a microprocessor.
- **A2.** Which of the following is NOT true of PIC18F4550 ADC?
- (a) The conversion result can be left-justified or right-justified.
- (b) More than one analogue input channel can be converted at the same time.
- (c) The reference voltages can be selected.
- (d) The acquisition time is selectable.
- **A3**. Which of the following packages would you choose to prototype a PIC18-based circuit on a breadboard?
- (a) SPDIP (Skinny Plastic Dual-In-Line).
- (b) TQFP (Thin Quad Flat Pack).
- (c) QFN (Quad Flat No-lead).
- (d) SO (Small Outline).
- A4. What is a transducer?
- (a) A transducer converts an analogue voltage into a binary bit pattern.
- (b) A transducer samples and holds an input voltage for conversion.
- (c) A transducer converts a physical quantity into an electrical quantity.
- (d) A transducer is a digital to analogue converter.
- **A5.** Using 5V & ground as the reference voltages, a 10-bit analogue to digital converter would convert a 3V input to
- (a) $(1/5) \times (2^{10}-1)$
- (b) $(2/5) \times (2^{10}-1)$
- (c) $(5/3) \times (2^{10}-1)$
- (d) $(3/5) \times (2^{10}-1)$

A6 .	An active low push button switch
(a) (b) (c) (d)	gives a logic '0' when released gives a logic '1' when pressed can be connected as an input to a microcontroller can be connected as an output to a microcontroller
A7.	To indicate the water level in a drain, which one of the following devices is suitable?
(a) (b) (c) (d)	A buzzer An LED bar An LED A solenoid
A8.	Referring to the PIC18F4550 microcontroller pin diagram in the Appendix, at which pins should a crystal oscillator be connected, in order to supply a clock signal to the microcontroller?
(a) (b) (c) (d)	Pins 1 and 21 Pins 13 and 14 Pins 11 and 32 Pins 23 and 24
A9.	A compiler
(a) (b) (c) (d)	converts a high level language e.g. C-language program into machine code. converts an assembly language program into machine code. allows a program to be simulated on a PC before it is run on a microcontroller. converts machine code into a high level language e.g. C-language program.
A10.	Which line of code below can be used to write a logic 1 to RB5 (Port B, Bit 5), without affecting other bits of Port B?
(a) (b) (c) (d)	PORTB = 0xFF; PORTBbits.RB5 = 0; PORTB = 0b00100000; PORTB = PORTB 0b00100000;

SECTION B

SHORT QUESTIONS [14 marks each]

B1. A tissue vending machine inside a public washroom charges 20 cent for a packet of tissue. It only accepts 20 cent coin and cannot give change.

The "coin detector" in the machine produces a 10ms high pulse at RA0 pin of the PIC18 microcontroller whenever a 20 cent coin is inserted. To dispense a packet of tissue, the PIC18 microcontroller has to produce a 20ms high pulse at its RC1 pin, which is connected to a motor.

- (a) Write the C code to make RA0 an input pin. (2 marks)
- (b) Write the C code to make RC1 an output pin. (2 marks)
- (c) Write the C code to check if RA0 is high. (2 marks)
- (d) Given that delay_ms(k) where 0 < k < 255 produces a delay of k millisecond, write the lines of C code to produce a 20ms high pulse at RC1. (4 marks)
- (e) Using the answers to parts (a) to (e), write the C code for the tissue vending machine, such that a packet of tissue is dispensed whenever a 20 cent coin is inserted. You can use the following outline. (4 marks)

B2. In a factory, the boxes moving on a conveyor belt are detected using an Infra-Red sensor and counted by a PIC18 microcontroller. The count (0-5) is displayed on a 7-segment display. Whenever the count reaches 5, a buzzer will beep and the count will

(a) Assuming common cathode 7-segment display is used (i.e. '1' = ON), what is the code that will display the number '3' (with the decimal point turned off)?

- (b) A number of 470-ohm resistors are often used with the 7-segment display. Give a reason for using these resistors. (2 marks)
- (c) The flowchart for programming the PIC18 is given below. Complete it using these words:

 Beep Buzzer Box detected? Count = 0 Count=5? Indicate your answers in the answer booklet as (i) your answer... (8 marks)

(d) An engineer has written the code to detect & count the boxes as:

while(PORTBbits.RB5==0); // wait for IR signal to go high while(PORTBbits.RB5==1); // wait for IR signal to go low Count++; // increment count

What is the value of the variable Count at point y in the timing waveform above, assuming initial value of 0 for Count? (2 marks)

B3. A PIC18 microcontroller-based "water level monitoring" system is used in a fish tank, as shown below:

When the water level is too high (i.e. Max == 1), Pump2 is turned on (Pump2 = 1) to pump away the excess water. When the water level is too low (i.e. Min == 0), Pump1 is turned on (Pump1 = 1) to add water to the tank. Whenever Pump1 or Pump2 is turned on, the buzzer will also be activated, to alert the owner.

The microcontroller pins used for connecting to the I/O devices are shown below:

Max (sensor)	RA3	Active high
Min (sensor)	RA4	Active high
Pump1	RD1	Active high
Pump2	RD2	Active high
Buzzer	RD0	Active high

The water level sensors (Max & Min) can be created from 2 metal strips placed very close to one another, so that the presence of water will short the strips, resulting in a closed circuit between points 1 and 2.

- (a) Draw the circuit diagram of a water level sensor. Include Vcc, Ground and a 10k resistor in your circuit. (4 marks)
- (b) Write the codes to configure Port A bits 3 and 4 as inputs, and Port D bits 0, 1 and 2 as outputs. (4 marks)
- (c) Write the codes (in your answer booklet) to check the water level and to switch the pumps and buzzer on/off (as appropriate), for the "water level monitoring" described above. (6 marks)

```
while(1) { // loop forever

// if water level too high
// on Pump2, off Pump1, on Buzzer
// else if water level too low
// ...
// else
// ...
}
```

B4. An "automatic toilet flush" is used in a hotel washroom. When a person approaches the urinal (Human==1), the PIC18 microcontroller will set Flush=1 (so that the valve will open) for 2 seconds. This is called "pre-flush". When the person leaves (Human==0), the controller will again set Flush =1, this time for 5 seconds. The C-program used is shown in outline form below.

line	code	comments
1	void main () {	
2		// set pins as input/output here
3	while(1) {	
4	while (Human==0);	// Human defined as PORTAbits.RA0
5	Flush = 1;	// Flush defined as PORTAbits.RA1
6	Delay2sec ();	// a delay function
7	Flush = 0;	
8	while (Human==1);	
9	Flush = 1;	
10	Delay5sec ();	// another delay function
11	Flush = 0;	
12	}	
13	}	

(a) What is the purpose of line 3? (2 marks)

(b) Which 3 lines are "pre-flush"? (2 marks)

(c) What is the purpose of line 8? (2 marks)

- (d) Given that delay_ms(100); will give a delay of 0.1 sec, write the "for loop" to produce a delay of 2 second for the Delay2sec function. (4 marks)
- (e) There is some complaint that the pre-flush is a waste of water, while the "post-flush" of 5 seconds is longer than necessary. Suggest the changes to be made to the code, to save some flushing water. (4 marks)

B5. In a covered activity area, 2 sets of lights, X and Y, are installed.

A motion sensor, M, and a brightness sensor, B, are used with a PIC18 microcontroller to add intelligence to the lighting system. The PIC18 program is given in outline form below. Study the program and answer the questions which follow.

```
main (void)
{
    TRISD = 0x00;
    TRISA = 0xFF;
    ADCON0 = 0 b 0 0 0 0 0 0 1;
    ADCON1 = 0 b 0 0 0 0 1 1 1 0;
    ADCON2 = 0 b 1 0 0 1 0 1 1 0;
    while (1)
    {
        ADCONobits.GO = 1;
        while (ADCONobits.GO == 1);
        if (ADRESH < 0b00000010) { // it is dark
            if (PORTAbits.RA1==1) // and motion is detected
            PORTD = 0xFF; // on all lights i.e. sets X & Y
            else
            PORTD = 0x0F; // on set X lights only
        }
        else
        PORTD = 0x00; // off all lights i.e. sets X & Y
        }
}
```

- (a) Which AD channel (AN0 to AN12) is used for the brightness sensor B? (2 marks)
- (b) What are the reference voltages used for the ADC i.e. Vref- = __, Vref+ = __? (2 marks)
- (c) Is the result of the A to D conversion left-justified or right-justified? (2 marks)
- (d) What is the purpose of the statement below? (2 marks)

 while (ADCON0bits.GO == 1);
- (e) Based on the ADCON0 to ADCON2 settings, if the brightness sensor B gives a voltage of 1 volt, what will be the value in ADRESH once conversion is finished? (4 marks)
- (f) Which set of lights will be turned on if it is bright and motion is detected? (2 marks)

APPENDIX - PIC18F4550 - 40-pin PDIP - pin diagram

PIC18F4550 - Analogue to Digital Converter

<u>ADCON1</u> - The ADCON1 register configures the **voltage references** and the **functions of the port pins**.

U-0	U-0 U-0 R/W-0		R/W-0 R/W-0 ⁽¹⁾		R/W ⁽¹⁾		F	R/W ⁽¹⁾		R/W ⁽¹⁾						
_	_	— VCFG1 VCFG0 PCFG3 PCFG2			FG2	PCFG1 PCFG0				0						
bit 7										'		bit 0				
Legend:																
R = Reada	ble bit	W = Writable bit	ı	J = Un	implen	nented	bit, rea	d as '()'							
-n = Value	at POR	'1' = Bit is set		0' = Bit	t is clea	ared		x =	x = Bit is unknown							
bit 7-6	Unimplem	nented: Read as '0'														
bit 5	VCFG1: Voltage Reference Configuration bit (VREF- source)		PCFG3: PCFG0	AN12	AN11	AN10	AN9	AN8	AN7 ⁽²⁾	AN6 ⁽²⁾	AN5 ⁽²⁾	AN4	AN3	AN2	AN1	ANO
	1 = VREF- (0 = VSS	(AN2)	0000(1)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
bit 4		oltage Reference	0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
		Configuration bit (VREF+ source)	0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	1 = VREF+	(AN3)	0011	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	0 = VDD		0100	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
bit 3-0		CFG0: A/D Port	0101	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	Configurati	on Control bits:	0110	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
		_	0111(1)	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
			1000	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
			1001	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
			1010	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
			1011	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
			1100	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
			1101	D	D	D	D	D	D	D	D	D	D	D	Α	Α
			1110	D	D	D	D	D	D	D	D	D	D	D	D	Α
			1111	D	D	D	D	D	D	D	D	D	D	D	D	D
			A = Anal	oa inpu	ıt				D = Di	gital I/G	0					

<u>ADCON0</u> - The ADCON0 register controls the **operation of the A/D module**.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON			
bit 7		•		•			bit 0			
Legend:										
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	nown			
bit 7-6 bit 5-2		nel 1 (AN1) nel 2 (AN2) nel 3 (AN3) nel 4 (AN4) nel 5 (AN5) nel 6 (AN6) nel 7 (AN7) nel 8 (AN8) nel 9 (AN9) nel 10 (AN10)	el Select bits	oit 1 oit 0	GO/DONE: A/I When ADON = 1 = A/D conver 0 = A/D Idle ADON: A/D Or 1 = A/D conver 0 = A/D conver	: 1: rsion in progres n bit rter module is e	enabled			

<u>ADCON2</u> - The ADCON2 register configures the **A/D clock source**, **programmed acquisition time** and **justification**.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0		
bit 7									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpl	emented bit, read	l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is o	leared	x = Bit is unkn	nown		
1 = R 0 = L bit 6	ight justified eft justified plemented: R	Format Select b ead as 'o' D Acquisition Ti	0	111 110 101 5 100 011 010	CS2:ADCS0: A/D = FRC (clock deri = Fosc/64 = Fosc/16 = Fosc/4 = FRC (clock deri = Fosc/32 = Fosc/8 = Fosc/2	ved from A/D R	RC oscillator)		

- End of Paper -