BIJAN MAZAHERI

% bijanmazaheri.com

bmazaher@broadinstitue.org

github.com/honeybijan

Cambridge, MA

(781)-985-0881

I study topics related to causality, distribution shift, decision fusion, and mixture models, particularly with respect to the task of combining data and knowledge from multiple places, topics, and modalities. I approach problems through a bifocal lens, with theory guiding data-realistic approaches to application and application giving rise to new fundamental discoveries.

EDUCATION

California Institute of Technology - Pasadena, CA

Oct 2017 - Aug 2023

Ph.D.

Department of Computing and Mathematical Sciences, GPA: 3.9/4.0

Awarded NSF Graduate Research Fellowship and Amazon AI4Science Research Fellowship

Thesis Title: Combining Sources and Leveraging Contexts

Cambridge University (Emmanuel College) - Cambridge, UK

Oct 2016 - Jun 2017

Mathematics Part 1B

Supported by a Herchel Smith Fellowship

Additional classes in Computer Science and Mathematics Part II

Williams College - Williamstown, MA

Sep 2012 - Jun 2016

Bachelor of Arts

Physics and Computer Science, GPA: 3.92/4.00

Highest Honors (Physics), Phi Beta Kappa, Sigma Xi, Magna Cum Laude

Thesis Title: RNA Macrostates and Macrokinetics

WORK EXPERIENCE

Broad Institute of MIT and Harvard - Cambridge, MA

Oct 2023 - Now

Eric and Wendy Schmidt Postdoctoral Associate

Current projects focus on batch-effect correction, causal inference, missing data, and efficient experimental design. Primarily working with Prof. Caroline Uhler.

Amazon Research Causality Lab - Tübingen, Germany

Oct 2022 - Feb 2023

Applied Scientist Intern (L5)

Worked with Dr. Michaela Hardt, Dr. Atalanti Mastakouri, and Dr. Dominik Janzing Lead-authored a paper accepted to UAI 2023.

BioDiscovery - El Segundo, CA

Jun 2017 - Sep 2017

Intern

I developed and implemented methods for clustering cancers based on genome aberrations. My work has now been integrated into BioDiscovery's software and presented at a conference.

IBM T.J. Watson Research Center - Yorktown Heights, NY

Jun 2016 - Sep 2016

Intern

Worked with Dr. Victor Kravets (mentor) and Dr. Andrew Sullivan (manager).

Projects included non-greedy and map-reduce algorithms for factoring sum of products representations, with the goal of developing more efficient circuits.

TEACHING EXPERIENCE

Markov Chain Monte Carlo

Spring 2022

Head TA for new class on MCMC methods in theoretical computer science. Developed solutions and grading rubrics for problem sets.

Physics and Mathematics

Sep 2013-Jun 2016

TAed for undergraduate classes in Electricity and Magnetism, Classical Mechanics, Mathematical Methods for Scientists, Premed Physics, Discrete Mathematics.

AWARDS AND GRANTS

Amazon AI4Science Research Fellowship

Awarded Spring 2022

Funding for research with the potential to aid scientific discovery.

National Science Foundation Graduate Research Fellowship

Awarded Spring 2019

3 year Ph.D. fellowship awarded for a proposal to research confounding influence in causal networks.

Herchel Smith Fellowship

Awarded Spring 2016

Funding for 1-3 years of study at Cambridge University.

PUBLICATIONS

Spencer Gordon, Eric Jahn, *Bijan Mazaheri, Yuval Rabani, and Leonard J Schulman. Identification of Mixtures of Discrete Product Distributions in Near-Optimal Sample and Time Complexity. In The Thirty Seventh Annual Conference on Learning Theory, 2024.

Identification of mixtures of discrete product distributions in near-optimal sample and time complexity. In The Thirty Seventh Annual Conference on Learning Theory, pages 2071–2091. PMLR.

Bijan Mazaheri, Atalanti Mastakouri, Dominik Janzing, and Michaela Hardt. Causal Information Splitting: Engineering Proxy Features for Robustness to Distribution Shifts. In *The 39th Conference on Uncertainty in Artificial Intelligence*, 2023.

Spencer Gordon, *Bijan Mazaheri, Yuval Rabani, and Leonard J Schulman. Causal Inference Despite Limited Global Confounding via Mixture Models. In 2nd Conference on Causal Learning and Reasoning, 2023.

Siddharth Jain, **Bijan Mazaheri**, Netanel Raviv, and Jehoshua Bruck. Glioblastoma signature in the DNA of blood-derived cells. *PLOS ONE* 16(9): e0256831. 2021.

Bijan Mazaheri, Siddharth Jain, and Jehoshua Bruck. Expert Graphs: Synthesizing New Expertise via Collaboration. In *2021 IEEE International Symposium on Information Theory (ISIT)*, pages 2447–2452, 2021.

Spencer Gordon, *Bijan Mazaheri, Yuval Rabani, and Leonard Schulman. Source Identification for Mixtures of Product Distributions. In *Conference on Learning Theory*, pages 2193–2216. PMLR, 2021.

Bijan Mazaheri, Siddharth Jain, and Jehoshua Bruck. Robust Correction of Sampling Bias using Cumulative Distribution Functions. *Advances in Neural Information Processing Systems*, volume 33, pages 3546–3556. Curran Associates, Inc., 2020.

PREPRINTS

^{* =} Authorship order is alphabetical.

Bijan Mazaheri, Spencer Gordon, Yuval Rabani, and Leonard J Schulman. Causal Discovery under Latent Class Confounding. *arXiv*:2311.07454, 2023. Under Review.

Bijan Mazaheri, Siddharth Jain, Matthew Cook, and Jehoshua Bruck. Omitted Labels in Causality: A Study of Paradoxes *arXiv:2311.06840*, 2023. Under Review.

Spencer Gordon, *Bijan Mazaheri, Leonard J Schulman, and Yuval Rabani. The sparse Hausdorff moment problem, with application to topic models. *arXiv*:2007.08101, 2020.

Siddharth Jain, **Bijan Mazaheri**, Netanel Raviv, and Jehoshua Bruck. Cancer Classification from Healthy DNA using Machine Learning. *BioRxiv*, page 517839, 2019.

Siddharth Jain, **Bijan Mazaheri**, Netanel Raviv, and Jehoshua Bruck. Short Tandem Repeats Information in TCGA is Statistically Biased by Amplification. *BioRxiv*, page 518878, 2019.

* = Authorship order is alphabetical.

PATENTS

Siddharth Jain, **Bijan Mazaheri**, Netanel Raviv, and Jehoshua Bruck. Mutation profile and related labeled genomic components, methods and systems. 2019.

WORKSHOPS

Simon's Institute for Theory of Computing: Causality

Spring 2022

4 week workshop on Causal inference methods.

INVITED TALKS

Simon's Institute for Theory of Computing

May 2023

Title: "Causal Discovery under Limited Global Confounding"

Thayer School of Engineering at Dartmouth Jones Seminar

May 2024

Title: "Latency and Heterogeneity in Data and What to do About it"

Stanford Online Causal Inference Seminar

Oct 2024

Title: "Synthetic Potential Outcomes and the Hierarchy of Causal Identifiability"

PROJECTS

LACCTIC Sep 2021 - present

I maintain a website for collegiate cross country with 10,000 regular users that applies concepts from batch-effect correction to ranking performances on differing terrain. The backend runs on Python and Django and the frontend uses React, and the database is hosted on AWS. I have helped advise over 20 student projects using this data.

MENTORSHIP

MIT UROP Summer 2024

I have directly supervised two undergraduate students on projects related to causality.

Caltech Cross Country Team

Sep 2018 - Sep 2022

Mentoring and supporting undergraduate students at Caltech as an assistant coach.

Data Science Projects

Sep 2019 - present

I have supported over 20 projects with undergraduate students using data on my website, and have advised some of these students in applying to graduate school.

SERVICE

Reviewer for AIStats, CLeaR, Nature, The American Statistician.

Sports statistics outreach for Cross Country and correspondent at D3 Glory Days.

Caltech Community Associate - volunteer position for building community in Caltech housing.