Primeiro Trabalho Pratico

Redes Complexas

Aluno: Pedro Santos Eusébio

repositório: ComplexNetwork

Redes analisadas:

• Facebook

- Enron email network
- High Energy Physics

Ferramentas

Foi utilizado para o desenvolvimento do trabalho a linguagem de programação Python juntamente com as bibliotecas Graph Tool, para análise dos grafos, matplotlib, para gerar os gráficos, e por fim a biblioteca Numpy para realizar as operações com *arrays* mais facilmente.

Análise

1. Facebook

Figure 1: Grafo Facebook

Como pode ser observado na imagem, o grafo é conexo, ou seja, todos os vértices são conectados. Além disso, o grafo é não direcionado, visto que, as arestas representam a relação de amizade entre duas pessoas (vértices). É um grafo com **4039 vértices** e **88234 arestas**. Os dados foram coletados por participantes que são usuários do aplicativo do Facebook *Social Circles*.

Métricas

	degrees	distance	clustering	betweeness edges	betweeness vertex	componer	nts closeness
min	1	1	0	1,23E-07	0	0	0,178254
max	1045	8	1	$0,\!171493$	0,480518	4039.0	$0,\!459699$
mean std	43,691012 52,414115	3,692507	0,605547 $0,003374$	4,18E-05 0,001103	0,000667 $0,011645$	$4039.0 \\ 0.0$	0,276168 $0,036119$

Clusterização Global : 0,51917428Quantidade de Componentes : 1

Podemos perceber através dos dados e do gráfico de Grau x Probabilidade(figura 2), a média baixa é explicada pelo fato de terem muitos vértices com um grau muito baixo e certas excessões com grau muito grande (como o grau máximo de 1045). Existem vértices isolados também, que são ligados a apenas um vertice.

Além disso, a maior distância do grafo é pequena se comparado ao número de vértices. Se observarmos a imagem do grafo (figura 1) veremos que temos diversos vértices que conectam os agrupamentos, fazendo um caminho mais rápido entre esses grupos, justificando dessa forma, a média da distância entre os vértices.

De acordo com o gráfico abaixo (figura 3), podemos ver também a distribuição dos índices de clusterização e as suas respectivas probabilidades. Observando o valor médio da clusterização e o gráfico acima, nos permite dizer que existem diversos agrupamentos e que estes são bastante conexos e interligados, tendo diversos vértices interligados uns com os outros aumentando assim o índice médio de clusterização.

Podemos perceber também, que o grafo é composto por apenas um componente, ou seja, existem pelo menos um caminho de um vértice para os demais.

Analisando o gráfico abaixo (figura 4), nota-se que existam uma distribuição do índice de *closeness* mais uniforme, justificado pelo fato do grafo ser uma componente conexa. A concentração está entre 0,25 e 0,33, com uma pequena parcela abaixo de 0,20, que seriam as folhas do grafo e vértices que possuem grau baixo, e um outra parcela com valores acima de 0,33, que seriam os vértices de grau elevado que conectam dois ou mais agrupamentos.

Figure 2: Grau x Probabilidade

Figure 3: Clusterização x Probabilidade

Figure 4: Closeness x Probabilidade