复几何

孙天阳

2023年7月23日

目录

	目录	1
1	复流形	2
	1 代数准备	2
	2 复流形与全纯向量丛	4
	3 Grassmannian	6
	4 近复结构和 (p,q) 型微分形式 \ldots	7
2	层论	8
	1 集合的层	8
	2 Čech 上同调	S
3	Kähler 流形	10
	1 代数准备	10
	2 代数准备	1.3

Chapter 1

复流形

1 代数准备

共轭空间

定义 1.1. 设 V,W 是复线性空间, 称映射 $f:V\to W$ 是反线性映射如果

$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad f(\lambda v) = \bar{\lambda}f(v).$$

例子 1.2. $\iota: \mathbb{C}^n \to \mathbb{C}^n, (z_1, \dots, z_n) \mapsto (\bar{z}_1, \dots, \bar{z}_n)$ 是反线性映射.

命题 1.3. 反线性映射之间的复合是线性映射, 反线性映射与线性映射的复合是反线性映射,

定义 1.4. 设 $f: V \to W$ 和 $g: W \to V$ 是反线性映射. 如果 $g \circ f = \mathrm{Id}_V$, 则称 $W \neq V$ 的共轭空间.

命题 1.5. 设 $f_i: V \to W_i$ 都是 V 的共轭空间, 则存在唯一的线性同构 $h: W_1 \to W_2$ 使得

例子 1.6. 设 V 是复向量空间. 定义 \overline{V} 如下

- (1) \overline{V} 与 V 有相同的 Abel 群
- (2) $\lambda * v := \bar{\lambda} \cdot v$. 其中 * 表示 \overline{V} 中的数乘, · 表示 V 中的数乘.

则 \overline{V} 是 V 的共轭空间的一种具体实现.

复结构

定义 1.7. 设 V 是一个实线性空间. V 上的一个复结构是指一个映射 $J \in \operatorname{End}(V)$ 满足 $J^2 = -\operatorname{Id}_V$.

给定 V 上的一个复结构 J, 我们可以赋予 V 一个复线性空间结构. 因为 V 已经是一个实线性空间, 因此要想知道 V 如何是一个复线性空间, 我们只需要知道 i 如何乘在 V 中的元素上. 定义

$$iv := J(v)$$

可以验证 V 成为一个复向量空间, 记作 V^{J} . 反之, 每个复向量空间都决定其底空间上的一个复结构.

例子 1.8. 设 V 是实线性空间, J 是 V 上的复结构, 则 -J 也是 V 上的复结构, 且 $V_{-J} = \overline{V_J}$.

例子 1.9. 设 V 是实线性空间, J 是 V 上的复结构. 定义 V^* 上的复结构如下, 仍记作 J,

$$J: V^* \longrightarrow V^*, \quad \alpha \longmapsto J(\alpha)$$

其中 $J(\alpha)(v) := \alpha(J(v))$.

复化

定义 1.10. 设 V 是实线性空间, 定义 $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$.

定义 1.11. 设 V 是复线性空间. 称反线性映射 $f: V \to V$ 是共轭映射, 如果 $f \circ f = \mathrm{Id}_V$.

例子 1.12. $\iota: V_{\mathbb{C}} \to V_{\mathbb{C}}, v \otimes z \mapsto v \otimes \overline{z}$ 是共轭映射.

命题 1.13. 设 V 是复线性空间, f 是其上的共轭映射. 设

$$W = \{ v \in V \mid f(v) = v \}.$$

则有 $V \cong W \otimes_{\mathbb{R}} \mathbb{C}$.

命题 1.14. 复化与张量积的交换性

命题 1.15. 复化与外积的交换性

复结构与复化

设 V 是实线性空间,J 是 V 上的复结构, 则 J 自然诱导 $V_{\mathbb{C}}$ 上的一个复结构

$$J \colon V_{\mathbb{C}} \longrightarrow V_{\mathbb{C}}, \quad v \otimes z \longmapsto J(v) \otimes z.$$

J 的最小多项式为 x^2+1 , 没有重根, 因此 $V_{\mathbb{C}}$ 有直和分解

$$V_{\mathbb{C}} \cong V^{1,0} \oplus V^{0,1}$$

其中 $V^{1,0}$ 和 $V^{0,1}$ 分别代表 J 的以 i 和 -i 为特征值的特征子空间.

命题 1.16. (V, J) 与 $V^{1,0}$ 自然同构.

命题 1.17. wedge 的分解.

注记. 有一些书很讨厌是这样的.

引理 1.18.

$$\bigwedge^{n}(V \oplus W) \cong \bigoplus_{k=0}^{n} \left(\bigwedge^{k} V \otimes \bigwedge^{n-k} W\right).$$

https://math.stackexchange.com/questions/822470/exterior-power-commutes-with-direct-sum

2 复流形与全纯向量丛

定义 2.1. 设 M 是 Hausdorff 且第二可数的拓扑空间. 称 M 是复流形, 如果存在同胚

$$\varphi_{\alpha} : U_{\alpha} \subset M \longrightarrow \varphi_{\alpha}(U_{\alpha}) \subset \mathbb{C}^n$$

使得 $\{U_{\alpha}\}$ 构成 M 的开覆盖且对任意 $U_{\alpha} \cap U_{\beta} \neq \emptyset$ 有 $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ 是全纯映射.

例子 2.2. $\mathbb{CP}^n = \mathbb{C}^{n+1} \setminus \{0\} / \sim 是复流形.$

证明. 设 $0 \le i, j \le n$, 不妨设 i < j.

$$\varphi_i \colon U_i = \{ [z_0, \cdots, z_n] \mid z_i \neq 0 \} \longrightarrow \mathbb{C}^n, \quad [z_0, \cdots, z_n] \longmapsto \left(\frac{z_0}{z_i}, \cdots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \cdots, \frac{z_n}{z_i} \right)$$

$$\varphi_i \circ \varphi_j^{-1} \colon \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j), \quad (\xi_1, \cdots, \xi_n) \mapsto \left(\cdots, \frac{\xi_{i-1}}{\xi_i}, 1, \frac{\xi_{i+1}}{\xi_i}, \cdots, \frac{\xi_{j-1}}{\xi_i}, \frac{1}{\xi_i}, \frac{\xi_{j+1}}{\xi_i}, \cdots \right)$$

例子 2.3. Gr(n,k) 是复流形. 该例子是上一个例子的推广, 因为 $\mathbb{CP}^n = Gr(n+1,1)$.

证明. 任取 $V \in Gr(n,k)$, 任取 $\{v_1, \dots, v_k\}$ 是 V 的一组基, 该组基在 \mathbb{C}^n 的标准基下可表示为

$$A = \begin{pmatrix} v_{11} & \cdots & \cdots & v_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ v_{k1} & \cdots & \cdots & v_{kn} \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix} \cdot (e_1, \cdots, e_n)$$

其中·表示内积. 设 $\{\tilde{v}_1, \dots, \tilde{v}_k\}$ 是 V 的另一组基, 则存在唯一的元素 $g \in \mathrm{GL}(k, \mathbb{C})$ 使得

$$\begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix} = g \begin{pmatrix} \tilde{v}_1 \\ \vdots \\ \tilde{v}_k \end{pmatrix} \Longrightarrow A = g\tilde{A}.$$

因为 A 是 k 个线性无关向量 $\{v_1, \cdots, v_k\}$ 的矩阵表示, 所以 A 存在不为零的 k 阶子式. 反之, 每给定一个行满秩的 $k \times n$ 阶矩阵 A, 我们就得到一个 k 维线性空间 V, 其中 V 是由 A 的行向量张成的. A 与 \tilde{A} 决定同一个 V 当且仅当它们相差 $GL(k,\mathbb{C})$ 中的一个元素. 一个观察是, 如果 A 的某个 k 阶子式不为零, 那么与它决定同一个 V 的 \tilde{A} 的那个 k 阶子式也不为零. 坐标化 Gr(n,k) 的思路是, 我们挑出矩阵表示的第 I 个 k 阶子式不为零的那些 V, 选取一个典范的矩阵表示, 即第 I 个子矩阵为单位阵的矩阵表示, 我们便可以用该矩阵表示的其他坐标分量来坐标化 Gr(n,k) 中的元素.

设
$$I = \{i_1, \dots, i_k\} \subset \{1, \dots, n\}$$
. 设 $V_{I^{\circ}} = \text{span} \{e_i \mid j \notin I\}$. 记

$$U_I = \{ V \in Gr(n, k) \mid V \cap V_{I^{\circ}} = \{0\} \}.$$

断言 U_I 中的元素就是那些矩阵表示的第 $I \cap k$ 阶子式不为零的 V. 承认断言. 定义

$$\varphi_I \colon U_I \longrightarrow \mathbb{C}^{k(n-k)}.$$

引理 2.4. $V \in U_I$ 当且仅当 V 的矩阵表示的第 $I \land k$ 阶子式不为零.

证明. $V \in U_I \Longleftrightarrow V \cap V_{I^\circ} = \{0\} \Longleftrightarrow \{v_1, \cdots, v_k, e_j \mid j \notin I\}$ 线性无关.

定义 2.5. 全纯映射

例子 2.6. $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$ 是全纯映射.

定义 2.7. 全纯向量丛

参考文献

- 石亚龙复几何第1章
- GTM275 第 7.1 节
- G-H 第 0 章第 5 节
- Hatcher 向量丛和 K 理论
- 陈省身第3章第1节

例子 2.8. 全纯切丛

例子 2.9. 全纯余切丛

3 Grassmannian

定义 3.1. 定义 Plücker 嵌入如下

$$\iota \colon Gr(n,k) \longrightarrow \bigwedge^{p} \mathbb{C}^{n} \longrightarrow \mathbf{P}(\bigwedge^{p} \mathbb{C}^{n})$$

$$E \longmapsto e_{1} \wedge \cdots \wedge e_{k} \longmapsto [e_{1} \wedge \cdots \wedge e_{p}]$$

其中 $\{e_1, \dots, e_k\}$ 是 E 的任意一组基.

引理 3.2. 设 $(\beta_1, \dots, \beta_k) = (\alpha_1, \dots, \alpha_k)A$, 则

$$\beta_1 \wedge \cdots \wedge \beta_k = \det(A)\alpha_1 \wedge \cdots \wedge \alpha_k.$$

引理 3.3. 设 $\beta_1 \wedge \cdots \wedge \beta_k = \lambda \alpha_1 \wedge \cdots \wedge \alpha_k$, 其中 $\lambda \neq 0$. 那么存在 A 满足 $\det(A) = \lambda$ 使得

$$(\beta_1, \cdots, \beta_k) = (\alpha_1, \cdots, \alpha_k)A.$$

证明.

$$0 = \alpha_i \wedge \alpha_1 \wedge \cdots \wedge \alpha_k = \alpha_i \wedge \beta_1 \wedge \cdots \wedge \beta_k \Longrightarrow \operatorname{span} \{\alpha_1, \cdots, \alpha_k\} = \operatorname{span} \{\beta_1, \cdots, \beta_k\}.$$

引理 3.2 说明 Plücker 嵌入是良定的, 引理 3.3 说明 Plücker 嵌入是单射.

命题 **3.4.** Gr(n,k) 是紧的.

证明.

4 近复结构和 (p,q) 型微分形式

定义 4.1. 近复结构

引理 4.2. 复矩阵的实行列式等于它的复行列式的模长的平方

引理 4.3. 有近复结构的流形是可定向的

注记. 偶维数, 可定向, 不一定有近复结构, 比如 S^4 .

Chapter 2

层论

1 集合的层

定义 1.1. 设 X 是拓扑空间. X 上的一个集合的层是指到 X 的一个局部同胚 $\pi: \mathcal{S} \to X$.

命题 1.2. 设 $\pi: \mathscr{S} \to X$ 是局部同胚, 则 π 是开映射.

证明. 任给 $\mathscr S$ 中开集 U, 要证 $\pi(U)$ 是 X 中开集. 任取 $q \in \pi(U)$, 能找到一个原像 $p \in U$. 因为 π 是局部同胚, 按定义存在 p 的开邻域 V 满足 $\pi(V)$ 是 X 中开集且 π 限制在 V 上是同胚. 因为 $U \cap V \subset V$ 是开集, 所以 $\pi(U \cap V)$ 是开集. 且 $q = \pi(p) \in \pi(U \cap V) \subset \pi(U)$.

命题 1.3. 设 $\pi: \mathcal{S} \to X$ 是局部同胚, 则茎 $\mathcal{S}_x := \pi^{-1}(x)$ 是闭集, 且其子空间拓扑为离散拓扑.

定义 1.4. 设 $(\mathscr{S}', \pi'), (\mathscr{S}, \pi)$ 是 X 上的层. 称连续映射 $\varphi: \mathscr{S}' \to \mathscr{S}$ 是层同态如果下列图表交换.

命题 1.5. 设 $\varphi: \mathscr{S}' \to \mathscr{S}$ 是层同态, 则 φ 也是局部同胚.

容易看出恒等映射是层同态, 层同态的复合还是层同态. 因此 X 上的层构成一个范畴.

例子 1.6. 设 M 是一个赋予离散拓扑的集合, 那么 $\pi: X \times M \to X$ 是 X 上的层.

例子 1.7. 设 $Y \subset X$. 则 $\pi: \pi^{-1}(Y) \to Y$ 是 Y 上的层. 其中 Y 和 $\pi^{-1}(Y)$ 都赋予子空间拓扑.

定义 1.8. 称 $\mathcal{I} \subset \mathcal{S}$ 是 \mathcal{S} 的子层, 如果 $\pi: \mathcal{I} \to X$ 是 X 上的层.

命题 1.9. $\mathcal{I} \subset \mathcal{S}$ 是 \mathcal{S} 的子层当且仅当 $\mathcal{I} \in \mathcal{S}$ 中的开集.

例子 1.10. 设 $(\mathcal{S}', \pi'), (\mathcal{S}, \pi)$ 是 X 上的层. 我们定义

$$\mathscr{S} \oplus \mathscr{S}' := \bigcup_{x \in X} \mathscr{S}_x \times \mathscr{S}'_x$$

在其上赋予 $\mathscr{S} \times \mathscr{S}'$ 的子空间拓扑, 则 $\tilde{\pi}$: $\mathscr{S} \oplus \mathscr{S}' \to X$ 是 X 上的层.

例子 1.11.

CHAPTER 2. 层论

2 Čech 上同调

Chapter 3

Kähler 流形

1 代数准备

我们在本节中厘清一些初学者容易困惑的问题. 设 $M \in \mathbb{R}$ 是 n 维复流形,则它也是 2n 维实流形. 取 $p \in M$ 的全纯坐标卡

$$(U, z_1 = x_1 + iy_1, \cdots, z_n = x_n + iy_n).$$

- M 在 p 处的全纯切空间 $T_p^h M = \operatorname{span}_{\mathbb{C}} \left\{ \frac{\partial}{\partial z^1}, \cdots, \frac{\partial}{\partial z^n} \right\}$.
- M 在 p 处的实切空间 $T_p^{\mathbb{R}}M = \operatorname{span}_{\mathbb{R}}\left\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial y^1}, \cdots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^n}\right\}$
- M 的复流形结构自然诱导了 $T_p^{\mathbb{R}}M$ 上的一个复结构 $J \colon \frac{\partial}{\partial x^i} \mapsto \frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^i} \mapsto -\frac{\partial}{\partial x^i}$
- $T_p^h M \cong (T_p^{\mathbb{R}}M, J), \frac{\partial}{\partial z^i} \mapsto \frac{\partial}{\partial x^i}$. 这个同构很重要, 是理解很多混淆之处的关键.

接下来我们讨论三样东西:黎曼度量 g、厄米度量 h 和基本 2-形式 ω . 我们对于实线性空间上的内积很熟悉,它是空间上的对称、正定、双线性函数. 我们对于复线性空间上的内积也很熟悉,它是空间上关于第一分量线性、共轭对称、正定的二元函数. 关于线性空间上的 g,h,ω 之间的关系,我推荐阅读 Huybrechts 的复几何导论的第 1.2 节. 在此我做一个简述

- 设我们给定了一个复线性空间及其上的内积 h, 忘记空间本身的复线性空间结构, 考虑其下的实线性空间结构, 取 g 为 h 的实部, 取 ω 为 h 的负虚部. 则 g 成为实线性空间上的内积, 并且 g 与复结构相容.
- 设我们有一个实线性空间, 有其上的复结构 J, 有其上的内积 g 并且 g 与 J 是相容的. 那么我们定义 $\omega(u,v)=g(Ju,v)$, 定义 $h=g-\mathrm{i}\omega$, 则 h 成为复线性空间上的内积.
- 设我们有一个实线性空间,有其上的复结构 J,有其上的内积 g 并且 g 与 J 是相容的. 考虑实线性空间的复化,考虑 g 的复化 $g^{\mathbb{C}}$,g 的复化方式是对第一分量按线性延拓,对第二分量按共轭线性延拓. 这样我们就得到了 $T_p^{\mathbb{C}}M \times T_p^{\mathbb{C}}M$ 上的内积,它可以限制到 T_p^hM 上. 这种方式得到的内积是上一种方式得到的内积的 $\frac{1}{2}$.

在上面的讨论中, g, h, ω 作为映射该如何理解已经非常清楚. 我主要想讨论的是 g, h, ω 的具体表达式的理解与计算问题. 首先是 h, 我们知道张量积可以用来描述双线性,但是复内积关于第一分量线性,关于第二分量共轭线性,我们该如何描述它呢? 一种似乎通用的方式是,利用复线性空间 V 与其共轭空间 \overline{V} 之间的共轭线性的双射,将关于第一分量线性第二分量共轭线性的映射

$$V \times V \longrightarrow \mathbb{C}$$

等同于双线性映射

$$V \times \overline{V} \longrightarrow \mathbb{C}$$
.

而后者可以用张量积的方式来描述. 具体到我们的情况,因为 $\overline{T_p^hM}$ 可自然视为 T_p^hM 的共轭空间,因此我们在一个坐标邻域内将 h 写为

$$h = h_{\alpha\bar{\beta}} dz^{\alpha} \otimes d\bar{z}^{\beta}.$$

其中 $h_{\alpha\beta}$ 在每一点处都是厄米矩阵. 我们必须小心地来理解 $\mathrm{d}z^{\beta}$. 在这里,它不再是它的本意,而是被用来标志共轭线性,具体来说,在点 p 处, h_p 可视作

$$h_p \colon T_p^h M \times T_p^h M \longrightarrow \mathbb{C}$$
$$\frac{\partial}{\partial z^{\alpha}}, \frac{\partial}{\partial z^{\beta}} \longmapsto h_{\alpha\bar{\beta}}$$

再关于第一个分量线性,关于第二个分量共轭线性作延拓. 如果你用 $\mathrm{d}z^{\beta}$ 的本意来理解,它吞进一个 $T_p^h M$ 里的元素只能是零,上面的映射是荒谬的. 上面实际发生的事情是,将第二分量先变为它的共轭,比如 $\frac{\partial}{\partial z^{\beta}}$ 先变为 $\frac{\partial}{\partial \bar{z}^{\beta}}$,再被 $h_{\alpha\bar{\beta}}\mathrm{d}z^{\alpha}\otimes\mathrm{d}z^{\beta}$ 作用. 这时或许有人会问,那我们干脆就把内积考虑成 $V\times V$ 上的函数不行吗? 好问题,我暂时还回答不好. 想清再写.

如果事情到此为止了,那我就不会混乱了,悲剧的是, $h = h_{\alpha\bar{\beta}} \mathrm{d} z^{\alpha} \otimes \mathrm{d} \bar{z}^{\beta}$ 字面上的意义,也值得关注. 这是因为,有人会对 h 作一些形式计算,但当你写下 $\mathrm{d} \bar{z} = \mathrm{d} x - \mathrm{id} y$ 的时候,你就已经在使用 $\mathrm{d} \bar{z}$ 本身的意义了! 更令人匪夷所思的是,这样的形式计算还没有得出错误的结论. 我希望仔细检查这个过程中发生了什么.

之前我们提到过, T_p^M 自然同构于 $(T_p^{\mathbb{R}}M,J)$. 在下面我们将灵活地将 h 视为 T_p^M 上的内积或 $(T_p^{\mathbb{R}}M,J)$ 上的内积. 首先,设

$$h = h_{\alpha\bar{\beta}} dz^{\alpha} \otimes d\bar{z}^{\beta}.$$

我们希望计算 h 的实部 g 的局部表达. 因为是算 g,所以用 $T_p^{\mathbb{R}}M$ 的基会方便一些.

$$\begin{split} g(\frac{\partial}{\partial x^{\alpha}},\frac{\partial}{\partial x^{\beta}}) &= \Re h(\frac{\partial}{\partial z^{\alpha}},\frac{\partial}{\partial z^{\beta}}) = \Re h_{\alpha\bar{\beta}} \\ g(\frac{\partial}{\partial x^{\alpha}},\frac{\partial}{\partial x^{\beta}}) &= \Re h(\frac{\partial}{\partial z^{\alpha}},\frac{\partial}{\partial z^{\beta}}) = \Re h_{\alpha\bar{\beta}} \end{split}$$

因此

$$g = \Re h_{\alpha\bar{\beta}}(\mathrm{d}x^{\alpha} \otimes_{\mathbb{R}} \mathrm{d}x^{\beta} + \mathrm{d}y^{\alpha} \otimes_{\mathbb{R}} \mathrm{d}y^{\beta}) + \Im h_{\alpha\bar{\beta}}(\mathrm{d}x^{\alpha} \otimes_{\mathbb{R}} \mathrm{d}y^{\beta} - \mathrm{d}y^{\alpha} \otimes_{\mathbb{R}} \mathrm{d}x^{\beta})$$

形式计算,哪怕你能算出来看起来差不多的东西,tensor 也不是在 R 上 tensor,也是在 C 上 tensor,这里面的差别,我也是刚刚才意识到,还没想清楚.

考虑 \bar{h} , 它将 h 的结果取个共轭. 首先, 容易看出 \bar{h} 关于第一个分量共轭线性,关于第二个分量线性. 其次,它作用在 $(\frac{\partial}{\partial z^{\alpha}}, \frac{\partial}{\partial z^{\beta}})$ 上的值为 $\bar{h}_{\alpha\bar{\beta}} = h_{\beta\bar{\alpha}}$. 因此

$$\bar{h} = h_{\beta\bar{\alpha}} d\bar{z}^{\alpha} \otimes dz^{\beta} = h_{\alpha\bar{\beta}} d\bar{z}^{\beta} \otimes dz^{\alpha}$$

$$\omega = \frac{\mathrm{i}}{2}(h - \bar{h}) = \frac{\mathrm{i}}{2}h_{\alpha\bar{\beta}}(\mathrm{d}z^{\alpha} \otimes \mathrm{d}\bar{z}^{\beta} - \mathrm{d}\bar{z}^{\beta} \otimes \mathrm{d}z^{\alpha}) = \frac{\mathrm{i}}{2}h_{\alpha\bar{\beta}}\mathrm{d}z^{\alpha} \wedge \mathrm{d}\bar{z}^{\beta}$$

我们考虑

$$h + \bar{h} \colon T_p^h M \times T_p^h M \longrightarrow \mathbb{R}$$

因为 h 与 \bar{h} 的取值互为共轭,因此最终结果实际上是实值的. 回忆 $(T_p^{\mathbb{R}}M,J)$ 同构于 T_p^hM .

- $h + \bar{h}$ 当然关于两个分量都是实线性的.
- $h + \bar{h}$ 是对称的.
- 正定吗?

定义 1.1. Kahler 流形

2 代数准备

定义 2.1. 设 V 是复线性空间, 称 $h: V \times V \to \mathbb{C}$ 是其上的内积, 如果

- (1) $h(\lambda v_1 + v_2, \mu v_3 + v_4) = \lambda \bar{\mu} h(v_1, v_3) + \lambda h(v_1, v_4) + \bar{\mu} h(v_2, v_3) + h(v_2, v_4).$
- (2) $h(v_1, v_2) = \overline{h(v_2, v_1)}$.
- (3) $h(v,v) \ge 0$, 除非 v = 0.

命题 2.2. 设 V 是复线性空间, h 是其上的内积, 则 $g=\operatorname{Re} h$ 是 V 作为实线性空间上的内积. 证明.

(1) 因为只考虑 V 的实线性空间结构, 所以 λ, μ 均为实数.

$$g(\lambda v_1 + v_2, \mu v_3 + v_4) = \lambda \mu g(v_1, v_3) + \lambda g(v_1, v_4) + \mu g(v_2, v_3) + g(v_2, v_4).$$

- (2) $h(v_1, v_2) = \overline{h(v_2, v_1)} \Longrightarrow g(v_1, v_2) = g(v_2, v_1).$
- (3) $h(v,v) \in \mathbb{R} \Longrightarrow g(v,v) = h(v,v) \geqslant 0$, $\Re v = 0$.

命题 2.3. 设 J 是由 V 的复线性空间结构诱导的 V 上的复结构, 则 $g(Jv_1, Jv_2) = g(v_1, v_2)$.

证明.
$$g(Jv_1, Jv_2) = \overline{h(Jv_1, Jv_2)} = \overline{\mathrm{i}(-\mathrm{i})h(v_1, v_2)} = g(v_1, v_2).$$

命题 2.4. 设 V 是复线性空间, h 是其上的内积, 则 $\omega = -\operatorname{Im} h$ 是 V 上的反对称双 \mathbb{R} -线性函数.