[MAC0211] Laboratório de Programação I Aula 3 Sistemas de Numeração (Continuação) Linguagem de Montagem

Alair Pereira do Lago

DCC-IME-USP

3 de março de 2015

Sistemas de numeração

O ENIAC usava o sistema de numeração decimal. Depois dele, todos os computadores eletrônicos usam em seus cálculos aritméticos o sistema de numeração binário.

Sistema decimal (base 10)

- ► Usa dez dígitos distintos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- É um sistema posicional
 - ► Valor de um dígito depende da posição em que ele se encontra no conjunto de dígitos que representa uma quantidade
 - O valor total do número é a soma dos valores relativos de cada dígito

Sistema binário (base 2)

- Usa dois dígitos distintos (0, 1)
- Estrutura de pesos dos números binários:

$$\dots 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0, \ 2^{-1} \ 2^{-2} \ 2^{-3} \ 2^{-4} \ 2^{-5} \dots$$

Conversão de binário para decimal

Exemplo: $(111001, 1)_2$

$$= (1x25 + 1x24 + 1x23 + 0x22 + 0x21 + 1x20 + 1x2-1)10$$

= $(32 + 16 + 8 + 1 + 0, 5)_{10}$
= $(57, 5)_{10}$

Conversão de decimal para binário

Exemplo:

$$(57,3125)_{10} = (111001,0101)_2$$

Parte inteira – Método das divisões sucessivas

```
57 \div 2 = 28 com resto 1 \rightarrow bit menos significativo 28 \div 2 = 14 com resto 0 14 \div 2 = 7 com resto 0 7 \div 2 = 3 com resto 1 3 \div 2 = 1 com resto 1 \rightarrow bit mais significativo \rightarrow bit mais significativo
```

Tomando-se os restos <u>na ordem inversa da que foram gerados</u>, temos o número <u>111001</u>.

Logo, temos que $(57)_{10} = (111001)_2$.

Conversão de decimal para binário

Exemplo:

$$(57,3125)_{10} = (111001,0101)_2$$

Parte fracionária – Método das multiplicações sucessivas

$$0.3125 \times 2 = 0$$
, $625 \rightarrow$ bit mais significativo $0.625 \times 2 = 1$, $25 \rightarrow$ $0.25 \times 2 = 0$, $5 \rightarrow$ bit menos significativo $0.5 \times 2 = 1$, $0 \rightarrow$ bit menos significativo

Tomando-se os restos <u>na ordem em que foram gerados</u>, temos o número 0101.

Logo, temos que $(0,3125)_{10} = (0,0101)_2$.

Aritmética binária

Soma

$$0 + 0 = 0$$

 $0 + 1 = 1 + 0 = 1$
 $1 + 1 = 10$

Exemplo: 1111 + 11100 = 101011

Aritmética binária

Subtração

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $10 - 1 = 1$

Exemplo: 10001 + 1110 = 101011

Conversão de binário para decimal

Outro exemplo:

$$\begin{array}{ccc} (101010101010101110)_2 \\ \hline parte 1 & parte 2 \\ (8 \text{ bits}) & (8 \text{ bits}) \\ \hline 10101010 & 10101110 \\ \hline (170)_{10} & (174)_{10} \\ \hline \end{array}$$

Logo, temos que
$$(1010101010101110)_2 = (170 \times 2^8 + 174)_{10} = (170 \times 256 + 174)_{10} = (43694)_{10}$$
.

Organização da memória de um computador

- A memória é organizada como "retângulos" de bits
- Cada retângulo é chamado de palavra
- Transferências de dados de/para a memória são feitas de 1 (ou mais) palavra(s) por vez
- Palavras na memória de um computador são numeradas consecutivamente, iniciando em 0; dizemos que esses números são os endereços das palavras
- Os endereços das palavras são usados pelos processadores, nas operações de transferência de dados de/para a memória
- Capacidade de uma memória = número de palavras × tamanho da palavra
- ► Computadores com processadores Intel usam palavras de 8 bits

Organização da memória de um computador

- ▶ 1 byte = 8 bits
- O número de palavras na memória de um computador geralmente é uma potência grande de 2, ou um múltiplo menor de uma dessas potências
- È conveniente o uso de símbolos/prefixos especiais para denotar essas potências:

	Valor Exato	Símbolo	Pretixo	Valor Aprox.
2 ¹⁰	1 024	k	kilo	mil
2^{20}	1 048 576	М	mega	milhão
2^{30}	1 073 741 824	G	giga	bilhão
2 ⁴⁰	1 099 511 627 776	Т	tera	trilhão

Um "parênteses" sobre símbolos/prefixos

IEC prefixos binários			SI prefixos decimais		
Valor	Símbolo	Prefixo	Valor	Símbolo	Prefixo
2 ¹⁰	Ki	kibi	10 ³	k	kilo
2 ²⁰	Mi	mebi	10 ⁶	М	mega
2 ³⁰	Gi	gibi	10 ⁹	G	giga
2 ⁴⁰	Ti	tebi	10 ¹²	Т	tera
2^{50}	Pi	pebi	10 ¹⁵	Р	peta

- ► IEC International Electrotechnical Commission
- ► SI International System of Units
- ightharpoonup Considerando esses prefixos, 1 kibibyte (KiB) eq 1 kilobyte (kB)

Sistema hexadecimal (base 16)

- Usa 16 dígitos distintos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
- Estrutura de pesos dos números binários:

$$\dots 16^5 \ 16^4 \ 16^3 \ 16^2 \ 16^1 \ 16^0, \ 16^{-1} \ 16^{-2} \ 16^{-3} \ 16^{-4} \ 16^{-5} \dots$$

Razões para aprendê-lo

- ► Endereços de memória são números muito grandes → representação hexadecimal é mais "curta"
- ► Depuradores de código geralmente exibem os valores contidos nos registradores em hexadecimal; é útil sabermos verificar a aritmética de valores em hexadecimal sem a necessidade de convertê-los para a base 10

Sistema hexadecimal (base 16)

Exemplo de conversão de hexadecimal para decimal

$$(14D)_{16} = (1 \times 16^2 + 4 \times 16^1 + 13 \times 16^0)_{10}$$

= $(256 + 64 + 13)_{10}$
= $(333)_{10}$

Exemplo de conversão de decimal para hexadecimal

$$1000 \div 16 = 62$$
 com resto 8
 $62 \div 16 = 3$ com resto $14 = E$
 $3 \div 16 = 0$ com resto 3

Tomando-se os restos <u>na ordem inversa da que foram gerados</u>, temos o número <u>3E8</u>.

Logo, temos que $(1000)_{10} = (3E8)_{16}$.

Relação entre a base binária e a base hexadecimal

Exemplo de conversão de decimal para binário

```
1000
              500
                   com resto
500
   ÷ 2 =
              250
                   com resto
250
   \div 2 =
              125
                   com resto
   \div 2 = 62
125
                   com resto
62 ÷ 2 =
               31
                   com resto
31 \div 2 =
               15
                   com resto
15 \div 2 = 7
                   com resto
 7 \div 2 = 3
                   com resto
 3
     \div 2 = 1
                   com resto
                   com resto
```

Tomando-se os restos <u>na ordem inversa da que foram gerados</u>, temos o número <u>1111101000</u>.

Logo, temos que $(1000)_{10} = (1111101000)_2$.

Relação entre a base binária e a base hexadecimal

- Dividir por 2 quatro vezes equivale a dividir por 16 uma vez
- Se agruparmos os dígitos do número binário quatro a quatro, veremos a seguinte relação:

Número na base decimal:		1000	
Número na base binária:	11	1110	1000
Número na base hexadecimal:	3	Ε	8

- Assim, podemos usar o sistema hexadecimal como uma forma "mais legível" do binário
- ► Com dois dígitos em hexadecimal representamos 1 byte
- Outro exemplo:

```
Binário: 1011 0010 1001 0101 0000 0111 1010 1000 1000 Hexadecimal: B 2 9 5 0 7 A 8 8
```

Aritmética hexadecimal

Exemplo:
$$47BC + A78 = 5234$$

"Colinha":

- $(C+8)_{16} = (12+8)_{10} = (20)_{10} = (14)_{16}$
- $(1+B+7)_{16} = (1+11+7)_{10} = (19)_{10} = (13)_{16}$
- $(1+7+A)_{16} = (1+7+10)_{10} = (18)_{10} = (12)_{16}$
- \blacktriangleright $(1+4)_{16}=(5)_{16}$

Aritmética hexadecimal

Exemplo:
$$47BC - A4E = 3D6E$$

"Colinha":

- $ightharpoonup (1C E)_{16} = (28 14)_{10} = (14)_{10} = (E)_{16}$
- $(A-4)_{16} = (10-4)_{10} = (6)_{10} = (6)_{16}$
- $(17 A)_{16} = (23 10)_{10} = (13)_{10} = (D)_{16}$
- $(3-0)_{16}=(3)_{16}$

Representação sinal-e-magnitude

- Bit mais significativo representa o sinal do número
 - ▶ 0 número positivo
 - ▶ 1 número negativo
- ► Exemplo: $(0101)_2 = (5)_{10}$ e $(1101)_2 = (-5)_{10}$

Problema: a soma fica complicada para o computador "Algoritmo" para a soma:

- Caso 1 os dois números são positivos: basta somá-los
- Caso 1 os dois números são negativos: remova os sinais dos números, some-os e depois coloque o sinal de menos no resultado
- Caso 3 um número é positivo e outro negativo: subtraia o de menor magnitude do de maior; se o de maior magnitude tem um sinal de menos, então coloque o sinal de menos no resultado

Complemento de 2

- Usada nos computadores
- Facilita a soma: não é preciso se preocupar se o número é positivo ou negativo... basta somá-los
- Funcionamento "análogo" ao do odômetro
- Exemplo: $(4 + (-7))_{10} = (0100 + 1001)_2 = (1101)_2 = (-3)_{10}$

Decimal	Binário (4 bits) em		
	Complemento de 2		
-8	1000		
-7	1001		
-6	1010		
-5	1011		
-4	1100		
-3	1101		
-2	1110		
-1	1111		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		

Conversão de binário "puro" para Complemento de 2

- Passo 1: inverter os bits (= trocar zeros por uns e uns por zeros)
- Passo 2: somar 1 ao número resultante da inversão

Obs.: os mesmos passos valem para converter de complemento de 2 para binário puro.

Decimal	Binário puro	Complemento de 2	
		(8 bits)	
-108	-01101100	10010100	

$$(108)_{10} = (01101100)_2$$

Depois da inversão: 10010011
Depois de + 1: 10010100

Lembrete: arquitetura da família x86

Registradores de propósito geral

- A (acumulador)
- ▶ B (base)
- C (contador)
- D (dados)
- processador 8086 (16 bits): AX (AH,AL), BX (BH,BL),
 CX (CH,CL), DX (DH,DL), SP, BP, SI, DI
- processador 80386 (32 bits): EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI
- processador Intel x86-64 e AMD64 (64 bits): RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-15

Linguagem de Montagem

Estrutura geral das instruções

Cada linha de um programa em linguagem de montagem é composto por 4 campos:

- rótulo (label): "nomeia" os blocos do programa. São usados nos saltos. Devem ser alfanuméricos começando por letras
- mnemônico: especifica uma instrução (ex.: MOV, ADD, ...)
- operando(s): objeto(s) sobre o qual(is) a instrução opera.
 Quando uma instrução possui mais de um operando, eles devem vir separados por vírgulas. Nem toda instrução tem um operando
- ➤ comentário: documenta o código. É iniciado por um ponto-e-vírgula. É permitido que uma linha tenha somente o campo de comentário. (Obs.: comentários são particularmente importantes em linguagem de montagem!)

Linguagem de montagem

Exemplo de programa

[Rótulo:]	[Mnemônico]	[Operando]	[;Comentário]
inicio:	MOV MOV ADD DEC JNZ	CX, 5 AX, 25h AX,AX CX inicio	; inicializa contador com 5 ; inicializa AX com 25h ; AX <- AX + AX ; contador <- contador - 1

Comando para transferência de dados: MOV

Copia o valor do segundo operando no primeiro operando. O conteúdo do segundo operando permanece inalterado.

Formatos

- ▶ MOV reg,reg/mem/const
- MOV mem,reg/const

Operandos

- reg um registrador de propósito geral
- mem posição de memória (pode ser indicada por meio de uma constante, como [1000], ou por meio de um registrador, como [EBX])
- const valor constante

Evanania a

Comando para transferência de dados: MOV

Exempl	OS				
Correto		Incorreto		Problema	
MOV	AH,-14	MOV	AL,999	; 999 não cabe em 8 bits	
MOV	AX,36H				
MOV	AL, 'A'	MOV	EBX,DX	; não possuem o mesmo	
MOV	EAX,EBX			; tamanho	
MOV	BX,1000				
MOV	AX,[EBX]				
MOV	AX,[1000]				
MOV	AX,[1000+EBX]				
MOV	[1000],AX	MOV	[1000],[EBX]	; não há MOV direto	
MOV	[1000],36H			; entre memórias	

Considerações sobre o uso de memória como operando

Casos de não ambiguidade no tamanho

Acontecem quando a instrução envolve um operando do tipo *mem* e outro do tipo *reg*.

Neste caso, o número de palavras manipuladas na memória é determinado pelo tamanho de *reg*.

Exemplo: a instrução

MOV AX, [1000]

copia <u>2 palavras</u> da memória (posições 1000 e 1001) porque o registrador AX é de 16 bits.

Considerações sobre o uso de memória como operando

Casos de ambiguidade no tamanho

Acontecem quando a instrução envolve um operando do tipo *mem* e outro do tipo *const*. Exemplo:

MOV [EBX], 5

Neste caso, o número de palavras manipuladas na memória pode ser determinado de duas maneiras:

- 1. a arquitetura do processador determina a quantidade de bits *default* (16 bits, 32 bits, 64 bits)
- uso de notação para determinar o quantidade de bytes manipulados.
 Exemplo:

```
MOV BYTE [EBX],5; BYTE para designar 8 bits
MOV WORD [EBX],5; WORD para designar 16 bits
MOV DWORD [EBX],5; DWORD para designar 32 bits
```

Um "parênteses": Convenções de notação

Soluções para problemas de ambiguidade

- Problema-exemplo 1: 50 pode ser um número em notação decimal ou hexadecimal
- Solução: usar sufixos que determinam o sistema de numeração.
 Por exemplo, 50D designa um número decimal, enquanto 50H é hexadecimal (10B é binário)
- Problema-exemplo2 (consequência da solução anterior): AH,
 BH, CH e DH designam números hexadecimais, mas também são nomes de registradores
- Solução: na linguagem de montagem, fazer com que todos os números hexadecimais sejam também iniciados por um dígito em 0,1,...,9 ¹. Por exemplo, **OAH** designa o número hexadecimal A e não o registrador AH

¹Na linguagem C, números hexadecimais são precedidos por "0x"

Comando para troca de dados: XCGH

Troca os valores dos operandos (ou seja, faz o primeiro receber o valor do segundo e o segundo receber o valor do primeiro).
Os operandos precisam ser do mesmo tamanho.

Formatos

- ▶ XCGH reg,reg/mem
- XCGH mem,reg

```
XCHG AH, BL
XCHG AH, [BL]
XCHG [EBX], AH
```

Instruções aritméticas – soma: ADD

Soma o valor do segundo operando ao valor do primeiro, armazenando o resultado no primeiro operando. O valor do segundo operando permanece inalterado.

Formato

► ADD reg,reg/mem/const

```
ADD BL,10 ; BL <- BL + 10
ADD BL,AL ; BL <- BL + AL
ADD BL,[1000] ; BL <- BL + [1000]
```

Instruções aritméticas – subtração: SUB

Subtrai o valor do segundo operando do valor do primeiro, armazenando o resultado no primeiro operando.

O valor do segundo operando permanece inalterado.

Formato

► SUB reg,reg/mem/const

```
SUB BL,10 ; BL <- BL - 10
SUB BL,AL ; BL <- BL - AL
SUB BL,[1000] ; BL <- BL - [1000]
```

Instruções aritméticas – incremento e decremento: INC e DEC

Incrementa ou decrementa o valor do operando em 1.

Formato

- ► INC reg/mem
- ▶ DEC reg/mem

Bibliografia e materiais recomendados

- ► Capítulos 3, 4 e 6 do livro *Linux Assembly Language Programming*, de B. Neveln
- ► Livro The Art of Assembly Language Programming, de R. Hyde http://cs.smith.edu/~thiebaut/ArtOfAssembly/artofasm.html
- ► Notas das aulas de MAC0211 de 2010, feitas pelo Prof. Kon http://www.ime.usp.br/~kon/MAC211

Cenas dos próximos capítulos...

- Mais instruções em linguagem de montagem
- Estrutura de um programa em linguagem de montagem
- Montadores
- Primeiro programa completo em linguagem de montagem