[3]:	<pre>print("Success!") Success! #Loading Dataset df = pd.read_csv('Loan_Train.csv') print("Dataset Loaded Successfully!")</pre>
[4]: t[4]: [5]:	#Checking the Shape of Dataset df.shape (614, 13) • There are 614 Rows and 13 Columns in our dataset. #Checking Column Names
t[5]: [6]: t[6]:	<pre>Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education',</pre>
[7]:	0 LP001002 Male No 0 Graduate No 5849 0.0 NaN 366 1 LP001003 Male Yes 1 Graduate No 4583 1508.0 128.0 366 2 LP001005 Male Yes 0 Graduate Yes 3000 0.0 66.0 366 3 LP001006 Male Yes 0 Not Graduate No 2583 2358.0 120.0 366 4 LP001008 Male No 0 Graduate No 6000 0.0 141.0 366 #Datatypes of features df.info() Features Features No 6000 0.0 141.0 366 **Calass 'pandas.core.frame.DataFrame'> RangeIndex: 614 entries, 0 to 613 Data columns (total 13 columns): ***Patricular (total 13 column
[8]: t[8]:	3
[9]: t[9]:	std 6109.041673 2926.248369 85.587325 65.12041 0.364878 min 150.000000 0.000000 9.000000 12.00000 0.000000 25% 2877.500000 0.000000 100.00000 360.00000 1.000000 50% 3812.500000 1188.500000 128.000000 360.00000 1.000000 75% 5795.000000 2297.250000 168.000000 360.00000 1.000000 #Checking unique values in each feature df.apply(lambda x: len(x.unique())) Loan_ID Gender 3 Married 3 3 3 Dependents 5 5 5 5 Education 2 2 5 5 ApplicantIncome 505 505 6 6 CoapplicantIncome 287 287 4 4
[10]:	Loan Amount
[11]: [11]:	7 CoapplicantIncome 614 non-null float64 8 LoanAmount 592 non-null float64 9 Loan_Amount_Term 600 non-null float64 10 Credit_History 564 non-null object 11 Property_Area 614 non-null object 12 Loan_Status 614 non-null object dtypes: float64(4), int64(1), object(8) memory usage: 62.5+ KB #Checking null values in data, if any df.isnull().sum() Loan_ID
[13]: [13]:	#Handling Null Values with different strae df['Gender'] = df['Gender'].fillna('Male') df['Married'] = df['Married'].fillna(0) df['LoanAmount'] = df['LoanAmount'].fillna(0) df['LoanAmount Term'] = df['LoanAmount'].fillna(df['LoanAmount'].mean()) df['Self_Employed'] = df['Self_Employed'].fillna(df['LoanAmount_Term'].median()) df['Credit_History'] = df['Credit_History'].fillna(0) #Rechecking for null values df.isnull().sum() Loan_ID
[14]: [14]:	Credit_History
[15]: [15]: [16]:	#Checking for Duplicate Rows df.duplicated().sum() #Checking data before moving to EDA df.head()
[17]:	Coan_ID
[17]:	Text(0, 0, '422'), Text(0, 0, '192')] 400 350 300 250 192 Nearly 68% loans gets approved. Gender
[18]:	#Countplot for loans on the basis of gender sns.countplot(x=df['Gender'], data=df, hue='Loan_Status') <axessubplot:xlabel='gender', ylabel="count"> Loan_Status Y N There are more Men than Women. (Approx. 3x)</axessubplot:xlabel='gender',>
[19]: [19]:	**There are more Men than Women. (Approx. 3x) Married #*Countplot for loans on the basis of marital status sns.countplot(x=df['Married'], data=df, hue='Loan_Status') <axessubplot:xlabel='married', ylabel="count"> 100</axessubplot:xlabel='married',>
[20]: [20]:	
[21]: [21]:	• Majority of the population have 0 dependents and are also likely to accepted for loan. Education #Countplot for loans on the basis of Education sns.countplot(x=df['Education'], data=df, hue='Loan_Status') <axessubplot:xlabel='education', ylabel="count"> Loan_Status Y N</axessubplot:xlabel='education',>
[22]:	• Nearly 5/6th population is graduate and are more likey to be approved for loan Self Employed #Countplot for loans on the basis of Employment sns.countplot(x=df['Self_Employed'], data=df, hue='Loan_Status') <axessubplot:xlabel='self_employed', ylabel="count"> Loan_Status Y N</axessubplot:xlabel='self_employed',>
[23]:	**Self_Employed • 5/6th of the population is not self-employed. **Loan Amount Term **Countplot for loans on the basis of Term sns.countplot(x=df['Loan_Amount_Term'], data=df, hue='Loan_Status') <axessubplot:xlabel='loan_amount_term', ylabel="count"> **Loan_Status** **Loan</axessubplot:xlabel='loan_amount_term',>
[24]:	• Majority of the loans are taken for 360 Months.(30 Years) Credit History #Countplot for the loans on the basis of Credit History sns.countplot(x=df['Credit_History'], data=df, hue='Loan_Status') <axessubplot:xlabel='credit_history', ylabel="count"></axessubplot:xlabel='credit_history',>
[25]:	• Applicants with credit history are more likely to be approved. Property Area
[25]:	**Countplot for loans on the basis of Area sns.countplot(x=df['Property_Area'], data=df, hue='Loan_Status') AxeaSubplot:xlabel='Property_Area' , ylabel='count'> 175 150 125 150 175 150 175 175 175 175 175 175 175 175 175 175
[26]:	#Histogram for Applicant Income sns.distplot(df['ApplicantIncome']) AxesSubplot:xlabel='ApplicantIncome">ApplicantIncome , ylabel='Density'> 0.00020 0.00015 0.000005 0.000005 0.000005 0.000005
[27]: [27]:	ApplicantIncome #Histogram for Coapplicant Income sns.distplot(df['CoapplicantIncome']) <axessubplot:xlabel='coapplicantincome', ylabel="Density"> 0.0005 0.0004 0.0002 0.0001</axessubplot:xlabel='coapplicantincome',>
[28]: [28]:	Loan Amount #Histogram for Loan Amount sns.distplot(df['LoanAmount']) <axessubplot:xlabel='loanamount', ylabel="Density"> 0.000 0.008 0.0004</axessubplot:xlabel='loanamount',>
[29]: [30]:	• Other than the skewedness of numerical data, there is nothing much to correlate the data in numerical features. Preprocessing #Encoding categorical values to numerical df = pd.get_dummies(df, drop_first=True) #Splitting the data into Feature and Target Variable X = df.drop(columns = 'Loan_Status_Y') y = df['Loan_Status_Y']
[32]:	#Splitting the data in Training and Test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify = y, random_state = 42) Training the models Logistic Regression LR = LogisticRegression() LR. fit (X_train, y_train) LogisticRegression()
[32]: [33]: [34]:	LogisticRegression() y_pred = LR.predict(X_test) acc_LR = accuracy_score(y_test,y_pred) f1_LR = f1_score(y_test,y_pred) print("Accuracy: ", acc_LR) print("F1 Score: ", f1_LR) Accuracy: 0.8048780487804879 F1 Score: 0.866666666666667
[35]: [35]: [36]: [37]:	Gaussian Naive Bayes GNB = GaussianNB() GNB.fit(X_train, y_train) GaussianNB() y_pred = GNB.predict(X_test)
[38]: [38]:	<pre>acc_GNB = accuracy_score(y_test,y_pred) f1_GNB = f1_score(y_test,y_pred) print("Accuracy: ", acc_GNB) print("F1 Score: ", f1_GNB) Accuracy: 0.7642276422764228 F1 Score: 0.8432432432432 Decision Tree DT = DecisionTreeClassifier() DT.fit(X_train,y_train) DecisionTreeClassifier()</pre>
[39]: [40]: [41]:	<pre>y_pred = DT.predict(X_test) acc_DT = accuracy_score(y_test,y_pred) f1_DT = f1_score(y_test,y_pred) print("Accuracy: ", acc_DT) print("F1 Score: ", f1_DT) Accuracy: 0.6829268292682927 F1 Score: 0.7636363636363637 Random Forest RF = RandomForestClassifier() RF.fit(X_train,y_train) RandomForestClassifier()</pre>
[42]: [43]: [44]: [44]:	<pre>y_pred = RF.predict(X_test) acc_RF = accuracy_score(y_test,y_pred) f1_RF = f1_score(y_test,y_pred) print("Accuracy: ", acc_RF) print("F1 Score: ", f1_RF) Accuracy: 0.7804878048780488 F1 Score: 0.8439306358381502 Support Vecotr Machine SVM = SVC() SVM.fit(X_train,y_train) SVC() y_pred = SVM.predict(X_test)</pre>
[47]: [47]: [48]:	<pre>acc_SVM = accuracy_score(y_test,y_pred) f1_SVM = f1_score(y_test,y_pred) print("Accuracy: ", acc_SVM) print("F1 Score: ", f1_SVM) Accuracy: 0.6910569105691057 F1 Score: 0.8173076923076924 K-Nearest Neighbors KNN = KNeighborsClassifier() KNN.fit(X_train,y_train) KNeighborsClassifier() y_pred = KNN.predict(X_test) acc_KNN = accuracy_score(y_test,y_pred) f1_KNN = f1_score(y_test,y_pred)</pre>
[50]: [50]:	<pre>print("Accuracy: ", acc_KNN) print("F1 Score: ", f1_KNN) Accuracy: 0.6504065040650406 F1 Score: 0.7624309392265194 XGBoost XGB = XGBClassifier(eval_metric='mlogloss') XGB.fit(X_train, y_train) XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,</pre>
[51]: [52]:	
[53]: [53]: [54]:	Accuracy: 0.73170731707 F1 Score: 0.8070175438596492 Light GBM LGBM = LGBMClassifier() LGBM.fit(X_train, y_train) LGBMClassifier() y_pred = LGBM.predict(X_test) acc_LGBM = accuracy_score(y_test,y_pred) f1_LGBM = f1_score(y_test,y_pred) print("Accuracy: ", acc_LGBM) print("F1 Score: ", f1_LGBM) Accuracy: 0.7479674796747967 F1 Score: 0.8208092485549133
	Evaluation Accuracy Scores models = pd.DataFrame({ 'Model': ['Logistic Regression', 'Naive Bayes', 'Decision Tree', 'Random Forest', 'Support Vector Machire 'K - Nearest Neighbors', 'XGBoost Classifier', 'Light Gradient Boosting Machine'], 'Score': [acc_LR, acc_GNB, acc_DT, acc_RF, acc_SVM, acc_KNN, acc_XGB, acc_LGBM]}) models.sort_values(by='Score', ascending=False) Model Score 1 Logistic Regression
[57]:	
	 7 Light Gradient Boosting Machine 0.820809 4 Support Vector Machines 0.817308 6 XGBoost Classifier 0.807018 2 Decision Tree 0.763636