МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразование КС-грамматик»

Выполнил: ст. группы ПВ-223 Игнатьев Артур Олегович

Проверил:

Рязанов Юрий Дмитриевич

Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Вариант 3

Вариант 3						
1.	E-	→EabE	3			
2.	E-	→BaD				

3. D→ε

4. D→aEAb

5. D→bD

6. D→C

7. C→BCa

8. C→CEb

9. A→abC

10. $A \rightarrow Abb$

11. B \rightarrow aECb

12. B→D

Задание 1. Преобразовать исходную грамматику G (см. варианты заданий) в грамматику G_1 без лишних символов.

Грамматика G:

- 1. $E \rightarrow EabE$
- $2. E \rightarrow BaD$
- $3. D \rightarrow \varepsilon$
- $4. D \rightarrow aEAb$
- $5. D \rightarrow bD$
- 6. $D \rightarrow C$
- 7. $C \rightarrow BCa$
- 8. $C \rightarrow CEb$
- 9. $A \rightarrow abC$
- 10. $A \rightarrow Abb$
- 11. $B \rightarrow aECb$
- 12. $B \rightarrow D$

В множество продуктивных нетерминалов Р включаем нетерминал D (правило 3). Нетерминал D продуктивен, поэтому нетерминал В (правило 12). Нетерменалы D и В продуктивные, поэтому добавляем нетерминал Е (правило 2). Получаем P={D, B, E}. Увеличить множество Р не можем.

Из множества всех нетерминалов исключаем все продуктивные. Получаем множество {С, А} бесплодных нетерминалов.

Исключаем правила 4, 6, 7, 8, 9, 10 и 11. Они содержат бесплодные нетерминалы.

Получаем грамматику:

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow BaD$
- 3. $D \rightarrow \varepsilon$
- 5. D→bD
- 12. $B \rightarrow D$

Ищем достижимые символы.

Р={Е} – начальный нетерминал.

 $P = \{E, B, D, a, b\}$ — все символы являются достижимыми.

Все символы являются достижимыми, значит ничего не исключаем.

Получаем грамматику G_1 :

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow BaD$
- 3. $D \rightarrow \varepsilon$
- $4. D \rightarrow bD$
- 5. $B \rightarrow D$

Задание 2. Преобразовать грамматику G_1 в грамматику G_2 без ε -правил.

Грамматика G₁:

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow BaD$
- 3. $D \rightarrow \varepsilon$
- $4. D \rightarrow bD$
- 5. $B \rightarrow D$

Ищем множество аннулирующих нетерминалов. Исключаем правила, содержащие хотя бы один терминал в правой части.

Получаем грамматику:

- 1. $D \rightarrow \varepsilon$
- $2. B \rightarrow D$

Находим продуктивные нетерминалы из данной грамматики:

D продуктивен, по правилу $D \rightarrow \varepsilon$ (он может порождать пустую цепочку).

В продуктивен, по правилу $B \rightarrow D$. D уже продуктивен.

Получаем множество аннулирующих нетерминалов: {D, B}

Исключаем из каждого правила исходной грамматики аннулирующие нетерминалы всеми возможными способами. Полученные правила добавляем в множество правил грамматики

- 1. $E \rightarrow EabE$
- 2_1 . $E \rightarrow BaD$
- $2_2. E \rightarrow Ba$
- 2_3 . $E \rightarrow aD$
- 2 4. $E \rightarrow a$

- 3. D→ ε
- $4_1. D \rightarrow bD$
- 4_2. *D*→*b*
- $5_1. B \rightarrow D$
- 5_2. B→ ε

Получим грамматику G_2 исключением повторяющихся и эпсилон-правил:

- 1. $E \rightarrow EabE$
- 2_1 . $E \rightarrow BaD$
- 2_2. $E \rightarrow Ba$
- 2_3 . $E \rightarrow aD$
- $2_4. E \rightarrow a$
- $4_1. D \rightarrow bD$
- $4_2. D \rightarrow b$
- 5_1. *B*→*D*

Задание 3. Преобразовать грамматику G_1 в грамматику G_3 без цепных правил.

Получаем грамматику G₃:

- 1. $E \rightarrow EabE$
- 2. E → BaD
- 3. D→ ε
- $4. D \rightarrow bD$
- 5. B→bD
- 6. $B \rightarrow \varepsilon$

Задание 4. Преобразовать грамматику G_1 в грамматику G_4 без левой рекурсии.

- 1. E→EabE левая рекурсия
- 2. $E \rightarrow BaD$
- 3. D→ ε
- $4. D \rightarrow bD$
- 5. $B \rightarrow D$

Заменим правило с левой рекурсией на 3 новых правила и получим грамматику G_4 :

- $1_1.~E' \rightarrow abEE'$
- 1_2. $E' \rightarrow \varepsilon$
- 1_3. $E \rightarrow BaDE'$
- 2. $E \rightarrow BaD$
- 3. D→ ε
- $4. D \rightarrow bD$
- 5. B→D

Задание 5. Преобразовать грамматику G_1 в грамматику G_5 без несаморекурсивных нетерминалов.

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow BaD$
- 3. D→ ε
- $4. D \rightarrow bD$
- 5. $B \rightarrow D$ несаморекурсивный нетерминал

Исключаем правило 5. Имеем одно вхождение B в правило 2. Заменяем его на содержимое правила 5. Получаем грамматику G_5 :

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow DaD$
- 3. D→ ε
- $4. D \rightarrow bD$

Задание 6. Получить грамматику G_6 , эквивалентную грамматике G_1 , в которой правая часть каждого правила состоит либо из одного терминала, либо двух нетерминалов.

Используем грамматику G_5 , так как в ней нет цепных правил.

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow DaD$
- 3. $D \rightarrow \varepsilon$
- $4. D \rightarrow bD$

Устраним в G₅ все эпсилон-правила:

- 1. $E \rightarrow EabE$
- 2. $E \rightarrow DaD$
- $3. E \rightarrow a$
- $4. E \rightarrow Da$
- 5. $E \rightarrow aD$
- 6. $D \rightarrow bD$
- 7. $D \rightarrow b$

Преобразуем данную грамматику в НФХ:

Исходная грамматика			
$E \rightarrow EabE$	$E \rightarrow EN_1$	$E \rightarrow EN_1$	$E \rightarrow EN_1$
$E \rightarrow DaD$	$N_1 \rightarrow abE$	$N_1 \rightarrow aN_3$	$N_1 \rightarrow N_4 N_3$
$E{ ightarrow}a$	$E \rightarrow DN_2$	$N_3 \rightarrow bE$	$N_4 \rightarrow a$
$E \rightarrow Da$	$N_2 \rightarrow aD$	$E \rightarrow DN_2$	$N_3 \rightarrow N_5 E$
$E{ ightarrow}aD$	$E{ ightarrow}a$	$N_2 \rightarrow aD$	$N_5 \rightarrow b$
$D{ ightarrow}bD$	$E \rightarrow Da$	$E \rightarrow a$	$E \rightarrow DN_2$
$D{ ightarrow}b$	$E{\rightarrow}aD$	$E \rightarrow Da$	$N_2 \rightarrow N_4 D$
	$D{\rightarrow}bD$	$E \rightarrow aD$	$E \rightarrow a$
	$D \rightarrow b$	$D{ ightarrow}bD$	$E \rightarrow DN_4$
		$D \rightarrow b$	$E \rightarrow N_4D$
			$D \rightarrow N_5 D$
			$D{ ightarrow}b$

Грамматика G₆:

- 1. $E \rightarrow EN$
- $2. N_1 \rightarrow N_4 N_3$
- $3. N_4 \rightarrow a$
- 4. $N_3 \rightarrow N_5 E$
- $5. N_5 \rightarrow b$
- 6. $E \rightarrow DN_2$
- 7. $N_2 \rightarrow N_4 D$
- 8. $E \rightarrow a$
- 9. $E \rightarrow DN_4$
- 10. $E \rightarrow N_4D$
- 11. $D \rightarrow N_5 D$
- 12. D→b

Задание 7. Получить грамматику G_7 , эквивалентную грамматике G_1 , в которой правая часть каждого правила начинается терминалом.

Используем грамматику G_4 , так как в ней нет левой рекурсии.

- 1. $E' \rightarrow abEE'$
- $2. E' \rightarrow \varepsilon$
- 3. $E \rightarrow BaDE'$
- 4. $E \rightarrow BaD$
- 5. D→ ε
- 6. $D \rightarrow bD$
- 7. $B \rightarrow D$

Устраним в G₄ все эпсилон-правила:

- $1_1. E' \rightarrow abEE'$
- $1_1_2 E' \rightarrow abE$
- 2. $E' \rightarrow \varepsilon$
- $3_1. E \rightarrow BaDE'$
- $3_2. E \rightarrow BaD$
- 3_3. $E \rightarrow aDE'$
- $3_4. E \rightarrow BaE'$
- $3_5. E \rightarrow Ba$
- 3_6. $E \rightarrow aE'$
- 3_7 . $E \rightarrow aD$
- $3_8. E \rightarrow a$
- 4_1 . $E \rightarrow BaD$
- 4_2 . $E \rightarrow Ba$
- 4_3 . $E \rightarrow aD$
- $4_4. E \rightarrow a$

- 5. D→ ε
- $6_1. D \rightarrow bD$
- $6_2. D \rightarrow b$
- 7. $B \rightarrow D$
- 1. $E' \rightarrow abEE'$
- $2. E' \rightarrow abE$
- $3.\,E{\to}BaDE'$
- $4. E \rightarrow BaD$
- 5. $E \rightarrow aDE'$
- 6. $E \rightarrow BaE'$
- 7. $E \rightarrow Ba$
- 8. $E \rightarrow \alpha E'$
- 9. $E \rightarrow aD$
- 10. E→a
- 11. $D \rightarrow bD$
- 12. $D \rightarrow b$
- 13. $B \rightarrow D$

Выполняем замену края:

- 1. $E' \rightarrow abEE'$
- 2. $E' \rightarrow abE$
- 3. $E \rightarrow DaDE'$
- $4. E \rightarrow DaD$
- 5. $E \rightarrow aDE'$
- 6. $E \rightarrow DaE'$
- 7. $E \rightarrow Da$
- 8. $E \rightarrow aE'$
- 9. $E \rightarrow aD$

- 10. E→a
- 11. $D \rightarrow bD$
- 12. D→b
- 13. B→D
- 1. $E' \rightarrow abEE'$
- $2. E' \rightarrow abE$
- $3.\ E{\rightarrow}bDaDE'$
- $3_1. E \rightarrow baDE'$
- $4. E \rightarrow bDaD$
- 4_1 . $E \rightarrow baD$
- 5. $E \rightarrow aDE'$
- 6. $E \rightarrow bDaE'$
- 6_1 . E→baE'
- 7. $E \rightarrow bDa$
- 7_1. $E \rightarrow ba$
- 8. $E \rightarrow \alpha E'$
- 9. $E \rightarrow aD$
- 10. E→a
- 11. $D \rightarrow bD$
- 12. D→b
- 13. B→bD
- 13_1. $B \rightarrow b$

Грамматика G₇:

- 1. $E' \rightarrow abEE'$
- $2.\,E'{\to}abE$
- 3. $E \rightarrow bDaDE'$
- 3_1 . $E \rightarrow baDE'$
- $4. E \rightarrow bDaD$
- 4_1 . $E \rightarrow baD$
- 5. $E \rightarrow aDE'$
- 6. $E \rightarrow bDaE'$
- 6_1 . E→baE'
- 7. $E \rightarrow bDa$
- 7_1. $E \rightarrow ba$
- 8. $E \rightarrow aE'$
- 9. $E \rightarrow aD$
- 10. E→a
- 11. $D \rightarrow bD$
- 12. $D \rightarrow b$
- 13. $B \rightarrow bD$
- 13_1. $B \rightarrow b$

Задание 8. Получить грамматику G_8 , эквивалентную грамматике G_1 , в которой правая часть каждого не ε -правила начинается терминалом и любые два правила с одинаковой левой частью различаются первым символом в правой части.

Используем грамматику G_5 приведенную в НФГ(во время решения выяснилось, что данную грамматику невозможно преобразовать к искомой. Если удалить из приведенной грамматики G_5 правила 9 и 7 то искомую грамматику возможно будет найти)

Грамматика G₅ приведенная в НФГ(удалены некоторые правила):

- 1. $E \rightarrow aDabE$
- 2. $E \rightarrow aabE$
- 3. $E \rightarrow bDaD$
- $4. E \rightarrow baD$
- 5. $E \rightarrow bDN$
- 6. $E \rightarrow bN$
- 8. $E \rightarrow a$
- $9. D \rightarrow b$
- 10. $N \rightarrow a$

Выполним левую факторизацию:

- 1. $E \rightarrow aG_1$
- 2. $G_1 \rightarrow DabE$
- 3. $G_1 \rightarrow abE$
- 4. G_1 → ε
- 5. $E \rightarrow bG_2$
- 6. $G_2 \rightarrow DaD$

- 7. $G_2 \rightarrow aD$
- 8. $G_2 \rightarrow DN$
- 9. $G_2 \rightarrow N$
- 10. D→b
- 11. *N*→*a*

Выполним замену:

- 1. $E \rightarrow \alpha G_1$
- 2. $G_1 \rightarrow babE$
- 3. $G_1 \rightarrow abE$
- 4. $G_1 \rightarrow \varepsilon$
- 5. $E \rightarrow bG_2$
- 6. $G_2 \rightarrow bab$
- 7. $G_2 \rightarrow ab$
- 8. $G_2 \rightarrow ba$
- 9. $G_2 \rightarrow a$
- 10. D→b
- 11. *N*→*a*

Выполним левую факторизацию:

- 1. $E \rightarrow \alpha G_1$
- 2. $G_1 \rightarrow babE$
- 3. $G_1 \rightarrow abE$
- 4. $G_1 \rightarrow \varepsilon$
- 5. $E \rightarrow bG_2$
- 6. $G_2 \rightarrow bG_3$
- 7. $G_3 \rightarrow ab$
- 8. $G_3 \rightarrow a$

- 9. $G_2 \rightarrow aG_4$
- 10. $G_4 \rightarrow b$
- 11. $G_4 \rightarrow \varepsilon$
- 11. $D \rightarrow b$
- 12. *N*→*a*

Выполним левую факторизацию:

- 1. $E \rightarrow aG_1$
- 2. $G_1 \rightarrow babE$
- 3. $G_1 \rightarrow abE$
- 4. $G_1 \rightarrow \varepsilon$
- 5. $E \rightarrow bG_2$
- 6. $G_2 \rightarrow bG_3$
- 7. $G_3 \rightarrow aG_5$
- 8. $G_5 \rightarrow b$
- 9. $G_5 \rightarrow \varepsilon$
- 10. $G_2 \rightarrow aG_4$
- 11. $G_4 \rightarrow b$
- 12. $G_4 \rightarrow \varepsilon$
- 13. D→b
- 14. *N*→*a*

Грамматика G_8 :

- 1. $E \rightarrow aG_1$
- 2. $G_1 \rightarrow babE$
- 3. $G_1 \rightarrow abE$
- 4. $G_1 \rightarrow \varepsilon$
- 5. $E \rightarrow bG_2$
- 6. $G_2 \rightarrow bG_3$
- 7. $G_3 \rightarrow aG_5$
- 8. $G_5 \rightarrow b$
- 9. $G_5 \rightarrow \varepsilon$
- 10. $G_2 \rightarrow aG_4$
- 11. $G_4 \rightarrow b$
- 12. $G_4 \rightarrow \varepsilon$
- 13. D→b
- 14. *N*→*a*

Задание 9. Получить грамматику G_9 , эквивалентную грамматике G_1 , в которой правая часть каждого правила не содержит двух стоящих рядом нетерминалов.

Используем грамматику G₆:

- 1. $E \rightarrow EN_1$
- $2. N_1 \rightarrow N_4 N_3$
- $3. N_4 \rightarrow a$
- $4. N_3 \rightarrow N_5 E$
- $5. N_5 \rightarrow b$
- 6. $E \rightarrow DN_2$
- 7. $N_2 \rightarrow N_4 D$
- 8. $E \rightarrow a$
- 9. $E \rightarrow DN_4$
- 10. $E \rightarrow N_4D$
- 11. $D \rightarrow N_5 D$
- 12. $D \rightarrow b$

Выполним преобразования в правилах с различными нетерминалами N в левой части:

- $2. N_1 \rightarrow aN_3$
- $3. N_4 \rightarrow a$
- $4. N_3 \rightarrow bE$
- $5. N_5 \rightarrow b$
- 7. $N_2 \rightarrow aD$

Получаем грамматику G₉:

- 1. $E \rightarrow EaN_3$
- 2. $N_1 \rightarrow aN_3$
- $3. N_4 \rightarrow a$
- $4. N_3 \rightarrow bE$
- $5. N_5 \rightarrow b$
- 6. $E \rightarrow DaD$
- 7. $N_2 \rightarrow aD$
- 8. $E \rightarrow a$
- 9. E→Da
- 10. E→aD
- 11. $D \rightarrow bD$
- 12. D→b

Задание 10. Получить грамматику G_{10} , эквивалентную грамматике G_1 , в которой любой символ занимает либо только крайнюю правую позицию в правых частях правил, либо находится левее самого правого символа в правых частях правил.

Используем грамматику G₄:

- 1. $E' \rightarrow abEE'$
- $2. E' \rightarrow \varepsilon$
- 3. $E \rightarrow BaDE'$
- $4. E \rightarrow BaD$
- 5. $D \rightarrow \varepsilon$
- 6. $D \rightarrow bD$
- 7. $B \rightarrow D$

Заменим D в грамматике 3 на B, так как это нарушает условия задачи:

- 1. $E' \rightarrow abEE'$
- $2. E' \rightarrow \varepsilon$
- 3. $E \rightarrow BaBE'$
- $4. E \rightarrow BaD$
- 5. D→ ε
- 6. $D \rightarrow bD$
- 7. $B \rightarrow D$

Получаем грамматику G_{10} :

- 1. $E' \rightarrow abEE'$
- $2. E' \rightarrow \varepsilon$
- 3. $E \rightarrow BaBE'$
- $4. E \rightarrow BaD$
- 5. D→ ε
- 6. $D \rightarrow bD$
- 7. $B \rightarrow D$

Вывод: в ходе лабораторной работы были изучены основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.