

Aspect-Oriented Ontology Development

- KR paradigm and ontology development method for
 - Modularizing ontologies and making the module's description explicit
 - Representing context in an ontology, such as
 - Temporal, spatial, topological context
 - Views
 - ✓ Aspects of interest
 - ✓ Opinion
 - ✓ Competing definitions
 - **√** ...
 - Epistemic context
 - ✓ Agent's state of knowledge about axioms/facts
 - Deontic context
 - ✓ Permission, obligation and prohibition

AspectOWL

- AspectOWL is an extension to W3C OWL 2 DL
- New:
 - Axioms carry context information (aspects).
 - Semantics: The model-theoretic interpretation of the axiom (truth valuation) is restricted to only hold within the context.

OWL 2 DL (SROIQ(D)) Semantics

	syntax	semantics
top concept	Τ	$\Delta_I^{\mathcal{I}}$
negation	$\neg C$	$\Delta_I^{\mathcal{I}} \setminus C^{\mathcal{I}}$
conjunction	$C\sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
existential restriction	$\exists r.C$	$\{d \in \Delta_I^{\mathcal{I}} \mid \text{ there exists an } e \in C^{\mathcal{I}} \text{ with } (d, e) \in r^{\mathcal{I}}\}$
at-most restriction	$\leq_n r.C$	$\{d \in \Delta_I^{\mathcal{I}} \mid \#\{e \in C^{\mathcal{I}} \mid (d,e) \in r^{\mathcal{I}}\} \leq n\}$
nominal	{ <i>a</i> }	$\{a^{\mathcal{I}}\}$
general concept inclusion	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$
concept assertion	C(a)	$a^{\mathcal{I}} \in C^{\mathcal{I}}$
role assertion	r(a,b)	$(a^{\mathcal{I}},b^{\mathcal{I}})\in r^{\mathcal{I}}$
role inclusion	$r \sqsubseteq s$	$r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
transitivity	trans(r)	$(d,e) \in r^{\mathcal{I}} \text{ and } (e,f) \in r^{\mathcal{I}} o (d,f) \in r^{\mathcal{I}}$
symmetry	sym(r)	$(d,e) \in r^{\mathcal{I}} ightarrow (e,d) \in r^{\mathcal{I}}$
reflexivity	ref(r)	$(d,d) \in r^{\mathcal{I}}$ for all $d \in \Delta_I^{\mathcal{I}}$
role chain	$r \circ s$	$(d,e) \in r^{\mathcal{I}} \text{ and } (e,f) \in s^{\mathcal{I}} \to (d,f) \in (r \circ s)^{\mathcal{I}}$
inverse role	Inv(r,s)	$(d,e) \in r^{\mathcal{I}} o (e,d) \in s^{\mathcal{I}}$
disjoint roles	$r \sqcap s \sqsubseteq \neg \top^9$	$r^{\mathcal{I}} \cap s^{\mathcal{I}} \subseteq \emptyset$

AspectOWL Semantics

AspectOWL Semantics are defined in terms of multi-dimensional (SROIQ_{Kripke}) interpretations

$$\mathcal{J} := (W, R, L, \cdot^{\mathcal{J}}, \Delta, (\cdot^{\mathcal{I}_w})_{w \in W})$$

- W: set of possible worlds
- R: set of accessibility relations
- L: Kripke interpretation (assigning truth values to propositional symbols in each world)

$$(\mathsf{hasAspect}(\alpha, A))^{\mathcal{J}} \to A^{\mathcal{J}} \subseteq C^{\mathcal{J}} := \{ w \in W \mid \mathcal{I}_w \models \alpha \}$$

- α : a DL (OWL) axiom
- A: a concept description (OWL class expression)

Modal Logic Family

Name	Modal Axiom	Condition on Frames	R is	DL Axiom
(D)	$\Box A \rightarrow \Diamond A$	$\forall w \exists u : wRu$	Serial	$\top \sqsubseteq \exists R. \top$
(M)	$\Box A \to A$	$\forall w : wRw$	Reflexive	$\top \sqsubseteq \exists R.Self$
(4)	$\Box A \to \Box \Box A$	$(wRv \wedge vRu) \Rightarrow wRu$	Transitive	Trans(R)
(B)	$A ightarrow \Box \Diamond A$	$wRv \Rightarrow vRw$	Symmetric	Sym(R)
(5)	$\Diamond A \to \Box \Diamond A$	$(wRv \wedge wRu) \Rightarrow vRu$	Euclidean	$R^{-1} \circ R \sqsubseteq R^{a}$
(CD)	$\Diamond A \to \Box A$	$(wRv \wedge wRu) \Rightarrow v = u$	Functional	$\top \sqsubseteq (\leqslant 1R.\top)$
$(\Box M)$	$\Box(\Box A \to A)$	$wRv \Rightarrow vRv$	Shift Reflexive	$\exists R^{-1}. \top \sqsubseteq \exists R. Self$
(<i>C</i> 4)	$\Box\Box A\to\Box A$	$wRv \Rightarrow \exists u(wRu \land uRv)$	Dense	$R \circ R \sqsubseteq R \wedge \top \sqsubseteq \nexists R.Self^{\ a}$
(C)	$\Diamond \Box A \to \Box \Diamond A$	$wRv \wedge wRx \Rightarrow \exists u(vRu \wedge xRu)$	Convergent	<i>b</i>

^afalls under OWL 2 restriction

Table 1. Modal Logic axioms and corresponding conditions on frames and OWL axioms

^bNot possible in pure DL. See Section 1.3 for a workaround involving SWRL.

Temporal Aspect in Terms of OWL primitives

AspectOWL Protégé Plugin

Axiom Selection Options

- Aspect target axioms may be selected
 - Explicitly, like in the preceding examples: Join points
 - By some sort of query: Pointcut model
 - SPARQL CONSTRUCT
 - Signature-based
 - DL Query

AOP terminology

Example: Temporalized Deontic Logic

Example: Temporalized Deontic Logic

Example: Temporalized Deontic Logic

Example in Protégé

Example in extended OWL Functional Syntax

```
Ontology(<http://ontology.aspectowl.xyz/example/deontic>
   TransitiveObjectProperty(juridicallyAccepts)
   ReflexiveObjectProperty(juridicallyAccepts)
   TransitiveObjectProperty(ethicallyAccepts)
   ReflexiveObjectProperty(ethicallyAccepts)
   TransitiveObjectProperty(after)
   EquivalentClasses(EthicallyProhibited
   ObjectComplementOf(ObjectSomeValuesFrom(ethicallyAccepts Reality)))
   EquivalentClasses(JuridicallyPermissible ObjectSomeValuesFrom(juridicallyAccepts Reality))
   ObjectPropertyAssertion(Aspect(EthicallyProhibited) Aspect((Aspect(ObjectHasValue(after
   21Jan2019)))JuridicallyPermissible) Aspect(Reality) performsAction Agent_A Action_1)
```

Example as First-Order Theory

```
1. \forall x, y, z : (juridicallyAccepts(x, y) \land (juridicallyAccepts(y, z) \rightarrow (juridicallyAccepts(x, z)))
2. \forall x : juridicallyAccepts(x, x)
3. \forall x, y, z : (ethicallyAccepts(x, y) \land (ethicallyAccepts(y, z) \rightarrow (ethicallyAccepts(x, z)))
4. \forall x : ethicallyAccepts(x, x)
5. \forall x, y, z : (after(x, y) \land (after(y, z) \rightarrow (after(x, z))))
6. \forall x: (JuridicallyPermissible(x) \leftrightarrow \exists y: juridicallyAccepts(x,y) \land Reality(y))
7. \forall x : (EthicallyProhibited(x) \leftrightarrow \forall y : \sim (ethicallyAccepts(x,y) \land Reality(y)))
8. \forall x : (EthicallyProhibited(x) \land temp\_JuridicallyPermissible(x) \land Reality(x) \leftrightarrow Partial Permissible(x) \land Reality(x) \leftrightarrow Partial Permissible(x) \land 
             performsAction(Agent\_A, Action\_1))
9. \forall x, y : (after(x, 21Jan2019) \leftrightarrow temp\_JuridicallyPermissible(y)))
```

Thank you for your attention

Kaiserin-Augusta-Allee 31 10589 Berlin, Germany info@fokus.fraunhofer.de www.fokus.fraunhofer.de

Researcher

Ralph Schäfermeier

Phone +49 (30) 34 63 - 7490

ralph.schaefermeier@fokus.fraunhofer.de

