WydziaĹ Elektroniki i Technik Informacyjnych Politechnika Warszawska

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 3

Wojciech Rokicki, RadosĹaw Tuzimek, Jakub Gruszecki

Spis treści

Pop	rawność wartości sygnałów w punkcie pracy
1.1. 1.2. 1.3.	Poprawność sygnałów
Odp	owiedzi skokowe i charakterystyka statyczna
2.1. 2.2. 2.3.	Wyznaczenie dpowiedzi skokowych
Odp	owiedź skokowa dla algorytmu DMC
3.1.	Odpowiedź skokowa
Reg	ulacja procesu
4.1. 4.2.	Regulator PID
Dob	ór nastaw regulatorów
5.1. 5.2.	Dobór nastaw cyfrowego regulatora PID
Opt	ymalizacja wskaźnika jakości
6.1. 6.2. 6.3.	Algorytm optymalizacji
	1.1. 1.2. 1.3. Odp 2.1. 2.2. 2.3. Odp 3.1. Reg 4.1. 4.2. Dob 5.1. 5.2. Opt 6.1. 6.2.

1. Poprawność wartości sygnałów w punkcie pracy

1.1. Poprawność sygnałów

W celu sprawdzenia poprawności sygnałów U_{pp} oraz Y_{pp} obiekt został pobudzony sygnałem o wartości U_{pp} . Wartości sygnałów w punkcie pracy są poprawne, jeśli sygnał wyjściowy przyjmie wartość Y_{pp} .

1.2. Wnioski

Na podstawie rysunku widać, że dla stałej wartości sygnału sterującego U_{pp} wyjście obiektu przyjmuje stałą wartość, równą Y_{pp} . Jest to dowód na to, że wartości sygnałów wejsciowego i wyjściowego w punkcie pracy są poprawne.

1.3. Implementacja

Do przeprowadzenia eksperymentu wykorzystany został skrypt zad1.m.

2. Odpowiedzi skokowe i charakterystyka statyczna

2.1. Wyznaczenie dpowiedzi skokowych

W celu wyznaczenia odpowiedzi skokowych obiekt pobudzony został czterema skokami sygnału sterującego w chwili k=21. Sygnał sterujący zmieniał się o dU=0,1 od U_{min} =0,9 do U_{max} =1,3.

2.2. Charakterystyka statyczna

W celu wyznaczenia charakterystyki statycznej procesu

2.3. Wnioski

Otrzymana charakterystyka statyczna procesu jest liniowa.

3. Odpowiedź skokowa dla algorytmu DMC

3.1. Odpowiedź skokowa

Do wyznaczania odpowiedzi skokowej dla algorytmu DMC wybrana została odpowiedź dla zmiany sygnału sterującego o 0,1 z punktu pracy $U_{pp}=1,1$. Otrzymana odpowiedź skokowa poddana została normalizacji, czyli przesunięciu o wartość sygnału wyjściowego w punkcie pracy, a następnie podzielona przez długość skoku. Następnie, w celu wyznaczenia współczyników odpowiedzi skokowej dla algorytmu DMC zastosowany został wzór:

$$S_i = \frac{S_i^0(k) - Y_{pp}}{\Delta U} \tag{3.1}$$

gdzie S^0_i to seria pomiarów pozyskanych w celu wyznaczenia odpowiedzi skokowej, zaś wielkość ΔU jest to przyrost wartości sygnału sterującego. Poniżej przedstawiono gotową odpowiedź skokową dla algorytmu DMC.

4. Regulacja procesu

- 4.1. Regulator PID
- 4.2. Regulator DMC

5. Dobór nastaw regulatorów

- 5.1. Dobór nastaw cyfrowego regulatora PID
- 5.2. Dobór nastaw predykcyjnego regulatora DMC

6. Optymalizacja wskaźnika jakości

- 6.1. Algorytm optymalizacji
- 6.2. Optymalne nastawy regulatora PID
- 6.3. Optymalne nastawy regulatora DMC