Introduction to Soft Computing

Dr. Sumanto Dutta

School of Computer Applications KIIT (Deemed to be University) Bhubaneshwar.

July 11, 2024

Outline

Course Overview

Lesson Plan

Introduction to Soft Computing

Concept of Computation

Hard Computing

Soft Computing

How Soft Computing Works

Comparison: Hard vs. Soft Computing

Hybrid Computing

Course Overview

- ▶ Basics of Fuzzy Logic and problem-solving.
- Genetic Algorithm framework and optimization problems.
- Building and training Artificial Neural Networks for complex problems.

Class Organization

▶ **Semester:** Autumn, Session 2024-2025

Course: Soft Computing

Code: MC5145

► **Credit:** 3-0-0 = 3

► Timing (Section A):

Tuesday: 12:00 PM - 01:00 PM
 Wednesday: 04:00 PM - 05:00 PM

Thursday: 12:00 PM - 01:00 PM

► Timing (Section B):

Tuesday: 09:30 AM - 10:30 AM

Wednesday: 03:00 PM - 04:00 PM

Thursday: 03:00 PM - 04:00 PM

Reference Books

- 1. S. Rajasekaran, G.A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications, 2nd edition, 2018.
- 2. S N Sivanandam Principles Of Soft Computing, 2nd Edition, John Wiley, 2011.
- 3. Davis E.Goldberg, Genetic Algorithms: Search, Optimization and Machine Learning, Addison Wesley, N.Y.,1989
- 4. J.S.R.Jang, C.T.Sun and E.Mizutani, Neuro-Fuzzy and Soft Computing, , PHI/Pearson Education, 2015

Evaluation Plan

- ► Mid-Semester Test: 20 Marks
- ► End-Semester Test: 50 Marks
 - ▶ Syllabus: 20% from the syllabus covered till Mid-semester.
 - ▶ 80% from the syllabus covered post-Mid-semester.
- Other Assessment: 30 Marks
 - Class Test 1: 10 Marks (Topic: Fuzzy Logic)
 - Class Test 2: 10 Marks (Topic: Artificial Neural Network)
 - Class Test 3: 10 Marks (Topic: Evolutionary Computing Techniques)
 (Note: Best two out of three tests will be considered.)
 - Practical problem solving: 5 Marks (Topic: Covering three major topics)
 - Attendance:
 - ▶ 5 Marks if more than 75% attendance
 - ▶ 4 Marks if more than 70% and less than 75
 - ▶ 3 Marks if more than 60% and less than 70
 - 2 Marks if more than 50% and less than 60
 - ▶ 1 Marks if more than 30% and less than 50
 - 0 Marks if less than 30%

Lesson Plan

Lecturer No.	Unit No.	Торіс
Lecturer 1		Introduction to Soft Computing
		 Concept of computing systems.
		"Soft" computing versus "Hard" computing
		Characteristics of Soft computing
		Some applications of Soft computing techniques
Lecturer 2		Fuzzy logic
Lecturer 3		Introduction to Fuzzy logic.
	Unit - I	Crisp Logic
		 Fuzzy sets and membership functions.
		Operations on Fuzzy sets.
Lecturer 4		Fuzzy relations, rules, propositions, implications and
Lecturer 5		inferences.
Lecturer 6		Defuzzification techniques.
Lecturer 7		Some applications of Fuzzy logic.

Lecturer 8		Neural Networks
	- - - Unit - II	Biological neurons and its working.
		Simulation of biological neurons to problem solving.
Lecturer 9		Different ANNs architectures.
Lecturer 10		
Lecturer 11		Perceptron, Adaline
Lecturer 12		Back propagation
Lecturer 13		Multilayer Perceptron
		Radial Basis Function Networks
Lecturer 14		Unsupervised Learning Neural Networks
Lecturer 15		Competitive Learning Networks,
Lecturer 16		Kohonen Self Organizing Networks
Lecturer 17		Hebbian Learning,
Lecturer 18		Hop-field networks
Lecturer 19		Mid-Sem Revision
Lecturer 20		Mid-sem Paper discussion

Lecturer 21 Lecturer 22		Genetic Algorithms • Fundamentals of genetic algorithms: Encoding, Fitness
Lecturer 23		functions, Reproduction. Genetic Modeling: cross cover, inversion and deletion,
Lecturer 24		Mutation operator, Bit-wise operators, Bitwise operators used in GA.
Lecturer 25 Lecturer 26		
Lecturer 27		
Lecturer 28	Unit - III	Optimization
Lecturer 29	-	Derivative-based Optimization, Descent Methods, The Method of Steepest Descent, Classical Newton's Method, Step Size Determination.
Lecturer 30		Derivative-free Optimization, Genetic Algorithms,
Lecturer 31		Simulated Annealing, Random Search, Downhill Simplex Search

Lecturer 32	- Unit-IV	Hybrid Systems
Lecturer 33		Hybrid system, neural Networks, fuzzy logic and Genetic algorithms hybrids.
Lecturer 34		algoriums nyorids.
Lecturer 35		
Lecturer 36		Genetic Algorithm based Back propagation Networks
Lecturer 37		
Lecturer 38		GA based weight determination applications: Fuzzy Back
Lecturer 39		Propagation Networks.
Lecturer 40		End-Sem Revision

Introduction

- ► Concept of computation
- ► Hard computing
- ► Soft computing
- ► Comparison: Hard vs. Soft computing
- Hybrid computing

Concept of Computation

- Computation involves mapping functions and control actions.
- It is a formal method or algorithm to solve a problem.

Hard Computing

- Introduced by L. A. Zadeh in 1996.
- ► Guarantees precise results and unambiguous control actions.
- ▶ Requires formal mathematical models or algorithms.

Examples of Hard Computing

- ► Solving numerical problems (e.g., polynomial roots, integration).
- Searching and sorting techniques.
- ► Computational geometry problems (e.g., shortest path).

Soft Computing

- Exploits tolerance for imprecision and uncertainty.
- Achieves tractability, robustness, and low solution cost.
- Main components: fuzzy logic, neuro-computing, probabilistic reasoning.

Characteristics of Soft Computing

- ▶ Does not require precise mathematical models.
- May not yield precise solutions.
- Algorithms are adaptive to dynamic environments.
- ▶ Inspired by biological methodologies (e.g., genetics, evolution).

Examples of Soft Computing

- ► Handwritten character recognition (Artificial Neural Networks).
- ▶ Money allocation problem (Evolutionary Computing).
- ► Robot movement (Fuzzy Logic).

Example: Handwritten Character Recognition

► Artificial Neural Networks are trained to recognize characters from handwriting samples.

Example: Money Allocation Problem

► Evolutionary Computing is used to optimize the allocation of money to different investments for maximum return.

Example: Robot Movement

► Fuzzy Logic is applied to determine the movement of a robot in a grid environment.

Natural Selection Process

- Starts with a random population.
- ► Reproduces next generation.
- Selects superior individuals.
- Basis of Genetic Algorithms.

Medical Diagnosis Approach

- Doctor diagnoses based on symptoms and tests.
- Correlates with diseases despite uncertainties.
- Basis of Fuzzy Logic.

Hard Computing vs. Soft Computing

Hard Computing

- Precise and unambiguous results.
- Requires exact input data.
- Deterministic.

Soft Computing

- Tolerant of imprecision and uncertainty.
- ► Can handle ambiguous and noisy data.
- Stochastic.

Hybrid Computing

- ► Combines hard and soft computing.
- Leverages strengths of both approaches.

Thank You!

Dr. Sumanto Dutta
School of Computer Applications
KIIT (Deemed to be University) Bhubaneshwar

Email: sumanto.fca@kiit.ac.in

Mobile: +91-7438999183 (Available between 8:00 AM - 7:00 PM)

Crisp Set Theory

Crispness & Impreciseness

- Crispness: Clearly defined boundaries and characteristics.
 - **Example:** A set of even numbers: $A = \{2, 4, 6, 8, 10, \ldots\}$.
- ▶ Impreciseness: Lack of clarity in boundaries and characteristics.
 - Example: A set of "tall" people, where "tall" can have different interpretations.

Uncertainty & Vagueness

- ▶ **Uncertainty:** The state of being uncertain or not having exact information.
- ▶ Vagueness: Lack of precision or distinctness.

Example

Vague: I will come back soon.

Fuzzy: I will come back within 1 minute.

Crisp Set Theory

Let A be a collection of well-defined objects x_i , and U is the universal set.

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

$$\chi_A: x \to \{0,1\}$$

Example: Characteristic Function

Example

Let $A = \{1, 2, 3\}$ and $U = \{1, 2, 3, 4, 5\}$.

The characteristic function $\chi_A(x)$ is defined as:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

For
$$x = 2$$
, $\chi_A(2) = 1$.

For
$$x = 4$$
, $\chi_A(4) = 0$.

Operations on Sets

$$A^c = U - A$$

$$(A^c)^c = A$$

$$ightharpoonup \phi^c = U$$

$$V$$
 $U^c = \phi$

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x | x \in A \text{ and } x \in B\}$$

$$ightharpoonup A \cup U = U$$

$$ightharpoonup A \cap U = A$$

Operations on Sets

Figure: Operations on Sets

Example: Operations on Sets

Example

Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, and $U = \{1, 2, 3, 4, 5, 6\}$.

▶ **Union:** $A \cup B = \{1, 2, 3, 4, 5\}$

▶ Intersection: $A \cap B = \{3\}$

► Complement: $A^c = \{4, 5, 6\}$

Properties of Set Theory

- ▶ Involution: $(A^c)^c = A$
- **Commutativity:** $A \cup B = B \cup A$, $A \cap B = B \cap A$
- ▶ Associativity: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
- **▶ Distributive:** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **▶ Idempotency:** $A \cup A = A$, $A \cap A = A$
- ▶ **Absorption:** $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- ▶ **Identity:** $A \cup \phi = A$, $A \cap U = A$
- ▶ **De-Morgan's Law:** $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$
- **Law of Contradiction:** $A \cap A^c = \phi$
- ▶ Law of Excluded Middle: $A \cup A^c = U$

Example

Let $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{1, 3\}$.

- ▶ Commutativity: $A \cup B = B \cup A = \{1, 2, 3\}$
- ▶ Associativity: $A \cup (B \cup C) = (A \cup B) \cup C = \{1, 2, 3\}$
- ▶ Distributive: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) = \{1, 2\}$

Types of Sets

- ► Convex Set: A set in which the line segment between any two points in the set is also within the set.
- ▶ Non-Convex Set: A set that does not satisfy the convex set condition.

Figure: Convex and Non-Convex Set

Example: Types of Sets

Example

Convex Set: A circle or a square where any line segment between two points lies within the shape.

Non-Convex Set: A shape like a crescent moon where a line segment between two points can lie outside the shape.

Cardinality

|A| = Number of elements in set A.

Example

Let $A = \{a, b, c, d\}$.

The cardinality of A is |A| = 4.

Power Set

 $ightharpoonup \mathcal{P}(A) = \text{Collection of all subsets of } A.$

Example

Let
$$A = \{a, b, c\}$$
. Then, $|\mathcal{P}(A)| = 2^{|A|} = 8$.

$$\mathcal{P}(A) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

Crisp Set Theory(Continued...)

Crisp Relations

- Crisp relation is defined over the Cartesian product of two crisp sets.
- ▶ Suppose A and B are two crisp sets. The Cartesian product, denoted as $A \times B$, is a collection of ordered pairs such that:

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

Definition of Crisp Relation

- ▶ Crisp relation is a set of ordered pairs (a, b) from Cartesian product $A \times B$ such that $a \in A$ and $b \in B$.
- ► Relations represent the mapping of sets and define the interaction or association of variables.
- The strength of the relationship between ordered pairs of elements in each universe is measured by the characteristic function χ .

Properties of Cartesian Product

- ightharpoonup A imes B
 eq B imes A
- $|A \times B| = |A| \times |B|$
- ▶ $A \times B$ provides a mapping from $a \in A$ to $b \in B$

Applications of Crisp Relations

▶ Useful in logic, pattern recognition, control systems, classification, etc.

Characteristic Function

$$\chi_R(a,b) = \begin{cases} 1 & \text{if } (a,b) \in (A \times B) \\ 0 & \text{if } (a,b) \notin (A \times B) \end{cases}$$

Example: Crisp Relation

Example

Consider two crisp sets: $C = \{1, 2, 3\}$ and $D = \{4, 5, 6\}$.

- ▶ Find Cartesian product $C \times D$.
- ► Find relation R over this Cartesian product such that $R = \{(c, d) \mid d = c + 2, (c, d) \in C \times D\}.$

Solution: Cartesian Product

$$C \times D = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$

$$R = \{(2,4), (3,5)\}$$

Representations of Crisp Relations

- ► Functional Form
- ► Sagittal (Pictorial) Representation
- ► Matrix Representation

Example: Representations

▶ Let
$$A = \{1, 2, 3\}$$
, $B = \{4, 5, 6\}$, $R = \{(2, 4), (3, 5)\}$.

Sagittal Representation

Figure: Sagittal Representation of Relation

Matrix Representation

$$R = \begin{bmatrix} 4 & 5 & 6 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Figure: Matrix Representation of Relation

Special Types of Relations

- ▶ Null Relation: No mapping of elements from universe *X* to universe *Y*.
- Complete Relation: All elements of universe X are mapped to universe Y.
- ▶ Universal Relations: The universal relation on A is defined as $U_A = A \times A = A^2$.
- ▶ Identity Relations: The identity relation on *A* is defined as $I_A = \{(a, a) \mid \forall a \in A\}$.

Example: Special Relations

- ightharpoonup Let $A = \{0, 1, 2\}$.
- ► Universal Relation: $U_A = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}.$
- Identity Relation: $I_A = \{(0,0), (1,1), (2,2)\}.$

Operations on Crisp Relations

- Suppose R(x, y) and S(x, y) are two relations defined over two crisp sets, where $x \in A$ and $y \in B$.
- Operations include Union, Intersection, Complement, and Containment.

$$R = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

Relation R

$$S = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 0 & 1 \end{bmatrix}$$

Relation S

Union of Crisp Relations

$$R \cup S = \chi_{R \cup S}(x, y) = \max(\chi_R(x, y), \chi_S(x, y))$$

$$R \cup S = egin{bmatrix} 1 & 1 & 0 \ 1 & 1 & 1 \ 0 & 1 & 1 \end{bmatrix}$$

Figure: Union of Crisp Relations

Intersection of Crisp Relations

$$R \cap S = \chi_{R \cap S}(x, y) = \min(\chi_R(x, y), \chi_S(x, y))$$

$$R \cap S = egin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$

Figure: Intersection of Crisp Relations

Complement of Crisp Relation

$$R^c = \chi_{R^c}(x,y) = 1 - \chi_R(x,y)$$
 $R^c = egin{bmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 1 \end{bmatrix}$

Figure: Complement of Crisp Relation

Containment of Crisp Relations

$$R \subseteq S = \chi_{R \subseteq S}(x, y) = \chi_{R}(x, y) \le \chi_{S}(x, y)$$

$$T = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Figure: Containment of Crisp Relations

- Relation R is not contained within relation S.
- ▶ Consider the relation T where $\chi_R(x, y) \leq \chi_T(x, y)$.
- Hence, R is contained within T.

Cardinality of Crisp Set

- ► Cardinality defines the number of elements in the given set.
- ▶ Let *A* and *B* be crisp sets with cardinality *n* and *m*, respectively.
- ▶ The cardinality of a crisp relation defined over Cartesian product $A \times B$ will be $n \times m$.

Example: Cardinality

Example

Let $A = \{1, 2\}$ and $B = \{3, 4, 5\}$.

- ► n = |A| = 2
- | m = |B| = 3
- ightharpoonup So, $n \times m = 6$

The Cartesian product:

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

Cardinality of Cartesian product is $|A \times B| = 6 = n \times m$.

Composition of Crisp Relation

- ▶ The composition of relation R and S is denoted as $R \circ S$.
- $R \circ S = \{(x,z) \mid (x,y) \in R, \text{ and } (y,z) \in S, \forall y \in Y\}$
- The composition of the relation is computed in two ways:
 - Max-min composition
 - Max–product composition
- ► For crisp relations, both methods yield identical results. For fuzzy relations, they give different results.

Max-Min Composition for Crisp Relations

- ► Max-Min composition is one way of computing the interaction between variables of different relations.
- ▶ The composition of relation R and S is denoted as $R \circ S$.
- Mathematically, it is defined as:

$$R \circ S = \{(x, z) \mid (x, y) \in R, \text{ and } (y, z) \in S, \forall y \in Y\}$$

Methods of Composition

- ► Max-min composition
- ► Max-product composition
- For crisp relations, both methods yield identical results.
- ► For fuzzy relations, the results of max-min composition and max-product composition would be different.

Example 1: Max-Min Composition

- ▶ Let $R = \{(x_1, y_1), (x_1, y_3), (x_2, y_4)\}$ and $S = \{(y_1, z_2), (y_3, z_2)\}$.
- Find the Max-Min composition of these relations.

$$R = \begin{array}{cccc} y_1 & y_2 & y_3 & y_4 \\ x_1 & \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} & S = \begin{array}{c} y_1 & \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \\ y_4 & \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Composition Matrix $T = R \circ S$

T	z_1	z_2
x_1	0	1
<i>x</i> ₂	0	0
<i>X</i> 3	0	0

Calculation of T

$$\chi_{T}(x_{1},z_{1}) = \max(\min(\chi_{R}(x_{1},y_{1}),\chi_{S}(y_{1},z_{1})),$$

$$\min(\chi_{R}(x_{1},y_{3}),\chi_{S}(y_{3},z_{1})),\min(\chi_{R}(x_{1},y_{4}),\chi_{S}(y_{4},z_{1})))$$

$$\chi_{T}(x_{1},z_{1}) = \max(\min(1,0),\min(1,0),\min(0,0)) = \max(0,0,0) = 0$$

$$\chi_{T}(x_{1},z_{2}) = \max(\min(1,1),\min(1,1),\min(0,0)) = \max(1,1,0) = 1$$

$$\chi_{T}(x_{2},z_{1}) = \max(\min(0,0),\min(0,0),\min(1,0)) = \max(0,0,0) = 0$$

$$\chi_{T}(x_{2},z_{2}) = \max(\min(0,1),\min(0,1),\min(1,0)) = \max(0,0,0) = 0$$

$$\chi_{T}(x_{3},z_{1}) = \max(\min(0,0),\min(0,0),\min(0,0)) = \max(0,0,0) = 0$$

$$\chi_{T}(x_{3},z_{2}) = \max(\min(0,1),\min(0,1),\min(0,0)) = \max(0,0,0) = 0$$

Example 2: Max-Min Composition

Example

- Given $X = \{1, 3, 5\}$ and $Y = \{1, 3, 5\}$.
- $R = \{(x,y) \mid y = x+2\} = \{(1,3),(3,5)\}.$

Steps

Calculation of T

$$\chi_{\mathcal{T}}(1,1) = \max(\min(0,0),\min(1,0),\min(0,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(1,3) = \max(\min(0,1),\min(1,0),\min(0,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(1,5) = \max(\min(0,1),\min(1,1),\min(0,0)) = \max(0,1,0) = 1$$

$$\chi_{\mathcal{T}}(3,1) = \max(\min(0,0),\min(0,0),\min(1,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(3,3) = \max(\min(0,1),\min(0,0),\min(1,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(3,5) = \max(\min(0,1),\min(0,1),\min(1,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(5,1) = \max(\min(0,0),\min(0,0),\min(0,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(5,3) = \max(\min(0,1),\min(0,0),\min(0,0)) = \max(0,0,0) = 0$$

$$\chi_{\mathcal{T}}(5,5) = \max(\min(0,1),\min(0,0),\min(0,0)) = \max(0,0,0) = 0$$

Fuzzy Set Theory

Outline

Introduction

Fuzzy Sets

Linguistic Variables and Hedges

Operations of Fuzzy Sets

Introduction, or what is fuzzy thinking?

- Experts rely on common sense when they solve problems.
- ► How can we represent expert knowledge that uses vague and ambiguous terms in a computer?
- ► Fuzzy logic is not logic that is fuzzy, but logic that is used to describe fuzziness.
- Fuzzy logic is the theory of fuzzy sets, sets that calibrate vagueness.
- Fuzzy logic is based on the idea that all things admit of degrees.

Introduction, or what is fuzzy thinking? (cont.)

- ▶ Boolean logic uses sharp distinctions.
- ► Fuzzy logic reflects how people think.
- ► Fuzzy logic was introduced in the 1930s by Jan Lukasiewicz.
- Max Black published a paper on vagueness in 1937.
- Lotfi Zadeh published his paper "Fuzzy Sets" in 1965.

Why fuzzy?

- ▶ The term is concrete, immediate, and descriptive.
- ► Fuzzy logic is a set of mathematical principles for knowledge representation based on degrees of membership.
- ▶ Unlike two-valued Boolean logic, fuzzy logic is multi-valued.
- ▶ Fuzzy logic uses the continuum of logical values between 0 and 1.

Fuzzy Sets

- ▶ The concept of a set is fundamental to mathematics and language.
- ► The classical example in fuzzy sets is tall men.
- ► Elements of the fuzzy set "tall men" have degrees of membership based on their height.

Fuzzy Sets (cont.)

		Degree of	Membership	*
Name	Height, cm	Crisp	Fuzzy	1.0
Chris	208	1	1.00	0.8
Mark	205	1	1.00	0.6 - 0.4 -
John	198	1	0.98	0.2 -
Tom	181	1	0.82	0.0
David	179	0	0.78	150 160 170 180 190 200 21 Height, ci
Mike	172	0	0.24	Degree of Fuzzy Sets Membership
Bob	167	0	0.15	1.0
Steven	158	0	0.06	0.8-
Bill	155	0	0.01	0.6-
Peter	152	0	0.00	0.4-
	'	,	1	0.0 150 160 170 180 190 200 21 Height, cr.

Fuzzy Sets (cont.)

- ▶ The x-axis represents the universe of discourse.
- ▶ The y-axis represents the membership value of the fuzzy set.
- A fuzzy set is a set with fuzzy boundaries.
- ▶ In classical set theory, a crisp set A of X is defined by the characteristic function $f_A(x)$.
- ▶ In fuzzy theory, a fuzzy set \bar{A} of X is defined by the membership function $\mu_{\bar{A}}(x)$.
- ► This set allows a continuum of possible choices.

Linguistic Variables and Hedges

- At the root of fuzzy set theory lies the idea of linguistic variables.
- ► A linguistic variable is a fuzzy variable.
- In fuzzy expert systems, linguistic variables are used in fuzzy rules.
- ➤ The range of possible values of a linguistic variable represents the universe of discourse.
- A linguistic variable carries the concept of fuzzy set qualifiers, called hedges.
- Hedges are terms that modify the shape of fuzzy sets.

Fuzzy Sets with the Hedge very

Hedge	Mathematical Expression	Graphical Representation	
A little	$[\mu_A(x)]^{1.3}$		
Slightly	$\left[\mu_A(x)\right]^{1.7}$		
Very	$\left[\mu_{\mathcal{A}}(x)\right]^2$		
Extremely	$[\mu_A(x)]^3$		

Operations of Fuzzy Sets

- ▶ The classical set theory describes interactions between crisp sets, called operations.
- Fuzzy sets include intersection, union, complement, and containment operations.
- **Complement** of a fuzzy set \bar{A} is given by $\mu_{\bar{A}^C}(x) = 1 \mu_{\bar{A}}(x)$.
- \blacktriangleright Example: If $\mu_{\bar{A}}(x)=0.7$, then $\mu_{\bar{A}^C}(x)=0.3$.
- ► Containment: Elements of a fuzzy subset have smaller memberships than in the larger set.
- \blacktriangleright Example: If $\mu_{\bar{B}}(x)=0.4$ and $\mu_{\bar{A}}(x)=0.7, \bar{B}$ is a subset of \bar{A} .

Operations of Fuzzy Sets (cont.)

- ▶ **Intersection**: The fuzzy intersection of two fuzzy sets \bar{A} and \bar{B} on X is given by $\mu_{A \cap B}(x) = min[A(x), B(x)].$
- ► Example: If_A(x) = 0.6 and $_B(x) = 0.8$, then $\mu_{A \cap B}(x) = 0.6$.
- ▶ **Union**: The fuzzy operation for forming the union of two fuzzy sets A and B on X is given by $\mu_{A \sqcup B}(x) = \max[A(x), B(x)]$.
- ► Example: If_A(x) = 0.5 and _B(x) = 0.3, then $\mu_{A \cup B}(x) = 0.5$.

Operations of Fuzzy Sets (cont.)

$$\bar{A} = \{(x_1, 0.2), (x_2, 0.7), (x_3, 1), (x_4, 0)\}$$

$$\bar{B} = \{(x_1, 0.5), (x_2, 0.3), (x_3, 1), (x_4, 0.1)\}$$

Disjunctive Sum (Ex-OR) Simple

$$ar{A}\oplus ar{B}=(ar{A}\cap ar{B}^c)\cup (ar{A}^c\cap ar{B})$$

Example:

$$\bar{A} \oplus \bar{B} = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0), (x_4, 0.1)\}$$

Disjoint Sum (Ex-OR)

$$\bar{A}\Delta\bar{B}, \quad \mu_{A\Delta B}(x) = |\mu_A(x) - \mu_B(x)|$$

Example:

$$\bar{A}\Delta \bar{B} = \{(x_1, 0.3), (x_2, 0.4), (x_3, 0), (x_4, 0.1)\}$$

Simple Difference

$$A - B = A \cap B^c = \min(\mu_A(x), 1 - \mu_B(x))$$

Example:

Simple Difference

$$A - B = A \cap B^c = \min(\mu_A(x), 1 - \mu_B(x))$$

Example:

$$\mu_{A-B}(x) = \{(x_1, 0.3), (x_2, 0.4), (x_3, 0), (x_4, 0.1)\}$$

Bounded Difference

$$\mu_{A\ominus B}(x) = \max[0, \mu_A(x) - \mu_B(x)]$$

Example:

$$\mu_{A \ominus B}(x_1) = \max(0, 0.2 - 0.5) = 0$$

m-th Power of a Fuzzy Set

$$\mu_A^m(x) = [\mu_A(x)]^m$$

Example:

• If $\mu_A(x) = 0.6$ and m = 2: $\mu_A^2(x) = 0.36$

Distances in Fuzzy Sets

Hamming Distance

$$d(\bar{A},\bar{B}) = \sum_{i=1}^{n} |\mu_{\bar{A}}(x_i) - \mu_{\bar{B}}(x_i)|$$

Example:

$$d(\bar{A}, \bar{B}) = |0.2 - 0.5| + |0.7 - 0.3| + |1 - 1| + |0 - 0.1| = 0.8$$

Relative Hamming Distance

$$\delta(ar{A},ar{B})=rac{d(ar{A},ar{B})}{|X|}$$

Example:

• If
$$|X| = 4$$
: $\delta(\bar{A}, \bar{B}) = \frac{0.8}{4} = 0.2$

Euclidean Distance

$$e(\bar{A},\bar{B}) = \sqrt{\sum_{i=1}^{n} (\mu_{\bar{A}}(x_i) - \mu_{\bar{B}}(x_i))^2}$$

Example:

•
$$e(\bar{A}, \bar{B}) = \sqrt{(0.2 - 0.5)^2 + (0.7 - 0.3)^2 + (1 - 1)^2 + (0 - 0.1)^2} = \sqrt{0.09 + 0.16 + 0 + 0.01} = 0.5$$

Minkowski Distance

$$d_w(\bar{A}, \bar{B}) = \left(\sum_{i=1}^n |\mu_{\bar{A}}(x_i) - \mu_{\bar{B}}(x_i)|^w\right)^{1/w}$$

Example:

For w = 3: $d_3(\bar{A}, \bar{B}) = ((-0.3)^3 + 0.4^3 + 0^3 + (-0.1)^3)^{1/3} \approx 0.330$

Fuzzy Relations

Cartesian Product Let $\bar{A}_1, \bar{A}_2, \ldots, \bar{A}_n$ be fuzzy sets in the universes X_1, X_2, \ldots, X_n . The **Cartesian product** $\bar{A}_1 \times \bar{A}_2 \times \ldots \times \bar{A}_n$ is a fuzzy set in the product space $X_1 \times X_2 \times \ldots \times X_n$ and its membership function is given by:

$$\mu_{\bar{A}_1 \times \bar{A}_2 \times \ldots \times \bar{A}_n}(x_1, x_2, \ldots, x_n) = \min\{\mu_{\bar{A}_1}(x_1), \mu_{\bar{A}_2}(x_2), \ldots, \mu_{\bar{A}_n}(x_n)\}$$

Example:

Let $\bar{A}_1 = \{(x_1, 0.5), (x_2, 0.7)\}$ and $\bar{A}_2 = \{(y_1, 0.8), (y_2, 0.6)\}$.

The Cartesian product $\bar{A}_1 \times \bar{A}_2$ will have the membership function values:

$$\mu_{\bar{A}_1 \times \bar{A}_2}(x_i, y_j) = \min(\mu_{\bar{A}_1}(x_i), \mu_{\bar{A}_2}(y_j))$$

Computed as:

$$\mathbf{M} = \begin{bmatrix} \mu_{\bar{A}_1 \times \bar{A}_2}(x_1, y_1) & \mu_{\bar{A}_1 \times \bar{A}_2}(x_1, y_2) \\ \mu_{\bar{A}_1 \times \bar{A}_2}(x_2, y_1) & \mu_{\bar{A}_1 \times \bar{A}_2}(x_2, y_2) \end{bmatrix} = \begin{bmatrix} \min(0.5, 0.8) & \min(0.5, 0.6) \\ \min(0.7, 0.8) & \min(0.7, 0.6) \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \\ 0.7 & 0.6 \end{bmatrix}$$

Thus, the Cartesian product $\bar{A}_1 \times \bar{A}_2$ is:

$$\mathbf{M} = \begin{bmatrix} 0.5 & 0.5 \\ 0.7 & 0.6 \end{bmatrix}$$

Fuzzy Relation

$$\bar{R}: X \times Y \rightarrow [0,1]$$

$$\mu_R(x,y) = \min\{\mu_A(x), \mu_B(y)\}$$

Example: Let:

$$\bar{A} = \{(x_1, 0.2), (x_2, 0.5), (x_3, 1.0)\}$$

 $\bar{B} = \{(y_1, 0.7), (y_2, 0.4)\}$

The fuzzy relation $\bar{R} = \bar{A} \times \bar{B}$ will have the membership values:

$$\mathbf{R} = \begin{bmatrix} \mu_{\bar{R}}(x_1, y_1) & \mu_{\bar{R}}(x_1, y_2) \\ \mu_{\bar{R}}(x_2, y_1) & \mu_{\bar{R}}(x_2, y_2) \\ \mu_{\bar{R}}(x_3, y_1) & \mu_{\bar{R}}(x_3, y_2) \end{bmatrix} = \begin{bmatrix} \min(0.2, 0.7) & \min(0.2, 0.4) \\ \min(0.5, 0.7) & \min(0.5, 0.4) \\ \min(1.0, 0.7) & \min(1.0, 0.4) \end{bmatrix}$$

Calculating the values:

$$\mathbf{R} = \begin{bmatrix} 0.2 & 0.2 \\ 0.5 & 0.4 \\ 0.7 & 0.4 \end{bmatrix}$$

Thus, the fuzzy relation $\bar{R} = \bar{A} \times \bar{B}$ is:

$$\mathbf{R} = \begin{bmatrix} 0.2 & 0.2 \\ 0.5 & 0.4 \\ 0.7 & 0.4 \end{bmatrix}$$

Operations on Fuzzy Relations

Intersection

$$\mu_{R\cap S}(x,y) = \min\{\mu_R(x,y), \mu_S(x,y)\}$$

Union

$$\mu_{R \cup S}(x, y) = \max\{\mu_R(x, y), \mu_S(x, y)\}$$

Complement

$$\mu_{R^c}(x,y) = 1 - \mu_R(x,y)$$

Projections:

- ► First Projection: $R^{(1)} = \{x, \max_y \mu_R(x, y)\}$
- ▶ Second Projection: $R^{(2)} = \{y, \max_x \mu_R(x, y)\}$
- ▶ Total Projection: $R^{(T)} = \max_{x,y} \mu_R(x,y)$

Example:

$$R = \begin{bmatrix} 0.1 & 0.2 & 0.4 \\ 0.2 & 0.8 & 0.6 \end{bmatrix}, \quad S = \begin{bmatrix} 0.3 & 0.5 & 0.7 \\ 0.2 & 0.4 & 0.9 \end{bmatrix}$$
$$R \cap S = \begin{bmatrix} 0.1 & 0.2 & 0.4 \\ 0.2 & 0.4 & 0.6 \end{bmatrix}$$

Composition of Fuzzy Relations

Max-Min Composition

$$R \circ S = \{(x, z), \max_{y} \min(\mu_{R}(x, y), \mu_{S}(y, z))\}$$

Example:

Given:

$$R = \begin{bmatrix} 0.2 & 0.6 \\ 0.4 & 0.8 \end{bmatrix}, \quad S = \begin{bmatrix} 0.3 & 0.7 \\ 0.5 & 0.9 \end{bmatrix}$$

$$R \circ S = \begin{bmatrix} \max(\min(0.2, 0.3), \min(0.6, 0.5)) & \max(\min(0.2, 0.7), \min(0.6, 0.9)) \\ \max(\min(0.4, 0.3), \min(0.8, 0.5)) & \max(\min(0.4, 0.7), \min(0.8, 0.9)) \end{bmatrix}$$

Max-Product Composition

$$R \circ S = \{(x, z), \max_{y} (\mu_{R}(x, y) \cdot \mu_{S}(y, z))\}$$

Example:

Using the same matrices R and S:

$$R \circ S = \begin{bmatrix} \max(0.2 \cdot 0.3, 0.6 \cdot 0.5) & \max(0.2 \cdot 0.7, 0.6 \cdot 0.9) \\ \max(0.4 \cdot 0.3, 0.8 \cdot 0.5) & \max(0.4 \cdot 0.7, 0.8 \cdot 0.9) \end{bmatrix}$$

Membership Functions (MFs)

Triangular MF

$$triangle(x; a, b, c) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x \le b \\ \frac{c-x}{c-b}, & b \le x \le c \\ 0, & x \ge c \end{cases}$$

The triangular MF using the min-max formula:

triangle(x; a, b, c) = max
$$\left(\min\left(\frac{x-a}{b-a}, \frac{c-x}{c-b}\right), 0\right)$$

Trapezoidal MF

$$\mathsf{trapezoid}(x; a, b, c, d) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & b \le x \le c \\ \frac{d-x}{d-c}, & c \le x \le d \\ 0, & x \ge d \end{cases}$$

The trapezoidal MF using the min-max formula:

$$\mathsf{trapezoid}(x; a, b, c, d) = \mathsf{max}\left(\mathsf{min}\left(\frac{\mathsf{x} - \mathsf{a}}{\mathsf{b} - \mathsf{a}}, 1, \frac{\mathsf{d} - \mathsf{x}}{\mathsf{d} - \mathsf{c}}\right), 0\right)$$

Gaussian MF

gaussian(x; c,
$$\sigma$$
) = $e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$

A **Generalized Bell MF**(also known as the Cauchy MF) is specified by three parameters (a, b, c):

$$bell(x; a, b, c) = \frac{1}{1 + \left|\frac{x-c}{a}\right|^{2b}}$$

Visualization:

A sigmoidal MF is defined by:

$$sig(x; a, c) = \frac{1}{1 + exp[-a(x-c)]}$$

Visualization:

Fuzzy Propositions

Fuzzy propositions involve logical connectives and are defined using truth values. Here are some basic fuzzy propositions:

S. No.	Symbol	Connective	Usage	Definition
1		NOT	$\neg P$	1-T(P)
2	V	OR	$P \lor Q$	$\max(T(P), T(Q))$
3	\wedge	AND	$P \wedge Q$	$\min(T(P), T(Q))$
4	\rightarrow	Implication	P o Q	$\max(1-T(P),T(Q))$
5	=	Equality	P = Q	1- T(P)-T(Q)

Examples:

Given fuzzy sets $A = \{0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1\}$ and $B = \{0, 0.5, 1.0, 0, 0.5, 1.0, 0, 0.5, 1.0\}$, compute:

- ¬A
- \triangleright $A \land B$
- \triangleright $A \lor B$
- \triangleright $A \rightarrow B$

Given fuzzy propositions: - P= "Max is fast" with truth value T(P)=0.8 - Q= "Daniel is fast" with truth value T(Q)=0.6 Compute:

► (a) Max is not fast:

$$T(\neg P) = 1 - T(P) = 1 - 0.8 = 0.2$$

▶ (b) Max is fast and so is Daniel:

$$T(P \land Q) = \min(T(P), T(Q)) = \min(0.8, 0.6) = 0.6$$

► (c) Either Max is fast or Daniel is:

$$T(P \lor Q) = \max(T(P), T(Q)) = \max(0.8, 0.6) = 0.8$$

▶ (d) If Max is fast, then so is Daniel:

$$T(P \to Q) = \max(1 - T(P), T(Q)) = \max(1 - 0.8, 0.6) = 0.6$$

Fuzzy Implications

A fuzzy implication is a rule in the form: "If x is A, then y is B ($A \rightarrow B$)". Here, A and B are linguistic variables on universes X and Y, respectively. Two main interpretations:

1. A coupled with B:

$$R: \bar{A} \to \bar{B} = \bar{A} \times \bar{B} = \int_{X \times Y} [\mu_{\bar{A}}(x) \star \mu_{\bar{B}}(y)] (x, y)$$

T-norm operators like Algebraic Product: $T(ab) = a \cdot b$ and Minimum: $T(ab) = \min(a, b)$

2. A entails B:

- ▶ Material implication: $R: \bar{A} \rightarrow \bar{B} = \bar{A}^c \cup \bar{B}$
- ▶ Propositional calculus: $R: \bar{A} \to \bar{B} = \bar{A}^c \cup (\bar{A} \cap \bar{B})$
- ▶ Extended propositional calculus: $R : \bar{A} \to \bar{B} = (\bar{A} \cap \bar{B}) \cup \bar{B}$

Implication Functions:

1. Zadeh's arithmetic rule:

$$R_{za} = \bar{A}^c \cup \bar{B} = \int_{X \times Y} \left[1 \wedge \left(1 - \mu_{\bar{A}}(x) + \mu_{\bar{B}}(y) \right) \right] (x, y)$$

Or, more compactly:

$$f_{za}(a,b)=1\wedge (1-a+b)$$

2. Zadeh's max-min rule:

$$oxed{R_{\mathsf{mm}} = ar{A}^c \cup (ar{A} \cap ar{B}) = \int_{\mathcal{X} imes \mathcal{Y}} (1 - \mu_{ar{A}}(x)) ee \mu_{ar{B}}(y) \, (x,y)}$$

Or, more compactly:

$$f_{zmm}(a,b) = (1-a) \lor (a \land b)$$

3. Boolean fuzzy rule:

$$R_{\mathsf{bf}} = ((1-a) \lor b)$$

Example: Zadeh's Max-Min Rule

Given fuzzy sets:

$$X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}, \bar{A} = \{0, 0.8, 0.6, 0.1\}, \bar{B} = \{0.2, 1.0, 0.8, 0\}$$
$$\boxed{R_{mm} = (\bar{A} \times \bar{B}) \cup (\bar{A}^c \times I)}$$

Step-by-Step Solution:

1. Compute the Complement of \bar{A} :

$$\bar{A}^c = \{1 - 0, 1 - 0.8, 1 - 0.6, 1 - 0.1\} = \{1, 0.2, 0.4, 0.9\}$$

2. Compute $(\bar{A} \times \bar{B})$ using min operation:

$$\bar{A} \times \bar{B} = \begin{bmatrix} \min(0,0.2) & \min(0,1.0) & \min(0,0.8) & \min(0,0) \\ \min(0.8,0.2) & \min(0.8,1.0) & \min(0.8,0.8) & \min(0.8,0) \\ \min(0.6,0.2) & \min(0.6,1.0) & \min(0.6,0.8) & \min(0.6,0) \\ \min(0.1,0.2) & \min(0.1,1.0) & \min(0.1,0.8) & \min(0.1,0.8) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.2 & 0.8 & 0.8 & 0 \\ 0.2 & 0.6 & 0.6 & 0 \\ 0.1 & 0.1 & 0.1 & 0 \end{bmatrix}$$

3. Compute $(\bar{A}^c \times I)$ using min operation:

$$\begin{split} \bar{A}^c \times I &= \begin{bmatrix} \min(1,1) & \min(1,1) & \min(1,1) & \min(1,1) \\ \min(0.2,1) & \min(0.2,1) & \min(0.2,1) & \min(0.2,1) \\ \min(0.4,1) & \min(0.4,1) & \min(0.4,1) & \min(0.4,1) \\ \min(0.9,1) & \min(0.9,1) & \min(0.9,1) & \min(0.9,1) \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0.2 & 0.2 & 0.2 & 0.2 \\ 0.4 & 0.4 & 0.4 & 0.4 \\ 0.9 & 0.9 & 0.9 & 0.9 \end{bmatrix} \end{split}$$

4. Combine Using Union (∪):

$$\begin{split} R_{mm} &= \max \left(\bar{A} \times \bar{B}, \bar{A}^c \times I \right) = \begin{bmatrix} \max(0,1) & \max(0,1) & \max(0,1) & \max(0,1) \\ \max(0.2,0.2) & \max(0.8,0.2) & \max(0.8,0.2) & \max(0.8,0.2) \\ \max(0.2,0.4) & \max(0.6,0.4) & \max(0.6,0.4) \\ \max(0.1,0.9) & \max(0.1,0.9) & \max(0.1,0.9) \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0.2 & 0.8 & 0.8 & 0.2 \\ 0.4 & 0.6 & 0.6 & 0.4 \\ 0.9 & 0.9 & 0.9 & 0.9 \end{bmatrix} \end{split}$$

Fuzzy Inferences / Fuzzy Reasoning

Fuzzy inferences or reasoning involves obtaining new knowledge through existing rules. Two main processes:

1. Generalized Modus Ponens (GMP)

Rule (p): If x is \bar{A}_R then y is \bar{B}_R

Fact (q): If x is \bar{A}_f

Conclusion: Then y is \bar{B}_c

$$\bar{B}_c = \bar{A}_f \circ R_{\mathsf{mm}}$$

$$\mu_{\bar{B}_c}(y) = \max_{x \in X} \left(\min(\mu_{\bar{A}_f}(x), \mu_{R_{\text{mm}}}(x, y)) \right)$$

Example:

- ▶ Let $\bar{A}_R = \{0.2, 0.5, 1.0\}, \bar{B}_R = \{0.7, 0.9, 0.4\}, \bar{A}_f = \{0.5, 0.8, 0.3\}$
- ightharpoonup Compute $\bar{B}_c = \bar{A}_f \circ R_{\mathsf{mm}}$

2. Generalized Modus Tollens (GMT)

Rule: If x is \bar{A}_R then y is \bar{B}_R

Fact: If y is \bar{B}_f

Conclusion: Then x is \bar{A}_c

$$\bar{A}_c = \bar{B}_f \circ R_{\mathsf{mm}}$$

$$\mu_{\bar{\mathcal{A}}_c}(x) = \max_{y \in Y} \left(\min(\mu_{\bar{B}_f}(y), \mu_{R_{mm}}(x, y)) \right)$$

Example:

- Let $\bar{B}_R = \{0.7, 0.9, 0.4\}, \bar{A}_R = \{0.2, 0.5, 1.0\}, \bar{B}_f = \{0.6, 0.8, 0.2\}$
- ► Compute $\bar{A}_c = \bar{B}_f \circ R_{\sf mm}$

Defuzzification Techniques

1. Lambda-cut Method (Alpha-cut method)

The lambda-cut method, also known as the alpha-cut method, is defined by:

$$\bar{A}_{\lambda} = \{x \mid \mu_{\bar{A}}(x) \ge \lambda\}, \quad \forall \lambda \in (0 \le \lambda \le 1)$$

Example 1:

For $\lambda = 0.6$:

$$\bar{A}_{0.6} = \{(x_1, 1), (x_2, 0), (x_3, 0), (x_4, 0)\}$$

For $\lambda = 0.2$:

$$\bar{A}_{0.2} = \{(x_1, 0.1), (x_2, 0.5), (x_3, 0.7), (x_4, 1)\}$$

2. Maxima Method

1. Height Method:

$$\mu_c(x^*) \ge \mu_c(x) \quad \forall x \in X$$

- x^* is the height of the output fuzzy set \bar{C} . This method is applicable when height is unique.
- 2. First of Maxima (FoM):

$$x^* = \min\{x | \bar{c}(x) = \max(\bar{c}(x))\}$$

3. Last of Maxima (LoM):

$$x^* = \max\{x|\bar{c}(x) = \max(\bar{c}(x))\}\$$

4. Mean of Maxima (MoM):

$$x^* = \frac{\sum_{x \in M} (x_i)}{|M|}$$

where $M = \{x | \mu_{\bar{c}}(x_i) = h(\bar{c})\}$

3. Centroid Method (COG)

The centroid method calculates the "center of gravity" of the fuzzy set:

$$x^* = \frac{\sum_{i=1}^{n} x_i A_i}{\sum_{i=1}^{n} A_i}$$

where A_i denotes the area of region x_i and is the geometric center of the area A_i .

4. Weighted Average Method

$$x^* = \frac{\sum_i \mu_C(x_i) \cdot (x_i)}{\sum_i \mu_C(x_i)}$$

- Where x_i is the value where the middle of the fuzzy set C_i is observed.

Fuzzy Inference Process: Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The mapping then provides a basis from which decisions can be made, or patterns discerned. Major steps are as follows:

- 1. **Fuzzification of the input variables**: The first step is to take the inputs and determine the degree to which they belong to each of the appropriate fuzzy sets via membership functions (fuzzification).
- Application of fuzzy operators (AND, OR) in the antecedent: After the inputs are fuzzified, it is known how each part of the antecedent is satisfied for each rule. If the antecedent of a rule has more than one part, the fuzzy operator is applied to obtain one number representing the result of the rule antecedent.
- 3. **Implication from the antecedent to the consequent**: A consequent is a fuzzy set represented by a membership function, which weights appropriately the linguistic characteristics attributed to it.
- 4. **Aggregation of the consequent across the rule**: Aggregation is the process by which the fuzzy sets that represent the outputs of each rule are combined into a single fuzzy set. Aggregation only occurs once for each output variable, which is before the final defuzzification step.
- 5. **Defuzzification**: The input for the defuzzification process is the aggregate output fuzzy set and the output is a single number. As much as fuzziness helps the rule evaluation during the intermediate steps, the final desired output for each variable is generally a single number.

Figure: FIS System

1. Mamdani Controllers

- Mamdani fuzzy inference was first introduced as a method to create a control system by synthesizing a set of linguistic control rules obtained from experienced human operators.
- In a Mamdani system, the output of each rule is a fuzzy set.

Example: Two-input, one-output, three-rule tipping problem

- ▶ R1: If the service is poor or the food is rancid, then the tip is cheap.
- **R2**: If the service is good, then the tip is average.
- ▶ R3: If the service is excellent or the food is delicious, then the tip is generous.

2. Sugeno Fuzzy Inference Systems

- ➤ Sugeno fuzzy inference, also referred to as Takagi-Sugeno-Kang fuzzy inference, uses singleton output membership functions that are either constant or a linear function of the input values.
- ► The defuzzification process for a Sugeno system is more computationally efficient compared to that of a Mamdani system since it uses a weighted average or weighted sum of a few data points rather than compute a centroid of a two-dimensional area.
- Each rule generates two values w_i and z_i . The output of each rule is the weighted output level, which is the product of w_i and z_i .

Example

Fuzzy Inference Systems (FIS)

FIS Types:

1. Mamdani System:

- Intuitive.
- Well-suited to human input.
- More interpretable rule base.
- Widespread acceptance.

2. Sugeno System:

- Computationally efficient.
- ▶ Works well with linear techniques (e.g., PID control).
- Works well with optimization and adaptive techniques.
- Guarantees output surface continuity.
- Well-suited to mathematical analysis.