Advanced Econometrics: 2SLS and Instrumental Variables Prepared by

Aditya Korekallu Srinivasa

Scientist (Senior Scale)

ICAR-Indian Agricultural Research Institute New Delhi

Contents

1	Introduction: Why Instrumental Variables?	2			
	1.1 The Problem of Endogeneity	2			
	1.2 Instrumental Variables (IV): The Solution	2			
2	2 What is an Instrumental Variable?	2			
_	2.1 Formal Definition				
	2.2 Intuitive Example				
3	Two-Stage Least Squares (2SLS): Theory and Derivation 3				
	3.1 The Basic Model	3			
	3.2 2SLS Procedure (Step-by-Step)				
	3.3 Matrix Formulation	3			
	3.4 Properties of 2SLS				
4	- · · · · · · · · · · · · · · · · · · ·	3			
	4.1 Instrument Relevance				
	4.2 Instrument Exogeneity				
	4.3 Overidentification	4			
5	<u>.</u>	4			
	5.1 Why IV for Impact Evaluation?	4			
	5.2 Example: Training Program for Farmers				
	5.3 Interpretation	4			
6	6 Testing Instrument Validity and Strength	4			
	6.1 Tests for Weak Instruments	4			
	6.2 Overidentification Tests				
	6.3 Testing for Endogeneity				
	6.4 Testing Instrument Exogeneity				
7	Practical Examples from Agricultural Economics	5			
•	7.1 Example 1: Impact of Microcredit on Farm Productivity				
	7.2 Example 2: Fertilizer Use and Crop Yield				
	7.3 Example 3: Extension Services and Technology Adoption				
	7.4 Example 4: Irrigation and Farm Income				
8	8 Summary Table: IV and 2SLS in Practice	6			

1 Introduction: Why Instrumental Variables?

1.1 The Problem of Endogeneity

In many econometric models, an explanatory variable may be correlated with the error term. This endogeneity can arise from:

- Simultaneity (joint determination of variables)
- Omitted variable bias
- Measurement error
- Reverse causality

Consequence: OLS estimates are biased and inconsistent.

1.2 Instrumental Variables (IV): The Solution

The **instrumental variables** method provides a way to obtain consistent estimates when regressors are endogenous. An **instrument** is a variable that is:

- Relevant: Correlated with the endogenous regressor.
- Valid (Exogenous): Uncorrelated with the error term.

2 What is an Instrumental Variable?

2.1 Formal Definition

Given the model:

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

If x_i is endogenous (Cov $(x_i, u_i) \neq 0$), an instrument z_i satisfies:

- 1. Relevance: $Cov(z_i, x_i) \neq 0$
- 2. Exogeneity: $Cov(z_i, u_i) = 0$

2.2 Intuitive Example

Suppose x_i is fertilizer use, y_i is crop yield, and u_i includes unobserved soil quality. If farmers choose x_i based on soil quality, OLS is biased. Suppose z_i is a government program assignment (randomized), which affects x_i but not u_i directly. Then z_i is a valid instrument.

3 Two-Stage Least Squares (2SLS): Theory and Derivation

3.1 The Basic Model

Consider the structural equation:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$$

where x_{1i} is endogenous, x_{2i} is exogenous.

3.2 2SLS Procedure (Step-by-Step)

1. **First Stage:** Regress x_{1i} on all exogenous variables (instruments), obtain fitted values \hat{x}_{1i} .

$$x_{1i} = \pi_0 + \pi_1 x_{2i} + \pi_2 z_i + v_i$$

2. **Second Stage:** Regress y_i on \hat{x}_{1i} and x_{2i} :

$$y_i = \beta_0 + \beta_1 \hat{x}_{1i} + \beta_2 x_{2i} + \varepsilon_i$$

Result: The 2SLS estimator is consistent even if x_{1i} is endogenous.

3.3 Matrix Formulation

Let Y be $n \times 1$, X $(n \times k)$ contain both endogenous and exogenous regressors, and Z $(n \times l)$ the instruments (all exogenous variables).

$$\hat{\beta}_{2SLS} = (X_P' X_P)^{-1} X_P' Y$$

where $X_P = P_Z X$ and $P_Z = Z(Z'Z)^{-1} Z'$ is the projection matrix onto the space spanned by Z.

3.4 Properties of 2SLS

- Consistent and asymptotically normal if instruments are valid.
- In exactly identified models, 2SLS and IV are equivalent.
- In overidentified models, 2SLS uses all available instruments.

4 Conditions for Valid Instruments

4.1 Instrument Relevance

- The instrument must be strongly correlated with the endogenous regressor.
- Weak instruments (low correlation) lead to bias and large standard errors.
- Check: First-stage F-statistic should typically exceed 10.

4.2 Instrument Exogeneity

- The instrument must be uncorrelated with the error term in the structural equation.
- This is a theoretical assumption, but can be tested (see below).

4.3 Overidentification

- If the number of instruments > number of endogenous regressors, the equation is overidentified.
- Overidentification allows for tests of instrument validity (see below).

5 Instrumental Variables in Impact Assessment

5.1 Why IV for Impact Evaluation?

In program evaluation and policy analysis, treatment or exposure is often endogenous (e.g., farmers self-select into a training program). IV methods allow us to estimate causal effects when randomization is not feasible.

5.2 Example: Training Program for Farmers

Suppose y_i is yield, D_i is participation in a training program (endogenous), Z_i is random assignment (instrument).

$$y_i = \alpha + \beta D_i + \gamma X_i + u_i$$

First stage: $D_i = \pi_0 + \pi_1 Z_i + \pi_2 X_i + v_i$ Second stage: $y_i = \alpha + \beta \hat{D}_i + \gamma X_i + \varepsilon_i \beta$ is the local average treatment effect (LATE) if Z_i is a valid instrument.

5.3 Interpretation

IV estimates the causal effect for those whose treatment status is affected by the instrument (compliers).

6 Testing Instrument Validity and Strength

6.1 Tests for Weak Instruments

- First-stage F-statistic: Should be > 10 for strong instruments (Staiger and Stock, 1997).
- Partial R^2 : How much of the variation in the endogenous regressor is explained by the instruments.

6.2 Overidentification Tests

- Sargan-Hansen Test: Tests whether instruments are uncorrelated with the error term.
- **Procedure:** Estimate the model by 2SLS, regress residuals on all instruments, compute test statistic.

6.3 Testing for Endogeneity

• Hausman Test: Compares OLS and IV/2SLS estimates. Significant difference suggests endogeneity.

6.4 Testing Instrument Exogeneity

- If overidentified, use Sargan-Hansen test.
- If just-identified, exogeneity cannot be tested directly.

7 Practical Examples from Agricultural Economics

7.1 Example 1: Impact of Microcredit on Farm Productivity

Source: Diagne, A., Zeller, M. (2001). "Access to Credit and Its Impact on Welfare in Malawi." Research Report 116, IFPRI.

Endogeneity: Access to microcredit (D_i) is endogenous because more productive farmers may self-select into borrowing.

Instrument: Distance to the nearest microfinance institution (Z_i) .

How IV Solves It: Z_i affects the likelihood of borrowing but is plausibly unrelated to unobserved farmer productivity.

Details:

- First stage: $D_i = \pi_0 + \pi_1 Z_i + \pi_2 X_i + v_i$
- Second stage: $Y_i = \alpha + \beta \hat{D}_i + \gamma X_i + u_i$
- IV estimate of β gives the causal effect of microcredit access on productivity.

7.2 Example 2: Fertilizer Use and Crop Yield

Source: Sheahan, M., Barrett, C. B. (2017). "Ten striking facts about agricultural input use in Sub-Saharan Africa." *Food Policy*, 67, 12–25.

Endogeneity: Fertilizer use is endogenous (farmers with better soils may use more fertilizer).

Instrument: Village-level fertilizer price or government subsidy eligibility.

How IV Solves It: Price/subsidy is correlated with fertilizer use but plausibly exogenous to plot-level unobserved soil quality.

Details:

• First stage: Fertilizer use regressed on price/subsidy and controls.

- Second stage: Yield regressed on predicted fertilizer use.
- IV corrects for bias in OLS due to omitted soil quality.

7.3 Example 3: Extension Services and Technology Adoption

Source: Kondylis, F., Mueller, V., Zhu, J. (2017). "Seeing is believing? Evidence from an extension network experiment." *Journal of Development Economics*, 125, 1–16.

Endogeneity: Participation in extension services is endogenous (motivated farmers more likely to participate).

Instrument: Randomized invitation to extension meetings.

How IV Solves It: Random assignment is exogenous and affects participation, allowing causal estimation of extension effect on technology adoption.

Details:

- First stage: Participation regressed on invitation status and controls.
- Second stage: Adoption regressed on predicted participation.
- IV estimate captures causal impact of extension services.

7.4 Example 4: Irrigation and Farm Income

Source: Dillon, B. (2017). "Selling crops early reduces storage and fertilizer use: Evidence from a randomized controlled trial in Kenya." *Journal of Development Economics*, 126, 172–189.

Endogeneity: Access to irrigation is endogenous (richer farmers may have more access).

Instrument: Randomized allocation of irrigation pumps.

How IV Solves It: Randomization ensures exogeneity, allowing estimation of causal effect of irrigation on income.

Details:

- First stage: Irrigation access regressed on random allocation.
- Second stage: Income regressed on predicted irrigation access.
- IV estimate gives causal effect.

8 Summary Table: IV and 2SLS in Practice

Step	Purpose	Key Output	Tests
1. Choose IVs	Solve endogeneity	Instrument variables	Relevance, exogeneity
2. First stage	Predict endogenous regressor	Fitted values, F-statistic	Weak IV test
3. Second stage	Estimate structural equation	Causal effect estimate	Hausman test
4. Overid. test	Test instrument validity	Sargan-Hansen statistic	Overid. p-value

Glossary

- Instrumental Variable (IV): A variable correlated with the endogenous regressor but uncorrelated with the error.
- **2SLS**: Two-stage least squares, an estimation method using IVs.
- Endogeneity: Correlation between regressor and error term.
- Weak Instrument: Instrument only weakly correlated with endogenous regressor.
- Overidentification: More instruments than endogenous regressors.
- Sargan-Hansen Test: Test for instrument exogeneity.
- Hausman Test: Test for endogeneity.
- Local Average Treatment Effect (LATE): Causal effect for compliers in IV settings.

Practice Questions

- 1. Explain the two conditions for a valid instrument. Give an example from agriculture.
- 2. Outline the steps of 2SLS estimation and explain why each is necessary.
- 3. What are the consequences of using a weak instrument?
- 4. How can you test for instrument relevance and exogeneity?
- 5. In an impact evaluation, why might IV be preferred over OLS?
- 6. For each of the agricultural economics examples above, explain what was endogenous and how IV solved the issue.
- 7. Design an IV strategy for evaluating the impact of a fertilizer subsidy program.
- 8. Discuss the interpretation of IV estimates when treatment effects are heterogeneous.

References

- Gujarati, D. N., & Porter, D. C. (2010). Basic Econometrics (5th ed.). McGraw-Hill.
- Wooldridge, J. M. (2013). *Introductory Econometrics: A Modern Approach* (5th ed.). Cengage Learning.
- Diagne, A., & Zeller, M. (2001). "Access to Credit and Its Impact on Welfare in Malawi." IFPRI Research Report 116.
- Sheahan, M., & Barrett, C. B. (2017). "Ten striking facts about agricultural input use in Sub-Saharan Africa." Food Policy, 67, 12–25.

- Kondylis, F., Mueller, V., & Zhu, J. (2017). "Seeing is believing? Evidence from an extension network experiment." *Journal of Development Economics*, 125, 1–16.
- Dillon, B. (2017). "Selling crops early reduces storage and fertilizer use: Evidence from a randomized controlled trial in Kenya." *Journal of Development Economics*, 126, 172–189.
- Staiger, D., & Stock, J. H. (1997). "Instrumental Variables Regression with Weak Instruments." *Econometrica*, 65(3), 557–586.