UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:			
	mark available	А	В	E	
Component 2	60	48	42	27	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/02

CHEMISTRY
Paper 2 (Structured Questions)

			<i></i>
Page 1	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – JUNE 2005	9701	2

1 (a) same proton no./atomic no./no. of protons (1) different mass no./nucleon no./no. of neutrons (1) [2]

(b)

	number of		
isotope	protons	neutrons	electrons
⁵⁶ Fe	26	30	26
⁵⁹ Co	27	32	27
	(1)	(1)	(1)

give one mark for each correct column allow (1) if no column is correct but one row is correct

[3]

(c) (i) weighted mean/average mass

of an <u>atom</u> (not element)

compared with ¹²C

one atom of ¹²C has a mass of exactly 12

[relative to ¹/₁₂th the mass of a ¹²C atom would get 2]

(1)

<u>or</u>

(ii)
$$A_r = \underline{54 \times 5.84 + 56 \times 91.68 + 57 \times 2.17}$$
 (1)

$$= \frac{5573.13}{100} = 55.7 \text{ to } 3 \text{ sf}$$
 (1)

allow 55.9 if A_r is calculated using 99.69 instead of 100

[Total: 10]

[5]

[4]

2 (a) 1 S + $O_2 \rightarrow SO_2$ (1)

2
$$2SO_2 + O_2 = 2SO_3$$
 equil **(1)** equation **(1)**

3
$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (1)

Allow sequences that start with SO_2 and include $H_2S_2O_7$ before H_2SO_4 .

Equilibrium mark is <u>only</u> scored if \Rightarrow <u>only</u> appears in the SO₂/SO₃ equation.

(b) vanadium pentoxide/vanadium(V) oxide/ V_2O_5 (1) [1]

(c) (i)
$$H^{x}_{o}S_{o}^{x}H$$
 (1)

(ii) non-linear/bent/V-shaped (1)

Page 2	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – JUNE 2005	9701	2

(iii	i) H ₂ O has hydrogen bonds/H ₂ S does not <u>or</u> H ₂ S has van der Waals' forces only	(1)	
	hydrogen bonds are stronger than van der Waals' forces <u>or</u> H ₂ S has weaker intermolecular bonds than H ₂ O	(1)	[4]
(d) (i)	$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$ from -2 (1) to +4 allow e.c.f. on equation	(1) (1)	
(ii)	9 68.2g H ₂ S react with 3 x 24 dm ³ O ₂ 8.65g H ₂ S react with $\frac{3 \times 24 \times 8.65}{68.2}$ = 9.13 dm ³ 68.2 allow 9.16 dm ³ if H ₂ S = 68 is used allow e.c.f on (d)(i)	(1) (1)	[5]
	an acid that is partially dissociated into ions $H_2S(g) + H_2O(I) \rightarrow H_3O^+(aq) + HS^-(aq)$	(1)	[0]
	<u>or</u>		
	$H_2S(g) + aq \rightarrow H^{+}(aq) + HS^{-}(aq)$		
	<u>or</u>		
	$H_2S(aq) \rightarrow H^{+}(aq) + HS^{-}(aq)$ equation (1) state symbols (1)		[3]

3 (a) **A** MgSO₄

B $MgCI_2$

C MgCO₃

D MgO

E Mg(OH)₂

 $\mathsf{F} \quad \mathsf{Mg}(\mathsf{NO}_3)_2$

Accept name or formula

but penalise when name and formula do not agree

(6 x 1)

[6]

[Total: 17]

Page 3	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – JUNE 2005	9701	2

	(b) (i)	cpd C to compare to cpd F to compare to cpd F to compare to cpd F to compare to cpd C to compare to cpd F to compare to cpd C to to	$SO_4 \rightarrow MgSO_4 + H_2$ cpd D $\rightarrow MgO + CO_2$		(1)(1)(1)	[3]
	(ii)		\rightarrow MgO + H ₂ O		(1)	[1]
						[Total: 10]
4	(a) (i)	stage I	C1 ₂ /chlorine uvl/sunlight		(1) (1)	
		stage II	KCN heat in ethanol		(1) (1)	
	(ii)) stage III	Br ₂ uvl/sunlight		(1) (1)	[6]
	(b)	stage IV	H₂SO₄(aq)/HC <i>l</i> (aq) <u>or</u> NaOH(aq) followed by H⁺ heat/reflux		(1) (1)	
		stage V	NaOH(aq) heat		(1) (1)	[4]
	(c) (i)		atom in a molecule attached to ent atoms or groups of atoms		(1)	
	(ii))	Br R — C — C:N <u>or</u> H	Br/OH R — C — C = O H O — H		
		one corre both isom	od correctly displayed ct isomer shown as 3D ers shown in		(1) (1)	F 47
		mirror obj	ect/mirror image arrangement		(1)	[4]

[Total: 13 max]

Page 4	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – JUNE 2005	9701	2

5 (a) C:H:O =
$$\frac{66.7}{12}$$
: $\frac{11.1}{1}$: $\frac{22.2}{16}$

= 5.56 : 11.1 : 1.39

= 4:8:1

$$C_4H_8O = 72$$
 molecular formula = C_4H_8O (1) [2]

(ii) -OH group (in -CO₂H
$$\underline{\text{or}}$$
 -OH) present (1) [2]

(e)
$$H \subset CH_2OF$$
 $C=C \subset H$

allow (1) for correctly labelled cis-trans structures that are
$$C_4H_8O$$
 but incorrect [2]

[Total: 10]

