

Proyecto 2: Segmentación

Luna Duran – Alejandro García

Contexto sobre la problemática a tratar

Los leucocitos, también conocidos como glóbulos blancos, son células sanguíneas esenciales que protegen al cuerpo contra las enfermedades y las infecciones. La identificación y conteo preciso de los leucocitos es fundamental para el diagnóstico y el seguimiento de una amplia variedad de trastornos, incluyendo infecciones, enfermedades auto inmunitarias y cáncer

Selección del espacio que nos de más beneficios para nuestro caso de estudio

"Unificación" de un mismo leucocito con varios nucleos

Mejorar la diferencia de contraste usando *contrast stretching*

CONTRAST STRETCHING

Fuente: https://stackoverflow.com/questions/411188 08/difference-between-contrast-stretching-and-histogram-equalization

- Consiste la ampliación del rango de valores de los píxeles en una imagen para que los valores de píxeles oscuros sean más oscuros y los valores de píxeles claros sean más claros.
- Esto puede mejorar la visualización de detalles y texturas en una imagen y hacer que la imagen sea más clara y fácil de interpretar.

→ ANÁLISIS DE HISTOGRAMAS

s1 = 0 r1 = 50 r2 = 210 s2 = 255

Conteo de leucocitos 01

CONTRASTSTRETCHING

02

03

04

Conteo de leucocitos

Proyecto 2

Min-max contrast stretching:

```
def contrast equal(pix, r1, s1, r2, s2):
    if (0 <= pix and pix <= r1):
       return (s1 / r1) * pix
    elif (r1 < pix and pix <= r2):
       return ((s2 - s1) / (r2 - r1)) * (pix - r1) + s1
       return ((255 - s2) / (255 - r2)) * (pix - r2) + s2
pixelVal_vec = np.vectorize(contrast_equal)
```

Conteo de leucocitos

2023

02

03

04

01

Proyecto 2

Conteo de leucocitos

2023

Limpieza de la mascara

Operaciones

Eliminamos el ruido

→ Dilatacion

Restablecemos los objetos (apertura)

→ Erosion

Obtenemos los objetos para la segmentacion

Obtenemos la mascara con Watershed

Proceso

Fondo

Dilatamos la mascara para obtener el fondo.

Region desconocida

Restamos el fondo de los objetos.

Segmentacion

Aplicamos Watershed

Intersección sobre la Unión

Conteo de los leucocitos apartir de las mascaras.

→ Resultados

Esta foto de Autor des conocido se concede bajo licencia de CC BY-NC-ND.

Nuestra mascara

- Imagen 1: 21
- Imagen 2: 13
- Imagen 3: 20

Mascara manual

- Imagen 1: 21
- Imagen 2: 13
- Imagen 3: 23

Conclusiones

THANK YOU

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, and it includes icons by **Flaticon**, infographics & images by **Freepik**

Please keep this slide for attribution