

Anthony Lestone PHYS '25

Konstantin Nelson ENGR '25

Rachel Simms ENGR '25

INADEQUATE THERMAL CONTROL SYSTEMS RESULT IN A LACK OF PRECISION FOR SATELLITE-BASED EXPERIMENTS.

Our goal is to enable precise data collection over the duration of a CubeSat's lifespan.

REQUIREMENTS

- Maintain temperature of 4 K for the magnetometer
- Fit within a 1.5U chassis
- Power consumption below 28 W
- Measure temperature inside the apparatus and adjust accordingly
- Last the duration of the satellite's lifespan

POSSIBLE SOLUTIONS

Active Cooling System

Helium Reservoir

Blackbody Radiators

5

OUR SOLUTION

OUR SOLUTION - PASSIVE COOLING

- -\ Solar/Shield
 - limits absorbance of solar energy
- Blackbody Radiator
 - solves issue of zero exchange medium
 - transforms heat energy into infrared waves
- Gets to 150 K

ACTIVE COOLING - CRYOGENIC COOLER

- Actively move heat from the magnetometer to the radiator
- 8 W of cooling power is required
- Thermally isolated from the chassis
- Helium is used as the refrigerant

ACTIVE COOLING - TEMPERATURE REGULATION

emperadure. 247.55 K

Temperature: 252.15 K

Temperature: 247.97 K

Temperature: 250.08 K

Temperature: 248.10 K

Temperature: 250.29 K

Temperature: 249.79 K

Temperature: 251.55 K

Telephone - Telephone in the contract of the c

Temperature: 248.93 K

Temperature: 251.35 K

Temperature: 248.28 K

Temperature: 252.57 K

- Always needs to cool,
 but at different rates
- PWM input to create constant temperature
- Prototyped systemdemonstratestemperature regulation

PROOF OF CONCEPT

- Surface of CubeSat can range from 285 K (12°C) to 292 K (19°C) during orbit
- Cryocooler will consume
 7-8 W of power

PROOF OF CONCEPT

Cryocooler Power Consumption as External Temperature

COMPETITIVE EDGE

Unique Product

Only product that is constrained to 1.5U that can achieve the desired temperature level

Cross functional usage

• Can be used with various superconductor-based devices

Modularity

• Can be added to existing CubeSats as a system module to enable cooling to 4K

Growing Industry

- Half of operational satellites are common model CubeSats
- Increasing demand for higher precision data

GOING FORWARD

- Determine if a multistage cryocooler system would work more efficiently within space constraints
- Swarm of CubeSats
- Determine most optimal material for Blackbody radiation

CITATIONS

https://researchoutreach.org/articles/earths-magnetic-field-changes-through-time/

https://www.nasa.gov/smallsat-institute/sst-soa-2020/thermal-control

https://cryo.gsfc.nasa.gov/introduction/helium_space2.html

https://www.researchgate.net/profile/Carl-

Kirkconnell/publication/300791613_Microsat_cryocooler_system/links/5720187408aeaced788ad451/Microsat-cryocooler-system.pdf

https://satcatalog.s3.amazonaws.com/components/1136/SatCatalog_-_Blue_Canyon_Technologies_-_XB3_-_Datasheet.pdf

https://www.youtube.com/watch?v=36pdVmXsDdM

https://aip.scitation.org/doi/pdf/10.1063/1.2354545

https://starcryo.com/wp-content/themes/education-pro/brochures/SQUID-Guide.pdf

https://plancksatellite.org.uk/mission/cryogenics/

https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/17SQUID.pdf

https://www.osti.gov/servlets/purl/819968

https://www.northropgrumman.com/high-efficiency-cryocoolers/

https://cryocooler.org/resources/Documents/C19/567.pdf

https://aip.scitation.org/doi/pdf/10.1063/1.2908681

https://trc.nist.gov/cryogenics/cryocoolers.html

https://www.jlab.org/IR/Cryocooler_Fundamentals_Course_Notes/CEC-RGR_1_200dpi-final.pdf

https://www2.jpl.nasa.gov/adv_tech/coolers/Cool_ppr/CEC2005%2050yr%20History%20of%20Cryo%20in%20Space.pdf

https://techcrunch.com/2017/01/31/origami-inspired-radiator-from-nasa-could-change-shape-to-warm-or-cool-tiny-satellites/

 $\underline{https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/1076907/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/10769/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/10769/Cube Sat-active-thermal-management-in-support-of-proceedings-of-spie/10769/Cube Sat-active-thermal-management-in-spie/10769/Cube Sat-active-thermal-manageme$

cooled-electro-optical/10.1117/12.2321959.full?SSO=1

https://science.nasa.gov/science-news/science-at-nasa/2001/ast21mar_1/

Storyblocks

Questions?

	Light Side of Earth	Dark Side of Earth
Heat Absorption from Sun	2.1 W	0 W
Heat Absorption from Earth	0.5 W	0 W
Heat from Satellite Functions	30 W	30 W
Total Heat	32.6 W	30 W
External Chassis Temperature	292.4 K (19.2 °C)	285.1 K (11.9 °C)
Heat Transfer to SQUID	0.010 W	0.0094 W
Heat Transfer to Radiator	10.61 W	9.71 W
Power to run Cryocooler	7.9 W	7.2 W
Total Heat Transfer to Radiator	18.5 W	16.9 W
Temperature of Radiator	262.2 K (-11.0 °C)	255.2 K (-18.0 °C)