FMEA Analysis Report sensor_interface

Failure Mode and Effects Analysis for Electronic Circuit Board

Report Date: 2025-08-06

Prepared by: Circuit-Synth FMEA Analyzer

Standard: AIAG-VDA FMEA / IPC-A-610

Classification: Quality Assurance Document

Executive Summary

This FMEA analysis evaluates the sensor_interface circuit design to identify potential failure modes and assess associated risks. The analysis examined 7 components across 0 subsystems.

Key Findings

Metric	Value	Status
Total Failure Modes Analyzed	23	√ Good
Critical Risk Modes (RPN ≥ 300)	2	■ Attention
High Risk Modes (125 ≤ RPN < 300)	14	■ Attention
Average RPN Score	187.9	■ Attention

System Overview

Circuit analysis of sensor_interface.json

Subsystems

FMEA Analysis Table

ID	Component	Failure Mode	Effect	S	0	D	RPN	Risk
1	J1 - Conn_01x04	Solder joint failure	Complete loss of connection, s	9	7	7	441	Critical
2	U2 - ATmega328P-AU	ESD damage	Complete MCU failure, system	i 10 4		8	320	Critical
3	C1 - C	ESR increase	Power supply instability, heat	6 6		7	252	High
4	C2 - C	ESR increase	Power supply instability, heat	6	6	7	252	High
5	C1 - C	Capacitance degradation	Increased ripple, filtering in	5 7		7	245	High
6	C2 - C	Capacitance degradation	Increased ripple, filtering in	eased ripple, filtering in 5		7	245	High
7	U2 - ATmega328P-AU	Flash corruption	Firmware corruption, boot fail	ware corruption, boot fail 8		7	224	High
8	U2 - ATmega328P-AU	Thermal damage	Component malfunction	ponent malfunction 9		6	216	High
9	R1 - R	Resistance drift	Component malfunction	oction 4		8	192	High
10	R2 - R	Resistance drift	Component malfunction	unction 4		8	192	High
11	J1 - Conn_01x04	Contact oxidation	Intermittent connection, data 5		6	6	180	High
12	U2 - ATmega328P-AU	I/O pin failure	Peripheral communication loss 7		5	5	175	High
13	R1 - R	Thermal damage	Component malfunction		4	6	168	High
14	R2 - R	Thermal damage	Component malfunction		4	6	168	High
15	U2 - ATmega328P-AU	Clock failure	System hang, timing errors		3	6	162	High
16	J1 - Conn_01x04	Mechanical damage	Connection loss, physical dama		5	4	140	High
17	C1 - C	Short circuit	Power rail short, system damag		3	5	120	Medium
18	C2 - C	Short circuit	Power rail short, system damaç	, 8	3	5	120	Medium
19	J1 - Conn_01x04	Pin misalignment	Component malfunction	6	4	5	120	Medium
20	C1 - C	Open circuit	Component malfunction	7	3	5	105	Medium
21	C2 - C	Open circuit	Component malfunction	7	3	5	105	Medium
22	R1 - R	Open circuit	Component malfunction	6	3	5	90	Medium
23	R2 - R	Open circuit	Component malfunction	6	3	5	90	Medium

Risk Assessment Matrix

Risk Level	RPN Range	Count	Action Required
Critical	≥ 300	2	Immediate action required
High	125-299	14	Action required before production
Medium	50-124	7	Monitor and improve if feasible
Low	< 50	0	Acceptable risk level

Recommendations

Priority Actions

- J1 Conn_01x04 Solder joint failure: CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief
- **U2 ATmega328P-AU** ESD damage: CRITICAL: Add TVS diodes, implement ESD protection circuits, use guard rings
- C1 C ESR increase: Important: Review design and implement appropriate mitigation
- C2 C ESR increase: Important: Review design and implement appropriate mitigation
- C1 C Capacitance degradation: Use higher-grade capacitors, derate voltage, add redundancy

General Recommendations

- Implement design review process with focus on high-RPN items
- Establish component derating guidelines (50-80% of maximum ratings)
- · Add test points for critical signals to improve detection capability
- Implement thermal analysis and management for power components
- Establish incoming inspection procedures for critical components
- Document lessons learned and update FMEA regularly