PLANNING AND SEARCH

LOGICAL AGENTS; FOL

Outline

- ♦ First-order logic
- ♦ Syntax
- \Diamond Semantics
- \diamondsuit What can we express

First-order logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

Logics in general

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Syntax of FOL: Basic elements

```
KingJohn, 2, UCB, \dots
Constants
Predicates Brother, >, \dots
Functions Sqrt, LeftLegOf,...
Variables x, y, a, b, \dots
Connectives \land \lor \lnot \Rightarrow \Leftrightarrow
Equality =
Quantifiers \forall \exists
```

Atomic sentences

```
Atomic sentence = predicate(term_1, ..., term_n)
                    or term_1 = term_2
```

```
Term = function(term_1, ..., term_n)
         or constant or variable
```

```
E.g., Brother(KingJohn, RichardTheLionheart)
    > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
```

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.
$$Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn) > (1,2) \lor \leq (1,2) > (1,2) \land \neg > (1,2)$$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for constant symbols → objects predicate symbols → relations

function symbols → functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which $Richard \rightarrow Richard$ the Lionheart $John \rightarrow$ the evil King John $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary

For each possible k-ary relation on n objects

For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment by enumerating FOL models is not easy!

Universal quantification

 $\forall \langle variables \rangle \langle sentence \rangle$

Everyone at Berkeley is smart:

```
\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
(At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn))
 \land (At(Richard, Berkeley) \Rightarrow Smart(Richard))
 \land (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley))
 \land \dots
```

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

$$\forall x \ At(x, Berkeley) \land Smart(x)$$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

 $\exists \langle variables \rangle \langle sentence \rangle$

Someone at Stanford is smart:

 $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

```
(At(KingJohn, Stanford) \land Smart(KingJohn)) \lor (At(Richard, Stanford) \land Smart(Richard)) \lor (At(Stanford, Stanford) \land Smart(Stanford)) \lor \dots
```

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

```
\forall x \ \forall y is the same as \forall y \ \forall x (why??)
```

$$\exists x \exists y$$
 is the same as $\exists y \exists x$ (why??)

$$\exists x \ \forall y \ \text{is } \mathbf{not} \text{ the same as } \forall y \ \exists x$$

$$\exists x \ \forall y \ Loves(x,y)$$

"There is a person who loves everyone in the world"

$$\forall y \; \exists x \; Loves(x,y)$$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$$

$$\exists x \ Likes(x, Broccoli)$$
 $\neg \forall x \ \neg Likes(x, Broccoli)$

Brothers are siblings

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

$$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$$
.

One's mother is one's female parent

$$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x,y \; FirstCousin(x,y) \; \Leftrightarrow \; \exists \, p,ps \; Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y)$