Nome:

 $N.^{0}$ mec.:

Classificação (espaço reservado ao professor):

E\C	0	1	2	3
0	0	7	14	20
1	0	4	10	
2	0	0		
3	0			

Duração: 0h15

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4 2021/22

2.º miniteste: turma TP4-5; versão 2

- Desenha uma circunferência à volta da opção A, B ou C que consideres correta em cada uma das três questões abaixo.
- Relativamente a cada uma dessas questões, a cotação preliminar a atribuir será de 10 pontos se a escolha estiver correta, de 0 pontos se nenhuma opção for escolhida ou se for escolhida mais do que uma, e de -5 pontos se a escolha estiver errada. Designando por S a soma aritmética das cotações preliminares obtidas nas três questões, a nota na escala de 0 a 20 valores neste miniteste será dada pela expressão $\lceil \frac{2}{3} \max\{S,0\} \rceil$ (i.e, será a nota no quadro acima que resulta do cruzamento do n.º de respostas certas C com o n.º de respostas erradas E).
- Quando se refere "comparação" nas questões abaixo, tanto pode ser o critério, digamos inicial, de comparação, como o da comparação por passagem ao limite, tanto no caso de séries como no de integrais impróprios. O que interessa é que um deles permita chegar à opção de resposta correta.
- 1. Se na determinação da natureza da série $\sum_{n=1}^{\infty} \frac{1}{(n+1)!}$ por comparação escolhermos comparar com a série de natureza conhecida $\sum_{n=1}^{\infty} n^{-2}$, qual das seguintes afirmações é verdadeira?
 - A. Esta comparação não permite concluir sobre a natureza da série dada.
 - B. Da comparação sai que a série dada é convergente.
 - C. Da comparação sai que a série dada é divergente.
- 2. Escolhe a série de natureza conhecida que, por comparação, permite concluir sobre a natureza da série $\sum_{n=2}^{\infty} \frac{\ln(n^3-1)-2^{-n}}{n^2\sqrt{n}}$:

A.
$$\sum_{n=2}^{\infty} \frac{1}{n^{5/2}}$$
.

B.
$$\sum_{n=2}^{\infty} \frac{1}{n^3}$$
.

C.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n}}.$$

3. Escolhe o integral impróprio de natureza conhecida que, por comparação, permite concluir sobre a natureza do integral impróprio $\int_1^\infty \frac{1}{\left[5\sin(\pi/6)\right]^x} dx$:

$$\mathbf{A.} \ \int_1^\infty \frac{1}{x} \, dx.$$

$$\mathbf{B.} \ \int_1^\infty \frac{1}{2^x} \, dx.$$

$$\mathbf{C.} \int_{1}^{\infty} \frac{1}{\pi^x} \, dx.$$