Shri Ramdeobaba College of Engineering and Management, Nagpur-13. Department of Electronics Engineering

Analog and Digital Communication Engineering Lab [ENP357]

Even Semester – 2023-24

<u>Lab 07</u>

<u>SNR</u>

Name:	Pawan Dilip Sorte
Batch / Roll No.	A1/12
Semester/Section:	6 th /A
Date of Performance:	5/04/2024
Date of Submission:	17/04/2024
Name & Signature of Faculty:	Mrs.Rohini Ochawar

Lab-07

Aim: Computation of S/N and noise figure for the given noise model.

✓ Apparatus used : Function generator, CRO

✓ Observations

Observations

1. Observed Waveforms of different Noise patterns

2. Measurement for signal to noise ratio

I/P Signal Type/	Type of noise	Noise Amplitude n	Output in (dB) SNR
Freq. /amplitude		(t) Vrms=	= 20 log10 (Signal
x(t)		Vmax/1.414	RMS value)/ (Noise
			RMS value)
Random Data/1.2KH z/3Volts	White Noise	0 Volts(Vpp)	SNR = 5.46
Random Data/1.2KH z/3Volts	White Noise	1 Volts(Vpp)	SNR = 14.06
Random Data/1.2KH z/3Volts	White Noise	2.2 Volts(Vpp)	SNR =9.26

3. Observed Waveforms of output signal y(t)

White noise

Additive white noise

Periodic random noise

signal noise

Square wave sample

White noise

Addition

2 volt

Signal + Noise

1.04

Noise

Calculations:

		CONTE
(I)	Sample > 3v	RMS = 2.12
	Noise -> 2 V	RMS = 1.414
	SNR = 3.54	
(F)	Noise -> 1.6	PMS = 1.13.
	SNR -> 5.46	
3	Noise > 0.6	RMS = 0.42
	SNR -> 14.06	
4	Noise - 1.04	RMS = 0.43
	gnr -> 9.26	

Conclusion:

We Use these metrics to optimize system design for better signal quality and sensitivity in practical applications.

Note: Save your lab report file as shown in the following example:

Batch_A1/B1/C1_Roll No-Lab-No

Eg. Batch-C1-21_Lab-04

Once you have done all the corrections submit your lab report in soft copy to your course instructor.