CINETIQUE CHIMIQUE

Exercice n°1

Hydrolyse du 2-bromométhylpropane.

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

1°) Définir :La vitesse de consommation de C, de formation de HBr, de réaction.

2°) A 25°C on obtient les résultats suivants ($C = [(CH_3)_3CBr]$):

				_ [(- :	-0/0	<i>)</i> -	
t (heure)	0	2	4	8	12	20	30
C (mol/l)	0.100	0.090	0.080	0.065	0.052	0.033	0.019

Montrer que ces résultats sont compatibles avec une cinétique du premier ordre par rapport à (CH₃)₃CBr. Déterminer la constante de vitesse.

- 3°) Dans les mêmes conditions mais à 50°C, le temps de demi-vie est de 56 min. Calculer à cette température la constante de vitesse. Au bout de combien de temps, la réaction aura évolué de 25%.
- 4°) Calculer l'énergie d'activation de cette réaction.

Exercice n°2

Soit la réaction :

$$CH_3CI + C_2H_5O^- \rightarrow CH_3OC_2H_5 + CI^-$$

La concentration initiale des réactifs est 0,1 mol.L⁻¹. On titre les ions chlorures produits au cours de la réaction, puis une étude graphique nous permet d'obtenir le tableau suivant :

t (min)	67	77	89	99	123	154
[Cl ⁻] 10 ³ mol.L ⁻¹	17	28	37	44	55	64
V 10 ³ mol.L ⁻¹ .min ⁻¹	1,31	0,99	0,75	0,60	0,39	0,25

- 1°) Appliquer la méthode différentielle pour déterminer l'ordre de la réaction et la constante de vitesse.
- 2°) Retrouver ces résultats par la méthode intégrale.
- 3°) Exprimer et calculer le temps de demi-réaction.

Exercice n°3

L'éther méthylique se décompose, à haute température, selon le schéma :

$$(CH_3)_2O \rightarrow CH_4 + CO + H_2$$

Dans un récipient préalablement vidé, on introduit de l'éther méthylique et on mesure la pression totale à différents instants, la température étant maintenue égale à 500°C

				<u> </u>	
t (s)	390	777	1587	3135	8
P (mmHg)	408	498	624	779	931

- 1°) Etablir une relation entre la concentration initiale en éther méthylique et la pression finale dans le réacteur, puis entre la concentration en éther méthylique à l'instant t et la pression totale.
- 2°) Déterminer l'ordre de la réaction, ainsi que le temps de demi-vie.
- 3°) L'énergie d'activation est Ea = 171.4 kJ/mol, dans quel intervalle peut varier la température pour que la vitesse de réaction varie de moins de 2% par rapport à la vitesse à 500°C?

Exercice n°4

La réaction $A \to B$ a été étudiée à 923°C. Le temps de demi vie est donné en fonction de la pression initiale. Déterminer l'ordre de la réaction.

P (atm)	66 10 ⁻³	13 10 ⁻²	26 10 ⁻²	53 10 ⁻²
t _{1/2} (min)	10.8	7.5	5.3	3.7

Exercice n°5

Pour la réaction $C_2H_5I + OH^- \rightarrow C_2H_5OH + I^-$ en solution dans l'éthanol, la constante de vitesse a été déterminée en fonction de la température.

Calculer l'énergie d'activation.

A 50°C, quelle est la variation maximale de température que peut subir le système pour que la vitesse de la réaction ne varie pas plus de 1%?

t (°C)	15.83	32.02	59.75	90.61
k 10 ³ (l/mol/s)	0.0503	0.368	6.71	119

Exercice n°6

Pour la réaction : NO + $H_2 \rightarrow 1/2$ N₂ + H₂O en phase gazeuse , maintenue à volume constant, on trouve à 1100 K les résultats suivants:

expérience	(1)	(2)	(3)	(4)
10 ³ .[NO] (mol.l ⁻¹)	5.0	15.1	20	10.4
10 ³ .[H ₂] (mol.l ⁻¹)	2.0	2.0	8.0	4.0
$-10^4 \frac{d[NO]}{dt} (mol.l^{-1}.s^{-1})$	0.24	2.20	15.36	2.08

En supposant que la réaction admet des ordres partiels, quelles sont leurs valeurs? Quelle est la constante de vitesse à cette température?

Exercice n°7

L'hydrogénation d'un alcène A : A + $H_2 \rightarrow B$ est réalisée à 800 K à partir d'un mélange équimolaire de A et de H_2 . On relève :

t (s)	0	100	180	300	510	800	2000
P _{H2} (atm)	1.00	0.90	0.83	0.75	0.64	0.53	0.31

A la même température, on part d'un excès d'hydrogène. On relève :

P _A (atm)	1.43	1.05	0.54
t _{1/2} (s)	416	414	415

Déterminer l'ordre de la réaction et les ordres partiels