Importando bibliotecas

```
import pandas as pd
import numpy as np
import seaborn as sns

from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans

// usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir
import pandas.util.testing as tm
Importando base de dados
```

Verificando informações iniciais

Pergunta 1 - Após a utilização da biblioteca pandas para a leitura dos dados sobre os valores lidos, é CORRETO afirmar:

```
print(cars.shape)
cars.info()
cars.head()

#R: Não foram encontrados valores nulos após a leitura dos dados.
```

```
(261, 8)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 261 entries, 0 to 260
Data columns (total 8 columns):
# Column Non-Null Count Dtype
  mpg
              261 non-null float64
1 cylinders 261 non-null int64
2 cubicinches 261 non-null object
3 hp
              261 non-null
                            int64
4 weightlbs 261 non-null object
5 time-to-60 261 non-null int64
                            int64
6 vear
              261 non-null
   brand 261 non-null object
7
dtypes: float64(1), int64(4), object(3)
memory usage: 16.4+ KB
```

	mpg	cylinders	cubicinches	hp	weightlbs	time-to-60	year	brand
0	14.0	8	350	165	4209	12	1972	US.
1	31.9	4	89	71	1925	14	1980	Europe.

Pergunta 2 - Realize a transformação das colunas "cubicinches" e "weightlbs" do tipo "string" para o tipo numérico utilizando o pd.to_numeric(), utilizando o parâmetro errors='coerce'. Após essa transformação é CORRETO afirmar:

```
cars['cubicinches'] = pd.to_numeric(cars['cubicinches'], errors='coerce')
cars['weightlbs'] = pd.to_numeric(cars['weightlbs'], errors='coerce')
cars.info()
cars.head()
```

#R: Essa transformação adiciona valores nulos ao nosso dataset.

 \Box

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 261 entries, 0 to 260
Data columns (total 8 columns):
# Column Non-Null Count Dtype
```

Pergunta 3 - Indique quais eram os índices dos valores presentes no dataset que "forçaram" o pandas a compreender a variável "cubicinches" como string.

```
3 hp 261 non-null int64
cars.loc[cars['cubicinches'].isnull()]
```

#R: 40 e 180

$\qquad \qquad \Box \Rightarrow \qquad \qquad$		mpg	cylinders	cubicinches	hp	weightlbs	time-to-60	year	brand
	40	16.0	6	NaN	105	3897.0	19	1976	US.
	180	19.8	6	NaN	85	2990.0	18	1980	US.

Pergunta 4 - Após a transformação das variáveis "string" para os valores numéricos, quantos valores nulos (células no dataframe) passaram a existir no dataset?

```
4 30.5 4 98.0 63 2051.0 17 1978 US. cars.isnull().sum()
```

#R: 5

 \Box

```
mpg 0
cylinders 0
cubicinches 2
hp 0
weightlbs 3
time-to-60 0
year 0
brand 0
dtype: int64
```

Pergunta 5 - Substitua os valores nulos introduzidos no dataset, após a transformação, pelo valor médio das colunas. Qual é o novo valor médio da coluna "weightlbs"?

```
cars['cubicinches'].fillna(cars['cubicinches'].mean(), inplace=True)
cars['weightlbs'].fillna(cars['weightlbs'].mean(), inplace=True)

cars.describe()
#R: 3009.8333333
```

	mpg	cylinders	cubicinches	hp	weightlbs	time-to- 60	
count	261.000000	261.000000	261.000000	261.000000	261.000000	261.000000	261.0
mean	23.144828	5.590038	200.918919	106.360153	3009.833333	15.547893	1976.8
std	7.823570	1.733310	108.837269	40.499959	849.097575	2.910625	3.6
min	10.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	1971.0

Pergunta 6 - Após substituir os valores nulos pela média das colunas, selecione as colunas ['mpg', 'cylinders', 'cubicinches', 'hp', 'weightlbs', 'time-to-60', 'year']. Qual é o valor da mediana para a característica 'mpg'?

```
cars1 = cars[['mpg', 'cylinders', 'cubicinches', 'hp', 'weightlbs', 'time-to-60', 'year']]
cars1['mpg'].median()
```

#R: 22

□ 22.0

Pergunta 7 - Qual é a afirmação CORRETA sobre o valor de 14,00 para a variável "time-to-60"?

```
cars1['time-to-60'].describe()
```

#R: 75% dos dados são maiores que o valor de 14,00.

```
    count

             261.000000
    mean
              15.547893
    std
               2.910625
    min
              8.000000
    25%
              14.000000
    50%
              16.000000
    75%
              17.000000
              25.000000
    max
```

Name: time-to-60, dtype: float64

Pergunta 8 - Sobre o coeficiente de correlação de Pearson entre as variáveis "cylinders" e "mpg", é correto afirmar, EXCETO:

```
cars1[['mpg', 'cylinders']].corr()
```

#R: Mesmo não sendo igual a 1, é possível dizer que à medida que a variável "cylinders" au

mpg cylinders

mpg 1.00000 -0.77671

cylinders -0.77671 1.00000

Pergunta 9 - Sobre o boxplot da variável "hp", é correto afirmar, EXCETO:

```
sns.boxplot(cars1['hp']);
cars1['hp'].describe()
```

#R: Existe uma maior dispersão no segundo quartil quando comparamos com o terceiro.

```
261.000000
count
mean
         106.360153
          40.499959
std
          46.000000
min
25%
          75.000000
50%
          95.000000
75%
         138.000000
         230.000000
max
Name: hp, dtype: float64
```


Pergunta 10 - Após normalizado, utilizando a função StandardScaler(), qual é o maior valor para a variável "hp"?

```
padroniza = StandardScaler()

colunas = cars1.columns

cars2 = padroniza.fit_transform(cars1)

cars2 = pd.DataFrame(cars2, columns=colunas)

print(cars2['hp'].max())

#R: 1,45 - Revisar com IGTI

$\times \text{3.05870398977614}$
```

Pergunta 11 - Aplicando o PCA, conforme a definição acima, qual é o valor da variância explicada com pela primeira componente principal?

```
pca = PCA(n_components=7)

pca_11 = pca.fit_transform(cars2)

pca_evplained_variance_ratio_[0]
```

```
#R:72%

$\tilde{\text{P}} = 0.7237134885896341
```

Pergunta 12 - Utilize os três primeiros componentes principais para construir o K-means com um número de 3 clusters. Sobre os clusters, é INCORRETO afirmar:

```
kmeans = KMeans(n_clusters=3,random_state=42)

q12 = kmeans.fit_predict(cars2)
kmeans.cluster_centers_

pd.Series(q12).value_counts()

#R: Todos os clusters possuem a mesma quantidade de elementos.

1 95
0 91
2 75
dtype: int64
```

Pergunta 13 - Após todo o processamento realizado nos itens anteriores, crie uma coluna que contenha a variável de eficiência do veículo. Veículos que percorrem mais de 25 milhas com um galão ("mpg">25) devem ser considerados eficientes. Utilize as colunas ['cylinders' ,'cubicinches' ,'hp' ,'weightlbs','time-to-60'] como entradas e como saída a coluna de eficiência criada. Utilizando a árvore de decisão como mostrado, qual é a acurácia do modelo?

```
eficiencia = np.where(cars1['mpg'] > 25, 1, 0)

pd.Series(eficiencia).value_counts()

    0     162
    1     99
    dtype: int64

cars3 = cars2[['cylinders' ,'cubicinches' ,'hp' ,'weightlbs','time-to-60']]

ad = DecisionTreeClassifier(random_state=42)

X_train, X_test, y_train, y_test = train_test_split(cars3, eficiencia, test_size=0.3, rand ad.fit(X_train, y_train)

previsaoAd = ad.predict(X_test)

confusaoAd = confusion_matrix(y_test, previsaoAd)
sns.heatmap(confusaoAd, cmap="YlGnBu", annot=True)
```

print("Acurácia: {}".format(((33+36)/79)*100))

#R: Aproximadamente, 0,87.

Pergunta 14 - Sobre a matriz de confusão obtida após a aplicação da árvore de decisão, como mostrado anteriormente, é INCORRETO afirmar:

```
confusaoAd = confusion_matrix(y_test, previsaoAd)
sns.heatmap(confusaoAd, cmap="YlGnBu", annot=True)
```

#R: Existem duas vezes mais veículos considerados não eficientes que instâncias de veículo

Pergunta 15 - Utilizando a mesma divisão de dados entre treinamento e teste empregada para a análise anterior, aplique o modelo de regressão logística como mostrado na descrição do trabalho. Comparando os resultados obtidos com o modelo de árvore de decisão, é INCORRETO afirmar:

```
lR = LogisticRegression(random_state=42)
```

previsaoLr = lR.predict(X_test)

```
print('Regressão Logística:')
print(classification_report(y_test, previsaoLr))
print('Árvore de Decisão:')
print(classification_report(y_test, previsaoAd))
```

#R:A regressão logística não deveria ser aplicada ao problema, pois ela trabalha apenas co

Regressão Logística:

support	f1-score	recall	precision	
41	0.87	0.88	0.86	0
38	0.85	0.84	0.86	1
79	0.86			accuracy
79	0.86	0.86	0.86	macro avg
79	0.86	0.86	0.86	weighted avg
			cisão:	Árvore de Dec
support	f1-score	recall	precision	
41	0.87	0.80	0.94	0
38	0.88	0.95	0.82	1
79	0.87			accuracy
79	0.87	0.88	0.88	macro avg
79	0.87	0.87	0.88	weighted avg