Übungen zur Vorlesung Graphischer Mittlerer Kümmungsfluß

Blatt 1

Aufgabe 1 (Äquivalenz von Höldernormen). (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit $\partial \Omega \in C^{0,1}$. Seien $k \in \mathbb{N}$ und $\alpha \in (0,1)$ fixiert. Definiere

$$||u||_{C^{k,\alpha}(\Omega)} := \sum_{|\beta| \le k} ||D^{\beta}u||_{C^0(\Omega)} + \sum_{|\beta| = k} [D^{\beta}u]_{C^{0,\alpha}(\Omega)}$$

und

$$||u||'_{C^{k,\alpha}(\Omega)} := \sum_{|\beta| \le k} ||D^{\beta}u||_{C^0(\Omega)} + \sum_{|\beta| \le k} [D^{\beta}u]_{C^{0,\alpha}(\Omega)}.$$

Zeige, dass die beiden Normen äuquivalent sind.

Aufgabe 2 (Kompatibilitätsbedingungen I). (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Seien $u_0 \in C^{\infty}(\bar{\Omega})$, $\varphi \in C^{\infty}(\partial \Omega \times [0,T))$ und $u \in C^{3;1}(\Omega \times (0,T))$ eine Lösung von

$$\begin{cases} \dot{u} = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \times (0, T) \\ u(x, 0) = u_0(x) & \text{für } x \in \bar{\Omega} \\ u(x, t) = \varphi(x) & \text{für } (x, t) \in \partial \Omega \times [0, T) \,. \end{cases}$$

Wie lauten die Kompatibilitätsbedingungen der Ordnung 1,2,3? Welche Bedingung ergibt sich an die mittlere Kümmung $H_{\text{graph }u}$?

Aufgabe 3 (Kompatibilitätsbedingungen II). (4 Punkte)

Sei $\Omega_0 = B_1(0)$ und $\Omega = \bigcup_{t>0} B_{1+t}(0) \times \{t\}$. Seien $u_0 \in C^{\infty}(\bar{\Omega}_0)$, $\varphi \in C^{\infty}(\partial \Omega \setminus \Omega_0)$ und $u \in C^{3;1}(\Omega)$ eine Lösung von

$$\begin{cases} \dot{u} = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \\ u(x,0) = u_0(x) & \text{für } x \in \bar{\Omega}_0 \\ u(x,t) = \varphi(x,t) & \text{für } (x,t) \in \partial \Omega \setminus \Omega_0 \,. \end{cases}$$

Wie lauten die Kompatibilitätsbedingungen der Ordnung 1,2,3?

Aufgabe 4. (4 Punkte)

Eine Lösung $u: \mathbb{R}^n \times [0,\infty) \to \mathbb{R}$ heißt homothetisch expandierend, falls $u(x,t) = v(\frac{x}{\sqrt{t}})$ auf $\mathbb{R}^n \times (0,\infty)$. Sei Φ die Fundamentallösung der Wärmeleitungsgleichung und $u_0(x) = |x|$.

Zeige, dass die Faltung $u = \Phi * u_0$ unter der Wärmeleitungsgleichung eine homothetisch expandierende Lösung generiert.

Abgabe: Bis Donnerstag, 03.05.2018, 10.00 Uhr, in die Mappe vor Büro F 402.