Table 6.1

Parameter Symbol	Parameter Description	Typical Parameter Value		
		n-Channel	p-Channel	Units
V ₇₀	Threshold voltage $(V_{BS} = 0)$	0.7 ± 0.15	-0.7 ± 0.15	v
K'	Transconductance parameter (in saturation)	$110.0 \pm 10\%$	$50.0 \pm 10\%$	μA/V ²
γ	Bulk threshold parameter	.0.4	0.57	$V^{1/2}$
λ	Channel length modulation parameter	$0.04 (L = 1 \mu m)$ $0.01 (L = 2 \mu m)$	$0.05 (L = 1 \mu m)$ $0.01 (L = 2 \mu m)$	V-1
$2 \phi_F $	Surface potential at strong inversion	0.7	0.8	v

5.1 Calculate the differential transconductance g_{md} and the differential voltage gain A_{ν} of an n-channel input differential amplifier shown in Figure 5.1 , with the parameters shown in table 6.1. Consider I_{ss} =100 μ A(the drain current of M5), and W_1/L_1 = W_2/L_2 = W_3/L_3 = W_4/L_4 =1. Assuming all the channel lengths are equal to 1 μ m, and V_{DD} =5V. If W_1/L_1 = W_2/L_2 =10 W_3/L_3 =10 W_4/L_4 =10, repeat the calculation

Figure 6.1

解:

a)
$$\left(\frac{W}{L}\right)_{1} = \left(\frac{W}{L}\right)_{2} = \left(\frac{W}{L}\right)_{3} = \left(\frac{W}{L}\right)_{4} = 1$$

 $g_{md} = g_{m1} = g_{m2} = \sqrt{K_{n}'\left(\frac{W}{L}\right)_{1}I_{SS}} = 104.9\mu S$
 $A_{v} = \frac{g_{m2}}{g_{ds2} + g_{ds4}} = \frac{2g_{m2}}{(\lambda_{2} + \lambda_{4})I_{SS}} = 23.31V/V$

b)
$$\left(\frac{W}{L}\right)_{1} = \left(\frac{W}{L}\right)_{2} = 10\left(\frac{W}{L}\right)_{3} = 10\left(\frac{W}{L}\right)_{4} = 10$$

 $g_{md} = g_{m1} = g_{m2} = \sqrt{K_{n}'\left(\frac{W}{L}\right)_{1}I_{SS}} = 331.7\,\mu\text{S}$
 $A_{v} = \frac{g_{m2}}{g_{ds2} + g_{ds4}} = \frac{2g_{m2}}{(\lambda_{2} + \lambda_{4})I_{SS}} = 73.71V/V$

5.2 Calculate the maximum($V_{IC}(max)$) and the minimum input common-mode voltages ($V_{IC}(min)$), and the input common mode voltage range (ICMR) of an n-channel input differential amplifier shown in Figure 6.1, with the parameters shown in table 6.1. Assume all MOSFETs are in saturation, all the (W/L)s are equal to $10\mu m/1\mu m$, $I_{SS}=10\mu A$, and $V_{DD}=5V$.

The maximum input common-mode input is given by

$$V_{IC}(\max) = V_{DD} + V_{T1} - V_{T3} - V_{dsat3}$$

or,
$$V_{IC}(\text{max}) = V_{DD} + V_{T1} - V_{T3} - \sqrt{\frac{I_{SS}}{K_P(W/L)_3}} = \underline{4.86 \text{ V}}$$

The minimum input common-mode input is given by

$$V_{IC}(\min) = V_{SS} + V_{T1} + V_{dsat1} + V_{dsat5}$$

or,
$$V_{IC}(\min) = V_{SS} + V_{T1} + \sqrt{\frac{I_{SS}}{K_N'(W/L)_1}} + \sqrt{\frac{2I_{SS}}{K_N'(W/L)_5}} = \underline{0.93 \text{ V}}$$

So, the input common-mode range becomes

$$ICMR = V_{IC}(max) - V_{IC}(min) = 3.93 \text{ V}$$

5.3 Find the value of the unloaded differential-transconductance, g_{md} , and the unloaded differential-voltage gain, A_v , for the p-channel input differential amplifier of Figure 6.3 when $I_{SS}=10\mu A$ and $I_{SS}=1\mu A$. What is the slew rate of the differential amplifier if a 100 pF capacitor is attached to the output? Assuming W1/L1=W2/L2=W3/L3=W4/L4=1, and all the channel lengths are equal to $1\mu m$. Use the transistor parameters of Table 6.1.

Figure 6.3

解:

a) Given I_{SS}=10μA,

$$g_{md} = g_{m1} = g_{m2} = 22.36 \mu S$$

 $A_{v} = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{(\lambda_{1} + \lambda_{2})I_{SS}} = 49.69V / V$

Given Iss=1µA

$$g_{md} = g_{m1} = g_{m2} = 7.07 \mu S$$

$$A_{v} = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{(\lambda_{1} + \lambda_{2})I_{SS}} = 157.11V / V$$

b) Slew rate can be given as

$$SR = \frac{I_{SS}}{C_L}$$
For $I_{SS} = 10 \mu A$ and $C_L = 100 \text{ pF}$

$$SR = \frac{I_{SS}}{C_L} = \underline{0.1 \text{ V/\mu s}}$$
For $I_{SS} = 1 \mu A$ and $C_L = 100 \text{ pF}$

$$SR = \frac{I_{SS}}{C_L} = \underline{0.01 \text{ V/\mu s}}$$

5.4 In the circuit of Fig 6.4, assume that $I_{SS}=1$ mA, $V_{DD}=3$ V and W/L=50/0.5 for all the transistors. And $I_{D5}=I_{D6}=0.8(I_{SS}/2)$. Assuming $\lambda \neq 0$.

- (a) Determine the voltage gain.
- (b) Calculate V_b.
- (c) If I_{SS} requires a minimum voltage of 0.4V, what is the maximum differential output swing?

Figure 6.4

解:

a)
$$A_V \approx -\frac{g_{m1}}{g_{m3}} = \sqrt{\frac{\mu_n I_{D1}}{\mu_p I_{D3}}} = \sqrt{\frac{110 \times 0.5 I_{SS}}{50 \times 0.2 \frac{I_{SS}}{2}}} = -3.32$$

b)
$$I_{D5} = I_{D6} = 0.8 \frac{I_{SS}}{2} = 0.4 \text{mA}$$

$$V_b = V_{DD} - V_{SG5} = V_{DD} - |V_{TH}| - \sqrt{\frac{2I_{D5}}{\mu_p C_{ox} \frac{W}{L}}} = 1.9V$$

$$\left(V_{out1,2}\right)_{\max} = \min\left(V_b + \left|V_{TH,P}\right|, V_{DD} - \left|V_{TH,P}\right|\right) = \min\left(1.9 + 0.7, 3 - 0.7\right) = 2.3V$$

$$(V_{out1,2})_{\min} = \max (V_{Iss\min} + V_{GS1}|_{I_D = 0.6I_{SS}} - V_{TH,N}, V_{DD} - V_{SG3}|_{I_D = 0.2I_{SS}})$$

$$V_{GS1}|_{I_D=0.6I_{SS}} = V_{TH,N} + \sqrt{\frac{2 \times 0.6I_{SS}}{\mu_n C_{ox} \frac{W}{L}}} = 0.7 + 0.33 = 1.03V$$

$$V_{SG3}|_{I_D=0.2I_{SS}} = |V_{TH,P}| + \sqrt{\frac{2 \times 0.2I_{SS}}{\mu_p C_{ox} \frac{W}{I_c}}} = 0.7 + 0.28 = 0.98V$$

$$(V_{out1,2})_{min} = max(0.4+1.03-0.7,3-0.98) = 2.02V$$

$$V_{out,swing} = 2(2.3 - 2.02) = 0.56V$$

- 5.5 The circuit shown in Figure 6.5 called a folded-current mirror differential amplifier and is useful for low values of power supply. Assume that all W/L values of each transistor is 100. Using the parameters shown in table 6.1,
 - a) Find the maximum input common mode voltage, $V_{IC}(max)$ and the minimum input common mode voltage, $V_{IC}(min)$. Keep all transistors in saturation for this problem.
 - b) What is the input common mode voltage range, ICMR?
 - c) Find the small signal voltage gain, v_{out}/v_{in} , if $v_{in} = v_1 v_2$.

Figure 6.5

解:

a)
$$v_{1(\text{max})} = V_{GS3} + V_{TN} = 0.7 + \sqrt{\frac{2 \bullet 50}{110 \bullet 100}} + 0.7 = 1.495V$$

$$v_{1}(\min) = 0 + V_{DS5}(\text{sat}) + V_{GS1}(50\mu\text{A}) = \sqrt{\frac{2 \cdot 100}{110 \cdot 100}} + \left(\sqrt{\frac{2 \cdot 50}{110 \cdot 100}} + 0.7\right)$$
$$= 0.1348 + 0953 + 0.7 = 0.9302\text{V} \implies \boxed{v_{1}(\min) = 0.9302\text{V}}$$

b)
$$V_{ICMR} = v_{1(max)} - v_{1(min)} = 1.495 - 0.9302 = 0.5648V$$

c)
$$A_v = g_{m1} \times (r_{o2} / / r_{o4} / / r_{o7}) = 116.5 V / V$$

5.6 In the circuit of Fig 5.6, assume that $I_{SS} = 0.5$ mA, $V_{DD} = 3$ V, $(W/L)_{1,2} = 50/0.5$ and $(W/L)_{3,4} = 10/0.5$. I_{SS} current is provided by NMOS, and its W/L = 50/0.5. Assuming $\lambda \neq 0$.

- a) Calculate the range of input common mode voltage.
- b) If $V_{in,CM} = 1.5V$, draw a sketch of the small signal differential voltage gain of the circuit when VDD changes from 0 to 3V.
- c) If the mismatch threshold voltage of M₁ and M₂ is 1mV, calculate CMRR.
- d) If the $W_3 = 10 \mu m$ and $W_4 = 11 \mu m$, calculate CMRR.

Figure 5.6

解:

a)
$$(V_{in, cm})_{min} = V_{GS1} + V_{Odss} = V_{TH1} + \sqrt{\frac{2I_{D1}}{\mu_n C_{ox}(\frac{W}{L})_1}} + \sqrt{\frac{2I_{SS}}{\mu_n C_{ox}(\frac{W}{L})_{SS}}} = 0.7V + 0.213V + 0.302V = 1.215V$$

$$(V_{in, cm})_{\text{max}} = V_{DD} - V_{od3} - V_{TH, P} + V_{TH, N} = V_{DD} - \sqrt{\frac{2I_{D3}}{\mu_P C_{ox}(\frac{W}{L})_3}} = 3V - 0.707V = 2.293V$$

b) 三个标记点: 开启电压V_{TH,P} = 0.7V

增益
$$Av = -\sqrt{\frac{Kn(\frac{W}{L})_1}{Kp(\frac{W}{L})_3}} = -3.317$$

饱和点电压 $VDD = V_{in, cm} - V_{TH, N} + V_{GS3} = 1.5V - 0.7V + 0.7V + 0.717V = 2.217V$

c) 由于M1和M2的阈值电压失配,因此有: $g_{m1} \neq g_{m2}, g_{m3} \neq g_{m4}$ 为了计算 A_{cm-dm} 有:

$$i_{D1} = g_{m1}(V_{in, cm} - V_p)$$

$$i_{D2} = g_{m2}(V_{in, cm} - V_p)$$

$$Vout1 = -\frac{i_{D1}}{g_{m3}} = -\frac{g_{m1}(V_{in, cm} - V_p)}{g_{m3}}$$

$$Vout2 = -\frac{i_{D2}}{g_{m4}} = -\frac{g_{m2}(V_{in, cm} - V_p)}{g_{m4}}$$

$$\frac{g_{m1}}{g_{m3}} = \sqrt{\frac{Kn(\frac{W}{L})_{1,2}}{Kp(\frac{W}{L})_{3,4}}} = \frac{g_{m2}}{g_{m4}}$$

$$\therefore Vout1 = Vout2$$

$$\therefore A_{cm-dm} = 0, CMRR = \infty$$

d١

$$A_{dm-dm} = -g_m R_D$$

$$A_{cm-dm} = \frac{g_m R_D}{1 + 2g_m R_{ss}} - \frac{g_m (R_D + \Delta R_D)}{1 + 2g_m R_{ss}} = -\frac{g_m \Delta R_D}{1 + 2g_m R_{ss}}$$

$$\therefore CMRR = \left| \frac{A_{dm-dm}}{A_{cm-dm}} \right| = \frac{1 + 2 g_m R_{ss}}{\Delta R_D / R_D}$$

$$R_{D1} = \frac{1}{g_{m3}}, R_{D2} = \frac{1}{g_{m4}}$$

$$\therefore \frac{\Delta R_D}{R_D} = \frac{R_{D1} - R_{D2}}{R_{D1}} = 1 - \frac{R_{D2}}{R_{D1}} = 1 - \sqrt{\frac{2K_p(\frac{W}{L})_3 I_D}{2K_p(\frac{W}{L})_4 I_D}} = 1 - \sqrt{\frac{10}{11}} = 0.0465$$

$$gm = \sqrt{2Kn(\frac{W}{L})_1 I_{D1}} = 2.345 m\Omega^{-1}$$

$$Rss = \frac{1}{\lambda Iss} = \frac{1}{0.08 \times 0.5 \times 10^{-3}} = 25k\Omega$$

$$\therefore CMRR = \frac{1 + 2 \times 2.345 m\Omega^{-1} \times 25k\Omega}{0.0465} = 2543$$