Nome:

RA: Turma:

1. Considere o seguinte conjunto de dados

x	1	1.25	1.5	1.75	2
y	5.1	5.79	6.53	7.45	8.46
ln(y)	1.6292	1.7561	1.8764	2.0082	2.1353

Se x_i é plotado com $\ln(y_i)$, os dados parecem ter uma relação linear. Utilize esta observação para efetuar um ajuste de uma curva apropriada aos dados (x_i, y_i) . [2.5 pts]

- 2. Considere o problema de valor inicial correspondente a uma massa suspensa numa mola com amortecimento. A equação da distancia à origem é y'' + 2y' + 2y = 0 e as condições iniciais são y(0) = 2 e y'(0) = -2.
 - (a) Escreve este problema na forma de um problema de valor inicial (vetorial) de primeira ordem. [0.5 pts]
 - (b) Aproxime y(0.2) utilizando o método de Euler Aperfeiçoado (de preferência em forma tabelar) com h = 0.1. [2 pts]
- 3. Considere a função tabelada abaixo

- (a) Utilize interpolação quadrática através da forma de Newton para aproximar $f(-\frac{1}{3})$. (Escolhe nós de interpolação apropriados). [2 pts]
- (b) Estime um limite superior para o erro cometido (em módulo) na aproximação de $f(-\frac{1}{3})$. [0.5 pts]
- 4. Considere a função $F:\mathbb{R} \to \mathbb{R}$ definida por

$$F(t) = \int_0^t \frac{1}{e^{x^2} + 1} dx.$$

- (a) Aproxime F(1) utilizando a regra de Simpson repetida com 2 subintervalos. [1 pt]
- (b) Aproxime F(1) utilizando quadratura gaussiana (regra simples). [1 pt]
- (c) Considere $\int_{-1}^{1} f(x)dx$ onde f é uma função arbitrária. Interpretar a aproximação obtida através de quadratura gaussiana (regra simples) em termos da área de um trapézio. [0.5 pts]
- 5. Considere o PVC: y''y y'x = 2, y(0) = 1, y(1) = 2. Escreva explicitamente o sistema de equações que deverá ser resolvido para obter os valores y_k no intervalo [0,1] com espaçamento h = 0.25 e erros de aproximação de ordem h^2 . Indique como resolver este sistema. [2.5 pts]

Escolhe 4 das 5 questões! Justifique as suas respostas explicitando todos os passos. Trabalhe com 4 dígitos decimais! Boa sorte!