4

2

2

CLAIMS

- (Currently amended) A method for constructing MPEG I-frames comprising the
 steps of:
 - a) configuring a JPEG engine to produce JPEG data in which <u>all</u> discrete cosine transform coefficients are encoded in a byte-aligned manner; and
- b) performing JPEG processing, using the JPEG engine, on an uncompressed
 digital image, producing JPEG data in which the encoding discrete cosine
 transform coefficients are encoded in a byte-aligned manner; and
- 8 c) reading the JPEG data; and
 - d) converting the JPEG data to MPEG data.
 - (Original) The method of claim 1, further comprising the step of storing the MPEG data in an MPEG file.
 - 3. (Original) The method of claim 2, further comprising the step of adding file header information to the MPEG file.
- 4. (Original) The method of claim 1 wherein the step of configuring the JPEG engine
 is accomplished by specifying table generating values that are used by the JPEG engine to generate Huffman code tables.
 - 5. (Previously presented) The method of claim 1, further comprising the steps of:
- a) providing conversion tables for converting JPEG data in which discrete cosine transform coefficients are encoded in a byte-aligned manner to MPEG data;
- 4 and

6

- b) performing the step of converting the JPEG data to MPEG data using the conversion tables.
- 6. (Previously presented) A digital imaging device comprising:
- a) a lens for focusing light; and
 - b) an electronic array light sensor for receiving the focused light from the lens;
- 4 and

HP Docket No. 100110176-1

Page 2 of 10

Serial No. 10/043,950

PAGE 3/11 * RCVD AT 8/2/2005 11:17:52 AM [Eastern Daylight Time] * SVR:USPTO-EFXRF-6/24 * DNIS:2738300 * CSID:9708987247 * DURATION (mm-ss):03-02

2

8

- 8 i. configure the JPEG engine to produce a data stream in which discrete cosine transform coefficients are encoded in a byte-aligned manner; and
- 10 ii. convert the data stream to an MPEG data stream representing an MPEG

 I-frame.
 - (Original) The digital imaging device of claim 6 wherein the digital imaging device is a camera.
 - 8. (Currently amended) An image compression system comprising:
 - a) means for obtaining an uncompressed digital image; and
 - b) means for performing JPEG image processing; and
 - c) means for configuring the JPEG processing means to produce a <u>JPEG-compliant</u> data stream in which <u>all</u> discrete cosine transform coefficients are encoded in a byte-aligned manner; and
 - d) means for converting the data stream to a data stream representing an MPEG I-frame.
 - 9. (Currently amended) A table of byte-aligned Huffman codes for encoding JPEG
 - DC coefficients, the table comprising Huffman codes, each Huffman code representing a range of magnitudes for a DC coefficient, each Huffman code
 - 4 having to be used with a following bit pattern that encodes which of the range of magnitudes represents the value of the DC coefficient, the combined lengths of
 - each Huffman code and corresponding following bit pattern being an integer multiple of 8 bits.
 - 10. (Currently amended) The table of claim 9, the table comprising nine Huffman codes having lengths of 1, 2, 3, 4, 5, 6, 7, 8 and 8 bits, to be followed by bit patterns of 7, 6, 5, 4, 3, 2, 1, 0, and 8 bits respectively.

- 2 AC coefficients, the table comprising Huffman codes, each Huffman code representing a run/size combination for an AC coefficient, each Huffman code
- 4 having to be used with a following bit pattern that encodes the value of the AC coefficient, the combined lengths of each Huffman code and corresponding
- 6 following bit pattern being an integer multiple of 8 bits.
- 12. (Currently amended) The table of claim 11, the table comprising 130 Huffman
 codes allocated as sixteen Huffman codes of each length 8, 9, 10, 11, 12, 13, 14,
 and 15 bits and two codes of length 16 bits, each code to be followed by a
- following bit pattern such that each Huffman code and its following bits consist of 16 total bits.
- 13. (Original) A lookup table that correlates byte-aligned JPEG DC coefficient codes
 and following bits with equivalent MPEG DC coefficient codes and following bits.
- 14. (Original) A lookup table that correlates byte-aligned JPEG AC coefficient codes
 and following bits with equivalent MPEG AC coefficient codes.
- 15. (Currently amended) A method, comprising configuring a JPEG engine to
 produce JPEG-compliant data comprising bit patterns that encode discrete cosine transform coefficients, each bit pattern that encodes a discrete cosine transform
 coefficient having a length that is an integer multiple of eight bits.
- 16. (Previously presented) The method of claim 15, wherein each bit pattern that
 encodes a discrete cosine transform coefficient comprises a Huffman code.
- 17. (Previously presented) The method of claim 16, wherein at each bit pattern that encodes a nonzero discrete cosine transform coefficient comprises a set of one or more following bits.
 - 18. (Previously presented) The method of claim 15, further comprising:

HP Docket No. 100110176-1

Page 4 of 10

Serial No. 10/043,950

6

- providing a table that correlates the bit patterns produced by the JPEG engine 2 with corresponding bit patterns that encode the discrete cosine transform 4 coefficients in MPEG format; and indexing into the table, using a bit pattern produced by the JPEG engine, in order to locate the corresponding MPEG bit pattern.
- 19. (Previously presented) The method of claim 15, wherein the JPEG engine is 2 implemented in software.
- 20. (Previously presented) A method, comprising constructing JPEG data in which 2 each bit pattern encoding a run/value combination has a length that is an integer multiple of eight bits.
- 21. (Previously presented) The method of claim 20, further comprising configuring a 2 JPEG engine to produce the JPEG data.
- 22. (Previously presented) The method of claim 20, wherein each bit pattern that 2 encodes a run/value combination comprises a Huffman code that encodes a run/size combination, and a following bit pattern that encodes a value for an AC discrete cosine transform coefficient. 4
- 23. (Previously presented) The method of claim 20, further comprising constructing 2 JPEG data in which each nonzero DC discrete cosine transform coefficient is encoded by a bit pattern having a length that is an integer multiple of eight bits.
- 24. (Previously presented) The method of claim 20, further comprising converting 2 the JPEG data to MPEG data using a lookup table.