Preliminaries

1.
$$P(X > Y) = \iint_{\{(x,y):x>y\}} f(x,y) dxdy = \int_{\infty}^{\infty} \int_{y}^{\infty} f(x,y) dxdy$$

2.
$$E[E(X|Y)] = E(X), Var(X) = E(X^2) - E(X)^2$$

Discrete Time Markov Chain (DTMC)

- 3. If present state given, future events are independent of the past.
- 4. Matrix P row sum up to 1

5.
$$p_{ij}^{(n)} = P(X_n = j | X_0 = i) = [P^n]_{ij}$$

6. Chapman-Kolmogorov equations:
$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}, \ P^{(n+m)} = P^{(n)} P^{(m)}, \ P^{(n)} = P^{n}$$

7.
$$a^{(n)} = a^{(0)}P^n$$
, $a_k^{(0)} = P(X_0 = k)$

8.
$$P(X_{n_1} = i_1, X_{n_2} = i_2, \cdots, X_{n_k} = i_k) = [P^{n_k - n_{k-1}}]_{i_{k-1}, i_k} \cdots [P^{n_2 - n_1}]_{i_2, i_1} [a_0 P^{n_1}]_{i_1}$$

- 9. Accessibility of states: $p_{ii}^{(0)} = 1$
- 10. Communicating class:

•
$$i \in C, j \in C \Rightarrow i \leftrightarrow j$$

•
$$i \in C, i \leftrightarrow j \Rightarrow j \in C$$

- 11. Cannot LEAVE $C \Rightarrow$ CLOSED communicating class
- 12. State space S is a SINGLE class \Rightarrow IRREDUCIBLE
- 13. First arrival time: $T_j = \min\{n \ge 1 : X_n = j\}$
- 14. Start at i, prob of ever reaching j: $\varrho_{ij} = P(T_j < \infty | X_0 = i) = \sum_{n=1}^{\infty} P(T_j = n | X_0 = i)$
- 15. Mean time to return to i: $m_{ii} = E(T_i|X_0 = i)$
- 16. TRANSIENT: $\varrho_{ii} < 1$
 - POSITIVE RECURRENT: $\varrho_{ii} = 1, m_{ii} < \infty$
 - NULL RECURRENT: $\varrho_{ii} = 1, m_{ii} = \infty$

(Class properties)

17.
$$i \rightarrow j$$
, $\varrho_{ii} < 1 \Rightarrow i$ is TRANSIENT

18. Mean number of visits:
$$E(N_i|X_0=i) = \begin{cases} \infty & \text{if } i \text{ is RECURRENT} \\ \frac{1}{1-\varrho_{ii}} & \text{if } i \text{ is TRANSIENT} \end{cases}$$

19. RECURRENT
$$\Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$$

20. • FINITE CLOSED communicating class \Rightarrow POSITIVE RECURRENT

1

• OPEN communicating class \Rightarrow TRANSIENT

21.
$$p_{ij}^* = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} p_{ij}^{(n)}$$

- 22. POSITIVE RECURRENT $\Leftrightarrow p_{ii}^* = \frac{1}{m_i i} > 0$ TRANSIENT or NULL RECURRENT $\Leftrightarrow p_{ii}^* = \frac{1}{m_i i} = 0$
- 23. State i has period d, $d = \gcd\{n|P_{ii}^{(n)} > 0\}$, class properties
- 24. Stationary probability: $\pi = \pi P$, $\sum_{j \in S} \pi_j = 1$ (global balance)
- 25. Aperiodic (irreducible): $\pi_j=\lim_{n\to\infty}p_{jj}^{(n)}=\lim_{n\to\infty}p_{ij}^{(n)}$ Periodic: DO NOT EXIST
- 26. $\pi_j = p_{jj}^*$
- 27. Positive recurrent $\Rightarrow \pi_j = \lim_{n \to \infty} p_{ij}^{(n)}$ is unique
- 28. Detailed balance equations: $\pi_i p_{ij} = \pi_j p_{ji}$, $\sum_{j \in S} \pi_j = 1$ Detailed balance equations satisfied \Rightarrow global balance equations satisfied
- 29. First passage time: $\hat{T}_A = \min\{n \geq 0 : X_n \in A\}$
- 30. Reaching set A before set B starting from i:

$$h_i = P(\hat{T}_A < \hat{T}_B | X_0 = i) = \begin{cases} 0 & \text{if } i \in B \\ 1 & \text{if } i \in A \\ \sum_{j \in S} & \text{if } i \in S - (A \cup B) \end{cases}$$

31. Mean time to reach set A starting from i:

$$g_i = E(\hat{T}_A | X_0 = i) = \begin{cases} 0 & \text{if } i \in A \\ 1 + \sum_{j \in S} p_{ij} g_j & \text{if } i \in S - A \end{cases}$$

- 32. Long-run average cost: $\psi_i = \sum_{j \in S} c(j) \pi_j$ (independent of initial state)
- 33. Total expected cost (transient): $\phi_i = c(i) + \sum_{j \in S} p_{ij} \phi_j$

Poisson Processes

- 34. Exponential distribution:
 - c.d.f.: $P(X \le x) = F(x) = 1 e^{-\lambda x}$
 - p.d.f.: $f(x) = \lambda e^{-\lambda x}$
- 35. Memoryless property: P(X > s + t | X > s) = P(X > t)In continuous distributions, only Exponential is memoryless
- 36. $P(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}, P(\min\{X_1, X_2\} > x) = e^{-(\lambda_1 + \lambda_2)x}$
- 37. Strong memoryless property: $P(X_2 > X_1 + x | X_2 > X_1) = P(X_2 > x) = e^{-\lambda x}$, where $X_2 \sim Exp(\lambda)$, X_1 is continuous r.v. ≥ 0 .
- 38. Sum of i.i.d. exponentials: $f_n(z) = \lambda e^{-\lambda z} \frac{(\lambda z)^{n-1}}{(n-1)!}$, where $Z = X_1 + X_2 + \dots + X_n$, $X_i \sim Exp(\lambda)$, $P(Z \le t) = 1 \sum_{r=0}^{n-1} e^{-\lambda t} \frac{(\lambda t)^r}{r!}$
- 39. N_t : the number of events that has occurred

- τ_n : the time between (n-1)-st and n-th event
- $S_n = \tau_1 + \tau_2 + \cdots + \tau_n$: the time when *n*-th event occurs
- 40. Def1: $\tau_n \stackrel{i.i.d.}{\sim} Exp(\lambda)$. $N_t \sim Pois(\lambda t)$, $P(N_t = k) = \frac{e^{-\lambda t}(\lambda t)^k}{k!}$ Def2: $N_t^{(s)} = N_{s+t} - N_s$, it is independent of $\{N_u, 0 \le u \le s\}$ (previous time) Def3:
 - has stationary and independent increments
 - $P(N_h = 0) = 1 \lambda h + o(h)$
 - $P(N_h = 1) = \lambda h + o(h)$
 - $P(N_h \ge 2) = o(h)$
- 41. Stationary increments: $N_{s+t} N_s$ is identical, does not dependent on s
 - Independent increments: $N_t N_s$ and $N_v N_u$ are independent for $s < t \le u < v$
- 42. Superpositioning: $N_t = N_t^{(1)} + \cdots + N_t^{(k)}$ is a $PP(\lambda_1 + \cdots + \lambda_k)$
- 43. Splitting: $\{N_t^{(1)}, t \geq 0\}, \ldots, \{N_t^{(k)}, t \geq 0\}$ are PP with rates $\lambda p_1, \ldots, \lambda p_k$
- 44. Campbell's Theorem: if $N_t = n$ is given, then these n events occur uniformly over t hours
- 45. Nonhomogeneous Poisson process:
 - has independent increments
 - $P(N_{t+h} N_t = 0) = 1 \lambda(t)h + o(h)$
 - $P(N_{t+h} N_t = 1) = \lambda(t)h + o(h)$
 - $P(N_h > 2) = o(h)$

46.
$$\Lambda(t) = \int_0^t \lambda(u) du, N_t \sim Pois(\Lambda(t)), P(N_t = k) = \frac{e^{-\Lambda(t)}(\Lambda(t))^k}{k!}$$

- 47. $E(N_t) = \Lambda(t), \ Var(N_t) = \Lambda(t)$
- 48. Unordered arrival are uniformly distributed with (s < t)
 - c.d.f.: $\Lambda(s)/\Lambda(t)$
 - p.d.f.: $\lambda(s)/\Lambda(t)$
- 49. Compound Poisson process: when event n occurs, we incur a random cost Y_n ,

$$Z_t = \sum_{n=1}^{N_t} Y_n, \ E(Z_t) = \lambda t E(Y_1), \ Var(Z_t) = \lambda t E(Y_1^2) = \lambda t [Var(Y_1) + E(Y_1)^2]$$

Continuous Time Markov Chain (CTMC)

- 50. CTMC: $\{X_t : t \geq 0\}$, DTMC embedded chain: $\{\tilde{X}_n : n \in \mathbb{N}\}$
- 51. $\tau_n \sim Exp(q_i)$, is the time spent in state \tilde{X}_{n-1}
- 52. $\tilde{p}_{ii} = 0$ for all i
- 53. $q_{ij} = q_i \tilde{p}_{ij}$ if $i \neq j$; $q_{ii} = -q_i = -\sum_{i \in S, i \neq i} q_i j$; row sum up to 0
- 54. $p_{ij}(t) = P(X_t = j | x_0 = i)$

55. Chapman-Kolmogorov equations:
$$p_{ij}(t+s) = \sum_{k \in S} p_{ik}(t) p_{kj}(s), P(t+s) = P(t)P(s)$$

56.
$$a^{(n)} = a^{(0)}P(t), a_i^{(0)} = P(X_0 = i)$$

57.
$$P(X_{t_1} = j_1, \dots, X_{t_k} = j_k) = [P(t_k - t_{k-1}]_{j_{k-1}, j_k} \dots [a^{(0)}P(t_1)]_{j_1}$$

58.
$$P'(0) = Q$$

- 59. Forward Kolmogorov equation: P'(t) = P(t)QBackward Kolmogorov equation: P'(t) = QP(t)Initial conditions: P(0) = I
- 60. TRANSIENT and RECURRENT: same as DTMC (14, 15, 16)
- 61. CTMC is POSITIVE RECURRENT $\Leftrightarrow \sum_{i \in S} \frac{\tilde{\pi}_i}{q_i} < \infty$, where $\tilde{\pi} = \tilde{\pi}\tilde{P}$
- 62. Stationary probability: $\pi Q = 0$, $\sum_{i \in S} \pi_i = 1$ (global balance)
- 63. Detailed balance equations: same as DTMC (28)
- 64. Reaching set A before set B staring from i:

$$\begin{cases} h_i = 0 & \text{if } i \in B \\ h_i = 1 & \text{if } i \in A \\ \sum_{j \in S} q_{ij} h_j = 0 & \text{if } i \in S - (A \cup B) \end{cases}$$

65. Mean time to reach set A starting from i:

$$\begin{cases} g_i = 0 & \text{if } i \in A \\ \sum_{j \in S} q_{ij} g_j = -1 & \text{if } i \in S - A \end{cases}$$

66. Long-run average cost: same as DTMC (32)