ML Homework2

Due Date: 2019/03/28 (THU.) 23:59

TAs' email address: jhhlab.tw@gmail.com

Description:

1. Naive Bayes classifier

Create a Naive Bayes classifier for each handwritten digit that support **discrete** and **continuous** features.

- Input:
 - 1. Training image data from MNIST
 - You Must download the MNIST from this website and parse the data by yourself.
 (Please do not use the build in dataset or you'll not get 100.)
 - Please read the description in the link to understand the format.
 - Basically, each image is represented by $28 \times 28 \times 8$ bits (Whole binary file is in **big endian** format; you need to deal with it), you can use a char arrary to store an image.
 - There are some headers you need to deal with as well, please read the link for more details.
 - 2. Training lable data from MNIST.
 - 3. Testing image from MNIST
 - 4. Testing label from MNIST
 - 5. Toggle option
 - 0: discrete mode
 - 1: continuous mode

TRAINING SET IMAGE FILE (train-images-idx3-ubyte)

offset	type	value	description
0000	32 bit integer	0x00000803(2051)	magic number
0004	32 bit integer	60000	number of images
8000	32 bit integer	28	number of rows
0012	32 bit integer	28	number of columns
0016	unsigned byte	??	pixel
0017	unsigned byte	??	pixel
xxxx	unsigned byte	??	pixel

TRAINING SET LABEL FILE (train-labels-idx1-ubyte)

offset	type	value	description
0000	32 bit integer	0x00000801(2049)	magic number
0004	32 bit integer	60000	number of items
0008	unsigned byte	??	label
0009	unsigned byte	??	label
xxxx	unsigned byte	??	label

The labels values are from 0 to 9.

• Output:

- Print out the posterior (in log scale to avoid underflow) of the ten categories (0-9) for each image in INPUT 3. Don't forget to marginalize them so sum it up will equal to 1.
- For each test image, print out your prediction which is the category having the highest posterior, and tally the prediction by comparing with INPUT 4.
- Print out the imagination of numbers in your Bayes classifier
 - For each digit, print a 28×28 binary image which 0 represents a white pixel, and 1 represents a black pixel.
 - The pixel is 0 when Bayes classifier expect the pixel in this position should less then 128 in original image, otherwise is 1. (In other words, Bayes classifier expect to see a white pixel in this position if $\sum_{i=0}^{127} Pr(pixel=i) > \sum_{i=128}^{255} Pr(pixel=i)$. Otherwise, Bayes classifier expect to see a black pixel)

• Calculate and report the error rate in the end.

• Function:

- 1. In Discrete mode:
 - Tally the frequency of the values of each pixel into 32 bins. For example, pixel 0 to 7 should be classified to bin 1, pixel 8 to 15 should be bin 2 ... etc. Then perform Naive Bayes classifier. Note that to avoid empty bin, you can use a peudocount (such as the minimum value in other bins) for instead.
- 2. In Continuous mode:
 - Use MLE to fit a Gaussian distribution for the value of each pixel. Perform Naive Bayes classifier.
- Sample input & output (for reference only)

```
Postirior (in log scale):
2
   0: 0.11127455255545808
   1: 0.11792841531242379
3
   2: 0.1052274113969039
   3: 0.10015879429196257
  4: 0.09380188902719812
   5: 0.09744539128015761
7
   6: 0.1145761939658308
9
   7: 0.07418582789605557
10
  8: 0.09949702276138589
11
   9: 0.08590450151262384
12
   Prediction: 7, Ans: 7
13
14
   Postirior (in log scale):
   0: 0.10019559729888124
15
16
   1: 0.10716826094630129
   2: 0.08318149248873129
17
   3: 0.09027637439145528
18
   4: 0.10883493744297462
19
  5: 0.09239544343955365
20
   6: 0.08956194806124541
2.1
22
   7: 0.11912349865671235
   8: 0.09629347315717969
23
   9: 0.11296897411696516
24
25
   Prediction: 2, Ans: 2
2.6
27
   .. all other predictions goes here ...
28
29
   Imagination of numbers in Bayesian classifier:
30
31
   0:
32
   33
  34
   35
```

```
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
... all other imagination of numbers goes here ...
62
63
9:
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
```

2. Online learning

Use online learning to learn the beta distribution of the parameter p (chance to see 1) of the coin tossing trails in batch.

- Input:
 - 1. A file contains many lines of binary outcomes:

```
1 01010101110110110101
2 0110101
3 010110101101
```

- 2. parameter a for the initial beta prior
- 3. parameter b for the initial beta prior
- Output: Print out the Binomial likelihood (based on MLE, of course), Beta prior and posterior probability (parameters only) for each line.
- Function: Use Beta-Binomial conjugation to perform online learning.
- Sample input & output (for reference only)
 - Input: A file (here shows the content of the file)

```
$ cat testfile.txt
   0101010101001011010101
   0110101
   010110101101
    01011010111101011010
   111101100011110
7
   101110111000110
   1010010111
   11101110110
10
   01000111101
11
   110100111
   01101010111
12
```

- Output
 - Case 1: a = 0, b = 0

```
case 1: 0101010101001011010101
   Likelihood: 0.16818809509277344
 3
   Beta prior: a = 0 b = 0
   Beta posterior: a = 11 b = 11
 5
   case 2: 0110101
 6
 7
   Likelihood: 0.29375515303997485
    Beta prior: a = 11 b = 11
8
9
    Beta posterior: a = 15 b = 14
10
    case 3: 010110101101
11
12
   Likelihood: 0.2286054241794335
13
    Beta prior: a = 15 b = 14
    Beta posterior: a = 22 b = 19
14
15
   case 4: 0101101011101011010
16
17
   Likelihood: 0.18286870706509092
    Beta prior: a = 22 b = 19
18
19
    Beta posterior: a = 33 b = 27
20
21
    case 5: 111101100011110
2.2
   Likelihood: 0.2143070548857833
    Beta prior: a = 33 b = 27
23
24
   Beta posterior: a = 43 b = 32
2.5
   case 6: 101110111000110
26
   Likelihood: 0.20659760529408
2.7
28
    Beta prior: a = 43 b = 32
29
   Beta posterior: a = 52 b = 38
30
    case 7: 1010010111
31
   Likelihood: 0.25082265600000003
32
    Beta prior: a = 52 b = 38
33
34
    Beta posterior: a = 58 b = 42
35
   case 8: 11101110110
36
37
   Likelihood: 0.2619678932864457
   Beta prior:
                  a = 58 b = 42
38
39
    Beta posterior: a = 66 b = 45
40
41
    case 9: 01000111101
    Likelihood: 0.23609128871506807
42
43
    Beta prior: a = 66 b = 45
    Beta posterior: a = 72 b = 50
44
45
   case 10: 110100111
46
   Likelihood: 0.27312909617436365
47
   Beta prior: a = 72 b = 50
48
    Beta posterior: a = 78 b = 53
49
```

```
50
51 case 11: 01101010111
52 Likelihood: 0.24384881449471862
53 Beta prior: a = 78 b = 53
54 Beta posterior: a = 85 b = 57
```

Case 2: a = 10, b = 1

```
case 1: 0101010101001011010101
 2
   Likelihood: 0.16818809509277344
    Beta prior: a = 10 b = 1
 3
 4
   Beta posterior: a = 21 b = 12
 5
    case 2: 0110101
 6
 7
    Likelihood: 0.29375515303997485
    Beta prior: a = 21 b = 12
9
    Beta posterior: a = 25 b = 15
10
    case 3: 010110101101
11
    Likelihood: 0.2286054241794335
12
13
    Beta prior: a = 25 b = 15
14
    Beta posterior: a = 32 b = 20
15
16
    case 4: 0101101011101011010
17
   Likelihood: 0.18286870706509092
    Beta prior: a = 32 b = 20
18
    Beta posterior: a = 43 b = 28
19
20
   case 5: 111101100011110
21
22
    Likelihood: 0.2143070548857833
    Beta prior: a = 43 b = 28
23
    Beta posterior: a = 53 b = 33
24
25
26
    case 6: 1011110111000110
    Likelihood: 0.20659760529408
27
    Beta prior: a = 53 b = 33
28
29
    Beta posterior: a = 62 b = 39
30
31
    case 7: 1010010111
32
    Likelihood: 0.25082265600000003
                 a = 62 b = 39
33
    Beta prior:
    Beta posterior: a = 68 b = 43
34
35
    case 8: 11101110110
36
37
    Likelihood: 0.2619678932864457
38
    Beta prior: a = 68 b = 43
    Beta posterior: a = 76 b = 46
39
40
    case 9: 01000111101
41
```

```
Likelihood: 0.23609128871506807

Beta prior: a = 76 b = 46

Beta posterior: a = 82 b = 51

case 10: 110100111

Likelihood: 0.27312909617436365

Beta prior: a = 82 b = 51

Beta posterior: a = 88 b = 54

case 11: 01101010111

Likelihood: 0.24384881449471862

Beta prior: a = 88 b = 54

Beta posterior: a = 88 b = 54

Beta posterior: a = 95 b = 58
```