15 Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems. ("Programming" in this context refers to a tabular method, not to writing computer code.) As we saw in Chapters 2 and 4, divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem. In contrast, dynamic programming applies when the subproblems overlap—that is, when subproblems share subsubproblems. In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subsubproblems. A dynamic-programming algorithm solves each subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time it solves each subsubproblem.

We typically apply dynamic programming to *optimization problems*. Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution *an* optimal solution to the problem, as opposed to *the* optimal solution, since there may be several solutions that achieve the optimal value.

When developing a dynamic-programming algorithm, we follow a sequence of four steps:

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic-programming solution to a problem. If we need only the value of an optimal solution, and not the solution itself, then we can omit step 4. When we do perform step 4, we sometimes maintain additional information during step 3 so that we can easily construct an optimal solution.

The sections that follow use the dynamic-programming method to solve some optimization problems. Section 15.1 examines the problem of cutting a rod into

rods of smaller length in way that maximizes their total value. Section 15.2 asks how we can multiply a chain of matrices while performing the fewest total scalar multiplications. Given these examples of dynamic programming, Section 15.3 discusses two key characteristics that a problem must have for dynamic programming to be a viable solution technique. Section 15.4 then shows how to find the longest common subsequence of two sequences via dynamic programming. Finally, Section 15.5 uses dynamic programming to construct binary search trees that are optimal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in deciding where to cut steel rods. Serling Enterprises buys long steel rods and cuts them into shorter rods, which it then sells. Each cut is free. The management of Serling Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i = 1, 2, ..., the price p_i in dollars that Serling Enterprises charges for a rod of length i inches. Rod lengths are always an integral number of inches. Figure 15.1 gives a sample price table.

The **rod-cutting problem** is the following. Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces. Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n=4. Figure 15.2 shows all the ways to cut up a rod of 4 inches in length, including the way with no cuts at all. We see that cutting a 4-inch rod into two 2-inch pieces produces revenue $p_2 + p_2 = 5 + 5 = 10$, which is optimal.

We can cut up a rod of length n in 2^{n-1} different ways, since we have an independent option of cutting, or not cutting, at distance i inches from the left end,

Figure 15.1 A sample price table for rods. Each rod of length i inches earns the company p_i dollars of revenue.

15.1 Rod cutting 361

Figure 15.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value of that piece, according to the sample price chart of Figure 15.1. The optimal strategy is part (c)—cutting the rod into two pieces of length 2—which has total value 10.

for $i=1,2,\ldots,n-1$. We denote a decomposition into pieces using ordinary additive notation, so that 7=2+2+3 indicates that a rod of length 7 is cut into three pieces—two of length 2 and one of length 3. If an optimal solution cuts the rod into k pieces, for some $1 \le k \le n$, then an optimal decomposition

$$n = i_1 + i_2 + \cdots + i_k$$

of the rod into pieces of lengths i_1, i_2, \ldots, i_k provides maximum corresponding revenue

$$r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$$
.

For our sample problem, we can determine the optimal revenue figures r_i , for i = 1, 2, ..., 10, by inspection, with the corresponding optimal decompositions

¹If we required the pieces to be cut in order of nondecreasing size, there would be fewer ways to consider. For n=4, we would consider only 5 such ways: parts (a), (b), (c), (e), and (h) in Figure 15.2. The number of ways is called the *partition function*; it is approximately equal to $e^{\pi\sqrt{2n/3}}/4n\sqrt{3}$. This quantity is less than 2^{n-1} , but still much greater than any polynomial in n. We shall not pursue this line of inquiry further, however.

```
r_1 = 1 from solution 1 = 1 (no cuts),

r_2 = 5 from solution 2 = 2 (no cuts),

r_3 = 8 from solution 3 = 3 (no cuts),

r_4 = 10 from solution 4 = 2 + 2,

r_5 = 13 from solution 5 = 2 + 3,

r_6 = 17 from solution 6 = 6 (no cuts),

r_7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3,

r_8 = 22 from solution 8 = 2 + 6,

r_9 = 25 from solution 9 = 3 + 6,

r_{10} = 30 from solution 10 = 10 (no cuts).
```

More generally, we can frame the values r_n for $n \ge 1$ in terms of optimal revenues from shorter rods:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1) . \tag{15.1}$$

The first argument, p_n , corresponds to making no cuts at all and selling the rod of length n as is. The other n-1 arguments to max correspond to the maximum revenue obtained by making an initial cut of the rod into two pieces of size i and n-i, for each $i=1,2,\ldots,n-1$, and then optimally cutting up those pieces further, obtaining revenues r_i and r_{n-i} from those two pieces. Since we don't know ahead of time which value of i optimizes revenue, we have to consider all possible values for i and pick the one that maximizes revenue. We also have the option of picking no i at all if we can obtain more revenue by selling the rod uncut.

Note that to solve the original problem of size n, we solve smaller problems of the same type, but of smaller sizes. Once we make the first cut, we may consider the two pieces as independent instances of the rod-cutting problem. The overall optimal solution incorporates optimal solutions to the two related subproblems, maximizing revenue from each of those two pieces. We say that the rod-cutting problem exhibits *optimal substructure*: optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently.

In a related, but slightly simpler, way to arrange a recursive structure for the rodcutting problem, we view a decomposition as consisting of a first piece of length icut off the left-hand end, and then a right-hand remainder of length n-i. Only the remainder, and not the first piece, may be further divided. We may view every decomposition of a length-n rod in this way: as a first piece followed by some decomposition of the remainder. When doing so, we can couch the solution with no cuts at all as saying that the first piece has size i=n and revenue p_n and that the remainder has size 0 with corresponding revenue $r_0=0$. We thus obtain the following simpler version of equation (15.1):

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}) . {15.2}$$

15.1 Rod cutting 363

In this formulation, an optimal solution embodies the solution to only *one* related subproblem—the remainder—rather than two.

Recursive top-down implementation

The following procedure implements the computation implicit in equation (15.2) in a straightforward, top-down, recursive manner.

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

Procedure CUT-ROD takes as input an array p[1..n] of prices and an integer n, and it returns the maximum revenue possible for a rod of length n. If n=0, no revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the maximum revenue q to $-\infty$, so that the **for** loop in lines 4–5 correctly computes $q=\max_{1\leq i\leq n}(p_i+\text{CUT-ROD}(p,n-i))$; line 6 then returns this value. A simple induction on n proves that this answer is equal to the desired answer r_n , using equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run it on your computer, you would find that once the input size becomes moderately large, your program would take a long time to run. For n=40, you would find that your program takes at least several minutes, and most likely more than an hour. In fact, you would find that each time you increase n by 1, your program's running time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself recursively over and over again with the same parameter values; it solves the same subproblems repeatedly. Figure 15.3 illustrates what happens for n=4: CUT-ROD(p,n) calls CUT-ROD(p,n-i) for $i=1,2,\ldots,n$. Equivalently, CUT-ROD(p,n) calls CUT-ROD(p,j) for each $j=0,1,\ldots,n-1$. When this process unfolds recursively, the amount of work done, as a function of n, grows explosively.

To analyze the running time of CUT-ROD, let T(n) denote the total number of calls made to CUT-ROD when called with its second parameter equal to n. This expression equals the number of nodes in a subtree whose root is labeled n in the recursion tree. The count includes the initial call at its root. Thus, T(0) = 1 and

Figure 15.3 The recursion tree showing recursive calls resulting from a call CUT-ROD(p,n) for n=4. Each node label gives the size n of the corresponding subproblem, so that an edge from a parent with label s to a child with label t corresponds to cutting off an initial piece of size s-t and leaving a remaining subproblem of size t. A path from the root to a leaf corresponds to one of the 2^{n-1} ways of cutting up a rod of length n. In general, this recursion tree has 2^n nodes and 2^{n-1} leaves.

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j).$$
(15.3)

The initial 1 is for the call at the root, and the term T(j) counts the number of calls (including recursive calls) due to the call Cut-Rod(p, n - i), where j = n - i. As Exercise 15.1-1 asks you to show,

$$T(n) = 2^n (15.4)$$

and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD explicitly considers all the 2^{n-1} possible ways of cutting up a rod of length n. The tree of recursive calls has 2^{n-1} leaves, one for each possible way of cutting up the rod. The labels on the simple path from the root to a leaf give the sizes of each remaining right-hand piece before making each cut. That is, the labels give the corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting

We now show how to convert CUT-ROD into an efficient algorithm, using dynamic programming.

The dynamic-programming method works as follows. Having observed that a naive recursive solution is inefficient because it solves the same subproblems repeatedly, we arrange for each subproblem to be solved only *once*, saving its solution. If we need to refer to this subproblem's solution again later, we can just look it

15.1 Rod cutting 365

up, rather than recompute it. Dynamic programming thus uses additional memory to save computation time; it serves an example of a *time-memory trade-off*. The savings may be dramatic: an exponential-time solution may be transformed into a polynomial-time solution. A dynamic-programming approach runs in polynomial time when the number of *distinct* subproblems involved is polynomial in the input size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming approach. We shall illustrate both of them with our rod-cutting example.

The first approach is *top-down with memoization*.² In this approach, we write the procedure recursively in a natural manner, but modified to save the result of each subproblem (usually in an array or hash table). The procedure now first checks to see whether it has previously solved this subproblem. If so, it returns the saved value, saving further computation at this level; if not, the procedure computes the value in the usual manner. We say that the recursive procedure has been *memoized*; it "remembers" what results it has computed previously.

The second approach is the *bottom-up method*. This approach typically depends on some natural notion of the "size" of a subproblem, such that solving any particular subproblem depends only on solving "smaller" subproblems. We sort the subproblems by size and solve them in size order, smallest first. When solving a particular subproblem, we have already solved all of the smaller subproblems its solution depends upon, and we have saved their solutions. We solve each subproblem only once, and when we first see it, we have already solved all of its prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time, except in unusual circumstances where the top-down approach does not actually recurse to examine all possible subproblems. The bottom-up approach often has much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memoization added:

```
MEMOIZED-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

²This is not a misspelling. The word really is *memoization*, not *memorization*. *Memoization* comes from *memo*, since the technique consists of recording a value so that we can look it up later.

```
MEMOIZED-CUT-ROD-AUX(p, n, r)

1 if r[n] \ge 0

2 return r[n]

3 if n = 0

4 q = 0

5 else q = -\infty

6 for i = 1 to n

7 q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

8 r[n] = q

9 return q
```

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary array r[0..n] with the value $-\infty$, a convenient choice with which to denote "unknown." (Known revenue values are always nonnegative.) It then calls its helper routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7 compute the desired value q in the usual manner, line 8 saves it in r[n], and line 9 returns it.

The bottom-up version is even simpler:

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD uses the natural ordering of the subproblems: a problem of size i is "smaller" than a subproblem of size j if i < j. Thus, the procedure solves subproblems of sizes $j = 0, 1, \ldots, n$, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array r[0..n] in which to save the results of the subproblems, and line 2 initializes r[0] to 0, since a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j, for j = 1, 2, ..., n, in order of increasing size. The approach used to solve a problem of a particular size j is the same as that used by CUT-ROD, except that line 6 now

15.1 Rod cutting 367

Figure 15.4 The subproblem graph for the rod-cutting problem with n = 4. The vertex labels give the sizes of the corresponding subproblems. A directed edge (x, y) indicates that we need a solution to subproblem y when solving subproblem x. This graph is a reduced version of the tree of Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges go from parent to child.

directly references array entry r[j-i] instead of making a recursive call to solve the subproblem of size j-i. Line 7 saves in r[j] the solution to the subproblem of size j. Finally, line 8 returns r[n], which equals the optimal value r_n .

The bottom-up and top-down versions have the same asymptotic running time. The running time of procedure BOTTOM-UP-CUT-ROD is $\Theta(n^2)$, due to its doubly-nested loop structure. The number of iterations of its inner **for** loop, in lines 5–6, forms an arithmetic series. The running time of its top-down counterpart, MEMOIZED-CUT-ROD, is also $\Theta(n^2)$, although this running time may be a little harder to see. Because a recursive call to solve a previously solved subproblem returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It solves subproblems for sizes $0, 1, \ldots, n$. To solve a subproblem of size n, the **for** loop of lines 6–7 iterates n times. Thus, the total number of iterations of this **for** loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total of $\Theta(n^2)$ iterations, just like the inner **for** loop of BOTTOM-UP-CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see aggregate analysis in detail in Section 17.1.)

Subproblem graphs

When we think about a dynamic-programming problem, we should understand the set of subproblems involved and how subproblems depend on one another.

The *subproblem graph* for the problem embodies exactly this information. Figure 15.4 shows the subproblem graph for the rod-cutting problem with n=4. It is a directed graph, containing one vertex for each distinct subproblem. The sub-

problem graph has a directed edge from the vertex for subproblem x to the vertex for subproblem y if determining an optimal solution for subproblem x involves directly considering an optimal solution for subproblem y. For example, the subproblem graph contains an edge from x to y if a top-down recursive procedure for solving x directly calls itself to solve y. We can think of the subproblem graph as a "reduced" or "collapsed" version of the recursion tree for the top-down recursive method, in which we coalesce all nodes for the same subproblem into a single vertex and direct all edges from parent to child.

The bottom-up method for dynamic programming considers the vertices of the subproblem graph in such an order that we solve the subproblems y adjacent to a given subproblem x before we solve subproblem x. (Recall from Section B.4 that the adjacency relation is not necessarily symmetric.) Using the terminology from Chapter 22, in a bottom-up dynamic-programming algorithm, we consider the vertices of the subproblem graph in an order that is a "reverse topological sort," or a "topological sort of the transpose" (see Section 22.4) of the subproblem graph. In other words, no subproblem is considered until all of the subproblems it depends upon have been solved. Similarly, using notions from the same chapter, we can view the top-down method (with memoization) for dynamic programming as a "depth-first search" of the subproblem graph (see Section 22.3).

The size of the subproblem graph G=(V,E) can help us determine the running time of the dynamic programming algorithm. Since we solve each subproblem just once, the running time is the sum of the times needed to solve each subproblem. Typically, the time to compute the solution to a subproblem is proportional to the degree (number of outgoing edges) of the corresponding vertex in the subproblem graph, and the number of subproblems is equal to the number of vertices in the subproblem graph. In this common case, the running time of dynamic programming is linear in the number of vertices and edges.

Reconstructing a solution

Our dynamic-programming solutions to the rod-cutting problem return the value of an optimal solution, but they do not return an actual solution: a list of piece sizes. We can extend the dynamic-programming approach to record not only the optimal *value* computed for each subproblem, but also a *choice* that led to the optimal value. With this information, we can readily print an optimal solution.

Here is an extended version of BOTTOM-UP-CUT-ROD that computes, for each rod size j, not only the maximum revenue r_j , but also s_j , the optimal size of the first piece to cut off:

15.1 Rod cutting 369

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

```
1 let r[0..n] and s[0..n] be new arrays
2 r[0] = 0
3 for j = 1 to n
4
        q = -\infty
5
        for i = 1 to j
            if q < p[i] + r[j-i]
6
7
              q = p[i] + r[j - i]
                s[j] = i
8
       r[j] = q
9
10
   return r and s
```

This procedure is similar to BOTTOM-UP-CUT-ROD, except that it creates the array s in line 1, and it updates s[j] in line 8 to hold the optimal size i of the first piece to cut off when solving a subproblem of size j.

The following procedure takes a price table p and a rod size n, and it calls EXTENDED-BOTTOM-UP-CUT-ROD to compute the array s[1..n] of optimal first-piece sizes and then prints out the complete list of piece sizes in an optimal decomposition of a rod of length n:

```
PRINT-CUT-ROD-SOLUTION (p, n)

1 (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

2 while n > 0

3 print s[n]

4 n = n - s[n]
```

In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD (p, 10) would return the following arrays:

A call to PRINT-CUT-ROD-SOLUTION (p, 10) would print just 10, but a call with n = 7 would print the cuts 1 and 6, corresponding to the first optimal decomposition for r_7 given earlier.

Exercises

15.1-1

Show that equation (15.4) follows from equation (15.3) and the initial condition T(0) = 1.

15.1-2

Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the *density* of a rod of length i to be p_i/i , that is, its value per inch. The greedy strategy for a rod of length n cuts off a first piece of length i, where $1 \le i \le n$, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n-i.

15.1-3

Consider a modification of the rod-cutting problem in which, in addition to a price p_i for each rod, each cut incurs a fixed cost of c. The revenue associated with a solution is now the sum of the prices of the pieces minus the costs of making the cuts. Give a dynamic-programming algorithm to solve this modified problem.

15.1-4

Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution, too.

15.1-5

The Fibonacci numbers are defined by recurrence (3.22). Give an O(n)-time dynamic-programming algorithm to compute the nth Fibonacci number. Draw the subproblem graph. How many vertices and edges are in the graph?

15.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem of matrix-chain multiplication. We are given a sequence (chain) $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices to be multiplied, and we wish to compute the product

$$A_1 A_2 \cdots A_n . \tag{15.5}$$

We can evaluate the expression (15.5) using the standard algorithm for multiplying pairs of matrices as a subroutine once we have parenthesized it to resolve all ambiguities in how the matrices are multiplied together. Matrix multiplication is associative, and so all parenthesizations yield the same product. A product of matrices is *fully parenthesized* if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses. For example, if the chain of matrices is $\langle A_1, A_2, A_3, A_4 \rangle$, then we can fully parenthesize the product $A_1A_2A_3A_4$ in five distinct ways:

```
(A_1(A_2(A_3A_4))),

(A_1((A_2A_3)A_4)),

((A_1A_2)(A_3A_4)),

((A_1(A_2A_3))A_4),

(((A_1A_2)A_3)A_4).
```

How we parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product. Consider first the cost of multiplying two matrices. The standard algorithm is given by the following pseudocode, which generalizes the SQUARE-MATRIX-MULTIPLY procedure from Section 4.2. The attributes *rows* and *columns* are the numbers of rows and columns in a matrix.

```
MATRIX-MULTIPLY (A, B)
1
   if A.columns \neq B.rows
        error "incompatible dimensions"
2
3
   else let C be a new A.rows \times B.columns matrix
4
        for i = 1 to A. rows
5
             for j = 1 to B. columns
6
                 c_{ii} = 0
7
                 for k = 1 to A. columns
8
                      c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
9
        return C
```

We can multiply two matrices A and B only if they are **compatible**: the number of columns of A must equal the number of rows of B. If A is a $p \times q$ matrix and B is a $q \times r$ matrix, the resulting matrix C is a $p \times r$ matrix. The time to compute C is dominated by the number of scalar multiplications in line 8, which is pqr. In what follows, we shall express costs in terms of the number of scalar multiplications.

To illustrate the different costs incurred by different parenthesizations of a matrix product, consider the problem of a chain $\langle A_1,A_2,A_3\rangle$ of three matrices. Suppose that the dimensions of the matrices are 10×100 , 100×5 , and 5×50 , respectively. If we multiply according to the parenthesization $((A_1A_2)A_3)$, we perform $10\cdot 100\cdot 5=5000$ scalar multiplications to compute the 10×5 matrix product A_1A_2 , plus another $10\cdot 5\cdot 50=2500$ scalar multiplications to multiply this matrix by A_3 , for a total of 7500 scalar multiplications. If instead we multiply according to the parenthesization $(A_1(A_2A_3))$, we perform $100\cdot 5\cdot 50=25,000$ scalar multiplications to compute the 100×50 matrix product A_2A_3 , plus another $10\cdot 100\cdot 50=50,000$ scalar multiplications to multiply A_1 by this matrix, for a total of 75,000 scalar multiplications. Thus, computing the product according to the first parenthesization is 10 times faster.

We state the *matrix-chain multiplication problem* as follows: given a chain $\langle A_1, A_2, \dots, A_n \rangle$ of *n* matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension

 $p_{i-1} \times p_i$, fully parenthesize the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Note that in the matrix-chain multiplication problem, we are not actually multiplying matrices. Our goal is only to determine an order for multiplying matrices that has the lowest cost. Typically, the time invested in determining this optimal order is more than paid for by the time saved later on when actually performing the matrix multiplications (such as performing only 7500 scalar multiplications instead of 75,000).

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic programming, let us convince ourselves that exhaustively checking all possible parenthesizations does not yield an efficient algorithm. Denote the number of alternative parenthesizations of a sequence of n matrices by P(n). When n=1, we have just one matrix and therefore only one way to fully parenthesize the matrix product. When $n \geq 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts, and the split between the two subproducts may occur between the kth and (k+1)st matrices for any $k=1,2,\ldots,n-1$. Thus, we obtain the recurrence

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$
 (15.6)

Problem 12-4 asked you to show that the solution to a similar recurrence is the sequence of *Catalan numbers*, which grows as $\Omega(4^n/n^{3/2})$. A simpler exercise (see Exercise 15.2-3) is to show that the solution to the recurrence (15.6) is $\Omega(2^n)$. The number of solutions is thus exponential in n, and the brute-force method of exhaustive search makes for a poor strategy when determining how to optimally parenthesize a matrix chain.

Applying dynamic programming

We shall use the dynamic-programming method to determine how to optimally parenthesize a matrix chain. In so doing, we shall follow the four-step sequence that we stated at the beginning of this chapter:

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

We shall go through these steps in order, demonstrating clearly how we apply each step to the problem.

Step 1: The structure of an optimal parenthesization

For our first step in the dynamic-programming paradigm, we find the optimal substructure and then use it to construct an optimal solution to the problem from optimal solutions to subproblems. In the matrix-chain multiplication problem, we can perform this step as follows. For convenience, let us adopt the notation $A_{i...j}$, where $i \leq j$, for the matrix that results from evaluating the product $A_iA_{i+1}\cdots A_j$. Observe that if the problem is nontrivial, i.e., i < j, then to parenthesize the product $A_iA_{i+1}\cdots A_j$, we must split the product between A_k and A_{k+1} for some integer k in the range $i \leq k < j$. That is, for some value of k, we first compute the matrices $A_{i...k}$ and $A_{k+1...j}$ and then multiply them together to produce the final product $A_{i...j}$. The cost of parenthesizing this way is the cost of computing the matrix $A_{i...k}$, plus the cost of computing $A_{k+1...j}$, plus the cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that to optimally parenthesize $A_iA_{i+1}\cdots A_j$, we split the product between A_k and A_{k+1} . Then the way we parenthesize the "prefix" subchain $A_iA_{i+1}\cdots A_k$ within this optimal parenthesization of $A_iA_{i+1}\cdots A_j$ must be an optimal parenthesization of $A_iA_{i+1}\cdots A_k$. Why? If there were a less costly way to parenthesize $A_iA_{i+1}\cdots A_k$, then we could substitute that parenthesization in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$ to produce another way to parenthesize $A_iA_{i+1}\cdots A_j$ whose cost was lower than the optimum: a contradiction. A similar observation holds for how we parenthesize the subchain $A_{k+1}A_{k+2}\cdots A_j$ in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$: it must be an optimal parenthesization of $A_{k+1}A_{k+2}\cdots A_j$.

Now we use our optimal substructure to show that we can construct an optimal solution to the problem from optimal solutions to subproblems. We have seen that any solution to a nontrivial instance of the matrix-chain multiplication problem requires us to split the product, and that any optimal solution contains within it optimal solutions to subproblem instances. Thus, we can build an optimal solution to an instance of the matrix-chain multiplication problem by splitting the problem into two subproblems (optimally parenthesizing $A_iA_{i+1}\cdots A_k$ and $A_{k+1}A_{k+2}\cdots A_j$), finding optimal solutions to subproblem instances, and then combining these optimal subproblem solutions. We must ensure that when we search for the correct place to split the product, we have considered all possible places, so that we are sure of having examined the optimal one.

Step 2: A recursive solution

Next, we define the cost of an optimal solution recursively in terms of the optimal solutions to subproblems. For the matrix-chain multiplication problem, we pick as our subproblems the problems of determining the minimum cost of parenthesizing $A_i A_{i+1} \cdots A_j$ for $1 \le i \le j \le n$. Let m[i,j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i...j}$; for the full problem, the lowest-cost way to compute $A_{1..n}$ would thus be m[1,n].

We can define m[i,j] recursively as follows. If i=j, the problem is trivial; the chain consists of just one matrix $A_{i..i}=A_i$, so that no scalar multiplications are necessary to compute the product. Thus, m[i,i]=0 for $i=1,2,\ldots,n$. To compute m[i,j] when i< j, we take advantage of the structure of an optimal solution from step 1. Let us assume that to optimally parenthesize, we split the product $A_iA_{i+1}\cdots A_j$ between A_k and A_{k+1} , where $i\leq k< j$. Then, m[i,j] equals the minimum cost for computing the subproducts $A_{i..k}$ and $A_{k+1...j}$, plus the cost of multiplying these two matrices together. Recalling that each matrix A_i is $p_{i-1}\times p_i$, we see that computing the matrix product $A_{i..k}A_{k+1...j}$ takes $p_{i-1}p_kp_j$ scalar multiplications. Thus, we obtain

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$
.

This recursive equation assumes that we know the value of k, which we do not. There are only j-i possible values for k, however, namely $k=i,i+1,\ldots,j-1$. Since the optimal parenthesization must use one of these values for k, we need only check them all to find the best. Thus, our recursive definition for the minimum cost of parenthesizing the product $A_i A_{i+1} \cdots A_j$ becomes

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j. \end{cases}$$
(15.7)

The m[i, j] values give the costs of optimal solutions to subproblems, but they do not provide all the information we need to construct an optimal solution. To help us do so, we define s[i, j] to be a value of k at which we split the product $A_i A_{i+1} \cdots A_j$ in an optimal parenthesization. That is, s[i, j] equals a value k such that $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1} p_k p_i$.

Step 3: Computing the optimal costs

At this point, we could easily write a recursive algorithm based on recurrence (15.7) to compute the minimum cost m[1, n] for multiplying $A_1A_2 \cdots A_n$. As we saw for the rod-cutting problem, and as we shall see in Section 15.3, this recursive algorithm takes exponential time, which is no better than the brute-force method of checking each way of parenthesizing the product.

Observe that we have relatively few distinct subproblems: one subproblem for each choice of i and j satisfying $1 \le i \le j \le n$, or $\binom{n}{2} + n = \Theta(n^2)$ in all. A recursive algorithm may encounter each subproblem many times in different branches of its recursion tree. This property of overlapping subproblems is the second hallmark of when dynamic programming applies (the first hallmark being optimal substructure).

Instead of computing the solution to recurrence (15.7) recursively, we compute the optimal cost by using a tabular, bottom-up approach. (We present the corresponding top-down approach using memoization in Section 15.3.)

We shall implement the tabular, bottom-up method in the procedure MATRIX-CHAIN-ORDER, which appears below. This procedure assumes that matrix A_i has dimensions $p_{i-1} \times p_i$ for i = 1, 2, ..., n. Its input is a sequence $p = \langle p_0, p_1, ..., p_n \rangle$, where p.length = n + 1. The procedure uses an auxiliary table m[1..n, 1..n] for storing the m[i, j] costs and another auxiliary table s[1..n-1,2..n] that records which index of k achieved the optimal cost in computing m[i,j]. We shall use the table s to construct an optimal solution.

In order to implement the bottom-up approach, we must determine which entries of the table we refer to when computing m[i,j]. Equation (15.7) shows that the cost m[i,j] of computing a matrix-chain product of j-i+1 matrices depends only on the costs of computing matrix-chain products of fewer than j-i+1 matrices. That is, for $k=i,i+1,\ldots,j-1$, the matrix $A_{i...k}$ is a product of k-i+1 < j-i+1 matrices and the matrix $A_{k+1...j}$ is a product of j-k < j-i+1 matrices. Thus, the algorithm should fill in the table m in a manner that corresponds to solving the parenthesization problem on matrix chains of increasing length. For the subproblem of optimally parenthesizing the chain $A_iA_{i+1}\cdots A_j$, we consider the subproblem size to be the length j-i+1 of the chain.

MATRIX-CHAIN-ORDER (p)

```
1 \quad n = p.length - 1
    let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
 3
    for i = 1 to n
 4
         m[i,i] = 0
 5
    for l = 2 to n
                               # l is the chain length
 6
         for i = 1 to n - l + 1
             i = i + l - 1
 7
             m[i, j] = \infty
 8
 9
             for k = i to i - 1
                  q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
10
                  if q < m[i, j]
11
12
                      m[i, j] = q
                      s[i, j] = k
13
14
    return m and s
```


Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n=6 and the following matrix dimensions:

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the darker entries, the pairs that have the same shading are taken together in line 10 when computing

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13,000 , \\ m[2,3] + m[4,5] + p_1 p_3 p_5 &= 2625 + 1000 + 35 \cdot 5 \cdot 20 &= 7125 , \\ m[2,4] + m[5,5] + p_1 p_4 p_5 &= 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11,375 \end{cases}$$

$$= 7125 .$$

The algorithm first computes m[i,i] = 0 for i = 1,2,...,n (the minimum costs for chains of length 1) in lines 3–4. It then uses recurrence (15.7) to compute m[i,i+1] for i = 1,2,...,n-1 (the minimum costs for chains of length l = 2) during the first execution of the **for** loop in lines 5–13. The second time through the loop, it computes m[i,i+2] for i = 1,2,...,n-2 (the minimum costs for chains of length l = 3), and so forth. At each step, the m[i,j] cost computed in lines 10–13 depends only on table entries m[i,k] and m[k+1,j] already computed.

Figure 15.5 illustrates this procedure on a chain of n=6 matrices. Since we have defined m[i,j] only for $i \leq j$, only the portion of the table m strictly above the main diagonal is used. The figure shows the table rotated to make the main diagonal run horizontally. The matrix chain is listed along the bottom. Using this layout, we can find the minimum cost m[i,j] for multiplying a subchain $A_i A_{i+1} \cdots A_j$ of matrices at the intersection of lines running northeast from A_i and

northwest from A_j . Each horizontal row in the table contains the entries for matrix chains of the same length. MATRIX-CHAIN-ORDER computes the rows from bottom to top and from left to right within each row. It computes each entry m[i, j] using the products $p_{i-1}p_kp_j$ for $k=i,i+1,\ldots,j-1$ and all entries southwest and southeast from m[i,j].

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER yields a running time of $O(n^3)$ for the algorithm. The loops are nested three deep, and each loop index (l, i, and k) takes on at most n-1 values. Exercise 15.2-5 asks you to show that the running time of this algorithm is in fact also $\Omega(n^3)$. The algorithm requires $\Theta(n^2)$ space to store the m and s tables. Thus, MATRIX-CHAIN-ORDER is much more efficient than the exponential-time method of enumerating all possible parenthesizations and checking each one.

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar multiplications needed to compute a matrix-chain product, it does not directly show how to multiply the matrices. The table s[1..n-1,2..n] gives us the information we need to do so. Each entry s[i,j] records a value of k such that an optimal parenthesization of $A_iA_{i+1}\cdots A_j$ splits the product between A_k and A_{k+1} . Thus, we know that the final matrix multiplication in computing $A_{1..n}$ optimally is $A_{1..s[1,n]}A_{s[1,n]+1..n}$. We can determine the earlier matrix multiplications recursively, since s[1,s[1,n]] determines the last matrix multiplication when computing $A_{1..s[1,n]}$ and s[s[1,n]+1,n] determines the last matrix multiplication when computing $A_{s[1,n]+1..n}$. The following recursive procedure prints an optimal parenthesization of $\langle A_i, A_{i+1}, \ldots, A_j \rangle$, given the s table computed by MATRIX-CHAIN-ORDER and the indices i and j. The initial call PRINT-OPTIMAL-PARENS (s,1,n) prints an optimal parenthesization of $\langle A_1, A_2, \ldots, A_n \rangle$.

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

In the example of Figure 15.5, the call PRINT-OPTIMAL-PARENS (s, 1, 6) prints the parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$.

Exercises

15.2-1

Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is (5, 10, 3, 12, 5, 50, 6).

15.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY (A, s, i, j) that actually performs the optimal matrix-chain multiplication, given the sequence of matrices (A_1, A_2, \ldots, A_n) , the s table computed by MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call would be MATRIX-CHAIN-MULTIPLY (A, s, 1, n).)

15.2-3

Use the substitution method to show that the solution to the recurrence (15.6) is $\Omega(2^n)$.

15.2-4

Describe the subproblem graph for matrix-chain multiplication with an input chain of length n. How many vertices does it have? How many edges does it have, and which edges are they?

15.2-5

Let R(i, j) be the number of times that table entry m[i, j] is referenced while computing other table entries in a call of MATRIX-CHAIN-ORDER. Show that the total number of references for the entire table is

$$\sum_{i=1}^{n} \sum_{j=i}^{n} R(i,j) = \frac{n^3 - n}{3}.$$

(Hint: You may find equation (A.3) useful.)

15.2-6

Show that a full parenthesization of an n-element expression has exactly n-1 pairs of parentheses.

15.3 Elements of dynamic programming

Although we have just worked through two examples of the dynamic-programming method, you might still be wondering just when the method applies. From an engineering perspective, when should we look for a dynamic-programming solution to a problem? In this section, we examine the two key ingredients that an opti-

mization problem must have in order for dynamic programming to apply: optimal substructure and overlapping subproblems. We also revisit and discuss more fully how memoization might help us take advantage of the overlapping-subproblems property in a top-down recursive approach.

Optimal substructure

The first step in solving an optimization problem by dynamic programming is to characterize the structure of an optimal solution. Recall that a problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems. Whenever a problem exhibits optimal substructure, we have a good clue that dynamic programming might apply. (As Chapter 16 discusses, it also might mean that a greedy strategy applies, however.) In dynamic programming, we build an optimal solution to the problem from optimal solutions to subproblems. Consequently, we must take care to ensure that the range of subproblems we consider includes those used in an optimal solution.

We discovered optimal substructure in both of the problems we have examined in this chapter so far. In Section 15.1, we observed that the optimal way of cutting up a rod of length n (if we make any cuts at all) involves optimally cutting up the two pieces resulting from the first cut. In Section 15.2, we observed that an optimal parenthesization of $A_i A_{i+1} \cdots A_j$ that splits the product between A_k and A_{k+1} contains within it optimal solutions to the problems of parenthesizing $A_i A_{i+1} \cdots A_k$ and $A_{k+1} A_{k+2} \cdots A_j$.

You will find yourself following a common pattern in discovering optimal substructure:

- 1. You show that a solution to the problem consists of making a choice, such as choosing an initial cut in a rod or choosing an index at which to split the matrix chain. Making this choice leaves one or more subproblems to be solved.
- 2. You suppose that for a given problem, you are given the choice that leads to an optimal solution. You do not concern yourself yet with how to determine this choice. You just assume that it has been given to you.
- 3. Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- 4. You show that the solutions to the subproblems used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique. You do so by supposing that each of the subproblem solutions is not optimal and then deriving a contradiction. In particular, by "cutting out" the nonoptimal solution to each subproblem and "pasting in" the optimal one, you show that you can get a better solution to the original problem, thus contradicting your supposition that you already had an optimal solution. If an optimal

solution gives rise to more than one subproblem, they are typically so similar that you can modify the cut-and-paste argument for one to apply to the others with little effort.

To characterize the space of subproblems, a good rule of thumb says to try to keep the space as simple as possible and then expand it as necessary. For example, the space of subproblems that we considered for the rod-cutting problem contained the problems of optimally cutting up a rod of length i for each size i. This subproblem space worked well, and we had no need to try a more general space of subproblems.

Conversely, suppose that we had tried to constrain our subproblem space for matrix-chain multiplication to matrix products of the form $A_1A_2\cdots A_j$. As before, an optimal parenthesization must split this product between A_k and A_{k+1} for some $1 \le k < j$. Unless we could guarantee that k always equals j-1, we would find that we had subproblems of the form $A_1A_2\cdots A_k$ and $A_{k+1}A_{k+2}\cdots A_j$, and that the latter subproblem is not of the form $A_1A_2\cdots A_j$. For this problem, we needed to allow our subproblems to vary at "both ends," that is, to allow both i and j to vary in the subproblem $A_iA_{i+1}\cdots A_j$.

Optimal substructure varies across problem domains in two ways:

- 1. how many subproblems an optimal solution to the original problem uses, and
- 2. how many choices we have in determining which subproblem(s) to use in an optimal solution.

In the rod-cutting problem, an optimal solution for cutting up a rod of size n uses just one subproblem (of size n-i), but we must consider n choices for i in order to determine which one yields an optimal solution. Matrix-chain multiplication for the subchain $A_iA_{i+1}\cdots A_j$ serves as an example with two subproblems and j-i choices. For a given matrix A_k at which we split the product, we have two subproblems—parenthesizing $A_iA_{i+1}\cdots A_k$ and parenthesizing $A_{k+1}A_{k+2}\cdots A_j$ —and we must solve *both* of them optimally. Once we determine the optimal solutions to subproblems, we choose from among j-i candidates for the index k.

Informally, the running time of a dynamic-programming algorithm depends on the product of two factors: the number of subproblems overall and how many choices we look at for each subproblem. In rod cutting, we had $\Theta(n)$ subproblems overall, and at most n choices to examine for each, yielding an $O(n^2)$ running time. Matrix-chain multiplication had $\Theta(n^2)$ subproblems overall, and in each we had at most n-1 choices, giving an $O(n^3)$ running time (actually, a $\Theta(n^3)$ running time, by Exercise 15.2-5).

Usually, the subproblem graph gives an alternative way to perform the same analysis. Each vertex corresponds to a subproblem, and the choices for a sub-

problem are the edges incident to that subproblem. Recall that in rod cutting, the subproblem graph had n vertices and at most n edges per vertex, yielding an $O(n^2)$ running time. For matrix-chain multiplication, if we were to draw the subproblem graph, it would have $\Theta(n^2)$ vertices and each vertex would have degree at most n-1, giving a total of $O(n^3)$ vertices and edges.

Dynamic programming often uses optimal substructure in a bottom-up fashion. That is, we first find optimal solutions to subproblems and, having solved the subproblems, we find an optimal solution to the problem. Finding an optimal solution to the problem entails making a choice among subproblems as to which we will use in solving the problem. The cost of the problem solution is usually the subproblem costs plus a cost that is directly attributable to the choice itself. In rod cutting, for example, first we solved the subproblems of determining optimal ways to cut up rods of length i for $i = 0, 1, \ldots, n - 1$, and then we determined which such subproblem yielded an optimal solution for a rod of length n, using equation (15.2). The cost attributable to the choice itself is the term p_i in equations of subchains of $A_i A_{i+1} \cdots A_j$, and then we chose the matrix A_k at which to split the product. The cost attributable to the choice itself is the term $p_{i-1} p_k p_j$.

In Chapter 16, we shall examine "greedy algorithms," which have many similarities to dynamic programming. In particular, problems to which greedy algorithms apply have optimal substructure. One major difference between greedy algorithms and dynamic programming is that instead of first finding optimal solutions to subproblems and then making an informed choice, greedy algorithms first make a "greedy" choice—the choice that looks best at the time—and then solve a resulting subproblem, without bothering to solve all possible related smaller subproblems. Surprisingly, in some cases this strategy works!

Subtleties

You should be careful not to assume that optimal substructure applies when it does not. Consider the following two problems in which we are given a directed graph G = (V, E) and vertices $u, v \in V$.

Unweighted shortest path: Find a path from u to v consisting of the fewest edges. Such a path must be simple, since removing a cycle from a path produces a path with fewer edges.

³We use the term "unweighted" to distinguish this problem from that of finding shortest paths with weighted edges, which we shall see in Chapters 24 and 25. We can use the breadth-first search technique of Chapter 22 to solve the unweighted problem.

Figure 15.6 A directed graph showing that the problem of finding a longest simple path in an unweighted directed graph does not have optimal substructure. The path $q \to r \to t$ is a longest simple path from q to t, but the subpath $q \to r$ is not a longest simple path from q to r, nor is the subpath $r \to t$ a longest simple path from r to t.

Unweighted longest simple path: Find a simple path from u to v consisting of the most edges. We need to include the requirement of simplicity because otherwise we can traverse a cycle as many times as we like to create paths with an arbitrarily large number of edges.

The unweighted shortest-path problem exhibits optimal substructure, as follows. Suppose that $u \neq v$, so that the problem is nontrivial. Then, any path p from u to v must contain an intermediate vertex, say w. (Note that w may be u or v.) Thus, we can decompose the path $u \stackrel{p}{\leadsto} v$ into subpaths $u \stackrel{p_1}{\leadsto} w \stackrel{p_2}{\leadsto} v$. Clearly, the number of edges in p equals the number of edges in p_1 plus the number of edges in p_2 . We claim that if p is an optimal (i.e., shortest) path from u to v, then p_1 must be a shortest path from u to w. Why? We use a "cut-and-paste" argument: if there were another path, say p_1' , from u to w with fewer edges than p_1 , then we could cut out p_1 and paste in p_1' to produce a path $u \stackrel{p_1'}{\leadsto} w \stackrel{p_2}{\leadsto} v$ with fewer edges than p, thus contradicting p's optimality. Symmetrically, p_2 must be a shortest path from w to v. Thus, we can find a shortest path from v to v and a shortest path from v to v and choosing an intermediate vertex v that yields the overall shortest path. In Section 25.2, we use a variant of this observation of optimal substructure to find a shortest path between every pair of vertices on a weighted, directed graph.

You might be tempted to assume that the problem of finding an unweighted longest simple path exhibits optimal substructure as well. After all, if we decompose a longest simple path $u \stackrel{p}{\leadsto} v$ into subpaths $u \stackrel{p_1}{\leadsto} w \stackrel{p_2}{\leadsto} v$, then mustn't p_1 be a longest simple path from u to w, and mustn't p_2 be a longest simple path from w to v? The answer is no! Figure 15.6 supplies an example. Consider the path $q \to r \to t$, which is a longest simple path from q to t. Is $q \to r$ a longest simple path from q to t? No, for the path $q \to s \to t \to r$ is a simple path that is longer. Is $r \to t$ a longest simple path from r to t? No again, for the path $r \to q \to s \to t$ is a simple path that is longer.

This example shows that for longest simple paths, not only does the problem lack optimal substructure, but we cannot necessarily assemble a "legal" solution to the problem from solutions to subproblems. If we combine the longest simple paths $q \to s \to t \to r$ and $r \to q \to s \to t$, we get the path $q \to s \to t \to r \to q \to s \to t$, which is not simple. Indeed, the problem of finding an unweighted longest simple path does not appear to have any sort of optimal substructure. No efficient dynamic-programming algorithm for this problem has ever been found. In fact, this problem is NP-complete, which—as we shall see in Chapter 34—means that we are unlikely to find a way to solve it in polynomial time.

Why is the substructure of a longest simple path so different from that of a shortest path? Although a solution to a problem for both longest and shortest paths uses two subproblems, the subproblems in finding the longest simple path are not inde*pendent*, whereas for shortest paths they are. What do we mean by subproblems being independent? We mean that the solution to one subproblem does not affect the solution to another subproblem of the same problem. For the example of Figure 15.6, we have the problem of finding a longest simple path from q to t with two subproblems: finding longest simple paths from q to r and from r to t. For the first of these subproblems, we choose the path $q \to s \to t \to r$, and so we have also used the vertices s and t. We can no longer use these vertices in the second subproblem, since the combination of the two solutions to subproblems would yield a path that is not simple. If we cannot use vertex t in the second problem, then we cannot solve it at all, since t is required to be on the path that we find, and it is not the vertex at which we are "splicing" together the subproblem solutions (that vertex being r). Because we use vertices s and t in one subproblem solution, we cannot use them in the other subproblem solution. We must use at least one of them to solve the other subproblem, however, and we must use both of them to solve it optimally. Thus, we say that these subproblems are not independent. Looked at another way, using resources in solving one subproblem (those resources being vertices) renders them unavailable for the other subproblem.

Why, then, are the subproblems independent for finding a shortest path? The answer is that by nature, the subproblems do not share resources. We claim that if a vertex w is on a shortest path p from p to p, then we can splice together any shortest path p w and any shortest path p v to produce a shortest path from p to p. We are assured that, other than p, no vertex can appear in both paths p and p. Why? Suppose that some vertex p w appears in both p and p, so that we can decompose p as p as p and p as p as p as p and p and p together; let's say that p has p edges. Now let us construct a path p and p to p from p to p. Because we have excised the paths from p to p and from p to p together; let's contains at least one edge, path p contains at most p edges, which contradicts

the assumption that p is a shortest path. Thus, we are assured that the subproblems for the shortest-path problem are independent.

Both problems examined in Sections 15.1 and 15.2 have independent subproblems. In matrix-chain multiplication, the subproblems are multiplying subchains $A_i A_{i+1} \cdots A_k$ and $A_{k+1} A_{k+2} \cdots A_j$. These subchains are disjoint, so that no matrix could possibly be included in both of them. In rod cutting, to determine the best way to cut up a rod of length n, we look at the best ways of cutting up rods of length i for $i = 0, 1, \ldots, n-1$. Because an optimal solution to the length-n problem includes just one of these subproblem solutions (after we have cut off the first piece), independence of subproblems is not an issue.

Overlapping subproblems

The second ingredient that an optimization problem must have for dynamic programming to apply is that the space of subproblems must be "small" in the sense that a recursive algorithm for the problem solves the same subproblems over and over, rather than always generating new subproblems. Typically, the total number of distinct subproblems is a polynomial in the input size. When a recursive algorithm revisits the same problem repeatedly, we say that the optimization problem has *overlapping subproblems*.⁴ In contrast, a problem for which a divide-and-conquer approach is suitable usually generates brand-new problems at each step of the recursion. Dynamic-programming algorithms typically take advantage of overlapping subproblems by solving each subproblem once and then storing the solution in a table where it can be looked up when needed, using constant time per lookup.

In Section 15.1, we briefly examined how a recursive solution to rod cutting makes exponentially many calls to find solutions of smaller subproblems. Our dynamic-programming solution takes an exponential-time recursive algorithm down to quadratic time.

To illustrate the overlapping-subproblems property in greater detail, let us reexamine the matrix-chain multiplication problem. Referring back to Figure 15.5, observe that MATRIX-CHAIN-ORDER repeatedly looks up the solution to subproblems in lower rows when solving subproblems in higher rows. For example, it references entry m[3, 4] four times: during the computations of m[2, 4], m[1, 4],

⁴It may seem strange that dynamic programming relies on subproblems being both independent and overlapping. Although these requirements may sound contradictory, they describe two different notions, rather than two points on the same axis. Two subproblems of the same problem are independent if they do not share resources. Two subproblems are overlapping if they are really the same subproblem that occurs as a subproblem of different problems.

Figure 15.7 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN(p, 1, 4). Each node contains the parameters i and j. The computations performed in a shaded subtree are replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN.

m[3, 5], and m[3, 6]. If we were to recompute m[3, 4] each time, rather than just looking it up, the running time would increase dramatically. To see how, consider the following (inefficient) recursive procedure that determines m[i, j], the minimum number of scalar multiplications needed to compute the matrix-chain product $A_{i...j} = A_i A_{i+1} \cdots A_j$. The procedure is based directly on the recurrence (15.7).

```
RECURSIVE-MATRIX-CHAIN(p, i, j)
1
   if i == j
2
       return 0
  m[i, j] = \infty
   for k = i to j - 1
5
       q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k)
            + RECURSIVE-MATRIX-CHAIN(p, k + 1, j)
            + p_{i-1}p_kp_i
       if q < m[i, j]
6
7
            m[i, j] = q
   return m[i, j]
```

Figure 15.7 shows the recursion tree produced by the call RECURSIVE-MATRIX-CHAIN(p, 1, 4). Each node is labeled by the values of the parameters i and j. Observe that some pairs of values occur many times.

In fact, we can show that the time to compute m[1, n] by this recursive procedure is at least exponential in n. Let T(n) denote the time taken by RECURSIVE-MATRIX-CHAIN to compute an optimal parenthesization of a chain of n matrices. Because the execution of lines 1-2 and of lines 6-7 each take at least unit time, as

does the multiplication in line 5, inspection of the procedure yields the recurrence

$$T(1) \ge 1$$
,
 $T(n) \ge 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1)$ for $n > 1$.

Noting that for i = 1, 2, ..., n-1, each term T(i) appears once as T(k) and once as T(n-k), and collecting the n-1 1s in the summation together with the 1 out front, we can rewrite the recurrence as

$$T(n) \ge 2\sum_{i=1}^{n-1} T(i) + n . (15.8)$$

We shall prove that $T(n) = \Omega(2^n)$ using the substitution method. Specifically, we shall show that $T(n) \ge 2^{n-1}$ for all $n \ge 1$. The basis is easy, since $T(1) \ge 1 = 2^0$. Inductively, for $n \ge 2$ we have

$$T(n) \geq 2\sum_{i=1}^{n-1} 2^{i-1} + n$$

$$= 2\sum_{i=0}^{n-2} 2^{i} + n$$

$$= 2(2^{n-1} - 1) + n \text{ (by equation (A.5))}$$

$$= 2^{n} - 2 + n$$

$$\geq 2^{n-1},$$

which completes the proof. Thus, the total amount of work performed by the call RECURSIVE-MATRIX-CHAIN(p, 1, n) is at least exponential in n.

Compare this top-down, recursive algorithm (without memoization) with the bottom-up dynamic-programming algorithm. The latter is more efficient because it takes advantage of the overlapping-subproblems property. Matrix-chain multiplication has only $\Theta(n^2)$ distinct subproblems, and the dynamic-programming algorithm solves each exactly once. The recursive algorithm, on the other hand, must again solve each subproblem every time it reappears in the recursion tree. Whenever a recursion tree for the natural recursive solution to a problem contains the same subproblem repeatedly, and the total number of distinct subproblems is small, dynamic programming can improve efficiency, sometimes dramatically.

Reconstructing an optimal solution

As a practical matter, we often store which choice we made in each subproblem in a table so that we do not have to reconstruct this information from the costs that we stored.

For matrix-chain multiplication, the table s[i,j] saves us a significant amount of work when reconstructing an optimal solution. Suppose that we did not maintain the s[i,j] table, having filled in only the table m[i,j] containing optimal subproblem costs. We choose from among j-i possibilities when we determine which subproblems to use in an optimal solution to parenthesizing $A_iA_{i+1}\cdots A_j$, and j-i is not a constant. Therefore, it would take $\Theta(j-i)=\omega(1)$ time to reconstruct which subproblems we chose for a solution to a given problem. By storing in s[i,j] the index of the matrix at which we split the product $A_iA_{i+1}\cdots A_j$, we can reconstruct each choice in O(1) time.

Memoization

As we saw for the rod-cutting problem, there is an alternative approach to dynamic programming that often offers the efficiency of the bottom-up dynamic-programming approach while maintaining a top-down strategy. The idea is to *memoize* the natural, but inefficient, recursive algorithm. As in the bottom-up approach, we maintain a table with subproblem solutions, but the control structure for filling in the table is more like the recursive algorithm.

A memoized recursive algorithm maintains an entry in a table for the solution to each subproblem. Each table entry initially contains a special value to indicate that the entry has yet to be filled in. When the subproblem is first encountered as the recursive algorithm unfolds, its solution is computed and then stored in the table. Each subsequent time that we encounter this subproblem, we simply look up the value stored in the table and return it.⁵

Here is a memoized version of RECURSIVE-MATRIX-CHAIN. Note where it resembles the memoized top-down method for the rod-cutting problem.

⁵This approach presupposes that we know the set of all possible subproblem parameters and that we have established the relationship between table positions and subproblems. Another, more general, approach is to memoize by using hashing with the subproblem parameters as keys.

```
MEMOIZED-MATRIX-CHAIN(p)
  n = p.length - 1
  let m[1...n, 1...n] be a new table
3
   for i = 1 to n
       for j = i to n
4
5
           m[i,j] = \infty
   return LOOKUP-CHAIN(m, p, 1, n)
LOOKUP-CHAIN(m, p, i, j)
   if m[i, j] < \infty
2
       return m[i, j]
3
   if i == j
4
       m[i, j] = 0
5
   else for k = i to j - 1
6
            q = \text{LOOKUP-CHAIN}(m, p, i, k)
                 + LOOKUP-CHAIN(m, p, k + 1, j) + p_{i-1}p_kp_i
7
            if q < m[i, j]
8
                m[i, j] = q
9
   return m[i, j]
```

The MEMOIZED-MATRIX-CHAIN procedure, like MATRIX-CHAIN-ORDER, maintains a table m[1..n,1..n] of computed values of m[i,j], the minimum number of scalar multiplications needed to compute the matrix $A_{i..j}$. Each table entry initially contains the value ∞ to indicate that the entry has yet to be filled in. Upon calling LOOKUP-CHAIN(m,p,i,j), if line 1 finds that $m[i,j] < \infty$, then the procedure simply returns the previously computed cost m[i,j] in line 2. Otherwise, the cost is computed as in RECURSIVE-MATRIX-CHAIN, stored in m[i,j], and returned. Thus, LOOKUP-CHAIN(m,p,i,j) always returns the value of m[i,j], but it computes it only upon the first call of LOOKUP-CHAIN with these specific values of i and j.

Figure 15.7 illustrates how MEMOIZED-MATRIX-CHAIN saves time compared with RECURSIVE-MATRIX-CHAIN. Shaded subtrees represent values that it looks up rather than recomputes.

Like the bottom-up dynamic-programming algorithm MATRIX-CHAIN-ORDER, the procedure MEMOIZED-MATRIX-CHAIN runs in $O(n^3)$ time. Line 5 of MEMOIZED-MATRIX-CHAIN executes $\Theta(n^2)$ times. We can categorize the calls of LOOKUP-CHAIN into two types:

- 1. calls in which $m[i, j] = \infty$, so that lines 3–9 execute, and
- 2. calls in which $m[i, j] < \infty$, so that LOOKUP-CHAIN simply returns in line 2.

There are $\Theta(n^2)$ calls of the first type, one per table entry. All calls of the second type are made as recursive calls by calls of the first type. Whenever a given call of LOOKUP-CHAIN makes recursive calls, it makes O(n) of them. Therefore, there are $O(n^3)$ calls of the second type in all. Each call of the second type takes O(1) time, and each call of the first type takes O(n) time plus the time spent in its recursive calls. The total time, therefore, is $O(n^3)$. Memoization thus turns an $O(2^n)$ -time algorithm into an $O(n^3)$ -time algorithm.

In summary, we can solve the matrix-chain multiplication problem by either a top-down, memoized dynamic-programming algorithm or a bottom-up dynamic-programming algorithm in $O(n^3)$ time. Both methods take advantage of the overlapping-subproblems property. There are only $\Theta(n^2)$ distinct subproblems in total, and either of these methods computes the solution to each subproblem only once. Without memoization, the natural recursive algorithm runs in exponential time, since solved subproblems are repeatedly solved.

In general practice, if all subproblems must be solved at least once, a bottom-up dynamic-programming algorithm usually outperforms the corresponding top-down memoized algorithm by a constant factor, because the bottom-up algorithm has no overhead for recursion and less overhead for maintaining the table. Moreover, for some problems we can exploit the regular pattern of table accesses in the dynamic-programming algorithm to reduce time or space requirements even further. Alternatively, if some subproblems in the subproblem space need not be solved at all, the memoized solution has the advantage of solving only those subproblems that are definitely required.

Exercises

15.3-1

Which is a more efficient way to determine the optimal number of multiplications in a matrix-chain multiplication problem: enumerating all the ways of parenthesizing the product and computing the number of multiplications for each, or running RECURSIVE-MATRIX-CHAIN? Justify your answer.

15.3-2

Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an array of 16 elements. Explain why memoization fails to speed up a good divide-and-conquer algorithm such as MERGE-SORT.

15.3-3

Consider a variant of the matrix-chain multiplication problem in which the goal is to parenthesize the sequence of matrices so as to maximize, rather than minimize,

the number of scalar multiplications. Does this problem exhibit optimal substructure?

15.3-4

As stated, in dynamic programming we first solve the subproblems and then choose which of them to use in an optimal solution to the problem. Professor Capulet claims that we do not always need to solve all the subproblems in order to find an optimal solution. She suggests that we can find an optimal solution to the matrix-chain multiplication problem by always choosing the matrix A_k at which to split the subproduct $A_i A_{i+1} \cdots A_j$ (by selecting k to minimize the quantity $p_{i-1} p_k p_j$) before solving the subproblems. Find an instance of the matrix-chain multiplication problem for which this greedy approach yields a suboptimal solution.

15.3-5

Suppose that in the rod-cutting problem of Section 15.1, we also had limit l_i on the number of pieces of length i that we are allowed to produce, for i = 1, 2, ..., n. Show that the optimal-substructure property described in Section 15.1 no longer holds.

15.3-6

Imagine that you wish to exchange one currency for another. You realize that instead of directly exchanging one currency for another, you might be better off making a series of trades through other currencies, winding up with the currency you want. Suppose that you can trade n different currencies, numbered $1,2,\ldots,n$, where you start with currency 1 and wish to wind up with currency n. You are given, for each pair of currencies i and j, an exchange rate r_{ij} , meaning that if you start with d units of currency i, you can trade for dr_{ij} units of currency j. A sequence of trades may entail a commission, which depends on the number of trades you make. Let c_k be the commission that you are charged when you make k trades. Show that, if $c_k = 0$ for all $k = 1, 2, \ldots, n$, then the problem of finding the best sequence of exchanges from currency 1 to currency n exhibits optimal substructure. Then show that if commissions c_k are arbitrary values, then the problem of finding the best sequence of exchanges from currency 1 to currency n does not necessarily exhibit optimal substructure.

15.4 Longest common subsequence

Biological applications often need to compare the DNA of two (or more) different organisms. A strand of DNA consists of a string of molecules called

bases, where the possible bases are adenine, guanine, cytosine, and thymine. Representing each of these bases by its initial letter, we can express a strand of DNA as a string over the finite set {A, C, G, T}. (See Appendix C for the definition of a string.) For example, the DNA of one organism may be $S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$, and the DNA of another organism may be $S_2 = \mathtt{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$. One reason to compare two strands of DNA is to determine how "similar" the two strands are, as some measure of how closely related the two organisms are. We can, and do, define similarity in many different ways. For example, we can say that two DNA strands are similar if one is a substring of the other. (Chapter 32 explores algorithms to solve this problem.) In our example, neither S_1 nor S_2 is a substring of the other. Alternatively, we could say that two strands are similar if the number of changes needed to turn one into the other is small. (Problem 15-5 looks at this notion.) Yet another way to measure the similarity of strands S_1 and S_2 is by finding a third strand S_3 in which the bases in S_3 appear in each of S_1 and S_2 ; these bases must appear in the same order, but not necessarily consecutively. The longer the strand S_3 we can find, the more similar S_1 and S_2 are. In our example, the longest strand S_3 is GTCGTCGGAAGCCGGCCGAA.

We formalize this last notion of similarity as the longest-common-subsequence problem. A subsequence of a given sequence is just the given sequence with zero or more elements left out. Formally, given a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$, another sequence $Z = \langle z_1, z_2, \ldots, z_k \rangle$ is a **subsequence** of X if there exists a strictly increasing sequence $\langle i_1, i_2, \ldots, i_k \rangle$ of indices of X such that for all $j = 1, 2, \ldots, k$, we have $x_{i_j} = z_j$. For example, $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ with corresponding index sequence $\langle 2, 3, 5, 7 \rangle$.

Given two sequences X and Y, we say that a sequence Z is a **common subsequence** of X and Y if Z is a subsequence of both X and Y. For example, if $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, the sequence $\langle B, C, A \rangle$ is a common subsequence of both X and Y. The sequence $\langle B, C, A \rangle$ is not a *longest* common subsequence (LCS) of X and Y, however, since it has length 3 and the sequence $\langle B, C, B, A \rangle$, which is also common to both X and Y, has length 4. The sequence $\langle B, C, B, A \rangle$ is an LCS of X and Y, as is the sequence $\langle B, D, A, B \rangle$, since X and Y have no common subsequence of length 5 or greater.

In the *longest-common-subsequence problem*, we are given two sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ and wish to find a maximum-length common subsequence of X and Y. This section shows how to efficiently solve the LCS problem using dynamic programming.

Step 1: Characterizing a longest common subsequence

In a brute-force approach to solving the LCS problem, we would enumerate all subsequences of X and check each subsequence to see whether it is also a subsequence of Y, keeping track of the longest subsequence we find. Each subsequence of X corresponds to a subset of the indices $\{1, 2, ..., m\}$ of X. Because X has 2^m subsequences, this approach requires exponential time, making it impractical for long sequences.

The LCS problem has an optimal-substructure property, however, as the following theorem shows. As we shall see, the natural classes of subproblems correspond to pairs of "prefixes" of the two input sequences. To be precise, given a sequence $X = \langle x_1, x_2, \dots, x_m \rangle$, we define the ith **prefix** of X, for $i = 0, 1, \dots, m$, as $X_i = \langle x_1, x_2, \dots, x_i \rangle$. For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$ and X_0 is the empty sequence.

Theorem 15.1 (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .
- **Proof** (1) If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k+1, contradicting the supposition that Z is a *longest* common subsequence of X and Y. Thus, we must have $z_k = x_m = y_n$. Now, the prefix Z_{k-1} is a length-(k-1) common subsequence of X_{m-1} and Y_{n-1} . We wish to show that it is an LCS. Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k-1. Then, appending $x_m = y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.
- (2) If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y.

(3) The proof is symmetric to (2).

The way that Theorem 15.1 characterizes longest common subsequences tells us that an LCS of two sequences contains within it an LCS of prefixes of the two sequences. Thus, the LCS problem has an optimal-substructure property. A recur-

sive solution also has the overlapping-subproblems property, as we shall see in a moment.

Step 2: A recursive solution

Theorem 15.1 implies that we should examine either one or two subproblems when finding an LCS of $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$. If $x_m = y_n$, we must find an LCS of X_{m-1} and Y_{n-1} . Appending $x_m = y_n$ to this LCS yields an LCS of X and Y. If $x_m \neq y_n$, then we must solve two subproblems: finding an LCS of X_{m-1} and Y and finding an LCS of X and Y_{n-1} . Whichever of these two LCSs is longer is an LCS of X and Y. Because these cases exhaust all possibilities, we know that one of the optimal subproblem solutions must appear within an LCS of X and Y.

We can readily see the overlapping-subproblems property in the LCS problem. To find an LCS of X and Y, we may need to find the LCSs of X and Y_{n-1} and of X_{m-1} and Y. But each of these subproblems has the subsubproblem of finding an LCS of X_{m-1} and Y_{n-1} . Many other subproblems share subsubproblems.

As in the matrix-chain multiplication problem, our recursive solution to the LCS problem involves establishing a recurrence for the value of an optimal solution. Let us define c[i,j] to be the length of an LCS of the sequences X_i and Y_j . If either i=0 or j=0, one of the sequences has length 0, and so the LCS has length 0. The optimal substructure of the LCS problem gives the recursive formula

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
(15.9)

Observe that in this recursive formulation, a condition in the problem restricts which subproblems we may consider. When $x_i = y_j$, we can and should consider the subproblem of finding an LCS of X_{i-1} and Y_{j-1} . Otherwise, we instead consider the two subproblems of finding an LCS of X_i and Y_{j-1} and of X_{i-1} and Y_j . In the previous dynamic-programming algorithms we have examined—for rod cutting and matrix-chain multiplication—we ruled out no subproblems due to conditions in the problem. Finding an LCS is not the only dynamic-programming algorithm that rules out subproblems based on conditions in the problem. For example, the edit-distance problem (see Problem 15-5) has this characteristic.

Step 3: Computing the length of an LCS

Based on equation (15.9), we could easily write an exponential-time recursive algorithm to compute the length of an LCS of two sequences. Since the LCS problem

has only $\Theta(mn)$ distinct subproblems, however, we can use dynamic programming to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ as inputs. It stores the c[i,j] values in a table $c[0\ldots m,0\ldots n]$, and it computes the entries in **row-major** order. (That is, the procedure fills in the first row of c from left to right, then the second row, and so on.) The procedure also maintains the table $b[1\ldots m,1\ldots n]$ to help us construct an optimal solution. Intuitively, b[i,j] points to the table entry corresponding to the optimal subproblem solution chosen when computing c[i,j]. The procedure returns the b and c tables; c[m,n] contains the length of an LCS of X and Y.

```
LCS-LENGTH(X, Y)
 1 m = X.length
 2 \quad n = Y.length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
 5
         c[i, 0] = 0
 6 for j = 0 to n
 7
         c[0, j] = 0
    for i = 1 to m
 8
 9
         for j = 1 to n
10
              if x_i == y_i
                  c[i, j] = c[i - 1, j - 1] + 1

b[i, j] = "\\\"
11
12
              elseif c[i - 1, j] \ge c[i, j - 1]
13
14
                  c[i,j] = c[i-1,j]
                  b[i, j] = "\uparrow"
15
              else c[i, j] = c[i, j - 1]
16
                   b[i, j] = "\leftarrow"
17
18
     return c and b
```

Figure 15.8 shows the tables produced by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The running time of the procedure is $\Theta(mn)$, since each table entry takes $\Theta(1)$ time to compute.

Step 4: Constructing an LCS

The *b* table returned by LCS-LENGTH enables us to quickly construct an LCS of $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$. We simply begin at b[m, n] and trace through the table by following the arrows. Whenever we encounter a " \nwarrow " in entry b[i, j], it implies that $x_i = y_j$ is an element of the LCS that LCS-LENGTH

Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The square in row i and column j contains the value of c[i,j] and the appropriate arrow for the value of b[i,j]. The entry 4 in c[7,6]—the lower right-hand corner of the table—is the length of an LCS $\langle B, C, B, A \rangle$ of X and Y. For i,j>0, entry c[i,j] depends only on whether $x_i=y_j$ and the values in entries c[i-1,j], c[i,j-1], and c[i-1,j-1], which are computed before c[i,j]. To reconstruct the elements of an LCS, follow the b[i,j] arrows from the lower right-hand corner; the sequence is shaded. Each " \nwarrow " on the shaded sequence corresponds to an entry (highlighted) for which $x_i=y_j$ is a member of an LCS.

found. With this method, we encounter the elements of this LCS in reverse order. The following recursive procedure prints out an LCS of X and Y in the proper, forward order. The initial call is PRINT-LCS (b, X, X.length, Y.length).

```
PRINT-LCS (b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i, j] == \text{``\ ''}

4 PRINT-LCS (b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] == \text{``\ ''}

7 PRINT-LCS (b, X, i - 1, j)

8 else PRINT-LCS (b, X, i, j - 1)
```

For the *b* table in Figure 15.8, this procedure prints BCBA. The procedure takes time O(m + n), since it decrements at least one of *i* and *j* in each recursive call.

Improving the code

Once you have developed an algorithm, you will often find that you can improve on the time or space it uses. Some changes can simplify the code and improve constant factors but otherwise yield no asymptotic improvement in performance. Others can yield substantial asymptotic savings in time and space.

In the LCS algorithm, for example, we can eliminate the b table altogether. Each c[i,j] entry depends on only three other c table entries: c[i-1,j-1], c[i-1,j], and c[i,j-1]. Given the value of c[i,j], we can determine in O(1) time which of these three values was used to compute c[i,j], without inspecting table b. Thus, we can reconstruct an LCS in O(m+n) time using a procedure similar to PRINT-LCS. (Exercise 15.4-2 asks you to give the pseudocode.) Although we save $\Theta(mn)$ space by this method, the auxiliary space requirement for computing an LCS does not asymptotically decrease, since we need $\Theta(mn)$ space for the c table anyway.

We can, however, reduce the asymptotic space requirements for LCS-LENGTH, since it needs only two rows of table c at a time: the row being computed and the previous row. (In fact, as Exercise 15.4-4 asks you to show, we can use only slightly more than the space for one row of c to compute the length of an LCS.) This improvement works if we need only the length of an LCS; if we need to reconstruct the elements of an LCS, the smaller table does not keep enough information to retrace our steps in O(m+n) time.

Exercises

15.4-1

Determine an LCS of (1, 0, 0, 1, 0, 1, 0, 1) and (0, 1, 0, 1, 1, 0, 1, 1, 0).

15.4-2

Give pseudocode to reconstruct an LCS from the completed c table and the original sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ in O(m + n) time, without using the b table.

15.4-3

Give a memoized version of LCS-LENGTH that runs in O(mn) time.

15.4-4

Show how to compute the length of an LCS using only $2 \cdot \min(m, n)$ entries in the c table plus O(1) additional space. Then show how to do the same thing, but using $\min(m, n)$ entries plus O(1) additional space.

15.4-5

Give an $O(n^2)$ -time algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers.

15.4-6 *

Give an $O(n \lg n)$ -time algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers. (*Hint:* Observe that the last element of a candidate subsequence of length i is at least as large as the last element of a candidate subsequence of length i-1. Maintain candidate subsequences by linking them through the input sequence.)

15.5 Optimal binary search trees

Suppose that we are designing a program to translate text from English to French. For each occurrence of each English word in the text, we need to look up its French equivalent. We could perform these lookup operations by building a binary search tree with n English words as keys and their French equivalents as satellite data. Because we will search the tree for each individual word in the text, we want the total time spent searching to be as low as possible. We could ensure an $O(\lg n)$ search time per occurrence by using a red-black tree or any other balanced binary search tree. Words appear with different frequencies, however, and a frequently used word such as the may appear far from the root while a rarely used word such as machicolation appears near the root. Such an organization would slow down the translation, since the number of nodes visited when searching for a key in a binary search tree equals one plus the depth of the node containing the key. We want words that occur frequently in the text to be placed nearer the root.⁶ Moreover, some words in the text might have no French translation,⁷ and such words would not appear in the binary search tree at all. How do we organize a binary search tree so as to minimize the number of nodes visited in all searches, given that we know how often each word occurs?

What we need is known as an *optimal binary search tree*. Formally, we are given a sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys in sorted order (so that $k_1 < k_2 < \dots < k_n$), and we wish to build a binary search tree from these keys. For each key k_i , we have a probability p_i that a search will be for k_i . Some searches may be for values not in K, and so we also have n + 1 "dummy keys"

⁶If the subject of the text is castle architecture, we might want *machicolation* to appear near the root.

⁷Yes, *machicolation* has a French counterpart: *mâchicoulis*.

Figure 15.9 Two binary search trees for a set of n = 5 keys with the following probabilities:

i	0	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

(a) A binary search tree with expected search cost 2.80. (b) A binary search tree with expected search cost 2.75. This tree is optimal.

 $d_0, d_1, d_2, \ldots, d_n$ representing values not in K. In particular, d_0 represents all values less than k_1, d_n represents all values greater than k_n , and for $i = 1, 2, \ldots, n-1$, the dummy key d_i represents all values between k_i and k_{i+1} . For each dummy key d_i , we have a probability q_i that a search will correspond to d_i . Figure 15.9 shows two binary search trees for a set of n = 5 keys. Each key k_i is an internal node, and each dummy key d_i is a leaf. Every search is either successful (finding some key k_i) or unsuccessful (finding some dummy key d_i), and so we have

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1. (15.10)$$

Because we have probabilities of searches for each key and each dummy key, we can determine the expected cost of a search in a given binary search tree T. Let us assume that the actual cost of a search equals the number of nodes examined, i.e., the depth of the node found by the search in T, plus 1. Then the expected cost of a search in T is

$$E[\text{search cost in } T] = \sum_{i=1}^{n} (\text{depth}_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (\text{depth}_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} \text{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} \text{depth}_{T}(d_{i}) \cdot q_{i} , \quad (15.11)$$

where depth_T denotes a node's depth in the tree T. The last equality follows from equation (15.10). In Figure 15.9(a), we can calculate the expected search cost node by node:

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	2	0.05	0.15
k_4	1	0.10	0.20
k_5	2	0.20	0.60
d_{0}	2	0.05	0.15
d_1	2	0.10	0.30
d_2	3	0.05	0.20
d_3	3	0.05	0.20
d_4	3	0.05	0.20
d_5	3	0.10	0.40
Total			2.80

For a given set of probabilities, we wish to construct a binary search tree whose expected search cost is smallest. We call such a tree an *optimal binary search tree*. Figure 15.9(b) shows an optimal binary search tree for the probabilities given in the figure caption; its expected cost is 2.75. This example shows that an optimal binary search tree is not necessarily a tree whose overall height is smallest. Nor can we necessarily construct an optimal binary search tree by always putting the key with the greatest probability at the root. Here, key k_5 has the greatest search probability of any key, yet the root of the optimal binary search tree shown is k_2 . (The lowest expected cost of any binary search tree with k_5 at the root is 2.85.)

As with matrix-chain multiplication, exhaustive checking of all possibilities fails to yield an efficient algorithm. We can label the nodes of any n-node binary tree with the keys k_1, k_2, \ldots, k_n to construct a binary search tree, and then add in the dummy keys as leaves. In Problem 12-4, we saw that the number of binary trees with n nodes is $\Omega(4^n/n^{3/2})$, and so we would have to examine an exponential number of binary search trees in an exhaustive search. Not surprisingly, we shall solve this problem with dynamic programming.

Step 1: The structure of an optimal binary search tree

To characterize the optimal substructure of optimal binary search trees, we start with an observation about subtrees. Consider any subtree of a binary search tree. It must contain keys in a contiguous range k_i, \ldots, k_j , for some $1 \le i \le j \le n$. In addition, a subtree that contains keys k_i, \ldots, k_j must also have as its leaves the dummy keys d_{i-1}, \ldots, d_j .

Now we can state the optimal substructure: if an optimal binary search tree T has a subtree T' containing keys k_i, \ldots, k_j , then this subtree T' must be optimal as

well for the subproblem with keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_j . The usual cut-and-paste argument applies. If there were a subtree T'' whose expected cost is lower than that of T', then we could cut T' out of T and paste in T'', resulting in a binary search tree of lower expected cost than T, thus contradicting the optimality of T.

We need to use the optimal substructure to show that we can construct an optimal solution to the problem from optimal solutions to subproblems. Given keys k_i, \ldots, k_j , one of these keys, say k_r ($i \le r \le j$), is the root of an optimal subtree containing these keys. The left subtree of the root k_r contains the keys k_i, \ldots, k_{r-1} (and dummy keys d_{i-1}, \ldots, d_{r-1}), and the right subtree contains the keys k_{r+1}, \ldots, k_j (and dummy keys d_r, \ldots, d_j). As long as we examine all candidate roots k_r , where $i \le r \le j$, and we determine all optimal binary search trees containing k_i, \ldots, k_{r-1} and those containing k_{r+1}, \ldots, k_j , we are guaranteed that we will find an optimal binary search tree.

There is one detail worth noting about "empty" subtrees. Suppose that in a subtree with keys k_i, \ldots, k_j , we select k_i as the root. By the above argument, k_i 's left subtree contains the keys k_i, \ldots, k_{i-1} . We interpret this sequence as containing no keys. Bear in mind, however, that subtrees also contain dummy keys. We adopt the convention that a subtree containing keys k_i, \ldots, k_{i-1} has no actual keys but does contain the single dummy key d_{i-1} . Symmetrically, if we select k_j as the root, then k_j 's right subtree contains the keys k_{j+1}, \ldots, k_j ; this right subtree contains no actual keys, but it does contain the dummy key d_i .

Step 2: A recursive solution

We are ready to define the value of an optimal solution recursively. We pick our subproblem domain as finding an optimal binary search tree containing the keys k_i, \ldots, k_j , where $i \geq 1$, $j \leq n$, and $j \geq i - 1$. (When j = i - 1, there are no actual keys; we have just the dummy key d_{i-1} .) Let us define e[i, j] as the expected cost of searching an optimal binary search tree containing the keys k_i, \ldots, k_j . Ultimately, we wish to compute e[1, n].

The easy case occurs when j = i - 1. Then we have just the dummy key d_{i-1} . The expected search cost is $e[i, i-1] = q_{i-1}$.

When $j \ge i$, we need to select a root k_r from among k_i, \ldots, k_j and then make an optimal binary search tree with keys k_i, \ldots, k_{r-1} as its left subtree and an optimal binary search tree with keys k_{r+1}, \ldots, k_j as its right subtree. What happens to the expected search cost of a subtree when it becomes a subtree of a node? The depth of each node in the subtree increases by 1. By equation (15.11), the expected search cost of this subtree increases by the sum of all the probabilities in the subtree. For a subtree with keys k_i, \ldots, k_j , let us denote this sum of probabilities as

$$w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l.$$
 (15.12)

Thus, if k_r is the root of an optimal subtree containing keys k_i, \ldots, k_i , we have

$$e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j)).$$

Noting that

$$w(i, j) = w(i, r - 1) + p_r + w(r + 1, j)$$
,

we rewrite e[i, j] as

$$e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j).$$
(15.13)

The recursive equation (15.13) assumes that we know which node k_r to use as the root. We choose the root that gives the lowest expected search cost, giving us our final recursive formulation:

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1, \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j. \end{cases}$$
(15.14)

The e[i, j] values give the expected search costs in optimal binary search trees. To help us keep track of the structure of optimal binary search trees, we define root[i, j], for $1 \le i \le j \le n$, to be the index r for which k_r is the root of an optimal binary search tree containing keys k_i, \ldots, k_j . Although we will see how to compute the values of root[i, j], we leave the construction of an optimal binary search tree from these values as Exercise 15.5-1.

Step 3: Computing the expected search cost of an optimal binary search tree

At this point, you may have noticed some similarities between our characterizations of optimal binary search trees and matrix-chain multiplication. For both problem domains, our subproblems consist of contiguous index subranges. A direct, recursive implementation of equation (15.14) would be as inefficient as a direct, recursive matrix-chain multiplication algorithm. Instead, we store the e[i, j] values in a table e[1..n+1,0..n]. The first index needs to run to n+1 rather than n because in order to have a subtree containing only the dummy key d_n , we need to compute and store e[n+1,n]. The second index needs to start from 0 because in order to have a subtree containing only the dummy key d_0 , we need to compute and store e[1,0]. We use only the entries e[i,j] for which $j \geq i-1$. We also use a table root[i,j], for recording the root of the subtree containing keys k_i, \ldots, k_j . This table uses only the entries for which $1 \leq i \leq j \leq n$.

We will need one other table for efficiency. Rather than compute the value of w(i, j) from scratch every time we are computing e[i, j]—which would take

 $\Theta(j-i)$ additions—we store these values in a table w[1..n+1,0..n]. For the base case, we compute $w[i,i-1]=q_{i-1}$ for $1\leq i\leq n+1$. For $j\geq i$, we compute

$$w[i,j] = w[i,j-1] + p_j + q_j. (15.15)$$

Thus, we can compute the $\Theta(n^2)$ values of w[i, j] in $\Theta(1)$ time each.

The pseudocode that follows takes as inputs the probabilities p_1, \ldots, p_n and q_0, \ldots, q_n and the size n, and it returns the tables e and root.

```
OPTIMAL-BST(p,q,n)
   let e[1..n + 1, 0..n], w[1..n + 1, 0..n],
             and root[1...n, 1...n] be new tables
    for i = 1 to n + 1
         e[i, i-1] = q_{i-1}
 3
         w[i, i-1] = q_{i-1}
 4
 5
    for l = 1 to n
         for i = 1 to n - l + 1
 6
             j = i + l - 1
 7
             e[i, j] = \infty
 8
             w[i, j] = w[i, j - 1] + p_i + q_i
 9
             for r = i to j
10
                  t = e[i, r-1] + e[r+1, j] + w[i, j]
11
                  if t < e[i, j]
12
                      e[i, j] = t
13
                      root[i, j] = r
14
15
    return e and root
```

From the description above and the similarity to the MATRIX-CHAIN-ORDER procedure in Section 15.2, you should find the operation of this procedure to be fairly straightforward. The **for** loop of lines 2–4 initializes the values of e[i, i-1] and w[i, i-1]. The **for** loop of lines 5–14 then uses the recurrences (15.14) and (15.15) to compute e[i, j] and w[i, j] for all $1 \le i \le j \le n$. In the first iteration, when l=1, the loop computes e[i, i] and w[i, i] for $i=1, 2, \ldots, n$. The second iteration, with l=2, computes e[i, i+1] and w[i, i+1] for $i=1, 2, \ldots, n-1$, and so forth. The innermost **for** loop, in lines 10–14, tries each candidate index r to determine which key k_r to use as the root of an optimal binary search tree containing keys k_i, \ldots, k_j . This **for** loop saves the current value of the index r in root[i, j] whenever it finds a better key to use as the root.

Figure 15.10 shows the tables e[i, j], w[i, j], and root[i, j] computed by the procedure OPTIMAL-BST on the key distribution shown in Figure 15.9. As in the matrix-chain multiplication example of Figure 15.5, the tables are rotated to make

Figure 15.10 The tables e[i, j], w[i, j], and root[i, j] computed by OPTIMAL-BST on the key distribution shown in Figure 15.9. The tables are rotated so that the diagonals run horizontally.

the diagonals run horizontally. OPTIMAL-BST computes the rows from bottom to top and from left to right within each row.

The OPTIMAL-BST procedure takes $\Theta(n^3)$ time, just like MATRIX-CHAIN-ORDER. We can easily see that its running time is $O(n^3)$, since its **for** loops are nested three deep and each loop index takes on at most n values. The loop indices in OPTIMAL-BST do not have exactly the same bounds as those in MATRIX-CHAIN-ORDER, but they are within at most 1 in all directions. Thus, like MATRIX-CHAIN-ORDER, the OPTIMAL-BST procedure takes $\Omega(n^3)$ time.

Exercises

15.5-1

Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST(*root*) which, given the table *root*, outputs the structure of an optimal binary search tree. For the example in Figure 15.10, your procedure should print out the structure

 k_2 is the root k_1 is the left child of k_2 d_0 is the left child of k_1 d_1 is the right child of k_1 k_5 is the right child of k_2 k_4 is the left child of k_5 k_3 is the left child of k_4 d_2 is the left child of k_3 d_3 is the right child of k_3 d_4 is the right child of k_4 d_5 is the right child of k_5

corresponding to the optimal binary search tree shown in Figure 15.9(b).

15.5-2

Determine the cost and structure of an optimal binary search tree for a set of n = 7 keys with the following probabilities:

		1						
p_i		0.04 0.06	0.06	0.08	0.02	0.10	0.12	0.14
q_i	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05

15.5-3

Suppose that instead of maintaining the table w[i, j], we computed the value of w(i, j) directly from equation (15.12) in line 9 of OPTIMAL-BST and used this computed value in line 11. How would this change affect the asymptotic running time of OPTIMAL-BST?

15.5-4 *****

Knuth [212] has shown that there are always roots of optimal subtrees such that $root[i, j-1] \leq root[i, j] \leq root[i+1, j]$ for all $1 \leq i < j \leq n$. Use this fact to modify the OPTIMAL-BST procedure to run in $\Theta(n^2)$ time.

Problems

15-1 Longest simple path in a directed acyclic graph

Suppose that we are given a directed acyclic graph G=(V,E) with real-valued edge weights and two distinguished vertices s and t. Describe a dynamic-programming approach for finding a longest weighted simple path from s to t. What does the subproblem graph look like? What is the efficiency of your algorithm?

Figure 15.11 Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with length approximately 24.89. This tour is not bitonic. (b) The shortest bitonic tour for the same set of points. Its length is approximately 25.58.

15-2 Longest palindrome subsequence

A *palindrome* is a nonempty string over some alphabet that reads the same forward and backward. Examples of palindromes are all strings of length 1, civic, racecar, and aibohphobia (fear of palindromes).

Give an efficient algorithm to find the longest palindrome that is a subsequence of a given input string. For example, given the input character, your algorithm should return carac. What is the running time of your algorithm?

15-3 Bitonic euclidean traveling-salesman problem

In the *euclidean traveling-salesman problem*, we are given a set of n points in the plane, and we wish to find the shortest closed tour that connects all n points. Figure 15.11(a) shows the solution to a 7-point problem. The general problem is NP-hard, and its solution is therefore believed to require more than polynomial time (see Chapter 34).

J. L. Bentley has suggested that we simplify the problem by restricting our attention to *bitonic tours*, that is, tours that start at the leftmost point, go strictly rightward to the rightmost point, and then go strictly leftward back to the starting point. Figure 15.11(b) shows the shortest bitonic tour of the same 7 points. In this case, a polynomial-time algorithm is possible.

Describe an $O(n^2)$ -time algorithm for determining an optimal bitonic tour. You may assume that no two points have the same x-coordinate and that all operations on real numbers take unit time. (*Hint:* Scan left to right, maintaining optimal possibilities for the two parts of the tour.)

15-4 Printing neatly

Consider the problem of neatly printing a paragraph with a monospaced font (all characters having the same width) on a printer. The input text is a sequence of n

words of lengths l_1, l_2, \ldots, l_n , measured in characters. We want to print this paragraph neatly on a number of lines that hold a maximum of M characters each. Our criterion of "neatness" is as follows. If a given line contains words i through j, where $i \leq j$, and we leave exactly one space between words, the number of extra space characters at the end of the line is $M - j + i - \sum_{k=i}^{j} l_k$, which must be nonnegative so that the words fit on the line. We wish to minimize the sum, over all lines except the last, of the cubes of the numbers of extra space characters at the ends of lines. Give a dynamic-programming algorithm to print a paragraph of n words neatly on a printer. Analyze the running time and space requirements of your algorithm.

15-5 Edit distance

In order to transform one source string of text x[1..m] to a target string y[1..n], we can perform various transformation operations. Our goal is, given x and y, to produce a series of transformations that change x to y. We use an array z—assumed to be large enough to hold all the characters it will need—to hold the intermediate results. Initially, z is empty, and at termination, we should have z[j] = y[j] for j = 1, 2, ..., n. We maintain current indices i into x and j into z, and the operations are allowed to alter z and these indices. Initially, i = j = 1. We are required to examine every character in x during the transformation, which means that at the end of the sequence of transformation operations, we must have i = m + 1.

We may choose from among six transformation operations:

Copy a character from x to z by setting z[j] = x[i] and then incrementing both i and j. This operation examines x[i].

Replace a character from x by another character c, by setting z[j] = c, and then incrementing both i and j. This operation examines x[i].

Delete a character from x by incrementing i but leaving j alone. This operation examines x[i].

Insert the character c into z by setting z[j] = c and then incrementing j, but leaving i alone. This operation examines no characters of x.

Twiddle (i.e., exchange) the next two characters by copying them from x to z but in the opposite order; we do so by setting z[j] = x[i+1] and z[j+1] = x[i] and then setting i = i+2 and j = j+2. This operation examines x[i] and x[i+1].

Kill the remainder of x by setting i = m + 1. This operation examines all characters in x that have not yet been examined. This operation, if performed, must be the final operation.

As an example, one way to transform the source string algorithm to the target
string altruistic is to use the following sequence of operations, where the
underlined characters are $x[i]$ and $z[j]$ after the operation:

Operation	X	z
initial strings	<u>a</u> lgorithm	_
copy	a <u>l</u> gorithm	a_
copy	al <u>g</u> orithm	al_
replace by t	al <u>go</u> rithm	alt_
delete	algo <u>r</u> ithm	alt_
copy	algor <u>i</u> thm	altr_
insert u	algor <u>i</u> thm	altru_
insert i	algor <u>i</u> thm	altrui_
insert s	algor <u>i</u> thm	altruis_
twiddle	algorit <u>h</u> m	altruisti_
insert c	algorit <u>h</u> m	altruistic_
kill	algorithm_	altruistic_

Note that there are several other sequences of transformation operations that transform algorithm to altruistic.

Each of the transformation operations has an associated cost. The cost of an operation depends on the specific application, but we assume that each operation's cost is a constant that is known to us. We also assume that the individual costs of the copy and replace operations are less than the combined costs of the delete and insert operations; otherwise, the copy and replace operations would not be used. The cost of a given sequence of transformation operations is the sum of the costs of the individual operations in the sequence. For the sequence above, the cost of transforming algorithm to altruistic is

```
(3 \cdot \cos(\text{copy})) + \cos(\text{replace}) + \cos(\text{delete}) + (4 \cdot \cos(\text{insert})) + \cos(\text{twiddle}) + \cos(\text{kill}).
```

a. Given two sequences x[1...m] and y[1...n] and set of transformation-operation costs, the *edit distance* from x to y is the cost of the least expensive operation sequence that transforms x to y. Describe a dynamic-programming algorithm that finds the edit distance from x[1...m] to y[1...n] and prints an optimal operation sequence. Analyze the running time and space requirements of your algorithm.

The edit-distance problem generalizes the problem of aligning two DNA sequences (see, for example, Setubal and Meidanis [310, Section 3.2]). There are several methods for measuring the similarity of two DNA sequences by aligning them. One such method to align two sequences x and y consists of inserting spaces at

arbitrary locations in the two sequences (including at either end) so that the resulting sequences x' and y' have the same length but do not have a space in the same position (i.e., for no position j are both x'[j] and y'[j] a space). Then we assign a "score" to each position. Position j receives a score as follows:

- +1 if x'[j] = y'[j] and neither is a space,
- -1 if $x'[j] \neq y'[j]$ and neither is a space,
- -2 if either x'[j] or y'[j] is a space.

The score for the alignment is the sum of the scores of the individual positions. For example, given the sequences x = GATCGGCAT and y = CAATGTGAATC, one alignment is

```
G ATCG GCAT
CAAT GTGAATC
-*++*+*+-++*
```

A + under a position indicates a score of +1 for that position, a – indicates a score of -1, and a * indicates a score of -2, so that this alignment has a total score of $6 \cdot 1 - 2 \cdot 1 - 4 \cdot 2 = -4$.

b. Explain how to cast the problem of finding an optimal alignment as an edit distance problem using a subset of the transformation operations copy, replace, delete, insert, twiddle, and kill.

15-6 Planning a company party

Professor Stewart is consulting for the president of a corporation that is planning a company party. The company has a hierarchical structure; that is, the supervisor relation forms a tree rooted at the president. The personnel office has ranked each employee with a conviviality rating, which is a real number. In order to make the party fun for all attendees, the president does not want both an employee and his or her immediate supervisor to attend.

Professor Stewart is given the tree that describes the structure of the corporation, using the left-child, right-sibling representation described in Section 10.4. Each node of the tree holds, in addition to the pointers, the name of an employee and that employee's conviviality ranking. Describe an algorithm to make up a guest list that maximizes the sum of the conviviality ratings of the guests. Analyze the running time of your algorithm.

15-7 Viterbi algorithm

We can use dynamic programming on a directed graph G=(V,E) for speech recognition. Each edge $(u,v)\in E$ is labeled with a sound $\sigma(u,v)$ from a finite set Σ of sounds. The labeled graph is a formal model of a person speaking

a restricted language. Each path in the graph starting from a distinguished vertex $\nu_0 \in V$ corresponds to a possible sequence of sounds produced by the model. We define the label of a directed path to be the concatenation of the labels of the edges on that path.

a. Describe an efficient algorithm that, given an edge-labeled graph G with distinguished vertex v_0 and a sequence $s = \langle \sigma_1, \sigma_2, \ldots, \sigma_k \rangle$ of sounds from Σ , returns a path in G that begins at v_0 and has s as its label, if any such path exists. Otherwise, the algorithm should return NO-SUCH-PATH. Analyze the running time of your algorithm. (*Hint:* You may find concepts from Chapter 22 useful.)

Now, suppose that every edge $(u, v) \in E$ has an associated nonnegative probability p(u, v) of traversing the edge (u, v) from vertex u and thus producing the corresponding sound. The sum of the probabilities of the edges leaving any vertex equals 1. The probability of a path is defined to be the product of the probabilities of its edges. We can view the probability of a path beginning at v_0 as the probability that a "random walk" beginning at v_0 will follow the specified path, where we randomly choose which edge to take leaving a vertex u according to the probabilities of the available edges leaving u.

b. Extend your answer to part (a) so that if a path is returned, it is a *most probable path* starting at v_0 and having label s. Analyze the running time of your algorithm.

15-8 Image compression by seam carving

We are given a color picture consisting of an $m \times n$ array A[1...m, 1...n] of pixels, where each pixel specifies a triple of red, green, and blue (RGB) intensities. Suppose that we wish to compress this picture slightly. Specifically, we wish to remove one pixel from each of the m rows, so that the whole picture becomes one pixel narrower. To avoid disturbing visual effects, however, we require that the pixels removed in two adjacent rows be in the same or adjacent columns; the pixels removed form a "seam" from the top row to the bottom row where successive pixels in the seam are adjacent vertically or diagonally.

- a. Show that the number of such possible seams grows at least exponentially in m, assuming that n > 1.
- **b.** Suppose now that along with each pixel A[i, j], we have calculated a real-valued disruption measure d[i, j], indicating how disruptive it would be to remove pixel A[i, j]. Intuitively, the lower a pixel's disruption measure, the more similar the pixel is to its neighbors. Suppose further that we define the disruption measure of a seam to be the sum of the disruption measures of its pixels.

Give an algorithm to find a seam with the lowest disruption measure. How efficient is your algorithm?

15-9 Breaking a string

A certain string-processing language allows a programmer to break a string into two pieces. Because this operation copies the string, it costs *n* time units to break a string of *n* characters into two pieces. Suppose a programmer wants to break a string into many pieces. The order in which the breaks occur can affect the total amount of time used. For example, suppose that the programmer wants to break a 20-character string after characters 2, 8, and 10 (numbering the characters in ascending order from the left-hand end, starting from 1). If she programs the breaks to occur in left-to-right order, then the first break costs 20 time units, the second break costs 18 time units (breaking the string from characters 3 to 20 at character 8), and the third break costs 12 time units, totaling 50 time units. If she programs the breaks to occur in right-to-left order, however, then the first break costs 20 time units, the second break costs 10 time units, and the third break costs 8 time units, totaling 38 time units. In yet another order, she could break first at 8 (costing 20), then break the left piece at 2 (costing 8), and finally the right piece at 10 (costing 12), for a total cost of 40.

Design an algorithm that, given the numbers of characters after which to break, determines a least-cost way to sequence those breaks. More formally, given a string S with n characters and an array L[1..m] containing the break points, compute the lowest cost for a sequence of breaks, along with a sequence of breaks that achieves this cost.

15-10 Planning an investment strategy

Your knowledge of algorithms helps you obtain an exciting job with the Acme Computer Company, along with a \$10,000 signing bonus. You decide to invest this money with the goal of maximizing your return at the end of 10 years. You decide to use the Amalgamated Investment Company to manage your investments. Amalgamated Investments requires you to observe the following rules. It offers n different investments, numbered 1 through n. In each year j, investment i provides a return rate of r_{ij} . In other words, if you invest d dollars in investment i in year j, then at the end of year j, you have dr_{ij} dollars. The return rates are guaranteed, that is, you are given all the return rates for the next 10 years for each investment. You make investment decisions only once per year. At the end of each year, you can leave the money made in the previous year in the same investments, or you can shift money to other investments, by either shifting money between existing investments or moving money to a new investment. If you do not move your money between two consecutive years, you pay a fee of f_1 dollars, whereas if you switch your money, you pay a fee of f_2 dollars, where $f_2 > f_1$.

- a. The problem, as stated, allows you to invest your money in multiple investments in each year. Prove that there exists an optimal investment strategy that, in each year, puts all the money into a single investment. (Recall that an optimal investment strategy maximizes the amount of money after 10 years and is not concerned with any other objectives, such as minimizing risk.)
- **b.** Prove that the problem of planning your optimal investment strategy exhibits optimal substructure.
- c. Design an algorithm that plans your optimal investment strategy. What is the running time of your algorithm?
- **d.** Suppose that Amalgamated Investments imposed the additional restriction that, at any point, you can have no more than \$15,000 in any one investment. Show that the problem of maximizing your income at the end of 10 years no longer exhibits optimal substructure.

15-11 Inventory planning

The Rinky Dink Company makes machines that resurface ice rinks. The demand for such products varies from month to month, and so the company needs to develop a strategy to plan its manufacturing given the fluctuating, but predictable, demand. The company wishes to design a plan for the next n months. For each month i, the company knows the demand d_i , that is, the number of machines that it will sell. Let $D = \sum_{i=1}^n d_i$ be the total demand over the next n months. The company keeps a full-time staff who provide labor to manufacture up to m machines per month. If the company needs to make more than m machines in a given month, it can hire additional, part-time labor, at a cost that works out to c dollars per machine. Furthermore, if, at the end of a month, the company is holding any unsold machines, it must pay inventory costs. The cost for holding j machines is given as a function h(j) for $j = 1, 2, \ldots, D$, where $h(j) \ge 0$ for $1 \le j \le D$ and $h(j) \le h(j+1)$ for $1 \le j \le D-1$.

Give an algorithm that calculates a plan for the company that minimizes its costs while fulfilling all the demand. The running time should be polyomial in n and D.

15-12 Signing free-agent baseball players

Suppose that you are the general manager for a major-league baseball team. During the off-season, you need to sign some free-agent players for your team. The team owner has given you a budget of X to spend on free agents. You are allowed to spend less than X altogether, but the owner will fire you if you spend any more than X.

You are considering N different positions, and for each position, P free-agent players who play that position are available. Because you do not want to overload your roster with too many players at any position, for each position you may sign at most one free agent who plays that position. (If you do not sign any players at a particular position, then you plan to stick with the players you already have at that position.)

To determine how valuable a player is going to be, you decide to use a sabermetric statistic⁹ known as "VORP," or "value over replacement player." A player with a higher VORP is more valuable than a player with a lower VORP. A player with a higher VORP is not necessarily more expensive to sign than a player with a lower VORP, because factors other than a player's value determine how much it costs to sign him.

For each available free-agent player, you have three pieces of information:

- the player's position,
- the amount of money it will cost to sign the player, and
- the player's VORP.

Devise an algorithm that maximizes the total VORP of the players you sign while spending no more than \$X altogether. You may assume that each player signs for a multiple of \$100,000. Your algorithm should output the total VORP of the players you sign, the total amount of money you spend, and a list of which players you sign. Analyze the running time and space requirement of your algorithm.

Chapter notes

R. Bellman began the systematic study of dynamic programming in 1955. The word "programming," both here and in linear programming, refers to using a tabular solution method. Although optimization techniques incorporating elements of dynamic programming were known earlier, Bellman provided the area with a solid mathematical basis [37].

⁸Although there are nine positions on a baseball team, *N* is not necesarily equal to 9 because some general managers have particular ways of thinking about positions. For example, a general manager might consider right-handed pitchers and left-handed pitchers to be separate "positions," as well as starting pitchers, long relief pitchers (relief pitchers who can pitch several innings), and short relief pitchers (relief pitchers who normally pitch at most only one inning).

⁹Sabermetrics is the application of statistical analysis to baseball records. It provides several ways to compare the relative values of individual players.

Galil and Park [125] classify dynamic-programming algorithms according to the size of the table and the number of other table entries each entry depends on. They call a dynamic-programming algorithm tD/eD if its table size is $O(n^t)$ and each entry depends on $O(n^e)$ other entries. For example, the matrix-chain multiplication algorithm in Section 15.2 would be 2D/1D, and the longest-common-subsequence algorithm in Section 15.4 would be 2D/0D.

Hu and Shing [182, 183] give an $O(n \lg n)$ -time algorithm for the matrix-chain multiplication problem.

The O(mn)-time algorithm for the longest-common-subsequence problem appears to be a folk algorithm. Knuth [70] posed the question of whether subquadratic algorithms for the LCS problem exist. Masek and Paterson [244] answered this question in the affirmative by giving an algorithm that runs in $O(mn/\lg n)$ time, where $n \leq m$ and the sequences are drawn from a set of bounded size. For the special case in which no element appears more than once in an input sequence, Szymanski [326] shows how to solve the problem in $O((n+m)\lg(n+m))$ time. Many of these results extend to the problem of computing string edit distances (Problem 15-5).

An early paper on variable-length binary encodings by Gilbert and Moore [133] had applications to constructing optimal binary search trees for the case in which all probabilities p_i are 0; this paper contains an $O(n^3)$ -time algorithm. Aho, Hopcroft, and Ullman [5] present the algorithm from Section 15.5. Exercise 15.5-4 is due to Knuth [212]. Hu and Tucker [184] devised an algorithm for the case in which all probabilities p_i are 0 that uses $O(n^2)$ time and O(n) space; subsequently, Knuth [211] reduced the time to $O(n \lg n)$.

Problem 15-8 is due to Avidan and Shamir [27], who have posted on the Web a wonderful video illustrating this image-compression technique.