February 26, 2023

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
[2]: df= pd.read_csv("Breast_cancer_data.csv")
[3]: df
[3]:
          mean_radius
                        mean_texture
                                       mean_perimeter
                                                        mean_area mean_smoothness \
                 17.99
                                10.38
                                                122.80
                                                           1001.0
                                                                             0.11840
     1
                 20.57
                                17.77
                                                                             0.08474
                                                132.90
                                                           1326.0
     2
                 19.69
                                21.25
                                                130.00
                                                           1203.0
                                                                             0.10960
     3
                 11.42
                                20.38
                                                77.58
                                                                             0.14250
                                                            386.1
     4
                 20.29
                                14.34
                                                135.10
                                                           1297.0
                                                                             0.10030
                   •••
                                22.39
                                                142.00
                                                           1479.0
                                                                             0.11100
     564
                 21.56
     565
                                28.25
                 20.13
                                                131.20
                                                           1261.0
                                                                             0.09780
     566
                 16.60
                                28.08
                                                108.30
                                                            858.1
                                                                             0.08455
                                29.33
     567
                 20.60
                                                140.10
                                                           1265.0
                                                                             0.11780
     568
                 7.76
                                24.54
                                                 47.92
                                                             181.0
                                                                             0.05263
          diagnosis
     0
                   0
     1
                   0
     2
                   0
     3
                   0
     4
                   0
     564
                   0
     565
                   0
     566
                   0
     567
                   0
     568
```

[569 rows x 6 columns]

```
[5]: data= df.to_numpy()
      X= data[:, 0:5]
      print(X.shape)
      y= data[:, 5]
      m= y.shape[0]
      y= y.reshape(m, 1)
      X = np.insert(X, 0, np.ones((1,m)), axis= 1)
      print(X)
     (569, 5)
     [[1.000e+00 1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01]
      [1.000e+00 2.057e+01 1.777e+01 1.329e+02 1.326e+03 8.474e-02]
      [1.000e+00 1.969e+01 2.125e+01 1.300e+02 1.203e+03 1.096e-01]
      [1.000e+00 1.660e+01 2.808e+01 1.083e+02 8.581e+02 8.455e-02]
      [1.000e+00 2.060e+01 2.933e+01 1.401e+02 1.265e+03 1.178e-01]
      [1.000e+00 7.760e+00 2.454e+01 4.792e+01 1.810e+02 5.263e-02]]
 [7]: from sklearn.model_selection import train_test_split
[11]: def hypothesis(X, theta):
          tmp = X@theta
          yest= 1/(1+(np.exp(-(tmp))))
          return yest
      def cost(X, y, theta):
          m= X.shape[0]
          Yest= hypothesis(X, theta)
          lh1= np.log(Yest)
          lh2= np.log(1-Yest)
          cs=-((lh1.T@y)+lh2.T@(1-y))/m
          return cs
      def gradient(X, y, theta):
          gr= np.zeros((6,1))
          Yest= hypothesis(X, theta)
          err= Yest- y
          m= X.shape[0]
          gr= X.T@err/m
          return gr
      def normalize(X):
          cols= X.shape[1]
          Xmean= np.mean(X, axis= 0)
          Xmin= np.min(X, axis= 0)
          Xmax= np.max(X, axis= 0)
          X_norm = X.copy()
```

```
for i in range(1, cols):
    X_norm[:, i] = (X_norm[:, i] - Xmean[i])/(Xmax[i] - Xmin[i])
    return X_norm

X_norm= normalize(X)
```

[12]: X_norm

```
[13]: X_train, X_test, Y_train, Y_test= train_test_split(X_norm, y, test_size=0.2, □ → random_state=0)

print("Number of training examples in train_set and test_set", X_train. → shape[0], Y_train.shape[0])
```

Number of training examples in train_set and test_set 455 455

```
[ ]: N= 30000
     alpha= 0.03
     m= Y_train.shape[0]
     theta= np.zeros((6, 1))
     prev_cost= cost(X_train, Y_train, theta)
     print("Cost before training:", prev_cost)
     for i in range(N):
         print(i, prev_cost) # ----> J_history
         theta= theta- alpha* gradient(X_train, Y_train, theta)
         current_cost= cost(X_train, Y_train, theta)
         if abs(prev_cost- current_cost)<1e-6:</pre>
             print(i)
             break
         prev_cost= current_cost
     print("Final theta", theta)
     print("\n")
     print("Cost after Training:", prev cost)
```

```
[22]: def findMSE(X, y, theta):
    m= X.shape[0]
    Y_pred= hypothesis(X, theta)
    Y_pred= [1 if i>= 0.5 else 0 for i in Y_pred]
    Y_pred= np.array(Y_pred).reshape(m, 1)
    err= Y_pred- y
    mse= err.T@err/m
    return mse

print("Train_mse:", findMSE(X_train, Y_train, theta))
Train_mse: [[0.07692308]]
```

Test mse: [[0.0877193]]

1 Confusion Matrix Evaluation

[23]: print("Test_mse:", findMSE(X_test, Y_test, theta))

```
[24]: true_positive, true_negative, false_positive, false_negative= 0,0, 0, 0
      m= X_test.shape[0]
      Y_pred= hypothesis(X_test, theta)
      Y_pred= [1 if i>= 0.5 else 0 for i in Y_pred]
      Y_pred= np.array(Y_pred).reshape(m, 1)
      for i in range(m):
          if Y_pred[i] == 0 and Y_test[i] == 0:
              true_negative+=1
          elif Y_pred[i] == 1 and Y_test[i] == 0:
              false positive+=1
          elif Y_pred[i] == 1 and Y_test[i] == 1:
              true positive+=1
          elif Y_pred[i] == 0 and Y_test[i] == 1:
              false_negative+=1
      print(true_positive, true_negative, false_positive, false_negative)
      P = true_positive/(true_positive+false_positive)
      R = true_positive/(true_positive+false_negative)
      F1 = 2*P*R/(P+R)
      print("Accuracy:",(true_positive+true_negative)/m)
      print("P R F1",P,R,F1)
```

63 41 6 4

Accuracy: 0.9122807017543859

P R F1 0.9130434782608695 0.9402985074626866 0.9264705882352942

2 Logistic Regression on mnist dataset

```
[3]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
[4]: traindata= pd.read_csv("mnist_train.csv")
     testdata= pd.read_csv("mnist_test.csv")
     traindataset= traindata.to numpy()
     testdataset= testdata.to_numpy()
     print(traindataset.shape, testdataset.shape)
     train_labels= traindataset[:, 0].reshape(60000, 1) # 60000 training samples_
      ⇔are present in traindataset
     test_labels= testdataset[:, 0].reshape(10000, 1)
                                                              # 10000 testing
     ⇔samples are present in testdataset
     train_features= traindataset[:, 1:]
     test_features= testdataset[:, 1:]
```

(60000, 785) (10000, 785)

3 sample Representation

```
[7]: i= 5
            # ith sample in the data
     np.printoptions(linewidth= 600)
     print(train_features[i, :].reshape((28, 28)))
                                                              #the each samples have 784
      ⇔values which can be reshaped into 28*28 matrix form
     plt.imshow(train_features[i, :].reshape((28, 28)))
                                                              # imshow shows the pixels_
      ⇒by taking the values as the value of intensity
     plt.show()
     print("This is:", train_labels[i, 0])
    0
                                                    0
                                                        0
                                                                     0
                                                                             0
                                                                                  0
             0
                 0
                     0
                          0
                              0
                                  0
                                       0
                                           0
                                               0
                                                            0
                                                                0
                                                                         0
         0
             0
                 0
                     0
                          0
                              0
                                  0
                                       0
                                           0
                                               0]
             0
                 0
                                  0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
                                                                                  0
             0
                 0
                     0
                          0
                              0
                                  0
                                       0
                                           0
                                               0]
        0
             0
                 0
                     0
                          0
                              0
                                  0
                                       0
                                           0
                                               0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
                                                                                  0
             0
                 0
                     0
                          0
                              0
                                  0
                                       0
                                           0
                                               0]
         0
     0
                                       0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
                                                                             0
                                                                                  0
        0
             0
                 0
                     0
                              0
                                  0
                                           0
                                               0
                                                    0
                     0
                          0
                              0
                                  0
                                               0]
         0
             0
                 0
                                       0
                                           0
        0
             0
                 0
                     0
                          0
                              0
                                  0
                                       0
                                           0
                                               0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                         0
                                                                                  0
             0
                          0
                                  0
                                               0]
        0
             0
                     0
                              0
                                  0
                                                    0
                                                                     0
                                                                        13
                                                                            25 100
                                                        0
                                                            0
                                                                0
      122
             7
                 0
                     0
                        0
                              0
                                  0 0
                                           0
                                               07
      0 ]
             0
                 0
                     0
                          0
                              0
                                  0
                                      0
                                           0
                                               0
                                                    0
                                                        0
                                                            0 33 151 208 252 252
      252 146
                     0
                                       0
                                           0
                                               07
```

```
0 0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        0 0 40 152 244 252 253 224 211
252 232
                               0
         40
               0
                   0
                       0
                           0
                                   0
                                       0]
                                      15 152 239 252 252 252 216 31 37
[ 0
               0
                   0
                       0
                           0
                               0
                                   0
     0
           0
252 252
          60
               0
                   0
                       0
                           0
                               0
                                   0
                                       07
                                       96 252 252 252 252 217 29
0 0
                               0
                                                                    0 37
           0
               0
                   0
                       0
                           0
252 252
                   0
                       0
                               0
                                        07
          60
               0
                           0
0 0
               0
                   0
                       0
                           0
                               0
                                    0 181 252 252 220 167 30
                                                                0
                                                                    0 77
252 252
          60
               0
                   0
                       0
                           0
                               0
                                   0
                                        07
0 0
                           0
                               0
                                      26 128 58 22
                                                        0
                                                            0
                                                                0
                                                                     0 100
           0
               0
                   0
                       0
                                   0
252 252
         60
               0
                   0
                       0
                           0
                               0
                                   0
                                       07
0 0
                               0
                                       0
                                            0
                                                0
                                                        0
                                                            0
                                                                0
                                                                     0 157
           0
               0
                   0
                       0
                           0
                                   0
                                                    0
252 252
                               0
                                       0]
          60
               0
                   0
                       0
                           0
                                   0
0 0
                                               0 0 110 121 122 121 202
                   0
                       0
                           0
                               0
                                   0
                                       0
                                           0
               0
252 194
                                       0]
           3
               0
                   0
                       0
                           0
                               0
                                   0
0 0
                                       0 10 53 179 253 253 255 253 253
           0
               0
                   0
                       0
                           0
                               0
                                   0
228 35
               0
                   0
                       0
                           0
                               0
                                       07
           0
                                   0
[ 0
     0
           0
               0
                   0
                       0
                           0
                               0
                                   5 54 227 252 243 228 170 242 252 252
231 117
           6
               0
                   0
                       0
                           0
                               0
                                   0
                                       0]
0 0
           0
               0
                   0
                       0
                           0
                               6
                                  78 252 252 125 59 0 18 208 252 252
252 252 87
               7
                   0
                       0
                           0
                               0
                                   0
                                       07
ΓΟ
                           5 135 252 252 180 16 0 21 203 253 247 129
      0
           0
               0
                   0
                       0
173 252 252 184
                  66
                      49
                         49
                                        0]
                               0
                                   0
       0
               0
                   0
                       3 136 252 241 106 17 0 53 200 252 216 65
 14 72 163 241 252 252 223
                               0
                                   0
                                        07
                   0 105 252 242 88 18 73 170 244 252 126
ΓΟ
      0
           0
               0
                                                               29
                                                                         0
              89 180 180 37
                               0
                                   0
                                       0]
  0
       0
           0
[ 0
                   0 231 252 245 205 216 252 252 252 124
       0
                                                                0
                                                                     0
                                                                         0
           0
                       0
  0
       0
           0
               0
                   0
                           0
                               0
                                   0
                                        0]
0
                   0 207 252 252 252 252 178 116 36
                                                        4
       0
           0
               0
                                                                0
                                                                     0
                                                                         0
  0
       0
           0
                   0
                       0
                           0
                               0
                                   0
                                        0]
ΓΟ
       0
           0
               0
                   0
                      13
                          93 143 121
                                       23
                                            6
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
  0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        0]
Γ
  0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
  0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0]
[ 0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
  0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        0]
[ 0
                                                                         0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
  0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       07
ΓΟ
       0
           0
               0
                   0
                           0
                               0
                                   0
                                        0
                                            0
                                                                         0
                       0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        07
[ 0
       0
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                        0
                                            0
                                                0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                         0
  0
       0
               0
                   0
                               0
                                        0]]
           0
                       0
                           0
                                   0
```


This is: 2

4 Normalize features

m= X.shape[0]

```
lh2= np.log(1- (hypothesis(X, theta)))
          cs = -(lh1.T@y+lh2.T@(1-y))/m
          return cs
      def gradient(X, y, theta):
          m= y.shape[0]
          Yest= hypothesis(X, theta)
          err= Yest- y
          gr= (X.T@err)/m
          return gr
      train_labels0= np.array([1 if i==0 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels1= np.array([1 if i==1 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels2= np.array([1 if i==2 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels3= np.array([1 if i==3 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels4= np.array([1 if i==4 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels5= np.array([1 if i==5 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels6= np.array([1 if i==6 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels7= np.array([1 if i==7 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels8= np.array([1 if i==8 else 0 for i in train_labels]).
       →reshape(m_train, 1)
      train_labels9= np.array([1 if i==9 else 0 for i in train_labels]).
       →reshape(m_train, 1)
[15]: def gradient_descent(X, y, theta_initial, alpha, tol, N):
          theta= theta_initial
          prev cost= cost(X, y, theta)
          print("Cost before training:", prev_cost)
          for i in range(N):
              print("-", end= "")
              theta= theta- alpha*gradient(X, y, theta)
              cs= cost(X, y, theta)
              if abs(prev_cost- cs)<tol:</pre>
                  print(i)
                  break
              prev_cost= cs
          print("the cost after training:", prev_cost)
          return theta
```

lh1= np.log(hypothesis(X, theta))

```
[16]: theta_inital= np.zeros((785, 1))
      theta0= gradient_descent(train_features, train_labels0, theta_inital, 0.03,__
       →1e-6, 3000 )
      theta1= gradient_descent(train_features, train_labels1, theta_inital, 0.03, __
       →1e-6, 3000 )
      theta2= gradient_descent(train_features, train_labels2, theta_inital, 0.03,__
       →1e-6, 3000 )
      theta3= gradient_descent(train_features, train_labels3, theta_inital, 0.03, __
       →1e-6, 3000 )
      theta4= gradient_descent(train_features, train_labels4, theta_inital, 0.03, u
       →1e-6, 3000 )
      theta5= gradient_descent(train_features, train_labels5, theta_inital, 0.03,
       41e-6, 3000 )
      theta6= gradient_descent(train_features, train_labels6, theta_inital, 0.03,
       →1e-6, 3000 )
      theta7= gradient_descent(train_features, train_labels7, theta_inital, 0.03, u
       →1e-6, 3000 )
      theta8= gradient_descent(train_features, train_labels8, theta_inital, 0.03, __
       →1e-6, 3000 )
      theta9= gradient_descent(train_features, train_labels9, theta_inital, 0.03, __
       →1e-6, 3000 )
     Cost before training: [[0.69314718]]
```

				the co	st after	training:	[[0.0423170	7]]
Cost	before	training:	[[0.69314718]]					

				+ho	coat	oftor	training:	[[0.04047849]]
~ .					COSC	arter	craining.	[[0.04047043]]
Cost	before	training:	[[0.69314718]]					
					00c+	of+	+	[[0 00700077]]
					COST	arter	craining:	[[0.08700877]]
Cost	before	training:	[[0.69314718]]	J				

the cost after training: [[0.10102085]]
Cost before training: [[0.69314718]]	

				e cost afte	er training:	[[0.07153784]]
Cost before				ne cost afte	er training:	[[0.07153784]]
				e cost afte	er training:	[[0.07153784]]
				ne cost afte	er training:	[[0.07153784]]
				ne cost afte	er training:	[[0.07153784]]
				ne cost afte	er training:	[[0.07153784]]
				ne cost afte	er training:	[[0.07153784]]
				ne cost afte	er training:	[[0.07153784]]
				ne cost afte	er training:	[[0.07153784]]
Cost before	training:	[[0.693147	18]]		er training:	
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			
Cost before	training:	[[0.693147	18]]			

	the cost after training: [[0.1134967]]
Cost before training: [[0.69314718]]	

				the	cost	after	training	[[0.05408988]]
Coat	hoforo				CODO	ar our	orarming.	[[0:0010000]]
COST	perore	craining.	[[0.69314718]					
			·					
				t.he	cost	after	training	[[0.06173994]]
			[[0.69314718]			001		[[0.001,0001]]
0000	PETOTE	orarning.	[[O : O 2 O T # 1 T O]	L				

	the	cost after	training:	[[0.152341	57]]
Cost before training:					


```
0.
               0.
                                      ],
             [ 0.
                                       , 0.
                            0.
                                      ],
               0.
                            0.
             [ 0.
                            0.
                                       , 0.
               0.
                            0.
                                       ]])
[25]: testPrediction = 1/(1+np.exp(-test_features@theta))
      i = 1003
      print(testPrediction[i,:])
      print(np.argmax(testPrediction[i,:]))
      print(test labels[i])
     [3.61221678e-04 3.14821596e-07 5.16941061e-04 4.00406839e-01
      1.89973454e-06 5.53674883e-01 3.82089047e-07 2.16860535e-06
      9.53381239e-02 2.06206713e-05]
     5
     [5]
[26]: testPred = np.argmax(testPrediction,axis=1).reshape(10000,1)
      print(testPred)
     [[7]
      [2]
      [1]
      [4]
      [8]
      [6]]
[27]: correct = [1 if testPred[i]==test_labels[i] else 0 for i in range(0,10000)]
      accuracy = np.sum(correct)/10000
      print(accuracy*100)
     89.92
```

5 Logistic_regression on university admission dataset

df.columns = ['exam_score_1', 'exam_score_2', 'label']

```
[3]: df
[3]:
                       exam_score_2 label
         exam_score_1
            34.623660
                          78.024693
     0
     1
            30.286711
                          43.894998
                                          0
     2
                                          0
            35.847409
                          72.902198
     3
            60.182599
                          86.308552
                                          1
     4
            79.032736
                          75.344376
                                          1
     95
            83.489163
                          48.380286
                                          1
    96
            42.261701
                          87.103851
                                          1
     97
            99.315009
                          68.775409
                                          1
                          64.931938
     98
            55.340018
                                          1
     99
            74.775893
                          89.529813
                                          1
     [100 rows x 3 columns]
[4]: df.describe().T
[4]:
                                                       min
                                                                  25%
                                                                              50% \
                   count
                               mean
                                            std
                   100.0
     exam_score_1
                          65.644274 19.458222
                                                 30.058822
                                                            50.919511
                                                                        67.032988
     exam score 2 100.0
                                                 30.603263
                                                            48.179205
                          66.221998 18.582783
                                                                        67.682381
     label
                   100.0
                           0.600000
                                       0.492366
                                                  0.000000
                                                             0.000000
                                                                         1.000000
                         75%
                                     max
     exam_score_1 80.212529
                              99.827858
     exam score 2 79.360605
                              98.869436
     label
                               1.000000
                    1.000000
[8]: plt.figure(figsize=(7,5))
     plot= sns.scatterplot(x= "exam_score_1", y= "exam_score_2", data= df, hue=__

¬"label", style= "label", s= 80)
     #hue---> here hue means how color to be differentiated, so here labe column is \Box
      ⇒used to differentiate the color
     #style---> Here style means how to differentiate the markers to be used, sou
     here the lanel column is used to differentiate the style
     # s--> size of marker
     handles, labels= plot.get_legend_handles_labels()
     plot.legend(handles[0:], ["Not admitted", "Admitted"])
     plt.title("Scatter plot for university admission")
     plt.show()
```

Scatter plot for university admission


```
[92]: def sigmoid(z):
    z= np.array(z)
    return 1/(1+np.exp(-z))

[123]: def cost_function(theta, X, y):
    m = y.shape[0]
    theta = theta[:, np.newaxis] #trick to make numpy minimize work
    h = sigmoid(X.dot(theta))
    J = (1/m) * (-y.T.dot(np.log(h)) - (1-y).T.dot(np.log(1-h)))

    diff_hy = h - y
    grad = (1/m) * diff_hy.T.dot(X)

    return J, grad

[124]: m = df.shape[0]
    X = np.hstack((np.ones((m,1)),df[['exam_score_1', 'exam_score_2']].values))
    y = np.array(df.label.values).reshape(-1,1)
    initial_theta = np.zeros(shape=(X.shape[1]))
```

```
[125]: cost, grad = cost_function(initial_theta, X, y)
       print('Cost at initial theta (zeros):', cost)
       print('Expected cost (approx): 0.693')
       print('Gradient at initial theta (zeros):')
       print(grad.T)
       print('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628')
      Cost at initial theta (zeros): [[0.69314718]]
      Expected cost (approx): 0.693
      Gradient at initial theta (zeros):
      [ [ -0.1 ]
       [-12.00921659]
       [-11.26284221]]
      Expected gradients (approx):
       -0.1000
       -12.0092
       -11.2628
[126]: import scipy.optimize as opt
       def optimize_theta(X, y, initial_theta):
           opt_results = opt.minimize(cost_function, initial_theta, args=(X, y), u

→method='TNC',
                                      jac=True, options={'maxiter':400})
           return opt_results['x'], opt_results['fun']
[127]: opt_theta, cost = optimize_theta(X, y, initial_theta)
      C:\Users\JAGADISH\AppData\Local\Temp\ipykernel_10980\1274892550.py:3:
      DeprecationWarning: 'maxiter' has been deprecated in favor of 'maxfun' and will
      be removed in SciPy 1.11.0.
        opt_results = opt.minimize(cost_function, initial_theta, args=(X, y),
      method='TNC',
[128]: opt theta
[128]: array([-25.16131862,
                              0.20623159,
                                            0.20147149])
[129]:
      cost
[129]: 0.20349770158947464
      6 Decision Boundary
[156]: plt.figure(figsize= (7, 5))
       plot= sns.scatterplot(x= "exam_score_1", y= "exam_score_2", data= df, hue=__
```

¬"label", style= "label", s= 80)

```
handles, labels= plot.get_legend_handles_labels()
plot.legend(handles[0:], ["Not admitted", "Admitted"])
plt.title("University admission decision boundary")

plot_x= np.array(plot.get_xlim())
print(plot_x)
plot_y = (-opt_theta[1]/opt_theta[2]) * plot_x - opt_theta[0]/opt_theta[2]
plt.plot(plot_x, plot_y, "-", c= "green")
plt.show(plot)
```

[26.57037068 103.31630956]

7 Evaluating Logistic Regression

```
[157]: prob= sigmoid(np.array([1, 45, 85]).dot(opt_theta))
print("The prob of getting admission of student with 45 and 85 marks is:", prob)
```

The prob of getting admission of student with 45 and 85 marks is: 0.7762906236225744

8 Accuracy on training set

```
[160]: def predict(X, theta):
           y_pred= [1 if sigmoid(X[i, :].dot(theta))>= 0.5 else 0 for i in range(0, X.
        ⇔shape[0])]
            return y_pred
[161]: y_pred_prob = predict(X, opt_theta)
[162]: y_pred_prob
[162]: [0,
        Ο,
        Ο,
        1,
        Ο,
        1,
        Ο,
        1,
        1,
        1,
        Ο,
        1,
        1,
        0,
        1,
        Ο,
        Ο,
        1,
        1,
        Ο,
        1,
        0,
        0,
        1,
        1,
        1,
        1,
        0,
        0,
        1,
        1,
        0,
        0,
        Ο,
        Ο,
```

1, 1, 0,

Ο, 1,

0,

1,

Ο,

Ο, 1,

1,

1, 1,

1,

1,

1, Ο,

Ο,

0,

1,

1,

1,

1, 0,

0,

0,

1, Ο,

1,

1,

1, 1,

1,

1,

1,

1, 1,

Ο,

1,

1,

1, 1,

```
1,
        1,
        0,
        1,
        1,
        0,
        1,
        1,
        0,
        1.
        1,
        1,
        1,
        1,
        0,
        1]
       y_pred_prob== df.label.values
[165]: array([ True,
                             True,
                                     True,
                                                   True,
                                                           True, False,
                      True,
                                            True,
                                                                         True,
               True, False,
                                                          True, False,
                             True,
                                     True,
                                            True,
                                                   True,
                                                                         True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                           True,
                                                                  True,
                                                                         True,
              False,
                             True,
                                     True,
                                            True,
                                                   True, False,
                                                                  True,
                      True,
                                                                         True,
              False,
                      True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                           True, False,
                                                                         True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                          True,
                                                                  True,
                                                                         True,
                             True, False,
                                            True,
               True,
                      True,
                                                   True,
                                                          True,
                                                                  True,
                                                                         True,
               True,
                      True,
                             True,
                                     True,
                                            True,
                                                   True,
                                                           True, True,
                                                                         True,
               True,
                                            True,
                                                           True, False,
                      True,
                             True,
                                     True,
                                                   True,
                                                                         True,
               True,
                      True, False,
                                     True,
                                            True,
                                                   True,
                                                           True, True,
                                                                         True,
                                                                  True, False,
               True,
                      True,
                             True,
                                    True,
                                            True,
                                                   True,
                                                           True,
               True])
      f'Train Accuracy: {np.mean(y_pred_prob== df.label.values)*100}'
[163]: 'Train Accuracy: 89.0'
          Equivalent with Sklearn
[167]: from sklearn.linear_model import LogisticRegression
       log_reg= LogisticRegression(solver= "newton-cg", max_iter= 400)
       log_reg.fit(df[['exam_score_1', "exam_score_2"]].values, df.label.values)
[167]: LogisticRegression(max_iter=400, solver='newton-cg')
[168]: log_reg.intercept_, log_reg.coef_
```

0,

```
[168]: (array([-25.05200378]), array([[0.2053533, 0.20058239]]))
      #Accuracy with sklearn
[170]: log reg.score(df[['exam_score_1', 'exam_score_2']].values,df.label.values)
[170]: 0.89
           Regularized Logistic Regression
      Visualization of the data
[181]: df2= pd.read_csv("E:\VS_
        →CODE\machine-learning-andrew-ng-master\machine-learning-andrew-ng-master\data\ex2data2.
        otxt", sep =",", header= None)
       df2.columns= ['test_1', 'test_2', 'label']
[182]: df2
[182]:
             test_1
                        test 2 label
           0.051267 0.699560
           -0.092742
                      0.684940
                                    1
       1
       2
          -0.213710 0.692250
                                    1
       3
           -0.375000 0.502190
                                    1
           -0.513250
                      0.465640
                                    1
                                    0
       113 -0.720620
                      0.538740
       114 -0.593890
                      0.494880
                                    0
       115 -0.484450
                      0.999270
                                    0
       116 -0.006336 0.999270
                                    0
       117 0.632650 -0.030612
                                    0
       [118 rows x 3 columns]
[183]: df2.describe().T
[183]:
                                                        25%
                                                                  50%
                                                                            75%
              count
                          mean
                                     std
                                              min
              118.0
                      0.054779
                                0.496654 -0.83007 -0.372120 -0.006336
                                                                       0.478970
       test_1
       test_2
                                0.519743 -0.76974 -0.254385
              118.0
                      0.183102
                                                             0.213455
                                                                       0.646563
       label
              118.0
                     0.491525 0.502060 0.00000 0.000000 0.000000
                                                                       1.000000
                  max
              1.0709
       test_1
```

test 2 1.1089

1.0000

label

Scatter plot for the exam data


```
[187]: def map_feature(X1, X2, degree):
    X1 = np.array(X1).reshape(-1,1)
    X2 = np.array(X2).reshape(-1,1)

    out = np.ones((X1.shape[0], 1))
    for i in range(1, degree+1):
        for j in range(0, i+1):
            p = (X1**(i-j)) * (X2**j)
            out = np.append(out, p, axis=1)
    return out
```

```
[188]: X_p = map_feature(df2.test_1.values, df2.test_2.values, 6)
X_p.shape
```

```
[188]: (118, 28)
[189]: def cost_function_reg(theta, X, y, lambda_reg):
           m = y.shape[0]
           theta = theta[:, np.newaxis]
           h = sigmoid(X.dot(theta))
           J = (1/m) * (-y.T.dot(np.log(h)) - (1-y).T.dot(np.log(1-h))) + (lambda_reg/
        \hookrightarrow (2*m)) * np.sum(theta[1:]**2)
           diff_hy = h - y
           grad = (1/m) * diff_hy.T.dot(X) + ((lambda_reg/m) * theta.T)
           grad[0, 0] = (1/m) * diff_hy.T.dot(X[:, 0])
           return J, grad
[190]: import scipy.optimize as opt
       def optimize_theta_reg(X, y, initial_theta, lambda_reg):
           opt_results = opt.minimize(cost_function_reg, initial_theta, args=(X, y, __
        →lambda_reg), method='TNC', jac=True, options={'maxiter':400})
           return opt_results['x'], opt_results['fun']
[191]: m = df.shape[0]
       X = X_p
       y = np.array(df2.label.values).reshape(-1,1)
       initial_theta = np.zeros(shape=(X.shape[1]))
[192]: lambda_reg = 1
       cost, grad = cost_function_reg(initial_theta, X, y, lambda_reg)
[193]: print(grad.T[:5])
      [[8.47457627e-03]
       [1.87880932e-02]
       [7.77711864e-05]
       [5.03446395e-02]
       [1.15013308e-02]]
[194]: lambda_reg = 10
       initial_theta = np.ones(shape=(X.shape[1]))
       cost, grad = cost_function_reg(initial_theta, X, y, lambda_reg)
[195]: print(grad.T[:5])
      [[0.34604507]
       [0.16135192]
       [0.19479576]
       [0.22686278]
```

[0.09218568]]

```
[196]: lambda reg = [1, 10, 100, 0]
       fig, axs = plt.subplots(nrows=1, ncols=4, figsize=(15,4))
       u = np.linspace(-1, 1.5, 50)
       v = np.linspace(-1, 1.5, 50)
       for il, l in enumerate(lambda_reg):
           theta_opt, cost = optimize_theta_reg(X, y, initial_theta, 1)
           z = np.zeros((u.shape[0], v.shape[0]))
           for i in range(len(u)):
               for j in range(len(v)):
                   z[i,j] = map_feature(u[i], v[j], 6).dot(theta_opt)
           sns.scatterplot(x='test_1', y='test_2', hue='label', data=df2,__
        ⇔style='label', s=80, ax=axs[i1])
           axs[il].contour(u, v, z.T, levels=[0], colors='green')
           axs[il].set_title('$\lambda={}$'.format(1))
       fig.tight_layout()
       plt.show()
      C:\Users\JAGADISH\AppData\Local\Temp\ipykernel 10980\968707659.py:3:
      DeprecationWarning: 'maxiter' has been deprecated in favor of 'maxfun' and will
      be removed in SciPy 1.11.0.
        opt_results = opt.minimize(cost_function_reg, initial_theta, args=(X, y,
      lambda_reg), method='TNC', jac=True, options={'maxiter':400})
      C:\Users\JAGADISH\AppData\Local\Temp\ipykernel_10980\968707659.py:3:
      DeprecationWarning: 'maxiter' has been deprecated in favor of 'maxfun' and will
      be removed in SciPy 1.11.0.
        opt_results = opt.minimize(cost_function_reg, initial_theta, args=(X, y,
      lambda reg), method='TNC', jac=True, options={'maxiter':400})
      C:\Users\JAGADISH\AppData\Local\Temp\ipykernel_10980\968707659.py:3:
      DeprecationWarning: 'maxiter' has been deprecated in favor of 'maxfun' and will
      be removed in SciPy 1.11.0.
        opt_results = opt.minimize(cost_function_reg, initial_theta, args=(X, y,
      lambda_reg), method='TNC', jac=True, options={'maxiter':400})
      C:\Users\JAGADISH\AppData\Local\Temp\ipykernel_10980\968707659.py:3:
      DeprecationWarning: 'maxiter' has been deprecated in favor of 'maxfun' and will
      be removed in SciPv 1.11.0.
        opt results = opt.minimize(cost function reg, initial_theta, args=(X, y,
      lambda_reg), method='TNC', jac=True, options={'maxiter':400})
```

```
[197]: lambda_reg = 1
      theta, cost = optimize_theta_reg(X, y, initial_theta, lambda_reg)
      theta
      C:\Users\JAGADISH\AppData\Local\Temp\ipykernel 10980\968707659.py:3:
      DeprecationWarning: 'maxiter' has been deprecated in favor of 'maxfun' and will
      be removed in SciPy 1.11.0.
        opt_results = opt.minimize(cost_function_reg, initial_theta, args=(X, y,
      lambda_reg), method='TNC', jac=True, options={'maxiter':400})
[197]: array([ 1.27273509, 0.62525435, 1.18108521, -2.01994882, -0.91742556,
             -1.43167368, 0.12399628, -0.36552234, -0.35723208, -0.17514253,
             -1.4581339, -0.05098852, -0.61553085, -0.27470069, -1.19280263,
             -0.24220871, -0.20601057, -0.04472767, -0.2777735, -0.29536755,
             -0.45637086, -1.04318579, 0.02776829, -0.29241701, 0.01556523,
             -0.32737793, -0.14388044, -0.92463148)
[198]: |y_pred_prob = predict(X, theta)
      f'Train accuracy: {np.mean(y_pred_prob == df2.label.values) * 100}'
[198]: 'Train accuracy: 83.05084745762711'
[199]: from sklearn.linear_model import LogisticRegression
      log_reg = LogisticRegression(solver='newton-cg', max_iter=400)
      log reg.fit(X[:,1:], df2.label.values)
[199]: LogisticRegression(max_iter=400, solver='newton-cg')
[200]: log_reg.intercept_, log_reg.coef_
[200]: (array([1.27273852]),
       array([[ 0.62527427, 1.18107953, -2.01995701, -0.91743361, -1.43166228,
                0.12400943, -0.36552879, -0.35723375, -0.1751281, -1.45816817,
               -0.05099315, -0.61556795, -0.27470949, -1.19281161, -0.24218951,
               -0.20599958, -0.04473522, -0.27778736, -0.29537501, -0.45635027,
               -1.04321271, 0.02777197, -0.29243756, 0.0155633, -0.32738395,
```

-0.14388956, -0.92464266]]))

```
[201]: log_reg.score(X[:,1:], df2.label.values)

[201]: 0.8305084745762712

[]:
```