Índice

	Ecuación no homogénea 5.1. Método coeficientes indeterminados	8
	Ecuaciones homogéneas con coeficientes constantes	6
3.	Reducción de orden	5
2.	Estructura del conjunto de soluciones	2
1.	Introduccion	_

1. Introducción

"Me convertí en ateo porque como estudiante de post-grado en física cuántica, la vida parecía ser reducible a ecuaciones diferenciales de segundo orden. Matemáticas, química y física tenían todo y yo no veo ninguna necesidad de ir más allá de eso."

Francis Collins

Definición 1 (Ecuación lineal general de segundo orden).

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x),$$
(1)

donde p,q,r son funciones definidas en un intervalo I=(a,b) de $\mathbb R$ con valores en $\mathbb R.$ Si $r\equiv 0$ se llama homogénea

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0,$$
(2)

Teorema 1 (Teorema de existencia y unicidad de soluciones).

Supongamos p,q,r continuas sobre I. Sean $x_0\in I$ e $y_0,y_1\in\mathbb{R}$ dados. Entonces existe una única solución del PVI

$$\begin{cases} \frac{d^2y}{dx^2} + & p(x)\frac{dy}{dx} + q(x)y = r(x), & x \in I \\ y(x_0) & = y_0 \\ y'(x_0) & = y_0^1 \end{cases}$$

2. Estructura del conjunto de soluciones

Teorema 1.

Si y_1 e y_2 son soluciones de (2) y $c_1, c_2 \in \mathbb{R}$ entonces $c_1y_1 + c_2y_2$ es solución. Vale decir, el conjunto de soluciones es un espacio vectorial. En particular $y \equiv 0$ es una solución, a la que llameremos trivial.

Demostración. El operador

$$L[y] := y'' + py' + qy$$

es lineal, por consiguiente $L[c_1y_1 + c_2y_2] = c_1L[y_1] + c_2L[y_2] = 0$.

Teorema 2.

Supongamos que y_p es una solución particular de (1) y que $y_g=y_g(x,c_1,c_2)$ es una solución general de (2). Entonces $y=y_p+y_g$ es solución general de (1).

Demostración. El operador

$$L[y] := y'' + py' + qy$$

es lineal, por consiguiente $L[y_g+y_p]=L[y_g]+L[y_p]=0+r=r$. Recíprocamente supongamos y solución de L[y]=r, entonces $L[y-y_p]=L[y]-L[y_p]=r-r=0$. Luego debe haber c_1 y c_2 con $y(x)-y_p(x)=y_g(x,c_1,c_2)$.

Volviendo a las ecuaciones homogéneas, supongamos que tenemos dos soluciones de (2) y_1 e y_2 . Entonces la expresión

$$c_1 y_1 + c_2 y_2, \quad c_1, c_2 \in \mathbb{R}$$
 (3)

es solución también. Notar que en la expresión aparecen dos constantes y habíamos dicho que era de esperar que la solución general de una ecuación de orden 2 contuvie-se precisamente dos constantes de integración. De modo que podemos conjeturar que (3) es solución general de (2). Hay una situación especial, si, por ejemplo, $y_1 = ky_2$, $k \in \mathbb{R}$, entonces $c_1y_1 + c_2y_2 = (c_1k + c_2)y_2 = cy_2$. Vale decir la combinación lineal (3) termina siendo sólo combinación lineal de la función y_2 y por ende siendo esencialmente una expresión uniparamétrica.

Definición 1 (Independencia lineal).

Un conjunto finito de funciones $\{y_1, \ldots, y_n\}$ se dirá linealmente independiente sobre un conjunto I, si la única solución de $c_1y_1(t) + \cdots + c_ny_n(t) = 0$, para $t \in I$, es $c_1 = c_2 = \cdots = c_n = 0$.

Definición 2 (Definición wronskiano).

Dadas n fuciones $\{y_1,\ldots,y_n\}$ con dominio I el wronskiano $W(x)=W(y_1,y_2,\ldots,y_n)(x)$ de estas funciones en un punto $x\in I$ se define por

$$W(x) = \det \begin{pmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{pmatrix}$$
(4)

Lema 1 (Propiedades Wronskiano I).

Sea $\{y_1,\ldots,y_n\}$ un conjunto de n funciones. Si existe un $x_0\in I$ con $W(x_0)\neq 0$ entonces $\{y_1,\ldots,y_n\}$ son linealmente independientes

Demostración. Supongamos que $c_1y_1 + \cdots + c_ny_n \equiv 0$. Derivando n-1 veces esta igualdad y evaluando el resultado en x_0 obtenemos

$$c_1 y_1(x_0) + \dots + c_n y_n(x_0) = 0$$

$$c_1 y_1'(x_0) + \dots + c_n y_n'(x_0) = 0$$

$$\vdots \qquad \vdots$$

$$c_1 y_1^{(n-1)}(x_0) + \dots + c_n y_n^{(n-1)}(x_0) = 0$$

Las igualdades anteriores dicen que el vector $(c_1, \ldots, c_n)^t$ pertenece al nucleo de la matriz

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & y'_2(x_0) & \cdots & y'_n(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{pmatrix}$$

Como por hipótesis la matríz es no singular, debe ocurrir que $c_1=c_2=\cdots c_n=0.$

Teorema 3 (Teorema. Propiedades wronskiano II, Fórmula de Abel).

Supongamos que y_1 e y_2 son solución de

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0, \quad x \in I = (a, b)$$
 (5)

Entonces existe $c \in \mathbb{R}$ que satisface

$$W(y_1, y_2)(x) = ce^{-\int pdx}.$$
 (6)

Esta expresión se denomina fórmula de Abel. En particular vale que

$$\exists x_0 \in I : W(x_0) \neq 0 \iff \forall x \in I : W(x) \neq 0.$$

Demostración. Tenemos que

$$W(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x).$$

Derivando y usando (5)

$$W'(x) = y_1 y_2'' - y_1 y_2''$$

= $y_1 (-py_2' - qy_2) - y_2 (-py_1' - qy_1)$
= $-pW$.

Vale decir W resuelve la ecuación W' = -pW la cual es facilmente resoluble, mostrando su resolución que se satisface (6)

Teorema 4 (Propiedades wronskiano III).

Sean y_1 e y_2 soluciones de (5). Entonces son equivalentes

- 1. y_1 e y_2 son linealmente indepenientes en I.
- 2. $W(y_1, y_2)(x) \neq 0$ para todo $x \in I$.

Demostración. Que 2 implica 1 es consecuencia de la propiedad del wronskiano I. Veamos que 1 implica 2. Supongamos que exista un x_0 con $W(x_0)=0$. Esto quiere decir que una de las columnas de la matríz wronskiana en x_0 es múltiplo de la otra. Supongamos que $y_2(x_0)=ky_1(x_0)$ e $y_2'(x_0)=ky_1'(x_0)$. Esto quiere decir que y_2 y ky_1 resuelven el mismo pvi. Por lo tanto $y_2(x)=ky_1(x)$ para todo x. Lo que nos dice lo contrario de 1

Teorema 5 (Estructura del conjunto de soluciones, ecuación homogénea).

Si y_1 e y_2 son soluciones linealmente independientes de

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0, \quad x \in I = (a,b)$$

entonces

$$y(x, c_1, c_2) = c_1 y_1 + c_2 y_2 \tag{7}$$

es solución general.

Demostración. Que la expresión (7) es solución ya lo hemos dicho. Restaría ver que cualquier solución se escribe como en (7). Sea y cualquier solución y $x_0 \in I$. La matriz wronskiana

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix}$$

Es no singular dado que el determinante es no nulo. Por este motivo el sistema

$$c_1 y_1(x_0) + c_2 y_2(x_0) = y(x_0)$$

$$c_1 y_1'(x_0) + c_2 y_2'(x_0) = y'(x_0)$$

tiene solución para c_1 y c_2 . De este modo vemos que la función $c_1y_1+c_2y_2$ resuelve el PVI

$$\begin{cases} \frac{d^2z}{dx^2} + p(x)\frac{dz}{dx} + q(x)z = 0, & x \in I \\ z(x_0) = y(x_0) \\ z'(x_0) = y'(x_0) \end{cases}.$$

Evidentemente y es solución también, por el Teorema de Existencia y Unicidad vemos que $y=c_1y_1+c_2y_2$

3. Reducción de orden

Como conclusión de los anterior, vemos que si queremos resolver (5) debemos conseguir dos soluciones linealmente independientes. Suponiendo que ya contamos con una solución no trivial vamos a describir un método que posibilita encontrar otra solución y_2 linealmente independiente de y_1 . El método consiste en proponer que y_2 se escribe

$$y_2(x) = v(x)y_1(x)$$

Sustituyendo este ansatz en la ecuación

$$0 = y_2'' + py_2' + qy_2$$

= $y_1v'' + 2v'y_1' + vy_1'' + pv'y_1 + pvy_1' + qvy_1$
= $y_1v'' + (2y_1' + py_1)v' + v(y_1'' + py_1' + qy_1)$
= $y_1v'' + (2y_1' + py_1)v'$

La fórmula anterior es nuevamente una ecuación de segundo orden para v, pero en este caso afortunadamente contamos con herramientas para resolverla puesto que se trata de una ecuación donde la variable dependiente v no aparece explícitamente, sino que aparecen sus derivadas v' y v''. Hay que intentar la sustitución w = v'. Luego

$$y_1w'' + (2y_1' + py_1)w = 0$$

Recordar que y_1 la asumimos conocida y que p es obviamente conocida, así $2y'_1 + py_1$ es una función conocida. La ecuación es una ecuación lineal homogénea de primer orden. Usando la fórmula para resolver este tipo de ecuación, obtenemos

$$w(x) = Ce^{-\int \frac{y_1'}{y_1} + pdx} = Ce^{-2\ln|y_1|}e^{-\int pdx} = C\frac{1}{y_1^2}e^{-\int pdx}$$

Es suficiente encontrar sólo una función v, de allí podemos tomar C=1.

$$w(x) = \frac{1}{y_1^2} e^{-\int p dx} \Longrightarrow v(x) = \int \frac{1}{y_1^2} e^{-\int p dx} dx$$
 (8)

Otra manera de testear la independencia lineal de dos funciones y_1 e y_2 es notar que si fueran linealmente dependientes e $y_1 \neq 0$ en un conjunto $J \subset I$ entonces y_2/y_1 sería constante. Luego uno chequearía independencia si comprobase que y_2/y_1 no es constante en algún subdominio $J \subset I$. En el caso anterior $y_2/y_1 = v$, luego deberíamos tener v no constante sobre algún subconjunto J. Pero v constante implicaría $y_1^{-2}e^{-\int pdx}=0$ y esto claramente no ocurre. De modo que por el método anterior encontramos dos soluciones independientes.

4. Ecuaciones homogéneas con coeficientes constantes

Consideramos la ecuación

$$y'' + py' + qy = 0, \quad p, q \in \mathbb{R}$$

$$(9)$$

Propongamos una solución de la forma

$$y(x) = e^{\lambda x}, \quad \lambda \in \mathbb{C}$$

Reemplazando en la ecuación

$$(\lambda^2 + \lambda p + q)e^{\lambda x} = 0.$$

Se debe satisfacer la llamada ecuación característica

$$\lambda^2 + p\lambda + q = 0 \tag{10}$$

Tenemos tres casos acorde al valor de $\Delta := p^2 - 4c$

1. $\Delta = p^2 - 4c > 0$, raices reales distintas λ_1, λ_2 . Este es el caso más sencillo de todos, obtenemos las soluciones

$$y_1(x) = e^{\lambda_1 x}$$
 y $y_2(x) = e^{\lambda_2 x}$.

Para chequear la independencia

$$\frac{y_2}{y_1} = e^{(\lambda_2 - \lambda_1)x} \neq \text{cte.}$$

Luego

$$y(x, c_2, c_2) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}.$$
 (11)

es solución general

2. $\Delta = p^2 - 4c < 0$, raices complejas conjugadas $\lambda_1 = \mu + i\nu$, $\lambda_2 = \mu - i\nu$, $\mu, \nu \in \mathbb{R}$. Proponemos una solución de la forma

$$y(x) = e^{\mu x} v(x)$$

Hagamos los cálculos con SymPy

$$-\frac{p^2}{4}v(x) + qv(x) + \frac{d^2}{dx^2}v(x) = 0$$

Como $\nu^2:=-\frac{1}{4}(p^2-4q)>0$, v resuelve la ecuación del oscilador armónico con frecuencia ν . Recordar que la solución general para v es

$$v(x) = C_1 \cos \nu x + C_2 \sin \nu x,$$

y de allí

$$y(x) = e^{\mu x} \{ C_1 \cos \nu x + C_2 \sin \nu x \}$$
 (12)

Seguidamente presentamos las gráficas de las soluciones para distiontos valores de μ .

3. $\Delta = p^2 - 4c = 0$, raices iguales . Conocemos una solución $y_1 = e^{-\frac{p}{2}x}$. Podemos hallar otra por el método de reducción de orden. Esto consiste en proponer otra solución de la forma $y_2(x) = y_1(x)v(x)$ Dejemos que lo haga SymPy

```
>>> x,p=symbols('x,p')
>>> y=Function('y')(x)
>>> v=Function('v')(x)
>>> y=v*exp(-p/2*x)
>>> ecua=y.diff(x,2)+p*y.diff(x)+p**2/4*y
>>> ecuav=simplify(ecua/exp(-p/2*x))
>>> ecuav
```

Se obtiene

$$\frac{d^2}{dx^2}v(x) = 0.$$

La solución general para v es $v=c_1+c_2x$. Así el método mencionado proporciona la solución extra

$$y_2(x) = xe^{-\frac{p}{2}x}$$

5. Ecuación no homogénea

5.1. Método coeficientes indeterminados

Intentamos resolver

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x),\tag{13}$$

donde $p,q,r\in\mathbb{R}, r\in C(I)$ $r\neq 0$. El método consiste en buscar soluciones en la misma clase de funciones a la que pertenece r(x). Funciona de manera metódica sólo para algunos tipos de funciones r(x). Concretamente para r(x) combinación lineal de funciones polinómicas, exponenciales $e^{\alpha x}$ o trigonométricas $\cos \alpha x$ y $\sin \alpha x$. Lo vamos a ilustrar con ejemplos para cada caso.

1. Caso $r(x)=e^{ax}$ y $a^2+pa+q\neq 0$. En esta situación se propone como solución una función de la forma $y(x)=Ae^{ax}$. Usamos SymPy para el cálculo

```
1 >>> x,p,q,a,A=symbols('x,p,q,a,A')
>>> y=A*exp(a*x)
>>> ecua=y.diff(x,2)+p*y.diff(x)+q*y-exp(a*x)
>>> ecua=simplify(ecua/exp(a*x))
>>> ecua
A*a**2 + A*a*p + A*q - 1
>>> solve(ecua,A)
[1/(a**2 + a*p + q)]
```

Si $a^2+pa+q\neq 0$, encontramos la solución particular $y(x)=\frac{1}{(a^2+pa+q)}e^{ax}$

2. Caso $r(x) = e^{ax}$ y $a^2 + pa + q = 0$. En esta situación diremos que la ecuación está en *resonancia*. Más generalmente, diremos que se presenta resonancia cuando r(x) es solución del problema homogéneo. Propongamos como solución $y(x) = Axe^{ax}$. Hagamos los cálculos con SymPy.

```
>>> x,p,q,a,A=symbols('x,p,q,a,A')
>>> y=A*x*exp(a*x)
>>> ecua=y.diff(x,2)+p*y.diff(x)+q*y-exp(a*x)
>>> ecua=simplify(ecua/exp(a*x))
>>> ecua
6 A*a*(a*x + 2) + A*p*(a*x + 1) + A*q*x - 1
>>> ecua.subs(q,-a**2 - a*p).simplify()
8 2*A*a + A*p - 1
```

Luego, si $2a+p\neq 0$, $y(x)=\frac{1}{2a+p}xe^{ax}$ resuelve el problema.

3. Caso $r(x) = e^{ax}$, $a^2 + pa + q = 0$ y 2a + p = 0. Si 2a + p = 0, como también $a^2 + pa + q = 0$, tenemos que a es una raíz doble de la ecuación $\lambda^2 + p\lambda + q = 0$. En este caso, proponemos como solución $y(x) = Ax^2e^{ax}$.

```
>>> x,p,q,a,A=symbols('x,p,q,a,A')
>>> y=A*x**2*exp(a*x)
>>> ecua=y.diff(x,2)+p*y.diff(x)+q*y-exp(a*x)
>>> ecua=simplify(ecua/exp(a*x))
>>> ecua
A*p*x*(a*x + 2) + A*q*x**2 + A*(a**2*x**2 + 4*a*x + 2) - 1
>>> ecua.subs([(q,-a**2 - a*p) , (p,-2*a)]).simplify()
2*A - 1
```

Hay que tomar $y(x) = \frac{1}{2}x^2e^{ax}$

4. Caso $r(x) = \sin bx$. Proponemos

$$y(x) = A\cos x + B\sin x$$
,

como candidato a solución.

```
>>> x,p,q,a,b,A,B=symbols('x,p,q,a,b,A,B')
>>> y=A*cos(b*x)+B*sin(b*x)
>>> ecua=y.diff(x,2)+p*y.diff(x)+q*y-sin(b*x)
>>> ecua.simplify()
-b**2*(A*cos(b*x) + B*sin(b*x)) - b*p*(A*sin(b*x) -
B*cos(b*x)) + q*(A*cos(b*x) + B*sin(b*x)) - sin(b*x)
```

La expresión en el miembro de la izquierda es una combinación lineal de las funciones $\cos bx$ y $\sin bx$. Como estas funciones son linealmente independientes debemos tener que los coeficientes en la combinación lineal deben ser cero

```
>>> ecua.expand().coeff(sin(b*x))
-A*b*p - B*b**2 + B*q - 1
>>> ecua.expand().coeff(cos(b*x))
-A*b**2 + A*q + B*b*p
```

Obtenemos un sistema de ecuaciones

$$\begin{cases}
-Abp - (b^2 - q)B = 1 \\
Bbp - (b^2 - q)A = 0
\end{cases}$$
(14)

Para que el sistema tenga solución la matriz de coeficientes debe ser no singular

$$0 \neq \det \begin{pmatrix} -bp & -(b^2 - q) \\ -(b^2 - q) & bp \end{pmatrix} = -(b^2p^2 + (b^2 - q)^2)$$

Podemos suponer $b \neq 0$, de lo contrario la ecuación hubiese sido homogénea. entonces la condición de arriba ocurre si y sólo si $p \neq 0$ o $b^2 \neq q$. En esa situación encontraremos una solución de la forma

$$y(x) = A\cos bx + B\sin bx,$$

donde A y B resuelven (14).

Cuando p=0 y $b^2=q$ el sistema (14) puede no tener solución. Notar que en este caso la ecuación queda

$$y'' + b^2y = \sin bx$$

Es una ecuación de un oscilador armónico no homogénea. Habíamos visto que justamente $r(x) = \sin bx$ es una solución del problema homogéno. Nuevamente estamos en una situación de resonancia. Como en casos anteriores hay que proponer como solución

$$y(x) = x (A\cos x + B\sin x),$$

5. Caso $r(x) = \operatorname{sen} bx$ con resonancia

```
>>> x,b,A,B=symbols('x,b,A,B')
>>> y=x*(A*cos(b*x)+B*sin(b*x))
>>> ecua=y.diff(x,2)+b**2*y-sin(b*x)
>>> eq1=ecua.expand().coeff(sin(b*x))
>>> eq2=ecua.expand().coeff(cos(b*x))
>>> H=solve([eq1,eq2],[A,B])
>>> H

{B: 0, A: -1/(2*b)}
>>> y.subs(H)
-x*cos(b*x)/(2*b)
```

Encontramos la solución general

$$y(x) = -\frac{x}{2b}\cos bx.$$

El caso donde $r(x) = \cos bx$ se trata de manera completamente similar.

6. Caso r(x) polinomio Hay que proponer como solución un polinomio, en primera instancia, del mismo grado.

Supongamos

$$\frac{d^2y}{dx^2} + p\frac{dy}{dx} + q(x)y = c_0 + c_1x + \dots + c_nx^n$$
 (15)

Se propone $y = a_0 + a_1 x + \cdots + a_n x^n$. Luego

$$2a_2 + 3 \cdot 2x + \dots + n(n-1)x^{n-2} + pa_1 + p2a_2x + \dots + pna_nx^{n-1} + qa_0 + qa_1x + \dots + qa_nx^n = c_0 + c_1x + \dots + c_nx^n$$

Como las funciones $1, x, \dots, x^n$ son linealmente independientes, los coeficientes en ambos lados de la igualdad deben ser iguales.

$$2a_{2} + pa_{1} + qa_{0} = c_{0}$$

$$3 \cdot 2 + 2pa_{2} + qa_{1} = c_{1}$$

$$\vdots$$

$$n(n-1) + p(n-1)a_{n-1} + qa_{n-2} = c_{n-2}$$

$$pna_{n} + qa_{n-1} = c_{n-1}$$

$$qa_{n} = c_{n}$$

Es útil escribir estas igualdades matricialmente.

$$\begin{pmatrix} q & \cdots & \cdots & \cdots \\ & q & \cdots & \cdots & \cdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & q & pn \\ \vdots & & & q \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \\ a_n \end{pmatrix} = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{n-1} \\ c_n \end{pmatrix}$$

Es un sistema triángular superior que se resuelve por sustitución ascendente. Esto siempre que $q \neq 0$. En caso contrario la matríz es singular y es posible que el sistema no tenga solución.

El caso q=0 es una forma de resonancia. Puede ser tratado como las anteriores resonancias, pero notando que la ecuación se reduce a $y^{\prime\prime}+py^{\prime}=r$ conviene tomar $v=y^{\prime}$ como nueva variable dependiente y reducir la ecuación a una de primer orden.

Por último señalemos que si deseamos resolver un problema de la forma

$$L[y] \equiv y'' + py' + qy = r_1(x) + \dots + r_n(x),$$

donde las funciones r_i son de alguna de las formas descriptas en los casos previos, entonces la linealidad de L implica que, si y_i resuelve $L[y_i]=r_i,\,y=y_1+\cdots+y_n$ resuelve la ecuación deseada.