# Fiche méthode: Proportion

# I. Proportion d'une sous-population

## Application 1: Proportion d'une sous-population

Une classe compte 32 élèves, dont 20 filles. Parmi les 18 élèves de 17 ans, on dénombre 8 filles.

1. a. Quelle est la proportion de filles dans la classe?

Soit  $p_1$  la proportion de filles dans la classe. Ainsi  $p_1 = \frac{20}{23} = \frac{5}{9}$ .

b. Quel est le pourcentage de fille dans la classe ?

$$p_1 = \frac{5}{8} = 0.625 = \frac{62.5}{100} = 62.5\%$$

 a. Quelle est la proportion de filles de 17 ans parmi le filles?

Soit  $p_2$  la proportion de filles de 17 ans parmi les filles. Ainsi  $p_2 = \frac{8}{20} = \frac{2}{5}$ 

b. Quel est le pourcentage de filles de 17 ans parmi les filles ?

$$p_2 = \frac{2}{5} = \frac{40}{100} = 40\%$$

3. Quelles sont les populations considérées dans les questions 1. et 2. ?

Dans la question 1, la population considérée est la classe. Dans la question 2, la population considérée est les filles.

4. a. Parmi les 32 élèves, il y en a 25% qui ont 18 ans, combien d'élèves ont 18 ans ?

Soit n le nombre d'élèves ayant 18 ans.

$$n = \frac{25}{100} \times 32 = 8.$$

Ainsi il v a 8 élèves de 18 ans dans la classe.

b. Quel est le pourcentage d'élèves n'ayant ni 17 ans ni 18

Soit  $p_3$  la proportion d'élèves n'ayant ni 17 ans ni 18 ans. Il y a 18+8=26 élèves de 17 ans ou 18 ans.

Ainsi il y a 32 - 26 = 6 élèves ayant ni 17 ans ni 18 ans.

$$p_3 = \frac{6}{32} = 0,1875 = \frac{18,75}{100} = 18,75\%$$

# Application 2: Proportion d'une sous-population

- On considère une première boite de maquereaux de 175g.
  - a. Il y a 26,7 g de protéines dans les maquereaux. Quel est le pourcentage de protéines ?

II y a  $\frac{26.7}{175} \approx 0.1526 = 15.26\%$  de protéines dans les maguereaux

b. If y a 7,2% de lipides. Quelle est la masse (en g) de lipides dans les maquereaux ?

If y a  $\frac{7.2}{100} \times 175 = 12.6g$  de lipides dans les maquereaux.

2. On considère une deuxième boite de maquereaux. On sait qu'il y a 30g de protéines dans cette boite et que cela représente 20% de la boite. Quelle est le poids de cette boite de maquereaux ?

La boite a un poids de :  $\frac{30}{0.2}$  = 150g

## Vocabulaires:

- Les éléments qui constituent une population sont les individus de cette population.
- Le nombre d'individus est appelé l'effectif de la population.

#### Exemples de populations :

L'ensemble des élèves d'un lycée, l'ensemble des lettres de l'alphabet, l'ensemble des livres de classe d'un élève.

 Une sous population d'une population de référence E est une population dont tous les individus sont aussi des individus de la population E.

#### Proportion:

 Soit E une population de référence d'effectif n<sub>E</sub> et A une sous-population de E d'effectif n<sub>A</sub>.

La proportion de A dans E est le quotient défini par :  $p = \frac{n_A}{n_E}$ .

<u>Remarque</u>: Une proportion s'exprime souvent sous forme de pourcentage.

Exemple: p = 0.25 s'écrit aussi :  $p = \frac{25}{100}$  ou encore : p = 25%.

- Une proportion est toujours comprise entre 0 et 1, et n'a pas d'unité.
- Si l'on connait deux des trois nombres  $n_A$ ,  $n_E$  et p, alors on pe e troisième :

 $p = \frac{n_A}{n_E}$  s'écrit aussi :  $p \mid n_E$   $n_A = p \times n_E$  ou encore :  $n_A$ 

Calculer p% d'un nombre N, c'est multiplier N par :  $\frac{p}{100}$ .

#### II. Réunion et intersection de sous-populations

#### Application 3: Proportion d'union et intersection

On a interrogé 1200 personnes sur la possession d'un ordinateur et d'une télévision. Les résultats sont donnés cidessous :

|         | Ordinateur | Sans ordinateur | Total |
|---------|------------|-----------------|-------|
| TV      | 414        | 462             | 876   |
| Sans TV | 90         | 234             | 324   |
| Total   | 504        | 696             | 1200  |

#### On note:

- $p_0$  la proportion de personnes ayant un ordinateur.
- $p_T$  la proportion de personnes ayant un ordinateur.
- $p_{O\cap T}$  la proportion de personnes ayant un ordinateur et une télé.
- $p_{O \cup T}$  la proportion de personnes ayant au moins l'un des

Calculer la proportion de personnes avant :

| calculation ac personnes ayant.  |                                                                                                                                                                                                           |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| a) un ordinateur                 | b) une télévision                                                                                                                                                                                         |  |  |
| 504                              | 876                                                                                                                                                                                                       |  |  |
| $p_{O} = \frac{1200}{1200}$      | $p_T = \frac{1200}{1200}$                                                                                                                                                                                 |  |  |
| c) un ordi et une télé           | d) au moins l'un des 2.                                                                                                                                                                                   |  |  |
| $p_{O\cap T} = \frac{414}{1200}$ | $\begin{aligned} p_{OUT} &= p_O + p_T - p_{ODT} \\ p_{OUT} &= \frac{504}{\frac{1200}{1200}} + \frac{876}{\frac{1200}{1200}} - \frac{414}{\frac{1200}{1200}} \\ p_{OUT} &= \frac{966}{1200} \end{aligned}$ |  |  |

Soient A et B deux sous-populations d'une même population E.

# Vocabulaire : Réunion et intersection :

- L'intersection  $A \cap B$  est la souspopulation constituée des éléments appartenant à A et à B.
- L'union A∪B est la sous-population constituée des éléments appartenant à A ou à B.
- Deux sous-populations A et B d'une même population E sont disjointes lorsqu'elles n'ont pas d'élément commun : A ∩ B = Ø

#### Proportion: Réunion et intersection:

 Les proportions de A, de B, de A ∪ B et de A ∩ B dans E sont liées par la relation:

$$p_{A\cup B}=p_A+p_B-p_{A\cap B}$$

Si A et B sont deux sous-populations disjointes d'une même population E :

$$p_{A\cup B}=p_A+p_B$$

# III. <u>Proportions échelonnées</u>

# Application 3:

Dans une classe, il y a 40% de garçons dont 75% ont 16 ans.

Quelle est la proportion de garçons ayant 16 ans parmi les A appartiennent à B élèves de la classe.

$$p = \frac{40}{100} \times \frac{75}{100} = \frac{3}{10}$$

La proportion de garçons ayant 16 ans parmi les élèves de la classe.



- 40% de garçons : Proportion de l'ensemble bleu dans l'ensemble rouge.
- dont 75% ont 16 ans: Proportion de l'ensemble vert dans l'ensemble bleu.
- Chercher la proportion de garçons ayant 16 ans parmi les élèves de la classe : Proportion de l'ensemble vert dans l'ensemble rouge.

#### Inclusion:

Un ensemble A est inclus dans un ensemble B, noté  $A \subset B$ , lorsque tous les éléments de A appartiennent à B

# Proportions échelonnées :

Soient trois populations A, B et E telles que  $A \subset B$  et  $B \subset E$ .

La proportion p de A dans E est le **produit** de la proportion  $p_1$ de A dans B et de la proportion  $p_2$  de B dans E:

$$p = p_1 \times p_2$$

