Bài 3. PHƯƠNG TRÌNH ĐƯỜNG THẨNG

A. TÓM TẮT LÝ THUYẾT

1. Phương trình tổng quát của đường thẳng

vectơ pháp tuyến của đường thẳng

vectơ $\vec{n} \neq \vec{0}$ được gọi là vectơ pháp tuyến (VTPT) của đường thẳng Δ nếu giá của nó vuông góc với Δ .

Nhận xét

- $oldsymbol{\Theta}$ Nếu vect
ơ \overrightarrow{n} là một VTPT của Δ th
ì $k\overrightarrow{n}$ $(k\neq 0)$ cũng là một VTPT của $\Delta.$
- ❷ Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một VTPT.

Phương trình tổng quát của đường thẳng Cho đường thẳng Δ đi qua $M(x_0; y_0)$ và có VTPT $\vec{n}_{\Delta}(a; b)$. Phương trình tổng quát của Δ là

$$\Delta : a(x - x_0) + b(y - y_0) = 0$$
 hay $ax + by + c = 0$ (với $c = -ax_0 - by_0$).

Một số trường hợp đặc biệt

Các hệ số	PTĐT Δ	Tính chất đường thẳng Δ
c = 0	ax + by = 0	Δ đi qua gốc tọa độ O
a = 0	by + c = 0	$\Delta \ /\!\!/ \ Ox$ hoặc $\Delta \equiv Ox$
b = 0	ax + c = 0	$\Delta \mathrel{/\!\!/} Oy$ hoặc $\Delta \equiv Oy$

 $oldsymbol{\Lambda}$ Dồ thị hàm số bậc nhất y=ax+b chính là đường thẳng ax-y+b=0 (không vuông góc với trục Ox).

2. Phương trình tham số của đường thẳng

vecto chỉ phương của đường thẳng

vectơ $\overrightarrow{u} \neq \overrightarrow{0}$ được gọi là vectơ chỉ phương (VTCP) của đường thẳng Δ nếu giá của nó song song hoặc trùng với Δ .

Nhận xét

- $oldsymbol{\Theta}$ Nếu vecto \overrightarrow{u} là một VTCP của Δ thì $k\overrightarrow{u}$ $(k \neq 0)$ cũng là một VTCP của Δ .
- ❷ Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một VTCP.
- $\ensuremath{\boldsymbol{\Theta}}$ Nếu \overrightarrow{u} là một VTCP và \overrightarrow{n} là một VTPT của Δ thì $\overrightarrow{u} \perp \overrightarrow{n}.$

PTTS của đường thẳng Cho đường thẳng Δ đi qua $M(x_0; y_0)$ và có VTCP $\overrightarrow{u}(u_1; u_2)$. PTTS của Δ là

$$\Delta : \begin{cases} x = x_0 + u_1 t \\ y = y_0 + u_2 t \end{cases}$$
 (với t là tham số và $t \in \mathbb{R}$).

Nhân xét

$$+ M(x_M; y_M) \in \Delta \Leftrightarrow \exists t \in \mathbb{R} \colon \begin{cases} x_M = x_0 + tu_1 \\ y_M = y_0 + tu_2 \end{cases} \text{ hay } M(x_0 + tu_1; y_0 + tu_2) \in \Delta.$$

- + Gọi k là hệ số góc của Δ có VTCP $\overrightarrow{u}(u_1;u_2)$ thì
 - $\bullet \ k = \tan \alpha \ \text{v\'oi} \ \begin{cases} \alpha = \widehat{xAt} \\ \alpha \neq 90^{\circ}. \end{cases}$
 - $k = \frac{u_2}{u_1}$ với $u_1 \neq 0$.

ĐIỂM:

"Only in the darkness can you see the stars."

-Martin Luther King Jr.-

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

.....

.....

QUICK NOTE		$VTPT \overrightarrow{n}_{\Delta} = (a; b)$
	$lack lack $ $lack lack $ Nếu Δ có phương trình $ax+by+c=0$ thì Δ có	$[VTCP \overrightarrow{u}_{\Delta} = (-b; a)]$
		$\bigvee VTCP \ \overrightarrow{u}_{\Delta} = (b; -a).$
	$igodelarbox{$igodelarbox{\bigcirc}$ Cho đường thẳng Δ đi qua M_0(x_0;y_0) và có VT_0(x_0;y_0)$	$CP \overrightarrow{u}(u_1; u_2)$. Phương trình
	$chính tắc của \Delta là$	(1)2)
	$x-x_0$ $y-y_0$	(a)
	$\Delta : \frac{x - x_0}{u_1} = \frac{y - y_0}{u_2} (u_1 \neq 0;$	$u_2 \neq 0$).
	Trong trường hợp $u_1 = 0$ hoặc $u_2 = 0$ thì đường t chính tắc.	hang khong co phương trình
	$m{D}$ ặc $m{bi}$ ệt: PTDT AB với $A(x_A;y_A),\ B(x_B;y_B)$ co	ó dạng
	$x-x_A$ $y-y_A$	
	$\frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A}.$	
	\bigcirc Dường thắng \triangle đi qua hai điểm $A(a;0)$, $B(0;b)$ (a	$,b \neq 0)$ thì có phương trình
	$\Delta : \frac{x}{a} + \frac{y}{b} = 1,$	
	được gọi là PTĐT theo đoạn chắn.	
	$igoplus Dường thẳng \Delta đi qua điểm M(x_0;y_0) và có hệ số g$	aốc k thì có nhương trình của
		_
	$\Delta \colon y = k(x - x_0) + y_0,$	
	được gọi là phương trình theo hệ số góc k.	
	B. CÁC DẠNG BÀI TẬP	
	vecto chỉ phương, vecto pháp tuyến của đư	ờng thẳng
	vecto chí phương, vecto pháp tuyên của đư	ờng thẳng
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ?	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ?	
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u} = (3; -1)$. (B) $\vec{u} = (5; 1)$. (C) $\vec{u} = (5; 3)$.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\textcircled{\textbf{D}} \ \overrightarrow{u} = (1; 3).$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u} = (3; -1)$. (B) $\vec{u} = (5; 1)$. (C) $\vec{u} = (5; 3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3} + \frac{y}{2} = \frac{y}{2}$	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\textcircled{\textbf{D}} \ \overrightarrow{u} = (1; 3).$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u} = (3; -1)$. (B) $\vec{u} = (5; 1)$. (C) $\vec{u} = (5; 3)$. (CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3} + \frac{y}{2} = d$ có tọa độ là	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1; 3).$ 1. Một vectơ pháp tuyến của
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u} = (3; -1)$. (B) $\vec{u} = (5; 1)$. (C) $\vec{u} = (5; 3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3} + \frac{y}{2} = d$ có tọa độ là (A) $(2; 3)$. (B) $(3; 2)$. (C) $(-3; 2)$.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1; 3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \left(\frac{1}{2}; \frac{1}{3}\right).$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u} = (3; -1)$. (B) $\vec{u} = (5; 1)$. (C) $\vec{u} = (5; 3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3} + \frac{y}{2} = d$ có tọa độ là (A) $(2; 3)$. (B) $(3; 2)$. (C) $(-3; 2)$. CÂU 3. Cho PTDT Δ : $3x + 4y - 5 = 0$. Tìm một vectơ pháp tr	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases}$ $(t\in\mathbb{R}).$ $ \mathbf{D} \ \overrightarrow{u} = (1;3). $ 1. Một vectơ pháp tuyến của $\mathbf{D} \ \left(\frac{1}{2};\frac{1}{3}\right). $ uyến của đường thẳng $\Delta.$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (B) $\vec{n}=(4;3)$. (C) $\vec{n}=(3;4)$.	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases}$ $(t\in\mathbb{R}).$ $ \mathbf{D} \ \vec{u} = (1;3). $ 1. Một vectơ pháp tuyến của $ \mathbf{D} \left(\frac{1}{2};\frac{1}{3}\right). $ uyến của đường thẳng $\Delta.$ $ \mathbf{D} \ \vec{n} = (-4;3). $
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong \vec{u} của (A) $\vec{n}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases}$ $(t\in\mathbb{R}).$ $ \mathbf{D} \ \vec{u} = (1;3). $ 1. Một vectơ pháp tuyến của $ \mathbf{D} \left(\frac{1}{2};\frac{1}{3}\right). $ uyến của đường thẳng $\Delta.$ $ \mathbf{D} \ \vec{n} = (-4;3). $
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng Δ . $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1;2), B(5;6)$ là (A) $\vec{u}=(1;1)$. (B) $\vec{u}=(-4;2)$. (C) $\vec{u}=(1;-1)$	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng Δ . $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng Δ . $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u} = (3; -1)$. (B) $\vec{u} = (5; 1)$. (C) $\vec{u} = (5; 3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3} + \frac{y}{2} = d$ có tọa độ là (A) $(2; 3)$. (B) $(3; 2)$. (C) $(-3; 2)$. CÂU 3. Cho PTDT Δ : $3x + 4y - 5 = 0$. Tìm một vectơ pháp tr (A) $\vec{n} = (4; 3)$. (B) $\vec{n} = (4; -3)$. (C) $\vec{n} = (3; 4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1; 2)$, $B(5; 6)$ là (A) $\vec{u} = (1; 1)$. (B) $\vec{u} = (-4; 2)$. (C) $\vec{u} = (1; -1)$. CÂU 5. Một đường thẳng có bao nhiêu vectơ chỉ phương? (A) Vô số vectơ. (B) Hai vectơ. (C) Ba vectơ.	g trình $\begin{cases} x=5+3t \\ y=1-t \end{cases} (t \in \mathbb{R}).$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT Δ : $3x+4y-5=0$. Tìm một vectơ pháp tr (A) $\vec{n}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là (A) $\vec{u}=(1;1)$. (B) $\vec{u}=(-4;2)$. (C) $\vec{u}=(1;-1)$. CÂU 5. Một đường thẳng có bao nhiêu vectơ chỉ phương? (A) Vô số vectơ. (B) Hai vectơ. (C) Ba vectơ. (C) Ba vectơ.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \ \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng $\Delta.$ $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm $\mathbf{D} \ \vec{u} = (-1;1).$ $\mathbf{D} \ \mathbf{M} \hat{\mathbf{O}} \mathbf{D} \ \vec{u} = (-1;2) \mathbf{D} \ \mathbf{D}$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là (A) $\vec{u}=(1;1)$. (B) $\vec{u}=(-4;2)$. (C) $\vec{u}=(1;-1)$. CÂU 5. Một đường thẳng có bao nhiều vectơ chỉ phương? (A) Vô số vectơ. (B) Hai vectơ. (C) Ba vectơ.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \ \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng $\Delta.$ $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm $\mathbf{D} \ \vec{u} = (-1;1).$ $\mathbf{D} \ \mathbf{M} \hat{\mathbf{O}} \mathbf{D} \ \vec{u} = (-1;2) \mathbf{D} \ \mathbf{D}$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (CÂU 3. Cho PTĐT Δ : $3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (CÂU 4. Trong mặt phẳng tọa độ Oxy , vecto chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là (A) $\vec{u}=(1;1)$. (CÂU 5. Một đường thẳng có bao nhiều vectơ chỉ phương? (A) Vô số vectơ. (B) Hai vectơ. (C) Ba vectơ. (CÂU 6. vectơ nào là vectơ chỉ phương của đường thẳng đị $B(1;4)$? (A) $\vec{u}=(-2;6)$. (B) $\vec{u}=(2;1)$. (C) $\vec{u}=(1;1)$.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \ \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng $\Delta.$ $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm (). $\mathbf{D} \ \vec{u} = (-1;1).$ $\mathbf{D} \ \text{Một vectơ.}$ i qua hai điểm $A(-3;2)$ và $\mathbf{D} \ \vec{u} = (-1;2).$
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (C) $\vec{u}=(5;3)$. CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng $d:\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (C) $(-3;2)$. CÂU 3. Cho PTDT $\Delta:3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{u}=(4;3)$. (B) $\vec{n}=(4;-3)$. (C) $\vec{n}=(3;4)$. CÂU 4. Trong mặt phẳng tọa độ Oxy , vectơ chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là (A) $\vec{u}=(1;1)$. (B) $\vec{u}=(-4;2)$. (C) $\vec{u}=(1;-1)$. CÂU 5. Một đường thẳng có bao nhiêu vectơ chỉ phương? (A) Vô số vectơ. (B) Hai vectơ. (C) Ba vectơ. CÂU 6. vectơ nào là vectơ chỉ phương của đường thẳng dia $B(1;4)$? (A) $\vec{u}=(-2;6)$. (B) $\vec{u}=(2;1)$. (C) $\vec{u}=(1;1)$.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \ \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng Δ . $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm $\mathbf{D} \ \vec{u} = (-1;1).$ $\mathbf{D} \ \mathbf{M} \ \hat{\mathbf{D}} \ \vec{u} = (-1;2).$ $2 + 3t$ 4.
	CÂU 1. Trong mặt phẳng Oxy cho đường thẳng d có phương vectơ nào sau đây là vectơ chỉ phương của đường thẳng d ? (A) $\vec{u}=(3;-1)$. (B) $\vec{u}=(5;1)$. (CÂU 2. Trong mặt phẳng Oxy , cho đường thẳng d : $\frac{x}{3}+\frac{y}{2}=d$ có tọa độ là (A) $(2;3)$. (B) $(3;2)$. (CÂU 3. Cho PTĐT Δ : $3x+4y-5=0$. Tìm một vectơ pháp trong $\vec{n}=(4;3)$. (CÂU 4. Trong mặt phẳng tọa độ Oxy , vecto chỉ phương \vec{u} của $A(1;2)$, $B(5;6)$ là (A) $\vec{u}=(1;1)$. (CÂU 5. Một đường thẳng có bao nhiều vectơ chỉ phương? (A) Vô số vectơ. (B) Hai vectơ. (C) Ba vectơ. (CÂU 6. vectơ nào là vectơ chỉ phương của đường thẳng đị $B(1;4)$? (A) $\vec{u}=(-2;6)$. (B) $\vec{u}=(2;1)$. (C) $\vec{u}=(1;1)$.	g trình $\begin{cases} x = 5 + 3t \\ y = 1 - t \end{cases} (t \in \mathbb{R}).$ $\mathbf{D} \ \vec{u} = (1;3).$ 1. Một vectơ pháp tuyến của $\mathbf{D} \ \left(\frac{1}{2}; \frac{1}{3}\right).$ uyến của đường thẳng Δ . $\mathbf{D} \ \vec{n} = (-4;3).$ đường thẳng đi qua hai điểm (a). $\mathbf{D} \ \vec{u} = (-1;1).$ $\mathbf{D} \ \text{Một vectơ.}$ ii qua hai điểm $A(-3;2)$ và $\mathbf{D} \ \vec{u} = (-1;2).$ $2 + 3t$ 4. $\mathbf{D} \ \vec{u}_2 = (3;4).$

(A)	\overrightarrow{u}	=	(4;	6) .

(B)
$$\vec{u} = (1; 3)$$
.

$$(\mathbf{c}) \vec{u} = (-1; 3).$$

$$(\mathbf{D}) \vec{u} = (2; -6).$$

CÂU 9. Cho đường thẳng d: x - y + 15 = 0. vecto chỉ phương của d là

$$(A) \vec{u} = (-1; 1).$$

(B)
$$\vec{u} = (1; 1)$$
.

$$(\mathbf{C}) \vec{u} = (1;0).$$

$$(\mathbf{D}) \vec{u} = (1; -1).$$

CÂU 10. Trong mặt phẳng tọa độ Oxy, vectơ chỉ phương và vectơ pháp tuyến của một đường thẳng thì

(A) vuông góc với nhau.

(B) bằng nhau.

(**c**) cùng phương.

(**D**) đối nhau.

CÂU 11. vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng d: $\begin{cases} x=2\\ y=-1+6t \end{cases}$

$$(\mathbf{A}) \vec{u}_2 = (-6; 0).$$

(B)
$$\vec{u}_1 = (6; 0)$$
.

$$(\mathbf{C}) \vec{u}_4 = (0; 6).$$

$$(\mathbf{D}) \, \dot{\vec{u}}_3 = (2;6)$$

CÂU 12. Trong hệ tọa độ Oxy, cho hai điểm M(-2;1), N(1;-3). Đường trung trực của đoạn MN có một vecto pháp tuyến là

$$\mathbf{A} \vec{n} = (-3; 4).$$

(B)
$$\vec{n} = (4; -3).$$

$$(\vec{c}) \vec{n} = (\frac{1}{2}; -1).$$
 $(\vec{b}) \vec{n} = (3; 4).$

$$D $\vec{n} = (3; 4).$$$

CÂU 13. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình x + 2y - 3 = 0. Trong các vecto sau vecto nào là một vecto chỉ phương của đường thẳng d?

$$(\vec{\mathbf{A}})\vec{u} = (1; -3).$$

(B)
$$\vec{u} = (1; 2)$$
.

$$\vec{\mathbf{c}}$$
) $\vec{u} = (2; -1).$

$$(\mathbf{D}) \vec{u} = (2;1).$$

CÂU 14. Trong hệ toạ độ Oxy, cho đường thẳng d có phương trình 5x - 3y + 1 = 0. vector nào sau đây **không** là vectơ pháp tuyến của đường thẳng d?

$$(A) \vec{n_2} = (-5; 3).$$

(B)
$$\overrightarrow{n_1} = (5; -3).$$

$$\mathbf{C} \overrightarrow{n_3} = (3; 5).$$

CÂU 15. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có PTTS là $\begin{cases} x=2+3t \\ y=5-4t \end{cases}$, $(t \in \mathbb{R})$.

vecto nào dưới đây là một vecto chỉ phương của d?

$$(\mathbf{A}) \vec{u} = (3; -4).$$

(B)
$$\vec{u} = (3; 4)$$
.

$$(\vec{c}) \vec{u} = (2; 5).$$

$$(\mathbf{D}) \vec{u} = (4; 3).$$

CÂU 16. Một đường thẳng có bao nhiêu vecto pháp tuyến?

(A) 2.

(B) 1.

 (\mathbf{D}) Vô số.

CÂU 17. Cho đường thẳng Δ có phương trình tổng quát x+3y-11=0. vectơ nào sau đây là vecto chỉ phương của đường thẳng Δ .

(A)(-3;-1).

(B) (1; -3).

 $(\mathbf{C})(3;-1).$

CÂU 18. vectơ pháp tuyến của đường thẳng x - 3y + 4 = 0 là

$$(\mathbf{A}) \vec{n}_1 = (1; -3).$$

(B)
$$\vec{n}_3 = (1; 4)$$
.

$$(\vec{c}) \vec{n}_4 = (3;1).$$

$$(\mathbf{D}) \vec{n}_2 = (1:3).$$

CÂU 19. Cho đường thẳng d có PTTS $\begin{cases} x=2+t \\ y=t \end{cases}$ $(t \in \mathbb{R})$. vecto nào sau đây là vecto

pháp tuyến của đường thẳng d.

$$(A)(-2;2).$$

$$(\mathbf{C})(0;1).$$

D
$$(2;0)$$
.

CÂU 20. Trong mặt phẳng Oxy, cho đường thẳng d: 5x - y + 2022 = 0. vectơ nào sau đây là vecto pháp tuyến của d?

(A) $\vec{v} = (-1; 5)$.

(B)
$$\vec{p} = (-1; -5).$$

(**c**)
$$\vec{n} = (1; 5)$$
.

(D)
$$\vec{u} = (5; -1).$$

CÂU 21. Trong mặt phẳng Oxy, cho đường thẳng d: -2x + 3y + 1 = 0. vectơ nào dưới đây là một vectơ pháp tuyến của d?

 $(\mathbf{A}) \vec{n_1} = (3; -2).$

(B)
$$\vec{n_4} = (2; 3)$$
.

$$(\vec{c}) \vec{n_2} = (3; 2).$$

$$(\mathbf{D})\vec{n_3} = (-2;3)$$

CÂU 22. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: $\begin{cases} x = 1 + 3t \\ y = 3 - t \end{cases} (t \in \mathbb{R}). \text{ vectơ nào}$

dưới đây là một vecto chỉ phương của d?

$$(\mathbf{A}) \ \vec{u} = (3; 1).$$

(B)
$$\vec{u} = (3; -1).$$

(**c**)
$$\vec{u} = (1; 3)$$
.

$$(\mathbf{D}) \vec{u} = (-1; 3).$$

CÂU 23. Cho đường thẳng (d): 3x + 2y - 10 = 0, vectơ nào sau đây là vectơ chỉ phương của (d)?

$$(\mathbf{A}) \ \vec{u} = (3; -2).$$

(B)
$$\vec{u} = (3; 2)$$
.

$$(\mathbf{C}) \vec{u} = (-2; -3).$$

$$(\mathbf{D}) \vec{u} = (2; -3).$$

Viết PTTS của đường thẳng

Để lập PTTS của đường thẳng Δ ta cần xác đinh một điểm $M(x_0; y_0) \in \Delta$ và một vecto chi phương $\vec{u} = (u_1; u_2)$.

Vậy PTTS đường thẳng Δ : $\begin{cases} x = x_0 + tu_1 \\ y = y_0 + tu_2. \end{cases}$

1. Ví du minh hoa

VÍ DỤ 1. Trong mặt phẳng Oxy, viết PTTS đường thẳng Δ biết Δ đi qua M(1;2) và có vec-to chỉ phương $\vec{u} = (-1; 3)$.

VÍ DU 2. Trong mặt phẳng Oxy, đường thẳng d đi qua A(1;2), B(3;1). Viết PTTS đường thẳng d.

VÍ DỤ 3. Trong mặt phẳng Oxy, đường thẳng d đi qua M(-2;3) và song song với đường thẳng EF. Biết E(0; -1), F(-3; 0). Viết PTĐT d.

2. Bài tập trắc nghiệm

CÂU 1. Điểm nào trong các điểm sau thuộc đường thẳng d: $\begin{cases} x=5-2t \\ y=t \end{cases}, t \in \mathbb{R}?$ **(A)** N(3;0). **(B)** P(-2;1). **(C)** Q=(5;0). **(D)** M=(2;1).

CÂU 2. Trong mặt phẳng Oxy, cho điểm A(3, -4), B(0, 6). Viết PTTS của đường thẳng

CÂU 3. Trong mặt phẳng Oxy, cho đường thẳng Δ có PTTS $\begin{cases} x=3+4t \\ y=-4+t \end{cases}$. Điểm nào sau đây thuộc đường thẳng Δ ?

(A) M(19; 1).

(B) N(19;0).

 $(\mathbf{C}) P(19; 2).$

CÂU 4. Trong mặt phẳng Oxy, cho đường thẳng $d:\begin{cases} x=3-2t \\ y=1+3t \end{cases}$. Một vectơ chỉ phương

của đường thẳng d là

(A) $\vec{u} = (2; 3)$.

(B) $\vec{u} = (3; 2)$.

 $(\mathbf{c}) \vec{u} = (-2; -3).$ $(\mathbf{D}) \vec{u} = (2; -3).$

CÂU 5. Trong mặt phẳng Oxy, nếu một đường thẳng Δ có hệ số góc là k thì Δ có một vecto chỉ phương là

(A) $\vec{u} = (k; 1)$.

(B) $\vec{u} = (k; -1).$

 $(\vec{c}) \vec{u} = (1; k).$

 $(\mathbf{D}) \vec{u} = (-1; k).$

CÂU 6. Trong mặt phẳng Oxy, viết PTTS của đường thẳng d đi qua điểm A(1; -4) có một

(a) $\begin{cases} x = 1 - 4t \\ y = 4 + 9t \end{cases}$ (b) $\begin{cases} x = 1 - 4t \\ y = -4 - 9t \end{cases}$ (c) $\begin{cases} x = 1 - 4t \\ y = -4 + 9t \end{cases}$ (d) $\begin{cases} x = 1 + 9t \\ y = -4 - 4t \end{cases}$

CÂU 7. Trong mặt phẳng Oxy, viết PTTS của đường thẳng d đi qua điểm A(3,-5) có hệ $s\hat{o}$ góc k = -3.

CÂU 8. Trong mặt phẳng Oxy, viết PTTS đường thẳng d đi qua điểm A(0;-4) và song song với đường thẳng Δ có PTTS $\begin{cases} x = 2018 + 2t \\ y = 10 - t. \end{cases}$ $\mathbf{B} \begin{cases} x = -2t \\ y = -4 + t \end{cases}$ $\mathbf{B} \begin{cases} x = -4 + 2t \\ y = -t \end{cases}$ $\mathbf{C} \begin{cases} x = -2t \\ y = 4 + t \end{cases}$ $\mathbf{D} \begin{cases} x = -4 - t \\ y = 2t \end{cases}$

CÂU 9. Trong mặt phẳng Oxy, viết PTTS của đường thẳng Δ đi qua điểm M(5;-2) và có vecto pháp tuyến $\vec{n} = (4; -3)$

(A) $\begin{cases} x = 8 + 3t \\ y = 2 + 4t \end{cases}$ (B) $\begin{cases} x = 5 - 3t \\ y = -2 + 4t \end{cases}$ (C) $\begin{cases} x = 5 + 4t \\ y = -2 - 3t \end{cases}$

CÂU 10. Cho đường thẳng d: $\begin{cases} x=2+3t \\ y=5-4t \end{cases}$. Điểm nào sau đây không thuộc d?

(A) A(5;3).

(B) B(2;5).

 $(\mathbf{C}) C(-1; 9).$

4

CÂU 11. Cho đường thẳng d: $\begin{cases} x=2-3t \\ y=-1+2t \end{cases}$ và điểm $A\left(\frac{7}{2};-2\right)$. Điểm $A\in d$ ứng với giá

trị nào của t?

$$\mathbf{A} t = \frac{3}{2}.$$

$$\bigcirc t = -\frac{1}{2}$$

(B)
$$t = \frac{1}{2}$$
. **(C)** $t = -\frac{1}{2}$.

CÂU 12. Viết PTTS của đường thẳng d đi qua điểm M(1; -3) và có vectơ chỉ phương

$$\begin{cases} x = 1 - 2t \\ y = -3 + t \end{cases}$$

$$\bigcirc \begin{cases} x = -1 + 2 \\ y = 3 - t \end{cases}$$

$$\bigcirc \begin{cases} x = 5 - 7t \\ y = 5t \end{cases}$$

$$\bigcirc \begin{cases} x = 5 + 7t \\ y = 5t \end{cases}.$$

CÂU 15. Trong mặt phẳng Oxy, cho đường thẳng Δ có PTTS $\begin{cases} x=2+2t \\ y=3+t \end{cases}$. Tìm điểm Mcó tọa độ nguyên nằm trên đường thẳng Δ và cách điểm A(0;1) một khoảng bằng 5.

(A) M(-4,4).

(B) M(4;4).

(**C**) M(0; 2).

(**D**) M(8;5).

CÂU 16. Trong mặt phẳng Oxy, cho đường thẳng Δ có PTTS Δ : $\begin{cases} x=2+2t \\ y=3+t \end{cases}$. Có bao nhiêu điểm thuộc đường thẳng Δ và cách điểm A(0;1) một khoảng bằng 5

(A) 1.

CÂU 17. Trong mặt phẳng Oxy, cho đường thẳng Δ có PTTS $\begin{cases} x=2+2t \\ y=3+t \end{cases}$. Gọi M(a;b) là giao điểm của đường thẳng Δ với đường thẳng d: x+y+1=0. Tính a^2+b^2 . (a) $a^2+b^2=4$. (b) $a^2+b^2=3$. (c) $a^2+b^2=5$. (d) $a^2+b^2=1$.

CÂU 18. Trong mặt phẳng Oxy, cho đường thẳng Δ có PTTS $\begin{cases} x=2+2t \\ y=3+t \end{cases}$ và A(0;1). Gọi

M(a;b) là điểm trên Δ sao cho AM ngắn nhất. Tính a+b. (a) $\frac{9}{5}$. (b) $\frac{-2}{5}$.

CÂU 19. Trong mặt phẳng Oxy, cho tam giác ABC có A(1;1), B(-2;5) trọng tâm G thuộc đường thẳng Δ_1 có phương trình $\begin{cases} y = \frac{1-2t}{2}, \text{ dính } C \text{ thuộc đường thẳng } \Delta_2 \text{ có phương} \end{cases}$

trình $\begin{cases} x = k \\ y = 1 - k \end{cases}$. Tìm tọa độ điểm C.

(A) C(13; -12).

(B) C(14; -13).

 $(\mathbf{C}) C(15; -14).$

 $(\mathbf{D}) C(16; -15).$

CÂU 20. Trong mặt phẳng Oxy, cho hình vuông ABCD biết A(-1;2) và phương trình của một đường chéo là $\begin{cases} x = -1 + 2t \\ y = -2t \end{cases}$. Biết tọa độ điểm C(a;b). Tính $a \cdot b$.

 $(\mathbf{C}) 1.$

CÂU 21. Trong mặt phẳng Oxy, cho hai điểm A(-1;2), B(-2;3). Gọi I(a;b) là điểm thuộc đường thẳng Δ : $\begin{cases} x=t \\ y=3t+10 \end{cases}$ sao cho IA=IB. Tính a^2+b^{2018} .

 $(\mathbf{D}) 1000.$

CÂU 22. Viết PTTS của đường thẳng đi qua 2 điểm A(3;-7) và B(1;-7)

QUICK N	QUICK N	
•	_	

CÂU 23. Viết PTTS của đường thẳng đi qua gốc tọa độ O và song song với đường thẳng

 $\begin{cases} x = 1 + 3t. \\ y = 1 + 3t. \end{cases}$ $(A) \begin{cases} x = 4t \\ y = 3t. \end{cases}$ $(B) \begin{cases} x = 4t \\ y = 1 + 3t. \end{cases}$ $(C) \begin{cases} x = -3t \\ y = 4t. \end{cases}$ $(C) \begin{cases} x = -3t \\ y = 4t. \end{cases}$ $(D) \begin{cases} x = 3t \\ y = -4t. \end{cases}$ **CÂU 24.** Viết PTTS của đường thẳng d đi qua A(-1,2) và vuông góc với đường thẳng

(A) $\begin{cases} x = -1 + 2t \\ y = 2 + t \end{cases}$ (B) $\begin{cases} x = -1 + 2t \\ y = 2 - t \end{cases}$ (C) $\begin{cases} x = 1 + 2t \\ y = 2 - t \end{cases}$ (D) $\begin{cases} x = -1 + t \\ y = 2 + 2t \end{cases}$

CÂU 25. Cho tam giác ABC có tọa độ các đỉnh là A(-1;1), B(4;7), C(3;-2), M là trung điểm của đoạn thẳng AB. PTTS của đường thẳng CM là

(a) $\begin{cases} x = 3 + t \\ y = -2 - 4t \end{cases}$ (b) $\begin{cases} x = 3 + t \\ y = -2 + 4t \end{cases}$ (c) $\begin{cases} x = 3 - t \\ y = 4 + 2t \end{cases}$ (d) $\begin{cases} x = 3 + 3t \\ y = -2 + 4t \end{cases}$

CÂU 26. Trong mặt phẳng Oxy, cho đường thẳng Δ : $\begin{cases} x = -2t \\ y = 1 + t \end{cases}$ và Δ' : $\begin{cases} x = -2 - t' \\ y = t' \end{cases}$. Viết

PTTS của đường thẳng d đối xứng với Δ' qua Δ .

 $\mathbf{\hat{A}} d: \begin{cases} x = l \\ y = 22 - 7l \end{cases}$ $\mathbf{\hat{C}} d: \begin{cases} x = -6 + 3l \\ y = 4 \end{cases}$

CÂU 27. Trong mặt phẳng Oxy, cho A(-1;2), B(3;1) và đường thẳng $\Delta:\begin{cases} x=1+t\\ y=2+t \end{cases}$. Biết tọa độ điểm C(a;b), a > 0 thuộc Δ sao cho tam giác ABC cân tại B. Tính 2a - b.

CÂU 28. Trong mặt phẳng Oxy, cho A(-1;2), B(3;1) và đường thẳng Δ : $\begin{cases} x=1+t \\ y=2+t \end{cases}$. Có bao nhiêu điểm C thuộc đường thẳng thuộc Δ sao cho tam giác ABC đều?

 (\mathbf{A}) 0.

(D) 3.

CÂU 29. Trong mặt phẳng Oxy, cho hình vuông ABCD biết A(-1;2) và phương trình của một đường chéo là $\begin{cases} x=-1+2t\\ y=-2t \end{cases}$. Biết tọa độ điểm B(a;b),b>0. Tính a.b.

 (\mathbf{C}) 1.

 $(\mathbf{D})0.$

CÂU 30. Trong mặt phẳng Oxy, cho tam giác ABC có M(-1;1) là trung điểm của BC, và

 $AB: \begin{cases} x = k \\ y = \frac{-2k - 3}{6}, & AC: \\ y = t \end{cases}$ Viết PTTS của BC. $ABC: \begin{cases} x = -1 + 5t' \\ y = 1 + 3t' \end{cases}$ B $BC: \begin{cases} x = -1 + 5t' \\ y = 1 + 4t' \end{cases}$ D $BC: \begin{cases} x = -1 + 5t' \\ y = 1 + 4t' \end{cases}$

CÂU 31. Cho đường thẳng d có PTTS $\begin{cases} x = 1 + 3t \\ y = 5 - t \end{cases}$, và điểm M(2;4). Tìm tọa độ điểm M'đối xứng với M qua đường thẳng d.

(a) $M'\left(\frac{12}{5}; \frac{26}{5}\right)$.

(b) $M'\left(\frac{11}{5}; \frac{23}{5}\right)$.

(c) $M'\left(\frac{11}{5}; \frac{23}{5}\right)$.

(d) $M'\left(\frac{11}{5}; -\frac{23}{5}\right)$.

Lập phương trình tổng quát của đường thẳng

Để lập phương trình tổng quát của đường thẳng Δ ta cần xác định một điểm $M(x_0; y_0) \in \Delta$ và một vectơ pháp tuyến $\vec{n} = (a; b)$.

Vậy phương trình tổng quát của đường thẳng Δ : $a(x-x_0)+b(y-y_0)=0$ hay Δ : ax + by = c với $c = -(ax_0 + by_0)$.

VÍ DU 1. Trong mặt phẳng Oxy, cho đường thẳng Δ đi qua điểm M(-1;5) và có vector pháp tuyến $\vec{n} = (-2, 3)$. Viết phương trình tổng quát của đường thẳng Δ .

VÍ DỤ 2. Trong mặt phẳng Oxy, cho đường thẳng Δ đi qua điểm N(2;3) và vuông góc với đường thẳng AB với A(1;3), B(2;1). Viết phương trình tổng quát của đường thẳng Δ .

VÍ DỤ 3. Trong mặt phẳng Oxy, viết phương trình tổng quát của đường thẳng d đi qua A(-1;2) và vuông góc với đường thẳng Δ : 2x - y + 4 = 0.

VÍ DỤ 4. Trong mặt phẳng Oxy, cho đường thẳng Δ có PTTS $\begin{cases} x=1+2t \\ u=-3-t \end{cases}$.

- a) Viết phương trình tổng quát của đường thẳng Δ .
- b) Viết phương trình tổng quát của đường thẳng d đi qua điểm N(4;2) và vuông góc với

VÍ DỤ 5. Trong mặt phẳng Oxy, cho đường thẳng d đi qua điểm A(1; -3) và song song với đường thẳng l: 3x + y - 10 = 0. Lập phương trình tổng quát của đường thẳng d.

VÍ DỤ 6. Trong mặt phẳng Oxy, cho tam giác ABC có A(1;1), B(2;5) và C(-4;3).

- a) Lập phương trình tổng quát của đường thẳng chứa cạnh AB.
- b) Lập phương trình tổng quát của đường cao xuất phát từ đỉnh C.
- c) Lập phương trình tổng quát của trung tuyến xuất phát từ đỉnh A.

VÍ DU 7. Trong mặt phẳng Oxy, cho đường thẳng d có phương trình x-y+1=0 và điểm A(0;3).

- a) Lập phương trình tổng quát của đường thẳng Δ đi qua điểm A và vuông góc với đường thẳng d.
- b) Tìm tọa độ điểm A' đối xứng với điểm A qua đường thẳng d.

1. Bài tâp trắc nghiệm

CÂU 1. Trong mặt phẳng Oxy, viết phương trình tổng quát của đường thẳng d đi qua điểm A(-1;3) và có vecto pháp tuyến $\vec{n}=(2;1)$.

$$(\mathbf{A}) 2x + y + 1 = 0.$$

$$\mathbf{(B)} - x + 3y - 1 = 0$$

(c)
$$2x + y - 5 = 0$$
.

(B)
$$-x + 3y - 1 = 0$$
. **(C)** $2x + y - 5 = 0$. **(D)** $2x + y - 1 = 0$.

CÂU 2. Trong mặt phẳng tọa độ Oxy, cho 2 điểm A(1;-4), B(3,2). Phương trình tổng quát đường trung trực của đoạn thẳng AB là

$$(\mathbf{A}) \, 3x + y + 1 = 0.$$

(B)
$$x + y - 1 = 0$$
.

$$(c) 3x - y + 4 = 0.$$

$$(\mathbf{D})x + 3y + 1 = 0.$$

CÂU 3. Cho đường thẳng d có PTTS $\begin{cases} x=5+t \\ y=-9-2t \end{cases}$. Phương trình tổng quát của d là

$$\mathbf{A} x + 2y + 1 = 0.$$

B)
$$2x + y - 1 = 0$$

(B)
$$2x + y - 1 = 0$$
. **(C)** $-2x + y - 1 = 0$. **(D)** $2x + 3y - 1 = 0$.

$$\mathbf{D} 2x + 3y - 1 = 0$$

CÂU 4. Trong mặt phẳng tọa độ Oxy, phương trình tổng quát của đường thẳng đi qua 2 điểm A(2;-1), B(3;2) là

$$(\mathbf{A}) x + 3y - 9 = 0.$$

(B)
$$x + 3y + 1 = 0$$
.

$$(\mathbf{C}) 3x - y - 7 = 0.$$

$$(\mathbf{D}) 3x - y - 5 = 0.$$

CÂU 5. Đường thẳng d: 4x - 3y + 5 = 0. Một đường thẳng Δ đi qua gốc toa độ và vuông góc với d có phương trình là

$$\mathbf{A} 3x + 4y = 0.$$

(B)
$$3x - 4y = 0$$
.

$$\mathbf{C} 4x - 3y = 0.$$

$$(\mathbf{D})4x + 3y = 0.$$

CÂU 6. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1), B(4;5) và C(-3;2). Lập phương trình đường cao của tam giác ABC kẻ từ A.

$$(\mathbf{A}) - 3x + 7y + 13 = 0.$$

(B)
$$7x + 3y + 13 = 0$$
.

$$(\mathbf{C}) 3x + 7y + 1 = 0.$$

$$(\mathbf{D})7x + 3y - 11 = 0.$$

VNPmath - 0962940819 **♀ QUICK NOTE**

Bài 4. VỊ TRÍ TƯƠNG ĐỐI GIỮA HAI ĐƯỜNG THẨNG. GÓC VÀ KHOẨNG CÁCH

A. TÓM TẮT LÝ THUYẾT

1. Vị trí tương đối giữa hai đường thẳng

Trên mặt phẳng tọa độ, xét hai đường thẳng Δ_1 : $a_1x+b_1y+c_1=0$ và Δ_2 : $a_2x+b_2y+c_2=0$. Khi đó, tọa độ giao điểm (nếu có) của Δ_1 và Δ_2 là nghiệm của hệ phương trình

$$\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$$
 (*)

- $oldsymbol{\Theta}$ Δ_1 cắt Δ_2 tại $M(x_0;y_0)$ khi và chỉ khi hệ (*) có nghiệm duy nhất $(x_0;y_0)$.
- Θ Δ_1 song song với Δ_2 khi và chỉ khi (*) vô nghiệm.
- Θ Δ_1 trùng Δ_2 khi và chỉ khi hệ (*) có vô số nghiệm.

Δ Dựa vào các véc-tơ chỉ phương $\overrightarrow{u_1}$, $\overrightarrow{u_2}$ hoặc các véc-tơ pháp tuyến $\overrightarrow{n_1}$, $\overrightarrow{n_2}$ của Δ_1 , Δ_2 ta có

 \bigcirc Δ_1 và Δ_2 song song hoặc trùng nhau $\Leftrightarrow \overrightarrow{u_1}$ và $\overrightarrow{u_2}$ cùng phương $\Leftrightarrow \overrightarrow{n_1}$ và $\overrightarrow{n_2}$ cùng phương.

 $oldsymbol{\Theta}$ Δ_1 và Δ_2 cắt nhau $\Leftrightarrow \overrightarrow{u_1}$ và $\overrightarrow{u_2}$ không cùng phương $\Leftrightarrow \overrightarrow{n_1}$ và $\overrightarrow{n_2}$ không cùng phương.

2. Góc giữa hai đường thẳng

Hai đường thẳng cắt nhau tạo thành bốn góc, số đo của góc không tù được gọi là số đo góc (hay đơn giản là góc) giữa hai đường thẳng.

Góc giữa hai đường thẳng song song hoặc trùng nhau được quy ước bằng 0° .

Cho hai đường thẳng Δ_1 : $a_1x + b_1y + c_1 = 0$ và Δ_2 : $a_2x + b_2y + c_2 = 0$, với các véc-tơ pháp tuyến $\overrightarrow{n_1} = (a_1; b_1)$ và $\overrightarrow{n_2} = (a_2; b_2)$ tương ứng. Khi đó, góc φ giữa hai đường thẳng đó được xác định thông qua công thức

$$\cos \varphi = |\cos (\overrightarrow{n_1}, \overrightarrow{n_2})| = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{|a_1 a_2 + b_1 b_2|}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}.$$

3. Khoảng cách từ một điểm đến một đường thẳng

Cho điểm $M(x_0;y_0)$ và đường thẳng $\Delta\colon ax+by+c=0$. Khoảng cách từ điểm M đến đường thẳng Δ , ký hiệu là $\operatorname{d}(M,\Delta)$, được tính bởi công thức

$$d(M, \Delta) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

B. CÁC DẠNG TOÁN

Xét vị trí tương đối giữa hai đường thẳng

Phương pháp chung

- Xét hệ phương trình tạo bởi hai đường thẳng.
- Tìm số nghiệm của hệ phương trình, từ đó kết luận vị trí tương đối giữa hai đường thẳng.

Ta có thể xét theo trình tự:

- **⊘** Kiểm tra hai véc-tơ chỉ phương (hoặc hai véc-tơ pháp tuyến) của hai đường thẳng có cùng phương hay không.
- ❷ Nếu chúng không cùng phương ⇒ hai đường thẳng cắt nhau. Nếu chúng cùng phương, kiểm tra một điểm bất kỳ thuộc đường thẳng này có thuộc đường thẳng kia hay không.

1. Ví du minh hoa

VÍ DỤ 1. Trong mặt phẳng tọa độ Oxy, xét vị trí tương đối giữa đường thẳng $\Delta \colon x-3y+1=0$ và mỗi đường thẳng $d_1 \colon x+y-2=0$ và $d_2 \colon -2x+6y+5=0$.

VÍ DỤ 2. Trong mặt phẳng tọa độ Oxy, xét vị trí tương đối của hai đường thẳng d: 3x - 4y + 1 = 0 và Δ : $\begin{cases} x = 4t \\ y = 1 + 3t \end{cases}$.

VÍ DỤ 3. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng lần lượt có phương trình $\Delta_1 \colon 3x - 2y + 4 = 0$, $\Delta_2 \colon 2x + y + 5 = 0$. Tìm tọa độ giao điểm I của hai đường thẳng Δ_1 và Δ_2 .

VÍ DỤ 4. Đường thẳng $\Delta \colon 5x - y = 10$ tạo với các trục tọa độ tam giác có diện tích bằng bao nhiêu?

VÍ DỤ 5. Trong mặt phẳng tọa độ Oxy, hai đường thẳng $d_1 \colon mx + y - m - 1 = 0$ và $d_2 \colon x + my - 2 = 0$ song song với nhau khi và chỉ khi

VÍ DỤ 6. Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình $d_1: 5x - 6y - 4 = 0$, $d_2: x + 2y - 4 = 0$, $d_3: mx - (2m - 1)y + 9m - 19 = 0$ (m là tham số). Tìm tất cả các giá trị của tham số m để ba đường thẳng đã cho cùng đi qua một điểm?

VÍ DỤ 7. Trong mặt phẳng Oxy, cho P(1;3), Q(2;-1) và đường thẳng d: x+y+2=0. Tìm tọa độ giao điểm của đường thẳng PQ và d.

2. Bài tập tự luận

BÀI 1. Xét vị trí tương đối của cặp đường thẳng $d_1: 2x-y+2=0$ và $d_2: -4x+2y+1=0$. Tìm tọa độ giao điểm nếu chúng cắt nhau.

BÀI 2. Xét vị trí tương đối của cặp đường thẳng d_1 : x = 2 và d_2 : x + 2y - 4 = 0. Tìm tọa độ giao điểm nếu chúng cắt nhau.

BÀI 3. Xét vị trí tương đối của cặp đường thẳng d_1 : $\begin{cases} x = 5 + t \\ y = -3 + 2t \end{cases}$ và d_2 : $\begin{cases} x = 4 + t' \\ y = -3 + 3t' \end{cases}$ Tìm tọa độ giao điểm nếu chúng cắt nhau.

BÀI 4. Cho hai đường thẳng $d\colon mx-2y+1=0$ và $\Delta\colon 2x+y-3=0$. Tìm tất cả các giá trị của m để hai đường thẳng d và Δ

- a) Cắt nhau.
- b) Song song.
- c) Trùng nhau.

BÀI 5. Cho hai đường thẳng d: 2mx + (m-1)y - 2 = 0 và $\Delta: (m+2)x + (2m+1)y - (m+2) = 0$. Tìm tất cả các giá trị của m để hai đường thẳng d và Δ

a) Cắt nhau.

GV.VŨ	NGOC	PHÁ1

QUICK NOTE	
 QUICK NOTE	
 	• •
 	• •
 	٠.
 	٠.
 	• •
 	• •
 	••
 	• •
 	• •
 	٠.
 	٠.
 	• •
 	• •

- b) Song song.
- c) Trùng nhau.

BÀI 6. Cho hai đường thẳng d: (m-2)x + (m-6)y + (m-1) = 0 và $\Delta: (m-4)x + (2m-3)y + m - 5 = 0$. Tìm tất cả các giá trị của m để hai đường thẳng d và Δ

- a) Cắt nhau.
- b) Song song.
- c) Trùng nhau.

BÀI 7. Cho điểm A(2;1) và hai đường thẳng $d_1: 3x-2y+10=0$, $d_2: 4x+3y-7=0$. Viết PTĐT d qua A và giao điểm của hai đường thẳng d_1 , d_2 .

BÀI 8. Tìm tất cả các giá trị của m để ba đường thẳng d_1 : x+y+1=0, d_2 : 3x+5y=-1, d_3 : (m+1)x-my=3m+4 đồng quy.

BÀI 9. Viết PTDT d_2 đi qua A(1;1) và song song với đường thẳng $d_1: 2x - y + 1 = 0$.

BÀI 10. Cho ba đường thẳng $d_1: 3x - 5y + 2 = 0$, $d_2: 5x - 2y + 4 = 0$ và $d_3: 2x - y + 4 = 0$. Viết PTDT d qua giao điểm của hai đường thẳng d_1 , d_2 và song song với đường thẳng d_3 .

BÀI 11. Cho ba đường thẳng d_1 : x - 2y + 5 = 0, d_2 : 2x + 3y - 4 = 0 và d_3 : 4x - 3y + 5 = 0. Viết PTĐT d qua giao điểm của hai đường thẳng d_1 , d_2 và vuông góc với đường thẳng d_3 .

BÀI 12. Cho tam giác ABC có A(0;-1), B(2;-3), C(2;0).

- a) Viết phương trình các đường trung tuyến của tam giác.
- b) Viết phương trình các đường cao của tam giác.
- c) Viết phương trình các đường trung trực của tam giác ABC.

BÀI 13. Viết PTDT d song song với đường thẳng $\Delta \colon 3x - 4y + 2 = 0$ và cách A(2;3) một khoảng h = 1.

BÀI 14. Viết PTĐT Δ song song và cách đường thẳng $d\colon 2x+3y-8=0$ một khoảng bằng $\sqrt{13}$.

BÀI 15. Viết PTĐT d song song với đường thẳng $\Delta \colon 2x - y + 3 = 0$ và cách Δ một khoảng $h = \sqrt{5}$.

BÀI 16. Viết PTĐT d đi qua điểm A(-1;2) và cách B(3;5) một khoảng bằng 3.

BÀI 17. Viết PTĐT đi qua điểm M(2;5) và cách đều hai điểm P(-1;2), Q(5;4).

2

Góc giữa hai đường thẳng

Nắm vững định nghĩa, công thức tính góc giữa hai đường thẳng.

1. Ví dụ minh hoạ

VÍ DỤ 1. Tìm số đo góc giữa hai đường thẳng d_1 và d_2 trong các trường hợp.

$$\bigcirc$$
 $d_1: 2x + 4y + 5 = 0$ và $d_2: 3x + y + 2022 = 0$.

$$\Theta \ d_1 \colon x + 2y + 1 = 0 \text{ và } d_2 \colon \begin{cases} x = t \\ y = 99 + 2t \end{cases}.$$

$$\Theta \ d_1: \begin{cases} x = 2 + 2t \\ y = 3 - 7t \end{cases}$$
 và $d_2: \begin{cases} x = 2022 + 4t \\ y = 2023 - 14t \end{cases}$

VÍ DỤ 2. Trong mặt phẳng với hệ trục tọa độ Oxy, tính góc giữa đường thẳng $\sqrt{3}x-y+1=0$ và trục hoành.

VÍ DỤ 3. Trong mặt phẳng Oxy, tìm tất cả các giá trị m để hai đường thẳng d: (2m-1)x + my - 10 = 0 và $\Delta: 3x + 2y + 6 = 0$ vuông góc với nhau.

VÍ DỤ 4. Trong mặt phẳng Oxy, tìm m để hai đường thẳng $d_1: 2x - 3y - 10 = 0$ và $d_2: \begin{cases} x = 2 - 3t \\ y = 1 - 4mt \end{cases}$ vuông góc với nhau.

VÍ DỤ 5. Trong mặt phẳng Oxy, tìm giá trị của m để hai đường thẳng $d_1: mx+y-m-1=0$ và d_2 : x + my - 2 = 0 song song với nhau.

VÌ DỤ 6. Trong mặt phẳng tọa độ Oxy, tìm các giá trị của tham số m để đường thẳng x + my - 3 = 0 hợp với đường thẳng x + y = 0 một góc 60° .

VÍ DU 7. Trong mặt phẳng Oxy, viết PTĐT d đi qua A(0;1) và tạo với đường thẳng $\Delta: x+1$ 2y - 7 = 0 một góc 45° .

2. Bài tấp tư luân

BÀI 1. Cho hai đường thẳng $d_1: 2x-4y-3=0$ và $d_2: 3x-y+17=0$. Số đo góc giữa d_1 và d_2 là

BÀI 2. Tính góc giữa hai đường thẳng $d_1: x + 2y + 4 = 0$ và $d_2: x - 3y + 6 = 0$.

BÀI 3. Tính góc tạo bởi giữa hai đường thẳng d_1 : 6x - 5y + 15 = 0 và d_2 : $\begin{cases} x = 10 - 6t \\ y = 1 + 5t. \end{cases}$

BÀI 4. Tính cô-sin của góc giữa hai đường thẳng $\begin{cases} x = 1 + t \\ y = 2 - 3t \end{cases}$ và $\begin{cases} x = 3 + 2t \\ y = 1 + t \end{cases}$

BÀI 5. Xác định tất cả các giá trị của a để góc tạo bởi đường thẳng $\begin{cases} x=9+at\\ y=7-2t \end{cases} (t\in\mathbb{R})$ và đường thẳng 3x + 4y - 2 = 0 bằng 45° .

$$\mathbf{A}$$
 $a = 1, a = -14.$

B
$$a = \frac{2}{7}, a = -14$$

(A)
$$a = 1, a = -14.$$
 (B) $a = \frac{2}{7}, a = -14.$ **(C)** $a = -2, a = -14.$ **(D)** $a = \frac{2}{7}, a = 14.$

(D)
$$a = \frac{2}{7}, \ a = 1$$

Khoảng cách từ một điểm đến một đường thẳng

Nắm được công thức tính khoảng cách từ một điểm đến một đường thắng.

1. Ví du minh hoa

VÍ DỤ 1. Tính khoảng cách từ điểm M đến đường thẳng d trong mỗi trường hợp sau

 Θ M(-2;1) và d: 2x - 3y + 5 = 0;

$$\Theta M(1; -3) \text{ và } d: \begin{cases} x = -2 + 3t \\ y = 2 - 4t \end{cases};$$

 $\bigcirc M(0;0)$ và $d: \frac{x}{-4} + \frac{y}{2} = 1.$

VÍ DỤ 2. Cho $\triangle ABC$ có A(3;4), B(1;1) và C(2;1). Tính độ dài đường cao kẻ từ A của $\triangle \overrightarrow{ABC}$.

VÍ DỤ 3. Tìm tọa độ điểm M trên đường thẳng $\Delta\colon \begin{cases} x=1-2t \\ y=2+t \end{cases}$ và cách trục tung một khoảng bằng 3.

VÍ DỤ 4. Trong mặt phẳng tọa độ Oxy, tính khoảng cách d giữa hai đường thẳng $\Delta_1: 7x +$ y-3=0 và Δ_2 : 7x+y+12=0.

VÍ DỤ 5. Trong mặt phẳng tọa độ Oxy, tìm điểm M trên đường thẳng d: $\begin{cases} x = 3 - 2t \\ y = 1 + 3t \end{cases}$ để nó cách điểm A(0;4) một khoảng là 1.

VÍ DU 6. Trong mặt phẳng Oxy, tìm tọa độ điểm A có hoành độ dương, thuộc đường thẳng $\begin{cases} x = 3 + t \\ y = 2 + t \end{cases}$, cách đường thẳng $d \colon 2x - y - 3 = 0$ một khoảng là $2\sqrt{5}$.

VÍ DỤ 7. Cho đường thẳng $\Delta: (m-1)x - my + 2 = 0$ (m là tham số). Tìm m sao cho khoảng cách từ K(0;3) đến Δ bằng $\sqrt{5}$.

VÍ DU 8. Cho đường thẳng d: 3x - y - 1 = 0. Viết PTĐT Δ song song với d sao cho khoảng cách gi

VÍ DU $t \dot{u} A d$

GV.VŨ NGOC PHÁT	
9. Cho hai điểm $A(-2;0)$ và $B(0;1)$. Viết PTĐT Δ đi qua B sao cho khoảng cách ra Δ bằng 1.	
řa hai đường thẳng bằng $\frac{3\sqrt{3}}{5}$.	

♥ VNPmath - 0962940819 ♥
QUICK NOTE
GOICK NOIL

VÍ DỤ 10. Một trạm viễn thông S có toạ độ (5;2). Một người đang ngồi trên chiếc xe khách chạy trên đoạn cao tốc có dạng một đường thẳng Δ có phương trình 6x+8y-21=0. Tính khoảng cách ngắn nhất giữa người đó và trạm viễn thông S. Biết rằng mỗi đơn vị độ dài tương ứng với $1~\rm km$.

2. Bài tấp tư luân

BÀI 1. Tính khoảng cách từ điểm M(1;4) đến đường thẳng $\ell \colon 3x-5y+2=0.$

BÀI 2. Tính khoảng cách từ điểm M(-1;2) đến đường thẳng $\Delta: 3x-4y-4=0$.

BÀI 3. Viết phương trình của đường thẳng (D) song song với (D'): 3x + 4y - 1 = 0 và cách (D') một đoạn bằng 2.

BÀI 4. Tính khoảng cách d từ điểm M(2;0) đến đường thẳng $\begin{cases} x=1+3t \\ y=2-4t. \end{cases}$

BÀI 5. Tính khoảng cách giữa hai đường thẳng song song d_1 : x-y-3=0 và d_2 : x-y-1=0.

BÀI 6. Cho đường thẳng Δ : -(m+1)x + (m+2)y + 6 = 0 (m là tham số). Tìm m sao cho khoảng cách từ M(-1;4) đến Δ bằng 5.

BÀI 7. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;0), B(0;-2). Độ dài đường cao hạ từ đỉnh O của tam giác OAB là

BÀI 8. Cho hai điểm M(-1;2), N(1;0). Viết PTĐT Δ đi qua M sao cho khoảng cách từ N đến Δ lớn nhất.

Tìm tọa độ điểm thỏa mãn điều kiện góc, khoảng cách

1. Ví du minh hoa

VÍ DỤ 1. Trong mặt phẳng hệ trực Oxy, đường thẳng d: x - 2y + 1 = 0. Tìm tọa độ hình chiếu của M(0;8) lên đường thẳng d.

VÍ DỤ 2. Trong mặt phẳng Oxy, cho hai điểm A(-1;2), B(-3;2) và đường thẳng $\Delta \colon 2x-y+3=0$. Tìm tọa độ điểm $C\in \Delta$ sao cho tam giác ABC cân ở C.

VÍ DỤ 3. Trong mặt phẳng Oxy, cho điểm M(3;1) và đường thẳng d: $\begin{cases} x=-2-2t \\ y=1+2t \end{cases}$. Tìm tọa độ của điểm đối xứng với điểm M qua d.

VÍ DỤ 4. Trong mặt phẳng Oxy, cho điểm A(0;5) và B(-4;3). Tìm tọa độ điểm M thuộc đường thẳng d: $\begin{cases} x=1+t\\ y=3-t \end{cases}; t\in \mathbb{R} \text{ sao cho } MA^2+MB^2 \text{ đạt giá trị nhỏ nhất.}$

VÍ DỤ 5. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1;1) và B(-2;4) và đường thẳng $\Delta \colon mx - y + 3 = 0$. Tìm tất cả các giá trị của tham số m để Δ cách đều A và B.

VÍ DỤ 6. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(-1;-2), B(1;-1). Biết tập hợp tất cả các điểm M(x;y) thỏa mãn $MA^2 - MB^2 = 2$ là một đường thẳng. Tính khoảng cách từ gốc tọa độ đến đường thẳng đó.

VÍ DỤ 7. Tìm tất cả các giá trị của m để khoảng cách từ M(-1;2) đến đường thẳng $\Delta \colon mx+y-m+4=0$ bằng $2\sqrt{5}$.

VÍ DỤ 8. Trong mặt phẳng Oxy, viết PTĐT d đi qua điểm A(1;2) và cách B(-2;3) một khoảng bằng $\frac{4\sqrt{10}}{5}$.

VÍ DU 9.

Trong mặt phẳng Oxy, cho hình vuông ABCD có C(7;2). Gọi M, N lần lượt là trung điểm của AB và AD. Biết đường thẳng MN có phương trình 3x - 4y + 2 = 0. Tính diện tích S của hình vuông ABCD.

VÍ DỤ 10. Trong mặt phẳng Oxy, cho đường thẳng d: x + y - 3 = 0 và hai điểm M(1;2), N(2;-1). Tìm tọa độ điểm A(a;b) (với a là số nguyên âm) thuộc đường thẳng d sao cho diện tích tam giác AMN bằng 4.

2. Bài tấp tư luân

- **BÀI 1.** Cho đường thẳng Δ có PTTS $\begin{cases} x=2+2t \\ y=3+t \end{cases}$ và điểm A(0;1).
 - a) Tìm điểm M nằm trên Δ và cách điểm A một khoảng bằng 5.
 - b) Tìm điểm N trên Δ sao cho AN ngắn nhất.
- **BÀI 2.** Cho hai đường thẳng Δ_1 : x + 2y + 5 = 0 và Δ_2 : -3x + 4y = 0. Tìm tọa độ điểm M thuộc Δ_1 sao cho khoảng cách từ M đến Δ_2 bằng 1.
- **BÀI 3.** Tìm những điểm nằm trên đường thẳng $\Delta \colon 2x + y 1 = 0$ và có khoảng cách đến d: 4x + 3y - 10 = 0 bằng 2.
- **BÀI 4.** Trong mặt phẳng tọa độ Oxy cho điểm A(1;1) và đường thẳng $\Delta \colon 2x+3y+4=0$. Tìm tọa độ điểm B trên đường thẳng Δ sao cho đường thẳng AB và Δ hợp với nhau góc 45° .
- **BÀI 5.** Trong mặt phẳng tọa độ Oxy, cho hai điểm A(0;2), B(2;-2) và đường thẳng $d_1:x$ y - 1 = 0, đường thẳng $d_2: x + y + 1 = 0$.
 - a) Tìm tọa độ điểm M trên đường thẳng d_1 thỏa mãn MA + MB đạt giá trị nhỏ nhất.
 - b) Tìm tọa độ điểm N trên d_2 sao cho NA + NB đạt giá trị nhỏ nhất.

C. CÂU HỎI TRẮC NGHIỆM

CÂU 1. Cho PTĐT Δ : Ax + By + C = 0 $(A^2 + B^2 \neq 0)$. Điều kiện nào sau đây để Δ song song hoặc trùng với trục hoành?

(A) B = 0.

(B) $A \cdot B \neq 0$.

 $(\mathbf{C})A = 0.$

CÂU 2. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với đỉnh A(1;2) và H(3;-1)là chân đường cao kẻ từ A của tam giác ABC. Khi đó đường thẳng BC có phương trình

(A) 2x - 3y + 4 = 0. (B) 3x + 2y + 7 = 0. (C) 3x + 2y - 7 = 0. (D) 2x - 3y - 9 = 0.

CÂU 4. Tìm tọa độ giao điểm của hai đường thẳng Δ_1 : $\begin{cases} x=22+2t \\ y=55+5t \end{cases}$ và Δ_2 : 2x+3y-19=0

(A) (5; 3).

(B) (10; 25).

 \bigcirc (-1;7).

CÂU 5. Xác định vị trí tương đối của hai đường thẳng Δ_1 : $\begin{cases} x = 3 + \sqrt{2}t \\ y = 1 - \sqrt{3}t \end{cases} \text{ và } \Delta_2 \colon \begin{cases} x = 2 + \sqrt{3}t \\ y = 1 + \sqrt{2}t \end{cases}.$

(A) Trùng nhau.

(B) Cắt nhau nhưng không vuông góc.

(**C**) Song song với nhau.

(**D**) Vuông góc với nhau.

CÂU 6. Cho hai đường thẳng Δ_1 : $x-3y=0, \Delta_2$: -2x+6y-1=0. Tìm mệnh đề đúng.

 $(\mathbf{A})\,\Delta_1 \equiv \Delta_2.$

 \bullet $\Delta_1 /\!\!/ \Delta_2$.

 $lackbox{\textbf{D}}\Delta_1 \text{ cắt } \Delta_2 \text{ tại } A\left(\frac{1}{12};\frac{1}{4}\right).$

CÂU 7. Trong mặt phẳng Oxy, cho đường thẳng Δ_1 : $\begin{cases} x=2-5t \\ y=-1+mt \end{cases}$, Δ_2 : x-3y=0. Giá

CÂU 8. Trong mặt phẳng Oxy, cho điểm M(1;2) và đường thẳng $\Delta: x+y+1=0$. Khoảng cách từ M đến đường thẳng Δ bằng

 $\sqrt{2}$

 $(\mathbf{C}) 4\sqrt{2}$.

(D) $2\sqrt{2}$.

QUICK NOTE	CÂU 9. Trong mặt p	ohẳng Oxy , khoảng cá	ch từ điểm $M(5;-1)$ đ	ến đường thẳng Δ : $\begin{cases} x = 7 - 2t \\ y = -4 + 3t \end{cases}$
	$(t \in \mathbb{R})$ bằng			
	(A) $\frac{6}{\sqrt{10}}$.	B 0.	$\bigcirc \frac{8}{\sqrt{10}}$.	$\bigcirc \!$
	CÂU 10. Tính khoả	ng cách từ $M(1:-1)$	đến đường thẳng Δ :	3x - 4y - 17 = 0.
	(A) 2.	B $-\frac{18}{5}$.		$\mathbf{D} \frac{10}{15}$.
	2.	\bullet $\frac{\bullet}{5}$.	$igotimes_{\overline{5}}$.	$\sqrt{5}$.
		ich giữa hai đường thể	fing song song $d: 3x+4$	y = 0 và $d' : 3x + 4y - 10 = 0$
	bằng (A) 7.	B) 2.	© 10.	(D) 5.
	•	<u> </u>	<u> </u>	<u> </u>
	mx + y - m + 4 = 0	bằng $2\sqrt{5}$.	,	$-1;2)$ đến đường thẳng Δ :
		B $m = -\frac{1}{2}$.	$\bigcirc m = -2.$	$\bigcirc m = -2, m = \frac{1}{2}.$
	_	2		= 0 đi qua điểm $A(1;2)$ và
		9	iết a, b là các số nguyê	n dương và $\frac{b}{a}$ tối giản. Tính
	giá trị biểu thức $T =$			<u></u>
	(A) 3.	(B) 0.	© 9.	D 12.
				x - 4y + m + 4 = 0 và điểm
	$M(1; 2)$. Gia trị dước $\mathbf{A} m = 11$.	m = 2.	cách từ M đến đường $ \widehat{\textbf{C}} m = 9. $	thang Δ bang 2 la $(\mathbf{D}) m = -9$.
	CAU 15. Trong mặt và cách (d) một kho	_	viêt PTDT (Δ) song s	song với (d) : $2x - y + 3 = 0$
			$\Delta_1: 2x-y$	+13=0
	(A) $\Delta : 2x - y + 13$	3 = 0.		-7 = 0
	$\bullet \Delta \colon 2x - y - 7$	= 0	$\Delta_1 \colon 2x - y$	+10=0
	<u> </u>	0.		-4 = 0
	CÂU 16 Trong mặt	t phẳng tọp đô <i>Ogy</i> (cho hai đường thổng A	$\Delta : \begin{cases} x = 1 - 2t \\ y = 1 + t \end{cases} $ và $\Delta' : 2x + $
				\
			tham số m để khoảng	cách từ điểm $M(1;-2)$ đến
	hai đường thẳng đó (A) 12.	$(\mathbf{B}) 0.$	\bigcirc 2.	(D) 10.
	•			
). Gọi Δ là đường thắng có rằng $A \in \Delta$ và tổng khoảng
	cách từ B và C đến	Δ là lớn nhất. Tính	S = a + b + c.	
	(A) $S = 18$.	B $S = 22$.		D $S = 10$.
	CÂU 18 Cho đường	$x + \frac{\partial}{\partial x} d_1 \cdot \int x = 2 - \frac{\partial}{\partial x} d_1 \cdot d_1 \cdot d_1$	+t	: $2x + y - 5 = 0$. Biết M là
		("		2x + y = 0. But M is
		trồng thắng d_1 và d_2 .	Tìm tọa độ điểm M .	M(1,2)
	(A) $M(-1; -3)$.		$\bigcirc M(3;-3).$	
	CÂU 19. Cho đường	g thẳng d_1 : $\begin{cases} x = 2t \\ \xi \end{cases}$	d_2 , d_2 : $x - 2y + 2 = 0$). Tìm tọa độ giao điểm của
	hai đường thẳng d_1	\ -	- 3t	
	A $I(2;-1)$.	va u_2 . B) $I(-2; 8)$.	\bigcirc $I(-4;11).$	$(\mathbf{D})I(2;2).$
	•	_	1 = 0. Mệnh đề nào sa	
				na aay sar.
	$(\mathbf{A}) d$ song song vớ	ới đường thẳng $\Delta\colon \left\{ \stackrel{ ext{ }}{t} ight.$	y = 1 - 2t	
	\bigcirc $\overrightarrow{u}(2;3)$ là véc-1	tơ chỉ phương của d .		
	$\bigcirc d$ vuông góc vớ	ới đường thẳng Δ' : 3	x + 2y - 1 = 0.	
	$\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$k = \frac{2}{3}$.		
	CÂU 21. Khẳng địn	3		
		In hao sau day sar: Δ : $y - 1 = 0$ song sor	ng với trục tung.	

☑ PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT PHẨNG	9 VNPmath - 0962940819 9
 B Đường thẳng Δ: 2x - 7y + 2 = 0 cắt hệ trục tọa độ tại hai điểm phân biệt. C Đường thẳng Δ: x - 2 = 0 song song với trục hoành. D Đường thẳng Δ: 2x - 7y = 0 đi qua gốc tọa độ. 	QUICK NOTE
CÂU 22. Đường thẳng Δ vuông góc với đường thẳng AB với $A(-2;1)$ và $B(4;3)$. Đường thẳng Δ có một véc-tơ chỉ phương là $\vec{c}=(1;-3)$. B $\vec{d}=(3;1)$. C $\vec{d}=(1;3)$.	
CÂU 23. Trong mặt phẳng tọa độ Oxy , đường thẳng Δ đi qua $A(1;1)$ và vuông góc với $d\colon 4x+2y+1=0$ có phương trình là	
CÂU 24. Đường thẳng nào sau đây đi qua $A(1;1)$ và song song với đường thẳng $2x+3y-2=0$? (A) $4x+6y-10=0$. (B) $2x+3y-7=0$. (C) $3x-2y-1=0$. (D) $x-y+3=0$.	
CÂU 25. Trong mặt phẳng tọa độ Oxy , đường thẳng qua $A(2;1)$ và song song với đường thẳng $2x + 3y - 2 = 0$ có phương trình tổng quát là $\mathbf{A}(x) = \mathbf{A}(x) + A$	
CÂU 26. Đường thẳng đi qua $M(2;0)$, song song với đường thẳng Δ : $\begin{cases} x=-4+5t\\ y=1-t \end{cases}$ có phương trình tổng quát	
(A) $x + 5y - 2 = 0$. (B) $5x - y - 10 = 0$. (C) $x + 5y + 1 = 0$. (D) $2x + 10y - 13 = 0$. (CÂU 27. Viết PTĐT d đi qua điểm $I(4; -1)$ và vuông góc với đường thẳng Δ : $x + y - 2017 = 0$.	
0.	
CÂU 28. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đường thẳng d qua điểm $M(2;-3)$ và song song với đường thẳng $\Delta\colon 2x-y+5=0$. (B) $d\colon 2x-y-7=0$. (B) $d\colon x-2y-8=0$. (C) $d\colon 2x-y+7=0$. (D) $d\colon x+y+4=0$.	
CÂU 29. Tìm PTTS của đường thẳng đi qua điểm $M(-1;2)$ và vuông góc với đường thẳng $2x-y+4=0$.	
CÂU 30. Cho đường thẳng Δ : $\begin{cases} x=2+3t\\ y=-1+t \end{cases} \ (t\in\mathbb{R}) \text{ và điểm } M(-1;6). \text{ PTDT đi qua } M$ và vuông góc với Δ là	
(A) $3x - y + 9 = 0$. (B) $x + 3y - 17 = 0$. (C) $3x + y - 3 = 0$. (D) $x - 3y + 19 = 0$. (CÂU 31. Trong mặt phẳng Oxy , cho tam giác ABC có điểm $A(3; -4)$, $B(-1; 2)$, $C(1; 5)$. PTDT đi qua trọng tâm của tam giác ABC và song song với đường thẳng AC là (A) $2x + 9y - 11 = 0$. (B) $9x + 2y + 5 = 0$. (C) $2x + 9y + 7 = 0$. (D) $9x + 2y - 11 = 0$.	
CÂU 32. Trong mặt phẳng tọa độ Oxy , hai đường thẳng $d_1 \colon mx + y - m - 1 = 0$ và $d_2 \colon x + my - 2 = 0$ song song với nhau khi và chỉ khi \bigcirc $M = 2$. \bigcirc $M = 1$. \bigcirc $M = 1$.	
CÂU 33. Trong mặt phẳng với hệ tọa độ Oxy , cho ba đường thẳng lần lượt có phương trình $d_1 \colon 5x - 6y - 4 = 0; d_2 \colon x + 2y - 4 = 0; d_3 \colon mx - (2m-1)y + 9m - 19 = 0 \ (m \text{ là tham số }).$ Tìm tất cả các giá trị của tham số m để ba đường thẳng đã cho cùng đi qua một điểm? (A) $m = 1$. (B) $m = -1$. (C) $m = -2$. (D) $m = 2$.	
CÂU 24. Trong một nhỗng tạo độ Ogy, ghọ đường thổng dực 1 24. 2 – 0. Đường thổng	

CÂU 34. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x + 2y - 3 = 0. Đường thẳng

nào sau đây song song với d? **©** -x - 2y + 1 = 0. **(D)** x - 2y + 3 = 0. **(A)** 4x + 8y - 12 = 0. **(B)** 2x - y + 3 = 0.

CÂU 35. Gọi d là đường thẳng qua M(4;-3) và song song với đường thẳng y=2x-4 (\mathbf{A}) d không có điểm nào có tọa độ là số nguyên chẵn.

 $lackbox{\textbf{B}}$ d đi qua điểm (10; 10).

Cả A và B đều sai.

(D) Cả A và B đều đúng.

QUICK NOTE		ia giao điểm của d_1,d_2	và song song với đườn	$x = 1 = 0, \Delta : x + 3y - 10 = 0.$ ag thắng Δ . a. $x + 3y - 4 = 0.$
		\mathring{a} các giá trị của tham s 1 = 0 song song với nh		thẳng $d: m^2x - 6y + m + 6 =$
			$\bigcirc \begin{bmatrix} m = -3 \\ m = 3 \end{bmatrix}.$	$\bigcirc m=3.$
	_		$m-3$ ếng AB và CD . Mệnh α	
	$\mathbf{A}\cos\alpha = \cos(\alpha)$		$\mathbf{B}\cos\alpha = \cos\left(A\right)$	
	$\mathbf{c}\cos\alpha = \sin\left(\frac{1}{2}\right)$	$\overrightarrow{AB}, \overrightarrow{CD})$.	$\bigcirc \cos \alpha = - \left \cos \alpha \right $	$S\left(\overrightarrow{AB},\overrightarrow{CD}\right)\Big .$
			hẳng mx + y - 3 = 0 hợ	p với đường thẳng $x+y=0$
	một góc 60° . Tổng \bigcirc -3 .	$m_1 + m_2$ bằng (B) 3.	© 4.	$(\mathbf{\overline{D}})$ -4 .
	•	0	$\overset{\smile}{\text{hằng } d_1 \colon x + 2y - 7} =$	
	$\mathbf{A} \frac{3}{\sqrt{5}}$.		$\frac{1}{5}$.	\bigcirc $\frac{3}{5}$.
	V 0	v s	•	$\sqrt{3}y + 2019 = 0 \text{ và } d_2 \colon y + \frac{1}{3}y + \frac{1}{3}$
	2020 = 0. Góc giữa	hai đường thẳng d_1 về	d_2 bằng	_
	(A) 60°.	B) 120°.	© 30°.	D 45°.
	CÂU 42. Cho hai d	đường thẳng $d_1 \colon 2x - 4$	$4y - 1 = 0; d_2 \colon x - \frac{1}{3}y$	$+4=0$. Số đo góc giữa d_1
	và d_2 là π	$\bigcap \pi$	3π	π
	$\mathbf{A} \frac{\pi}{4}$.	2 −	$\mathbf{C} - \frac{3\pi}{4}.$	T
	CÂU 43. Tìm côsin	n góc giữa 2 đường thẳ	$\log \Delta_1 \colon 10x + 5y - 1 =$	$x = 0 \text{ và } \Delta_2$: $\begin{cases} x = 2 + t \\ y = 1 - t \end{cases}$
			$\bigcirc \frac{3\sqrt{10}}{10}$.	(0
	$\mathbf{A} \frac{3}{10}$.	10	10	9
	CAU 44. Tính góc A 30°.	giữa hai đường thăng (B) 60°.	$3x + y - 1 = 0$ và $4x - 6$ 90° .	$-2y - 3 = 0.$ (D) $45^{\circ}.$
	•		<u> </u>	$\operatorname{ang} d_1 \colon x - 2y + 5 = 0 \text{ và}$
			$\operatorname{cng} \operatorname{thẳng} d_1 \text{ và } d_2 \text{ bằng}$	
	-			x+y-3=0 cắt nhau tại
	I. PTĐT qua $M(-$	$(2;0) \text{ cắt } (d_1), (d_2) \text{ lần}$		o $\triangle IAB$ cân tại A có dạng
	ax + by + 2 = 0. Tr $A T = -1.$	(nh $T = a - 5b$. (B) $T = 9$.	© $T = -9$.	$(\mathbf{\overline{D}})T = 11.$
	•		0	PTĐ T Δ đi qua M và tạo
	với d một góc 45° .			
	~	0 và Δ_2 : $5x + y - 7 = 9 = 0$ và Δ_2 : $3x + y - 4$		
	~	$+1 = 0 \text{ và } \Delta_2 \colon 5x + y$		
	$\stackrel{lack}{\bigcirc} \Delta_1 \colon x - 5y +$	$9 = 0$ và $\Delta_2 \colon 5x + y -$	-7 = 0.	
			x và cách đều hai đường	g thẳng: $d_1: 3x - 2y - 6 = 0$
	$ \begin{array}{c} \text{và } d_2: 3x - 2y + 3 \\ & \left(\frac{1}{2}; 0\right). \end{array} $		(a) (\(\sqrt{2} \cdot 0 \)	(1.0)
	(2)		\bigcirc $(\sqrt{2};0).$	
	CÂU 49. Cho đườn	ng thẳng $\Delta:\begin{cases} x=1+\\ y=-2t \end{cases}$	$3t$ và điểm $M\left(3;3\right) .$ To	ọa độ hình chiếu vuông góc
	của M trên đường	thẳng Δ là:		_
	(4;2).	_	\bigcirc (-2; 2).	(7;4).
	CÂU 50. Cho đườn M qua d là	$\text{ng th} \dot{\text{a}} \text{ng } d: 2x3y + 3 =$	= 0 và $M(8;2)$. Tọa độ	của điểm M' đối xứng với
	(4;8).	B (4; 8).	\bigcirc (4; 8).	(4; 8).

CÂU 51. Tìm điểm M nằm trên $\Delta: x+y-1=0$ và cách N(-1;3) một khoảng bằng 5.

(A) (2; -1).

(B) (-2; -1).

 $(\mathbf{C})(-2;1).$

CÂU 52. Cho đường thẳng đi qua 2 điểm A(3;0), B(0;-4), tìm tọa độ điểm M thuộc Oysao cho diện tích ΔMAB bằng 6

(A)(0;1).

(B) (0;0) và (0;-8). **(C)** (1;0).

CÂU 53. Cho $A\left(2;2\right),B\left(5;1\right)$ và đường thẳng $\Delta:x2y+8=0.$ Điểm $C\in\Delta.$ C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. Tọa độ của C là

(B) (12; 10).

CÂU 54. Cho 3 đường thẳng có phương trình $\Delta_1: x+y+3=0; \ \Delta_2: x-y-4=0;$ Δ_3 : x-2y=0. Tìm tọa độ điểm M nằm trên Δ_3 sao cho khoảng cách từ M đến Δ_1 bằng 2 lần khoảng cách từ M đến Δ_2 .

(A) M(0;0).

B) M(-22; -11).

 $(\mathbf{C}) M_1(-22;-11), M_2(2;1).$

 $(\mathbf{D})M(2;1).$

CÂU 55. Trong mặt phẳng toạ độ Oxy cho $\Delta: x - y + 1 = 0$ và hai điểm A(2;1), B(9;6). Điểm M(a;b) nằm trên Δ sao cho MA + MB nhỏ nhất. Tính a + b.

(A) a + b = -9.

(B) a + b = 9.

(**C**) a + b = -7.

(D) a + b = 7.

CÂU 56. Cho đường thẳng d: x-2y-2=0 và hai điểm A(0,1), B(3,4). M(a,b) thuộc đường thẳng dsao cho $|\overrightarrow{MA}+2\overrightarrow{MB}|$ đạt giá trị nhỏ nhất. Giá trị a+b bằng

(B) $a+b=\frac{3}{5}$. **(C)** $a+b=\frac{19}{5}$.

CÂU 57. Trong mặt phẳng Oxy, cho hai điểm A(1;2), B(4;3). Điểm M(a,b), $\left(a^2+b^2\neq 0\right)$ sao cho $\widehat{MAB}=135^\circ$ và khoảng cách từ M đến đường thẳng AB bằng $\frac{\sqrt{10}}{2}$. Khi đó a+2bbằng

(A) 2.

B) 5.

 $(\mathbf{C}) 1.$

 $(\mathbf{D})6.$

Bài 5. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

A. TÓM TẮT LÍ THUYẾT

 $oldsymbol{\Theta}$ Phương trình của đường tròn (C) có tâm I(a;b), bán kính R là

$$(x-a)^2 + (y-b)^2 = R^2.$$

 $oldsymbol{\Theta}$ Với các hằng số a, b, c thoả mãn $a^2 + b^2 - c > 0$, phương trình

$$x^2 + y^2 - 2ax - 2by + c = 0$$

là phương trình của một đường tròn có tâm I(a;b) và có bán kính $R=\sqrt{a^2+b^2-c}$.

 \bullet Cho đường tròn (C) có tâm I(a;b), bán kính R. Phương trình tiếp tuyến Δ của (C)tại $M_0(x_0; y_0)$ là $(a - x_0) \cdot (x - x_0) + (b - y_0) \cdot (y - y_0) = 0$.

B. CÁC DẠNG TOÁN

Xác định tâm và bán kính đường tròn

- $oldsymbol{\Theta}$ Nếu phương trình đường tròn có dạng (C): $(x-a)^2+(y-b)^2=R^2$ thì (C) có tâm là I(a;b) và bán kính bằng R.
- $\ensuremath{f \Theta}$ Nếu phương trình đường tròn có dạng
 $(C)\colon x^2+y^2-2ax-2by+c=0$ thì tâm Iđược xác định $\begin{cases} -2a = \cdots \\ -2b = \cdots \end{cases} \Leftrightarrow \begin{cases} a = \cdots \\ b = \cdots \end{cases} \Rightarrow I(a;b) \text{ và bán kính } R = \sqrt{a^2 + b^2 - c}.$

 $oldsymbol{\Theta}$ Phương trình $x^2+y^2-2ax-2by+c=0$ là phương trình đường tròn khi A $v\grave{a}$ chỉ khi $a^2 + b^2 - c > 0$.

 $oldsymbol{\Theta}$ Điều kiện đường thẳng Δ tiếp xúc với đường tròn (I,R) là d $(I,\Delta)=R$.

alli		Ν	\frown	ī
2101	CK	II NII	v	-

.........

1. Ví du

VÍ DU 1. Trong các phương trình sau, phương trình nào là phương trình đường tròn. Tìm tâm và bán kính của đường tròn đó.

a)
$$x^2 + y^2 - 2x - 2y - 2 = 0$$
.

b)
$$x^2 + y^2 + 2x - 8y + 1 = 0$$
.

c)
$$16x^2 + 16y^2 + 16x - 8y = 11$$
.

d)
$$7x^2 + 7y^2 - 4x + 6y - 1 = 0$$
.

VÍ DỤ 2. Tìm tọa độ tâm I và bán kính R của đường tròn $(x-2)^2 + (y+3)^2 = 5$.

VÍ DỤ 3. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 + 4x - 2y - 7 = 0$. Tìm tọa độ tâm I và bán kính của đường tròn (C).

VÍ DỤ 4. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $x^2+y^2-2x+10y+1=0$. Trong các điểm M(-1;3), N(4;-1), P(2;1), Q(3;-2), điểm nào thuộc (C)?

2. Bài tấp tư luân

BÀI 1. Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:

a)
$$(x-2)^2 + (y-8)^2 = 49$$
;

b)
$$(x+3)^2 + (y-4)^2 = 23$$
.

BÀI 2. Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó.

a)
$$x^2 + 2y^2 - 4x - 2y + 1 = 0$$
;

b)
$$x^2 + y^2 - 4x + 3y + 2xy = 0$$
;

c)
$$x^2 + y^2 - 8x - 6y + 26 = 0$$
;

d)
$$x^2 + y^2 + 6x - 4y + 13 = 0$$
;

e)
$$x^2 + y^2 - 4x + 2y + 1 = 0$$
.

BÀI 3. Tìm m để các phương trình sau là phương trình đường tròn.

a)
$$x^2 + y^2 + 4mx - 2my + 2m + 3 = 0$$
.

b)
$$x^2 + y^2 - 2(m-3)x + 4my - m^2 + 5m + 4 = 0$$
.

Viết phương trình đường tròn

Phương pháp: Để viết phương trình đường tròn ta thường đi theo một trong hai hướng

- \odot Tìm tâm I(a;b) và bán kính R. Khi đó phương trình đường tròn là $(x-a)^2$ + $(y-b)^2 = R^2$.
- $\ensuremath{\boldsymbol{\Theta}}$ Gọi phương trình của đường tròn là $x^2+y^2+2ax+2by+c=0.$ Từ điều kiên của đề bài đưa đến hệ phương trình với ẩn số a, b, c. Giải hệ phương trình tìm a, b, c, từ đó ta có phương trình đường tròn.

VÍ DU 1. Trong mặt phẳng Oxy, đường tròn (C) tâm I(-2;5) bán kính R=7. Viết phương trình đường tròn (C).

VÍ DU 2. Viết phương trình đường tròn (C) có tâm I(1;-2) và đi qua A(-2;2).

VÍ DU 3. Viết phương trình đường tròn (C) có đường kính AB, với A(-1; -3), B(-3; 5).

VÍ DỤ 4. Viết phương trình đường tròn (C) có tâm I(1;3) và tiếp xúc với đường thẳng $\Delta \colon x + 2y + 3 = 0.$

VÍ DU 5. Viết phương trình đường tròn (C) có tâm I(1;-2) và tiếp xúc với trục Ox.

VÍ DỤ 6. Trong mặt phẳng Oxy, viết phương trình đường tròn có tâm nằm trên đường thẳng y = x và đi qua hai điểm A(3;0), B(4;3).

VÍ DU 7. Lập phương trình đường tròn (C) đi qua ba điểm A(-1;1), B(0;-2), C(0;2).

1. Bài tập tự luyện

BÀI 1. Lập phương trình đường tròn (C) trong các trường hợp sau

- a) (C) có tâm I(1;3) và bán kính R=2.
- b) (C) có tâm I(3;5) và qua điểm A(7;2).
- c) (C) có đường kính AB với A(1;1), B(7;5).

BÀI 2. Lập phương trình đường tròn (C) trong các trường hợp sau

- a) (C) có tâm I(2;-1) và tiếp xúc với đường thẳng $\Delta : 3x 4y 20 = 0$.
- b) (C) qua hai điểm A(2;3), B(-2;1) và có tâm nằm trên trục hoành.

BÀI 3. Viết phương trình đường tròn (C) có tâm thuộc đường thẳng $\Delta \colon x+y-1=0$ và đi qua hai điểm A(6; 2), B(-1; 3).

BAI 4. Lập phương trình đường tròn (C) đi qua ba điểm

- a) A(2;6), B(-6;2), C(-1;-3).
- b) A(1;2). B(5;2), C(1;-3).

BÀI 5. Lập phương trình đường tròn (C) trong các trường hợp sau

- a) (C) có tâm I(2; -5) và tiếp xúc với Ox.
- b) (C) có tâm I(1;3) và tiếp xúc với Oy.
- c) (C) tiếp xúc cả hai trục tọa độ và có tâm nằm trên đường thẳng Δ : 4x 2y 8 = 0.
- d) (C) tiếp xúc cả hai trực tọa độ và qua M(2;1).
- e) (C) qua A(9,9) và tiếp xúc với truc Ox tai M(6,0).
- f) (C) tiếp xúc với trục Ox tại A(2;0) và khoảng cách từ tâm của (C) đến B(6;4) bằng 5.

3 Phương trình tiếp tuyến của đường tròn

a) Cho điểm $M(x_0; y_0)$ thuộc đường tròn (C): $(x-a)^2 + (y-b)^2 = R^2$ (tâm I(a; b), bán kính R). Khi đó, tiếp tuyến Δ của (C) tại $M(x_0; y_0)$ có véc-tơ pháp tuyến $\overline{MI} = (a - x_0; b - y_0)$ và phương trình $\Delta: (a - x_0)(x - x_0) + (b - y_0)(y - y_0) = 0.$

b) Lập phương trình tiếp tuyến Δ với đường tròn (C), khi biết Δ đi qua một điểm không thuộc đường tròn (C). Khi đó ta sử dụng điều kiện đường thẳng Δ là tiếp tuyến của đường tròn (C) khi và chỉ khi d $(I, \Delta) = R$.

VÍ DỤ 1. Cho đường tròn (C): $x^2 + y^2 - 2x - 2y - 11 = 0$. Tiếp tuyến của (C) tại điểm M(4;-1) thuộc (C) có phương trình là

VÍ DỤ 2. Trong mặt phẳng tọa độ Oxy, cho đường tròn (\mathscr{C}) : $x^2 + y^2 - 3x - y = 0$. Viết phương trình tiếp tuyến của (\mathscr{C}) tại M(1;-1) thuộc (C).

VÍ DU 3. Cho đường tròn (C) có phương trình $x^2 + y^2 + 4x - 2y - 4 = 0$. Từ O(0;0) kẻ được bao nhiều đường thẳng tiếp xúc với (C)?

GV.VŨ	NGỌC	PHÁT

VÍ DỤ 4. Trong mặt phẳng Oxy, cho đường thẳng d: 2x - y - 5 = 0 và hai điểm A(1;2) và B(4;1).

- a) Viết phương trình đường tròn (C) có tâm thuộc đường thẳng d và đi qua hai điểm A,B.
- b) Viết phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến vuông góc với đường thẳng $d'\colon x+y+2019=0.$

VÍ DỤ 5. Với những giá trị nào của m thì đường thẳng $\Delta \colon 4x + 3y + m = 0$ tiếp xúc với đường tròn $(C) \colon x^2 + y^2 - 9 = 0$.

VÍ DỤ 6. Viết phương trình tiếp tuyến (Δ) của đường tròn $(C): (x-1)^2 + (y-2)^2 = 8$ biết tiếp tuyến đi qua điểm M(3; -2).

1. Bài tấp tư luyên

BÀI 1. Trong mặt phẳng tọa độ Oxy, viết phương trình tiếp tuyến của đường tròn

(C):
$$(x+1)^2 + (y-3)^2 = 25$$

tại điểm M(-4;7).

BÀI 2. Trong mặt phẳng tọa độ Oxy, viết phương trình tiếp tuyến Δ của đường tròn

$$(C)$$
: $(x-1)^2 + (y-3)^2 = 25$

tai điểm N(4;-1).

BÀI 3. Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : $x^2 + y^2 + 4x + 4y - 17 = 0$. Viết phương trình tiếp tuyến Δ của (C) biết Δ vuông góc với đường thẳng d: 3x - 4y + 1 = 0.

BÀI 4. Trong mặt phẳng tọa độ Oxy, viết phương trình tiếp tuyến với $(C): (x-1)^2 + (y+2)^2 = 10$, biết tiếp tuyến song song với đường thẳng d: x+3y-5=0.

BÀI 5. Viết phương trình tiếp tuyến của đường tròn $(C):(x-3)^2+y^2=9$ biết tiếp tuyến đi qua điểm M(3;5).

BÀI 6. Cho hai đường tròn $(C_1): x^2+y^2+2x-2y-3=0$ và $(C_2): x^2+y^2-4x-14y+33=0$.

- a) Chứng minh rằng (C_1) và (C_2) tiếp xúc với nhau.
- b) Viết phương trình tiếp tuyến chung của hai đường tròn tại tiếp điểm.

BÀI 7. Trong mặt phẳng tọa độ Oxy, cho đường tròn $(C): x^2 + y^2 - 6x + 4y - 7 = 0$ và điểm A(5;4) nằm ngoài đường tròn. Gọi tiếp điểm của tiếp tuyến kẻ từ A đến đường tròn là T_1, T_2 , với hoành độ T_1 nhỏ hơn hoành độ T_2 . Tìm tọa độ của véc-tơ $\overline{T_1T_2}$.

C. BÀI TẬP TRẮC NGHIỆM

1. Bài tập trắc nghiệm cơ bản

CÂU 1. Trong mặt phẳng tọa độ Oxy, cho đường tròn có phương trình $(x-3)^2+(y+2)^2=5$. Xác định tâm I và bán kính R của đường tròn trên?

$$(\mathbf{A}) I(-3;2), R = \sqrt{5}.$$

(B)
$$I(3;-2), R = \sqrt{5}.$$

$$(\mathbf{C}) I(-3;2), R = 5.$$

$$(\mathbf{D})I(3;-2), R=5.$$

CÂU 2. Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tọa độ tâm I(-2;4) và bán kính R=4 có phương trình là

(A)
$$(C)$$
: $(x+2)^2 + (y-4)^2 = 16$.

B)
$$(C)$$
: $(x-2)^2 + (y+4)^2 = 16$.

(c)
$$(C)$$
: $(x+2)^2 + (y-4)^2 = 4$.

$$(C): (x-2)^2 + (y+4)^2 = 4.$$

CÂU 3. Phương trình nào là phương trình của đường tròn có tâm I(3; -4) và đường kính bằng 4?

$$\mathbf{A}(x-3)^2 + (y+4)^2 = 4.$$

B)
$$(x+3)^2 + (y-4)^2 = 16$$
.

(c)
$$(x+3)^2 + (y-4)^2 = 4$$
.

$$(\mathbf{D})(x-3)^2 + (y+4)^2 = 16.$$

CÂU 4. Đường tròn tâm I(2;0) và đi qua điểm A(-1;7) có phương trình là

$$(x+2)^2 + y^2 = \sqrt{58}.$$

$$(x-2)^2 + y^2 = \sqrt{58}.$$

$$\mathbf{C}(x+2)^2 + y^2 = 58.$$

$$(\mathbf{D})(x-2)^2 + y^2 = 58.$$

PHƯƠNG PHÁP TOẠ ĐỘ TRONG MẶT P	PHẨNG		♥ VNPmath - 0962940819
CÂU 5. Đường tròn đường kính AB với $A(3$ (A) $(x+2)^2 + (y-3)^2 = 5$. (C) $(x-2)^2 + (y+3)^2 = \sqrt{5}$.	B) $(x+1)^2 + (x+1)^2 +$	$(y+2)^2 = 17.$	QUICK NOTE
CÂU 6. Trong mặt phẳng tọa độ Oxy , bán k là	tính R của đường t	$x^2 + y^2 - 2x + 4y + 1 = 0$	
	$\bigcirc R = 1.$	$\bigcirc R = 3.$	
câu 7. Trong các phương trình sau, phươn	ng trình nào là ph	nương trình của một đường	
tròn? (A) $x^2 + y^2 + 2x - 4y + 9 = 0$. (C) $2x^2 + 2y^2 - 8x - 4y - 6 = 0$.		x + 4y + 13 = 0. x - 4y + 1 = 0.	
CÂU 8. Tìm tất cả các giá trị của m để phư	ong trình $x^2 + y^2$ -	-4x + 2y + m = 0 là phương	
trình đường tròn?	$\bigcirc m < 5$	$\bigcirc m > 5$	
CÂU 9. Cho đường tròn $(C): x^2 + y^2 - 4x - 4$		_	
(A) (C) có tâm $I(2;0)$.	$\mathbf{B}(C)$ có bán l		
$\mathbf{C}(C)$ cắt trực Ox tại hai điểm phân biệt	<u> </u>		
CÂU 10. Cho đường cong $(C_m): x^2 + y^2 -$	8x + 10y + m = 0	0. Với giá trị nào của m thì	
(C_m) là đường tròn có bán kính bằng 7?			
_	_		
CÂU 11. Tìm tọa độ tâm I của đường tròn $(\mathbf{A}) I(0;0)$. $(\mathbf{B}) I(1;0)$.		0;4), B(2;4), C(4;0)? $(D) I(1;1).$	
•		<u> </u>	
CÂU 12. Phương trình đường tròn qua ba đ (A) $x^2 + y^2 - 2x - 2y + 8 = 0$.			
$ \hat{\mathbf{C}} x^2 + y^2 - 2x - 2y - 8 = 0. $	$Ix^2 + y^2 + 2$	2x + 2y - 8 = 0.	
CÂU 13. Với những giá trị nào của m thì đư	ường thẳng $(\Delta):4$	x + 3y + m = 0 tiếp xúc với	
$\text{duờng tròn } (C): x^2 + y^2 = 9?$			
(A) $m = 3$ và $m = -3$. (C) $m = -3$.	$\mathbf{B} m = -3.$ $\mathbf{D} m = 15 \text{ và } n$	n — _15	
•	<u> </u>		
CÂU 14. Trong mặt phẳng tọa độ Oxy , cho đường tròn có tâm I và tiếp xúc với đường t		-y+5=0. Finding trining	
$ (x-1)^2 + (y-2)^2 = 5. $	B $(x-1)^2 + (x-1)^2 + $		
© $(x+1)^2 + (y+2)^2 = 5$.	D $(x+1)^2 + (x+1)^2 + $	•	
CÂU 15. Trong mặt phẳng tọa độ Oxy cho đ	$\text{fi\'em } I(2;-3). \text{ Phu}$	ơng trình đường tròn có tâm	
I và tiếp xúc với trục hoành có dạng $(\mathbf{A})(x-2)^2 + (y+3)^2 = 9.$	B) $(x+2)^2 + (x+2)^2 +$	$(y-3)^2 = 9.$	
$(x-2)^2 + (y+3)^2 = 4.$	$(x+2)^2 + (x+2)^2 + (x+2$	* *	
CÂU 16. Trong mặt phẳng Oxy , cho đường	g tròn $(C):(x-3)$	$(y)^2 + (y+1)^2 = 13$. Phương	
trình tiếp tuyến của đường tròn (C) tại điển	<u> </u>		
(A) $2x - 3y + 4 = 0$. (B) $2x + 3y + 4 = 0$.	0	9	
CÂU 17. Trong mặt phẳng Oxy , cho đường tiếp tuyến d của đường tròn (C) tại điểm N		-3x - y = 0. Phương trình	
(A) $d: x + 3y - 2 = 0.$	B $d: x - 3y + $	4 = 0.	
© $d: x - 3y - 4 = 0.$	D $d: x + 3y +$	2 = 0.	
CÂU 18. Trong mặt phẳng tọa độ Oxy , cho			
thẳng d đi qua điểm $I(1;2)$ cắt (C) tại hai đ $(\mathbf{A}) MN = 1.$ $(\mathbf{B}) MN = 2.$	_	$\widehat{\mathbf{p}}$ dài của MN . $\widehat{\mathbf{D}}MN=6$.	
_	\smile		
CÂU 19. Trong mặt phẳng tọa độ Oxy , cho $M(2,\sqrt{3})$. Số tiếp tuyến của đường tròn (C)		$(x-1) + y^{-} = 25$ va diem	
(A) 0. (B) 1.	© 2.	D Vô số.	
CÂU 20. Trong mặt phẳng tọa độ Oxy , cho		$x^2 + y^2 - 2x + 4y + 1 = 0$ và	
điểm $M(-2,2)$. Số tiếp tuyến của đường trò	` ~	1 70 6	
(A) 0. (B) 1.	© 2.	$ig(\mathbf{D} ig) ext{V} \hat{\mathbf{o}} \ ext{s} \hat{\mathbf{o}}.$	

QUICK NOTE	2. Bài tập trắc nghiệm nâng cao	
	CÂU 21. Cho phương trình $x^2 + y^2 - 2mx - 4(m-2)$	y+6-m=0. Tìm điều kiện của m
	để phương trình đã cho là phương trình đường tròn?	$(-\infty;1)\cup(2;+\infty).$
		$\left(-\infty;\frac{1}{3}\right)\cup(2;+\infty).$
	CÂU 22. Viết phương trình tiếp tuyến của đường tròn	$(C): (x-3)^2 + (y+1)^2 = 5$, biết
	tiếp tuyến song song với đường thẳng $d: 2x + y + 7 = 0$)?
	(A) $2x + y + 1 = 0$ hoặc $2x + y - 1 = 0$.	
	© $2x + y + 10 = 0$ hoặc $2x + y - 10 = 0$. © $2x + y - 10 = 0$	y = 0 hoặc 2x + y + 10 = 0.
	CÂU 23. Trong mặt phẳng với hệ trục tọa độ Oxy , cho đ	
	0 và đường thẳng d : $5x + 12y - 6 = 0$. Phương trình c tiếp xúc với (C) là	các đường thăng song song với d về
	(a) $5x + 12y - 95 = 0$ và $5x + 12y - 9 = 0$. (B) $5x + 12y - 9 = 0$.	12y + 95 = 0 và $5x + 12y + 9 = 0$.
	\mathbf{C} $5x + 12y - 95 = 0$ và $5x + 12y + 9 = 0$. \mathbf{D} $5x + 12y + 9 = 0$	
	CÂU 24. Trong mặt phẳng tọa độ Oxy , cho đường tròn	(C): $x^2 + y^2 + 4x + 4y - 17 = 0$. Việt
	phương trình tiếp tuyến Δ của (C) biết Δ vuông góc với	
	(A) $4x + 3y + 39 = 0$ và $4x + 3y - 10 = 0$. (B) $4x - 10 = 0$.	3y + 39 = 0 và 4x - 3y - 11 = 0.
	© $4x + 3y + 39 = 0$ và $4x + 3y - 11 = 0$. D $4x + 3y + 3y + 3y = 0$	3y - 39 = 0 và $4x + 3y - 10 = 0.$
	CÂU 25. Trong mặt phẳng tọa độ Oxy , cho $A(1;2)$, B	(-3;1), C(4;-2). Tập hợp các điểm
	M thỏa mãn hệ thức $MA^2 + MB^2 = MC^2$ là	
	A Dường tròn tâm $I(-5;6)$ bán kính $R = \sqrt{66}$.	
	B Đường tròn tâm $I(-6;5)$ bán kính $R = \sqrt{34}$. C Đường tròn tâm $I(-6;5)$ bán kính $R = \sqrt{66}$.	
	Duờng tròn tâm $I(-5;6)$ bán kính $R = \sqrt{34}$.	
	CÂU 26. Đường tròn (C) đi qua hai điểm $A(-1;2)$, thẳng $\Delta: 3x - y + 10 = 0$. Phương trình của đường trò	
		$3)^2 + (y+1)^2 = \sqrt{5}.$
		$3)^2 + (y-1)^2 = 5.$
	CÂU 27. Đường tròn (C) có tâm I thuộc đường thẳn	ng $d: x + 3y + 8 = 0$, đi qua điểm
	$A(-2;1)$ và tiếp xúc với đường thẳng $\Delta: 3x-4y+10$	
	(C) là:	$r^{2} + (1)^{2} + 16$
		$5)^{2} + (y+1)^{2} = 16.$ $1)^{2} + (y+3)^{2} = 25.$
		, (0)
	CÂU 28. Đường tròn (C) đi qua hai điểm $A(-1;1)$, E $\Delta: 3x - 4y + 8 = 0$. Viết phương trình đường tròn (C)	
	$\Delta \cdot 3x - 4y + 8 = 0$. Viet plutong triain duoing troii (C) hon 5.	, biet tain cua (C) co noaim do mic
		$1)^2 + (y-2)^2 = 5.$
	© $(x+1)^2 + (y-6)^2 = 25.$ © $x^2 + y^2 + y^2 = 25.$	$(y-4)^2 = 10.$
	CÂU 29. Trong mặt phẳng Oxy , cho đường tròn (C) :	
	tiếp tuyến của (C) , biết rằng tiếp tuyến đi qua điểm M	
	A $x + 3y - 2 = 0$ và $3x - y - 14 = 0$. B $x + 3y - 2 = 0$	
		3y + 2 = 0 và 3x - y - 14 = 0.
	CÂU 30. Viết phương trình tiếp tuyến Δ của đường tr	$ron (C): x^2 + y^2 - 4x - 4y + 4 = 0$
	biết tiếp tuyến đi qua điểm $B(4;6)$. (A) $\Delta : x - 4 = 0$ hoặc $\Delta : 3x + 4y - 36 = 0$.	
	B) $\Delta : x - 4 = 0$ hoặc $\Delta : 3x + 4y - 30 = 0$.	
	© $\Delta : y = 0$ hoặc $\Delta : y = 0$ 0. © $\Delta : y = 0$ hoặc $\Delta : 3x + 4y - 36 = 0$.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Bài 6. BA ĐƯỜNG CONIC

A. ELIP

Từ phương trình chính tắc của elip (E) tìm a, b, c; từ đó suy ra các yếu tố của elip (E)và ngược lại.

1. Khái niệm elip

Cho hai điểm cố định F_1 , F_2 và một độ dài không đổi 2a lớn hơn F_1F_2 . Elip (E) là tập hợp các điểm M trong mặt phẳng sao cho

$$F_1M + F_2M = 2a.$$

Các điểm F_1 và F_2 gọi là các tiêu điểm của

Độ dài $F_1F_2 = 2c$ gọi là tiêu cự của elip (a>c).

2. Phương trình chính tắc của elip

Cho elip (E) có các tiêu điểm F_1 và F_2 và đặt $F_1F_2 = 2c$. Chọn hệ trục tọa độ Oxy sao cho $F_1(-c;0)$ và $F_2(c;0)$.

$$M(x;y)\in (E) \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \; (1)$$

trong đó $b = \sqrt{a^2 - c^2}$.

Phương trình (1) gọi là phương trình chính tắc của elip.

- Elip (E) cắt Ox tại hai $di\tilde{e}mA_1(-a;0),$ $A_2(a;0)$ và cắt Oy tại hai điểm $B_1(0;-b), B_2(0;b).$
- Các điểm A_1 , A_2 , B_1 , B_2 qoi là các đính của elip.
- \bullet Doạn thẳng $A_1A_2 = 2a$ gọi là trục lớn, đoạn thẳng $B_1B_2 = 2b$ gọi là trực nhỏ của elip.
- Giao điểm O của hai truc là tâm đối xứng của elip.
- $N\acute{e}u \ M(x;y) \in (E) \ thi$ $|x| \le a, |y| \ge b.$

3. Ví du mẫu

- a) Cho elip (E): $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Tìm tâm sai của (E).
- b) Một elip có độ dài trực lớn bằng 26, tâm sai $e = \frac{12}{13}$. Tìm độ dài trực nhỏ của elip

♀ VNPmath - 0962940819 ♀
OUIOV NOTE
QUICK NOTE

 $lack T \hat{a} m \ sai \ e = \frac{c}{a}.$

VÍ DỤ 2. Cho elip (E) có độ dài trực lớn bằng 10, tỉ số giữa tiêu cự và độ dài trực lớn là $\frac{2}{E}$.

- a) Tính độ dài trực nhỏ của elip (E)
- b) Viết phương trình chính tắc của elip (E).

4. Câu hỏi trắc nghiêm khác quan

CÂU 1. Phương trình chính tắc của elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6

$$\mathbf{A} \frac{x^2}{64} + \frac{y^2}{36} = 1.$$

$$\mathbf{\hat{c}} \frac{x^2}{9} + \frac{y^2}{16} = 1.$$

$$\mathbf{\hat{D}})9x^2 + 16y^2 = 144.$$

CÂU 2. Phương trình chính tắc của elip có tâm sai $e=\frac{4}{5}$, độ dài trục nhỏ bằng 12 là

(A)
$$\frac{x^2}{25} + \frac{y^2}{36} = 1$$
. (B) $\frac{x^2}{64} + \frac{y^2}{36} = 1$. (C) $\frac{x^2}{100} + \frac{y^2}{36} = 1$. (D) $\frac{x^2}{36} + \frac{y^2}{25} = 1$.

$$\mathbf{c}$$
 $\frac{x^2}{100} + \frac{y^2}{36} =$

CÂU 3. Cho elip có phương trình $9x^2 + 25y^2 = 225$. Lúc đó hình chữ nhật cơ sở có diện tích

(A) 15.

(B) 30.

 $(\mathbf{C})40.$

CÂU 4. Đường thẳng y=kx cắt elip $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ tại hai điểm phân biệt

lack A đối xứng nhau qua gốc toạ độ O.

 (\mathbf{B}) đối xứng nhau qua trục Oy.

(**c**) đối xứng nhau qua truc Ox.

(**D**) đối xứng nhau qua hai trục tọa độ.

CÂU 5. Cho elip (E): $\frac{x^2}{16} + \frac{y^2}{9} = 1$. M là điểm nằm trên (E). Lúc đó đoạn thắng OM

(A)
$$OM \le 3$$
. **(B)** $3 \le OM \le 4$. **(C)** $4 \le OM \le 5$. **(D)** $OM \ge 5$.

$$\bigcirc 4 \le OM \le 5$$

$$\bigcirc OM \geq 5.$$

CÂU 6. Cho elip $(E): \frac{x^2}{25} + \frac{y^2}{9} = 1$ và đường thẳng (d): x = -4 cắt (E) tại hai điểm M,

$$\bigcirc MN = \frac{18}{5}.$$

N. Khi đó:
$$\frac{9}{5}$$
. **B** $MN = \frac{9}{25}$. **C** $MN = \frac{18}{5}$. **D** $MN = \frac{18}{25}$.

CÂU 7. Cho elip (E) có các tiêu điểm $F_1(-4;0)$, $F_2(4;0)$ và một điểm M nằm trên (E) biết rằng chu vi của tam giác MF_1F_2 bằng 18. Khi đó tâm sai của (E) là $\mathbf{\hat{A}}\ e = \frac{4}{18}. \qquad \mathbf{\hat{B}}\ e = \frac{4}{5}. \qquad \mathbf{\hat{C}}\ e = -\frac{4}{5}.$

$$\mathbf{B} e = \frac{4}{5}.$$

$$\mathbf{C} e = -\frac{4}{5}.$$

CÂU 8. Biết elip (E) có các tiêu điểm $F_1\left(-\sqrt{7};0\right)$, $F_2\left(\sqrt{7};0\right)$ và đi qua $M\left(-\sqrt{7};\frac{9}{4}\right)$. Gọi

(A)
$$NF_1 + MF_2 = \frac{9}{2}$$
.

B
$$NF_2 + MF_1 = \frac{23}{2}$$

$$\bigcirc NF_2 - NF_1 = \frac{7}{2}.$$

$$\bigcirc NF_1 + MF_1 = 8.$$

CÂU 9. Trong các phương trình sau, phương trình nào biểu diễn một elip có khoảng cách giữa các đường chuẩn là $\frac{50}{3}$ và tiêu cự 6?

$$\mathbf{B} \frac{x^2}{89} + \frac{y^2}{64} = 1$$

$$\bigcirc \frac{x^2}{9} + \frac{y^2}{5} = 1.$$

(A)
$$\frac{x^2}{16} + \frac{y^2}{7} = 1$$
. (B) $\frac{x^2}{89} + \frac{y^2}{64} = 1$. (C) $\frac{x^2}{9} + \frac{y^2}{5} = 1$. (D) $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

CÂU 10. Tìm phương trình chính tắc của elip có trục lớn gấp đôi trục bé và có tiêu cự bằng

$$\sum_{\mathbf{A}} \frac{x^2}{2c} + \frac{y^2}{0} = 1.$$

(A)
$$\frac{x^2}{26} + \frac{y^2}{9} = 1$$
. (B) $\frac{x^2}{26} + \frac{y^2}{24} = 1$. (C) $\frac{x^2}{24} + \frac{y^2}{6} = 1$. (D) $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

CÂU 11. Cho elip có phương trình $16x^2 + 25y^2 = 100$. Tính tổng khoảng cách từ điểm thuộc elip có hoành độ x=2 đến hai tiêu điểm.

(**A**) 5.

(B) $2\sqrt{2}$.

 $(\mathbf{c}) 4\sqrt{3}$.

CÂU 12. Đường thẳng qua M(1;1) và cắt elip (E): $4x^2 + 9y^2 = 36$ tại hai điểm M_1, M_2 sao cho $MM_1 = MM_2$ có phương trình là

$$c $4x + 9y - 13 = 0.$$$

$$\bigcirc x + y + 5 = 0.$$

B. HYPEBOL

2

Hypebol

Cho hai điểm cố định F_1, F_2 và một độ dài không đổi 2a nhỏ hơn F_1F_2 . Hypebol (H) là tập hợp các điểm M trong mặt phẳng sao cho $|F_1M - F_2M| = 2a$. Các điểm F_1 và F_2 gọi là các tiêu điểm của hypebol.

Độ dài $F_1F_2 = 2c$ gọi là tiêu cự của hypebol (c > a).

Phương trình chính tắc

Cho hypebol (H) có các tiêu điểm F_1 , F_2 và đặt $F_1F_2=2c$. Điểm M thuộc hypebol (H) khi và chỉ khi $|F_1M-F_2M|=2a$.

Chọn hệ trực tọa độ Oxy sao cho $F_1(-c;0)$ và $F_2(c;0)$.

$$M(x;y) \in (H) \Leftrightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \quad (2)$$

trong đó $b = \sqrt{c^2 - a^2}$.

Phương trình (2) gọi là phương trình chính tắc của hypebol.

- A
- $oldsymbol{\Theta}$ (H) cắt Ox tại hai điểm $A_1(-a;0)$ và $A_2(a;0)$. Nếu ta vẽ hai điểm $B_1(0;-b)$ và $B_2(0;b)$ vào hình chữ nhật OA_2PB_2 thì $OP = \sqrt{a^2 + b^2} = c$.
- Θ Các điểm A_1, A_2 gọi là các đính của hypebol.
- $oldsymbol{\Theta}$ Doạn thẳng $A_1A_2=2a$ gọi là trực thực, đoạn thẳng $B_1B_2=2b$ gọi là trực ảo của hypebol.
- **⊙** Giao điểm O của hai trực là tâm đối xứng của hypebol.
- \bullet Nêu $M(x;y) \in (H)$ thì $x \leq -a$ hoặc $x \geq a$.

വ	ICK	NC	Ш
Sυ	ICK	INC	ЛΕ

	Ī	•	•	Ī	•	•	•	•								Ī	•	•	•	•	•												
																												•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																													•	•	٠	•	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•																																	•
																																	_
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•																																	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	_
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

1. Các ví dụ

VÍ DU 1.

a) Tìm tâm sai của hypebol $3x^2 - y^2 = 12$.

b) Cho hypebol (H): $\frac{x^2}{4} - \frac{y^2}{9} = 1$. Tìm tọa độ đỉnh, tiêu điểm, tâm sai và hai tiệm cận

VÍ DỤ 2. Cho hypebol (H) có một tiêu điểm $F_2(8;0)$ và (H) đi qua điểm A(5;0). Viết phương trình chính tắc của hypebol (H).

2. Câu hỏi trắc nghiệm

CÂU 1. Parabol có phương trình $y^2 = \sqrt{2}x$ có

 (\mathbf{A}) tiêu điểm $F(\sqrt{2};0)$.

B đường chuẩn $\Delta : x = -\frac{\sqrt{2}}{2}$.

© tham số tiêu $p = \sqrt{2}$.

(D) khoảng cách từ tiêu điểm đến đường chuẩn là $d(F, \Delta) = \frac{\sqrt{2}}{2}$.

CÂU 2. Đường thẳng nào là đường chuẩn của parabol $y^2 = \frac{3}{2}x$?

B $x = -\frac{3}{8}$. **C** $x = -\frac{3}{4}$.

CÂU 4. Phương trình chính tắc của parabol mà khoảng cách từ đỉnh tới tiêu điểm bằng $\frac{3}{4}$

 $(\mathbf{C})y^2 = 3x.$

CÂU 5. Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là $\frac{x^2}{16} - \frac{y^2}{9} = 1$. **(B)** $\frac{y^2}{16} + \frac{x^2}{9} = 1$. **(C)** $\frac{x^2}{16} - \frac{y^2}{25} = 1$. **(D)** $\frac{y^2}{16} - \frac{x^2}{9} = 1$.

CÂU 6. Hypebol có tâm sai $e = \sqrt{5}$ và đi qua điểm (1;0) có phương trình chính tắc là $\frac{y^2}{1} + \frac{x^2}{4} = 1$. **B** $\frac{x^2}{1} - \frac{y^2}{4} = 1$. **C** $\frac{y^2}{1} - \frac{x^2}{4} = 1$. **D** $\frac{x^2}{4} - \frac{y^2}{25} = 1$.

CÂU 7. Phương trình hai tiệm cận $y=\pm\frac{2}{3}x$ là của phương trình chính tắc (H) nào sau

(A) $\frac{x^2}{4} - \frac{y^2}{9} = 1$. (B) $\frac{x^2}{2} - \frac{y^2}{3} = 1$. (C) $\frac{x^2}{9} - \frac{y^2}{4} = 1$. (D) $\frac{x^2}{3} - \frac{y^2}{2} = 1$.

CÂU 8. Cho đường thẳng Δ và một điểm F không thuộc Δ . Tập hợp các điểm M sao cho $MF = \frac{1}{\sqrt{2}} \mathrm{d}(M, \Delta)$ là một

(c) parabol.

(**D**) đường tròn.

CÂU 9. Viết phương trình chính tắc của Hypebol, biết giá trị tuyệt đối hiệu các bán kính qua tiêu của điểm M bất kỳ trên hypebol là 8, tiêu cự bằng 10.

 \mathbf{c} $\frac{x^2}{4} + \frac{y^2}{3} = 1.$

 $\mathbf{B} \frac{x^2}{4} - \frac{y^2}{3} = 1.$ $\mathbf{D} \frac{x^2}{16} - \frac{y^2}{9} = 1 \text{ hoặc } -\frac{x^2}{9} + \frac{y^2}{16} = 1.$

CÂU 10. Viết phương trình của Hypebol có 2c = 10, 2a = 8 và tiêu điểm nằm trên trục

 $\mathbf{A} \frac{x^2}{16} - \frac{y^2}{9} = 1.$

 $\mathbf{c} \frac{x^2}{4} + \frac{y^2}{2} = 1.$

(B) $\frac{x}{4} - \frac{y}{3} = 1$. (D) $\frac{x^2}{16} - \frac{y^2}{9} = 1$ hoặc $-\frac{x^2}{9} + \frac{y^2}{16} = 1$.

CÂU 11. Hypebol $\frac{x^2}{16} - \frac{y^2}{9} = 1$ có hai tiêu điểm là

(A) $F_1(-2;0); F_2(2;0)$ $(\mathbf{C}) F_1(-4;0); F_2(4;0).$

B) $F_1(-3;0)$; $F_2(3;0)$. $(\mathbf{D}) F_1(-5;0); F_2(5;0).$

C. PARABOL

Parabol

 \P Định nghĩa 6.1 (Parabol). Cho một điểm F và một đường thẳng Δ cố định không đi qua F. Parabol (P) là tập hợp các điểm M cách đều F và Δ . F gọi là **tiêu điểm** và Δ gọi là **đường chuẩn** của parabol (P).

7 Định lí 6.1 (Phương trình chính tắc). Cho parabol (P) có tiêu điểm F và đường chuẩn Δ . Gọi khoảng cách từ tiêu điểm đến đường chuẩn là p, hiển $nhi\hat{e}n \ p > 0.$

Chọn hệ trục tọa độ Oxy sao cho $F\left(\frac{p}{2};0\right)$ và $\Delta: x + \frac{p}{2} = 0.$

$$M(x;y) \in (P) \Leftrightarrow y^2 = 2px$$
 (3).

Phương trình (3) gọi là phương trình chính tắc của

 \mathbf{A} Chú ý:

- Θ O gọi là **đỉnh** của parabol (P).
- **⊘** Ox gọi là **trục đối xứng** của parabol (P).
- \bigcirc p gọi là **tham số tiêu** của parabol (P).
- \bigcirc Nếu $M(x;y) \in (P)$ thì $x \ge 0$ và $M'(x;-y) \in (P)$.

1. Các ví du

VÍ DŲ 1.

- a) Tìm tiêu điểm, phương trình đường chuẩn của parabol $y^2 = \frac{1}{2}x$.
- b) Tìm tiêu điểm, phương trình đường chuẩn của parabol $y^2 = 4x$.

VÍ DỤ 2. Viết phương trình chính tắc của parabol (P), biết (P) có đường chuẩn $\Delta: x+4=$

2. Câu hỏi trắc nghiệm

CÂU 1. Parabol có phương trình $y^2 = \sqrt{2}x$ có

A
$$F(\sqrt{2};0)$$
.

(A)
$$F(\sqrt{2};0)$$
. (B) $\Delta \colon x = -\frac{\sqrt{2}}{4}$. (C) $p = \sqrt{2}$.

$$\bigcirc p = \sqrt{2}$$

$$(\mathbf{D}) d(F, \Delta) = \frac{\sqrt{2}}{2}.$$

CÂU 2. Đường thẳng nào là đường chuẩn của parabol $y^2 = \frac{3}{2}x$?

(A)
$$x = \frac{3}{2}$$
.

©
$$x = -\frac{3}{8}$$
.

CÂU 3. Khoảng cách từ tiêu điểm đến đường chuẩn của parabol $y^2 = \sqrt{3}x$ là

$$(A) d(F, \Delta) = \frac{\sqrt{3}}{2}.$$

$$\mathbf{B}) d(F, \Delta) = \sqrt{3}.$$

$$(\mathbf{C}) d(F, \Delta) = \frac{\sqrt{3}}{4}.$$

CÂU 4. Phương trình chính tắc của parabol mà khoảng cách từ đỉnh tới tiêu điểm bằng $\frac{3}{4}$

$$\mathbf{B})\,y^2 = \frac{3}{2}x.$$

$$\bigcirc y^2 = 3x.$$

$$\mathbf{D}y^2 = 6x.$$

CÂU 5. Cho parabol (P): $y^2 = 4x$ có tiêu điểm là F. Gọi M là điểm thuộc (P) thỏa mãn MF = 3. Hoành độ của M bằng

♥ VNPmath - 0962940819 ♥	
QUICK NOTE	A 1. (
	CÂU 6. Gọi MN là một α
	góc với Ox và $MN = 3$. I
	A 12. (
	CÂU 7. Cho parabol (P)
	số góc bằng 1, cắt (P) tạ
	A 28. (
	CÂU 8. Đường thẳng nào
	CÂU 9. Viết phương trìn
	$\mathbf{A} y^2 = -2x. $
	_
	CÂU 10. Cho điểm $A(3;$
	nhất của AM .
	CÂU 11. Cho M là một
	(d): $4x + 3y + 46 = 0$. The
	(A) 2.
	2.
	D. BÀI TOÁN TI
	D. BAITUAN II
	BÀI 1. Mặt Trăng chuyển
	tiêu điểm. Các khoảng cá Đất tương ứng là 400000
	đạo elip.
	BÀI 2. Với tâm sai khoản
	hình tinh trong hệ Mặt T
	km. Tìm khoảng cách gầi
	Trời (tiêu điểm cuat quỹ
	BÀI 3.
	Một phòng thì thầm có tr
	hai tiêu điểm ở độ cao 1,6
	sàn) và cách nhau 16 m. vòm cao 7,6 m (hình bên)
	thì thầm từ một tiêu điệ
	nhiêu giây đến được tiêu
	vận tốc âm thanh là 343 tròn đáp số tới 4 chữ số s
	BÀI 4.
	Một sao chổi đi qua hệ Mi nhánh hypebol nhận tâm
	khoảng cách gần nhất từ
	Trời là $3 \cdot 10^8$ km và tâm
	3,6 (hình bên). Hãy lập p hypebol chứa quỹ đạo, v
	phẳng tọa độ tương ứng v
	I .

B) 3.

 $\bigcirc \frac{3}{2}$.

 $(\mathbf{D})2.$

đây cung đi qua tiêu điểm F của parabol (P) thỏa mãn MN vuông Khoảng cách từ tiêu điểm đến đường chuẩn của (P) bằng

B) 3.

(C) 6.

(**D**) đáp số khác.

: $y^2 = 16x$. Một đường thẳng đi qua tiêu điểm F của (P), có hệ i M và N. Độ dài MN bằng

B) 32.

 $(\mathbf{C})40.$

(**D**)20.

o là đương chuẩn của parabol $y^2 = 4x$?

$$\mathbf{B} x = -1.$$

$$\mathbf{C}$$
 $x=4$.

$$\bigcirc x = \pm 1.$$

h Parabol (P) có tiêu điểm F(3;0) và đỉnh là gốc tọa độ O.

$$\mathbf{B}) y^2 = 6x.$$

$$\mathbf{\hat{C}}y^2 = 12x$$

©
$$y^2 = 12x$$
. **©** $y = x^2 + \frac{1}{2}$.

0), gọi M là một điểm tuỳ ý trên $(P): y^2 = x$. Tìm giá trị nhỏ

 $oldsymbol{\mathbb{B}}rac{5}{2}.$

 $\bigcirc \frac{9}{2}$.

 $\bigcirc \frac{\sqrt{11}}{2}$.

điểm thuộc (P): $y^2 = 64x$, N là một điểm thuộc đường thẳng m giá trị nhỏ nhất của đoạn thẳng MN.

 $\bigcirc \frac{5}{2}$.

HỰC TẾ

n động theo một quỹ đạo là hình elip nhân tâm Trái Đất là một ch lớn nhất và nhỏ nhất từ các vị trí của Mặt Trăng đến tâm Trái km và 363000 km (theo nssdc.gsfc.nasa.gov). Tìm tâm sai của quỹ

g 0,244 quỹ đạo của sao Diêm Vương "dẹt" so với quỹ đạo của tám Frời. Nửa độ dài trục lớn của elip quỹ đạo là khoảng $590635\cdot 10^6$ n nhất và khoảng cách xa nhất giữa sao Diêm Vương và tâm Mặt đạo) (theo nssdc.gsfc.nasa.gov).

ần vòm elip với 6 m (so với mặt Đỉnh của mái . Hỏi âm thanh ểm thì sau bao điểm kia? Biết 3.2 m/s và làm sau dấu phẩy.

ặt Trời theo quỹ đạo là một Mặt Trời là một tiêu điểm, sao chổi này đến tâm Mặt sai của quỹ đạo hypebol là ohương trình chính tắc của ới một đơn vi đo trên mặt với 10^8 km trên thực tế.

BÀI 5.

Bốn trạm phát tín hiệu vô tuyến có vị trí A, B, C, D theo thứ tự đó thẳng hàng và cách đều với khoảng cách 200 km (hình bên). Tại một thời điểm, bốn trạm cùng phát tín hiệu với vận tốc 292000 km/s. Một tàu thủy nhận được tín hiệu từ trạm C trước 0,0005 s so với tín hiệu từ trạm B và nhận được tín hiệu từ trạm D sớm 0,0001 s so với tín hiệu từ trạm A.

- a) Tính hiệu các khoảng cách từ tàu đến các trạm B, C.
- b) Tính hiệu các khoảng cách từ tàu đến các trạm A, D.
- c) Chọn hệ trục tọa độ Oxy như hình bên
(1 đơn vị trên mặt phẳng tọa độ ứng với 100 km trên thực tế). Hãy lập phương trình chính tắc của hai hype
bol đi qua vị trí M của tàu.

BÀI 6. Quỹ đạo chuyển động của sao chổi Halley là một elip, nhận Mặt Trời là một tiêu điểm, có tâm sai bằng 0,967.

- a) Giải thích vì sao ta có thể coi bất kì hình elip nào với tâm sai bằng 0,967 là hình ảnh thu nhỏ của sao chổi Halley.
- b) Biết khoảng cách gần nhất từ sao chổi Halley đến tâm Mặt Trời là khoảng $88 \cdot 10^6$ km, tính khoảng cách xa nhất (theo nssdc.gsfc.nasa.gov)

BÀI 7. Một tàu vũ trụ nằm trong một quỹ đạo tròn và ở độ cao 148km so với bờ mặt Trái Đất. Sau khi đạt được vận tốc cần thiết để thoát khỏa lực hấp dẫn của Trái Đất, tàu vũ trụ sẽ đi theo quỹ đạo parabol với tâm Trái Đất là tiêu điểm; điểm khởi đầu của quỹ đạo này là đỉnh parabol quỹ đạo.

- a) Viết phương trình chính tắc của parabol quỹ đạo (1 đơn vị đo trên mặt phẳng tọa độ ứng với 1 km thực tế, lấy bán kính Trái Đất là 6371 km).
- b) Giải thích vì sao, kể từ khi đi vào quỹ đạo parabol, càng ngày, tàu vũ trụ càng cách xa Trái Đất.

BÀI 8. Khúc cua của một con đường có dạng hình parabol, điểm đầu vào khúc cua là A, điểm cuối là B, khoảng cách AB=400 m. Đỉnh của parabol (P) của khúc cua cách đường thẳng AB một khoảng 20 m và cách đều A, B.

- a) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng tọa độ tương ứng với 1 m thự tế.
- b) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng tọa độ tương ứng với 1 km thự tế.

									3	١	Į	I		9	1	K			1		9	ì	ľ									
	•	•	•	•		•	•	•	=								_					_	•	•	•			=	-	-		-
•				•																												
				•																												
•	•	•	•	•	•	•	•	•	•		•	•	•		•	•		•	•	•			•	•	•	•	•	•	•	•	•	-
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	٠	•	•	•	•	•	•	•	•			•	•					•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•				٠	•													•	٠					•		•	
•					•					•																			•		•	
				•	•																											
				•																												
•		•		•	•	•	•	•	•		•	•	•		•	•		•	•	•			•	•	•	•	•	•	•	•	•	-
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•					•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•			٠	•	•	•	•	•		•	•	•
•	•	•	•	•	•				•	•								•	•	•			•	•	•							
	•	•	•	•	•													•	•	•											•	
					•																											
																															•	-
																															•	•
																						•									•	
																															•	•
•		•		•		•	•	•		•													•		•						•	
										•						•													•		•	
		•																													•	

Bài 3.	Phương trình đường thẳng	1
A	Tóm tắt lý thuyết	
B	Các dạng bài tập	
	Dạng 1. vectơ chỉ phương, vectơ pháp tuyến của đường thẳng	2
	🗁 Dạng 2. Viết PTTS của đường thẳng	
	Dạng 3. Lập phương trình tổng quát của đường thẳng	
Bài 4.	VỊ TRÍ TƯƠNG ĐỐI GIỮA HAI ĐƯỜNG THẮNG. GÓC VÀ	KHOẢNG
	CÁCH	8
A	Tóm tắt lý thuyết	8
B	Các dạng toán	
	Dang 1. Xét vị trí tương đối giữa hai đường thẳng	
	🗁 Dạng 2. Góc giữa hai đường thẳng	
	🗁 Dạng 3. Khoảng cách từ một điểm đến một đường thẳng	
	🗁 Dạng 4. Tìm tọa độ điểm thỏa mãn điều kiện góc, khoảng cách	
	Câu hỏi trắc nghiệm	13
Bài 5.	PHƯƠNG TRÌNH ĐƯỜNG TRÒN	17
A	Tóm tắt lí thuyết	17
B	Các dạng toán	17
	🗁 Dạng 1. Xác định tâm và bán kính đường tròn	17
	🗁 Dạng 2. Viết phương trình đường tròn	18
	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn 	18
	🗁 Dạng 2. Viết phương trình đường tròn	18
© Bài 6.	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm 	18
Bài 6.	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm 	
	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm BA ĐƯỜNG CONIC 	
A	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm BA ĐƯỜNG CONIC Elip 	18 19 20 23 23 23
	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm BA ĐƯỜNG CONIC Elip Dạng 1. Elip 	18 19 20 23 23 25 25
A	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm BA ĐƯỜNG CONIC Elip Dạng 1. Elip Hypebol 	18 19 20 23 25 25 25
B	 Dạng 2. Viết phương trình đường tròn Dạng 3. Phương trình tiếp tuyến của đường tròn Bài tập trắc nghiệm BA ĐƯỜNG CONIC Elip Dạng 1. Elip Hypebol Dạng 2. Hypebol 	18 19 20 23 25 25 25 27

