Fast k-Nearest Neighbor Classifier (beta)

Contents

Fast Nearest Neighbor Searching	1
The FastKNN Classifier	1
Find the Best k	1
Plot Classification Decision Boundary	1

Fast KNN with shrinkage estimator for the class membership probabilities

Fast Nearest Neighbor Searching

The fastknn method implements a k-Nearest Neighbor (KNN) classifier based on the ANN library. ANN is written in C++ and is able to find the k nearest neighbors for every point in a given dataset in O(N log N) time. The package RANN provides an easy interface to use ANN library in R.

The FastKNN Classifier

The fastknn was developed to deal with very large datasets (> 100k rows) and is ideal to Kaggle competitions. It can be up to 20x faster then the popular knn method from the R package class, for large datasets. Moreover, fastknn provides a shrinkage estimator to the class membership probabilities, based on the inverse distances of the nearest neighbors (see the PDF version):

$$P(x_i \in y_j) = \frac{\sum_{k=1}^K \left(\frac{1}{d_{ik}} \cdot (n_{ik} \in y_j)\right)}{\sum_{k=1}^K \left(\frac{1}{d_{ik}}\right)}$$

where x_i is the i^{th} test instance, y_j is the j^{th} unique class label, n_{ik} is the k^{th} nearest neighbor of x_i , and d_{ik} is the distance between x_i and n_{ik} . This estimator can be thought of as a weighted voting rule, where those neighbors that are more close to x_i will have more influence on predicting x_i 's label.

In general, the weighted estimator provides more **calibrated probabilities** when compared with the traditional estimator based on the label proportions of the nearest neighbors, and reduces **logarithmic loss** (log-loss).

How to use

Required Packages

Find the Best k

Plot Classification Decision Boundary