CCP 2005. Filière MP. MATHÉMATIQUES 2.

Corrigé de JL. Lamard (jean-louis.lamard@prepas.org)

I. Détermination de Rac(A) dans quelques exemples.

Exemple 1 : Cas où A possède n valeurs propres distinstes.

1.	Comme A possède n valeurs propres réelles deux à deux distinctes, A est R -diagonalisable (cours classique) i.e. il
	existe $P \in GL_n(\mathbb{R})$ telle que $A = PDP^{-1}$. Il vient alors que $R^2 = A$ si et seulement si (puisque P est inversible)
	$P^{-1}R^2P = D$ soit si et ssi $(P^{-1}RP)^2 = D$. \square
	Ainsi $Rac(A) = P Rac(D) P^{-1}$.

- **2. a.** Soit S une racine carrée de D. On a $SS^2 = S^2S$ (= S^3) donc SD = DS. \square
- 2. b. Comme S commute avec D, tout sous-espace propre de D est stable par S. Or comme les valeurs propres de D sont deux à deux distinctes, les sous-espaces propres de D sont des droites. Il en découle que les n droites propres de D sont stables par S ce qui prouve que S est diagonale. \square
- **2.** c. On a evidemment $s_i^2 = \lambda_i$. \square
- **2.** d. Si A admet une valeur propre strictement négative, il en découle que Rac(A) est l'ensemble vide. \square
- 2. e. Il découle de ce qui précède que si toutes les valeurs propres de A sont positives ou nulles alors : $Rac(D) = \{ \operatorname{diag}(\varepsilon_1 \sqrt{\lambda_1}, \dots, \varepsilon_n \sqrt{\lambda_n}) \}.$
- 3. Compte tenu de ce qui précède A admet au moins une racine carrée si et seulement si toutes ses valeurs propres sont positives ou nulles et alors $Rac(A) = \{P \operatorname{diag}(\varepsilon_1 \sqrt{\lambda_1}, \dots, \varepsilon_n \sqrt{\lambda_n}) P^{-1}\}.$ Il y en a alors donc 2^n si les valeurs propres sont toutes strictement positives et 2^{n-1} si 0 est valeur propre. \square
- 4. Notons déjà que comme A est symétrique réelle, elle est orthodiagonalisable.

En outre en faisant la somme des deux dernières colonnes on constate que 0 est valeur propre et que (0,1,1) est vecteur propre associé.

En exploitant cette remarque, on remplace dans le polynôme caractéristique la dernière colonne par elle-même plus la seconde ce qui permet de factoriser X. On se ramène alors classiquement à un déterminant d'ordre 2 (une fois qu'on a factorisé par X, on remplace la deuxième ligne par elle-même moins la troisième). Il vient ainsi très rapidement que le polynôme caractéristique est $X(X^2 - 17X + 16) = X(X - 1)(X - 16)$.

On peut d'ailleurs vérifier que la trace de A est bien égale à 17.

Un calcul immédiat montre que (1, 1, -1) est vecteur propre relatif à 1.

Soit par calcul direct soit par produit vectoriel (puisque A est ortho-diagonalisable) il vient que (2, -1, 1) est vecteur propre relatif à 16.

Ainsi les racines carrées de
$$A$$
 sont les 4 matrices $P \operatorname{diag}(0, \varepsilon_2, 4\varepsilon_3)^t P$ avec $\varepsilon_i = \pm 1$ et $P = \begin{pmatrix} 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{pmatrix}$. \square

Exemple 2 : Cas où A est la matrice nulle.

- **5. a.** $f^2 = 0$ si et seulement si Im $f \subset \text{Ker } f$. Il en découle immédaitement par le théorème du rang que $\operatorname{rg} f \leqslant \frac{n}{2}$. \square
- ${f 5.}$ b. Remarquons une faute dans l'énoncé : il faut lire "un" vecteur u_i et non pas "le" vecteur : les vecteurs en question formant un sosu-espace affine de dimension $n-r \geqslant \frac{n}{2}$.

Remarquons aussi que la complétion d'une base de Im f en une base de Ker f est bien possible car Im $f \subset \text{Ker } f$ (et bien sûr le théorème de la base incomplète).

Soit alors une famille
$$(\alpha_1, \ldots, \alpha_{n-r}, \beta_1, \ldots, \beta_r)$$
 de n réels telle que $\sum_{i=1}^{i=n-r} \alpha_i e_i + \sum_{j=1}^r \beta_j u_j = 0$ (1).

En appliquant f, et en tenant compte du fait que $f(e_i) = 0$ pour tout i, il vient que $\sum_{i=1}^r \beta_j e_j = 0$.

Comme la famille $(e_j)_{j=1,\ldots,r}$ est libre on obtient que les β_j sont nuls.

En reportant dans (1) il vient que $\sum_{i=1}^{i=n-r} \alpha_i e_i = 0$ donc que les α_i sont nuls egalement puisque la famille $(e_i)_{i=1,\ldots,n-r}$

Ainsi la famille \mathcal{B} est-elle libre donc une base de \mathbb{R}^n puisque de cardinal n. \square

La matrice de f dans cette base est la matrice bloc $M_r = \begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$. \square

6. a. Il découle de ce qui précède que si M est de carré nul alors soit $M=0$ soit M est semblable à une matrice de type M_r avec $r \leqslant \frac{n}{2}$. Réciproquement si $r \leqslant \frac{n}{2}$ un calcul facile prouve que $M_r^2 = 0$ (car $r \leqslant n/2$) donc que toute
matrice semblable à M_r est de carré nul. En conclusion les racines carrées de la matrice nulle sont la matrice nulle et les matrices semblables à une matrice M_r avec $r \leq \frac{n}{2}$. \square
6. b. En particulier les matrices carrées d'ordre 4 de carré nul sont la matrice nulle et les matrices semblables à M_1 ou à M_2 . \square
Exemple 3 : Cas où A est la matrice identité.
7. b. On a $R^2 = I_n$ donc det $R = \pm 1$ ce qui prouve que R est inversible (d'ailleurs d'inverse elle-même). \Box
7. b. R est annulé par le polynôme X^2-1 scindé à racines siples sur R donc R -diagonalisable et les valeurs propres sont à rechercher parmi $\{-1,1\}$. Donc R est semblable à une matrice $J_p=\operatorname{diag}(1,\ldots,1,-1,\ldots,-1)$ avec p fois 1 $(0\leqslant p\leqslant n)$. \square
8. Réciproquement on a bien sûr $J_p^2 = I_n$ donc également pour toute matrice semblable. Ainsi les racines carrées de l'identité sont les matricess emblables à l'une des $n+1$ matrices J_p avec $0 \le p \le n$. \square En d'autres termes ce sont les symétries par rapport à un sous-espace parallèllement à un sous-espace supplémentaire.
Exemple 3 : Cas où A est une matrice symétrique réelle.
9. Une matrice symétrique n'admet pas forcément de racine carrées comme le prouve l'exemple de la matrice (-1) avec $n=1$!
10.Soit M symétrique réelle positive. Elle est, par théorème de cours, ortho-diagonalisable donc $M = PDP^{-1} = PD^tP$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $\lambda_i \geqslant 0$ pour tout i puisque M est positive. Soit alors $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$. La matrice $R = P\Delta^tP$ est alors symétrique. En outre elle est positive puisque semblable à Δ donc à valeurs propres positives ou nulles. Enfin on a $R^2 = (P\Delta P^{-1})(P\Delta P^{-1}) = P\Delta^2 P^{-1} = PDP^{-1} = M$. Ainsi une matrice symétrique positive admet-elle au moins une racine carrée également symétrique positive. \Box
$II.\ ext{\'e}tude\ topologique\ de\ Rac(A).$
Commençons par noter que $\mathcal{M}_n(\mathbb{R})$ étant de dimension finie, on pourra utiliser (pour ce qui est des propriétés topologiques) n'importe quelle norme de $\mathcal{M}_n(\mathbb{R})$ puisqu'elles sont toutes équivalentes.
11. En tant qu'application bilinéaire sur un prduit de deux espaces de dimension finie, le produit matriciel est une application continue de $\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$. Il en découle que l'application $M \longmapsto M^2$ est une application continue de $\mathcal{M}_n(\mathbb{R})$ dans lui-même. Ainsi $Rac(A)$ est-elle une partie fermée de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque du fermé $\{A\}$ par une application continue. \square
12.a. Il est immédiat que $\left\{S_q\right\}_{q\in\mathbb{N}}\subset Rac(I_2)$ ce qui prouve que $Rac(I_2)$ est non borné. \square
12. b.D'une manière générale, pour $n \ge 3$, soit M_q la matrice bloc $\begin{pmatrix} I_{n-2} & 0 \\ 0 & S_q \end{pmatrix}$.
Un calcul par blocs montre que $M_q \in Rac(I_n)$. Or $N(M_q) = q$ donc $Rac(I_n)$ est une partie non bornée pour tout $n \ge 2$. \square
12.c.Supposons qu'il existe une norme $ \ $ sur-multiplicative sur $GL_n(\mathbb{R})$. On aurait en particulier $ I_n = M_q^2 \geqslant M_q ^2$ pour tout entier q . Ce qui est impossible car en vertu de l'équivalence des normes sur $\mathcal{M}_n(\mathbb{R})$ on a $ M_q \xrightarrow[q \to +\infty]{} +\infty$. \square
III. Intérieur de $Rac(A)$.
13.a. $B_{\infty}(a,r) = \prod_{i=1}^{p} a_i - r, a_i + r[. \Box$
13. b.Si $A \subset B$ il est immédiat que $\overset{\circ}{A} \subset \overset{\circ}{B}$ puisque $\overset{\circ}{A}$ est un ouvert inclus dans A donc dans B . Il en découle que si F ou G est d'intérieur vide, il en va a fortiori de $F \cap G$. \square
14.a.On sait qu'un polynôme de degré n admet au plus n racines (immédiate conséquence par exemple du théorème de division euclidienne qui prouve que a est racine de P si et seulement si $X-a$ divise P). Donc le polynôme nul est le seul polynôme à une variable tel que $Z(P)$ soit infinii. \square
14. b. $Z(P)$ est la droite d'équation $y = 2x - 1$ et $Z(Q)$ la parabole d'équation $y = x^2$. Ces deux ensembles sont donc
infinis. \square

15.a. On raisonne par récurrence sur p , le résultat étant vrai pour $p=1$ d'après 14.a. Supposons le vrai jusqu'au rang p avec $p\geqslant 1$ et soit $P\in \Gamma_{p+1}$ tel que P s'annule sur $I_1\times\cdots\times I_{p+1}$ avec I_i partie infinie de \mathbb{R} . Supposons que P soit non nul i.e. qu'il existe $(a_1,\ldots,a_{p+1})\in\mathbb{R}^{p+1}$ tel que $P(a_1,\ldots,a_{p+1})\neq 0$. Pour $\alpha\in I_1$ notons Q_α le polynôme à p variables défini par $Q_\alpha(x_2,\ldots,x_{p+1})=P(\alpha,x_2,\ldots,x_{p+1})$. Ce polynôme s'annule sur $I_2\times\cdots\times I_{p+1}$ donc est nul par hypothèse de récurrence. En particulier $Q_\alpha(a_2,\ldots,a_{p+1})=P(\alpha,a_2,\ldots,a_{p+1})=0$ pour tout $\alpha\in I_1$. Soit alors R le polynôme à une variable défini par $R(x)=P(x,a_2,\ldots,a_{p+1})$. Ce polynôme est nul pour tout $\alpha\in I_1$ et admet donc une infinité de racines donc est nul. En particulier $R(a_1)=P(a_1,a_2,\ldots,a_{p+1})=0$. Contradiction qui prouve que le résultat est vrai au rang $p+1$. \square	
15. b. Immédiate conséquence de la question précédente et de la question 13 a. $\hfill\Box$	
15. c. Ainsi si P n'est pas le polynôme nul alors $Z(P)$ est d'intérieur vide. \square	
16. a.Soit $M = (m_{i,j})_{1 \leq i,j \leq n}$. Alors les coefficients de M^2 sont des polynômes $Q_{i,j}$ à p^2 variables $m_{i,j}$. Notons $P_{i,j} = Q_{i,j} - a_{i,j}$. Il vient alors que $Rac(A) = \bigcap_{1 \leq i,j \leq n} Z(P_{i,j})$. \square	
16. b.En remarquant que les polynômes $Q_{i,j}$ sont non nuls et donc également les polynômes $P_{i,j}$ (et cela pour toute matrice A) il découle de la question 15. que l'intérieur de $Rac(A)$ est vide pour toute matrice A . \square	
FIN	