

X-Ray Fluorescence BPMs - Elliptical Beam Profile

Purpose

- Monochromatic x-ray profile transmission
- Helical Undulators
 - Elliptical Beam Profiles
 - No previous analysis
- Beam simulation versus beam measurement

Undulator radiation

N periods

Work to date

- Simulate Linear Undulator Beam
 - Total Power
 - Monochromatic Power
- Vary Undulator Parameters
 - Gap, aperture sizes
- Programs: SDDS, XOP

Work to be completed

- Simulate Elliptical Undulator Beam: EM Diagram---
 - Determine appropriate aperture size
 - Permit sufficient monochromatic xrays for research
 - Intercept sufficient power to perform measurements
- Investigate x-ray distribution and properties in K-space
- Prepare user-friendly report with trends, plots, tables, etc.
- Work towards vertical grazing incidence copper XBPM
 - Planar fluorescence, pinhole camera
- Update XBPM with undulator changes
- Model XBPM structure, response
- Typical work:
 - Validate SDDS results in XOP
 - Determine trends: Power profiles vs. K -->
 - Investigate higher harmonics

Kenneth Schlax; Lee Teng Internship Program 2010; Advisor: BX Yang