

Índice de Contenidos

3.3 El sistema de entrada y salida

- Definición y función fundamental
 - Importancia en el sistema operativo
- Clasificación de dispositivos de E/S
- Funciones esenciales
- Estructura

3.3.1 Acceso directo a memoria

- Concepto y definición
- Funcionamiento del DMA
- Ventajas del DMA
 Comparación con métodos tradicionales

3.3.2 Manejadores de dispositivos

- Definición y propósito
- Arquitectura en capas
- Funcionamiento
- Gestión de colas de peticiones
- Relación con controladores

Definición y función fundamental

El sistema de **entrada y salida (E/S o I/O)** es una de las funciones más importantes y complejas que realiza el sistema operativo. Su función principal es **gestionar la comunicación** entre el sistema informático y los dispositivos periféricos, actuando como intermediario entre la CPU y los dispositivos externos.

Esquema del sistema de computadora mostrando la interacción entre CPU, memoria y unidades de E/S

Importancia en el sistema operativo

Los dispositivos periféricos son **significativamente más lentos** que la CPU

Existe una **gran variedad de dispositivos** con características y protocolos diferentes

La **eficiencia del sistema global** depende en gran medida de la eficacia del sistema de E/S

! Los **fallos en dispositivos de E/S** son comunes y deben gestionarse adecuadamente

Diversidad de dispositivos periféricos que requieren gestión eficiente

Clasificación de dispositivos de E/S

Dispositivos orientados a caracteres

- Trabajan conflujos de caracteres individuales
- Ejemplos: teclados, ratones, impresoras
- No tienen estructura de bloques
- Acceso secuencial

Dispositivos orientados a bloques

- Trabajan conbloques de datos de tamaño fijo
- Ejemplos: discos duros, unidades USB, tarjetas de memoria
- Tienen estructura de bloques
- Permiten acceso aleatorio
- Soportan DMA (Acceso Directo a Memoria)

Categorías de dispositivos

- Dispositivos de bloques
 - » Bloques de tamaño fijo

DISCOS

- » L/E de cada bloque de forma independiente
- » Se puede direccionar cada bloque
- Dispositivos de caracteres
 - » Sin estructura de bloques
 - » L/E de flujos de caracteres

TERMINALES

IMPRESORAS

Funciones esenciales del sistema de E/S

Enviar comandos y datos

Formatear órdenes según especificaciones de cada dispositivo

11. Conocer estado de dispositivos

Verificar si están listos, ocupados o en error

Detectar interrupciones

Responder a señales cuando dispositivos **completan operaciones**

Controlar errores

Detectar y gestionar errores en **operaciones de E/S**

Gestionar buffers

Almacenar temporalmente datos para **compensar diferencias de velocidad**

Proporcionar interfaz uniforme

Ocultar **peculiaridades de hardware** a las aplicaciones

Esquema del sistema de E/S mostrando sus funciones principales

Estructura del sistema de E/S

- Nivel de usuario
 Interfaz para aplicaciones y usuarios
- Nivel independiente del dispositivo

 Proporciona una interfaz uniforme para todos los dispositivos
- Nivel de controlador de dispositivo

 Traduce solicitudes abstractas a comandos específicos del hardware
- Hardware del dispositivo

 Los dispositivos físicos y sus circuitos de control

El controlador del dispositivo se encarga de mostrar al sistema operativo una interfaz estándar (dispositivo virtual) que hace transparentes al sistema operativo las peculiaridades del hardware.

Acceso directo a memoria - Concepto y definición

El Acceso Directo a Memoria (DMA - Direct Memory Access) es una técnica que permite a ciertos dispositivos de hardware acceder directamente a la memoria principal sin intervención constante de la CPU. Es especialmente útil para dispositivos de E/S de alto rendimiento.

Esquema del sistema informático mostrando la integración del controlador DMA

Funcionamiento del DMA

Ventajas del acceso directo a memoria

Solapa operaciones

Permite que la CPU **realice otras tareas** mientras se realiza la transferencia

Reduce carga de CPU

Elimina la necesidad de gestionar **cada byte** transferido

Aumenta rendimiento

Mejora significativamente la **eficiencia** en operaciones de E/S intensivas

Disminuye latencia

Permite transferencias **más rápidas** al eliminar sobrecarga de CPU

Eficiencia energética

Reduce el trabajo de CPU, importante en **dispositivos móviles**

Esquema de transferencia de datos mediante DMA mostrando la eficiencia del proceso

Comparación con métodos tradicionales de E/S

Métodos tradicionales sin DMA

- La CPU debe gestionar cada transferencia de datos
- Para cada byte/word transferido:
 - Leer el dato del dispositivo
 - Almacenar el dato en memoria
 - Repetir para el siguiente dato

Con DMA

- La CPU **configura una única operación** para toda la transferencia
- El controlador DMA gestiona la transferencia completa
- La CPU solo se notifica al finalizar la operación

Esta diferencia es especialmente significativa en operaciones de E/S grandes, donde el ahorro de ciclos de CPU puede ser del 90% o más, permitiendo que la CPU se dedique a tareas más críticas.

Funcionamiento del DMA Para dar una instrucción al DMA se debe de enviar la siguiente información: Data count Para solicitar una transacción se utilizan las lineas de read y write de la lógica de Data register control. Address • La dirección del dispositivo de I/O Request to DMA involucrado. Acknowledge from DMA Control logic Read • La dirección inicial en memoria para leer o escribir a través de las líneas de datos. • El número de datos a leer o escribir a través de la línea de datos.

Diagrama que ilustra el funcionamiento del Acceso Directo a Memoria (DMA)

Manejadores de dispositivos - Definición y propósito

Los manejadores de dispositivos (también conocidos como drivers) son programas especializados que permiten al sistema operativo comunicarse con los dispositivos de hardware. Su propósito principal es aceptar solicitudes abstractas y ponerse en contacto con el controlador para realizar esa petición.

Intermediario entre SO y hardware

XA Traduce órdenes abstractas

Gestiona dispositivos específicos

Arquitectura del sistema operativo mostrando la relación entre aplicaciones, kernel y controladores de dispositivos

Arquitectura en capas del software de E/S

- Capa de usuario Interfaz para aplicaciones y usuarios
- Capa independiente del dispositivo Proporciona una interfaz uniforme para todos los dispositivos
- Capa de controlador de dispositivo Traduce solicitudes abstractas a comandos específicos del hardware
- Hardware del dispositivo Los dispositivos físicos y sus circuitos de control
- Ventajas del diseño en capas
- Oculta peculiaridades del

mantener

Sistema modular y fácil de Añadir dispositivos sin

modificar el sistema

Interfaz amigable para hardware usuarios

Funcionamiento de los manejadores

Traducción de solicitudes

Convierte solicitudes genéricas en **comandos específicos** para el dispositivo

Gestión de estado

Mantiene información sobre el estado actual: **listo**, **ocupado**, **en error**

Manejo de interrupciones

Procesa señales del dispositivo para **notificar** el estado de las operaciones

Buffering

Gestiona búferes para **compensar diferencias** de velocidad entre CPU y dispositivo

Control de errores

Detecta y gestiona errores en las **operaciones de E/S**

Gestión de colas de peticiones

Dispositivo ocupado

Cuando el dispositivo está ocupado, el manejador **gestiona una cola** de peticiones para darles paso tan pronto como sea posible

Ordenación de peticiones

Algunos manejadores implementan **algoritmos de ordenación** óptima (ej: algoritmo del elevador en discos duros para minimizar movimiento del cabezal)

Priorización

Las peticiones pueden tener **diferentes niveles de prioridad**, y el manejador debe gestionarlas en consecuencia

Ejemplo de cola de peticiones

- 1 Petición de alta prioridad (interrupción)
- 2 Petición de media prioridad (lectura)
- 3 Petición de baja prioridad (escritura)
- 4 Petición de baja prioridad (lectura)

Relación con los controladores de dispositivos

<> Manejador de dispositivo

- Software que se ejecuta en el espacio del sistema operativo
- ✓ Proporciona una interfaz estandarizada
- Traduce órdenes abstractas a comandos específicos

Controlador de dispositivo

- ✓ Componente de hardware físico
- Se comunica directamente con el dispositivo físico
- Implementa protocolos específicos del dispositivo

El manejador se comunica con el controlador para realizar las operaciones físicas en el dispositivo. Muchos controladores, en particular los correspondientes a dispositivos de bloque, permiten el **DMA**, lo que mejora significativamente el rendimiento del sistema al solapar operaciones de CPU y E/S.

Gestión en Windows

En Windows, los manejadores de dispositivos pueden gestionarse a través del **Administrador de dispositivos**, donde se pueden ver las propiedades, actualizar drivers, resolver conflictos de recursos y gestionar el estado de los dispositivos del sistema.

