VWS4LS: 15.10.2024 – Öffentliche Ergebnistagung

1	10:00	Einlass	Alle	
2	10:30	Begrüßung aller Teilnehmer und Vorstellung der Agenda	Christian Kosel (ARENA2036), Georg Schnauffer (ARENA2036)	
3	10:40	Einführung in die ARENA2036 und Projektfamilie Leitungssatz	Georg Schnauffer (ARENA2036)	
4	11:00	VWS4LS und der Projektergebnisse der vergangenen 3 Jahre	Christian Kosel (ARENA2036)	
5	11:30	Ergebnis 1 – Funktionale Vorstellung des Gesamt-Demonstrators	Christian Kosel (ARENA2036)	
6	12:00	Mittagspause	Alle	
7	13:00	Ergebnis 2 – Pilotanbindung der Verwaltungsschale und Catena-X	Mario Angos (Coroplast), Lena Beil (Dräxlmaier)	
8	13:20	Ergebnis 3 – Beschreibung von Capabilities für Produkt, Prozess und Ressourcen	Matthias Freund (Festo)	
9	13:40	Ergebnis 4 – Entwicklung und Anwendung der OPC-UA Companion Specification for Wiring Harness	Pascal Neuperger (Komax)	
10	14:00	Ergebnis 5 – Automatisierten Verhandlungsverfahren in der Produktion	Gerd Neudecker (Kromberg und Schubert), Melanie Stolze (Ifak Magdeburg)	
11	14:20	Ergebnis 6 – Integration der Domänen-Standards "KBL" und "VEC" und Verwaltungsschale	Matthias Freund (Festo)	
12	14:40	Pause	Alle	
13	14:50	Ergebnis 7 – Architekturergebnisse rund um die Verwaltungsschale (je 7 Minuten)	Pascal Neuperger (Komax), Melanie Stolze (Ifak Magdeburg), Rene Fischer (Fraunhofer IESE), Jannis Jung (Fraunhofer IESE) und Gerd Neudecker (Kromberg und Schubert)	
14	15:40	Ergebnis 8 – Referenzarchitektur für die Virtuelle Inbetriebnahme von Verbundkomponenten auf Grundlage der VWS	Pascal Neuperger (Komax), Toni Kristicevic (Festo)	
15	16:00	Ergebnis 9 – Entwicklung von IDTA – Submodellen (Data-Retention-Policies und Bill-Of-Process)	Alexander Salinas (Dräxlmaier), Pascal Neuperger (Komax)	
16	16:30	Zusammenfassung und Ausblick	Christian Kosel (ARENA2036)	
17	16:45	Q+A	Alle	
18	17:00	Abschluss der Veranstaltung + Abendveranstaltung	Alle	

Ergebnis 8 – Referenzarchitektur für die Virtuelle Inbetriebnahme von Verbundkomponenten auf Grundlage der VWS

ARENA2036

Ziel: Evaluierung des SSP-Standards im Kontext der AAS-Verbundkomponenten für den Use Case Virtuelle Inbetriebnahme (VIBN) am Beispiel eines Komax-Prüfmoduls mit Festo-Komponenten

- 5 pneumatische Antriebseinheiten (Zylinder + Ventil) von Festo
 - 4 * Simulationen per FMU
 - 1 * Simulation per SSP

Komax-Modul

Komax-Modul mit pneumatischen Komponenten von Festo

Was ist ein Prüfmodul?

- Adapter zur verschleißfreien Aufnahme einer Leitungssatzkomponente (z.B. Stecker, Clips, etc.)
- Erfasst Merkmale und Ausprägungen der Leitungssatzkomponente (z.B. Anbauteile, Farbe, etc.)
- Verbindet die elektrischen Kontakte der Leitungssatzkomponente mit der Prüftechnik
- Wirft die Leitungssatzkomponente nach Pr
 üfende unbesch
 ädigt aus

Herausforderungen

- Varianz und Toleranzen der Leitungssatzkomponenten
- Positionierung und Ausrichtung von Anbauteilen
- Auswahl und Auslegung geeigneter Bauteile
- Änderungen an der Leitungssatzkomponente im Lebenszyklus des Leitungssatzes

Wozu VIBN?

- Frühzeitiges Erkennen von Problemen im Design
- Validierung des Adapterkonzeptes mit den ausgewählten Bauteilen in Kombination mit der Leitungssatzkomponente
- Effizientere Auswirkungsanalyse bei Änderungen an der Leitungssatzkomponente
- Inbetriebnahme (Simulation) der Maschinenfunktion vor Fertigstellung der Produktion

Was ist VIBN?

- Methodik im digitalen Engineering
- Abbildung und Optimierung der realen Anlage mittels digitalem Zwilling
- Entwicklung und Erproben von Steuerungs-SW an virtueller Anlage
- Ergebnis: deutlich h\u00f6here Qualit\u00e4t der Steuerungs-SW

Anwendungen der VIBN:

- Engineering
- Marketing
- Schulung

AAS

Verknüpfung Engineeringdaten: **AML**

Simulationsmodelle: **FMI / FMU**

https://fmi-standard.org/

https://ssp-standard.org/

File Definitions – System Structure Package (*.SSP)

*.SSF

Use case

 Exchange of Complete Systems with Variants and all Related Resources

Features

- All information (FMUs, system structure definition, parameters) can be stored in one archive (zip-file)
- Multiple SSDs in one SSP allows for variant modeling
- Common relative URI addressing of content for unified access, integration into PLM/PDM

SSP besteht aus:

- FMU Simulationsdatei
- SSD Definieren eines Netzwerks von FMUs/Modellen
- SSB Sammlung von Steuersignalen an einem zentralen Ort
- SSV Tool-unabhängiger Austausch von Parameterdaten
- SSM Zuordnung von Parametern zu FMUs/Komponenten

2018-10-11 MAP System Structure and Parameterization – Current Status – MA User Meeting 2018

Slide 5

Description of used simulation models in SSP file


```
<?xml version="1.0"?>
<ssd:SystemStructureDescription
  xmlns:ssc="http://ssp-standard.org/SSP1/SystemStructureCommon"
  xmlns:ssd="http://ssp-standard.org/SSP1/SystemStructureDescription"
  xmlns:ssv="http://ssp-standard.org/SSP1/SystemStructureParameterValues"
  xmlns:ssm="http://ssp-standard.org/SSP1/SystemStructureParameterMapping"
  xmlns:ssb="http://ssp-standard.org/SSP1/SystemStructureSignalDictionary"
  name="Festo ZylinderVentil"
  version="1.0">
  <ssd:System
    name="Root">
    <ssd:Elements>
        name="Festo Pneumatic Ventil 5 2 bistabil"
        type="application/x-fmu-sharedlibrary"
        source="resources/0001 Festo Pneumatic Ventil 5 2 bistabil.fmu">
      </ssd:Component>
       ssd:Component
        name="FMU Festo Pneumatic Zylinder"
        type="application/x-fmu-sharedlibrary"
        source="resources/0002 FMU Festo Pneumatic Zylinder.fmu">
        <ssd:Connectors>
      </ssd:Component>
    </ssd:Elements>
    <ssd:Connections>
      <ssd:Connection
        startElement="Festo Pneumatic Ventil 5 2 bistabil"
        startConnector="V 4"
        endElement="FMU Festo Pneumatic Zylinder"
        endConnector="V 4">
      </ssd:Connection>
      <ssd:Connection
        startElement="Festo Pneumatic_Ventil_5_2 bistabil"
        startConnector="V 2"
        endElement="FMU Festo Pneumatic Zylinder"
        endConnector="V 2" />
    </ssd:Connections>
    <ssd:Annotations>
  </ssd:System>
  <ssd:DefaultExperiment
    startTime="0.000000"
    stopTime="1.000000">
</ssd:SystemStructureDescription>
```


Description of **connections between simulation models** in SSP file


```
<?xml version="1.0"?>
<ssd:SystemStructureDescription
  xmlns:ssc="http://ssp-standard.org/SSP1/SystemStructureCommon"
  xmlns:ssd="http://ssp-standard.org/SSP1/SystemStructureDescription"
  xmlns:ssv="http://ssp-standard.org/SSP1/SystemStructureParameterValues"
  xmlns:ssm="http://ssp-standard.org/SSP1/SystemStructureParameterMapping"
  xmlns:ssb="http://ssp-standard.org/SSP1/SystemStructureSignalDictionary"
  name="Festo ZylinderVentil"
  version="1.0">
  <ssd:System
    name="Root">
    <ssd:Elements>
      <ssd:Component
        name="Festo Pneumatic Ventil 5 2 bistabil"
        type="application/x-fmu-sharedlibrary"
        source="resources/0001 Festo Pneumatic Ventil 5 2 bistabil.fmu">
        <ssd:Connectors>
      </ssd:Component>
      <ssd:Component
        name="FMU Festo Pneumatic Zylinder"
        type="application/x-fmu-sharedlibrary"
        source="resources/0002 FMU Festo Pneumatic Zylinder.fmu">
        <ssd:Connectors>
      </ssd:Component>
    </ssd:Elements>
    <ssd:Connections>
        startElement="Festo Pneumatic Ventil 5 2 bistabil"
        startConnector="V 4"
        endElement="FMU Festo Pneumatic Zylinder"
        endConnector="V 4">
      </ssd:Connection>
        startElement="Festo Pneumatic Ventil 5 2 bistabil"
        startConnector="V 2"
        endElement="FMU Festo Pneumatic Zylinder"
        endConnector="V 2" />
    </ssd:Connections>
    <ssd:Annotations>
  </ssd:System>
  <ssd:DefaultExperiment
    startTime="0.000000"
    stopTime="1.000000">
-</ssd:SystemStructureDescription>
```


AAS-Integration der Simulationsmodelle

Simulation Models" (IDTA 02005)

AAS Prüfmodul (Komax)

 AAS "AAS_Type_999163259" [https://example.com/ids/sm/2524_3180_3042_2376] of Asset AssetInformation http://komaxgroup.com/testing/asset/999163259 SM "Nameplate" V2.0 [http://komaxgroup.com/testing/999163259/digital-namep SM "ContactInformations" V1.0 [http://komaxgroup.com/testing/999163259/con SM "HandoverDocumentation" V1.2 [http://komaxgroup.com/testing/999163259 SM "BillOfMaterials" V1.0 [http://komaxgroup.com/testing/999163259/hierarchic SM "TechnicalData" V1.2 [http://komaxgroup.com/testing/999163259/technical-c SM "SimulationModels" [https://example.com/ids/sm/1581_0120_2022_6546] SMC "NXMCDSimulationModel" (16 elements) @{FormTitle=SimulationMode SMC "SimitSimulationModel" (16 elements) @{FormTitle=SimulationModel} @ SMC "PLCConnectSimulationModel" (16 elements) @{FormTitle=SimulationM SMC "PLCSimAdvancedSimulationModel" (16 elements) @{FormTitle=Simulat SM "MCAD" [https://example.com/ids/sm/2524_3180_3042_0086] AAS "AAS_Type_119467" [http://komaxgroup.com/testing/119467] of [http://komaxg AAS "AAS_Type_119466" [http://komaxgroup.com/testing/119466] of [http://komaxg AAS "AAS Type 119465" [http://komaxgroup.com/testing/119465] of [http://komaxg

Ergebnisdokumentation

https://github.com/VWS4LS/vws4ls-subproject-results/tree/main/TP05#ap-53---verbundkomponente-ressource-produktionsmittel-und-vibn