Universidade Federal do Paraná

Extensões e Aplicações Modelo de Regressão Conway-Maxwell-Poisson para Modelagem de Dados de Contagem

Curitiba

Eduardo Elias Ribeiro Junior

Extensões e Aplicações Modelo de Regressão Conway-Maxwell-Poisson para Modelagem de Dados de Contagem

Trabalho de Conclusão de Curso apresentado à disciplina Laboratório B do Curso de Graduação em Estatística da Universidade Federal do Paraná, como exigência parcial para obtenção do grau de Bacharel em Estatística.

Universidade Federal do Paraná
Setor de Ciências Exatas
Departamento de Estatística

Orientador: Prof. Dr. Walmes Marques Zeviani

Curitiba 2016

Agradecimentos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Resumo

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Palavras-chave: COM-Poisson. Dados de contagem.

Lista de ilustrações

Figura 1 –	Ilustração de diferentes tipos de processos pontuais	19
Figura 2 –	Probabilidades pela distribuição Poisson para diferentes valores de .	23
Figura 3 –	Experimento sobre capulhos de algodão sob efeito de desfolha	30
Figura 4 –	Experimento sobre capulhos de algodão sob efeito de infestação de	
	mosca-branca	31

Lista de tabelas

Tabela 1 –	Distribuições de probabilidades para dados de contagem com indica-	
	ção das características contempladas	22
Tabela 2 –	Dados de automóveis	32

Lista de símbolos

log Logarítmo neperiano (de base e)

Sumário

1	INTRODUÇÃO	17
2	MODELOS PARA DADOS DE CONTAGEM	21
2.1	Modelo Poisson	22
2.1.1	Estimação via Quase-Verossimilhança	24
2.2	Modelo Binomial Negativo	25
2.3	Modelo COM-Poisson	25
2.4	Modelos para excesso de zeros	25
2.5	Modelos de efeitos aleatórios	26
3	MATERIAL E MÉTODOS	27
3.1	Seção	27
3.1.1	Subseção	27
4	RESULTADOS E DISCUSSÃO	29
5	CONSIDERAÇÕES FINAIS	33
	REFERÊNCIAS	35
	APÊNDICES	37
	APÊNDICE A – LIPSUM	39
	ANEXOS	41
	ANEXO A – LIPSUM	43

1 Introdução

Em diversas áreas do conhecimento é comum o interesse em i) compreender o relacionamento entre variáveis de interesse e características de uma amostra e ii) realizar predições por meio de modelos estatísticos ajustados por dados de uma amostra. A teoria de modelos de regressão sustentam muitas das pesquisas na área de Estatística aplicada.

Os modelos de regressão, na sua forma univariada e usual, consistem no estabelecimento de uma equação matemática que relaciona a média de uma variável aleatória de interesse (variável resposta) com as demais variáveis aleatórias observadas (covariáveis). Nesta metodologia considera-se uma distribuição de probabilidades para a variável resposta condicionada as covariáveis cuja a média está associada a uma preditor que acomoda os efeitos das variáveis independentes.

Podemos destacar o modelo linear normal como o modelo predominante dentre as análises estatísticas aplicadas. Esse modelo estabelece que a variável resposta condicional as covariáveis têm distribuição Normal de média descrita por um preditor linear das covariáveis. Todavia, não são raras as situações me que a variável resposta se apresenta na forma de contagens, assumindo valores inteiros não negativos. Variáveis aleatórias de contagem, de forma geral, representam o número de ocorrências de um evento em um domínio específico que pode ser contínuo, como um intervalo de tempo ou espaço, ou discreto, como indivíduos ou grupos.

A análise de dados de contagem pelo modelo linear normal produz estimativas que contêm erros padrões inconsistentes e podem produzir predições negativas para o número de eventos (KING, 1989). Uma alternativa adotada durante muitos anos, e ainda aplicada, é encontrar alguma forma de transformação da variável resposta a fim de atender aos pressupostos do modelo de regressão normal. Contudo essa abordagem dispõe de resultados insatisfatórios, pois i) dificulta a intepretação dos resultados, ii) não contempla a natureza da variável (ainda serão valores pontuais, só que em outra escala) iii) não contempla a relação média e variância, característica de dados de contagem e iv) no uso da transformação logarítmica é problemática quando há contagens nulas.

Diante do problema diferentes abordagens foram propostas, contudo destaca-se o trabalho apresentado por Nelder e Wedderburn (1972) que introduz a teoria dos modelos lineares generalizados (MLG's). Esta nova classe de modelos flexibilizou a distribuição condicional associada permitindo outras distribuições pertencentes à família exponencial de distribuições. Tal família contempla as distribuições Poisson, Binomial, Gama entre outras bem conhecidas na literatura, além da própria distribuição

Normal.

Com os MLG's a modelagem de dados passou a ser mais fiel a natureza da variável resposta, principalmente no que diz respeito ao seu suporte. Neste contexto, a análise de variáveis aleatórias de contagem, que têm suporte nos conjunto dos números naturais, foi enriquecida expressivamente.

Para análise estatística dessas variáveis, temos o modelo probabilístico de Poisson, já consolidado na literatura e amplamente utilizado. Este modelo possui apenas um parâmetro, denotado por λ , que representa a média e também a variância, o que implica em uma relação identidade ($\lambda = E[Y] = V[Y]$). Essa propriedade, chamada de equidispersão, é uma particularidade do modelo Poisson que pode não ser adequada a diversas situações. Quando aplicado sob negligência desta suposição, o modelo Poisson apresenta erros padrões inconsistentes para as estimativas dos parâmentros e por consequência, para toda função desses parâmetros (WINKELMANN, 1995; WINKELMANN, 1994).

O caso de superdispersão, quando a variância é maior que a média, é o mais comum e tem uma gama de métodos para análise mais extensa. A superdispersão pode ocorrer pela ausência de covariáveis importantes, excesso de zeros, diferentes amplitudes de domínio (offset) não consideradas, heterogeneidade de unidades amostrais, entre outros (Ribeiro Jr et al., 2012). Para tais casos uma abordagem é a adoção de modelos com efeitos aleatórios que capturam a variabilidade extra. Um caso particular dos modelos Poisson de efeitos aleatórios, muito adotado no campo aplicado da Estatística, ocorre quando consideramos distribuição Gama para os efeitos aleatórios, nesta situação temos expressão fechada para a função de probabilidade marginal, que assume a forma Binomial Negativa.

Outra manifestação de fuga da suposição de equidispersão é a subdispersão, situação menos comum na literatura. Os processos que reduzem a variabilidade das contagens, abaixo do estabalecido pela Poisson, não são tão conhecidos quanto os que produzem variabilidade extra. Pela mesma razão, são poucas as abordagens descritas na literatura que capazes de tratar a subdispersão, uma vez que efeitos aleatórios só capturam a variabilidade extra. Podemos citar os modelos de quasi-verossimilhança como a abordagem mais utilizada. Todavia não é possível recuperar a verdadeira distribuição da variável resposta nessa abordagem pois a modelagem é baseada apenas nos dois primeiros momentos da distribuição condicional (PAULA, 2013).

A figura 1 ilustra, sob um contexto espacial de duas dimensões, a ocorrência das características de equi, super e subdispersão respectivamente. Nesta figura cada ponto representa a ocorrência de uma variável aleatória e cada parcela, delimitada pelas linhas pontilhadas, representa o intervalo no espaço cujo contabiliza-se as ocorrências. No painel da esquerda temos a representação de dados de contagem equidispersos, neste

Figura 1 – Ilustração de diferentes tipos de processos pontuais. Da direita para esquerda temos processos sob padrões aleatório, aglomerado e uniforme

cenário temos que as ocorrências da variável aleatória se dispõem aleatoriamente. No painel central o padrão já se altera, temos a representação do caso de superdispersão. Note que neste cenário formam-se aglomerados que deixam parcelas co contagens mutio elevadas e parcelas com contagens baixas. Uma possível causa deste padrão se dá pelo processo de contágio (e.g. contagem de casos de uma doença contagiosa, contagem de frutos apodrecidos). Na terceiro e último painel temos o caso de subdispersão, em que as ocorrências se dispõe uniformemente no espaço. Note agora que as contagens de ocorrências nas parcelas variam bem pouco. Ao contrário do caso superdisperso uma causa provável seria o oposto de contágio, a repulsa, ou seja, uma ocorrência causa a repulsa de outras ocorrências em seu redor (e.g. contagem de árvores, contagem de animais).

Outra alterativa paramétrica que contempla os casos de equi, super e subdispersão é a adoção de uma distribuição mais flexível para a variável resposta condicional as covariáveis. A distribuição COM-Poisson surgiu anteriormente à formalização dos MLG's, proposta por Conway e Maxwell (1962) a COM-Poisson (nome em em homenagem aos seus autores Richard W. Conway, William L. Maxwell, Conway-Maxwell-Poisson) generaliza a distribuição Poisson com a adição de mais uma parâmetro, denotado por ν , que torna a razão de probabilidades sussecivas não linear contemplando os casos de sub e superdispersão (SHMUELI et al., 2005).

Uma característica bastante relevante é que a COM-Poisson possui como casos particulares as distribuições Poisson, Geométrica e Binomial. Portanto, empregando a COM-Poisson como distribuição condicional associada, obtemos um modelo de regressão sem a imposição de equidispersão. Tal flexibilidade, considerando o amplo uso do modelo Poisson, significa que a COM-Poisson pode ser aplicada nessas situações

e será especialmente importante naquelas onde há fuga da equidispersão.

Pela similaridade da função de distribuição COM-Poisson com a Poisson, vários aspectos podem ser estendidos. Por exemplo, há situações em que o delineamento do experimento sugere uma estrutura de covariância entre observações induzidas por um processo hierárquico de casualização ou amostragem. São casos assim os experimentos em parcelas subdivididas e experimentos com medidas repetidas ou longitudinais. Tais estruturas estabelecem modelos com efeitos não observáveis que agem no nível de observação ou unidade experimental e isso pode ser incorporado no modelo de regressão COM-Poisson com a inclusão de efeitos aleatórios. Da mesma forma, excesso de zeros pode ser introduzido a essa distribuição da mesma maneira que ocorre para o modelo Poisson, através de truncamento (modelos Hurdle) ou inflação (modelos de mistura) (SELLERS; RAIM, 2016). Estas extensões para o modelo COM-Poisson ainda não são bem consolidadas na literatura e são escassas suas aplicações. Uma constatação do fato é que não há implementações destas extensões nos principais softwares estatísticos.

Na literatura brasileira, aplicações do modelo COM-Poisson são escassas. Foram encontradas apenas aplicações na área de Análise de Sobrevivência, mais especificamente em modelos com fração de cura (RIBEIRO, 2012; BORGES, 2012). Portanto, o presente trabalho visa colaborar com a literatura estatística brasileira i) apresentando e explorando o modelo de regressão COM-Poisson para dados de contagem, ii) estendendo as aplicações desse modelo COM-Poisson para situações específicas como inclusão de efeitos aleatórios e modelagem de excesso de zeros, iii) discutindo os aspectos inferenciais por meio de análise de dados reais e iv) disponibilizando os recursos computacionais, em formato de pacote R, para ajuste dos modelos apresentados. Nas aplicações optou-se também pela análise via modelos já disponíveis para as situações estudas.

O trabalho é organizado em cinco capítulos. Esse primeiro capítulo visa enfatizar as características das variáveis aleatórias de contagem e suas lacunas que podem ser complementadas na análise estatística dessas variáveis. O capítulo 2 é dedicado a revisão bibliográfica dos modelos estatísticos empregados a análise de dados de contagem, nesse capítulo os modelos Poisson, Binomial Negativo, as abordagens para excesso de zeros, a estrutura dos modelos de efeitos aleatórios e o modelo COM-Poisson são apresentados. No capítulo ?? apresentammos os conjuntos de dados a serem analisados e os métodos para ajuste e comparação dos modelos. O capítulo 4 traz os os principais resultados da aplicação e comparação dos modelos estatísticos com ênfase nas discussões sob aspectos inferenciais empíricos. Finalmente no capítulo 5 são apresentadas as considerações finais obtidas desse trabalho e listados algumas possíveis linhas de pesquisa para estudos futuros.

2 Modelos para dados de contagem

Métodos para inferência em dados de contagem estão bem aquém da quantidade disponível para dados contínuos. Destacamos o modelo log-linear Poisson como o modelo mais utilizado quando se trata de dados de contagem. Porém não raramente os dados de contagens apresentam variância superior ou inferior à sua média. Esses são os casos de super ou subdispersão já enunciados no capítulo 1, que quando ocorrem inviabilizam o uso da distribuição Poisson.

Nos casos de fuga da equidispersão algumas abordagens não paramétricas são empregadas. Nesse contexto, podemos citar os métodos de estimação via quase-verossimilhança, estimação robusta dos erros padrões (estimador "sanduíche") e estimação dos erros padrões via reamostragem ("bootstrap") (HILBE, 2014). Desses métodos detalhamos brevemente somente o método de estimação via função de quase-verossimilhança na seção 2.1.1.

No contexto paramétrico, pesquisas recentes trazem modelos bastante flexíveis à fuga de equidispersão no campo da Estatística aplicada, veja (SELLERS; SHMUELI, 2010; ZEVIANI et al., 2014; LORD; GEEDIPALLY; GUIKEMA, 2010). Na tabela 1 listamos as distribuições de probabilidades consideradas por Winkelmann (2008) e Kokonendji (2014) e as características de dados de contagem que são contempladas. Notamos que a Poisson na verdade é um caso particular, pois é a única das distribuições listada que contempla somente a característica de equidipersão, ainda observa-se que temos um conjunto maior de distribuições para os casos de superdispersão com relação os casos de subdispersão. Embora este grande número de distribuições exista para lidar com os casos de fuga de equidispersão destacamos que são poucos os pacotes estatísticos que empregam essas distribuições a modelos de regressão para dados de contagem.

Dos modelos paramétricos o Binomial Negativo aparece em destaque com implementações já consolidadas nos principais *softwares* estatísticos e frequentes aplicações nos casos de superdispersão. Na seção 2.2 detalhes da construção desses modelos são apresentados. Dos demais modelos derivados das distribuições listadas na tabela ?? este trabalho abordará somente o modelo COM-Poisson, que é apresentado com detalhes na seção 2.3.

Um outro fenômeno que é frequente em dados de contagem é a ocorrência excessiva de zeros. Esse fenômeno sugere a modelagem de dois processos geradores de dados, o gerador de zeros extra e o gerador das contagens. Existem ao menos duas abordagens pertinentes para estes casos que são os modelos de mistura e os modelos condicionais. Na abordagem por modelos de mistura a variável resposta é modelada

Distribuição	Contempla a característica de			
Distribuição	Equidispersão	Superdispersão	Subdispersão	
Poisson	✓			
Binomial Negativa	\checkmark	\checkmark		
Inverse Gaussian Poisson	\checkmark	\checkmark		
Compound Poisson	\checkmark	\checkmark		
Poisson Generalizada	\checkmark	\checkmark	\checkmark	
Gamma-Count	\checkmark	\checkmark	\checkmark	
COM-Poisson	\checkmark	\checkmark	\checkmark	
Katz	\checkmark	\checkmark	\checkmark	
Poisson Polynomial	\checkmark	\checkmark	\checkmark	
Double-Poisson	\checkmark	\checkmark	\checkmark	
Lagrangian Poisson	\checkmark	\checkmark	\checkmark	

Tabela 1 – Distribuições de probabilidades para dados de contagem com indicação das características contempladas

como uma mistura de duas distribuições, no trabalho de Lambert (1992), uma mistura da distribuição Bernoulli com uma distribuição de Poisson ou Binomial Negativa. Considerando os modelos condicionais, também chamados de modelos de barreira (RIDOUT; DEMETRIO; HINDE, 1998), temos que a modelagem da variável resposta é realizada em duas etapas. A primeira refere-se ao processo gerador de contagens nulas e a segunda ao gerador de contagens não nulas. Nesta trabalho a modelagem de excesso de zeros se dará somente via modelos de barreira. A seção 2.4 é destinada a um breve detalhamento desta abordagem.

Nesta capítulo também abordamos a situação da inclusão de efeitos aleatórios no seção 2.5. Em análise de dados de contagem a inclusão desses efeitos perimitem acomodar variabilidade extra e incorporar a estrutura amostral do problema como em experimentos com medidas repetidas ou longitudinais e experimentos em parcelas subdivididas.

2.1 Modelo Poisson

A Poisson é uma das principais distribuição de probabilidades discretas. Com suporte nos inteiros não negativos, dizemos que uma variável aleatória segue um modelo Poisson se sua função massa de probabilidade for

$$Pr(Y = y \mid \lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$
 $y = 0, 1, 2, \cdots$ (2.1)

em que $\lambda > 0$ representa a taxa de ocorrência do evento de interesse. Uma particularidade já destacada desta distribuição é que $E(X) = V(X) = \lambda$. Isso torna a distribuição

2.1. Modelo Poisson 23

Figura 2 – Probabilidades pela distribuição Poisson para diferentes valores de λ

Poisson bastante reestritiva. Na figura 2 são apresentadas as ditribuições Poisson para diferentes parâmetros, note que devido a propriedade E(X) = V(X) contagens maiores também são mais dispersas.

Uma propriedade importante da distribuição Poisson é sua relação com a distribuição Exponencial. Essa relação estabelece que se os tempos entre a ocorrência de eventos se distribuem conforme modelo Exponencial de parâmetro λ a contagem de eventos em um intervalo de tempo t tem distribuição Poisson com média λt . A distribuição *Gamma-Count*, citada na tabela 1, estende esta propriedade do processo adotando a distribuição Gama para os tempos entre eventos tornando a distribuição da contagem decorrente mais flexível (WINKELMANN, 1995; ZEVIANI et al., 2014).

Outra propriedade que decorre da construção do modelo Poisson é sobre a razão entre probabilidades sucessivas, $\frac{P(Y=y-1)}{P(Y=y)} = \frac{y}{\lambda}$. Essa razão é linear em y e tem sua taxa de crescimento ou decrescimento como $\frac{1}{\lambda}$. Os modelos Katz e COM-Poisson se baseiam na generalização da razão de probabilidades a fim de flexibilizar a distribuição decorrente.

A utilização do modelo Poisson na análise de dados se dá por meio do modelo de regressão Poisson. Seja Y_i variáveis aleatórias condicionalmente independentes, dados as covariáveis X_i , $i=1,2,\cdots,n$. O modelo de regressão log-linear Poisson, sob a teoria dos MLG's é definido como

$$Y_i \mid X_i \sim Poisson(\mu_i)$$

$$\log(\mu_i) = X_i \beta$$
(2.2)

em que $\mu_i > 0$ é a média da variável aleatória $Y_i \mid X_i$ que é calculada a partir do vetor $\beta \in \mathbb{R}^p$.

O processo de estimação do vetor β é baseado na maximização da verossimilhança que nas distribuições que pertencem à família exponencial, os MLG's, é realizado via algoritmo de mínimos quadrados ponderados iterativamente, ou, do inglês *Iteractive Weighted Least Squares - IWLS* (NELDER; WEDDERBURN, 1972).

2.1.1 Estimação via Quase-Verossimilhança

Em 1974 Wedderburn propôs uma forma de estimação a partir de uma função biparamétrica, denoninada quase-verossimilhança. Suponha que temos y_i observações independentes com esperanças μ_i e variâncias $V(\mu_i)$. A função de quase-verossimilhança é é expressa como

$$Q(\mu_i \mid y_i) = \int_{y}^{\mu_i} \frac{y_i - t}{\phi V(\mu_i)} dt$$
 (2.3)

Note na expressão 2.3 que a função de quase-verossimilhança é definida a partir da especificação de μ_i , $V(\mu_i)$ e ϕ . O processo de estimação via maximização dessa função compartilha as mesmas estimativas para μ_i , porém a dispersão de y_i , $V(y_i) = \phi V(\mu_i)$ é corrigida pelo parâmetro adicional ϕ .

Assim os problemas com a fuga da suposição de equidispersão podem ser superados quando a estimação por máxima quase-verossimilhança é adotado. Porém um resultado dessa abordagem é que

$$-E\left(\frac{\partial^2 Q(\mu\mid y)}{\partial \mu^2}\right) \le -E\left(\frac{\partial^2 \ell(\mu\mid y)}{\partial \mu^2}\right)$$

ou seja a informação a respeito de μ quando se conhece apenas ϕ e $V(\mu)$, a relação entre média e variância, é menor do que a informação quando se conhece a distribuição da variável resposta, dada pela log-verossimilhança $\ell(\mu \mid y)$. Além disso ressalta-se que, de forma geral, não se recupera a distribuição de Y somente com as especificações de ϕ e $V(\mu)$.

Em modelos de regressão, definimos $g(\mu_i) = X\beta$ e $V(\mu_i)$ que definem a função de quase-verossimilhança. Nessa abordagem são estimados os parâmetros β e ϕ . A estimativa do vetor β pode ser obtidas pelo algoritmo IWLS, usando as funções quase-escore e matriz de quase-informação. Para o parâmetro ϕ um estimador usual é o baseado na estatística χ^2 de Pearson.

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$
 (2.4)

2.2 Modelo Binomial Negativo

2.3 Modelo COM-Poisson

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.4 Modelos para excesso de zeros

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.5 Modelos de efeitos aleatórios

3 Material e Métodos

3.1 Seção

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

3.1.1 Subseção

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac

turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

4 Resultados e Discussão

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac,

Figura 3 – Experimento sobre capulhos de algodão sob efeito de desfolha

nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Verificando *outputs* R *inline* 0,333. A referenciação de figuras produzidas em *chunks* R é fig: + chunkname, assim como vemos nas figuras 4 e 3. Para as tabelas a referenciação também é simples, conforme tabela 2.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibu-

Figura 4 – Experimento sobre capulhos de algodão sob efeito de infestação de moscabranca

lum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Entendendo citações:

- Zeviani et al. (2014)
- Paula (2013, p. 281)

cyl disp hp drat wt qsec VS mpg 21,00 6,00 160,00 110,00 3,90 2,62 16,46 0,00 21,00 160,00 3,90 2,88 17,02 6,00 110,00 0,00 22,80 4,00 108,00 93,00 3,85 2,32 18,61 1,00 21,40 6,00 258,00 110,00 3,08 3,21 19,44 1,00 18,70 8,00 360,00 175,00 3,15 3,44 17,02 0,00 18,10 225,00 2,76 3,46 20,22 1,00 6,00 105,00 14,30 8,00 360,00 245,00 3,21 3,57 15,84 0,00 3,69 3,19 20,00 24,40 4,00 146,70 62,00 1,00 22,80 140,80 95,00 3,92 3,15 22,90 4,00 1,00 19,20 6,00 167,60 123,00 3,92 3,44 18,30 1,00 17,80 6,00 167,60 123,00 3,92 3,44 18,90 1,00 16,40 8,00 275,80 180,00 3,07 4,07 17,40 0,00 17,30 3,73 8,00 275,80 180,00 3,07 17,60 0,00 15,20 8,00 275,80 180,00 3,07 3,78 18,00 0,00 5,25 17,98 10,40 8,00 472,00 205,00 2,93 0,00 10,40 460,00 3,00 5,42 17,82 8,00 215,00 0,00 14,70 8,00 440,00 230,00 3,23 5,34 17,42 0,00 32,40 4,00 78,70 66,00 4,08 2,20 19,47 1,00 30,40 4,00 75,70 52,00 4,93 1,61 18,52 1,00 33,90 4,22 4,00 71,10 65,00 1,83 19,90 1,00 21,50 4,00 120,10 97,00 3,70 2,46 20,01 1,00 15,50 2,76 3,52 16,87 8,00 318,00 150,00 0,00 15,20 8,00 304,00 150,00 3,15 3,44 17,30 0,00 13,30 8,00 350,00 245,00 3,73 3,84 15,41 0,00 19,20 8,00 400,00 175,00 3,08 3,85 17,05 0,00 27,30 4,00 79,00 66,00 4,08 1,94 18,90 1,00 120,30 2,14 16,70 26,00 4,00 91,00 4,43 0,00 30,40 4,00 3,77 1,51 16,90 95,10 113,00 1,00 15,80 8,00 351,00 264,00 4,22 3,17 14,50 0,00 2,77

Tabela 2 – Dados de automóveis

(SELLERS; SHMUELI, 2010)

19,70

15,00

21,40

6,00

8,00

4,00

- (Ribeiro Jr et al., 2012, cap. 4)
- (ZEVIANI et al., 2014 apud PARK; LORD, 2009, p. 2–3)

145,00

301,00

121,00

175,00

335,00

109,00

3,62

3,54

4,11

3,57

2,78

15,50

14,60

18,60

0,00

0,00

1,00

• Lord, Geedipally e Guikema (2010 apud SHMUELI et al., 2005)

5 Considerações Finais

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

REFERÊNCIAS

BORGES, P. Novos modelos de sobrevivência com fração de cura baseados no processo da carcinogênese. Tese (Doutorado) — Universidade Federal de São Carlos, 2012. Citado na página 20.

CONWAY, R. W.; MAXWELL, W. L. A queuing model with state dependent service rates. *Journal of Industrial Engineering*, v. 12, p. 132—136, 1962. Citado na página 19.

HILBE, J. M. *Modeling Count Data*. [S.l.: s.n.], 2014. 300 p. ISSN 1467-9280. ISBN ISBN 978-1-107-02833-3. Citado na página 21.

KING, G. Variance specification in event count models: from restrictive assumptions to a generalized estimator. *American Journal of Political Science*, v. 33, n. 3, p. 762–784, aug 1989. ISSN 00925853. Disponível em: http://www.jstor.org/stable/2111071. Citado na página 17.

KOKONENDJI, C. C. Over- and Underdisperson Models. In: *Methods and Applications of Statistics in Clinical Trials: Planning, Analysis, and Inferential Methods.* [s.n.], 2014. p. 506–526. Disponível em: https://lmb.univ-fcomte.fr/IMG/pdf/ch30{_}kokonendji2014. Citado na página 21.

LAMBERT, D. Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. *Technometrics*, v. 34, n. 1, p. 1, feb 1992. ISSN 00401706. Disponível em: http://www.jstor.org/stable/1269547?origin=crossref>. Citado na página 22.

LORD, D.; GEEDIPALLY, S. R.; GUIKEMA, S. D. Extension of the application of conway-maxwell-poisson models: Analyzing traffic crash data exhibiting underdispersion. *Risk Analysis*, v. 30, n. 8, p. 1268–1276, 2010. ISSN 02724332. Citado 2 vezes nas páginas 21 e 32.

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. *Journal of the Royal Statistical Society. Series A (General)*, v. 135, p. 370–384, 1972. Citado 2 vezes nas páginas 17 e 24.

PARK, B.-J.; LORD, D. Application of finite mixture models for vehicle crash data analysis. *Accident; analysis and prevention*, v. 41, n. 4, p. 683–691, 2009. ISSN 1879-2057. Citado na página 32.

PAULA, G. A. *Modelos de regressão com apoio computacional*. IME-USP São Paulo, 2013. Disponível em: https://www.ime.usp.br/{~}giapaula/textoregressao.h. Citado 2 vezes nas páginas 18 e 31.

RIBEIRO, A. M. T. *Distribuição COM-Poisson na análise de dados de experimentos de quimioprevenção do câncer em animais*. Tese (Doutorado) — Universidade Federal de São Carlos, 2012. Citado na página 20.

Ribeiro Jr, P. J. et al. Métodos computacionais para inferência com aplicações em R. In: 20° Simpósio Nacional de Probabilidade e Estatística. [s.n.], 2012. p. 282. Disponível em: http://leg.ufpr.br/doku.php/cursos:mcie. Citado 2 vezes nas páginas 18 e 32.

36 REFERÊNCIAS

RIDOUT, M.; DEMETRIO, C. G.; HINDE, J. Models for count data with many zeros. *International Biometric Conference*, n. December, p. 1–13, 1998. Citado na página 22.

SELLERS, K. F.; RAIM, A. A flexible zero-inflated model to address data dispersion. *Computational Statistics & Data Analysis*, Elsevier B.V., v. 99, p. 68–80, jul 2016. ISSN 01679473. Disponível em: http://dx.doi.org/10.1016/j.csda.2016.01.007http://linkinghub.elsevier.com/retrieve/pii/S0167947316000165. Citado na página 20.

SELLERS, K. F.; SHMUELI, G. A flexible regression model for count data. *Annals of Applied Statistics*, v. 4, n. 2, p. 943–961, 2010. ISSN 19326157. Citado 2 vezes nas páginas 21 e 32.

SHMUELI, G. et al. A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. *Journal of the Royal Statistical Society. Series C: Applied Statistics*, v. 54, n. 1, p. 127–142, 2005. ISSN 00359254. Citado 2 vezes nas páginas 19 e 32.

WEDDERBURN, R. W. M. Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method. *Biometrika*, v. 61, n. 3, p. 439, dec 1974. ISSN 00063444. Disponível em: http://www.jstor.org/stable/2334725?origin=crossref>. Citado na página 24.

WINKELMANN, R. Duration Dependence and Dispersion in Count-Data Models. *Journal of Business & Economic Statistics*, v. 13, n. 4, p. 467–474, oct 1995. ISSN 0735-0015. Disponível em: http://www.tandfonline.com/doi/abs/10.1080/07350015.1995. 10524620>. Citado 2 vezes nas páginas 18 e 23.

WINKELMANN, R. *Econometric Analysis of Count Data*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. 342 p. ISBN 978-3-540-77648-2. Disponível em: http://medcontent.metapress.com/index/A65RM03P4874243N.pdfhttp://link.springer.com/10.1007/978-3-540-78389-3. Citado na página 21.

WINKELMANN, R.; ZIMMERMANN, K. F. Count data models for demographic data. 1994. 205–221, 223 p. Citado na página 18.

ZEVIANI, W. M. et al. The Gamma-count distribution in the analysis of experimental underdispersed data. *Journal of Applied Statistics*, n. October, p. 1–11, 2014. ISSN 0266-4763. Disponível em: http://dx.doi.org/10.1080/02664763.2014.922168>. Citado 4 vezes nas páginas 21, 23, 31 e 32.

APÊNDICE A – Lipsum

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

ANEXO A - Lipsum

Sed mattis, erat sit amet gravida malesuada, elit augue egestas diam, tempus scelerisque nunc nisl vitae libero. Sed consequat feugiat massa. Nunc porta, eros in eleifend varius, erat leo rutrum dui, non convallis lectus orci ut nibh. Sed lorem massa, nonummy quis, egestas id, condimentum at, nisl. Maecenas at nibh. Aliquam et augue at nunc pellentesque ullamcorper. Duis nisl nibh, laoreet suscipit, convallis ut, rutrum id, enim. Phasellus odio. Nulla nulla elit, molestie non, scelerisque at, vestibulum eu, nulla. Ut odio nisl, facilisis id, mollis et, scelerisque nec, enim. Aenean sem leo, pellentesque sit amet, scelerisque sit amet, vehicula pellentesque, sapien.