Fakultät für Informatik
Professur Technische Informatik

Professur Technische Informatik Prof. Dr. Wolfram Hardt

Hardware /Software Codesign I

System Partitioning

Prof. Dr. Wolfram Hardt

Dipl.-Inf. Michael Nagler

Contents

- Partitioning
- General Partitioning Algorithms
- HW/SW Partitioning Algorithms
- Examples

Partitioning - Abstraction

- ______ partitioning
 - register transfer level, net lists
 - system parameters are known quite good (area, delay, ...)
 - no comparison of design alternatives
 - e.g. map a digital circuit onto two chips (FPGA, ASIC)
- ______ partitioning
 - system level
 - system parameter are not known → estimation required
 - compare different design alternative → design space exploration

Cost Functions

- measure quality of a design point
 - may include C ... system cost (in [\$])

L ... latency (in [sec])

P ... power consumption (in [W])

- requires estimation to find C, L, P
- example

$$f(C, L, P) = k_1 \cdot h_C(C, C_{\text{max}}) + k_2 \cdot h_L(L, L_{\text{max}}) + k_3 \cdot h_P(P, P_{\text{max}})$$

 h_C , h_L , h_P ... denote how strong C, L, P violate the design

constraints C_{max} , L_{max} , P_{max} k_1 , k_2 , k_3 ... weighting and normalisation

General Partitioning Problem

definition

The general partitioning problem is to assign n objects $O = \{o_1, ..., o_n\}$ to m blocks (partitions) $P = \{p_1, ..., p_m\}$, such that

- **–** _____
- **-**
- the general partitioning problem is NP-complete
- in case of system synthesis:
 - objects O = problem graph nodes
 - blocks P = architecture graph nodes

Contents

- Partitioning
- General Partitioning Algorithms
- HW/SW Partitioning Algorithms
- Examples

Classification

- algorithms
 - constructive algorithms
 - random mapping
 - hierarchical clustering

accuracy? local minimum?

- iterative algorithms
 - Kerninghan-Lin
 - simulated annealing
 - evolutionary algorithms (design space exploration)
- _____ algorithms
 - enumeration of solutions
 - Integer Linear Programs (ILP)

very high computing effort!

Constructive Algorithms

- often used to generate a valid start partition for iterative algorithms (initial partition)
- possibly difficult to find a suitable closeness function
- algorithms
 - random mapping (each object is randomly assigned to some block)
 - hierarchical clustering

Hierarchical Clustering

- complete connected graph G = (V, E)
 - V ... set of partitions
 - E ... relation of each partition pair
- $f: E \to \mathfrak{R}$
 - assigns real number to each edge of G
 - determines how desirable the grouping of two partitions is
- stepwise grouping of two appropriate partitions
- time complexity: O(n²)

Algorithm

```
HierachicalClustering(0,f)
{
   // put every object to its own block
   for (int i = 0; i < N; i++) p[i] += {o[i]};
   // calculate closeness between the objects
   for (int i = 0; i < N; i++)
          for (int j = 0; j < N; j++)
                    CalculateCloseness(p[i],p[j]);
   // combine of objects and recalculation of closeness
   k := N + 1;
   while (BreakCondition(p) == false)
          (x,y) := BestPair(p);
                                       // get partitions p[x], p[y] to combine
         p[k] := Union(p[x], p[y]);
         p[x] := null; p[y] := null;
                                       // "delete" old partitions
         N := N - 1;
                                       // 1 partition created, 2 deleted
          RecalculateCloseness(p);
         k := k + 1;
   }
}
```


Example (I)

Example (II)

Example (III)

Kerninghan-Lin Algorithm

- generation of bi-partitions
 - calculate cost benefit for all objects, ______
 - move object with most benefit
- example: minimum cut (minimise number of edges between partitions)

Kerninghan-Lin Extension

- move the object into the other partition that leads to the highest cost reduction
 - → leave the local minimum
- algorithm
 - as long as a better partition is found:
 - move the best one of the n objects by trial and error
 - continue with all other *n-1* objects
 - chose from this n partitions the cheapest one
 - activate the relevant movement
- time complexity: _____
- partitioning into m blocks:

Simulated Annealing (I)

- metal and glass take on minimal energy states when they are cooled down under certain conditions
 - for each temperature, thermodynamic equilibrium is reached
 - the temperature is decreased arbitrarily slow
- generalisation
 - temperature is fixed → change parameters
 - wait until balance is established → optimisation based on this new parameters
- time complexity:
 - from ______, depending on the implementation of Equilirium(), DecreaseTemp(), Frozen()
 - the longer the runtime, the better the result
 - usually functions are constructed to get polynomial runtime

Simulated Annealing (II)

```
temp = temp start;
cost = c(P);
while (Frozen() == false)
  while (Equilibrium() == false)
    P n = RandomMove(P);
    cost n = c(P n);
    deltacost = cost n - cost;
    if (Accept(deltacost, temp) > random(0,1))
      P = P n;
      cost = cost n;
                                                  deltacost
                                                  k·temp
                              Accept() = min(1, e)
  }
  temp = DecreaseTemp(temp);
```


Simulated Annealing (III)

- **DecreaseTemp()** (temp_start = 1.0)
 - $temp = \mu * temp$ (typical: $0.8 \le \mu \le 0.99$)
- Frozen()
 - gets true when ______ or if there is no more improvement
- Equilibrium()
 - gets true after certain number of iterations or if there is no more improvement
- RandomMove()
 - moves randomly objects between partitions

(Integer) Linear Programs

- LP are a method to optimise a objective function of a set
- the set is constricted by ______
- used to solve problems without a specialised solving method
- ILP is special case: only whole numbers are allowed as solutions
- problem has to be mathematically modelled and can be solved with existing (I)LP algorithms (solver)
- (I)LP problem is in principle NP-complete

21

Integer Linear Programs (I)

- mathematically modelling of partition problem:
 - binary variables $x_{i,k} = 1 \leftrightarrow \text{object } o_i \text{ in block } p_k$
 - cost $c_{i,k}$, if object o_i in block p_k
 - integer linear program:

$$x_{i,k} \in \{0,1\}$$
 $1 \le i \le n$, $1 \le k \le m$

$$\sum_{k=1}^{m} x_{i,k} = 1$$
 $1 \le i \le n$
objective function:

Integer Linear Programs (II)

- limits modelled by constraints
- maximal numbers of h_k objects in block p_k

$$\sum_{i=1}^{n} x_{i,k} \le h_k \qquad 1 \le k \le m$$

• maximal cost H_k of objects in block p_k

23

Summary

24

Contents

- Partitioning
- General Partitioning Algorithms
- HW/SW Partitioning Algorithms
- Examples

HW/SW Partitioning Problem

remember: general partitioning problem

The partitioning problem is to assign n objects $O = \{o_1, ..., o_n\}$ to m blocks (partitions) $P = \{p_1, ..., p_m\}$, such that

- $p_1 \cup p_2 \cup ... \cup p_m = O$
- $\forall i, j : i \neq j \Rightarrow p_i \cap p_j = \emptyset$
- cost c(P) are minimised

HW/SW partitioning is special case: bi-partitioning

26

Classification

27

Greedy Partitioning

- migration (move) of objects into the other block (HW or SW) until
 _____ (costs)
- algorithm:

```
do
{
   partition_old = partition;

   for (int i = 1; i <= n; i++)
    {
      if (costs(move(partition,o[i]) < costs(partition))
          partition = move(partition, o[i]);
   }
} while (partition != partition_old)</pre>
```


Start Partitioning

- software-orientated approach
 - start greedy with partitioning: _____
 - all functions can be realised in SW
 - performance might be too low → migrate objects to HW

- hardware-orientated approach
 - start greedy with partitioning: _____
 - the performance is sufficient in HW
 - costs might be too high → migrate objects to SW

4-Phases Partitioning (I)

- input: program in ANSI C or C++
 - no HW specific extensions
 - many applications
- abstraction level: module (= C function/method)
- method:
 - automatic determination of graph weightings
 - 4 partitioning criterions
 - designer can insert experiences by different weighting constants
- time complexity: _____

4-Phases Partitioning (II)

- partitioning criterions for modules
 - dynamic execution time (DA)
 - statically determinable execution time (SA)
 - interface parameter (PA)
 - memory access (MA)

formalism

- characterisation of each module mod by partitioning vector P(mod) = (DA(mod), SA(mod), PA(mod), MA(mod))

weighting vector for criterions

$$Cut_{HW/SW} = (W_{DA}, W_{SA}, W_{PA}, W_{MA})$$

partitioning function Φ for module mod

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = P(mod) - Cut_{HW/SW}$$

$$\Phi(mod) = \begin{cases} 1, & \forall i \in [1,4]: \ \alpha_i > 0 \\ 0, & else \end{cases}$$

mod to HW: $\Phi(mod) = 1$

mod to SW: $\Phi(mod) = 0$

Algorithm

Determination of DA

- execution time of a C-function (module) varies

 - = relative frequency of runtime to runtime of whole system
 - = average runtime depending on number of execution
- many measurements necessary for reliable determination
- cost function

normalisation constants

$$DA(mod) = \underbrace{RT_{abs}^{SW}(mod)}_{SW_ABS_RT} + \underbrace{RT_{rel}^{SW}(mod)}_{SW_REL_RT} + \underbrace{RT_{ave}^{SW}(mod)}_{SW_AVE_RT}$$

Determination of SA

- different characteristics in SW or HW for different instructions
 - jumps (Jump) → interferes pipelining in SW
 - bit manipulating instructions (Bitop) \rightarrow usually only one bit / cycle
- count of all instructions (*Inst*) for calculation of relative frequency of instructions
- cost function

a SW implementation $RT_{approx}^{SW}(mod)$ $SA(mod) = \frac{Jump(mod) + Bitop(mod)}{Inst(mod)} \cdot 100\%$

34

estimated complexity of

Determination of PA

- - data type (implicit data size, e.g. type = char → size = 8 bit)
 - access type (read, write, r/w)
- pointer and global variables not correctly determined
- cost function $given interface width of \\ HW implementation \\ PA(mod) = \frac{SW_INTERF_WIDTH}{max(Width_{IN}(mod), Width_{OUT}(mod), Width_{InOut}(mod))}$

Determination of MA

•

- local and global data
- direction of data transfer (load, store)
- "distance" between source and destination (→ access times may varies)
- compare efficiency of data transfers in SW and HW

$$\eta_{DT}(mod) = DT^{SW}(mod)$$

costs for data transfers of mod in SW implementation

cost function

$$MA(mod) = \begin{cases} \eta_{DT}(mod), & \eta_{DT}(mod) > 1 \\ 0, & else \end{cases}$$

Implementation

Results

example

38

Contents

- Partitioning
- General Partitioning Algorithms
- HW/SW Partitioning Algorithms
- Examples

Yorktown Silicon Compiler (YSC)

- functional partitioning of hardware
 - input: functional description on the level of arithmetic and logical expressions
 - target: partitioning to several chips
 - abstraction level: functional units of data paths (ALUs, registers)

closeness function:

$$closeness(p_{i}, p_{j}) = \left(\frac{sharedwires(p_{i}, p_{j})}{maxwires(P)}\right)^{c_{2}} \cdot \left(\frac{maxsize}{min(size(p_{i}), size(p_{j}))}\right)^{c_{3}} \cdot \left(\frac{maxsize}{size(p_{i}) + size(p_{j})}\right)$$

Vulcan

- HW/SW bi-partitioning
 - input: program in HardwareC
 - C code, extended by a process concept and interprocess communication
 - specification with constraints (min/max-times, data rates)
 - target architecture: 1 processor, 1 ASIC
 - 1 global bus (processor is master) and 1 global memory
 - abstraction level: basic blocks and operations
 - deterministic execution times
 - method: HW orientated greedy
 - cost function includes HW costs, memory requirements, performance and synchronisation effort

Cosyma

- HW/SW bi-partitioning
 - input: program in C^x
 - C code, extended by a process concept and interprocess communication
 - specification of min/max times
 - target architectures: processor, coprocessor
 - coupled by a shared memory
 - computations on the processor and the coprocessor may not overlap in time
 - abstraction level: basic blocks
 - method: 2 loops
 - inner loop: simulated annealing with cost function that gives the estimated time gain for a HW realisation of a block
 - outer loop: synthesis to improve the estimations for the inner loop