Main text Table 1

Estimates of SAUC with CR when $c_1^2=c_2^2$ for scenario 1-4

Yi

2021-04-05

Print table

s.rdt <- "scenario/18rows/set-0.5b-all.RData"
dt <- "res/DT-pkg-0.5b-all/"</pre>

Table 1: Estimates of SAUC when $c_1^2 = c_2^2$

		$S_P = 25$		$S_P = 50$		$S_P = 200$	
	SUAC	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	0.641 (0.494, 0.732)	99.4	0.613 (0.504, 0.696)	99.7	0.617 (0.567, 0.662)	99.1
Proposed $(c_1^2 = c_2^2)$		$0.637\ (0.488,\ 0.731)$	99.6	$0.615\ (0.510,\ 0.696)$	99.8	$0.622\ (0.575,\ 0.665)$	99.7
$Reitsma_O$		$0.697\ (0.611,\ 0.760)$	100.0	$0.692\ (0.636,\ 0.739)$	100.0	$0.693\ (0.667,\ 0.716)$	100.0
$Reitsma_P$		$0.630\ (0.537,\ 0.701)$	100.0	$0.622\ (0.563,\ 0.674)$	100.0	$0.620\ (0.591,\ 0.646)$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.702	$0.712\ (0.622,\ 0.768)$	99.8	$0.708\ (0.648,\ 0.752)$	99.5	$0.705\ (0.679,\ 0.725)$	99.3
Proposed $(c_1^2 = c_2^2)$		$0.713\ (0.623,\ 0.768)$	99.6	$0.711\ (0.653,\ 0.752)$	99.6	$0.704\ (0.681,\ 0.724)$	99.5
$Reitsma_O$		$0.741\ (0.686,\ 0.782)$	100.0	$0.741\ (0.704,\ 0.772)$	99.9	$0.739\ (0.723,\ 0.754)$	100.0
$Reitsma_{P}$		$0.708 \ (0.651, \ 0.751)$	100.0	$0.703\ (0.668,\ 0.735)$	100.0	$0.703\ (0.687,\ 0.719)$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.564	$0.579\ (0.479,\ 0.661)$	99.6	$0.562\ (0.483,\ 0.632)$	99.7	$0.573\ (0.523,\ 0.615)$	99.7
Proposed $(c_1^2 = c_2^2)$		$0.577 \ (0.489, \ 0.661)$	99.8	$0.572\ (0.508,\ 0.637)$	100.0	$0.572\ (0.531,\ 0.611)$	99.7
$Reitsma_O$		$0.676 \ (0.608, \ 0.728)$	100.0	$0.673\ (0.630,\ 0.708)$	100.0	$0.673\ (0.651,\ 0.695)$	100.0
$Reitsma_P$		$0.567 \ (0.513, \ 0.611)$	100.0	$0.564 \ (0.529, \ 0.597)$	100.0	$0.563 \ (0.547, \ 0.582)$	100.0
Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	0.620	$0.630\ (0.543,\ 0.694)$	99.8	$0.618\ (0.552,\ 0.672)$	100.0	$0.617\ (0.583,\ 0.650)$	99.7
Proposed $(c_1^2 = c_2^2)$		$0.628 \ (0.554, \ 0.695)$	99.8	$0.624\ (0.567,\ 0.675)$	99.8	$0.623\ (0.595,\ 0.650)$	99.7
$Reitsma_O$		$0.699 \ (0.647, \ 0.744)$	99.9	$0.696 \ (0.662, \ 0.727)$	100.0	$0.695 \ (0.681, \ 0.711)$	100.0
$Reitsma_{P}$		$0.620\ (0.579,\ 0.657)$	100.0	$0.619\ (0.589,\ 0.646)$	100.0	$0.618 \ (0.605, \ 0.632)$	99.9

Note:

Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model estimating $(c_1^2, c_2^2)^T$; Proposed $(tildec_1^2, tildec_2^2)$ is the proposed model specified $c_1^2 = c_2^2 = 0.5$; Reitsma $_O$ is Reitsma model based on the observed studies; and Reitsma $_P$ is Reitsma model based on the population studies.