1. Consider using this encoder-decoder model for machine translation.

True/False: This model is a "conditional language model" in the sense that the decoder portion (shown in green) is modeling the probability of the input sentence x.

1/1 point

\bigcirc	True

False

∠ Expand

✓ Correct

The encoder-decoder model for machine translation models the probability of the output sentence y conditioned on the input sentence x. The encoder portion is shown in green, while the decoder portion is shown in purple.

2.	2. In beam search, if you decrease the beam width B , which of the following would you expect to be true? Select all that a	apply. 0/1 point
	Beam search will run more quickly.	
	Correct As the beam width decreases, beam search runs more quickly, uses up less memory, and converges after fewer step generally not find the maximum P(y x).	ps, but will
	Beam search will use up more memory.	
	! This should not be selected As the beam width decreases, beam search runs more quickly, uses up less memory, and converges after fewer step generally not find the maximum $P(y x)$.	ps, but will
	Beam search will converge after fewer steps.	
	Beam search will generally find better solutions (i.e. do a better job maximizing P ($y \mid x$)).	
	! This should not be selected As the beam width decreases, beam search runs more quickly, uses up less memory, and converges after fewer step generally not find the maximum $P(y x)$.	ps, but will

Incorrect
You didn't select all the correct answers

Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

⊘ Correct

- 5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the search algorithm.
 - False.
 - True.

∠⁷ Expand

✓ Correct

Further, here is the formula for $lpha^{< t,t'>}$.

$$\alpha^{< t,t'>} = \frac{\exp(e^{< t,t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t,t'>})}$$

Which of the following statements about $lpha^{< t,t'>}$ are true? Check all that apply.

$$\sum_{t'} \alpha^{< t, t'>} = -1$$

$$lpha^{< t, t'>}$$
 is equal to the amount of attention $y^{< t>}$ should pay to $a < t'>$

$$\checkmark$$
 Correct Correct! $\alpha^{< t,t'>}$ = amount of attention $y^{< t>}$ should pay to $a^{< t'>}$

We expect $a^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

(

Great, you got all the right answers.

We can replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network because $s^{< t>}$ is independent of $lpha^{< t,t'>}$ and $e^{< t,t'>}$.

-) True
- False

Correct We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on and $e^{< t,t'>}$; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$.

1/1 point

- The input sequence length T_x is large.
- The input sequence length T_{x} is small.

Correct

The encoder-decoder model works quite well with short sentences. The true advantage for the attention model occurs when the input sentence is large.

9.	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	1/1 point
	c_oo_o_kkb_oooooookkk	
	Cokbok	
	Cook book	
	cookbook	
	Coookkbooooookkk	
	∠ [¬] Expand	

- Features of the audio (such as spectrogram features) at time $_{t}$.
- Whether the trigger word is being said at time t.
- Whether someone has just finished saying the trigger word at time _t.
- The $_{\it t}$ -th input word, represented as either a one-hot vector or a word embedding.

∠ Expand

Correct