

Why do neural nets learn and generalize?

Eugene Golikov

October 4, 2019

Neural Systems and Deep Learning Lab., MIPT

Classic "bias-variance trade-off" curve:

Extended curve for neural networks:

The figure is borrowed from Belkin et al. $(2018)^1$.

¹https://arxiv.org/abs/1812.11118

Similar curves for random forest and boosting:

Left: random forest, right: boosting on decision trees.

Figures are borrowed from Belkin et al. (2018).

General "double descent" curve:

The figure is borrowed from Belkin et al. (2018).

Preliminaries

Learning objective:

$$\hat{\mathcal{L}}_n(W) = \mathbb{E}_{x,y \in \mathcal{S}_n} \ell(y, f(x; W)) \to \min_W,$$

where

- $S_n = \{x_i, y_i\}_{i=1}^n \sim \mathcal{D}^n$ dataset of size n;
- $f(x; W) = W_L \sigma(W_{L-1} \dots \sigma(W_1 x))$ neural network with weights $W = W_{1:L}$ and non-linearity σ ;
- $W_I \in \mathbb{R}^{d_I \times d_{I-1}}$, where d_I width of I-th layer;
- $\ell(y, \hat{y})$ convex loss (typically, square).

Learning procedure:

$$W^{(k+1)} = W^{(k)} - \eta \operatorname{(stoch)}\operatorname{grad} \hat{\mathcal{L}}_n(W^{(k)}).$$

5

- Observation: SGD achieves zero training risk.
- Natural hypothesis: All local minima of $\hat{\mathcal{L}}_n$ are global.
- Motivation:
 - Lee et al. (2016)²: If $\hat{\mathcal{L}}_n \in C_l^{2,1}$ GD with $\eta < l^{-1}$ doesn't converge to a strict saddle (or maximum) a.s. wrt random initialization.

²https://arxiv.org/abs/1602.04915

Hypothesis: All local minima of $\hat{\mathcal{L}}_n$ are global.

Cases:

- Linear regression (square loss and L = 1): convex problem ⇒ trivial.
- Deep linear regression (square loss and $\sigma = id$):

$$\hat{\mathcal{L}}_{\textit{n,deep}}(\textit{W}_{1:L}) = \mathbb{E}_{\textit{x,y} \in \textit{S}_\textit{n}} \ell(\textit{y}, \textit{W}_\textit{L} \textit{W}_\textit{L-1} \dots \textit{W}_\textit{1} \textit{x}) \rightarrow \min_{\textit{W}_{1:L}}$$

is equivalent to:

$$\hat{\mathcal{L}}_{n,shallow}(R) = \mathbb{E}_{x,y \in S_n} \ell(y,Rx) o \min_{R: \text{ rk } R \leq \min d_l}.$$

7

Lu & Kawaguchi (2017)³:

Theorem 1:

If $W_{1:L}$ is a local minimum of $\hat{\mathcal{L}}_{n,deep}$, than $R=W_L\dots W_1$ is a local minimum of $\hat{\mathcal{L}}_{n,shallow}$.

Theorem 2:

Every local minimum of $\hat{\mathcal{L}}_{n,shallow}$ is global.

Corollary:

Every local minimum of $\hat{\mathcal{L}}_{n,deep}$ is global.

Almost the same result was obtained earlier in Kawaguchi (2016)⁴.

³https://arxiv.org/abs/1702.08580

 $^{^{4} \}verb|http://www.mit.edu/~kawaguch/publications/kawaguchi-nips16.pdf|$

Lu & Kawaguchi (2017):

Theorem 1:

If $W_{1:L}$ is a local minimum of $\hat{\mathcal{L}}_{n,deep}(W_{1:L})$, than $R = W_L \dots W_1$ is a local minimum of $\hat{\mathcal{L}}_{n,shallow}(R)$.

Proof outline:

- R is a local minimum of $\hat{\mathcal{L}}_{n,shallow} \Leftrightarrow \forall \delta R \quad \hat{\mathcal{L}}_{n,shallow}(R) \leq \hat{\mathcal{L}}_{n,shallow}(R + \delta R);$
- $W_{1:L}$ is a local minimum of $\hat{\mathcal{L}}_{n,deep} \Leftrightarrow \forall \delta W_{1:L} \quad \hat{\mathcal{L}}_{n,deep}(W_{1:L}) \leq \hat{\mathcal{L}}_{n,deep}(W_1 + \delta W_1 \dots W_L + \delta W_L).$
- Need to prove that $\forall \delta R \quad \exists \delta W_{1:L} : R + \delta R = (W_L + \delta W_L) \dots (W_1 + \delta W_1).$

9

Hypothesis: All local minima of $\hat{\mathcal{L}}_n$ are global.

Cases:

- Shallow non-linear regression (square loss and L=2): Theorem (Yu & Chen, 1995⁵): If $d_1 \geq n$ and σ is analytic, then all local minima of $\hat{\mathcal{L}}_n$ are global.
- Deep non-linear regression (square loss and L ≥ 2):
 Theorem (Nguyen & Hein, 2017⁶):
 If ∃I: d_I ≥ n, d_{I+1} ≥ ... ≥ d_L and σ is analytic, then all (non-degenerate) local minima of Â_n are global.

⁵https://ieeexplore.ieee.org/document/410380/

⁶https://arxiv.org/abs/1704.08045

Theorem (Yu & Chen, 1995):

If $d_1 \geq n$ and σ is analytic, then all local minima of $\hat{\mathcal{L}}_n$ are global.

Proof outline:

- Let $W_{1,2}$ be a local minimum of $\hat{\mathcal{L}}_n$.
- Let $Z = [z_1 \dots z_n] \in \mathbb{R}^{d_1 \times n}$, where $z_i = \sigma(W_1 x_i)$; then $f(x_i; W_{1,2}) = W_2 z_i$.

Lemma: If σ is analytic and $d_1 \ge n$, then the set $\{W_1 : \operatorname{rk} Z < n\}$ has Lebesgue measure zero.

- If $\operatorname{rk} Z = n$, then $\hat{\mathcal{L}}_n(W_{1,2}) = 0$.
- If $\operatorname{rk} Z < n$ and $\hat{\mathcal{L}}_n(W_{1,2}) > 0$, then $\hat{\mathcal{L}}_n(W_{1,2})$ is unstable wrt gradient flow dynamics on W_2 : **contradiction**.

Problem of cross-entropy loss:

 $\hat{\mathcal{L}}_n$ can have no minima in $\mathcal{W} = \mathbb{R}^{\dim W}$.

Define:

- Sublevel set: $\hat{\mathcal{L}}_n^{-1}((-\infty,\alpha))\subset\mathcal{W};$
- Local valley: connected component of a sublevel set;
- Bad local valley: local valley for which $\inf_{W \in \text{valley}} \hat{\mathcal{L}}_n > \inf_{W \in \mathcal{W}} \hat{\mathcal{L}}_n$.

More on deep non-linear case:

Let $\ell(y,\cdot)$ be any convex loss, $\sigma(\cdot) \nearrow$, and $\sigma(\mathbb{R}) = \mathbb{R}$.

Theorems (Nguyen, 2019⁷):

- 1. If $\exists l: d_l \geq n, d_{l+1} > \ldots > d_L$, then $\hat{\mathcal{L}}_n$ has no bad local valleys;
- 2. If $d_1 \geq 2n$ and $d_2 > \ldots > d_L$, then all sublevel sets of $\hat{\mathcal{L}}_n$ are connected.

Empirical results (Garipov et al., 2018, Draxler et al., 2018⁸): For realistic networks $Arg \min \hat{\mathcal{L}}_n$ is connected.

⁷http://proceedings.mlr.press/v97/nguyen19a/nguyen19a.pdf

 $^{^8 {\}rm https://arxiv.org/abs/1803.00885,\,https://arxiv.org/abs/1802.10026}$

Figure 1: Results of training Conv-small of Miyato et al. $(2017)^{10}$ on subset of 4000 samples of CIFAR10. Initial numbers of filters in convolutional layers were multiplied by width factor.

⁹https://arxiv.org/abs/1704.03976

¹⁰https://arxiv.org/abs/1704.03976

- Observation: optimization becomes easier as number of parameters grows.
- **Hypothesis:** $\mathcal{L}(W^{(k)}) \leq (1-\beta)^k \mathcal{L}(W^{(0)})$ whp over initialization $W^{(0)}$, and β grows with dim W.
- **Problems:** In general, more params ⇒ harder to optimize:
 - Theorem (Jin et al., 2017)¹¹: Suppose $\mathcal{L} \in C^{2,2}(\mathbb{R}^{\dim W})$ general function to minimize. Then $\forall \ \epsilon > 0$ for appropriate choice of hyperparameters (perturbed) GD achieves an ϵ -2nd-order stationary point of \mathcal{L} in

$$K_{\epsilon} = O(\log^4(\dim W)/\epsilon^2)$$
 iterations whp.

¹¹https://arxiv.org/abs/1703.00887

Hypothesis: $\mathcal{L}(W^{(k)}) \leq (1-\beta)^k \mathcal{L}(W^{(0)})$ whp over initialization $W^{(0)}$, and β grows with dim W.

Consider a 2-layer non-linear net with square loss:

$$f(W, a, x) = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \sigma(w_r^T x), \quad x \in \mathbb{R}^d, \ w_r \in \mathbb{R}^d, \ a_r \in \mathbb{R}.$$
$$\mathcal{L}(W, a) = \frac{1}{2} \sum_{i=1}^{n} (f(W, a, x_i) - y_i)^2.$$

Continuous-time GD:

$$\frac{dw_r(t)}{dt} = -\frac{\partial \mathcal{L}(W(t), a(t))}{\partial w_r}; \qquad \frac{da(t)}{dt} = -\frac{\partial \mathcal{L}(W(t), a(t))}{\partial a}.$$

Consider training the output layer only:

$$\frac{da(t)}{dt} = -\frac{\partial \mathcal{L}(W, a(t))}{\partial a}.$$

Denote:
$$z_i = \sigma(Wx_i), \quad Z = [z_1 \dots z_n] \in \mathbb{R}^{m \times n}.$$

$$\frac{d\mathcal{L}(W, a(t))}{dt} \leq -2\lambda_{min}(H^{out})\mathcal{L}(W, a(t)),$$

where

$$H^{out} = \frac{1}{m} Z^T Z \in \mathbb{R}^{n \times n}.$$

From lemma of Yu & Chen (1995):

If σ is analytic and $m \geq n$, then $H^{out'}$ is full rank a.s. wrt $W \sim \mathcal{N}(0, I)$.

Hence $\lambda_{min}(H^{out}) > 0$, and:

$$\mathcal{L}(W, a(t)) \leq e^{-2\lambda_{min}(H^{out})t}\mathcal{L}(W, a(0)).$$

Consider training the input layer only:

$$\frac{dw_r(t)}{dt} = -\frac{\partial \mathcal{L}(W(t), a)}{\partial w_r}.$$

Loss dynamics:

$$\frac{d\mathcal{L}(W(t),a)}{dt} \leq -2\lambda_{min}(H(t))\mathcal{L}(W(t),a),$$

where H(t) = H(W(t)), and

$$H_{ij}(W) := \frac{1}{m} \sum_{r=1}^{m} \left(\frac{\partial f(W, a, x_i)}{\partial w_r} \right)^T \frac{\partial f(W, a, x_j)}{\partial w_r} \quad \forall i, j = 1, \dots, n.$$

Loss dynamics:

$$\frac{d\mathcal{L}(W(t),a)}{dt} \leq -2\lambda_{min}(H(t))\mathcal{L}(W(t),a),$$

Let $W(0) \sim \mathcal{N}(0, I)$ and $\lambda_0 := \lambda_{min}(\mathbb{E}_{W(0)}H(0))$.

Lemma (Du et al., 2019¹²): If $\forall i, j \ x_i \not \mid x_i$, then $\lambda_0 > 0$.

Assume $\forall t \geq 0$ $\lambda_{min}(H(t)) \geq \kappa \lambda_0 > 0$. Then,

$$\mathcal{L}(W(t),a) \leq e^{-2\kappa\lambda_0 t} \mathcal{L}(W(0),a).$$

Similar for discrete-time GD with step η :

$$\mathcal{L}^{(k)} \leq (1 - \alpha \kappa \lambda_0)^k \mathcal{L}^{(0)} \quad \forall k \geq 0 \quad \text{for sufficiently small } \eta.$$

¹²https://openreview.net/forum?id=S1eK3i09YQ

Theorem (Du et al., 2019):

Assume $||x_i|| = 1, |y_i| < C$ $\forall i = 1 \dots n$, and

$$w_r(0) \sim \mathcal{N}(0, I), \ a_r \sim U(\{-1, 1\}) \quad \forall r = 1, \dots, m.$$

Let $\delta \in (0,1)$ and $m=\Omega\left(\frac{n^6}{\lambda_0^4\delta^3}\right)$; then w.p. $\geq 1-\delta$ over initialization

$$\lambda_{min}(H(t)) \geq \frac{\lambda_0}{2} \quad \forall t \geq 0.$$

Theorem (Song & Yang, 2019)¹³:

The same holds for $m = \Omega\left(\frac{n^4}{\lambda_0^4}\log^3\left(\frac{n}{\delta}\right)\right)$.

¹³https://arxiv.org/abs/1906.03593

General "double descent" curve:

Generalization ability

- **Observation:** Test risk of networks found by SGD decreases as width grows.
- **Hypothesis:** There is a network complexity measure with following properties:
 - 1. It correlates with test risk;
 - 2. It is implicitly minimized by SGD.

Our goal is to bound the risk difference:

$$\left|R(\hat{f}_n) - \hat{R}_n(\hat{f}_n)\right| \leq \mathrm{bound}(\textit{N}(\hat{f}_n),\textit{n},\delta) \quad \text{w.p. } \geq 1-\delta \text{ over dataset } \textit{S}_n,$$

where

- R(f) risk of predictor f,
- $\hat{R}_n(f)$ empirical risk of predictor f on dataset S_n ,
- $\hat{f}_n = \mathcal{A}(S_n) \in \mathcal{F}$ solution found by algorithm \mathcal{A} (e.g. SGD) on S_n ,
- N(f) complexity measure of predictor f.

Usual form of bound:

bound
$$(N, n, \delta) = O\left(\sqrt{\frac{N + \log(1/\delta)}{n}}\right)$$
.

$$\left|R(\hat{f}_n) - \hat{R}_n(\hat{f}_n)\right| \leq \operatorname{bound}(\textit{N}(\hat{f}_n), n, \delta) \quad \text{w.p.} \, \geq 1 - \delta \, \operatorname{over} \, \operatorname{dataset} \, S_n.$$

Worst-case bounds:

bound =
$$\sup_{f \in \mathcal{F}} \left| R(f) - \hat{R}_n(f) \right|$$
.

Lead to complexity measures that depend on \mathcal{F} (and do not depend on \hat{f}_n directly).

$$\left| R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \right| \leq \sup_{f \in \mathcal{F}} \left| R(f) - \hat{R}_n(f) \right|.$$

- ullet Let ${\mathcal F}$ be the set of all nets of the given architecture;
- Let $R(f) = \mathbb{E}_{x,y \sim \mathcal{D}}[yf(x) < 0] = 1$ accuracy of f.

Bad nets usually exist:

Experiments similar to Zhang et al. $(2017)^{14}$.

Hence the bound is vacuous.

¹⁴https://arxiv.org/abs/1611.03530

$$\left| R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \right| \leq \sup_{f \in \mathcal{F}} \left| R(f) - \hat{R}_n(f) \right|.$$

- Let \mathcal{F} be the set of all nets of the given architecture;
- Let $R(f) = \mathbb{E}_{x,y \sim \mathcal{D}}[yf(x) < 0] = 1$ accuracy of f.

Leads to vacuous bounds; way to mitigate it:

- Narrow F;
- Use scale-sensitive R, i.e. $R_{\gamma}(f) = \mathbb{E}_{x,y \sim \mathcal{D}}[yf(x) < \gamma]$.

Way to narrow \mathcal{F} :

Let \hat{f}_n be network with weights $\left\{\hat{W}_n^{(l)}\right\}_{l=1}^L$. Consider

$$\mathcal{F}(\hat{f}_n) = \left\{ f : \ \left\| W^{(I)} \right\| \le \left\| \hat{W}_n^{(I)} \right\| \right\}.$$

Lead to bounds that depend on $\left\{\left\|\hat{W}_{n}^{(l)}\right\|\right\}_{l=1}^{L}$.

Examples:

- Bartlett (1998)¹⁵: Tanh-nets, bound depends on l_1 -norm of output layer;
- Bartlett et al. $(2017)^{16}$: Arbitrary feed-forward nets, bound depends on Lipschitz constant of learned net \hat{f}_n .

 $^{^{15} {\}rm https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=661502}$

¹⁶https://arxiv.org/abs/1706.08498

Consider stochastic learning algorithm: $\hat{f}_n = \mathcal{A}(S_n) \sim Q|S_n$.

Corresponding bound:

$$\left|\mathbb{E}_{Q|S_n}R(\hat{f}_n) - \mathbb{E}_{Q|S_n}\hat{R}_n(\hat{f}_n)\right| \leq \mathrm{bound}(\textit{N}(Q|S_n),\textit{n},\delta) \quad \text{w.p. } \geq 1-\delta \text{ over } S_n.$$

PAC-bayesian bound (McAllester, 1999)¹⁷:

$$N(Q) = KL(Q \parallel P),$$

where P denotes prior over predictors f.

- **Pros:** Depends on learned predictor \hat{f}_n .
- Cons: Vacuous if $P(A) = 0 \Rightarrow Q(A) = 0$.

 $^{^{17}} http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.1908&rep=rep1&type=pdf$

Usually \hat{f}_n is deterministic and P is continuous $\Rightarrow \mathit{KL}(\delta_{\hat{f}_n} \parallel P) = \infty$.

How to deal with it?

• Make stochastic (Dziugaite & Roy, 2017)¹⁸:

$$\mathbb{E}_{Q|S_n}\hat{R}_n(\hat{f}_n) + \text{bound}(\mathit{KL}(Q|S_n \parallel P), n, \delta) \to \min_{Q},$$

where Q is initialized with $\delta_{\hat{f}_a}$.

¹⁸https://arxiv.org/abs/1703.11008

Usually \hat{f}_n is deterministic and P is continuous $\Rightarrow KL(\delta_{\hat{f}_n} || P) = \infty$.

How to deal with it?

• Use margin loss (Neyshabur et al., 2018)¹⁹: Let $Q = \mathcal{N}(\hat{f}_n, \sigma)$. Take $\delta' \in (0, 1)$ and $\gamma > 0$. Then take maximal σ :

$$R(\hat{f}_n) - \hat{R}_{n,\gamma}(\hat{f}_n) \leq \mathbb{E}_{f \sim Q \mid S_n}(R_{\gamma/2}(f) - \hat{R}_{n,\gamma/2}(f)) \quad \text{w.p. } \geq 1 - \delta' \text{ over } S_n.$$

¹⁹https://openreview.net/forum?id=Skz_WfbCZ

Usually \hat{f}_n is deterministic and P is continuous $\Rightarrow KL(\delta_{\hat{f}_n} || P) = \infty$.

How to deal with it?

Use discrete coding (Zhou et al., 2019)²⁰:
 Let |f|_c — number of bits required to encode f with coding c.
 Coding-based prior:

$$P_c(f) = \frac{1}{Z} m(|f|_c) 2^{-|f|_c},$$

where m(k) — some probability measure over \mathbb{Z} . Then,

$$\mathit{KL}(\delta_{\hat{f}_n} \parallel P_c) \leq |\hat{f}_n|_c \log 2 - \log(m(|\hat{f}_n|_c)).$$

²⁰https://openreview.net/forum?id=BJgqqsAct7

Sanity checks (Nagarajan & Kolter, 2019)²¹:

- 1. Non-vacuous (bound < 1);
- 2. Reflect the same width/depth/batch size dependence as generalization error;
- 3. Decrease with dataset size;
- 4. Increase with proportion of randomly flipped labels;
- 5. Applies directly to original learned network.

All of the above-mentioned bounds fail at least one of them.

²¹https://arxiv.org/abs/1902.04742

Most of the bounds depend either on:

- 1. Lipschitz constant of \hat{f}_n (Bartlett et al., 2017, Neyshabur et al., 2018), **or**
- 2. I₂ distance from init (Dziugaite & Roy, 2017).

Generalization ability

Observation: Test risk of networks found by SGD decreases as width grows.

Hypothesis: There is a network complexity measure $N(\cdot)$ with following properties:

- 1. It correlates with test risk;
- 2. It is implicitly minimized by SGD:

$$\hat{f}_n = \operatorname{SGD}(S_n) \in \underset{f: \hat{R}_n(f)=0}{\operatorname{Arg \, min}} N(f).$$

Implicit bias

Results (teaser):

- **Linear regression:** for zero init GD chooses minimum l_2 -norm solution.
- **Neural network:** depends on magnitude of init (Chizat et al., 2018)²²:
 - Large init: SGD finds minimum norm solution in some RKHS;
 - Small init: ??

²²https://arxiv.org/abs/1812.07956