Assignment 2

Deadline

Friday 17th February, 2017

- 1. Suppose that p_1, p_2, p_3 are distinct primes and that $n, k \in \mathbb{Z}^+$ with $n = p_1^5 p_2^3 p_3^k$. Let A be the set of positive integer divisors of n and define a relation \mathbb{R} on A by $x\mathbb{R}y$ if x exactly divides y. If there are 5880 ordered pairs in \mathbb{R} , determine k and |A|.
- 2. Let A be a set with |A| = n, and let \mathbb{R} be an equivalence relation on A with $|\mathbb{R}| = r$. Why is r n always even?
- 3. A relation \mathbb{R} on a set A is called *irreflexive* if for all $a \in A$, $(a, a) \notin \mathbb{R}$. Let \mathbb{R} be a non-empty relation on A. Prove that if \mathbb{R} satisfies two of the following properties reflexive, symmetric, transitive, then it cannot satisfy the third.
- 4. Given a set A with n elements and a relation \mathbb{R} on A, let M denote the relation matrix for \mathbb{R} . Then, prove the following:
 - (a) \mathbb{R} is reflexive iff $I_n \leq M$.
 - (b) \mathbb{R} is symmetric iff $M = M^T$
 - (c) \mathbb{R} is transitive iff $M.M = M^2 \leq M$
- 5. Prove that $M(\mathbb{R}) = \mathbf{0}$ iff $\mathbb{R} = \phi$.
- 6. Prove that $M(\mathbb{R}) = 1$ iff $\mathbb{R} = A \times A$.
- 7. Prove that $M(\mathbb{R})^n = [M(\mathbb{R})^n]$, for all $n \in \mathbb{Z}^+$.
- 8. Let $f: A \to B$. If $B_1, B_2 \dots B_n$ is a partition of B, prove that $f^{-1}(B_i)|1 \le i \le n, f^{-1}(B_i) \ne \phi$ is a partition of A.
- 9. Suppose that \mathbb{R} and S are reflexive relations on a set A. Prove or disprove each of these statements:
 - (a) $\mathbb{R} \cup S$ is reflexive
 - (b) $\mathbb{R} \cap S$ is reflexive
 - (c) $\mathbb{R} S$ is irreflexive $\mathbb{R} \circ S$ is reflexive
- 10. Suppose that the relation \mathbb{R} is irreflexive, is \mathbb{R}^2 necessarily irreflexive? Give reasons.
- 11. Let \mathbb{R} be the relation of the set of all metro stations in Delhi, such that $(a, b) \in \mathbb{R}$ if it is possible to go from stop a to stop b without changing trains. What is \mathbb{R}^n , for a positive integer n?
- 12. Let n be a positive integer and S a set of strings. Suppose that R_n is the relation on S such that sR_nt if and only if s=t, or both s and t have at least n characters and the first n characters of s and t are the same. That is, a string of fewer than n characters is related only to itself; a string s with at least n characters is related to a string t if and only if t has at least t characters and t begins with the t characters at the start of t. For example, let t and let t be the set of all bit strings. Then t are three bits. For instance, t of strings and t are bit strings of length 3 or more that begin with the same three bits. For instance, t of strings and every positive integer t, t is an equivalence relation on t.
- 13. Let R_3 be the relation from previous question. What are the sets in the partition of the set of all bit strings arising from the relation R_3 on the set of all bit strings?

- 14. Each bead on a bracelet with three beads is either red, white, or blue. Define the relation \mathbb{R} between bracelets as: (B_1, B_2) , where B_1 and B_2 are bracelets, belongs to \mathbb{R} if and only if B_2 can be obtained from B_1 by rotating it or rotating it and then reflecting it.
 - (a) Show that R is an equivalence relation.
 - (b) What are the equivalence classes of \mathbb{R} ?
- 15. How many equivalence relations are there over the set A = (a, b, c)?
- 16. Given the partition P = 1, 2, 3, 4, 5 of the set A = 1, 2, 3, 4, 5, consider R the associated equivalence relation on A. Draw the digraph associated to R and write down the matrix M(R).
- 17. Prove that if R is a relation and $S \subseteq R$, then S is a relation.
- 18. If R is a reflexive relation on S, then so is any superset of R inside $S \times S$.
- 19. The following problems pertain to the relationship of congruence mod n, defined on Z as follows: DEFINITION: Let a and b be integers and let n be a positive integer. Then $a \equiv n$ b iff $n \mid (a b)$. Show that $2 \mid (x-y)$ iff x and y have the same parity; i.e., either both x and y are even or both are odd.
- 20. Determine whether the following relations are reflexive, symmetric, or transitive. Prove your claims. $D = (x, x) : x \in S$, the diagonal of $S \times S$, where S is any set.