МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Компьютерная графика»

Tema: Примитивы OpenGL

Студент гр. 8383	 Ларин А.
Преподаватель	Герасимова Т.В.

Санкт-Петербург 2021

Задание

На базе предложенного шаблона разработать программу реализующую представление тестов отсечения (glScissor), прозрачности (glAlphaFunc), смешения цветов (glBlendFunc) в библиотеке OpenGL на базе разработанных вами в предыдущей работе примитивов.

Разработанная на базе шаблона программа должна быть пополнена возможностями остановки интерактивно различных атрибутов тестов через вызов соответствующих элементов интерфейса пользователя

Общие сведения

Управление режимами работы в OpenGL осуществляется при помощи двух команд - glEnable и glDisable, одна из которых включает, а вторая выключает некоторый режим.

```
void glEnable(GLenum cap)
void glDisable(GLenum cap)
```

Обе команды имеют один аргумент – сар, который может принимать значения определяющие тот или иной режим, например, GL_ALPHA_TEST, GL_BLEND, GL_SCISSOR_TEST и многие другие.

Тест отсечения

Режим GL_SCISSOR_TEST разрешает отсечение тех фрагментов объекта, которые находятся вне прямоугольника "вырезки".

Прямоугольник "вырезки" определяется функцией glScissor:

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height); где параметры

- x, у определяют координаты левого нижнего угла прямоугольника «вырезки», исходное значение (0,0).
 - width, height ширина и высота прямоугольника «вырезки».

В приведенном ниже фрагменте программы реализуется тест отсечения. Сначала изображается группа связных отрезков не используя режим отсечения, а затем включается этот режим.

```
glEnable(GL_SCISSOR_TEST);
InitViewport(0, windH*2/3, vpW, vpH);
glScissor(0,windH*2/3,vpW/2,vpH/2);
Triangles();
Quads();
glDisable(GL_SCISSOR_TEST);
InitViewport(windW/3, windH*2/3, vpW, vpH);
glScissor(windW/3,windH*2/3,vpW/2,vpH/2);
Triangles();
```

Quads();

Тест прозрачности

Режим GL_ALPHA_TEST задает тестирование по цветовому параметру альфа. Функция glAlphaFunc устанавливает функцию тестирования параметра альфа.

void glAlphaFunc(GLenum func, GLclampf ref)

где параметр – func может принимать следующие значения:

```
GL_NEVER – никогда не пропускает
```

GL_LESS – пропускает, если входное значение альфа меньше, чем

значение ref

GL_EQUAL – пропускает, если входное значение альфа равно значению

ref

GL_LEQUAL — пропускает, если входное значение альфа меньше или равно значения ref

GL_GREATER — пропускает, если входное значение альфа больше, чем значение ref

GL_NOTEQUAL — пропускает, если входное значение альфа не равно значению ref

GL_GEQUAL — пропускает, если входное значение альфа больше или равно значения ref

GL_ALWAYS – всегда пропускается, по умолчанию,

а параметр ref — определяет значение, с которым сравнивается входное значение альфа. Он может принимать значение от 0 до 1, причем 0 представляет наименьшее возможное значение альфа, а 1 — наибольшее. По умолчанию ref равен 0.

В приведенном ниже фрагменте программы реализуется тест прозрачности glEnable(GL_ALPHA_TEST);

```
InitViewport(windW*2/3, windH*2/3, vpW, vpH); glAlphaFunc(GL_LESS, 0.7f);
```

Triangles();

Quads();

```
InitViewport(0, windH/3, vpW, vpH); glAlphaFunc(GL_GREATER, 0.7f); Triangles(); Quads(); glDisable(GL_ALPHA_TEST);
```

Тест смешения цветов

Режим GL_BLEND разрешает смешивание поступающих значений цветов RGBA со значениями, находящимися в буфере цветов.

Функция glBlendFunc устанавливает пиксельную арифметику.

void glBlendFunc(GLenum sfactor, GLenum dfactor); где параметры

- sfactor устанавливает способ вычисления входящих факторов смешения RGBA. Может принимать одно из следующих значений GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA и GL_SRC_ALPHA_SATURATE.
- dfactor устанавливает способ вычисления факторов смешения RGBA, уже находящихся в буфере кадра. Может принимать одно из следующих значений GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA и GL_ONE_MINUS_DST_ALPHA.

```
В приведенном ниже фрагменте программы реализуется тест смешения
      glEnable(GL_BLEND);
      InitViewport(windW/3, windH/3, vpW, vpH);
      glBlendFunc(GL_ONE, GL_ZERO);
      Triangles();
      Quads();
      InitViewport(windW*2/3, windH/3, vpW, vpH);
      glBlendFunc(GL ONE, GL ONE);
      Triangles();
      Quads();
      InitViewport(0, 0, vpW, vpH);
      glBlendFunc(GL_ONE, GL_SRC_COLOR);
      Triangles();
      Quads();
      InitViewport(windW/3, 0, vpW, vpH);
      glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_COLOR);
      Triangles();
      Quads();
      InitViewport(windW*2/3, 0, vpW, vpH);
      glBlendFunc(GL ZERO, GL ONE MINUS SRC COLOR);
      Triangles();
```

Прозрачность лучше организовывать используя команду glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA). Такой же

Quads();

вызов применяют для устранения ступенчатости линий и точек. Для устранения ступенчатости многоугольников применяют вызов команды glBlendFunc(GL_SRC_ALPHA_SATURATE, GL_ONE).

Выполнение

Задание вполнено на языке C++ с использованием фреймворка Qt5. Qt предоставляет возможность использование OpenGL посредством класса QGLWidget. От него отнаследован класс CustomGL.

class CustomGL : public QGLWidget, в котором переопределены методы:

- void initializeGL(); Задает контекст рендеринга. Заключается в установке фона белым
- void resizeGL(int nWidth, int nHeight);
 Для корректного масштабирования. Размер окна задается через qlViewport.
- void paintGL();
 Вызов этой функции происходит при рисовании. Она в свою очередь вызывает функцию scene где прописана вся логика рисования.

В данном классе так же прописаны шесть точек. Для них выбраны различные цвета, а так при отрисовке задается различная прозрачность. Точки расположены в форме звезды.

В функции scene происходит отрисовка примитива не экране. Последовательно вызываются функции glEnable с параметрами GL_BLEND,

GL_SCISSOR_TEST, GL_ALPHA_TEST и функции задающие параметры для них:

Для GL_BLEND: sfactor и dfactor

Для GL_SCISSOR_TEST: координаты обрезки

Для GL_ALPHA_TEST: тип и пороговое значение

Все параметры берутся из главного окна посредством сигналов при изменении

В коде главного окна инициализируются элементы интерфейса, помещаются в layout'ы и связываются сигналы со слотами.

Выводы.

Были изучены основы работы с OpenGL, отрисованы примитивы и произведены эксперименты со смешиванием, обрезкой и прозрачностью