Vv156 Lecture 13

Jing Liu

UM-SJTU Joint Institute

October 25, 2018

- Differentiation can be used to solve various optimization problems.
- 1. Maximizing or minimizing a continuous function over a finite closed interval.

Exercise

An open-top box is to be made by cutting small congruent squares from the corner of a 12cm-by-12cm sheet of tin and bending up the sides. How large should the squares cut from the corner be to make the box hold as much as possible?

Solution

ullet Produce a sketch. Let x denote the length of each small square.

$$V(x) = (12 - 2x)^{2}x$$
$$= 144x - 48x^{2} + 4x^{3}, \qquad 0 \le x \le 6$$

 \bullet V is continuous in the closed and bounded interval [0,6], so EVT guarantees that there is an absolute maximum value of V in [0,6].

Find critical points

$$V'(x) = 144 - 96x + 12x^{2}$$
$$= 12(2 - x)(6 - x)$$
$$\implies x = 2; \quad x = 6$$

Evaluate the critical points and end points

$$V(x) = (12 - 2x)^2 x$$

 $\implies V(0) = 0, \qquad V(2) = 128, \qquad V(6) = 0$

• Thus the maximum volume is 128cm³, and the squares are 2cm-by-2cm.

Exercise

Find the radius and height of the right circular cylinder of largest volume that can be inscribed in a right circular cone with radius 6cm and height 10cm.

Solution

• Produce a sketch. Let

r= radius of the cylinder h= height of the cylinder V= volume of the cylinder

 \bullet Find V as a function of only one variable,

$$V = \pi r^2 h$$

Similar triangles implies

$$\begin{split} \frac{10-h}{r} &= \frac{10}{6} \implies h = 10 - \frac{5}{3}r \\ &\implies V = \pi r^2 (10 - \frac{5}{3}r), \qquad 0 \le r \le 6 \end{split}$$

- ullet V is continuous in the closed and bounded interval [0,6], so EVT guarantees that there is an absolute maximum value of V in [0,6].
- Find critical points

$$V' = 20\pi r - 5\pi r^{2}$$
$$= 5\pi r (4 - r)$$
$$\implies r = 0; \quad r = 4$$

• Evaluate the critical points and end points

$$V(r) = \pi r^2 (10 - \frac{5}{3}r)$$

 $\implies V(0) = 0, \qquad V(4) = \frac{160}{3}\pi, \qquad V(6) = 0$

• So the maximum volume is $\frac{160}{3}\pi {\rm cm}^3$, and this happens when r=4.

2. Maximizing or minimizing a continuous function over a noncompact interval.

Exercise

A cylindrical can is to be made to hold 1L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

Solution

- Let h, r, S be the height, the radius and the surface area, respectively.
- Assume there is no waste or overlap, we need to minimise the surface area

$$S = 2\pi r^2 + 2\pi rh$$

• The volume of the can needs to be $1L = 1000 \text{ cm}^3$, so h in terms of r is

$$1000 = \pi r^2 h \implies h = \frac{1000}{\pi r^2} \implies S = 2\pi r^2 + \frac{1000}{r}$$

ullet Thus we have reduced the problem to finding a value of r in the interval $[0,\infty)$ for which S is a minimum. So EVT is NOT applicable here, however

$$S' = 4\pi r - 2000r^{-2} = 2r^{-2}(2\pi r^3 - 1000)$$

• The critical points are at r=0 and $r=\frac{10}{\sqrt[3]{2\pi}}$, by the first derivative test,

$$r<0 \qquad \qquad S'<0 \qquad \text{decreasing}$$

$$0< r<\frac{10}{\sqrt[3]{2\pi}} \qquad S'<0 \quad \text{decreasing}$$

$$\frac{10}{\sqrt[3]{2\pi}}< r \qquad \qquad S'>0 \quad \text{increasing}$$

Hence

$$r = \frac{10}{\sqrt[3]{2\pi}}$$

gives a global minimum as well as a local minimum of S.

Therefore

$$h = \frac{1000}{\pi r^2} = \frac{20}{\sqrt[3]{2\pi}} \qquad \text{and} \qquad r = \frac{10}{\sqrt[3]{2\pi}}$$

is the dimension of the can that minimises the surface area, and so the cost.

- The speed of light depends on the medium through which it travels and tends to be slower in denser media.
- In a vacuum, it travels at the speed $c=3\times 10^8 {\rm m/sec}$, but in the earth's atmosphere it travels slightly slower than that, and even slower in glass.

Fermat's principle of least time

light travels from one point to another along a path for which the time of travel is a minimum.

Exercise

Find the path that a ray of light will follow in going from a point A in a medium where the speed of light is c_1 across a straight boundary to a point B in another medium where the speed of light is c_2 .

Solution

• According to Fermat's principle, we should minimise the time of travel,

$$\mathsf{time} = \frac{\mathsf{distance}}{\mathsf{speed}}$$

ullet Let us set up the coordinate system such that point A is on the y-axis,

and that the line separating the two media is x-axis.

• In a uniform medium, where the speed of light remain constant, "shortest time" means "shortest path", and the ray of light will follow a straight line.

So the path from A to B will consist of a line segment from A to the boundary P, followed by another line segment from P to B.

• Let x be the x-coordinate of P, then

 \bullet The times required for light from A to P and from P to B, respectively, are

$$t_1 = \frac{AP}{c_1} = \frac{\sqrt{a^2 + x^2}}{c_1}, \qquad \text{and} \qquad t_2 = \frac{PB}{c_2} = \frac{\sqrt{b^2 + (d - x)^2}}{c_2}$$

ullet So the total time from A and to B in terms of x is given by

$$t = t_1 + t_2 = \frac{\sqrt{a^2 + x^2}}{c_1} + \frac{\sqrt{b^2 + (d - x)^2}}{c_2}$$

• This expresses t as a differentiable function of x for $0 \le x \le d$, and

$$\frac{dt}{dx} = \frac{x}{c_1\sqrt{a^2 + x^2}} - \frac{d - x}{c_2\sqrt{b^2 + (d - x)^2}}$$

is continuous, and is negative at x=0 and is positive x=d.

ullet Therefore IVT guarantees there is a point between 0 and d such that

$$0 = \frac{x}{c_1\sqrt{a^2 + x^2}} - \frac{d - x}{c_2\sqrt{b^2 + (d - x)^2}}$$

• There is only one such point since $\frac{d^2t}{dx^2} > 0$ for 0 < x < d.

ullet In terms of angles, $heta_1$ and $heta_2$

we have

$$\frac{\sin \theta_1}{c_1} - \frac{\sin \theta_2}{c_2} = 0$$

which is known as the Snell's law or the law of refraction.