NETWORK DEVICES

Computer Networking

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

•

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco José de Caldas

2024-III

Outline

1 Cables - trammit

2 Devices + decisions (setup)

Outline

Cables

2 Devices

Cables

- Cables are the most important part of a network.
- They are the physical medium through which data is transmitted.

There are different types of cables, and each one has resource characteristics.

The most common types of cables are: Coaxidi, Twitted Pair, an

Fiber Optic.

Cables

- Cables are the most important part of a network.
- They are the **physical medium** through which data is transmitted.
- There are different types of cables, and each one has its ow characteristics
- The most common type of cables are: Chaxiai, Twisted Pair, an

Cables

- Cables are the most important part of a network.
- They are the **physical medium** through which data is transmitted.

• There are different types of cables, and each one has its own characteristics.

• The most common types of cables are: Coaxial, Twisted Pair, and

Plastic light palse

History of Wire and Cable

Coaxial Cables I

- Coaxial cables are used in cable television systems, telephone companies, and the Internet.)
- They are used for long-distance communication, and can carry high-speed data.
- They are more **expensive** than twisted pair cables, but they are more **reliable** and have a **longer lifespan**.

Coaxial Cables II

They are made of a **copper core**, surrounded by a **plastic insulator**, and a **metal shield**.

Twisted Pair Cables

- Twisted pair cables are the most common type of cable used in computer networks.
- They are made of two **copper** wires twisted together, and are used for **short-distance** communication.
- They are used in Ethernet networks, and can carry high-speed data.
- They are inexpensive, easy to install, and flexible.

Twister Pair Cables Categories I

Twister Pair Cables Categories II

	Category	Maximum Speed	Max. Length	Frequency	SHIELDING	Application
	CAT 1	Up to Mbps(Garry only Voice)		1MHz	Unshielded	Old telephone cabling
	CAT 2	Up to 4Mbps		4MHz	Unshielded	Token Ring Network
	CAT 3	Up to 10Mbps	100m	16MHz	Unshielded	Token Ring & 10BASE-T Network
	CAT 4	Up to 16Mbps	100m	20MHz	Unshielded	Token Ring Network
	CAT 5	Up to 100Mbps	100m	100MHz	Unshielded	Ethernet, Fast ethernet and Token Ring
	CAT 5e	Up to 1Gbps	100m	100MHz	Unshielded or Shielded	Ethernet, Fast ethernet & Gigabit ethernet
	CAT 6	Up to 10Gbps	100m	250MHz	Unshielded or Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 10G Ethernet(37 - 55 meter)
(CAT 6a	Up to 10Gbps	100m	500MHz	Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 10G Ethernet(37 - 55 meter)
	CAT 7	Up to 10Gbps	100m	600MHz	Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 10G Ethernet(100 meter)
	CAT 8	Up to 40Gbps	100m	2000MHz	Shielded	Ethernet, Fast ethernet, Gigabit ethernet & 25G- 40G Etherne (30 meter)

Fiber Optic Cables

- Fiber optic cables are used in high-speed networks, such as the nternet and cable television systems.
- They are used for long-distance communication, and can carry high-speed data.
- They are more **expensive** than coaxial and twisted pair cables, but they are more **reliable** and have a longer **lifespan**.

Fiber Optic Cables Conponents

They are made of glass or plastic fibers, and use light to transmit data

Computer Networking

Outline

Cables

2 Devices

Network Devices

- Network devices are the hardware components that make up a network.
- They are used to connect computers, printers, and other devices to the network.
- There are different types of network devices, such as routers switches, and hubs.
- Each device has its own function, and is used to perform specific tasks on the network.

Network Devices

- Network devices are the hardware components that make up a network.
- They are used to connect computers, printers, and other devices to the network.
- There are different types of network devices, such as routers, switches, and hubs.
- Each device has its own function, and is used to perform specific tasks on the network.

- Routers are used to connect different networks together.
- They are used to route data between networks, and to filter and forward data packets.
- They works at the network layer of the OSI model, and use IP addresses to determine the best path for data to travel.
- They use the **Border Gateway Protocol** (*BGP*) to exchange routing information with other routers.

- Routers are used to connect different networks together.
- They are used to route data between networks, and to filter and forward data packets.
- They works at the network layer of the OSI model, and use IP addresses to determine the best path for data to travel.
- They use the **Border Gateway Protocol** (*BGP*) to exchange routing information with other routers.

- Routers are used to connect different networks together.
- They are used to route data between networks, and to filter and forward data packets.
- They works at the network layer of the OSI model, and use IP addresses to determine the best path for data to travel.
- They use the **Border Gateway Protocol** (*BGP*) to exchange routing information with other routers.

- Routers are used to connect different networks together.
- They are used to route data between networks, and to filter and forward data packets.
- They works at the network layer of the OSI model, and use IP addresses to determine the best path for data to travel.
- They use the **Border Gateway Protocol** (*BGP*) to exchange routing information with other routers.

Routers in a WAN

Switches

- Switches are used to connect devices on the same network.
- They are used to forward data packets between devices, and to filter and forward data packets.
- They works at the data link layer of the OSI model, and use MAC addresses to determine the best path for data to travel.

Switches

- **Switches** are used to connect devices on the same network.
- They are used to forward data packets between devices, and to filter and forward data packets.
- They works at the data link layer of the OSI model, and use MAC addresses to determine the best path for data to travel.

Switches

- Switches are used to connect devices on the same network.
- They are used to forward data packets between devices, and to filter and forward data packets.
- They works at the data link layer of the OSI model, and use MAC addresses to determine the best path for data to travel.

Switches in a LAN

Hubs

- **Hubs** are used to connect devices on the same network.
- They are used to broadcast data between devices, and to forward data packets to all devices on the network.
- They works at the physical layer of the OSI model, and use electrical signals to transmit data between devices.

Hubs

- Hubs are used to connect devices on the same network.
- They are used to broadcast data between devices, and to forward data packets to all devices on the network.
- They works at the physical layer of the OSI model, and use electrical signals to transmit data between devices.

Hubs

- Hubs are used to connect devices on the same network.
- They are used to broadcast data between devices, and to forward data packets to all devices on the network.
- They works at the physical layer of the OSI model, and use electrical signals to transmit data between devices.

Hubs in a LAN

Repeaters

- Repeaters are used to extend the range of a network.
- They are used to amplify and retransmit data signals between devices.
- They are sometimes called signal boosters, and are used to overcome the attenuation of data signals over long distances.
- Also, they could be known as bridges, and are used to connect two networks together.

Devices per Layer

Case of Study: Network Architecture

Outline

Cables

2 Devices

- Cables are the most important part of a network, and are used to transmit data between devices.
- There are different types of cables, such as coaxial, twisted pair, and fiber optic.
- Network devices are the hardware components that make up a network, and are used to connect devices together.
- There are different types of network devices, such as routers, switches, and hubs.

- Cables are the most important part of a network, and are used to transmit data between devices.
- There are different types of cables, such as coaxial, twisted pair, and fiber optic.
- Network devices are the hardware components that make up a network, and are used to connect devices together.
- There are different types of network devices, such as routers, switches, and hubs.

- Cables are the most important part of a network, and are used to transmit data between devices.
- There are different types of cables, such as coaxial, twisted pair, and fiber optic.
- Network devices are the hardware components that make up a network, and are used to connect devices together.
- There are different types of network devices, such as routers, switches, and hubs.

- Cables are the most important part of a network, and are used to transmit data between devices.
- There are different types of cables, such as coaxial, twisted pair, and fiber optic.
- Network devices are the hardware components that make up a network, and are used to connect devices together.
- There are different types of network devices, such as routers, switches, and hubs.

Outline

Cables

2 Devices

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/computer-networking

