- 1. Sigui X un conjunt i $\{\tau_i\}_{i\in I}$ una família de topologies en X. És $\bigcup T_i \subset \mathcal{P}(X)$ una topologia? És base per alguna topologia? I què podem dir de $\bigcap T_i \subset \mathcal{P}(X)$?
- 2. Sigui X un conjunt amb un operador $\Phi \colon \mathcal{P}(X) \to \mathcal{P}(X)$ que compleix:
 - (a) Si $A \subset X$, aleshores $A \subset \Phi(A)$.
 - (b) Si $A, B \subset X$ aleshores $\Phi(A \cup B) = \Phi(A) \cup \Phi(B)$.
 - (c) $\Phi(\emptyset) = \emptyset$.
 - (d) $\Phi(\Phi(A)) = \Phi(A)$.

Aleshores es pot definir una topologia on A és tancat sii $\Phi(A) = A$.

- Què obtenim si definim el següent operador: fixat $B \subset X$ considera $\Phi(A) = A \cup B$?
- Un altre exemple a $\mathbb R$ i la clausura Cl agafada a la topologia usual, prenem $\Phi(A) = \operatorname{Cl}(A) \cup \{0\}$ si A no està acotat i $\Phi(A) = \operatorname{Cl}(A)$ si A està acotat. Comproveu que compleix els requisits.
- 3. Sigui $X = \mathbb{Z}$. Definim els següents subconjunts

$$U_n = egin{cases} \{n\} & n ext{ senar} \\ \{n-1, n, n+1\} & n ext{ parell} \end{cases}$$

i definim la família $\mathcal{B} = \{U_n | n \in \mathbb{Z}\}.$

- (a) Proveu que la família τ formada per tots els subconjunts de X que es poden escriure com unions d'elements de \mathcal{B} és una topologia.
- (b) Donats enters n < m, definim $I_{n,m} = \{n, n+1, \ldots, m\}$, calculeu $\operatorname{Int}(I_{n,m})$, $\operatorname{Cl}(I_{n,m})$ i $\partial I_{n,m}$.
- (c) Sigui $f_k: X \to X$ definida com $f_k(x) = x + k$, per a quins valors de k és f_k un homeomorfisme?
- 4. Sigui X un espai topològic i $A \subset X$. Diem que A és un tancat regular si A = Cl(Int(A)).
 - (a) Proveu que si $U \subset X$ és obert, aleshores B = CI(U) és un tancat regular.
 - (b) Siguin $A, B \subset X$ tals que A és un tancat regular. Proveu que si $\partial A \cap \operatorname{Int}(B) \neq \emptyset$ aleshores $\operatorname{Int}(A) \cap \operatorname{Int}(B) \neq \emptyset$.
- 5. Sigui X un conjunt no numerable i fixem $x_0 \in X$. Considereu la família de subconjunts de X

$$\mathcal{T} = \left\{ U \subseteq X \mid U = \emptyset \text{ o bé } x_0 \in U \right\}$$

- (a) Demostreu que (X, T) és un espai topològic.
- (b) Demostreu que si U és un obert diferent del buit, aleshores CI(U) = X
- (c) Demostreu que si C és un tancat diferent de X, aleshores $Int(C) = \emptyset$
- (d) Demostreu que (X, \mathcal{T}) no admet cap base numerable d'oberts.
- 6. Sigui X un espai topològic i $A \subseteq X$. Demostreu:
 - (a) $Int(A) = \emptyset$ si i només si $X \setminus A$ és dens a X

- (b) $Int(A) \neq \emptyset$ si i només si per a tot subconjunt dens D de X, $D \cap A \neq \emptyset$
- (c) A és un obert si i només si tot subconjunt B de X tal que $A \cap B = \emptyset$, satisfa $A \cap CI(B) = \emptyset$
- 7. Sigui $f: X \to Y$ una aplicació entre espais topològics.
 - (a) f és oberta sii $f(Int(A)) \subset Int(f(A))$.
 - (b) Sigui f és contínua i oberta, i exhaustiva. Aleshores si \mathcal{B} és una base de la topologia a X, $f(\mathcal{B})$ és una base per la topologia de Y.