```
Week 8 Studio 1
```

Activity 1

supply voltage - relational speed characteristic for constant load Heig foy car

constant load = floot ground

or contact gradient slope

parameter ret no = 61 mod 50-11 = 12

Vm = 7.0 V

Torque load a of sliding har

Molor wHage Vm (v)	Rotational speed N (KPM)
7	971
8	1260
9	1572
10	1962
12	2366
Va. B. 3	2525

w= Vm - Rm2m

Torque = contamt =) Im a Torque Rm, ke, Im contamt =) plot is linear

N= 327,94 Vm - 1339,5

The graph would not pun through the origin as $Vm \neq 0$ when N = 0

Activity 2

2

Force exorted on current - conging conductor $F = BIL \sin \Phi$

For PMDC, B, I, & are contant =) TshuH = 14 Im

Im - w relationship for a fixed motor witage Um

1	Mutor cump 2m (A)	ryM	Angular speed w (1
orque load setting	MOTO	564	591)
1213 range	0,83	30 /	
1/2 range	v.64	1306	136.8
	0.44	2235	234,0
	0.20	3020	316.3
ill range	W 20		
~1/10 rangh	0.15	337 7	35316

$$w = \frac{Vm}{ke} - \frac{km^2m}{lke} = \sum_{k=0}^{\infty} \frac{Vm - ake}{km}$$

5, stall current when
$$\alpha = 0$$
 = 0 , 9687 A $\alpha = 0$, 9687 A

5. stall current when
$$W=0$$
 = 0 = 0.9687 = $421 \text{ rad} v^{-1}$ = 4020 RPM

In a practical motor, no load speed account for frictional toque prevent Small current still needed to maintain motor speed even with no ext light

7.
$$Rm = \frac{vm}{2m}$$
 when $a=0$

$$=\frac{12.0}{0.9647}=12.4\Omega$$

$$ke = \frac{Vm}{a}$$
 when $Jm = 0$

$$= 0.02 8 \frac{Vs}{rad}$$

Activity 3

prease terminal relocally varied using IWM = Duty (yell x Supply without

For a practical motor that needs to be opened hi-directionally, revent cumul

by using a 1-1 bridge around

Integrated around L2931) chip is a dual H- Bridge motor contable

contain) 2 H-bridge, and winthis 2 motors

- 1. upload code
- connect CH1 to pins 5, 6, 7 to see output
- change for to 280 M =) topp = 220 Ms (check with panodin Bruwje)
- 4. change to to 1000 Ms =) andy cycle much lower
- connect the circum All gound mux be common

PWM Frequency (ICH2)	(in)	(fon (MI)	pwm noire audible:
	1000	5W	Yes
2	500	250	Yes
4	250	125	,le1
10	100	50	(~1
w	50	25	M

humming from motor caused by forque nipple.

human frog range who to which 2

I would ray 4-10/1/2 is andble and higher frequency to deting uith

7.

Duty Cycle(%)	ton(M)	p.p.M		
50	25	22		*
60	30	42		1 100000 ()
70	35			Increasing trail
80	40		_	
90	45			
100	29			V1 w1

8. All a for loop