

XX CONGRESSO ACADÊMICO SOBRE DEFESA NACIONAL

DroneSwarm2D: Um Simulador de Enxame de Drones Autônomos para o Estudo de Táticas Defensivas Distribuídas

Autores	Instituição de Ensino
João Paulo de Andrade Dantas	ITA
Lucas Silva Lima	ITA
Rafael Duarte Rocha	ITA
Rafael Hoffmann Giannico	ITA
Denys Derlian Carvalho Brito	ITA

ROTEIRO

1. Contextualização

- Definição do Problema
- 2. Proposta de Solução
 - ☐ Defesa Autônoma e Distribuída usando o mesmo tipo de vetor
 - ☐ Delimitação de Escopo
- 3. Fundamentação Teórica
 - Algoritmos Distribuídos
 - ☐ Redes *Ad Hoc*
- 4. Metodologia
 - ☐ Simulador *DroneSwarm2D*
 - ☐ Algoritmos de Defesa
 - ☐ Modelagem de Ameaças
 - ☐ Táticas Comparadas e Métricas de Avaliação
- 5. Próximos Passos
- 6. Referências

Emprego de drones de pequeno porte em conflitos armados

Figura 1: Drone de pequeno porte operando em ambiente urbano durante missão ofensiva.

CHEC

Emprego de drones de pequeno porte em conflitos armados

- Proliferação massiva: Mais de 80 países utilizam drones de pequeno porte para fins militares
- Democratização tecnológica:
 - Custos reduzidos de fabricação
 - Sensores miniaturizados
 - Algoritmos de navegação acessíveis
- Fácil construção: Adaptação de plataformas comerciais para fins hostis

Características de drones de pequeno porte

- Baixo Radar Cross Section (RCS)
- ☐ Voo em baixa altitude
- Perfil de navegação não balístico
- Construção extremamente versátil

Figura 2: Exemplo de drone de papelão, de baixa assinatura radar, adaptado para combate.

Enxame de Drones

Figura 3: Uso massivo de drones de pequeno porte.

Limitações da Defesa Atual para esse novo desafio

Arquiteturas centralizadas: Pontos únicos de falha

Estoques limitados vs. ataques em massa

Sukhoi Su-57 (US\$ 34.4 M) destruído por drone de pequeno porte e baixo custo (10/06/24)

Figura 4: Imagem satélite pós-ataque realizado por drone de pequeno porte à aeronave militar.

Sukhoi Su-57 (US\$ 34.4 M) destruído por drone de pequeno porte e baixo custo (10/06/24)

Figura 5: Imagem satélite pré e pós-ataque realizado por drone de pequeno porte à aeronave militar.

CHEC

Problema

Uma nova era de ameaças aéreas:

"A democratização da tecnologia de drones transformou pequenas aeronaves em armas acessíveis e letais"

COMO DEFENDER ÁREAS CRÍTICAS CONTRA ATAQUES DE ENXAMES DE DRONE DE PEQUENO PORTE COORDENADOS?

PROPOSTA DE SOLUÇÃO

Proposta: Defesa Autônoma e Distribuída usando o mesmo tipo de vetor

Conceito Central: Enxame de drones defensivos autônomos operando em rede ad hoc descentralizada

- Sem comando central: Eliminação de pontos únicos de falha
- Coordenação emergente: Comportamento coletivo através de regras locais
- Tomada de decisão distribuída: Cada agente decide com base em informações parciais

Vantagens Esperadas: Maior resiliência, escalabilidade e custo-efetividade

Escopo do Trabalho

Foco da Pesquisa:

- ☐ Camada de aplicação (OSI): Algoritmos de coordenação e diretor de navegação
- ☐ Simulação 2D: *DroneSwarm2D*
- ☐ Planejamento clássico: Comportamento determinístico
- ☐ Comunicação idealizada: Troca de mensagens em raio fixo
- ☐ Tratamento de Falhas: Perdas de mensagens, falha de sensor, bipartição
 - de rede, etc

Não Abordado: Aspectos de *hardware*, protocolos de rede de baixo nível, segurança criptográfica e artefato bélicos destinados a neutralização de drones de pequeno porte

FUNDAMENTAÇÃO TEÓRICA

Algoritmos Distribuídos

Definição: Algoritmos projetados para execução em sistemas onde múltiplos agentes processam e se comunicam de forma assíncrona e descentralizada, sem depender de um controlador central.

Características Fundamentais:

- ☐ Processamento paralelo: Múltiplos nós executam simultaneamente
- ☐ Comunicação por mensagens: Troca de informações entre pares
- ☐ Decisão local: Cada agente decide com base em dados parciais
- ☐ Coordenação emergente: Comportamento coletivo surge das interações

CHEC

Exemplo Comparativo (Eleição)

Vantagens:

- ☐ Fácil entendimento
- ☐ Fácil implementação

Exemplo Comparativo (Eleição)

Figura 7: Diagrama de eleição distribuída usando o algoritmo *Bully*.

Redes Ad Hoc

Definição: Redes descentralizadas que se formam dinamicamente entre dispositivos móveis, sem necessidade de infraestrutura fixa como roteadores, torres ou estações base.

Características Principais:

- ☐ Auto-organização: Rede se forma automaticamente
- ☐ Cada nó é roteador: Retransmite mensagens de outros
- ☐ Topologia dinâmica: *Links* aparecem e desaparecem
- Multi-salto: Mensagens passam por vários nós
- ☐ FANETs (Flying Ad hoc Network)

Simulador *DroneSwarm2D*

Figura 8: Interface principal do simulador.

Características:

- ☐ Linguagem: Python
- Visualização: tempo real
- ☐ Extensível: Env. RL

Interface:

- ☐ Simulação: drones e ambiente
- ☐ Estados: representação interna dos
 - agentes

Simulador *DroneSwarm2D*

Conceito central: Drones possuem visão restrita do ambiente e sensor somente de avistamento (direção)

Três Componentes:

- Matriz de Recência: Atualidade [0,1] por região
- Matriz de Direção: Vetores de movimento observados
- Posição Própria: Referência para integração

Mecanismos:

- Decaimento exponencial
- Junção seletiva de informações
- Validação por coerência

CHEC

Simulador *DroneSwarm2D*

Matriz de Recência e direção: Representação vetorial que condensa informação de quão recente foi uma detecção, onde e com qual direção (conhecimento que emerge da rede distribuída)

Figura 9: Representação interna de drone defensivo: matriz de recência e direção.

CHEC

Simulador DroneSwarm2D

Junção de estados: Processo de fusão de estados internos entre drones por comunicação *ad hoc*

Figura 10: Junção de estados internos.

Interceptação baseada em navegação proporcional

Figura 11: Geometria da interceptação.

Problema: Calcular trajetória ótima para interceptar alvo móvel Condição de interceptação:

$$||r+v_tt||=v_ct$$

Solução:

- Equação quadrática em t
- Tempo ótimo de interceptação
 - Direção do ponto de encontro

Estratégia de Posicionamento Passivo

Figura 12: Formação de defesa em camadas com posicionamento estratégico dos drones.

Holding Ativo: Estado de espera estratégica não estático

Ações:

- Identificar ameaça prioritária
- Calcular trajetória prevista
- Posicionar-se interceptando
- Coordenar com vizinhos

Resultado: Defesa em camadas e cobertura otimizada

Modelagem dos Drones Inimigos

Figura 13: Diversidade de padrões de ataque modelados.

Comportamento Adaptativo

- Trajetórias variadas: Direta, zigzag, espiral, oscilatória
- Detecção de defensores: Decisão entre ataque e evasão

Algoritmo de agressividade adaptativa com base em distância ao alvo.

Parâmetros

d: Distância ao alvo

R: Raio defensivo

α: Agressividade [0,1]

Comportamento

 \square Se $r < p_{attack}$: Ataque direto

☐ Caso contrário: Evasão temporária

Resultado: Ameaças dinâmicas e pseudo-aleatórias que se adaptam

à defesa

Exemplo de Cenário: Tática Descentralizada

Figura 14: Simulação do controle centralizado em cenário base.

Próximos Passos

Implementação:

- Implementar cenários com as táticas a serem comparadas
- ☐ Realizar simulações em lote
- Colher resultados e gerar visualizações (imagem e vídeo)

Avaliação:

- ☐ Discriminar resultados obtidos por cenário com testes estatísticos
- ☐ Concluir trabalho, comparando o resultado obtido com o esperado

Referências Principais

- BARREIROS, D. Projeções sobre o Futuro da Guerra: Tecnologias disruptivas e mudançasparadigmáticas (2020–2060).
 IE-UFRJ Discussion Paper, 2019.
- FIGUEIREDO, B. M. The Use of Uncrewed Aerial Systems by Non-State Armed Groups: ExploringTrends in Africa. UNIDIR, 2024.
- GONG, J. et al. Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition. IEEE Transactions
 on Aerospace and Electronic Systems, 2023.
- DANTAS, J. P. A. et al. ASA: A Simulation Environment for Evaluating Military Operational Scenarios. Proceedings of the 20th International Conference on Scientific Computing, 2022.
- SILVA, L. B. **Plataforma de cossimulação para sistemas autônomos com múltiplos drones**. Tese(Doutorado) Universidade Federal do Ceará, 2019.
- CATARRO, T. et al. Energy-Aware PSO-based Topology Control in FANETs. Ad Hoc Networks, 2024. In press.
- BEKMEZCI, I.; SAHINGOZ, O. K.; TEMEL, S. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, v. 11, n. 3, p. 1254–1270, 2013.
- TANENBAUM, A. S.; VAN STEEN, M. **Distributed Systems: Principles and Paradigms**. Pearson Education, 2010.
- LYNCH, N. A. Distributed Algorithms. Morgan Kaufmann, 1996.
- RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: A Modern Approach. 3rd ed. Pearson Education, 2016.
- GHALLAB, M.; NAU, D.; TRAVERSO, P. Automated Planning: Theory and Practice. Morgan Kaufmann, 2004.
- WOOLDRIDGE, M. An Introduction to MultiAgent Systems. 2nd ed. John Wiley & Sons, 2009.
- GUPTA, L.; JAIN, R.; VASZKUN, G. Survey of important issues in UAV communication networks. IEEE Communications
 Surveys & Tutorials, v. 18, n. 2, p. 1123–1152, 2016.

Muito Obrigado!

Lucas Silva Lima limalsl@ita.br

Instituto Tecnológico de Aeronáutica