BINARY SEARCH TREES

Problem Solving with Computers-II

Binary Search

- Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a [lo] ≤ value ≤ a [hi].
- Ex. Binary search for 33.

Trees

A tree has following general properties:

- One node is distinguished as a **root**;
- Every node (exclude a root) is connected by a directed edge *from* exactly one other node;

A direction is: *parent -> children*

• Leaf node: Node that has no children

Which of the following is/are a tree?

Binary Search Trees

What are the operations supported?

What are the running times of these operations?

How do you implement the BST i.e. operations supported by it?

Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations	
Min	
Max	
Successor	
Predecessor	
Search	
Insert	
Delete	
Print elements in order	

Example keys: 42, 32, 45, 12, 41, 50

Binary Search Tree – What is it?

- Each node:
 - stores a key (k)
 - has a pointer to left child, right child and parent (optional)
 - Satisfies the Search Tree Property

For any node, Keys in node's left subtree < Node's key Node's key < Keys in node's right subtree

Which of the following is/are a binary search tree?

BSTs allow efficient search!

- Start at the root;
- Trace down a path by comparing **k** with the key of the current node x:
 - If the keys are equal: we have found the key
 - If k < key[x] search in the left subtree of x
 - If k > key[x] search in the right subtree of x

Insert

- Insert 40
- Search for the key
- Insert at the spot you expected to find it

Min/Max

Which of the following described the algorithm to find the maximum value in the BST?

- A. Follow right child pointers from the root, until a node with no right child is encountered, return that node's key
- B. Follow left child pointers from the root, until a node with no left child is encountered, return that node's key
- C. Traverse to the last level in the tree and traverse the tree left to right, return the key of the last node in the last level.

Define the BST ADT

Operations	
Search	42
Insert	
Min	
Max	$\begin{pmatrix} 32 \end{pmatrix} \begin{pmatrix} 45 \end{pmatrix}$
Successor	
Predecessor	
Delete	$ \left(\begin{array}{c} 12 \right) \left(\begin{array}{c} 41 \right) $
Print elements in order	

```
class BSTNode {
public:
  BSTNode* left;
  BSTNode* right;
  BSTNode* parent;
  int const data;
  BSTNode(int d) : data(d) {
    left = right = parent = nullptr;
```

Max: find the maximum key value in a BST

Alg: int BST::max()

Maximum = 20

Min: find the minimum key value in a BST

```
Alg: int BST::min() {
Start at the root.
Follow
        child
pointers from the root, until
a node with no left child is
encountered.
Return the key of that node
```


Min = ?

Traversing down the tree

• Suppose n is a pointer to the root. What is the output of the following code:

```
n = n->left;
n = n->right;
cout<<n->data<<endl;
 A. 42
 B. 32
 C. 12
 D. 41
 E. Segfault
```


Traversing up the tree

- Suppose n is a pointer to the node with value 50.
- What is the output of the following code:

```
n = n-parent;
  = n->parent;
n = n->left;
cout<<n->data<<endl;
 A. 42
 B. 32
 C. 12
 D. 45
 E. Segfault
```


In order traversal: print elements in sorted order

Algorithm Inorder(tree)

- 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
- 2. Visit the root.
- 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

Algorithm Preorder(tree)

- 1. Visit the root.
- 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
- 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use to recursively clear the tree!

Algorithm Postorder(tree)

- 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
- 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
- 3. Visit the root.

Predecessor: Next smallest element


```
int bst::predecessor(BSTNode* n, int value) const{
   if(!n) return std::numeric_limits<int>::min();
   if(n->left){
       //Case 1
       return _____;
   }else{
       //Case 2
   }
}
```

- What is the predecessor of 32?
- What is the predecessor of 45?

```
Fill in the blank for case 1 using min/max helper functions
A.n->left;
B.min(n)
C.max(n)
D.min(n->left)
E.max(n->left)
```

Successor: Next largest element

- What is the successor of 45?
- What is the successor of 50?
- What is the successor of 60?

Delete: Case 1 - Node is a leaf node

- Set parent's (left/right) child pointer to null
- Delete the node

Delete: Case 2 - Node has only one child

Replace the node by its only child

Delete: Case 3 - Node has two children

 Can we still replace the node by one of its children? Why or Why not?