NAME:

SECTION:

1. A wire of length L carries a current $I = I(\hat{z} - \hat{y})$ within magnetic field $B = B\hat{x}$. What is F?

- a) $ILB(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}})$
- **b)** $ILB(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}} + \hat{\boldsymbol{z}})$
- c) $ILB(\hat{\boldsymbol{y}} + \hat{\boldsymbol{z}})$
- d) $ILB(-\hat{\boldsymbol{y}} \hat{\boldsymbol{z}})$
- e) $ILB(-\hat{\boldsymbol{x}} \hat{\boldsymbol{y}})$

2. A magnetic field decreases in intensity from 3T to 1T over the course of two seconds. A loop of radius 1m perpendicular to the field experiences what EMF in Volts?

- **a**) 1
- b) π
- **c)** 0.12
- **d)** 0
- **e**) 3

3. If the loop were instead held at an angle of 45° to the field, what would be the EMF?

- **a)** 0.5
- **b)** $\pi/2$
- c) $\sqrt{2}/2$
- **d)** $\pi\sqrt{2}/2$
- **e**) 0

- **4.** Two parallel wires of length L separated by a distance d carry current I. What is the magnetic field at the location of one of the wires?
- a) $\frac{\mu_0 I}{2\pi d}$
- b) $\frac{\mu_0 I^2}{2\pi d}$
- **c)** 0
- d) $\frac{\mu_0 I}{2\pi d^2}$
- e) $\mu_0 I$
- 5) What is the force of one wire on the other if they: carry current in the same direction; carry current in opposite directions?
- a) $0; \frac{\mu_0 I^2}{2\pi d} L$
- **b)** $\frac{\mu_0 I^2}{2\pi d} L; 0$
- **c)** 0; 0
- **d)** $\frac{\mu_0 I^2}{2\pi d} L; -\frac{\mu_0 I^2}{2\pi d} L$

NAME: Key

SECTION:

1. A wire of length L carries a current $I = I(\hat{z} - \hat{y})$ within magnetic field $B = B\hat{x}$. What is F?

a)
$$ILB(\hat{x} + \hat{y})$$

b)
$$ILB(\hat{x} + \hat{y} + \hat{z})$$

$$\mathbf{O}$$
 $ILB(\hat{y} + \hat{z})$

d)
$$ILB(-\hat{\boldsymbol{y}} - \hat{\boldsymbol{z}})$$

e)
$$ILB(-\hat{\boldsymbol{x}} - \hat{\boldsymbol{y}})$$

2. A magnetic field decreases in intensity from 3T to 1T over the course of two seconds. A loop of radius 1m perpendicular to the field experiences what EMF in Volts?

$$\mathcal{L} = -\frac{\Delta \Phi}{\Delta t} = -\frac{A \Delta B}{\Delta t} = -\frac{\pi r^2 (B_z - B_1)}{\Delta t}$$

$$\mathfrak{g}$$

$$= \frac{\pi \left(\ln \right)^2 \left(3T - 1T \right)}{2s}$$

e) 3

3. If the loop were instead held at an angle of 45° to the field, what would be the EMF?

b)
$$\pi/2$$

c)
$$\sqrt{2}/2$$

$$\xi = \frac{\sqrt{2}}{2} \pi V$$

$$\pi\sqrt{2}/2$$

4. Two parallel wires of length L separated by a distance d carry current I. What is the magnetic field at the location of one of the wires?

b)
$$\frac{\mu_0 I^2}{2\pi d}$$

c) 0

d)
$$\frac{\mu_0 I}{2\pi d^2}$$

e) $\mu_0 I$

$$B\Delta L = 2\pi\Delta B = \mu_0 I$$

$$B = \frac{\mu_0 I}{2\pi\Delta}$$

5) What is the force of one wire on the other if they: carry current in the same direction; carry current in opposite directions?

a)
$$0; \frac{\mu_0 I^2}{2\pi d} L$$

b)
$$\frac{\mu_0 I^2}{2\pi d} L; 0$$

c) 0; 0

See sol to previous wksht