目录

第	1章	基本概念	2
	1.1	微分方程及其解的定义	2
	1.2	微分方程及其解的几何解释	4
第	2 章	初等积分法	6
	2.1	恰当方程	6
	2.2	变量分离的方程	8
	2.3	一阶线性方程	13
	2.4	初等变换法	19
	2.5	积分因子法 (Integrating Factor)	24
	2.6	应用举例	30
第	3 章	存在和唯一性定理	35
	3.1	皮卡存在和唯一性定理	35
	3.2	佩亚诺存在定理	37
	3.3	解的延伸	40
	3.4	比较定理及其应用	42
第	4 章	奇解	45
	4.1	一阶隐式微分方程	45
		4.1.1 证明与总结	45
		4.1.2 习题	46
	4.2	奇解	48
	4.3	包络	50
第	5 章	高阶微分方程	51
	5.1		51

目录 2

	5.2	n 维线性空间中的微分方程	52			
	5.3	解对初值和参数的连续依赖性	56			
	5.4	解对初值和参数的连续可微性	56			
第	6 章	线性微分方程组	58			
	6.1	一般理论	58			
		6.1.1 证明与总结	58			
		6.1.2 习题	59			
	6.2	常系数线性微分方程组	63			
		6.2.1 证明与总结	63			
		6.2.2 习题	65			
	6.3	高阶线性微分方程	77			
		6.3.1 证明与总结	77			
		6.3.2 习题	79			
第	7章	幂级数解法	89			
	7.1	柯西定理	89			
	7.2	幂级数解法	91			
	7.3	勒让德多项式	94			
		7.3.1 证明与总结	94			
		7.3.2 习题	95			
	7.4	广义幂级数解法	98			
		7.4.1 证明与总结	98			
		7.4.2 习题	99			
	7.5	贝塞尔函数	104			
第	8 章	定性理论与分支理论初步 1	108			
	8.2	解的李雅普诺夫稳定性	108			
参	<u>参考文献</u> 110					

前言

这份习题解答的开始制作日期我也记得不太真切了,大概是 2020 年的时候吧,当时用 $T_{\rm E}X$ 把手写的答案全部敲了一遍,工作量着实不小。

2022 年 6 月份,因一次偶然的机会,我又重新审视了一遍这份习题解答,发现里面有比较多的排版问题,所以本人花了几天时间将源代码修改了一番。但无论怎样,错误和不规范的地方总是不可避免的,如果您在参考这份习题解答的时候发现了任何问题,希望您能够及时向我反馈,让我们一起将这份文档变得更好。

而且,这份习题解答目前只完成了前面 7 章的习题,后续章节可能也会进行完善, 当然,也欢迎热心的朋友通过 pull request 来进行助力。

• 仓库: https://github.com/SwitWu/ODE-DingTongren-Solutions

• 邮箱: sywumath@gmail.com

2022 年 6 月 15 日 武汉珞珈山

基本概念

微分方程及其解的定义 1.1

1. 验证下列函数是右侧相应微分方程的解或通解:

(1)
$$y = C_1 e^{2x} + C_2 e^{-2x} : y'' - 4y = 0;$$

(2)
$$y = \frac{\sin x}{x} : xy' + y = \cos x;$$

(3)
$$y = x \left(\int x^{-1} e^x dx + C \right) : xy' - y = xe^x;$$

$$(4) \ y = \begin{cases} -\frac{1}{4}(x - C_1)^2, & -\infty < x < C_1, \\ 0, & C_1 \le x \le C_2, \\ +\frac{1}{4}(x - C_2)^2, & C_2 < x < +\infty, \end{cases}$$

证明: (1) $y = C_1 e^{2x} + C_2 e^{-2x} \Rightarrow y' = 2C_1 e^{2x} - 2C_2 e^{-2x} \Rightarrow y'' = 4C_1 e^{2x} + 4C_2 e^{-2x} \Rightarrow x'' = 4C_1 e^{2x} + 4C_2 e^{2x} \Rightarrow x'' = 4C_1 e^{2x} + 4$ y'' - 4y = 0;

(2)
$$y = \frac{\sin x}{x} \Rightarrow y' = \frac{x \cos x - \sin x}{x^2} \Rightarrow xy' + y = \frac{x \cos x - \sin x}{x} + \frac{\sin x}{x} = \cos x;$$

(2)
$$y = \frac{\sin x}{x} \Rightarrow y' = \frac{x \cos x - \sin x}{x^2} \Rightarrow xy' + y = \frac{x \cos x - \sin x}{x} + \frac{\sin x}{x} = \cos x;$$

(3) $y = x \left(\int x^{-1} e^x dx + C \right) \Rightarrow y' = \int x^{-1} e^x dx + C + e^x \Rightarrow xy' - y = x \left(\int x^{-1} e^x dx + C \right) + xe^x - y = xe^x;$

(4) 当
$$x < C_1$$
 时, $y' = -\frac{1}{2}(x - C_1)$, 而 $\sqrt{|y|} = \sqrt{\frac{1}{4}(x - C_1)^2} = \frac{1}{2}(C_1 - x)$, 故 $y' = \sqrt{|y|}(x < C_1)$, 其他两段同理可以验证.

2. 求下列初值问题的解:

(1)
$$y''' = x, y(0) = a_0, y'(0) = a_1, y''(0) = a_2;$$

(2)
$$\frac{dy}{dx} = f(x), y(0) = 0$$
 (这里 $f(x)$ 是一个连续函数);

- (3) $\frac{dR}{dt} = -aR, R(0) = 1$ (这里 a > 0 是一个常数);
- (4) $\frac{dy}{dx} = 1 + y^2, y(x_0) = y_0.$

解: (1) $y(x) = \frac{1}{24}x^4 + \frac{a_2}{2}x^2 + a_1x + a_0$;

- (2) $y(x) = \int_0^x f(t) dt$;
- (3) $R(t) = e^{-at}$;

$$(4) y(x) = \tan(x + \arctan y_0 - x_0). \qquad \Box$$

- 3. 求出:
- (1) 曲线族 $y = Cx + x^2$ 所满足的微分方程;
- (2) 曲线族 $y = C_1 e^x + C_2 x e^x$ 所满足的微分方程;
- (3) 平面上以原点为中心的一切圆所满足的微分方程;
- (4) 平面上一切圆所满足的微分方程.
- **解**: (1) 求导得 y' = C + 2x, 联立方程消去 C 得 $y + x^2 xy' = 0$.

 $\frac{y'-y}{x}$, 代入第三个方程得 y''-2y'+y=0.

- (3) 平面上以原点为中心的一切圆的参数方程为 $x^2 + y^2 = R^2$ (R 为参数), 求导得 x + yy' = 0.
- (4) 平面上一切圆的参数方程为 $(x-a)^2 + (y-b)^2 = R^2$ (a,b,R) 为参数) 关于 x 求 三次导并消去参数即得 $3y'(y'')^2 [1+(y')^2]y''' = 0$.
- **4.** 证明: 设 $y = g(x, C_1, C_2, \dots, C_n)$ 是一个充分光滑的函数族, 其中 x 是自变量, 而 C_1, C_2, \dots, C_n 是 n 个独立的参数 (任意常数), 则存在一个形如 (1.1) 的 n 阶微分方程, 使得它的通解恰好是上述函数族.

证明:已知

$$\begin{cases} y = g(x, C_1, C_2, \dots, C_n) \\ y' = g^{(1)}(x, C_1, C_2, \dots, C_n) \\ \dots \\ y^{(n-1)} = g^{(n-1)}(x, C_1, C_2, \dots, C_n) \\ y^{(n)} = g^{(n)}(x, C_1, C_2, \dots, C_n) \end{cases}$$

$$(\star)$$

因为 C_1, C_2, \cdots, C_n 独立, 所以 Jacobi 行列式

$$\frac{D[g, g^{(1)}, \cdots, g^{(n-1)}]}{D[C_1, C_2, \cdots, C_n]} = \begin{vmatrix}
\frac{\partial g}{\partial C_1} & \frac{\partial g}{\partial C_2} & \cdots & \frac{\partial g}{\partial C_n} \\
\frac{\partial g^{(1)}}{\partial C_1} & \frac{\partial g^{(1)}}{\partial C_2} & \cdots & \frac{\partial g^{(1)}}{\partial C_n} \\
\vdots & \vdots & & \vdots \\
\frac{\partial g^{(n-1)}}{\partial C_1} & \frac{\partial g^{(n-1)}}{\partial C_2} & \cdots & \frac{\partial g^{(n-1)}}{\partial C_n}
\end{vmatrix} \neq 0.$$

由隐函数存在定理知可由方程组(*)的前 n 个方程解出

$$C_i = C_i(x, y, \dots, y^{(n-1)}) (i = 1, 2, \dots, n).$$

将之代入方程组(*)最后一个方程中得

$$y^{(n)} = g^{(n)}(x, C_1(x, y, \dots, y^{(n-1)}), \dots, C_n(x, y, \dots, y^{(n-1)})).$$

上式即为所求的 n 阶微分方程.

1.2 微分方程及其解的几何解释

1. 作出如下微分方程的线素场:

$$(1) \ y' = \frac{xy}{|xy|};$$

(2)
$$y' = (y-1)^2$$
;

(3)
$$y' = x^2 + y^2$$
.

解: (1) 奇异点集合为 $\{(x,y) \mid x=0 \text{ 或 } y=0\}$, 线素场如图 (Matlab 制图).

图 1.1: (1) 题图

- (2) 等斜线为 $(y-1)^2 = k \Rightarrow y = 1 \pm \sqrt{k}$, 线素场如图.
- (3) 等斜线为 $x^2 + y^2 = k$, 线素场如图.

图 1.2: (2) 题图

图 1.3: (3) 题图

- 2. 利用线素场研究下列微分方程的积分曲线族:
- (1) y' = 1 + xy;
- (2) $y' = x^2 y^2$.
- 3. 根据磁场的物理直观, 试作微分方程 (2.8) 的线素场及其积分曲线族的草图.

第 2 章

初等积分法

2.1 恰当方程

1. 判断下列方程是否为恰当方程; 并且对恰当方程求解.

(1)
$$(3x^2 - 1) dx + (2x + 1) dy = 0$$
.

(2)
$$(x+2y) dx + (2x - y) dy = 0.$$

(3)
$$(ax + by) dx + (bx + cy) dy = 0.$$

(4)
$$(ax - by) dx + (bx - cy) dy = 0 (b \neq 0)$$
.

(5)
$$(t^2 + 1)\cos u \, du + 2t\sin u \, dt = 0.$$

(6)
$$(ye^x + 2e^x + y^2) dx + (e^x + 2xy) dy = 0.$$

(7)
$$\left(\frac{y}{x} + x^2\right) dx + (\ln x - 2y) dy = 0.$$

(8)
$$(ax^2 + by^2) dx + cxy dy = 0.$$

(9)
$$\frac{2s-1}{t} ds + \frac{s-s^2}{t^2} dt = 0.$$

(10)
$$xf(x^2 + y^2) dx + yf(x^2 + y^2) dy = 0$$
, 其中 $f(\cdot)$ 是连续可微的.

解:

(1) $\frac{\partial P}{\partial y} = 0$, $\frac{\partial Q}{\partial x} = 2$, 不是恰当方程.

2.1 恰当方程 7

(2) $\frac{\partial P}{\partial y} = 2, \frac{\partial Q}{\partial x} = 2$, 是恰当方程, 因为

$$(x + 2y) dx + (2x - y) dy = d\left(\frac{1}{2}x^2 + 2xy - \frac{1}{2}y^2\right),$$

所以通积分为

$$\frac{1}{2}x^2 + 2xy - \frac{1}{2}y^2 = C.$$

(3) $\frac{\partial P}{\partial y} = b = \frac{\partial Q}{\partial x}$, 是恰当方程, 因为

$$(ax + by) dx + (bx + cy) dy = d\left(\frac{1}{2}ax^2 + bxy + \frac{1}{2}cy^2\right),$$

所以通积分为

$$\frac{1}{2}ax^2 + bxy + \frac{1}{2}cy^2 = C.$$

- (4) $\frac{\partial P}{\partial y} = -b \neq \frac{\partial Q}{\partial x} = b$, 不是恰当方程.
- (5) $\frac{\partial P}{\partial t} = 2t \cos u = \frac{\partial Q}{\partial u}$, 故是恰当方程, 因为

$$(t^2 + 1)\cos u \,du + 2t\sin u \,dt = d((t^2 + 1)\sin u),$$

所以通积分为

$$(t^2 + 1)\sin u = C.$$

(6) $\frac{\partial P}{\partial y} = e^x + 2y = \frac{\partial Q}{\partial x}$, 是恰当方程, 因为

$$(ye^x + 2e^x + y^2) dx + (e^x + 2xy) dy = d(ye^x + xy^2 + 2e^x),$$

所以通积分为

$$ye^x + xy^2 + 2e^x = C.$$

(7) $\frac{\partial P}{\partial y} = \frac{1}{x} = \frac{\partial Q}{\partial x}$, 是恰当方程, 因为

$$\left(\frac{y}{x} + x^2\right) dx + (\ln x - 2y) dy = d\left(y \ln x + \frac{1}{3}x^3 - y^2\right),$$

所以通积分为

$$y \ln x + \frac{1}{3}x^3 - y^2 = C.$$

$$(8)$$
 $\frac{\partial P}{\partial y}=2by, \frac{\partial Q}{\partial x}=cy,$ 因此当 $2b=c$ 时方程为恰当方程, 此时

$$(ax^{2} + by^{2}) dx + cxy dy = (ax^{2} + by^{2}) dx + 2bxy dy = d\left(\frac{1}{3}ax^{3} + bxy^{2}\right),$$

所以通积分为

$$\frac{1}{3}ax^3 + bxy^2 = C.$$

当 $2b \neq c$ 时, 方程不是恰当方程.

(9) $\frac{\partial P}{\partial t} = \frac{1-2s}{t^2} = \frac{\partial Q}{\partial s}$, 是恰当方程, 因为

$$\frac{2s-1}{t} ds + \frac{s-s^2}{t^2} dt = d\left(\frac{s^2-s}{t}\right),\,$$

所以通积分为

$$\frac{s^2 - s}{t} = C.$$

(10) $\frac{\partial P}{\partial y} = 2xyf'(x^2 + y^2) = \frac{\partial Q}{\partial x}$, 是恰当方程, 且通积分为

$$F(x^2 + y^2) = C$$
,其中 F 是 f 的不定积分.

2.2 变量分离的方程

1. 求解下列微分方程, 并指出这些方程在 Oxy 平面上有意义的区域:

$$(1) \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{y};$$

(2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2}{y(1+x^3)};$$

$$(3) \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 \sin x = 0;$$

(4)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + x + y^2 + xy^2;$$

(5)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = (\cos x \cos 2y)^2;$$

(6)
$$x\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{1 - y^2};$$

(7)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x - \mathrm{e}^x}{y + \mathrm{e}^y}.$$

解: (1) $y^2 = \frac{2}{3}x^3 + C, y \neq 0$;

- (2) $y^2 = \frac{2}{3} \ln|1 + x^3| + C, y \neq 0, x \neq -1;$
- (3) $\frac{1}{y} + \cos x = C$, \Re : y = 0;
- (4) $y = \tan(x + \frac{1}{2}x^2 + C);$
- (5) 当 $\cos 2y \neq 0$ 时,原方程等价于 $\frac{dy}{\cos^2 2y} = \sec^2 2y \, dy = \cos^2 x \, dx$,积分得 $2x + \sin 2x 2 \tan 2y = C$,当 $\cos 2y = 0$ 时,有特解 $y = \frac{\pi}{4} + \frac{k\pi}{2}(k \in \mathbb{Z})$;
 - (6) $\arcsin y = \ln |x| + C$, $\$ \text{ #} : y = \pm 1$;

(7)
$$y^2 - x^2 + 2(e^y - e^{-x}) = C (y + e^y \neq 0).$$

2. 求解下列微分方程的初值问题:

(1)
$$\sin 2x \, dx + \cos 3y \, dy = 0$$
, $y\left(\frac{\pi}{2}\right) = \frac{\pi}{3}$;

- (2) $x dx + ye^{-x} dy = 0$, y(0) = 1;
- (3) $\frac{\mathrm{d}r}{\mathrm{d}\theta} = r$, r(0) = 2;

(4)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\ln|x|}{1+y^2}, \quad y(1) = 0;$$

(5)
$$\sqrt{1+x^2} \frac{\mathrm{d}y}{\mathrm{d}x} = xy^3$$
, $y(0) = 1$.

解: (1) 积分得 $-\frac{1}{2}\cos 2x + \frac{1}{3}\sin 3y + C = 0$, 由 $y\left(\frac{\pi}{2}\right) = \frac{\pi}{3}$ 得 $C = -\frac{1}{2}$, 因此原方程的解为 $2\sin 3y - 3\cos 2x - 3 = 0$.

- (2) 原方程等价于 $xe^x dx + y dy = 0$, 积分得 $(x-1)e^x + \frac{1}{2}y^2 + C = 0$, 代入初值条件 y(0) = 1 得 $C = \frac{1}{2}$, 因此原方程的解为 $2(x-1)e^x + y^2 + 1 = 0$.
- (3) 由初值条件知 $r \neq 0$, 故 $\frac{dr}{r} = d\theta$, 积分得 $r = Ce^{\theta}$ ($C \neq 0$), 代入初值条件得 C = 2, 因此原方程的解为 $r = 2e^{\theta}$.
- (4) $(1+y^2)$ d $y = \ln|x|$ dx, 积分得 $y + \frac{1}{3}y^3 = x(\ln|x|-1) + C$, 代人初值条件得 C = 1, 因此原方程的解为 $y + \frac{1}{3}y^3 = x(\ln|x|-1) + 1$.
- (5) 由初值条件知 $y \neq 0$,故原方程等价于 $\frac{\mathrm{d}y}{y^3} = \frac{x}{\sqrt{1+x^2}}\,\mathrm{d}x$,积分得 $-\frac{1}{2}y^{-2} = \sqrt{1+x^2}+C$,代入初值条件得 $C=-\frac{3}{2}$,因此原方程的解为 $2\sqrt{1+x^2}+y^{-2}-3=0$.
 - 3. 求解下列微分方程, 并作出相应积分曲线族的简图:

(1)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x;$$

(2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = ay \ (a \neq 0 \ 为常数);$$

$$(3) \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - y^2;$$

(4)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^n \ (n = \frac{1}{3}, 1, 2).$$

解: (1) $y = \sin x + C$, 积分曲线族如图 2.1.

图 2.1: $y = \sin x + C$

(2) y = 0 为特解, 当 $y \neq 0$ 时, 积分得 $y = Ce^{ax}$ ($C \neq 0$), 积分曲线族如图 2.2 (以 a > 0 为例).

(3) $y = \pm 1$ 为特解,当 $y \neq \pm 1$ 时, $\frac{\mathrm{d}y}{1-y^2} = \mathrm{d}x$,积分得 $y = \frac{C\mathrm{e}^{2x}-1}{C\mathrm{e}^{2x}+1}(C \neq 0)$,当 C > 0 时,函数图像位于直线 y = 1 和 y = -1 之间且单调递增;当 C < 0 时,存在间 断点 $x_0 = \frac{1}{2}\ln\left(-\frac{1}{C}\right)$,y = y(x) 在 $(-\infty, x_0)$ 上单调递减且当 $x \to x_0$ 一时 $y \to -\infty$,在 (x_0, ∞) 上单调递减且当 $x \to x_0$ + 时 $y \to +\infty$,积分曲线族如图 2.3.

(4) 下述三种情形积分曲线族都易作出 (略去).

- (i) $n = \frac{1}{3}$ 时, 通解为 $\frac{3}{5}y^{\frac{2}{3}} = x + C$ $(x \ge -C)$, 特解为 y = 0;
- (ii) n=1 时, 通解为 $y=Ce^x$ $(C \in \mathbb{R})$;
- (iii) n=2 时, 通解为 $y=\frac{1}{-x+C}$ $(C\in\mathbb{R})$, 特解为 y=0.

4. 跟踪: 设某 A 从 Oxy 平面上的原点出发, 沿 x 轴正方向前进; 同时某 B 从点 (0,b) 开始跟踪 A, 即 B 的运动方向永远指向 A 并与 A 保持等距 b. 试求 B 的光滑运动轨迹.

解: 设 B 的运动轨迹方程为 y=y(x), 记某时刻 B 的位置为 (x,y(x)), 则此时 A 相应的位置为 $\left(x-\frac{y(x)}{y'(x)},0\right)$, 由于 A 与 B 保持等距, 故

$$\left(\frac{y}{y'}\right)^2 + y^2 = b^2 \Rightarrow \mathrm{d}x = -\frac{\sqrt{b^2 - y^2}}{y}\,\mathrm{d}y.$$

图 2.2: $y = Ce^{ax}$

积分得

$$x = -\int \frac{\sqrt{b^2 - y^2}}{y} \, dy (y = b \cos \theta)$$

$$= -\int \frac{b \sin \theta}{b \cos \theta} (-b \sin \theta) \, d\theta$$

$$= b \int (\sec \theta - \cos \theta) \, d\theta$$

$$= b \ln |\sec \theta + \tan \theta| - b \sin \theta + C$$

$$= b \ln \frac{b + \sqrt{b^2 - y^2}}{y} - \sqrt{b^2 - y^2} + C.$$

由初值条件 y(0)=b 得 C=0,故 B 的光滑运动轨迹方程为 $x=b\ln\frac{b+\sqrt{b^2-y^2}}{y}-\sqrt{b^2-y^2}$.

5. 设微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y),$$

其中 f(y) 在 y=a 的某邻域 (例如区间 $|y-a|\leqslant \varepsilon$) 内连续, 而且 f(y)=0 当且仅当 y=a. 证明: 在直线 y=a 上的每一点,上述方程的解是局部唯一的,当且仅当瑕积分

$$\left| \int_{a}^{a \pm \varepsilon} \frac{\mathrm{d}y}{f(y)} \right| = \infty.$$

图 2.3: $y = \pm 1$ 和 $y = \frac{Ce^{2x} - 1}{Ce^{2x} + 1}$

解: (\Leftarrow) 显然, y = a 是方程的一个解, 用反证法, 设 y = y(x) 是方程的另一个解, 它与直线 y = a 相交. 不妨设 (x_0, a) 是它们的一个交点, 且存在区间 $I = (x_0, x_0 + \delta)$ 或 $I = (x_0 - \delta, x_0)$, 使得当 $x \in I$ 时, $y(x) \neq a$, 从而

$$\frac{\mathrm{d}y(x)}{f(y(x))} = \mathrm{d}x, \quad x \in I.$$

积分得

$$\int_{a}^{y} \frac{dy}{f(y)} = \int_{x_0}^{x} \frac{dy(x)}{f(y(x))} = \int_{x_0}^{x} dx = x - x_0 < \infty.$$

矛盾.

 (\Rightarrow) 用反证法, 设 $\left|\int_a^{a\pm\varepsilon} \frac{\mathrm{d}y}{f(y)}\right| < +\infty$, 则由

$$\int_{a}^{y} \frac{\mathrm{d}y}{f(y)} = x - x_0$$

定义的函数是方程的解, 且通过点 (x_0, a) , 而 y = a 也是过点 (x_0, a) 的解, 矛盾.

6. 利用上题结果, 作出下列微分方程积分曲线族的草图:

$$(1)\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{|y|}; \quad (2)\frac{\mathrm{d}y}{\mathrm{d}x} = \begin{cases} y\ln|y|, & y \neq 0, \\ 0, & y = 0. \end{cases}$$

解: (1) 因为 $\int_0^{\pm \varepsilon} \frac{dy}{\sqrt{|y|}}$ 收敛, 故解不是局部唯一的, 微分方程的通解为

$$y = \begin{cases} \frac{1}{4}(x+C)^2, & x \geqslant -C, \\ -\frac{1}{4}(x+C)^2, & x \leqslant -C. \end{cases}$$

另外特解为 y=0, 积分曲线族容易作出.

(2) 因为 $\int_0^{\pm\varepsilon} \frac{\mathrm{d}y}{y \ln |y|}$ 发散, 所以解是局部唯一的, 微分方程的通解为

$$y = \pm e^{Ce^x} \quad (C \in \mathbb{R}).$$

另外特解为 y=0, 积分曲线族容易作出.

2.3 一阶线性方程

1. 求解微分方程:

$$(1) \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = x\mathrm{e}^{-x};$$

(2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} + y\tan x = \sin(2x);$$

(3)
$$x \frac{dy}{dx} + 2y = \sin x, \ y(\pi) = \frac{1}{\pi};$$

(4)
$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{1 - x^2}y = 1 + x, \ y(0) = 1.$$

解: (1)
$$p(x) = 2$$
, $q(x) = xe^{-x}$, 故

$$y = e^{-\int 2 dx} \left(C + \int x e^{-x} e^{\int 2 dx} dx \right) = C e^{-2x} + (x - 1)e^{-x}.$$

(2)
$$p(x) = \tan x$$
, $q(x) = \sin(2x)$, 故
$$y = e^{-\int \tan x \, dx} \left(C + \int \sin(2x) e^{\int \tan x \, dx} \, dx \right)$$

$$= |\cos x| \left(C + \int \frac{\sin(2x)}{|\cos x|} dx \right) = C|\cos x| - 2\cos^2 x$$

(3)
$$p(x) = \frac{2}{x}, q(x) = \frac{\sin x}{x}, \text{ ix}$$

$$y = e^{-\int \frac{2}{x} dx} \left(C + \int \frac{\sin x}{x} e^{\int \frac{2}{x} dx} dx \right) = \frac{1}{x^2} (C + \sin x - x \cos x).$$

代入初值条件得 C=0, 故原方程的解为

$$y = \frac{\sin x}{x^2} - \frac{\cos x}{x}.$$

2. 把下列微分方程化为线性微分方程:

$$(1) \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2}{2y};$$

15

$$(2) \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x+y^2};$$

(3)
$$3xy^2 \frac{\mathrm{d}y}{\mathrm{d}x} + y^3 + x^3 = 0;$$

(4)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y} + x \tan y.$$

解: (1) 令 $u = y^2$, 则 $\frac{du}{dx} = 2y \frac{dy}{dx} = x^2 + u$.

- (2) 将 x 看作 y 的函数, 即 $\frac{dx}{dy} = \frac{x}{y} + y$.
- $(3) \diamondsuit u = y^3, \ \mathbb{M} \frac{\mathrm{d}u}{\mathrm{d}x} = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{u}{x} x^2.$
- (4) 原方程变形为 $\cos y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + x \sin y$, 令 $u = \sin y$, 即得 $\frac{\mathrm{d}u}{\mathrm{d}x} = 1 + xu$.
- 3. 设 $y = \varphi(x)$ 满足微分不等式

$$y' + a(x)y \leqslant 0 \quad (x \geqslant 0).$$

求证:

$$\varphi(x) \leqslant \varphi(0) e^{-\int_0^x a(s) ds} \quad (x \geqslant 0).$$

证明: 在不等式两边同时乘以 $e^{\int_0^x a(s) ds}$, 得

$$e^{\int_0^x a(s) ds} \frac{dy}{dx} + a(x) y e^{\int_0^x a(s) ds} \leq 0,$$

即

$$\frac{\mathrm{d}\left(\varphi(x)\mathrm{e}^{\int_0^x a(s)\,\mathrm{d}s}\right)}{\mathrm{d}x} \leqslant 0.$$

将上式从 0 到 x 积分得

$$\varphi(x)e^{\int_0^x a(s) ds} - \varphi(0) \leqslant 0 \Rightarrow \varphi(x) \leqslant \varphi(0)e^{-\int_0^x a(s) ds}.$$

4. 用常数变易法求解非齐次线性方程 $\frac{dy}{dx} + p(x)y = q(x)$,即:假设方程有形如 $y = Ce^{-\int p(x) dx}$ 的解,但其中的常数 C 变易为 x 的一个待定函数 C(x). 然后将这种形式的解代入原方程,再去确定 C(x).

解: 因为

$$y = C(x)e^{-\int p(x) dx},$$

所以

$$\frac{\mathrm{d}y}{\mathrm{d}x} = C'(x)\mathrm{e}^{-\int p(x)\,\mathrm{d}x} + C(x)(-p(x))\mathrm{e}^{-\int p(x)\,\mathrm{d}x}.$$

即

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = C'(x)\mathrm{e}^{-\int p(x)\,\mathrm{d}x}.$$

16

故有

$$C'(x)e^{-\int p(x) dx} = q(x).$$

解之得

$$C(x) = \int q(x)e^{\int p(x) dx} dx + C.$$

代回即得原方程的解为

$$y = e^{-\int p(x) dx} \left(C + \int q(x) e^{\int p(x) dx} dx \right). \qquad \Box$$

5. 考虑方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x),$$

其中 p(x) 和 q(x) 都是以 $\omega > 0$ 为周期的连续函数. 试证:

(1) 若 $q(x) \equiv 0$, 则方程的任一非零解以 ω 为周期, 当且仅当函数 p(x) 的平均值

$$\bar{p} = \frac{1}{\omega} \int_0^\omega p(x) \, \mathrm{d}x = 0.$$

(2) 若 q(x) 不恒为零,则方程有唯一的 ω 周期解,当且仅当 $\bar{p} \neq 0$. 试求出此解.

证明: (1) 若 $q(x) \equiv 0$, 则方程的通解为

$$y = Ce^{-\int_0^x p(s) ds}.$$

从而

$$y(x) = y(x + \omega) \Leftrightarrow \int_0^x p(s) \, \mathrm{d}s = \int_0^{x + \omega} p(s) \, \mathrm{d}s \Leftrightarrow \int_0^{\omega} p(x) \, \mathrm{d}x = 0 \Leftrightarrow \bar{p} = 0.$$

(2) 若 q(x) 不恒为零, 则方程的通解为

$$y = e^{-\int_0^x p(s) ds} \left(C + \int_0^x q(s) e^{\int_0^s p(t) dt} ds \right).$$

下面求常数 C 使得 y(x) 为 ω 周期解, 即

$$y(x) = y(x + \omega), \forall x \in \mathbb{R}.$$

可以断言若 y(x) 是原方程的解且满足 $y(0) = y(\omega)$, 则 y(x) 是原方程的 ω 周期解, 事实上, 若 y(x) 是原方程的解, 则 $y(x+\omega)$ 也是原方程的解, 令 $u(x) = y(x+\omega) - y(x)$, 则 u(x) 是相应齐次线性方程的解, 又因为 u(0) = 0, 故 $u(x) \equiv 0$.

现将 $y(0) = y(\omega)$ 代入通解表达式得

$$C = e^{-\int_0^\omega p(s) \, \mathrm{d}s} \left(C + \int_0^\omega q(s) e^{\int_0^s p(t) \, \mathrm{d}t} \, \mathrm{d}s \right),$$

17

解得

$$C = \frac{1}{e^{\int_0^{\omega} p(s) \, ds} - 1} \int_0^{\omega} q(s) e^{\int_0^s p(t) \, dt} \, ds.$$

故方程有唯一的 ω 周期解当且仅当 $\int_0^\omega p(s)\,\mathrm{d}s\neq 0\Leftrightarrow \bar p\neq 0$, 下面求 y(x) 的表达式:

因为

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} + p(x)y(x) = q(x).$$

在等式两边同时乘以 $e^{\int_0^x p(t) dt}$, 得

$$\mathrm{e}^{\int_0^x p(t)\,\mathrm{d}t}\frac{\mathrm{d}y(x)}{\mathrm{d}x} + \mathrm{e}^{\int_0^x p(t)\,\mathrm{d}t}p(x)y(x) = \mathrm{e}^{\int_0^x p(t)\,\mathrm{d}t}q(x).$$

即

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(y(x)\mathrm{e}^{\int_0^x p(t)\,\mathrm{d}t}\right) = \mathrm{e}^{\int_0^x p(t)\,\mathrm{d}t}q(x).$$

将上式从 x 到 $x + \omega$ 积分, 利用 y(x) 及 p(x) 的周期性得

$$y(x+\omega)e^{\int_0^{x+\omega} p(t) dt} - y(x)e^{\int_0^x p(t) dt} = y(x)e^{\int_0^x p(t) dt} \left(e^{\int_x^{x+\omega} p(t) dt} - 1\right)$$
$$= y(x)e^{\int_0^x p(t) dt} \left(e^{\int_0^\omega p(t) dt} - 1\right)$$
$$= \int_x^{x+\omega} e^{\int_0^s p(t) dt} q(s) ds$$

从而

$$y(x) = \frac{1}{e^{\int_0^\omega p(t) dt} - 1} \int_x^{x+\omega} e^{\int_x^s p(t) dt} q(s) ds.$$

6. 设连续函数 f(x) 在区间 $-\infty < x < +\infty$ 上有界. 证明: 方程

$$y' + y = f(x)$$

在区间 $-\infty < x < +\infty$ 上有并且只有一个有界解, 试求出这个有界解, 并进而证明: 当 f(x) 还是以 ω 为周期的周期函数时, 这个有界解也是一个以 ω 为周期的周期函数.

证明: 方程的通解为

$$y = e^{-x} \left(C + \int_0^x f(s)e^s ds \right).$$

当 $x \to -\infty$ 时, $e^{-x} \to +\infty$, 要使得解有界, 必有

$$C + \int_0^x f(s)e^s ds \to 0 \quad (x \to -\infty).$$

故取

$$C = \int_{-\infty}^{0} f(s) e^{s} ds.$$

18

此时解为

$$y(x) = \int_{-\infty}^{x} f(s)e^{s-x} ds.$$

因为 f(x) 有界, 所以存在 M > 0, 使得 $|f(x)| \leq M(\forall x \in \mathbb{R})$, 故

$$|y(x)| \leqslant M \int_{-\infty}^{x} e^{s-x} ds = M.$$

说明 y(x) 的确是有界解. 当 f(x) 以 ω 为周期时, 有

$$y(x + \omega) = \int_{-\infty}^{x+\omega} f(s)e^{s-(x+\omega)} ds \quad (\text{Let } t = s - \omega)$$
$$= \int_{-\infty}^{x} f(t)e^{t-x} dt$$
$$= y(x),$$

所以 y(x) 也是以 ω 为周期的周期函数.

7. 令集合 $H^0 = \{f(x) \mid f \text{ 是以 } 2\pi \text{ 为周期的连续函数}\}$, 易知 H^0 关于实数域构成一个线性空间. 对于任意 $f \in H^0$, 定义它的模

$$||f|| = \max_{0 \le x \le 2\pi} |f(x)|.$$

证明 H^0 是 Banach 空间, 利用下式

$$y(x) = \frac{1}{e^{2a\pi} - 1} \int_{x}^{x+2\pi} e^{-a(x-s)} f(s) ds.$$

可以在空间 H^0 中定义一个变换 φ , 它把 f 变到 y. 试证: φ 是有界线性算子.

证明: 任取 H^0 中的 Cauchy 序列 $(f_n)_{n\geqslant 1}$, 则对任意 $\epsilon>0$, 存在 N>0, 使得当 m,n>N 时有

$$||f_m - f_n|| < \epsilon$$

即

$$\max_{0 \le x \le 2\pi} |f_m(x) - f_n(x)| < \epsilon.$$

故对于 $\forall x \in \mathbb{R}$, $(f_n(x))_{n \ge 1}$ 是 \mathbb{R} 中的 Cauchy 序列, 故收敛, 记为 $f_n(x) \to f(x)$, 这样就得到了一个函数 $f: \mathbb{R} \to \mathbb{R}$, 容易验证 f(x) 是 2π 周期函数, 且

$$||f_n - f|| = \max_{0 \le x \le 2\pi} |f_n(x) - f(x)| \to 0 \quad (n \to \infty).$$

故 $f_n \to f$ $(n \to \infty)$, 所以 H^0 是 Banach 空间, 下面证明 φ 是有界线性算子: 线性性显然, 有界性如下

$$\|\varphi(f)\| = \max_{0 \le x \le 2\pi} \left| \frac{1}{e^{2a\pi} - 1} \int_{x}^{x + 2\pi} e^{-a(x - s)} f(s) \, ds \right|$$

$$\le \|f\| \cdot \left| \frac{1}{e^{2a\pi} - 1} \int_{x}^{x + 2\pi} e^{-a(x - s)} \, ds \right| = \frac{1}{a} \|f\|.$$

2.4 初等变换法

1. 求解下列微分方程:

(1)
$$y' = \frac{2y - x}{2x - y};$$

(2)
$$y' = \frac{2y - x + 5}{2x - y - 4};$$

(3)
$$y' = \frac{x+2y+1}{2x+4y-1}$$
;

$$(4) \ y' = x^3 y^3 - xy.$$

解:
$$(1)$$
 令 $u = \frac{y}{x}$, 则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u + x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2u - 1}{2 - u}.$$

当 $u \neq \pm 1$ 时, 上式化为

$$\frac{2-u}{u^2-1}\,\mathrm{d}u = \frac{1}{x}\,\mathrm{d}x.$$

积分得 $y-x=C(x+y)^3$ ($C\neq 0$), 当 u=1 时, 特解 y=x 可以令 C=0 合并到 通解之中, 当 u=-1 时特解为 x+y=0. 综上, 原方程的通解为 $y-x=C(x+y)^3$ ($C\in\mathbb{R}$), 特解为 x+y=0.

(2) 令
$$\begin{cases} 2\beta - \alpha + 5 = 0 \\ 2\alpha - \beta - 4 = 0 \end{cases}$$
 , 解得 $\alpha = 1$, $\beta = -2$, 故作变量代换
$$\begin{cases} x = \xi + 1 \\ y = \eta - 2 \end{cases}$$
 , 则

原方程化为

$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = \frac{2\eta - \xi}{2\xi - \eta}.$$

由 (1) 知上述方程的通解为 $\eta - \xi = C(\xi + \eta)^3$ ($C \in \mathbb{R}$), 特解为 $\xi + \eta = 0$, 因此原方程的通解为 $y - x + 3 = C(x + y + 1)^3$ ($C \in \mathbb{R}$), 特解为 x + y + 1 = 0.

(3) 令 v = x + 2y, 则原方程化为

$$\frac{\mathrm{d}v}{\mathrm{d}x} = 1 + 2\frac{v+1}{2v-1} = \frac{4v+1}{2v-1}.$$

当 $4v+1\neq 0$ 时, 上述方程等价于

$$\frac{2v-1}{4v+1}\,\mathrm{d}v=\mathrm{d}x.$$

积分并代回原变量得通解 $8y - 4x - 3\ln|4x + 8y + 1| = C$, 当 4v + 1 = 0 时, 得特解 4x + 8y + 1 = 0.

(4) 此方程为伯努利方程, 当 $y \neq 0$ 时, 在方程两边同时乘以 $-2y^{-3}$, 得

$$-2y^{-3}y' = -2x^3 + 2xy^{-2}.$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = -2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x} = 2xu - 2x^3.$$

解得

$$u(x) = e^{\int 2x \, dx} \left(C + \int -2x^3 e^{\int -2x \, dx} \, dx \right) = Ce^{x^2} + x^2 + 1.$$

代回变量即得原方程的通解为 $y^2 = \left(Ce^{x^2} + x^2 + 1\right)^{-1}$, 另外 y = 0 为特解.

- 2. 利用适当的变换, 求解下列方程:
- (1) $y' = \cos(x y)$;
- (2) $(3uv + v^2) du + (u^2 + uv) dv = 0;$

(3)
$$(x^2 + y^2 + 3) \frac{\mathrm{d}y}{\mathrm{d}x} = 2x \left(2y - \frac{x^2}{y}\right);$$

(4)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x^3 + 3xy^2 - 7x}{3x^2y + 2y^3 - 8y}.$$

解: (1) 令 u = x - y, 则

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 1 - \cos u.$$

当 $1 - \cos u \neq 0$, 即 $x - y \neq 2k\pi$ $(k \in \mathbb{Z})$ 时, 上述方程化为

$$\frac{\mathrm{d}u}{1-\cos u} = \mathrm{d}x.$$

积分并代回原变量得通解为 $\cot \frac{x-y}{2} + x + C = 0$, 当 $1 - \cos u = 0$ 时, 有特解 $y = x + 2k\pi$ $(k \in \mathbb{Z})$.

(2) 可以用齐次方程的标准解法求解,但是也可以用积分因子法,在方程两边同时乘以 u, 得

$$(3u^2v + uv^2) du + (u^3 + u^2v) dv = 0.$$

分组得

$$(3u^2v du + u^3 dv) + (uv^2 du + u^2v dv) = d\left(u^3v + \frac{1}{2}u^2v^2\right) = 0.$$

故通解为 $u^3v + \frac{1}{2}u^2v^2 = C$.

(3) 原方程等价于

$$\frac{2y\,\mathrm{d}y}{2x\,\mathrm{d}x} = \frac{4y^2 - 2x^2}{x^2 + y^2 + 3},$$

即

$$\frac{\mathrm{d}y^2}{\mathrm{d}x^2} = \frac{4y^2 - 2x^2}{x^2 + y^2 + 3}.$$

令 $v = x^2, u = y^2$, 则上述方程化为

$$\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{4u - 2v}{u + v + 3}.$$

令
$$\begin{cases} 4u-2v=0\\ u+v+3=0 \end{cases}, 解得 u=-1, v=-2, 故作变换 \begin{cases} v=\xi-2\\ u=\eta-1 \end{cases}, 则方程化为$$

$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = \frac{4\eta - 2\xi}{\eta + \xi}.$$

令 $\beta = \frac{\eta}{\xi}$, 则当 $\beta \neq 1$ 且 $\beta \neq 2$ 时,

$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = \beta + \xi \frac{\mathrm{d}\beta}{\mathrm{d}\xi} = \frac{4\beta - 2}{\beta + 1} \Rightarrow \frac{\beta + 1}{(\beta - 1)(\beta - 2)} \, \mathrm{d}\beta = -\frac{1}{\xi} \, \mathrm{d}\xi.$$

积分并代回原变量得 $(y^2-2x^2-3)^3=C\left(y^2-x^2-1\right)^2$ $(C\neq 0)$. 当 $\beta=1$ 时,得特解 $y^2=x^2+1$,当 $\beta=2$ 时,得特解 $y^2-2x^2-3=0$,显然这个特解可以合并到通解 之中.综上所述,原方程的通解为 $(y^2-2x^2-3)^3=C\left(y^2-x^2-1\right)^2$ $(C\in\mathbb{R})$,特解为 $y^2=x^2+1$.

(4) 原方程等价于

$$\frac{\mathrm{d}y^2}{\mathrm{d}x^2} = \frac{2x^2 + 3y^2 - 7}{3x^2 + 2y^2 - 8}.$$

令 $v = x^2, u = y^2$, 则上述方程化为

$$\frac{\mathrm{d}u}{\mathrm{d}v} = \frac{3u + 2v - 7}{2u + 3v - 8}.$$

$$\Rightarrow$$

$$\begin{cases} v = \xi + 2 \\ u = \eta + 1 \end{cases}$$
 , 则

$$\frac{\mathrm{d}\eta}{\mathrm{d}\xi} = \frac{3\eta + 2\xi}{2\eta + 3\xi}.$$

令 $\beta = \frac{\eta}{\epsilon}$, 则当 $\beta \neq \pm 1$ 时,

$$\beta + \xi \frac{\mathrm{d}\beta}{\mathrm{d}\xi} = \frac{3\beta + 2}{2\beta + 3} \Rightarrow \frac{2\beta + 3}{\beta^2 - 1} \, \mathrm{d}\beta = \frac{-2}{\xi} \, \mathrm{d}\xi.$$

积分并代回原变量得 $(y^2 - x^2 + 1)^5 = C(x^2 + y^2 - 3)$ $(C \neq 0)$. 当 $\beta = 1$ 时,得特解 $y^2 - x^2 + 1 = 0$,显然此特解可合并到通解之中,当 $\beta = -1$ 时得特解 $x^2 + y^2 - 3 = 0$. \square

3. 求解下列微分方程:

(1)
$$y' = -y^2 - \frac{1}{4x^2}$$
;

(2)
$$x^2y' = x^2y^2 + xy + 1$$
.

解: (1) 这是 Riccati 方程, 由定理 2.3 中的做法, 令 z = xy, 则原方程化为

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{-\frac{1}{4} + z - z^2}{x} = \frac{-\left(z - \frac{1}{2}\right)^2}{x}.$$

当 $z=\frac{1}{2}$ 时得特解 $y=\frac{1}{2x}$, 当 $z\neq\frac{1}{2}$ 时, 上述方程化为

$$\frac{\mathrm{d}z}{-\left(z-\frac{1}{2}\right)^2} = \frac{\mathrm{d}x}{x}.$$

积分得通解为 $y = \frac{1}{2x} + \frac{1}{Cx + x \ln|x|}$.

(2) 这是 Riccati 方程, 容易观察出一个特解为 $y=-\frac{1}{x}$, 令 $y=u-\frac{1}{x}$, 其中 u 是新的未知函数, 则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^2} = \left(u - \frac{1}{x}\right)^2 + \frac{1}{x}\left(u - \frac{1}{x}\right) + \frac{1}{x^2} = u^2 - \frac{u}{x} + \frac{1}{x^2}.$$

故

$$\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{u}{x} = u^2.$$

这是伯努利方程, 当 u=0 时, 得特解 xy+1=0; 当 $u\neq 0$ 时, 在方程两边同时乘以 $-u^{-2}$, 得

$$-u^{-2}\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{u^{-1}}{x} = -1.$$

今 $z = u^{-1}$, 则上述方程化为一阶线性方程

$$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -1.$$

解得

$$z = e^{\int \frac{1}{x} dx} \left(C + \int -e^{-\int \frac{1}{x} dx} dx \right)$$
$$= |x| \left(C + \int \frac{-1}{|x|} dx \right) = |x| \left(C - \operatorname{sgn} x \cdot \ln|x| \right) = Cx - x \ln|x|.$$

故原方程的通解为 $y = -\frac{1}{x} + \frac{1}{Cx - x \ln|x|}$.

23

4. 试把二阶微分方程

$$y'' + p(x)y' + q(x)y = 0$$

化成一个里卡蒂方程.

解: 令 $y = e^{\int u \, dx}$, 即得 Riccati 方程

$$u' + u^2 + p(x)u + q(x) = 0.$$

5. 求一曲线, 使得过这曲线上任意点的切线与该点向径的夹角等于 🛣

解: 设曲线方程为 y = y(x), 则

$$\tan\frac{\pi}{4} = \frac{\frac{dy}{dx} - \frac{y}{x}}{1 + \frac{dy}{dx} \frac{y}{x}} = 1 \Rightarrow \frac{dy}{dx} = \frac{x+y}{x-y}.$$

解得 $2 \arctan \frac{y}{x} - \ln(x^2 + y^2) = C$.

6. 探照灯的反光镜 (旋转曲面) 应具有何种形状, 才能使点光源发射的光束反射成平行线束.

解: 设所求曲面由曲线 y=y(x) $(y\geqslant 0)$ 绕 x 轴旋转而成, 并且不妨将点光源置于原点, 且平行光线沿 x 轴正方向射出 (所以下面要保证 $\frac{\mathrm{d}y}{\mathrm{d}x}>0$), 则由几何关系得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{y}{x} - \frac{\mathrm{d}y}{\mathrm{d}x}}{1 + \frac{y}{x}\frac{\mathrm{d}y}{\mathrm{d}x}}.$$

化简为

$$\frac{y}{x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} = 0.$$

故

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1 \pm \sqrt{1 + \left(\frac{y}{x}\right)^2}}{\frac{y}{x}} = \frac{-x \pm \operatorname{sgn} x \cdot \sqrt{x^2 + y^2}}{y}.$$

为了使得 $\frac{dy}{dx} > 0$, 取

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x + \sqrt{x^2 + y^2}}{y}.$$

当 x > 0 时,上述方程等价于

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1 + \sqrt{1 + \left(\frac{y}{x}\right)^2}}{\frac{y}{x}}.$$

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{-1 + \sqrt{1 + u^2}}{u} \Rightarrow \frac{u}{1 + u^2 - \sqrt{1 + u^2}} \, \mathrm{d}u = -\frac{1}{x} \, \mathrm{d}x.$$

积分并代回原变量得通解 $y^2 = C(2x + C)$ (C > 0, x > 0).

当 x < 0 时,上述方程等价于

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1 - \sqrt{1 + \left(\frac{y}{x}\right)^2}}{\frac{y}{x}}.$$

$$u + x \frac{du}{dx} = \frac{-1 - \sqrt{1 + u^2}}{u} \Rightarrow \frac{u}{1 + u^2 + \sqrt{1 + u^2}} du = -\frac{1}{x} dx.$$

积分并代回原变量得通解 $y^2 = C(2x + C)$ $(C > 0, -C/2 \le x < 0)$.

综上, 原方程的通解为 $y^2 = C(2x + C)$ $(C > 0, x \ge -C/2)$, 因此旋转曲面的方程为 $y^2 + z^2 = C(2x + C)$ (C > 0), 由此可知该曲面是一个旋转抛物面.

2.5 积分因子法 (Integrating Factor)

1. 求解下列微分方程:

(1)
$$(3x^2y + 2xy + y^3) dx + (x^2 + y^2) dy = 0$$
;

(2)
$$y dx + (2xy - e^{-2y}) dy = 0;$$

(3)
$$\left(3x + \frac{6}{y}\right) dx + \left(\frac{x^2}{y} + \frac{3y}{x}\right) dy = 0;$$

(4)
$$y dx - (x^2 + y^2 + x) dy = 0;$$

(5)
$$2xy^3 dx + (x^2y^2 - 1) dy = 0;$$

(6)
$$y(1 + xy) dx - x dy = 0;$$

(7)
$$y^3 dx + 2(x^2 - xy^2) dy = 0;$$

(8)
$$e^x dx + (e^x \cot y + 2y \cos y) dy = 0.$$

解: (1) 因为
$$\frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = 3$$
, 故取积分因子 $\mu(x) = e^{3x}$, 得全微分方程:

$$e^{3x}(3x^2y + 2xy + y^3) dx + e^{3x}(x^2 + y^2) dy = 0,$$

即

$$d\left(e^{3x}x^2y + \frac{1}{3}e^{3x}y^3\right) = 0.$$

故通解为 $e^{3x}(3x^2y + y^3) = C$.

(2) 因为 $\frac{1}{P}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) = 2 - \frac{1}{y}$, 故取积分因子 $\mu(y) = \frac{e^{2y}}{y}$, 得全微分方程:

$$e^{2y} dx + \left(2xe^{2y} - \frac{1}{y}\right) dy = 0,$$

即

$$d\left(xe^{2y} - \ln|y|\right) = 0.$$

故通解为 $xe^{2y} - \ln |y| = C$, 另外特解为 y = 0.

(3) 在方程两边同时乘以 xy, 得

$$3x^2y \, dx + 6x \, dx + x^3 \, dy + 3y^2 \, dy = 0,$$

即

$$d(x^3y + y^3 + 3x^2) = 0.$$

故通解为 $x^3y + y^3 + 3x^2 = C$.

(4) 在方程两边同时乘以 $\frac{1}{r^2+u^2}$, 得

$$\frac{y dx - x dy}{x^2 + y^2} - dy = d\left(-\arctan\frac{y}{x} - y\right) = 0.$$

故通积分为 $\arctan \frac{y}{x} + y = C$ (或者写成 $\arctan \frac{x}{y} - y = C$), 另有特解 y = 0.

(5) 因为 $\frac{1}{P}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) = \frac{-2}{y}$, 故取积分因子 $\mu(y) = e^{-\int \frac{2}{y} dy} = \frac{1}{y^2}$, 得全微分方程:

$$2xy dx + x^2 dy - \frac{1}{y^2} dy = d\left(x^2y + \frac{1}{y}\right) = 0.$$

故通解为 $x^2y+\frac{1}{y}=C$, 另外有特解 y=0. (6) 因为 $\frac{1}{P}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=\frac{-2}{y}$, 故取积分因子 $\mu(y)=\mathrm{e}^{-\int\frac{2}{y}\,\mathrm{d}y}=\frac{1}{y^2}$, 得全微分方程:

$$\left(\frac{1}{y} + x\right) dx - \frac{x}{y^2} dy = d\left(\frac{1}{2}x^2 + \frac{x}{y}\right) = 0.$$

故通解为 $\frac{1}{2}x^2 + \frac{x}{y} = C$, 另外有特解 y = 0.

(7) 设方程有积分因子 $\mu = x^m y^n$, 则得全微分方程:

$$x^{m}y^{n+3} dx + 2(x^{m+2}y^{n} - x^{m+1}y^{n+2}) dy = 0.$$

于是

$$\frac{\partial (x^m y^{n+3})}{\partial y} = \frac{\partial (2 \left(x^{m+2} y^n - x^{m+1} y^{n+2}\right))}{\partial x}.$$

即

$$(n+3)x^m y^{n+2} = 2(m+2)x^{m+1}y^n - 2(m+1)x^m y^{n+2}.$$

比较系数得 2(m+2)=0, n+3=-2(m+1), 解得 m=-2, n=-1, 故方程有积分因 子 $\mu=\frac{1}{x^2y},$ 因而得全微分方程:

$$\frac{y^2}{x^2} dx + 2\left(\frac{1}{y} - \frac{y}{x}\right) dy = d\left(\ln y^2 - \frac{y^2}{x}\right) = 0.$$

故通解为 $\ln y^2 - \frac{y^2}{x} = C$, 另外有特解 x = 0, y = 0.

注: 对于 P(x,y) 和 Q(x,y) 都是关于 x,y 的多项式的情形, 使用这种方法比较好.

(8) 因为
$$\frac{1}{P}\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) = \cot y$$
, 故取积分因子 $\mu(y) = \sin y$, 得全微分方程:

$$e^{x} \sin y \, dx + (e^{x} \cos y + 2y \sin y \cos y) \, dy = d\left(e^{x} \sin y + \frac{1}{4} \sin 2y - \frac{1}{2}y \cos 2y\right) = 0.$$

故通解为 $e^x \sin y + \frac{1}{4} \sin 2y - \frac{1}{2}y \cos 2y = C$.

2. 证明方程 $P(x,y)\,\mathrm{d}x+Q(x,y)\,\mathrm{d}y=0$ 有形如 $\mu=\mu(\varphi(x,y))$ 的积分因子的充要条件是

$$\frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q\frac{\partial \varphi}{\partial x} - P\frac{\partial \varphi}{\partial y}} = f(\varphi(x, y))$$

并写出这个积分因子. 然后将结果应用到下述各种情形, 得出存在每一种类型积分因子的充要条件:

- (1) $\mu = \mu(x \pm y)$;
- (2) $\mu = \mu(x^2 + y^2);$
- (3) $\mu = \mu(xy)$;
- (4) $\mu = \mu(\frac{y}{x});$
- (5) $\mu = \mu(x^{\alpha}y^{\beta}).$

证明:

有积分因子
$$\mu = \mu(\varphi(x,y))$$

$$\iff \frac{\partial(\mu P)}{\partial y} = \frac{\partial(\mu Q)}{\partial x}$$

$$\iff \left(Q\frac{\partial \varphi}{\partial x} - P\frac{\partial \varphi}{\partial y}\right) \frac{\mathrm{d}\mu}{\mathrm{d}s}\Big|_{s=\varphi(x,y)} = \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)\mu$$

$$\iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q\frac{\partial \varphi}{\partial x} - P\frac{\partial \varphi}{\partial y}} = \frac{1}{\mu} \frac{\mathrm{d}\mu}{\mathrm{d}s}\Big|_{s=\varphi(x,y)} =: f(\varphi(x,y)).$$

(1) 有积分因子
$$\mu = \mu(x \pm y) \iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q \mp P} = f(x \pm y);$$

此时有积分因子
$$\mu = e^{\int f(s) ds}|_{s=\varphi(x,y)}$$
, 于是
$$(1) 有积分因子 \mu = \mu(x \pm y) \iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q \mp P} = f(x \pm y);$$

$$(2) 有积分因子 \mu = \mu(x^2 + y^2) \iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{2xQ - 2yP} = f(x^2 + y^2);$$

$$(3) 有积分因子 \mu = \mu(xy) \iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x}} = f(xy);$$

(3) 有积分因子
$$\mu = \mu(xy) \iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{yQ - xP} = f(xy)$$

(4) 有积分因子
$$\mu = \mu(\frac{y}{x}) \iff \frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{-\frac{y}{x^2}Q - \frac{1}{x}P} = f(\frac{y}{x});$$

(5) 有积分因子
$$\mu = \mu(x^{\alpha}y^{\beta}) \iff \frac{\frac{x^{2}}{\partial y} - \frac{\partial Q}{\partial x}}{\frac{\alpha}{\alpha}Q - \frac{\beta}{y}P} = f(x^{\alpha}y^{\beta}).$$

3. 证明齐次方程 P(x,y) dx + Q(x,y) dy = 0 有积分因子 $\mu = \frac{1}{xP+yQ}$.

证明: (证法 1) 设 P(x,y) 和 Q(x,y) 是 m 次齐次函数, 即

$$P(tx, ty) = t^m P(x, y), Q(tx, ty) = t^m Q(x, y).$$

两边对 t 求导并取 t=1, 得

$$x\frac{\partial P}{\partial x} + y\frac{\partial P}{\partial y} = mP, x\frac{\partial Q}{\partial x} + y\frac{\partial Q}{\partial y} = mQ.$$

为了证明 $\frac{1}{xP+yQ}$ 是齐次方程的积分因子, 只需要证明

$$\frac{\partial}{\partial y} \left(\frac{P}{xP + yQ} \right) = \frac{\partial}{\partial x} \left(\frac{Q}{xP + yQ} \right).$$

通过计算可得

$$\begin{split} &\frac{\partial}{\partial y} \left(\frac{P}{xP + yQ} \right) - \frac{\partial}{\partial x} \left(\frac{Q}{xP + yQ} \right) \\ &= \frac{\frac{\partial P}{\partial y} (xP + yQ) - P \left(x \frac{\partial P}{\partial y} + Q + y \frac{\partial Q}{\partial y} \right)}{(xP + yQ)^2} \\ &- \frac{\frac{\partial Q}{\partial x} (xP + yQ) - Q \left(P + x \frac{\partial P}{\partial x} + y \frac{\partial Q}{\partial x} \right)}{(xP + yQ)^2} \\ &= \frac{1}{(xP + yQ)^2} \left[Q \left(x \frac{\partial P}{\partial x} + y \frac{\partial P}{\partial y} \right) - P \left(y \frac{\partial Q}{\partial y} + x \frac{\partial Q}{\partial x} \right) \right] \\ &= \frac{1}{(xP + yQ)^2} (mQP - mPQ) = 0. \end{split}$$

故 $\mu = \frac{1}{xP+yQ}$ 是积分因子.

(证法 2) 设 P(x,y) 和 Q(x,y) 是 m 次齐次函数, 即

$$P(tx, ty) = t^m P(x, y), Q(tx, ty) = t^m Q(x, y).$$

$$P(x,y) dx + Q(x,y) dy$$
= $P(x, ux) dx + Q(x, ux)(u dx + x du)$
= $x^{m} [P(1, u) + uQ(1, u)] dx + x^{m+1}Q(1, u) du = 0.$

上式为变量分离的方程,有积分因子

$$\mu = \frac{1}{x^{m+1}[P(1,u) + uQ(1,u)]}.$$

将 $u = \frac{y}{x}$ 代回, 即得原方程有积分因子 $\mu = \frac{1}{xP+yQ}$.

4. 证明定理 2.6 及其逆定理: 在定理 2.6 的假定下, 若 μ_1 是微分方程 P(x,y) dx + Q(x,y) dy = 0 的另一个积分因子, 则 μ_1 必可表为 $\mu_1 = \mu g(\Phi)$ 的形式, 其中函数 g 和 Φ 的意义与在定理 2.6 中的相同.

证明:由

$$\mu(x,y)g(\Phi(x,y))P(x,y)\,\mathrm{d}x + \mu(x,y)g(\Phi(x,y))Q(x,y)\,\mathrm{d}y$$
$$=g(\Phi(x,y))\,\mathrm{d}\Phi(x,y) = \mathrm{d}G(\Phi(x,y))$$

即证, 其中 $G(s) = \int g(s) ds$. 下面证明其逆定理:

设

$$\mu_1 P(x, y) dx + \mu_1 Q(x, y) dy = d\Psi.$$

因为

$$\frac{D[\Phi, \Psi]}{D[x, y]} = \begin{vmatrix} \mu P & \mu Q \\ \mu_1 P & \mu_1 Q \end{vmatrix} = 0,$$

所以 Φ 和 Ψ 函数相关, 故

$$\frac{\mu_1}{\mu} = \frac{\mathrm{d}\Psi}{\mathrm{d}\Phi}$$

可以表示为 Φ 的函数.

5. 设函数 $P(x,y),Q(x,y),\mu_1(x,y)$ 和 $\mu_2(x,y)$ 都是连续可微的, μ_1 和 μ_2 是微分方程

$$P(x,y) dx + Q(x,y) dy = 0$$

的两个积分因子, 而且 $\frac{\mu_1}{\mu_2}$ 不恒为常数. 试证: $\frac{\mu_1(x,y)}{\mu_2(x,y)} = C$ 是方程 $P(x,y) \, \mathrm{d} x + Q(x,y) \, \mathrm{d} y = 0$ 的一个通积分.

证明: 先证明一个引理: 设 P(x,y) dx + Q(x,y) dy = 0 是恰当方程, 且 $\mu(x,y) \neq C$ 为其积分因子, 则 $\mu(x,y) = C$ 是其一个通解. 事实上, 因为 $\mu(x,y)$ 为其积分因子, 所以

$$\frac{\partial}{\partial y}(\mu P) = \frac{\partial}{\partial x}(\mu Q).$$

即

$$P\frac{\partial \mu}{\partial y} + \mu \frac{\partial P}{\partial y} = Q\frac{\partial \mu}{\partial x} + \mu \frac{\partial Q}{\partial x}.$$

又因为 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, 故

$$P\frac{\partial \mu}{\partial y} = Q\frac{\partial \mu}{\partial x}.$$

在原方程两边同时乘以 $\frac{\partial \mu}{\partial y}$, 得

$$P\frac{\partial \mu}{\partial y} dx + Q\frac{\partial \mu}{\partial y} dy = Q\left(\frac{\partial \mu}{\partial x} dx + \frac{\partial \mu}{\partial y} dy\right) = Q d\mu = 0 \Rightarrow \mu(x, y) = C.$$

故 $\mu(x,y) = C$ 是其一个通解, 引理证毕. 下证本题定理:

因为 μ_1, μ_2 是 P(x,y) dx + Q(x,y) dy = 0 两个积分因子, 故 $\mu_1 P(x,y) dx + \mu_1 Q(x,y) dy = 0$ 为恰当方程, 且 $\frac{\mu_2}{\mu_1} \neq C$ 为其积分因子, 故由引理结论知 $\frac{\mu_1(x,y)}{\mu_2(x,y)} = C$ 是方程 P(x,y) dx + Q(x,y) dy = 0 的一个通积分.

2.6 应用举例

30

1. 求下列各曲线族的正交轨线族:

(1)
$$x^2 + y^2 = Cx$$
;

(2)
$$xy = C$$
;

(3)
$$y^2 = ax^3$$
;

(4)
$$x^2 + C^2y^2 = 1$$
.

解: (1) 联立 $x^2 + y^2 = Cx$ 与 (2x - C) dx + 2y dy = 0, 消去 C 得曲线族满足微分方程 $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$, 故正交曲线族的微分方程为

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2xy}{x^2 - y^2}.$$

解得 $x^2 + y^2 = Ky$ $(K \neq 0)$.

(2) 曲线族 xy = C 满足的微分方程为 y dx + x dy = 0, 故正交曲线族的微分方程为

$$-x\,\mathrm{d}x + y\,\mathrm{d}y = 0.$$

解得 $x^2 - y^2 = K$.

(3) 联立 $y^2 = ax^3$ 与 $2y dy = 3ax^2 dx$, 消去 a 得曲线族满足微分方程 3y dx - 2x dy = 0, 故正交曲线族的微分方程为

$$2x \, \mathrm{d}x + 3y \, \mathrm{d}y = 0.$$

解得 $x^2 + \frac{3}{2}y^2 = K$.

(4) 联立 $x^2 + C^2y^2 = 1$ 与 $2x \, dx + 2C^2y \, dy = 0$, 消去 C^2 得曲线族满足微分方程 $xy \, dx - (x^2 - 1) \, dy = 0$, 故正交曲线族的微分方程为

$$(x^2 - 1) dx + xy dy = 0.$$

解得 $x^2 + y^2 - \ln x^2 = K$, 特解 x = 0.

2. 求与下列各曲线族相交成 $\frac{\pi}{4}$ 角的曲线族:

(1)
$$x - 2y = C$$
;

(2)
$$xy = C$$
;

(3) $y = x \ln ax$;

31

(4) $y^2 = 4ax$.

解: (1)

$$\tan\frac{\pi}{4} = \frac{y' - y_1'}{1 + y'y_1'} = 1 \Rightarrow y_1' = \frac{y' - 1}{y' + 1} = \frac{1}{2} \Rightarrow y' = 3.$$

积分得等角轨线族为 y = 3x + K.

(2) xy = C 满足的微分方程为 y dx + x dy = 0, 故

$$y'_1 = \frac{y'-1}{y'+1} = -\frac{y}{x} \Rightarrow (x-y) dx - (x+y) dy = 0.$$

积分得等角轨线族为 $x^2 - y^2 - 2xy = K$.

(3) 联立 $y = x \ln ax$ 与 $dy = (\ln ax + 1) dx$ 消去 a 得曲线族 $y = x \ln ax$ 满足微分方程 $\frac{dy}{dx} = \frac{y}{x} + 1$, 故

$$y'_1 = \frac{y'-1}{y'+1} = \frac{x+y}{x} \Rightarrow \frac{dy}{dx} = \frac{-2x}{y} - 1.$$

积分得等角轨线族为 $\ln(y^2 + xy + 2x^2) - \frac{2}{\sqrt{7}} \arctan \frac{2y+x}{\sqrt{7}x} = K$.

(4) $y^2 = 4ax$ 满足的微分方程为 $y \, dx - 2x \, dy = 0$, 故

$$y'_1 = \frac{y'-1}{y'+1} = \frac{y}{2x} \Rightarrow \frac{dy}{dx} = \frac{2x+y}{2x-y}.$$

积分得等角轨线族为 $\ln(y^2 - xy + 2x^2) - \frac{6}{\sqrt{7}x} \arctan \frac{2y - x}{\sqrt{7}x} = K$.

3. 给定双曲线族 $x^2 - y^2 = C$ (其中 C 是任意常数). 设有一个动点 P 在平面 (x,y) 上移动, 它的轨迹与和它相交的每条双曲线均成 $\frac{\pi}{6}$ 角, 又设此动点从 $P_0(0,1)$ 出发, 求出动点的轨迹.

解: 双曲线族 $x^2 - y^2 = C$ 满足的微分方程为 x dx - y dy = 0, 设动点的轨迹方程 为 y = y(x), 则

$$\tan\frac{\pi}{6} = \frac{\sqrt{3}}{3} = \frac{y' - y_1'}{1 + y'y_1'}.$$

从上式解得

$$y'_1 = \frac{\sqrt{3}y' - 1}{y' + \sqrt{3}} = \frac{x}{y} \Rightarrow \frac{dy}{dx} = \frac{\sqrt{3}x + y}{\sqrt{3}y - x}.$$

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\sqrt{3} + u}{\sqrt{3}u - 1} \Rightarrow \left(\frac{\frac{1}{2}}{u - \sqrt{3}} + \frac{\frac{\sqrt{3}}{2}}{\sqrt{3}u + 1}\right) \mathrm{d}u = -\frac{1}{x} \,\mathrm{d}x.$$

积分得 $\sqrt{3}y^2 - 2xy - \sqrt{3}x^2 = C \neq 0$, 代入初值 $P_0(0,1)$ 得 $C = \sqrt{3}$, 故动点轨迹方程为 $\sqrt{3}(x^2 - y^2 + 1) + 2xy = 0$.

32

4. (**追线**) 设在 Oxy 平面上, 有某物 P 从原点 O 出发, 以常速 a > 0 沿 x 轴的正方向运动. 同时又有某物 Q 以常速 b 从点 (0,1) 出发追赶 P. 设 b > a, 且 Q 的运动方向永远指向 P. 试求 Q 的运动轨迹与追上 P 的时间.

解: 设点 Q 的运动轨迹方程为 y=y(x), 记某时刻 Q 的坐标为 (x,y(x)), 则相应地点 P 的坐标为 $\left(x-\frac{y(x)}{y'(x)},0\right)$, 由时间关系得

$$\frac{\int_0^x \sqrt{1 + (y'(t))^2} \, \mathrm{d}t}{b} = \frac{x - \frac{y(x)}{y'(x)}}{a}.$$

将上式对 x 求导得

$$\frac{1}{b}\sqrt{1+(y'(x))^2} = \frac{1}{a}\left(1-\frac{(y'(x))^2-y(x)y''(x)}{(y'(x))^2}\right) = \frac{y(x)y''(x)}{a(y'(x))^2}.$$

即

$$\frac{a}{b}\sqrt{1+(y')^2} = \frac{yy''}{(y')^2}.$$

令 p = y', 则 $y'' = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = p \frac{dp}{dy}$, 从而上式化为

$$\frac{a}{b}\sqrt{1+p^2} = \frac{yp\frac{\mathrm{d}p}{\mathrm{d}y}}{p^2} \Rightarrow \frac{\mathrm{d}p}{p\sqrt{1+p^2}} = \frac{a}{b}\frac{\mathrm{d}y}{y}.$$

注意到 p < 0, 故

$$\frac{a}{b}\frac{\mathrm{d}y}{y} = \frac{-\frac{1}{p^2}\,\mathrm{d}p}{\sqrt{1+\left(\frac{1}{p}\right)^2}} = \frac{\mathrm{d}\left(\frac{1}{p}\right)}{\sqrt{1+\left(\frac{1}{p}\right)^2}}.$$

积分得

$$\ln\left(\frac{1}{p} + \sqrt{1 + \left(\frac{1}{p}\right)^2}\right) = \frac{a}{b}(\ln y + \ln C).$$

因此

$$\frac{1}{p} + \sqrt{1 + \left(\frac{1}{p}\right)^2} = (Cy)^{\frac{a}{b}}.$$

当 y=1 时, $\frac{1}{p}=0$, 故代入初值条件得 C=1, 故

$$\frac{1}{p} + \sqrt{1 + \left(\frac{1}{p}\right)^2} = y^{\frac{a}{b}}.$$

取倒数得

$$-\frac{1}{p}+\sqrt{1+\left(\frac{1}{p}\right)^2}=y^{-\frac{a}{b}}.$$

两式相减可得变量分离的方程

$$\mathrm{d}x = \frac{1}{2} \left(y^{\frac{a}{b}} - y^{-\frac{a}{b}} \right) \mathrm{d}y.$$

积分得

$$x = \frac{b}{2(a+b)}y^{\frac{a+b}{b}} - \frac{b}{2(b-a)}y^{\frac{b-a}{b}} + C_1.$$

代入初值条件 (x,y)=(0,1) 得 $C_1=\frac{ab}{b^2-a^2}$, 故点 Q 的运动轨迹为

$$x = \frac{b}{2(a+b)}y^{\frac{a+b}{b}} - \frac{b}{2(b-a)}y^{\frac{b-a}{b}} + \frac{ab}{b^2 - a^2}.$$

当 Q 追上 P 时, 重合点的横坐标为 $x_1 = \frac{ab}{b^2 - a^2}$, 故时间为 $t = \frac{x_1}{a} = \frac{b}{b^2 - a^2}$.

我们可以在本题的基础上讨论更一般的问题: 在正 n 边形的每个顶点上分别有一个物体, 按逆时针方向每一个物体都以不变的速度 v 跟踪与它相邻的物体, 那么如何求每个物体的运动轨迹.

以 n = 4 为例, 设 t = 0 时四个物体 A, B, C 和 D 分别在二维平面上的 (1,1), (-1,1), (-1,-1) 和 (1,-1) 处, 从此刻开始 A, B, C, D 分别以不变的速度 v 追赶 B, C, D, A. 求物体 A 的运动轨迹.

解: 设 A 的轨迹方程为 y = y(x), 记某时刻 A 的坐标为 (x, y(x)), 则此时 B 的坐标为 (-y(x), x), 由于 A 的运动方向指向 B, 故

$$y'(x) = \frac{y(x) - x}{x + y(x)}.$$

此为齐次方程容易解得

$$2 \arctan \frac{y}{x} + \ln (x^2 + y^2) = \frac{\pi}{2} + \ln 2.$$

5. (**逃逸速度**) 假设地球的半径为 $R = 6437 \, \text{km}$, 地面上的重力加速度为 $g = 9.8 \, \text{m/s}^2$, 又设质量为 M 的火箭在地面以初速 v_0 垂直上升. 假设不计空气阻力和其他任何星球的引力. 试求火箭的逃逸速度, 即: 使火箭一去不复返的最小初速度 v_0 .

解: 逃逸速度又称为第二宇宙速度, 取沿地球径向向外为正方向, 记地球质量为 M_1 , 记火箭的速度函数为 v=v(t), 位移函数为 s=s(t), 则由牛顿第二定律知

$$M\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = -\frac{GM_1M}{s^2}.$$

故

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = -\frac{GM_1}{s^2}.$$

由黄金代换 $GM_1 = gR^2$ 得

$$-\frac{gR^2}{s^2} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}t} = v\frac{\mathrm{d}v}{\mathrm{d}s}.$$

分离变量得

$$v \, \mathrm{d}v = -gR^2 \frac{\mathrm{d}s}{s^2}.$$

积分并代入初值条件得

$$\frac{1}{2}v^2 = \frac{gR^2}{s} + \left(\frac{1}{2}v_0^2 - gR\right).$$

要使得火箭从地球逃逸, 就必须始终有v > 0, 因此

$$\frac{1}{2}v_0^2 - gR \geqslant 0 \Longrightarrow v_0 \geqslant \sqrt{2gR} = 11.2 \,\text{km/s}.$$

6. 设某社会的总人数为 N, 当时流行一种传染病, 得病人数为 x. 设传染病人数的扩大率是与得病人数和未得病人数的乘积成正比. 试讨论传染病人数的发展趋势, 并以此解释对传染病人进行隔离的必要性.

 \mathbf{m} : 设比例常数为 k, 则依题意得

$$\frac{\mathrm{d}x}{\mathrm{d}t} = kx(N-x).$$

上式为变量分离的方程,容易解得 $x(t) = \frac{CNe^{kNt}}{1+Ce^{kNt}}$,当 $t \to +\infty$ 时, $x(t) \to N$,因此对传染病人进行隔离是有必要的.

第 3 章

存在和唯一性定理

3.1 皮卡存在和唯一性定理

1. 利用右端函数的性质讨论下列微分方程满足初值条件 y(0) = 0 的解的唯一性问题:

$$(1) \frac{\mathrm{d}y}{\mathrm{d}x} = |y|^{\alpha} \ (常数 \ \alpha > 0);$$

(2)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \begin{cases} 0, & \text{if } y = 0, \\ y \ln|y|, & \text{if } y \neq 0. \end{cases}$$

 \mathbf{W} : (1) 显然 y=0 是满足初值条件的解, 当 $0<\alpha<1$ 时, 由下式

$$\int_0^y \frac{\mathrm{d}y}{|y|^\alpha} = x$$

确定的函数 $\Phi(x,y)$ 是满足初值条件的解, 且当 $x \neq 0$ 时, $y \neq 0$, 故此时解不唯一.

当 $\alpha \ge 1$ 时,满足初值条件的解是唯一的,用反证法,假设还存在另一解 y=1y(x),y(0)=0,则必存在 x_0 和 ϵ 使得 $y(x_0)=0$,且当 $x_0 < x < x_0 + \epsilon$ 时, $y(x) \ne 0$,故

$$\frac{1}{|y(x)|^{\alpha}} \frac{\mathrm{d}y(x)}{\mathrm{d}x} = 1, \quad x_0 < x < x_0 + \epsilon.$$

因此

$$\int_0^{y(x)} \frac{dy}{|y|^{\alpha}} = \int_{x_0}^x \frac{1}{|y(x)|^{\alpha}} \frac{dy(x)}{dx} dx = x - x_0 < \infty.$$

矛盾, 故满足初值条件的解是唯一的. 综上, 当 $0<\alpha<1$ 时, 解不唯一; 当 $\alpha\geqslant1$ 时, 解 唯一.

(2) 显然 y = 0 是满足初值条件的解. 下面用反证法证明满足初值条件的解是唯一的, 假设还存在另一解 y = y(x), y(0) = 0, 则必存在 x_0 和 ϵ 使得 $y(x_0) = 0$, 且当 $x_0 < x < x_0 + \epsilon$ 时, $y(x) \neq 0$, 故

$$\frac{1}{y(x)\ln|y(x)|} \frac{\mathrm{d}y(x)}{\mathrm{d}x} = 1, x_0 < x < x_0 + \epsilon.$$

因此

$$\int_{0}^{y(x)} \frac{\mathrm{d}y}{y \ln |y|} = \int_{x_0}^{x} \frac{1}{y(x) \ln |y(x)|} \frac{\mathrm{d}y(x)}{\mathrm{d}x} \, \mathrm{d}x = x - x_0 < \infty.$$

矛盾, 故满足初值条件的解是唯一的.

2. 试求初值问题:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y + 1, \quad y(0) = 0$$

的皮卡序列,并由此取极限求解

解: 利用皮卡序列迭代公式

$$y_{n+1}(x) = y_0 + \int_{x_0}^x f(x, y_n(x)) dx,$$

知

$$y_1(x) = \int_0^x (x+1) \, \mathrm{d}x = \frac{1}{2}x^2 + x,$$

$$y_2(x) = \int_0^x \left(\frac{1}{2}x^2 + 2x + 1\right) \, \mathrm{d}x = \frac{x^3}{3!} + x^2 + x,$$

$$y_3(x) = \int_0^x \left(\frac{x^3}{3!} + x^2 + 2x + 1\right) \, \mathrm{d}x = \frac{x^4}{4!} + \frac{x^3}{3} + x^2 + x,$$

$$y_4(x) = \int_0^x \left(\frac{x^4}{4!} + \frac{x^3}{3} + x^2 + 2x + 1\right) \, \mathrm{d}x = \frac{x^5}{5!} + \frac{x^4}{12} + \frac{x^3}{3} + x^2 + x.$$

观察规律并用归纳法可证得

$$y_n(x) = \frac{x^{n+1}}{(n+1)!} + \frac{2x^n}{n!} + \frac{2x^{n-1}}{(n-1)!} + \dots + \frac{2x^2}{2} + x.$$

故

$$\lim y_n(x) = 2e^x - x - 2.$$

3. 设连续函数 f(x,y) 对 y 是递减的,则初值问题 (E) 在右侧 $(\mathbb{P} x \ge x_0)$ 的解是 唯一的. (试问: 在左侧 $(\mathbb{P} x \le x_0)$ 的解是否唯一? 能举一个反例吗?)

证明: (反证法) 假设初值问题有两个解 $y_1(x)$ 和 $y_2(x)$, 且存在 $x_1 > x_0$ 使得 $y_1(x_1) \neq y_2(x_1)$, 不妨设 $y_1(x_1) > y_2(x_1)$, 记

$$\bar{x} = \sup\{x_0 \leqslant x < x_1 : y_1(x) = y_2(x)\}.$$

显然有 $x_0 \le \bar{x} < x_1$, 令 $r(x) = y_1(x) - y_2(x)$, 则 $r(\bar{x}) = 0$ 且当 $\bar{x} < x < x_1$ 时 r(x) > 0, 又

$$r'(x) = y_1'(x) - y_2'(x) = f(x, y_1(x)) - f(x, y_2(x)) < 0, \bar{x} < x < x_1,$$

所以 $r(x) \le 0$ ($\bar{x} < x < x_1$),矛盾,故假设不成立,即证初值问题在右侧的解是唯一的,左侧的解不唯一,例如方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2}y^{\frac{1}{3}}$,其解为 $y^2 = (-x + C)^3$ 以及特解 y = 0,显然过 x 轴上每一点的左侧解不是唯一的.

注: 若 f(x,y) 对 y 是递增的, 同理可以证明初值问题 (E) 在左侧的解是唯一的. \square

3.2 佩亚诺存在定理

1. 利用 Ascoli 引理证明: 若一函数序列在有限区间 I 上是一致有界和等度连续的,则在 I 上它至少有一个一致收敛的子序列.

证明: 若 I = [a, b] 是有界闭区间,则即为 Ascoli 定理,下面假设函数序列 $\{f_n(x)\}$ 在有界开区间 (a, b) 上是一致有界和等度连续的,即假设:

(i) (一致有界) 存在正常数 M > 0, 使得

$$|f_n(x)| \leq M, \quad \forall x \in (a,b), \forall n = 1, 2, \cdots$$

(ii) (等度连续) 对任意 $\epsilon > 0$, 存在 $\delta = \delta(\epsilon) > 0$, 使得 $\forall x_1, x_2 \in (a, b)$, 当 $|x_1 - x_2| < \delta$ 时, 有

$$|f_n(x_1) - f_n(x_2)| < \epsilon, \quad \forall n = 1, 2, \cdots$$

由 Cauchy 收敛原理知 $\lim_{x\to a+} f_n(x)$ 存在等价于

$$\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in \{x \mid 0 < x - a < \delta\}, |f_n(x_1) - f_n(x_2)| < \epsilon.$$

结合 $\{f_n(x)\}$ 等度连续知对于每一个 n, 单侧极限 $\lim_{x\to a+} f_n(x)$ 存在, 同理单侧极限 $\lim_{x\to b-} f_n(x)$ 存在. 定义函数序列

$$F_n(x) = \begin{cases} \lim_{x \to a+} f_n(x), & x = a, \\ f_n(x), & x \in (a,b), \quad n = 1, 2, \dots \\ \lim_{x \to b-} f_n(x), & x = b. \end{cases}$$

则 $\{F_n(x)\}$ 在闭区间 [a,b] 上一致有界且等度连续,因此其在区间 [a,b] 上至少有一个一致收敛的子序列,由此可知 $\{f_n(x)\}$ 在 (a,b) 上至少有一个一致收敛的子序列.

2. 试举例说明, 当 I 是无限区间时上面的结论不成立.

 \mathbf{M} : 取定义在 $[0,+\infty)$ 上的函数序列

$$f_n(x) = \begin{cases} \frac{x}{n}, & 0 \leqslant x \leqslant n, \\ 1, & x > n. \end{cases}$$

容易验证 $\{f_n(x)\}$ 是一致有界且等度连续的, 下面证明 $\{f_n(x)\}$ 没有一致收敛的子序列 $\{f_{n_k}(x)\}$, 首先若 $\{f_{n_k}(x)\}$ 一致收敛, 则必收敛到 0, 但是

$$\lim_{k \to \infty} d(f_{n_k}, 0) = \lim_{k \to \infty} \sup_{x \in [0, +\infty)} |f_{n_k}(x) - 0| = 1 \neq 0.$$

矛盾, 故 $\{f_n(x)\}$ 没有一致收敛的子序列.

3. 我们知道: 皮卡序列满足 Ascoli 引理的条件. 试问: 能用皮卡序列来证明佩亚诺的存在定理吗? 说明理由.

解: 不能. 因为在定义皮卡序列的积分式中:

$$y_{n+1}(x) = y_0 + \int_{x_0}^x f(x, y_n(x)) dx.$$

 $y_{n+1}(x)$ 通过 $y_n(x)$ 表示出来,一旦限制在子序列上,这种表示法就失效了.

4. 对于与初值问题 (E) 等价的积分方程

$$y(x) = y_0 + \int_{x_0}^x f(x, y(x)) dx.$$

在区间 $I = [x_0, x_0 + h]$ 上 (其中正数 h 的意义同定理 3.3) 构造序列 $y_n(x)$ 如下: 任给 正整数 n, 令 $x_k = x_0 + kd_n$, 其中 $d_n = h/n$, $k = 0, 1, \dots, n$. 则分点

$$x_0, x_1, x_2, \cdots, x_n (= x_0 + h)$$

把区间 I 分成 n 等份. 我们从 $[x_0,x_1]$ 到 $[x_1,x_2]$, 再从 $[x_1,x_2]$ 到 $[x_2,x_3]$, \cdots , 最后从 $[x_{n-2},x_{n-1}]$ 到 $[x_{n-1},x_0+h]$ 用递推法定义下面的函数:

$$y_n(x) = \begin{cases} y_0, & \text{\pm x} \in [x_0, x_1]; \\ y_0 + \int_{x_0}^{x - d_n} f(s, y_n(s)) \, \mathrm{d}s, & \text{\pm x} \in [x_1, x_0 + h]. \end{cases}$$

称序列

$$y_1(x), y_2(x), \cdots, y_n(x), \cdots \quad (x \in I)$$

为 Tonelli 序列, 试用 Tonelli 序列和 Ascoli 引理证明佩亚诺存在定理.

证明: 由定义式可知 $y_n(x)$ 是通过如下递推得到的: 当 $x \in [x_0, x_1]$ 时,

$$y_n(x) = y_0.$$

$$y_n(x) = y_0 + \int_{x_0}^{x - d_n} f(s, y_n(s)) ds = y_0 + \int_{x_0}^{x - d_n} f(s, y_0) ds.$$

$$y_n(x) = y_0 + \int_{x_0}^{x - d_n} f(s, y_n(s)) ds = y_0 + \int_{x_0}^{x_1} f(s, y_0) ds + \int_{x_1}^{x - d_n} f(s, y_n(s)) ds,$$

其中上式中最右侧积分式里的 $y_n(s)$ 为当 $x \in [x_1, x_2]$ 时已经得到的 $y_n(x)$.

这样不断地递推下去, 即可得到 $y_n(x)$ 在区间 $[x_0, x_0 + h]$ 上面的表达式, 容易验证 $\{y_n(x)\}$ 在 $[x_0, x_0 + h]$ 上连续, 且由 $y_n(x) - y_0 = 0$, $x \in [x_0, x_1]$ 和

$$|y_n(x) - y_0| = \left| \int_{x_0}^{x - d_n} f(s, y_n(s)) \, ds \right| \le M(x - d_n - x_0), \quad x_1 \le x \le x_0 + h$$

知 $\{(x, y_n(x)) \mid x \in [x_0, x_0 + h]\} \subset R$, 从而 $(y_n(x))_{n \ge 1}$ 一致有界.

对于 $\forall x, \tilde{x} \in [x_0, x_0 + h]$, 不妨设 $x < \tilde{x}$, 则 $\max\{\tilde{x} - d_n, x_0\} \geqslant \max\{x - d_n, x_0\}$, 由 定义知

$$y_n(x) = y_0 + \int_{x_0}^{\max\{x - d_n, x_0\}} f(s, y_n(s)) \, \mathrm{d}s.$$
$$y_n(\tilde{x}) = y_0 + \int_{x_0}^{\max\{\tilde{x} - d_n, x_0\}} f(s, y_n(s)) \, \mathrm{d}s.$$

故

$$|y_n(\tilde{x}) - y_n(x)| = \left| \int_{\max\{x - d_n, x_0\}}^{\max\{\tilde{x} - d_n, x_0\}} f(s, y_n(s)) \, \mathrm{d}s \right|$$

$$\leq M(\max\{\tilde{x} - d_n, x_0\} - \max\{x - d_n, x_0\}) \leq M(\tilde{x} - x).$$

因此 $\{y_n(x)\}$ 在区间 $[x_0, x_0 + h]$ 上等度连续,由 Ascoli 定理知 $(y_n(x))_{n\geqslant 1}$ 有一致收敛的子序列 $(y_{n_k}(x))_{k\geqslant 1}$,记 $y_{n_k}(x) \Rightarrow \phi(x)$,在下面定义式中

$$y_{n_k}(x) = y_0 + \int_{x_0}^{\max\{x - d_{n_k}, x_0\}} f(s, y_{n_k}(s)) ds,$$

取极限 $k \to \infty$, 并注意到 $\max \{x - d_{n_k}, x_0\} \to x$, 即得

$$\phi(x) = y_0 + \int_{x_0}^x f(s, \phi(s)) ds.$$

故 $\phi(x)$ 是初值问题 (E) 的一个解.

3.3 解的延伸 40

3.3 解的延伸

1. 利用定理 3.5 证明: 线性微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a(x)y + b(x) \quad (x \in I)$$

的每一个解 y = y(x) 的 (最大) 存在区间为 I, 这里假设 a(x) 和 b(x) 在区间 I 上是连续的.

证明: 显然

$$|a(x)y + b(x)| \leqslant |a(x)||y| + |b(x)|.$$

 $\diamondsuit \ A(x) = |a(x)| \ge 0, \ B(x) = |b(x)| \ge 0, \ \text{则} \ A(x) \ \text{和} \ B(x) \ \text{都是} \ I \ \text{上的连续函数, 由定理 3.5 知每一个解的最大存在区间为 } I.$

2. 讨论下列微分方程解的存在区间:

(1)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2 + y^2};$$

$$(2) \frac{\mathrm{d}y}{\mathrm{d}x} = y(y-1);$$

(3)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = y\sin(xy);$$

$$(4) \frac{\mathrm{d}y}{\mathrm{d}x} = 1 + y^2.$$

解: (1) 因为 $\frac{1}{x^2+y^2}$ 在区域 $\mathbb{R}^2\setminus\{0\}$ 上连续, 故由解的延伸定理知任意积分曲线必延伸到 $\mathbb{R}^2\setminus\{0\}$ 的边界. 设 $y=y(x), x\in J$ 为一个饱和解, 则

$$\frac{\mathrm{d}y(x)}{\mathrm{d}x} = \frac{1}{x^2 + y^2(x)} > 0.$$

故存在反函数 x = x(y), 且 x(y) 满足

$$\frac{\mathrm{d}x(y)}{\mathrm{d}y} = x^2(y) + y^2.$$

由教材例 1 知 x=x(y) 的存在区间有限, 不妨记为 (c,d), 则当 $y\to c+$ 或 $y\to d-$ 时, $x(y)\to\infty$, 也就说明 y(x) 有界, 故其存在区间为 $(-\infty,+\infty)$ 或 $(-\infty,0)$ 或 $(0,+\infty)$.

注: 对照教材例 1 可以证明一般结论: 微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = af(x) + by^2 \quad (f(x) \uparrow > 0, ab > 0)$$

任一解的存在区间都是有界的.

3.3 解的延伸 41

(2) 这是变量分离的方程, 容易解得方程的通解为 $y(x) = \frac{1}{1 - Ce^x}$ $(C \in \mathbb{R})$, 另外有特解 y = 0.

当 C<0 时, 0< y(x)<1 且 y(x) 单调减, 当 $x\to -\infty$ 时, $y(x)\to 1$, 当 $x\to +\infty$ 时, $y(x)\to 0$;

当 C = 0 时, y(x) = 1;

当 C > 0 时,分母有零点 $x_c = -\ln C$,当 $x \in (-\infty, x_c)$ 时,y(x) > 0 单调增, $x \to -\infty$ 时, $y(x) \to 1$, $x \to x_c$ 时, $y(x) \to +\infty$;当 $x \in (x_c, +\infty)$ 时,y(x) < 0 单调增, $x \to x_c$ 时, $y(x) \to -\infty, x \to +\infty$ 时, $y(x) \to 0$.

综上, 解的存在区间为 $(-\infty, +\infty)$ 或 $(-\infty, -\ln C)$ 或 $(-\ln C, +\infty)$.

- (3) 因为 $y\sin(xy)$ 在 \mathbb{R}^2 上连续,且 $|y\sin(xy)| \leq |y|$,故由定理 3.5 知解的存在区间为 $(-\infty, +\infty)$.
 - (4) 原方程的解为 $x = \arctan y + C$, 故解的存在区间为 $(C \frac{\pi}{2}, C + \frac{\pi}{2})$.
- **3.** 考虑对称形式的微分方程 $x \, dx + y \, dy = 0$, 它的定义域为 $G = \{(x,y) : x^2 + y^2 > 0\}$. 则单位圆 $(x^2 + y^2 = 1)$ 是一条积分曲线, 它在区域 G 的内部; 它并没有延伸到 G 的边界, 这一点是否与解的延伸定理相矛盾? 为什么?

解:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$$
, 因为 $-\frac{x}{y}$ 在区域 G 上不连续, 故不能运用延伸定理.

4. 设初值问题

(E):
$$\frac{dy}{dx} = (y^2 - 2y - 3)e^{(x+y)^2}, \quad y(x_0) = y_0$$

的解的最大存在区间为: a < x < b, 其中 (x_0, y_0) 是平面上任一点, 则 $a = -\infty$ 和 $b = \infty$ 中至少有一个成立.

证明: 因为 $f(x,y) = (y^2 - 2y - 3)e^{(x+y)^2}$ 在 \mathbb{R}^2 上连续, 且对 y 有连续的偏导数, 故经过任一点的积分曲线唯一, 显然 y = 3 和 y = -1 是两个特解, 其他积分曲线不与其二者相交, 故:

- (1) $y_0<-1$ 时, $\frac{\mathrm{d}y}{\mathrm{d}x}>0$, 故解 y=y(x) 严格单调增, 但不能与 y=-1 相交, 故必有 $b=+\infty.$
- (2) $-1 < y_0 < 3$ 时, $\frac{dy}{dx} < 0$, 故解 y = y(x) 严格单调减, 但不能与 y = -1 和 y = 3 相交, 故必有 $a = -\infty, b = +\infty$.
- (3) $y_0>3$ 时, $\frac{\mathrm{d}y}{\mathrm{d}x}>0$, 故解 y=y(x) 严格单调增, 但不能与 y=3 相交, 故必有 $a=-\infty.$

$$(4) y_0 = -1$$
 或 $y_0 = 3$ 时, 显然 $a = -\infty, b = +\infty$.

5. 设初值问题

(E):
$$\frac{dy}{dx} = (x^2 - y^2)f(x, y), \quad y(x_0) = y_0,$$

其中函数 f(x,y) 在全平面连续且满足 yf(x,y) > 0, 当 $y \neq 0$. 则对于任意的 (x_0,y_0) , 当 $x_0 < 0$ 和 $|y_0|$ 适当小时 (E) 的解可延拓到 $-\infty < x < +\infty$.

证明: 显然 $y = \pm x$ 是线素场的水平等斜线,由 f(x,y) 连续以及 yf(x,y) > 0,当 $y \neq 0$ 可知 f(x,0) = 0,故 y = 0 为方程的特解. 当 $x_0 < 0$ 且 $|y_0| < |x_0|$ 时(以 $y_0 > 0$ 为例),解 y = y(x) 在区域 $\{(x,y) \mid 0 \leq y < -x, x < 0\}$ 单调增加,故可向左延伸至 $-\infty$,向右穿过 y = -x 后单调减,必与 y = x 相交,穿过直线 y = x 后单调增加且不能再次穿过 y = x,故可向右延拓至 $+\infty$.

3.4 比较定理及其应用

1. 设初值问题 (E), 矩形区域 R, 和正数 h 的意义同定理 3.1. 试证在 (E) 的最小解 y = W(x) 和最大解 y = Z(x) 之间充满了 (E) 的其它解, 即任取一点 (x_1, y_1) , 其中

$$|x_1 - x_0| \le h$$
, $W(x_1) \le y_1 \le Z(x_1)$,

则 (E) 在 $|x-x_0| \leq h$ 上至少有一个解 y=u(x) 满足: $u(x_1)=y_1$.

证明: 为证明简单以 $x_1 \in (x_0, x_0 + h]$ 为例, 由解的延伸定理知初值问题:

$$(E_1): \frac{dy}{dx} = f(x,y), \quad y(x_1) = y_1$$

的解 $y = \phi(x)$ 必与 y = W(x) 或 y = Z(x) 相交, 不妨设与 y = W(x) 相交于点 $(\xi, W(\xi))$ 且两曲线在交点处相切, 令

$$u(x) = \begin{cases} W(x), & x_0 - h \leqslant x \leqslant \xi, \\ \phi(x), & \xi < x \leqslant x_0 + h. \end{cases}$$

则 y = u(x) 为 (E) 的解且满足 $u(x_1) = y_1$.

2. (第二比较定理) 设函数 f(x,y) 与 F(x,y) 都在平面区域 G 内连续且满足

$$f(x,y) \leqslant F(x,y), \quad (x,y) \in G;$$

又设函数 $y = \phi(x)$ 与 $y = \Phi(x)$ 在区间 a < x < b 上分别是初值问题

$$(E_1): \frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

与

$$(E_2): \frac{dy}{dx} = F(x,y), \quad y(x_0) = y_0$$

的解 $[(x_0, y_0) \in G]$, 并且 $y = \phi(x)$ 是 (E_1) 的右行最小解和左行最大解 (或者: $y = \Phi(x)$ 是 (E_2) 的右行最大解和左行最小解), 则有如下比较关系:

$$\phi(x) \leqslant \Phi(x), \ \text{\'et} \ x_0 \leqslant x < b;$$

证明: 不妨设 $\Phi(x)$ 是最大右行解和最小左行解, 为证当 $x_0 \leqslant x < b$ 时, $\phi(x) \leqslant \Phi(x)$, 只需证明 $\forall c \in (x_0, b)$, 有

$$\phi(x) \leqslant \Phi(x), \quad x \in [x_0, c].$$

考虑初值问题

$$(E_n^*): \frac{\mathrm{d}y}{\mathrm{d}x} = F(x,y) + \frac{1}{n}, \quad y(x_0) = y_0, \quad n = 1, 2, \cdots.$$

由 Peano 存在定理和解的延伸定理知 (E_n^*) 在 $[x_0,c]$ 上有解, 取其中一解记为 $\Phi_n(x)$, 由第一比较定理得 $\phi(x) < \Phi_n(x) < \Phi_{n-1}(x)$, $x_0 \le x \le c$, 即

$$\Phi_1(x) > \Phi_2(x) > \dots > \Phi_n(x) > \dots > \phi(x), \quad x_0 \leqslant x \leqslant c.$$

显然 $\{\Phi_n(x)\}$ 在 $[x_0,c]$ 上一致有界, 且由

$$|\Phi_n(x_1) - \Phi_n(x_2)| \le \left| \int_{x_1}^{x_2} \left(F(x, \Phi_n(x)) + \frac{1}{n} \right) dx \right| \le (M+1)|x_1 - x_2|$$

知 $\{\Phi_n(x)\}$ 等度连续, 故其有一致收敛的子列, 不妨设其一致收敛:

$$\lim_{n \to \infty} \Phi_n(x) = \Phi_*(x).$$

在下式

$$\Phi_n(x) = y_0 + \int_{x_0}^x \left(F(x, \Phi_n(x)) + \frac{1}{n} \right) dx$$

中令 $n \to \infty$, 得

$$\Phi_*(x) = y_0 + \int_{x_0}^x F(x, \Phi_*(x)) dx.$$

故 $\Phi_*(x)$ 是 (E_2) 的解, 因此

$$\phi(x) \leqslant \lim_{n \to \infty} \Phi_n(x) = \Phi_*(x) \leqslant \Phi(x), \quad x_0 \leqslant x \leqslant c.$$

同理可证 $\phi(x) \geqslant \Phi(x), a < x \leqslant x_0$.

3. 设初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + (y+1)^2, y(0) = 0$$

的解在右侧的最大存在区间为 $[0,\beta)$, 试证: $\frac{\pi}{4}<\beta<1$.

证明: 首先初值问题的解存在且唯一 (记为 $\phi(x)$) 并可延伸到包含坐标原点的任意 区域的边界, 下面分三步证明 $\frac{\pi}{4} < \beta < 1$.

(1) 证明: $\frac{\pi}{4} \leq \beta \leq 1$.

当 $|x| \leq 1$ 时, 显然有

$$(y+1)^2 \leqslant x^2 + (y+1)^2 \leqslant 1 + (y+1)^2$$

第 4 章

奇解

4.1 一阶隐式微分方程

4.1.1 证明与总结

考虑一阶隐式微分方程:

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0. \tag{*}$$

• 若可由 (*) 式导出 y = f(x, p), 则

$$p = f'_x(x, p) + f'_p(x, p) \frac{\mathrm{d}y}{\mathrm{d}x}.$$

若解出 p = u(x, C), 则通解为 y = f(x, u(x, C)); 若解出 x = v(p, C), 则通解为

$$\begin{cases} x = v(p, C), \\ y = f(v(p, C), p), \end{cases}$$

其中 p 视作参变量.

• 若可由 (\star) 式导出 F(y,p)=0, 即不显含自变量 x, 设 y=g(t),p=h(t), 则

$$dx = \frac{1}{p} dy = \frac{g'(t)}{h(t)} dt \Rightarrow x = \int \frac{g'(t)}{h(t)} dt.$$

故通解为 $x = \int \frac{g'(t)}{h(t)} dt$, y = g(t).

- 若可由 (\star) 式导出 F(x,p)=0, 即不显含未知函数 y, 此时处理方式同上.
- 设 x = f(u, v), y = g(u, v), p = h(u, v), 由 dy = p dx 若能解出 v = Q(u, C), 则 通解为 x = f(u, Q(u, C)), y = g(u, Q(u, C)).

4.1.2 习题

1. 求解下列微分方程:

(1)
$$2y = p^2 + 4px + 2x^2 \left(p = \frac{\mathrm{d}y}{\mathrm{d}x}\right);$$

(2)
$$y = px \ln x + (xp)^2$$
;

(3)
$$2xp = 2\tan y + p^3\cos^2 y$$
.

证明: (1) 将原方程求导得

$$2p = 2p\frac{\mathrm{d}p}{\mathrm{d}x} + 4p + 4x\frac{\mathrm{d}p}{\mathrm{d}x} + 4x.$$

即

$$(p+2x)\left(\frac{\mathrm{d}p}{\mathrm{d}x}+1\right) = 0.$$

当 p+2x=0 时, 代入原方程得特解 $y=-x^2$;

当 $\frac{\mathrm{d}p}{\mathrm{d}x}=-1$ 时, p=-x+C, 代人原方程得通解 $y=-\frac{1}{2}x^2+Cx+\frac{1}{2}C^2$.

(2) 将原方程求导得

$$p = x \ln x \frac{\mathrm{d}p}{\mathrm{d}x} + p(\ln x + 1) + 2xp \left(p + x \frac{\mathrm{d}p}{\mathrm{d}x}\right).$$

即

$$\left(x\frac{\mathrm{d}p}{\mathrm{d}x} + p\right)(\ln x + 2xp) = 0.$$

当 $x \frac{dp}{dx} + p = 0$ 时, $p = \frac{C}{x}$, 代入原方程得通解 $y = C \ln x + C^2$;

当 $\ln x + 2xp = 0$ 时, $p = -\frac{\ln x}{2x}$, 代入原方程得特解 $y = -\frac{1}{4}(\ln x)^2$.

(3) 当 p=0 时得特解 $y=k\pi$ $(k\in\mathbb{Z})$;

当 $p \neq 0$ 时,将原方程变形为

$$x = \frac{\tan y}{p} + \frac{1}{2}p^2 \cos^2 y.$$

在上式中关于 y 求导得

$$\frac{1}{p} = \frac{1}{p^2} \left(\sec^2 y \cdot p - \tan y \cdot \frac{\mathrm{d}p}{\mathrm{d}y} \right) + p \frac{\mathrm{d}p}{\mathrm{d}y} \cos^2 y - p^2 \sin y \cos y.$$

即

$$\left(\frac{\mathrm{d}p}{\mathrm{d}y} - p\tan y\right)\left(p^3\cos^2 y - \tan y\right) = 0.$$

当 $\frac{dp}{dy} - p \tan y = 0$ 时,解得 $p = \frac{1}{C \cos y}$ ($C \neq 0$),代人原方程得通解 $x = C \sin y + \frac{1}{2C^2}$; 当 $p^3 \cos^2 y - \tan y = 0$ 时, $p = \frac{\tan^{\frac{1}{3}} y}{\cos^{\frac{2}{3}} y}$,代人原方程得特解 $x = \frac{3}{2} \sin^{\frac{2}{3}} y$.

2. 用参数法求解下列微分方程:

$$(1) 2y^2 + 5\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 4;$$

$$(2) x^2 - 3\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1;$$

$$(3) \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y - x^2 = 0;$$

$$(4) x^3 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 = 4x\frac{\mathrm{d}y}{\mathrm{d}x}.$$

证明: (1) 令 $y = \sqrt{2}\sin t$, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{5}}\cos t$, 则

当 dy = 0 时, 得特解 $y = \pm \sqrt{2}$:

当 $\mathrm{d}y \neq 0$ 时, $\mathrm{d}x = \frac{\mathrm{d}x}{\mathrm{d}y}\,\mathrm{d}y = \frac{\sqrt{5}}{2\cos t}\sqrt{2}\cos t\,\mathrm{d}t = \sqrt{\frac{5}{2}}\,\mathrm{d}t \Rightarrow x = \sqrt{\frac{5}{2}}t + C$, 故通解为 $y = \sqrt{2}\sin\left(\sqrt{\frac{2}{5}}(x - C)\right).$ (2) $\diamondsuit x = \sec t, \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{3}}\tan t, 則$

$$(2) \diamondsuit x = \sec t, \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{3}} \tan t, \ \mathbb{M}$$

$$dy = \frac{dy}{dx} dx = \frac{1}{\sqrt{3}} \tan^2 t \sec t dt.$$

积分得

$$y = \frac{1}{2\sqrt{3}}(\sec t \tan t - \ln|\sec t + \tan t|) + C.$$

故通解为

$$\begin{cases} x = \sec t, \\ y = \frac{1}{2\sqrt{3}}(\sec t \tan t - \ln|\sec t + \tan t|) + C. \end{cases}$$

本题也可以利用恒等式: $\cosh^2 t - \sinh^2 t = 1$, 得到另外一种通解表达式: x = 1 $\cosh t, y = \frac{1}{4\sqrt{3}}(\sinh 2t - 2t) + C.$

(3) 将原方程求导得

$$2p\frac{\mathrm{d}p}{\mathrm{d}x} + p - 2x = 0 \Rightarrow \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{x}{p} - \frac{1}{2}.$$

 $\Rightarrow u = \frac{p}{x} \neq 0$, 则

$$\frac{\mathrm{d}p}{\mathrm{d}x} = u + x \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{u} - \frac{1}{2} \Rightarrow x \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{2u^2 + u - 2}{2u} = 0.$$

• 当 $2u^2+u-2=0$ 即 $u=\frac{-1\pm\sqrt{17}}{4}$ 时, 若 $u=\frac{-1+\sqrt{17}}{4}$, 则 $p=\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{-1+\sqrt{17}}{4}x\Rightarrow y=\frac{-1+\sqrt{17}}{8}x^2+C$, 将 $p=\frac{-1+\sqrt{17}}{4}x$ 直接代入原方程得 $y=\frac{-1+\sqrt{17}}{8}x^2$, 故原方程有特解 $y=\frac{-1+\sqrt{17}}{8}x^2$, 同理可得到另外一个特解 $y=\frac{-1-\sqrt{17}}{8}x^2$;

4.2 奇解 48

• 当 $2u^2 + u - 2 \neq 0$ 时, $\frac{2u}{2u^2 + u - 2} du + \frac{1}{x} dx = 0$, 下面对该变量分离的方程进行不定积分:

$$\int \frac{2u}{2u^2 + u - 2} \, du + \int \frac{1}{x} \, dx = 0$$

$$\Rightarrow \frac{1}{2} \ln|2u^2 + u - 2| - \frac{1}{2} \int \frac{1}{2\left(x + \frac{1}{4}\right)^2 - \frac{17}{8}} \, du + \ln|x| = C$$

$$\Rightarrow \frac{1}{2} \ln|2u^2 + u - 2| - \frac{1}{4} \int \frac{1}{\left(x + \frac{1}{4}\right)^2 - \frac{17}{16}} \, du + \ln|x| = C$$

$$\Rightarrow \frac{1}{2} \ln|2u^2 + u - 2| + \frac{1}{2\sqrt{17}} \ln\left|\frac{u + \frac{1 + \sqrt{17}}{4}}{u + \frac{1 - \sqrt{17}}{4}}\right| + \ln|x| = C$$

$$\Rightarrow \frac{\sqrt{17}}{4} \ln|2p^2 - 2x^2 + px| + \frac{1}{4} \ln\left|\frac{p + \frac{1 + \sqrt{17}}{4}x}{p + \frac{1 - \sqrt{17}}{4}x}\right| = C_1$$

$$\Rightarrow (2(p - \alpha x)(p - \beta x))^{\frac{\sqrt{17}}{4}} \left(\frac{p - \beta x}{p - \alpha x}\right)^{\frac{1}{4}} = C_2 \neq 0$$

$$\Rightarrow (p - \alpha x)^{\alpha} = C_3(p - \beta x)^{\beta}, C_3 \neq 0,$$

其中 $\alpha = \frac{\sqrt{17}-1}{4}$, $\beta = \frac{-\sqrt{17}-1}{4}$.

综上所述, 原方程有通解 $(p-\alpha x)^{\alpha}=C(p-\beta x)^{\beta}$ $(C\neq 0)$ 以及两个特解 $y_1=\frac{1}{2}\alpha x^2,y_2=\frac{1}{2}\beta x^2.$

(4)
$$\Rightarrow p = tx$$
, $y = 0$ $\Rightarrow x = \frac{4t}{1+t^3}$, $p = \frac{4t^2}{1+t^3}$

积分得

$$y = \int \frac{4t^2(4 - 8t^2)}{(1 + t^3)^3} dt = \frac{32}{3} \frac{1}{1 + t^3} - \frac{8}{(1 + t^3)^2} + C.$$

故通解为

$$\begin{cases} x = \frac{4t}{1+t^3}, \\ y = \frac{32}{3} \frac{1}{1+t^3} - \frac{8}{(1+t^3)^2} + C. \end{cases}$$

4.2 奇解

1. 利用 p-判别式求下列微分方程的奇解:

(1)
$$y = x \frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2;$$

4.2 奇解 49

(2)
$$y = 2x \frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2;$$

(3)
$$(y-1)^2 \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{4}{9}y;$$

解: (1) 令 $F(x,y,p) = y - xp - p^2$, 则 p-判别式为 $y - xp - p^2 = 0$, -x - 2p = 0 ⇒ $y = -\frac{1}{4}x^2$, 经验证 $y = -\frac{1}{4}x^2$ 是原方程的解, 又

$$F_y'\left(x, -\frac{1}{4}x^2, -\frac{1}{2}x\right) = 1, \ F_{pp}''\left(x, -\frac{1}{4}x^2, -\frac{1}{2}x\right) = -2, \ F_p'\left(x, -\frac{1}{4}x^2, -\frac{1}{2}x\right) = 0.$$

故 $y = -\frac{1}{4}x^2$ 是奇解.

(2) 令 $F(x, y, p) = y - 2xp - p^2$, 则 p-判别式为 $y - 2xp - p^2 = 0$, $-2x - 2p = 0 \Rightarrow y = -x^2$, 但是 $y = -x^2$ 不是原方程的解更不是奇解.

(3) 令 $F(x,y,p) = (y-1)^2 p^2 - \frac{4}{9}y$, 则 p-判别式为 $(y-1)^2 p^2 - \frac{4}{9}y = 0$, $2(y-1)^2 p = 0 \Rightarrow y = 0$, 经验证 y = 0 是原方程的解, 又

$$F'_y(x,0,0) = -\frac{4}{9}, \ F''_{pp}(x,0,0) = 2, \ F'_p(x,0,0) = 0,$$

故 y=0 是原方程的奇解.

2. 举例说明, 在定理 4.2 的条件 (4.28) 中的两个不等式是缺一不可的.

解: 分别考虑方程
$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - y^2 = 0$$
 与 $\sin\left(y\frac{\mathrm{d}y}{\mathrm{d}x}\right) = y$.

3. 研究下面的例子, 说明定理 4.2 的条件 (4.29) 是不可缺少的:

$$y = 2x + y' - \frac{1}{3}(y')^3.$$

解: p-判别式为: $y=2x+p-\frac{1}{3}p^2, 0=1-p^2 \Rightarrow y=2\pm\frac{2}{3}$, 经检验 $y=2x+\frac{2}{3}$ 不是原方程的解, $y=2x-\frac{2}{3}$ 是原方程的解, 但不是特解.

令
$$F(x,y,p) = y - 2x + \frac{1}{3}p^3 - p$$
, 则

$$F_y'\left(x,2x-\frac{2}{3},2\right)=1,\ F_{pp}''\left(x,2x-\frac{2}{3},2\right)=4,\ F_p'\left(x,2x-\frac{2}{3},2\right)=3\neq 0.$$

故条件
$$F_p'(x,\varphi(x),\varphi'(x))=0$$
 不可缺少.

4.3 包络

1. 试求克莱罗方程的通解及其包络.

解: 克莱罗方程为: $y = xp + f(p) \left(p = \frac{dy}{dx} \right)$, 其中 $f''(p) \neq 0$.

$$y = xp + f(p) \Rightarrow (x + f'(p)) \frac{\mathrm{d}p}{\mathrm{d}x} = 0.$$

由 $\frac{\mathrm{d}p}{\mathrm{d}x}=0$ 即 p=C得通解 $y=Cx+f(C),\,C$ 判别式为

$$\begin{cases} y = Cx + f(C), \\ x + f'(C) = 0 \end{cases} \Rightarrow \begin{cases} x = -f'(C) = \varphi(C), \\ y = -Cf'(C) + f(C) = \psi(C). \end{cases}$$
 (*)

令 V(x,y,C) = Cx + f(C) - y, 则 $V_x'(\varphi(C),\psi(C),C) = C,V_y'(\varphi(C),\psi(C),C) = -1$, 故 $(V_x',V_y') \neq (0,0)$, 又 $(\varphi'(C),\psi'(C)) = (-f''(C),-Cf''(C)) \neq (0,0)$, 故 (*) 是曲线族 y = Cx + f(C) 的一支包络.

2. 试求一微分方程, 使它有奇解为 $y = \sin x$.

解: 考虑克莱罗方程 y = xp + f(p), 将 $y = \sin x$ 代入得

$$\sin x = x \cos x + f(\cos x).$$

$$\sqrt{1-p^2} = p \arccos p + f(p).$$

故

$$f(p) = -p\arccos p + \sqrt{1 - p^2}.$$

容易验证 $y = \sin x$ 是方程 $y = xp - p \arccos p + \sqrt{1 - p^2}$ 的奇解.

第5章

高阶微分方程

5.1 几个例子

1. 利用线性单摆方程测量你所在地的重力常数 g.

解: 利用单摆周期 $T=2\pi\sqrt{\frac{l}{g}}$ 即得 $g=\frac{4\pi^2}{T^2}l$, 测量摆长以及单摆完成一个周期运动的时间即可得出所在地的重力常数 g.

2. 如果在非线性单摆方程中取 $\sin x$ 的三次近似, 即

$$\sin x \sim x - \frac{x^3}{6},$$

则有单摆的三次近似方程

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a^2 \left(x - \frac{x^3}{6} \right) = 0.$$

由此证明单摆振动是不等时的,而且它的相图说明可以发生进动.

证明: 将方程变形然后两边同时乘以 dz 即得

$$\frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = a^2 \left(\frac{x^3}{6} - x\right) \frac{\mathrm{d}x}{\mathrm{d}t}.$$

积分得

$$\frac{1}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 = a \left(\frac{x^4}{24} - \frac{x^2}{2} \right) + \frac{C}{2}.$$

设单摆的振幅为 A, 则

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \pm \sqrt{a^2 \left(\frac{x^4}{12} - x^2\right) + C} = \pm \sqrt{a^2 \left(\frac{x^4}{12} - x^2\right) - a^2 \left(\frac{A^4}{12} - A^2\right)}.$$

故周期 T 满足

$$\frac{T}{4} = \int_0^A \frac{\mathrm{d}x}{\sqrt{a^2 \left(\frac{x^4}{12} - x^2 - \frac{A^4}{12} + A^2\right)}}.$$

因此

$$T = \frac{4}{a} \int_0^1 \frac{A \, \mathrm{d}u}{\sqrt{\frac{A^4}{12}(u^4 - 1) - A^2(u^2 - 1)}} = \frac{4}{a} \int_0^1 \frac{\mathrm{d}u}{\sqrt{(u^2 - 1)\left(\frac{A^2}{12}(u^2 + 1) - 1\right)}}.$$

由于 T 与 A 有关, 故单摆的振动是不等时的.

3. 在悬链线问题中当 $L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 时如何处理?

解: 此时悬链线即为直线段, 其方程为 $y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1 \ (x_1 \le x \le x_2)$.

4. 微分方程 (5.20) 表示二体问题的运动方程. 在上面求解过程中, 试适当选择积分常数, 使运动 (x(t),y(t),z(t)) 的轨道在一条直线上并且趋向 O 点 (即二体发生碰撞);或者使轨道是一圆周.

解: (i) 运动 (x(t), y(t), z(t)) 的轨道在一条直线上并且趋向 O 点 (即二体发生碰撞) 时, $\frac{d\theta}{dt} = 0$, 由 (5.28) 知 $C_3 = 0$, 再由 (5.27) 知 $\frac{dr}{dt} = -\sqrt{\frac{2\mu}{r} + C_4}$.

(ii) 运动 (x(t), y(t), z(t)) 的轨道是一圆周时, $\frac{dr}{dt} = 0$,故 $r = r_0$,由 (5.27) 知 $C_4 = \left(r_0 \frac{d\theta}{dt}\right)^2 - \frac{2\mu}{r_0}$,又由 (5.28) 知 $r_0^2 \frac{d\theta}{dt} = -C_3$,故 $C_4 = \frac{C_3^2}{r_0^2} - \frac{2\mu}{r_0}$.

5.2 n 维线性空间中的微分方程

1. 把单摆方程 (5.7), 悬链线方程 (5.15) 和二体运动方程 (5.20) 分别写成标准微分方程组.

解: (i) 单摆方程为

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a^2 \sin x = 0.$$

令 $x_1 = x, x_2 = \frac{dx}{dt}$, 则标准微分方程组为

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2, \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = -a^2 \sin x_1. \end{cases}$$

(ii) 悬链线方程为

$$y'' = a\sqrt{1 + (y')^2}.$$

令 $y_1 = y, y_2 = \frac{dy}{dx}$, 则标准微分方程组为

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}t} = y_2, \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} = a\sqrt{1 + y_2^2}. \end{cases}$$

(iii) 二体运动方程为

$$\begin{cases} \ddot{x} = -\frac{Gm_s x}{\left(\sqrt{x^2 + y^2 + z^2}\right)^3}, \\ \ddot{y} = -\frac{Gm_s y}{\left(\sqrt{x^2 + y^2 + z^2}\right)^3}, \\ \ddot{z} = -\frac{Gm_s z}{\left(\sqrt{x^2 + y^2 + z^2}\right)^3}. \end{cases}$$

令 $s_1=x, s_2=\frac{\mathrm{d}x}{\mathrm{d}t}, s_3=y, s_4=\frac{\mathrm{d}y}{\mathrm{d}t}, s_5=z, s_6=\frac{\mathrm{d}z}{\mathrm{d}t},$ 则标准微分方程组为

$$\begin{cases} \frac{\mathrm{d}s_1}{\mathrm{d}t} = s_2, \\ \frac{\mathrm{d}s_2}{\mathrm{d}t} = -\frac{Gm_s s_1}{(\sqrt{s_1^2 + s_3^2 + s_5^2})^3}, \\ \frac{\mathrm{d}s_3}{\mathrm{d}t} = s_4, \\ \frac{\mathrm{d}s_4}{\mathrm{d}t} = -\frac{Gm_s s_3}{(\sqrt{s_1^2 + s_3^2 + s_5^2})^3}, \\ \frac{\mathrm{d}s_5}{\mathrm{d}t} = s_6, \\ \frac{\mathrm{d}s_6}{\mathrm{d}t} = -\frac{Gm_s s_5}{(\sqrt{s_1^2 + s_3^2 + s_5^2})^3}. \end{cases}$$

2. 对 n 维向量形式的微分方程, 叙述相应的皮卡存在和唯一性定理以及佩亚诺存在定理, 并写出证明的主要步骤.

解: (Picard 存在和唯一性定理) 设初值问题

$$(E): \frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{f}(x, \boldsymbol{y}), \boldsymbol{y}(x_0) = \boldsymbol{y}_0.$$

其中函数 f(x,y) 在矩阵区域

$$R: |x - x_0| \le a, ||y - y_0|| \le b$$

内连续, 而且对 \boldsymbol{y} 满足 Lipschitz 条件, 则初值问题 (E) 在区间 $I = [x_0 - h, x_0 + h]$ 上有且只有一个解 $\boldsymbol{y} = \boldsymbol{\phi}(x)$, 其中 $h = \min\left\{a, \frac{b}{M}\right\}$, $M = \max_{(x, \boldsymbol{y}) \in R} \|\boldsymbol{f}(x, \boldsymbol{y})\|$.

Proof: (一) 初值问题 (E) 等价于积分方程

$$\boldsymbol{y} = \boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{f}(x, \boldsymbol{y}) \, \mathrm{d}x.$$

(二) 用逐次迭代法构造皮卡序列

$$y_{n+1}(x) = y_0 + \int_{x_0}^x f(x, y_n(x)) dx (x \in I) \quad (n = 0, 1, 2, \dots),$$

其中 $\mathbf{y}_0(x) = \mathbf{y}_0$, 因为 $\mathbf{f}(x, \mathbf{y}_0(x))$ 在 I 上连续, 故

$$\boldsymbol{y}_1(x) = \boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{f}(x, \boldsymbol{y}_0(x)) \, \mathrm{d}x$$

在 I 上连续可微, 而且满足不等式

$$\|\boldsymbol{y}_1(x) - \boldsymbol{y}_0\| \le \left| \int_{x_0}^x \|\boldsymbol{f}(x, \boldsymbol{y}_0(x))\| \right| \le M|x - x_0|.$$

这就是说在 $I \perp ||\mathbf{y}_1(x) - \mathbf{y}_0|| \leq Mh \leq b$. 因此, $\mathbf{f}(x, \mathbf{y}_1(x))$ 在 I 上是连续的, 故

$$\boldsymbol{y}_2(x) = \boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{f}(x, \boldsymbol{y}_1(x)) \, \mathrm{d}x$$

在 I 上连续可微, 而且满足不等式

$$\|\boldsymbol{y}_{2}(x) - \boldsymbol{y}_{0}\| \leqslant \left| \int_{x_{0}}^{x} \|\boldsymbol{f}(x, \boldsymbol{y}_{1}(x))\| \right| \leqslant M|x - x_{0}|.$$

这就是说在 $I \perp ||y_2(x) - y_0|| \leq Mh \leq b$. 由归纳法可证: Picard 序列 $\{y_n(x)\}$ 在区间 I 上连续可微并且满足不等式

$$\|\boldsymbol{y}_n(x) - \boldsymbol{y}_0\| \le M|x - x_0| \quad (n = 0, 1, 2, \cdots).$$

(三) Picard 序列 $\{y_n(x)\}$ 在区间 I 上一致收敛到积分方程的解. $\{y_n(x)\}$ 的收敛性等价于级数

$$\sum_{n=1}^{\infty} [\boldsymbol{y}_n(x) - \boldsymbol{y}_{n-1}(x)]$$

的收敛性,利用归纳法证明不等式

$$\|\boldsymbol{y}_n(x) - \boldsymbol{y}_{n-1}(x)\| \leqslant \frac{M}{L} \frac{(L|x - x_0|^n)}{n!} \quad (n = 1, 2, \dots).$$

上述不等式意味着级数 $\sum\limits_{n=1}^{\infty} [\boldsymbol{y}_n(x) - \boldsymbol{y}_{n-1}(x)]$ 一致收敛, 故 Picard 序列 $\{\boldsymbol{y}_n(x)\}$ 一致收敛, 因此极限函数

$$\phi(x) = \lim_{n \to \infty} \mathbf{y}_n(x)$$

在 I 上连续, 在关系式

$$\mathbf{y}_{n+1}(x) = \mathbf{y}_0 + \int_{x_0}^x \mathbf{f}(x, \mathbf{y}_n(x)) dx$$

两侧取极限 $n \to \infty$, 得

$$\phi(x) = y_0 + \int_{x_0}^x f(x, \phi(x)) dx.$$

故 $y = \phi(x)$ 是积分方程的连续解.

(四)解的唯一性

设积分方程有两个解 $\boldsymbol{y} = \boldsymbol{\phi}(x)$ 和 $\boldsymbol{y} = \boldsymbol{\psi}(x)$. 设两个解的共同存在区间为 $J = [x_0 - d, x_0 + d]$, 则

$$\phi(x) - \psi(x) = \int_{x_0}^x (f(x, \phi(x)) - f(x, \psi(x))) dx \quad (x \in J).$$

故利用李氏条件有

$$\|\phi(x) - \psi(x)\| \le L \left| \int_{x_0}^x \|\phi(x) - \psi(x)\| \, \mathrm{d}x \right|.$$
 (*)

注意在区间 J 上, $\|\phi(x) - \psi(x)\|$ 是连续有界的, 故可取其一个上界 K, 则

$$\|\phi(x) - \psi(x)\| \leqslant LK|x - x_0|.$$

将其代入(*)右端,有

$$\|\phi(x) - \psi(x)\| \leqslant K \frac{(L|x - x_0|)^2}{2}.$$

利用归纳法可得

$$\|\phi(x) - \psi(x)\| \leqslant K \frac{(L|x - x_0|)^n}{n!} \quad (x \in J).$$

$$\phi(x) = \psi(x) \quad (x \in J).$$

故积分方程的解是唯一的.

(佩亚诺存在定理) 定理的叙述和证明可参考教材.

3. 对 n 阶线性微分方程组的初值问题, 试叙述并证明解的存在和唯一性定理.

 \mathbf{M} : 设 $\mathbf{A}(x)$ 和 $\mathbf{f}(x)$ 在区间 a < x < b 上连续, 则初值问题

$$(E): \frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} x} = \boldsymbol{A}(x)\boldsymbol{y} + \boldsymbol{f}(x), \boldsymbol{y}(x_0) = \boldsymbol{y}_0$$

的解 y = y(x) 在区间 a < x < b 上存在且唯一, 其中 $a < x_0 < b$, $y_0 \in \mathbb{R}^n$.

Proof: 只需要证明 f(x, y) = A(x)y + f(x) 满足 Lipschitz 条件即可, $\forall y_1, y_2 \in \mathbb{R}^n$, 有

$$\|f(x, y_1) - f(x, y_2)\| = \|A(x)(y_1 - y_2)\| \le \|A(x)\| \cdot \|y_1 - y_2\|.$$

5.3 解对初值和参数的连续依赖性

- 1. 证明定理 5.1 的推论.
- **2.** 设 f(x, y) 在区域 R 上连续, 而且微分方程

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = f(x, \boldsymbol{y})$$

经过 R 内任意一点的积分曲线都是 (存在) 唯一的,则上述微分方程解对初值是连续依赖的.

3. 试举例说明, 如果微分方程不满足解的唯一性条件, 则它的积分曲线族在局部范围内也不能视作平行直线族.

5.4 解对初值和参数的连续可微性

1. 利用定理 5.3 (在 y 为列向量的情况) 证明

$$z = \frac{\partial \varphi}{\partial \lambda} = \left(\frac{\partial \varphi_i}{\partial \lambda_k}(x, \lambda)\right)_{n \times m}$$

满足线性(变分)方程

$$\frac{\mathrm{d}z}{\mathrm{d}x} = A(x, \lambda)z + B(x, \lambda)$$

和初值条件 $z(x_0, \lambda) = 0$, 其中

$$\mathbf{A}(x, \lambda) = \mathbf{f}'_{\mathbf{y}}(x, \boldsymbol{\varphi}(x, \lambda), \lambda) = \left(\frac{\partial f_i}{\partial y_j}(x, \boldsymbol{\varphi}(x, \lambda), \lambda)\right)_{n \times n},$$

和

- **2.** 在本节最后的推论中, 试求 $z=\frac{\partial \varphi}{\partial \eta}(x,\eta)$ 所满足的微分方程和初值条件 (只要求作形式的计算).
 - **3.** 设纯量函数 $y = y(x, \eta)$ (η 为实参数) 是微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sin(xy), \quad y(0) = \eta$$

的解. 证明: 不等式

$$\frac{\partial y}{\partial \eta}(x,\eta) > 0$$

对一切的 x 和 η 都成立.

证明: $z = \frac{\partial y}{\partial \eta}$ 满足的初值问题为

$$\frac{\partial z}{\partial x} = x \cos(x\varphi)z, \quad z(0) = 1.$$

直接解得

$$\frac{\partial y}{\partial \eta} = z = e^{\int_0^x x \cos(x\varphi) \, \mathrm{d}x}.$$

因此 $\frac{\partial y}{\partial \eta}(x,\eta) > 0$ 恒成立.

线性微分方程组

6.1 一般理论

6.1.1 证明与总结

P159 证明: $H(C_1 \mathbf{y}_1^0 + C_2 \mathbf{y}_2^0) = C_1 H(\mathbf{y}_1^0) + C_2 H(\mathbf{y}_2^0)$.

证明: 首先显然 $H(C_1\boldsymbol{y}_1^0+C_2\boldsymbol{y}_2^0)\in\mathcal{S}$, 又由引理 6.1 知 $C_1H(\boldsymbol{y}_1^0)+C_2H(\boldsymbol{y}_2^0)\in\mathcal{S}$. 然后又因为

$$(H(C_1 \mathbf{y}_1^0 + C_2 \mathbf{y}_2^0))(x_0) = C_1 \mathbf{y}_1^0 + C_2 \mathbf{y}_2^0$$
$$(C_1 H(\mathbf{y}_1^0) + C_2 H(\mathbf{y}_2^0))(x_0) = C_1 \mathbf{y}_1^0 + C_2 \mathbf{y}_2^0$$

由解的唯一性知 $H(C_1\boldsymbol{y}_1^0 + C_2\boldsymbol{y}_2^0) = C_1H(\boldsymbol{y}_1^0) + C_2H(\boldsymbol{y}_2^0).$

注意解矩阵的行列式就是其对应的解组的 Wronsky 行列式.

推论 6.2 的证明:

证明: (1) 记 $C = (c_1, \dots, c_n)$, 则 $\Phi(x)C = (\Phi(x)c_1, \dots, \Phi(x)c_n)$, 由 (6.15) 式知 $\forall 1 \leq i \leq n, \Phi(x)c_i$ 是方程 (6.2) 的解,也即 $\{\Phi(x)c_i|1 \leq i \leq n\}$ 为 (6.2) 的解组.记 $\Phi(x)$ 对应的基本解组的 Wronsky 行列式为 W(x), 则 $\Phi(x)C$ 对应的解组的 Wronsky 行列式为:

$$W_1(x) = |\boldsymbol{\Phi}(x)\boldsymbol{c}_1\cdots\boldsymbol{\Phi}(x)\boldsymbol{c}_n| = |\boldsymbol{\Phi}(x)|\cdot|\boldsymbol{C}| = W(x)|\boldsymbol{C}| \neq 0$$

故 $\Phi(x)C$ 也是基解矩阵.

(2) $\Phi(x)$ 和 $\Psi(x)$ 都是基解矩阵, 设 $\Phi(x) = (y_1(x), \dots, y_n(x)), \Psi(x) = (y_1^*(x), \dots, y_n^*(x)).$ 因为 $\Phi(x)$ 是基解矩阵, 所以 $y_1(x), \dots, y_n(x)$ 是 (6.2) 的基本解组, 故存在 $\{c_{ij} \mid 1 \leq$

 $i, j \leq n$ } 使得

$$\boldsymbol{y}_{i}^{*}(x) = \sum_{j=1}^{n} c_{ji} \boldsymbol{y}_{j}(x), 1 \leqslant i \leqslant n$$

即

$$(\boldsymbol{y}_{1}^{*}(x), \cdots, \boldsymbol{y}_{n}^{*}(x)) = (\boldsymbol{y}_{1}(x), \cdots, \boldsymbol{y}_{n}(x)) \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

也即

$$\Psi(x) = \Phi(x)C$$

其中 $C = (c_{ij})_{n \times n}$,在上述等式两边同时取行列式得 $|\Psi| = |\Phi| \cdot |C|$,由 $|\Psi| \neq 0$, $|\Phi| \neq 0$ 知 $|C| \neq 0$.

6.1.2 习题

1. 求出齐次线性微分方程组

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(t)\boldsymbol{y}$$

的通解, 其中 A(t) 分别为:

(1)
$$\mathbf{A}(t) = \begin{pmatrix} \frac{1}{t} & 0\\ 0 & \frac{1}{t} \end{pmatrix}, t \neq 0;$$

$$(2) \mathbf{A}(t) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix};$$

(3)
$$\mathbf{A}(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$(4) \ \mathbf{A}(t) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

解: (1) $\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{t} & 0 \\ 0 & \frac{1}{t} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, 分量形式为 $\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{y_1}{t}$, $\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{y_2}{t}$, 解得 $y_1 = kt$, 不妨取基解矩阵为 $\begin{pmatrix} 0 & t \\ t & 0 \end{pmatrix}$, 则通解为

$$\mathbf{y}(t) = C_1 \begin{pmatrix} 0 \\ t \end{pmatrix} + C_2 \begin{pmatrix} t \\ 0 \end{pmatrix}.$$

(2) $\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, 分量形式为 $\frac{dy_1}{dt} = y_1 + y_2$, $\frac{dy_2}{dt} = y_2$, 由 $\frac{dy_2}{dt} = y_2$ 解得 $y_2 = Ce^t$, 先取 $y_2 = 0$ 得 $y_1 = Ce^t$, 再取 $y_2 = e^t$ 得 $y_1 = Ce^t + te^t$, 不妨取基解矩阵为 $\begin{pmatrix} e^t & te^t \\ 0 & e^t \end{pmatrix}$, 则通解为

$$\mathbf{y}(t) = C_1 \begin{pmatrix} \mathbf{e}^t \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} t \mathbf{e}^t \\ \mathbf{e}^t \end{pmatrix}$$

(3) $\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, 分量形式为 $\frac{\mathrm{d}y_1}{\mathrm{d}t} = y_2$, $\frac{\mathrm{d}y_2}{\mathrm{d}t} = -y_1$, 故 $\frac{\mathrm{d}^2y_1}{\mathrm{d}t} = \frac{\mathrm{d}y_2}{\mathrm{d}t} = -y_1$ ⇒ $y_1 = C_1 \sin t + C_2 \cos t$, $y_2 = C_1 \cos t - C_2 \sin t$, 不妨取基解矩阵为 $\begin{pmatrix} \sin t & \cos t \\ \cos t & -\sin t \end{pmatrix}$, 则通解为

$$\mathbf{y}(t) = C_1 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} + C_2 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}.$$

$$(4) \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, 分量形式为 \frac{\mathrm{d}y_1}{\mathrm{d}t} = y_3, \frac{\mathrm{d}y_2}{\mathrm{d}t} = y_2, \frac{\mathrm{d}y_3}{\mathrm{d}t} = y_1, \text{ in }$$

取
$$y_1 = e^{-t}$$
, 得 $y_3 = -e^{-t}$, 不妨取基解矩阵为 $\begin{pmatrix} e^t & 0 & e^{-t} \\ 0 & e^t & 0 \\ e^t & 0 & -e^{-t} \end{pmatrix}$, 则通解为

$$\mathbf{y}(t) = C_1 \begin{pmatrix} e^t \\ 0 \\ e^t \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ e^t \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{pmatrix}.$$

2. 求解非齐次线性微分方程组的初值问题:

(1)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \frac{2}{t}x, & \frac{\mathrm{d}y}{\mathrm{d}t} = x + y - 1 + \frac{2}{t}x & (t > 0), \\ x(1) = \frac{1}{3}, & y(1) = -\frac{1}{3}; \end{cases}$$
(2)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2t}{1+t^2}x, & \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{1}{t}y + x + t & (t > 0), \\ x(1) = 0, & y(1) = \frac{4}{3}. \end{cases}$$

解: (1) 由 $\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \frac{2}{t}x$ 得 $x = \mathrm{e}^{-\int \frac{2}{t} \, \mathrm{d}t} \left(C + \int \mathrm{e}^{\int \frac{2}{t} \, \mathrm{d}t} \, \mathrm{d}t \right) = \frac{t}{3} + \frac{C}{t^2}$,代入初值条件 $x(1) = \frac{1}{3}$ 得 $x(t) = \frac{t}{3}$. 又 $\frac{\mathrm{d}}{\mathrm{d}t}(x+y) = x+y$ 且 (x+y)(1) = 0,故 $x+y \equiv 0$,故 $y(t) = -\frac{t}{3}$.

(2) 由 $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2t}{1+t^2}x$ 得 $x(t) = C(1+t^2)$,代入初值条件 x(1) = 0 得 $x(t) \equiv 0$,故 $\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{y}{t} + t$,解得 $y(t) = \frac{C}{t} + \frac{t^2}{3}$,代入初值条件 $y(1) = \frac{4}{3}$ 得 $y(t) = \frac{1}{t} + \frac{t^2}{3}$.

3. 试证向量函数组

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} x^2 \\ 0 \\ 0 \end{pmatrix}$$

在任意区间 a < x < b 上线性无关. (显然, 它们的朗斯基行列式 $W(x) \equiv 0$. 对照定理 6.2 可知, 上述三个线性无关的向量函数不可能同时满足任意一个三阶的齐次线性微分 方程组.)

证明: 设 k₁, k₂, k₃ 满足

$$k_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} + k_3 \begin{pmatrix} x^2 \\ 0 \\ 0 \end{pmatrix} = \mathbf{0}, \quad a < x < b.$$

即 $k_1 + k_2 x + k_3 x^2 = 0$, a < x < b, 显然必有 $k_1 = k_2 = k_3 = 0$, 故该向量函数组线性无 关.

4. 试证基解矩阵完全决定齐次线性微分方程组, 即如果方程组

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y} \quad \boxminus \quad \frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{B}(x)\boldsymbol{y}$$

有一个相同的基解矩阵, 则 $\mathbf{A}(x) \equiv \mathbf{B}(x)$.

证明: 设相同的基解矩阵为 $\Phi(x)$, 则

$$\frac{\mathrm{d}}{\mathrm{d}x}\boldsymbol{\Phi}(x) = \boldsymbol{A}(x)\boldsymbol{\Phi}(x) = \boldsymbol{B}(x)\boldsymbol{\Phi}(x).$$

由于 $\Phi(x)$ 可逆, 故 $A(x) \equiv B(x)$.

5. 设 $\Phi(x)$ 是齐次线性微分方程组 (6.2) 的一个基解矩阵, 并且 n 维向量函数 f(x,y) 在区域 $E(a < x < b, |y| < \infty)$ 上连续. 则求解初值问题

$$\left\{egin{aligned} rac{\mathrm{d}oldsymbol{y}}{\mathrm{d}x} &= oldsymbol{A}(x)oldsymbol{y} + oldsymbol{f}(x,oldsymbol{y}), \ oldsymbol{y}(x_0) &= oldsymbol{y}_0 \end{aligned}
ight.$$

等价于求解 (向量形式的) 积分方程

$$\boldsymbol{y}(x) = \boldsymbol{\Phi}(x)\boldsymbol{\Phi}^{-1}(x_0)\boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{\Phi}(x)\boldsymbol{\Phi}^{-1}(s)\boldsymbol{f}(s,\boldsymbol{y}(s))\,\mathrm{d}s,$$

其中 $x_0 \in (a, b)$.

证明: 由 $\Phi^{-1}(x)\Phi(x) = I$, 求导得

$$\boldsymbol{\varPhi}^{-1}(x)\frac{\mathrm{d}\boldsymbol{\varPhi}(x)}{\mathrm{d}x} + \frac{\mathrm{d}\boldsymbol{\varPhi}^{-1}(x)}{\mathrm{d}x}\boldsymbol{\varPhi}(x) = \mathbf{0}.$$

又

$$\frac{\mathrm{d}\boldsymbol{\Phi}(x)}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{\Phi}(x).$$

故

$$\boldsymbol{\Phi}^{-1}(x)\boldsymbol{A}(x) + \frac{\mathrm{d}\boldsymbol{\Phi}^{-1}(x)}{\mathrm{d}x} = \mathbf{0}.$$

设 y(x) 是初值问题的解, 则

$$\frac{\mathrm{d}\boldsymbol{y}(x)}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y}(x) + \boldsymbol{f}(x,\boldsymbol{y}(x)), \quad \boldsymbol{y}(x_0) = \boldsymbol{y}_0$$

$$\iff \boldsymbol{\Phi}^{-1}(x)\frac{\mathrm{d}\boldsymbol{y}(x)}{\mathrm{d}x} = \boldsymbol{\Phi}^{-1}(x)\boldsymbol{A}(x)\boldsymbol{y}(x) + \boldsymbol{\Phi}^{-1}(x)\boldsymbol{f}(x,\boldsymbol{y}(x)), \quad \boldsymbol{y}(x_0) = \boldsymbol{y}_0$$

$$\iff \boldsymbol{\Phi}^{-1}(x)\frac{\mathrm{d}\boldsymbol{y}(x)}{\mathrm{d}x} + \frac{\mathrm{d}\boldsymbol{\Phi}^{-1}(x)}{\mathrm{d}x}\boldsymbol{y}(x) = \boldsymbol{\Phi}^{-1}(x)\boldsymbol{f}(x,\boldsymbol{y}(x)), \quad \boldsymbol{y}(x_0) = \boldsymbol{y}_0$$

$$\iff \frac{\mathrm{d}}{\mathrm{d}x}\left(\boldsymbol{\Phi}^{-1}(x)\boldsymbol{y}(x)\right) = \boldsymbol{\Phi}^{-1}(x)\boldsymbol{f}(x,\boldsymbol{y}(x)), \quad \boldsymbol{y}(x_0) = \boldsymbol{y}_0$$

$$\iff \boldsymbol{\Phi}^{-1}(x)\boldsymbol{y}(x) = \boldsymbol{\Phi}^{-1}(x_0)\boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{\Phi}^{-1}(s)\boldsymbol{f}(s,\boldsymbol{y}(s))\,\mathrm{d}s$$

$$\iff \boldsymbol{y}(x) = \boldsymbol{\Phi}(x)\boldsymbol{\Phi}^{-1}(x_0)\boldsymbol{y}_0 + \int_{x_0}^x \boldsymbol{\Phi}(x)\boldsymbol{\Phi}^{-1}(s)\boldsymbol{f}(s,\boldsymbol{y}(s))\,\mathrm{d}s.$$

故 y(x) 是初值问题的解等价于 y(x) 是积分方程的解.

6. 设当 a < x < b 时, 非齐次线性微分方程组 (6.1) 中的 f(x) 不恒为零. 证明 (6.1) 有且至多有 n+1 个线性无关解.

证明: (i) 设 $\phi_1(x)$, \cdots , $\phi_n(x)$ 为相应的齐次线性微分方程组的一个基本解组, $\phi_*(x)$ 为 (6.1) 的一个特解, 则 $\mathbf{y}_0(x) = \phi_*(x)$, $\mathbf{y}_1(x) = \phi_1(x) + \phi_*(x)$, \cdots , $\mathbf{y}_n(x) = \phi_n(x) + \phi_*(x)$ 是 (6.1) 的 n+1 个解, 下证这 n+1 个解线性无关, 设

$$\sum_{i=0}^{n} k_i \boldsymbol{y}_i(x) = \sum_{i=1}^{n} k_i \boldsymbol{\phi}_i(x) + \left(\sum_{i=0}^{n} k_i\right) \boldsymbol{\phi}_*(x) = \boldsymbol{0}. \tag{*}$$

对上式求导得

$$\sum_{i=1}^{n} k_1 \mathbf{A}(x) \phi_i(x) + \left(\sum_{i=0}^{n} k_i\right) (\mathbf{A}(x) \phi_*(x) + \mathbf{f}(x))$$

$$= \mathbf{A}(x) \left(\sum_{i=1}^{n} k_i \phi_i(x) + \left(\sum_{i=0}^{n} k_i\right) \phi_*(x)\right) + \left(\sum_{i=0}^{n} k_i\right) \mathbf{f}(x)$$

$$= \left(\sum_{i=0}^{n} k_i\right) \mathbf{f}(x) = \mathbf{0} \Rightarrow \sum_{i=0}^{n} k_i = 0.$$

代回 (*) 式得 $\sum_{i=1}^{n} k_i \phi_i(x) = 0$, 故 $k_i = 0$ ($i = 0, 1, \dots, n$), 从而这 n + 1 个解线性无关.

(ii) 设 $\phi(x)$ 是 (6.1) 的任意一个解,则 $\phi(x) - y_0(x), \dots, \phi(x) - y_n(x)$ 是相应的齐次线性微分方程组的 n+1 个解,故其必线性相关,即存在不全为零的 k_0, k_1, \dots, k_n 使得

$$\sum_{i=0}^{n} k_i(\phi(x) - y_i(x)) = \left(\sum_{i=0}^{n} k_i\right) \phi(x) - \sum_{i=0}^{n} k_i y_i(x) = 0.$$

显然 $\sum_{i=0}^{n} k_i \neq 0$, 否则与 $\mathbf{y}_0(x), \cdots, \mathbf{y}_n(x)$ 的线性无关性矛盾, 故

$$\phi(x) = \sum_{i=0}^{n} \frac{k_j}{\sum_{i=0}^{n} k_i} y_j(x).$$

因此线性无关解个数不超过 n+1.

6.2 常系数线性微分方程组

6.2.1 证明与总结

结论 (教材 Page 170) 令 M 为全体 n 阶实矩阵组成的集合, 在 M 中定义范数 为: 对于 $A \in \mathcal{M}$, 令

$$\|A\| = \sum_{i,j=1}^{n} |a_{ij}|.$$

则 $(\mathcal{M}, \|\cdot\|)$ 是 Banach 空间.

证明: 任取 \mathcal{M} 中的 Cauchy 序列 $(\mathbf{A}_n)_{n\geq 1}$, 即 $\forall \epsilon > 0, \exists N > 0, \forall m, n > N$, 有

$$\|\boldsymbol{A}_m - \boldsymbol{A}_n\| = \sum_{i \ i=1}^n \left| a_{ij}^{(m)} - a_{ij}^{(n)} \right| < \epsilon.$$

故对任意给定的 i, j, 序列 $(a_{ij}^{(n)})_{n \ge 1}$ 是 \mathbb{R} 中的 Cauchy 序列, 必收敛, 记之为 $a_{ij}^{(n)} \to a_{ij}$ $(n \to \infty)$, 则 $\mathbf{A}_n \to \mathbf{A} = (a_{ij})_{n \times n}$, 因此 $(\mathcal{M}, \|\cdot\|)$ 是 Banach 空间.

命题 1 (教材 Page 171) 矩阵 A 的幂级数

$$E+A+\frac{1}{2!}A^2+\cdots+\frac{1}{k!}A^k+\cdots$$

是绝对收敛的.

证明: 因为

$$||E|| + ||A|| + ||\frac{1}{2!}A^{2}|| + \dots + ||\frac{1}{k!}A^{k}|| + \dots$$

$$\leq ||E|| + ||A|| + \frac{1}{2!}||A||^{2} + \dots + \frac{1}{k!}||A||^{k} + \dots$$

$$= n + e^{||A||} - 1 < \infty,$$

故矩阵 A 的幂级数 $E + A + \frac{1}{2!}A^2 + \cdots + \frac{1}{k!}A^k + \cdots$ 绝对收敛.

结合泛函分析中定理: 赋范空间完备当且仅当绝对收敛级数必收敛. 故幂级数 $E+A+\frac{1}{2!}A^2+\cdots+\frac{1}{4!}A^k+\cdots$ 收敛, 将其和记为 e^A .

命题 2 矩阵指数函数有下面的性质:

1) 若矩阵 A 和 B 是可交换的 (即 AB = BA), 则

$$e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}}e^{\mathbf{B}}$$
:

2) 对任何矩阵 A, 指数函数 e^{A} 是可逆的, 且

$$\left(\mathbf{e}^{\mathbf{A}}\right)^{-1} = \mathbf{e}^{-\mathbf{A}};$$

3) 若 P 是一个非奇异的 n 阶矩阵, 则

$$e^{\boldsymbol{P}\boldsymbol{A}\boldsymbol{P}^{-1}} = \boldsymbol{P}e^{\boldsymbol{A}}\boldsymbol{P}^{-1}.$$

证明: (1)

$$\mathbf{e}^{\mathbf{A}}\mathbf{e}^{\mathbf{B}} = \left(\sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}\right) \left(\sum_{k=0}^{\infty} \frac{\mathbf{B}^k}{k!}\right) = \sum_{k=0}^{\infty} \sum_{i+j=k}^{\infty} \frac{\mathbf{A}^i}{i!} \frac{\mathbf{B}^j}{j!} = \sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{\mathbf{A}^i \mathbf{B}^{k-i}}{i!(k-i)!}$$
$$= \sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{1}{k!} C_k^i \mathbf{A}^i \mathbf{B}^{k-i} = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A} + \mathbf{B})^k = \mathbf{e}^{\mathbf{A} + \mathbf{B}}.$$

(2) 由于 \mathbf{A} 与 $-\mathbf{A}$ 可交换, 故

$$e^{\mathbf{A}}e^{-\mathbf{A}} = e^{\mathbf{0}} = \mathbf{E}.$$

所以 $(e^{\mathbf{A}})^{-1} = e^{-\mathbf{A}}$.

(3)

$$e^{PAP^{-1}} = \sum_{k=0}^{\infty} \frac{(PAP^{-1})^k}{k!} = \sum_{k=0}^{\infty} \frac{PA^kP^{-1}}{k!} = Pe^AP^{-1}.$$

本节引进新的概念: 矩阵指数函数 e^{A} , 容易证明 e^{xA} 是常系数齐次线性微分方程 组 $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} x} = \boldsymbol{A} \boldsymbol{y}$ 的标准基解矩阵, 然后利用若尔当标准型找到实际计算基解矩阵 e^{xA} 的一个方法:

$$e^{x\mathbf{A}} = e^{x\mathbf{P}\mathbf{J}\mathbf{P}^{-1}} = \mathbf{P}e^{x\mathbf{J}}\mathbf{P}^{-1}.$$

从而

$$e^{x\boldsymbol{A}}\boldsymbol{P} = \boldsymbol{P}e^{x\boldsymbol{J}} = \boldsymbol{P} \begin{pmatrix} e^{x\boldsymbol{J}_1} & & & \\ & e^{x\boldsymbol{J}_2} & & & \\ & & \ddots & & \\ & & & e^{x\boldsymbol{J}_m} \end{pmatrix}$$

也是常系数齐次线性微分方程组的一个基解矩阵,但是上述结果计算量较大,将之再细致分析,得到下面求基解矩阵的具体计算方法:

由 $|\mathbf{A} - \lambda \mathbf{E}| = 0$ 求出特征值 λ , 分两种情况:

- (i) 若全为单根 $\lambda_1, \dots, \lambda_n$, 则基解矩阵为 $\boldsymbol{\Phi}(x) = \left(e^{\lambda_1 x} \boldsymbol{r}_1, e^{\lambda_2 x} \boldsymbol{r}_2, \dots, e^{\lambda_n x} \boldsymbol{r}_n\right)$, 其中 \boldsymbol{r}_i 是与 λ_i 对应的特征向量.
- (ii) 若有重根, 设 $\lambda_1, \cdots, \lambda_s$ 相应的重数分别为 n_1, \cdots, n_s , 则由 $(\boldsymbol{A} \lambda_i \boldsymbol{E})^{n_i} \boldsymbol{r} = 0$ 算出 n_i 个线性无关的特征向量 $\boldsymbol{r}_{10}^{(i)}, \cdots, \boldsymbol{r}_{n_i0}^{(i)}$, 再由

$$r_{jk}^{(i)} = (\boldsymbol{A} - \lambda_i \boldsymbol{E}) r_{j,k-1}^{(i)}$$
 $(k = 1, 2, \dots, n_i - 1; j = 1, 2, \dots, n_i; i = 1, 2, \dots, s)$

算出其它所需向量,则基解矩阵为

$$\left(e^{\lambda_1 x} P_1^{(1)}(x), \cdots, e^{\lambda_1 x} P_{n_1}^{(1)}(x); \cdots; e^{\lambda_s x} P_1^{(s)}(x), \cdots, e^{\lambda_s x} P_{n_s}^{(s)}(x)\right),$$

其中
$$P_j^{(i)}(x) = \boldsymbol{r}_{j0}^{(i)} + \frac{x}{1!} \boldsymbol{r}_{j1}^{(i)} + \frac{x^2}{2!} \boldsymbol{r}_{j2}^{(i)} + \dots + \frac{x^{n_i-1}}{(n_i-1)!} \boldsymbol{r}_{j,n_i-1}^{(i)}.$$

6.2.2 习题

1. 求出常系数齐次线性微分方程组 (6.25) 的通解, 其中的矩阵 A 分别为:

$$(1)\begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix}; \qquad (2)\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix};$$

$$(3)\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & -4 \end{pmatrix}; \qquad (4)\begin{pmatrix} -5 & -10 & -20 \\ 5 & 5 & 10 \\ 2 & 4 & 9 \end{pmatrix};$$

$$(5)\begin{pmatrix} 1 & \frac{2}{3} & -\frac{2}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{4}{3} \end{pmatrix}; \qquad (6)\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}.$$

解:
$$(1) |A - \lambda E| = (\lambda - 7)(\lambda + 2) = 0 \Rightarrow \lambda = 7$$
 或 $\lambda = -2$.
 当 $\lambda = 7$ 时, $\begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, 取特征向量为 $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 当 $\lambda = -2$ 时, $\begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & 4 \\ 0 & 0 \end{pmatrix}$, 取特征向量为 $\mathbf{r} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$.
 故基解矩阵为

$$\boldsymbol{\Phi}(x) = \begin{pmatrix} e^{7x} & 4e^{-2x} \\ e^{7x} & -5e^{-2x} \end{pmatrix}.$$

故通解为

$$\boldsymbol{y} = C_1 \begin{pmatrix} e^{7x} \\ e^{7x} \end{pmatrix} + C_2 \begin{pmatrix} 4e^{-2x} \\ -5e^{-2x} \end{pmatrix}.$$

$$\boldsymbol{\varPhi}(x) = \begin{pmatrix} \mathrm{e}^{\mathrm{i}ax} & \mathrm{i}\mathrm{e}^{-\mathrm{i}ax} \\ \mathrm{i}\mathrm{e}^{\mathrm{i}ax} & \mathrm{e}^{-\mathrm{i}ax} \end{pmatrix} \Rightarrow \widetilde{\boldsymbol{\varPhi}}(x) = \begin{pmatrix} \cos ax & \sin ax \\ -\sin ax & \cos ax \end{pmatrix}.$$

从而通解为

$$y = C_1 \begin{pmatrix} \cos ax \\ -\sin ax \end{pmatrix} + C_2 \begin{pmatrix} \sin ax \\ \cos ax \end{pmatrix}.$$

(3) 由
$$\frac{\mathrm{d}y_2}{\mathrm{d}x} = -y_2$$
,得 $y_2 = C_1 \mathrm{e}^{-x}$;再由 $\frac{\mathrm{d}y_1}{\mathrm{d}x} = -y_1 + y_2 = -y_1 + C_1 \mathrm{e}^{-x}$,得
$$y_1 = \mathrm{e}^{-\int \mathrm{d}x} \left(C_2 + \int C_1 \mathrm{e}^{-x} \mathrm{e}^{\int \mathrm{d}x} \, \mathrm{d}x \right) = C_1 x \mathrm{e}^{-x} + C_2 \mathrm{e}^{-x}.$$

再由
$$\frac{\mathrm{d}y_3}{\mathrm{d}x} = y_1 - 4y_3 = -4y_3 + C_1 x \mathrm{e}^{-x} + C_2 \mathrm{e}^{-x}$$
, 得

$$y_3 = e^{-\int 4 dx} \left(C_3 + \int \left(C_1 x e^{-x} + C_2 e^{-x} \right) e^{\int 4 dx} dx \right) = C_1 \left(\frac{x}{3} - \frac{1}{9} \right) e^{-x} + \frac{1}{3} C_2 e^{-x} + C_3 e^{-4x}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} x \\ 1 \\ \frac{x}{3} - \frac{1}{9} \end{pmatrix} e^{-x} + C_2 \begin{pmatrix} 1 \\ 0 \\ \frac{1}{3} \end{pmatrix} e^{-x} + C_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{-4x}.$$

$$(4) |\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} -5 - \lambda & -10 & -20 \\ 5 & 5 - \lambda & 10 \\ 2 & 4 & 9 - \lambda \end{vmatrix} = -(\lambda - 5)(\lambda^2 - 4\lambda + 5) = 0 \Rightarrow \lambda = 5, 2 \pm i$$

$$(4) |\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} -5 - \lambda & -10 & -20 \\ 5 & 5 - \lambda & 10 \\ 2 & 4 & 9 - \lambda \end{vmatrix} = -(\lambda - 5)(\lambda^2 - 4\lambda + 5) = 0 \Rightarrow \lambda = 5, 2 \pm i.$$

$$\Rightarrow \lambda = 5 \text{ 时}, \begin{pmatrix} -10 & -10 & -20 \\ 5 & 0 & 10 \\ 2 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ 取特征向量为 } \mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}.$$

$$\begin{pmatrix} -7 - \mathbf{i} & -10 & -20 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2}(3 + \mathbf{i}) \end{pmatrix}$$

当
$$\lambda = 2 + i$$
 时,
$$\begin{pmatrix} -7 - i & -10 & -20 \\ 5 & 3 - i & 10 \\ 2 & 4 & 7 - i \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2}(3+i) \\ 0 & 1 & \frac{1}{2}(2-i) \\ 0 & 0 & 0 \end{pmatrix}$$
(这里的矩阵行变换

也不是很复杂, 主要就是凑出 1), 取特征向量为
$$\mathbf{r}=\begin{pmatrix}3+\mathrm{i}\\2-\mathrm{i}\\-2\end{pmatrix}$$
, 故对于特征值 $\lambda=2-\mathrm{i}$

可以取到特征向量
$$r = \begin{pmatrix} 3 - i \\ 2 + i \\ -2 \end{pmatrix}$$
.

故基解矩阵为

$$\Phi(x) = \begin{pmatrix}
2e^{5x} & (3+i)e^{(2+i)x} & (3-i)e^{(2-i)x} \\
0 & (2-i)e^{(2+i)x} & (2+i)e^{(2-i)x} \\
-e^{5x} & -2e^{(2+i)x} & -2e^{(2-i)x}
\end{pmatrix}$$

$$\Rightarrow \widetilde{\Phi}(x) \begin{pmatrix}
2e^{5x} & (3\cos x - \sin x)e^{2x} & (\cos x + 3\sin x)e^{2x} \\
0 & (2\cos x + \sin x)e^{2x} & (-\cos x + 2\sin x)e^{2x} \\
e^{5x} & -2\cos xe^{2x} & -2\sin xe^{2x}
\end{pmatrix}.$$

从而通解为

$$\mathbf{y} = C_1 \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} e^{5x} + C_2 \begin{pmatrix} 3\cos x - \sin x \\ 2\cos x + \sin x \\ -2\cos x \end{pmatrix} e^{2x} + C_3 \begin{pmatrix} \cos x + 3\sin x \\ -\cos x + 2\sin x \\ -2\sin x \end{pmatrix} e^{2x}.$$

(5)
$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 1 - \lambda & \frac{2}{3} & -\frac{2}{3} \\ 0 & \frac{2}{3} - \lambda & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{4}{3} - \lambda \end{vmatrix} = -(\lambda - 1)^3 = 0 \Rightarrow \lambda_{1,2,3} = 1, \text{ } \pm \mp$$

$$(\boldsymbol{A}-\boldsymbol{E})^3=\mathbf{0}$$
,故由 $(\boldsymbol{A}-\boldsymbol{E})^3\boldsymbol{r}=\mathbf{0}$ 得到三个线性无关的特征向量 $\boldsymbol{r}_{10}=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $\boldsymbol{r}_{20}=\begin{pmatrix}1\\0\\0\end{pmatrix}$

$$\mathbf{\Phi}(x) = \begin{pmatrix} e^x & \frac{2}{3}xe^x & -\frac{2}{3}xe^x \\ 0 & \left(1 - \frac{1}{3}x\right)e^x & \frac{1}{3}xe^x \\ 0 & -\frac{1}{3}xe^x & \left(1 + \frac{1}{3}x\right)e^x \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^x + C_2 \begin{pmatrix} \frac{2}{3}x \\ 1 - \frac{1}{3}x \\ -\frac{1}{3}x \end{pmatrix} e^x + C_3 \begin{pmatrix} -\frac{2}{3}x \\ \frac{1}{3}x \\ 1 + \frac{1}{3}x \end{pmatrix} e^x.$$

(6)
$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 1 - \lambda & 1 & 1 & 1 \\ 1 & 1 - \lambda & -1 & -1 \\ 1 & -1 & 1 - \lambda & -1 \\ 1 & -1 & -1 & 1 - \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 2)^3 = 0 \Rightarrow \lambda_{1,2,3} = 0$$

 $2, \lambda_4 = -2.$

$$(\mathbf{A} - 2\mathbf{E})^3 \mathbf{r} = 0$$
 得到三个线性无关的特征向量 $\mathbf{r}_{10} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{r}_{20} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{r}_{30} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix},$

 $\mathbb{E} \mathbf{r}_{ij} = \mathbf{0}(i = 1, 2, 3; j = 1, 2).$

当
$$\lambda = -2$$
时, $\mathbf{A} + 2\mathbf{E} = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & -1 & -1 \\ 1 & -1 & 3 & -1 \\ 1 & -1 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 由 $(\mathbf{A} + 2\mathbf{E})\mathbf{r} = \mathbf{A}$

$$\mathbf{0}$$
 得特征向量 $\mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

故基解矩阵为

$$\boldsymbol{\varPhi}(x) = \begin{pmatrix} e^{2x} & e^{2x} & e^{2x} & -e^{-2x} \\ e^{2x} & 0 & 0 & e^{-2x} \\ 0 & e^{2x} & 0 & e^{-2x} \\ 0 & 0 & e^{2x} & e^{-2x} \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{2x} + C_2 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{2x} + C_3 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} e^{2x} + C_4 \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix} e^{-2x}. \qquad \Box$$

2. 求出常系数非齐次线性微分方程组 (6.24) 的通解, 其中:

(1)
$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix};$$

(2)
$$\mathbf{A} = \begin{pmatrix} 0 & -n^2 \\ -n^2 & 0 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} \cos nx \\ \sin nx \end{pmatrix};$$

(3)
$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} 0 \\ 2e^x \end{pmatrix};$$

(4)
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -2 \\ -1 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} 2 - x \\ 0 \\ 1 - x \end{pmatrix};$$

(5)
$$\mathbf{A} = \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} x^2 \\ 2x \\ x \end{pmatrix}.$$

解: (1) $|A - \lambda E| = (\lambda - 2)^2 = 0 \Rightarrow \lambda_{1,2} = 2$. 由 $(A - 2E)^2 r = 0$ 得到两个线性无关的特征向量 $r_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $r_{20} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, 且 $r_{11} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $r_{21} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, 故基解矩阵为

$$\boldsymbol{\varPhi}(x) = \begin{pmatrix} e^{2x} & xe^{2x} \\ 0 & e^{2x} \end{pmatrix}.$$

通解为

$$\mathbf{y} = \mathbf{\Phi}(x)\mathbf{c} + \mathbf{\Phi}(x) \int \mathbf{\Phi}^{-1}(x)\mathbf{f}(x) dx$$
$$= C_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2x} + C_2 \begin{pmatrix} x \\ 1 \end{pmatrix} e^{2x} - \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}.$$

$$\boldsymbol{\Phi}(x) = \begin{pmatrix} e^{n^2 x} & e^{-n^2 x} \\ -e^{n^2 x} & e^{-n^2 x} \end{pmatrix}.$$

其逆矩阵为

$$\Phi^{-1}(x) = \frac{1}{2} \begin{pmatrix} e^{-n^2 x} & -e^{-n^2 x} \\ e^{n^2 x} & e^{n^2 x} \end{pmatrix}.$$

故

$$\mathbf{\Phi}(x)^{-1}\mathbf{f}(x) = \frac{1}{2} \begin{pmatrix} e^{-n^2 x} \cos nx - e^{-n^2 x} \sin nx \\ e^{n^2 x} \cos nx + e^{n^2 x} \sin nx \end{pmatrix}.$$

利用不定积分公式

$$\begin{cases} \int e^{\alpha x} \sin \beta x \, dx = \frac{\alpha}{\alpha^2 + \beta^2} e^{\alpha x} \sin \beta x - \frac{\beta}{\alpha^2 + \beta^2} e^{\alpha x} \cos \beta x + C, \\ \int e^{\alpha x} \cos \beta x \, dx = \frac{\alpha}{\alpha^2 + \beta^2} e^{\alpha x} \cos \beta x + \frac{\beta}{\alpha^2 + \beta^2} e^{\alpha x} \sin \beta x + C \end{cases}$$

得

$$\int \boldsymbol{\Phi}(x)^{-1} \boldsymbol{f}(x) \, \mathrm{d}x = \frac{1}{2} \begin{pmatrix} \frac{n+1}{n^3+n} \mathrm{e}^{-n^2 x} \sin nx + \frac{-n+1}{n^3+n} \mathrm{e}^{-n^2 x} \cos nx \\ \frac{n+1}{n^3+n} \mathrm{e}^{n^2 x} \sin nx + \frac{n-1}{n^3+n} \mathrm{e}^{n^2 x} \cos nx \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}(x) \int \boldsymbol{\Phi}(x)^{-1} \boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} \frac{n+1}{n^3 + n} \sin nx \\ \frac{n-1}{n^3 + n} \cos nx \end{pmatrix}.$$

因此通解为

$$\mathbf{y} = C_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{n^2 x} + C_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-n^2 x} + \begin{pmatrix} \frac{n+1}{n^3+n} \sin nx \\ \frac{n-1}{n^3+n} \cos nx \end{pmatrix}.$$

(3)
$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 2 - \lambda & -1 \\ 1 & -\lambda \end{vmatrix} = (\lambda - 1)^2 = 0 \Rightarrow \lambda = 1$$
, 由 $(\mathbf{A} - \mathbf{E})^2 \mathbf{r} = 0$ 得到两个

线性无关得特征向量
$$\mathbf{r}_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{r}_{20} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, 且 $\mathbf{r}_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\mathbf{r}_{21} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$. 故基解矩 阵为

$$\boldsymbol{\varPhi}(x) = \begin{pmatrix} (x+1)e^x & -xe^x \\ xe^x & (1-x)e^x \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}(x) \int \boldsymbol{\Phi}(x)^{-1} \boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} -x^2 \mathrm{e}^x \\ (-x^2 + 2x) \mathrm{e}^x \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} x+1 \\ x \end{pmatrix} e^x + C_2 \begin{pmatrix} -x \\ -x+1 \end{pmatrix} e^x + \begin{pmatrix} -x^2 e^x \\ (-x^2 + 2x)e^x \end{pmatrix}.$$

$$(4) |\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 2 - \lambda & 1 & -2 \\ -1 & -\lambda & 0 \\ 1 & 1 & -1 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda^2 + 1) = 0 \Rightarrow \lambda = 1, \pm i.$$
 当 $\lambda = 1$ 时,
$$\begin{pmatrix} 1 & 1 & -2 \\ -1 & -1 & 0 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$
 取特征向量为 $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$ 当 $\lambda = i$ 时,
$$\begin{pmatrix} 2 - i & 1 & -2 \\ -1 & -i & 0 \\ 1 & 1 & -1 - i \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & i \\ 0 & 0 & 0 \end{pmatrix},$$
 取特征向量为 $\mathbf{r} = \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}.$ 当 $\lambda = -i$ 时,可取特征向量为 $\mathbf{r} = \begin{pmatrix} i \\ 1 \\ i \end{pmatrix}$ (注意共轭特征向量为共轭特征值的特征

向量).

故基解矩阵为

$$\widetilde{\boldsymbol{\Phi}}(x) = \begin{pmatrix} e^x & e^{\mathrm{i}x} & \mathrm{i}e^{-\mathrm{i}x} \\ -e^x & \mathrm{i}e^{\mathrm{i}x} & e^{-\mathrm{i}x} \\ 0 & e^{\mathrm{i}x} & \mathrm{i}e^{-\mathrm{i}x} \end{pmatrix} \Rightarrow \boldsymbol{\Phi}(x) = \begin{pmatrix} e^x & \cos x & \sin x \\ -e^x & -\sin x & \cos x \\ 0 & \cos x & \sin x \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}^{-1}(x) = \begin{pmatrix} e^{-x} & 0 & -e^{-x} \\ -\sin x & -\sin x & \sin x + \cos x \\ \cos x & \cos x & \sin x - \cos x \end{pmatrix}.$$

故

$$\boldsymbol{\varPhi}^{-1}(x)\boldsymbol{f}(x) = \begin{pmatrix} \mathrm{e}^{-x} \\ (1-x)\cos x - \sin x \\ (1-x)\sin x + \cos x \end{pmatrix} \Rightarrow \int \boldsymbol{\varPhi}^{-1}(x)\boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} -\mathrm{e}^{-x} \\ (1-x)\sin x \\ (x-1)\cos x \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}(x) \int \boldsymbol{\Phi}^{-1}(x) \boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} -1 \\ x \\ 0 \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} e^x + C_2 \begin{pmatrix} \cos x \\ -\sin x \\ \cos x \end{pmatrix} + C_3 \begin{pmatrix} \sin x \\ \cos x \\ \sin x \end{pmatrix} + \begin{pmatrix} -1 \\ x \\ 0 \end{pmatrix}.$$

(5)
$$|\mathbf{A} - \lambda \mathbf{E}| = -(\lambda + 1)^3 = 0 \Rightarrow \lambda_{1,2,3} = -1.$$

由
$$(\mathbf{A} + \mathbf{E})^3 \mathbf{r} = 0$$
 得到三个线性无关的特征向量 $\mathbf{r}_{10} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{r}_{20} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{r}_{30} = \mathbf{r}_{30} = \mathbf{r}_{30}$

$$egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}, \ egin{pmatrix} 1 \ m{r}_{11} = m{r}_{12} = m{r}_{22} = m{0}, \ m{r}_{21} = egin{pmatrix} -1 \ 0 \ 0 \end{pmatrix}, \ m{r}_{31} = egin{pmatrix} 0 \ -1 \ 0 \end{pmatrix}, \ m{r}_{32} = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}.$$

$$\mathbf{\Phi}(x) = \begin{pmatrix} e^{-x} & -xe^{-x} & \frac{1}{2}x^2e^{-x} \\ 0 & e^{-x} & -xe^{-x} \\ 0 & 0 & e^{-x} \end{pmatrix}.$$

故

$$\mathbf{\Phi}^{-1}(x) = \begin{pmatrix} e^x & xe^x & \frac{1}{2}x^2e^x \\ 0 & e^x & xe^x \\ 0 & 0 & e^x \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}^{-1}(x)\boldsymbol{f}(x) = \begin{pmatrix} 3x^2 e^x + \frac{1}{2}x^3 e^x \\ 2xe^x + x^2 e^x \\ xe^x \end{pmatrix} \Rightarrow \int \boldsymbol{\Phi}^{-1}(x)\boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} \left(\frac{1}{2}x^3 + \frac{3}{2}x^2 - 3x + 3\right) e^x \\ x^2 e^x \\ (x-1)e^x \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}(x) \int \boldsymbol{\Phi}^{-1}(x) \boldsymbol{f}(x) dx = \begin{pmatrix} x^2 - 3x + 3 \\ x \\ x - 1 \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{-x} + C_2 \begin{pmatrix} -x \\ 1 \\ 0 \end{pmatrix} e^{-x} + C_3 \begin{pmatrix} x^2 \\ -2x \\ 2 \end{pmatrix} e^{-x} + \begin{pmatrix} x^2 - 3x + 3 \\ x \\ x - 1 \end{pmatrix}. \qquad \Box$$

3. 求出微分方程组 (6.24) 满足初值条件 $y(0) = \eta$ 的解, 其中:

(1)
$$\mathbf{A} = \begin{pmatrix} -5 & -1 \\ 1 & -3 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} e^x \\ e^{2x} \end{pmatrix}, \quad \mathbf{\eta} = \begin{pmatrix} 1 \\ 0 \end{pmatrix};$$

(2)
$$\mathbf{A} = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} 3x \\ 4 \end{pmatrix}, \quad \mathbf{\eta} = \begin{pmatrix} 2 \\ 3 \end{pmatrix};$$

(3)
$$\mathbf{A} = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} \sin x \\ -2\cos x \end{pmatrix}, \quad \mathbf{\eta} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

(4)
$$\mathbf{A} = \begin{pmatrix} 16 & 14 & 38 \\ -9 & -7 & -18 \\ -4 & -4 & -11 \end{pmatrix}, \quad \mathbf{f}(x) = \begin{pmatrix} -2e^{-x} \\ -3e^{-x} \\ 2e^{-x} \end{pmatrix}, \quad \mathbf{\eta} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

解: (1)
$$|A - \lambda E| = (\lambda + 4)^2 = 0 \Rightarrow \lambda_{1,2} = -4$$
.

由
$$(\mathbf{A} + 4\mathbf{E})^2 \mathbf{r} = 0$$
 得两个线性无关的特征向量 $\mathbf{r}_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{r}_{20} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, 且

$$oldsymbol{r}_{11}=egin{pmatrix} -1 \ 1 \end{pmatrix}, oldsymbol{r}_{21}=egin{pmatrix} -1 \ 1 \end{pmatrix}.$$

$$\mathbf{\Phi}(x) = \begin{pmatrix} (1-x)e^{-4x} & -xe^{-4x} \\ xe^{-4x} & (1+x)e^{-4x} \end{pmatrix}.$$

故

$$\mathbf{\Phi}^{-1}(x) = \begin{pmatrix} (1+x)e^{4x} & xe^{4x} \\ -xe^{4x} & (1-x)e^{4x} \end{pmatrix}.$$

故

$$\boldsymbol{\varPhi}^{-1}(x)\boldsymbol{f}(x) = \begin{pmatrix} (1+x)e^{5x} + xe^{6x} \\ -xe^{5x} + (1-x)e^{6x} \end{pmatrix} \Rightarrow \int \boldsymbol{\varPhi}^{-1}(x)\boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} \frac{4}{25}e^{5x} + \frac{1}{5}xe^{5x} - \frac{1}{36}e^{6x} + \frac{1}{6}xe^{6x} \\ -\frac{1}{5}xe^{5x} + \frac{1}{25}e^{5x} + \frac{7}{36}e^{6x} - \frac{1}{6}xe^{6x} \end{pmatrix}.$$

故

$$\mathbf{\Phi}(x) \int \mathbf{\Phi}^{-1}(x) \mathbf{f}(x) dx = \begin{pmatrix} \frac{4}{25} e^x - \frac{1}{36} e^{2x} \\ \frac{1}{25} e^x + \frac{7}{36} e^{2x} \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} (1-x)e^{-4x} \\ xe^{-4x} \end{pmatrix} + C_2 \begin{pmatrix} -xe^{-4x} \\ (1+x)e^{-4x} \end{pmatrix} + \begin{pmatrix} \frac{4}{25}e^x - \frac{1}{36}e^{2x} \\ \frac{1}{25}e^x + \frac{7}{36}e^{2x} \end{pmatrix}.$$

结合初值条件

$$C_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{4}{25} - \frac{1}{36} \\ \frac{1}{25} + \frac{7}{36} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

得 $C_1 = \frac{781}{900}, C_2 = \frac{-211}{900}$, 故初值问题的解为

$$\mathbf{y} = \frac{781}{900} \begin{pmatrix} 1 - x \\ x \end{pmatrix} e^{-4x} + \frac{-211}{900} \begin{pmatrix} -x \\ 1 + x \end{pmatrix} e^{-4x} + \begin{pmatrix} \frac{4}{25} e^x - \frac{1}{36} e^{2x} \\ \frac{1}{25} e^x + \frac{7}{36} e^{2x} \end{pmatrix}.$$

(2)
$$|\mathbf{A} - \lambda \mathbf{E}| = \lambda^2 + 4 = 0 \Rightarrow \lambda = \pm 2i$$
.
当 $\lambda = 2i$ 时, $\begin{pmatrix} -2i & -2 \\ 2 & -2i \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -i \\ 0 & 0 \end{pmatrix}$,取特征向量为 $\mathbf{r} = \begin{pmatrix} i \\ 1 \end{pmatrix}$.
当 $\lambda = -2i$ 时,取特征向量为 $\mathbf{r} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

$$\widetilde{\boldsymbol{\varPhi}}(x) = \begin{pmatrix} \mathrm{i}\mathrm{e}^{2\mathrm{i}x} & \mathrm{e}^{-2\mathrm{i}x} \\ \mathrm{e}^{2\mathrm{i}x} & \mathrm{i}\mathrm{e}^{-2\mathrm{i}x} \end{pmatrix} \Rightarrow \boldsymbol{\varPhi}(x) = \begin{pmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{pmatrix}.$$

故

$$\boldsymbol{\varPhi}^{-1}(x) = \begin{pmatrix} \cos 2x & \sin 2x \\ -\sin 2x & \cos 2x \end{pmatrix}.$$

故

$$\boldsymbol{\varPhi}^{-1}(x)\boldsymbol{f}(x) = \begin{pmatrix} 3x\cos 2x + 4\sin 2x \\ -3x\sin 2x + 4\cos 2x \end{pmatrix} \Rightarrow \int \boldsymbol{\varPhi}^{-1}(x)\boldsymbol{f}(x) \,\mathrm{d}x = \begin{pmatrix} \frac{3}{2}x\sin 2x - \frac{5}{4}\cos 2x \\ \frac{3}{2}x\cos 2x + \frac{5}{4}\sin 2x \end{pmatrix}.$$

故

$$\Phi(x) \int \Phi^{-1}(x) f(x) dx = \begin{pmatrix} -\frac{5}{4} \\ \frac{3}{2}x \end{pmatrix}.$$

故通解为

$$\mathbf{y} = C_1 \begin{pmatrix} \cos 2x \\ \sin 2x \end{pmatrix} + C_2 \begin{pmatrix} -\sin 2x \\ \cos 2x \end{pmatrix} + \begin{pmatrix} -\frac{5}{4} \\ \frac{3}{2}x \end{pmatrix}.$$

结合初值条件

$$C_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -\frac{5}{4} \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix},$$

得 $C_1 = \frac{13}{4}, C_2 = 3$, 故初值问题的解为

$$\mathbf{y} = \frac{13}{4} \begin{pmatrix} \cos 2x \\ \sin 2x \end{pmatrix} + 3 \begin{pmatrix} -\sin 2x \\ \cos 2x \end{pmatrix} + \begin{pmatrix} -\frac{5}{4} \\ \frac{3}{2}x \end{pmatrix}.$$

(3)
$$|\mathbf{A} - \lambda \mathbf{E}| = (\lambda - 1)(\lambda - 2) = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 2.$$
当 $\lambda = 1$ 时, $\begin{pmatrix} 3 & -3 \\ 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$,取特征向量为 $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
当 $\lambda = 2$ 时, $\begin{pmatrix} 2 & -3 \\ 2 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix}$,取特征向量为 $\mathbf{r} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

故基解矩阵为

$$\boldsymbol{\Phi}(x) = \begin{pmatrix} e^x & 3e^{2x} \\ e^x & 2e^{2x} \end{pmatrix}.$$

故

$$\Phi^{-1}(x) = \begin{pmatrix} -2e^{-x} & 3e^{-x} \\ e^{-2x} & -e^{-2x} \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}^{-1}(x)\boldsymbol{f}(x) = \begin{pmatrix} -2e^{-x}\sin x - 6e^{-x}\cos x \\ e^{-2x}\sin x + 2e^{-2x}\cos x \end{pmatrix}$$

积分得

$$\int \Phi^{-1}(x) f(x) dx = \begin{pmatrix} -2e^{-x} \sin x + 4e^{-x} \cos x \\ -2e^{-2x} \cos x \end{pmatrix}.$$

故

$$\boldsymbol{\Phi}(x) \int \boldsymbol{\Phi}^{-1}(x) \boldsymbol{f}(x) \, \mathrm{d}x = \begin{pmatrix} -2\sin x + \cos x \\ -2\sin x + 2\cos x \end{pmatrix}.$$

故通解为

$$y = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^x + C_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{2x} + \begin{pmatrix} -2\sin x + \cos x \\ -2\sin x + 2\cos x \end{pmatrix}.$$

结合初值条件

$$C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

得 $C_1 = -4$, $C_2 = 1$, 故初值问题的解为

$$\mathbf{y} = -4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^x + \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{2x} + \begin{pmatrix} -2\sin x + \cos x \\ -2\sin x + 2\cos x \end{pmatrix}.$$

(4) $(-2x, -3x, 2x)e^{-x}$.

4. 求解微分方程组

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

其中 a 和 b 为实常数, 而且 $b \neq 0$.

解:
$$\begin{vmatrix} a - \lambda & -b \\ b & a - \lambda \end{vmatrix} = (a - \lambda)^2 + b^2 = 0 \Rightarrow \lambda = a \pm bi.$$

当
$$\lambda = a + bi$$
 时, $\begin{pmatrix} -bi & -b \\ b & -bi \end{pmatrix}$ → $\begin{pmatrix} i & 1 \\ 0 & 0 \end{pmatrix}$,取特征向量为 $\boldsymbol{r} = \begin{pmatrix} i \\ 1 \end{pmatrix}$. 当 $\lambda = a - bi$ 时,取特征向量为 $\boldsymbol{r} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

$$\widetilde{\boldsymbol{\varPhi}}(t) = \begin{pmatrix} \mathrm{i}\mathrm{e}^{(a+b\mathrm{i})t} & \mathrm{e}^{(a-b\mathrm{i})t} \\ \mathrm{e}^{(a+b\mathrm{i})t} & \mathrm{i}\mathrm{e}^{(a-b\mathrm{i})t} \end{pmatrix} \Rightarrow \boldsymbol{\varPhi}(t) = \begin{pmatrix} \mathrm{e}^{at}\cos bt & -\mathrm{e}^{at}\sin bt \\ \mathrm{e}^{at}\sin bt & \mathrm{e}^{at}\cos bt \end{pmatrix}.$$

故通解为

$$\begin{pmatrix} x \\ y \end{pmatrix} = C_1 \begin{pmatrix} \mathrm{e}^{at} \cos bt \\ \mathrm{e}^{at} \sin bt \end{pmatrix} + C_2 \begin{pmatrix} -\mathrm{e}^{at} \sin bt \\ \mathrm{e}^{at} \cos bt \end{pmatrix}.$$

5. 证明: 常系数齐次线性微分方程组 $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} x} = \boldsymbol{A} \boldsymbol{y}$ 的任何解当 $x \to +\infty$ 时都趋于零,当且仅当它的系数矩阵 \boldsymbol{A} 的所有特征根都具有负的实部.

证明: 方程的基解矩阵为

$$\left(e^{\lambda_1 x} P_1^{(1)}(x), \cdots, e^{\lambda_1 x} P_{n_1}^{(1)}(x); \cdots; e^{\lambda_s x} P_1^{(s)}(x), \cdots, e^{\lambda_s x} P_{n_s}^{(s)}(x)\right).$$

故

当
$$x \to +\infty$$
 时任何解都趋于零
$$\iff \mathrm{e}^{\lambda_i x} \to 0 \ (x \to +\infty) \quad (i=1,2,\cdots,s)$$

$$\iff \mathrm{Re}(\lambda_i) < 0 \quad (i=1,2,\cdots,s).$$

6.3 高阶线性微分方程

6.3.1 证明与总结

对于高阶线性微分方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x),$$

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y} + \boldsymbol{f}(x) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n(x) & -a_{n-1}(x) & -a_{n-2}(x) & \cdots & -a_1(x) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f(x) \end{pmatrix}.$$

(I) 齐次方程: 有 n 个线性无关的解 $\varphi_1(x), \dots, \varphi_n(x)$, 解组的朗斯基行列式

$$W(x) = W(x_0)e^{-\int_{x_0}^x a_1(s) ds}$$
.

(一个运用: 二阶齐次线性微分方程组 y'' + p(x)y' + q(x)y = 0 若知道一个特解可以求出通解).

(II) 非齐次方程: 通解为

$$y = C_1 \varphi_1(x) + \dots + C_n \varphi_n(x) + \varphi^*(x),$$

其中特解

$$\varphi^*(x) = \sum_{k=1}^n \varphi_k(x) \int_{x_0}^x \frac{W_k(s)}{W(s)} f(s) \, \mathrm{d}s.$$

这里 W(x) 是 $\varphi_1(x), \dots, \varphi_n(x)$ 的 Wronsky 行列式, 而 $W_k(x)$ 是 W(x) 中第 n 行第 k 列元素的代数余子式. 此公式既可以用前面的公式

$$\mathbf{y} = \mathbf{\Phi}(x) \left(\mathbf{c} + \int_{x_0}^x \mathbf{\Phi}^{-1}(s) \mathbf{f}(s) \, \mathrm{d}s \right)$$

取第一个分量导出, 也可以用常数变易法导出 (见习题 6).

esp: 常系数高阶线性微分方程, 其系数矩阵为

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{pmatrix}.$$

由 $|A - \lambda E| = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$ 算出特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$, 其重数 分别为 n_1, n_2, \dots, n_s $(n_1 + n_2 + \dots + n_s = n)$, 则齐次方程基本解组为:

$$\begin{cases} e^{\lambda_1 x}, x e^{\lambda_1 x}, \cdots, x^{n_1 - 1} e^{\lambda_1 x}; \\ \dots \\ e^{\lambda_s x}, x e^{\lambda_s x}, \cdots, x^{n_s - 1} e^{\lambda_s x}. \end{cases}$$

对于非齐次方程, 还需要求出特解, 一般用上述特解求解公式, 在 f(x) 形式特殊时, 可以用待定系数法:

当
$$f(x) = P_m(x)e^{\mu x}$$
 时, 取

$$\varphi^*(x) = x^k Q_m(x) e^{\mu x},$$

其中 μ 为 k 重特征根.

当
$$f(x) = [A_m(x)\cos(\beta x) + B_l(x)\sin(\beta x)]e^{\alpha x}$$
 时, 取

$$\varphi^*(x) = x^k [C_n(x)\cos(\beta x) + D_n(x)\sin(\beta x)]e^{\alpha x},$$

其中 $\alpha \pm i\beta$ 为 k 重特征根, $n = \max\{m, l\}$.

6.3.2 习题

1. 证明函数组

$$\varphi_1(x) = \begin{cases} x^2, & \underline{\sharp} \ x \geqslant 0, \\ 0, & \underline{\sharp} \ x < 0; \end{cases} \qquad \varphi_2(x) = \begin{cases} 0, & \underline{\sharp} \ x \geqslant 0, \\ x^2, & \underline{\sharp} \ x < 0 \end{cases}$$

在区间 $(-\infty, +\infty)$ 上线性无关, 但它们的朗斯基行列式恒等于零. 这与本节的定理 6.2^* 是否矛盾? 如果并不矛盾, 那么它说明了什么?

证明: 设 $k_1\varphi_1(x) + k_2\varphi_2(x) = 0, \forall x \in (-\infty, +\infty), \, \exists \, x \geqslant 0 \text{ 时}, \, k_1x^2 = 0 \Rightarrow k_1 = 0,$ 当 $x < 0 \text{ 时}, \, k_2x^2 = 0 \Rightarrow k_2 = 0, \, \text{故} \, \varphi_1(x) \text{ 与} \, \varphi_2(x) \text{ 在} \, (-\infty, +\infty) \text{ 上线性无关. 这与 定理 } 6.2^* \, 不矛盾, 并说明不存在二阶齐次线性微分方程使得它以 <math>\varphi_1(x)$ 与 $\varphi_2(x)$ 为解组.

2. 证明命题 5.

证明: (⇒) 显然

(
$$\Leftarrow$$
) 设 $k_1\varphi_1(x) + \cdots + k_n\varphi_n(x) = 0$, 则

$$k_1\varphi_1'(x) + \dots + k_n\varphi_n'(x) = 0,$$

• • •

$$k_1 \varphi_1^{(n-1)}(x) + \dots + k_n \varphi_n^{(n-1)}(x) = 0.$$

由向量函数组线性无关即得 $k_i = 0$ $(i = 1, 2, \dots, n)$, 故 $\varphi_1(x), \dots, \varphi_n(x)$ 线性无关. \square

- **3.** 考虑微分方程: y'' + q(x)y = 0.
- (1) 设 $y = \varphi(x)$ 与 $y = \psi(x)$ 是它的两个解, 试证 $\varphi(x)$ 与 $\psi(x)$ 的朗斯基行列式恒等于一个常数.
- (2) 设已知方程有一个特解为 $y = e^x$, 试求这方程的通解, 并确定 q(x) = ?

解: (1) $W(x) = W(x_0)e^{-\int_{x_0}^x 0 \, ds} = W(x_0)$.

(2) 将 $y = e^x$ 代入原方程得 q(x) = -1, 即原方程为 y'' - y = 0, 解得通解为 $y = C_1 e^x + C_2 e^{-x}$.

4. 考虑微分方程

$$y'' + p(x)y' + q(x) = 0, \tag{*}$$

其中 p(x) 和 q(x) 是区间 I: a < x < b 上的连续函数.

- (1) 设 $y = \varphi(x)$ 是方程 (*) 在区间 I 上的一个非零解 (即 $\varphi(x)$ 在区间 I 上不恒等于零), 试证 $\varphi(x)$ 在区间 I 上只有简单零点 (即: 如果存在 $x_0 \in I$, 使得 $\varphi(x_0) = 0$, 那么必有 $\varphi'(x_0) \neq 0$). 并由此进一步证明, $\varphi(x)$ 在任意有限闭区间上至多有有限个零点, 从而每一个零点都是孤立的.
- (2) 在例 1 中, 对一般的情形证明相应的结论.

解: (1) 假设存在 $x_0 \in I$ 使得 $\varphi(x_0) = \varphi'(x_0) = 0$, 则由解的存在唯一性定理知方程只有零解 $y = \varphi(x) = 0$, 与 $\varphi(x)$ 是非零解相矛盾, 故 $\varphi(x)$ 在区间 I 上只有简单零点.

设 J 是 I 中有限闭区间,且 $\varphi(x)$ 在区间 J 上有无限个零点,记为 $\{x_n\}_{n\geq 1}$,由 Bolzano-Weierstrass 定理知 $\{x_n\}_{n\geq 1}$ 有收敛子列,不妨就设其本身收敛且 $\lim_{n\to\infty}x_n=x_0\in J$,由连续性知 $\varphi(x_0)=0$,故

$$\varphi'(x_0) = \lim_{x_n \to x_0} \frac{\varphi(x_n) - \varphi(x_0)}{x_n - x_0} = 0.$$

由存在唯一性定理知 $\varphi(x) \equiv 0$, 矛盾, 故 $\varphi(x)$ 的每一个零点都是孤立的.

(2) 情形 1: $\varphi(x)$ 在区间 I 上恒不为零, 设 y=y(x) 是方程的任意一个解, 则由刘维尔公式得

$$\begin{vmatrix} \varphi & y \\ \varphi' & y' \end{vmatrix} = \varphi y' - \varphi' y = C_2 e^{-\int_{x_0}^x p(t) dt}.$$

在上式两边同时乘以 $\frac{1}{\omega^2}$, 则得

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\varphi} \right) = \frac{C_2}{\varphi^2} \mathrm{e}^{-\int_{x_0}^x p(t) \, \mathrm{d}t}.$$

将上式从 x_0 到 x 积分得

$$\int_{x_0}^x \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{y}{\varphi} \right) \mathrm{d}s = \frac{y(x)}{\varphi(x)} - C_1 = \int_{x_0}^x \frac{C_2}{\varphi^2(s)} \mathrm{e}^{-\int_{x_0}^s p(t) \, \mathrm{d}t} \, \mathrm{d}s.$$

故

$$y(x) = \varphi(x) \left[C_1 + C_2 \int_{x_0}^x \frac{1}{\varphi^2(s)} e^{-\int_{x_0}^s p(t) dt} ds \right],$$

其中 C_1, C_2 是任意常数.

情形 2: $\varphi(x)$ 是非零解, 由 (1) 知 $\varphi(x)$ 的每一个零点都是孤立的, 利用 $\varphi(x)$ 的零点将区间 (a,b) 分割为开区间之并.

- **5.** 设函数 u(x) 和 v(x) 是方程 y'' + p(x)y' + q(x)y = 0 的一个基本解组, 试证:
- (1) 方程的系数函数 p(x) 和 q(x) 能由这个基本解组唯一地确定.
- (2) u(x) 和 v(x) 没有共同的零点.

故

$$p(x) = \frac{\begin{vmatrix} -u'' & u \\ -v'' & v \end{vmatrix}}{\begin{vmatrix} u' & u \\ v' & v \end{vmatrix}} = \frac{u''v - uv''}{W[u(x), v(x)]}, \quad q(x) = \frac{\begin{vmatrix} u' & -u'' \\ v' & -v'' \end{vmatrix}}{\begin{vmatrix} u' & u \\ v' & v \end{vmatrix}} = \frac{u'v'' - u''v'}{W[u(x), v(x)]}.$$

也即 p(x) 和 q(x) 能由这个基本解组唯一地确定.

- (2) 假设 u(x) 和 v(x) 有共同的零点 x_0 , 则 $W[u(x_0), v(x_0)] = 0$, 与 u(x) 和 v(x) 为基本解组相矛盾, 故 u(x) 和 v(x) 没有共同的零点.
 - 6. 试用常数变易法证明定理 6.3*.

证明: 设非齐次线性微分方程的通解为

$$y = C_1(x)\varphi_1(x) + \cdots + C_n(x)\varphi_n(x).$$

则

$$y' = C'_1(x)\varphi_1(x) + \dots + C'_n(x)\varphi_n(x) + C_1(x)\varphi'_1(x) + \dots + C_n(x)\varphi'_n(x).$$

$$\diamondsuit$$
 $C'_1(x)\varphi_1(x) + \cdots + C'_n(x)\varphi_n(x) = 0$, 则

$$y' = C_1(x)\varphi_1'(x) + \dots + C_n(x)\varphi_n'(x).$$

故

$$y'' = C_1'(x)\varphi_1'(x) + \dots + C_n'(x)\varphi_n'(x) + C_1(x)\varphi_1''(x) + \dots + C_n(x)\varphi_n''(x).$$

$$\diamondsuit C_1'(x)\varphi_1'(x) + \dots + C_n'(x)\varphi_n'(x) = 0, \ \mathbb{M}$$

$$y'' = C_1(x)\varphi_1''(x) + \dots + C_n(x)\varphi_n''(x).$$

同理可得

$$y^{(n-1)} = C_1(x)\varphi_1^{(n-1)}(x) + \dots + C_n(x)\varphi_n^{(n-1)}(x).$$

$$y^{(n)} = C_1'(x)\varphi_1^{(n-1)}(x) + \dots + C_n'(x)\varphi_n^{(n-1)}(x) + C_1(x)\varphi_1^{(n)}(x) + \dots + C_n(x)\varphi_n^{(n)}(x).$$
 将 $y, y', \dots, y^{(n)}$ 的表达式代入 $y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x)$ 得
$$C_1'(x)\varphi_1^{(n-1)}(x) + \dots + C_n'(x)\varphi_n^{(n-1)}(x) + \dots + a_n(x)\varphi_i^{(n-1)}(x) + \dots + a_n(x)\varphi_i^{(n-1)}(x) + \dots + a_n(x)\varphi_i^{(n-1)}(x) + \dots + a_n(x)\varphi_i^{(n-1)}(x)$$

而

$$\sum_{i=1}^{n} C_i(x) \left(\varphi_i^{(n)}(x) + a_1(x) \varphi_i^{(n-1)}(x) + \dots + a_n(x) \varphi_i(x) \right) = 0.$$

故

$$C'_1(x)\varphi_1^{(n-1)}(x) + \dots + C'_n(x)\varphi_n^{(n-1)}(x) = f(x).$$

再根据前面所得有

$$\begin{cases} C'_1(x)\varphi_1(x) + \dots + C'_n(x)\varphi_n(x) = 0, \\ C'_1(x)\varphi'_1(x) + \dots + C'_n(x)\varphi'_n(x) = 0, \\ \dots \\ C'_1(x)\varphi_1^{(n-1)}(x) + \dots + C'_n(x)\varphi_n^{(n-1)}(x) = f(x). \end{cases}$$

上述方程组的系数行列式即为 W(x), 故

$$C'_1(x) = \frac{1}{W(x)} \begin{vmatrix} 0 & \varphi_2(x) & \cdots & \varphi_n(x) \\ 0 & \varphi'_2(x) & \cdots & \varphi'_n(x) \\ \vdots & \vdots & & \vdots \\ f(x) & \varphi_2^{(n-1)}(x) & \cdots & \varphi_n^{(n-1)}(x) \end{vmatrix} = \frac{W_1(x)}{W(x)} f(x).$$

同理可得 $C'_i(x) = \frac{W_i(x)}{W(x)} f(x)$ $(i = 2, 3, \dots, n)$, 积分得

$$C_i(x) = \int_{x_0}^x \frac{W_i(s)}{W(s)} f(s) ds + C_i.$$

再代回最初的式子即得

$$y = C_1 \varphi_1(x) + \dots + C_n \varphi_n(x) + \sum_{k=1}^n \varphi_k(x) \int_{x_0}^x \frac{W_k(s)}{W(s)} f(s) \, \mathrm{d}s. \qquad \Box$$

7. 设欧拉方程

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy' + a_{n}y = 0,$$

其中 a_1, a_2, \dots, a_n 都是常数, x > 0. 试利用适当的变换把它化成常系数的齐次线性微分方程.

解: $\Rightarrow x = e^t$, 则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \mathrm{e}^{-t} \frac{\mathrm{d}y}{\mathrm{d}t},$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \mathrm{e}^{-2t} \left(\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - \frac{\mathrm{d}y}{\mathrm{d}t}\right).$$

用归纳法可以证明

$$\frac{\mathrm{d}^k y}{\mathrm{d}x^k} = \mathrm{e}^{-kt} \left(\frac{\mathrm{d}^k y}{\mathrm{d}t^k} + \beta_1 \frac{\mathrm{d}^{k-1} y}{\mathrm{d}t^{k-1}} + \dots + \beta_{k-1} \frac{\mathrm{d}y}{\mathrm{d}t} \right). \tag{*}$$

其中 $\beta_1,\beta_2,\beta_{k-1}$ 都是常数. 将其代人原方程就得到常系数齐次线性微分方程

$$\frac{\mathrm{d}^n y}{\mathrm{d}t^n} + b_1 \frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} + \dots + b_{n-1} \frac{\mathrm{d}y}{\mathrm{d}t} + b_n y = 0,$$

其中 b_1, b_2, \dots, b_n 是常数. 求解之, 再代回原变量, 便可得原方程通解.

注(*)式其实不太精细,事实上,利用归纳法容易证明下列关系式

$$x^k \frac{\mathrm{d}^k y}{\mathrm{d} x^k} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\mathrm{d}}{\mathrm{d} t} - 1 \right) \cdots \left(\frac{\mathrm{d}}{\mathrm{d} t} - k + 1 \right) y.$$

8. 求解有阻尼的弹簧振动方程

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + r\frac{\mathrm{d}x}{\mathrm{d}t} + kx = 0,$$

其中 m, r, k 都是正的常数. 并就 $\Delta = r^2 - 4mk$ 大于, 等于和小于零的不同情况, 说明相应解的物理意义.

解: 特征方程为

$$m\lambda^2 + r\lambda + k = 0.$$

特征根为

$$\lambda_1 = \frac{-r + \sqrt{r^2 - 4mk}}{2m}, \quad \lambda_2 = \frac{-r - \sqrt{r^2 - 4mk}}{2m}.$$

(i) $\Delta > 0$ 即大阻尼情形, $\lambda_2 < \lambda_1 < 0$, 通解为

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t},$$

其中 C_1, C_2 为任意常数. 此时 $\lim_{t\to\infty} x(t) = 0$, 并且有

- (a) 当常数 C_1 和 C_2 全为零时,则 $x(t) \equiv 0$,即弹簧静止;
- (b) 当常数 C_1 和 C_2 有且只有一个为零时,则 x(t) 保持定号,即弹簧不能振动;
- (c) 当常数 C_1 和 C_2 都不为零时, 此时弹簧最多只能经过一次静止点, 亦即

$$x(t_0) = C_1 e^{\lambda_1 t_0} + C_2 e^{\lambda_2 t_0} = 0$$

当且仅当
$$-1 < \frac{C_1}{C_2} < 0$$
 异号,而且 $t_0 = \frac{1}{\lambda_2 - \lambda_1} \ln \left(-\frac{C_1}{C_2} \right)$.

(ii) $\Delta < 0$ 即小阻尼情形, 此时 $\lambda_1 = \alpha + \mathrm{i}\beta, \lambda_2 = \alpha - \mathrm{i}\beta$, 其中 $\alpha = -\frac{r}{2m} < 0, \beta = \frac{\sqrt{-\Delta}}{2m} > 0$, 通解为

$$x(t) = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t) = A e^{\alpha t} \cos(\beta t - \theta_0).$$

故 $\lim_{t\to\infty} x(t) = 0$,且

- (a) 当 A = 0 时, 弹簧静止;
- (b) 当 A > 0 时, 弹簧振动.
- (iii) $\Delta = 0$ 即临界阻尼情形, 有两个相等的特征根 $\lambda_1 = \lambda_2 = -\frac{r}{2m}$, 通解为

$$x(t) = e^{-\frac{r}{2m}t}(C_1 + C_2t).$$

此时 $\lim_{t\to\infty} x(t) = 0$ 且 x(t) 至多有一个零点, 故弹簧不振动.

9. 求解弹簧振子在无阻尼下的强迫振动方程

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + kx = p\cos\omega t,$$

其中 m,k,p 和 ω 都是正的常数. 并对外加频率 $\omega\neq\omega_0$ 和 $\omega=\omega_0$ 两种不同的情况, 说 明解的物理意义, 这里 $\omega_0=\sqrt{\frac{k}{m}}$ 是弹簧振子的固有频率.

解:特征方程为

$$m\lambda^2 + k = 0.$$

解得特征根为 $\lambda = \pm \sqrt{\frac{k}{m}} i = \pm \omega_0 i$, 故相应齐次线性微分方程的解为

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t.$$

当 $\omega \neq \omega_0$ 时, 方程有特解 $x(t) = A\cos\omega t + B\sin\omega t$, 代入原方程得 $A = \frac{p}{k-m\omega^2}$, B = 0, 故原方程通解为

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + \frac{p}{k - m\omega^2} \cos \omega t.$$

当 $\omega=\omega_0$ 时,方程有特解 $x(t)=t(A\cos\omega_0t+B\sin\omega_0t)$,代入原方程得 $A=0,B=\frac{p}{2m\omega_0}$,故原方程通解为

$$x(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t + \frac{p}{2m\omega_0} t \sin \omega_0 t.$$

此时发生了共振.

10. 求解下列常系数线性微分方程:

(1)
$$y'' + y' - 2y = 2x, y(0) = 0, y'(0) = 1;$$

(2)
$$2y'' - 4y' - 6y = 3e^{2x}$$
;

(3)
$$y'' + 2y' = 3 + 4\sin 2x$$
;

(4)
$$y''' + 3y' - 4y = 0$$
;

(5)
$$y''' - 2y'' - 3y' + 10y = 0$$
;

(6)
$$y''' - 3ay'' + 3a^2y' - a^3y = 0$$
:

(7)
$$y^{(4)} - 4y''' + 8y'' - 8y' + 3y = 0$$
;

(8)
$$y^{(5)} + 2y''' + y' = 0$$
;

(9)
$$y^{(4)} + 2y'' + y = \sin x, y(0) = 1, y'(0) = -2, y''(0) = 3, y'''(0) = 0;$$

(10)
$$y^{(4)} + y = 2e^x, y(0) = y'(0) = y''(0) = y'''(0) = 1;$$

(11)
$$y'' - 2y' + 2y = 4e^x \cos x$$
;

(12)
$$y'' - 5y' + 6y = (12x - 7)e^{-x}$$
;

(13)
$$x^2y'' + 5xy' + 13y = 0(x > 0);$$

$$(14) (2x+1)^2y'' - 4(2x+1)y' + 8y = 0.$$

解: (1) $\lambda^2 + \lambda - 2 = 0 \Rightarrow \lambda_1 = -2, \lambda_2 = 1$, 设方程的特解为 y = ax + b, 代人原方程得 $a = -1, b = -\frac{1}{2}$, 故原方程的通解为

$$y = C_1 e^{-2x} + C_2 e^x - x - \frac{1}{2}.$$

代入初值条件得 $C_1 = -\frac{1}{2}, C_2 = 1$, 故原方程的解为

$$y = -\frac{1}{2}e^{-2x} + e^x - x - \frac{1}{2}.$$

(2) $2\lambda^2-4\lambda-6=0\Rightarrow\lambda_1=3,\lambda_2=-1$, 设方程的特解为 $y=a\mathrm{e}^{2x}$, 代人原方程得 $a=-\frac{1}{2}$, 故原方程的通解为

$$y = C_1 e^{3x} + C_2 e^{-x} - \frac{1}{2} e^{2x}.$$

(3) $\lambda^2+2\lambda=0\Rightarrow\lambda_1=0,\lambda_2=-2$, 设特解为 $y=Ax+B\cos 2x+C\sin 2x$, 代人原方程得 $A=\frac{3}{2},B=C=-\frac{1}{2}$, 故原方程通解为

$$y = C_1 + C_2 e^{-2c} + \frac{3}{2}x - \frac{1}{2}(\sin 2x + \cos 2x).$$

(4) $\lambda^3 + 3\lambda - 4 = 0 \Rightarrow \lambda = 1, \frac{-1 \pm \sqrt{15}i}{2}$, 故方程的实基本解组为 e^x , $e^{-\frac{1}{2}x}\cos\frac{\sqrt{15}}{2}x$, $e^{-\frac{1}{2}x}\sin\frac{\sqrt{15}}{2}x$, 故通解为

$$y = C_1 e^x + \left(C_2 \cos \frac{\sqrt{15}}{2}x + C_3 \sin \frac{\sqrt{15}}{2}x\right) e^{-\frac{1}{2}x}.$$

 $(5)~\lambda^3-2\lambda^2-3\lambda+10=0\Rightarrow \lambda=-2,2\pm i,$ 故实基本解组为 $e^{-2x},e^{2x}\cos x,e^{2x}\sin x,$ 故通解为

$$y = C_1 e^{-2x} + (C_2 \cos x + C_3 \sin x)e^{2x}.$$

(6)
$$\lambda^3 - 3a\lambda^2 + 3a^2\lambda - a^3 = (\lambda - a)^3 = 0 \Rightarrow \lambda_{1,2,3} = a$$
, 故通解为

$$y = (C_1 + C_2 x + C_3 x^2) e^{ax}.$$

 $(7) \ \lambda^4 - 4\lambda^3 + 8\lambda^2 - 8\lambda + 3 = (\lambda - 1)^2(\lambda^2 - 2\lambda + 3) = 0 \Rightarrow \lambda_{1,2} = 1, \lambda_3 = 1 + \sqrt{2}i, \lambda_4 = 1 - \sqrt{2}i,$ 故通解为

$$y = (C_1 + C_2 x)e^x + (C_3 \cos \sqrt{2}x + C_4 \sin \sqrt{2}x)e^x.$$

 $(8) \ \lambda^5 + 2\lambda^3 + \lambda = \lambda(\lambda^2 + 1)^2 = 0 \Rightarrow \lambda_1 = 0, \lambda_{2,3} = i, \lambda_{4,5} = -i,$ 故复基本解组为 1, $e^{ix}, xe^{ix}, e^{-ix}, xe^{-ix},$ 相应的实基本解组为 1, $\cos x, \sin x, x\cos x, x\sin x$, 故通解为

$$y = C_1 + (C_2 + C_3 x) \cos x + (C_4 + C_5 x) \sin x.$$

(9)
$$\lambda^4 + 2\lambda^2 + 1 = (\lambda^2 + 1)^2 = 0 \Rightarrow \lambda_{1,2} = i, \lambda_{3,4} = -i$$
, 故对应齐次方程的通解为
$$\varphi(x) = C_1 \sin x + C_2 \cos x + C_3 x \sin x + C_4 x \cos x.$$

设特解为 $\varphi^*(x) = x^2(A\cos x + B\sin x)$, 则

$$(\varphi^*(x))' = 2x(A\cos x + B\sin x) + x^2(-A\sin x + B\cos x),$$

$$(\varphi^*(x))'' = (2 - x^2)(A\cos x + B\sin x) + 4x(-A\sin x + B\cos x),$$

$$(\varphi^*(x))''' = -6x(A\cos x + B\sin x) + (6 - x^2)(-A\sin x + B\cos x),$$

$$(\varphi^*(x))^{(4)} = (x^2 - 12)(A\cos x + B\sin x) - 8x(-A\sin x + B\cos x).$$

故 $(x^2 - 12 + 4 - 2x^2 + x^2)(A\cos x + B\sin x) + (-8x + 8x)(-A\sin x + B\cos x) = -8(A\cos x + B\sin x) = \sin x \Rightarrow A = 0, B = -\frac{1}{8}$, 故 $\varphi^*(x) = -\frac{1}{8}x^2\sin x$, 故原方程的通解为

$$y = C_1 \sin x + C_2 \cos x + C_3 x \sin x + C_4 x \cos x - \frac{1}{8} x^2 \sin x.$$

再代人初值条件 $y(0) = C_2 = 1$, $y'(0) = C_1 + C_4 = -2$, $y''(0) = -C_2 + 2C_3 = 3$, $y'''(0) = -C_1 - 3C_4 - \frac{3}{4} = 0$, 解得 $C_1 = -\frac{21}{8}$, $C_2 = 1$, $C_3 = 2$, $C_4 = \frac{5}{8}$, 故原方程的解为

$$y = \left(-\frac{1}{8}x^2 + 2x - \frac{21}{8}\right)\sin x + \left(\frac{5}{8}x + 1\right)\cos x.$$

(10) $\lambda^4 + 1 = 0 \Rightarrow \lambda = e^{i\left(\frac{\pi}{4} + \frac{1}{2}k\pi\right)}$ (k = 0, 1, 2, 3), 也即 $\lambda_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $\lambda_2 = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $\lambda_3 = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$, $\lambda_4 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$, 故相应的齐次线性微分方程的解为

$$\varphi(x) = \left(C_1 \cos \frac{\sqrt{2}}{2} x + C_2 \sin \frac{\sqrt{2}}{2} x\right) e^{\frac{\sqrt{2}}{2} x} + \left(C_3 \cos \frac{\sqrt{2}}{2} x + C_4 \sin \frac{\sqrt{2}}{2} x\right) e^{-\frac{\sqrt{2}}{2} x}.$$

设原方程的特解为 $\varphi^*(x) = Ae^x$, 代人原方程得 A = 1, 故特解为 $\varphi^*(x) = e^x$, 因此原方程的通解为

$$y = \left(C_1 \cos \frac{\sqrt{2}}{2}x + C_2 \sin \frac{\sqrt{2}}{2}x\right) e^{\frac{\sqrt{2}}{2}x} + \left(C_3 \cos \frac{\sqrt{2}}{2}x + C_4 \sin \frac{\sqrt{2}}{2}x\right) e^{-\frac{\sqrt{2}}{2}x} + e^x.$$

结合初值条件知 $C_i = 0$ (i = 1, 2, 3, 4), 故原方程满足初值条件的解为 $y = e^x$.

(11)
$$\lambda^2 - 2\lambda + 2 = 0 \Rightarrow \lambda = 1 \pm i$$
, 故相应齐次线性微分方程的通解为

$$\varphi(x) = (C_1 \cos x + C_2 \sin x)e^x.$$

设原方程的特解为 $\varphi^*(x) = x(A\cos x + B\sin x)e^x$, 代入原方程得 A = 0, B = 2, 故特解为 $\varphi^*(x) = 2xe^x\sin x$, 故原方程的通解为

$$y = (C_1 \cos x + C_2 \sin x)e^x + 2xe^x \sin x.$$

(12) $\lambda^2 - 5\lambda + 6 = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = 3$, 故相应齐次线性微分方程的通解为

$$\varphi(x) = C_1 e^{2x} + C_2 e^{3x}.$$

设原方程的特解为 $\varphi^*(x)=(Ax+B)\mathrm{e}^{-x}$, 代人原方程得 A=1,B=0, 故特解为 $\varphi^*(x)=x\mathrm{e}^{-x}$, 因此原方程的通解为

$$y = C_1 e^{2x} + C_2 e^{3x} + x e^{-x}.$$

(13) 令 $x = e^t$, 则原方程化为

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}}{\mathrm{d}t} - 1 \right) y + 5 \frac{\mathrm{d}}{\mathrm{d}t} y + 13y = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4 \frac{\mathrm{d}y}{\mathrm{d}t} + 13y = 0.$$

特征方程为 $\lambda^2 + 4\lambda + 13 = 0 \Rightarrow \lambda = -2 \pm 3i$, 故实基本解组为 $e^{-2t} \cos 3t$, $e^{-2t} \sin 3t$, 代回原变量即得基本解组为 $\frac{1}{x^2} \cos(3 \ln x)$, $\frac{1}{x^2} \sin(3 \ln x)$, 故通解为

$$y = \frac{1}{x^2} (C_1 \cos(3\ln x) + C_2 \sin(3\ln x)).$$

(14)
$$\Rightarrow u = 2x + 1$$
, 则
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \frac{\mathrm{d}u}{\mathrm{d}x} = 2\frac{\mathrm{d}y}{\mathrm{d}u},$$

$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}u} \left(2\frac{\mathrm{d}y}{\mathrm{d}u}\right) \frac{\mathrm{d}u}{\mathrm{d}x} = 4\frac{\mathrm{d}^2y}{\mathrm{d}u^2}.$$

故原方程化为

$$u^{2} \cdot 4 \frac{d^{2}y}{du^{2}} - 4u \cdot 2 \frac{dy}{du} + 8y = 0 \Rightarrow u^{2} \frac{d^{2}y}{du^{2}} - 2u \frac{dy}{du} + 2y = 0.$$

今 $u = e^t$, 则上述方程化为

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}}{\mathrm{d}t} - 1 \right) y - 2 \frac{\mathrm{d}}{\mathrm{d}t} y + 2y = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 3 \frac{\mathrm{d}y}{\mathrm{d}t} + 2y = 0.$$

特征方程为 $\lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 2$, 故通解为

$$y = C_1 e^t + C_2 e^{2t} = C_1 u + C_2 u^2 = C_1 (2x+1) + C_2 (2x+1)^2.$$

第7音

幂级数解法

7.1 柯西定理

图 7.1: 柯西定理图示 $(E): \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y), y(x_0) = y_0 \to y = y_0 + \sum_{n=1}^{\infty} C_n (x - x_0)^n$ $\uparrow 在 R_0 内 F(x,y) 是 f(x,y) 的优函数 \qquad \downarrow |C_n| \leqslant \widehat{C}_n$ $(\widehat{E}): \frac{\mathrm{d}y}{\mathrm{d}x} = F(x,y), y(x_0) = y_0 \to y = y_0 + \sum_{n=1}^{\infty} \widehat{C}_n (x - x_0)^n$ $\downarrow y = y_0 + b - b\sqrt{1 + \frac{2aM}{b} \ln\left(1 - \frac{x - x_0}{a}\right)} (|x - x_0| < \rho)$

1. 陈述并详细证明解析微分方程组的柯西定理.

解: 柯西定理: 考虑微分方程组的初值问题

(E):
$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, \dots, y_n), y_1(0) = 0\\ \dots\\ \frac{dy_n}{dx} = f_n(x, y_1, \dots, y_n), y_n(0) = 0 \end{cases}$$

其中函数 $f_k(k=1,2,\cdots,n)$ 在区域 $R:|x|\leqslant \alpha,|y_1|\leqslant \beta,\cdots,|y_n|\leqslant \beta$ 内可以展成收敛的幂级数

$$f_k(x, y_1, \dots, y_n) = \sum_{i, j_1, \dots, j_n = 0}^{\infty} a_{i, j_1, \dots, j_n}^{(k)} x^i y_1^{j_1} \dots y_n^{j_n}.$$

则初值问题 (E) 在邻域 $|x|<\rho$ 内有唯一的解析解 $y_k=y_k(x)$, 其中 $\rho=a\left(1-\mathrm{e}^{\frac{-b}{(n+1)aM}}\right)$, $a<\alpha,b<\beta$.

7.1 柯西定理 90

证明: 因为 $f_k(x, y_1, \dots, y_n)$ 在区域 R 上可以展成收敛的幂级数

$$f_k(x, y_1, \dots, y_n) = \sum_{i, j_1, \dots, j_n = 0}^{\infty} a_{i, j_1, \dots, j_n}^{(k)} x^i y_1^{j_1} \dots y_n^{j_n}.$$

故对任意的正数 $a < \alpha, b < \beta$, 正项级数

$$\sum_{i,j_1,\cdots,j_n=0}^{\infty} a_{i,j_1,\cdots,j_n}^{(k)} a^i b^{j_1+\cdots+j_n}$$

收敛, 故其通项有界, 即存在 M > 0 使得

$$\left| a_{i,j_1,\cdots,j_n}^{(k)} \right| a^i b^{j_1+\cdots+j_n} \leqslant M \Rightarrow \left| a_{i,j_1,\cdots,j_n}^{(k)} \right| \leqslant \frac{M}{a^i b^{j_1+\cdots+j_n}} \cdots (*)$$

考虑下述函数在区域 $R_0: |x| < a, |y_1| < b, \dots, |y_n| < b$ 上的展开式

$$G(x, y_1, \cdots, y_n) = \frac{M}{\left(1 - \frac{x}{a}\right) \left(1 - \frac{y_1}{b}\right) \cdots \left(1 - \frac{y_n}{b}\right)} = \sum_{i, j_1, \dots, j_n = 0}^{\infty} \frac{M}{a^i b^{j_1 + \dots + j_n}} x^i y_1^{j_1} \cdots y_n^{j_n}.$$

由 (*) 知在 R_0 上 $G(x, y_1, \dots, y_n)$ 是 $f_k(x, y_1, \dots, y_n)$ 的优函数. 我们考虑初值问题

$$(\widehat{E}): \frac{\mathrm{d}y_k}{\mathrm{d}x} = G(x, y_1, \dots, y_n), y_k(0) = 0(k = 1, 2, \dots, n)$$

注意到上述方程组的右端函数与 k 无关, 故只要标量函数 y 的初值问题

$$(\widetilde{E}): \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{M}{\left(1 - \frac{x}{a}\right)\left(1 - \frac{y}{b}\right)^n}, y(0) = 0$$

有解 y = y(x), 则 $y_i = y(x)(i = 1, 2, \dots, n)$ 就是 (\hat{E}) 的解. 容易求得 (\tilde{E}) 的解为

$$y = b - b \sqrt[n+1]{1 + \frac{(n+1)aM}{b} \ln\left(1 - \frac{x}{a}\right)}.$$

可以证明当 $|x| < \rho = a \left(1 - e^{\frac{-b}{(n+1)aM}}\right)$ 时,上述解可以展开成收敛的幂级数,故初值问题 (E) 在 $|x| < \rho$ 上有唯一的解析解.

2. 设初值问题

(E):
$$y'' + p(x)y' + q(x) = 0$$
, $y(x_0) = y_0$, $y'(x_0) = y'_0$,

其中 p(x) 和 q(x) 在区间 $|x-x_0| < a$ 内可以展成 $(x-x_0)$ 的收敛的幂级数,则 (E) 的解析解 y=y(x) 在 $|x-x_0| < a$ 内存在且唯一.

7.2 幂级数解法

解: 令 $y_1 = y, y_2 = y'$, 则初值问题 (E) 等价于

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = y_2 = f_1(x, y_1, y_2), & y_1(x_0) = y_0, \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = -p(x)y_2 - q(x)y_1 = f_2(x, y_1, y_2), & y_2(x_0) = y_0'. \end{cases}$$

91

结合题给条件知 $f_i(x, y_1, y_2)(i = 1, 2)$ 在区域

$$R: |x - x_0| < a, |y_1 - y_0| < \infty, |y_2 - y_0'| < \infty$$

上可以展开成收敛的幂级数, 由柯西定理知初值问题在 $|x-x_0| < \rho$ 上存在唯一的解析解, 其中

$$\rho = \tilde{a} \left(1 - e^{\frac{-b}{3\tilde{a}M}} \right), \tilde{a} < a, b < \infty.$$

由于 $\lim_{b\to\infty} \rho = \tilde{a}$, 又 $\tilde{a} < a$ 是任意的, 故 (E) 的解析解在 $|x-x_0| < a$ 上存在且唯一. \square

3. 叙述并证明解析微分方程的解关于初值和参数的解析性定理.

7.2 幂级数解法

- **1.** 求出下列微分方程在 $x = x_0$ 处展开的两个线性无关的幂级数解, 并写出相应的 递推公式:
 - (1) $y'' xy' y = 0, x_0 = 0$;
 - (2) $y'' xy' y = 0, x_0 = 1$;
 - (3) $(1-x)y'' + y = 0, x_0 = 0.$

解: (1) 设方程有幂级数解

$$y = \sum_{n=0}^{\infty} a_n x^n.$$

则

$$y' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^{n},$$

$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^{n}.$$

将之代入原方程得

$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - (n+1)a_n]x^n = 0.$$

7.2 幂级数解法 92

故递推公式为

$$(n+2)a_{n+2} - a_n = 0 \quad (n = 0, 1, \cdots).$$

故 $a_{2n} = \frac{1}{(2n)!!}a_0$, $a_{2n+1} = \frac{1}{(2n+1)!!}a_1$ $(n \ge 0)$, 从而得方程有幂级数解

$$y = a_0 \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!!} + a_1 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!!}.$$

分别取 $a_0 = 1, a_1 = 0$ 和 $a_0 = 0, a_1 = 1$ 得两个线性无关的幂级数解

$$y_1 = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!!}, \quad y_2 = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!!}.$$

(2) 设方程有幂级数解

$$y = \sum_{n=0}^{\infty} a_n (x-1)^n.$$

则

$$y' = \sum_{n=0}^{\infty} (n+1)a_{n+1}(x-1)^n,$$

$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}(x-1)^n.$$

将之代入原方程得

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)a_{n+2} - (n+1)(a_{n+1} + a_n) \right] (x-1)^n = 0.$$

故递推公式为

$$a_{n+2} = \frac{a_{n+1} + a_n}{n+2}$$
 $(n = 0, 1, \cdots).$

分别取 $a_0 = 1, a_1 = 0$ 和 $a_0 = 0, a_1 = 1$ 可得两个线性无关的解.

(3) 所设幂级数形式与(1)相同,代入原方程可得

$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - (n+1)na_{n+1} + a_n]x^n = 0.$$

故递推公式为

$$a_{n+2} = \frac{(n+1)na_{n+1} - a_n}{(n+2)(n+1)}$$
 $(n = 0, 1, \cdots).$

分别取 $a_0 = 1, a_1 = 0$ 和 $a_0 = 0, a_1 = 1$ 得两个线性无关的幂级数解

$$y_1 = 1 - \frac{1}{2}x^2 - \frac{1}{6}x^3 - \frac{1}{24}x^4 - \frac{1}{60}x^5 - \dots,$$

$$y_2 = x - \frac{1}{6}x^3 - \frac{1}{12}x^4 - \frac{1}{24}x^5 - \dots$$

7.2 幂级数解法 93

2. 对于下列初值问题求出 $y''(x_0), y^{(3)}(x_0)$ 和 $y^{(4)}(x_0)$, 从而写出相应初值问题的解在 x_0 点的泰勒级数的前几项:

(1)
$$y'' + xy' + y = 0$$
; $y(0) = 1, y'(0) = 0$;

(2)
$$y'' + (\sin x)y' + (\cos x)y = 0$$
; $y(0) = 0, y'(0) = 1$.

解: (1)
$$y''(0) = -1$$
, $y^{(3)}(0) = 0$, $y^{(4)}(0) = 3$, $y = 1 - \frac{1}{2!}x^2 + \frac{3}{4!}x^4 + \cdots$;
(2) $y''(0) = 0$, $y^{(3)}(0) = -2$, $y^{(4)}(0) = 0$, $y = x - \frac{2}{3!}x^3 + \cdots$.

3. 求解 Hermite 方程

$$y'' - 2xy' + \lambda y = 0 \quad (-\infty < x < \infty),$$

其中 λ 是常数.

解: 设方程有幂级数解

$$y = \sum_{n=0}^{\infty} a_n x^n.$$

则

$$y' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n,$$

$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^{n}.$$

将之代入原方程得

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)a_{n+2} + (\lambda - 2n)a_n \right] x^n = 0.$$

故递推公式为

$$a_{n+2} = \frac{2n-\lambda}{(n+2)(n+1)} a_n \quad (n=0,1,\cdots).$$

从而

$$a_{2n} = \frac{\prod_{k=0}^{n-1} (4k - \lambda)}{(2n)!} a_0, \quad a_{2n+1} = \frac{\prod_{k=1}^{n} (4k - 2 - \lambda)}{(2n+1)!} a_1 \quad (n \geqslant 1).$$

故方程的解为

$$y = a_0 \left[1 + \sum_{n=1}^{\infty} \frac{\prod_{k=0}^{n-1} (4k - \lambda)}{(2n)!} x^{2n} \right] + a_1 \left[x + \sum_{n=1}^{\infty} \frac{\prod_{k=1}^{n} (4k - 2 - \lambda)}{(2n+1)!} x^{2n+1} \right]. \quad \Box$$

4. 求微分方程

$$y'' + (\sin x)y = 0$$

在 x=0 处展开的两个线性无关的幂级数解.

解: 设方程有幂级数解 $y = \sum_{n=0}^{\infty} a_n x^n$, 将之代入方程得

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}\right) \left(\sum_{n=0}^{\infty} a_n x^n\right) = 0.$$

即

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right) \left(a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots\right) = 0.$$

也即 (下面的式子可以通过观察前几项 $x^n (n \ge 3)$ 的系数归纳得到: $\left(a_2 - \frac{1}{3!}a_0\right)x^3$, $\left(a_3 - \frac{1}{3!}a_1\right)x^4$, $\left(a_4 - \frac{1}{3!}a_2 + \frac{1}{5!}a_0\right)x^5$, $\left(a_5 - \frac{1}{3!}a_3 + \frac{1}{5!}a_1\right)x^6$)

$$2a_2 + (3 \cdot 2a_3 + a_0)x + (4 \cdot 3a_4 + a_1)x^2 + \sum_{n=3}^{\infty} \left[\sum_{\substack{j=0\\j=n-1-2i}}^{\lfloor (n-1)/2 \rfloor} \frac{(-1)^i}{(2i+1)!} a_j + (n+2)(n+1)a_{n+2} \right] x^n = 0.$$

令 x 的同次幂系数为零得

$$a_{2} = 0,$$

$$a_{3} = -\frac{1}{3!}a_{0},$$

$$a_{4} = -\frac{1}{3 \cdot 4}a_{1},$$

$$a_{5} = \frac{1}{5!}a_{0},$$

$$a_{6} = \frac{1}{2 \cdot 3 \cdot 5 \cdot 6}a_{1} + \frac{1}{2 \cdot 3 \cdot 5 \cdot 6}a_{0}, \dots$$

故方程的幂级数解为

$$y = a_0 \left(1 - \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^6}{2 \cdot 3 \cdot 5 \cdot 6} + \cdots \right) + a_1 \left(x - \frac{x^4}{3 \cdot 4} + \frac{x^6}{2 \cdot 3 \cdot 5 \cdot 6} - \cdots \right).$$
分别取 $a_0 = 1, a_1 = 0$ 和 $a_0 = 0, a_1 = 1$ 可得两个线性无关的解.

7.3 勒让德多项式

7.3.1 证明与总结

求证:
$$P_n(1) = 1$$
, $P_n(-1) = (-1)^n$.

证明: 利用积函数求导的 Leibniz 公式得

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

$$= \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x+1)^n (x-1)^n)$$

$$= \frac{1}{2^n n!} \sum_{k=0}^n C_n^k \left(\frac{d^k}{dx^k} (x+1)^n \right) \left(\frac{d^{n-k}}{dx^{n-k}} (x-1)^n \right)$$

$$= \frac{1}{2^n n!} \sum_{k=0}^n C_n^k \left(\frac{n!}{(n-k)!} (x+1)^{n-k} \right) \left(\frac{n!}{k!} (x-1)^k \right)$$

$$= \frac{1}{2^n} \sum_{k=0}^n \left(C_n^k \right)^2 (x+1)^{n-k} (x-1)^k.$$

故 $P_n(1) = 1$, $P_n(-1) = (-1)^n$.

注: 结合本题结论, 我们已经得到 Legendre 多项式的三种表达形式:

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k (2n-2k)!}{k!(n-k)!(n-2k)!} x^{n-2k}$$
$$= \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
$$= \frac{1}{2^n} \sum_{k=0}^n \left(C_n^k\right)^2 (x+1)^{n-k} (x-1)^k.$$

7.3.2 习题

1. 令函数

$$G(x,t) = (1 - 2xt + t^2)^{-1/2}.$$

则 G(x,t) 关于 t 展开的幂级数为

$$G(x,t) = \sum_{n=0}^{\infty} P_n(x)t^n,$$

其中 $P_n(x)$ 是勒让德多项式 (函数 G(x,t) 称为勒让德多项式的 Generating Function).

证明: 首先容易证明一个双重求和关系式

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} A(n,k)t^{n+k} = \sum_{n=0}^{\infty} \sum_{k=0}^{\left[\frac{n}{2}\right]} A(n-k,k)t^{n}.$$
 (*)

令
$$u(x,t)=2xt-t^2$$
,则由幂级数公式 $(1+x)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}\frac{(-1)^n(2n-1)!!}{(2n)!!}x^n$ 知
$$G(x,t)=(1-u)^{-\frac{1}{2}}$$

$$\begin{aligned} & = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} u^n \\ & = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} (2xt-t^2)^n \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{n} C_n^k \frac{(-1)^k (2n-1)!!}{(2n)!!} (2xt)^{n-k} t^{2k} \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^k n! (2n-1)!!}{k! (n-k)! (2n)!!} (2x)^{n-k} t^{n+k} (according to (*)) \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{\frac{n}{2}} \frac{(-1)^k (n-k)! (2n-2k-1)!!}{k! (n-2k)! (2n-2k)!!} 2^{n-2k} x^{n-2k} t^n \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{\frac{n}{2}} \frac{(-1)^k (n-k)! (2n-2k-1)!!}{2^n k! (n-2k)! (2n-2k)!!} 2^{2n-2k} x^{n-2k} t^n \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{\frac{n}{2}} \frac{(-1)^k \left[2^{n-k} (n-k)! (2n-2k-1)!! \right]}{2^n k! (n-2k)! \left[(2n-2k)!! / 2^{n-k} \right]} x^{n-2k} t^n \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{\frac{n}{2}} \frac{(-1)^k (2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k} t^n \\ & = \sum_{n=0}^{\infty} \sum_{k=0}^{\frac{n}{2}} \frac{(-1)^k (2n-2k)!}{2^n k! (n-k)! (n-2k)!} x^{n-2k} t^n \\ & = \sum_{n=0}^{\infty} P_n(x) t^n. \end{aligned}$$

证毕.

2. 利用上题中的 G(x,t) 所满足的恒等式

$$(1 - 2xt + t^2)\frac{\partial G}{\partial t} = (x - t)G,$$

证明下述递推公式:

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0 \quad (n \ge 1).$$

证明: 因为

$$G(x,t) = \sum_{n=0}^{\infty} P_n(x)t^n,$$

所以

$$\frac{\partial G}{\partial t} = \sum_{n=1}^{\infty} n \mathbf{P}_n(x) t^{n-1} = \sum_{n=0}^{\infty} (n+1) \mathbf{P}_{n+1}(x) t^n.$$

97

又 $(1-2xt+t^2)\frac{\partial G}{\partial t}=(x-t)G$, 故

$$\begin{split} \sum_{n=0}^{\infty} (n+1) \mathbf{P}_{n+1}(x) t^n &- 2x \sum_{n=0}^{\infty} (n+1) \mathbf{P}_{n+1}(x) t^{n+1} + \sum_{n=0}^{\infty} (n+1) \mathbf{P}_{n+1}(x) t^{n+2} \\ &= x \sum_{n=0}^{\infty} \mathbf{P}_n(x) t^n - \sum_{n=0}^{\infty} \mathbf{P}_n(x) t^{n+1}. \end{split}$$

即

$$\begin{split} \sum_{n=0}^{\infty} (n+1) \mathbf{P}_{n+1}(x) t^n - 2x \sum_{n=0}^{\infty} n \mathbf{P}_n(x) t^n - x \sum_{n=0}^{\infty} \mathbf{P}_n(x) t^n \\ + \sum_{n=2}^{\infty} (n-1) \mathbf{P}_{n-1}(x) t^n + \sum_{n=1}^{\infty} \mathbf{P}_{n-1}(x) t^n = 0. \end{split}$$

也即

$$\sum_{n=0}^{\infty} (n+1) P_{n+1}(x) t^n - \sum_{n=0}^{\infty} (2n+1) x P_n(x) t^n + \sum_{n=1}^{\infty} n P_{n-1}(x) t^n = 0.$$

故

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0 \quad (n \ge 1).$$

3. 利用刘维尔公式求出勒让德方程的另一个与 $P_n(x)$ 线性无关的解 $Q_n(x)$,并且证明: 当 x < 1 而 $x \to 1$ 时, $|Q_n(x)| \to +\infty$.

证明: 由所学结论知

$$Q_n(x) = P_n(x) \int_{x_0}^x \frac{1}{P_n^2(s)} e^{-\int_{x_0}^s \frac{-2t}{1-t^2} dt} ds = P_n(x) \int_{x_0}^x \frac{1-x_0^2}{P_n^2(s)(1-s^2)} ds.$$

因为 $P_n(1) = 1$, 所以存在 $x_0 \in (0,1)$ 使得当 $x \in [x_0,1]$ 时

$$\frac{1}{2} \leqslant \mathcal{P}_n(x) \leqslant 2,$$

所以

$$Q_n(x) \geqslant \frac{1}{2} \int_{x_0}^x \frac{1 - x_0^2}{4(1 - s^2)} \, \mathrm{d}s = \frac{1 - x_0^2}{16} \left(\ln \frac{1 + x}{1 - x} - \ln \frac{1 + x_0}{1 - x_0} \right) \to +\infty \quad (x \to 1 -).$$

即

$$\lim_{x \to 1_{-}} Q_n(x) = +\infty.$$

7.4 广义幂级数解法

7.4.1 证明与总结

考虑微分方程

$$A(x)y'' + B(x)y' + C(x)y = 0.$$

设 x₀ 为其奇点, 将方程变形为

$$y'' + p(x)y' + q(x)y = 0.$$

若 $(x-x_0)p(x)$ 和 $(x-x_0)^2q(x)$ 在 x_0 附近解析, 则 x_0 是正则奇点, 此时方程有收敛的广义幂级数解

$$y = \sum_{n=0}^{\infty} C_n (x - x_0)^{n+\rho} \quad (C_0 \neq 0),$$

其中指标 ρ 的求解方程为: $\rho(\rho-1) + a_0\rho + b_0 = 0$, 这里 a_0, b_0 分别为下述方程中 P(x) 和 Q(x) 在 $x = x_0$ 处的取值:

$$(x - x_0)^2 y'' + (x - x_0)P(x)y' + Q(x)y = 0.$$

$$\sum_{k=0}^{\infty} (k+\rho)(k+\rho-1)C_k(x-x_0)^k + \sum_{k=0}^{\infty} a_k(x-x_0)^k \sum_{k=0}^{\infty} (k+\rho)C_k(x-x_0)^k$$

$$+ \sum_{k=0}^{\infty} b_k(x-x_0)^k \sum_{k=0}^{\infty} C_k(x-x_0)^k$$

$$= \sum_{k=0}^{\infty} (k+\rho)(k+\rho-1)C_k(x-x_0)^k + \sum_{k=0}^{\infty} \sum_{j=0}^{k} a_j(k-j+\rho)C_{k-j}(x-x_0)^k$$

$$+ \sum_{k=0}^{\infty} \sum_{j=0}^{k} b_j C_{k-j}(x-x_0)^k = 0$$

故

$$(k+\rho)(k+\rho-1)C_k + \sum_{j=0}^k a_j(k-j+\rho)C_{k-j} + \sum_{j=0}^k b_jC_{k-j} = 0 \quad (k=0,1,\cdots)$$

当 k=0 时, 即为 $C_0(\rho(\rho-1)+a_0\rho+b_0)=0$, 当 $k\geqslant 1$ 时, 即为

$$[(k+\rho)(k+\rho-1) + a_0(k+\rho) + b_0] C_k + \sum_{j=1}^k (a_j(k-j+\rho) + b_j) C_{k-j} = 0.$$

记 $f_0(\rho) = \rho(\rho - 1) + a_0\rho + b_0$, $f_j(\rho) = a_j\rho + b_j$, 则上式即为

$$C_k f_0(\rho + k) + \sum_{j=1}^k C_{k-j} f_j(\rho + k - j) = 0 \quad (k \ge 1).$$

7.4.2 习题

1. 试判别 x = -1, 0, 1 是下列微分方程的什么点 (常点, 正则奇点或非正则奇点)?

(1)
$$xy'' + (1-x)y' + xy = 0$$
;

(2)
$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$
;

(3)
$$2x^4(1-x^2)y'' + 2xy' + 3x^2y = 0$$
;

(4)
$$x^2(1-x^2)y'' + 2x^{-1}y' + 4y = 0;$$

(5)
$$y'' + \left(\frac{x}{1+x}\right)^2 y' + 3(1+x)^2 y = 0.$$

解:

- (1) $x = \pm 1$ 为常点, x = 0 为正则奇点;
- (2) $x = \pm 1$ 为正则奇点, x = 0 为常点;
- (3) $x = \pm 1$ 为正则奇点, x = 0 为非正则奇点;
- (4) $x = \pm 1$ 为正则奇点, x = 0 为非正则奇点;

(5)
$$x = 0, x = 1$$
 为常点, $x = -1$ 为非正则奇点.

2. 用广义幂级数求解下列微分方程:

(1)
$$2xy'' + y' + xy = 0$$
;

(2)
$$x^2y'' + xy' + (x^2 - \frac{1}{9})y = 0;$$

(3)
$$2x^2y'' - xy' + (1+x)y = 0$$
;

(4)
$$xy'' + y = 0$$
;

(5)
$$xy'' + y' - y = 0.$$

解: (1) 设广义幂级数解为

$$y = \sum_{k=0}^{\infty} C_k x^{k+\rho}.$$

将之代入方程得

$$\sum_{k=-1}^{\infty} ((k+\rho+1)(2k+2\rho+1)C_{k+1} + C_{k-1}) x^{k+\rho} = 0 \quad (C_{-2} = C_{-1} = 0).$$

指标方程为: $\rho(2\rho - 1) = 0 \Rightarrow \rho = 0, \frac{1}{2}$.

当 $\rho=0$ 时, $(k+1)(2k+1)C_{k+1}+C_{k-1}=0\Rightarrow C_{k+1}=\frac{-C_{k-1}}{(k+1)(2k+1)}(k\geqslant 0)$, 故 $C_{2k+1}=0(k\geqslant 0)$ 且.

$$C_{2k} = \frac{-C_{2k-2}}{2k(4k-1)} = \frac{C_{2k-4}}{2k(4k-1)(2k-2)(2k-5)} = \dots = \frac{(-1)^k C_0}{2^k k! 3 \cdot 7 \cdot \dots \cdot (4k-1)} (k \geqslant 1).$$

此时解为

$$y_1 = C_0 \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^n n! 3 \cdot 7 \cdot \dots \cdot (4n-1)} \right].$$

当 $\rho = \frac{1}{2}$ 时, $(k + \frac{3}{2})(2k + 2)C_{k+1} + C_{k-1} = 0 \Rightarrow C_{k+1} = \frac{-C_{k-1}}{(2k+3)(k+1)}(k \ge 0)$, 故 $C_{2k+1} = 0(k \ge 0)$ 且.

$$C_{2k} = \frac{-C_{2k-2}}{2k(4k+1)} = \frac{C_{2k-4}}{2k(4k+1)(2k-2)(4k-3)} = \dots = \frac{2^k C_0}{2^k k! \dots (4k+1)} (k \ge 1).$$

此时解为

$$y_2 = C_0 x^{\frac{1}{2}} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^n n! \dots (4n+1)} \right].$$

(2) 此方程为贝塞尔方程且对应的 $n=\frac{1}{3}$, 由教材讨论知此方程的解为

$$y_1 = J_{\frac{1}{3}}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+\frac{4}{3})\Gamma(k+1)} \cdot \left(\frac{x}{2}\right)^{2k+\frac{1}{3}},$$

$$y_2 = J_{-\frac{1}{3}}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{\Gamma(k+\frac{2}{3})\Gamma(k+1)} \cdot \left(\frac{x}{2}\right)^{2k-\frac{1}{3}}.$$

(3) 设广义幂级数解为

$$y = \sum_{k=0}^{\infty} C_k x^{k+\rho}.$$

将之代入方程得

$$\sum_{k=0}^{\infty} \left[((k+\rho)(2k+2\rho-3)+1)C_k + C_{k-1} \right] x^{k+\rho} = 0 \quad (C_{-1}=0).$$

指标方程为: $\rho(2\rho - 3) + 1 = 0 \Rightarrow \rho = 1, \frac{1}{2}$.

当
$$\rho = 1$$
 时, $((k+1)(2k-1)+1)C_k + C_{k-1} = 0$, 故

$$C_k = \frac{-C_{k-1}}{k(2k+1)} = \frac{C_{k-2}}{k(2k+1)(k-1)(2k-1)} = \dots = \frac{(-1)^k C_0}{k!(2k+1)!!} (k \ge 1).$$

此时解为

$$y_1 = C_0 x \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!(2n+1)!!} \right].$$

当
$$\rho = \frac{1}{2}$$
 时, $((k+\frac{1}{2})(2k-2)+1)C_k + C_{k-1} = 0$, 故

$$C_k = \frac{-C_{k-1}}{k(2k-1)} = \frac{C_{k-2}}{k(2k-1)(k-1)(2k-3)} = \dots = \frac{(-1)^k C_0}{k!(2k-1)!!} (k \geqslant 1).$$

此时解为

$$y_2 = C_0 x^{\frac{1}{2}} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!(2n-1)!!} \right].$$

(4) 设广义幂级数解为

$$y = \sum_{k=0}^{\infty} C_k x^{k+\rho}.$$

将之代入方程得

$$\sum_{k=-1}^{\infty} ((k+\rho+1)(k+\rho)C_{k+1} + C_k)x^{k+\rho} = 0 \quad (C_{-1} = 0).$$

指标方程为: $\rho(\rho - 1) = 0 \Rightarrow \rho = 0, 1.$

当
$$\rho = 1$$
 时, $(k+1)(k+2)C_{k+1} + C_k = 0 \Rightarrow C_{k+1} = \frac{-C_k}{(k+1)(k+2)}$, 故

$$C_k = \frac{-C_{k-1}}{k(k+1)} = \dots = \frac{(-1)^k C_0}{k!(k+1)!} (k \ge 1).$$

此时解为

$$y = C_0 x \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!(n+1)!} \right].$$

当 $\rho = 0$ 时, $(k+1)kC_{k+1} + C_k = 0$, 令 k = 0 得 $C_0 = 0$, 不符合条件故舍去.

(5) 设广义幂级数解为

$$y = \sum_{k=0}^{\infty} C_k x^{k+\rho}.$$

将之代入方程得

$$\sum_{k=-1}^{\infty} \left[(k+\rho+1)^2 C_{k+1} - C_k \right] x^{k+\rho} = 0.$$

指标方程为: $\rho^2 = 0 \Rightarrow \rho = 0$, 故 $(k+1)^2 C_{k+1} - C_k = 0$, 因此

$$C_k = \frac{C_{k-1}}{k^2} = \dots = \frac{C_0}{(k!)^2} \quad (k \geqslant 1).$$

故方程的解为

$$y = C_0 \left[1 + \sum_{n=1}^{\infty} \frac{x^n}{(n!)^2} \right].$$

3. 设超几何方程

$$x(1-x)y'' + [\gamma - (1+\alpha+\beta)]y' - \alpha\beta y = 0,$$

其中 α, β, γ 是常数.

(1) 证明 x = 0 是一个正则奇点, 相应的指标根为

$$\rho_1 = 0$$
 和 $\rho_2 = 1 - \gamma$;

(2) 证明 x = 1 也是一个正则奇点, 相应的指标根为

$$\rho_1 = 0 \quad \text{fil} \quad \rho_2 = \gamma - \alpha - \beta;$$

(3) 设 $1-\gamma$ 不是整数, 则超几何方程在 x=0 的邻域内有一个幂级数解为

$$y_1 = 1 + \frac{\alpha\beta}{\gamma \cdot 1!}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)2!}x^2 + \cdots$$

(超几何级数). 试问它的收敛半径是什么?

(4) 设 $1-\gamma$ 不是整数,则第二个解是

$$y_{2} = x^{1-\gamma} \left[1 + \frac{(\alpha - \gamma + 1)(\beta - \gamma + 1)}{(2-\gamma)!} x \right]$$
$$\frac{(\alpha - \gamma + 1)(\alpha - \gamma + 2)(\beta - \gamma + 1)(\beta - \gamma + 2)}{(2-\gamma)(3-\gamma)2!} x^{2} + \cdots \right].$$

证明: (1) 因为 $\frac{\gamma - (1 + \alpha + \beta)x}{1 - x}$ 和 $\frac{\alpha \beta x}{x - 1}$ 在 x = 0 的邻域内解析, 所以 x = 0 是正则奇点, 原方程等价于

$$x^{2}y'' + \frac{x[\gamma - (1 + \alpha + \beta)x]}{1 - x}y' - \frac{\alpha\beta x}{1 - x}y = 0.$$

故 $a_0 = \gamma, b_0 = 0$, 故指标方程为: $\rho(\rho - 1) + \gamma \rho = 0 \Rightarrow \rho_1 = 0, \rho_2 = 1 - \gamma$.

(2) 因为 $\frac{\gamma-(1+\alpha+\beta)x}{-x}$ 和 $\frac{\alpha\beta(x-1)}{x}$ 在 x=1 的邻域内解析, 所以 x=1 是正则奇点, 原方程等价于

$$(x-1)^{2}y'' + (x-1)\frac{(1+\alpha+\beta)x - \gamma}{x}y' + \frac{x-1}{x}\alpha\beta y = 0.$$

故 $a_0 = 1 + \alpha + \beta - \gamma$, $b_0 = 0$, 故指标方程为: $\rho(\rho - 1) + (1 + \alpha + \beta - \gamma)\rho = 0 \Rightarrow \rho_1 = 0$, $\rho_2 = \gamma - \alpha - \beta$.

(3) 对于 $\rho_1 = 0$, 设方程的幂级数解为

$$y = \sum_{k=0}^{\infty} C_k x^k.$$

将之代入原方程得

$$\sum_{k=0}^{\infty} \left[(k+1)(k+\gamma)C_{k+1} - (k+\alpha)(k+\beta)C_k \right] x^k = 0.$$

故

$$C_{k+1} = \frac{(k+\alpha)(k+\beta)}{(k+1)(k+\gamma)} C_k \quad (k \geqslant 0).$$

由此得到(3)中所示的一个解

记
$$a_n = \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\beta(\beta+1)\cdots(\beta+n-1)}{\gamma(\gamma+1)\cdots(\gamma+n-1)n!}$$
,则

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(\alpha + n)(\beta + n)}{(\gamma + n)(n+1)} = 1.$$

故级数收敛半径为 1.

(4) 设 $\rho = 1 - \gamma$ 对应的广义幂级数解为

$$y = \sum_{n=0}^{\infty} a_n x^{n-\gamma+1}.$$

则将之代入原方程得

$$\sum_{n=1}^{\infty} \left[(n+1-\gamma)na_n - (\alpha+n-\gamma)(\beta+n-\gamma)a_{n-1} \right] x^{n-\gamma} = 0.$$

故

$$a_n = \frac{(\alpha + n - \gamma)(\beta + n - \gamma)}{(n + 1 - \gamma)n} a_{n-1} \quad (n \geqslant 1).$$

所以

$$a_n = \frac{(\alpha - \gamma + 1) \cdots (\alpha - \gamma + n)(\beta - \gamma + 1) \cdots (\beta - \gamma + n)}{(2 - \gamma) \cdots (n + 1 - \gamma)n!} a_0 \quad (n \ge 1).$$

取 $a_0 = 1$, 则得广义幂级数解

$$y = x^{1-\gamma} \left[1 + \sum_{n=1}^{\infty} \frac{(\alpha - \gamma + 1) \cdots (\alpha - \gamma + n)(\beta - \gamma + 1) \cdots (\beta - \gamma + n)}{(2 - \gamma) \cdots (n + 1 - \gamma)n!} x^n \right]. \quad \Box$$

7.5 贝塞尔函数

1. 试证:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^{-n} \mathbf{J}_n(x) \right] = -x^{-n} \mathbf{J}_{n+1}(x);$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^n \mathbf{J}_n(x) \right] = x^n \mathbf{J}_{n-1}(x).$$

证明: 只证明第二式

$$\frac{d}{dx} \left[x^{-n} J_n(x) \right]
= \frac{d}{dx} \left(x^n \sum_{n=0}^{\infty} \frac{(-1)^k}{\Gamma(n+k+1)\Gamma(k+1)} \left(\frac{x}{2} \right)^{2k+n} \right)
= \sum_{n=0}^{\infty} \frac{(-1)^k}{\Gamma(n+k+1)\Gamma(k+1)} \left(\frac{1}{2} \right)^{2k+n} (2k+2n) x^{2n+2k-1}
= x^n \sum_{n=0}^{\infty} \frac{(-1)^k}{\Gamma(n+k)\Gamma(k+1)} \left(\frac{x}{2} \right)^{2k+n-1}
= x^n J_{n-1}(x).$$

2. 证明半整数阶的贝塞尔函数为

$$\begin{split} \mathbf{J}_{\frac{1}{2}}(x) &= \sqrt{\frac{2}{\pi x}} \sin x, \quad \mathbf{J}_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x, \\ \mathbf{J}_{n+\frac{1}{2}}(x) &= \frac{(-1)^n}{\sqrt{\pi}} (2x)^{n+\frac{1}{2}} \frac{\mathbf{d}^n}{(\mathbf{d}x^2)^n} \frac{\sin x}{x}, \\ \mathbf{J}_{-n-\frac{1}{2}}(x) &= \frac{1}{\sqrt{\pi}} (2x)^{n+\frac{1}{2}} \frac{\mathbf{d}^n}{(\mathbf{d}x^2)^n} \frac{\cos x}{x} \quad (n = 0, 1, 2, \cdots). \end{split}$$

证明:

$$J_{\frac{1}{2}}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma\left(k + \frac{3}{2}\right)} \left(\frac{x}{2}\right)^{2k + \frac{1}{2}}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \left(k + \frac{1}{2}\right) \cdots \frac{1}{2} \sqrt{\pi}} \left(\frac{x}{2}\right)^{2k + \frac{1}{2}}$$

$$= \sqrt{\frac{2}{\pi x}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

$$= \sqrt{\frac{2}{\pi x}} \sin x.$$

105

$$J_{-\frac{1}{2}}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\frac{1}{2})} \left(\frac{x}{2}\right)^{2k-\frac{1}{2}}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k-\frac{1}{2})\cdots\frac{1}{2}\sqrt{\pi}} \left(\frac{x}{2}\right)^{2k-\frac{1}{2}}$$

$$= \sqrt{\frac{2}{\pi x}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

$$= \sqrt{\frac{2}{\pi x}} \cos x.$$

$$J_{n+\frac{1}{2}}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(n+k+\frac{3}{2})} \left(\frac{x}{2}\right)^{n+\frac{1}{2}+2k}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\left(n+k+\frac{1}{2}\right)\left(n+k-\frac{1}{2}\right)\cdots\frac{1}{2}\sqrt{\pi}} \left(\frac{x}{2}\right)^{n+\frac{1}{2}+2k}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k 2^{n+\frac{1}{2}}(n+k)(n+k-1)\cdots(k+1)}{\sqrt{\pi}(2n+2k+1)!} x^{n+\frac{1}{2}+2k}. \tag{*}$$

将 $\frac{\sin x}{x}$ 展成幂级数并且令 $x^2 = t$, 得

$$\frac{\sin x}{x} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} t^k = \sum_{k=-n}^{\infty} \frac{(-1)^{k+n}}{(2n+2k+1)!} t^{n+k}.$$

故

$$\frac{\mathrm{d}^n}{(\mathrm{d}x^2)^n} \frac{\sin x}{x} = \frac{\mathrm{d}}{\mathrm{d}t^n} \left(\sum_{k=-n}^{\infty} \frac{(-1)^{k+n}}{(2n+2k+1)!} t^{n+k} \right)$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^{n+k} (n+k)(n+k-1) \cdots (k+1)}{(2n+2k+1)!} t^k.$$

结合(*)得

$$J_{n+\frac{1}{2}}(x) = \frac{(-1)^n}{\sqrt{\pi}} (2x)^{n+\frac{1}{2}} \frac{d^n}{(dx^2)^n} \frac{\sin x}{x}.$$

最后一式同理可证.

3. 用贝塞尔函数表达微分方程

$$y'' + xy = 0$$

的通解.

解: 令
$$x = \left(\frac{3}{2}u\right)^{\frac{2}{3}}, y = x^{\frac{1}{2}}v,$$
则

$$u = \frac{2}{3}x^{\frac{3}{2}}, v = yx^{-\frac{1}{2}}.$$
 (*)

106

对 x 求导得

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \sqrt{x},$$

$$\frac{\mathrm{d}y}{\mathrm{d}x}x^{-\frac{1}{2}} - \frac{1}{2}x^{-\frac{3}{2}}y = \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} = \sqrt{x}\frac{\mathrm{d}v}{\mathrm{d}x}.$$

上式两端乘以 x 并整理得

$$\sqrt{x}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}}y + x^{\frac{3}{2}}\frac{\mathrm{d}v}{\mathrm{d}u}.$$
 (**)

由(*)(**) 得

$$\sqrt{x}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}v + \frac{3}{2}u\frac{\mathrm{d}v}{\mathrm{d}u}.$$
 (***)

上式对 x 求导得

$$\sqrt{x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \frac{1}{2}x^{-\frac{1}{2}}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}u}\left(\frac{1}{2}v + \frac{3}{2}u\frac{\mathrm{d}v}{\mathrm{d}u}\right)\frac{\mathrm{d}u}{\mathrm{d}x} = \left[\frac{1}{2}\frac{\mathrm{d}v}{\mathrm{d}u} + \frac{3}{2}\left(\frac{\mathrm{d}v}{\mathrm{d}u} + u\frac{\mathrm{d}^2v}{\mathrm{d}u^2}\right)\right]\sqrt{x}.$$

两端乘以x并结合(*)(***)得

$$x^{\frac{3}{2}}\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \frac{1}{2}\left(\frac{3}{2}u\frac{\mathrm{d}v}{\mathrm{d}u} + \frac{1}{2}v\right) = \frac{3}{2}u\left(\frac{3}{2}u\frac{\mathrm{d}^2v}{\mathrm{d}u^2} + 2\frac{\mathrm{d}v}{\mathrm{d}u}\right).$$

故

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{2}{3u} \left(\frac{9}{4} u^2 \frac{\mathrm{d}^2 v}{\mathrm{d}u^2} + \frac{9}{4} u \frac{\mathrm{d}v}{\mathrm{d}u} - \frac{1}{4} v \right).$$

又

$$xy = \left(\frac{3}{2}u\right)^{\frac{2}{3}} \left(\frac{3}{2}u\right)^{\frac{1}{3}} v = \frac{3}{2}uv,$$

故

$$\frac{2}{3u} \left(\frac{9}{4} u^2 \frac{\mathrm{d}^2 v}{\mathrm{d}u^2} + \frac{9}{4} u \frac{\mathrm{d}v}{\mathrm{d}u} - \frac{1}{4} v \right) + \frac{3}{2} u v = 0.$$

即

$$u^2 \frac{\mathrm{d}^2 v}{\mathrm{d}u^2} + u \frac{\mathrm{d}v}{\mathrm{d}u} + \left(u^2 - \frac{1}{9}\right)v = 0.$$

因此

$$v = C_1 J_{\frac{1}{3}}(u) + C_2 J_{-\frac{1}{3}}(u).$$

从而原方程的解为

$$y = \sqrt{x} \left[C_1 \mathbf{J}_{\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) + C_2 \mathbf{J}_{-\frac{1}{3}} \left(\frac{2}{3} x^{\frac{3}{2}} \right) \right].$$

定性理论与分支理论初步

8.2 解的李雅普诺夫稳定性

- 1. 证明: 线性方程零解的渐进稳定性等价于它的全局稳定性.
- **2.** 设 x 和 t 都是标量, 试求出方程

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(t)x$$

的零解为稳定或渐进稳定的条件.

3. 对于极坐标下的方程

$$\dot{\theta} = 1, \quad \dot{\theta} = \begin{cases} r^2 \sin \frac{1}{r}, & \stackrel{\text{def}}{=} r > 0, \\ 0, & \stackrel{\text{def}}{=} r = 0, \end{cases}$$

试作出原点附近的相图, 并研究平衡点 r=0 的稳定性质.

4. 设二阶常系数线性方程

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{x},$$

其中 A 是一个 2×2 的常矩阵. 记

$$\begin{cases} p = -\operatorname{tr}[\boldsymbol{A}], \\ q = \det[\boldsymbol{A}]. \end{cases}$$

再设 $p^2 + q^2 \neq 0$, 试证:

- (1) 当 p > 0 且 q > 0 时, 零解是渐进稳定的;
- (2) 当 p > 0 且 q = 0 或 p = 0 且 q > 0 时, 零解是稳定的, 但不是渐进稳定的;

- (3) 在其他情形下, 零解都是不稳定的.
- 5. 讨论二维的微分方程

$$\dot{x} = y - xf(x, y), \quad \dot{y} = -x - yf(x, y)$$

零解的稳定性, 其中函数 f(x,y) 在 (0,0) 附近是连续可微的.

6. 设 $x \in \mathbb{R}^1$, 函数 g(x) 连续, 且 xg(x) > 0 当 $x \neq 0$. 试证方程

$$\ddot{x} + g(x) = 0$$

的零解是稳定的, 但不是渐进稳定的.

7. 研究二维微分方程

$$\dot{x} = y, \quad \dot{y} = -1 + x^2$$

的两个平衡点的稳定性.

8. 讨论下列微分方程零解的稳定性:

(1)
$$\dot{x} = -y - xy^2$$
, $\dot{y} = x - x^4y$;

(2)
$$\dot{x} = -y^3 - x^5, \, \dot{y} = x^3 - y^5;$$

(3)
$$\dot{x} = -x + 2x(x+y)^2$$
, $\dot{y} = -y^3 + 2y^3(x+y)^2$;

(4)
$$\dot{x} = 2x^2y + y^3$$
, $\dot{y} = -xy^2 = 2x^5$.

参考文献

- [1] 丁同仁 and 李承治. 常微分方程教程. 高等教育出版社, 2 edition, 2004.
- [2] 袁荣. 常微分方程. 高等教育出版社, 2012.