Credit risk

title-page

Jaromir Benes <u>jaromir.benes@gimm.institute</u>
Tomas Motl <u>tomas.motl@gimm.institute</u>

GIMM-NBR Macroprudential Modeling Workshop Kigali, July 2023

Workshop repository:

https://github.com/gimm-institute/july-2023-rwanda-workshop.git

Feedback through credit risk

Credit risk creates several types of feedback linkages in the model:

- Current credit events impair loan performance: allowances, write-offs, losses, capital deterioration
- Expected credit risk gets priced in new lending rates/conditions
- Capital adequacy stress gets priced in new lending rates/conditions
- Unexpected risk (i.e. value at risk between expected risk and a particular percentile) is buffered in regulatory capital
- Macro conditions trigger credit events: nonlinear mapping of current and expected macro conditions into credit events

Summary of credit risk feedback elements

Credit risk feedback element	Module
Credit events → Loan performance	Bank loan performance
Expected risk → Lending conditions	Bank interest rates
Capital adequacy stress → Lending conditions	Bank capital
Macro conditions → Credit events	Credit risk connector
Lending conditions \rightarrow Output and forex	Local macro economy

Credit risk function

- Implicitly based on Basel asymptotic single risk factor approach
- Mapping from a macro conditions index, z_t , (a single composit factor) into a portfolio default rate, q_t

$$q_t=f(z_t)$$

• Sign and location conventions for z_t :

Value	Meaning
$z_t=0$	Macroeconomic and macrofinancial steady state
$z_t > 0$	Better than average times
$z_t < 0$	Worse than average times

Places where the portfolio default rates enter the model

- Actual performance of the existing loan portfolio
- Expected credit risk used in pricing new loans

Key properties of credit risk function

- Nonlinear and asymmetric
- Around normal times, the credit risk function can be safely approximated as a linear function
- Large distress leads to disproportionately larger deterioration in loan performance
- Conversely, exceptionally good times reduce defaults to a much smaller extent
- Lower and upper bounds different from [0, 1]: Autonomous defaults, technical maximum

Example shape

Functional form

• Five-parameter generalized logistic function

$$f(z_t) \equiv {\overline q} + \left({\overline q} - {\overline q}
ight) {\left[rac{1}{1 + \exp{-rac{z - \mu}{\sigma}}}
ight]}^{\exp{
u}}$$

Parameter	Meaning
μ	Location: moves the curve left-right
σ	Scale: makes the curve steeper/flatter
ν	Shape: makes the curve asymmetric
\underline{q}	Lower bound
\overline{q}	Upper-lower bound spread

Macro conditions index

The portfolio segment specific macro conditions index combines

- **current** macro performance: output gap
- borrower **vulnerability**: annualized credit (loans) to GDP ratio

Constructed as a weighted average of (percent/percentage point) deviations from the long-run sustainability trends

$$z_t \,=\, (1-c_1) \left(\log y_t - \log \overline{y}_t
ight) \,-\, c_1 \left(\left[rac{l}{4 \cdot py \cdot fwy}
ight]_t - \left[rac{l}{4 \cdot py \cdot y}
ight]_t^{\mathrm{tnd}}
ight)$$