Universidad de Guadalajara

Seminario de problemas de programación de sistemas reconfigurables

Contador del 0 al 9 con BCD (8, 4, -2, -1)

Nombre:

Muñoz Nuñez Ian Emmanuel

Sección: D01

Código: 216464457

Maestra:

María Patricia Ventura Nuñez

Ingeniería Robótica

1. Objetivo

Solucionar problemas de diseño utilizando las herramientas aprendidas en programación de sistemas reconfigurables.

Simular circuitos digitales en programas de diseño como *Proteus* e implementarlos físicamente.

Diseño e implementación de un contador asíncrono del 0 al 9 utilizando F-F JK con código BCD (8, 4, -2, -1,).

2. Material

- Protoboard.
- Fuente VCC (5V).
- Resistencias de 220Ω y $2k\Omega$.
- Dip-switch de 4 bits.
- 4 leds.
- 4 F-F JK 4027.
- GAL22v10D.

3. Marco teórico

3.1. Código BCD (8, 4, -2, -1)

	8	4	-2	-1	
0	0	0	0	0	
1	0	1	1	1	
3	0	1	1	0	
1	0	1	0	1	
4	0	1	0	0	
5	1	0	1	1	
6	1	0	1	0	
7	1	0	0	1	
8	1	0	0	0	
9	1	1	1	1	

 Tabla 1: Tabla del código BCD 8 4 -2 -1

3.2. Tabla de verdad

	QB	*	*	*	Q^t			Q^{t+1}			В		С			
	QA	QB	QC	QD	QA	QB	QC	QD	QA	QB	QC	QD	JB	KB	JC	KC
0	0	0	0	0	0	0	0	0	0	1	1	1	1	Χ	1	Χ
1	0	1	1	1	0	0	0	1	Х	Χ	Χ	Χ	Х	Χ	Х	Χ
2	0	1	1	0	0	0	1	0	Х	Χ	Χ	Χ	Х	Χ	Х	Χ
3	0	1	0	1	0	0	1	1	Х	Χ	Χ	Χ	Х	Χ	Х	Χ
4	0	1	0	0	0	1	0	0	1	0	1	1	Х	1	1	Χ
5	1	0	1	1	0	1	0	1	0	1	0	0	Х	0	0	Χ
6	1	0	1	0	0	1	1	0	0	1	0	1	Х	0	Х	1
7	1	0	0	1	0	1	1	1	0	1	1	0	Х	0	Х	0
8	1	0	0	0	1	0	0	0	1	1	1	1	1	Χ	1	Χ
9	1	1	1	1	1	0	0	1	1	0	0	0	0	Χ	0	Χ
10					1	0	1	0	1	0	0	1	0	Χ	Х	1
11					1	0	1	1	1	0	1	0	0	Χ	Х	0
12					1	1	0	0	Х	Χ	Χ	Χ	Х	Χ	Х	Χ
13					1	1	0	1	Х	Χ	Х	Х	Х	Χ	Х	Χ
14					1	1	1	0	Х	Χ	Χ	Χ	Х	Χ	Х	Χ
15					1	1	1	1	0	0	0	0	Х	1	Х	1

Tabla 2: Tabla de verdad para el circuito

3.3. Ecuaciones logicas

 $\operatorname{Figura} 1$: Diagrama de $\operatorname{\it Karnaugh}$ para obtener $\operatorname{\it JB}$

 $JB = \overline{\mathbf{QC}} \, \overline{\mathbf{QD}}$

Figura 2: Diagrama de Karnaugh para obtener KB

$$KB = \overline{\mathbf{QC}}\,\overline{\mathbf{QD}} + \mathbf{QA}$$

Figura 3: Diagrama de Karnaugh para obtener JC

 $JC = \overline{\mathbf{QD}}$

Figura 4: Diagrama de Karnaugh para obtener KC

$$KC = \mathbf{QA} \, \mathbf{QB} + \overline{\mathbf{QD}}$$

3.4. Código

Listing 1: Código desarrollado en WinCupl

```
1 Name
             proy9;
 2 PartNo
 3 Date
 4 Revision 01;
 5 Designer ian ;
 6 Company
 7
 8 Location ;
 9 Device
             g22v10 ;
10
11 /* ENTRADAS */
12 PIN 2=QA;
13 PIN 3=QB;
14 PIN 4=QC;
15 PIN 5=QD;
16
17 /* SALIDAS */
18 PIN 23=JB;
19 PIN 22=KB;
20 PIN 21=JC;
21 PIN 20=KC;
22
23 \text{ JB} = !QC \& !QD;
24 \text{ KB} = (!QC \& !QD) # QA;
25 \text{ JC} = !QD;
26 KC = (QA & QB) # !QD;
```

4. Procedimiento

Primero se hizo la representación de los numeros en código *BCD* (8, 4, -2, -1). Después se observó la forma de controlar los estados de forma asíncrona y se hizo la tabla de verdad para el circuito.

Con la tabla de verdad se obtuvieron las ecuaciones lógicas para realizar las conexiones del circuito y para programar la *GALL22v10*.

Los materiales utilizados son: 1 dip-switch de 4 bits, 4 resistencias de 220Ω y una de $2k\Omega$, 4 leds, 2 *Flip-Flop's 4027*, una *GAL22v10* y un generador de pulsos de reloj.

5. Circuito a implementar

5.1. Simulación

En la siguiente página se muestra el diseño del circuito en simulación.

Proyecto 9: Contador asincrono del 0 al 9 utilizando F-F JK con codigo BCD(8, 4, -2, -1) Maestra: Maria Patricia Ventura Nuñez Materia: Seminario de problemas de programacion de sistemas reconfigurables

4027

Alumno: Muñoz Nuñez Ian Emmanuel

Codigo: 216464457

Seccion: D01

4027

5.2. Protoboard

Figura 5: Circuito en protoboard

6. Conclusión

Fue interesante aprender a controlar las *Flip-Flop's* para usarlas como mejor nos parezca, al principio es difícil entender el funcionamiento y como es que se manejan las F-F's de manera asíncrona, pero al final el resultado es muy impresionante y reconfortante.

8