1: The $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is called a diagonal matrix if $a_{ij} = 0$ when $i \neq j$. Show that the product of two $n \times n$ diagonal matrices is again a diagonal matrix. Give a simple rule for determining this product.

2: Let A be 2×2 matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that if $ad - bc \neq 0$ then $\mathbf{A}^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}$.

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}.$$

4: Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

(a)
$$f(x) = 2x^2 + x^4 \log x$$

(b)
$$f(x) = 3x^4 + (\log x)^6$$

(c)
$$f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$$

(d)
$$f(x) = (x^3 + 5\log x)/(x^5 + 1)$$

5: Show that if a, b, c, and d are integers, where $a \neq 0$, such that a|c and b|d, then ab|cd.

6: What are the quotient and the remainder when

- (a) 45 is divided by 8?
- **(b)** 777 is divided by 21?
- **(c)** -124 is divided by 19?
- (d) -1 is divided by 23?
- (e) -2001 is divided by 87?
- **(f)** 0 is divided by 17?
- **(g)** 1,234,567 is divided by 1001?
- **(h)** -100 is divided by 101?

7: Suppose that a and b are integers, $a\equiv 11(\mod 19)$ and $b\equiv 3(\mod 19)$. Find the integer c with $0\leq c\leq 18$ such that

- (a) $c \equiv 13a \pmod{19}$
- **(b)** $c \equiv 8b \pmod{19}$
- (c) $c \equiv a b \pmod{19}$.
- (d) $c \equiv 7a + 3b \pmod{19}$.
- (e) $c \equiv 2a^2 + 3b^2 \pmod{19}$.
- (f) $c \equiv a^3 + 4b^3 \pmod{19}$.

8: Find the prime factorization of each of these integers.

- **(a)** 39
- **(b)** 81
- **(c)** 100
- **(d)** 143
- **(e)** 289

9: What are the greatest common divisors of these pairs of integers.

(a)
$$2^3 \cdot 3^3 \cdot 5^5$$
, $2^5 \cdot 3^3 \cdot 5^2$

(b)
$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13, \ 2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}$$

(d)
$$2^2 \cdot 7$$
, $5^3 \cdot 13$

(f)
$$2 \cdot 3 \cdot 5 \cdot 7$$
, $2 \cdot 3 \cdot 5 \cdot 7$