# Advanced Mathematics for Engineers -Laboratory Problems

Eric Saier (eric.saier@hs-weingarten.de) Mat-Nr. 28224 January 27, 2017

### 1 Linear Algebra

First, mylib to print mat

```
def getNumberString(pNumber, strLength):
          nStr = str(round(pNumber, 2));
           if pNumber >= 0: nStr = "" + nStr;
          spacesBefore = strLength - len(nStr);
           if spacesBefore > 0:
                   for i in range(spacesBefore): nStr = "_" + nStr;
           return nStr;
11
13
  def printVector(pVector):
      for element in pVector:
15
                   print(getNumberString(element, 7));
17
  #
  def printMatrix(pMatrix):
           for row in pMatrix:
                   rowStr = "";
21
                   for element in row:
                           rowStr += getNumberString(element, 7) + """
23
                   print(rowStr);
25
```

Listing 1: mylib script to properly print vectors and matrices

#### 1.1 Problem 1.1

**Problem 1.1** Implement a tool that reads a matrix and right hand side vector of a system of linear equations from a file and does the following:

- a) Write programs to compute the relevant information about the matrix using built-in functions: determinant, inverse, rank and the eigenvalues and eigenvectors, whether it is symmetric and positive definite.
- b) Solve the linear system using a built in function (do not use the inverse matrix).
- c) Program the Gaussian Elimination method described in section 5.2.1 for the matrix and print the resultant matrix (built-in function not to be used).

If any of the above does not exist/cannot be calculated, print the appropriate reason.

prog to read from txt txt must have following form:

first matrix

elements seperated by single space row ends with semicolon hashtag sign to indicate that matrix is over, vector comes next vector as row, read same as matrix row.

following script to read txt

```
def getVectorFromLine(line):
           numbers = [];
           numberString = "";
           for c in line:
                    if c = ', or c = '; ':
                            numbers.append(float(numberString));
6
                            {\tt numberString} \, = \, "" \, ;
                    else:
                            numberString += c;
10
           return numbers;
12
  #
14
  myMatrix = [];
myVector = [];
  textFile = open('matrixTextFile.txt', 'r');
  readMatrix = True;
20
  for line in textFile:
22
           if len(line) > 0:
                    if line[0] == '#':
24
                            readMatrix = False;
                    else:
26
                            vectorRead = getVectorFromLine(line);
28
                            if readMatrix: myMatrix.append(vectorRead);
                            else: myVector = vectorRead;
30
  print("Matrix_from_file:");
34 mylib.printMatrix(myMatrix);
general and print ("Vector_from_file:");
```

```
mylib.printVector(myVector);
```

Listing 2: todo

afterwards, you have mat and vec from txt as vars myMatrix and myVector as python arrays, where the vector is a one-dim array and the matrix a 2 dim array, with first dim rows and second dim the elements.

### 1.1.1 a)

```
for in-built functions numpy (np).

np = numpy

easy / self-explanatory
```

```
matrixRows = len(myMatrix);
  matrixCols = len(myMatrix[0]);
  vectorRows = len(myVector);
  isMatrixSquare = matrixRows == matrixCols;
  notSquareStr = "matrix_is_not_square";
  matrixArr = np.array(myMatrix);
  vectorArr = np.array(myVector);
print("determinant:");
13 if isMatrixSquare:
          detA = np.linalg.det(matrixArr);
          print(detA);
  else:
           print(notSquareStr);
17
print("inverse:");
  if isMatrixSquare:
          invA = np.linalg.inv(matrixArr);
          mylib.printMatrix(invA);
23
  else:
           print(notSquareStr);
25
  print("rank:");
27
29 rankA = np.linalg.matrix_rank(matrixArr);
  print(rankA);
31
  eigenValues = [];
33 eigenVectors = [];
  if isMatrixSquare:
35
          eigA = np.linalg.eig(matrixArr);
```

```
for eigi in eigA:
37
                   for el in eigi:
39
                            if isinstance(el, np.ndarray):
                                     eigenVectors.append(el);
                            else:
41
                                     eigenValues.append(el);
43
           print("eigenvalues:");
45
           for eigenValue in eigenValues:
47
                   print (eigenValue.real);
49
           print("eigenvectors:");
51
           for eigenVector in eigenVectors:
                   print (eigenVector.real);
53
  else:
55
           print("eigenvalues_and_eigenvectors");
           print(notSquareStr);
57
  print("is_symmetric:");
59
  if isMatrixSquare:
           isSym = (matrixArr.transpose() == matrixArr).all();
           print(isSym);
63
  else:
           print(notSquareStr);
65
  print("is_positive_definite:");
67
  if isMatrixSquare:
69
           isPosDef = np.all(np.linalg.eigvals(matrixArr));
           print(isPosDef);
71
  else:
           print(notSquareStr);
73
```

Listing 3: todo

#### results:

```
determinant:
 169.2
  inverse:
    -0.13
              0.43
                      -0.53
                                 0.15
     0.11
             -0.17
                       0.71
                                -0.28
6
     0.29
             -0.24
                        0.3
                                 0.03
    -0.11
              0.01
                                  0.2
                      -0.26
```

```
10 rank:
  4
12
   eigenvalues:
  8.25668694865
  5.18909337619
  -0.222890162424
   -0.222890162424
18
   eigenvectors:
  [-0.31568286 \quad 0.44289131 \quad 0.61685718 \quad 0.61685718]
                          3.70103040e-01 -4.34768294e-01
   [-7.86684467e-05]
                                                                 -4.34768294e
       -01
  [ \ 0.38980754 \ -0.19285648 \ -0.40093074 \ -0.40093074]
   [\begin{array}{cccc} 0.86509792 & -0.79352215 & 0.10527324 & 0.10527324 \end{array}]
   is symmetric:
  False
26
28 is positive definite:
  True
```

Listing 4: Result of 1.1 a)

matrix is square (evtl noch andere conditions) therefore all things could be done.

### 1.1.2 b)

to solve the lin system, check whether matrix cols and vector rows are equal. afterwards, use built-in (numpy again).

Listing 5: todo

#### XS

```
 \begin{array}{l} x1 = -0.33829787234 \\ x2 = 1.88156028369 \\ x3 = 1.88794326241 \\ x4 = -1.13439716312 \end{array}
```

Listing 6: Result of 1.1 b)

### 1.1.3 c)

Υ

```
def gaussElemMethod(matrix, vector):
            n = len(matrix[0]);
            for k in range(n-1):
                     \max L = -1;
                     for l in range(k, n):
                              maxL = max(maxL, abs(matrix[l][k]));
                     mFound = -1;
10
                     for m in range(n):
12
                               if abs(matrix[m][k]) == maxL:
                                        mFound = m;
14
                      if \ mFound > 0 \ and \ matrix [mFound][k] == 0 \colon \\
16
                               print("singular");
                               continue;
18
                     for i in range (k + 1, n):
20
                               qik \; = \; matrix \, [\, i \, ] \, [\, k\, ] \; \; / \; \; matrix \, [\, k\, ] \, [\, k\, ] \, ;
22
                               for j in range (0, n):
                                        matrix[i][j] = matrix[i][j] - qik *
24
                                              matrix [k][j];
                               vector[i] = vector[i] - qik * vector[k];
26
28
30 gaussElemMethod(myMatrix, myVector);
32 print("matrix_after_elimination:");
  mylib.printMatrix(myMatrix);
34
   print("vector_after_elimination:");
36 mylib.printVector(myVector);
```

Listing 7: todo

Ζ

```
matrix after elimination:
       1.0
               -2.0
                         3.0
                                 -4.0
       0.0
               11.2
                       -11.2
                                 17.4
                         3.0
       0.0
                0.0
                                 -0.43
       0.0
                0.0
                         0.0
                                 5.04
  vector after elimination:
       6.1
    -19.81
      6.15
     -5.71
11
```

Listing 8: Result of 1.1 c)

### 1.2 Problem 1.2

#### Problem 1.2

a) Write a program that multiplies two arbitrary matrices. Don't forget to check the dimensions of the two matrices before multiplying. The formula is

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Do not use built-in functions for matrix manipulation.

b) Write a program that computes the transpose of a matrix.

prog to read from txt

### 1.2.1 a)

Υ

```
matrix1 = [[1.8, -2], [3, -4.1], [3, 2]];
matrix2 = [[1, -2, -3, 4], [-5, 4, 1, 1]];

print("matrix_A:");
mylib.printMatrix(matrix1);

print("matrix_B:");
mylib.printMatrix(matrix2);

print("A_x_B:");
```

```
matrix1Rows = len(matrix1);
  matrix2Rows = len(matrix2);
15
  matrix1Cols = len(matrix1[0]);
  matrix2Cols = len(matrix2[0]);
17
19 resultMatrix = [];
  if matrix1Cols != matrix2Rows:
           print("number_of_matrix_A_columns_and_matrix_B_rows_aren't_
               equal");
23
  for matrix1Row in range(matrix1Rows):
25
           {\tt resultVector} \, = \, [\,]\,;
27
           for matrix2Col in range(matrix2Cols):
                   mySum = 0;
29
                    for k in range(matrix1Cols):
31
                            mySum = mySum + matrix1[matrix1Row][k] *
                                matrix2[k][matrix2Col];
33
                    \verb|resultVector.append(mySum)|;
35
           resultMatrix.append(resultVector);
37
  mylib.printMatrix(resultMatrix);
```

Listing 9: todo

Χ

```
matrix A:
       1.8
               -2.0
       3.0
                -4.1
       3.0
                 2.0
  matrix B:
       1.0
                -2.0
                         -3.0
                                    4.0
      -5.0
                 4.0
                          1.0
                                    1.0
  A x B:
      11.8
              -11.6
                         -7.4
                                    5.2
11
              -22.4
                        -13.1
                                    7.9
      23.5
      -7.0
                 2.0
                         -7.0
                                  14.0
```

Listing 10: Result of 1.2 a)

### 1.2.2 b)

```
Y
  matrix3 = [[1, 2.4], [3.3, -4], [-5, -6.1]];
  print("matrix_C:");
  mylib.printMatrix(matrix3);
7 matrix3Rows = len(matrix3);
  matrix3Cols = len(matrix3[0]);
  transposedMatrix = [];
11
  for j in range(matrix3Cols):
           transposedVector = [];
13
           for i in range(matrix3Rows):
15
                   transposedVector.append(matrix3[i][j]);
17
           transposed Matrix\,.\,append\,(\,transposed\,Vector\,)\;;
19
  print("C_transposed:");
21 mylib.printMatrix(transposedMatrix);
```

Listing 11: todo

```
X
```

```
matrix C:

1.0 2.4
3.3 -4.0
4 -5.0 -6.1

C transposed:
1.0 3.3 -5.0
8 2.4 -4.0 -6.1
```

Listing 12: Result of 1.2 b)

### 2 Calculus - Selected Topics

### 2.1 Problem 2.3

**Problem 2.3** Given the function  $f: \mathbb{N}_0 \to \mathbb{N}$  with

$$f(x) = x! \equiv \begin{cases} x \cdot (x-1) \cdot (x-2) \cdot \dots \cdot 2 \cdot 1 & \text{if } x \ge 1\\ 1 & \text{if } x = 0. \end{cases}$$

Give a recursive definition of the function.

- a) Implement an iterative and a recursive method for calculating f(x).
- b) The upper function can be generalized, such that  $\Gamma : \mathbb{C} \to \mathbb{R}$  with

$$\Gamma(z) \equiv \int_{0}^{1} \left[ \ln \left( \frac{1}{t} \right) \right]^{z-1} dt.$$

Implement this function using a built-in function for the definite integral and show empirically that  $\Gamma(n)=(n-1)!$ .

c) Write a recursive program that calculates the Fibonacci function

$$\mathrm{Fib}(\mathbf{n}) = \left\{ \begin{array}{cc} \mathrm{Fib}(n-1) + \mathrm{Fib}(n-2) & \mathrm{if} \ n > 1 \\ 1 & \mathrm{if} \ n = 0, 1 \end{array} \right.$$

and test it for  $n = 1 \dots 20$ . Report about your results!

d) Plot the computing time of your program as a function of n.

### 2.1.1 a)

Χ

```
n = int(input("n_=_"));
factorialIterative = 1;

for i in range(n):
    factorialIterative *= (i + 1);

print("iterative_result:_" + str(factorialIterative));

def factorialFunc(x):
    if x <= 0: return 1;

return x * factorialFunc(x - 1);

factorialRecursive = factorialFunc(n);

print("recursive_result:_" + str(factorialRecursive));</pre>
```

Listing 13: todo

results:

```
ı R
```

Listing 14: Result of 1.1 a)

X

### 2.1.2 b)

X

Listing 15: todo

results:

```
R
```

Listing 16: Result of 1.1 a)

X

### 2.1.3 c)

X

```
def fibonacciFunc(x):
    if x <= 1: return 1;
    return fibonacciFunc(x - 1) + fibonacciFunc(x - 2);

results = [];</pre>
```

```
for i in range(20):

fib = fibonacciFunc(i);

print("fib(" + str(i + 1) + ")===" + str(fib));

results.append(fib);
```

Listing 17: todo

results:

```
R
```

Listing 18: Result of 1.1 a)

Χ

### 2.1.4 d)

Χ

Listing 19: todo

results:

### 2.2 Problem 2.4

Χ

Listing 20: todo

Y



Figure 1: todo

### Problem 2.4

- a) Write a short program to show that the series  $\sum_{k=0}^{\infty} \frac{1}{k!}$  converges to the Euler number e and plot the graph.
- b) Calculate the Taylor polynomials of the function sin(x) at  $x_0=0$  from degree 0 to 6. Plot all the polynomials and the sin(x) in the interval  $[-2\pi, 2\pi]$  in one diagram.
- c) Implement a program to calculate  $e^x$  with a precision of 10 digits. Utilize the Maclaurin series of the function (Taylor expansion in  $x_0=0$ ). Use the Lagrangian form of the remainder term to find a proper polynomial degree for the approximation. Test your program for different values of x.

### 2.2.1 a)

X

С

Listing 21: todo

results:

ı R

Listing 22: Result of 1.1 a)

X

| 2.2.2 b) |                              |
|----------|------------------------------|
| X        |                              |
|          |                              |
| С        |                              |
|          | Listing 23: todo             |
| results: |                              |
| ı R      |                              |
|          | Listing 24: Result of 1.1 a) |
| X        |                              |
|          |                              |
| 2.2.3 c) |                              |
| X        |                              |
|          |                              |
|          | Listing 25: todo             |
| results: |                              |
| ı R      |                              |
|          | Listing 26: Result of 1.1 a) |
| X        | ,                            |
| Λ        |                              |
| 2.2.4 d) |                              |
| X        |                              |
| 1        |                              |
| С        |                              |
|          | Listing 27: todo             |
| results: |                              |
| ı R      |                              |
|          | Listing 28: Result of 1.1 a) |

15

X

**Problem 2.5** In a bucket with capacity v there is a poisonous liquid with volume  $\alpha v$ . The bucket has to be cleaned by repeatedly diluting the liquid with a fixed amount  $(\beta - \alpha)v$  $(0 < \beta \le 1)$  of water and then emptying the bucket. After emptying, the bucket always keeps  $\alpha v$  of its liquid. Cleaning stops when the concentration  $c_n$  of the poison after n iterations is reduced from 1 to  $c_n < \epsilon > 0$ , where  $\alpha < 1$ . a) Assume  $\alpha = 0.01$ ,  $\beta = 1$  and  $\epsilon = 10^{-9}$ . Compute the number of cleaning-iterations.

- b) Compute the total volume of water required for cleaning.
- c) Can the total volume be reduced by reducing  $\beta$ ? If so, determine the optimal  $\beta$ .
- d) Give a formula for the time required for cleaning the bucket.
- e) How can the time for cleaning the bucket be minimized?

### Problem 2.5

| 2.5 1 TODIEII 2.5            |
|------------------------------|
| X                            |
|                              |
| С                            |
| Listing 29: todo             |
| Y                            |
|                              |
| 2.3.1 a)                     |
| X                            |
|                              |
| С                            |
| Listing 30: todo             |
| results:                     |
| R                            |
| Listing 31: Result of 1.1 a) |
| X                            |
|                              |
| 2.3.2 b)                     |
| X                            |
|                              |
| С                            |
| Listing 32: todo             |
| results:                     |
| R                            |
| Listing 22: Popult of 1.1 a) |

Listing 33: Result of 1.1 a)

Χ

|   | 2.3.3 c        | )  |         |             |            |   |  |
|---|----------------|----|---------|-------------|------------|---|--|
|   | X              |    |         |             |            |   |  |
| 1 | С              |    |         |             |            |   |  |
|   |                |    | Li      | sting 34: 1 | todo       |   |  |
|   | results:       |    |         |             |            |   |  |
| 1 | R              |    |         |             |            |   |  |
|   |                |    | Listing | 35: Result  | t of 1.1 a | ) |  |
|   | X              |    |         |             |            |   |  |
|   |                |    |         |             |            |   |  |
|   | 2.3.4 d        | )  |         |             |            |   |  |
|   | <b>2.3.4</b> d | )  |         |             |            |   |  |
| 1 | X              | .) |         |             |            |   |  |
| 1 | X              |    | Li      | sting 36: 1 | todo       |   |  |
| 1 | X              |    | Li      | sting 36: 1 | odo        |   |  |
|   | X<br>C         |    | Li      | sting 36: 1 | odo        |   |  |
|   | X C results:   |    |         | sting 36: t |            | ) |  |

## 3 Statistics and Probability

### 3.1 Problem 3.6

### Problem 3.6

- a) Implement the mentioned linear congruential generator of the form  $x_n = (ax_{n-1} + b) \mod m$  with a = 7141, b = 54773 and m = 259200 in a programming language of your choice.
- b) Test this generator on symmetry and periodicity.
- c) Repeat the test after applying the Neumann Filter.
- d) Experiment with different parameters a, b, m. Will the quality of the bits be better?

| X        |                              |
|----------|------------------------------|
| C        |                              |
|          | Listing 38: todo             |
| Y        |                              |
| 3.1.1 a) |                              |
| X        |                              |
| C        |                              |
|          | Listing 39: todo             |
| results: |                              |
| R        |                              |
| ]        | Listing 40: Result of 1.1 a) |
| X        |                              |
| 3.1.2 b) |                              |
| X        |                              |
| C        |                              |
|          | Listing 41: todo             |
| results: |                              |
| R        |                              |
|          | Listing 42: Result of 1.1 a) |

X

```
3.1.3 c)

X

C

Listing 43: todo

results:

R

Listing 44: Result of 1.1 a)

X

3.1.4 d)

X

C

Listing 45: todo

results:

R
```

Listing 46: Result of 1.1 a)

X

### 3.2 Problem 3.7

**Problem 3.7** Download the file from <sup>1</sup>. It contains greyscale numbers from the Google Streetview house number dataset and a Octave program skeleton. Complete the following tasks in the program skeleton:

- a) Run PCA and visualize the first 100 eigenvectors. (PCA is provided in pca.m, the visualisation is provided in displayData.m, each function provides help via help commandname)
- b) Project the data down to 100 dimensions.
- c) Recover the data.
- d) Experiment with different (smaller) number of principal components.
- e) Compare the effects you observe on the restored data with effects you know from JPEG images. Can you observe similarities and explain them?

The program shows you the eigenvectors as images and the difference between the original numbers and the numbers using just 100 eigenvectors. Now you can try different numbers of eigenvectors and see how PCA works on images.

Χ

```
Listing 47: todo

Y

3.2.1 a)

X
```

Listing 48: todo

results:

С



Figure 2: todo

X
3.2.2 b)
X
C

Listing 49: todo

results:



Figure 3: todo

X

3.2.3 c)

X

C C

Listing 50: todo

results:

### Original numbers



### Recovered numbers



Figure 4: todo

 $\mathbf{X}$ 

3.2.4 d)

Χ

C

Listing 51: todo

results:

Χ

### **3.2.5** e)

Like the JPEG compression detail gets lost, especially between two areas where the color contrast is high.

### Original numbers

### Recovered numbers



Figure 5: todo - 50 principal components

### Original numbers



### Recovered numbers



Figure 6: todo - 10 principal components

### 4 Numerical Mathematics Fundamendals

### 4.1 Problem 4.8

#### Problem 4.8 Roots of Nonlinear Equations

Given the fixed-point equation  $\frac{1}{2}e^{-x^2} = x$ 

- a) Plot the left- and right-hand side of the equation in one diagram to approximate the solution graphically.
- b) Analyse if fixed-point iteration is applicable and find a contraction interval!
- c) Determine the Lipschitz constant L!
- d) How many iteration steps are necessary to reach a precision of 12 decimal digits starting from x<sub>0</sub> = 0 (a priori estimation)?
- e) Implement fixed-point iteration, interval bisection and newton's method and apply the programs for solving the equation! Which method is the fastest, slowest (give reasons)? Does the expected speed of convergence meet the real speed?
- f) How many steps does fixed-point iteration take to a precision of 12 digits on the above equation? Why is the number less than estimated?

First the function needs to be defined. The're are two ways to find a root, setting function equal to 0 and setting the function equal to x. The function which is to be set equal to 0 is going to be called f(x), while the function to be set equal to x is going to be called fFixed(x), with their derived functions fDerived(x) and fFixedDerived respectively:

Listing 52: Different functions for the equation

These functions will be used in the code of the following subtasks, where method to find a root determines which of them is going to be used.

#### 4.1.1 a)

With the following code both sides of the equation will be plotted:

```
xses = [];
fLeft = [];
fRight = [];
for i in range(200):
```

```
x = (i / 100.0) - 1;

xses.append(x);

fLeft.append(fFixed(x));
 fRight.append(x);

plt.plot(xses, fLeft);
plt.plot(xses, fRight);
plt.xlabel('x');
plt.ylabel('y');
plt.show();
```

Listing 53: Problem 4.8 a)

The resulting plot of both sides of the equation looks like the following:



Figure 7: Graphical solution for the root

The approximate solution can be found graphically by looking for an intersection of both functions. The functions intersect close to the point  $(0.45 \mid 0.45)$ , therefore the root of the function is approximately 0.45.

### 4.1.2 b)

To use the fixed point interation method for finding a root of a function within an interval  $[a, b] \rightarrow [a, b]$ , the function has to be a contraction within this interval. A

function is a contraction if the Lipschitz constant L is greater than 0 and smaller than 1. Within the interval  $[0,1] \rightarrow [0,1]$ , where we graphically estimated the root in the sub task a), the Lipschitz constant is about 0.4289 (see sub task c)), therefore the condition holds and fixed point interation is applicable.

#### 4.1.3 c)

The Lipschitz constant is the highest increase or decrease of a function, or in other words the maximum of the absolute value of the minimum and maximum of the first derivative of said function. The second derivative of the function has two roots, at  $x_1 = -0.70711$  and  $x_2 = 0.70711$ . These are the maxima and minima of the first derivative, and therefore the highest increase of the function and the Lipschitz constant L. Since only  $x_2$  is in the contraction interval, the Lipschitz constant can simply be calculated by plugging it into the function f.

```
# -0.70711 and 0.70711 are roots of the 2nd derivative of f lipschitz = abs(fFixedDerived(0.70711));

4 print("L===" + str(lipschitz));
```

Listing 54: Problem 4.8 c)

The resulting L is:

```
L = 0.428881942471
```

Listing 55: Result of 4.8 c)

### 4.1.4 d)

With the Lipschitz constant from c), the maximum number of iterations required to find a root with a given precision by using the fixed point iteration method can be calculated with the a priori estimation:

Listing 56: Problem 4.8 d)

The result of this estimation is:

```
33 iteration steps required
```

Listing 57: Result of 4.8 d)

Therefore, to get a precision of 12 decimal digits for our function f a maximum of 33 iterations are needed.

#### 4.1.5 e)

First we need a function to see whether our calculated value is precise enough:

```
def isPreciseEnough(val, goal, precision): f = pow(10, precision); return math.floor(val * f) == math.floor(goal * f);
```

Listing 58: Determine if an approximation is precise enough

The implementation of fixed point iteration could be realized in the following way:

Listing 59: Fixed point iteration method

The interval bisection method can be implemented like this:

```
def mySign(x):
    return -1 if x < 0 else 1;

def getRootBisection(pXA, pXB, goal, precision):
    xa = pXA;
    xb = pXB;
    xm = -1;
    steps = 1;

while steps < 100:
    xm = xa + (xb - xa) / 2.0;</pre>
```

Listing 60: Interval Bisection method

Finally a function to approximate the root of a function with Newton's method could be realized the following way:

Listing 61: Newton's method

Afterwards, the three methods can be compared regarding how much time is needed to find the root of the function with the desired precision.

```
steps = 0;
11
13
           for i in range (10000):
                    param1 = p1 + 0.000001 * math.sin(i * 7);
15
                    if (type == 0): steps = getFixedPoint(param1, goal,
                          precision);
                    elif (type == 1): steps = getRootBisection(param1,
17
                        p2, goal, precision);
                    else: steps = getRootNewton(param1, goal, precision
                        );
19
           print("steps_taken:" + str(steps));
           printTimeDiff(startTime, getTime());
21
  \begin{array}{lll} \textbf{def} & getFixedPointRec2\left(x\,,\; maxSteps\,,\; stepsTaken\,\right): \end{array}
           newX = fFixed(x);
25
           if stepsTaken < maxSteps:</pre>
                    return getFixedPointRec2(newX, maxSteps, stepsTaken
27
                         +1);
           else:
                    return newX;
29
  def getFixedPointRec1(x0, maxSteps):
           return getFixedPointRec2(x0, maxSteps, 1);
33
  # get a precise enough approximation of the root
_{35} fP33 = getFixedPointRec1(0, 100);
  precision = 6;
37
  print("correct_digits_required:_" + str(precision));
39
  print("fixed_point_iteration:");
findRoot(0, fP33, precision, 0, -1);
43 print ("interval_bisection:");
  findRoot (1\,,\ fP33\,,\ precision\,,\ 0\,,\ 1)\,;
  print("newton's_method:");
  findRoot(2, fP33, precision, 0, -1);
47
_{49} precision = 12;
  print("correct_digits_required:_" + str(precision));
  print("fixed_point_iteration:");
findRoot(0, fP33, precision, 0, -1);
print("interval_bisection:");
  findRoot(1, fP33, precision, 0, 1);
```

```
print("newtons_method:");
findRoot(2, fP33, precision, 0, -1);

precision = 18;
print("correct_digits_required:_" + str(precision));

print("fixed_point_iteration:");
findRoot(0, fP33, precision, 0, -1);

print("interval_bisection:");
findRoot(1, fP33, precision, 0, 1);

print("newtons_method:");
findRoot(2, fP33, precision, 0, -1);
```

Listing 62: Testing the three methods

The results of the tests are the following:

```
1 correct digits required: 6
  fixed point iteration:
  steps taken: 14
  average time taken: 0.0382 milliseconds
  interval bisection:
  steps taken: 17
  average time taken: 0.0914 milliseconds
  newtons method:
11 steps taken: 4
  average time taken: 0.0237 milliseconds
13
  correct digits required: 12
15 fixed point iteration:
  steps taken: 27
17 average time taken: 0.1185 milliseconds
19 interval bisection:
  steps taken: 40
21 average time taken: 0.2703 milliseconds
23 newtons method:
  steps taken: 4
_{25} average time taken: 0.0321 milliseconds
27 correct digits required: 18
  fixed point iteration:
steps taken: 35
  average time taken: 0.1501 milliseconds
31
```

```
interval bisection:

steps taken: 51
average time taken: 0.3547 milliseconds

newtons method:

steps taken: 5
average time taken: 0.0377 milliseconds
```

Listing 63: Result of 4.8 e)

As seen Newton's method is much faster than the other two methods, with up to almost a tenth of computational time. The second fastest method is fixed point iteration, while the interval bisection method is the slowest.

The reason why Newton's method is the fastest is because it also utilizes the first derivative of the function, which is a valuable information to find the root quicker. Interval bisection is the slowest method because it doesn't even use the function value unlike fixed point iteration. Instead, the interval is halved halved with each step, no matter how close one bound is to the root of the function (except when the approximation is already precise enough of course).

### 4.1.6 f)

To get a precise enough approximation of the root, 27 steps were needed instead of the estimated 33 steps in d). The reason it took less iterations is because the a priori estimation always assumes the worst case scenario.

### 5 Function Approximation

### 5.1 Problem 5.9

#### Problem 5.9

- a) Write a program that calculates a table of all coefficients of the interpolating polynomial of degree n for any function f in any interval [a, b]. Pass the function name, the degree of the polynomial and the value table as parameters to the program.
- b) Apply the program to the interpolation of the function  $f(x) := e^{-x^2}$  in the interval [-2, 10] and calculate the polynomial up to the 10th degree. The given points are to be distributed "equidistant". Plot both funtions together in one diagram.
- c) Calculate the maximum norm of the deviation between the interpolation polynomial p and f from exercise b) on an equidistant grid with 100 given points.
- d) Compare the equidistant interpolation with the Taylor series of f of degree 10 (expanded around  $x_0 = 0$  and  $x_0 = 4$ ), with respect to maximum norm of the approximation error.

### 5.1.1 a)

To calculate the coefficients, [...] [numpy to solve lin eq]

```
def getCoefficients(fx, degree, a, b):
           xses = [];
           yses = [];
           step = (b - a) / float(degree - 1);
           for i in range (degree):
                   x = a + i * step;
                   xses.append(x);
                   yses.append(fx(x));
10
           matA = [];
12
           for xVal in xses:
14
                   row = [];
                   for i in range (degree):
16
                            row.append(pow(xVal, i));
                   matA.append(row);
20
           matrixArr = np.array(matA);
           vectorArr = np.array(yses);
22
           linSolutions = np.linalg.solve(matrixArr, vectorArr);
24
           return linSolutions;
26
```

Listing 64: Problem 5.9 a)

This function will be used in the following subtasks.

### 5.1.2 b)

To use the coefficients as a function, a python function to [return a value is required].

```
def polynomialF(coefficients, x):
    sum = 0.0;

for i in range(len(coefficients)):
    sum += coefficients[i] * pow(x, i);

return sum;
```

Listing 65: Function which uses the calculated coefficients

[now plot them]

```
def myF(x):
          return pow(math.e, -pow(x, 2));
  coefficients = getCoefficients(myF, 10, -2, 10);
  xses = [];
  realYses = [];
  approxYses = [];
  for i in range (100):
          x = -2 + i * (12 / 100.0);
          xses.append(x);
13
          realYses.append(myF(x));
          approxYses.append(polynomialF(coefficients, x));
15
plt.plot(xses, realYses);
  plt.plot(xses, approxYses);
19 plt.xlabel("x");
  plt.ylabel("y");
  plt.show();
```

Listing 66: todo

[the resulting plot looks like the following]



Figure 8: Plot of both functions

[blue - real, green - approx] [close to origin in the positive part pretty equal]

### 5.1.3 c)

```
maxApproxDev = -1;

for i in range(100):
    realY = realYses[i];

approxY = approxYses[i];

maxApproxDev = max(maxApproxDev, abs(realY - approxY));

print("maximum_deviation:_" + str(maxApproxDev));
```

Listing 67: Problem 5.9 c)

The results of the calculation of the maximum deviation are:

```
maximum deviation: 0.634025332357
```

Listing 68: Result of 5.9 c)

### 5.1.4 d)

[First Taylor Series]

### [Calc Yses for Plot]

```
def taylorFuncAt0(x):
          sum = 1;
          \mathbf{sum} = \mathbf{pow}(\mathbf{x}, 2);
          sum += pow(x, 4) / 2.0;
          sum = pow(x, 6) / 6.0;
          sum += pow(x, 8) / 24.0;
          sum = pow(x, 10) / 120.0;
          sum += pow(x, 12) / 720.0;
          sum = pow(x, 14) / 5040.0;
          sum += pow(x, 16) / 40320.0;
11
          return sum;
13
  def taylorFuncAt4(x):
          ep16 = float(pow(math.e, 16));
15
          xm4 = x - 4;
17
          \mathbf{sum} = 1 / \mathbf{ep16};
          sum = 8 * xm4 / ep16;
19
          sum += 31 * pow(xm4, 2) / ep16;
          21
          sum += 835 * pow(xm4, 4) / (6 * ep16);
          sum = 2876 * pow(xm4, 5) / (15 * ep16);
          sum += 18833 * pow(xm4, 6) / (90 * ep16);
          sum = 58076 * pow(xm4, 7) / (315 * ep16);
25
          sum += 332777 * pow(xm4, 8) / (2520 * ep16);
          sum = 43325 * pow(xm4, 9) / (567 * ep16);
27
          sum += 3937007 * pow(xm4, 10) / (113400 * ep16);
29
          return sum;
31
  taylor0Yses = [];
33 taylor4Yses = [];
  for i in range (100):
35
          x = -2 + i * (12 / 100.0);
37
          taylor0Yses.append(taylorFuncAt0(x));
          taylor4Yses.append(taylorFuncAt4(x));
39
```

Listing 69: todo

### [Then calculate deviation]

```
maxTaylor0Dev = -1;
maxTaylor4Dev = -1;
for i in range(100):
```

```
realY = realYses[i];
taylor0Y = taylor0Yses[i];
taylor4Y = taylor4Yses[i];

maxTaylor0Dev = max(maxTaylor0Dev, abs(realY - taylor0Y));
maxTaylor4Dev = max(maxTaylor4Dev, abs(realY - taylor4Y));

print("maximum_deviation_of_taylor_series_with_cc==0:=" + str(
    maxTaylor0Dev));
print("maximum_deviation_of_taylor_series_with_cc==4:=" + str(
    maxTaylor4Dev));
```

Listing 70: todo

[the results are]

```
maximum deviation of taylor series with c=0: 1.88827128486e+11 maximum deviation of taylor series with c=4: 354.936464804
```

Listing 71: Result of 1.1 a)

```
[taylor at c = 0 with much bigger deviation]
[because c = 4 is the center of interval]
```

### 5.2 Problem 5.10

#### Problem 5.10

a) Write an octave function to determine the coefficients  $a_1 \dots a_k$  of a function

```
f(x) = a_1 f_1(x) + a_2 f_2(x) + \dots + a_k f_k(x)
```

with the method of least squares. The two parameters of the function are an  $m \times 2$  matrix of data points as well as a cell array with the handles of the base functions  $f_1, \ldots, f_k$  (see www.gnu.org/software/octave/doc/v4.0.1/Function-Handles.html for function handles).

- b) Test the function by creating a linear equation with 100 points on a line, and then use your function to determine the coefficients of the line. Repeat the test with slightly noisy data (add a small random number to the data values). Plot the approximated straight line in red together with the data points in blue.
- c) Determine the polynomial of degree 4, which minimizes the sum of the squared errors of the following value table (see: http://www.hs-weingarten.de/~ertel/vorlesungen/ mathi/mathi-ueb15.txt):

```
-16186.1
                                                8016.53
                                                                                         10104
                                                                                                                                41046.6
         -10180.1
-2810.82
773.875
7352.34
                                                                                       15141.8
15940.5
19609.5
                                       19
20
21
                                                7922.01
4638.39
                                                                              29
30
31
                                                                                                                                37451.1
37332.2
                                                                                                                      39
40
                                                3029.29
                                                                                                                      41
                                                                                                                                29999.8
                                                2500.28
          11454.5
                                                                                         22738
12
13
14
15
                                       22
23
24
25
                                                                                                                                24818.1
         15143.3
13976.
                                                6543.8
3866.37
                                                                              33
34
35
                                                                                       25090.1
29882.6
                                                                                                                      43
44
                                                                                                                               10571.6
1589.82
          15137.1
                                                2726.68
                                                                                       31719.7
                                                                                                                               -17641.9
                                                                                                                      45
46
                                                6916.44
8166.62
16
17
          10383.4
                                       \frac{26}{27}
                                                                              36
37
                                                                                        38915.6
```

d) Calculate to c) the sum of the squared errors. Determine the coefficients of a parabola and calculate again the sum of the squared errors. What difference do you see? Plot both curves together with the data points in one diagram.

# 5.2.1 a)

[get coefficients with method of least squares] [again lin eq can be solved with numpy]

```
def getCoefficients(baseFunctions, dataPoints):
           l = len(baseFunctions);
           \mathrm{mat} A = [\,];
           for i in range(1):
                    matrixRow = [];
                    for j in range(1):
                             elemSum = 0;
10
                             for dp in dataPoints:
                                      x \, = \, dp \, [\, 0 \, ] \, ;
12
                                      elemSum += baseFunctions[i](x) *
                                           baseFunctions[j](x);
14
                             matrixRow.append(elemSum);
16
                    matA.append(matrixRow);
18
           vecB = [];
20
           for i in range(l):
                    elemSum = 0;
22
                    for dp in dataPoints:
24
                             elemSum += dp[1] * baseFunctions[i](dp[0]);
26
                    vecB.append(elemSum);
28
           matrixArr = np.array(matA);
           vectorArr = np.array(vecB);
30
           linSolutions = np.linalg.solve(matrixArr, vectorArr);
32
           return linSolutions;
34
```

Listing 72: Problem 5.10 a)

## 5.2.2 b)

[with the function from a), simple to make the lin eq with two base functions.] [afterwards, calculate enough y values and plot them]

```
def myF1(x): return x;
def myF0(x): return 1;
```

```
baseFns = [];
  baseFns.append(myF1);
  baseFns.append(myF0);
  linPoints = [];
10 rndPoints = [];
  xses = [];
  yses = [];
  rndYses = [];
14
  for i in range (100):
           x \; = \; i \; \; / \; \; 10.0 \, ;
16
           y = x * 0.64 + 2.3;
           xses.append(x);
           yses.append(y);
20
           rnd = random.random() - 0.5;
22
           rndY = y + rnd * 0.6;
           rndYses.append(rndY);
24
           linPoints.append([x, y]);
26
           rndPoints.append([x, rndY]);
28
  print("coefficients:");
print(getCoefficients(baseFns, linPoints));
  print("approximated_coefficients:");
  print(getCoefficients(baseFns, rndPoints));
34
  plt.plot(xses, yses);
_{36} plt.plot(xses, rndYses, "ro");
  plt.xlabel("x");
38 plt.ylabel("y");
  plt.show();
```

Listing 73: todo

[The result of the exact coefficients and the approximation with random points are]

Listing 74: Result of 1.1 a)

[the approximated coefficients are very close.]
[the plot of the exact linear equation and the random points looks like this:]



Figure 9: todo

# 5.2.3 c)

[also with the function, poly degree 4 and 2 which is needed for subtask d)]

```
def myF4(x): return pow(x, 4);
    def myF3(x): return pow(x, 3);
    def myF2(x): return pow(x, 2);
    def myF1(x): return x;
    def myF0(x): return 1;

def polynomialF(coefficients, x):
        sum = 0.0;

nc = len(coefficients);

for i in range(nc):
        sum += coefficients[i] * pow(x, nc - i - 1);

return sum;

txtBaseFns4 = [];
txtBaseFns2 = [];
```

```
19
  txtBaseFns4.append(myF4);
  txtBaseFns4.append(myF3);
  txtBaseFns4.append(myF2);
txtBaseFns4.append(myF1);
  txtBaseFns4.append(myF0);
  txtBaseFns2.append(myF2);
  txtBaseFns2.append(myF1);
  txtBaseFns2.append(myF0);
29
  txtPoints = [];
31
  \mathtt{txtPoints.append} \left( \left[ 8 \;, \;\; -16186.1 \right] \right);
_{33} txtPoints.append([9, -2810.82]);
  # [...] (I left out the other values in the paper to save space)
_{35} txtPoints.append([45, -17641.9]);
  txtPoints.append([46, -37150.2]);
37
  txtCoefficients4 = getCoefficients(txtBaseFns4, txtPoints);
  txtCoefficients2 = getCoefficients(txtBaseFns2, txtPoints);
41 txtPointsXses = [];
  txtPointsYses = [];
  error4 = 0;
_{45} error2 = 0;
  for i in range(len(txtPoints)):
47
           txtPoint = txtPoints[i];
49
           txtPointsXses.append(txtPoint[0]);
           txtPointsYses.append(txtPoint[1]);
51
           y4 = polynomialF(txtCoefficients4, i + 8);
53
           y2 = polynomialF(txtCoefficients2, i + 8);
55
           error4 += pow(y4 - txtPoint[1], 2);
           error2 += pow(y2 - txtPoint[1], 2);
59
  print("error_of_degree_4_polynomial:_" + str(error4));
print ("error_of_degree_2_polynomial:_" + str(error2));
63 | txtFXses = [];
  txtF4Yses = [];
txtF2Yses = [];
for i in range (152):
           x = 8 + i * 0.25;
```

```
69
          txtFXses.append(x);
71
          y4 = polynomialF(txtCoefficients4, x);
          y2 = polynomialF(txtCoefficients2, x);
73
          txtF4Yses.append(y4);
75
          txtF2Yses.append(y2);
77
  plt.plot(txtFXses, txtF4Yses);
  plt.plot(txtFXses, txtF2Yses);
  plt.plot(txtPointsXses, txtPointsYses, "ro");
  plt.xlabel("x");
83 plt.ylabel("y");
  plt.show();
```

Listing 75: todo

```
R
```

Listing 76: Result of 1.1 a)

Χ

## 5.2.4 d)

[use the functions from c)

```
siehe c) — aufdroeseln
```

Listing 77: todo

results:

```
error of degree 4 polynomial: 101457690.277
error of degree 2 polynomial: 7711489909.2
```

Listing 78: Result of 1.1 a)

```
[error of degree 4 over 70 times smaller] [makes sense]
[the plot looks like this]
[perfectly illustrates the closeness and farawayness of each function]
```

## 5.3 Problem 5.11

The methods getCoefficients and polynomialF as well as the txtPoints from problem 5.10 will be used in this exercise as well.



Figure 10: todo

#### Problem 5.11

- a) From the data in problem 5.10 c), extract all data points with an even x within one line of code.
- b) Divide these data points randomly in two matrices X and T of size 10×2 (each consisting of 10 data points).
- c) X is called the training data, T the test data. Determine the polynomials of degree 2-8, each minimizing the sum of the squared errors on the training data X. Plot the seven polynomial functions together with the data points in one diagram. The points in X have to be plotted in blue and those in T with red. Plot each function in a different color using the following cell array of color characters: {'b','c','r','g','m','y','y','k'}}
- d) For each polynomial, calculate the sum of the squared errors on the training data X and the test data T. Plot both squared error sums in dependence of degree n in one diagram (using again blue for X and red for T).
- e) Since we divide the data randomly to X and T, the outcome might change if we run the program again. Run the program from b) to c) several times. What is the decisive difference in the plots of the squared error sums for X and T and can you explain this difference? At what degree do we have the smallest error on the test data in most of the cases?
- f) The method you applied is called cross validation. In practice, we would choose the degree which minimizes the error on the test data. Why does it make sense, to use different data subsets for the approximation and for the test?

## 5.3.1 a)

```
evenPoints = [];

for txtPoint in txtPoints:
```

```
if txtPoint[0] % 2 == 0:
evenPoints.append(txtPoint);
```

Listing 79: todo

## 5.3.2 b)

```
matrixX = [];
matrixT = [];

for evenPoint in evenPoints:
    rnd = random.random();

if len(matrixT) >= 10 or (rnd < 0.5 and len(matrixX) < 10):
        matrixX.append(evenPoint);

else:
    matrixT.append(evenPoint);</pre>
```

Listing 80: todo

#### 5.3.3 c)

[To get the polynomials up to degree 8, first the base functions have to be defined:]

```
def myF8(x): return pow(x, 8);
  def myF7(x): return pow(x, 7);
  def myF6(x): return pow(x, 6);
  def myF5(x): return pow(x, 5);
  def myF4(x): return pow(x, 4);
  def myF3(x): return pow(x, 3);
  def myF2(x): return pow(x, 2);
  def myF1(x): return x;
  def myF0(x): return 1;
10
  def getBaseFunctionList(degree):
          baseFunctions = [];
12
          if degree >= 8: baseFunctions.append(myF8);
14
          if degree >= 7: baseFunctions.append(myF7);
          if degree >= 6: baseFunctions.append(myF6);
16
          if degree >= 5: baseFunctions.append(myF5);
          if degree >= 4: baseFunctions.append(myF4);
18
          if degree >= 3: baseFunctions.append(myF3);
          if degree >= 2: baseFunctions.append(myF2);
20
          baseFunctions.append(myF1);
22
          baseFunctions.append(myF0);
24
```

Listing 81: todo

[using these base functions the coefficients can be calculated with the getCoefficients function. Afterwards, the y values of those functions can be collected with the polynomialF function to plot them].

```
xses = [];
  allYses = [];
  for i in range (152):
           xses.append(8 + i * 0.25);
  for i in range (7):
           degree = i + 2;
           baseFunctionList = getBaseFunctionList(degree);
11
            {\tt coefficients} \, = \, {\tt getCoefficients} \, (\, {\tt baseFunctionList} \, , \, \, {\tt matrixX}) \, ;
13
           yses = [];
15
            for x in xses:
                    y = polynomialF(coefficients, x);
17
                     yses.append(y);
19
           allYses.append(yses);
21
  xXses = [];
23
  xYses = [];
  tXses = [];
  tYses = [];
25
  for i in range (10):
           xXses.append(matrixX[i][0]);
           xYses.append(matrixX[i][1]);
29
           tXses.append(matrixT[i][0]);
           tYses.append(matrixT[i][1]);
31
  colors = ["b", "c", "r", "g", "m", "y", "k"];
33
  plt.plot(xXses, xYses, "bo");
35
  plt.plot(tXses, tYses, "ro");
37
  for i in range(len(allYses)):
           plt.plot(xses\,,\ allYses[i]\,,\ colors[i])\,;
39
  plt.xlabel("x");
  plt.ylabel("y");
43 plt.show();
```

# Listing 82: todo

[the resulting graph looks like this.]



Figure 11: todo

# 5.3.4 d)

[to calculate the error, square of distance between data point]

```
def getError(coefficients, mat):
    errorSum = 0;

for elem in mat:
    fY = polynomialF(coefficients, elem[0]);

errorSum += pow(fY - elem[1], 2);

return errorSum;

def getErrors(degree, matX, matT):
    baseFunctionList = getBaseFunctionList(degree);

coefficients = getCoefficients(baseFunctionList, matX);
```

```
errorSumX = getError(coefficients, matX);
17
           errorSumT = getError(coefficients, matT);
           return [errorSumX, errorSumT];
19
  degrees = [];
21
  errorsX = [];
  errorsT = [];
23
  for i in range (7):
25
           degree = i + 2;
           degrees.append(degree);
27
           errors = getErrors(degree, matrixX, matrixT);
29
           errors X . append (errors [0]);
           errorsT.append(errors[1]);
33
  plt.plot(degrees, errorsX, "b");
  plt.plot(degrees, errorsT, "r");
35
  plt.xlabel("degree");
  plt.ylabel("error");
  plt.show();
```

Listing 83: todo

[the result looks the following:]

## 5.3.5 e)

[with a higher degree, the deviation from training data is pretty small]. [obv since they are used for the small function]

[on the test data however the error first drops but then increases]

The deviation to the original approximated function (where all data points were used) minimizes the more evenly the points of X and T are distributed. The reason for that is that when there's a large interval of test points only, the approximated function has no bounds at all in that interval and can deviate as much as it needs to, without increasing the error. The results seems to be the the best with polynomials of degree 4 and 5.

[a reason could be that functions of higher degrees tend to spike more, and they are more free with "loose" test data points]

#### 5.3.6 f)

It makes sense because the approximated function is supposed to be close to all data values, and even the points "in between" which are not part of both the



Figure 12: todo

training and test data.

# 6 Numerical Integration and Solution of Ordinatry Differnial Equations

## 6.1 Problem 7.12

#### Problem 7.12

- a) Compute the area of a unit circle using both presented Monte-Carlo methods (naive and mean of function values) to an accuracy of at least 10<sup>-3</sup>.
- b) Produce for both methods a table of the deviations of the estimated value depending on the number of trials (random number pairs) and draw this function. What can you say about the convergence of this method?
- c) Compute the volume of the four dimensional unit sphere to a relative accuracy of 10<sup>-3</sup>. How much more running time do you need?

Χ

Listing 84: todo

Y

## 6.1.1 a)

```
def getRandCoord(a, b):
           return random.random() * (b - a) + a;
  def circleF(x):
           newX \; = \; (\; x \; \% \; \; 2\; ) \; \; - \; \; 1\; ;
           return math.sqrt(1 - pow(newX, 2));
  def doNaiveMonteCarloTest(xMin, xMax, yMin, yMax):
           randX = getRandCoord(xMin, xMax);
           randY = getRandCoord(yMin, yMax);
11
           return circleF(randX) > randY;
13
  goal = math.pi;
15
  def doNaiveMonteCarlo(precision):
           areaEstimated = 0;
17
           tries = 0.0;
           successes = 0.0;
19
           while abs(areaEstimated - goal) > precision and tries <
21
                100000:
                    if doNaiveMonteCarloTest(0, 4, 0, 1):
```

```
23
                            successes += 1;
25
                   tries += 1;
                   areaEstimated = 4 * (successes / tries);
27
           return [areaEstimated, tries];
29
  def doMeanMonteCarlo(precision):
31
           areaEstimated = 0;
           tries = 0.0;
33
           \mathbf{sum} = 0.0;
35
           while abs(areaEstimated - goal) > precision and tries <
               100000:
                   randX = getRandCoord(0, 4);
37
                   sum += circleF(randX);
39
                   tries += 1;
41
                   areaEstimated = 4 * (sum / tries);
43
           return [areaEstimated, tries];
45
  minError = 0.001;
47
  naiveMonteCarlo = doNaiveMonteCarlo(minError);
49
  print("naive_method:");
  print("estimated_area:_" + str(naiveMonteCarlo[0]));
  print("tries: " + str(naiveMonteCarlo[1]));
53
  meanMonteCarlo = doMeanMonteCarlo(minError);
55
  print("_");
  print("mean_value_method:");
57
  print("estimated_area:_" + str(meanMonteCarlo[0]));
print("tries: " + str(meanMonteCarlo[1]));
```

Listing 85: todo

```
naive method:
estimated area: 3.14241702843

tries: 7141.0

mean value method:
estimated area: 3.14239623321

tries: 658.0
```

Listing 86: Result of 1.1 a)

Χ

## 6.1.2 b)

```
def getNaiveMonteCarloDeviation(tries):
           successes = 0.0;
           for i in range(tries):
                   if doNaiveMonteCarloTest(0, 4, 0, 1):
                            successes += 1;
           areaEstimated = 4 * (successes / tries);
           return abs(areaEstimated - goal);
11
  def getMeanMonteCarloDeviation(tries):
          sum = 0.0;
13
           for i in range(tries):
15
                   randX = getRandCoord(0, 4);
17
                   sum += circleF(randX);
19
           areaEstimated = 4 * (sum / tries);
21
           return abs(areaEstimated - goal);
23
  xses = [];
  naiveYses = [];
25
  meanYses = [];
27
  for i in range(1, 250):
           naiveDeviation = getNaiveMonteCarloDeviation(i * 10);
29
           meanDeviation = getMeanMonteCarloDeviation(i * 10);
31
           xses.append(i);
           naiveYses.append(naiveDeviation);
33
           meanYses.append(meanDeviation);
35
  plt.plot(xses, naiveYses);
37 plt.plot(xses, meanYses);
  plt.xlabel("tries");
general plt.ylabel("deviation");
  plt.show();
```

# Listing 87: todo

results:



Figure 13: todo

X

# 6.1.3 c)

X

Listing 88: todo

```
def doNaiveMonteCarloTest4D():
    randX = getRandCoord(0, 1);
    randY = getRandCoord(0, 1);
    randZ = getRandCoord(0, 1);
    randA = getRandCoord(0, 1);
    randA = getRandCoord(0, 1);
return isIn4DSphere4D(randX, randY, randZ, randA);
```

```
goal2 = pow(math.pi, 2) / 2.0;
10
  def doNaiveMonteCarlo4D(precision):
          areaEstimated = 0;
12
          tries = 0.0;
          successes = 0.0;
14
           while abs(areaEstimated - goal2) > precision and tries <
16
                   if doNaiveMonteCarloTest4D():
                           successes += 1;
                   tries += 1;
20
                   areaEstimated = 16 * (successes / tries);
22
          return [areaEstimated, tries];
24
26 fourDSphere = doNaiveMonteCarlo4D(minError);
  print("estimated_area_of_4D_unit_sphere:_" + str(fourDSphere[0]));
```

Listing 89: todo

```
estimated area of 4D unit sphere: 4.93493975904
```

Listing 90: Result of 1.1 a)

Listing 91: todo

The deviation tends to get smaller, yet it doesn't converge. results:

```
average tries for 2d unit circle: 4928.92
```

```
average tries for 4d unit sphere: 14141.112
```

Listing 92: Result of 1.1 a)

[it takes about 3 times as much computational time to calculate the volume of a 4 dimensional unit sphere than it is to calculate the area of a 2 dimensional unit circle.]

## 6.2 Problem 7.13

#### Problem 7.13

- a) Write programs that implement the Euler-, Heun- and Runge Kutta methods for solving first order initial value problems.
- b) Implement the Richardson extrapolation scheme for these methods.

## 6.2.1 a)

```
def odeSolver(f, a, b, y0, h, yp1Method):
            x = a;
            y = y0;
            yses = [];
            yses.append(y);
            while x \le b:
                     y = yp1Method(f, x, y, h);
10
                      yses.append(y);
12
                      x += h;
14
            return yses;
   def eulerYP1(f, x, y, h):
            \mathbf{return} \ \mathbf{y} + \mathbf{h} \ * \ \mathbf{f}(\mathbf{x}, \ \mathbf{y});
18
  def heunYP1(f, x, y, h):
20
            k1 = h * f(x, y);
            k2 = h * f(x + h, y + k1);
22
            return y + 0.5 * (k1 + k2);
24
26
  def rungeKuttaYP1(f, x, y, h):
            k1 = h * f(x, y);
            k2 = h * f(x + 0.5 * h, y + 0.5 * k1);
28
            k3 = h * f(x + 0.5 * h, y + 0.5 * k2);
```

```
k4 = h * f(x + h, y + k3);
30
32
           return y + (1 / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4);
  def euler(f, a, b, y0, h):
34
          return odeSolver(f, a, b, y0, h, eulerYP1);
  def heun(f, a, b, y0, h):
           return odeSolver(f, a, b, y0, h, heunYP1);
38
  def rungeKutta(f, a, b, y0, h):
40
           return odeSolver(f, a, b, y0, h, rungeKuttaYP1);
42
  def odeSystemSolver(fVector, a, b, y0Vector, h, yp1Methods):
44
           yVectorses = [];
          x = a;
46
           yVector = y0Vector;
48
           yVectorses.append(yVector);
50
           while x \le b:
                   yp1Vector = yp1Methods(fVector, x, yVector, h);
52
                   yVectorses.append(yp1Vector);
                   yVector = yp1Vector;
56
                   x += h;
58
           return yVectorses;
60
  def rungeKuttaYP1System(fVector, x, yVector, h):
62
          nF = len(fVector);
64
           k1Vector = [];
           yVectorPlusHalfK1Vector = [];
66
           for i in range(nF):
68
                   k1El = h * fVector[i](x, yVector);
                   k1Vector.append(k1El);
70
                   yVectorPlusHalfK1Vector.append(yVector[i] + 0.5 *
                       k1El);
           k2Vector = [];
           yVectorPlusHalfK2Vector = [];
74
           for i in range(nF):
76
                   k2El = h * fVector[i](x + 0.5 * h,
                       yVectorPlusHalfK1Vector);
```

```
k2Vector.append(k2El);
78
                    y VectorPlusHalfK2 Vector \, . \, append \, ( \, y Vector \, [ \, i \, ] \, \, + \, \, 0.5 \, \, \, *
                         k2El);
80
           k3Vector = [];
           yVectorPlusK3Vector = [];
82
           for i in range(nF):
84
                    k3El = h * fVector[i](x + 0.5 * h,
                         yVectorPlusHalfK2Vector);
                    k3Vector.append(k3El);
86
                    yVectorPlusK3Vector.append(yVector[i] + k3El);
88
           yp1Vector = [];
90
           for i in range(nF):
                    k4El = h * fVector[i](x + h, yVectorPlusK3Vector);
92
                    yp1 = yVector[i] + (1 / 6.0) * (k1Vector[i] + 2 *
94
                         k2Vector[i] + 2 * k3Vector[i] + k4El);
                    yp1Vector.append(yp1);
96
           return yp1Vector;
98
  def rungeKuttaSystem(fVector, a, b, y0Vector, h):
           return odeSystemSolver(fVector, a, b, y0Vector, h,
                rungeKuttaYP1System);
```

Listing 93: todo

Χ

#### 6.2.2 b)

[for richardson extrapolation only the next step (yp1) functions need to be adjusted]

[q and pk empirically]

```
def fkFunc(f, x, y, h, yp1Func, q, pk, step):
    if step == 1:
        fh = yp1Func(f, x, y, h);
        fqh = yp1Func(f, x, y, q * h);

else:
    fh = fkFunc(f, x, y, h, yp1Func, q, pk, step - 1);
    fqh = fkFunc(f, x, y, q * h, yp1Func, q, pk, step - 1);

return fh + ((fh - fqh) / (pow(q, pk) - 1.0));
```

```
def eulerYP1Richardson(f, x, y, h):
         return fkFunc(f, x, y, h, eulerYP1, 5, 23, 5);
13
  def heunYP1Richardson(f, x, y, h):
         return fkFunc(f, x, y, h, heunYP1, 2, 13, 5);
15
  def rungeKuttaYP1Richardson(f, x, y, h):
         return fkFunc(f, x, y, h, rungeKuttaYP1, 4, 18, 5);
19
  def eulerRichardson(f, a, b, y0, h):
         return odeSolver(f, a, b, y0, h, eulerYP1Richardson);
21
  def heunRichardson(f, a, b, y0, h):
23
         return odeSolver(f, a, b, y0, h, heunYP1Richardson);
25
  def rungeKuttaRichardson(f, a, b, y0, h):
         27
```

Listing 94: todo

Χ

#### 6.3 Problem 7.14

```
Problem 7.14 The initial value problem
```

```
\frac{dy}{dx} = \sin(xy) \qquad y_0 = y(0) = 1
```

is to be solved numerically for  $x \in [0, 10]$ .

- a) Compare the Euler-, Heun- and Runge Kutta methods on this example. Use h = 0.1.
- b) Apply Richardson extrapolation to improve the results in x=5 for all methods. (attention: use the correct  $p_k$  for each method.)

(iwo import functions from prob 7.13)

## 6.3.1 a)

X

```
plt.plot(xses, eulerYses);
plt.plot(xses, heunYses);
plt.plot(xses, rungeKuttaYses);

plt.xlabel("x");
plt.ylabel("y");
plt.show();
```

Listing 95: todo



Figure 14: todo

# 6.3.2 b)

X

```
eulerRichardsonYses = dif.eulerRichardson(myF, 0, 10, 1, 0.1);
heunRichardsonYses = dif.heunRichardson(myF, 0, 10, 1, 0.1);
rungeKuttaRichardsonYses = dif.rungeKuttaRichardson(myF, 0, 10, 1, 0.1);

print("euler:_" + str(eulerRichardsonYses[50]));
print("heun:_" + str(heunRichardsonYses[50]));
print("runge-kutta:_" + str(rungeKuttaRichardsonYses[50]));
```

Listing 96: todo

Χ

```
euler: 0.656662162824
heun: 0.657837825456
runge-kutta: 0.657541150858
```

Listing 97: Result of 1.1 a)

Χ

## 6.4 Problem 7.15

**Problem 7.15** Apply the Runge Kutta method to the predator-prey example ?? and experiment with the parameter  $\alpha$  and the initial values. Try to explain the population results biologically.

```
def sheepFunc(t, yVector):
          return 10 * yVector[0] * (1 - yVector[1]);
3
  def wolfsFunc(t, yVector):
          return yVector[1] * (yVector[0] - 1);
  fses = [];
  y0ses = [];
  fses.append(sheepFunc);
  fses.append(wolfsFunc);
  y0ses.append(3);
y0ses.append(1);
15 yVectors = dif.rungeKuttaSystem(fses, 0, 5, y0ses, 0.05);
17 xses = [];
  sheepYses = [];
  wolfsYses = [];
  x = 0;
21
23 for yVector in yVectors:
          sheepYses.append(yVector[0]);
          wolfsYses.append(yVector[1]);
25
          xses.append(x);
          x += 0.05;
27
29 plt.plot(xses, sheepYses);
  plt.plot(xses, wolfsYses);
31 plt.xlabel("x");
```

```
plt.ylabel("y");
plt.show();
```

Listing 98: todo



Figure 15:  $\alpha = 10$ , initially 3 sheep and 1 wolfs

# 6.5 Problem 7.16



Figure 16:  $\alpha = 9$ , initially 4 sheep and 2 wolfs



Figure 17:  $\alpha = 12$ , initially 3 sheep and 2 wolfs

Problem 7.16 Use Runge Kutta to solve the initial value problem

$$\frac{dy}{dx} = x\sin(xy) \qquad y_0 = y(0) = 1$$

for  $x \in [0, 20]$ . Report about problems and possible solutions.

Listing 99: todo

results:



Figure 18: todo

Since the x parameter is a factor both inside and outside of the sine, the frequency as well as the amplitude increase as x grows. Hence, the fluctuation increases and the slopes get steeper and steeper. Because the step size stays the same, the curve gets "spikier" and slightly inaccurate. A possible solution could be to decrease the step size.