Sea $\mathcal{V}=H^1_0(0,1)$ y la forma bilineal $a_\kappa:\mathcal{V}\times\mathcal{V}\to\mathbb{R}$ definida por

$$a_{\kappa}(y,v) := \int_0^1 \kappa(x) \frac{\partial y}{\partial x} \frac{\partial v}{\partial x} dx, \quad \forall y, v \in \mathcal{V}.$$

Asumiendo que la función parámetro κ verifica que, existen cotas $\kappa_U,~\kappa_L>0~{\rm tal}$ que

$$0 < \kappa_L \le \kappa(x) \le \kappa_U, \quad \forall x \in [0, 1].$$

Se pide probar lo siguiente:

- 1. $a\kappa$ es continua.
- 2. $a\kappa$ es coerciva sobre \mathcal{V} .
- 3. $l \in \mathcal{V}'$.

1.1 a_{κ} es continua

Recordemos que $a_{\kappa}(\cdot,\cdot)$ es continua si $\exists c>0$ tal que

$$|a_{\kappa}(y,v)| \le c||y||_{\mathcal{V}}||v||_{\mathcal{V}}, \quad \forall y,v \in \mathcal{V}$$

Entonces desarrollando tenemos

$$|a_{\kappa}(y,v)| = \left| \int_{0}^{1} \kappa(x) \frac{\partial y}{\partial x} \frac{\partial v}{\partial x} dx \right|$$

$$\leq \kappa_{U} \left| \int_{0}^{1} \frac{\partial y}{\partial x} \frac{\partial v}{\partial x} dx \right|$$

$$\leq \kappa_{U} \|y'\|_{L^{2}} \|v'\|_{L^{2}},$$

donde en la ultima desigualdad hemos usado la desigualdad de Cauchy-Schwarz.

Como (0,1) es acotado por la proposición 3 tenemos que la norma $\|v'\|_{L^2}$ es equivalente a la norma $\|v\|_{\mathcal{V}}$, por tanto $\exists c_1>0$ tal que

$$|a_{\kappa}(y,v)| \le \kappa_U ||y'||_{L^2} ||v'||_{L^2}$$

 $\le \kappa_U c_1 ||y||_{\mathcal{V}} ||v||_{\mathcal{V}},$

como queríamos ver.

1.2 a_{κ} es coerciva sobre \mathcal{V}

Recordemos que $a_{\kappa}(\cdot,\cdot)$ es coerciva si $\exists c>0$ tal que

$$a_{\kappa}(v,v) \ge c \|v\|_{\mathcal{V}}^2, \quad \forall v \in \mathcal{V}$$

Entonces desarrollando tenemos

$$a_{\kappa}(y,v) = \int_{0}^{1} \kappa(x) \frac{\partial y}{\partial x} \frac{\partial v}{\partial x} dx$$

$$\geq \kappa_{L} \int_{0}^{1} \frac{\partial y}{\partial x} \frac{\partial v}{\partial x} dx$$

$$= \kappa_{L} \left(\left[\int_{0}^{1} \left[v' \right]^{2} dx \right]^{1/2} \right)^{2}$$

$$= \kappa_{L} \|v'\|_{L^{2}}^{2}.$$

Como (0,1) es acotado por la proposición 3 tenemos que la norma $||v'||_{L^2}$ es equivalente a la norma $||v||_{\mathcal{V}}$, por tanto $\exists c_2 > 0$ tal que

$$a_{\kappa}(y,v) \ge \kappa_L \|v'\|_{L^2}^2$$

$$\ge \kappa_L c_2 \|v\|_{\mathcal{V}}^2,$$

como queríamos ver.

1.3 $l \in \mathcal{V}$

Asumiendo que l(v) es igual que la definida en el apartado 1.5 Formulación débil o variacional,

$$l(v) = \int_0^1 fv dx, \quad \forall v \in \mathcal{V}.$$

Vemos que l es lineal

$$l(\alpha v_1 + \beta v_2) = \int_0^1 f \cdot (\alpha v_1 + \beta v_2) dx = \alpha \int_0^1 f v_1 dx + \beta \int_0^1 f v_2 dx = \alpha l(v_1) + \beta l(v_2)$$

para todo $\alpha, \beta \in \mathbb{R}, v_1, v_2 \in \mathcal{V}$. Por otro lado aplicando la desigualdad de Cauchy-Schwarz en $L^2(0,1)$

$$|l(v)| = \left| \int_0^1 fv dx \right| = |(f, v)_{L^2}| \le ||f||_{L^2} ||v||_{L^2} \le ||f||_{L^2} ||v||_{\mathcal{V}},$$

lo que prueba que $||l||_{\mathcal{V}'} \leq ||f||_{L^2}$, y por tanto $l \in \mathcal{V}'$.

 $\mathbf{2}$

Pruebe que ϕ_i es una base de \mathcal{V}_h .

Primero vemos que las funciones ϕ_i son independientes. Es decir que

$$a_1\phi_1 + \dots + a_n\phi_n = 0. \tag{1}$$

solo si $a_i = 0, \forall i \in \{1, ..., n\}.$

Tomando la primera derivada debil de las funciones ϕ_1, \ldots, ϕ_n , tenemos

$$\phi'_{i}(x) = \begin{cases} \frac{1}{h}, & \forall x \in (x_{i-1}, x_{i}) \\ -\frac{1}{h}, & \forall x \in (x_{i}, x_{i+1}) \\ 0, & x < x_{i-1} \text{ or } x > x_{i+1}, \end{cases}$$

donde ϕ' es un abuso de notacion para referise a la derivada debil de ϕ . Entonces derivando (1), tenemos que

$$\sum_{i=1}^{n} a_i \phi_i' = 0,$$

entonces podemos ver que $a_1 = 0$ ya que $\phi'_1(x) = \frac{1}{h}, \forall x \in (0, h)$ y el resto de derivadas débiles de ϕ valen 0 en el intervalo (0, h). De manera recursiva podemos argumentar lo mismo para el resto de a_i .

Por tanto tenemos que $a_i = 0$, $\forall i \in \{1, ..., n\}$, y por tanto $\{\phi_i\}$ son independientes.

Veamos que $\{\phi_i\}$ genera \mathcal{V}_h .

Sea $g \in \mathcal{V}_h$ vemos que se puede expresar como

$$g(x) = a_1\phi_1(x) + \dots + a_n\phi_n(x).$$

Primero vemos que

$$g(0) = a_1 \phi_1(0) + \dots + a_n \phi_n(0) = 0 + \dots + 0 = 0$$

$$g(1) = a_1 \phi_1(1) + \dots + a_n \phi_n(1) = 0 + \dots + 0 = 0,$$

para todo $\{a_i\}$.

Por otro lado g restringida al intervalo $[x_i, x_{i+1}]$ es un polinomio de primer grado, asi que

$$g|_{[x_{i},x_{i+1}]}(x) = ax + b$$

$$= a_{1} \phi_{1}|_{[x_{i},x_{i+1}]}(x) + \dots + a_{n} \phi_{n}|_{[x_{i},x_{i+1}]}(x)$$

$$= a_{i} \phi_{i}|_{[x_{i},x_{i+1}]}(x) + a_{i+1} \phi_{i+1}|_{[x_{i},x_{i+1}]}(x)$$

$$= \frac{1}{h}(a_{i}(x_{i+1} - x) + a_{i+1}(x - x_{i})),$$

que nos lleva a un sistema de dos ecuaciones con dos incógnitas para cada intervalo $[x_i, x_{i+1}]$,

$$ah = -a_i + a_{i+1}$$

$$bh = a_i x_{i+1} - a_{i+1} x_i,$$

por tanto existe $\{a_i\}$ tal que $g(x) = a_1\phi_1(x) + \cdots + a_n\phi_n(x)$.

Supongamos que $f \in \mathcal{V}_h$, entonces tenemos que

$$f(x) = \sum_{i=1}^{n} f(x_i)\phi_i(x) = \sum_{i=1}^{n} f_i\phi_i(x)$$

Entonces tenemos que

$$P_{i} = l(\phi_{i}) = \int_{0}^{1} f(s)\phi_{i}(s)ds$$

$$= \int_{0}^{1} \left(\sum_{i=1}^{n} f_{i}\phi_{i}(s)\right)\phi_{i}(s)ds$$

$$= \int_{0}^{1} \left(f_{i-1}\phi_{i-1}(s) + f_{i}\phi_{i}(s) + f_{i+1}\phi_{i+1}(s)\right)\phi_{i}(s)ds$$

$$= \int_{x_{i-1}}^{x_{i}} f_{i-1}\phi_{i-1}(s)\phi_{i}(s)ds + \int_{x_{i-1}}^{x_{i+1}} f_{i}\phi_{i}^{2}(s)ds + \int_{x_{i}}^{x_{i+1}} f_{i+1}\phi_{i+1}(s)\phi_{i}(s)ds,$$
(2)

donde en la segunda igualdad hemos usado que $\phi_i \cdot \phi_j = 0, \forall |i-j| > 1$. Estudiemos las tres integrales de la ultima igualdad,

$$\begin{split} \int_{x_{i-1}}^{x_i} f_{i-1}\phi_{i-1}(s)\phi_i(s)ds &= \frac{h}{6} \left(4\phi_{i-1} \left(\frac{x_i + x_{i-1}}{2} \right) \left(\frac{x_i + x_{i-1}}{2} \right) \right) f_{i-1} \\ &= \frac{h}{6} 4 \left(\frac{1}{h} \left(x_i - \frac{2x_i - h}{2} \right) \right) \left(\frac{1}{h} \left(\frac{2x_{i-1} + h}{2} - x_{i-1} \right) \right) f_{i-1} \\ &= \frac{h}{6} \cdot 4 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot f_{i-1} = \frac{h}{6} f_{i-1} \end{split}$$

donde en la primera igualdad hemos usado que $\phi_i(x_{i-1}) = 0$ y que $\phi_{i-1}(x_i) = 0$. Notemos que la ultima integral de (2) es igual a esta cambiando los indices i-1 por i e i por i+1.

Por otro lado la segunda integral,

$$\begin{split} \int_{x_{i-1}}^{x_{i+1}} f_i \phi_i^2(s) ds &= \frac{h}{6} \left(4\phi_i^2 \left(\frac{x_{i+1} + x_{i-1}}{2} \right) \right) f_i \\ &= \frac{h}{6} 4\phi_i^2(x_i) f_i = \frac{h}{6} 4 \left(\frac{x_i - x_{i-1}}{h} \right)^2 f_i \\ &= \frac{h}{6} 4 f_i, \end{split}$$

donde en la primera igualdad hemos usado que $\phi_i(x_{i-1}) = 0 = \phi_i(x_{i+1})$. Finalmente continuado con (2) tenemos,

$$P_i = l(\phi_i) = \frac{h}{6} (f_{i-1} + 4f_i + f_{i+1})$$

Podemos extender la base de V_h , $\{\phi_i\}$, a \mathcal{A}_h añadiendo

$$\phi_0 = \begin{cases} \frac{x_1 - x}{h}, & \forall x \in (x_0, x_1) \\ 0, & \text{en caso contrario,} \end{cases}$$
$$\begin{cases} \frac{x - x_n}{h}, & \forall x \in (x_0, x_0) \end{cases}$$

$$\phi_{n+1} = \begin{cases} \frac{x - x_n}{h}, & \forall x \in (x_n, x_{n+1}) \\ 0, & \text{en caso contrario,} \end{cases}$$

las cuales tienes como derivadas débiles,

$$\phi_0' = \begin{cases} \frac{-1}{h}, & \forall x \in (x_0, x_1) \\ 0, & \text{en caso contrario,} \end{cases}$$

$$\phi'_{n+1} = \begin{cases} \frac{1}{h}, & \forall x \in (x_n, x_{n+1}) \\ 0, & \text{en caso contrario.} \end{cases}$$

Entonces tenemos que $\kappa = \sum_{i=0}^{n+1} \kappa(x_i) \phi_i(x) = \sum_{i=0}^{n+1} \kappa_i \phi_i(x)$. Con esto empecemos por calcular K_{ii} ,

$$K_{ii} = a_{\kappa}(\phi_{i}, \phi_{i}) = \int_{0}^{1} \kappa(s)\phi_{i}^{\prime 2}(s)ds$$

$$= \frac{1}{h^{2}} \int_{x_{i-1}}^{x_{i+1}} \kappa_{i-1}\phi_{i-1}(s) + \kappa_{i}\phi_{i}(s) + \kappa_{i+1}\phi_{i+1}(s)ds$$

$$= \frac{1}{h^{2}} \left(\kappa_{i-1}\frac{h}{2} + \kappa_{i}\frac{2h}{2} + \kappa_{i+1}\frac{h}{2}\right)$$

$$= \frac{1}{2h} \left(\kappa_{i-1} + 2\kappa_{i} + \kappa_{i+1}\right),$$

donde hemos usado que

$$\int_{x_{i-1}}^{x_i} \phi_i(s) ds = \int_{x_i}^{x_{i+1}} \phi_i(s) ds = \frac{h}{2}.$$

Finalmente calculamos K_{ii+1} ,

$$K_{ii+1} = a_{\kappa}(\phi_i, \phi_{i+1}) = \int_0^1 \kappa(s) \phi_i'(s) \phi_{i+1}'(s) ds$$

$$= -\frac{1}{h^2} \int_{x_i}^{x_{i+1}} \kappa_i \phi_i(s) + \kappa_{i+1} \phi_{i+1}(s) ds$$

$$= -\frac{1}{h^2} \left(\kappa_i \frac{h}{2} + \kappa_{i+1} \frac{h}{2} \right)$$

$$= -\frac{1}{2h} \left(\kappa_i + \kappa_{i+1} \right).$$

Para ver que $\mathcal{V}_h \subset \mathcal{V}$ es suficiente ver que todo elemento, ϕ_i de la base the \mathcal{V}_h pertenece a \mathcal{V} .

Primero tenemos por definición que $\phi_i(0) = \phi_i(1) = 0$. Veamos que $\phi_i \in L^2(0,1)$,

$$\|\phi_i\|_{L^2}^2 = \int_0^1 \phi_i(x)^2 dx$$

$$= \int_{x_i - h}^{x_i} \left(\frac{x - x_i - h}{h}\right)^2 dx + \int_{x_i}^{x_i + h} \left(\frac{x_i + h - x}{h}\right)^2 dx$$

$$= \frac{1}{h^2} \left(\int_0^{2h} u^2 du\right) = \frac{8h}{3} < \infty.$$

En el ejercicio 2 ya hemos visto que existen las derivadas debiles de ϕ_i , veamos que $\phi_i' \in L^2(0,1)$,

$$\begin{split} \|\phi_i'\|_{L^2}^2 &= \int_0^1 \phi_i'(x)^2 dx \\ &= \int_{x_i - h}^{x_i} \frac{1}{h^2} dx + \int_{x_i}^{x_i + h} \frac{1}{h^2} dx \\ &= \frac{2}{h}, \end{split}$$

por tanto $\|\phi_i'\|_{L^2} < \infty$ si h > 0.

Podemos concluir que $\phi_i \in \mathcal{V}, \forall i \in \{1, ..., n\}$, y por lo tanto $\mathcal{V}_h \subset \mathcal{V}$.

6

La grafica del error L^2 es

La siguiente tabla indica el error L^2 usando n puntos interiores

n	ar ar a
11	$ y - y_h _{L^2}$
11	0.0019789446521015497
21	0.0005764876672852483
31	0.0002693026999544415
41	0.0001551708338519879
51	0.0001007010259283127

Para estudiar la convergencia usamos la siguiente grafica, que muestra el error de la solucion dividido entre h^k

Vemos que el error no es estable para $h^3,$ para asegurarnos veamos mas de cerca h^2

Para h^2 el error si es estable, por lo tanto podemos concluir que la convergencia es de orden $O(h^2)$.

Sea $y \in C^2([0,1])$ tal que -y'' + y = f, multiplicado en ambos lados por $v \in H^1((0,1))$,

$$(-y'' + y)v = fv,$$

integrando a ambos lados,

$$\int_{0}^{1} (-y'' + y)v dx = \int_{0}^{1} fv dx.$$

Aplicando integración por partes,

$$-\int_{0}^{1} y''vdx + \int_{0}^{1} yvdx = \int_{0}^{1} y'v'dx + [y'v]_{x=0}^{x=1} + \int_{0}^{1} yvdx$$

$$= \int_{0}^{1} y'v'dx + [y'(1)v(1) - y'(0)v(0)] + \int_{0}^{1} yvdx$$

$$= \int_{0}^{1} y'v' + yvdx,$$

por tanto $y \in C^2([0,1])$ solución del problema clásico también es solución el problema variacional.

El desarrollo de la sección 1.7 nos lleva a la misma estructura KU=P

$$\begin{pmatrix} a(\phi_1, \phi_1) & \cdots & a(\phi_p, \phi_1) \\ \vdots & \ddots & \vdots \\ a(\phi_p, \phi_1) & \cdots & a(\phi_p, \phi_p) \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_p \end{pmatrix} = \begin{pmatrix} l(\phi_1) \\ \vdots \\ l(\phi_p) \end{pmatrix}$$

En el caso del vector de carga el resultado es el mismo que en el apartado,

$$P_i = l(\phi_i) = \frac{h}{6}(f_{i-1} + f_i + f_{i+1}).$$

Por otro lado para calcular la matriz usaremos,

$$\int_{0}^{1} \phi_{i}' \phi_{i+1}' dx = -\frac{1}{h}, \quad 2 \leq i \leq p$$

$$\int_{0}^{1} (\phi_{i}')^{2} dx = \frac{2}{h}, \quad 1 \leq i \leq p - 1$$

$$\int_{0}^{1} \phi_{i} \phi_{i+1} dx = \frac{h}{6}, \quad 2 \leq i \leq p$$

$$\int_{0}^{1} (\phi_{i})^{2} dx = \frac{2h}{3}, \quad 1 \leq i \leq p - 1$$

$$\int_{0}^{1} (\phi_{p}')^{2} dx = \frac{1}{h},$$

$$\int_{0}^{1} (\phi_{p})^{2} dx = \frac{h}{3}.$$
(3)

Entonces tenemos que, para todo $1 \le i \le p-1$,

$$K_{ii} = a(\phi_i, \phi_i) = \int_0^1 (\phi_i')^2 + (\phi_i)^2 dx = \frac{2}{h} + \frac{2h}{3},$$

para i = p,

$$K_{pp} = a(\phi_p, \phi_p) = \int_0^1 (\phi_p')^2 + (\phi_p)^2 dx = \frac{1}{h} + \frac{h}{3},$$

finalmente para $2 \le i \le p$,

$$K_{i-1i} = a(\phi_{i-1}, \phi_i) = \int_0^1 \phi'_{i-1} \phi'_i + \phi_{i-1} \phi_i dx = -\frac{1}{h} + \frac{h}{6}.$$

La solución de sistema en h=1/20 es

El error de la solución,

h	$ y - y_h _{L^2}$	$ y - y_h _{H^1}$
$\frac{1}{10}$	0.0273981240511847	0.1760585878272073
$\frac{1}{20}$	0.0170630953086795	0.1467514165268919
$\frac{1}{30}$	0.0121585957379206	0.1262226493473558
$\frac{\frac{1}{30}}{\frac{1}{40}}$	0.0094177301604370	0.1129957853054767
$\frac{1}{50}$	0.0076785509658391	0.1019941189517640

 $Finalmente \ analizando \ la \ convergencia \ de \ las \ dos \ normas \ numéricamente, tenemos$

Con lo que podemos concluir que la solución del problema mediante la discretización converge de manera lineal para las dos normas.