## PROFIT MEETS PRECISION:

## APARTMENT PRICING POWERED BY MACHINE LEARNING

Project By Dhika Wahyu Pratama

## STAKEHOLDER



#### PRELIMINARY DATA INFORMATION

The data used comes from **Daegu Apartment**, which contains information about Sale Price Apartment in Daegu. In addition to Sale Price information, this data also includes, Hallway type, Number of Facilities nearby, Number of Facilities in Apartment, Size, Parkinglot, etc.

## PROBLEM STATEMENT

Dengan bertambahnya jumlah unit yang tersedia di pasar, menetapkan harga yang tepat menjadi semakin penting agar penjualan tetap kompetitif tanpa mengorbankan potensi keuntungan

## Objective

- Membangun alat prediksi harga jual/sewa apartemen berbasis machine learning.
- Membantu pemilik apartemen menentukan harga yang sesuai berdasarkan fitur properti.
- Menyediakan estimasi harga yang adil, akurat, dan mudah digunakan.
- Mendukung peningkatan pendapatan perusahaan melalui pemanfaatan prediksi harga yang optimal.

## Target

- Menentukan harga jual properti yang tepat untuk tiap properti yang baru akan mereka jual
- Mencapai RMSE, MAE, dan MAPE serendah mungkin untuk memastikan akurasi prediksi harga properti.

# Data Understanding & Data Cleaning

## **Dataset Variable**

| Nama Fitur                  | Deskripsi                                                    |
|-----------------------------|--------------------------------------------------------------|
| Hallway Type                | Tipe lorong atau jenis apartemen berdasarkan desain bangunan |
| TimeToSubway                | Waktu tempuh menuju stasiun subway terdekat (dalam menit)    |
| SubwayStation               | Nama stasiun subway terdekat                                 |
| N_FacilitiesNearBy (ETC)    | Jumlah fasilitas umum lainnya di sekitar apartemen           |
| N_FacilitiesNearBy          | Tumlah kantar namarintahan di sakitar anartaman              |
| (PublicOffice)              | Jumlah kantor pemerintahan di sekitar apartemen              |
| N_SchoolNearBy (University) | Jumlah universitas di sekitar apartemen                      |
| N_Parkinglot (Basement)     | Jumlah tempat parkir bawah tanah (basement) yang tersedia    |
| YearBuilt                   | Tahun pembangunan apartemen selesai                          |
| N_FacilitiesInApt           | Jumlah fasilitas internal apartemen                          |
| Size (sqft)                 | Luas apartemen dalam satuan square feet (kaki persegi)       |
| SalePrice                   | Harga jual apartemen dalam satuan Won (₩)                    |

## DATA UNDERSTANDING

- Total Data Row = **4123**
- Missing Values = 0
- Duplicated Data = 1422
- Data Non Duplicated = 2701
- Outliers = **30**

Clean data = 2671



## Data Analysis

## 1. TYPES OF PROPERTY RELATED TO PRICE



## 2. ACCESSIBILITY RELATED TO PRICE

Proporsi Total Penjualan Berdasarkan Waktu Ke Subway 0-5min



|                    | Total Sales | Total Unit |
|--------------------|-------------|------------|
| TimeToSubway       |             |            |
| 0-5min             | 363266627   | 1230       |
| 5min~10min         | 88830291    | 499        |
| 10min~15min        | 73349303    | 434        |
| 15min~20min        | 61950439    | 408        |
| no_bus_stop_nearby | 21981696    | 100        |

## 2. ACCESSIBILITY RELATED TO PRICE

Proporsi Jumlah Properti Terjual Berdasarkan Tipe Hallway (0-5 menit ke Subway)



## 3. FACILITIES RELATED TO PRICE



TIPE TERRACED
MEMANG MEMILIKI
JUMLAH FASILITAS
YANG CENDERUNG
LEBIH BANYAK
DIBANDINGKAN
DENGAN JENIS
LAINNYA,

## Model Machine Learning

## PREPROCESSING & MODELING

#### SPLITTING DATA

TRAIN: 80%TEST: 20%

#### TRASNFORM DATA

PIPELINE



## ::: MODELING

#### **5 FOLD CROSS VAL**

|     | Model                      | Mean_RMSE     | Std_RMSE    | Mean_MAE      | Std_MAE     | Mean_MAPE | Std_MAPE |
|-----|----------------------------|---------------|-------------|---------------|-------------|-----------|----------|
| 0   | Linear Regression          | -51835.117441 | 2327.952867 | -40989.834230 | 1749.277428 | -0.206764 | 0.009180 |
| 1   | KNN Regressor              | -47994.833522 | 1310.550343 | -37481.299499 | 1104.581336 | -0.195279 | 0.009442 |
| 2   | DecisionTree Regressor     | -44437.000857 | 1417.396295 | -35342.231023 | 935.898694  | -0.177789 | 0.004704 |
| 3   | RandomForest Regressor     | -44430.328193 | 1402.818764 | -35339.101804 | 925.709891  | -0.177870 | 0.004689 |
| 4   | XGBoost Regressor          | -44426.937979 | 1391.609476 | -35320.089998 | 920.807719  | -0.177647 | 0.004731 |
| 5   | Adaboost Regressor         | -53242.152424 | 2052.489493 | -42172.569330 | 1632.716984 | -0.202731 | 0.004559 |
| • 6 | GradientBoosting Regressor | -44281.130447 | 1258.956581 | -35263.863341 | 1009.801476 | -0.177190 | 0.004989 |
| 7   | SVR                        | -45526.877343 | 1203.490612 | -35942.497607 | 918.043380  | -0.181669 | 0.004938 |

- ....
- BEST RMSE
- BEST MAE
- BEST MAPE

## ::: MODELING

#### **TUNING HYPERPARAMETER**

| Hyperparameter        | Nilai-nilai yang Dicoba                |
|-----------------------|----------------------------------------|
| max_depth             | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19      |
| learning_rate         | 0.01, 0.02,, 0.10<br>(increment 0.01)  |
| n_estimators          | 1000, 1100,, 2000<br>(increment 100)   |
| subsample             | 0.2, 0.3,, 0.9 (increment 0.1)         |
| max_leaf_nodes        | 1, 2,, 10                              |
| min_impurity_decrease | 0.0, 0.1,, 1.0 (increment 0.1)         |
| max_features          | 0.1, 0.2,, 0.9, 'sqrt', 'log2', 'auto' |

## MODELING

#### **TUNING HYPERPARAMETER**

#### RandomizedSearchCV best\_estimator\_: Pipeline preprocessing: ColumnTransformer Scaler One Hot remainder ▶ StandardScaler ▶ passthrough OneHotEncoder GradientBoostingRegressor GradientBoostingRegressor(learning\_rate=0.01, max\_depth=7, max\_features=0.30000000000000000, max\_leaf\_nodes=6, min impurity decrease=0.300000000000000004, n\_estimators=1800, random\_state=42, subsample=0.8)

#### **TRAIN**

BEST SCORE RMSE TRAINING

==> 44172.29

#### **TEST**

BEFORE **TH** 

|      | RMSE         | MAE          | MAPE     |
|------|--------------|--------------|----------|
| Grad | 48566.012311 | 39333.243739 | 0.195183 |

#### AFTER **TH**

|      | RMSE         | MAE          | MAPE     |
|------|--------------|--------------|----------|
| Grad | 48839.993243 | 39424.042247 | 0.195126 |

## **MODEL INTERPRETATION**



## MODEL INTERPRETATION

#### **FEATURE IMPORTANCES**





### MODEL INTERPRETATION

#### **SHAP**

Scaler\_\_Size(sqf)

One Hot\_\_HallwayType\_terraced

Scaler\_YearBuilt

Scaler\_\_N\_Parkinglot(Basement)

remainder\_\_N\_FacilitiesNearBy(ETC)

remainder\_\_N\_FacilitiesInApt



High

- SCALER\_SIZE(SQF) → LARGER SIZE = HIGHER PRICE.
- ONE HOT\_HALLWAYTYPE\_TERRACED →
  "TERRACED" HALLWAY TYPE INCREASES VALUE.
- SCALER\_YEARBUILT → NEWER
  CONSTRUCTION YEAR = HIGHER PRICE.
- SCALER\_N\_PARKINGLOT(BASEMENT) → MORE BASEMENT PARKING = HIGHER VALUE.
- REMAINDER\_N\_FACILITIESNEARBY(ETC) → NEARBY FACILITIES BOOST PRICE.
- REMAINDER\_N\_FACILITIESINAPT → MORE FACILITIES, HIGHER VALUE

## Model Machine Learning

## CONCLUSION

#### • Fitur yang Paling Berpengaruh adalah:

- a.Luas apartemen (Size(sqf))
- b.Tipe lorong (HallwayType)
- c. Tahun dibangun (YearBuilt)
- d. Jumlah fasilitas dalam apartemen (N\_facilitiesinApt)
- e.Ketersediaan parkir (ParkingLot)

#### Performa Model

- a. Evaluasi model menggunakan metrik RMSE, MAE, dan MAPE.
- b.MAPE setelah hyperparameter tuning sebesar ~19%, yang berarti prediksi harga rata-rata meleset sekitar 19% dari nilai sebenarnya.

#### Keterbatasan Model

- a. Model masih menunjukkan bias yang cukup tinggi, terlihat dari visualisasi antara harga aktual dan prediksi.
- b.Hal ini kemungkinan besar disebabkan oleh keterbatasan fitur yang tidak merepresentasikan faktor eksternal seperti keamanan lingkungan, akses makanan, dan fasilitas umum sekitar, Pemandangan, Tingkat Kebisingan dan lainnya.

## RECCOMENDATION

#### Lakukan A/B Testing

 Uji efektivitas model terhadap kemungkinan lakunya listing, dibandingkan dengan pengguna yang menentukan harga jual (Sale Price) secara manual.

#### Perkaya Fitur yang Lebih Relevan

Tambahkan fitur yang berkaitan dengan kenyamanan tinggal, seperti:

- Jarak ke pusat kota
- Tingkat kebisingan
- Akses makanan dan fasilitas umum Serta perluas cakupan data apartemen di Daegu untuk meningkatkan kapasitas generalisasi model.

#### • Perbaiki Kualitas dan Kuantitas Data

- Hapus data duplikat untuk menghindari bias
- Jika jumlah data memadai, pertimbangkan penggunaan model yang lebih kompleks seperti Neural Networks (NN)

#### Kembangkan Prediksi Jangka Panjang

 Model saat ini dapat dikembangkan lebih lanjut untuk memprediksi tren harga apartemen di masa depan, membantu pengguna memperkirakan potensi kenaikan nilai properti.

## THANKYOU