Lecture 8: Các đồng hợp nhất được

- Heap nhị phân
- Một heap hợp nhất được (mergeable heap) là một cấu trúc dữ liệu hỗ trợ năm thao tác sau (gọi là các thao tác heap hợp nhất được).
 - MAKE-HEAP() tạo và trả về một heap trống.
 - INSERT(H, x) chèn nút x, mà trường key của nó đã được điền, vào heap H.
 - MINIMUM(H) trả về một con trỏ chỉ đến nút trong heap H
 mà khóa của nó là nhỏ nhất.
 - EXTRACT-MIN(H) tách ra nút có khóa nhỏ nhất khỏi H,
 và trả về một con trỏ chỉ đến nút đó.
 - UNION (H_1, H_2) tạo và trả về một heap mới chứa tất cả các nút của các heaps H_1 và H_2 . Các heaps H_1 và H_2 sẽ bị hủy bởi thao tác này.

Thời gian chạy của các thao tác lên heaps hợp nhất được

■ *n* là số nút của heap

Thủ tục\Heap	· · ·	Binomial heap	Fibonacci heap
	(worst-case)	(worst-case)	(khấu hao)
MAKE-HEAP	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
INSERT	$\Theta(\lg n)$	$O(\lg n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$O(\lg n)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$
UNION	$\Theta(n)$	$O(\lg n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$

Heap nhị thức

■ Heap nhị thức

Heap nhị thức được Vuillemin giới thiệu năm 1978.

Hỗ trợ thêm các thao tác

- DECREASE-KEY(H, x, k) gán vào nút x trong heap H trị mới k của khóa, k nhỏ hơn hay bằng trị hiện thời của khóa.
- DELETE(H, x) xóa nút x khỏi heap H.
- Nhận xét:
 - Heap nhị thức không hỗ trợ thao tác SEARCH hữu hiệu.
 - Do đó, các thao tác DECREASE-KEY và DELETE cần một con trỏ đến nút cần được xử lý.

Định nghĩa cây nhị thức

- $C\hat{a}y$ nhi thức B_k với k = 0, 1, 2,... là một cây có thứ tự được định nghĩa đệ quy:
 - Cây nhị thức B_0 gồm một nút duy nhất.
 - Cây nhị thức B_k gồm hai cây nhị thức B_{k-1} được *liên kết* với nhau theo một cách nhất định:

• Nút gốc của cây này là con bên trái nhất của nút gốc của cây

kia.

 \bigcirc

 B_0

Định nghĩa cây nhị thức

độ sâu

- Lemma (Đặc tính của một cây nhị thức) Cây nhị thức B_k có các tính chất sau:
 - 1. có 2^k nút,
 - 2. chiều cao của cây là k,
 - 3. có đúng $\binom{k}{i}$ nút tại độ sâu i với i = 0, 1, ..., k
 - 4. bậc của nút gốc của cây là k, nó lớn hơn bậc của mọi nút khác; ngoài ra nếu các con của nút gốc được đánh số từ trái sang phải bằng k-1, k-2,..., 0, thì nút con i là gốc của cây con B_i .

$$\binom{k}{i} = \frac{k!}{i!(k-i)!} \quad \text{hệ số nhị thức (tổ hợp chập i từ k phần tử)}$$

Chứng minh

Dùng quy nạp theo k.

Bước cơ bản: dễ dàng thấy các tính chất là đúng cho $B_0-2^0=1$ nút Bước quy nạp: giả sử lemma là đúng cho B_{k-1} .

- 1. Cây nhị thức B_k gồm hai B_{k-1} nên B_k có $2^{k-1} + 2^{k-1} = 2^k$ nút.
- 2. Do cách liên kết hai cây nhị thức B_{k-1} với nhau để tạo nên B_k nên độ sâu tối đa của nút trong B_k bằng độ sâu tối đa của nút trong B_{k-1} cộng thêm 1, tức là: (k-1)+1=k.

Chứng minh (tiếp)

3. Gọi D(k, i) là số các nút tại độ sâu i của cây nhị thức B_k .

$$D(k,i) = D(k-1,i) + D(k-1,i-1)$$

$$= {\begin{pmatrix} k-1 \\ i \end{pmatrix}} + {\begin{pmatrix} k-1 \\ i-1 \end{pmatrix}}$$

$$= {\begin{pmatrix} k \\ i \end{pmatrix}}$$

k1
$$D(k-1,i) = (k-1)!/(i! (k-i-1)!)$$

$$= (k!/k) ((k-i)/(i!(k-i)!))$$

$$D(k-1,i-1) = (k-1)!/((i-1)! (k-i)!)$$

$$= (k!/k) (i/i! (k-i)!)$$

khmt-hung, 11/29/2006

Chứng minh (tiếp)

4. Sử dụng hình sau. Cây B_k gồm hai cây B_{k-1}

^a Hệ quả (Corollary)

Bậc tối đa của một nút bất kỳ trong một cây nhị thức có n nút là $\lg 2(n)$. Vì $n=2^k$ ---- k là bậc của nút gốc (là bậc tối đa)

Định nghĩa heap nhị thức

- ^a **Định nghĩa:** Một <u>heap</u> nhị thức H là một tập các cây nhị thức thỏa mãn các *tính chất heap nhị thức* sau:
 - 1. Mọi cây nhị thức trong H là heap-ordered: mọi nút đều có khóa
 lớn hơn hay bằng khóa của nút cha của nó.
 - 2. Với mọi số nguyên $k \ge 0$ cho trước thì có nhiều nhất một cây nhị thức trong H mà gốc của nó có bậc là k.

Tính chất của heap nhị thức

■ Tính chất

- 1. Gốc của một cây trong một heap nhị thức chứa khóa nhỏ nhất trong cây.
- 2. Một heap nhị thức H với n nút gồm nhiều nhất là $\lfloor \lg 2(n) \rfloor + 1$ cây nhị thức.

Chứng minh

- 1. Hiển nhiên.
- 2. n có biểu diễn nhị phân duy nhất, biểu diễn này cần $\lfloor \lg n \rfloor + 1$ bits, có dạng $\langle b_{\lfloor \lg n \rfloor}, b_{\lfloor \lg n \rfloor 1}, ..., b_0 \rangle$ sao cho

$$n = \sum_{i=0}^{\lfloor \lg n \rfloor} b_i 2^i$$

$$10 = \boxed{1 \quad 0 \quad 1 \quad 0}$$

Cùng với định nghĩa 2, ta thấy cây nhị thức Bi xuất hiện trong H nếu và chỉ nếu bi = 1. => Với n=10 thì trong heap có 2 cây nhị thức là B1 và B3

Biểu diễn heap nhị thức

Biểu diễn heap nhị thức

Qui tắc trữ cho mỗi cây nhị thức trong một heap nhị thức:

- biểu diễn theo kiểu "Bên trái là con, bên phải là anh em" (leftchild, right-sibling representation)
- Mỗi nút *x* có một trường sau
 - key[x]: trữ khóa của nút.

và các con trỏ sau:

- -p[x]: trữ con trỏ đến nút cha của x.
- *child*[x]: con trỏ đến con bên trái nhất của x.
 - Nếu x không có con thì child[x] = NIL
- sibling[x]: con trỏ đến anh em của x ở ngay bên phải x.
 - Nếu x là con bên phải nhất của cha của nó thì sibling[x] = NIL.

Biểu diễn heap nhị thức (tiếp)

- Ngoài ra mỗi nút x còn có một trường sau
 - degree[x]: bậc của x (= số các con của x)
- Các gốc của các cây nhị thức trong một heap nhị thức được tổ chức thành một danh sách liên kết, gọi là *danh sách các gốc* của heap nhị thức.
 - Khi duyệt danh sách các gốc của một heap nhị thức thì các bậc của các gốc theo thứ tự tăng dần.
 - Nếu x là một gốc thì sibling[x] chỉ đến gốc kế đến trong danh sách các gốc.
- Để truy cập một heap nhị thức *H*
 - head[H]: con trỏ chỉ đến gốc đầu tiên trong danh sách các gốc của
 H.
 - head[H] = NIL n'eu H không có phần tử nào.

Tạo một heap nhị thức

■ Thủ tục để tạo một heap nhị thức mới:

MAKE-BINOMIAL-HEAP

- Tạo một đối tượng H với head[H] = NIL.
- có thời gian chạy là $\Theta(1)$.

Tìm khóa nhỏ nhất

- Thủ tục để tìm khóa nhỏ nhất trong một heap nhị thức *H* có *n* nút: BINOMIAL-HEAP-MINIMUM
 - trả về một con trỏ đến nút có khóa nhỏ nhất.

```
BINOMIAL-HEAP-MINIMUM(H)

1  y \leftarrow \text{NIL}

2  x \leftarrow head[H]

3  min \leftarrow \infty

4  while \ x \neq \text{NIL}

5  do \ if \ key[x] < min

6  then \ min \leftarrow key[x]

7  y \leftarrow x

8  x \leftarrow sibling[x]

9  return \ y
```

– Thời gian chạy của thủ tục là $O(\lg n)$ vì cần kiểm tra nhiều nhất là $\lfloor \lg n \rfloor + 1$ nút gốc.

k3 Nếu có n nút thì suy ra có tối đa là $\lg 2(n) + 1$ cây nhị thức khmt-hung, 11/29/2006

Liên kết hai cây nhị thức

■ Thủ tục để liên kết hai cây nhị thức:

BINOMIAL-LINK

– liên kết cây nhị thức B_{k-1} có gốc tại nút y vào cây nhị thức B_{k-1} có gốc tại nút z để tạo ra cây nhị thức B_k . Nút z trở thành gốc của một cây B_k .

BINOMIAL-LINK(y, z)

- 1 $p[y] \leftarrow z$ 2 $sibling[y] \leftarrow child[z]$ 3 $child[z] \leftarrow y$ 4 $degree[z] \leftarrow degree[z] + 1$

– Thời gian chạy của thủ tục là O(1).

Hòa nhập hai heap nhị thức

■ Thủ tục để hòa nhập (merge) danh sách các gốc của heap nhị thức H_1 và danh sách các gốc của heap nhị thức H_2 :

BINOMIAL-HEAP-MERGE(H_1, H_2)

- hòa nhập các danh sách các gốc của H_1 và H_2 thành một danh sách các gốc duy nhất mà thứ tự các bậc là tăng dần.
- nếu các danh sách các gốc của H_1 và H_2 có tổng cộng là m gốc, thì thời gian chạy của thủ tục là O(m).

Các trường hợp xảy ra trong Binomial-Heap-Union

k4 các cây Bk và Bt (t>k) khmt-hung, 11/29/2006

Hợp hai heap nhị thức

■ Thủ tục để hợp hai heap nhị thức:

```
BINOMIAL-HEAP-UNION
```

- hợp nhất hai heap nhị thức H_1 và H_2 và trả về heap kết quả.

```
BINOMIAL-HEAP-UNION(H_1, H_2)
      H \leftarrow \text{Make-Binomial-Heap}()
      head[H] \leftarrow BINOMIAL-HEAP-MERGE(H_1, H_2)
3
     // Giải phóng H1 và H2
     if head[H] = NIL
5
         then return H
     prev-x \leftarrow NIL
     x \leftarrow head[H]
     next-x \leftarrow sibling[x]
```

Hợp hai heap nhị thức

(tiếp)

```
while next-x \neq NIL
10
        do if (degree[x] \neq degree[next-x]) hay
                      (sibling[next-x] \neq NIL
                       valthing[next-x]] = degree[x]
                                                                 ▷ Trường hợp 1 và 2
11
              then prev-x \leftarrow x
12

▷ Trường hợp 1 và 2

                    x \leftarrow next-x
13
              else if key[x] \le key[next-x]
14
                      then sibling[x] \leftarrow sibling[next-x]
                                                                 ▶ Trường hợp 3
15
                            BINOMIAL-LINK(next-x, x)
                                                                 ▶ Trường hợp 3
16

    ▷ Trường hợp 4

                      else if prev-x = NIL
17

    ▷ Trường hợp 4

                              then head[H] \leftarrow next-x
18
                              else sibling[prev-x] \leftarrow next-x > Trường hợp 4
19
                            BINOMIAL-LINK(x, next-x)

    ▷ Trường hợp 4

20

    ▷ Trường hợp 4

                            x \leftarrow next-x
21
            next-x \leftarrow sibling[x]
22 return H
```

Ví dụ thực thi BINOMIAL-HEAP-UNION

Ví dụ thực thi BINOMIAL-HEAP-UNION (tiếp)

Phân tích BINOMIAL-HEAP-UNION

- Thời gian chạy của BINOMIAL-HEAP-UNION là $O(\lg n)$, với n là số nút tổng cộng trong các heaps H_1 và H_2 . Đó là vì
 - Gọi n_1 là số nút của H_1 , và n_2 là số nút của H_2 , ta có $n=n_1+n_2$.
 - Do đó H_1 chứa tối đa $\lfloor \lg n_1 \rfloor + 1$ nút gốc, và H_2 chứa tối đa $\lfloor \lg n_2 \rfloor + 1$ nút gốc. Vậy BINOMIAL-HEAP-MERGE chạy trong thời gian $O(\lg n)$.
 - H chứa tối đa $\lfloor \lg n_1 \rfloor + \lfloor \lg n_2 \rfloor + 2 = O(\lg n)$ nút ngay sau khi thực thi xong BINOMIAL-HEAP-MERGE. Do đó vòng lặp **while** lặp tối đa $\lfloor \lg n_1 \rfloor + \lfloor \lg n_2 \rfloor + 2$ lần, mỗi lần lặp tốn O(1) thời gian.

Chèn một nút

■ Thủ tục để chèn một nút vào một heap nhị thức: BINOMIAL-HEAP-INSERT

- chèn một nút x vào một heap nhị thức H, giả sử đã dành chỗ cho x và khóa của x, key[x], đã được điền vào.

```
BINOMIAL-HEAP-INSERT(H, x)

1 H' \leftarrow \text{Make-Binomial-Heap}()

2 p[x] \leftarrow \text{NIL}

3 child[x] \leftarrow \text{NIL}

4 sibling[x] \leftarrow \text{NIL}

5 degree[x] \leftarrow 0

6 head[H'] \leftarrow x

7 H \leftarrow \text{Binomial-Heap-Union}(H, H')
```

– Thời gian chạy của thủ tục là $O(\lg n)$.

Tách ra nút có khóa nhỏ nhất

- Thủ tục để tách ra nút có khóa nhỏ nhất khỏi heap nhị thức: BINOMIAL-HEAP-EXTRACT-MIN
 - đem nút có khóa nhỏ nhất khỏi heap nhị thức H và trả về một con trỏ chỉ đến nút được tách ra.

BINOMIAL-HEAP-EXTRACT-MIN(H)

- 1 tìm trong danh sách các gốc của H gốc x có khóa nhỏ nhất, và đem x ra khỏi danh sách các gốc của H
- 2 $H' \leftarrow \text{Make-Binomial-Heap}()$
- 3 đảo ngược thứ tự của các con của *x* trong danh sách liên kết của chúng, và gán vào *head[H']* con trỏ chỉ đến đầu của danh sách có được
- 4 $H \leftarrow \text{BINOMIAL-HEAP-UNION}(H, H')$
- 5 return x

Tách ra nút có khóa nhỏ nhất

(tiếp)

- Thời gian chạy của thủ tục là $O(\lg n)$ vì nếu H có n nút thì mỗi dòng từ 1 đến 4 thực thi trong thời gian $O(\lg n)$.

Ví dụ thực thi Binomial-Heap-Extract-Min

Giảm khóa

■ Thủ tục để giảm khóa của một nút trong một heap nhị thức thành một trị mới:

BINOMIAL-HEAP-DECREASE-KEY

giảm khóa của một nút x trong một heap nhị thức H thành một trị
 mới k.

Giảm khóa

- Tính chất *heap-ordered* của cây chứa *x* phải được duy trì!

```
BINOMIAL-HEAP-DECREASE-KEY(H, x, k)
     if k > key[x]
         then error "khóa mới lớn hơn khóa hiện thời"
 3 \quad key[x] \leftarrow k
 4 y \leftarrow x
 5 z \leftarrow p[y]
    while z \neq \text{NIL và } key[y] < key[z]
           do đổi chỗ key[y] \leftrightarrow key[z]
               Nếu y và z có thông tin phụ thì cũng đổi chỗ chúng
 9
               y \leftarrow z
               z \leftarrow p[y]
10
```

- Thời gian chạy của thủ tục là $O(\lg n)$: vì x có độ sâu tối đa là $\lfloor \lg n \rfloor$ nên vòng lặp **while** (dòng 6-10) lặp tối đa $\lfloor \lg n \rfloor$ lần.

Ví dụ thực thi BINOMIAL-HEAP-DECREASE-KEY

Xóa một khóa

■ Thủ tục để xóa khóa của một nút *x*:

BINOMIAL-HEAP-DELETE

- xóa khóa của một nút x khỏi heap nhị thức H.

BINOMIAL-HEAP-DELETE(H, x)

- 1 BINOMIAL-HEAP-DECREASE-KEY($H, x, -\infty$)
- 2 BINOMIAL-HEAP-EXTRACT-MIN(H)

- Thời gian chạy của thủ tục là $O(\lg n)$.

Bài toán cây khung nhỏ nhất

- 1. Cho G=(V,E) là đồ thị vô hướng liên thông với tập đỉnh V={1,2,...,n} và tập cạnh E gồm m cạnh. Mỗi cạnh được gán một giá trị thực c(e) độ dài của cạnh.
- 2. Bài toán đặt ra là tìm cây khung có độ dài nhỏ nhất.
- 3. Thuật toán Kruskal: Ban đầu cho T=rỗng, tìm cạnh nhỏ nhất trong E ghép cạnh này vào T nếu không tạo ra chu trình. Đến khi trong T có n-1 cạnh thì T chính là cây khung tối thiểu.
- 4. Thuật toán Prim: (phương pháp lân cận gần nhất). Xuất phát từ một đỉnh tùy ý s, y là một đỉnh lân cận gần nhất của s. Tiếp tục như thế với 2 đỉnh s và y ta lại tìm một đỉnh z lân cận gần nhất của 2 đỉnh này ... Tiếp tục cho đến khi ta thu được n đỉnh.

THUẬT TOÁN TÌM CÂY KHUNG NHỎ NHẤT SỬ DỤNG ĐỐNG NHỊ THỨC

Giả sử có một đồ thị vô hướng liên thông G=(V,E) với hàm trọng số $w:E \to R$.

Ta gọi w(u,v) là trọng số của cạnh (u,v). Ta muốn tìm một khung nhỏ nhất với G: một tập hợp con các cây khung $T \subseteq E$ liên thông tất cả các đỉnh trong V có tổng trọng số là nhỏ nhất.

Thuật toán tìm cây khung tối thiểu T:

11

12

MST-MERGEABLE-HEAP(G)

Ta gọi $\{Vi\}$ là một phân hoạch các đỉnh của V và với mỗi tập Vi, ta có một tập hợp $Ei \subseteq \{(u,v): u \in V \text{ và } v \in Vi.$

 $Vi \leftarrow Vi \cup Vj$, huỷ Vj

 $Ei \leftarrow Ei \cup Ei$

```
1 T \leftarrow \emptyset

2 For mỗi đỉnh vi \in V[G] do

3 Vi \leftarrow \{vi\}

4 Ei \leftarrow \{(vi,v) \in E[G]\}

5 While còn có nhiều hơn một tập đỉnh Vi do

6 chọn bất kỳ tập đỉnh Vi

7 trích cạnh có trọng số cực tiểu (u,v) từ Ei

8 với u \in Vi và v \in Vj

9 If i \neq j then

10 T \leftarrow T \cup \{(u,v)\}
```

Khai báo cấu trúc

```
BinomialEdge
 struct
         { int u,v; // đỉnh u, v
          int key; // {trọng số cạnh w(u,v)}
          int degree; // số nút con
         struct BinomialEdge* child;
         struct BinomialEdge* sibling;
         struct BinomialEdge* parent;
// Danh sách các đống nhị thức
BinomialEdge* E [N];
```

Thuật toán chi tiết trên cấu trúc đồng nhị thức

```
MST-MERGEABLE-HEAP(G)
    T \leftarrow \emptyset
    For mỗi đỉnh vi \in V[G]
                                              do
           Vi \leftarrow \{vi\}
           Ei \leftarrow Make-Binomial-Heap()
           For
                   (vi,v) \in E[G] do
                     Binomial-Heap-Insert((vi, v), Ei)
6
     While có hơn một tập đỉnh Vi do
           chọn bất kỳ tập đỉnh Vi \neq \emptyset
8
           (u,v) \leftarrow Binomial-Heap-Extract-Min(Ei)
9
           v \acute{o} i \ u \in Vi \ v \grave{a} \ v \in Vj \ \{t \grave{i} m \ t \grave{a} p \ Vj \}
10
11
           If i \neq j then
12
                       T \leftarrow T \cup \{(u,v)\}
                       Vi \leftarrow Vi \cup Vj, huỷ Vj
13
                       Ei \leftarrow Binomial-Heap-Union(Ei,Ej)
14
```

Bài tập

- 1. Thực hiện từng bước thuật toán trên với một bài toán cụ thể.
- 2. Cài đặt thuật tóan Prim với Binomial Heap trên (C++; C#, Java)