In questo testo $\log x$ indica il logaritmo in base e

(A) Domande.

Stabilire se le seguenti affermazioni sono vere o false e giustificare la propria risposta:¹

- 1. L'insieme $A = \{\frac{3n^2+1}{2n^2}, n \in \mathbb{N}\}$ ammette estremo inferiore in \mathbb{R} e vale inf $A = \frac{3}{2}$.
- 2. Vale che $\lim_{n\to\infty} \sqrt[n]{n+3^n} = 2$.
- 3. Se $f: \mathbb{R} \to \mathbb{R}$ è derivabile e strettamente crescente allora f'(x) > 0 per ogni $x \in \mathbb{R}$.

(B) Esercizi.

- 1. (a) Studiare la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = xe^{1-x^2}$ e tracciarne il grafico.
 - (b) Determinare, se esistono, tutti i valori di $\alpha \in \mathbb{R}$ per i quali l'equazione seguente ha esattamente una soluzione

$$xe^{1-x^2} = \alpha.$$

2. Dimostrare che

$$\lim_{x \to +\infty} \frac{\log x}{\sqrt{x}} = 0$$

e poi studiare la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{\log n}{n^2 + n}.$$

3. Calcolare esplicitamente il seguente integrale improprio

$$I = \int_0^4 \frac{x+8}{(x+4)\sqrt{x}} \, dx$$

 $[suggerimento:\ usare\ una\ opportuna\ sostituzione]$

¹giustificare tramite un argomento o dimostrazione, o negare tramite un controesempio