Examen No. 2 - Paralelo A

NOMBRE:	_ CALIFICACIÓN:

Asignatura: Leyes Físicas III - Fecha: 15 de mayo de 2018 - Créditos: 10 puntos a ponderarse.

PARTE A - 40 minutos:

Escoja la respuesta correcta a cada una de las siguientes preguntas y <u>justifique</u> brevemente su selección en el espacio en blanco asignado a cada pregunta.

1. (0.5 puntos)

¿Qué sucede con la energía mecánica de un objeto en movimiento si no todas las fuerzas aplicadas sobre él son conservativas?

- A. Aumenta
- B. Disminuye
- C. Permanece constante
- D. Se conserva
- E. Se duplica

2. **(0.5 puntos)**

Para cuadruplicar la energía cinética de una partícula, su rapidez debe:

- A. Reducirse a la mitad
- B. Duplicarse
- C. Cuadruplicarse
- D. Aumentarse en un 25%
- E. Reducirse en un 25%

3. **(0.5 puntos)**

Una persona de $62 \,\mathrm{kg}$ camina a una rapidez de $2 \,\mathrm{m \, s^{-1}}$. ¿Cuál es el módulo de su cantidad de movimiento?

- A. $124 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-1}$
- B. 124 N
- C. $124 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2}$
- D. $248 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-1}$
- $E. 248 \, kg \, m \, s^{-2}$

4. (0.5 puntos)

Un jugador de hockey, que pesa 72 kg (sin casco), se encuentra inicialmente en reposo sobre una pista de hielo sin fricción. El jugador se quita el casco de $1.5\,\mathrm{kg}$ y lo arroja horizontalmente, por lo cual, el jugador retrocede con una velocidad de $-0.3\,\vec{\imath}\,\mathrm{m\,s^{-1}}$ en dirección contraria a la del lanzamiento. ¿Con qué velocidad fue arrojado el casco?

- A. $+6.25 \times 10^{-3} \, \vec{i} \,\mathrm{m \, s^{-1}}$
- B. $+14.4 \,\vec{i} \,\mathrm{m \, s^{-1}}$
- C. $-14.4 \,\vec{i} \,\mathrm{m \, s^{-1}}$
- D. $+160 \,\vec{i} \,\mathrm{m \, s^{-1}}$
- E. $+32.4 \, \vec{i} \,\mathrm{m \, s^{-1}}$

5. (0.5 puntos)

Una bomba eléctrica es capaz de elevar $500\,\mathrm{kg}$ de agua a una altura de $25\,\mathrm{m}$ en $50\,\mathrm{s}$. ¿Cuál es la potencia útil de la bomba?

- A. 122500 J
- B. 2450 J
- C. 2450 watt
- D. -2450 watt
- E. 98 watt

6. (0.5 puntos)

¿Cuál es la ventaja mecánica ideal de la palanca de la figura a continuación?

7. (0.5 puntos)

Un sistema masa-resorte horizontal con movimiento armónico simple (M.A.S.) tiene máxima velocidad en:

- A. La máxima elongación
- B. La amplitud
- C. La mitad de la amplitud
- D. Un tercio de la amplitud
- E. La posición de equilibrio

8. (0.5 puntos)

Un cuerpo de 15 kg se eleva desde el piso hasta una altura de 10 m sobre él. Calcule el trabajo realizado por el peso del cuerpo en ese trayecto.

- A. $-1470 \,\mathrm{J}$
- B. $+1470 \,\mathrm{J}$
- C. -150 J
- D. +150 J
- E. 0 J

9. **(1 punto)**

Deduzca una expresión para la fuerza \vec{F} aplicada sobre una partícula, cuya función de energía potencial en dos dimensiones viene dada por: $U(x,y)=x^3\,y^2-x^2+y\,[{\rm J}]$

NOMBRE:	

PARTE B - 1 hora 20 minutos:

Resuelva los siguientes problemas y exprese las respuestas en unidades SI.

10. **(2.5 puntos)**

Un bloque de 30.6 kg de masa desliza desde el reposo hacia abajo del plano inclinado y después sobre un plano horizontal (ver figura), hasta ser detenido por un resorte. Si el resorte es comprimido 30.5 cm por el bloque y el coeficiente de rozamiento cinético en ambos planos es $\mu_k = 0.2$:

- (a) Determinar la constante k del resorte.
- (b) ¿Se conserva la energía mecánica del bloque en el trayecto A-C?

11. **(2.5 puntos)**

Un bloque A de $9\,\mathrm{kg}$ está ligado a dos resortes idénticos de longitud normal $3\,\mathrm{m}$ y de constante $21.25\,\mathrm{N}\,\mathrm{m}^{-1}$. El bloque está en reposo sobre una mesa rugosa y los dos resortes están sujetos a la mesa en M y N. Una bala de $1\,\mathrm{kg}$ golpea al bloque A con una rapidez de $50\,\mathrm{m}\,\mathrm{s}^{-1}$ y se incrusta en él. Con el impacto, el conjunto bala-bloque se mueve hacia la derecha una distancia de $4\,\mathrm{m}$ como se indica en la figura.

- (a) Calcular el coeficiente de rozamiento entre el bloque y la mesa.
- (b) ¿Qué tipo de choque se produjo?

