Kontekstno-neodvisne gramatike za kodiranje in stiskanje podatkov

Janez Podlogar

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

21. 11. 2022

Kodiranje in kod

Slika: Telegrafska tipka in zvočnik

Slika: Braillova pisava

Kodiranje in kod

• Spreminjanje zapisa sporočila imenujemo kodiranje

Kodiranje in kod

- Spreminjanje zapisa sporočila imenujemo kodiranje
- Sistem pravil po katerem se kodiranje opravi imenujemo kod

Morsejeva abeceda je kodiranje črk, števil in ločil s pomočjo zaporedja signalov:

• Dolžina kratkega signala je ena enota

- Dolžina kratkega signala je ena enota
- Dolgi signal je trikrat daljši od kratkega signala

- Dolžina kratkega signala je ena enota
- Dolgi signal je trikrat daljši od kratkega signala
- Razmik med signali znotraj črke je tišina dolžine kratkega signala

- Dolžina kratkega signala je ena enota
- Dolgi signal je trikrat daljši od kratkega signala
- Razmik med signali znotraj črke je tišina dolžine kratkega signala
- Razmik med črkami je tišina dolga tri kratke signale oz. en dolgi signal

- Dolžina kratkega signala je ena enota
- Dolgi signal je trikrat daljši od kratkega signala
- Razmik med signali znotraj črke je tišina dolžine kratkega signala
- Razmik med črkami je tišina dolga tri kratke signale oz. en dolgi signal
- Presledek med besedami je tišina dolga sedmih kratkih signalov

Abeceda in nizi na abecedi

Definicija

- ullet *Abeceda* je končna neprazna množica Σ
- Množica vseh končnih nizov abecede Σ označimo z Σ^*

Abeceda in nizi na abecedi

Definicija

- Abeceda je končna neprazna množica Σ
- Množica vseh končnih nizov abecede Σ označimo z Σ^*

Primer nizov abecede

Naj bo $\Sigma = \{a, b, c\}$ abeceda, potem sta niza

 $ab \in \Sigma^*$, cababcccababcccab $\in \Sigma^*$

Kodiranje in dekodiranje

Definicija

• Kodiranje nizov abecede Σ je injektivna funkcija $\kappa \colon \Sigma^* \to \Sigma^*_c$

Kodiranje in dekodiranje

Definicija

- Kodiranje nizov abecede Σ je injektivna funkcija $\kappa \colon \Sigma^* \to \Sigma^*_c$
- *Dokodiranje kodiranja* κ je funkcija $\delta \colon C \subseteq \Sigma_c^* \to \Sigma^*$, da velja

$$\forall w \in \Sigma^* : \delta(\kappa(w)) = w$$

•
$$\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{\bot\}$$

- $\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{\bot\}$
- $\Sigma_c = \{\cdot, -, \square\}$

- $\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{\bot\}$
- $\Sigma_c = \{\cdot, -, \square\}$
- $\kappa_s \colon \Sigma \to \Sigma_c^*$

Kodna funkcija črk κ_s

• Vrednosti funkcije so določene s tabelo

• Dodatno $\kappa_s(\Box) = \Box \Box \Box$

- $\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{\bot\}$
- $\Sigma_c = \{\cdot, -, \square\}$
- $\kappa_s \colon \Sigma \to \Sigma_c^*$
- $\kappa(w) = \kappa_s(a_1) \square \square \square \square \kappa_s(a_2) \square \square \square \square \cdots \kappa_s(a_n)$

Morsov kod

•
$$\Sigma = \{A, B, \dots, Z\} \cup \{0, 1, \dots, 9\} \cup \{\bot\}$$

•
$$\Sigma_c = \{\cdot, -, \square\}$$

•
$$\kappa_s \colon \Sigma \to \Sigma_c^*$$

•
$$\kappa(w) = \kappa_s(a_1) \square \square \square \square \kappa_s(a_2) \square \square \square \square \cdots \kappa_s(a_n)$$

Primer kodiranja z Morsejevo abecedo

Definicija

Stiskanje je kodiranje K za katerega velja

$$\exists n \in \mathbb{N} \ \forall w \in \Sigma^* \colon |w| \ge n \implies |\kappa(w)| \ll |w|$$

Primer stiskanja niza

• Za abecedo vzemimo $\Sigma = \{a, b, c\}$ in stisnimo niz

w = cababcccababcccab

Primer stiskanja niza

ullet Za abecedo vzemimo $\Sigma = \{a,b,c\}$ in stisnimo niz

$$w = cababcccababcccab$$

• Uvedemo oznaki A = ab in B = ccc

$$w = cAABAABA$$

Primer stiskanja niza

• Za abecedo vzemimo $\Sigma = \{a, b, c\}$ in stisnimo niz

$$w = cababcccababcccab$$

• Uvedemo oznaki A = ab in B = ccc

$$w = cAABAABA$$

• Uvedemo novo spremeljivko C = AAB

$$w = cCCA$$

Primer stiskanja niza

Prešnji postopek zapišemo na sledeč način

$$S \rightarrow cCCA$$
.

$$A \rightarrow ab$$
,

$$B \rightarrow ccc$$
,

$$C \rightarrow AAB$$

Definicija

Definicija

Kontektsno-neodvisna gramatika je četverica $G = (V, \Sigma, P, S)$, kjer je

• V končna množica nekončnih simbolov

Definicija

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov

Definicija

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov
- $P \subseteq V \times (V \cup \Sigma)^*$ celovita relacija

Definicija

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov
- $P \subseteq V \times (V \cup \Sigma)^*$ celovita relacija
- $S \in V$ začetni simbol

Definicija

Kontektsno-neodvisna gramatika je četverica $G = (V, \Sigma, P, S)$, kjer je

- V končna množica nekončnih simbolov
- abeceda Σ množica končnih simbolov
- $P \subseteq V \times (V \cup \Sigma)^*$ celovita relacija
- $S \in V$ začetni simbol

Definicija

Jezik kontekstno-neodvisne gramatike G je množica vseh nizov, ki jih lahko izpeljemo z gramatiko G, označimo ga z L(G).

Stiskanje niza w = cababcccababcccab

Naj bo
$$G_w = (V, \Sigma, P, S)$$
, kjer je

Stiskanje niza w = cababcccababcccab

Naj bo
$$G_w = (V, \Sigma, P, S)$$
, kjer je

•
$$V = \{S, A, B, C\}$$

$$L(G) = \{w\}$$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$

$$L(G) = \{w\}$$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$

$$L(G) = \{w\}$$

Stiskanje niza w = cababcccababcccab

Naj bo $G_w = (V, \Sigma, P, S)$, kjer je

- $V = \{S, A, B, C\}$
- $\Sigma = \{a, b, c\}$
- $P = \{S \rightarrow cCCA, A \rightarrow ab, B \rightarrow ccc, C \rightarrow AAB\}$
- \bullet S=S

$$L(G) = \{w\}$$