

East West University Department of Computer Science and Engineering Course Outline Fall 2022 Semester

Course: CSE103 Structured Programming

Credits and Teaching Scheme

cicuits and i	cuis and Teaching Scheme									
	Theory	Laboratory	Total							
Credits	3	1.5	4.5							
Contact	3 Hours/Week for 13 Weeks + Final	3 Hours/Week for 13	6 Hours/Week for 13 Weeks + Final							
Hours	Exam in the 14 th Week	Weeks	Exam in the 14 th Week							

Prerequisite

None

Instructor Information

Instructor: Dr. Maheen Islam, Associate Professor, CSE Dept.

Office: Room # 628

Tel. No.: 09666775577 (hunting) extn. 258

E-mail: maheen@ewubd.edu

TA: TBA

Class Routine an	d Office Hour					
Days	8:30 – 10:00	10:10-11:40	11:50-1:20	1:30-3:00	3:10-4:40	4:50 – 6:20
Sunday	Office Hour	CSE405(4)	CSE103(7)	Office Hour		
Monday	CSE103(10)	Office Hour				
Tuesday	Office Hour	CSE405(4)	CSE103(7)		Office Hour	CSE 405(5) LAB
Wednesday	CSE103(10)	Office Hour				
Thursday	CSE 103(7) LAB	CSE 103(10) LAB	CSE 103(10) LAB			

Course Objective

The purpose of this course is to introduce the students to computer programming using structured language. The students will be able to enhance their analyzing and problem-solving skills and use the same for writing programs using C language. Knowledge of this course will be needed as prerequisite knowledge for future courses such as CSE106 Discrete Mathematics, CSE110 Object Oriented Programming, CSE207 Data Structures, CSE246 Algorithms, CSE302 Database Systems, CSE366 Artificial Intelligence, CSE405 Computer Networks and many others.

Knowledge Profile

K2: Conceptually-based mathematics, numerical analysis, statistics, and formal aspects of computer and information science

Learning Domains

Cognitive - C2: Understanding, C3: Applying Psychomotor - P2: Manipulation, P3: Precision

Affective - A2: Responding

Program Outcomes (POs)

PO1: Engineering Knowledge

Complex Engineering Problem Solution

EP1: Depth of knowledge required

EP2: Range of conflicting requirements

Complex Engineering Activities

None

Course Outcomes (COs) with Mappings

After completion of this course students will be able to:

CO	CO Description	PO	Learning Domains	Knowledge Profile	Complex Engineering Problem Solving/ Engineering Activities
CO1	Understand and apply the fundamentals of programming, basics of elementary programming, and different control statements in the target language.	PO1	C2, C3	K2	EP1
CO2	Understand and apply the different types of arrays and functions for implementing structured programs.	PO1	C2, C3	K2	EP1, EP2
CO3	Understand different data structures like pointers, structures, unions, user defined data types, and dynamic memory for implementing structured programs.	PO1	C3	K2	EP1, EP2
CO4	Demonstrate skills to choose appropriate language constructs and data structures to design, build and test realistic, complex application.	PO1	C2, C3 P2, P3 A2	K2	EP1, EP2

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching- Learning	CO		Mark of Cognitive		Exam (Mark)
	Method		Leari		Mark	(Mark)
			Lev	els		
			C2	C3		
Introduction to computers and	Lectures, Class	CO1	2.5		2.5	Midterm
programming languages, data	Discussions,					Exam I
representation in computer, flowchart	Discussions					(15)
construction for problem solving	Outside Class					
Introduction to C Programming (input,	Do	CO1	2.5		2.5	
output, variables, data types, operators,						
expressions, assignments)						
Conditional control statements (if, if-else,	Do	CO1	2.5	2.5	5.0	
nested if-else, switch)						
Loop statement (while, for and	Do	CO1	3.0	3.0	5.0	
dowhile), break and continue						
statements						

Course Topic	Teaching- Learning Method	СО	Mark of Cognitive Learning Levels		CO Mark	Exam (Mark)
			C2	C3		
Introduction to arrays (arrays, declaring arrays, manipulating arrays)	Do	CO2	3.0	4.0	7.0	Midterm Exam II
Nested loop statement	Do	CO1	2.5	3.5	6.0	(20)
Multidimensional array	Do	CO2	3.5	3.5	7.0	
Characters and strings (various types of string manipulation)	Do	CO2	2.5	3.5	5.0	Final (20)
Introduction to functions (function definitions, function prototypes and argument, header files). Solving complex problems in modular fashion using user defined function	Do	CO2		2.5	2.5	
Introduction to recursive definition and solving problem using recursive function	Do	CO2		2.5	2.5	
Pointers (pointer variable declarations, pointer operators, passing arguments to functions by reference with pointers, pointer expressions and pointer arithmetic, arrays of pointers, and function pointers)	Do	CO3		2.5	2.5	
Structures (structure definitions and initialization, accessing structure members, structure with function and pointer)	Do	CO3		2.5	2.5	
File management (files and streams, creating a file, reading data from file, writing data to file, and updating files)	Do	CO3		2.5	2.5	
Dynamic memory allocation and linked lists	Do	CO3		2.5	2.5	

Laboratory Experiments and Assessment Scheme

Experiment	Teaching- Learning Method	СО	Cogr Lear	rk of nitive rning vels	Mark of Psychomotor Learning Levels		Mark of Affective Learning Levels	CO Mark
			C2	C3	P2	P3	A2	
Problem solving using arithmetic operators and conditional control statements	Discussion, Report Writing, Coding and Running Program	CO4	0.5		0.5	0.5	0.5	2
Problem solving using loops	Do	CO4	0.5		0.5	0.5	0.5	2

Problem solving requiring array manipulation	Do	CO4	0.5		0.5	0.5	0.5	2
Problem solving requiring nested loop	Do	CO4		0.5	0.5	0.5	0.5	2
Lab Exam	Individual Lab Exam	CO4		1.5	0.5	0.5	0.5	3
Problem solving requiring multidimensional array	Do	CO4		0.5	0.5	0.5	0.5	2
Problem solving requiring user defined function and string manipulation	Do	CO4		0.5	0.5	0.5	0.5	2
Problem solving involving file input/output	Do	CO4		0.5	0.5	0.5	0.5	2
Problem solving requiring user defined data types	Do	CO4		0.5	0.5	0.5	0.5	2
Lab Exam	Individual Lab Exam	CO4		1.5	0.5	0.5	0.5	3
Total			1.5	5.5	5.0	5.0	5.0	22

M	lini Project							
	Mini Project	Teaching-Learning Method	СО	Mark of Cognitive Learning Level	Mark of Psychomotor Learning Levels		Mark of Affective Learning Level	CO Mark
				С3	P2	Р3	A2	
	Mini Project including Report and Presentation	Group-based, moderately complex electronic circuit building for practical application with report writing and presentation	CO4	8	1	1	1	11

Overall Assessment Scheme

Aggaggmant Awas		C	Other	PO Marks		
Assessment Area	CO1	CO2	CO3	CO4		PO1
Class Participation					5	
Class Test/Quiz					7	
Midterm-I Exam	15					15
Midterm-II Exam	6	14				20
Final Exam		10	10			20

Laboratory Experiments and Lab Exam				22		22
Mini Project & VIVA	0	0	0	11		11
Total	21	24	10	33	12	88

Teaching Materials/Equipment

Text book:

[1] Paul Deitel, Harvey Deitel, C How to Program, 6th Edition, Prentice Hall.

[2] E. Balagurusamy, *Programming in ANSI C*,7th Edition, McGrawHillEducation (India) Private Limited, Chennai, India, 2017.

Lab Manual:

Lab manual will be provided.

Project Description:

Project description will be provided.

Equipment/Software:

Any C/C++ IDE: As example, Visual C++, Code::Block, and/or Dev-C++

Exam Dates

Section	Term I	Term II	Final
7	06.11.2022	04.12.2022	08.01.2023
10	09.11.2022	07.12.2022	11.01.2023

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
97-100	A+	4.00	73-76	C+	2.30
90-96	A	4.00	70-72	С	2.00
87-89	A-	3.70	67-69	C-	1.70
83-86	B+	3.30	63-66	D+	1.30
80-82	В	3.00	60-62	D	1.00
77-79	B-	2.70	Below 60	F	0.00

Academic Code of Conduct

Academic Integrity:

Any form of cheating, plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 20 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be NO make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student misses any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor within 48 hours of the exam time. Proper supporting documents in favor of the reason of missing the exam must be presented with the application.

- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.