What is claimed is:

- 1. An assay for determining the cyclooxygenase-2 activity of a sample comprising the steps of:
 - (a) adding
 - (1) a human osteosarcoma cell preparation,
 - (2) a sample, said sample comprising a putative cyclooxygenase-2 inhibitor, and
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin E₂ produced in step (a).
- 2. An assay for determining the cyclooxygenase-2 activity of a sample according to claim 1 comprising the steps of:
 - (a) adding
 - (1) a human osteosarcoma cell preparation,
 - (2) a sample, said sample comprising a putative cyclooxygenase-2 inhibitor, and
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin E₂ produced in step (a),
 - wherein the cell preparation comprises 10³ to 10⁹ whole cells of osteosarcoma per cc, or 50 to 500 ug of osteosarcoma microsomes per ml of preparation; and 0.1 to 50 µl of arachidonic acid per ml of preparation.
- 3. An assay for determining the cyclooxygenase-2 activity of a sample comprising the steps of:
 - (a) adding
 - (1) a human ostcosarcoma cell preparation,
 - (2) a sample, said sample comprising a putative cyclooxygenase-2 inhibitor, and
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin E₂ produced in step (a)
 - (c) corrolating the amount of prostaglandin E₂ produced with cyclooxygenase-2 activity,
 - wherein the osteosarcoma cell preparation consists essentially of osteosarcoma 143.98.2 microsomes.
- 4. An assay according to claim 3 wherein the osteosarcoma 143.98.2 microsomes are substantially free of endogenous arachidonic acid.
- 5. An assay according to claim 3 wherein the microsomes are contacted with an amount of delipidized scrum protein effective to reduce the amount of endogenous arachidonic acid in the microsomes by a factor of at least approximately
- 6. An assay for determining the cyclooxygenase-2 activity of a sample comprising the steps of:
 - (a) adding
 - (1) a human osteosarcoma cell preparation,
 - (2) a sample, said sample comprising a putative cyclooxygenase-2 inhibitor, and
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin E₂ produced in step (a),
 - (c) corrolating the amount of prostaglandin E₂ produced with cyclooxygenase-2 activity,
 - wherein the human osteosarcoma cell preparation contains no recombinant vector.

- 7. An assay for determining the cyclooxygenase-2 activity of a sample comprising the steps of:
 - (a) adding
 - (1) a human osteosarcoma cell preparation,
 - (2) a sample, said sample comprising a putative cyclooxygenase-2 inhibitor, and
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin E₂ produced in step (a)
 - (c) corrolating the amount of prostaglandin E₂ produced with cyclooxygenase-2 activity,
 - wherein the osteosarcoma cell preparation consists essentially of whole cells of osteosarcoma 143.98.2.
 - 8. A composition comprising:
 - (a) an osteosarcoma cell preparation, having 10³ to 10⁹ osteosarcoma cells per cc of cell preparation or 50 to 500 μg of osteosarcoma microsomes; and
 - (b) 0.1 to 50 μl of arachidonic acid per cc of cell preparation.
- 9. A composition according to claim 8 comprising 8×10⁴ to 2×10⁶ osteosarcoma 143.98.2 whole cells per cc of cell preparation or 100 to 400 µg of osteosarcoma 143.98.2 microsomes; and 10 to 20 µl of peroxide-free arachidonic acid per cc of cell preparation.
- 10. A composition according to claim 9 wherein the microsomes are substantially free of endogenous arachidonic acid.
- 11. An assay for determining the cyclooxygenase-1 activity of a sample comprising the steps of:
 - (a) adding
 - (1) a COX-1 cell preparation,
 - a sample, said sample comprising a putative cyclooxygenase-1 inhibitor;
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin \mathbf{E}_2 produced in step (a)
 - (c) corrolating the amount of prostaglandin E₂ produced with cyclooxygenase-2 activity.
- 12. An assay according to claim 11 wherein the COX-1 cell preparation consists essentially of whole cells of U-937.
- 13. An assay according to claim 11 wherein the COX-1 cell preparation consists essentially of U-937 microsomes.
- 14. An assay for determining the cyclooxygenase-1 activity of a sample according to claim 10 comprising the steps of:
 - (a) adding
 - (1) a COX-1 cell preparation,
 - (2) a sample, said sample comprising a putative cyclooxygenase-1 inhibitor;
 - (3) arachidonic acid; and
 - (b) determining the amount of prostaglandin E₂ produced in step (a),
 - wherein the cell preparation comprises 10⁵ to 10⁸ whole cells of U-937 per cc, or 1 to 10 mg of U-937 microsomes per ml of preparation; and
 - 0.1 to 50 µl of arachidonic acid per ml of preparation.
- 15. An assay according to claim 14 wherein the cell preparation comprises 8×10^8 to 1.5×10^6 whole cells of U-937 per cc, or 1 to 5 mg of U-937 microsomes per ml of preparation.

16. Human Cyclooxygenase-2 cDNA which encodes protein of SEQ ID NO:10.

17. Human cyclooxygenase-2 cDNA according to claim 15 comprising the coding region which is bases 97 to 1909 of FIG. 2 (SEQ. ID. NO. 11:).

18. Human cyclooxygenese-2 which is shown in FIG. 1 (SEQ. ID. NO. 10:).

19. A transformed host that expresses cyclooxygenase-2 as shown in FIG. 1 (SEQ. ID. NO. 10:) comprising:

(a) a mammalian or eukaryotic expression vector; and

(b) a sequence encoding human cyclooxygenase-2 comprising bases 97 to 1909 as shown in FIG. 2 (SEQ ID NO:11) or encodes protein of FIG. 1 (SEQ ID NO:10).

20. A system according to claim 19 wherein the expression vector is a vacinia or baculovirus vector.

21. A system according to claim 19 wherein cyclooxygenase-2 is expressed in COS-7 cells.

. . . .