In [3]: #1. Use the inbuilt dataset 'titanic'. The dataset contains 891 row #about the passengers who boarded the unfortunate Titanic ship. Use #if we can find any patterns in the data.

In [45]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Out[46]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adı
0	0	3	male	22.0	1	0	7.2500	S	Third	man	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	
886	0	2	male	27.0	0	0	13.0000	S	Second	man	
887	1	1	female	19.0	0	0	30.0000	S	First	woman	
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	
889	1	1	male	26.0	0	0	30.0000	С	First	man	
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	

891 rows × 15 columns

4

In [16]: sns.displot(x = dataset['age'], bins = 10)

Out[16]: <seaborn.axisgrid.FacetGrid at 0x7f6f53ab0750>

In [17]: sns.distplot(x = dataset['age'], bins = 10)

<ipython-input-17-0edf267bf961>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level fun ction with

similar flexibility) or `histplot` (an axes-level function for his tograms).

For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(x = dataset['age'], bins = 10)

Out[17]: <Axes: ylabel='Density'>

In [23]: sns.distplot(dataset['age'], bins = 10,kde=False)

<ipython-input-23-f2dca48d8ca1>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level fun ction with

similar flexibility) or `histplot` (an axes-level function for his tograms).

For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(dataset['age'], bins = 10,kde=False)

Out[23]: <Axes: xlabel='age'>

In [24]: sns.jointplot(x = dataset['age'], y = dataset['fare'], kind ='scatt

Out[24]: <seaborn.axisgrid.JointGrid at 0x7f6f5157aa10>

In [26]: sns.jointplot(x = dataset['age'], y = dataset['fare'], kind ='hex')

Out[26]: <seaborn.axisgrid.JointGrid at 0x7f6f51575cd0>

In [27]: sns.rugplot(dataset['fare'])

Out[27]: <Axes: xlabel='fare'>

In [28]: sns.barplot(x='sex', y='age', data=dataset)

Out[28]: <Axes: xlabel='sex', ylabel='age'>

In [29]: sns.barplot(x='sex', y='age', data=dataset, estimator=np.std)

Out[29]: <Axes: xlabel='sex', ylabel='age'>

In [30]: sns.countplot(x='sex', data=dataset)

Out[30]: <Axes: xlabel='sex', ylabel='count'>

In [31]: sns.boxplot(x='sex', y='age', data=dataset)

Out[31]: <Axes: xlabel='sex', ylabel='age'>

In [32]: sns.boxplot(x='sex', y='age', data=dataset, hue="survived")

Out[32]: <Axes: xlabel='sex', ylabel='age'>

In [33]: sns.violinplot(x='sex', y='age', data=dataset)

Out[33]: <Axes: xlabel='sex', ylabel='age'>

In [34]: sns.violinplot(x='sex', y='age', data=dataset, hue='survived')

Out[34]: <Axes: xlabel='sex', ylabel='age'>

In [35]: sns.stripplot(x='sex', y='age', data=dataset, jitter=False)

Out[35]: <Axes: xlabel='sex', ylabel='age'>

In [36]: sns.stripplot(x='sex', y='age', data=dataset, jitter=True)

Out[36]: <Axes: xlabel='sex', ylabel='age'>

In [37]: sns.stripplot(x='sex', y='age', data=dataset, jitter=True, hue='sur

Out[37]: <Axes: xlabel='sex', ylabel='age'>

In [38]: sns.swarmplot(x='sex', y='age', data=dataset)

Out[38]: <Axes: xlabel='sex', ylabel='age'>

In [39]: sns.swarmplot(x='sex', y='age', data=dataset, hue='survived')

Out[39]: <Axes: xlabel='sex', ylabel='age'>

In [73]: numerical_dataset = dataset.select_dtypes(include=np.number)
 numerical_dataset.corr()

out[/J].	0ut	[73]	:
----------	-----	------	---

	survived	pclass	age	sibsp	parch	fare
survived	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
pclass	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
age	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
sibsp	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
parch	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
fare	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [70]: sns.heatmap(numerical_dataset.corr())

Out[70]: <Axes: >

In [71]: | sns.heatmap(numerical_dataset.corr(),annot=True)

Out[71]: <Axes: >

In [76]: sns.heatmap(numerical_dataset)

Out[76]: <Axes: >

In [75]: sns.histplot(dataset['fare'], kde=False, bins=10)

Out[75]: <Axes: xlabel='fare', ylabel='Count'>

In [78]: sns.heatmap(numerical_dataset.corr(), cmap='coolwarm')

Out[78]: <Axes: >

In [80]: sns.heatmap(numerical_dataset, cmap='viridis')

Out[80]: <Axes: >

т. Г 1.	
in i ii	
	