Math 55, Homework 5.

Prob 1. Find a formula for
$$\sum_{k=0}^{m} \lfloor \sqrt[3]{k} \rfloor$$
.

$$\sum_{k=0}^{m} \lfloor k^{1/5} \rfloor = \sum_{i=0}^{m} i |\{0 \le k \le m : \lfloor k^{1/5} \rfloor = i\}|$$

$$= \sum_{i=0}^{\lfloor m^{1/5} \rfloor} i |\{0 \le k \le m : i^{3} \le k \le (i+i)^{3}\}|$$

$$= \sum_{i=0}^{\lfloor m^{1/5} \rfloor - 1} i ((i+1)^{3} - i^{3}) + \lfloor m^{1/5} \rfloor (m - \lfloor m^{1/5} \rfloor^{3} + 1)$$

$$= \sum_{i=0}^{\lfloor m^{1/5} \rfloor - 1} (3i^{3} + 3i^{2} + i) + \lfloor m^{1/5} \rfloor m - \lfloor m^{1/5} \rfloor^{3} + 1)$$

$$= \frac{1}{4} (\lfloor m^{1/5} \rfloor - 1 \lfloor m^{1/5} \rfloor^{2} (3 \lfloor m^{1/5} \rfloor + 1) + \lfloor m^{1/3} \rfloor (m - \lfloor m^{1/5} \rfloor^{3} + 1)$$

Prob 2. (a) Find a recurrence relation for the balance B(k) owed at the end of k months on a loan at a rate r if a payment P is made on the loan each month.

$$B(k) = B(k-1)\left(1+\frac{r}{12}\right) - P$$

(b) Determine what the monthly payment P should be so that the loan is paid off after T months.

$$B(k) = B(0) \left(1 + \frac{r}{12} \right)^{k} - \rho - \rho \left(1 + \frac{r}{12} \right) - \rho \left(1 + \frac{r}{12} \right)^{2} - \dots - \rho \left(1 + \frac{r}{12} \right)^{k-1}$$

$$\rho \frac{\left(1 + \frac{r}{12}\right)^{k} - 1}{\left(1 + \frac{r}{12} - 1\right)} = \frac{|2\rho|}{r} \left(\left(1 + \frac{r}{12}\right)^{k} - 1\right), \quad \delta 0 \qquad \beta(k) = \left(\beta(0) - \frac{|2\rho|}{r}\right) \left(1 + \frac{r}{12}\right)^{k} + \frac{|2\rho|}{r}$$

to pay loan after T months we calculate B(T)=0

$$p = \frac{r \beta(0)}{|2|} \cdot \frac{\left(1 + \frac{r}{12}\right)^T}{\left(1 + \frac{r}{12}\right) - 1}$$

(c) Suppose you take out a fixed-rate mortgage for \$1M at the current (historically low) rate 3% and want to pay it off in 20 years. What monthly payment should you make?

$$P = 2500 \cdot \frac{1.0025^{240}}{1.0025^{240} - 1} \approx 5545.97$$

this shows that the fixed monthly payment should be \$5,545.97 (245,546)

(d) Now suppose the same mortgage of \$1M but you have qualified only for the rate 5% and the maximum monthly payment you can afford is \$5K. How many years will it take you to pay off that mortgage?

$$\left(\frac{|2P|}{r} - \beta(0)\right)\left(1 + \frac{r}{12}\right)^{\mathsf{T}} = \frac{|2P|}{r} \implies \left(1 + \frac{r}{12}\right)^{\mathsf{T}} = \frac{|2P|}{|2P - r\beta(0)|} \implies \mathsf{T} = \frac{\mathsf{In}\left(12P\right) - \mathsf{In}\left(12P - r\beta(0)\right)}{\mathsf{In}\left(1 + \frac{r}{12}\right)}$$

NOW for the values: P=5,000, r=0.05 & B(D)=1,000,000

$$T = \frac{\ln b}{\ln 1.004 \ln b \log 7} \approx 430.918 \approx 35.9 \text{ years}$$

Prob 3. Write down the full addition and multiplication tables for \mathbb{Z}_9 (where addition means $+_9$ and multiplication means \cdot_9).

+0	7	0	(2	3	9	9	6	7	8
-	0	0		2	3	Ч	5	le	7	8
	1	ſ	2	3	4	5	6	7	8	0
_	2	2	3	7	5	6	7	8	D	1
	3	3	Ч	5	b	7	8	D	1	2
	4	4	5	le	7	8	0	(2	3
	5	5	ي	7	8	0	[2	3	4
	6	ه	7	8	Đ	(2	3	Ч	5
	7	7	B	D	٦	2	Ŋ	4	ما	6
_	8	8	ט	(2	3	4	5	Q	7

° (7	0	(2	3	4	9	6	7	8
	0	0	٥	0	Q	О	0	ρ	Ô	บ
		0	į	2	3	Y	5	le	7	8
	2	Q	2	7	6	8	l	3	ഗ	7
	3	D	3	le	0	3	Ŷ	0	3	6
	4	0	4	8	3	7	2	9	8	5
	5	0	5	1	le	2	7	3	8	4
	6	Ø	ی	3	D	6	3	0	Ú	3
	7	б	7	5	3	8	8	le	Y	2
	8	0	8	7	6	Ç	Ч	3	2	1

Prob 4. (a) Prove that, if p is a prime, then all positive integers less than p except for 1 and p-1 can be split into (p-3)/2 pairs such that each pair consists of integers that are inverses of each other modulo p.

the proof of p=2 1s vacuous.

the product of all numbers in the set S is congruent to 1 mod $p \longrightarrow product$ of (p-3)/2 pairs which are inverses of each other

(b) Conclude from part (a) that $(p-1)! \equiv -1 \pmod{p}$ whenever p is prime.

$$(\rho-1)! = 1\left(\mathsf{T}_{j\in S}^{\mathsf{T}}\right)(\rho-1) \equiv 1\left(-1\right) \equiv -1 \pmod{p}$$

(c) What can we conclude if n is a positive integer such that $(n-1)! \not\equiv -1 \pmod n$? If $(n-1)! \not\equiv -1 \pmod n$, then n is composite if n was prime then we would conclude part b

Prob 5. Prove or disprove that there are infinitely many primes of the form 6k+5, $k\in\mathbb{Z}_+$. If there are only finite many primes of bits (represented by p_1,p_2,p_3,\cdots,p_n for $n\in\mathbb{N}$) For example if we think about $b(p_1,\cdots p_n)-1$ and then plug into the equation showing $b(p_1,\cdots p_n-1)+5$. We see that no pe of the primes $p_1,p_2,\cdots p_n$ divide N because N=1 (mod p_j) $\forall j=1,\dots,n$.

case 1: If N is prime then N is not in $(p_j)_{j=1}^n$ be o_j p_j values not dividing into N case 2:

If N is composite then we have to look at the prime divisors. N cannot divide by 2 or 3 because $N = -1 \pmod{4}$

therefore all prime divisors of N are either -1 or 1 (mod 6) from cases shown above. If they were all equal to 1 (mod 6) then N would also have to equal 1 (mod 6) but we saw that $N \equiv -1$ therefore this gives evidence that at least one prime divisors of N is equal to $-1 \equiv 5 \pmod{6}$

through this proof we can see there are infinitely many primes of the form 64+5