ECONOMIA ED ORGANIZZAZIONE AZIENDALE

a.a. 2013/2014 11/04/2014

COGNOME E NOME	NUMERO DI MATRICOLA

Esercizio 1 - Bilancio

In un'azienda si ha la seguente struttura del costo unitario e del costo fisso unitario CFu:

	Costo	CFu
	unitario	
Consumi	4,5	0,0
Manodopera	6,0	5,0
TFR	0,7	0,6
Ammortamenti	3,0	3,0
Costi industriali	1,5	0,5
Spese amministrative	2,0	1,3
Spese commerciali	0,8	0,6
Spese di ricerca	0,9	0,9
Oneri finanziari	0,6	0,6

Il prezzo di vendita è fissato a 24; la capacità produttiva dell'impresa è di 10.000 unità/anno e l'attuale grado di sfruttamento è del 40%.

Si prospetta all'impresa l'opportunità di un aumento delle vendite con la fornitura di 2.500 pezzi in più all'anno per un minimo di 5 anni ad un cliente il quale però chiede che venga effettuata una miglioria sul prodotto. La valutazione economica di questa miglioria implica, secondo le valutazioni effettuate dall'azienda:

- Nuovi impianti per 25.000 da ammortizzare in 5 anni a quote crescenti (serie aritmetica con ragione 2.000);
- Maggiori consumi unitari per 1 euro;
- Maggiori spese di ricerca per 4.000 da ammortizzare in 5 anni a quote costanti.

Determinare, per gli anni 1 e 2, il prezzo minimo a partire dal quale conviene accettare l'offerta del cliente.

Esercizio 2 - Investimenti

Si riportano -per uno stesso investimento - un grafico nel quale è tracciato l'andamento di NPV=f (i), e una tabella nella quale sono mostrati alcuni flussi di cassa. Con i dati presenti in tabella e nel grafico, calcolare i NCF degli anni 0 e 3.

t	NCF _t
0	
1	- 30
2	- 30
3	

Soluzione esercizio 1

Affinchè l'accettazione dell'offerta non implichi un peggioramento della situazione iniziale ΔRO = 0) è necessario che il prezzo p' sia tale da ottenere una relazione del tipo:

$$\Delta RT \ge \Delta CF + \Delta CV$$

Cioé:

 $p_t \cdot \Delta Q \ge \Delta C F_t + C V u' \cdot \Delta Q$

dove:

p_t è l'incognita, cioè il prezzo che varia in ogni anno

 ΔQ è l'incremento di quantità (2.500)

 ΔCF_t è l'incremento dei costi fissi legati all'accettazione del nuovo ordine che si modifica ogni anno essendo la quota di ammortamento crescente nel tempo

CVu' è il nuovo costo variabile unitario, che tiene conto del vecchio CVU e dei maggiori consumi unitari.

Pertanto:

$$CVu' = CVu + 1$$

Per calcolare CVu:

	Costo unitario	CFu	CVu
Consumi	4,5		4,5
Manodopera	6,0	5,0	1,0
TFR	0,7	0,6	0,1
Ammortamenti	3,0	3,0	-
Costi industriali	1,5	0,5	1,0
Spese amministrative	2,0	1,3	0,7
Spese commerciali	0,8	0,6	0,2
Spese di ricerca	0,9	0,9	ı
Oneri finanziari	0,6	0,6	ı
Totale	20,0		7,5

Quindi:

$$CVu' = CVu + 1 = 7,5 + 1 = 8,5$$

Il piano di ammortamento è così fatto:

Anno 1: 1.000

Anno 2: 3.000

Anno 3: 5.000

Anno 4: 7.000

Anno 5: 9.000

Anno 1

$$\Delta CF_1 = 1.000 + \frac{4.000}{5} = 1.000 + 800 = 1.800$$

Quindi:

$$p_1 \cdot \Delta Q \ge \Delta C F_1 + C V u' \cdot \Delta Q$$

$$p_1 \cdot 2.500 \ge 1.800 + 8.5 \cdot 2.500$$

$$p_1 \cdot 2.500 \ge 23.050$$

$$p_1 \ge 9,22$$

Risulta conveniente accettare l'offerta del cliente nella misura in cui il prezzo è maggiore o uguale a 9,22

Anno 2

$$\Delta CF_2 = 3.000 + \frac{4.000}{5} = 3.000 + 800 = 3.800$$

Quindi:

 $p_2 \cdot \Delta Q \geq \Delta C F_2 + C V u' \cdot \Delta Q$

 $p_2 \cdot 2.500 \ge 3.800 + 8.5 \cdot 2.500$

 $p_2 \cdot 2.500 \ge 23.050$

 $p_2 \ge 10,02$

Risulta conveniente accettare l'offerta del cliente nella misura in cui il prezzo è maggiore o uguale a 10,22

Soluzione esercizio 2

t	NCF _t
0	
1	- 30
2	- 30
3	

Il valore 50 rappresenta il NCF all'anno 0: infatti, al tendere del tasso *i* all'infinito, la funzione di NPV si avvicina asintoticamente al valore 50, che è l'unico flusso di cassa a non essere attualizzato, in quanto, appunto, si manifesta all'anno 0.

t	NCF _t
0	+50
1	- 30
2	- 30
3	

Dall'osservazione del grafico è possibile vedere che l'ordinata all'origine (i = 0) della funzione NPV è - 100. Ciò significa che la somma dei flussi di cassa netti (non attualizzati) è 100. In termini generali, risulta infatti che:

$$NPV = I_0 + \frac{NCF_1}{(1+i)} + \frac{NCF_2}{(1+i)^2} + ... + \frac{NCF_t}{(1+i)^t} + ... + \frac{NCF_n}{(1+i)^n}$$

E quindi, con i = 0:

$$NPV = I_{0} + \frac{NCF_{1}}{(1+0)} + \frac{NCF_{2}}{(1+0)^{2}} + ... + \frac{NCF_{t}}{(1+0)^{t}} + ... + \frac{NCF_{n}}{(1+0)^{n}} = I_{0} + NCF_{1} + NCF_{2} + ... + NCF_{t} + ... + NCF_{n}$$

E in termini specifici:

$$NPV = NCF_1 + NCF_2 + NCF_3$$

 $-100 = 50 - 30 - 30 + NCF_3$
 $-90 = NPV_3$

Quindi i NCF dell'investimento risultano i seguenti:

t	NCF _t
0	+50
1	- 30
2	- 30
3	-90