НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет ПИиКТ

Отчёт по лабораторной работе на тему: Решение ОДУ и задачи Коши Усовершенствованный метод Эйлера

> Выполнил студент

Агнистова Алина Юрьевна

Группа № Р3225

Преподаватель: Перл Ольга Вячеславовна

Описание метода и расчётные формулы

Усовершенствованный метод Эйлера — численный метод решения ОДУ (обыкновенных дифференциальных уравнений), который повышает точность аппроксимации решения. Усовершенствованный метод, как и простой метод Эйлера основан на аппроксимации решения ОДУ с использованием касательных к кривой решения. На каждом шаге вычисляется наклон решения в точке и следующее приближенное значение находится с учётом этого наклона.

Для заданного дифференциального уравнения $\frac{dx}{dy} = f(x,y)$ с начальным условием $y(x_0) = y_0$ решение состоит из нескольких шагов:

- 1. Вычисляем текущее значение x_n и y_n для вычисления $f(x_n, y_n)$.
- 2. Вычисляем прогнозируемое значение для шага n + 1:

$$y_{n+1,p} = y_n + h * f(x_n, y_n)$$
, где $h - \text{шаг приращения}$

3. Корректируем прогнозируемое значение:

$$y_{n+1,c} = y_n + h * f(x_n, y_n) + f(x_{n+1}, y_{n+1,p})$$

4. Выполнение приращения:

$$x_{n+1} = x_n + h, n = n + 1$$

Шаги повторяются до тех пор, пока не достигнуто желаемое значение х или не закончилось количество итераций.

Блок-схема реализованного метода

Код метода

```
double solveByEulerImproved(int f, double epsilon, double a, double y_a,
double b) {
    fn_t& func = get_function(f);
    double h = 0.01;
    double y_p = 0, y_c = 0, y_b = y_a;
    while (a < b) {
        y_p = y_b + h * func(a, b);
        y_c = y_b + h * ((func(a, y_b) + func(a + h, y_p)) / 2);
        h *= pow(min(1.0, (epsilon/fabs(y_c-y_p))), 0.5); //**0.5
        y_b = y_c;
        a += h;
    }
    return y_b;
}</pre>
```

Примеры и результаты работы программы

Пример 1

Входные данные:

```
1
0.01
0
1
1.57
```

Выходные данные: 1.9992

```
1
0.01
0
1
1.57
1.9992
Process finished with exit code 0
```

Пример 2

Входные данные:

2	
0.01	
1	
0.5	
2	

Выходные данные: 1.9992

```
2
0.01
1
0.5
2
1.07202
Process finished with exit code 0
```

Пример 3

Входные данные:

3
0.001
1
2
2

Выходные данные: 1.9992

```
3
0.001
1
2
2
3.55279
Process finished with exit code 0
```

Пример 4

Входные данные:

Выходные данные: 3.4302

```
0.1
0
1
1
3.4302
Process finished with exit code 0
```

Пример 5

Входные данные:

5
0.01
0
1
5

Выходные данные: 1.9992

```
5
0.01
0
1
5
1
Process finished with exit code 0
```

Проанализировав результаты запуска реализованного метода, можно сделать вывод, что код справляется с основными ситуациями.

Для оценки метода приведена таблица сравнения усовершенствованного метода Эйлера с методом Адамса-Башфорта и методом Рунге-Кутта 4 порядка:

	Усовершенствованный	Метод Адамса-	Метод Рунге-
	метод Эйлера	Башфорта	Кутта 4 порядка
Описание	Метод, использующий	Метод, основанный	Метод,
	два оценочных шага	на расчёте текущего	использующий
	для каждого интервала	значения при	четыре оценки
	для улучшения	использовании	наклона в каждом
	точности по	значений	интервале для
	сравнению с простым	производных на	достижения
	методом Эйлера.	предыдущих шагах.	высокой точности.
Вычислительная	Низкая (но выше, чем	Средняя (зависит от	Высокая

сложность	у простого метода	количества шагов)	(вычисление 4х
	Эйлера)		наклонов)
Применимость	Задачи, допускающие	Эффективен для	Может быть менее
	неточности в решении	решения ОДУ на	эффективным для
		больших интервалах	функций с
			высокой
			кривизной
Численная	Средняя (требует	Средняя (более	Высокая
стабильность	малого размера шага	стабилен, чем	
	для сложных систем)	усовершенствованный	
		метод Эйлера, но	
		менее, чем Рунге-	
		Кутта)	

Таким образом, метод Рунге-Кутта 4-го порядка будет оптимальным выбором в ситуациях, где требуется высокая точность решений ОДУ и допустима повышенная вычислительная сложность. Метод Адамса-Башфорта, как многократно-шаговый метод, предпочтителен для долгосрочных интегрирований ОДУ, когда требуется эффективно обшей использовать информацию ИЗ предыдущих шагов ДЛЯ повышения производительности расчётов. Усовершенствованный метод Эйлера является прекрасным выбором в случаях, когда требуются более точные результаты, чем может предложить простой метод Эйлера, но не требуется столь высокая точность, как у метода Рунге-Кутта. Он обладает лучшей численной стабильностью по сравнению с простым методом Эйлера и менее вычислительно затратен, чем метод Рунге-Кутта, делая его хорошим компромиссом между сложностью и точностью.

Временная алгоритмическая сложность метода составляет O(n), так как для нахождения решения используется цикл while, внутри которого происходят все необходимые вычисления.

Метод отличается хорошей численной стабильностью, однако могут возникать ошибки из-за аккумуляции неточностей округления.

Вывод

В результате выполнения лабораторной работы была реализовано решение ОДУ улучшенного метода Эйлера на языке программирования C++. Алгоритмическая сложность метода составила O(n).

Усовершенствованный метод Эйлера – метод решения ОДУ, отличающийся высокой эффективностью и средней точностью, однако может вызвать численные ошибки.