

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :	A1	(11) International Publication Number: WO 91/05314
G06K 9/00		(43) International Publication Date: 18 April 1991 (18.04.91)

(21) International Application Number: PCT/US89/04396 (22) International Filing Date: 3 October 1989 (03.10.89) (71) Applicant: GRUMMAN AEROSPACE CORPORATION [US/US]; Bethpage, NY 11714 (US). (72) Inventor: LEIB, Kenneth, G. ; 3068 Beltagh Avenue, Wantagh, NY 11793 (US). (74) Agent: SCOTT, Anthony, C.; Scully, Scott, Murphy & Presser, 400 Garden City Plaza, Garden City, NY 11530 (US). (81) Designated States: DE*, GB, JP.	Published <i>With international search report.</i>
---	---

(54) Title: ROBOTIC VISION, OPTICAL CORRELATION SYSTEM

(57) Abstract

A robotic vision, optical correlation system optically analyzes an input image (10) to provide identification and aspect information. The input image (10) is incident upon a spatial light modulator (14). A multiple holographic lens (22) then performs a multiple number of Fourier transformations upon the image (10). An array of matched filters (24) has the array of Fourier transforms incident thereon. Each matched filter (24) comprises a Fourier transform hologram of different aspect view of the object and passes an optical correlation signal indicative of the degree of correlation. The signal is then transformed by an inverse Fourier transform lens (26). A detector (28) then detects the signal. A processing circuit (30) compares the relative magnitudes of the signals to determine aspect information about the input image (10). The present invention includes a normalizing means (electronic (30) or optical) for each matched filter. This normalizing means operates on the basis of separate angular response curves for each matched filter.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
DE	Germany	LU	Luxembourg	TD	Chad
DK	Denmark			TG	Togo
				US	United States of America

ROBOTIC VISION, OPTICAL CORRELATION SYSTEM

1 The present invention relates generally to a
robotic vision, optical correlation system which utilizes
matched filters to provide object identification, and to
provide aspect information, such as positional and size
5 information, about an object, and more particularly pertains
to a robotic vision system as described which utilizes
primarily parallel optical processing therein.

10 The study and application of robotic vision
systems is an area that is accelerating in interest in both
commercial and military activities. Current commercial
applications have been identified for machine operations and
production lines. In the prior art, robot manipulators have
been utilized in relatively large scale manufacturing
15 assembly lines to perform simple manipulative tasks including
loading and unloading machines, stacking parts, spray
painting, and spot-welding. These machines generally
responded to a set of highly specific program commands
wherein the positioning and orientation of the workpieces
manipulated were known with considerable precision. In
20 general, the programming of such a manipulator was relatively
complicated, and the program was useful only if the
positioning of the workpieces was held within relatively
precise tolerances.

25 Recently, there has been an attempt to increase the
flexibility of such manipulators by the addition of various
sensory capabilities. Tactile and auditory capabilities are
presently being developed along with visual capabilities, as
concerns the present invention. Range finding, and
structured light and binocular vision techniques have been

30

35

1 employed in such robotic vision systems. However, none of
these systems are particularly useful in applications
requiring identification of an object, and a determination
of its location and orientation. Furthermore, the known
5 robotic vision systems require a substantial amount of
processing time between vision sensing and object
identification.

A number of robotic or machine vision systems have
been disclosed and analyzed in the prior art relative to
their abilities to perform specific intended tasks. These
10 systems have usually been hybrid in nature, with the sensor
often being an analog device, and the processing and
articulation control frequently being digital in nature. A
further bifurcation in this technology is the choice between
digital and analog object recognition. Digital systems often
15 rely upon video input and algorithms to sort out objects and
parts according to size and aspect. The memory libraries are
restricted only by the size of the computer memory. There
are fewer optical systems, and most of them rely upon
electronic processing to some degree.

20 Spight U.S. Patent 4,462,046 discloses an optical
vision system in which video cameras are used in association
with a computer, and in which off-axis views are stored in
the processor. The Fast Fourier Transforms (FFT) are video
analyzed and processed in the computer. At best, this system
25 is restricted to thirty frames per second.

In contrast to the Spight system, the present
invention performs its processing optically and in parallel
at near the speed of light. Many views of many different
objects can be stored in a single complex matched filter,

30

35

1 and these filters can be specifically designed to handle
multiple objects. A further advantage of the subject
invention is that specially designed multiple holographic
lenses allow many objects and/or many views to be optically
processed in parallel, and also the degree of aspect of an
5 object can be determined to a desired degree of resolution.

Grumet U.S. Patent 3,779,492 is of interest to the
present invention, and discloses a matched filter optical
correlator system similar to the present invention in which
10 a coherent, optical signal processor is used for recognition
of specific known targets. Each matched filter record
includes a pair of matched filters that separately process
the high and low spatial frequencies. The outputs thereof
are combined in a logical AND operation and the target is
interrogated for fine features as well as for correct size
15 and shape. The optical memory bank of matched filter pairs
comprises diffraction patterns of all resolvable views, in
both azimuth and elevation, of a target, thus forming a
target recognition comb-filter bank. All views of the
recognition bank are simultaneously interrogated optically
20 according to the diffraction pattern of the detected object
to determine whether the detected object is the desired
target as stored in any of the views in the memory bank.

The present invention differs from and improves
upon the Grumet system in several important respects. One
25 embodiment of the subject invention provides an inverse
Fourier transform lens array for receiving the optical
correlation outputs of an array of matched filters, and each
optical correlation output is then directed to a separate
detector. Grumet instead illustrates a single lens 29 which
30 directs all of the outputs onto a common detector. The

present invention also provides a normalizing means for each
1 individual matched filter for producing a normalized output
signal therefrom, and Grumet totally fails to appreciate the
need for signal normalization. The separate detector
advantageously allows each output signal to be amplified
5 separately, which allows each amplifier to be used for
separate normalization of that processing channel. Grumet
also fails to appreciate that each matched filter has a
separate and individual angular response curve, which should
be formulated, and can be utilized to determine aspect
10 information about an object of interest.

The general principle of operation of the present
invention is that an object is recognized, its size,
location and aspect are determined, and signals are generated
15 for control purposes. This system utilizes the properties of
optical matched filters to enable an identification of the
object, a determination of its size, a determination of the
location of the object, a determination of any angular
aspect, and a determination of object velocity, if needed,
through successive sightings.

20 In accordance with the teachings herein, the
present invention provides a system for optically comparing
an input image with optical information stored in one or more
matched filters to provide identification and aspect
information about the input image. The input image is
25 incident upon a spatial light modulator, and the input image
spatially modulates a coherent beam of radiation. A multiple

1 holographic lens has the spatially modulated radiation beam
1 incident thereon, and performs a multiple number of Fourier
5 transformations thereon to obtain an array of a multiple set
 of Fourier transforms of the spatially modulated radiation
 beam. A corresponding array of matched filters has the
5 array of Fourier transforms incident thereon, with each
 matched filter comprising a Fourier transform hologram of an
 aspect view of an object of interest, and each matched
 filter passes an optical correlation signal in dependence
10 upon the degree of correlation of the Fourier transform of
 the spatially modulated radiation beam with the Fourier
 transform recorded by the matched filters. An inverse
 Fourier transform lens array receives the optical
 correlation outputs of the array of matched filters, and
15 performs an inverse Fourier transformation on each optical
 correlation output. A detector array then detects the
 inverse Fourier transform of each optical correlation
 output, and produces a detector output signal representative
 of each optical correlation output.

20 In accordance with one preferred embodiment, the
 detector output signals are electronically processed in a
 processing circuit which compares the relative magnitudes of
 the signals to determine aspect information about the input
 image. The processing circuit comprises a normalizing
 amplifier circuit for each detector output signal, an analog
25 to digital converter for converting each normalized detector

1 output signal to a corresponding digital signal, and
1 comparator circuits for comparing the magnitudes of the
corresponding digital signals. The outputs of the
comparator circuits are then processed in a logic circuit
which develops move right or move left robotic control
5 signals.

The present invention recognizes the need to
normalize the outputs of the separate matched filter
channels in the optical correlation system. The
normalization can be achieved electronically, as by a
10 separate normalization amplifier for the detector of each
matched filter channel, wherein the gain of each
normalization amplifier is set to compensate for differences
in the outputs of the individual matched filters.
15 Alternatively, the normalization can be achieved optically,
as by adjusting the amplitude of the light being processed
through each individual matched filter channel, as by
adjusting the output power of the laser, or by an
attenuating filter, which can be a rotatable polarizing
filter, in the optical path of each matched filter channel.
20

The normalization function can also be tied to the
individual angular response of each matched filter, and the
subject invention recognizes that each matched filter has an
individual angular response curve which is normally
different for each matched filter. Accordingly, an angular
25 response curve is empirically developed for each individual
matched filter. The maximum amplitude signal for all of the
angular response curves are then set to be substantially
equal to normalize the angular response curves. The angular

30

35

1 field of view for each normalized angular response curve is
then determined, which allows a determination of the number
of matched filters required to yield a desired overall
angular detection response for the system.

5 Figure 1 is an exemplary embodiment of a robotic
vision system employing the teachings and illustrating the
general principles of operation of the present invention;

Figure 2 illustrates the angular sensitivity of a
matched filter to spatial frequency bandwidth;

10 Figures 3a and 3b illustrate the sensitivity of a
matched filter to image rotation, with a fixed scale size;

Figure 4 illustrates a simple object showing the
effect of object aspect rotation in a planar view;

15 Figure 5 shows the effects of the object rotation
of Figure 4 upon the Fourier transforms thereof;

Figure 6 illustrates the angular sensitivity of a
matched filter, and more particularly the angular
sensitivities of the correlation signals of three matched
filters for three possible object positions;

20 Figure 7 is a representative illustration of the
correlation signals for a system wherein seven angular aspect
views are recorded on matched filters.

Figure 8 illustrates a positional control system
with signal processing electronics to derive positional
control signals;

25 Figure 9 illustrates a further embodiment of the
present invention with a partitioned array of detectors, and
illustrates one optical technique for normalizing the output
of each matched filter channel;

1 Figure 10 illustrates an exemplary embodiment of an
arrangement for the preparation of a MF memory bank for
different aspect views of interest for an object;

5 Figure 11 illustrates an idealized situation in
which the angular response curves of all of the matched
filters are equal in amplitude and angular range;

Figure 12 illustrates a realistic situation in
which the angular response curve of each matched filter is
different in both amplitude and angular range; and

10 Figure 13 illustrates a normalization of the
response curves of Figure 12 in which the peak amplitudes of
each curve are equalized, which results in different angular
ranges for each matched filter.

15 A number of elements and concepts relating to the
present invention are used frequently in this description
and are essential to an understanding of the function and
general principles of operation of the invention, and
accordingly the nature and properties of several of those
concepts are discussed hereinbelow initially for
convenience.

20 A holographic lens (HL) is made by recording the
interference pattern of an expanding point radiation source
and a collimated radiation beam, which produces a hologram of
a point source. When the holographic lens (after recording
and processing, as on film) is illuminated, it recreates the
25 point source, i.e., it behaves as a lens. If the recording
process is initially repeated, a series of point source
holograms, or a multiple holographic lens (MHL), can be
recorded on the film.

30

35

The subject invention utilizes one of several
1 possible distributions in offset angle, position and focal
length in a multiple holographic lens array to produce an
array of Fourier Transforms of an input spatially modulated,
laser radiation beam. In general, the particular
5 requirements of the array will be determined by the
particular problem being addressed. In summary, a
holographic lens takes a Fourier Transform (FT) of a laser
beam illuminated scene or target, and a multiple holographic
10 lens takes, simultaneously, a multiple set of Fourier
Transforms. A multiple holographic lens array is usually
used in conjunction with a corresponding multiple array of
matched filters.

When a lens is illuminated by a spatially modulated
15 collimated beam (as when it is modified spatially by passing
through a film of a scene, target, etc.), the lens creates at
the focal point the Fourier Transform of the object(s) on the
film, which is a basic lens property. When the Fourier
Transform is interfered with a collimated (or reference) beam
from the same source, an interference pattern results. This
20 is called a Fourier Transform hologram, or Matched Filter
(MF). It is an optical spatial filter of the input object.
When an arbitrary scene is played through the system, the
matched filter will pick out and pass the object for which it
was made. The signal passed by the filter is Fourier
25 transformed again and a "correlation" plane results. If the
matched filter target is present, a sharp correlation signal
results, whereas non-target signals result in broad, low
correlation signals in the correlation plane.

The present invention uses the sensitivity of a
30 matched filter to object rotation or object scale size. As
either of these aspects change (i.e., the object is at a

1 different angle than the one for which the MF is made, or at
a different distance, therefore at a different scale size),
the correlation signal changes.

5 Figure 1 illustrates a relatively simple embodiment
of an optical correlator employing a memory bank of matched
filters pursuant to the teachings of the present invention.
An object of interest 10 is moving past the input to the
optical correlator, and is imaged by an input lens 12 onto a
spatial light modulator (SLM) 14, which spatially modulates
the image onto a laser beam from a laser 16, directed thereto
10 by a mirror 18 and beam splitter 20. The spatially modulated
laser beam is Fourier transformed by a multiple holographic
lens 22 and directed onto a corresponding array of matched
filters (MFs) 24. An inverse Fourier Transform lens array 26
inversely Fourier transforms the output of the MFs and
15 directs the outputs thereof onto a detector array 28, the
output signals of which are electronically processed at 30,
as described in greater detail hereinbelow, to produce output
control signals.

20 A matched filter is a Fourier transform (FT)
hologram with properties that are sensitive to an input
object's size, angular aspect and input location. These
parameters can be predetermined in order to prescribe a set
of angle and range (size) lines covering the anticipated
object's aspects. The detector can be partitioned to resolve
25 the location to the degree desired.

20 In the fabrication of a matched filter, the
holographic fringe visibility is optimized at a particular
spatial frequency that will satisfy the size and/or aspect
sensitivity requirements. Because it is unlikely that both
30 requirements can be satisfied simultaneously, a plurality of
independent MFs are utilized in the present invention. The

1 nature of different particular applications will generally
require significantly different MF sensitivities.

5 A matched filter is a complex holographic structure having size, wavelength, thickness of the storage medium, focal length of the Fourier transform lens, contrast ratio, overlap, placement, and spatial frequency dependence. Each of the characteristics can be described using the following carefully developed approaches to qualifying or quantifying matched filters.

10 (a) In fabricating matched filters of complex objects for the first time, a correlation matrix can be developed, and a representative matrix is shown below.

	.90	.93	.97	.96	.94	
15 Amplitude	.91	.94	.99	.97	.95	Optical Exposure Time
Transmittance	.93	.95	1.0	.98	.96	
	.92	.94	.98	.95	.94	
20	.91	.93	.96	.93	.91	
Reference Signal	Beam Ratio R					

25 The y axis is amplitude transmittance (amount of light transmitted, going from 0 to 1.0 - the opposite of density.) Optical exposure (relative) is often used as the actual parameter, and is shown at the right hand side. The x axis is the Reference beam divided by the Signal beam ratio, designated by R. In practice, one often establishes a given beam ratio, and then varies exposure time. This can be accomplished easily with the correlator shutter, and so this procedure is followed, bearing in mind that the

1 procedure is followed in the dark. This generates a column
of values. Then, a new beam ratio R is established,
typically +3dB or up two times, and the procedure is
repeated.

5 The values in the matrix are peak correlation
values obtained after the photoplates used to make the
matched filters are exposed, developed, dried and reinserted
in the optical correlator. The matrix development is a long
and time consuming process, and depends upon the material,
object, etc. This illustrates that just making the matched
10 filter with a given material is a complicated, detailed
process because of the complex nature of matched filters.

(b) A second criteria which has been developed is
termed the system criteria S.

15 $S = (\lambda F)^{-1} \frac{\text{cycles/mm}}{\text{mm}}$

where λ (mm) and F (mm) are respectively the matched filter
operational wavelength and the lens focal length. The
20 smaller the value of S, the easier it is to control
parametric variation sensitivity, and locational problems
also ease with smaller values of S. The system criteria S
indicates the extent the MF is spread out on the medium (and
therefore, bandwidth, exposure time necessary, etc.).

25 (c) A third criteria on capacity C was developed
to indicate the number of matched filters which can be
placed on a photographic plate for recording.

30 Capacity C = CONSTANT $\times \frac{\text{SPG}}{((\Delta\nu) N F \lambda)^2}$

1 C is the capacity in matched filters per square
centimeter.

5 S is the split spectrum factor (since the Fourier transform has 180° symmetry, one half or all of the matched filter can be used), and has a value of 1 or 2.

10 P is the number of overlapped filters at a given location. This can have values up to 30 but conservatively P can be approximately 4.

15 G is the geometrical packing factor, and depends upon the mix of target objects to be recorded, and values between 1 and 1.5 might be reasonable.

20 λ , F have already been explained. Practical values are $.45 \text{ um} \leq \lambda \leq 2 \text{ um}$, and $25 \leq F \leq 1500 \text{ cm}$.

25 N. $\Delta\nu$ is the bandwidth of the matched filter.

30 N is the multiple of $\Delta\nu$ used to obtain 96% of the autocorrelation value. $\Delta\nu$ is usually set to be the frequency range where the matched filter is optimized for holographic contrast ratio.

35 This explanation illustrates the complexity of matched filters, and all of the factors that must be considered in fabricating them, and when they are complicated, the requirement for performing correct normalization.

40 Special equipment has been designed to measure a matched filter's sensitivity to angular orientation, scale and contrast. In addition, the above criteria must be applied to each group of matched filters since, for example, $\Delta\nu$ and angular sensitivity are intimately related, and a change in one affects the other. Also, the photographic exposure time Δt has an influence upon $\Delta\nu$ and therefore, angular sensitivity. Consider the value of the system criteria S. When λ is changed or F (or both), S changes, as

1 does $\Delta\phi$ and the angular sensitivity. This illustrates again
the requirement for normalization. Similar analyses could
also be performed for scale changes, or contrast changes,
which require the matched filter quality to be assessed
again.

5 Another important MF factor is the spatial
frequency bandwidth. Matched filters can be optimized at
any desired frequency, but the degree of object
discrimination is often dependent upon the fine details of
the object and, thus, the higher frequencies. The frequency
10 requirements must be considered along with the particular
object's size, position, and aspect. Along with spatial
frequency bandwidth, the angle, size, and matched filter
sensitivity must also be considered.

15 Figure 2 illustrates a situation in which an
idealized matched filter (solid line) of an object is
addressed by the Fourier transform of the same object but
with some rotation (dotted lines). Clearly, at a low
spatial frequency bandwidth, there is an overlap between the
two, and this means some signal will be available for
20 interpretation. If the filter has a high frequency cutoff
(e.g., Wn_1), it is also clear that no signal may be
available for robotic interpretation. Moreover, the center
of each of the "lobes" is often blocked out when a high
frequency filter is utilized.

25 Figure 3a illustrates three angular sensitivity
curves obtained for three separate orders, or spatial
frequency bands. When a validated simulation of the
correlation process is used, the corresponding curves of
Figure 3b are obtained, and represent the desired result for
30 the object. The angular sensitivity can be seen to be
variable over a wide range.

Another important MF factor is the size aspect.

- 1 Consider the simple object shown in Figure 4(a). The image projected onto the spatial light modulator (SLM) is that shown as the system (or front) view. The Fourier transform for the view (a), again idealized, is shown in Figure 5a.
- 5 The points between the outlined frequency regions represent zeros of the FT, in this case equally spaced. As the object presents a new view, the rectangular image on the SLM undergoes a gradual increase to a maximum at 26 degrees (Figure 5b), and then decreases until it presents a 90 degree view (Figure 5c), the narrowest view, i.e., its width is ($2 L \cos r + L \sin r$).

During this sequence, the FT starts with something like that shown in Figure 5a. As the angular rotation of the view increases, the larger area yields a similar FT but one in which the zeros move toward the origin (zero spatial frequency), and at approximately 26 degrees, the FT zeros are closest to the origin. At larger angular views, the corresponding zeros move to higher frequencies until at 90 degrees they are at the greatest set of spatial frequencies.

15 This basic example illustrates that the choices of FT to fabricate an MF must be chosen wisely. As a new view is presented the FT "sweeps" past the fixed FT used to generate the FT hologram (matched filter). A correlation signal proceeds through a sequence of values reaching a maximum at autocorrelation. Thus, the size factor for some objects which present common type of views must be considered in MF construction. Based upon experience, a -3dB range for the correlation signal can represent objects ranged in size from ±4% to ±20%.

20

25 Consider an embodiment similar to Figure 1 having MFs for three different angular views of an object, -10°, 0°,

and $+10^\circ$. Their idealized angular sensitivities are shown in
1 Figure 6a. If the view encountered, for example, is 0° ,
Figure 6b, then the MF for that view would produce the
maximum autocorrelation signal, while the other two views
would produce signals approximately half as large, as
5 illustrated in Figure 6b. Alternatively, an object
encountered at $+10^\circ$, Figure 6c, or at -10° , Figure 6d, would
produce maximum signals from the $+10^\circ$ MF and the -10° MF,
respectively. In each respective situation, the MF
constructed at -10° and $+10^\circ$ MF would yield no signal in the
10 respective cases, as illustrated in Figures 6c and d.

This arrangement allows a logical determination of
the angular view of an object by the output signals from
three matched filters. If the object has some other angle
within the entire viewing range, then an unambiguous array
15 of three signals is obtained. For higher precision, more
channels with more MFs could be utilized. For a seven
channel system, the signals might look like the array in
Figure 7. The processing logic would be more involved, but
the principle of operation is the same. Increased angular
20 sensitivity of a matched filter increases the precision, but
requires a larger memory of MFs. In general, the number of
MFs required depends upon (a) the object and (b) the detail
with which one wants to resolve the object. A MF of an
object can be made using low spatial frequencies of the
25 object, yielding low orientation discrimination, perhaps
where it is unnecessary to be more discriminating. On the
other hand, high spatial frequencies allow a system to be
very discriminating because the MF rotational sensitivity is
high.

30 The control circuit of Figure 8 can be used for the
optical correlator system of Figure 1 with respect to the

exemplary embodiment of matched filter responses of Figure
1 6a. As illustrated in Figure 8, the outputs of the
detectors L, C and R are normalized because not all MFs have
the same autocorrelation signal at perfect registration.
The light energy through a MF of one view of an object is
5 often substantially different from that for a second view
also in perfect registration with its MF. For a simple
symmetrical object, three views of the object would
generally produce equal autocorrelation. However, three
10 orthogonal views of an automobile, for example, would
generally yield autocorrelation signals which are quite
different, and accordingly normalization of the signals is
necessary. Figure 4 illustrates an object with different
views.

In summary, the detected signals are normalized and
15 amplified in the Normalization and Gain circuits 40 as
required. Each of the three views must have the same gain
so that the right view, for example, seen by the right view
MF has the same signal as the center view MF has when it
"sees" the center view. When the angular fall off curves
20 are made the same, normalization ensures that the center
view MF has -3dB response for a 0dB left view response at
the same time that the left view MF has -3dB response for a
0dB center view response. The same relationship must
prevail for the center view and right view MF responses.
25 Explained differently, except for axially symmetric
geometrical objects, most objects have different cross
sections for different views. Thus, the energy "passed" by
a MF will be different for each different view, and
normalization is required. The normalization factor
30 required for each amplifier gain circuit for each matched
filter channel is determined from the angular response
curves as described herein, and then the normalization

1 factors for all of the matched filter channels are stored as
data in a memory 41, from which they are recalled to control
each of the amplifier gain circuits.

5 After normalization, each of the R, C, and L
channel signals is converted to a corresponding digital
signal by an A to D converter 42. The normalized output
signal for each channel is shown in Figure 6b, c and d for
the three major cases of object facing center, and then
right and left of center. The normalization and D/A
conversion can be readily established for cases of
10 intermediate positions or for n views of the object.

15 Referring to Figure 8, each of the L and R digital
outputs are compared to C in a comparator 44, and yield a
set of signals, $C < L$, $C > L$, and $C < R$, $C > R$. The following
logic equations are applicable,

$$\begin{aligned} (C > R) + (C > L) &= \text{Center} \\ (C > R) + (C < L) &= \text{Facing Left} \\ (C < R) + (C > L) &= \text{Facing Right} \end{aligned}$$

20 Thus, appropriate AND gates 46 determine the
relationships, and develop the commands move right, stop, or
move left, which are available for robotic control.
However, it should be understood that many alternate
electronic approaches can be used to process the matched
filter outputs.

25 Better angular response can be obtained by the
following techniques: narrower angular sensitivities (i.e.,
higher frequency filters), more discriminating logic (e.g.,
logic which also determines sense as a trial command is
executed), and narrower crossover points (e.g., possible -1dB
crossovers, and not -3dB as illustrated in Figure 4), or by
30 some combination of the three techniques.

The object can also be moving across the input so
that the matched filter outputs in the correlation plane also

vary, thus providing time dependent positional signals.
1 Therefore, a segmented detector, could be utilized for deriving positional information.

The embodiments of Figures 1 and 8 utilize individual detectors. Television cameras can also be used, 5 and single lines containing the correlation signal of the sequentially scanned format can be isolated, and used for measurement, which has proven to be satisfactory but inaccurate. The correlation plane can also be scanned with a fiber optic probe, which provides a highly accurate 10 measurement of the maximum value. However, this technique is manual, slow, and inappropriate for the present invention. Accordingly, it is much more advantageous to focus the output of each individual matched filter channel onto a separate detector having a balanced output amplifier 15 so that normalizations can be made pursuant to the quality of each matched filter.

The exemplary embodiment of a MHL-MF configuration shown in Figure 9 can provide information on articulation based upon the orientation, position and size of the object. 20 If the class of object is such as to be uniform, then a size determination might be used as a distance measurement. For a multiple parameter embodiment, an array of detectors is required, such as a CCD type in which the array is subdivided and processed according to the parameters, in the illustrated 25 embodiment, nine segments.

Figure 9 illustrates a modulated input beam 48, a multiple 3 x 3 holographic lens 50, a matched filter array 52, a holographic lens and/or fly's eye version MHL 54, and a partitioned detector array 56. In this embodiment, a 30 normalizing fabrication plate 58 is placed in front of the matched filter plate 101. It consists of a plate large enough to block the [(3 x 3) - 1] beams from the MHL 50 to

the MF plate 52. The one beam permitted through to the MF plate passes through a rotatable polarizer 60. This is a circularly mounted piece of sheet polaroid (HN type) which is linearly polarized. Since the laser beam is linearly polarized, Θ rotation of the circularly mounted polarizer 60 causes a sine Θ change in the intensity of the passed beam. Thus, each position can be accommodated for an individual nonelectronic normalization. The R-beam must be equally set. In operation, the fabrication plate 58 would be selectively positioned in x and y for each matched filter channel, and the rotation of the polarizer controlled and positioned by data in memory for that particular matched filter channel to achieve normalization of all of the matched filter channels. The fabrication plate can be stepped in sequence in x and y, as by stepper motors, to sequentially position it for each matched filter channel. The polarizer could also be placed in front of the MHL 50, or anywhere in the chain of optical elements of the correlator in which the MF beam is affected. The technique for mounting and driving the rotation of the polarizer are known in the art, such as by driving a stepper motor to turn the polarizer 60. In a preferred embodiment, control signals for the polarizer would be computer (PC) derived.

Unlike the usual neutral density controls in a fabrication which are set by sensing the laser beam, the polarizer should be adjusted in both the signal and reference beam channels by computer to a predetermined amount which is derived from test data on the robotic piece during a rotation test.

In some embodiments the MF correlation robotic vision system will require a large MF library. The capacity of the memory can be determined once the application is formulated and the degree of MF discrimination clearly established.

1 The equation for capacity C has been previously
explained. Using an argon laser and a 25 mm focal length
Fourier transform lens, over one thousand MF/cm² can be
stored with modest layout considerations. Depending upon
the particular embodiment and application, a multiplicity of
5 matched filters can be stored for several different aspects
of several different targets.

10 In many correlator applications, it will be
sufficient to take a single inverse FT of the MF array for
processing. In a robotic vision system, individual or
grouped FT can be utilized so that individual correlation
signals are produced (as in Figure 1). Therefore, it is
important that the memory be appropriately organized. For
example, scale size can be determined first to provide a
bank of filters for a particular scale size S to have their
15 outputs processed simultaneously, and for another scale size
S₁, the processing system could be switched as appropriate
to enable a single processor to be employed.

20 The spatial light modulator could be liquid
crystal, photorefractive, thermoplastic or magneto-optic, and
can be either transmissive or reflective in nature. The SLM
should operate at several cycles per second, and have a
resolution of 50 cycles per mm at a contrast rate of 0.5, an
absence of image retention, a lifetime of several hundred
thousand cycles, and provide seven or eight gray levels as
25 required.

30 The matched filter response can be accurately
characterized and made quite efficient through dichromated
gelatin or thermoplastic media, and in one embodiment, MFs of
a sufficiently high phase frequency could be computer
generated to provide a higher degree of precision.

Figure 10 illustrates an arrangement for the preparation of a matched filter (MF) 68 of an object in which an object 70 is placed at one aspect of interest and is imaged by lens 72 through a beam splitter 74 onto a spatial light modulator (SLM) 76. A laser beam from a laser 78 is split by a beam splitter 80 into a signal path 82 and a reference path 84. The laser beam in the signal path 82 is spatially modulated by the SLM 76, and a Fourier transform is taken with a fourier transform lens 86. The laser beam in the reference path 84 is spatially filtered at 88, collimated at 90, and directed through a shutter 92 to the matched filter plate 68 where interference occurs and the MF is recorded. When a different object aspect is desired, the MF plate is moved to a new position, and the process is repeated. The memory bank of the robotic vision system is complete when all aspects of the object are recorded. In the practice of the present invention, the recording medium can be a photographic emulsion, dichromated gelatin, photopolymer, and the like, and can be coated or mounted on a suitable substrate such as a glass plate, thin film, and the like.

In using the arrangement of Figure 10 to fabricate matched filters, several precautions must be taken prior to fabrication. First, the length of the reference path 84 and the signal beam path 82 must be measured, both from the center of the beam splitter 80. Account must be taken of the glass in each path and of the total length of the glass path being increased by the index of refraction of the glass, typically 1.5. When such accounting has been made and the two paths compared, it is necessary that they be equal in total length to a difference of no more than the coherence length of the laser, which is typically several

1 centimeters. In practice, a difference of 2 millimeters is
readily achievable.

Knowing the Fourier transform lens 86 focal length (360 mm in an exemplary embodiment) and the operational wavelength, 6328 angstroms being typical, the system factor S given earlier can be computed, and is 4.39 cycles per mm per mm. Using representative criteria developed earlier, a cut off spatial frequency of 10 cycles/mm. can be used. Thus, the center to center distance for matched filter spacing in the array illustrated for example in Figure 9 becomes $(2 \times 10) / 4.39 = 4.56$ millimeters.

The second provision for the set up of Figure 10 is that during fabrication of an array, an aperture is used to permit one filter to be made while all others are blocked, and then the aperture is moved 4.56 mm. to the next location, and a second filter is made. Coincidentally, the movable aperture must also have a spatial frequency radius of 10 cycles/mm and therefore be 4.56 mm in diameter. Figure 3 and 4 of U.S. Patent 4,703,944 illustrate a device which enables the blanking of all positions but one to be achieved.

Thirdly, the elements of Figure 10 must all be aligned, with particular attention being paid to having the target of interest focused upon the spatial light modulator 76 in the input of Fig. 10. Reading out of the spatial light modulator 76 requires a polarizer 94 in front of the SLM and an analyzer 96 therebehind. These three elements must be individually aligned and then in tandem so that the output of the group has the same polarization as the reference path beam. In order to fabricate the holographic matched filter, the reference and the signal beam polarizations must be coplanar for maximum

1 effectiveness. Any other alignment decreases the quality of
the matched filter, and an orthogonal polarization will not
even interact holographically.

5 The Fourier Transform lens 86 can be a glass lens,
but a specially designed multiple holographic lens is
preferably used in order to have many FT replications of the
object to address all desired MF positions. When a
holographic lens is illuminated with a collimated beam of
radiation, an off-axis focus is achieved. If the beam
remains collimated but the wavelength is changed, a second
10 off-axis focus having a different offset angle and focal
distance than the first is obtained. This result is the
consequence of the fact that physically a hologram is
basically a highly complex diffraction grating. It is often
advantageous to fabricate a matched filter at one
15 wavelength, and to use the filter at a second wavelength.
For example, some images are recorded best in a matched
filter at a wavelength in the blue light spectra and played
back best at a wavelength in the red light spectra. In
this situation, the operating light signal has a tendency to
20 alter the image formed in the matched filter. This tendency
is substantially reduced if the matched filter is operated
at the wavelength used to fabricate the filter.

25 Moreover, it must be recognized that each
different object aspect view yields a unique matched filter
which in itself has angular scale sensitivities. In a
robotic vision system, each different aspect view matched
filter must be treated as a new object matched filter since
each matched filter is different, and thus yields different
signals. Accordingly, normalization is required to the same
30 standard, i.e., a properly aligned matched filter.
Moreover, the normalization is affected by angular
sensitivity, and so compensation is necessary, which has not
been recognized by the prior art.

For example, for a robotic system for L-C-R movements, a matched filter must be fabricated for each of the left, center and right views. Then an angular sensitivity curve must be generated for each matched filter to produce a working response curve, which is the response curve to be normalized. An angular response curve cannot be generated for the center position view, and then used for the left and right views as the angular response curve for each matched filter is different.

The number of MFs required is dependent upon the response of each individual filter. For example, a particular target for which a matched filter is made might show an angular response as shown by one of the lobes of Figure 11. If this is an overhead view and the object always looks the same when rotated, each response looks the same so that a complete memory for 360° coverage would have a "picket fence" response as shown in Figure 11. Note that the responses are all equally spaced and of equal height.

Now consider a moving robotic part. If the robotic part is considered from different aspect views, the set of responses of Figure 12 might be obtained. While the individual responses may be 3db responses (i.e. the base line is located at $\frac{1}{2}$ the peak level), note that the angular widths vary in size and the peak correlation signals have different heights. These arise because the different aspect views may have more energy in one view than in another.

The net result is that their amplitudes must be brought to a common level. This can be accomplished electronically by a normalizing amplifier as described hereinabove, or optically as by selectively exposing the matched filter photo plates to uniformly "darken" them, bringing the amplitudes down to one common maximum height.

Then, the resultant responses would appear as in Figure 13.
1 The numbers represent arbitrary values, and are for
illustration only. Note, however, that the peak values are
equal. The number of matched filters which are required for
a particular angular range can then be determined after the
5 angular responses are normalized as shown in Figure 13.

While several embodiments and variations of the
present invention for a robotic vision system are described
in detail herein, it should be apparent that the disclosure
and teachings of the present invention will suggest many
10 alternative designs to those skilled in the art.

15

20

25

30

35

WHAT IS CLAIMED IS:

- 1 1. A system for optically comparing an input image with optical information stored in matched filters to provide identification and aspect information about the input image, comprising:
 - 5 a. a spatial light modulator, having incident thereon an input image to be analyzed, which spatially modulates a coherent beam of radiation to form a spatially modulated radiation beam;
 - 10 b. a multiple holographic lens having the spatially modulated radiation beam incident thereon, for performing a multiple number of Fourier transformations thereon to obtain an array of a multiple set of Fourier transforms of the spatially modulated radiation beam;
 - 15 c. an array of matched filters, having the array of Fourier transforms incident thereon, with each matched filter comprising a Fourier transform hologram of an aspect view of an object of interest and passing an optical correlation signal in its matched filter channel in dependence upon the degree of correlation of the Fourier transform of the spatially modulated radiation beam with the Fourier transform recorded by the matched filter;
 - 20 d. an inverse Fourier transform lens means, receiving the optical correlation outputs of said array of matched filters, for performing an inverse Fourier transformation on each optical correlation output;
 - 25 e. a detector means for detecting the inverse Fourier transform of each optical correlation output, and for producing a detector output signal representative of each optical correlation output;
 - 30 f. a normalizing means for each matched filter channel for producing a normalized detector output signal therefrom, said normalization means including developing an

1 angular response curve for each individual matched filter,
and setting the maximum amplitude signals for all of the
angular response curves to be substantially equal to
normalize the angular response curves, determining the
angular field of view for each normalized angular response
5 curve, and determining the number of matched filters
required to yield a desired overall angular detection
response; and

10 g. comparator means for comparing the magnitudes
of the normalized detector output signals to generate output
directional control signals therefrom, as determined by the
aspect information about the input image.

15 2. A system for optically comparing an input
image with optical information stored in matched filters to
provide identification and aspect information about the
input image, as claimed in claim 1, further comprising:

20 a. said array of matched filters including at
least a center matched filter for a center on-line view of
an object of interest, a left matched filter for a left of
center angular view of the same object of interest, and a
right matched filter for a right of center angular view of
the same object of interest;

25 b. said detector means including at least a
center detector for said center matched filter, a left
detector for said left matched filter, and a right detector
for said right matched filter;

30 c. said comparator means including at least a
left comparator means for comparing the magnitude of the
left detector output signal with the magnitude of the center
detector output signal to determine which magnitude is
greater, and a right comparator means for comparing the
magnitude of the right detector output signal with the

1 magnitude of the center detector output signal to determine
which magnitude is greater;

5 d. directional means, receiving the outputs of
said left comparator means and said right comparator means,
for generating an output directional control signal
representative of the determined angular position of the
object of interest; and

10 e. a processor means coupled to receive the
detector output signals from said detector means, for
comparing the relative magnitudes of the signals to
determine aspect information about the input image, said
processor means further including a normalizing circuit for
each detector output signal, an analog to digital converter
for converting each normalized detector output signal to a
corresponding digital signal, and comparator circuit means
15 for comparing the magnitudes of the corresponding digital
signals.

20 3. A system for optically comparing an input
image with optical information stored in matched filters to
provide identification and aspect information about the
input image, as claimed in claim 1, said normalizing means
including a normalizing amplifier circuit for each detector
output signal for producing a normalized detector output
signal.

25 4. A system for optically comparing an input
image with optical information stored in matched filters to
provide identification and aspect information about the
input image, as claimed in claim 1, said normalizing means
including an optical normalizer in each matched filter
channel.

30

35

5. A method for optically comparing an input image with optical information stored in matched filters to provide identification and aspect information about the input image, comprising:
 - 1 a. directing an input image to be analyzed onto a spatial light modulator to spatially modulate a coherent beam of radiation to form a spatially modulated radiation beam;
 - 5 b. directing the spatially modulated radiation beam onto a multiple holographic lens to perform a multiple number of Fourier transformations thereon to obtain an array of a multiple set of Fourier transforms of the spatially modulated radiation beam;
 - 10 c. directing the array of Fourier transforms onto an array of matched filters, with each matched filter comprising a Fourier transform hologram of an aspect view of an object of interest and passing an optical correlation signal in its matched filter channel in dependence upon the degree of correlation of the Fourier transform of the spatially modulated radiation beam with the Fourier transform recorded by the matched filter;
 - 15 d. directing the optical correlation outputs of said array of matched filters onto an inverse Fourier transform lens means to perform an inverse Fourier transformation on each optical correlation output;
 - 20 e. detecting the inverse Fourier transform of each optical correlation output and producing a detector output signal representative of each optical correlation output;

30

35

f. normalizing the signal through each matched filter channel to produce a normalized detector output signal therefrom, said normalizing step including developing an individual angular response curve for each matched filter, with each individual angular response curve having an individual peak amplitude and an individual angular range, and normalizing the signal through each matched filter channel to equalize the peak amplitudes of all of the matched filter channels, which can result in different angular ranges for each matched filter channel, after setting the peak amplitude signals for all of the angular response curves to be substantially equal to normalize the angular response curves, determining the angular field of view for each normalized angular response curve, and determining the number of matched filters required to yield a desired overall angular detection response; and

g. comparing the magnitudes of the normalized detector output signals to generate output directional control signals therefrom, as determined by the aspect information about the input image.

6. A method for optically comparing an input image with optical information stored in matched filters to provide identification and aspect information about the input image, as claimed in claim 5, further comprising:

a. said step of directing the array of Fourier transforms onto an array of matched filters including directing the array of Fourier transforms onto at least a center matched filter for a center on-line view of an object of interest, a left matched filter for a left of center angular view of the same object of interest, and a right matched filter for a right of center angular view of the same object of interest;

- b. detecting the inverse Fourier transforms with
1 at least a center detector for said center matched filter, a left detector for said left matched filter, and a right detector for said right matched filter;
- c. comparing the magnitudes of the normalized
5 detector output signals by at least a left comparator means for comparing the magnitude of the left detector output signal with the magnitude of the center detector output signal to determine which magnitude is greater, and a right comparator means for comparing the magnitude of the right detector output signal with the magnitude of the center detector output signal to determine which magnitude is greater;
- d. utilizing the outputs of said left comparator means and said right comparator means to generate an output
10 directional control signal representative of the determined angular position of the object of interest; and
- e. comparing the relative magnitudes of the
15 detector output signals to determine aspect information about the input image, providing a normalizing circuit for each detector output signal, an analog to digital converter for converting each normalized detector output signal to a corresponding digital signal, and comparator circuit means for comparing the magnitudes of the corresponding digital signals.
- 20 7. A method for optically comparing an input image with optical information stored in matched filters to provide identification and aspect information about the input image, as claimed in claim 5, said normalizing step being performed by a normalizing amplifier circuit for each detector output signal for producing a normalized detector output signal, including storing in memory an amplification

1 factor for each normalizing amplifier circuit to achieve
normalized detector output signals for all of the matched
filter channels.

5 8. A method for optically comparing an input image
with optical information stored in matched filters to
provide identification and aspect information about the
input image, as claimed in claim 5, said normalizing step
being performed by an optical normalization in each matched
filter channel.

10 9. A method for optically comparing an input image
with optical information stored in matched filters to
provide identification and aspect information about the
input image, as claimed in claim 8, said normalizing step
being performed by an optical attenuating filter in each
matched filter channel, said normalizing step
15 being performed by a rotatable polarization attenuating
filter in each matched filter channel, wherein the rotatable
polarization filter is selectively rotated for each matched
filter channel to achieve normalization for all of the
matched filter channels.

20 10. A method for optically comparing an input
image with optical information stored in matched filters to
provide identification and aspect information about the
input image, as claimed in claim 8, said normalizing step
being performed by controlling the power to a laser
25 illuminating each matched filter channel.

2/4

Fig. 3 a ..

Fig. 3 b

Fig. 4

Fig. 5

Fig. 6

4/4

PREPARATION OF HF MEMORY BANK FOR ALL ASPECTS OF INTEREST FOR AN OBJECT

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US89/04396

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int. CL.5 : G06K 9/00
U.S. CL. 382/31

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
U.S.	382/31; 350/162.12, 162.13, 162.14

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT ⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	US, A, 4,490,849 (GRUMET ET AL.) 25 December 1984, See column 2, line 62 to column 3, line 27, column 4, line 61 to column 5, line 15, and column 8, lines 27-39.	1, 5
A	US, A, 3,851,308 (KAWASAKI ET AL.) 26 November 1974	1, 5
A	US, A, 3,779,492 (GRUMET ET AL.) 18 December 1973	1, 5
A	US, A, 3,483,513 (BURCKHARDT ET AL.) 9 December 1969	1, 5
A	Optics and Laser Technology, Vol. 4, No. 5 issued October 1972, G. Winzer, N. Douklias "Improved Holographic Matched Filter Systems..."	1, 5

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

05 January 1990

Date of Mailing of this International Search Report

26 JAN 1990

International Searching Authority

ISA/US

Signature of Authorized Officer

Michael Cammarata