	EXAM ALSM 2: EXAM NOTES: CALM SLEPS.
	We have independently collected a set of responses y: as well as the value for the have observations:
- 1.	We have independently collected a set of responses in the have observations: Some explanatory variables stard in vertex xi i.e. we have observations:
2	Response 4: has a distribution Pytos (gi Di) that is a monter of the
	exponential family 11 mars 5
	response #[4]
3	Model constant by linking expectation of response $E(y;]$ with the linear
	predictor $x_i^T \beta$ $g(\mathbf{E}[y_i]) = x_i^T \beta$ $f[y_i] = g^T(x_i^T \beta)$
	# / 9/3
i,	link function g is a monotonic differentiable function (ensues inverse g-lexist)
	a grown welfood or argmox posterior potability.
5	Estimale β by β = argmax livelihood or argmax posterior pobability.
	$E(y) = g^{-1}(x^{-1}\beta)$
U	
	BERNOULI
	BERNOULI y is a blony vortable PATE (1916) = 1-0 Pytol (9=1/0) = 0 Pytol (19-0) = 1-0 Pytol (9=1/0) = 0 Pytol (19-0) = 1-0
	Pyle (9=1 0) = 0 Pyle (9=0 0) = 10 Pyle = 04(1-0) y E(0,1] 0 E(0,1] E(y)=0
	Yyıe = 0/10/