Máster en Tecnologías de Análisis de Datos Masivos: BIG DATA

Internet de las Cosas en el Contexto de Big Data

Tema 4: Sistemas de adquisición y gestión de datos (parte 2)

Juan Antonio Martínez <u>juanantonio@um.es</u>

Wooclap

ÍNDICE

I. INTRODUCCIÓN

- ETSI-CIM y NGSI-LD
- ENFOQUE DE "DIGITAL TWIN"

2. GESTIÓN DE DATOS EN FIWARE

- API NGSI-LDY SMART DATA MODELS
- GESTIÓN DE DATOS A NIVEL DE "SOLUCIÓN INTELIGENTE"
- GESTIÓN DE DATOS A NIVEL DE "ORGANIZACIÓN INTELIGENTE"
- GESTIÓN DE DATOS A NIVEL DE "ESPACIO DE DATOS INTELIGENTE"

3. DESARROLLO DE ESPACIOS DE DATOS EUROPEOS

ETSI ISG CIM Mission

Make it easier

for END-USERS

and CITY DATABASES

and IoT internet-of-things

and third-party APPS to

exchange KNOWLEDGE

Important issues in sharing data

Máster en BIG DATA

Evolution of Standard representation

Máster en BIG DATA

Various Architectures

Máster en BIG DATA Internet de las Cosas

Various Architectures

Máster en BIG DATA Internet de las Cosas

Various Architectures

Example Data Model: Smart Lamppost model in a city

NGSI-LD Information model

Example Data Model: Grocery Store

Source: https://www.etsi.org/deliver/etsi gr/CIM/001 099/008/01.01.01 60/gr CIM008v010101p.pdf

UNIVERSIDAD DE MURCIA

GESTIÓN Y COMPARTICIÓN DE DATOS EN FIWARE

• Creación de una entidad de "ParkingSpot" mediante la API NGSI-LD

```
ParkingSpot:
curl -X POST \
                                                                                  description: 'A parking spot is an area well delimited where one vehicle can be parked.'
  http://localhost:3000/ngsi-ld/v1/entities/ \
  -H 'Link: <https://schema.lab.fiware.org/ld/context>; rel="http://
                                                                                    TimeInstant:
  -H 'content-length: 884' \
                                                                                      description: 'Timestamp saved by FIWARE''s IoT Agent. There can be production environments
  -d '{
                                                                                      format: date-time
         "id": "urn:ngsi-ld:ParkingSpot:santander:daoiz_velarde_1_5:3
                                                                                      type: Property
         "type": "ParkingSpot",
         "status": {
              "type": "Property",
                                                                      description: 'Status of the parking spot from the point of view of occupancy. Enum:''closed, free, occupied, unknown''
             "value": "free",
                                                                        - closed
             "observedAt": "2018-09-21T12:00:00Z"
                                                                        - free

    occupied

         "category": {
                                                                        - unknown
              "type": "Property",
                                                                      type: Property
             "value": [
                                                                      x-ngsi:
                  "onstreet"
                                                                        model: https://schema.org/Text
                                                                                              refParkingSite:
         "refParkingSite": {
                                                                                                any0f:
              "type": "Relationship",
                                                                                                  - description: 'Property. Identifier format of any NGSI entity'
              "object": "urn:ngsi-ld:ParkingSite:santander:daoiz_velarde_1_5"
                                                                                                    maxLength: 256
         },
                                                                                                    minLength: 1
         "name": {
                                                                                                   pattern: ^[\w\-\.\{\}\$\+\*\[\]`|~^@!,:\\]+$
              "type": "Property",
                                                                                                    type: string
             "value": "A-13"
                                                                                                  - description: 'Property. Identifier format of any NGSI entity'
         },
                                                                                                    format: uri
         "location": {
                                                                                                    type: string
             "type": "GeoProperty",
                                                                                                description: 'Parking site to which the parking spot belongs to.'
             "value": {
                                                                                                type: Relationship
                  "type": "Point",
                  "coordinates": [
                       -3.80356167695194,
                       43.46296641666926
```

Gemelo Digital

- Basada en el enfoque de gemelo digital (digital twin)
 - Representación digital de un activo físico (p.e., autobús) o concepto (p.e., pronóstico de tiempo)
 - Colección de gemelos digitales (contexto); datos asociados a los gemelos digitales (información de contexto)
- Representación de gemelo digital
 - Identificador
 - Tipo
 - Atributos: propiedades y relaciones con otros gemelos digitales
 - Estáticos vs Dinámicos
 - Observables vs Inferidos

Gemelo Digital

- Construcción del gemelo digital a partir información de diferentes fuentes
- Procesamiento y análisis constante de los datos del gemelo digital por parte de las aplicaciones
 - Automatización de tareas
 - Facilitar la toma de decisiones a los usuarios finales
- Gestión y compartición de datos en múltiples niveles

Gemelo Digital

- Requiere la estandarización de dos elementos críticos
 - API: acceso a los datos de los gemelos digitales
 - Modelos de datos: descripción de los atributos y semántica de los gemelos digitales
- FIWARE está impulsando esta estandarización
 - API NGSI-LD
 - Publicada en 2019 por el ETSI
 - Acceso a datos de contexto (información de los gemelos digitales)
 - Implementada por el Context Broker
 - Smart Data Models
 - Biblioteca de modelos de datos (> 500) que mapean activos físicos del mundo real
 - Descrito en JSON-LD → compatibles con la API NGSI-LD
 - Facilita la interoperabilidad entre diferentes sistemas

GESTIÓN Y COMPARTICIÓN DE DATOS EN FIWARE

• Ejemplo de arquitectura a nivel de "solución inteligente" basada en FIWARE: recogida y paletizado de productos en un almacén

GESTIÓN Y COMPARTICIÓN DE DATOS EN FIWARE

• Ejemplo de arquitectura a nivel de "organización inteligente" basada en FIWARE: ciudad inteligente

Espacio de datos

• Ecosistema de datos descentralizado que permite un intercambio de éstos efectivo y confiable entre los participantes

I. Interoperabilidad de datos

- "Idioma común" entre los participantes
 - Adopción de APIs
 - Modelos de datos
 - Mecanismos de trazabilidad de las transacciones

2. Soberanía y confianza de los datos

- Confianza entre participantes y soberanía sobre datos compartidos
 - Gestión de identidad
 - Intercambio de datos confiable
 - Cumplimiento de políticas sobre acceso y uso de datos

3. Creación de valor de los datos

- Mercados donde generar valor compartiendo datos
 - Términos y condiciones vinculados a las ofertas
 - Publicación y descubrimiento de ofertas
 - Gestión de contratos referentes al derecho de acceso y uso de datos

Gobernanza en espacios de datos

- Acuerdos comerciales
 - Términos y condiciones del intercambio de datos
 - Marco legal de los contratos del espacio de datos
- Acuerdos operativos
 - Políticas del espacio de datos (p.e., GDPR)
 - Herramientas para auditoría de procesos
 - Prácticas de ciberseguridad
- Acuerdos organizacionales
 - Especificaciones de los componentes tecnológicos que permiten la realización del espacio de datos -> independientes del dominio

- I. Componentes de FIWARE para la "interoperabilidad de datos"
 - API NGSI-LD → intercambio de datos entre participantes en el espacio de datos a través de puntos finales establecidos

- I. Componentes de FIWARE para la "interoperabilidad de datos"
 - Smart Data Models → mapeo de objetos del mundo real en estructuras JSON-LD compatibles con NGSI-LD

- I. Componentes de FIWARE para la "interoperabilidad de datos"
 - - Componente <u>CanisMajor</u>: adaptador para el Context Broker que permite el registro de transacciones NGSI-LD en tecnologías distribuidas (blockchain)

- 2. Componentes de FIWARE para la "soberanía y confianza de los datos"
 - **Gestión de identidad** \rightarrow identificación, autenticación y autorización de los participantes del espacio de datos
 - Componente <u>Keyrock</u>: compatible con los estándares OpenIdConnect (autenticación) y OAuth2 (autorización); integración con eIDAS
 - Intercambio de datos confiable → participantes "son quienes dicen ser" y se cumplen las reglas/acuerdos de control de acceso a los datos
 - Implementación de la tecnología <u>IDS Connector</u> (descrita en el Modelo de Arquitectura de Referencia del Espacio de Datos Industriales (<u>IDS RAM</u>)): integra el *Context Broker*, un conjunto de *adaptadores de sistema* y el componente <u>PEP proxy Wilma</u>

Máster en BIG DATA Internet de las Cosas

FIWARE Y LOS ESPACIOS DE DATOS

- Módulo de gestión de identidad (IdM) → emite JSON Web Token si el proceso de autenticación es correcto
- Policy Decision Point (PDP) → toma decisiones de acceso (permitir, denegar) en base a políticas previamente definidas
- Policy Enforcement Point (PEP) → controla el acceso al Context Broker a partir de la decisión tomada por el PDP
- Autoridad de Certificación (CA) y Aprovisionamiento de Atributos Dinámicos (DAPS)
 → servicios del espacio de datos para garantizar la confiabilidad entre los participantes

29

- 3. Componentes de FIWARE para la "creación de valor de los datos"
 - Gestión de datos como activos de valor empresarial -> publicación, descubrimiento y negociación
 - Ecosistema <u>Bussiness API Ecosystem</u> (BAE): creación de servicios de Marketplace para la gestión de ofertas en base a activos de datos
 - Archivos de datos estáticos
 - Datos proporcionados desde NGSI-LD
 - Servicios de procesamiento de datos

- 3. Componentes de FIWARE para la "creación de valor de los datos"
 - Gestión de datos como activos de valor empresarial -> publicación, descubrimiento y negociación
 - Ecosistema <u>Bussiness API Ecosystem</u> (BAE): acceso a través de API y portal web
 - Definición de nuevos activos de datos
 - Búsqueda de ofertas
 - Registro de nuevas ofertas \rightarrow descripción del activo, modelos de datos, puntos finales y términos y condiciones (esquema de precios)

DESARROLLO DE ESPACIOS DE DATOS EUROPEOS

- Progama Digital Connecting Europe Facility (CEF)
 - Mejorar la vida diaria de los ciudadanos, empresas y administraciones
 → despliegue de Infraestructuras transeuropeas de Servicios Digitales
 (DSI)
 - Basado en conjunto de bloques de construcción (digital building blocks)
 - Mejorar el uso y procesamiento de datos a todos los niveles
 - Soluciones replicables e interoperables entres estados miembros de UE
 - Mercado digital único
 - Conexión con FIWARE
 - Context Broker como bloque de construcción de CEF
 - Integración del Keyrock con el bloque de construcción elD (identificación electrónica)
 - Integración de componentes para registro de transacciones con el bloque de construcción <u>EBSI</u> (blockchain)

DESARROLLO DE ESPACIOS DE DATOS EUROPEOS

• Iniciativa Estrategia Europea de Datos

- Crear un mercado único para compartir e intercambiar datos de diferentes sectores de manera eficiente y segura en la UE
 - CE definió 9 dominios iniciales: industrial, acuerdo ecológico, movilidad, salud, finanzas, energía, agricultura, administración pública y competencias
 - Cada dominio sigue su propio enfoque de gestión e intercambio de datos → no hay interoperabilidad
 - Necesario un acuerdo entre participantes sobre los componentes a utilizar y los principios de diseño para conectar los diferentes espacios de datos → alineación con el programa CEF y FIWARE

DESARROLLO DE ESPACIOS DE DATOS EUROPEOS

Proyecto GAIA-X

- Crear una infraestructura de datos federada en Europa para compartir datos de forma segura y confiable
 - Uso de componentes definidos en el marco de la <u>Asociación</u> <u>Internacional de Espacios de Datos</u> (IDSA) y FIWARE
 - **IDSA**: componentes centrados en garantizar la confianza y soberanía de los datos
 - **FIWARE**: NGSI-LD y Smart Data Models, y componentes para el Martketplace

Máster en Tecnologías de Análisis de Datos Masivos: BIG DATA

Internet de las Cosas en el Contexto de Big Data

Tema 4: Sistemas de adquisición y gestión de datos (parte 2)

Juan Antonio Martínez <u>juanantonio@um.es</u>