1. OLS:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4.913331	0.063121	77.840	<2e-16	***
exper	0.039313	0.002196	17.906	<2e-16	***
educ	0.073807	0.003534	20.887	<2e-16	***
smsa	0.164741	0.015692	10.499	<2e-16	***
black	-0.188223	0.017768	-10.593	<2e-16	***
south	-0.129053	0.015229	-8.474	<2e-16	***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3772 on 3004 degrees of freedom Multiple R-squared: 0.2788, Adjusted R-squared: 0.2776 F-statistic: 232.2 on 5 and 3004 DF, p-value: < 2.2e-16

2. Bayesian:

1) Flat prior

2) Beta_educ ~N(0.06,0.025)

3. The estimates from OLS are the means of Bayesian.

OLS is point estimation of parameters; Bayesian estimates the distributions of parameters.