

EJEMPLOS DE CAJA NEGRA

Sesión 9

Dr. Arana Caparachin Maglioni

Ejercicio

• Un	Numero-empleado	Nombre-empleado	Meses-Trabajo	Directivo
------	-----------------	-----------------	---------------	-----------

Donde:

- ✓ Numero-empleado es un campo de números enteros positivos de 3 dígitos (excluido el 000).
- ✓ Nombre-empleado es un campo alfanumérico de 10 caracteres.
- ✓ Meses-Trabajo es un campo que indica el número de meses que lleva trabajando el empleado; es un entero positivo (incluye el 000) de 3 dígitos.
- ✓ Directivo es un campo de un solo carácter que puede «+» para indicar que el empleado es un directivo y
 «-» para indicar que no lo es.

- El programa asigna una prima (que se imprime en un lisado) a cada empleado según las normas siguientes:
 - ✓ **P1** a los directivos con, al menos, 12 meses de antigüedad.
 - ✓ P2 a los no directivos con, al menos, 12 meses de antigüedad.
 - ✓ P3 a los directivos sin un mínimo de 12 meses de antigüedad.
 - ✓ P4 a los no directivos sin un mínimo de 12 meses de antigüedad.

- a) Desarrollar la estrategia de Clases de Equivalencia:
 - i. Crear una Tabla de Clases de Equivalencia (las clases deberán ser numeradas) en la que se indiquen las siguientes columnas en cada fila:
 - Condición de entrada que se analiza.
 - Clases válidas.
 - Clases no válidas que se generan para la condición.

- a) Desarrollar la estrategia de Clases de Equivalencia:
 - ii. Generar los casos de prueba (especificando la entrada en todos los casos y la salida esperada sólo en los casos válidos) para las clases creadas usando la técnica de particiones de equivalencia, indicando en cada caso las clases que cubre.

- b) Desarrollar la estrategia de Valores Límites:
 - Utilizando las clases del ejercicio (a-i) y generando otras clases necesarias,
 crear una tabla para la técnica de Condiciones Límites en donde se
 especifique:
 - Condición de entrada que se analiza.
 - Clases válidas e inválidas.

- b) Desarrollar la estrategia de Valores Límites:
 - ii. Generar los casos de prueba para el ejercicios anterior, indicando que clases cubren cada uno de ellos.
- c) Desarrollar la estrategia de **Grafos Causa-Efecto / Tablas de Decisión:**
 - i. Generar los casos de prueba siguiendo los 8 pasos de la estrategia.

RESOLUCIÓN DE CAJA NEGRA

Sesión 9

Dr. Arana Caparachin Maglioni

a) Clases de Equivalencia:

i. Tabla de Clases de Equivalencia

Listar todos los posibles casos existentes, teniendo en cuenta las condiciones.

Condición	Clases Válidas	Clases Inválidas	
Nº empleado	1. Número de 3 dígitos mayor a 000 y	2. Número menor a 3 dígitos	
	menor o igual a 999	Numero mayor a 3 dígitos	
		4. Número 000	
		Número negativo	
		6. No es número	
		7. Cadena Nula	
Nombre	8. Cadena alfanumérica de 10	 9. Cadena de más de 10 caracteres. 	
empleado	caracteres.	Cadena de menos de 10 caracteres.	
		 Cadena sólo de dígitos 	
		12(7).	
Meses	13(1,4).	14(2). 15(3). 16(5). 17(6). 18(7).	
trabajados			
Directivo	19. Cadena de 1 caracter = '+'	21. Cadena de 1 caracter distinto a '+' o '-'	
	20. Cadena de 1 caracter = '-'	Cadena de más de 1 caracter	
		23(7).	

a) Clases de Equivalencia:

i. Tabla de Clases de Equivalencia

• **Nota:** Cuando fuera posible se reúsan las clases de equivalencia para otras condiciones, y en estos casos se renumera para luego evitar confusiones cuando deben ser cubiertas por los casos de prueba derivados.

a) Clases de Equivalencia:

ii. Casos de pruebas

• Se seleccionan datos representativos de cada una de las clases de equivalencia, para que todas queden cubiertas. Si los casos de prueba se forman únicamente a partir de clases válidas entonces se supone que no existirá falla del sistema y se debería generar un efecto, en este caso es la asignación de una prima de seguro. Se indica cuáles clases son cubiertas por cada caso de prueba y su efecto (falla/salida).

a) Clases de Equivalencia:

ii. Casos de pruebas

Ten en cuenta que debes colocar todas las situaciones posibles que se le ocurran.

Caso de Prueba	Clases Válidas	Clases Invalidas	Salida
(625, JORGE_SOTO, 035, '+')	1, 8, 13, 19		P1
(021, JUAN_PEREZ, 012, '-')	1, 8, 13, 20		P2
(125, MARIA_LASO, 010, '+')	1, 8, 13, 19		P3
(003, ANA_ROBLES, 005, '-')	1, 8, 13, 20		P4
(45, BART_SIMPSON, 15, '=')		2, 9, 14, 21	Error
(0075, CARTMAN, 1020, '+-')		3,10,15,22	Error
(000, 0023456789, -03, null)		4,11, 16, 23	Error
(-89, null, dos, '-')	20	5, 12, 17	Error
(olo, BETO_SANTO, null, '+')	8, 19	6, 18	Error
(null, TITO_VILLA, 018, '-')	8, 13, 20	7	Error

b) Valores Límites:

i. Tabla de Clases de Equivalencia

- Se toma como base las clases de equivalencia definidas en el inciso anterior y se agregan clases con el valor en cada límite y uno más y uno menos (dependiendo del tipo de dato).
- Se pueden nuevamente reusar clases, las anteriores y las nuevas. Continuamos la numeración a partir de la anterior.

b) Valores Límites:

i. Tabla de Clases de Equivalencia

Condición	Clases Válidas	Clases Inválidas
Nº empleado 24. Número 001		28 (4)
	25. Número 002	29. Numero 1000
	26. Número 999	30. Número de 2 dígitos
	27. Número 998	31. Numero de 4 dígitos
Nombre	32(8).	Cadena de 11 caracteres.
empleado		Cadena de 9 caracteres.
Meses	35(4). 36(24). 37(26). 38(27).	39. Número -01
trabajados		40(29). 41(30). 42(31).
Directivo	43(19). 44(20).	45. Cadena de 2 caracteres

b) Valores Límites:

ii. Casos de prueba

Ten en cuenta que debes colocar todas las situaciones posibles que se le ocurran.

Caso de Prueba	Clases Válidas	Clases Invalidas	Salida
(001, JORGE_SOTO, 000, '+')	24, 32, 35, 43		P3
(002, JUAN_PEREZ, 001, '-')	25, 32, 36, 44		P4
(999, MARIA_LASO, 999, '+')	26, 32, 37, 43		P1
(998, ANA_ROBLES, 998, '-')	27, 32, 38, 44		P2
(000, MONTY_BURNS, -01, '++')		28, 33, 39, 45	Error
(1000, STANSMITH, 1000, '+')	43	29, 34, 40	Error
(89, JUAN_SANTO, 78, '-')	32, 44	30, 41	Error
(0233, ANA_CARASO, 0190, '+')	32, 43	31, 42	Error

c) Grafos Causa-Efecto:

i. Tabla de causas y efecto

Colocar en la tabla las condiciones de entrada en una columna y las posibles salidas en otra.

Causa	Efecto
1- Directivo	101- P1 (Director y >= 12 meses)
2- No Directivo	102- P2 (No Director y >= 12 meses)
3- Antigüedad >= 12 meses	103- P3 (Director y < 12 meses)
4- Antigüedad < 12 meses	104- P4 (No Director y < 12 meses)

c) Grafos Causa-Efecto:

ii. Construcción de grafos causa-efecto

 $\begin{array}{c|c}
1 & & & \\
 & & & \\
\hline
 &$

La cantidad de grafos depende de las combinaciones entre las condiciones (según lo solicitado en el enunciado)

c) Grafos Causa-Efecto:

iii. Verificar restricciones

Representar mediante una tabla las combinaciones de los grafos.

	Casos de Test			
Causas	1	2	3	4
1- Directivo	1	0	1	0
2- No Directivo	0	1	0	1
3->= 12 meses	1	0	0	1
4- < 12 meses	0	1	1	0
Efectos				
101- P1	1	0	0	0
102- P2	0	0	0	1
103- P3	0	0	1	0
104- P4	0	1	0	0

c) Grafos Causa-Efecto:

iv. Pruebas concluidas

Casos de Test	Entradas (Causas)		Salida Esperada
Casos de Test	Tipo de Empleado	Antigüedad	(efectos)
1	Directivo	>= 12 meses	P1
2	No Directivo	< 12 meses	P4
3	Directivo	< 12 meses	P3
4	No Directivo	>= 12 meses	P2

EJEMPLO DE CAJA BLANCA

Sesión 9

Dr. Arana Caparachin Maglioni

Caso:

- Tenemos un vector con 10 números:
 - ✓ Visualizar cada uno de los números.
 - ✓ Comprobar si cada número es par o impar.
 - ✓ Sumar todos los números pares e ir visualizando la suma, cada vez que sumes un número.
 - ✓ Visualizar si el número impar es mayor o menor de 50.

Caso:

· Código

```
int v[10] = \{12, 56, 33, 59, 8, 7, 75, 78, 44, 22\};
int i=0, s=0;
while (1<10)
    printf("%d\n", v[i]);
     if (v[i]\%2 == 0)
          s += v[i];
          printf("Suma de pares: %d\n", s);
    else
          if (v[i] >= 50)
               printf("Número mayor de 50 %d\n", v[i]);
          else
               printf("Número menor de 50 %d\n", v[i]);
         //fin if
     } //fin if
     i++;
} //fin while
```

Caso:

Complejidad ciclomática

Caso:

· Grafo de flujo

Muchas gracias

