Capitolo Sesto

INFINITI E INFINITESIMI

§ 1. ORDINI DI INFINITO

DEFINIZIONE. Sia data una funzione $f: E(\subset \mathbb{R}) \to \mathbb{R}$ e sia $\alpha \in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$ di accumulazione per E. Diremo che f è infinita per x che tende ad α , o, brevemente, in α , se è

$$\lim_{x \to \alpha} f(x) = \infty \text{ (o, eventual mente, } +\infty \text{ o } -\infty).$$

In questo caso, diremo anche che $f \grave{e}$ un infinito per x che tende ad α .

ESEMPIO. 1) Sono infinite le funzioni:

$$x^n$$
, per $x \to \infty$, e^x , per $x \to +\infty$, $tg x$, per $x \to \frac{\pi}{2}$, $\frac{1}{x-2}$, per $x \to 2$, $\log x$, per $x \to +\infty$ e per $x \to 0^+$.

Consideriamo le funzioni (di \mathbb{R} in \mathbb{R}) x, 2x, $x(2 + \sin x)$, e^x . Tutte queste funzioni sono infinite per $x \to +\infty$, ma tendono tutte a infinito con la stessa *rapidità*? Per poter rispondere alla domanda, abbiamo bisogno di un criterio per misurare questa 'rapidità'. Dobbiamo cioè decidere quand'è che due funzioni tendono all'infinito con la stessa velocità e quando una funzione tende a infinito più rapidamente di un'altra. Le scelte possibili sono, a priori diverse. Qui adottiamo una delle possibili scelte che, pur non essendo la più generale possibile, è più che sufficiente ai nostri scopi.

DEFINIZIONE. Siano $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infiniti per $x \to \alpha \ (\in \mathbb{R} \cup \{\infty, +\infty, -\infty\})$. Diremo che f è *equivalente* a g, e scriveremo $f \sim g$, se è

$$\lim_{x \to \alpha} \frac{|f(x)|}{|g(x)|} = l \in \mathbb{R} \setminus \{0\}.$$

OSSERVAZIONE. Si ha dunque, in particolare, $f \sim g$ se è $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = l \in \mathbb{R} \setminus \{0\}$, ma non è vero il viceversa. Può cioè succedere che risulti $f \sim g$ senza che esista il $\lim_{x \to \alpha} \frac{f(x)}{g(x)}$, come appare dal seguente

ESEMPIO. 2) Siano $f,g: \mathbb{N} \to \mathbb{R}$, con f(n) = 2n e $g(n) = (-1)^n n$. Si ha: $\lim_{n \to +\infty} \frac{|f(n)|}{|g(n)|} = 2 \in \mathbb{R} \setminus \{0\}$, da cui $f \sim g$, pur non esistendo il $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$.

¹ Una definizione più generale è la seguente: Due funzioni f,g, infinite per $x \to \alpha$ sono equivalenti se esiste un intorno di α dove, per ogni $x \ne \alpha$ è f(x) = g(x) φ(x), con φ funzione limitata e discosta da zero..

TEOREMA 1. Quella sopra definita è una relazione di equivalenza nell'insieme delle funzioni infinite per $x \to \alpha$.

DIM. Essendo $\lim_{x \to \alpha} \frac{|f(x)|}{|f(x)|} = 1$, si ha $f \sim f$. Da $\lim_{x \to \alpha} \frac{|f(x)|}{|g(x)|} = l \in \mathbb{R} \setminus \{0\}$, si ottiene $\lim_{x \to \alpha} \frac{|g(x)|}{|f(x)|} = \frac{1}{l} \in \mathbb{R} \setminus \{0\}$; dunque, da $f \sim g$ segue $g \sim f$. In fine, da $\lim_{x \to \alpha} \frac{|f(x)|}{|g(x)|} = l$ e $\lim_{x \to \alpha} \frac{|g(x)|}{|h(x)|} = m$, con l, $m \in \mathbb{R} \setminus \{0\}$, si ottiene $\lim_{x \to \alpha} \frac{|f(x)|}{|h(x)|} = \lim_{x \to \alpha} \frac{|f(x)|}{|g(x)|} \frac{|g(x)|}{|h(x)|} = lm \in \mathbb{R} \setminus \{0\}$; dunque, da $f \sim g$ e $g \sim h$ segue $f \sim h$.

DEFINIZIONE. Le classi dell'equivalenza ora definita prendono il nome di *ordini di infinito*. La classe di equivalenza alla quale appartiene la funzione f si indica con $Ord_{\alpha}f$ o, semplicemente, Ord f se non ci possono essere equivoci riguardo al punto α . È dunque, per definizione,

$$\operatorname{Ord}_{\alpha} f = \operatorname{Ord}_{\alpha} g$$
 se e solo se è $f \sim g$.

ESEMPIO. 3) Si ha:
$$Ord_{+\infty} x^2 = Ord_{+\infty} (2x^2 - 3x + 1).$$

E anche:

$$\operatorname{Ord}_{\pi/2} \operatorname{tg} x = \operatorname{Ord}_{\pi/2} f(x), \operatorname{con} f(x) = \frac{1}{\pi/2 - x};$$

infatti, si ha:

$$\lim_{x \to \pi/2} \frac{\lg x}{f(x)} = \lim_{x \to \pi/2} \frac{\left[\frac{\pi}{2} - x\right] \sin x}{\cos x} = \lim_{x \to \pi/2} \frac{\frac{\pi}{2} - x}{\sin\left(\frac{\pi}{2} - x\right)} = 1.$$

DEFINIZIONE. Siano $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infiniti per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Diremo che $f \ge strettamente$ equivalente a g e scriveremo $f \approx g$, se è

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = 1.$$

È di immediata verifica il

TEOREMA 2. Quella ora definita è una relazione di equivalenza nell'insieme delle funzioni infinite per $x \to \alpha$. Inoltre da $f \approx g$ segue $f \sim g$, mentre non sussiste l'implicazione opposta.

Ciò si esprime dicendo che l'equivalenza " \approx " è strettamente più fine dell'equivalenza " \approx ".

ESEMPI. 4) Riesaminando le funzioni dell'Esempio 3, si vede che, per $x \to \frac{\pi}{2}$, tg x è strettamente equivalente a $\frac{1}{\pi/2 - x}$, mentre, per $x \to \infty$, x^2 non è strettamente equivalente a $2x^2 - 3x + 1$.

5) Posto f(x) = x e g(x) = [x], si ha $f \approx g$. Lo si ricava immediatamente osservando che è

$$1 \ge \frac{[x]}{x} \ge \frac{x-1}{x} \to 1.$$

Confronto fra gli ordini di infinito

DEFINIZIONE. Siano $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infiniti per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Diremo che è $\operatorname{Ord}_{\alpha} f > \operatorname{Ord}_{\alpha} g$ se è

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \infty, \text{ o, ciò che è lo stesso, se è } \lim_{x \to \alpha} \frac{|f(x)|}{|g(x)|} = +\infty.$$

TEOREMA 3. La definizione appena date è coerente, ossia: da $f \sim f_1$, $g \sim g_1$, $Ord_{\alpha}f > Ord_{\alpha}g$ segue $Ord_{\alpha}f_1 > Ord_{\alpha}g_1$.

DIM. Per ipotesi, si ha:

$$\lim_{x\to\alpha}\frac{|f(x)|}{|f_1(x)|}=l;\quad \lim_{x\to\alpha}\frac{|g(x)|}{|g_1(x)|}=m, \text{ con } l,\,m\in\mathbb{R}\setminus\{0\},\quad \lim_{x\to\alpha}\frac{|f(x)|}{|g(x)|}=+\infty.$$

Si ottiene:

$$\lim_{x \to \alpha} \frac{|f_1(x)|}{|g_1(x)|} = \lim_{x \to \alpha} \frac{|f_1(x)|}{|f(x)|} \frac{|f(x)|}{|g(x)|} \frac{|g(x)|}{|g_1(x)|} = +\infty,$$

dato che $\frac{|f_1(x)|}{|f(x)|} \to \frac{1}{l} \neq 0$.

TEOREMA 4. Quella appena definita è una relazione d'ordine fra gli ordini di infinito (sempre con $x \to \alpha$).

Ciò significa che *non è mai* $\operatorname{Ord}_{\alpha}f > \operatorname{Ord}_{\alpha}f$ (proprietà *antiriflessiva*), che se è $\operatorname{Ord}_{\alpha}f > \operatorname{Ord}_{\alpha}g$, non può essere $\operatorname{Ord}_{\alpha}g > \operatorname{Ord}_{\alpha}f$ (proprietà *antisimmetrica* in forma *forte*) e, in fine, che da $\operatorname{Ord}_{\alpha}f > \operatorname{Ord}_{\alpha}g$ e $\operatorname{Ord}_{\alpha}g > \operatorname{Ord}_{\alpha}h$ segue $\operatorname{Ord}_{\alpha}f > \operatorname{Ord}_{\alpha}h$ (proprietà *transitiva*). La verifica è immediata.

ESEMPIO. 6) Per $x \to +\infty$, si ha: Ord $x^3 > \text{Ord } x^2 > \text{Ord } x$.

Ord $e^x > \operatorname{Ord} x^r > \operatorname{Ord} \log x$, per ogni $r \in \mathbb{R}^+$.

Inoltre,

$$\operatorname{Ord}_{0^+} \log x < \operatorname{Ord}_{0^+} \frac{1}{x^r}$$
, per ogni $r \in \mathbb{R}^+$.

OSSERVAZIONE. L'ordinamento così stabilito nell'insieme degli ordini di infinito *non è totale*. Esistono cioè elementi *inconfrontabili*.

ESEMPI. 7) Le funzioni $f(x) = x + x^2 \sin^2 x$ e g(x) = x sono entrambi infinite per $x \to +\infty$. Ma, non esistendo il $\lim_{x \to +\infty} \frac{|f(x)|}{|g(x)|}$, non può essere né $\operatorname{Ord} f = \operatorname{Ord} g$, né $\operatorname{Ord} f > \operatorname{Ord} g$, né $\operatorname{Ord} g > \operatorname{Ord} f$. Per verificare che, effettivamente, il limite non esiste, basta osservare che, per gli x del tipo $k\pi$, $k \in \mathbb{Z} \setminus \{0\}$, è $\frac{f(x)}{g(x)} = 1$, mentre per gli x del tipo $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, è $\frac{f(x)}{g(x)} = \frac{x + x^2}{x}$ che tende a $+\infty$.

8) Sono del pari inconfrontabili gli ordini di infinito, sempre per $x \to +\infty$, delle funzioni x e $x(2 + \sin x)$.

§ 2. ORDINI DI INFINITESIMO

DEFINIZIONE. Sia data una funzione $f: E(\subset \mathbb{R}) \to \mathbb{R}$ e sia $\alpha \in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$ di accumulazione per E. Diremo che f è *infinitesima per x che tende a* α , o, brevemente, *in* α , se è

$$\lim_{x\to\alpha}f(x)=0.$$

In questo caso, diremo anche che $f \grave{e}$ un infinitesimo per x che tende ad α .

ESEMPIO. 1) Sono infinitesime le funzioni:

$$x^n$$
, per $x \to 0$, e^x , per $x \to -\infty$, $\operatorname{tg} x$, per $x \to \pi$,
$$\frac{1}{x-2}$$
, per $x \to \infty$, $\log x$, per $x \to 1$.

Per semplicità, ci limiteremo al caso di funzioni che tendono a 0 al tendere di x a α ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$) e che non si annullano in *tutto un intorno* di α (salvo, eventualmente, nel punto stesso se è $\alpha \in \mathbb{R}$).

DEFINIZIONE. Siano $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$, due infinitesimi per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Diremo che $f \ni equivalente$ a g, e scriveremo $f \sim g$, se \ni

$$\lim_{x \to \alpha} \frac{|f(x)|}{|g(x)|} = l \in \mathbb{R} \setminus \{0\}.^2$$

OSSERVAZIONE. Si ha dunque, in particolare, $f \sim g$ se è $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = l \in \mathbb{R} \setminus \{0\}$, ma non è vero il viceversa. Può cioè succedere che risulti $f \sim g$ senza che esista il $\lim_{x \to \alpha} \frac{f(x)}{g(x)}$, come appare dal seguente

ESEMPIO. 2) Siano
$$f,g: \mathbb{N} \to \mathbb{R}$$
, con $f(n) = \frac{2}{n} e \ g(n) = \frac{(-1)^n}{n}$. Si ha: $\lim_{n \to +\infty} \frac{|f(n)|}{|g(n)|} = 2 \in \mathbb{R} \setminus \{0\}$, da cui $f \sim g$, pur *non esistendo* il $\lim_{n \to +\infty} \frac{f(n)}{g(n)}$.

Ragionando come nel caso degli infiniti, si prova subito il

TEOREMA 5. Quella sopra definita è una relazione di equivalenza nell'insieme delle funzioni infinitesime per $x \to \alpha$.

DEFINIZIONE. Le classi dell'equivalenza ora definita prendono il nome di *ordini di infinitesimo*. La classe di equivalenza alla quale appartiene la funzione f si indica con ord αf o, semplicemente, ord f se non ci possono essere equivoci riguardo al punto α . È dunque, per definizione,

² Anche in questo caso, una definizione più generale è la seguente: Due funzioni f,g, infinitesime per $x \to \alpha$ sono equivalenti se esiste un intorno di α dove, per ogni $x \ne \alpha$ è f(x) = g(x) φ(x), con φ funzione limitata e discosta da zero..

$$\operatorname{ord}_{\alpha} f = \operatorname{ord}_{\alpha} g$$
 se e solo se è $f \sim g$.

ESEMPIO. 3) Si ha:
$$\operatorname{ord}_0 x = \operatorname{Ord}_0 (2x + 3 \sin x) = \operatorname{ord}_0 \operatorname{tg} x^3$$

ord₀ (1 - cos x) = ord₀ x², essendo
$$\lim_{n\to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$
;

$$\operatorname{ord}_0(e^x - 1) = \operatorname{ord}_0 x = \operatorname{ord}_0 \log(x + 1);$$

ord₀
$$(x - \sin x) = \text{ord}_0 x^3$$
, dato che è $\lim_{n \to 0} \frac{x - \sin x}{x^3} = \frac{1}{6}$.

DEFINIZIONE. Siano $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infinitesimi per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Diremo che f è *strettamente equivalente* a g, e scriveremo $f \approx g$, se è

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = 1.$$

TEOREMA 6. Quella ora definita è una relazione di equivalenza nell'insieme delle funzioni infinitesime per $x \to \alpha$. Inoltre da $f \approx g$ segue $f \sim g$, mentre non sussiste l'implicazione opposta.

Ciò si esprime dicendo che l'equivalenza " \approx " è strettamente più fine dell'equivalenza " \sim ".

ESEMPIO. 4) Riesaminando le funzioni dell'Esempo 3, si vede che, per $x \to 0$, è

$$x \approx \sin x \approx \operatorname{tg} x \approx e^x - 1 \approx \log(x+1);$$

 $1 - \cos x \approx \frac{x^2}{2}; \quad x - \sin x \approx \frac{x^3}{6}.$

Confronto fra gli ordini di infinitesimo

DEFINIZIONE. Siano $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infinitesimi per $x \to \alpha \ (\in \mathbb{R} \cup \{\infty, +\infty, -\infty\})$. Diremo che è ord $_{\alpha}f > \text{ord}_{\alpha}g$ se è

$$\lim_{x \to \alpha} \frac{f(x)}{g(x)} = 0.$$

Procedendo come nel caso degli infiniti, si provano i seguenti Teoremi:

TEOREMA 7. La definizione appena date è coerente, ossia: da $f \sim f_1$, $g \sim g_1$, ord $_{\alpha}f$ > ord $_{\alpha}g$ segue ord $_{\alpha}f_1$ > ord $_{\alpha}g_1$.

TEOREMA 8. Quella appena definita è una relazione d'ordine fra gli ordini di infinitesimo (sempre con $x \to \alpha$).

ESEMPIO. 5) Si ha: $\operatorname{ord}_0 x^3 > \operatorname{ord}_0 x^2 > \operatorname{ord}_0 x$.

ord
$$_{-\infty}e^x > \text{ord }_{-\infty}\frac{1}{x^n}$$
, per ogni $n \in \mathbb{N}^+$.

OSSERVAZIONE. L'ordinamento così stabilito nell'insieme degli ordini di infinitesimo

non è totale. Esistono cioè elementi inconfrontabili.

ESEMPIO. 6) Le funzioni $f(x) = x + x \sin^2(1/x)$ e g(x) = x sono entrambi infinitesime per $x \to 0$. Ma, non esistendo il $\lim_{x \to 0} \frac{|f(x)|}{|g(x)|}$, non può essere né ord f = ord g, né ord f > ord g, né ord g > ord f. Per accertare che, in effetti, il limite non esiste, basta osservare che, per gli x del tipo $\frac{1}{k\pi}$, $k \in \mathbb{Z} \setminus \{0\}$, è $\frac{f(x)}{g(x)} = 1$, mentre per gli x per cui è $\frac{1}{x} = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, è $\frac{f(x)}{g(x)} = 2$.

§ 3. ORDINI DI INFINITO O DI INFINITESIMO E OPERAZIONI FRA FUNZIONI

Dai Teoremi sul limite del prodotto e delle funzioni composte, segue subito il seguente

TEOREMA 9. Siano f, f_1 , g, g_1 : $E(\subset \mathbb{R}) \to \mathbb{R}$ infinite per $x \to \alpha \ (\in \mathbb{R} \cup \{\infty, +\infty, -\infty\})$.

- 1) Se è $f \sim f_1$ e $g \sim g_1$, allora è anche $fg \sim f_1g_1$.
- 2) Se f, f_1 sono positive in un intorno di α e se è $f \sim f_1$, allora, per ogni numero reale positivo k è anche $f^k \sim f_1^k$.
 - 3) $Si\ ha\ Ord_{\alpha}fg > Ord_{\alpha}f$.
- 4) Le funzioni $\frac{1}{f}e\frac{1}{g}$ sono infinitesime per $x \to \alpha$ e si ha $\operatorname{Ord}_{\alpha}f = \operatorname{Ord}_{\alpha}g$ se e solo se è $\operatorname{ord}_{\alpha}\frac{1}{f} = \operatorname{ord}_{\alpha}\frac{1}{g}e$ $\operatorname{Ord}_{\alpha}f > \operatorname{Ord}_{\alpha}g$ se e solo se è $\operatorname{ord}_{\alpha}\frac{1}{f} > \operatorname{ord}_{\alpha}\frac{1}{g}$.

Le Proposizioni (1) e (2) si esprimono dicendo che la relazione di equivalenza è *compati-bile* con il prodotto di funzioni e l'elevamento a potenza.

Dal Teorema sul limite della somma, segue poi subito il seguente

TEOREMA 10. Siano f, g: $E(\subset \mathbb{R}) \to \mathbb{R}$ infinite per $x \to \alpha \ (\in \mathbb{R} \cup \{\infty, +\infty, -\infty\})$.

- 1) Se è $\operatorname{Ord}_{\alpha} f > \operatorname{Ord}_{\alpha} g$, allora anche f + g è infinita per $x \to \alpha$ e si ha $\operatorname{Ord}_{\alpha} (f + g) = \operatorname{Ord}_{\alpha} f$; si ha anzi: $f + g \approx f$. La stessa tesi sussiste anche se la funzione g è limitata.
- 2) Se è $\operatorname{Ord}_{\alpha} f = \operatorname{Ord}_{\alpha} g$ e se anche f + g è infinita per $x \to \alpha$, si ha $\operatorname{Ord}_{\alpha} (f + g) \le \operatorname{Ord}_{\alpha} f$, valendo il segno "<" se e solo se f è strettamente equivalente a -g.

Principio di sostituzione degli infiniti

TEOREMA 11. Siano f, f_1 , g, g_1 : $E(\subset \mathbb{R}) \to \mathbb{R}$ infinite per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$); con $f \approx f_1$ e $g \approx g_1$; allora, se esiste il $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = l$, esiste ed è uguale a l'anche il $\lim_{x \to \alpha} \frac{f_1(x)}{g_1(x)}$.

DIM. Si ha:

$$\lim_{x \to \alpha} \frac{f_1(x)}{g_1(x)} = \lim_{x \to \alpha} \frac{f_1(x)}{f(x)} \frac{f(x)}{g(x)} \frac{g(x)}{g_1(x)} = 1 \times l \times 1 = l. \blacksquare$$

ESEMPIO. 1) Si ha:

$$\lim_{x \to +\infty} \frac{x^3 + 3x^2 + 2x - 1}{2x^3 + x \arctan x} = \lim_{x \to +\infty} \frac{x^3}{2x^3} = \frac{1}{2}.$$

Passiamo agli infinitesimi. Dai Teoremi sui limiti del prodotto e delle funzioni composte, segue subito il seguente

TEOREMA 12. Siano f, f_1 , g, g_1 : $E(\subset \mathbb{R}) \to \mathbb{R}$ infinitesime per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, +\infty\}$).

- 1) Se è $f \sim f_1$ e $g \sim g_1$, allora è anche $fg \sim f_1g_1$.
- 2) Siano f, f_1 positive in un intorno di α ; se è $f \sim f_1$, allora, per ogni numero reale positivo k è anche $f^k \sim f_1$.
 - 3) $Si\ ha\ ord_{\alpha}fg > ord_{\alpha}f$.
 - 4) Le funzioni $\frac{1}{f}$ e $\frac{1}{g}$ sono infinite per $x \to \alpha$ (dato che, per ipotesi, f e g non si annul-

lano in tutto un intorno di α). Si ha $\operatorname{ord}_{\alpha} f = \operatorname{ord}_{\alpha} g$ se e solo se è $\operatorname{Ord}_{\alpha} \frac{1}{f} = \operatorname{Ord}_{\alpha} \frac{1}{g} e$ $\operatorname{ord}_{\alpha} f$ $> \operatorname{ord}_{\alpha} g$ se e solo se è $\operatorname{Ord}_{\alpha} \frac{1}{f} > \operatorname{Ord}_{\alpha} \frac{1}{g}$.

Le Proposizioni (1) e (2) si esprimono dicendo che la relazione di equivalenza è *compati-bile* con il prodotto di funzioni e con l'elevamento a potenza.

Dal Teorema sul limite della somma, segue poi subito il seguente

TEOREMA 13. Siano f, g: $E(\subset \mathbb{R}) \to \mathbb{R}$ infinitesime per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$).

- 1) Se è $\operatorname{ord}_{\alpha} f < \operatorname{ord}_{\alpha} g$, allora anche f + g non si annulla in tutto un intorno di α e si ha $\operatorname{ord}_{\alpha} (f + g) = \operatorname{ord}_{\alpha} f$; si ha anzi: $f + g \approx f$.
- 2) Se è $\operatorname{ord}_{\alpha} f = \operatorname{ord}_{\alpha} g$ e se anche f + g non si annulla in tutto un intorno di α , si ha $\operatorname{ord}_{\alpha} (f + g) \ge \operatorname{ord}_{\alpha} f$, valendo il segno ">" se e solo se f è strettamente equivalente a -g.

Principio di sostituzione degli infinitesimi

In modo analogo a quanto fatto per gli infiniti, si prova il

TEOREMA 14. Siano f, f_1 , g, g_1 : $E(\subset \mathbb{R}) \to \mathbb{R}$ infinitesime per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$); con $f \approx f_1$ e $g \approx g_1$; allora, se esiste il $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = l$, esiste ed è uguale a l anche il $\lim_{x \to \alpha} \frac{f_1(x)}{g_1(x)}$.

ESEMPI. 2) Si ha:

$$\lim_{x \to 0} \frac{x + 3x^3 + 2(1 - \cos x)}{3\sin x + x \arctan x} = \lim_{x \to 0} \frac{x}{3\sin x} = \frac{1}{3}.$$

3) Ricordando che è $x - \sin x \approx \frac{x^3}{6}$ e $1 - \cos x \approx \frac{x^2}{2}$, si ha:

$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x(1 - \cos x)} = \lim_{x \to 0} \frac{e^{\sin x}(x^x - \sin x - 1)}{x(1 - \cos x)} = 2\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac{1}{3}.$$

§ 4. ORDINI D'INFINITO O D'INFINITESIMO REALI, SOPRAREALI, SOTTOREALI, INFRAREALI

Sappiamo che l'insieme degli ordini di infinito per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$) è solo parzialmente ordinato. Vogliamo ora occuparci di un suo sottoinsieme totalmente ordinato e contenente le funzioni elementari.

Siccome la funzione identica è infinita per $x \to \infty$, è naturale cominciare con il caso $\alpha = +\infty$.

Sappiamo che l'equivalenza fra infiniti è compatibile con il prodotto e con l'innalzamento a potenza. Perciò, assunto

$$Ord_{+\infty}x = 1$$
,

è naturale assumere anche

$$\operatorname{Ord}_{+\infty} x^k = k$$
, $\forall k > 0$.

Ora si ha

$$\operatorname{Ord}_{+\infty} x^h x^k = \operatorname{Ord}_{+\infty} x^{h+k} = h+k$$

e

$$\operatorname{Ord}_{+\infty}(x^h)^k = \operatorname{Ord}_{+\infty}x^{hk} = hk.$$

Generalizzando questo fatto, si accetta la seguente

DEFINIZIONE. Detti $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infiniti per $x \to +\infty$, si assume

$$\operatorname{Ord}_{+\infty} fg = \operatorname{Ord}_{+\infty} f + \operatorname{Ord}_{+\infty} g$$

e, se f è positiva in un intorno di $+\infty$,

$$\operatorname{Ord}_{+\infty} f^k = k \operatorname{Ord}_{+\infty} f$$

Se f è infinita per x che tende a - ∞ , si assume

$$\operatorname{Ord}_{-\infty} f(x) = \operatorname{Ord}_{+\infty} f(-x).$$

Passiamo agli infiniti per x che tende ad $x_0 \in \mathbb{R}$ (in particolare $x_0 = 0$). Dal Teorema sul limite delle funzioni composte si ottiene subito il

TEOREMA 15. Se $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ sono due infiniti equivalenti per $x \to x_0 \in \mathbb{R}$, allora sono equivalenti, per $x \to \infty$, gli infiniti $f(x_0 + \frac{1}{x})$ e $g(x_0 + \frac{1}{x})$.

È dunque naturale accettare la seguente

DEFINIZIONE. Se $f: E(\subset \mathbb{R}) \to \mathbb{R}$ è infinita per $x \to x_0 \in \mathbb{R}$, si pone:

$$\operatorname{Ord}_{\mathbf{x}_0} f(x) = \operatorname{Ord}_{\infty} f(x_0 + \frac{1}{x}).$$

È dunque, in particolare:

$$\operatorname{Ord}_{x_0} \frac{1}{|x - x_0|^k} = \operatorname{Ord}_{+\infty} \frac{1}{|x_0 + 1/t - x_0|^k} = \operatorname{Ord}_{+\infty} t^k = k,$$

da cui

$$\operatorname{Ord}_0 \frac{1}{|x|^k} = k.$$

Sappiamo che è $\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty$, $\forall n \in \mathbb{N}^+$; è dunque

$$\operatorname{Ord}_{+\infty} e^{x} > \operatorname{Ord}_{+\infty} x^{n} (= n), \forall n \in \mathbb{N}^{+}.$$

DEFINIZIONE. Sia $f: E(\subset \mathbb{R}) \to \mathbb{R}$ infinita per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Se, per ogni numero reale k > 0, è $\operatorname{Ord}_{\alpha} f > k$, si dice che l'ordine di infinito di f per $x \to \alpha$ è *soprareale*. Se, per ogni numero reale k > 0, è $\operatorname{Ord}_{\alpha} f < k$, si dice che l'ordine di infinito di f per $x \to \alpha$ è *sottoreale*. Se esiste numero reale k > 0 tale che $k < \operatorname{Ord}_{\alpha} f < k + \varepsilon$, per ogni $\varepsilon > 0$, si dice che l'ordine di infinito di f per $x \to \alpha$ è *infrareale*.

ESEMPIO. 1) Sia a > 1; allora $\operatorname{Ord}_{+\infty} a^x$ è soprareale e $\operatorname{Ord}_{+\infty} \log_a x$ è sottoreale, mentre è infrareale $\operatorname{Ord}_{+\infty} x \log_a x$, dato che, $\forall \ \varepsilon > 0$ è

$$1 = \operatorname{Ord}_{+\infty} x < \operatorname{Ord}_{+\infty} x \log_a x < \operatorname{Ord}_{+\infty} x^{1+\varepsilon} = 1 + \varepsilon.$$

Osserviamo ancora che non c'è un unico ordine di infinito soprareale né un unico ordine di infinito sottoreale. Si ha, infatti:

$$\operatorname{Ord}_{+\infty} e^{x} < \operatorname{Ord}_{+\infty} e^{2x} < \operatorname{Ord}_{+\infty} e^{3x} < \cdots$$
;

$$\operatorname{Ord}_{+\infty} \log x > \operatorname{Ord}_{+\infty} \log \log_a x > \operatorname{Ord}_{+\infty} \log \log \log_a x > \dots$$

Ne viene, fra l'altro, che non esiste né un ordine di infinito massimo, né uno minimo.

Passiamo agli infinitesimi.

Anche l'insieme degli ordini di infinitesimo per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$) è solo parzialmente ordinato. Come già fatto per gli infiniti, vogliamo occuparci di un suo sottoinsieme totalmente ordinato e contenente le funzioni elementari.

Siccome la funzione identica è infinitesima per $x \to 0$, è naturale cominciare con il caso $\alpha = 0$.

Sappiamo che l'equivalenza fra infinitesimi è compatibile con il prodotto e con l'innalzamento a potenza. Perciò, assunto

$$\operatorname{ord}_0 x = 1$$
,

è naturale assumere anche

$$\operatorname{ord}_0 |x|^k = k, \quad \forall k > 0.$$

Ragioni analoghe a quelle viste per gli infiniti, ci portano ad accettare la

DEFINIZIONE. Detti $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ due infinitesimi per $x \to 0$, si assume

$$\operatorname{ord}_0 fg = \operatorname{ord}_0 f + \operatorname{ord}_0 g$$

e, se f è positiva in un intorno di 0,

$$\operatorname{ord}_0 f^k = k \operatorname{ord}_0 f \quad \forall k > 0.$$

Si ammette poi che, per ogni $x_0 \in \mathbb{R}$, sia

$$\operatorname{ord}_{x_0} |x - x_0|^k = k$$
, per ogni $k > 0$.

Passiamo agli infinitesimi per x che tende a $+\infty$ (a $-\infty$). Dal Teorema sul limite delle funzioni composte si ottiene subito il

TEOREMA 16. Se $f,g: E(\subset \mathbb{R}) \to \mathbb{R}$ sono due infinitesimi equivalenti per $x \to +\infty$ [per $x \to -\infty$], allora sono equivalenti, per $x \to 0$, gli infinitesimi

$$f\!\!\left(\frac{1}{|x|}\right) \quad e \quad g\!\left(\frac{1}{|x|}\right) \quad \left[f\!\!\left(\frac{-1}{|x|}\right) \quad e \quad g\!\left(\frac{-1}{|x|}\right)\right] \blacksquare$$

È dunque naturale accettare la seguente

DEFINIZIONE. Se $f: E(\subset \mathbb{R}) \to \mathbb{R}$ è infinitesima per $x \to +\infty$ [per $x \to -\infty$], si pone:

$$\operatorname{ord}_{+\infty} f(x) = \operatorname{ord}_0 f\left(\frac{1}{|x|}\right) \quad \left[\operatorname{ord}_{-\infty} f(x) = \operatorname{ord}_0 f\left(\frac{-1}{|x|}\right)\right].$$

È dunque, in particolare:

$$\operatorname{ord}_{\infty} \frac{1}{|x|^{\underline{k}}} = \operatorname{ord}_{0} |x|^{k} = k.$$

Analogamente a quanto fatto per gli infiniti, si dà la nozione di ordini di infinitesimo soprareale, sottoreale e infrareale.

DEFINIZIONE. Sia $f: E(\subset \mathbb{R}) \to \mathbb{R}$ infinitesima per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Se, per ogni numero reale k > 0 è ord $_{\alpha}f > k$, si dice che l'ordine di infinitesimo di f per $x \to \alpha$ è soprareale. Se, per ogni numero reale k > 0 è ord $_{\alpha}f < k$, si dice che l'ordine di infinitesimo di f per $x \to \alpha$ è sottoreale. Se esiste un numero reale k > 0 tale che $k < \operatorname{ord}_{\alpha}f < k + \varepsilon$, per ogni $\varepsilon > 0$, si dice che l'ordine di infinitesimo di f per $x \to \alpha$ è f infrareale.

ESEMPIO. 2) Tenendo conto dei limiti notevoli, si ottiene che ord_{-∞} e^x è soprareale, ord₀ $\frac{1}{\log x}$ è sottoreale, ord₀ $x \log x$ è infrareale.

Si ha, inoltre:

$$\operatorname{ord}_0 x = \operatorname{ord}_0 \sin x = \operatorname{ord}_0 \operatorname{arct} g x = \operatorname{ord}_0 (e^x - 1) = \operatorname{ord}_0 \log(1 + x) = 1;$$

 $\operatorname{ord}_0 (1 - \cos x) = 2; \operatorname{ord}_0 (x - \sin x) = 3.$

Legami fra ordini di infinito e ordini di infinitesimo

Dalle definizioni sopra adottate segue subito il

TEOREMA 17. Sia $f: E(\subset \mathbb{R}) \to \mathbb{R}$ un infinito [un infinitesimo] per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$). Si ha

$$\operatorname{Ord}_{\alpha} f(x) = \operatorname{ord}_{\alpha} \frac{1}{f(x)} \qquad \left[\operatorname{ord}_{\alpha} f(x) = \operatorname{Ord}_{\alpha} \frac{1}{f(x)} \right]. \blacksquare$$

Nella pratica è comoda la seguente

DEFINIZIONE. Gli ordini di infinito [di infinitesimo] si assumono come ordini di infinitesimo [di infinito] *negativi*. Le funzioni limitate e discoste da 0 si assumono come infinite e infinitesime di ordine 0.

ESEMPIO. 3) Si ha:

$$\operatorname{Ord}_{+\infty} \frac{x\sqrt{2x} \operatorname{arctg} x}{x^2 + 1} = 1 + \frac{1}{2} + 0 - 2 = -\frac{1}{2};$$

dunque, la nostra funzione è infinitesima di ordine $\frac{1}{2}$.

§ 5. ESERCIZI

1) Determinare gli ordini di infinito, per $x \to +\infty$ delle seguenti funzioni:

$$\sqrt[3]{x^2}; \quad \frac{x^5 + x^2 - 1}{x^2 - 3x}; \quad (1 + 2x)\sqrt{x}; \quad \frac{1 + 2x}{\sqrt[3]{x^2}}; \quad \frac{x^2}{\log(1 + x)}; \quad x^2 \operatorname{arctg} x + x \sin x;$$

$$\frac{x^2(1 + \sin^2 x)}{x + \log x}; \quad \frac{x^2 + x(1 + \sin x)}{\sqrt{x + 1}}; \quad x^3(x + 1)^5 - x^8; \quad \frac{x^2\sqrt{2 + \sin x}}{(x + 1)\operatorname{arctg} x};$$

$$x\sqrt{\frac{x^2 + 1}{x - 1}} + \sqrt{x^3 + 2} - x; \quad \sqrt{x^2\sqrt{\frac{x^3 + \sin x}{x^3 - \sin x}}} + (x^2 - 1)\operatorname{arctg} x + x\sqrt{x}.$$

2) Determinare gli ordini di infinitesimo, per $x \to 0$ delle seguenti funzioni:

$$\arcsin^3 x; \quad \sqrt{\operatorname{tg} x}; \quad x^2(e^x - 1); \quad x^3 - 5x^2; \quad \sin^2 x + \operatorname{tg}^2 x; \quad \sin^4 x \cos^3 x;$$

 $x + \sin x; \quad 1 - e^{2x}; \quad \frac{x \arctan x}{\sqrt{\sin x}}; \quad \frac{x^2(\arctan x + x)}{\sqrt{1 - \cos x}}; \quad \frac{\log(1 + \sin x)}{\sqrt{|\sin x|}}.$

3) Disporre in ordine crescente gli ordini di infinito per $x \to +\infty$ delle seguenti funzioni:

$$x$$
; $x \log x$; $\frac{x}{\log x}$; $x \log^2 x$; $\frac{x \log x}{\log \log x}$; $x \log x (\log \log x)^2$; $\frac{x \log x (\log \log x)^3}{\log x}$; $x \log(x \log x)$.

4) Si provi che, se f(x) è una funzione che tende a $+\infty$ [a $-\infty$] per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$) e se Ord f non è sottoreale, allora $e^{f(x)}$ è un infinito di ordine soprareale [un infinitesimo di ordine soprareale]. Si provi, mediante esempi, che se Ord f è sottoreale, allora la funzione $e^{f(x)}$ può avere ordine di infinito [di infinitesimo] sottoreale, reale, soprareale.

[Caso $f \to +\infty$, con $\alpha = +\infty$.. Essendo Ordf non sottoreale, esiste un numero positivo k per

cui è $\operatorname{Ord} f > k$. È dunque $\frac{f(x)}{x^k} \to +\infty$. Esiste perciò un intorno di $+\infty$ in cui si ha $f(x) > x^k$. Per ogni numero naturale n si ha dunque

$$\frac{e^{f(x)}}{x^n} = \frac{e^{f(x)}}{e^{x^k}} \frac{e^{x^k}}{x^n} = e^{f(x) - x^k} \frac{e^{x^k}}{(x^k)^{n/k}} \to +\infty.$$

Controesempi, sempre con $f \to +\infty$ e $\alpha = +\infty$. Siano $f_1(x) = \log^2 x$, $f_2(x) = \log x$, $f_3(x) = \log\log x$. Tutte tre queste funzioni sono degli infiniti di ordine sottoreale, ma $\exp f_1$ è di ordine soprareale, $\exp f_2$ è di ordine 1 e, in fine, $\exp f_3$ è di ordine sottoreale. Per verificare che, effettivamente, $\exp f_1$ è di ordine soprareale, basta osservare che è

$$\frac{\exp f_1(x)}{x^n} = \exp\left(\log^2 x - n \log x\right) \to +\infty.$$

5) Si provi che, se f(x) è una funzione che tende a $+\infty$ per $x \to \alpha$ ($\in \mathbb{R} \cup \{\infty, +\infty, -\infty\}$) e se Ord f non è soprareale, allora $\log f(x)$ è un infinito di ordine sottoreale. Si provi, mediante esempi, che se Ord f è soprareale, allora la funzione $\log f(x)$ può avere ordine di infinito sottoreale, reale, soprareale.

[Caso $f \to +\infty$, con $\alpha = +\infty$. Essendo Ordf non soprareale, esiste un numero positivo k per cui è Ordf < k. È dunque $\frac{f(x)}{x^k} \to 0$. Esiste perciò un intorno di $+\infty$ in cui si ha $f(x) < x^k$ e, di conseguenza, anche $\log f(x) < \log x^k$. Per ogni numero reale h si ha dunque

$$\frac{\log f(x)}{x^h} = \frac{\log f(x)}{\log x^k} \frac{\log x^k}{x^h} < k \frac{\log x}{x^h} \to 0.$$

Controesempi, sempre con $\alpha = +\infty$. Siano $f_1(x) = \exp(\exp x)$, $f_2(x) = e^x$, $f_3(x) = \exp(\log^2 x)$. Tutte tre queste funzioni sono degli infiniti di ordine soprareale, ma $\log f_1$ è di ordine soprareale, $\log f_2$ è di ordine 1 e, in fine, $\log f_3$ è di ordine sottoreale.]