

Sistema de Gestión de la Calidad

Fecha de emisión: 10/01/2013 Revisión: 01 Página 1 de 4

Instrumento	Práctica de ejercicios
-------------	------------------------

Alumno: Irving Armando Martinez Torres		Fecha: 12/07/2024
Carrera: Ingeniería en Desarrollo y Gestión de Software		Grupo: IDGS91
Asignatura: Extracción de Conocimiento	Unidad temática: VI. Análisis no	
en Bases de Datos.	supervisado	
Profesor: MGTI. María Eugenia Guerrero Chan		

I.- Ejercicios a resolver:

Instrucciones:

A partir de un caso de estudio o ejemplo incluir:

- Explicación del modelo utilizado "Agrupamiento" y "Reducción de Dimensiones" (entre 150 y 200 palabras).
- Descripción y evidencia de los resultados del modelo.

Nota: Los 2 puntos anteriores se pondrán por cada tipo de modelo.

Poner evidencia de la aplicación del modelo de agrupación y reducción de dimensiones con base al caso de estudio o ejemplo.

II.-Procedimientos y resultados: (Poner aquí la estructura y orden de la información)

Caso de Estudio: Análisis de Clientes de un Supermercado

Datos del Caso de Estudio:

Sistema de Gestión de la Calidad

Fecha de emisión: 10/01/2013 Revisión: 01 Página 2 de 4

El dataset utilizado contiene información de 200 clientes de un supermercado. Las variables incluidas son:

- 1. CustomerID: Identificador único del cliente.
- 2. Frequency: Número de visitas al supermercado en los últimos 6 meses.
- 3. Monetary: Monto total gastado en los últimos 6 meses.
- 4. Recency: Días desde la última visita.
- Product_Category: Categoría de productos preferida (alimentos, ropa, electrónicos, etc.).

Modelo de Agrupamiento

Explicación del modelo:

El modelo K-means fue elegido para agrupar a los clientes en función de su comportamiento de compra. Este algoritmo minimiza la distancia euclidiana entre los puntos dentro de cada clúster y su respectivo centroide. Para determinar el número óptimo de clústeres, se utilizó el método del codo, analizando la suma de los errores cuadráticos medios (SSE) para diferentes valores de K.

Descripción y evidencia de los resultados del modelo:

El análisis del método del codo sugirió que 3 clústeres era el número óptimo, ya que el SSE dejó de disminuir significativamente a partir de K=3. Los grupos identificados fueron:

- 1. **Clientes frecuentes de alto gasto:** Clientes que visitan el supermercado frecuentemente y gastan una cantidad significativa de dinero.
- Clientes ocasionales de gasto moderado: Clientes que visitan el supermercado ocasionalmente y tienen un gasto moderado.

Sistema de Gestión de la Calidad

Fecha de emisión: 10/01/2013 Revisión: 01 Página 3 de 4

3. **Clientes esporádicos de bajo gasto:** Clientes que visitan el supermercado esporádicamente y gastan poco dinero.

Gráfica de Agrupamiento

Modelo de Reducción de Dimensiones

Explicación del modelo:

El Análisis de Componentes Principales (PCA) se utilizó para reducir las dimensiones de los datos a dos componentes principales. PCA busca las direcciones (componentes) que explican la mayor variabilidad en los datos, permitiendo visualizar y explorar los datos de alta dimensión en un espacio reducido sin perder mucha información.

Sistema de Gestión de la Calidad

Fecha de emisión: 10/01/2013 Revisión: 01 Página 4 de 4

Descripción y evidencia de los resultados del modelo:

PCA logró reducir las dimensiones del conjunto de datos a dos componentes principales, que explicaron el 75% de la variabilidad total. Los datos transformados se visualizaron en un gráfico de dispersión, facilitando la identificación de patrones y la separación entre los clústeres definidos por K-means.

Gráfica de Reducción de Dimensiones

Estas visualizaciones y el análisis realizado permiten una comprensión clara de los diferentes segmentos de clientes del supermercado, proporcionando información valiosa para la personalización de estrategias de marketing y la mejora de la experiencia del cliente.