QuantA&M Informational

Welcome!

David Tanase - President

What is our mission?

The mission of QuantA&M is to connect students with the resources they need to learn more about the development, implementation, and application of quantum computing technology.

The organization also hopes to bring a new generation of inquisitive students to the forefront of quantum computing innovation as we enter a society which uses quantum computing as a mainstream method of solving complex problems.

Background

- Founded Dec. 2022 by David Tanase, Mac Morrison, and Sam Bieberich
- Supported by faculty advisor Dr. James Cai:
 - Associate Professor, Veterinary Medicine & Biomedical Sciences
 - Affiliated Faculty, Electrical & Computer Engineering
 - https://cailab-tamu.github.io/
- Inspired by the lack of infrastructure A&M boasts in the field of Quantum Computing compared to other Universities
 - TU Quantum Collective 600 members
 - O Q-Munity (HS) 12,000 members

"Our research lies at the interface of human genetics, computational statistics, and data science. Current research focuses on understanding diverse behaviors of cells using machine learning, network theory, and quantum computation."

Yeah but why else should I care?

Samuel (Sam) Bieberich, Vice-President

How much does Computing mak			
\$140,000 Based on 143 salaries	/ Annual	Median \$140,000	
The average quantum the USA is \$140,000 per			
hour. Entry level positions start at \$106,250 per year while most experienced workers make up to \$155,050 per year.		Low \$106,250	Higi \$155,05
Quantum compregion	uting: salaries p	per	
	uting: salaries p \$158,175	per	
region		per	

EMPLOYER	⇒ JOB TITLE	BASE SALARY	LOCATION	SUBMIT	\$ START DATE
IBM CORPORATION	QUANTUM COMPUTING APPLICATIONS RESEARCHER	250,000	SAN FRANCISCO, CA	02/26/2019	03/12/2019
JPMORGAN CHASE & CO	QUANTUM COMPUTING SCIENTIST	150,000	NEW YORK, NY	03/11/2019	09/10/2019
IBM CORPORATION	QUANTUM COMPUTING APPLICATIONS RESEARCHER	145,000	SAN JOSE, CA	03/26/2019	09/04/2019
RIGETTI & CO INC	QUANTUM ENGINEER	140,000	BERKELEY, CA	03/13/2019	09/09/2019
ALIBABA GROUP (US) INC	QUANTUM RESEARCH SCIENTIST	138,000	BELLEVUE, WA	03/11/2019	09/07/2019
IBM CORPORATION	QUANTUM SOLUTIONS DEVELOPER	125,445	YORKTOWN HEIGHTS, NY	03/20/2019	09/19/2019
PSIQUANTUM CORP	QUANTUM ARCHITECT	123,261	PALO ALTO, CA	03/12/2019	09/10/2019
PSIQUANTUM CORP	QUANTUM ARCHITECT	123,261	PALO ALTO, CA	03/12/2019	09/10/2019
RAYTHEON BBN TECHNOLOGIES CORP	QUANTUM COMPUTING THEORIST	121,555	CAMBRIDGE, MA	03/08/2019	08/08/2019
IBM CORPORATION	QUANTUM SOLUTIONS DEVELOPER	120,000	YORKTOWN HEIGHTS, NY	02/04/2019	08/06/2019

Moore's Law

We-Chih Huang - Graduate Mentor

Quantum Computing

Vs.

Classical Computing

Calculates with qubits, which can represent 0 and 1 at the same time

Calculates with transistors, which can represent either 0 or 1

Power increases exponentially in proportion to the number of qubits

Power increases in a 1:1 relationship with the number of transistors

Quantum computers have high error rates and need to be kept ultracold

Classical computers have low error rates and can operate at room temp

Well suited for tasks like optimization problems, data analysis, and simulations

Most everyday processing is best handled by classical computers

Two prime numbers

The product

piece of cake 73797149 * 82268713 — 6071196471299237

Hard

73797149 * 82268713 ------ 6071196471299237

until QC....

What is Quantum Computing anyways?

Future plans

Book club/Study group

- We want to begin to harbor a learning program for the field of QC
 - To do so, we will start with the Qiskit textbook this semester, and by the end of the year we
 hope that you will be qualified to take the IBM Qiskit Advocate exam
 - Free at https://qiskit.org/learn/

Fig. 1. Quantum engineering course modules suggested for STEM students at any level (orange shaded text box), all levels plus advanced students (orange fade to purple), and advanced students only (purple). Arrows between boxes show different sequences taught by the authors (see text), which can be used as a basis for future engineering education research and course development upon formulating program and institution-tailored learning goals (green: Blais; purple: Carr; dark blue (first semester), orange (second semester): Economou; red: Kapit; and black: Lynn). The broad gray circular arrow highlights a particular choice (Girvin) as an example, 1-2-3-4-6. Note that particular connections, such as modules 2 to 3, are almost universal, while some, such as 5 and 12, are presently aspirational.

Chapters
Prerequisites
Setting Up Your Environment
Python and Jupyter Notebooks
Quantum States and Qubits
Introduction
Introduction The Atoms of Computation
The Atoms of Computation

Courses					
Basics of quantum information	Introduction Course	Quantum Machine Learning			
Single systems	Why Quantum Computing?	Introduction			
Multiple systems	The Atoms of Computation	Parameterized quantum circuits			
Quantum circuits	What is Quantum?	Data encoding			
Quantum protocols and games	protocols and games Describing Quantum Computers Entangled States Visualizing Entanglement Grover's search algorithm Project	Training parameterized quantum circuits			
		Supervised learning			
		Variational classification			
		Quantum feature maps and kernels			
		Unsupervised learning			
		Quantum generative adversarial			
		networks			
		Project			

Independent or Team projects

Because quantum computing is a small, but growing field, there are limited opportunities at the moment, meaning only those with good resumes will be accepted to the most enviable positions. This is why we encourage our members to take part in an individual or group project, sponsored by QuantA&M, which they may use on their resumes or for future reference with applications in the field.

Some potential ideas for a project are as follows:

- Quantum Blog Post
- Undergraduate research paper submission
- Github code projects with Quantum languages (Qiskit, Q#, Cirq, etc.)

A lot more information about these opportunities is available on the Discord channel for projects, accessible by assigning yourself the role Interested in a Quantum Project

Speaker events

- Hosted by QuantA&M, come to listen to a speaker or a panel of speakers from either A&M or Industry talk about QC
- First event will be this month, date pending, with 2-3 graduate students at A&M working in the field of Quantum Physics (related to QC)

Thanks for giving us a shot!

- Discord
 - Main source of information until website is live
- Newsletter
 - Publishing announcements and dates of events
 - Posted weekly in the Discord, and via email

Upcoming Events:

- Feb. 8 First Book Club meeting (7-8 pm approx.) on Zoom
 - How to set up and run a job on a real quantum computer
- Feb. 13 QHack introductory event (time pending) @ Peterson Building