

Description

The VSM60P04Y uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for use as a load switch or in PWM applications.

General Features

V_{DS} =-60V,I_D =-4A

 $R_{DS(ON)}$ <120m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <170m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Load switch
- PWM application

SOT-23-3

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60P04Y-S2	VSM60P04Y	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	-60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	-4	А
Pulsed Drain Current (Note 1)	I _{DM}	-16	А
Maximum Power Dissipation	P _D	1.5	W
Single pulse avalanche energy (Note 5)	E _{AS}	72	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

١	Thermal Decistores Junction to Ambient(Note 2)	D	02.2	°C/W
	I nermal Resistance, Junction-to-Ambient	КөЈА	83.3	C/VV

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA

On Characteristics (Note 3)						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.0	-1.5	-2.5	V
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-4A	-	106	120	mΩ
	$R_{DS(ON)}$	V _{GS} =-4.5V, I _D =-3A	-	135	170	mΩ
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-4A	-	10	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	\/ - 20\/\/ -0\/	-	930	-	PF
Output Capacitance	Coss	V_{DS} =-30V, V_{GS} =0V, F=1.0MHz	-	85	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHZ	-	35	-	PF
Switching Characteristics (Note 4)				•		
Turn-on Delay Time	t _{d(on)}		-	8	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30 V , R_L =7.5 Ω ,	-	4	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =3 Ω	-	32	-	nS
Turn-Off Fall Time	t _f		-	7	-	nS
Total Gate Charge	Qg	V - 20 I - 4A	-	25	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-30, I_{D} =-4A, V_{GS} =-10V	-	3	-	nC
Gate-Drain Charge	Q _{gd}	VGS10V	-	7	-	nC
Drain-Source Diode Characteristics				•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-4A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-4	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =- 4A	-	25		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	31		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=-20V,VG=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

10

15

20

25

5

0

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

T_J-Junction Temperature(°C)

Figure 10 ID Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance