Chapter 4.2 Random Variables

Jim Albert and Monika Hu

Chapter 4 Discrete Distributions

A Coin Flipping Game

- ➤ Suppose that Peter and Paul play a simple coin game. A coin is tossed. If the coin lands heads, then Peter receives \$2 from Paul; otherwise Peter has to pay \$2 to Paul.
- ► The game is played for a total of five coin flips. After the five flips, what is Peter's net gain (in dollars)?
- ▶ There are 32 possibilities for the five flips.

ННННН	НТННН	ТНННН	ТТННН
HHHHT	HTHHT	THHHT	TTHHT
HHHTH	HTHTH	THHTH	TTHTH
HHHTT	HTHTT	THHTT	TTHTT
HHTHH	HTTHH	THTHH	TTTHH
HHTHT	HTTHT	THTHT	TTTHT
HHTTH	HTTTH	THTTH	TTTTH
HHTTT	HTTTT	THTTT	TTTTT

A Random Variable

- ► For each possible outcome of the flips, say *HTHHT*, there will be a corresponding net gain for Peter.
- For this outcome, Peter won three times and lost twice, so his net gain is 3(2) 2(2) = 2 dollars.
- The net gain is an example of a random variable, a number that is assigned to each outcome of the random experiment.
- ▶ Use a capital letter *G* to denote Peter's gain in this experiment.

Assign Random Variable to All 32 Outcomes

HHHHHH, G = 10	HTHHH, G = 6	THHHH, G = 6	TTHHF
HHHHT, $G = 6$	HTHHT, $G = 2$	THHHT, $G = 2$	TTHHT
HHHTH, G = 6	HTHTH, G = 2	THHTH, G = 2	TTHTF
HHHTT, G = 2	HTHTT, $G = -2$	THHTT, $G = -2$	TTHTT
HHTHH, G = 6	HTTHH, G = 2	THTHH, G = 2	TTTHE
HHTHT, $G=2$	HTTHT, $G = -2$	THTHT, $G = -2$	TTTHT

HHTTH, G = 2 HTTTH, G = -2 THTTH, G = -2 TTTTH HHTTT, G = -2 HTTTT, G = -6 THTTT

Comments

- ▶ Possible gains for Peter are -10, -6, -2, 2, 6, and 10 dollars.
- ▶ Table gives all possible values of *G*.

Gain g (dollars)	Number of outcomes	P(G=g)
-10		
-6		
-2		
2		
6		
10		

Finding Probabilities

- ▶ What is the probability that Peter gains \$6 in this game?
- ▶ Looking at the table of outcomes, one sees that Peter won \$6 in five of the outcomes. Since each outcome has probability 1/32, the probability of Peter winning \$6 is 5/32.
- This process is continued for all of the possible values of G
 obtain a probability distribution for G.

Gain g (dollars)	Number of outcomes	P(G=g)
-10	1	1/32
-6	5	5/32
-2	10	10/32
2	10	10/32
6	5	5/32
10	1	1/32