Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Machine Learning Operations (MLOps)

Overview

Machine Learning Workflow

	Ingest & Analyze	Prepare & Transform	Train & Tune	Deploy & Manage
	Data exploration	Feature engineering	Automated ML	Model deployment
- (50)	Bias detection	Feature store	Model train and tune	Automated pipelines
	Amazon S3 & Amazon Athena	Amazon SageMaker Data Wrangler	Amazon SageMaker Autopilot	Amazon SageMaker Endpoints
	AWS Glue	Amazon SageMaker Processing Jobs	Amazon SageMaker Training & Debugger	Amazon SageMaker Batch Transform
	Amazon SageMaker Data Wrangler & Clarify	Amazon SageMaker Feature Store	Amazon SageMaker Hyperparameter Tuning	Amazon SageMaker Pipelines

It's not just **technology**... People Technology **Process**

Considerations

Machine Learning Development Lifecycle (MLDC) != Software Development Lifecycle (SDLC)

Considerations

Machine Learning Development Lifecycle (MLDC) != Software Development Lifecycle (SDLC)

A Model may be a small part of an overall solution

Considerations

Machine Learning Development Lifecycle (MLDC) != Software Development Lifecycle (SDLC)

A Model may be a small part of an overall solution

Multiple personas spanning the MLDC

Considerations

Machine Learning Development Lifecycle (MLDC) != Software Development Lifecycle (SDLC)

A Model may be a small part of an overall solution

Multiple personas spanning the MLDC

Integration with traditional IT practices

Machine Learning Workflow

Goals

Accelerate the path to production:

- ☐ Reduce manual hand-offs between steps
- ☐ Increase automation within steps
- ☐ Orchestrate the workflow

Goals

Accelerate the path to production:

- ☐ Reduce manual hand-offs between steps
- Increase automation within steps
- ☐ Orchestrate the workflow

Improve the quality of deployed models:

Implement automated workflows with quality gates

Goals

Accelerate the path to production:

- ☐ Reduce manual hand-offs between steps
- Increase automation within steps
- Orchestrate the workflow

Improve the quality of deployed models:

Implement automated workflows with quality gates

Build resilient, secure, performant, operationally efficient and cost optimized ML solutions

 \Box Consider aspects unique to ML solutions + Traditional systems engineering considerations

Path to production

Path to production

Path to production

Path to production

Accelerate the path to production

Accelerate the path to production

Accelerate the path to production

Accelerate the path to production

Accelerate the path to production

Automation vs Orchestration

Automation: Automate a task (Ex. Data Preparation) to perform a specific activity or produce defined artifacts based on the inputs or triggers of that task without human intervention

Accelerate the path to production

Automation vs Orchestration

Automation: Automate a **task** (Ex. Data Preparation) to perform a specific activity or produce defined artifacts based on the inputs or triggers of that task without human intervention

Transformed **Process** Data Data Data ingest output

Example: Data Preparation

Raw

Orchestration: Orchestrate the steps of a workflow that contain a collection of tasks

Improve the quality of deployed models

Examples: Automated quality gates

Improve the quality of deployed models

Examples: Automated quality gates

Improve the quality of deployed models

Improve the quality of deployed models

Improve the quality of deployed models

Key Considerations

Security

Reliability

Cost Optimization

Performance Efficiency

Operational Excellence

Creating Machine Learning Pipelines

Creating Machine Learning Pipelines

Building Effective Pipelines

Data Tasks

Data Ingestion for Model Development

Data Tasks

Data Ingestion for Model Development

TO...

Data Tasks

Data Ingestion for Model Retraining

Data Tasks

Data Pre-Processing & Feature Engineering

Data Tasks

Data Versioning

Examples:

Data Tasks

Pipeline Triggers Ingest & Prepare & Train & Tune Deploy & Manage Experiment & Model Lineage Tracking

Data Validation

Examples:

Data Quality

Statistical Bias

Data Schema

Model Building Tasks

Model Training, Evaluation & Versioning

Model Deployment Tasks

Model Deployment & Consumption

Operating Tasks

Prepare & Train & Tune Ingest & Analyze Prepare & Train & Tune Deploy & Manage Experiment & Model Lineage Tracking

Logging & Monitoring

Logging →

- Model Data
- System Data

Monitoring →

- Collect Metrics
- Setup Alerts
- Trigger Automated Flows

Operating Tasks

Additional Feedback Mechanisms

- Each persona can have different motivations and needs for monitors, logging and dashboards.
- Examples:
 - Pipeline Status
 - System Performance
 - Model Performance

Machine Learning Pipelines

Pipeline Orchestration: Bringing It Together

- Steps within Task can be automated
- □ Each set of tasks has Inputs &Artifacts produced as part of those steps

☐ **Orchestration** is required to coordinate the execution of tasks and steps within the tasks.

Model Lineage & Artifact Tracking

Model Lineage

What is Model Lineage?

For **EACH** version of a trained model:

- ☐ Version(s) of data used
- Version(s) of code/hyperparameters used
- ☐ Version(s) of algorithm/framework
- ☐ Version(s) of training docker image
- ☐ Version(s) of packages/libraries

Model Lineage

Model Lineage Example

Model Lineage

Model Registry

What is a Model Registry?

- Centrally manage model metadata and model artifacts
- ☐ Track which models are deploy across environments

Artifact Tracking

What is Artifact Tracking?

 An Artifact is the output of a step or task can be consumed by the next step in a pipeline or deployed directly for consumption

Artifact Tracking

Pipeline Manifest

Example:

Artifact Tracking

Pipeline Manifest - Why it matters

Machine Learning Pipelines

with Amazon SageMaker Pipelines

Machine Learning Workflow

	Ingest & Analyze	Prepare & Transform	Train & Tune	Deploy & Manage
	Data exploration	Feature engineering	Automated ML	Model deployment
-(63)-	Bias detection	Feature store	Model train and tune	Automated pipelines
	Amazon S3 & Amazon Athena	Amazon SageMaker Data Wrangler	Amazon SageMaker Autopilot	Amazon SageMaker Endpoints
	AWS Glue	Amazon SageMaker Processing Jobs	Amazon SageMaker Training & Debugger	Amazon SageMaker Batch Transform
	Amazon SageMaker Data Wrangler & Clarify	Amazon SageMaker Feature Store	Amazon SageMaker Hyperparameter Tuning	Amazon SageMaker Pipelines

Amazon SageMaker Pipelines

Create & visualize automated workflows

Choose the best performing model to deploy

Automatic tracking of models

Bring CI/CD to Machine Learning

Amazon SageMaker Pipelines

SageMaker Pipelines has 3 components

Amazon SageMaker Pipelines

SageMaker Pipelines has 3 components

Pipelines

- Create Pipelines to build and evaluate models
- ☐ Python SDK for building workflows
- ☐ Pipeline visualization available through Amazon SageMaker Studio
- ☐ Fully managed pipelines no servers to manage

Processing Step

Processing Step

Define Step Inputs & Outputs →

```
processing_inputs = [
    ProcessingInput(
     input_name='customer-reviews-input-data',
     source='s3://...',
     destination='/opt/ml/processing/input/data/',
     s3 data distribution type='ShardedByS3Key'
processing outputs=[
         ProcessingOutput(...)
```

Processing Step

Configure the Processing Step →

Training Step

Training Step

Configure Hyperparameters →

```
hyperparameters={
          'max_seq_length': max_seq_length,
          'epochs': epochs,
          'learning_rate': learning_rate,
          ...
}
```

Training Step

Configure Estimator →

```
from sagemaker.pytorch import PyTorch as PyTorchEstimator
estimator = PyTorchEstimator(
           entry point='train.py',
           source dir='src',
           role=role,
           instance_count=train_instance_count,
           instance type=train instance type,
           volume size=train volume size,
           py version='py3',
           framework version='1.6.0',
           hyperparameters=hyperparameters,
           metric definitions=metric definitions,
           input mode=input mode
```


Training Step


```
Configure the Training Step →
                                          Output from
training step = TrainingStep(
                                          Processing Step
          name='Train',
          estimator=estimator,
          inputs={
          'train': TrainingInput(
          s3 data=processing step.properties.ProcessingOu
tputConfig.Outputs[
                    'sentiment-train'
          ].S3Output.S3Uri,
          content type='text/csv'
```

'validation': TrainingInput(...

Evaluation Step

Use Amazon SageMaker Processing to evaluate trained model using test holdout dataset →

Model evaluation

Evaluate the model with holdout test dataset

Code: evaluate_model_metrics.py

```
from sklearn.metrics import classification report
from sklearn.metrics import accuracy score
                                          Define model
def predict_fn(input data, model):
                                          predict
   model.eval()
                                          function
   return predicted classes jsonlines
                                                              Use "test"
y test = df test reviews['review body'].map(predict)
                                                              holdout data
y actual = df test reviews['sentiment'].astype('int64')
print(classification_report(y_true=y_test, y_pred=y_actual))
                                                              Calculate
accuracy = accuracy_score(y_true=y_test, y_pred=y_actual)
                                                              test accuracy
print('Test accuracy: ', accuracy)
```


Analyze results

```
from pprint import pprint

evaluation_json = sagemaker.s3.S3Downloader.read_file(
    "{}/evaluation.json".format(evaluation_metrics_s3_uri))

pprint(json.loads(evaluation_json))
```

```
>> {'metrics': {'accuracy': {'value': 0.7458165031736872}}}
```


Evaluation Step

Define Output →

Evaluation Step

Configure Processing Step →

Condition Step

Condition Step

Define a Condition & Import Conditional Workflow Step →

Condition Step

Configure the Condition →

Condition Step

Configure the Condition Step →

Amazon SageMaker Pipelines

SageMaker Pipelines has 3 components

Model Registry

- ☐ Catalog models for production
- Manage model versions & metadata
- Manage the approval status of a model
- ☐ Trigger model deployment pipeline

Register Model Step

Define deployment image for inference →

Register Model Step

Define model metrics to be stored as metadata →

Register Model Step

Configure the Register Model Step →

```
register_step = RegisterModel(
            name="RegisterModel",
            estimator=estimator.
            image uri=....
      model data=
            training step.properties.ModelArtifacts.S3ModelArtifacts,
      content_types=["application/jsonlines"],
      response types=["application/jsonlines"],
      inference instances=[deploy instance type],
      transform_instances=['ml.m5.xlarge'], # batch transform
      model package group name=model package group name,
      approval_status=model_approval_status,
      model metrics=model metrics)
```


Amazon SageMaker Pipelines

SageMaker Pipelines has 3 components

Bringing It All Together

Configure the Pipeline →

Bringing It All Together

Create & Execute the Pipeline →

Machine Learning Pipelines

with Amazon SageMaker Projects

Amazon SageMaker Pipelines

SageMaker Pipelines has 3 components

SageMaker Projects

- Create end-to-end ML solutions with CI/CD practices
- Incorporates source/version control
- 3 Built-In MLOps Project Templates covering:
 - O Build, Train, Deploy
 - o Build, Train
 - Deploy
- Ability to bring custom Project templates

