Near instance-optimal PAC Reinforcement Learning in deterministic MDPs

Andrea Tirinzoni³, Aymen Al Marjani^{1,2}, Emilie Kaufmann²,

¹UMPA, ENS de Lyon ²Inria Lille, Equipe SCOOL ³META AI, Paris

Journées de Statistiques 16 Juin 2022

Motivation

Markov Decision Process

- H: Horizon.
- $(S_h, A_h)_{h \in [H]}$: Finite state and action spaces.
- **1** The agent interacts *sequentially* with the environment within *episodes*. At each episode, the agent starts at some fixed state $s_1 \in S_1$.
- **1** Then for every $h \in [H]$:
 - The agent is at some state $s_h \in \mathcal{S}_h$,
 - chooses to play action $a_h \in A_h$,
 - receives reward $R(s_h, a_h) \sim q_h(.|s_h, a_h)$,
 - makes transition to the next state $s_{h+1} = f_h(s_h, a_h)$. Given $(s_h, a_h), s_{h+1}$ is deterministic.

The PAC RL problem

We define a policy as $\pi = \{\pi_h\}_{h \in [H]}$, where $\pi_h : \mathcal{S} \to \mathcal{A}$.

The PAC RL problem

We define a policy as $\pi = \{\pi_h\}_{h \in [H]}$, where $\pi_h : \mathcal{S} \to \mathcal{A}$. Each policy π is characterized by its value function:

$$V_1^{\pi} = \mathbb{E}_{q,\pi} \left[\left. \sum_{h=0}^H R(s_h^{\pi}, a_h^{\pi}) \right| s_1 \right].$$

The optimal value function is defined as: $V_1^\star = \max_\pi \ V_1^\pi$

The PAC RL problem

We define a policy as $\pi = \{\pi_h\}_{h \in [H]}$, where $\pi_h : \mathcal{S} \to \mathcal{A}$. Each policy π is characterized by its value function:

$$V_1^{\pi} = \mathbb{E}_{q,\pi} \left[\left. \sum_{h=0}^H R(s_h^{\pi}, a_h^{\pi}) \right| s_1 \right].$$

The optimal value function is defined as: $V_1^\star = \max_\pi \ V_1^\pi$

The PAC RL Problem: The transitions f_h are known, but the rewards $(q_h)_{h \in [H]}$ are unknown. Given parameters (ε, δ) , interact with the environment for some number of episodes τ_{δ} , until you find a policy $\widehat{\pi}$ such that:

$$\mathbb{P}(V_1^{\widehat{\pi}} \geq V_1^{\star} - \varepsilon) \geq 1 - \delta.$$

using minimum number of Episodes!

The learning problem illustrated

Previous results

Define the action-value function:

$$Q_h^{\star}(s,a) = \mathbb{E}_{q,\pi^{\star}} \left[\sum_{\ell=h}^{H} R(s_{\ell}, a_{\ell}) \middle| s_h = s, a_h = s \right],$$

$$V_h^{\star}(s) = \max_{a \in h} Q_h^{\star}(s, a).$$

• Define the value gaps:

$$\Delta_h(s,a) = V_h^{\star}(s) - Q_h^{\star}(s,a)$$

 (Wagenmaker et al. 2021) propose an algorithm for PAC RL whose sample complexity is roughly

$$\widetilde{\mathcal{O}}\left(\sum_{(s,a,h)} \frac{H^2 \log(1/\delta)}{\max(\Delta_h(s,a),\varepsilon)^2}\right)$$

Value gaps? Seriously?

 $\Delta_2(s_2^2,a_2)=10^{-3}\Longrightarrow$ Relying on value gaps to detect suboptimality of (s_2^2,a_2) will take many episodes !

Beyond value gaps: Return gaps!

We propose a return gaps:

$$\overline{\Delta}_h(s,a) = V_1^{\star} - \max_{\pi: \text{ goes through } (h,s,a)} V_1^{\pi}.$$

 $\overline{\Delta}_2(s_2^2, a_2) = 98 \Longrightarrow$ We can detect suboptimality of (s_2^2, a_2) earlier!

Hoeffding bounds

• Assuming the reward distributions are σ^2 -subgaussian, we can define high probability upper and lower confidence bounds on the value of any policy:

$$egin{aligned} \overline{V}_h^{t,\pi}(s) &= \sum_{\ell=h}^H \left(\hat{r}_\ell^t(s_\ell^\pi, a_\ell^\pi) + \sqrt{rac{\log\left(rac{e(t+1)SAH}{\delta}
ight)}{2n_\ell^t(s_\ell^\pi, a_\ell^\pi)}}
ight), \ \underline{V}_h^{t,\pi}(s) &= \sum_{\ell=h}^H \left(\hat{r}_\ell^t(s_\ell^\pi, a_\ell^\pi) - \sqrt{rac{\log\left(rac{e(t+1)SAH}{\delta}
ight)}{2n_\ell^t(s_\ell^\pi, a_\ell^\pi)}}
ight) \end{aligned}$$

Algorithm: Elimination rule and stopping rule

Algorithm 1 Elimination-based PAC RL (EPRL) for deterministic MDPs

```
1: Input: deterministic MDP (without reward) \mathcal{M} := (\mathcal{S}, \mathcal{A}, \{f_h\}_{h \in [H]}, s_1, H), \varepsilon,
2: Initialize \mathcal{A}_h^0(s) \leftarrow \mathcal{A}_h(s) for all h \in [H], s \in \mathcal{S}_h
3: Set n_h^0(s, a) \leftarrow 0 for all h \in [H], s \in \mathcal{S}_h, a \in \mathcal{A}_h(s)
     for t = 1, \ldots do
          Play \pi^t \leftarrow \text{MAXCOVERAGE}()
5.
          Update statistics n_h^t(s, a), \hat{r}_h^t(s, a)
6:
         \mathcal{A}_h^t(s) \leftarrow \mathcal{A}_h^{t-1}(s) \cap \left\{ a \in \mathcal{A} : \mathsf{max}_{\pi \in \Pi_{s,a,h} \cap \Pi^{t-1}} \, \overline{V}_1^{t,\pi}(s_1) \geq \mathsf{max}_{\pi \in \Pi} \, \underline{V}_1^{t,\pi}(s_1) \right\}
          \text{if} \quad \max_{\pi \in \Pi^t} \left( \overline{V}_1^{\pi,t}(s_1) - \underline{V}_1^{\pi,t}(s_1) \right) \leq \varepsilon \quad \text{or} \quad \forall h \in [H], s \in \mathcal{S}_h : |\mathcal{A}_h^t(s)| \leq 1
8:
          then
               Stop and recommend \widehat{\pi} \in \arg\max_{\pi \subset \Pi^t} \overline{V}_1^{\pi,t}(s_1)
```

- end if 10.
- 11: end for

9:

Algorithm: Sampling rule

Algorithm 2 Elimination-based PAC RL (EPRL) for deterministic MDPs

- 1: **Input:** deterministic MDP (without reward) $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \{f_h\}_{h \in [H]}, s_1, H), \varepsilon, \delta$
- 2: Initialize $\mathcal{A}_h^0(s) \leftarrow \mathcal{A}_h(s)$ for all $h \in [H], s \in \mathcal{S}_h$
- 3: Set $n_h^0(s,a) \leftarrow 0$ for all $h \in [H], s \in \mathcal{S}_h, a \in \mathcal{A}_h(s)$
- 4: **for** t = 1, ... **do**
- 5: Play $\pi^t \leftarrow \text{MAXCOVERAGE}()$
- 6: Update statistics $n_h^t(s, a), \hat{r}_h^t(s, a)$
- 7: Do eliminations.
- 8: Check if stopping rule is triggered.
- 9: end for
- 10: **function** MaxCoverage()
- 11: Let $k_t \leftarrow \min_{h,s,a} n_h^{t-1}(s,a) + 1$ and $\bar{t}_{k_t} \leftarrow \inf_{l \in \mathbb{N}} \{l : k_l = k_t\}$
- 12: $\mathbf{return} \ \pi^t \leftarrow \arg\max_{\pi \in \Pi} \sum_{h=1}^H \mathbb{1}\left(a_h^\pi \in \mathcal{A}_h^{\bar{t}_{k_t}-1}(s_h^\pi), n_h^{t-1}(s_h^\pi, a_h^\pi) < k_t\right)$

Main Results

Theorems 1 and 3 (Tirinzoni, AL Marjani, Kaufmann" 22)

EPRL is (ε, δ) -PAC. Moreover, with probability at least $1 - \delta$, its sample complexity bounded by:

$$\begin{split} \tau_{\delta} &= \widetilde{\mathcal{O}}\bigg(\varphi^{\star}\bigg(\bigg[\frac{H^{2}\log(1/\delta)}{\max(\overline{\Delta}_{h}(s,a),\varepsilon)^{2}}\bigg]_{s,a,h}\bigg)\bigg), \\ &\leq \widetilde{\mathcal{O}}\bigg(\sum_{s,a,h}\frac{H^{2}\log(1/\delta)}{\max(\overline{\Delta}_{h}(s,a),\varepsilon)^{2}}\bigg). \end{split}$$

Furthermore, any (ε, δ) -PAC algorithm must have a sample complexity at least:

$$\mathbb{E}[\tau_{\delta}] = \Omega\bigg(\varphi^{\star}\bigg((\frac{\log(1/\delta)}{\max(\overline{\Delta}_{h}(s,a),\varepsilon)^{2}})_{s,a,h}\bigg)\bigg).$$

where the $\widetilde{\mathcal{O}}$ hides universal constants (not that large, trust me) and log factors.

Conclusion and perspectives

- We can detect and eliminate suboptimal (state,action) pair very early by looking at the full trajectory and not only what happens after.
- Combining this simple elimination rule with clever exploration, we can achieve near optimal sample complexity!
- Extensions to stochastic transitions?

Thanks!