VİTMO

Исследовательская работа по теме "Пределы"

Группа М3103

Кравченкова Елизавета Левков Андрей Родецкий Никита Смирнов Максим

Преподаватель

Сарычев Павел Александрович

Математический анализ **Университет ИТМО** Санк-Петербург, Россия

23 октября 2022 г.

Оглавление

1	Задача 1		3
	1.1	Вычислите предел последовательности при $x \to \infty$	3
	1.2	Постройте график общего члена последовательности в зависимости от номера n	4
	1.3	Проиллюстрируйте сходимость (расходимость) последовательности	5
2	Задача 2		6
	2.1	Вычислите предел функции при $x \to \infty$	6
	2.2	Постройте график функции	6
	2.3	Проиллюстрируйте сходимость (расходимость) функции на бесконечности	7
3	Задача 3		9
	3.1	Сделайте графическую иллюстрацию к задаче	9
	3.2	Составьте математическую модель: введите обозначения, составьте формулу	9
	3.3	Решите задачу аналитически	9
4	Задача 4		10
	4.1	Сделайте графическую иллюстрацию к задаче	10
	4.2	Составьте математическую модель: введите обозначения, составьте формулу	10
	4.3	Решите задачу аналитически	10
5	Вы	воды	11
6	3. Опеночный пист		12

$$a_n = \frac{\sqrt[3]{n^5(5n-3)} - \sqrt[3]{5n^6 + 2}}{\sqrt{9n^2 - 2n + 3}}$$

1.1

$$\lim_{n \to +\infty} \frac{\sqrt[3]{n^5(5n-3)} - \sqrt[3]{5n^6+2}}{\sqrt{9n^2-2n+3}}$$

1. При $n \to +\infty$ $9n^2 - 2n + 3 \sim 9n^2$

$$\lim_{n \to +\infty} \frac{9n^2 - 2n + 3}{9n^2} = \lim_{n \to +\infty} \frac{9 - \frac{2}{n} + \frac{3}{n^2}}{9} = 1$$

2. Числитель:

По формуле разности кубов:

$$a - b = (\sqrt[3]{a} - \sqrt[3]{b})(a^{\frac{2}{3}} + \sqrt[3]{ab} + b^{\frac{2}{3}})$$

$$(1) \sqrt[3]{n^5(5n-3)} - \sqrt[3]{5n^6+2} = \frac{5n^6-3n^5-5n^6-2}{\left(n^{\frac{10}{3}}(5n-3)^{\frac{2}{3}} + n^{\frac{5}{3}}(25n^7-15n^6+10n-6)^{\frac{1}{3}} + (5n^6+2)^{\frac{2}{3}}\right)}$$

Докажем в общем случае для $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$

$$\lim_{x \to +\infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{a_n x^n} = \lim_{x \to +\infty} \frac{a_n + \frac{a_n - 1}{x} + \dots + \frac{a_0}{x^n}}{a_n} = 1$$

В знаменателе (1) имеет смысл рассматривать только старшую степень при n и коэффициент при ней

И в
$$(n^{\frac{10}{3}}(5n-3)^{\frac{2}{3}})$$
 это $\sqrt[3]{25n^{12}} = \sqrt[3]{25}n^4$

в
$$(n^5(25n^7-15n^6+10n-6))^{\frac{1}{3}}$$
 это $\sqrt[3]{25n^{12}}=\sqrt[3]{25}n^4$

в
$$((5n^6+2)^2)^{\frac{1}{3}}$$
 это $\sqrt[3]{25}n^4$

А значит знаменатель эквивалентен $3\sqrt[3]{25}n^4$ при $n\to +\infty$

А числитель: $-3n^5$ при $n \to +\infty$

$$\lim_{n \to +\infty} \frac{\sqrt[3]{n^5(5n-3)} - \sqrt[3]{5n^6+2}}{\sqrt{9n^2-2n+3}} = \lim_{n \to +\infty} \frac{-3n^5}{\sqrt[3]{25} \cdot n^4 \cdot \sqrt{9n^2}} = \lim_{n \to +\infty} \frac{-3n^5}{3*3\sqrt[3]{25} \cdot n^5} = -\frac{1}{3\sqrt[3]{25}}$$

1.2

1.3

Пусть $f: \mathbb{N} \to \mathbb{R}$, $f(n) = y_n$ - последовательность. Если предел при $n \to +\infty$ существует и конечен, то говорят, что последовательность сходится. Это означает, что если a - это предел, то выполняется $\forall \varepsilon > 0 \; \exists N_\varepsilon \; \forall n \geqslant N_\varepsilon : |y_n - a| < \varepsilon$.

 $\varepsilon = 0.08$ Начиная с n=2 все значения последовательности попадают в ε -окрестность

 $\varepsilon=0.5$ Начиная с n=1 все значения последовательности попадают в ε -окрестность

 $\varepsilon=0.02$ Начиная с n=2 все значения последовательности попадают в ε -окрестность

$$f(x) = \left(\frac{1-x}{2-10x}\right)^{5x-3}$$

2.1

 $\frac{1-x}{2-10x}$ стремится к $\frac{1}{10},$ при $x\to\infty$

При х $\to +\infty$ функция 5x-3 стремится к $+\infty$ и поэтому предел $\lim_{x\to +\infty} f(x)=0$.

При х $\to -\infty$ функция 5x-3 стремится к $-\infty$ и поэтому предел $\lim_{x\to -\infty} f(x) = +\infty$.

Отсюда следует, что предела при $x \to \infty$ (бесконечности без знака) не существует.

2.2

2.3

- 1. Назовём функцию g(x) сходящейся на бесконечности, если она стремится к числу A при $x \to \infty$. Иначе говоря, число A называется пределом функции g(x) при $x \to \infty$ если для любого числа $\varepsilon > 0$ существует число Δ , что для всех $|x| > \Delta$ выполняется $|g(x) A| < \varepsilon$. Если число A существует и конечно, то g(x) сходится на бесконечности. Иначе назовём функцию g(x) расходящейся на бесконечности.
- 2. Возьмём $\varepsilon_1 = 2, \, \varepsilon_2 = 1$ и $\varepsilon_3 = 0.5$.
- 3. График с ε_1 -окрестностью в точке 0 (первая картинка), ε_2 окрестностью в точке 0 (вторая картинка) и ε_3 -окрестностью (третья картинка). Функция f(x) нарисована зелёным цветом.

4. Так как пределы при $x \to \pm \infty$ различны и, более того, один из них бесконечен, то не существует таких Δ , что для всех $|x| > \Delta$ выполняется $|f(x) - A| < \varepsilon_i$ для $i \in \{1,2,3\}$ для какого-то числа A.

Какой порядок будет иметь приращение площади треугольника по отношению к бесконечно малому приращению одного из его углов?

3.1

3.2

Обозначим угол CAC' за $\Delta \alpha$. Угол BAC за α . BA=c, AC=AC'=b. Площадь треугольника можно выразить через две стороны и угол между ними. Тогда наша

Площадь треугольника можно выразить через две стороны и угол между ними. Тогда наша задача сводится к нахождению производной частной функции:

$$\frac{\partial S(b,c,\alpha)}{\partial \alpha}$$

3.3

$$\frac{\partial S(b,c,\alpha)}{\partial \alpha} = \lim_{\Delta \alpha \to 0} \frac{S(b,c,\alpha + \Delta \alpha) - S(b,c,\alpha)}{\Delta \alpha} = \lim_{\Delta \alpha \to 0} \frac{\frac{1}{2}a \cdot b \cdot \sin{(\gamma + \Delta \gamma)} - \frac{1}{2}a \cdot b \cdot \sin{(\gamma)}}{\Delta \gamma} = \lim_{\Delta \alpha \to 0} \frac{\sin{(\gamma + \Delta \gamma)} - \sin{(\gamma)}}{\Delta \gamma} = \left(\frac{a \cdot b}{2}\right) \lim_{\Delta \alpha \to 0} \frac{\sin{(\gamma + \Delta \gamma)} - \sin{(\gamma)}}{\Delta \gamma} = \left(\frac{a \cdot b}{2}\right) \cdot \cos{\gamma}$$

Заметим, что из-за того, что приращение угла небольшое, AC' = AC и \Rightarrow Изменение площади равно изменению синуса на произведение сторон пополам. Следовательно, приращение площади к приращению угла равно отношению приращения синуса к приращению угла, умноженное на две стороны пополам. Что равно косинусу угла на произведение сторон пополам

Отрезок длиной a разделён на n частей, и на каждой построен равносторонний треугольник. Найдите предел длины получившейя ломаной при $n \to \infty$.

4.1

Отрезок разделен на n частей (на картинке разделен на 6 частей)

4.2

Нам нужно найти предел суммы ломаной. Для этого мы выразим для каждого разбиения отрезка сумму и найдем ее предел.

$$\lim_{n \to +\infty} \sum_{i=1}^{n} 2x_n = 2 \cdot \lim_{n \to +\infty} \sum_{i=1}^{n} x_n = 2 \cdot a$$

4.3

Каждый x_i отрезок учитывается дважды, а сумма всех отрезков равна длине всего отрезка. Значит сумма длин равна 2a

Выводы 5

При решении рассматриваемых задач мы научились исследовать последовательность функции на сходимость/расходимость, улучшили свои навыки в решении пределов, научились использовать их в решении задач практического характера, а также сделали иллюстрации к своим решениям. Таким образом, все поставленные перед нами задачи были выполнены.

Оценочный лист 6

Кравченкова Елизавета

Вклад исполнителя - 25 %

Левков Андрей

Вклад исполнителя - 25 %

Родецкий Никита

Вклад исполнителя - 25 %

Смирнов Максим

Вклад исполнителя - 25 %