Matematici Financiare și Actuariale

Capitolul 1: Matematici financiare

Lect. univ. dr. Alexandru-Darius Filip

Universitatea Babeș-Bolyai Cluj-Napoca Facultatea de Științe Economice și Gestiunea Afacerilor IDFR

Cuprins

Capitolul 1. Matematici financiare

- 1.1. Dobânzi
- 1.2. Anuități
- 1.3. Rambursări

Bibliografie:

- 1. A.S. Mureşan & colectiv didactic, *Matematici Financiare și Actuariale. Teorie și probleme*, ed. Mega, Cluj-Napoca, 2013.
- 2. A.S. Mureşan, *Operații financiare certe și aleatoare. Optimizări și modelare*, ed. Mega, Cluj-Napoca, 2009.
- 3. Suport de curs (Silabus) disponibil pe Moodle.

Evaluare

NotaFinală = 30% NotaTeme + 70% NotaExamen

NotaTeme = Media aritmetică a notelor obținute pe temele de control de la capitolele: Matematici financiare, respectiv Matematici actuariale.

Temele de control se găsesc în **Suportul de curs (Silabus).**Rezolvarile se salvează într-un fișier PDF (sub formă de poze), iar fișierul se încarcă pe Moodle la secțiunea *Tema1* pentru partea de *Matematici financiare*, respectiv *Tema2* pentru partea de *Matematici actuariale*.

Evaluare

Tema nr.1

- Referat:
 - Dobânda nominală. Dobânda anuală efectivă. Dobânda instantanee (Bibliografie: Suportul de curs, pag. 11)
- De rezolvat problemele propuse în suportul de curs (Bibliografie: Suportul de curs, Teme de control, pag. 35-40)

$\S~1.1.~\mathsf{Dobânzi}$

Dobânzi

 $\label{eq:Dobanda} Dobanda = suma de bani plătită de debitor către creditor pentru folosirea unei sume de bani împrumutate pe o anumită perioadă de timp și cu un anumit procent.$

Tipuri de dobânzi:

- Dobânda simplă
- Dobânda compusă
- Dobânda nominală
- Dobânda anuală efectivă
- Dobânda instantanee

Dobânda simplă

- se folosește pentru împrumuturi / depozite pe termen de cel mult 1 an
- suma inițială împrumutată / depusă rămâne constantă în timp până la scadență
- dobânda se plătește în totalitate doar la scadență

Formula de calcul pentru dobânda simplă:

$$D = s \cdot i \cdot t = s \cdot i \cdot \frac{l}{12} = s \cdot i \cdot \frac{z}{360}$$

unde:

D = dobânda (u.m.)

s = suma inițială (u.m.)

 $i=\mathsf{dob}$ ânda unitară anuală (procentul anual, rata anuală a dob ânzii) (%)

t = durata de timp pentru împrumut / depozit (maxim 1 an)

// = durata de timp pentru împrumut / depozit (luni)

z = durata de timp pentru împrumut / depozit (zile)

Formula de calcul pentru suma finală:

$$S = s + D$$

unde: S = suma finală (u.m.) (se obţine doar la scadenţă).

Problema 1: Calculați dobânda pentru 200 € depuși la o bancă pe 10 luni, cu rata anuală a dobânzii de 5%.

Soluție:

Problema 2: Care a fost suma inițială depusă la data de 11 ianuarie 2020 într-un cont de economii, dacă la data de 18 mai 2020 în cont erau 5000 de lei? Dobânda unitară anuală a fost de 4%.

Soluţie:

Dobânzi unitare echivalente în regim de dobândă simplă

Considerăm anul financiar împarțit în mai multe subperioade:

$$1 \text{ an } = 2 \text{ semestre } = 4 \text{ trimestre } = 12 \text{ luni } = 360 \text{ zile}$$

Notații:

i = dobânda unitară anuală (%)

 $i_2 = dobânda unitară semestrială (%)$

 $i_4 = dobânda unitară trimestrială (%)$

 $\it i_{12}=$ dobânda unitară lunară (%)

 $i_{360} = dobânda unitară zilnică (%)$

În general: $i_m=$ dobânda unitară corespunzătoare unei subperioade (%)

Dobânzile unitare i și i_m se numesc *echivalente* dacă pentru aceeași sumă inițială și aceeași perioadă de timp, se obține aceeași dobândă simplă.

Pentru o perioadă $t \le 1$ an avem: $D = s \cdot i \cdot t$

Pentru o perioadă $t \leq 1$ an, împărțită în m subperioade avem: $D = s \cdot i_m \cdot m \cdot t$

Din egalitatea dobânzilor, găsim: $i_m = \frac{i}{m}$

Factor de fructificare și factor de actualizare

Factorul de fructificare = valoarea de peste un an a unei unități monetare de azi.

$$S = s + D = s + s \cdot i \cdot t = 1 + 1 \cdot i \cdot 1 = 1 + i$$
.

Notăm: u = 1 + i = factorul de fructificare.

Factorul de actualizare = valoarea de azi a unei unități monetare de peste un an.

$$S = s + D = s + s \cdot i \cdot t = s(1 + i \cdot t) \Rightarrow s = \frac{S}{1 + i \cdot t} = \frac{1}{1 + i \cdot 1} = \frac{1}{1 + i}.$$

Notăm: $v = \frac{1}{1+i}$ = factorul de actualizare.

Problema 3: Știind că dobânda unitară anuală la titlurile de stat *Fidelis* este de 4%, care este dobânda unitară trimestrială echivalentă ? Dar factorul de fructificare anual, respectiv trimestrial ?

Dobânda compusă (Dobânda capitalizată)

Dobânda compusă

- se folosește pentru împrumuturi / depozite pe o durată de timp t>1 an.

Formula de calcul a sumei finale dupa n ani: $S = s(1+i)^n = s \cdot u^n$

Formula de calcul a dobânzii compuse: D = S - s

Problema 4: Care este dobânda pentru un depozit de 5000 €, după 3 ani, știind că procentul anual este de 2%?

Dobânda compusă (Dobânda capitalizată)

Problema 5: Care a fost suma depusă de o persoană la o bancă, dacă după cinci ani persoana are în cont suma de $10.000 \in ?$ În primii doi ani, procentul anual oferit de bancă a fost de 2%, iar în următorii trei ani, 3%.

Soluție:

Problema 6: După câți ani o sumă de bani depusă la o bancă se dublează, știind că procentul anual este de 2%?

Dobânda compusă (Dobânda capitalizată)

Dobânzi unitare echivalente în regim de dobândă compusă

Dobânzile unitare i și i_m se numesc *echivalente* dacă pentru aceeași sumă inițială și aceeași perioadă de timp, se obține aceeași sumă finală.

Pentru n ani avem: $S = s(1+i)^n$

Pentru n ani, împărțiți fiecare în m subperioade, avem: $S = s(1 + i_m)^{n \cdot m}$ Din egalitatea sumelor finale, găsim:

$$(1+i)^n = (1+i_m)^{n \cdot m} \Rightarrow \boxed{i_m = \sqrt[m]{1+i}-1}$$

Problema 7: Aflați dobânda unitară lunară echivalentă cu dobânda unitară anuală de 5%, în regim de dobândă simplă și în regim de dobândă compusă.

Soluţie:

\S 1.2. Anuități

- Considerăm că se cumpără un produs, iar plata acestuia se face în rate
- Presupunem că se plătesc n rate, notate r_k , $k=\overline{1,n}$
- Fiecare rată r_k se plătește la momentul de timp t_k , $k=\overline{1,n}$

Anuitate = ansamblul $\{(r_k, t_k)\}_{k=\overline{1,n}}$ format din ratele r_k și momentele de timp t_k , la care se plătesc ratele.

Valoarea unei anuități

Fie $\{(r_k, t_k)\}_{k=\overline{1,n}}$ o anuitate.

Valoarea anuității la momentul $t = \text{suma tuturor ratelor } r_k$ actualizate la momentul t.

$$V(t) = \sum_{k=1}^{n} r_k v^{t_k - t}$$

Clasificarea anuitătilor

- Anuități constante întregi posticipate (a.c.î.p.)
- Anuități constante întregi anticipate (a.c.î.a.)
- Anuități constante fracționate posticipate (a.c.f.p.)
- Anuități constante fracționate anticipate (a.c.f.a.)

1. Anuități constante întregi posticipate (a.c.î.p.)

- constante: pentru că $r_1 = r_2 = \ldots = r_n = r$ (ratele sunt egale și constante).
- întregi: pentru că ratele se plătesc din an în an.
- posticipate: pentru că plata fiecărei rate se face la sfârșitului anului.

Valoarea anuității constante întregi posticipate la momentul t

$$V(t) = r \cdot \frac{1 - v^n}{i} \cdot u^t$$

unde:

u = 1 + i este factorul de fructificare $v = \frac{1}{1+i}$ este factorul de actualizare

Valori particulare:

- Valoarea iniţială $V(0) = r \cdot \frac{1 v^n}{i} = IN$
- Valoarea finală $V(n) = r \cdot \frac{u^n 1}{i} = FIN$

Problema 1: Să se determine valoarea inițială și finală a unei anuități pentru care rata de 100 u.m. se plătește timp de 12 ani, la sfârșitul fiecărui an. Procentul anual este 6%.

2. Anuități constante întregi anticipate (a.c.î.a.)

- constante: pentru că $r_1 = r_2 = \ldots = r_n = r$ (ratele sunt egale și constante).
- întregi: pentru că ratele se plătesc din an în an.
- anticipate: pentru că plata fiecărei rate se face la începutul anului.

Valoarea anuității constante întregi anticipate la momentul t

$$V(t) = r \cdot \frac{1 - v^n}{i} \cdot u^{t+1}$$

unde:

$$u = 1 + i$$
 este factorul de fructificare $v = \frac{1}{1+i}$ este factorul de actualizare

Valori particulare:

- Valoarea inițială
$$V(0) = r \cdot \frac{1 - v^n}{i} \cdot u = IN$$

- Valoarea finală
$$V(n) = r \cdot \frac{u^n - 1}{i} \cdot u = FIN$$

Problema 2: O persoană cumpără un produs în valoare de 5000 u.m., plătind un avans de 20% din preț, restul urmând a fi achitat în rate egale, timp de 3 ani, cu o rată anuală a dobânzii de 12%. Să se determine valoarea unei rate și, în funcție de aceasta, valoarea cumulată a tuturor ratelor la sfârșitul celor trei ani, dacă ratele se plătesc la începutul fiecărui an.

3. Anuități constante fracționate posticipate (a.c.f.p.)

- constante: pentru că $r_1 = r_2 = \ldots = r_n = r$ (ratele sunt egale și constante).
- fracționate: pentru că ratele se plătesc pe subperioade ale anului.
- posticipate: pentru că plata fiecărei rate se face la sfârșitului subperioadei.

Valoarea anuității constante fracționate posticipate la momentul t (ani)

$$V_m(t) = r \cdot \frac{1 - v_m^{n \cdot m}}{i_m} \cdot u_m^{t \cdot m}$$

unde:

 $u_m = 1 + i_m$ este factorul de fructificare

 $v_m = \frac{1}{1+i_m}$ este factorul de actualizare

 $i_m = \frac{i}{m}$ este dobânda unitară corespunzătoare subperioadei

Valori particulare:

- Valoarea inițială
$$V_m(0) = r \cdot \frac{1 - v_m^{n \cdot m}}{i_m} = IN$$

- Valoarea finală
$$V_m(n) = r \cdot \frac{u_m^{n \cdot m} - 1}{i_m} = \mathit{FIN}$$

Problema 3: Dorim să cumpărăm un produs, plătind la sfârșitul fiecărei luni câte $20 \in$, timp de 2 ani, dobânda unitară anuală fiind de 6%. Care este prețul de vânzare al produsului ?

4. Anuități constante fracționate anticipate (a.c.f.a.)

- constante: pentru că $r_1 = r_2 = \ldots = r_n = r$ (ratele sunt egale și constante).
- fracționate: pentru că ratele se plătesc pe subperioade ale anului.
- anticipate: pentru că plata fiecărei rate se face la începutul subperioadei.

Valoarea anuității constante fracționate anticipate la momentul t (ani)

$$V_m(t) = r \cdot \frac{1 - v_m^{n \cdot m}}{i_m} \cdot u_m^{t \cdot m + 1}$$

unde:

 $u_m = 1 + i_m$ este factorul de fructificare

 $v_m = \frac{1}{1+i_m}$ este factorul de actualizare

 $i_m = \frac{i}{m}$ este dobânda unitară corespunzătoare subperioadei

Valori particulare:

- Valoarea inițială
$$V_m(0) = r \cdot \frac{1 - v_m^{n \cdot m}}{i_m} \cdot u_m = \mathit{IN}$$

- Valoarea finală
$$V_m(n) = r \cdot \frac{u_m^{n \cdot m} - 1}{i_m} \cdot u_m = \mathit{FIN}$$

Problema 4: La începutul fiecărui semestru, un student depune la o bancă, într-un cont, suma de 300 de lei. Știind că banca oferă o dobândă unitară anuală de 4%, care va fi suma pe care studentul o va avea în cont la sfârșitul celor 3 ani ?

\S 1.3. Rambursări

Rambursarea (amortizarea) împrumuturilor

 $\widehat{\text{Imprumut}} = \text{tripletul } (s, i, t)$ format dintr-o sumă de bani s, un procent anual i și o perioadă de timp t.

- Considerăm că împrumutul este contractat pe o perioadă de n ani
- Rambursarea (amortizarea) împrumuturilor se face prin anuități întregi sau fracționate posticipate.
- Pentru a ilustra rambursarea unui împrumut, vom construi un tabel (plan) de rambursare ce conține elementele:

unde:

k = numărul de ordine al anului (sau al subperioadei).

 $R_k = \text{suma rămasă de rambursat în perioada } k$

 $D_k = \mathsf{dob}$ ânda pentru suma de rambursat

$$(D_k = R_k \cdot i \text{ sau } D_k = R_k \cdot i_m, \text{ unde } i_m = \frac{i}{m})$$

 $Q_k=\operatorname{cota}$ din împrumut aferentă perioadei k

 $r_k =$ rata corespunzătoare perioadei k

A. Rambursări directe

- Debitorul rambursează direct creditorului datoria pe care o are față de acesta
- Se cunosc patru modele de rambursare directă
- Modelul 1D
- se caracterizează prin plata unică la scadență (plata întregii datorii la scadență)

k	R_k	D_k	Q_k	r_k
1	s	s·i	0	0
2	s · u	s · u · i	0	0
3	$s \cdot u^2$	s · u² · i	0	0
	:	:	:	:
n	$s \cdot u^{n-1}$	$s \cdot u^{n-1} \cdot i$	$s \cdot u^{n-1}$	s · u ⁿ

Exemplu: Să se ramburseze suma de 1000 €, împrumutată pe 4 ani, cu procentul anual 10%, prin plata întregii datorii la scadență.

- Modelul 2D
- se caracterizează prin plata periodică a dobânzilor și plata sumei împrumutate la scadență

k	R_k	D_k	Q_k	r_k
1	s	s·i	0	s·i
2	s	s·i	0	s·i
3	S	s·i	0	s·i
:	:	:	:	:
n	5	s·i	5	s · u

Exemplu: Să se ramburseze suma de 1000 €, împrumutată pe 4 ani, cu procentul anual 10%, prin plata periodică a dobânzilor și plata sumei împrumutate la scadență. Solutie:

- Modelul 3D
- se caracterizează prin plata cotelor constante din împrumut și plata dobânzilor aferente fiecărei perioade
- Formula cotei constante

$$Q=\frac{s}{n}$$

k	R_k	D_k	Q_k	r_k
1	$s = n \cdot Q$	$n \cdot Q \cdot i$	Q	$(n \cdot i + 1)Q$
2	(n-1)Q	$(n-1)Q \cdot i$	Q	[(n-1)i+1]Q
3	(n-2)Q	$(n-2)Q \cdot i$	Q	[(n-2)i+1]Q
:	:	:	:	:
n	Q	Q · i	Q	(i+1)Q

Exemplu: Să se ramburseze suma de 1000 €, împrumutată pe 4 ani, cu procentul anual 10%, prin plata cotelor constante din împrumut și plata dobânzilor aferente fiecărui an.

- Modelul 4D
- se caracterizează prin plăți periodice constante (rate constante). La sfârșitul fiecărui an se rambursează câte o rată constantă formată dintr-o parte din împrumut și dobânda aferentă sumei nerambursate.
- Formula ratei constante $| r = \frac{1}{1 v^n}$

$$r = \frac{s \cdot i}{1 - v^n}$$

k	R_k	D_k	Q_k	r_k
1	$r^{\frac{1-v^n}{i}}$	$r(1-v^n)$	r·v ⁿ	r
2	$r^{\frac{1-v^{n-1}}{i}}$	$r(1-v^{n-1})$	$r \cdot v^{n-1}$	r
3	$r^{\frac{1-v^{n-2}}{i}}$	$r(1-v^{n-2})$	$r \cdot v^{n-2}$	r
:	:	:	:	
n	$r^{\frac{1-\nu}{i}}$	r(1-v)	r · v	r

Exemplu: Să se ramburseze suma de 1000 €, împrumutată pe 3 ani, cu procentul anual 10%, prin plata ratelor constante la sfârșitul fiecărui an.

Soluţie:

B. Rambursări indirecte

- Debitorul constituie suma împrumutată de la creditor la o terță parte. La scadență, debitorul preia suma constituită de la terța parte și o plătește creditorului său.
- Se cunosc două modele de rambursări indirecte:
- Modelul 1l
 - între debitor și creditor avem modelul 2D
 - între debitor și terța parte avem modelul 4D
- Modelul 2I
 - între debitor și creditor avem modelul 1D
 - între debitor și terța parte avem modelul 4D

Observație: În general, în cazul modelelor indirecte de rambursare, modelul de rambursare 4D se înlocuiește cu fondul de acumulare (tabelul FA).

k	r_k	S_k^{in}	D_k	S_k^{fin}	C_k

unde:

k = numărul de ordine al anului (sau al subperioadei)

 r_k = rata corespunzătoare perioadei k (este rata din modelul 4D)

 $S_k^{in} = \text{suma acumulată în fondul de acumulare la începutul perioadei } k$

 $D_k = \text{dobânda aferentă sumei } S_k^{in}$

 $S_k^{\mathit{fin}} = \mathsf{suma}$ acumulată în fondul de acumulare la sfârșitul perioadei k

 $C_k = \text{suma rămasă de acumulat până la amortizarea întregii datorii.}$

Aplicația 1: O persoană împrumută de la o altă persoană suma de 1000 €, pe timp de 4 ani, cu procentul anual 10%. Debitorul urmează să restituie creditorului dobânzile la sfârșitul fiecărui an, iar suma necesară restituirii sumei împrumutate, o va constitui la o bancă prin plăți periodice constante, pe timp de 4 ani, cu procentul anual 8%. Construiți planul de rambursare, punând în evidență fondul de acumulare.

Soluţie:

Aplicația 2: O persoană împrumută de la o altă persoană suma de 1000 €, pe timp de 4 ani, cu procentul anual 10%. Debitorul urmează să restituie creditorului întreaga datorie la scadență. Suma necesară restituirii datoriei, o va constitui la o bancă prin plăți periodice constante, pe timp de 4 ani, cu procentul anual 8%. Construiți planul de rambursare, punând în evidență fondul de acumulare.