Introduction to Probability and Statistics

Session 2 Exercises

Israel Leyva-Mayorga

Exercise 1: Poll results

On October 14, 2003, the New York Times reported that a recent poll indicated that 52% of the population was in favor of the job performance of president Bush, with a margin of error (i.e., 95% confidence interval (CI)) of $\pm 4\%$.

- a) What does this mean?
- b) How many people were questioned?

Exercise 2: Wireless communication with multiple antennas

A device transmits a signal towards a receiver. The receiver measures the signal strength, which is affected by Gaussian noise and, hence, is normally distributed with mean μ and variance $\sigma^2 = 4$. The receiver has 9 receiving antennas and each one records the value of the signal strength, which are

$$[5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5]$$

- a) Calculate the 95% CI using $Z_{\alpha/2}$
- b) Calculate the 95% CI using $T_{\alpha/2,n-1}$ and without knowing the variance

Exercise 3: Execution time of an algorithm.

We measured the execution time of an image processing algorithm and obtained an average execution time of $\mu=12.995$ ms. Assume that our measurements are subject to Gaussian noise with zero mean and variance $\sigma^2=1.997$

- a) Get the maximum likelihood estimates for μ , denoted as $\hat{\mu}_n$ after taking a sample with n=10 and n=1000.
- b) Plot the collected measurements along with the estimated $\hat{\mu}_n$.

- c) Calculate the 95% CI for both values of n assuming that the variance σ^2 is known.
- d) Calculate the 95% CI for both values of n assuming that the variance is **not known** using $Z_{\alpha/2}$
- e) Calculate the 95% CI for both values of n assuming that the variance is **not known** using $T_{\alpha/2,n-1}$
- f) Which of these CIs is wider?

Exercise 4: CIs with unknown parameters and small sample size.

Suppose the data 2.5, 5.5, 8.5, 11.5 was drawn from a $N(\mu, \sigma^2)$ distribution with unknown parameters. Give the 95%, 80%, and 50% CIs for μ .

Exercise 5: Chapter 9, problem 4 and 9

The following data indicate the relationship between x, the specific gravity of a wood sample, and Y, its maximum crushing strength in compression parallel to the grain

$\overline{x_i}$	$y_i(psi)$	x_i	$y_i(psi)$
.41	1850	.39	1760
.46	2620	.41	2500
.44	2340	.44	2750
.47	2690	.43	2730
.42	2160	.44	3120

- a) Plot a scatter diagram. Does a linear relationship seem reasonable?
- b) Estimate the regression coefficients.
- c) Predict the maximum crushing strength of a wood sample whose specific gravity is 0.43.
- d) Estimate the variance of an individual response.