Reinforcement learning for Integrated Fixed-income with Link-based Embeddings

Integrating Regime Detection, Graph Neural Networks, and Modern RL Algorithms

Corentin Servouze, Rany Stephan

March 21, 2025

Outline

- Introduction
- Project Overview
- Bond Market Models
- 4 Regime Detection
- 5 Graph Neural Networks for Credit Risk
- 6 RL Pipeline
- Conclusion

The Problem of Fixed Income Portfolio Management

- Fixed income markets represent over \$100 trillion globally
- Managing bond portfolios involves complex challenges:
 - Interest rate risk and credit risk management
 - Multi-dimensional features (duration, convexity, credit quality)
 - Regime-dependent dynamics (recession, expansion, crisis)
 - Limited liquidity compared to equities
- Traditional approaches:
 - Static allocation strategies (ladders, barbells)
 - Duration targeting
 - Factor-based or index-tracking methods

Project Innovation

- Comprehensive RL framework for fixed income portfolios that:
 - Integrates regime detection for regime-aware strategies
 - Incorporates credit risk through graph neural networks
 - Uses RL algorithms (TD3, DDPG)
 - Models realistic bond market dynamics
- Creates a complete simulation-to-deployment pipeline
- Addresses multi-faceted bond portfolio optimization with focus on risk-adjusted returns

Project Architecture

Prior Work in Fixed Income RL

- Limited research compared to equity RL applications
- Notable prior work:
 - Halperin & Feldshteyn (2018): Q-learning for fixed income trading
 - Kolm & Ritter (2019): Deep hedging with neural networks
 - Makinen et al. (2019): RL for corporate bond trading
- Limitations of existing approaches:
 - Often simplified market dynamics
 - Limited consideration of regime changes
 - Lack of network effects in credit risk
 - Focus on single bonds rather than portfolios

Interest Rate Models

Vasicek Model:

$$dr_t = \kappa(\theta - r_t)dt + \sigma dW_t \tag{1}$$

where:

- r_t is the short rate at time t
- $oldsymbol{\circ}$ κ is the mean reversion speed
- $oldsymbol{ heta}$ is the long-term mean level
- \bullet σ is the volatility
- dW_t is a Wiener process increment
- Mean-reverting process capturing central tendency of rates
- Allows for negative rates (theoretical limitation)

Interest Rate Models (Continued)

Cox-Ingersoll-Ross (CIR) Model:

$$dr_t = \kappa(\theta - r_t)dt + \sigma\sqrt{r_t}dW_t \tag{2}$$

- Square root diffusion term ensures non-negative rates
- Higher volatility when rates are higher
- Same mean-reversion structure as Vasicek

• Hull-White Model:

$$dr_t = [\theta(t) - \kappa r_t]dt + \sigma dW_t \tag{3}$$

- Time-dependent $\theta(t)$ function
- Calibrated to match initial yield curve
- Extension of Vasicek with greater flexibility

Credit Spread Models

Merton Model:

ullet Firm's asset value V follows geometric Brownian motion:

$$dV_t = rV_t dt + \sigma_V V_t dW_t \tag{4}$$

- Default occurs if $V_T < D$ at debt maturity T
- Credit spread:

$$s(t,T) = -\frac{1}{T-t} \ln(1 - N(-d_2))$$
 (5)

where
$$d_2 = \frac{\ln(V_t/D) + (r - \frac{1}{2}\sigma_V^2)(T-t)}{\sigma_V \sqrt{T-t}}$$

- Model parameters:
 - Asset value V_t
 - Face value of debt D
 - Asset volatility σ_V
 - Risk-free rate r

Bond Pricing

Zero-coupon bond price:

$$P(t,T) = \frac{F}{(1+y_{t,T})^{T-t}}$$
 (6)

where F is face value, $y_{t,T}$ is yield

Coupon bond price:

$$P(t,T) = \sum_{i=1}^{n} \frac{c \cdot F}{(1 + y_{t,T}/m)^{m(t_i - t)}} + \frac{F}{(1 + y_{t,T}/m)^{m(T - t)}}$$
(7)

where c is coupon rate, m is payments per year

• Credit-risky bond:

$$P(t,T) = \sum_{i=1}^{n} \frac{c \cdot F}{(1 + r_{t,t_i} + s_{t,t_i})^{t_i - t}} + \frac{F}{(1 + r_{t,T} + s_{t,T})^{T - t}}$$
(8)

where $r_{t,T}$ is risk-free rate, $s_{t,T}$ is credit spread

Bond Risk Metrics

• Macaulay Duration:

$$D = \frac{\sum_{t=1}^{T} t \cdot CF_t \cdot (1+y)^{-t}}{\sum_{t=1}^{T} CF_t \cdot (1+y)^{-t}}$$
(9)

• Modified Duration:

$$D_{mod} = \frac{D}{1+y} \tag{10}$$

Convexity:

$$C = \frac{\sum_{t=1}^{T} t(t+1) \cdot CF_t \cdot (1+y)^{-t}}{P \cdot (1+y)^2}$$
 (11)

Price sensitivity to yield changes:

$$\frac{\Delta P}{P} \approx -D_{mod} \cdot \Delta y + \frac{1}{2} \cdot C \cdot (\Delta y)^2 \tag{12}$$

Metrics capture different aspects of interest rate risk

Economic Regimes in Fixed Income

- Different market regimes significantly impact fixed income:
 - Normal regime: Steady growth, stable rates
 - Expansion regime: Rising rates, flattening yield curve
 - Stress regime: Flight to quality, widening credit spreads
 - Crisis regime: Rate cuts, extreme volatility, liquidity issues
- Importance for bond investors:
 - Risk factors behave differently across regimes
 - Optimal allocations vary by regime
 - Regime shifts create both risks and opportunities
 - Traditional mean-variance assumptions break down during transitions

Hidden Markov Models for Regime Detection

- Hidden Markov Model (HMM) framework:
 - Observable features \mathbf{X}_t (yields, spreads, etc.)
 - Hidden states (regimes) $z_t \in \{1, 2, ..., K\}$
 - Emission distributions $p(\mathbf{X}_t|z_t)$
 - Transition matrix A where $A_{ij} = p(z_t = j | z_{t-1} = i)$
- Model specification:

$$p(\mathbf{X}_t|z_t=k) = \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (13)

- Parameter estimation via Expectation-Maximization:
 - E-step: Calculate posterior $p(z_t|X_{1:T})$ using forward-backward algorithm
 - M-step: Update μ_k , Σ_k , and A

Regime Characterization and Transitions

Statistical regime characteristics:

- Expected returns, volatilities, correlations
- Yield curve shapes (normal, flat, inverted)
- Average spread levels by rating
- Typical duration of each regime (persistence)

Transition matrix visualization:

	Normal	Expansion	Stress	Crisis
Normal	0.983	0.010	0.005	0.002
Expansion	0.015	0.975	0.008	0.002
Stress	0.008	0.005	0.967	0.020
Crisis	0.010	0.000	0.025	0.965

Regime forecasting:

- Short-term prediction via Markov property
- Confidence metrics for regime identification

Integration with Market Simulator and RL

Market simulator integration:

- Regime-specific parameters for interest rate models
- Regime-dependent credit spread dynamics
- Transition probabilities for regime switching

• RL environment integration:

- Current regime as part of state representation
- Regime-specific reward scaling to account for different risk environments
- Enables learning of regime-appropriate strategies

Benefits:

- More realistic simulation of market dynamics
- Allows RL agent to learn regime-specific policies
- Better generalization to different market conditions

Credit Risk and Network Effects

Traditional limitations:

- Credit ratings provide point-in-time assessments
- Standard models treat issuers independently
- Interconnections between companies often ignored

Network effects in credit markets:

- Supply chain dependencies
- Counterparty relationships
- Common exposures to risk factors
- Contagion effects during crises
- GNN advantage: Can explicitly model these relationships

Graph Neural Network Formulation

Graph representation:

- Nodes: Bond issuers with features X_i
- Edges: Relationships between issuers
- Target: Credit spreads or default probabilities

• Message passing framework:

$$\mathbf{h}_{i}^{(l+1)} = \mathsf{UPDATE}\left(\mathbf{h}_{i}^{(l)}, \mathsf{AGGREGATE}\left(\{\mathbf{h}_{j}^{(l)} : j \in \mathcal{N}(i)\}\right)\right) \quad (14)$$

where:

- $\mathbf{h}_{i}^{(I)}$ is the node representation at layer I
- $\mathcal{N}(i)$ is the neighborhood of node i
- AGGREGATE combines information from neighbors
- UPDATE incorporates aggregated information

GNN Model Architectures

Graph Convolutional Network (GCN):

$$\mathbf{H}^{(l+1)} = \sigma \left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$$
(15)

where $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ and $\tilde{\mathbf{D}}$ is degree matrix

Graph Attention Network (GAT):

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{ij} \mathbf{W}^{(l)} \mathbf{h}_{j}^{(l)} \right)$$
 (16)

with attention coefficients α_{ij} learned from data

Message Passing Neural Network (MPNN):

$$\mathbf{m}_{i}^{(l+1)} = \sum_{j \in \mathcal{N}(i)} \mathsf{MSG}^{(l)}(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}, \mathbf{e}_{ij})$$
(17)

$$\mathbf{h}_{i}^{(l+1)} = \mathsf{UPDATE}^{(l)}(\mathbf{h}_{i}^{(l)}, \mathbf{m}_{i}^{(l+1)}) \tag{18}$$

Credit Spread Prediction with GNN

- **Node features X**_i for issuer i:
 - Financial ratios (debt/equity, interest coverage)
 - Market capitalization and volatility
 - Industry and sector indicators
 - Current credit rating
 - Historical spread volatility
- Edge features e_{ij} between issuers i and j:
 - Strength of relationship
 - Type of connection (supply chain, competitor, etc.)
 - Correlation of historical spreads
- Prediction target:

$$\hat{\mathbf{s}}_i = f_{\theta}(\mathbf{X}_i, \{\mathbf{X}_j, \mathbf{e}_{ij} : j \in \mathcal{N}(i)\}) \tag{19}$$

where \hat{s}_i is predicted credit spread, f_{θ} is GNN

Node Embeddings and Integration with RL

• Node embeddings capture rich credit risk information:

$$\mathbf{z}_i = \mathbf{h}_i^{(L)} \in \mathbb{R}^d \tag{20}$$

- \mathbf{z}_i is low-dimensional embedding of issuer i
- Encodes both issuer-specific and network information
- Dimensionality d typically 32-128
- Integration into RL state space:

$$\mathbf{s}_t = [\mathbf{m}_t, \mathbf{r}_t, \mathbf{z}_{i_1}, \mathbf{z}_{i_2}, ..., \mathbf{z}_{i_n}]$$
 (21)

where:

- $oldsymbol{m}_t$ is market state (rates, economic indicators)
- **r**_t is current regime
- $\mathbf{z}_{i_1},...,\mathbf{z}_{i_n}$ are embeddings of bonds in investable universe
- Enriches state representation with network-aware credit risk information

RL Environment Design for Fixed Income

• State space S:

$$\mathbf{s}_t = [\mathbf{m}_t, \mathbf{p}_t, \mathbf{h}_t, \mathbf{r}_t, \mathbf{z}_t] \tag{22}$$

where:

- m_t: Market features (rates, spreads, volatility)
- **p**_t: Portfolio features (current weights, durations)
- h_t: Historical returns and features (lookback window)
- r_t: Regime indicator (one-hot encoded)
- z_t: GNN embeddings of issuers in universe
- Dimensions: Typically 500-700 features in total

RL Environment Design (Continued)

• Action space A:

$$\mathbf{a}_t = [w_1, w_2, ..., w_n]$$
 s.t. $\sum_{i=1}^n w_i = 1, \quad w_i \ge 0$ (23)

- w_i is portfolio weight for bond i
- Continuous action space with simplex constraint
- Dimensionality = number of bonds in universe

Transition dynamics:

$$\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t) \tag{24}$$

- Based on bond market simulation
- Incorporates regime transitions
- Updates portfolio based on new weights and market movements

Reward Function Design

Multi-objective reward function:

$$r_t = \alpha \cdot r_{\text{return}} + \beta \cdot r_{\text{risk}} + \gamma \cdot r_{\text{constraint}} - \delta \cdot r_{\text{cost}}$$
 (25)

Component rewards:

$$r_{\text{return}} = R_t$$
 (26)

$$r_{\mathsf{risk}} = -\sigma_t \tag{27}$$

$$r_{\text{constraint}} = -\sum_{j} \max(0, c_j(\mathbf{a}_t))^2$$
 (28)

$$r_{\text{cost}} = TC(\mathbf{a}_{t-1}, \mathbf{a}_t) \tag{29}$$

where:

- R_t is portfolio return
- σ_t is portfolio volatility
- c_i are constraint functions (e.g., duration limits)
- TC is transaction cost function

Deep Deterministic Policy Gradient (DDPG)

- Actor-critic architecture for continuous action spaces:
 - Actor $\mu_{\theta}(s)$: Deterministic policy mapping states to actions
 - Critic $Q_{\phi}(s, a)$: Action-value function estimator
- Learning algorithm:

$$\mathcal{L}_{\text{critic}} = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}} \left[(Q_{\phi}(s,a) - y)^2 \right]$$
 (30)

$$y = r + \gamma Q_{\phi'}(s', \mu_{\theta'}(s')) \tag{31}$$

$$\mathcal{L}_{actor} = -\mathbb{E}_{s \sim \mathcal{D}} \left[Q_{\phi}(s, \mu_{\theta}(s)) \right]$$
 (32)

where ϕ' and θ' are parameters of target networks

• **Exploration** with Ornstein-Uhlenbeck process:

$$a_t = \mu_\theta(s_t) + \mathcal{N}_t \tag{33}$$

Twin Delayed Deep Deterministic Policy Gradient (TD3)

• Improvements over DDPG:

- Twin critics to reduce overestimation bias
- Delayed policy updates
- Target policy smoothing
- Clipped double Q-learning

• Twin critics update:

$$y = r + \gamma \min_{i=1,2} Q_{\phi'_i}(s', \mu_{\theta'}(s') + \epsilon)$$
 (34)

$$\mathcal{L}_{\text{critic}_i} = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}} \left[(Q_{\phi_i}(s,a) - y)^2 \right]$$
 (35)

where $\epsilon \sim \mathsf{clip}(\mathcal{N}(0,\sigma), -c, c)$

Delayed policy updates:

$$\nabla_{\theta} \mathcal{L}_{actor} = -\mathbb{E}_{s \sim \mathcal{D}} \left[\nabla_{a} Q_{\phi_{1}}(s, a) |_{a = \mu_{\theta}(s)} \nabla_{\theta} \mu_{\theta}(s) \right]$$
(36)

Updated every d critic updates (typically d = 2)

RL Training and Hyperparameter Tuning

• Training procedure:

- Episode length: 252 steps (1 trading year)
- Batch size: 64-128 transitions
- Replay buffer size: 100,000 transitions
- Learning rates: 1e-4 (actor), 1e-3 (critic)
- Discount factor: 0.99
- Target network update: au=0.001 (soft updates)

Data efficiency techniques:

- Experience replay with prioritization
- Random start points within simulation
- Data augmentation through regime resampling
- Curriculum learning (gradually increasing difficulty)

• Evaluation metrics during training:

- Average return
- Sharpe ratio
- Constraint violation frequency
- Portfolio turnover

Backtest Evaluation Framework

Benchmark strategies:

- Equal weight (naive diversification)
- Market value weight (passive approach)
- Duration targeting (fixed income standard)
- Regime-based rule strategies (manually defined)

Performance metrics:

- Total return and volatility
- Sharpe and Sortino ratios
- Maximum drawdown
- Regime-conditional performance
- Turnover and transaction costs

Statistical significance tests:

- Bootstrap resampling
- Spanning tests
- Out-of-sample robustness checks

Key Takeaways

- Fixed income markets benefit significantly from RL approaches due to their complex, regime-dependent dynamics and asymmetric risk profiles
- Regime detection provides crucial context that improves both simulation realism and strategy performance
- Graph neural networks capture issuer relationships and network effects in credit risk that traditional models miss
- Advanced RL algorithms like TD3 handle the high-dimensional continuous action space effectively while managing constraints
- Integrated approach combining multiple modeling techniques yields superior performance to any single method alone

References

- Halperin, I., & Feldshteyn, I. (2018). Market self-learning of signals, impact and optimal trading: Invisible hand inference with free energy. arXiv preprint arXiv:1805.06126
- Kolm, P. N., & Ritter, G. (2019). Dynamic replication and hedging: A reinforcement learning approach. The Journal of Financial Data Science, 1(1), 159-171.
- Makinen, Y., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2019). Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data. Quantitative Finance, 19(12), 2033-2050.
- Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of finance, 29(2), 449-470.
- Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. ICLR.
- Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic methods. ICML.
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.