Comprensión de los Datos

A01384654

Angela Monserrat Hernandez Lomas

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Pregnancies Number of Pregnancies: Numérica Discreta

Glucose Plasma Glucose Concentration: Numérica Continua

BloodPressure Diastolic Blood Pressure (mm Hg): Numérica Continua

SkinThickness Triceps Skin Fold Thickness (mm): Numérica Continua

Insulin 2-Hour Serum Insulin (mu U/ml): Numérica Continua

BMI Body Mass Index (weight in kg / height in m^2): Numérica Continua

DiabetesPedigreeFunction Diabetes Pedigree Function: Numérica Continua

Age Age (years): Numérica Discreta

Outcome Class Variable (0 = No Diabetes; 1 = Diabetes): Categórica

```
In [2]: #lee archivo csv
df = pd.read_csv('diabetes.csv')
```

Descripción de Variables

```
In [3]: #Usa función shape para revisar el total de renglones y columnas
df.shape

Out[3]: (768, 9)
In [4]: #Revisa los primeros 5 renglones del dataset usando la función head()
df.head(4)
```

about:srcdoc Página 1 de 21

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	

In [5]: #Revisa los últimos 5 renglones del dataset usando la función tail()
 # Revisar los últimos 5 renglones
 df.tail()

Out[5]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabet
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

In [6]: #Revisa la información mas completa del conjunto de datos usando la fu
#Muestra el total de datos, las columnas y su tipo correspondiente, di
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

Ninguna variable contiene valores nulos

In [7]: #revisa cuántos valores únicos tiene cada atributo del archivo usando
df.nunique()

about:srcdoc Página 2 de 21

```
Out[7]: Pregnancies
                                       17
         Glucose
                                      136
         BloodPressure
                                       47
         SkinThickness
                                       51
         Insulin
                                      186
         BMI
                                      248
         DiabetesPedigreeFunction
                                      517
         Age
                                       52
         Outcome
                                        2
         dtype: int64
```

Exploración de Datos

In [8]: #utiliza la función describe() para obtener estadística básica. se pue
df.describe()

Out[8]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	
	count	768.000000	768.000000	768.000000	768.000000	768.000000	76
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	;
	std	3.369578	31.972618	19.355807	15.952218	115.244002	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	1
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	3
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	3
	max	17.000000	199.000000	122.000000	99.000000	846.000000	

```
In [9]: #Revisa Valores nulos con funcion isnull().sum()
        df.isnull().sum()
Out[9]: Pregnancies
                                      0
         Glucose
                                      0
         BloodPressure
                                      0
         SkinThickness
                                      0
         Insulin
                                      0
         BMI
         DiabetesPedigreeFunction
                                      0
                                      0
         Age
         Outcome
                                      0
         dtype: int64
```

In [10]: #Revisar valores únicos por columna usando función unique(): nombre-co
df.Pregnancies.unique()

about:srcdoc Página 3 de 21

```
array([ 6, 1, 8, 0, 5, 3, 10, 2, 4, 7, 9, 11, 13, 15, 17, 1
Out[10]:
         2, 14])
In [11]: df.Glucose.unique()
Out[11]: array([148, 85, 183, 89, 137, 116, 78, 115, 197, 125, 110, 168, 13
         9,
                189, 166, 100, 118, 107, 103, 126, 99, 196, 119, 143, 147, 9
         7,
                145, 117, 109, 158, 88, 92, 122, 138, 102, 90, 111, 180, 13
         3,
                106, 171, 159, 146,
                                    71, 105, 101, 176, 150, 73, 187,
                                                                        84,
         4,
                141, 114,
                           95, 129, 79, 0, 62, 131, 112, 113, 74,
         6,
                 80. 123.
                           81, 134, 142, 144, 93, 163, 151, 96, 155, 76, 16
         0,
                124, 162, 132, 120, 173, 170, 128, 108, 154, 57, 156, 153, 18
         8,
                152, 104, 87, 75, 179, 130, 194, 181, 135, 184, 140, 177, 16
         4,
                           86, 193, 191, 161, 167, 77, 182, 157, 178, 61, 9
                 91. 165.
         8,
                      82, 72, 172, 94, 175, 195,
                127,
                                                    68, 186, 198, 121, 67, 17
         4,
                199,
                      56, 169, 149, 65, 190])
In [12]: df.BloodPressure.unique()
         array([ 72,
                      66,
                           64,
                                40,
                                     74,
                                          50,
                                                0,
                                                         96,
                                                              92,
                                                                   80,
                                                                             8
Out[12]:
                                                    70,
                                                                        60,
                 30,
                      88,
                           90,
                                94,
                                     76,
                                          82,
                                               75,
                                                    58,
                                                         78,
                                                              68, 110,
                                                                        56,
         2,
                                     65, 108,
                                               55, 122,
                 85,
                      86,
                           48,
                                44,
                                                         54,
                                                              52,
                                                                   98, 104,
                                                                             9
         5,
                 46, 102, 100,
                               61,
                                     24, 38, 106, 114])
In [13]: | df.SkinThickness.unique()
Out[13]:
         array([35, 29, 0, 23, 32, 45, 19, 47, 38, 30, 41, 33, 26, 15, 36, 1
         1, 31,
                37, 42, 25, 18, 24, 39, 27, 21, 34, 10, 60, 13, 20, 22, 28, 5
         4, 40,
                51, 56, 14, 17, 50, 44, 12, 46, 16, 7, 52, 43, 48, 8, 49, 6
         3, 99])
In [14]: df.Insulin.unique()
```

about:srcdoc Página 4 de 21

```
array([ 0, 94, 168, 88, 543, 846, 175, 230, 83, 96, 235, 146, 11
Out [14]:
         5,
                140, 110, 245, 54, 192, 207, 70, 240, 82, 36, 23, 300, 34
         2,
                304, 142, 128, 38, 100, 90, 270, 71, 125, 176,
                                                                 48. 64. 22
         8,
                76, 220, 40, 152, 18, 135, 495, 37, 51, 99, 145, 225, 4
         9,
                50,
                     92, 325, 63, 284, 119, 204, 155, 485, 53, 114, 105, 28
         5,
                156,
                     78, 130,
                               55, 58, 160, 210, 318, 44, 190, 280, 87, 27
         1,
                129, 120, 478, 56, 32, 744, 370,
                                                  45, 194, 680, 402, 258, 37
         5,
                150, 67, 57, 116, 278, 122, 545, 75, 74, 182, 360, 215, 18
         4,
                42, 132, 148, 180, 205, 85, 231,
                                                  29,
                                                       68,
                                                            52, 255, 171, 7
         3,
                108, 43, 167, 249, 293, 66, 465, 89, 158, 84,
                                                                 72,
                                                                      59,
                                                                           8
         1,
                196, 415, 275, 165, 579, 310, 61, 474, 170, 277,
                                                                 60,
         5,
                237, 191, 328, 250, 480, 265, 193, 79, 86, 326, 188, 106,
                                                                           6
         5,
                166, 274, 77, 126, 330, 600, 185,
                                                  25, 41, 272, 321, 144,
                                                                           1
         5,
                183,
                     91, 46, 440, 159, 540, 200, 335, 387, 22, 291, 392, 17
         8,
                127, 510, 16, 112])
```

In [15]: df.Outcome.unique()

Out[15]: array([1, 0])

In [16]: df.DiabetesPedigreeFunction.unique()

```
array([0.627, 0.351, 0.672, 0.167, 2.288, 0.201, 0.248, 0.134, 0.158,
Out[16]:
                 0.232, 0.191, 0.537, 1.441, 0.398, 0.587, 0.484, 0.551, 0.254,
                 0.183, 0.529, 0.704, 0.388, 0.451, 0.263, 0.205, 0.257, 0.487,
                 0.245, 0.337, 0.546, 0.851, 0.267, 0.188, 0.512, 0.966, 0.42 ,
                 0.665, 0.503, 1.39, 0.271, 0.696, 0.235, 0.721, 0.294, 1.893,
                 0.564, 0.586, 0.344, 0.305, 0.491, 0.526, 0.342, 0.467, 0.718,
                 0.962, 1.781, 0.173, 0.304, 0.27, 0.699, 0.258, 0.203, 0.855,
                 0.845, 0.334, 0.189, 0.867, 0.411, 0.583, 0.231, 0.396, 0.14,
                 0.391, 0.37, 0.307, 0.102, 0.767, 0.237, 0.227, 0.698, 0.178,
                 0.324, 0.153, 0.165, 0.443, 0.261, 0.277, 0.761, 0.255, 0.13 ,
                 0.323, 0.356, 0.325, 1.222, 0.179, 0.262, 0.283, 0.93 , 0.801,
                 0.207, 0.287, 0.336, 0.247, 0.199, 0.543, 0.192, 0.588, 0.539,
                0.22 , 0.654, 0.223, 0.759, 0.26 , 0.404, 0.186, 0.278, 0.496,
                 0.452, 0.403, 0.741, 0.361, 1.114, 0.457, 0.647, 0.088, 0.597,
                 0.532, 0.703, 0.159, 0.268, 0.286, 0.318, 0.272, 0.572, 0.096,
                 1.4 , 0.218, 0.085, 0.399, 0.432, 1.189, 0.687, 0.137, 0.637,
```

about:srcdoc Página 5 de 21

```
0.833, 0.229, 0.817, 0.204, 0.368, 0.743, 0.722, 0.256, 0.709,
0.471, 0.495, 0.18 , 0.542, 0.773, 0.678, 0.719, 0.382, 0.319,
0.19 , 0.956, 0.084, 0.725, 0.299, 0.244, 0.745, 0.615, 1.321,
0.64 , 0.142, 0.374, 0.383, 0.578, 0.136, 0.395, 0.187, 0.905,
0.15 , 0.874, 0.236, 0.787, 0.407, 0.605, 0.151, 0.289, 0.355,
0.29 , 0.375, 0.164, 0.431, 0.742, 0.514, 0.464, 1.224, 1.072,
0.805, 0.209, 0.666, 0.101, 0.198, 0.652, 2.329, 0.089, 0.645,
0.238, 0.394, 0.293, 0.479, 0.686, 0.831, 0.582, 0.446, 0.402,
1.318, 0.329, 1.213, 0.427, 0.282, 0.143, 0.38, 0.284, 0.249,
0.926, 0.557, 0.092, 0.655, 1.353, 0.612, 0.2 , 0.226, 0.997,
0.933, 1.101, 0.078, 0.24 , 1.136, 0.128, 0.422, 0.251, 0.677,
0.296, 0.454, 0.744, 0.881, 0.28 , 0.259, 0.619, 0.808, 0.34 ,
0.434, 0.757, 0.613, 0.692, 0.52 , 0.412, 0.84 , 0.839, 0.156,
0.215, 0.326, 1.391, 0.875, 0.313, 0.433, 0.626, 1.127, 0.315,
0.345, 0.129, 0.527, 0.197, 0.731, 0.148, 0.123, 0.127, 0.122,
1.476, 0.166, 0.932, 0.343, 0.893, 0.331, 0.472, 0.673, 0.389,
0.485, 0.349, 0.279, 0.346, 0.252, 0.243, 0.58, 0.559, 0.302,
0.569, 0.378, 0.385, 0.499, 0.306, 0.234, 2.137, 1.731, 0.545,
0.225, 0.816, 0.528, 0.509, 1.021, 0.821, 0.947, 1.268, 0.221,
0.66 , 0.239, 0.949, 0.444, 0.463, 0.803, 1.6 , 0.944, 0.196,
0.241, 0.161, 0.135, 0.376, 1.191, 0.702, 0.674, 1.076, 0.534,
1.095, 0.554, 0.624, 0.219, 0.507, 0.561, 0.421, 0.516, 0.264,
0.328, 0.233, 0.108, 1.138, 0.147, 0.727, 0.435, 0.497, 0.23 ,
0.955, 2.42 , 0.658, 0.33 , 0.51 , 0.285, 0.415, 0.381, 0.832,
0.498, 0.212, 0.364, 1.001, 0.46 , 0.733, 0.416, 0.705, 1.022,
0.269, 0.6 , 0.571, 0.607, 0.17 , 0.21 , 0.126, 0.711, 0.466,
0.162, 0.419, 0.63, 0.365, 0.536, 1.159, 0.629, 0.292, 0.145,
1.144, 0.174, 0.547, 0.163, 0.738, 0.314, 0.968, 0.409, 0.297,
0.525, 0.154, 0.771, 0.107, 0.493, 0.717, 0.917, 0.501, 1.251,
0.735, 0.804, 0.661, 0.549, 0.825, 0.423, 1.034, 0.16 , 0.341,
0.68 , 0.591, 0.3 , 0.121, 0.502, 0.401, 0.601, 0.748, 0.338,
0.43 , 0.892, 0.813, 0.693, 0.575, 0.371, 0.206, 0.417, 1.154,
0.925, 0.175, 1.699, 0.682, 0.194, 0.4 , 0.1 , 1.258, 0.482,
0.138, 0.593, 0.878, 0.157, 1.282, 0.141, 0.246, 1.698, 1.461,
0.347, 0.362, 0.393, 0.144, 0.732, 0.115, 0.465, 0.649, 0.871,
0.149, 0.695, 0.303, 0.61 , 0.73 , 0.447, 0.455, 0.133, 0.155,
1.162, 1.292, 0.182, 1.394, 0.217, 0.631, 0.88, 0.614, 0.332,
0.366, 0.181, 0.828, 0.335, 0.856, 0.886, 0.439, 0.253, 0.598,
0.904, 0.483, 0.565, 0.118, 0.177, 0.176, 0.295, 0.441, 0.352,
0.826, 0.97 , 0.595, 0.317, 0.265, 0.646, 0.426, 0.56 , 0.515,
0.453, 0.785, 0.734, 1.174, 0.488, 0.358, 1.096, 0.408, 1.182,
0.222, 1.057, 0.766, 0.171])
```

In [17]: df.Age.unique()

```
Out[17]: array([50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 34, 57, 59, 51, 27, 4 1, 43,

22, 38, 60, 28, 45, 35, 46, 56, 37, 48, 40, 25, 24, 58, 42, 4 4, 39,

36, 23, 61, 69, 62, 55, 65, 47, 52, 66, 49, 63, 67, 72, 81, 6 4, 70,

68])
```

about:srcdoc Página 6 de 21

Variables Cuantitativas

Medidas de tendencia central

```
In [18]: #Se puede obtener la media, mediana y moda para
         mean glucose = df['Glucose'].mean()
         median_glucose =df['Glucose'].median()
         mode_glucose = df['Glucose'].mode()
         print("Mean_glucose:", mean_glucose)
         print("Median_glucose:", median_glucose)
         print("Mode_glucose:", mode_glucose)
         mean_BMI = df['BMI'].mean()
         median_BMI =df['BMI'].median()
         mode BMI = df['BMI'].mode()
         print("Mean_BMI:", mean_BMI)
         print("Median_BMI:", median_BMI)
         print("Mode_BMI:", mode_BMI)
        Mean_glucose: 120.89453125
        Median_glucose: 117.0
        Mode_glucose: 0
                             99
             100
        Name: Glucose, dtype: int64
        Mean_BMI: 31.992578124999998
        Median_BMI: 32.0
        Mode_BMI: 0
                        32.0
        Name: BMI, dtype: float64
```

Conclusiones: La glucosa promedio fue 120.89 La glucosa al centro (mediana) fue 117 La glucosa más repetida fue de 99 y 100

El BMI promedio fue 31.99 El BMI al centro (mediana) fue 32 El BMI más repetido fue de 32

Variables Categóricas

```
In [19]: #Para conteo de cada valor en una columna, en orden descendente usar
# nombreDataframe.columna.value_counts()
# nombreDataframe['columna'].value_counts()
df.Outcome.value_counts()
Out[19]: Outcome
0 500
1 268
Name: count, dtype: int64
```

about:srcdoc Página 7 de 21

```
In [20]: # Revisa conteo de Outcome
         print("Conteo Outcome:")
         print(df['Outcome'].value_counts())
        Conteo Outcome:
        Outcome
             500
        1
             268
        Name: count, dtype: int64
In [21]: # Crear columna para clasificar glucosa
         df['GlucoseLevel'] = pd.cut(df['Glucose'], bins=[0, 99, 125, 200], lab
         # Mostrar total por cada nivel
         print(df['GlucoseLevel'].value_counts())
        GlucoseLevel
        Alto
                  297
                  274
        Normal
                  192
        Bajo
        Name: count, dtype: int64
In [22]: # Crear columna que combine BMI y Outcome
         df['BMI_Category'] = pd.cut(df['BMI'], bins=[0, 18.5, 25, 30, 100], la
         # Ver distribución
         print(df['BMI_Category'].value_counts())
        BMI_Category
        0beso
                     465
        Sobrepeso
                     180
        Normal
                     108
                       4
        Bajo
        Name: count, dtype: int64
In [23]: df
```

about:srcdoc Página 8 de 21

Out[23]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabet
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••	•••	•••	•••		•••		
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 11 columns

Consulta

```
In [24]: # df.iloc[i]: Accede a la fila en la posición i.
         # Acceder a la primera fila
         df.iloc[0]
Out[24]: Pregnancies
                                           6
          Glucose
                                         148
          BloodPressure
                                          72
          SkinThickness
                                          35
          Insulin
                                           0
          BMI
                                       33.6
          DiabetesPedigreeFunction
                                      0.627
          Age
                                          50
                                           1
          Outcome
          GlucoseLevel
                                       Alto
          BMI_Category
                                      0beso
          Name: 0, dtype: object
In [25]: # Acceder a las dos primeras filas
         df.iloc[0:2]
```

about:srcdoc Página 9 de 21

Out[25]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	

In [26]: #Seleccionar columnas, indicando entre corchetes [nombreColumna, nombr
df[['Glucose', 'BMI', 'Outcome']].head(10) # Muestra las primeras 10

Out[26]:		Glucose	ВМІ	Outcome
	0	148	33.6	1
	1	85	26.6	0
	2	183	23.3	1
	3	89	28.1	0
	4	137	43.1	1
	5	116	25.6	0
	6	78	31.0	1
	7	115	35.3	0
	8	197	30.5	1
	9	125	0.0	1

In [27]: #Selección de filas [indicar dataframe[columna] operador valor]
Outcome = 1 (personas con diabetes)
df[df['Outcome'] == 1][['Glucose', 'BMI', 'Outcome']]

about:srcdoc Página 10 de 21

Out[27]:		Glucose	BMI	Outcome
	0	148	33.6	1
	2	183	23.3	1
	4	137	43.1	1
	6	78	31.0	1
	8	197	30.5	1
	•••	•••		
	755	128	36.5	1
	757	123	36.3	1
	759	190	35.5	1
	761	170	44.0	1
	766	126	30.1	1

268 rows × 3 columns

Out[28]:		Glucose	ВМІ	Outcome
	75	0	24.7	0
	502	0	39.0	1
	349	0	41.0	1
	342	0	32.0	0
	182	0	27.7	0

Monstrara las 5 personas con nivel de glucosa más bajo.

```
In [29]: df.sort_values(by='BMI', ascending=False)[['Glucose', 'BMI', 'Outcome'
```

about:srcdoc Página 11 de 21

Out[29]:		Glucose	ВМІ	Outcome
	177	129	67.1	1
	445	180	59.4	1
	673	123	57.3	0
	125	88	55.0	1
	120	162	53.2	1

Mostrara las 5 personas con BMI más alto.

```
In [30]: #Agrupar por un atributo y calcular función de agregación utilizando g
df.groupby('Outcome')[['Glucose', 'BMI']].max()
```

Out[30]: Glucose BMI

Outcome

0	197	57.3
1	199	67.1

Nos dira el máximo valor de Glucose y BMI por Outcome

```
In [31]: # Crear un subconjunto con Glucose > 140
    df_high_glucose = df[df['Glucose'] > 140]
    df_high_glucose[['Glucose', 'BMI', 'Outcome']].head(10)
```

Out[31]:

	Glucose	BMI	Outcome
0	148	33.6	1
2	183	23.3	1
8	197	30.5	1
11	168	38.0	1
13	189	30.1	1
14	166	25.8	1
22	196	39.8	1
24	143	36.6	1
26	147	39.4	1
28	145	22.2	0

about:srcdoc Página 12 de 21

Nos mostrara las primeras 10 personas que cuenten con glucosa mayor a 140, su BMI y si tienen o no tienen diabetes

```
In [32]: # Crear un subconjunto con BMI > 30
df_high_bmi = df[df['BMI'] > 30]
df_high_bmi[['Glucose', 'BMI', 'Outcome']].head(10)
```

Out[32]:		Glucose	ВМІ	Outcome
	0	148	33.6	1
	4	137	43.1	1
	6	78	31.0	1
	7	115	35.3	0
	8	197	30.5	1
	10	110	37.6	0
	11	168	38.0	1
	13	189	30.1	1
	16	118	45.8	1
	18	103	43.3	0

Nos mostrara las primeras 10 personas con BMI mayor a 30, su glucosa y si tienen o no diabetes

Visualización y Análisis de Datos

```
In [47]: sns.countplot(x='Outcome', data=df)
  plt.title('Distribución de Outcome')
  plt.xlabel('Outcome (0 = No, 1 = Sí)')
  plt.ylabel('Frecuencia')
  plt.show()
```

about:srcdoc Página 13 de 21

hay más del doble de casos sin diabetes que con diabetes

BMI

```
In [54]: df['BMI'] = df['BMI'].fillna(df['BMI'].median())

sns.boxplot(y='BMI', data=df)
plt.title('Boxplot de BMI')
plt.show()

sns.boxplot(x='Outcome', y='BMI', data=df)
plt.title('Boxplot de EMI según Outcome')
plt.xlabel('Outcome')
plt.ylabel('BMI')
plt.show()
```

about:srcdoc Página 14 de 21

about:srcdoc Página 15 de 21

La mayoría de los valores están entre 25 y 35 es decir, en rangos de sobrepeso u obesidad. Se puede decir que la población tiende a tener sobrepeso, lo cual puede influir en la prevalencia de diabetes. Ademas se pueden visualizar valores atipicos por encima de 50

```
In [43]: plt.figure(figsize=(8,5))
    sns.histplot(df['BMI'], bins=20, kde=True, color='salmon')
    plt.title('Histograma de BMI')
    plt.xlabel('Índice de Masa Corporal (BMI)')
    plt.ylabel('Frecuencia')
    plt.show()
```


Glucose

```
In [55]: df['Glucose'] = df['Glucose'].fillna(df['Glucose'].median())

sns.boxplot(y='Glucose', data=df)
plt.title('Boxplot de Glucose')
plt.show()

sns.boxplot(x='Outcome', y='Glucose', data=df)
plt.title('Boxplot de Glucose según Outcome')
plt.xlabel('Outcome')
plt.ylabel('Glucose')
plt.show()
```

about:srcdoc Página 16 de 21

La mediana está alrededor de 120 mg/dL. Se pueden observar algunos ceros que

about:srcdoc Página 17 de 21

quiza son errores. La distribución está sesgada a la derecha porque hay mas valores hacia arriba lo que puede decirnos que hay más individuos con niveles normales y pocos con niveles muy altos. Se puede inferir que niveles altos de glucosa se asocian con mayor probabilidad de diabetes

```
In [45]: plt.figure(figsize=(8,5))
    sns.histplot(df['Glucose'], bins=20, kde=True, color='skyblue')
    plt.title('Histograma de Glucose')
    plt.xlabel('Nivel de Glucosa')
    plt.ylabel('Frecuencia')
    plt.show()
```



```
In [38]: corr = df[['BMI', 'Glucose', 'Outcome']].corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.title('Mapa de calor de correlación')
    plt.show()
```

about:srcdoc Página 18 de 21

La glucosa es la variable más relevante para diabetes, seguida de BMI. Se puede ver que BMI y Glucose están algo correlacionadas pero no tan significativamente

about:srcdoc Página 19 de 21

Se puede observar con una relacion de 0.47 que a mayor glucosa mas probabilidad hay de que se tenga diabetes la cual es la variable mas relevante. Le sigue BMI con una correlación de 0.29 lo que nos dice que un IMC más alto también se asocia con mayor riesgo. Variables como Age (0.24) y Pregnancies (0.22) muestran correlaciones positivas bajas, indicando que personas mayores y con más embarazos tienen un riesgo ligeramente mayor de diabetes, pero estas variables tienen un impacto menor en outcome

¿Hay alguna variable que no aporta información? Si tuvieras que eliminar variables, ¿cuáles quitarías y por qué? Considero que glucosa y BMI son de las variables que mas aportan informacion por lo que eliminaria las demas variables como BloodPressure, SkinThickness y DiabetesPedigreeFunction que tienen correlaciones muy bajas con Outcome

Si comparas el rango de las variables (min-max), ¿todas están en rangos similares? Describe sus rangos.

about:srcdoc Página 20 de 21