Optimized Information Gathering in Robotics and Sensor Networks

Andreas Krause

California Institute of Technology

Information gathering problems

- Want to learn something about the state of the world
 - Estimate water quality in a geographic region, detect outbreaks, ...
- We can choose (partial) observation
 - Make measurements, place sensors, choose experimental parameters ...
- ... but they are expensive / limited
 - hardware cost, power consumption, grad student time ...

Want to cost-effectively get most useful information!

Related work

Sensing problems considered in

```
Experimental design (Lindley '56, Robbins '52...), Spatial statistics (Cressie '91, ...), Machine Learning (MacKay '92, ...), Robotics (Sim&Roy '05, ...), Sensor Networks (Zhao et al '04, ...), Operations Research (Nemhauser '78, ...)
```

Existing algorithms typically

- Heuristics: No guarantees! Can do arbitrarily badly.
- Find optimal solutions (Mixed integer programming, POMDPs):
- Want algorithms that have theoretical guarantees and scale to large problems!

fires

Want to place sensors to detect fires in buildings

regression

Joint probability distribution

$$P(X_1,...,X_n,Y_1,...,Y_n) = P(X_1,...,X_n) P(Y_1,...,Y_n | X_1,...,X_n)$$
Prior Likelihood

Why is this useful?

- Robust reasoning: Integrate measurements from multiple sensors. E.g.: P(X₂ I y₁,y₂,y₃) likely more accurate than P(X₂ I y₂)
- Exploiting correlation: Can predict P(X₁, X₃ I y₂)
 - → Can turn some sensors off to save battery life

Making observations

Less uncertain \rightarrow Reward[P(XIY₁=hot)] = 0.2

Making observations

Reward[$P(X|Y_3=hot)$] = 0.4

A different outcome...

Reward[$P(X|Y_3=cold)$] = 0.1

Value of information

Should we raise a fire alert?

Temp. X Actions	Fiery hot	normal/cold
No alarm	-\$\$\$	0
Raise alarm	\$	-\$

Only have belief about temperature P(X = hot | loss)

 \rightarrow choose $a^* = \operatorname{argmax}_a \sum_{x} P(x lobs) U(x,a)$

Decision theoretic value of information

Reward[P(X I obs)] = $\max_{a} \sum_{x} P(xlobs) U(x,a)$

Other example reward functions

Entropy

Reward[$P(\mathbf{X})$] = $-H(\mathbf{X}) = \sum_{\mathbf{x}} P(\mathbf{x}) \log_2 P(\mathbf{x})$

Expected mean squared prediction error (EMSE)

Reward[P(**X**)] = -1/n $\sum_s Var(X_s)$,

Many other objectives possible and useful...

Value of information [Lindley '56, Howard '64]

For any set A of sensors, its value of information is

$$F(A) = \sum_{\mathbf{y}_{\mathbf{A}}} P(\mathbf{y}_{\mathbf{A}}) \text{ Reward}[P(\mathbf{X} \mid \mathbf{y}_{\mathbf{A}})]$$

Observations Reward when observing made by sensors \mathbf{A} $Y_A = y_A$

Want to find a set $A^* \mu V$, $IA^*I \cdot k$ s.t.

$$A^* = \operatorname{argmax}_{A \mid A \mid k} F(A)$$

Optimizing Value of Information

- Given: finite set V of locations
- Want:

$$A^*\mu$$
 V such that

$$\mathcal{A}^* = \operatorname*{argmax}_{|\mathcal{A}| \le k} F(\mathcal{A})$$

Typically NP-hard!

Greedy algorithm:

```
Start with A = ;
```

For
$$i = 1$$
 to k

$$s^* := argmax_s F(A [{s}))$$

$$A := A [\{s^*\}]$$

How well can this simple heuristic do?

Performance of greedy

Temperature data from sensor network

Greedy empirically close to optimal. Why?

Key observation: Diminishing returns

Placement $A = \{Y_1, Y_2\}$

Placement B = $\{Y_1, ..., Y_5\}$

Theorem [Krause and Guestrin, UAI '05]:

Information gain $F(A) = H(X) - H(X | Y_A)$ is

New sensor Y'

Submodularity: B A

For A μ B, F(A [{Y'}) – F(A) , F(B [{Y'}) –

useful

Theorem [Nemhauser et al '78] Greedy algorithm gives constant factor approximation $F(A_{greedy})$, (1-1/e) $F(A_{opt})$

~63%

- Greedy algorithm gives near-optimal solution!
- For information gain: Guarantees best possible unless P = NP!
 [Krause & Guestrin '05]

monitoring

Use robots to monitor environment

Not just select best k locations A for given F(A). Need

- ... be robust against uncertainty in the function F
- ... take into account cost of traveling between locations
- ... cope with environments that change over time

robustness?

→ Sensor failures

Adversarial environments

Unified view: $A^* = \underset{|A| \leq k}{\operatorname{argmax}} \underset{i}{\min} F_i(A)$

do?

$$V=\{s_1, s_2, s_3\}$$
 Buy k=2 sensors F_i = intrusion at s_i

Optimal score: 1

→ Greedy does arbitrarily badly ⊗ Can we do better?

Greedy picks

s₃ first

Then, can

choose only
s₁ or s₂

Greedy score: 8