

Methods of Artificial Intelligence: Lecture

9. Session: Vagueness and Uncertainty II

Kai-Uwe Kühnberger, Nohayr Muhammad Winter Term 2022/2023 January 13th, 2023

Overview

- Probabilistic Logic
 - Properties of Probabilities
 - Propositional Probabilistic Logic
 - Conditional Probability
- Bayesian Networks
 - Joint Distributions
 - Conditional Independence
 - Example
 - Constructing Bayesian Networks

Probabilistic Logic: Properties of Probabilities

Modeling Uncertainty

Probability Space

- A (finite) probability space is a triple $\langle \Omega, \Sigma, P \rangle$
 - Ω is a finite non-empty set
 - Σ is the set of all subsets of Ω
 - P: $\Sigma \to \mathbf{R}$ is a 'probability measure'
- Ω is the set of elementary events (in other fields also called "possible worlds" or "states")
- Σ is the set of events
 - Each event E in Σ is a subset of Ω
 - Intuitively, each event E corresponds to a set of possible worlds that satisfy some statement

Probability Measures

- Probability measures assign probabilities to events
- They are characterized by Kolmogorov's axioms (here: finite version)
 - 1. $P(E) \ge 0$ (Non-negativity)
 - 2. $P(\Omega) = 1$ (Normalization)
 - 3. If the events E_1, E_2, \dots, E_n are disjoint, then (Finite Additivity)

$$P(E_1 \cup E_2 \cup ... \cup E_n) = P(E_1) + P(E_2) + ... + P(E_n).$$

The infinite version of Kolmogorov's axioms replaces the last axiom with:

The countable sequence of disjoint events $E_1, E_2, ...$ satisfies:

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

Further Properties

- We can derive many other properties from Kolmogorov's axioms
- For example, we have

$$P(A) \leq 1$$

(Numeric bound)

$$P(\Omega \setminus E) = 1 - P(E)$$

(Complement)

$$A \subseteq B$$
 implies $P(A) \le P(B)$

(Monotonicity)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(Sum Rule)

 Deriving some of these properties is good practice to get a better intuition for the axioms and for probabilities

Proof of $P(A) \leq 1$

• To derive $P(A) \le 1$, note that

$$P(A) = P(A) + 0$$

$$\leq P(A) + P(A^{C})$$

$$= P(A \cup A^{C})$$

$$= P(\Omega)$$

$$= 1$$

(Non-negativity) (Additivity)

(Normalization)

Proof of $A \subseteq B$ implies $P(A) \le P(B)$

■ To derive $A \subseteq B$ implies $P(A) \le P(B)$, assume that $A \subseteq B$. Then

$$P(B) = P(A \cup (B \setminus A))$$
 $(A \subseteq B)$
= $P(A) + P(B \setminus A)$ (Additivity)
 $\geq P(A)$ (Non-negativity)

Probabilistic Logic: Propositional Probabilistic Logic

Probabilistic Reasoning and Probabilistic Knowledge Bases

Propositional Probabilistic Logic

- Similar to Fuzzy Logic, we want to extend classical logic
- We do so by regarding propositional classical interpretations as possible worlds
- Given a set of propositional atoms $A_1, ..., A_n$, let Ω be the set of classical interpretations I: $\{A_1, ..., A_n\} \rightarrow \{0,1\}$
- Furthermore, we identify formulas F with the event E_F that contains all interpretations that satisfy F
- A probability measure P can then assign probabilities to formulas via

$$P(F) = P(E_F)$$

Example

- Consider propositional atoms A₁, A₂
- We let Ω be the set of classical interpretations and consider a probability measure P (as we saw before, it suffices to define P for elementary events)

A ₁	A ₂	P(A ₁ ,A ₂)
0	0	0.2
0	1	0.3
1	0	0.15
1	1	0.35

$$P(A_1) = P(\{(1,0), (1,1)\}) = P(\{(1,0)\}) + P(\{(1,1)\}) = 0.15 + 0.35 = 0.5$$

$$P(A_2) = P(\{(0,1), (1,1)\}) = P(\{(0,1)\} + P(\{(1,1)\}) = 0.3 + 0.35 = 0.65$$

$$P(A_1 \lor A_2) = 0.3 + 0.15 + 0.35 = 0.8$$

Fuzzy vs. Probabilistic Logic

- Probabilistic logic maintains many logical properties
- If T is a tautological formula, we have

$$P(T) = P(E_T) = P(\Omega) = 1$$

If C is a contradictory formula, we have P(C) = P(E_C) =

$$P(\emptyset) = 1 - P(\Omega) = 0$$

- Hence, each probability measure assigns probability 1 to tautological and probability 0 to contradictory formulas
- We do not have such a property for Fuzzy logics
 (this is reasonable because A ∨ ¬A is not necessarily true for vague statements)

Simple Reasoning Example

- Probabilistic knowledge bases contain probabilistic formulas F: p
- A probability measure P satisfies the expression F:p iff P(F) = p
- Consider the knowledge base
- A ∧ B : 0.3
- A : 0.8
- We can derive $P(B) \le 0.5$

$$P(B) = P((A \lor \neg A) \land B)$$

$$= P((A \land B) \lor (\neg A \land B))$$

$$= P(A \land B) + P(\neg A \land B)$$

$$= 0.3 + (1 - P(A \lor \neg B))$$

$$\leq 0.3 + 1 - P(A)$$

$$= 0.3 + 1 - 0.8$$

$$= 0.5$$
Tautology
Distributivity
Complementary Event
$$(E(A) \subseteq E(A \lor \neg B))$$

Probabilistic Logic: Conditional Probability

Dependent Events

Conditional Probability

- We often want to express probability under particular conditions
 - Probability of disease given that patient shows certain symptoms
 - Probability of spam given certain keywords in email
 - Probability of car given certain features of image
- P(B | A) is the probability that event B is occurring given that event A has occurred
- Formally, conditional probability is defined as $P(B \mid A) = P(B \cap A) / P(A)$

Conditional Probability

- The definition can easily be transferred to probabilistic logics $P(G \mid F) = P(G \land F) / P(F)$
- Probabilistic knowledge bases can also contain conditional formulas
 (G | F)[p]
- P satisfies (G | F)[p] if and only if P(G | F) = p

Conditional Reasoning Example

- Consider the knowledge base
 - Bird: 0.8
 - (Penguin | Bird)[0.2]
 - (Flies | Bird)[0.3]
 - (Bird | Penguin)[1]
 - (Flies | Penguin)[0]
- We can derive P(Penguin) ≥ 0.16 for all P that satisfy knowledge base

```
P(Penguin) = P((Bird \lor \neg Bird) \land Penguin) (Tautology)

= P((Bird \land Penguin) \lor (\neg Bird \land Penguin)) (Distributivity)

= P(Bird \land Penguin) + P(\neg Bird \land Penguin) (Additivity)

= P(Penguin | Bird) * P(Bird) + (Conditional)

P(Penguin | ¬Bird) * P(¬Bird)

= 0.2 * 0.8 + P(Penguin | ¬Bird) * P(¬Bird) (Non-negativity)

\ge 0.2 * 0.8 = 0.16
```

Summary

- In Fuzzy Theory, vague statements can be true to a certain degree.
- In Probability Theory, precise statements are either true or false, probabilities express our degree of belief
- Probabilistic Logic maintains more classical properties than Fuzzy Logic (e.g. Tautologies and Contradictions)
- Reasoning in Probabilistic Logic is often harder than in Fuzzy Logic

	Classical	Fuzzy	Probabilistic
Truth values	{0,1}	[0,1]	[0,1]
Propositions are	True or false	True to a certain degree	True or false
Truth values represent	True or false	Degree of "membership"	"Probability" that statement is true

Summary

Some more features

	Probability Theory	Fuzzy Logic		
Possible "values"	$0 \le P(A) \le 1$	Truth values are elements of the real interval [0,1]		
"Complement operation"	$P(\Omega \setminus E) = 1 - P(E)$	A^C : $\mu_{AC}(x) = 1 - \mu_A(x)$ [fuzzy set]		
Involution of "negation"	Holds	Holds for Fuzzy Logics we introduced (involutive monodial t-norm based algebras)		
"Conjunction"	$P(A \cap B) = P(A) \cdot P(B)$ [if A and B are independent]	$alg_t(x,y) = x \cdot y$ [example of a t-norm]		
"Disjunction"	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$alg_s(x,y) = x + y - (x \cdot y)$ [example of a s-norm]		
"Neutral	$P(\Omega) = 1$	1 Defined as 0 ⇒ 0		
elements"	$P(\varnothing) = 0$	0 Defined as ¬1		

Bayesian Networks

Joint Distribution

Motivation

- Probabilistic Reasoning is computationally difficult
- Bayesian networks can improve performance by making independency assumptions
 - Flu does not depend on size of patient
 - Spam does not depend on font type of email
 - Rain does not depend on daylight
 - Etc.

Probability Distribution

- Bayesian networks express beliefs about a finite set of random variables {X₁, X₂, ..., X_n}
- Each random variable has a domain of values
 - Boolean {0,1}
 - Finite $\{a_1, a_2, ..., a_k\}$
 - Infinite [0,1], Q, R
- A joint probability distribution over $\{X_1, X_2, ..., X_n\}$ is a function $P(X_1, X_2, ..., X_n)$ that maps variable assignments to **R** such that:
 - 1. $P(x_1, x_2, ..., x_n) \ge 0$ for all assignments $(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$

2.
$$\Sigma_{x_1, x_2, ..., x_n}$$
 $P(x_1, x_2, ..., x_n) = 1$

Consider three Boolean varibles toothache, cavity, catch

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
$\neg cavity$.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Bayesian Networks

Conditional Independence

Independence

- Formally, events A and B are called independent iff P(A ∩ B) = P(A) * P(B)
- Analogously, formulas F and G are called independent iff P(F ∧ G) = P(F) * P(G)

If A is independent of B, then P(B | A) = P(B)

$$P(B \mid A) = P(B \cap A) / P(A)$$

$$= P(B) * P(A) / P(A) \qquad \text{(Independence)}$$

$$= P(B) * 1$$

$$= P(B)$$

(A does not add any information about $B - symmetrically P(A \mid B) = P(A)$)

Independence

A and B are independent iff

$$\mathbf{P}(Toothache, Catch, Cavity, Weather) \\ = \mathbf{P}(Toothache, Catch, Cavity) \mathbf{P}(Weather)$$

32 entries reduced to 12; for n independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional Independence

- Events A and B are called conditionally independent given C iff P(A ∩ B | C) = P(A | C) * P(B | C)
- Analogously, formulas F and G are called independent given H iff P(F \(\text{G} \) | H) = P(F \| H) * P(G \| H)
- If A is independent of B given C, then P(B | A ∩ C) = P(B | C)

```
P(B \mid A \cap C) = P(B \cap A \cap C) / P(A \cap C)
= P(B \cap A \cap C) / P(C)) * (P(C) / P(A \cap C)
= P(A \cap B \mid C) * 1/P(A \mid C)
= P(A \mid C) * P(B \mid C) / P(A \mid C)
= P(B \mid C)
(Conditional Prob.)
(Independence)
= P(B \mid C)
```

(if C is known, A does not add any information about B)

Conditional Independence

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1)
$$P(catch|toothache, cavity) = P(catch|cavity)$$

The same independence holds if I haven't got a cavity:

(2)
$$P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$$

Catch is conditionally independent of Toothache given Cavity:

$$\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$$

Equivalent statements:

$$\begin{aligned} \mathbf{P}(Toothache|Catch,Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache,Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{aligned}$$

Conditional independence can reduce complexity of calculations significantly.

Further Readings

Most topics can be found in:

S. Russell, P. Norvig.

Artificial Intelligence - A modern approach.

Pearson Education, 2010, 3rd Edition.

Sections 13.1: Introduction to acting under uncertainty

Sections 13.2–3: Basic probability and probabilistic logic notions

Sections 14.7.3: Fuzzy sets and fuzzy logics

T.J. Ross.

Fuzzy logic with engineering applications.

John Wiley & Sons. 2009.

D. Koller, N. Friedman.

Probabilistic graphicals models: principles and techniques.

MIT Press. 2009.