Università della Svizzera italiana	Institute of Computing CI

High-Performance Computing Lab

Institute of Computing

Student: Dennys Mike Huber Discussed with: Alberto Finardi & Leon Ackermann

Solution for Project 6

In this project, we will investigate the graph partitioning problem within the context of domain decomposition for high-performance computing (HPC) applications.

1. Construct adjacency matrices from connectivity data [10 points]

For this exercise the goal was to read the csv file of each graph and create a sparse adjacency matrix which must symmetric and sparse. To ensure the first property we applied the code seen in Listing 1, where we check if the matrix is symmetric and if not do the necessary adjustment. To ensure the second property we use the sparse function to create a sparse matrix.

```
1 W = sparse(from,to, 1, nodes, nodes);
2 if ~issymmetric(W)
3 W = (W+W')/2;
4 disp('The adjacency matrix has been symmetrized.');
5 end
```

Listing 1: Ensure symmetric property

Figure 1: Country graphs

After creating the adjacency matrix we save it and the coordinates matrix in folder ./Datasets/Countries_Ma As the final step we load the matrices for Norway and Vietnam and visualize it with the provided gplotg function. The resulting graphs can be seen in Figure 1.

2. Implement graph partitioning algorithms [25 points]

For this exercise the task was to Implement two different graph bisection algorithms. The first algorithm can be seen in Listing 2 and is called Spectral bisection. The algorithm leverages the spectral properties of the Laplacian Matrix, which can be computed by L = D - A, where D is the degree matrix and A is the adjacency matrix. Subsequently, we use this Laplacian matrix to compute its eigen values and eigen vectors. In Matlab we can use the eigs function to that for sparse matrices. More precisely we are interested in the second smallest eigenvector, also commonly referred to as Fiedler vector. Using the median of the Fiedler vector we then assign the vertices to one of the partitions depending on if the corresponding entry in the fiedler vector is smaller or bigger than the median.

```
1 function [part1,part2, eig_vec] = bisection_spectral(A,xy,picture)
    \% 1. Construct the Laplacian.
3
    D = diag(sum(A, 2));
4
    L = D - A;
5
    % 2. Calculate its eigensdecomposition.
6
    [eig_vec,^{\sim}] = eigs(L,3,1e-10);
8
    % 3. Label the vertices with the components of the Fiedler vector.
9
    fiedler_vec = eig_vec(:,2);
    % 4. Partition them around their median value, or 0.
    fiedler_med = median(fiedler_vec);
12
    n = size(A,1);
    map = zeros(n,1);
13
    map(fiedler_vec <= fiedler_med) = 0;</pre>
14
    map(fiedler_vec > fiedler_med) = 1;
    [part1, part2] = other(map);
16
17
    if picture == 1
18
      gplotpart(A,xy,part1);
19
      title('Spectral bisection (actual) using the Fiedler Eigenvector');
20
21
22 end
```

Listing 2: Spectral graph bisection implementation

The second algorithm that we Implemented was inertial bisection 3, which leverages geometric properties to subdivide the graph into two subpartitions. Inertial bisection does this by computing the center mass in both x and y. Then the matrix M is constructed to reflect the distribution of points relative to the center of mass. This Matrix M is then used to compute its own smallest normalized eigen vector, which represents the direction of minimum variance. This eigen vector is used to define a line that passes through the center of mass. This line is then used to partition the vertices into two disjointed groups.

```
1 function [part1,part2] = bisection_inertial(A,xy,picture)
    % 1. Calculate the center of mass.
    xy_{mean} = mean(xy, 1);
    x_{mean} = xy_{mean}(1);
6
    y_{mean} = xy_{mean}(2);
    \% 2. Construct the matrix M.
8
    x_{shift} = xy(:,1) - x_{mean};
9
    y_shift = xy(:,2) - y_mean;
10
    Sxx = sum(x_shift.^2);
12
    Syy = sum(y_shift.^2);
    Sxy = sum(x_shift.*y_shift);
    M = [Syy, Sxy; Sxy, Sxx];
14
    % 3. Calculate the smallest eigenvector of M.
16
    [eig_vec,~] = eigs(M,1,1e-10);
17
18
    % 4. Find the line L on which the center of mass lies.
```

```
eig_vec = eig_vec/norm(eig_vec);
20
21
    % 5. Partition the points around the line L.
22
    [part1, part2] = partition(xy, eig_vec);
23
24
    if picture == 1
25
      gplotpart(A,xy,part1);
      title('Inertial bisection (actual) using the Fiedler Eigenvector');
27
28
29
  end
```

Listing 3: Inertial graph bisection implementation

As a final step we compare the newly implemented algorithms to the Coordinate bisection and Metis bisection methods using a variety of different mashes. The goal is to figure out, which algorithms creates the lowest number of edge-cuts to create the two partitions. The results in Table 1 clearly show that there is not a clear algorithm that always creates the lowest number of edge-cuts and the choice of bisection algorithm has to be made on an individual problem basis.

Mesh	Coordinate	Metis 5.0.2	Spectral	Inertial
mesh1e1	18	18	18	20
mesh2e1	37	34	36	47
mesh3e1	19	20	18	19
mesh3em5	19	20	24	19
airfoil1	94	93	132	93
$netz4504_dual$	25	19	23	27
stufe	16	17	16	16
3elt	172	96	117	257
barth4	206	111	127	208
ukerbe1	32	36	32	28
crack	253	220	233	384

Table 1: Bisection Results

3. Recursively bisecting meshes [15 points]

In this exercise we recursively partition 2D graphs derived by structural engineering matrices provided by Nasa. For that we use the provided function Recursion, which takes a bisection algorithm and graph as arguments and then partitions the graph into 2^l subpartitions. In our case we chose l to be 3 and 4 to create 8 and 16 partitions respectively. The resulting edge-cuts for both partition sizes can be found in table 2. Furthermore an example for the visual result of different algorithms for the mesh crack using 16 partitions can be seen in Figure 6.

Mesh	Edge Cut (8 Partitions)				Edge Cut (16 Partitions)			
1110011	Coordinate	Metis 5.0.2	Spectral	Inertial	Coordinate	Metis 5.0.2	Spectral	Inertial
airfoil1	397	318	516	670	629	516	819	1081
$netz4504_dual$	112	96	127	165	183	159	198	271
stufe	129	108	123	320	246	193	227	606
3elt	469	418	733	814	752	699	1168	1230
barth4	549	470	875	977	549	470	875	1492
ukerbe1	781	147	225	340	888	245	374	499
crack	883	808	1343	1351	1419	1275	1860	1884

Table 2: Edge cut results for recursive bi-partitioning using 8 and 16 partitions.

Figure 2: Recursive bisecting of mesh "crack" into 16 partitions with different algorithms.

4. Comparing recursive bisection to direct k-way partitioning [10 points]

Partitions	Luxemburg	usroads-48	Greece	Switzerland	Vietnam	Norway	Russia
16	191	585	318	685	270	271	572
32	317	983	500	1067	445	509	941

Table 3: Cut edges for recursive bisection.

Partitions	Luxemburg	usroads-48	Greece	Switzerland	Vietnam	Norway	Russia
16	185	545	301	665	231	241	551
32	304	921	486	1013	418	436	931

Table 4: Cut edges for direct multiway partitioning in Metis 5.0.2.

Figure 3: Partitioning results for the graphs of USA, Luxemburg, and Russia for 32 partitions

5. Utilizing graph eigenvectors [25 points]

Figure 4: Eigen vectors associated with the first λ_1 and second λ_2 smallest eigen values of the graph Laplacian matrix L for the graph "airfoil1."

Figure 5: Entries of the eigenvector associated with the second smallest eigenvalue λ_2 of the Graph Laplacian matrix L

Figure 6: Spectral bi-partitioning results using the eigenvectors to supply coordinates (bottom) and using cartesian coordinates (top).