CENG 306 Biçimsel Diller ve Otomatlar Formal Languages and Automata

Konular

- Durum İndirgeme State Minimization
- Myhill-Nerode Theorem
- Table-Filling Algorithm

- Bir M otomatı için birçok durumu gözardı etmenin kolay bir yolu olabilir.
- Aşağıdaki otomat $L=(ab \cup ba)^*$ dilini tanır.

- Burada q_7 ve q_8 durumları unreachable (erişilemez) durumdur.
- Unreachable durumların tamamı otomat'tan doğrudan çıkarılabilir.
- NFA'nın DFA eşitini bulurken aynı optimizasyon yapılmaktadır.

Unreachable durumları bulan algoritma aşağıdaki gibidir;

```
R := \{s\};
while there is a state p \in R and a \in L and \partial(p, a) such that \partial(p, a) \notin R
do add \partial(p, a) to R
```

Bu algoritmayla silinen durumlardan sonra da otomat hala gereksiz durumlara sahip olabilir.

 q_4

- Burada q_4 ve q_6 durumları denk'tir (**equivalent**).
- Bu yüzden bir durum olarak birleştirilebilir.
- q_4 ve q_6 denk durumlar aynı string için otomatı sonuç durumuna götürür.
- Denk durumlar aynı string için otomatı sonuç olmayan farklı diğer durumlara da götürebilir.

Tanım: L diline göre iki string'in denkliği

 $L \subseteq L^*$ ve $x, y \in L^*$ olsun. Eğer $z \in L^*$ ve $xz \in L$ iken $yz \in L$ olursa x ve y, L diline göre denk olarak adlandırılır, $x \approx_L y$ şeklinde gösterilir.

- x ve y string'lerinin ikisi de L diline ait olabilir veya olmayabilir.
- Sonlarına eklenen herhangi bir string x ve y'i L diline ait yapabilir veya yapmayabilir.

Örnek: x bir string ve L bir dil ise, [x] bu L diline göre x'in sahip oldugu denk sınıfı göstersin. Aşağıdaki otomat $L = (ab \cup ba)^*$ dilini tanır ve \approx_L için 4 denk sınıf vardır;

1.
$$[e] = L$$

$$2.[a] = La$$

$$3.[b] = Lb$$

$$4.[aa] = L(aa \cup bb) +$$

- 1. durumda herhangi bir $x \in L$ için, x = e bile olsa $xz \in L$ yapan her z string'ide L diline aittir.
- 2. durumda herhangi bir $x \in La$ string'i $xz \in L$ olabilmesi için z string'inin bL şeklinde olması gereklidir.
- 3. durumda z string'inin bL şeklinde olması gereklidir.
- 4. durumda hiçbir z string'i L(aa ∪ bb) prefix'i için bu string'i dile ait yapamaz.
- 1. durumdaki kümeye ait tüm stringler aynı durumlara, ve diger 2., 3., veya 4.
 durumlardaki string kümeleri de aynı durumlara götürür.

Tanım: M otomatına göre iki string'in denkliği

 $M = (K, L, \delta, s, F)$ bir deterministic automata olsun.

Eger iki string $x, y \in \sum^* M$ otomatını s başlangıç durumundan aynı duruma götürüyorsa M otomatına göre denktir ve $x \sim_M y$ şeklinde gösterilir.

$$(s,x) \mid {}^*(q,e)$$
 ve $(s,y) \mid {}^*(q,e)$ ise $x \sim_{\scriptscriptstyle M} y$ olur.

- Herhangi bir q durumu için denk sınıf E_q şeklinde gösterilir.
- Bu durumların s başlangıç durumundan erişilebilir olması zorunludur.

Örnek: Aşagıdaki otomat $L = (ab \cup ba)^*$ dilini tanır ve \sim_M için 6 **denk sınıf** vardır;

1.
$$E_{q1} = (ba)^*$$

$$2. E_{q2} = La \cup a \square$$

$$3. E_{q3} = abL$$

4.
$$E_{q4} = b(ab)^*$$

5.
$$E_{q5} = L(bb \cup aa) \sum *$$

6.
$$E_{q6} = abLb$$

Teorem: Deterministic $M = (K, L, \delta, s, F)$ otomatında herhangi $x, y \in \sum^* string'leri$ için $\mathbf{x} \sim_M \mathbf{y}$ ise $\mathbf{x} \approx_{L(M)} \mathbf{y}$ olur.

Myhill-Nerode Theorem

Teorem: $L \subseteq \Sigma^*$ regular dil olsun. L dilini tanıyan ve \approx_L içindeki denk sınıfların sayısına tam eşit sayıda duruma sahip olan bir deterministic automata vardır.

ispat: $x \in \Sigma^*$ string'i için \approx_L ilişkisi içinde denk sınıflar [x] şeklinde gösterilir. Bu dil için $M = (K, \Sigma, \delta, s, F)$ otomatı aşağıdaki gibi oluşturulabilir; $K = \{ [x] : x \in \Sigma^* \}, \approx_L$ altında denk sınıflar kümesi $s = [e], \approx_L$ altında e için denk sınıflar kümesi $F = \{ [x] : x \in L \},$

Son olarak herhangi bir $[x] \in K$ ve herhangi bir $a \in \sum i$ çin, $\delta([x], a) = [xa]$ geçişleri tanımlanır.

Myhill-Nerode Theorem

Örnek: $L = (ab \cup ba)^*$ dilini tanıyan 6 duruma sahip olan deterministic otomat 4 durumla gösterilebilir.

Corollary: L bir regular dildir, eger \approx_L sonlu sayıda denk sınıfa sahipse.

ispat: L = L(M) regular ise, en $az \approx_L deki$ denk sınıfların sayısı kadar duruma sahip bir M deterministic sonlu otomat vardır.

Örnek: Aşagıdaki otomat'ın en az duruma sahip eşitini bulalım. Denk durum var mıdır?

Örnek: Aşagıdaki otomat'ın en az duruma sahip eşitini bulalım.

denk durum var mıdır? C ve G denk degildir!

A ve G denk midir?

- e-string için ikisi denktir.

Çünkü ikisi de final state degildir.

- 0 için ikisi B ve G ye gider. İkisi de final state değildir ve denktir.
- 1 için F ve E ye giderler. İkisi de final state değildir ve denktir.

Örnek: Aşagıdaki otomat'ın en az duruma sahip eşitini bulalım.

denk durum var mıdır? C ve G denk degildir!

A ve G denk midir?

- e-string için ikisi denktir.

Çünkü ikisi de final state degildir.

- 0 için ikisi B ve G ye gider. İkisi de final state değildir ve denktir.
- 1 için F ve E ye giderler. İkisi de final state değildir ve denktir.
- 01 için sırasıyla C ve E ye giderler. C final state E değildir. Böylece 01 için denk değillerdir.
- Herhangi bir string için seçilen iki durumdan birisi final state'e giderken digeri gitmiyorsa denk olmadıkları ispat edilmiş olur.

Örnek: Aşagıdaki otomat'ın en az duruma sahip eşitini bulalım.

Örnek: Aşagıdaki otomat'ın en az duruma sahip eşitini bulalım.

- A ve E durumlarına bakalım. İkisi de final state olmadıgı için e-string için denktirler.
- 1 için ikisi de F' ye gider. 1'le başlayan tüm stringler için denktirler.
- 0 için B ve H' ye giderler. İkisi de final state olmadığı için denktir.
- 01 için ikiside C'ye 00 için ikisi de G'ye gider. $\delta(A, \Sigma^*) = \delta(E, \Sigma^*)$

- Denk durumların bulunması için tüm durumları tek tek test etmek gerekir. Bu zor ve zaman alıcıdır. Hata yapma olasılığı yüksektir.
- Bunu sistematik yapmak için Tablo Doldurma Algoritması kullanılır.
- Durumlar kendi kendisini içermeyecek şekilde bir tablo hazırlanır.
- Başlangıçta final state'ler ile diğerleri denk değil olarak işaretlenir.

Örnek:

- C final state'tir. C ile diğer durumlar arasına x konur.
- Diğer durum çiftlerinde 0 ve/veya 1 girişleri için final state ve diğer durumlara gidiliyorsa x ile işaretlenir.
 - Örn: E ve F 0 için H ve C'ye gider. C final state ve H final state degil E ve F çifti işaretlenir.
- Örnegin A ve G için 1 girişinde F ve E'ye gider. E-F çifti işaretli oldugu (denk olmadığı) için A-G işaretlenir.

Örnek:

- C final state'tir. C ile diğer durumlar arasına x konur.
- Diğer durum çiftlerinde 0 ve/veya 1 girişleri için final state ve diğer durumlara gidiliyorsa x
 ile işaretlenir.
 - Örn: E ve F 0 için H ve C'ye gider. C final state ve H final state degil E ve F çifti işaretlenir.
- Örnegin A ve G için 1 girişinde F ve E'ye gider. E-F çifti işaretli oldugu (denk olmadığı) için A-G işaretlenir.

Örnek: Aşagıdaki otomat'ın en az duruma sahip eşitini bulalım.

- A ve E durumlarına bakalım. İkisi de final state olmadıgı için e-string için denktirler.
- 1 için ikisi de F' ye gider. 1'le başlayan tüm stringler için denktirler.
- 0 için B ve H' ye giderler. İkisi de final state olmadıgı için denktir.
- 01 için ikiside C'ye 00 için ikisi de G'ye gider. $\delta(A, \Sigma^*) = \delta(E, \Sigma^*)$

Örnek: (devam)

■ A-E, B-H ve D-F durumları denk durumlardır ve birleştirilebilir.

Örnek: (devam)

- States kümesinin partition kümesi, ({A, E}, {B, H}, {C}, {D, F}, {G}) olarak oluşturulur.
- Denk durumlar transitive'dir. p-q denk ise ve q-r denk ise p-r 'de denktir.
- Partition kümesindeki her bir eleman bir durum olarak oluşturulur.
- Başlangıç durumu {A, E} dir. Çünkü A orijinal otomatta başlangıç durumudur.
- C final state'dir. Çünkü orijinal otomatta final state'dir.
- Yeni oluşturulan her bir durumun tüm girişler için geçişleri düzenlenir.
- Örnek: {A, E} 0 için {B, H}'ye geçer. Orijinal otomatta A 0 için B'ye E ise H'ye geçer. {A, E} 1 için {D, F}'ye geçer. Orijinal otomatta A 1 için F'ye ve E 1 için F'ye geçer.

Örnek:

• Aşağıdaki otomata denk minimum duruma sahip otomatı bulunuz.

Örnek:

• Aşağıdaki otomata denk minimum duruma sahip otomatı bulunuz.

Ödev

Problemleri çözünüz 2.5.3 (sayfa 101)