Learning Maximum Excluding Ellipsoids In Unbalanced Scenarios with Theoretical Guarantees

Guillaume Metzler - PhD Student

Supervised by : M. Sebban, A. Habrard and E. Fromont

Summer School 2017
Big Data & Business Methods
Technologies and Innovation

Outline

- Origin of the idea
- Presentation of the algorithm
- Theoretical Guarantees
- Applications & Experiments

The Minimum Including Ball Problem

Given a set of n unlabelled points, find the center \mathbf{c} and the smallest radius R of the ball that includes the data [Tax & Duin (2004)]

Hard Inclusion $(\xi_i = 0)$

Soft Inclusion $(\xi_i \ge 0)$

MIB and One class SVM

$$\min_{\mathbf{c},\xi,\rho} \frac{1}{2} \|\mathbf{c}\|^2 + \frac{1}{\nu n} \sum_{i=1}^n \xi_i - \rho - \frac{1}{2} \|\mathbf{x}_i\|$$

$$\mathbf{c}^T \mathbf{x}_i \ge \rho + \frac{1}{2} \|\mathbf{x}_i\| - \xi_i$$

$$\xi_i \ge 0$$

Belonging to the ball

\$\mathref{1}\$
Being above the hyperplane

Hyperplane

Anomaly / Fraud detection: towards a Maximum Excluding Ball problem

Maximizing the accuracy is inappropriate.

More relevant criteria:

$$Precision = \frac{TP}{TP + FP} \qquad \qquad Recall = \frac{TP}{TP + FN}$$

$$F_{\beta} = \frac{(1+\beta^2)Precision \cdot Recall}{\beta^2 \cdot Precision \cdot Recall}$$

A Metric Learning-based approach

From excluding balls to learned excluding ellipsoids

 \Rightarrow The Maximum Excluding Ellipsoid (ME^2) algorithm

Key Properties of ME²

- center of ellipsoids are no more learned (positive data)
- negative examples are used to learn ellipsoids
- use of a Mahalanobis like metric learning approach:

$$\|\mathbf{x} - \mathbf{c}\|_{\mathbf{M}}^2 = (\mathbf{x} - \mathbf{c})^T \mathbf{M} (\mathbf{x} - \mathbf{c})$$

s.t. M is PSD.

 ME^2 comes with a cheap way to get the positive definiteness of \mathbf{M} .

The ME^2 Algorithm

Given a set of n negative examples and p positive examples i.i.d. according to a joint distribution \mathcal{D} over $\mathbb{R}^d \times \{-1, +1\}$. For all positive examples \mathbf{c} :

$$\min_{R,\mathbf{M},\xi} \frac{1}{n} \sum_{i=1}^{n} \xi_i + \mu(B-R)^2 + \lambda \|\mathbf{M} - \mathbf{I}\|_F^2,$$

$$s.t. \quad \|\mathbf{x}_i - \mathbf{c}\|_{\mathbf{M}}^2 \ge R - \xi_i, \quad \forall i = 1, ..., n,$$

$$\xi_i \ge 0,$$

$$B \ge R \ge 0.$$

$$R$$
 radius of the ellipsoid

$$\mathbf{M}$$
 $d \times d$ matrix

$$\xi$$
 slack variables

$$\mu$$
 controls ellipsoid's size

$$\lambda$$
 controls distortion w.r.t. to a ball

Dual Formulation

$$\min_{\alpha,\beta,\delta} \quad \alpha^{T} \left(\frac{1}{4\lambda} \mathbf{G}' + \frac{1}{4\mu} \mathbf{U}_{d \times d} \right) \alpha + \frac{\beta^{2}}{4\mu} + \frac{\delta^{2}}{4\mu} + \alpha^{T} \left(\operatorname{diag}(\mathbf{G}) - \left(B + \frac{\beta}{2\mu} - \frac{\delta}{2\mu} \right) \mathbf{U}_{d} \right) + \beta \left(B - \frac{\delta}{2\mu} \right),$$

$$s.t. \quad 0 \le \alpha_{i} \le \frac{1}{n}, \quad \forall i = 1, ..., n,$$

$$\beta, \delta \ge 0,$$

where **G** is the Gram matrix and **G**' is the Hadamard product of **G** with itself. \mathbf{U}_d (respectively $\mathbf{U}_{d\times d}$) represents a vector of length d (respectively a matrix of size $d\times d$) where entries are equal to 1.

About the Dual Formulation

- Easier to solve, only depends on the number of positive instances.
- \bullet Gives an explicit expression of both Radius R and Similarity $\mathbf M$

$$R = \frac{\beta - \delta + 2\mu B - \sum_{i=1}^{n} \alpha_i}{2\mu}$$

$$\mathbf{M} = \mathbf{I} + \frac{1}{2\lambda} \sum_{i=1}^{n} \alpha_i (\mathbf{x}_i - \mathbf{c}) (\mathbf{x}_i - \mathbf{c})^T$$

• Last equality shows that M is **PSD**.

Theoretical Guarantees derived from ME²

Theoretical Results

Uniform Stability [O.Bousquet & A.Elisseeff (2002)]

Definition

A learning algorithm has a uniform stability in $\frac{\beta}{n}$ respect to a loss function ℓ and a parameter set θ , with β a positive constant if:

$$\forall S, \ \forall i, \ 1 \leq i \leq n, \ \sup_{\mathbf{x}} |\ell(\theta_S, \mathbf{x}) - \ell(\theta_{S^i}, \mathbf{x})| \leq \frac{\beta}{n}.$$

where S^i corresponds to S after the replacement of one example drawn according to \mathcal{D} .

Theorem

Let $\delta > 0$ and n > 1. For any algorithm with uniform stability β/n , using a loss function bounded by K, with probability $1 - \delta$ over the random draw of S:

$$L(\theta_S) \le \hat{L}_S(\theta_S) + \frac{2\beta}{n} + (4\beta + K)\sqrt{\frac{\ln 1/\delta}{2n}},$$

where $L(\cdot)$ is the true risk and $\hat{L}_S(\cdot)$ its empirical estimate over S.

Hinge Loss Version of ME²

Using a hinge loss $\ell(\mathbf{M}, R, \mathbf{x}) = \frac{1}{n} [R - ||\mathbf{x}_i - \mathbf{c}||_{\mathbf{M}}^2]_+$ the problem can be rewritten as follow:

$$\min_{R,\mathbf{M}} \sum_{i=1}^{n} \ell(R, \mathbf{M}, \mathbf{x}_i) + \mu(B - R)^2 + \lambda ||\mathbf{M} - \mathbf{I}||_F^2,$$

$$s.t. \quad B \ge R \ge 0.$$

Generalization Guarantee on ME²

Theorem

Let $\delta > 0$ and n > 1. There exists a constant $\kappa > 0$, such that with probability at least $1 - \delta$ over the random draw over S, we have for any (\mathbf{M}, R) solution of our optimization problem:

$$L(\mathbf{M}, R) \le \hat{L}_S(\mathbf{M}, R) + \frac{4 \max(1, 4B^2)}{n \kappa \min(\mu, \lambda)} + \left(\frac{8 \max(1, 4B^2)}{\kappa \min(\mu, \lambda)} + B + 4B^2 \sqrt{\frac{\mu B^2}{\lambda} + d}\right) \sqrt{\frac{\ln 1/\delta}{2n}}$$

with
$$\beta = \frac{2}{\kappa min(\mu, \lambda)} (max(1, 4B^2))^2$$

and $K = B + 4B^2 \sqrt{\frac{\mu B^2}{\lambda} + d}$.

Experimental Results

A neighborhood based decision rule

At test time, a data is assigned to its nearest center

A neighborhood based decision rule

Label prediction

ME² tends to maximize the F-Measure

Experimental Comparison

- Decision Tree
- Decision Tree with sampling methods:
 - 1. Oversampling
 - 2. Undersampling
 - 3. Both
- Random Forest
- SVM with Linear Kernel
- SVM with Gaussian Kernel

Experimental Comparison

Algorithm	Abalone	Wine	Abalone17	Abalone20	Abalone19
$\overline{ m RF}$	0.67	0.02	0.20	0.04	0.00
$\overline{\mathrm{DT}}$	0.71	0.00	0.00	0.00	0.00
$\overline{DT_O}$	0.67	0.06	0.35	0.02	0.02
$\overline{DT_U}$	0.69	0.08	0.33	0.18	0.00
$\overline{DT_{OU}}$	0.62	0.08	0.31	0.15	0.04
LSVM	0.62	0.09	0.29	0.21	0.04
RBFSVM	0.63	0.16	0.17	0.00	0.00
$\overline{ME^2}$	0.62	0.16	0.37	0.21	0.04

Performance is evaluated with respect to the F-Measure

Datasets	Abalone	Wine	Abalone17	Abalone20	Abalone19
Rate of pos. examples	10.7%	3.3%	2.5%	1.4%	0.76%

Comparaison w.r.t. a decreasing nb. of positives

Conclusion

- Capture non linearity via local models
- ME^2 is theoretically founded (uniform stability)
- Models can be learned in parallel
- Promising results in unbalanced scenarios

Future Work

- Continue the work on the decision rule
- Derive some theoretical results using the ellipsoids and Nearest Neighbor Algorithm
- Using the Global decision to improve the local decision
- Apply it on real data sets

Thank you for your attention!