САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и кибербезопасности Высшая школа технологий и искусственного интеллекта Направление: 02.03.01 Математика и компьютерные науки

Основы архитектуры ЦВМ Отчёт по лабораторной работе №3 Синтез последовательных схем. Счётчики.

Выполнила:

Михайлова А. А.

студент группы 5130201/30002

Проверила:

Вербова Н. М.

Санкт-Петербург 2024

Цель работы: изучить принципы синтеза последовательных схем на примере синтеза недвоичного счётчика

Ход работы:

Синтезируем недвоичный вычитающий счётчик с коэффициентом пересчёта равным 5.

 $K_{eq} = 5$, тогда $m >= |log_2 5| = 2,32 -> m = 3 -$ для построения счётчика нам нужно 3 триггера.

Число избыточных состояний:

$$N = 2^m - 5 = 3$$

Для удобства из всех возможных состояний счётчика исключим 3 избыточных с конца: 101, 110, 111.

Составим таблицу функционирования счётчика.

№ сост	$\mathbf{Q_1}^{\mathbf{t}}$	$\mathbf{Q_2}^{\mathbf{t}}$	Q_3^t	Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}
0	0	0	0	1	0	0
1	0	0	1	0	0	0
2	0	1	0	0	0	1
3	0	1	1	0	1	0
4	1	0	0	0	1	1

На основании таблицы функционирования счётчика составим прикладные таблицы для каждого триггера счётчика. Они отражают переход триггера из предыдущего состояния Q_i^t в следующее Q_i^{t+1} . В таких таблицах прочёркнутые клетки соответствуют исключённым состояниям счётчика.

$Q_1^{t-}>Q_1^{t+1}$	Ç	Q_2	$!Q_2$	
Q_3	00	-	-	00
!Q ₃	00	-	10	01
	!Q1	Q_1		!Q1

$Q_2^{t-}>Q_2^{t+1}$	Q_2		!(Q_2
Q_3	11	-	-	00
!Q ₃	10	-	01	00
	!Q1	Ç	Q ₁	$!Q_1$

$Q_3^{t-}>Q_3^{t+1}$	Q_2		!(Q_2
Q_3	10	-	-	10
!Q ₃	01	-	01	00
	!Q1	Ç	\mathbf{Q}_1	!Q ₁

С помощью прикладных таблиц составим карты Карно по следующему принципу:

$Q_i^t \rightarrow Q_i^{t+1}$	J	K
00	0	*
01	1	*
10	*	1
11	*	0

\mathbf{J}_1	Ç) ₂	!(Q_2
Q_3	0	-	1	0
$!Q_3$	0	-	*	1
	$!Q_1$	Ç) 1	$!Q_1$

J_2	Q_2		!(Q_2
Q_3	*	-	-	0
$!Q_3$	*	-	1	0
	!Q1	Ç) ₁	!Q1

J_3	Q_2		!(Q_2
Q_3	*	-	-	*
!Q3	1	-	1	0
	$!Q_1$	Ç) ₁	$!Q_1$

K_1	Q_2		!Q2	
Q_3	*	-	-	*
!Q3	*	-	1	*
	$!Q_1$	Ç) ₁	$!Q_1$

K_2	Q_2		!(Q_2
Q_3	0	-	-	*
!Q3	1	-	*	*
	$!Q_1$	Ç) ₁	$!Q_1$

K ₃	Q_2		$!Q_2$	
Q_3	1	-	1	1
!Q3	*	-	*	*
	$!Q_1$	Ç) ₁	$!Q_1$

Карты Карно отражают значения логических функций на всех входах каждого триггера в зависимости от состояний счётчика. Составим логические уравнения входов триггеров, которые связывают между собой входы и выходы всех триггеров счётчика.

$$J_1 = !Q_2!Q_3$$

$$J_2\!=Q_1$$

$$J_3 = Q_1!Q_2VQ_1$$

$$K_1=1$$

$$K_2 = !Q_3$$

$$K_3 = 1$$

Опираясь на уравнения построим схему счётчика:

Схема ИС К155ИЕ6 (SN74192):

При суммировании в динамике:

Суммирующий счётчик с $K_{cq} = 6$.

Вывод:

- 1. Синтезирован недвоичный вычитающий счётчик с коэффициентом пересчёта 5, начерчена схема в Multisim и проверена работа.
- 2. Изучен принцип работы счётчика на ИС К155ИЕ6, на базе которого синтезирован счётчик с коэффициентом пересчёта, равным 6.