FLASHATTENTION

Васильевых Павел, БПМИ213

ПЛАН

- 1. Стандартный Attention.
- 2. FlashAttention.
- 3. FlashAttention 2.

СТАНДАРТНЫЙ ATTENTION

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q} , \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$, write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute P = softmax(S), write **P** to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write \mathbf{O} to HBM.
- 4: Return O.

Количество обращений к

медленной памяти равно

$$O(N^2 + Nd)$$
.

ПОЧЕМУ FLASHATTENTION?

Авторы заметили, что на время работы значительно влияют операции с памятью. Главная идея уменьшить количество операций копирования между медленной и быстрой памятью.

УЛУЧШЕННЫЙ АЛГОРИТМ

УЛУЧШЕННЫЙ АЛГОРИТМ

Количество обращений к медленной памяти равно $O(N^2d^2M^{-1})$.

С помощью Block-Sparse FlashAttention можно сделать ещё быстрее.

Algorithm 1 FLASHATTENTION

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_r = \left\lceil \frac{M}{4d} \right\rceil$, $B_c = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d \right)$.
- 2: Initialize $\mathbf{0} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- 6: Load \mathbf{K}_{i} , \mathbf{V}_{i} from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: end for
- 15: **end for**
- 16: Return O.

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S} \odot \mathbb{1}_{\tilde{\mathbf{M}}}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

ПРОИЗВОДИТЕЛЬНОСТЬ

BERT Implementation	Training time (minutes)
Nvidia MLPerf 1.1 [56]	20.0 ± 1.5
FLASHATTENTION (ours)	17.4 ± 1.4

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [84]	18.2	$9.5 \text{ days } (1.0 \times)$
GPT-2 small - Megatron-LM [74]	18.2	$4.7 \text{ days } (2.0 \times)$
GPT-2 small - FlashAttention	18.2	$2.7 ext{ days } (3.5 \times)$
GPT-2 medium - Huggingface 84	14.2	$21.0 \text{ days } (1.0\times)$
GPT-2 medium - Megatron-LM [74]	14.3	$11.5 \text{ days } (1.8 \times)$
GPT-2 medium - FLASHATTENTION	14.3	$6.9 ext{ days } (3.0 \times)$

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	-
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	$2.4 \times$
Block-sparse FlashAttention	37.0	63.0	81.3	43.6	73.3	59.6	2.8 ×
Linformer [81]	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention [48]	38.8	63.2	80.7	42.6	72.5	59.6	2.3×
Performer [11]	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention [77]	36.1	60.2	76.7	40.6	66.6	56.0	1.7×
Reformer 49	36.5	63.8	78.5	39.6	69.4	57.6	1.3×
Smyrf [18]	36.1	64.1	79.0	39.6	70.5	57.9	1.7×

ЕЩЁ МЕТРИКИ

Model	Path-X	Path-256
Transformer	Х	X
Linformer 81	X	×
Linear Attention 48	X	×
Performer [11]	X	×
Local Attention [77]	Х	×
Reformer 49	X	×
SMYRF [18]	X	×
FLASHATTENTION	61.4	×
Block-sparse FlashAttention	56.0	63.1

(a) A positive example.

FLASHATTENTION 2

УЛУЧШЕНИЯ:

- 1) убраны промежуточные нормализации softmax;
- 2) для backward pass хранится на один массив меньше;
- 3) другой порядок циклов и дополнительное распараллеливание по длине последовательности (в первом алгоритме уже используется распараллеливание по количеству голов и размеру батча);
- 4) синхронизация между warps не нужна.

Algorithm 1 FlashAttention-2 forward pass

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, block sizes B_c, B_r .

- 1: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 2: Divide the output $\mathbf{O} \in \mathbb{R}^{N \times d}$ into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, and divide the logsum exp L into T_r blocks L_i, \ldots, L_{T_r} of size B_r each.
- 3: **for** $1 \le i \le T_r$ **do**
- 4: Load \mathbf{Q}_i from HBM to on-chip SRAM.
- 5: On chip, initialize $\mathbf{O}_{i}^{(0)} = (0)_{B_r \times d} \in \mathbb{R}^{B_r \times d}, \ell_{i}^{(0)} = (0)_{B_r} \in \mathbb{R}^{B_r}, m_{i}^{(0)} = (-\infty)_{B_r} \in \mathbb{R}^{B_r}.$
- 6: **for** $1 \le j \le T_c$ **do**
- 7: Load \mathbf{K}_j , \mathbf{V}_j from HBM to on-chip SRAM.
- 8: On chip, compute $\mathbf{S}_i^{(j)} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.
- 9: On chip, compute $m_i^{(j)} = \max(m_i^{(j-1)}, \operatorname{rowmax}(\mathbf{S}_i^{(j)})) \in \mathbb{R}^{B_r}, \ \tilde{\mathbf{P}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} m_i^{(j)}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\ell_i^{(j)} = e^{m_i^{j-1} m_i^{(j)}} \ell_i^{(j-1)} + \operatorname{rowsum}(\tilde{\mathbf{P}}_i^{(j)}) \in \mathbb{R}^{B_r}$.
- 10: On chip, compute $\mathbf{O}_i^{(j)} = \text{diag}(e^{m_i^{(j-1)} m_i^{(j)}})^{-1} \mathbf{O}_i^{(j-1)} + \tilde{\mathbf{P}}_i^{(j)} \mathbf{V}_j$.
- 11: end for
- 12: On chip, compute $\mathbf{O}_i = \operatorname{diag}(\ell_i^{(T_c)})^{-1} \mathbf{O}_i^{(T_c)}$.
- 13: On chip, compute $L_i = m_i^{(T_c)} + \log(\ell_i^{(T_c)})$.
- 14: Write \mathbf{O}_i to HBM as the *i*-th block of \mathbf{O} .
- 15: Write L_i to HBM as the *i*-th block of L.
- 16: end for
- 17: Return the output $\mathbf{0}$ and the logsum exp L.

FLASHATTENTION 2

He требуется синхронизация между warps.

производительность

Авторы оставляют на будущее возможность получения дополнительного прироста скорости, сопоставимого с полученным с помощью FlashAttention 2, с использованием новых архитектурных особенностей видеокарт.

Figure 7: Attention forward + backward speed on H100 GPU

(b) Without causal mask, head dimension 128 Attention forward + backward speed (A100 80GB SXM4)

Pytorch FlashAttention 200 xformers FlashAttention Triton FlashAttention-2 512 2k Sequence length

(c) With causal mask, head dimension 64

(d) With causal mask, head dimension 128

Figure 4: Attention forward + backward speed on A100 GPU

Model	Without FlashAttention	FLASHATTENTION	FLASHATTENTION-2
GPT3-1.3B 2k context	$142~\mathrm{TFLOPs/s}$	189 TFLOPs/s	196 TFLOPs/s
GPT3-1.3B 8k context	$72 ext{ TFLOPS/s}$	170 TFLOPs/s	$220 \mathrm{TFLOPs/s}$
GPT3-2.7B 2k context	149 TFLOPs/s	189 TFLOPs/s	205 TFLOPs/s
GPT3-2.7B 8k context	80 TFLOPs/s	175 TFLOPs/s	225 TFLOPs/s

ССЫЛКИ

- 1. FlashAttention:
- https://arxiv.org/abs/2205.14135.
- 2. FlashAttention 2:
- https://arxiv.org/abs/2307.08691.
- 3. Небольшая статья про FlashAttention: https://habr.com/ru/articles/669506.