Skojarzenia

Najliczniejsze skojarzenia:

- grafy proste dwudzielne,
- dowolne grafy proste.

Dokładne skojarzenia o maksymalnej sumie wag w obciążonych pełnych grafach dwudzielnych.

Definicje

Def Zbiór krawędzi *M* jest *skojarzeniem* w grafie *G*, jeśli żadne dwie krawędzie należące do *M* nie mają wspólnego wierzchołka.

Problemy:

- najliczniejsze skojarzenie szukamy skojarzenia zawierającego największą możliwą liczbę krawędzi
- dokładne skojarzenie pytamy, czy istnieje skojarzenie złożone z *n*/2 krawędzi (*n* musi być parzyste)
- skojarzenie o minimalnej (maksymalnej) wadze szukamy w obciążonym grafie takiego skojarzenia, aby suma wag jego krawędzi była możliwie najmniejsza (największa)
- dokładne skojarzenie o minimalnej (maksymalnej) wadze j.w. oraz dodatkowo skojarzenie musi zawierać *n*/2 krawędzi

Definicje

Def. Niech *M* będzie dowolnym skojarzeniem.

- Krawędź nazywamy *skojarzoną*, jeśli należy ona do *M*. W przeciwnym wypadku krawędź jest *nieskojarzona*.
- Wierzchołek *v* nazywamy *wolnym* (w odniesieniu do konkretnego skojarzenia *M*), jeśli żadna spośród krawędzi należących do *M* nie zawiera *v*.
- Droga *P* jest *naprzemienna* względem *M*, jeśli dla dowolnych dwóch sąsiednich krawędzi należących do *P* nie jest prawdą, że jednocześnie należą lub nie należą do *M*.
- Droga naprzemienna, która zaczyna się i kończy w różnych wierzchołkach wolnych jest *drogą powiększającą*.
- dla wierzchołka $v \in V(G)$ definiujemy $N(v) = \{u \in V(G): \{u,v\} \in E(G)\}$
- dla $S \subseteq V(G)$ definiujemy $N(S) = (\bigcup_{v \in S} N(v)) \setminus S$

Drogi powiększające

Def. Niech $A,B \subseteq E(G)$ będą zbiorami. Oznaczmy $A \oplus B := (A \cup B) \setminus (A \cap B)$.

Tw. *Jeśli M jest skojarzeniem, natomiast P drogą powiększająca względem M, to M'* := $M \oplus P$ *jest również skojarzeniem. Ponadto* |M'| = |M| + 1.

Przykład:

Pewne skojarzenie M

Droga powiększająca P

Skojarzenie $M \oplus P$

Twierdzenie Halla

Tw. Dwudzielny graf prosty $G=(A \cup B, E)$ ma dokładne skojarzenie wtedy i tylko wtedy, gdy dla każdego $S \subseteq A$ zachodzi $|N(S)| \ge |S|$.

Dowód:

- (⇒) Niech *M* będzie dokładnym skojarzeniem oraz niech $S \subseteq A$.
 - jeśli $A = \{u_1, ..., u_k\}, B = \{v_1, ..., v_k\}$, to możemy założyć, że $\{u_i, v_i\} \in M$
 - wierzchołki v_i skojarzone z wierzchołkami należącymi do S są parami różne i należą do N(S)
- (\Leftarrow) Rozważmy najliczniejsze skojarzenie M w grafie G.
 - niech *u* będzie nieskojarzonym wierzchołkiem
 - niech X będzie zbiorem wszystkich wierzchołków osiągalnych z u poprzez drogę naprzemienną; niech $L:=X\cap A,\,R:=X\cap B.$
 - N(L) = R
 - jedynym wierzchołkiem wolnym w X jest u, gdyż w przeciwnym wypadku mamy ścieżkę powiększającą. Zatem: |L| = |R| + 1
 - stąd: |N(L)| = |R| = |L| 1 < |L|, sprzeczność

Kojarzenie małżeństw...

Tw. Jeśli graf prosty dwudzielny $G=(A \cup B, E)$ jest k-regularny, to posiada dokładne skojarzenie.

Dowód:

- m = k|A| oraz m = k|B|, co oznacza, że |A| = |B|.
- Niech $S \subseteq A$ będzie dowolny.
- Istnieje dokładnie *k*|*S*| krawędzi incydentnych do *S*.
- Stąd, co najmniej k|S| krawędzi jest incydentnych do N(S).
- Z faktu, że G jest k-regularny wynika, że do N(S) jest incydentnych k|N(S)| krawędzi.
- Zatem: $k|S| \le k|N(S)|$, co oznacza, że $|S| \le |N(S)|$.

Def. Symbolem o(G) oznaczamy liczbę składowych spójności grafu G, które posiadają nieparzystą liczbę wierzchołków.

Tw. Spójny graf prosty G posiada dokładne skojarzenie wtedy i tylko wtedy, gdy dla każdego $S \subseteq V(G)$ zachodzi $o(G - S) \leq |S|$.

Dowód: (⇒)

- Załóżmy, że teza nie zachodzi, tzn. $S \subseteq V(G)$ oraz G S posiada |S|+1składowych nieparzystego rzędu.
- W składowych parzystego rzędu znajdujemy skojarzenia dokładne.
- Każda składowa nieparzystego rzędu posiada wierzchołek, który musi być skojarzony z wierzchołkiem *v*, który do tej składowej nie należy.
- *v* musi być elementem *S* sprzeczność.

Dowód: (\Leftarrow)

- Przypuśćmy, że G nie posiada dokładnego skojarzenia.
- Tworzymy graf *F* dodając do *G* krawędzie, aż będzie spełniony warunek:
 - F nie posiada dokładnego skojarzenia,
 - po dodaniu dowolnej krawędzi *e* do *F* graf *F*+*e* posiada skojarzenie dokładne.
- Definiujemy zbiór U zawierający wierzchołki stopnia n-1 w grafie F.
- Oczywiście *U* jest różny od *V*, gdyż w przeciwnym wypadku *F* miałby dokładne skojarzenie.

Lemat *Graf F – U jest sumą grafów pełnych.*

Dowód:

- Załóżmy, że lemat nie zachodzi.
- Istnieje składowa H w grafie F U, która nie jest grafem pełnym.
- Znajdujemy wierzchołki x,y,z takie, że $\{x,y\},\{y,z\} \in E(H)$ oraz $\{x,z\} \notin E(H)$.
- Z faktu, że y nie należy do U wynika, że istnieje wierzchołek w, z którym y nie jest sąsiedni.

Dowód lematu c.d.:

- Rozważmy skojarzenie M_1 w grafie $F + \{x, z\}$ oraz skojarzenie M_2 w grafie $F + \{w, y\}$.
- **Przypadek 1:** W grafie $M_1 \cup M_2$ istnieje cykl obejmujący $\{y,w\}$ oraz $\{x,z\}$:
- Istnieje dokładne skojarzenie w grafie F. Na rysunku jego krawędzie są oznaczone etykietą M. Skojarzenie M "poza cyklem" jest równe dowolnemu spośród M_i.
 Sprzeczność.

Dowód lematu c.d.:

- **Przypadek 2:** W grafie $M_1 \cup M_2$ krawędzie $\{y,w\}$ oraz $\{x,z\}$ należą do różnych cykli:
- Istnieje dokładne skojarzenie M w grafie F. Na rysunku jego krawędzie są oznaczone etykietą M. Skojarzenie M "poza cyklami" jest równe dowolnemu spośród M_i. Sprzeczność.

M M M M Z M

Dowód lematu jest zakończony.

Ciąg dalszy dowodu tw. Tutte: (←)

- Załóżmy, że F U ma k składowych spójności nieparzystego rzędu $H_1,...,H_k$.
- Wiadomo, że k oraz |U| są jednocześnie parzyste lub jednocześnie nieparzyste.
- Składowe spójności F U parzystego rzędu mają dokładne skojarzenia, ponieważ na podstawie lematu są one grafami pełnymi.
- W każdej składowej H_i wybieramy dowolny wierzchołek v_i i "kojarzymy" go z dowolnym wierzchołkiem w U.
- Powyższa operacja jest poprawna, ponieważ $o(F S) \le o(G S) \le |S|$ dla każdego S, co oznacza to, że $k \le |U|$.
- Pozostałe wierzchołki w U można skojarzyć, gdyż tworzą graf pełny i ich liczba jest parzysta.
- Podobnie można skojarzyć wierzchołki w grafach $H_i v_i$.
- Otrzymaliśmy więc dokładne skojarzenie w F sprzeczność.

Algorytm

Tw. Skojarzenie M jest najliczniejsze wtedy i tylko wtedy, gdy nie zawiera drogi powiększającej względem M.

Z twierdzenia wynika następujący algorytm:

- 1. inicjalnie skojarzenie *M* nie zawiera żadnych krawędzi;
- 2. jeśli nie istnieje droga powiększająca względem M to "koniec";
- 3. znajdź drogę powiększającą *P*;
- 4. $M := M \oplus P$;
- 5. przejdź do punktu 2;

Drzewo naprzemienne

Def. Drzewo T będące podgrafem G jest drzewem naprzemiennym względem skojarzenia M jeśli:

- T zawiera dokładnie jeden wolny wierzchołek r(T),
- dla każdego wierzchołka $v \in V(T)$ droga łącząca r(T) z v jest naprzemienna względem skojarzenia M,
- dla każdego liścia v drzewa T (różnego od r(T)) krawędź należąca do skojarzenia M i incydentna do v w G należy do T.

Przykład.

Graf G i skojarzenie M

Pewne drzewo naprzemienne

Las naprzemienny

Def. Las naprzemienny F względem M w grafie G jest sumą drzew naprzemiennych takich, że:

- każdy wolny wierzchołek należy do pewnego drzewa będącego w F,
- drzewa należące do F są parami wierzchołkowo rozłączne.

Uwagi:

- jeśli $v \in V(F)$, to F(v) oznacza drzewo naprzemienne należące do F, które zawiera wierzchołek v,
- r(F(v)) jest wówczas wierzchołkiem wolnym należącym do drzewa naprzemiennego w F zawierającego v,
- graf *F* zawierający wyłącznie wierzchołki wolne jest pewnym lasem naprzemiennym
- wierzchołek v jest parzysty (nieparzysty), jeśli droga łącząca v z r(F(v)) w drzewie F(v) zawiera parzystą (nieparzystą) liczbę krawędzi. Zbiór parzystych (nieparzystych) wierzchołków oznaczać będziemy przez even(F) (odd(F)).

Szukanie dróg powiększających

Szukanie drogi powiększającej w grafie dwudzielnym można opisać procedurą, składającą się z dwóch poniższych kroków, którą nazwijmy Grow:

- 1. Jeśli istnieje wierzchołek $u \in even(F)$, który jest sąsiedni do wierzchołka $v \notin odd(F)$, to zachodzi jeden z przypadków:
 - a) jeśli $v \notin even(F)$, to do drzewa F(u) dodaj krawędź $\{u,v\}$ oraz krawędź incydentną do v i należącą do skojarzenia M;
 - b) jeśli $v \in even(F)$ droga powiększająca została znaleziona (składa się z krawędzi $\{u,v\}$, ścieżki łączącej v z T(v) i ścieżki łączącej u z T(u)) i procedura kończy działanie;
- 2. Jeśli nie istnieje wierzchołek $u \in even(F)$, który jest sąsiedni do wierzchołka $v \notin odd(F)$, to procedura Grow kończy działanie.

Uwagi:

- inicjalnie F to graf pusty zawierający wszystkie wierzchołki wolne,
- powyższe kroki są wykonywane "do skutku".

Gdy graf nie jest dwudzielny...

Uwaga: Procedura szukania dróg powiększających podana poprzednio nie uwzględnia sytuacji, gdy $u \in even(F)$ oraz $v \in odd(F)$, co może się zdarzyć, gdy graf zawiera cykle o nieparzystej długości.

Przykład:

Uwaga: W powyższym przykładzie nadal jest możliwe rozszerzenie drzewa naprzemiennego, jednak można wskazać przykłady, gdy rozbudowa drzewa nie jest możliwe, mimo tego, że droga powiększająca istnieje.

Kielichy

Def. Cykl C nazywamy *naprzemiennym* względem skojarzenia M, jeśli $M \cap C$ jest najliczniejszym skojarzeniem w C.

Uwaga: Jeśli C jest cyklem naprzemiennym o nieparzystej długości, to dokładnie jeden wierzchołek w C jest wolny względem skojarzenia $M \cap C$.

Def. Jeśli *T* jest drzewem naprzemiennym, które zawiera dwa wierzchołki grafu *G*, które są w *G* sąsiednie oraz oba są parzyste w lesie naprzemiennym zawierającym *T*, to cykl powstały w drzewie *T* poprzez dodanie krawędzi łączącej wspomniane dwa wierzchołki nazywamy *kielichem*. Ścieżkę (złożoną z krawędzi należących do *T*) łączącą korzeń *T* z kielichem nazywamy *łodygą*.

Ściąganie kielichów

Def. Jeśli C jest kielichem, to przez ściągnięcie C rozumiemy ściągnięcie wszystkich krawędzi należących do C. Tak otrzymany graf oznaczamy symbolem G_C .

Uwaga: Jeśli F jest lasem naprzemiennym w G, to F_C jest lasem naprzemiennym w G_C .

Ściąganie kielichów

Tw. Niech M, F, C będą odpowiednio skojarzeniem, rodziną drzew naprzemiennych oraz kielichem w grafie G. Każda droga powiększająca w grafie G_C może być przekształcona w drogę powiększającą w G.

Tw. Jeśli M_C jest najliczniejszym skojarzeniem w G_C , to M jest najliczniejszym skojarzeniem w G.

Wniosek Jeśli $C_1,...,C_k$ są kielichami względem skojarzenia M w grafie G oraz $((M_{C_1})_{C_2}...)_{C_k}$ jest najliczniejszym skojarzeniem w $((G_{C_1})_{C_2}...)_{C_k}$, to M jest najliczniejszym skojarzeniem w G.

Szukanie dróg powiększających

Aby rozszerzyć procedurę Grow na przypadek grafów dowolnych należy przewidzieć możliwość występowania kielichów.

- 1. Jeśli istnieje wierzchołek $u \in even(F)$, który jest sąsiedni do wierzchołka $v \notin odd(F)$, to zachodzi jeden z przypadków:
 - a) jeśli $v \notin even(F)$, to do drzewa F(u) dodaj krawędź $\{u,v\}$ oraz krawędź incydentną do v i należącą do skojarzenia M;
 - b) jeśli $v \in even(F)$ oraz $F(u) \neq F(v)$ droga powiększająca została znaleziona i procedura kończy działanie;
 - c) jeśli $v \in even(F)$ oraz F(u)=F(v) kielich C został znaleziony; ściągamy C;
- 2. Jeśli nie istnieje wierzchołek $u \in even(F)$, który jest sąsiedni do wierzchołka $v \notin odd(F)$, to procedura Grow kończy działanie.

Grafy obciążone

- W dalszej części rozważamy pełne dwudzielne grafy obciążone, tzn. $G = (X \cup Y, E)$, |X| = |Y|; funkcja wagowa $w: E \to \mathbb{R}_+$ jest taka, że $w(e) \ge 0$ dla każdej krawędzi $e \in E$,
- Rozwiązujemy problem polegający na znalezieniu dokładnego skojarzenia o maksymalnej sumie wag.

Uwagi:

- założenie, że wagi są nieujemne nie zmniejsza ogólności,
- rozważanie grafów pełnych dwudzielnych nie zmniejsza ogólności,
- możemy założyć, że partycje grafu mają jednakowe rozmiary,
- problem jest równoważny szukaniu dokładnego skojarzenia o minimalnej sumie wag,
- problem równoważny szukaniu skojarzenia (dowolnego) o maksymalnej (minimalnej) sumie wag,
- problem ogólniejszy od poprzedniego,

Etykietowanie wierzchołków

Def. Funkcja $l: V \to \mathbb{R}_+$ jest *poprawna* jeśli $l(x) + l(y) \ge w(x,y)$.

Przykład:

Graf G (pozostałe krawędzie mają wagę 0)

Funkcja l.

$$l(y) = 0$$
 dla $y \in Y$
 $l(x) = \max\{w(e) : x \in e\}$ dla $x \in X$.

Graf G_l

Def. Graf prosty G_l definiujemy następująco:

- $V(G_l) = V(G)$
- $\{x,y\} \in E(G_l)$ wtedy i tylko wtedy, gdy l(x) + l(y) = w(x,y)

Przykład:

Graf G i funkcja l

Graf G_l

Skojarzenia w G_l i w G

Tw. Jeśli M jest dokładnym skojarzeniem w grafie G_l , to M jest dokładnym skojarzeniem o maksymalnej sumie wag w G.

Dowód:

$$w(M) = \sum_{e \in M} w(e) = \sum_{\{x,y\} \in M} (l(x) + l(y))$$
$$= \sum_{\{v \in V: v \text{ jest skojarzony w } M\}} l(v) = \sum_{v \in V} l(v).$$

Jeśli M' jest dowolnym dokładnym skojarzeniem w G, to:

$$w(M') = \sum_{e \in M'} w(e) \le \sum_{\{x,y\} \in M'} (l(x) + l(y))$$
$$= \sum_{\{v \in V: v \text{ jest skojarzony w } M'\}} l(v) = \sum_{v \in V} l(v) = w(M).$$

Skojarzenia w G_l i w G

Wniosek Jeśli graf G_l posiada dokładne skojarzenie, to jest ono maksymalnym dokładnym skojarzeniem w G.

Uwaga: Jeśli graf G_l nie posiada dokładnego skojarzenia, to zmierzamy do zmodyfikowania funkcji l w taki sposób, że:

- graf G_l otrzymuje dodatkowe krawędzie,
- krawędzie, które należały do G_l nie są z niego usuwane,
- funkcja *l* pozostaje poprawna.

Algorytm

1. Skonstruuj inicjalną funkcję wagową *l*:

$$l(y) = 0 \text{ dla } y \in Y$$

 $l(x) = \max\{w(e) : x \in e\} \text{ dla } x \in X$

- 2. utwórz graf G_l ;
- 3. jeśli G_l posiada dokładne skojarzenie M, to jest ono szukanym maksymalnym skojarzeniem w G (na mocy wcześniejszego twierdzenia); w takim przypadku algorytm kończy działanie;
- 4. jeśli G_l nie posiada dokładnego skojarzenia, to popraw funkcję l;
- 5. wróć do punktu 2;

Poprawianie funkcji l

- 1. Inicjalizacja:
 - niech M będzie dowolnym najliczniejszym skojarzeniem w G_l ;
 - niech $x \in X$ będzie wierzchołkiem wolnym w G_1 względem M;
 - $S := \{x\}; T \text{zbiór pusty};$
- 2. Jeśli N(S) = T w grafie G_l , to:
 - $\alpha = \min\{l(x) + l(y) w(x, y) : x \in S, y \in \overline{T}\}$
 - $l'(a) := \begin{cases} l(a) \alpha & \text{gdy } a \in S \\ l(a) + \alpha & \text{gdy } a \in T \\ l(a) & \text{else} \end{cases}$
 - utwórz graf G_l ;
- 3. Jeśli $N(S) \neq T$ w grafie G_l , to:
 - wybierz wierzchołek $y \notin T$, który należy do N(S);
 - jeśli istnieje $z \notin S$, t.ż. $\{y,z\} \in M$, to $S := S \cup \{z\}$; $T := T \cup \{y\}$; wróć do kroku 2;
 - w przeciwnym wypadku KONIEC;