Egyedi felsorolók

Felsorolások fajtái

- Eddig nevezetes gyűjtemények elemeinek szokásos, elvárt sorrendben történő, ún. standard felsorolásával találkoztunk. Ilyenkor a felsorolást végző felsoroló gyakran észrevétlen maradt, a megvalósításban nem kellett a felsoroló osztályát megadni.
- □ Egyedi felsorolás az, amelyik
 - nem a szokásos módon járja be a feldolgozandó gyűjtemény elemeit, vagy
 - egy lépésben a gyűjtemény több elemét is felhasználja, vagy
 - több feldolgozandó gyűjtemény elemeit futtathatja össze
- □ Egyedi felsorolásnak tekinthetjük azt is, ha egy standard felsorolás
 - nem a first() művelettel indul, mert már korábban valahogyan a "folyamatban van" állapotba került, vagy
 - korábban áll le, minthogy a gyűjtemény elemei elfogynának, vagy
 - nincs a felsorolás hátterében valódi gyűjtemény

1.Feladat

Adott két függvény, az $f : \mathbb{N} \to \mathbb{R}$ és $g : \mathbb{N} \to \mathbb{R}$, továbbá egy $e \in \mathbb{R}$ szám. Tudjuk, hogy van olyan i és j argumentum, amelyre f(i)+g(j)=e teljesül. Adjunk meg ilyen i-t és j-t!

 $A : e: \mathbb{R}, i: \mathbb{N}, j: \mathbb{N}$

 $Ef: e = e_0 \wedge \exists i, j \in \mathbb{N} : f(i) + g(j) = e$

Uf: Ef \wedge f(i)+g(j)=e

Ez a specifikáció nem sokat segít, nincs benne programozási tételre utaló nyom.

Ötlet

Gondolatban rendezzük el az f(i)+g(j) értékeket egy végtelen kiterjedésű 0-tól kezdődő indexelésű <u>mátrixba</u> úgy, hogy a mátrix i-dik sorának j-edik eleme az f(i)+g(j) érték legyen.

Definiáljunk egy felsorolót, amelyik ennek a képzeletbeli mátrix elemeinek indexpárjait járja be.

A standard (sorfolytonos vagy oszlopfolytonos) felsorolás ehhez nem lesz jó, hiszen a mátrix sorai is, oszlopai is végtelen hosszúak, így ezek a felsorolók csak az első sor vagy oszlop elemeit képesek bejárni.

Tervezés

Ezen felsoroló mögött nincs gyűjtemény, csak egy képzeletbeli mátrix, amelynek indexeit járja be nem a szokott módon.

```
A : t:enor(\mathbb{N} \times \mathbb{N}), e:\mathbb{R}, i:\mathbb{N}, j:\mathbb{N}
```

$$Ef: t = t_0 \land e = e_0 \land \exists i,j \in \mathbb{N}: f(i)+g(j)=e$$

$$Uf : e = e_0 \wedge (i,j) = SELECT_{(i,j) \in t_0} (f(i)+g(j)=e)$$

Kiválasztás: t:enor(E) ~ $t:enor(\mathbb{N}\times\mathbb{N})$

f(i)+g(j)=efelt(e)

¬felt(t.current())

t.next()

i, j := t.current()

Indexpárok felsorolója

A felsorolással úgy teszünk, mintha egy létező mátrix soron következő sor és oszlop indexét állítanánk elő.

end() művelet nem kell

Tervezés

Ezen felsoroló mögött nincs gyűjtemény, csak egy képzeletbeli mátrix, amelyet nem a szokott módon jár be.

```
A : t:enor(\mathbb{N} \times \mathbb{N}), e:\mathbb{R}, i:\mathbb{N}, j:\mathbb{N}
```

$$Ef: t = t_0 \land e = e_0 \land \exists i,j \in \mathbb{N}: f(i)+g(j)=e$$

$$Uf$$
: $e = e_0 \wedge (i,j) = SELECT_{(i,j) \in t_0} (f(i)+g(j)=e)$

Kiválasztás: t:enor(E) \sim t:enor($\mathbb{N} \times \mathbb{N}$) e \sim (i,j)

$$felt(e)$$
 ~ $f(i)+g(j) = e$

i, j := 0, 0

$$f(i) + g(j) \neq e$$

$$i > 0$$

$$i := j + 1$$

$$j := 0$$

Kiválasztás tesztelése

- ☐ A kiválasztás tesztelése magának a felsorolónak a tesztelésével azonos.
 - A felsorolás hossza most mindig végtelen hosszú, de azt vizsgálhatjuk, hogy a keresett elem a felsorolásban az első, második, illetve sokadik indexpárra jelenik-e meg, esetleg ezt a vizsgálatot a mellékátlókra levetítve azt tesztelhetjük, hogy melyik átlóban van a keresett elem: első, második, sokadik.
 - Azt is vizsgálhatjuk, hogy megfelelően működik-e a keresés, ha a keresett elem egy mellékátlónak az elején, végén, vagy közepén van.
 - A felsorolás eleje szerint: f(0)+g(0)=e

Program

```
int main()
                   bool all(double r) { return true; }
    double e = read<double>("Give a real number: ",
                              "This is not a real number!", all);
                             függvénysablon
    int i, j;
    i = j = 0;
    while ( f(i) + g(j) ! = e ) {
         if(i>0) { --i; ++j; }
         else { i = j+1; j = 0; }
    cout << "The given number is equal to the sum f("</pre>
          << i << ")+q(" << j << ")\n";
    return 0;
```

Olvasó függvénysablon

```
template <typename Item>
Item read( const std::string &msg, const std::string &err, bool valid(Item))
    Item n:
    bool wrong;
    do{
                                az operator>>-nak az Item típusra
         std::cout << msq;</pre>
                                értelmezettnek kell lennie
         std::cin >> n;
         if((wrong = std::cin.fail())) std::cin.clear();
         std::string tmp = "";
         getline(std::cin, tmp);
         wrong = wrong || tmp.size()!=0 || !valid(n);
         if(wrong) std::cout << err << std::endl;</pre>
    } while (wrong);
    return n;
```

2.Feladat

Egy kiránduláson adott távolságonként mértük a felszín tengerszint feletti magasságát, és az adatokat egy szekvenciális inputfájlban rögzítettük. A kirándulás hány százalékában vezetett az út felfelé?

A: f:infile(\mathbb{R}), v: \mathbb{R}

$$Ef$$
: $f = f_0 \land |f_0| \ge 2$

Uf:
$$v = (\sum_{i=2..|f_0|} 1) / (\sum_{i=2..|f_0|} 1)$$

Egyszerre kell két egymás utáni elemre hivatkozni, de a szekvenciális fájl olvasással történő bejárása ezt nem támogatja.

Az lenne jó, ha a szekvenciális fájl helyett lenne egy olyan felsorolónk, amelyik a szekvenciális fájl

közvetlen egymás utáni elempárjait tudná felsorolni.

A: t:enor($\mathbb{R} \times \mathbb{R}$), v: \mathbb{R}

Ef :
$$t = t_0 \wedge |t_0| > 0$$

$$Uf: v = (\sum_{(e|ső,másod) \in t_0} 1) / (\sum_{(e|ső,másod) \in t_0} 1)$$

$$e|ső < másod$$

Pufferelt felsoroló

A felsorolással úgy teszünk, mintha minden lépésben a soron következő két szomszédos elemet olvasnánk be a szekvenciális inputfájlból.

Olyan sorozat, amelynek elemei az eredeti inputfájl szomszédos elemeiből álló számpárok.							
$(\mathbb{R} \times \mathbb{R})^*$	first()	next()	current()	end()			
f: infile(\mathbb{R}) első, másod : \mathbb{R} st : Status	st, első, f : read st, másod, f : read	első:= másod st, másod, f : read	(első, másod)	st =abnorm			

Tervezés

H,+,0

 $\mathbb{N},+,0$

```
A: t: enor(\mathbb{R} \times \mathbb{R}), v:\mathbb{R}
                                             A számlálás és az összegzést
   Ef: t = t_0 \wedge |t_0| > 0
                                             közös ciklusba vonjuk össze.
   Uf: v = (100 \cdot \sum_{(első, másod) \in t_0} 1) / (\sum_{(első, másod) \in t_0} 1)
                                                                              st, első, f : read
                    első<másod
                                                                           st, másod, f: read
                                                                                c, d := 0, 0
                                                                                  st = norm
Számlálás:
t:enor(E) ~
               t:enor(\mathbb{R}\times\mathbb{R})
                                                                                  első<másod
                (első, másod)
e
                 másod > első
felt(e)
                                                                             c := c + 1
                                                                                    d := d + 1
<u>Összegzés:</u>
t:enor(E) ~
                  t:enor(\mathbb{R}\times\mathbb{R})
                                                                                    első := akt
                  (első, másod)
e
                                                                              st, másod, f: read
f(e)
```

 $v := 100 \cdot c / d$

Számlálás és összegzés tesztelése

- ☐ A számlálás és összegzés ugyanazt a felsorolót használja. E szerint egyben vizsgálható a
 - felsorolás hossza: egy, kettő vagy hosszabb (legyen végig emelkedő)
 - felsorolás eleje: csak az elején van egy emelkedés
 - felsorolás vége: csak a végén van egy emelkedés
- A számlálás eredménye szerint:
 - nincs terep-emelkedés
 - egyetlen terep-emelkedés van
 - több terep-emelkedés van
- Az összegzés terheléses vizsgálata itt nem érdekes.

Program

```
int main()
                                                 f >> first >> second:
    ifstream f("input.txt");
                                                  while( !f.fail() )
    if(f.fail()){
                                                      if( first < second ) ++c;</pre>
         cout << "Wrong file name!\n";</pre>
                                                     ++d;
         exit(1);
                                                     first = second;
                                                     f >> second;
    int first, second;
    int c = 0; int d = 0;
    for( f >> first >> second; !f.fail(); first = second, f >> second) {
         if( first < second ) ++c;</pre>
         ++d;
    cout.setf(ios::fixed);
    cout.precision(2);
    cout << "Rate of the uphill part of the trip: "</pre>
          << (100.0*c)/d << "%" << endl;
                              valós osztás, mert a számlálóból double típusú érték lett
    return 0;
```

3.Feladat

Egy kiránduláson adott távolságonként mértük a felszín tengerszint feletti magasságát, és az adatokat egy szekvenciális inputfájlban rögzítettük. Milyen hosszú volt a leghosszabb egybefüggően emelkedő szakasza a túrának?

```
A: f:infile(\mathbb{R}), max:\mathbb{N}
```

$$Ef: f = f_0 \land$$
$$\exists i \in [1 ... |f|]: f[i] > f[i-1]$$

Uf : ?

Egy maximum kiválasztást kellene specifikálni az egybefüggően emelkedő szakaszok hosszai között, de ezek nem olvashatók ki közvetlenül az inputfájlból, ezért a feladatot nehéz precízen specifikálni.

Ötlet

- □ Milyen jó lenne, ha az eredeti fájl adatai helyett egyből az egybefüggően emelkedő szakaszok hosszait sorolnánk fel! Ezek között már könnyű lenne a legnagyobbat megtalálni.
- Az emelkedő szakaszok hosszainak megadásához viszont az eredeti fájl adatai helyett elég volna azt látni, hogy mely lépések emelkedtek, melyek nem.
- □ Ezen jelzéseket az eredeti fájl alapján könnyű felsorolni.

Tervezés

Tegyük fel, hogy van olyan felsorolónk, amely felsorolja az egybefüggően emelkedő szakaszok hosszait.

```
A: t:enor(\mathbb{N}), max:\mathbb{N}
```

Ef :
$$t = t_0 \wedge |t_0| > 0$$

$$Uf$$
: max = **MAX**_{eeto} e

Maximum kiválasztás

 $t:enor(E) \sim t:enor(N)$

f(e) ~ e

H, > ~ N, >

Maximum kiválasztás tesztelése

- ☐ Maximum kiválasztás felsorolója szerint:
 - felsorolás hossza: egy, kettő vagy hosszabb
 - felsorolás eleje: legelső érték a legnagyobb
 - felsorolás vége: legutolsó érték a legnagyobb
- □ Maximum kiválasztás eredménye szerint:
 - Egyetlen legnagyobb érték
 - Több egyformán legnagyobb érték

Főprogram

```
int main()
{
    LengthEnumerator t("input.txt");
    t.first();
    int max = t.current();
    for( t.next(); !t.end(); t.next() ){
        if( max < t.current() ) max = t.current();
    }
    cout << "The length of the longest uphill part: " << max << endl;
    return 0;
}</pre>
```

Hosszúságok felsorolója

Next() művelet

Megszámolja, hogy a 0 és 1-esek már elkezdett felsorolásában milyen hosszú a soron következő 1-esekből álló szakaszt, feltéve, hogy van ilyen.

 $A: b:enor(\{0,1\}), hossz:\mathbb{N}, vége:\mathbb{L}$

b' – a b változó kiinduló értéke
b" – a b változó értéke a 0-k átlépése után

Ef : $b = b' \wedge b'$ "folyamatban van"

Keresi a b' felsorolás soron következő 1-esekből álló szakaszának elejét vagy a felsorolás végét.

 $Uf: (e'', b'') = SELECT_{e \in (b'.current(), b')} (b.end() \lor e=1) \land$

 \wedge vége = b".end()

Ez a jelölés (e∈b' helyett) arra utal, hogy a b'.current() értékét közvetlenül – a b.first() alkalmazása nélkül – elérjük, hiszen a b' felsorolása már folyamatban van.

$$\wedge$$
 (\neg vége \rightarrow (hossz, b = $\sum_{e \in (e'', b'')}^{e = 1} 1$)

A soron következő 1-esekből álló szakasz hosszát olyan összegzés adja meg, amely addig tart, amíg e = 1 (itt e=b.current()).

Leálláskor a b felsoroló még tartalmazhat elemeket

Egy már folyamatban levő felsorolást folytatunk: az e∈(e", b") arra utal, hogy a b".current() értékét a b.first() alkalmazása nélkül elérjük.

Amikor találunk 1-esekből álló szakaszt, akkor e" = b".current() = 1 és \neg b".end().

Specifikációs jelölések

Felsorolás végig:

az sx, dx, x : read (sx,dx) párokat sorol, de (sx,dx) \in x₀ helyett ezt a dx \in x₀ jelöli

t:enor(E) Σ , MAX	h:set(E)	i:[m n]	x:infile(E)
$r = \boxtimes_{e \in t_0} f(e)$	$r = \boxtimes_{e \in h_0} f(e)$	$r = \bigotimes_{i=mn} f(i)$	$r = \boxtimes_{\mathrm{dx} \in \mathrm{x}_0} f(\mathrm{dx})$
$r, t = \boxtimes_{e \in t_0} felt(e)$	$r, h = \boxtimes_{e \in h_0} felt(e)$	$r, i = \boxtimes_{i=mn} felt(i)$	$r, (sx,dx,x) = \boxtimes_{dx \in x_0} felt(dx)$

SEARCH, SELECT

Az sx, dx, x (akárcsak h vagy i) változók, amelyek feldolgozás végi értéke is fontos lehet.

Felsorolás feltétel fenn állásáig:

t:enor(E)	h:set(E)	i:[m n]	x:infile(E)	
$ = \bigotimes_{e \in t_0}^{tart(e)} f(e)$	$ = \bigotimes_{e \in h_0}^{tart(e)} f(e)$	$ = \bigotimes_{i=mn}^{tart(i)} f(i)$	$ = \bigotimes_{\mathbf{dx} \in \mathbf{x}_0}^{tart(\mathbf{dx})} \mathbf{f}(\mathbf{dx})$	
$\neg t.end() \land tart(e)$ $h \neq \emptyset \land tart(e)$ $i < n \land tart(i)$ $sx = norm \land tart(e)$				

Korábban abbahagyott felsorolás folytatása:

t:enor(E)	h:set(E)	i:[m n]	x:infile(E)
= $\boxtimes_{e \in (t'.current(),t')} f(e)$	$ = \bigotimes_{e \in h'} f(e)$	$ = \boxtimes_{i=i'+1n} f(i)$	= $\boxtimes_{\mathrm{dx}\in(\mathrm{dx'},\mathrm{x'})} \mathrm{f}(\mathrm{dx})$

Next() művelet

```
e", b" = SELECT<sub>e∈(b'.current(), b')</sub> (b.end()\veee=1)

\wedge vége = b".end()

\wedge ( \negvége \rightarrow (hossz,b = \sum_{e∈(e'',b'')}^{e=1} 1 ))
```

```
Kiválasztás megkezdett felsorolóval
t:enor(\mathbb{E}) \sim b:enor(\mathbb{L})
                 first() nélkül
felt(e) \sim b.end() \vee b.current()=1
Feltételig tartó összegzés
megkezdett felsorolóval
t:enor(E) ~
                 b:enor(\mathbb{L})
                  first() nélkül
                  amíg b.current()=1
                 hossz
S
f(e)
                  \mathbb{N},+,0
H,+,0
```


Next() szürkedoboz tesztelése

- ☐ Kiválasztás megkezdett felsorolóval:
 - felsorolás hossza: nulla, egy, vagy hosszabb nem emelkedő az elején
 - felsorolás eleje: az elején rögtön van emelkedés
 - felsorolás vége: csak a végén van egy emelkedés
 - A kiválasztás feltétele: nincs emelkedés illetve van
- ☐ Feltételig tartó összegzés megkezdett felsorolóval:
 - felsorolás hossza: nulla, egy, vagy hosszabb emelkedő az elején
 - felsorolás eleje: csak az elején van egy emelkedés
 - felsorolás vége: csak a végén van egy emelkedés
 - Az összegzés terhelése: itt nem érdekes

Hosszúságok felsoroló osztálya

```
class LengthEnumerator{
public:
    LengthEnumerator(const std::string &fname) : _b(fname){}
    void first() { _b.first(); next(); }
    int current() const { return _length; }
    bool end() const { return _end; }
    void next();

private:
    BitEnumerator _b;
    int _length;
    bool _end;
};
```

```
void LengthEnumerator::next()
{
    for( ; !_b.end() && !_b.current(); _b.next() );
    if ( (_end = _b.end()) ) return;
    for( _length = 0 ; !_b.end() && _b.current(); _b.next() ) ++_length;
}
```

Lépések felsorolója

Lépések felsoroló osztálya

```
class BitEnumerator{
public:
    enum Errors { FILEERROR };
    BitEnumerator(const std::string &fname) {
        _f.open(fname);
        if(_f.fail()) throw FILEERROR;
    }
    void first() { _f >> _first >> _second; }
    void next() { _first = _second; _f >> _second; }
    int current() const { return (_first < _second ? 1 : 0); }
    bool end() const { return _f.fail(); }

private:
    std::ifstream _f;
    int _first, _second;
};</pre>
```