<u>Notes</u>

Discussion

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey ~

Next >

<u>Calendar</u>

☆ Course / Unit 3: Optimization / Lecture 10: Constrained optimization

()

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

Progress

25:54:08

☐ Bookmark this page

Previous

Lecture due Sep 13, 2021 20:30 IST Completed

Practice

Describing regions

In order to describe a region R, we generally have to describe the boundary of that region, and a rule for determining if a point is inside of the region or not.

The typical way to do this is with an inequality (or a system of inequalities).

Examples 4.1

1. The interior and boundary of a square region whose vertices lie at the points (0,0), (1,0), (0,1), and (1,1) is described by the set of points (x,y) that satisfies the system of inequalities

$$0 \le x \le 1 \tag{4.109}$$

$$0 \le y \le 1 \tag{4.110}$$

.

2. If we wish to consider a region R given by an ellipse whose major axis has length 4 along the x axis and minor axis lies along the y-axis with length 2, one way to do this is to describe R as the set of points that satisfy $x^2/4 + y^2 \le 1$.

Note that $x^2/4+y^2=1$ exactly describes the boundary ellipse. The condition $x^2/4+y^2\leq 1$ is specifying a relationship that describes all points that lie inside of that ellipse.

Visualizing regions

To understand a region described by inequalities, first draw the boundary curves that are described by the associated system equalities, then determine what it means for a point to satisfy the inequality, typically by shading the region.

Example 4.2

To describe the square region:

$$0 \le x \le 1 \tag{4.111}$$

$$0 \le y \le 1,\tag{4.112}$$

first draw the curves defining the boundary. The boundaries are the vertical lines x=0 and x=1, as well as the horizontal lines y=0 and y=1. The inequality $0 \le x \le 1$ specifies that the x values are restricted to the region between the two vertical lines. The inequality $0 \le y \le 1$ specifies that the y values are restricted to the region between the two horizontal lines.

Practice with bounded regions 1

1/1 point (graded)

The bounded region R is defined by $y \geq 0$, $y+x \geq 1$, and $x^2+y^2 \leq 2$.

Which of the shaded orange regions is ${m R}$?

None of the above

Solution:

The region must be restricted to quadrants ${f 1}$ and ${f 2}$ because of the equation $y \geq 0$. All of the regions satisfy this inequality. The line $x+y\geq 1$ is the region above the line of slope -1 that intersects the y-axis at 1. The only region that satisfies this is the third option. And we know that the region should also lie inside of the circle of radius $\sqrt{2}$, and this region does in fact lie above the line but within this circular region in the first quadrant.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Practice with bounded regions 2

1/1 point (graded)

Select the inequalities below that together define the bounded region shown. Note that the circle has radius $oldsymbol{1}$.

 $x \geq 0$

 $y \geq 0$

 $\checkmark x+y\geq 0$

 $x + y \leq 0$

 $x+y\geq 1$

 $\checkmark x+y \leq 1$

 $x^2+y^2\geq 1$

 $x^2 + y^2 \le 1$

 $x+y \leq x^2+y$

Solution:

The region inside the unit circle is $x^2+y^2\leq 1$. The region above the line y=-x is given by the inequality $y \geq -x$, which can be rewritten as $y+x \geq 0$. The region below the line y=1-x is given by the inequality $y \leq 1-x$, which is the same as $x+y \leq \overline{1}$. Hide Notes **⊞** Calculator

Therefore these three inequalities completely define the region.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Bounded or unbounded?

1/1 point (graded)

Consider the region R defined by the inequalities $x\geq 2$, $y\geq 0$, and $y\leq \ln{(x)}$.

This region is

bounded

unbounded

Solution:

The region $x \geq 2$ is the region to the right of the line x = 2. The region $y \geq 0$ is the region above the x-axis. The region $y \leq \ln{(x)}$ is the region below the curve $y = \ln{(x)}$. This region is unbounded.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

4. Describing and visualizing bounded and unbounded regions

Hide Discussion

Tania: Unit 3: Ontimization / A Describing and visualizing bounded and unbounded

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>