Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

Outline

- Linear programming
- Quadratic programming
- Quadratically constrained quadratic programming
- Second-order cone programming
- Semidefinite programming
- Conic programming

Linear Programming (LP)

- Affine objective and constraint functions
- minimize an affine function over a polyhedron

• Solution: (i) $-\infty$; (ii) at a vertex

Linear Programming: standard form

- The only inequalities are $x \ge 0$
- Converting general form to standard form: s.t. $Gx \le h$

min
$$c^T x$$

s.t. $Gx \le h$
 $Ax = b$

min $c^T x$
s.t. $Ax = b$
 $x \ge 0$

Introducing slack variables s for the inequalities:

min
$$c^T x$$

s.t. $Gx \le h$
 $Ax = b$
min $c^T x$
s.t. $Gx + s = h$
 $Ax = b$
 $s \ge 0$

 \triangleright Decompose the variable x as the difference of two non-negative variables

$$x = x^{+} - x^{-}$$
min $c^{T}x$
s.t. $Gx + s = h$

$$Ax = b$$

$$s \ge 0$$

$$x = x^{+} - x^{-}$$
min $c^{T}x^{+} - c^{T}x^{-}$
s.t. $Gx^{+} - Gx^{-} + s = h$

$$Ax^{+} - Ax^{-} = b$$

$$s \ge 0, x^{+} \ge 0, x^{-} \ge 0$$

Diet problem: To find the cheapest combination of foods that satisfies some nutritional requirements.

min
$$c^T x$$

s.t. $Ax \ge b$
 $x \ge 0$

- x_j : units of food j; c_j : per-unit price of food j
- A_{ij}: content of nutrient i in per unit of food j
- b_i : minimum required intake of nutrient i

Transportation: Ship commodities from given sources to destinations at minimum cost

$$\min_{x} \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to
$$\sum_{j=1}^{n} x_{ij} \leq s_{i}, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} \geq d_{j}, j = 1, \dots, n, x \geq 0$$

- x_{ij} : units shipped from i to j
- c_{ij} : per-unit shipping cost from i to j
- s_i : supply at source i, i = 1, ..., m
- d_i : demand at destination j, j = 1, ..., n

Piecewise-linear minimization

$$\min \max_{i=1,\dots,m} a_i^T x + b_i$$

Equivalent LP:

Absolute value minimization

min
$$|c^Tx + d|$$

s.t. $Ax = b$

Equivalent LP:

min
$$t$$

s.t. $c^T x + d \le t$
 $-c^T x - d \le t$
 $Ax = b$

L_{∞} -norm minimization

$$\min ||x||_{\infty}$$
subject to $Gx \le h$

$$Ax = b$$

$$||x||_{\infty} \triangleq \max_{i} |x_{i}|$$

Equivalent LP:

$$\min_{\substack{t \in \mathbb{R}, x \in \mathbb{R}^n \\ \text{subject to}}} t$$

$$\text{subject to} \quad Gx \leq h$$

$$Ax = b$$

$$x \leq t \mathbf{1}$$

$$-t \mathbf{1} \leq x$$

L_1 -norm minimization

min
$$||x||_1$$

subject to $Gx \le h$
 $Ax = b$

$$||x||_1 \triangleq \sum_i |x_i|$$

Equivalent LP:

$$\min_{t \in \mathbb{R}^n, x \in \mathbb{R}^n} \quad \mathbf{1}^T t$$
subject to $Gx \le h$

$$Ax = b$$

$$x \le t$$

$$-t \le x$$

Quadratic Programming (QP)

min
$$\frac{1}{2}x^TPx + q^Tx + r$$

s.t. $Gx \le h$
 $Ax = b$

- $P \in \mathbb{S}^n_+$, so the objective is convex function
- Minimize a convex quadratic function over a polyhedron

Least-squares and regression

$$\min_{x} ||Ax - b||_{2}^{2} = x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b$$
 subject to $l_{i} \leq x_{i} \leq u_{i}, i = 1, ..., n$

Linear programming with random cost

Deterministic

Non-deterministic

min
$$\mathbf{E}[c^Tx] + \gamma \mathbf{var}[c^Tx] = \bar{c}^Tx + \gamma x^T \Sigma x$$

subject to $Gx \le h$
 $Ax = b$

- c is random vector with mean \bar{c} and covariance Σ
- $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$

Portfolio optimization

minimize
$$x^T \Sigma x$$

subject to $R^T x \ge r_{min}$
 $\mathbf{1}^T x = B$
 $x \ge 0$

- Price changes of all invested assets has mean $R \in \mathbb{R}^n$ and covariance $\Sigma \in \mathbb{R}^{n \times n}$
- r_{min} : minimum return.
- $\mathbf{1} \in \mathbb{R}^n$: every component is 1;
- *B*: budget.

Quadratically constrained quadratic programming (QCQP)

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\quad i=1,\ldots,m$$

$$Ax=b$$

- $P \in \mathbb{S}^n_+$, so the objective and constraint functions are convex
- Minimize a convex quadratic function over a intersection of m ellipsoids and an affine set

QCQP: example

Portfolio optimization

```
minimize x^T \Sigma_0 x

subject to x^T \Sigma_i x \leq d_i, i = 1, ..., m

R^T x \geq r_{min}

\mathbf{1}^T x = B

x \geq 0
```

• There are a few estimation of the covariance of the price changes, Σ_i , i=0,...,m

Second-order cone programming (SOCP)

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$
 $Fx = g$,

- $A_i \in \mathbb{R}^{n_i \times n}$
- Inequalities are second-order cone constraints

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i+1}$$

• If $A_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP.

 $\{(x,t)| \|x\|_2 \le t\}$ is second-order cone, also called ice cream cone.

SOCP: examples

Robust linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m,$

• a_i is inaccurate, but are known in ellipsoids: $a_i \in \mathcal{E}_i = \{\overline{a}_i + P_i u \mid \|u\|_2 \le 1\}$ $\overline{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

Equivalent SOCP:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i=1,\dots,m \\ \end{array}$$

$$\sup_{||u||_2 \le 1} \bar{a}_i^T x + (P_i u)^T x = \sup_{||u||_2 \le 1} \bar{a}_i^T x + u^T (P_i^T x) = \bar{a}_i^T x + ||P_i^T x||_2$$

SOCP: examples

Robust linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m,$

- a_i is Gaussian with mean \bar{a}_i , and covariance Σ_i
- $a_i^T x$ is Gaussian with mean $\bar{a}_i^T x$, and variance $x^T \Sigma_i x = \left\| \Sigma_i^{1/2} x \right\|_2$

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

Equivalent SOCP:

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \Phi^{-1}(\eta)\|\Sigma_i^{1/2}x\|_2 \leq b_i, \quad i=1,\ldots,m$
$$\Phi(x) = (1/\sqrt{2\pi})\int_{-\infty}^x e^{-t^2/2}\,dt \text{ is CDF of } \mathcal{N}(0,1)$$

$$\Pr(a_i^T x \le b_i) = \Pr\left(\frac{a_i^T x - \bar{a}_i^T x}{\left\|\Sigma_i^{1/2} x\right\|_2} \le \frac{b_i - \bar{a}_i^T x}{\left\|\Sigma_i^{1/2} x\right\|_2}\right) \ge \eta \iff \frac{b_i - \bar{a}_i^T x}{\left\|\Sigma_i^{1/2} x\right\|_2} \ge \Phi^{-1}(\eta)$$

Semidefinite programming (SDP)

$$\min \ c^T x$$
 subject to
$$Ax = b$$

$$x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leqslant 0$$

linear matrix inequality (LMI)

$$Y \leq 0 \Leftrightarrow -Y \geq 0$$

- $F_i, G \in \mathbb{S}^k$
- Multiple LMI is equivalent to single LMI:

$$x_1F_1 + x_2F_2 + \dots + x_nF_n + G \le 0$$

$$x_1H_1 + x_2H_2 + \dots + x_nH_n + L \le 0$$

$$x_1 \begin{bmatrix} F_1 & 0 \\ 0 & H_1 \end{bmatrix} + x_2 \begin{bmatrix} F_2 & 0 \\ 0 & H_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} F_n & 0 \\ 0 & H_n \end{bmatrix} + \begin{bmatrix} G & 0 \\ 0 & L \end{bmatrix} \leq 0$$

Semidefinite programming (SDP): standard form

- $\operatorname{tr}(Z)$: sum of matrix Z diagonal elements; $\operatorname{tr}(CX) = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$
- Converting general form to standard form:

- \triangleright Introducing slack variable $S \ge 0$ for the inequalities
- \triangleright Decompose the variable x as the difference of two non-negative variables

$$x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$$

 \triangleright Constructing block matrix out of x^+, x^-, S as semidefinite matrix.

SDP: example

Eigenvalue minimization

min
$$\lambda_{\max}(F(x))$$

- $F(x) = \sum_{i=1}^k x_i F_i, F_i \in \mathbb{S}^k$
- $t \ge \lambda_{max}(Z)$ if and only if $tI Z \ge \mathbf{0}$.

Equivalent SDP:

 $\min t$

subject to $tI - F(x) \ge \mathbf{0}$

Matrix norm minimization

min
$$||F(x)||_2 = (\lambda_{\max}(F(x)^T F(x)))^{1/2}$$

- 2-norm of a matrix is its maximum singular value: $||F||_2 \triangleq \sigma_{\max}(F) = \lambda_{\max}(F^T F)$
- Schur complement theorem: $\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \ge 0 \Leftrightarrow A BC^{-1}B^T \ge 0$

Equivalent SDP:

min
$$t$$

subject to $t^2I - F(x)^TF(x) \ge \mathbf{0}$

$$\min t$$

$$\text{subject to } \begin{bmatrix} tI & F(x) \\ F(x)^T & tI \end{bmatrix} \ge \mathbf{0}$$

Connection

LP
$$\min c^T x$$
 subject to $Gx \le h$
$$Ax = b$$

SOCP

LP QP

min
$$c^T x$$
 min $\frac{1}{2}x^T P x + q^T x + r$

subject to $Gx \le h$ s.t. $Gx \le h$ $Ax = b$

min
$$c^Tx$$
 subject to $\|F_ix + e_i\|_2 \leq g_i^Tx + d_i$, $i=1,\ldots,m$ $Ax = b$

SDP
$$\min \ c^T x$$
 subject to
$$Ax = b$$

$$x_1F_1 + x_2F_2 + \dots + x_nF_n + G \leqslant 0$$

LP and QP

LP
$$P = 0$$
 min $c^T x$ subject to $Gx \le h$
$$Ax = b$$
 Subject to $Cx = 0$ Subject t

$$LP \subseteq QP$$

QP and SOCP

$$LP \subseteq QP \subseteq SOCP \subseteq SDP$$

QP

$$\min \frac{1}{2}x^T P x + q^T x$$

subject to $Gx \le h$
 $Ax = b$

SOCP

min
$$q^T x + t$$

subject to $Gx \le h$
 $Ax = b$

$$\frac{1}{2} x^T P x \le t$$

$$\left\| \left(\frac{1}{\sqrt{2}} P^{1/2} x, \frac{1}{2} - \frac{t}{2} \right) \right\|_2 \le \frac{1}{2} + \frac{t}{2}$$

SOCP and **SDP**

$$LP \subseteq QP \subseteq SOCP \subseteq SDP \subseteq$$
?

SOCP

$$||x||_2 \le t$$

SDP

$$\begin{bmatrix} t & x^T \\ x & tI \end{bmatrix} \geqslant \mathbf{0}$$

Conic programming

$$LP \subseteq QP \subseteq SOCP \subseteq SDP \subseteq Conic programming$$

General conic programming

min
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

• \leq_K : generalized inequality

Proper cone

A convex cone $K \subseteq \mathbb{R}^n$ is a proper cone if

- K is closed, i.e., contains its boundary
- K is solid, i.e., has nonempty interior

Convex cone: for any $x_1, x_2 \in K$, $\theta_1, \theta_2 \ge 0$, $\theta_1 x_1 + \theta_2 x_2 \in K$

• K is pointed, i.e., contains no line, or $x \in K$, and $-x \in K \Rightarrow x = 0$

Examples:

- Nonnegative orthant $K = \mathbb{R}^n_+ \triangleq \{x | x_i \ge 0\}$
- Second-order cone $K = Q^{n+1} \triangleq \{(x, t) | ||x||_2 \le t\}$
- Positive semidefinite cone $K = \mathbf{S}_{+}^{n} \triangleq \{X \in \mathbf{S}^{n} | z^{T}Xz \geq 0 \text{ for all } z \in \mathbb{R}^{n}\}.$

Generalized inequality

Generalized inequality is defined in a proper cone K to denote a partial ordering

$$x \leq_K y \iff y - x \in K$$
 $x \leq_K y \iff y - x \in \text{int } K$

Examples:

- Nonnegative orthant $K=\mathbb{R}^n_+\triangleq\{x|x_i\geq 0\}$: component wise inequality $x\leqslant_{\mathbb{R}^n_+}y\iff y-x\in\mathbb{R}^n_+$, or $y_i-x_i\geq 0$
- Second-order cone $K = Q^{n+1} \triangleq \{(x,t) | \|x\|_2 \le t\}$ $y \leq_{Q^{n+1}} z \iff z y \in Q^{n+1}, \text{ or } \|z_{1:n} y_{1:n}\|_2 \le z_{n+1} y_{n+1}$
- Positive semidefinite cone $K = \mathbf{S}^n_+ \triangleq \{X \in \mathbf{S}^n | z^T X z \geq 0 \text{ for all } z \in \mathbb{R}^n\}.$ $X \leq_{\mathbf{S}^n_+} Y \iff Y X \in \mathbf{S}^n_+, \text{ or } Y X \geqslant 0 \text{ is positive semidefinite matrix}$

Properties of generalized inequality

Generalized inequality also preserves \leq in \mathbb{R}

$$\leq$$
 in \mathbb{R}

- Additivity: $x \leq_K y$ and $u \leq_K v \implies x + u \leq_K y + v \implies x \leq y$ and $u \leq v \implies x + u \leq y + v$
- Transitivity: $x \leq_K y$ and $y \leq_K z \implies x \leq_K z$

- $ightharpoonup x \le y \text{ and } y \le z \implies y \le z$
- Anti-symmetric: $x \leq_K y$ and $y \leq_K x \implies x = y$
- $\rightarrow x \le y \text{ and } y \le x \implies x = y$
- Homogeneity: $x \leq_K y$ and $a \geq 0 \Longrightarrow ax \leq_K ay$
- $\Rightarrow x \le y \text{ and } a \ge 0 \Longrightarrow ax \le ay$

Conic programming

min
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

•
$$K = \mathbb{R}^n_+ \Longrightarrow$$
 linear programming (LP)
$$\min \ c^T x$$
 subject to $Fx + g \leqslant 0$
$$Ax = b$$

• $K = Q^{n+1} \Longrightarrow$ second-order cone programming (SOCP)

• $K = \mathbf{S}_{+}^{n} \Longrightarrow$ semidefinite programming (SDP)

$$\min \ c^T x$$
 subject to
$$x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leqslant 0$$

$$Ax = b$$

Conic programming: standard form

• LP:
$$K=\mathbb{R}^n_+$$

$$\min \ c^T x$$

$$\text{subject to} \ Ax=b$$

$$x\geq 0 \ (\text{or, } x\in\mathbb{R}^n_+)$$

• SOCP:
$$K = Q^{n+1}$$

$$\min \ c^T x$$

$$\text{subject to} \ Ax = b$$

$$x \geqslant_{Q^{n+1}} 0 \ (\text{or, } x \in Q^{n+1})$$

• SDP:
$$K = \mathbf{S}_+^n$$
 min $\mathrm{Tr}(CX)$ subject to $\mathrm{Tr}(A_iX) = b_i$, for $i = 1, \dots, p$ $X \geqslant_{\mathbf{S}_+^n} \mathbf{0}$ (or, $x \in \mathbf{S}_+^n$)