МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» тема: «Оценка параметров надежности программ по структурным схемам надежности»

Студент гр. 6304	Зубов К.А.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в π .3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения:

W(y) = b*exp(-b*y), y>=0, c параметром b=0.1 и соответственно $m_{\mathfrak{g}\mathsf{KCH}}=s_{\mathfrak{g}\mathsf{KCH}}=1/b=10$. Значения случайной величины Y c экспоненциальным законом распределения c параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]:

$$Y = -ln(t) / b$$

- с. релеевским законом распределения:
 - $W(y) = (y/c^2)^* \exp(-y^2/(2^*c^2)), y>=0, c$ параметром c=8.0 и соответственно $m_{pen} = c^* \operatorname{sqrt}(\square/2), s_{pen} = c^* \operatorname{sqrt}(2-\square/2).$ Значения случайной величины Y с релеевским законом распределения c параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * $\operatorname{sqrt}(-2^* \ln(t))$.
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.

3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая

 оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.

Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

- 1) Равномерный закон
- a. 100% (n = 30)

i	X	i	X	i	X
1	0.057	2	0.639	3	2.274
4	2.910	5	3.406	6	3.840
7	3.869	8	4.655	9	5.286
10	6.360	11	8.167	12	9.702
13	10.040	14	10.539	15	10.583
16	10.714	17	11.464	18	11.719

19	11.925	20	12.916	21	14.418
22	14.551	23	14.974	24	16.489
25	16.900	26	18.182	27	18.343
28	19.284	29	19.377	30	19.821

Проверка существования максимума B $\hat{}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

A = 20.391, 20.39 > 15.5

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.828	2.584	2.379	2.204	2.054	1.922
f-g	1.167	0.443	0.179	0.051	0.019	0.059

$$m = 35 \Longrightarrow B = m - 1 = 34$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.006552

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31	32	33	34
Xi	38.154	50.872	76.308	152.617

Время до полного завершения тестирования 317.952

Полное время: 631.356

b. 80% (n = 24)

i	X	i	X	i	X
1	1.012	2	2.209	3	2.874
4	3.519	5	3.621	6	5.286
7	5.983	8	7.187	9	8.029
10	9.468	11	10.190	12	12.143
13	12.202	14	12.545	15	13.394
16	13.618	17	13.690	18	14.409
19	15.415	20	15.603	21	15.835
22	16.409	23	17.778	24	19.509

Проверка существования максимума B $\hat{}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_{i}}{\sum_{i=1}^{n} X_{i}}$$

A = 15.968, 15.97 > 12.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058

g	2.657	2.392	2.176	1.995
f-g	1.119	0.424	0.179	0.063

$$m = 29 \Longrightarrow B = m - 1 = 28$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.00731

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25	26	27	28
Xi	34.199	45.599	68.398	136.796

Время до полного завершения тестирования 284.992

Полное время: 536.92

c.
$$60\%$$
 (n = 18)

i	X	i	X	i	X
1	0.988	2	2.354	3	3.728
4	4.384	5	7.028	6	7.741
7	8.868	8	10.086	9	11.740
10	12.800	11	12.871	12	16.098
13	16.792	14	16.835	15	17.358
16	17.646	17	18.364	18	18.911

Проверка существования максимума B $\hat{}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 12.104, 12.1 > 9.5$$

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.610	2.280	2.023	1.819	1.652
f-g	0.885	0.268	0.074	0.007	0.045

$$m = 22 \Longrightarrow B = m - 1 = 21$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.008891

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	19	20	21
Xi	37.492	56.238	112.476

Время до полного завершения тестирования 206.205

Полное время: 410.797

2) Равномерный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.067	2	0.510	3	0.619
4	0.817	5	1.619	6	2.303

7	2.497	8	2.851	9	3.454
10	3.794	11	4.238	12	6.066
13	7.174	14	7.239	15	7.616
16	7.664	17	8.479	18	9.149
19	9.155	20	9.410	21	10.173
22	12.205	23	14.287	24	15.381
25	18.548	26	18.764	27	21.373
28	22.417	29	24.628	30	29.573

Проверка существования максимума B $\hat{}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

$$A = 22.324, 20.32 > 15.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33
f	3.995	3.027	2.558
g	3.458	3.100	2.810
f-g	0.537	0.073	0.252

$$m = 32 \Longrightarrow B = m - 1 = 31$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

$$K = 0.010992$$

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31
Xi	90.978

Время до полного завершения тестирования 90.978

Полное время: 373.048

b. 80% (n = 24)

i	X	i	X	i	X
1	0.207	2	0.233	3	0.384
4	0.995	5	1.704	6	2.836
7	3.082	8	3.538	9	4.133
10	4.235	11	5.568	12	9.838
13	9.994	14	10.449	15	12.071
16	12.495	17	13.684	18	14.211
19	14.747	20	17.329	21	19.293
22	19.844	23	22.112	24	22.650

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

A = 17.756, 17.76 > 12.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27
f	3.776	2.816	2.354
g	3.313	2.911	2.596
f-g	0.463	0.095	0.242

$$m = 26 \Longrightarrow B = m - 1 = 25$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.012903

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25
Xi	77.503

Время до полного завершения тестирования 77.503

Полное время: 303.135

c.
$$60\%$$
 (n = 18)

i	X	i	X	i	X
1	1.220	2	1.614	3	3.608
4	4.218	5	4.397	6	4.738
7	7.809	8	8.780	9	9.194
10	10.540	11	10.956	12	15.837
13	18.457	14	19.442	15	20.842
16	21.007	17	49.483	18	60.249

Проверка существования максимума B $\hat{}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_{i}}{\sum_{i=1}^{n} X_{i}}$$

A = 13.924, 13.92 > 9.5

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20
f	3.495	2.548
g	3.546	2.962
f-g	0.051	0.415

$$m = 19 \Longrightarrow B = m - 1 = 18$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.013018

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

Время до полного завершения тестирования 0

Полное время: 272.391

1) Релеевский закон

a. 100% (n = 30)

i	X	i	X	i	X
1	1.311	2	2.895	3	3.003

4	3.349	5	4.017	6	5.292
7	6.023	8	6.319	9	7.371
10	7.981	11	8.044	12	8.169
13	8.318	14	8.460	15	8.723
16	8.825	17	9.878	18	10.951
19	11.101	20	11.637	21	11.757
22	11.969	23	12.452	24	13.451
25	13.850	26	15.204	27	16.911
28	18.315	29	18.414	30	24.643

Проверка существования максимума B^{*}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

A = 19.816, 19.82 > 15.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36	37
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725
g	2.682	2.462	2.276	2.115	1.976	1.854	1.746
f-g	1.313	0.565	0.283	0.140	0.059	0.010	0.021

$$m = 36 => B = m - 1 = 35$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

$$K = 0.006207$$

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31	32	33	34	35
Xi	32.220	40.275	53.701	80.551	161.102

Время до полного завершения тестирования 367.849

Полное время: 666.482

b. 80% (n = 24)

i	X	i	X	i	X
1	1.174	2	2.109	3	2.213
4	2.316	5	2.528	6	2.666
7	4.853	8	4.909	9	5.240
10	7.324	11	7.816	12	7.856
13	7.910	14	8.449	15	9.594
16	10.159	17	10.509	18	11.615
19	12.023	20	13.359	21	13.535
22	13.716	23	19.443	24	19.706

Проверка существования максимума B^{*}:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

A = 16.619, 16.62 > 12.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.864	2.558	2.312	2.109
f-g	0.912	0.258	0.042	0.051

$$m = 27 => B = m - 1 = 26$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.011501

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	25	26
Xi	43.474	86.948

Время до полного завершения тестирования 130.421

Полное время: 331.443

c.
$$60\%$$
 (n = 18)

i	X	i	X	i	X
1	2.728	2	3.543	3	4.173
4	4.882	5	5.717	6	6.202
7	6.848	8	7.195	9	7.840
10	7.943	11	8.192	12	8.289
13	8.292	14	8.776	15	10.351
16	10.361	17	12.557	18	16.482

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i}$$

A = 11.502, 11.5 > 9.5

Найдём $m \ge n + 1$:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21	22	23	24	25	26
f	3.495	2.548	2.098	1.812	1.607	1.451	1.326	1.223
g	2.401	2.118	1.895	1.715	1.566	1.440	1.334	1.242
f-g	1.094	0.430	0.203	0.097	0.042	0.011	0.008	0.018

$$m = 25 \Longrightarrow B = m - 1 = 24$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$

K = 0.0095

Среднее время \hat{X}_{n+1} :

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	19	20	21	22	23	24
Xi	17.544	21.052	26.315	35.087	52.631	105.261

Время до полного завершения тестирования 257.89

Полное время: 398.261

4) Итоговые таблицы

а. Оценки первоначального числа ошибок

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	34	28	21
Экспоненциальный	31	25	18
Релеевский	35	26	24

b. Оценки полных времен проведения тестирования

Закон	n = 30	n = 24	n = 18
распределения			
Равномерный	631.356	536.92	410.797
Экспоненциальный	373.048	303.135	272.391
Релеевский	666.482	331.443	398.261

с. Анализ

Равномерное распределение демонстрирует худшие результаты оценки полного времени проведения тестирования при 80% и 60% входных данных и имеет более высокий результат оценки количества первоначальных ощибок.

Экспоненциальный закон распределения демонстрирует лучшие результаты — это соответствует одному из предположений в модели Джелински-Моранды, что время до следующего отказа программы распределено экспоненциально.

Выводы

В ходе выполнения лабораторной работы было проведено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы для различных законов распределения времен обнаружения отказов и различного объема данных.