

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS	3		9709/12
Paper 1 Pure N	Mathematics 1 (P1)		May/June 2019
			1 hour 45 minutes
Candidates ans	wer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

Additional Materials:

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

List of Formulae (MF9)

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

	nt of x in the expans	(1)			
		•••••	•••••	••••••	•••••••
		•••••••••••	•••••		•
		•••••	•••••		
		•••••••••••	•••••		
		•••••	•••••		•••••••••••
		•••••	•••••	•	•
	•••••	•••••••••••	•••••		••••••••••
		••••••	•••••		•
•••••					

AB interse	cts the y-ax	is at the p	omi C. I	find the	Coordina	nes of C.				
										••••
••••••	••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •		•	••••••	••••••	••••
					•••••					
•••••	•••••	, .	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••		••••
	•••••			•••••	•••••					
•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••
	•••••		•••••	•••••	•••••			•••••	•••••	••••
	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	•••••	••••
			•••••	•••••	•••••					••••
•	••••••				•					••••
					•••••					••••
••••••	••••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••
					•••••					
•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••
					•••••					
•••••	•••••		••••••	•••••	•••••		•••••	•••••	•••••	••••
•••••	•••••		•••••	•••••	•••••		••••••	•••••	•••••	••••

3 A	A curve is such that	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 -$	$\frac{4}{r^2}$. T	The point P	(2,	9) lies on	the curve.
-----	----------------------	---	---------------------	---------------	-----	------------	------------

	of 0.05 units per second. Find the rate of change of the y-coordinate when the point is at P .
	Find the equation of the curve.
•	
•	
•	

i) Show that $a^2 + b^2$ has a constant value for all	values of x .	
		• • • •
		• • • •
		• • • •
		••••
		••••
		• • • •
In the case where $\tan x = 2$, express a in terms	s of b .	

The diagram shows a semicircle with diameter AB , centre O and radius r . The point C lies on the circumference and angle $AOC = \theta$ radians. The perimeter of sector BOC is twice the perimeter of sector AOC . Find the value of θ correct to 2 significant figures. [5]

6	The equation of a curve is $y = 3\cos 2x$ and the equation of a line is $2y$	$\pm \frac{3x}{3} = 5$
U	The equation of a curve is $y = 3\cos 2x$ and the equation of a fine is $2y$	$\pm \frac{\pi}{\pi} - 3$

(i)	State the smallest and largest values of y for both the curve and the line for $0 \le x \le 2\pi$. [3]

	3x	
(ii)	Sketch, on the same diagram, the graphs of $y = 3\cos 2x$ and $2y + \frac{3x}{2} = 5$ for $0 \le x \le 2\pi$.	[3]
	π	

(iii) State the number of solutions of the equation
$$6\cos 2x = 5 - \frac{3x}{\pi}$$
 for $0 \le x \le 2\pi$. [1]

7 Functions f and g are defined by

$$f: x \mapsto 3x - 2, \quad x \in \mathbb{R},$$

 $g: x \mapsto \frac{2x + 3}{x - 1}, \quad x \in \mathbb{R}, \ x \neq 1.$

(i)	Obtain expressions for $f^{-1}(x)$ and $g^{-1}(x)$, stating the value of x for which $g^{-1}(x)$ is not defined. [4]

 •••••

8 The position vectors of points A and B, relative to an origin O, are given by

$$\overrightarrow{OA} = \begin{pmatrix} 6 \\ -2 \\ -6 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 3 \\ k \\ -3 \end{pmatrix}$,

where k is a constant.

Find th	ne values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d OB are equ	ıal.	
Find th	ne values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	ue values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	ne values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	ne values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	ne values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	ne values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	ue values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ıal.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	
Find th	ue values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	
Find th	e values o	f k for whi	ch the lengt	hs of <i>OA</i> an	d <i>OB</i> are equ	ial.	

The point C is such that $\overrightarrow{AC} = 2\overrightarrow{CB}$.

In the case where $k = 4$, find the unit vector in the direction of \overrightarrow{OC} .	[4]

		nates of P .					
			•••••				
			•••••				
			•••••				
•••••	••••••••••	••••••					
•••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••
		•••••		••••••			
•••••		•••••				•••••	
		•••••	••••••	••••••			
	••••••					•••••	•••••
•••••							
						•••••	
	•••••					•••••	

10	(a)		n arithmetic progression, the sum of the first ten terms is equal to the sum of the next five as. The first term is a .
		(i)	Show that the common difference of the progression is $\frac{1}{3}a$. [4]
		(ii)	Given that the tenth term is 36 more than the fourth term, find the value of a . [2]

th	at the first term is 12, find the value of the fifth term.
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
• • •	
•••	
•••	

11

(i)

The diagram shows part of the curve $y = \sqrt{(4x+1)} + \frac{9}{\sqrt{(4x+1)}}$ and the minimum point M.

Find expressions for $\frac{dy}{dx}$ and $\int y dx$.	[6]

(11)	Find the coordinates of M .	[3]
Γhe	shaded region is bounded by the curve, the y -axis and the line through M parall	el to the <i>x</i> -axis.
	shaded region is bounded by the curve, the y -axis and the line through M parall Find, showing all necessary working, the area of the shaded region.	el to the x-axis.
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	
	Find, showing all necessary working, the area of the shaded region.	

Additional Page

must be clearly shown.

19

BLANK PAGE

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.