

System Simulation (CNG-476)

Discrete-Event Simulation

Instructor: Asst. Prof. Muhammad Toaha Raza Khan

Computer Engineering Department
Middle East Technical University,
Northern Cyprus Campus

Recap: Simulation Model Taxonomy

Recap: DES Model Development

- How to develop a simulation model:
 - 1. Determine the goals and objectives
 - 2. Build a **conceptual** model
 - 3. Convert into a **specification** model
 - 4. Convert into a **computational** model
 - 5. Verify the model
 - 6. Validate the model
- Typically an iterative process

Overview of DES Module

- Develops a common framework (and terminology) for the modeling of complex systems
- Covers the basic building blocks for all discrete-event simulation models
- Introduces and explains the fundamental concepts and methodologies underlying all discrete-event simulation packages:
 - These concepts and methodologies are not tied to any particular simulation package

Outline

- Concepts in discrete-event simulation
 - Terminology and concepts
 - Two pedagogical examples
- Components of discrete-event simulation
 - Time advance approaches
 - Event scheduling approach
- Manual simulation
 - Grocery store example
- Simulation program
 - Simulation of queuing systems
 - Infinite and finite population model
 - Tandem queue with blocking
- Verification and validation of simulation models

Outline

- Concepts in discrete-event simulation
 - Terminology and concepts
 - Two pedagogical examples
- Components of discrete-event simulation
 - Time advance approaches
 - Event scheduling approach
- Manual simulation
 - Grocery store example
- Simulation program
 - Simulation of queuing systems
 - Infinite and finite population model
 - Tandem queue with blocking
- Verification and validation of simulation models

Concepts in Discrete-Event Simulation (1 of 2)

- Model: an abstract representation of a (real) system
- System: a collection of entities that interact together over time (e.g., people, machines, CPU, Web server)
- System state: a collection of variables that contain all the information necessary to adequately describe the system at any time (e.g., occupancy)
- Entity: any object or component in the system (e.g., a server, a customer, a machine)
- Attributes: the properties of a given entity
- List: a collection of associated entities, ordered in some logical fashion (e.g., sets, queues)

Concepts in Discrete-Event Simulation (2 of 2)

- Event: an instantaneous occurrence that changes the state of a system (e.g., an arrival of a new customer)
- Event list: a list of event notices for future events, ordered by time of occurrence, also called the future event list (FEL)
- Activity (unconditional wait): a duration of time of specified length that is known when it begins (e.g., a service time)
- Delay (conditional wait): a duration of time of unspecified indefinite length, which is not known until it ends (e.g., customer delay while waiting in line)
- Clock: a variable representing simulated time, which can be either continuous or discrete

Note: different commercial simulation packages use different terminology for the same or similar concepts

Key Concepts in Discrete-Event Simulation

- An activity represents a service time, an inter-arrival time, or any processing time whose duration has been defined or characterized by the modeler:
 - An activity's duration may be specified as:
 - · Deterministic or stochastic
 - A function depending on system variables and/or entity attributes
 - Duration is not affected by the occurrence of other events
- A delay's duration is determined by current system conditions (not specified by the modeller ahead of time):
 - For example, a customer's delay in a waiting line may be dependent on the number and duration of service of other customers ahead in line, and whether a server has a failure (and repair time) or not

Example 1: ABC Call Center

A computer technical support center with personnel taking calls and providing service:

- Three support staff: Alice, Bob, Chris (multiple support channel)
- A simplifying rule: alphabetical tie-breaker if > 1 staff are idle
- Goal: to find out how well the current arrangement works in terms of the response time of the system
- Random variables:
 - Arrival time between calls
 - Service time (different distributions for Alice, Bob, and Chris)

States in ABC Call Center Example

The ABC Call Center System is a discrete-event model with the following components:

- System state:
 - The number of callers waiting to be served at time t
 - Indicator that Alice is idle or busy at time t
 - Indicator that Bob is idle or busy at time t
 - Indicator that Chris is idle or busy at time t
- Entities: neither the caller nor the servers need to be explicitly represented, except in terms of the state variables, unless certain per-caller or per-server statistics are desired

Events in ABC Call Center Example

Events:

- Arrival of a call
- Service completion by Alice
- Service completion by Bob
- Service completion by Chris

Activities:

- Inter-arrival time
- Service time by Alice
- Service time by Bob
- Service time by Chris
- Delay: a caller's wait in queue until Alice, Bob, or Chris becomes free

Example 2: Pancake Manor

A pancake restaurant in an old church in Brisbane, Australia:

- Host/hostess for seating of customers (possible waiting here)
- Waiter/waitress for ordering/bringing food and beverages
- Kitchen and cook(s) for preparing food (possible queueing too!)
- Cashier for payment and departure
- Goal: to find out how many staff (and tables) to have to keep the response time of the system reasonable
- Random variables:
 - Arrival times of customers
 - Sizes of groups
 - Time of day
 - Service times for ordering, eating, payment, etc.

Example 2: Pancake Manor

States in Pancake Manor Example

The Pancake Manor restaurant is a discrete-event model with the following components:

- System state:
 - The number of customers waiting to be seated at time t
 - The number of customers waiting to order at time t
 - The number of customers waiting for food at time t
 - The number of customers eating at time t
 - The number of customers waiting to pay at time t
 - The number of available/occupied tables at time t
- Entities: customers; host/hostess; waiter/waitress; cooks in kitchen; tables in restaurant; other?

Events in Pancake Manor Example

Events:

- Arrival of a customer (or group of customers)
- Service completion by host/hostess
- Service completion by waiter/waitress
- Service completion by cook
- Service completion by cashier

Activities:

- Inter-arrival time
- Service time by host/hostess
- Service time by waiter/waitress
- Service time by cook
- Service time by cashier
- Delay: a caller's wait for seating, ordering, eating, paying, etc.

Outline

- Concepts in discrete-event simulation
 - Terminology and concepts
 - Two pedagogical examples
- Components of discrete-event simulation
 - Time advance approaches
 - Event scheduling approach
- Manual simulation
 - Grocery store example
- Simulation program
 - Simulation of queuing systems
 - Infinite and finite population model
 - Tandem queue with blocking
- Verification and validation of simulation models

Components of a Simulation

- In DES simulation:
 - The simulation is driven by events
 - The simulation time advances based on sequence of events
 - System state changes with events
- Requirements:
 - Time advance algorithm
 - Event scheduling
 - Event processing

Time Advance Approaches

The mechanism for advancing simulation time and guaranteeing that all events occur in correct chronological order

- General approaches:
- 1. Time-stepping approach (fixed time increment):
 - Also known as the "activity scanning" approach
 - At each clock advance, the conditions for each activity are checked, and if the conditions are true, then the corresponding activities begin
- 2. Event-scheduling approach (variable time advance):
 - Concentrates on events and their effect on system state
 - The simulation clock is advanced to the time of the next imminent event on the FEL

Time-Stepping Approach

- ullet At any given time t, the list of all pending future events is scanned to determine which ones are applicable
- FEL not strictly required, nor does it need to be ordered
- Main challenge is getting the time step appropriate
 - Too small: high overhead; lots of scanning; not much happens
 - Too large: too many events applicable at once
- Real systems often have highly-varying times between events
- Time-stepping approach is simple in concept, but often slow in execution (i.e., high overhead)
- Suitable only for simulating small systems with well-defined inherent time steps (e.g., mortgage.c, fluid flow)

Event-Scheduling Approach

- At any given time t, the future event list (FEL) contains all previously scheduled future events and their associated event times $(t_1, t_2, ...)$
- FEL is ordered by event time, and the event times satisfy: $t \le t_1 \le t_2 \le \cdots \le t_n$ where t is the value of the Clock.

Event-Scheduling Approach

Old system snapshot at time t

CLOCK	System State	***	Future Event List	• • •
t	(5, 1, 6)		(3, t ₁) – Type 3 event to occur at t ₁ (1, t ₂) – Type 1 event to occur at t ₂ (1, t ₃) – Type 1 event to occur at t ₃	
			$(2, t_n)$ – Type 3 event to occur at t_n	

New system snapshot at time t₁

- **Step 1** –Remove the event notice for the imminent event (event 3, time t_1) from FEL.
- Step 2 -Advance CLOCK to imminent event (i.e., advance CLOCK from t to t1).
- Step 3 –Execute imminent event: update system state, change entity attributes, and set membership as needed.
- Step 4 –Generate future events (if necessary) and place their event notices on FEL, ranked by event time. (Example: Event 4 to occur at time t^* , where $t_2 < t^* < t_3$.)
- Step 5 Update cumulative statistics and counters.

New system snapshot at time t1

CLOCK	System State	* • (*)	Future Event List	• • •
t ₁	(5, 1, 5)		(1, t ₂) – Type 1 event to occur at t ₂ (4, t*) – Type 4 event to occur at t* (1, t ₃) – Type 1 event to occur at t ₃	
			$(2, t_n)$ – Type 3 event to occur at t_n	

List Processing

- The management of a list
 - The major list processing operations performed on a FEL are:
 - · Removal of the imminent event
 - Addition of a new event to the list
 - Occasionally removal of some event (cancellation of an event)
 - Efficiency of search within the list depends on the logical organization of the list and how the search is conducted
- Data structure for FEL? Choice depends on system size:
 - Variable(s)
 - Arrays
 - Files
 - Ordered linked list
 - Priority queue
 - Binary heap
 - Calendar queue

Future Events

Arrival event:

- For example, at time 0, the first arrival event is generated and is scheduled on the FEL. When the clock eventually is advanced to the time of this first arrival, a second arrival event is generated.
- Service completion event:
 - Triggered only on the condition that a customer is present and a server is free
- Stopping event, E:
 - At time 0: schedule a stop simulation event at a specified future time T_E
 - Run length T_E is determined by the simulation itself. Generally, T_E is the time of occurrence of some specified event E (e.g., completion of 1000th customer) or condition (e.g., relative change in estimate of π , or standard deviation of queue size)

Outline

- Concepts in discrete-event simulation
 - Terminology and concepts
 - Two pedagogical examples
- Components of discrete-event simulation
 - Time advance approaches
 - Event scheduling approach
- Manual simulation
 - Grocery store example
- Simulation program
 - Simulation of queuing systems
 - Infinite and finite population model
 - Tandem queue with blocking
- Verification and validation of simulation models

Example 3: Grocery Store

Grocery Store with single checkout

- Single-channel queue:
 - The system consists of those customers waiting plus the one (if any) checking out
 - For this example, a stopping time of 60 minutes is set

Components of Grocery Store Example

- Model components:
 - System state:
 - LQ(t): # of customers waiting in line at time t (excluding the customer being checked out)
 - LS(t): # of customer being checked out (1 or 0) at time t
 - Entities: the server and customers are not explicitly modeled, except in terms of the state variables
 - Events: arrival (A), departure (D), stopping event (E)
 - Event notices (event type, event time):
 - (A, t) representing an arrival event to occur at future time t
 - (D, t) representing a customer departure at future time t
 - (E, 60) representing the simulation stop event at future time 60
 - Activities: inter-arrival time and service time
 - Delay: customer time spent in waiting line

Arrivals in Grocery Store Example

• Event logic:

Departures in Grocery Store Example

Scenario 1 in Grocery Store Example

- Initial conditions are: the first customer arrives at time 0 and begins service
- Only two statistics:
 - B: total server busy time (server utilization = B/T_E)
 - MaxQ: maximum queue (checkout line) length observed
- Input parameters:

Interarrival Times	0	8	6	1	8
Service Times	4	1	4	3	5

Event Summary for Grocery Store Example

Clock	System State				Cumulative Statistics		
	LQ(t)	LS(t)	Future Event List	Comment	В	MQ	
0	0 1 (D, 4), (A, 8), (E, 60)		(D, 4), (A, 8), (E, 60)	First A occurs: (a* = 8), schedule next A; (s*=4) Schedule first D	0	0	
4	0	0	(A, 8), (E, 60)	First D occurs: (D, 4)	4	0	
8	0	1	(D, 9), (A, 14), (E, 60)	Second A occurs: (A, 8); (a* = 6) Schedule next A; (s* = 1) Schedule next D		0	
9	0	0	(A, 14) (E, 60)	Second D occurs: (D, 9)	5	0	
14	0	1	(A, 15) (D, 18) (E, 60)	Third A occurs: (A, 14); (s* = 4) Schdeule next D	5	0	
15	1	1	(D, 18), (A, 23), (E, 60)	Fourth A occurs: (A, 15) (Customer delayed)	6	1	
18	0	1	(D, 21) (A, 23) (E, 60)	Third D occurs: (D, 18); (s* = 3) schedule next D	9	1	

Simulation Table

Manual vs. Computer Simulation

- When an event-scheduling algorithm is computerized, only one snapshot (the current one or partially updated one) is kept in computer memory
 - A new snapshot can be derived only from the previous snapshot, newly generated random variables, and the event logic
 - The current snapshot must contain all information necessary to continue the simulation

Scenario 2 in Grocery Store Example

- Suppose the simulation analyst desires to estimate
 - mean response time, and,
 - mean proportion of customers who spend 4 or more minutes in the system (i.e., waiting in line + checkout time)
- It is necessary to expand the previous model to represent the individual customers explicitly:
 - Customer entity with arrival time as an attribute will be added to the list of components
 - Customer entities will be stored in a list to be called 'Checkout Queue' as C1, C2, C3,

Statistics for Grocery Store Example

Collected Statistics:

- Three new cumulative statistics will be collected:
 - S: the sum of customer response times for all customers who have departed by the current time
 - *F*: the total number of customers who spend 4 or more minutes at the checkout counter
 - N_D : the total number of departures up to the current simulation time

Computing Statistics for Grocery Store Example

Updating Statistics:

 At time 18, when the departure event (D, 18, C3) is being executed, the response time for customer C3 is computed as:

Response time = clock time - attribute 'time of arrival' = 18 -14 = 4 minutes

• Then S is incremented by 4 minutes, and F and N_D by one customer

Summary Table for Grocery Store Example

• Input parameters:

Interarrival Times	0	8	6	1	8
Service Times	4	1	4	3	5

	System State				Statistics		
Clock $LQ(t)$ $LS(t)$		Checkout Queue	Future Event List		N_D	F	
0	0	1	(C1, 0)	(D, 4, C1), (A, 8, C2), (E, 60)	0	0	0
4	0	0		(A, 8, C2), (E, 60)	4	1	1
8	0	1	(C2, 8)	(D, 9, C2), (A, 14, C3), (E, 60)	4	1	1
9	0	0		(A, 14, C3), (E, 60)	5	2	1
14	0	1	(C3, 14)	(A, 15, C4), (D, 18, C3), (E, 60)	5	2	1
15	1	1	(C3, 14), (C4, 15)	(D, 18, C3), (A, 23, C5), (E, 60)	5	2	1
18	0	1	(C4, 15)	(D, 21, C4), (A, 23, C5), (E, 60)	9	3	2

Outline

- Concepts in discrete-event simulation
 - Terminology and concepts
 - Two pedagogical examples
- Components of discrete-event simulation
 - Time advance approaches
 - Event scheduling approach
- Manual simulation
 - Grocery store example
- Simulation program
 - Simulation of queueing systems
 - Infinite and finite population model
 - Tandem queue with blocking
- Verification and validation of simulation models

Generic Simulation Program (1 of 4)

Initialization

- Initialize clock to zero
- Initialize state variables and statistical counters
- Initialize event list (with already known future events)

Generic Simulation Program (2 of 4)

- Main loop (repeat until the condition for terminating the simulation is met)
 - Determine the most imminent event and remove it from the event list (suppose this event is of type i)
 - Advance clock to the time of this event
 - Invoke event routine for type i

Generic Simulation Program (3 of 4)

- Event routine (a separate routine for each event type)
 - Update state variables
 - Update statistical counters
 - When required, add future events to the event list

Generic Simulation Program (4 of 4)

- Report generator
 - Invoked when simulation has terminated
 - Compute and output performance measures of interest

Simulation of Queueing Systems

- 1. Single server infinite population
- 2. Single server finite population
- 3. Tandem queue
- 4. Tandem queue with blocking
- 5. Closed network model

Components of a Queueing System

Arrival Definition

- Arrival time
 - Time at which a customer arrives at a service facility
- Inter-arrival time
 - Time between two successive arrivals to a service facility
- Arrival rate
 - Number of arrivals per unit of time

Timing Diagram

C_j - customer j

a_i - arrival time of C_j

 y_j - interrarrival time between $\,C_{j\text{-}1}\,$ and C_j

Relationship between Arrival Rate and Inter-arrival Time

• Define:

$$L = \sum_{j=1}^{n} y_j$$

• Mean inter-arrival time $=\frac{L}{n}$

Arrival rate

$$=\frac{n}{L}=\frac{1}{\text{mean interarrival time}}$$

Service Definition

- Service requirement in units of work
 - Ex 1: CPU unit of work is "instruction"
 - Ex 2: communication channel unit of work is "bit"
- Server capacity in units of work per second
 - Ex 1: CPU server capacity is in "number of instructions executed per second"
 - Ex 2: communication channel server capacity is in "number of bits transmitted per second"

service requirement

- Service time = server capacity
- Service rate
 - Number of customers served per second (assuming no idle time)

Timing Diagram

C_j - customer j

 x_j - service time of C_j

 b_{j-1} - time at which C_j starts service

Relationship between Service Rate and Service Time

• Define:

$$L = \sum_{j=1}^{n} x_j$$

Mean service time

$$=\frac{L}{n}$$

Service rate

$$=\frac{n}{L} = \frac{1}{\text{mean service time}}$$

Service Disciplines

Examples:

- First-Come-First-Serve (FCFS) (a.k.a. FIFO)
- Last-Come-First-Serve (LCFS)
- Round-Robin (RR) with a fixed quantum
 Infinitesimal quantum ⇒ Processor Sharing (PS)
- Shortest Job First (SJF)
- Shortest Remaining Processing Time (SRPT)
- And many more...

Typical Performance Measures

- Response time
 - Elapsed time from arrival to departure
- Waiting time
 - Time spent in queue
- Number of customers in system
- Number of customers in queue
- Server utilization
 - Proportion of time that the server is busy
- Throughput
 - Rate at which customers leave the service facility after completing service

Utilization

Proportion of time that the server is busy

- Total busy time = $\sum_{j=1}^{n} S_j$
- $U = \text{proportion of time server is busy} = \frac{1}{L} \sum_{j=1}^{n} S_j$

Note: $U \le 1$

Throughput

- Rate at which customers leave a service facility after completing service
 - Throughput:

$$R=\frac{n}{L}$$

where n is the number of customers served in time L

Single Server Queue Example (ssq3.c)

Infinite population model

- Number of users of the service facility is large (potentially infinite)
- Pattern of customer arrivals is based on combined behavior of the customers, and is assumed to be independent of the state of the system

Single Server Queue Example

Assumptions

- Inter-arrival times are independent of system state
- Inter-arrival times are iid (independent and identically distributed)
- Service times are independent of system state
- Service times are iid
- FCFS scheduling
- System is empty at time zero
- Arrival of first customer occurs after the first inter-arrival time
- Simulation terminates when the *m*-th customer starts service

- Input parameters
 - Inter-arrival time distribution (e.g., exponential)
 - Service time distribution (e.g., uniform)
- Performance measures of interest
 - Mean waiting time in queue, \overline{w}
 - Mean number of customers in system, \bar{n}

State variables

- status = server status (busy or idle)
- n = number of customers in system

Statistical counters

- nw = number of waiting times accumulated
- sw = sum of accumulated waiting times
- sa = sum of accumulated areas (for calculating \bar{n})
- last event = time of last event when accumulating area

- Lists
 - event_list
 - queue
- Event types
 - type 1: arrival
 - type 2: start_service
 - type 3: departure

Single Server Queue Model (1 of 4)

Initialization

- clock = 0
- status = idle
- n = 0
- nw = sw = 0
- last event = 0
- sa = 0
- Initialize queue to empty
- Initialize event list to empty
- Determine inter_t, the first interarrival time
- Schedule an arrival event to occur at clock + inter_t

Single Server Queue Model (2 of 4)

- Main loop (repeat until the condition for terminating the simulation is met)
 - Determine the most imminent event and remove it from the event list (suppose this event is of type \pm and occurs at time \pm)
 - clock = t
 - $sa = sa + (clock last event) \cdot n$
 - last event = clock
 - Invoke event routine for type i

Single Server Queue Model (3a of 4)

- arrival event type 1
 - Determine inter_t, the interarrival time between the current and next arrivals
 - Schedule an arrival event to occur at clock + inter t
 - n = n + 1
 - Enter arriving customer to end of queue, and save its time of arrival (given by clock)
 - If status is idle, invoke routine for start_service event

Single Server Queue Model (3b of 4)

- start_service event type 2
 - Remove customer from front of queue, and retrieve time of arrival (t_arrival)
 - nw = nw + 1
 - sw = sw + (clock t arrival)
 - If nw = m (condition for terminating simulation), exit main loop
 - status = busy
 - Determine serv t, the customer service time
 - Schedule a departure event to occur at clock + serv t

Single Server Queue Model (3c of 4)

- departure event type 3
 - n = n 1
 - status = idle
 - If n > 0, invoke event routine for start service event

Single Server Queue Model (4 of 4)

- Report generator
 - Mean waiting time: $\overline{w} = sw/nw$
 - Mean no. of customers in system: $\bar{n} = \text{sa/clock}$
 - Output results

Sequence of Events

departures

start service

arrival

Manual Trace of Single Server Queue Example

clock	event	status	n	e vent list		queue	nw	sw	
0			idle		0	(A, 1)		empty	0
1	Α		busy		1	(A, 3), (D, 4)	empty	1	0
3	Α		busy		2	(D, 4), (A, 6)	(C2, 3)	1	0
4	D		busy		1	(A, 6), (D, 9)	empty	2	1
6	Α		busy		2	(D, 9), (A, 11)	(C3, 6)	2	1
9	D		busy		1	(D, 10), (A, 11)	empty	3	4
10	D		idle		0	(A, 11)		empty	3
11	Α		busy		1	(A, 15), (D, 17)	empty	4	4

mean waiting time = sw/nw = 1.0

Notation: A - arrival event, D - departure event

(Cj, x) - customer j in queue, time of arrival of this customer is x

n - number of customers in system

Single Server Queue Example

• Finite population model

Finite Population Model

- Number of users is not large
- The behavior of each user is modeled explicitly as far as arrival pattern is concerned
- Arrival rate is dependent on the state of the system
- Definition
 - Think time: elapsed time from completion of previous request to submission of next request

Finite Population Model

Finite Population Model

Assumptions

- Service times are iid and independent of system state
- Think times are iid and independent of system state
- FCFS scheduling
- System is empty at time zero
- For each of the N users, the first request is submitted after a think time
- Subsequent arrivals depend upon prior service completions
- Simulation terminates at time term_sim

Finite Population Model

Initialization

- clock = 0
- status = idle
- n = 0
- Initialize queue to empty
- Initialize event_list to empty
- for user j (j = 1 to N)
 Determine think_t, a think time of user j,
 and schedule an arrival event at clock + think_t
 end for
- Schedule an end simulation event at term sim

Finite Population Model

- arrival event
 - n = n + 1
 - Enter arriving customer to end of queue
 - If status is idle, invoke routine for start service event
- start_service event
 - Remove customer from front of queue
 - status = busy
 - Determine serv t, the service time of customer
 - Schedule a departure event to occur at clock + serv t

Finite Population Model

- departure event
 - n = n 1
 - status = idle
 - Determine think t
 - Schedule an arrival event at clock + think t
 - If n > 0, invoke event routine for start service
- end-simulation event
 - exit main loop

Example: Tandem Queue – M Stages

- Subsystems and interactions
 - M subsystems one for each stage
 - A departure from stage i becomes an arrival to stage i+1 (i = 1 to M-1)

- \bullet Use event routines for single server queue model for each of the ${\tt M}$ stages
- Modifications to implement tandem queue:
 - departure event: for stage i (i = 1 to M-1)
 - add the step
 - Invoke routine for arrival event at stage i+1
 - arrival event: for stage i (i = 2 to M)
 - do not schedule the next arrival event!

Example: Tandem Queue with Blocking

Max: K customers

Tandem Queue with Blocking

- Two stages
- Finite waiting room at stage 2 (number of customers in system < K)
- Blocking
 - Server 1 is blocked if a customer completing service at stage 1 finds no queuing space at stage 2

Tandem Queue with Blocking

- Subsystems and interaction
 - 2 subsystems one for each stage
 - Server 1 is blocked if a customer completing service at stage 1 finds no queuing space at stage 2
 - If server 1 is in the "blocked" state, it becomes "not blocked" when a departure occurs at stage 2
 - A departure from stage 1 becomes an arrival to stage 2

- Use event routines for single server queue (infinite population model) for each of the 2 stages
- Modifications to implement tandem queue with blocking:
 - Add state variable b
 - b = 1 if server 1 is blocked and 0 if server 1 is not blocked
 - Initialization : add the step
 - b = 0

- Modifications (cont.):
 - start_service event at stage 1: add the step
 - Schedule an end_service event at stage 1 instead of a departure event at stage 1
 - end_service event at stage 1: add the step
 - If number in system at stage 2 < K invoke routine for departure event at stage 1
 - else b = 1

- Modifications (cont.):
 - departure event at stage 1: add the step
 - Invoke routine for arrival event at stage 2
 - arrival event at stage 2:
 - Do not schedule the next arrival event
 - departure event at stage 2: add the step
 - If b = 1, then b = 0 and invoke routine for departure event at stage 1

Example: Closed Network Model

N circulating customers

Subsystems and Interaction

- Four subsystems, one for each server
- Interaction is defined by transition probabilities
 - A customer departing from server 1 has
 - 50% probability of arriving at server 2
 - 30% probability of arriving at server 3
 - 20% probability of arriving at server 4
 - A customer departing from server 2, 3 or 4 has 100% probability of arriving at server 1

- Single server queue model for each subsystem with modifications to model the interaction
- Initialization
 - clock = 0
 - for i = 1 to 4
 - Initialize queue (i) to empty
 - status(i) = idle
 - n(i) = 0
 - Initialize event list to empty
 - Enter N customers at end of queue (1)
 - n(1) = N
 - Invoke start_service event at server 1

- Departure event from server 1: add the steps
 - Determine k, the ID of the next server for the departing customer (k = 2: 50%, k = 3: 30%, k = 4: 20%)
 - Invoke arrival event to server k
- Departure event from server 2, 3, or 4: add the step
 - Invoke arrival event to server 1
- Arrival event at server 1, 2, 3, or 4
 - Do not schedule the next arrival event

Outline

- Concepts in discrete-event simulation
 - Terminology and concepts
 - Two pedagogical examples
- Components of discrete-event simulation
 - Time advance approaches
 - Event scheduling approach
- Manual simulation
 - Grocery store example
- Simulation program
 - Simulation of queuing systems
 - Infinite and finite population model
 - Tandem queue with blocking
- Verification and validation of simulation models

Verification and Validation

Verification

- Increase the level of confidence in the correctness of simulation program
- Approaches
 - Use a "trace" to debug simulation program
 - Trace is obtained by printing state variables, statistical counters, etc., after each event
 - Verify simulation output using analytic results

Fundamental Results

- Use fundamental results of queuing systems
- Examples
 - For any subsystem, mean arrival rate, mean number in system, and mean response time must be consistent with Little's formula

Analytic Results

- Check results for cases where analytic results are known
- Examples
 - Simulation model: open networks with exponential interarrival time distribution and uniform service time distribution
 - Run simulation for the case of exponential service time distribution (analytic solution is available)
 - Verify if the simulation output is consistent with known analytic results

Validation

- Model should be "good enough" (subjective)
- Seek expert opinion on system components that need to be carefully modeled, e.g., bottleneck
- A model should be valid for the performance measures
- The most valid model may not be the most cost-effective model

Three Step Approach to Validation

- 1. Build a model with high face validity
 - Appears to be reasonable to people who are knowledgeable about the system being modeled
- 2. Validation of model assumptions
 - Structural assumptions: entities, attributes, sets, etc.
 - Data assumptions
 - Collect reliable data
 - · Identify appropriate distribution
 - Validate the assumed distribution

Three Step Approach to Validation

- 3. Validation of input-output relationship
 - Model should be able to predict system behavior under existing conditions

Could be done using historical data collected for validation purposes.