

Vectores

MATEMÁTICA PARA CIENCIA DE DATOS PROF. ESTEBAN BALLESTERO

Vectores: Plano xy

- Es un par ordenado (a, b) donde $a, b \in R$.
- \blacktriangleright A los valores $a\ y\ b$ se le llaman elementos o componentes del vector.
- Note que la notación (a, b) también se usa para punto, entonces, cuál es la diferencia:

Vectores

Característica	Vector	Punto
Notación (a, b)	X	X
Tiene magnitud	X	
Tiene dirección	X	

Vectores

- \blacktriangleright Cuando se trabaja con el vector (a,b)se debe entender que este inicia en el punto (0,0) y termina en el punto (a,b).
- Análogamente para puntos en el espacio (a, b, c), estos inicia en (0,0,0).
- ▶ Vectores nulos: en (0,0) en $\mathbb{R}^2 y$ (0,0,0) en \mathbb{R}^3

Vectores dirigidos

Característica	Vector: \overrightarrow{PQ}	Vector: \overrightarrow{QP}
Inicia	Р	Q
Termina	Q	P
Cálculo	Q-P	P-Q

Estos vectores tienen la misma magnitud, pero van en dirección opuesta

Ejemplo:

► Calcule y dibuje el vector \overrightarrow{PQ} , donde P = (-2,4) y Q = (2,1)

Solución:

$$\overrightarrow{PQ} = Q - P = (2,1) - (-2,4) = (4,-3)$$

Si graficamos este vector con el que se tenía en la lámina anterior, ocurre lo siguiente, ¿Por qué?:

Traslaciones...

Los vectores están anclados en el origen. Sin embargo, frecuentemente visualizamos un vector como su traslación: El vector \overrightarrow{AB} está anclado en el origen, pero lo visualizamos como el "vector" que va de A hasta B. Formalmente:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OB}$$

Vectores en el espacio

Magnitud y dirección de un vector

 Como anteriormente se indicó, un vector tiene dos componentes importantes: magnitud (medida para el vector, su longitud) y dirección(suele darse a partir de ángulos)

Magnitud de un vector o norma

▶ Vectores en \mathbb{R}^2 : Sea v = (a, b)

$$||v|| = \sqrt{a^2 + b^2}$$

Vectores en \mathbb{R}^3 : Sea v=(a,b,c) $\|v\|=\sqrt{a^2+b^2+c^2}$

Dirección

La dirección de un vector es el ángulo (en radianes) que forma el vector con el semieje "x" positivo. $(0 \le \theta \le 2\pi)$

Dirección: en R²

- \blacktriangleright Para determinar el ángulo θ :

Dirección: en R³

Para el caso de los vectores en \mathbb{R}^3 , no se maneja es posible dar la dirección con un único vector, así, la ubicación de este en el espacio requiere de 3 ángulos específicos:

- \triangleright α :ángulo entre el vector y el semieje x positivo
- \triangleright β :ángulo entre el vector y el semieje y positivo
- $ightharpoonup \gamma$:ángulo entre el vector y el semieje z positivo

Cosenos directores

A partir de los ángulos directores y partiendo de un vector $v = (x_0, y_0, z_0)$, se obtienen los cosenos directores:

$$\cos(\alpha) = \frac{x_0}{\|v\|}$$
$$\cos(\beta) = \frac{y_0}{\|v\|}$$
$$\cos(\gamma) = \frac{z_0}{\|v\|}$$

¿Será el vector $u=(\cos(\alpha),\cos(\beta),\cos(\gamma))$ un vector unitario?

Multiplicación por un escalar

Sea $v = (a, b) \in \mathbb{R}^2$ un vector y $\alpha \in \mathbb{R}$ un escalar, se define el producto escalar de la siguiente manera:

$$\alpha v = (\alpha a, \alpha b)$$

Además, la magnitud de αv se calcularía:

$$\|\boldsymbol{\alpha}v\| = |\boldsymbol{\alpha}|\|v\|$$

*Los resultados anteriores se amplían análogamente para vectores en \mathbb{R}^3

Multiplicación por un escalar

▶ El vector αv, es un vector paralelo al vector v

 $\alpha > 0$: la dirección de αv es la misma que la de v

 $\alpha < 0$: la dirección de αv ela misma que la de $v + \pi$

Teorema 1.14 (Propiedades de los vectores).

Si
$$\overrightarrow{v}$$
, \overrightarrow{w} , $\overrightarrow{u} \in \mathbb{R}^3$ y $\alpha, \beta \in \mathbb{R}$ entonces,

- 1.) Conmutatividad: $\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{v}$
- 2.) Asociatividad: $\overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w}$
- 3.) Elemento neutro: $\overrightarrow{v} + \overrightarrow{0} = \overrightarrow{v}$
- 4.) Inversos: $\overrightarrow{v} + -\overrightarrow{v} = \overrightarrow{0}$

5.)
$$1\overrightarrow{v} = \overrightarrow{v}$$

6.)
$$\alpha \beta \overrightarrow{v} = \alpha (\beta \overrightarrow{v})$$

7.)
$$\alpha (\overrightarrow{v} + \overrightarrow{w}) = \alpha \overrightarrow{v} + \alpha \overrightarrow{w}$$

8.)
$$(\alpha + \beta) \overrightarrow{v} = \alpha \overrightarrow{v} + \beta \overrightarrow{v}$$

Propiedades para vectores

Definición 1.4 (Suma y resta).

Si
$$\overrightarrow{v}=(v_1,v_2,v_3)\in\mathbb{R}^3$$
 y $\overrightarrow{w}=(w_1,w_2,w_3)\in\mathbb{R}^3$;
$$\overrightarrow{v}+\overrightarrow{w}=(v_1+w_1,v_2+w_2,v_3+w_3) \text{ y } \overrightarrow{v}-\overrightarrow{w}=(v_1-w_1,v_2-w_2,v_3-w_3)$$

Suma de vectores

Resta de vectores

 $\|v-w\| = \|w-v\|$, pero v-w tiene dirección opuesta a w-v

Vectores unitarios: especiales

► En \mathbb{R}^2 : i = (1,0) y j = (0,1)

Cualquier vector en \mathbb{R}^2 se puede escribir en términos del los vectores i, j

► En \mathbb{R}^3 : i = (1,0,0) , j = (0,1,0) y k = (0,0,1)

Cualquier vector en \mathbb{R}^3 se puede escribir en términos del los vectores i, j, k.

Vectores unitarios

¿Cómo encontrar un vector unitario con la misma dirección que un vector dado?

Si v representa a cualquier vector, entonces el vector $\frac{v}{\|v\|}$ es un vector unitario en la misma dirección de v.

Producto para vectores

- Existen dos tipos de producto para vectores:
- Producto punto: el resultado es un escalar
- Producto vectorial o producto cruz: el resultado es un vector

Producto punto

En \mathbb{R}^2 :

Si $u = (a_1, b_1)$ y $v = (a_2, b_2)$, el producto escalar o producto punto se define:

$$\boldsymbol{u}\cdot\boldsymbol{v}=\boldsymbol{a_1}\boldsymbol{a_2}+\boldsymbol{b_1}\boldsymbol{b_2}$$

En \mathbb{R}^3 :

Si $u = (a_1, b_1, c_1)$ y $v = (a_2, b_2, c_2)$, el producto escalar o producto punto se define:

$$u \cdot v = a_1 a_2 + b_1 b_2 + c_1 c_2$$

Ángulo entre dos vectores

Entre dos vectores cualesquiera u, v, se puede apreciar que hay dos ángulos que los separan. De esta manera, se define a φ como el ángulo entre los vectores como el ángulo NO NEGATIVO más pequeño entre u y v, así:

$$0 \le \varphi \le \pi$$

Ángulo entre dos vectores

Sean u y v dos vectores no nulos. Si φ es el ángulo entre dichos vectores , entonces se cumple:

$$\cos(\varphi) = \frac{uv}{\|u\|\|v\|}$$

$$uv = ||u|| ||v|| \cos(\varphi)$$

$$\varphi = \arccos\left(\frac{uv}{\|u\|\|v\|}\right) = \cos^{-1}\left(\frac{uv}{\|u\|\|v\|}\right)$$

Vectores paralelos

Dos vectores $u \ y \ v$ se dice que son paralelos si cumplen alguna de las siguientes condiciones:

1.
$$\varphi = 0 \lor \varphi = \pi$$

$$\mathbf{2.} \quad \mathbf{Si} \ u \neq \mathbf{0} \ y \ v = \alpha u$$

Vectores ortogonales

Dos vectores $u \ y \ v$ se dice que son ortogonales (perpendiculares) si cumplen alguna de las siguientes condiciones:

1.
$$\varphi = \frac{\pi}{2}$$

$$\mathbf{2.} \qquad \mathbf{Si} \ u, v \neq \mathbf{0} \colon \ v \cdot u = \mathbf{0}$$

Proyección de un vector

Si u y v son vectores NO nulos, la proyección de u sobre v es un vector definido por:

$$Proy_v u = \frac{uv}{\|v\|^2} v$$

Donde $\frac{uv}{\|v\|^2}$ es la componente de u en la dirección de v, corresponde a un escalar.

żEs $proy_vu \parallel v$?, żEn qué casos la $Proy_vu = 0$?

Proyección de un vector

Resultado:

Si $v \neq 0$ es un vector, entonces, para cualquier otro vector u, se cumple que:

$$w = u - \frac{uv}{\|v\|^2}v = u - Proy_v u$$

Es un vector ortogonal a v

Producto cruz o vectorial

Consideremos los vectores $\overrightarrow{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$ y $\overrightarrow{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$. El producto $\overrightarrow{v} \times \overrightarrow{v}$ se define de la siguiente manera,

$$\overrightarrow{u} \times \overrightarrow{v} = (u_2v_3 - u_3v_2)\widehat{\imath} - (u_1v_3 - u_3v_1)\widehat{\jmath} + (u_1v_2 - u_2v_1)\widehat{k}$$

$$= (u_2v_3 - u_3v_2)\widehat{\imath} + (u_3v_1 - u_1v_3)\widehat{\jmath} + (u_1v_2 - u_2v_1)\widehat{k}$$

Producto cruz o vectorial

Producto cruz o vectorial

Consideremos los vectores \overrightarrow{v} , \overrightarrow{w} , $\overrightarrow{u} \in \mathbb{R}^3$ y $\alpha \in \mathbb{R}$, entonces

1.)
$$\overrightarrow{u} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = 0$$

2.)
$$\overrightarrow{v} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = 0$$

3.)
$$||\overrightarrow{u} \times \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 ||\overrightarrow{v}||^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2$$
 (igualdad d Lagrange)

4.)
$$\overrightarrow{u} \times \overrightarrow{v} = -(\overrightarrow{v} \times \overrightarrow{u})$$

5.)
$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}$$

6.)
$$(\overrightarrow{u} + \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} + \overrightarrow{v} \times \overrightarrow{w}$$

7.)
$$\alpha(\overrightarrow{u} \times \overrightarrow{v}) = (\alpha \overrightarrow{u}) \times \overrightarrow{v} = \overrightarrow{u} \times (\alpha \overrightarrow{v})$$

8.)
$$\overrightarrow{u} \times \overrightarrow{0} = \overrightarrow{0} \times \overrightarrow{u} = \overrightarrow{0}$$

9.)
$$\overrightarrow{u} \times \overrightarrow{u} = 0$$