Assignment 2 Tic Tac Toe Game Report

Minmax Algorithms

Test Case	win	loss(HUM AN)	Draw	Remarks
Raound1	W (ai)	L(_i H)		Implementation and Space Efficiency: Minimax Algorithm is easier to implement and uses less space
Raound2			D	than reinforcement when the code runs.
Raound3	W (ai)	L(dH)		Optimality Comparison: Minimax ensures an optimal outcome where a human cannot win,
Raound4	W (ai)	L(₍ H)		while reinforcement learning provides a suitable but not necessarily optimal path.
Raound5	W (ai)	L(_i H)		Winning probabilities in reinforcement learning are uncertain.
Raound6			D	Learning Process and Time Efficiency: Reinforcement learning takes time for learning, whereas Minimax, utilizing DFS,
Raound7	W (ai)	L (≀H)		delivers optimal results without a learning phase
Raound8			D	Minimax proves efficient in scenarios where learning is not required.
Raound9	W (ai)	L (₁H)		
Raound10	W (ai)	L(_i H)		
Total	7	7	3	10(match)

Reinforcement learning

Tool Coop		1,	D	Domonico
Test Case	win	IOSS(HUM AN)	Draw	Remarks
Raound1	W (ai)	L (_(H)		
Raound2	W (ai)	L (₁H)		Decay Factor Selection: I opted for a `decay_gamma` value of 0.9, resulting in the following observations.
Raound3			D	
Raound4	L (ai)	W (H)		Testing and Stability: Despite analyzing the values over 50,000 iterations, they did not converge to a fixed point.
Raound5	W (ai)	L (,H)		Achieving a precisely fixed saturation point in reinforcement learning is uncommon.
Raound6			D	

Raound7			D	
Raound8	L (ai)	W (H)		Convergence and Variability: The values for each state displayed convergence tendencies but fluctuated with a certain degree of error.
Raound9	W (ai)	L (,H)		This variability indicates the dynamic nature of reinforcement learning,
Raound10			D	where states may not stabilize but converge with inherent fluctuations.
Total	W-4L-2	W-2 L-4	4	10(match)

<u>Mini-Max Algorithm Analysis:</u>

Comments:

- Mini-Max consistently performs well, winning the majority of games against the human player.
- The algorithm tends to result in a draw less frequently, indicating a decisive outcome in most games.

• The human player faces challenges, losing in the majority of encounters with the Mini-Max algorithm.

Reinforcement Learning (RL) Analysis:

Comments:

- RL demonstrates variability in performance, winning fewer games than Mini-Max.
- RL shows improvement in some games, as seen in the wins, but also faces losses.
- The draw percentage is higher compared to Mini-Max, indicating a more balanced outcome.

Overall Efficacy Analysis:

- Mini-Max consistently outperforms RL in terms of winning games.
- RL demonstrates a more balanced performance, with a notable number of draws.
- The choice between the two approaches depends on the desired outcome Mini-Max for decisive victories, RL for a more varied gameplay experience with potential for improvement over time.