Express Mail Label No.	Dated:

Docket No.: 00597/0200575-US0

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Tadahisa Saga, et al.	
Application No.: Not Yet Assigned	Confirmation No.:
Filed: Concurrently Herewith	Art Unit: N/A
For: INCUBATOR	Examiner: Not Yet Assigned

CLAIM FOR PRIORITY AND SUBMISSION OF DOCUMENTS

MS Patent Application Commissioner For Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign applications filed in the following foreign countries on the dates indicated:

Country	Application No.	Date
Japan	2002-356824	December 9, 2002
Japan	2002-356834	December 9, 2002

In support of this claim, a certified copy of each said original foreign application is filed herewith.

Dated: December 5, 2003

Respectfully submitted,

Melvin C. Garner

Registration No.: 26,272 DARBY & DARBY P.C.

P.O. Box 5257

New York, New York 10150-5257

(212) 527-7700

(212) 753-6237 (Fax)

Attorneys/Agents For Applicant

\mathbf{H} 玉 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年12月 9 日

出 Application Number:

特願2002-356834

[ST. 10/C]:

[JP2002-356834]

出 願 人 Applicant(s):

三洋電機株式会社

三洋電機バイオメディカ株式会社

2003年10月21日

特許庁長官 'Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 YAB02-0078

【提出日】 平成14年12月 9日

【あて先】 特許庁長官殿

【国際特許分類】 C12M 1/00

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機バイオ

メディカ株式会社内

【氏名】 佐賀 忠久

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機バイオ

メディカ株式会社内

【氏名】 新井 敬之

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機バイオ

メディカ株式会社内

【氏名】 新屋 英俊

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機バイオ

メディカ株式会社内

【氏名】 玉置 裕一

【特許出願人】

【識別番号】 000001889

【氏名又は名称】 三洋電機株式会社

【特許出願人】

【識別番号】 302010448

【氏名又は名称】 三洋電機バイオメディカ株式会社

ページ: 2/E

【代理人】

【識別番号】

100098361

【弁理士】

【氏名又は名称】 雨笠 敬

【手数料の表示】

【予納台帳番号】

020503

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9112807

【包括委任状番号】 0202815

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 インキュベータ

【特許請求の範囲】

【請求項1】 本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、前記反応室の上部を開閉自在に覆うカバーとを備え、前記反応ブロックを加熱/冷却することにより、前記反応試料を培養するインキュベータにおいて、

前記本体に設けられ、培養状態の表示を行う表示部を備え、該表示部を前記本 体に対して角度調整可能に取り付けたことを特徴とするインキュベータ。

【請求項2】 本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、前記反応室の上部を開閉自在に覆うカバーとを備え、前記反応ブロックを加熱/冷却することにより、前記反応試料を培養するインキュベータにおいて、

前記本体に設けられ、培養状態の設定を行う操作部を備え、該操作部を前記本体に対して角度調整可能に取り付けたことを特徴とするインキュベータ。

【請求項3】 本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、前記反応室の上部を開閉自在に覆うカバーとを備え、前記反応ブロックを加熱/冷却することにより、前記反応試料を培養するインキュベータにおいて、

前記本体に設けられ、培養状態の表示を行う表示部と培養状態の設定を行う操作部とを具備する操作パネルを備え、該操作パネルを前記本体に対して角度調整可能に取り付けたことを特徴とするインキュベータ。

【請求項4】 前記表示部、操作部又は操作パネルを前記本体に対して複数 段階で角度調整可能としたことを特徴とする請求項1、請求項2又は請求項3の インキュベータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、血液、検体等から採取されたDNA(ディオキシリボ核酸)等の反

応試料の温度を変化させて増幅等の反応を促進させるためのインキュベータに関する。

[0002]

【従来の技術】

従来この種のインキュベータは、ホスホトリエステル法によるDNA或いはRNAの自動合成装置などがあり、反応器の外周を熱ブロックで覆い、この熱ブロックにペルチェ効果による加熱冷却機能を有したサーモモジュールを装着すると共に、サーモモジュールを埋設して構成されている。

[0003]

ここで、上記ホスホトリエステル法によるDNA等の合成方法は、マスキング・脱保護・乾燥・縮合の4工程をこの順で繰り返すことにより、DNAの増殖を促進する方法であり、そのために、前記合成装置では反応器内にDNAや各種試薬・溶液を混合した試料を入れ、前記サーミスタによってサーモモジュールの通電を制御して熱ブロックを+42℃に加熱することにより前記マスキング・乾燥・縮合の3工程を行うと共に、サーモモジュールの通電方向を変えて熱ブロックを+20℃に冷却することにより脱保護工程を行うように構成されている(例えば特許文献1参照。)。

[0004]

図18は、従来のインキュベータ100を示している。従来のインキュベータ100は、本体101の上面に反応室102を形成し、この反応室102内に図示しない加熱手段や冷却手段により加熱または冷却する反応ブロック103を装着している。そして、この反応ブロック103の装着された反応室102の上部には、下面に上部加熱板104を備えた断熱カバー105を設けられる。この断熱カバー105は、後端を本体101に回動自在に枢支することにより、回動して上方に開放する構成とされている。

[0005]

他方、この本体101の上面であって、断熱カバー105の後方には、操作部 108及び表示部109を備えた操作パネル106が設けられている。この操作 パネル106は、斜め前方に所定角度にて傾斜して設けられた取付部107の前 面に取り付けられている。

[0006]

【特許文献1】

実公昭62-44979号公報

[0007]

【発明が解決しようとする課題】

しかしながら、上述の如き構成では、反応器内の増幅状態を示す表示部109 や増幅状態を設定する操作部108を備えた操作パネル106は、取付部107 によって一定の角度に固定されているため、一定の高さ以外の位置に当該装置を 設置した場合に、表示部109の視認性や操作部108の操作性が悪いという問 題があった。

[0008]

そこで、本発明は、従来の技術的課題を解決するために成されたものであり、 省スペースのために棚などに複数台設置された場合であっても、表示部、操作部 等を備えた操作パネルを見易く、使い易い角度に調整することが可能なインキュ ベータを提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明のインキュベータは、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するものであって、本体に設けられ、培養状態の表示を行う表示部を備え、該表示部を本体に対して角度調整可能に取り付けたことを特徴とする。

[0010]

本発明によれば、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより反応試料を培養するインキュベータにおいて、本体に設けられ、培養状

態の表示を行う表示部を備え、該表示部を本体に対して角度調整可能に取り付けたので、省スペースのために棚などに複数台設置された場合に、表示部を見易い角度に調整することが可能となる。これにより、使用性が向上する。

$[0\ 0\ 1\ 1]$

請求項2の発明のインキュベータは、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するものであって、本体に設けられ、培養状態の設定を行う操作部を備え、該操作部を本体に対して角度調整可能に取り付けたことを特徴とする。

[0012]

請求項2の発明によれば、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するインキュベータにおいて、本体に設けられ、培養状態の設定を行う操作部を備え、該操作部を本体に対して角度調整可能に取り付けたので、省スペースのために棚などに複数台設置された場合に、操作部を使い易い角度に調整することが可能となる。これにより、使用性が向上する

$[0\ 0\ 1\ 3]$

請求項3の発明のインキュベータは、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するものであって、本体に設けられ、培養状態の表示を行う表示部と培養状態の設定を行う操作部とを具備する操作パネルを備え、該操作パネルを本体に対して角度調整可能に取り付けたことを特徴とする。

[0014]

請求項3の発明によれば、本体に構成された反応室と、該反応室内に設けられ

、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するインキュベータにおいて、本体に設けられ、培養状態の表示を行う表示部と培養状態の設定を行う操作部とを具備する操作パネルを備え、該操作パネルを本体に対して角度調整可能に取り付けたので、省スペースのために棚などに複数台設置された場合に、操作パネルを見易く、使い易い角度に調整することが可能となる。これにより、使用性が向上する。

[0015]

請求項4の発明のインキュベータは、請求項1、請求項2又は請求項3の発明 において、表示部、操作部又は操作パネルを本体に対して複数段階で角度調整可 能としたことを特徴とする。

[0016]

請求項4の発明によれば、請求項1、請求項2又は請求項3の発明において、 表示部、操作部又は操作パネルを本体に対して複数段階で角度調整可能としたの で、設置場所に合わせて、容易に角度調整を行うことができるようになる。これ により、より一層使用性が良好となる。

[0017]

【発明の実施の形態】

以下、図面に基づいて本発明の実施形態を詳述する。図1は本発明のインキュベータ1の斜視図、図2はインキュベータ1の正面図、図3はインキュベータ1の背面図、図4はインキュベータ1の側面図、図5はインキュベータ1の平面図を示している。本実施例のインキュベータ1は、反応試料としての染色体DNAの熱変性工程と、プライマーとのアニーリング工程と、鎖の伸張工程とを1サイクルとしてこのサイクルを複数回繰り返して行うPCR法と称されるDNA増殖方法を実現するための装置である。

[0018]

インキュベータ1は、上面に反応室3を形成した本体2により構成されており、この反応室3には、アルミニウム等の熱伝導性材料にて形成された反応ブロック4が設けられている。この反応ブロック4には、内部にDNAや各種試薬、培

地となる溶液等を混合した反応試料を収容した反応容器 5 を保持するための保持 穴 6 が複数形成されている。そして、本体 2 の上面には、反応室 3 の上部を開閉 自在に覆うための断熱カバー 7 が設けられている。尚、この断熱カバー 7 の詳細 については、後述する。

[0019]

本体2内には、反応ブロック4を加熱、冷却するペルチェ素子を備えている。 また、本体2の前面には、反応ブロック4の加熱又は冷却による反応容器5内の 反応試料の培養(増幅)状態の表示を行う表示部9と、制御装置に接続され、反 応容器5内の反応試料の培養(増幅)状態の設定を行う操作部10とを備えた操 作パネル8が設けられている。尚、操作パネル8の詳細な構造は、後述する。

[0020]

尚、各図において、操作パネル8の下方に設けられる11は、インキュベータ 1の電源スイッチである。また、本体2の背面に設けられる12は、電源プラグ のコンセントであり、13は、本体2内の排気を外部に排出するための排気口で ある。

$[0\ 0\ 2\ 1]$

以上の構成により、制御装置は、前記ヒータを制御し、反応ブロック4の保持 穴6に保持された反応容器5内の反応試料を例えば+94℃の熱変性温度とし、 反応試料を熱変性させる熱変性工程を行う。次いで、制御装置は、ペルチェ冷却 素子を制御し、反応ブロック4を例えば+37℃に冷却して、反応容器5内に収 容されて熱変性された反応試料のアニーリング工程と伸張工程を行う。制御装置 は、この熱変性工程と、アニーリング工程と、伸張工程を1サイクルとして複数 回、例えば30回繰り返すことにより、PCR法によるDNA等の培養(増幅) を行う。

[0022]

次に、図6乃至図13を参照して前記断熱カバー7の開閉機構について説明する。図6は断熱カバー7を下方から見た斜視図、図7乃至図9は断熱カバーによる反応容器5への加圧状態及び断熱カバーの開放動作を示す断面図、図10乃至図13は断熱カバー7の開放動作を示す断面図である。

[0023]

断熱カバー7は、下方に開口を有しており、該断熱カバー7内には、当該開口に臨んで反応容器5の上部(キャップ5A)を加熱するための上部加熱手段20が設けられている。この上部加熱手段20は、加熱板21と、当該加熱板21を加熱するための上部加熱用ヒータ22と、加熱板21を断熱カバー7内に保持するための支持板23と、当該加熱板21と支持板23とを連結するための複数の連結部材(本実施例では、加熱板21の四隅に設けられるため4つ用いられる。)24とから構成される。

[0024]

ここで、連結部材24には、支持板23と加熱板21との間に位置して伸張方向に付勢されたバネ部材(加圧手段)29が設けられている。また、この支持板23、上部加熱用ヒータ22、加熱板21の外周は、ガスケット25にて囲繞されているものとする。

[0025]

そして、この加熱板の下方には、反応容器5のキャップ5A周縁部に当接する 熱伝導性の板材にて構成された押さえ板(押さえ手段)26が設けられている。 この押さえ板26には、反応ブロック4に収納される反応容器5のキャップ5A の上部を貫通して挿入し、キャップ5Aの周縁部を加圧するための貫通孔27が 複数(本実施例では、反応容器5を複数収容可能としているため、複数であるが 、反応容器5を一個のみ収容するものである場合には、一個でよい。)形成され ている。

[0026]

これにより、簡単な構造にて支障なく上部加熱手段20の加熱板21を反応容器5へ当接することができる。尚、本実施例では、貫通孔27としているが、これ以外にも凹所であっても良いものとする。かかる場合には、簡単な構造にて支障なく押さえ板26を介して上部加熱手段20からの熱を反応容器5へ伝導させることができる。

[0027]

この押さえ板26には、上方に向かって先細り形状とされる図示しない取付孔

が穿設されており、この取付孔は、上部(頭の部分)が下方に向けて先細りとなる形状の皿ネジ28により、少許間隔を存して加熱板21下面に取り付けられる。これにより、押さえ板26は、上部加熱手段20に対して一定の範囲で移動可能となる。また、押さえ板26は、反応容器5から離間した状態では、自重により中立位置に保持されることとなる。尚、実施例のように自重により中立位置に保持するものに限らず、機械的、電気的、磁気的にに押さえ板26を中立位置に保持してもよい。また、押さえ板26は係る中立位置に限らず、予め設定された位置(一定の位置)に保持してもよい。

[0028]

断熱カバー7の上面には、把手部材30が設けられている。この把手部材30は、断熱カバー7の前部左右に渡って設けられる把手軸31により、上方に回動自在とされる本体30Aと、この本体30Aに一体に形成される把手部30Bとにより構成される。この把手部材30の本体30Aには、断熱カバー7の両側部に位置して該把手部材30と一体に把手係止部32が形成されている。この把手係止部32は、把手部30Bの略水平時において上向きの円弧状を呈しており、この端部には、後述する係合部40と容易に係合するため上縁が少許切り欠かれ先細り形状とされている。

[0029]

更にこの把手部材30の本体30Aには、同じく断熱カバー7の両側部に位置して例えば把手部30Bと対向する位置に下方に開口した切欠により構成される係止部30Cが形成される。この係止部30Cは、把手部30Bを把手軸31を中心として上方に回動し、略垂直にまで移動させた際(図11及び図12の状態)に、係る位置において予め断熱カバー7の両側面に設けられた係止ピン33と嵌合し、把手部材30の回動を規制するものである。

[0030]

また、この断熱カバー7の両側面には、該断熱カバー7の下部であって前記把 手軸31の前方に、前部誘導軸35が設けられていると共に、該断熱カバー7の 後部に、後部誘導軸36が設けられている。

[0031]

他方、インキュベータ1の本体2上面には、断熱カバー7の両側方に位置してそれぞれレール部材37が設けられる。このレール部材37には、断熱カバー7側の面に前部誘導溝38及び後部誘導溝39がそれぞれ形成される。前部誘導溝38は、レール部材37の前側の下部から略垂直に起立した起立溝38Aが形成された後、該起立溝38Aの上端から後方に渡って略水平とされた水平溝38Bが形成され、これらが連通して構成される。後部誘導溝38は、レール部材38の下部において、中央から後方に渡って略水平とされた溝により構成されている

[0032]

更にまた、このレール部材37には、前記把手部材30に形成された係止部30Cと着脱自在に係止するための係合部40が断熱カバー7側に突出して形成される。

[0033]

以上の構成により、インキュベータ1の動作及び断熱カバー7による反応容器5の加圧及び断熱カバー7の開閉動作について説明する。先ず、断熱カバー7の閉鎖状態について説明する。断熱カバー7は、図10に示す如く両側面に設けられた前部誘導軸35がレール部材37の前部誘導溝38の起立溝38A下部内に位置すると共に、後部誘導軸36がレール部材37の後部誘導溝39前部内に位置する。また、把手部材30は、把手部30Bが略水平状態となり、把手係止部32がレール部材37に形成された係合部40に係合されている。

[0034]

この状態で、反応ブロック4内に収容された反応容器5は、図7に示す如く断熱カバー7により上方から加圧され、反応容器5のキャップ5Aは、押さえ板26の貫通孔27内に位置する。このとき、断熱カバー7が閉鎖していることから、連結部材24に設けられたバネ部材29の付勢力により、加熱板21が下方に加圧されると共に、押さえ板26は前記取付孔内に皿ネジ28の上部が進入し、押さえ板26と加熱板21が密着する。これにより、反応容器5のキャップ5Aは、貫通孔27により、加熱板21に当接する。また、反応容器5のキャップ5A問縁部は、押さえ板26に加圧されることとなる。

[0035]

この状態で、反応室3内は密閉され、上述した如きPCR法によるDNA等の培養(増幅)を行う。ここで、本実施例では、反応容器5のキャップ5Aは、上方から加圧され、上部加熱手段20としての加熱板21が当接しているため、上部加熱手段20の上部加熱用ヒータ22を制御することにより、反応容器5の加熱/冷却時に生じる反応容器5上部の結露の発生を未然に防止することができる

[0036]

また、押さえ板26は、バネ部材29により下方に加圧されているため、DN A等の培養(増幅)を行っている際に、反応容器5のキャップ5Aが開放してしまう不都合を未然に防止することができる。更に、押さえ板26に形成される貫通孔27の周縁部によりキャップ5Aの周縁部を押圧することが可能となり、反応容器5の上部加熱時に、キャップ5Aが変形することを未然に回避することができるようになる。

[0037]

次に、断熱カバー7の開放動作について説明する。先ず、把手部材30の把手部30Bを把手軸31を中心として上方に回動させ、把手係止部32と、レール部材37に形成された係合部40との係合を解放する。そして更に、把手部30Bを上方に回動させ、図11に示す如く、本体30Aに形成される係止部30Cを、断熱カバー7の両側面に設けられた係止ピン33と嵌合させる。これにより、把手部材30の回動が規制される。

[0038]

そして、この把手部材30の回動が規制された状態で、後部誘導軸36を中心として把手部材30と共に断熱カバー7を上方に回動させる。このとき、前部誘導軸37は、図12に示す如く前部誘導溝38の起立溝38Aに沿って上昇する。これにより、図8及び図9に示す如く断熱カバー7内に外気が侵入し、該断熱カバー7による反応室3への加圧が解除される。

[0039]

・ 尚、このとき、押さえ板26は、バネ部材29による付勢力から解放され、前

記取付孔内から皿ネジ28が後退し、押さえ板26は、自重により中立位置に保持される。

[0040]

その後、把手部材30の回動が規制された状態で、断熱カバー7の前部誘導軸35が前部誘導溝38の起立溝38Aの上端まで後部誘導軸36を中心として把手部材30と共に断熱カバー7を上方に回動させた後、図13に示す如く、前部誘導軸35は前部誘導溝38の水平溝38Bに沿って、後部誘導軸36は、後部誘導溝39に沿って、後方に水平移動させることにより、把手部材30と共に断熱カバー7を水平に後方に移動する。これにより、本体2の反応室3が断熱カバー7より解放される。

[0041]

以上詳述した如く断熱カバー7は、本体2に対して回動且つ水平方向に移動自在とされるため、上部加熱手段20の反応容器5側への加圧の解除と反応室3の開閉の構造を簡素化することができる。また、断熱カバー7は、回動により反応ブロック4に保持された反応容器5に対して離接自在とされると共に、反応容器5から離間し、且つ、その下面を下向きとした状態で水平方向に移動し、反応室3の上部を開放することが可能となるため、断熱カバー7を開放した状態で、作業者が反応容器5の取り出し作業を行う際に、上部加熱手段20の加熱板21や押さえ板26によって火傷することを未然に回避することができる。

[0042]

尚、上述した如く押さえ板26は上部加熱手段20の加熱板21に対して移動可能に設けられているため、反応容器5から離間した状態では、自重により中立位置に保持される。そのため、断熱カバー7を閉鎖する際に、押さえ板26が円滑に移動し、反応容器5への位置合わせを容易に行うことができるようになり、押さえ板26に形成された貫通孔27と各反応容器5のキャップ5Aとの格別な位置合わせが必要なくなる。これにより、容易に押さえ板26により反応容器5のキャップ5Aを押圧することができ、利便性が向上する。

[0043]

また、押さえ板26は、上部加熱手段20に対して一定の範囲で移動可能とな

るように加熱板21に取り付けられているため、反応容器5のキャップ5Aへの加圧量(潰れ量)を容易に規制することができる。そのため、格別にキャップ5Aの加圧量を規制するための枠部材などを設ける必要がなくなる。

[0044]

尚、本実施例では、反応容器5のキャップ5Aを押圧する押さえ板26には、キャップ5Aを貫通して挿入し、キャップ5Aの上面を加熱板21と当接させる 貫通孔27が形成されているが、押さえ板26の熱伝導度が高ければ、上述した 如く貫通孔27を凹所により構成しても同様の効果を得ることができる。

[0045]

次に、図14万至図17を参照して、前記操作パネル8の構造について説明する。前記操作パネル8は、上述した如く反応ブロック4の加熱又は冷却による反応容器5内の反応試料の培養(増幅)状態の表示を行う表示部9と、制御装置に接続され、反応容器5内の反応試料の培養(増幅)状態の設定を行う操作部10とを備えたパネル部材である。この操作パネル8は、本体2の前面において、上端に設けられたオイルダンパー(回転ダンパー)50を備えた回転軸51を中心として、前方に回動自在に取り付けられる。

[0046]

この操作パネル8には、前記回転軸51に対し、円弧状を呈したパネル支持部材52が設けられる。この支持部材52には、同じく円弧状を呈した係合溝53が形成されており、この係合溝53には、水平または下方に向けて切り欠かれた角度調整溝54が複数、本実施例では4つ形成されている。

[0047]

他方、本体2の前面には、操作パネル8と所定間隔を存して隔壁60が設けられており、この隔壁60の下部には、付勢部材取付部61が取り付けられる。この付勢部材取付部61には、縮退方向に付勢されたバネ部材62が取り付けられ、連結部材63を介して操作レバー56が連結される。尚、この連結部材63には、操作レバー保持部64が固定され、この操作レバー保持部64は、上下方向に長く形成された長孔65を有する支持板66により上下動可能に保持される。支持板66は、隔壁60に取り付けられる。

[0048]

操作レバー56は、本体2の下部にまで延出して設けられ、この上端には、前記支持部材52の係合溝53に挿入される支持軸55が取り付けられる。尚、通常は、操作レバー56は、バネ部材62の付勢力により、下方に付勢され、操作レバー56の上端に設けられた支持軸55は、係合溝53に形成された何れかの角度調整溝54、図14に示す如く操作パネル8が垂直状態では、最下部の角度調整溝54に保持されている。

[0049]

以上の構成により、操作パネル8の角度調整を行う際には、図15に示す如く上方に押し上げ、バネ部材62の付勢力に反して、支持板66に形成された長孔65の長さ寸法分だけ上方に操作レバー保持部64を移動させる。これにより、操作レバー56の上端に設けられた支持軸55は、係合溝53の上縁に当接し、角度調整溝54による規制が解除される。

[0050]

そして、図16に示す如くこの状態から操作パネル8を回動軸51を中心として前方に回動させることにより、支持軸55は、支持板52の係合溝53内を移動し、本体2に対し操作パネル8に傾斜角度を形成することができる。支持軸55を何れかの角度調整溝54、図16では、前方から2番目の角度調整溝54に係止させ、操作レバー56を離す。これにより、図17に示す如くバネ部材62の付勢力により、操作レバー56、連結部材63に設けられた操作レバー保持部64は、下方に引き下げられ、操作レバー56の上端に設けられた支持軸55は、角度調整溝54に保持される。

[0051]

これにより、表示部 9 及び操作部 1 0 を設けた操作パネル 8 を本体 2 に対して容易に角度調整することができるようになる。そのため、省スペースのために本インキュベータ 1 が棚などに複数台設置された場合であっても、表示部 9 を見易い角度に、操作部 1 0 を操作しやすい角度に調整することが可能となる。これにより、使用性が向上する。

[0052]

尚、本実施例では、表示部9及び操作部10の両者を設けた操作パネル8を角 度調整可能としているが、これ以外に、表示部9のみを、若しくは、操作部10 のみを角度調整可能としても良いものとする。

[0053]

また、本実施例では、支持板52に形成される角度調整溝54を複数形成しているため、操作パネル8を本体2に対して複数段階で角度調整することができるようになり、より一層使用性が良好となる。

[0054]

更にまた、本実施例では、回転軸51にオイルダンパー50が設けられているため、万一、支持軸55が角度調整溝54より欠落した場合であっても、急激に操作パネル8が回転し、損傷することを未然に回避することができるようになる

[0055]

【発明の効果】

以上詳述した如く本発明によれば、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより反応試料を培養するインキュベータにおいて、本体に設けられ、培養状態の表示を行う表示部を備え、該表示部を本体に対して角度調整可能に取り付けたので、省スペースのために棚などに複数台設置された場合に、表示部を見易い角度に調整することが可能となる。これにより、使用性が向上する。

[0056]

請求項2の発明によれば、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するインキュベータにおいて、本体に設けられ、培養状態の設定を行う操作部を備え、該操作部を本体に対して角度調整可能に取り付けたので、省スペースのために棚などに複数台設置された場合に、操作

部を使い易い角度に調整することが可能となる。これにより、使用性が向上する。。

[0057]

請求項3の発明によれば、本体に構成された反応室と、該反応室内に設けられ、反応試料を収容した容器を一個若しくは複数個保持する熱伝導性の反応ブロックと、反応室の上部を開閉自在に覆うカバーとを備え、反応ブロックを加熱/冷却することにより、反応試料を培養するインキュベータにおいて、本体に設けられ、培養状態の表示を行う表示部と培養状態の設定を行う操作部とを具備する操作パネルを備え、該操作パネルを本体に対して角度調整可能に取り付けたので、省スペースのために棚などに複数台設置された場合に、操作パネルを見易く、使い易い角度に調整することが可能となる。これにより、使用性が向上する。

[0058]

請求項4の発明によれば、請求項1、請求項2又は請求項3の発明において、 表示部、操作部又は操作パネルを本体に対して複数段階で角度調整可能としたの で、設置場所に合わせて、容易に角度調整を行うことができるようになる。これ により、より一層使用性が良好となる。

【図面の簡単な説明】

図1

本発明のインキュベータの斜視図である。

図2

本発明のインキュベータの正面図である。

【図3】

本発明のインキュベータの背面図である。

【図4】

本発明のインキュベータの側面図である。

図5

本発明のインキュベータの平面図である。

図6

断熱カバーを下方から見た斜視図である。

【図7】

断熱カバーによる反応容器 5 への加圧状態及び断熱カバー閉鎖状態を示す断面 図である。

【図8】

断熱カバーによる反応容器 5 への加圧状態及び断熱カバーの略開放状態を示す 断面図である。

【図9】

断熱カバーによる反応容器 5 への加圧状態及び断熱カバーの開放状態を示す断 面図である。

【図10】

断熱カバーの閉鎖状態を示す断面図である。

【図11】

断熱カバーの把手部の係合を解除した状態を示す断面図である。

【図12】

断熱カバーの略開放状態を示す断面図である。

【図13】

断熱カバーの完全開放状態を示す断面図である。

【図14】

操作パネルが最下部の角度調整溝に保持された状態を示す断面図である。

【図15】

操作レバーが操作された状態を示す操作パネルの断面図である。

【図16】

操作パネルを前方に回動させた状態を示す断面図である。

【図17】

操作パネルが下から2番目の角度調整溝に保持された状態を示す断面図である

【図18】

従来のインキュベータの斜視図である。

【符号の説明】

- 1 インキュベータ
- 2 本体
- 3 反応室
- 4 反応ブロック
- 5 反応容器
- 6 保持穴
- 7 断熱カバー
- 8 操作パネル
- 9 表示部
- 10 操作部
- 50 オイルダンパー (回転ダンパー)
- 5 1 回転軸
- 5 2 支持部材
- 5 3 係合溝
- 54 角度調整溝
- 5 5 支持軸
- 56 操作レバー
- 60 隔壁
- 6 1 付勢部材取付部
- 62 バネ部材
- 63 連結部材
- 64 操作レバー保持部
- 6 5 長孔
- 66 支持板

【書類名】

図面

図1]

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【書類名】 要約書

【要約】

【課題】 省スペースのために棚などに複数台設置された場合であっても、表示 部、操作部等を備えた操作パネルを見易く、使い易い角度に調整することが可能 なインキュベータを提供する。

【解決手段】 本体2に構成された反応室3と、反応室3内に設けられ、反応試料を収容した反応容器5を一個若しくは複数個保持する熱伝導性の反応ブロック4と、反応室3の上部を開閉自在に覆う断熱カバー7とを備え、反応ブロック4を加熱/冷却することにより、反応試料を培養するインキュベータ1において、本体2に設けられ、培養状態の表示を行う表示部9を設けた操作パネル8を備え、操作パネル8を本体2に対して角度調整可能に取り付けた。

【選択図】 図17

特願2002-356834

出願人履歴情報

識別番号

[000001889]

1. 変更年月日 [変更理由]

1990年 8月24日

住所

新規登録

正 別

大阪府守口市京阪本通2丁目18番地

氏 名 三洋電機株式会社

2. 変更年月日

1993年10月20日

[変更理由]

住所変更

住 所

大阪府守口市京阪本通2丁目5番5号

氏 名 三洋電機株式会社

特願2002-356834

出願人履歴情報

識別番号

[302010448]

変更年月日
変更理由]

2002年 2月15日

新規登録

L 変 更 埋 田 」 住 所

大阪府守口市京阪本通2丁目5番5号

氏 名

三洋電機バイオメディカ株式会社