Junior Seminar Notes

Alan Yan Project Advisor: Professor Allan Sly

February 16, 2022

Contents

1 The Initial Conditions

 $\mathbf{2}$

1 The Initial Conditions

We first describe the initial markov chain.

Definition 1 (Markov Chain I). We have a Markov chain x_0, x_1, \ldots where x_0 is some initial vector in \mathbb{R}^n . Notation-wise, let $x_k = (x_{k,1}, \ldots, x_{k,n})$. The Markov chain progresses as follows: given x_k pick two distinct coordinates I and J uniformly at random, and replace $x_{k,I}$ and $x_{k,J}$ by their average $\frac{x_{k,I}+x_{k,J}}{2}$.

We have a Markov chain x_0, x_1, \ldots where x_0 is some initial vector in \mathbb{R}^n . Notation-wise, let $x_k = (x_{k,1}, \ldots, x_{k,n})$. The Markov chain progresses as follows: given x_k pick two distinct coordinates I and J uniformly at random, and replace $x_{k,I}$ and $x_{k,J}$ by their average $\frac{x_{k,I}+x_{k,J}}{2}$. We want to study the rate of convergence of this Markov chain to its average $(\overline{x}_0, \ldots, \overline{x}_0)$ where

$$\bar{x_0} = \frac{x_{0,1} + \ldots + x_{0,n}}{n}.$$

We have two ways to measure the distance from the average:

$$T(k) = \sum_{i=1}^{n} |x_{k,i} - \overline{x}_0|$$

$$S(k) = \sum_{i=1}^{n} |x_{k,i} - \overline{x}_0|^2.$$

We have an exact formula for the expected L^2 norm. Without loss of generality, we can assume $\bar{x}_0 = 0$.

Proposition 1 (Proposition 2.1 in the paper). For any $k \geq 0$, we have

$$\mathbb{E}(S(k+1)|\mathcal{F}_k) = \left(1 - \frac{1}{n-1}\right)S(k).$$

Proof. The calculation is done in the paper.

To avoid issues of dependence in the discrete time setting, we approximate Markov chain I with the following continuous time Markov chain.

Definition 2 (Markov Chain II). We have a Markov chain $\{x_t\}_{t\geq 0}$. Give each pair of coordinates an independent Poisson clock with rate $\binom{n}{2}^{-1}$. When a clock rings, replace the corresponding pair of coordinates with their average.

With this new Markov chain, we introduce the same measurements from the average.

$$T'(k) := \sum_{i=1}^{n} |x_{t,i} - \overline{x}_0|$$

$$S'(k) := \sum_{i=1}^{n} |x_{t,i} - \overline{x}_0|^2.$$

We get a similar formula for the expected L^2 distance.

Proposition 2. For any $t \ge s \ge 0$, we have that

$$\mathbb{E}[S'(t)|\mathcal{F}_s] = \exp\left(-\frac{t-s}{n-1}\right)S'(s).$$

Proof. Let E_k be the event that there are k rings between times s and t. Then

$$\mathbb{E}[S'(t)|\mathcal{F}_s] = \sum_{k=0}^{\infty} \mathbb{E}\left[S'(t)|\mathcal{F}_s \text{ and } k \text{ rings}\right] \cdot \Pr[E_k]$$

$$= \sum_{k=0}^{\infty} \left(1 - \frac{1}{n-1}\right)^k S'(s) \cdot e^{-(t-s)} \cdot \frac{(t-s)^k}{k!}$$

$$= \exp\left((t-s)\left(1 - \frac{1}{n-1}\right)\right) \cdot e^{-(t-s)} S'(s)$$

$$= \exp\left(-\frac{t-s}{n-1}\right) \cdot S'(s).$$

This suffices for the proof.

From here on out, we study the process starting from $x_0 = (1 - 1/n, -1/n, \dots, -1/n)$. The main theorem that the paper proves is the following.

Theorem 1 (Theorem 2.3 in the paper). Take $\Phi: \mathbb{R} \to [0,1]$ as the cdf of the standard normal distribution. For any $a \in \mathbb{R}$, we have $T'(n(\log_2(n) + a\sqrt{\log_2(n)})/2) \xrightarrow{\mathbb{P}} 2\Phi(-a)$ in probability as $n \to \infty$.

In the discrete case, we have the following theorem.

Theorem 2 (Theorem 1.2 in the paper). For any $a \in \mathbb{R}$, we have that

$$T(|n(\log_2(n) + a\sqrt{\log_2(n)})/2) \xrightarrow{\mathbb{P}} 2\Phi(-a).$$

Proposition 3. Theorem 1 and Theorem 2 are equivalent.