Elements of Computational Biology

Saul Pierotti

October 22, 2019

21/10/19

- Linear algebra is one of the main topics for developping algorithms
- Biology ha an high level of noise in its data
- I should know the formula of binomial and normal distribution
- Tests like T-Student, ANOVA
- Slides: www.biocomp.unibo.it/gigi/2019-2020/ECB
- Vectors
 - Given a reference system, a vector is represented by its components on the axis
 - $-\vec{x} \in \mathbb{R}^n$ means x is a real vector in an n-dimensional space
 - $-\vec{x} \in C^n$ means x is a complex vector in an n-dimensional space
 - Sum of vectors is done by summing their components or graphically with the parallelogram rule
 - * $\vec{c} = \vec{a} + \vec{b}meansc_i = a_i + b_i fori = 1..n$
 - * Difference is the same concept
 - * $Fprevery\vec{v}thereisthe\vec{0}$ $forwhichthesum\vec{v} + \vec{0} = \vec{v}$
 - * You can only sum vectors in the same vector space
 - Scalar multiplication
 - * $\vec{c} = \lambda \vec{a} meansc_i = a_i \lambda$
 - * A scalar multiplication of a sum is the sum of the scalar multiplications of the components
 - The norm of a vector $||\vec{v}||$ is its length
 - * Can be computed with the pitagorean theorem $||\vec{v}|| = \sqrt{\sum i} = 1nv_1^2$
 - * The norm of the sum is less or equal to the sum of the norm of the components
 - * The scalar product of a norm is the norm of the scalar product
 - * Norm in higher dimensions
 - · Pitagorean theorem with all the components
 - Distance between points in space is the norm of the difference between the vectors defining the points
 - Dot product, also called scalar or inner product
 - * You can use the notation $\langle A, B \rangle$
 - * It is used in physics to calculate work
 - * $\vec{w} = ||\vec{F}||||\vec{s}||\cos\theta = \sum i = 1nF_i * s_i$
 - * It is a number, complex or real depending on the vectors!
 - * It is commutative and distributive
 - $* < x, x > = ||\vec{x}||^2$
 - * It is positive when the angle is acute
 - * No cancelation rule
 - $\cdot < A, B > = < A, C > doesNOTimply \vec{B} = \vec{C}$
 - Angle between vectors
 - * Can be calculated inverting the dot product

- Line in passing through the origin
 - * Can be defined as the set of points ortoghonal to a vector \vec{w}
 - $* w_1x_1 + w_2x_2 = 0$
 - * In higher dimensions this describes an hyperplane (an n-1 dimensional object)

22/10/19

- Still about vectors
 - All the point on an hyperplane have the same projection on its defining vector \vec{w}
 - The projection of \vec{b} on \vec{a} is calculated as $\vec{b} * cos\theta$
 - $-<\vec{w}, y\vec{x}>+b=0$ where $b=-\frac{p}{\vec{w}}$ with p being the projection
 - A projection is a number which is positive when \vec{w}
 - 2 hyperplanes are parallel if their are defined by the same vector \vec{w} allowing for a scaling factor λ
 - The distance between parallel hyperplanes is computed as the difference of their projections on \vec{w}
 - The distance of a point A from an hyperplane is the projection of the point on the defining vector \vec{w} , minus the projection of the hyperplane on the same vector
 - * This is $\frac{\langle \vec{A}, \vec{w} \rangle}{||\vec{w}||}$
 - Hyperplanes are useful for the separation of classes of data
- Matrices
 - A matrix is an array of numbers arranged in a rectangural structure
 - It has n rows and m columns, it is represented as $A \in \mathbb{R}^{n*m}$
 - The index is always nm, meaning row and then column
 - We can sum only matrices of the same dimensions, they are said to be conformable for addition
 - The sum is defined as the sum of the respective elements
 - The 0 matrix contains all 0 elements and does not change the matrix it is added to
 - Scalar multiplication is performed multiplying all the elements of the matrix for the scalar
 - * $C = \lambda A$ implies $c_{ij} = \lambda a_{ij}$
 - Matrix addition and scalar multiplication are commutative, associative and distributive
 - Matrix product has peculiar properties
 - * C = A * B can be computed as row by column product
 - * It can be defined only if the number of columns in the first matrix is equal to the number of rows of the second
 - * The result is a matrix with the same number of rows as the first, and the same number of columns as the second
 - * Do exercised because they are so important
 - * The product between matrices is NOT commutative!
 - *A(B+C) = AB + AC
 - * (A + B)C = AC + BC
 - *A(BC) = (AB)C
 - * Be aware!
 - · If AB = 0 we can NOT conclude that B or C are 0
 - · If AB = AC we can NOT conclude that B = C
 - An upper triangular matrix has all the elements below the diagonal equal to 0, and a lower triangular the ones above it
 - A diagonal matrix has all the elements outside the diagonal equal to 0
 - A diagonal matrix with all 1 elements is the identity matrix I
 - * It does not change the square matrix it is multiplied to
 - * In this case, AI = IA = A
 - In numbers, an invers of a is the number b such that ab = 1, so b = 1/a
 - The inverse of a matrix, called A^{-1} , can exist but that is not always the case
 - The transposition of a nm matrix is a mn matrix, called A^t , where $[A^t]_{ij} = A_{ji}$
 - * A and A^t are always conformable to product, in both directions
 - A matrix is symmetric if $A = A^t$, antisymmetric if $A = -A^t$

- An antisymmetric matrix has a 0 diagonal and antisymmetrical elements otherwise
- An orthogonal matrix has its invers equal to the transposal, $A^{-1} = A^t$
 - * They are really useful because they can describe a spatial rotation
 - * You can check for orthoganlity by checking that $A * A^t = I$
- Some properties of transpose and inverse matrices $*(AB)^{-1} = B^{-1} * A^{-1}$, but only if $(AB)^{-1}$ exists(!) $*(AB)^t = B^t * A^t$
- It is possible to associate a number called determinant to any square matrix
 - $* det(A) \in R$
 - * For an order 2 square matrix, that is $det(A) = a_{11} * a_{22} a_{12} * a_{21}$