Economics 703: Answers to Mid-Term Exam

Raymond Deneckere

Fall 2004

- 1. Which of the following sets are compact? Which are connected? Substantiate your claim.
 - (a) A finite set in \mathbb{R}^n .

Let $C = \{x_1, ..., x_k\}$ denote the set in question, and let $\{O_{\alpha}\}_{\alpha \in A}$ be an arbitrary open cover of C. For each j = 1, ..., k pick O_{α_j} such that $x_j \in O_{\alpha_j}$. This is possible because $\bigcup_{\alpha \in A} O_{\alpha} \supset C$. Then $\{O_{\alpha_j}\}_{j=1}^k$ is a finite subcover of C. Hence C is compact.

If C consists of a single point, then C is connected. This is because there exists no separation of C: if A and B are two nonempty sets whose union is C, then it must be the case that A = B, i.e. that A and B are not disjoint. If, on the other hand C contains more than one element then C is not connected. Indeed, if A and B are disjoint nonempty sets whose union is C, say $A = \{x_1, ..., x_l\}$ and $B = \{x_{l+1}, ..., x_k\}$, then neither one can contain a limit point of the other. This is because all the points in C are isolated.

(b) The rationals in [0, 1].

Let $C = Q \cap [0, 1]$. Then C is not closed, for all irrational numbers in the unit interval are limit points of a sequence of rationals converging to them (consider the decimal expansion). Hence by the Heine-Borel theorem C is not compact. C is also not connected because the connected subsets of \mathbb{R} are convex.

(c) $C = \{(x, y) \in \mathbb{R}^2 | xy \ge 1\} \cap \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 5\}.$

The set C is not closed, for its northeast boundary is defined by a strict inequality. Hence by the Heine-Borel Theorem C is not compact.

The set C is not connected. Consider $C_1 = \{(x,y) \in \mathbb{R}^2_+ | xy \ge 1\} \cap \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 5\}$ and $C_2 = \{(x,y) \in \mathbb{R}^2 | xy \ge 1\} \cap \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 5\}$. Then $C_1 \ne \emptyset$, $C_2 \ne \emptyset$, $C_1 \cup C_2 = C$. Furthermore, since $d(C_1,C_2) > 0$ neither these sets contains a limit point of the other. We conclude that C_1 and C_2 form a separation of C.

2. Let $A \subset \mathbb{R}$ and $M = \sup A$. Prove of disprove the following claim : M is a limit point of A.

The statement is false, as the following simple counterexample demonstrates. Let $A = [0,1] \cup \{2\}$. Then $\sup A = 2$, but 2 is an isolated point of A.

- 3. Let $\{x_k\}$ be a sequence in \mathbb{R}^n satisfying $||x_k x_l|| \leq \frac{1}{k} + \frac{1}{l}$. Does x_k converge? Why or why not?
 - The sequence $\{x_k\}$ is a Cauchy sequence. Since $\mathbb R$ is complete, the sequence converges to a limit in $\mathbb R$. To see that the sequence is Cauchy, pick $\varepsilon>0$, and let $N>\frac{2}{\varepsilon}$. Then for $k\geq N$ and $l\geq N$ we have $||x_k-x_l||\leq \frac{1}{k}+\frac{1}{l}\leq \frac{2}{N}<\epsilon$.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be given by the rule $f(x) = ax^3 + bx^2 + cx + d$, where a > 0. Show that f has a real root, i.e. there exists $x_0 \in \mathbb{R}$ such that $f(x_0) = 0$. Observe that the function f is continuous (as a polynomial, it is differentiable everywhere, and hence continuous). Since a > 0 we have $\lim_{x \to \infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$. Hence there exists $M < \infty$ such that $f(x) \geq K$ for all $x \geq M$ and $f(x) \leq -K$ for all $x \leq -M$. Since f(-M) < 0 < f(M), it follows from the intermediate value theorem that there exists $x_0 \in (-M, M)$ such that $f(x_0) = 0$.
- 5. Determine whether the "curve" described by the equation $x^2+y+\sin(xy)=0$ can be written in the form y=g(x) in a neighbourhood of (0,0). Can the equation be written in the form x=h(y) in a neighbourhood of (0,0)? Prove your claim.

Let $f(x,y) = x^2 + y + \sin(xy)$. Then $\frac{\partial f}{\partial x} = 2x + y \cos(xy)$ and $\frac{\partial f}{\partial y} = 1 + x \cos(xy)$. These derivatives are continuous, so f is a C^1 function. Hence the conditions for the implicit function theorem to be applicable are satisfied. Since $\cos(0) = 1$ we have $\frac{\partial f}{\partial x}(0,0) = 0$ and $\frac{\partial f}{\partial x}(0,0) = 1$. The condition of the implicit function theorem for y to be expressable as a function of x in a neighborhood of (0,0), namely that $f_y \neq 0$, is therefore satisfied. Indeed, we have $g'(0) = -\frac{f_x}{f_y}(0,0) = 0$.

However, the condition for x to be expressible as a function of y in a neighbourhood of (0,0), namely that $f_x(0,0) \neq 0$, is not satisfied. Hence we cannot conclude that x can be expressed as a function of y in a neighbourhood of (0,0).

To see whether or not this can be done, let us suppose that $y=y_0>0$, and see if there exists a solution in x to the equation $f(x,y_0)=0$. First note that x=0 is not a solution, for $f(0,y_0)=y_0>0$. Next, using a first-order Taylor series expansion of $\sin xy_0$ around x=0, we have $\sin xy_0=y_0\sin(x'y_0)$, for some $x'\in(0,x)$. Hence $f(x,y_0)=x^2+y_0+y_0\sin(x'y_0)$. Now since $\sin(x'y_0)\geq -1$, we see that $f(x,y_0)\geq x^2>0$ for all $x\neq 0$. Hence the equation $f(x,y_0)$ does not have a solution in x for any $y_0>0$.

At the same time, for $y_0 < 0$, we have $f(0, y_0) = y_0 < 0$. Furthermore, since $|\sin(xy_0)| \le 1$, and since $x^2 \to \infty$ for $x \to \pm \infty$, there exists $x_0 < 0$

and $x_1 > 0$ such that $f(x_0, y_0) > 0$ and $f(x_1, y_0) > 0$. It then follows from the intermediate value theorem that there exists $x'_0 \in (x_0, 0)$ and $x'_1 \in (0, x_1)$ such that $f(x'_0, y_0) = f(x'_1, y_1) = 0$. Thus for $y_0 > 0$ there are always two solutions in x for the equation $f(x, y_0) = 0$.

A somewhat quicker (but less insightful) way to see the the same thing goes as follows. Observe that since f is a C^2 function, the function g(x) is actually be a C^2 function. More precisely, since $g'(x) = -\frac{f_x}{f_y}(x,g(x))$ we have $g''(x) = -\frac{(f_{xx} + f_{xy}g')f_y - (f_{yx} + f_{yy}g')f_x}{f_y^2}(x,g(x))$. Using the facts that $f_x(0,0) = 0$, $f_y(0,0) = 1$, $f_{xx}(0,0) = 2$, and g'(0) = 0, we obtain that g''(0) = -2. This means that near x = 0, g(x) behaves like the quadratic $-x^2$. Thus for any $y_0 < 0$ near zero there exists $x'_0 < 0$ and $x'_1 > 0$ close to zero so that $g(x'_0) = g(x'_1) = y_0$, and for $y_0 > 0$ near zero there exists no x near zero so that $g(x) = y_0$.