Flip-Flops

Yuri Kaszubowski Lopes Éverlin Fighera Costa Marques

UDESC

YKL e EFCM (UDESC) Flip-Flops 1/26

Revisão: Schmitt-Trigger

Anotações

Anotações

Revisão: Schmitt-Trigger

Anotações

YKL e EFCM (UDESC) Flip-Flops 3/2

Revisão: Schmitt-Trigger

Texas Instruments (2016)

YKL e EFCM (UDESC

Flip-Flop

4/26

Anotações			

Circuitos

- Combinacionais: Full adder
 - A saída depende exclusivamente da entrada
- Sequenciais: Flip-flops
 - possuem uma memória interna, e a saída pode depender da entrada e do estado da memória.

YKL e EECM (UDESC)

Flin-Flons

5/2

Anotações

Flip-Flops

- Circuito sequencial
- Circuito básico de memória
- Conhecidos como multivibradores biestáveis
 - Possuem dois estados estáveis:
 - * 0 * 1
- Feitos com portas lógicas conectadas com feedback
 - Conectamos determinadas saídas do circuito em determinadas entradas

Símbolo geral de um flip-flop. Adaptado de (TOCCI et al., 2007)

YKL e EFCM (UDESC

Flip-Flop

6/26

Flip-Flops

- Temos duas saídas:

 - Saída normal, Q
 Saída invertida, Q
- Quando Q = 1 e $\overline{Q} = 0$ o flip-flop está em **set**
 - Ao inserir entradas que fazem com que Q = 1 estamos **setando** o flip-flop
- Quando Q=0 e $\overline{Q}=1$ o flip-flop está em ${f reset}$
 - ightharpoonup Ao inserir entradas que fazem com que Q=0 estamos **resetando** o

Símbolo geral de um flip-flop. Adaptado de (TOCCI et al., 2007)

Latches

- Tipo de flip-flop básico
- Podemos construir com portas NAND ou NOR.

YKL	e EF	CM ((UDE	SC)

Anotações

Anotações

Anotações

Latch com NAND

- Construído com duas portas NAND ligadas com feedback
- ullet As entradas (\overline{SET} e \overline{RESET}) normalmente estão em nível lógico alto (1)
 - Exceto quando desejamos trocar o estado do latch

Adaptado de (TOCCI et al., 2007)

Setando o Latch

- O set é feito através de um pulso de nível lógico baixo (0) na entrada SET
 - ► RESET não é alterado e é mantido alto
- Temos dois comportamentos:
 - Caso Q fosse 0 antes do pulso
 Caso Q fosse 1 antes do pulso

Anotações

Setando o Latch: caso Q = 0

- Caso Q fosse 0 antes do pulso
 - ▶ Entre t_0 e t_1 enviamos um pulso de nível baixo em \overline{SET} :
 - * O NAND-1 recebe 0 do \overline{SET} , e 1 de \overline{Q} , logo Q=1* O NAND-2 recebe 1 do \overline{RESET} e 1 de Q, logo $\overline{Q}=0$

Após t_1 o nível em \overline{SET} volta para alto:

- * O NAND-1 recebe 1 do \overline{SET} , e 0 de \overline{Q} , logo Q=1 * O NAND-2 recebe 1 do \overline{RESET} e 1 de Q, logo $\overline{Q}=0$

Anotações

Anotações

Setando o Latch: caso Q = 1

- Caso Q fosse 1 antes do pulso
 - ▶ Entre t_0 e t_1 enviamos um pulso de nível baixo em \overline{SET} :
 - * O NAND-1 recebe 0 do \overline{SET} , e 0 de \overline{Q} , logo Q=1 (i.e., permanece em 1) * O NAND-2 recebe 1 do \overline{RESET} e 1 de Q, logo $\overline{Q}=0$ (i.e., permanece em 0)

Após t_1 o nível em \overline{SET} volta para alto:

- * O NAND-1 recebe 1 do \overline{SET} , e 0 de \overline{Q} , logo Q=1 * O NAND-2 recebe 1 do \overline{RESET} e 1 de Q, logo $\overline{Q}=0$

				'7 [
Α	В	A.B	Ā.B	0 SET
0	0	0	1	to ti
0	1	0	1	
1	0	0	1	1
1	1	1	0	2 0 0
				RESET •
		Δds	nhatne	de (TOCCLet al. 2007)

3			
	·		·

Resetando o Latch

- O reset é feito através de um pulso de nível lógico baixo (0) na entrada RESET

 ► SET não é alterado e é mantido alto

 • Também temos **dois** comportamentos:
- - Caso Q fosse 0 antes do pulso
 Caso Q fosse 1 antes do pulso

Anotações

Resetando o Latch: caso Q = 0

- Caso Q fosse 0 antes do pulso
 - ▶ Entre t_0 e t_1 enviamos um pulso de nível baixo em \overline{RESET} :

 - * O NAND-1 recebe 1 do \overline{RESET} e 0 de Q, logo $\overline{Q}=1$ (i.e., permanece em 1) * O NAND-1 recebe 1 do \overline{SET} , e 1 de \overline{Q} , logo Q=0 (i.e., permanece em 0) Após t_1 o nível em \overline{RESET} volta para alto: * O NAND-1 recebe 1 do \overline{RESET} e 0 de Q, logo $\overline{Q}=1$ * O NAND-1 recebe 1 do \overline{SET} , e 1 de \overline{Q} , logo Q=0

Α	В	A.B	Ā.B	SET • Q
0	0	0	1	
0	1	0	1	10 11
1	0	0	1	
1	1	1	0	1 0 0 1
				0 RESET • t ₀ t ₁
				to ti
		Ad	aptado	de (TOCCI et al., 2007)

Anotações

Resetando o Latch: caso Q = 1

- Caso Q fosse 1 antes do pulso
 - ▶ Entre t_0 e t_1 enviamos um pulso de nível baixo em \overline{RESET} :
 - * O NAND-2 recebe 0 do \overline{RESET} e 1 de \overline{Q} , logo $\overline{Q}=1$ * O NAND-1 recebe 1 do \overline{SET} , e 1 de \overline{Q} , logo Q=0

- * O NAND-1 receive 1 do \overline{SE} , e 1 de \overline{Q} , logo \overline{Q} = 0 Após t_1 o nível em \overline{RESET} volta para alto: * O NAND-2 receive 1 do \overline{RESET} e 0 de \overline{Q} , logo \overline{Q} = 1 * O NAND-1 receive 1 do \overline{SET} , e 1 de \overline{Q} , logo Q = 0

Α	В	A.B	Ā.B	SET Q 1							
0	0	0	1								
0	1	0	1	10 11							
1	0	0	1								
1	1	1	0	1 0 0 1							
				0 RESET 0							
	Adaptado de (TOCCI et al., 2007)										

Set e Reset simultâneos

- Durante o pulso, $Q = \overline{Q} = 0$
 - Uma situação absurda!
- Após o fim do pulso, o resultado vai depender de quem retorna para alto antes (SET ou RESET)
 - Se ambos voltam para alto ao mesmo tempo, n\u00e3o podemos predizer o resultado
 - ▶ De forma geral, enviar um nível lógico baixo para SET e RESET ao mesmo tempo nos levará a comportamentos indesejados e/ou imprevisíveis

Anotações			

VKL & FECM (LIDESC)

Flip-Flo

16/26

Latch com NAND: Resumo

TOCCI et al., 2007

Anotações

YKL e EFCM (UDESC)

Flip-Flops

17/26

Latch com NAND

TOCCI et al., 2007

Anotações

/KL e EFCM (UDESC) Filip-Flops 18:

Exercício

- $\hline \textbf{O} \text{ Considere os sinais de onda retangular abaixo nas entradas } \overline{\textit{SET}} \text{ e} \\ \overline{\textit{RESET}} \text{ de um Latch NAND. Considere que } \textit{Q} \text{ está inicialmente em 0}$

 - Como será o sinal de onda em Q?
 Como será o sinal de onda em Q?

Anotações

Exercício

Resposta parcial

Anotações			

Latch com NOR

- Podemos seguir um raciocínio similar ao utilizado com NAND's para construir um latch com NOR's
 - ▶ Uma das diferenças principais é que SET e RESET ficam em nível lógico
 - Um nível lógico alto é enviado somente quando desejamos enviar um set/reset

Anotações				

Energizando os latches

- ullet Ao energizar um latch, não podemos afirmar se Q=0 ou Q=1
 - ► Depende de alguns fatores
 - Atrasos de propagação do circuitoCapacitâncias parasitas
- Se o latch precisa ser iniciado em determinado estado, como podemos proceder?
 - ► Aciona-se o seu SET/SET ou RESET/RESET ao energizar o latch
 - ► Dependendo se desejamos que o estado inicial seja 0 ou 1

-			

Exercício

- Faça a mesma análise realizada para o latch NAND no latch de NOR's
 ► Compare seus resultados com Tocci et al (2007).

 - Preencha a tabela a seguir com a saída esperada em Q em caso de SET/RESET

- Considere os sinais de onda retangular abaixo nas entradas SET e RESET de um Latch NOR. Considere que Q está inicialmente em 0.
 - Ocomo será o sinal de onda em Q?
 - 2 Como será o sinal de onda em \overline{Q} ?

Anotações

Anotações

Anotações

Utilização de Flip-Flops

- Memórias SRAM (Static random-access memory) comumente são construídas com flip-flops
 - E.g., memória cache e registradores da CPU

Core i7-8700K 6 Cores e 12MB de Cache

3 3		

Referências

- TOCCI, R.J.; MOSS, G.L.; WIDMER,N.S. **Digital Systems: Principles and Applications**. 12a ed, Prentice-Hall, 2016.
- TOCCI, R.J.; WIDMER, N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011.
- TANENBAUM, A.S. Organização estruturada de computadores. 5. ed.

São Paulo: Pearson, 2007. BIGNELL, J., DONOVAN, R. Eletrônica Digital. Cengage do Brasil, 2010 MELO, M. Eletrônica Digital. Makron Books.2003. Texas Instruments. SNx414 and SNx4LS14 Hex Schmitt-Trigger Inverters, 2016.			- - -	
			-	
YKL e EFCM (UDESC)	Flip-Flops	25/26		
			Α	unotações
			_	•
			_	
			_	
			-	
			-	
			-	
			_	
			А	notações
			_	
			_	
			_	
			_	
			_	

Anotações