Réduction de bruit active

Thomas RAYNAUD & Mohamed HSAINI

Contexte

Qu'est ce que c'est?

Mise en place d'un système de réduction de bruit active :

- Traitement audio qui filtre un son parasite.
- Résultat exploratoire.
- Système adaptatif :
 - Générer un signal opposé au signal d'origine.

Cas d'usage:

- Casque à réduction de bruit : réduire le son dans les moyens de transports.
- Dans certaines professions : améliorer l'intelligibilité dans des environnements industriels bruyants.

Choix d'implémentation

Circulation des échantillons

- Utilisation d'un bruit blanc en entrée.
- Implémentation d'un buffer circulaire.
- Principe de FIFO (first in first out).

• Deux façons de le modéliser :

- Filtre inconnu FIR -

- o un câble jack-to-jack.
- o coefficient multiplicateur k.

 $v[n] = 0.44 * \sum C_{x[i]} // en supposant les coefficients constants$

y[i] = x[num_coefficient-1] *coefficient[i]

Puis sa pondération est déterminée :

coefficient[i] = coefficient[i] + (\(\mu^*\)erreur*x[num_coefficient-1])

Calcul de l'erreur

- Soustraction pour chaque échantillon.
 erreur = signal_sortie signal_de_reference
- Rapidité de convergence de l'erreur pilotée par le coefficient μ.

Ce que l'on en tire

Point dur

Remplacer le "filtre inconnu" par un casque qui émet un signal dans un microphone.

- Difficultés: à régler le gain.
- **Solution** : utilisation d'un son généré virtuellement.

Perspectives d'amélioration

- Remplacer le bruit blanc par un canal casque/microphone
- Implémentation de FxLMS :
 - Convergence plus rapide.
 - Traitement d'environnements complexes.
- Cas d'application :
 - Casque à réduction de bruit.
 - Salle insonorisée.

