

Chamada

Roteiro de hoje!

- Definição
- + Exemplo de árvore de decisão
- + Geração da árvore de decisão
- → Métricas utilizadas para selecionar a melhor divisão
- + Avaliação do desempenho em Árvore de Decisão
- Atividade

Árvores de Decisão

Definição

Utiliza a estratégia dividir para conquistar.

 Um problema complexo é dividido em problemas mais simples (subproblemas).

 Para cada subproblema é aplicada uma mesma estratégia recursivamente

Algortimos

- ID3 (Quilan, 1979).
- **♦** CART (Breiman et al., 1984).
- C4.5 (J48 no Weka) (Quilan, 1993).

Árvores de Decisão Decision Node Sub-Tree Decision Node Decision Node Leaf Leaf Leaf Decision Node Node Node Node Leaf Leaf Node Node

Akinator

Esquema da Tarefa de Classificação

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

TID	Attrib 1	Attrib2	Attrib3	Class
11	No	Small	55k	?
12	Yes	Medium	80k	?
13	Yes	Large	95k	?
14	No	Small	95k	?
15	No	Large	67k	?

Exemplos de Árvore de Decisão

categorico categorico ntinuo classe

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

Modelo: Árvore de Decisão

Exemplos de Árvore de Decisão

Exemplos de Árvore de Decisão

catedorico catedorico chilo classe

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

Pode existir mais de uma árvore de decisão adequada para os mesmos dados!

Aplicando o Modelo aos Dados de Teste

Início na raiz da árvore.

Training Set

Employed	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Aplicando o Modelo aos Dados de Teste

Indução de Árvores de Decisão

Características

- Pequenas árvores de decisão são muito fáceis de interpretar.
- → A construção de árvores é computacionalmente barata mesmo para uma grande quantidade de dados.
- A classificação dos dados de testes em uma árvore de decisão é extremamente rápida.
- Os algoritmos de árvores de decisão são bastante robustos para a presença de ruídos, especialmente quando possuem métodos para evitar o *overfitting*.
- → A presença de atributos redundantes afeta negativamente a acurácia de árvores de decisão.

Indução de Árvores de Decisão

- Estratégia Gulosa (Greedy).
 - → Particionar os registros baseado no teste de um atributo que otimiza um certo critério.
- Problemas:
 - Determinar como particionar os registros.
 - Como especificar a condição de teste para o atributo?
 - ◆ Como determinar qual é o melhor particionamento?
- ◆ Determinar quando parar de particionar.

Indução de Árvores de Decisão

- Depende do tipo do atributo
 - Nominal
 - cor, identificação, profissão,
 - Ordinal
 - gosto (ruim, médio, bom), dias da semana, ...
 - Contínuo (numérico)
 - peso, tamanho, idade, temperatura, ...
- Depende do número de ramos para particionar
 - Particionamento em 2 ramos.
 - Particionamento em n ramos.

Particionamento em Atributos Contínuos

- Diferentes maneiras de tratar:
 - → Discretização para transformar em um atributo categórico ordinal.
 - ★ Estático discretizado uma vez no início.
 - → Dinâmico intervalos podem ser achados por particionamento em intervalos iguais, em frequências iguais, ou agrupamento.
 - **↑** Teste Binário: (A < v) ou (A ≥ v)
 - → Considera todos os possíveis pontos de corte e procura o melhor.

Para Determinar o Melhor Ponto de

Particionamento

Grau de impureza

Para Determinar o Melhor Ponto de Particionamento

- Abordagem Gulosa:
 - → Nodos com distribuição homogênea de classes são preferidos.
- ♦ Necessita de uma métrica para medir a impureza do nodo:

C0: 5 C1: 5

Não-homogêneo Alto grau de impureza C0: 9
C1: 1

Homogêneo Baixo grau de impureza

Classificação

Métricas Utilizadas para Selecionar a Melhor Divisão

Métricas para Avaliar a Impureza de Nodos

Índice Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_{i}}{n} GINI(i)$$

Entropia

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

♦ Erros de classificação

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Métricas de Impureza: GINI

Índice Gini para um dado nodo t :

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

(NOTA: $p(j \mid t)$ é a frequência relativa da classe j no nodo t).

Máximo (1 - $1/n_c$) quando registros são igualmente distribuidos entre todas as classes, implicando na informação menos interessante.

Mínimo (0.0) quando todos os registros pertencem a uma única classe, implicando na informação mais interessante.

C1	0
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Particionamento baseado no Índice GINI

- Usado pelos algoritmos CART, SLIQ, SPRINT.
- Quando um nodo p é particionado em k partições (filhos), a qualidade do particionamento é calculado por,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

onde, n_i = número de registros no filho i, n_i = número de registros no nodo p.

Atributos Categóricos: Calculando o GINI

catedorico catedorico chasse

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

Gini =
$$1 - (3/3)^2 - (0/3)^2$$

Gini = $1 - 1 - 0$
Gini = $0,0$

Gini =
$$1 - (3/7)^2 - (4/7)^2$$

Gini = $1 - 9/49 - 16/49$
Gini = $(49 - 9 - 16)/49$
Gini = $0,49$

Gini_{split} =
$$(3/10)*0,0 + (7/10)*0,49$$

Gini_{split} = $0 + 0,34$
Gini_{split} = $0,34$

Atributos Categóricos: Calculando o GINI

; C		CiO	
* edoric	. adhri	oili	CP
x (?)	× (2)		

	X	×		
TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Gini =
$$1 - (3/3)^2 - (0/3)^2$$

Gini = $1 - 1 - 0$
Gini = $0,0$

Gini =
$$1 - (3/7)^2 - (4/7)^2$$

Gini = $1 - 9/49 - 16/49$
Gini = $(49 - 9 - 16)/49$
Gini = $0,49$

Gini_{split} =
$$(3/10)*0,0 + (7/10)*0,49$$

Gini_{split} = $0 + 0,34$
Gini_{split} = $0,34$

Atributos Categóricos: Calculando o GINI

catedorico catedorico atinuo classe

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

 $Gini_{split} = 0,3$

Atributos Contínuos: Calculando Índice GINI

- Classificar valores existentes.
- Pesquisar linearmente estes valores, apurando a população envolvida, e calculando o índice GINI.
- ♦ Escolher a posição de particionamento que apresenta o menor índice GINI.

	Calote		N		N		N		S		S		S	}	N		١	١	١	1		N	
											Ren	dim.	Trib	utáv	eis								
Valores Ordenados ————			60		70)	7!	5	85	5	90)	9	5	10	0	12	20	12	25		220	
Posições de particionamento -		5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	72	23	30
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	S	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	N	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	343	0.4	17	0.4	00	<u>0.3</u>	<u>800</u>	0.3	43	0.3	75	0.4	100	0.4	120

Induzindo o 2º Nível da Árvore de Decisão

Induzindo o 2º Nível da Árvore de Decisão

catedorico catedorico ntinuo classe

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

Medidas para Selecionar a Melhor Divisão

- As medidas são baseadas no grau de impureza dos nodos filhos.
- ♦ Quanto menor o grau de impureza mais distorcida será a distribuição da classe.
- Por exemplo:
 - → Um nodo com classe de distribuição uniforme (0,1) tem impureza zero.
 - ♦ Um nodo com distribuição de classe uniforme (0.5,0.5) possui uma impureza mais alta.

Comparação entre as medidas de impurezas para problemas de classificação binária

Medidas para Selecionar a Melhor Divisão

♦ Determine o Gini, a Entropia e o Erro dos nodos abaixo.

Nodo N ₁	Quant
Classe=0	0
Classe=1	6

Nodo N ₁	Quant
Classe=0	1
Classe=1	5

Nodo N ₁	Quant
Classe=0	3
Classe=1	3

Árvores de Decisão

Vantagens

- Simples de visualizar e entender
- Não necessita muita preparação para os dados (pre-processamento), tais como normalização
 - Apenas não aceita valores faltantes
- O custo é logaritmo a quantidade de dados usados para treinar a árvore
- Suporta dados numéricos e categóricos.
- Modelo caixa branca: fácil interpretação
- Possível reproduzir o modelo utilizando testes estatísticos

Árvores de Decisão

Desvantagens

- Indutores de árvores de decisão podem criar modelos muito complexos que não generalizam bem todos os dados (overfitting)
 - Para evitar esse problema deve ser definido um número mínimo de objetos nos nodos folhas ou um número máximo de profundidade da árvore
- Pequenas variações no dataset podem gerar modelos instáveis
 - + Esse problema pode ser atenuado usando árvore de decisão em conjuntos menores.
- → Podem criar modelos tendenciosos a classes dominantes (bias)
 - Recomenda-se equilibrar o conjunto de dados ante de ajustar a árvore de decisão.

Classificação

Avaliando o Desempenho de um

Classificador

Avaliação de Desempenho

Matriz de Confusão:

	CLASSE PREVISTA						
CLASSE REAL		Classe=SIM	Classe=NAO				
	Classe=SIM	a (TP)	b (FN)				
	Classe=NAO	C (FP)	d[sep](TN)				

a: **TP** (true positive)
verdadeiro positivo
b: **FN** (false negative)
falso negativo

c: FP (false positive)falso positivod: TN (true negative)verdadeiro negativo

catedorico catedorico atinuo classe

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Set

	CLASSE PREVISTA					
CLASSE		Classe=SIM	Classe=NAO			
REAL	Classe=SIM	3	0			
	Classe=NAO	0	7			

Acurácia = 100%

	CLASSE PREVISTA					
CLASSE		Classe=SIM	Classe=NAO			
REAL	Classe=SIM	3 (TP)	0 (FN)			
	Classe=NAO	4	3			
		(FP)	(TN)			

- PAcuracy: (TP+TN)/(TP+FN+FP+TN) = 60%
 - Percentual de acertos.
- Recall (sensibilidade): TP/(TP+FN) = 100%
 - Representa as instâncias que deveriam ser da classe **s** mas foram classificadas na classe **n**. Mais direcionado para a classe real.

	CLASSE PREVISTA						
CLASSE		Classe=SIM	Classe=NAO				
REAL	Classe=SIM	3 (TP)	0 (FN)				
	Classe=NAO	4	3				
		(FP)	(TN)				

- Precision (especificidade): TP/(TP+FP) = 43%
 - Representa as instâncias que deveriam ser da classe N mas foram classificadas na classe S.
 Direcionado para a classe prevista
- + F1-Score: (2×(Recall×Precision))/(Recall+Precision) = 60,14%
 - Equilíbrio entre Precision e Recall
 - Representa a distribuição de classe desigual

- Acuracy:
 - → Percentual de acertos.
 - (TP+TN)/(TP+FN+FP+TN) = 60%

- Recall (sensibilidade):
 - + TP/(TP+FN) = 100%
- Precision (especificidade):
 - + TP/(TP+FP) = 43%
- → F1-Score: (2×(Recall×Precision))/(Recall+Precision) = 60,14%

	CLASSE PREVISTA					
CLASSE		Classe=SIM	Classe=NAO			
REAL	Classe=SIM	3 (TP)	0 (FN)			
	Classe=NAO	4	3			
		(FP)	(TN)			

catedolico catedolico continuo classe

TID	Employed	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Employed					
Yes/		No			
No		Yes			

	CLASSE PREVISTA				
CLASSE REAL		Classe=SIM	Classe=NAO		
	Classe=SIM	3	0		
	Classe=NAO	4	3		

Acurácia = 60%

Training Set

Sensibilidade (*Recall*) = 100% (percentual de positivos pegos)

Especificidade (*Precision*) = 43% (percentual de negativos pegos)

Exercício

- ◆ Utilize o dataset zoo_2.csv e execute o algoritmo utilizando o método holdout, reservando apenas 20% dos dados para teste.
- ◆ Gere a matriz de confusão para os datasets de treino e teste.
- ◆ Compute as métricas (precision, recall e f1-score) para os conjutos de treino e teste.
- ◆ Avalie e compare os resultados obtidos pelo dataset de treino e teste e identifique se houve overfitting, underfitting ou se o modelo induzido gerado é adequado para utilizar em dados não vistos.
- Caso os resultados não estejam bons, altere os parâmetros do algoritmo para tentar melhorar o desempenho do modelo.

Créditos

- Adaptação dos slides de Pang-Ning Tan
 - Michigan State University
 - http://www.cse.msu.edu/~ptan/
 - ptan@cse.msu.edu
- Adaptação dos slides de Eamon Keogh
 - University of California at Riverside
 - http://www.cs.ucr.edu/~eamonn/
 - <u>eamonn@cs.ucr.edu</u>
- Adaptação dos slides de Ricardo Campello e Eduardo Hruschka
 - Universidade de São Paulo (ICMC)
- Adaptação dos slides de Rodrigo Barros
 - Pontifícia Universidade Católica do Rio Grande do Sul (PPGCC)

Referências

- Breiman, L., Freidman, J., Olshen, R. e Stone, C. (1984). Classification and Regression Trees.
 Wadsworth International Group., USA.
- ◆ Faceli, K.; Lorena, A.C.; Gama, J.; de Carvalho, A.C.P.L.F. Inteligência Artificial: Uma abordagem de aprendizado de máquina. LTC, Rio de Janeiro, 2011.
- Quilan, R. (1979). Discovering rules by induction from large collections of examples. In:
 Michie, D. (Ed.) Expert Systems in the Microelectronic Age, p. 168-201. Edinburgh
 University Press.
- Quilan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
 Inc., San Mateo, CA, USA.
- ♦ TAN, P-N; STEINBACH, M.; KUMAR, V. Introduction to Data Mining. Pearson, 2006.

Referências

- https://medium.com/data-hackers/%C3%A1rvore-de-decis%C3%A3o-88c7d0fd7a31
- https://scikit-learn.org/stable/modules/tree.html

