Category theory notes

Angus Rush

April 27, 2018

Contents

1	Basic category theory 4						
	1.1	Categories	4				
		1.1.1 Basic definitions	4				
		1.1.2 Building new categories	5				
		1.1.3 Properties of morphisms	6				
	1.2		8				
	1.3	Natural transformations	0				
	1.4		7				
			7				
		S C C C C C C C C C C C C C C C C C C C	8				
	1.5	· · · · · · · · · · · · · · · · · · ·	0				
2	Cartesian closed categories 26						
	2.1	Cartesian closed categories	6				
	2.2	8	26				
	2.3		9				
	2.4		0				
	2.5	-	2				
	2.6	1	3				
3	Hom functors and the Yoneda lemma 34						
	3.1	The Hom functor					
	3.2		8				
	3.3	1	8				
	3.4		1				
4	Limits 44						
•	4.1	Limits and colimits	-				
	4.2	Pullbacks and kernels					
	4.3		0				
	4.4		3				
	4.5	•	55				
	4.6		6				
5	Adj	unctions 5	8				
_			4				
6	Monoidal categories646.1 Structure64						
	6.1						
			4				
		,	8				
		n i a praided monoidal categories 6	×				

		6.1.4	Symmetric monoidal categories	. 71			
	6.2	Interna	al hom functors	. 72			
		6.2.1	The internal hom functor	. 72			
		6.2.2	The evaluation map	. 76			
		6.2.3	The composition morphism	. 77			
		6.2.4	Dual objects	. 77			
7	Abelian categories						
	7.1	Additi	ve categories	. 81			
	7.2	Pre-ab	elian categories	. 82			
	7.3	Abelia	n categories	. 85			
	7.4	Exact s	sequences	. 89			
	7.5	Length	n of objects	. 89			
8	Tensor Categories						
9	Internalization						
	0.1 Internal groups						

1 Basic category theory

I will do my best to stick to the conventions used at the nLab ([20]).

1.1 Categories

1.1.1 Basic definitions

Definition 1 (category). A category C consists of

- a class Obj(C) of objects, and
- for every two objects $A, B \in \text{Obj}(\mathbb{C})$, a class Hom(A, B) of *morphisms* with the following properties.
 - 1. For $f \in \text{Hom}(A, B)$ and $g \in \text{Hom}(B, C)$, there is an associated morphism

$$g \circ f \in \text{Hom}(A, C)$$
,

called the *composition* of f and g.

- 2. This composition is associative.
- 3. For every $A \in \text{Obj}(C)$, there is at least one morphism 1_A , called the *identity morphism* which functions as both a left and right identity with respect to the composition of morphisms.

If ever it is potentially unclear which category we are talking about, we will add a subscript to Hom, writing for example $\operatorname{Hom}_{\mathbb{C}}(A, B)$ instead of $\operatorname{Hom}(A, B)$.

Note 2. There is a reason we say that the objects and morphisms of a category are a *class* rather than a set. It may be that there may be 'too many' objects to be contained in a set. For example, we will see that there is a category of sets, but there is no set of all sets. We will for the most part sidestep foundational questions of size, but in some cases it will be unavoidable. In particular, categories whose objects and/or morphisms *are* small enough to be contained in a set will play an especially important role.

Notation 3. Following Aluffi ([10]), we will use the sans serif font mathsf to denote categories. For example C, Set.

Notation 4. The identity morphism 1_A is often simply denoted by A. We will avoid this in the earlier chapters since it is potentially confusing, but use it freely in later chapters.

Example 5. The prototypical category is Set, the category whose objects are sets and whose morphisms are set functions.

Example 6 (category with one object). The category 1, where Obj(1) is the singleton $\{*\}$, and the only morphism is the identity morphism $id_*: * \to *$.

Example 7. Pretty much all standard algebraic constructions naturally live in categories. For example, we have

- the category Grp, whose objects are groups and whose morphisms are group homomorphisms;
- the category Ab, whose objects are abelian groups and whose morphisms are group homomorphisms;
- the category Ring, whose objects are rings and whose morphisms are ring homomorphisms;
- the category *R*-Mod, whose objects are modules over a ring *R* and whose morphisms are module homomorphisms;
- the category $Vect_k$, whose objects are vector spaces over a field k and whose morphisms are linear maps;
- the category FinVect_k, whose objects are finite-dimensional vector spaces over a field *k* and whose morphisms are linear maps;
- the category k-Alg, whose objects are algebras over a field k and whose morphisms are algebra homomorphisms.

Example 8. In addition to algebraic structures, categories help to formulate geometric structures, such as

- the category Top, whose objects are topological spaces and whose morphisms are continuous maps;
- the category Met, whose objects are metric spaces and whose morphisms are metric maps;
- the category Man^p , whose objects are manifolds of class C^p and whose morphisms are p-times differentiable functions;
- the category SmoothMfd, whose objects are C^{∞} manifolds and whose morphisms are smooth functions

and many more.

1.1.2 Building new categories

Here are a few ways we can use existing categories to create new ones.

Definition 9 (opposite category). Let C be a category. The <u>opposite category</u> C^{op} is the category whose objects are the same as the objects Obj(C) and whose morphisms $f \in Hom_{C^{op}}(A, B)$ are defined to be the morphisms $Hom_C(B, A)$.

That is to say, the opposite category is the category one gets by formally reversing all the arrows in a category. If $f \in \text{Hom}_{\mathbb{C}}(A, B)$, i.e. $f : A \to B$, then in \mathbb{C}^{op} , $f : B \to A$.

Definition 10 (product category). Let C and D be categories. The <u>product category</u> $C \times D$ is the category whose

• objects are ordered pairs (C, D), where $C \in \text{Obj}(C)$ and $D \in \text{Obj}(D)$, whose

- morphisms are ordered pairs (f, g), where $f \in \operatorname{Hom}_{\mathbb{C}}(C_1, C_2)$ and $g \in \operatorname{Hom}_{\mathbb{D}}(D_1, D_2)$, in which
- composition is taken componentwise, so that

$$(f_1, q_1) \circ (f_2, q_2) = (f_1 \circ q_1, f_2 \circ q_2),$$

and

• the identity morphisms are given in the obvious way:

$$1_{(C,D)} = (1_C, 1_D).$$

Definition 11 (subcategory). Let C be a category. A category S is a subcategory of C if

- The objects Obj(S) of S are a subcollection of the objects of C
- For $S, T \in \text{Obj}(S)$, the morphisms $\text{Hom}_S(S, T)$ are a subcollection of the morphisms $\text{Hom}_C(S, T)$ such that
 - ∘ for every $S \in \text{Obj}(S)$, the identity $1_C \in \text{Hom}_S(S, S)$.
 - ∘ for all $f \in \text{Hom}_S(S, T)$ and $g \in \text{Hom}_S(T, U)$, the composite $g ∘ f ∈ \text{Hom}_S(S, U)$.

If S is a subcategory of C, we will write $S \subseteq C$.

Definition 12 (full subcategory). Let C be a category, $\mathcal{I}: S \hookrightarrow C$ a subcategory. Write $S \subset C$ We say that S is <u>full</u> in C if for every $S, T \in \mathrm{Obj}(S)$, $\mathrm{Hom}_S(S,T) \simeq \mathrm{Hom}_C(S,T)$. That is, if there are no morphisms in $\mathrm{Hom}_C(S,T)$ which cannot be written $\mathcal{I}(f)$ for some $f \in \mathrm{Hom}_S(S,T)$.

Example 13. Recall that $Vect_k$ is the category of vector spaces over a field k, and $FinVect_k$ is the category of finite dimensional vector spaces.

It is not difficult to see that $FinVect_k \subset Vect_k$: all finite dimensional vector spaces are vector spaces, and all linear maps between finite-dimensional vector spaces are maps between vector spaces. In fact, since for V and W finite-dimensional, one does not gain any maps by moving from $Hom_{FinVect_k}(V, W)$ to $Hom_{Vect_k}(V, W)$, $FinVect_k$ is even a *full* subcategory of $Vect_k$.

1.1.3 Properties of morphisms

Category theory has many essences, one of which is as a major generalization of set theory. With this in mind, it would be nice to be able to upgrade definitions and theorems about functions between sets to definitions and theorems about morphisms between objects. It is here that we run into our first major challenge: in general, the objects of a category are *not* sets, so we cannot talk about their elements. We therefore have to find definitions which we can give purely in terms objects and morphisms between them.

Definition 14 (isomorphism). Let C be a category, $A, B \in \text{Obj}(C)$. A morphism $f \in \text{Hom}(A, B)$ is said to be an isomorphism if there exists a morphism $g \in \text{Hom}(B, A)$ such that

$$g \circ f = 1_A$$
, and $f \circ g = 1_B$.

If we have an isomorphism $f: A \to B$, we say that A and B are isomorphic, and write $A \simeq B$.

Definition 15 (monomorphism). Let C be a category, $A, B \in \text{Obj}(C)$. A morphism $f: A \to B$ is said to be a monomorphism if for all $Z \in \text{Obj}(C)$ and all $g_1, g_2: Z \to A$, $f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$.

$$Z \xrightarrow{g_1} A \xrightarrow{f} B$$

Note 16. When we wish to notationally distinguish monomorphisms, we will denote them by hooked arrows: if $f: A \to B$ is mono, we will write

$$A \stackrel{f}{\longleftrightarrow} B$$
.

Theorem 17. In Set, a morphism is a monomorphism precisely when it is injective.

Proof. Suppose $f: A \to B$ is a monomorphism. Then for any set Z and any maps $g_1, g_2: Z \to A$, $f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$. In particular, take $Z = \{*\}$ and suppose $g_1(*) = a_1$ and $g_2(*) = a_2$. Then $(f \circ g_1)(*) = f(a_1)$ and $(f \circ g_2)(*) = f(a_2)$, so

$$f(a_1) = f(a_2) \implies a_1 = a_2.$$

But this is exactly the definition of injectivity.

Now suppose that f is injective. Then for any Z and g_1 , g_2 as above,

$$(f \circ g_1)(z) = (f \circ g_2)(z) \implies g_1(z) = g_2(z)$$
 for all $z \in Z$.

But this means that $g_1 = g_2$, so f is mono.

Example 18. In Vect_k, monomorphisms are injective linear maps.

Definition 19 (epimorphism). Let C be a category, $A, B \in \text{Obj}(C)$. A morphism $f: A \to B$ is said to be a <u>epimorphism</u> if for all $Z \in \text{Obj}(C)$ and all $g_1, g_2: B \to Z$, $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$.

$$A \xrightarrow{f} B \xrightarrow{g_1} Z$$
.

Notation 20. We will denote epimorphisms by two-headed right arrows. That is, if $f: A \to B$ is epi, we will write

$$A \stackrel{f}{\longrightarrow} B$$

Theorem 21. *In* Set, *epimorphisms are precisely surjections.*

Proof. Suppose $f: A \to B$ is an epimorphism. Then for any set Z and maps $g_1, g_2: B \to Z$, there $g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$. In particular, this is true if $Z = \{0, 1\}$, and g_1 and g_2 are as follows.

$$g_1 \colon b \mapsto 0 \quad \text{for all } b; \qquad g_2 \colon b \mapsto \begin{cases} 0, & b \in \text{im}(f) \\ 1, & b \notin \text{im}(f). \end{cases}$$

But then $g_1 \circ f = g_2 \circ f$, so $g_1 = g_2$ since f is epi. Hence, im(f) = B, so f is surjective. \square

Example 22. In Vect $_k$, epimorphisms are surjective linear maps.

Note 23. In Set, isomorphisms are bijections, bijections are injective surjections, and injective surjections are monic epimorphisms, so a morphism is an isomorphism if and only if it is a monomorphism and an epimorphism. This is *not* true in general: a morphism can be monic and epic without being an isomorphism.

Take, for example, the category Top, whose objects are topological spaces and whose morphisms are continuous maps. In order for a morphism f to be monic and epic, it is necessary only that it be injective and surjective, i.e. it must have a set-theoretic inverse. However its inverse does not have to be continuous, and therefore may not be a morphism in Top.

Set theory has some foundational annoyances: not every collection of sets is small enough to be a set, for example. Category theory has its own foundational issues, which for the most part we will avoid. However, there are a few important situations in which foundational questions of size play an unavoidably important role.

Definition 24 (small, locally small, hom-set). A category C is

- small if Obj(C) is a set and for all objects $A, B \in Obj(C)$, $Hom_C(A, B)$ is a set.
- <u>locally small</u> if for all $A, B \in \text{Obj}(C)$, $\text{Hom}_{C}(A, B)$ is a set. In this case, we call $\text{Hom}_{C}(A, B)$ the <u>hom-set</u>. (Actually, terminology is often abused, and $\text{Hom}_{C}(A, B)$ is called a hom-set even if it is not a set.)

Example 25. Here is a slightly whimsical example of a category, which will turn out to have great relevance for Deligne's theorem.

Let G be a group. Let us create a category G which behaves like this group.

- Our category G has only one object, called *.
- The set Hom_G(*, *) is equal to the underlying set of the group *G*, and for *f*, *g* ∈ Hom_G(*, *), the compositions *f* ∘ *g* = *f* · *g*, where · is the group operation in *G*. The identity *e* ∈ *G* is the identity morphism 1* on *.

$$f \overset{g}{\underset{*}{\bigcirc}} * pe=1_*$$

$$\underset{g \circ f}{\downarrow}$$

Note: since each $q \in G$ has an inverse, every morphism in G is an isomorphism.

1.2 Functors

Just as morphisms connect objects in the same category, functors allow us to connect different categories. In fact, functors can be viewed as morphisms in a 'category of categories.'

Definition 26 (functor). Let C and D be categories. A $\underline{\text{functor}}$ \mathcal{F} from C to D is a mapping which associates

- to each object $X \in \text{Obj}(C)$ an object $\mathcal{F}(X) \in \text{Obj}(D)$.
- to each morphism $f \in \text{Hom}(X, Y)$ a morphism $\mathcal{F}(f)$ such that $\mathcal{F}(1_X) = 1_{\mathcal{F}(X)}$ for all X, and one of the two following properties are satisfied.

∘ The morphism $f \in \text{Hom}(\mathcal{F}(X), \mathcal{F}(Y))$ and if $f : X \to Y$ and $g : Y \to Z$, then

$$\mathcal{F}(g\circ f)=\mathcal{F}(g)\circ\mathcal{F}(f).$$

In this case we say that \mathcal{F} is covariant.

• The morphism $f \in \text{Hom}(\mathcal{F}(Y), \mathcal{F}(X))$, and if $f: X \to Y$ and $g: Y \to Z$, then

$$\mathfrak{F}(g\circ f)=\mathfrak{F}(f)\circ \mathfrak{F}(g).$$

In this case, we say that \mathcal{F} is contravariant.

Notation 27. We will typeset functors with calligraphic letters using the font euca1, and notate them with squiggly arrows. For example, if C and D are categories and $\mathcal F$ is a functor from C to D, then we would write

$$\mathcal{F} \colon \mathsf{C} \leadsto \mathsf{D}.$$

Note 28. One can also define a contravariant functor $C \rightsquigarrow D$ as a covariant functor $C^{op} \rightsquigarrow D$. *Note* 29. When the adjective is unspecified, a *functor* will mean a *covariant functor*.

Example 30. Let 1 be the category with one object * (Example 6). Let C be any category. Then for each $X \in \text{Obj}(C)$, we have the functor

$$\mathcal{F}_X$$
: 1 \leadsto C; $\mathcal{F}(*) = X$, $\mathcal{F}(\mathrm{id}_*) = \mathrm{id}_X$.

Example 31. Recall that Grp is the category of groups. Denote by CRing the category of commutative rings.

The following are functors CRing ↔ Grp.

- GL_n , which assigns to each commutative ring the group of all $n \times n$ matrices with nonzero determinant, and to each morphism $f: K \to K'$ the homomorphism $GL_n(K) \to GL_n(K')$ which maps a matrix with entries in K to a matrix with entries in K' by mapping each entry individually.
- $(\cdot)^*$, which maps each commutative ring K to its group of units K^* , and each morphism $K \to K'$ to its restriction to K^* .

One of the nice things about functors is that they map commutative diagrams to commutative diagrams. For example, if \mathcal{F} is a contraviariant functor, then one might see the following.

Definition 32 (full, faithful). Let C and D be locally small categories (Definition 24), and let $\mathcal{F}: C \rightsquigarrow D$. Then \mathcal{F} induces a family of set-functions

$$\mathcal{F}_{X,Y} \colon \operatorname{Hom}_{\mathbb{C}}(X,Y) \to \operatorname{Hom}_{\mathbb{D}}(\mathcal{F}(X),\mathcal{F}(Y)).$$

We say that \mathcal{F} is

• full if $\mathcal{F}_{X,Y}$ is surjective for all $X, Y \in \text{Obj}(\mathbb{C})$

- faithful if $\mathcal{F}_{X,Y}$ is injective for all $X, Y \in \text{Obj}(\mathbb{C})$,
- fully faithful if \mathcal{F} is full and faithful.

Note 33. Fullness and faithfulness are *not* the functorial analogs of surjectivity and injectivity. A functor between small categories can be full (faithful) without being surjective (injective) on objects. Instead, we have the following result.

Lemma 34. A fully faithful functor is injective on objects up to isomorphism. That is, if \mathfrak{F} : $C \rightsquigarrow D$ is a fully faithful functor and $\mathfrak{F}(A) \simeq \mathfrak{F}(B)$, then $A \simeq B$.

Proof. Let $\mathcal{F}: \mathbb{C} \leadsto \mathbb{D}$ be a fully faithful functor, and suppose that $\mathcal{F}(A) \simeq \mathcal{F}(B)$. Then there exist $f': \mathcal{F}(A) \to \mathcal{F}(B)$ and $g': \mathcal{F}(B) \to \mathcal{F}(A)$ such that $f' \circ g' = 1_{\mathcal{F}(B)}$ and $g' \circ f' = 1_{\mathcal{F}(A)}$. Because the function $\mathcal{F}_{A,B}$ is bijective it is invertible, so there is a unique morphism $f \in \mathrm{Hom}_{\mathbb{C}}(A,B)$ such that $\mathcal{F}(f) = f'$, and similarly there is a unique $g \in \mathrm{Hom}_{\mathbb{C}}(B,A)$ such that $\mathcal{F}(g) = g'$.

Now,

$$1_{\mathcal{F}(A)} = g' \circ f' = \mathcal{F}(g) \circ \mathcal{F}(f) = \mathcal{F}(g \circ f),$$

and since \mathcal{F} is injective, we must have $g \circ f = 1_A$. Identical logic shows that we must also have $f \circ g = 1_B$. Thus $A \simeq B$.

Definition 35 (essentially surjective). A functor $\mathcal{F}: C \rightsquigarrow D$ is <u>essentially surjective</u> if for every $A' \in Obj(D)$, there exists $A \in Obj(C)$ such that $A' \simeq \mathcal{F}(A)$.

Example 36 (diagonal functor). Let C be a category, $C \times C$ the product category of C with itself. The diagonal functor $\Delta \colon C \rightsquigarrow C \times C$ is the functor which sends

- each object $A \in \text{Obj}(C)$ to the pair $(A, A) \in \text{Obj}(C \times C)$, and
- each morphism $f: A \to B$ to the ordered pair

$$(f, f) \in \operatorname{Hom}_{C \times C}(A \times B, A \times B).$$

Definition 37 (bifunctor). A <u>bifunctor</u> is a functor whose domain is a product category (Definition 10).

Example 38. Recall Example 25. Let G be a group, and G the category which mimics it.

Then functors ρ : $G \rightsquigarrow Vect_k$ are k-linear representations of G!

To see this, let us unwrap the definition. The functor ρ assigns to $* \in \text{Obj}(G)$ an object $\rho(*) = V \in \text{Obj}(\text{Vect})$, and to each morphism $g: * \to *$ a morphism $\rho(g): V \to V$. This assignment sends units to units, and this composition is associative.

1.3 Natural transformations

Saunders Mac Lane, one of the fathers of category theory, used to say that he invented categories so he could talk about functors, and he invented functors so he could talk about natural transformations. Indeed, the first paper ever published on category theory, published by Eilenberg and Mac Lane in 1945, was titled "General Theory of Natural Equivalences." [23]

Natural transformations provide a notion of 'morphism between functors.' They allow us much greater freedom in talking about the relationship between two functors than equality.

Here is an example which motivates the definition of a natural transformation. Let A and B be sets. There is an isomorphism from $A \times B$ to $B \times A$ which is given by switching the order of the ordered pairs:

$$\operatorname{swap}_{AB} : (a, b) \mapsto (b, a).$$

Similarly, for sets C and D, there is an isomorphism $C \times D$ to $D \times C$ which is given by switching the order of ordered pairs.

$$\operatorname{swap}_{CD}: (c,d) \mapsto (d,c).$$

In some obvious intuitive sense, these isomorphisms are really the same isomorphism. However, it is not immediately obvious how to formalize this. They are not equal as functions, for instance, since the definition of a function contains the information about the image and coimage, so they cannot be equal as functions.

Here is how it is done. Notice that for *any* functions $f: A \to C$ and $g: B \to D$, the following diagram commutes.

$$\begin{array}{c}
A \times B \xrightarrow{(f,g)} C \times D \\
\text{swap}_{A,B} \downarrow & \downarrow \text{swap}_{C,D} \\
B \times A \xrightarrow{(g,f)} D \times C
\end{array}$$

That is to say, if you're trying to go from $A \times B$ to $D \times C$ and all you've got is functions $f: A \to B$ and $g: C \to D$ and the two swap isomorphisms, it doesn't matter whether you use the swap isomorphism on $A \times B$ and then use (g, f) to get to $D \times C$, or immediately go to $C \times D$ with (f, g), then use the swap isomorphism there: the result is the same. Furthermore, this is true for *any* functions f and g.

As we will see, the cartesian product of sets is a functor from the product category (Definition 10) Set \times Set to Set which maps (A, B) to $A \times B$. There is another functor Set \times Set which sends (A, B) to $B \times A$. The above means that there is a natural isomorphism, called swap, between them.

This example makes clear another common theme of natural transformations: they formalize the idea of 'the same function between different objects.' They allow us to make precise statements like 'swap $_{A,B}$ and swap $_{C,D}$ are somehow the same, despite the fact that they are in no way equal as functions.'

Definition 39 (natural transformation). let C and D be categories, and let \mathcal{F} and \mathcal{G} be covariant functors from C to D. A natural transformation η between \mathcal{F} and \mathcal{G} consists of

- for each object $A \in \text{Obj}(\mathbb{C})$ a morphism $\eta_A \colon \mathcal{F}(A) \to \mathcal{G}(A)$, such that
- for all $A, B \in \text{Obj}(C)$, for each morphism $f \in \text{Hom}(A, B)$, the diagram

$$\begin{array}{ccc}
\mathcal{F}(A) & \xrightarrow{\mathcal{F}(f)} & \mathcal{F}(B) \\
\eta_A \downarrow & & \downarrow \eta_B \\
\mathcal{G}(A) & \xrightarrow{\mathcal{G}(f)} & \mathcal{G}(B)
\end{array}$$

commutes.

If the functors \mathcal{F} and \mathcal{G} are contravariant, the changes needed to make the definition make sense are obvious: basically, some arrows need to be reversed. However, this is one of those times where it's easier, in line with Note 28, to just pretend that we have a covariant functor from the opposite category.

Definition 40 (natural isomorphism). A <u>natural isomorphism</u> $\eta: \mathcal{F} \Rightarrow \mathcal{G}$ is a natural transformation such that each η_A is an isomorphism.

Notation 41. We will use double-shafted arrows to denote natural transformations: if \mathcal{F} and \mathcal{G} are functors and η is a natural transformation from \mathcal{F} to \mathcal{G} , we will write

$$\eta \colon \mathfrak{F} \Rightarrow \mathfrak{G}.$$

Example 42. Recall the functors GL_n and $(\cdot)^*$ from Example 31.

Denote by $\det_K M$ the determinant of a matrix M with its entries in a commutative ring K. Then the determinant is a map

$$\det_K \colon \mathrm{GL}_n(K) \to K^*.$$

Because the determinant is defined by the same formula for each K, the action of f commutes with \det_K : it doesn't matter whether we map the entries of M with f first and then take the determinant, or take the determinant first and then feed the result to f.

That is to say, the following diagram commutes.

$$GL_n(K) \xrightarrow{\det_K} K^*$$

$$GL_n(f) \downarrow \qquad \qquad \downarrow f^*$$

$$GL_n(K') \xrightarrow{\det_{K'}} K'^*$$

But this means that det is a natural transformation $GL_n \Rightarrow (\cdot)^*$.

We can compose natural transformations in the obvious way.

Lemma 43. Let C and D be categories, \mathcal{F} , \mathcal{G} , \mathcal{H} be functors, and Φ and Ψ be natural transformations as follows.

This induces a natural transformation $\mathcal{F} \Rightarrow \mathcal{H}$.

Proof. For each object $A \in \text{Obj}(C)$, the composition $\Psi_A \circ \Phi_A$ exists and maps $\mathcal{F}(A) \to \mathcal{H}(A)$. Let's write

$$\Psi_A \circ \Phi_A = (\Psi \circ \Phi)_A$$
.

We have to show that these are the components of a natural transformation, i.e. that they make the following diagram commute for all $A, B \in \text{Obj}(\mathbb{C})$, all $f : A \to B$.

$$\begin{array}{ccc}
\mathcal{F}(A) & \xrightarrow{\mathcal{F}(f)} & \mathcal{F}(\mathcal{B}) \\
(\Psi \circ \Phi)_A & & & \downarrow (\Psi \circ \Phi)_B \\
\mathcal{H}(A) & \xrightarrow{\mathcal{H}(f)} & \mathcal{H}(B)
\end{array}$$

We can do this by adding a middle row.

$$\begin{array}{ccc}
\mathcal{F}(A) & \xrightarrow{\mathcal{F}(f)} & \mathcal{F}(\mathcal{B}) \\
\Phi_{A} \downarrow & & & \downarrow \Phi_{B} \\
\mathcal{G}(A) & \xrightarrow{\mathcal{G}(f)} & \mathcal{G}(B) \\
\Psi_{A} \downarrow & & & \downarrow \Psi_{B} \\
\mathcal{H}(A) & \xrightarrow{\mathcal{H}(f)} & \mathcal{H}(B)
\end{array}$$

The top and bottom squares are the naturality squares for Φ and Ψ respectively. The outside square is the one we want to commute, and it manifestly does because each of the inside squares does.

Definition 44 (vertical composition). The above composition $\Psi \circ \Phi$ is called <u>vertical composition</u>.

Definition 45 (functor category). Let C and D be categories. The <u>functor category</u> Func(C, D) (sometimes D^C or [C, D]) is the category whose objects are functors $C \rightsquigarrow D$, and whose morphisms are natural transformations between them. The composition is given by vertical composition.

We can also compose natural transformations in a not so obvious way.

Lemma 46. Consider the following arrangement of categories, functors, and natural transformations.

$$C \xrightarrow{\mathcal{F}} D \xrightarrow{\mathcal{G}} E$$

This induces a natural transformation $\mathfrak{G} \circ \mathfrak{F} \Rightarrow \mathfrak{G}' \circ \mathfrak{F}'$.

Proof. By definition, Φ and Ψ make the diagrams

commute. Since functors take commutative diagrams to commutative diagrams, we can map everything in the first diagram to E with $\mathfrak G$.

$$(\mathfrak{G} \circ \mathfrak{F})(A) \xrightarrow{(\mathfrak{G} \circ \mathfrak{F})(f)} (\mathfrak{G} \circ \mathfrak{F})(B)$$

$$\downarrow^{\mathfrak{G}(\Phi_{A})} \qquad \qquad \downarrow^{\mathfrak{G}(\Phi_{B})}$$

$$(\mathfrak{G} \circ \mathfrak{F}')(A) \xrightarrow{(\mathfrak{G} \circ \mathfrak{F}')(f)} (\mathfrak{G} \circ \mathfrak{F}')(B)$$

Also, since $\mathcal{F}'(f) \colon \mathcal{F}'(A) \to \mathcal{F}'(B)$ is a morphism in D and Ψ is a natural transformation, the following diagram commutes.

Sticking these two diagrams on top of each other gives a new commutative diagram.

The outside rectangle is nothing else but the commuting square for a natural transformation

$$(\Psi * \Phi): \mathcal{G} \circ \mathcal{F} \Rightarrow \mathcal{G}' \circ \mathcal{F}'$$

with components $(\Psi * \Phi)_A = \Psi_{\mathcal{F}(A)} \circ \mathcal{G}(\Phi_A)$.

Definition 47 (horizontal composition). The natural transformation $\Psi * \Phi$ defined above is called the horizontal composition of Φ and Ψ .

Note 48. Really, the above definition of the horizontal composition is lopsided and ugly. Why did we apply the functor $\mathcal G$ to the first square rather than $\mathcal G'$? It becomes less so if we notice the following. The first step in our construction of $\Psi * \Phi$ was to apply the functor $\mathcal G$ to the commutative diagram

$$\begin{array}{ccc}
\mathfrak{F}(A) & \xrightarrow{\mathfrak{F}(f)} & \mathfrak{F}(B) \\
\Phi_{A} \downarrow & & \downarrow \Phi_{B} \\
\mathfrak{F}'(A) & \xrightarrow{\mathfrak{F}'(f)} & \mathfrak{F}'(B)
\end{array}$$

We could instead have applied the functor \mathcal{G}' , giving us the following.

Then we could have glued to it the bottom of the following commuting square.

$$(\mathfrak{G} \circ \mathfrak{F})(A) \xrightarrow{(\mathfrak{G} \circ \mathfrak{F})(f)} (\mathfrak{G} \circ \mathfrak{F})(B)$$

$$\downarrow^{\Psi_{\mathfrak{F}(A)}} \qquad \qquad \downarrow^{\Psi_{\mathfrak{F}(B)}}$$

$$(\mathfrak{G}' \circ \mathfrak{F})(A) \xrightarrow{(\mathfrak{G}' \circ \mathfrak{F})(f)} (\mathfrak{G}' \circ \mathfrak{F})(B)$$

If you do this you get *another* natural transformation $\mathcal{G} \circ \mathcal{F} \Rightarrow \mathcal{G}' \circ \mathcal{F}'$, with components $\mathcal{G}'(\Phi_A) \circ \Psi_{\mathcal{F}(A)}$. Why did we use the first definition rather than this one?

It turns out that $\Psi_{\mathcal{F}(A)} \circ \mathcal{G}(\Phi_A)$ and $\mathcal{G}'(\Phi_A) \circ \Psi_{\mathcal{F}(A)}$ are equal. To see this, pick any $A \in \mathrm{Obj}(A)$. From the morphism

$$\Phi_A \colon \mathcal{F}(A) \to \mathcal{F}'(A),$$

the natural transformation Ψ gives us a commuting square

$$(\mathfrak{G} \circ \mathfrak{F})(A) \xrightarrow{\mathfrak{G}(\Phi_A)} (\mathfrak{G} \circ \mathfrak{F}')(A)$$

$$\downarrow_{\Psi_{\mathfrak{F}'(A)}} \qquad \qquad \downarrow_{\Psi_{\mathfrak{F}'(A)}} ;$$

$$(\mathfrak{G}' \circ \mathfrak{F})(A) \xrightarrow{\mathfrak{G}'(\Phi_A)} (\mathfrak{G}' \circ \mathfrak{F}')(A)$$

the two ways of going from top left to bottom right are nothing else but $\Psi_{\mathcal{F}(A)} \circ \mathcal{G}(\Phi_A)$ and $\mathcal{G}'(\Phi_A) \circ \Psi_{\mathcal{F}(A)}$.

Example 49 (whiskering). Consider the following assemblage of categories, functors, and natural transformations.

$$C \xrightarrow{f} D \xrightarrow{g} E$$

The horizontal composition allows us to Φ to a natural transformation $\mathcal{G} \circ \mathcal{F}$ to $\mathcal{G} \circ \mathcal{F}'$ as follows. First, augment the diagram as follows.

$$C \xrightarrow{\mathcal{F}} D \xrightarrow{\mathcal{G}} E$$

We can then take the horizontal composition of Φ and $1_{\mathcal{G}}$ to get a natural transformation from $\mathcal{G} \circ \mathcal{F}$ to $\mathcal{G} \circ \mathcal{F}'$ with components

$$(1_{\mathfrak{S}} * \Phi)_{\mathfrak{A}} = \mathfrak{S}(\Phi_{\mathfrak{A}}).$$

This natural transformation is called the *right whiskering* of Φ with \mathcal{G} , and is denoted $\mathcal{G}\Phi$. That is to say, $(\mathcal{G}\Phi)_A = \mathcal{G}(\Phi_A)$.

The reason for the name is clear: we removed a whisker from the RHS of our diagram.

We can also remove a whisker from the LHS. Given this:

$$C \xrightarrow{\mathcal{F}} D \xrightarrow{\mathcal{G}} E$$

we can build a natural transformation (denoted $\Psi \mathcal{F}$) with components

$$(\Psi \mathcal{F})_A = \Psi_{\mathcal{F}(A)},$$

making this:

$$C \xrightarrow{g_{\circ}\mathcal{F}} E .$$

This is called the *left whiskering* of Ψ with $\mathfrak F$

Lemma 50. If we have a natural isomorphism $\eta: \mathfrak{F} \Rightarrow \mathfrak{G}$, we can construct a natural isomorphism $\eta^{-1}: \mathfrak{G} \Rightarrow \mathfrak{F}$.

Proof. The natural transformation gives us for any two objects A and B and morphism $f:A\to B$ a naturality square

$$\begin{array}{ccc}
\mathcal{F}(A) & \xrightarrow{\mathcal{F}(f)} & \mathcal{F}(B) \\
\eta_A \downarrow & & \downarrow \eta_B \\
\mathcal{G}(A) & \xrightarrow{\mathcal{G}(f)} & \mathcal{G}(B)
\end{array}$$

which tells us that

$$\eta_B \circ \mathfrak{F}(f) = \mathfrak{G}(f) \circ \eta_A$$
.

Since η is a natural isomorphism, its components η_A are isomorphisms, so they have inverses η_A^{-1} . Acting on the above equation with η_A^{-1} from the right and η_B^{-1} from the left, we find

$$\mathcal{F}(f) \circ \eta_A^{-1} = \eta_B^{-1} \circ \mathcal{G}(f),$$

i.e. the following diagram commutes.

$$\begin{array}{ccc}
\mathcal{G}(A) & \xrightarrow{\mathcal{G}(f)} & \mathcal{G}(B) \\
\eta_A^{-1} \downarrow & & \downarrow \eta_B^{-1} \\
\mathcal{F}(A) & \xrightarrow{\mathcal{F}(f)} & \mathcal{F}(B)
\end{array}$$

But this is just the naturality square for a natural isomorphism η^{-1} with components $(\eta^{-1})_A = \eta_A^{-1}$.

We would like to be able to express when two categories are the 'same.' The correct notion of sameness is provided by the following definition.

Definition 51 (categorical equivalence). Let C and D be categories. We say that C and D are equivalent if there is a pair of functors

$$C \rightleftharpoons D$$

and natural isomorphisms $\eta: \mathcal{F} \circ \mathcal{G} \Rightarrow 1_{\mathcal{C}}$ and $\varphi: 1_{\mathcal{C}} \Rightarrow \mathcal{G} \circ \mathcal{F}$.

Note 52. The above definition of categorical equivalence is equivalent to the following: C and D are equivalent if there is a functor $\mathcal{F}: C \rightsquigarrow D$ which is fully faithful (Definition 32) and essentially surjective (Definition 35). That is to say, if the equivalence \mathcal{F} is 'bijective up to isomorphism.'

Definition 53 (essentially small category). A category C is said to be <u>essentially small</u> if it is equivalent to a small category (Definition 24).

Example 54. Let G be a group, G the category which mimics it, and let ρ and ρ' : G \rightsquigarrow Vect be representations (recall Example 38.)

A natural transformation $\eta: \rho \Rightarrow \rho'$ is called an *intertwiner*. So what *is* an intertwiner?

Well, η has only one component, $\eta_* \colon \rho(*) \to \rho'(*)$, which is subject to the condition that for any $g \in \operatorname{Hom}_{G}(*,*)$, the diagram below commutes.

$$\rho(*) \xrightarrow{\rho(g)} \rho(*) \\
\eta_* \downarrow \qquad \qquad \downarrow \eta_* \\
\rho'(*) \xrightarrow{\rho'(g)} \rho'(*)$$

That is, an intertwiner is a linear map $\rho(*) \to \rho'(*)$ such that for all q,

$$\eta_* \circ \rho(g) = \rho'(g) \circ \eta_*.$$

1.4 Some special categories

1.4.1 Comma categories

Definition 55 (comma category). Let A, B, C be categories, S and T functors as follows.

$$A \xrightarrow{S} C \longleftrightarrow^{T} B$$

The comma category ($S \downarrow T$) is the category whose

- objects are triples (α, β, f) where $\alpha \in \text{Obj}(A)$, $\beta \in \text{Obj}(B)$, and $f \in \text{Hom}_{\mathbb{C}}(\mathbb{S}(\alpha), \mathbb{T}(\beta))$, and whose
- morphisms $(\alpha, \beta, f) \to (\alpha', \beta', f')$ are all pairs (g, h), where $g: \alpha \to \alpha'$ and $h: \beta \to \beta'$, such that the diagram

$$\begin{array}{ccc} \mathbb{S}(\alpha) & \xrightarrow{\mathbb{S}(g)} & \mathbb{S}(\alpha') \\ f \downarrow & & \downarrow f' \\ \mathbb{T}(\beta) & \xrightarrow{\mathbb{T}(h)} & \mathbb{T}(\beta') \end{array}$$

commutes.

Notation 56. We will often specify the comma category ($S \downarrow T$) by simply writing down the diagram

$$A \xrightarrow{S} C \xleftarrow{\mathcal{T}} B$$
.

Let us check in some detail that a comma category really is a category. To do so, we need to check the three properties listed in Definition 1

1. We must be able to compose morphisms, i.e. we must have the following diagram.

$$(\alpha, \beta, f) \xrightarrow{(g,h)} (\alpha', \beta', f') \xrightarrow{(g',h')} (\alpha'', \beta'', f'')$$

We certainly do, since by definition, each square of the following diagram commutes,

$$\begin{array}{ccc} \mathbb{S}(\alpha) & \xrightarrow{\mathbb{S}(g)} & \mathbb{S}(\alpha') & \xrightarrow{\mathbb{S}(g')} & \mathbb{S}(a'') \\ f \downarrow & & f' \downarrow & & \downarrow f'' \\ \mathbb{T}(\alpha) & \xrightarrow{\mathbb{T}(h)} & \mathbb{T}(\alpha') & \xrightarrow{\mathbb{T}(h')} & \mathbb{T}(a'') \end{array}$$

so the square formed by taking the outside rectangle

$$S(\alpha) \xrightarrow{S(g') \circ S(g)} S(\alpha'')$$

$$f \downarrow \qquad \qquad \downarrow f''$$

$$T(\alpha) \xrightarrow{T(h') \circ T(h)} T(\alpha'')$$

commutes. But S and T are functors, so

$$S(q') \circ S(q) = S(q' \circ q),$$

and similarly for $\mathfrak{I}(h' \circ h)$. Thus, the composition of morphisms is given via

$$(q', h') \circ (q, h) = (q' \circ q, h' \circ h).$$

- 2. We can see from this definition that associativity in $(S \downarrow T)$ follows from associativity in the underlying categories A and B.
- 3. The identity morphism is the pair $(1_{S(\alpha)}, 1_{\mathfrak{I}(\beta)})$. It is trivial from the definition of the composition of morphisms that this morphism functions as the identity morphism.

1.4.2 Slice categories

A special case of a comma category, the so-called *slice category*, occurs when C = A, S is the identity functor, and B = 1, the category with one object and one morphism (Example 6).

Definition 57 (slice category). A slice category is a comma category

$$A \xrightarrow{id_A} A \longleftrightarrow^{\mathcal{T}} 1$$
.

Let us unpack this prescription. Taking the definition literally, the objects in our category are triples (α, β, f) , where $\alpha \in \text{Obj}(A)$, $\beta \in \text{Obj}(1)$, and $f \in \text{Hom}_A(\text{id}_A(\alpha), \Upsilon(\beta))$.

There's a lot of extraneous information here, and our definition can be consolidated considerably. Since the functor \mathcal{T} is given and 1 has only one object (call it *), the object $\mathcal{T}(*)$ (call it X) is singled out in A. We can think of \mathcal{T} as \mathcal{F}_X (Example 30). Similarly, since the identity morphism doesn't do anything interesting, Therefore, we can collapse the following diagram considerably.

$$\begin{array}{ccc}
\mathcal{F}_X(*) & \xrightarrow{\mathcal{F}_X(1_*)} & \mathcal{F}_X(*) \\
f \downarrow & & \downarrow f' \\
\operatorname{id}_A(\alpha) & \xrightarrow{\operatorname{id}_A(g)} & \operatorname{id}_A(\alpha')
\end{array}$$

The objects of a slice category therefore consist of pairs (α, f) , where $\alpha \in \text{Obj}(A)$ and

$$f: \alpha \to X$$
;

the morphisms $(\alpha, f) \to (\alpha', f')$ consist of maps $g \colon \alpha \to \alpha'$. This allows us to define a slice category more neatly.

Let A be a category, $X \in \text{Obj}(A)$. The <u>slice category</u> $(A \downarrow X)$ is the category whose objects are pairs (α, f) , where $\alpha \in \text{Obj}(A)$ and $f : \alpha \to X$, and whose morphisms $(\alpha, f) \to (\alpha', f')$ are maps $g : \alpha \to \alpha'$ such that the diagram

commutes.

One can also define a coslice category, which is what you get when you take a slice category and turn the arrows around: coslice categories are *dual* to slice categories.

Definition 58 (coslice category). Let A be a category, $X \in \text{Obj}(A)$. The <u>coslice category</u> $(X \downarrow A)$ is the comma category given by the diagram

$$1 \xrightarrow{\mathcal{F}_X} A \xleftarrow{\mathrm{id}_A} A .$$

The objects are morphisms $f: X \to \alpha$ and the morphisms are morphisms $g: \alpha \to \alpha'$ such that the diagram

commutes.

1.5 Universal properties

Note 59. It is assumed that the reader is familiar with the basic idea of a universal property and has seen (but not necessarily understood) a few examples, such as the universal properties for products and tensor algebras.

In general, the 'nicest' definition of a structure uses only the category-theoretic information about the category in which the structure lives; the definition of a product (of sets, for example) is best given without making use of hand-wavy statements like "ordered pairs of an element here and an element there." The idea is similar to the situation in linear algebra, where it is aesthetically preferrable to avoid introducing an arbitrary basis every time one needs to prove something, instead using properties intrinsic to the vector space itself.

The easiest way to do this in general is by using the idea of a *universal property*.

Definition 60 (initial objects, final objects, zero objects). Let C be a category. An object $A \in \text{Obj}(C)$ is said to be an

- <u>initial object</u> if Hom(A, B) has exactly one element for all $B \in Obj(C)$, i.e. if there is exactly one arrow from A to every object in C.
- <u>final object</u> (or *terminal object*) if Hom(*B*, *A*) has exactly one element for all *B* ∈ Obj(C), i.e. if there is exactly one arrow from every object in C to *A*.
- zero object if it is both initial and final.

Example 61. In Set, there is exactly one map from any set S to any one-element set $\{*\}$. Thus $\{*\}$ is a terminal object in Set.

Furthermore, it is conventional that there is exactly one map from the empty set \emptyset to any set B. Thus the \emptyset is initial in Set.

Example 62. The trivial group is a zero object in Grp.

Theorem 63. Let C be a category, let I and I' be two initial objects in C. Then there exists a unique isomorphism between I and I'.

Proof. Since I is initial, there exists exactly one morphism from I to any object, including I itself. By Definition 1, Part 3, I must have at least one map to itself: the identity morphism 1_I . Thus, the only morphism from I to itself is the identity morphism. Similarly, the only morphism from I' to itself is also the identity morphism.

But since I is initial, there exists a unique morphism from I to I'; call it f. Similarly, there exists a unique morphism from I' to I; call it g. By Definition 1, Part 1, we can take the composition $g \circ f$ to get a morphism $I \to I$.

But there is only one isomorphism $I \rightarrow I$: the identity morphism! Thus

$$g\circ f=1_I.$$

Similarly,

$$f \circ q = 1_{I'}$$
.

This means that, by Definition 14, f and g are isomorphisms. They are clearly unique because of the uniqueness condition in the definition of an initial object. Thus, between any two initial objects there is a unique isomorphism, and we are done.

Here is a bad picture of this proof.

$$1_{I} = g \circ f \stackrel{f}{\rightleftharpoons} I \stackrel{f}{\rightleftharpoons} I' \rightleftharpoons 1_{I'} = f \circ g$$

Definition 64 (category of morphisms from an object to a functor). Let C, D be categories, let $\mathcal{U}: D \leadsto C$ be a functor. Further let $X \in Obi(C)$. The category of morphisms $(X \downarrow \mathcal{U})$ is the following comma category (see Definition 55):

$$1 \xrightarrow{\mathcal{F}_X} C \longleftrightarrow D$$
.

Just as for (co)slice categories (Definitions 57 and 58), there is some unpacking to be done. In fact, the unpacking is very similar to that of coslice categories. The LHS of the commutative square diagram collapses because the functor \mathcal{F}_X picks out a single element X; therefore, the objects of $(X \downarrow \mathcal{U})$ are ordered pairs

$$(\alpha, f); \quad \alpha \in \text{Obj}(D), \quad f: X \to \mathcal{U}(\alpha),$$

and the morphisms $(\alpha, f) \to (\alpha', f')$ are morphisms $g: \alpha \to \alpha'$ such that the diagram

commutes.

Just as slice categories are dual to coslice categories, we can take the dual of the previous definition.

Definition 65 (category of morphisms from a functor to an object). Let C, D be categories, let $\mathcal{U} \colon \mathsf{D} \leadsto \mathsf{C}$ be a functor. The category of morphisms $(\mathcal{U} \downarrow X)$ is the comma category

$$D \xrightarrow{\mathcal{U}} C \xleftarrow{\mathcal{F}_X} 1.$$

The objects in this category are pairs (α, f) , where $\alpha \in \text{Obj}(D)$ and $f : \mathcal{U}(\alpha) \to X$. The morphisms $(\alpha, f) \to (\alpha', f')$ are morphisms $g: \alpha \to \alpha'$ such that the diagram

$$\mathcal{U}(\alpha) \xrightarrow{\mathcal{U}(g)} \mathcal{U}(\alpha')$$

$$f \xrightarrow{X} f'$$

commutes.

Definition 66 (initial morphism). Let C, D be categories, let $\mathcal{U}: D \rightsquigarrow C$ be a functor, and let $X \in \text{Obj}(\mathbb{C})$. An initial morphism (called a *universal arrow* in [17]) is an initial object in the category $(X \downarrow \mathcal{U})$, i.e. the comma category which has the diagram

$$1 \xrightarrow{\mathcal{F}_X} C \longleftrightarrow D$$

This is not by any stretch of the imagination a transparent definition, but decoding it will be good practice.

The definition tells us that an initial morphism is an object in $(X \downarrow \mathcal{U})$, i.e. a pair (I, φ) for $I \in \text{Obj}(D)$ and $\varphi \colon X \to \mathcal{U}(\alpha)$. But it is not just any object: it is an initial object. This means that for any other object (α, f) , there exists a unique morphism $(I, \varphi) \to (\alpha, f)$. But such morphisms are simply maps $g \colon I \to \alpha$ such that the diagram

$$\begin{array}{c|c} X \\ f \\ \downarrow \\ \mathcal{U}(I) \xrightarrow{\mathcal{U}(g)} \mathcal{U}(\alpha) \end{array}$$

commutes.

We can express this schematically via the following diagram (which is essentially the above diagram, rotated to agree with the literature).

As always, there is a dual notion.

Definition 67 (terminal morphism). Let C, D be categories, let $\mathcal{U} : D \rightsquigarrow C$ be a functor, and let $X \in \text{Obj}(C)$. A terminal morphism is a terminal object in the category $(\mathcal{U} \downarrow X)$.

This time "terminal object" means a pair (I, φ) such that for any other object (α, f) there is a unique morphism $q: \alpha \to I$ such that the diagram

$$\mathcal{U}(\alpha) \xrightarrow{\mathcal{U}(g)} \mathcal{U}(I)$$

$$f \qquad \qquad \downarrow^{\varphi}$$

$$X$$

commutes.

Again, with the diagram helpfully rotated, we have the following.

Definition 68 (universal property). There is no hard and fast definition of a universal property. In complete generality, an object with a universal property is just an object which is initial or terminal in some category. However, quite a few interesting universal properties are given in terms of initial and terminal morphisms, and it will pay to study a few examples.

Note 69. One often hand-wavily says that an object I satisfies a universal property if (I, φ) is an initial or terminal morphism. This is actually rather annoying; one has to remember that when one states a universal property in terms of a universal morphism, one is defining not only an object I but also a morphism φ , which is often left implicit.

Example 70 (tensor algebra). One often sees some variation of the following universal characterization of the tensor algebra, which was taken (almost) verbatim from Wikipedia. We will try to stretch it to fit our definition, following the logic through in some detail.

Let V be a vector space over a field k, and let A be an algebra over k. The tensor algebra T(V) satisfies the following universal property.

Any linear transformation $f: V \to A$ from V to A can be uniquely extended to an algebra homomorphism $T(V) \to A$ as indicated by the following commutative diagram.

$$V \xrightarrow{i} T(V)$$

$$f \downarrow \int_{A}^{\tilde{f}}$$

As it turns out, it will take rather a lot of stretching.

Let \mathcal{U} : k-Alg \rightsquigarrow Vect $_k$ be the forgetful functor which assigns to each algebra over a field k its underlying vector space. Pick some k-vector space V. We consider the category $(V \downarrow \mathcal{U})$, which is given by the following diagram.

$$1 \xrightarrow{\mathcal{F}_V} \operatorname{Vect}_k \longleftrightarrow k$$
-Alg

By Definition 66, the objects of $(V \downarrow \mathcal{U})$ are pairs (A,L), where A is a k-algebra and L is a linear map $V \to \mathcal{U}(A)$. The morphisms are algebra homomorphisms $\rho \colon A \to A'$ such that the diagram

$$U(A) \xrightarrow{L} U(A')$$

commutes. An object (T(V), i) is initial if for any object (A, f) there exists a unique morphism $q: T(V) \to A$ such that the diagram

$$V \xrightarrow{i} \mathcal{U}(T(V)) \qquad T(V)$$

$$\downarrow \mathcal{U}(g) \qquad \qquad \downarrow \exists ! g$$

$$\mathcal{U}(A) \qquad A$$

commutes.

Thus, the pair (i, T(V)) is the initial object in the category $(V \downarrow \mathcal{U})$. We called T(V) the *tensor algebra* over V.

But what is i? Notice that in the Wikipedia definition above, the map i is from V to T(V), but in the diagram above, it is from V to U(T(V)). What gives?

The answer that the diagram in Wikipedia's definition does not take place in a specific category. Instead, it implicitly treats T(V) only as a vector space. But this is exactly what the functor $\mathcal U$ does.

Example 71 (tensor product). According to the excellent book [3], the tensor product satisfies the following universal property.

Let V_1 and V_2 be vector spaces. Then we say that a vector space V_3 together with a bilinear map $\iota: V_1 \times V_2 \to V_3$ has the *universal property* provided that for any bilinear map $B: V_1 \times V_2 \to W$, where W is also a vector space, there exists a unique linear map $L: V_3 \to W$ such that $B = L\iota$. Here is a diagram describing this 'factorization' of B through ι :

$$V_1 \times V_2 \xrightarrow{\iota} V_3$$

$$\downarrow^L$$

$$W$$

It turns out that the tensor product defined in this way is neither an initial or final morphism. This is because in the category $Vect_k$, there is no way of making sense of a bilinear map.

Example 72 (categorical product). Here is the universal property for a product, taken verbatim from Wikipedia ([21]).

Let C be a category with some objects X_1 and X_2 . A product of X_1 and X_2 is an object X (often denoted $X_1 \times X_2$) together with a pair of morphisms $\pi_1 \colon X \to X_1$ and $\pi_2 \colon X \to X_2$ such that for every object Y and pair of morphisms $f_1 \colon Y \to X_1$, $f_2 \colon Y \to X_2$, there exists a unique morphism $f \colon Y \to X_1 \times X_2$ such that the following diagram commutes.

$$X_1 \stackrel{f_1}{\longleftarrow} X_1 \times X_2 \stackrel{f_2}{\longrightarrow} X_2$$

Consider the comma category ($\Delta \downarrow (X_1, X_2)$) (where Δ is the diagonal functor, see Example 36) given by the following diagram.

$$C \xrightarrow{\Delta} C \times C \xrightarrow{\mathcal{F}_{(X_1,X_2)}} 1$$

The objects of this category are pairs (A, (s, t)), where $A \in Obj(C)$ and

$$(s, t): \Delta(A) = (A, A) \to (X_1, X_2).$$

The morphisms $(A, (s, t)) \rightarrow (B, (u, v))$ are morphisms $r: A \rightarrow B$ such that the diagram

commutes.

An object $(X_1 \times X_2, (\pi_1, \pi_2))$ is final if for any other object $(Y, (f_1, f_2))$, there exists a unique morphism $f: Y \to X_1 \times X_2$ such that the diagram

commutes. If we re-arrange our diagram a bit, it is not too hard to see that it is equivalent to the one given above. Thus, we can say: a product of two sets X_1 and X_2 is a final object in the category $(\Delta \downarrow (X_1, X_2))$

2 Cartesian closed categories

2.1 Cartesian closed categories

This section loosely follows [24].

Cartesian closed categories are the prototype for many of the structures possessed by monoidal categories. They are interesting in their own right, but will not be essential in what follows.

2.2 Products

We saw in Example 72 the definition for a categorical product. In some categories, we can naturally take the product of any two objects; one generally says that such a category *has products*. We formalize that in the following.

Definition 73 (category with products). Let C be a category such that for every two objects $A, B \in \text{Obj}(C)$, there exists an object $A \times B$ which satisfies the universal property (Example 72). Then we say that C has products.

Note 74. Sometimes people call a category with products a *Cartesian category*, but others use this terminology to mean a category with all finite limits.¹ We will avoid it altogether.

Theorem 75. Let C be a category with products. Then the product can be extended to a bifunctor (Definition 37) $C \times C \rightarrow C$.

Proof. Let $X, Y \in \text{Obj}(C)$. We need to check that the assignment $(X, Y) \mapsto \times (X, Y) \equiv X \times Y$ is functorial, i.e. that \times assigns

- to each pair $(X, Y) \in \text{Obj}(C \times C)$ an object $X \times Y \in \text{Obj}(C)$ and
- to each pair of morphisms $(f,g):(X,Y)\to (X',Y')$ a morphism

$$\times (f, q) = f \times q \colon X \times Y \to X' \times Y'$$

such that

$$\circ$$
 1_X × 1_Y = 1_{X×Y}, and

¹We will see later that any category with both products and equalizers has all finite limits.

 \circ × respects composition as follows.

We know how \times assigns objects in C \times C to objects in C. We need to figure out how \times should assign to a morphism (f, g) in C \times C a morphism $f \times g$ in C. We do this by diagram chasing.

Suppose we are given two maps $f: X_1 \to X_2$ and $g: Y_1 \to Y_2$. We can view this as a morphism (f, g) in $C \times C$.

Recall the universal property for products: a product $X_1 \times Y_1$ is a final object in the category $(\Delta \downarrow (X_1, Y_1))$. Objects in this category can be thought of as diagrams in $C \times C$.

$$(X_1 \times Y_1, X_1 \times Y_1) \xrightarrow{\pi_1, \pi_2} (X_1, Y_1) .$$

By assumption, we can take the product of both X_1 and Y_1 , and Y_2 and Y_2 . This gives us two diagrams living in $C \times C$, which we can put next to each other.

$$(X_1 \times Y_1, X_1 \times Y_1) \xrightarrow{(\pi_1, \pi_2)} (X_1, Y_1)$$

$$(X_2 \times Y_2, X_2 \times Y_2) \xrightarrow{(\rho_1, \rho_2)} (X_2, Y_2)$$

We can draw in our morphism (f, g), and take its composition with (π_1, π_2) .

$$(X_1 \times Y_1, X_1 \times Y_1) \xrightarrow{(\pi_1, \pi_2)} (X_1, Y_1)$$

$$(f \circ \pi_1, g \circ \pi_2) \xrightarrow{(\rho_1, \rho_2)} (X_2, Y_2)$$

$$(X_2 \times Y_2, X_2 \times Y_2) \xrightarrow{(\rho_1, \rho_2)} (X_2, Y_2)$$

Now forget about the top right of the diagram. I'll erase it to make this easier.

$$(X_1 \times Y_1, X_1 \times Y_1)$$

$$(f \circ \pi_1, g \circ \pi_2)$$

$$(X_2 \times Y_2, X_2 \times Y_2) \xrightarrow{(\rho_1, \rho_2)} (X_2, Y_2)$$

The universal property for products says that there exists a unique map $h: X_1 \times Y_1 \to X_2 \times Y_2$ such that the diagram below commutes.

And *h* is what we will use for the product $f \times g$.

Of course, we must also check that h behaves appropriately. Draw two copies of the diagram for the terminal object in $(\Delta \downarrow (X, Y))$ and identity arrows between them.

$$(X \times Y, X \times Y) \xrightarrow{(\pi_1, \pi_2)} (X, Y)$$

$$\downarrow^{(1_{X \times Y}, 1_{X \times Y})} \qquad \qquad \downarrow^{(1_X, 1_Y)}$$

$$(X \times Y, X \times Y) \xrightarrow{(\pi_1, \pi_2)} (X, Y)$$

Just as before, we compose the morphisms to and from the top right to draw a diagonal arrow, and then erase the top right object and the arrows to and from it.

By definition, the arrow on the right is $1_X \times 1_Y$. It is also $1_{X \times Y}$, and by the universal property it is unique. Therefore $1_{X \times Y} = 1_X \times 1_Y$.

Next, put three of these objects together. The proof of the last part is immediate.

The meaning of this theorem is that in any category where you can take products of the objects, you can also take products of the morphisms.

Example 76. The category Vect_k of vector spaces over a field k has the direct sum \oplus as a product.

The product is, in an appropriate way, commutative.

Lemma 77. There is a natural isomorphism between the following functors $C \times C \rightarrow C$

$$\times : (A, B) \to A \times B$$
 and $\tilde{\times} : (A, B) \to B \times A$.

Proof. We define a natural transformation $\Phi: \times \Rightarrow \tilde{times}$ whose components are

$$\Phi_{AB}: A \times B \longrightarrow B \times A$$

as follows. Denote the canonical projections for the product $A \times B$ by π_A and π_B . Then (π_B, π_A) is a map $A \times B \to (B, A)$, and the universal property for products gives us a map $A \times B \to B \times A$. We can pull the same trick to go from $B \times A$ to $A \times B$, using the pair (π_A, π_B) and the universal property. Furthermore, these maps are inverse to each other, so $\Phi_{A,B}$ is an isomorphism.

We need only check naturality, i.e. that for $f: A \to A'$, $g: B \to B'$, the following square commutes.

$$\begin{array}{ccc}
A \times B & \longrightarrow & A' \times B' \\
\downarrow & & \downarrow \\
B \times A & \longrightarrow & B' \times A'
\end{array}$$

Note 78. It is an important fact that the product is associative. We shall see this in Theorem 110, after we have developed the machinery to do it cleanly.

2.3 Coproducts

Definition 79. Let C be a category, X_1 and $X_2 \in \text{Obj}(C)$. The <u>coproduct</u> of X_1 and X_2 , denoted $X_1 \coprod X_2$, is the initial object in the category $((X_1, X_2) \downarrow \Delta)$. In everyday language, we have the following.

An object $X_1 \coprod X_2$ is called the coproduct of X_1 and X_2 if

- 1. there exist morphisms $i_1\colon X_1\to X_1\amalg X_2$ and $i_2\colon X_2\to X_1\amalg X_2$ called *canonical injections* such that
- 2. for any object Y and morphisms $f_1: X_1 \to Y$ and $f_2: X_2 \to Y$ there exists a unique morphism $f: X_1 \coprod X_2 \to Y$ such that $f_1 = f \circ i_1$ and $f = f_2 = f \circ i_2$, i.e. the following diagram commutes.

Definition 80 (category with coproducts). We say that a category C <u>has coproducts</u> if for all $A, B \in \text{Obj}(C)$, the coproduct $A \coprod B$ is in Obj(C).

We have the following analog of Theorem 75.

Theorem 81. Let C be a category with coproducts. Then we have a functor $\coprod : C \times C \leadsto C$.

Proof. We verify that \coprod allows us to define canonically a coproduct of morphisms. Let $X_1, X_2, Y_1, Y_2 \in \text{Obj}(C)$, and let $f: X_1 \to Y_1$ and $g: X_2 \to Y_2$. We have the following diagram.

$$X_{1} \xrightarrow{i_{1,X}} X_{1} \coprod X_{2} \xleftarrow{i_{2,X}} X_{2}$$

$$\downarrow f \qquad \downarrow i_{1,Y} \circ f \qquad \downarrow g$$

$$Y_{1} \xrightarrow{i_{1,Y}} Y_{1} \coprod Y_{2} \xleftarrow{i_{2,Y}} Y_{2}$$

But by the universal property of coproducts, the diagonal morphisms induce a map $X_1 \coprod X_2 \to Y_1 \coprod Y_2$, which we define to be $f \coprod g$.

The rest of the verification that \coprod really is a functor is identical to that in Theorem 75.

Example 82. In Set, the coproduct is the disjoint union.

Example 83. In Vect_k, the coproduct \oplus is the direct sum.

Example 84. In k-Alg the tensor product is the coproduct. To see this, let A, B, and B be k-algebras. The tensor product $A \otimes_k B$ has canonical injections $\iota_1 \colon A \to A \otimes B$ and $\iota_2 \colon B \to A \otimes B$ given by

$$\iota_A \colon v \to v \otimes 1_B$$
 and $\iota_B \colon v \mapsto 1 \otimes v$.

Let $f_1: A \to R$ and $f_2: B \to R$ be k-algebra homomorphisms. Then there is a unique homomorphism $f: A \otimes B \to R$ which makes the following diagram commute.

2.4 Biproducts

A lot of the stuff in this section was adapted and expanded from [33].

One often says that a biproduct is an object which is both a product and a coproduct, but this is both misleading and unnecessarily vague. Objects satisfying universal properties are only defined up to isomorphism, so it doesn't make much sense to demand that products *coincide* with coproducts. However, demanding only that they be isomorphic (or even naturally isomorphic) is too weak, and does not determine a biproduct uniquely. In this section we will give the correct definition which encapsulates all of the properties of the product and the coproduct we know and love.

In order to talk about biproducts, we need to be aware of the following result, which we will consider in much more detail in Definition 7.2.

Definition 85 (zero morphism). Let C be a category with zero object 0. For any two objects $A, B \in \text{Obj}(C)$, the <u>zero morphism</u> $0_{A,B}$ is the unique morphism $A \to B$ which factors through 0.

$$A \xrightarrow{0_{A,B}} B$$

Notation 86. It will often be clear what the source and destination of the zero morphism are; in this case we will drop the subscripts, writing 0 instead of 0_{AB} . With this notation, for all morphisms f and g we have $f \circ 0 = 0$ and $0 \circ g = 0$.

Definition 87 (category with biproducts). Let C be a category with zero object 0, products \times (with canonical projections π), and coproducts \coprod (with natural injections ι). We say that C has biproducts if for each two objects $A_1, A_2 \in \text{Obj}(C)$, there exists an isomorphism

$$\Phi_{A_1,A_2}: A_1 \coprod A_2 \longrightarrow A_1 \times A_2$$

such that

$$A_i \xrightarrow{\iota_i} A_1 \coprod A_2 \xrightarrow{\Phi_{A_1, A_2}} A_1 \times A_2 \xrightarrow{\pi_j} A_j = \begin{cases} 1_{A_1}, & i = j \\ 0, & i \neq j. \end{cases}$$

Here is a picture.

Lemma 88. The isomorphisms $\Phi_{A,B}$ are unique if they exist.

Proof. We can compose Φ_{A_1,A_2} with π_1 and π_2 to get maps $A_1 \coprod A_2 \to A_1$ and $A_1 \coprod A_2 \to A_2$. The universal property for products tells us that there is a unique map $\varphi \colon A_1 \coprod A_2 \to A_1 \times A_2$ such that $\pi_1 \circ \varphi = \pi_1 \circ \Phi_{A_1,A_2}$ and $\pi_2 \circ \varphi = \pi_2 \circ \Phi_{A_1,A_2}$; but φ is just Φ_{A_1,A_2} . Hence Φ_{A_1,A_2} is unique.

Lemma 89. In any category C with biproducts $\Phi_{A,B}$: $A \coprod B \to A \times B$, any map $A \coprod B \to A' \times B'$ is completely determined by its components $A \to A'$, $A \to B'$, $B \to A'$, and $B \to B'$. That is, given any map $f: A \coprod B \to A' \times B'$, we can create four maps

$$\pi_{A'} \circ f \circ \iota_A \colon A \to A', \qquad \pi_{B'} \circ f \circ \iota_A \colon A \to B', \qquad etc,$$

and given four maps

$$\psi_{A,A'}: A \to A'; \qquad \psi_{A,B'}: A \to B'; \qquad \psi_{B,A'}: B \to A', \qquad and \psi_{B,B'}: B \to B',$$

we can construct a unique map $\psi: A \coprod B \to A' \times B'$ such that

$$\psi_{A,A'} = \pi_{A'} \circ \psi \circ \iota_A, \qquad \psi_{A,B'} = \pi_{B'} \circ \psi \circ \iota_A, \qquad etc.$$

Proof. The universal property for coproducts give allows us to turn the morphisms $\psi_{A,A'}$ and $\psi_{A,B'}$ into a map $\psi_A \colon A \to B \times B'$, the unique map such that

$$\pi_{A'} \circ \psi_A = \psi_{A,A'}$$
 and $\pi_{B'} \circ \psi_A = \psi_{A,B'}$.

The morphisms $\psi_{B,A'}$ and $\psi_{B,B'}$ give us a map ψ_B which is unique in the same way.

Now the universal property for coproducts gives us a map $\psi \colon A \coprod B \to A' \times B'$, the unique map such that $\psi \circ \iota_A = \psi_A$ and $\psi \circ \iota_B = \psi_B$.

Theorem 90. The $\Phi_{A,B}$ defined above form the components of a natural isomorphism.

Proof. Let A, B, A', and $B' \in \text{Obj}(C)$, and let $f: A \to A'$ and $g: B \to B'$. To check that $\Phi_{A,B}$ are the components of a natural isomorphism, we have to check that the following naturality square commutes.

$$A \coprod B \xrightarrow{f \coprod g} A' \coprod B'$$

$$\downarrow^{\Phi_{A,B}} \qquad \qquad \downarrow^{\Phi_{A',B'}}$$

$$A \times B \xrightarrow{f \times g} A' \times B'$$

That is, we need to check that $(f \times g) \circ \Phi_{A,B} = \Phi_{A',B'} \circ (f \coprod g)$.

Both of these are morphisms $A \coprod B \to A' \times B'$, and by Lemma 89, it suffices to check that their components agree, i.e. that

Example 91. In the category $Vect_k$ of vector spaces over a field k, the direct sum \oplus is a biproduct.

Example 92. In the category Ab of abelian groups, the direct sum \oplus is both a product and a coproduct. Hence Ab has biproducts.

2.5 Exponentials

Astonishingly, we can talk about functional evaluation purely in terms of products and universal properties.

Definition 93 (exponential). Let C be a category with products, $A, B \in \text{Obj}(C)$. The exponential of A and B is an object $B^A \in \text{Obj}(C)$ together with a morphism $\varepsilon \colon B^A \times A \to B$, called the *evaluation morphism*, which satisfies the following universal property.

For any object $X \in \text{Obj}(C)$ and morphism $f: X \times A \to B$, there exists a unique morphism $\bar{f}: X \to B^A$ which makes the following diagram commute.

$$\begin{array}{ccc}
B^{A} & & & B^{A} \times A & \xrightarrow{\varepsilon} & B \\
\exists! \overline{f} & & & \overline{f} \times 1_{A} & & f \\
X & & & X \times A & & & & & & \\
\end{array}$$

Example 94. In Set, the exponential object B^A is the set of functions $A \to B$, and the evaluation morphism ε is the map which assigns $(f, a) \mapsto f(a)$. Let us check that these objects indeed satisfy the universal property given.

Suppose we are given a function $f: X \times A \to B$. We want to construct from this a function $\bar{f}: X \to B^A$, i.e. a function which takes an element $x \in X$ and returns a function $\bar{f}(x): A \to B$. There is a natural way to do this: fill the first slot of f with x! That is to say, define $\bar{f}(x) = f(x, -)$. It is easy to see that this makes the diagram commute:

$$(f(x,-),a) \xrightarrow{\tilde{f} \times 1_A} f(x,a)$$

$$(x,a)$$

Furthermore, \bar{f} is unique since if it sent x to any function other than f the diagram would not commute.

Example 95. One might suspect that the above generalizes to all sorts of categories. For example, one might hope that in Grp, the exponential H^G of two groups G and H would somehow capture all homomorphisms $G \to H$. This turns out to be impossible; we will see why in REF.

2.6 Cartesian closed categories

Definition 96 (cartesian closed category). A category C is cartesian closed if it has

- 1. products: for all $A, B \in Obj(C), A \times B \in Obj(C)$;
- 2. exponentials: for all $A, B \in \text{Obj}(C), B^A \in \text{Obj}(C)$;
- 3. a terminal element (Definition 60) $1 \in C$.

Cartesian closed categories have many inveresting properties. For example, they replicate many properties of the integers: we have the following familiar formulae for any objects A, B, and C in a Cartesian closed category with coproducts +.

- 1. $A \times (B + C) \simeq (A \times B) + (A \times C)$
- 2. $C^{A+B} \simeq C^A \times C^B$.
- 3. $(C^A)^B \simeq C^{A \times B}$
- 4. $(A \times B)^C \simeq A^C \times B^C$
- 5. $C^1 \simeq C$

We could prove these immediately, by writing down diagrams and appealing to the universal properties. However, we will soon have a powerful tool, the Yoneda lemma, that makes their proof completely routine.

3 Hom functors and the Yoneda lemma

3.1 The Hom functor

Given any locally small category (Definition 24) C and two objects $A, B \in \text{Obj}(C)$, we have thus far notated the set of all morphisms $A \to B$ by $\text{Hom}_C(A, B)$. This may have seemed a slightly odd notation, but there was a good reason for it: Hom_C is really a functor.

To be more explicit, we can view $\operatorname{Hom}_{\mathbb{C}}$ in the following way: it takes two objects, say A and B, and returns the set of morphisms $A \to B$. It's a functor $\mathbb{C} \times \mathbb{C}$ to set!

(Actually, as we'll see, this isn't quite right: it is actually a functor $C^{op} \times C \to Set$. But this is easier to understand if it comes about in a natural way, so we'll keep writing $C \times C$ for the time being.)

That takes care of how it sends objects to objects, but any functor has to send morphisms to morphisms. How does it do that?

A morphism in $C \times C$ between two objects (A', A) and (B', B) is an ordered pair (f', f) of two morphisms:

$$f: A \to B'$$
 and $f: A' \to B'$,

where A, B, A', and $B' \in Obj(C)$. We can draw this as follows.

$$A' \xrightarrow{f'} B'$$

$$A \xrightarrow{f} B$$

We have to send this to a set-function $\operatorname{Hom}_{\mathbb{C}}(A',A) \to \operatorname{Hom}_{\mathbb{C}}(B',B)$. So let m be a morphism in $\operatorname{Hom}_{\mathbb{C}}(A,A')$. We can draw this into our little diagram above like so.

$$A' \xrightarrow{f'} B'$$

$$A \xrightarrow{f} B$$

Notice: we want to build from m, f, and f' a morphism $B' \to B$. Suppose f' were going the other way.

$$A' \xleftarrow{f'} B'$$

$$A \xrightarrow{f} B$$

Then we could get what we want simply by taking the composition $f \circ m \circ f'$.

$$A' \xleftarrow{f'} B'$$

$$\downarrow f \circ m \circ f'$$

$$A \xrightarrow{f} B$$

But we can make f' go the other way simply by making the first argument of Hom_C come from the opposite category: that is, we want Hom_C to be a functor $C^{op} \times C \rightarrow Set$.

As the function $m \mapsto f \circ m \circ f'$ is the action of the functor $\operatorname{Hom}_{\mathbb{C}}$ on the morphism (f', f), it is natural to call it $\operatorname{Hom}_{\mathbb{C}}(f', f)$.

Of course, we should check that this *really is* a functor, i.e. that it treats identities and compositions correctly. This is completely routine, and you should skip it if you read the last sentence with annoyance.

First, we need to show that $\operatorname{Hom}_{\mathbb{C}}(1_{A'}, 1_A)$ is the identity function $1_{\operatorname{Hom}_{\mathbb{C}}(A', A)}$. It is, since if $m \in \operatorname{Hom}_{\mathbb{C}}(A', A)$,

$$\operatorname{Hom}_{\mathbb{C}}(1_{A'}, 1_A) \colon m \mapsto 1_A \circ m \circ 1_{A'} = m.$$

Next, we have to check that compositions work the way they're supposed to. Suppose we have objects and morphisms like this:

$$A' \xleftarrow{f'} B' \xleftarrow{g'} C'$$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

where the primed stuff is in C^{op} and the unprimed stuff is in C. This can be viewed as three objects (A', A), etc. in $C^{op} \times C$ and two morphisms (f', f) and (g', g) between them.

Okay, so we can compose (f', f) and (g', q) to get a morphism

$$(g',g)\circ (f',f)=(f'\circ g',g\circ f)\colon (A',A)\to (C',C).$$

Note that the order of the composition in the first argument has been turned around: this is expected since the first argument lives in C^{op} . To check that Hom_C handles compositions correctly, we need to verify that

$$\operatorname{Hom}_{\mathbb{C}}(g,g') \circ \operatorname{Hom}_{\mathbb{C}}(f,f') = \operatorname{Hom}_{\mathbb{C}}(f' \circ g',g \circ f).$$

Let $m \in \text{Hom}_{\mathbb{C}}(A', A)$. We victoriously compute

$$\begin{split} [\operatorname{Hom}_{\mathbb{C}}(g,g') \circ \operatorname{Hom}_{\mathbb{C}}(f,f')](m) &= \operatorname{Hom}_{\mathbb{C}}(g,g')(f \circ m \circ f') \\ &= g \circ f \circ m \circ f' \circ g' \\ &= \operatorname{Hom}_{\mathbb{C}}(f' \circ g',g \circ f). \end{split}$$

Let's formalize this in a definition.

Definition 97 (hom functor). Let C be a locally small category. The $\underline{\text{hom functor}}$ Hom_C is the functor

$$C^{op} \times C \rightsquigarrow Set$$

which sends the object (A', A) to the set $\operatorname{Hom}_{\mathbb{C}}(A', A)$ of morphisms $A' \to A$, and the morphism $(f', f) \colon (A', A) \to (B', B)$ to the function

$$\operatorname{Hom}_{\mathbb{C}}(f', f) \colon \operatorname{Hom}_{\mathbb{C}}(A', A) \to \operatorname{Hom}_{\mathbb{C}}(B', B); \qquad m \mapsto f \circ m \circ f'.$$

Example 98. Hom functors give us a new way of looking at the universal property for products, coproducts, and exponentials.

Let C be a locally small category with products, and let X, A, $B \in Obj(C)$. Recall that the universal property for the product $A \times B$ allows us to exchange two morphisms

$$f_1: X \to A$$
 and $f_2: X \to B$

for a morphism

$$f: X \to A \times B$$
.

We can also compose a morphism $g: X \to A \times B$ with the canonical projections

$$\pi_A \colon A \times B \to A$$
 and $\pi_B \colon A \times B \to B$

to get two morphisms

$$\pi_A \circ f: X \to A$$
 and $\pi_B \circ f: X \to B$.

This means that there is a bijection

$$\operatorname{Hom}_{\mathbb{C}}(X, A \times B) \simeq \operatorname{Hom}_{\mathbb{C}}(X, A) \times \operatorname{Hom}_{\mathbb{C}}(X, B).$$

In fact this bijection is natural in X. That is to say, there is a natural bijection between the following functors $C^{op} \rightarrow Set$:

$$h_{A\times B}\colon X\to \operatorname{Hom}_{\mathbb{C}}(X,A\times B)$$
 and $h_A\times h_B\colon X\to \operatorname{Hom}_{\mathbb{C}}(X,A)\times \operatorname{Hom}_{\mathbb{C}}(X,B).$

Let's prove naturality. Let

$$\Phi_X \colon \operatorname{Hom}(X, A \times B) \to \operatorname{Hom}(X, A) \times \operatorname{Hom}(X, B); \qquad f \mapsto (\pi_A \circ f, \pi_B \circ f)$$

be the components of the above transformation, and let $g: X' \to X$. Naturality follows from the fact that the diagram below commutes.

$$\operatorname{Hom}(X, A \times B) \xrightarrow{\operatorname{Hom}(g, 1_{A \times B})} \operatorname{Hom}(X', A \times B)$$

$$\downarrow^{\Phi_{X'}}$$

$$\operatorname{Hom}(X, A) \times \operatorname{Hom}(X, B) \xrightarrow{\operatorname{Hom}(g, 1_{A}) \times \operatorname{Hom}(g, 1_{B})} \operatorname{Hom}(X', A) \times \operatorname{Hom}(X', B)$$

$$f \longmapsto^{\Phi_{X'}} \downarrow^{\Phi_{X'}}$$

$$\downarrow^{\Phi_{X'}}$$

The coproduct does a similar thing: it allows us to trade two morphisms

$$A \to X$$
 and $B \to X$

for a morphism

$$A \coprod B \to X$$
,

and vice versa. Similar reasoning yields a natural bijection between the following functors $C \rightsquigarrow Set$:

$$h^{A \coprod B} \Rightarrow h^A \times h^B$$
.

The exponential is a little bit more complicated: it allows us to trade a morphism

$$X \times A \rightarrow B$$

for a morphism

$$X \to B^A$$
.

and vice versa. That is to say, we have a bijection between two functors $C^{op} \rightsquigarrow \mathsf{Set}$

$$X \mapsto \operatorname{Hom}_{\mathbb{C}}(X \times A, B)$$
 and $X \mapsto \operatorname{Hom}_{\mathbb{C}}(X, B^A)$.

The fact that the functors are more complicated does not hurt us: the above bijection is still natural.

The hom functor as defined above is cute, but not a whole lot else. Things get interesting when we curry it.

Recall from computer science the concept of currying. Suppose we are given a function of two arguments, say f(x, y). The idea of currying is this: if we like, we can view f as a family of functions of only one variable y, indexed by x:

$$h_x(y) = f(x, y).$$

We can even view h as a function which takes one argument x, and which returns a *function* h_x of one variable y.

This sets up a correspondence between functions $f: A \times B \to C$ and functions $h: A \to C^B$, where C^B is the set of functions $B \to C$. The map which replaces f by h is called *currying*. We can also go the other way (i.e. $h \mapsto f$), which is called *uncurrying*.

We have been intentionally vague about the nature of our function f, and what sort of arguments it might take; everything we have said also holds for, say, bifunctors.

In particular, it gives us two more ways to view our bifunctor Hom_C . We can fix any $A \in Obj(C)$ and curry either argument. This gives us the following.

Definition 99 (curried hom functor). Let C be a locally small category, $A \in \text{Obj}(C)$. We can construct from the hom functor Hom_C

- a functor h^A : C \rightsquigarrow Set which maps
 - \circ an object $B \in \text{Obj}(C)$ to the set $\text{Hom}_C(A, B)$, and
 - \circ a morphism $f: B \to B'$ to a Set-function

$$h^A(f): \operatorname{Hom}_{\mathbb{C}}(A, B) \to \operatorname{Hom}_{\mathbb{C}}(A, B'); \qquad m \mapsto f \circ m.$$

- a functor h_A : $C^{op} \rightsquigarrow Set$ which maps
 - \circ an object $B \in \text{Obj}(C)$ to the set $\text{Hom}_{C}(B, A)$, and
 - \circ a morphism $f: B \to B'$ to a Set-function

$$h_A(f): \operatorname{Hom}_{\mathbb{C}}(B', A) \to \operatorname{Hom}_{\mathbb{C}}(B, A); \qquad m \mapsto m \circ f.$$

3.2 Representable functors

Roughly speaking, a functor C \simples Set is representable if it is

Definition 100 (representable functor). Let C be a category. A functor $\mathcal{F}: C \rightsquigarrow Set$ is representable if there is an object $A \in Obj(C)$ and a natural isomorphism (Definition 40)

$$\eta \colon \mathcal{F} \Rightarrow egin{cases} h^A, & ext{if } \mathcal{F} ext{ is covariant} \\ h_A, & ext{if } \mathcal{F} ext{ is contravariant.} \end{cases}$$

Note 101. Since natural isomorphisms are invertible, we could equivalently define a representable functor with the natural isomorphism going the other way.

Example 102. Consider the forgetful functor \mathcal{U} : Grp \rightsquigarrow Set which sends a group to its underlying set, and a group homomorphism to its underlying function. This functor is represented by the group $(\mathbb{Z}, +)$.

To see this, we have to check that there is a natural isomorphism η between \mathcal{U} and $h^{\mathbb{Z}} = \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{Z}, -)$. That is to say, for each group G, there a Set-isomorphism (i.e. a bijection)

$$\eta_G \colon \mathcal{U}(G) \to \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{Z}, G)$$

satisfying the naturality conditions in Definition 39.

First, let's show that there's a bijection by providing an injection in both directions. Pick some $g \in G$. Then there is a unique group homomorphism which sends $1 \mapsto g$, so we have an injection $\mathcal{U}(G) \hookrightarrow \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{Z}, G)$.

Now suppose we are given a group homomorphism $\mathbb{Z} \to G$. This sends 1 to some element $g \in G$, and this completely determines the rest of the homomorphism. Thus, we have an injection $\operatorname{Hom}_{\operatorname{Grp}(\mathbb{Z},G)} \hookrightarrow \mathcal{U}(G)$.

All that is left is to show that η satisfies the naturality condition. Let F and H be groups, and $f: G \to H$ a homomorphism. We need to show that the following diagram commutes.

$$\mathcal{U}(G) \xrightarrow{\mathcal{U}(f)} \mathcal{U}(H)$$

$$\eta_{G} \downarrow \qquad \qquad \downarrow \eta_{H}$$

$$\text{Hom}_{Grp}(\mathbb{Z}, G) \xrightarrow{h^{\mathbb{Z}}(f)} \text{Hom}_{Grp}(\mathbb{Z}, H)$$

The upper path from top left to bottom right assigns to each $g \in G$ the function $\mathbb{Z} \to G$ which maps $1 \mapsto f(g)$. Walking down η_G from $\mathcal{U}(G)$ to $\mathrm{Hom}_{\mathrm{Grp}}(\mathbb{Z},G)$, g is mapped to the function $\mathbb{Z} \to G$ which maps $1 \mapsto g$. Walking right, we compose this function with f to get a new function $\mathbb{Z} \to H$ which sends $1 \mapsto f(g)$. This function is really the image of a homomorphism and is therefore unique, so the diagram commutes.

3.3 The Yoneda embedding

The Yoneda embedding is a very powerful tool which allows us to prove things about any locally small category by embedding that category into Set, and using the enormous amount of structure that Set has.

Definition 103 (Yoneda embedding). Let C be a locally small category. The $\underline{\text{Yoneda embedding}}$ ding is the functor

$$\mathcal{Y}: \mathbb{C} \leadsto [\mathbb{C}^{op}, \operatorname{Set}], \qquad A \mapsto h_A = \operatorname{Hom}_{\mathbb{C}}(-, A).$$

where $[C^{op}, Set]$ is the category of functors $C^{op} \rightsquigarrow Set$, defined in Definition 45.

Of course, we also need to say how \mathcal{Y} behaves on morphisms. Let $f: A \to A'$. Then $\mathcal{Y}(f)$ will be a morphism from h_A to $h_{A'}$, i.e. a natural transformation $h_A \Rightarrow h_{A'}$. We can specify how it behaves by specifying its components $(\mathcal{Y}(f))_B$.

Plugging in definitions, we find that $(\mathcal{Y}(f))_B$ is a map $\operatorname{Hom}_{\mathbb{C}}(B,A) \to \operatorname{Hom}_{\mathbb{C}}(B,A')$. But we know how to get such a map—we can compose all of the maps $B \to A$ with f to get maps $B \to A'$. So $\mathcal{Y}(f)$, as a natural transformation $\operatorname{Hom}_{\mathbb{C}}(-,A) \to \operatorname{Hom}_{\mathbb{C}}(-,A')$, simply composes everything in sight with f.

Theorem 104 (Yoneda lemma). Let \mathcal{F} be a functor from C^{op} to Set. Let $A \in Obj(C)$. Then there is a set-isomorphism (i.e. a bijection) η between the set $Hom_{[C^{op},Set]}(h_A,\mathcal{F})$ of natural transformations $h_A \Rightarrow \mathcal{F}$ and the set $\mathcal{F}(A)$. Furthermore, this isomorphism is natural in A.

Note 105. A quick admission before we begin: we will be sweeping issues with size under the rug in what follows by tacitly assuming that $\text{Hom}_{[C^{op}, \mathsf{Set}]}(h_A, \mathcal{F})$ is a set. The reader will have to trust that everything works out in the end.

Proof. A natural transformation $\Phi \colon h_A \Rightarrow \mathcal{F}$ consists of a collection of Set-morphisms (that is to say, functions) $\Phi_B \colon \operatorname{Hom}_{\mathbb{C}}(B,A) \to \mathcal{F}(A)$, one for each $B \in \operatorname{Obj}(\mathbb{C})$. We need to show that to each element of $\mathcal{F}(A)$ there corresponds exactly one Φ . We will do this by showing that any Φ is completely determined by where Φ_A sends the identity morphism $1_A \in \operatorname{Hom}_{\mathbb{C}}(A,A)$, so there is exactly one natural transformation for each place Φ can send 1_A .

The proof that this is the case can be illustrated by the following commutative diagram.

Here's what the above diagram means. The natural transformation $\Phi \colon h_A \Rightarrow \mathcal{F}$ has a component $\Phi_A \colon \operatorname{Hom}_{\mathbb{C}}(A,A) \to \mathcal{F}(A)$, and Φ_A has to send the identity transformation 1_A somewhere. It can send it to any element of $\mathcal{F}(A)$; let's call $\Phi_A(1_A) = a$.

Now the naturality conditions force our hand. For any $B \in \text{Obj}(C)$ and any $f : B \to A$, the naturality square above means that $\Phi_B(f)$ has to be equal to $(\mathcal{F}f)(a)$. We get no choice in the matter.

But this completely determines Φ ! So we have shown that there is exactly one natural transformation for every element of $\mathcal{F}(A)$. We are done!

Well, almost. We still have to show that the bijection we constructed above is natural. To that end, let $f: B \to A$. We need to show that the following square commutes.

$$\begin{array}{ccc} \operatorname{Hom}_{[\mathsf{C}^{\operatorname{op}},\mathsf{Set}]}(h_A,\mathcal{F}) & \xrightarrow{\eta_A} & \mathcal{F}(A) \\ & \operatorname{Hom}_{[\mathsf{C}^{\operatorname{op}},\mathsf{Set}]}(\mathcal{Y}(f),\mathcal{F}) \downarrow & & & \downarrow \mathcal{F}(f) \\ & \operatorname{Hom}_{[\mathsf{C}^{\operatorname{op}},\mathsf{Set}]}(h_B,\mathcal{F}) & \xrightarrow{\eta_B} & \mathcal{F}(B) \end{array}$$

This is notationally dense, and deserves a lot of explanation. The natural transformation $\operatorname{Hom}_{[\mathsf{C}^{\operatorname{op}},\mathsf{Set}]}(\mathcal{Y}(f),\mathcal{F})$ looks complicated, but it's really not since we know what the hom functor does: it takes every natural transformation $h_A\Rightarrow \mathcal{F}$ and pre-composes it with $\mathcal{Y}(f)$. The natural transformation η_A takes a natural transformation $\Phi\colon h_A\Rightarrow \mathcal{F}$ and sends it to the element $\Phi_A(1_A)\in \mathcal{F}(A)$.

So, starting at the top left with a natural transformation $\Phi \colon h_A \Rightarrow \mathcal{F}$, we can go to the bottom right in two ways.

1. We can head down to $\text{Hom}_{[C^{op}, Set]}(h_B, \mathcal{F})$, mapping

$$\Phi \mapsto \Phi \circ \mathcal{Y}(f)$$
,

then use η_B to map this to $\mathcal{F}(B)$:

$$\Phi \circ \mathcal{Y}(f) \mapsto (\Phi \circ \mathcal{Y}(f))_{\mathcal{B}}(1_{\mathcal{B}}).$$

We can simplify this right away. The component of the composition of natural transformations is the composition of the components, i.e.

$$(\Phi \circ \mathcal{Y}(f))_{B}(1_{B}) = (\Phi_{B} \circ \mathcal{Y}(f)_{B})(1_{B}).$$

We also know how y(f) behaves: it composes everything in sight with f.

$$y(f)(1_B) = f$$
.

Thus, we have

$$(\Phi \circ \mathcal{Y}(f))(1_B) = \Phi_B(f).$$

2. We can first head to the right using η_A . This sends Φ to

$$\Phi_A(1_A) \in \mathcal{F}(A)$$
.

We can then map this to $\mathcal{F}(B)$ with f, getting

$$\mathcal{F}(f)(\Phi_A(1_A)).$$

The naturality condition is thus

$$(\mathfrak{F}(f))(\Phi_A(1_A)) = \Phi_B(f),$$

which we saw above was true for any natural transformation Φ .

Lemma 106. The Yoneda embedding is fully faithful (Definition 32).

Proof. We have to show that for all $A, B \in Obj(C)$, the map

$$\mathcal{Y}_{A,B} \colon \mathrm{Hom}_{\mathbb{C}}(A,B) \to \mathrm{Hom}_{[\mathbb{C}^{\mathrm{op}},\mathrm{Set}]}(h_A,h_B)$$

is a bijection.

Fix $B \in \text{Obj}(C)$, and consider the functor h_B . By the Yoneda lemma, there is a bijection between $\text{Hom}_{[C^{op}, Set]}(h_A, h_B)$ and $h_B(A)$. By definition,

$$h_B(A) = \operatorname{Hom}_{\mathbb{C}}(A, B).$$

But $\text{Hom}_{[C^{op}, Set]}(h_A, h_B)$ is nothing else but $\text{Hom}_{[C^{op}, Set]}(h_A, h_B)$, so we are done.

Note 107. We defined the Yoneda embedding to be the functor $A \mapsto h_A$; this is sometimes called the *contravariant Yoneda embedding*. We could also have studied to map A to h^A , called the *covariant Yoneda embedding*, in which case a slight modification of the proof of the Yoneda lemma would have told us that the map

$$\operatorname{Hom}_{\mathsf{C}^{\mathrm{op}}}(B,A) \to \operatorname{Hom}_{[\mathsf{C},\mathsf{Set}]}(h^A,h^B)$$

is a natural bijection. This is often called the covariant Yoneda lemma.

Here is a situation in which the Yoneda lemma is commonly used.

Corollary 108. Let C be a locally small category. Suppose for all $A \in Obj(C)$ there is a bijection

$$\operatorname{Hom}_{\mathbb{C}}(A,B) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(A,B')$$

which is natural in A. Then $B \simeq B'$

Proof. We have a natural isomorphism $h_B \Rightarrow h_{B'}$. Since the Yoneda embedding is fully faithful, it is injective on objects up to isomorphism (Lemma 34). Thus, since h_B and $h_{B'}$ are isomorphic, so must be $B \simeq B'$.

3.4 Applications

We have now built up enough machinery to make the proofs of a great variety of things trivial, as long as we accept a few assertions.

It is possible, for example, to prove that the product is associative in *any* locally small category, just from the fact that it is associative in Set.

Lemma 109. The Cartesian product is associative in Set. That is, there is a natural isomorphism α between $(A \times B) \times C$ and $A \times (B \times C)$ for any sets A, B, and C.

Proof. The isomorphism is given by $\alpha_{A,B,C}$: $((a,b),c) \mapsto (a,(b,c))$. This is natural because for functions like this,

$$A \xrightarrow{f} A'$$

$$B \stackrel{g}{\longrightarrow} B'$$

$$C \xrightarrow{h} C'$$

the following diagram commutes.

$$((a,b),c) \xrightarrow{((f,g),h)} ((f(a),g(b)),h(c))$$

$$\alpha_{A,B,C} \downarrow \qquad \qquad \downarrow \alpha_{A',B',C'}$$

$$(a,(b,c)) \xrightarrow{f,(g,h)} (f(a),(g(b),h(c)))$$

Theorem 110. In any locally small category C with products, there is a natural isomorphism $(A \times B) \times C \simeq A \times (B \times C)$.

Proof. We have the following string of natural isomorphisms for any X, A, B, $C \in Obj(C)$.

$$\begin{aligned} \operatorname{Hom}_{\mathbb{C}}(X,(A\times B)\times C) &\simeq \operatorname{Hom}_{\mathbb{C}}(X,A\times B) \times \operatorname{Hom}_{\mathbb{C}}(X,C) \\ &\simeq (\operatorname{Hom}_{\mathbb{C}}(X,A) \times \operatorname{Hom}_{\mathbb{C}}(X,B)) \times \operatorname{Hom}_{\mathbb{C}}(X,C) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(X,A) \times (\operatorname{Hom}_{\mathbb{C}}(X,B) \times \operatorname{Hom}_{\mathbb{C}}(X,C)) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(X,A) \times \operatorname{Hom}_{\mathbb{C}}(X,B\times C) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(X,A\times (B\times C)). \end{aligned}$$

Thus, by Corollary 108, $(A \times B) \times C \simeq A \times (B \times C)$.

Note 111. By induction, all finite products are associative.

Theorem 112. In any category with products \times , coproducts +, initial object 0, final object 1, and exponentials, we have the following natural isomorphisms.

1.
$$A \times (B + C) \simeq (A \times B) + (A \times C)$$

2.
$$C^{A+B} \simeq C^A \times C^B$$
.

3.
$$(C^A)^B \simeq C^{A \times B}$$

4.
$$(A \times B)^C \simeq A^C \times B^C$$

5.
$$C^0 \simeq 1$$

6.
$$C^1 \simeq C$$

Proof.

1. We have the following list of natural isomorphisms.

$$\begin{split} \operatorname{Hom}_{\mathbb{C}}(A \times (B + C), X) &\simeq \operatorname{Hom}_{\mathbb{C}}(B + C, X^{A}) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(B, X^{A}) \times \operatorname{Hom}_{\mathbb{C}}(C, X^{A}) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(B \times A, X) \times \operatorname{Hom}_{\mathbb{C}}(C \times A, X) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}((B \times A) + (C \times A), X). \end{split}$$

2. We have the following list of natural isomorphisms.

$$\begin{split} \operatorname{Hom}(X,C^{A+B}) &\simeq \operatorname{Hom}(X\times (A+B),C) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}((X\times A) + (X\times B),C) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(X\times A,C) \times \operatorname{Hom}_{\mathbb{C}}(X\times B,C) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(X,C^A) \times \operatorname{Hom}_{\mathbb{C}}(X,C^B) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(X,C^A\times C^B). \end{split}$$

42

Etc.

4 Limits

4.1 Limits and colimits

As we have seen, one often gets categorical concepts by 'categorifying' concepts from set theory. One example of this is the notion of a *diagram*, which is the categorical generalization of an indexed family.

Definition 113 (indexed family). Let J and X be sets. A <u>family of elements in X indexed by</u> J is a function

$$x: J \to X; \qquad j \mapsto x_j.$$

To categorify this, one considers a functor from one category J, called the *index category*, to another category C. Using a functor from a category instead of a function from a set allows us to index the morphisms as well as the objects.

Definition 114 (diagram). Let J and C be categories. A <u>diagram</u> of type J in C is a (covariant) functor

$$\mathfrak{D}\colon \mathsf{I} \leadsto \mathsf{C}.$$

One thinks of the functor \mathcal{D} embedding the index category J into C.

Definition 115 (cone). Let C be a category, J an index category, and $\mathcal{D}: J \rightsquigarrow C$ be a diagram. Let 1 be the category with one object and one morphism (Example 6) and \mathcal{F}_X the functor $1 \rightsquigarrow C$ which picks out $X \in \text{Obj}(C)$ (see Example 30). Let \mathcal{K} be the unique functor $J \rightsquigarrow 1$.

A cone of shape J from X is an object $X \in \text{Obj}(C)$ together with a natural transformation

$$\varepsilon \colon \mathcal{F}_X \circ \mathcal{K} \Rightarrow \mathcal{D}.$$

That is to say, a cone to J is an object $X \in \text{Obj}(C)$ together with a family of morphisms $\Phi_A \colon X \to \mathcal{D}(A)$ (one for each $A \in \text{Obj}(J)$) such that for all $A, B \in \text{Obj}(J)$ and all $f \colon A \to B$ the following diagram commutes.

Note 116. Here is an alternate definition. Let Δ be the functor $C \leadsto [J, C]$ (the category of functors $J \leadsto C$, see TODO) which assigns to each object $X \in \text{Obj}(C)$ the constant functor $\Delta_X : J \leadsto C$, i.e. the functor which maps every object of J to X and every morphism to 1_X . A cone over $\mathcal D$ is then an object in the comma category (Definition 55) ($\Delta \downarrow \mathcal D$) given by the diagram

$$C \xrightarrow{\Delta} [J,C] \xleftarrow{\mathcal{D}} 1$$
.

The objects of this category are pairs (X, f), where $X \in \mathrm{Obj}(\mathbb{C})$ and $f : \Delta(X) \to \mathcal{D}$; that is to say, f is a natural transformation $\Delta_X \Rightarrow \mathcal{D}$.

This allows us to make the following definition.

Definition 117 (category of cones over a diagram). Let C be a category, J an index category, and $\mathcal{D} \colon J \to C$ a diagram. The category of cones over \mathcal{D} is the category $(\Delta \downarrow \mathcal{D})$.

Note 118. The alternate definition given in Note 116 not only reiterates what cones look like, but even prescribes what morphisms between cones look like. Let (X, Φ) be a cone over a diagram $\mathcal{D}: J \leadsto C$, i.e.

- an object in the category ($\Delta \downarrow \mathcal{D}$), i.e.
- a pair (X, Φ) , where $X \in \text{Obj}(\mathbb{C})$ and $\Phi \colon \Delta_X \Rightarrow \mathcal{D}$ is a natural transformation, i.e.
- for each $J \in \text{Obj}(J)$ a morphism $\Phi_J \colon X \to \mathcal{D}(J)$ such that for any other object $J' \in \text{Obj}(J)$ and any morphism $f \colon J \to J'$ the following diagram commutes.

$$\mathcal{D}(J) \xrightarrow{\Phi_{J}} X \xrightarrow{\Phi_{J'}} \mathcal{D}(J')$$

This agrees with our previous definition of a cone.

Let (Y, Γ) be another cone over \mathcal{D} . Then a morphism $\Xi: (X, \Phi) \to (Y, \Gamma)$ is

- a morphism $\Xi \in \text{Hom}_{(\Delta \mid \mathcal{D})}((X, \Phi), (Y, \Gamma))$, i.e.
- a natural transformation $\Xi \colon \Delta_X \Rightarrow \Delta_Y$ (i.e. a morphism $\Delta_X \to \Delta_Y$ in the category [J, C]) such that the diagram

$$\Delta_X \xrightarrow{\Xi} \Delta_Y$$

commutes, i.e.

• a morphism $\xi: X \to Y$ such that for each $J \in \text{Obj}(J)$, the diagram

commutes.

Cocones are the dual notion to cones. We make the following definition.

Definition 119 (cocone). A <u>cocone over a diagram \mathcal{D} </u> is an object in the comma category $(\mathcal{D} \downarrow \Delta)$.

Definition 120 (category of cocones). The <u>category of cocones over a diagram \mathcal{D} </u> is the category $(\mathcal{D} \downarrow \Delta)$.

The categorical definitions of cones and cocones allow us to define limits and colimits succinctly.

Definition 121 (limits, colimits). A <u>limit</u> of a diagram $\mathcal{D}: J \rightsquigarrow C$ is a final object in the category $(\Delta \downarrow \mathcal{D})$. A colimit is an initial object in the category $(\mathcal{D} \downarrow \Delta)$.

Note 122. The above definition of a limit unwraps as follows. The limit of a diagram $\mathcal{D}: J \leadsto C$ is a cone (X, Φ) over \mathcal{D} such that for any other cone (Y, Γ) over \mathcal{D} , there is a unique map $\xi: Y \to X$ such that for each $J \in \text{Obj}(J)$, the following diagram commutes.

$$Y \xrightarrow{\xi} X$$

$$\Gamma_{J} \searrow \Phi_{J}$$

$$\mathcal{D}(J)$$

Notation 123. We often denote the limit over the diagram $\mathfrak{D}: J \leadsto C$ by

$$\lim \mathcal{D}.$$

Similarly, we will denote the colimit over \mathcal{D} by

$$\lim_{\longrightarrow} \mathcal{D}$$
.

If there is notational confusion over which functor we are taking a (co)limit, we will add a dummy index:

$$\lim_{\leftarrow i} \mathcal{D}_i.$$

Example 124. Here is a definition of the product $A \times B$ equivalent to that given in Example 72: it is the limit of the following somewhat trivial diagram.

$$1_A \stackrel{\longrightarrow}{\subset} A$$
 $B \stackrel{\longrightarrow}{\smile} 1_B$

Let us unwrap this definition. We are saying that the product $A \times B$ is a cone over A and B

$$A \times B$$

$$A \times B$$

$$A \times B$$

$$B$$

But not just any cone: a cone which is universal in the sense that any *other* cone factors through it uniquely.

$$A \stackrel{f_1}{\longleftarrow} A \times B \stackrel{f_2}{\longrightarrow} B$$

In fact, this allows us to generalize the product: the product of n objects $\prod_{i=1}^{n} A_i$ is the limit over diagram consisting of all the A_i with no morphisms between them.

Definition 125 (equalizer). Let J be the category with objects and morphisms as follows. (The necessary identity arrows are omitted.)

$$J \xrightarrow{1 \atop 2} J'$$

A diagram \mathcal{D} of shape J in some category C looks like the following.

$$A \xrightarrow{f} B$$

The equalizer of f and g is the limit of the diagram \mathcal{D} ; that is to say, it is an object eq \in Obj(C) and a morphism $e : eq \rightarrow A$

$$eq \xrightarrow{e} A \xrightarrow{f} B$$

such that for any *other* object Z and morphism $i: Z \to A$ such that $f \circ i = g \circ i$, there is a unique morphism $e: Z \to \text{eq}$ making the following diagram commute.

$$Z$$

$$\exists ! u \downarrow \downarrow \downarrow \downarrow \\ eq \xrightarrow{e} A \xrightarrow{f} B$$

4.2 Pullbacks and kernels

In what follows, C will be a category and A, B, etc. objects in Obj(C).

Definition 126 (pullback). Let f, g be morphisms as follows.

$$A \xrightarrow{f} C$$

A <u>pullback of f along g</u> (also called a pullback of g over f, sometimes notated $A \times_C B$) is a commuting square

$$\begin{array}{ccc}
U & \xrightarrow{q} & B \\
\downarrow p & & \downarrow g \\
A & \xrightarrow{f} & C
\end{array}$$

such that for any other commuting square

$$\begin{array}{ccc}
V & \xrightarrow{t} & B \\
\downarrow s & & \downarrow g \\
A & \xrightarrow{f} & C
\end{array}$$

47

there is a unique morphism $h: V \to U$ such that the diagram

Note 127. Here is another definition: the pullback $A \times_C B$ is the limit of the diagram

$$A \xrightarrow{f} C$$

This might at first seem odd; after all, don't we also need an arrow $A \times_C B \to C$? But this arrow is completely determined by the commutativity conditions, so it is superfluous.

Example 128. In Set, *U* is given (up to unique isomorphism) by

$$U = \{(a, b) \in A \times B \mid f(a) = g(b)\}.$$

The morphisms p and q are given by the projections p(a,b) = a, q(a,b) = b.

To see that this really does satisfy the universal property, consider any other set V and functions $s: V \to A$ and $t: V \to B$ making the above diagram commute. Then for all $v \in V$, f(s(v)) = t(g(v)).

Now consider the map $V \to U$ sending v to (s(v), t(v)). This certainly makes the above diagram commute; furthermore, any other map from V to U would not make the diagram commute. Thus U and h together satisfy the universal property.

Lemma 129. Let $f: X \to Y$ be a monomorphism. Then any pullback of f is a monomorphism.

Proof. Suppose we have the following pullback square.

$$X' \xrightarrow{p_1} X$$

$$p_2 \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

Our aim is to show that p_2 is a monomorphism.

Suppose we are given an object *Z* and two morphisms α , β : $Z \to X'$.

We can compose α and β with p_2 . Suppose that these agree, i.e.

$$p_2 \circ \alpha = p_2 \circ \beta$$
.

We will be done if we can show that this implies that $p_1 = p_2$.

We can compose with g to find that

$$q \circ p_2 \circ \alpha = q \circ p_2 \circ \beta$$
.

but since the pullback square commutes, we can replace $g \circ p_2$ by $f \circ p_1$.

$$f \circ p_1 \circ \alpha = f \circ p_1 \circ \beta$$
.

since f is a monomorphism, this implies that

$$p_1 \circ \alpha = p_1 \circ \beta$$
.

Now forget α and β for a minute. We have constructed a commuting square as follows.

the universal property for pullbacks tells us that there is a unique morphism $Z \to X'$ making the diagram commute. But either α or β will do! So $\alpha = \beta$.

Definition 130 (kernel of a morphism). Let C be a category with an initial object (Definition 60) 0 and pullbacks. The <u>kernel</u> $\ker(f)$ of a morphism $f: A \to B$ is the pullback along f of the unique morphism $0 \to \overline{B}$.

$$\ker(f) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \longrightarrow B$$

That is to say, the kernel of f is a pair $(\ker(f), \iota)$, where $\ker(f) \in \operatorname{Obj}(C)$ and $\iota \colon \ker(f) \to A$ which satisfies the above universal property.

Note 131. Although the kernel of a morphism f is a pair $(\ker(f), \iota)$ as described above, we will sometimes sloppily say that the object $\ker(f)$ is the kernel of f, especially when the the morphism ι is obvious or understood. Such abuses of terminology are common; one occasionally even sees the morphism ι being called the kernel of f.

Example 132. In Vect_k, the initial object is the zero vector space $\{0\}$. For any vector spaces V and W and any linear map $f: V \to W$, the kernel of f is the pair $(\ker(f), \iota)$ where $\ker(f)$ is the vector space

$$\ker(f) = \{ v \in V \mid f(v) = 0 \}$$

and ι is the obvious injection $\ker(f) \to V$.

Lemma 133. Let $f: A \to B$, and let $(\iota, \ker(f))$ be the kernel of f. Then ι is a monomorphism (Definition 15).

Proof. Suppose we have an object $Z \in \text{Obj}(C)$ and two morphisms $g_1, g_2 \colon Z \to \ker(f)$. We have the following diagram.

Further suppose that $\iota \circ g_1 = \iota \circ g_2$.

Now pretend that we don't know about g_1 and g_2 .

The universal property for kernels tells us that there is a unique map $Z \to \ker(f)$ making the above diagram commute. But since g_1 and g_2 both make the diagram commute, g_1 and g_2 must be the same map, i.e. $g_1 = g_2$.

4.3 Pushouts and cokernels

Pushouts are the dual notion to pullbacks.

Definition 134 (pushouts). Let f, g be morphisms as follows.

$$C \xrightarrow{g} B$$

$$f \downarrow A$$

The pushout of f along g (or g along f) is a commuting square

$$\begin{array}{ccc}
C & \xrightarrow{g} & B \\
f \downarrow & & \downarrow q \\
A & \xrightarrow{p} & U
\end{array}$$

such that for any other commuting square

$$\begin{array}{ccc}
C & \xrightarrow{g} & B \\
f \downarrow & & \downarrow t \\
A & \xrightarrow{s} & V
\end{array}$$

there exists a unique morphism $h \colon U \to V$ such that the diagram

commutes.

Note 135. As with pullbacks, we can also define a pushout as the colimit of the following diagram.

$$\begin{array}{c}
C \xrightarrow{g} B \\
f \downarrow \\
A
\end{array}$$

Example 136. Let us construct the pushout in Set. If we ignore the object C and the morphisms f and g, we discover that U must satisfy the universal property of the coproduct of A and B.

Let us therefore make the ansatz that $U = A \coprod B = A \sqcup B$ and see what happens when we add C, f, and g back in.

51

In doing so, we find that the square A-C-B-U must also commute, i.e. we must have that $(q \circ q)(c) = (p \circ f)(c)$ for all $c \in C$. Since p and q are just inclusions, we see that

$$U = A \coprod B/\sim$$
,

where \sim is the equivalence relation generated by the relations $f(c) \sim g(c)$ for all $c \in C$.

Definition 137 (cokernel of a morphism). Let C be a category with terminal object 1. The cokernel of a morphism $f: A \to B$ is the pushout of f along the unique morphism $A \to 1$.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow_{\pi} \\
1 & \longrightarrow \operatorname{coker}(f)
\end{array}$$

Example 138. In Vect_k, the terminal object is the vector space $\{0\}$. If V and W are k-vector spaces and f is a linear map $V \to W$, then $\operatorname{coker}(f)$ is

$$W/\sim$$
,

where \sim is the relation generated by $f(v) \sim 0$ for all $v \in V$. But this relation is exactly the one which mods out by $\operatorname{im}(f)$, so $\operatorname{coker}(f) = W/\operatorname{im}(f)$.

Lemma 139. For any morphism $f: A \to B$, the canonical projection $\pi: B \to \operatorname{coker}(f)$ is an epimorphism.

Proof. The proof is dual to the proof that the canonical injection ι is mono (Lemma 133).

Definition 140 (normal monomorphism). A monomorphism (Definition 15) $f: A \to B$ is normal if it the kernel of some morphism. To put it more plainly, f is normal if there exists an object C and a morphism $g: B \to C$ such that (A, f) is the kernel of g.

$$A \xrightarrow{f} B \xrightarrow{g} C$$

Example 141. In Vect_k, monomorphisms are injective linear maps (Example 18). If f is injective then sequence

$$\{0\} \longrightarrow V \stackrel{f}{\longrightarrow} W \stackrel{\pi}{\longrightarrow} W/\mathrm{im}(f), \longrightarrow \{0\}$$

is exact, and we always have that $im(f) = ker(\pi)$. Thus in $Vect_k$, every monomorphism is normal.

Definition 142 (conormal epimorphism). An epimorphism $f: A \to B$ is <u>conormal</u> if it is the cokernel of some morphism. That is to say, if there exists an object C and a morphism $g: C \to A$ such that (B, f) is the cokernel of g.

Example 143. In Vect_k, epimorphisms are surjective linear maps. If $f: V \to W$ is a surjective linear map, then the sequence

$$\{0\} \longrightarrow \ker(f) \xrightarrow{\iota} V \xrightarrow{f} W \longrightarrow \{0\}$$

is exact. But then $\operatorname{im}(\iota) = \ker(f)$, so f is conormal. Thus in Vect_k , every epimorphism is conormal.

Note 144. To show that in our proofs that in $Vect_k$ monomorphisms were normal and epimorphisms were conormal, we showed that monomorphisms were the kernels of their cokernels, and epimorphisms were the cokernels of their kernels. This will be a general feature of Abelian categories.

Definition 145 (binormal category). A category is <u>binormal</u> if all monomorphisms are normal and all epimorphisms are conormal.

Example 146. As we have seen, $Vect_k$ is binormal.

4.4 A necessary and sufficient condition for the existence of finite limits

In this section we prove a simple criterion to check that a category has all finite limits (i.e. limits over diagrams with a finite number of objects and a finite number of morphisms). The idea is as follows.

In general, adding more objects to a diagram makes the limit over it larger, and adding more morphisms makes the limit smaller. In the extreme case in which the only morphisms are the identity morphisms, the limit is simply the categorical product. As we add morphisms, roughly speaking, we have to get rid of the parts of the product which are preventing the necessary triangles from commuting. Thus, to make the universal cone over a diagram, we can start with the product, and cut out the bare minimum we need to make everything commute: the way to do that is with an equalizer.

The following proof was adapted from [25].

Theorem 147. Let C be a category. Then if C has all finite products and equalizers, C has all finite limits.

Proof. Let $\mathcal{D}: J \leadsto C$ be a finite diagram. We want to prove that \mathcal{D} has a limit; we will do this by constructing a universal cone over it, i.e.

- an object $L \in Obj(C)$, and
- for each $j \in \text{Obj}(J)$, a morphism $P_i : L \to \mathcal{D}(j)$

such that

1. for any $i, j \in \text{Obj}(J)$ and any $\alpha : i \rightarrow j$ the following diagram commutes,

$$\begin{array}{ccc}
L & & & \\
P_i & & & & \\
& \swarrow & & & & \\
\mathcal{D}(i) & \xrightarrow{\mathcal{D}(\alpha)} & \mathcal{D}(j)
\end{array}$$

and

2. for any other object $L' \in \text{Obj}(\mathbb{C})$ and family of morphisms $Q_j \colon L' \to \mathcal{D}(j)$ which make the diagrams

$$\begin{array}{ccc}
L' & Q_j \\
\downarrow & & \downarrow \\
\mathcal{D}(i) & \xrightarrow{\mathcal{D}(\alpha)} & \mathcal{D}(j)
\end{array}$$

commute for all i, j, and α , there is a unique morphism $f: L' \to L$ such that $Q_j = P_j \circ f$ for all $j \in \text{Obj}(J)$.

Denote by Mor(J) the set of all morphisms in J. For any $\alpha \in \text{Hom}_J(i, j) \subseteq \text{Mor}(J)$, let dom(α) = i and cod(α) = j.

Consider the following finite products:

$$A = \prod_{j \in \text{Obj}(J)} \mathcal{D}(j)$$
 and $B = \prod_{\alpha \in \text{Mor}(J)} \mathcal{D}(\text{cod}(\alpha)).$

From the universal property for products, we know that we can construct a morphism $f: A \to B$ by specifying a family of morphisms $f_\alpha: A \to \mathcal{D}(\operatorname{cod}(\alpha))$, one for each $\alpha \in \operatorname{Mor}(J)$. We will define two morphisms $R, S: A \to B$ in this way:

$$R_{\alpha} = \pi_{\mathcal{D}(\operatorname{cod}(\alpha))}; \qquad S_{\alpha} = \mathcal{D}(\alpha) \circ \pi_{\mathcal{D}(\operatorname{dom}(\alpha))}.$$

Now let $e: L \to A$ be the equalizer of R and S (we are guaranteed the existence of this equalizer by assumption). Further, define $P_j: L \to \mathcal{D}(j)$ by

$$P_i = \pi_{\mathcal{D}(i)} \circ e$$

for all $j \in \text{Obj}(J)$.

The claim is that L together with the P_j is the limit of \mathcal{D} . We need to verify conditions 1 and 2 on L and P_j listed above.

1. We need to show that for all $i, j \in \text{Obj}(J)$ and all $\alpha \colon i \to j$, we have the equality $\mathcal{D}(\alpha) \circ P_i = P_j$. Now, for every $\alpha \colon i \to j$ we have

$$\mathcal{D}(\alpha) \circ P_i = \mathcal{D}(\alpha) \circ \pi_{\mathcal{D}(i)} \circ e$$

$$= S_{\alpha} \circ e$$

$$= R_{\alpha} \circ e$$

$$= \pi_{\mathcal{D}(j)} \circ e$$

$$= P_j.$$

2. We need to show that for any other $L' \in \text{Obj}(\mathbb{C})$ and any other family of morphisms $Q_j \colon L' \to \mathcal{D}(j)$ such that for all $\alpha \colon i \to j$, $Q_j = \mathcal{D}(\alpha) \circ Q_i$, there is a unique morphism $h \colon L' \to L$ such that $Q_j = P_j \circ h$ for all $j \in \text{Obj}(J)$. Suppose we are given such an L' and Q_j .

The universal property for products allows us to construct from the family of morphisms Q_i a morphism $Q: L' \to A$ such that $Q_i = \pi_{\mathcal{D}(i)} \circ Q$. Now, for any $\alpha: i \to j$,

$$R_{\alpha} \circ Q = \pi_{\mathcal{D}(j)} \circ Q$$

$$= Q_j$$

$$= \mathcal{D}(\alpha) \circ Q_i$$

$$= \mathcal{D}(\alpha) \circ \pi_i \circ Q$$

$$= S_{\alpha} \circ Q.$$

Thus, $Q: L' \to A$ equalizes R and S. But the universal property for equalizers guarantees us a unique morphism $h: L' \to L$ such that $Q = P \circ h$. We can compose both sides of this equation on the left with $\pi_{\mathcal{D}(j)}$ to find

$$\pi_{\mathcal{D}(j)} \circ Q = \pi_{\mathcal{D}(j)} \circ P \circ h,$$

i.e.

$$Q_i = P_i \circ h$$

as required.

4.5 The hom functor preserves limits

Theorem 148. Let C be a locally small category. The hom functor $Hom_C \colon C^{op} \times C \rightsquigarrow Set$ preserves limits in the second argument, i.e. for $\mathfrak{D} \colon J \rightsquigarrow C$ a diagram in C we have a natural isomorphism

$$\operatorname{Hom}_{\mathbb{C}}(Y, \underset{\leftarrow}{\lim} \mathcal{D}) \simeq \underset{\leftarrow}{\lim} \operatorname{Hom}_{\mathbb{C}}(Y, \mathcal{D}),$$

where the limit on the RHS is over the hom-set diagram

$$\operatorname{Hom}_{\mathbb{C}}(Y, -) \circ \mathfrak{D} \colon J \rightsquigarrow \operatorname{Set}.$$

Proof. Let L be the limit over the diagram \mathcal{D} . Then for any map $f: Y \to L$, there is a cone from Y to \mathcal{D} by composition, and for any cone with tip Y over \mathcal{D} we get a map $f: Y \to L$ from the universal property of limits. Thus, there is a bijection

$$\operatorname{Hom}_{\mathbb{C}}(Y, \lim_{\leftarrow} \mathfrak{D}) \simeq \operatorname{Cones}(Y, \mathfrak{D}),$$

which is natural in *Y* since the diagram

$$\operatorname{Hom}_{\mathsf{C}}(Y, \lim_{\leftarrow} \mathfrak{D}) \xrightarrow{(-) \circ f} \operatorname{Hom}_{\mathsf{C}}(Z, \lim_{\leftarrow} \mathfrak{D})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Cones}(Y, \mathfrak{D}) \xrightarrow{(-) \circ f} \operatorname{Cones}(Z, \mathfrak{D})$$

trivially commutes. We will be done if we can show that there is also a natural isomorphism

Cones
$$(Y, \mathcal{D}) \simeq \lim_{\leftarrow} \operatorname{Hom}_{\mathbb{C}}(Y, \mathcal{D}).$$

Let us understand the elements of the set $\lim_{\leftarrow} \operatorname{Hom}_{\mathbb{C}}(Y, \mathbb{D})$. The diagram

$$\operatorname{Hom}_{\mathbb{C}}(Y, -) \circ \mathfrak{D} \colon J \rightsquigarrow \operatorname{Set}$$

maps $J \in \text{Obj}(J)$ to $\text{Hom}_{\mathbb{C}}(Y, \mathcal{D}(J)) \in \text{Obj}(\mathsf{Set})$. A universal cone over this diagram is a set S together with, for each $J_i \in \text{Obj}(J)$, a function

$$f_i: S \to \operatorname{Hom}_{\mathbb{C}}(Y, \mathcal{D}(J_i))$$

such that for each $\alpha \in \text{Hom}_{I}(J_{i}, J_{j})$, the diagram

commutes.

Now pick any element $s \in S$. Each f_i maps this to a function $Y \to \mathcal{D}(J_i)$ which makes the diagram

$$\begin{array}{ccc}
Y \\
f_i(s) & & \downarrow \\
\mathcal{D}(J_i) & \xrightarrow{\mathcal{D}(\alpha)} & \mathcal{D}(J_j)
\end{array}$$

commute. But this is exactly an element of Cones(Y, \mathcal{D}). Conversely, every element of Cones(Y, \mathcal{D}) gives us an element of S, so we have a bijection

$$Cones(Y, \mathcal{D}) \simeq \lim_{\leftarrow} Hom_{\mathbb{C}}(Y, \mathcal{D}),$$

which is natural as required.

Corollary 149. The first slot of the hom functor turns colimits into limits. That is,

$$\operatorname{Hom}_{\operatorname{\mathbb{C}}}(\varinjlim \mathcal{D}, Y) \simeq \varprojlim \operatorname{Hom}_{\operatorname{\mathbb{C}}}(\mathcal{D}, Y).$$

Proof. Dual to that of Theorem 148.

4.6 Filtered colimits and ind-objects

Definition 150 (preorder). Let S be a set. A preoreder on S is a binary relation \leq which is

- 1. reflexive $(a \le a)$
- 2. transitive (if $a \le b$ and $b \le c$, then $a \le c$)

A preorder is said to be <u>directed</u> if for any two objects a and b, there exists an 'upper bound,' i.e. an object r such that $a \le r$ and $b \le r$.

Filtered categories are a generalization of filtered preorders.

Definition 151 (filtered category). A category J is filtered if

• for each pair of objects $J, J' \in \text{Obj}(J)$, there exists an object K and morphisms $J \to K$ and $J' \to K$.

That is, every diagram with two objects and no morphisms is the base of a cocone.

• For every pair of morphisms $i, j: J \to J'$, there exists an object K and a morphism $f: J' \to K$ such that $f \circ i = f \circ j$, i.e. the following diagram commutes.

$$J \xrightarrow{i} J' \xrightarrow{f} K$$

That is, every diagram of the form $\bullet \Rightarrow \bullet$ is the base of a cocone.

Definition 152 (filtered colimit). A <u>filtered colimit</u> is a colimit over a diagram $\mathcal{D} \colon J \to C$, where J is a filtered category.

We now define the so-called *category of inductive objects* (or simply *ind-objects*).

Definition 153 (category of ind-objects). Let C be a category. We define the <u>category of</u> ind-objects of C, denote Ind(C) as follows.

- The objects $F \in \text{Obj}(\text{Ind}(C))$ are defined to be filtered colimits of objects of diagrams $\mathcal{F} \colon D \rightsquigarrow C$.
- For two objects $F = \lim_{d} \mathcal{F}_d$ and $G = \lim_{e} \mathcal{G}_e$, the morphisms $\operatorname{Hom}_{\operatorname{Ind}(C)}(F, G)$ are defined to be the set

$$\operatorname{Hom}_{\operatorname{Ind}(C)}(F,G) = \lim_{\leftarrow d} \lim_{\rightarrow e} \operatorname{Hom}_{C}(\mathcal{F}_{d},\mathcal{G}_{e}).$$

Note 154. There is a fully faithful embedding $C \hookrightarrow Ind(C)$ which exhibits any object A as the colimit over the trivial diagram $\bullet \curvearrowright$.

The importance of the category of ind-objects can be seen in the following example.

Example 155. Let V be an infinite-dimensional vector space over some field k. Then V can be realized as an object in the category Ind(FinVect).

In fact, there is an equivalence of categories $Vect_k \simeq Ind(FinVect_k)$. Similarly, there is an equivalence of categories $SVect_k \simeq Ind(FinSVect_k)$

Note 156. This is stated without proof as Example 3.39 of [11]. I haven't been able to find a real source for it.

5 Adjunctions

Consider the following functors:

- \mathcal{U} : Grp \rightsquigarrow Set, which sends a group to its underlying set, and
- \mathcal{F} : Set \rightsquigarrow Grp, which sends a set to the free group on it.

The functors \mathcal{U} and \mathcal{F} are dual in the following sense: \mathcal{U} is the most efficient way of moving from Grp to Set since all groups are in particular sets; \mathcal{F} might be thought of as providing the most efficient way of moving from Set to Grp. But how would one go about formalizing this?

Well, these functors have the following property. Let S be a set, G be a group, and let $f: S \to \mathcal{U}(G)$, $s \mapsto f(s)$ be a set-function. Then there is an associated group homomorphism $\tilde{f}: \mathcal{F}(S) \to G$, which sends $s_1 s_2 \dots s_n \mapsto f(s_1 s_2 \dots s_n) = f(s_1) \cdots f(s_n)$. In fact, \tilde{f} is the unique homomorphism $\mathcal{F}(S) \to G$ such that $f(s) = \tilde{f}(s)$ for all $s \in S$.

Similarly, for every group homomorphism $g \colon \mathcal{F}(S) \to G$, there is an associated function $S \to \mathcal{U}(G)$ given by restricting g to S. In fact, this is the unique function $\mathcal{F}(S) \to G$ such that $f(s) = \tilde{f}(s)$ for all $s \in S$.

Thus for each $f \in \operatorname{Hom}_{\operatorname{Grp}}(S, \mathcal{U}(G))$ we can construct an $\tilde{f} \in \operatorname{Hom}_{\operatorname{Set}}(\mathcal{F}(S), G)$, and vice versa. Let us add some mathematical scaffolding to the ideas explored above. We build two functors $\operatorname{Set}^{\operatorname{op}} \times \operatorname{Grp} \rightsquigarrow \operatorname{Set}$ as follows.

1. Our first functor maps the object $(S, G) \in \text{Obj}(\text{Set}^{\text{op}} \times \text{Grp})$ to the hom-set $\text{Hom}_{\text{Grp}}(\mathcal{F}(S), G)$, and a morphism $(\alpha, \beta) \colon (S, G) \to (S', G')$ to a function

$$\operatorname{Hom}_{\operatorname{Grp}}(\mathcal{F}(S), G) \to \operatorname{Hom}_{\operatorname{Grp}}(\mathcal{F}(S'), G'); \qquad m \mapsto \mathcal{F}(\alpha) \circ m \circ \beta$$

2. Our second functor maps (S, G) to $\operatorname{Hom}_{\operatorname{Set}}(S, \mathcal{U}(G))$, and (α, β) to

$$m \mapsto \alpha \circ m \circ \mathcal{U}(\beta).$$

We can define a natural isomorphism Φ between these functors with components

$$\Phi_{S,G} \colon \operatorname{Hom}_{\operatorname{Grp}}(\mathfrak{F}(S), G) \to \operatorname{Hom}_{\operatorname{Set}}(S, \mathfrak{U}(G)); \qquad f \to \tilde{f}.$$

This mathematical structure turns out to be a recurring theme in the study of categories, called an *adjuction*. We have encountered it before: we saw in Example 98 that there was a natural bijection between

$$\operatorname{Hom}_{\mathbb{C}}(X \times (-), B)$$
 and $\operatorname{Hom}_{\mathbb{C}}(X, B^{(-)}).$

Definition 157 (hom-set adjunction). Let C, D be categories and \mathcal{F} , \mathcal{G} functors as follows.

$$C \xrightarrow{\mathcal{F}} D$$

We say that $\underline{\mathcal{F}}$ is left-adjoint to $\underline{\mathcal{G}}$ (or equivalently \mathcal{G} is right-adjoint to \mathcal{F}) and write $\mathcal{F} \dashv \mathcal{G}$ if there is a natural isomorphism

$$\Phi \colon \operatorname{Hom}_{\mathbb{D}}(\mathfrak{F}(-), -) \Longrightarrow \operatorname{Hom}_{\mathbb{C}}(-, \mathfrak{G}(-)),$$

which fits between \mathcal{F} and \mathcal{G} like this.

$$C^{op} \times D \qquad \Phi \qquad \text{Set}$$

$$Hom_{D}(\mathcal{F}(-),-)$$

$$+ \operatorname{Hom}_{D}(-,\mathcal{G}(-))$$

The natural isomorphsim amounts to a family of bijections

$$\Phi_{AB} : \operatorname{Hom}_{\mathcal{D}}(\mathcal{F}(A), B) \to \operatorname{Hom}_{\mathcal{C}}(A, \mathcal{G}(B))$$

which satisfies the coherence conditions for a natural transformation.

Here are two equivalent definitions which are often used.

Definition 158 (unit-counit adjunction). We say that two functors $\mathcal{F}: C \rightsquigarrow D$ and $\mathcal{G}: D \rightsquigarrow C$ form a unit-counit adjunction if there are two natural transformations

$$\eta \colon 1_{\mathsf{C}} \Rightarrow \mathfrak{G} \circ \mathfrak{F}, \quad \text{and} \quad \varepsilon \colon \mathfrak{F} \circ \mathfrak{G} \Rightarrow 1_{\mathsf{D}},$$

called the unit and counit respectively, which make the following so-called triangle diagrams

$$\begin{array}{ccc}
\mathcal{F} & \xrightarrow{\mathfrak{I}\eta} & \mathcal{F}\mathcal{G}\mathcal{F} \\
\downarrow_{\mathfrak{I}\mathcal{F}} & & \downarrow_{\mathfrak{I}\mathcal{F}} & & & \downarrow_{\mathfrak{I}\mathcal{G}} \\
& & & & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G}} \\
& & & & & & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G}} \\
& & & & & & & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G}} \\
& & & & & & & & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G} & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G}} & & \downarrow_{\mathfrak{I}\mathcal{G} &$$

commute.

The triangle diagrams take quite some explanation. The unit η is a natural transformation $1_C \Rightarrow \mathcal{G} \circ \mathcal{F}$. We can draw it like this.

$$C \xrightarrow{\int_{G_0 \mathcal{F}}^{1_C}} C$$
.

Analogously, we can draw ε like this.

$$D \xrightarrow{f \circ g} D$$

We can arrange these artfully like so.

Notice that we haven't actually *done* anything; this diagram is just the diagrams for the unit and counit, plus some extraneous information.

We can whisker the η on top from the right, and the ε below from the left, to get the following diagram,

then consolidate to get this:

We can then take the composition $\varepsilon \mathcal{F} \circ \mathcal{F} \eta$ to get a natural transformation $\mathcal{F} \Rightarrow \mathcal{F}$

$$C \xrightarrow{\mathcal{F}} \mathcal{F}_{\eta} D;$$

the first triangle diagram says that this must be the same as the identity natural transformation $1_{\mathcal{F}}$.

The second triangle diagram is analogous.

Lemma 159. The functors \mathcal{F} and \mathcal{G} form a unit-counit adjunction if and only if they form a hom-set adjunction.

Proof. Suppose \mathcal{F} and \mathcal{G} form a hom-set adjunction with natural isomorphism Φ . Then for any $A \in \text{Obj}(\mathbb{C})$, we have $\mathcal{F}(A) \in \text{Obj}(\mathbb{D})$, so Φ give us a bijection

$$\Phi_{A,\mathcal{F}(A)} \colon \operatorname{Hom}_{\mathsf{D}}(\mathcal{F}(A),\mathcal{F}(A)) \to \operatorname{Hom}_{\mathsf{C}}(A,(\mathcal{G}\circ\mathcal{F})(A)).$$

We don't know much in general about $\operatorname{Hom}_{\mathsf{D}}(\mathcal{F}(A),\mathcal{F}(A))$, but the category axioms tell us that it always contains $1_{\mathcal{F}(A)}$. We can use $\Phi_{A,\mathcal{F}(A)}$ to map this to

$$\Phi_{A,\mathcal{F}(A)}(1_{\mathcal{F}(A)}) \in \text{Hom}_{\mathbb{C}}(A, (\mathfrak{G} \circ \mathcal{F})(A)).$$

Let's call $\Phi_{A,\mathcal{F}(A)}(1_{\mathcal{F}(A)}) = \eta_A$.

Similarly, if $B \in \text{Obj}(D)$, then $\mathcal{G}(B) \in \text{Obj}(C)$, so Φ gives us a bijection

$$\Phi_{\mathcal{G}(B),B} \colon \operatorname{Hom}_{\mathsf{D}}((\mathcal{F} \circ \mathcal{G})(B), B) \to \operatorname{Hom}_{\mathsf{C}}(\mathcal{G}(B), \mathcal{G}(B)).$$

Since $\Phi_{S(B),B}$ is a bijection, it is invertible, and we can evaluate the inverse on $1_{S(B)}$. Let's call

$$\Phi_{\mathfrak{G}(B),B}^{-1}(1_{\mathfrak{G}(B)})=\varepsilon_B.$$

Clearly, η_A and ε_B are completely determined by Φ and Φ^{-1} respectively. It turns out that the converse is also true; in a manner reminiscent of the proof of the Yoneda lemma, we can express $\Phi_{A,B}$ in terms of η , and $\Phi_{A,B}^{-1}$ in terms of ε , for *any* A and B. Here's how this is done.

We use the naturality of Φ . We know that for any $A \in \text{Obj}(C)$, $B \in \text{Obj}(D)$, and $g \colon \mathcal{F}(A) \to B$, the following diagram has to commute.

Let's start at the top left with $1_{\mathcal{F}(A)}$ and see what happens. Taking the top road to the bottom right, we have $\Phi_{A,B}(g)$, and from the bottom road we have $\mathcal{G}(g) \circ \eta_A$. The diagram commutes, so we have

$$\Phi_{A,B}(g) = \mathcal{G}(g) \circ \eta_A.$$

Similarly, the commutativity of the diagram

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbb{D}}((\mathcal{F} \circ \mathcal{G})(B), B) & \xrightarrow{(-) \circ \mathcal{F}(f)} & \operatorname{Hom}_{\mathbb{D}}(\mathcal{F}(A), B) \\ & & & & & & & & & & \\ \Phi_{\mathcal{G}(B), B}^{-1} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

means that, for any $f: A \to \mathcal{G}(B)$,

$$\Phi_{AB}^{-1}(f) = \varepsilon_B \circ \mathcal{F}(f)$$

To show that η and ε as defined here satisfy the triangle identities, we need to show that for all $A \in \text{Obj}(C)$ and all $B \in \text{Obj}(D)$,

$$(\varepsilon \mathcal{F})_A \circ (\mathcal{F} \eta)_A = (1_{\mathcal{F}})_A$$
 and $(\mathcal{G} \varepsilon)_B \circ (\eta \mathcal{G})_B = (1_{\mathcal{G}})_B$.

We have

$$(\varepsilon \mathcal{F})_A \circ (\mathcal{F} \eta)_A = \varepsilon_{\mathcal{F}(A)} \circ \mathcal{F}(\eta_A) = \Phi_{A,\mathcal{F}(A)}^{-1}(\eta_A) = 1_A = (1_{\mathcal{F}})_A$$

and

$$(\mathcal{G}_{\varepsilon})_{B}\circ(\eta\mathcal{G})_{B}=\mathcal{G}(\varepsilon_{B})\circ\eta_{\mathcal{G}(B)}=\Phi_{\mathcal{G}(B),B}(\varepsilon_{B})=1_{B}=(1_{\mathcal{G}})_{B}.$$

Definition 160 (adjunct). Let $\mathcal{F} + \mathcal{G}$ be an adjunction as follows.

$$C \xrightarrow{\mathcal{F}} D$$

Then for each $A \in \text{Obj}(C)$ $B \in \text{Obj}(D)$, we have a natural isomorphism (i.e. a bijection)

$$\Phi_{A,B}: \operatorname{Hom}_{\mathbb{D}}(\mathfrak{F}(A), B) \to \operatorname{Hom}_{\mathbb{C}}(A, \mathfrak{G}(B)).$$

Thus, for each $f \in \operatorname{Hom}_{\mathbb{D}}(\mathfrak{F}(A), B)$ there is a corresponding element $\tilde{f} \in \operatorname{Hom}_{\mathbb{C}}(A, \mathfrak{G}(B))$, and vice versa. The morphism \tilde{f} is called the adjunct of f, and f is called the adjunct of \tilde{f} .

61

Lemma 161. Let C and D be categories, $\mathcal{F}: C \rightsquigarrow D$ and $\mathcal{G}, \mathcal{G}': D \rightsquigarrow C$ functors,

$$C \xrightarrow{\mathcal{G}} D$$

$$K \xrightarrow{\mathcal{G}'} D$$

and suppose that G and G' are both right-adjoint to F. Then there is a natural isomorphism $G \Rightarrow G'$.

Proof. Since any adjunction is a hom-set adjunction, we have two isomorphisms

$$\Phi_{C,D} \colon \operatorname{Hom}_{\mathsf{D}}(\mathfrak{F}(C), D) \Rightarrow \operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}(D))$$
 and $\Psi_{C,D} \colon \operatorname{Hom}_{\mathsf{D}}(\mathfrak{F}(C), D) \Rightarrow \operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}'(D))$

which are natural in both C and D. By Lemma 50, we can construct the inverse natural isomorphism

$$\Phi_{C,D}^{-1}$$
: $\operatorname{Hom}_{\mathbb{C}}(C, \mathfrak{G}(D)) \Rightarrow \operatorname{Hom}_{\mathbb{D}}(\mathfrak{F}(C), D),$

and compose it with Ψ to get a natural isomorphsim

$$(\Psi \circ \Phi^{-1})_{C,D} \colon \operatorname{Hom}_{\mathbb{C}}(C, \mathfrak{G}(D)) \Rightarrow \operatorname{Hom}_{\mathbb{C}}(C, \mathfrak{G}'(D)).$$

Thus for any morphism $f: D \to E$, the following diagram commutes.

$$\begin{array}{c} \operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}(D)) \xrightarrow{\operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}(f))} \operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}(E)) \\ \\ (\Psi \circ \Phi^{-1})_{C,D} \downarrow & \downarrow (\Psi \circ \Phi^{-1})_{C,E} \\ \operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}'(D)) \xrightarrow{\operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}'(f))} \operatorname{Hom}_{\mathsf{C}}(C, \mathfrak{G}'(E)) \end{array}$$

But the fully faithfulness of the Yoneda embedding tells us that there exist isomorphisms μ_D and μ_E making the following diagram commute,

$$\begin{array}{ccc}
\Im(D) & \xrightarrow{\Im(f)} & \Im(E) \\
\downarrow^{\mu_D} & & \downarrow^{\mu_E} \\
\Im'(D) & \xrightarrow{\Im'(f)} & \Im'(E)
\end{array}$$

and taking the collection of all such $\mu_{(-)}$ gives us a natural isomorphism $\mu \colon \mathcal{G} \Rightarrow \mathcal{G}'$.

Note 162. We do not give very many examples of adjunctions now because of the frequency with which category theory graces us with them. Howver, it is worth mentioning a specific class of adjunctions: the so-called *free-forgetful adjunctions*. There are many *free* objects in mathematics: free groups, free modules, free vector spaces, free categories, etc. These are all unified by the following property: the functors defining them are all left adjoints.

Let us take a specific example: the free vector space over a set. This takes a set *S* and constructs a vector space which has as a basis the elements of *S*.

There is a forgetful functor \mathcal{U} : Vect_k \rightsquigarrow Set which takes any set and returns the set underlying it. There is a functor \mathcal{F} : Set \rightsquigarrow Vect_k, which takes a set and returns the free vector space on it. It turns out that there is an adjunction $\mathcal{F} \dashv \mathcal{U}$.

And this is true of any free object! (In fact by definition.) In each case, the functor giving the free object is left adjoint to a forgetful functor.

Theorem 163. Let C and D be categories and \mathcal{F} and \mathcal{G} functors as follows.

$$C \xrightarrow{\mathcal{F}} D$$

Let $\mathfrak F \dashv \mathfrak G$ be an adjunction. Then $\mathfrak G$ preserves limits, i.e. if $\mathfrak D \colon J \to C$ is a diagram and $\lim_{\leftarrow i} \mathfrak D_i$ exists in C, then

$$\mathcal{G}(\lim_{\leftarrow i} \mathcal{D}_i) \simeq \lim_{\leftarrow i} (\mathcal{G} \circ \mathcal{D}_i).$$

Proof. We have the following chain of isomorphisms, natural in $Y \in \text{Obj}(D)$.

$$\begin{split} \operatorname{Hom}_{\mathbb{D}}(Y, \mathcal{G}(\lim_{\leftarrow i} \mathcal{D}_{i})) &\simeq \operatorname{Hom}_{\mathbb{C}}(\mathcal{F}(Y), \lim_{\leftarrow i} \mathcal{D}_{i}) \\ &\simeq \lim_{\leftarrow i} \operatorname{Hom}_{\mathbb{C}}(\mathcal{G}(Y), \mathcal{D}_{i}) & \left(\begin{array}{c} \operatorname{Hom \ functor \ commutes \ with} \\ \operatorname{limits: \ Theorem \ 148} \end{array} \right) \\ &\simeq \lim_{\leftarrow i} \operatorname{Hom}_{\mathbb{D}}(Y, \mathcal{G} \circ \mathcal{D}_{i}) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(Y, \lim_{\leftarrow i} (\mathcal{G} \circ \mathcal{D}_{i})). \end{split}$$

By the Yoneda lemma, specifically Corollary 108, we have a natural isomorphism

$$\mathcal{G}(\lim_{\leftarrow i} \mathcal{D}_i) \simeq \lim_{\leftarrow i} (\mathcal{G} \circ \mathcal{D}_i).$$

Corollary 164. Any functor \mathcal{F} which is a left-ajoint preserves colimits.

Proof. Dual to the proof of Theorem 163.

6 Monoidal categories

6.1 Structure

6.1.1 Basic definitions

Monoidal categories are the first ingredient in the categorification and generalization of the tensor product. Roughly speaking, the tensor product allows us to multiply two vector spaces to produce a new vector space. There are natural isomorphisms making this multiplication associative, and an 'identity vector space' given by the ground field regarded as a one-dimensional vector space over itself. This means that the tensor product gives the set of all vector spaces the structure of a monoid.

A monoidal category will be a category in which the objects have the structure of a monoid, i.e. there is a suitably defined 'multiplication' (usually written \otimes) which is unital (with unit 1) and associative. The prototypical example of categorical multiplication is the product (see Example 72), although it is far from the only one.

When put like this, monoidal categories don't sound like complicated entities, and indeed in practice they are not. However, there is a lot of subtlety in making associativity play well with multiplication by units. Since we are in a category, demanding that our multiplication be associative 'on the nose,' i.e. that, for example,

$$(V \otimes 1) \otimes (W \otimes T)$$
 and $(V \otimes W) \otimes T$

should be literally equal, is too draconian. The natural weakening of this is to demand that these be merely isomorphic, but this is far too weak: for vector spaces, for example, this requires only that the dimension be the same. Even natural isomorphism is not quite strong enough.

The correct way of solving this problem is by demanding that certain diagrams, called *co-herenece diagrams*, commute. These diagrams then force other diagrams to commute in a way that solves our problem, as Mac Lane showed in the so-called *Mac Lane's Coherence Theorem*.

Definition 165 (monoidal category). A <u>monoidal category</u> is a category C equipped with a monoidal structure. A monoidal structure is the following:

- A bifunctor (Definition 37) \otimes : C \times C \rightarrow C called the *tensor product*,
- An object *I* called the *unit object*, and
- Three natural isomorphisms (Definition 40) subject to coherence conditions expressing the fact that the tensor product
 - \circ is associative: there is a natural isomorphism α called the *associator*, with components

$$\alpha_{ABC} : (A \otimes B) \otimes C \xrightarrow{\sim} A \otimes (B \otimes C)$$

• has left and right identity: there are two natural isomorphisms λ and ρ respectively called the *left unitor* and *right unitor* with components

$$\lambda_A \colon I \otimes A \xrightarrow{\sim} A$$

and

$$\rho_A \colon A \otimes I \xrightarrow{\sim} A.$$

The coherence conditions are that the following diagrams commute for all A, B, C, and $D \in \text{Obj}(C)$.

• The triangle diagram

• The home plate diagram¹ (usually the pentagon diagram)

More succinctly, a monoidal structure on a category C is a quintuple $(\otimes, 1, \alpha, \lambda, \rho)$.

Notation 166. The notation $(\otimes, 1, \alpha, \lambda, \rho)$ is prone to change. If the associator and unitors are not important, or understood from context, they are often left out. We will often say "Let $(C, \otimes, 1)$ be a monoidal category."

Example 167. The simplest (though not the prototypical) example of a monoidal category is Set with the Cartesian product. We have already studied this structure in some detail in Section 2.1. We check that it satisfies the axioms in Definition 165.

- The Cartesian product on Set *is* a set-theoretic product, and can be naturally viewed, thanks to Theorem 75, as the bifunctor.
- Any set with one element $I = \{*\}$ functions as the unit object.
- For all sets A, B, C

¹Unfortunately, the home plate, as drawn, is actually upside down.

- The universal property of products guarantees us an isomorphism $\alpha_{A,B,C} : (A \times B) \times C \to A \times (B \times C)$ which sends $((a,b),c) \mapsto (a,(b,c))$.
- ∘ Since $\{*\}$ is terminal, we get an isomorphism λ_A : $\{*\} \times A \rightarrow A$ which sends $(*, a) \mapsto a$.
- ∘ Similarly, we get a map ρ_A : $A \times \{*\} \to A$ which sends $(a, *) \mapsto a$.

The pentagon and triangle diagram commute vacuously since the cartesian product is associative.

Lemma 168. The tensor product \otimes of vector spaces is a bifunctor $\text{Vect}_k \times \text{Vect}_k \longrightarrow \text{Vect}_k$.

Proof. It is clear what the domain and codomain of the tensor product is, and how it behaves on objects and morphisms. The only non-trivial aspect is showing that the standard definition of the tensor product of morphisms respects composition, which is not difficult. \Box

Example 169. The category $Vect_k$ is a monoidal category with

- 1. The bifunctor \otimes is given by the tensor product.
- 2. The unit 1 is given by the field *k* regarded as a 1-dimensional vector space over itself.
- 3. The associator is the map which sends $(v_1 \otimes v_2) \otimes v_3$ to $v_1 \otimes (v_2 \otimes v_3)$. It is not *a priori* obvious that this is well-defined, but it is also not difficult to check.
- 4. The left unitor is the map which sends $(x, v) \in k \times V$ to $xv \in V$.
- 5. The right unitor is the map which sends

$$(v, x) \mapsto xv$$
.

Definition 170 (monoidal subcategory). Let $(C, \otimes, 1)$ be a monoidal category. A <u>monoidal subcategory</u> of C is a subcategory (Definition 11) $S \subseteq C$ which is closed under the tensor product, and which contains 1.

Example 171. Recall that FinVect_k is the category of finite dimensional vector spaces over a field k. We saw in Example 13 that FinVect_k was a full subcategory of Vect_k.

We have just seen that $Vect_k$ is a monoidal category with unit object 1 = k. Since k is a one-dimensional vector space over itself, $k \in Obj(FinVect_k)$, and since the dimension of the tensor product of two finite-dimensional vector spaces is the product of their dimensions, the tensor product is closed in $FinVect_k$. Hence $FinVect_k$ is a monoidal subcategory of $Vect_k$.

Lemma 172. Let C be a category with monoidal structure $(\otimes, 1, \alpha, \lambda, \rho)$. Then the maps λ_1 and $\rho_1 \colon 1 \otimes 1 \to 1$ agree.

Note 173. This insight is due to [14].

The triangle and pentagon diagram are the first in a long list of coherence diagrams designed to pacify categorical structures into behaving like their algebraic counterparts. For a monoid, multiplication is associative by fiat, and the extension of this to *n*-fold products follows by a trivial application of induction. In monoidal categories, associators are isomorphisms rather than equalities, and we have no a priori guarantee that different ways of composing associators give the same isomorphism.

Mac Lane's coherence theorem shows us that this is exactly what the coherence diagrams guarantee.

Theorem 174 (Mac Lane's coherence theorem). Any two ways of freely composing unitors and associators to go from one expression to another coincide.

The following definition was taken mutatis mutandis from [13].

Definition 175 (monoidal functor). Let C and C' be monoidal categories. A functor \mathcal{F} : C \rightsquigarrow C' is lax monoidal if it is equipped with

- a natural transformation $\Phi_{X,Y} \colon \mathcal{F}(X) \otimes \mathcal{F}(Y) \to \mathcal{F}(X \otimes Y)$, and
- a morphism $\varphi: 1_{C'} \to \mathcal{F}(1_C)$ such that
- the following diagrams commute for any $X, Y, Z \in Obj(\mathbb{C})$.

$$(\mathfrak{F}(X)\otimes \mathfrak{F}(Y))\otimes \mathfrak{F}(Z) \xrightarrow{\Phi_{X,Y}\otimes 1_{\mathfrak{F}(Z)}} \mathfrak{F}(X\otimes Y)\otimes \mathfrak{F}(Z) \xrightarrow{\Phi_{X\otimes Y,Z}} \mathfrak{F}((X\otimes Y)\otimes Z)$$

$$\downarrow^{\mathfrak{F}(X)\otimes (\mathfrak{F}(Y),\mathfrak{F}(Z))} \downarrow^{\mathfrak{F}(X)\otimes \mathfrak{F}(Z)} \xrightarrow{\mathfrak{F}(X)\otimes \mathfrak{F}(Y)\otimes \mathfrak{F}(Z)} \mathfrak{F}(X\otimes Y)\otimes \mathfrak{F}(X\otimes Y)\otimes$$

If Φ is a natural isomorphism and φ is an isomorphism, then $\mathcal F$ is called a strong monoidal functor.

We will denote the above monoidal functor by $(\mathfrak{F}, \Phi, \varphi)$.

Note 176. The above diagrams above are exactly those necessary to ensure that the monoidal structure is preserved. They do this by demanding that the associator and the unitors be \mathcal{F} -equivariant.

Note 177. In much of the literature, a strong monoidal functor is simply called a monoidal functor.

Definition 178 (monoidal natural transformation). Let (F, Φ, φ) and (G, Γ, γ) be monoidal functors. A natural transformation $\eta : \mathcal{F} \Rightarrow \mathcal{G}$ is monoidal if the following diagrams commute.

6.1.2 Line objects

Definition 179 (invertible object). Let $(C, \otimes, 1)$ be a monoidal category. An <u>invertible object</u> (sometimes called a *line object*) is an object $L \in Obj(C)$ such that both of the <u>functors $C \rightsquigarrow C$ </u>

- $\ell_L: A \mapsto L \otimes A$
- $r_L: A \mapsto A \otimes L$

are categorical equivalences.

Lemma 180. If $(C, \otimes, 1)$ is a monoidal category and L is an invertible object, then there is an object $L^{-1} \in \text{Obj}(C)$, unique up to isomorphism, such that $L \otimes L^{-1} \simeq L^{-1} \otimes L \simeq 1$. Furthermore, L is invertible only if there exists such an L^{-1} .

Proof. Suppose *L* is invertible. Then the functor $\ell_L \colon A \mapsto L \otimes A$ is bijective up to isomorphism, i.e. for any $A \in \text{Obj}(C)$, there is an object $A' \in \text{Obj}(C)$, unique up to isomorphism, such that

$$\ell_L(A') = L \otimes A' \simeq A.$$

If this is true for any A, it must also be true for 1, so there exists an object L^{-1} , unique up to isomorphism, such that

$$\ell_L(L^{-1}) = L \otimes L^{-1} \simeq 1.$$

The same logic tells us that there exists some other element L'^{-1} , such that

$$r_L(L'^{-1}) = L'^{-1} \otimes L \simeq 1.$$

Now

$$1 \simeq L'^{-1} \otimes L \simeq L'^{-1} \otimes (L \otimes L^{-1}) \otimes L \simeq (L'^{-1} \otimes L) \otimes (L^{-1} \otimes L) \simeq (L'^{-1} \otimes L) \otimes 1 \simeq L'^{-1} \otimes L,$$

so L'^{-1} is also a left inverse for L. But since ℓ_L is an equivalence of categories, L only has one left inverse up to isomorphism, so L^{-1} and L'^{-1} must be isomorphic.

Definition 181. Let $(C, \otimes, 1)$ be a monoidal category. Then the full subcategory (Definition 12) (Line(C), \otimes , 1) \subseteq $(C, \otimes, 1)$ whose objects are the line objects in C is called the <u>line subcategory</u> of $(C, \otimes, 1)$. Since invertibility is closed under the tensor product and 1 is invertible $(1^{-1} \simeq 1)$, Line(C) is a monoidal subcategory of C.

6.1.3 Braided monoidal categories

Braided monoidal categories capture the idea that we should think of morphisms between tensor products spatially, as diagrams embedded in 3-space. This sounds odd, but it turns out to be the correct way of looking at a wide class of problems.

To be slightly more precise, we can think of the objects X, Y, etc. in any monoidal category as little dots.

We can express the tensor product $X \otimes Y$ by putting the dots representing X and Y next to each other.

A morphism f between, say, $X \otimes Y$ and $A \otimes B \otimes C$ can be drawn as a diagram consisting of some lines and boxes.

We can compose morphisms by concatenating their diagrams.

In a braided monoidal category, we require that for any two objects X and Y we have an isomorphism $\gamma_{XY} \colon X \otimes Y \to Y \otimes X$, which we draw like this.

Since γ_{AB} is an isomorphism, it has an inverse γ_{AB}^{-1} (not necessarily equal to γ_{BA} !) which we draw like this.

The idea of a braided monoidal category is that we want to take these pictures seriously: we want two expressions involving repeated applications of the γ .. and their inverses to be equivalent if and only if the braid diagrams representing them are homotopic. Thus we want, for example,

$$\gamma_{XY} \circ \gamma_{YZ} \circ \gamma_{XY} = \gamma_{YZ} \circ \gamma_{XY} \circ \gamma_{YZ}$$

since

A digression into the theory of braid groups would take us too far afield. The punchline is that to guarantee that all such compositions involving the γ are identified in the correct way, we must define braided monoidal categories as follows.

Definition 182 (braided monoidal category). A catgory C with monoidal structure $(\otimes, 1, \alpha, \lambda, \rho)$ is <u>braided</u> if for every two objects A and $B \in Obj(C)$, there is an isomorphism $\gamma_{A,B} \colon A \otimes B \to B \otimes A$ such that the following *hexagon diagrams* commute.

The collection of such y form a natural isomorphism betweem the bifunctors

$$(A, B) \mapsto A \otimes B$$
 and $(A, B) \mapsto B \otimes A$,

and is called a braiding.

Definition 183 (braided monoidal functor). A lax monoidal functor $(\mathcal{F}, \Phi, \phi)$ (Definition 175) is braided monoidal if it makes the following diagram commute.

$$\begin{array}{ccc} \mathcal{F}(x) \otimes \mathcal{F}(y) & \xrightarrow{\gamma_{\mathcal{F}(x),\mathcal{F}(y)}} & \mathcal{F}(y) \otimes \mathcal{F}(x) \\ & & & \downarrow \\ \Phi_{x,y} & & & \downarrow \\ \Phi_{x,y} & & & \downarrow \\ \mathcal{F}(x \otimes y) & \xrightarrow{\mathcal{F}(\gamma_{x,y})} & \mathcal{F}(y \otimes x) \end{array}$$

Note 184. There are no extra conditions imposed on a monoidal natural transformation to turn it into a braided natural transformation.

6.1.4 Symmetric monoidal categories

Until now, we have been calling the bifunctor \otimes in Definition 165 a tensor product. This has been an abuse of terminology: in general, one defines tensor products not to be those bifunctors which come from any monoidal category, but only those which come from *symmetric* monoidal categories. We will define these shortly.

Conceptually, passing from the definition of a braided monoidal category to that of a symmetric monoidal category is rather simple. One only requires that for any two objects A and B, $\gamma_{BA} = \gamma_{AB}^{-1}$, i.e. $\gamma_{BA} \circ \gamma_{AB} = 1_{A \otimes B}$.

We can interpret this nicely in terms of our braid diagrams. We can draw $\gamma_{BA} \circ \gamma_{AB}$ like this.

The requirement that this must be homotopic to the identity transformation

can be expressed by making the following rule: in a *symmetric* monoidal category, we don't care about the difference between undercrossings and overcrossings:

Then we can exchange the diagram representing $\gamma_{BA} \circ \gamma_{AB}$ for

which is clearly homotopic to the identity transformation on $A \otimes B$.

Definition 185 (symmetric monoidal category). Let C be a braided monoidal category with braiding γ . We say that C is a <u>symmetric monoidal category</u> if for all $A, B \in \text{Obj}(C)$, $\gamma_{BA} \circ \gamma_{AB} = 1_{A \otimes B}$. A braiding γ which satisfies such a condition is called symmetric.

Note 186. There are no extra conditions imposed on a monoidal natural transformation to turn it into a symmetric natural transformation.

6.2 Internal hom functors

We can now generalize the notion of an exponential object (Definiton 93) to any monoidal category.

6.2.1 The internal hom functor

Recall the definition of the hom functor on a locally small category C (Definition 97): it is the functor which maps two objects to the set of morphisms between them, so it is a functor

$$C^{op} \times C \rightsquigarrow Set.$$

If we take C = Set, then our hom functor never really leaves Set; it is *internal* to Set. This is our first example of an *internal hom functor*. In fact, it is the prototypical internal hom functor, and we can learn a lot by studying its properties.

Let *X* and *Y* be sets. Denote the set of all functions $X \to Y$ by [X, Y].

Let S be any other set, and consider a function $f: S \to [X, Y]$. For each element $s \in S$, f picks out a function $h_s: X \to Y$. But this is just a curried version of a function $S \times X \to Y$! So as we saw in Section 3.1, we have a bijection between the sets [S, [X, Y]] and $[S \times X, Y]$. In fact, this is even a *natural* bijection, i.e. a natural transformation between the functors

$$[-,[-,-]]$$
 and $[-\times-,-]$: Set^{op} × Set^{op} × Set \rightsquigarrow Set.

Let's check this. First, we need to figure out how our functors act on functions. Suppose we have sets and functions like so.

$$A'' \xleftarrow{f''} B''$$

$$A' \xleftarrow{f'} B'$$

$$A \xrightarrow{f} B$$

Our functor maps

$$(A'', A', A) \mapsto [A'', [A', A]] = \operatorname{Hom}_{\operatorname{Set}}(A'', \operatorname{Hom}_{\operatorname{Set}}(A', A)),$$

so it should map (f'', f', f) to a function

$$[f'', [f', f]] : [A'', [A', A]] \to [B'', [B', B]].$$

The way to do that is by sending $m \in [A'', [A', A]]$ to

$$[f', f] \circ m \circ f''$$
.

You can check that this works as advertised.

The other one's not so tough. Our functor maps an object (A'', A', A) to $[A'' \times A', A]$. We need to map (f'', f', f) to a function

$$[f'' \times f', f] : [A'' \times A', A] \rightarrow [B'' \times B', B].$$

We do that by sending $m \in [A'' \times A', A]$ to

$$f \circ m \circ (f'', f') \in [B'' \times B', B].$$

Checking that [-, [-, -]] and $[- \times -, -]$ really *are* functorial would be a bit much; each is just the composition of hom functor and the Cartesian product. We will however check that there is a natural isomorphism between them, which amounts to checking that the following diagram commutes.

$$[A'' \times A', A] \xrightarrow{[f'' \times f', f]} \qquad [B'' \times B', B]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

In other words, we have to show that

$$\Phi_{[A^{\prime\prime}\times A^{\prime},A]}(f\circ m\circ (f^{\prime},f^{\prime\prime}))=[f^{\prime},f]\circ \Phi_{[B^{\prime\prime}\times B^{\prime},B]}(m)\circ f^{\prime\prime}.$$

So what is each of these? Well, $f \circ m \circ (f', f'')$ is a map $B'' \times B' \to B$, which maps (say) $(b'', b') \mapsto b$.

The natural transformation Φ tells us to curry this, i.e. turn it into a map $B'' \to [B', B]$. Not just any map, though: a map which when evaluated on b'' turns into a map which, when evaluated on b', yields b.

We know that $f \circ m \circ (f', f'') : (b'', b') \mapsto b$, i.e.

$$f(m(f''(b''), f'(b'))) = b.$$

If we can show that this is *also* what $[f', f] \circ \Phi_{[B'' \times B', B]}(m) \circ f''$ is equal to when evaluated on b'' and then b', we are done, since two functions are equal if they take the same value for all inputs.

Well, let's go through what this definition means. First, we take b'' and feed it to f''. Next, we let $\Phi_{[B'' \times B', B]}(m)$ act on the result, i.e. we fill the first argument of m with f''(b''). What we get is the following:

$$m(f''(b''), -).$$

Then we are to precompose this with f' and stick the result into f:

$$f(m(f''(b''), f'(-))).$$

Finally, we are to evaluate this on b' to get

Indeed, this is equal to b, so the diagram commutes.

In other words, Φ is a natural bijection between the hom-sets [-, [-, -]] and $[- \times -, -]$.

We picked this example because the collection [A, B] of all functions between two sets A and B is itself a set. Therefore it makes sense to think of the hom-sets $\operatorname{Hom}_{\mathbb{C}}(A, B)$ as living within the same category as A and B. We saw in Section 2.1 that in a category with products, we could sometimes view hom-sets as exponential objects. However, we now have the technology to be even more general.

Definition 187 (internal hom functor). Let (C, \otimes) be a monoidal category. An <u>internal hom</u> functor is a functor

$$[-,-]_C: C^{op} \times C \rightsquigarrow C$$

such that for every $X \in \text{Obj}(C)$ we have a pair of adjoint functors

$$(-) \otimes X \dashv [X, -]_{\mathbb{C}}.$$

The objects $[A, B]_{\mathbb{C}}$ are called internal hom objects.

Note 188. The reason for the long introduction to this section was that the pair of adjoint functors in Definition 187 really matches the one in Set. Recall, in Set there was a natural transformation

$$\operatorname{Hom}_{\operatorname{Set}}(S \times X, Y) \simeq \operatorname{Hom}_{\operatorname{Set}}(S, [X, Y]).$$

This means that for any set *X*, there is a pair of adjoint functors

$$(-) \times X \dashv [X, -],$$

which is in agreement with the statement of Definition 187.

Notation 189. The convention at the nLab is to denote the internal hom by square braces [A, B], and this is for the most part what we will do. Unfortunately, we have already used this notation for the *regular* hom functor. To remedy this, we will add a subscript if the category to which the hom functor belongs is not clear: $[-, -]_C$ for a hom functor internal to C, $[-, -]_{Set}$ for the standard hom functor (or the hom functor internal to Set, which amounts to the same).

There is no universally accepted notation for the internal hom functor. One often sees it denoted by a lower-case hom: $\hom_{\mathbb{C}}(A, B)$. Many sources (for example DMOS [16]) distinguish the internal hom with an underline: $\underline{\operatorname{Hom}}_{\mathbb{C}}(A, B)$. Deligne typesets it with a script H: $\mathscr{H}om_{\mathbb{C}}(A, B)$.

Definition 190 (closed monoidal category). A monoidal category equipped with an internal hom functor is called a closed monoidal category.

Note 191. Here is another (clearly equivalent) definition of $[X, Y]_C$: it is the object representing (Definition 100) the functor

$$T \mapsto \operatorname{Hom}_{\mathbb{C}}(T \otimes X, Y).$$

Example 192. In many locally small categories whose objects can be thought of as "sets with extra structure," it is possible to pile structure on top of the hom sets until they themselves can be viewed as bona fide objects in their categories. It often (*but not always!*) happens that these beefed-up hom sets coincide (up to isomorphism) with the internal hom objects.

Take for example $Vect_k$. For any vector spaces V and W, we can turn $Hom_{Vect_k}(V, W)$ into a vector space by defining addition and scalar multiplication pointwise; we can then view $Hom_{Vect_k}(V, W)$ as belonging to $Obj(Vect_k)$. It turns out that this is precisely (up to isomorphism) the internal hom object $[V, W]_{Vect_k}$.

To see this, we need to show that there is a natural bijection

$$\operatorname{Hom}_{\operatorname{Vect}_k}(A, \operatorname{Hom}_{\operatorname{Vect}_k}(B, C)) \simeq \operatorname{Hom}_{\operatorname{Vect}_k}(A \otimes B, C).$$

Suppose we are given a linear map $f: A \to \operatorname{Hom}_{\operatorname{Vect}_k}(B, C)$. If we act with this on an element of A, we get a linear map $B \to C$. If we evaluate this on an element of B, we get an element of C. Thus, we can view f as a bilinear map $A \times B \to C$, hence as a linear map $A \otimes B \to C$.

Now suppose we are given a linear map $g: A \otimes B \to C$. By pre-composing this with the tensor product we can view this as a bilinear map $A \times B \to C$, and by currying this we get a linear map $A \to \operatorname{Hom}_{\operatorname{Vect}_k}(B,C)$.

For the remainder of this chapter, let $(C, \otimes, 1)$ be a closed monoidal category with internal hom functor $[-, -]_C$.

In a closed monoidal category, the adjunction between the internal hom and the tensor product even holds internally.

Lemma 193. For any $X, Y, Z \in Obj(C)$ there is a natural isomorphism

$$[X \otimes Y, Z]_{\mathbb{C}} \xrightarrow{\sim} [X, [Y, Z]_{\mathbb{C}}]_{\mathbb{C}}.$$

Proof. Let $A \in \text{Obj}(C)$. We have the following string of natural isomorphisms.

$$\begin{aligned} \operatorname{Hom}_{\mathbb{C}}(A,[X\otimes Y,Z]_{\mathbb{C}}) &\simeq \operatorname{Hom}_{\mathbb{C}}(A\otimes (X\otimes Y),Z) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}((A\otimes X)\otimes Y,Z) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(A\otimes X,[Y,Z]_{\mathbb{C}}) \\ &\simeq \operatorname{Hom}_{\mathbb{C}}(A,[X,[Y,Z]_{\mathbb{C}}]_{\mathbb{C}}). \end{aligned}$$

Since this is true for each *A* we have, by Corollary 108,

$$[X \otimes Y, Z]_{\mathbb{C}} \xrightarrow{\sim} [X, [Y, Z]_{\mathbb{C}}]_{\mathbb{C}}.$$

Lemma 194. Let $(C, \otimes, 1)$ be a closed symmetric monoidal category. For any $A, B, R \in \text{Obj}(C)$, there is a natural transformation

$$[A, B]_{\mathbb{C}} \to [R \otimes A, R \otimes B]_{\mathbb{C}},$$

natural in A and B.

Proof. The assignment $R \otimes (-)$ is a functor, and induces a transformation of the regular hom functor

$$\operatorname{Hom}_{\mathbb{C}}(A, B) \mapsto \operatorname{Hom}_{\mathbb{C}}(R \otimes A, R \otimes B)$$

which is natural in *A* and *B*. We would like to show that the internal hom functor also has this property.

The following string of natural transformations guarantees it by the Yoneda lemma.

$$\operatorname{Hom}_{\mathbb{C}}(X, [A, B]_{\mathbb{C}}) \simeq \operatorname{Hom}_{\mathbb{C}}(X \otimes A, \otimes B)$$

 $\simeq \operatorname{Hom}_{\mathbb{C}}(R \otimes X \otimes A, R \otimes B)$
 $\simeq \operatorname{Hom}_{\mathbb{C}}(X \otimes (R \otimes A), R \otimes B)$
 $\simeq \operatorname{Hom}_{\mathbb{C}}(X, [R \otimes A, R \otimes B]_{\mathbb{C}}).$

6.2.2 The evaluation map

The internal hom functor gives us a way to talk about evaluating morphisms $f: X \to Y$ without mentioning elements of X.

Definition 195 (evaluation map). Let $X \in \text{Obj}(\mathbb{C})$. We have seen that the adjunction

$$(-) \otimes X \dashv [X, -]_C$$

gives us, for any $A, X, Y \in Obj(C)$, a natural bijection

$$\operatorname{Hom}_{\mathbb{C}}(A \otimes X, Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(A, [X, Y]_{\mathbb{C}}).$$

In particular, with $A = [X, Y]_C$, we have a bijection

$$\operatorname{Hom}_{\mathbb{C}}([X,Y]_{\mathbb{C}}\otimes X,Y)\stackrel{\sim}{\to}\operatorname{Hom}_{\mathbb{C}}([X,Y]_{\mathbb{C}},[X,Y]_{\mathbb{C}}).$$

The adjunct (Definition 160) of $1_{[X,Y]_C} \in \operatorname{Hom}_{\mathbb{C}}([X,Y]_{\mathbb{C}},[X,Y]_{\mathbb{C}})$ is an object in $\operatorname{Hom}_{\mathbb{C}}([X,Y]_{\mathbb{C}} \otimes X,Y)$, denoted

$$\operatorname{eval}_{XY}: [X,Y]_C \otimes X \to Y,$$

and called the evaluation map.

Example 196. As we saw in Example 167, the category Set is a monoidal category with a bifunctor given by the cartesian product. The internal hom is simply the regular hom functor

$$Hom_{Set}(-, -) = [-, -].$$

Let us explore the evaluation map on Set. It is the adjunct of the identity map $1_{[X,Y]}$ under the adjunction

$$[[X, Y] \times X, Y] + [[X, Y], [X, Y]].$$

Thus, it is a function

$$\operatorname{eval}_{X,Y} : [X, Y] \times X \to Y; \qquad (f, x) \mapsto \operatorname{eval}_{X,Y} (f, x).$$

So far, we don't know what $eval_{X,Y}$ sends (f, x) to; we just know that we'd *like it* if it sent it to f(x).

The above adjunction is given by currying: we start on the LHS with a map $eval_{X,Y}$ with two arguments, and we turn it into a map which fills in only the first argument. Thus the map on the RHS adjunct to $eval_{X,Y}$ is given by

$$f \mapsto \text{eval}_{X,Y}(f,-).$$

If we want the map $f \mapsto \operatorname{eval}_{X,Y}(f,-)$ to be the identity map, f and $\operatorname{eval}_{X,Y}(f,-)$ must agree on all elements x, i.e.

$$f(x) = \operatorname{eval}_{X,Y}(f, x)$$
 for all $x \in X$.

Thus, the evaluation map is the map which sends $(f, x) \mapsto f(x)$.

6.2.3 The composition morphism

The evaluation map allows us to define composition of morphisms without talking about internal hom objects as if they have elements.

Definition 197 (composition morphism). For $X, Y, Z \in Obj(C)$, the composition morphism

$$\circ_{X,Y,Z} : [Y,Z]_{\mathbb{C}} \otimes [X,Y]_{\mathbb{C}} \to [X,Z]_{\mathbb{C}}$$

is the $(-) \otimes X \vdash [X, -]_{\mathbb{C}}$ -adjunct of the composition

$$[Y,Z]_{\mathbb{C}} \otimes [X,Y]_{\mathbb{C}} \otimes X \xrightarrow{\left(1_{[Y,Z]_{\mathbb{C}}},\operatorname{eval}_{X,Y}\right)} [Y,Z]_{\mathbb{C}} \otimes Y \xrightarrow{\operatorname{eval}_{Y,Z}} Z.$$

Example 198. In Set, the composition morphism $\circ_{X,Y,Z}$ lives up to its name. Let $f: X \to Y$, $g: Y \to Z$, and $x \in X$. The above composition goes as follows.

- 1. The map $(1_{[Y,Z]}, \text{eval}_{X,Y})$ turns the triple (g, f, x) into the pair (g, f(x)).
- 2. The map $\operatorname{eval}_{Y,Z} \operatorname{turns} (g, f(x)) \operatorname{into} g(f(x)) = (g \circ f)(x)$.

The evaluation morphism $\circ_{X,Y,Z}$ is the currying of this, i.e. it sends

$$(f,g) \mapsto (f \circ g)(-).$$

6.2.4 Dual objects

Recall that for any *k*-vector space *V*, there is a dual vector space

$$V^* = \{L \colon V \to k\} .$$

This definition generalizes to any closed monoidal category.

Definition 199 (dual object). Let $X \in \text{Obj}(\mathbb{C})$. The <u>dual object</u> to X, denoted X^* , is defined to be the object

$$[X,1]_{C}$$
.

That is to say, X^* is the internal hom object modelling the hom set of morphisms from X to the identity object 1.

Notation 200. The evaluation morphism (Definition 195) has a component

$$\operatorname{eval}_{X^*,X} \colon X^* \otimes X \to 1.$$

To clean things up a bit, we will write eval $_X$ instead of eval $_{X^*,X}$.

Notation 201. In many sources, e.g. DMOS ([16]), the dual object to X is denoted X^{\vee} instead of X^* .

Lemma 202. There is a natural isomorphism between the functors

$$\text{Hom}_{\mathbb{C}}(-,X^*)$$
 and $\text{Hom}_{\mathbb{C}}((-)\otimes X,1).$

Proof. For any $X, T \in \text{Obj}(\mathbb{C})$, the definition of the internal hom $[-,-]_{\mathbb{C}}$ gives us a natural isomorphism

$$\operatorname{Hom}_{\mathbb{C}}(T \otimes X, 1) \simeq \operatorname{Hom}_{\mathbb{C}}(T, [X, 1]_{\mathbb{C}}) = \operatorname{Hom}_{\mathbb{C}}(T, X^*).$$

Theorem 203. The map $X \mapsto X^*$ can be extended to a contravariant functor.

Proof. We need to figure out how our functor should act on morphisms. We define this by analogy with the familiar setting of vector spaces. Recall that for a linear map $L: V \to W$, the dual map $L^t: W^* \to V^*$ is defined by

$$(L^t(w))(v) = w(L(v)).$$

By analogy, for $f \in \text{Hom}_{\mathbb{C}}(X, Y)$, we should define the dual morphism $f^t \in \text{Hom}_{\mathbb{C}}(B^*, A^*)$ by demanding that the following diagram commutes.

$$h^* \otimes X \xrightarrow{f^t \otimes 1_X} X^* \otimes X$$

$$\downarrow_{1_Y \otimes f} \qquad \qquad \downarrow_{\text{eval}_X}$$

$$h^* \otimes Y \xrightarrow{\text{eval}_Y} 1$$

To check that this is functorial, we must check that it respects compositions, i.e. that the following diagram commutes.

$$Z^* \otimes X \xrightarrow{(f^t \circ g^t) \otimes 1_X} X^* \otimes X$$

$$\downarrow 1_Z \otimes (g \circ f) \qquad \qquad \downarrow \text{eval}_X$$

$$Z^* \otimes Z \xrightarrow{\text{eval}_Z} 1$$

Let's add in some more objects and morphisms.

We want to show that the outer square commutes. But it clearly does: that the top left square commutes is trivial, and the right and bottom 'squares' are the commutativity conditions defining f^t and g^t .

Note 204. It's not clear to me why f^t as defined above exists and is unique.

The above is one, but not the only, way to define dual objects. We can be more general.

Definition 205 (right duality). Let C be a category with monoidal structure $(\otimes, 1, \alpha, \lambda, \rho)$. Right duality of two objects A and $A^* \in \text{Obj}(C)$ consists of

1. A morphism of the form

$$eval_A: A^* \otimes A \rightarrow 1$$
,

called the evaluation map (or counit if you're into Hopf algebras)

2. A morphism of the form

$$i_A \colon 1 \to A \otimes A^*$$

called the *coevaluation* map (or *unit*)

such that the compositions

$$X \xrightarrow{i_A \otimes 1_X} (X \otimes X^*) \otimes X \xrightarrow{\alpha_{X,X^*,X}} X \otimes (X^* \otimes X) \xrightarrow{1_X \otimes \operatorname{eval}_X} X$$

$$X^* \xrightarrow{1_{X^*} \otimes \operatorname{eval}_X} X^* \otimes (X \otimes X^*) \xrightarrow{\alpha_{X^*,X,X^*}^{-1}} (X^* \otimes X) \otimes X^* \xrightarrow{\operatorname{eval}_X \otimes 1_{X^*}} X^*$$

are the identity morphism.

Definition 206 (rigid monoidal category). A monoidal category $(C, \otimes, 1)$ is <u>rigid</u> if every object has a left and right dual.

Theorem 207. Every rigid monoidal category is a closed monoidal category (i.e. has an internal hom functor, see Definition 190) with internal hom object

$$[A,B]_{\mathbb{C}} \simeq B \otimes A^*.$$

Proof. We can prove the existence of this isomorphism by showing, thanks to Corollary 108, that for any $X \in \text{Obj}(C)$ there is an isomorphism

$$\operatorname{Hom}_{\mathbb{C}}(X, [A, B]_{\mathbb{C}}) \simeq \operatorname{Hom}_{\mathbb{C}}(X, B \otimes A^*).$$

The defining adjunction of the internal hom gives us

$$\operatorname{Hom}_{\mathbb{C}}(X, [A, B]_{\mathbb{C}}) \simeq \operatorname{Hom}_{\mathbb{C}}(X \otimes A, B).$$

Now we can map any $f \in \operatorname{Hom}_{\mathbb{C}}(X \otimes A, B)$ to

$$(f \otimes 1_A) \circ (1_X \otimes i_A) \in \operatorname{Hom}_{\mathbb{C}}(X, B \otimes A^*).$$

We will be done if we can show that the assignment

$$f \mapsto (f \otimes 1_A) \circ (1_X \otimes i_A)$$

is an isomorphism. We'll do this by exhibiting an inverse:

$$\operatorname{Hom}_{\mathbb{C}}(X, B \otimes A^*) \ni q \mapsto (1_W \otimes \operatorname{eval}_V) \circ (q \otimes 1_V) \in \operatorname{Hom}_{\mathbb{C}}(X \otimes A, B).$$

Of course, first we should show that $(f \otimes 1_A) \circ (1_X \otimes i_A)$ really does map $X \to B \otimes A^*$. But it does; it does this by first acting on X with i_A :

$$X \to X \otimes A \otimes A^*$$

and then acting on the $X \otimes A$ with f and letting the A^* hang around:

$$X \otimes A \otimes A^* \to B \otimes A^*$$
.

To show that

$$g \mapsto (1_B \otimes \operatorname{eval}_A) \circ (g \otimes 1_A)$$

really is an inverse, we can shove the assignment

$$f \mapsto (f \otimes 1_A) \circ (1_X \otimes i_A)$$

into it and show that we get f right back out. That is to say, we need to show that

$$(1_B \otimes \operatorname{eval}_A) \circ ([(f \otimes 1_A) \circ (1_X \otimes i_A)] \otimes 1_A) = f.$$

This is easy to see but hard to type. Write it out. You'll need to use first of the two composition identities.

To show that the other composition yields g, you have to use the other.

7 Abelian categories

This section draws heavily from [22].

7.1 Additive categories

Recall that Ab is the category of abelian groups.

Definition 208 (Ab-enriched category). A category C is Ab-enriched if

- 1. for all objects $A, B \in \text{Obj}(C)$, the hom-set $\text{Hom}_C(A, B)$ has the structure of an abelian group (i.e. one can add morphisms), such that
- 2. the composition

$$\circ$$
: $\operatorname{Hom}_{\mathbb{C}}(B, \mathbb{C}) \times \operatorname{Hom}_{\mathbb{C}}(A, \mathbb{B}) \to \operatorname{Hom}_{\mathbb{C}}(A, \mathbb{C})$

is additive in each slot: for any f_1 , $f_2 \in \text{Hom}_{\mathbb{C}}(B, C)$ and $g \in \text{Hom}_{\mathbb{C}}(A, B)$, we must have

$$(f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g,$$

and similarly in the second slot.

Note 209. In any Ab-enriched category, every hom-set has at least one element—the identity element of the hom-set taken as an abelian group.

Definition 210 (endomorphism ring). Let C be an Ab-enriched category, and let $A \in \text{Obj}(C)$. The endomorphism ring of A, denoted End(A), is $\text{Hom}_{C}(A, A)$, with addition given by the abelian structure and multiplication given by composition.

Lemma 211. *In an* Ab-enriched category C, a finite product is also a coproduct, and vice versa. *In particular, initial objects and terminal objects coincide.*

Proof. See [39], Proposition 2.1 for details.

Definition 212 (additive category). A category C is <u>additive</u> if it has biproducts (Definition 87) and is Ab-enriched.

Example 213. The category Ab of Abelian groups is an additive category. We have already seen that it has the direct sum \oplus as biproduct. Given any two abelian groups A and B and morphisms $f, g: A \to B$, we can define the sum f + g via

$$(f+q)(a) = f(a) + q(a)$$
 for all $a \in A$.

Then for another abelian group C and a morphism $h: B \to C$, we have

$$[h \circ (f+q)](a) = h(f(a)+g(a)) = h(f(a))+h(g(a)) = [h \circ f+h \circ g](a),$$

so

$$h \circ (f + q) = h \circ f + h \circ q$$
,

and similarly in the other slot.

Example 214. The category $Vect_k$ is additive. Since vector spaces are in particular abelian groups under addition, it is naturally Ab-enriched,

Definition 215 (additive functor). Let $\mathcal{F}: \mathbb{C} \leadsto \mathbb{D}$ be a functor between additive categories. We say that \mathcal{F} is additive if for each $X, Y \in \mathrm{Obj}(\mathbb{C})$ the map

$$\operatorname{Hom}_{\mathbb{C}}(X,Y) \to \operatorname{Hom}_{\mathbb{D}}(\mathfrak{F}(X),\mathfrak{F}(Y))$$

is a homomorphism of abelian groups.

Lemma 216. For any additive functor $\mathcal{F}: \mathbb{C} \rightsquigarrow \mathbb{D}$, there exists a natural isomorphism

$$\Phi \colon \mathcal{F}(-) \oplus \mathcal{F}(-) \Rightarrow \mathcal{F}(- \oplus -).$$

Proof. The commutativity of the following diagram is immediate.

The (X, Y)-component $\Phi_{X,Y}$ is an isomorphism because

7.2 Pre-abelian categories

Definition 217 (pre-abelian category). A category C is <u>pre-abelian</u> if it is additive and every morphism has a kernel (Definition 130) and a cokernel (Definition 137).

Lemma 218. Pre-abelian categories have equalizers (Definition 125).

Proof. We show that in an pre-abelian category, the equalizer of f and g coincides with the kernel of f - g. It suffices to show that the kernel of f - g satisfies the universal property for the equalizer of f and g.

Here is the diagram for the universal property of the kernel of f - g.

The universal property tells us that for any object $Z \in \text{Obj}(\mathbb{C})$ and any morphism $i \colon Z \to A$ with $i \circ (f - g) = 0$ (i.e. $i \circ f = i \circ g$), there exists a unique morphism $\bar{\imath} \colon Z \to \ker(f - g)$ such that $i = \bar{\imath} \circ \iota_{f-g}$.

Corollary 219. Every pre-abelian category has all finite limits.

Proof. By Theorem 147, a category has finite limits if and only if it has finite products and equalizers. Pre-abelian categories have finite products by definition, and equalizers by Lemma 218.

Recall from Section 2.4 the following definition.

Definition 220 (zero morphism). Let C be a category with zero object 0. For any two objects $A, B \in \text{Obj}(C)$, the <u>zero morphism</u> $0_{A,B}$ is the unique morphism $A \to B$ which factors through 0.

$$A \xrightarrow{0_{A,B}} B$$

Notation 221. It will often be clear what the source and destination of the zero morphism are; in this case we will drop the subscripts, writing 0 instead of 0_{AB} .

It is easy to see that the left- or right-composition of the zero morphism with any other morphism results in the zero morphism: $f \circ 0 = 0$ and $0 \circ g = 0$.

Lemma 222. Every morphism $f: A \to B$ in a pre-abelian catgory has a canonical decomposition

$$A \xrightarrow{p} \operatorname{coker}(\ker(f)) \xrightarrow{\bar{f}} \ker(\operatorname{coker}(f)) \xrightarrow{i} B$$
,

where p is an epimorphism (Definition 19) and i is a monomorphism (Definition 15).

Proof. We start with a map

$$A \stackrel{f}{\longrightarrow} B$$
.

Since we are in a pre-abelian category, we are guaranteed that f has a kernel $(\ker(f), \iota)$ and a cokernel $(\operatorname{coker}(f), \pi)$. From the universality squares it is immediate that $f \circ \iota = 0$ and $\pi \circ f = 0$ This tells us that the composition $\pi \circ f \circ \iota = 0$, so the following commutes.

We know that π has a kernel (ker(π), i) and i has a cokernel (coker(i), p), so we can add their commutativity squares as well.

If we squint hard enough, we can see the following diagram.

The outer square commutes because $\pi \circ f = 0$, so the universal property for $\ker(\pi)$ gives us a unique morphism $A \to \ker(\pi)$. Let's add this to our diagram, along with a morphism $0 \to \ker(\pi)$ which trivially keeps everything commutative.

Again, buried in the bowels of our new diagram, we find the following.

And again, the universal property of cokernels gives us a unique morphism \bar{f} : coker(ι) \rightarrow ker(π).

The fruit of our laborious construction is the following commuting square.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{p} & \downarrow^{i} \\
\operatorname{coker}(i) & \xrightarrow{\bar{f}} & \ker(\pi)
\end{array}$$

We have seen (Lemma 133) that i is mono, and (Lemma 139) that p is epi.

Now we abuse terminology by calling $\iota = \ker(f)$ and $\pi = \operatorname{coker}(f)$. Then we have the required decomposition.

Note 223. The abuse of notation above is ubiquitous in the literature.

7.3 Abelian categories

This section is under very heavy construction. Don't trust anything you read here.

Definition 224 (abelian category). A pre-abelian category C is <u>abelian</u> if for each morphism f, the canonical morphism guaranteed by Lemma 222

$$\bar{f}$$
: coker(ker(f)) \rightarrow ker(coker(f))

is an isomorphism.

Note 225. The above piecemeal definition is equivalent to the following.

A category C is abelian if

- 1. it is Ab-enriched Definition 212, i.e. each hom-set has the structure of an abelian group and composition is bilinear;
- 2. it admits finite coproducts, hence (by Lemma 211) biproducts and zero objects;
- 3. every morphism has a kernel and a cokernel;
- 4. for every morphism, f, the canonical morphism \bar{f} : $\operatorname{coker}(\ker(f)) \to \ker(\operatorname{coker}(f))$ is an isomorphism.

For the remainder of the section, let C be an abelian category.

Lemma 226. In an abelian category, every morphism decomposes into the composition of an epimorphism and a monomorphism.

Proof. For any morphism f, bracketing the decomposition $f = i \circ \bar{f} \circ p$ as

$$i \circ (\bar{f} \circ p).$$

gives such a composition.

Note 227. The above decomposition is unique up to unique isomorphism.

Definition 228 (image of a morphism). Let $f: A \to B$ be a morphism. The object ker(coker(f)) is called the image of f, and is denoted im(f).

Lemma 229.

- 1. A morphism $f: A \to B$ is mono iff for all $Z \in \text{Obj}(C)$ and for all $g: Z \to A$, $f \circ g = 0$ implies g = 0.
- 2. A morphism $f: A \to B$ is epi iff for all $Z \in Obj(C)$ and for all $g: B \to Z$, $g \circ f = 0$ implies g = 0.

Proof.

1. First, suppose f is mono. Consider the following diagram.

$$Z \xrightarrow{g} A \xrightarrow{f} B$$

If the above diagram commutes, i.e. if $f \circ g = 0$, then g = 0, so $1 \implies 2$.

Now suppose that for all $Z \in \text{Obj}(C)$ and all $g: Z \to A$, $f \circ g = 0$ implies g = 0.

Let $g, g' \colon Z \to A$, and suppose that $f \circ g = f \circ g'$. Then $f \circ (g - g') = 0$. But that means that g - g' = 0, i.e. g = g'. Thus, g = g'. Thus, g = g'.

2. Dual to the proof above.

Lemma 230. *Let* $f: A \rightarrow B$. *We have the following.*

- 1. The morphism f is mono iff ker(f) = 0
- 2. The morphism f is epi iff coker(f) = 0.

Proof.

1. We first show that if $\ker(f) = 0$, then f is mono. Suppose $\ker(f) = 0$. By the universal property of kernels, we know that for any $Z \in \mathrm{Obj}(C)$ and any $g: Z \to A$ with $f \circ g = 0$ there exists a unique map $\bar{g}: Z \to \ker(f)$ such that $g = \iota \circ \bar{g}$.

But then g factors through the zero object, so we must have g=0. This shows that $f\circ g=0 \implies g=0$, and by Lemma 229 f must be mono.

Next, we show that if f is mono, then ker(f) = 0. To do this, it suffices to show that ker(f) is final, i.e. that there exists a unique morphism from every object to ker(f).

Since $Hom_C(Z, \ker(f))$ has the structure of an abelian group, it must contain at least

one element. Suppose it contains two morphisms h_1 and h_2 .

Our aim is to show that $h_1 = h_2$. To this end, compose each with ι .

Since $f \circ \iota = 0$, we have $f \circ (\iota \circ h_1) = 0$ and $f \circ (\iota \circ h_2) = 0$. But since f is mono, by Lemma 229, we must have $\iota \circ h_1 = 0 = \iota \circ h_2$. But by Lemma 133, ι is mono, so again we have

$$h_1 = h_2 = 0$$
,

and we are done.

2. Dual to the proof above.

Lemma 231. We have the following.

- 1. The kernel of the zero morphism $0: A \to B$ is the pair $(A, 1_A)$.
- 2. The cokernel of the zero morphism $0: A \to B$ is the pair $(B, 1_B)$.

Proof.

1. We need only verify that the universal property is satisfied. That is, for any object $Z \in \text{Obj}(\mathbb{C})$ and any morphism $h \colon Z \to A$ such that $0 \circ g = 0$, there exists a unique morphism $\bar{g} \colon Z \to \ker(0)$ such that the following diagram commutes.

But this is pretty trivial: $\bar{q} = q$.

2. Dual to above.

Theorem 232. All abelian categories are binormal (Definition 145). That is to say:

- 1. all monomorphisms are kernels
- 2. all epimorphisms are cokernels.

Proof.

1. Consider the following diagram taken Lemma 222, which shows the canonical factorization of any morphism f.

By definition of a pre-abelian category, we know that \bar{f} is an isomorphism.

Note 233. The above theorem is actually an equivalent definition of an abelian category, but the proof of equivalence is far from trivial. See e.g. [40] for details.

Definition 234 (subobject, quotient object, subquotient object). Let $Y \in \text{Obj}(C)$.

- 1. A <u>subobject</u> of *Y* is an object $X \in \text{Obj}(C)$ together with a monomorphism $i: X \hookrightarrow Y$. If *X* is a <u>subobject</u> of *Y* we will write $X \subseteq Y$.
- 2. A quotient object of Y is an object Z together with an epimorphism $p: Y \rightarrow Z$.
- 3. A subquotient object of *Y* is a quotient object of a subobject of *Y*.

Definition 235 (quotient). Let $X \subseteq Y$, i.e. let there exist a monomorphism $f: X \hookrightarrow Y$. The quotient Y/X is the cokernel (coker(f), π_f).

Example 236. Let V be a vector space, $W \subseteq V$ a subspace. Then we have the canonical inclusion map $\iota \colon W \hookrightarrow V$, so W is a subobject of V in the sense of Definition 234.

According to Definition 235, the quotient V/W is the cokernel ($\operatorname{coker}(\iota), \pi_{\iota}$) of ι . We saw in Example 138 that the cokernel of ι was $V/\operatorname{im}(\iota)$. However, $\operatorname{im}(\iota)$ is exactly W! So the categorical notion of the quotient V/W agrees with the linear algebra notion.

Definition 237 (k-linear category). An abelian category Definition 224 C is k-linear if for all $A, B \in Obj(C)$ the hom-set $Hom_C(A, B)$ has the structure of a k-vector space whose additive structure is the abelian structure, and for which the composition of morphisms is k-linear.

Example 238. The category $Vect_k$ is k-linear.

Definition 239 (k-linear functor). let C and D be two k-linear categories, and $\mathcal{F} \colon C \leadsto D$ a functor. Suppose that for all objects C, $D \in \text{Obj}(C)$ all morphisms f, $g \colon C \to D$, and all α , $\beta \in k$, we have

$$\mathfrak{F}(\alpha f + \beta q) = \alpha \mathfrak{F}(f) + \beta \mathfrak{G}(g).$$

Then we say that \mathcal{F} is k-linear.

7.4 Exact sequences

Definition 240 (exact sequence). A sequence of morphisms

$$\cdots \longrightarrow X_{i-1} \xrightarrow{f_{i-1}} X_i \xrightarrow{f_i} X_{i+1} \longrightarrow \cdots$$

is called exact in degree i if the image (Definition 228) of f_{i-1} is equal to the kernel (Definition 130) of f_i . A sequence is exact if it is exact in every degree.

Lemma 241. If a sequence

$$\cdots \longrightarrow X_{i-1} \xrightarrow{f_{i-1}} X_i \xrightarrow{f_i} X_{i+1} \longrightarrow \cdots$$

is exact in degree i, then $f_i \circ f_{i-1} = 0$.

Definition 242 (short exact sequence). A <u>short exact sequence</u> is an exact sequence of the following form.

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

Definition 243 (exact functor). Let C, D be abelian categories, $\mathcal{F} \colon C \rightsquigarrow D$ a functor. We say that \mathcal{F} is

- left exact if it preserves biproducts and kernels
- right exact if it preserves biproducts and cokernels
- exact if it is both left exact and right exact.

7.5 Length of objects

Definition 244 (simple object). A nonzero object $X \in \text{Obj}(C)$ is called <u>simple</u> if 0 and X are its only subobjects.

Example 245. In Vect_k, the only simple object (up to isomorphism) is k, taken as a one-dimensional vector space over itself.

Definition 246 (semisimple object). An object $Y \in \text{Obj}(C)$ is <u>semisimple</u> if it is isomorphic to a direct sum of simple objects.

Example 247. In $Vect_k$, all finite-dimensional vector spaces are semisimple.

Definition 248 (semisimple category). An abelian category C is <u>semisimple</u> if every object of C is semisimple.

Example 249. The category FinVect $_k$ is semisimple.

Definition 250 (Jordan-Hölder series). Let $X \in \text{Obj}(C)$. A filtration

$$0 = X_0 \subset X_1 \subset \cdots \subset X_{n-1} \subset X_n = X$$

of X such that X_i/X_{i-1} is simple for all i is called a <u>Jordan Hölder series</u> for X. The integer n is called the length of the series X_i .

The importance of Jordan-Hölder series is the following.

Theorem 251 (Jordan-Hölder). Let X_i and Y_i be two Jordan-Hölder series for some object $X \in \text{Obj}(C)$. Then the length of X_i is equal to the length of Y_i , and the objects Y_i/Y_{i-1} are a reordering of X_i/X_{i-1} .

Proof. See [22], pg. 5, Theorem 1.5.4.

Definition 252 (length). The <u>length</u> of an object X is defined to be the length of any of its Jordan-Hölder series. This is well-defined by Theorem 251.

8 Tensor Categories

The following definition is taken almost verbatim from [11].

Definition 253 (tensor category). Let k be a field. A k-tensor category A (as considered by Deligne in [30]) is an

- 1. essentially small (Definition 53)
- 2. k-linear¹ (Definition 237)
- 3. rigid (Definition 206)
- 4. symmetric (Definition 185)
- 5. monoidal category (Definition 165)

such that

- 1. the tensor product functor \otimes : A \times A \rightsquigarrow A is, in both arguments separately,
 - a) k-linear (Definition 239)
 - b) exact (Definition 243)
- 2. $End(1) \simeq k$, where End denotes the endomorphism ring (Definition 210).

Example 254. Vect $_k$ is *not* a tensor category because it is not essentially small; there is one isomorphism class of vector spaces for each cardinal, and there is no set of all cardinals. However, its subcategory FinVect $_k$ is a tensor category.

Definition 255 (finite tensor category). A *k*-tensor category A is called finite (over *k*) if

- 1. There are only finitely many simple objects in A, and each of them admits a projective presentation.
- 2. Each object *A* of A is of finite length.
- 3. For any two objects A, B of A, the hom-object (i.e. k-vector space) $Hom_A(A, B)$ is finite-dimensional.

Example 256. The category FinVect $_k$ is finite.

- 1. The only simple object is *k* taken as a one-dimensional vector space over itself.
- 2. The length of a finite-dimensional vector space is simply its dimension.
- 3. The vector space $\operatorname{Hom}_{\mathsf{FinVect}}(V, W)$ has dimension $\dim(V)\dim(W)$.

Definition 257 (finitely \otimes -generated). A k-tensor category A is called <u>finitely \otimes -generated</u> if there exists an object $E \in \text{Obj}(A)$ such that every other object $X \in A$ is a subquotient

¹Hence abelian.

(Definition 234) of a finite direct sum of tensor products of E; that is to say, if there exists a finite collection of integers n_i such that X is a subquotient of $\bigoplus_i E^{\otimes^{n_i}}$.

$$\bigoplus_{i} E^{\otimes^{n_{i}}}$$

$$\downarrow^{\pi}$$

$$X \stackrel{\iota}{\longleftrightarrow} \left(\bigoplus_{i} E^{\otimes^{n_{i}}}\right) / Q$$

Example 258. The category FinVect_k is finitely generated since any finite-dimensional vector space is isomorphic to $k^n = k \oplus \cdots \oplus k$ for some n.

Definition 259 (subexponential growth). A tensor category A has <u>subexponential growth</u> if, for each object X there exists a natural number N_X such that

$$\operatorname{len}(X^{\otimes_n}) \leq (N_X)^n$$
.

Example 260. The category $FinVect_k$ has subexponential growth. For any finite-dimensional vector space V, we always have

$$\dim(V^{\otimes^n}) = (\dim(V))^n,$$

so we can take $N_V = \dim(V)$.

Theorem 261. Let A be a tensor category, and suppose that

- 1. every object $A \in Obj(A)$ has a finite length
- 2. the dimension of every hom space $\operatorname{Hom}_A(A, B)$ is finite over k.

Then the category Ind(A) of ind-objects of A (Definition 153) has the following properties.

- 1. Ind(A) is abelian (Definition 224).
- 2. $A \hookrightarrow Ind(A)$ is a full subcategory (cf. Note 154).
- 3. The tensor product on A extends to Ind(A) via

$$X \otimes Y \simeq (\lim_{i \to i} X_i) \otimes (\lim_{i \to j} Y_j)$$

$$\simeq \lim_{i \to i,j} (X_i \otimes Y_j).$$

4. The category Ind(A) fails only to be a tensor category because it is not necessarily essentially small and rigid. More specifically, an object $A \in Ind(A)$ is dualizable if and only if it is in A.

Proof. Proposition 3.38 in [11].

Definition 262 (tensor functor). Let $(\mathscr{A}, \otimes_A, 1_A)$ and $(\mathscr{B}, \otimes_B, 1_B)$ be k-tensor categories. A functor $\mathcal{F} \colon \mathscr{A} \to \mathscr{B}$ is called a tensor functor if it is

- 1. braided (Definition 183) and
- 2. strong monoidal (Definition 175).

9 Internalization

One of the reasons that category theory is so useful is that it makes generalizing concepts very easy. One of the most powerful ways of doing this is known as *internalization*.

9.1 Internal groups

Definition 263 (group object). Let C be a category with binary products \times and a terminal object *. A group object in C (or a *group internal to* C) is an object $G \in Obj(C)$ together with

- a map $e: * \rightarrow G$, called the *unit map*;
- a map $(-)^{-1}: G \to G$, called the *inverse map*; and
- a map $m: G \times G \rightarrow G$, called the *multiplication map*

such that

• Multiplication is associative, i.e. the following diagram commutes.

$$G \times G \times G \xrightarrow{\operatorname{id}_{G} \times m} G \times G$$

$$m \times \operatorname{id}_{G} \downarrow \qquad \qquad \downarrow m$$

$$G \times G \xrightarrow{m} G$$

• The unit picks out the 'identity element,' i.e. the following diagram commutes.

$$G \xrightarrow{e \times id_G} G \times G$$

$$id_G \times e \downarrow \qquad \qquad \downarrow m$$

$$G \times G \xrightarrow{m} G$$

• The inverse map behaves as an inverse, i.e. the following diagram commutes.

Here, $\delta\colon G\to G\times G$ is the diagonal map defined uniquely by the universal property of the product

It will be convenient to represent the above data in the following way.

Bibliography

- [1] M.-L. Michelson and H.B. Lawson. *Spin Geometry*. Princeton University Press, Princeton, NJ, 1989.
- [2] R. Vakil, The Rising Sea. http://www.math216.wordpress.com/
- [3] S. B. Sontz. *Principal Bundles: The Classical Case.* Springer International Publishing, Switzerland, 2015.
- [4] T. Hungerford. Algebra. Springer-Verlag New York, NY, 1974.
- [5] J. Figuroa-O'Farril. *PG Course on Spin Geometry*. https://empg.maths.ed.ac.uk/Activities/Spin/
- [6] P. Deligne et al. *Quantum Fields and Strings: a Course for Mathematicians*. American Mathematical Society, 1999.
- [7] V. S. Varadarajan. *Supersymmetry for Mathematicans: An Introduction*. American Mathematical Society, 2004.
- [8] The Catsters. https://www.youtube.com/channel/ UC5Y9H2KDRHZZTWZJtlH4VbA
- [9] A. Connes and M. Marcolli. *Noncommutative Geometry, Quantum Fields and Motives.* http://www.alainconnes.org/docs/bookwebfinal.pdf
- [10] P. Aluffi. Algebra: Chapter 0. American Mathematical Society, 2009.
- [11] Nlab—Deligne's Theorem on Tensor Categories. https://ncatlab.org/nlab/show/Deligne's+theorem+on+tensor+categories
- [12] J. Baez. This Week's Finds in Mathematical Physics (Week 137). http://math.ucr.edu/home/baez/week137.html
- [13] J. Baez. Some Definitions Everyone Should Know. http://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf
- [14] The Unapologetic Mathematician: Mac Lane's Coherence Theorem. https://unapologetic.wordpress.com/2007/06/29/mac-lanes-coherence-theorem/
- [15] D. Montgomery and L. Zippin. *Topological Transformation Groups*. University of Chicago Press, Chicago, 1955.
- [16] P. Deligne, J.S. Milne, A. Ogus, and K. Shih. *Hodge Cycles, Motives, and Shimura Varieties*. Springer Verlag, 1982
- [17] S. Mac Lane. *Categories for the Working Mathematician*. Springer-Verlag New York, New York, 1998.
- [18] J. Baez. An introduction to n-Categories. https://arxiv.org/pdf/q-alg/

- 9705009.pdf
- [20] https://www.ncatlab.org/
- [21] Wikipedia Product (Category Theory). https://en.wikipedia.org/wiki/ Product_(category_theory)
- [22] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. *Tensor Categories*. American Mathematical Society, 2015.
- [23] S. Awodey and A. Bauer. Lecture Notes: Introduction to Categorical Logic
- [24] S. Awodey. Category Theory Foundations. https://www.youtube.com/watch?v=BF6kHD1DAeU&index=1&list=PLGCr8P_YncjVjwAxrifKgcQYtbZ3zuPlb
- [25] S. Awodey. Category Theory. Oxford University Press, 2006.
- [26] R. Haag. Local Quantum Physics: Fields, Particles, Algebras. Springer-Verlag Berlin Heidelberg New York, 1996
- [27] R. Sexl and H. Urbantke. *Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics.* Springer-Verlag Wein, 1992
- [28] J. Wess and J. Bagger. Supersymmetry and Supergravity. Princeton University Press, Princeton NJ, 1992
- [29] H J W Müller-Kirsen and Armin Wiedemann *Introduction to Supersymmetry (Second edition)*. World Scientific, 2010.
- [30] Pierre Deligne. *Catégories Tensorielle*, Moscow Math. Journal 2 (2002) no. 2, 227-228 https://www.math.ias.edu/files/deligne/Tensorielles.pdf
- [31] I. Kolář, P. Michor, and J. Slovák. *Natural Operations in Differential Geometry*. Springer-Verlag, Berlin Heidelberg, 1993.
- [32] R. Hartshorne. *Algebraic Geometry*. Springer-Verlag, New York, 1977.
- [33] Q. Yuan. Annoying Precision: A neditation on semiadditive categories. https://qchu.wordpress.com/2012/09/14/a-meditation-on-semiadditive-categories/
- [34] J. Nestruev. Smooth Monifolds and Observables. Springer-Verlag, New York, 2002.
- [35] J. Baez and A. Lauda. *A prehistory of n-categorical physics*. https://arxiv.org/pdf/0908.2469.pdf
- [36] A. Neumaier. *Elementary particles as irreducible representations.* https://www.physicsoverflow.org/21960.
- [37] U. Schreiber. Why Supersymmetry? Because of Deligne's theorem https://www.physicsforums.com/insights/supersymmetry-delignes-theorem/
- [38] G. W. Mackey. *Induced representations*. W.A. Benjamin, Inc., and Editore Boringhieri, New York, 1968.

- [39] nLab: Additive category. https://ncatlab.org/nlab/show/additive-category#ProductsAreBiproducts
- [40] P. Freyd. Abelian Categories Harper and Row, New York, 1964.
- [41] J. Milne, Basic Theory of Affine Group Schemes, 2012. Available at www.jmilne.org/math/
- [42] E. Wigner. *On Unitary Representations of the Inhomogeneous Lorentz Group.* Annals of Mathematics. Second Series, Vol. 40, No. 1 (Jan., 1939), pp. 149-204
- [43] J. P. M. dos Santos. Representation theory of symmetric groups. https://www.math.tecnico.ulisboa.pt/~ggranja/joaopedro.pdf
- [44] U. Manin. *Gauge Fields and Complex Geometry*, Springer-Verlag Berlin Heidelberg New York, 1988.
- [45] Valter Moretti (https://physics.stackexchange.com/users/35354/valter-moretti). Euler-Lagrange equations and friction forces, URL (version: 2014-02-02): https://physics.stackexchange.com/q/96470
- [46] J.S. Milne. *Lie Algebras, Algebraic Groups, and Lie Groups.* Available at www.jmilne.org/math/
- [47] J. Fröhlich and F. Gabbiani. *Braid statistics in Local Quantum Theory*. Rev. Math. Phys. 02, 251 (1990).
- [48] J. Binney and D. Skinner. *The Physics of Quantum Mechanics*. Available at https://www-thphys.physics.ox.ac.uk/people/JamesBinney/qb.pdf
- [49] R. Feynman. *Spacetime Approach to Non-Relativistic Quantum Mechanics*. Rev. Mod. Phys. 20, 367 fi?? Published 1 April 1948
- [50] F. A. Berezin. The Method of Second Quantization. Nauka, Moscow, 1965. Tranlation: Academic Press, New York, 1966. (Second edition, expanded: M. K. Polivanov, ed., Nauka, Moscow, 1986.)
- [51] S. Coleman and J. Mandula. *All Possible Symmetries of the S Matrix*. Physical Review, 159(5), 1967, pp. 1251fi??1256.
- [52] R. Haag, M. Sohnius, and J. T. Łopuszański. *All possible generators of supersymmetries of the S-matrix*. Nuclear Physics B, 88: 257fi??274 (1975)