5/10/2019 ______*·*

Modelling Transportation Systems

Nonlinear Programming

Dr Zhiyuan Liu

Email: zhiyuanl@seu.edu.cn

Nonlinear Programming (NLP)

□ Learning Objectives

- Understand the formulation and classification of NLP.
- Familiar with the first- and second-order necessary optimality conditions.
- Learn the Karush-Kuhn-Tucker (KKT) conditions.
- Know how to use KKT conditions to find a local optimum.
- Understand the steepest descent direction method for multidimensional unconstrained minimization problems.
- Know the Frank-Wolfe method for multidimensional constrained minimization problems and traffic assignment problems.

Mathematical Programming

- Linear Programming
- Nonlinear Programming
- Dynamic Programming
- ☐ Graphic Theory
- Stochastic Programming
-

Formulating a NLP

□A Regression Example

Consumers' behavior prediction model

Suppose in a given month, a consumer allots E dollars to spend on 3 different products (i=1,2,3). Assume that the consumer will purchase a certain minimal amount q_i of product i with price p_i . Out of the remaining money a certain fixed fraction a_i of funds is allocated to purchase more of product i. Parameter a_i may be interpreted as the marginal propensity to consume commodity i out of uncommitted funds. Once these numbers can be estimated, we have the following model to predict the consumer's behavior:

$$p_i q_i + a_i [E - (p_1 q_1 + p_2 q_2 + p_3 q_3)] = p_i q_i + a_i (E - \sum_{j=1}^{3} p_j q_j), i = 1, 2, 3$$

Our problem is to infer parameters q_i and a_i (i=1,2,3) from her or his monthly purchase record.

Formulating a NLP (con't)

Purchase records over four months

Month m	E_m	Product 1		Product 2		Product 3	
		p_{ml}	Q_{m1}	p_{m2}	Q_{m2}	p_{m3}	Q_{m3}
1	1500	2.5	198	4.0	124	5.0	100
2	2000	2.7	200	3.5	200	4.9	110
3	1500	2.8	100	4.0	80	5.6	60
4	1200	2.6	152	3.6	115	4.5	65

Note: p_{mi} , price of product i at month m; Q_{mi} , amount of product i purchased at month m

Difference between the realistic and estimated expenses for product i at month m:

$$e_{mi} = p_{mi}Q_{mi} - \left[p_{mi}q_i + a_i(E_m - \sum_{j=1}^3 p_{mj}q_j)\right], m = 1, 2, 3, 4; i = 1, 2, 3$$

Formulating a NLP (con't)

■Nonlinear programming model

Decision variables:

$$a_i, q_i, i = 1, 2, 3$$
, namely, $a_1, a_2, a_3, q_1, q_2, q_3$

• Objective function:

Minimize sum of square of e_{mi} for all the products over the four months (Least Square Method)

$$\min_{a,q} f(a,q) = \sum_{m=1}^{4} \sum_{i=1}^{3} e_{mi}^{2} = \sum_{m=1}^{4} \sum_{i=1}^{3} \left\{ p_{mi} Q_{mi} - \left[p_{mi} q_{i} + a_{i} (E_{m} - \sum_{j=1}^{3} p_{mj} q_{j}) \right] \right\}^{2}$$
where $a = (a_{1}, a_{2}, a_{3})^{T}, q = (q_{1}, q_{2}, q_{3})^{T}$

• Constraints:

(2)
$$a_1 + a_2 + a_3 = 1$$

(1)
$$a_i \ge 0$$
; $q_i \ge 0$, $i = 1, 2, 3$

(3)
$$q_i \le Q_{mi}$$
, $i = 1, 2, 3, m = 1, 2, 3, 4$

Defining a Nonlinear Programming Problem

> Example 1

$$\min_{x \in R^2} f(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

> Example 2

$$\min f(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$
 subject to
$$x_1 + x_2 - 5 \le 0$$

$$x_1, x_2 \ge 0$$

> Example 2

$$\min f(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$
 subject to
$$(x_1 - 1)^2 + (x_2 - 1)^2 - 1 \le 0$$

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Defining a Nonlinear Programming Problem (con't)

□Problem statement

Determine a set of values of the decision variables that optimizes an objective function subject to several constraints described by appropriate functions

Defining a Nonlinear Programming Problem (con't)

Vectors:

- Decision variables:
- Inequality constraints:
- Equality constraints:

$$x = (x_1, \dots, x_n)^T$$

 $g = (g_1, \cdots, g_{m_1})^T$

 $h = (h_1, \cdots, h_{m_2})^T$

> Assumptions

f(x), g(x) and h(x) are continuously differentiable functions

> Alternative representations (use vectors)

$$\min_{x} f(x)$$

 $\min_{x \in \Omega} f(x)$

Subject to:

$$g(x) \leq 0$$

$$h(x) = 0$$

where

$$\Omega = \left\{ x \middle| g(x) \le 0, h(x) = 0 \right\}$$

Inequality constraints are more common to see

Preliminary knowledge

□Difficulties with NLPs

- 1. Local optimum \neq global optimum
- 2. Unlike LP, optimum may not occur at extreme point (vertex)
- 3. Even if f(x) is bounded, there may not be an optimal solution

$$f(x) = 1 - \frac{1}{x}, \Omega = \{x : x \ge 0.5\}, \Longrightarrow \max_{x \in \Omega} f(x) = ?$$

4. Feasible solution region may not be connected

Example

$$\Omega = \{x : g_1(x) \ge g_2(x)\}$$

Preliminary knowledge (con't)

Maximum and Minimum Solutions

- x*=1 is the global minimum solution of function $f_1(x)$
- x*=1 is the global maximum solution of function $f_2(x)$

(a) Function
$$f_1(x) = (x-1)^2 + 0.5$$

(b) Function $f_2(x) = 0.5 - (x-1)^2$

Preliminary knowledge (con't)

- □ Global and Local Minimum Solutions for Minimization Problem: $\min_{x \in \Omega} f(x)$
- Global minimum solution x^*
 - (i) (Feasibility) x^* is a feasible solution of the minimization problem, i.e., $x^* \in \Omega$
 - (ii) (Optimality) $f(x) \ge f(x^*)$ for any $x \in \Omega$
 - Local minimum solution x^*
- (i) (Feasibility) x^* is a feasible solution of the minimization problem, i.e., $x^* \in \Omega$
- (ii) (Optimality) $f(x) \ge f(x^*)$ for any x in a neighborhood of x^*

Preliminary knowledge (con't)

- What are the global minimum and global maximum solutions of function $f_3(x)$?
- What are the global minimum and maximum solutions of function $f_3(x)$ subject to $-5 \le x \le 2$?

Multivariate Functions

Examples

$$(1) f_1(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

where vector:
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \Re^2$$

$$(2) f_2(x) = 2x_1 + 3x_2 + 0.5x_3 - x_4$$

where vector:
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \Re^4$$

Multivariate Functions (con't)

Gradient of a n-dimensional function f(x) at a

solution
$$x=x^*$$

$$\nabla f(x^*) = \begin{cases} \partial f(x^*)/\partial x_1 \\ \partial f(x^*)/\partial x_2 \\ \vdots \\ \partial f(x^*)/\partial x_n \end{cases}$$

$$f: R^n \to R^1$$
what if $R^n \to R^n$?
$$Jacobian$$

$$(1) f_1(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

$$\nabla f_1(x^*) = \begin{pmatrix} 2(x_1^* - 2) \\ 2(x_2^* - 2) \end{pmatrix}$$

$$(1) f_1(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

$$(2) f_2(x) = 2x_1 + 3x_2 + 0.5x_3 - x_4$$

Multivariate Functions (con't)

□Geometric interpretation of a gradient

Given a function $f(x) = x_1 + x_2$,

at point x=(2,1),

$$\nabla f(2,1) = (1,1)^T$$

✓ Conclusions

- 1. The function value will **increase** when moving away from point *x* along the gradient direction:
- 2. The function value will **decrease** when moving away from point *x* along the opposite direction:

The opposite direction of a gradient provides an important clue for minimizing a function.

Multivariate Functions (con't)

□Geometric interpretation of a gradient

$$z = (x_1 - 2)^2 + (x_2 - 2)^2$$

$$\nabla z(1.4,1.4) = (-1.2,-1.2)$$

Representation in contours

Multivariate Functions (con't)

Hessian Matrix of a n-dimensional Function f(x) at a Solution $x=x^*$

$$\nabla^{2} f\left(x^{*}\right) = \begin{bmatrix} \partial^{2} f\left(x^{*}\right) / \partial^{2} x_{1} & \partial^{2} f\left(x^{*}\right) / \partial x_{1} \partial x_{2} & \dots & \partial^{2} f\left(x^{*}\right) / \partial x_{1} \partial x_{n} \\ \partial^{2} f\left(x^{*}\right) / \partial x_{2} \partial x_{1} & \partial^{2} f\left(x^{*}\right) / \partial^{2} x_{2} & \dots & \partial^{2} f\left(x^{*}\right) / \partial x_{2} \partial x_{n} \\ \vdots & \vdots & \vdots & \vdots \\ \partial^{2} f\left(x^{*}\right) / \partial x_{n} \partial x_{1} & \partial^{2} f\left(x^{*}\right) / \partial x_{n} \partial x_{2} & \dots & \partial^{2} f\left(x^{*}\right) / \partial^{2} x_{2} \end{bmatrix}_{n \times n}$$

• **Examples**

Examples

$$(1) f_1(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

$$\nabla^2 f(x^*) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Definition of Positive Definite

Let A be a $n \times n$ matrix

- Positive definite matrix For any non-zero vector x, we have $x^TAx > 0$
- Positive semi-definite matrix For any non-zero vector x, we have $x^TAx \ge 0$
- A sufficient and necessary condition

Matrix *A* is positive definite if the values of the leading principal minor determinants are positive

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \begin{vmatrix} a_{11} \end{vmatrix} > 0 \qquad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0$$

20

Preliminary knowledge (con't)

□Feasible Directions of a NLP

$$\min_{x \in \Omega} f(x) \qquad \text{where } \Omega \subseteq \mathbb{R}^n$$

• Feasible direction d at a point x of set Ω A direction d (i.e., a n-dimensional vector) is referred to as a *feasible direction* at point x of set Ω iff there is a parameter such that

$$x + \alpha d \in \Omega$$
 for all $0 \le \alpha \le \overline{\alpha}$

- ✓ For interior point (1,0.5), any direction is a feasible direction (*Why?*)
- ✓ For vertex (2, 0), Feasible direction: d = (1,0.5) (2,0) = (-1,0.5)Infeasible direction: d = (3, 1.5) - (2,0) = (1, 1.5)

Preliminary knowledge (con't)

□Feasible directions of a NLP

• We first talk about the binding constraints

$$g_i(\mathbf{x}) \le 0$$
 $i = 1, 2, ..., m$

It is assumed that D is a feasible direction at X^* . The binding constraints at this points are $g_j(X^*) = 0$

and J is the set of all the binding constraints at X^* . Then $\nabla g_i(X^*)^T D < 0, j \in J$ Infeasible Region $\nabla g_1(x) = 0$ $g_2(x) = 0$ Binding $\nabla g_2(x^*)$ Feasible region Ω

Constrain

Preliminary knowledge (con't)

□Feasible directions of a NLP

 $X = X^* + \lambda D$

 λ : step size

Proof: using Taylor expansion

$$f(X) = f(X^*) + \nabla f(X^*)^{\mathrm{T}} (X - X^*) + o(X - X^*)$$
$$g_j(X^* + \lambda D) = g_j(X^*) + \lambda \nabla g_j(X^*)^{\mathrm{T}} D + o(\lambda)$$

Since $g_i(X^*) = 0$

For a feasible direction D, we have: $g_j(X^* + \lambda D) \le 0, j \in J$ Thus, $g_j(X^*) + \lambda \nabla g_j(X^*)^T D + o(\lambda) \le 0 \Rightarrow \nabla g_j(X^*)^T D < 0, j \in J$

For nonbinding constraints, $g_i(X^{(0)}) < 0, i \notin J$ Then, for any direction D, there always exist $\lambda > 0$, satisfy $g_i(X^{(0)} + \lambda D) \le 0, i \notin J$

Preliminary knowledge (con't)

□Descent directions of a NLP

- A vector D is a descent direction at $X^{(0)}$, if there exits a real number $\lambda > 0$, such that $f(X^{(0)} + \lambda D) < f(X^{(0)})$
- For any decent direction, we further have $\nabla f(X^{(0)})^T D < 0$
- Proof: Using Taylor expansion of f(X) at $X^{(0)}$, we have

$$f(X^{(0)} + \lambda D) = f(X^{(0)}) + \nabla f(X^{(0)})^{T} \lambda D + o(X - X^{(0)})$$
$$f(X^{(0)} + \lambda D) - f(X^{(0)}) < 0 \Rightarrow \nabla f(X^{(0)})^{T} \lambda D < 0$$
$$\nabla f(X^{(0)})^{T} D < 0$$

Important conclusion: negative gradient is the fastest descent direction

Preliminary knowledge (con't)

□Feasible Descent directions of a NLP

Example: $\Omega = \{(x_1, x_2) | x_1 + x_2 \le 2, x_1 \ge 0, x_2 \ge 0\}$, and $f(x) = (x_1 - 1)^2 + (x_2 - 2)^2$

At point (1,0.5)

Feasible descent directions: d_1 , d_2 , d_3

At point (2,0)

Feasible descent direction: d_5

Preliminary knowledge (con't)

□Feasible descent directions of a NLP

Literally,

Feasible descent direction: both feasible and descent.

- If $X^{(0)}$ is not a local minimum, the search direction of the next iteration should be a *feasible descent direction at this point*;
- If $X^{(0)}$ is a local minimum, it dose not have feasible descent direction;
- On the other hand, if a point has feasible descent direction, it is definitely not the local minimum.

Preliminary knowledge (con't)

□Feasible descent directions of a NLP

Mathematically,

If point $X^{(0)}$ is not the local minimum, there must exist a direction D that satisfy the following inequalities simultaneously,

$$\begin{cases} \nabla f(X^{(0)})^T D < 0 \\ \nabla g_j(X^{(0)})^T D < 0, j \in J \end{cases}$$

Graphically,

- the included angle between D and the negative gradient of the objective function is acute;
- the included angle between *D* and the *negative gradient of the* binding constraints is acute.

Convex Optimization

Convex Optimization

- Convex Programming Convex Optimization
 - Minimize Convex Function over Convex Set
- A special subfield of nonlinear programming
 - The most commonly addressed NLP
 - Much easier to solve than other NLP models.

$$\min_{x \in \Omega} f(x)$$

where

$$\Omega = \{ x | g(x) \le 0, h(x) = 0 \}$$

Definition of Convex Set

\square Sets in the n-dimensional Real Space \mathbb{R}^n

Let Ω be a set of a vector space over the real numbers $\Omega \subseteq \mathbb{R}^n$

Definition

A set Ω in \mathbb{R}^n is said to be convex if, for all x_1 and x_2 in Ω and all α in the interval [0,1], the point $\alpha x_1 + (1-\alpha)x_2$ also belongs to Ω .

$$\alpha x_1 + (1 - \alpha)x_2 \in \Omega$$

• Example 1

$$\Omega_1 = \{(x_1, x_2) | x_1 + x_2 \le 2; x_1 - x_2 \le 1; x_1 \ge 0; x_2 \ge 0\}$$

Definition of Convex Set

• Example 2

$$\Omega_2 = \{(x_1, x_2) | (x_1-1)^2 + (x_2-1)^2 \le 1\}$$

• Example 3

$$\Omega_3 = \{(x_1, x_2) | x_1 + x_2 \le 3; g(x) < =0; x_1 \ge 0; x_2 \ge 0\}$$

where

$$g(x) = \begin{cases} x_1 - x_2, & 0 \le x_1 \le 1 \\ 3 - x_1 - 2x_2, & x_1 \ge 1 \end{cases}$$

Definition of Convex Functions

Convexity in Set Ω

$$f\left(x_{1}+\alpha\left(x_{2}-x_{1}\right)\right) \leq f\left(x_{1}\right)+\alpha\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right], \forall x_{1},x_{2} \in \Omega, \forall \alpha \in \left[0,1\right]$$

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $f(x_1) + \alpha[f(x_2) - f(x_1)]$

• Strict Convexity in Set Ω

$$f(x_1 + \alpha(x_2 - x_1)) < f(x_1) + \alpha[f(x_2) - f(x_1)]$$

$$\forall x_1, x_2 \in \Omega, \forall \alpha \in [0,1]$$

First-order Condition

□Conditions ensuring convexity of a function

Let C be a nonempty convex subset of R^n and let $f: R^n \to R$ be differentiable over an open set that contains C.

A sufficient condition

(i) f is **convex** over C iff

$$f(z) \ge f(x) + \nabla f(x)'(z - x), \forall x, z \in C$$

(ii) f is strictly convex over C iff

$$f(z) > f(x) + \nabla f(x)'(z - x), \forall x \neq z, x, z \in C$$

Second-order Condition

Conditions checking convexity of a function

Assume that Hessian matrix $\nabla^2 f(x)$ does exist for any feasible x in set Ω

A second-order condition

- (i) Function f(x) is convex if and only if (iff) the Hessian matrix $\nabla^2 f(x)$ is **semi-positive definite**.
- (ii) Function f(x) is **strictly convex** if and only if the Hessian matrix $\nabla^2 f(x)$ is **positive definite**.

Convex Functions

Examples

■ Function $f_1(x) = (x_1 - 2)^2 + (x_2 - 2)^2$

It is a strictly convex function

■ Function $f_2(x) = 2x_1 + 3x_2 + 0.5x_3 - x_4$

It is a convex but not strictly function

Remark

All the linear functions are convex. Are they concave?

Convex Functions (con't)

• Example 1:

Prove that $f(x) := \sum_{j=1}^{n} c_j x_j$ is a convex function on its natural domain

• Example 2:

Suppose that $c_{i} > 0, j = 1, 2...n$.

Prove that $f(x) := \sum_{j=1}^{n} c_j x_j^2$ is a convex function (Hint: $2ab \le a^2 + b^2$)

• Example 3:

Give an example of the values of c_i , j = 1, 2...n,

such that $f(x) := \sum_{j=1}^{n} c_j x_j^2$ is no longer a convex function

Convex Optimization

□The following statements are true about the convex minimization problem:

- if a local minimum exists, then it is a global minimum.
- the set of all (global) minima is convex.
- for each strictly convex function, if the function has a minimum, then the minimum is unique.

Examples:

- Least squares
- Linear programming (convex or concave?)
- Convex quadratic minimization with linear constraints
- Conic optimization (锥优化)
- Entropy maximization with appropriate constraints

Local and Global Minimum of a convex optimization problem

Local minimum

If a x^* in a convex set Ω satisfies $\nabla f(x^*)^T d \ge 0$ for any feasible direction d at x^* , then x^* is a **global minimum** for the convex programming problem: $\min_{x \in \Omega} f(x)$

Proof.

Suppose that x^* is not a global minimum, then there is a point y in set Ω such that $f(y) < f(x^*)$.

Since Ω is a convex set, for any $0 \le \alpha \le 1$, $x^* + \alpha(y - x^*)$ is still in set Ω . In other words, $y - x^*$ is a feasible direction at point x^* .

As f(x) is a convex function, it can be seen that

$$f(y) \ge f(x^*) + \nabla f(x^*)^T (y - x^*) \ge f(x^*)$$
 This is a contradiction.

5/10/2019

Karush-Kuhn-Tucker (KKT) Conditions

5/10/2019

Karush-Kuhn-Tucker Conditions

□ How to verify x^* is an local optimum for the following nonlinear programming:

$$\begin{aligned} \min f(x) \\ \text{subject to} \\ g_i(x) &\leq 0, \ i = 1, \dots, m_1 \\ h_j(x) &= 0, j = 1, \dots, m_2 \end{aligned}$$

- ✓ Existing *optimality conditions* for optimization problems with constraints involve enumeration of all feasible directions.
- ✓ How to effectively handle these *feasible directions*?

KKT Conditions (con't)

□ A Necessary Optimality Condition

If x^* is a local minimum, then there exist Lagrangian multipliers $\{u_1, u_2, ..., u_{ml}\}$ and $\{\lambda_1, \lambda_2, ..., \lambda_{m_2}\}$ satisfy the following KKT conditions:

$$(1)\nabla f(x^*) + \sum_{i=1}^{m_1} u_i \nabla g_i(x^*) + \sum_{j=1}^{m_2} \lambda_j \nabla h_j(x^*) = 0$$
 (KKT Equations)

(2)
$$u_i \ge 0, i = 1, \dots, m_1$$
 (Non-negativity)

(3)
$$u_i g_i(x^*) = 0, i = 1, \dots, m_1$$
 (Complementary slackness conditions)

(4)
$$g_i(x^*) \le 0, i = 1, \dots, m_1, h_i(x^*) = 0, j = 1, \dots, m_2$$
 (Feasibility)

Constraint Qualification (CQ), or Regularity Condition

- For the KKT conditions to hold, $g_i(x)$ and $h_j(x)$ must satisfy certain regularity conditions (usually called *constraint qualifications*).
- The most used CQs are listed below:
- Linearity constraint qualification (LCQ):

If $g_i(x)$ and $h_j(x)$ are affine functions, then no other condition is needed.

• Linear independence constraint qualification (LICQ):

$$\nabla g_i(x)$$
 and $\nabla h_i(x)$ are linearly independent.

•

Reference:

- Chapter 5 of *Nonlinear Programming: Theory and Algorithms* by Bazaraa et al. (1993)
- Eustaquio, R. G., Karas, E. W., & Ribeiro, A. A. (2010). Constraint qualifications for nonlinear programming.

KKT Conditions (con't)

□ Remarks

- The KKT conditions provide a necessary condition for the local minimum of a NLP.
- The KKT conditions are the necessary and sufficient conditions for the local minimum of a convex programming problem.
- Any local minimum is also global minimum for a convex programming problem.
- A strictly convex programming problem has the unique optimal solution.

KKT Conditions (con't)

Example

Check that $x^*=(0.5,1.5)$ is the unique global optimal solution for the following minimization problem:

subject to
$$\min f(x) = (x_1 - 2)^2 + (x_2 - 3)^2$$

$$x_1 + x_2 \le 2$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$u_1$$

$$u_2$$

$$u_3$$

(1) Verify the feasibility condition

$$x_1^* + x_2^* = 2$$
 $x_1^* = 0.5 > 0$
 $x_2^* = 1.5 > 0$

KKT Conditions (con't)

(2) Verify the complementary slackness conditions

$$u_2 \times (-x_1^*) = 0$$
, $u_3 \times (-x_2^*) = 0$, $u_1^* \times (x_1^* + x_2^* - 2) = 0$

It can be seen that $u_2=0, u_3=0$ and u_1 is a unknown and nonnegative multiplier.

(3) Solve the KKT equations

(4) Check the non-negativity conditions

$$u_1 = 3 > 0, u_2 = 0, u_3 = 0$$

KKT Conditions (con't)

Example 1:

Use the KKT conditions to solve the following NLP

$$\begin{cases} \min f(x) = (x-3)^2 \\ 0 \le x \le 5 \end{cases}$$

• Standard form:

$$\begin{cases} \min f(x) = (x-3)^2 \\ g_1(x) = -x \le 0 \\ g_2(x) = x - 5 \le 0 \end{cases}$$

• Obtain the gradient of the objective function and constraints

$$\nabla f(x) = 2(x-3),$$

$$\nabla g_1(x) = -1, \nabla g_2(x) = 1$$

KKT Conditions (con't)

- Example 1:
- Introduce the multipliers

$$\begin{cases} \min f(x) = (x-3)^2 \\ g_1(x) = -x \le 0 & \longrightarrow & \gamma_1 \\ g_2(x) = x - 5 \le 0 & \longrightarrow & \gamma_2 \end{cases}$$

Convex function Convex set

Convex optimization

- Based on the KKT conditions, let the local minimum be $x^*, \gamma_1^*, \gamma_2^*$
- Then, they should satisfy

$$2(x^* - 3) - \gamma_1^* + \gamma_2^* = 0 \qquad \gamma_1^*, \gamma_2^* \ge 0$$

$$\gamma_1^* x^* = 0 \qquad -x^* \le 0$$

$$\gamma_2^* (x^* - 5) = 0 \qquad x^* - 5 \le 0$$

KKT Conditions (con't)

Example 1:

$$2(x^* - 3) - \gamma_1^* + \gamma_2^* = 0 \qquad \gamma_1^*, \gamma_2^* \ge 0$$
$$\gamma_1^* x^* = 0 \qquad -x^* \le 0$$
$$\gamma_2^* (x^* - 5) = 0 \qquad x^* - 5 \le 0$$

- Discussions:
- (1) Let $\gamma_1^* \neq 0, \gamma_2^* \neq 0$, no feasible solution;
- (2) Let $\gamma_1^* \neq 0$, $\gamma_2^* = 0 \Rightarrow x^* = 0$, $\gamma_1^* = -6$, doesn't satisfy KKT;
- (3) Let $\gamma_1^* = 0$, $\gamma_2^* \neq 0 \Rightarrow x^* = 5$, $\gamma_2^* = -4$, doesn't satisfy KKT;
- (4) Let $\gamma_1^* = \gamma_2^* = 0 \Rightarrow x^* = 3$, satisfies KKT \rightarrow a local minimum.
- The problem is a convex model, so the local minimum is a also a global minimum

Difficulties with NLPs

- The objective function and constraints must be continuously differentiable
- CQ must be satisfied at the points fulfilling KKT conditions.
- Finding points that fulfill KKT conditions is no easy task (involves many equalities and inequalities).
- Moreover, there may be many solutions fulfilling the KKT conditions. So, efficient algorithms are still needed, instead of solving the KKT conditions directly.

Solution Algorithms

Solution Algorithms

- What are your understanding of an algorithm?
- Processes constitute an algorithm for solving a mathematical model?
 - Input
 - Initiation
 - Descend direction
 - Line search
 - Stop Criterion:

$$\left| x_{k+1} - x_k \right| \le \varepsilon$$

• where \mathcal{E} is a given positive constant

Solution Algorithms

How to draw a flowchart for an algorithm?

Solution Algorithms

- We first talk about methods for line search.
- After the descend direction is obtained, a line search is necessary to locate the optimal point for next step along this direction.
- So, line search problem usually only has one dimension.
- Three methods to solve such a one-dimensional optimization problem.
 - Bisection Algorithm
 - Golden Section Algorithm
 - Newton Method

Line Search Methods – Bisection Algorithm

□ Assumption

z(x) is a convex and continuously differentiable function in the interval [a, b]

□ Motivation

Find a zero point of function z'(x) in the interval [a, b], i.e.,

$$z'(x)=0$$
 with $a \le x \le b$

Line Search Methods – Bisection Algorithm

Algorithmic Framework

$$(b_{k+1} - a_{k+1}) = 0.5 * (b_k - a_k)$$

Step 0: Given an initial interval

$$[a_0, b_0] \subseteq [a, b]$$
 wher $x^* \in [a, b]$ and $z'(a_0) < 0, z'(b_0) > 0$
Let $k=0$

Step 1: if b_k - $a_k \le \varepsilon$, then stop and yield an optimal minimum $x^* = (b_k - a_k)/2$. Otherwise, go to Step 2

Step 2: Set
$$x_k = (b_k - a_k)/2$$

If $z'(x_k) \ge 0$, then $b_{k+1} = x_k$, $a_{k+1} = a_k$
If $z'(x_k) < 0$, then $a_{k+1} = x_k$, $b_{k+1} = b_k$
Set $k = k+1$ and go to Step 1.

Line Search Methods – Bisection Algorithm

■ Example

• Use the bisection algorithm to solve the following NLP.

$$\min z(x) = \sin x$$

s.t.
$$3 \le x \le 6$$

- Because $z'(x) = \cos x, a_0 = 3, b_0 = 6, x_0 = 4.5$
- Then $z'(3) = -0.99 < 0, z'(6) = 0.96 > 0, z'(x_0) = -0.2108$

$$a_1 = 4.5, b_1 = 6, x_1 = 5.25$$

Line Search Methods – Bisection Algorithm

- Example
- Iterative Process of Bisection Algorithm

k	a_k	b _k	X _k	z'(x _k)	z'(a _k)	z'(b _k)
0	3	6	4.5	-0.2108	-0.99	0.96017
1	4.5	6	5.25	0.51209	-0.2108	0.96017
2	4.5	5.25	4.875	0.1619	-0.2108	0.51209
3	4.5	4.875	4.6875	-0.0249	-0.2108	0.1619
4	4.6875	4.875	4.78125	0.06881	-0.0249	0.1619
5	4.6875	4.78125	4.73438	0.02198	-0.0249	0.06881
6	4.6875	4.73475	4.71113	-0.0013	-0.0249	0.02236

Comments on bisection search method

- In step 2, why don't we consider the case of $z(x_k)=0$ separately?
 - Due to problem structure and numerical errors, the possibility that $z(x_k)=0$ is very low.
- Which should be taken as the output?
 - $-(a_k+b_k)/2$, or a_k or b_k
 - This does not matter much because the tolerance ϵ is generally very small.

5/10/2019

Comments on bisection search method

- How is ε determined?
 - A larger ϵ gives to a faster convergent speed, but lower precision. Therefore, ϵ is chosen as a tradeoff between the efficiency and quality.
 - For example, if x represents the unit price at the retailer market, then it is acceptable to set ε at 1 cent.
- Any other stopping criteria?
- Yes. e.g., $|z(x_k)| < \varepsilon$ (the number of iterations required will change)
- We can also stop after a given number of iterations
- We can also stop after a given CPU time

Conclusions

- Bisection algorithm is used to solve convex and continuously-differentiable problem.
 - Invalid if the problem is not differentiable.
- So, Golden section algorithm is used, and it doesn't even require the problem to be convex.
 - Read the textbook for more details of the Golden section algorithm.

Line Search Methods – Golden Section Algorithm

Example:

 $\min_{2 \le x \le 4} z(x) = (x-1)^2 + 1$

Line Search Methods – Newton's Method

□Idea of Newton Method

$$\min_{x \in R^n} z(x) \Longrightarrow z'(x) = 0$$

This method starts with an initial guess which is reasonably close to the true solution, then the function is approximated by its tangent line, and one computes the *x*-intercept of this tangent line. This *x*-intercept will typically be a better approximation to the function' solution than the original guess, and the method can be

iterated.

$$z'(x) = 0$$

Newton's Method

$$\begin{cases} z'(x_n) = 0 \\ z''(x_n) \neq 0 \end{cases}$$

□Newton Method for Line Search

• we suppose the current solution is x_n and x_{n+1} is the next solution. The tangent line of y = z''(x) at x_n is

$$y = z'(x_n) + z''(x_n)(x - x_n)$$

• The *x*-intercept of this line is regarded as the next approximation root, that is,

$$x_{n+1} = x_n - \frac{z'(x_n)}{z''(x_n)}$$

This method will end until the solution satisfy a predetermined stop criterion.

63 5/10/2019

Newton's Method

$$\min_{x \in R^n} z(x)$$

 $\min_{x \in \mathbb{R}^n} z(x)$ Assume that z(x) is second-order continuous differentiable.

□ Newton Method for Line Search

• Explanation based on the 2nd order Taylor approximation

$$z(x) \approx z(x_k) + z'(x_k)(x - x_k) + \frac{1}{2}z''(x_k)(x - x_k)^2$$

First order derivative: $z'(x) = z'(x_k) + z''(x_k)(x - x_k)$

• To minimize z(x), first-order necessary optimality: z'(x) = 0

$$z'(x_k) + z''(x_k)(x - x_k) = 0 \Rightarrow x = x_k - \frac{z'(x_k)}{z''(x_k)}$$

• Thus, based on x_k , $x_{k+1} = x_k - \frac{z'(x_k)}{z''(x_k)}, k = 0,1...$

Gradient Descent

Gradient Descent

Problem

Find a local minimum of a differentiable function $z(x), x \in \mathbb{R}^n$.

 x^* is a (global) minimum of z(x) iff $z(x^*) \le z(x), \forall x \in \mathbb{R}^n$.

 x^* is a local minimum of z(x) iff there exists an $\varepsilon > 0$ and

$$z(x^*) \le z(x), \forall x \in \mathbb{R}^n \text{ and } ||x - x^*||_2 < \varepsilon.$$

Gradient Descent (con't)

Idea of Descent Direction Methods

• Moving from one point to another, while reducing the

objective value.

Gradient Descent (con't)

Framework of Descent Direction Methods

- Step 0: Choose an initial point $x^{(0)}$
- Step 1: Verify a stopping criterion
- Step 2: Find a feasible descent direction $d^{(k)}$ (feasibility is automatically ensured)
- Step 3: Identify an optimal/good step size $\alpha^{(k)}$ in connection with direction $d^{(k)}$
- Step 4: Set $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$

Gradient Descent (con't)

Steepest Descent/Gradient Descent

• A natural idea is to use the negative gradient direction.

$$\nabla z(x)_{x=x^{(k)}} := \begin{pmatrix} \frac{\partial z}{\partial x_1} \\ \frac{\partial z}{\partial x_2} \\ \vdots \\ \frac{\partial z}{\partial x_n} \end{pmatrix}_{x=x^{(k)}} \quad \text{or } \nabla z(x^{(k)}) := \begin{pmatrix} \frac{\partial z}{\partial x_1^{(k)}} \\ \frac{\partial z}{\partial x_2^{(k)}} \\ \vdots \\ \frac{\partial z}{\partial x_n^{(k)}} \end{pmatrix}$$

Gradient Descent (con't)

Gradient Descent Algorithm

Step 0: Choose an initial point $x^{(0)}$ and set k = 0. Define $\varepsilon > 0$

Step 1: If $|\nabla z(x^{(k)})| < \varepsilon$, then stop. Otherwise, go to Step 2

Step 2: Set $d^{(k)} := -\nabla z(x^{(k)})$. Find an $\alpha^{(k)}$ which is the optimal solution of one-dimensional minimization problem: $\min_{0 \le \alpha < \infty} z \left(x^{(k)} + \alpha d^{(k)} \right)$

Step 3:Set $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$, and let k = k + 1, go to Step 1.

Gradient Descent (con't)

Gradient Descent Algorithm

- In Step 0, in general, it is preferable to choose an initial point that is near to a local minimum. (e.g., use the optimal solution of a heuristic algorithm as the initial solution)
- In Step 1, other stop criteria are also possible.
- The sub-problem in Step 2 is a line search. It is much easier to solve than the original problem. Herein, we can use the KKT conditions, bisection search, or golden section.

Gradient Descent (con't)

Example

$$\min_{x \in R^2} z(x) = (x_1 - 2)^2 + 10(x_2 - 2)^2$$

- Gradient $\nabla z(x) = (2x_1 4, 20x_2 40)^T$
- Line search

$$f(\alpha) = z(x^{(k)} - \alpha \nabla z(x^{(k)})) = (x_1 + \alpha (4 - 2x_1^{(k)}) - 2)^2 + 10(x_2^{(k)} + \alpha (40 - 20x_2^{(k)}) - 2)^2$$

 \checkmark A parabola, Let $f'(\alpha)=0$, it follows that:

$$0 \le \alpha_k = \frac{(4 - 2x_1^{(k)})^2 + (40 - 20x_2^{(k)})^2}{2(4 - 2x_1^{(k)})^2 + 20(40 - 20x_2^{(k)})^2}$$

Gradient Descent (con't)

Example

Iterative scheme (2 iterations)

k	X ^(k)	d ^(k)	d ^(k)	α ^(k)	z(x ^(k))
0	(-4,-3)	(12,100)	100.7	0.051	286
1	(-3.392,2.065)	(10.784,-1.294)	10.9	0.443	29.118
2	(1.389, 1.491)				

Gradient Descent (con't)

Comments

- When *z*(*x*) is convex, gradient descent would end up at a global optimum.
- Slow convergence due to the "zigzaging" nature of the method.
 - Quadratic function
 - Rosenbrock function

$$f(x_1, x_2) = (1 - x_1)^2 + 100[x_2 - (x_1)^2]^2$$

Gradient Descent (con't)

Comments

Zigzaging

Gradient Descent (con't)

Comments

Rosenbrock function.

Frank-Wolfe Method

Frank-Wolfe Method

Purpose

Find an optimal solution of the following convex programming problem by solving a series of linear programming (LP) problems.

$$\min_{x} f(x)$$

subject to

$$g(x) \le 0$$
$$h(x) = 0$$

$$h(x) = 0$$

Frank, M. and Wolfe (1956) An algorithm for quadratic programming. Naval Research Logistics quarterly Research, Vol. 14, pp. 43-53.

Frank-Wolfe Method

□ Algorithmic Framework

Step 0: Choose an initial feasible point $x^{(0)}$ and set k=0

Step 1: Find the descent direction $d^{(k)}=y^{(k)}-x^{(k)}$ where $y^{(k)}$ is the optimal solution of the LP:

$$\min_{y} y^{T} \nabla f\left(x^{(k)}\right)$$

subject to

$$g(y) \le 0$$
$$h(y) = 0$$

$$h(y) = 0$$

Frank-Wolfe Method

Step 2: If
$$\left| \sum_{i=1}^{n} \left[\left(\partial f(x^{(k)}) / \partial x_i \right) \left(y_i^{(k)} - x_i^{(k)} \right) \right] \right| \le \varepsilon$$
, then stop. Otherwise, go to Step 3

Step 3: Find an α_k , which is the optimal solution of the following one-dimension minimization problem, by using a line search method

$$\min_{0 \le \alpha \le 1} f\left(x^{(k)} + \alpha\left(y^{(k)} - x^{(k)}\right)\right)$$

Step 4: Set
$$x^{(k+1)} = x^{(k)} + \alpha_k (y^{(k)} - x^{(k)})$$
, and let k=k+1, got to Step 1

Frank-Wolfe Method

Example

Find an optimal solution of the following minimization method by the Frank-Wolfe method with the stop tolerance ε =0.01 and the initial solution $x^{(0)}$ =(0,0)

$$\min f(x) = (x_1 - 2)^2 + (x_2 - 3)^2$$

subject to

$$x_1 + x_2 \le 2$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Frank-Wolfe Method

Iteration 1 (k=0)

$$\nabla f\left(x^{(0)}\right) = \left(-4, -6\right)^T$$

 $x^{(0)} = (0,0)^T \quad \mathbf{y_2}$

(1) Find the optimal solution $y^{(0)}$ of the

LP: $\min z(y) = -4y_1 - 6y_2$

subject

to

$$y_1 + y_2 \le 2$$

$$y^{(0)} = (0,2)$$

$$y_1 \ge 0$$

$$y_2 \ge 0$$

(2) Check the stop criterion:

$$\sum_{i=1}^{n} \left[\left(\partial f(x^{(0)}) / \partial x_i \right) \left(y_i^{(0)} - x_i^{(0)} \right) \right] = \left[\left[-4 \times (0 - 0) + (-6)(2 - 0) \right] \right] > 0.01$$

Frank-Wolfe Method

(3) Find the optimal solution α_0 of the one-dimensional minimization problem by the bisection search method:

$$x^{(0)} + \alpha \left(y^{(0)} - x^{(0)} \right) = \left(0, 0 \right)^T + \alpha \left[\left(0, 2 \right)^T - \left(0, 0 \right)^T \right] = \left(0, 2\alpha \right)^T$$

$$\min_{0 \le \alpha \le 1} f\left(x^{(0)} + \alpha\left(y^{(0)} - x^{(0)}\right)\right) = (0 - 2)^2 + (2\alpha - 3)^2$$

(4) Update

$$x^{(1)} = x^{(0)} + \alpha_0 \left(y^{(0)} - x^{(0)} \right)$$
$$= \begin{pmatrix} 0 + 1 \times (0 - 0) \\ 0 + 1 \times (2 - 0) \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Frank-Wolfe Method

Iteration 2 (k=1)

$$\nabla f\left(x^{(1)}\right) = \left(-4, -2\right)^T$$

 $x^{(1)} = (0,2)$ y_2

(1) Find the optimal solution $y^{(1)}$ of the

LP:

$$\min z(y) = -4y_1 - 2y_2
y_1 \ge 0
y_2 \ge 0
y_1 + y_2 \le 2$$

$$y^{(1)} = (2,0)$$

(2) Check the stop criterion:

$$\left| \sum_{i=1}^{n} \left[\left(\partial f(x^{(1)}) / \partial x_i \right) \left(y_i^{(1)} - x_i^{(1)} \right) \right] \right| = \left| \left[-4 \times (2 - 0) + (-2)(0 - 2) \right] \right| > 0.01$$

Frank-Wolfe Method

(3) Find the optimal solution α_0 of the one-dimensional minimization problem by the bisection search method:

$$\min_{0 \le \alpha \le 1} f\left(x^{(1)} + \alpha\left(y^{(1)} - x^{(1)}\right)\right) = \left(2\alpha - 2\right)^2 + \left(-2\alpha - 1\right)^2$$

(4) Update

$$x^{(2)} = x^{(1)} + \alpha_1 \left(y^{(1)} - x^{(1)} \right)$$

$$= \begin{pmatrix} 0 + 0.25 \times (2 - 0) \\ 2 + 0.25 \times (0 - 2) \end{pmatrix}$$

$$= \begin{pmatrix} 0.5 \\ 1.5 \end{pmatrix}$$

Newton's Method (reading materials)

Newton's Method

$$\min_{x \in R^n} z(\mathbf{x})$$

■Newton Method for multivariate functions

$$z(\mathbf{x}) \approx z(\mathbf{x}_k) + \nabla z(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_k)^T \nabla^2 z(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)$$

where

There
$$\nabla z(\mathbf{x}) = \begin{bmatrix} \frac{\partial z}{\partial x_1} \\ \frac{\partial z}{\partial x_2} \\ \vdots \\ \frac{\partial z}{\partial x_n} \end{bmatrix} \qquad \nabla^2 z(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 z}{\partial x_1^2} & \frac{\partial^2 z}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 z}{\partial x_1 \partial x_n} \\ \frac{\partial^2 z}{\partial x_2 \partial x_1} & \frac{\partial^2 z}{\partial x_2^2} & \cdots & \frac{\partial^2 z}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 z}{\partial x_n \partial x_1} & \frac{\partial^2 z}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 z}{\partial x_n^2} \end{bmatrix}_{n \times n}$$

Newton's Method

□Newton Method for multivariate functions

$$z(\mathbf{x}) \approx z(\mathbf{x}_k) + \nabla z(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_k)^T \nabla^2 z(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)$$
Then, it gives: $\nabla z(\mathbf{x}) \approx \nabla z(\mathbf{x}_k) + \nabla^2 z(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k)$

• The first order necessary optimality gives that

$$\nabla z(\mathbf{x}) = 0$$

$$\Rightarrow \nabla z(\mathbf{x}_k) + \nabla^2 z(\mathbf{x}_k)(x - \mathbf{x}_k) = 0$$

• If $\nabla^2 z(\mathbf{x}_k)$ is nonsingular, then we have

$$x = \mathbf{x}_k - \frac{\nabla z(\mathbf{x}_k)}{\nabla^2 z(\mathbf{x}_k)}$$

Newton's Method (con't)

Algorithm

Step 0: Choose an initial point $x^{(0)}$ and set k = 0. Define $\varepsilon > 0$

Step 1: If $|\nabla z(x^{(k)})| < \varepsilon$, then stop. Otherwise, go to Step 2

Step 2: Set
$$x^{(k+1)} = x^{(k)} - \left[\nabla^2 z \left(x^{(k)} \right) \right]^{-1} \nabla z \left(x^{(k)} \right)$$
, and let $k = k + 1$, go to Step 1.

Pros

It is usually faster than gradient descent method. For quadratic optimization problems, it finds the optimal solution in one iteration.

Cons

- It may not converge to a KKT point.
- The Hessian may be singular (not invertible).

Newton's Method (con't)

Example

$$\min z(x) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$

$$\nabla z(x) = \left(4(x_1 - 2)^3 + 2x_1 - 4x_2, -4x_1 + 8x_2\right)$$

$$H(x) = \nabla^2 z(x) = \begin{pmatrix} 12(x_1 - 2)^2 + 2 & -4\\ -4 & 8 \end{pmatrix}$$

• Use Newton method to solve the problem starting from point (0,3). Stop after 6 iterations.

Newton's Method (con't)

Example

Newton's Method (con't)

Example

Algorithms for Multidimensional Unconstrained Minimization Problems

Summary

> The feasible descent direction method

$$x_{k+1} = x_k + \alpha_k d_k$$
 with $\nabla z(x_k)^T d_k < 0$

where step size α_k can be obtained by a line search

- \triangleright The steepest descent direction method: $d_k = -\nabla z(x_k)$
- Newton method: $d_k = \left[\nabla^2 z(x_k) \right]^{-1} \nabla z(x_k)$ and $\alpha_k = 1$
- > Other descent direction methods:

$$d_k = -F_k \nabla z(x_k)$$
 where F_k is any positive definite matrix

e.g. Quasi-Newton Method

Optimal Conditions for the Local Minimum Necessary Condition vs. Sufficient Condition (reading materials)

First-order Necessary Optimality Conditions

• Constrained NLP: $\min_{x \in \mathcal{X}} f(x)$

Given that f(x) is a continuously differentiable function, if x^* is a local minimum, then any feasible direction d at x^* should satisfy the condition: $\nabla f(x^*)^T d \ge 0$

First-order Necessary Optimality Conditions (con't)

Proof by contradiction:

Assume that the condition does not hold, i.e., there is a feasible direction d at x^* such that $\nabla f(x^*)^T d < 0$.

As d is a feasible direction at x^* and $\nabla f(x)$ is a continuous vector function, hence there is $\alpha_1 > 0$ such that

$$\nabla f(x^* + \alpha d)^T d < 0 \qquad \forall \alpha \in [0, \alpha_1]$$

Taking a very small but positive α in the interval $[0,\alpha_1]$, by Taylor's theorem, it follows that

$$f(x^* + \alpha d) = f(x^*) + \alpha \nabla f(x^* + (1 - \theta)\alpha d)^T d$$

In other words, we have $f(x^* + \alpha \theta d) < f(x^*)$

It contradicts to the assumption that x^* is a local minimum

First-order Necessary Optimality Conditions (con't)

• Unconstrained NLP: $\min_{x \in \mathbb{R}^n} f(x)$

Given that f(x) is a continuously differentiable function, if x^* is a local minimum, then x^* must fulfill the condition:

$$\nabla f(x^*) = 0$$

Proof (using the first-order necessary condition for the constrained NLP):

First take an unit vector: $e_i = (0, ..., 1, 0, ..., 0)$.

As both e_i and $-e_i$ are the feasible direction of the unconstrained NLP, we have

$$\nabla z \left(x^* \right)^T e_i = \partial z \left(x^* \right) / \partial x_i \ge 0 \text{ and } \nabla z \left(x^* \right)^T \left(-e_i \right) = -\partial z \left(x^* \right) / \partial x_i \ge 0$$

$$\partial z \left(x^* \right) / \partial x_i = 0, i = 1, \dots, n$$

First-order Necessary Optimality Conditions (con't)

□ Corollary: For a constrained NLP

Given that f(x) is a continuously differentiable function, if x^* is a local minimum point and also an interior point in Ω , then we also have

$$\nabla f(x^*) = 0$$

 $\nabla f(x^*)^T d \ge 0$ holds for any feasible direction d

Second-order Necessary Optimality Conditions

Example

At point A, we have

$$\nabla f(x) = 0$$

Point *A* is a saddle point rather than a local minimum

Conclusion

The first-order partial derivatives of the objective functions are *not sufficient* to verify a local minimum.

Second-order Necessary Optimality Conditions (con't)

• For a Constrained NLP: $\min_{x \in \Omega \subset R^n} f(x)$

If $\nabla^2 f(x)$ is a continuous function on set Ω and x^* is a local minimum, then any feasible direction d at x^* should satisfy:

- (i) $\nabla f(x^*)^T d \ge 0$
- (ii) if $\nabla f(x^*)^T d = 0$, then $d^T \nabla^2 f(x^*) d \ge 0$
- Unconstrained NLP: $\min_{x \in \mathbb{R}^n} f(x)$

If $\nabla^2 f(x)$ is a continuous function on R^n , and x^* is a local minimum, then we have:

- (i) $\nabla f(x^*)^T = 0$
- (ii) $\nabla^2 f(x^*)$ is positive semi-definite

Second-order Necessary Optimality Conditions (con't)

Proof of the unconstrained NLP by contradiction

Suppose the second-order necessary optimal condition does not hold, i.e., there is a direction d such that: $d^T \nabla^2 f(x^*) d < 0$

As $\nabla^2 f(x)$ is a continuous function, then there is a positive parameter $\alpha_1 > 0$ such that

$$d^{T}\nabla^{2} f(x^{*} + \alpha d) d < 0, \forall \alpha \in [0, \alpha_{1}]$$

Taking a very small positive α in the interval $[0,\alpha_1]$, by Taylor's theorem, it follows that

$$f(x^* + \alpha d) = f(x^*) + \alpha \nabla f(x^*)^T d + \frac{1}{2}\alpha^2 d^T \nabla^2 f(x^* + \theta \alpha d) d$$
Hence,
$$f(x^* + \alpha d) < f(x^*)$$

It contradicts the fact that x^* is the optimum

□ Example 1:

$$\min f(x) = x_1^2 + x_1 x_2 - x_1 - x_2,$$

s.t. $x_1 \ge 1, x_2 \ge 0$

Does the optimum $x^* = (1,0)$ satisfy

 $\nabla f(x^*)^T d \ge 0$ for any feasible direction d?

□ Example 2:

$$\min f(x) = x_1^2 + x_1 x_2 - x_1 - x_2$$

- Find a stationary point, that is, a point with zero gradient.
- Is the point a *local minimum*?

Second-order Necessary Optimality Conditions (con't)

□ Example 1:

$$\min f(x) = x_1^2 + x_1 x_2 - x_1 - x_2, \text{ s.t. } x_1 \ge 1, x_2 \ge 0$$

$$\text{Given } x_1^* = 1, x_2^* = 0 \Rightarrow \nabla f\left(x^*\right) = \left(1, 0\right)^T \Rightarrow \nabla f\left(x^*\right) d \ge 0$$
any feasible direction at $\left(1, 0\right), d = \left(d_1, d_2\right) \ge 0$

$$\begin{cases} if \ \nabla f\left(\boldsymbol{x}^*\right)^T d = d_1 = 0 \\ then \ d^T \nabla^2 f\left(\boldsymbol{x}^*\right)^T d = (d_1, d_2) \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 2d_1^2 + 2d_1 d_2 = 0 \end{cases}$$

Hence, both first order and second order conditions are satisfied

Second-order Necessary Optimality Conditions (con't)

□ Example 2:

Applying the second-order necessary optimality conditions to verify that (1,-1) is not a local minimum for the unconstrained minimization problem as follows:

$$\min f(x) = x_1^2 + x_1 x_2 - x_1 - x_2$$

Gradient function:
$$\nabla f(x) = (2x_1 + x_2 - 1, x_1 - 1)^T = (0, 0)^T \implies x_1 = 1, x_2 = -1$$

So, (1, -1) is a stationary point.

Hessian matrix function:
$$\nabla^2 f(x) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \Longrightarrow \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = (2 \times 0 - 1 \times 1) = -1 < 0$$

So, at (1, -1) the Hessian matrix is not positive definite, so it's not a local minimum.

Second-order Sufficient Optimality Conditions

Unconstrained minimization problem: $\min_{x \in R^n} z(x)$

Assume that $\nabla^2 z(x)$ is a continuous function over \mathbb{R}^n . If a point x^* fulfills the following two conditions:

(i)
$$\nabla z(x^*) = 0$$

(ii) $\nabla^2 z(x^*)$ is a positive definite matrix

Then, x^* is a local minimum of the unconstrained minimization problem

