CSS 322 Reference sheets for Midterm Exam

$$(AB)^T = B^T A^T, (ABC)^T = C^T B^T A^T,$$

Theorem 1. A square upper or lower triangular matrix is nonsingular if and only if all of its diagonal entries are nonzeros.

Gaussian Elimination:

Eliminate a_{ik} by

$$(\operatorname{Row}\,i) := (\operatorname{Row}\,i) - \left(\frac{a_{ik}}{a_{kk}}\right) \cdot (\operatorname{Row}\,k).$$

Call a_{kk} a **pivot** and (a_{ik}/a_{kk}) a **multiplier**.

Theorem 2. Suppose you know all the row swaps performed by GEPP in advance. Then GEPP is equivalent to: first do all of swaps on A, then carry out plain GE on the permuted matrix.

Properties of permutation matrices

- 1. Multiply a matrix on its left by a permutation matrix permutes its rows.
- 2. Multiply a matrix on its right by a permutation matrix permutes its columns.
- 3. $PP^T = I$, i.e. $P^{-1} = P^T$.

Theorem 3. GEPP encounters a zero pivot if and only if A is singular.

Sherman-Morrison formula:

$$(A - uv^T)^{-1} = A^{-1} + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}.$$

Woodbury formula:

$$(A-UV^T)^{-1} = A^{-1} + A^{-1}U(I-V^TA^{-1}U)^{-1}V^TA^{-1}$$
, numbers $0 < C_1 \le C_2$ such that, for all x ,

where U and V are $n \times k$ matrices.

Rank-One Updating of Solution

Suppose we have the P^TLU factorization of a matrix A. Solve $(A - uv^T)x = b$ efficiently by

- Solve Az = u for z.
- Solve Ay = b for y.
- Then $x = y + ((v^T y)/(1 v^T z))z$.

The properties of norms

 $\|\cdot\|$ is a norm if

- 1. $||x|| \ge 0$ for all $x \in \mathbb{R}^n$. ||x|| = 0 if and only if x = 0.
- 2. If α is a scalar,

$$\|\alpha x\| = |\alpha| \cdot \|x\|.$$

3. For all $x, y \in \mathbb{R}^n$,

$$||x + y|| \le ||x|| + ||y||$$
.

Some vector norm properties

 $||x||_1 \ge ||x||_2 \ge ||x||_{\infty}$.

• Hölder inequality:

$$|x^T y| \le ||x||_p ||y||_q, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

• "Cauchy-Swartz inequality":

$$|x^T y| \le ||x||_2 ||y||_2$$
.

• Suppose $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix (which means $Q^T Q = QQ^T = I$ by definition).

$$||Qx||_2 = ||x||_2$$
.

Theorem 4 (The equivalence of norms). For any two norms $\|\cdot\|_a$ and $\|\cdot\|_b$, there exists a pair of real numbers $0 < C_1 < C_2$ such that for all r

$$C_1 \|x\|_b \leq \|x\|_a \leq C_2 \|x\|_b$$
.

Theorem 5. For any vector p-norm and induced matrix p-norm,

$$||Ax||_p \le ||A||_p \cdot ||x||_p$$

where $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$.

Theorem 6.

$$||AB||_p \le ||A||_p \cdot ||B||_p$$

for any p-norm, where $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times l}$.

If $\hat{x} \in \mathbb{R}^n$ is an approximation to $x \in \mathbb{R}^n$, then the relative error is

$$\frac{\|\hat{x} - x\|}{\|x\|}.$$

Floating-point number system

$$\pm (d_0.d_1d_2...d_{p-1})_2 \times 2^E$$
,

where p is the number of mantissa digits (precision), E is the (integer) exponent $(L \leq E \leq U)$, d_i is either 0 or 1.

Unit roundoff, or machine epsilon, is the maximum **possible** relative error resulting from one scalar operation in floating-point arithmetic. Denoted as ϵ_{mach} .

$$\epsilon_{\text{mach}} = 2^{1-p} \text{ or } 2^{-p}$$

depending on the roundoff method.

$$\operatorname{cond}_p(A) \geq 1.$$

 $\operatorname{cond}_p(I) = 1.$

If $\alpha \neq 0$ is a scalar, then

$$cond(A) = cond(\alpha A)$$
.

If D is a diagonal matrix, that is, $d_{ij} = 0$ for $i \neq j$, Then the LU factorization of A are given by

$$\operatorname{cond}(D) = \frac{\max_{i} |d_{ii}|}{\min_{i} |d_{ii}|}.$$

Theorem 7 (Wilkinson (simplified)). Suppose we solve Ax = b, $A \in \mathbb{R}^{n \times n}$ using GEPP and the foursteps procedure in presence of roundoff. The computed \hat{x} satisfies

$$(A+E)\hat{x}=b,$$

where E satisfies

$$\frac{\|E\|_{\infty}}{\|A\|_{\infty}} \le \rho n \epsilon_{mach} + O(\epsilon_{mach}^2).$$

In the (extremely rare) worst case, $\rho = 2^{n-1}$. In practice, however, it is usually observed that $\rho \approx 2$.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive def**inite if

$$x^T A x > 0$$

for all nonzero $x \in \mathbb{R}^n$.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **positive** semidefinite if

$$x^T A x > 0$$

for all $x \in \mathbb{R}^n$.

Cholesky Factorization

for
$$k=1$$
 to n

$$a_{kk} = \sqrt{a_{kk}}$$
for $i=k+1$ to n

$$a_{ik} = a_{ik}/a_{kk}$$
end
for $j=k+1$ to n
for $i=k+1$ to n

$$a_{ij} = a_{ij} - a_{ik} \cdot a_{jk}$$
end
end
end

Solving tridiagonal linear systems

Let

$$A = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & a_n & b_n \end{bmatrix}.$$

$$L = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_2 & 1 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & m_{n-1} & 1 & 0 \\ 0 & \cdots & 0 & m_n & 1 \end{bmatrix},$$

$$U = \begin{bmatrix} d_1 & c_1 & 0 & \cdots & 0 \\ 0 & d_2 & c_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & d_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & d_n \end{bmatrix}.$$