Этап 1

Электрический пробой

Содержание

1	Этап	1	5
	1.1	Докладчики	5
	1.2	Содержание	5
	1.3	1. Введение	6
		1.3.1 Актуальность	6
		1.3.2 Объект и предмет исследования	6
		1.3.3 Цель работы	7
		1.3.4 Задачи	7
	1.4	2. Теоретическое описание задачи	7
		1.4.1 Газовый пробой	7
		1.4.2 Твердотельный пробой	8
		1.4.3 Вакуумный пробой	9
	1.5		10
	1.6		10
	1.7		11
	1.8		11

Список иллюстраций

Список таблиц

1 Этап 1

1.1 Докладчики

- Амуничников Антон Игоревич
- Леснухин Даниил Дмитриевич
- Майзингер Эллина Сергеевна
- Дымченко Дмитрий Юрьевич
- Матюхин Павел Андреевич
- Понамарев Алексей Михайлович

1.2 Содержание

- 1. Введение
- 2. Теоретическое описание задачи
 - Газовый пробой
 - Твердотельный пробой
 - Вакуумный пробой

- 3. Экспериментальные методы исследования
- 4. Применение и практическое значение
- 5. Выводы
- 6. Список литературы

1.3 1. Введение

1.3.1 Актуальность

Электрический пробой – это явление, при котором диэлектрик теряет свои изолирующие свойства под воздействием сильного электрического поля. Оно играет ключевую роль в высоковольтной технике, электронике и молниезащите.

Примеры электрического пробоя в технике и природе:

- Молнии атмосферный пробой воздуха.
- **Газовый разряд** используется в лампах, разрядниках и плазменных генераторах.
- Разрушение изоляции в кабелях и электрооборудовании.

1.3.2 Объект и предмет исследования

- Физические механизмы электрического пробоя.
- Влияние внешних факторов (температура, давление, влажность) на напряжение пробоя.
- Методы измерения пробивного напряжения.

1.3.3 Цель работы

Изучение механизмов электрического пробоя и определение факторов, влияющих на его возникновение.

1.3.4 Задачи

- 1. Рассмотреть основные типы пробоя: газовый, твердотельный, вакуумный.
- 2. Изучить их физические механизмы.
- 3. Определить ключевые параметры, влияющие на напряжение пробоя.
- 4. Описать методы экспериментального изучения пробоя.

1.4 2. Теоретическое описание задачи

1.4.1 Газовый пробой

Газовый пробой возникает, когда электрическое поле ускоряет свободные электроны до энергии, достаточной для ионизации молекул газа. Этот процесс приводит к лавинообразному увеличению числа заряженных частиц и формированию проводящего канала.

1.4.1.1 Закономерности газового пробоя

Основной закон, описывающий газовый пробой, - закон Пашена:

$$V_b = \frac{B \cdot p \cdot d}{\ln(A \cdot p \cdot d) - \ln(\ln(1+1/\gamma))}$$

где:

- (V b) напряжение пробоя,
- (p) давление газа,
- (d) расстояние между электродами,
- (A, B) эмпирические коэффициенты,
- (gamma) коэффициент вторичной эмиссии.

1.4.1.2 Виды газового пробоя

- 1. **Тлеющий разряд** маломощный разряд, используемый в неоновых лампах.
- 2. Искровой разряд кратковременный процесс, например, молния.
- 3. **Дуговой разряд** устойчивый пробой, используемый в сварке и разрядных трубках.

1.4.2 Твердотельный пробой

Твердотельный пробой – это процесс, при котором разрушается структура диэлектрика, превращая его в проводник.

1.4.2.1 Виды твердотельного пробоя:

1. Электронный пробой

- Происходит при высокой напряжённости электрического поля.
- Заряженные частицы разрушают кристаллическую решётку.

2. Тепловой пробой

- Высокое поле вызывает разогрев материала.
- При достижении критической температуры структура разрушается.

3. Механический пробой

- Электростатические силы вызывают напряжения в диэлектрике.
- Это приводит к его механическому разрушению.

Значение пробивного напряжения (V_b) для твёрдых диэлектриков можно выразить через:

$$E_b = \frac{V_b}{d}$$

где:

- (E b) критическая напряжённость пробоя,
- (d) толщина диэлектрика.

1.4.3 Вакуумный пробой

Вакуумный пробой происходит при сильном электрическом поле, когда эмиссия электронов приводит к лавинному увеличению заряженных частиц.

Основные механизмы вакуумного пробоя:

- 1. Автоэлектронная эмиссия эмиссия электронов с поверхности катода.
- 2. Ионная бомбардировка выбивание атомов под действием ионных потоков.
- 3. **Тепловой эффект** локальный нагрев поверхности приводит к её разрушению.

Формула критического напряжения пробоя в вакууме:

где:

- (А и В) — эмпирические коэффициенты, определяемые экспериментально

• (d) – расстояние между электродами.	

1.5 3. Экспериментальные методы исследования

Для изучения электрического пробоя используют несколько методов:

1. Метод пробивного напряжения

- Измерение напряжения, при котором происходит пробой.
- Используется для оценки прочности изоляционных материалов.

2. Импульсные испытания

- Применяются для анализа коротких высоковольтных разрядов.
- Позволяют исследовать динамику пробоя.

3. Оптические методы

- Используются для визуального анализа плазменных разрядов.
- Включают в себя лазерную интерферометрию и скоростную съёмку.

1.6 4. Применение и практическое значение

Электрический пробой применяется в различных сферах:

• Высоковольтные технологии – изоляторы, молниеотводы, разрядники.

- Плазменные технологии резка и сварка металлов.
- Электроника защитные диоды и стабилизаторы напряжения.
- Аэрокосмическая отрасль изучение разрядов в условиях вакуума.

1.7 5. Выводы

В ходе работы были рассмотрены основные механизмы электрического пробоя, определены ключевые параметры, влияющие на его критическое напряжение. Полученные знания позволяют разрабатывать более эффективные электроизоляционные материалы и защитные системы.

1.8 6. Список литературы

- 1. Пашен Ф. "Электрические разряды в газах", Москва, 1985.
- 2. Fridman A., Kennedy L. "Plasma Physics and Engineering", CRC Press, 2011.
- 3. Кумпан В.О. "Диэлектрики и их применение", СПб, 2002.