Exercice - Gravure Chimique de cuivre

1. $NO_3^-(aq) \rightleftharpoons NO(g)$

 $NO_3^-(aq) \rightleftharpoons NO(g) + 2 H_2O(\ell)$

 $NO_3^-(aq) + 4 H^+(aq) \rightleftharpoons NO(g) + 2 H_2O(\ell)$

 $NO_3^-(aq) + 4 H^+(aq) + 3 e^- \rightleftharpoons NO(g) + 2 H_2O(\ell)$

2. Le cuivre Cu et l'ion nitrate NO₃ sont les réactifs. Les produits sont l'ion cuivre (II) Cu²⁺ et l'oxyde d'azote NO.

$$Cu(s) \rightleftarrows Cu^{2+}(aq) + 2 e^{-}$$

$$NO_{3}^{-}(aq) + 4 H^{+}(aq) + 3 e^{-} \rightleftarrows NO(g) + 2 H_{2}O(\ell)$$

On combine les demi-équations électroniques de sorte qu'il n'y ait pas d'électrons dans l'équation bilan.

$$(Cu(s) \rightleftharpoons Cu^{2+}(aq) + 2e^{-}) \times 3$$

$$(NO_3^-(aq) + 4 H^+(aq) + 3 e^- \rightleftharpoons NO(g) + 2 H_2O(\ell)) \times 2$$

$$3 \text{ Cu(s)} + 2 \text{ NO}_{3}^{-}(\text{aq}) + 8 \text{ H}^{+}(\text{aq}) + 6 \text{ e}^{-} \rightarrow 3 \text{ Cu}^{2+}(\text{aq}) + 2 \text{ NO}(\text{g}) + 4 \text{ H}_{2}\text{O}(\ell) + 6 \text{ e}^{-}$$

L'équation s'écrit donc :

$$3 \text{ Cu}(s) + 2 \text{ NO}_{3}^{-}(aq) + 8 \text{ H}^{+}(aq) \rightarrow 3 \text{ Cu}^{2+}(aq) + 2 \text{ NO}(g) + 4 \text{ H}_{2}\text{O}(\ell)$$

Exercice 01

9 **a.**
$$Zn^{2+}(aq) + 2e^{-} = Zn(s)$$
.

b.
$$Al^{3+}$$
 (aq) + 3 e^- = Al (s).

c.
$$I_2(aq) + 2e^- = 2I^-(aq)$$
.

d.
$$S_4O_6^{2-}$$
 (aq) + 2 e⁻ = 2 $S_2O_3^{2-}$ (aq).

Exercice 02

11 a. Ag⁺ (aq) et H⁺ (aq) sont les oxydants; H₂ (g) et Ag (s) sont les réducteurs des couples oxydant/ réducteur:

 $Ag^+(aq)/Ag$ (s) et $H^+(aq)/H_2$ (g).

- **b.** $S_2O_8^{2-}$ (aq) et Cu^{2+} (aq) sont les oxydants; Cu (s) et SO_4^{2-} (aq) sont les réducteurs des couples oxydant/ réducteur : $S_2O_8^{2-}$ (aq)/ SO_4^{2-} (aq) et Cu^{2+} (aq)/Cu (s).
- c. Au³⁺ (aq) et Fe³⁺ (aq) sont les oxydants; Au (s) et Fe²⁺ (aq) sont les réducteurs des couples oxydant/ réducteur :

 $Au^{3+}(aq)/Au(s)$ et $Fe^{3+}(aq)/Fe^{2+}(aq)$.

Exercice 03

- 12 1. 2 Ag⁺ (aq) + Pb (s) \rightarrow 2 Ag(s) + Pb²⁺ (aq)
- 2. C'est une réaction d'oxydoréduction car il y a échange d'électrons entre deux espèces chimiques.
- **3.** Couples : Ag^{+} (aq)/Ag (s) et Pb^{2+} (aq)/Pb (s).
- **4.** $Ag^{+}(aq) + e^{-} = Ag(s)$ et Pb(s) = Pb²⁺(aq) + 2 e⁻.

Exercice 04

- 13 1. Couples: $Au^{3+}(aq)/Au(s)$ et $Mg^{2+}(aq)/Mg(s)$.
- 2. $Au^{3+}(aq) + 3e^{-} = Au(s) et Mg(s) = Mg^{2+}(aq) + 2e^{-}$.
- 3. 2 Au^{3+} (aq) + 3 Mq (s) $\rightarrow 2 \text{ Au}$ (s) + 3 Mq^{2+} (aq).
- 4. Les ions or sont réduits et le magnésium est oxydé.

Exercice 05

16 1. a.
$$I_2$$
 (aq) + 2 e^- = 2 I^- (aq)

et
$$C_6H_8O_6$$
 (aq) = $C_6H_6O_6$ (aq) + 2 H⁺ (aq) + 2 e⁻.

b.
$$I_2$$
 (aq) + $C_6H_8O_6$ (aq) $\rightarrow C_6H_6O_6$ (aq) + 2 H⁺ (aq) + 2 I⁻ (aq).

2. a.
$$2 I^{-}(aq) = I_{2}(aq) + 2 e^{-}$$

et
$$H_2O_2$$
 (aq) + 2 H^+ (aq) + 2 e^- = 2 H_2O (ℓ).

b.
$$H_2O_2$$
 (aq) + 2 H^+ (aq) + 2 I^- (aq) $\rightarrow I_2$ (aq) + 2 H_2O (ℓ).

Exercice 06

18 1.
$$n(H_2O_2) = \frac{\mu \times V}{M} = \frac{15 \times 20 \times 10^{-3}}{(2 \times 16 + 2 \times 1,0)} = 8,8 \times 10^{-3}$$

mol; $n(I^-) = c \times V = 1,0 \times 0,020 = 0,020$ mol.

2. Le tableau est :

Équation de la réaction		2 I-(aq)	+ H ₂ O ₂ (aq) -	\rightarrow I_2 (aq) $+$	2 HO-(aq)
État du système	Avancement x (en mol)	Quantités de matière présentes dans le système (en mol)			
initial	<i>x</i> = 0	n(I-) = 0,020	$n(H_2O_2) = 8.8 \times 10^{-3}$	0	0
en cours de transformation	x	0,020 - 2 x	8,8 × 10 ⁻³ – x	х	2 x
final	$X = X_{f}$	0,020 - 2 x _f	$8.8 \times 10^{-3} - x_{\rm f}$	X _f	2 x _f

Si H_2O_2 (aq) limitant: $8.8 \times 10^{-3} - x_{f=} 0$ donc $x_f = 8.8$

3. Si I⁻ (aq) limitant: $0.020 - 2x_f = 0$ donc $x_f = 0.010$ | Le réactif limitant est l'eau oxygénée H_2O_2 (aq) et $x_{\rm f} = 8.8 \times 10^{-3}$ mol, car c'est la valeur la plus faible pour l'avancement final.

4. État final :

État final (en mol) $x_{\rm f} = 8.8 \times 10^{-3}$ $2,4 \times 10^{-3}$ 0 8.8×10^{-3} 1.8×10^{-2}

Exercice 07

15 Réaction ou pas réaction?

1. Un mélange réalisé avec un oxydant et un réducteur n'appartenant pas au même couple, peut-être le lieu d'une réaction d'oxydoréduction. On identifie donc les mélanges suivants :

$$(Au^{3+}(aq); Fe(s)) et (Ag^{+}(aq); Fe^{2+}(aq)).$$

2.
$$Au^{3+}(aq) + 3e^{-} \rightleftharpoons Au(s)$$
 (× 2)

$$Fe(s) \rightleftharpoons Fe^{2+}(aq) + 2e^{-} (\times 3)$$

$$2 \text{ Au}^{3+}(aq) + 3 \text{ Fe}(s) \rightarrow 2 \text{ Au}(s) + 3 \text{ Fe}^{2+}(aq)$$

$$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$$

 $Fe^{2+}(aq) \rightleftharpoons Fe^{3+}(aq) + e^{-}$

$$\overline{Ag^+(aq) + Fe^{2+}(aq)} \rightarrow Ag(s) + Fe^{3+}(aq)$$

Exercice 08

Les propriétés de l'eau oxygénée (30 min)

1. a. Réducteur : I-(aq) Oxydant : H2O2(aq)

b. $I_{2}(aq) + 2e^{-} \rightleftharpoons 2I^{-}(aq)$

 $H_2O_2(aq) + 2 H^+(aq) + 2e^- \rightleftharpoons 2 H_2O(\ell)$

c.
$$2 I^{-}(aq) \rightleftharpoons I_{2}(aq) + 2e^{-}$$

 $H_{2}O_{2}(aq) + 2 H^{+}(aq) + 2e^{-} \rightleftharpoons 2 H_{2}O(\ell)$

 $2 I^{-}(aq) + H_{2}O_{2}(aq) + 2 H^{+}(aq) \rightarrow I_{2}(aq) + 2 H_{2}O(\ell)$

2. a. L'évolution de la coloration est due à l'oxydation des ions iodure (incolore) par l'eau oxygénée, qui produit du diiode (jaune).

b. $A = k \times C$

 $C = A/k = 0.38/600 = 6.3 \times 10^{-4} \text{ mol} \cdot L^{-1}$

- **c.** $n_{\text{H}_2\text{O}_2} = n_{\text{I}_2}$ final = 6,3 × 10⁻⁴ × 0,100 = 6,3 × 10⁻⁵ mol
- **3.** Car H_2O_2 est à la fois un oxydant dans le couple H_2O_2/H_2O et un réducteur dans le couple O₂/H₂O₃.

Exercice 09

[23] L'endre sympathique (10 min)

$$C_6H_8O_6(aq) \rightleftharpoons C_6H_6O_6(aq) + 2H^+(aq) + 2e^-$$

 $I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$

$$C_{2}H_{8}O_{6}(aq) + I_{2}(aq) \rightarrow C_{6}H_{6}O_{6}(aq) + 2 H^{+}(aq) + 2 I^{-}(aq)$$

Le diiode oxyde l'acide ascorbique, $I_{2}(aq)$ de couleur marron est réduit en ion iodure l-(aq) qui lui est incolore.

$$2 I^{-}(aq) \rightleftharpoons I_{2}(aq) + 2e^{-}$$

$$H_2O_2(aq) + 2 H^+(aq) + 2e^- \rightleftharpoons 2 H_2O(\ell)$$

$$2 I^{-}(aq) + 2 H^{+}(aq) + H_{2}O_{2}(aq) \rightarrow 2 H_{2}O(\ell) + I_{2}(aq)$$

L'eau oxygénée, H₂O₂ (aq) oxyde les ions iodure l⁻ (aq) en diiode (marron) I, (aq). Ce dernier formant un complexe de couleur bleue avec l'amidon qui a été ajouté à l'eau oxygénée, fait réapparaître l'écriture.