Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen

Advanced Design Project

Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf

Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen Advanced Design Project

Eingereicht von Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf Tag der Einreichung: 13. Februar 2018

Gutachter: Prof. Dr. rer. nat. Hermann Winner

Betreuer: M.Sc. Hartmut Niemann

Technische Universität Darmstadt Fachbereich Maschinenbau

Fachgebiet Fahrzeugtechnik und Dynamik Prof. Dr. rer. nat. Hermann Winner

Ehrenwörtliche Erklärung		

i

Kurzzusammenfassung

Inhaltsverzeichnis

1	Einf	ührung
	1.1	Motivation
	1.2	Voraussetzungen
2	Tecl	hnische Grundlagen
	2.1	Strömungsmechanik
		2.1.1 Rohrströmungen
		2.1.2 Laminare/Turbulente Strömungen
		2.1.3 Reynoldszahl
		2.1.4 Prandtlzahl
	2.2	Feinraumtechnik
		2.2.1 Eigenschaften von Partikeln
		2.2.2 Partikelmessverfahren
		2.2.3 Aerosole
	2.3	Mechanische Grundlagen
		2.3.1 Ventile
		2.3.2 Luftfiltersysteme
_		
3		suchsplattform
	3.1	Partikelmessgeräte
		3.1.1 APS-3321
		3.1.2 FMPS-3091
	0.0	3.1.3 OPC-N2
	3.2	Simulation
		3.2.1 SpaceClaim
		3.2.2 Fluent
	3.3	Partikelgeneratoren
		3.3.1 Dinhs Megazerstäuber 2000
		3.3.2 Alexs Partikelhack 500M
		3.3.3 Der Gia 6000
4	Anf	orderungen an unsere Arbeit
5		llyse verschiedener Industrie-Aerosole
	5.1	Eigenschaften von Aerosolen
	5.2	Di-Ethyl-Hexyl-Sebacat (DEHS)
	5.3	Di-N-Octylphtalat (DOP)
	5.4	Emery 3004 (PAO-4)
	5.5	Poly Styrene Latex Spheres (PSL)
	5.6	Auswertung der Analyse
		5.6.1 Anforderungsvergleich der Aerosole
		5.6.2 Auswahl eines Aerosols

6	Kon	zepte für den Versuchsaufbau	11
	6.1	Konzept 1	11
		6.1.1 Aufbau	
		6.1.2 âĂć	11
	6.2	Konzept 2	11
	6.3	Konzept 3	11
	6.4	Konzept 4	11
	6.5	Konzept 5	11
7	Sim	ulationsergebnisse	13
	7.1	âĂć	13
8	Aus	wertung der Konzepte	15
Αk	bild	ungsverzeichnis	15

iv Inhaltsverzeichnis

1 Einführung		
<u> </u>		
1.1 Motivation		
1.2 Voraussetzungen		

2 Technische Grundlagen
2.1 Strömungsmechanik
2.1.1 Rohrströmungen
2.1.2 Laminare/Turbulente Strömungen
2.1.3 Reynoldszahl
2.1.4 Prandtlzahl
2.2 Feinraumtechnik
2.2.1 Eigenschaften von Partikeln
2.2.2 Partikelmessverfahren
2.2.3 Aerosole
2.3 Mechanische Grundlagen
2.3.1 Ventile
2.3.2 Luftfiltersysteme

3 Versuchsplattform
3.1 Partikelmessgeräte
3.1.1 APS-3321
3.1.2 FMPS-3091
3.1.3 OPC-N2
3.2 Simulation
3.2.1 SpaceClaim
3.2.2 Fluent
3.3 Partikelgeneratoren
3.3.1 Dinhs Megazerstäuber 2000
3.3.2 Alexs Partikelhack 500M
3.3.3 Der Gia 6000

4	Anforderungen an unsere Arbeit

5 Analyse verschiedener Industrie-Aerosole
5.1 Eigenschaften von Aerosolen
5.2 Di-Ethyl-Hexyl-Sebacat (DEHS)
5.3 Di-N-Octylphtalat (DOP)
5.4 Emery 3004 (PAO-4)
5.5 Poly Styrene Latex Spheres (PSL)
5.6 Auswertung der Analyse
5.6.1 Anforderungsvergleich der Aerosole
5.6.2 Auswahl eines Aerosols

6 Konzepte für den Versuchsaufbau	
6.1 Konzept 1	
6.1.1 Aufbau	
6.1.2 âĂć	
6.2 Konzept 2	
6.3 Konzept 3	
6.4 Konzept 4	
6.5 Konzept 5	

7 Simula	tionsergebnisse		
7.1 âĂć			

Auswertung d	er Konzepte		