PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: (11) International Publication Number: WO 00/07433 A01H 5/00, 1/02, C09K 7/02, C12P 7/40, 7/64, C12N 9/20 A1 (43) International Publication Date: 17 February 2000 (17.02.00) (21) International Application Number: PCT/US99/17645 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI, (22) International Filing Date: 3 August 1999 (03.08.99) GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, (30) Priority Data: SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, 09/128,602 3 August 1998 (03.08.98) YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, US SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, (71) Applicant (for all designated States except US): CARGILL, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), INCORPORATED [US/US]; 15407 West McGinty Road, OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, Wayzata, MN 55441-5624 (US). MR, NE, SN, TD, TG). (72) Inventors; and (75) Inventors/Applicants (for US only): KODALI, Dharma Published [IN/US]; 710 Olive Lane North, Plymouth, MN 55447 With international search report. (US). FAN, Zhegong [CN/US]; 4429 Monte Carlo Place, Fort Collins, CO 80525 (US). DeBONTE, Lorin, R. [US/US]; 3706 Rochdale Drive, Fort Collins, CO 80525 (US). (74) Agents: MCCORMICK GRAHAM, Monica et al.; Fish & Richardson P.C., P.A., Suite 3300, 60 South Sixth Street, Minneapolis, MN 55402 (US). (54) Title: PLANTS, SEEDS AND OILS HAVING AN ELEVATED TOTAL MONOUNSATURATED FATTY ACID CONTENT (57) Abstract Plants, seeds and oils having a total long-chain monounsaturated content of at least about 82 % and an erucic acid content of at least about 15 % are described. Methods for producing plants having the profiled fatty acid content are also described.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal	
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GB	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Treland	MN	Mongolia	UA	Ukraine	
BR	Brazil	iL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US		
CA	Canada	IT	Italy	MX	Mexico	UZ	United States of America	
CF	Central African Republic	JP	Japan	NB	Niger	VN	Uzbekistan	
CG	Congo	KE	Кепуа	NL	Netherlands		Vict Nam	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	YU ZW	Yugoslavia	
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand	ZW	Zimbabwe	
CM	Cameroon	-	Republic of Korea	PL	Polandi			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakatan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	ü	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SB				
EE	Estonia	LR	Liberia	SG	Sweden			
			Lincing	30	Singapore			

Plants, Seeds and Oils Having an Elevated Total Monounsaturated Fatty Acid Content

Technical Field

This invention relates to fatty acid desaturases and nucleic acids encoding desaturase proteins. More particularly, the invention relates to nucleic acids encoding delta-12 and delta-15 fatty acid desaturase proteins that affect fatty acid composition in plants, polypeptides produced from such nucleic acids and plants expressing such nucleic acids.

Background of the Invention

Many breeding studies have been conducted to improve the fatty acid profile of Brassica varieties. Pleines and Freidt, Fat Sci. Technol., 90(5), 167-171 15 (1988) report plant lines with reduced C_{18:3} levels (2.5-5.8%) combined with high oleic content (73-79%). Rakow and McGregor, J. Amer. Oil Chem. Soc., 50, 400-403 (Oct. 1973) discuss problems associated with selecting mutants for linoleic and linolenic acids. In Can. J. Plant Sci., 68, 509-511 (Apr. 1988) Stellar summer rape producing seed oil with 3% linolenic acid and 28% linoleic acid is disclosed. Roy 20 and Tarr, Z. Pflanzenzuchtg, 95(3), 201-209 (1985) report transfer of genes through an interspecific cross from Brassica juncea into Brassica napus resulting in a reconstituted line combining high linoleic with low linolenic acid content. Roy and Tarr, Plant Breeding, 98, 89-96 (1987) discuss prospects for development of B. napus L. having improved linolenic and linolenic acid content. European Patent 25 application 323,753 published July 12, 1989 discloses seeds and oils having greater than 79% oleic acid combined with less than 3.5% linolenic acid. Canvin, Can. J. Botany, 43, 63-69 (1965) discusses the effect of temperature on the fatty acid composition of oils from several seed crops including rapeseed.

Mutations typically are induced with extremely high doses of radiation 30 and/or chemical mutagens (Gaul, H. Radiation Botany (1964) 4:155-232). High

dose levels which exceed LD_{50} , and typically reach LD_{90} , led to maximum achievable mutation rates. In mutation breeding of *Brassica* varieties, high levels of chemical mutagens alone or combined with radiation have induced a limited number of fatty acid mutations (Rakow, G.Z. Pflanzenzuchtg (1973) 69:62-82).

5 The low α-linolenic acid mutation derived from the Rakow mutation breeding program did not have direct commercial application because of low seed yield. The first commercial cultivar using the low α-linolenic acid mutation derived in 1973 was released in 1988 as the variety Stellar (Scarth, R. et al., Can. J. Plant Sci. (1988) 68:509-511). Stellar was 20% lower yielding than commercial cultivars at the time of its release.

Alterations in fatty acid composition of vegetable oils is desirable for meeting specific food and industrial uses. For example, *Brassica* canola varieties with increased monounsaturate levels (oleic acid) in the seed oil, and products derived from such oil, would improve lipid nutrition. Canola lines which are low in polyunsaturated fatty acids and high in oleic acid tend to have higher oxidative stability, which is a useful trait for the retail food industry. Useful traits of vegetable oils for industrial uses like lubrication fluids include desirable low temperature behavior such as low pour point and low cloud point along with very high oxidative stability.

Delta-12 fatty acid desaturase (also known as oleic desaturase) is involved in the enzymatic conversion of oleic acid to linoleic acid. Delta-15 fatty acid desaturase (also known as linoleic acid desaturase) is involved in the enzymatic conversion of linoleic acid to α-linolenic acid. A microsomal delta-12 desaturase has been cloned and characterized using T-DNA tagging. Okuley, et al., Plant Cell 6:147-158 (1994). The nucleotide sequences of higher plant genes encoding microsomal delta-12 fatty acid desaturase are described in Lightner et al., WO94/11516. Sequences of higher plant genes encoding microsomal and plastid delta-15 fatty acid desaturases are disclosed in Yadav, N., et al., Plant Physiol., 103:467-476 (1993), WO 93/11245 and Arondel, V. et al., Science, 258:1353-1355 (1992).

Summary of the Invention

Triacylglycerols containing fatty acids with heterogenous chain lengths and with high monounsaturate levels can provide useful traits for industrial purposes. Plants with fatty acid compositions that have high monounsaturate levels and heterogenous chain lengths would provide a source of industrial oils for uses such as lubrication.

In one aspect, the invention features a *Brassica* plant, and progeny thereof, producing seeds having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition. The oleic acid and eicosenoic acid content of the seeds is at least about 37% and at least about 14%, based on total fatty acid composition, respectively. The saturated fatty acid content of such seeds is less than 7% and the polyunsaturated fatty acid content is less than about 11%.

In some embodiments, the plants have a monounsaturated fatty acid content of from about 85% to about 90% and an erucic acid content of at least about 15% based on total fatty acid composition. In such plants, the oleic acid content can be at least about 42% and in particular, from about 47% to about 56% based on total fatty acid composition. The erucic acid content is from about 17% to about 31%, and the eicosenoic acid content is from about 15% to about 21%.

The invention also features a *Brassica* seed oil having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition. Such oils can have an oleic acid and eicosenoic acid content of at least about 14% and 37%, respectively, based on total fatty acid composition. The saturated fatty acid content can be less than about 7%, e.g., less than about 4% or about 2 to 4%. The polyunsaturated fatty acid content is less than about 11% and in particular embodiments, less than 9%, based on total fatty acid composition. The α-linolenic acid content can be about 1% to about 2%.

In some embodiments, the *Brassica* seed oil contains a long chain monounsaturated fatty acid content of from about 85% to about 90%. In such oils,

the oleic acid content is at least about 42%, and in particular embodiments, is from about 47% to about 56%, based on total fatty acid composition. The erucic acid and eicosenoic acid content is from about 17% to about 31% and from about 15% to about 21%, respectively, based on total fatty acid composition. Also featured is a *Brassica* seed oil having a long chain monounsaturated fatty acid content of at least about 82%, wherein the sum of the nervonic acid, erucic acid and eicosenoic acid content is from about 50% to about 66% based on total fatty acid composition. Such a seed oil can have an oleic acid content from about 25% to about 30%.

The invention also features a method of producing plants having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15%, based on total fatty acid composition. The methods include crossing a first plant line with a second plant line and selecting progeny with the desired fatty acid composition. The first plant line has an erucic acid content of at least about 45%. The second plant line has an oleic acid content of at least about 84%.

The invention also features a method of making a vegetable oil. The method comprises the steps of crushing *Brassica* seeds having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition, and extracting the vegetable oil from the crushed seeds. The method can also include the steps of refining and bleaching the oil, and deodorizing the oil.

The invention also features a lubricant or hydraulic fluid comprising a Brassica oil having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition, and an additive. The additive can be an antioxidant, a rust inhibitor, a corrosion inhibitor, a pour point depressant, an anti-foam additive, a colorant and a detergent. The additive can be present in an amount from about 0.01% to about 20% by weight.

Brief Description of the Sequence Listing

SEQ ID NO:1 shows the DNA sequence for the coding region of a wild type *Brassica* Fad2-D gene. SEQ ID NO:2 is the deduced amino acid sequence for SEQ ID NO:1.

SEQ ID NO:3 shows the DNA sequence for the coding region of the IMC 129 mutant *Brassica* Fad2-D gene. SEQ ID NO:4 is the deduced amino acid sequence for SEQ ID NO:3.

SEQ ID NO:5 shows the DNA sequence for the coding region of a wild type *Brassica* Fad2-F gene. SEQ ID NO:6 is the deduced amino acid sequence for SEQ ID NO:5.

SEQ ID NO:7 shows the DNA sequence for the coding region of the Q508 mutant *Brassica* Fad2-F gene. SEQ ID NO:8 is the deduced amino acid sequence for SEQ ID NO:7.

SEQ ID NO:9 shows the DNA sequence for the coding region of the Q4275 mutant *Brassica* Fad2-F gene. SEQ ID NO:10 is the deduced amino acid sequence for SEQ ID NO:9.

Brief Description of the Figures

Figure 1 is a histogram showing the frequency distribution of seed oil oleic acid (C_{18:1}) content in a segregating population of a Q508 X Westar cross.

The bar labeled WSGA 1A represents the $C_{18:1}$ content of the Westar parent. The bar labeled Q508 represents the $C_{18:1}$ content of the Q508 parent.

Figure 2 shows the nucleotide sequences for a *Brassica* Fad2-D wild type gene (Fad2-D wt), IMC129 mutant gene (Fad2-D GA316 IMC129), Fad2-F wild type gene (Fad2-F wt), Q508 mutant gene (Fad2-F TA515 Q508) and Q4275 mutant gene (Fad2-F GA908 Q4275).

Figure 3 shows the deduced amino acid sequences for the polynucleotides of Figure 2.

Figure 4 is a schematic of a breeding procedure used to produce Brassica plants having a high erucic acid and a high oleic acid content.

Detailed Description

All percent fatty acids herein are percent by weight of the oil of which the fatty acid is a component.

As used herein, a "line" is a group of plants that display little or no genetic variation between individuals for at least one trait. Such lines may be created by several generations of self-pollination and selection, or vegetative propagation from a single parent using tissue or cell culture techniques. As used herein, the term "variety" refers to a line which is used for commercial production.

The term "mutagenesis" refers to the use of a mutagenic agent to induce random genetic mutations within a population of individuals. The treated population, or a subsequent generation of that population, is then screened for usable trait(s) that result from the mutations. A "population" is any group of individuals that share a common gene pool. As used herein "M₀" is untreated seed. As used herein, "M1" is the seed (and resulting plants) exposed to a mutagenic agent, while " M_2 " is the progeny (seeds and plants) of self-pollinated M_1 plants, " M_3 " is the progeny of self-pollinated M_2 plants, and " M_4 " is the progeny of selfpollinated M_3 plants. " M_5 " is the progeny of self-pollinated M_4 plants. " M_6 ", " M_7 ", etc. are each the progeny of self-pollinated plants of the previous generation. The term "selfed" as used herein means self-pollinated.

"Stability" or "stable" as used herein means that with respect to a given fatty acid component, the component is maintained from generation to generation for at least two generations and preferably at least three generations at substantially the same level, e.g., preferably $\pm 5\%$. The method of invention is capable of creating lines with improved fatty acid compositions stable up to ±5% from 25 generation to generation. The above stability may be affected by temperature, location, stress and time of planting. Thus, comparison of fatty acid profiles should be made from seeds produced under similar growing conditions. Stability may be measured based on knowledge of prior generation.

Intensive breeding has produced certain Brassica plants whose seed oil 30 contains less than 2% erucic acid. The same varieties have also been bred so that

the defatted meal contains less than 30 µmol glucosinolates/gram. "Canola" as used herein refers to plant seeds or oils which contain less than 2% erucic acid (C_{22:1}), and result in a defatted meal with less than 30 µmol glucosinolates/gram.

Applicants have discovered plants with mutations in a delta-12 fatty acid 5 desaturase gene. Such plants have useful alterations in the fatty acid compositions of the seed oil. Such mutations confer, for example, an elevated oleic acid content, a decreased, stabilized linoleic acid content, or both elevated oleic acid and decreased, stabilized linoleic acid content.

Applicants have further discovered plants with mutations in a delta-15 10 fatty acid desaturase gene. Such plants have useful alterations in the fatty acid composition of the seed oil, e.g., a decreased, stabilized level of α -linolenic acid.

Applicants have further discovered isolated nucleic acid fragments (polynucleotides) comprising sequences that carry mutations within the coding sequence of delta-12 or delta-15 fatty acid desaturases. The mutations confer 15 desirable alterations in fatty acid levels in the seed oil of plants carrying such mutations. Delta-12 fatty acid desaturase is also known as omega-6 fatty acid desaturase and is sometimes referred to herein as Fad2 or 12-DES. Delta-15 fatty acid desaturase is also known on omega-3 fatty acid desaturase and is sometimes referred to herein as Fad3 or 15-DES.

A nucleic acid fragment of the invention may be in the form of RNA or in the form of DNA, including cDNA, synthetic DNA or genomic DNA. The DNA may be double-stranded or single-stranded, and if single-stranded, can be either the coding strand or non-coding strand. An RNA analog may be, for example, mRNA or a combination of ribo- and deoxyribonucleotides. Illustrative 25 examples of a nucleic acid fragment of the invention are the mutant sequences shown in Fig. 3.

A nucleic acid fragment of the invention contains a mutation in a microsomal delta-12 fatty acid desaturase coding sequence or a mutation in a microsomal delta-15 fatty acid desaturase coding sequence. Such a mutation 30 renders the resulting desaturase gene product non-functional in plants, relative to

20

the function of the gene product encoded by the wild-type sequence. The nonfunctionality of the delta-12 desaturase gene product can be inferred from the decreased level of reaction product (linoleic acid) and increased level of substrate (oleic acid) in plant tissues expressing the mutant sequence, compared to the 5 corresponding levels in plant tissues expressing the wild-type sequence. The nonfunctionality of the delta-15 desaturase gene product can be inferred from the decreased level of reaction product (α -linolenic acid) and the increased level of substrate (linoleic acid) in plant tissues expressing the mutant sequence, compared to the corresponding levels in plant tissues expressing the wild-type sequence.

A nucleic acid fragment of the invention may comprise a portion of the coding sequence, e.g., at least about 10 nucleotides, provided that the fragment contains at least one mutation in the coding sequence. The length of a desired fragment depends upon the purpose for which the fragment will be used, e.g., PCR primer, site-directed mutagenesis and the like. In one embodiment, a nucleic acid 15 fragment of the invention comprises the full length coding sequence of a mutant delta-12 or mutant delta-15 fatty acid desaturase, e.g., the mutant sequences of Fig. 3. In other embodiments, a nucleic acid fragment is about 20 to about 50 nucleotides (or base pairs, bp), or about 50 to about 500 nucleotides, or about 500 to about 1200 nucleotides in length.

Desirable alterations in fatty acid levels in the seed oil of plants can be produced using a ribozyme. Ribozyme molecules designed to cleave delta-12 or delta-15 desaturase mRNA transcripts can be used to prevent expression of delta-12 or delta-15 desaturases. While various ribozymes that cleave mRNA at site-specific recognition sequences can be used to destroy desaturase mRNAs, hammerhead 25 ribozymes are particularly useful. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target RNA contain a 5'-UG-3' nucleotide sequence. The construction and production of hammerhead ribozymes is well known in the art. See, for example, U.S. Patent No. 5,254,678. Hammerhead 30 ribozyme sequences can be embedded in a stable RNA such as a transfer RNA

(tRNA) to increase cleavage efficiency in vivo. Perriman, R. et al., <u>Proc. Natl. Acad. Sci. USA</u>, 92(13):6175-6179 (1995); de Feyter, R. and Gaudron, J., <u>Methods in Molecular Biology</u>, Vol. 74, Chapter 43, "Expressing Ribozymes in Plants", Edited by Turner, P.C, Humana Press Inc., Totowa, NJ. RNA endoribonucleases such as the one that occurs naturally in *Tetrahymena thermophila*, and which have been described extensively by Cech and collaborators are also useful. See, for example, U.S. Patent No. 4,987,071.

A mutation in a nucleic acid fragment of the invention may be in any portion of the coding sequence that renders the resulting gene product non
functional. Suitable types of mutations include, without limitation, insertions of nucleotides, deletions of nucleotides, or transitions and transversions in the wild-type coding sequence. Such mutations result in insertions of one or more amino acids, deletions of one or more amino acids, and non-conservative amino acid substitutions in the corresponding gene product. In some embodiments, the

sequence of a nucleic acid fragment may comprise more than one mutation or more than one type of mutation.

Insertion or deletion of amino acids in a coding sequence may, for example, disrupt the conformation of essential alpha-helical or beta-pleated sheet regions of the resulting gene product. Amino acid insertions or deletions may also disrupt binding or catalytic sites important for gene product activity. It is known in the art that the insertion or deletion of a larger number of contiguous amino acids is more likely to render the gene product non-functional, compared to a smaller number of inserted or deleted amino acids. Non-conservative amino acid substitutions may replace an amino acid of one class with an amino acid of a different class. Non-conservative substitutions may make a substantial change in the charge or hydrophobicity of the gene product. Non-conservative amino acid substitutions may also make a substantial change in the bulk of the residue side chain, e.g., substituting an alanyl residue for a isoleucyl residue.

Examples of non-conservative substitutions include the substitution of a 30 basic amino acid for a non-polar amino acid, or a polar amino acid for an acidic

amino acid. Because there are only 20 amino acids encoded in a gene, substitutions that result in a non-functional gene product may be determined by routine experimentation, incorporating amino acids of a different class in the region of the gene product targeted for mutation.

Preferred mutations are in a region of the nucleic acid encoding an amino acid sequence motif that is conserved among delta-12 fatty acid desaturases or delta-15 fatty acid desaturases, such as a His-Xaa-Xaa-Xaa-His motif (Tables 1-3). An example of a suitable region has a conserved HECGH motif that is found, for example, in nucleotides corresponding to amino acids 105 to 109 of the Arabidopsis and Brassica delta-12 desaturase sequences, in nucleotides corresponding to amino acids 101 to 105 of the soybean delta-12 desaturase sequence and in nucleotides corresponding to amino acids 111 to 115 of the maize delta-12 desaturase sequence. See e.g., WO 94/115116; Okuley et al., Plant Cell 6:147-158 (1994). The one letter amino acid designations used herein are described in Alberts, B. et al., Molecular Biology of the Cell, 3rd edition, Garland Publishing, New York, 1994. Amino acids flanking this motif are also highly conserved among delta-12 and delta-15 desaturases and are also suitable candidates for mutations in fragments of the invention.

An illustrative embodiment of a mutation in a nucleic acid fragment of the invention is a Glu to Lys substitution in the HECGH motif of a Brassica microsomal delta-12 desaturase sequence, either the D form or the F form. This mutation results in the sequence HECGH being changed to HKCGH as seen by comparing SEQ ID NO:2 (wild-type D form) to SEQ ID NO:4 (mutant D form). A similar mutation in other Fad-2 sequences is contemplated to result in a non-functional gene product.

A similar motif may be found at amino acids 101 to 105 of the *Arabidopsis* microsomal delta-15 fatty acid desaturase, as well as in the corresponding rape and soybean desaturases (Table 5). See, e.g., WO 93/11245; Arondel, V. et al., Science, 258:1153-1155 (1992); Yadav, N. et al., Plant Physiol., 103:467-476 (1993). Plastid delta-15 fatty acids have a similar motif (Table 5).

Among the types of mutations in an HECGH motif that render the resulting gene product non-functional are non-conservative substitutions. An illustrative example of a non-conservative substitution is substitution of a glycine residue for either the first or second histidine. Such a substitution replaces a charged residue (histidine) with a non-polar residue (glycine). Another type of mutation that renders the resulting gene product non-functional is an insertion mutation, e.g., insertion of a glycine between the cysteine and glutamic acid residues in the HECGH motif.

Other regions having suitable conserved amino acid motifs include the
HRRHH motif shown in Table 2, the HRTHH motif shown in Table 6 and the
HVAHH motif shown in Table 3. See, e.g., WO 94/115116; Hitz, W. et al., Plant
Physiol., 105:635-641 (1994); Okuley, J., et al., supra; and Yadav, N. et al., supra.
An illustrative example of a mutation in the region shown in Table 3 is a mutation
at nucleotides corresponding to the codon for glycine (amino acid 303 of B. napus).

A non-conservative Gly to Glu substitution results in the amino acid sequence DRDYGILNKV being changed to sequence DRDYEILNKV (compare wild-type F form SEQ ID NO:6 to mutant Q4275 SEQ ID NO:10, Fig. 3).

Another region suitable for a mutation in a delta-12 desaturase sequence contains the motif KYLNNP at nucleotides corresponding to amino acids 171 to 175 of the *Brassica* desaturase sequence. An illustrative example of a mutation is this region is a Leu to His substitution, resulting in the amino acid sequence (Table 4) KYHNN (compare wild-type Fad2-F SEQ ID NO:6 to mutant SEQ ID NO:8). A similar mutation in other Fad-2 amino acid sequences is contemplated to result in a non-functional gene product.

- 12 -

TABLE 1

Alignment of Amino Acid Sequences from Microsomal Delta-12 Fatty Acid Desaturases

	<u>Species</u>	Position	Amino Acid Sequence
5	. z. zo wopo w manana	100-129	IWVIAHECGH HAFSDYQWLD DTVGLIFHSF
	Glycine max	96-125	VWVIAHECGH HAFSKYQWVD DVVGLTLHST
	Zea mays	106-135	VWVIAHECGH HAFSDYSLLD DVVGLVLHSS
	Ricinus communis ^a	1- 29	WVMAHDCGH HAFSDYQLLD DVVGLILHSC
	Brassica napus D	100-128	VWVIAHECGH HAFSDYQWLD DTVGLIFHS
10	Brassica napus F	100-128	VWVIAHECGH HAFSDYQWLD DTVGLIFHS

from plasmid pRF2-1C

TABLE 2

Alignment of Amino Acid Sequences from Microsomal <u>Delta-12 Fatty Acid Desaturases</u>

15	Species	<u>Position</u>	Amino Acid Sequence
	Arabidopsis thalian	a 130-158	LLVPYFSWKY SHRRHHSNTG SLERDEVFV
	Glycine max	126-154	LLVPYFSWKI SHRRHHSNTG SLDRDEVFV
	Zea mays	136-164	LMVPYFSWKY SHRRHHSNTG SLERDEVFV
	Ricinus communis ^a	30- 58	LLVPYFSWKH SHRRHHSNTG SLERDEVFV
20	Brassica napus D	130-158	LLVPYFSWKY SHRRHHSNTG SLERDEVFV
	Brassica napus F	130-158	LLVPYFSWKY SHRRHHSNTG SLERDEVFV

from plasmid pRF2-1C

25

TABLE 3

Alignment of Amino Acid Sequences from Microsomal <u>Delta-12 Fatty Acid Desaturases</u>

	Species	<u> </u>	osition	Amino Acid Sequence
	Arabidopsis thaliana	298-333	DRDYGILNK	V FHNITDTHVA HHLFSTMPHY NAMEAT
	Glycine max	294-329		FHHITDTHVA HHLFSTMPHY HAMEAT
	Zea mays	305-340		V FHNITDTHVA HHLFSTMPHY HAMEAT
30	Ricinus communis*	198-224	DRDYGILN	V FHNITDTQVA HHLF TMP
	Brassica napus D	299-334		V FHNITDTHVA HHLFSTMPHY HAMEAT
	Brassica napus F	299-334	DRDYGILNK	V FHNITDTHVA HHLFSTMPHY HAMEAT

from plasmid pRF2-1C

- 13 -

TABLE 4

Alignment of Conserved Amino Acids from Microsomal <u>Delta-12 Fatty Acid Desaturases</u>

	Species	<u>Position</u>	Amino Acid Sequence
10	Arabidopsis thaliana Glycine max Zea mays Ricinus communis ^a Brassica napus D Brassica napus F ^a from plasmid pRF2-1C	165-180 161-176 172-187 65- 80 165-180 165-180	IKWYGKYLNN PLGRIM VAWFSLYLNN PLGRAV PWYTPYVYNN PVGRVV IRWYSKYLNN PPGRIM IKWYGKYLNN PLGRTV IKWYGKYLNN PLGRTV

TABLE 5

Alignment of Conserved Amino Acids from Plastid and Microsomal <u>Delta-15 Fatty Acid Desaturases</u>

15	Species	<u>Position</u>	Amino Acid Sequence
20	Arabidopsis thaliana ^a Brassica napus ^a Glycine max ^a Arabidopsis thaliana Brassica napus Glycine max	156-177 114-135 164-185 94-115 87-109 93-114	WALFVLGHD CGHGSFSNDP KLN WALFVLGHD CGHGSFSNDP RLN WALFVLGHD CGHGSFSNNS KLN WAIFVLGHD CGHGSFSDIP LLN WALFVLGHD CGHGSFSNDP RLN WALFVLGHD CGHGSFSDSP PLN

^a Plastid sequences

- 14 -

Alignment of Conserved Amino Acids from Plastid and Microsomal

Delta-15 Fatty Acid Desaturases

	<u>Species</u>	<u>Position</u>	Amino Acid Sequence
10	A. thaliana ^a B. napus ^a Glycine max ^a A. thaliana Brassica napus Glycine max	188-216 146-174 196-224 126-154 117-145 125-153	ILVPYHGWRI SHRTHHQNHG HVENDESWH ILVPYHGWRI SHRTHHQNHG HVENDESWH ILVPYHGWRI SHRTHHQHHG HAENDESWH ILVPYHGWRI SHRTHHQNHG HVENDESWV ILVPYHGWRI SHRTHHQNHG HVENDESWV ILVPYHGWRI SHRTHHQNHG HIEKDESWV

^a Plastid sequences

The conservation of amino acid motifs and their relative positions indicates that regions of a delta-12 or delta-15 fatty acid desaturase that can be mutated in one species to generate a non-functional desaturase can be mutated in the corresponding region from other species to generate a non-functional delta-12 desaturase or delta-15 desaturase gene product in that species.

Mutations in any of the regions of Tables 1-6 are specifically included within the scope of the invention and are substantially identical to those mutations exemplified herein, provided that such mutation (or mutations) renders the resulting desaturase gene product non-functional, as discussed hereinabove.

A nucleic acid fragment containing a mutant sequence can be generated by techniques known to the skilled artisan. Such techniques include, without limitation, site-directed mutagenesis of wild-type sequences and direct synthesis using automated DNA synthesizers.

A nucleic acid fragment containing a mutant sequence can also be generated by mutagenesis of plant seeds or regenerable plant tissue by, e.g., ethyl methane sulfonate, X-rays or other mutagens. With mutagenesis, mutant plants having the desired fatty acid phenotype in seeds are identified by known techniques and a nucleic acid fragment containing the desired mutation is isolated from genomic DNA or RNA of the mutant line. The site of the specific mutation is then

determined by sequencing the coding region of the delta-12 desaturase or delta-15 desaturase gene. Alternatively, labeled nucleic acid probes that are specific for desired mutational events can be used to rapidly screen a mutagenized population.

The disclosed method may be applied to all oilseed *Brassica* species,

5 and to both Spring and Winter maturing types within each species. Physical mutagens, including but not limited to X-rays, UV rays, and other physical treatments which cause chromosome damage, and other chemical mutagens, including but not limited to ethidium bromide, nitrosoguanidine, diepoxybutane etc. may also be used to induce mutations. The mutagenesis treatment may also be

10 applied to other stages of plant development, including but not limited to cell cultures, embryos, microspores and shoot apices.

"Stable mutations" as used herein are defined as M₅ or more advanced lines which maintain a selected altered fatty acid profile for a minimum of three generations, including a minimum of two generations under field conditions, and exceeding established statistical thresholds for a minimum of two generations, as determined by gas chromatographic analysis of a minimum of 10 randomly selected seeds bulked together. Alternatively, stability may be measured in the same way by comparing to subsequent generations. In subsequent generations, stability is defined as having similar fatty acid profiles in the seed as that of the prior or subsequent generation when grown under substantially similar conditions.

Mutation breeding has traditionally produced plants carrying, in addition to the trait of interest, multiple, deleterious traits, e.g., reduced plant vigor and reduced fertility. Such traits may indirectly affect fatty acid composition, producing an unstable mutation; and/or reduce yield, thereby reducing the commercial utility of the invention. To eliminate the occurrence of deleterious mutations and reduce the load of mutations carried by the plant, a low mutagen dose is used in the seed treatments to create an LD30 population. This allows for the rapid selection of single gene mutations for fatty acid traits in agronomic backgrounds which produce acceptable yields.

- 16 -

The seeds of several different fatty acid lines have been deposited with the American Type Culture Collection and have the following accession numbers.

	<u>Line</u>	Accession No.	Deposit Date
	A129.5	40811	May 25, 1990
5	A133.1	40812	May 25, 1990
	M3032.1	75021	June 7, 1991
	M3062.8	75025	June 7, 1991
	M3028.10	75026	June 7, 1991
	IMC130	75446	April 16, 1993
10	Q4275	97569	May 10, 1996

In some plant species or varieties more than one form of endogenous microsomal delta-12 desaturase may be found. In amphidiploids, each form may be derived from one of the parent genomes making up the species under consideration. Plants with mutations in both forms have a fatty acid profile that differs from plants with a mutation in only one form. An example of such a plant is *Brassica napus* line *Q508*, a doubly-mutagenized line containing a mutant D-form of delta-12 desaturase (SEQ ID NO:3) and a mutant F-form of delta-12 desaturase (SEQ ID NO:7). Another example is line Q4275, which contains a mutant D-form of delta-12 desaturase (SEQ ID NO:3) and a mutant F-form of delta-12 desaturase (SEQ ID NO:3). See Figs. 2-3.

Preferred host or recipient organisms for introduction of a nucleic acid fragment of the invention are the oil-producing species, such as soybean (Glycine max), rapeseed (e.g., Brassica napus, B. rapa and B. juncea), sunflower (Helianthus annus), castor bean (Ricinus communis), corn (Zea mays), and safflower (Carthamus tinctorius).

A nucleic acid fragment of the invention may further comprise additional nucleic acids. For example, a nucleic acid encoding a secretory or leader amino acid sequence can be linked to a mutant desaturase nucleic acid fragment such that the secretory or leader sequence is fused in-frame to the amino terminal end of a mutant delta-12 or delta-15 desaturase polypeptide. Other nucleic acid

fragments are known in the art that encode amino acid sequences useful for fusing in-frame to the mutant desaturase polypeptides disclosed herein. See, e.g., U.S. 5,629,193 incorporated herein by reference. A nucleic acid fragment may also have one or more regulatory elements operably linked thereto.

The present invention also comprises nucleic acid fragments that selectively hybridize to mutant desaturase sequences. Such a nucleic acid fragment typically is at least 15 nucleotides in length. Hybridization typically involves Southern analysis (Southern blotting), a method by which the presence of DNA sequences in a target nucleic acid mixture are identified by hybridization to a labeled oligonucleotide or DNA fragment probe. Southern analysis typically involves electrophoretic separation of DNA digests on agarose gels, denaturation of the DNA after electrophoretic separation, and transfer of the DNA to nitrocellulose, nylon, or another suitable membrane support for analysis with a radiolabeled, biotinylated, or enzyme-labeled probe as described in sections 9.37-9.52 of 15 Sambrook et al., (1989) Molecular Cloning, second edition, Cold Spring Harbor Laboratory, Plainview; NY.

A nucleic acid fragment can hybridize under moderate stringency conditions or, preferably, under high stringency conditions to a mutant desaturase sequence. High stringency conditions are used to identify nucleic acids that have a 20 high degree of homology to the probe. High stringency conditions can include the use of low ionic strength and high temperature for washing, for example, 0.015 M NaCl/0.0015 M sodium citrate (0.1X SSC); 0.1% sodium lauryl sulfate (SDS) at 50-65°C. Alternatively, a denaturing agent such as formamide can be employed during hybridization, e.g., 50% formamide with 0.1% bovine serum albumin/0.1% 25 Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM NaCl, 75 mM sodium citrate at 42°C. Another example is the use of 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 30 42°C, with washes at 42°C in 0.2 x SSC and 0.1% SDS.

Moderate stringency conditions refers to hybridization conditions used to identify nucleic acids that have a lower degree of identity to the probe than do nucleic acids identified under high stringency conditions. Moderate stringency conditions can include the use of higher ionic strength and/or lower temperatures 5 for washing of the hybridization membrane, compared to the ionic strength and temperatures used for high stringency hybridization. For example, a wash solution comprising 0.060 M NaCl/0.0060 M sodium citrate (4X SSC) and 0.1% sodium lauryl sulfate (SDS) can be used at 50°C, with a last wash in 1X SSC, at 65°C. Alternatively, a hybridization wash in 1X SSC at 37°C can be used.

Hybridization can also be done by Northern analysis (Northern blotting), a method used to identify RNAs that hybridize to a known probe such as an oligonucleotide, DNA fragment, cDNA or fragment thereof, or RNA fragment. The probe is labeled with a radioisotope such as ³²P, by biotinylation or with an enzyme. The RNA to be analyzed can be usually electrophoretically separated on an agarose or polyacrylamide gel, transferred to nitrocellulose, nylon, or other suitable membrane, and hybridized with the probe, using standard techniques well known in the art such as those described in sections 7.39-7.52 of Sambrook et al., supra.

A polypeptide of the invention comprises an isolated polypeptide having 20 a mutant amino acid sequence, as well as derivatives and analogs thereof. See, e.g., the mutant amino acid sequences of Fig. 3. By "isolated" is meant a polypeptide that is expressed and produced in an environment other than the environment in which the polypeptide is naturally expressed and produced. For example, a plant polypeptide is isolated when expressed and produced in bacteria or 25 fungi. A polypeptide of the invention also comprises variants of the mutant desaturase polypeptides disclosed herein, as discussed above.

In one embodiment of the claimed invention, a plant contains both a delta-12 desaturase mutation and a delta-15 desaturase mutation. Such plants can have a fatty acid composition comprising very high oleic acid and very low alpha-30 linolenic acid levels. Mutations in delta-12 desaturase and delta-15 desaturase may

be combined in a plant by making a genetic cross between delta-12 desaturase and delta-15 desaturase single mutant lines. A plant having a mutation in delta-12 fatty acid desaturase is crossed or mated with a second plant having a mutation in delta-15 fatty acid desaturase. Seeds produced from the cross are planted and the resulting plants are selfed in order to obtain progeny seeds. These progeny seeds are then screened in order to identify those seeds carrying both mutant genes.

Alternatively, a line possessing either a delta-12 desaturase or a delta-15 desaturase mutation can be subjected to mutagenesis to generate a plant or plant line having mutations in both delta-12 desaturase and delta-15 desaturase. For example, the IMC 129 line has a mutation in the coding region (Glu₁₀₆ to Lys₁₀₆) of the D form of the microsomal delta-12 desaturase structural gene. Cells (e.g., seeds) of this line can be mutagenized to induce a mutation in a delta-15 desaturase gene, resulting in a plant or plant line carrying a mutation in a delta-12 fatty acid desaturase gene and a mutation in a delta-15 fatty acid desaturase gene.

Progeny includes descendants of a particular plant or plant line, e.g., seeds developed on an instant plant are descendants. Progeny of an instant plant include seeds formed on F_1 , F_2 , F_3 , and subsequent generation plants, or seeds formed on BC_1 , BC_2 , BC_3 and subsequent generation plants.

Plants according to the invention preferably contain an altered fatty acid composition. For example, oil obtained from seeds of such plants may have from about 69 to about 90% oleic acid, based on the total fatty acid composition of the seed. Such oil preferably has from about 74 to about 90% oleic acid, more preferably from about 80 to about 90% oleic acid. In some embodiments, oil obtained from seeds produced by plants of the invention may have from about 2.0% to about 5.0% saturated fatty acids, based on total fatty acid composition of the seeds. In some embodiments, oil obtained from seeds of the invention may have from about 1.0% to about 14.0% linoleic acid, or from about 0.5% to about 10.0% α-linolenic acid.

Oil composition typically is analyzed by crushing and extracting fatty acids from bulk seed samples (e.g., 10 seeds). Fatty acid triglycerides in the seed

are hydrolyzed and converted to fatty acid methyl esters. Those seeds having an altered fatty acid composition may be identified by techniques known to the skilled artisan, e.g., gas-liquid chromatography (GLC) analysis of a bulked seed sample, single seed or a single half-seed. Half-seed analysis is well known in the art to be useful because the viability of the embryo is maintained and thus those seeds having a desired fatty acid profile may be planted to form the next generation. However, half-seed analysis is also known to be an inaccurate representation of genotype of the seed being analyzed. Bulk seed analysis typically yields a more accurate representation of the fatty acid profile of a given genotype. Half-seed analysis of a population of seeds is, however, a reliable indicator of the likelihood of obtaining a desired fatty acid profile. Fatty acid composition can also be determined on larger samples, e.g., oil obtained by pilot plant or commercial scale refining, bleaching and deodorizing of endogenous oil in the seeds.

The nucleic acid fragments of the invention can be used as markers in plant genetic mapping and plant breeding programs. Such markers may include restriction fragment length polymorphism (RFLP), random amplification polymorphism detection (RAPD), polymerase chain reaction (PCR) or self-sustained sequence replication (3SR) markers, for example. Marker-assisted breeding techniques may be used to identify and follow a desired fatty acid composition during the breeding process. Marker-assisted breeding techniques may be used in addition to, or as an alternative to, other sorts of identification techniques. An example of marker-assisted breeding is the use of PCR primers that specifically amplify a sequence containing a desired mutation in delta-12 desaturase or delta-15 desaturase.

Methods according to the invention are useful in that the resulting plants and plant lines have desirable seed fatty acid compositions as well as superior agronomic properties compared to known lines having altered seed fatty acid composition. Superior agronomic characteristics include, for example, increased seed germination percentage, increased seedling vigor, increased resistance to

seedling fungal diseases (damping off, root rot and the like), increased yield, and improved standability.

In another aspect, *Brassica* plants producing seeds having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15%, based on total fatty acid composition, are featured. As used herein, "long chain" refers to carbon chains of 16 and greater, e.g., chains of 16 to 24 carbons. The long chain monounsaturated fatty acid content is distributed primarily among oleic acid, eicosenoic acid and erucic acid. The heterogenous nature of the long chain monounsaturated fatty acids in the seed oil triacylglycerols confers desirable properties to the oil. The levels of total saturated fatty acids and/or the total polyunsaturated fatty acids can be decreased in order to increase the long chain monounsaturate content, i.e., oleic acid, eicosenoic acid, erucic acid and nervonic acid.

High oleic acid lines described herein can be crossed to high erucic acid lines to produce *Brassica* plants having a high long chain monounsaturated fatty acid content within their seeds. Suitable high oleic acid lines are described, for example, in Example 5 and Table 17, and have an oleic acid content of about 82% to about 85%, based on total fatty acid composition. Suitable high erucic acid lines have an erucic acid content of about 45% or greater, based on total fatty acid composition. *Brassica* plant line HEC01 is a high erucic acid line that is particularly useful and is sold under the trade name Hero. Other high erucic acid varieties are also known, such as varieties designated Venus, Mercury, Neptune, S89-3673, Dwarf Essex, Reston, Bridger or R-500. McVetty, P.B.E. et al., Can. J. Plant Sci., 76(2):341-342 (1996); Scarth, R. et al., Can. J. Plant Sci., 75(1):205-206 (1995); and McVetty, P.B.E. et al., Can. J. Plant Sci., 76(2):343-344 (1996).

Seeds of the invention can have an oleic acid and eicosenoic acid content of at least about 37% and 14%, respectively, based on total fatty acid composition. The total saturated fatty acid content is less than about 7%. As used herein, "total saturated fatty acid content" refers to the total of myristate (14:0), palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0) and lignocerate

(24:0). The total polyunsaturated content is less than about 11% based on total fatty acid composition. As used herein, "total polyunsaturated fatty acid content" refers to the sum of linoleic (18:2), α -linolenic (18:3), and eicosadienoic (20:2) fatty acids as a percentage of the total fatty acid content.

In some embodiments, the long chain monounsaturate content in seeds is from about 85% to about 90%. The oleic acid content within these seeds is about 42% or greater, and preferably from about 47% to about 56%. The erucic acid and eicosenoic acid content are from about 17% to about 31% and from about 15% to about 21%, respectively.

In some embodiments, the long chain monounsaturate content in seeds is from about 82% to about 90%. The oleic acid content within these seeds is about 25% to about 33%. The erucic acid and eicosenoic acid content are from about 44% to about 50% and from about 10% to about 13%, respectively.

Seed oils having a long chain monounsaturated content of at least about 82% and an erucic acid content of at least about 15%, based on total fatty acid composition, are also featured. These oils can be extracted, for example, from a single line of *Brassica* seeds having a suitable fatty acid composition as described herein. The oleic acid and eicosenoic acid content of these oils is at least about 37% and 14%, respectively, based on total fatty acid composition. The total saturated and polyunsaturated content of these oils is less than about 7% and 11%, respectively. Preferably, the polyunsaturated content is less than about 9%. In some embodiments, the oils have a monounsaturated content of from about 85% to about 90%. The oleic acid content of these oils is at least about 42% and more preferably, from about 47% to about 56%. The oils have an erucic acid content of from about 15% to about 21%.

In some embodiments, the long chain monounsaturate content in such oils is from about 82% to about 90%, comprising an oleic acid content of about 25% to about 33%, an erucic acid of about 44% to about 50% and an eicosenoic acid content of about 10% to about 13%. The sum of the nervonic acid, erucic

acid and eicosenoic acid contents is such oils can be from about 50% to about 66%.

Alternatively, it is contemplated that oils of the invention can be obtained by mixing high-erucic acid rapeseed oil (HEAR) and an oil having at least about 87% oleic acid, preferably from about 90% to about 95% oleic acid, based on total fatty acid composition. HEAR oil has an erucic acid content of about 49% and an oleic acid content of about 16%.

Oils having a long chain monounsaturated content of at least about 82% unexpectedly have low temperature properties that are desirable for industrial applications such as lubrication. The basis for these properties is not known, but is it possible that the heterogeneous chain lengths of the triacylglycerols in oils of the invention impede orderly packing as the end methyl groups have a mismatch in molecular volume, reducing Van der Waals interactions. The double bond in each fatty acid moiety is present at different carbon positions along the acyl chain,

which may disrupt packing and also reduce π-π electronic interactions between adjacent fatty acid chains. The high monounsaturate content is thought to provide improved oxidative stability along with high fluidity characteristics. The low levels of polyunsaturates in oils of the invention also promotes high oxidative stability, since the rates of oxidation of linoleic acid and linolenic acid at 20°C are 12-20 times and 25 times, respectively, larger than the rate of oxidation of oleic acid.

Oxidative stability can be measured with an Oxidative Stability Index Instrument, Omnion, Inc., Rockland, MA, according to AOCS Official Method Cd 12b-92 (revised 1993). The method is an automated replacement for the Active Oxygen Method (AOM) procedure, AOCS Official Method Cd 12-57. Oxidative stability of oils having a long chain monounsaturated content of at least about 82% is from about 40 AOM hours to about 100 AOM hours in the absence of added antioxidants. In comparison, mid-oleic canola oil (about 76% oleic acid) and high erucic acid rapeseed oil have oxidative stabilities of about 38 and 16 AOM hours, respectively, in the absence of added antioxidants.

The oils of the invention have desirable functional properties, e.g., low temperature behavior and a high viscosity index, along with high oxidative stability. The presence of higher molecular weight fatty acids increases the molecular weight of the triacylglycerols, providing the oil with a higher flash point and a higher fire point. The increased molecular weight also improves the viscosity index of the oils. Viscosity index is an arbitrary number that indicates the viscosity change with temperature of a lubricant. The Dean and Davis viscosity index can be calculated from observed viscosities of a lubricant at 40°C and 100°C and can produce values ranging from 0 to values greater than 200. A higher viscosity index value indicates that the viscosity of the oil changes less with a change in temperature. In other words, the higher the viscosity index, the smaller the difference in viscosity between high and low temperatures.

An oil of the invention can be formulated for industrial applications such as engine lubricants or as hydraulic fluids by addition of one or more additives to an oil having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15%, based on total fatty acid composition. For example, a transmission fluid for diesel engines can be made that includes antioxidants, anti-foam additives, anti-wear additives, corrosion inhibitors, dispersants, detergents, and acid neutralizers, or combinations thereof.

Hydraulic oil compositions can include antioxidants, anti-rust additives, anti-wear additives, pour point depressants, viscosity-index improvers and anti-foam additives or combinations thereof. Specific formulations will vary depending on the end use of the oil; suitability of a formulation for a specific end use can be assessed using standard techniques.

Typical antioxidants include zinc dithiophosphates, methyl dithiocarbamates, hindered phenols, phenol sulfides, metal phenol sulfides, metal salicylates, aromatic amines, phospho-sulfurized fats and olefins, sulfurized olefins, sulfurized fats and fat derivatives, sulfurized paraffins, sulfurized carboxylic acids, disalieylal-1,2,-propane diamine, 2,4-bis (alkyldithio-1,3,4-thiadiazoles) and dilauryl selenide. Antioxidants are typically present in amounts from about 0.01% to about

5%, based on the weight of the composition. In particular, about 0.01% to about 1.0% of antioxidant is added to an oil of the invention. See U.S. Patent No. 5,451,334 for additional antioxidants.

Rust inhibitors protect surfaces against rust and include, for example, 5 alkylsuccinic type organic acids, and derivatives thereof, alkylthioacetic acids and derivatives thereof, organic amines, organic phosphates, polyhyndric alcohols and sodium and calcium sulphonates. Anti-wear additives adsorb on metal and provide a film that reduces metal-to-metal contact. In general, anti-wear additives include zinc dialkyldithiophosphates, tricresyl phosphate, didodecyl phosphite, sulfurized 10 sperm oil, sulfurized terpenes and zinc dialkyldithiocarbamate, and are used in amounts from about 0.05% to about 4.5%.

Corrosion inhibitors include dithiophosphates and in particular, zinc dithiophosphates, metal sulfonates, metal phenate sulfides, fatty acids, acid phosphate esters and alkyl succinic acids.

Pour point depressants permit flow of the oil composition below the pour point of the unmodified lubricant. Common pour point depressants include polymethacrylates, wax alkylated naphthalene polymers, wax alkylated phenol polymers and chlorinated polymers and are typically present in amounts of about 1% or less. See, for example, U.S. Patent Nos. 5,451,334 and 5,413,725. The 20 viscosity-index can be increased by adding polyisobutylenes, polymethacrylates, polyacrylates, ethylene propylene copolymers, styrene isoprene copolymers, styrene butadiene copolymers and styrene maleic ester copolymers.

Anti-foam additives reduce or prevent the formation of a stable surface foam and are typically present in amounts from about 0.00003% to about 0.05%. 25 Polymethylsiloxanes, polymethacrylates, salts of alkyl alkylene dithiophosphates, amyl acrylate telomer and poly(2-ethylhexylacrylate-co-ethyl acrylate are nonlimiting examples of anti-foam additives.

Detergents and dispersants are polar materials that provide a cleaning function. Detergents include metal sulfonates, metal salicylates and metal thiophosponates. Dispersants include polyamine succinimides, hydroxy benzyl

polyamines, polyamine succinamides, polyhydroxy succinic esters and polyamine amide imidazolines.

While the invention is susceptible to various modifications and alternative forms, certain specific embodiments thereof are described in the general methods and examples set forth below. For example the invention may be applied to all *Brassica* species, including *B. rapa*, *B. juncea*, and *B. hirta*, to produce substantially similar results. It should be understood, however, that these examples are not intended to limit the invention to the particular forms disclosed but, instead the invention is to cover all modifications, equivalents and alternatives falling within the scope of the invention. This includes the use of somaclonal variation; physical or chemical mutagenesis of plant parts; anther, microspore or ovary culture followed by chromosome doubling; or self- or cross-pollination to transmit the fatty acid trait, alone or in combination with other traits, to develop new *Brassica* lines.

EXAMPLE 1

15

Mutagenesis

Seeds of Westar, a Canadian (*Brassica napus*) spring canola variety, were subjected to chemical mutagenesis. Westar is a registered Canadian spring variety with canola quality. The fatty acid composition of field-grown Westar, 3.9% C_{16:0}, 1.9% C_{18:0}, 67.5% C_{18:1}, 17.6% C_{18:2}, 7.4% C_{18:3}, <2% C20:1 + C_{22:1}, has remained stable under commercial production, with <± 10% deviation, since 1982.

Prior to mutagenesis, 30,000 seeds of *B. napus* cv. Westar seeds were preimbibed in 300-seed lots for two hours on wet filter paper to soften the seed coat. The preimbibed seeds were placed in 80 mM ethylmethanesulfonate (EMS) for four hours. Following mutagenesis, the seeds were rinsed three times in distilled water. The seeds were sown in 48-well flats containing Pro-Mix. Sixty-eight percent of the mutagenized seed germinated. The plants were maintained at 25°C/15°C, 14/10 hr day/night conditions in the greenhouse. At flowering, each plant was individually self-pollinated.

M₂ seed from individual plants were individually catalogued and stored, approximately 15,000 M₂ lines was planted in a summer nursery in Carman, Manitoba. The seed from each selfed plant were planted in 3-meter rows with 6-inch row spacing. Westar was planted as the check variety. Selected lines in the field were selfed by bagging the main raceme of each plant. At maturity, the selfed plants were individually harvested and seeds were catalogued and stored to ensure that the source of the seed was known.

Self-pollinated M₃ seed and Westar controls were analyzed in 10-seed bulk samples for fatty acid composition via gas chromatography. Statistical thresholds for each fatty acid component were established using a Z-distribution with a stringency level of 1 in 10,000. Mean and standard deviation values were determined from the non-mutagenized Westar control population in the field. The upper and lower statistical thresholds for each fatty acid were determined from the mean value of the population ± the standard deviation, multiplied by the Z-distribution. Based on a population size of 10,000, the confidence interval is 99.99%.

The selected M₃ seeds were planted in the greenhouse along with Westar controls. The seed was sown in 4-inch pots containing Pro-Mix soil and the plants were maintained at 25°C/15°C, 14/10 hr day/night cycle in the greenhouse. At flowering, the terminal raceme was self-pollinated by bagging. At maturity, selfed M₄ seed was individually harvested from each plant, labelled, and stored to ensure that the source of the seed was known.

The M₄ seed was analyzed in 10-seed bulk samples. Statistical thresholds for each fatty acid component were established from 259 control samples using a Z-distribution of 1 in 800. Selected M₄ lines were planted in a field trial in Carman, Manitoba in 3-meter rows with 6-inch spacing. Ten M₄ plants in each row were bagged for self-pollination. At maturity, the selfed plants were individually harvested and the open pollinated plants in the row were bulk harvested. The M₅ seed from single plant selections was analyzed in 10-seed bulk samples and the bulk row harvest in 50-seed bulk samples.

Selected M₅ lines were planted in the greenhouse along with Westar controls. The seed was grown as previously described. At flowering the terminal raceme was self-pollinated by bagging. At maturity, selfed M₆ seed was individually harvested from each plant and analyzed in 10-seed bulk samples for fatty acid composition.

Selected M₆ lines were entered into field trials in Eastern Idaho. The four trial locations were selected for the wide variability in growing conditions. The locations included Burley, Tetonia, Lamont and Shelley (Table 7). The lines were planted in four 3-meter rows with an 8-inch spacing, each plot was replicated four times. The planting design was determined using a Randomized Complete Block Design. The commercial cultivar Westar was used as a check cultivar. At maturity the plots were harvested to determine yield. Yield of the entries in the trial was determined by taking the statistical average of the four replications. The Least Significant Difference Test was used to rank the entries in the randomized complete block design.

TABLE 7
Trial Locations for Selected Fatty Acid Mutants
SITE CHARACTERIZATIONS

BURLEY Irrigated. Long season. High temperatures during flowering.

20 TETONIA Dryland. Short season. Cool temperatures.

LOCATION

LAMONT Dryland. Short season. Cool temperatures.

SHELLEY Irrigated. Medium season. High temperatures during flowering.

To determine the fatty acid profile of entries, plants in each plot were bagged for self-pollination. The M₇ seed from single plants was analyzed for fatty acids in ten-seed bulk samples.

To determine the genetic relationships of the selected fatty acid mutants crosses were made. Flowers of M_6 or later generation mutations were used in crossing. F_1 seed was harvested and analyzed for fatty acid composition to determine the mode of gene action. The F_1 progeny were planted in the greenhouse. The resulting plants were self-pollinated, the F_2 seed harvested and analyzed for fatty acid composition for allelism studies. The F_2 seed and parent line seed was planted in the greenhouse, individual plants were self-pollinated. The F_3 seed of individual plants was tested for fatty acid composition using 10-seed bulk samples as described previously.

In the analysis of some genetic relationships dihaploid populations were made from the microspores of the F_1 hybrids. Self-pollinated seed from dihaploid plants were analyzed for fatty acid analysis using methods described previously.

For chemical analysis, 10-seed bulk samples were hand ground with a glass rod in a 15-mL polypropylene tube and extracted in 1.2 mL 0.25 N KOH in 1:1 ether/methanol. The sample was vortexed for 30 sec. and heated for 60 sec. in a 60°C water bath. Four mL of saturated NaCl and 2.4 mL of iso-octane were added, and the mixture was vortexed again. After phase separation, 600 μL of the upper organic phase were pipetted into individual vials and stored under nitrogen at -5°C. One μL samples were injected into a Supelco SP-2330 fused silica capillary column (0.25 mm ID, 30 M length, 0.20 μm df).

The gas chromatograph was set at 180°C for 5.5 minutes, then programmed for a 2°C/minute increase to 212°C, and held at this temperature for 1.5 minutes. Total run time was 23 minutes. Chromatography settings were: Column head pressure - 15 psi, Column flow (He) - 0.7 mL/min., Auxiliary and Column flow - 33 mL/min., Hydrogen flow - 33 mL/min., Air flow - 400 mL/min., Injector temperature - 250°C, Detector temperature - 300°C, Split vent - 1/15.

Table 8 describes the upper and lower statistical thresholds for each fatty acid of interest.

- 30 -

TABLE 8
Statistical Thresholds for Specific Fatty Acids
Derived from Control Westar Plantings

	_	Percent Fatty Acids							
5	Genotype	$C_{16:0}$	$C_{18:0}$	$C_{18:1}$	C _{18:2}	C _{18:3}	Sats		
	M ₃ Genera	tion(1 ir	10,00	0 rejecti	on rate)	_		
	Lower	3.3	1.4		13.2	5.3	6.0		
	Upper	4.3	2.5	71.0	21.6	9.9	8.3		
10	M ₄ General	M ₄ Generation(1 in 800 rejection rate)							
	Lower	3.6	0.8		12.2	3.2	5.3		
	Upper	6.3	3.1	76.0	32.4	9.9	11.2		
	M ₅ Generat	ion (1 i	n 755 r	ejection	rate)				
	Lower	2.7	0.9		9.6	2.6	4.5		
15	Upper	5.7	_2.7	80.3	26.7	9.6	10.0		
	*Sats=Total	Saturat	e Conte	ent					

EXAMPLE 2

High Oleic Acid Canola Lines

In the studies of Example 1, at the M₃ generation, 31 lines exceeded the upper statistical threshold for oleic acid (≥ 71.0%). Line W7608.3 had 71.2% oleic acid. At the M₄ generation, its selfed progeny (W7608.3.5, since designated A129.5) continued to exceed the upper statistical threshold for C_{18:1} with 78.8% oleic acid. M₅ seed of five self-pollinated plants of line A129.5 (ATCC 40811) averaged 75.0% oleic acid. A single plant selection, A129.5.3 had 75.6% oleic acid. The fatty acid composition of this high oleic acid mutant, which was stable under both field and greenhouse conditions to the M₇ generation, is summarized in Table 9. This line also stably maintained its mutant fatty acid composition to the M₇ generation in field trials in multiple locations. Over all locations the self-pollinated plants (A129) averaged 78.3% oleic acid. The fatty acid composition of the A129 for each Idaho trial location are summarized in Table 10. In multiple location replicated yield trials, A129 was not significantly different in yield from the parent cultivar Westar.

The canola oil of A129, after commercial processing, was found to have superior oxidative stability compared to Westar when measured by the Accelerated Oxygen Method (AOM), American Oil Chemists' Society Official Method Cd 12-57 for fat stability; Active Oxygen Method (revised 1989). The AOM of Westar 5 was 18 AOM hours and for A129 was 30 AOM hours.

TABLE 9 Fatty Acid Composition of a High Oleic Acid Canola Line Produced by Seed Mutagenesis Percent Fatty Acids

T circuit faity Acids						
Genotype	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}	Sats
Westar	3.9	1.9	67.5	17.6	7.4	7.0
W7608.3 (M ₃)	3.9	2.4	71.2	12.7	6.1	7.6
W7608.3.5 (M ₄)	3.9	2.0	78.8	7.7	3.9	7.3
A129.5.3 (M ₅)	3.8	2.3	75.6	9.5	4.9	7.6

Sats=Total Saturate Content

20

Fatty Acid Composition of a Mutant High Oleic Acid Line at Different Field Locations in Idaho Percent Fatty Acids

TABLE 10

Location	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}	Sats
Burley	3.3	2.1	77.5	8.1	6.0	6.5
Tetonia	3.5	3.4	77.8	6.5	4.7	8.5
Lamont	3.4	1.9	77.8	7.4	6.5	6.3
Shelley	3.3	2.6	80.0	5.7	4.5	7.7
	Burley Tetonia Lamont Shelley	Burley 3.3 Tetonia 3.5 Lamont 3.4 Shelley 3.3	Burley 3.3 2.1 Tetonia 3.5 3.4 Lamont 3.4 1.9	Burley 3.3 2.1 77.5 Tetonia 3.5 3.4 77.8 Lamont 3.4 1.9 77.8 Shelley 3.3 2.6 80.0	Burley 3.3 2.1 77.5 8.1 Tetonia 3.5 3.4 77.8 6.5 Lamont 3.4 1.9 77.8 7.4 Shelley 3.3 2.6 80.0 5.7	Burley 3.3 2.1 77.5 8.1 6.0 Tetonia 3.5 3.4 77.8 6.5 4.7 Lamont 3.4 1.9 77.8 7.4 6.5 Shelley 3.3 2.6 80.0 5.7 4.5

Sats=Total Saturate Content

The genetic relationship of the high oleic acid mutation A129 to other oleic desaturases was demonstrated in crosses made to commercial canola cultivars and a low linolenic acid mutation. A129 was crossed to the commercial cultivar Global ($C_{16:0}$ - 4.5%, $C_{18:0}$ - 1.5%, $C_{18:1}$ - 62.9%, $C_{18:2}$ - 20.0%, $C_{18:3}$ - 7.3%).

Approximately 200 F₂ individuals were analyzed for fatty acid composition. The results are summarized in Table 11. The segregation fit 1:2:1 ratio suggesting a single co-dominant gene controlled the inheritance of the high oleic acid phenotype.

TABLE 11
Genetic Studies of A129 X Global
Frequency

10

15

	$C_{18:1}$		
Genotype	Content(%)	Observed	Expected
od-od-	77.3	43	47
od-od+	71.7	106	94 5
od+od+	66.1	49	47

A cross between A129 and IMC 01, a low linolenic acid variety (C_{16:0} - 4.1%, C_{18:0} - 1.9%, C_{18:1} - 66.4%, C_{18:2} - 18.1%, C_{18:3} - 5.7%), was made to determine the inheritance of the oleic acid desaturase and linoleic acid desaturase. In the F₁ hybrids both the oleic acid and linoleic acid desaturase genes approached the mid-parent values indicating a co-dominant gene actions. Fatty acid analysis of the F₂ individuals confirmed a 1:2:1:2:4:2:1:2:1 segregation of two independent, co-dominant genes (Table 12). A line was selected from the cross of A129 and IMC01 and designated as IMC130 (ATCC deposit no. 75446) as described in U.S. Patent Application No. 08/425,108, incorporated herein by reference.

- 33
<u>TABLE 12</u>

<u>Genetic Studies of A129 X IMC 01</u>

			Frequency				
	Genotype	Ratio	Observed	Expected			
5	od-od-ld-ld-	1	11	12			
	od-od-ld-ld+	2	30	24			
	od-od-ld+ld+	1	10	12			
	od-od+ld-ld-	2	25	24			
	od-od+ld-ld+	4	54	47			
10	od-od+ld+ld+	2	-18	24			
	od+od+ld-ld-	1	7	12			
	od+od+ld-ld+	2	25	24			
	od+od+ld+ld+	1	8	12			

An additional high oleic acid line, designated A128.3, was also produced by the disclosed method. A 50-seed bulk analysis of this line showed the following fatty acid composition: C_{16:0} - 3.5%, C_{18:0} - 1.8%, C_{18:1} - 77.3%, C_{18:2} - 9.0%, C_{18:3} - 5.6%, FDA Sats - 5.3%, Total Sats - 6.4%. This line also stably maintained its mutant fatty acid composition to the M₇ generation. In multiple locations replicated yield trials, A128 was not significantly different in yield from the parent cultivar Westar.

A129 was crossed to A128.3 for allelism studies. Fatty acid composition of the F_2 seed showed the two lines to be allelic. The mutational events in A129 and A128.3 although different in origin were in the same gene.

An additional high oleic acid line, designated M3028.-10 (ATCC 75026), was also produced by the disclosed method in Example 1. A 10-seed bulk analysis of this line showed the following fatty acid composition: C_{16:0} - 3.5%, C_{18:0} - 1.8%, C_{18:1} - 77.3%, C_{18:2} - 9.0%, C_{18:3} - 5.6%, FDA Saturates - 5.3%, Total Saturates - 6.4%. In a single location replicated yield trial M3028.10 was not significantly different in yield from the parent cultivar Westar.

- 34 **-**

EXAMPLE 3

Low Linoleic Acid Canola

In the studies of Example 1, at the M₃ generation, 80 lines exceeded the lower statistical threshold for linoleic acid (≤ 13.2%). Line W12638.8 had 9.4%

5 linoleic acid. At the M₄ and M₅ generations, its selfed progenies [W12638.8, since designated A133.1 (ATCC 40812)] continued to exceed the statistical threshold for low C_{18.2} with linoleic acid levels of 10.2% and 8.4%, respectively. The fatty acid composition of this low linoleic acid mutant, which was stable to the M₇ generation under both field and greenhouse conditions, is summarized in Table 13. In

10 multiple location replicated yield trials, A133 was not significantly different in yield from the parent cultivar Westar. An additional low linoleic acid line, designated M3062.8 (ATCC 75025), was also produced by the disclosed method. A 10-seed bulk analysis of this line showed the following fatty acid composition: C_{16:0} - 3.8%, C_{18:0} - 2.3%, C_{18:1} - 77.1%, C_{18:2} - 8.9%, C_{18:3} - 4.3%, FDA Sats-6.1%.

15 This line has also stably maintained its mutant fatty acid composition in the field and greenhouse.

TABLE 13

Fatty Acid Composition of a Low

Linoleic Acid Canola Line Produced by Seed Mutagenesis

20	Percent Fatty Acids						
	Genotype	C _{16:0}	C _{18:0}	.C _{18:1}	$C_{18:2}$	C _{18:3}	Sats ^b
	Westar	3.9	1.9	67.5	17.6	7.4	7.0
	W12638.8 (M ₃)	3.9	2.3	75.0	9.4	6.1	7.5
25	W12638.8.1 (M ₄)	4.1	1.7	74.6	10.2	5.9	7.1
	A133.1.8 (M _s)	3.8	2.0	77.7	8.4	5.0	7.0

Letter and numbers up to second decimal point indicate the plant line. Number after second decimal point indicates an individual plant.

bSats=Total Saturate Content

- 35 -

EXAMPLE 4

Low Linolenic and Linoleic Acid Canola

In the studies of Example 1, at the M₃ generation, 57 lines exceeded the lower statistical threshold for linolenic acid (≤ 5.3%). Line W14749.8 had 5.3% linolenic acid and 15.0% linoleic acid. At the M₄ and M₅ generations, its selfed progenies [W14749.8, since designated M3032 (ATCC 75021)] continued to exceed the statistical threshold for low C_{18:3} with linolenic acid levels of 2.7% and 2.3%, respectively, and for a low sum of linolenic and linoleic acids with totals of 11.8% and 12.5% respectively. The fatty acid composition of this low linolenic acid plus linoleic acid mutant, which was stable to the M₅ generation under both field and greenhouse conditions, is summarized in Table 14. In a single location replicated yield trial M3032 was not significantly different in yield from the parent cultivar (Westar).

Fatty Acid Composition of a Low

Linolenic Acid Canola Line Produced by Seed Mutagenesis

Percent Fatty Acids

	Genotype	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}	Sats
	Westar	3.9	1.9	67.5	17.6	7.4	7.0
20	W14749.8 (M ₃)	4.0	2.5	69.4	15.0	5.3	6.5
	M3032.8 (M ₄)	3.9	2.4	77.9	9.1	2.7	6.4
-25	M3032.1 (M ₅)	3.5	2.8	80.0	10.2	2.3	6.5

Sats=Total Saturate Content

15

EXAMPLE 5 Canola Lines O508 and Q4275

Seeds of the *B. napus* line IMC-129 were mutagenized with methyl N-30 nitrosoguanidine (MNNG). The MNNG treatment consisted of three parts: presoak, mutagen application, and wash. A 0.05M Sorenson's phosphate buffer was used to maintain pre-soak and mutagen treatment pH at 6.1. Two hundred seeds were treated at one time on filter paper (Whatman #3M) in a petri dish (100mm x 15mm). The seeds were pre-soaked in 15 mls of 0.05M Sorenson's buffer, pH 6.1, under continued agitation for two hours. At the end of the pre-soak period, the buffer was removed from the plate.

A 10mM concentration of MNNG in 0.05M Sorenson's buffer, pH 6.1, was prepared prior to use. Fifteen ml of 10m MNNG was added to the seeds in each plate. The seeds were incubated at 22°C±3°C in the dark under constant agitation for four (4) hours. At the end of the incubation period, the mutagen solution was removed.

The seeds were washed with three changes of distilled water at 10 minute intervals. The fourth wash was for thirty minutes. This treatment regime produced an LD60 population.

Treated seeds were planted in standard greenhouse potting soil and placed into an environmentally controlled greenhouse. The plants were grown under sixteen hours of light. At flowering, the racemes were bagged to produce selfed seed. At maturity, the M2 seed was harvested. Each M2 line was given an identifying number. The entire MNNG-treated seed population was designated as the Q series.

Harvested M2 seeds was planted in the greenhouse. The growth conditions were maintained as previously described. The racemes were bagged at flowering for selfing. At maturity, the selfed M3 seed was harvested and analyzed for fatty acid composition. For each M3 seed line, approximately 10-15 seeds were analyzed in bulk as described in Example 1.

High oleic-low linoleic M3 lines were selected from the M3 population using a cutoff of >82% oleic acid and <5.0% linoleic. From the first 1600 M3 lines screened for fatty acid composition, Q508 was identified. The Q508 M3 generation was advanced to the M4 generation in the greenhouse. Table 15 shows

- 37 -

the fatty acid composition of Q508 and IMC 129. The M4 selfed seed maintained the selected high oleic-low linoleic acid phenotype (Table 16).

TABLE 15
Fatty Acid Composition of A129 and High
Oleic Acid M3 Mutant O508

Line #	16:0	18:0	18:1	18:2	18:3
A129*	4.0	2.4	77.7	7.8	4.2
O508	3.9	2.1	84.9	2.4	2.9

*Fatty acid composition of A129 is the average of 50 self-pollinated plants grown with the M3 population

 $\rm\,M_4$ generation Q508 plants had poor agronomic qualities in the field compared to Westar. Typical plants were slow growing relative to Westar, lacked early vegetative vigor, were short in stature, tended to be chlorotic and had short pods. The yield of Q508 was very low compared to Westar.

The M₄ generation Q508 plants in the greenhouse tended to be reduced in vigor compared to Westar. However, Q508 yields in the greenhouse were greater than Q508 yields in the field.

Fatty Acid Composition of Seed Oil from Greenhouse-Grown Q508, IMC 129 and Westar.

TABLE 16

Line	16:0	18:0	18:1	18:2	18:3	FDA Sats
IMC 129 ^a	4.0	2.4	77.7	7.8	4.2	6.4
Westar ^b	3.9	1.9	67.5	17.6	7.4	>5.8
Q508°	3.9	2.1	84.9	2.4	2.9	6.0

Average of 50 self-pollinated plants

5

25

20

Data from Example 1

^cAverage of 50 self-pollinated plants

5

2

Nine other M4 high-oleic low-linoleic lines were also identified: Q3603, Q3733, Q4249, Q6284, Q6601, Q6761, Q7415, Q4275, and Q6676. Some of these lines had good agronomic characteristics and an elevated oleic acid level in seeds of about 80% to about 84%.

Q4275 was crossed to the variety Cyclone. After selfing for seven generations, mature seed was harvested from 93GS34-179, a progeny line of the Q4275xCyclone cross. Referring to Table 17, fatty acid composition of a bulk seed sample shows that 93GS34 retained the seed fatty acid composition of Q4275. 93GS34-179 also maintained agronomically desirable characteristics.

After more than seven generations of selfing of Q4275, plants of Q4275, IMC 129 and 93GS34 were field grown during the summer season. The selections were tested in 4 replicated plots (5 feet X 20 feet) in a randomized block design. Plants were open pollinated. No selfed seed was produced. Each plot was harvested at maturity, and a sample of the bulk harvested seed from each line was analyzed for fatty acid composition as described above. The fatty acid compositions of the selected lines are shown in Table 17.

TABLE 17

Fatty Acid Composition of
Field Grown IMC 129, Q4275 and 93GS34 Seeds

Line	Fatty Acid Composition (%)						
	C _{16:0}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}	FDA Sats	
IMC 129	3.3	2.4	76.7	8.7	5.2	5.7	
Q4275	3.7	3.1	82.1	4.0	3.5	6.8	
93GS34-179	2.6	2.7	85.0	2.8	3.3	5.3	

The results shown in Table 17 show that Q4275 maintained the selected 25 high oleic - low linoleic acid phenotype under field conditions. The agronomic characteristics of Q4275 plants were superior to those of Q508.

 M_4 generation Q508 plants were crossed to a dihaploid selection of Westar, with Westar serving as the female parent. The resulting F1 seed was

termed the 92EF population. About 126 F1 individuals that appeared to have better agronomic characteristics than the Q508 parent were selected for selfing. A portion of the F_2 seed from such individuals was replanted in the field. Each F_2 plant was selfed and a portion of the resulting F_3 seed was analyzed for fatty acid composition. The content of oleic acid in F_3 seed ranged from 59 to 79%. No high oleic (>80%) individuals were recovered with good agronomic type.

A portion of the F₂ seed of the 92EF population was planted in the greenhouse to analyze the genetics of the Q508 line. F₃ seed was analyzed from 380 F2 individuals. The C_{18:1} levels of F₃ seed from the greenhouse experiment is depicted in Figure 1. The data were tested against the hypothesis that Q508 contains two mutant genes that are semi-dominant and additive: the original IMC 129 mutation as well as one additional mutation. The hypothesis also assumes that homozygous Q508 has greater than 85% oleic acid and homozygous Westar has 62-67% oleic acid. The possible genotypes at each gene in a cross of Q508 by

 $AA = Westar Fad2^a$ $BB = Westar Fad2^b$ $aa = Q508 Fad2^a$ $bb = Q508 Fad2^b$

15 Westar may be designated as:

Assuming independent segregation, a 1:4:6:4:1 ratio of phenotypes is expected. The phenotypes of heterozygous plants are assumed to be indistinguishable and, thus, the data were tested for fit to a 1:14:1 ratio of homozygous Westar: heterozygous plants: homozygous Q508.

Phenoty	pic # of	
<u>Ratio</u>	Westar Alleles	Genotype
1	4	AABB(Westar)
4	3	AABb,AaBB,AABb,AaBB
6	2	AaBb,AAbb,AaBb,AaBb,aaBB,AaBb
4	1	Aabb,aaBb,Aabb,aaBb
1	0	aabb (Q508)
	•	

Using Chi-square analysis, the oleic acid data fit a 1:14:1 ratio. It was concluded that Q508 differs from Westar by two major genes that are semi-dominant and additive and that segregate independently. By comparison, the genotype of IMC 129 is aaBB.

The fatty acid composition of representative F3 individuals having greater than 85% oleic acid in seed oil is shown in Table 18. The levels of saturated fatty acids are seen to be decreased in such plants, compared to Westar.

TABLE 18
92EF F₃ Individuals with >85% C_{18:1} in Seed Oil

		JZLI I3	maividuais	will /839	$\frac{6 \text{ C}_{18:1} \text{ in Se}}{6 \text{ C}_{18:1}}$	ea Oii	
10	F3 Plant Identifier	Fatty A	cid Compo	sition (%)			
	Identifici	C16:0	C18:0	C18:1	C18:2	C18:3	FDASA
	+38068	3.401	1.582	85.452	2.134	3.615	4.983
	+38156	3.388	1.379	85.434	2.143	3.701	4.767
	+38171	3.588	1.511	85.289	2.367	3.425	5.099
1.5	+38181	3.75	1.16	85.312	2.968	3.819	4.977
	+38182	3.529	0.985	85.905	2.614	3.926	4.56
	+38191	3.364	1.039	85.737	2.869	4.039	4.459
	+38196	3.557	1.182	85.054	2.962	4.252	4.739
	+38202	3.554	1.105	86.091	2.651	3.721	4.713
0	+38220	3.093	1.16	86.421	1.931	3.514	4.314
	+38236	3.308	1.349	85.425	2.37	3.605	4.718
	+38408	3.617	1.607	85.34	2.33	3.562	5.224
	+38427	3.494	1.454	85.924	2.206	3.289	4.948
	+38533	3.64	1.319	85.962	2.715	3.516 .	4.959

- 41 -

EXAMPLE 6

Leaf and Root Fatty Acid Profiles of Canola Lines IMC-129, Q508, and Westar

Plants of Q508, IMC 129 and Westar were grown in the greenhouse.

Mature leaves, primary expanding leaves, petioles and roots were harvested at the 6-8 leaf stage, frozen in liquid nitrogen and stored at -70°C. Lipid extracts were analyzed by GLC as described in Example 1. The fatty acid profile data are shown in Table 19. The data in Table 19 indicate that total leaf lipids in Q508 are higher in C_{18:1} content than the C_{18:2} plus C_{18:3} content. The reverse is true for Westar and IMC 129. The difference in total leaf lipids between Q508 and IMC 129 is consistent with the hypothesis that a second Fad2 gene is mutated in Q508.

The C_{16:3} content in the total lipid fraction was about the same for all three lines, suggesting that the plastid FadC gene product was not affected by the Q508 mutations. To confirm that the FadC gene was not mutated, chloroplast lipids were separated and analyzed. No changes in chloroplast C_{16:1}, C_{16:2} or C_{16:3} fatty acids were detected in the three lines. The similarity in plastid leaf lipids among Q508, Westar and IMC 129 is consistent with the hypothesis that the second

mutation in Q508 affects a microsomal Fad2 gene and not a plastid FadC gene.

CABLE 19

	3Q508	12.0				2.5	8.89	4.4	12.3
	129	21.9		.	.,	2.9	6.1	30.4	38.7
ROOT	West.	21.1	,	1		3.6	3.5	28.0	43.8
	3Q508	11.9	1.4	1.8	5.7	1.6	46.9	5.2	25.3
я́.	129	23.5	1.3	2.2	4.6	4.0	12.9	18.3	33.2
PETIOLE	West.	21.7	1.0	1.8	5.7	3.7	4.9	20.7	40.4
	3Q508	11.3	1.1	2.8	6.9	1.5	38.0	4.9	33.5
DING	129	16.1	9.0	3.1	5.4	2.8	8.3	13.8	50.0
EXPANDING LEAF	West.	16.4		2.8	6.3	2.5	3.8	13.3	54.2
	3Q508	10.1	1.1	2.0	14.0	1.2	16.7	8.9	46.0
RE	129	6.11	9.0	2.2	15.0	1.6	4.9	11.5	50.3
MATURE LEAF	West.	12.1	0.8	2.3	14.7	2.2	2.8	12.6	50.6
		16:0	16:1	16:2	16:3	18:0	18:1	18:2	18:3

- 43 -

EXAMPLE 7

Sequences of Mutant and Wild-Type Delta-12 Fatty Acid <u>Desaturases from B. napus</u>

Primers specific for the FAD2 structural gene were used to clone the

entire open reading frame (ORF) of the D and F delta-12 desaturase genes by
reverse transcriptase polymerase chain reaction (RT-PCR). RNA from seeds of
IMC 129, Q508 and Westar plants was isolated by standard methods and was used
as template. The RT-amplified fragments were used for nucleotide sequence
determination. The DNA sequence of each gene from each line was determined

from both strands by standard dideoxy sequencing methods.

Sequence analysis revealed a G to A transversion at nucleotide 316 (from the translation initiation codon) of the D gene in both IMC 129 and Q508, compared to the sequence of Westar. The transversion changes the codon at this position from GAG to AAG and results in a non-conservative substitution of glutamic acid, an acidic residue, for lysine a basic residue. The presence of the same mutation in both lines was expected since the Q508 line was derived from IMC 129. The same base change was also detected in Q508 and IMC 129 when RNA from leaf tissue was used as template.

The G to A mutation at nucleotide 316 was confirmed by sequencing several independent clones containing fragments amplified directly from genomic DNA of IMC 129 and Westar. These results eliminated the possibility of a rare mutation introduced during reverse transcription and PCR in the RT-PCR protocol. It was concluded that the IMC 129 mutant is due to a single base transversion at nucleotide 316 in the coding region of the D gene of rapeseed microsomal delta 12-desaturase.

A single base transition from T to A at nucleotide 515 of the F gene was detected in Q508 compared to the Westar sequence. The mutation changes the codon at this position from CTC to CAC, resulting in the non-conservative substitution of a non-polar residue, leucine, for a polar residue, histidine, in the

resulting gene product. No mutations were found in the F gene sequence of IMC 129 compared to the F gene sequence of Westar.

These data support the conclusion that a mutation in a delta-12 desaturase gene sequence results in alterations in the fatty acid profile of plants

containing such a mutated gene. Moreover, the data show that when a plant line or species contains two delta-12 desaturase loci, the fatty acid profile of an individual having two mutated loci differs from the fatty acid profile of an individual having one mutated locus.

The mutation in the D gene of IMC 129 and Q508 mapped to a region

10 having a conserved amino acid motif (His-Xaa-Xaa-His) found in cloned delta
12 and delta-15 membrane bound-desaturases (Table 20).

TABLE 20

Alignment of Amino Acid Sequences
of Cloned Canola Membrane Bound-Desaturases

15	Desaturase Gene	Sequence ^a	Position
	Canola-fad2-D(mutant)	AHKCGH	109-114
	Canola-Fad2-D	AHECGH	109-114
	Canola-Fad2-F	AHECGH	109-114
	Canola-FadC	<u>GHD</u> C <u>A</u> H	170-175
20	Canola-fad3 (mutant)	<u>G</u> H K CGH	94-99
	Canola-Fad3	<u>G</u> HDCGH	94-99
	Canola-FadD	<u>G</u> HDCGH	125-130

(FadD = Plastid delta 15, Fad3 = Microsomal delta-15),

(FadC = Plastid delta-12, Fad2 = Microsomal delta-12)

^a One letter amino acid code; conservative substitutions are underlined; non-conservative substitutions are in bold.

type Westar plants.

- 45 -

EXAMPLE 8

Transcription and Translation of Microsomal Delta-12 <u>Fatty Acid Desaturases</u>

Transcription in vivo was analyzed by RT-PCR analysis of stage II and stage III developing seeds and leaf tissue. The primers used to specifically amplify delta-12 desaturase F gene RNA from the indicated tissues were sense primer 5'-GGATATGATGATGATGATGAAAGA-3' and antisense primer 5'-TCTTTCACCATCATCATATCC-3'. The primers used to specifically amplify delta-12 desaturase D gene RNA from the indicated tissues were sense primer 5'-GTTATGAAGCAAAGAAGAAAC-3' and antisense primer 5'-GTTTCTTTGCTTCATAAC-3'. The results indicated that mRNA of both the D and F gene was expressed in seed and leaf tissues of IMC 129, Q508 and wild

In vitro transcription and translation analysis showed that a peptide of
about 46 kD was made. This is the expected size of both the D gene product and
the F gene product, based on sum of the deduced amino acid sequence of each
gene and the cotranslational addition of a microsomal membrane peptide.

These results rule out the possibility that non-sense or frameshift mutations, resulting in a truncated polypeptide gene product, are present in either the mutant D gene or the mutant F gene. The data, in conjunction with the data of Example 7, support the conclusion that the mutations in Q508 and IMC 129 are in delta-12 fatty acid desaturase structural genes encoding desaturase enzymes, rather than in regulatory genes.

EXAMPLE 9

25

Development of Gene-Specific PCR Markers

Based on the single base change in the mutant D gene of IMC 129 described in above, two 5' PCR primers were designed. The nucleotide sequence of the primers differed only in the base (G for Westar and A for IMC 129) at the 3' end. The primers allow one to distinguish between mutant fad2-D and wild-type

Fad2-D alleles in a DNA-based PCR assay. Since there is only a single base difference in the 5' PCR primers, the PCR assay is very sensitive to the PCR conditions such as annealing temperature, cycle number, amount, and purity of DNA templates used. Assay conditions have been established that distinguish between the mutant gene and the wild type gene using genomic DNA from IMC 129 and wild type plants as templates. Conditions may be further optimized by varying PCR parameters, particularly with variable crude DNA samples. A PCR assay distinguishing the single base mutation in IMC 129 from the wild type gene along with fatty acid composition analysis provides a means to simplify segregation and selection analysis of genetic crosses involving plants having a delta-12 fatty acid desaturase mutation.

EXAMPLE 10

Transformation with Mutant and Wild Type Fad3 Genes

B. napus cultivar Westar was transformed with mutant and wild type

15 Fad3 genes to demonstrate that the mutant Fad3 gene for canola cytoplasmic linoleic desaturase delta-15 desaturase is nonfunctional. Transformation and regeneration were performed using disarmed Agrobacterium tumefaciens essentially following the procedure described in WO 94/11516.

Two disarmed Agrobacterium strains were engineered, each containing a 20 Ti plasmid having the appropriate gene linked to a seed-specific promoter and a corresponding termination sequence. The first plasmid, pIMC110, was prepared by inserting into a disarmed Ti vector the full length wild type Fad3 gene in sense orientation (nucleotides 208 to 1336 of SEQ ID 6 in WO 93/11245), flanked by a napin promoter sequence positioned 5' to the Fad3 gene and a napin termination 25 sequence positioned 3' to the Fad3 gene. The rapeseed napin promoter is described in EP 0255378.

The second plasmid, pIMC205, was prepared by inserting a mutated Fad3 gene in sense orientation into a disarmed Ti vector. The mutant sequence contained mutations at nucleotides 411 and 413 of the microsomal Fad3 gene

described in WO93/11245, thus changing the sequence for codon 96 from GAC to AAG. The amino acid at codon 96 of the gene product was thereby changed from aspartic acid to lysine. See Table 20. A bean (*Phaseolus vulgaris*) phaseolin (7S seed storage protein) promoter fragment of 495 base pairs was placed 5' to the mutant Fad3 gene and a phaseolin termination sequence was placed 3' to the mutant Fad3 gene. The phaseolin sequence is described in Doyle et al., (1986) J. Biol. Chem. 261:9228-9238) and Slightom et al., (1983) Proc. Natl. Acad. Sci. USA 80:1897-1901.

The appropriate plasmids were engineered and transferred separately to

Agrobacterium strain LBA4404. Each engineered strain was used to infect 5 mm
segments of hypocotyl explants from Westar seeds by cocultivation. Infected
hypocotyls were transferred to callus medium and, subsequently, to regeneration
medium. Once discernable stems formed from the callus, shoots were excised and
transferred to elongation medium. The elongated shoots were cut, dipped in

RootoneTM, rooted on an agar medium and transplanted to potting soil to obtain
fertile T1 plants. T2 seeds were obtained by selfing the resulting T1 plants.

Fatty acid analysis of T2 seeds was carried out as described above. The results are summarized in Table 21. Of the 40 transformants obtained using the pIMC110 plasmid, 17 plants demonstrated wild type fatty acid profiles and 16 demonstrated overexpression. A proportion of the transformants are expected to display an overexpression phenotype when a functioning gene is transformed in sense orientation into plants.

Of the 307 transformed plants having the pIMC205 gene, none exhibited a fatty acid composition indicative of overexpression. This result indicates that the mutant fad3 gene product is non-functional, since some of the transformants would have exhibited an overexpression phenotype if the gene product were functional.

TABLE 21

Overexpression and Co-suppression Events in Westar Populations Transformed with pIMC205 or pIMC110.

Construct	Construct Number of α - Transformants Linolenic Acid		Overexpression Events (>10% linolenic)	Overexpression Co-Suppression Wild Type Events Events Events (>10% linolenic) (<4.0% linolenic)	Wild Type Events
		Range(%)	,		
pIMC110	40	2.4 - 20.6	16	7	17
pIMC205	307	4.6 - 10.4	0	0	307

Fatty acid compositions of representative transformed plants are presented in Table 22. Lines 652-09 and 663-40 are representative of plants containing pIMC110 and exhibiting an overexpression and a co-suppression phenotype, respectively. Line 205-284 is representative of plants containing pIMC205 and having the mutant fad3 gene.

TABLE 22

Fatty Acid Composition of T2 Seed
From Westar Transformed With pIMC205 or pIMC110.

.]	Line		Fatty Aci	d Compo	sition (%)
		C16:0	C18:0	C18:1	C18:2	C18:3
10	652-09 pIMC110 overexpression	4.7	3.3	65.6	8.1	14.8
	663-40 pIMC110 co-suppression	4.9	2.1	62.5	23.2	3.6
15	205-284 pIMC205	3.7	1.8	68.8	15.9	6.7

EXAMPLE 11

Sequences of Wild Type and Mutant Fad2-D and Fad2-F

High molecular weight genomic DNA was isolated from leaves of Q4275 plants (Example 5). This DNA was used as template for amplification of Fad2-D and Fad2-F genes by polymerase chain reaction (PCR). PCR amplifications were carried out in a total volume of 100 μl and contained 0.3 μg genomic DNA, 200 μM deoxyribonucleoside triphosphates, 3 mM MgSO₄, 1-2 Units DNA polymerase and 1X Buffer (supplied by the DNA polymerase

25 manufacturer). Cycle conditions were: 1 cycle for 1 min at 95°C, followed by 30 cycles of 1 min at 94°C, 2 min at 55°C and 3 min at 73°C.

The Fad2-D gene was amplified once using Elongase® (Gibco-BRL). PCR primers were: CAUCAUCAUCAUCTTCTTCGTAGGGTTCATCG and

CUACUACUATCATAGAAGAGAAAGGTTCAG for the 5' and 3' ends of the gene, respectively.

The Fad2-F gene was independently amplified 4 times, twice with Elongase® and twice with Taq polymerase (Boehringer Mannheim). The PCR primers used were: 5'CAUCAUCAUCAUCATGGGTGCACGTGGAAGAA3' and 5'CUACUACUATCTTTCACCATCATCATCATATCC3' for the 5' and 3' ends of the gene, respectively.

Amplified DNA products were resolved on an agarose gel, purified by JetSorb® and then annealed into pAMP1 (Gibco-BRL) via the (CAU)₄ and (CUA)₄ sequences at the ends of the primers, and transformed into E. coli DH5α.

The Fad2-D and Fad2-F inserts were sequenced on both strands with an ABI PRISM 310 automated sequencer (Perkin-Elmer) following the manufacturer's directions, using synthetic primers, AmpliTaq® DNA polymerase and dye terminator.

The Fad2-D gene was found to have an intron upstream of the ATG start codon. As expected, the coding sequence of the gene contained a G to A mutation at nucleotide 316, derived from IMC 129 (Fig. 2).

A single base transversion from G to A at nucleotide 908 was detected in the F gene sequence of the Q4275 amplified products, compared to the wild type F gene sequence (Fig. 2). This mutation changes the codon at amino acid 303 from GGA to GAA, resulting in the non-conservative substitution of a glutamic acid residue for a glycine residue (Table 3 and Fig. 3). Expression of the mutant Q4275 Fad2-F delta-12 desaturase gene in plants alters the fatty acid composition, as described hereinabove.

25

EXAMPLE 12

High Erucic, High Oleic Acid Rapeseed

The breeding procedure designed to produce novel fatty acid compositions in rapeseed is outlined in Figure 4. In general, crosses were made between a high erucic acid line and a high oleic acid line. The high erucic acid

- 51 -

line, designated HECO1 (sold under the trade name Hero), contains about 45.5% erucic acid (Table 23). The high oleic acid lines were designated 93GS66A-130 and 93GS34A-179 and were derived from 93GS. See, for example, Example 5 and Table 17. These lines contain about 84% oleic acid in their seed oil (Table 24).

5

TABLE 23

Fatty Acid Composition of HEC01

15

20

Fatty Acid	Weight (%)
C _{14:0}	0.05
C _{16:0}	3.60
C _{16:1}	0.36
C _{18:0}	1.66
$C_{_{18:1}}$	14.72
C _{18:2}	10.67
C _{18:3}	9.71
C _{20:0}	1.36
C _{20:1}	9.04
C _{20:2}	0.48
C _{22:0}	1.74
C _{22:1}	45.45
C _{24:0}	0.49
C _{24:1}	0.81

52 -

TABLE 24 Fatty Acid Composition of 93GS66A-130 and 93GS34A-179

	Fatty Acid	Weight(%) of 93GS66A-130	Weight(%) of 93GS34A-179
,	C _{14:0}	0.04	0.05
5	C _{16:0}	3.25	3.23
	C _{16:1}	0.25	0.25
	C _{18:0}	1.60	1.94
	C _{18:1}	84.38	83.71
	C _{18:2}	2.58	3.14
10	C _{18:3}	4.86	4.76
	C _{20:0}	0.56	0.65
	C _{20:1}	1.57	1.41
	C _{20:2}	0.05	0.04
	C _{22:0}	0.37	0.39
15	C _{22:1}	0.06	0.03
	C _{24:0}	0.20	0.18
	C _{24:1}	0.21	0.18

The F₁ generations of crosses between HEC01 x 93GS66A-130, and HEC01 x 93GS34A-179, were designated 96.801 and 96.804, respectively. F₁ 20 96.801 and 96.804 plants were self-pollinated to produce F₂ seed. Overall, 622 random single F₂ seeds were analyzed for their fatty acid composition. Table 25 summarizes the average percent and standard deviation for total monounsaturated content, oleic acid, eicosenoic acid, erucic acid, total polyunsaturated and total saturated fatty acid content of these 622 seeds.

- 53 -

TABLE 25

Fatty acid	%
Total long chain monounsaturated	78.90 ± 4.07
Palmitoleate	0.28 ± 0.06
Oleic Acid	45.33 ± 9.91
Eicosenoic Acid	14.84 ± 2.84
Erucic Acid	17.97 ± 8.9
Nervonic Acid	0.48 ± 0.21
Total polyunsaturated	7.10 ± 1.05
Total saturated	13.99 ± 3.83

10

5

Analysis of this data indicate that the frequency distributions deviate from a normal distribution. The total long chain monounsaturated content frequency distribution is slightly skewed to the right (-0.0513), and the eicosenoic acid content distribution is strongly skewed to the right (-1.715). Frequency distributions for oleic acid and erucic acid content are strongly skewed to the left (0.397 and 0.177, respectively). Skewness was calculated using Lotus 1-2-3 for Windows (release 5.0).

Table 26 describes characteristics of selected populations within the total population of seeds. For example, 151 seeds had a long chain monounsaturated fatty acid content greater than 82% (Table 26, column B). Within this population, the average oleic, eicosenoic and erucic acid content was about 48%, 16%, and 19%, respectively. Total polyunsaturated fatty acid content (C18:2, C18:3, and C20:2) was about 9% and total saturated fatty acid content was less than 7%.

Forty-seven of the 622 seeds had a long chain monounsaturated content greater than 85% (Table 26, column C). The average oleic, eicosenoic and erucic acid content within these seeds was 51%, 17%, and 17%, respectively. Total saturated and total polyunsaturated fatty acids were each less than 7%.

Twenty-three of the seeds had an eicosenoic acid content greater than 19% (Table 26, column F). Within these seeds, the average oleic acid erucic acid content was about 44% and 19%, respectively. Total polyunsaturated fatty acids were less than 10% and total saturated fatty acids were less than 7%.

26
نه
፮
<u>_</u>

			1 able 20			
	А	В	С	D	3	뚀
Total Saturated	6.76 ± 0.72	6.65 ± 0.07	6.68 ± 0.61	6.85 ± 0.98	6.85 ± 0.93	6.66 ± 0.78
C14:0	0.04 ± 0.04	0.07 ± 0.05	0.06 ± 0.03	0.07 ± 0.04	0.06 ± 0.64	0.07 ± 0.05
C16:0	3.42 ± 0.37	3.35 ± 0.34	3.28 ± 0.32	3.45 ± 0.40	3.51 ± 0.42	3.31 ± 0.33
C18:0	1.92 ± 0.33	1.93 ± 0.32	2.06 ± 0.32	1.83 ± 0.30	1.90 ± 0.30	1.93 ± 0.23
C20:0	0.77 ± 0.14	0.76 ± 0.14	0.76 ± 0.13	0.80 ± 0.13	0.76 ± 0.12	0.79 ± 0.16
C22:0	0.38 ± 0.14	0.36 ± 0.12	0.37 ± 0.11	0.42 ± 0.15	0.35 ± 0.12	0.35 ± 0.29
C24:0	0.21 ± 0.19	0.19 ± 0.14	0.20 ± 0.17	0.28 ± 0.76	0.26 ± 0.71	0.19 ± 0.24
Total Monounsaturated	82.91 ± 2.11	84.21 ± 1.64	86.21 ± 1.00	79.49 ± 4.00	80.36 ± 3.75	83.92 ± 2.43
C16:1	0.28 ± 0.05	0.27 ± 0.05	0.27 ± 0.04	0.27 ± 0.05	0.27 ± 0.05	0.26 ± 0.05
C18:1	46.45 ± 9.47	47.66 ± 9.22	51.33 ± 8.96	39.29 ± 6.21	43.55 ± 6.91	44.08 ± 2.89
C20:1	16.91 ± 2.57	16.41 ± 2.47	16.72 ± 2.40	15.56 ± 2.22	16.78 ± 1.30	19.97 ± 0.63
C22:1	19.69 ± 8.45	19.38 ± 8.25	17.39 ± 12.26	23.81 ± 5.89	19.27 ± 6.39	19.09 ± 2.32
C24:1	0.49 ± 0.19	0.48 ± 0.17	0.50 ± 0.18	0.56 ± 0.19	0.49 ± 0.21	0.52 ± 0.29
Total Polyunsaturated	10.33 ± 2.10	9.14 ± 1.71	7.11 ± 0.98	13.66 ± 3.87	12.80 ± 3.60	9.43 ± 2.43
C18:2	5.16 ± 1.5	4.36 ± 1.24	3.17 ± 0.82	7.25 ± 2.62	6.58 ± 2.40	3.96 ± 1.39
C18:3	5.02 ± 1.18	4.65 ± 1.07	3.84 ± 0.69	6.19 ± 1.61	6.02 ± 1.52	5.27 ± 1.25
C20:2	0.15 ± 0.10	0.13 ± 0.04	0.10 ± 0.04	0.22 ± 0.11	0.19 ± 0.10	0.20 ± 0.28
A=>RAM total long chain m	Carried Contraction Contraction	417				

A=>80% total long chain monounsaturated content, n=247; B=>82% total long chain monounsaturated content, n=151; C=>85% total long chain monounsaturated content, n=47; D=>15% erucic acid, n=318; E=>15% eicosenoic acid, n=323; F=>19% eicosenoic acid, n=23

Fatty acid composition of selected single seeds is presented in Table 27. V800655.334 was a single seed that had a long chain monounsaturated fatty acid content of approximately 84%. The oleic acid, eicosenoic acid and erucic acid content was 33.48%, 17.14%, and 32.23%, respectively. The total polyunsaturated fatty acid content was approximately 10%. The linoleic, α -linolenic and erucic acid content was 3.54%, 6.01%, and 0.15%, respectively.

V800655.126 was a single seed that had a long chain monounsaturated fatty acid content of approximately 85% (42.67% oleic acid, 16.21% eicosenoic acid, and 25.37% erucic acid). The total polyunsaturated fatty acid content was approximately 8% (4.87% linoleic acid, 3.05% α-linolenic acid, and 0.13% eicosadienoic acid).

V800654.9 was a single seed that had a long chain monounsaturated fatty acid content of 89% (51.53% oleic acid, 16.94% eicosenoic acid, and 19.24% erucic acid). The total polyunsaturated fatty acid content was approximately 8% 15 (4.87% linoleic acid, 3.05% α-linolenic acid, and 0.13% eicosadienoic acid).

Single seeds having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% were planted in a greenhouse, grown to maturity and self-pollinated. Seed (F₃ generation) from each plant were harvested. A bulk seed sample from each F₂ plant is analyzed for fatty acid composition.

- 57 TABLE 27
Fatty Acid Composition of Selected Single Seeds

	Fatty Acid	V800655.334 Weight (%)	V800655.126 Weight (%)	V800654.9 Weight (%)
	C _{14:0}	0.07	0.05	0.03
5	C _{16:0}	3.49	3.52	2.98
	C _{16:1}	0.34	0.28	0.28
	C _{18:0}	1.64	1.89	1.65
	C _{18:1}	33.48	42.67	51.53
	C _{18:2}	3.54	4.87	2.09
0	C _{18:3}	6.01	3.05	3.53
	C _{20:0}	0.86	0.87	0.68
	C _{20:1}	17.14	16.21	16.94
	C _{20:2}	0.15	0.13	0.10
·	C _{22:0}	0.41	0.35	0.24
5	C _{22:1}	32.23	25.37	19.24
	C _{24:0}	0.12	0.13	0.14
	C _{24:1}	0.52	0.61	0.59

EXAMPLE 13

Additional crosses were made between Hero and several high oleic lines

(Table 28) to increase the seed erucic acid content through a reduction in
polyunsaturates content and increase in total monunsaturates content. The high
oleic acid lines included 048X058 and Q4275X663-40. The 048X058 line resulted
from a cross of two separate transformed lines. The 048X058 line contains a cosuppression event resulting from introduction of the 663-40 transgene described
above, and a second co-suppression event resulting from a transgene that includes
an oleosin promoter linked to an oleic desaturase gene. The Q4275X663-40 line
was derived from a cross of Q4275 (Example 5 and Table 17) by 663-40. The

663-40 line contains a co-suppression event resulting from a transgene that includes a napin promotor linked to a linoleic desaturase gene. Plants of each line were grown in growth chambers under 16 hrs of light at 23/17°C day/night temperature. Flowers were emasculated prior to opening and covered to prevent cross pollination. On the following day, stigmas of emasculated flowers were pollinated with the desired pollen donor. At pod maturity the F1 seed was harvested.

TABLE 28

Cross Number	Female Parent	Cross Number Female Parent Female Phenotype	Male Parent	Male Phenotype	Source of Male Phenotype
неноа	HEC101	High 22:1	, 048X058	High 18:1/ Low 18:3	Transgenes
ненов	HEC101	High 22:1	Q4275X663- 40	Q4275X663- High 18:1/ Low 40 18:3	Mutant/ Transgene
ненос	HEC101	High 22:1	Q4275X663- 40	High 18:1/ Low 18:3	Mutant/ Transgene

5

F1 seed generated from the crosses in Table 28 were advanced to F2 seed generation in the growth chamber. Ten seeds were individually planted for each cross. At flowering the plants were covered with bags to ensure self pollination. The F2 seeds were harvested at maturity.

The seeds were germinated on filter paper at room temperature in the dark. Eighteen to 24 hours after the start of germination, one cotyledon was removed from the seed for extraction of fatty acids. Fatty acid compositions were determined using gas chromatography. Selected F2 half seeds having a high erucic content are shown in Tables 29 and 30.

F₂ half seeds were planted in soil and grown under growth chamber conditions described above. At flowering the plants were covered with bags for self pollination. After maturity, F₃ seed was harvested and analyzed for fatty acid composition. Seeds were analyzed using a 10-15 seed sample size. The results of the analysis are in Tables 31 and 32.

TABLE 29

Fatty Acid Composition of F, Half Seeds of HEHOA [HE101X(048X052)]

Sample No.					Fatty Acid Composition (%)	d Compo	sition (%)				
	C16:0	C18:0 C18:1	C18:1	C18:2	C18:2 C18:3 C20:0 C20:1	C20:0	C20:1	C22:0	C22:1	C24:0	C24:1
VL10186-1	3.34	1.83	49.7	3.32	1.59	0.87	19.62	0:30	18.10	0.39	0.35
VL10186-5	2.61	1.07	29.14	5.81	2.42	0.71	14.99	0.31	40.90	0.93	09.0
VL10186-33 3.47		1.32	29.73	4.38	2.98	98.0	12.22	0.44	41.21	1.50	1.28
VL10186-59 4.01		1.68	41.38 2.96		1.69	1.08	19.72	0.43	26.05	0	0.55
VL10186-67 3.90		1.29	29.10	3.65	2.89	0.88	13.79	0.52	40.96	1.31	1.09
VL10186-74 2.76		1.25	34.04	2.63	1.45	0.75	16.64	0.38	38.67	0.14	0.95
VL10186-88 3.23		1.39	48.97	3.27	1.50	0.60	19.71	0.17	20.48	0	0.36

TABLE 30

Fatty Acid Compositions of Half Seeds of HEHOC [HE101X(Q4275X663-40)]

Sample No.					Fatty Acid Composition (%)	d Compo	sition (%	(1			
	C16:0	C18:0	C18:1	C18:2	C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 C22:0 C22:1 C24:0	C20:0	C20:1	C22:0	C22:1	C24:0	C24:1
VL10200-214 2.24 0.74 31.66 3.01 6.24 0.46 11.79 0.41	2.24	0.74	31.66	3.01	6.24	0.46	11.79	0.41	40.60 0.86	98.0	1.57
VL10200-231 3.89 1.03	3.89	1.03	31.51	31.51 12.50 2.41	2.41	0.54	0.54 14.17 0.29	0.29	32.23 0		0.75
VL10200-238 3.36 0.95 33.19 8.99 1.66 0.55 14.35 0.21	3.36	0.95	33.19	8.99	1.66	0.55	14.35	0.21	33.61 0.83	0.83	1.02
VL10200-267 3.12 1.02	3.12	1.02	30.18	7.61	30.18 7.61 1.52 0.59	0.59	14.53 0.19	0.19	39.41 0.24	0.24	1.013
VL10203-50 2.63 0.97 31.79 8.47	2.63	0.97	31.79		1.99	0.58	0.58 14.58 0.25	0.25	37.41 0.13	I	0.59
VL10200-293 2.71	2.71	0.78	32.83 6.85		1.88 0.46	0.46	13.11 0.32 39.18 0.82	0.32	39.18	ł	0.67

TABLE 31
Fatty acid composition of F3 lines of 97HEHOA [HE101X(048X052)]

				֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓	any Acic	Compos	ratty Acid Composition (%)				
Sample No.	C16:0	C16:0 C18:0	C18:1	C18:2	C18:3	C20:0	C18:1 C18:2 C18:3 C20:0 C20:1 C22:0 C22:1 C24:0	C22:0	C22:1	C24:0	C24:1
НЕНОА-74 2.51	2.51	1.03	27.44	3.72	3.55	0.65	13.60 0.30	0:30	45.57	0.14	1.03
HEHOA-01 3.66	3.66	1.40	47.79	6.47	2.97	0.62	19.23	0.25	16.11	0.14	97.0
HEHOA-67 2.47	2.47	0.84	20.43	7.25	3.89	69.0	10.33	0.47	52.09	0.16	98.0
HEHOA-59 2.81		1.08	27.01	7.88	2.82	0.69	16.15	0.32	39.68	0.15	98.0
HEHOA-88 3.16		1.21	44.85	9.21	2.31	0.49	16.30	0.21	21.00 0.12	0.12	0.58
НЕНОА-33 2.53	2.53	0.79	21.90	9.52	3.55	0.53	11.51 0.31	0.31	47.59 0.13	0.13	1.08
НЕНОА-5	2.93	1.01	23.67	10.26 2.00		6.63	14.34	0.38	42.98 0.15		1.06

TABLE 32
Fatty acid composition of F3 lines of HEHOC | HE101X(Q4275X663-40)|

					Fatty Acid Composition (%)	d Compo	sition (%	(G			
Sample No.	C16:0	C18:0	C18:1	C18:2	C18:3	C20:0	C20:1	C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 C22:0 C22:1 C24:0 C24:1	C22:1	C24:0	C24:1
НЕНОС-214	2.47	1.12	31.15	3.77	2.47 1.12 31.15 3.77 3.84 0.77 13.78 0.43	0.77	13.78		41.15	41.15 0.17 0.97	0.97
ненос-267	2.62	1.42	31.64	6.44	1.42 31.64 6.44 1.30 0.84 15.64 0.39	0.84	15.64		38.15	38.15 0.16 0.95	0.95
ненос-293	2.73	1.13	32.08	7.23	2.73 1.13 32.08 7.23 2.18 0.72	0.72	14.88	14.88 0.41 37.17 0.17 0.81	37.17	0.17	0.81
НЕНОС-238	2.90	1.05	35.20	9.37	1.05 35.20 9.37 1.76 0.66 14.88 0.38	99.0	14.88		32.05 0.1	1	1.01
HEHOC(2)-50 2.60 0.93 31.16 5.66 2.09 0.61	2.60	0.93	31.16	5.66	2.09	0.61	14.93 0.31	0.31	40.30 0.11	1	0.88
HEHOC(2)-156 3.19	3.19	1.71	46.56	3.05	1.71 46.56 3.05 1.59 0.94 16.41 0.40	0.94	16.41		24.67 0.19 0.83	0.19	0.83

HEHOC-214 F₃ seeds were planted and grown under growth chamber conditions and self-pollinated as described above. At maturity, F₄ seeds were harvested and analyzed for fatty acid composition, using bulk samples of 10-15 seeds. The seed fatty acid composition of three F₄ lines is shown in Table 33. All three samples had a long chain monounsaturated fatty acid content of greater than 82% and an erucic acid content of greater than 37% based on total fatty acid composition. Genes affecting fatty acid composition are still segregating in this F₄ generation material. Selection in subsequent generations will fix the genetic makeup and result in lines having a seed fatty acid composition of about 25-30% oleic acid, about 3-4% linoleic acid, about 1-2% α-linolenic acid, about 45-50% erucic acid and about 10-13% eicosenoic acid.

TABLE 33
Fatty acid composition of F4 lines of HEHOC 214

Sample					Fatty	Fatty Acid Composition (%)	mposition	(%) u				
	C16:0	C18:0	C18:1	C18:2	C18:3	C20:0	C20:1	C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 C22:0 C22:1 C24:0 C24:1 Total Sats	C22:1	C24:0	C24:1	Total Sats
-	1.91 1.33 35.9 3.17 1.21 0.97 16.57 0.52	1.33	35.9	3.17	1.21	0.97	16.57	0.52	37.1	37.1 0.23 0.76 4.9	0.76	4.9
2	1.86	0.87	24.26 8.49 1.01 0.7	8.49	1.01	0.7	12.41 0.4	1	48.56	48.56 0.18 0.90 4.0	06.0	4.0
3	1.94	0.83	26.67 8.31 1.02 0.64 14.17 0.34	8.31	1.02	0.64	14.17	0.34	44.71	44.71 0.14 0.82	0.82	3.9

EXAMPLE 14

Seeds from the lines of Table 31 were planted in two separate plots.

Plants in each plot were allowed to open-pollinate. Oil was extracted from seeds produced on each plot; the fatty acid compositions of each oil are shown in Table

34. A sample of each oil was refined and bleached (high long chain monounsaturate plot 1) or refined, bleached, and deodorized (high long chain monounsaturate plot 2). Oil from plot 1 had a total saturated fatty acid content of 5.55%, a long chain monounsaturated fatty acid content of 85.23%, and a total polyunsaturated fatty acid content of 6.80%. Oil from plot 2 had a total saturated fatty acid content of 5.22%, a long chain monounsaturated fatty acid content of 82.90%, and a total polyunsaturated fatty acid content of 9.56%. The iodine values of oil from plots 1 and 2 were 79 and 81.7, respectively. Oil from plot 1, which was not deodorized, contained 420 ppm of tocopherol. Oil from plot 2 contained 280 ppm of tocopherol. Oil from plots 1 and 2 had average oxidative stabilities of 70 AOM hours (n=2, 69 and 71 AOM hours) and 49.5 AOM hours (n=2, 48 and 51 AOM hours), respectively.

TABLE 34

Fatty Acid Composition of High Long Chain Monounsaturate Rapeseed Oil

	Plot				Fatty Ac	id Compo	sition (%))		
20	No.	C16:0	C18:0	C18:1	C18:2	C18:3	C20:0	C20:1	C22:0	C22:1
ļ	Plot 1	2.45	1.50	31.50	3.68	2.45	0.90	13.20	0.39	39.3
	Plot 2	2.55	1.30	29.70	6.35	2.46	0.76	12.50	0.36	39.50

Table 35 provides characteristics of oils from plots 1 and 2, which were determined by differential scanning calorimetry using a Perkin Elmer Model 7 differential scanning calorimeter. Samples of 7-12 mg were placed in sample pans, sealed, and loaded into an autosampler. Samples were cooled from an initial temperature of 20°C, which was maintained for 1 minute, to -30°C at a rate of

10

40°C per minute. Samples were held at -30°C for 10 minutes, then heated to 75°C at a rate of 5°C per minute to obtain a melting curve. Samples were held at 75°C for 10 minutes, then cooled to -30°C at a rate of 5°C per minute to obtain a cooling curve. The results show that these oils, having a long chain monounsaturate content of greater than 82% and an erucic acid content of greater than 15%, exhibit melting points of about 2-3° C. By comparison, trierucin is a solid at room temperature.

TABLE 35

Characteristics of High Long Chain Monounsaturate Rapeseed Oil

Plot	MP (°C)	Onset of Crystallization (°C)	ΔΗ (j/g)
1	3.2	-24	88.5
. 2	2.2	-27 `	92.6

EXAMPLE 15

Seeds of *Brassica napus* variety IMC 129 were mutagenized with

MNNG as described in Example 5. Treated seeds were grown as described in

Example 5 and selection for decreased seed stearic acid or decreased palmitic acid

content was carried out at the M3 generation. Plants from two selected lines,

designated ZW1441 (decreased palmitic acid) and Y30137 (decreased stearic acid),

were crossed with HE101. ZW1441XHE101 progeny that produced seeds having

decreased palmitic acid and elevated erucic acid were selected. Y30137XHE101

progeny that produced seeds having decreased stearic acid and elevated erucic acid

were selected. The fatty acid composition of seeds from representative F₄

generation selected lines is shown in Table 36. The results show that seeds having

a long chain monounsaturate content of about 82% or greater, an erucic acid

content of 15% or greater and a total saturates content of less than 4% (e.g., about 2.0 to about 4.0%) can be achieved.

TABLE 36 Fatty Acid Composition of F, Lines

Sample No.				Fatty Aci	Fatty Acid Composition (%)	sition (%	(9		
	C16:0	C18:0	C18:1	C18:2	C18:3	C20:0	C20:1	C22:0	C22:1
ZW1441	2.73	1.74	73.46	11.46	7.52	29.0	1.47	0.34	0
ZW1441 x HE101									
_	1.99	0.97	14.89	10.66	6.77	0.97	8.57	0.78	52.4
2	2.15	0.90	14.89	12.09	7.01	08.0	8.84	0.58	50.7
3	2.18	1.02	13.86	11.24	6.64	0.97	8.89	0.65	52.33
Y30137	3.44	1.14	78.08	7.41	6.23	0.71	1.70	0.46	0.04
HE101 x Y30137									
	2.26	0.77	17.17	9.31	6.32	69.0	10.44	0.50	50.99
2	1.99	0.75	26.42	8.48	7.47	0.58	12.97	0.39	39.5
3	1.99	0.79	24.62	5.22	6.32	0.64	13.84	0.35	44.86

ഗ

10

To the extent not already indicated, it will be understood by those of ordinary skill in the art that any one of the various specific embodiments herein described and illustrated may be further modified to incorporate features shown in other of the specific embodiments. All patents, publications, and other references cited herein are incorporated by reference in their entirety.

The foregoing detailed description has been provided for a better understanding of the invention only and no unnecessary limitation should be understood therefrom as some modifications will be apparent to those skilled in the art without deviating from the spirit and scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. A *Brassica* plant producing seeds having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition.
- 5 2. The plant of claim 1, said seeds having an oleic acid content of at least about 37% based on total fatty acid composition.
 - 3. The plant of claim 1, said seeds having an eicosenoic acid content of at least about 14% based on total fatty acid composition.
- 4. The plant of claim 1, wherein said monounsaturated fatty acid content is from about 85% to about 90%.
 - 5. The plant of claim 4, said seeds having an oleic acid content of at least about 42% based on total fatty acid composition.
 - 6. The plant of claim 5, wherein said oleic acid content is from about 47% to about 56%.
- 7. The plant of claim 4, said seeds having an erucic acid content of from about 17% to about 31% based on total fatty acid composition.
 - 8. The plant of claim 4, said seeds having an eicosenoic acid content from about 15% to about 21% based on total fatty acid composition.
- 9. The plant of claim 1, said seeds having a saturated fatty acid content of less20 than about 7% based on total fatty acid composition.

- 10. The plant of claim 9, said seeds having a saturated fatty acid acid content of less than about 4% based on total fatty acid composition.
- 11. The plant of claim 10, said seeds having a saturated fatty acid acid content of about 2% to about 4% based on total fatty acid composition.
- 5 12. The plant of claim 1, said seeds having a polyunsaturated fatty acid content of less than about 11% based on total fatty acid composition.
 - 13. The plant of claim 12, said seeds having a polyunsaturated fatty acid content of about 6% to about 11% based on total fatty acid composition.
- 14. The plant of claim 1, said seeds having an α-linolenic acid content of about 1%
 10 to about 2% based on total fatty acid composition.
 - 15. Progeny of the plant of claim 1, said progeny having said long chain monounsaturated fatty acid content and said erucic acid content.
- 16. A Brassica seed oil having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total15 fatty acid composition.
 - 17. The oil of claim 16, said oil having an oleic acid content of at least about 37% based on total fatty acid composition.
 - 18. The oil of claim 16, said oil having an eicosenoic acid content of at least about 14% based on total fatty acid composition.
- 20 19. The oil of claim 16, wherein said monounsaturated fatty acid content is from about 85% to about 90%.

- 20. The oil of claim 19, said oil having an oleic acid content of at least about 42% based on total fatty acid composition.
- 21. The oil of claim 20, wherein said oleic acid content is from about 47% to about 56%.
- 5 22. The oil of claim 19, said oil having an erucic acid content of from about 17% to about 31% based on total fatty acid composition.
 - 23. The oil of claim 19, said oil having an eicosenoic acid content from about 15% to about 21% based on total fatty acid composition.
- 24. The oil of claim 16, said oil having a saturated fatty acid content of less than about 7% based on total fatty acid composition.
 - 25. The oil of claim 16, said oil having a polyunsaturated fatty acid content of less than about 11% based on total fatty acid composition.
 - 26. The oil of claim 25, wherein said polyunsaturated fatty acid content is less than about 9%.
- 27. A Brassica seed oil having a long chain monounsaturated fatty acid content of at least about 82%, wherein the sum of the nervonic acid, erucic acid and eicosenoic acid content is from about 50% to about 66% based on total fatty acid composition.
- 28. The seed oil of claim 27, wherein the oleic acid content is from about 25% to 20 about 30%.

- 29. A method of producing a *Brassica* plant, said method comprising the steps of crossing a first plant line with a second plant line and selecting progeny of said cross, wherein said first plant line has an erucic acid content of at least about 45% based on total fatty acid composition and said second plant line has an oleic acid content of at least about 84% based on total fatty acid composition, said progeny having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition.
- 30. A method of making a vegetable oil, said method comprising the steps of crushing Brassica seeds having a long chain monounsaturated fatty acid content of
 at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition, and extracting said vegetable oil from said crushed seeds.
 - 31. The method of claim 30, further comprising the steps of refining and bleaching said oil.
 - 32. The method of claim 31, further comprising the step of deodorizing said oil.
- 15 33. A lubricant, comprising a Brassica oil having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition, and an additive.
- 34. The lubricant of claim 33, wherein said additive is selected from the group consisting of an antioxidant, a rust inhibitor, a corrosion inhibitor, a pour point
 20 depressant, an anti-foam additive, a colorant and a detergent.
 - 35. The lubricant of claim 33, wherein said additive is present in an amount from about 0.01% to about 20% by weight.

- 36. A hydraulic fluid comprising a *Brassica* oil having a long chain monounsaturated fatty acid content of at least about 82% and an erucic acid content of at least about 15% based on total fatty acid composition, and an additive.
- 37. The hydraulic fluid of claim 36, wherein said additive is selected from the
 group consisting of an antioxidant, a rust inhibitor, a corrosion inhibitor, a pour point depressant, an anti-foam additive, a colorant and a detergent.
 - 38. The hydraulic fluid of claim 36, wherein said additive is present in an amount from about 0.01% to about 20% by weight.

			•
IMC 129 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508 Q4275
wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)
Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2 - D Fad2 - D Fad2 - F Fad2 - F	Fad2-D Fad2-D Fad2-F Fad2-F
40 CTCCCTCCA CTCCCTCCA CTCCCTCCA CTCCCTCCA	80 A C C C T G C G A A C C C T G C G A	120 A A A G C A A T C A A A G C A A T C	160 GCTCTTTCT GCTCTTTCT GCTCTTTCT GCTCTTTCT
30 C A A G T G T C T C C A A G T G T C T C C A A G T G T C T C C A A G T G T C T C C A A G T G T C T C	T C A A G C G C G T T C A A G C G C G C G T T C A A G C G C G C G T T C A A G C G C G T T C A A G C G C G T T C A A G C G C G T T C A A G C G C G T T	110 AGAACTCAAGAGAGAGAGAGAGAGAGAGAGAGAGTCAAAGAGAAGTCAAAGAGAGGAAGAGAAGAAGAAGAAGAAGAAGAAGAAGA	150 T C G A T C C C T C T C G A T C C C T C T C G A T C C C T C T C G A T C C C T C
20 1 G G A A G A A T G T G G A A G A A T G T G G A A G A A T G T G G A A G A A T G T G G A A G A A T G	60 A C C G A C A A C A A C C G A C A A C A A C C G A C A C C A A C C G A C A C C A A C C G A C A C C A	100 TCACTGTCGG TCACTGTCGG TCACTGTCGG	140 T T T C A A A C G C T T T C A A A C G C T T T C A A A C G C T T T C A A A C G C T T T C A A A C G C
10 A T G G G T G C A G G A T G G G T G C A G G A T G G G T G C A G G A T G G G T G C A G G A T G G G T G C A G G	50 A A A A G T C T G A A A A A A G T C T G A A A G A A G T C T G A A A G A A G T C T G A A A G A A G T C T G A A	90 G A C A C C G C C C T G A C A C C G C C C T G A C A C C G C C C T G A C A C C G C C C T	130 C C A C C G C A C T G C C A C C G C A C T G C C A C C G C A C T G C C A C C G C A C T G C C A C C G C A C T G
. ਰਗਰਗ ,	41 41 41 41	81 81 81 81	121 121 121 121 121

F19.2A

0508 Q508 Q4275	IMC 125 Q508 Q4275	IMC. 125 Q508 Q4275	IMC 125
. wt (GA316) wt (TA515) (GÀ908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) wt
Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F
200 G C T T C T A G C T T C T A G C T T C T A G C T T C T A	240 T C A C C C T T C A C C C T T C A C C C T T C A C C C T T C A C C C T	280 T G C C A G G T G C C A A G T G C C A A G T G C C A A G	320 A C G A G T G A C A A G T G A C G A G T G
190 GCCTCCT GCCTCCT GCCTCCT GCCTCCT	230 TCCTCC TCCTCCC	270 CTGGGCC CTGGGCC CTGGGCC CTGGGCC	310 ATAGCCC ATAGCCC ATAGCCC ATAGCCC
T C A T A T T C A T A T C A T A T A T C A T A T		C T C T C T A A C T C T C T C T C T C T	6 6 6 4 7 C C C C C C C C C C C C C C C C C C
180 1 G G G A C A T C A T G G G A C A T C A T G G G A C A T C A T G G G A C A T C A T G G G A C A T C A	220 CCACTTACTT CCACTTACTT CCCACTTACTT CCACTTACTT	260 CGCCTGGCCT CGCCTGGCCT CGCCTGGCCT CGCCTGGCCT	300 ACCGGCGTCT ACCGGCGTCT ACCGGCGTCT
170 CTACCTCATC CTACCTCATC CTACCTCATC CTACCTCATC	210 T A C G T C G C C A T A C G T C G C C A T A C G T C G C C A T A C G T C G C C A T A C G T C G C C A	250 C T C C T A C T T C T C C T A C T T	290 TGCGTCCTA TGCGTCCTA TGCGTCCTA
161 C C C 161 C C C C C C C C C C C C C	201 C 7 201 C 7 201 C 7 201 C 7	241 CT 241 CT 241 CT 241 CT 241 CT 241 CT	281 G C 281 G C 281 G C 281 G G

Fig. 29

321	IMC 125 · Q508 Q4275	IMC 125 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508 Q4275
330 340 350 350 360		wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	A316) A515) A908)
330 CGGCCACCACGACGCCTTCAGCGACTACCAGTGGACGACGGACG				Fad2-D Fad2-D Fad2-F Fad2-F
321 321 321 321 321 361 361 361 401 401 441 441 441 441	330 GGCCACCACGCTTCAGCGACTACCAGTGGCTGGACGACGGCGGCCGACCACCACCACGCGACTACCAGTGGCTGGACGACGACGACGACGACGACGACGACGACGACGACGAC	CCGTCGGCCTCATCCTTCCTTCCTTCCTTCCTTCCTTCGTCCTTTCCTTCC	410 420 430 430 440 CTTCTCCTGGAAGTACAGTCATCGACGCCACCATTCCAA CTTCTCCTGGAAGTACAGTCATCGACGCCACCATTCCAA CTTCTCTCTGGAAGTACAGTCATCGACGCCACCATTCCAA CTTCTCTCTGGAAGTACAGTCATCGACGCCACCAA CTTCTCTCTGGAAGTACAGTCATCGACGCCACCAA	ACTGGCTCCCTCGAGAGACGAAGTGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGGTTTGTCCCCAAGACTGTTTGTCCCCAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTGTCCCCAAAGACTGTTTTGTCCCCAAAGACTGTTTTGTCCCCAAAGACTGTTTTGTCCCCAAAGACTGTTTTGTTCCCCAAAGACTGTTTTGTTCCCCAAAGACTGTTTTGTTCCCCAAAGACTGTTTTGTTCCCCAAAGACTGTTTTGTTCCCCAAAGACTGTTTTGTTCCCCAAAGACTGTTTTTTTT
	321 321 321 321 321	361 361 361 361 361	401 401 401 401	4 4 4 4 4

Stg. 20

IMC 129 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508 Q4275
wt (GA316) 1 wt (TA515) Q (GA908) Q	wt (GA316) I wt (TA515) Q (GA908) Q	wt (GA316) II wt (TA515) Q: (GA908) Q:	wt (GA316) IN wt (TA515) Q5 (GA908) Q4
- Fad2-D Fad2-F Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D v Fad2-D (Fad2-F v Fad2-F (
520 C C T C A A C A C C T C A A C A	560 CAGTTCAC CAGTTCAC CAGTTCAC CAGTTCAC	600 TCTCGGGGG TCTCGGGGA TCTCGGGA	640 C C A C C C A C C A C C C A
510 C G G C A A G T A C G G C A A G T A	550 TTAACGGTT TTAACGGTT TTAACGGTT TTAACGGTT	590 CTTCAACG CTTCAACG CTTCAACG	630 T G C C A T T T T G C C A T T T T G C C A T T T T G C C A T T T T G C C A T T T T G C C A T T T
500 A A G T G G T A A A G T G G T A	540 C C G T G A T G C C G T G A T G C C G T G A T G C C G T G A T G	580 G T A C T T A G C G T A C T T A G C G T A C T T A G C G T A C T T A G C G T A C T T A G C	620 G G C T T C G C T G G C T T C G C T G G C T T C G C T
490 A A G A A G T C A G A C A T C A A G A A G T C A G A C A T C A A G A A G T C A G A C A T C A A G A A G T C A G A C A T C A A G A A G T C A G A C A T C A A G A A G T C A G A C A T C	530 A C C C T T T G G G A C G C A A C C C T T T G G G A C G C A A C C C T T T G G G A C G C A A C C C T T T G G G A C G C A A C C C T T T G G G A C G C A A C C C T T T G G G A C G C A	570 CTCGGCTGGCCTTT CTCGGCTGGCCGTT CTCGGCTGGCCGTT	610 G A C C T T A C G A C G G C G A C C T T A C G A C G G C G A C C T T A C G A C G G C G A C C T T A C G A C G G C G A C C T T A C G A C G G C G A C C T T A C G A C G G C
481 7 481 7 481 7 481 7	521 7 521 7 521 8 521 8 521 8	561 T 561 T 561 T 561 T	601 A 601 A 601 A 601 A

F19.2D

IMC 129 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508 Q4275	IMC 129 Q508
wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (wt (GA316) 1 wt (TA515) C (GA908) Q	wt (GA316) I wt (TA515) Q
Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F
680 C A G A T A T A C A G A T A T A C A G A T A T A C A G A T A T A	720 A C G G T C T C A C G G T C T C	760 G A T G G T C T G A T G G T C T G A T G G T C T G A T G G T C T	800 6 6 6 T T C T T 6 6 6 T T C T T 7 6 6 T T T C C T 6 6 T T T C C T
670 A G C G T C T C A G C G T C T C A G C G T C T C A G C G T C T C	710 CGTCTGCT CGTCTGCT CGTCTGCT CGTCTGCT	750 G T T G C C T C G T G G C C T C G T G G C C T C G T G G C C T C	790 T T G T C A A C O T T G T C A A C O T T G T C A A T O
660 ACGACCGTG ACGACGGTG ACGACCGCGACGGCGACCGCGCG	700 CATCCTCGC CATCCTCGC CATCCTCGC	740 T C C A A G G A T C C A A G G A C G C A G G G A C G C A G G G A C G C A G G G A	780 TCTTCTGA TCTTCTGA GCTTCTGA
650 C C C A T C T A C A C C C A T C T A C A C C C A T C T A C A C C C A T C T A C A C C C A T C T A C A C C C C A T C T A C A	690 C C G A C G C T G G C C G A C G C T G G C C G A C G C T G G C C G A C G C T G G C C G A C G C T G G	730 C T A C G C T G C T G C T A C G C T G C T G T T A C G C C G C C G T T A C G C C G C C G T T A C G C C G C C G	770 TACGGAGTTCC TACGGAGTTCC TACGGAGTTCC TACGGAGTCCC
A C G C T A C G C T A C G C T A C G C T	C A T C T C A T C T C A T C T C A T C T C A T C T	T A C C G T T C C G T T C C G T T C C G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
641 641 641 641	681 681 681 681 681	721 721 721 721 721	761 761 761 761

F19. 28

IMC 125 Q508 Q4275	IMC 125 Q508 Q4275	IMC 125 Q508 Q4275	IMC 125 Q508 Q4275
wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) 1 wt (TA515) C (GA908) Q	wt (GA316) I wt (TA515) Q (GA908) O
Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2 - D Fad2 - D Fad2 - F Fad2 - F
840 CTTCCCTG CTTCCCTG CTTCCCTG	880 G A G G G A G G A G G G A G G A G G G G	1 T G A A C A A T T G A A C A A T T G A A C A A T T G A A C A A T T G A A C A A T T G A A C A A T T G A A C A A T	960 CGCATCAC CGCATCAC CGCATCAT CGCATCAT
830 A C A C G C A T C A C B C G C A T C A C B C G C A T C A C B C G C A T C A C B C G C A T C A C B C G C A T C	870 G G A T T G G T T G G A T T G G T T G G A T T G G T T G G A T T G G T T	910 A C G G A A T C A C G G A A T C	950 G C A C G T G G G C A C G T G G G C A C G T G G G C A C G T G G
820 CTTGCAGC CTTGCAGC CTTGCAGC	960 TCTGAGTG TCTGAGTG TCCGAGTG TCCGAGTG	900 ACAGAGACT ACAGAGACT ACAGAGACT ACAGAGACT	940 C A C G G A C A C C A C G G A C A C T A C C G A C A C T A C C G A C A C T A C C G A C A C
810 AGTTTTGATCACTTA AGTTTTGATCACTTA CGTGTTGATCACTTA CGTGTTGATCACTTA CGTGTTGATCACTTA	850 CCTCACTATGACTCG CCTCACTATGACTCG CCTCACTACGATTCG CCTCACTACGATTCG	890 CTTTGGCCACCGTTG CTTTGGCCACGGTTG CTTTGGCTACCGTTG CTTTGGCTACCGTTG	930 G G T C T T C C A C A A T A T G G T C T T C C A C A A T A T G G T C T T C C A C A A T A T G G T C T T C C A C A A T A T G G T C T T C C A C A A T A T
801 801 801 801 801	841 841 841 841	881 881 881 881	921 921 921 921 921

F19.2F

A316)	-F (TA515) Q508 -F (GA908) Q4275	-D wt -D (GA316) IMC 129 -F wt -F (TA515) 0508	(GA908)	Fad2-D wt Fad2-D (GA316) IMC 129 Fad2-F wt	Fad2-F (TA515) Q508 Fad2-F (GA908) Q4275
1000 G G A A G C T A G G A A G C T A G G A A G C T A	TTCTCCACGATGCCGCATTATCACGCG	A G G C G A A B G G C G G C G C G C G C G C G C G C G	AGGCGATAACTGGGAGAGTATTATCAGTT 1050 1060 1070 1080	T G G G A C G C C G G T G G T T A A G G C G A T G T G G A G G G A G G C G A T G T G A G G G A G G C G A T G T G A G G G A G G C G A T G T G A G G G A G G C G A T G T G G A G G G A G G C G A T G T G G A G G G A G G C G A T G T G A G G G A G G C G	TGGGACGCCGGTGGTTAAGGCGATGTGGAGGCGGTGGGGCG
961 CT 961 CT 961 CT) U	1001 C G A 1001 C G A 1001 C C A 1001 C C A	,	1041 C G A 1041 C G A 1041 C G A	ပပ

F19.29

1100 ATGTGGAACCGGACAGGCAAGGTGAGATGTGGAGATGTGGAACCGGACAGGCAAGGTGAGATGTGGAACCGGACAGGCAAGGTGAGATGTGAGATGAAGTTATGA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 44444 0 0000

F19.24

IMC129 Q508 Q4275	IMC129 Q508 Q4275	IMC129 Q508 Q4275	IMC129 Q508 Q4275
wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)	wt (GA316) wt (TA515) (GA908)
Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F	Fad2-D Fad2-D Fad2-F Fad2-F
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser Glu Thr Asp Asn Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser Glu Thr Asp Asn Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser Glu Thr Asp Thr Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser Glu Thr Asp Thr Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser Glu Thr Asp Thr Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser Glu Thr Asp Thr	Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr Val Gly Glu Leu Lys Lys Ala Ile Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr Val Gly Glu Leu Lys Lys Ala Ile Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr Val Gly Glu Leu Lys Lys Ala Ile Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr Val Gly Glu Leu Lys Lys Ala Ile Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr Val Gly Glu Leu Lys Lys Ala Ile Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr Val Gly Glu Leu Lys Lys Ala Ile	Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile 1 Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile 1 Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile 2 Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile 3 Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile 4 Pro Pro His Cys Phe Lys Arg Ser Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile	10 Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 61 Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 61 Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 61 Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 61 Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 61 Ile Ile Ala Ser Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro
		4 4 4 4 4	ωωωωω

F19.3A

IMC129	IMC129	IMC129	IMC129
Q508	Q508	Q508	0508
Q4275	Q4275	Q4275	04275
wt	wt	wt	wt
(GA316)	(GA316)	(GA316)	(GA316)
wt	wt	wt	wt
(TA515)	(TA515)	(TA515)	(TA515)
(GA908)	(GA908)	(GA908)	(GA908)
Fad2-D	Fad2-D	Fad2-D	Fad2-D
Fad2-D	Fad2-D	Fad2-D	Fad2-D
Fad2-F	Fad2-F	Fad2-F	Fad2-F
Fad2-F	Fad2-F	Fad2-F	Fad2-F
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Val 81 Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Val 81 Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Val 81 Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Val 81 Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Val 81 Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val Leu Thr Gly Val	120 Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp 101 Trp Val Ile Ala His Lys Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp 101 Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp 101 Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp 101 Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp 101 Trp Val Ile Ala His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Leu Asp Asp	140 121 Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser 121 Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser 121 Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser 121 Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser 121 Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser 121 Thr Val Gly Leu Ile Phe His Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser	150 160 141 His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 141 His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 141 His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 141 His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 141 His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 141 His Arg Arg His His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys

Ftg. 3B

Fad2-D wt	Fad2-D wt	Fad2-D wt	Fad2-D wt
Fad2-D (GA316) IMC129	Fad2-D (GA316) IMC129	Fad2-D (GA316) IMC129	Fad2-D (GA316) IMC129
Fad2-F wt	Fad2-F wt	Fad2-F wt	Fad2-F wt
Fad2-F (TA515) Q508	Fad2-F (TA515) Q508	Fad2-F (TA515) Q508	Fad2-F (TA515) Q508
Fad2-F (GA908) Q4275	Fad2-F (GA908) Q4275	Fad2-F (GA908) Q4275	Fad2-F (GA908) Q4275
140 180 180 161 Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu Gly Arg Thr Val 161 Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu Gly Arg Thr Val 161 Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu Gly Arg Thr Val 161 Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr His Asn Asn Pro Leu Gly Arg Thr Val 161 Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu Gly Arg Thr Val	190 200 181 Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly 181 Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly 181 Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly 181 Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly 181 Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly 181 Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly	210 220 201 Arg Pro Tyr Asp Gly Gly Phe Ala Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp 201 Arg Pro Tyr Asp Gly Gly Phe Ala Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp 201 Arg Pro Tyr Asp Gly Gly Phe Ala Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp 201 Arg Pro Tyr Asp Gly Gly Phe Ala Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp 201 Arg Pro Tyr Asp Gly Gly Phe Ala Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp	240 221 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 221 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 221 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 221 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 221 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 221 Arg Glu Arg Leu Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu

Fig. 3C

IMC129	IMC129	IMC129	IMC129
Q508	Q508	Q508	Q508
Q4275	Q4275	Q4275	Q4275
wt	wt	wt	wt
(GA316)	(GA316)	(GA316)	(GA316)
wt	wt	wt	wt
(TA515)	(TAS15)	(TA515)	(TA515) (
(GA908)	(GA908)	(GA908)	(GA908) (
Fad2-D	Fad2-D	Fad2-D v	Fad2-D v
Fad2-D	Fad2-D	Fad2-D	Fad2-D (
Fad2-F	Fad2-F	Fad2-F v	Fad2-F v
Fad2-F	Fad2-F	Fad2-F	Fad2-F (
250 241 Tyr Arg Tyr Ala Ala Val Gln Gly Val Ala Ser Met Val Cys Phe Tyr Gly Val Pro Leu 241 Tyr Arg Tyr Ala Ala Val Gln Gly Val Ala Ser Met Val Cys Phe Tyr Gly Val Pro Leu 241 Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr Gly Val Pro Leu 241 Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr Gly Val Pro Leu 241 Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr Gly Val Pro Leu 241 Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr Gly Val Pro Leu	270 280 261 Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu 261 Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu 261 Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu 261 Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu 261 Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu 261 Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr Leu Gln His Thr His Pro Ser Leu	290 281 Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg 281 Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg 281 Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg 281 Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg 281 Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg 281 Pro His Tyr Asp Ser Ser Glu Trp Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg	320 320 320 320 320 320 320 320 320 320
00000	5555	2 2 2 2 2	301 301 301 301 301

Fig. 3D

Fad2-D wt	Fad2-D wt	Fad2-D wt	Fad2-D wt
Fad2-D (GA316) IMC129	Fad2-D (GA316) IMC129	Fad2-D (GA316) IMC129	Fad2-D (GA316) IMC129
Fad2-F wt	Fad2-F wt	Fad2-F wt	Fad2-F wt
Fad2-F (TA515) Q508	Fad2-F (TA515) Q508	Fad2-F (TA515) Q508	Fad2-F (TA515) Q508
Fad2-F (GA908) Q4275	Fad2-F (GA908) Q4275	Fad2-F (GA908) Q4275	Fad2-F (GA908) Q4275
Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile 321 Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile 321 Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile 321 Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile 321 Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile 321 Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala Ile Lys Pro Ile	350 341 Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Val Lys Ala Met Trp Arg Glu Ala 341 Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Val Lys Ala Met Trp Arg Glu Ala 341 Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Val Lys Ala Met Trp Arg Glu Ala 341 Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Val Lys Ala Met Trp Arg Glu Ala 341 Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val Val Lys Ala Met Trp Arg Glu Ala	370 361 Lys Glu Cys Ile Tyr Val Glu Pro Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr 361 Lys Glu Cys Ile Tyr Val Glu Pro Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr 361 Lys Glu Cys Ile Tyr Val Glu Pro Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr 361 Lys Glu Cys Ile Tyr Val Glu Pro Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr 361 Lys Glu Cys Ile Tyr Val Glu Pro Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr	381 Asn Asn Lys Leu ter 381 Asn Asn Lys Leu ter

Fig. 38

Fig. 4

SEQUENCE LISTING

<110> Kodali, Dharma R. Fan, Zhegong DeBonte, Lorin R.

<120> PLANTS, SEEDS AND OILS HAVING AN ELEVATED TOTAL MONOUNSATURATED FATTY ACID CONTENT

<130> 07148/097WO1

<150> 09/128,602

<151> 1998-08-03

<160> 18

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 1155

<212> DNA

<213> Brassica napus

<220>

<221> CDS

<222> (1)...(1152)

<221> unsure

<222> (133)...(133)

<223> Xaa = Pro or Leu

<221> unsure

<222> (194)...(194)

<223> Xaa = Leu

<221> unsure

<222> (246)...(246)

<223> Xaa = Ile or Val

<221> unsure

<222> (262)...(262)

<223> Xaa = Ile or Val

<221> unsure

<222> (345)...(345)

<223> Xaa = Tyr

<4	n	∩>	1
\sim		_	

~400> I	
atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aaa aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15	48
gaa acc gac aac atc aag cgc gta ccc tgc gag aca ccg ccc ttc act Glu Thr Asp Asn Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr 20 25 30	96
gtc gga gaa ctc aag aaa gca atc cca ccg cac tgt ttc aaa cgc tcg Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser 35 40 45	144
atc cct cgc tct ttc tcc tac ctc atc tgg gac atc atc ata gcc tcc Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser 50 55 60	192
tgc ttc tac tac gtc gcc acc act tac ttc cct ctc ctc cct cac cct Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 65 70 75 80	240
ctc tcc tac ttc gcc tgg cct ctc tac tgg gcc tgc cag ggc tgc gtc Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95	288
cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110	336
age gae tae eag tgg etg gae gae ace gte gge etc ate tte eae tee Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125	384
ttc ctc ctc gtc cyt tac ttc tcc tgg aag tac agt cat cga cgc cac Phe Leu Leu Val Xaa Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His 130 135 140	432
cat tee aac act gge tee ete gag aga gae gaa gtg ttt gte eee aag His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 145 150 155 160	480
aag aag tca gac atc aag tgg tac ggc aag tac ctc aac aac cct ttg Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu 165 170 175	528
gga cgc acc gtg atg tta acg gtt cag ttc act ctc ggc tgg cct ttg Gly Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu 180 185 190	576

Tyr Xaa Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Gly Phe Ala 195 200 205	624
tgc cat ttc cac ccc aac gct ccc atc tac aac gac cgt gag cgt ctc Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu 210 215 220	672
cag ata tac atc tcc gac gct ggc atc ctc gcc gtc tgc tac ggt ctc Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 225 230 235 240	720
tac cgc tac gct gct rtc caa gga gtt gcc tcg atg gtc tgc ttc tac Tyr Arg Tyr Ala Ala Xaa Gln Gly Val Ala Ser Met Val Cys Phe Tyr 245 250 255	768
gga gtt cet ett etg rtt gte aac ggg tte tta gtt ttg ate aet tac Gly Val Pro Leu Leu Xaa Val Asn Gly Phe Leu Val Leu Ile Thr Tyr 260 265 270	816
ttg cag cac acg cat cct tcc ctg cct cac tat gac tcg tct gag tgg Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp 275 280 285	864
gat tgg ttg agg gga gct ttg gcc acc gtt gac aga gac tac gga atc Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile 290 295 300	912
ttg aac aag gtc ttc cac aat atc acg gac acg cac gtg gcg cat cac Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His 305 310 315 320	960
ctg ttc tcg acc atg ccg cat tat cat gcg atg gaa gct acg aag gcg Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala 325 330 335	1008
ata aag ccg ata ctg gga gag tat tay cag ttc gat ggg acg ccg gtg Ile Lys Pro Ile Leu Gly Glu Tyr Xaa Gln Phe Asp Gly Thr Pro Val 340 345 350	1056
gtt aag gcg atg tgg agg gag gcg aag gag tgt atc tat gtg gaa ccg Val Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro 355 360 365	1104
gac agg caa ggt gag aag aaa ggt gtg ttc tgg tac aac aat aag tta Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu 370 375 380	1152

tga

. 1155

```
<210> 2
     <211> 384
     <212> PRT
     <213> Brassica napus
     <220>
     <221> UNSURE
     <222> (133)...(133)
     <223> Xaa = Pro or Leu
     <221> UNSURE
     <222> (194)...(194)
     <223> Xaa = Leu
    <221> UNSURE
    <222> (246)...(246)
    <223> Xaa = Ile or Val
    <221> UNSURE
    <222> (262)...(262)
    <223> Xaa = Ile or Val
    . <221> UNSURE
    <222> (345)...(345)
    <223> Xaa = Tyr
    <400> 2
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser
                           10
Glu Thr Asp Asn Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr
                        25
Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser
                     40
                                     45
Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser
                  55
Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro
               70
                               75
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val
                           90
Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe
                        105
                                        110
```

Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser

Phe Leu Leu Val Xaa Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His

125

120

```
135
His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
                               155
                150
Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu
            165
                            170
Gly Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu
                        185
                                       190
Tyr Xaa Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Gly Phe Ala
                      200
                                      205
Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu
                   215
                                   220
Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu
                230
                                235
Tyr Arg Tyr Ala Ala Xaa Gln Gly Val Ala Ser Met Val Cys Phe Tyr
                           250
                                           255
Gly Val Pro Leu Leu Xaa Val Asn Gly Phe Leu Val Leu Ile Thr Tyr
                        265
                                        270
Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp
                      280
                                     285
Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile
                                  300
Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His
               310
                               315
Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala
           325
                           330
                                           335
Ile Lys Pro Ile Leu Gly Glu Tyr Xaa Gln Phe Asp Gly Thr Pro Val
                        345
Val Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro
                     360
                                     365
Asp Arg Gin Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
                  375
                                  .380
    <210> 3
    <211> 1155
    <212> DNA
    <213> Brassica napus
    <220>
    <221> CDS
    <222> (1)...(1152)
    <223>
    <221> unsure
    <222> (133)...(133)
    <223> Xaa = Pro or Leu
    <221> unsure
    <222> (194)...(194)
```

<223> Xaa = Leu	
<221> unsure <222> (246)(246) <223> Xaa = Ile or Val	
<221> unsure <222> (262)(262) <223> Xaa = Ile or Val	
<221> unsure <222> (345)(345) <223> Xaa = Tyr	
<400> 3 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aaa aag tct Met Gly Ala Gly Gly Arg Met Gin Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15	48
gaa acc gac aac atc aag cgc gta ccc tgc gag aca ccg ccc ttc act Glu Thr Asp Asn Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr 20 25 30	96
gtc gga gaa ctc aag aaa gca atc cca ccg cac tgt ttc aaa cgc tcg Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser 35 40 45	144
atc cct cgc tct ttc tcc tac ctc atc tgg gac atc atc ata gcc tcc Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser 50 55 60	192
tgc ttc tac tac gtc gcc acc act tac ttc cct ctc ctc cct cac cct Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 65 70 75 80	240
ctc tcc tac ttc gcc tgg cct ctc tac tgg gcc tgc cag ggc tgc gtc Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95	288
cta acc ggc gtc tgg gtc ata gcc cac aag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Lys Cys Gly His His Ala Phe 100 105 110	336
age gae tae eag tgg etg gae gae ace gte gge ete ate tte eae tee Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125	384
tte etc etc etc eyt tae tte tee teg aag tae agt eat ega ege eac	432

130	Val Xaa Tyr 135	Phe Ser Tr	p Lys Ty r S 140	er His Arg Arg His	
cat tee aac ac His Ser Asn 145	t ggc tcc ctc Thr Gly Ser I 150	gag aga gac Leu Glu Arg 155	, Asp Glu V	gtc ccc aag al Phe Val Pro Lys 160	480
	ac atc aag tg Asp Ile Lys 7 165	g tac ggc aa _l Trp Tyr Gly 170	g tac etc aac Lys Tyr Let 17	u Asn Asn Pro Leu	528
gga cgc acc g Gly Arg Thr 180	Val Met Leu	g gtt cag ttc Thr Val Gli 185	act ete gge t n Phe Thr L 190	igg cct ttg eu Gly Trp Pro Leu	576
tac ttr gcc ttc Tyr Xaa Ala 1 195	aac gtc tcg g Phe Asn Val 20	Ser Gly Arg	ac gac ggc g g Pro Tyr As 205	ggc ttc gct sp Gly Gly Phe Ala	624
tgc cat ttc cac Cys His Phe I 210	ccc aac gct His Pro Asn 215	Ala Pro Ile 🤈	ac gac cgt g Гут Asn Asp 220	gag cgt ctc Arg Glu Arg Leu	672
cag ata tac atc Gln Ile Tyr Il 225	tcc gac gct e Ser Asp Al 230	gge ate ete g la Gly Ile Le 235	u Ala Val C	ac ggt ctc Cys Tyr Gly Leu 240	720
	t get rte caa ; Ala Ala Xaa 45	gga gtt gcc t Gln Gly Val 250	cg atg gtc tg Ala Ser Me 25	et Val Cys Phe Tyr	768
gga gtt cct ctt Gly Val Pro I 260				act tac al Leu Ile Thr Tyr	816
tg cag cac acg Leu Gln His 7 275	g cat cct tcc Thr His Pro S 28	Ser Leu Pro	at gac tcg tc His Tyr Asp 285	t gag tgg Ser Ser Glu Trp	864
gat tgg ttg agg Asp Trp Leu 2 290	g gga gct ttg Arg Gly Ala 295	Leu Ala Thi	gac aga gac Val Asp A 300	tac gga atc rg Asp Tyr Gly Ile	912
tg aac aag gto Leu Asn Lys ' 305	ttc cac aat a Val Phe His 310	atc acg gac a Asn Ile Thr 315	cg cac gtg g Asp Thr His	gcg cat cac s Val Ala His His 320	960
etg ttc tcg acc	atg ccg cat t	at cat gcg at	g gaa gct ac	eg aag geg	1008

```
Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala
                             330
 ata aag ccg ata ctg gga gag tat tay cag ttc gat ggg acg ccg gtg
                                                                   1056
Ile Lys Pro Ile Leu Gly Glu Tyr Xaa Gln Phe Asp Gly Thr Pro Val
          340
                          345
gtt aag gcg atg tgg agg gag gcg aag gag tgt atc tat gtg gaa ccg
                                                                  1104
Val Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro
       355
                       360
gac agg caa ggt gag aag aaa ggt gtg ttc tgg tac aac aat aag tta
                                                                  1152
Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
   370
                    375
tga
                                                                  1155
     <210> 4
     <211> 384
     <212> PRT
     <213> Brassica napus
     <220>
     <221> UNSURE
     <222> (133)...(133)
     <223> Xaa= Pro or Leu
     <221> UNSURE
     <222> (194)...(194)
     <223> Xaa = Leu
    <221> UNSURE
    <222> (246)...(246)
     <223> Xaa = Ile or Val
    <221> UNSURE
    <222> (262)...(262)
    <223> Xaa = Ile or Val
    <221> UNSURE
    <222> (345)...(345)
    <223> Xaa = Tyr
    <400> 4
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser
                            10
```

Glu Thr Asp Asn Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr

20	25	30	
	Lys Lys Ala Ile		Phe I vs Ara Ser
35	40	45	The Lys Aig Sei
Ile Pro Arg Ser 1	Phe Ser Tyr Leu I 55	le Trp Asp Ile Ile	e Ile Ala Ser
Cys Phe Tyr Tyr 65	Val Ala Thr Thr 70	~ <i>c</i>	Leu Pro His Pro
Leu Ser Tyr Phe 85	Ala Trp Pro Leu 90		
Leu Thr Gly Val	Trp Val Ile Ala I	His Lys Cys Gly	His His Ala Phe
Ser Asp Tyr Gln 115	Trp Leu Asp Asp 120	Thr Val Gly Le 125	u Ile Phe His Ser
Phe Leu Leu Val	Xaa Tyr Phe Ser	Trp Lys Tyr Ser 140	His Arg Arg His
His Ser Asn Thr 145	Gly Ser Leu Glu 150	Arg Asp Glu Val	Phe Val Pro Lys
Lys Lys Ser Asp 165	Ile Lys Trp Tyr (Gly Lys Tyr Leu 175	
Gly Arg Thr Val 180	Met Leu Thr Val	Gln Phe Thr Le	u Giy Trp Pro Let
Тут Xaa Ala Phe	Asn Val Ser Gly		Gly Gly Phe Ala
195	200	205	, .,
Cys His Phe His	Pro Asn Ala Pro 215	Ile Tyr Asn Asp 220	Arg Glu Arg Leu
Gin Ile Tyr Ile S	er Asp Ala Gly Ile	e Leu Ala Val Cy	s Tyr Gly Leu
225	230	235	240
Tyr Arg Tyr Ala 245	Ala Xaa Gln Gly 250	Val Ala Ser Met 255	
Gly Val Pro Leu 260	Leu Xaa Val Asn 265	Gly Phe Leu Va 270	l Leu Ile Thr Tyr
Leu Gln His Thr 275	His Pro Ser Leu ? 280	Pro His Tyr Asp 285	Ser Ser Glu Trp
Asp Trp Leu Arg 290	g Gly Ala Leu Ala 295	Thr Val Asp Ar 300	g Asp Tyr Gly Ile
Leu Asn Lys Val	Phe His Asn Ile		
305 Lou Pho Son The	310	315 Wantan Maria	320
325		335	•
Ile Lys Pro Ile L	eu Gly Glu Tyr X	aa Gln Phe Asp	Gly Thr Pro Val
340	345	350	
Val Lys Ala Met 355	Trp Arg Glu Ala 360	Lys Glu Cys Ile 365	Tyr Val Glu Pro

365

Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu 370 375 380

<210> 5 <211> 1155

Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
<213> Brassica napus <220> <221> CDS <222> (1)(1152) <400> 5 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
<220> <221> CDS <222> (1)(1152) <400> 5 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
<221> CDS <222> (1)(1152) <400> 5 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
<222> (1)(1152) <400> 5 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
<222> (1)(1152) <400> 5 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
<400> 5 atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	48
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag ege gta eee tge gag aca eeg eee tte act	48
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag ege gta eee tge gag aca eeg eee tte act	48
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	***
1 5 10 15 gaa acc gac acc atc aag cgc gta ccc tgc gag aca ccg ccc ttc act	
gaa acc gac acc atc aag ege gta eee tge gag aca eeg eee tte act	
	^
	96
Glu Thr Asp Thr Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr	
20 25 30	
	14
Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser	
35 40 45	
	192
lle Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser	
50 55 60	
ge tte tae tae gte gee ace act tae tte cet etc etc eet eac eet	240
Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro	
65 70 75 80	
cic tee tae tie gee teg eet ete tae teg gee tee eaa geg toe ote	285
	288
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val	288
ctc tcc tac ttc gcc tgg cct ctc tac tgg gcc tgc caa ggg tgc gtc Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95	288
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95	
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 eta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc	288 336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe	
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 eta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc	
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 eta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc	
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 eta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125 ttc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125 ttc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125 ttc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125 ttc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125 atc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His 130 135 140	336
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95 cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc ttc Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110 agc gac tac cag tgg ctt gac gac acc gtc ggt ctc atc ttc cac tcc Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125 atc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His 130 135 140	33(384 432

Lys Lys Ser Asp Ile 165	Lys Trp Tyr Gly 170	Lys Tyr Leu Asn Asn Pro	528 Leu
gga cgc acc gtg atg t Gly Arg Thr Val Me 180	ta acg gtt cag ttc et Leu Thr Val Gl 185	act ctc ggc tgg ccg ttg In Phe Thr Leu Gly Trp Pr 190	576 o Leu
tac tta gcc ttc aac gtc Tyr Leu Ala Phe Ass 195	c tcg gga aga cct n Val Ser Gly Ar 200	tac gac ggc ggc ttc gct g Pro Tyr Asp Gly Gly Ph 205	624 e Ala
Cys His Phe His Pro	c gct ccc atc tac : Asn Ala Pro Ile 215	aac gac cgc gag cgt ctc Tyr Asn Asp Arg Glu Arg 220	672 Leu
	sp Ala Gly Ile L	gcc gtc tgc tac ggt ctc eu Ala Val Cys Tyr Gly L 5 240	720 eu
		c tcg atg gtc tgc ttc tac l Ala Ser Met Val Cys Phe 255	768 : Tyr
gga gtc ccg ctt ctg at Gly Val Pro Leu Leu 260	t gtc aat ggt ttc c I lle Val Asn Gly 265	tc gtg ttg atc act tac Phe Leu Val Leu Ile Thr 270	816 T yr
ttg cag cac acg cat co Leu Gln His Thr His 275	et tee etg eet eac Pro Ser Leu Pro 280	tac gat tcg tcc gag tgg His Tyr Asp Ser Ser Glu 285	864 Trp
Asp Trp Leu Arg Gl		gac aga gac tac gga atc nr Val Asp Arg Asp Tyr G 300	912 ly Ile
ttg aac aag gtc ttc ca Leu Asn Lys Val Pho 305 310	e His Asn Ile Thr	acg cac gtg gcg cat cat Asp Thr His Val Ala His 320	960 His
ctg ttc tcc acg atg cc Leu Phe Ser Thr Met 325	g cat tat cac gcg t Pro His Tyr His 330	atg gaa gct acc aag gcg Ala Met Glu Ala Thr Lys 335	1008 Ala
ata aag ccg ata ctg g Ile Lys Pro Ile Leu (340	ga gag tat tat cag Gly Glu Tyr Tyr (345	ttc gat ggg acg ccg gtg Gln Phe Asp Gly Thr Pro \ 350	1056 Val

```
gtt aag gcg atg tgg agg gag gcg aag gag tgt atc tat gtg gaa ccg
                                                                   1104
Val Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro
                       360
gac agg caa ggt gag aag aaa ggt gtg ttc tgg tac aac aat aag tta
                                                                   1152
Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu
                   375
                                    380
tga
                                                                  1155
     <210> 6
     <211> 384
     <212> PRT
     <213> Brassica napus
    <400> 6
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser
                            10
Glu Thr Asp Thr Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr
         20
                         25
Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser
Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser
Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro
                70
                                75
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gin Gly Cys Val
                            90
Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe
                         105
                                         110
Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser
                      120
                                      125
Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His
                   135
His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys
                150
                                155
Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu
                            170
                                            175
Gly Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu
         180
                         185
Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Gly Phe Ala
                                      205
Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu
                   215
                                   220
Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu
                230
                                235
Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr
                            250
```

Gly Val Pro Leu 260	Leu Ile Val A 265		Leu Val Leu Ile Th 270	r Tyr
		eu Pro His T	yr Asp Ser Ser Glu	і Ттр
		Ala Thr Val 300	Asp Arg Asp Tyr	Gly Ile
Leu Asn Lys Val			Thr His Val Ala Hi 320	s His
Leu Phe Ser Thr 325			Met Glu Ala Thr Ly 335	s Ala
Ile Lys Pro Ile Le 340			ne Asp Gly Thr Pro 350	Val
Val Lys Ala Met 355	Trp Arg Glu . 360	Ala Lys Glu 6	Cys Ile Tyr Val Gl	u Pro
Asp Arg Gln Gly 370	Glu Lys Lys 375	Gly Val Phe 380	Trp Tyr Asn Asn I	Lys Leu
<210> 7				
<211> 1155				
<212> DNA <213> Brassi	ca napus			
	Lup us			
<220>			•	
<221> CDS <222> (1)(1152)			~
<400> 7				
_	Gly Arg Met	Gln Val Ser	Pro Pro Ser Lys Ly	48 s Ser
1 5		10	15	
gaa acc gac acc at Glu Thr Asp Thr 20	c aag cgc gta Ile Lys Arg V 25	ccc tgc gag a al Pro Cys G	aca ccg ccc ttc act ilu Thr Pro Pro Phe 30	96 Thr
	g aaa gca atc Lys Lys Ala I 40	le Pro Pro Hi	is Cys Phe Lys Arg	144 Ser
ate cet ege tet tte i	toc tac etc atc	tgg gac atc a	ate ata gee tee Ile Ile Ile Ala Ser	192
50	55	60	The He He Ala Sel	
tgc ttc tac tac gtc	gcc acc act ta	c ttc cct ctc c	tc cct cac cct	240
Cys Phe Tyr Tyr	Val Ala Thr T 70	Thr Tyr Phe P 75	Pro Leu Leu Pro Hi 80	s Pro
ctc tcc tac ttc gcc	tgg cct ctc tac	tgg gcc tgc	caa ggg tgc gtc	288

85 90 95	Cys Val
cta acc ggc gtc tgg gtc ata gcc cac gag tgc ggc cac cac gcc t Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His 100 105 110	atc 336 Ala Phe
age gae tae eag tgg ett gae gae ace gte ggt ete ate tte eae tee Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe 115 120 125	
ttc ctc ctc gtc cct tac ttc tcc tgg aag tac agt cat cga cgc cac Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg 130 135 140	432 Arg His
cat tee aac act gge tee ete gag aga gac gaa gtg ttt gte eee aaş His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val 145 150 155 160	g 480 I Pro Lys
aag aag tca gac atc aag tgg tac ggc aag tac cac aac aac cct tt Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr His Asn Asn 165 170 175	
gga ege ace gtg atg tta acg gtt eag tte act ete gge tgg eeg ttg Gly Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Tr 180 185 190	
tac tta gcc ttc aac gtc tcg gga aga cct tac gac ggc ggc ttc gct Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Gly 195 200 205	624 Phe Ala
tgc cat ttc cac ccc aac gct ccc atc tac aac gac cgc gag cgt ctc Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu 210 215 220	672 Arg Leu
cag ata tac atc tcc gac gct ggc atc ctc gcc gtc tgc tac ggt ctc Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gl 225 230 235 240	720 ly Leu
ttc cgt tac gcc gcc gcg cag gga gtg gcc tcg atg gtc tgc ttc tac Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys 245 250 255	768 Phe Tyr
gga gtc ccg ctt ctg att gtc aat ggt ttc ctc gtg ttg atc act tac Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Leu Ile 260 265 270	816 Thr Tyr
ttg cag cac acg cat cct tcc ctg cct cac tac gat tcg tcc gag tgg	864

Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp 275 280 285	
gat tgg ttg agg gga gct ttg gct acc gtt gac aga gac tac gga atc Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile 290 295 300	912
ttg aac aag gtc ttc cac aat att acc gac acg cac gtg gcg cat cat Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His 305 310 315 320	960
ctg ttc tcc acg atg ccg cat tat cac gcg atg gaa gct acc aag gcg Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala 325 330 335	1008
ata aag ccg ata ctg gga gag tat tat cag ttc gat ggg acg ccg gtg lie Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val 340 345 350	1056
gtt aag geg atg tgg agg gag geg aag gag tgt ate tat gtg gaa eeg Val Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro 355 360 365	1104
gac agg caa ggt gag aag aaa ggt gtg ttc tgg tac aac aat aag tta Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu 370 375 380	1152
ga ·	1155
<210> 8 <211> 384 <212> PRT <213> Brassica napus	
<400> 8 Met Gly Ale Gly Gly Are Met Gle Vel See Dee Dee See Lee Lee See	
Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15	
Glu Thr Asp Thr Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr 20 25 30	
Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser 35 40 45	
Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser 50 55 60	
Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 75 80	
Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95	
Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe	

100 105 110
Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser . 115 120 125
Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His 130 135 140
His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 145 150 155 160
Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr His Asn Asn Pro Leu 165 170 175
Gly Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu 180 185 190
Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Gly Phe Ala 195 200 205
Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu 210 215 220
Gin Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu
225 230 235 240
Phe Arg Tyr Ala Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr 245 250 255
Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr 260 265 270
Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp 275 280 285
Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile 290 295 300
Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His 305 310 315 320
Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala 325 330 335
Ile Lys Pro Ile Leu Gly Glu Tyr Tyr Gln Phe Asp Gly Thr Pro Val 340 345 350
Val Lys Ala Met Trp Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro 355 360 365
Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu 370 375 380
<210> 9
<211> 1155
<212> DNA
<213> Brassica napus
<220>
<221> CDS
<222> (1)(1152)
<400> 9

atg ggt gca ggt gga aga atg caa gtg tct cct ccc tcc aag aag tct Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser

1	5	10	15		
gaa acc gac a Glu Thr Asp 20	cc atc aag cgc p Thr Ile Lys Arg	gta ccc tgc gag g Val Pro Cys 5	g aca ccg ccc Glu Thr Pro 30	etc act Pro Phe Thr	96
gtc gga gaa c Val Gly Glu 3 35	tc aag aaa gca a Leu Lys Lys Al 40	atc cca ccg cac la Ile Pro Pro 4	His Cys Phe I	c tcg Lys Arg Ser	144
atc cet ege te le Pro Arg S 50	t ttc tcc tac ctc er Phe Ser Tyr 55	atc tgg gac atc Leu Ile Trp A 60	atc ata gcc to sp Ile Ile Ile	cc Ala Ser	192
gc ttc tac tac Cys Phe Tyr 65	gtc gcc acc act Tyr Val Ala Th 70	tac ttc cct ctc r Thr Tyr Phe 75	ctc cct cac cc Pro Leu Leu 80	et Pro His Pro	240
etc tcc tac ttc Leu Ser Tyr I	gcc tgg cct ctc Phe Ala Trp Pro 85	tac tgg gcc tg Leu Tyr Trp 90	c caa ggg tgc Ala Cys Gln 95	gtc Gly Cys Val	288
eta acc ggc gt Leu Thr Gly 100	c tgg gtc ata gc Val Trp Val Ile 10	c cac gag tgc Ala His Glu ()5	ggc cac cac g Cys Gly His H 110	cc ttc lis Ala Phe	336
egc gac tac ca Ser Asp Tyr (115	ig tgg ctt gac ga Gln Trp Leu As 120	p Asp Thr Val	ctc atc ttc cac Gly Leu Ile 25	tcc Phe His Ser	384
tc ctc ctc gtc Phe Leu Leu 130	cet tac ttc tec t Val Pro Tyr Ph 135	gg aag tac agt e Ser Trp Lys 140	cat cga cgc cat Tyr Ser His A	ac Arg Arg His	432
at tee aac act His Ser Asn T 45	ggc tcc ctc gag Thr Gly Ser Leu 150	g aga gac gaa i Glu Arg Asp 155	gtg ttt gtc ccc Glu Val Phe 160	aag Val Pro Lys	480
Lys Lys Ser A	ac atc aag tgg ta Asp Ile Lys Trp 65				528
ga ege ace g Gly Arg Thr \ 180	tg atg tta acg gt Val Met Leu Th 18	ır Val Gln Phe	c ggc tgg ccg Thr Leu Gly 190	ttg Trp Pro Leu	576
ac tta gcc ttc 'yr Leu Ala I	aac gtc tcg gga Phe Asn Val Se	aga cct tac ga r Gly Arg Pro	c ggc ggc ttc Tyr Asp Gly	gct Gly Phe Ala	624

		1	8	
195	200	20:	5	
tgc cat ttc cac ccc Cys His Phe His 1 210	aac get eec a Pro Asn Ala i 215	atc tac aac gad Pro Ile Tyr As 220	c cgc gag cgt ctc sn Asp Arg Glu Arg Leu	672
	gac gct ggc r Asp Ala Gl 230	atc etc gee gto y Ile Leu Ala 235	tgc tac ggt ctc Val Cys Tyr Gly Leu 240	720
ttc cgt tac gcc gcc Phe Arg Tyr Ala 245	Ala Ala Gln	gtg gcc tcg a Gly Val Ala S 250	tg gtc tgc ttc tac er Met Val Cys Phe Tyr 255	768
gga gtc ccg ctt ctg Gly Val Pro Leu l 260	g att gtc aat g Leu Ile Val A 265	sn Gly Phe L	ttg atc act tac eu Val Leu Ile Thr Tyr 270	816
ttg cag cac acg ca Leu Gln His Thr I 275	t cet tee etg e His Pro Ser L 280	ect cac tac gat eu Pro His Ty 285	л Asp Ser Ser Glu Trp	864
gat tgg ttg agg gg: Asp Trp Leu Arg 290	a get ttg get a Gly Ala Leu 295	acc gtt gac aga Ala Thr Val A 300	a gac tac gaa atc Asp Arg Asp Tyr Glu Ile	912
	cac aat att ac Phe His Asn 310	c gac acg cac Ile Thr Asp T 315	gtg gcg cat cat hr His Val Ala His His 320	960
ctg ttc tcc acg atg Leu Phe Ser Thr M 325	Met Pro His T	ac gcg atg gaa Tyr His Ala M 330	gct acc aag gcg et Glu Ala Thr Lys Ala 335	1008
ata aag ccg ata ctg Ile Lys Pro Ile Let 340	gga gag tat i Gly Glu Ty 345	т Тут Gln Phe	ggg acg ccg gtg Asp Gly Thr Pro Val 350	1056
gtt aag gcg atg tgg Val Lys Ala Met 7 355	g agg gag gcg Frp Arg Glu 2 360	aag gag tgt a Ala Lys Glu C 365	tc tat gtg gaa ccg Cys Ile Tyr Val Glu Pro	1104

gac agg caa ggt gag aag aaa ggt gtg ttc tgg tac aac aat aag tta Asp Arg Gln Gly Glu Lys Lys Gly Val Phe Trp Tyr Asn Asn Lys Leu 370 375 380

tga

1155

<210> 10 <211> 384 <212> PRT <213> Brassica napus

<400> 10

Met Gly Ala Gly Gly Arg Met Gln Val Ser Pro Pro Ser Lys Lys Ser 1 5 10 15

Glu Thr Asp Thr Ile Lys Arg Val Pro Cys Glu Thr Pro Pro Phe Thr
20 25 30

Val Gly Glu Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser 35 40 45

Ile Pro Arg Ser Phe Ser Tyr Leu Ile Trp Asp Ile Ile Ile Ala Ser 50 55 60

Cys Phe Tyr Tyr Val Ala Thr Thr Tyr Phe Pro Leu Leu Pro His Pro 65 70 75 80

Leu Ser Tyr Phe Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95

Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110

Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125

Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His 130 135 140

His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys 145 150 155 160

Lys Lys Ser Asp Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu 165 170 175

Gly Arg Thr Val Met Leu Thr Val Gln Phe Thr Leu Gly Trp Pro Leu 180 185 190

Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Gly Phe Ala 195 200 205

Cys His Phe His Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu 210 215 220

Gln Ile Tyr Ile Ser Asp Ala Gly Ile Leu Ala Val Cys Tyr Gly Leu 225 230 235 240

Phe Arg Tyr Ala Ala Gln Gly Val Ala Ser Met Val Cys Phe Tyr 245 250 255

Gly Val Pro Leu Leu Ile Val Asn Gly Phe Leu Val Leu Ile Thr Tyr 260 265 270

Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp
275
280
285

Asp Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Glu Ile 290 295 300

Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His 305 310 315 320

Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Ala 325 330 335

lie Lys Pro Ile Le 340	eu Gly Glu Tyr 1 345	fyr Gln Pl	ne Asp Gly 350	Thr Pro Val	
Val Lys Ala Met		Lvs Gh		r Val Glu Pro	•
355	360	36		r var Glu Flo	
Asp Arg Gln Gly				sn Asn Lys Le	- 11
370	375	380	P 7		- L
<210> 11					
<211> 21	•				
<212> DNA					
<213> Other	nucleic acid				
<400> 11					
ggatatgatg atggtga	aag a				21
<210> 12					
<211> 21					
<212> DNA					
<213> Other	nucleic acid				
<400> 12		•			
tettteacea teateatat	СС				21
<210> 13					
<211> 21					
<212> DNA					
<213> Other	nucleic acid				
<400> 13				•	
gttatgaagc aaagaag	7999 C				21
2.m.PmPo mmPmE	,uuu C				21
<210> 14					
<211> 21					
<212> DNA					
<213> Other	nucleic acid				
•					
<400> 14			·		
gtttettett tgetteataa	. c .				21
<210> 15				•	
<211> 32					
<212> DNA					
<213> Other	nucleic acid				
<100×15					
<400> 15	tos toss ationi				
caucaucauc aucttet	reg tagggiteat cg				32
<210> 16					

33

<213> Other

cuacuacuac uatettteae cateateata tee

<400> 18

International application No.
PCT/US99/17645

A. CL	ASSIFICATION OF SUBJECT MATTER			
IPC(6)	:A01H 5/00, 1/02; C09K 7/02; C12P 7/40, 7/64- (C12N 9/20		
US CL	:800/264, 298; 426/601; 305/117			
According	to International Patent Classification (IPC) or to be	oth national classification and IPC		
B. FIE	LDS SEARCHED			
Minimum	documentation searched (classification system follo	wed by classification symbols)		
U.S. :	800/264, 298; 426/601; 305/117	or of other and a symbols,		
Documenta	tion searched other than minimum documentation to	the extent that evaluations		
		me execut met anch documents sue meinder	in the fields searched	
Electronic o	data base consulted during the intersectional asset	(
WEST/DI	data base consulted during the international search ERWENT, DIALOG	(name of data base and, where practicable	, search terms used)	
	EKWENI, DIALOG			
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.	
Y	TOPFER et al. Modification of Plan	nt I inid Synthesis Science OF	1.00	
	May 1995, Vol. 268, pages 681-686	. See entire document	1-38	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, see that to the ment.		
Y	AXTELL, J.D. Breeding for Impro	wed Nutritional Oscillar		
	Plant Breeding II (Frey, ed.) 1981,	roces 365 415	1-38	
1	pages 389-395.	pages 303-413, see especially		
	P-B-0 007 373.			
Y	CARR P Processing of Oileand Co.			
•	CARR, R. Processing of Oilseed Crop	ps. In: Oil Crops of the World	16-28, 30-38	
	(Robbelen et al, eds). 1989, pages 253 and 255.	226-259, see especially pages	ĺ	
1	233 and 233.			
Y	TIG 5 800 000 1 777 00		1	
1	US 5,703,022 A (FLOYD) 30 December 1997, col. 1-2.			
		i	ĺ	
			1	
-		• 1		
[·	1	
		İ		
X Furthe	r documents are listed in the continuation of Box (
		C. See patent family annex.	•	
	ini catagories of cited documents:	"T" letter dooum ent published after the inter	national filing data or priority	
to be	ment defining the general state of the art which is not considered of particular relevance	date and not in conflict with the applic the principle or theory underlying the i	estion but cited to understand	
B' earti	er document published on or after the intersectional filing date	"X" document of particular relevance; the	claimed invention cannot be	
L* does	ment which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other	considered novel or cannot be considere when the document is taken alone	d to involve an inventive step	
speci	ing terrors (se specified)	"Y" document of particular relevance: the	claimed invention course by	
O* docu	ment referring to an oral disclosure, use, exhibition or other	considered to involve an inventive a combined with one or more other such of		
	-	being obvious to a person skilled in the	ert	
document published prior to the international filing data but later than **B** document member of the same patent family				
hate of the au	ctual completion of the international search	Date of mailing of the international scare	h report	
25 OCTOR	A A			
		24 NOV 1999		
ame and ma	uling address of the ISA/US	Authorized officer		
Box PCT	r of Patents and Trademarks	ELIZABETH F. MCELWAIN	. 7	
Washington,		ELIZABETH F. MCELWAIN	Tec	
acsimile No.	(703) 305-3230	Telephone No. 308-0196		

Form PCT/ISA/210 (second sheet)(July 1992)#

International application No.
PCT/US99/17645

Category*	Citation of document, with indication, where appropriate, of the relevant pas	sages Relevant to claim N
Y		Veievant in Claim V
(US 5,773,391 A (LAWATE et al) 30 June 1998, col. 26-35	16-28, 30-38
	_	
·	·	
	·	
		·
	,	
j		
ŀ		
-		
		· .
	•	
•		
		·

Form PCT/ISA/210 (continuation of second sheet)(July 1992)+

International application No. PCT/US99/17645

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no measingful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Picase See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US99/17645

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-15 and 29, drawn to a Brassica plant, progeny and a method of breedin brassica plants.

Group II, claim(s) 16-28, drawn to oil.

Group III, claim(s) 30-32, drawn to a method of making vegetable oil.

Group IV, claim(s) 33-35, drawn to a lubricant.

Group V, claim(s) 36-38, drawn to hydraulic fluid.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: . The inventions of groups I, II, IV and V are distinct products that differ chemically, structurally and functionally, and can be made separately and used independently, and lack a corresponding special technical feature, wherein the products of groups II, IV and V can be made by alternate methods than be extraction from the plants of group I, such as by chemical synthesis, and the plants may be used in a method other than for extraction of oil, such as for vegetable production. In addition, the invention of group III is drawn to a method of making oil, and the products of groups II. IV and V may be made by alternate methods, such as by chemical synthesis, and the plants of group I can be used for different methods, such as for vegetable production. Thus the claimed inventious lack a corresponding technical feature and the claimed products and methods lack unity.

Form PCT/ISA/210 (extra sheet)(July 1992)*