Systèmes d'exploitation et Architecture I Représentation des nombres (1) - les entiers

Marie Duflot-Kremer présenté par Sovanna Tan

Licence 2 - Université Paris Est Créteil

Entiers non signés

Entiers signés

Arithmétique entière

Pourquoi ça marche?

Introduction

Dans un ordinateur, besoin de représenter les nombres :

- de manière compacte,
- pour avoir des calculs faciles.

Plusieurs types de nombres à représenter :

- Entiers positifs → écriture en base 2 (binaire)
- Entiers signés → ?
- Nombres réels → ?

Stockage en mémoire \Rightarrow taille limitée pour chaque donnée.

Exemple: trois chiffres décimaux

On peut représenter les nombres de 000 à 999 mais pas :

- les nombres plus grands que 999
- les négatifs
- les réels

Problèmes de dépassement, de précision.

Retour sur l'exemple

$$588 + 657 = ???$$

$$003 - 005 = ???$$

$$005 / 002 = ???$$

Représentation des nombres

On représente les nombres à l'aide de symboles.

Attention

Bien faire la différence entre un nombre (par exemple dix) et sa (ses) représentations :

- 10 (décimal),
- 1010 (binaire),
- A (hexadécimal)
- sur les doigts (plusieurs représentations possibles)

Représentation - les bases

Pour représenter un entier, on choisit une base.

Les plus connues :

- 10 (décimal), la plus connue pour l'homme,
- 2 (binaire), pour l'ordi,
- 16 (hexadécimal), représentation plus compacte que le binaire.
- 1 (unaire), quand on compte sur ses doigts

D'autres plus rares :

- 12 (duodécimal) utilisé par les Egyptiens pour le compte en heures/mois,
- 20 (vigésimal) utilisée par les Aztèques, un peu en france (quatre-vingt)
- 60 (sexagésimal) mesure du temps, des angles, utilisée par les Babyloniens

Représentation - choix des symboles

- Les "chiffres arabes" utilisés pour le système décimal se composent de 10 symboles : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Pour les bases 1 à 10 on utilise (une partie de) ces symboles
 - ex : en binaire 0 et 1
- Pour une base 11 ou plus il faut compléter :
 - ex : en hexa, on utilise les chiffres et A B C D E F
- Chez les babyloniens, deux symboles :
 - Un : \ \ Dix : \
 - On les combine jusqu'à 60 :
 - Au-delà, on utilise la numération en base 60.

ex :
$$7 = 1 \times 60 + 24 = 84$$

Comment ça marche?

En base 10 :
$$342 = 300 + 40 + 2$$

= $3 \times 100 + 4 \times 10 + 2$
= $3 \times 10^2 + 4 \times 10^1 + 2 \times 10^0$

Dans les autres bases c'est pareil :

En base b (≥ 2) on note $(n_t...n_1n_0)_b$ le nombre n qui vaut

$$n = n_t \times b^t + ... + n_1 \times b + n_0 \times 1 = \sum_{i=0}^{t} n_i \times b^i$$

Remarque:

On appelle cela un système de numération **positionnel** : la valeur d'un chiffre dépend de sa position dans la représentation. En base b, le $i^{\text{ème}}$ chiffre à partir de la droite correspond à b^{i-1} . Un système de numération non positionnel : la numération romaine

Pourquoi le binaire?

Facilement accepté par l'ordinateur : différence entre deux tensions. Quelques ordinateurs fonctionnent en ternaire, mais très peu.

Base $2 \rightarrow \text{uniquement des } 0 \text{ et des } 1.$

Choix arbitraire : on aurait pu prendre deux symboles quelconques, ex : α et β .

Rappel:

avec n symboles (=BInary digiTs = bits) on peut représenter en binaire un entier positif entre :

- tous les bits à 0 : $\sum_{i=0}^{n-1} 0 \times 2^i = 0$
- et tous les bits à 1 : $\sum_{i=0}^{n-1} 1 \times 2^i = 2^n 1$

Exemples: $1101_2 = 13_{10}$ $7_{10} = 111_2$

Changements de base (1) - binaire \rightarrow décimal

- Méthode 1 : addition de puissances successives.
- On utilise la formule ci-dessus.
- $n = (n_t...n_1 n_0)_2 = n_t \times 2^t + ...n_1 \times 2^1 + n_0 \times 2^0$
- Rappel : comme on est en binaire, pour tout i on a $n_i \in \{0,1\}$

Exemple

$$101102 = 1 \times 24 + 0 \times 23 + 1 \times 22 + 1 \times 21 + 0 \times 20$$

= 16 + 4 + 2
= 22₁₀

Changements de base (1bis) - binaire \rightarrow décimal

Méthode 2 : multiplications par 2 et ajouts de 1.

Reprenons l'exemple

$$10110_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= (1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}) \times 2 + 0$$

$$= (1011_{2} \times 2) + 0$$

$$= (((101_{2} \times 2) + 1) \times 2) + 0$$

$$= (((((10_{2} \times 2) + 1) \times 2) + 1) \times 2) + 0$$

$$= ...$$

- on part du 1 le plus à gauche,
- pour chaque nouveau chiffre on multiplie par 2,
- et si en plus le chiffre est 1 on ajoute 1.

Changements de base (1bis) - sur un exemple

- on part du 1 le plus à gauche,
- pour chaque nouveau chiffre on multiplie par 2,
- et si en plus le chiffre est 1 on ajoute 1.

Exemple:

 $010101_2 = ? 21_{10}$

- ullet on part du 1 le plus à gauche ightarrow 1
- le chiffre suivant est un $0 \rightarrow 1 \times 2 = 2$
- le chiffre suivant est un $1 \rightarrow (2 \times 2) + 1 = 5$
- le chiffre suivant est un $0 \rightarrow 5 \times 2 = 10$
- le chiffre suivant est un $1 \rightarrow (10 \times 2) + 1 = 21$

Changements de base (2) - décimal \rightarrow binaire

Méthode :

- Diviser le nombre choisi par deux,
- garder le quotient, noter le reste,
- diviser le quotient par 2, écrire le nouveau reste,
- continuer jusqu'à avoir un quotient =0.

Attention : Il faut écrire les restes de droite à gauche

Exemple: 20

$$20 / 2 = 10 \text{ reste } 0$$

 $10 / 2 = 5 \text{ reste } 0$
 $5 / 2 = 2 \text{ reste } 1$
 $2 / 2 = 1 \text{ reste } 0$
 $1 / 2 = 0 \text{ reste } 1$

Résultat: 10100

Représentation hexadécimale

- Besoin de 16 symboles :
 - 10 chiffres : 0 ... 9
 - plus 6 lettres : A B C D E F
- La façon dont est représenté le binaire car :
 - plus compacte,
 - plus lisible,
 - facile à convertir en binaire.

Changements de base (3) - hexa \rightarrow binaire

$$\begin{array}{ccc} \text{hexa} & \rightarrow & \text{binaire} \\ \text{1 symbole} & \rightarrow & \text{4 bits} \end{array}$$

- chaque symbole hexadecimal a sa correspondance en binaire
- $C_{16} = 12_{10} = 1100_2$
- Pour traduire un nombre plus long on traduit les signes hexa un par un :

Exemple

 $CAFE_{16} = 1100 \ 1010 \ 1111 \ 1110_{2}$

Changements de base (4) - binaire \rightarrow hexa

binaire
$$\rightarrow$$
 hexa
4 bits \rightarrow 1 symbole

- Si besoin on complète avec des 0 à gauche pour avoir un multiple de 4 bits
- On traduit les bits par bloc de 4 en hexadécimal

Exemple

 $0111\ 0011\ 1010_2 = 73A_{16}$

Entiers non signés sur *n* bits

On a un entier sur k bits et on le veut sur $n \neq k$ bits. Comment faire?

- Si k < n, il suffit de rajouter n k zéros à gauche.
- Si k > n c'est plus compliqué :
 - Si on a au moins k-n zéros à gauche on en enlève k-n.
 - Sinon c'est impossible

Exemple:

Représenter 8₁₀ sur :

• 6 bits: 001000₂

• 4 bits : 1000₂

• 3 bits : impossible!

Entiers signés

Jusqu'à présent on a considéré des entiers non signés :

- pas besoin de signe (positif ou négatif)
- tous les bits ont servi à coder la valeur absolue

Pour calculer on va avoir besoin de nombres signés

- besoin de représenter le signe...
- de manière simple...
- tout en facilitant les calculs.

Principe

- Bit de gauche = signe (0 : positif, 1 : négatif).
- Les autres bits représentent la valeur absolue.
- Permet de représenter sur *n* bits un nombre allant de $-(2^{n-1}-1)$ à $2^{n-1}-1$.

Exemple

$$00010_2 \rightarrow 2$$

$$10010_2 \rightarrow -2$$

Représentation signe et valeur absolue (2)

Avantages:

- calculer l'opposé d'un nombre est facile,
- le bit de gauche donne le signe :
 - $0 \rightarrow positif$,
 - ullet 1 o négatif.

Inconvénients:

- difficile d'additionner deux nombres de signes différents
- difficile de soustraire des nombres
- deux représentations de 0

Attention : dans la suite du cours (et donc à l'examen) on ne va PAS utiliser cette notation.

Principe (sur *n* bits)

- Premier bit de poids négatif : -2^{n-1} ,
- les autres de poids positif : $+2^i$

$$(a_{n-1}...a_1a_0)_2 \leftrightarrow -2^{n-1} \times a_{n-1} + \sum_{i=0}^{n-2} 2^i \times a_i$$

Exemples sur 8 bits

- $-45_{10} = -128 + 83 = -128 + 64 + 16 + 2 + 1$ = 11010011_2
- $101111110_2 = -128 + 32 + 16 + 8 + 4 + 2 = -66_{10}$

Valeur minimale sur *n* bits quand :

- a_{n-1} vaut 1
- les a; valent tous 0

Valeur maximale sur *n* bits quand :

- a_{n-1} vaut 0
- les a; valent tous 1

Permet de représenter sur n bits des entiers de -2^{n-1} à $2^{n-1} - 1$.

Complément à deux (3)

Inconvénient :

 opposé d'un nombre (un peu) plus difficile à calculer (cf. plus loin)

Avantages :

- une seule représentation de 0,
- addition et soustraction + simples.
- le bit de gauche donne le signe :
 - 0 → positif,
 - $1 \rightarrow \text{n\'egatif.}$

Remarque: Pour la suite du cours, on va utiliser uniquement la représentation en complément à deux.

Dépassement

Qu'appelle-t-on dépassement?

Définition

On dit qu'il y a dépassement de capacité lors d'une opération arithmétique sur n bits lorsque le résultat ne peut pas être représenté sur n bits. L'opération donne alors un résultat incorrect.

On en verra dans ce cours dans :

- les décalages à gauche
- les additions
- les soustractions

Extension de signe

Entier signé sur n bits \rightarrow entier signé sur n + k bits.

Méthode

On rajoute des bits à gauche de la même valeur que le bit de signe.

Exemples

- $5_{10} = 0101_2$ (sur 4 bits) = 00000101_2 (sur 8 bits).
- $-4 = 1100_2$ (sur 4 bits) = 111111100_2 (sur 8 bits).

Décalages (1) - à gauche

Méthode

- on enlève le bit de gauche,
- on décale les autres d'une position à gauche et
- on rajoute un 0 à droite.

Exemples

$$00110011_2 = 51_{10}$$
 $11110011_2 = -13_{10}$ \downarrow \downarrow $01100110_2 = 102_{10}$ $11100110_2 = -26_{10}$

Cela réalise une multiplication par 2.

Décalages (1bis) - dépassement

Il y a dépassement pour un décalage à gauche quand :

- les deux bits de gauche du nombre de départ sont différents,
- c'est à dire quand le bit de signe du résultat est différent de celui du nombre de départ.

Exemples

Décalages (2) - à droite

Méthode

- on enlève le bit en position 0 (le plus à droite),
- on décale les autres d'une position vers la droite et
- on recopie le bit de signe en position n-1 (à gauche).

Exemples

$$0110_2 = 6_{10}$$
 $0101_2 = 5_{10}$ $110010_2 = -14_{10}$
 \downarrow \downarrow \downarrow
 $0011_2 = 3_{10}$ $0010_2 = 2_{10}$ $111001_2 = -7_{10}$

Cela revient à une division entière par deux.

Décalages (2bis) - les arrondis

- Pas de problème de dépassement,
- par contre on fait une division entière,
- arrondi à l'entier inférieur.

Attention aux arrondis

Qu'obtient-on si on décale n fois à droite un nombre sur n bits?

- s'il est positif : $00...00_2 = 0$
- s'il est négatif : $11...11_2 = -1!!!$

C'est normal : si on divise -1 par deux et qu'on arrondit à l'entier inférieur, on retrouve -1!

En assembleur on verra deux décalages à droite :

- un logique (met un 0 à gauche) : entiers non signés, et
- un arithmétique (recopie du bit de signe) : entiers signés.

Addition

Méthode

- comme à l'école
- avec des retenues
- la différence ? 1+1= 0 et on retient 1

Exemple

Addition (2) - dépassement

Exemples sur 5 bits

Que donne l'algorithme d'addition sur 5 bits?

Dépassement ? non, oui oui et non.

- Il peut y avoir dépassement lorsque les deux nombres à ajouter sont de signe identique.
- Le dépassement se voit au résultat de signe différent
 - par exemple A > 0, B > 0 et résultat < 0.

But : calculer l'écriture (en compl. à deux) de -A à partir de A.

Méthode

- On prend le complément booléen bit à bit (changer les 0 en 1 et les 1 en 0),
- on ajoute 1 au résultat obtenu.

Exemple

$$B = 6 = 00110_{2}$$
 $\bar{B} = 11001_{2}$
 $-B = \bar{B} + 1 = 11010_{2}$

Vérification : $11010_2 = -16 + 8 + 2 = -6$

Opposé (2) - dépassement

- Il y a dépassement lorsque A représentable mais pas -A
- Une seule valeur dans ce cas
- A = -2^{n-1} sur *n* bits

Arithmétique entière

Méthode

Comment calcule-t-on A-B?

- A-B = A+ (-B)
- on calcule l'opposé -B,
- puis on l'ajoute à A.

$$A - B = A + \bar{B} + 1$$

Exemple

Calculer 5 - 12 (sur 6 bits) : $\bar{B} = 001100 \quad 000101 \\ -B = 110010 \quad +110100 \\ -B = 110100$

Résultat : -7

Soustraction (2) - dépassement

On calcule A-B. Quand y a-t-il dépassement?

- Il peut y avoir dépassement lorsque les deux nombres à soustraire sont de signe différent.
- Le dépassement se voit au résultat de même signe que B
 - par exemple A > 0, B < 0 et résultat < 0.
 - ou encore A < 0, B > 0 et résultat > 0.

Retour sur les avantages

- un seul algorithme d'addition, pas de souci de signe
- la soustraction se fait en utilisant l'addition
- on a bien une seule représentation de 0
 - pour calculer l'opposé de 00000 ...
 - on prend le complément booléen bit à bit 11111 ...
 - puis on ajoute 1 ce qui donne 00000.

Méthode

Comment calcule-t-on A×B?

- comme à l'école
- avec des décalages et des additions
- l'avantage? on ne fait que des multiplications par 0 ou 1!

```
 \begin{array}{c} 0\ 0\ 1\ 0\ 1 \\ \hline \times\ 0\ 0\ 0\ 1\ 1 \\ \hline 0\ 0\ 1\ 0\ 1 \\ \hline 0\ 0\ 1\ 0\ 1\ . \ Cet \quad algorithme \quad sera \quad vu/programm\'e \quad en \\ 0\ 0\ 0\ 0\ 0\ . \ . \ . \\ \hline 0\ 0\ 0\ 0\ 0\ . \ . \ . \\ \hline 0\ 1\ 1\ 1\ 1 \\ \end{array}
```

Pourquoi "décalage à gauche" = "multiplication par deux" ?

Lorsqu'il n'y a pas de dépassement bien sûr

Pas de dépassement = deux bits de gauche ont la même valeur. Si A est positif :

- $A = 00a_{n-3}...a_1a_0$
- Quand on décale on a $0a_{n-3}...a_1a_00$
- on passe de $A = \sum_{i=0}^{n-3} a_i \times 2^i$ à $\sum_{i=0}^{n-3} a_i \times 2^{i+1} = 2A$.

Si A est négatif :

•
$$A = (11a_{n-3}...a_1a_0)_2 = -2^{n-1} + 2^{n-2} + \sum_{i=0}^{n-3} a_i \times 2^i$$
.

• soit
$$A = -2^{n-2} + \sum_{i=0}^{n-3} a_i \times 2^i$$

• quand on décale on a
$$A' = (1a_{n-3}...a_1a_00)_2 = -2^{n-1} + \sum_{i=0}^{n-3} a_i \times 2^{i+1}$$
.

•
$$A' = 2 \times (-2^{n-2} + \sum_{i=0}^{n-3} a_i \times 2^i) = 2A$$

Pourquoi "décalage à droite" = "division par deux" ?

Division entière : arrondi à l'entier inférieur

- On va traiter le cas où A est pair
- l'écriture binaire a un 0 à droite
- le cas impair revient au même modulo l'arrondi

Si A est positif:

- on passe de $A = (0a_{n-2}...a_10)_2 = \sum_{i=1}^{n-2} a_i \times 2^i$
- à $(00a_{n-2}...a_1)_2 = \sum_{i=1}^{n-2} a_i \times 2^{i-1} = A/2$

Si A est négatif,

- on passe de $A = (1a_{n-2}...a_10)_2 = -2^{n-1} + \sum_{i=1}^{n-2} a_i \times 2^i$
- à $A' = (11a_{n-2}...a_1)_2 = -2^{n-1} + 2^{n-2} + \sum_{i=1}^{n-2} a_i \times 2^{i-1} = -2^{n-2} + \sum_{i=1}^{n-2} a_i \times 2^{i-1} = 1/2 \times (-2^{n-1} + \sum_{i=1}^{n-2} a_i \times 2^i) = A/2$

Pourquoi " $\bar{B} + 1$ " = "-B"?

- Il suffit de montrer que : $B + (\bar{B} + 1) = 0$.
- \bar{B} est l'inverse bit à bit de B
- \bar{B} a des 0 où B a des 1 et réciproquement
- et donc pour tout B, $B + \bar{B} = 11....11$
- et 11....11 + 00...01 = 00...00