

SEQUENCE LISTING

<110> Genencor International, Inc.
 The Proctor & Gamble Company
 Jones, Brian E.
 Kolkman, Marc
 Leeflang, Chris
 Oh, Hiroshi
 Poulose, A.J.
 Sadlowski, Eugene S.
 Shaw, Andrew
 van der Kleij, Wilhelmus A.H.
 van Marrenwijk, Leo

<120> Serine Proteases, Nucleic Acids Encoding Serine Enzymes and Vectors and Host Cells Incorporating Same

<130> GC819-2-US/B

<140> 10/576,331

<141> 2006-04-18

<150> US 60/523,609

<151> 2003-11-19

<160> 656

<170> PatentIn version 3.2

<210> 1

<211> 1680

<212> DNA

<213> Cellulomonas strain 69B4

<400> 1

gcgcgtcg	ccacgacga	cggcgtccgc	cgttgcgg	cgtacctgcg	ttggctcacc	60
accaccaga	tcgacctcca	taacgaggcc	gtatgaccag	aaaggatct	gccaccgccc	120
accagcacgc	tcctaacc	cgagcaccgg	cgaccggcgg	gtgcgatgaa	aggacgaac	180
cgagatgaca	ccacgcacag	tcacgcgggc	cctggccgtg	gccaccgcag	ccgcccacact	240
cctggcaggg	ggcatggccg	cccaggccaa	cgagccccca	ccaccggga	gcmcagcgc	300
accgccacgc	ctggccgaga	agctcgaccc	cgacccctc	gaggccatgg	agcgcgacct	360
ggccctcgac	gcccgggaa	ccgcccacac	cctggcggtc	cagcacgacg	cagccgagac	420
cgccgaggcc	ctcgccgaag	agctcgacga	ggacttcgccc	ggcacctggg	tcgaggacga	480
cgtccctgtac	gtcgccacca	ccgacgagga	cgccgtcgag	gaggtcgagg	gcgaaggcgc	540
cacggccgtc	accgtcgagc	actccctggc	cgacccctcgag	gcctggaaga	ccgtccctcg	600
cgcgcgcctc	gagggccacg	acgacgtgcc	cacccgttac	gtcgacgtcc	cgaccaacag	660
cgtcgctgtc	gccgtcaagg	ccggagccca	ggacgtcgcc	gccggcctcg	tcgaagggtgc	720
cgacgtcccg	tccgacgccc	tgaccttcgt	cgagaccgac	gagacccccc	ggaccatgtt	780
cgacgtgtac	ggcggcaacg	cctacaccat	cgggggccgc	agccgctgt	cgatcggtt	840
cgcggtaaac	ggcgggttca	tcacccgggg	ccactgcggc	cgacccggcg	ccaccaccgc	900
caaccccccacc	gggaccttcg	ccgggtccag	ttcccccggc	aacgactacg	cgttcgccg	960
tacccggggcc	ggcgtgaacc	tgctggccca	ggtcaacaac	tactccggtg	gccgcgtcca	1020
ggtcggccggg	cacaccgggg	cccccggtgg	ctcgccgtg	tgccggtccg	ggtcgaccac	1080
cgggtggcac	tgccggacca	tcactgcgt	caactccctcg	gtcacctacc	ccgaggcccac	1140
cgtccgcggc	ctgatccgca	ccaccgtctg	cgccgagccc	ggcgactccg	gtggctcgct	1200
gctcgccggc	aaccaggccc	agggcgtcac	gtccggccgc	tccggcaact	gccgcaccgg	1260
tggcaccacg	ttttccagc	cggtaaccc	catcctccag	gctacggcc	tgaggatgat	1320

caccacggac	tcgggcagca	gcccggcccc	tgcaccgacc	tcctgcacccg	gctacgcccc	1380
cacccctcacc	gggaccctcg	cgccggcccg	ggccgccccc	cagcccaacg	ggtcctacgt	1440
gcaggtaaac	cggtccggga	cccacagcgt	gtgcctcaac	ggggccctccg	gtgcggactt	1500
cgacctctac	gtcagcgtct	ggaacggcag	ctcctgggt	accgtcgccc	agagcaccc	1560
ccccggctcc	aacgagacca	tcacctaccg	cgcaacgccc	ggctactacc	gctacgttgt	1620
caacgcccgcg	tccggctccg	gtgcctacac	catggggctc	accctccct	gacgtagcgc	1680

<210> 2
<211> 1488
<212> DNA
<213> Cellulomonas strain 69B4

<400> 2

atgacaccac	gcacagtac	gccccccctg	ggcgtggcca	ccgcagccgc	cacactcctg	60
gcaggcggca	tggccccc	ggccaacgag	cccgaccac	ccggagcgc	gagcgcaccc	120
ccacgcctgg	ccgagaagct	cgaccccgac	ctcctcgagg	ccatggagcg	cgacccctggc	180
ctcgacgcgg	aggaagccgc	cgccaccctg	gcgttccagc	acgacgcgc	cgagaccggc	240
gaggccctcg	ccgaagagct	cgacgaggac	ttcggccgca	cctgggtcga	ggacgacgtc	300
ctgtacgtcg	ccaccaccga	cgaggacgccc	gtcgaggagg	tcgagggcga	aggcgccacg	360
gcccgtcaccg	tcgagcactc	cctggccgac	ctcgaggct	ggaagaccgt	cctcgacgcc	420
gcccctcgagg	gccacgacga	cgtcccacc	ttgtacgtcg	acgtcccgac	caacagcgtc	480
gtcgctcgccg	tcaaggccgg	agcccaggac	gtcgccgccc	gcctcgtcga	aggtgcccac	540
gtcccgtccg	acgccgtgac	cttcgtcgag	accgacgaga	ccccgcggac	catgttcgac	600
gtgatcgccg	gcaacgccta	caccatcggg	gggcgcagcc	gctgctcgat	cgggttcgcg	660
gtcaacgcgcg	ggttcatcac	cgccggccac	tgcggccgca	ccggcgccac	caccgccaac	720
cccaccggga	ctttcggccg	gtccagcttc	ccgggcaacg	actacgcgtt	cgtccgtacc	780
ggggccggcg	tgaacctgct	ggcccaggtc	aacaactact	ccggtgccgc	cgtccaggtc	840
gccccggcaca	ccgcggccccc	cgtcggctcg	ggcgtgtgcc	ggtccgggtc	gaccaccggg	900
tggcactgcg	gcaccatcac	tgcgtcaac	tcctcggtca	cctaccccg	gggcaccgtc	960
cgcggcctga	tccgcaccac	cgtctcgccc	gagccggcg	actccggtg	ctcgctgctc	1020
gccccggcaacc	aggcccaggg	cgtcacgtcc	ggcggtccg	gcaactgcgc	caccgggtggc	1080
accacgttct	tccagccggt	caaccccatc	ctccaggcg	acggcctgag	gatgatcacc	1140
acggactcgg	gcagcagccc	ggccctgtca	ccgacccct	gcaccggcta	cgcggcacc	1200
ttcacccggga	ccctcgccgc	cgccggggcc	ggcccccagc	ccaacgggtc	ctacgtgcag	1260
gtcaaccgggt	ccgggaccca	cagcgtgtgc	ctcaacgggc	cctccgggtc	ggacttcgac	1320
ctctacgtgc	agcgctggaa	cggcagctcc	tgggtgaccg	tcgcccagag	cacccccc	1380
ggctccaacg	agaccatcac	ctaccgcggc	aacggccgct	actaccgcta	cgtggtaaac	1440
gcccgtccg	gctccgggtc	ctacaccatg	gggctcacc	tccccctga		1488

<210> 3
<211> 1404
<212> DNA
<213> Cellulomonas spp.

<400> 3

aacgagcccg	caccaccgg	gagcgcgagc	gcaccgcac	gcctggccga	gaagctcgac	60
cccgacccctc	tcgaggccat	ggagcgcgac	ctggggcctcg	acgcggagga	agccggccccc	120
accctggcggt	tccagcacga	cgcagccgag	accggcgagg	ccctcgccga	agagctcgac	180
gaggacttcg	ccggcacctg	ggtcgaggac	gacgtcctgt	acgtcgccac	caccgacgag	240
gacgcgtcg	aggaggtcga	gggcgaaggc	gccacggccg	tcaccgtcg	gcactccctg	300
gccgacccctg	aggcctggaa	gaccgtcctc	gacgcgc	tcgagggcga	cgacgcgtg	360
cccacctgggt	acgtcgacgt	cccgaccaac	agcgtcg	tcgcccgtcaa	ggccggagcc	420
caggacgtcg	ccgcccggct	cgtcgaaagg	gccgacgtcc	cgtccgacgc	cgtgaccc	480
gtcgagaccg	acgagacccc	gcggaccatg	ttcgacgtga	tcggcgccaa	cgcctacacc	540
atcgggggggc	gcagccgctg	ctcgatcggt	ttcgccgtca	acggcggtt	catcaccgccc	600
ggccactgcg	gccgcacccgg	cgccaccacc	gccaacccca	ccgggaccc	cgcgggtcc	660
agcttcccg	gcaacgacta	cgcgttcgtc	cgtaccgggg	ccggcgtgaa	cctcgccgtcc	720

caggtaaca	actactccgg	tggccgcgtc	caggtcgccg	ggcacaccgc	ggcccccgtc	780
ggctcgccg	tgtgccggtc	cgggtcgacc	acccgggtggc	actgcggcac	catcaactgcg	840
ctcaactcct	cgttccaccta	ccccgagggc	accgtcccg	gcctgatccg	caccaccgtc	900
tgcggccgagc	ccggcgactc	cggtggtcg	ctgtcgccg	gcaaccaggc	ccagggcgtc	960
acgtccggcg	gtccggcaa	ctgcccacc	ggtggcacca	cgtttcttcca	gcccgtcaac	1020
cccatctcc	aggcgtaacgg	cctgaggatg	atcaccacgg	actcgggcag	cagcccgccc	1080
cctgcaccga	ccttcctgcac	cggctacgccc	cgcaccttca	ccgggaccct	cgccggccggc	1140
cgggccgccc	cccagcccaa	cgggtcttac	gtgcagggtca	accgtccgg	gaccacacgc	1200
gtgtgcctca	acggggccctc	cggtgccgac	tgcacccctt	acgtgcagcg	ctggAACGGC	1260
agctccctgg	tgaccgtcgc	ccagagcacc	tcccccggct	ccaacgagac	catcacctac	1320
cgcggcaacg	ccggctacta	ccgctacgt	gtcaacgcgg	cgtccggctc	cggtgcctac	1380
accatggggc	tcaccctcccc	ctga				1404

<210> 4
<211> 567
<212> DNA
<213> *Cellulomonas* spp.

<210> 5
<211> 83
<212> DNA
<213> Cellulomonas strain 69B4

<400> 5
atgacaccac cacagtcacg cgggcctgg ccgtggccac cgca gccc acactcctgg 60
caaggcqcat qcccccac acc 83

<210> 6
<211> 495
<212> PRT
<213> Cellulomonas strain 69B4

<400> 6

```

Met Thr Pro Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr Ala Ala
1           5           10          15
Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala Asn Glu Pro Ala
20          25          30
Pro Pro Gly Ser Ala Ser Ala Pro Pro Arg Leu Ala Glu Lys Leu Asp
35          40          45
Pro Asp Leu Leu Glu Ala Met Glu Arg Asp Leu Gly Leu Asp Ala Glu
50          55          60
Glu Ala Ala Ala Thr Leu Ala Phe Gln His Asp Ala Ala Glu Thr Gly
65          70          75          80
Glu Ala Leu Ala Glu Glu Leu Asp Glu Asp Phe Ala Gly Thr Trp Val

```

85	90	95
Glu Asp Asp Val Leu Tyr Val Ala Thr	Asp Glu Asp Ala Val Glu	
100	105	110
Glu Val Glu Gly Glu Gly Ala Thr	Ala Val Thr Val Glu His Ser Leu	
115	120	125
Ala Asp Leu Glu Ala Trp Lys	Thr Val Leu Asp Ala Ala Leu Glu Gly	
130	135	140
His Asp Asp Val Pro Thr Trp Tyr Val Asp Val	Pro Thr Asn Ser Val	
145	150	155
Val Val Ala Val Lys Ala Gly Ala Gln Asp Val	Ala Ala Gly Leu Val	
165	170	175
Glu Gly Ala Asp Val Pro Ser Asp Ala Val	Thr Phe Val Glu Thr Asp	

180	185	190
Glu Thr Pro Arg Thr Met Phe Asp Val Ile	Gly Gly Asn Ala Tyr Thr	
195	200	205
Ile Gly Gly Arg Ser Arg Cys Ser Ile	Gly Phe Ala Val Asn Gly Gly	
210	215	220
Phe Ile Thr Ala Gly His Cys Gly Arg	Thr Gly Ala Thr Thr Ala Asn	
225	230	235
Pro Thr Gly Thr Phe Ala Gly Ser Ser	Phe Pro Gly Asn Asp Tyr Ala	
245	250	255
Phe Val Arg Thr Gly Ala Gly Val Asn	Leu Ala Gln Val Asn Asn	
260	265	270
Tyr Ser Gly Gly Arg Val Gln Val Ala	Gly His Thr Ala Ala Pro Val	
275	280	285
Gly Ser Ala Val Cys Arg Ser Gly Ser	Thr Thr Gly Trp His Cys Gly	
290	295	300
Thr Ile Thr Ala Leu Asn Ser Ser Val	Thr Tyr Pro Glu Gly Thr Val	
305	310	315
Arg Gly Leu Ile Arg Thr Thr Val Cys	Ala Glu Pro Gly Asp Ser Gly	
325	330	335
Gly Ser Leu Leu Ala Gly Asn Gln Ala	Gln Gly Val Thr Ser Gly Gly	
340	345	350
Ser Gly Asn Cys Arg Thr Gly Thr	Phe Phe Gln Pro Val Asn	
355	360	365
Pro Ile Leu Gln Ala Tyr Gly Leu Arg	Met Ile Thr Thr Asp Ser Gly	
370	375	380
Ser Ser Pro Ala Pro Ala Pro Thr	Ser Cys Thr Gly Tyr Ala Arg Thr	
385	390	395
Phe Thr Gly Thr Leu Ala Ala Gly Arg	Ala Ala Gln Pro Asn Gly	
405	410	415
Ser Tyr Val Gln Val Asn Arg Ser	Gly Thr His Ser Val Cys Leu Asn	
420	425	430
Gly Pro Ser Gly Ala Asp Phe Asp	Leu Tyr Val Gln Arg Trp Asn Gly	
435	440	445
Ser Ser Trp Val Thr Val Ala Gln Ser	Thr Ser Pro Gly Ser Asn Glu	
450	455	460
Thr Ile Thr Tyr Arg Gly Asn Ala Gly	Tyr Tyr Arg Tyr Val Val Asn	
465	470	475
Ala Ala Ser Gly Ser Gly Ala Tyr Thr	Met Gly Leu Thr Leu Pro	
485	490	495

<210> 7
<211> 467
<212> PRT

<213> Cellulomonas strain 69B4

<400> 7

Asn Glu Pro Ala Pro Pro Gly Ser Ala Ser Ala Pro Pro Arg Leu Ala
1 5 10 15
Glu Lys Leu Asp Pro Asp Leu Leu Glu Ala Met Glu Arg Asp Leu Gly
20 25 30
Leu Asp Ala Glu Glu Ala Ala Ala Thr Leu Ala Phe Gln His Asp Ala
35 40 45
Ala Glu Thr Gly Glu Ala Leu Ala Glu Glu Leu Asp Glu Asp Phe Ala
50 55 60
Gly Thr Trp Val Glu Asp Asp Val Leu Tyr Val Ala Thr Thr Asp Glu
65 70 75 80
Asp Ala Val Glu Glu Val Glu Gly Glu Gly Ala Thr Ala Val Thr Val
85 90 95
Glu His Ser Leu Ala Asp Leu Glu Ala Trp Lys Thr Val Leu Asp Ala
100 105 110
Ala Leu Glu Gly His Asp Asp Val Pro Thr Trp Tyr Val Asp Val Pro
115 120 125
Thr Asn Ser Val Val Val Ala Val Lys Ala Gly Ala Gln Asp Val Ala
130 135 140
Ala Gly Leu Val Glu Gly Ala Asp Val Pro Ser Asp Ala Val Thr Phe
145 150 155 160
Val Glu Thr Asp Glu Thr Pro Arg Thr Met Phe Asp Val Ile Gly Gly
165 170 175
Asn Ala Tyr Thr Ile Gly Gly Arg Ser Arg Cys Ser Ile Gly Phe Ala
180 185 190
Val Asn Gly Gly Phe Ile Thr Ala Gly His Cys Gly Arg Thr Gly Ala
195 200 205
Thr Thr Ala Asn Pro Thr Gly Thr Phe Ala Gly Ser Ser Phe Pro Gly
210 215 220
Asn Asp Tyr Ala Phe Val Arg Thr Gly Ala Gly Val Asn Leu Leu Ala
225 230 235 240
Gln Val Asn Asn Tyr Ser Gly Gly Arg Val Gln Val Ala Gly His Thr
245 250 255
Ala Ala Pro Val Gly Ser Ala Val Cys Arg Ser Gly Ser Thr Thr Gly
260 265 270
Trp His Cys Gly Thr Ile Thr Ala Leu Asn Ser Ser Val Thr Tyr Pro
275 280 285
Glu Gly Thr Val Arg Gly Leu Ile Arg Thr Thr Val Cys Ala Glu Pro
290 295 300
Gly Asp Ser Gly Gly Ser Leu Leu Ala Gly Asn Gln Ala Gln Gly Val
305 310 315 320
Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr Phe Phe
325 330 335
Gln Pro Val Asn Pro Ile Leu Gln Ala Tyr Gly Leu Arg Met Ile Thr
340 345 350
Thr Asp Ser Gly Ser Ser Pro Ala Pro Ala Pro Thr Ser Cys Thr Gly
355 360 365
Tyr Ala Arg Thr Phe Thr Gly Thr Leu Ala Ala Gly Arg Ala Ala Ala
370 375 380
Gln Pro Asn Gly Ser Tyr Val Gln Val Asn Arg Ser Gly Thr His Ser
385 390 395 400
Val Cys Leu Asn Gly Pro Ser Gly Ala Asp Phe Asp Leu Tyr Val Gln
405 410 415
Arg Trp Asn Gly Ser Ser Trp Val Thr Val Ala Gln Ser Thr Ser Pro

420 425 430
Gly Ser Asn Glu Thr Ile Thr Tyr Arg Gly Asn Ala Gly Tyr Tyr Arg
435 440 445
Tyr Val Val Asn Ala Ala Ser Gly Ser Gly Ala Tyr Thr Met Gly Leu
450 455 460
Thr Leu Pro
465

<210> 8
<211> 189
<212> PRT
<213> Cellulomonas spp.

<400> 8

Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr Ile Gly Gly Arg Ser Arg
1 5 10 15
Cys Ser Ile Gly Phe Ala Val Asn Gly Gly Phe Ile Thr Ala Gly His
20 25 30
Cys Gly Arg Thr Gly Ala Thr Thr Ala Asn Pro Thr Gly Thr Phe Ala
35 40 45
Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Phe Val Arg Thr Gly Ala
50 55 60
Gly Val Asn Leu Leu Ala Gln Val Asn Asn Tyr Ser Gly Gly Arg Val
65 70 75 80
Gln Val Ala Gly His Thr Ala Ala Pro Val Gly Ser Ala Val Cys Arg
85 90 95
Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Thr Ala Leu Asn
100 105 110
Ser Ser Val Thr Tyr Pro Glu Gly Thr Val Arg Gly Leu Ile Arg Thr
115 120 125
Thr Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Leu Ala Gly
130 135 140
Asn Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr
145 150 155 160
Gly Gly Thr Thr Phe Phe Gln Pro Val Asn Pro Ile Leu Gln Ala Tyr
165 170 175
Gly Leu Arg Met Ile Thr Thr Asp Ser Gly Ser Ser Pro
180 185

<210> 9
<211> 28
<212> PRT
<213> Cellulomonas strain 69B4

<400> 9

Met Thr Pro Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr Ala Ala
1 5 10 15
Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala
20 25

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
 <223> primer

 <220>
 <221> misc_feature
 <222> (3)..(3)
 <223> n is a, c, g, or t

 <400> 10
 acnacsggst ggcrtgtcgg cac 23

<210> 11
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

 <220>
 <221> misc_feature
 <222> (2)..(17)
 <223> n is a, c, g, or t

<400> 11
 angngccgcc ggagtcncc 19

<210> 12
 <211> 58
 <212> PRT
 <213> Cellulomonas strain 69B4

<400> 12

Asp	Gly	Trp	Asp	Cys	Gly	Thr	Ile	Thr	Ala	Leu	Asn	Ser	Ser	Val	Thr
1				5					10					15	
Tyr	Pro	Glu	Gly	Thr	Val	Arg	Gly	Leu	Ile	Arg	Thr	Thr	Val	Cys	Ala
				20				25					30		
Glu	Pro	Gly	Asp	Ser	Gly	Gly	Ser	Leu	Leu	Ala	Gly	Asn	Gln	Ala	Gln
			35			40					45				
Gly	Val	Thr	Ser	Gly	Asp	Ser	Gly	Gly	Ser						

50 55

<210> 13
 <211> 177
 <212> DNA
 <213> Cellulomonas strain 69B4

<400> 13
 acgacggctg ggactgcggc accatcaactg cgctcaactc ctcggtcacc taccccgagg 60
 gcaccgtccg cggcctgatc cgccaccaccc tctgcgccga gccccggcgcac tccggtggt 120
 cgctgctcgc cggcaaccag gcccaggcg tcacgtccgg cgactccggc ggctcat 177

<210> 14
 <211> 32

<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 14

cggggtaggt gaccgaggag ttgagcgcag tg

32

<210> 15

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 15

gctcgccggc aaccaggccc agggcgtcac gtc

33

<210> 16

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 16

aacggcggtt tcatcaccgc cggccactgc ggcc

34

<210> 17

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> N-terminus of the mature chain determined by MALDI-TOF analysis

<400> 17

Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr Ile Gly Gly Arg
1 5 10

<210> 18

<211> 189

<212> PRT

<213> Cellulomonas strain 69B4

<400> 18

Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr Ile Gly Gly Arg Ser Arg
1 5 10 15
Cys Ser Ile Gly Phe Ala Val Asn Gly Gly Phe Ile Thr Ala Gly His
20 25 30
Cys Gly Arg Thr Gly Ala Thr Thr Ala Asn Pro Thr Gly Thr Phe Ala

35	40	45
Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Phe Val Arg Thr Gly Ala		
50	55	60
Gly Val Asn Leu Leu Ala Gln Val Asn Asn Tyr Ser Gly Gly Arg Val		
65	70	75
Gln Val Ala Gly His Thr Ala Ala Pro Val Gly Ser Ala Val Cys Arg		
85	90	95
Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Thr Ala Leu Asn		
100	105	110
Ser Ser Val Thr Tyr Pro Glu Gly Thr Val Arg Gly Leu Ile Arg Thr		
115	120	125
Thr Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Leu Ala Gly		
130	135	140
Asn Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr		
145	150	155
Gly Gly Thr Thr Phe Phe Gln Pro Val Asn Pro Ile Leu Gln Ala Tyr		
165	170	175
Gly Leu Arg Met Ile Thr Thr Asp Ser Gly Ser Ser Pro		
180	185	

<210> 19
<211> 184

<212> PRT
<213> Streptomyces griseus

<400> 19

Thr Pro Leu Ile Ala Gly Gly Glu Ala Ile Thr Thr Gly Gly Ser Arg		
1	5	10
Cys Ser Leu Gly Phe Asn Val Ser Val Asn Gly Val Ala His Ala Leu		
20	25	30
Thr Ala Gly His Cys Thr Asn Ile Ser Ala Ser Trp Ser Ile Gly Thr		
35	40	45
Arg Thr Gly Thr Ser Phe Pro Asn Asn Asp Tyr Gly Ile Ile Arg His		
50	55	60
Ser Asn Pro Ala Ala Ala Asp Gly Arg Val Tyr Leu Tyr Asn Gly Ser		
65	70	75
Tyr Gln Asp Ile Thr Thr Ala Gly Asn Ala Phe Val Gly Gln Ala Val		
85	90	95
Gln Arg Ser Gly Ser Thr Thr Gly Leu Arg Ser Gly Ser Val Thr Gly		
100	105	110
Leu Asn Ala Thr Val Asn Tyr Gly Ser Ser Gly Ile Val Tyr Gly Met		
115	120	125
Ile Gln Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu		
130	135	140
Phe Ala Gly Ser Thr Ala Leu Gly Leu Thr Ser Gly Gly Ser Gly Asn		
145	150	155
Cys Arg Thr Gly Gly Thr Thr Phe Tyr Gln Pro Val Thr Glu Ala Leu		
165	170	175
Ser Ala Tyr Gly Ala Thr Val Leu		
180		

<210> 20
<211> 174
<212> PRT
<213> Streptomyces fradiae

<400> 20
Ile Ala Gly Gly Glu Ala Ile Tyr Ala Ala Gly Gly Gly Arg Cys Ser
1 5 10 15
Leu Gly Phe Asn Val Arg Ser Ser Ser Gly Ala Thr Tyr Ala Leu Thr
20 25 30
Ala Gly His Cys Thr Glu Ile Ala Ser Thr Trp Tyr Thr Asn Ser Gly
35 40 45
Gln Thr Ser Leu Leu Gly Thr Arg Ala Gly Thr Ser Phe Pro Gly Asn
50 55 60
Asp Tyr Gly Leu Ile Arg His Ser Asn Ala Ser Ala Ala Asp Gly Arg
65 70 75 80
Val Tyr Leu Tyr Asn Gly Ser Tyr Arg Asp Ile Thr Gly Ala Gly Asn
85 90 95
Ala Tyr Val Gly Gln Thr Val Gln Arg Ser Gly Ser Thr Thr Gly Leu
100 105 110
His Ser Gly Arg Val Thr Gly Leu Asn Ala Thr Val Asn Tyr Gly Gly
115 120 125
Gly Asp Ile Val Ser Gly Leu Ile Gln Thr Asn Val Cys Ala Glu Pro
130 135 140
Gly Asp Ser Gly Gly Ala Leu Phe Ala Gly Ser Thr Ala Leu Gly Leu
145 150 155 160
Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr
165 170

<210> 21
<211> 188
<212> PRT
<213> Streptomyces lividans

<400> 21
Asn Lys Leu Ile Gln Gly Gly Asp Ala Ile Tyr Ala Ser Ser Trp Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Arg Thr Ser Ser Gly Ala Glu Tyr Phe
20 25 30
Leu Thr Ala Gly His Cys Thr Asp Gly Ala Gly Ala Trp Arg Ala Ser
35 40 45
Ser Gly Gly Thr Val Ile Gly Gln Thr Ala Gly Ser Ser Phe Pro Gly
50 55 60
Asn Asp Tyr Gly Ile Val Gln Tyr Thr Gly Ser Val Ser Arg Pro Gly
65 70 75 80
Thr Ala Asn Gly Val Asp Ile Thr Arg Ala Ala Thr Pro Ser Val Gly
85 90 95
Thr Thr Val Ile Arg Asp Gly Ser Thr Thr Gly Thr His Ser Gly Arg
100 105 110
Val Thr Ala Leu Asn Ala Thr Val Asn Tyr Gly Gly Asp Val Val
115 120 125
Gly Gly Leu Ile Gln Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly
130 135 140
Gly Ser Leu Tyr Gly Ser Asn Gly Thr Ala Tyr Gly Leu Thr Ser Gly
145 150 155 160
Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro Val
165 170 175
Thr Glu Ala Leu Ser Ala Tyr Gly Val Ser Val Tyr
180 185

<210> 22
<211> 188
<212> PRT
<213> Streptomyces coelicolor

<400> 22

Asn Lys Leu Ile Gln Gly Gly Asp Ala Ile Tyr Ala Ser Ser Trp Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Arg Thr Ser Ser Gly Ala Glu Tyr Phe
20 25 30
Leu Thr Ala Gly His Cys Thr Asp Gly Ala Gly Ala Trp Arg Ala Ser
35 40 45
Ser Gly Gly Thr Val Ile Gly Gln Thr Ala Gly Ser Ser Phe Pro Gly
50 55 60
Asn Asp Tyr Gly Ile Val Gln Tyr Thr Gly Ser Val Ser Arg Pro Gly
65 70 75 80
Thr Ala Asn Gly Val Asp Ile Thr Arg Ala Ala Thr Pro Ser Val Gly
85 90 95
Thr Thr Val Ile Arg Asp Gly Ser Thr Thr Gly Thr His Ser Gly Arg
100 105 110
Val Thr Ala Leu Asn Ala Thr Val Asn Tyr Gly Gly Asp Val Val
115 120 125
Gly Gly Leu Ile Gln Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly
130 135 140
Gly Ser Leu Tyr Gly Ser Asn Gly Thr Ala Tyr Gly Leu Thr Ser Gly
145 150 155 160
Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro Val
165 170 175
Thr Glu Ala Leu Ser Ala Tyr Gly Val Ser Val Tyr
180 185

<210> 23
<211> 189
<212> PRT

<213> Streptomyces albogriseolus

<400> 23

Thr Lys Leu Ile Gln Gly Gly Asp Ala Ile Tyr Ala Ser Ser Trp Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Arg Ser Ser Ser Gly Val Asp Tyr Phe
20 25 30
Leu Thr Ala Gly His Cys Thr Asp Gly Ala Gly Thr Trp Tyr Ser Asn
35 40 45
Ser Ala Arg Thr Thr Ala Ile Gly Ser Thr Ala Gly Ser Ser Phe Pro
50 55 60
Gly Asn Asp Tyr Gly Ile Val Arg Tyr Thr Gly Ser Val Ser Arg Pro
65 70 75 80
Gly Thr Ala Asn Gly Val Asp Ile Thr Arg Ala Ala Thr Pro Ser Val
85 90 95
Gly Thr Thr Val Ile Arg Asp Gly Ser Thr Thr Gly Thr His Ser Gly
100 105 110
Arg Val Thr Ala Leu Asn Ala Thr Val Asn Tyr Gly Gly Asp Ile
115 120 125
Val Ser Gly Leu Ile Gln Thr Thr Val Cys Ala Glu Pro Gly Asp Ser

130 135 140
Gly Gly Pro Leu Tyr Gly Ser Asn Gly Thr Ala Tyr Gly Leu Thr Ser
145 150 155 160
Gly Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro
 165 170 175
Val Thr Glu Ala Leu Ser Ala Tyr Gly Val Ser Val Tyr
 180 185

<210> 24
<211> 188
<212> PRT
<213> Streptomyces griseus

<400> 24

Thr Lys Leu Ile Ser Gly Gly Asp Ala Ile Tyr Ser Ser Thr Gly Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Arg Ser Gly Ser Thr Tyr Tyr Phe Leu
 20 25 30
Thr Ala Gly His Cys Thr Asp Gly Ala Thr Thr Trp Trp Ala Asn Ser
 35 40 45
Ala Arg Thr Thr Val Leu Gly Thr Thr Ser Gly Ser Ser Phe Pro Asn
 50 55 60
Asn Asp Tyr Gly Ile Val Arg Tyr Thr Asn Thr Thr Ile Pro Lys Asp
65 70 75 80
Gly Thr Val Gly Gly Gln Asp Ile Thr Ser Ala Ala Asn Ala Thr Val
 85 90 95
Gly Met Ala Val Thr Arg Arg Gly Ser Thr Thr Gly Thr His Ser Gly
 100 105 110
Ser Val Thr Ala Leu Asn Ala Thr Val Asn Tyr Gly Gly Asp Val
 115 120 125
Val Tyr Gly Met Ile Arg Thr Asn Val Cys Ala Glu Pro Gly Asp Ser
 130 135 140
Gly Gly Pro Leu Tyr Ser Gly Thr Arg Ala Ile Gly Leu Thr Ser Gly
145 150 155 160
Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro Val
 165 170 175
Thr Glu Ala Leu Ser Ala Tyr Gly Val Ser Val Tyr
 180 185

<210> 25
<211> 188
<212> PRT
<213> Streptomyces griseus

<400> 25

Val Leu Gly Gly Gly Ala Ile Tyr Gly Gly Ser Arg Cys Ser Ala
1 5 10 15
Ala Phe Asn Val Thr Lys Gly Gly Ala Arg Tyr Phe Val Thr Ala Gly
 20 25 30
His Cys Thr Asn Ile Ser Ala Asn Trp Ser Ala Ser Ser Gly Gly Ser
 35 40 45
Val Val Gly Val Arg Glu Gly Thr Ser Phe Pro Thr Asn Asp Tyr Gly
 50 55 60
Ile Val Arg Tyr Thr Asp Gly Ser Ser Pro Ala Gly Thr Val Asp Leu
65 70 75 80

Tyr Asn Gly Ser Thr Gln Asp Ile Ser Ser Ala Ala Asn Ala Val Val
 85 90 95
 Gly Gln Ala Ile Lys Lys Ser Gly Ser Thr Thr Lys Val Thr Ser Gly
 100 105 110
 Thr Val Thr Ala Val Asn Val Thr Val Asn Tyr Gly Asp Gly Pro Val
 115 120 125
 Tyr Asn Met Gly Arg Thr Thr Ala Cys Ser Ala Gly Gly Asp Ser Gly
 130 135 140
 Gly Ala His Phe Ala Gly Ser Val Ala Leu Gly Ile His Ser Gly Ser
 145 150 155 160
 Ser Gly Cys Ser Gly Thr Ala Gly Ser Ala Ile His Gln Pro Val Thr
 165 170 175
 Lys Ala Leu Ser Ala Tyr Gly Val Thr Val Tyr Leu
 180 185

<210> 26
 <211> 190
 <212> PRT
 <213> Streptomyces fradiae

<400> 26

Gln Arg Glu Val Ala Gly Gly Asp Ala Ile Tyr Gly Gly Ser Arg
 1 5 10 15
 Cys Ser Ala Ala Phe Asn Val Thr Lys Asn Gly Val Arg Tyr Phe Leu
 20 25 30
 Thr Ala Gly His Cys Thr Asn Leu Ser Ser Thr Trp Ser Ser Thr Ser
 35 40 45
 Gly Gly Thr Ser Ile Gly Val Arg Glu Gly Thr Ser Phe Pro Thr Asn
 50 55 60
 Asp Tyr Gly Ile Val Arg Tyr Thr Thr Thr Asn Val Asp Gly Arg
 65 70 75 80
 Val Asn Leu Tyr Asn Gly Gly Tyr Gln Asp Ile Ala Ser Ala Ala Asp
 85 90 95
 Ala Val Val Gly Gln Ala Ile Lys Lys Ser Gly Ser Thr Thr Lys Val
 100 105 110
 Thr Ser Gly Thr Val Ser Ala Val Asn Val Thr Val Asn Tyr Ser Asp
 115 120 125
 Gly Pro Val Tyr Gly Met Val Arg Thr Thr Ala Cys Ser Ala Gly Gly
 130 135 140
 Asp Ser Gly Gly Ala His Phe Ala Gly Ser Val Ala Leu Gly Ile His
 145 150 155 160
 Ser Gly Ser Ser Gly Cys Thr Gly Thr Asn Gly Ser Ala Ile His Gln
 165 170 175
 Pro Val Arg Glu Ala Leu Ser Ala Tyr Gly Val Asn Val Tyr
 180 185 190

<210> 27
 <211> 190
 <212> PRT
 <213> Streptomyces albogriseolus

<400> 27

Lys Pro Phe Ile Ala Gly Gly Asp Ala Ile Thr Gly Asn Gly Gly Arg
 1 5 10 15
 Cys Ser Leu Gly Phe Asn Val Thr Lys Gly Gly Glu Pro His Phe Leu

20	25	30	
Thr Ala Gly His Cys Thr Glu Gly Ile Ser Thr Trp Ser Asp Ser Ser			
35	40	45	
Gly Gln Val Ile Gly Glu Asn Ala Ala Ser Ser Phe Pro Gly Asp Asp			
50	55	60	
Tyr Gly Leu Val Lys Tyr Thr Ala Asp Val Ala His Pro Ser Gln Val			
65	70	75	80
Asn Leu Tyr Asp Gly Ser Ser Gln Ser Ile Ser Gly Ala Ala Glu Ala			
85	90	95	
Ala Val Gly Met Gln Val Thr Arg Ser Gly Ser Thr Thr Gln Val His			
100	105	110	
Ser Gly Thr Val Thr Gly Leu Asp Ala Thr Val Asn Tyr Gly Asn Gly			
115	120	125	
Asp Ile Val Asn Gly Leu Ile Gln Thr Asp Val Cys Ala Glu Pro Gly			
130	135	140	
Asp Ser Gly Gly Ser Leu Phe Ser Gly Asp Lys Ala Val Gly Leu Thr			
145	150	155	160
Ser Gly Gly Ser Gly Asp Cys Thr Ser Gly Gly Thr Thr Phe Phe Gln			
165	170	175	
Pro Val Thr Glu Ala Leu Ser Ala Thr Gly Thr Gln Ile Gly			
180	185	190	

<210> 28

<211> 190

<212> PRT

<213> Streptomyces coelicolor

<400> 28

Lys Pro Phe Val Ala Gly Gly Asp Ala Ile Thr Gly Gly Gly Arg			
1	5	10	15
Cys Ser Leu Gly Phe Asn Val Thr Lys Gly Gly Glu Pro Tyr Phe Ile			
20	25	30	
Thr Ala Gly His Cys Thr Glu Ser Ile Ser Thr Trp Ser Asp Ser Ser			
35	40	45	
Gly Asn Val Ile Gly Glu Asn Ala Ala Ser Ser Phe Pro Asp Asn Asp			
50	55	60	
Tyr Gly Leu Val Lys Tyr Thr Ala Asp Val Asp His Pro Ser Glu Val			
65	70	75	80
Asn Leu Tyr Asn Gly Ser Ser Gln Ala Ile Ser Gly Ala Ala Glu Ala			
85	90	95	
Thr Val Gly Met Gln Val Thr Arg Ser Gly Ser Thr Thr Gln Val His			
100	105	110	
Asp Gly Thr Val Thr Gly Leu Asp Ala Thr Val Asn Tyr Gly Asn Gly			
115	120	125	
Asp Ile Val Asn Gly Leu Ile Gln Thr Asp Val Cys Ala Glu Pro Gly			
130	135	140	
Asp Ser Gly Gly Ser Leu Phe Ser Gly Asp Gln Ala Ile Gly Leu Thr			
145	150	155	160
Ser Gly Gly Ser Gly Asp Cys Thr Ser Gly Gly Glu Thr Phe Phe Gln			
165	170	175	
Pro Val Thr Glu Ala Leu Ser Ala Thr Gly Thr Gln Ile Gly			
180	185	190	

<210> 29

<211> 191

<212> PRT

<213> Streptomyces griseus

<400> 29

Thr Pro Leu Ile Ala Gly Gly Asp Ala Ile Trp Gly Ser Gly Ser Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Val Lys Gly Gly Glu Pro Tyr Phe Leu
20 25 30
Thr Ala Gly His Cys Thr Glu Ser Val Thr Ser Trp Ser Asp Thr Gln
35 40 45
Gly Gly Ser Glu Ile Gly Ala Asn Glu Gly Ser Ser Phe Pro Glu Asn
50 55 60
Asp Tyr Gly Leu Val Lys Tyr Thr Ser Asp Thr Ala His Pro Ser Glu
65 70 75 80
Val Asn Leu Tyr Asp Gly Ser Thr Gln Ala Ile Thr Gln Ala Gly Asp
85 90 95
Ala Thr Val Gly Gln Ala Val Thr Arg Ser Gly Ser Thr Thr Gln Val
100 105 110
His Asp Gly Glu Val Thr Ala Leu Asp Ala Thr Val Asn Tyr Gly Asn
115 120 125
Gly Asp Ile Val Asn Gly Leu Ile Gln Thr Thr Val Cys Ala Glu Pro
130 135 140
Gly Asp Ser Gly Gly Ala Leu Phe Ala Gly Asp Thr Ala Leu Gly Leu
145 150 155 160
Thr Ser Gly Gly Ser Gly Asp Cys Ser Ser Gly Gly Thr Thr Phe Phe
165 170 175
Gln Pro Val Pro Glu Ala Leu Ala Ala Tyr Gly Ala Glu Ile Gly
180 185 190

<210> 30

<211> 200

<212> PRT

<213> Streptomyces lividans

<400> 30

Lys Thr Phe Ala Ser Gly Gly Asp Ala Ile Phe Gly Gly Ala Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Thr Ala Gly Asp Gly Ser Ala Ala Phe
20 25 30
Leu Thr Arg Gly His Cys Gly Gly Ala Thr Met Trp Ser Asp Ala
35 40 45
Gln Gly Gln Pro Ile Ala Thr Val Asp Gln Ala Val Phe Pro Pro
50 55 60
Glu Gly Asp Phe Gly Leu Val Arg Tyr Asp Gly Pro Ser Thr Glu Ala
65 70 75 80
Pro Ser Glu Val Asp Leu Gly Asp Gln Thr Leu Pro Ile Ser Gly Ala
85 90 95
Ala Glu Ala Ser Val Gly Gln Glu Val Phe Arg Met Gly Ser Thr Thr
100 105 110
Gly Leu Ala Asp Gly Gln Val Leu Gly Leu Asp Val Thr Val Asn Tyr
115 120 125
Pro Glu Gly Thr Val Thr Gly Leu Ile Gln Thr Asp Val Cys Ala Glu
130 135 140
Pro Gly Asp Ser Gly Gly Ser Leu Phe Thr Arg Asp Gly Leu Ala Ile
145 150 155 160
Arg Leu Thr Ser Gly Gly Thr Arg Asp Cys Thr Ser Gly Gly Glu Thr

165 170 175
Phe Phe Gln Pro Val Thr Thr Ala Leu Ala Ala Val Gly Gly Thr Leu
180 185 190
Gly Gly Glu Asp Gly Gly Asp Gly
195 200

<210> 31
<211> 201
<212> PRT
<213> Streptomyces coelicolor

<400> 31

Lys Thr Phe Ala Ser Gly Gly Asp Ala Ile Phe Gly Gly Ala Arg
1 5 10 15
Cys Ser Leu Gly Phe Asn Val Thr Ala Gly Asp Gly Ser Pro Ala Phe
20 25 30
Leu Thr Ala Gly His Cys Gly Val Ala Ala Asp Gln Trp Ser Asp Ala
35 40 45
Gln Gly Gly Gln Pro Ile Ala Thr Val Asp Gln Ala Val Phe Pro Gly
50 55 60
Glu Gly Asp Phe Ala Leu Val Arg Tyr Asp Asp Pro Ala Thr Glu Ala
65 70 75 80
Pro Ser Glu Val Asp Leu Gly Asp Gln Thr Leu Pro Ile Ser Gly Ala
85 90 95
Ala Glu Ala Ala Val Gly Gln Glu Val Phe Arg Met Gly Ser Thr Thr
100 105 110
Gly Leu Ala Asp Gly Gln Val Leu Gly Leu Asp Ala Thr Val Asn Tyr
115 120 125
Pro Glu Gly Met Val Thr Gly Leu Ile Gln Thr Asp Val Cys Ala Glu
130 135 140
Pro Gly Asp Ser Gly Gly Ser Leu Phe Thr Arg Asp Gly Leu Ala Ile
145 150 155 160
Gly Leu Thr Ser Gly Gly Ser Gly Asp Cys Thr Val Gly Glu Thr
165 170 175
Phe Phe Gln Pro Val Thr Thr Ala Leu Ala Ala Val Gly Ala Thr Leu
180 185 190
Gly Gly Glu Asp Gly Gly Ala Gly Ala
195 200

<210> 32
<211> 68
<212> PRT
<213> Streptomyces platensis

<400> 32

Val Asp Gly Leu Ile Gln Thr Asp Val Cys Ala Glu Pro Gly Asp Ser
1 5 10 15
Gly Gly Ala Leu Phe Asp Gly Asp Ala Ala Ile Gly Leu Thr Ser Gly
20 25 30
Gly Ser Gly Asp Cys Ser Gln Gly Gly Glu Thr Phe Phe Gln Pro Val
35 40 45
Thr Glu Ala Leu Lys Ala Tyr Gly Ala Gln Ile Gly Gly Gln Gly
50 55 60
Glu Pro Pro Glu
65

<210> 33
<211> 201
<212> PRT
<213> Streptomyces coelicolor

<400> 33

Thr Thr Arg Leu Asn Gly Ala Glu Pro Ile Leu Ser Thr Ala Gly Arg
1 5 10 15
Cys Ser Ala Gly Phe Asn Val Thr Asp Gly Thr Ser Asp Phe Ile Leu
20 25 30
Thr Ala Gly His Cys Gly Pro Thr Gly Ser Val Trp Phe Gly Asp Arg
35 40 45
Pro Gly Asp Gly Gln Val Gly Arg Thr Val Ala Gly Ser Phe Pro Gly
50 55 60
Asp Asp Phe Ser Leu Val Glu Tyr Ala Asn Gly Lys Ala Gly Asp Gly
65 70 75 80
Ala Asp Val Val Ala Val Gly Asp Gly Lys Gly Val Arg Ile Thr Gly
85 90 95
Ala Gly Glu Pro Ala Val Gly Gln Arg Val Phe Arg Ser Gly Ser Thr
100 105 110
Ser Gly Leu Arg Asp Gly Arg Val Thr Ala Leu Asp Ala Thr Val Asn
115 120 125
Tyr Pro Glu Gly Thr Val Thr Gly Leu Ile Glu Thr Asp Val Cys Ala
130 135 140
Glu Pro Gly Asp Ser Gly Gly Pro Met Phe Ser Glu Gly Val Ala Leu
145 150 155 160
Gly Val Thr Ser Gly Gly Ser Gly Asp Cys Ala Lys Gly Thr Thr
165 170 175
Phe Phe Gln Pro Leu Pro Glu Ala Met Ala Ser Leu Gly Val Arg Leu
180 185 190
Ile Val Pro Gly Arg Glu Gly Ala Ala
195 200

<210> 34
<211> 188
<212> PRT
<213> Metarhizium anisopliae

<400> 34

Ala Thr Val Gln Gly Gly Asp Val Tyr Tyr Ile Asn Arg Ser Ser Arg
1 5 10 15
Cys Ser Ile Gly Phe Ala Val Thr Thr Gly Phe Val Ser Ala Gly His
20 25 30
Cys Gly Gly Ser Gly Ala Ser Ala Thr Thr Ser Ser Gly Glu Ala Leu
35 40 45
Gly Thr Phe Ser Gly Ser Val Phe Pro Gly Ser Ala Asp Met Ala Tyr
50 55 60
Val Arg Thr Val Ser Gly Thr Val Leu Arg Gly Tyr Ile Asn Gly Tyr
65 70 75 80
Gly Gln Gly Ser Phe Pro Val Ser Gly Ser Ser Glu Ala Ala Val Gly
85 90 95
Ala Ser Ile Cys Arg Ser Gly Ser Thr Thr Gln Val His Cys Gly Thr
100 105 110
Ile Gly Ala Lys Gly Ala Thr Val Asn Tyr Pro Gln Gly Ala Val Ser

115 120 125
Gly Leu Thr Arg Thr Ser Val Cys Ala Glu Pro Gly Asp Ser Gly Gly
130 135 140
Ser Phe Tyr Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Ser
145 150 155 160
Gly Asp Cys Ser Arg Gly Gly Thr Thr Tyr Phe Gln Pro Val Asn Arg
165 170 175
Ile Leu Gln Thr Tyr Gly Leu Thr Leu Val Thr Ala
180 185

<210> 35
<211> 195
<212> PRT
<213> Streptomyces griseus

<400> 35

Ala Asp Ile Arg Gly Gly Asp Ala Tyr Tyr Met Asn Gly Ser Gly Arg
1 5 10 15
Cys Ser Val Gly Phe Ser Val Thr Arg Gly Thr Gln Asn Gly Phe Ala
20 25 30
Thr Ala Gly His Cys Gly Arg Val Gly Thr Thr Asn Gly Val Asn
35 40 45
Gln Gln Ala Gln Gly Thr Phe Gln Gly Ser Thr Phe Pro Gly Arg Asp
50 55 60
Ile Ala Trp Val Ala Thr Asn Ala Asn Trp Thr Pro Arg Pro Leu Val
65 70 75 80
Asn Gly Tyr Gly Arg Gly Asp Val Thr Val Ala Gly Ser Thr Ala Ser
85 90 95
Val Val Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His
100 105 110
Cys Gly Thr Ile Gln Gln Leu Asn Thr Ser Val Thr Tyr Pro Glu Gly
115 120 125
Thr Ile Ser Gly Val Thr Arg Thr Ser Val Cys Ala Glu Pro Gly Asp
130 135 140
Ser Gly Gly Ser Tyr Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser
145 150 155 160
Gly Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Tyr Phe Gln Pro
165 170 175
Ile Asn Pro Leu Leu Gln Ala Tyr Gly Leu Thr Leu Val Thr Ser Gly
180 185 190
Gly Gly Thr
195

<210> 36
<211> 197
<212> PRT
<213> Streptomyces coelicolor

<400> 36

Tyr Asp Leu Arg Gly Gly Glu Ala Tyr Tyr Ile Asn Asn Ser Ser Arg
1 5 10 15
Cys Ser Ile Gly Phe Pro Ile Thr Lys Gly Thr Gln Gln Gly Phe Ala
20 25 30
Thr Ala Gly His Cys Gly Arg Ala Gly Ser Ser Thr Thr Gly Ala Asn
35 40 45

Arg Val Ala Gln Gly Thr Phe Gln Gly Ser Ile Phe Pro Gly Arg Asp
50 55 60
Met Ala Trp Val Ala Thr Asn Ser Ser Trp Thr Ala Thr Pro Tyr Val
65 70 75 80
Leu Gly Ala Gly Gly Gln Asn Val Gln Val Thr Gly Ser Thr Ala Ser
85 90 95
Pro Val Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His
100 105 110
Cys Gly Thr Val Thr Gln Leu Asn Thr Ser Val Thr Tyr Gln Glu Gly
115 120 125
Thr Ile Ser Pro Val Thr Arg Thr Thr Val Cys Ala Glu Pro Gly Asp
130 135 140
Ser Gly Gly Ser Phe Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser
145 150 155 160
Gly Gly Ser Gly Asp Cys Arg Thr Gly Gly Glu Thr Phe Phe Gln Pro
165 170 175
Ile Asn Ala Leu Leu Gln Asn Tyr Gly Leu Thr Leu Lys Thr Thr Gly
180 185 190
Gly Asp Asp Gly Gly
195

<210> 37
<211> 189
<212> PRT
<213> Streptomyces spp.

<400> 37

Tyr Asp Leu Val Gly Gly Asp Ala Tyr Tyr Ile Gly Asn Gly Arg Cys
1 5 10 15
Ser Ile Gly Phe Ser Val Arg Gln Gly Ser Thr Pro Gly Phe Val Thr
20 25 30
Ala Gly His Cys Gly Ser Val Gly Asn Ala Thr Thr Gly Phe Asn Arg
35 40 45
Val Ser Gln Gly Thr Phe Arg Gly Ser Trp Phe Pro Gly Arg Asp Met
50 55 60
Ala Trp Val Ala Val Asn Ser Asn Trp Thr Pro Thr Ser Leu Val Arg
65 70 75 80
Asn Ser Gly Ser Gly Val Arg Val Thr Gly Ser Thr Gln Ala Thr Val
85 90 95
Gly Ser Ser Ile Cys Arg Ser Gly Ser Thr Thr Gly Trp Arg Cys Gly
100 105 110
Thr Ile Gln Gln His Asn Thr Ser Val Thr Tyr Pro Gln Gly Thr Ile
115 120 125
Thr Gly Val Thr Arg Thr Ser Ala Cys Ala Gln Pro Gly Asp Ser Gly
130 135 140
Gly Ser Phe Ile Ser Gly Thr Gln Ala Gln Gly Val Thr Ser Gly Gly
145 150 155 160
Ser Gly Asn Cys Ser Ile Gly Gly Thr Thr Phe His Gln Pro Val Asn
165 170 175
Pro Ile Leu Ser Gln Tyr Gly Leu Thr Leu Val Arg Ser
180 185

<210> 38
<211> 187
<212> PRT
<213> Streptomyces spp.

<400> 38

Tyr Asp Leu Val Gly Gly Asp Ala Tyr Tyr Met Gly Gly Gly Arg Cys
1 5 10 15
Ser Val Gly Phe Ser Val Thr Gln Gly Ser Thr Pro Gly Phe Ala Thr
20 25 30
Ala Gly His Cys Gly Thr Val Gly Thr Ser Thr Thr Gly Tyr Asn Gln
35 40 45
Ala Ala Gln Gly Thr Phe Glu Glu Ser Ser Phe Pro Gly Asp Asp Met
50 55 60
Ala Trp Val Ser Val Asn Ser Asp Trp Asn Thr Thr Pro Thr Val Asn
65 70 75 80
Glu Gly Glu Val Thr Val Ser Gly Ser Thr Glu Ala Ala Val Gly Ala
85 90 95
Ser Ile Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile
100 105 110
Gln Gln His Asn Thr Ser Val Thr Tyr Pro Glu Gly Thr Ile Thr Gly
115 120 125
Val Thr Arg Thr Ser Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser
130 135 140
Tyr Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly
145 150 155 160
Asn Cys Thr Ser Gly Gly Thr Thr Tyr His Gln Pro Ile Asn Pro Leu
165 170 175
Leu Ser Ala Tyr Gly Leu Asp Leu Val Thr Gly
180 185

<210> 39

<211> 193

<212> PRT

<213> Streptomyces coelicolor

<400> 39

Glu Asp Leu Val Gly Gly Asp Ala Tyr Tyr Ile Asp Asp Gln Ala Arg
1 5 10 15
Cys Ser Ile Gly Phe Ser Val Thr Lys Asp Asp Gln Glu Gly Phe Ala
20 25 30
Thr Ala Gly His Cys Gly Asp Pro Gly Ala Thr Thr Gly Tyr Asn
35 40 45
Glu Ala Asp Gln Gly Thr Phe Gln Ala Ser Thr Phe Pro Gly Lys Asp
50 55 60
Met Ala Trp Val Gly Val Asn Ser Asp Trp Thr Ala Thr Pro Asp Val
65 70 75 80
Lys Ala Glu Gly Glu Lys Ile Gln Leu Ala Gly Ser Val Glu Ala
85 90 95
Leu Val Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His
100 105 110
Cys Gly Thr Ile Gln Gln His Asp Thr Ser Val Thr Tyr Pro Glu Gly
115 120 125
Thr Val Asp Gly Leu Thr Glu Thr Thr Val Cys Ala Glu Pro Gly Asp
130 135 140
Ser Gly Gly Pro Phe Val Ser Gly Val Gln Ala Gln Gly Thr Thr Ser
145 150 155 160
Gly Gly Ser Gly Asp Cys Thr Asn Gly Gly Thr Thr Phe Tyr Gln Pro
165 170 175

Val Asn Pro Leu Leu Ser Asp Phe Gly Leu Thr Leu Lys Thr Thr Ser
180 185 190

Ala

<210> 40

<211> 187

<212> PRT

<213> Thermobifida fusca

<400> 40

Leu Ala Ala Ile Ile Gly Gly Asn Pro Tyr Tyr Phe Gly Asn Tyr Arg
1 5 10 15
Cys Ser Ile Gly Phe Ser Val Arg Gln Gly Ser Gln Thr Gly Phe Ala
20 25 30
Thr Ala Gly His Cys Gly Ser Thr Gly Thr Arg Val Ser Ser Pro Ser
35 40 45
Gly Thr Val Ala Gly Ser Tyr Phe Pro Gly Arg Asp Met Gly Trp Val
50 55 60
Arg Ile Thr Ser Ala Asp Thr Val Thr Pro Leu Val Asn Arg Tyr Asn
65 70 75 80
Gly Gly Thr Val Thr Val Thr Gly Ser Gln Glu Ala Ala Thr Gly Ser
85 90 95
Ser Val Cys Arg Ser Gly Ala Thr Thr Gly Trp Arg Cys Gly Thr Ile
100 105 110
Gln Ser Lys Asn Gln Thr Val Arg Tyr Ala Glu Gly Thr Val Thr Gly
115 120 125
Leu Thr Arg Thr Thr Ala Cys Ala Glu Gly Gly Asp Ser Gly Gly Pro
130 135 140
Trp Leu Thr Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Thr Gly
145 150 155 160
Asp Cys Arg Ser Gly Gly Ile Thr Phe Phe Gln Pro Ile Asn Pro Leu
165 170 175
Leu Ser Tyr Phe Gly Leu Gln Leu Val Thr Gly
180 185

<210> 41

<211> 198

<212> PRT

<213> Lysobacter enzymogenes

<400> 41

Ala Asn Ile Val Gly Gly Ile Glu Tyr Ser Ile Asn Asn Ala Ser Leu
1 5 10 15
Cys Ser Val Gly Phe Ser Val Thr Arg Gly Ala Thr Lys Gly Phe Val
20 25 30
Thr Ala Gly His Cys Gly Thr Val Asn Ala Thr Ala Arg Ile Gly Gly
35 40 45
Ala Val Val Gly Thr Phe Ala Ala Arg Val Phe Pro Gly Asn Asp Arg
50 55 60
Ala Trp Val Ser Leu Thr Ser Ala Gln Thr Leu Leu Pro Arg Val Ala
65 70 75 80
Asn Gly Ser Ser Phe Val Thr Val Arg Gly Ser Thr Glu Ala Ala Val
85 90 95
Gly Ala Ala Val Cys Arg Ser Gly Arg Thr Thr Gly Tyr Gln Cys Gly

	100	105	110
Thr Ile Thr Ala Lys Asn Val Thr Ala Asn Tyr Ala Glu Gly Ala Val			
115	120	125	
Arg Gly Leu Thr Gln Gly Asn Ala Cys Met Gly Arg Gly Asp Ser Gly			
130	135	140	
Gly Ser Trp Ile Thr Ser Ala Gly Gln Ala Gln Gly Val Met Ser Gly			
145	150	155	160
Gly Asn Val Gln Ser Asn Gly Asn Asn Cys Gly Ile Pro Ala Ser Gln			
165	170	175	
Arg Ser Ser Leu Phe Glu Arg Leu Gln Pro Ile Leu Ser Gln Tyr Gly			
180	185	190	
Leu Ser Leu Val Thr Gly			
195			

<210> 42

<211> 189

<212> PRT

<213> Streptomyces coelicolor

<400> 42

Ala Ala Gly Thr Val Gly Gly Asp Pro Tyr Tyr Thr Gly Asn Val Arg			
1	5	10	15
Cys Ser Ile Gly Phe Ser Val His Gly Gly Phe Val Thr Ala Gly His			
20	25	30	
Cys Gly Arg Ala Gly Ala Gly Val Ser Gly Trp Asp Arg Ser Tyr Ile			
35	40	45	
Gly Thr Phe Gln Gly Ser Ser Phe Pro Asp Asn Asp Tyr Ala Trp Val			
50	55	60	
Ser Val Gly Ser Gly Trp Trp Thr Val Pro Val Val Leu Gly Trp Gly			
65	70	75	80
Thr Val Ser Asp Gln Leu Val Arg Gly Ser Asn Val Ala Pro Val Gly			
85	90	95	
Ala Ser Ile Cys Arg Ser Gly Ser Thr Thr His Trp His Cys Gly Thr			
100	105	110	
Val Leu Ala His Asn Glu Thr Val Asn Tyr Ser Asp Gly Ser Val Val			
115	120	125	
His Gln Leu Thr Lys Thr Ser Val Cys Ala Glu Gly Gly Asp Ser Gly			
130	135	140	
Gly Ser Phe Ile Ser Gly Asp Gln Ala Gln Gly Val Thr Ser Gly Gly			
145	150	155	160
Trp Gly Asn Cys Ser Ser Gly Gly Glu Thr Trp Phe Gln Pro Val Asn			
165	170	175	
Glu Ile Leu Asn Arg Tyr Gly Leu Thr Leu His Thr Ala			
180	185		

<210> 43

<211> 197

<212> PRT

<213> Rarobacter faecitabidus

<400> 43

Val Ile Val Pro Val Arg Asp Tyr Trp Gly Gly Asp Ala Leu Ser Gly			
1	5	10	15
Cys Thr Leu Ala Phe Pro Val Tyr Gly Gly Phe Leu Thr Ala Gly His			
20	25	30	

Cys Ala Val Glu Gly Lys Gly His Ile Leu Lys Thr Glu Met Thr Gly
35 40 45
Gly Gln Ile Gly Thr Val Glu Ala Ser Gln Phe Gly Asp Gly Ile Asp
50 55 60
Ala Ala Trp Ala Lys Asn Tyr Gly Asp Trp Asn Gly Arg Gly Arg Val
65 70 75 80
Thr His Trp Asn Gly Gly Gly Val Asp Ile Lys Gly Ser Asn Glu
85 90 95
Ala Ala Val Gly Ala His Met Cys Lys Ser Gly Arg Thr Thr Lys Trp
100 105 110
Thr Cys Gly Tyr Leu Leu Arg Lys Asp Val Ser Val Asn Tyr Gly Asn
115 120 125
Gly His Ile Val Thr Leu Asn Glu Thr Ser Ala Cys Ala Leu Gly Gly
130 135 140
Asp Ser Gly Gly Ala Tyr Val Trp Asn Asp Gln Ala Gln Gly Ile Thr
145 150 155 160
Ser Gly Ser Asn Met Asp Thr Asn Asn Cys Arg Ser Phe Tyr Gln Pro
165 170 175
Val Asn Thr Val Leu Asn Lys Trp Lys Leu Ser Leu Val Thr Ser Thr
180 185 190
Asp Val Thr Thr Ser
195

<210> 44

<211> 191

<212> PRT

<213> Streptomyces coelicolor

<400> 44

Asp Pro Pro Leu Arg Ser Gly Leu Ala Ile Tyr Gly Thr Asn Val Arg
1 5 10 15
Cys Ser Ser Ala Phe Met Ala Tyr Ser Gly Ser Ser Tyr Tyr Met Met
20 25 30
Thr Ala Gly His Cys Ala Glu Asp Ser Ser Tyr Trp Glu Val Pro Thr
35 40 45
Tyr Ser Tyr Gly Tyr Gln Gly Val Gly His Val Ala Asp Tyr Thr Phe
50 55 60
Gly Tyr Tyr Gly Asp Ser Ala Ile Val Arg Val Asp Asp Pro Gly Phe
65 70 75 80
Trp Gln Pro Arg Gly Trp Val Tyr Pro Ser Thr Arg Ile Thr Asn Trp
85 90 95
Asp Tyr Asp Tyr Val Gly Gln Tyr Val Cys Lys Gln Gly Ser Thr Thr
100 105 110
Gly Tyr Thr Cys Gly Gln Ile Thr Glu Thr Asn Ala Thr Val Ser Tyr
115 120 125
Pro Gly Arg Thr Leu Thr Gly Met Thr Trp Ser Thr Ala Cys Asp Ala
130 135 140
Pro Gly Asp Ser Gly Ser Gly Val Tyr Asp Gly Ser Thr Ala His Gly
145 150 155 160
Ile Leu Ser Gly Gly Pro Asn Ser Gly Cys Gly Met Ile His Glu Pro
165 170 175
Ile Ser Arg Ala Leu Ala Asp Arg Gly Val Thr Leu Leu Ala Gly
180 185 190

<210> 45

<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 45
tgcgccgagc ccggcgactc 20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 46
gagtcgcccc gctcggcgca 20

<210> 47
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 47
ttcccccggca acgactacgc gtgggt 26

<210> 48
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 48
accCACGCGT agtcgttgcc ggggaa 26

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 49
gccgctgctc gatcgggttc 20

<210> 50
<211> 24

<212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 50
 gcagttgccg gagccggcgg acgt 24

<210> 51
 <211> 14
 <212> DNA
 <213> Artificial Sequence

<220>

<223> synthetic

<220>
 <221> misc_feature
 <222> (7)...(7)
 <223> n is a, c, g, or t

<400> 51
 tsoggsgnncrt ggtt 14

<210> 52
 <211> 12
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> synthetic

<400> 52

Leu Arg Met Ile Thr Thr Asp Ser Gly Ser Ser Pro
 1 5 10

<210> 53
 <211> 555
 <212> DNA
 <213> Cellulomonas flavigena

<400> 53
 gtgcacgtca tcggggcaa cgctactac atcgggtcg gctcgccgtg ctgcgtcg 60
 ttccgcgtcg agggcggtt cgtcaccgcg gggcactgcg ggcgcgcggg cgcgagcacg 120
 tcgtcaccgt cggggacctt ccgcggctcg tcgtccccg gcaacgacta cgcgtggtc 180
 caggtcgct cgggcaaacac gcccgcggg ctggtaaca accactcggg cggcacggtg 240
 cgcgtcaccg gctcgacga ggcgcgcggc ggctcgatc tgtgccgatc gggcagcacg 300
 acgggatggc ggtcgcccta cgtccggcg tacaacacga ccgtcggtt cgcggaggc 360
 tcggtctcg gctcatccg cacgagcgtg tgccgcgagc cggcgactc cggccgctcg 420
 ctgtcgccg gcacgcaggc ccaggcggtc acgtcggcg ggtccggcaa ctgcccgtac 480
 gggggcacga cgtacttcca gcccgtgaac gagatcctgc aggaccagcc cggccgctcg 540
 accacgcgtg cccta 555

<210> 54
 <211> 185
 <212> PRT
 <213> Cellulomonas flavigena

<400> 54

Val Asp Val Ile Gly Gly Asn Ala Tyr Tyr Ile Gly Ser Arg Ser Arg
 1 5 10 15
 Cys Ser Ile Gly Phe Ala Val Glu Gly Gly Phe Val Thr Ala Gly His
 20 25 30
 Cys Gly Arg Ala Gly Ala Ser Thr Ser Ser Pro Ser Gly Thr Phe Arg
 35 40 45
 Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Trp Val Gln Val Ala Ser
 50 55 60
 Gly Asn Thr Pro Arg Gly Leu Val Asn Asn His Ser Gly Gly Thr Val
 65 70 75 80
 Arg Val Thr Gly Ser Gln Gln Ala Ala Val Gly Ser Tyr Val Cys Arg
 85 90 95
 Ser Gly Ser Thr Thr Gly Trp Arg Cys Gly Tyr Val Arg Ala Tyr Asn
 100 105 110
 Thr Thr Val Arg Tyr Ala Glu Gly Ser Val Ser Gly Leu Ile Arg Thr
 115 120 125
 Ser Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Val Ala Gly
 130 135 140
 Thr Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Tyr
 145 150 155 160
 Gly Gly Thr Thr Tyr Phe Gln Pro Val Asn Glu Ile Leu Gln Asp Gln
 165 170 175
 Pro Gly Pro Ser Thr Thr Arg Ala Leu
 180 185

<210> 55
 <211> 1009
 <212> DNA
 <213> Cellulomonas biazotea

<400> 55

taaaacagac ggccagtgaa tttgtataac gactcactat aggcgaaattt	aatttagcggtt	60
ccgcgaattt gcccttaccc atagggcacg cgtggtcgac ggccctgggc	ttgtacgtcg	120
acgtcactac caacacggtc gtcgtcaacg ccaccgcctt cgccgtggcc	caggcgaccg	180
agatcgtcgc cgccgcaacg gtgcccggcc acgcccgtccg ggtcgtcgag	accacccagg	240
cgcggccgac gttcatcgac gtcatcgccg gcaaccgtta ccggatcaac	aacacacccgc	300
gctgctcggt cggcttcgcc gtcagcgccg gcttcgtcac cgccgggcac	tgcggcacga	360
ccggcgccgac cacgacgaaa ccgtccggca cgttcggccgg ctcgtcggttc	ccccggcaacg	420
actacgcgtg ggtgcgcgtc ggtccggca acaccccggt cggccggctg	aacaactaca	480
gcggcgccgac cgtggccgtc gccggctcga cgcaggcgac cgtcggtcg	tccgtctgcc	540
gctccggctc caccacgggg tggcgctcg ggacgatcca ggcgttcaac	tccaccgtca	600
actacgcgtca gggcagcgtc tccggcctca tccgcacgaa cgtgtcgcc	gagcccgccg	660
actccggccgg ctcgtctcata gcccggcaacc aggcccagg	cctgacgtcc ggcgggtcg	720
gcaactgcac caccggccgg acgacgtact tccagccgtt	caacgaggcg ctctccgcct	780
acggcctgac gtcgtcagc tctgtccggcg gcggcggtgg	cgccggcaccg acctgcaccg	840
ggtacgcgtcg gacctacacc ggctcgctcg cctcgccgca	gtccggccgtc cagccgtccg	900
gcagctatgt gaccgtcgaa tccagcgccca ccatccgcgt	ctgcctcgac ggcccggagcg	960
ggacggactt cgacctgtac ctgcagaagt ggaacgggtc	cgcgtgggc	1009

<210> 56

<211> 335
<212> PRT
<213> Cellulomonas biazotea

<400> 56

Lys Gln Thr Ala Ser Glu Phe Val Ile Arg Leu Thr Ile Gly Glu Leu
1 5 10 15
Asn Leu Ala Ala Ala Asn Ser Pro Leu Pro Ile Gly His Ala Trp Ser
20 25 30
Thr Ala Leu Gly Trp Tyr Val Asp Val Thr Thr Asn Thr Val Val Val
35 40 45
Asn Ala Thr Ala Leu Ala Val Ala Gln Ala Thr Glu Ile Val Ala Ala
50 55 60
Ala Thr Val Pro Ala Asp Ala Val Arg Val Val Glu Thr Thr Glu Ala
65 70 75 80
Pro Arg Thr Phe Ile Asp Val Ile Gly Gly Asn Arg Tyr Arg Ile Asn
85 90 95
Asn Thr Ser Arg Cys Ser Val Gly Phe Ala Val Ser Gly Gly Phe Val
100 105 110
Thr Ala Gly His Cys Gly Thr Thr Gly Ala Thr Thr Thr Lys Pro Ser
115 120 125
Gly Thr Phe Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Trp Val
130 135 140
Arg Val Ala Ser Gly Asn Thr Pro Val Gly Ala Val Asn Asn Tyr Ser
145 150 155 160
Gly Gly Thr Val Ala Val Ala Gly Ser Thr Gln Ala Thr Val Gly Ala
165 170 175
Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp Arg Cys Gly Thr Ile
180 185 190
Gln Ala Phe Asn Ser Thr Val Asn Tyr Ala Gln Gly Ser Val Ser Gly

195 200 205
Leu Ile Arg Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser
210 215 220
Leu Ile Ala Gly Asn Gln Ala Gln Gly Leu Thr Ser Gly Gly Ser Gly
225 230 235 240
Asn Cys Thr Thr Gly Gly Thr Thr Tyr Phe Gln Pro Val Asn Glu Ala
245 250 255
Leu Ser Ala Tyr Gly Leu Thr Leu Val Thr Ser Ser Gly Gly Gly
260 265 270
Gly Gly Gly Thr Thr Cys Thr Gly Tyr Ala Arg Thr Tyr Thr Gly Ser
275 280 285
Leu Ala Ser Arg Gln Ser Ala Val Gln Pro Ser Gly Ser Tyr Val Thr
290 295 300
Val Gly Ser Ser Gly Thr Ile Arg Val Cys Leu Asp Gly Pro Ser Gly
305 310 315 320
Thr Asp Phe Asp Leu Tyr Leu Gln Lys Trp Asn Gly Ser Ala Trp
325 330 335

<210> 57
<211> 474
<212> DNA
<213> Cellulomonas fimi

<400> 57

gtggacgtga	tcggcgccga	cgcctactac	atcggcgccc	gcagccgctg	ttcgatcggt	60
ttcggcggtca	ccgggggtt	cgtgaccgccc	gggcactgcg	gccgcacccgg	cgcggccacg	120
acgagcccg	cgggcacgtt	cgccggctcg	agcttcccgg	gcaacgacta	cgcgtgggtg	180
cgggtcgctg	cgggcaaacac	gcccgtcgcc	gccccgtgaaca	actacagcgg	cggcacggtc	240
gcccgtcgcc	gctcgaccac	ggccgcccgtc	ggtgcgacccg	tgtgccgctc	gggctccacc	300
accggctggc	ggtgcggcac	catccaggcg	ttcaacgcga	ccgtcaacta	cgccgagggc	360
agcgtctccg	gcctcatccg	cacgaacgtg	tgcgccgagc	ccggcgactc	ggggcgctcg	420
ctcgtcgccc	gcaaccaggc	gcagggcatg	acgtccggcg	gctccgacaa	ctgc	474

<210> 58

<211> 144

<212> PRT

<213> Cellulomonas fimi

<400> 58

Val	Asp	Val	Ile	Gly	Gly	Asp	Ala	Tyr	Tyr	Ile	Gly	Gly	Arg	Ser	Arg
1				5						10			15		
Cys	Ser	Ile	Gly	Phe	Ala	Val	Thr	Gly	Gly	Phe	Val	Thr	Ala	Gly	His
				20				25				30			
Cys	Gly	Arg	Thr	Gly	Ala	Ala	Thr	Thr	Ser	Pro	Ser	Gly	Thr	Phe	Ala
		35					40				45				
Gly	Ser	Ser	Phe	Pro	Gly	Asn	Asp	Tyr	Ala	Trp	Val	Arg	Val	Ala	Ser
		50				55				60					
Gly	Asn	Thr	Pro	Val	Gly	Ala	Val	Asn	Asn	Tyr	Ser	Gly	Gly	Thr	Val
	65				70				75			80			
Ala	Val	Ala	Gly	Ser	Thr	Gln	Ala	Ala	Val	Gly	Ala	Thr	Val	Cys	Arg
				85				90				95			
Ser	Gly	Ser	Thr	Thr	Gly	Trp	Arg	Cys	Gly	Thr	Ile	Gln	Ala	Phe	Asn
				100				105				110			
Ala	Thr	Val	Asn	Tyr	Ala	Glu	Gly	Ser	Val	Ser	Gly	Leu	Ile	Arg	Thr
		115				120				125					
Asn	Val	Cys	Ala	Glu	Pro	Gly	Asp	Ser	Gly	Gly	Ser	Leu	Val	Ala	Gly
	130				135				140						

<210> 59.

<211> 462

<212> DNA

<213> Cellulomonas gelida

<400> 59

ctcgcgccca	accaggcgca	gggcgtgacg	tcggcggtt	cgggcaactg	ctcgtcgggc	60
gggacgacgt	acttccagcc	cgtcaacgag	gccctccggg	tgtacgggct	cacgctcg	120
acctctgacg	gtggggcac	cgagccgccc	ccgacgggt	gccagggtct	tgcgcggacc	180
taccaggcga	gcgtctcgcc	cgggacgtcg	gtcgccgc	cgaacggttc	gtacgtc	240
accggggcgc	ggacgacccg	ggtgtgcctg	agcggacccgg	ccggcacgg	cctggacctg	300
tacctgcaga	agtggAACGG	gtactcg	gcccagctcg	cgca	gtcgcttg	360
gccacggagg	cggcacgt	caccgggacc	gcccgtact	accgctacgt	ggtccacgcg	420
tacgcgggtt	cggggcgta	caccctgggg	gcgacgaccc	cg		462

<210> 60

<211> 154

<212> PRT

<213> Cellulomonas gelida

<400> 60

Leu Ala Gly Asn Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn

1	5	10	15
Cys Ser Ser Gly	Gly Thr Thr Tyr	Phe Gln Pro Val Asn	Glu Ala Leu
20	25	30	
Arg Val Tyr Gly	Leu Thr Leu Val Thr Ser Asp	Gly Gly	Gly Thr Glu
35	40	45	
Pro Pro Pro Thr Gly	Cys Gln Gly Tyr Ala Arg Thr	Tyr Gln Gly	Ser
50	55	60	
Val Ser Ala Gly	Thr Ser Val Ala Gln Pro Asn	Gly Ser	Tyr Val Thr
65	70	75	80
Thr Gly Gly	Gly Thr His Arg Val Cys	Leu Ser Gly	Pro Ala Gly Thr
85	90	95	
Asp Leu Asp Leu	Tyr Leu Gln Lys Trp Asn	Gly Tyr Ser Trp	Ala Ser
100	105	110	
Val Ala Gln Ser	Thr Ser Pro Gly	Ala Thr Glu	Ala Val Thr Tyr Thr
115	120	125	
Gly Thr Ala Gly	Tyr Tyr Arg Tyr Val Val His	Ala Tyr Ala Gly Ser	
130	135	140	
Gly Ala Tyr Thr	Leu Gly Ala Thr Thr Pro		
145	150		

<210> 61
<211> 257

<212> DNA
<213> Cellulomonas iranensis

<400>	61					
tcccccggca	acgactacgc	gtgggtccag	gtcgggtcg	gacacacccc	ccggggcctg	60
gtcaacaact	acgcgggcgg	caccgtgcgg	gtcaccgggt	cgcagcaggc	cgcggtcg	120
gctacgtct	gccggtcggg	cagcacgacg	ggctggcgct	gcggcaccgt	gcaggcctac	180
aacgcgtcgg	tccgctacgc	cgagggcacc	gtctcggcc	tcatccgcac	caacgtctgc	240
gccgagcccg	gctactc					257

<210> 62
<211> 85
<212> PRT
<213> Cellulomonas iranensis

<400> 62

Phe Pro Gly Asn Asp	Tyr Ala Trp Val Gln Val	Gly Ser Gly Asp Thr	
1	5	10	15
Pro Arg Gly	Leu Val Asn Asn Tyr Ala Gly	Gly Thr Val Arg Val Thr	
20	25	30	
Gly Ser Gln	Gln Ala Ala Val Gly	Ala Tyr Val Cys Arg Ser Gly Ser	
35	40	45	
Thr Thr Gly	Trp Arg Cys Gly	Thr Val Gln Ala Tyr Asn Ala Ser Val	
50	55	60	
Arg Tyr Ala Glu	Gly Thr Val Ser Gly	Leu Ile Arg Thr Asn Val Cys	
65	70	75	80
Ala Glu Pro	Gly Asp		
85			

<210> 63
<211> 904
<212> DNA
<213> Cellulomonas cellasea

<400> 63

gtcgggcggg	tccggcaact	gccgctacgg	gggcacgacg	tacttccagc	ccgtgaacga	60
gatcctgcag	gcctacggtc	tgcgtctcg	cctgggctga	cacgctcg	gcgggcccgg	120
ctcgacgccc	ccggccccgtc	ggcccgggtc	gccgcctgg	acgtcgacgt	gccgaccaac	180
aagctcg	tcgagtcggt	cggcgacacc	gcccggccg	ccgacgcccgt	cgcgcgcg	240
ggcctgcctg	ccgacgcccgt	gacgctcg	accaccgagg	cgccacggac	tttcgtcgac	300
gtcatcg	gcaacgcgt	ctacatcaac	gcgagcagcc	gctgctcggt	cggcttcgcg	360
gtcgagggcg	ggtcgtcac	cgcgggcccac	tgcgggcgc	cggcgcgag	cacgtcgta	420
ccgtcg	ccctccgcgg	ctcgtcg	cccggcaacg	actacgcgtg	gttccagg	480
gcctcg	acacgcccgc	cgggctgg	aacaaccact	cgggcggcac	gtgcgcgtc	540
accggctcgc	agcaggccgc	gtcggcgtc	tacgtgtg	gatcggcag	cacgacgg	600
tggcgtcg	gctacgtccg	ggcgtacaac	acgaccgtc	ggtacgcg	ggctcg	660
tcggcctca	tccgcacgag	cgtgtgc	gagccggcg	actccggcg	ctcgcgt	720
gccggcacgc	aggcccagg	cgtcacgtc	ggcgggtcc	gcaactg	ctacggggc	780
acgacgtact	tccagcccgt	gaacgagatc	ctgcaggc	acggtctgc	tctcg	840
ggcgtacacg	ctcgcggcgg	gccctccct	gcccgtcg	cgccggcccc	accagcccg	900
gccc						904

<210> 64

<211> 300

<212> PRT

<213> Cellulomonas cellasea

<400> 64

Val	Gly	Arg	Val	Arg	Gln	Leu	Pro	Leu	Arg	Gly	His	Asp	Val	Leu	Pro
1					5				10					15	
Ala	Arg	Glu	Arg	Asp	Pro	Ala	Gly	Leu	Arg	Ser	Ala	Ser	Arg	Pro	Gly
						20			25					30	
Leu	Thr	Arg	Ser	Arg	Arg	Ala	Arg	Leu	Asp	Ala	Ala	Gly	Pro	Ser	Ala
						35			40					45	
Arg	Val	Ala	Ala	Trp	Tyr	Val	Asp	Val	Pro	Thr	Asn	Lys	Leu	Val	Val
						50			55					60	
Glu	Ser	Val	Gly	Asp	Thr	Ala	Ala	Ala	Asp	Ala	Val	Ala	Ala	Ala	
						65			70					75	
Gly	Leu	Pro	Ala	Asp	Ala	Val	Thr	Leu	Ala	Thr	Thr	Glu	Ala	Pro	Arg
						85			90					95	
Thr	Phe	Val	Asp	Val	Ile	Gly	Gly	Asn	Ala	Tyr	Tyr	Ile	Asn	Ala	Ser
						100			105					110	
Ser	Arg	Cys	Ser	Val	Gly	Phe	Ala	Val	Glu	Gly	Gly	Phe	Val	Thr	Ala
						115			120					125	
Gly	His	Cys	Gly	Arg	Ala	Gly	Ala	Ser	Thr	Ser	Ser	Pro	Ser	Gly	Thr
						130			135					140	
Phe	Arg	Gly	Ser	Ser	Phe	Pro	Gly	Asn	Asp	Tyr	Ala	Trp	Val	Gln	Val
						145			150					155	
Ala	Ser	Gly	Asn	Thr	Pro	Arg	Gly	Leu	Val	Asn	Asn	His	Ser	Gly	Gly
						165			170					175	
Thr	Val	Arg	Val	Thr	Gly	Ser	Gln	Gln	Ala	Ala	Val	Gly	Ser	Tyr	Val
						180			185					190	
Cys	Arg	Ser	Gly	Ser	Thr	Thr	Gly	Trp	Arg	Cys	Gly	Tyr	Val	Arg	Ala
						195			200					205	
Tyr	Asn	Thr	Thr	Val	Arg	Tyr	Ala	Glu	Gly	Ser	Val	Ser	Gly	Leu	Ile
						210			215					220	
Arg	Thr	Ser	Val	Cys	Ala	Glu	Pro	Gly	Asp	Ser	Gly	Gly	Ser	Leu	Val
						225			230					235	
Ala	Gly	Thr	Gln	Ala	Gln	Gly	Val	Thr	Ser	Gly	Gly	Ser	Gly	Asn	Cys
						245			250					255	

Arg Tyr Gly Gly Thr Thr Tyr Phe Gln Pro Val Asn Glu Ile Leu Gln
 260 265 270
 Ala Tyr Gly Leu Arg Leu Val Leu Gly His Ala Arg Gly Gly Pro Ser
 275 280 285
 Pro Ala Arg Arg Ala Pro Ala Pro Pro Ala Arg Ala
 290 295 300

<210> 65
 <211> 429
 <212> DNA
 <213> Cellulomonas xylinolytica

<400> 65
 cgctgctcga tcgggttcgc cgtgacgggc ggcttcgtga ccggccggcca ctgcggacgg 60
 tccggcgca cgacgacgtc gcccggcggc acgttcggccg ggtccagctt tcccccaac 120
 gactacgcct gggtccgcgc ggcctcgggc aacacgccc tcggtgccgt gaaccgctac 180
 gacggcagcc gggtggaccgt ggccgggtcc accgacgcgg ccgtcggtgc cgcggctgc 240
 cggtcggggt cgacgaccgc gtggggctgc ggcacgatcc agtcccgcgg cgcgagcgtc 300
 acgtacgccc agggcaccgt cagcgggctc atccgcacca acgtgtgcgc cgagccgggt 360
 gactccgggg ggtcgctgat cgccggcacc caggcgcggg gcgtgacgta cggccggctcc 420
 ggcaactgc 429

<210> 66
 <211> 143
 <212> PRT
 <213> Cellulomonas xylinolytica

<400> 66

Arg Cys Ser Ile Gly Phe Ala Val Thr Gly Gly Phe Val Thr Ala Gly
 1 5 10 15
 His Cys Gly Arg Ser Gly Ala Thr Thr Ser Pro Ser Gly Thr Phe
 20 25 30
 Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Trp Val Arg Ala Ala
 35 40 45
 Ser Gly Asn Thr Pro Val Gly Ala Val Asn Arg Tyr Asp Gly Ser Arg
 50 55 60
 Val Thr Val Ala Gly Ser Thr Asp Ala Ala Val Gly Ala Ala Val Cys
 65 70 75 80
 Arg Ser Gly Ser Thr Thr Ala Trp Gly Cys Gly Thr Ile Gln Ser Arg
 85 90 95
 Gly Ala Ser Val Thr Tyr Ala Gln Gly Thr Val Ser Gly Leu Ile Arg
 100 105 110
 Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Ile Ala
 115 120 125
 Gly Thr Gln Ala Arg Gly Val Thr Ser Gly Gly Ser Gly Asn Cys
 130 135 140

<210> 67
 <211> 1284
 <212> DNA
 <213> Oerskovia turbata

<400> 67
 atggcacgat cattctggag gacgctcgcc acggcgtgcg ccgcgacggc actgggtgcc 60
 ggcccccgcag cgctcacccgc gaaacgcccgcg acgcccaccc ccgacacccccc gaccgtttca 120
 ccccagacct ctcgaaaggc ctcgcccgcg gtgctccgcg ccctccagcg ggacctgggg 180

ctgagcgcca	aggacgcgac	gaagcgtctg	gcgttccagt	ccgacgcggc	gagcaccgag	240
gacgcgtctcg	ccgacagcct	ggacgcctac	gcgggcgcct	gggtcgaccc	tgcgaggaac	300
accctgtacg	tcggcgtcgc	cgacagggcc	gaggccaagg	aggtccgttc	ggccggagcg	360
acccccgtgg	tcgtcgacca	cacgctcgcc	gagctcgaca	cgtggaaggc	ggcgctcgac	420
ggtgagctca	acgacccccgc	gggcgtcccc	agctggttcg	tcgacgtcac	gaccaccag	480
gtcgctgtca	acgtgcacga	cggcggacgc	gccctcgccg	agctggctgc	cgcgagcgcg	540
ggcgtgcccgc	ccgacgcccatt	cacctacgtg	acgacgaccg	aggctcctcg	tcccctcgtc	600
gacgtgggtgg	gcccgaacgc	gtacaccatg	ggttcggcgc	ggcgctgctc	ggtcggttc	660
gcggtgaacg	ggggcttcat	cacggccggg	cactgcggct	cggtcgccac	ccgcacctcg	720
ggggccggcgc	gcacgttccg	gggggtcgaac	ttccccggca	acgactacgc	ctgggtgcag	780
gtcgacgcgg	gtaacaccccc	ggtcggcgcg	gtcaacaact	acagcgggtgg	gcmcgtcgcg	840
gtcgccagggt	cgacggccgc	gcccgtgggg	gcctcggtct	gcccgtccgg	ttccacgacg	900
ggctggact	gcccgcacat	cggcgcgtac	aacacctcg	tgacgtaccc	gcagggcacc	960
gtctcggggc	tcatccgcac	gaacgtgtgc	gccgagcccg	gcgactcg	cggtcgctc	1020
ctcgccggca	accaggcgca	gggcgtgacc	tcgggcgggt	cgggcaactg	ctcgccggc	1080
gggacgacgt	acttccagcc	cgtcaacgag	gccctcg	ggtacgggt	cacgctcg	1140
acctctgacg	gtggggccccc	gagccgcgc	cgaccgggt	ccaggctat	gcgcggac	1200
accaggcgag	cgtctcg	gggacgtcgg	tcgcgcagcg	aacggttcgt	acgtcacgac	1260
cggggcg	cgaccgggt	tgcc				1284

<210> 68
<211> 428
<212> PRT
<213> Oerskovia turbata

<400> 68

Met	Ala	Arg	Ser	Phe	Trp	Arg	Thr	Leu	Ala	Thr	Ala	Cys	Ala	Ala	Thr
1								5		10					15
Ala	Leu	Val	Ala	Gly	Pro	Ala	Ala	Leu	Thr	Ala	Asn	Ala	Ala	Thr	Pro
								20		25					30
Thr	Pro	Asp	Thr	Pro	Thr	Val	Ser	Pro	Gln	Thr	Ser	Ser	Lys	Val	Ser
								35		40					45
Pro	Glu	Val	Leu	Arg	Ala	Leu	Gln	Arg	Asp	Leu	Gly	Leu	Ser	Ala	Lys
							50		55		60				
Asp	Ala	Thr	Lys	Arg	Leu	Ala	Phe	Gln	Ser	Asp	Ala	Ala	Ser	Thr	Glu
							65		70		75				80
Asp	Ala	Leu	Ala	Asp	Ser	Leu	Asp	Ala	Tyr	Ala	Gly	Ala	Trp	Val	Asp
							85		90		95				
Pro	Ala	Arg	Asn	Thr	Leu	Tyr	Val	Gly	Val	Ala	Asp	Arg	Ala	Glu	Ala
							100		105		110				
Lys	Glu	Val	Arg	Ser	Ala	Gly	Ala	Thr	Pro	Val	Val	Val	Asp	His	Thr
							115		120		125				
Leu	Ala	Glu	Leu	Asp	Thr	Trp	Lys	Ala	Ala	Leu	Asp	Gly	Glu	Leu	Asn
							130		135		140				
Asp	Pro	Ala	Gly	Val	Pro	Ser	Trp	Phe	Val	Asp	Val	Thr	Thr	Asn	Gln
							145		150		155				160
Val	Val	Val	Asn	Val	His	Asp	Gly	Gly	Arg	Ala	Leu	Ala	Glu	Leu	Ala
							165		170		175				
Ala	Ala	Ser	Ala	Gly	Val	Pro	Ala	Asp	Ala	Ile	Thr	Tyr	Val	Thr	Thr
							180		185		190				
Thr	Glu	Ala	Pro	Arg	Pro	Leu	Val	Asp	Val	Val	Gly	Gly	Asn	Ala	Tyr
							195		200		205				
Thr	Met	Gly	Ser	Gly	Gly	Arg	Cys	Ser	Val	Gly	Phe	Ala	Val	Asn	Gly
							210		215		220				
Gly	Phe	Ile	Thr	Ala	Gly	His	Cys	Gly	Ser	Val	Gly	Thr	Arg	Thr	Ser
							225		230		235				240

Gly Pro Gly Gly Thr Phe Arg Gly Ser Asn Phe Pro Gly Asn Asp Tyr
 245 250 255
 Ala Trp Val Gln Val Asp Ala Gly Asn Thr Pro Val Gly Ala Val Asn
 260 265 270
 Asn Tyr Ser Gly Gly Arg Val Ala Val Ala Gly Ser Thr Ala Ala Pro
 275 280 285
 Val Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys
 290 295 300
 Gly Thr Ile Gly Ala Tyr Asn Thr Ser Val Thr Tyr Pro Gln Gly Thr
 305 310 315 320
 Val Ser Gly Leu Ile Arg Thr Asn Val Cys Ala Glu Pro Gly Asp Ser
 325 330 335
 Gly Gly Ser Leu Leu Ala Gly Asn Gln Ala Gln Gly Val Thr Ser Gly
 340 345 350
 Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Tyr Phe Gln Pro Val
 355 360 365
 Asn Glu Ala Leu Gly Gly Tyr Gly Leu Thr Leu Val Thr Ser Asp Gly
 370 375 380
 Gly Gly Pro Ser Arg Arg Arg Pro Gly Ala Arg Ala Met Arg Gly Pro
 385 390 395 400
 Thr Arg Ala Ala Ser Arg Pro Gly Arg Arg Ser Arg Ser Glu Arg Phe
 405 410 415
 Val Arg His Asp Arg Gly Arg Ala Thr Gly Cys Ala
 420 425

<210> 69
 <211> 524
 <212> DNA
 <213> Oerskovia jenensis

<400> 69
 gccgctgctc ggtcggttc gcggtaacg gcggcttcgt caccgcaggc cactgcggga 60
 cgggtggcac ccgcacctcg gggccggcgc gcacgttccg cgggtcgagc ttccccggca 120
 acgactacgc ctgggtgcag gtcgacgcgg ggaacacccc ggtcggggcc gtcaacaact 180
 acagcggtgg acgcgtcgcg gtcgcgggct cgacggccgc acccgtgggt tcctcggtct 240
 gccggtccgg ttccacgacg ggctggcgct gcggcacat cgccgcctac aacagctcg 300
 tgacgtaccc gcaggggacc gtctccgggc tcatccgcac caacgtgtgc gccgagccgg 360
 gcgactcggg cggctcgctc ctcgcgggca accaggcaca gggcctgacg tcgggcgggt 420
 cgggcaactg ctcgtcgggc ggcacgacgt acttccagcc cgtcaacgag gcgctctcg 480
 cctacggcct cacgctcggt acctccggcg gcagggcaa ctgc 524

<210> 70
 <211> 174
 <212> PRT
 <213> Oerskovia jenensis

<400> 70

Arg Cys Ser Val Gly Phe Ala Val Asn Gly Gly Phe Val Thr Ala Gly
 1 5 10 15
 His Cys Gly Thr Val Gly Thr Arg Thr Ser Gly Pro Gly Gly Thr Phe
 20 25 30
 Arg Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Trp Val Gln Val Asp
 35 40 45
 Ala Gly Asn Thr Pro Val Gly Ala Val Asn Asn Tyr Ser Gly Gly Arg
 50 55 60
 Val Ala Val Ala Gly Ser Thr Ala Ala Pro Val Gly Ser Ser Val Cys

65	70	75	80
Arg Ser Gly Ser Thr Thr Gly Trp Arg Cys Gly Thr Ile Ala Ala Tyr			
85	90	95	
Asn Ser Ser Val Thr Tyr Pro Gln Gly Thr Val Ser Gly Leu Ile Arg			
100	105	110	
Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Leu Ala			

115	120	125	
Gly Asn Gln Ala Gln Gly Leu Thr Ser Gly Gly Ser Gly Asn Cys Ser			
130	135	140	
Ser Gly Gly Thr Thr Tyr Phe Gln Pro Val Asn Glu Ala Leu Ser Ala			
145	150	155	160
Tyr Gly Leu Thr Leu Val Thr Ser Gly Gly Arg Gly Asn Cys			
165	170		

<210> 71

<211> 984

<212> DNA

<213> Cellulosimicrobium cellulans

<400> 71

ccacgggcgg cgggtcgggc agcgcgctcg tcgggctcgc gggcaagtgc atcgacgtcc	60
ccgggtccga cttcagtgc acggcagcgc tccagctgtg gacgtgcaac gggtgcagg	120
cagcgcttggaa cggtcgaagc cgacggcacc gtacgcgcgg gcgcaagtgc catggacgtc	180
gcgtgggcgc cgcggccgac ggcacggcgc tccagctcgc gaactgcacg gcaacgcgc	240
ccagaagttc gtgctcaacg ggcggggcga cctcggtcgc gtgctggcga acaaagtgcg	300
tgcacgcgcg cgggtgcgcg ccggaggtact cgccgcgcg tacagagctca cggcgacgtg	360
cgcggcggcg accgctacat cacacgggac ccggggcgcgt cgtcggtcgc ggcctgctcg	420
atcgggtacg ccgtccaggc cggcttcgc acggcggggc actgcggacg cggcggaca	480
aggagagtgc tcaccgcgag ctgggcgcgc atggggacgg tccaggcggc gtcgttcccc	540
ggccacgact acgcgtgggt ggcgcgtcgc gcccggttct cccccgtccc gcgggtgaac	600
aactacgcgcg gcccgcaccgt cgacgtcgcg ggctcggccg aggcccgt gggtcgtcg	660
gtgtgcccgt cggcgcac gaccggctgg cgctcggcgc tcatcgagca gaagaacatc	720
accgtcaact acggcaacgg cgacgttccc ggcctcgtgc gggcagcgc gtgcggag	780
ggccggcact cggcgggtc ggtatctcc ggcaaccagg cgcaggcgt cacgtcgggc	840
aggatcaacg actgctcgaa cggcggcaag ttcccttacc agcccgatcg acggcctgtc	900
gctcgtgacc acggcggcggc ggtcggcag cgcgtcgtc gggctcgc gcaagtgcat	960
cgacgtcccc gggtccgact tcag	984

<210> 72

<211> 328

<212> PRT

<213> Cellulosimicrobium cellulans

<400> 72

Pro Arg Ala Ala Gly Arg Ala Ala Arg Ser Ser Gly Ser Arg Ala Ser			
1	5	10	15
Ala Ser Thr Ser Pro Gly Pro Thr Ser Val Thr Ala Ser Ala Ser Ser			
20	25	30	
Cys Gly Arg Ala Thr Gly Arg Arg Gln Arg Trp Thr Phe Glu Ala Asp			
35	40	45	
Gly Thr Val Arg Ala Gly Gly Lys Cys Met Asp Val Ala Trp Ala Pro			
50	55	60	
Arg Pro Thr Ala Arg Arg Ser Ser Arg Thr Ala Arg Gln Arg Gly			

65	70	75	80
Pro Glu Val Arg Ala Gln Arg Arg Gly Arg Pro Arg Val Gly Ala Gly			
85	90	95	
Glu Gln Ser Ala Ser Thr Pro Pro Gly Ala His Arg Gly Thr Arg Gly			
100	105	110	
Ala Val Arg Ala His Gly Asp Val Arg Gly Gly Asp Arg Tyr Ile Thr			
115	120	125	
Arg Asp Pro Gly Ala Ser Ser Gly Ser Ala Cys Ser Ile Gly Tyr Ala			
130	135	140	
Val Gln Gly Gly Phe Val Thr Ala Gly His Cys Gly Arg Gly Gly Thr			
145	150	155	160
Arg Arg Val Leu Thr Ala Ser Trp Ala Arg Met Gly Thr Val Gln Ala			
165	170	175	
Ala Ser Phe Pro Gly His Asp Tyr Ala Trp Val Arg Val Asp Ala Gly			
180	185	190	
Phe Ser Pro Val Pro Arg Val Asn Asn Tyr Ala Gly Gly Thr Val Asp			
195	200	205	
Val Ala Gly Ser Ala Glu Ala Pro Val Gly Ala Ser Val Cys Arg Ser			
210	215	220	
Gly Ala Thr Thr Gly Trp Arg Cys Gly Val Ile Glu Gln Lys Asn Ile			
225	230	235	240
Thr Val Asn Tyr Gly Asn Gly Asp Val Pro Gly Leu Val Arg Gly Ser			
245	250	255	
Ala Cys Ala Glu Gly Gly Asp Ser Gly Gly Ser Val Ile Ser Gly Asn			
260	265	270	
Gln Ala Gln Gly Val Thr Ser Gly Arg Ile Asn Asp Cys Ser Asn Gly			
275	280	285	
Gly Lys Phe Leu Tyr Gln Pro Asp Arg Arg Pro Val Ala Arg Asp His			
290	295	300	
Gly Arg Arg Val Gly Gln Arg Ala Arg Arg Ala Arg Gly Gln Val His			
305	310	315	320
Arg Arg Pro Arg Val Arg Leu Gln			
325			

<210> 73

<211> 257

<212> DNA

<213> Promicromonospora citrea

<400> 73

ttccccggca acgactacgc gtgggtgaac acgggcacgg acgacaccct cgtcgccgccc	60
gtgaacaact acagcggcgg cacggtaac gtcggggct cgaccgtgc cgccgtcgcc	120
gcgacggtct gccgctcggt ctccacgacc ggctggcact gcggcaccat ccaggcgctg	180
aacgcgtcgg tcacctacgc cgagggcacc gtgagcggcc tcatccgcac caacgtgtgc	240
gccgagcccg gcgactc	257

<210> 74

<211> 85

<212> PRT

<213> Promicromonospora citrea

<400> 74

Phe Pro Gly Asn Asp Tyr Ala Trp Val Asn Thr Gly Thr Asp Asp Thr			
1	5	10	15
Leu Val Gly Ala Val Asn Asn Tyr Ser Gly Gly Thr Val Asn Val Ala			
20	25	30	

Gly Ser Thr Arg Ala Ala Val Gly Ala Thr Val Cys Arg Ser Gly Ser
 35 40 45
 Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Leu Asn Ala Ser Val
 50 55 60
 Thr Tyr Ala Glu Gly Thr Val Ser Gly Leu Ile Arg Thr Asn Val Cys
 65 70 75 80
 Ala Glu Pro Gly Asp
 85

<210> 75
 <211> 257
 <212> DNA
 <213> Promicromonospora sukumoe

<400> 75
 ttccccggca acgactacgc gtgggtgaac gtcggctccg acgacacccc gatcggtgcg 60
 gtcaacaact acagcggcgg caccgtgaac gtcgcggct cgacccaggc cgccgtcggc 120
 tccaccgtct gccgctccgg ttccacgacc ggctggcaact gcggcaccat ccaggccttc 180
 aacgcgtcgg tcacctacgc cgagggcacc gtgtccggcc tgatccgcac caacgtctgc 240
 gccgagcccg gcgactc 257

<210> 76
 <211> 85
 <212> PRT
 <213> Promicromonospora sukumoe

<400> 76

Phe Pro Gly Asn Asp Tyr Ala Trp Val Asn Val Gly Ser Asp Asp Thr
 1 5 10 15
 Pro Ile Gly Ala Val Asn Asn Tyr Ser Gly Gly Thr Val Asn Val Ala
 20 25 30
 Gly Ser Thr Gln Ala Ala Val Gly Ser Thr Val Cys Arg Ser Gly Ser
 35 40 45
 Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Phe Asn Ala Ser Val
 50 55 60
 Thr Tyr Ala Glu Gly Thr Val Ser Gly Leu Ile Arg Thr Asn Val Cys
 65 70 75 80
 Ala Glu Pro Gly Asp
 85

<210> 77
 <211> 430
 <212> DNA
 <213> Xylanibacterium ulmi

<400> 77
 gccgctgctc gatcggttgc gccgtgacgg gcggcttcgt gaccgccggc cactcggtac 60
 ggtccggcgc gacgacgacg tccgcgagcg gcacgttcgc cgggtccagc tttccggca 120
 acgactacgc ctgggtccgc gcggcctcgga acacacgccc gtcggtgccg tgaaccgcta 180
 cgacggcagc cgggtgaccg tggccgggtc caccgacgccc gccgtcggtg ccggcggtctg 240
 ccggtcgggg tcgacgaccg cgtggcgctg cggcacgatc cagtcccgcc ggcgcgacgg 300
 cacgtacgccc cagggcaccg tcagcggtc catccgcacc aacgtgtccg cggagccgg 360
 tgactccggg gggtcgctga tcgcggcac ccaggcgcag ggcgtgacgt ccggcggtctc 420
 cggcaactgc 430

<210> 78

<211> 141
<212> PRT
<213> Xylanibacterium ulmi

<400> 78

Arg Cys Ser Ile Gly Phe Ala Val Thr Gly Gly Phe Val Thr Ala Gly
1 5 10 15
His Cys Gly Arg Ser Gly Ala Thr Thr Ser Ala Ser Gly Thr Phe
20 25 30
Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Trp Val Arg Ala Ala
35 40 45
Ser Gly Asn Thr Pro Val Gly Ala Val Asn Arg Tyr Asp Gly Ser Arg
50 55 60
Val Thr Val Ala Gly Ser Thr Asp Ala Ala Val Gly Ala Ala Val Cys
65 70 75 80
Arg Ser Gly Ser Thr Thr Ala Trp Arg Cys Gly Thr Ile Gln Ser Arg
85 90 95
Gly Ala Thr Val Thr Tyr Ala Gln Gly Thr Val Ser Gly Leu Ile Arg
100 105 110
Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Ile Ala
115 120 125
Gly Thr Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly
130 135 140

<210> 79

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 79
acccacgcgt agtcgttgcc

20

<210> 80
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 80
acccacgcgt agtcgtkgcc gggg

24

<210> 81
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 81

tcgtcggtt cgccgg	18
<210> 82	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 82	
cgacgtgctc ggcggc	17
<210> 83	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 83	
cgcgccagc tcgcggtg	18
<210> 84	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 84	
cggccccgag gtgcgggtgc cg	22
<210> 85	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 85	
cagcgtctcc ggcctcatcc gc	22
<210> 86	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 86	
ctcggtctcg ggcctcatcc gc	22

<210> 87	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 87	
cgacgttccc ggcctcgtgc gc	22
<210> 88	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 88	
caccgtctcg gggctcatcc gc	22
<210> 89	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 89	
agcarcgtgt gcgccgagcc	20
<210> 90	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 90	
ggcagcgcgt gcgccggagg	20
<210> 91	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 91	
gccgctgctc gatcgggttc	20
<210> 92	
<211> 24	

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 92
gcagttgccg gagccggccgg acgt 24

<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 93
tgcgccgagc ccggcgactc cggc 24

<210> 94
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 94
ggcacgacgt acttccagcc cgtgaac 27

<210> 95
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 95
gaccacacgacg tagtcgttgc cggggAACGA cga 33

<210> 96
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 96
gaagggtcccc gacggtgacg acgtgctcgc gcc 33

<210> 97
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 97
caggcgagg gcgtgacctc gggcggtcg 30

<210> 98
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 98
ggcgggacga cgtacttcca gcccgtaaa 29

<210> 99
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 99
cacccacgca tagtcgtggc cggggAACGA 30

<210> 100
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 100
gaagccgccc tggacggcgt acccgatcga gca 33

<210> 101
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 101
tgcgcgagg gcggcgactc gggcggtcg 30

<210> 102
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 102
ttcctctacc agccgtcaa cccgatccta 30

<210> 103
<211> 33
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 103
cgccgcgggg acgaacccgc cctcgaccgc gaa 33

<210> 104
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 104
cgcgtagtcg ttgccgggga acgacgagcc 30

<210> 105
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 105
ggcctcatcc gcacgagcgt gtgcgccgag 30

<210> 106
<211> 36
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 106
acgtcggcgt ggtccggcaa ctgccgtac gggggc 36

<210> 107
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 107
gagcccgta caccggaggg cctcggtgac gggctggaa 39

<210> 108
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 108
cgtcacgccc tgcgcctggc tgcccgcgag 30

<210> 109
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 109
tccagccgt caacgaggcc ctccgggtgt acgggctc 38

<210> 110
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 110
acgtcggtcg cgcaaggaa cggttcgta gtc 33

<210> 111
<211> 30

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 111
cgtggtcgca ccggtcgtgc cgcagtgc 30

<210> 112
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 112
gacgacgacc gtgttggtag tgacgtcgac gtacca 36

<210> 113
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 113
tccaccacgg ggtggcgctg cgggacgatc 30

<210> 114
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 114
gtgtgcgcgg agcccgccga ctccggcgcc 30

<210> 115
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 115
gctcggggccc ccaccgtcag aggtcacgag cgtgag 36

<210> 116
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 116
atggcacgat cattctggag gacgctcgcc acggcg 36

<210> 117
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 117
tgctcgatcg ggtacgcccgt ccagggcgcc ttc 33

<210> 118
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 118
taggatcggtttagacggct ggttagaggaa 30

<210> 119
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 119
tggtacgtcg acgtcaactac caacacggtc gtcgtc 36

<210> 120
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 120
gccgcggag tcgccccggct cggcgcacac 30

<210> 121
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 121
gtsgacgtsa tcggsggsaa cgcttactac 30

<210> 122
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (13)..(16)
<223> n is a, c, g, or t

<400> 122
sgcsgtsgcs ggnganga 18

<210> 123
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 123
gtsgaygtsa tcggcggcga ygcstac 27

<210> 124
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (10)..(16)
<223> n is a, c, g, or t

<400> 124
sgasgcgtan ccctgncc 18

<210> 125
<211> 189
<212> PRT
<213> Artificial Sequence

<220>
<223> consensus sequence

<220>
<221> VARIANT
<222> 1, 8-16, 24, 35, 36, 38, 39, 41-44, 48, 61-64, 66, 67, 69-71, 81, 87, 89,
93, 109-111, 113, 116, 159, 160, 163-166, 169-189
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> 4, 19, 28, 108, 126
<223> Xaa is Ile or Val

<220>
<221> VARIANT
<222> 7, 157
<223> Xaa is Asn or Asp

<220>

<221> VARIANT
<222> 92, 99, 143
<223> Xaa is Ser or Ala

<220>
<221> VARIANT
<222> 112, 156
<223> Xaa is Asn or Gly

<220>
<221> VARIANT
<222> 21
<223> Xaa is Phe or Tyr

<220>
<221> VARIANT
<222> 40
<223> Xaa is Thr or Val

<220>
<221> VARIANT
<222> 59
<223> Xaa is Phe or Trp

<220>
<221> VARIANT
<222> 65
<223> Xaa is Gly or Asp

<220>
<221> VARIANT
<222> 68
<223> Xaa is Leu or Phe

<220>
<221> VARIANT
<222> 74
<223> Xaa is Asn or Arg

<220>
<221> VARIANT
<222> 75
<223> Xaa is Tyr or His

<220>
<221> VARIANT
<222> 76
<223> Xaa is Ser or Asp

<220>
<221> VARIANT
<222> 78
<223> Xaa is Gly or Ser

<220>
<221> VARIANT
<222> 79

<223> Xaa is Arg or Thr

<220>

<221> VARIANT

<222> 83

<223> Xaa is Ala or Thr

<220>

<221> VARIANT

<222> 85

<223> Xaa is His or Ser

<220>

<221> VARIANT

<222> 86

<223> Xaa is Thr or Gln

<220>

<221> VARIANT

<222> 102

<223> Xaa is Gly or Ala

<220>

<221> VARIANT

<222> 104

<223> Xaa is His or Arg

<220>

<221> VARIANT

<222> 107

<223> Xaa is Thr or Tyr

<220>

<221> VARIANT

<222> 114

<223> Xaa is Ser or Thr

<220>

<221> VARIANT

<222> 118

<223> Xaa is Pro or Ala

<220>

<221> VARIANT

<222> 119

<223> Xaa is Glu or Gln

<220>

<221> VARIANT

<222> 121

<223> Xaa is Thr, Ser, or Asp

<220>

<221> VARIANT

<222> 123

<223> Xaa is Arg or Ser

<220>
<221> VARIANT
<222> 128
<223> Xaa is Thr or Gly

<220>
<221> VARIANT
<222> 129
<223> Xaa is Thr, Asn, or Ser

<220>
<221> VARIANT
<222> 130
<223> Xaa is Val or Ala

<220>
<221> VARIANT
<222> 134
<223> Xaa is Pro or Gly

<220>
<221> VARIANT
<222> 141
<223> Xaa is Leu or Val

<220>
<221> VARIANT
<222> 142
<223> Xaa is Leu, Val, or Ile

<220>
<221> VARIANT
<222> 145
<223> Xaa is Asn or Thr

<220>
<221> VARIANT
<222> 148
<223> Xaa is Gln or Arg

<220>
<221> VARIANT
<222> 150
<223> Xaa is Val or Leu

<220>
<221> VARIANT
<222> 154
<223> Xaa is Gly or Arg

<220>
<221> VARIANT
<222> 155
<223> Xaa is Ser or Ile

<400> 125

Xaa Asp Val Xaa Gly Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1 5 10 15
Cys Ser Xaa Gly Xaa Ala Val Xaa Gly Gly Phe Xaa Thr Ala Gly His
20 25 30
Cys Gly Xaa Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Thr Phe Xaa
35 40 45
Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Xaa Val Xaa Xaa Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Val Asn Xaa Xaa Xaa Gly Xaa Xaa Val
65 70 75 80
Xaa Val Xaa Gly Xaa Xaa Xaa Ala Xaa Val Gly Xaa Xaa Val Cys Arg
85 90 95
Ser Gly Xaa Thr Thr Xaa Trp Xaa Cys Gly Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Val Xaa Tyr Xaa Xaa Gly Xaa Val Xaa Gly Leu Xaa Arg Xaa
115 120 125
Xaa Xaa Cys Ala Glu Xaa Gly Asp Ser Gly Ser Xaa Xaa Xaa Gly
130 135 140
Xaa Gln Ala Xaa Gly Xaa Thr Ser Gly Xaa Xaa Xaa Xaa Cys Xaa Xaa
145 150 155 160
Gly Gly Xaa Xaa Xaa Xaa Gln Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa
165 170 175
Xaa
180 185

<210> 126
<211> 16
<212> PRT
<213> Cellulomonas cellasea

<220>
<221> VARIANT
<222> (1)..(1)
<223> Xaa is Ile or Tyr

<400> 126

Xaa Ala Trp Asp Ala Phe Ala Glu Asn Val Val Asp Trp Ser Ser Arg
1 5 10 15

<210> 127
<211> 17
<212> PRT
<213> Cellulomonas cellasea

<400> 127

Tyr Gly Gly Thr Thr Tyr Phe Gln Pro Val Asn Glu Ile Leu Gln Ala
1 5 10 15
Tyr

<210> 128
<211> 11
<212> PRT
<213> Cellulomonas flavigena

<220>
<221> VARIANT
<222> (4)..(11)
<223> Xaa is Ile or Tyr

<400> 128

Val Asp Val Xaa Gly Gly Asn Ala Tyr Tyr Xaa
1 5 10

<210> 129
<211> 9
<212> PRT
<213> Cellulomonas fimi

<220>
<221> VARIANT
<222> (4)..(4)
<223> Xaa is Ile or Tyr

<400> 129

Val Asp Val Xaa Gly Gly Asp Ala Tyr
1 5

<210> 130
<211> 305
<212> DNA
<213> Aspergillus niger

<220>
<221> misc_feature
<222> (186)..(186)
<223> n is a, c, g, or t

<400> 130

tgcggatcc	tgttcgagtt	cttggcacgt	tagaagccgg	agatgtgaga	ggtgatctgg	60
aactgctcac	cctcggttgt	ggtgacctgg	aggtaaagca	agtgaccctt	ctggcggagg	120
tggtaaggaa	cgggggttcca	cggggagaga	gagatggcct	tgacggcttt	gggaagggga	180
gcttcngcgc	gggggaggat	ggtcttgaga	gagggggagc	tagtaatgtc	gtacttggac	240
aggagtgct	ccttctccga	cgcattcagcc	acctcagcgg	agatggcatc	gtgcagagac	300
agacc						305

<210> 131
<211> 1488
<212> DNA
<213> Cellulomonas strain 69B4

<400> 131

atgacaccac	gaactgtcac	aagagctctg	gctgtggcaa	cagcagctgc	tacactcttg	60
gctggggta	tggcagcaca	agctaacgaa	ccggctcctc	caggatctgc	atcagcccct	120
ccacgattag	ctgaaaaact	tgaccctgac	ttacttgaag	caatggAACG	cgatctgggg	180
ttagatgcag	aggaagcagc	tgcaacgtta	gctttcagc	atgacgcagc	tgaaacggga	240
gaggctctt	ctgaggaact	cgacgaagat	ttcgccggca	cgtgggttga	agatgtatgt	300
ctgtatgtt	caaccactga	tgaagatgtc	gttgaagaag	tgcaggcga	aggagcaact	360
gctgtgactg	ttgagcattc	tcttgctgt	ttagaggcgt	ggaagacgt	tttgatgtct	420
gcgtggagg	gtcatgtga	tgtgcctacg	ttgtacgtcg	acgtgcctac	gaattcggta	480

gtcgttgctg	taaaggcagg	agcgcaggat	gtagctgcag	gacttgtgga	aggcgctgat	540
gtgccatcac	atgcggtcac	ttttagaa	acggacgaaa	cgcctagaac	gatgttcgac	600
gtaattggag	gcaacgcata	tactattggc	ggccggctca	gatgttctat	cgattcgca	660
gtaaacggtg	gcttcattac	tgccggtcac	tgcgaaagaa	caggagccac	tactgccaat	720
ccgactggca	cattgcagg	tagctcgtt	ccggaaaatg	attatgcatt	cgtccgaaca	780
ggggcaggag	taaatttgct	tgcccaagtc	aataactact	cgggcggcag	agtccaagta	840
gcaggacata	cggccgcacc	agttggatct	gctgtatgcc	gctcaggtag	cactacaggt	900
tggcattgct	gaactatcac	ggcgctgaat	tcgtctgtca	cgtatccaga	ggAACAGTC	960
cgaggactta	tccgcacgac	ggttgtgcc	gaaccaggta	atagcggagg	tagccttta	1020
gcggaaatc	aagcccagg	tgtcacgtca	ggtgggtctg	gaaattgtcg	gacggggggga	1080
acaacattct	ttcaaccagt	caacccgatt	ttgcaggctt	acggcctgag	aatgattacg	1140
actgactctg	gaagttcccc	tgctccagca	cctacatcat	gtacaggcta	cgcaagaacg	1200
ttcacaggaa	ccctcgccgc	aggaagagca	gcagctcaac	cgaacggtag	ctatgttcag	1260
gtcaaccgga	gcggtacaca	ttccgtctgt	ctcaatggac	ctagcggtag	ggactttgat	1320
ttgtatgtgc	agcgatggaa	tggcagtagc	tggtaaccg	tcgctcaatc	gacatcgccg	1380
ggaagcaatg	aaaccattac	gtaccgcgg	aatgtggat	attatgcata	cgtggtaac	1440
gctcggtcag	gatcaggagc	ttacacaatg	ggactcaccc	tcccctga		1488

<210> 132
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> linker

<400> 132

Asp	Asp	Asn	Asp	Pro	Ile
1			5		

<210> 133
<211> 1020
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<400> 133						
gtgagaagca	aaaaattgtg	gatcagcttg	ttgtttcggt	taacgttaat	ctttacgatg	60
gcgttcagca	acatgagcgc	gcaggctgat	gattattcag	ttgttagagga	acatgggcaa	120
ctaagtatta	gtaacgtga	attagtcaat	gaacgaggcg	aacaagttca	gttaaaaggg	180
atgagttccc	atggttcgca	atggtacggt	caatttgtaa	actatgaaag	catgaaatgg	240
ctaagagatg	attggggaaat	aactgtattc	cgagcagcaa	tgtataccctc	ttcaggagga	300
tatattgacg	atccatcagt	aaaggaaaaa	gtaaaagaga	ctgttgaggc	tgcgatagac	360
cttggcataat	atgtgatcat	tgattggcat	atcccttcag	acaatgaccc	aatatatat	420
aaagaagaag	cgaaggattt	cttgcataaa	atgtcagagt	tgtatggaga	ctatccgaat	480
gtgatatacg	aaattgcaaa	tgaaccgaat	ggtgtgtat	ttacgtggaa	caatcaaata	540
aaaccgtatg	cagaagaat	gattccggtt	attcgtgaca	atgaccctaa	taacattgtt	600
attgttaggtt	caggtacatg	gagtcaggat	gtccatcatg	cagccgataa	tcatgttgc	660
gatcctaacg	tcatgtatgc	atttcatttt	tatgcaggaa	cacatggaca	aaatttacga	720
gaccaagtag	attatgcatt	agatcaagga	gcagcgat	ttgttagtga	atggggaca	780
agtgcagcta	caggtgatgg	tggtgtgttt	ttagatgaag	cacaagtgtg	gattgactt	840
atggatgaaa	gaaatttaag	ctgggccaac	tggctctaa	cgcataagga	tgagtcatct	900
gcagcgtaa	tgccaggtgc	aaatccaact	ggtgggtgga	cagaggctga	actatctcca	960
tctggatcat	ttgtgaggaa	aaaaataaga	gaatcagcat	ctgacaacaa	tgcataccata	1020

<210> 134
<211> 340
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 134

Val Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Phe Ala Leu Thr Leu
1 5 10 15
Ile Phe Thr Met Ala Phe Ser Asn Met Ser Ala Gln Ala Asp Asp Tyr
20 25 30
Ser Val Val Glu Glu His Gly Gln Leu Ser Ile Ser Asn Gly Glu Leu
35 40 45
Val Asn Glu Arg Gly Glu Gln Val Gln Leu Lys Gly Met Ser Ser His

50 55 60
Gly Leu Gln Trp Tyr Gly Gln Phe Val Asn Tyr Glu Ser Met Lys Trp
65 70 75 80
Leu Arg Asp Asp Trp Gly Ile Thr Val Phe Arg Ala Ala Met Tyr Thr
85 90 95
Ser Ser Gly Gly Tyr Ile Asp Asp Pro Ser Val Lys Glu Lys Val Lys
100 105 110
Glu Thr Val Glu Ala Ala Ile Asp Leu Gly Ile Tyr Val Ile Ile Asp
115 120 125
Trp His Ile Leu Ser Asp Asn Asp Pro Asn Ile Tyr Lys Glu Glu Ala
130 135 140
Lys Asp Phe Phe Asp Glu Met Ser Glu Leu Tyr Gly Asp Tyr Pro Asn
145 150 155 160
Val Ile Tyr Glu Ile Ala Asn Glu Pro Asn Gly Ser Asp Val Thr Trp
165 170 175
Asp Asn Gln Ile Lys Pro Tyr Ala Glu Glu Val Ile Pro Val Ile Arg
180 185 190
Asp Asn Asp Pro Asn Asn Ile Val Ile Val Gly Thr Gly Thr Trp Ser
195 200 205
Gln Asp Val His His Ala Ala Asp Asn Gln Leu Ala Asp Pro Asn Val
210 215 220
Met Tyr Ala Phe His Phe Tyr Ala Gly Thr His Gly Gln Asn Leu Arg
225 230 235 240
Asp Gln Val Asp Tyr Ala Leu Asp Gln Gly Ala Ala Ile Phe Val Ser
245 250 255
Glu Trp Gly Thr Ser Ala Ala Thr Gly Asp Gly Gly Val Phe Leu Asp
260 265 270
Glu Ala Gln Val Trp Ile Asp Phe Met Asp Glu Arg Asn Leu Ser Trp
275 280 285
Ala Asn Trp Ser Leu Thr His Lys Asp Glu Ser Ser Ala Ala Leu Met
290 295 300
Pro Gly Ala Asn Pro Thr Gly Gly Trp Thr Glu Ala Glu Leu Ser Pro
305 310 315 320
Ser Gly Thr Phe Val Arg Glu Lys Ile Arg Glu Ser Ala Ser Asp Asn
325 330 335
Asn Asp Pro Ile
340

<210> 135
<211> 30
<212> PRT
<213> Cellulomonas strain 69B4

<400> 135

Met Arg Ser Lys Lys Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr
1 5 10 15
Ala Ala Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala
20 25 30

<210> 136
<211> 30
<212> PRT
<213> Cellulomonas strain 69B4

<400> 136

Met Arg Ser Lys Lys Leu Trp Ile Ser Leu Leu Leu Ala Val Ala Thr
1 5 10 15
Ala Ala Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala
20 25 30

<210> 137
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 137
ctagctaggt accatgacac cacgaactgt cacaagagct

40

<210> 138
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 138
gtgtgcaagg tttcagggga gggtgagtcc catttgtaa

40

<210> 139
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 139
ctagctaggt accatgacac cacgaactgt cacaagagct

40

<210> 140
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 140
gtgtgcaagc tttcaagggg aacttccaga gtcagtc 37

<210> 141
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 141
tcatgcaggg taccatgaga agcaagaagc gaactgtcac aagagctctg gct 53

<210> 142
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 142
gtgtgcaagc tttcagggga gggtgagtcc cattgtgtaa 40

<210> 143
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 143
tcatgcaggg taccatgaga agcaagaagc gaactgtcac aagagctctg gct 53

<210> 144
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 144
gtgtgcaagc tttcaagggg aacttccaga gtcagtc 37

<210> 145

<211> 74
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 145
tcatgcaggg taccatgaga agcaagaagt tgtggatcg tttgctgctg gctgtggcaa 60
cagcagctgc taca 74

<210> 146
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 146
gtgtgcaagc ttccagggg aggtgagtcc cattgtgtaa 40

<210> 147
<211> 74
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 147
tcatgcaggg taccatgaga agcaagaagt tgtggatcg tttgctgctg gctgtggcaa 60
cagcagctgc taca 74

<210> 148
<211> 37
<212> DNA

<213> Artificial Sequence

<220>
<223> primer

<400> 148
gtgtgcaagc ttcaagggg aacttccaga gtcagtc 37

<210> 149
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 149

ccataccgga tccaaacgaa ccggctcctc caggatct 38
<210> 150
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 150
ctcgagttaa gcttttaagg ggaacttcca gagttagtc 39
<210> 151
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 151
tgagctgcta gcaaaaggag agggtaaaga atgacaccac gaactgtc 48
<210> 152
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 152
cgtacatccc gggtcagggg agggtgagtc ccattg 36
<210> 153
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 153
tgagctgcta gcaaaaggag agggtaaaga atgacaccac gaactgtc 48
<210> 154
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 154
catgcacatccc gggtaaggg gaacttccag agtcagtc 38

<210> 155
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 155
tgagctgcta gcaaaaggag agggtaaaga atgagaagca agaag 45

<210> 156
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 156
cgtacatccc gggtcagggg agggtgagtc ccattg 36

<210> 157
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 157
tgagctgcta gcaaaaggag agggtaaaga atgagaagca agaag 45

<210> 158
<211> 38

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 158
catgcattccc gggttaaggg gaacttccag agtcagtc 38

<210> 159
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 159
tgagctgcta gcaaaaggag agggtaaaga atgagaagca agaag 45

<210> 160
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 160
cgtacatccc gggtcagggg agggtgagtc ccattg 36

<210> 161
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 161
ttagctgcta gcaaaaggag agggtaaaga atgagaagca agaag 45

<210> 162
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 162
catgcattccc gggtaaggg gaacttccag agtcagtc 38

<210> 163
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 163
tgcagtctgc tagcaaaagg agaggtaaaa gagtgagaag 40

<210> 164
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 164
catgcattccc gggtaaggg gaacttccag agtcagtc 38

<210> 165
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 165
ttatgcgagg ctagaaaaag gagagggtaa agagtgagaa gcaaaaaacg 50

<210> 166
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 166
taaagagtga gaagaaaaaa acgcacagtc acgcgggccc tg 42

<210> 167
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 167
gtcctctgtt aacttacggg ctgctgcccg agtcc 35

<210> 168
<211> 41
<212> DNA

<213> Artificial Sequence

<220>
<223> primer

<400> 168
gcaacatgtc tgcgaggct aacgaaccgg ctcctccagg a 41

<210> 169
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 169
gacatgacat aagcttaagg ggaacttcca gagtc 35

<210>	170					
<211>	25					
<212>	DNA					
<213>	Artificial Sequence					
 <220>						
<223>	primer					
 <400>	170					
gagccgaatt	catataacctg	ccgtt	25			
 <210>	171					
<211>	41					
<212>	DNA					
<213>	Artificial Sequence					
 <220>						
<223>	primer					
 <400>	171		41			
tcctggagga	gccggttcgt	tagcctgcgc	agacatgttg	c		
 <210>	172					
<211>	5713					
<212>	DNA					
<213>	Artificial Sequence					
 <220>						
<223>	synthetic					
 <400>	172					
catcacatat	acctggcggtt	cactattatt	tagtcaaatg	agatattatg	atattttctg	60
aatttgtattt	aaaaaggcaaa	ctttatgccc	atgcaacaga	aactataaaa	aatacagaga	120
atgaaaagaa	acagatagat	tttttagttc	tttaggcccgg	tagtctgcaa	atcccttttat	180
gattttctat	caaacaaaaag	aggaaaatag	accagttgca	atccaaacgaa	gagtctaata	240
aatgtgaggc	acagaatagt	cttttaagta	agtctactct	gaattttttt	aaaaggagag	300
ggtaaagagt	gagaagcaaa	aaattgtgga	ttagctgtt	gttgcgtta	acgttaatct	360
ttacgatggc	gttcagcaac	atgtctgcgc	aggctaacgaa	accggctcct	ccaggatctg	420
catcagcccc	tccacgatta	gctgaaaaaac	ttgaccctga	cttacttgaa	gcaatggAAC	480
gcgtatctggg	gttagatgca	gaggaagcag	ctgcaacgtt	agcttttcag	catgacgcag	540
ctgaaacgggg	agaggctt	gctgaggaac	tgcacgaaga	tttcgcgggc	acgtgggtt	600
aagatgtatgt	gctgtatgtt	gcaaccactg	atgaagatgc	tgttgaagaa	gtcgaaggcg	660
aaggagcaac	tgctgtgact	gttggacatt	ctcttgctga	tttagaggcg	tggaaagacgg	720
ttttggatgc	tgcgctggag	ggtcatgatg	atgtgcctac	gtgg tacgtc	gacgtgccta	780
cgaattcgggt	agtctgtgct	gtaaaggcag	gagcgcagga	tgttagctgca	ggacttgtgg	840
aaggcgctga	tgtgccatca	gatgcggtca	ctttttaga	aacggacgaa	acgcctagaa	900
cgtatgttgc	cgtaatttgg	ggcaacgcatt	atactattgg	cgccgggtct	agatgttcta	960
tcggattcgc	agtaaacgggt	ggcttcattt	ctgcccgtca	ctgccaaga	acaggagcca	1020
ctactgccaa	tccgactggc	acatttgcag	gtagctcggt	tccggaaat	gattatgcatt	1080
tcgtccgaac	aggggcagga	gtaaatttgc	ttgcccagt	caataactac	tcggcggca	1140
gagtccaaatgt	agcaggacat	acggccgcac	cagttggatc	tgctgtatgc	cgctcaggta	1200
gcactacagg	ttggcattgc	ggaactatca	cgccgctgaa	ttcgtctgtc	acgtatccag	1260
agggaaacagt	ccgaggactt	atccgcacga	cggttgtgc	cgaaccagg	gatagcggag	1320
gtagcctttt	agcggaaat	caagcccaag	gtgtcacgtc	aggtggttct	ggaaattgtc	1380
ggacgggggg	aacaacattt	tttcaaccag	tcaacccat	tttgcaggct	tacggcctga	1440
gaatgattac	gactgactt	ggaagttccc	cttaagctt	aaaaaccggc	cttggccccc	1500
ccggttttttt	attatttttc	ttcctccgca	tgttcaatcc	gctccataat	cgacggatgg	1560

ctccctctga aaatttaac gagaaacggc gggttgaccc ggctcagtcc cgtaacggcc	1620
aagtccctgaa acgtctcaat cgccgcttcc cggttccgg tcagctcaat gccgtaacgg	1680
tcggcggcggt ttcctgata cccggagacg gcattcgtaa tcggatccc gacgcacatcg	1740
ggccggcatc accggcgcca cagggtcggt tgctggcgcc tatatcgccg acatcaccga	1800
tggggaaagat cgggctcgcc acttcgggct catgagcgct tgttcggcg tgggtatggt	1860
ggcaggcccc gtggccgggg gactgttggg cgccatctcc ttgcacatgcac cattccttgc	1920
ggcggcggtg ctcaacggcc tcaacctact actgggctgc ttccataatgc aggagtcgca	1980
taagggagag cgtcgaccga tgccctttag agcctcaac ccagtcagct cctccggtg	2040
ggcgcggggc atgactatcg tcgcccact tatgactgtc ttctttatca tgcaactcg	2100
aggacaggtg cccgcagcgc tctgggtcat ttccggcgag gaccgcttgc gctggagcgc	2160
gacgatgatc ggcctgtcgcc ttgcggattt cgaaatctt cacgccttcg ctcaagcctt	2220
cgtcacttgtt cccgcacca aacgtttcg cggaaagcag gccattatcg cccgcattggc	2280
ggccgacgcg ctgggtacg tcttgctggc gttcgacg cgaggctgga tggcttccc	2340
cattatgatt ttctcgctt cccggccat cggatgccc gcgttgcagg ccattgtgtc	2400
caggcaggta gatgacgacc atcaggaca gcttcaagga tcgctcgccg ctcttaccag	2460
cctaacttcg atcactggac cgctgatcgat cacggcgtt tatgcccctt cggcgagcac	2520
atggaacggg ttggcatgaa ttgaggcgcc gccctataacc ttatttatgt tacagtaata	2580
ttgacttta aaaaaggatt gattctaattt aagaaagcag acaagtaagc ctcctaaattt	2640
cacttagat aaaaatttag gaggcatatc aaatgaactt taataaaattt gatttagaca	2700
atggaagag aaaaagagata ttaatcatt atttgaacca acaaaccgact ttttagtataa	2760
ccacagaaat tgatattatgt gttttataacc gaaacataaaa acaagaagga tataaatttt	2820
accctgcatt tattttctta gtgacaagggt tgataaaactc aaatacagct ttttagaactg	2880
gttacaatag cgacggagag ttaggttattt gggataagtt agagccactt tatacaattt	2940
ttgatgggtt atctaaaaca ttctctggta tttggactcc tgtaaaagaat gacttcaaag	3000
agttttatga ttatcacatt tctgtatgtt agaaatataa tggttcgggg aaattgtttc	3060
ccaaaacacc tatacctgaa aatgctttt ctcttctat tattccatgg acttcattt	3120
ctgggtttaa cttaaatatc aataataata gtaattaccc tctaccattt attacagcag	3180
gaaaattcat taataaaggat aattcaatat atttaccgct atcttacag gtacatcatt	3240
ctgtttgtga tggttatcat gcaggattgt ttatgaactc tattcaggaa ttgtcagata	3300
ggcctaatttga ctggctttta taatatgaga taatgccac tgtaactttt acagtcggtt	3360
ttctaatgtc actaacctgc cccgttagt gaagaagggtt tttatattac agtccagat	3420
cctgcctcgc gcgtttcggt gatgacgggtt aaaacctctg acacatgcag ctccggaga	3480
cggtcacagc ttgtctgtaa gcggatgccc ggagcagaca agcccgtag ggcgcgtcag	3540
cgggtgttgg cgggtgtcgg ggcgcagcca tgaccaggc acgtagcgat agcggagtgt	3600
atactggctt aactatgcgg catcagagca gattgtactg agagtgcacc atatcggtt	3660
tgaaaataccg cacagatgcg taaggagaaa ataccgcattt aggccgtctt ccgccttc	3720
gctcaactgac tcgctcgctt cggcgttcc gctgcggcga gcgttatcag ctcactcaaa	3780
ggcggtataa cggttatcca cagaatcagg ggataacgcg gaaagaaca tgtgagcaaa	3840
aggccagcaa aaggccagga accgtaaaaaa ggccgcgttgc tggcggtttt tccataggct	3900
ccgccccccct gacgagcattt acaaaaaatcg acgctcaagt cagaggtggc gaaacccgac	3960
aggactataa agataccagg cgtttccccc tggaaactcc ctcgtcgctt ctcctgttcc	4020
gaccctgcgg cttaccggat acctgtccgc ctttccctt tggaaagcgt tggcgcttc	4080
tcatagctca cgctgttagt atctcagttc ggtgttagtgc gttcgcttca agctggctg	4140
tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctt tccgttaact atcgcttgc	4200
gtccaaacccg gtaagacacg acttacgcgc tctgtgttcc acgactggta acaggattag	4260
cagagcgagg tatgttaggcg tgctacaga gttcttgcag tggcggttactacggctt	4320
cactagaagg acagtatttg gatatctgcgc tctgtgttcc acgactggta acaggattag	4380
agttggtagc tcttgcattcc gcaaaacaaac caccgcttgcg acgggtgtt ttttgcattt	4440
caagcagcag attacgcgcg gaaaaaaaagg atctcaagaa gatcccttgc tctttctac	4500
ggggcttgac gctcagtggc acgaaaactc acgttaaggg atttggtca tgagattatc	4560
aaaaaggatc ttccatcata tccttttaaa taaaaatgcg agttttaat caatctaaag	4620
tatatatgat taaacttgcgtt ctgacatgtt ccaatgcgtt atcgtgagg cacctatctc	4680
agcgatctgtt ctatccatgtt catccatgt tgccctgcactc cccgtcggtt agataactac	4740
gatacgggag ggcttaccat ctggccccccag tgctgcatttgcg acggccgtcc	4800
accggctcca gatttacccat cccatccatgtt ccaatgcgtt atcgtgagg cacctatctc	4860
tcctgcactt tttatccctt ccattccatgtt ccaatgcgtt atcgtgagg cacctatctc	4920
ttatccctt ccattccatgtt ccaatgcgtt atcgtgagg cacctatctc	4980

acgctcgatcg tttggtatgg cttcatttcag ctccgggttcc caacgatcaa ggcgagttac 5040
atgatcccc atgttgatgc aaaaagcggt tagctccccc ggtcctccga tcgttgtcag 5100
aagaatgtt gccgcagtgt tatcactcat gttatggca gcactgcata attctttac 5160
tgtcatgccca tccgttaagat gctttctgt gactggtag tactcaacca agtattctg 5220
agaatagtgt atgcggcgac cgagttgctc ttgcccggcg tcaacacggg ataataccgc 5280
gccacatagc agaactttaa aagtgcgtcat cattggaaaa cgttcttcgg ggcgaaaact 5340
ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcggt caccaactg 5400
atcttcagca tcttttactt tcaccagcggt ttctgggtga gcaaaaacag gaaggcaaaa 5460
tgccgcaaaa aaggaaataa gggcgacacg gaaatgttga atactcatac tcttccttt 5520
tcaaatattat tgaagcattt atcagggtta ttgtctcatg agcggatatac tatttgaatg 5580
tatttagaaa aataaaacaaa taggggttcc ggcacatattt cccgaaaaag tgccacactga 5640
cgtctaagaa accattatta tcatgacatt aacctataaaa aataggcgta tcacgaggcc 5700
ctttcgatcc caa 5713

<210> 173
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 173

Met Lys Lys Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr Ala Ala
1 5 10 15
Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala Asn Glu Pro Ala
20 25 30
Pro

<210> 174
<211> 36
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 174

Met Lys Lys Pro Leu Gly Arg Thr Val Thr Arg Ala Leu Ala Val Ala
1 5 10 15
Thr Ala Ala Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala Asn
20 25 30
Glu Pro Ala Pro
35

<210> 175
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic

<400> 175

Met Lys Lys Pro Leu Gly Lys Ile Val Ala Ser Thr Ala Leu Leu Ile
1 5 10 15
Ser Val Ala Phe Ser Ser Ser Ile Ala Ser Ala Asn Glu Pro Ala Pro
20 25 30

<210> 176
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 176
aggagaaccga atgaagaaaac gaactgtcac aagagctctg 40

<210> 177
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 177
cagagctctt gtgacagttc gtttcttcat tcgggtccct 40

<210> 178
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 178
aatgaagaaa ccgttggggc gaactgtcac aagagctctg 40

<210> 179
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 179
cagagctctt gtgacagttc gccccaacgg tttcttcatt 40

<210> 180
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 180
agttcatcga tcgcacatcgcc taacgaaccg gctcctccag ga 42

<210> 181
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 181
tcctggagga gccgggttcgt tagccgatgc gatcgatgaa ct 42

<210> 182
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 182
tcagggggat cctagattct gttaacttaa cgtt 34

<210> 183
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 183
gtgctgtttt atcctttacc ttgtctcc 28

<210> 184
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 184
agttaagcaa tcagatctc ttcaggta 29

<210> 185
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 185

cattgaaagg ggaggagaat catgagaagc aagaagcgaa ctgtcac 47

<210> 186
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 186
gtgacagttc gcttcttgct tctcatgatt ctcctccct ttcaatg 47

<210> 187
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 187
ctttacccttg tctccaagct taaaataaaa aaacgg 36

<210> 188
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 188
gcgcaggatg tagcagctgg acttgtgg 28

<210> 189
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 189
ccacaagtcc agctgctaca tcctgcgc 28

<210> 190
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 190
gcctcattct gcagcttcag caaacgaacc ggctcctcca gg 42

<210> 191
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 191
cgtcctctgt taactcagtc gtcacttcca gagtcagtcg taatc 45

<210> 192
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 192
atccctactcg aggctttct tttggaagaa aatataggg 39

<210> 193
<211> 35
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 193
tggaatctcg aggttttac ctttacacctg tctcc 35

<210> 194
<211> 136
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 194
acccccctcg aggctttct tttggaagaa aatataggga aaatggtaact tgtaaaaat 60
tcggaatatt tatacaaatat catatgtttc acattgaaag gggaggagaa tcataaaca 120
acaaaaaacgg cttaac 136

<210> 195
<211> 118
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 195
gtcgacctcg aggtttatc ctttaccttg tctccaagct taaaataaaa aaacggattt 60
ccttcaggaa atccgtcctc tgtaactca aggggaactt ccagagtcag tcgtaatc 118

<210> 196
<211> 135
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 196
acccccctcg aggctttct ttggaaagaa aatataggga aaatggtaact tgtaaaaat 60
tcggaatatt tataacaatat catatgttac acattgaaag gggaggagaa tcatgacacc 120
acgaactgtc acaag 135

<210> 197
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 197
attagtctcg aggatcgacc ggaccgcaac ctcc 34

<210> 198
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 198
cgatggcatt cagcgattcc gttctgcta acgaaccggc tcctccagga tctgc 55

<210> 199
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 199
gcagatcctg gaggagccgg ttcgttagca gaagcgaaat cgctgaatgc catcg 55

<210> 200
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 200
actagtaagc ggtatgaacga gcccccacca cccggggagcg cgagc 45

<210> 201
<211> 42
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 201
ggcgcgccctt aggggagggt gagccccatg gtgttaggcac cg 42

<210> 202
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 202
actagtaagc ggtatgaacga gcccccacca cccggggagcg cgagc 45

<210> 203
<211> 40
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 203
ggcgcgccctt acgggctgct gccccagtcc gtgggtgatca 40

<210> 204
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 204
actagtaagc ggtatgttcga cgttatcggt ggcaacgcctt acaccat 47

<210> 205
<211> 40
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<400> 205
ggcgcgcctt acgggctgct gcccgagtcc gtggtgatca 40

<210> 206
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 206
atgacaccac gaactgtcac aagagctctg 30.

<210> 207
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 207

aacgaaccgg ctcctccagg atctgcatca 30

<210> 208
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 208
agggaactt ccagagtcag tcgtaatcat tctcaggcc 39

<210> 209
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 209
ggggagggtg agtcccattt tgtaagctcc tga 33

<210> 210
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 210

accgcgactg ctagcaacgt catctccaag cgccggcggtg gcaacgaacc ggctcctcca	60
ggatct	66
<210> 211	
<211> 66	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 211	
accgcgactg ctagcaacgt catctccaag cgccggcggtg gcaacgaacc ggctcctcca	60
ggatct	66
<210> 212	
<211> 54	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 212	
ccgccagggtg tcggtcacct aaggggact tccagagtca gtcgtaatca ttct	54
<210> 213	
<211> 90	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> synthetic	
<400> 213	
atgagaagca agaagcgaac tgtcacaaga gctctggctg tggcaacagc agctgctaca	60
ctcttggctg ggggtatggc agcacaagct	90
<210> 214	
<211> 389	
<212> PRT	
<213> Cellulomonas strain 69B4	
<400> 214	
Met Arg Ser Lys Lys Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr	
1 5 10 15	
Ala Ala Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala Asn Glu	
20 25 30	
Pro Ala Pro Pro Gly Ser Ala Ser Ala Pro Pro Arg Leu Ala Glu Lys	
35 40 45	
Leu Asp Pro Asp Leu Leu Glu Ala Met Glu Arg Asp Leu Gly Leu Asp	
50 55 60	
Ala Glu Glu Ala Ala Ala Thr Leu Ala Phe Gln His Asp Ala Ala Glu	
65 70 75 80	
Thr Gly Glu Ala Leu Ala Glu Glu Leu Asp Glu Asp Phe Ala Gly Thr	
85 90 95	

Trp Val Glu Asp Asp Val Leu Tyr Val Ala Thr Thr Asp Glu Asp Ala
 100 105 110
 Val Glu Glu Val Glu Gly Glu Gly Ala Thr Ala Val Thr Val Glu His
 115 120 125
 Ser Leu Ala Asp Leu Glu Ala Trp Lys Thr Val Leu Asp Ala Ala Leu
 130 135 140
 Glu Gly His Asp Asp Val Pro Thr Trp Tyr Val Asp Val Pro Thr Asn
 145 150 155 160
 Ser Val Val Val Ala Val Lys Ala Gly Ala Gln Asp Val Ala Ala Gly
 165 170 175
 Leu Val Glu Gly Ala Asp Val Pro Ser Asp Ala Val Thr Phe Val Glu
 180 185 190
 Thr Asp Glu Thr Pro Arg Thr Met Phe Asp Val Ile Gly Gly Asn Ala
 195 200 205
 Tyr Thr Ile Gly Gly Arg Ser Arg Cys Ser Ile Gly Phe Ala Val Asn
 210 215 220
 Gly Gly Phe Ile Thr Ala Gly His Cys Gly Arg Thr Gly Ala Thr Thr
 225 230 235 240
 Ala Asn Pro Thr Gly Thr Phe Ala Gly Ser Ser Phe Pro Gly Asn Asp
 245 250 255
 Tyr Ala Phe Val Arg Thr Gly Ala Gly Val Asn Leu Leu Ala Gln Val
 260 265 270
 Asn Asn Tyr Ser Gly Gly Arg Val Gln Val Ala Gly His Thr Ala Ala
 275 280 285
 Pro Val Gly Ser Ala Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His
 290 295 300
 Cys Gly Thr Ile Thr Ala Leu Asn Ser Ser Val Thr Tyr Pro Glu Gly
 305 310 315 320
 Thr Val Arg Gly Leu Ile Arg Thr Thr Val Cys Ala Glu Pro Gly Asp
 325 330 335
 Ser Gly Gly Ser Leu Leu Ala Gly Asn Gln Ala Gln Gly Val Thr Ser
 340 345 350
 Gly Gly Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr Phe Phe Gln Pro
 355 360 365
 Val Asn Pro Ile Leu Gln Ala Tyr Gly Leu Arg Met Ile Thr Thr Asp
 370 375 380
 Ser Gly Ser Ser Pro
 385

<210> 215
 <211> 29
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 215
 gcaatcagat cttccttcag gttatgacc

<210> 216
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> primer

<400> 216
gcatcgaaga tctgattgct taactgcttc 30

<210> 217
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 217
gaaacgccta gaacgatgnn sgacgtaatt ggaggcaac 39

<210> 218
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 218
acgcctagaa cgatgttcnn sgttaattgga ggcaacgca 39

<210> 219
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 219
ccttagaacga tgttcgacnn sattggaggc aacgcata 39

<210> 220
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 220
agaacgatgt tcgacgtann sggaggcaac gcataatact 39

<210> 221
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 221
acgatgttcg acgtaatnn sggcaacgca tataactatt 39

<210> 222
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 222
atgttcgacg taattggann saacgcatac actattggc 39

<210> 223
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 223

ttcgacgtaa ttggaggcnn sgcataatact attggcggc 39

<210> 224
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 224
gacgttaattt gaggcaacnn statactatt ggccggccgg 39

<210> 225
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 225
gtaattggag gcaacgcann sactattggc ggccgggtct 39

<210> 226
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 226
attggaggca acgcataatnn sattggcggc cggtctaga 39

<210> 227
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 227
ggaggcaacg cataactnn sggcggccgg tctagatgt 39

<210> 228
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 228
ggcaacgcat atactatnn sggccggtct agatgttct 39

<210> 229
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 229
aacgcatata ctattggcnn scggtctaga tgttctatc 39

<210> 230
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 230
gcatatacta ttggcggcnn stctagatgt tctatcgga 39

<210> 231
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 231
tatactattg gcggccggnn sagatgttct atcggattc

39

<210> 232
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 232
actattggcg gccggctcnn stgttctatc ggattcgca

39

<210> 233
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 233
attggcggcc ggtctagann stctatcgga ttgcgcagta

39

<210> 234
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 234
ggcggccggt ctagatgtnn satcgattc gcagtaaac 39

<210> 235
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 235
ggccggtcta gatgttctnn sggattcgca gttaaacggt 39

<210> 236
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 236
cggtctagat gttctatcnn sttcgcagta aacggtgac 39

<210> 237
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 237
tctagatgtt ctatcggnn sgcaagtaaac ggtggcttc 39

<210> 238

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 238
agatgttctta tcggattcnn sgtaaacggg ggcttcatt 39

<210> 239
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 239
tgttcttatcg gattcgcann saacggtgcc ttcattact 39

<210> 240
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 240
tctatcggat tcgcagtann sggtaaaatcttcc 39

<210> 241
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (19)..(20)
<223> n is a, c, g, or t

<400> 241
atcggattcg cagtaaacnn sggcttcatt actgccggt 39

<210> 242
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 242
ggattcgcag taaacggtnn sttcattact gccggtcac 39

<210> 243
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 243
ttcgcagtaa acggtgtgnn sattactgcc ggtcactgc 39

<210> 244
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 244
gcagtaaacg gtggcttcnn sactgccggt cactgcgga 39

<210> 245
<211> 39
<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 245

gtaaaacggtg gcttcattnn sgccggtcac tgcggaaga

39

<210> 246

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 246

aacggtgtggct tcattactnn sggtaactgc ggaagaaca

39

<210> 247

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 247

ggtgtggcttca ttactgccnn scactgcgga agaacagga

39

<210> 248

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 248
ggcttcatta ctgccgtnn stgcggaaga acaggagcc 39

<210> 249
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 249
ttcattactg ccggcacnn sgaaagaaca ggagccact 39

<210> 250
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 250
attactgccg gtcactgcnn sagaacagga gccactact 39

<210> 251

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 251
actgccggtc actgcggann sacaggagcc actactgcc 39

<210> 252
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 252
gcccgtcact gcggaagann sggagccact actgccaat 39

<210> 253
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 253
ggtcactgcg gaagaacann sgccactact gccaatccg 39

<210> 254
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 254
cactgcggaa gaacaggann sactactgcc aatccgact 39

<210> 255
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 255
tgcggaagaa caggagccnn sactgccaat ccgactggc 39

<210> 256
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 256
ggaagaacag gagccactnn sgccaatccg actggcaca 39

<210> 257
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 257
agaacaggag ccactactnn saatccgact ggcacattt 39

<210> 258
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 258
acaggagcca ctactgccnn sccgactggc acatttgca 39

<210> 259
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 259
ggagccacta ctgccaatnn sactggcaca tttgcaggt 39

<210> 260
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 260
gccactactg ccaatccgnn sggcacattt gcaggtagc 39

<210> 261
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 261
actactgcc aatccgactnn sacatttgca ggttagctcg 39

<210> 262
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 262
actgccaatc cgactggcnn stttgcaggt agctcgttt 39

<210> 263
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 263
gccaaatccga ctggcacann sgcaggttagc tcgtttccg 39

<210> 264

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 264
aatccgactg gcacatttnn sggtagctcg tttccggga 39

<210> 265
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 265
ccgactggca catttgcann sagctcgttt ccggaaat 39

<210> 266
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 266
actggcacat ttgcaggtnn stcgttccg ggaaatgat 39

<210> 267
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 267
ggcacatttgcaggttagcnn stttccggga aatgattat 39

<210> 268
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 268
acatttgcag gttagctcgnn sccggaaat gattatgca 39

<210> 269
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 269

tttgcaggtta gctcgttnn sggaaatgat tatgcattc

39

<210> 270
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 270
gcaggttagct cgttccgnn saatgattat gcattcgtc

39

<210> 271
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 271
ggtagctcgt ttccgggann sgattatgca ttctcgccga

39

<210> 272
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 272
agctcgtttc cggaaatnn statgcattc gtccgaaca

39

<210> 273
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 273
tcgtttccgg gaaatgatnn sgcattcgtc cgaacaggg 39

<210> 274

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 274
tttccgggaa atgattatnn sttcgtccga acaggggca 39

<210> 275

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 275
ccgggaaatg attatgcann sgtccgaaca gggcagga 39

<210> 276

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 276
ggaaaatgatt atgcattcnn scgaacaggg gcaggagta 39

<210> 277
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 277
aatgattatg cattcgtnnn sacaggggca ggagtaat 39

<210> 278
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 278
gattatgcat tcgtccgann sggggcagga gtaaatttg 39

<210> 279
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 279
tatgcattcg tccgaacann sgcaggagta aatttgctt 39

<210> 280
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 280
gcattcgtcc gaacagggnn sgagtaaat ttgcttgcc 39

<210> 281

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 281
ttcgcccgaa cagggcann sgtaaatttg cttgcccaa 39

<210> 282

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 282
gtccgaacag gggcaggann saatttgctt gcccaagtc 39

<210> 283

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 283
cgaacagggg caggagtann sttgcttgcc caagtcaat 39

<210> 284
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 284
acaggggcag gagtaaatnn scttgcccaa gtcaataac 39

<210> 285
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 285
ggggcaggag taaattgnn sgcccaagtc aataactac 39

<210> 286
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 286
gcaggagtaa atttgctnn scaagtcaat aactactcg 39

<210> 287
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 287
ggagtaaatt tgcttgccnn sgtcaataac tactcgggc 39

<210> 288

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 288
gtaaatttgc ttgcccaann saataactac tcgggcggc 39

<210> 289

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 289
aatttgcttg cccaaagtcnn saactactcg ggcggcaga 39

<210> 290

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 290
ttgcttgccc aagtcaatnn stactcgggc ggcagagtc 39

<210> 291
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 291
cttgcccaag tcaataacnn stcgggcggc agagtccaa 39

<210> 292
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 292
gcccaagtca ataactacnn sggcggcaga gtccaagta 39

<210> 293
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 293
caagtcaata actactcgnn sggcagagtc caagtagca 39

<210> 294
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 294
gtcaataact actcgggcnn sagagtccaa gtagcagga. 39

<210> 295

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 295
aataactact cgggcggcnn sgtccaagta gcaggacat 39

<210> 296

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 296
aactactcg~~g~~ gcggcagann scaagttagca ggacatacg 39

<210> 297

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 297

tactcggcg gcagagtcnn sgtagcagga catacggcc 39

<210> 298
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 298
tcgggcccga gagtccaann sgcaggacat acggccgca 39

<210> 299
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 299
ggcggcagag tccaagtann sggacatacg gccgcacca 39

<210> 300
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 300
ggcagagtcc aagtagcann scatacggcc gcaccagtt 39

<210> 301
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 301
agagtccaaag tagcaggann sacggccgca ccagttgga 39

<210> 302
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (19)..(20)
<223> n is a, c, g, or t

<400> 302
gtccaaatcgtag caggacatnn sgccgcacca gttggatct 39

<210> 303
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 303
caagtagcag gacatacggn sgcaccagg ggatctgct 39

<210> 304
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 304

gtacaggac atacggccnn sccagttgga tctgctgta 39

<210> 305
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 305
gcaggacata cggccgcann sggtggatct gctgtatgc 39

<210> 306
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 306
ggacatacgg ccgcaccann sggatctgct gtatgccgc 39

<210> 307
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 307
catacggcccg caccagttnn stctgctgta tgccgctca 39

<210> 308
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 308
acggccgcac cagttggann sgctgtatgc cgctcaggt 39

<210> 309
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 309
gccgcaccag ttggatctnn sgtatgccgc tcaggtagc 39

<210> 310
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 310
gcaccagttg gatctgctnn stgcccgtca ggttagcact 39

<210> 311
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 311
ccagttggat ctgctgtann scgctcaggt agcactaca 39

<210> 312
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 312
gttggatctg ctgtatgcnn stcaggttagc actacaggt

39

<210> 313
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 313
ggatctgctg tatgccgcnn sggttagca acaggttgg

39

<210> 314
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 314
tctgctgtat gccgctcann sagcactaca ggttggcat

39

<210> 315
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 315
gctgtatgcc gctcaggtnn sactacaggt tggcattgc 39

<210> 316
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 316
gtatgccgct cagtagcnn sacaggttgg cattgcgga 39

<210> 317
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 317
tgccgctcag gtagcactnn sggttggcat tgcgaaact 39

<210> 318
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 318
cgctcaggta gcactacann stggcattgc ggaactatc 39

<210> 319
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 319
tcaggttagca ctacaggtnn scattgcgga actatcacg 39

<210> 320
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 320
ggtagcacta caggttggnn stgcggaact atcacggcg 39

<210> 321
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 321
agcaactacag gttggcatnn sggaactatc acggcgctg 39

<210> 322
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 322
actacaggtt ggcattgcnn sactatcacg gcgctgaat 39

<210> 323

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 323
acaggttggc attgcggann satcacggcg ctgaattcg 39

<210> 324
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 324
ggttggcatt gcgaaactnn sacggcgctg aattcgtct 39

<210> 325
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 325
tggcattgcg gaactatcnn sgcgctgaat tcgtctgtc 39

<210> 326

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 326
cattgcggaa ctatcacgnn sctgaattcg tctgtcacg 39

<210> 327
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 327
tgcggaacta tcacggcggn saattcgtct gtcacgtat 39

<210> 328
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 328
ggaactatca cggcgctgnn stcgtctgtc acgtatcca 39

<210> 329
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (19)..(20)
<223> n is a, c, g, or t

<400> 329
actatcacgg cgctgaatnn stctgtcacg tatccagag 39

<210> 330
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 330
atcacggcgc tgaattcggn sgtcacgtat ccagaggga 39

<210> 331
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 331
acggcgctga attcgtctnn sacgtatcca gagggaaaca 39

<210> 332
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 332
gcgtctgtcnn statccagag ggaacagtc 39

<210> 333
<211> 39
<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 333

ctgaattcgt ctgtcacgnn sccagaggga acagtccga

39

<210> 334

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 334

aattcgtctg tcacgtatnn sgagggaaaca gtccgagga

39

<210> 335

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 335

tcgtctgtca cgttatccann sggaacagtc cgaggactt

39

<210> 336

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 336
tctgtcacgt atccagagnn sacagtccga ggacttatac 39

<210> 337
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 337
gtcacgtatc cagagggnn sgtccgagga cttatccgc 39

<210> 338
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 338
acgttatccag aggaaacann scgaggactt atccgcacg 39

<210> 339
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 339
tatccagagg gaacagtcnn sggacttatac cgcacgacg 39

<210> 340
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 340
ccagaggaa cagtccgann scttatccgc acgacggtt 39

<210> 341
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 341
gagggAACAG TCCGAGGANN SATCCGCACG ACGGTTTGT 39

<210> 342
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 342
ggaacagtcc gaggactnn scgcacgacg gtttgcc 39

<210> 343
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 343

acagtccgag gacttatcnn sacgacggtt tgtgccgaa 39

<210> 344
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 344
gtccgaggac ttatccgcnn sacggtttgt gccgaacca 39

<210> 345
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 345
cgaggactta tccgcacgnn sgtttgcc gaaccaggt 39

<210> 346
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 346
ggacttatcc gcacgcacgnn stgtgccgaa ccaggtgat 39

<210> 347
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 347
cttataccgca cgacggttnn sgccgaacca ggtgatagc 39

<210> 348

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 348
atccgcacga cggtttgttnn sgaaccaggat gatagcgga 39

<210> 349

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 349
cgcacgacgg ttttgtgccnn sccaggtgat agcggaggt 39

<210> 350

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 350

acgacggttt gtgccgaann sggtgatagc ggaggtagc 39

<210> 351
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 351
acggtttgtc ccgaaccann sgatagcgga ggtgcctt 39

<210> 352
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 352
gtttgtgccg aaccaggtnn sagcggaggt agcctttta 39

<210> 353
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 353
tgtgccgaac caggtgatnn sggaggtagc cttagcg 39

<210> 354
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 354
gccgaaccag gtgatagcnn sggtagcctt ttagcggga 39

<210> 355
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 355
gaaccaggtg atagcggnn sagccttttgcggaaat 39

<210> 356
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 356
ccaggtata gcggaggtnn sctttagcg ggaaatcaa 39

<210> 357
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 357
ggtagatagcg gaggtacnn sttagcggga aatcaagcc 39

<210> 358
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 358
gatagcgaggatgaccttnn sgcgaaat caagccaa 39

<210> 359
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 359
agcggaggta gcctttann sggaaatcaa gcccaaggt 39

<210> 360
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 360
ggaggtagcc tttagcgnn saatcaagcc caaggtgtc 39

<210> 361
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 361
ggtagccttt tagcgggann scaagccaa ggtgtcacg 39

<210> 362
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 362
agccttttag cggaaatnn sgcccaaggt gtcacgtca 39

<210> 363

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 363
cttttagcgg gaaatcaann scaaggtgtc acgtcaggt 39

<210> 364
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 364

ttagcggaa atcaagccnn sggtgtcacg tcaggtggt 39

<210> 365
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 365
gcggaaaatc aagcccaann sgtcacgtca ggtggttct 39

<210> 366
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 366
ggaaatcaag cccaaaggtnn sacgtcaggt ggttctgga 39

<210> 367
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 367
aatcaagccc aaggtgtcnn stcaggtggt tctggaaat 39

<210> 368
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 368
caagcccaag gtgtcacgnn sggtggttct ggaaattgt 39

<210> 369
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 369
gcccaaggtg tcacgtcann sggttctgga aattgtcgg 39

<210> 370
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 370
caaggtgtca cgtcaggtnn stctggaaat tgtcggacg 39

<210> 371
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 371
ggtgtcacgt caggtggtnn sggaaattgt cggacgggg 39

<210> 372
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 372
gtcacgtcag gtggttctnn saattgtcgg acgggggga

39

<210> 373
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 373
acgtcaggtg gttctggann stgtcgacg gggggaaaca

39

<210> 374
<211> 39
<212> DNA

<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 374
tcaggtggtt ctggaaatnn scggacgggg ggaacaaca

39

<210> 375
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t.

<400> 375
ggtggttctg gaaattgtnn sacgggggaa acaacattc 39

<210> 376
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 376
ggttctggaa attgtcggnn sgggggaaca acattctt 39

<210> 377
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 377
tctggaaatt gtcggacgnn sggaacaaca ttctttcaa 39

<210> 378
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 378
ggaaattgtc ggacggggnn sacaacattc tttcaacca 39

<210> 379
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 379
aattgtcgga cggggggann sacattcttt caaccagtc 39

<210> 380
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 380
tgtcggacgg ggggaacann sttctttcaa ccagtcaac 39

<210> 381
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 381
cggacggggg gaacaacann stttcaacca gtcaacccg 39

<210> 382
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 382
acggggggaa caacattcnn scaaccagtc aaccggatt 39

<210> 383
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 383
gggggaacaa cattttttnn sccagtcaac ccgattttg 39

<210> 384
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 384
ggaacaacat tcttcaann sgtcaacccg attttgcag 39

<210> 385
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 385
acaacattct ttcaaccann saacccgatt ttgcaggct 39

<210> 386

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 386
acattcttc aaccagtcnn sccgattttg caggcttac 39

<210> 387
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 387
tttttcaac cagtcaacnn satttgcag gcttacggc 39

<210> 388
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 388
tttcaaccag tcaaccgnn sttgaggct tacggcctg 39

<210> 389
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 389
caaccagtca acccgatnn scaggcttac ggcctgaga 39

<210> 390
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 390
ccagtcaacc cgatttggn sgcttacggc ctgagaatg 39

<210> 391
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 391
gtcaaacccga tttgcagnn stacggcctg agaatgatt 39

<210> 392
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 392
aaccggattt tgcaggctnn sggcctgaga atgattacg 39

<210> 393
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 393
ccgattttgc aggcttacnn sctgagaatg attacgact

39

<210> 394
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 394
attttgcagg cttacggcnn sagaatgatt acgactgac

39

<210> 395
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 395
ttgcaggctt acggcctgnn satgattacg actgactct

39

<210> 396
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (19)..(20)
<223> n is a, c, g, or t

<400> 396
caggcttacg gcctgagann sattacgact gactctgga 39

<210> 397
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 397
gcttacggcc tgagaatgnn sacgactgac tctggaagt 39

<210> 398
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 398
tacggcctga gaatgattnn sactgactct ggaagttcc 39

<210> 399
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 399
ggcctgagaa tgattacgnn sgactctgga agttcccct 39

<210> 400
<211> 39
<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 400

ctgagaatga ttacgactnn stctggaagt tcccccttaaa 39

<210> 401

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 401

agaatgatta cgactgacnn sggaagttcc ccttaaccc 39

<210> 402

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 402

atgattacga ctgactctnn sagttcccct taacccaac 39

<210> 403

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<400> 403
attacgactg actctggann stccccttaa cccaaacaga 39

<210> 404
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 404

acgactgact ctggaagttnn sccttaaccc aacagagga 39

<210> 405
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (19)..(20)
<223> n is a, c, g, or t

<400> 405
actgactctg gaagttccnn staacccaac agaggacgg 39

<210> 406
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 406
gttgcctcca attacgtcsn ncatcggttct aggcgttcc 39

<210> 407
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 407
tgcgttgccct ccaattacsn ngaacatcgt tctaggcgt 39

<210> 408
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 408
atatgcgttg cctccaatsn ngtcgaacat cgttctagg 39

<210> 409
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 409
agtatatgcg ttgcctccsn ntacgtcgaa catcggtct 39

<210> 410
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 410
aatagtatat gcgttgccsn naattacgtc gaacatcg 39

<210> 411
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 411
gccaatagta tatgcgttsn ntccaattac gtcgaacat 39

<210> 412
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 412
gccgccaata gtatatgcsn ngcctccaa tacgtcgaa 39

<210> 413
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 413
ccggccgcca atagtatasn ngttgcctcc aattacgtc 39

<210> 414
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 414
agaccggccg ccaatagsn ntgcgttgcc tccaattac 39

<210> 415

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 415

tctagaccgg ccgccaatsn natatgcgtt gcctccat 39

<210> 416

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 416
acatctagac cggccgcsn nagtatatgc gttgcctcc 39

<210> 417

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 417

agaacatcta gaccggccsn naatagtata tgcgttgcc

39

<210> 418
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 418
gatagaacat ctagaccgsn ngccaatagt atatgcgtt

39

<210> 419
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 419
tccgatagaa catctagasn ngccgccaat agtatatgc

39

<210> 420
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 420
gaatccgata gaacatctsn nccggccgcc aatagtata

39

<210> 421
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 421
tgcgaatccg atagaacasn nagaccggcc gccaatagt 39

<210> 422
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 422
tactgcgaat ccgatagasn ntctagaccg gccgccaat 39

<210> 423
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 423
gtttactgcg aatccgatsn nacatctaga ccggccgcc 39

<210> 424
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 424
accgtttact gcgaatccsn nagaacatct agaccggcc 39

<210> 425
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 425

gccaccgtt actgcgaasn ngatagaaca tctagaccg

39

<210> 426
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 426

gaagccaccg tttactgcsn ntccgataga acatctaga

39

<210> 427
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 427

aatgaagcca ccgtttacsn ngaatccgat agaacatct

39

<210> 428
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 428
agtaatgaag ccaccgttsn ntgcgaatcc gatagaaca 39

<210> 429

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 429
ggcagtaatg aagccaccsn ntactgcgaa tccgataga 39

<210> 430

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 430
accggcagta atgaagccsn ngtttactgc gaatccgat 39

<210> 431

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 431
gtgaccggca gtaatgaasn naccgttac tgcgaatcc 39

<210> 432
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 432
gcagtgaccg gcagtaatsn ngccaccgtt tactgcgaa 39

<210> 433
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 433
tccgcagtga ccggcagtsn ngaagccacc gtttactgc 39

<210> 434
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 434
tctccgcag tgaccggcsn naatgaagcc accgttac 39

<210> 435
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 435
tgttcttccg cagtgaccsn nagtaatgaa gccaccgtt 39

<210> 436
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 436
tcctgttctt ccgcagtgsn nggcagtaat gaagccacc 39

<210> 437
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 437
ggctcctgtt cttccgcasn naccggcagt aatgaagcc 39

<210> 438
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 438
agtggctcct gttcttccsn ngtgaccggc agtaatgaa 39

<210> 439

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 439
agttagtgctt cctgttctsn ngcagtgacc ggcagtaat 39

<210> 440
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 440
ggcagtagtg gctcctgttsn ntccgcagtg accggcagt 39

<210> 441

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 441
attggcagta gtggctccsn ntcttccgca gtgaccggc 39

<210> 442
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 442
cggattggca gtagtggcsn ntgttcttcc gcagtgacc 39

<210> 443
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 443
agtccggattg gcagtagtsn ntccctgttct tccgcagtg 39

<210> 444
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 444
gccagtcgga ttggcagtsn nggctcctgt tcttccgca 39

<210> 445
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 445
tgtgccagtc ggattggcsn nagtggctcc tgttcttcc 39

<210> 446
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 446
aaatgtgcc a t cggattsn n a gtagtggc t c c t gttct 39

<210> 447
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 447
t g c a a a t g t g c c a g t g s n n g g c a g t a g t g g c t c t g t 39

<210> 448
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 448
a c t g c a a a t g t g c a g t g s n n a t t g g c a g t a g t g g c t c c 39

<210> 449
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)

<223> n is a, c, g, or t

<400> 449
gctacctgca aatgtgccsn ncggattggc agtagtggc 39

<210> 450
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 450
cgagctacct gcaaatgttsn nagtcggatt ggcagtagt 39

<210> 451
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 451
aaacgagcta cctgcaaasn ngccagtcgg attggcagt 39

<210> 452
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 452
cgaaaaacgag ctacacctgcsn ntgtgccagt cggattggc 39

<210> 453
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 453
tccccgaaac gagctaccsn naaatgtgcc agtcggatt 39

<210> 454
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 454
attcccccga aacgagctsn ntgcaaatgt gccagtcgg 39

<210> 455
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 455
atcatttccc ggaaacgasn nacctgcaaa tgtgccagt 39

<210> 456
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 456
ataatcattt cccgaaaasn ngctacacctgc aaatgtgcc 39

<210> 457
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 457
tgcataatca tttcccggsn ncgagctacc tgcaaatgt 39

<210> 458
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 458
gaatgcataaa tcatttccsn naaacgagct acctgcaaa 39

<210> 459
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 459
gacgaatgca taatcatttsn ncggaaaacgaa gctacacctgc 39

<210> 460
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 460
tcggacgaat gcataatcsn ntcccgaaa cgagctacc 39

<210> 461

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 461
tggtcggacg aatgcatasn natttcccg aaacgagct 39

<210> 462

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 462
ccctgttcgg acgaatgcsn natcatttcc cgaaaaacga 39

<210> 463

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 463

tgccctgtt cggacgaasn nataatcatt tcccgaaa 39

<210> 464
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 464
tcctgcccct gttcggacs n tgcataatc atttccgg 39

<210> 465
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 465
tactcctgcc cctgttcsn ngaatgcata atcatttcc 39

<210> 466
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 466
atttactcct gccctgttsn ngacgaatgc ataatcatt 39

<210> 467
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 467
caaatttact cctgccccsn ntggacgaa tgcataatc 39

<210> 468
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 468
aagcaaattt actcctgcsn ntgttcggac gaatgcata 39

<210> 469
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 469
ggcaagcaaa tttactccsn nccctgttcg gacgaatgc 39

<210> 470
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 470
ttggcaagg aaatttacsn ntggccctgt tcggacgaa 39

<210> 471
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 471
gacttggca agcaaattsn ntccctgcccc tgttcggac 39

<210> 472
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 472
attgacttgg gcaagcaasn ntactcctgc ccctgttcg 39

<210> 473

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 473
gttattgact tgggcaagsn natttactcc tgccccctgt 39

<210> 474
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 474
gtagttattg acttgggcsn ncaaatttac tcctgcccc 39

<210> 475

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 475
cgagtagtta ttgacttgsn naagcaaatt tactcctgc 39

<210> 476

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 476
gcccgagtag ttattgacsn nggcaagcaa atttactcc 39

<210> 477

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 477
gccgccccgag tagttattn nttgggcaag caaatttac 39

<210> 478
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 478
tctgccgccc gagtagttsn ngacttgggc aagcaaatt 39

<210> 479
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 479
gactctgccc cccgagtaasn nattgacttg ggcaagcaa 39

<210> 480
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 480
ttggactctg ccgccccasn ngttattgac ttggcaag 39

<210> 481
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 481
tacttggact ctgccgccsn ngtagttatt gacttggc 39

<210> 482
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 482
tgctacttgg actctgccsn ncgagtagtt attgacttg 39

<210> 483
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 483
tcctgctact tggactctsn ngcccgagta gttattgac 39

<210> 484
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 484
atgcctgct acttggacsn ngccgccccga gtagttatt 39

<210> 485
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 485
cgatatgcct gctacttgsn ntctgccgccc cgagtagtt 39

<210> 486
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 486
ggccgtatgt cctgctacsn ngactctgcc gccccgagta 39

<210> 487
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 487
tgccggccgta tgtcctgcsn nttggactct gccgccccga 39

<210> 488
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 488
tggcggcc gtatgtccsn ntacttggac tctgccgccc 39

<210> 489
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 489
aactggtgcg gccgtatgsn ntgctacttg gactctgcc 39

<210> 490
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 490
tccaactggt gcggccgtsn ntcctgctac ttggactct 39

<210> 491
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 491
agatccaact ggtgcggcsn natgtcctgc tacttggac 39

<210> 492

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 492
agcagatcca actggtgcsn ncgtatgtcc tgctacttg

39

<210> 493
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 493
tacagcagat ccaactgggn nggccgtatg tcctgctac

39

<210> 494
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 494
gcatacagca gatccaacsnn ntgcggccgt atgtcctgc

39

<210> 495
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 495
gcggcataca gcagatccsn ntggtgcgcc cgtatgtcc 39

<210> 496
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 496
tgagcggcat acagcagasn naactggtgc ggccgtatg 39

<210> 497
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 497
acctgagcgg catacagcsn ntccaactgg tgcgccgt 39

<210> 498
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 498
gctacacctgag cggcatacsn nagatccaac tggtgcggc 39

<210> 499
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 499
agtgtaccc gagcggcasn nagcagatcc aactggtgc

39

<210> 500
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 500
tgttagtgcta cctgagcgsn ntacagcaga tccaaactgg

39

<210> 501
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 501
acctgttagtgctacccn ngcatacagc agatccaac

39

<210> 502
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 502
ccaacctgta gtgctaccsn ngcggcatac agcagatcc 39

<210> 503

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 503
atgccaacct gttagtgctsn ntgagcggca tacagcaga 39

<210> 504
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 504
gcaatgccaa cctgtagtsn nacctgagcg gcatacago 39

<210> 505
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 505
tccgcaatgc caaccctgtsn ngctacctga gcggcatac 39

<210> 506
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 506
agtccgcaa tgccaaaccsn nagtgctacc tgagcggca 39

<210> 507
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 507
gatagttccg caatgccasn ntgttagtgct acctgagcg 39

<210> 508
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 508
cgtgatagtt ccgcaatgsn nacctgttagt gctacctga 39

<210> 509
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 509
cgccgtgata gttccgcasn nccaacctgt agtgctacc 39

<210> 510
<211> 39
<212> DNA
<213> Artificial Sequence.

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)

<223> n is a, c, g, or t

<400> 510
cagcgccgtg atagttccsn natgccaacc tgttagtgct 39

<210> 511
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 511
attcagcgcc gtgatagtsn ngcaatgcc aacctgttagt 39

<210> 512
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 512
cgaattcagc gccgtgatsn ntccgcaatg ccaacctgt 39

<210> 513
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 513
agacgaattc agcgccgtsn nagttccgca atgccaacc 39

<210> 514
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 514
gacagacgaa ttcagcgcsn ngatagttcc gcaatgcc 39

<210> 515
<211> 39.
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 515
cgtgacagac gaattcagsn ncgtgatagt tccgcaatg 39

<210> 516
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 516
atacgtgaca gacgaattsn ncgccgtat agttccgca 39

<210> 517
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 517
tggatacgtg acagacgasn ncagcgccgt gatagttcc 39

<210> 518
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 518
ctctggatac gtgacagagasn nattcagcgc cgtgatagt 39

<210> 519
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 519
tccctctgga tacgtgacs sn ncgaattcag cgccgtat 39

<210> 520
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (20)..(21)
<223> n is a, c, g, or t

<400> 520
tggtccctct ggatacgtsn nagacgaatt cagcgccgt 39

<210> 521
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 521
gactgttccc tctggatasn ngacagacga attcagcgc 39

<210> 522
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 522
tcggactgtt ccctctgggn ncgtgacaga cgaattcag 39

<210> 523
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 523
tcctcggact gttccctcsn natacgtgac agacgaatt 39

<210> 524
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 524
aagtccctcg actgttccsn ntggatacgt gacagacga 39

<210> 525
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 525

gataagtccct cggactgttsn nctctggata cgtgacaga 39

<210> 526
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 526
gcggataagt cctcggacsn ntccctctgg atacgtgac 39

<210> 527
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 527
cgtgcggata agtcctcgsn ntgttccctc tggataacgt

39

<210> 528
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 528
cgtcgatcgaa ataagtccsn ngactgttcc ctctggata

39

<210> 529
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 529
aaccgtcgatcgaa agtccsn ntcggactgt tccctctgg

39

<210> 530
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 530
acaaaaccgtc gtgcggatsn ntccctcgac tgttccctc 39

<210> 531
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 531
ggcacaaacc gtcgtgcgsn naagtccctcg gactgttcc 39

<210> 532
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 532
ttcggcacaa accgtcgtsn ngataagtcc tcggactgt 39

<210> 533
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 533
tggttcgca caaacgtsn ngcggataag tcctcgac 39

<210> 534

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 534
acctggttcg gcacaaacs n cgtgcggat aagtcc tcg 39

<210> 535
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 535
atcacctggt tcggcacasn ncgtcgtgcg gataagtcc 39

<210> 536
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 536
gctatcacct ggtcggcsn naaccgtcgt gcggataag 39

<210> 537
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (20)..(21)
<223> n is a, c, g, or t

<400> 537
tccgctatca cctggttcsn nacaaaccgt cgtgcggat 39

<210> 538
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 538
acctcccgcta tcacacctggsn nggcacaaaac cgtcgtgcg 39

<210> 539
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 539
gctacacctcg ctatcaccsn ntccggcaca aaccgtcgt 39

<210> 540
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (20)..(21)
<223> n is a, c, g, or t

<400> 540

aaggctacct ccgctatcsn ntggttcggc acaaaccgt 39

<210> 541
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 541
taaaaaggcta cctccgctsn nacctggttc ggcacaaac 39

<210> 542
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 542
cgctaaaaagg ctacctccsn natcacctgg ttccggcaca 39

<210> 543
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 543
tccccgctaaa aggctaccsn ngctatcacc tggttcggc 39

<210> 544
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 544

atttcccgct aaaaggctsn ntccgctatc acctgggttc 39

<210> 545
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 545
ttgatttccc gctaaaagsn nacctccgct atcacctgg 39

<210> 546

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 546
ggcttgattt cccgctaasn ngctacctcc gctatcacc 39

<210> 547
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 547

ttgggcttga tttcccgcsn naaggctacc tccgctatc

39

<210> 548
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 548
accttggct tgatttccsn ntaaaaggct acctccgct

39

<210> 549
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 549
gacacaccttgg gcttgattsn ncgctaaaag gctacctcc

39

<210> 550
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 550

cgtgacacct tgggcttgsn ntcccgctaa aaggctacc

39

<210> 551
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 551
tgacgtgaca ccttggcsn natttccgc taaaaggct 39

<210> 552
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 552
acctgacgtg acaccttgsn nttgatttcc cgctaaaag 39

<210> 553
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 553
accacctgac gtgacaccsn nggcttgatt tcccgctaa 39

<210> 554
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 554

agaaccacct gacgtgacsn nttgggcttg atttccgc

39

<210> 555
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 555
tccagaacca cctgacgtsn naccttggc ttgattcc

39

<210> 556
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 556
attccagaa ccacctgasn ngacacaccttggatt

39

<210> 557
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 557
acaatttcca gaaccacccsn ncgtgacacc ttgggcttg

39

<210> 558
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 558
ccgacaattt ccagaaccsn ntgacgtgac accttggc 39

<210> 559

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 559
cgtccgacaa tttccagasn nacctgacgt gacacccttg 39

<210> 560

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 560
ccccgtccga caatttccsn naccacctga cgtgacacc 39

<210> 561

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<400> 561
tccccccgtc cgacaattsn nagaaccacc tgacgtgac 39

<210> 562
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 562
tgttcccccc gtccgacasn ntccagaacc acctgacgt 39

<210> 563
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 563
tgttggccc cccgtccgsn natttccaga accacacctga 39

<210> 564
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 564
gaatgttggtt ccccccgtsn nacaatttcc agaaccacc 39

<210> 565
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 565
aaagaatgtt gttcccsn nccgacaatt tccagaacc 39

<210> 566
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 566
ttgaaagaat gttgtccsn ncgtccgaca atttccaga 39

<210> 567
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 567
tggttgaaag aatgttgtsn nccccgtccg acaatttcc 39

<210> 568
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 568
gactgggtga aagaatgttsn ntcccccggt ccgacaatt 39

<210> 569

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 569
gttgactggt tgaaagaasn ntgttccccc cgtccgaca 39

<210> 570
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 570
cggttgact ggttcaaasn ntgttgttcc ccccgatccg 39

<210> 571
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 571
aatcgggttg actgggtgsn ngaatgttgt tccccccgt 39

<210> 572
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature

<222> (20)..(21)
<223> n is a, c, g, or t

<400> 572
caaaaatcggg ttgactggsn naaagaatgt tgcccccc 39

<210> 573
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 573
ctgcaaaatc gggttgacsn ntgaaagaa tggtttcc 39

<210> 574
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 574
agcctgcaaa atcggttsn ntggtgaaa gaatgttgt 39

<210> 575
<211> 39
<212> DNA
<213> Artificial Sequence

<220>

<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 575
gtaaggcctgc aaaatcggsn ngactggttg aaagaatgt 39

<210> 576
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 576
gccgttaagcc tgcaaaatsn ngttgactgg ttgaaagaa 39

<210> 577
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 577
caggccgtaa gcctgcaasn ncgggttgac tggttgaaa 39

<210> 578
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 578
tctcaggccg taaggctgsn naatcggtt gactgggtg 39

<210> 579
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 579
cattctcagg ccgtaagcsn ncaaaaatcggttgactgg 39

<210> 580
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 580
aatcattctc aggccgtasn nctgaaaaat cgggttgac 39

<210> 581
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 581
cgtaatcatt ctcaggccsn nagcctgcaa aatcgggtt 39

<210> 582
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 582
agtgcgtatc attctcagsn ngtaagcctg caaaaatcggttgactgg 39

<210> 583
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 583
gtcagtcgta atcattctsn ngccgtaagc ctgcaaaat 39

<210> 584
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 584
agagtca gtaatcatsn ncaggccgta agcctgcaa 39

<210> 585

<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 585
tccagagtca gtcgtaatsn ntctcaggcc gtaaggctg 39

<210> 586
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 586
acttccagag tcagtcgtsn ncattctcag gccgttaagc 39

<210> 587
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 587
ggaacttcca gagtcagtsn naatcattct caggccgta 39

<210> 588
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 588
aggggaactt ccagagtcgn ncgtaatcat tctcaggcc 39

<210> 589
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 589
ttaagggaa cttccagasn nagtcgtaat cattctcag 39

<210> 590
<211> 39

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 590
gggttaaggg gaacttccsn ngtcagtcgt aatcattct 39

<210> 591
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 591
gttgggttaa ggggaactsn nagagtcagt cgtaatcat 39

<210> 592
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 592
tctgttgggt taaggggasn ntccagagtc agtcgtaat 39

<210> 593
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>

<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 593
tcctctgttg ggttaaggsn nacttccaga gtcagtcgt 39

<210> 594
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<400> 594
ccgtcctctg ttgggttasn nggaacttcc agagtcagt 39

<210> 595
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 595
gcataatacta ttggcggcct gtctagatgt tctatcgga 39

<210> 596
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 596
actattggcg gccggctca gtgttctatc ggattcgc 38

<210> 597
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 597
ctgccggctca ctgcggattt acaggagcca ctactgc 37

<210> 598

<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 598
atgattatgc attcgctca acagggcag gagtaaat 38

<210> 599
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 599
ataactactc gggcgccaca gtccaagtag caggacatac 40

<210> 600
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 600
atccagaggg aacagtcttg ggacttatcc gcacgac 37

<210> 601
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 601
cagtccgagg acttatccag acgacggttt gtgccgaac 39

<210> 602
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 602
gtggttctgg aaattgtcag acgggggaa caacattc 38

<210> 603

<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 603
tgcaggctta cggcctgcag atgattacga ctgactc 37

<210> 604
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 604
ttggcgcccg gtctagatca tctatcgat tcgcagta 38

<210> 605
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 605
tcattactgc cggtcaactca ggaagaacag gagccact 38

<210> 606
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 606
cagttggatc tgctgtatct cgctcaggta gcactac 37

<210> 607
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 607
cactacaggt tggcattcag gaactatcac ggcgctg 37

<210> 608
<211> 38
<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 608
cttatccgca cgacggttc agccgaacca ggtgatag 38

<210> 609

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 609
caggtggttc tggaaattca cggacggggg gaacaac 37

<210> 610

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 610
tgcctcacat ttgtgccac 19

<210> 611

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 611
caggatgtag ctgcaggac 19

<210> 612

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 612
ctcggttatg agttagttc 19

<210> 613

<211> 50

<212> DNA

<213> Artificial Sequence

<220>
<223> primer

<400> 613
cagagacaga ccccccggagg taaccatggc acgatcattc tggaggacgc 50

<210> 614
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 614
gcgtcctcca gaatgatcggt cccatgggta cctccggggg tctgtctctg 50

<210> 615
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 615
atccgctcgc ggatccccat tgcagctcg ggcccccacc gtcagaggc acgag 55

<210> 616
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 616
gcagcctgaa ctatggcga tcctctagag atcgaacttc at 42

<210> 617
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 617
agaccgacga gaccccgccg accatggtcg acgtcatcg cgcaacgcg tactac 56

<210> 618
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 618
tcagccgatc cgctcgcgga tccccattgt cagcccagga cgagacgcag accgta 56

<210> 619
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 619
gttagtacgctg ttgccggccga tgacgtcgac catggtccgc ggggtctcggt cggctct 56

<210> 620
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 620
gcagcctgaa ctatgtcgat tcctcttagat atcgaacttc atgttcga 48

<210> 621
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 621
accgacgaga ccccgccggac catgcacggc gacgtgcgcg gcggcgaccg cta 53

<210> 622
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 622
tagcggtcgac cgccgcgcac gtcgcccgtgc atggtccgcg ggggtctcggtc ggt 53

<210> 623
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 623

tcagccgatc cgctcgccga tccccattgt cagcgagccc gacgagcgcg ctgccccac

59

<210> 624

<211> 184

<212> PRT

<213> Cellulomonas strain 69B4

<400> 624

Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr Ile Gly Gly Arg Ser Arg
1 5 10 15
Cys Ser Ile Gly Phe Ala Val Asn Gly Gly Phe Ile Thr Ala Gly His
20 25 30
Cys Gly Arg Thr Gly Ala Thr Thr Ala Asn Pro Thr Gly Thr Phe Ala
35 40 45
Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Phe Val Arg Thr Gly Ala
50 55 60
Gly Val Asn Leu Leu Ala Gln Val Asn Asn Tyr Ser Gly Gly Arg Val
65 70 75 80
Gln Val Ala Gly His Thr Ala Ala Pro Val Gly Ser Ala Val Cys Arg
85 90 95
Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Thr Ala Leu Asn
100 105 110
Ser Ser Val Thr Tyr Pro Glu Gly Thr Val Arg Gly Leu Ile Arg Thr
115 120 125
Thr Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Leu Ala Gly
130 135 140
Asn Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr
145 150 155 160
Gly Gly Thr Thr Phe Phe Gln Pro Val Asn Pro Ile Leu Gln Ala Tyr
165 170 175
Gly Leu Arg Met Ile Thr Thr Asp
180

<210> 625

<211> 187

<212> PRT

<213> Streptomyces griseus

<400> 625

Val Leu Gly Gly Ala Ile Tyr Gly Gly Ser Arg Cys Ser Ala
1 5 10 15
Ala Phe Asn Val Thr Lys Gly Gly Ala Arg Tyr Phe Val Thr Ala Gly
20 25 30
His Cys Thr Asn Ile Ser Ala Asn Trp Ser Ala Ser Ser Gly Gly Ser
35 40 45
Val Val Gly Val Arg Glu Gly Thr Ser Phe Pro Thr Asn Asp Tyr Gly
50 55 60
Ile Val Arg Tyr Thr Asp Gly Ser Ser Pro Ala Gly Thr Val Asp Leu
65 70 75 80
Tyr Asn Gly Ser Thr Gln Asp Ile Ser Ser Ala Ala Asn Ala Val Val
85 90 95
Gly Gln Ala Ile Lys Lys Ser Gly Ser Thr Thr Lys Val Thr Ser Gly
100 105 110
Thr Val Thr Ala Val Asn Val Thr Val Asn Tyr Gly Asp Gly Pro Val
115 120 125

Tyr Asn Met Val Arg Thr Thr Ala Cys Ser Ala Gly Gly Asp Ser Gly
130 135 140
Gly Ala His Phe Ala Gly Ser Val Ala Leu Gly Ile His Ser Gly Ser
145 150 155 160
Ser Gly Cys Ser Gly Thr Ala Gly Ser Ala Ile His Gln Pro Val Thr
165 170 175
Glu Ala Leu Ser Ala Tyr Gly Val Thr Val Tyr
180 185

<210> 626

<211> 185

<212> PRT

<213> Streptomyces griseus

<400> 626

Ile Ser Gly Gly Asp Ala Ile Tyr Ser Ser Thr Gly Arg Cys Ser Leu
1 5 10 15
Gly Phe Asn Val Arg Ser Gly Ser Thr Tyr Tyr Phe Leu Thr Ala Gly
20 25 30
His Cys Thr Asp Gly Ala Thr Thr Trp Trp Ala Asn Ser Ala Arg Thr
35 40 45
Thr Val Leu Gly Thr Thr Ser Gly Ser Ser Phe Pro Asn Asn Asp Tyr
50 55 60
Gly Ile Val Arg Tyr Thr Asn Thr Thr Ile Pro Lys Asp Gly Thr Val
65 70 75 80
Gly Gly Gln Asp Ile Thr Ser Ala Ala Asn Ala Thr Val Gly Met Ala
85 90 95
Val Thr Arg Arg Gly Ser Thr Thr Gly Thr His Ser Gly Ser Val Thr
100 105 110
Ala Leu Asn Ala Thr Val Asn Tyr Gly Gly Asp Val Val Tyr Gly
115 120 125

Met Ile Arg Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Pro
130 135 140
Leu Tyr Ser Gly Thr Arg Ala Ile Gly Leu Thr Ser Gly Gly Ser Gly
145 150 155 160
Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro Val Thr Glu Ala
165 170 175
Leu Val Ala Tyr Gly Val Ser Val Tyr
180 185

<210> 627

<211> 198

<212> PRT

<213> Lysobacter enzymogenes

<400> 627

Ala Asn Ile Val Gly Gly Ile Glu Tyr Ser Ile Asn Asn Ala Ser Leu
1 5 10 15
Cys Ser Val Gly Phe Ser Val Thr Arg Gly Ala Thr Lys Gly Phe Val
20 25 30
Thr Ala Gly His Cys Gly Thr Val Asn Ala Thr Ala Arg Ile Gly Gly
35 40 45

Ala Val Val Gly Thr Phe Ala Ala Arg Val Phe Pro Gly Asn Asp Arg
50 55 60
Ala Trp Val Ser Leu Thr Ser Ala Gln Thr Leu Leu Pro Arg Val Ala
65 70 75 80
Asn Gly Ser Ser Phe Val Thr Val Arg Gly Ser Thr Glu Ala Ala Val
85 90 95
Gly Ala Ala Val Cys Arg Ser Gly Arg Thr Thr Gly Tyr Gln Cys Gly
100 105 110
Thr Ile Thr Ala Lys Asn Val Thr Ala Asn Tyr Ala Glu Gly Ala Val
115 120 125
Arg Gly Leu Thr Gln Gly Asn Ala Cys Met Gly Arg Gly Asp Ser Gly
130 135 140
Gly Ser Trp Ile Thr Ser Ala Gly Gln Ala Gln Gly Val Met Ser Gly
145 150 155 160
Gly Asn Val Gln Ser Asn Gly Asn Asn Cys Gly Ile Pro Ala Ser Gln
165 170 175
Arg Ser Ser Leu Phe Glu Arg Leu Gln Pro Ile Leu Ser Gln Tyr Gly
180 185 190
Leu Ser Leu Val Thr Gly
195

<210> 628

<211> 191

<212> PRT

<213> Streptomyces fradiae

<400> 628

Ile Ala Gly Gly Glu Ala Ile Tyr Ala Ala Gly Gly Gly Arg Cys Ser
1 5 10 15
Leu Gly Phe Asn Val Arg Ser Ser Ser Gly Ala Thr Tyr Ala Leu Thr
20 25 30
Ala Gly His Cys Thr Glu Ile Ala Ser Thr Trp Tyr Thr Asn Ser Gly
35 40 45
Gln Thr Ser Leu Leu Gly Thr Arg Ala Gly Thr Ser Phe Pro Gly Asn
50 55 60
Asp Tyr Gly Leu Ile Arg His Ser Asn Ala Ser Ala Ala Asp Gly Arg
65 70 75 80
Val Tyr Leu Tyr Asn Gly Ser Tyr Arg Asp Ile Thr Gly Ala Gly Asn
85 90 95
Ala Tyr Val Gly Gln Thr Val Gln Arg Ser Gly Ser Thr Thr Gly Leu
100 105 110
His Ser Gly Arg Val Thr Gly Leu Asn Ala Thr Val Asn Tyr Gly Gly
115 120 125
Gly Asp Ile Val Ser Gly Leu Ile Gln Thr Asn Val Cys Ala Glu Pro
130 135 140
Gly Asp Ser Gly Gly Ala Leu Phe Ala Gly Ser Thr Ala Leu Gly Leu
145 150 155 160
Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr Phe Phe
165 170 175
Gln Pro Val Thr Glu Ala Leu Ser Ala Tyr Gly Val Ser Ile Leu
180 185 190

<210> 629

<211> 181

<212> PRT

<213> Streptomyces griseus

<400> 629

Ile Ala Gly Gly Glu Ala Ile Thr Thr Gly Gly Ser Arg Cys Ser Leu
1 5 10 15
Gly Phe Asn Val Ser Val Asn Gly Val Ala His Ala Leu Thr Ala Gly
20 25 30
His Cys Thr Asn Ile Ser Ala Ser Trp Ser Ile Gly Thr Arg Thr Gly
35 40 45
Thr Ser Phe Pro Asn Asn Asp Tyr Gly Ile Ile Arg His Ser Asn Pro
50 55 60
Ala Ala Ala Asp Gly Arg Val Tyr Leu Tyr Asn Gly Ser Tyr Gln Asp
65 70 75 80
Ile Thr Thr Ala Gly Asn Ala Phe Val Gly Gln Ala Val Gln Arg Ser
85 90 95
Gly Ser Thr Thr Gly Leu Arg Ser Gly Ser Val Thr Gly Leu Asn Ala
100 105 110
Thr Val Asn Tyr Gly Ser Ser Gly Ile Val Tyr Gly Met Ile Gln Thr
115 120 125
Asn Val Cys Ala Gln Pro Gly Asp Ser Gly Gly Ser Leu Phe Ala Gly
130 135 140
Ser Thr Ala Leu Gly Leu Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr
145 150 155 160
Gly Gly Thr Thr Phe Tyr Gln Pro Val Thr Glu Ala Leu Ser Ala Tyr
165 170 175
Gly Ala Thr Val Leu
180

<210> 630

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic

<400> 630

Pro Arg Thr Met Phe Asp
1 5

<210> 631

<211> 10

<212> PRT

<213> Cellulomonas strain 69B4

<400> 631

Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr
1 5 10

<210> 632

<211> 9

<212> PRT

<213> Cellulomonas strain 69B4

<400> 632

Thr Ala Asn Pro Thr Gly Thr Phe Ala
1 5

<210> 633
<211> 12
<212> PRT
<213> Cellulomonas strain 69B4

<400> 633

Phe Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala
1 5 10

<210> 634
<211> 14
<212> PRT
<213> Cellulomonas strain 69B4

<400> 634

Phe Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Phe Val
1 5 10

<210> 635
<211> 10
<212> PRT
<213> Cellulomonas strain 69B4

<400> 635

Arg Thr Gly Ala Gly Val Asn Leu Leu Ala
1 5 10

<210> 636
<211> 9
<212> PRT
<213> Cellulomonas strain 69B4

<400> 636

Phe Phe Gln Pro Val Asn Pro Ile Leu
1 5

<210> 637

<211> 11
<212> PRT
<213> Cellulomonas strain 69B4

<400> 637

Phe Phe Gln Pro Val Asn Pro Ile Leu Gln Ala
1 5 10

<210> 638

<211> 13
<212> PRT
<213> Cellulomonas strain 69B4

<400> 638

<210> 639

<211> 255

<212> PRT

<213> Streptogrisin C

<400> 639

Ala Asp Ile Arg Gly Gly Asp Ala Tyr Tyr Met Asn Gly Ser Gly Arg
 1 5 10 15
 Cys Ser Val Gly Phe Ser Val Thr Arg Gly Thr Gln Asn Gly Phe Ala
 20 25 30
 Thr Ala Gly His Cys Gly Arg Val Gly Thr Thr Thr Asn Gly Val Asn
 35 40 45
 Gln Gln Ala Gln Gly Thr Phe Gln Gly Ser Thr Phe Pro Gly Arg Asp
 50 55 60
 Ile Ala Trp Val Ala Thr Asn Ala Asn Trp Thr Pro Arg Pro Leu Val
 65 70 75 80
 Asn Gly Tyr Gly Arg Gly Asp Val Thr Val Ala Gly Ser Thr Ala Ser
 85 90 95
 Val Val Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His
 100 105 110
 Cys Gly Thr Ile Gln Gln Leu Asn Thr Ser Val Thr Tyr Pro Glu Gly
 115 120 125
 Thr Ile Ser Gly Val Thr Arg Thr Ser Val Cys Ala Glu Pro Gly Asp
 130 135 140
 Ser Gly Gly Ser Tyr Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser
 145 150 155 160
 Gly Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Tyr Phe Gln Pro
 165 170 175
 Ile Asn Pro Leu Leu Gln Ala Tyr Gly Leu Thr Leu Val Thr Ser Gly
 180 185 190
 Gly Gly Thr Pro Thr Asp Pro Pro Thr Thr Pro Pro Thr Asp Ser Pro
 195 200 205
 Gly Gly Thr Trp Ala Val Gly Thr Ala Tyr Ala Ala Gly Ala Thr Val
 210 215 220
 Thr Tyr Gly Gly Ala Thr Tyr Arg Cys Leu Gln Ala His Thr Ala Gln
 225 230 235 240
 Pro Gly Trp Thr Pro Ala Asp Val Pro Ala Leu Trp Gln Arg Val
 245 250 255

<210> 640

<211> 185

<212> PRT

<213> Streptogrisin B

<400> 640

Ile Ser Gly Gly Asp Ala Ile Tyr Ser Ser Thr Gly Arg Cys Ser Leu

1 5 10 15
Gly Phe Asn Val Arg Ser Gly Ser Thr Tyr Tyr Phe Leu Thr Ala Gly

20 25 30
His Cys Thr Asp Gly Ala Thr Thr Trp Trp Ala Asn Ser Ala Arg Thr
35 40 45
Thr Val Leu Gly Thr Thr Ser Gly Ser Ser Phe Pro Asn Asn Asp Tyr
50 55 60
Gly Ile Val Arg Tyr Thr Asn Thr Thr Ile Pro Lys Asp Gly Thr Val
65 70 75 80
Gly Gly Gln Asp Ile Thr Ser Ala Ala Asn Ala Thr Val Gly Met Ala
85 90 95
Val Thr Arg Arg Gly Ser Thr Thr Gly Thr His Ser Gly Ser Val Thr
100 105 110
Ala Leu Asn Ala Thr Val Asn Tyr Gly Gly Asp Val Val Tyr Gly
115 120 125
Met Ile Arg Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Pro
130 135 140
Leu Tyr Ser Gly Thr Arg Ala Ile Gly Leu Thr Ser Gly Gly Ser Gly
145 150 155 160
Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro Val Thr Glu Ala
165 170 175
Leu Ser Ala Tyr Gly Val Ser Val Tyr
180 185

<210> 641

<211> 181

<212> PRT

<213> Streptogrisin A

<400> 641

Ile Ala Gly Gly Glu Ala Ile Thr Thr Gly Gly Ser Arg Cys Ser Leu
1 5 10 15
Gly Phe Asn Val Ser Val Asn Gly Val Ala His Ala Leu Thr Ala Gly
20 25 30
His Cys Thr Asn Ile Ser Ala Ser Trp Ser Ile Gly Thr Arg Thr Gly
35 40 45
Thr Ser Phe Pro Asn Asn Asp Tyr Gly Ile Ile Arg His Ser Asn Pro
50 55 60
Ala Ala Ala Asp Gly Arg Val Tyr Leu Tyr Asn Gly Ser Tyr Gln Asp
65 70 75 80
Ile Thr Thr Ala Gly Asn Ala Phe Val Gly Gln Ala Val Gln Arg Ser
85 90 95
Gly Ser Thr Thr Gly Leu Arg Ser Gly Ser Val Thr Gly Leu Asn Ala
100 105 110
Thr Val Asn Tyr Gly Ser Ser Gly Ile Val Tyr Gly Met Ile Gln Thr
115 120 125
Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Ser Leu Phe Ala Gly
130 135 140
Ser Thr Ala Leu Gly Leu Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr
145 150 155 160
Gly Gly Thr Thr Phe Tyr Gln Pro Val Thr Glu Ala Leu Ser Ala Tyr
165 170 175
Gly Ala Thr Val Leu
180

<210> 642

<211> 188

<212> PRT

<213> Streptogrisin D

<400> 642

Ile Ala Gly Gly Asp Ala Ile Trp Gly Ser Gly Ser Arg Cys Ser Leu
1 5 10 15
Gly Phe Asn Val Val Lys Gly Gly Glu Pro Tyr Phe Leu Thr Ala Gly
20 25 30
His Cys Thr Glu Ser Val Thr Ser Trp Ser Asp Thr Gln Gly Gly Ser
35 40 45
Glu Ile Gly Ala Asn Glu Gly Ser Ser Phe Pro Glu Asn Asp Tyr Gly
50 55 60
Leu Val Lys Tyr Thr Ser Asp Thr Ala His Pro Ser Glu Val Asn Leu
65 70 75 80
Tyr Asp Gly Ser Thr Gln Ala Ile Thr Gln Ala Gly Asp Ala Thr Val
85 90 95
Gly Gln Ala Val Thr Arg Ser Gly Ser Thr Thr Gln Val His Asp Gly

100 105 110
Glu Val Thr Ala Leu Asp Ala Thr Val Asn Tyr Gly Asn Gly Asp Ile
115 120 125
Val Asn Gly Leu Ile Gln Thr Thr Val Cys Ala Glu Pro Gly Asp Ser
130 135 140
Gly Gly Ala Leu Phe Ala Gly Asp Thr Ala Leu Gly Leu Thr Ser Gly
145 150 155 160
Gly Ser Gly Asp Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln Pro Val
165 170 175
Pro Glu Ala Leu Ala Ala Tyr Gly Ala Glu Ile Gly
180 185

<210> 643

<211> 198

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus sequence

<220>

<221> VARIANT

<222> (9)..(10)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> VARIANT

<222> (12)..(12)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> VARIANT

<222> (22)..(23)

<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (25)..(27)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (37)..(38)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (43)..(51)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (55)..(56)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (62)..(62)
<223> Xaa can be any naturally occurring amino acid

<220>

<221> VARIANT
<222> (73)..(79)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (82)..(82)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (84)..(84)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (86)..(87)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (89)..(89)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (92)..(92)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (95)..(95)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (97)..(97)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (100)..(100)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (103)..(103)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (111)..(111)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (113)..(113)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (127)..(127)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (129)..(129)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (132)..(132)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (155)..(155)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT
<222> (179)..(179)
<223> Xaa can be any naturally occurring amino acid

<220>
<221> VARIANT

<222> (191)..(198)

<223> Xaa can be any naturally occurring amino acid

<400> 643

Ile Ala Gly Gly Asp Ala Ile Tyr Xaa Xaa Gly Xaa Ser Arg Cys Ser
1 5 10 15
Leu Gly Phe Asn Val Xaa Xaa Gly Xaa Xaa Xaa Tyr Phe Leu Thr Ala
20 25 30
Gly His Cys Thr Xaa Xaa Gly Thr Thr Trp Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45
Xaa Xaa Xaa Ile Gly Thr Xaa Xaa Gly Ser Ser Phe Pro Xaa Asn Asp
50 55 60
Tyr Gly Ile Val Arg Tyr Thr Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Val
65 70 75 80
Asn Xaa Tyr Xaa Gly Xaa Xaa Gln Xaa Ile Thr Xaa Ala Gly Xaa Ala
85 90 95
Xaa Val Gly Xaa Ala Val Xaa Arg Ser Gly Ser Thr Thr Gly Xaa His
100 105 110
Xaa Gly Ser Val Thr Ala Leu Asn Ala Thr Val Asn Tyr Gly Xaa Gly
115 120 125
Xaa Ile Val Xaa Gly Leu Ile Arg Thr Thr Val Cys Ala Glu Pro Gly
130 135 140
Asp Ser Gly Gly Ser Leu Phe Ala Gly Ser Xaa Ala Leu Gly Leu Thr
145 150 155 160
Ser Gly Gly Ser Gly Asn Cys Ser Ser Gly Gly Thr Thr Phe Phe Gln
165 170 175
Pro Val Xaa Glu Ala Leu Ser Ala Tyr Gly Leu Thr Val Ile Xaa Xaa
180 185 190
Xaa Xaa Xaa Xaa Xaa
195

<210> 644

<211> 513

<212> PRT

<213> Thermus aquaticus

<400> 644

Met Arg Lys Thr Tyr Trp Leu Met Ala Leu Phe Ala Val Leu Val Leu
1 5 10 15
Gly Gly Cys Gln Met Ala Ser Arg Ser Asp Pro Thr Pro Thr Leu Ala
20 25 30
Glu Ala Phe Trp Pro Lys Glu Ala Pro Val Tyr Gly Leu Asp Asp Pro
35 40 45
Glu Ala Ile Pro Gly Arg Tyr Ile Val Val Phe Lys Lys Gly Lys Gly
50 55 60
Gln Ser Leu Leu Gln Gly Gly Ile Thr Thr Leu Gln Ala Arg Leu Ala
65 70 75 80
Pro Gln Gly Val Val Val Thr Gln Ala Tyr Thr Gly Ala Leu Gln Gly
85 90 95
Phe Ala Ala Glu Met Ala Pro Gln Ala Leu Glu Ala Phe Arg Gln Ser
100 105 110
Pro Asp Val Glu Phe Ile Glu Ala Asp Lys Val Val Arg Ala Trp Ala
115 120 125
Thr Gln Ser Pro Ala Pro Trp Gly Leu Asp Arg Ile Asp Gln Arg Asp
130 135 140

Leu Pro Leu Ser Asn Ser Tyr Thr Tyr Thr Ala Thr Gly Arg Gly Val
 145 150 155 160
 Asn Val Tyr Val Ile Asp Thr Gly Ile Arg Thr Thr His Arg Glu Phe
 165 170 175
 Gly Gly Arg Ala Arg Val Gly Tyr Asp Ala Leu Gly Gly Asn Gly Gln
 180 185 190
 Asp Cys Asn Gly His Gly Thr His Val Ala Gly Thr Ile Gly Gly Val
 195 200 205
 Thr Tyr Gly Val Ala Lys Ala Val Asn Leu Tyr Ala Val Arg Val Leu
 210 215 220
 Asp Cys Asn Gly Ser Gly Ser Thr Ser Gly Val Ile Ala Gly Val Asp
 225 230 235 240
 Trp Val Thr Arg Asn His Arg Arg Pro Ala Val Ala Asn Met Ser Leu
 245 250 255
 Gly Gly Gly Val Ser Thr Ala Leu Asp Asn Ala Val Lys Asn Ser Ile
 260 265 270
 Ala Ala Gly Val Val Tyr Ala Val Ala Ala Gly Asn Asp Asn Ala Asn
 275 280 285
 Ala Cys Asn Tyr Ser Pro Ala Arg Val Ala Glu Ala Leu Thr Val Gly
 290 295 300
 Ala Thr Thr Ser Ser Asp Ala Arg Ala Ser Phe Ser Asn Tyr Gly Ser
 305 310 315 320
 Cys Val Asp Leu Phe Ala Pro Gly Ala Ser Ile Pro Ser Ala Trp Tyr
 325 330 335
 Thr Ser Asp Thr Ala Thr Gln Thr Leu Asn Gly Thr Ser Met Ala Thr
 340 345 350
 Pro His Val Ala Gly Val Ala Ala Leu Tyr Leu Glu Gln Asn Pro Ser
 355 360 365
 Ala Thr Pro Ala Ser Val Ala Ser Ala Ile Leu Asn Gly Ala Thr Thr
 370 375 380
 Gly Arg Leu Ser Gly Ile Gly Ser Gly Ser Pro Asn Arg Leu Leu Tyr
 385 390 395 400
 Ser Leu Leu Ser Ser Gly Ser Gly Ser Thr Ala Pro Cys Thr Ser Cys
 405 410 415
 Ser Tyr Tyr Thr Gly Ser Leu Ser Gly Pro Gly Asp Tyr Asn Phe Gln
 420 425 430
 Pro Asn Gly Thr Tyr Tyr Ser Pro Ala Gly Thr His Arg Ala Trp
 435 440 445
 Leu Arg Gly Pro Ala Gly Thr Asp Phe Asp Leu Tyr Leu Trp Arg Trp
 450 455 460
 Asp Gly Ser Arg Trp Leu Thr Val Gly Ser Ser Thr Gly Pro Thr Ser
 465 470 475 480
 Glu Glu Ser Leu Ser Tyr Ser Gly Thr Ala Gly Tyr Tyr Leu Trp Arg
 485 490 495
 Ile Tyr Ala Tyr Ser Gly Ser Gly Met Tyr Glu Phe Trp Leu Gln Arg
 500 505 510
 Pro

<210> 645
 <211> 495
 <212> PRT
 <213> Cellulomonas strain 69B4
 <400> 645

Met Thr Pro Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr Ala Ala

1 5 10 15
Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala Asn Glu Pro Ala
20 25 30
Pro Pro Gly Ser Ala Ser Ala Pro Pro Arg Leu Ala Glu Lys Leu Asp
35 40 45
Pro Asp Leu Leu Glu Ala Met Glu Arg Asp Leu Gly Leu Asp Ala Glu
50 55 60
Glu Ala Ala Ala Thr Leu Ala Phe Gln His Asp Ala Ala Glu Thr Gly
65 70 75 80
Glu Ala Leu Ala Glu Glu Leu Asp Glu Asp Phe Ala Gly Thr Trp Val
85 90 95
Glu Asp Asp Val Leu Tyr Val Ala Thr Thr Asp Glu Asp Ala Val Glu
100 105 110
Glu Val Glu Gly Glu Gly Ala Thr Ala Val Thr Val Glu His Ser Leu
115 120 125
Ala Asp Leu Glu Ala Trp Lys Thr Val Leu Asp Ala Ala Leu Glu Gly
130 135 140
His Asp Asp Val Pro Thr Trp Tyr Val Asp Val Pro Thr Asn Ser Val
145 150 155 160
Val Val Ala Val Lys Ala Gly Ala Gln Asp Val Ala Ala Gly Leu Val
165 170 175
Glu Gly Ala Asp Val Pro Ser Asp Ala Val Thr Phe Val Glu Thr Asp
180 185 190
Glu Thr Pro Arg Thr Met Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr
195 200 205
Ile Gly Gly Arg Ser Arg Cys Ser Ile Gly Phe Ala Val Asn Gly Gly
210 215 220
Phe Ile Thr Ala Gly His Cys Gly Arg Thr Gly Ala Thr Thr Ala Asn
225 230 235 240
Pro Thr Gly Thr Phe Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala
245 250 255
Phe Val Arg Thr Gly Ala Gly Val Asn Leu Leu Ala Gln Val Asn Asn
260 265 270
Tyr Ser Gly Gly Arg Val Gln Val Ala Gly His Thr Ala Ala Pro Val
275 280 285
Gly Ser Ala Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly
290 295 300
Thr Ile Thr Ala Leu Asn Ser Ser Val Thr Tyr Pro Glu Gly Thr Val
305 310 315 320
Arg Gly Leu Ile Arg Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly
325 330 335
Gly Ser Leu Leu Ala Gly Asn Gln Ala Gln Gly Val Thr Ser Gly Gly
340 345 350
Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr Phe Phe Gln Pro Val Asn
355 360 365
Pro Ile Leu Gln Ala Tyr Gly Leu Arg Met Ile Thr Thr Asp Ser Gly
370 375 380
Ser Ser Pro Ala Pro Ala Pro Thr Ser Cys Thr Gly Tyr Ala Arg Thr
385 390 395 400
Phe Thr Gly Thr Leu Ala Ala Gly Arg Ala Ala Ala Gln Pro Asn Gly
405 410 415
Ser Tyr Val Gln Val Asn Arg Ser Gly Thr His Ser Val Cys Leu Asn
420 425 430
Gly Pro Ser Gly Ala Asp Phe Asp Leu Tyr Val Gln Arg Trp Asn Gly
435 440 445
Ser Ser Trp Val Thr Val Ala Gln Ser Thr Ser Pro Gly Ser Asn Glu
450 455 460

Thr Ile Thr Tyr Arg Gly Asn Ala Gly Tyr Tyr Arg Tyr Val Val Asn
465 470 475 480
Ala Ala Ser Gly Ser Gly Ala Tyr Thr Met Gly Leu Thr Leu Pro
485 490 495

<210> 646
<211> 510
<212> PRT
<213> Artificial Sequence

<220>
<223> consensus sequence

<220>
<221> VARIANT
<222> (3)...(509)
<223> Xaa can be any naturally occurring amino acid

<400> 646

Met Ala Xaa Xaa Ala Xaa Xaa Leu Leu Ala Gly Xaa Xaa Xaa Ala Xaa
1 5 10 15
Xaa Xaa Asp Pro Xaa Pro Xaa Xaa Ala Xaa Ala Xaa Xaa Pro Lys Xaa
20 25 30
Ala Xaa Xaa Xaa Xaa Asp Xaa Xaa Glu Ala Ile Xaa Xaa Xaa Xaa
35 40 45
Xaa Leu Xaa Xaa Xaa Xaa Ala Xaa Ala Xaa Xaa Xaa Gln Xaa Xaa
50 55 60
Xaa Xaa Xaa Xaa Xaa Xaa Leu Ala Xaa Xaa Xaa Xaa Leu Xaa
65 70 75 80
Xaa Xaa Phe Xaa Gly Xaa
85 90 95
Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Xaa Asp Xaa Glu Xaa Xaa Xaa
100 105 110
Ala Xaa Xaa Val Xaa Xaa Ala Xaa Ala Xaa Xaa Xaa Xaa Xaa Xaa
115 120 125
Xaa Leu Asp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Tyr
130 135 140
Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa Xaa Val Xaa Xaa Ile Xaa Xaa
145 150 155 160
Gly Xaa Ala Xaa Val Xaa
165 170 175
Xaa Asp Ala Leu Xaa Xaa Xaa Xaa Asp Xaa Xaa Xaa Xaa Xaa Xaa
180 185 190
Xaa Met Xaa Xaa Ile Gly Gly Xaa Xaa Tyr Xaa Ile Ala Xaa Xaa
195 200 205
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Ala
210 215 220
Xaa Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg Xaa Xaa Xaa
225 230 235 240
Xaa Xaa Ala Xaa Xaa Xaa Xaa Ser Xaa Ala Gly Xaa Xaa Xaa Xaa Ala
245 250 255
Xaa Asp Xaa Ala Xaa Xaa Xaa Ser Xaa Ala Ala Xaa Xaa Xaa Xaa Xaa
260 265 270
Xaa Xaa Xaa Xaa Asn Xaa Xaa Ala Asn Xaa Xaa Asn Tyr Ser Xaa Ala
275 280 285
Arg Val Xaa Xaa Ala Xaa Xaa Ala Ala Xaa Xaa Ser Xaa Xaa

290	295	300
Xaa Xaa Ser Xaa Ser Xaa Xaa Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa		
305	310	315
Xaa Ala Xaa Xaa Xaa Ser Xaa Xaa Tyr Xaa Xaa Xaa Thr Xaa Xaa Xaa		
325	330	335
Xaa Ile Xaa Xaa Thr Xaa Xaa Ala Xaa Pro Xaa Xaa Ala Gly Xaa Ala		
340	345	350
Xaa Leu Xaa Xaa Xaa Gln Xaa Xaa Xaa Xaa Thr Xaa Ala Xaa Xaa Ala		
355	360	365
Xaa Xaa Xaa Xaa Xaa Gly Xaa Thr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa		
370	375	380
Xaa Xaa Ala Xaa Xaa Xaa Leu Xaa Ser Xaa Xaa Ser Xaa Gly Ser		
385	390	395
Xaa Xaa Xaa Xaa Xaa Thr Ser Cys Ser Xaa Tyr Xaa Xaa Ser Xaa		
405	410	415
Ser Gly Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Xaa Gln Pro Asn Gly Ser		
420	425	430
Tyr Xaa Xaa Xaa Xaa Xaa Ala Gly Thr His Xaa Xaa Xaa Leu Xaa Gly		
435	440	445
Pro Ala Gly Xaa Asp Phe Asp Leu Tyr Leu Xaa Arg Trp Xaa Gly Ser		
450	455	460
Xaa Trp Leu Thr Val Ala Xaa Ser Thr Xaa Pro Xaa Ser Xaa Glu Ser		
465	470	475
Ile Ser Tyr Xaa Gly Xaa Ala Gly Tyr Tyr Xaa Trp Xaa Ile Xaa Ala		
485	490	495
Xaa Ser Gly Ser Gly Xaa Tyr Xaa Xaa Xaa Leu Xaa Xaa Pro		
500	505	510

<210> 647

<211> 190

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus sequence

<220>

<221> VARIANT

<222> (6)..(188)

<223> Xaa can be any naturally occurring amino acid

<400> 647

Asp Val Ile Gly Gly Xaa Xaa Tyr Xaa Ile Xaa Xaa Xaa Xaa Arg Xaa		
1	5	10
Xaa Xaa Xaa Xaa Cys Ser Ile Gly Phe Ala Val Xaa Gly Gly Phe Val		
20	25	30
Thr Ala Gly His Cys Gly Arg Xaa Gly Ala Xaa Xaa Xaa Xaa Xaa Xaa		
35	40	45
Thr Ser Xaa Pro Xaa Gly Thr Phe Xaa Gly Ser Ser Phe Pro Gly Asn		
50	55	60
Asp Tyr Ala Trp Val Gln Val Ala Ser Gly Asn Thr Pro Val Gly Ala		
65	70	75
Val Asn Asn Tyr Ser Gly Gly Thr Val Xaa Val Ala Gly Ser Thr Xaa		
85	90	95
Ala Ala Val Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp		
100	105	110

<210> 648
<211> 368
<212> PRT
<213> *Theunekifida fuscata*

<100> 648

Met	Asn	His	Ser	Ser	Arg	Arg	Thr	Thr	Ser	Leu	Leu	Phe	Thr	Ala	Ala
1					5				10				15		
Leu	Ala	Ala	Thr	Ala	Leu	Val	Ala	Ala	Thr	Thr	Pro	Ala	Ser	Ala	Gln
					20				25				30		
Glu	Leu	Ala	Leu	Lys	Arg	Asp	Leu	Gly	Leu	Ser	Asp	Ala	Glu	Val	Ala
					35				40				45		
Glu	Leu	Arg	Ala	Ala	Glu	Ala	Glu	Ala	Val	Glu	Leu	Glu	Glu	Leu	
					50				55			60			
Arg	Asp	Ser	Leu	Gly	Ser	Asp	Phe	Gly	Gly	Val	Tyr	Leu	Asp	Ala	Asp
65					70					75				80	
Thr	Thr	Glu	Ile	Thr	Val	Ala	Val	Thr	Asp	Pro	Ala	Ala	Val	Ser	Arg
					85				90				95		
Val	Asp	Ala	Asp	Asp	Val	Thr	Val	Asp	Val	Val	Asp	Phe	Gly	Glu	Thr
					100				105				110		
Ala	Leu	Asn	Asp	Phe	Val	Ala	Ser	Leu	Asn	Ala	Ile	Ala	Asp	Thr	Ala
					115				120				125		
Asp	Pro	Lys	Val	Thr	Gly	Trp	Tyr	Thr	Asp	Leu	Glu	Ser	Asp	Ala	Val
					130				135			140			
Val	Ile	Thr	Thr	Leu	Arg	Gly	Gly	Thr	Pro	Ala	Ala	Glu	Glu	Leu	Ala
145					150				155				160		
Glu	Arg	Ala	Gly	Leu	Asp	Glu	Arg	Ala	Val	Arg	Ile	Val	Glu	Glu	Asp
					165				170				175		
Glu	Glu	Pro	Gln	Ser	Leu	Ala	Ala	Ile	Ile	Gly	Gly	Asn	Pro	Tyr	Tyr
					180				185				190		
Phe	Gly	Asn	Tyr	Arg	Cys	Ser	Ile	Gly	Phe	Ser	Val	Arg	Gln	Gly	Ser
					195				200				205		
Gln	Thr	Gly	Phe	Ala	Thr	Ala	Gly	His	Cys	Gly	Ser	Thr	Gly	Thr	Arg
					210				215			220			
Val	Ser	Ser	Pro	Ser	Gly	Thr	Val	Ala	Gly	Ser	Tyr	Phe	Pro	Gly	Arg
225					230				235				240		
Asp	Met	Gly	Trp	Val	Arg	Ile	Thr	Ser	Ala	Asp	Thr	Val	Thr	Pro	Leu
					245				250				255		
Val	Asn	Arg	Tyr	Asn	Gly	Gly	Thr	Val	Thr	Val	Thr	Gly	Ser	Gln	Glu
					260				265				270		
Ala	Ala	Thr	Gly	Ser	Ser	Val	Cys	Arg	Ser	Gly	Ala	Thr	Thr	Gly	Trp
					275				280				285		
Arg	Cys	Gly	Thr	Ile	Gln	Ser	Lys	Asn	Gln	Thr	Val	Arg	Tyr	Ala	Glu
					290				295			300			
Gly	Thr	Val	Thr	Gly	Leu	Thr	Arg	Thr	Thr	Ala	Cys	Ala	Glu	Gly	Gly

305	310	315	320
Asp Ser Gly Gly Pro Trp Leu Thr Gly Ser Gln Ala Gln Gly Val Thr			
325	330	335	
Ser Gly Gly Thr Gly Asp Cys Arg Ser Gly Gly Ile Thr Phe Phe Gln			
340	345	350	
Pro Ile Asn Pro Leu Leu Ser Tyr Phe Gly Leu Gln Leu Val Thr Gly			
355	360	365	

<210> 649
<211> 382
<212> PRT
<213> Streptomyces spp.

<400> 649

Met Arg His Thr Gly Arg Asn Ala Ile Gly Ala Ala Ile Ala Ala Ser			
1	5	10	15
Ala Leu Ala Phe Ala Leu Val Pro Ser Gln Ala Ala Asn Asp Thr			
20	25	30	
Leu Thr Glu Arg Ala Glu Ala Ala Val Ala Asp Leu Pro Ala Gly Val			
35	40	45	
Leu Asp Ala Met Glu Arg Asp Leu Gly Leu Ser Glu Gln Glu Ala Gly			
50	55	60	
Leu Lys Leu Val Ala Glu His Asp Ala Ala Leu Leu Gly Glu Thr Leu			
65	70	75	80
Ser Ala Asp Leu Asp Ala Phe Ala Gly Ser Trp Leu Ala Glu Gly Thr			
85	90	95	
Glu Leu Val Val Ala Thr Thr Ser Glu Ala Glu Ala Glu Ile Thr			
100	105	110	
Glu Ala Gly Ala Thr Ala Glu Val Val Asp His Thr Leu Ala Glu Leu			
115	120	125	
Asp Ser Val Lys Asp Ala Leu Asp Thr Ala Ala Glu Ser Tyr Asp Thr			
130	135	140	
Thr Asp Ala Pro Val Trp Tyr Val Asp Val Thr Thr Asn Gly Val Val			
145	150	155	160
Leu Leu Thr Ser Asp Val Thr Glu Ala Glu Gly Phe Val Glu Ala Ala			
165	170	175	
Gly Val Asn Ala Ala Ala Val Asp Ile Gln Thr Ser Asp Glu Gln Pro			
180	185	190	
Gln Ala Phe Tyr Asp Leu Val Gly Gly Asp Ala Tyr Tyr Met Gly Gly			
195	200	205	
Gly Arg Cys Ser Val Gly Phe Ser Val Thr Gln Gly Ser Thr Pro Gly			
210	215	220	
Phe Ala Thr Ala Gly His Cys Gly Thr Val Gly Thr Ser Thr Thr Gly			
225	230	235	240
Tyr Asn Gln Ala Ala Gln Gly Thr Phe Glu Glu Ser Ser Phe Pro Gly			
245	250	255	
Asp Asp Met Ala Trp Val Ser Val Asn Ser Asp Trp Asn Thr Thr Pro			
260	265	270	
Thr Val Asn Glu Gly Glu Val Thr Val Ser Gly Ser Thr Glu Ala Ala			
275	280	285	
Val Gly Ala Ser Ile Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys			
290	295	300	
Gly Thr Ile Gln Gln His Asn Thr Ser Val Thr Tyr Pro Glu Gly Thr			
305	310	315	320
Ile Thr Gly Val Thr Arg Thr Ser Val Cys Ala Glu Pro Gly Asp Ser			
325	330	335	

Gly Gly Ser Tyr Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly
340 345 350
Gly Ser Gly Asn Cys Thr Ser Gly Gly Thr Thr Tyr His Gln Pro Ile
355 360 365
Asn Pro Leu Leu Ser Ala Tyr Gly Leu Asp Leu Val Thr Gly
370 375 380

<210> 650
<211> 388
<212> PRT
<213> Streptomyces spp.

<400> 650

Met Arg Leu Lys Gly Arg Thr Val Ala Ile Gly Ser Ala Leu Ala Ala
1 5 10 15
Ser Ala Leu Ala Leu Ser Leu Val Pro Ala Asn Ala Ser Ser Glu Leu
20 25 30
Pro Ser Ala Glu Thr Ala Lys Ala Asp Ala Leu Val Glu Gln Leu Pro
35 40 45
Ala Gly Met Val Asp Ala Met Glu Arg Asp Leu Gly Val Pro Ala Ala
50 55 60
Glu Val Gly Asn Gln Leu Val Ala Glu His Glu Ala Ala Val Leu Glu
65 70 75 80
Glu Ser Leu Ser Glu Asp Leu Ser Gly Tyr Ala Gly Ser Trp Ile Val
85 90 95
Glu Gly Thr Ser Glu His Val Val Ala Thr Thr Asp Arg Ala Glu Ala
100 105 110
Ala Glu Ile Thr Ala Ala Gly Ala Thr Ala Thr Val Val Glu His Ser
115 120 125
Leu Ala Glu Leu Glu Ala Val Lys Asp Ile Leu Asp Glu Ala Ala Thr
130 135 140
Ala Asn Pro Glu Asp Ala Ala Pro Val Trp Tyr Val Asp Val Thr Thr
145 150 155 160
Asn Glu Val Val Val Leu Ala Ser Asp Val Pro Ala Ala Glu Ala Phe
165 170 175
Val Ala Ala Ser Gly Ala Asp Ala Ser Thr Val Arg Val Glu Arg Ser
180 185 190
Asp Glu Ser Pro Gln Pro Phe Tyr Asp Leu Val Gly Gly Asp Ala Tyr
195 200 205
Tyr Ile Gly Asn Gly Arg Cys Ser Ile Gly Phe Ser Val Arg Gln Gly
210 215 220
Ser Thr Pro Gly Phe Val Thr Ala Gly His Cys Gly Ser Val Gly Asn
225 230 235 240
Ala Thr Thr Gly Phe Asn Arg Val Ser Gln Gly Thr Phe Arg Gly Ser
245 250 255
Trp Phe Pro Gly Arg Asp Met Ala Trp Val Ala Val Asn Ser Asn Trp
260 265 270
Thr Pro Thr Ser Leu Val Arg Asn Ser Gly Ser Gly Val Arg Val Thr
275 280 285
Gly Ser Thr Gln Ala Thr Val Gly Ser Ser Ile Cys Arg Ser Gly Ser
290 295 300
Thr Thr Gly Trp Arg Cys Gly Thr Ile Gln Gln His Asn Thr Ser Val
305 310 315 320
Thr Tyr Pro Gln Gly Thr Ile Thr Gly Val Thr Arg Thr Ser Ala Cys
325 330 335
Ala Gln Pro Gly Asp Ser Gly Gly Ser Phe Ile Ser Gly Thr Gln Ala

340 345 350
Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Ser Ile Gly Gly Thr
355 360 365
Thr Phe His Gln Pro Val Asn Pro Ile Leu Ser Gln Tyr Gly Leu Thr
370 375 380
Leu Val Arg Ser
385

<210> 651
<211> 458
<212> PRT
<213> Streptomyces lividans

<400> 651

Met Val Gly Arg His Ala Ala Arg Ser Arg Arg Ala Ala Leu Thr Ala
1 5 10 15
Leu Gly Ala Leu Val Leu Thr Ala Leu Pro Ser Ala Ala Ser Ala Ala
20 25 30
Pro Pro Pro Val Pro Gly Pro Arg Pro Ala Val Ala Arg Thr Pro Asp
35 40 45
Ala Ala Thr Ala Pro Ala Arg Met Leu Ser Ala Met Glu Arg Asp Leu
50 55 60
Arg Leu Ala Pro Gly Gln Ala Ala Ala Arg Pro Val Asn Glu Ala Glu
65 70 75 80
Ala Gly Thr Arg Ala Gly Met Leu Arg Asn Thr Leu Gly Asp Arg Phe
85 90 95
Ala Gly Ala Trp Val Ser Gly Ala Thr Ser Ala Glu Leu Thr Val Ala
100 105 110
Thr Thr Asp Ala Ala Asp Thr Ala Ala Ile Glu Ala Gln Gly Ala Lys
115 120 125
Ala Ala Val Val Gly Arg Asn Leu Ala Glu Leu Arg Ala Val Lys Glu
130 135 140
Lys Leu Asp Ala Ala Ala Val Arg Thr Arg Thr Arg Gln Thr Pro Val
145 150 155 160
Trp Tyr Val Asp Val Lys Thr Asn Arg Val Thr Val Gln Ala Thr Gly
165 170 175
Ala Ser Ala Ala Ala Ala Phe Val Glu Ala Ala Gly Val Pro Ala Ala
180 185 190
Asp Val Gly Val Arg Val Ser Pro Asp Gln Pro Arg Val Leu Glu Asp
195 200 205
Leu Val Gly Gly Asp Ala Tyr Tyr Ile Asp Asp Gln Ala Arg Cys Ser
210 215 220
Ile Gly Phe Ser Val Thr Lys Asp Asp Gln Glu Gly Phe Ala Thr Ala
225 230 235 240
Gly His Cys Gly Asp Pro Gly Ala Thr Thr Gly Tyr Asn Glu Ala
245 250 255
Asp Gln Gly Thr Phe Gln Ala Ser Thr Phe Pro Gly Lys Asp Met Ala
260 265 270
Trp Val Gly Val Asn Ser Asp Trp Thr Ala Thr Pro Asp Val Lys Ala
275 280 285
Glu Gly Gly Glu Lys Ile Gln Leu Ala Gly Ser Val Glu Ala Leu Val
290 295 300
Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly
305 310 315 320
Thr Ile Gln Gln His Asp Thr Ser Val Thr Tyr Pro Glu Gly Thr Val
325 330 335

Asp Gly Leu Thr Gly Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly
340 345 350
Gly Pro Phe Val Ser Gly Val Gln Ala Gln Gly Thr Thr Ser Gly Gly
355 360 365
Ser Gly Asp Cys Thr Asn Gly Gly Thr Thr Phe Tyr Gln Pro Val Asn
370 375 380
Pro Leu Leu Ser Asp Phe Gly Leu Thr Leu Lys Thr Thr Ser Ala Ala
385 390 395 400
Thr Gln Thr Pro Ala Pro Gln Asp Asn Ala Ala Ala Asp Ala Trp Thr
405 410 415
Ala Gly Arg Val Tyr Glu Val Gly Thr Thr Val Ser Tyr Asp Gly Val
420 425 430
Arg Tyr Arg Cys Leu Gln Ser His Gln Ala Gln Gly Val Gly Ser Pro
435 440 445
Ala Ser Val Pro Ala Leu Trp Gln Arg Val
450 455

<210> 652

<211> 458

<212> PRT

<213> Streptomyces coelicolor A3(2)

<400> 652

Met Val Gly Arg His Ala Ala Arg Ser Arg Arg Ala Ala Leu Thr Ala
1 5 10 15
Leu Gly Ala Leu Val Leu Thr Ala Leu Pro Ser Ala Ala Ser Ala Ala
20 25 30
Pro Pro Pro Val Pro Gly Pro Arg Pro Ala Val Ala Arg Thr Pro Asp
35 40 45
Ala Ala Thr Ala Pro Ala Arg Met Leu Ser Ala Met Glu Arg Asp Leu
50 55 60
Arg Leu Ala Pro Gly Gln Ala Ala Ala Arg Leu Val Asn Glu Ala Glu
65 70 75 80
Ala Gly Thr Arg Ala Gly Met Leu Arg Asn Thr Leu Gly Asp Arg Phe
85 90 95
Ala Gly Ala Trp Val Ser Gly Ala Thr Ser Ala Glu Leu Thr Val Ala
100 105 110
Thr Thr Asp Ala Ala Asp Thr Ala Ala Ile Glu Ala Gln Gly Ala Lys
115 120 125
Ala Ala Val Val Gly Arg Asn Leu Ala Glu Leu Arg Ala Val Lys Glu
130 135 140
Lys Leu Asp Ala Ala Ala Val Arg Thr Arg Thr Arg Gln Thr Pro Val
145 150 155 160
Trp Tyr Val Asp Val Lys Thr Asn Arg Val Thr Val Gln Ala Thr Gly
165 170 175
Ala Ser Ala Ala Ala Ala Phe Val Glu Ala Ala Gly Val Pro Ala Ala
180 185 190
Asp Val Gly Val Arg Val Ser Pro Asp Gln Pro Arg Val Leu Glu Asp
195 200 205
Leu Val Gly Gly Asp Ala Tyr Tyr Ile Asp Asp Gln Ala Arg Cys Ser
210 215 220
Ile Gly Phe Ser Val Thr Lys Asp Asp Gln Glu Gly Phe Ala Thr Ala
225 230 235 240
Gly His Cys Gly Asp Pro Gly Ala Thr Thr Gly Tyr Asn Glu Ala
245 250 255
Asp Gln Gly Thr Phe Gln Ala Ser Thr Phe Pro Gly Lys Asp Met Ala

260	265	270
Trp Val Gly Val Asn Ser Asp	Trp Thr Ala Thr Pro Asp	Val Lys Ala
275	280	285
Glu Gly Gly Glu Lys Ile Gln Leu Ala Gly Ser Val	Glu Ala Leu Val	
290	295	300
Gly Ala Ser Val Cys Arg Ser Gly Ser Thr	Thr Gly Trp His Cys Gly	
305	310	315
320		
Thr Ile Gln Gln His Asp Thr Ser Val	Thr Tyr Pro Glu Gly	Thr Val
325	330	335
Asp Gly Leu Thr Glu Thr Thr Val	Cys Ala Glu Pro Gly	Asp Ser Gly
340	345	350
Gly Pro Phe Val Ser Gly Val Gln Ala Gln Gly	Thr Thr Ser Gly Gly	
355	360	365
Ser Gly Asp Cys Thr Asn Gly Gly	Thr Phe Tyr Gln Pro Val Asn	
370	375	380
Pro Leu Leu Ser Asp Phe Gly Leu Thr Leu Lys	Thr Thr Ser Ala Ala	
385	390	395
400		
Thr Gln Thr Pro Ala Pro Gln Asp Asn Ala Ala	Asp Ala Trp Thr	
405	410	415
Ala Gly Arg Val Tyr Glu Val Gly	Thr Thr Val Ser Tyr Asp Gly	Val
420	425	430
Arg Tyr Arg Cys Leu Gln Ser His Gln Ala Gln Gly	Val Gly Ser Pro	
435	440	445
Ala Ser Val Pro Ala Leu Trp Gln Arg Val		
450	455	

<210> 653

<211> 456

<212> PRT

<213> Streptomyces avermitilis MA-4680

<400> 653

Met Val His Arg His Val Gly Ala Gly Cys Ala Gly Leu Ser Val Leu

1	5	10	15
Ala Thr Leu Val Leu Thr Gly Leu Pro	Ala Ala Ala Ala Ile	Glu Pro	
20	25	30	
Pro Gly Pro Ala Pro Ala Pro Ser	Ala Val Gln Pro Leu Gly	Ala Gly	
35	40	45	
Asn Pro Ser Thr Ala Val Leu Gly	Ala Leu Gln Arg Asp	Leu His Leu	
50	55	60	
Thr Asp Thr Gln Ala Lys	Thr Arg Leu Val Asn	Glu Met Glu Ala Gly	
65	70	75	80
Thr Arg Ala Gly Arg Leu Gln Asn	Ala Leu Gly Lys His	Phe Ala Gly	
85	90	95	
Ala Trp Val His Gly Ala Ala Ser	Ala Asp Leu Thr Val	Ala Thr Thr	
100	105	110	
His Ala Thr Asp Ile Pro Ala Ile	Thr Ala Gly Gly	Ala Thr Ala Val	
115	120	125	
Val Val Lys Thr Gly Leu Asp Asp	Leu Lys Gly Ala Lys	Lys Lys Leu	
130	135	140	
Asp Ser Ala Val Ala His Gly Gly	Thr Ala Val Asn	Thr Pro Val Arg	
145	150	155	160
Tyr Val Asp Val Arg Thr Asn Arg Val	Thr Leu Gln Ala Arg	Ser Arg	
165	170	175	

Ala Ala Ala Asp Ala Leu Ile Ala Ala Gly Val Asp Ser Gly Leu
 180 185 190
 Val Asp Val Lys Val Ser Glu Asp Arg Pro Arg Ala Leu Phe Asp Ile
 195 200 205
 Arg Gly Gly Asp Ala Tyr Tyr Ile Asp Asn Thr Ala Arg Cys Ser Val
 210 215 220
 Gly Phe Ser Val Thr Lys Gly Asn Gln Gln Gly Phe Ala Thr Ala Gly
 225 230 235 240
 His Cys Gly Arg Ala Gly Ala Pro Thr Ala Gly Phe Asn Glu Val Ala
 245 250 255
 Gln Gly Thr Val Gln Ala Ser Val Phe Pro Gly His Asp Met Ala Trp
 260 265 270
 Val Gly Val Asn Ser Asp Trp Thr Ala Thr Pro Asp Val Ala Gly Ala
 275 280 285
 Ala Gly Gln Asn Val Ser Ile Ala Gly Ser Val Gln Ala Ile Val Gly
 290 295 300
 Ala Ala Ile Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr
 305 310 315 320
 Val Glu Glu His Asp Thr Ser Val Thr Tyr Glu Glu Gly Thr Val Asp
 325 330 335
 Gly Leu Thr Arg Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly Gly
 340 345 350
 Ser Phe Val Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Ser
 355 360 365
 Gly Asp Cys Thr Arg Gly Gly Thr Thr Tyr Tyr Gln Pro Val Asn Pro
 370 375 380
 Ile Leu Ser Thr Tyr Gly Leu Thr Leu Lys Thr Ser Thr Ala Pro Thr
 385 390 395 400
 Asp Thr Pro Ser Asp Pro Val Asp Gln Ser Gly Val Trp Ala Ala Gly
 405 410 415
 Arg Val Tyr Glu Val Gly Ala Gln Val Thr Tyr Ala Gly Val Thr Tyr
 420 425 430
 Gln Cys Leu Gln Ser His Gln Ala Gln Gly Val Trp Gln Pro Ala Ala
 435 440 445
 Thr Pro Ala Leu Trp Gln Arg Leu
 450 455

<210> 654
 <211> 458
 <212> PRT
 <213> Streptomyces lividans

<400> 654

Met Pro His Arg His Arg His Arg Ala Val Gly Ala Ala Val Ala
 1 5 10 15
 Ala Thr Ala Ala Leu Leu Val Ala Gly Leu Ser Gly Ser Ala Ser Ala
 20 25 30
 Gly Thr Ala Pro Ala Gly Ser Ala Pro Thr Ala Ala Glu Thr Leu Arg
 35 40 45
 Thr Asp Ala Ala Pro Pro Ala Leu Leu Lys Ala Met Gln Arg Asp Leu
 50 55 60
 Gly Ile Asp Arg Arg Gln Ala Glu Arg Arg Leu Val Asn Glu Ala Glu
 65 70 75 80
 Ala Gly Ala Thr Ala Gly Arg Leu Arg Ala Ala Leu Gly Gly Asp Phe
 85 90 95
 Ala Gly Ala Trp Val Arg Gly Ala Glu Ser Gly Thr Leu Thr Val Ala

	100	105	110
Thr	Thr Asp Ala Gly Asp Val	Ala Ala Val Glu Ala Arg Gly Ala Glu	
	115	120	125
Ala	Lys Val Val Arg His Ser Leu Ala Asp Leu Asp Ala Ala Lys Ala		
	130	135	140
Arg	Leu Asp Thr Ala Ala Gly Leu Asn Thr Ala Asp Ala Pro Val		
	145	150	155
Trp	Tyr Val Asp Thr Arg Thr Asn Thr Val Val Val Glu Ala Ile Arg		
	165	170	175
Pro	Ala Ala Ala Arg Ser Leu Leu Thr Ala Ala Gly Val Asp Gly Ser		
	180	185	190
Leu	Ala His Val Lys Asn Arg Thr Glu Arg Pro Arg Thr Phe Tyr Asp		
	195	200	205
Leu	Arg Gly Gly Glu Ala Tyr Tyr Ile Asn Asn Ser Ser Arg Cys Ser		
	210	215	220
Ile	Gly Phe Pro Ile Thr Lys Gly Thr Gln Gln Gly Phe Ala Thr Ala		
	225	230	235
Gly	His Cys Asp Arg Ala Gly Ser Ser Thr Thr Gly Ala Asn Arg Val		
	245	250	255
Ala	Gln Gly Thr Phe Gln Gly Ser Ile Phe Pro Gly Arg Asp Met Ala		
	260	265	270
Trp	Val Ala Thr Asn Ser Ser Trp Thr Ala Thr Pro Tyr Val Leu Gly		
	275	280	285
Ala	Gly Gly Gln Asn Val Gln Val Thr Gly Ser Thr Ala Ser Pro Val		
	290	295	300
Gly	Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly		
	305	310	315
Thr	Val Thr Gln Leu Asn Thr Ser Val Thr Tyr Gln Glu Gly Thr Ile		
	325	330	335
Ser	Pro Val Thr Arg Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly		
	340	345	350
Gly	Ser Phe Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly		
	355	360	365
Ser	Gly Asp Cys Arg Thr Gly Gly Gly Thr Phe Phe Gln Pro Ile Asn		
	370	375	380
Ala	Leu Leu Gln Asn Tyr Gly Leu Thr Leu Lys Thr Thr Gly Gly Asp		
	385	390	395
Asp	Gly Gly Gly Asp Asp Gly Gly Glu Glu Pro Gly Gly Thr Trp Ala		
	405	410	415
Ala	Gly Thr Val Tyr Gln Pro Gly Asp Thr Val Thr Tyr Gly Gly Ala		
	420	425	430
Thr	Phe Arg Cys Leu Gln Gly His Gln Ala Tyr Ala Gly Trp Glu Pro		
	435	440	445
Pro	Asn Val Pro Ala Leu Trp Gln Arg Val		
	450	455	

<210> 655

<211> 463

<212> PRT

<213> Streptomyces coelicolor A3 (2)

<400> 655

Met	Pro His Arg His Arg His His Arg Ala Val Gly Ala Ala Val Ala		
1	5	10	15
Ala	Thr Ala Ala Leu Leu Val Ala Gly Leu Ser Gly Ser Ala Ser Ala		
	20	25	30

Gly Thr Ala Pro Ala Gly Ser Ala Pro Thr Ala Ala Glu Thr Leu Arg
 35 40 45
 Thr Asp Ala Ala Pro Pro Ala Leu Leu Lys Ala Met Gln Arg Asp Leu
 50 55 60
 Gly Leu Asp Arg Arg Gln Ala Glu Arg Arg Leu Val Asn Glu Ala Glu
 65 70 75 80
 Ala Gly Ala Thr Ala Gly Arg Leu Arg Ala Ala Leu Gly Gly Asp Phe
 85 90 95
 Ala Gly Ala Trp Val Arg Gly Ala Glu Ser Gly Thr Leu Thr Val Ala
 100 105 110
 Thr Thr Asp Ala Gly Asp Val Ala Ala Ile Glu Ala Arg Gly Ala Glu
 115 120 125
 Ala Lys Val Val Arg His Ser Leu Ala Asp Leu Asp Ala Ala Lys Ala
 130 135 140
 Arg Leu Asp Thr Ala Ala Ala Gly Leu Asn Thr Ala Asp Ala Pro Val
 145 150 155 160
 Trp Tyr Val Asp Thr Arg Thr Asn Thr Val Val Val Glu Ala Ile Arg
 165 170 175
 Pro Ala Ala Ala Arg Ser Leu Leu Thr Ala Ala Gly Val Asp Gly Ser
 180 185 190
 Leu Ala His Val Lys Asn Arg Thr Glu Arg Pro Arg Thr Phe Tyr Asp
 195 200 205
 Leu Arg Gly Gly Glu Ala Tyr Tyr Ile Asn Asn Ser Ser Arg Cys Ser
 210 215 220
 Ile Gly Phe Pro Ile Thr Lys Gly Thr Gln Gln Gly Phe Ala Thr Ala
 225 230 235 240
 Gly His Cys Gly Arg Ala Gly Ser Ser Thr Thr Gly Ala Asn Arg Val
 245 250 255
 Ala Gln Gly Thr Phe Gln Gly Ser Ile Phe Pro Gly Arg Asp Met Ala
 260 265 270
 Trp Val Ala Thr Asn Ser Ser Trp Thr Ala Thr Pro Tyr Val Leu Gly
 275 280 285
 Ala Gly Gly Gln Asn Val Gln Val Thr Gly Ser Thr Ala Ser Pro Val
 290 295 300
 Gly Ala Ser Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly
 305 310 315 320
 Thr Val Thr Gln Leu Asn Thr Ser Val Thr Tyr Gln Glu Gly Thr Ile
 325 330 335
 Ser Pro Val Thr Arg Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly
 340 345 350
 Gly Ser Phe Ile Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly
 355 360 365
 Ser Gly Asp Cys Arg Thr Gly Gly Glu Thr Phe Phe Gln Pro Ile Asn
 370 375 380
 Ala Leu Leu Gln Asn Tyr Gly Leu Thr Leu Lys Thr Thr Gly Gly Asp
 385 390 395 400
 Asp Gly Gly Asp Asp Gly Gly Asp Asp Gly Gly Glu Glu Pro
 405 410 415
 Gly Gly Thr Trp Ala Ala Gly Thr Val Tyr Gln Pro Gly Asp Thr Val
 420 425 430
 Thr Tyr Gly Gly Ala Thr Phe Arg Cys Leu Gln Gly His Gln Ala Tyr
 435 440 445
 Ala Gly Trp Glu Pro Pro Asn Val Pro Ala Leu Trp Gln Arg Val
 450 455 460

<210> 656
 <211> 457

<212> PRT

<213> Streptomyces griseus

<400> 656

Met Glu Arg Thr Thr Leu Arg Arg Arg Ala Leu Val Ala Gly Thr Ala
1 5 10 15
Thr Val Ala Val Gly Ala Leu Ala Leu Ala Gly Leu Thr Gly Val Ala
20 25 30
Ser Ala Asp Pro Ala Ala Thr Ala Ala Pro Pro Val Ser Ala Asp Ser
35 40 45
Leu Ser Pro Gly Met Leu Ala Ala Leu Glu Arg Asp Leu Gly Leu Asp
50 55 60
Glu Asp Ala Ala Arg Ser Arg Ile Ala Asn Glu Tyr Arg Ala Ala Ala
65 70 75 80
Val Ala Ala Gly Leu Glu Lys Ser Leu Gly Ala Arg Tyr Ala Gly Ala
85 90 95
Arg Val Ser Gly Ala Lys Ala Thr Leu Thr Val Ala Thr Thr Asp Ala
100 105 110
Ser Glu Ala Ala Arg Ile Thr Glu Ala Gly Ala Arg Ala Glu Val Val
115 120 125
Gly His Ser Leu Asp Arg Phe Glu Gly Val Lys Lys Ser Leu Asp Lys
130 135 140
Ala Ala Leu Asp Lys Ala Pro Lys Asn Val Pro Val Trp Tyr Val Asp
145 150 155 160
Val Ala Ala Asn Arg Val Val Val Asn Ala Ala Ser Pro Ala Ala Gly
165 170 175
Gln Ala Phe Leu Lys Val Ala Gly Val Asp Arg Gly Leu Val Thr Val
180 185 190
Ala Arg Ser Ala Glu Gln Pro Arg Ala Leu Ala Asp Ile Arg Gly Gly
195 200 205
Asp Ala Tyr Tyr Met Asn Gly Ser Gly Arg Cys Ser Val Gly Phe Ser
210 215 220
Val Thr Arg Gly Thr Gln Asn Gly Phe Ala Thr Ala Gly His Cys Gly
225 230 235 240
Arg Val Gly Thr Thr Asn Gly Val Asn Gln Gln Ala Gln Gly Thr
245 250 255
Phe Gln Gly Ser Thr Phe Pro Gly Arg Asp Ile Ala Trp Val Ala Thr
260 265 270
Asn Ala Asn Trp Thr Pro Arg Pro Leu Val Asn Gly Tyr Gly Arg Gly
275 280 285
Asp Val Thr Val Ala Gly Ser Thr Ala Ser Val Val Gly Ala Ser Val
290 295 300
Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Gln
305 310 315 320
Leu Asn Thr Ser Val Thr Tyr Pro Glu Gly Thr Ile Ser Gly Val Thr
325 330 335
Arg Thr Ser Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile
340 345 350
Ser Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys
355 360 365
Ser Ser Gly Gly Thr Thr Tyr Phe Gln Pro Ile Asn Pro Leu Leu Gln
370 375 380
Ala Tyr Gly Leu Thr Leu Val Thr Ser Gly Gly Gly Thr Pro Thr Asp
385 390 395 400
Pro Pro Thr Thr Pro Pro Thr Asp Ser Pro Gly Gly Thr Trp Ala Val
405 410 415

Gly Thr Ala Tyr Ala Ala Gly Ala Thr Val Thr Tyr Gly Gly Ala Thr
420 425 430
Tyr Arg Cys Leu Gln Ala His Thr Ala Gln Pro Gly Trp Thr Pro Ala
435 440 445
Asp Val Pro Ala Leu Trp Gln Arg Val
450 455