```
In [1]: 1 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy import stats
```

Question 1

 Δh = h2-h1, measured in unit of m.

Area = πr^2 , measured in unit of m^2 .

The specific discharge = $\frac{Q}{A}$ measured in unit of ms^{-1} .

(a)

```
In [2]: 1 # experiment number
         2 Test=[i for i in range(1,11)]
         3 Test=np.array(Test)
         5 # create sediment samples
         6 Sediment_Sample=np.array(['A','A','A','A','B','B','B','B','B'])
         8 # array of flow rate
           Q=np.array([2.5e-5,4e-5,5.2e-5,8e-5,1e-4,2.5e-6,4e-6,5.2e-6,8e-6,1e-5])
        10
        11 # head values in metre
        12 h1=1e-2*np.array([1,2,2.5,3.4,5,0.5,1.2,3.2,5.3,6])
        13 h2=np.around(h1, decimals=5)
        14
        15 h2=le-2*np.array([4.5,6,8.5,11.6,15.5,13.5,27.2,31.2,46.3,71])
        16 h2=np.around(h2, decimals=5)
        17
        18 # compute delta_h
        19 delta h=h2-h1
        20 delta_h=np.around(delta_h,decimals=8)
        21
        22 # initialize dl
        23 dl=0.1
        24
        25 # compute head gradient
        26 dh_dl=delta_h/dl
        27
        28 # calulate the area
29 Area=np.pi*0.1*0.1
        30
        31 # compute specific discharge
        32 g=0/Area
        33 q=np.around(q,decimals=10)
        34
```

```
In [4]: 1 # Display the table df
```

Out[4]:

	Test	Sample	Q $(m^3 s^{-1})$	h1(<i>m</i>)	h2(<i>m</i>)	delta h / dl	Specific Discharge (ms ⁻¹)
0	1	Α	2.5e-05	0.01	0.045	0.35	0.000796
1	2	Α	4e-05	0.02	0.06	0.40	0.001273
2	3	Α	5.2e-05	0.025	0.085	0.60	0.001655
3	4	Α	8e-05	0.034	0.116	0.82	0.002546
4	5	Α	0.0001	0.05	0.155	1.05	0.003183
5	6	В	2.5e-06	0.005	0.135	1.30	0.000080
6	7	В	4e-06	0.012	0.272	2.60	0.000127
7	8	В	5.2e-06	0.032	0.312	2.80	0.000166
8	9	В	8e-06	0.053	0.463	4.10	0.000255
9	10	В	1e-05	0.06	0.71	6.50	0.000318

```
In [5]: 1 # split dataframe into sample A and B
2
3 Exp_A = df.loc[df["Sample"] == "A"]
4 Exp_B = df.loc[df["Sample"] == "B"]
```

(b)

```
In [6]:
                # Visualisation
            2
                plt.figure(figsize=(15,6))
            3
            4
               plt.subplot(1,2,1)
            5 sns.regplot(x='delta h / dl', y='Specific Discharge ($ms^{-1}$)',data=Exp_A)
6 plt.title(" (a) Scatterplot for Sample A ",fontsize=15)
               plt.ylabel("specific discharge ($ms^{-1}$)",fontsize=15)
plt.xlabel("delta h / dl",fontsize=15)
            8
            9
               plt.grid()
           10
           11 plt.subplot(1,2,2)
           12 sns.regplot(x='delta h / dl', y='Specific Discharge ($ms^{-1}$)', data = Exp_B, color="g")
           13 plt.title(" (b) Scatterplot for Sample B", fontsize=15)
14 plt.ylabel("specific discharge ($ms^{-1}$)", fontsize=15)
           15 plt.xlabel("delta h / dl",fontsize=15)
           16 plt.grid()
           17 plt.show()
```


(c)

The K value for sample A is 0.003267371621086932 m/s

```
In [8]: 1 stats_B= stats.linregress(Exp_B['delta h / dl'], Exp_B['Specific Discharge ($ms^{-1}$)'])
2 print(f"The K value for sample B is {stats_B[0]} m/s")
```

The K value for sample B is 4.7767027239865744e-05 m/s

Sample A with $K \approx 10^{-3}$ is gravel

Sample B with $K \approx 10^{-5}$ is Clean Sand.

Some potential sources of error are

- 1. Unstable environmental conditions
- 2. Contamination of the sample by foreign particles or substances
- 3. Improperly calibrated instruments
- 4. Inaccurate flow measurements
- 5. Poorly maintained or malfunctioning equipment