- 1. Într-un triunghi dreptunghic ABC avem $m(\hat{A}) = 90^{\circ}$, BC = 5 și AB = 4. Atunci aria triunghiului ABC este: (9 pct.)
 - a) 6; b) 12; c) 3; d) 10; e) 2; f) 5.
- 2. Ştiind că $\sin x = \frac{\sqrt{3}}{2}$, atunci $\cos^2 x$ este: (9 pct.)
 - a) $\frac{1}{\sqrt{2}}$; b) $\frac{1}{2}$; c) $\frac{3}{4}$; d) $\frac{1}{4}$; e) 1; f) 0.
- 3. Soluția ecuației $\sin^3 x = \cos^3 x$ din intervalul $[0, \pi]$ este: (9 pct.)

a)
$$x = \frac{\pi}{3}$$
; b) $x = \frac{\pi}{5}$; c) $x = \frac{5\pi}{6}$; d) $x = \frac{\pi}{4}$; e) $x = \frac{2\pi}{3}$; f) $x = \frac{3\pi}{4}$.

- 4. Distanța de la punctul M(-1,2) la dreapta de ecuație d: 3x + 4y 3 = 0 este: (9 pct.)
 - a) $\frac{2}{5}$; b) 1; c) 5; d) $\frac{1}{5}$; e) 2; f) $\frac{5}{2}$.
- 5. Fie M mulțimea valorilor parametrului $m \in \mathbb{R}$ pentru care dreptele de ecuații $d_1: mx + y = 2$ și $d_2: x + my = 1$ sunt paralele. Atunci: (9 pct.)
 - a) $M = \{1\}$; b) $M = \{-1\}$; c) $M = \emptyset$; d) $M = \{0\}$; e) $M = \{-1, 0, 1\}$; f) $M = \{-1, 1\}$.
- 6. Se consideră triunghiul ABC de vârfuri A(0,2), B(2,0) și C(4,0). Centrul cercului circumscris triunghiului ABC are coordonatele: (9 pct.)
 - a) $(\frac{3}{2}, 3)$; b) (0, 3); c) (3, 0); d) $(\frac{3}{2}, \frac{3}{2})$; e) (3, 3); f) $(0, \frac{3}{2})$.
- 7. Să se determine valoarea parametrului $m \in \mathbb{R}$ pentru care vectorii $\bar{u} = (2m+1)\bar{i} + 3\bar{j}$ și $\bar{v} = -\bar{i} + \bar{j}$ sunt ortogonali. (9 pct.)
 - a) m = 0; b) m = 1; c) $m = -\frac{1}{2}$; d) $m = \frac{1}{2}$; e) m = -1; f) m = -2.
- 8. Valoarea expresiei $E = 2\cos 60^{\circ} \cdot \operatorname{ctg} 45^{\circ} \cdot \operatorname{tg} 30^{\circ} \cdot \sin 90^{\circ}$ este: (9 pct.)

a)
$$E = -\frac{\sqrt{3}}{3}$$
; b) $E = \frac{\sqrt{3}}{3}$; c) $E = 0$; d) $E = \frac{\sqrt{3}}{6}$; e) $E = \frac{\sqrt{2}}{2}$; f) $E = 1$.

- 9. Se dau vectorii $\bar{u} = \sqrt{3}\,\bar{i} \bar{j}$ și $\bar{v} = -\sqrt{3}\,\bar{i} + 2\bar{j}$. Calculați $||\bar{u} + \bar{v}||$. (9 pct.)
 - a) 0; b) 2; c) 1; d) 4; e) 3; f) $\sqrt{3}$.
- 10. Fie *n* numărul soluțiilor ecuației $\sin x + \cos x = \sqrt{2}$ care aparțin intervalului $\left[\frac{\pi}{4}, \frac{17\pi}{4}\right]$. Atunci: (9 pct.)

a)
$$n = 3$$
; b) $n = 5$; c) $n = 0$; d) $n = 2$; e) $n = 4$; f) $n = 1$.