Predictive Accuracy of Regression / Regression Trees

Data Mining Prof. Dawn Woodard School of ORIE Cornell University

Outline

- 1 Measuring Predictive Accuracy
 - Example: Model Selection in Linear Regression
- **2** Regression Trees
 - Definition
 - Training the Tree
 - Examples

Predictive Accuracy of Regression

So far we have discussed two different types of supervised learning:

- 1 Classification (categorical outcome)
- 2 Regression (continuous outcome)

Evaluating Accuracy:

- For classification we evaluated the accuracy of our method by calculating % misclassified in the validation or test data (or looking at false pos. and false neg. rates separately)
- For regression how might we measure predictive accuracy?

Predictive Accuracy of Regression

Often we measure predictive accuracy using the root mean square error on the validation/test data (smaller is better):

$$\mathsf{RMSE} = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (Y_i - \hat{Y}_i)^2}$$

where M is the # of test observations.

Alternative: Mean absolute error:

Model Selection for Linear Regression

Which predictor variables to include in the regression model?

Why is it not necessarily best to include all the available predictors?

Model Selection for Linear Regression

Recall the complexity / accuracy curve. How might "model complexity" be measured for our linear regression model?

Model Selection for Linear Regression

What's a good way to choose a set of predictors that yields high predictive accuracy (accuracy on unseen data such as test data)?

All Subsets Regression

- All Subsets Regression means that we compare all possible subsets of the predictors, and choose a model based on some criterion, like the one on the previous slide.
- What happens as the number of available predictors gets large?

Forward Stepwise Selection

Forward stepwise selection is an alternative:

Backward Stepwise Selection

Backward stepwise selection is similar:

Definition of Regression Trees

- Regression trees are a method for prediction of a continuous outcome (as for linear regression)
- they partition the space \mathbb{R}^p of the predictor vector (X_1, \dots, X_p) and predict a fixed value \hat{Y} on each of the partition sets.
 - In particular:

- These splits correspond to simple logical rules for prediction.
 - Example:

Definition of Regression Trees

A tree for predicting the price of used Toyota Corollas (SPB text):

Definition of Regression Trees

- Key: Regression trees are flexible enough to accurately approximate almost any relationship between predictors & outcome (by making the tree big enough)!
- Can the same predictor can appear in more than one split of the tree?

Training:

- Outcome: Y (continuous)
 Predictors: X₁,..., X_p with n observations in training data
- For a tree \mathcal{T} , the predicted value \hat{Y} in each leaf is taken to be:
- We want to learn the tree structure \mathcal{T} from the data, i.e.:

Define:

- |T| = # terminal nodes ("leaves") in tree T
- $\mathbf{m} = 1, ..., |T|$: terminal node index
- \blacksquare R_m : region in \mathbb{R}^p corresponding to terminal node m
- N_m : # training observations in R_m

Want a tree T that has low error on the training data, meaning low sum of squared error:

- The **predicted value** \hat{Y} for leaf m is called:
- The **residual sum of squares** (also called the "sum of squared errors") on the training data is:

We want a tree that is not too big, while having low RSS. Why?

We use a **criterion for picking a tree** that penalizes the size of the tree:

$$C_{\alpha}(T) = RSS(T) + \alpha |T|$$

for $\alpha > 0$

- But: cannot simply evaluate $C_{\alpha}(T)$ for all possible trees
 - Why?

lacktriangle Another difficulty: don't know what lpha to use

Pruning: removing a subtree

Solution:

Let $T \subseteq T_0$ be any tree that can be obtained from T_0 by "**pruning**" (removing a subtree)

- Instead of considering all trees, consider all trees $T \subseteq T_0$ where T_0 is a "full" tree that is good in some sense.
- e.g.: prune at (*)

Note: Pruning ALWAYS increases the RSS. Why?

Conversely, splitting a terminal node always decreases RSS.

Training a Tree

A full tree means that none of its terminal nodes can be split any farther because it either

■ We will obtain a "good" full tree as follows.

Growing the Tree

Growing the tree::

- 1. Start with the tree that has no splits (all observations are in the single terminal node)
- Split at the variable j and cut point s that yields the largest decrease in RSS(T)

3.

4. Repeat until obtaining a full tree T_0 .

Growing the Tree

Pruning the Tree

After growing the tree, we prune it back using "weakest-link" pruning.

The "weakest link" is the internal node that produces the smallest "per-node increase" in RSS(T) when pruned; continue until we get the single-node tree.

per-node increase
$$= \frac{\Delta \text{ in } RSS(T)}{\Delta \text{ in } |T|}$$
 $=$

Weakest-link pruning:

Weakest-link pruning:

- Start at T₀
- Prune weak link to get T(1)
- Prune weak link of T(1) to get T(2)
- Continue to get sequence of trees

$$T_0, T(1), T(2), ..., T(L)$$
, for some integer L

T(L) is the tree with a single terminal node.

Weakest-link pruning

For any α , one can show that

- there is a unique tree $T_{\alpha} \subseteq T_0$ that minimizes C_{α}
- the sequence of trees T_0 , T(1), T(2), ..., T(L) obtained from T_0 by weakest link pruning **must** contain T_α !

Weakest-link pruning

Now we have to choose **one** of these trees. We can use:

- RMSE on validation data
- RMSE from cross-validation

Summary

Summary: Tree training by "grow & prune"

- Have a criterion $C_{\alpha}(T)$ that combines
 - how accurate tree is on training data (RSS(T))
 - size |T| of the tree
- Instead of considering all possible trees (too many), consider only trees $T \subseteq T_0$ for some good full tree T_0
- Get T₀ by growing the tree, decreasing RSS(T) as much as possible at each step

Summary

Procedure:

- Grow tree
- Prune, obtaining T_0 , T(1), T(2), ..., T(L)
- Choose one of these trees by accuracy on validation data

Consider applying regression trees with p = 2 continuous predictors and a continuous outcome variable.

T/F: the following partition of the predictor space could be obtained using regression trees:

A: True; B: False

Here's another example of regression trees for p = 2 predictors:

Plots from Hastie, Tibshirani, and Freedman (2009).

For the same example, here's a perspective plot of \hat{Y} vs. X_1 and X_2 :

Plots from Hastie, Tibshirani, and Freedman (2009).

Now compare the surface of \hat{Y} vs. X_1 and X_2 , for a regression tree and for linear regression.

Plots from Rafael Irizarry's course notes.

Advantage(s) of regression trees over linear regression:

Advantage(s) of linear regression over regression trees:

