Systèmes Numériques

Transformée en ${\mathcal Z}$

K. Boudjelaba

SN - 2

Table des matières

Introduction à la commande numérique Signaux numériques et échantillonnés

Chaine de traitement numérique

Transformée en ${\mathcal Z}$

Introduction à la commande numérique

Problématique de l'Asservissement

Imposer un comportement prédéterminé à une grandeur physique :

- ► Maintien à une valeur constante (régulation),
- ► Evolution suivant une loi prédéterminée (poursuite).

Objectifs

Elaborer, synthétiser le signal de commande analogique ou **numérique** du processus que l'on veut contrôler par des filtres analogiques ou **numériques**

Généralités sur l'asservissement

Exemple du régulateur de vitesse

Dans un véhicule, le régulateur de vitesse permet de maintenir le véhicule à une vitesse de consigne.

► **Système**: Un véhicule

► Grandeur à maintenir: la vitesse

► Commande: l'accélérateur

Certains paramètres extérieurs vont influencer la vitesse du véhicule \rightarrow nécessité de mettre en place un dispositif pour corriger l'influence des perturbations.

Figure 1: Commande de la vitesse d'un véhicule

Généralités sur l'asservissement

Le régulateur de vitesse

La régulation nécessite la mise en place

- d'un capteur de vitesse,
- → d'un comparateur de vitesse (consigne vs mesure),
- d'un correcteur, permettant de modifier la commande en fonction de la sortie du comparateur.

Figure 2: Mise en place d'un régulateur de vitesse

Généralités sur l'asservissement-Schéma Fonctionnel

- ightharpoonup e(t): signal d'entrée ou consigne,
- $\epsilon(t) = e(t) m(t)$: signal d'erreur fourni par le comparateur,
- $u_c(t)$: signal de commande,
- \triangleright s(t): signal de sortie,
- ightharpoonup m(t): signal de sortie du capteur ou mesure,
- \blacktriangleright b(t): perturbation du bruit.

Asservissement numérique

Structure de Base

Commande numérique

Elaborer, synthétiser le signal de commande du processus que l'on souhaite contrôler par des moyens numériques (processeur, microcontrôleur, DSP, ...)

Asservissement numérique

Composants

- 1. Convertisseur Analogique-Numérique (CAN):
 - Fonctionne à la cadence T_e s,
 - ► Nécessite un filtre avant la conversion
- 2. Convertisseur Numérique-Analogique (CNA):
 - Fonctionne à la cadence T_e s,
 - ► Nécessite un bloqueur avant le processus physique
- 3. Algorithme de traitement:
 - ► Manipule des suites de nombres
 - ► Elabore la loi de commandce $u_c[n]$.
- 4. Element de comparaison:
 - ► Comparaison réalisée de manière algorithmique: $\varepsilon[n] = e[n] m[n]$.

Asservissement numérique

Avantages de la commande numérique

- Souplesse d'emploi remarquable:
 - modification simplifiée des correcteurs,
 - ▶ possibilité de commande à distance (via le réseau),
 - possibilité de stockage des informations.
- Système économique:
 - poids, encombrement et consommation électrique faibles,
 - prix du matériel.
- Performances:
 - Algorithme moins sensible aux perturbations extérieures,
 - Pas de vieillissement des composants.

Inconvénients de la commande numérique

- Dégradation des performances dynamiques,
- Calibration des correcteurs moins intuitive que pour les procédés analogiques.

Signaux numériques et échantillonnés

Signaux de Référence

► Impulsion unité:

$$\delta[n] = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{ailleurs} \end{cases}$$

► Echelon unité:

$$u[n] = \begin{cases} 1 & \text{si } n \ge 0 \\ 0 & \text{si } n < 0 \end{cases}$$

► Rampe unité

$$r[n] = \begin{cases} nT_e & \text{si } n \ge 0\\ 0 & \text{si } n < 0 \end{cases}$$

Chaine de traitement numérique

Problématique

- Signaux à traiter généralement de type analogique (signal électrique obtenu par un capteur représentatif d'une grandeur physique)
- ► Traitement à réaliser de manière numérique.

Méthodologie

- ▶ Nécessité d'une conversion analogique-numérique (CAN),
- ▶ Nécessité d'une conversion numérique-analogique (CNA).

Échantillonnage

Définition

L'échantillonnage est l'opération qui consiste à mesurer un signal en capturant des valeurs à intervalles réguliers.

L'intervalle de mesure s'appelle la période d'échantillonnage, notée Te. La question est de savoir si les échantillons sont représentatifs du signal initial ou pas ?

Théorème de Nyquist-Shannon

Un signal est correctement représenté à partir de ses échantillons, si la fréquence d'échantillonnage f_e $(=1/T_e)$ est supérieure à deux fois la fréquence maximale f_{max} contenue dans ce signal. \Rightarrow $f_e \ge 2f_{max_{signal}}$

Principe de l'échantillonneur idéal

Prélève une suite des valeurs du signal analogique toutes les T_e secondes :

$$e_b(t) = \sum_{n=-\infty}^{\infty} e(t)\delta(t - nT_e)$$

► $T_e = 1/F_e$ désigne la période d'échantillonnage (en s),

Figure 3: Signal Echantillonné

Théorème de Shannon

Pour pouvoir reconstruire le signal, il faut que

$$F_e \ge 2f_{max} \tag{1}$$

► f_{max} désigne la fréquence maximale du signal. Ex: Pour les signaux audio, $f_{max} \approx 20 \text{kHz}$ et donc $F_e \ge 40 \text{kHz}$.

Figure 4: Signal Echantillonné avec $F_e \ge 2f_{max}$

Transformée en ${\mathcal Z}$

Transformée en \mathcal{F}

Problématique

Analyser et comprendre l'influence d'un système linéaire et invariant dans le temps (SLIT), à temps discret, sur le signal numérique d'entrée e[n].

► Problématique identique à l'analyse des systèmes à temps continu . . . mais transposée aux systèmes à temps discret.

Méthodologie

Figure 5: SLIT à temps continu

Figure 6: SLIT à temps discret

Utilisation de la transformée de Laplace. ► Utilisation de la transformée en Z.

Rappels

Signal numérique

Un signal numérique (ou signal à temps discret) s[n] est une suite numérique, c'est à dire une liste ordonnée de nombres : s[0] = 1, s[1] = 5, s[2] = 4 ...

- Expression analytique d'un signal numérique : Signal à tracer s[n] = 3n + 1 si $n \ge 1$ et s[0] = 0.5
- ▶ Relation de récurrence (équation aux différences) : Signal à tracer s[n] = 4s[n-1] + 5 si $n \ge 1$ et s[0] = 1
- ► Représentation graphique :

Définitions

La transformée en $\mathcal Z$ est un outil mathématique, utilisée en automatique et en traitement du signal (c'est l'équivalent discret de la transformée de $\mathscr L$ aplace).

Transformée en ${\mathcal Z}$ mono-latérale

La transformée en ${\mathcal Z}$ d'un signal numérique x[n] est définie par

$$X(z) \triangleq TZ[x[n]] = \sum_{n=0}^{+\infty} x[n]z^{-n}$$

- ▶ $z \in \mathbb{C}$ est la variable de la transformée en \mathcal{Z} .
- ► $X(z) \in \mathbb{C}$ est une fonction complexe.
- lacktriangle Attention, la transformée de ${\mathcal Z}$ ne converge pas toujours.

Transformée en ${\mathcal Z}$

$$X(z) \triangleq TZ[x[n]] = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

Linéarité

Soit $s_1[n]$ et $s_2[n]$ deux signaux numériques dont les transformées en \mathcal{Z} sont respectivement données par $S_1(z) \triangleq TZ[s_1[n]]$ et

$$S_2(z) \triangleq TZ[s_2[n]].$$

La transformée en ${\mathcal Z}$ est linéaire :

$$S(z) \triangleq TZ[a.s_1[n] + b.s_2[n]] = a.S_1(z) + b.S_2(z)$$

Linéarité

Soit $s_1[n]$ et $s_2[n]$ deux signaux numériques dont les transformées en \mathcal{Z} sont respectivement données par $S_1(z) \triangleq TZ[s_1[n]]$ et

$$S_2(z) \triangleq TZ[s_2[n]].$$

La transformée en ${\mathcal Z}$ est linéaire :

$$S(z) \triangleq TZ \Big[a.s_1[n] + b.s_2[n] \Big] = a.S_1(z) + b.S_2(z)$$

Retard

Soit x[n] = s[n-k] un signal numérique dont la transformée en \mathcal{Z} est donnée par S(z) = TZ[s[n]].

Retarder un signal de k échantillons $(k \in \mathbb{N})$ revient à multiplier sa transformée en \mathcal{Z} par z^{-k} :

$$X(z) = TZ[s[n-k]] = z^{-k}S(z)$$

Convolution

Soit $s_1[n]$ et $s_2[n]$ deux signaux numériques dont les transformées en \mathcal{Z} sont respectivement données par $S_1(z) \triangleq TZ[s_1[n]]$ et

$$S_2(z) \triangleq TZ[s_2[n]].$$

Soit le produit de convolution de $s_1[n]$ et $s_2[n]$ définit par :

$$s[n] = s_1[n] \otimes s_2[n] \triangleq \sum_{\ell=0}^{n} s_1[n-\ell] s_2[\ell] = \sum_{\ell=0}^{n} s_1[\ell] s_2[n-\ell]$$
 (2)

Convoluer deux signaux numériques revient à multiplier leur transformée en $\ensuremath{\mathcal{Z}}$:

$$TZ[s[n]] = TZ[s_1[n] \otimes s_2[n]] = TZ[s_1[n]] \times TZ[s_2[n]]$$
$$S(z) = S_1(z) \times S_2(z)$$

Soit s[n] un signal numérique dont les transformées en \mathcal{Z} est donnée par $S(z) \triangleq TZ[s[n]]$.

Théorème de la valeur initiale

La valeur initiale s'obtient à partir de S(z) via l'expression

$$s[0] = \lim_{z \to \infty} S(z)$$

Théorème de la valeur finale

La valeur finale s'obtient à partir de S(z) via l'expression

$$s[\infty] = \lim_{z \to 1} (z - 1)S(z)$$

Signal	Représentation graphique	TZ
	0.8 0.6 0.6 0.4 0.2	
δ[n]	2 4 6 8 n	$\delta(z)=1$
$\delta[n-k]$	□ 0.8	$\delta(z) = z^{-k}$
	1 0.6 3 0.6 0.4 0.2	
<i>u</i> [<i>n</i>]	2 4 6 8 n	$U(z) = \frac{1}{1-z^{-1}}$

Signal	TZ	
n.u[n]	$\frac{z^{-1}}{(1-z^{-1})^2}$	
$n^2.u[n]$	$\frac{z^{-1}(1+z^{-1})}{\left(1-z^{-1}\right)^3}$	
a ⁿ .u[n]	$\frac{1}{1 - az^{-1}}$	
$e^{-\alpha n}.u[n]$	$\frac{1}{1 - e^{-\alpha}z^{-1}}$	
$sin(\omega n).u[n]$	$\frac{z^{-1}\sin(\omega)}{1-2z^{-1}\cos(\omega)+z^{-2}}$	
$\cos(\omega n).u[n]$	$\frac{1 - z^{-1}\cos(\omega)}{1 - 2z^{-1}\cos(\omega) + z^{-2}}$	

Calcul des transformées en Z - Signaux de Référence

Impulsion unité décalée

Echelon unité u[n]

Rampe unité $r[n] = nT_e$

Transformée en $\mathcal Z$:

$$S(z) = \sum_{n=0}^{\infty} \delta[n-k]z^{-n} = z^{-k}$$

Transformée en ${\mathcal Z}$:

$$U(z) = \sum_{n=0}^{\infty} u[n]z^{-n} = \sum_{n=0}^{\infty} z^{-n} = \frac{1}{1 - z^{-1}}$$

Transformée en ${\mathcal Z}$:

$$R(z) = \sum_{n=0}^{\infty} r[n]z^{-n} = \frac{zT_e}{(z-1)^2}$$

Méthode de la "victime"

Application de la définition générale basée sur le calcul d'une somme

Méthode du "petit futé"

- Utilisation de tables de TZ pré-calculées
- ▶ ou ...
 - 1. Utilisation des propriétés de la TZ (linéarité / retard)
 - 2. Utilisation de tables de TZ pré-calculées.

Exercice

Déterminer la transformée en ${\mathcal Z}$ du signal suivant :

Exercice

Déterminer la transformée en ${\mathcal Z}$ du signal suivant :

Solution

En remarquant que s[n] = u[n] + 2u[n-4], le résultat devient trivial

$$S(z) = \frac{1 + 2z^{-4}}{1 - z^{-1}}$$

Nous pouvons vérifier le résultat aux limites en utilisant le théorème de la valeur initiale / finale $(s[0] = 1 \text{ et } s[\infty] = 3)$.

Autre intérêt de la transformée en ${\mathcal Z}$

La transformée en ${\mathcal Z}$ permet de déterminer la solution d'une équation aux différences (Exp. Déterminer la réponse des filtres numériques à des excitations données).

Exemple 1

Calculer la TZ du signal numérique défini par :

$$s[0]=1,\ s[1]=2,\ s[2]=3,\ s[n\geq 3]=0.$$

Exemple 2

Déterminer la transformée en \mathcal{Z} de la fonction s[n] = 2n - 3

Autre intérêt de la transformée en ${\mathcal Z}$

La transformée en $\mathcal Z$ permet de déterminer la solution d'une équation aux différences (Exp. Déterminer la réponse des filtres numériques à des excitations données).

Exemple 1

Calculer la TZ du signal numérique défini par :

$$s[0] = 1$$
, $s[1] = 2$, $s[2] = 3$, $s[n \ge 3] = 0$.

On applique la formule : $S(z) = \sum_{n=0}^{+\infty} s[n]z^{-n}$

$$\Rightarrow S[z] = s[0]z^{-0} + s[1]z^{-1} + s[2]z^{-2} = 1 + 2z^{-1} + 3z^{-2} = \frac{z^2 + 2z + 3}{z^2}$$

Exemple 2

Déterminer la transformée en \mathcal{Z} de la fonction s[n] = 2n - 3

$$\Rightarrow s[n] = 2r[n] - 3u[n]$$

$$\Rightarrow S(z) = 2\frac{z}{(z-1)^2} - 3\frac{z}{z-1}$$

Calcul de la FT en z à partir de l'équation aux différences

On considère l'équation aux différences reliant le signal d'entrée e[n] au signal de sortie s[n] d'un système numérique :

$$a_0s[n] + a_1s[n-1] + \dots + a_ms[n-m] = b_0e[n] + b_1e[n-1] + \dots + b_\ell e[n-\ell]$$

On applique la transformée en ${\mathcal Z}$ à l'équation et en utilisant la formule du retard :

$$a_{0}S(z) + a_{1}z^{-1}S(z) + \dots + a_{m}z^{-m}S(z) = b_{0}E(z) + b_{1}z^{-1}E(z) + \dots + b_{\ell}z^{-\ell}E(z)$$

$$\Rightarrow \left(a_{0} + a_{1}z^{-1} + \dots + a_{m}z^{-m}\right)S(z) = \left(b_{0} + b_{1}z^{-1} + \dots + b_{\ell}z^{-\ell}\right)E(z)$$

$$\Rightarrow F(z) = \frac{S(z)}{E(z)} = \frac{b_{0} + b_{1}z^{-1} + \dots + b_{\ell}z^{-\ell}}{a_{0} + a_{1}z^{-1} + \dots + a_{m}z^{-m}}$$

Exemple

$$s(n) - 2s(n-1) = 3e(n)$$

Calcul de la FT en z à partir de l'équation aux différences

On considère l'équation aux différences reliant le signal d'entrée e[n] au signal de sortie s[n] d'un système numérique :

$$a_0s[n] + a_1s[n-1] + \dots + a_ms[n-m] = b_0e[n] + b_1e[n-1] + \dots + b_\ell e[n-\ell]$$

On applique la transformée en $\ensuremath{\mathcal{Z}}$ à l'équation et en utilisant la formule du retard :

$$a_{0}S(z) + a_{1}z^{-1}S(z) + \dots + a_{m}z^{-m}S(z) = b_{0}E(z) + b_{1}z^{-1}E(z) + \dots + b_{\ell}z^{-\ell}E(z)$$

$$\Rightarrow \left(a_{0} + a_{1}z^{-1} + \dots + a_{m}z^{-m}\right)S(z) = \left(b_{0} + b_{1}z^{-1} + \dots + b_{\ell}z^{-\ell}\right)E(z)$$

$$\Rightarrow F(z) = \frac{S(z)}{E(z)} = \frac{b_{0} + b_{1}z^{-1} + \dots + b_{\ell}z^{-\ell}}{a_{0} + a_{1}z^{-1} + \dots + a_{m}z^{-m}}$$

Exemple

$$s(n) - 2s(n-1) = 3e(n)$$

$$\Rightarrow S(z) - 2z^{-1}S(z) = 3E(z) \Rightarrow (1 - 2z^{-1})S(z) = 3E(z)$$

$$\Rightarrow F(z) = \frac{S(z)}{E(z)} = \frac{3}{1 - 2z^{-1}} = \frac{3z}{z - 2}$$

Pôles et zéros d'une fonction de transfert en z

Soit
$$F(z) = \frac{N(z)}{D(z)}$$

Les zéros de F(z) sont les racines du numérateur N(z) = 0Les pôles de F(z) sont les racines du dénominateur D(z) = 0

Exemple

$$F(z) = \frac{N(z)}{D(z)} = \frac{3}{1 - 2z^{-1}} = \frac{3z}{z - 2}$$
. Les zéros : $z = 0$ et les pôles : $z = 2$

Détermination de l'équation aux différences à partir de la fonction de transfert en ${\mathcal Z}$

Soit la fonction de transfert $F(z) = \frac{3z}{z-2}$

Pôles et zéros d'une fonction de transfert en z

Soit
$$F(z) = \frac{N(z)}{D(z)}$$

Les zéros de F(z) sont les racines du numérateur N(z) = 0Les pôles de F(z) sont les racines du dénominateur D(z) = 0

Exemple

$$F(z) = \frac{N(z)}{D(z)} = \frac{3}{1 - 2z^{-1}} = \frac{3z}{z - 2}$$
. Les zéros : $z = 0$ et les pôles : $z = 2$

Détermination de l'équation aux différences à partir de la fonction de transfert en ${\mathcal Z}$

Soit la fonction de transfert
$$F(z) = \frac{3z}{z-2}$$

On exprime
$$F(z)$$
 en puissance négative de z : $F(z) = \frac{3}{1 - 2z^{-1}}$

$$\Rightarrow \frac{S(z)}{E(z)} = \frac{3}{1 - 2z^{-1}} \Rightarrow (1 - 2z^{-1})S(z) = 3E(z) \Longrightarrow s[n] - 2s[n - 1] = 3e[n]$$

Réponse en fréquence

La réponse fréquentielle d'un système discret peut être calculée en remplaçant z par $z=e^{\mathrm{j}\omega}=e^{\mathrm{j}2\pi f}$ dans la fonction de transfert F(z).

Exemple

Déterminer la réponse en fréquence du système discret défini par cette

fonction de transfert :
$$F(z) = \frac{1}{1 - 0.5z^{-1}}$$

Réponse en fréquence

La réponse fréquentielle d'un système discret peut être calculée en remplacant z par $z = e^{j\omega} = e^{j2\pi f}$ dans la fonction de transfert F(z).

Exemple

Déterminer la réponse en fréquence du système discret défini par cette

fonction de transfert :
$$F(z) = \frac{1}{1 - 0.5z^{-1}}$$

fonction de transfert :
$$F(z) = \frac{1}{1 - 0.5z^{-1}}$$

$$\Rightarrow F(j\omega) = \frac{1}{1 - 0.5e^{-j\omega}} = \frac{1}{1 - 0.5e^{-j2\pi f}} = F(j2\pi f)$$

$$\Rightarrow F(j2\pi f) = \frac{1}{1 - 0.5\cos(2\pi f) - 0.5j\sin(2\pi f)}$$

$$\Rightarrow |F(f)| = \sqrt{\frac{1}{1 - \cos(2\pi f) + 0.25}}$$

$$\Rightarrow |F(f)| = \sqrt{\frac{1}{1 - \cos(2\pi f) + 0.25}}$$
Et $\arg[F] = \arctan\left(\frac{1 - 0.5\cos(2\pi f)}{-0.5\sin(2\pi f)}\right)$

Exercice

On veut créer et tracer, sous Python, le signal analogique défini par : $s(t) = \cos(2\pi*a*(1-t^2))$ sur l'intervalle [0,0.1]. Avec a = 20000. Á cet effet, ce signal doit être échantillonné car l'ordinateur (Python aussi) travaille avec des signaux numériques. Donc, on prélève une valeur de ce signal toutes les T_e secondes, en respectant le théorème de Shannon

Indice : si on prélève N = 2000 échantillons sur l'intervalle [0,0.1], la condition de Shannon est respectée.

 \Rightarrow $T_e = 0.1/N$ et $f_e = 1/T_e$ et on doit prélever la valeur de s(t) pour chaque instant $t[k] = k * T_e$ avec $k = 0, 1 \dots N-1$

- ► Tracer ce signal s(t[k]) sur l'intervalle [0,0.1]
- ▶ Tracer ce signal s(t[k]) sur l'intervalle [0.08,0.1] afin de visualiser les détails de cette partie qui contient les hautes fréquences de ce signal
- Tracer le spectre de ce signal échantillonné en utilisant la transformée de Fourier discrète

Exercice (suite)

On parle de sous-échantillonnage lorsque le critère de Shannon n'est pas vérifié. Nous allons nous placer dans ce cas en réduisant la fréquence d'échantillonnage (nombre d'échantillons prélevés). On prend N=300.

- ► Tracer ce signal s(t[k]) sur l'intervalle [0,0.1]
- ▶ Tracer ce signal s(t[k]) sur l'intervalle [0.08,0.1] afin de visualiser les détails de cette partie qui contient les hautes fréquences de ce signal
- ► Tracer le spectre de ce signal échantillonné en utilisant la transformée de Fourier