EECS 4020 Algorithms

HW1

I. Getting Started

- Let A[1..n] be an array of distinct numbers
- We say

```
(i, j) is an inversion if i < j and A[i] > A[j]
```

Q1(a)

How many inversions in the array below?

(2, 3, 8, 6, 1)

Q1(a)

How many inversions in the array below?

Ans: 5

Q1(b)

Which permutation of (1, 2, ..., n) has the most # of inversions?

Ans: (n, n-1, ..., 2, 1)

Q1(c)

What is the relationship between running time of insertion sort and # inversions?

Ans: # swaps in insertion sort = # inversions

- running time of insertion sort
 - = O(n + # inversions)

Q1(d)

How to count # inversions in O(n log n) time?

Ans: Let A[1..n] be an array
 If 1st half of A is increasing, and
 2nd half of A is also increasing
 → we can count # inversions in O(n) time

Q1(d)

Ans: To count # inversions in general, we modify MergeSort as follows:

- 1. Sort 1st half, count # inversions within
- 2. Sort 2nd half, count # inversions within
- 3. Merge 1st half and 2nd half, count # inversions between them

An increasing array is modified by moving its left part (of unknown length) to its right

How to find the min item in O(log n) time?

Ans: Let B[1..n] be the array after the movement If B[1] < B[n] the array is not moved Else, at any location p,

- if $B[p] < B[1] \rightarrow$ min item is on p's left side
- Else,
 min item is on p's right side

This allows us to perform binary search

Consider the code below:

```
ComputeCount()

1. Input a positive integer n;

2. Set count = 0;

2. for j = 1, 2, ..., n

3. if j is a factor of n

4. { Update count to become 1 - count; }

5. Output count;
```

What does it do? How to rewrite to run faster?

```
ComputeCount()

1. Input a positive integer n;

2. Set count = 0;

2. for j = 1, 2, ..., n

3. if j is a factor of n

4. { Update count to become 1 - count; }

5. Output count;
```

Ans: Check if n is a square. How to run faster?

```
ComputeCount()

1. Input a positive integer n;

2. Set count = 0;

2. for j = 1, 2, ..., n

3. if j is a factor of n

4. { Update count to become 1 - count; }

5. Output count;
```

II. Growth of Functions

Given that

$$f(n) = a_m n^m + a_{m-1} n^{m-1} + \ldots + a_1 n + a_0$$
, where $a_m > 0$.

Show that

$$f(n) = \Theta(n^m)$$

Ans:

Let \mathbf{A} denote $|a_0| + |a_1| + \ldots + |a_{m-1}|$ Observe that

- $f(n) \ge (a_m/2) n^m$ when $n > 2A/a_m$
- $f(n) \le (a_m + A) n^m$

Show that

$$k \ln k = \Theta(n) \rightarrow k = \Theta(n/\ln n)$$

Ans:

- $cn < k \ln k < Cn$ for some c and C in long run
- Then, $cn < k^2$ and k < Cn
- Also, $\operatorname{cn}/\ln k < \operatorname{cn}/\ln k$
 - $\rightarrow \quad \operatorname{cn} / \ln \left(\operatorname{Cn} \right) < \quad k \quad < \operatorname{Cn} / \ln \left(\operatorname{cn} \right)^{1/2}$

What's wrong with this?

"Since
$$n = O(n)$$
, and $2n = O(n)$, ..., we have

$$\sum_{k=1}^{n} k \cdot n = \sum_{k=1}^{n} O(n) = O(n^{2}).$$

Is the following true?

$$O(f(n)) - O(f(n)) = 0.$$

Classify the following functions in increasing order:

e^n	$(\lg n)^{\lg n}$	$(\sqrt{2})^{\lg n}$	n^2	n!	$(\lg n)!$
$4^{\lg n}$	(n + 1)!	$n \lg n$	n^3	$\lg^2 n$	$\lg(n!)$
$\sqrt{\lg n}$	$2^{\sqrt{2 \lg n}}$	2^{2^n}	$n^{1/\lg n}$	$\ln \ln n$	$n \cdot 2^n$
n	2^n	$n^{\lg\lg n}$	$\ln n$	1	$2^{\lg n}$

 $2^{2^{n}}$

III. Solving Recurrences

Solve the recurrence:

$$T(n) = T(n-1) + T(n/2) + n$$

By brute force expansion, we see that:

- $T(n) < n T(n/2) + n^2$
- T(n) > (n/2)T(n/4)

$$\rightarrow$$
 $T(n) = n^{\Theta(\log n)}$

Solve the recurrence:

$$T(n) = T(n/3) + T(2n/3) + n$$

Ans: $T(n) = \Theta(n \log n)$

IV. Heapsort

K sorted lists, total length = n

How to merge them into one sorted list?

Ans: Two methods

- (1) Use a heap of size O(K)
- (2) Pair up and merge; then recursion

- A list with n nearly-sorted numbers
- Each located at most d pos from its correct pos

How to sort the list?

Ans: Three methods

- (1) Use a heap of size O(d)
- (2) Create O(d) sorted list, then merge
- (3) O(n/d) rounds of sorting, each round sorts O(d) numbers