

## 12.Binary Search Trees

Yu-Shuen Wang, CS, NCTU

## Non-binary and binary trees



## **Full binary tree**



For a node i, it's left child index is 2i, it's right child index is 2i + 1, and it's parent index is  $\lfloor i/2 \rfloor$ 

## **Complete binary tree**



## 12.1 What is a binary search tree?

#### Binary-search property.

Let x be a node in a binary search tree. If y is a node in the left subtree of x, then  $\text{key}[y] \leq \text{key}[x]$ . If y is a node in the right subtree of x, then  $\text{key}[x] \leq \text{key}[y]$ .

## **Binary search Tree**



#### Tree traversal

## Inorder tree walk (LVR)



#### Inorder tree walk

```
INORDER_TREE_WALK(x)

1 if x \neq nil

2 then INORDER_TREE_WALK(left[x])

3 print key[x]

4 INORDER_TREE_WALK(right[x])
```

### Theorem 12.1

If x is the root of an n-node subtree, then the call INORDER-TREE-WALK(x) takes  $\Theta(n)$  time.

## Preorder tree walk (VLR)



## Preorder tree walk (VLR)

```
PREORDER_TREE_WALK(x)
```

- 1 print key[x]
- 2 if  $x \neq nil$
- 3 **then** PREORDER\_TREE\_WALK(*left*[x])
- 4 PREORDER\_TREE\_WALK(right[x])

## Postorder tree walk (LRV)



## Postorder tree walk (LRV)

```
POSTORDER_TREE_WALK(x)
```

- 1 if  $x \neq nil$
- 2 **then** POSTORDER\_TREE\_WALK(*left*[x])
- 3 POSTORDER\_TREE\_WALK(*right*[x])
- 4 print *key*[x]

# 12.2 Querying a binary search tree



## TREE\_SEARCH(x,k)

```
TREE_SEARCH(x,k)

1 if x = nil or k = key[x]

2 then return x

3 if k < key[x]

4 then return TREE_SEARCH(left[x],k)

5 else return TREE_SEARCH(right[x],k)
```

## ITERATIVE\_SEARCH(x,k)

```
ITERATIVE_SEARCH(x,k)

1 While x \neq nil or k \neq key[x]

2 do if k < key[x]

3 then x \leftarrow left[x]

4 else x \leftarrow right[x]

5 return x
```

#### MAXIMUM and MINIMUM

- TREE\_MINIMUM(x)
  - 1 while  $left[x] \neq NIL$
  - 2 **do**  $x \leftarrow left[x]$
  - 3 return x
- TREE\_MAXIMUM(x)
  - 1 while  $right[x] \neq NIL$
  - 2 **do**  $x \leftarrow right[x]$
  - 3 return x



## SUCCESSOR and PREDECESSOR

#### TREE\_SUCCESSOR

- 1 if  $right[x] \neq nil$
- 2 then return TREE\_MINIMUM(right[x])
- 3  $y \leftarrow p[x]$
- 4 while  $y \neq nil$  and x = right[y]
- 5 do  $x \leftarrow y$
- 6  $y \leftarrow p[y]$
- 7 return y



Chapter 12

## Quiz:

Write the sudo-codes of TREE\_PREDECESSOR

### Theorem 12.2

The dynamic-set operations, SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR can be made to run in O(h) time on a binary search tree of height h.

## 12.3 Insertion and deletion

#### Inserting an item with key 13 into a binary search tree



#### Insertion

#### Tree-Insert(T,z)

```
1 y \leftarrow NIL
2 x \leftarrow root[T]
    while x \neq NIL
        do y \leftarrow x
              if key[z] < key[x]
                then x \leftarrow left[x]
                else x \leftarrow right[x]
8 p[z] \leftarrow y
```

unsuccessful search

9 **if** 
$$y = NIL$$

tree T was empty

- 10 then  $root[T] \leftarrow z$
- 11 else if key[z] < key[y]  $\triangleright$  link to child
- 12 then  $left[y] \leftarrow z$
- 13 else  $right[y] \leftarrow z$

Chapter 12

#### Deletion: z has no children



#### Deletion: z has only one child



#### Deletion: z has two children



#### Tree-Delete(T,z)

- 1 **if** left[z] = NIL **or** right[z] = NIL **one** or no child
- 2 then  $y \leftarrow z$
- 3 **else**  $y \leftarrow \text{Tree-Successor}(z)$  **b** two children
- 4 **if**  $left[y] \neq NIL$
- ► set x to be y's child
- 5 then  $x \leftarrow left[y]$
- 6 **else**  $x \leftarrow right[y]$
- 7 **if**  $x \neq NIL$

- ▶ if at least one child
- 8 then  $p[x] \leftarrow p[y]$
- connect the child to its parent



9 **if** p[y] = NIL

y is root

10 then  $root[T] \leftarrow x$ 

y will be deleted, x becomes root

- 11 **else if** y = left[p[y]]
- 12 **then**  $left[p[y]] \leftarrow x$

connect parent to child

- 13 **else**  $right[p[y]] \leftarrow x$
- 14 if  $y \neq z$
- 15 **then**  $key[z] \leftarrow key[y]$
- copy y's satellite data into z
- 17 return y



#### Theorem 12.3

The dynamic-set operations, INSERT and DELETE can be made to run in O(h) time on a binary search tree of height h.