- 1 supplementary information
- 2
- $3\,$ $\,$ A novel type bacterial flagellar motor that can use divalent cations as a coupling ion
- 4 Riku Imazawa, Yuka Takahashi, Wataru Aoki, Motohiko Sano and Masahiro Ito

Fig. S1. Effect of lower concentration of divalent cations on swimming speed of *Paenibacillus* sp. TCA20, *E. coli*, and *B. pseudofirmus* OF4. Swimming speeds of *Paenibacillus* sp. TCA20, *E. coli*, and *B. pseudofirmus* OF4 cells were measured in 30 mM Tris-HCl containing less than 1 mM CaCl₂ (A), MgCl₂ (B), or SrCl₂ (C) concentrations. The results represent the average swimming speed of 30 independent cells of three independent experiments. The error bars indicate standard deviations.

Table S1. Bacterial strains and plasmids used in this study.

Strains or plasmid	Description	Source or reference
Strain		
Escherichia coli		
	F ⁻ mcrAΔ1 (mrr-hsd RMS-mcrBC) Φ80dlacZ	
DH5αMCR	$\Delta(lacZYAargF)~U169~deoR~recA1~endA1$	Stratagene
	supE44 λthi-1 gyr-496 relA1	
Paenibacillus sp.		
TCA20	Wild type	This study
Bacillus pseudofirmus		
OF4	Wild type	(1)
Bacillus subtilis		
BR151MA	lys3 trpC2 (wild type)	(2)
ΔΑΒΔΡS	lys3 trpC2 ΔmotAB ΔmotPS	(3)
BS-AB	Δ AB Δ PS <i>lacA</i> ::P _{xylA} -motAB from BR151MA	(4)
BS-PS	\triangle AB \triangle PS <i>lacA</i> ::P _{xylA} -motPS from BR151MA	(4)
OF4PS	Δ AB Δ PS <i>lacA</i> ::P _{xylA} -motPS from OF4	This study
TCA-AB1	Δ AB Δ PS <i>lacA</i> ::P _{xylA} -motAB1 from TCA20	This study
TCA-AB2	\triangle AB \triangle PS <i>lacA</i> ::P _{xylA} -motAB2 from TCA20	This study
ΔΑΒΡSΔΚQ	$\Delta AB\Delta PS \Delta ykoK \Delta yfjQ$	This study
ΔΔTCA-AB1	\triangle ABPS \triangle KQ <i>lacA</i> ::P _{xylA} -motAB1 from TCA20	This study
Plasmid		
pGEM-7zf(+)	Cloning vector; Ap ^R	Promega
pAX01	$lacA$ integration vector with Em^R gene and P_{xylA}	(5)
CEM AD1	promoter upstream of multiple cloning site	771. · 1
pGEM-AB1	pGEM-7zf(+) + $motAB1$ from TCA20	This study
pGEM-AB2	pGEM-7zf(+) + $motAB2$ from TCA20	This study
pAX-P _{xylA} -AB1	$pAX01 + P_{xylA}$ -motAB1 from TCA20	This study
pAX-P _{xylA} -AB2	$pAX01 + P_{xylA}$ -motAB2 from TCA20	This study
pUC18Tc	Cloning vector, Ap ^R ::Tc ^R	(3)
pUC18Tc-∆ykoK	pUC18Tc+ΔykoK fragment	This study
pUC18Tc-∆yfjQ	pUC18Tc+ $\Delta yfjQ$ fragment	This study

3 Table S2. Oligonucleotides used in this study.

Primer	Sequence (5'→3') ^a	Accession number and
DI Im at A D.1. Ca all E		corresponding sequence b
PUmotAB1-SacII-F	gttcccgCGGattatactcggttcatg	BBIW01000007.1
		(13736-13762)
PUmotAB1-SacII-R	ccatcCcgcGGtaaaaatcaggatgg	BBIW01000007.1
		(<u>15458-15483</u>)
PUmotAB2-SacII-F	aacCCgCggatatcttgaaaggattcag	BBIW01000023.1
		(33114-33130)
PUmotAB2-SacII-R	caaagccGcGGacaggattggaggc	BBIW01000023.1
		(<u>34800-34824</u>)
BS-YkoK-CM-1	GAAATTTCCGCAAAAGATGGACG	CP010052.1
	C	(1395250-1395273)
BS-YkoK-CM-2	GGCTCGCAGTTGAGACGGACGTA	CP010052.1
	CCTCCTCTACGGAGACG	(<u>1395998-1396017</u>)
		(<u>1397391-1397410</u>)
BS-YkoK-CM-3	CGTCTCCGTAGAGGAGGTACGTC	CP010052.1
	CGTCTCAACTGCGAGCC	(1395998-1396017)
		(1397391-1397410)
BS-YkoK-CM-4	CGGTATTGTCCGTTTTGAACCG	CP010052.1
		(<u>1398073-1398094</u>)
BS-YfjQ-CM-1	CGAACATGAGGACGTTTTGCACG	CP010052.1
	G	(<u>873101-873124</u>)
BS-YfjQ -CM-2	GGCTTACAACAAAAAAAGAACCCT	CP010052.1
	CCACCTGCCATTATATC	(872323-872342)
		(871322-871340)
BS-YfjQ -CM-3	GATATAATGGCAGGTGGAGGGTT	CP010052.1
	CTTTTTGTTGTAAGCC	(<u>872323-872342</u>)
		(<u>871322-871340</u>)
BS-YfjQ -CM-4	GCCCTAAAGACATTTTGAAGCCG	CP010052.1
		(870568-870546)

^a Nucleotides that were added to introduce point mutations are shown by a capital letter. Minus

6

⁵ strand is underlined.

9 References

2122

Guffanti AA, et al. (1986) Isolation and characterization of new facultatively alkalophilic strains of
 Bacillus species. J. Bacteriol. 167(3):766-773.

- 2. Grundy FJ & Henkin TM (1991) The *rpsD* gene, encoding ribosomal protein S4, is autogenously regulated in *Bacillus subtilis*. *J Bacteriol* 173(15):4595-4602.
- Takahashi Y, Koyama K, & Ito M (2014) Suppressor mutants from MotB-D24E and MotS-D30E in
 the flagellar stator complex of *Bacillus subtilis*. J. Gen. Appl. Microbiol. 60(4):131-139.
- 4. Takahashi Y & Ito M (2014) Mutational analysis of charged residues in the cytoplasmic 542 loops of MotA and MotP in the *Bacillus subtilis* flagellar motor. *J. Biochem.* 156(4):211-220.
- 5. Ireton K, Rudner DZ, Siranosian KJ, & Grossman AD (1993) Integration of multiple developmental signals in *Bacillus subtilis* through the Spo0A transcription factor. *Genes Dev.* 7(2):283-294.