Chemical shift – theory

Ziel: structure determination of chemical substances

Chemical shift – theory

Ziel: structure determination of chemical substances

ightharpoonup electron orbitals contribute to B_0 :

$$\delta \vec{B} = \sigma \vec{B_0}$$

modification of the Larmor frequency:

$$\omega_i = \omega_L (1 - \sigma_i)$$

Chemical shift – theory

Ziel: structure determination of chemical substances

• electron orbitals contribute to B_0 :

$$\delta \vec{B} = \sigma \vec{B_0}$$

modification of the Larmor frequency:

$$\omega_i = \omega_L (1 - \sigma_i)$$

reference substance: TMS (Tetra-Methyl-Silan)

CH₃

relative chemical shift in ppm:

$$\delta_i = \sigma_i - \sigma_{TMS} = \frac{\omega_{TMS} - \omega_i}{\omega_L}$$

Chemical shifts δ_i of compounds relative to TMS

Measurements

- five chemical substances, with and without TMS
- inhomogeneities and diffusion processes reduce resolution
 ⇒ thin glass tube, put into rotation with pressure air
- result:
 - without rotation:

$$FWHM = 200 Hz, I = 0.25$$

with rotation:

$$FWHM = 20 Hz, I = 1.9$$

energy resolution:

$$\Delta E_{NMR} = h \cdot \Delta \nu = 8,28 \cdot 10^{-14} \, \text{eV}$$

Probe C: acetic acid CH₃ — COOH

Peaks of C+ [ppm]	Peaks of C [ppm]	Chem. shift.	
$p_1 = 16, 7$ $p_2 = 26, 2$	$p_1 = 17, 0$ $p_2 = 26, 6$	$\delta_i = 11, 6$ $\delta_i = 2, 1$	COOH-group Methyl group CH ₃
$p_3 = 28, 3$	_	_	TMS

Peaks of B+ [ppm]	Peaks of B [ppm]	Chem. shift	
$p_1 = 22,7$ $p_2 = 27,5$	$p_1 = 22,7$ $p_2 = 27,5$	$\delta_i = 7, 0$ $\delta_i = 2, 2$	Benzene group Methyl group, Peak twice as high as p_1
$p_3 = 29,7$	_	-	TMS

Probe E: toluol CH_3

Peaks of E+ [ppm]	Peaks of E [ppm]	Chem. shift		
$egin{aligned} ho_1 &= 19,5 \ ho_2 &= 24,4 \end{aligned}$	$egin{aligned} ho_1 &= 23, 1 \ ho_2 &= 23, 1 \end{aligned}$	$\delta_i = 7, 3$ $\delta_i = 2, 4$	Benzene group Methyl group,	peaks have
$p_3 = 26, 8$	-	-	same hight TMS	

Probe A: fluoroaceton $FCH_2 - CO - CH_3$

$$FCH_2 - CO - CH_3$$

Peaks of A+ [ppm]	Peaks of A [ppm]	Chem. shift	
$p_1 = 22, 2$ $p_2 = 24, 6$	$p_1 = 23, 8$ $p_2 = 21, 4$	$\delta_i = 6, 3$ $\delta_i = 3, 9$	FCH ₂ -group
$p_3 = 26, 4$ $p_4 = 28, 5$	$p_3 = 19, 6$	$\delta_i = 2, 1$	Methyl group CH ₃ TMS

Probe D: fluoroacetonitril FCH₂ — CN

Peaks of D+ [ppm]	Peaks of D [ppm]	Chem. shift	
$p_1 = 30, 8$	_	_	TMS
$p_2 = 34, 8$	$p_2 = 26, 6$	$\delta_i = 6, 4$ $delta_i = 4, 0$	FCH ₂ group
$p_3 = 37, 2$	$p_3 = 24, 2$	$delta_i = 4,0$	·

one dimensional imaging - theory

- position dependent magnet fields
- ► Superposition of the static field $\vec{B_0}$ with gradient fields $\vec{B^x}$, $\vec{B^y}$, $\vec{B^z}$
- two techniques:

frequency coding

- Larmor frequency $\omega_L = \gamma (B_0 + G^z \cdot z) = \omega_L^0 + \omega_z$
- ▶ measured NMR signal S(t) is Fourier transform of $M_{\perp}^{rot}(z)$

phase coding

- ▶ apply gradient field, increase strength
- phase rotates: $\phi(z) = (\gamma G^z T_{Ph})z = k_z z$

two dimensional imaging – theory

One dimensional imaging measurements

- ► Bruker[®] NMR analyzer mg7.5
- ► Glass tube filled with 15 mm of oil
- ► Glass tube filled with 50 mm of water
- glass tube with teflon structure
- examination of an inflitration process: Fick's second law: $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$

two dimensional imaging measurements

Figure: teflon structure

Figure: olive

two dimensional imaging measurements

-16,0 -12,5 -7,5 -5,0 -3,0

Figure: peanut shell

Figure: aloe vera