Introducción

Visión por Computador II

¿Qué vemos en la imagen?

Butterflies by Bill https://flic.kr/p/936eNL

¿Qué hora del día es?

Butterflies by Bill https://flic.kr/p/936eNL

¿Cuántas mariposas hay?

Butterflies by Bill https://flic.kr/p/936eNL

- Muy bueno interpretando imágenes
- Es "invariable" a variaciones de la apariencia de los objetos
- Puede completar información faltante
- Puede remover información
- Puede usar información del contexto o externa

Color Constancy

Color Constancy

Color Constancy

Sistema visual humano Color Constancy

- Capacidad de percibir los colores como relativamente constantes en distintas iluminaciones
- Por ejemplo, una manzana roja seguirá pareciendo roja en un día soleado o nublado, o en una tienda de comestibles o en una casa.

Qué es CV CV vs CG

Forward model: (CG) Cómo la luz se refleja en las superficies y termina en un plano de imagen

- Backwards model: (CV) Reconstruir las propiedades del mundo visto en imágenes
- Recuperar variables desconocidas dada información insuficiente

Areas relacionadas con CV

OCR (Optical Character Recognition)

Vigilancia

Inspección de productos

Retail

Fotogrametría

Salud

CGI

Realidad Aumentada

"No es mi objetivo el sorprenderlos, pero la forma más simple de resumirlo es diciendo que en este momento existen máquinas que piensan, aprenden y crean." - Herbert Simon 1957

Gestación de la inteligencia artificial Marvin Minsky and Dean Edmonds Construyen la primera Red Neuronal. 1943

1970

- Después de unas grandes expectativas por los avances en los 50 en Al.
- Un problema simple en la agenda de resolver Al
- Recuperar la estructura 3D de imágenes para entender toda la escena

Apple I expuesto en el Smithsonian Institution.

1990

- Aprendizaje estadístico con Eigenfaces
- Incremento de la interacción de CV-CG: modelado y renderizado basado en imágenes

Modeling and Rendering Architecture from Photographs

Debevec, Taylor, and Malik 1996

Original photograph with marked edges

Recovered model

Model edges projected onto photograph

Synthetic rendering

2000

- Continuación de interacción entre los campos de la visión y los gráficos.
- Técnicas de Feature-based (combinado con Aprendizaje) para OR
- La última tendencia, que ahora domina gran parte de la investigación sobre reconocimiento visual: Aplicación de aprendizaje de máquinas
- Esta tendencia coincide con la mayor disponibilidad de inmensas cantidades de datos parcialmente etiquetados en Internet

https://www.midjourney.com

Propagación de la luz

- La luz es emitida por una o varias fuentes luminosas y luego es
- Se refleja en la superficie de un objeto.
- Una parte de esta luz se dirige hacia la cámara.

Componentes del resultado visual de una imagen

Color

- El color se crea dentro del sistema visual y no tiene existencia ni significado físico real.
- Color interpretación a un estímulo electromagnético (Radiación)
- Espectro visible: porción del espectro electromagnético que es visible para el ojo humano.

Tres elementos:

- A. Físico (electromagnetismo)
- B. Humano (percepción del color)
- C. Tecnológico (recreación del color)

Comparison of wavelength, frequency and energy for the electromagnetic spectrum. (Credit: NASA's Imagine the Universe)

Colores espectrales: El rango visible puede ser dividido en colores producidos por una* longitud de onda

Color

- El ojo humano responde de forma diferente a las distintas longitudes de onda de la luz.
- Es tricromático: contiene tres tipos diferentes de fotorreceptores llamados conos que son sensibles a distintas longitudes de onda de la luz.
 - A. Conos S (longitud de onda corta): luz azul
 - B. Conos M (longitud de onda media): luz verde
 - C. Conos L (longitud de onda larga): Luz roja

Espacios y modelos de color

Modelo de color

- Permite representar los colores como tuplas de números
- Permite crear colores partiendo de los colores primarios

Espacio de color

- Describe una lista mensurable y fija de posibles colores y valores de luminancia.
- Su función práctica más básica es describir las capacidades de un dispositivo de captura o visualización para reproducir la información de color.

Modelo aditivo RGB

Modelo sustractivo CMYK

Imagen mapa de bits

Imagen Ráster

- Estructura de datos para representar imágenes
- Matriz 2D que almacena los valores de cada pixel
- Valores normalmente son un vector (RGB)

Pixel (Picture Element)

Elemento indexado más pequeño de una imagen rasterizada

Composición de imagen raster. Tomado de Wikipedia

Imágenes de mapa de bits

Pixel of an RGB image are formed from the corresponding pixel of the three component images

Sistema coordenado de imágenes

- Origen: esquina izquierda superior
- Eje x: horizontal
- Eje y: vertical

Sistema coordenado de imágenes. Editado de slicer.org

Herramientas del curso

- Python >3.8
- PIP
- Virtualenv
- IDE (VS Code, PyCharm)
- Git
- Google Colab

Local

Nube

Python

Verificar que ya esté instalado:

>> python3 -V

Links de ayuda

- (Mac M1) https://towardsdatascience.com/how-to-easily-set-up-python-on-any-m1-mac-5ea885b73fab
- (Windows) https://learn.microsoft.com/en-us/windows/python/beginners
- (Windows: descargar e instalar) https://www.python.org/downloads/
- (Mac) https://brew.sh/#install

PIP y virtualenv

(Manejador de paquetes)

- Verificar que PIP esté instalado
 - >> python3 -m pip -V
- Instalar Virtualenv
 - >> (Windows) pip install virtualenv
 - >> (Linux) sudo apt install virtualenv

Links de ayuda

- https://linuxhint.com/install-pip-mac
- https://pip.pypa.io/en/stable/installation/
- https://medium.com/analytics-vidhya/virtual-environment-6ad5d9b6af59

IDEs sugeridas

https://code.visualstudio.com/

https://www.jetbrains.com/pycharm/

GIT

Verificar que ya esté instalado:

>> git -- version

Instalar

Linux (debian) >> sudo apt install git

Mac >> xcode-select —install (instala Xcode Command Line Tools)

Windows: https://git-scm.com/download/win

GIT

- Crear usuario
 - GitHub.com
 - bitbucket.org
 - gitlab.com
- Configurar Git
 - >> git config --global user.name "your_name"
 - >> git config --global user.email "your_email_address"

Ejercicio 1

Crear un repositorio con un script que genere y guarde la siguientes imágenes

Setup

- 1. Crear repositorio en git
- 2. Clonar repositorio local
 - 1. >> git clone https://github.com/user/repo.git
- 3. Crear un ambiente virtual (venv) y activarlo
 - >> virtualenv venv
 - >> virtualenv source venv/bin/activate
- 4. Instalar paquetes:
 - >> pip install opency-python
- 5. Editar .gitignore y agregar carpeta de venv

(Mac M1)

- >> conda create --name venv
- >> conda activate venv