VERS/A	UNIVERSIDAD DE MÁLAGA	
Departamento de Matemática Aplicada		

Primer apellido:

Segundo apellido:

Nombre:

DNI:

Titulación y grupo:

E.T.S.I. Informática

Cálculo para la Computación: tema 4, 22-1-2016

1. (Hasta 2 puntos) Calcula el siguiente límite:
$$\lim \left(\frac{\log(n+1)}{\log n}\right)^n$$

2. (Hasta 1.2 puntos) Sabemos que
$$\sum_{n=2}^{\infty} \frac{n^2 - n}{3^n} = \frac{3}{4}$$
. Calcula $\sum_{n=2}^{\infty} \frac{n^2 + n}{3^{n+1}}$

3. (Hasta 1.6 puntos) Suma la serie:
$$\sum_{n=0}^{\infty} \frac{n^2}{(n+1)!}$$

4. (Hasta 1.6 puntos) Determina el carácter de las series
$$\sum_{n=1}^{\infty} \frac{\sin \frac{1}{n}}{n}$$
, $\sum_{n=1}^{\infty} \frac{\cos \frac{1}{n}}{n}$

5. (Hasta 1.8 puntos)

a) Demuestra que la sucesión
$$r_n = \frac{n^2}{3(n+1)^2}$$
 es creciente.

- b) Indica como determinar el menor natural N tal que la suma parcial N-ésima de la serie $\sum_{n=1}^{\infty} \frac{1}{n^2 3^n}$ aproxime la suma exacta con un error menor que 10^{-3} .
- 6. (Hasta 1.8 puntos) Determina una serie cuya suma sea $\log \frac{5}{3}$. Indica como determinar el menor natural N tal que la suma parcial N-ésima de la serie del apartado anterior aproxime $\log \frac{5}{3}$ con un error menor que 10^{-3} .

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad x \in \mathbb{R} \qquad R_{n}(x) = e^{c_{n}} \frac{x^{n+1}}{(n+1)!}, \quad (c_{n} \text{ entre 0 y } x)$$

$$\log x = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^{n} \qquad x \in (0,2] \qquad R_{n}(x) = \frac{(-1)^{n}}{c_{n}^{n+1}(n+1)} (x-1)^{n+1}, \quad (c_{n} \text{ entre 1 y } x)$$

$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} \qquad x \in \mathbb{R} \qquad R_{n}(x) = (-1)^{n+1} (\operatorname{sen} c_{n}) \frac{x^{2n+2}}{(2n+2)!}, \quad (c_{n} \text{ entre 0 y } x)$$

$$\operatorname{cos} x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} \qquad x \in \mathbb{R} \qquad R_{n}(x) = (-1)^{n+1} (\operatorname{sen} c_{n}) \frac{x^{2n+1}}{(2n+1)!}, \quad (c_{n} \text{ entre 0 y } x)$$

$$\operatorname{arctg} x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} \qquad x \in [-1,1]$$

W. Z The sea . V. W	UNIVERSIDAD DE MÁLAGA
---------------------	--------------------------

Departamento de Matemática Aplicada

Primer apellido:
Segundo apellido:
Nombre:
DNI:

Titulación y grupo:

E.T.S.I. Informática

Cálculo para la Computación: tema 3, 15-12-2015

- Se deben justificar adecuadamente las respuestas, indicando los resultados más importantes que se aplican en cada momento.
- Se debe escribir con bolígrafo azul o negro (no usar lápiz).
- No se puede utilizar la calculadora.
- 1. (Hasta 2.5 puntos) Calcula las siguientes primitivas:

a)
$$\int \frac{\log x}{x} dx$$
, b) $\int \frac{dy}{x^2 + y^2}$,

b)
$$\int \frac{dy}{x^2 + y^2}$$

c)
$$\int \frac{x}{e^{2x}} dx$$

- 2. (Hasta 2 puntos)
 - a) Estudia si $f(x) = \frac{x^3 + 2x^2 1}{x}$ es solución de la ecuación diferencial $xy' + y = 3x^2 + 4x$ en
 - b) Analiza si la ecuación puede tener más soluciones que pasen por el mismo punto (-1,0)
- 3. (Hasta 2.5 puntos) Resuelve la siguiente ecuación diferencial:

$$y' = \frac{\sin y + y \sin x}{\cos x - x \cos y}$$

4. (Hasta 1.5 puntos) Completa los límites de integración en el lado derecho

$$\iint\limits_R xy \, dx \, dy = \int_{-}^{-} \left(\int_{-}^{-} xy \, dx \right) \, dy$$

5. (Hasta 1.5 puntos) Completa el integrando y los límites de integración en el lado derecho, obtenido tras aplicar el cambio de variable a coordenadas polares

$$\iint\limits_{R} xy \, dx \, dy = \int_{-}^{-} \left(\int_{-}^{-} \underline{\qquad} dr \right) \, d\theta$$

NERS/A	UNIVERSIDAD DE MÁLAGA	
Departamento de Matemática Aplicada		

Segundo apellido:

Primer apellido:

Nombre:

Titulación y grupo:

E.T.S.I. Informática

Cálculo para la Computación: temas 1 y 2, 20–11–2015

- Se deben **justificar** adecuadamente las respuestas, indicando los resultados más importantes que se aplican en cada momento.
- Se debe escribir con bolígrafo azul o negro (no usar lápiz).
- No se puede utilizar la calculadora.
- 1. (Hasta 1.6 puntos) Representa graficamente $f(x) = \frac{x^3}{x^2 1}$, analizando sus intervalos de crecimiento, decrecimiento y la existencia de asíntotas.
- 2. (Hasta 1.6 puntos) Teniendo en cuenta que la figura de abajo muestra la gráfica de $f(\theta)=2\cos\theta+\sin2\theta$, dibuja la curva polar $r=f(\theta)$

- 3. (Hasta 2 puntos) Identifica los elementos fundamentales de la cónica $9(4x+3y-5)^2 16(-3x+4y+10)^2 = 3^225^2$: centro, ejes, asíntotas, vértices. Dibújala.
- 4. (Hasta 1.6 puntos) Halla las constantes a y b de forma que la superficie $ax^2 byz = (a+2)x$ sea ortogonal a la superficie $4x^2y + z^3 = 4$ en el punto (1, -1, 2).
- 5. (Hasta 1.6 puntos) Determina si $\left(\frac{1}{3}, \frac{-2}{3}\right)$ es un máximo local, mínimo local o punto silla del campo

$$f(x,y) = x^2 + y^3 + 3xy^2 - 2x$$

6. (Hasta 1.6 puntos) Halla los puntos críticos de $f(x,y) = \sin^2 xy$ sujeta a la condición $x^2 + 4y^2 = 1$.