

SOLUBILITIES

OF

INORGANIC AND ORGANIC SUBSTANCES

A HANDBOOK OF THE MOST RELIABLE
QUANTITATIVE SOLUBILITY
DETERMINATIONS

RECALCULATED AND COMPILED BY

ATHERTON SEIDELL, Ph.D. (J.H.U.)

Chemist, Division of Pharmacology, Hygienic Laboratory of the U.S.

Public Health and Marine-Hospital Service, Washington, D.C.

Formerly Assistant Chemist, Bureau of Chemistry

U.S. Department of Agriculture

FOURTH PRINTING CORRECTED

NEW YORK

D. VAN NOSTRAND COMPANY
25 PARK PLACE

1917

QD66 S4 1917

COPYRIGHT, 1907 AND 1911 BY D. VAN NOSTRAND COMPANY

Stanbope Press
F. H. GILSON COMPANY
BOSTON, U.S.A.

PREFACE

During the years which have elapsed since Professor Arthur M. Comey's admirable "Dictionary of Chemical Solubilities" went to press (March, 1894), the literature upon solubilities has grown to such an extent that it has appeared desirable to make a new compilation of it. Soon after beginning work upon this volume the author realized that it would not be possible to prepare a compilation of solubility results which would fulfill completely the various requirements of theoretical, technical, analytical, and other classes of chemists, and he has therefore endeavored to meet some of the needs of all chemists rather than provide information especially arranged for any particular class.

The following features have been considered of chief importance in preparing the present compilation: completeness of the data, reliability of the determinations, uniformity in expression of results, convenience of arrangement of material, and the indexing of the cross-references to tables.

The material has been collected almost entirely from the original sources, and not from text-books or works of reference. The plan followed has been to search diligently the tables of contents or indices of twenty-five of the principal chemical journals issued since 1875, and to consult all articles in these as well as in other journals to which references could be obtained. In this connection, however, it should be stated that indexed references to work on solubility usually appear under the name of the substance employed, and not under the heading "solubility." Furthermore, solubility determinations are often incidental to other investigations, and consequently are not indicated in the title of the article or included in the index of the journal. Considering these difficulties there can be little hope of making such a compilation complete in every detail, and in the present case the best that can be said is that an earnest effort has been made to omit nothing of importance. This has been done not only for the author's personal satisfaction in perfecting the work, but also to give the reader a reasonable assurance that the absence from these pages of results upon a particular substance is good evidence that such determinations of satisfactory reliability

PREFACE

are not readily obtainable from the usually accessible chemical journals.

Although at the time Professor Comey compiled his book it appeared inadvisable to attempt, in the majority of cases, to select the most reliable determinations of the solubility of the same substance reported by different investigators, the present author believes that this can now be done with advantage. The selections have been made in all cases by calculating the available determinations to a common basis and drawing curves through the points plotted on cross-section paper. A comparison of the curves, together with a study of the details of the methods by which the determinations were made in the several cases, has usually furnished clear evidence for a reliable selection. For some substances, however, this plan could not be followed, and it has therefore been necessary to present two or more sets of disagreeing results.

In many instances the calculations and study necessary to ascertain the most reliable figures have required much labor, and perhaps in some cases the author has not succeeded in selecting the ones nearest the truth; but it is believed that the economy of space required to present the material, and the saving of the time of the reader in making the necessary selections himself, will far overbalance the disadvantage resulting from the accidental inaccuracies introduced through extended computations.

An additional advantage resulting from the recalculation of different determinations to a common basis is the increased uniformity in the expression of results throughout the volume. On this account it has been possible to give the solubility of most substances for regular intervals of temperature and in terms of weight of dissolved substance per given weight of solvent or of solution.

Quantitative results alone have been included in this compilation, since it is assumed that qualitative determinations, if desired, can be readily made by simple tests in the laboratory, and therefore the effort necessary to collect such observations from the literature is out of proportion to the value of the information obtained.

In regard to the names and formulas of the compounds included, the author wishes to say that they are, for the most part, given as found in the original papers from which they were taken; and in some cases a lack of uniformity in the manner of their expression will be noted. This is especially true of the molecules of water of crystallization in the formulas given in connection with the guide names placed in heavy type at the head of the tables for all substances considered. As is well known, many compounds, besides gaining or losing water in air, also crystallize with different numbers of molecules of water even at the ordinary temperature, and it was therefore thought best to include such information at the proper place in the tables under the heading "Solid Phase" rather than to select in doubtful cases the number of molecules of water which the particular substance was considered to carry under ordinary conditions.

Although the arrangement of the material is alphabetical according to the customary English names, an index has been added which also provides for those cases where there appears a doubt as to which name is preferable, and furnishes cross-references to those tables which contain results upon more than one substance.

A glance through the pages of this book will show the incompleteness of the data for many of the most common chemical compounds. Furthermore many of the results given are of doubtful accuracy, although the best available. It is hoped, therefore, that a realization of the present incomplete state of our information concerning solubilities as evidenced in these pages will stimulate investigations of many of those substances which have hitherto been studied incompletely or not at ail.

This volume went to press January 1st, 1907, and the subject matter is brought up to November, 1906.

In conclusion, the author begs all indulgence for errors and omissions, and will thank any one for calling them to his attention or making suggestions such as would improve a possible future edition of this "Handbook."

A. S.

Washington, D.C., Feb. 22, 1907.

ABBREVIATIONS

Abs. — Absolute. Abs. Coef. — Absorption Coefficient. Aq. or aq. - Aqueous. At. - Atmosphere. b. pt. - Boiling Point. cc. - Cubic Centimeter. conc. - Concentrated. d. —Dextro.
d_{i.} —Density.
f. pt. —Freezing Point. G., g., or gm. — Gram. Gms. or gms. — Grams. G.M. or Gm. Mol. - Gram Molecule. l. — Laevo. m. - Meta. Mg. or mg. — Milligram.
Mgs. or mgs. — Milligrams.
Mg. Mol. — Milligram Molecule.
Millimols. — Milligram Molecules. Mol. — Molecule. m. pt. — Melting Point. N. or n. — Normal. o. - Ortho. ord. - Ordinary. p. - Para. ppt. — Precipitate. pptd. — Precipitated. pt. - Part. sat. — Saturated. sol. — Solution. Sp. Gr. — Specific Gravity. to. - Temperature in degrees C. temp. — Temperature. vol. — Volume. wt. — Weight.

ABBREVIATIONS OF TITLES OF JOURNALS

Am. Ch. J. The American Chemical Journal, Baltimore. Am. J. Sci. American Journal of Science and Arts, New Haven. Analyst. The Analyst, London.

Ann. See Liebig's Ann.

Ann. chim. anal. appl. Annales de chimie analytique appliquée, Paris. Ann. chim. phys. Annales de chimie et de physique, Paris. Ann. Physik. Annalen der Physik und Chemie, Leipzig. See also I Ann. and Wied. Ann. Annalen der Physik und Chemie, Leipzig. See also Pogg.

Apoth.-Ztg. Apotheker Zeitung, Berlin.

Arch. Pharm. Archiv der Pharmacie, Halle.

Ber. Berichte der deutschen chemischen Gesellschaft, Berlin.

Biedermann's Centr. Biedermann's Centralblatt für Agrikulturchemie, u. s. w., Leipzig.

Bull. soc. chim. Bulletin de la société chimique de Paris. Chem. Centralbl. Chemisches Centralblatt, Berlin.

Chem. Ind. Die Chemische Industrie, Berlin. Chem. News. The Chemical News, London.

Chem.-Ztg. Chemiker Zeitung, Cöthen. Compt. rend. Comptes rendus hebdomadaires des Seances de l'Academie des Sciences, Paris.

Dingler pol. J. Dingler's polytechnisches Journal, Stuttgart.
Gazz. chim. ital. Gazzeta chimica italiana, Palermo.
Jahresber. Chem. Jahresbericht über die Fortschritte der Chemie, Giessen.
J. Am. Chem. Soc. Journal of the American Chemical Society, Easton.

J. Anal. Chem. Soc. Journal of the American Chemical Society, Easton.
J. Anal. Chem. The Journal of Analytical and Applied Chemistry, Easton.
J. Chem. Soc. Journal of the Chemical Society of London.
J. pharm. chim. Journal de pharmacie et de chimie, Paris.
J. Physic. Chem. Journal of Physical Chemistry, Cornell.

J. pr. Chem. Journal für praktische chemie, Leipzig. Journal of the Russian Chemical Society, St. J. russ. phys. chem. Ges.

Petersburg. J. Soc. Chem. Ind. Journal of the Society of Chemical Industry, London. Landw. Vers-Stat. Landwirthschaftlichen Versuchs-Stationen, Berlin.

Liebig's Annalen. Justus Liebig's Annalen der Chemie, Leipzig.

Monatsh. Ch. Monatshefte für Chemie, u. s. w., Vienna.

Mon. Sci. Le Moniteur Scientifique, Paris.

Mulder. Scheikundige Verhandelingen en Onderzoekingen, Vol. 3 Bijdragen tot de Geschiedenis van Het Scheikungig Gebonden Water by G. J. Mulder, Rotterdam, 1864.

Pharm. J. Pharmaceutical Journal and Transactions, London. Phil. Mag. The Philosophical Magazine, London.

Physic. Rev. Physical Review, Cornell.
Pogg. Ann. Annalen der Physik und Chemie, edited by Poggendorf. also Ann. Physik and Wied. Ann.

Proc. Am. Acad. Proceedings of the American Academy of Arts and Sciences, Boston.

Proc. Roy. Soc. Proceedings of the Royal Society of London. Rec. trav. chim. Recueil des travaux chimiques des Pays-Bas, I Recueil des travaux chimiques des Pays-Bas, Leiden.

Sitzber. Akad. Wiss. Berlin. Sitzungsberichte der königlichen preussischen Akademie der Wissenschaften zu Berlin.

Sitzber. Akad. Wiss. Wien. Sitzungsberichte der mathematische naturwissenschaftlichen classe der kaiserlichen Akademie der Wissenschaften zu Wien.

U. S. P. Pharmacopœia of the United States, 8th Revision, 1900.

ABBREVIATIONS OF TITLES OF JOURNALS

Annalen der Physik und Chemie, edited by Wiederman. Wied. Ann. also Pogg. Ann. and Ann. Physik.

Wiss. Abh. p. t. Reichanstalt. Wissenschaftlichen Abhandlung der physik-

alische technische Reichstalt, Charlottenburg.

Z. anal. Chem. Zeitschrift für analytische Chemie, Wiesbaden.

Z. angew. Chem. Zeitschrift für angewandte Chemie, Berlin.
Z. anorg. Chem. Zeitschrift für angewandte Chemie, Berlin.
Z. Elektrochem. Zeitschrift für anorganische Chemie, Hamburg and Leipzig.
Z. Elektrochem. Zeitschrift für Elektrochemie, Halle.
Z. Krystallogr. Zeitschrift für Krystallographie und Mineralogie, Leipzig.
Z. Physik. Chem. Zeitschrift für physikalische Chemie, Leipzig.
Z. Ver. Zuckerind. Zeitschrift für Rubenzucker-Industrie, Berlin.

The above abbreviations with a few necessary exceptions are taken from the list adopted by the editor of the Journal of the American Chemical Society for the new abstract journal, "Chemical Abstracts," and will in general be familiar to many of those who use this volume. In a large number of instances Chem. has been contracted to Ch., but with this exception, and possibly a few inaccuracies which have slipped in, the abbreviations of journal titles used in this book conform to the above list.

ACENAPHTHENE C12H10.

SOLUBILITY IN SEVERAL ORGANIC SOLVENTS.

(Speyers - Am. J. Sci. [4] 14, 294, 1902.)

Note. —In the original paper the results are given in terms of gram molecules of acenaphthene, acetamide, acetanilide, etc., per 100 gram molecules of solvent, at temperatures which varied with each solvent and with each weighing of the solutions. The tabulated results here given were obtained by recalculating and reading the figures from curves plotted on cross section paper.

	In M	ethyl Alcoh	iol.	In 1	Ethyl Alco	hol.	In Propyl Alcohol.		
t *.	(a)*	(b)*	(c)*	(a)	(b)	(c)	(a)	(b)	(c)
0	81.33	1.80	0.39	81.1	1.9	0.57	82.3	2.26	0.88
10	80.40	1.70	0.38	80.3	2.8	0.84	81.8	2.40	I.00
20	79.60	2.25	0.48	79.6	4.0	1.20	81.4	3.40	1.35
30	79.00	3.50	0.72	79.1	5.6	1.70	80.9	4.75	1.90
40	78.45	6.00	I.20	78.7	8.4	2.60	80.6	7.10	2.90
50	78.15	9.00	1.77	78.8	13.2	3.90	80.7	II.IO	4.40
60	78.30	11.70	2.35	79.4	23.2	7.00	81.5	19.60	8.20
70	78.60	14.30	2.90	80.75	40.5	12.50	83.9	37.00	16.20

	In C	hloroform		1	In Toluene.				
t °.	(a)	(b)	(c)	(a)	(b)	(c)			
0	143.8	16.4	12.7	90.7	13.18	7.9			
10	140.1	20.6	16.0	90.8	18.0	10.7			
20	136.3	27.0	19.5	91.0	24.5	14.5			
30	132.4	34.0	25.0	91.8	33.5	20.5			
40	128.0	42.5	32.0	92.7	47.0	28.0			
50	123.4			94.0	60.5	35.7			
60	119.3	62.5	50.0	95.5	74.0	43.5			
70				97.2	89.0	52.5			

ACETAMIDE CH3CO.NH2.

SOLUBILITY IN WATER AND IN ALCOHOL.

(Speyers.)

	I	n Water.	In I	In Ethyl Alcohol.				
to.	(a)	(b)	(c)	(a)	(b)	(c)		
0	105.5	70.8	29.6	85.62	17.3	18.5		
10	104.9	81.0	34.0	86.2	24.0	26.0		
20	104.3	97.5	40.8	87.3	31.5	33.8		
30	103.7	114.0	$47 \cdot 7$	88.8	40.5	43.0		
40	103.0	133.0	55.5	90.7	50.0	53 · 5		
50	102.3	154.0	64.0	93.0	61.0	64.5		
60	101.6	177.5	74.0	95.5	72.0	76.5		

ACETANILIDE C.H.NH.COCH3.

100 grams H₂O dissolve 0.55 gram at 25°, and 5.55 grams at b. pt.

^{* (}a) Weight of 100 cc. solution in grams. * (b) Grams dissolved substance per 100 grams solvent.

(c) Gram molecules of dissolved substance per 100 gram molecules of solvent.

SOLUBILITY OF ACETANILIDE IN ORGANIC SOLVENTS. (Speyers.)

	In :	Methyl Alc	ohol.	In	Ethyl Alc	ohol.	In Chloroform.			
t°.	(a)	(b)	(c)	(a)	(b)	(c)	(a)	(b)	(c)	
0	86.0	22.7	5 · 4	84.2	14.7	5.0	150.3	3.66	3.24	
10	86.4	30.0	7.0	84.4	20.0	6.6	147.5	7.80	7.00	
20	87.5	41.0	9.8		27.0		144.0	12.00	10.50	
30	89.2	54.0	13.2	86.0	36.0	12.2	139.8	17.0	15.0	
40	91.1	75.5	18.0	87.4	49.0	16.2	135.4	23.0	20.4	
50	93.2	107.0	25.2	89.5	65.0	22.0	131.4	31.0	27.6	
60	95.7	145.0	34.0	92.0	87.0	30.0	127.2	41.0	36.0	

SOLUBILITY IN MIXTURES OF ETHYL ALCOHOL AND WATER AT 25°. (Holleman and Antusch — Rec. trav. chim 13, 293, 1894.)

Vol. % Alcohol.	Gms. C ₈ H ₉ NO per 100 Gms. Solvent.	Sp. Gr.	Vol. % Alcohol.	Gms. C ₈ H ₉ NO per 100 Gms. Solvent.	Sp. Gr.
100	32.93	0.8512	55	13.13	0.9335
95	36.65	0.8737	50	9.74	0.9396
93	38.04	0.8813	45	7.25	0.9449
90	38.20	0.8896	40	5.10	0.9508
87	37.80	0.8959	35	3.58	0.9567
85	36.83	0.8996	31	2.56	0.9617
80	33.62	0.9072	25	1.73	0.9683
75	29.25	0.9133	20	1.30	0.9736
70	24.73	0.9185	15	1.03	0.9795
65	20.42	0.9185	10	0.94	0.9845
60	16.51	0.9287	0	0.54	0.9970

ACETIC ACID CH3COOH.

SOLUBILITY IN WATER.

		(Dannis - Ann. F	пуз. [4] 00,	122, 97.)	
t°.	Gms. CH ₃ COOH per 100 Gms. Solution.	Solid Phase.	t°.	Gms. CH ₃ COOH per 100 Gms. Solution.	Solid Phase.
- 5	15.1	Ice	- 20	66.3	CH ₃ COOH
-10	28.2	"	-10	76.7	66
-15	39.5		- 0	87.0	"
- 20		66 .	+10	90.8	"
-25		"	16	5 100.0 tr. pt.	66
- 26		ce + CH ₃ COOH	I	3	

DISTRIBUTION OF ACETIC ACID BETWEEN:

Water and Amyl Alcohol at 20°.	Water and Benzene at 25°.
(Herz and Fischer - Ber. 37, 4747, '04)	(H. and F Ber. 38, 1140, '05.)
CII COOTI O N. CII COOTI	C CH COOH C M CH COO

Gms. CH ₈ COOH per 100 cc.		G. M. Cl		H ₃ COOH		G. M. CH ₃ COOH per 100 cc.		
H ₂ O Layer.	Alcoholic Layer.	H ₂ O Layer.	Alcoholic Layer.	H ₂ O Layer.	C ₆ H ₆ Layer.	H ₂ O Layer.	C ₆ H ₆ Layer.	
1	0.923	0.01	0.0095	5	0.130	0.05	0.0014	
2	1.847	0.03	0.0280	10	0.417	0.10	0.0005	
3	2.741	0.05	0.0460	20	E · 55	0.20	0.0030	
4	3.694	0.07	0.0645	30	3.03	0.30	0.0290	
5	4.587	0.09	0.0830	40	4.95	0.50	0.051	
6	5 - 475	0.11	0.1010	• •		0.70	0.090	
7	6.434	0.13	0.1190					
8	7.328							

DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND BENZENE. (Waddell - J. Phys. Ch. 2, 237, 1898.)

Results in terms of grams per 100 grams solution.

	reports in course of Branch bor year Branch porteroff.												
	Upper	Layer.			Lo	wer Layer							
tº.	CH₃COOH.	C ₆ H ₆ .	H_2O .		CH₃COOH.	C ₆ H ₆ .	H ₂ O.						
25	0.46	99.52	0.02		9.4	0.18	90.42						
25	3.10	96.75	0.15		28.2	0.53	71.27						
25	5.20	94.55	0.25		37 · 7	0.84	61.46						
25	8.7	90.88	0.42		48.3	1.82	49.88						
25	16.3	82.91	0.79		61.4	6.1	32.5						
25	30.5	67.37	2.13		66.0	13.8	20.2						
25	52.5	39.60	7.60		52.8	39.6	7.6						
35	I . 2	98.68	0.08		16.4	0.62	89.98						
35	5 · 7	93.97	0.33		36.8	I.42	62.78						
35	9.0	90.42	0.58		49.0	2.10	48.90						
35	45.0	49.00	6.0		61.3	25.5	13.2						
35	52.2	39 · 4	8.4		52.2	39 · 4	8.4						

DISTRIBUTION OF ACETIC ACID BETWEEN WATER AND CHLOROFORM:

At Room Temperature. (Wright, Thomson and Leon — Proc. Roy. Soc. 49, 185, 1891.)

At 25°.

(Herz and Lewy; Rothmund and Wilsmore.)

At 25°.

	ults in på er Layer.	rts per 1	oo parts of s Lower		Gms. CH ₃ COOH per 100 cc.		G. M. CH ₃ COOH per 100 cc.		
CH₃COOH	. CHCl ₃ .	H ₂ O.	СН₃СООН.	CHCl3.	H ₂ O.	H ₂ O Layer.	CHCl ₃ Layer.	H ₂ O Layer.	CHCl ₃ Layer.
0	0.84	99.16	0	99.01	0.99	2	0.089	0.05	0.0032
6.46	0.92	92.62	1.04	98.24	0.72	4	0.313	0.075	0.0062
17.69	0.79	81.52	3.83	94.98	1.19	6	0.596	0.100	0.0100
25.10	1.21	73.69	6.77	91.85	1.38	8	0.974	0.150	0.0198
33.71	2.97	63.32	11.05	87.82	1.13	10	1.430	0.175	0.0260
44.12	7.30	48.58	17.72	80.00	2.28	12 '	1.982	0.200	0.0325
50.18	15.11	34.71	25.75	70.13	4.12	20	5.10	0.30	0.070
						30	10.2	0.50	0.170
						40	15.3	0.70	0.275
						50	21.9	0.80	0.335
						52.3	39.54	0.87	0.659

The figures in the table for 25° were read from the curve plotted from the results of H. and L., Z. electro. Ch. 11, 818, 1905, and of R. and W., Z. phys. Ch. 40, 623, 1902.

The influence of electrolytes upon the distribution of acetic acid between the aqueous and chloroform layers was investigated by Rothmund and Wilsmore, and the following results expressed in gram molecules per liter at 25° were obtained:

Electro-			CH ₃ COOH	Conc.*	Electro-	Conc. of Electrolyte		H₃COOH in C	Conc.* H ₃ COOH
lyte.	Aq.	Aq. Layer.	CHCl ₃ Layer.	H ₂ O Layer.	lyte.	Aq. Layer.	Aq. Layer.	CHCl ₃ Layer.	H ₂ O Layer.
HC1	Layer. 0.463	0.876	0.0907	0.946	H2SO	0.514	1.099	0.1315	1.168
44	0.463	0.813	0.2435	1.680 0.066	44	1.029	1.555	0.2714	1.787
"	0.926	1.586	0.2902	1.858	NH,NO			0.1313	1.168
HNO,	0.316	1.694	0.0927	0.958	LiNO,	1.0		0.3481	1.000
44	0.633	0.965	0.0981	0.988	44	1.0		0.2581	1.737
••	0.633	1.631	0.2486	1.702					

* Calculated from table above.

DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

Water an	nd Carb	on Bisul	lphide.	Water and Carbon Tetrachlorid					
	(Herz ar	nd Lewy.)		(Herz and Lewy.)					
	CS ₂ Layer.	G. M. CH per 10 H ₂ O Layer.	CS ₂ Layer.		CCl ₄ Layer.		CCl ₄ Layer.		
65	2.64	1.1	0.45	30	1.8	0.5	0.03		
70	3.0	1.2	0.55	40	3.0	0.7	0.055		
75	3.3	I.2	0.80	50	4.8	0.9	0.095		
80	5.4	1.35	0.97	60	5.8	I.I	0.155		
85	6.4	I.4	1.3	70	12.0	I.2	0.235		
				76.2	25.2	I.27	0.420		

DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN:

		Bromof			Water and Toluene. (H. and F. — Ber. 38, 1140, '05.)				
	H ₃ COOH 100 cc. CHBr ₃ Layer.	G. M. CH per 10 H ₂ O Layer.		Gms. (CH ₃ COOH 100 cc. C ₆ H ₅ CH ₃	G. M.	CH ₃ COOH r 100 cc. C ₆ H ₅ CH ₃ Laver.		
20	1.5	0.4	0.035	5	0.119	0.1	0.0025		
30	3.0	0.6	0.070	10	0.328	0.2	0.0075		
40	4.8	0.8	0.120	20	1.132	0.4	0.0260		
50	7.8	I.0	0.20	30	2.265	0.6	0.0530		
60	12.0	I.I	0.28	40	3.725	0.8	0.090		
65	15.6	1.15	0.395	50	5.841	1.0	0.140		
70	27.0			60	8.344		• • •		

DISTRIBUTION OF ACETIC ACID AT 25° BETWEEN: Water and o or a Xylene Water and a Xylene

wate	and o	$n p \propto y$	lene.	water and m Aylene.					
	(Herz and I	ischer.)			(Herz and Fischer.)				
	H ₃ COOH 100 cc. 0 or p Xylene Layer.		o or p Xylene Layer.	H ₀ O	CH ₃ COOH r 100 cc. m Xylene Layer.		CH ₃ COOH er 100 cc. m Xylene Layer.		
5	0.24	0.1	0.004	5	0.06 =	0.1	0.0015		
10	0.48	0.2	0.010	10	0.30	0.2	0.007		
20	1.13	0.4	0.025	20	0.95	0.4	0.022		
30	2.15	0.6	0.047	30	1.91	0.6	0.042		
40	3.40	0.8	0.079	40	3.04	0.8	0.072		
50	5.10	1.0	0.122	50	4.65	I.0	O.III		
60	7.27	I.2	0.230	60	6.65	I.2			
70	12.52								

Note. — The distribution results as presented in the original papers to which references are given in the above tables, are reported in millimolecules per 10 cc. portions of each layer in the several cases. To obtain the figures given in the above tables, the original results before and after calculating to gram quantities were plotted on cross-section paper, and from the curves thus obtained, readings for regular intervals of concentration of acetic acid in the aqueous layer were selected.

Chlor ACETIC ACID CH2C1COOH.

DISTRIBUTION OF CHLORACETIC ACID BETWEEN:

(Herz and Fischer.)

Water and Benzene at 25°. Water and Toluene at 25°.								
Gms. CH ₂ per 10		G. M. CH ₂			2ClCOOH		H ₂ ClCOOH	
H ₂ O Layer.	CoHo Layer.	H ₂ O Layer.	C ₆ H ₆ Layer.	H ₂ O Layer.	C ₆ H ₅ CH ₃ Layer.	H ₂ O Layer.	C ₆ H ₅ CH ₃ Layer.	
0.25*	8.69	0.0025	0.090	0.1*	5.22	0.001	0.055	
0.5	15.59	0.005	0.155	0.5	20.31	0.005	0.20	
1.0	27.87	0.010	0.28	1.0	34.87	0.010	0.36	
1.5	41.10	0.015	0.415	1.5	49.14	0.015	0.50	
2.0	52.90	0.02	0.54	2.0	60.46	0.02	0.62	
3.0	68.01	0.03	0.70	3.0	72.28	0.03	0.77	
4.0	76.52	0.04	0.79	4.0	81.72	0.04	0.85	
				5.0	86.94	0.05	0.90	

DISTRIBUTION OF CHLORACETIC ACID BETWEEN: (Herz and Lewy.)

Wate	er and C	hloroform	at 25°.	Water and Bromoform at 25°.				
Gms. CH ₂ ClCOOH per 100 cc.		G. M. CH ₂ ClCOOH per 100 cc.		per	Gms. CH ₂ ClCOOH per 100 cc.		G. M. CH ₂ ClCOOH per 100 cc.	
H ₂ O Layer.	CHCl ₃ Layer.	H ₂ O Layer.	CHCl ₃ Layer.	H ₂ O Layer.	CHBr ₃ Layer.	H ₂ O Layer.	CHBr ₈ Layer.	
5*	0.283	0.05	0.0025	40*	0.850	0.45	0.011	
10	0.614	0.10	0.0060	50	1.889	0.50	0.0165	
20	1.088	0.20	0.0135	60	2.994	0.60	0.028	
40	2.948	0.40	0.029	70	4.241	0.70	0.040	
50	3.684	0.60	0.045	80	5.620	0.80	0.053	
60	4.440	0.70	0.061	90	7.560	0.90	0.067	
70	7.086	0.75	0.077	91.6	11.340	0.97	0.120	

DISTRIBUTION OF CHLORACETIC ACID BETWEEN:

(Herz and Lewy.)

Water and Carbon Bisulphide at 25°.				Water and Carbon Tetra- chloride at 25°.			
	2ClCOOH		H ₂ ClCOOH	Gms. CH2ClCOOH G. M. CH2ClCOOH			
per 1	oo cc.	per 1	00 CC.	per 1	100 CC.	per i	oo cc.
H ₂ O	CS ₂	$\hat{\mathrm{H}}_{2}\mathrm{O}$	CS ₂	H ₂ O	CCL	H ₂ O	CCL
Layer.	Layer.	Layer.	Layer.	Layer.	Layer.	Layer.	Layer.
60* 80	0.426	0.6	0.0042	90* 95	1.417	0.95	0.0150
00		0.0	0.007	93	-0	1.00	0.0195
90	0.803	1.0	0.009	100	2.645	1.05	0.0270
100	1.040	1.05	0.0105	105	4.26	I.IO	0.0415
105	1.464	1.10	0.015	106.7	5.19	1.13	0.0550
106.7	1.890	1.13	0.020				

^{*} See Note, page 4.

SOLUBILITY OF MONOCHLOR, DICHLOR, AND OF TRICHLORACETIC ESTER IN AQUEOUS ALCOHOL AT ROOM TEMPERATURE.

(Bancroft - Phys. Rev. 3, 193, 1895-96, from results of Pfeiffer, Z. physik. chem. 9, 469, '92.)

cc. Ethyl Alcohol in	cc. H ₂ O added to cause separation of a second phase in mixtures of the given amts. of Alcohol and 3 cc. of:							
Mixtures.	CH2CICOOC2H5.	CHCl ₂ COOC ₂ H ₅	CCl3COOC2H5.					
3	1.32	0.90	0.65					
6	4.01	2.45	1.80					
9	7.30	4.33	3.02					
12	10.78	6.60	4.50					
15	16.16	9.20	6.50					
18	22.16							
21	28.74							

α ACETNAPHTHALIDE $C_2H_1ONH(C_{10}H_7)$.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch — Rec. trav. chim. 13, 289, 1894.)

Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	4.02	0.7916	65	1.78	0.8977
95	4.31	0.8150	60	I .44	0.9091
90	4.11	0.8344	55	I.02	0.9201
85	3.69	0.8485	50	0.71	0.9290
80	3.18	0.8624	35	0.25	0.9537
75	2.73	0.8761	20	0.09	0.9717
70	2.31	0.8798	IO	0.04	0.9841

ACETONE (CH₃)₂CO.

Solubility of Acetone at 25° in Aqueous Solutions of: Electrolytes. Non-Electrolytes.

(Bell - J. Phys. Ch. 9, 544, 1905; Linebarger - Am. Ch. J. 14, 380, 1802.)

Gms. Electro-	Gms. (CH ₃) ₂ CO per 100 Gms. Solvent in Solutions of:				Gms. Non- Gms. (CH ₃) ₂ CO per 100 Gms Electrolyte Solvent in Solutions of:			
Solution.	K ₂ CO ₃	Na ₂ CO ₃	(NH ₄) ₂ CO ₈	MgCO ₃	Aq. Solution.		Anethol.*	(C ₆ H ₅) ₂ CO.
1.25				83.5	5	92.5	103.0	90.0
2.50		51.0	0.011	65.0	10	117.0	123.0	108.5
5.00	65.0	38.0	73 · 5	47.0	20	137.0	144.5	126.0
7 · 5	46.5	27.5	57.0	38.0	30	148.5	155.0	133.0
10.0	34.5	19.5	44.5	29.0	40	155.5	162.0	136.0
12.5	25.5	14.0	35.0		50	159.5	166.0	135.5
15.0	18.0	9.0	28.0		60	160.2	165.0	131.5
20.0	8.0	2.7			70	155.0	158.0	123.0
25.0	3.7				80			108.5
30.0	1.6				90	• • •		82.0

^{*} Anethol = p Propenylanisol CH3.CH: CH[4]C6H4OCH3. Naphthalene results at 35°.

Note. — The original results were recalculated and plotted on cross-section paper. From the curves so obtained the above table was constructed. See also Note, page 7.

SOLUBILITY OF ACETONE IN AQUEOUS SOLUTIONS OF CARBOHYDRATES.
(Krug and McElroy — J. Anal. Ch. 6, 184, '92; Bell — J. Phys. Ch. 9, 547, '05.)

In Aqueous Solutions of Cane Sugar.

Per cent		Gms. (CH ₃) ₂ CO per 100 Gms. Sugar Solution at:								
Sugar.	15°.	20°•	25°.	30°.	35°•	40°.				
10	597 - 2		581.8	• • •	574.8					
20	272.5		250.0		251.8					
30	172.4		150.0		150.6					
35						110				
40		96.4	92.8	89.8		85				
45		71.9	68.8	65.7		62				
50		50.8	48.1	45.9		42				
55		35.8	33.8	32.5		29				
60		25.2	24.2	23.4						
65		18.3	17.7	17.0						
70		13.2	12.8	12.5						

In Aqueous Dextrose Solutions.

In Aqueous Maltose Solutions.

Per cent		Gms. (CH ₃) ₂ CO per 100 Gms. Solvent at:			Gms. (CH ₃) ₂ CO per 100 Gms. Solvent at:		
Dextrose.	15°.	25°.	35°∙	Maltose.	15°.	25°.	35°•
IO	736.7	747.9	761.5	10		348.I	
20	255.3	247 . 7	240.8	20	185.4	181.2	176.9
30	157.5	149.8	142.5	30	119.9	116.0	112.4
40	86.9	79.6	74.0	40	78.4	74 - 7	70.5
50	36.2	33.0	31.2	50	46.2	42.9	39.8

Note. — The above determinations were made by adding successive small quantities of acetone to mixtures of known amounts of water and the carbohydrate, and noting the point at which a clouding due to the separation of a second phase occurred. This method was also used for the solubility of acetone in the aqueous electrolyte solutions (see previous page). In the case of the aqueous non-electrolyte solutions, however, successive small amounts of water were added to mixtures of known amounts of acetone and the non-electrolyte.

DISTRIBUTION OF ACETONE BETWEEN WATER AND BENZENE AT 25°.

(Herz and Fischer — Ber. 38, 1142, '05.)

Gms. (CH ₃) ₂ C	O per 100 cc.	G. M. (CH ₃) ₂ CO	O per 100 cc.
Aq. Layer.	C ₆ H ₆ Layer.	Aq. Layer.	C ₆ H ₆ Layer.
1*	I . 20	0.025*	0.025
5	4.17	0.05	0.047
IO	10.15	0.10	0.975
15	15.59	0.15	0.150
20	22.50	0.20	0.215
		0.25	0.275

^{*} See Note, page 4.

ACET-PHENETIDINE p (PHENACETINE) C₆H₄(OC₂H₅)NHCH₃CO.

SOLUBILITY IN WATER, ALCOHOL, ETC.

(U. S. P.)

	Gms. (Gms. C ₆ H ₄ (OC ₂ H ₅)NHCH ₃ CO per 100 Gms.							
t°.	H ₂ O.	C ₂ H ₆ OH.	(CH ₃) ₂ O.	CHCl3.					
25	0.108	8.33	1.59	5.00					
b. pt.	I.43 -	50.0							

ACET-TOLUIDE p CH3.C6H4NH.C2H3O.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°.

(Holleman and Antusch - Rec. trav. chim. 13, 288, '94.)

Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	10.18	0.8074	50	1.92	0.9306
95	10.79	0.8276	45	1.41	0.9380
90	10.62	0.8440	40	0.96	0.9460
85	9.62	0.8576	35	0.66	0.9544
80	8.43	0.8685	25	0.31	0.9668
75	7.04	0.8803	20	0.23	0.9725
70	5.81	0.8904	15	0.16	0.9780
65	4.39	0.9021	5	0.13	0.9903
60	3.59	0.9115	0	0.12	0.9979
55	2.69	0.9207			

ACETYLENE C.H.

SOLUBILITY IN WATER.

(Winkler; see Landolt and Börnstein's Tabellen, 3d ed. p. 604, '05.)

t°.	a.	q.
0	1.73	0.20
5	1.49	0.17
10	1.31	0.15
15	1.15	0.13
20	1.03	0.12
25	0.93	0.11
30	0.84	0.09

a, "Absorption Coefficient," = the volume of gas (reduced to oo and 760 mm. pressure) taken up by one volume of the liquid at the given temperature when the partial pressure of the gas equals 760 mm. mercury.

q, "Solubility," = the amount of gas in grams which is taken up by 100 grams of the pure solvent at the given temperature if the total pressure, i.e., the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature is 760 mm.

ACETYLACETONE CH3COCH2COCH3.

SOLUBILITY IN WATER. (Rothmund — Z. phys. Ch. 26, 475, '98.)

Gms. CH3COCH3COCH3 per 100 Gms. Acetyl Acetone t°. Layer. Laver. 15.46 95.02 30 17.58 93.68 40 20.22 91.90 50 60 23.23 89.41 85.77 70 27.IO 78.82 80 33.92 56.8 87.7 (crit. temp.)

Note. — Weighed amounts of water and acetylacetone were placed in small glass tubes, which were then sealed and slowly heated until the contained mixtures became homogeneous. The temperature was then allowed to fall very gradually and the point noted at which cloudiness appeared. This point was accurately established for each tube by repeated trials. The curve plotted from these determinations shows two percentage amounts of acetylacetone which cause cloudiness at each temperature below the critical point. Of these two points, for each temperature, one represents the aqueous layer, i.e., the solubility of acetylacetone in water; and the other represents the acetylacetone layer, i.e., the solubility of water in acetylacetone. This method is known as the "Synthetic Method," and yields results in harmony with those obtained by the analytical method, i.e., by analyzing each layer after complete separation occurs.

ACONITINE (Amorphous) C34H47NO11.

SOLUBILITY IN SEVERAL SOLVENTS.

(At 25° U.S.P.; at 18°-22°, Müller — Apoth.-Ztg. 18, 2, '03.)

Solvent.	Gms. C ₃₄ H ₄₇ N 100 Gms. Solv 18°-22°.	O ₁ per vent at:	Solvent.	Gms. C ₃₄ H ₄ 100 Gms. S 18°-22°.	NO ₁₁ per Solvent at:
Water Alcohol Ether		0.031 4.54 2.27	Benzene	1.99	17.85

ADIPIC ACID (Normal) (CH₂)₄(COOH)₂.

100 grams H₂O dissolve 1.44 grams adipic acid at 15°.
(Henry — Compt. rend. 99, 1157, '84; Lamouroux — *Ibid.* 128, 998, '99.)

AIR

SOLUBILITY IN WATER.

(Winkler - Ber. 34, 1409, 'o1; see also Peterson and Sondern - Ber. 22, 1439, '89.)

			cc.* of atmospheric O and N per liter of:			
_	_		Dist. H ₂ O (a	it 760 mm.).	Sea Water	(at 760 mm.).
t°.	В.	B'.	Oxygen.	Nitrogen.	Oxygen.	Nitrogen.
0	0.02881	0.02864	10.19	18.45	$7 \cdot 77$	14.85
5	.02543	.02521	8.91	16.30	6.93	13.32
10	.02264	02237	7.87	14.50	6.29	12.06
15	.02045	.02011	7.04	13.07	5.70	11.05
20	.01869	.01826	6.35	11.91		10.25
25	.01724	.01671	5 · 75	10.96		9.62
30	.01606	.01539	5.24	10.15		
40	.01418	.01315	4.48	8.67		
50	.01297	.01140	3.85	7 · 55		
60	.01216	.00978	3.25	6.50		
80	.01126	.00600	1.97	4.03		
100	.01105	.00000	0.00	0.00		

B= "Coefficient of Absorption," *i.e.*, the amount of gas dissolved by the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm.

 $B' = {}^{\hat{\alpha}}$ Solubility," *i.e.*, the amount of gas, reduced to o° and 760 mm., which is absorbed by one volume of the liquid when the barometer indicates 760 mm. pressure.

* Reduced to oo and 760 mm.

SOLUBILITY OF AIR IN AQUEOUS SULPHURIC ACID AT 18° AND 760 MM. (Tower – Z. anorg. Ch. 50, 382, '06.)

Wt. % H₂SO₄ 98 90 80 70 60 50 Solubility Coef. 0.0173 0.0107 0.0069 0.0055 0.0059 0.0076

SOLUBILITY OF AIR IN ALCOHOL, ETC.

(Robinet - Compt. rend. 58, 608, '64.)

Solvent.	Vols. Air per 100 Vols. Solvent.	Solvent.	Vols. Air per 100 Vols. Solvent.
Alcohol (95.1%)	14.1	Oil of Lavender	
Petroleum	6.8	Oil of Turpentine.	24.2
Benzene	14.0		

ALANINE (α Aminopropionic Acid) CH₃CH(NH₂)COOH.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°.

(Holleman and Antusch — Rec. trav. chim. 13, 297, '94.)

Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. per 100 Gms. Solvent.	Sp. Gr. of Solutions.
0	16.47	I.042I	35	4.91	0.9670
5	14.37	1.0311	40	3.89	0.9577
10	12.43	1.0200	50	2.38	0.9355
15	10.49	1.0101	60	1.57	0.9102
20	8.48	0.9984	70	0.85	0.8836
25	7.11	0.9886	80	0.37	0 8556
31	5 · 53	0.9761			

ALDEHYDE.

SOLUBILITY OF p FORMALDEHYDE (TRIOXYMETHYLENE) IN AQUEOUS SODIUM SULPHITE SOLUTIONS AT 20°.

(Lumière and Seyewetz — Bull. soc. chim. [3] 27, 1213, '02.)

Grams Sodium Sulphite per 100 cc. H₂O 5 10 20 28 Gms. Trioxymethylene per 100 cc. solution 22 24 26 27

100 gms. H₂O dissolve 12.5 paraldehyde at 25°, and 6.6 gms. at b. pt.

ALCOHOLS.

SOLUBILITY OF AMYL ALCOHOL IN WATER AT 22°. (Herz — Ber. 31, 2671, '98.)

100 cc. water dissolve 3.284 cc. amyl alcohol. Sp. Gr. of solution = 0.9949, Volume = 102.99 cc.

100 cc. amyl alcohol dissolve 2.214 cc. water. Sp. Gr. of solution = 0.8248, Volume = 101.28 cc.

Sp. Gr. of H_2O at $22^\circ = 0.9980$; Sp. Gr. of amyl alcohol at $22^\circ = 0.8133$.

SOLUBILITY OF AMYL ALCOHOL IN WATER AT DIFFERENT TEMPERATURES, "Synthetic Method" (see Note, page 9).

(Alexejew — Ann. phys. Chem. 28, 305, '86.)

Gms. C5H11OH per 100 Gms.				Gms. C ₅ H ₁₁ OI	Gms. C ₅ H ₁₁ OH per 100 Gms.	
t°.	Aqueous Layer.	Alcoholic Layer.	t°.	Aqueous Layer.	Alcoholic Layer.	
0	8	97	100	2.0	80	
20	6	94	120	4.0	77	
40	4	90	140	7.0	73	
60	2	87	150	9.0	72	
80	1.5	83				

SOLUBILITY OF AMYL ALCOHOL IN AQ. ETHYL ALCOHOL SOLUTIONS. (Bancroft — Phys. Rev. 3, 193, '95-96.)

cc. Ethyl Alcohol in Mixture.	Second Phase in A Amounts of Ethy	cc. H ₂ O added to cause Separation of a Second Phase in Mixtures of the given Amounts of Ethyl Alcohol and 3 cc. Portions of Amyl Alcohol at:		
	9.1°.	19.20.		
3	13.21	3.50		
6	10.35	10.80		
9	18.34	19.10		
12	27 - 47	29.15		
15	41.25	43.15		

Note. — The effect of various amounts of a large number of salts upon the temperature (39.8°) at which a mixture of 20 cc. of amyl alcohol + 20 cc. of ethyl alcohol + 32.9 cc. of water becomes homogeneous has been investigated by Pfeiffer (Z. phys. Ch. 9, 444, '92). The results are no doubt of interest from a solubility standpoint, but their recalculation to terms suitable for presentation in the present compilation has not been attempted.

SOLUBILITY OF ISOAMYL ALCOHOL IN WATER.

to. Gms. Iso Amyl Alcohol per 100 Gms. H ₂ O Layer. Alcoholic Layer.			Observer.		
• •	H ₂ O Layer.	Alcoholic Layer.			
13.7	2.0		Balbrano — Ber. 9, 1437, '76		
16.5	2-5	92.9	Wittstein — Jahrb. 408, '62		
22	2.61	97.36	Herz — Ber. 31, 2669, '98		

SOLUBILITY OF BUTYL ALCOHOLS IN WATER, "SYNTHETIC METHOD" (see Note, page 9). (Alexejew — Ann. phys. Chem. 28, 305, '86.)

Secondary Butyl Alcohol Iso Butyl Alcohol and Water. and Water. Gms. Iso Butyl Alcohol per 100 Gms. Gms. Secondary Butyl Alcohol per 100 Gms. Alcoholic Aqueous Alcoholic Aqueous t. Layer. Layer. Layer. Layer. 66 - 20 27 . . . 28 60 - 10 56 85 27.5 0 13 IO 26.0 57 84 20 22.5 60 9 18 63.5 30 83 40 16 65.5 7.5 82 60 67 13 7 80 15 63 7 77.5 8 100 20 52 72 107 crit. temp. 33 . . . 16 62 120 28 130 50 133 crit. temp. 40

DISTRIBUTION OF ETHYL ALCOHOL BETWEEN WATER AND BENZENE AT 25°.

(Taylor - J. Phys. Ch. 1, 468, '97.) Composition of 10 cc. Lower Layer. Composition of 10 cc. of Upper Layer. C6H6. CoHo. H₂O. C2H5OH. H₂O. C2H5OH. 0.60 3.48 4.56 5.92 4.37 I.07 0.48 3.54 1.41 5.05 6.43 3.09 2.04 5.60 7.40 0.20 2.31 2.27 8.70 80.1 8.13 0.17 1.70 3.22 8.65 0.10 1.25 0.59 4.06 5.35 9.05 0.06 0.89 0.28 4.99 4.73

ALUMINIUM CHLORIDE $AlCl_3 \cdot 6 H_2O$.

SOLUBILITY IN WATER. (Gerlach - Z. anal. Ch. 8, 250, '69.)

100 gms. saturated solution contain 41.13 gms. AlCl₃ at 15°, Sp. Gr. of solution = 1.354.

ALUMINIUM SULPHATE Al₂(SO₄)₃ · 18 H₂O.

SOLUBILITY IN WATER.

(Poggiale - Ann. chim. phys. [3] 8, 467, '43.) Gms. Al2(SO4)3 per 100 Gms. Gms. Al₂(SO₄)₃ per 100 Gms. t*. Water. Solution. t°. Water. Solution. 23.8 60 59.1 0 31.3 37.2 66.2 39.8 70 IO 33.5 25.I 36.1 26.7 80 73.I 42.2 20 80.8 28.8 30 40.4 90 44.7 8g.1 47 · I 45.7 100 40 31.4 50 52.I $34 \cdot 3$

100 gms. of a saturated solution of aluminium sulphate in glycol contain 14.4 gms. Al₂(SO₄)₃. (de Coninck - Bull, acad, roy, Belgique, 350, '05.)

ALUMS.

SOLUBILITY OF AMMONIUM ALUM AND OF POTASSIUM ALUM IN WATER.

(Mulder; Poggiale — Ann. chim. phys. [3] 8, 467, '43; Locke — Am. Ch. J. 26, 174, '01; Marino — Gazz. chim. ital. 35, II, 351, '05; Berkeley — Trans. Roy. Soc. 203 A, 214, '04.)

	Ammonium Alum.				Potassium Alum.		
t°.	Gms. (NH ₄) ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	Gms. (NH ₄) ₂ Al ₂ (SO ₄) ₄ 2 ₄ H ₂ O per 100 g. H ₂ O.	G.M.(NH ₄) ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	Gms. K ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	Gms. K ₂ Al ₂ (SO ₄) ₄₂₄ H ₂ O per 100 g. H ₂ O.	G. M. K ₂ Al ₂ (SO ₄) ₄ per 100 g. H ₂ O.	
0	2.10	3.90	0.0044	3.0	5.65	0.0058	
5	3.50	6.91	0.0074	3.5	6.62	0.0068	
10	4.99	9.52	0.0105	4.0	7.60	0.0077	
15	6.25	12.66	0.0132	5.0	9.59	0.0097	
20	7.74	15.13	0.0163	5.9	11.40	0.0114	
25	9.19	19.19	0.0194	7.23	14.14	0.0140	
30	10.94	22.OI	0.0231	8.39	16.58	0.0162	
40	14.88	30.92	0.0314	11.70	23.83	0.0227	
50	20.10	44.10	0.0424	17.00	36.40	0.0329	
60	26.70	66.65	0.0569	24.75	57 · 35	0.0479	
70				40.0	110.5	0.0774	
80				71.0	321.3	0.1374	
90				109.0	2275.0	0.2110	
92.5				119.0	00	0.2313	
95	109.7	∞	0.2312				

Note. — The potassium alum figures in the preceding table were taken from a curve plotted from the closely agreeing determinations of Mulder, Locke, Berkeley, and Marino. For the higher temperatures (above 60°), however, the results of Marino are lower than those of the other investigators, and are omitted from the average curve.

Locke called attention in his paper to the fact that Poggiale's results upon ammonium and potassium alum had evidently become interchanged through some mistake. This explanation is entirely substantiated, not only by Locke's determinations, but also by those of Mulder and Berkeley. The ammonium alum figures given above were therefore read from Poggiale's potassium alum curve, with which Locke's determination of the solubility of ammonium alum at 25° is in entire harmony.

SOLUBILITY OF AMMONIUM ALUM IN PRESENCE OF AMMONIUM SUL-PHATE AND IN PRESENCE OF ALUMINIUM SULPHATE IN WATER.

(Rüdorff - Ber. 18, 1160, '85.)

Mixture Used.		+ Grams Al ₂ (SO ₄) ₃ .
Saturated Ammonium Alum at 18.5°	 I.42	3.69
20 cc. above sol. + 6 gms. cryst. $Al_2(SO_4)_3$.		16.09
20 cc. above sol. $+ 4$ gms. cryst. $(NH_4)_2SO_4$.	 20.81	. 0.29

Solubility of Mixtures of Potassium Alum and Aluminium Sulphate and of Potassium Alum and Potassium Sulphate in Water.

(Marino - Gazz. chim. ital. 35, II, 351, '05.)

t°.	Gms. per 1000 Gms. H ₂ O.		Gm. Mols. per 1000	Mols. H ₂ O.	Solid
• •	$Al_2(SO_4)_3.18H_2O$.	K ₂ SO ₄ .	Al ₂ (SO ₄) ₃ · 18H ₂ O.	K ₂ SO ₄ .	Phase.
0	243 · 73	23.45	6.r	2.3	K2Al2(SO4)2.24H2O
20	824.25	30.85	15.1	3 · I	+ Al ₂ (SO ₄) ₃
35	911.02	35.29	24 · I	3.6	"
50	1243.21	59.55	33 · 5	6.1	"
65	1598.00	119.43	43.1	12.6	"
77	1872.11	183.80	50.5	18.9	"
0	5.06	75.83	0.1	7.8	K ₂ Al ₂ (SO ₄) ₂ .24H ₂ O
0.5	8.66	75.18	0.2	7.7	+ K ₂ SO ₄
5.	16.07	85.78	0.4	8.8	"
IO	18.52	96.50	0.5	9.9	"
15	20.56	109.30	0.55	11.2	"
30	39.60	147.8	I.0	15.2	46
40	73.88	163.1	1.9	16.8	46
50	126.0	195.4	3 · 4	20.I	46
60	249.7	238.8	6.7	24.6	46
70	529.0	323.7	14.2	32.6	66
80	1044.0	517.27	28.1	53 · 4	66

Solubility of Mixtures of Potassium Alum and of Thallium Alum in Water at 25°.

(Fock - Z. Kryst. Min. 28, 397, '97.)

 $K_2Al_2(SO_4)_4 \cdot 24H_2O$; $Tl_2Al_2(SO_4)_4 \cdot 24H_2O$.

	Com		Solid Phase			
KAl(SO ₄)	per Liter.	TlAl(SC)4)2 per Liter.	Mol. %	Sp. Gr. of	Mol. % of Potassium
Grams.	Mg. Mols.	Grams.	Mg. Mols.	KAl(SO ₄) ₂ .	Solutions.	Alum.
69.90	270.5	0.00	0.00	100	1.0591	100.0
74.56	288.2	0.48	1.13	99.61	1.0601	99.32
67.90	262.8	I.72	4.07	98.48	1.0598	96.84
65.30	252.7	4.52	10.67	95.95	1.0603	90.84
64.95	251.4	9.60	22.67	91.73	1.0605	82.94
53 · 23	205.9	18.44	43.56	82.54	1.0609	68.24
45.32	175.4	24.60	58.10	75.12	1.0609	58.23
38.02	147.2	32.48	76.75	65.73	1.0011	46.72
34 · 54	133.6	35.59	84.10	61.36	1.0011	44.23
28.35	109.7	42.99	101.60	51.93	1.0623	32.07
10.94	42.4	66.12	156.2	21.34	1.0654	7.94
0.00	0.0	75.46	178.3	0.00	1.0674	0.00

SOLUBILITY OF SODIUM ALUM IN WATER.

100 gms. H₂O dissolve 51.0 gms. (?anhy.) Al₂Na₂(SO₄)₄.24H₂O at 16°. (Auge — Compt. rend. 110, 1139, '90.)

100 gms. H_2O dissolve 110.0 gms. $Al_2Na_2(SO_4)_4.24H_2O$ at 0°. (Tilden — J. Ch. Soc. (Lond.) 45, 269, '84.)

SOLUBILITY OF CAESIUM ALUM, RUBIDIUM ALUM, AND OF THALLIUM ALUM IN WATER.

(Setterburg — Liebig's Annalen, 211, 104, '82; Locke — Am. Ch. J. 26, 183, '01; Berkeley — Trans. Roy. Soc. 203 A, 215, '04.)

t°.	Caesium Gms. per 100		Rubidiu Gms. per 100	m Alum. o Gms. H ₂ O.	Thalliun Gms. per 100	
• •	Al ₂ Cs ₂ (SO ₄) ₄ .	Al ₂ Cs ₂ (SO ₄) ₄ ·24H ₂ O.	$Al_2Rb_2(SO_4)_4$.	Al ₂ Rb ₂ (SO ₄) ₄ .24H ₂ O.	Al ₂ Tl ₂ (SO ₄₎₄ .	Al ₂ Tl ₂ (SO ₄) ₄ .24H ₂ O.
0	0.21	0.34	0.72	I.2I	3.15	4.84
5	0.25	0.40	0.86	1.48	3.80	5.86
10	0.30	0.49	1.05	1.81	4.60	7.12
20	0.40	0.65	1.50	2.59	6.40	10.00
25	0.50	0.81	1.80	3.12	7.60	11.95
30	0.60	0.97	2.20	3.82	9.38	14.89
40	0.85	1.38	3.25	5.69	14.40	23.57
50	1.30	2.11	4.80	8.50	22.50	38.41
60	2.00	3.27	7.40	13.36	35.36	65.19
70	3.20	5.27	12.40	23.25		
80	5.40	9.01	21.60	43.25		
90	10.50	18.11				
100	22.70	42.54				

Note. — Curves were plotted from the closely agreeing determinations recorded by the above named investigators and the table constructed from the curves.

AMINES.

METHYL AMINE AND TRI METHYL AMINE, DISTRIBUTION BETWEEN: Water and Amyl Alcohol. Water and Benzene.

(He	rz and Fisch	ner — Ber. 37,	4751, '04.)	(H	erz and Fisch	er — Ber. 38,	1143, '05.)
	NH ₂ (CH ₃)		NH ₂ (CH ₃) to cc.		N(CH ₃) ₃		N(CH ₃) ₃
Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.	Aq. Layer.	C ₆ H ₆ Layer.	Aq. Layer.	C ₆ H ₆ Layer.
0.37	O.I2	1.155	0.3804	0.345	0.174	0.584	0.295
0.94	0.33	3.036	1.070	0.812	0.396	1.377	0.670
1.57	0.54	5.054	1.759	1.075	0.545	1.819	0.921
1.89	0.69	6.083	2.219	1.462	0.731	2.474	1.237
2.00	0.72	6.429	2.315	2.139	1.077	3.619	1.823
2.53	0.92	8.126	2 . 981	2.757	1.376	4.663	2.328
3.30	I.24	10.613	3.974	3.292	1.683	5.568	2.847
				3.996	2.053	6.760	3 · 474
				6.582	3.465	11.135	5.861

SOLUBILITIES OF DI ETHYL AMINE AND WATER.*

(Lattey - Phil. Mag. [6] 10, 308, '05.)

DISTRIBUTION OF TRI	ETHYL	AMINE
BETWEEN WATER	AND	AMYL
ALCOHOL AT 25°.		
/TT 1 TY 1	70	

(Herz and Fischer — Ber. 37, 4751, '04.)

	Gms. NH per 100		Gms. N(e		Millimols I	
t°.	Aqueous Layer.	Amine Layer.	Aqueous Layer.	Alcoholic Layer.	Aqueous Layer.	Alcoholic Layer.
155	21.7	59.0				
150	23.6	55.5	0.0885	2.299	0.0875	2.273
148	24.8	53 · 5	0.1683	4.457	0.1664	4.408
146.	26.3	51.0	0.1866	4.922	0.1846	4.868
145	28.0	49.0	0.2502	6.491	0.2474	6.418
144	31.0	45.0				
143.5	(crit. t.) 37	.4				

$N(C_2H_5)_3$. Tri Ethyl AMINE

SOLUBILITY IN WATER. (Rothmund - Z. phys. Ch. 26, 433, '98.)

t°.)3 per 100 Gms.	t °.		3 per 100 Gms.
	Aq. Layer.	Amine Layer.		Aq. Layer.	Amine Layer.
18.6 (crit.	temp.) 5	1.9	40	3.65	96.48
20	14.24	72.0	50	2.87	96.4
25	7.30	95.18	55	2.57	96.3
30	5.80	96.60	60	2.23	96.3
35	4.58	96.5	65	1.97	96.3

SOLUBILITY OF TRI ETHYL AMINE IN MIXTURES OF WATER AND ETHYL ALCOHOL AT DIFFERENT TEMPERATURES.* (Meerburg — Z. phys. Ch. 40, 647, '02.)

			(F-3 4				
0% A	cohol.	13.33%	Alcohol.	28.98%	Alcohol.	38.84%	Alcohol.	60.16%	Alcohol
t°.	. N(C ₂ H ₅) ₃ per 100 g. sol.	t°.	G. N(C ₂ H ₅) per 100 g. sol.	t°.	P. N(C ₂ H ₅) ₃ per 100 g. sol.	t°.	P_0 N(C ₂ H ₅) ₃ per 100 g. sol.	t°.	G. N(C ₂ H ₅) ₃ per 100 g. sol.
69.2	1.7	38.3	8.2	54.5	22.8	73.4	31.2	76-77	71.2
30.8	5.6	31.7	13.9	45.0	29.8	65.4	33 · 3	74-75	75.0
23.I	8.5	28.0	21.6	33 · 4	51.1	51.6	40.6	72-73	80.0
18.7	25.8	26.4	30.6	31.4	63.7	42.I	50.6		
18.7	37.2	24.9	40.5	30.3	68.5	40.9	54.7		
19.5	51.8	24.2	49.8	28.5	82.2	34.2	70.6		
20.5	68.6	24.I	60.7	35.0	91.8	33.0	77.5		
20.5	84.0	24.0	69.7			34.7	88.0		
20.5	89.7	23.5	73.6			40.5	91.3		
21.4	92.4	24.0	81.5						
25.8	95.5	24.2	87.4						
26.5	96.1	25.0	92.0						
Monn	Dog	140 fo	- T-: T-:	L 1 A	-: 777-		A Tabert	T+hom	and for

Note. — Results for Tri Ethyl Amine, Water and Ethyl Ether, and for Tri Ethyl Amine, Water and Phenol are also given by Meerburg.

100 gms. abs. methyl alcohol dissolve 57.5 grams $\rm NH(C_6H_5)_2$ at 19.5°. 100 gms. abs. ethyl alcohol dissolve 56.0 grams $\rm NH(C_6H_5)_2$ at 19.5°. (de Bruyn - Z. phys. Ch. 10, 784, 1892.)

^{*} Determinations made by "Synthetic Method," see Note, page 9.

SOLUBILITY OF DI PHENYL AMINE AND ALSO OF TRI PHENYL AMINE IN CARBON BISULPHIDE.

(Arctowski - Compt. rend. 121, 123, '95.)

NH(C	6H ₅) ₂ in CS ₂ .	N(C	6H5)3 in CS2.
t°.	Gms. per 100 Gms. Solution.	t°.	Gms per 100 Gms. Solution.
$-88\frac{1}{2}$	0.87	-83	1.91
-117	0.37	-91	1.56
		-102	I.24
		$-113\frac{1}{2}$	0.98

SOLUBILITY OF DI PHENYL AMINE IN HEXANE AND IN CARBON BISULPHIDE.

(Etard - Ann. chim. phys. [7] 2, 570, '94.)

t°.	Gms. NH(C ₆ H ₅) ₂ per 100 Gms. Sol. in:		t°.	Gms. NH(C ₆ H ₅) ₂ per 100 Gms. Sol. in:	
	Hexane.	CS ₂ .		Hexane.	CS ₂ .
-60		1.3	0	2.6	33.7
-50		2.2	+10	3.8	46.8
-40		3.8	20	6.7	60.9
-30	0.5	7.2	30	13.8	76.0
-20	0.8	12.5	40	47.0	
-10	1.4	21.6	50	94.0	

AMMONIA NH3.

SOLUBILITY OF AMMONIA IN WATER.

(Roscoe and Dittmar — Liebig's Annalen, 112, 334, '59; Raoult — Ann. chim. [5] 1, 262, '74; Mallet — Am. Ch. J. 19, 807, '97.)

	At 760 mm.	Pressure.		At 760 mm	. Pressure.
t°.	G. NH ₃ per 100 g. H ₂ O.	Vol. NH ₃ per 1 g. H ₂ O.	t°.	G.NH ₃ per 100 g. H ₂ O.	Vol. NH ₃ per 1 g. H ₂ O.
-40	294.6		20	52.6	710
-30	278.1		25	46.0	635
-20	176.8		30	40.3	595 (28°)
-10	111.5		35	35.5	• • •
0	87.5	1299	40	30.7	
5	77 - 5	1019	45	27.0	
IO	67.9	910	50	22.9	
15	60.0	802	56	18.5	• • •

SOLUBILITY OF AMMONIA IN AQUEOUS SALT SOLUTIONS. (Raoult.)

	Gms. NF	itrate Solutions I3 per 100 livent in:	In Potassium Hydroxide Solutions Gms. NH ₃ per 100 Gms. Solvent in:		
t°.	28.38% Ca(NO ₃) ₂ .	In 59.03% Ca(NO ₃) ₂ .	KOH.	25.25% KOH.	
0	96.25	104.5	72.0	49.5	
8	78.50	84.75	57.0	37.5	
16	65.00	70.5	46.0	28.5	
24			37 · 3	21.8	

MUTUAL SOLUBILITY OF AQUEOUS AMMONIA AND POTASSIUM CARBONATE SOLUTIONS.

(Newth - J. Chem. Soc. 77, 776, 1900.)

The solutions used were: Potassium Carbonate saturated at 15° (contained 57.2 grams $K_2\text{CO}_3$ per 100 cc.). Aqueous Ammonia of 0.885 Sp. Gr. (contained about 33 per cent ammonia). The determinations were made by adding successive small quantities of one of the solutions to a measured volume of the other, and observing the point at which opalescence appeared.

	Saturated K ₂ CO ₂	in Aq. Ammonia.	Aq. Ammonia in Saturated K2CO		
t°.	cc. K ₂ CO ₃ per 100 cc. Ammonia.	%K ₂ CO ₃ Solution in Mixture.	cc. Ammonia in 100 cc. K ₂ CO ₃ .	%K ₂ CO ₃ Solution in Mixture.	
I	2.0	2.0	37 · 5	72.7	
6	3.0	3.0	47 · 5	67.6	
II	5.0	4.7	52.5	65.0	
16	6.5	6.1	60.0	63.0	
21	8.5	8.0	77 · 5	56.3	
26	10.5	9.5	105.0	49.0	
31	12.5	II.I	152.5	39.0	
38	20.0	16.6	195.0	33.0	
39	21.0	17.0	220.0	31.0	
42	25.0	20.0	250.0	28.5	
43	35.0	26.0	285.0	26.5	

Above 43° the solutions are completely miscible. If 10 per cent of water is added to each solution the temperature of complete miscibility is lowered to 25°. The mutual solubilities are:

	Per cent K2CO3 Solution in:				
t°.	Ammonia	K ₂ CO ₃ Sol.			
	Layer.	Layer.			
0	8	62			
10	11	52			
20	15	38			
25 (crit. pt.)	2	5			

With the addition of 12.9 per cent of water to each solution the temperature of complete miscibility (crit. pt.) is lowered to 10°. With the addition of 18.1 per cent water this temperature becomes 0°.

SOLUBILITY OF AMMONIA IN ABSOLUTE ETHYL ALCOHOL. (Delepine — J. pharm. chim. [5] 25, 496, 1892; de Bruyn — Rec. trav. chim. 11, 112, '92.)

Densitu	Gms. NH ₃				100 Gms. Alcohol
Density.	Solution.	(Delepine.)	(de Bruyn.)	(Delepine.)	(de Bruyn.)
0.782	13.05	20.95	19.7	26.5	24.5
0.784	12.00	19.00	17.5	23.0	21.2
0.787	10.85	16.43	15.0	19.6	17.8
0.789	9.20	13.00	13.2	15.0	15.2
0.791	7.50	10.66	11.5	11.9	13.2
0.794	6.00	10.0	10.0	0.11	II.2
0.798	5.15	9.7	8.8	10.7	9.5
	0.784 0.787 0.789 0.791 0.794	Density. per 100 cc. Solution. 0.782 13.05 0.784 12.00 0.787 10.85 0.789 9.20 0.791 7.50 0.794 6.00	Density. per 100 cc. Solution. (Delepine.) 0.782 13.05 20.95 0.784 12.00 19.00 0.787 10.85 16.43 0.789 9.20 13.00 0.791 7.50 10.66 0.794 6.00 10.0	Density. per 100 cc. Solution. (Delepine.) (de Bruyn.) 0.782 13.05 20.95 19.7 0.784 12.00 19.00 17.5 0.787 10.85 16.43 15.0 0.789 9.20 13.00 13.2 0.791 7.50 10.66 11.5 0.794 6.00 10.0 10.0	Density. per 100 cc. Solution. (Delepine.) (de Bruyn.) (Delepine.) 0.782 13.05 20.95 19.7 26.5 0.784 12.00 19.00 17.5 23.0 0.787 10.85 16.43 15.0 19.6 0.789 9.20 13.00 13.2 15.0 0.791 7.50 10.66 11.5 11.9 0.794 6.00 10.0 10.0 11.0

Solubility of Ammonia in Aqueous Ethyl Alcohol. (Delepine.)

	In 969	% Alcohol.	In 90	% Alcohol.	In 80%	& Alcohol.
t°.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.
0	0.783	24.5	0.800	30.25	0.808	39.0
IO	0.803	18.6	0.794	28.8	0.800	28.8
20	0.788	14.8	0.795	15.8	0.821	19.1
30	0.791	10.7	0.796	11.4	0.826	12.2

	In 600	% Alcohol.	In 50	In 50% Alcohol.		
t°.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.	Sp. Gr. Solution.	G. NH ₃ per 100 Gms. Sol.		
0	0.830	50.45	0.835	69.77		
10	0.831	37 · 3	0.850	43.86		
20	0.842	26.1	0.869	33.8		
30	0.846	21.2	0.883	25.2		

SOLUBILITY OF AMMONIA IN ABSOLUTE METHYL ALCOHOL. (de Bruyn — Rec. trav. chim. 11, 112, '92.)

t°.	G. NH ₃ per Solution.	Alcohol.	t°.	G. NH ₃ per Solution.	Alcohol.
0	29.3	41.5	20	19.2	23.8
5	26.5	36.4	25	16.5	20.0
IO	24.2	31.8	30	14.0	16.0
15	21.6	27.8			

DISTRIBUTION OF AMMONIA BETWEEN:

Water and Amyl Alcohol at 20°. Water and Chloroform at 20°.

(Herz and Fischer — Ber. 37,
4747, '04.)

(Dawson and McCrae — J. Ch. Soc. 79, 496, '0x; see also Hantsch and Sebaldt — Z. phys. Ch. 30, 258, '99.)

Gms. NH	3 per 100 cc.	G.M.NI	H ₃ per 100 cc.		per 100 cc.		H ₃ per 100 cc.
	Alcoholic Layer.		Alcoholic Layer.	Aq. Layer.	CHCl ₃ Layer.	Aq. Layer.	CHCl ₃ Layer.
0.5	0.072	0.25	0.0035	0.2	0.007	0.01	0.00038
I.0	0.147	0.50	0.0073	0.4	0.015	0.02	0.00073
2.0	0.272	I.00	0.0148	0.6	0.023	0.03	0.00114
3.0	0.438	2.00	0.0295	0.8	0.031	0.04	0.00152
4.0	0.595	3.00	0.0460	I.0	0.039	0.05	0.00193
5.0	0.756			I.2	0.046	0.06	0.00232
				I · 4	0.055	0.08	0.00311
				1.6	0.063	0.10	0.00396

Note. — The influence of a large number of electrolytes upon the distribution of ammonia between water and chloroform was also investigated. For calculations of above distribution results, see Note, page 4.

SOLUBILITY OF AMMONIUM CALCIUM ARSENATE AND AMMONIUM MAGNESIUM ARSENATE IN WATER, ETC.

(Field - I.Ch. Soc. 11. 6. '72.)

(Field — J. Ch. 30c. 11, 0,	73-7
Solvent.	Grams per 100 Grams Solvent.
•	NH4CaAsO41H2O. NH4MgAsO41H2O.
Water	0.02 0.014
Aq. Ammonia 10% (Sp. Gr. 0.88)	
Aq. NH,Cl 5%	
Aq. NH, Cl 10%	0.095

AMMONIUM BENZOATE NH4C7H5O2.

SOLUBILITY IN WATER AND IN ALCOHOL.

	Gms. NH ₄ C ₇ H ₅ O ₂ per	100 Gms. Solvent in:
t°.	Water.	Alcohol.
25	9.52	4.0
b. pt.	83.33	13.2

AMMONIUM BROMO PLATINATE (NH.) PtBr.

100 gms. sat. aq. solution contain 0.59 gm. (NH₄)₂PtBr₆ at 20°.
(Halberstadt — Ber. 17, 2965, '84.)

AMMONIUM BROMIDE NH, Br.

SOLUBILITY IN WATER.
(Eder — Abh. K. Akad. Wiss. (Berlin) 82 ii. 1284, '80.)

	Gms. NH ₄ Br. p	er 100 Grams.		Gms. NH ₄ Br. pe	er 100 Grams.
t°.	Solution.	Water.	t°.	Solution.	Water.
10	39.8	66.2	50	48.5	94.3
20	42.5	74.0	60	50.2	101.0
30	44.8	81.3	80	53.5	115.0
40	46.7	87.5	100	56.1	128.2

SOLUBILITY OF AMMONIUM BROMIDE IN ABSOLUTE ETHYL ALCOHOL,
METHYL ALCOHOL, AND IN ETHER.
(Eder: de Bruyn — Z. phys. Ch. 10, 783, '02.)

		(The females of the	1-31 97	
	In Ethyl Gms. Ni per 100	H ₄ Br	In Methyl Gms. NI	H ₄ Br	In Ether (0.729 Sp. Gr.). Gms. NH ₄ Br per 100 Grams.
t°.	Solution.	Alcohol.	Solution.	Alcohol.	Ether.
15	2.97	3.06			0.123
19	3.12	3.22	II.I	12.5	• • • •
78	9.50	10.50			

Solubility of Tetra Ethyl **AMMONIUM BROMIDE** N(C₂H₅)₄Br, and of Tetra Methyl Ammonium Bromide N(CH₃)₄Br in Acetonitril. (Walden – Z. phys. Ch. 55, 712, '06.)

100 cc. sat. solution in CH₃CN contain 9.59 gms. N(C₂H₅)₄Br at 25°. 100 cc. sat. solution in CH₃CN contain 0.17 gm. N(CH₃)₄Br at 25°.

AMMONIUM CADMIUM BROMIDE NH4Br.CdBr2. 1 H2O.

100 parts of water dissolve 137.0 parts NH₄Br.CdBr_{2.}½H₂O.
100 parts of alcohol dissolve 18.8 parts NH₄Br.CdBr_{2.}½H₂O.
100 parts of ether dissolve 0.36 part NH₄Br.CdBr_{2.}½H₂O.
(Eder — Dingler polyt. J. 221, 89, '76.)

AMMONIUM CARBONATE (NH4)2CO2.

100 grams H₂O dissolve 100 grams (NH₄)₂CO₃H₂O at 15°. 100 grams glycerine dissolve 20 grams (NH₄)₂CO₃ at 15°.

(Divers - J. Ch. Soc. 23, 171, '70.)

AMMONIUM BICARBONATE NH, HCO3.

SOLUBILITY IN WATER. (Dibbits — J. pr. Ch. [2] 10, 417, '74.)

21

t°.	Gms. NH ₄ HCO ₃ I	Water.	t°. G	Solution.	per 100 Grams.
0	10.6	11.9	20	17.4	21.0
5	12.1	13.7	25	19.3	23.9
10	13.7	15.8	30	21.3	27.0
15	15.5	18.3			

Solubility of Ammonium Bicarbonate in Aqueous Solutions of Ammonium Chloride Saturated with CO_2 .

(Fedotieff - Z. phys. Ch. 49, 168, '04.)

	3374 -6		Per 1000 C	. Solution	1.		Per 1000	Grams H	2O.
t°.	Wt. of 1 cc. Sol.	G. M. NH ₄ Cl.	G. M. NH ₄ HCO ₃	Gms. NH ₄ Cl.	Gms. NH ₄ HCO ₃ .	G. M. NH ₄ Cl.	G. M. NH ₄ HCO ₃	Gms. NH ₄ Cl.	Gms. NH ₄ HCO ₈ .
0						0.0	I.22	0.0	119.0
0	1.077	4.41	0.37	235.9	29.2	5.42	0.46	290.8	36.0
15	1.064	0.0	2.12	0.0	167.2	0.0	2.36	0.0	186.4
15	1.063	0.5	1.84	26.8	145.2	0.56	2.06	29.9	162.9
15	1.062	1.0	1.59	53.5	125.5	1.13	1.80	60.6	142.2
15	1.062	1.41	1.42	75.4	112.2	1.59	1.60	85.1	126.9
15	1.065	1.89	4.28	8.001	IOI.I	2.18	1.48	116.8	116.8
15	1.069	2.87	0.99	153.3	78.2	3.42	1.18	183.0	93.3
15	1.076	3.84	0.79	205.2	62.5	5.03	0.98	269.3	77.3
15	1.085	4.82	0.65	257.9	51.4	6.21	0.84	332.5	66.4
15	1.085	4.95	0.62	264.8	48.9	6.40	0.81	343.5	64.2
30						0.0	3.42	0.0	270.0
30	• • •			• • •		7 · 4	1.15	397.0	91.0

Solubility of Ammonium Bicarbonate in Aqueous Solutions of Sodium Bicarbonate Saturated with CO₂.

(Fedotieff.)

					A .				
t°.	Wt. of 1 cc. Sol.	G. M. NaHCO ₃	G. M. NH ₄ HCO ₈ .	Gms. NaHCO3.	Gms. NH ₄ HCO ₃ .	G. M. NaHCO ₃ .	G. M. NH ₄ HCO ₈ .	Gms. NaHCO3.	Gms. NH4HCO
						0.0	1.51	0.0	119.0
0	1.072	0.53	1.28	44.6	101.4	0.58	1.39	48.2	109.4
15	1.064	0.0	2.12	0.0	167.2	0.0	2.36	0.0	186.4
15	1.090	0.63	1.92	52.5	151.3	0.71	2.16	59.2	170.6
30		***				0.0	3.42	0.0	270.0
30	• • •	• • •	• • •	• • •	• • •	o.83	2.91	70.0	230.0

AMMONIUM BICARBONATE 22

Solubility of Mixtures of Ammonium Bicarbonate, Sodium Bicarbonate, and Ammonium Chloride in Water Saturated with $\mathrm{CO}_2.$

-						~		
F	ω.	п	0	ŀ١.	0	**	- 1	ı

t°.	Wt. of cc. Sol.	Gram G	Mols. per ms. H ₂ O	1000	Gms. p	Solid			
	1 cc. 501.	NaHCO3.	NaCl.	NH4Cl.	NaHCO ₃ .	NaCl.	NH ₄ Cl.	Phase.	
0	1.114	0.59	0.96	4.92	49.61	56.16	263.4	a+b+c	
0	1.187	0.12	4.83	2:74	10.09	282.6	146.7	66	
15	1.116	0.93	0.51	6.28	78.18	29.84	336.2	66	
15	1.178	0.18	4.44	$3 \cdot 73$	15.13	259.8	199.6	"	
15	1.151	0.30	3.09	4.56	25.22	180.8	244.I	a + c	
15	1.128	0.51	1.68	5 · 45	42.87	98.28	291.7	"	
15	1.112	0.99	0.35	5.65	83.22	20.47	302.4	a + b	
15	1.108	1.07	0.20	5.21	89.95	11.70	278.9	"	
15	1.106	I.I2	0.11	4.92	94.14	6.44	263.4	"	
15	I.IOI	1.16	0.14	4.00	97.52	8.19	214.1	66	
15	1.090	0.93	0.95	2.03	78.18	55.58	108.6	66	
	$a = NaHCO_3$,				$b = NH_4HCO_3$,			$c = NH_4Cl.$	

AMMONIUM URANYL CARBONATE 2(NH₄)₂CO₃UO₂CO₃.

(Ebelmen.)

100 grams H₂O dissolve 5 grams of the salt at 15°.

AMMONIUM LEAD COBALTICYANIDE NH4PbCo(CN)6.3H2O.

(Schuler - Sitz. Ber. K. Akad. W. (Berlin) 79, 302.)

100 grams H₂O dissolve 12.0 grams of the salt at 18°.

AMMONIUM CHLORIDE NH,Cl.

SOLUBILITY IN WATER.

(Mulder; below oo, Meerburg - Z. anorg. Ch. 37, 203, 1903.)

t°.	Gms. NH4Cl p	Water.	t°.	Gms. NH ₄ Cl I	Water.
-15	19.7	24.5	40	31.4	45.8
-10.9	20.3	25.5	50	33 · 5	50.4
-5.7	21.7	27.7	60	35.6	55.2
0	22.7	29 · 4	70	37.6	60.2
+ 5	23.8	31.2	80	39.6	65.6
10	24.9	33 · 3	90	41.6	71.3
15	26.0	35.2	100	43.6	$77 \cdot 3$
20	27.1	37.2	110	45.6	83.8
25	28.2	39 · 3	115.6	46.6	87.3
30	29.3	41.4			

Density of saturated solution at $0^{\circ} = 1.088$, at $15^{\circ} = 1.077$, at $19^{\circ} = 1.075$.

Solubility of Ammonium Chloride in Aqueous Ammonium Bicarbonate Solutions Saturated with CO_2 .

(Fedotieff - Z. phys. Ch. 49, 169, 1904.)

	We of	Pe	T 1000 C	•	Per 1000 Gms. H ₂ O.				
t°.	ı cc. Sol.	G. M. NH ₄ HCO ₃ .	G. M. NH ₄ Cl.	Gms. NH ₄ HCO	Gms. 3. NH ₄ Cl.	G. M. NH ₄ HCO ₃	G. M. NH ₄ Cl.	Gms. NH4HCl	Gms. NH ₄ Cl.
0	1.069	0.0	4.60	0.0	246.1	0.0	5.57	0.0	298.0
0	1.077	0.37	4.41	29.2	235.9	0.46	5 · 42	36.0	290.8
15	1.077	0.0	5.29	0.0	283.1	0.0	6.64	0.0	355.0
15	1.085	0.62	4.95	48.9	264.8			64.2	
30						0.0	7.78	0.0	416.4
30						1.15	7.40	91.0	397.0

Solubility of Ammonium Chloride in Aqueous Solutions of Sodium Chloride Saturated with ${\rm CO}_2.$ (Fedotieff.)

			Per 1000	cc. Solution	1.		Per 1000	Gms. H ₂ O	•
t°.	Wt. of cc. Sol.	G. M. NaCl.	G. M. NH ₄ Cl.	Gms. NaCl.	Gms. NH ₄ Cl.	G. M. NaCl.	G. M. NH ₄ Cl.	Gms. NaCl.	Gms. NH ₄ Cl.
0	1.069	0.0	4.60	0.0	246.1	0.0	5.57	0.0	298.0
0	1.085	4.04	2.26	236.5	121.0	4.89	2.73	286.4	146.1
15	1.077	0.0	5.29	0.0	283.1	0.0	6.64	0.0	355.0
15	1.097	0.81	4.71	47.5	252.1	I.02	5.91	59.8	316.4
15	1.120	1.68	4.13	98.0	221.7	2.09	5.18	122.4	277.0
15	1.153	2.87	3.38	168.0	180.7	3.57	4.20	208.9	224.7
15	1.175	3.65	2.98	213.5	159.4	4.55	3.72	266.8	198.8
30						0.0	7.78	0.0	416.4
30	1.166	3.30	3.70	193.0	198.0	4.26	4.77	249.0	255 · 4
45						0.0	9.03	0.0	483.7
45		• • •				4.0	6.02	233.9	322.1

Solubility of Ammonium Chloride in Aqueous Solutions of Hydrochloric Acid at 0°.

(Engel - Ann. chim. phys. [6] 13, 379, '88.)

Sp. Gr. of Solutions.	Milligram N	Molecules per Solution.	Grams pe Solut	Grams per 100 cc. Solution.			
Solutions.	HCl.	NH ₄ Cl.	HCl.	NH4Cl.			
1.076	0.0	46.12	0.0	24.61			
1.069	2.9	43.6	1.05	23.16			
1.070	5 · 5	41.0	1.99	21.78			
1.071	7.85	39.15	2.84	20.79			
1.073	10.85	36.45	3.93	19.36			
1.078	21.4	27.37	7.74	14.54			
1.106	53.0	10.87	19.18	5.78			
1.114	61.0	8.8	22.07	4.67			

Sat. HClat 12° 3.7 at 17°

SOLUBILITY IN AQUEOUS AMMONIA SOLUTIONS AT 0°. (Engel — Bull. soc. chim. [3] 6, 17, 1891.)

Sp. Gr. of Solutions.	Milligram per 10 cc.		Grams pe Solut	er 100 cc.
Solutions.	NH ₃ .	NH ₄ Cl.	NH4OH.	NH ₄ Cl.
1.067	5.37	45.8	0.92	24.52
1.054	12.02	45 - 5	2.05	24.35
1.031	38.0	44.5	6.48	23.82
1.025	47.0	44.0	8.02	23.56
1.017	54.5	43.63	9.30	23.35
0.993	80.0	43.12	13.66	23.09
0.992	90.0	44.0	15.36	23.56
0.983	95.5	44.37	16.29	23.75
0.953	130.0	49.75	22.18	26.63
0.931	169,75	60.0	28.97	32.14

Solubilities of Mixtures of Ammonium Chloride and Other Salts in Water.

(Rüdorff, Karsten, Mulder.)

Both salts present in solid phase.

t°.	G	rams p	er 1	o Gran	ns H ₂ O.	t°.	Gra	ms per	100 Grams	H ₂ O.	
19.5					NH ₄ NO ₃						KCl M
21.5	20.8	•••	+	40.5	$(NH_4)_2SO_4$	K	14.8	38.8		+ 34.2	KNO ₃ K
20.0	33.8	"	+	11.6	BaCl ₂	R	18.5	39.8		+38.6	KNO ₃ K
18.5	39.2	"	+	17.0	$Ba(NO_3)_2$	K	14.0	36.8	**	+14.1	K₂SO₄ R
15.0	28.9	"				R	18.7	37.9		+13.3	K ₂ SO ₄ K
22.0	30.4	"	+	19.1	KCl	R	18.7	22.9	"	+23.9	NaCl R

Solubility of Ammonium Chloride in Absolute Ethyl and Methyl Alcohol at 19° and in Aqueous Ethyl Alcohol Solutions.

100 grams absolute ethyl alcohol dissolve 0.62 grams NH₄Cl. 100 grams absolute methyl alcohol dissolve 3.35 grams NH₄Cl.

(de Bruyn - Rec. trav. chim. 11, 156, '92.)

In Aqueous Alcohol at 30°. (Bathrick — J. Physic. Chem. 1, 159, '96.)

In Aq. Alcohol of 45 Wt. %. (Gerardin — Ann. chim. phys. [4] 5, 147, '65.)

Wt. per cent Alcohol.	G. NH ₄ Cl per 100 g. Alcohol.	Wt. per cent Alcohol.	G. NH ₄ Cl per 100 g. Alcohol.	t°.	G. NH ₄ Cl per 100 g. Alcohol.
0	40.4	45.9	17.0	4	11.2
8.3	35.3	54.3	14.0	8	12.6
16.9	31.8	65.0	9.6	27	19.4
25.9	27.5	75.6	6.4	38	23.6
34 · 4	21.7	87.9	2.9	56	30.1

SOLUBILITY OF AMMONIUM CHLORIDE IN AQUEOUS GLYCERINE SOLUTIONS AND IN AQUEOUS ACETONE SOLUTIONS AT 25°. (Herz and Knoch — Z. anorg. Chem. 45, 263, 267, '05.)

In Aqueous Glycerine. (Sp. Gr. of Glycerine 1.255, Impurity about 1.5%.)

In Aqueous Acetone.

Wt. % Glycerine.	NH ₄ Cl pe Solut Millimols.	tion.	Sp. Gr. at $\frac{25^{\circ}}{4^{\circ}}$.	Vol. % Acetone.		NH ₄ Cl pe Solu Millimols.	tion.	Sp. Gr. at $\frac{25^{\circ}}{4^{\circ}}$.
0.	585.1	31.32	1.0793	0		585.1	31.32	1.0793
13.28	544.6	29.16	1.0947	IO		534.1	28.59	1.0618
25.98	502.9	26.93	1.1127	20		464.6	24.87	1.0451
45.36	434.4	23.26	1.1452	30		396.7	21.23	1.0263
54.23	403.5	21.60	1.1606	40		328.5	17.59	0.9998
83.84	291.4	15.60	1.2225	*46.5	L	283.7	15.19	0.9800
100.00	228.4	12.23	1.2617	*85.7	U	18.9	1.01	0.8390
			•	90		9.4	0.50	0.8274

^{*} Between these two concentrations of acetone, the solution separates into two layers. L indicates lower layer, U indicates upper layer.

Solubility of Tetra Ethyl **AMMONIUM CHLORIDE** N(C₂H₅)₄Cl, and also of Tetra Methyl Ammonium Chloride N(CH₃)₄Cl in Acetonitril.

100 cc. sat. solution in CH₃CN contain 29.31 gms. N(C₂H₅)₄Cl at 25°. 100 cc. sat. solution in CH₃CN contain 0.265 gms. N(CH₃)₄Cl at 25°. (Walden – Z. physik. Chem. 55, 712, '06.)

AMMONIUM CHROMATES.

SOLUBILITY IN WATER AT 30°. (Schreinemaker — Z. physic. Chem. 55, 89, 'o6.)

Composition in Wt. per cent of: Solid Phase. The Solution. The Residue % CrO3. % NH3. % CrO3. % NH3. $(NH_4)_2CrO_4$ 6.933 22.23 9.966 16.53 20.44 47.59 " 8.20 16.973 . . . 6.37 38.03 22.53 12.15 $(NH_4)_2CrO_4 + (NH_4)_2Cr_2O_7$ 27.09 6.87 48.02 12.01 8.81 (NH₄)₂Cr₂O₇ 26.19 5.70 47.38 7.58 25.99 5.10 41.56 30.16 3.50 38.89 3.10 61.08 8.80 $(NH_4)_2Cr_2O_7 + (NH_4)_2Cr_3O_{10}$ 42.44 3.15 59.72 6.75 (NH₄)₂Cr₃O₁₀ 44.08 2.27 54.90 4.14 60.88 52.QI I.II 3.00 54.56 1.03 63.07 3.09 $(NH_4)_2Cr_3O_{10} + (NH_4)_2Cr_4O_{18}$ 65.70 56.57 $(NH_4)_2Cr_4O_3$ 0.97 2.95 58.87 0.65 69.74 3.24 62.48 0.46 71.93 3.10 63.60 73.68 1.18 $(NH_4)_2Cr_4O_{13} + CrO_3$ 0.40 63.66 0.41 71.47 2.07 62.94 0.21 CrO₂ 62.28 CrO₂

100 gms. of the sat. aq. solution contain 28.80 gms. (NH₄)₂CrO₄ at 30°. 100 gms. of the sat. aq. solution contain 32.05 gms. (NH₄)₂Cr₂O₇ at 30°.

AMMONIUM FLUOBORIDE NH43BF3.

100 parts of water dissolve 25 parts salt at 16°, and about 97 parts at b. pt. (Stolba - Chem. Techn. Cent. Anz. 7, 459.)

AMMONIUM FORMATE HCOONH, and also Ammonium Acid Formate.

SOLUBILITY IN WATER. (Groschuff - Ber. 36, 4351, '03.)

t°.	Gms. HCC	Gms.	Solid. Phase.	t°.	Gms. per Solut	ion.	Solid.
-20 0 20 40 60 80	Solution. 41.9 50.5 58.9 67.1 75.7 84.2 6 f. pt.	Water. 72 102 143 204 311 531	HCOONH, " " " " "		46.7 49.6 51.3 52.1 49.6 53.0 55.8	+ HCOC 34. I 36. 2 37. 4 38. 0 36. 2 38. 6 40. 7	HCOONH, HCOOH "" "" HCOONH, labil. " stabil. " "
				39	57.8	42.2	H ₂ O free solution.

SOLUBILITY OF AMMONIUM FORMATE IN FORMIC ACID SOLUTIONS. (Groschuff.)

30 grams of HCOONH, dissolved in weighed amounts of formic acid and cooled to the point at which a solid phase separated.

t°.	per 100 Gms.	G. M. HCOONH, per 100 G. M. HCOOH.	Solid Phase.	t°.	Gms. HCOONH ₄ per 100 Gms Solution	per . 100 G.	NH ₄ Solid Phase.	
- 3	35.3	39.9	HCOONH.	30	50.0 57.8	73.0		labil.
+8.5	40.6 50.0	49·9 73·0	44	78	73.1 m.pt. 100.0	199.0	4.6	"

AMMONIUM IODATE NH, IO,

100 parts H₂O dissolve 2.6 parts salt at 15° and 14.5 parts at 100°. (Rammelsberg - Pogg. Ann. 44, 555, 1838.)

Tetra Methyl AMMONIUM IODIDE N(CH₃)₄I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden — Z. physik. Chem. 55, 708, '06.)

			Sp. Gr. of	Gms. N(CH ₃) ₄	I per 100.
Solvent.	Formula.	t°.	Sp. Gr. of Solution.	-cc. Solution.	Gms. Solution.
Water	H_2O	0	1.0188	2.01	1.97
Water	$\mathrm{H_{2}O}$	25	1.0155	5.31-5.89	5.22
Methyl Alcohol	CH_3OH	0	0.8025	0.18-0.22	0.22
Methyl Alcohol	CH_3OH	25	0.7920	0.38-0.42	0.48
Ethyl Alcohol	C₂H₅OH	25	0.7894	0.09	
Glycol	$(CH_2OH)_2$	0		1.014	
Glycol	(CH ₂ OH) ₂	25	1.0678	0.240	0.224
Acetonitril	CH₃CN	25		0.650	
Nitro Methane	CH ₃ NO,	0	1.1387	0.25-0.32	0.22
Nitro Methane	CH ₃ NO ₂	25	1.1285	0.34-0.38	0.21
Acetone	$(CH_3)_2CO$	0		0.118	
Acetone	(CH ₃) ₂ CO	25		0.187	
Salicyl Aldehyde	C ₆ H ₄ .OH.CO		1.1492	0.302	0.263
Salicyl Aldehyde	C ₆ H ₄ .OH.CO	H 25	1.1379	0.510	0.484
		•			

Tetra Ethyl AMMONIUM IODIDE N(C2H3)4I.

SOLUBILITY IN SEVERAL SOLVENTS. (Walden — Z. physik. Chem. 55, 698, '06.)

0.1			Sn. Gr. of	Gms. N(C ₂ H ₅) ₄ I	рег 100.
Solvent.	Formula.	t°.	Sp.Gr.of Solution.	cc. Solution.	Gms. Solution.
Water	H_2O	0	1.0470	16.31	15.58
Water	H_2O	25	1.1021	36.33(35.5)	13.44
Methyl Alcohol	CH₃OH	o	0.8326	3 · 7 - 4 · 3	4.44
Methyl Alcohol	CH_3OH	25	0.8463	10.5 (10.7)	
Ethyl Alcohol	C_2H_5OH	ő	0.7928		0.439
Ethyl Alcohol	C_2H_5OH	25	0.7844		1.240
Glycol	$(CH_2OH)_2$	ŏ	1.1039		2.97
Glycol	$(CH_2OH)_2$	25	1.0904		
Acetonitril	CH₃CN	Ö	0.8163	2.24	2.74
Acetonitril	CH ₃ CN	25	0.7929	3.04 (3.54)	
Propionitril	CH₃CH₂CN	o	0.8059	0.618	0.767
Propionitril	CH ₃ CH ₂ CN	25	0.7830	o.81-1.01	1.20
Benzonitril	C_6H_5CN	25		0.467	
Methyl Sulphocyanide		25	1.0828	4.40	4.06
Ethyl Sulphocyanide	C ₂ H ₅ SCN	25	I.00I2	0.475	0.47
Nitro Methane	CH ₃ NO ₂	o	1.1658	3.59	3.004
Nitro Methane	$\mathrm{CH_3NO_2}$	25	1.1476	5.61-6.27	5.61
Nitroso Dimethylin	$(CH_3)_2N.NO$	25	1.0059	2.67	2.66
Acetyl Acetone	CH ₃ COCH ₂ COOCH ₃	25		0.268	
Furfurol	C₄H₃O.COH	0	1.1738	3.91	3 · 33
Furfurol	C₄H₃O.COH	25	1.1692	5 · 33	4.55
Benzaldehyde	C_0H_5COH	25		0.43	
Salicylaldehyde	C ₆ H ₄ .OH.COH	25		change-	
		•		able-17.7	
Anisaldehyde	C ₆ H ₄ .OCH ₃ .COH	25		0.59	
Acetone	$(CH_3)_2CO$	0	0.7991	0.174	0.218
Acetone	$(CH_3)_2CO$	25		0.249	0.218
Ethyl Acetate	CH ₃ COOC ₂ H ₅	25		0.00039	
Ethyl Nitrate	$C_2H_5ONO_2$	25	1.0984	0.062	0.056
Benzoyl Ethyl Acetate	C6H5COCH2COOC2H5	25	1.1303	0.321	0.284
Di-Methyl Malonate	CH ₂ (COOCH ₃) ₂	25	1.1335	0.040	0.035
Methyl Cyan Acetate	CH ₂ CNCOOCH ₃	0	1.1341	1.82	1.605
Methyl Cyan Acetate	CH ₂ CNCOOCH ₃	25		2.83	
Ethyl Cyan Acetate	CH ₂ CNCOOC ₂ H ₅	0	1.0760	1.057	0.981
Ethyl Cyan Acetate	CH ₂ CNCOOC ₂ H ₅	25	1.0607	1.71	1.41

Tetra Propyl AMMONIUM IODIDE N(C3H7)4I.

SOLUBILITY IN SEVERAL SOLVENTS.

(Walden - Z. physik. Chem. 55, 709, '06.)

			Sn Gr of	Gms. N(C ₃ H ₇), I	per 100.
Solvent.	Formula.	t°.	Sp. Gr. of Solution.	cc. Solution.	Gms. Solution.
Methyl Alcohol	CH₃OH	0	0.9756	40.92	41.94
Methyl Alcohol	CH₃OH.	25	1.0187	56.42	55 - 37
Ethyl Alcohol	C ₂ H ₅ OH	0	0.8349	6.5-6.8	8.14
Ethyl Alcohol	C_2H_5OH	25	0.8716	19.88-20.29	23.28
Acetonitril	CH ₃ CN	0	0.8553	13.03	15.24
Acetonitril	CH ₃ CN	25	0.8584	18.69	21.77
Propionitril	C_2H_5CN	0	0.8280	6.37	7.66
Propionitril	C_2H_5CN	25	0.8191	9.65	11.76
Benzonitril	C_6H_5CN	25	1.0199	8.44	8.35
Nitro Methane	CH_3NO_2	0	1.181	14.79	12.52
Nitro Methane	CH_3NO_2	25	1.158	22.24	19.21
Nitro Benzol	$C_6H_5NO_2$	25	1.193	5.71	4.79
Benzaldehyde	C_6H_5COH	0	1.0581	7.06	6.67
Benzaldehyde	C_6H_5COH	25	1.0549	9.87	9.35
A nisaldehyde	C ₆ H ₅ .OCH ₃ .COH	0	1.1114	5.60	5.04
Anisaldehyde	C ₆ H ₅ .OCH ₈ .COH	25	1.1004	6.75	6.14
Salicylaldehyde	$C_6H_5.OH.COH$	52		39.28	
Ethylnitrite	$C_6H_5ONO_2$	0	1.1207	0.522	0.466
Ethylnitrite	$C_6H_5ONO_2$	25	1.1025	0.653	0.592
Di-Methyl Malonate	$CH_2(COOCH_3)_2$. 0	1.1532	0.298	0.259
Di-Methyl Malonate	$CH_2(COOCH_3)_2$	25	1.1345	0.320	0.282
Acetone	$(CH_3)_2C$	0	0.8259	2.692	3.26
Acetone	$(CH_3)_2CO$	25	0.8049	3.944	4.90
Ethyl Acetate	CH ₃ COOC ₂ H ₅	25	0.8975	0.0063	0.007

AMMONIUM NITRATE NH4NO3.

SOLUBILITY IN WATER.

(Schwarz — Ostwald's Lehrbuch, 2d ed. p. 425; Muller and Kaufmann — Z. physik. Chem. 42, 497, 'oz-'o2.)

t°.	Sp. Gr. Solution.	G. Mols. NH ₄ NO ₃ per 100 Mols. H ₂ O.		LaNO ₃ per Gms.	Solid Phase.
0		26.63	54.19		NH ₄ NO ₃ rhomb. β
12.2	1.2945	34.50	60.53	153.4	"
20.2	1.3116	43.30	65.80	192.4	. "
25.0	1.3197	48.19	68.17	214.2	46
30.0	1.3299	54.40	70.73	241.8	41
32.I	1.3344	57.60	71.97	256.9	NH ₄ NO ₃ rhomb. β+rhomb. α
35.0	1.3394	59.80	72.64		NH, NO, rhomb. a
40.0	1.3464	66.80	74.82	297.0	• "
50.0		77.41	77 - 49	344.0	44
60.0		94.73	80.81	421.0	"
70.0		112.30	83.32	499.0	"
80.0		130.50	85.25	580.0	"
90.0		166.50	88.08	740.0	NH4NO2 rhombohedral?
100.0		106.00	80.71	871.0	66

Solubilities of Mixtures of Ammonium Nitrate and Other Salts.

(Rüdorff - Mulder.)

100 gms. H₂O dissolve 162.9 gms. NH₄NO₃ + 77.1 gms. NaNO₃ at 16° R.
100 gms. H₂O dissolve 88.8 gms. NH₄NO₃ + 40.6 gms. KNO₃ at

9° M.
100 gms. H₂O dissolve 101.3 gms. NH₄NO₃ + 6.2 gms. Ba(NO₃)₂ at 0° M.

SOLUBILITY OF AMMONIUM NITRATE IN AMMONIA. (Kuriloff — Z. physik. Chem. 25, 109, '98.)

t°.	Gms. NH ₄ NO ₃ .	Gms. NH ₃ .	Mols. NH ₄ NO ₃ per 100 Mols. NH ₄ NO ₃ + NH ₃ .		Gms. NH ₄ NO ₃ .		Iols. NH ₄ NO ₃ per 100 Mols. NH ₄ NO ₃ + NH ₂ .
-80	0	100	0.0	33.3	0.9358	0.2352	45.9
-60	1.3918	4.4327	6.25	35.9	0.7746	0.1857	47.0
-44.5	0.9526	1.2457	13.9			0.7747	53.8
-30	0.8308	0.3700	32.3		0.6439	0.0665	67.3
-10.5	0.9675	0.3515	36.9		, , ,	0.0588	74.2
0	0.7600	0.2607	38.3	168.0			100.0
t° =	temperat	cure of ec	quilibrium	between	solution	and so	lid phase.

SOLUBILITY OF AMMONIUM NITRATE IN NITRIC ACID. (Groschuff — Ber. 37, 1488, '04.)

Determinations by the "Synthetic Method," see Note, page 9.

t°.	Gms. NH ₄ NO ₃ per 100 Gms. Sol.	Mols. NH ₄ NO ₃ per 100 Mols. HNO	Solid Phase.	t°.	Gms. NH ₄ NO ₃ per 100 Gms. Sol.	Mols. NH ₄ NO ₃ per 100 Mols. HNC	Solid Phase	
8	21.1	2 I . I	NH4NO3.2HNO3	11.0	51.7	84.3	NH, NO3.	HNOs
23	28.7	31.6	" a	12.0	54.7	95.1	44	labil.
29.5 m.	pt. 38.8	50.0	44	11.5	57.6	108.0	44	Ъ
27.5	44.6	63.4	" в	11.5	54.0	92.4	NH4NO3	labil.
23.5	49.4	76.8	66	17.0		95.1	46	stabil.
17.5	54.0	92.4	46	27.0	56.2	101.0	44	
16.5	54.3	93.5	***************************************	49.0	60.4	120.0	44	
4.0	45.8	66.7	NH ₄ NO ₃ .HNO ₃ labil	79.0	68.1	168.0	14	
	a =	solution	n in HNO ₃ ,	b = s	olution	in NH,N	VO _s .	

SOLUBILITY OF AMMONIUM TRI-NITRATE IN WATER. (Groschuff.)

t°.	Gms. NH ₄ NO ₃ per 100 Gms. Solution.	Gms. HNO ₃ per 100 Gms. Solution.	Mols. NH ₄ NO ₃ * per 100 Mols. H ₂ O.	Mols. NH ₄ N per 100 total Mols. Solution.	Solid
-8	34.2	53.9	64.3		NH ₄ NO ₃ ,2HNO ₃
-2.5	34.8	54.8	75.1	23.1	66
+3.0	35 · 4	55.8	90.0	24.3	46
8.5	36.6	56.9	113.0	25.7	44
19.5	37 - 4	58.9	225.0	29.0	. "
25.0	38.1	60.0	450.0	31.0	"
29.5 m. I	ot. 38.8	61.2	0.0	00	"
		* or NE	LNO.2HNO.		

SOLUBILITY OF AMMONIUM NITRATE IN AQUEOUS ETHYL ALCOHOL. (Fleckenstein — Physic. Z. 6, 419, '05.)

t°.	Gra	Grams of NH ₄ NO ₃ Dissolved per 100 Grams Aq. Alcohol of (Wt.%).								
	100%.	86.77%.	76.12%.	51.65%.	25.81%.	0%.				
20	2.5	11.0	23.0	70.0	140	195				
30	4.0	14.0	32.0	90.0	165	230				
40	5.0	0.81	43.0	115.0	196	277				
50	6.0	24.0	55.0	144.0	244	365				
60	7 · 5	30.0	70.0	183.0	320					
70	9.0	41.0	93.0	230.0						
80	10.5	56.0								

Note. — The figures in the preceding table were read from curves shown in the abridged report of the work, and are therefore only approximately correct. Determinations of the solubility in methyl alcohol solutions were also made but not quoted in the abstract. The "Synthetic Method" (see Note, page 9) was used.

100 grams absolute ethyl alcohol dissolve 4.6 grams $\rm NH_4NO_3$ at 14° and 3.8 grams at 20.5°.

100 grams absolute methyl alcohol dissolve 14.6 grams NH4NO3 at 14° and 17.1 grams at 20.5°.

(Schiff and Monsacchi - Z. physik. Chem. 21, 277, '96; at 20.5° de Bruyn - Ibid., 10, 783, '92.)

AMMONIUM MAGNESIUM NITRATE 2NH4NO3.Mg(NO3)2.

100 parts water dissolve 10 parts salt at 12.5°.
(Foucroy.)

AMMONIUM MANGANIC MOLYBDATE 5(NH₄)₂MoO₄.Mn₂(Mo₂O₇)₃. 12H₂O.

100 parts water dissolve 0.98 parts salt at 17°.

(Struve - J. pr. Chem. 61, 460, '54.)

AMMONIUM OXALATE (NH₄)₂C₂O₄.

100 grams H₂O dissolve 2.215 grams (NH₄)₂C₂O₄ at 0° Sp. Gr. of solution = 1.0105.

(Engel - Ann. chim. phys. [6] 13, 359, '88.)

SOLUBILITY OF NEUTRAL AMMONIUM OXALATE IN AQUEOUS SOLU-TIONS OF ACID AMMONIUM OXALATE. (Engel.)

Milligram cc. So.	Mols. per 10 lution.	Grams p Solu	Grams per 100 cc. Solution.				
(NH ₄) ₂ C ₂ O ₄	NH ₄ HC ₂ O ₄	(NH ₄) ₂ C ₂ O ₄	NH4HC2O4.				
3.54	0.0	2.19	0.0				
2.65	1.45	1.63	0.77				
2 · 475	2.525	1.52	T.34				
2.38	2 . 90	I · 47	1.54*				
	* Both salts :	present in solid phase					

SOLUBILITY OF AMMONIUM OXALATE AND OXALIC ACID IN WATER AT 25°.
(Walden — Am. Ch. J. 34, 149, '05.)

Mixtures of the two substances were dissolved in warm water and the solutions allowed to cool in a thermostadt held at 25°.

Composition of Solution.				
Grams per i Soluti	on.	Mols. per 10 H ₂ O		Solid Phase.
$(NH_4)_2C_2O_4$	$H_2C_2O_4$.	$(NH_4)_2C_2O_4$.	$H_2C_2O_4$.	
0.28	10.20	0.045	2.281	H ₂ C ₂ O _{4.2} H ₂ O and (NH ₄) ₂ C ₂ O _{4.3} H ₂ C ₂ O _{4.4} H ₂ O
0.46	7.24	0.072	1.570	
2.44	2.59	0.372	0.546	Double salt, (NH ₄) ₂ C ₂ O _{4.3} H ₂ C ₂ O _{4.4} H ₂ O
3.65	2.80	0.566	0.599	
4.99	3.41	0.791	0.745	
5.20	3.55	0.824	0.781	$(NH_4)_2C_2O_43H_2C_2O_44H_2O$ and $(NH_4)_2C_2O_4.H_2C_2O_4.H_2O$
5.36	3.38	0.853	0.741	
6.27	3.04	I.00	0.671	Double salt, (NH ₄) ₂ .C ₂ O ₄ .H ₂ C ₂ O ₄ .H ₂ O
7.03	2.90	1.13	0.645	•
7.08	2.70	1.14	0.599	$(NH_4)_2C_2O_4.H_2C_2O_4.H_2O$ and $(NH_4)_2C_2O_4$
6.92		0.775		$(NH_4)_2C_2O_4$

AMMONIUM HYDROGEN PHOSPHITE (NH4H)HPO3.

100 grams water dissolve 171 grams (NH₄H)HPO₃ at 0°, 190 grams at 14.5° and 260 grams at 31°.

(Amat.—Compt. rend. 105, 809, '87.)

AMMONIUM PERMANGANATE NH, MnO,.

Composition of Solution.

100 parts water dissolve approximately 8 parts of NH₄MnO₄ at 15°. (Aschoff.)

AMMONIUM FLUO SILICATE (NH₄)₂SiF₆.

100 parts water dissolve 18.5 parts $(NH_4)_2SiF_6$ at 17.5°, Sp. Gr. 1.096. (Stolba — Chem. Centr. 418, 1877.)

AMMONIUM SALICYLATE C6H4(OH)COONH4.

100 parts H_2O dissolve 111.1 parts $C_6H_4(OH)COONH_4$ at 25°; 100 parts alcohol dissolve 43.5 parts at 25° and 100 parts at the b. pt. (U. S. P.)

AMMONIUM SULPHATE (NH4)2SO4.

SOLUBILITY IN WATER. (Mulder.)

t°		Grams (NH ₄) ₂ SO ₄		t°.	Grams (NH ₄) ₂ SO ₄ per 100 Grams.	
	•	Water.	Solution.		Water.	Solution.
	0	70.6	41.4	30	78.0	43.8
	5	71.8	41.8	40	0.18	44 . 8
	10	73.0	42.2	60	88.0	46.8
•	15	74.2	42.6	80	95.3	48.8
	20	75 · 4	43.0	100	103.3	50 8
	25	76.7	43 · 4	108.9	107.5	51.8
Sp.	Gr.	of saturated	solution a	at 15° = 1	.248; at 19°	= 1.241.

Solubility of Mixtures of Ammonium Sulphate and Copper Sulphate at 16°, and of Ammonium Sulphate and Potassium Sulphate at 19.1°.

(Rüdorff - Ber. 6, 482, '73.)

$(NH_4)_2SO_4 + CuSO_4$.	(NH ₄) ₂ SO ₄ + K ₂ SO ₄ .
Preparation of Solution. G. per 100 g. Solution. CuSO ₄ (NH ₄) ₂ SO ₄ .	Preparation of Solution. G.per 100 g.Solution K ₂ SO ₄ . (NH ₄) ₂ SO ₄ .
Both salts in excess 8.55 7.12	Both salts in excess 39.3 37.97
15 cc. sat. sol. + 3 gms. (NH ₄) ₂ SO ₄ 1.77 18.16	15 cc. sat. sol. + 4 g. K ₂ SO ₄ 4.94 33.26
15 cc. sat. sol. + 3 gms. CuSO ₄ .5H ₂ O 15.85 5.65	15 cc. sat. sol. + 4 g. (NH ₄) ₂ SO ₄ 2.05 40.80

Solubility of Ammonium Sulphate in Aqueous Ethyl Alcohol Solutions.

(Traube and Neuberg — Z. physik, Chem. 1, 510, '87; Bodländer — *Ibid.* 7, 318, '91; Schreinemaker — *Ibid.* 23, 657, '97; de Bruyn — *Ibid.* 32, 68, '00; Linebarger — Am. Ch. J. 14, 380, '92.)

Grams per 10	yer Results. 50 Gms. Solu- 10°-40°.	Gms. C ₂ H ₅ OH per 100 Gms.		Results. [H ₄) ₂ SO ₄ per : Solution at:	100 g.
C ₂ H ₅ OH.	(NH ₄) ₂ SO ₄ .	Solution.	6.5°.	15°.	33°•
100	0.0	0	42.0	42.6	44
80	0.1	2.5	39.0	40.2	5
70	0.3	5.0	36.2	37.2	5
60	1.4	7.5	33.2	34.5	42
50	3.2	10.0	30.0	31.0	35
45	4.8	12.5	27.2	28.0	3
40	6.6	15.0	24.6	25.2	3
35	9.2	17.5	22.0	22.4	3
30	12.2	20.0	20.0	20.0	3
25	14.6				

Note. — When ammonium sulphate is added to aqueous solutions of alcohol, it is found that for certain concentrations and temperatures the solutions separate into two liquid layers, the upper of which con-

tains the larger percentage of alcohol.

Most of the determinations which have been made upon this system, as contained in the papers referred to above, are given in terms of grams of ammonium sulphate, of alcohol and of water per 100 grams of these three components taken together. Those results which are given in other terms can be readily calculated to this basis, and it is therefore possible to make a comparison of the several sets of determinations by plotting on cross-section paper and drawing curves through the points. In the present case the grams of alcohol per 100 grams of solution were taken as ordinates, and the grams of ammonium sulphate in the same quantity of each solution taken as abscissæ. It was found that a single curve could be drawn through practically all the points representing the upper layer solutions at the several temperatures, but the points for the solutions containing the larger amounts of water gave curves which diverged with increase of temperature. The results given for 33° in the above table are not to be accepted as correct until further work has been done.

SOLUBILITY OF AMMONIUM SULPHATE IN AQUEOUS PROPYL ALCOHOL SOLUTIONS AT 20°.

(Linebarger - Am. Ch. J. 14, 380, '92.)

Gms. per Sol	100 Gms.	Gms. per 100 Gms. Solution.		
C ₃ H ₇ OH.	(NH ₄) ₂ SO ₄ .	C ₃ H ₇ OH.	(NH ₄) ₂ SO ₄ .	
70	0.4	40	3.2	
60	I.0	30	4.8	
50	2.0	20	6.7	

AMMONIUM CADMIUM SULPHATE (NH₄)₂Cd(SO₄)₂6H₂O.

100 cc. H₂O dissolve 72.3 grams (NH₄)₂Cd(SO₄)₂ at 25°. (Locke—Am. Ch. J. 27, 459, 'o1.)

AMMONIUM CHROMIUM SULPHATE (Alum) (NH4)2Cr2(SO4)4. 24H.O.

100 cc. H2O dissolve 10.78 grams anhydrous or 21.21 grams hydrated salt at 25°. (Locke - Am. Ch. J. 26, 174, 'o1.)

AMMONIUM COBALT SULPHATE (NH4),Co(SO4),.6H,O. SOLUBILITY IN WATER.

(Tobler — Liebig's Annalen 95, 193, '55; v. Hauer — J. pr. Chem. 74, 433, '58; at 25°, Locke — Am. Ch. J. 27, 459, 'or.)

t°.	Gms. (NH ₄) per 100		t°.	Gms. (NH ₄) ₂ Co(SO ₄) ₂ per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	6.0	5 · 7	40	22.0	18.0
10	9.5	8.7	50	27.0	21.3
20	13.0	11.5	60	33.5	25.1
25	14.72	12.8	70	40.0	28.6
30	17.0	14.5	80	49.0	32.9
-					

Note. — The determinations reported by the above named investigators were plotted on cross-section paper and although considerable variations were noted, an average curve which probably represents very nearly the true conditions was drawn through them, and the above table made from this curve.

AMMONIUM COPPER SULPHATE (NH₄)₂Cu(SO₄)₂.6H₂O.

100 grams H₂O dissolve 26.6 grams salt at 19°, Sp. Gr. of sol. = 1.1336 (Schiff - Liebig's Ann. 109, 326, '59.)

AMMONIUM IRON SULPHATE (Alum) $(NH_4)_2Fe_2(SO_4)_4.24H_2O.$ salt at 25°. Sp. Gr. of saturated solution at 15° = 1.203.

(Locke—Am. Ch. J. 26, 174, 'o1.) 100 cc. H2O dissolve 44.15 gms. anhydrous or 124.40 gms. hydrated

AMMONIUM IRON SULPHATE (ferrous) (NH₄)₂Fe(SO₄)₂.6H₂O.

SOLUBILITY IN WATER. (Tobler; at 25°, Locke — Am. Ch. J. 27, 459, 'o1.)

t°.	G. (NH ₄) ₂ Fe(SO ₄) ₂ per 100 g. H ₂ O.	t°.	G. (NH ₄) ₂ Fe(SO ₄) ₂ per 100 g. H ₂ O.	t°.	G. (NH ₄) ₂ Fe(SO ₄) ₂ per 100 g. H ₂ O.
0	12.5	25	25.0 (T)	50	40
15	20.0	25	35.1 (L)	70	52
		40	33.0		

AMMONIUM INDIUM SULPHATE (NH₄)₂In₂(SO₄)₄·24H₂O.

100 g. H₂O dissolve 200 gms. salt at 16° and 400 gms. at 30°. (Rössler – J. pr. Chem. [2] 7, 14, '73.)

AMMONIUM MAGNESIUM SULPHATE (NH₄)₂Mg(SO₄)₂.6H₂O.

SOLUBILITY IN WATER.

(Average curve, from results of Mulder, Tobler, Locke, at 25°.)

t°.		₂ Mg(SO ₄) ₂ oo Gms.	t°.	G. (NH ₄) ₂ Mg(SO ₄) ₂ per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	9.0	8.8	40	27.0	21.3
10	13.0	11.5	50	32.0	24.4
20	18.0	15.3	60	37.0	27.0
25	19.9	16.6	70	42.0	29.6
30	22.0	18.0	80	47.0	32.0

AMMONIUM MANGANESE SULPHATE (NH₄)₂Mn(SO₄)₂.6H₂O.

100 cc. water dissolve 37.2 gms. (NH₄)₂Mn(SO₄)₂ at 25°.

(Locke - Am. Ch. J. 27, 459, 'or.)

AMMONIUM NICKEL SULPHATE (NH4), Ni(SO4), 6H2O.

SOLUBILITY IN WATER.

(Average curve from Tobler, Locke, at 25°.)

t°.		4) ₂ Ni(SO ₄) ₂ 00 Gms.	t°.	G. (NH ₄) ₂ Ni(SO ₄) ₂ per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	I.0	0.99	40	12.0	10.72
IO	4.0	3.85	50	14.5	12.96
20	6.5	6.10	60	17.0	14.53
25	$7 \cdot 57$	7.04	70	20.0	16.66
30	9.0	8.45			

AMMONIUM SODIUM SULPHATE NH, NaSO, . 2H2O.

100 gms. water dissolve 46.6 gms. $NH_4.NaSO_4.2H_2O$ at 15°, Sp. Gr. Sol. = 1.1749.

AMMONIUM VANADIUM SULPHATE (Alum) (NH₄)₂V₂(SO₄)₄.

100 cc. $\rm H_2O$ dissolve 31.69 gms. anhydrous or 78.50 gms. hydrated salt at 25°. (Locke.)

AMMONIUM ZINC SULPHATE (NH₄)₂Zn(SO₄)₂.6H₂O.

SOLUBILITY IN WATER.

(Average curve, see Note, p. 33, Tobler, Locke, at 25°.)

t°.		G. (NH ₄) ₂ Zn(SO ₄) ₂ per 100 Gms.		G. (NH ₄) ₂ Zn(SO ₄) ₂ per 100 Gms.	
	Solution.	Water.		Solution.	Water.
0	6.54	7.0	40	16.66	20
10	8.67	9.5	50	20.0	25
20	11.11	12.5	60	23.1	30
25	12.36	14.1	70	25.9	35
30	13.79	16.0	80	29.6	42

AMMONIUM PERSULPHATE (NH₄)₂S₂O₈.

100 parts H₂O dissolve 58.2 parts (NH₄)₂S₂O₈ at o°.

(Marshall - J. Chem. Soc. 59, 771, '91.)

AMMONIUM SODIUM HYDROGEN SULPHITE (NH₄)Na₂H(SO₃)₂ 4H₂O.

100 gms. H_2O dissolve 42.3 gms. salt at 12.4° and 48.5° gms. at 15°. (Schwincker – Ber. 22, 1732, '89.)

AMMONIUM SULPHOCYANIDE NH4SCN.

100 parts water dissolve 128.1 parts NH₄SCN at 0° and 162.2 parts at 20°.

(Clowes - Z. Ch. 190, 1866.)

cc. H₂O added to cause separation

AMYL ACETATE BUTYRATE, FORMATE, etc.

SOLUBILITY IN WATER AND IN AQUEOUS ALCOHOL AT 20°.

(Bancroft - Phys. Rev. 3, 131, 196, 205, '95-'96; Traube. - Ber. 17, 2304, '84.)

Ester.	cc. Ester per 100 cc. H ₂ O.	Sp. Gr. of Ester.	Ester.	cc. Ester per	Sp. Gr. of Ester.
Amyl acetate	0.2	0.88	Amyl propionate	e o.1	0.88
Iso amylacetate			Iso amyl format	e 0.3 (gms.	at 22°)
Amyl butyrate	0.06	0.85			

Solubility of Iso Amyl Acetate Solubility of Amyl Acetate and Amyl in Aq. Alcohol Mixtures. Formate in Aq. Alcohol Mixtures.

Per 5 cc. C ₂ H ₅ OH.		cc. C ₂ H ₅ OH in Mixture.	of second phase in mixtures of the given amounts of alcohol and 3 co portions of:		
cc. H ₂ O.	cc. Iso Amyl acetate.	m marture.	Amyl Formate.	Amyl Acetate.	
7	0.41	3	1.80	1.76	
6	0.7	9	8.77	9.03	
5	1.31	15	17.01	17.52	
3.61	3.0	21	27.06	26.99	
3.01	4.0	27	38.31	37.23	
2.60	5.0	33	50.71	48.41	
		39	65.21	• • •	
		45	85.10		
		48	94.20		

ANETHOL (p Propylanisol) CH3CHCH[4]C6H4OCH3.

SOLUBILITY IN AQ. ALCOHOL AT 20°.

(Schimmel and Co. Reports, Oct 1895, p. 6.)

Vol. per cent alcohol = 20 25 30 40 50 Gm. Anethol per liter aq. alcohol=0.12 0.20 0.32 0.86 2.30

ANILINE C₆H₅(NH₂).

Sp. Gr. = 1.0175.

36

SOLUBILITY IN WATER AT 22°.

(Herz—Ber. 31, 2671, '98; see also Vaubel—J. pr. Chem. [2] 52, 72, '95; Aignan and Dugas—
Compt. rend. 129, 643, 99.)

100 cc. H₂O dissolve 3.481 cc. C₆H₅(NH₂) - Vol. of Sol. = 103.48, Sp. Gr. = 0.9986. 100 cc. $C_6 H_5(NH_2)$ dissolve 5.22 cc. H_2O — Vol. of Sol. = 104.96,

SOLUBILITY OF ANILINE IN WATER AT DIFFERENT TEMPERATURES. (Alexejew - Ann. Physik. Chem. 28, 305, '86; calc. by Rothmund - Z. physic. Chem. 26, 475, '98.) Determinations by "Synthetic Method" see Note, p. o. Figures read from curve

De	terminations by	Synthetic Michiga	see Mote, p. 9	. I iguits Itau ii	om curve.
t°.	Gms. C ₆ H ₅ (NI Aq. Layer.	Aniline Layer.	t°.		Aniline Layer.
20	3.2	95.5	140	13.0	83.5
40	3.5	95.0	150	18.0	79.0
60	3.8	94.7	160	27.5	71.0
80	4.5	93.5	165	36.0	63.0
100	6.0	92.0	167.5 (c	rit.temp.) 48	.6
120	8.5	88.5			

SOLUBILITY OF ANILINE IN AQUEOUS SALT SOLUTIONS AT 18°. (Euler - Z. physik. Chem. 49, 307, '04.)

Aq.	Solution.		Gms. C ₆ H ₅ (NH ₂) per 100 g. solvent.		Aq. Solution.	Gms. Salt per liter.	Gms. C ₆ H ₅ (NH ₂) per 100 g. solvent.
H_2) alone	0	3.61	N	NaOH	40.06	1.90
$\frac{1}{2}N$	KCl	37.3	3.15	N	LiCl	42.48	2.80
N	KCl	74.6	2.68	N	$CuCl_2$	67.25	3.00
N	NaCl	58.5	2.55				

SOLUBILITY OF ANILINE IN AQUEOUS ANILINE HYDROCHLORIDE SOLUTIONS AT 18°.

(Lidow - J. russ. phys. chem. Ges. 15, 420, '83; Ber. 16, 2297, '83.)

Per cent C ₆ H ₅ NH ₂ HCl in Solvent.	Gms. C ₆ N ₅ NH ₂ per 100 g. Solvent.	Per cent C ₆ H ₅ NH ₂ .HCl in Solvent.	Gms. C ₆ H ₅ NH ₂ per 100 g. Solvent.
5	3.8	30	39.2
12	5 · 3	35	50.4
25	18.3		

DISTRIBUTION OF ANILINE BETWEEN: (Vaubel - J. pr. Chem. [2] 67, 477, '03.)

d Ether.		Water a	and Carbon	Tetrachl	oride.
s. Gms. C ₆ l	H ₅ NH ₂ in:	Composit	ion of Solutions.	Gms. C6H5	
Aq. Layer.	Ether Layer.	G. C ₆ H ₅ NH Used.	Solvent.	Aq. Layer.	CCl ₄ Layer.
er 0.1671	1.0807	0.3478		0.3358	0.012
				,	
er o.0835	1.1643	1.2478		0.2707	1.971
	0.0	0		0	6-
ner 0.0594	1.1884	1.2478	+ 100 CC. CCI,	0.1845	1.003
	Gms. C ₆ Aq. Layer. er 0.1671 er 0.0835	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s. Gms. $C_6H_bNH_2in$: Composite Aq. Ether Layer. Layer. Used.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

SOLUBILITY OF ANILINE IN SULPHUR. (Alexejew - Ann. Physik. Chem. 28, 305, '86.)

t°.	Gms. C6H	Gms. C6H5NH2 per 100 g.		Gms. C ₆ H ₅ NH ₂ per 100 g.		
ь.	S. Layer.	Anilin Layer.	t°.	S. Layer.	Anilin Layer.	
100	4	75	130	15	58	
IIO	6	70 .	135	17.5	47	
120	το	64	138 (crit	t. temp.)	23	

DISTRIBUTION OF ANILINE BETWEEN WATER AND TOLUENE AND BETWEEN AQUEOUS SALT SOLUTIONS AND TOLUENE AT 25°

(Ried.1 - Z. physik. Chem. 56, 243, 'o6.)

Note. — Mixtures of Aniline and Toluene were shaken with water or with aqueous salt solutions, and after separation of the two layers the Sp. Gr. of the A: T mixture (layer) was determined and also the amount of Aniline in each layer.

Solution Shaken with A: T Mixture.	Vol. per cent S Aniline: Toluene in Mixtures Used.	Sp. Gr. of A: T Mixture after Separation.	Gms. C ₆ H ₅ NI A: T Layer.	H ₂ in 100 cc. of: Aq. Layer.
H ₂ O	50:50	0.9257	41.5	2.14
-ee	25:75	0.8928	20.7	1.5
66	12.5:87.5	0.8737	8.62	0.86
"	5.5:94.5	0.8661	3.87	0.45
"	2.5:97.5	0.8627	1.68	0.21
$0.1N \frac{K_2SO_4}{2}$	50:50	0.9297	44.0	2.09
"	25:75	0.8901	19.03	1.38
4.	12.5:87.5	0.8739	8.77	0.81
"	5.5:94.5	0.8663	3.94	0.42
"	2.5:97.5	0.8629	1.81	0.21
O.IN KBO2	50:50	0.9257	41.61	2.11
"	25:75	0.8870	17.08	I.34
66	12.5:87.5	0.8748	9.34	0.92
44	5.5:94.5	0.8661	3.85	0.44
66	2.5:97.5	0.8627	1.72	0.21
0.01094N Ba(OH)	50:50	0.9334	46.52	2.10
	25:75	0.8929	20.78	1.46
44	12.5:87.5	0.8749	9.41	0.88
44	5.5:94.5	0.8663	3.96	0.43
46	2.5:97.5	0.8628	1.72	0.20
$0.104 \text{N} \frac{\text{Sr(OH)}_2}{2}$	50: 50	0.9333	46.45	2.13
-	25:75	0.8929	20.78	1.46
0.1044N Sr(OH)	2 12.5:87.5	0.8750	9.46	0.88
"	5.5:94.5	0.8662	3.96	0.43
0.1063N Sr(OH)	2.5:97.5	0.8628	1.75	0.20
0.04N <u>Ca(OH)</u> ₂	50:50	0.9333	46.18	2.20
"	25:75	0.8925	20.59	1.51
. "	12.5:87.5	0.8749	9.43	0.91
"	5.5:94.5	0.8662	3.89	0.44
"	2.5:97.5	0.8627	1.70	0.21

100 cc. aqueous solution contain 3.607 gms. Aniline at 25°.

SOLUBILITY OF ANILINE, PHENOL MIXTURES IN WATER. (Schreinemaker — Z. physik. Chem. 29, 584; 30, 460, '00.)

t°.	+ 74.6	25.4 Mols. Anili Mols. Phenol sture per 100 Gms.		+ 50 M	= 50 Mols. Aniline Mols. Phenol ture per 100 Gms.
	Aq. Layer.	A. + P. Layer.		Aq. Layer.	A. + P. Layer.
40	5.0	86.0	40	4.0	91.5
60	5.5	82.0	80	5 · 5	85.5
80	8.0	77.0	100	8.0	82.0
100	12.5	67.0	120	13.5	73 · 5
110	19.0	56.5	130	19.0	66.0
104	(crit. temp.)	33	135	23.5	58.0
			T40 (crit temp)	2 5

Determinations in above table by "Synthetic Method," see Note, p. 9. Schreinemaker gives results for several other mixtures of Aniline and Phenol which yield curves entirely similar to those for the two mixtures here shown.

Nitr**ANILINES** $C_6H_4NH_2NO_2$. o, m, and p.

SOLUBILITY IN WATER.

(Carnelly and Thomson — J. Chem. Soc. 53, 768, '88; Vaubel — J. pr. Chem. [2] 52, 73, '95; above 20°, Löwenherz — Z. physik. Chem. 25, 407, '98.)

t°.	Grams Nitraniline per Liter of Solution.						
• •	Ortho Nitraniline.	Meta Nitraniline.	Para Nitraniline.				
20		1.14-1.67	0.77-0.80				
24.2	1.25 (25°)	1.205					
27.3	• • •	I.422					

Solubility of Ortho and of Meta Nitraniline in Hydrochloric Acid.

(Lowenherz.)

Ortho Nitraniline at 25°.			Meta Nitraniline.					
G. Mols. per Liter. Grams per Liter.			G. Mols. per Liter. Grams per			per Liter.		
HCl	C ₆ H ₅ NH ₂ . NO ₂ (o)	HCl	C ₆ H ₅ NH ₂ . NO ₂ (o)		HCl	$C_6H_5NH_2$. $NO_2(m)$	HCl	C ₆ H ₅ NH ₂ . NO ₂ (m)
0.0	0.0091	0.0	1.25	(25°)	0.0	0.0091	0.0	I . 20
0.63	0.0143	22.97	1.97	(26.5°)	0.0125	0.0183	0.46	2.53
0.95	0.0174	34.63	2.40	(23.3°)	0.0247	0.0274	0.90	3.85
1.26	0.0215	45.94	2.97					

SOLUBILITY OF META AND OF PARA NITRANILINE IN ORGANIC SOLVENTS AT 20°. (Carnelly and Thomson.)

Solvent.	Gms. 1	oer Liter.	Solvent.		er Liter.
Solvent.	Meta.	Para.	Solvent:	Meta.	Para.
Methyl Alcohol	110.6	95.9	Benzene	24.5	19.8
Ethyl Alcohol	70.5	58.4	Toluene	17.1	13.1
Propyl Alcohol	56.5	43.5	Cumene	11.5	9.0
Iso Butyl Alcohol	26.4		Chloroform	30.1	23.1
Iso Amyl Alcohol	85.1	62.9	Carbon Tetra Chloride	2.1	1.7
Ethyl Ether	78.9	61.0	Carbon Bisulphide	3.3	2.6

ANISIC ACID (p-Methoxybenzoic acid) CH₃O.C₆H₄.COOH. See also p. 61. 100 cc. sat. aq. solution contain 0.2263 gm. Anisic acid at 25°.

(Paul - Z. physik. Chem. 14, 111, '94.)

ANTHRACENE C14H10.

SOLUBILITY IN LIQUID SULPHUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow — Z. Electrochem. 9, 799, '03.)

Weighed amounts of anthracene and liquid SO₂ were placed in glass tubes which were then sealed, rotated at a gradually increasing temperature and the point at which the solid disappeared, observed.

t°.	Gms. C ₁₄ H ₁₀ per 100 g. Solution.	t°.	Gms. C ₁₄ H ₁₀ per 100 g. Solution.	t°.	Gms. C ₁₄ H ₁₀ per 100 g. Solution.
40 · I	2.11	65.0	4.0	98.0	9.36
45.8	2.48	78.2	5.66	99.1	9.95
47 . 9	2.65	88.0	7.14	106.5	12.78

SOLUBILITY OF ANTHRACENE IN ABSOLUTE ETHYL AND METHYL ALCOHOLS.

(v. Becchi; at 19.5°, de Bruyn — Z. physik. Chem. 10, 784, '92.)

	Grams C ₁₄ H	10 per 100 Gram	s Alcohol at;
	16°.	19.5°.	b. pt.
In Ethyl Alcohol	0.076	1.90	0.83
In Methyl Alcohol		1.80	

SOLUBILITY OF ANTHRACENE IN BENZENE. (Findlay — J. Chem. Soc. 81, 1221, '02.)

t°.	Gms. C ₁₄ H ₁₀ per 100 Gms. C ₆ H ₆ .	Mols. $C_{14}H_{10}$ per 100 Mols. C_6H_6 .	t°.	Gms. C ₁₄ H ₁₀ per 100 Gms. C ₆ H ₆ .	Mols. C ₁₄ H ₁₀ per 100 Mols. C ₆ H ₆ .
2			38.4	2.773	1.213
5	0.979	0.429	30.4		1.213
IO	1.118	0.491	.40.0	2:987	1.312
15	1.296	0.567	44.6	3.368	I.473
20	1.532	0.673	50	3.928	1.727
25	1.830	0.803	60	4.941	2.164
26.5	1.951	0.856	70	6.041	2.649
30	2.175	0.954	80	7.175	3.143

100 parts of toluene dissolve 0.92 parts anthracene at 16.5° and 12.94 parts at 100° (v. Becchi).

Solubility of Anthracene in Alcoholic Picric Acid Solutions AT 25°.

(Behrend - Z. physik. Chem. 15, 187, '94.)

Sc	er 100 Grams	Solid Phase.	Gran	Soluti		Solid Pha	ise.
Picric Acid.	Anthracene.		Aci	d. Ar	thracene.		
0	0.176	Anthracene	3.9	99	0.202	Anthracene	Picrate
1.017	0.190	"	5.0	87	0.180	"	
2.071	0.206	66	5.8	43	0.162	"	
2.673	0.215	66	6.7	27	0.151	"	
3 · 233	0.228	46	7 · 5	11	0.149	Anthracene + Picric	
3 - 469	0.236	Anthracene an Anthracene P		.52	0	Picric Acid	

ANTHRAQUINONE (C₆H₄)₂(CO)₂.

SOLUBILITY IN LIQUID SULPHUR DIOXIDE IN THE CRITICAL REGION. (Centnerswer and Teletow — Z. Electrochem. 9, 799, '08.) (See Anthracene, page 39).

t°.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.	t°.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.	t°.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.
39.6	0.64	92.1	2.81	118.5	5.60
51.5	0.88	101.4	3.67	141.6	7 · 53
67.9	1.73	106.3	4.23	160.0	9.60
82.4	2.24	108.7	4.40	179.0	12.70
				183.7	18.30

100 parts of absolute ethyl alcohol dissolve 0.05 part anthroquinone at 18° and 2.249 parts at b. pt. (v. Becchi).

SOLUBILITY OF ANTHRAQUINONE IN ETHER.

(Smits - Z. Electrochem. 9, 663, '03.)

Weighed amounts of ether and anthraquinone were placed in glass tubes which were then sealed. The temperature noted at which the anthraquinone disappeared and also at which the liquid phase disappeared (critical temp.). The two curves cross at 195° and again at 241°. Between these two temperatures the critical curve lies below the solubility curve, hence for this range of temperature no solubility curve is shown. The following figures were read from the curves, and are therefore only approximately correct.

t°.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.	t°.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.	t °.	Gms. C ₁₄ H ₈ O ₂ per 100 g. Solution.
130	3	241	30	260	80
150	4	245	40	270	90
170	4.5	247	50	275	100
195	5.0	250	60		

100 parts of toluene dissolve 0.19 part anthraquinone at 15° and 5.56 parts at 100° (v. Becchi).

ANTIMONY TRICHLORIDE SbC1,

SOLUBILITY IN WATER. SOLID PHASE SbCl₃. (Meerburg – Z. anorg. Chem. 33, 299, 1903.)

Mols. SbCla Gms. SbCla Gms. SbCl₃ Mols. SbCl₃ per 100 g. H₂O. per 100 Mols. H₂O. per 100 g. H₂O. per 100 Mols. H₂O. 91.6 1152.0 601.6 0 47.9 35 8.801-1368.0 815.8 15 64.9 40 1917.0 910.1 152.5 72.4 50 20 74.1 60 360.4 4531.0 931.5 ∞ 78.6 988.1 72 ∞ 25 1068.0 30 84.9

Solubility of Antimony Trichloride in Aqueous Hydrochloric Acid. Solid Phase SbCl₃. Temp. 20°.

(Meerburg.)

Mols. per 100 Mols. H ₂ O.			Gms. per 100 g. H_2O .		ls. per lols. H ₂ O.	Gn 100	Gms. per 100 g. H ₂ O.	
HCl.	SbCl ₃ .	HCl.	SbCl ₃ .	HCl.	SbCl ₈ .	HCl.	SbCl ₃ .	
0	72.4	0.0	910.1	9.1	68.9	18.41	866.4	
2.4	71.2	4.86	895.4	11.7	68.r	23.68	856.3	
6.I	69.9	12.34	879.0	28.7	62.8	58.08	789.8	
8.3	68.2	16.80	857.6	-				

100 grams absolute acetone dissolve 537.6 grams SbCl₃ at 18°.

(Naumann - Ber. 37, 4332, '04.)

ANTIMONY TRI IODIDE SbI3.

SOLUBILITY IN METHYLENE IODIDE AT 12°. (Retgers — Z. anorg. Ch. 3, 344, '93.)

100 parts CH₂I₂ dissolve 11.3 parts SbI₃. Sp. Gr. of solution = 3.453.

ANTIMONY POTASSIUM TARTRATE K(SbO)C₄H₄O₆.½H₂O.
100 grams glycerine dissolve 5.5 grams of the tartrate at 15.5°.

ARGON, A.

SOLUBILITY IN WATER. (Estreicher — Z. physik. Chem. 31, 184, '99.)

t°.	Cor. Bar. Pressure.	Vol. H ₂ O.	Vol. Absorbed Argon.	Absorption C	coefficients.*	Solubility.
0					0.0578	0.0102
I	764.9	77 - 40	4.34	0.0561	0.0561	0.0099
5	765.0	$77 \cdot 39$	3.92	0.0507	0.0508	0.0090
10	765.3	77.41	3 · 49	0.0450	0.0453	0.0079
15	762.4	77.46	3.13	0.0404	0.0410	0.0072
20	757.6	77.53	2.86	0.0369	0.0379	0.0066
25	766.7	77.62	2.64	0.0339	0.0347	0.0060
30	760.6	$77 \cdot 73$	2.43	0.0312	0.0326	0.0056
35	757.1	77.86	2.24	0.0288	0.0305	0.0052
40	758.3	77.99	2.07	0.0265	0.0286	0.0048
45	756.4	78.15	1.92	0.0246	0.0273	0.0045
50	747.6	78.31	1.73	0.0221	0.0257	0.0041
			the second secon			

a = under barometric pressure minus tension of H₂O vapor.

l = under 760 mm. pressure.

q = grams argon per 100 g.H₂O when total pressure is equal to 760 mm.

* See Acetylene, page 8.

· See Acetylene, page 8

ARSENIC PENTOXIDE As2Os.

100 parts H_2O dissolve 244.8 parts $As_2O_4 = 302.3$ parts H_3AsO_4 at 12.5°. Sp. Gr. of solution = 2.18 at 15°. (Vogel.)

ARSENIC IODIDE AsI,

SOLUBILITY IN METHYLENE IODIDE AT 12°. (Retgers — Z. anorg. Chem. 3, 344, 1803.)

100 grams CH₂I₂ dissolve 17.4 gms. AsI₃. Sp. Gr. of solution = 3.449.

ARSENIC TRIOXIDE As,O3.

SOLUBILITY OF THE:

Crystallized	Modification.	Amorphous Modification.			
In V	Vater.	In Water.			
t°.	Gms. As ₂ O ₃ per 100 cc. Sat. Solution.	t°.	Gms. As ₂ O ₃ per 100 cc. H ₂ O.		
2	1.201	ord. temp.	$3 \cdot 7$		
15	1.657	b. pt.	11.86		
25	2.038	In Alcohol,	Ether and CS ₂ .		
39.8	2.930		. As ₂ O ₃ per 100 g. Solvent.		
b. pt.	6.+	Alcohol	0.446		
(Bruner and St. Tolloczk	to — Z. anorg. Chem. 37, 456, Listy. Chem. 13, 114, '88.)	Ether	0.454		
'03; Chodounsky —	Listy. Chem. 13, 114, '88.)	CS ₂	0.001		
		(Winkler - J. pr	. Chem. [2] 31, 347, '85.)		

ASPARAGINE C₄H₈N₂O₃.H₂O.

Solubility β -l-Asparagine $C_4H_8N_2O_3$ - H_2O and of β -l-Asparaginic Acid $C_4H_7NO_4$ in Water.

Determined by "Synthetic Method," see Note, page 9. (Bresler – Z. physik. Chem. 47, 613, '04.)

	p-t-Asj	paragine		p-i-Asparaginic Acid.				
t°.	Gms. C ₄ H ₈ N ₂ O ₃ .H ₂ O per 100 g. H ₂ O.	t°.	Gms. C ₄ H ₈ N ₂ O ₃ .H ₂ O per 100 g. H ₂ O.	t°.	Gms. C ₄ H ₇ NO ₄ per 100 g. H ₂ O.	t°.	Gms. C ₄ H ₇ NO ₄ per 100 g. H ₂ O.	
0.7	0.9546	55.5	10.650	0.2	0.2674	51.0	1.2746	
7.9	1.4260	71.7	19.838	9.5	0.4042	63.5	1.8147	
17.5	2.1400	87.0	36.564	16.4	0.5176	70.0	2.3500	
28.0	3.1710	98.0	52.475	31.5	0.7514	80.5	3.2106	
41.4	5.6500			40.0	0.9258	97.4	5.3746	

ATROPINE C17H23NO3.

Solubility of Atropine $C_{17}H_{23}NO_3$ and of Atropine Sulphate $(C_{17}H_{23}NO_3)_2.SO_2(OH)_2$ in Water and Other Solvents. (U. S. P.; Müller — Apoth.-Ztg. 18, 244, '03.)

Grams Atro-pine Sulphate Grams Atropine per 100 Grams. per 100 Grams Solvent. (U. S. P.) Solvent. t°. Solvent. (U.S.P.) Solution. Water 1.782 (20°) 0.222 263.1 25 Water 80 1.15 454.5 Alcohol 68.44 25 . . . 27.0 Alcohol 60 III.III 52.6 Ether 2.21 (20°) 6.02 25 0.047 Chloroform 68.03 (20°) 64.10 0.161 25 Benzene 3.99 20 1.136* (170) Carbon Tetrachloride 0.661 20 3.88 Ethyl Acetate 20 . . . Petroleum Ether 0.83 20 Glycerine 3.0 15 33.0 . . . * Schnidelmeiser - Chem. Ztg. 25, 129, 'o1.

AZELAIC ACID C, H14(COOH)2.

SOLUBILITY IN WATER.

(Lamouroux - Compt. rend. 128, 998, '99.)

t ° = Gms. C ₇ H ₁₄ (COOH) ₂	0	15	20	35	50	65
per 100 cc. solution =	0.10	0.15	0.24	0.45	0.82	2.20

AZOPHENETOL (p) $C_6H_5N_2.C_6H_4.OC_2H_5$

SOLUBILITY IN 100 PER CENT ACETIC ACID.

(Dreyer and Rotarski - Chem. Centr. 76, II, 1016, '05.)

A knick at 94.7° corresponds to the transition temperature of the a modification into the \$ modification.

BARIUM ACETATE Ba(CH₃COO)₂.

SOLUBILITY IN WATER.

(Walker and Fyffe - J. Ch. Soc. 83, 179, '03; Krasnicki - Monatsh. Chem. 8, 597, '87.)

	Gms. Ba(0		2	Gms. Ba(CH ₃ COO) ₂			
t°.	per 100		Solid Phase.	t°.		o Gms.	Solid Phase.
	Water.	Solution.			Water.	Solution.	
0.3	58.8	37.0	$Ba(C_2H_3O_2)_2 \cdot 3H_2O$	40.5	79.0	44.I	$Ba(C_2H_3O_2)_2$
7.9	61 6	38.I	- 66	41.5	78.7	44.0	"
17.5	69.2	40.9	66	44.5	77.9	43.8	"
21.6	72.8	42.I	46	51.8	76.5	43 · 4	66
24.1	78.1	43.9	"	63.0	74.6	42.7	"
26.2	76.4	43.3	$Ba(C_2H_3O_2)_2.H_2O$	73.0	73.5	42.4	"
30.6	75.1	42.9	"	84.0	74.0	42.5	66
35.0	75.8	43.I	"	99.2	74.8	42.8	66
39.6	77.9	43.8	"				

Transition temperatures 24.7° and 41°.

BARIUM ARSENATE Ba₃(AsO₄)₂.

100 gms. H₂O dissolve 0.055 gm. Ba₃(AsO₄)₂; 100 gms. 5% NH₄Cl dissolve 0.195 gm., and 100 gms. 10% NH4OH dissolve 0.003 gm. Ba₃(AsO₄)₂

(Field - J. Ch. Soc. 11 6, 1859.)

BARIUM BROMATE BaBrO, H2O.

SOLUBILITY IN WATER. -Z. physik, Chem. 56, 238, 'o6; Rammelsberg - Pogg, Ann. 52, 81, '41.)

/ = = = = = = = = = = = = = = = = = = =	on-to as payous.	Onc. 30, 230,	oo, reminions		3-,,,
t°.	Gms. Ba(BrO ₃) ₂ per 100 Gms. Solution.	t°.	Gms. Ba(BrO ₃) ₂ per 100 Gms. Solution.	t°.	Gms. Ba(BrO ₃) ₂ per 100 Gms. Solution.
- 0.034	0.28	30	0.95	70	2.922
0	0.286	40	1.31	80	3.521
+10	0.439	50	1.72	90	4.26
20	0.652	60	2.271	98.7	5.256
25	0.788			99.65	5 · 39

BARIUM BROMIDE BaBr₂.2H₂O.

SOLUBILITY IN WATER. (Kremers — Pogg. Ann. 99, 47, '56; Etard — Ann. chim. phys. [7] 2, 540, '94.)

	Gms. Ba	Br2 per 100	Grams.		Gms. BaBr ₂ per 100 Grams.			
t°.	Water. (Kremers.)	Solu (Kremers.)	tion. (Etard.)	t°.	Water. (Kremers.)	Solut (Kremers.)	ion. (Etard.)	
- 20			45.6	40	114	53.2	51.5	
0	98	49 · 5	47 . 5	50	118	54.1	52.5	
IO	IOI	50.2	48.5	60	123	55.1	53.5	
20	104	51.0	49.5	70	128	56.1	54.5	
25	106	51.4	50.0	80	135	57 · 4	55.5	
. 30	109	52.1	50.6	100	149	60.0	57.8	
				140			59 · 4	

Sp. Gr. of saturated solution at $19.5^{\circ} = 1.710$.

The results of Kremers and Etard are both given, since it is uncertain which is the more correct.

SOLUBILITY OF MIXTURES OF BARIUM BROMIDE AND BARIUM IODIDE IN WATER AT DIFFERENT TEMPERATURES.

		(Litaru.)		
t°.	Grams per 100 Gms. S BaBr ₂ . Ba	olution. to.	Grams per 100 C	BaI ₂ .
-16	4.8 58		11.0	67.4
+60	5.5 66		14.9	67.7
135	9.2 67	. 2 Both	salts present in	solid phase.

Solubility of Barium Bromide in Methyl and Ethyl Alcohols. (de Bruyn — Z. physik. Chem. 10, 783, 92; Richards — Z. anorg. Chem. 3, 455, '93; Rohland — Ibid. 15 412, '97.)

t°.	Parts BaBr ₂ per 100 parts Aq. C_2H_6OH of:			Parts BaBr _{2.2} H ₂ O per 100 parts of Aq. CH ₃ OH of:		
	100%.	97% ·	87%.	100%.	93.5%.	50%.
15.0		0.48 (BaBr _{2.2} H ₂ O)		45.9	27.3	4.0
22.5	3	• • •	6	56.1		

BARIUM BUTYRATE $Ba(C_4H_7O_2)_2.2H_2O.$

SOLUBILITY IN WATER. (Deszathy — Monatsh. Chem. 14, 249, '93.)

t°.	Gms. Ba(C ₄ H ₇	O2)2 per 100 Gms.	t°.	Gms. Ba(C ₄ H ₇ C	O2)2 per 100 Gms
t.	Water.	Solution.	υ.	Water.	Solution.
0	37 - 42	27 . 24	50	36.44	26.77
10	36.65	26.82	60	37.68	27.36
20	36.12	26.55	70	39.58	28.36
30	35.85	26.38	80	42.13	29.64
40	35.82	26.37			

BARIUM CAPROATE AND BARIUM ISO CAPROATE.

SOLUBILITY IN WATER.

(Kulisch — Monatsh. Chem. 14, 567, '93.) (König — Monatsh. Chem. 15, 23, '94.)

В	arium Ba(C	Capi H ₃ .C	roate (Methyl CH ₃)CI	3 Pentan.) H ₂ COO) ₂ .	

Barium Iso Caproate (Methyl 2 Pentan.) Ba(CH₃CH(CH₃)CH₂.CH₂COO)₂.

_	-					A
t°.	per 100	C ₆ H ₁₁ O ₂) ₂ Gms. Solution.	Solid Phase.		C ₆ H ₁₁ O ₂) ₂ o Gms. Solution.	Solid Phase.
0	11.71	10.49	$Ba(C_6H_{11}O_2)_{2\cdot 3\frac{1}{2}}H_2O$	14.34	12.54	Ba(C ₆ H ₁₁ O ₂) _{2.4} H ₂ O
10	8.38	$7 \cdot 73$	66	- 13.33	11.77	44
20	6.89	6.45	46	12.67	11.26	44
30	5.87	5.55	44	12.37	II.OI	44
40	5 · 79	5 · 47	46	12.42	11.05	44
50	6.63	6.21	44	12.83	11.38	44
60	8.39	7.74	44	13.63	11.99	44
70	11.00	9.98	44	14.68	12.80	44
80	14.71	12.82	44"	16.24	13.97	44
90	19.28	16.16	44	17.95	15.23	44

BARIUM CARBONATE BaCO.

SOLUBILITY IN WATER.

(Holleman, Kohlrausch and Rose - Z. physik. Chem. 12, 129, 241, '93.)

Electrolytic conductivity method used.

I liter H_2O dissolves 0.016 g. BaCO₃ at 8.8°, 0.022 g. at 18°, and 0.024 g. at 24.2°.

Solubility of Barium Carbonate in Water containing CO2.

The average of several determinations at about 10°, by Bineau, Lassaigne, Foucroy and Bergmann is 1.10 gms. BaCO₃ per liter water. Wagner (Z. anal. Ch. 6, 167, '67) gives 7.25 gms. BaCO₃ per liter of water saturated with CO₂ at 4-6 atmospheres pressure.

BARIUM CHLORATE Ba(ClO3)H2O.

SOLUBILITY IN WATER.

(Trantz and Anschütz — Z. physik. Chem 56, 238, '06; Kremers — Pogg. Ann. 99, 43, '56; Tilden and Shenstone — Trans. Roy. Soc. 34, '84.)

t°.	Gms. Ba(ClO ₃) ₂ per 100 Gms. Solution.	t°.	Gms. Ba(ClO ₃) ₂ per 100 Gms. Solution	t°.	Gms. Ba(ClO ₃) ₂ per 100 Gms. Solution.
- 2.7	5 15.28	30	29 43	90	48.70
0	16.90	40	33.16	99.1	51.17
+ 10	21.23	50	36.69	105	52.62
20	25.26	60	40.05	116	66.0
25	27.53	70	43.04	146	78. o
		80	45.90		

BARIUM CHLORIDE BaCl, 2H,O.

SOLUBILITY IN WATER.

(Mulder; Engel - Ann. chim. phys. [6] 13, 372, '88; Etard - Ibid. [7] 2, 535, '94.)

t°.	Gms. BaCl ₂ I	er 100 Gms.	t°.	Gms. BaCl ₂ per 100 Gms.	
٠.	Water.	Solution.	٠.	Water.	Solution.
0	31.6	24.0	60	46.4	31.3
10	33 · 3	25.0	70	49 · 4	33.1
20	35 · 7	26.3	80	52.4	34.4
25	37.0	27.0	100	58.8	37.0
30	38.2	27.7	130	59.5	37.3
40	40.7	28.9	160	63.6	38.9
50	43.6	30.4	215	75.9	43.1

Sp. Gr. of solution saturated at $0^{\circ} = 1.25$; at $20^{\circ} = 1.27$.

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND BARIUM NITRATE IN WATER.

Both salts present in solid phase.

(Etard.)

t°.	Grams per 100 BaCl ₂ .	Gms. Solution. Ba(NO ₃) ₂ ,	t°.	Grams per 10 BaCl ₂ .	Ba(NO ₃) ₂ .
0	22.5	4.3	100	31	14
20	24.5	6.0	140	32	20
40	26.5	7.5	180	33	26
60	28.5	9.5	210	32	32

Solubility of Mixtures of Barium Chloride and Mercuric Chloride in Water.

(Foote and Bristol - Am. Ch. J. 32, 248, '04.)

t°.		tion. HgCl ₂ .	Solid Phase.	t°.	Gms. per i Solut BaCl ₂ .	HgCl ₂ .	Solid Phase.
10.4	23.58		aCl ₂ 2H ₂ O+ HgCl ₂ .	10.4			Double Salt BaCl ₂ .3HgCl ₂ .6H ₂ O.
10.4	23.44	50.74 (D	ouble Salt	10.4	21.64	51.74 {	BaCl ₂ ·2H ₂ O+HgCl ₂ .
10.4	22.58	51.23 }B	aCla.3HgCla.	25	23.02	54.83 (
10.4	22.48	51.41	6H ₂ O.				

Solubility of Mixtures of Barium Chloride and Potassium Chloride in Water.

(Foote - Am. Ch. J. 32, 253, '04.)

100 grams saturated solution contain 13.83 grams BaCl₂ + 18.97 grams KCl at 25°.

SOLUBILITY OF MIXTURES OF BARIUM CHLORIDE AND SODIUM CHLORIDE IN WATER.

(Precht and Wittgen - Ber. 14, 1667, '81; Rüdorff - Ber. 18, 1161, '85.)

to	Gms. per 100	Gms. H ₂ O.	Gms. per 100 Gms. Solution.		
6 ~.	BaCl ₂ .	NaCl.	BaCl2.	NaCl.	
20	4.1	33.8	2.9	25.0	
40	6.3	33.6	4.5	23.0	
60	9.7	33.5	6.8	23.4	
80	13.9	33.6	9.4	22.8	
100	17.9	33.6	8.11	22.2	

Solubility of Barium Chloride in Aqueous Solutions of Hydrochloric Acid at o°.

(Engel - Ann. chim. phys. [6] 13, 371, '88.)

Sp. Gr. of Solutions.	Milligran	m Mols. per	-	oo cc. Sol.	Gms. per	100 g. Sol.
Solutions.	HCl.	BaCl2.	HCl.	BaCl ₂ .	HCl.	BaCl ₂ .
1.250	0	28.90	0	30.10	0	24.07
I.242	I.I	27.80	0.40	28.95	0.32	23.31
1.228	2.8	26.07	1.02	27.15	0.83	22.II
1.210	5.0	23.40	1.82	24.36	1.51	20.14
1.143	14.4	14.00	5.24	14.57	4.58	12.76
1.118	18.8	10.20	6.84	10.47	6.13	9.37
1.099	22.7	6.67	8.99	6.95	7.55	6.33
1.079	32.0	2.74	11.66	2.85	10.81	2.64
1.088	50.5	0.29	18.41	0.30	16.92	0.28

Less than 1 part of BaCl₂ is soluble in 20,000 parts of concentrated HCl and in 120,000 parts of conc. HCl containing § volume of ether.

(Mar - Am. J. Sci. [3] 43, 521, '92.)

SOLUBILITY OF BARIUM CHLORIDE IN ABSOLUTE METHYL ALCOHOL AND IN GLYCERINE.

(In Alcohol, de Bruyn - Z. physik. Chem. 10, 783, '92.)

100 parts of CH₃OH dissolve 2.18 parts BaCl₂ at 15.5°, and 7.3 parts BaCl₂.2H₂O at 6°.
100 parts by weight of glycerine dissolve 10 parts of BaCl₂ at 15.5°.

SOLUBILITY OF BARIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL AT 15°.

(Schiff — Liebig's Ann. 118, 365, '61; Rohland — Z. anorg. Ch. 15, 412, '07.)

Wt. per cent alcohol 10 20 30 40 60 80 97 Gms. BaCl₂.2H₂O per 100 g. aq. alcohol 31.1 21.9 14.7 10.2 3.5 0.5 0.014

BARIUM CHROMATE BaCrO.

SOLUBILITY IN WATER AND IN SALT SOLUTIONS.

t°.	Solvent.	Gms. BaCrO ₄ per Liter Solution.	Observer.
18	Water	0.0038	(Kohlrausch & Rose — Z. physic. Ch. 12, 241, '93.)
ord. temp.	"	0.0062 (ignited BaCrO ₄) 0.0100 (not ignited)	(Schweitzer - Z. anal.
ord. temp.			
b. pt.	"	0.043	(Mescherzerski — Z. anal. Ch. 21, 399, '82.)
ord. temp.	1.5% Am. Acetate		(Fresenius — Z. anal. Ch. 29, 418, '90.)
ord. temp.	0.5% Am. Nitrate	0.022	(Ch. 29, 418, '90.)

BARIUM CITRATE Ba₃(C₆H₅O₇)₂.7H₂O.

SOLUBILITY IN WATER AND IN ALCOHOL.

100 grams water dissolve 0.0406 gram $\rm Ba_3(C_6H_5O_7)_2.7H_2O$ at 18°, and 0.0572 gm. at 25°.

100 grams 95% alcohol dissolve 0.0044 gram $Ba_3(C_6H_5O_7)_2.7H_2O$ at 18°, and 0.0058 gm. at 25°.

(Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

BARIUM CYANIDE Ba(CN)2.

SOLUBILITY IN WATER AND IN ALCOHOL AT 14°. (Joannis — Ann. chim. phys. [5] 26, 489, '82.)

100 parts water dissolve 80 parts Ba(CN)₂. 100 parts 70% alcohol dissolve 18 parts Ba(CN)₂.

BARIUM FERROCYANIDE AND BARIUM POTASSIUM FERRO-CYANIDE.

(Wyrouboff - Ann. chim. phys. [4] 16, 292, '69.)

100 parts water dissolve o.1 part Ba₂Fe(CN)₆.6H₂O at 15°, and 1.0 part at 75°.

100 parts water dissolve 0.33 part BaK₂Fe(CN)₆.5H₂O at ord. temp.

BARIUM FLUORIDE BaF.

(Kohlrausch - Z. physik. Chem. 50, 365, '04-'05.)

1 liter of water dissolves 1.63 gms. BaF₂ at 18°. Electrolytic conductivity method.

BARIUM FORMATE Ba(HCOO)2.2H2O.

SOLUBILITY IN WATER. (Krasnicki — Monatsh. Chem. 8, 597, '87.)

tº.	Gms. Ba(HCO	O)2 per 100 Gms.	t°.	Gms.Ba(HC	OO)2 per 100 Gms.
•	Water.	Solution.	• •	Water.	Solution.
0	27.76	21.72	40	34.81	25.82
IO	28.46	21.15	50	37.14	27.10
20	30.11	23.15	60	38.97	28.03
25	31.20	23.80	70	39.95	28.54
30	32.34	24.45	80	39.71	28.42

BARIUM HYDROXIDE Ba(OH).

SOLUBILITY IN WATER. SOLID PHASE Ba(OH)₂.8H₂O. (Rosenthiel and Rühlmann — Jahresber. Chem. 314, '70.)

t°.	Gms. Ba(OH)2 per 100 Gms.		t°.	Gms. Ba(OH) ₂ per 100 Gms.		
٠.	Water.	Solution.	٠.	Water.	Solution.	
0	1.67	1.65	30	5.59	5.29	
5	1.95	1.92	40	8.22	7.60	
IO	2.48	2.42	50	13.12	11.61	
15	3.23	3.13	60	20.94	17.32	
20	3.89	3 · 74	75	63.51	38.85	
25	4.68	4 · 47	30	101.40	50.35	

SOLUBILITY OF BARIUM HYDROXIDE IN AQUEOUS ACETONE AT 25°. (Herz and Knoch — Z. anorg. Chem. 41, 321, '04.)

Sp. Gr. of Solutions.	Vol. %	Ba(OH) ₂ per Solution	100 cc. Sat.	Gms. Ba(OH) ₂ per 100 Gms.
Solutions.	Acetone.	Millimols.	Grams.	Solution.
1.0479	0	55.08	4.722	4.506
1.0168	IO	31.84	2.730	2.686
0.9927	20	17.79	1.525	1.536
0.9763	30	9.10	0.779	0.798
0.9561	40	4.75	0.407	0.426
0.9398	50	1.54	0.132	0.141
0.9179	60	0.48	0.041	0.045
0.8956	70	80.0	0.007	810.0

BARIUM IODATE Ba(IO3)2.H2O.

SOLUBILITY IN WATER. (Trantz and Anschütz — Z. physik. Chem. 56, 238, '06.)

t°. (Sms. Ba(IO ₃) ₂ per coo Gms. Solution.	t°.	Gms. Ba(IO ₃) per 100 Gms. Solution.	t°.	Gms. Ba(IO ₃) ₂ per 100 Gms. Solution
- 0.046	0.008	30	0.031	70	0.093
+ 10	0.014	40	0.041	80	0.115
20	0.022	50	0.056	90	0.141
25	0.028	60	0.074	100	0.197

BARIUM IODIDE Bal.

SOLUBILITY IN WATER.

(Kremers — Pogg. Ann. 103, 66, 1858; Etard — Ann. chim. phys. [7] 2, 544, '94.)

t°	Gms. BaI2 Water.	Solution.	Solid Phase.	t°.	Water.	Solution.	Solid Phase.
- 20	143.9	59.0	BaI ₂ .6 H ₂ O	40	231.9	69.8	BaI ₂ .2 H ₂ O
	170.2		66	60	247.3	71.2	66
+10	185.7	65.0	"	80	261.0	72.3	44
20	203.I	67.0	"	100	271.7	73.I	66
25	212.5	68.0	66	120	281.7	73.8	66
30	219.6	68.7	66	160	294.8	74.6	66

Sp. Gr. of saturated solution at $19^{\circ}.5 = 2.24$.

For method of interpolating above results, see Note, page 33.

100 grams 97% Ethyl Alcohol dissolve 1.07 g. BaI₂.2H₂O at 15°.
(Rohland — Z. anorg. Chem. 15, 417, 1897.)

BARIUM MALATE BaC, H,O,.

SOLUBILITY IN WATER. (Cantoni and Basadonna — Bull. soc. chim. [3] 35, 731, 'o6.)

t°.	Gms. BaC ₄ H ₄ O ₅ per 100 cc. Sol.	t°.	Gms. BaC ₄ H ₄ O ₅ per 100 cc. Sol.	t°.	Gms. BaC ₄ H ₄ O ₅ per 100 cc. Sol.
20	0.883	35	0.895	60	I.OII
25	0.901	40	0.896	70	1.041
30	0.903	50	0.942	80	1.044

Somubility in Water and in Alcohol. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

100 grams water dissolve 1.24 gms. BaC₄H₄O₅ at 18°, and 1.3631 gms. at 25°.

100 grams 95% alcohol dissolve 0.0038 gms. BaC₄H₄O₅ at 18°, and 0.0039 gm. at 25°.

BARIUM MALONATE BaC₃H₂O₄.N₂O.

SOLUBILITY IN WATER. (Miczynski — Monatsh. Chem. 7, 263, '86.)

t°.	Gms. BaC ₈ H ₂	O ₄ per 100 Gms. Solution.	t°.	Gms. BaC ₃ H ₂ O ₄ per 100 Gms. Water. Solution.		
	water.	Solution.				
0	0.143	0.143	50	0.287	0.285	
IO	0.179	0.179	60	0.304	0.303	
20	0.212	0.211	70	0.317	0.316	
30	0.241	0.240	80	0.326	0.325	
40	0.266	0.265				

BARIUM MOLYBDATE BaMoO.

100 parts water dissolve 0.0058 part BaMoO4 at 23°.

(Smith and Bradbury - Ber. 24, 2930, '91.)

BARIUM NITRATE Ba(NO₃)₂.

SOLUBILITY IN WATER.

(Mulder; Gay Lussac; Etard — Ann. chim. phys. [7] 2, 528, 94; Euler — Z. physik. Chem. 49, 315, '04.)

t°.	Gms. Ba(NO ₃) ₂ per 100 Gms.		t°.	Gms. Ba(NO ₃) ₂ per 100 Gms.	
	Water.	Solution.		Water.	Solution.
0	5.0	4.8	80	27.0	21.3
10	7.0	6.5	100	34.2	25.5
20	9.2	8.4	120	42.0	29.6
25	10.4	9 · 4	140	50.0	33 · 3
30	11.6	10.6	160	58.0	36.7
40	14.2	12.4	180	67.0	40.I
50	17.1	14.6	200	76.0	43.2
60	20.3	16.9	215	84.5	45.8

Sp. Gr. of saturated solution at $19.5^{\circ} = 1.072$.

SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND LEAD NITRATE IN WATER AT 25°.

(Fock. - Z. Kryst. Min. 28, 365, '97; at 17°, Euler - Z. phyisk. Chem. 49, 315, '04.)

	_		In Solution.			In Solid Phase
Sp. Gr. of Solution.	Gms. per Liter. Ba(NO ₃) ₂ . Pb(NO ₃) ₂ .		Mg. Mols. per Liter. Ba(NO ₃) ₂ . Pb(NO ₃) ₂		Mol. % Ba(NO ₃) ₂ .	Mol. % Ba(NO ₃) ₂
1.079	102.2	0	391.0	0	100	100
1.088	54.9	17.63	210.I	53 · 3	79. 7 8	98.30
1.108	86.5	49.80	330.7	150.7	68.70	96.74
1.119	79 · 7	68.10	304.9	205.7	59.69	94.80
1.140	77.0	97.20	294 · 4	293.6	50.09	93.62
1.163	69.8	130.7	266.8	395.0	40.31	92.49
1.198	66.0	177.3	252.5	535.6	32.03	90.07
1.252	57 · 5	247 · 7	222.6	748.5	22.91	83 - 47
1.294	25.9	334.3	99.2	1010.3	8.11	75 · 44
1.376	28.8	429.7	110.3	1298.0	7 · 77	35.11
1.459	• • •	553.8	0.0	1673.0	0.0 1	0.0

Tables of results are also given for 15°, 30°, and 47°.

SOLUBILITY OF MIXTURES OF BARIUM NITRATE AND POTASSIUM NITRATE IN WATER AT 25°.

(Foote - Am. Ch. J. 32, 252, '04.)

Per 100 Gram	s Solution.	
Gms. KNO ₃ .	Grams Ba(NO ₃) ₂ .	Solid Phase.
14.89	6.62	Ba(NO ₃) ₂ and 2 KNO ₃ , Ba(NO ₃) ₂
16.30	5 · 49 }	Double salt,
21 99	3.04 ∫	$_{2}$ KNO $_{3}$.Ba(NO $_{3}$) $_{2}$
27 . 76	2.04	KNO ₃ and 2 KNO ₃ .Ba(NO ₃) ₂

Solubility of Barium Nitrate in Aqueous Phenol Solutions at 25°.

(Rothmund and Wilsmore - Z. phyisk. Chem. 40, 620, '02.)

G. Mols.	per Liter.	Gms. p	er Liter.	G. Mols. p	er Liter.	Gms. pe	er Liter.
C ₆ H ₅ OH	Ba(NO ₃) ₂ .	C ₆ H ₅ OH.	Ba(NO ₃) ₂ .	C ₆ H ₅ OH.	Ba(NO ₃) ₂ .	C ₆ H ₅ OH.	Ba(NO ₃) ₂
0.000	0.3835	0.0	100.2	0.310	0.3492	29.12	91.31
0.045	0.3785	4.23	98.97	0.401	0.3400	$37 \cdot 73$	88.90
0.082	0.3746	7.71	97 - 95	0.501			
0.146	0.3664	13.73	95.81	0.728 (sat.) 0.3098	68.45	81.00

BARIUM NITRITE Ba(NO₂)₂.H₂O.

SOLUBILITY IN WATER. (Vogel — Z. anorg. Chem. 35, 389, '03.)

t°. o° 20° 25° 30° 35° Gms. Ba(NO₂)₂ per 100 gms. H₂O 58 63 71 82 97

BARIUM OXALATE BaC2O4.

SOLUBILITY OF THE THREE HYDRATES IN WATER. (Groschuff — Ber. 34, 3318, '01.)

	$BaC_2O_{4,3\frac{1}{2}}H_2O$.		BaC ₂	O ₄ .2H ₂ O.	BaC ₂ C	$BaC_2O_4.\frac{1}{2}H_2O$.	
t°.		G. M. BaC ₂ O ₄		G. M. BaC ₂ O ₄	Gms. BaC2O4		
	per 1000 g. Sol.	per 100 Mol. H_2O .	per 1000 g. Sol.	per 100 G. M. H ₂ O.	per 1000 g. Sol.	per 100 Mol. H ₂ O.	
0	0.058	0.00046	0.053	0.00042	0.089	0.00070	
9.5	0.082	0.00066					
18	0.112	0.00090	0.089	0.00071	0.124	0.00099	
30	0.170	0.00136	0.121	0.00097	0.140	0.00112	
40			0.152	0.00122	0.151	0.00121	
45			0.169	0.00135			
50					0.164	0.00131	
55			0.212	0.00170			
60					0.175	0.00140	
65			0.250	0.00200			
73	• • •		0.285	0.00228			
75					0.188	0.00151	
90					0.200	0.00160	
100	• • •	• • •			0.211	0.00169	

SOLUBILITY OF BARIUM OXALATE (BaC₂O₄.½H₂O) IN AQUEOUS ACETIC ACID AT 26°-27°. (Herz and Muhs. — Ber. 36, 3715, 'o₃.)

Normality G. Residue* Gms. per 100 cc. Solution. Normality G. Residue* Gms. per 100 cc. Solution of Acetic per 50.05 cc. CH₃COOH. Ba Oxalate. of Acetic per 50 cc. Sol. CH3COOH. Ba Oxalate Acid. 0.0077 0.00 0.0154 3.85 0.0564 23.12 0.1127 0.565 3.39 0.0845 0.0423 5.79 0.0511 34.76 0.1021 1.425 0.0520 8.55 0.1039 0.0048 17.30 103.90 0.0006 2.85 0.0556 17.II O.IIII

^{*} Dried at 70°.

10.50

99

BARIUM ACID OXALATE BaC2O4.H2C2O4.2H2O.

SOLUBILITY IN WATER. (Groschuff.)

t°.	Gms.per 100 H ₂ C ₂ O ₄ .	Gms. Solution.	Mols. per 100	Mols. H ₂ O. BaC ₂ O ₄ .	Mols. H ₂ C ₂ O ₄ per 1 Mol.BaC ₂ O ₄ .
0	0.27	0.030	0.054	0.0024	22
18	0.66	0.070	0.130	0.0056	24
20.	5 0.76	0.076	0.15	0.0061	25
38	1.61	0.16	0.33	0.013	25
41	1.82	0.18	0.37	0.015	25
53	2.92	0.31	0.60	0.026	24
60	3.60	0.40	0.75	0.033	22.5
80	6.21	0.81	1.34	0.070	19
90	7.96	I.II	1.75	0.098	18

2.39

0.141

17

BARIUM PROPIONATE Ba(C₃H₅O₂)₂.H₂O. also 6H₂O.

1.55

SOLUBILITY IN WATER.

(Krasnicki — Monatsh. Chem. 8, 597, '87.)

t°.		$(C_3H_5O_2)_2$ o Gms.	t°.	Gms. $Ba(C_3H_5O_2)_2$ per 100 Gms.		
	Water.	Solution.		Water.	Solution.	
0	47.98	32.41	50	62.74	38.57	
IO	51.56	34.02	60	64.76	39.31	
20	54.82	35.42	70	66.46	39 · 93	
30	57 - 77	36.65	80	67.85	40.42	
40	60.41	37.66	• •			

BARIUM SULPHATE BaSO.

SOLUBILITY IN WATER.

Electrolytic Conductivity Method.

(Holleman; Kohlrausch and Rose - Z. physik. Chem. 12, 131, 241, '93.)

t° 2° 10° 19° 26° 34° 37.7° Gm. BaSO₄ per liter 0.0017 0.0020 0.0023 0.0026 0.0029 0.0031

Solubility of Barium Sulphate in Aqueous Solutions of Hydrochloric and of Nitric Acids.

(Banthisch - J. pr. Chem. 29, 54, 1884.)

	In Hydrochl	oric Acid.		In Nitric Acid.			
cc. containing 1 Mg. Equiv.	per 1 Mg. Equi	iv. Sol	lution.		per 1 Mg. Equiv.	Soli	er 100 cc.
of HCl.	of HCl.	HCl.	BaSO ₄ .	of HNO ₃ .	of HNO ₃ .	HNO3.	BaSO ₄ .
2.0	0.133	1.82	0.0067	2.0	0.140	3.15	0.0070
I .O	0.089	3.65	0.0089	1.0	0.107	6.31	0.0107
0.5	0.056	7.29	0.0101	0.5	0.085	12.61	0.0170
0.2	0.017	18.23	0.0086	0.2	0.048	31.52	0.0241

100 cc. HBr dissolve 0.04 gms. BaSO₄; 100 cc. HI dissolve 0.0016 gms. BaSO₄ at the boiling point.

(Haslam — Chem. News 53, 87, '86.)

SOLUBILITY OF BARIUM SULPHATE IN AQUEOUS SOLUTIONS OF IRON, ALUMINUM AND MAGNESIUM CHLORIDES AT 20° — 25°.

(Fraps. — Am. Ch. J. 27, 290, '01.)

Gms. Chloride	Milligrams BaSO ₄ per Liter in:			Gms.	Mgs. BaSO ₄ per Liter in:		
per Liter.	Aq. FeCls.	Aq. AlCl ₃ .	Aq. MgCl ₂ .	per Liter.	Aq. FeCl ₃ .	Aq. AlCl ₃ .	Aq.MgCl2.
I	58	33	30	25	150	116	50
$2\frac{1}{2}$	72	43	30	50	160	170	50
5	115	60	33	100	170	175	50
10	123	94	33				

BARIUM PerSULPHATE BaS₂O_{8.4}H₂O.

100 parts water dissolve 39.1 parts BaS₂O₈ or 52.2 parts BaS₂O₈. 4H₂O at o°.

(Marshall - J. Ch. Soc. 59, 771, '91.

BARIUM SULPHITE BaSO 3.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS. (Rogowicz — Z. Ver Zuckerind. 938, 1905.)

Conc. of	Gm. BaSO ₄ pe	er 100 cc. Sol.	Conc. of	Gm. BaSO ₄ per 100 cc. Sol.		
Conc. of Sugar Sol.	at 20°.	at 80°.	Conc. of Sugar Sol.	at 20°.	at 80°.	
o° Bx	0.0197	0.00177	40° Bx	0.0048	0.00158	
10° "	0.0104	0.00335	50° "	0.0030	0.00149	
20° "	0.0097	0.00289	60° " (sat.)	0.0022	0.00112	
30° "	0.0078	0.00223				

BARIUM SUCCINATE AND BARIUM ISO SUCCINATE

Ba.CH₂CH₂(COO)₂. Ba.CH₃CH₂(COO)₂. SOLUBILITY OF EACH IN WATER. (Miczynski — Monatsh. Chem. 7, 263, 1886.)

Gms. Ba. Succinate Gms. Ba. Iso Succinate per 100 Gms. per 100 Gms. tº. Water. Water. Solution. Solution. 1.884 1.840 0.421 0.420 0 2.852 IO 0.432 0.430 2.774 3.618 0.418 3.493 20 0.417 4.181 30 0.393 0.302 4.014 0.366 4.346 40 0.365 4.5420.336 4.700 4.594 50 0.337 60 0.306 0.305 4.656 4.450 4.410 4.224 70 0.273 0.272

100 gms. H₂O dissolve 0.396 gms. Ba Succinate at 18° and 0.410 gms. at 25°.

0.237

3.962

3.810

100 gms. 95% alcohol dissolve 0.0015 gms. Ba Succinate at 18° and 0.0016 gms. at 25°. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

BARIUM TARTRATE Ba(C₂H₂O₃)₂.

0.237

80

SOLUBILITY IN WATER.

(Cantoni and Zachoder - Bull. soc. chim. [3] 33, 751, '05; see also Partheil and Hübner.)

t°.	Gms. Ba(C ₂ H ₂ O ₃) ₂ per 100 cc. Solution.	t°.	Gms. Ba(C ₂ H ₂ O ₃) ₂ per 100 cc. Solution.	t°.	Gms. Ba(C ₂ H ₂ O ₃) ₂ per 100 cc. Solution.
0	0.0205	30	0.0315	70	0.0480
IO	0.0242	40	0.0352	80	0.0527
20	0.0279	50	0.0389	90	0.0541
25	0.0297	60	0.0440		

SOLUBILITY OF BARIUM TARTRATE IN AQUEOUS ACETIC ACID Solutions at 26°-27°.

(Herz and Muhs - Ber. 36, 3715, '03.)

Normality of Acetic Acid.	Gms. residue* per 50 cc. Sol.	Gins. per r	Oo cc. Solution. H. Ba tartrate.		Gms. residue* per 50 cc. Sol.	Gms.per 100 CH ₃ COOH.	cc. Solution Ba tartrate
0	0.0328	0.0	0.0655	$3 \cdot 77$	0.1866	22.62	0.3728
0.565	0.1151	3.39	0.2300	5.65	0.1865	33.90	0.3726
1.425	0.1559	8.55	0.3115	16.85	0.0218	IOI.IO	0.0436
2.85	0.1739	17.11	0.3475				
			* Dried	at 700			

100 grams 95% alcohol dissolve 0.032 gm. Ba tartrate at 18° and 0.0356 gm. at 25°. (Partheil and Hübner.)

BENZALDEHYDE C.H.COH.

100 gms. H₂O dissolve 0.3 gm. benzaldehyde at room temperature. (Fluckiger - Arch. Pharm. [3] 7, 103, '75.)

BENZAMIDE C6H5CONH2.

SOLUBILITY IN ETHYL ALCOHOL. (Speyers - Am. J. Sci. [4] 14, 295, '02.)

t°.	Sp. Gr. of Solutions.	$G.M.$ $C_6H_5CONH_2$ per 100 $G.M.$ $C_2H_5OH.$	Gms. C ₆ H ₅ CONH ₂ per 100 Gms. C ₂ H ₅ OH.	t°.	Sp. Gr. of Solutions.	G. M. C ₆ H ₅ CONH ₂ per 100 G.M. C ₂ H ₅ OH.	Gms. $C_6H_5CONH_2$ per 100 Gms. C_2H_5OH .	
0	o.833	3.1	8.15	40	0.848	0.11	28.92	
IO	0.832	4.2	11.04	50	0.862	14.2	37 · 34	
20	0.833	5.9	15.52	60	0.881	17.2	45.22	
25	0.835	6.8	17.87	70	0.913	20.4	53.63	
30	0.838	8.2	21.56					

SOLUBILITY OF BENZAMIDE IN MIXTURES OF ALCOHOL AND WATER AT 25°.

(Holleman and Antusch - Rec. trav. chim. 13, 294, '94.)

Vol. % Alcohol.	Gms. C ₆ H ₅ CONH ₂ per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	Gms. C ₆ H ₅ CONH ₂ per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	17.03	0.830	70	23.87	0.925
95	21.12	0.856	60	18.98	0.939
90	24.50	0.878	50	13.74	0.949
85	26.15	0.895	40	8.62	0.958
83	26.63	0.900	31	5 · 33	0.967
80	26.43	0.907	15	2.28	0.912
75	25.41	0.917	0	1.35	0.999

C₆H₆. BENZENE

SOLUBILITY IN WATER AT 22°. (Herz - Ber. 31, 2671, '08.)

100 cc. water dissolve 0.082 cc. C₆H₆, Vol. of Sol. = 100.082, Sp. Gr. = 0.9979.

100 cc. C₆H₆ dissolve 0.211 cc. H₂O, Vol. of sol. = 100.135, Sp. Gr. = 0.8768.

BENZENE, ACETIC ACID, WATER MIXTURES. (Lincoln — J. Physic. Chem. 8, 251, '04.)

Note. — To mixtures of known amounts of acetic acid and benzene, water was gradually added until clouding occurred. The same degree of clouding did not represent the end point in all cases, as was assumed by Waddel. (J. Physic. Chem. 4, 161, '00.)

	At 25°.			At 35°.	
CH₃COOH.	C ₆ H ₆ .	$_{ m H_2O}^{ m cc.}$	сн₃соон.	C_6^{CC} .	cc. H ₂ O.
5	10.06	0.45	100	18.10	1.14
5	8.04	0.55	100	16.09	I.22
- 5	6.03	0.64	100	10.06	1.55
5	3.02	0.98	100	6.03	2.17
5	2.01	1.28	100	4.02	2.77
5	I.OI	1.89	100	3.01	3.26
5	0.60	2.80	100	1.00	7.01
5	0.35	4.54	100	0.65	10.10
5	0.17	9 · 53	100	0.47	13.64

Benzene, Aq. Alcohol Mixtures; Benzene, Aq. Acetone Mixtures at 20°.

 $\mathrm{H}_{2}\mathrm{O}$ added to mixtures of known amounts of the other two and appearance of clouding noted.

(Bancroft - Phys. Rev. 3, 31, 1895.96.)

C₆H₆,C₂H₅OH and H₂O C₆H₆,CH₃OH and H₂O C₆H₅,(CH₃)₂CO and H₂O

Per 5 cc.	C ₂ H ₅ OH.	Per 5 cc.	CH ₃ OH.	Per 5 cc.	$(CH_3)_2CO$.
cc. H ₂ O.	cc. C ₆ H ₆ .	cc. H ₂ O.	cc. C ₆ H ₆ .	cc. H ₂ O.	cc. C ₆ H ₆ .
20	0.03	5.0	0.15	8.0	0.10
8	0.13	3.0	0.215	3.0	0.395
4	0.39	2.0	0.59	2.0	0.69
2	1.17	1.4	O. I	1.3	I.0
1.5	1.87	1.0	1.9	0.51	2.0
1.0	3 · 57	0.8	3.0	0.295	3.0
0.605	8.0	0.69	4.0	0.2	4.0
0.34	20.0	0.49	8.0	0.15	5.0

Mutual Solubility of Benzene and β Naphthalene Picrate $C_6H_2(\mathrm{NO_2})_3\mathrm{OH.C_{10}H_7OH.}$

"Synthetic Method "used — see Note, p. 9. (Kuriloff — Z. physik. Chem. 24, 442, '97.)

t°.	Gms. Picrate.	Gms. Benzene	α	t°.	Gms. Picrate.	Gms. Benzene.	a
157	100.0		100.0	111.6	1.173	1.037	19.2
148.4	2.128	0.115	79.3	102.0	1.087	1.780	II.2
137.4	1.274	0.170	61.1	29.5	0.390	8.430	0.95
134.2	1.384	0.297	49.3	4.6	1.329	21.80	0.48
126.8	1.019	0.343	38.3	5.02		100.0	

 $\alpha=$ Mols. β Naphthalene Picrate per 100 Mols. of β Naphthalene Picrate plus Benzene.

Determinations for a large number of isothermes are also given.

SOLUBILITY OF BENZENE IN SULPHUR. By "Synthetic Method," see Note, p. 9. (Alexejew — Ann. Physik. Chem. 28, 305, '86.)

t°.	Gms. C ₆ H ₆	per 100 Gms.	t°.	Gms. 6	C ₆ H ₆ per 100 Gms. C ₆ H ₆ Layer.
100	6	75	140	16	61
110	8	72.5	150	19	55
120	10	70	160	25	45
130	12	66	164 (crit	. temp.)	35

Di Brom BENZENE (p) C₆H₄Br₂.

SOLUBILITY IN ETHYL, PROPYL, ISO BUTYL ALCOHOLS, ETC. (Schröder — Z. physik. Chem. 11, 456, '93.)

Determinations by "Synthetic Method" see Note, p. 9.

t°.	Grams C ₆ H ₄ Br ₂ (p) per 100 Grams Sat. Solution in:						
υ.	C ₂ H ₅ OH.	C ₃ H ₇ OH.	(CH ₃)CH.CH ₂ OH	. (C ₂ H ₅) ₂ O.	CS ₂ .	C ₆ H ₆ .	C ₆ H ₅ Br.
0		• •			27		
10		• •		30	34	34	22
20		• •		38	4.3	43	-29
30	14	• •	15	47	53	53	36
40	19	• •	20	57	62	62	45
50	26	27	30	67	72	71	54
60	38	40	44	77	81	80	67
70	57.6	67	65	87	90	88	79
75	80.5	85	77				84
80	94 · 4	95	94.6				90

Chlor BENZENE C.H.Cl.

SOLUBILITY OF CHLOR BENZENE IN SULPHUR.

"Synthetic Method," see page 9.

	Grams C ₆ H ₅ Cl per 100 Grams.				
t°.	Sulphur	Chlor Ben-			
	Layer.	zene Layer.			
90	13	70			
100	18.5	63			
IIO	27	53			
116	(crit. temp.)	8			

For the solubility of Mixtures of di Chlor Benzene and di Brom Benzene in aqueous Ethyl Alcohol solutions see Thiel.

(Z. physik. Chem. 43, 656, 1903.)

Di Nitro BENZENE (m) C₆H₄(NO₂)₂.

SOLUBILITY IN BENZENE, BROM BENZENE AND IN CHLOROFORM. "Synthetic Method."

				(Schröder.)			
t°.	Gms. C ₆ H ₄ (NO ₂) ₂ per 100 Gms. Sol. in:			t°.	Gms. C ₆ H ₄ (NO ₃) ₂ per 100 Gms. Sol. in:		
	C_6H_6 .	C ₆ H ₅ Br.	CHCl ₃ .		C_6H_6 .	C ₆ H ₅ Br.	CHCl3.
				40	52.0	38.0	42.0
20	26.0	18.5	25.0	50	62.5	47 - 5	52.5
		23.7		60	71.0	57.0	65.0
30	40.0	28.7	33.0				

Solubilities of Di-Nitro BENZENES and of Tri-Nitro BENZENES in Several Solvents.
(de Bruyn — Rec. trav. chim. 13, 116, 150, '94.)

		Grams per 100 Grams Solvent.					
Solvent.	t°.	(o)C ₆ H ₄ . (NO ₂) ₂ .	$(m)C_6H_4.$ $(NO_2)_2.$	(p)C ₆ H ₄ . (NO ₂) ₂ .	(s)C ₆ H ₃ . (NO ₂) ₃ .	(as)C ₈ H ₈ (NO ₂) ₈ .	
Methyl Alcohol	20.5	3.30	6.75	0.69	4.9 (16°)	16.2 (15.5°)	
Ethyl Alcohol	20.5	1.9	3.5	0.4	1.9 (160)		
Propyl Alcohol	20.5	1.09	2.4	0.298		• • •	
Carbon Bi-Sulphide	17.6	0.236	1.35	0.148	0.25	• • •	
Chloroform	17.6	27.I	32.4	1.82	6.1		
Benzene	18.2	5.66	39.45	2:56	6.2 (16°)		
Ether	17.5				1.5		
Ethyl Acetate	18.2	12.96	36.27	3.56			
Toluene	16.2	3.62	30.66	2.36			
Carbon Tetra Chloride		0.143	1.18	0.12		• • •	
Water	(ord.)	0.014	0.0525	0.008			

Symmetrical Tri-Nitro BENZENE.

SOLUBILITY IN AQUEOUS ALCOHOL AT 25°. (Holleman and Antusch - Rec. trav. chim. 13, 296, '94.)

Vol. % Alcohol.	G. C ₆ H ₃ (NO ₃) ₃ (s) per 100 g. Solvent.	Sp. Gr. of Solutions.	Vol. % Alcohol.	G. C ₆ H ₃ (NO ₃) ₃ (s) per 100 g. Solvent.	Sp. Gr. of Solutions.
100	2.34	0.7957	80	0.57	0.8582
95	1.57	0.8131	75	0.47	0.8708
90	1.12	0.8288	70	0.37	0.8808
85	0.79	0.8436	60	0.23	0.9064

BENZOYL PHENYL HYDRAZINE C.H.NH.NH.C.H.O.

SOLUBILITY IN AQUEOUS ALCOHOL.

(Holleman and Antusch - Rec. trav. chim. 13, 201, '04.)

Vol. % Alcohol.	Gms. Hydrazine per 100 g. Solvent.	Sp. Gr. Solutions.	Vol. % Alcohol.	Gms. Hydrazine per 100 g. Solvent.	Sp. Gr. Solutions.
100	2.39	0.793	80	1 59	0.859
95	2.43	0.814	70	80.1	0.884
93	3.00	0.822	55	0.51	0.917
90	2.26	0.831	40	0.16	0.946

BENZO SULPHONIC ACIDS.

SOLUBILITY IN WATER. (Bahlman - Liebig's Ann. 186, 309, '77.)

Name of Acid.	Gms. Sulphonic A Solution	cid per 100 Gms.
o-Amido benzo sulphonic acid. Amido brom benzo sulphonic acid.	$11^{\circ} = 1.301$ $8^{\circ} = 0.737$	15° = 1.436 16° = 1.131*
Mono brom amido benzo sulphonic acid.	$12^{\circ} = 0.431$	$15^{\circ} = 0.463$
Barium di-brom benzo sulphonic acid. Barium nitro brom benzo sulphonic acid	$14^{\circ} = 1.713$	9° = 1.098
(hydrated). Barium nitro brom benzo sulphonic acid	$16^{\circ} = 0.527$	$30^{\circ} = 0.914$
(anhydrous).	$8^{\circ} = 0.156$	

BENZINE (Petroleum) C₅H₁₂C₆H₁₄.

100 parts of alcohol dissolve about 16 parts benzine of 0.638 — 0.660 Sp. Gr., at 25°.

BENZOIC ACID C.H.COOH.

SOLUBILITY IN WATER.

(Bourgoin - Ann. chim. phys. [5] 15, 171, '78.)

t°.	Grams. Ce per 1	H ₅ COOH ∞ Gms.	t°.	Grams. C ₆ H ₅ COOH per 100 Gms.		
	Water.	Solution.		Water.	Solution.	
0	0.170	0.170	40	0.555	0.551	
IO	0.210	0.200	50	0.775	0.768	
20	0.290	0.289	60	1.155	1.142	
25	0.345	0.343	80	2.715	2.643	
30	0.410	0.408	100	5.875	5.549	

100 grams saturated aqueous solution contains 0.340 gram C₆H₅COOH at 25°; 0.353 gram at 26.4°; 0.667 gram at 45°.

(Paul — Z. physik, Ch. 14, 111, '94; Noyes and Chapin — *Ibid.* 27, 443, '98; Hoffman and Langbeck — *Ibid.* 51, 393, '95; Philip — J. Ch. Soc. 87, 992, '95; see also Alexejew — Ann. Phys. Ch. 28, 305, '86; Ost — J. pr. Ch. [2] 17, 232, '78; Vaubel — *Ibid.* [2] 52, 73, '95.)

Solubility of Mixtures of Liquid Benzoic Acid and Water. (Alexejew.)

Determinations by "Synthetic Method," see Note, p. 9. Figures read from curve.

t°.	Gms. C ₆ H ₅ C	COOH per 100 Gms.	t°.	Gms. C ₆ H ₅ COOH per 100 Gms.		
٠.	Aq. Layer.	Benzoic Ac. Layer.	• •	Aq. Layer.	Benzoic Ac. Layer.	
70	6	83	100	12.0	69.0	
80	7 · 5	79.5	IIO	18.0	59.0	
90	8.5	76	116 (cr	it. temp.)	35	

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF: (Hoffman and Langbeck.)

Potassium Chloride at 25°. Potassium Nitrate at 25°

	2 0000	Didili Ollion	ac ac 25.		2 0 0000010	1111 1111111111	ac = 5 .
Nor- mality of Aq. KCl.	Gms. KCl. per Liter.	Dissolved C	Wt. per cent.	Nor- mality of Aq. KNO ₃	Gms. KNO ₃ per Liter.	Dissolved C	Wt. per cent.
0.02	1.49	5.0254-10-	4 0.339	0.02	2.02	5.0326-10	-4 o. 340
0.05	3.73	4.9801 "	0.333	0.05	5.06	5.0421 "	0.341
0.20	14.92	4.7639 "	0.322	0.20	20.24	5.0297 ."	0.340
0.50	37.30	4. 3632 "	0.295	0.50	50.59	4.9400 "	0.334
				I.00	101.10	4.7646 "	0.322

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF: (Hoffmann and Langbeck.)

	Sodium	Chloride	Э.	Sodiu	ım Nitra	te.	
Nor- mality of Aq. NaCl.	Gms. NaCl per Liter.	Gms. C ₆ H per 100 G at 25°.	at 45°.	Nor- mality of Aq. NaNO ₃ .	Gms. NaNO ₃ per Liter.	Gms. C ₆ per 100 at 25°.	H ₅ COOH Gms. Sol. at 45°.
0.00	0.00	0.340	0.667	0.02	1.70	0.340	0.666
0.02	1.17	0.339	0.663	0.05	8.51	0.339	0.663
0.05	2.93	0.335	0.654	0.20	17.02	0.333	0.647
0.20	11.70	0.336	0.617	0.50	42.54	0.319	0.613
0.50	29.25	0.282	0.546	I.00	85.09	0.294	
I.00	58.50		0.440				

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, FORMATE, BUTYRATE, AND SALICYLATE.

(Noyes and Chapin — Z. physik. Chem. 27, 443, '98; Philip — J. Ch. Soc. 87, 992, '05.)

Grams C6H5COOH per Liter of Solution in: Grams Sodium CH2COONa. HCOONa. Salt per CaH7COONa. CaH4OH.COONa. Liter. At 26.40. At 26.4°. At 26.4°. At 25°. At 25°. At 26.4°. 0 3.41 3.53 3.41 3.533.533.534.65 4.25 3.62 1 4.75 4.354.50 5.70 5.85 4.85 4.75 5.40 2 3.70 3 6.70 6.90 5.20 5.30 6.15 3.80 7.60 7.85 5.60 6.00 3.87 5.70 4 6 8.40 . . . 4.00 4.10

Gram. Mols.	Gram Molecules C6H5COOH per Liter of Solution in:						
Sodium Salt per Liter.	CH₃COONa.		HCO	HCOONa.		C6H4OH.COONa	
per Liter.	At 25°.	At 26.4°.	At 25°.	At 26.4°.	At 26.4°.	At 26.4°.	
0.00	0.0279	0.0289	0.0279	0.0289	0.0289	0.0289	
0.01	0.0362	0.0370	0.0330	0.0336	0.0376	0.0300	
0.02	0.0440	0.0448	0.0364	0.0372	0.0455	0.0312	
0.03	0.0508	0.0518	0.0392	0.0398	0.0525	0.0321	
0.04	0.0572	0.0586	0.0416	0.0423	0.0596	0.0328	
0.06			0.0460	0.0466		0.0342	

SOLUBILITY OF BENZOIC ACID IN ABSOLUTE ALCOHOLS. (Timofeiew — Compt. rend. 112, 1137, '91; at 15°, Bourgoin — Ann. chim. phys., [5] 13, 406, '78.)

In Met	hyl Alcoh	iol.	ln Ethyl A	lcohol.	In Prop	yl Alcoho	1.
t°.		Gms.		5 COOH 5 Gms.	G. C ₆ H ₄ per 100	COOH Gms.	
	CH₃OH.	Solution.	C ₂ H ₅ OH.	Solution.	C ₃ H ₇ OH.	Solution.	
3	50.16	33.39	40.16	28.65	29.88	23.00	
15			46.70	31.80			
21	69.29	40.93	54.09	35.10	40.64	28.90	

SOLUBILITY OF BENZOIC ACID IN 90% ALCOHOL, IN ETHER AND IN CHLOROFORM.
(Bourgoin.)

Solvent.	t°.	Gms. C ₆ H ₅ COOF	per 100 Grams.
	• •	Solvent.	Solution.
90% Alcohol	15	41.62	29.39
Ether	15	31.35	23.86
Chloroform	25	14.30	12.50

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE. (Hoffman and Langbeck.)

Normality of	Gms. C ₆ H ₁₂ O ₆	Dissolved C ₆ H ₅ CO	OH at 25°.	Dissolved C ₆ H ₅ COOH at 45°.		
Aq. Dextrose.	per Liter.	Mol. Conc.	Weight Per Cent.	Mol. Conc.	Weight Per Cent.	
0.02	3.67	5.0322.10-4	0.34	9.9088.10-4	0.674	
0.05	9.00	5.0403 "	0.34	9.9328 "	0.669	
0.204	36.73	5.0303 "	0.34	9.9323 "	0.669	
0.533	96.15	5.0321 "	0.34	10.0101 "	0.674	
1.068	192.30	5.0443 "	0.341	10.0369 "	0.676	

SOLUBILITY OF BENZOIC ACID IN AQUEOUS SOLUTIONS OF UREA AND OF THIO UREA.

(Hoffman and Langbeck.)

	Normality of Solution.	Gms. per Liter.	C ₆ H ₆ COOH Dissolved at 25°. Mol. Conc. Wt. per cent.
In Aqueous Urea	0.10	6.01 CO(NH ₂) ₂	5.1876.10 ⁻⁴ 0.350
In Aqueous Thio Urea		15.23 CS(NH ₂) ₂	5.4994 " 0.372

Amido BENZOIC ACIDS C.H.NH2.COOH (m).

SOLUBILITY IN WATER AND IN OTHER SOLVENTS. (de Coninck — Compt. rend. 116, 758, '93.)

	In Water.	In Organic Solvents.				
t°.	Gms. C ₆ H ₄ .NH ₂ .COOH(m) per 100 cc. H ₂ O.	Solvent.	t°.	Gms. C ₆ H ₄ .NH ₂ .COOH(m) per 100 cc. Solvent.		
0	0.43	Ethyl Alcohol (95%)	12.5	2.92		
10	0.52	Methyl Alcohol (pure)	10.5	4.05		
20	0.67	Acetone	11.3	6.22		
30	0.87	Methyl Iodide	10.0	0.04		
40	1.15	Ethyl Iodide	0.0	0.02		
50	1.50	Chloroform	12.0	0.07		
60	2.15	Bromoform	8.0	trace		
70	3.15					

SOLUBILITY OF THE THREE ISOMERIC AMIDO NITRO BENZOIC ACIDS.

	In E	other.			in Ethyl	Alcoho	1 (90%)
t°.	Gms. C ₆ H ₃ .NO per 100	t°.	Gms. C ₆ H ₃ NO ₃ .NH ₂ .COOH per 100 cc. Alcohol.				
	Ortho.	Meta.	Para.		Ortho.	Meta.	Para.
2.7	10.84	1.70	6.41	3	8.13	1.79	8.4
5.8	16.05 (6.8°)	1.81	8.21	9.6	10.70	2.20	11.3

SOLUBILITY IN WATER OF THE THREE ISOMERIC: (Vaubel — J. pr. Chem. [2] 52, 72, '95.)

Am	ido Benz	o Sulpho	nic Acids.		Amid	lo Phenols.	
t°.	G. C ₆ H ₄ .	NH2.SO2H pe	r 100 g. Aq. Sol.		G. C ₆ H ₄ (OH	I).NH2 per 100 g	. Aq. Sol.
.	Ortho.	Meta.	Para.		Ortho.	Meta.	Para.
7	1.06	1.276	0.592 (6°)	0	1.7	2.6 (20°)	I.I

Brom, Chlor, and Iodo BENZOIC ACIDS.

SOLUBILITY IN WATER AT 25°.

(Paul - Z. hysik. Chem. 14, 111, '94; Löwenherz - Ibid. 25, 401, '98; Vaubel.)

Compound.	Formula.	Grams. Gram Mol.
Brom benzoic acid.	C ₆ H ₄ Br.COOH (ortho).	1.856 0.00924
Brom benzoic acid.	C ₆ H ₄ Br.COOH (meta).	0.402 0.00200
Brom benzoic acid.	C ₆ H ₄ Br.COOH (para).	0.056 0.00028
Chlor benzoic acid.	C ₆ H ₄ Cl.COOH (ortho).	2.087 0.01333
Iodo benzoic acid.	C ₆ H ₄ I.COOH (ortho).	0.95
Iodo benzoic acid.	C ₆ H ₄ I.COOH (meta).	0.12

SOLUBILITY OF ORTHO HYDROXY BENZOIC ACID (SALICYLIC ACID), META HYDROXY BENZOIC ACID, AND PARA HYDROXY BENZOIC ACID (ANISIC ACID) IN WATER, BENZENE, ETC. (See also pp. 38 and 274.)
(Walker and Wood — J. Ch. Soc. 73, 622, '98; Vaubel — J. pr. Chem. [2] 52, 73, '95.)

100 gms. aq. solution contain 0.225 gm. C₆H₄.OH.COOH (0) at 15° (Vaubel).

100 gms. aq. solution contains 0.794 gm. C₆H₄.OH.COOH (p) at 15° (Vaubel).

t°.		OH.COOH Gms. H ₂ O.		Gms. C ₆ H ₄ .OH.COOH per 100 Gms. C ₆ H ₆ .	
	Meta.	Para.	Meta.	Para.	
IO	0.55	0.25		0.0018	
20	0.90	0.50	0.008	0.0027	
25	1.08	0.65	0.010	0.0035	
30	1.34	0.81	0.012	0.0045	
35	1.64	I.OI	0.015	0.0060	
40	2.10	I.24	0.017	0.0082	
50	3.10	2.12	0.028	0.0162	
60			0.047	0.028	
80			• • •	0.066	

I	n Aceton	e.		In Ethe	Γ.
t°.		H.COOH cc. Sol.	t°.		OH.COOH
	Meta.	Para.		Meta.	Para.
23	26.0	22.7	17	9.73	9.43

Methyl BENZOIC ACIDS C.H.COOH.CH. o, m, and p. SOLUBILITY IN WATER.

t*.	Gms. C ₆ H ₄ CO	OH.CH ₃ per 1000 Gn	ns. Sat. Solution.
	Ortho.	Meta.	Para.
25°	1.18	0.08	0.35

Nitro BENZOIC ACIDS C₆H₄.NO₂.COOH. o, m, and p. SOLUBILITY IN SEVERAL SOLVENTS.

(de Coninck — Compt. rend. 118, 471, '94; for solubility in H₂O, see also Paul, Vaubel, Löwenherz, and Goldschmidt — Z. physik. Chem. 25, 95, '96.)

Solvent. to.		Gms. C ₆ H ₄ .NO ₂ .COOH per 100 cc. Solvent.				
Solvent.	t°.	Ortho.	Meta.	Para.		
Water	20	0.682 (0.654G.)	0.315	0.039		
Water	25	0.743-0.779	0.341	0.028		
Water	30	0.922				
Methyl Alcohol	IO	42.72	47 - 34	9.6		
Ethyl Alcohol	10	28.2	33.1 (11.7°)	0.9		
Ethyl "(33 Vol.%)	15	0.64 (11.8°)	0.52	0.055		
Acetone	IO	41.5	41.5	4.54		
Benzene	IO	0.294	0.795	0.017(12.50)		
Carbon Bi-Sulphide	IO	0.012	0.10 (8.5°)	0.007		
Chloroform	IO	0.455 (11.°)	5.678	0.066		
Ether	IO	21.58	25.175	2.26		
Ligröin	IO	trace	0.013	0.00		

SOLUBILITY OF PARA NITRO BENZOIC ACID IN AQUEOUS SOLUTIONS OF ANILIN AND OF PARA TOLUIDIN AT 25°.

(Löwenherz - Z. physik. Chem. 25, 395, '98.)

In Anilin.

In p-Toluidin.

	ls. per Liter.	Gms. p	er Liter.	G. Mols	per Liter.	Gms. per	Liter.
C ₆ H ₅ NH ₂ .	C ₆ H ₄ .NO ₂ . COOH.	C ₆ H ₅ NH ₂	C ₆ H ₄ NO ₂ . COOH.	C ₆ H ₄ NH ₂ - CH ₃ .	C ₆ H ₄ NO ₂ . COOH.	C ₆ H ₄ NH ₂ - CH ₃ .	COOH.
0.0	0.00164	0.0	0.274	0.0	0.00164	0.0	0.274
0.01	0.00841	0.91	1.406	0.01	0.0100	1.071	1.671
0.02	0.01379	1.82	2.304	0.02	0.0174	2.142	2.902
0.04	0.02172	3.64	3.629	0.03	0.0245	3.213	4.097
0.08	0.0347	7.29	5.798				

SOLUBILITY OF ORTHO NITRO BENZOIC ACID IN AQUEOUS SOLUTIONS OF SODIUM BUTYRATE, ACETATE, FORMATE, AND SALICYLATE AT 26.4°.

(Philip - J. Chem. Soc. 87, 992, '05.)

Original results in terms of $\frac{\text{Mols.}}{100}$ per liter.

Gms. Na Salt per Liter.	Gms. Ortho CoH4COOH.NO2 per Liter of Solution in:						
	C ₃ H ₇ COONa.	CH ₃ COONa.	HCOONa.	C6H4.OH.COONa.			
0	7.85	7.85	7.85	7.85			
0.5	8.35	8.50	8.60	8.35			
1.0	8.90	9.15	9.50	8.70			
2	10.0	10.80	11.5	9.4			
3	II.2	12.55	13.5	II.O			
4	12.4	14.5	15.6	11.5			
6	15.2			• • •			

SOLUBILITY OF ORTHO NITRO BENZOIC ACID IN AQUEOUS SOLUTIONS OF DEXTROSE, SODIUM CHLORIDE, AND OF SODIUM NITRATE.

Original results in molecular quantities.

(Hoffman and Langbeck - Z. physik. Chem. 51, 412, '05.)

	In Dextros	e		In NaCl.			In NaNO3.	
G. C ₆ H ₁₂ O ₆ per 100 cc. Solution.	per 100 g	NO ₂ .COOH . Solvent. At 35°.	per 100 cc.	G.(0)C ₆ H ₄ N per 100 g. At 25°.	Solvent.	H G.NaNO ₃ per 100 cc. Solution.	G.(0)C ₆ H ₄ per 100 At 25°.	NO ₂ .COOH g. Solvent. At 35°.
0.0	0.736	1.063	0.117	0.743	1.072	0.170	0.746	1.074
0.36	0.736	1.064	0.195	0.746	1.075	0.284	0.754	1.080
1.80	0.732	1.061	0.585	0.749	1.070	0.851	0.767	1.096
9.50	0.722	1.051	2.425	o.688	0.967	4.255	0.774	1.097
20.00	0.703	1.030	5.80	0.597	0.831	8.510	0.748	I.047

BENZOIC SULPHINIDE (Saccharine) $C_6H_4 < {}_{CO}^{SO_2} > NH.$

100 parts water dissolve 0.4 part at 25° and 4.17 parts at 100°. 100 parts alcohol dissolve 4 parts at 25° (U. S. P.).

BENZOPHENONE (C₆H₅)₂CO.

SOLUBILITY IN AQUEOUS ALCOHOL AND IN OTHER SOLVENTS. (Derrien — Compt. rend. 130, 722, '00; Bell — J. Physic. Chem. 9, 550, '05.)

In Aqueous Alcohol at 40°.

			(Den.)		
Wt. % Alcohol	per 10	6H ₅) ₂ CO o Gms.	Wt. %		C ₆ H ₅) ₂ CO o Gms.
in Solvent.	Solvent.	Solution.	in Solvent.	Solvent.	Solution.
40	2	1.9	67.5	39	28.1
45	5	4.8	70	56	35.9
50	8	8.3	71	67	39.2
55	II	9.9	- 72	90	47 · 4
60	16	13.8	72.5	105	51.2
65	28	22.6	73	156	61.0

In Aqueous Alcohol and other Solvents.
(Derrien.)

Solvent.	t°.	Gms. (C ₆ H ₅) ₂ CO per 100 g. Solvent.	Solvent.	t °.	Gms. C ₆ H ₅) ₂ CO per 100 g. Solvent.
97% Ethyl Alcohol	17	13.5	Benzene	17	76.9
85 cc. 97 % Alcohol + 15 cc. H ₂ C) "		Xylene	17.6	38.4
80" " + 20"	•••	2.2	Nitro Benzene	15.8	58.8
75" " + 26"	44	1.3	Chloroform (com.)	16.5	55.5
75" + 26" Methyl Alcohol (pure)	9.8		Bromoform	17.3	33.3
" " 1	15.0	14.3	Toluene	17.2	55.5
Acetic Ether (pure)	9.6	19.2	Ligröine	14.6	6.7
Carbon Bisulphide	16.1	66.6			•

BERYLLIUM HYDROXIDE Be(OH)₂ (See also Glucinium, page 140). SOLUBILITY IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Rubenbauer — Z. anorg. Chem. 30 334, '02.)

Moist Be(OH)₂ used, solutions shaken 5 hours, temperature probably about 20°.

Per 20 co	Solution.	Molecular Dilution	Gms. per 100 cc. Solution.			
Gms. Na.	Gms. Be.	of the NaOH.	NaOH.	Be(OH) ₂ .		
0.3358	0.0358	1.37	2.917	0.850		
0.6716	0.0882	0.68	5 . 840	2.094		
0.8725	0.1175	0.53	7.585	2.789		
1.7346	0.2847	0.27	18.310	6.760		

BERYLLIUM SULPHATE BeSO.

SOLUBILITY IN WATER. (Levi, Malvano — Z. anorg. Chem. 48, 446, '06.)

t°.	Mols. H ₂ O per 1 Mol. BeSO ₄ .		SO ₄ per Gms. Solution.	Solid Phase.	t°. I	Mols. H ₂ O per 1 Mol. BeSO ₄ .		eSO ₄ per Gms.	Solid Phase.
31	11.18	52.23	34.32	BeSO ₄ .6H ₂ O	95.4	6.44	90.63	47.55	BeSO _{4.4} H O
50	9.62	60.67	37.77	4.4	107.2	5.06	115.3	53.58	4.6
72.2	7.79	74.94	42.85	44	III	4.55	12.8.3	56.19	44
77.4	4 7.13	81.87	45.01	4.4	80	6.89	84.76	45.87	BeSO _{4.2} H ₂ O
30	13.33	43.78	30.45	BeSO _{4.4} H ₂ O	91.4	5.97	97.77	49.42	44
40	12.49	46.74	31.85	4.6	105	4.93	118.4	54.21	44
68	9.42	61.95	38.27	4.6	119	3.91	149.3	59.88	4.6
85	7.65	76.30	43.28	4.6					

BISMUTH Bi.

MUTUAL SOLUBILITY OF BISMUTH AND ZINC.

(Spring and Romanoff - Z. anorg. Chem. 13, 34, '96.)

t°.		Upper Layer.		Layer.	t°.	Upper Layer.		Lower Layer.	
•	%Bi.	%Zn.	%Bi.	%Zn.		%Bi.	%Zn.	%Bi.	%Zn.
266	86	14			584	80	20	10	90
419			3	97	650	77	23	15	85
475	84	16	5	95	750	70	30	27	73
					810-8	20 (cri	t. temp.	.)	

BISMUTH CHLORIDE BiCl3.

100 grams absolute acetone dissolve 17.9 grams BiCl₃ at 18°.

(Naumann -- Ber. 37, 4332, 1904.)

BISMUTH IODIDE Bil.

100 grams absolute alcohol dissolve 3.5 grams BiI3 at 20°.

(Gott and Muir - J. Chem. Soc. 57, 138, '90.)

100 grams methylene iodide CH₂I₂ dissolve 0.15 gram BiI₃ at 12°.

(Retgers — Z. anorg. Chem. 3, 343, '93.)

BISMUTH NITRATE Bi(NO₃)_{3.5}H₂O.

100 grams acetone dissolve 48.66 grams Bi(NO₃)₃.5H₂O at o°, and 41.7 grams at 19°.

(von Laszczynski - Ber. 27, 2285, '94.)

BISMUTH OXIDE Bi2O3.

SOLUBILITY OF BISMUTH OXIDE IN AQUEOUS NITRIC ACID AT 20°. (Rutten and van Bemmelen — Z. anorg. Chem. 30, 386, '02.)

Present in Shaker Flask.	Gms. per 100 Gms. Solution.		Mols. p	er 100 Mol	Solid	
Per 1 part Bi_2O_3 . $3N_2O_5$.10 H_2O .	Bi ₂ O ₃	N_2O_5	Bi ₂ O ₃	N ₂ O ₅ R	atio Bi ₂ O ₃ : N ₂ O ₅ .	Phase.
24.4 parts H ₂ O 3.2 parts H ₂ O	0.321 6.37	0.963	0 126 2.844	1.61 13.82	1:12.8	$\mathrm{Bi_2O_3.N_2O_5.2H_2O}$
Dilute HNO	18.74	7.17 15.9	10.50	38.65	1: 3.6	Bi ₂ O ₃ N ₃ O ₅ .H ₃ O
Dilute HNO ₃ =	31.48	23.7	27.2	83.8		
$6.13\% \text{ N}_2\text{O}_5$ $6.816\% \text{ N}_2\text{O}_5$	32.93 32.67	24.83	30.15	97.97		Bi ₂ O ₃ .N ₂ O ₅ .H ₂ O and Bi ₂ O ₃ .3N ₂ O ₅ .10H ₂ O
$24.0\% \text{ N}_2\text{O}_5$	24.16	24.70 28.25	29.70 19.65	96.57 98.76	1: 3.2 1: 5.0	-Bi ₂ O ₃ .3N ₂ O ₅ .10H ₂ O
51.0% N ₂ O ₅ 70.0% N ₂ O ₅	11.66 20.76	46.62 53·75	10.81 33.51	186.23 355.87	1:17.2	Digog.grigos.rorigo
, ,, ,,	27.85°	51.02	51.0	403.0		$\rm Bi_2O_33N_2O_51oH_2O$ and $\rm Bi_2O_33N_2O_53H_2O$
Anyhdrous HNC Bi ₂ O ₃ + "	3 8.56 4.05	68.28	14.35	492.0		Bi ₂ O ₃ .3N ₂ O ₅ .3H ₂ O
212031	4.05	74.90	7.45	592.9	1.79.57	

Results are also given for 9°, 30°, and 65°.

BORIC ACID (Ortho) H₃BO₃.

SOLUBILITY IN WATER.

(Ditte - Compt. rend. 85, 1069, 77; Herz and Knoch - Z. anorg. Chem. 41, 319, '04.)

t°.	100	3BO ₃ per Gms. Solution.	Gms. B_2O_3 per 100 Gms. H_2O .	t°.	100	Solution.	Gms. B_2O_3 per 100 Gms. H_2O .
0	1.95	1.91	I.I	40	7.0	6.54	3.95
IO	2.70	2.63	1.5	50	8.8	8.09	5.08
20	4.0	3.85	2.25	60	0.11	9.91	6.2
25	4.7	4.49	2.65	80	16.8	14.38	9.5
30	5 · 4	5.12	3.05	IOC	27.5	21.57	15.52

The above results of Ditte are probably low.

Herz and Knoch find for 13°, 3.845 grams H₃BO₃ per 100 cc. solution, for 20°, 4.909, 25°, 5.593, and 26°, 5.637.

Bogdan finds 5.753 grams H₃BO₃ per 100 grams H₂O at 25°.

Solubility of Boric Acid in Aqueous Solutions of Hydrochloric, SULPHURIC, AND NITRIC ACIDS AT 26°.

(Herz - Z. anorg. Chem. 33, 355, 34, 205, '03.)

	Normality of ne H ₂ SO ₄ , HCl	Normality of	Gms. Strong Acid	Gms. B(OH) ₃ per 100 cc. Solution.			
or HNO ₃ .		Dissolved $B(OH)_3$.	Solution.	In HCl.	In H ₂ SO ₄ .	In HNO ₃ .	
	0	0.91	0	5.64	5.64	5.64	
	0.5	0.78	5	4.0	4.25	4.50	
	1.0	0.71	10	3.2	3.6	3.9	
	2.0	0.58	15	2 · 45	3.0	3.35	
	3.0	0.49	20	1.8	2.5	2.9	
	4.0	0.41	25		2.0	2.55	
	5.0	0.35	30		1.55	2 · I	
	6.0	0.26	35	• • •	• • • .	1.75	

The determinations given in the original tables in terms of normal solutions when plotted together lay close to an average curve drawn through them. The figures in the tables here shown were read (and calculated) from the average curve.

Solubility of Boric Acid in Aqueous Solutions of Electrolytes AT 25°.

(Bogdan - Ann. Scient. Univ. Jassy, 2, 47, '02-'03.)

Gms. Electro- lyte per 100	r	Grams H ₃ BO ₃ per 100 Gms. H ₂ O in Aq. Solutions of:							
Gms. H ₂ O.	NaCl.	KCl.	NaNO3.	KNO_3 .	Na ₂ SO ₄ .	K ₂ SO ₄ .			
0	5 · 75	5 · 75	5.75	5.75	5.75	5 · 75			
10	5.75	5.80	5.78	5.81	5 . 88	5.92			
20	5.74	5.86	5.81	5.88	6.00	6.10			
40	5.72	5.98	5.87	6.04	6.33	6.50			
60	5.72	6.12	5.95	6.20	6.70	6.92			
80	5.71	6.29	6.02	6.37	7.10	7 - 40			

Interpolated from the original.

100 parts alcohol dissolve 6.5 parts H₃BO₃ at 25° and 23 parts at b. pt. (U.S.P.).

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF UREA, ACE-TONE, AND OF PROPYL ALCOHOL AT 25°.

(Bogdan.)

Grams of CO(NH ₂) ₂ ,(CH ₃) ₂ CO or of C ₃ H ₇ OH per	Gms. H ₃ BC	Gms. H ₃ BO ₃ per 100 g. H ₂ O in Aq. Solutions of:						
100 Gms. H ₂ O.	$CO(NH_2)_2$	(CH ₃) ₂ CO.	C ₃ H ₇ OH.					
0	5.75	5 - 75	5.75					
10	5.84	5.84	5.80					
20	5.93	5.93	5.85					
40	6.13	6.12	5.94					
60	6.31	6.29	6.03					

SOLUBILITY OF BORIC ACID IN AQUEOUS SOLUTIONS OF:

Acetic Acid at 26°.

Acetone at 20°.

(Herz - Z. anorg. Chem. 34, 205, '03.) (Herz and Knoch - Ibid. 41, 319, '04.)

Normality	of Solutions.	Gms. per 100	cc. Solution.	cc. Acetone	B(OH) ₃ per 100	cc. Solution.
ĆH₃COOI	H. B(OH) ₃ .	ĆH₃COOH.	B(OH) ₃ .	Solvent.	Millimols.	Grams.
0	0.91	0	5.64	0	79.15	4.91
I	0.82	5	$4 \cdot 7$	20	81.71	5.07
2	0.65	10	4.2	30	83.35	5.17
4	0.42	20	3.0	40	82.72	5.13
6	0.25	30	2.0	50	81.62	5.06
				60	76.40	4.74
				70	67.62	4.19
				80	55.05	3.41
				100	8.06	0.50

SOLUBILITY OF BORIC ACID IN:

Pure Glycerine (Sp.Gr. = 1.260 at 15.5°).

Aq. Solutions of Glycerine at 25°.

(Hooper — Pharm. J. Trans. [3] 13, 258, '82.) (Herz and Knoch — Z. anorg. Chem. 45, 268, '05.)

t°.	Gms. B ₂ O ₃ ₃ H ₂ O per	Gms. B(O	H) ₃ per 100	Wt. % Glycerine	Millimols B(OH) ₃ per	Sp. Gr.	Gms. B(
٠.	Glycerine		. Solution.		100 cc. Sol.	at $\frac{25^{\circ}}{4^{\circ}}$.	cc. Solution.	Gms.So- lution.
0	20	15.87	13.17	0	90.1	1.017	5 · 59	5.50
10	24	19.04	16.00	7.15	90.1	1.038	5 · 59	5 . 38
20	28	22.22	18.21	20 . 44	90.6	1.063	5.62	5.28
30	33	26.19	20.75	31.55	92.9	1.090	5.76	5.29
40	38	30.16	23.17	40.95	97.0	1.113	6.02	5.41
50	44	34.92	25.95	48.7	103.0	1.133	6.39	5.64
60	50	39.68	28.41	69.2	140.2	1.187	8.69	7.32
70	56	44.65	30.72	100.0	390.3	1.272	24.20	19.02
80	61	48.41	32.61					
90	67	53.18	34.70					
100	72	57.14	36.36					

DISTRIBUTION OF BORIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 25°.

(Fox - Z. anorg. Chem. 35, 130, '03.)

Millimols B(OH)3 in		Gms. B(OH)3 in 100 cc.		Millimols B(OH)3 in		Gms. B(OH)3 in 100 cc	
Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.
265.8	76.6	1.648	0.475	87.9	33.2	0.545	0.206
196.5	59 · 5	1.219	0.369	75.2	22.7	0.466	0.141
159.6	47 · 5	0.990	0.294	64.6	19.76	0.400	0.123
126.0	37·I	0.781	0.230				

BORIC ACID (Tetra) H₂B₄O₇.

100 grams water dissolve 2.69 grams $H_2B_4O_7$ at 15°, Sp. Gr. = 1.015. (Gerlach – Z. anal. Chem. 28, 473, '89.)

BORON TRI-FLUORIDE BF3.

1 cc. H_2O absorbs 1.057 cc. BF_3 at 0° and 762 mm., 1 cc. conc. H_2SO_4 (Sp. Gr. 1.85) absorbs 50 cc. BF_3 .

BROMINE Br.

SOLUBILITY IN WATER.

(Winkler — Chem. Ztg. 23, 687, '99; Roozeboom — Rec. trav. chim. 3, 29, 59, 73, 84, '84; Dancer — J. Chem. Soc. 15, 477, '62; at 15°, Dietze — Pharm. Ztg. 43, 290, '98.)

		Grams Bromine per 100 Grams.				"Solubility." *
t°.		Vater. (R. D. & D.)	(W.)	olution. (R. D. & D.)	Coefficient." *	q.
	• •			`		
0	4.17	4.22	3.98	4.05	60.5	43.I
5	3.92	3 · 7	$3 \cdot 77$	$3 \cdot 57$	45.8	32.4
10	$3 \cdot 74$	3 · 4	3.61	3.29	35.1	24.8
15	3.65	3.25	3.52	3.15	27.0	19.0
20	3.58	3.20	3.46	3.10	21.3	14.8
25	3.48	3.17	3.36	3.07	.17.0	11.7
30	3 · 44	3.13	3.32	3.03	13.8	9.4
40	3 · 45		3 · 33	• • •	9.4	6.2
50	3.52		3.40	• • •	6.5	4.0
60				• • •	4.9	2.8
80				• • •	3.0	I.I

^{*} For "Absorption Coefficient" a and "Solubility" q. of Bromine Vapor in water, see Acetylene, page 9.

Solubility of Bromine in Aqueous Solutions of Potassium Sulphate, Sodium Sulphate, and of Sodium Nitrate at 25°.

(Jakowkin - Z. physik. Chem. 20, 38, '96.)

Normality of Salt Solution.	In K ₂ SO ₄ Gms. per Liter.		In Na ₂ SO ₄ Gms. per Liter.		In NaNOs Gms. per Liter.	
Sait Solution.	K ₂ SO ₄ .	Br.	Na ₂ SO ₄ .	Br.	NaNO3.	Br.
1	91.18	25.14	63.55	25.07	85.09	28.80
$\frac{1}{2}$	45.59	29.44	31.77	29.20	42.54	31.35
1	22.79	31.46	15.88	31.33	21.27	32.62
18	11.39	32.70	7.94	32.94	10.63	33 · 33
16	5.69	33.10	3.97	32.26	5.31	33.74

SOLUBILITY OF BROMINÉ IN NORMAL AQUEOUS SALT SOLUTIONS AT 25°.

(McLauchlan - Z. physik. Chem. 44, 617, '03.)

Salt.	Gms. Salt per Liter.	Normality of Dis- solved Br.	Gms. Br. per Liter.	.Salt.	Gms. Salt per Liter.	Normality of Dis- solved Br.	Gms. Br. per Liter.
Water	0.0	0.424	33.95	NH_4NO_3	80.11	0.688	55.15
Na ₂ SO ₄	63.55	0.286	23.9	NaCl	58.50	0.701	55.90
K_2SO_4	91.18	0.310	24.8	KCl	74.60	0.718	57 - 40
$(NH_4)_2SO_4$	70.04	0.971	$77 \cdot 7$	NH,Cl	53.52	1.028	82.2
NaNO ₃	85.09	0.3495	28.0	CH ₃ COONH	77.09	4.26	340.5
KNO ₃	101.19	0.362	28.95	H₂SO₄*	49.03	0. 366	29.26

^{*} Wildeman.

SOLUBILITY OF BROMINE IN AQUEOUS POTASSIUM BROMIDE SOLUTIONS. (Worley — J. Chem. Soc. 87, 1107, '05; see also Wildeman — Z. physik. Chem. 11, 421, '93.)

Gms. KBr	Br. per Liter Di	ssolved at 26.5°.	Br. per Liter Dis	solved at 18.5°.
per Liter.	G. Mols.	Grams.	G. Mols.	Grams.
0.00	0.4282	34.23	0.4448	35.56
2.18	0.4671	37 · 35	0.4823-	38.56
4.38	0.5101	40.79	0.5243	41.91
6.55	0.5530	44.21	0.5668	45.31
8.76	0.5920	47 - 33	0.6059	48.44
10.91	0.6488	51.87	0.6533	52.23
21.82	0.8591	68.69	0.8718	69.69
43.82	1.2704	101.60	1.3124	104.90
65.46	1.6717	133.70	1.7712	141.60
87.64	2.1029	168.10	2.2354	178.70
98.19	2.3349	186.20	2.4851	198.70
	per Liter. 0.00 2.18 4.38 6.55 8.76 10.91 21.82 43.82 65.46 87.64	per Liter. G. Mols. 0.00 0.4282 2.18 0.4671 4.38 0.5101 6.55 0.5530 8.76 0.5920 10.91 0.6488 21.82 0.8591 43.82 1.2704 65.46 1.6717 87.64 2.1029	per Liter. G. Mols. Grams. 0.00 0.4282 34.23 2.18 0.4671 37.35 4.38 0.5101 40.79 6.55 0.5530 44.21 8.76 0.5920 47.33 10.91 0.6488 51.87 21.82 0.8591 68.69 43.82 1.2704 101.60 65.46 1.6717 133.70 87.64 2.1029 168.10	per Liter. G. Mols. Grams. G. Mols. 0.00 0.4282 34.23 0.4448 2.18 0.4671 37.35 0.4823 4.38 0.5101 40.79 0.5243 6.55 0.5530 44.21 0.5668 8.76 0.5920 47.33 0.6059 10.91 0.6488 51.87 0.6533 21.82 0.8591 68.69 0.8718 43.82 1.2704 101.60 1.3124 65.46 1.6717 133.70 1.7712 87.64 2.1029 168.10 2.2354

100 grams saturated solution of Bromine in Carbon Bisulphide contain 45.4 grams Br at - 95°, 39.0 grams at - 110.5°, and 36.9 grams at - 116°.

(Arctowski - Z. anorg. Chem. 11, 274, '95-'96.)

DISTRIBUTION OF BROMINE AT 25° BETWEEN WATER AND: (Jakowkin — Z. physik. Chem. 18, 588, '95.)

Carbon Bisulphide.		Bron	noform.	Carbon Tetra Chloride			
Gms. Br. p	er Liter of:	Gms. Br.	per Liter of:	Gms. Br.	Gms. Br. per Liter of:		
Aq. Layer.	CS ₂ Layer.	Aq. Layer.	CHBr ₃ Layer.	Aq. Layer.	CCl. Layer.		
0.5	36	0.5	33	0.5	15		
I	80	I	66	I	28		
2	163	2	136	2	60		
3	240	3	206	3	90		
4	330	4	276	4	123		
5	420	5	346	5	156		
6	515	6	415	6	190		
7	620		• • •	8	260		
				10	340		
				12	430		
				14	520		

BRUCINE C₂₁H₂₀(OCH₃)₂N₂O₂.4H₂O.

SOLUBILITY IN SEVERAL SOLVENTS AT 180-220.

(Müller - Apoth. Ztg. 18, 232, '03.)

	Brucine Gms.
Water 0.0563 Petroleum Ether 0.0663 Ether 0.749 Carbon Tetra Chloride 0.0663 Acetic Ether 4.255 Carbon Tetra Chloride* 1.0665 Glycerine 2.2665 Carbon Tetra Chloride 1.0665 Carbon Tetra Chlor	937

^{*} Schindelmeiser - Chem. Ztg. 25, 129, 'o1.

BUTANE C.H.10.

Solubility in Water at t° . And 760 mm.

t°.	o°	4°	100	150	200
Vols. C ₄ H ₁₀ per 100 vols. H ₂ O		•		3	
per 100 vols. H ₂ O	3.147	2.77	2.355	2.147	2.065

Iso BUTYL ACETATE, etc.

SOLUBILITY IN WATER.

(Traube - Ber. 17, 2304, '84; at 20°, Vaubel - J. pr. Chem. 59, 30, '99.)

t°.	Compound.	Grams Compound per 100 Grams H ₂ O.
22	Iso Butyl Acelate	0.5
22	Iso Butyl Formate	1.0
20	Normal Butyric Aldehyde	3.6
20	Iso Butyric Aldehyde	10.0

SOLUBILITY OF BUTYL ACETATE AND OF BUTYL FORMATE IN MIXTURES OF ALCOHOL AND WATER.

(Bancroft - Calc. from Pfeiffer - Phys. Rev. 3, 205, '95-'96.)

cc. Alcohol in Mixture.	cc. H ₂ O added to cause separation of a second phase in mixtures of the given quantity of alcohol and 3 cc. portions of:				
	Butyl Formate.	Butyl Acetate.			
3	3 · 45	2.08			
3 6	8.83	6.08			
9	14.75	10.46			
12	21.45	15.37			
15 18	29.65	20.42			
18	39.0	25.60			
21	51.8	31.49			
24	∞	37 - 48			
27		43.75			
30		50.74			
33	*	59.97			

100 cc. H₂O dissolve 0.7 cc. iso butyl acetate at 25° (Bancroft)

Iso BUTYRIC ACID (CH3)2CH.COOH.

SOLUBILITY IN WATER.

(Rothmund - Z. physik. Chem. 26, 475, '98.)

Synthetic Method used, see Note, p. 9.

t°.	Gms. Iso Butyric Acid per 100 Gms.					
	Aq. Layer.	Iso Butyric Ac. Layer.				
5	16.4	73 · 4				
IO	17.5	68.5				
15	19.4	62.5				
20	22.6	53 · 9				
22	25.8	49.6				
24.7	(crit. temp.)	36.3				

CADMIUM BROMIDE CdBr2.

SOLUBILITY IN WATER.

(Dietz — Ber. 32, 95, '99; Z. anorg. Chem. 20, 260, '99; Wiss. Abh. p.t. Reichanstalt, 3, 433, '00; see also Eder — Dingler polyt. J. 221, 189, '76; Etard — Ann. chim. phys. [7] 2, 536, '94.)

t°.	Gms. CdBr ₂ per 100 Gms. Solution.	Mols. CdBr per 100 Mols. H ₂ O.	Solid Phase.	t °. 1	Gms. CdBr ₂ per 100 Gms. Solution.	Mols. CdBi per 100 Mols. H ₂ O	Solid Phase.
0	37.92	4.04	CdBr ₂ .4H ₂ O	40	60.65	10.20	CdBr ₂ .H ₂ O
18	48.90	6.21	"	45	60.75	10.24	66
30	56.90	8.73	66		61.10	10.39	"
38	61.84	10.73	66	80	62.29	10.48	66
35	60.29	10.05	CdBr ₂ .H ₂ O	100	61.63	10.63	46

Density of saturated solution at $18^{\circ} = 1.683$.

SOLUBILITY OF CADMIUM BROMIDE IN ALCOHOL, ETHER, AND IN ACETONE.

100 gms. sat. solution of CdBr₂.4H₂O in abs. alcohol contain 20.93 gms. CdBr₂ at 15° (Eder).

.100 gms. sat. solution of CdBr₂.4H₂O in abs. ether contain 0.4 gm.

CdBr2 at 15° (Eder).

100 gms. absolute acetone dissolve 1.559 gms. CdBr2 at 18°.

(Naumann - Ber. 37, 4332, '04.)

CADMIUM (Mono) AMMONIUM BROMIDE CdBr2.NH4Br.

SOLUBILITY IN WATER.

(Rimbach - Ber. 38, 1553, '05; Eder.)

t°.	100 Grams	Solution cont	ain Gms.	Ator	nic Re	lation.	G. CdBr ₂ .NH ₄ Br
	Cd.	Br.	NH_4 .	Cd	Br	: NH4.	per 100 Gms. Solution.
1.0	16.33	34.87	2 . 63	I	3	I	53.82
14.8	17.40	37.15	2.80	I	3	I	58.01
52.2	19.79	42.38	3.21	I	3	I	65.31
110.1	22.99	49.17	3.72	I	3	I	75.98

100 gms. sat. solution of CdBr₂.NH₄Br in abs. alcohol contain 15.8 gms. double salt at 15° (Eder).

100 gms. sat. solution of CdBr₂.NH₄Br in abs. ether contain 0.36 gm. double salt at 15° (Eder).

CADMIUM (Tetra) AMMONIUM BROMIDE CdBr2.4NH4Br.

SOLUBILITY IN WATER.

(Rimbach.)

The double salt is decomposed by water at temperatures below 160°.

± 0	Cd. Br. NH ₄ .			Atomic Relation in Sol.			Atomic Relation in Solid.		
٠.	Cd.	Br.	NH4.	Cd	: Br :	NH ₄ .	Cd	: Br :	NH ₄ .
0.8	14.72	50.46	6.67	I	4.82	2.82	I	10.02	8.02
13.0	14.95	51.48	6.85	I	4.85	2 .85	I	11.57	9.57
44.0	15.01	53.85	$7 \cdot 35$	1	5.04	3.04	1	6.84	4.84
76.4	14.6	54.28	7.80	I	5.32	3.32	I	6.63	4.63
123.5	15.5	59.50	8.45	I	5 . 38	3.38	I	7 - 40	5.40
160.0	14.7	62.67	9.43	I	5.99	3.99	I	6.03	4.03

CADMIUM (Mono) POTASSIUM BROMIDE CdBr2.KBr.H2O.

SOLUBILITY IN WATER.

(Rimbach; see also Eder.)

t°.	Cd.	Br.	ain Gms.	Atomic I		on in Sol.	Gms. CdBr ₂ .KBr per 100 Gms. Solution.
0.4	15.41	33.0	5.42	I	3	I	53.63
15.8		35.96		I	3	I	58.61
50.0	19.58	41.86	6.85	I	3	I	67.87
112.5	22.24	48.28	8.14	0.98	3	I.03	78.11

CADMIUM Tetra **POTASSIUM BROMIDE** is decomposed by water at ordinary temperatures.

CADMIUM (Mono) RHUBIDIUM BROMIDE CdBr2.RbBr.

SOLUBILITY IN WATER.

(Rimbach.)

t°.	100 Gms.	100 Gms. Solution contain Gms.			Atomic Relation in Sol.				
	Ćd.	Br.	Rb.	Cd:	Br	Rb.	per 100 Gms. Solution.		
0.4	8.37	17.93	6.43	I	3	I.OI	32.65		
14.5	10.72	23.02	8.30	0.99	3	1.01	41.87		
49.2	15.01		11.51	I	3	I	58.54		
107.5	19.65	41.12	14.06	I.02	3	0.96	75 · 77		

CADMIUM (Tetra) RHUBIDIUM BROMIDE CdBr2.4RbBr.

SOLUBILITY IN WATER.

(Rimbach.)

t°.	Cd Cd	Solution con Br	Rb.	Atomic I	Relatio	on in Sol. G	ms. CdBr _{2.4} RbBr per 100 Gms. Solution.
0.5	5.70	24.94	17.97	0.08	6	4.05	47 . 95
13.5	6.55	28.74	20.74	0.95	6	4.05	55.17
51.5	8.25	35.51	25.39	0.00	6	4.02	68.82
114.5	9.50	40.67	29.00	I .00	6	4.0	79.04

CADMIUM (Mono) SODIUM BROMIDE CdBr2. NaBr21H2O.

SOLUBILITY IN WATER, ETC., AT 15°.

(Eder - Ding. polyt. J. 221, 189, '76.)

Solvent.	Gms. CdBr ₂ .NaB	Solvent.	Solid Phase.
Water	49.0	96.1	CdBr ₂ .NaBr.2½H ₂ O
Absolute Alcohol	21.2	27.0	
Absolute Ether	0.52	0.53	- "

CADMIUM CHLORATE Cd(ClO₃)₂.2H₂O.

SOLUBILITY IN WATER.

(Meusser - Ber. 35, 1422, '02.)

t°. 1	Gms. Cd(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Cd(ClO ₃) ₂ per 100 Mols H ₂ O.	Solid Phase.	t°.	Gms. Cd(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Cd(ClO ₃) ₂ per 100 Mols. H ₂ O.	Solid Phase.
- 20	72.18	22.47	Cd(ClO ₃) ₂ .2H ₂ O	18	76.36	27.98 C	d(ClO ₃) ₂ .2H ₂ O
-15	72.53	22.87	ü	49	80.08	34.82	"
o	74.95	25.92	"	65	82.95	42.14	"

Density of the saturated solution at 18° = 2.284.

SOLUBILITY IN WATER.

DODODINITI III WILLDAN									
470 4	433, '00; above 100°, Etard - Ann. chim. phys. [7] 2, 536, '94.)								
[Dietz — W. Abh. p. t. Reichanstalt 3.	422. 'OO' BDOVE 100". Elard Ann. chim. phys. [7] 2, 520. '04.]								
(Dicta ive sible pe es recreambles 3)	433, 66, 886,6 166 , 25814 111111 (2111111) 211111 (2111111)								

t°.	G. CdCl ₂ per 100 Gms. Solution.	mols.CdCl per 100 Mols. H ₂ O	Solid	t°.	G. CdCl ₂ per 100 Gms. Solution.	Mols.CdCl ₂ per 100 Mols, H ₂ O.	Solid Phase.
- 9	43.58	7.5]		+10	57 - 47	13.3	
0	49.39	9.6	CdCL 4H O	20	57 - 35	13.2	
+10	55.58	12.3	Cuci ₂ .411 ₂ 0	40	57.51	13.3	CACL HO
15	59.12	14.2		60	57.71	13.4	Cuci ₂ .11 ₂ O
-10	44.35	7.8		80	58.41	13.8	
0	47 - 37	9.0		100	59.52	14.4	
+18	52.53	10.9	CdCl ₂ .2½H ₂ O	150	64.8		
30	56.91	12.8	(monoclinic)	200	72.0		
36	57.91	13.5		270	77 · 7		

Density of saturated solution at 18° = 1.741.

100 gms. abs. ethyl alcohol dissolve 1.52 gms. CdCl₂ at 15°.5.
100 gms. abs. methyl alcohol dissolve 1.71 gms. CdCl₂ at 15°.5.
(de Bruyn — Z. physik. Chem. 10, 783, '92.)

CADMIUM AMMONIUM CHLORIDE CdCl2.NH4Cl.

SOLUBILITY IN WATER. (Rimbach — Ber. 30, 3075, 1897.)

t°.	100 Gms	. Solution cont	ain Gms.	Gms. CdCl2.NH4Cl per 100 Gms.			
	Cd.	Cl.	NH .	Solution.	Water.		
2.4	14.26	13.44	2.24	29.94	42.74		
16.0	15.82	15.07	2.56	33 · 45	50.26		
41.2	18.61	17.46	2.89	38.96	63.83		
63.8	20.92	19.73	3 · 34	43.99	78.54		
105.9	24.70	23.52	4.01	52.23	109.33		

CADMIUM (Tetra) AMMONIUM CHLORIDE CdCl2.4NH4Cl.

IN CONTACT WITH WATER.

The salt is decomposed in aqueous solution.
(Rimbach.)

t°.	100 Gms. S	Solution cont	Atomic	Atomic Relation in Solution.			
٠.	Cd.	Cl.	NH4.	Cd	: C1	: NH4.	
3.9	5 · 75	18.17	$7 \cdot 37$	I	9.96	7.96	
16.1	6.96	20.26	7 · 97	I	9.20	7.13	
40.2	9.91	23.84	_8.92	1	7.61	5.61	
58.5	12.50	26.53	9.35	I	6.71	4.66	
112.9	16.66	31.79	10.78	I	6.02	4.02	
113.9	16.51	32.71	11.30	I	6.26	4.26	

SOLUBILITY OF MIXTURES OF CADMIUM TETRA AMMONIUM CHLORIDE AND CADMIUM AMMONIUM CHLORIDE IN WATER. (Rimbach — Ber. 35, 1300, '02.)

t°.	100 Gms.	100 Gms. Solution contain Gms.			Atomic Rela	ation.	Solid Phase, Mol. per cent of:	
	Cd.	Cl.	NH ₄ .	Cd	: Cl :	NH ₄ .	CdCl ₂ . NH ₄ Cl.	CdCl ₂ . 4NH ₄ Cl.
I.I	5.34	17.62	7.27	I	10.47	8.50	49.6	50.4
14.0	7.12	19.86	7.84	I	8.84	6.87	47.0	53.0
40.7	10.24	23.82	8.85	I	$7 \cdot 37$	5.37	77.0	23.0
58.5	12.50	26.53	9.35	1	6.71	4.66		

SOLUBILITY OF MIXTURES OF CADMIUM TETRA AMMONIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER.

(Rimbach.)

t°.	100 Gms. Solution contain Gms.				Atomic Relation.			Solid Phase, Mol. per cent of:	
	Čd.	Cl.	NH.	Cd	: Cl :	NH4.	NH ₄ Cl.	CdCl2.4NH4Cl.	
1.0	2.82	17.11	7.82	1	19.21	17.28	59.0	41.0	
13.2	2.76	18.84	8.71	I	21.62	19.62	74.0	26.0	
40.I	3.16	22.56	10.49	1	22.65	20.74	71.0	29.0	
58.2	3.51	25.21	11.72	1	22.79	20.89	69.0	31.0	

CADMIUM BARIUM CHLORIDE 2(CdCl2).BaCl2.5H2O.

SOLUBILITY IN WATER. (Rimbach - Ber. 30, 3083, '97.)

t°.	10	o Gms. Solutio	Gms. 2(CdCl ₂).BaCl ₂ per 100 Gms.		
	Cd.	, C1.	Ba.	Solution.	Water.
22.6	17.71	16.89	11.0	45.60	83.82
41.3	19.22	18.15	11.77	49.14	96.62
53.9	19.85	18.75	12.41	51.04	104.25
62.2	20.59	19.66	12.83	53.08	113.13
69.5	21.20	20.18	13.09	54 · 47	119.64
107.2	24.25	23.23	14.90	62.38	165.85

CADMIUM BARIUM CHLORIDE CdCl2. BaCl2.4H2O.

SOLUBILITY IN WATER. (Rimbach.)

t°.	100	Gms. Solutio	Gms. CdCl ₂ .BaCl ₂ per 100 Gms.		
	Cd.	Cl.	Ba.	Solution.	Water.
22.5	11.98	15.19	14.71	41.88	72.06
32.9	12.40	16.18	16.09	44.67	80.73
41.4	13.05	16.95	16.81	46.81	10.88
53 · 4	13.96	18.21	18.13	50.30	101.21
52.0	14.73	18.81	18.74	52.28	109.56
97.8	17.57	22.48	22.00	62.05	-163.50
108.3	18.53	23.51	22.79	64.83	184.33
109.2	18.67	23.69	29.95	65.31	188.27

CADMIUM MAGNESIUM CHLORIDE 2(CdCl2)MgCl2.12H2O.

SOLUBILITY IN WATER. (Rimbach.)

t°.	10	o Gms. Soluti contain Gms.	on	Gms. 2(CdCl ₂).MgCl ₂ per 100 Gms.		
	Cd.	Cl.	Mg.	Solution.	Water.	
2.4	22.14	21.06	2.41	45.61	83.86	
20.8	24.30	22.80	2.55	49.69	98.77	
45.5	26.24	24.55	2.72	53.51	115.10	
67.2	28.45	26.71	2.98	58.14	138.90	
121.8	31.84	30.20	3.44	65.48	189.69	

CADMIUM (Mono) RHUBIDIUM CHLORIDE CdCl2. RbCl.

SOLUBILITY OF CADMIUM MONO RHUBIDIUM CHLORIDE IN WATER. (Rimbach — Ber. 35, 1303, '02.)

t°.	100 Gms	. Solution ont	ain Gms.	Gms. CdCl2.RbCl per 100 Gms.		
	Cd.	Cl.	Rb.	Solution.	Water.	
I.2	4.80	4.53	3.63	12.97	14.90	
14.5	6.20	5.88	4.75	16.80	20.19	
41.4	9.34	8.86	7.14	25.31	33.89	
57.6	11.40	10.78	8.63	30.83	44.58	
103.9	17.14	16.37	13.39	46.62	87.36	

CADMIUM (Tetra) RHUBIDIUM CHLORIDE CdCl2.4RbCl.

IN CONTACT WITH WATER. (Rimbach.)

The double salt decomposes to CdCl2.RbCl and RbCl.

t°.	100 Gms. Solution contain Gms.				Atomic Rel	Solid Phase, Mol. per cent of:		
• .	Cd.	Cl.	Rb.	Cd	: Cl	: Rb.	ĆdCl ₂ . RbCl.	CdCl ₂ . 4RbCl.
0.7	0.65	6.52	14.73	I	31.88	29.88	30	70
8.8	1.07	7 · 37	16.13	1	21.89	19.89	24	76
13.8	1.32	7.86	16.93	1	18.88	16.83	16	84
42.4	3.21	11.35	22.45	1	11.21	9.21	14	86
59.0	4.61	13.41	25.31	1	9.23	7.23	33	67
108.4	8.94	18.57	31.15	1	6.57	4.59		

Solubility of Mixtures of $CdCl_2.4RbCl$ and RbCl in Water. (Rimbach.)

t°.	100 Gms. Solution contain Gms.			Atomic Relation.			Solid Phase, Mol. per cent of:	
	Cd.	Cl.	Rb.	Cd	: Cl :	Rb.	CdCl2-4RbCl	RbCl.
0.4		12.86	30.97		1	I	55	45
14.8		13.62	32.81		I	I	67	33
17.9		14.0	33.71		I	I	80	20

THE EFFECT OF THE PRESENCE OF HCl, CaCl₂ and of LiCl upon the Decomposition of Cadmium Tetra Rhubidium Chloride by Water at 16°.

(Rimbach—Ber. 38, 1570, '05.)

	(Kilinbach — Bel. 38, 1570, 05.)										
1	oo Gms.	Solution co	ntain Gm	s.	Mols. per 100 Mols. H ₂ O. Molecular R				lar Ratio.		
Total Cl.	Cl.	HCl.	Cd.	Rb.	CdCl2.	RbCl.	HCl.	CdCl ₂	: RbCl.		
36.44	0.84	36.61	0.41	1.39	0.109	0.483	29.76	1	4.43		
28.45	0.80	28.44	0.35	1.38	0.082	0.422	20.35	I	5.15		
12.09	3.24	9.11	0.69	6.74	0.139	I.77.2	5.60	1	12.75		
	Ca.	CaCl ₂ .		• •	•	• •	CaCl ₂ .				
14.98	7.56	20.91	0.73	2.80	0.159	0.799	4.59	1	5.04		
12:70	5.77	15.96	0.77	4.87	0.163	1.353	3.41	r	8.31		
10.85	3.78	14.47	I.00	8.51	0.211	2 . 365	2.24	I	II.22		
9.08	1.84	5.10	I.24	12.14	0.262	3.385	1.09	1	12.92		
	Li.	LiCl.					LiCl.				
26.49	4.87	29 - 40	0.56	3.871	0.139	1.271	19.40	1	9.13		
20.37	3.33	20.11	0.52	7 . 84	0.122	2.433	12.54	1	19.88		
See	Note o	n next	page.								

CADMIUM (Mono) POTASSIUM CHLORIDE CdCl2. KCl. H2O.

SOLUBILITY IN WATER.

(Rimbach - Ber. 30, 3079, '97; see also Croft - Phil. Mag. [3] 21, 356, '42.)

t°.		Gms. Solution contain Gms.	1	Gms. CdCl ₂ .KCl per 100 Gms.		
	Cd.	Cl.	K.	Solution.	Water.	
2.6	9.53	9.03	3.31	21.87	27.99	
15.9.	11.63	10.98	3.99	26.60	36.24	
41.5	15.47	14.73	5 · 45	35.66	55.34	
60.6	17.68	16.80	6.20	40.67	68.55	
105.1	22.46	21.34	7 .87	51.67	106.91	

CADMIUM (Tetra) POTASSIUM CHLORIDE CdCl₂.4KCl.

IN CONTACT WITH WATER.

(Rimbach.)

The double salt is decomposed when dissolved in water at ordinary temperature.

t°.	100 Grams Solution contain Gms.						
	Cd.	Cl.	ĸ.				
4	3.64	9.84	8.31				
23.6	5.66	14.02	11.52				
50.2	9.10	18.09	13.60				
108.9	11.94	23.11	17.16				

Note. — The effect of the presence of certain chlorides upon the decomposition of cadmium tetra potassium chloride by water at 16° was investigated by Rimbach in a manner similar to that used in the case of cadmium tetra rhubidium chloride (see preceding page). The results, which show the extent to which increasing amounts of the several chlorides force back the decomposition of the double salt, were plotted on cross-section paper, and the points at which the decomposition was prevented, were determined by interpolation. These values which show the minimum amount of the added chlorides which must be present to insure the crystallization of the pure double salt are shown in the following table.

Added	Mols.	per 100 Mol	s. H ₂ O.	Density of	Mols. per Liter of Solution.			
Chloride.	CdCl ₂ .	KCl.	Added 1 Chloride.	Solutions.	CdCl ₂ .	KCl.	Added Chloride.	
HCl	0.074	0.296	19.80	1.1403	0.033	0.132	8.828	
LiCl	0.344	1.376	9.30	1.1380	0.166	0.663	4.483	
CaCl	0.544	2.176	3.80	1.2333	0.270	1.808	1.887	
KCl	1.034	6.514*	2.378	1.214	0.507	3.195*	1.167	
				T-4-1				

* Total.

CADMIUM CYANIDE Cd(CN)2.

100 gms. H₂O dissolve 1.7 gms. Cd(CN)₂ at 15°.

(Joannis - Ann. chim. phys. [5] 26, 489, '82.)

CADMIUM FLUORIDE CdF2.

SOLUBILITY IN WATER.

100 cc. saturated aqueous solution contain 4.36 gms. CdF₂ at 25°.

(Jager — Z. anorg. Chem. 27, 34, 'or.)

CADMIUM HYDROXIDE Cd(OH)2.

SOLUBILITY IN WATER.

I liter of aqueous solution contains 0.0026 gm. Cd(OH)₂ at 25°.

(Bodländer – Z. physik. Chem. 27, 66, '98.)

CADMIUM IODIDE CdI2.

SOLUBILITY IN WATER.

(Dietz — W. Abh. p. t. Reichanstalt 3, 433, '00; see also Kremers — Pogg. Ann. 103, 57, '58; Eder — Dingl. polyt. J. 221, 189, '76; Etard — Ann. chim. phys. [7] 2, 536, '94.)

t°.	Gms. CdI ₂ po Solution.	Water.	Mols. CdI ₂ per 100 Mols. H ₂ O.	t°.	Gms. CdI ₂ p	Water.	Mols. CdI ₂ per 100 Mols. H ₂ O.
0	44 · 4	79.8	3.9	30	47 · 3	89.7	4 · 43
IO	45 · 4	83.2	4 · I	40	48.4	93.8	4.6
15	45.8	84.5	4.17	50	49.35	97 · 4	4.8
18	46.02	85.2	4.2	75	52.65	III.2	5 · 4
20	46.3	86.2	4.26	100	56.08	127.6	6.3
25	46.8	87.9	4.34				_

Density of saturated solution at $18^{\circ} = 1.590$.

SOLUBILITY OF CADMIUM IODIDE IN ORGANIC SOLVENTS.

Solvent.	t°.	Gms. Gms. Solution.	CdI ₂ per Gms. Solvent.	Observer.
Absolute Alcohol	15	50.5	102.0	(Eder.)
Ethyl Alcohol	20	42.6	74.27	(Timofeiew — Compt. rend. 112, 1224, '91.)
Methyl Alcohol	20	59.0	143.7	(Timofeiew — Compt. rend. 112, 1224, '91.)
Propyl Alcohol	20	28.9	40.67	(Timofeiew — Compt. rend. 112, 1224, '91.)
Absolute Ether	15	21.7	27.7	(Eder.)
Absolute Acetone	18	20.0	25.0	(Naumann — Ber. 37, 4332, '04.)

CADMIUM AMMONIUM IODIDES (Mono and Di).

SOLUBILITY IN WATER, ETC. (Rimbach — Ber. 38, 1557, '05; at 15° Eder — Dingl. polyt. J. 221, 189, '76.)

Cd. Mono				Cd. Di			
Ammonium Iodide.				Ammonium Iodide.			
Solvent.	t°.		Solvent.	t°.	Gms. CdI ₂ .		
Water	15	52.6	111.0	14.5	85.97	611.6	
Abs. Alcohol	15	53.	113	15	59	143	
Abs. Ether	15	29 · 4	41.7	15	10		

CADMIUM POTASSIUM IODIDES, Mono = CdI_2 .KI.H₂O, Di = CdI_2 .2KI.2H₂O.

CADMIUM Di SODIUM IODIDE CdI2.2 NaI.6H2O.

SOLUBILITY IN WATER, ETC., AT 15°.

Solvent.	Gms. CdI ₂ .KI per 100 Gms.			dI _{2.2} KI o Gms.	Gms. CdI _{2:2} NaI per 100 Gms.	
	Solution.	Solvent.	Solution.	Solvent.	Solution.	Solvent.
Water	51.5	106	57.8	137	61.3	158.8
Abs. Alcohol	, .		41.7	71	53 · 7	116.2
Abs. Ether			3.9	4.1	9.0	9.9

CADMIUM NITRATE Cd(NO₃)₂.

SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt 3 440, 'oo.)

t°.	Gms. Coper 10	Mater.	Mols. Cd(NO ₃) ₂ per 100 Mols. H ₂ O.	Solid Phase.
-13	37.37	59.67	4.55	$Cd(NO_3)_2.9H_2O$
- I + I	47 · 33	89.86	6.85 8.50	66
0	$5^2 \cdot 73$ $5^2 \cdot 37$	111.5	8.37	$Cd(NO_3)_2.4H_2O$
+18	55.9	126.8	9.61	**
30	58.4	140.4	10.7	66
40 59 · 5	61.42 76.54	159.2 326.3	12.1 25.0	66
37 3	, 51	0	0	

Density of saturated solution at $18^{\circ} = 1.776$.

CADMIUM OXALATE CdC2O4.3H2O.

r liter of sat. aqueous solution contains 0.033 gm. CdC₂O₄ at 18°.

(Kohlrausch — Z. physik. Chem. 44, 197, '03.)

CADMIUM SULPHATE CdSO4.

SOLUBILITY IN WATER.

(Mylius and Funk — W. Abh. p. t. Reichanstalt 3, 444, '00; see also Kohnstamm and Cohn — Wied Ann. 65, 344, '08; Steinwehr — Ann. der Phys. (Drude) [4] 9, 1050, '02; Etard — Ann. chim. phys. [7] 2 536, '04.)

£ °.	Gms. C per 100 Solution.		Solid Phase.	t°.	Gms. per 100 Solution.	CdSO ₄ Gms.	Solid Phase.
-17	44.5	80.2	CdSO ₄ .7H ₂ O	40	43.99	78.54	CdSO ₄ .8H ₂ O.
-10	46. I	85.5	"	60	44.99	83.68	66
- 5	48.5	94.2	"	73.5	46.6	87.28	"
- 18	43 · 35	76.52	CdSO ₄ .§H ₂ O	74.5	46.7	87.62	CdSO ₄ .H ₂ O
-10	43.27	76.28	"	77	42.2	73.02	"
0	43.01	76.48	46	85	39.6	65.57	"
+10	43.18	76.00	46	90	38.7	63.13	44
20	43.37	76.60	• •	100	37.8	60.77	66

SOLUBILITY OF CADMIUM SULPHATE IN AQUEOUS SOLUTIONS OF SULPHURIC ACID AT 0°.

(Engel - Compt. rend. 104, 507, '87.)

Equivalents per 10 Gms. H2O.		Density of Solutions.	Grams per 100	Grams per 100 Grams H ₂ O.			
H ₂ SO ₄ .	CdSO ₄ .	of Solutions.	H ₂ SO ₄ .	CdSO ₄ .			
0.	71.6	1.609	0.00	74.61			
3.87	70.9	1.591	1.90	73.87			
12.6	62.4	1.545	6.18	65.03			
28.1	50.6	1.476	13.78	52.73			
43 · 3	40.8	I.435	21.23	42.52			
47.6	37.0	1.421	23.34	38. 56			
53.8	32.7	1.407	26.38	34.07			
71.5	23.0	1.379	35.06	23.96			

Solubility of Mixed Crystals of Cadmium Sulphate and Ferrous Sulphate in Water at 25° .

(Stortenbecker — Z. physik. Chem. 34, 109, '00.)

	Mol. per cent Cd in				
Gms. per 100	Gms. H ₂ O.	Mols. per 100	Mols. H ₂ O.	Mol. % Cd.	Crystals of Solid Phase.
CdSO4.	FeSO ₄ .	Cd.	Fe.	in Sol.	Solid I hase.
Crystals with 23 1	Mols. H ₂ O.	_			
76.02	0.0	6.57	0.0	100	100
57.61	10.63	4.98	1.26	79.8	99.0
Crystals with 7 M	ols. H ₂ O.				
57.61	10.63	4.98	1.26	79.8	36.6
				78.5	34.6
	• • •			44.6	11.1
				24.4	4.8
0.0	26.69	0.0	3.165	0.0	0.0

CADMIUM POTASSIUM SULPHATE CdK2(SO4)2.

SOLUBILITY IN WATER.

(Wyrouboff - Bull. soc. chim. [3] 25, 121, 'oi.)

t°.	G. CdK ₂ (SO ₄) ₂ p 100 Gms. H ₂ O.	er Solid Phase.	t°. p	G. CdK ₂ (SO ₄) er 100 Gms. H	Solid O. Phase.
16	42.89	$CdK_2(SO_4)_2.2H_2O$	26	42.50	$CdK_2(SO_4)_2.1\frac{1}{2}H_2O$
31	46.82	"	31	42.80	"
40	47 - 40	"	40	43 - 45	"
			64	44.90	"

CADMIUM SODIUM SULPHATE CdNa2(SO4)2.2H2O.

SOLUBILITY IN WATER, ALSO WITH THE ADDITION OF CADMIUM SUL-PHATE AND OF SODIUM SULPHATE.

(Koppel, Gumpery - Z. physik. Chem. 52, 413, '05.)

t°.	Solu		H ₂ C		H	2O.	Solid Phase.
	CdSO ₄ .	Na ₂ SO ₄ .	CdŜO₄.	Na ₂ SO ₄ .	CdSO ₄ .	Na ₂ SO ₄ .	
24	22.25	15.07	35 - 49	24.04	3.07	3.05	
30	22.55	15.29	36.28	24.60	3.14	3.12	$CdNa_2(SO_4)_2.2H_2O$
40	22.89	15.65	37.24	25.45	3.22	3.28	
0	40.32	4.85	73 · 54	8.85	6.36	I.12)	
10	39.91	5.24	72.77	9.55	6.30	I.2I	$CdNa_2(SO_4)_2.2H_2O$
20	40.26	5.16	73.81	9.45	6.39	1.20	+CdSO _{1.8} H ₂ O
40	39.89	7.18	75.38	13.56	6.52	1.72	
-14.8	8 40 . 18	4.60	72.68	8.32	6.29	1.05	
0	37 - 30	6.53	66.32	11.62	5.74	1.47	CdNo (SQ) -II Q
10	32.53	8.69	55.34	14.78	4.79	1.84	$CdNa_2(SO_4)_2.2H_2O$
20	22.69	14.71	36.25	23.52	3.14	2.98	$+ Na_2SO_4.10H_2O$
25	16.33	19.82	25.60	31.06	2.21	3.94	
30	9.21	27 .80	14.62	44.14	1.26	4.59	CdNs (SQ) -II Q
35	8.26	29.35	13.26	47.06	1.15	5.96	$CdNa_2(SO_4)_2.2H_2O$
40	9.98	28.27	16.24	46.27	1.41	5.86	$+Na_2SO_4$

CAESIUM ALUMS

SOLUBILITY OF CAESIUM CHROMIUM ALUM, CAESIUM IRON ALUM, CAESIUM INDIUM ALUM, AND OF CAESIUM VANADIUM ALUM IN WATER,

(Locke - Am. Ch. J. 27, 174, 'o1.)

Formula of Alum.	t°.	Anhydrous Salt.	Hydrated Salt.	Gram Mols. Salt per 100 cc. H ₂ O.
$Cs_2Cr_2(SO_4)_4.24H_2O$	25	0.57	0.94	0.00151
	30	0.96	1.52	0.0025
"	35	1.206	1.91	0.0032
"	40	1.53	2 · 43	0.00405
$Cs_{2}Fe_{2}(SO_{4})_{4}.24H_{2}O$	25	1.71	2.72	0.0045
66	30	2.52	4.01	0.0066
"	35	3 · 75	6.01	0.0099
"	40	6.04	9.80	0.0156
$Cs_2In_2(SO_4)_4.24H_2O$	25	7 · 57	11.73	0.0172
$Cs_2V_2(SO_4)_2.24H_2O$	25	0.771	1.31	0.00204

CAESIUM CHLORAURATE CsAuCl.

SOLUBILITY IN WATER. (Rosenbladt — Ber. 19, 2537, '86.)

tº.	Gms. CsAuCl ₄ per 100 Gms. Solution.	t°.	Gms. CsAuCla per 100 Gms. Solution.		Gms. CsAuCl ₄ per 100 Gms. Solution.
IO	0.5	40	3.2	80	16.3
20	0.8	50	5 - 4	90	21.7
30	1.7	60	8.2	100	27.5
		70	12.0		

CAESIUM FLUOBORIDE CsBF1.

100 grams water dissolve 0.92 gram CsBFl₄ at 20°, and 0.04 gram at 100°. (Godeffroy — Ber. 9, 1367, '76.)

CAESIUM MERCURIC BROMIDE CsBr.2HgBr2.

100 grams saturated aqueous solution contain 0.807 gram CsBr. 2HgBr₂ at 16°. (Wells – Am. J. Sci. [3] 44, 221, '92.)

CAESIUM CARBONATE Cs2CO3.

100 grams absolute alcohol dissolve 11.1 grams Cs₂CO₃ at 19°, and 20.1 grams at b. pt. (Bunsen.)

CAESIUM CHLORIDE CsCl.

SOLUBILITY IN WATER.

(Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 208, '04; see also Hinrichsen and Sachsel — Z. physik. Chem. 50, 99, '04-'05; at 25°, Foote.)

t°.	G. CsCl per Solution.	Water.	G. Mol. CsCl per Liter.	t°.	G. CsCl pe Solution.	Water.	G. Mol. CsCl per Liter.
0	61.7	161.4	6.74	60	69.7	229.7	8.28
IO	63.6	174.7	7.11	70	70.6	239.5	8.46
20	65.1	186.5	7 · 38	80	71.4	250.0	8.64
30	66 . 4	197.3	7 . 63	90	72.2	260.1	8.80
40	67.5	208.0	7.86	100	73.0	270.5	8.96
50	68.6	218.5	8.07	119.4	74.4	290.0	9.22

Solubility of Mixtures of Caesium Chloride and Mercuric Chloride in Water at 25°.

(Foote — Am. Ch. J. 30, 340, '03.)

Gms. per 100 Gms. Solution.		Solid Phase.	Solut		Solid Phase.
CsCl ₂ .	HgCl2.		ĆsCl ₂ .	HgCl ₂ .	
65.61	0.0	CsCl	38.63	1.32	D. 11 C.
65.78	0.215	CsCl + Cs₃HgCl₅	17.03	0.51	Double Salt CsHgCl ₃ = 38.3% CsCl
62.36	0.32	Double Salt	1.53	0.42	Cong Cig = 30.3% CSCI
57.01	0.64	Cs ₃ HgCl ₅	0.61	2.64	CsHg + CsHg ₂ Cl ₅
52.35	1.23	= 65.1% CsCl	0.49	2.91	Double Salt
51.08	1.44	$Cs_3HgCl_5 + Cs_2HgCl_4$	0.40	3.78	$CsHg_2Cl_5 = 23.7\% CsCl$
49.30	1.49	Double Salt	0.44	4.63	CsHg ₂ Cl ₅ + CsHg ₅ Cl ₁₁
45.95	1.69	$Cs_2HgCl_4 = 55.4\%CsCl$	0.41	4.68	Double Salt
45.23	1.73	Cs ₂ HgCl ₄ + CsHgCl ₃	0.25	5.65	$CsHg_5Cl_{11} = 11.1\%C_5Cl$
			0.18	7.09	CsHg ₅ Cl ₁₁ + HgCl ₂
			0.0	6.90	HgCl ₂

CAESIUM CHLORTELLURATE 82

CAESIUM CHLORTELLURATE CsTeCls.

SOLUBILITY IN AQUEOUS HYDROCHLORIC ACID. (Wheeler — Am. J. Sci. [3] 45, 267, '93.)

100 parts HCl (Sp. Gr. 1.2) dissolve 0.05 part CsTeCl₆ at 22°. 100 parts HCl (Sp. Gr. 1.05) dissolve 0.78 part CsTeCl₆ at 22°.

CAESIUM THALLIC CHLORIDE 3CsC1.TlCl3.2H2O.

100 parts H_2O dissolve 2.76 parts 3CsCl.TlCl $_3$.2 H_2O at 17 $^\circ$, and 33.3 parts at 100 $^\circ$. (Godeffroy — Z. Osterr. Apoth. Ver. No. 9, 1886).

CAESIUM IODATE CsIO3.

roo parts H_2O dissolve 2.6 parts $CsIO_3$ at 24°, and 2.5 parts $2CsIO_3$. I_2O_5 at 21°. (Wheeler — Am. J. Sci. [3] 44, 123, '92.)

CAESIUM IODIDE Csl.

SOLUBILITY OF MIXTURES OF CAESIUM IODIDE AND IODINE IN WATER.

(Foote — Am. Ch. J. 29, 210, '03.)

t°.	Gms. per r Solut		t°.	Gms. per i	ion.	Solid Phase at both Temps.
-4	27.68	0.0	35.6	51.48	0.0	CsI
-4	27.52	0.09	35.6	51.66	0.71	CsI and CsI ₃
-4	3.18	0.31	35.6	10.72	1.78	CsI ₃ and CsI ₅
-0.2	0.85	0.34	35.6	3.74	1.60	CsI ₅ and I

t°.		100 Gms.	In Separated I Gms. per 100	Heavy Solution Gms. Solution.	Solid Phase.
52.2	16.75	4.52			CsI ₃ and CsI ₅
52.2	6.69	3.36			CsI ₅ and I
52.2	6.72	3.32	22.94	73.72	CsI ₅
52.2	6.65	3 · 45	22.80	74.63	I
73	26.98	15.07			CsI ₃ and CsI ₅
73	16.66	10.50	27.56	68.40	CsI ₅
73	6.27	4.08	17.68	80.02	I

CAESIUM (Tri) IODIDE CsI3.

100 cc. saturated aqueous caesium iodide (about 17 per cent CsI) solution contain 0.97 gram CsI₃ at 20°, density of solution = 1.154.

(Wells — Am. J. Sci. [3] 44, 221, '92.)

CAESIUM NITRATE CSNO3.

SOLUBILITY IN WATER.

(Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 213, '04.)

t°.	Gms. Csl	NO ₃ per Gms. Water.	G. Mols. CsNO ₃ per Liter.	t°.		SNO ₃ per Gms. Water.	G. Mols CsNO ₂ per Liter.
0	8.54	9.33	0.476	60	45.6	83.8	3.41
IO	12.97	14.9	0.725	70	51.7	107.0	4.10
20	18.7	23.0	1.11	80	57 · 3	134.0	4.81
30	25.3	33.9	1.58	90	62.0	163.0	5.50
40	32.1	47.2	2.12	100	66.3	197.0	6.19
50	39.2	64.4	2.73	106.2	68.8	220.3	6.58

CAESIUM OXALATE Cs2C2O4.H2O.

SOLUBILITY OF MIXTURES OF CAESIUM OXALATE AND OXALIC ACID IN WATER AT 25°.

(Foote and Andrew - Am. Ch. J. 34 156, '05.)

Varying amounts of the two substances were dissolved in hot water and the solutions allowed to cool in a thermostadt held at 25°.

Gms. S	per 100 olution.	G. Mols. G. Mol	. per 100 ls. H ₂ O.	Solid
	Cs ₂ C ₂ O ₄ .	$H_2C_2O_4$.	Cs ₂ C ₂ O ₄ .	Phase.
10.20		2.274		$H_2C_2O_4.2H_2O$
10.29	0.61	2.314	0.035	$H_2C_2O_4.2H_2O + H_3Cs(C_2O_4)_2.2H_2O$
7.90	9.92	1.924	0.614 (Double Salt.
4.11	25.12	1.162	1.81 S	$H_3Cs(C_2O_4)_2.2H_2O$
4.32	27.55	1.279	2.06	$H_3Cs(C_2O_4)_22H_2O + H_4Cs_2(C_2O_4)_3$
4.27	28.30	1.267	2.14 \	Double Salt.
4.40	35.90	1.476	3.07 \$	$H_4Cs_2(C_2O_4)_3$
4.82	40.10	1.752	3.71	$H_4Cs_2(C_2O_4)_3 + HCsC_2O_4$
4.45	42.32	1.672	4.05)	Double Salt.
3.05	48.80	1.268	5.16	HCsC ₂ O ₄
I.04	68.69	0.688	11.56)	
0.91	71.24	0.648	13.06	$HCsC_2O_4 + H_6Cs_8(C_2O_4)_7$
0.77	$73 \cdot 45$	0.598	14.51 (Double Salt.
0.75	74.04	0.596	14.96 \$	$H_6Cs_8(C_2O_4)_7$
0.74	75.20	0.625	15.93	$H_6Cs_8(C_2O_4)_7 + Cs_2C_2O_4.H_2O$
0.0	75.82	0.0	15.97	$Cs_2C_2O_4.H_2O$

CAESIUM PERMANGANATE CsMnO4.

100 cc. sat. aqueous solution contain 0.097 gm. CsMnO₄ at 1°, 0.23 gm. at 19°, and 1.25 gms. at 59°. (Patterson—J. Am. Chem. Soc. 28, 1735, '06.)

CAESIUM SELENATE Cs2SeO4.

100 grams H₂O dissolve 245 grams Cs₂SeO₄ at 12°.

(Tutton - J. Chem. Soc. 71, 850, '97.)

CAESIUM SULPHATE Cs2SO4.

SOLUBILITY IN WATER.

(Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 210, '04.)

\$°.		Gms. Water.	G. Mols. Cs ₂ SO ₄ per Liter.	to.	Gms. Cs 100 G Solution.	Water.	G. Mols. Cs ₂ SO ₄ per Liter.
0	62.6	167.1	3.42	60	66.7	199.9	3.78
10	63.4	173.1	3 · 49	70	67.2	205.0	3.83
20	64.1	178.7	3.56	80	67.8	210.3	3.88
30	64.8	184.1	3.62	90	68.3	214.9	3.92
40	65.5	189.9	3.68	100	68.8	220.3	3.97
50	66.1	194.9	3 · 73	108.6	69.2	224.5	4.00

SOLUBILITY OF CAESIUM DOUBLE SULPHATES IN WATER AT 25°. (Locke — Am. Ch. J. 27, 459, 'oi.)

Name.	Formula.	Gms. Anhy per 100 Solution.	odrous Salt OGms.	Gm. Mols. Salt per 100 Gms. H ₂ O.
Caesium Cadmium Sulphate	Cs ₂ Cd(SO ₄) ₂ .6H ₂ O	58.16	130.0	0.2455
Caesium Cobalt Sulphate	$Cs_2Co(SO_4)_2.6H_2O$	29.52	41.9	0.081
Caesium Copper Sulphate	CspCu(SO ₄) ₂ .6H ₂ O	31.49	46.0	0.0882
Caesium Iron Sulphate	$Cs_2Fe(SO_4)_2.6H_2O$	50.29	IOI.I	0.1967
Caesium Magnesium Sulphate	$Cs_2Mg(SO_4)_2.6H_2O$	34.77	53.3	0.1106
Caesium Manganese Sulphate	$Cs_2Mn(SO_4)_2.6H_2O$	44.58	80.4	0.157
Caesium Nickel Sulphate	$Cs_2Ni(SO_4)_2.6H_2O$	20.37	25.6	0.0495
Caesium Zinc Sulphate	$Cs_2Zn(SO_4)_2.6H_2O$	27.87	38.6	0.0738

CAFFEINE $C_5H(CH_3)_3N_4O_2.H_2O.$

SOLUBILITY IN SEVERAL SOLVENTS.

(U. S. P.; Göckel — J. Chem. Soc. 74, 327, '98; Commaille — Compt. rend. 81, 819, '75.)

	Grams Caffeine per 100 Grams Solvent at:						
Solvent.	25°. U.S.	.P. ^{80°} .	18°. Göc	b. pt.	15.17° Comma	b. pt.	
Water	2.19	19.23			1.311	45.51‡	
Alcohol	1.88	5.85*			0.6118	3.1218	
Ether	0.267		0.119	0.295	0.04418	0.3618	
Chloroform	12.5		11.77	15.63	12.97	19.02	
Benzene	0 • •		0.911	5.29	• • •		
Carbon Tetra							
Chloride			0.089	0.702			
Carbon Bisulphide			• • •		0.0585‡	0.454‡	
• 60°. † 65°.	‡ Gms	. anhydrous	caffeine.	§ Abs. ale	cohol and abs.	ether.	

CALCIUM ACETATE Ca(CH₃COO)₂.2H₂O.

SOLUBILITY IN WATER.

(Lumsden - J. Chem. Soc. 81, 355, '02, Krasnicki - Monatsh. Chem. 8, 597, '87.)

t°.	Gms. Ca(C	Gms.	Solid Phase.	t°.	ms. Ca(C)	Gms.	Solid Phase.
	Solution.	Water.			Solution.	Water.	
0	27.2	37.4	$Ca(CH_3COO)_2.2H_2O$	60	24.6	32.7	Ca(CH ₃ COO) ₂ .2H ₂ O
10	26.5	36.0	$Ca(CH_3COO)_2.2H_2O$	80	25.1	33 · 5	$Ca(CH_3COO)_2.2H_2O$
20	25.8	$34 \cdot 7$	$Ca(CH_3COO)_2.2H_2O$	84	25.3	33.8	Ca(CH ₃ COO) _{2.2} H ₂ O]
25	25.5		$Ca(CH_3COO)_2.2H_2O$	85	24.7	32.9	Ca(CH ₃ COO) ₂ .H ₂ O
30	25.3	33.8	$Ca(CH_3COO)_22H_2O$	90	23.7	31.1	Ca(CH ₃ COO) ₂ .H ₂ O
40	24.9	33 · 2	Ca(CH ₃ COO) ₂ .2H ₂ O	100	22.9	29.7	Ca(CH ₃ COO) ₂ .H ₂ O

SOLUBILITY OF CALCIUM ACETATE IN AN AQUEOUS SATURATED SOLUTION OF SUGAR AT 31.25°.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

100 gms. solution contain 8.29 gms. Ca(CH₃COO)₂ + 60.12 gms. sugar. 100 gms. water dissolve 26.3 gms. Ca(CH₃COO)₂ + 190.3 gms. sugar.

CALCIUM (Tri) Methyl ACETATE Ca[(CH₃)₃CCOO]₂.

CALCIUM (Di) Ethyl ACETATE Ca[(C2H5)2CHCOO]2.

CALCIUM Methyl Ethyl ACETATE Ca[CH₃(C₂H₅).CHCOO]₂.

SOLUBILITY OF EACH IN WATER. (Landau — Monatsh. Chem. 14, 717, '93; Keppish — Ibid. 9, 600, '88; Sedlitzki — Ibid. 8, 573, '87-1 Ca. Tri Methyl Acetate. Ca. Di Ethyl Acetate. Ca. Methyl Ethyl. Acetate

			210000000
t°.	Gms. Ca(C ₅ H ₉ O ₂) ₂ per 100 Gms.	Gms. Ca(C ₆ H ₁₁ O ₂) ₂ per 100 Gms.	Gms. Ca(C ₅ H ₉ O ₂) ₂ per 100 Gms.
	Water. Solution.	Water. Solution.	Water. Solution.
0	7.30 6.81	30.3 -23.22	28.78 22.35
10	6.84 6.40	27.8 21.75	31.71 24.07
20	6.54 6.14	25.6 20.38	33.76 25.23
30	6.40 6.01	23.7 19.16	34.92 25.89
40	6.44 6.05	22.1 18.10	35.20 26.04
50	6.64 6.22	20.8 17.22	34.60 25.71
60	6.86 6.42	19.9 16.60	33.11 24.89
70	7.11 6.64	19.2 16.11	30.74 23.41
80	7.38 6.87		27.49 21.56

CALCIUM Methyl Propyl **ACETATE** Ca[CH₃(C₃H₇).CHCOO].

CALCIUM (Di) Propyl ACETATE Ca[(C₃H₇)₂CHCOO]₂.

CALCIUM (Iso) Butyl **ACETATE** Ca[(CH₃)₂CH(CH₂)₂COO]₂.

SOLUBILITY OF EACH IN WATER.

(Stiassny — Monatsh. Chem. 12, 596, '91; Furth — Ibid. 9, 313, '88; König — Ibid. 15, 22, '94.) Ca. Methyl Propyl Acetate. Ca. Di Propyl Acetate. Ca. Iso Butyl Acetate.

Gms. $Ca(C_6H_{11}O_2)_2$ Gms. $Ca(C_8H_{15}O_2)_2$ Gms. $Ca(C_8H_{15$	Gms. Ca(C ₆ H ₁₁ O ₂) ₂ per 100 Gms.		
	Solution.		
0 16.58 14.22 9.57 8.73 7.48	6.96		
10 15.80 13.65 8.35 7.71 6.38	5.99		
20 15.14 13.15 7.19 6.71 5.66	5.36		
30 14.61 12.75 6.11 5.77 5.31	5.04		
40 14.21 12.45 5.09 4.84 5.31	5.04		
50 13.94 12.24 4.14 3.98 5.68	5 · 37		
60 13.79 12.13 3.25 3.15 6.41	6.02		
70 13.78 12.12 2.44 2.38 7.51	6.98		
80 13.89 12.20 1.65 1.62 8.97	8.23		
90 10.79	9.74		

CALCIUM BROMIDE CaBr₂.

SOLUBILITY IN WATER.

(Kremers — Pogg. Ann. 103, 65, '58; Etard — Ann. chim. phys. [7] 2, 532, '04, gives results which yield an irregular curve and are evidently less accurate than those of Kremers.)

t°.	Gms. CaBr2 per 100 Gms.		Gms. CaBr ₂	ms. CaBr2 per 100 Gms.		
t	Water. Solution.	t*.	Water.	Solution.		
-22	101 50.5	34.2	~	~		
0	125 55.5	40	213	68.1		
IO	132 57.0	60	278	73 · 5		
20	143 58.8	80	295	74.7		
25	153 60.5	105	312	75 · 7		

Density of saturated solution at $20^{\circ} = 1.82$.

CALCIUM (Normal) BUTYRATE Ca[CH₃(CH₂)₂COO]₂.H₂O.

CALCIUM (Iso) BUTYRATE Ca[(CH₃)₂CH.COO]_{2.5}H₂O.

SOLUBILITY OF EACH IN WATER.

(Lumsden — J. Chem. Soc. 81, 355, '02; see also Chancel and Parmentier — Compt. rend. 104, 474, '87; Deszathy — Monatsh. Chem. 14, 251, '03, and also Hecht — Liebig's Annalen 213, 72, '82, give results for the normal salt which are somewhat below those of Lumsden for the lower temperatures. Sedlitzki — Monatsh. Chem. 8, 566, '87, gives slightly different results for the iso salt.)

Calcium Normal Butyrate.			Calcium Iso Butyrate.			
t°.		C ₄ H ₇ O ₂) ₂ Solution.	t°.		(C ₄ H ₇ O ₂) ₂ o Gms. Solution.	Solid Phase.
0	20.31	16.89	0	20.10		Ca(C ₄ H ₇ O ₂) ₂ .5H ₂ O
10	19.15	16.08	20	22.40	18.30	- 46
20	18.20	15.39	30	23.80	19.23	66
25	17.72	15.05	40	25.28	20.65	"
30	17.25	14.71	60	28.40	22.12	"
40	16.40	14.09	62	28.70	22.30	"
60	15.15	13.16	65	28.25	22.03	$Ca(C_4H_7O_8)_2.H_2O$
80	14.95	13.01	80	27.00	21.26	"
100	15.85	13.69	100	26.10	20.69	66

CALCIUM CAPROATE $Ca[CH_3(CH_2)_4COO]_2.H_2O.$

CALCIUM 3 Methyl **PENTANATE** $Ca[CH_3.CH_2.CH(CH_3)CH_2.COO]_2$, $3H_2O$.

CALCIUM CAPRYLATE Ca[CH₃(CH₂)₆COO]₂.H₂O.

SOLUBILITY OF EACH IN WATER.

(Lumsden; the Pentanate, Kulish — Monatsh. Chem. 14, 566, '93; see also Keppish — Ibid. 9, 594, '88, and Altschul — Ibid. 17, 571, '96, for results on the Caproate.)

Ca. C	caproate.	Ca. 3 Methyl	Pentanate.	Ca. Caprylate.
t°.	Gms. $Ca(C_6H_{11}O_2)_2$ per 100 Gms. H_2O .		(C ₆ H ₁₁ O ₂) ₂ so Gms. Solution.	Gms. $Ca(C_8H_{15}O_2)_{5}$ per 100 Gms. H_2O_*
0	2.23	12.33	10.98	0.33
20	2.18	17.18	14.66	0.31
40	2.15	18.99	15.97	0.28
50	2.10	18.73	15.78	0.26
60	2.15	17.71	15.04	0.24
80	2.30	13.37	11.80	0.32
100	2.57	9.94	9.04	0.50

CALCIUM CARBONATE CaCO.

SOLUBILITY IN WATER, AS DETERMINED BY THE ELECTROLYTIC CONDUCTIVITY METHOD.

(Holleman, Kohlrausch, and Rose - Z. physik. Chem. 12, 120, 241, '03.)

1 liter solution contains 0.01 gram CaCO₃ at 8.7°, and 0.012 gram at 20°.

CALCIUM BICARBONATE Ca(HCO3)2.

SOLUBILITY IN WATER AT 15°.

Calcium carbonate in presence of water, free from and containing carbon dioxide, dissolves as the hydrogen carbonate.

(Among the investigators who have reported results upon the solubility of calcium bicarbonate may be mentioned, Cossa — Z. anal. Chem. 8, 145, '69; Schloesing — Compt. rend. 74, 1522, '72; Caro — Arch. Pharm. [3] 4, 145, '74; Reid — Proc. Roy. Soc. (Edin.) 15, 151, '87-'88; Irving and Young — J. Chem. Soc. 56, 344, '88; Anderson — Proc. Roy. Soc. (Edin.) 16, 319, '88-'89; Engel — Ann. chim. phys. [6] 13, 348, '88; Lubavin — J. russ. phys. chem. Ges. 24, 389, '92; Pollacci — L'Orosi 19, 217, '96, etc. The results, however, which appear of most interest and reliability are the following by Treadwell and Reuter — Z. anorg. Chem. 67, 185, '96.)

cc. CO ₂ per 100 cc. Gaseous Phase	Partial Pres- sure of CO ₂	Gms. per	Gms. per 100 cc. Saturated Solution.					
(o° and 760 mm.).	in mm. Hg.	Free CO2.	Ca(HCO ₃) ₂ .	Ca.				
8.94	67.9	0.1574	0.1872	0.0462				
6.04	45.9	0.0863	0.1755	0.0433				
5 · 45	41.4	0.0528	0.1597	0.0394				
2.18	16.6	0.0485	0.1540	0.0380				
1.89	14.4	0.0347	0.1492	0.0368				
1.72	13.1	0.0243	0.1331	0.0329				
0.79	6.0	0.0145	0.1249	0.0308				
0.41	3.1	0.0047	0.0821	0.0203				
0.25	1.9	0.0029	0.0595	0.0147				
0.08	0.6		0.0402	0.0099				
			0.0385	0.0095				

Therefore I liter sat. solution at 15° and o partial pressure of CO₂ contains 0.385 gram Ca(HCO₃)₂.

Solubility of Calcium Bicarbonate in Aqueous Sodium Chloride Solution at 15°.

(Treadwell and Reuter.)

The NaCl solution contained about 5 grams per liter, and was therefore approximately $\frac{1}{10}$ normal.

cc. CO ₂ per 100 cc. Gaseous Phase	Partial Pres- sure of CO ₂	Grams per	Grams per 100 cc. Saturated Solution.				
(o° and 760 mm.).	in mm. Hg.	Free CO2.	Ca(HCO ₃) ₂ .	Ca.			
16.95	128.8	0.1325	0.2184	0.0539			
11.47	87.2	0.1101	0.2143	0.0529			
6.07	46.1	0.0235	0.1492	0.0368			
3.16	24.0	0.0135	0.1183	0.0292			
0.50	3.8	0.0027	0.0739	0.0182			
.41	3.4	0.0003	0.0490	0.0121			
			0.0349	0.0086			
		. ^ .	0.0332	o.0082			

SOLUBILITY OF CALCIUM BICARBONATE IN AQUEOUS SOLUTIONS OF AMMONIUM NITRATE, SODIUM CHLORIDE AND OF SODIUM SULPHATE.

(Cameron and Seidell — J. Physic. Chem. 6, 50, '02; Berju and Kosminiko — Landw. Vers. Stat. 60, 422, '04.)

In NH ₄ NO	O ₃ Solutions at 18°.	In NaCl S	Solutions at 25°.	In	Na ₂ SO ₄ Solutions	at 24°.
Grams per	Liter Solution.	Grams per	Liter Solution.	Gr	ams per Liter Solu	ition.
NH4NO3.	Ca(HCO ₃) ₂ .	NaCl.	Ca(HCO ₃) ₂ .	Na ₂ SO ₄ .	Ca(HCO ₃) ₂ total.	Ca(HCO ₃) ₂ .
0	0.210	0	0.1046	0	0.092	0.092
5	0.340	5	0.150	5	0.175	0.175
10	0.415	10	0.180	IO	0.232	0.220
20	0.547	20	0.210	20	0.277	0.262
40	0.744	40	0.225	40	0.332	0.307
80	0.940	80	0.220	80	0.400	0.347
		100	0.215	100	0.432	0.355
		150	0.192	150	0.510	0.382
		200	0.170	200	0.600	0.400
		250	0.137	250	0.725	0.435

CALCIUM CHLORATE Ca(ClO₃)₂.2H₂O.

100 grams saturated aqueous solution contain 64.0 grams Ca(ClO₃), at 18°. Density of solution is 1.729.

(Mylius and Funk — Ber. 30, 1718, '97.)

CALCIUM CHLORIDE CaCl2.

SOLUBILITY IN WATER.

(Roozeboom — Z. physik. Chem. 4, 42, '89; see also Mulder; Ditte — Compt. rend. 92, 242, '81; Eng. — Ann. chim. physic. [6]13, 381, '88; Etard — *Ibid.* [7] 2, 532, '94.)

t°.	Gms. Ca 100 Water. S	Gms.	Solid Phase.	t°.	100	Gms. Solid Phase.
-55	42.5	29.8	Ice + CaCl ₂ .6H ₂ O	60	136.8	57.8 CaCl _{2.2} H ₂ O
-25	50.0	33.3	CaCl ₂ .6H ₂ O	70	141.7	58.6 CaCl _{2.2} H ₂ O
o	59.5	37 · 3	CaCl ₂ .6H ₂ O	80	147.0	59 · 5 CaCl ₂ . ₂ H ₂ O
10	65.0	39 · 4	CaCl ₂ .6H ₂ O	90	152.7	60.6 CaCl _{2.2} H ₂ O
20	74.5		CaCl ₂ .6H ₂ O	100	159.0	61.4 CaCl _{2.2} H ₂ O
30.2	102.7		CaCl ₂ .6H ₂ O	120	173.0	63 · 4 CaCl ₂ . ₂ H ₂ O
20	91.0		CaCl ₂ . ₄ H ₂ Oa	140	191.0	65.6 CaCl _{2.2} H ₂ O
29.8	100.6	50.1	$.4H_2O \alpha + .6H_2O$	160	222.5	69.0 CaCl _{2.2} H ₂ O
40	115.3	53 · 4	.4H ₂ O a	170	255.0	71.8 CaCl _{2.2} H ₂ O
20	104.5		CaCl _{2.4} H ₂ O β	175.5	297.0	74.8 $\left\{ \begin{array}{l} CaCl_{2.2}H_{2}O \\ + CaCl_{2.112}O \end{array} \right.$
29.2	112.8		$_{4}\text{H}_{2}\text{O}\ \beta + .6\text{H}_{2}\text{O}$	180	300.0	75.0 CaCl2.H2O
35	122.5	55.0	μH ₂ O β	200	311.0	75.7 CaCl ₂ .H ₂ O
38.4	127.5		$_4H_2O \beta + CaCl_22H_2O$	235	332.0	76.8 CaCl ₂ .H ₂ O
45 · 3	130.2	56.6	$_{4}\text{H}_{2}\text{O} \alpha + \text{CaCl}_{2.2}\text{H}_{2}\text{O}$	260	347.0	77.6 CaCl ₂ .H ₂ O

Density of saturated solution at $0^{\circ} = 1.367$, at $15^{\circ} = 1.399$, at $18^{\circ} = 1.417$.

Solubility of Calcium Chloride in Aqueous Solutions of Hydrochloric Acid at o°.

(Engel - Compt. rend. 104, 434, '87.)

G. Mols. in Mgs. per 10 cc. Solution.		Density of Solutions.	Grams per 100 cc. Solution.			
2CaCl2.	HCl.	5024110251	CaCl ₂ .	HČl.		
92.7	0.0	1.367	51.45	0.0		
83.7	9.1	1.344	46.45	3.32		
77.1	16.0	1.326	42.80	5.83		
66.25	29.25	1.310	36.77	10.66		
53.75	43 · 45	1.283.	29.84	15.84		
36.25	63.5	1.250	20.12	23.15		
20.3	95.0	1.238	11.29	34.62		

Solubility of Mixtures of Calcium Chloride and Alkali Chlorides.

(Mulder; Rüdorff.)

100 grams H₂O dissolve 63.5 grams CaCl₂+4.9 grams KCl at 7° (M) 100 grams H₂O dissolve 57.6 grams CaCl₂+2.4 grams NaCl at 4° (M) 100 grams H₂O dissolve 59.5 grams CaCl₂+4.6 grams NaCl at 7°(M) 100 grams H₂O dissolve 72.6 grams CaCl₂+16.0 grams NaCl at 15°(R)

Solubility of Calcium Chloride in Aqueous Alcohol at Room Temperature.

(Bödtker - Z. physik. Chem. 22, 570, '97.)

Solution Used.	Vol. per cent Alcohol.	Gms. CaCl ₂ per 5 cc. Sol.	Solution Used.	Vol. per cent Alcohol.	Gms. CaCl ₂ per 5 cc. Sol.
15 Gms. CaCl ₂ .6H ₂ O			15 Gms. CaCl ₂ .6H ₂ O+20 cc.		
+ 20 cc. alcohol	92.3	1.430	alcohol + 2 Gms. CaCl ₂	99.3	1.561
15 Gms. CaCl ₂ .6H ₂ O		-	" + 3 " "	"	1.590
+ 20 cc. alcohol	97.3	1.409	" +4 " "	66	1.641
15 Gms. CaCl ₂ .6H ₂ O			" +5 " "	"	1.709
+ 20 cc. alcohol	99.3	1.429			
15 Gms. CaCl ₂ .6H ₂ O					
+ 1 Gm. CaCl ₂	99.3	1.529			

SOLUBILITY OF CALCIUM CHLORIDE IN A SATURATED SOLUTION OF SUGAR AT 31.25°.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

100 grams saturated solution contain 42.84 grams sugar + 25.25 grams CaCl₂, or 100 grams water dissolve 135.1 grams sugar + 79.9 grams CaCl₂.

CALCIUM CITRATE Ca₃(C₆H₅O₇)_{2·4}H₂O.

SOLUBILITY IN WATER AND IN ALCOHOL AT 18° AND AT 25°.

(Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

Solvent.	Grams Ca ₃ (C per 100 Gms	6H ₅ O ₇) _{2.4} H ₂ O ₅ . Solvent at:
	18°.	25°.
Water	0.08496	0.0959
Alcohol (Sp. Gr. $0.8092 = 95\%$)	0.0065	0.0089

CALCIUM CHROMATE CaCrO.

SOLUBILITY OF THE SEVERAL HYDRATES IN WATER. (Mylius and Wrochem — Wiss. Abh. p. t. Reichanstalt 3, 462, '00.)

£°.	Gms. CaCrO.	per 100 Gms.	Mols. CaCrO	. Gms	. CaCrO4 I	er 100 Gms.	Mols.CaCrO
•	Water.	Solution.	H_2O .		Water.	Solution.	per 100 Mols. H ₂ O.
S	Solid Phase, a	CaCrO _{4.2} H ₂ O.	(Monoclinic.)	Sc	olid Phase,	CaCrO _{4.2} H	₂ O.
0	17.3	14.75	2.0	0	7.3	6.8	0.84
18	16.68	14.3	1.93	18	4.8	4 - 4	0.51
20	16.6	14.22	1.93	31	3.84	3.7	0.44
30	16.5	13.89	1.85	38.5	2.67	2.6	0.31
45	14.3	12.53	1.65	50	1.63	1.6	0.19
So	olid Phase, & C	CaCrO _{4.2} H ₂ O (1	Rhombic.)	60	1.13	I.I	0.13
0	10.9	9.8	1.25	100	0.81	0.8	0.09
18	11.5	10.3	1.33		Solid Pha	ase, CaCrO ₄ .	
40	11.6	10.4	1.34	0	4.5	4.3	0.52
	Solid Phase	e, CaCrO ₄ .H ₂ O		18	2.32	2.27	0.27
0	13.0	11.5	1.50	31	2.92	r.89	0.22
18	10.6	9.6	I.22	50	I.I2	1.11	0.13
25	10.0	9:1	1.15	60	0.83	0.82	O.II
40	8.5	7.8	0.98	70	0.80	0.79	0.09
60	6.1	5.7	0.70	100	0.42	0.42	0.05
75	4.8	4.6	0.56				
100	3.2	3.1	0.37				

Densities of the saturated solutions of the above several hydrates at 18° are: α CaCrO₄.2H₂O, 1.149; β CaCrO₄.2H₂O, 1.105; CaCrO₄.H₂O, 1.096; CaCrO₄.½H₂O, 1.044; CaCrO₄, 1.023.

100 cc. 29% alcohol dissolve 1.206 grams CaCrO.

100 cc. 53% alcohol dissolve 0.88 gram CaCrO₄.

(Fresenius - Z. anal. Chem. 30, 672, '91.)

CALCIUM POTASSIUM FERROCYANIDE CaK2Fe(CN)6.3H2O.

100 parts H₂O dissolve 0.125 part salt at 15°, and 0.69 part at b. pt.
(Kunheim and Zimmerman — Dingt. polyt. J. 252, 478, '84.)

CALCIUM FLUORIDE CaF2.

I liter of saturated aqueous solution contains 0.016 gram CaF₂ at 18°. Determined by the electrolytic method.

(Kohlrausch - Z. physik. Chem. 44, 197, '03.)

CALCIUM FORMATE Ca(HCOO)₂.

SOLUBILITY IN WATER.

(Lumsden - J. Chem. Soc. 81, 355, '02; see also Krasnicki - Monatsh. Chem. 8, 597, '87.)

t°.	Gms. Ca(per 100		t°.	Gms. Ca(HCOO) ₂ per 100 Gms.		
	Water.	Solution.	• •	Water.	Solution.	
0	16.15	13.90	60	17.50	14.89	
20	16.60	14.22	80	17.95	15.22	
40	17.05	14.56	100	18.40	15.53	

CALCIUM HEPTOATE (Oenanthate) Ca[CH2(CH2)5COO]2.H2O.

SOLUBILITY IN WATER.

(Lumsden — J. Chem. Soc. 81, 355, '02; see also Landau — Monatsh. Chem. 14, 712, '93; Altschul — *Ibid.* 17, 575, '96.)

t°.	o°.	20°.	40°.	60°.	80°.	1000.
G. $Ca(C_{7}H_{13}O_{2})_{2}$ per						
100 gms. solution	0.94	0.85	0.81	0.81	0.97	I.24

CALCIUM HYDROXIDE Ca(OH)2.

SOLUBILITY IN WATER.

(Average curve from the results of Lamy — Ann. chim. phys. [5] 14, 145, '78; Mahen — Pharm. J. Trans [3] 14, 505, '83-84; Herzfeld — Z. Ver Zuckerind. 34, 820, '97, and Guthrie — J. Soc. Chem. Ind. 20, 224, '01.)

t°.	Grams per 10 Ca(OH) ₂ .	CaO.	t°.	Grams, per 10 Ca(OH) ₂ .	CaO.
0	0.185	0.140	50	0.128	0.097
10	0.176	0.133	60	0.116	0.088
20	0.165	0.125	70	6.106	0.080
25	0.159	0.120	80	0.094	0.071
30	0.153	0.116	90	0.085	0.064
40	0.141	0.107	100	0.077	0.058

Solubility of Calcium Hydroxide in Aqueous Solutions of Ammonium Chloride at 25°.

(Noyes and Chapin - Z. physik. Chem. 28, 520, '99.)

Millimols per Liter.		Grams per Lit	Grams per Liter of Saturated Solution.				
NH ₄ Cl.	Ca(OH) ₂ .	NH ₄ Cl.	$Ca(OH)_2 =$	CaO.			
0.00	20.22	0.00	1.50	1.13			
21.76	29.08	1.165	2.16	1.63			
43.52	39.23	2.330	2.91	2.20			
83 .07	59.68	4 · 447	4.42	3 · 45			

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF CALCIUM CHLORIDE.

(Zahorsky - Z. anorg. Chem. 3, 41, '93; Lunge - J. Soc. Chem. Ind. 11, 882, '92.)

Concentration	Grams CaO Dissolved per 100 cc. Solvent at:						
of CaCl ₂ Solutions, Wt.%.	20°.	40°.	60°.	80°.	100°.		
0	0.1374	0.1162	0.1026	0.0845	0.0664		
5	0.1370	0.1160	0.1020	0.0936	0.0906		
10	0.1661	0.1419	0.1313	0.1328	0.1389		
15	0.1993	0.1781	0.1706	0.1736	0.1842		
20	0.1857*	0.2249	0.2204	0.2295	0.2325		
25	0.1661*	0.3020*	0.2989	0.3261	0.3710		
30	0.1630*	0.3680*	0.3664	0.4122	0.4922		

^{*} Indicates cases in which a precipitate of calcium oxychloride separated and thus removed some of the CaCl₂ from solution.

The results in 0% CaCl₂ solutions, *i.e.*, in pure water, are high when compared with the average results given above.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AND OF SODIUM CHLORIDE.

(Cabot - J. Soc. Chem. Ind. 16, 417, '97.)

In KCl Solutions.

In NaCl Solutions.

Gms. of the Chloride	Gms. CaO per Liter at:			Gms. CaO per Liter at:		
per Liter.	°.	15°.	99°•	õ°.	15°.	99°.
0	1.36	1.31	0.635	1.36	1.31	0.635
30	1.701	1.658	0.788	1.813	1.703	0.969
60	1.725	1.674	0.876		1.824	I.004
120	1.718	1.606	0.894	1.86	1.722	1.015
240	1.248	1.199	0.617	I.37	1.274	0.771
320	• • •			1.054	0.929	0.583

SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE ALONE AND CONTAINING SODIUM HYDROXIDE.

(Margiet - Bull. soc. chim. [3] 33, 631, '05.)

G. NaCl	Gms. CaO per Liter of Solution.			G. NaCl.	Gms. CaO per Liter of Solution.		
per Liter.	Without NaOH.	o.89.NaOH per Liter.	4.09.NaOH per Liter.	per Liter.	Without NaOH.	o.89.NaOH per Liter.	4.09.NaOH per Liter.
0	1.3	0.8	0.22	150	1.65	1.25	0.44
5	I · 4	0.9		175	1.6	I.2	
IO	1.6	1.0		182	1.6	I . 2	
25	1.7	I.I		225	1.4	I .O	
50	1.8	1.25		250	1.3	0.9	
75	1.9	I · 4	0.55	300	1.1	0.7	0.22
100	1.85	I · 4			• • •	• • •	

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE.

(d'Anselme — Bull. soc. chim. [3] 29, 938, '03.)

Concentration of NaOH:		Grams CaO per Liter Sat. Solution at:					
Normality.	Gms. per Liter	20°.	50°.	70°.	100°.		
0	0	1.170	0.880	0.75	0.54		
N/100	0.4	0.94	0.65	0.53	0.35		
N/25	1.6	0.57	0.35	0.225	0.14		
N/15	2.66	0.39	0.20	0.11	0.05		
N/8	5.00	0.18	0.06	0.04	0.01		
N/5	8.00	0.11	0.02	0.01	trace		
N/2	20.00	0.02	trace	0.00	0.00		

For results upon mixtures of calcium hydroxide and alkali carbonates and hydroxides, see Bodländer — Z. angew. Chem. 18, 1138, '05.

SOLUBILITY OF CALCIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF GLYCERINE AT 25°.

(Herz and Knoch — Z. anorg. Chem. 46, 193, '05; for older determinations, see Berthelot — Ann. chim. phys. [3] 46, 176; and Carles — Arch. Pharm. [3] 4, 558, '74.)

Density of Solutions	Wt. per cent Glycerine in Solution.	Millimols Ca(OH)2 per co cc. Solution.	Gms. per 1 Ca(OH) ₂	= CaO.
1.0003	0.0	4.3	0.1593	0.1206
I.0244	7.15	8.13	0.3013	0.2281
1.0537	20.44	14.9	0.5522	0.4180
1.0842	31.55	22.5	0.8339	0.6313
1.1137	40.95	40 · I	1.486	1.125
1.1356	48.7	44.0	1:631	I.234
1.2072	69.2	95.8	3.550	2.687

SOLUBILITY OF LIME IN AQUEOUS SOLUTIONS OF SUGAR. (Weisberg - Bull. soc. chim. [3] 21, 775, '99.)

The original results were plotted on cross-section paper and the following table constructed from the curves.

1st series, $t^{\circ} = 16'-17^{\circ}$. 2d, series $t^{\circ} = 15^{\circ}$.

Gms. per 100 Gms. Solution. Sugar. CaO.		G. CaO per 100 Gms. Sugar in Sol.	Gms. per Solu Sugar.	tion.	G. CaO per 100 Gms. Sugar in Sol.
I	0.30	35.0	I	0.50	62.5
.2	0.56	28.7	2	0.75	36.0
3	0.85	28.0	3	I.02	32.5
4	I.I2	27.7	4	I.22	30.2
5 6	I.40	27.5	5	1.45	28.5
6	1.65	27.5	6	1.67	27.7
8	2.22	27.5	8	2.22	27.5
IO	2.77	27.5	10	2.77	27.5
12	3.27	27.5	12	3.27	27.5
14	3.85	27.5	14	3.85	27.5

In the second series a very much larger excess of lime was used than in the first series. The author gives results in a subsequent paper, — Bull. soc. chim. [3] 23, 740, '00, — which show that the solubility is also affected by the condition of the calcium compound used, *i.e.*, whether the oxide, hydrate, or milk of lime is added to the sugar solutions.

CALCIUM IODATE Ca(IO₃)₂.6H₂O.

SOLUBILITY IN WATER. (Mylius and Funk — Ber. 30, 1724, '97; W. Abh. p. t. Reichanstalt 3, 448, '00.)

t°.	Gms. Ca(IO ₃) ₂ per 100 Gms. Sol.	Mols. $Ca(IO_3)_2$ per 100 Mols. H_2O .	Solid Phase.	t°.	Gms. Ca(IO ₃) ₂ per 100 Gms. Sol.	Mols. Ca(IO ₃) ₂ per 100 Mols. H ₂ O	Solid Phase.
0	0.10	0.0044	$Ca(IO_3)$.6 H_2O	21	0.37	0.016	$Ca(IO_3)_2.H_2O$
10	0.17	0.0075	44	35	0.48	0.021	"
18	0.25	0.011		40	0.52	0.023	"
30	0.42	0.019	"	45	0.54	0.024	"
40	0.61	0.027	- "	50	0.59	0.026	"
50	0.89	0.040	"	60	0.65	0.029	66
54	1.04	0.046	"	80	0.79	0.034	"
60	1.36	0.063	"	100	0.94	0.042	66

Density of solution saturated at $18^{\circ} = 1.00$.

CALCIUM IODIDE Cal2.

SOLUBILITY IN WATER.

(Average curve from the results of Kremers - Pogg. Ann. 103, 65, '58; Etard - Ann. chim. phys. [7]

t°.	Gms. CaI ₂ per 100 Gms. Solution.	t°.	Gms. CaI ₂ per 100 Gms. Solution.	t°.	Gms. CaI ₂ per 100 Gms. Solution.
0	64.6	30	69	80	78
10	66.0	40	70.8	100	81
20	67.6	60	74		

Density of solution saturated at $20^{\circ} = 2.125$.

CALCIUM (Neutral) MALATE Ca(C₄H₄O₅).₃H₂O. CALCIUM (Acid) MALATE $Ca(C_4H_5O_5)_2.6H_2O.$ CALCIUM MALONATE $Ca(C_3H_2O_4).4H_2O.$

SOLUBILITY OF EACH IN WATER.

(Iwig and Hecht — Liebig's Ann. 233, 167, '86; Cantoni and Basadonna — Bull. soc. chim. [3] 35, 731, '06; the malonate, Miczynski — Monatsh. Chem. 7, 261, '86.)

C	a. Neut	ral Mal	late.	Ca. Acid Malate. Ca. Malonate	e.
t°.	°. Gms. Ca(C ₄ H ₄ O ₅) per 100. Gms. Gms. cc. Sol. H ₂ O ₄ Sol. (C and B).			Gms. Ca(C ₄ H ₅ O ₅) ₂ per 100 Gms. Water. Solution. Gms. Ca(C ₃ H ₂ O) per 100 Gms. H ₂ O.	4)
0				0.290	
10	0.85	0.84		1.8 1.77 • 0.330	
20	0.82	0.81	0.907	1.5 1.48 0.365	
30	0.78	0.77	0.835	2.0 1.96 0.396	
40	0.74	0.73	0.816	5.2 4.94 0.422	
50	0.66	0.65	0.809	15.0 13.09 0.443	
57	0.57	0.56		32.24 24.29	
60	0.58	0.58	0.804	26.0 20.64 0.460	
70	0.63	0.63	0.795	11.0 9.91 0.472	
80	0.71	0.70	0.754	6.8 6.37 0.479	
90			0.740	•••	

SOLUBILITY OF CALCIUM MALATE IN WATER AND IN ALCOHOL. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

100 grams H₂O dissolve 0.9214 gram CaC₄H₄O₅.H₂O at 18°, and 0.8552 gram at 25°.

100 grams 95% alcohol dissolve 0.0049 gram CaC, H,O,.H2O at 18°,

and 0.00586 gram at 25°.

CALCIUM NITRATE Ca(NO3)2.2H2O.

SOLUBILITY IN WATER AT 18°. (Mylius and Funk - Ber. 30, 1718, '97.)

100 grams saturated solution contain 54.8 grams Ca(NO₃)₂. Density of solution, 1.548.

CALCIUM OXALATE Ca(COO)2.H2O.

SOLUBILITY IN WATER, BY ELECTROLYTIC CONDUCTIVITY METHOD. (Holleman, Kohlrausch, and Rose — Z. physik. Chem. 12, 129, 241, '93; Richards, McCaffrey, and Bisbee — Z. anorg. Chem. 28, 85, '01.)

t°.	Gms. CaC ₂ O ₄ per Liter of Solution.	t°.	Gms. CaC ₂ O ₄ per Liter of Solution.
13	o.oo67 (H)	25	o.0068 (R, McC and B)
18	0.0056 (K and R)	50	0.0095 "
24	o.oo8o (H)	95	0.0140 "

SOLUBILITY OF CALCIUM OXALATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 260-270.

(Herz and Muhs - Ber. 36, 3715, '03.)

Normality of Acetic Acid.	G. CH ₃ COOH per 100 cc. Sol.	Residue from 50.052 cc. Solution.
0	0.00	0.0017
0.58	3.48	0.0048
2.89	17.34	0.0058
5.79	34.74	0.0064

The residues were dried at 70° C.

CALCIUM OXIDE. See Calcium Hydroxide, p. 91.

CALCIUM PHOSPHATE (Tribasic) Ca₃(PO₄)₂.

SOLUBILITY IN WATER.

The determinations of the solubility of this salt in water, as stated in the literature, are found to vary within rather wide limits, due, no doubt, to the fact that so-called tribasic calcium phosphate is apparently a solid solution of the dibasic salt and calcium oxide, and therefore analyses of individual samples may show an excess of either lime or phosphoric acid. When placed in contact with water, more PO, ions enter solution than Ca ions, the resulting solution being acid in reaction and the solid phase richer in lime than it was, previous to being added to the water. For material having a composition approximating closely that represented by the formula Ca₃(PO₄)₂ the amount which is dissolved by CO₂ free water at the ordinary temperature, as calculated from the calcium determination, is o.or to o.ro gram per liter, depending upon the conditions of the experiment. Water saturated with CO₂ dissolves 0.15 to 0.30 gram per liter.

A list of references to papers on this subject is given by Cameron

and Hurst — J. Am. Chem. Soc. 26, 903, '04; see also Cameron and Bell, *Ibid.* 27, 1512, '05.

CALCIUM PHOSPHATE (Dibasic) CaHPO ... 2H2O.

SOLUBILITY IN WATER.

(Cameron and Seidell — J. Am. Chem. Soc. 26, 1460, '04; see also Rindell — Compt. rend. 134, 112, '02;

Magnanini — Gazz. chim. ital. 31, II, 544, '01.)

1 liter of CO₂ free water dissolves 0.136 gram CaHPO₄ at 25°.

1 liter of water sat. with CO2 dissolves 0.561 gram CaHPO4 at 25°.

SOLUBILITY OF DI CALCIUM PHOSPHATE AND OF MONO CALCIUM PHOS-PHATE IN AQUEOUS SOLUTIONS OF PHOSPHORIC ACID AT 25°. (Cameron and Seidell — J. Am. Chem. Soc. 27, 1508, '05; Causse — Compt. rend. 114, 414, '92.)

Grams per	Titor of			P2O5 per Liter	
Soluti	on.		per Liter	in Excess of	Solid Phase,
CaO.	P2O5.	Calc. from	CaO Found.	that combined with Ca.	Dona I mase:
1.71	4.69	4.15	CaHPO ₄	2·53	CaHPO ₄ .2H ₂ O
11.57	36.14	28.05	"	21.5	46
23.31	75.95	56.53	"	46.45	"
39.81	139.6	97.01	"	89.0	"
49.76	101.0	120.7	66	128.0	"
59 - 40	234.6	144.1	"	159.4	"
70.31	279.7	170.6	"	190.7	"
		174.2	CaHPO, or	226.0	CaHPO4.2H2O+
77.00	317.0	321.3	$CaH_4(PO_4)_2$	122.2	CaH ₄ (PO) ₂ .H ₂ O
72.30	351.9	301.6	$CaH_4(PO_4)_2$	169.0	CaH ₄ (PO ₄),.H ₂ O
69.33	361.1	289.3	* 66	186.1	* "
59.98	419.7	250.2	"	267.9	"
53 - 59	451.7	223.7	"	316.1	"
44.52	505.8	185.8	66	393.1	"
39.89	538.3	166.4	66	437 · 4	"

Density of the solution in contact with both salts at $25^{\circ} = 1.29$.

Solubility of Di Calcium Phosphate in Aqueous N/200 Solution OF ACID POTASSIUM TARTRATE AT 25°. (Magnanini.)

I liter of the solution contains 0.08 gram Ca = 0.235 gram CaHPO.

CALCIUM PHOSPHATE (Monobasic) CaH₄(PO₄)₂,H₂O.

SOLUBILITY IN WATER.

This salt is stable in contact with the aqueous solution only when there is present free phosphoric acid to the extent indicated by the above table.

CALCIUM PELARGONATE (Nonate) Ca[CH₃(CH₂),COO]₂.H₂O. CALCIUM PROPIONATE Ca(CH₃.CH₂COO)₂.H₂O.

SOLUBILITY OF EACH IN WATER. (Lumsden — J. Chem. Soc. 81, 355, '02; Krasnicki — Monatsh. Chem. 8, 597, '87.) Calaina Danaianat

	Calcium Propionate.			
Grams CalCH ₂ (CH ₂) ₇ COO ₂	Grams Ca(CH ₃ .CH ₂	COO)2 per 100 Grams.		
per 100 Grams H2O.	Water.	Solution.		
0.16	42.80	29.97		
0.14	39.85	28.48		
0.13	38 45	27.76		
0.12	38.25	27 .67		
0.15	39.85	28.48		
0.18	42.15	29.66		
0.26	48.44	32.63		
	0.14 0.13 0.12 0.15 0.18	Grams Ca[CH ₃ (CH ₂)-COO] ₂ per 100 Grams H ₂ O. 0.16 0.14 39.85 0.13 38.45 0.12 39.85 0.15 39.85 0.18 42.15		

67°.

5.1

CALCIUM SELENATE CaSeO.

SOLUBILITY IN WATER. (Etard - Ann. chim. phys. [7] 2, 532, '94.)

7.3

to. + 5°. 20°. 37°. - T°. 7.6 6.8 7.4

The accuracy of these results appears questionable.

CALCIUM SILICATE CaSiOa.

Gms. per 100 gms. sol.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 17°. (Weisberg - Bull. soc. chim. [3] 15, 1097, '96.)

The sample of calcium silicate was air dried.

Grams per 100 cc. Saturated Solution.

Solvent.	A	At 17°.		nd Filtering Hot.		
	CaO(det.)	CaSiO3(calc.)	CaO(det.)	CaSiO3(calc.)		
Water	0.0046	0.0095				
10% sugar sol.	0.0065	0.0135	0.0094	0.0195		
20% sugar sol.	0.0076	0.0157	0.0120	0.0249		

CALCIUM SUCCINATE $Ca(C_2H_2O_2)_2$.

CALCIUM (Iso) SUCCINATE CaCH3.CHC2O4.H2O.

SOLUBILITY OF EACH IN WATER. (Miczynski - Monatsh. Chem. 7, 261, '86.)

	Calcium Succinate.				Calcium Iso Succinate.			
t°.	$Ca(C_2H_2O_2)_2$ per 100 Gms. H_2O .	t°.	Gms. $Ca(C_2H_2O_2)_2$ per 100 Gms. H_2O_2 .	t°.	$Gms.$ $Ca(C_2H_2O_2)_2$ per 100 $Gms.$ H_2O	t°.	$Gms.$ $Ca(C_2H_2O_2)_2$ per 100 $Gms.$ $H_2O.$	
0	1.127	50	1.029	0	0.522	50	0.440	
IO	I.220	60	0.894	IO	0.524	60	0.396	
20	1.276	70	0.770	20	0.517	70	0.342	
40	1.177	80	0.657	40	0.475	80	0.279	

100 cc. H₂O dissolve 1.424 grams succinate (CaC₄H₄O₄.H₂O) at 18°, and 1.436 grams at 25°.

100 cc. 95% alcohol dissolve 0.00136 gram succinate (CaC4H4O4. H₂O) at 18°, and 0.00136 gram at 25°.

(Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

CALCIUM SULPHATE CaSO_{4.2}H₂O.

SOLUBILITY IN WATER.

(Hulett and Allen — J. Am. Chem. Soc. 24, 674, '02; for references to other determinations see Hulett and Allen, also Euler—Z. physik. Chem. 49, 313, '04. Determinations by the electrolytic conductivity method Holleman, Kohlrausch and Rose — Z. physik. Chem. 12, 129, 241, '93.)

t°.	Gms. CaSO ₄ per 100 cc. Solution.	Millimols. per Liter.	Density of Solutions.	t°.	Gms. CaSO ₄ per 100 cc. Solution.	Millimols per Liter.	Density of Solutions.
0	0.1759	12.926	1.00197	40	0.2097	15.413	0.99439
IO	0.1928	14.177	1.00173	55	0.2009	14.765	0.98796
18	0.2016	14.817	1.00059	65.	3 0.1932	14.200	0.98256
25	0.2080	15.295	0.99911	75	0.1847	13.575	0.97772
30	0.2090	15.361	0.99789	100	0.1619	11.900	
35	0.2096	15.405	0.99789	107	• • •	11.390	• •

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC, NITRIC, CHLOR ACETIC, AND FORMIC ACIDS. (Banthisch—J. pr. Chem. 29, 52, '84; Lunge—J. Soc. Chem. Ind. 4, 32, '85.)

In Hydrochloric. In Nitric. In Chlor Acetic. In Formic. Grams CaSO₄ per 100 cc. Sol. Gms. CaSO₄ per 100 cc. Sol. at 25°. Gms. CaSO₄ per Grams Acid Gms. CaSO₄ per 100 cc. Solution at 25°. per 100 cc. Solution. 100 cc. Sol at 102°. at 25°. at 25°. 0.208 0.160 0.208 0.208 0 0.208 1.38 Ι 0.72 0.56 2.38 0.82 2 I.02 . . . 3.20 3 1.25 I.02 4 I.42 3.64 I.20 0.22 0.24 6 1.65 4.65 1.48 . . . 8 I.74 . . . I.70 . . . 1.84 0.25 10 1.98 12

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF PHOS-PHORIC ACID AT 25°.

(Taber - page 61, Bull. 33, Bureau of Soils - U. S. Dept. Agr., 1906.)

	per Liter. CaSO ₄ .	Sp. Gr. of Solutions at 25.	Gms. po	CaSO ₄ ·	Sp. Gr. of Solutions at 25.
0.0	2.126	0.9991	145.1	7.920	1.106
5.0	3.143	1.002	205.0	8.383	1.145
10.5	3.734	1.007	311.5	7.965	I.22I
21.4	4.456	1.016	395.8	6.848	1.280
46.3	5.760	1.035	494.6	5.572	I.344
105.3	7.318	1.075			

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF SULPHURIC ACID.

(Cameron and Breazeale - J. Physic. Chem. 7, 574, '03.)

Grams H ₂ SO ₄ per Liter of Solution.	Resu Gms. CaSO ₄ per Liter.	Wt. of 1 cc.	Results at 35°. Gms. CaSO ₄ per Liter.	Results at 43°. Gms. CaSO ₄ per Liter.
0.00	2.126	0.9991 grams		2.145
0.48	2.128	1.0025 "	2.209	2.236
4.87	2.144	1.0026 "	2.451	2.456
8.11	2.203	1.0051 "		2.760
16.22	2.382	1.0098 "		3.116
48.67	2.727	1.0302 "	3 · 397	3.843
75.00	2.841	1.0435 "		4.146
97 - 35	2.779	1.0756 "	3.606	
146.01	2.571		3.150	4.139
194.70	2.313	1.1134 "		3.551
243 - 35	1.901	1.1418 "		2.959
292.02	1.541	1.1681 "		2.481

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF AMMONIUM SALTS.

(In NH₄Cl and NH₄NO₃, Cameron and Brown — J. Physic. Chem. 9, 210, '05; In (NH₄)₂SO₄ at 25°, Sullivan — J. Am. Chem. Soc. 27, 529, '05; In (NH₄)₂SO₄ at 50°, Bell and Tabor — J. Physic. Chem. 10, 119, '06.)

	In NH ₄ Cl	In NH ₄ NO ₃		In NH ₄ Cl	In NH ₄ NO ₃
	at 25°.	at 25°.		at 25°.	at 25°.
Gms. Ammo- nium Salt per Liter.	G. CaSO ₄ Dissolved per Liter.	G. CaSO ₄ Dissolved per Liter.	Gms. Ammo- nium Salt per Liter.	G. CaSO ₄ Dissolved per Liter.	G. CaSO ₄ Dissolved per Liter.
0	2.08	2.08	300	10.10	10.80
20	5.00	3.70	375	7.40	
40	7.00	5.10	400		11.40
60	8.00	6.05	600		12.15
80	8.50	7.00	800		12.10
100	9.10	7.65	1000		11.81
150	10.30	8.88	1400		10.02
200	10.85	9.85	sat.		7 · 55

In $(NH_4)_2SO_4$ at 25°.

In $(NH_4)_2SO_4$ at 50°.

,	27 0		•	20 6 1	-
Grams per 1	Liter Sol.	Wt. of 100 cc. Sat. Sol.	Grams per	Liter Sol.	Sp. Gr. of Solutions.
$(NH_4)_2SO_4$.	CaSO ₄ .	Sat. Sol.	$(NH_4)_2SO_4$.	CaSO ₄ .	of Solutions.
0.00	0.208	99.91	0.00	2.168	
0.129	0.204	99.91	15.65	1.609	1.0026
0.258	0.199	99.92	30.67	1.750	1.0113
0.821	0.181	99.95	91.6	2.542	1.0440
1.643	0.166	99.99	160.4	3 · 402	1.0819
3.287	0.154	100.10	221.6	4.068	1.1108
6.575	0.144	100.34	340.6	5.084	1.1653
13.15	0.146	100.82	416.5	5 · 354	1.1964
26.30	0.162	101.76	428.4	4.632	1.2043
84.9	0.233	105.34	530.8	2.152	1.2437
169.8	0.333	110.32	566.0	80.1	1.2508
339.6	0.450	119.15	566.7	0.00	1.2510

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF CALCIUM SALTS AT 25°.

(Cameron and Seidell — J. Physic. Chem. 5, 643, '01; Seidell and Smith — *Ibid.* 8, 493, '04; Cameron and Bell — J. Am. Chem. Soc. 28, 1220, '06.)

In Calcium Chloride.		In Calcium			In Calcium Hydroxide and		
Chlor	nde.		Nitrate	€.		vice ve	rsa.
Grams per		Gms. per I		Wt. of		Liter Sol.	Solid Phase.
CaCl ₂ .	CaSO ₄ .	$Ca(NO_3)_2$.	CaSO ₄ .	1 (0. 501.	CaO.	CaSO ₄ .	
0.00	2.06	0.0	2.08	0.998	0.0	2.126	CaSO ₄ .2H ₂ O
7 · 49	I.24	25	I.24	1.014	0.062	2.030	"
11.96	1.18	50	I.20	1.032	0.176	1.918	66
25 - 77	I.IO	100	1.13	1.067	0.349	1.853	66
32.05	1.08	200	0.93	1.137	0.61	1.722	66
51.53	I.02	300	0.76	I.204	0.939	1.634	66
97.02	0.84	400	0.57	1.265	I.222	1.588	$CaSO_4.2H_2O+$ $Ca(OH)_2$
192.71	0.47	500	0.40	1.328	I.242	1.214	Ca(OH) ₂
280.30	0.20	544	0.35	1.352	1.150	0.666	"
367.85	0.03				1.166	0.00	"

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF MAGNESIUM CHLORIDE AND OF MAGNESIUM NITRATE AT 25°. (Cameron, Seidell, and Smith.)

In Magnesium Chloride.

In Magnesium Nitrate.

Grams per Liter of Sat. Solution.				Gms. per Liter Sol.		
MgCl ₂ .	CaSO ₄ .	H_2O .	$Mg(NO_3)_2$.	CaSO ₄ .	Wt. of I cc. Solution.	
0.0	2.08	997 • 9	0.0	2.08	0.9981	
8.50	4.26	996.5	25	5.77	I .0205	
19.18	5.69	994.5	50	7.88	1 .0398	
46.64	7 · 59	989 . I	100	9.92	1.0786	
121.38	8.62	972.2	200	13.34	1.1498	
206.98	6.57	949.9	300	14.00	1.2190	
337.0	2.77	908.7	400	14.68	1.2821	
441.1	1.39	878.6	514	15.04	1.3553	

Solubility of Calcium Sulphate in Aqueous Solutions of Magnesium Sulphate at 25°.

(Cameron and Bell - J. Physic. Chem. 10, 210, '06.)

Grams per 1 MgSO ₄ .	CaSO ₄ .	Sp. Gr. of Solutions at 25°.	Grams per L MgSO ₄ .	CaSO ₄ .	Sp. Gr. of Solutions at 25°.
0.0	2.046	1.0032	149.67	1.597	1.1377
3.20	1.620	1.0055	165.7	1.549	1.1479
6.39	1.507	1.0090	171.2	I.474	1.1537
10.64	1.471	8110.1	198.8	1.422	1.1813
21.36	1.478	1.0226	232.1	1.254	1.2095
42.68	1.558	1.0419	265.6	1.070	1.2382
64.14	1.608	1.0626	298.0	0.860	1.2624
85.67	1.617	1.0833	330.6	0.647	1.2877
128.28	1.627	1.1190	355.0	0.501	1.3023

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, BROMIDE, AND IODIDE AT 21°.

(Ditte — Ann. chim. phys. [7] 14, 294, '98.)

In KCl Solutions. In KBr Solutions. In KI Solutions.

Grams of the Potassium Salt per Liter.	Gms. CaSO ₄ per Liter.	Gms. CaSO ₄ per Liter.	Gms. CaSO ₄ per Liter.
0	2.05	2.05	2.05
10	3.6	3.1	2.8
20	4.5	3.6	3.2
40	5.8	4.5	3.9
60	6.6	5.2	4.5
80	7.2	5.9	4.85
100	7 · 5	6.3	5.1
125	double salt	- 6.7	5 · 45
150		7.0	5.8
200		7 · 3	5.95
250		double salt	6.00
300			double salt

1.58*

32.47

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE AND OF POTASSIUM SULPHATE AT 25°.

(Seidell and Smith - J. Physic. Chem. 8, 493, '04; Cameron and Breazeale - Ibid. 8, 335, '04.)

In Potassium Nitrate.			In Po	tassium	Sulphate.
Gms. r Soli	caSO ₄ .	Wt. of 1 cc. Solution.	Gms. p Solu K ₂ SO ₄ .	er Liter tion. CaSO ₄ .	Wt. of 1 cc. Solution.
0.0	2.08	0.9981	0.0	2.08	0.9981
12.5	3.28	1.0081	4.88	1.60	1.0036
25.0	4.08	1.0154	5.09	1.56	1.0038
50.0	5.26	1.0321	- 9.85	1.45	1.0075
100.0	6.86	1.0625	19.57	1.49	1.0151
150	7.91	1.0924	28.35	1.55	1.0229
200	8.69	I.I224	30.66	1.57	1.0236

^{*} Solid phase syngenite. Results for the solubility of syngenite in solutions of potassium sulphate are also given in the original paper.

260

syngenite 1.1539

Solubility of Calcium Sulphate in Aqueous Solutions of Sodium Chloride at 26°.

(Cameron — J. Physic. Chem. 5, 556, '01; see this paper for references to other work, also Orloff — J. russphys. chem. Ges. 37, 949, '02; Cloez — Bull. soc. chim. [3] 29, 167, '03; d'Anselme — Ibid. [3] 29, 372, '03.)

Grams per 10	o cc. Solution.	Wt. of 1 cc. Solution.	Grams per 100	Grams per 100 cc. Solution.		
NaCl.	CaSO ₄ .	Solution.	NaCl.	CaSO ₄ .	Wt. of r cc. Solution.	
0.00	0.2121	0.9998	17.650	0.712	1.1196	
9.115	0.666	1.0644	22.876	0.679	1.1488	
14.399	0.718	1.0981	26.417	0.650	1.1707	
14.834	0.716	1.1012	32.049	0.572	1.2034	

SOLUBILITY OF MIXTURES OF CALCIUM SULPHATE AND CALCIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23°.

(Cameron and Seidell – J. Physic. Chem. 5, 643, 'o1.)

Grams per Liter Solution.			ution.	Grams per Liter Solution.			
-	NaCl.	Ca(HCO ₃) ₂ .	CaSC ₄ .	NaCl.	Ca(HCO ₃) ₂ .	CaSO ₄ .	
	0.00	0.060	1.930	79.52	0.060	6.424	
	3.63	0.072	2.720	121.90	0.056	5.272	
	11.49	0.089	3 . 446	193.80	0.048	4.786	
	39.62	0.101	5.156	267.60	0.040	4.462	

Solubility of Mixtures of Calcium Sulphate and Silver Sulphate in Water.

(Euler - Z. physik. Chem. 49, 313, '04.)

	Per Liter	of Solution.	Total Salt	
t°.	Gms. Salt.	Gms. Equiv.	per 100 Gms. Solution.	Sp. Gr. of Solutions.
$^{17}^{\circ}$ $\begin{cases} CaSO_{4} \\ Ag_{2}SO_{4} \end{cases}$	2.31 7.235	o.034 o.0464	0.9473	1.0083
25° { CaSO ₄ Ag ₂ SO ₄	2.61 8.11	o.o383 o.o520	1.062	010.1

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM SULPHATE AT 25°. (Scidell, Smith, Cameron, Breazeale.)

In Sodium Nitrate.

In Sodium Sulphate.

Grams per I NaNO ₃ .	CaSO ₄ .	Wt. of r cc. Solution.	Grams per Liter Solution. Na ₂ SO ₄ . CaSO ₄ .	Wt. of 1 cc. Solution.		
0	2.08	0.9981	2.39 1.65	1.0013		
25	4.25	1.0163	9.54 1.45	1.0076		
50	5.50	1.0340	14.13 1.39	1.0115		
100	7.10	1.0684	24.37 I.47	1.0205		
200	8.79	1.1336	46.15 1.65	1.0391		
300	9.28	1.1916	115.08 2.10	1 .0965		
600	7.89	1.3639	146.61 2.23	1.1427		
655	7 - 24	1.3904	257.10 2.65	1.2120		

SOLUBILITY OF CALCIUM SULPHATE IN AQUEOUS AND ALCOHOLIC MONO POTASSIUM TARTRATE SOLUTIONS AT 20°. (Magnanini — Gazz. chim. ital. 31, II, 544, 'o1.)

Solvent.	Gms. CaSO per 100 Gms Solution.			ns. CaSO.4 100 Gms. Solution
Water	0.2238	10% alcoholic N/200		0.0866
Aq. N/200 KHC ₄ H ₄ O ₆	0.2323	Aq. N/200 KHC ₂ H ₄ ($O_6 + 5\%$	
10 per cent alcohol	0.0970	tartaric ac.		0.2566
		10% alc. N/400 KHC	$_{2}H_{4}O_{6} + 5\%$	
		tartaric ac.		0.1086

Solubility of Calcium Sulphate in Aqueous Sugar Solutions. (Stolle — Z. Ver. Zuckerind. 50, 331, 'oo.)

Per cent Concen-	Grams CaSO ₄ Dissolved by 1 Liter of the Sugar Solutions at:							
tration of Sugar Solutions.	30°.	40°.	50°.	60°.	70°.	80°.		
0		2.157	1.730	1.730	1.652	1.710		
IO	2.041	1.730	1.730	I.574	1.574	1.613		
20	1.808	1.652	1.419	1.380	1.419	1.263		
27	1.550	1.438	1.361	1.283	1.283	0.972		
35	1.263	1.050	1.088	1.108	0.914			
42	1.030		0.777	0.816	0.855	0.729		
49		0.564	0.739	0.564	0.603	0.486		
55		0.486	0.505	0.486	0.360	0.330		

CALCIUM SULPHIDE CaS.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stolle.)

Per cent Concen- tration of Sugar		Grams CaS Dissolved per Liter of the Sugar Solutions at:									
Solutions.	30°.	40°.	50°.	60°.	70°.	80°.	90°.				
0	1.982	2.123	1.235	1.390	1.696	2.032	2 . 496				
10	1.866	1.316	1.441	1.673	1.560	1.634	1.544				
20	2 . 187	1.696	1.802	1.905	1.879	1 .892	1.930				
27	2.522	2.097	2.059	2.226	2.342	2.304	2.357				
35	2 . 689	2.265	2.304	2 . 406	2.342	2.857	2.947				
42	2.342	2.136	2.226	2.522	2.574	2.509	2 . 689				
49	2.445	2.290	2.458	2 . 638	2.728	2.818	3.063				
55	2.509	2.226	2.340	2.882	2.766	2.972	3.616				

CALCIUM SULPHITE CaSO.

SOLUBILITY IN WATER AND IN AQUEOUS SUGAR SOLUTIONS AT 18°. (Weisberg - Bull. soc. chim. [3] 15, 1097, '96.)

	Grams CaSO3 per 100 cc. Solution.				
Solvent.	At 18°.		After Boiling Solution 2 Hours.		
Water		0.0043	• • •		
10 Per cent Sugar		0.0083	0.0066		
30 Per cent Sugar		0.0080	0.0069		

CALCIUM TARTRATE CaC4H4O6.4H2O.

SOLUBILITY IN WATER.

(Cantoni and Zachoder - Bull. soc. chim. [3] 33, 747, '05.)

t°.	Gms. CaC ₄ H ₄ O _{6.4} H ₂ O per 100 cc. Sol.	t°.	Gms. CaC ₄ H ₄ O ₆ .4H ₂ O per 100 cc. Sol.	t°.	ms. CaC ₄ H ₄ O _{6.4} H ₂ O per 100 cc. Sol.
0	0.0365	30	0.0631	70	0.1430
IO	0.0401	40	0.0875	80	0.1798
20	0.0475	50	0.1100	85	0.2190
25	0.0525	60	0.1262		

100 gms. aq. Ca. tartrate solution contain 0.0185 g. CaC4H4O6.4H2O

at 18°, and 0.029489 at 25°.

100 gms. 95% alcohol solution contain 0.0187 g. CaC4H4O6.4H2O at 18°, and 0.02352 at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

100 gms. aq. Ca. tartrate solution contain 0.0364 g. CaC4H4O6 at 20°. 100 gms. 10% alcohol solution contain 0.0160 g. CaC4H4O6 at 20°.

100 gms. 10% alcohol + 5% tartaric acid solution contain 0.1632 g. CaC, H,O, at 20°. (Magnanini - Gazz. chim. ital. 31, II, 544, 'o1.)

SOLUBILITY OF CALCIUM TARTRATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26°-27°.

(Herz and Muhs - Ber. 36, 3715, '03; see also Enell - Pharm. Centrallh. 38, 181; Z. anal. Chem. 38, 368, '99.)

		Gms. CH ₃ COOH			Gms. CH ₃ COOH	Residue from	
Aceti	c Acid.	per 100 cc. Sol.	50.052 cc. Sol.	Acetic Acid.	per 100 cc. Sol.	50.052 cc. Sol.	
0		0	0.0217	3.80	22.80	0.2042	
0	.57	3.42	0.1082	5.70	34.20	0.1844	
I	.425	8.55	0.1635	10.09	60.54	0.1160	
2	.85	17.10	0.1970	16.505	93.03	0.0337	
Т	he re	sidue was dri	ed at 70° C	.			

CALCIUM BITARTRATE CaH₂(C₄H₄O₆)₂.

SOLUBILITY IN WATER AND IN AQUEOUS SOLUTIONS OF ACIDS AND OF SALTS.

(Warington - J. Chem. Soc. 28, 946, '75.)

In Hyd	lrochlor	ic Acid.	In other Acids and in Salt Solutions at 14°.				
Conc. of HCl Gms. per 100 Gms. Sol.		H ₂ (C ₄ H ₄ O ₆) ₂ Sms. Solvent. At 80°.	Acid or Salt.	Gms.Acid or Salt C per 100 cc. Sol.	Gms. CaH ₂ (C ₄ H ₄ O ₆) ₂ per 100 cc. Sol.		
0	0.600	4.027	Acetic Acid	0.81	0.422		
0.68	3.01	5 · 35	Tartaric Acid	1.03	0.322		
2.15	6.88	11.35	Citric Acid	0.84	0.546		
4.26	11.19	20.23	Sulphuric Acid	0.685	1.701		
8.36	22.75	40.93	Hydrochloric Ac	id 0.504	1.947		
16.13	48.31	80.12	Nitric Acid	0.845	1.969		
			Potassium Aceta	tė 1.387	0.744		
100 gms. H	I ₂ O dissolve	0.422 gms.	Potassium Citra	te 1.397	0.843		

CALCIUM VALERATE Ca[CH₃(CH₂)₃COO]₂.H₂O. CALCIUM (Iso) VALERATE Ca[(CH₃)₂.CH.CH₂.COO]₂.₃H₂O.

SOLUBILITY OF EACH IN WATER.

(Lumsden — J. Chem. Soc. 81, 355, '02; see also Furth — Monatsh. Chem. 9, 313, '88; Sedlitzky— *Ibid*, 8, 566, '87.)

Calcium Valerate.			e.	(Calcium	Iso Valerate.	
t°.	Gms. Ca(Gms.	t°.	Gms. Ca(per 100 Water.	C ₅ H ₉ O ₂) ₂ Solution.	Solid Phase.	
0	9.82	8.94	0	26.05	20.66	$Ca(C_5H_9O_2)_2.5H_2O$	
IO	9.25	8.47	10	22.70	18.50		
20	8.80	8.09	20	21.80	17.90	"	
30	8.40	7.75	30	21.68	17.82	"	
40	8.05	7 · 45	40	22.00	18.18	"	
50	7.85	7.28	45.5	22.35	18.42	"	
57	7 · 75	7.19	50	19.95	16.63	$Ca(C_5H_9O_2)_2.H_2O$	
60	7.78	7.22	60	18.38	15.52		
70	7.80	7.24	70	17.40	14.82	"	
80	7 · 95	7.36	80	16.88	14.44	"	
90	8.20	7.58	90	16.65	14.28	"	
TOO	8.78	8.07	100	16.55	14.20	46	

CAOUTCHOUC.

SOLUBILITY IN ORGANIC SOLVENTS. (Hanausek — J. pharm. chim. [5] 15, 509, '87.)

Solvent.	Grams. Caoutchouc Dissolved per 100 Gms. Solve					
Solvent.	Ceara.	Tete Noire.	Sierra Leone.			
Ether	2.5	3.6	4.5			
Turpentine	4.5	5.0	4.6			
Chloroform	3.0	3 · 7	3.0			
Petroleum	1.5	4.5	4.0			
Benzene	4 · 4	5.0	$4 \cdot 7$			
Carbon Bisulphic	de 0.4	0.0	0.0			

CAMPHORIC ACID C₈H₁₄(COOH)₂.

100 grams of water dissolve 0.8 gram $C_8H_{14}(COOH)_2$ at 25°, and 10 grams at the b. pt. (U.S.P.)

CARBAZOLE (Di Phenylene imid) (C₆H₄)₂NH.

100 grams abs. alcohol dissolve 0.92 gms. $(C_6H_4)_2NH$ at 14°, and 3.88 grams at b. pt.

100 grams toluene dissolve 0.55 gm. (C₆H₄)₂NH at 16.5°, and 5.46 grams at b. pt.

CARBAMIDES.

SOLUBILITY IN SEVERAL SOLVENTS.

as Methyl Phenyl Carbamide (m. pt. 82°), Benzyl Carbamide (m. pt. 149°). o Tolyl Carbamide (m.pt. 185°) and p Tolyl Carbamide (m.pt. 173°).

(Walker and Wood — J. Chem. Soc. 73, 626, '98.)

Solvent.	t°.	Grams Carbamide per 100 cc. Sat. Solution.					
Solvent.		s Methyl Phenyl.	Benzyl.	p Tolyl.	o Tolyl.		
Water	45	74	1.71	0.307	0.251		
Acetone	23	29.4	3.10	2.66	0.462		
Ether	22.5	2.28	0.053	0.062	0.0162		
Benzene	44.2	12.4	0.0597	0.043	0.0155		

CARBON DIOXIDE CO.

SOLUBILITY IN WATER AND IN AQUEOUS SODIUM CHLORIDE SOLUTIONS. (Bohr — Wied. Ann. Physik. [3] 68, 503, '99; Geffcken — Z. physik. Chem. 49, 271, '04; Just — Ibid. 37, 354, '01.)

t°.	Sol	ubility in Wa	In 6.53% NaCl.	In 17.62% NaCl.	
t.	q.	β.	1.	β.	β.
0	0.335	1.713		1.234	0.678
5	0.277	1.424		1.024	0.577
IO	0.231	1.194		0.875	0.503
15	0.197	1.019	1.070	0.755	0.442
20	0.169	0.878		0.664	0.393
25	0.145	0.759	0.826	0.583	0.352
30	0.126	0.665		0.517	0.319
40	0.097	0.530		0.414	0.263
50	0.076	0.436		0.370	0.235
60	0.058	0.359		0.305	0.183

q= wt. of gas dissolved by 100 grams of solvent at a total pressure of 760 mm. $\beta=$ the **Bunsen Absorption Coefficient** which signifies the volume (v) of the gas (reduced to 0° and 760 mm.) taken up by unit volume (V) of the liquid when the pressure of the gas itself minus the vapor tension of the solvent is 760 mm.

 $\beta = \frac{1}{V(1 + 0.00367 t)}$

l= the <code>Ostwald Solubility Expression</code> which represents the ratio of the volume (v) of gas absorbed at any pressure and temperature, to the volume

(V) of the absorbing liquid, i.e. $l = \frac{v}{V}$. This expression differs from the

Bunsen Absorption Coefficient, β , in that the volume (v) of the dissolved gas is not reduced to 0° and 760 mm. The solubility l is therefore the volume of gas dissolved by unit volume of the solvent at the temperature of the experiment. The two expressions are related thus:

 $l = \beta (1 + 0.00367 t), \quad \beta = \frac{l}{(1 + 0.00367 t)}.$

SOLUBILITY IN WATER AT PRESSURES ABOVE ONE ATMOSPHERE. (Wroblewski — Compt. rend. 94, 1335, '82.)

Pressure in Atmos- pheres.	Coefficient of	Saturation * at:	Pressure in Atmos- pheres.	Coefficient of	Saturation * at:
I	1.797	1.086	20	21.65	17.11
5	8.65	5.15	25	30.55	20.31
10	16.03	9.65	30	33.74	23.25
	* Coeff	icient of Absorption	n is no doubt	intended.	

SOLUBILITY OF CO₂ IN AQUEOUS SOLUTIONS OF ACIDS AND SALTS (Geffcken.)

Aq. Solvent.	Gms. Acid per Liter.		olved, l at:	Aq. Solvent.	Gms. Salt per Liter.		olved, l at:
HCl	18.23		0.806	CsCl	84.17		0.781
66	36.46	1.028	0.799	KCl	37.30		0.759
66	72.92	I.000	0.795	KCl	74.60	0.897	0.700
HNO ₃	31.52	1.078	0.840	KI	83.06	0.992	0.775
	63.05	1.086	0.853	KI	166.12	0.923	0.727
"	126.10	I.100	0.877	KBr	59.55	0.986	0.768
H ₂ SO ₄	24.52	1.018	0.794	KBr	119.11	0.914	0.713
	49.04	0.978	0.770	KNO_3	50.59	1.005	0.784
"	98.08	0.917	0.730	KNO ₃	101.19	0.946	0.749
**	147.11	0.870	0.698	RbCl	60.47	0.989	0.769
46	196.15	0.828	0.667	RbCl	120.95	0.921	0.788

45

SOLUBILITY IN AQUEOUS SOLUTIONS OF SALTS. (Mackenzie — Wied. Ann. Physik. [2] 1, 450, '77.)

Salt in	Gms. Salt per	Density of	Abs	sorption Co	ion Coefficient a at:		
Solution.	100 Gms. Solution.	Solution 15°.	8°.		15°.	22°.	
KCl	6.05	I.02I	0.988		0.777	0.670	
66	8.646	1.053	0.918		0.777	0.649	
"	11.974	1.080	0.864		0.720	0.597	
"	22.506	1.549	0.688		0.571	0.480	
NaCl	7.062	1.038	0.899	(6.4°)	0.735		
"	12.995	1.080	0.633	(6.4°)	0.557	0.482	
"	17.42	1.123	0.518		0.431	0.389	
66	26.00	1.195	0.347	(6.4°)	0.297	0.263	
NH ₄ Cl	6.465	I.02I	1.023		0.825	0.718	
66	8.723	1.047	I.000		0.791	0.702	
"	12.727	1.053	0.922		0.798	0.684	
46	24.233	1.072	0.813	(10°)	0.738	0.600	
			8°.	16.5°.	220.	30°.	
BaCl ₂	7.316	1.068	0.969	0.744	0.680	0.566	
66	9.753	1.092	I.02I	0.645	0.607	0.543	
66	14.030	1.137		0.618	0.524	0.467	
66	25.215	1.273	0.495	0.618	0.383	0.315	
$SrCl_2$	9.511	1.087	0.779	0.663	0.581	0.508	
66	12.325	1.1159	0.737	0.586	0.507	0.539	
"	17.713	1.173	0.606	0.473	0.444	0.367	
66	31.194	1.343	0.285	0.245	0.247	0.223	
CaCl ₂	4.365	1.036	0.942	0.759	0.673	0.596	
64	5 · 739	1.049	0.855	0.726	0.616	0.527	
"	8.045	1.068	0.838	0.674	0.581	0.500	
"	15.793	1.139	0.632	0.520	0.471	0.400	

SOLUBILITY OF CARBON DIOXIDE IN ALCOHOL. (Bohr — Wied. Ann. Physik [4] 1, 247, '00.)

In	99 per cent	Alcohol.	In 98.7 per	In 98.7 per cent Alcohol.			
t°.	cc. CO ₂ (at o° a	Nat. Solution.		Sat. Solution.			
-65	38.41	35.93	39.89	37.22			
- 20	7.51	7.41	7 · 25	7.16			
-10	5 · 75	5.69	5 · 43	5.38			
0	$4 \cdot 44$	4.40	4.35	4.31			
+10	3 · 57	3 · 55	• • •				
20	2.98	2.96					
25	2.76	2.74	• • •	• • •			
30	2.57	2.56	• • •	• • •			
40	2.20	2.19	• • •				

2.0I 2.00

SOLUBILITY IN AQUEOUS ALCOHOL AT 20°. (Müller - Wied. Ann. Physik. [2] 37, 39, '89; Lubarsch - Ibid. [2] 37, 525, '89.)

Density of Alcohol.	Per cent Alcohol By Wt.	Abs. Coef. of CO ₂ , α.	Density of Alcohol.	Per cent Alcohol By Wt.	Abs. Coef. of CO ₂ , a.
0.998	1.07	0.861	0.922	49.0	0.982
0.969	22.76	0.841	0.870 (18.8°)	71.1	1.293
0.960 (22.4	.°) 28.46	0.792	0.835 (16°)	85.3	1.974
0.956	31.17	0.801	0.795 (19°)	9 9 · 7	2.719
0.935 (17°)	42.15	0.877			

SOLUBILITY OF CARBON DIOXIDE IN ORGANIC SOLVENTS. (Just - Z. physik. Chem. 37, 354, 'or.)

Solvent.	Sol. of CO2, Ostwald Expression.*		Solvent.	Sol. of CO2,	Ostwald Ex	wald Expression.*		
SOLVEIL.	125.	l_{20} .	l_{15} .	DOI VEILE.	l_{25} .	l_{20} .	l ₁₅ .	
CS_2	0.870	0.889	0.945	C_3H_7OH	2.498			
$C_6H_5NH_2$	1.324	1.434	1.531	$C_2H_5OH(95\%$	(6) 2.706	2.923	3.130	
$C_5H_{11}OH$	1.831	1.941	2.058	C_6H_5COH	2.841	3.057	3.304	
C_6H_5Br	1.842	1.964	2.092	CHCl ₃	3 - 430	3.68r	3.958	
CCl ₄	2.294	2.502	2 . 603	CH ₃ OH	3.837	4.205	4.606	
$C_6H_5CH_3$	2.305	2.426	2.557	CH ₃ COOH	4.691	5.129	5.614	
C_6H_6	2.425	2.540	2.716	$(CH_3CO)_2O$	5.206	5.720	6.18	
$C_6H_5NO_2$	2.456	2.655	2.845	$(CH_3)_2CO$	6.295	6.921		
* See p. 105.								

Determinations are also given for the solubility in glycerine, iod benzene, o and m toluidine, eugenol, benzene tri chloride, cumol, carvene, di chlor hydrine, iso butyl alcohol, benzyl chloride, meta xylol, ethylene bromide, chlor benzene, propylene bromide, amyl bromide, carvol, amyl chloride, iso butyl chloride, butyric acid, ethylene chloride, pyridine, amyl formate, propionic acid, amyl acetate, iso butyl acetate, and in methyl acetate.

See Woukoloff — Compt. rend. 108, 674; 109, 62, '89, for the solubility of CO₂ in CS₂ and CHCl₃ at different pressures.

CARBON MONOXIDE CO.

SOLUBILITY IN WATER. (Winkler -- Ber. 34, 1416, 'o1.)

t°.	β, "Absorp. Coef."	β', "Solu- bility."	q.	t°.	β, "Absorp. Coef."	β', "Solu- bility."	q.
0	0.03537	0.03516	0.0044	40	0.01775	0.01647	0.0021
5	0.03149	0.03122	0.0039	50	0.01615	0.01420	0.0018
IO	0.02816	0.02782	0.0035	60	0.01488	0.01197	0.0015
15	0.02543	0.02501	0.0031	70	0.01440	0.00998	0.0013
20	0.02319	0.02266	0.0028	80	0.01430	0.00762	0.0010
25	0.02142	0.02076	0.0026	90	0.01420	0.00438	0.0006
30	0.01998	0.01915	0.0024	100	0.01410	0.00000	0.0000

 β = vol. of CO absorbed by 1 volume of the liquid at a partial pressure of 760 mm. See page 105. $\beta' = \text{vol.}$ of CO (reduced to 0° and 760 mm.) absorbed by 1 volume

of the liquid under a total pressure of 760 mm.

 $q = \text{grams of CO dissolved by 100 grams H}_2\text{O}$ at a total pressure of 760 mm.

SOLUBILITY OF CARBON MONOXIDE IN AQUEOUS ALCOHOL SOLUTIONS AT 20° AND 760 MM. PRESSURE.

(Lubarsch - Wied. Annalen Physik. [2] 37, 525, '89.)

Wt. % Alcohol. V	ol.% Absorbed CO.	Wt. % Alcohol.	Vol. % Absorbed CO.
------------------	-------------------	----------------	---------------------

0.00	2.41	28.57	1.50
9.09	1.87	33 · 33	1.94
16.67	1.75	50.00	3.20
23.08	1.68		

SOLUBILITY OF CARBON MONOXIDE IN ORGANIC SOLVENTS.

(Just - Z. physik. Chem. 37, 361, 'or.)

Results in terms of the Ostwald Solubility Expression, see p. 105.

Solvent.	l_{25} .	$l_{20}.$	Solvent.	l_{25} .	l_{20} .
Water	0.02404	0.02586	Toluene	0.1808	0.1742
Anilin	0.05358	0.05055	Ethyl Alcohol	0.1921	0.1901
Carbon Disulphide	0.08314	0.08112	Chloroform	0.1954	0.1897
Nitro Benzene	0.09366	0.09105	Methyl Alcohol	0.1955	0. 1830
Benzene	0.1707	0.1645	Amylacetate	0.2140	0.2108
Acetic Acid	0.1714	0. 1689	Acetone	0.2225	0.2128
Amyl Alcohol	0.1714	0.1706	Iso Butyl Acetate	0.2365	0.2314
Xylene	0.1781	0.1744	Ethyl Acetate	0.2516	0.2419

100 volumes of petroleum absorb 12.3 vols. CO at 20°, and 13.4 vols. at 10°.

(Guiewasz and Walfisz - Z. physik. Chem. 1, 70, '87.)

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ACETIC ACID AND OTHER SOLVENTS AT 25°.

(Skirrow - Z. physik. Chem. 41, 148, '02.)

Results in terms of the Ostwald Solubility Expression, see p. 105.

Mixture of Acetic Ac. and	in M	I ₃ COOH lixture. By Vol.	$_{l_{25}}^{\mathrm{CO}}.$	Mixture of Acetic Ac. and:		COOH ixture. By Vol.	CO. <i>l</i> ₂₅ .
Anilin " " " Benzene "	86.5 58.3 13.8 0.0 67.5 33.6	100.0	0.173 0.110 0.070 0.058 0.053 0.199 0.198	Chloroform " Nitro Benzene " " Toluene " "	56.4 0.0 88.4 49.0 0.0 74.7 56.9 20.5	64.5 0.0 84.8 66.3 0.0 71.0 52.6 17.8	0.196 0.206 0.156
66	0.0	0.0	0.174	46	0.0	0.0	0.182

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ACETONE AND OTHER SOLVENTS AT 25°.

(Skirrow.)

Mixture of	%(CH ₃) ₂ CC	in Mixtu	re. CO.	Mixture of	%(CH ₃) Mixt	2CO in	co.
Acetone and:	By Wt.	By Vol.	l_{25} .	Acetone and:	By Wt.		l_{25} .
Anilin	100.0	100.0	0.238	Chloroform	66.6	78.9	0.226
66	79.2	85.9	0.179	"	26.5	40.4	0.212
"	44.9	56.7	0.110	"	0.0	0.0	0.207
66	0.0	0.0	0.053	β Naphthol	86.o	93.9	0.190
Carbon Bisulphi	ide 82.0	83.8	0.236	"	73. I	87. 1	0.169
" -	50.5	61.8	0.227	Nitro Benzene	78.4	88.5	0.207
"	26.0	35.7	0. 187	"	46.8	69.5	0.157
"	14.5	21.2	0.144	"	0.0	0.0	0.090
"	0.0	0.0	0.096	Phenanthrene	87.2	95.4	0.205
Naphthalene	86.7	93.5	0.199	"	75.0	90.2	0.183
- "	72.6	85.4	0.187				

Solubility of Carbon Monoxide in Mixtures of Benzene and Other Solvents at 25°.

(Skirrow — Z. physik. Chem. 41, 144, '02.)

The solubility of the CO given in terms of the Ostwald Expression, see p. 105.

Mixture of Benzene and:		H ₆ in ture. By Vol.	CO. <i>l</i> ₂₅ .	Mixture of Benzene and:	Mixt	H ₆ in ture.	CO. l ₂₅ .
Naphthalene	100.0	100.0	0.174	Anilin	87.3	89.1	0.156
- "	88.5	92.6	0.164	"	71.7	75.2	0.131
"	66.2	76.3	0.141	"	42.6	47.0	0.095
Phenanthrene	89.2	95.1	0.144	46	21.2	24.3	0.068
"	72.6	85.8	0.127	"	0.0	0.0	0.053
a Naphthalene	96.5	98. ı	0.149	Nitro Benzene	71.8	80.1	0.152
-66	87.9	93. I	0.139	"	45.I	56.4	0.127
Ethyl Alcohol	47.7	44.9	0.181	66	0.0	0.0	0.093
"	0.0	0.0	0.192				

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF TOLUBNE AND OTHER SOLVENTS AT 25°.

(Skirrow.)

Mixture of Toluene and:	%C ₆ H ₅ Mixt By Wt.	CH ₃ in ure.	$_{l_{25}}^{\text{CO}}.$	Mixture of Toluene and:	Mix	By Vol.	CO. l ₂₅ .
Anilin	100.0	100.0	0.182	a Naphthol	95 · 5	97.1	0.171
66	94 · 4	93 · 5	0.169	"	91.2	94.2	0.162
66	80 · I	80.3	0.148	Nitro Benzene	81.7	85.7	0.160
46	55 - 4	55.6	0.115	66	50.8	58.1	0.131
"	25.4	25.6	0.077	"	23.7	29.3	0.108
"	0.0	0.0	0.053	66	0.0	0.0	0.093
Naphthalene	92.9	94.8	0.169	Phenanthrene	94.4	97.0	0.170
- "	84.9	88.7	0.161	"	88.8	93.9	0.161
"	77.3	82.5	0.153	66	78.4	87.5	0.147

SOLUBILITY OF CARBON MONOXIDE IN MIXTURES OF ORGANIC SOLVENTS AT 25°.

(Skirrow.)

Mixture Composed	of:	% of Latter	By Vol.	CO. l ₂₅ .
Chloroform and Meth	vl Alcohol	0.0	By Vol.	0.207
"	"	13.0		0.202
66	"	100		0.196
Carbon Bisulphide and	d Ethyl Di Chloride		100	0.147
"	"		75	0.157
66	"		51	0.160
66	"		18.4	0.140
66	"		0.0	0.083
Methyl Alcohol and G	lycerine	0.0	0.0	0.196
"	"	39.6	30.1	0.096
66	66	60.5	50.1	0.052
66	"	77 · I	68.9	0.025
66	"	100.0	100.0	very small

Note. - From the results shown in the preceding five tables, it is concluded that the solubility of carbon monoxide in various mixtures of organic solvents is, in general, an additive function.

CARBON BISULPHIDE CS.

SOLUBILITY IN WATER.

(Chancel and Parmentier - Compt. rend. 100, 773, 85; Rex - Z. physik. Chem. 55, 355, '06.)

	Grams C	S ₂ per 100		Grams CS2 per 100		
t°.	cc. Solu- tion.	Gms. H ₂ O (Rex).	t°.	cc. Solu- tion.	Gms. H ₂ O (Rex).	
0	0.204	0.258	30	0.155	0.195	
5	0.199		35	0.137		
10	0.194	0.239	40	0.111		
15	0.187		45	0.070		
20	0.179	0.101	49	0.014		
25	0.169					

100 cc. H₂O dissolve 0.174 cc. CS₂ at 22°; Vol. of solution = 100.208, Sp. Gr. = 0.9981.

100 cc. CS₂ dissolve 0.961 cc. H₂O at 22°; Vol. of solution=100.961, Sp. Gr. = 1.253. (Herz - Ber. 31, 2670, '98.)

SOLUBILITY OF CARBON BISULPHIDE IN:

Aq. Solutions of Ethyl Alcohol at 17°. Methyl Alcohol. (Tuchschmidt and Folleuins - Ber. 4, 583, '71.) (Rothmund - Z. physik. Chem. 26, 475, '98.)

Wt. per	Gms. CS ₂	Wt. per	Gms. CS ₂		Wt. per cent C	S ₂ in:
cent Alcohol.	per 100 cc. Solvent.	cent Alcohol.	per 100 cc. Solvent.	t°.	CH ₃ OH Layer.	CS ₂ Layer.
100	00	91.37	50	10	45.1	98.3
98.5	182	84.12	30	20	50.8	97.2
98.15	132	76.02	20	25	54.2	96.4
96.95	100	48.40	2	30	58.4	95.5
93.54	70	47.90	0	35	64.0	93.5
				40.5 (0	rit. temp.) 80.5	

SOLUBILITY OF CARBON OXYSULPHIDE IN WATER. (Winkler; see Landolt and Börnstein's Tabellen, 3d ed. p. 602, 1906.)

t °.	β.	q.	t°.	ß.	q.
0	I.333	0.356	20	0.561	0.147
5	1.056	0.281	25	0.468	0.122
10	0.835	0.221	30	0.403	0.104
15	0.677	0.179			

For β and q see Carbon Dioxide, page 105.

CARBON TETRACHLORIDE. See p. 201.

CARVOXIME C10H4:NOH.

SOLUBILITY IN *r* LIMONENE. (Goldschmidt and Cooper — Z. physik. Chem. 26, 714, '98.)

t°.	Gms. C ₁₀ H ₄ :NO per 100 Gms. Limonene.	H Solid Phase.	t°.	Gms. C ₁₀ H ₄ :NOI per 100 Gms. Limonene.	H Solid Phase.
24.6	44.6	l Carvoxime	48	198.7	l Carvoxime
30.0	59.2	l Carvoxime	49 · 4	199.7	r Carvoxime
30.3	63.3	r Carvoxime	55 · 4	325.1	'l Carvoxime
38.4	104.3	l Carvoxime	55.9		r Carvoxime
39.4	103.1	r Carvoxime	58.8	560.0	r Carvoxime
43.1	130.8	l Carvoxime	63.2	126.93	r Carvoxime

CERIUM ACETATE, BUTYRATE, FORMATE, etc.

SOLUBILITY IN WATER. (Wolff — Z. anorg. Chem. 45, 102, '05.)

Salt.	Formula.	Grams Anhydrous Salt per 100 Gms. Solution at:			
Sait.	roimula.	11°.	15°.	76°.	
Acetate	$Ce(C_2H_3O_2)_{3-1}\frac{1}{2}H_2O$		19.61	12.97	
Butyrate	$Ce(C_4H_7O_2)_3$, and $3H_2O$	3.544	3.406	1.984	
Iso Butyrate	$Ce(C_4H_7O_2)_{3\cdot3}H_2O$		6.603(20.4°)	3.39	
Formate	$Ce(CHO_2)_3$		0.398(13°)	0.374(75.3°)	
Propionate	$Ce(C_3H_5O_2)_3.H_2O_1$, and $3H_2$	0	18.99	15.93	

CERIUM AMMONIUM NITRATE (Ceri) Ce(NO₃)₄.2NH₄NO₃.

SOLUBILITY IN WATER. (Wolff.)

t°.	Gms. 1	Solution.	Atomic C Relation.	Gms. Ce(NO ₃) _{4.2} NH ₄ NO ₃ per 100 Gms.	
	NH ₄ .	Ce.	NH4 : Ce.	Solution.	Water.
25	4.065	15.16	2.08:1	58.49	140.9
35.2	4.273	16.10	2.06:1	61.79	161.7
45 · 3	4.489	16.69	2.08:1	64.51	174.9
64.5	4.625	(17.40 Ce (15.03 Ce IV	2.06 : L Ce 2.39 : I Ce IV	66.84	201.6
85.6	4.778	(18.16 Ce (15.79 Ce IV	2.04 : 1 Ce 2.34 : 1 Ce IV	69.40	226.8
112	6.117	(22.82 Ce (16.22 Ce IV	2.08 : 1 Ce 2.95 : 1 Ce IV	88.03	735 · 4

CERIUM AMMONIUM NITRATE 112

CERIUM AMMONIUM NITRATE (Cero) Ce(NO₃)₃.2NH₄NO₂.4H₂O.

SOLUBILITY IN WATER.

(Wolff.)

t°.	Gms. per 100 Gms. Solution.		Atomic Relation.	Gms. Ce(NO ₃) ₂ .2NH ₄ NO ₃ per 100 Gms.		
	NH4.	Ce.	NH ₄ : Ce.	Solution.	Water.	
8.75	4.787	18.56	1.999:1	70.2	235 · 5	
25.0	5.09	19.80	1.995:1	74.8	296.8	
45.0	5 · 53	21.06	2.037 : I	80.4	410.2	
60.0	6.01	22.77	2.054 : I	87.2	681.2	
65.06	6.11	23.42	2.022 : I	89.1	817.4	

CERIUM AMMONIUM SULPHATE Ce₂(SO₄)₃.(NH₄)₂SO₄.8H₂O.

SOLUBILITY IN WATER.

(Wolff.)

t°. Ce ₂ (SO ₄) ₃ .(NH ₄) ₂ SO ₄ per 100 Gms. Solution. Water.	Solid Phase.	t°. Ce2(SO ₄)3:(NH ₄)2SO ₄ Solid Phase. Solution. Water.
22.3 5.06 5.33	$.8H_2O$	45.0 2.91 2.99 Anhydride
35.1 4.93 5.18	"	55.25 2.16 2.21 "
45.2 4.76 4.99	"	75.4 1.46 1.48 "
		85.2 1.17 1.18 "

CERIUM SULPHATE Ce2(SO4)3.

SOLUBILITY OF THE SEVERAL HYDRATES IN WATER.

(Koppel — Z. anorg. Chem. 41, 377, '04; the previous determinations by Muthman and Rolig — Z. anorg. Chem. 16, 455, '98, and by Wyrouboff — Bull. soc. chim. [3] 25, 121, '01, are shown by Koppel to be inaccurate.)

t°.	Gms. Ce ₂ (SO ₄) ₈ per 100 Gms. Solution.	$\mathrm{Mols.}$ $\mathrm{Ce_2(SO_4)_3}$ per 100 $\mathrm{Mols.}$ $\mathrm{H_2O.}$	r Solid Phase.	t°.	Gms. Ce ₂ (SO ₄) ₃ per 100 Gms. Solution.	$Mols.$ $Ce_2(SO_4)_3$ per 100 $Mols.$ $H_2O.$	Solid Phase.
0	14.20	0.525	$Ce_2(SO_4)_3.12H_2O$	20.5	8.69	0.302	$\mathrm{Ce_2(SO_4)_3.8H_2O}$
18.8	14.91	0.555	44	40	5.613	0.188	4.6
19.2	15.04	0.561	44	60	3.88	0.129	46
0	17.35	0.665	$\mathrm{Ce_2(SO_4)_3.9H_2O}$	45	8.116	0.280	$\text{Ce}_2(\text{SO}_4)_3.5\text{H}_2\text{O}$
15	10.61	0.376	46	60	3.145	0.103	44
21	8.863	0.308	4.6	80	1.19	0.0382	44
31.6	6.686	0.227	44	100.5	0.46	0.0149	4.
45.6	4.910	0.164	66	35	7.8	0.27	Ce2(SO4)3.4H2O
50	4.465	0.148	. "	40	5.71	0.19	44
60	3 · 73	0.123	44	50	3.31	0.11	44
65	$3 \cdot 47$	0.114	44	65	1.85	0.06	44
0	15.95	0.605	$Ce_2(SO_4)_3.8H_2O$	82	0.98	0.032	46
15	9.95	0.350	44	100.5	0.42	0.014	*

CHLORAL HYDRATE C2HCl3O.H2O.

Solubility in Water, Ethyl Alcohol, Chloroform, and in Toluene.

. (Speyers - Am. J. Sci. [4] 14, 294, '02.)

Calculated from the original results, which are given in terms of gram molecules of chloral hydrate per 100 gram mols. of solvent.

	. In Water. S.			In Alcohol.		In Chloroform.		In Toluene.	
	W.	S.	W.	S.	W.	S.	W.	S.	
0	1.433	189.7	I.II	123.3	1.530	3 · 7	0.898	3.2	
5	1.460	233.0	1.16	130.0	1.515	4.0	0.900	4.0	
10	1.485	275.0	1.23	140.0	1.510	5.0	0.910	7.0	
15	1.510	330.0	1.30	160.0	1.505	9.0	0.915	11.0	
20	1.535	383. 0	1.36	185.0	1.510	19.0	0.94	21.0	
25	1.555	433.0	I.42	215.0	1.520	34.0	0.97	36.0	
30	1.580	480.0	I .49	245.0	1.540	56.0	I.02	56.o	
35	1.59	516.0	1.55	280.0	1.570	80.0	1.13	80.0	
40	1.605		1.60	320.0	1.590	110.0	1.40	IIO.O	
45	1.620								

W= wt. of 1 cc. saturated solution, S= Gms. $C_2HCl_3.H_2O$ per 100 grams solvent.

CHLORINE C1.

SOLUBILITY IN WATER.

(Winkler — Landolt and Börnstein's Tabellen, 3d ed. p. 532, 601, '06; Roozeboom — Rec. trav. chim. 3, 59, '84; 4, 69, '85; Z. physik. Chem. 2, 452, '88.)

t°.	β'.	q.	t°.	Gms. Cl per 100 Gms. H ₂ O.	Solid Phase.
0	4.610	1.46	-0.24	0.492	Ice+Cl.8 aq.
3 6	3.947	1.25	0	0.507-0.560	Cl.8 aq.
6	3.411	1.08	2	0.644	"
9	3.031	0.96	4	0.732	"
9.6	2.980	0.94	4 6	0.823	46
12.0	2.778	0.88	8	0.917	66
IO	3.095	0.997	9	0.965-0.908	66
15	2.635	0.849	20	1.85	66
20	2.260	0.729	28.7	3.69	66
25	1.985	0.641			
30	1.769	0.572			
40	1.414	0.459			
50	I.204	0.393			
60	1.006	0.329			
70	0.848	0.279			
80	0.672	0.223			
90	0.380	0.127			
100	0.000	0.000			

 $\beta'=$ vol. of Cl (red. to o° and 760 mm.) absorbed by 1 vol. H_2O at total pressure of 760 mm.

q =Gms. Cl per 100 gms. H₂O at a total pressure of 760 mm.

SOLUBILITY IN WATER. (Goodwin — Ber. 15, 3039, '82.)

The saturated aqueous solution of the chlorine was cooled until chlorhydrate separated; the temperature was then gradually raised and portions withdrawn for analysis at intervals. Slightly different results were obtained for solutions in contact with much, little, or no chlorhydrate. The following results are taken from an average curve.

t°.	Solubility Coefficient.	t°.	Solubility Coefficient.	t°.	Solubility Coefficient.
2.5	1.76	II	3.0	25	2.06
5.0	2.00	12.5	2.75	30	1.8
7.5	2.25	15	2.6	40	1.35
10	2.7	20	2.3	50	1.0

SOLUBILITY OF CHLORINE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID AND OF POTASSIUM CHLORIDE.

(Goodwin.)

t°.	Coefficient of Solubility in:						
	HCl (1.046 Sp. Gr.).	HCl (1.08 Sp. Gr.).	HCl (1.125 Sp. Gr.).	KCl (20 g. per 100 cc.).			
0	4.1	6.4	7 · 3	1.5			
5	5.1	5.2	6.7	2.0			
IO	4.1	4.5	6.1	2.2			
15	3.5	3.9	5 · 5	1.6			
20	3.0	3 · 4	4 · 7	I . 2			
25	2.5	3.0	4.0	1.0			
30	2.0	2.4		0.9			
40	1.25	1.6					

Goodwin also gives results for solutions of NaCl, CaCl₂, MgCl₂, SrCl₂, Fe₂Cl₂, CoCl₂, NiCl₂, MnCl₂, CdCl₂, LiCl, and in mixtures of some of these, but the concentrations of the salt solutions are not stated.

Solubility of Chlorine in Aqueous Solutions of Sodium Chloride.

(Kumpf - Wied. Ann. Beibl. 6, 276, '82; Kohn and O'Brien - J. Soc. Chem. Ind. 17, 100, '98.)

Coefficient of Solubility in:						
9.97% NaCl.	16.01% NaCl.	19.66% NaCl.	26.39% NaCl.			
2.3	1.9	1.7	0.5			
2.0	1.6	I · 4	0.44			
1.7	1.3	. 1.15	0.4			
1.4	1.06	0.95	0.36			
I.2	0.9	0.8	0.34			
0.94	0.75	0.65	0.3			
			0.2			
			0.05			
	2·3 2·0 1·7 1·4 1·2 0·94	9.97% NaCl. 16.01% NaCl. 2 · 3	9.97% NaCl. 16.01% NaCl. 19.66% NaCl. 2 · 3			

100 cc. of 6.2 per cent CaCl₂ solution dissolve 0.245 gram Cl at 12°. 100 cc. of 6.2 per cent MgCl₂ solution dissolve 0.233 gram Cl at 12°. 100 cc. of 6.2 per cent MnCl₂ solution dissolve 0.200 gram Cl at 12°.

For coefficient of solubility see page 105.

CHLORINE MONOXIDE Cl.O.

100 volumes of water at oo absorb 200 volumes of Cl2O gas.

CHLORINE TRIOXIDE Cl2O3.

SOLUBILITY IN WATER AT APPROX. 760 MM. PRESSURE. (Brandan — Liebig's Ann. 151, 340, '69.)

115

t°. 8.5°. 14.0°. 21°. 93°. Gms. Cl₂O₃ per 100 gms. H₂O 4.765 5.012 5.445 5.651

Garzarolli and Thurnbalk — Liebig's Ann. 209, 184, '81, say that Cl₂O₃ does not exist, and above figures are for mixtures of Cl₂O and Cl.

CHLOROFORM CHCla.

SOLUBILITY IN WATER.

(Chancel and Parmentier — Compt. rend. 100, 473, 85; Rex — Z. physik. Chem. 55, 355, '06.)

t°.	Gms. CHCl ₃ per Liter of Solution.	Density of Solutions.	t°.	Gms. CHCl ₃ per 100 Gms. H ₂ O (Rex).
0	9.87	1.00378		
3.2	8.90	• • •	0	1.062
17.4	7.12	1.00284	IO	0.895
29.4	7.05	1.00280	20	0.822
41.6	7.12	1.00284	30	0.776
54.9	7 · 75	1.00309		

100 cc. H_2O dissolve 0.42 cc. $CHCl_3$ at 22°; Vol. of sol. = 100.39 cc., Sp. Gr. = 1.0002.

100 cc. CHCl₃ dissolve 0.152 cc. H₂O at 22°; Vol. of sol. = 99.62 cc., Sp. Gr. = 1.4831.

(Herz -- Ber. 31, 2670, '98.)

SOLUBILITY OF CHLOROFORM IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20°.

(Bancroft — Phys. Rev. 3, 29, '95, '96.)

In Acetone. In Ethyl Alcohol. In Methyl Alcohol. Per 5 cc. C2H5OH. Per 5 cc. CH₃OH. Per 5 cc. (CH₃)₂CO cc. H₂O. cc. CHCl3. cc. CHCl₃. cc. H₂O. cc. CHCl3. cc. H₂O. IO 0.20 IO 0.10 0.16 5.0 8 0.48 0.22 0.3 5 4.0 6 0.515 0.80 4 3.0 0.33 1.13 4.0 2.0 0.58 4 2 2 2.51 7.0 I.0 I.49 0.955 8.0 I 4.60 I.I2 1.35 0.79 0.91 5.0 I.12 10.0 1.60 0.505 0.76 6.0 0.30 2.50 8.0 0.55 0.21 3.50 0.425 10.0 0.19 4.0 0.20 20.0 0.16 5.0 0.125 30.24 0.12 10.0

SOLUBILITY OF CHROMIUM ALUMS IN WATER AT 25°. (Locke — Am. Ch. J. 26, 174, '01.)

Alum. Formula. Formula. Grams Grams Grams Anhdyrous. Hydrated. Mols.

Potassium Chromium Alum $K_2Cr_2(SO_4)_4.24H_2O$ 12.51 24.39 0.0441 Tellurium Chromium Alum $Te_2Cr_2(SO_4)_4.24H_2O$ 10.41 16.38 0.0212

CHROMIUM CHLORIDE (ic) CrCl₃.6½H₂O.

100 grams H₂O dissolve 130 grams (green modification) at 15°.
(Recoura - Compt. rend. 102, 518, '86.)

CHROMIUM DOUBLE SALTS.

SOLUBILITY IN WATER.

(Jörgensen — J. pr. Chem. [2] 20, 105, '79; [2] 30, 1, '84; [2] 42, 208, '90; Struve — Ibid. [2] 61, 457, '99.)

Formula.	t°.	Gms. per 100 Gms. H ₂ O.
		1120.
CrCl(NH ₃) ₄ (OH ₂)Cl ₂	15	6.3
CrCl(NH ₃) ₅ Cl ₂	16	0.65
$Cr(NH_3)_6(NO_3)_3$	3	2.6
$CrCl(NH_3)_5(NO_3)_2$	17.5	1.4
$3K_2O.Cr_2O_3.12MoO_3.20H_2O$		2.5
	CrCl(NH ₃) ₄ (OH ₂)Cl ₂ CrCl(NH ₃) ₅ Cl ₂ Cr(NH ₃) ₆ (NO ₃) ₃ CrCl(NH ₃) ₅ (NO ₃) ₂	CrCl(NH ₃) ₄ (OH ₂)Cl ₂ 15 CrCl(NH ₃) ₅ Cl ₂ 16 Cr(NH ₃) ₆ (NO ₃) ₃ ?

CHROMIUM TRIOXIDE CrO.

SOLUBILITY IN WATER.

(Mylius and Funk — Wiss. Abh. p. t. Reichanstalt, 3, 451, '00.)

t°.	Gms. CrO ₃ per 100 g. Solution.	Mols. CrO ₃ per 100 Mols. H ₂ O.	Solid Phase.
0	62.08	29.4	CrO,
15	62.38	29.8	"
18	62.45	29.91	"
50	64.55	32.7	"
99	67.39	37.1	46

Density of solution saturated at 18° = 1.705.

CHROMIUM SULPHATES (ous and ic).

SOLUBILITY IN WATER (ous at 0°).

Salt.	Gms. per 100 Gms. H ₂ O.	Solid Phase.	Authority.
Chromous	12.35		(Moissan — Bull. soc. chim. [2] 37, 296, '82)
Chromic	120.0		(Etard — Compt. rend. 84, 1090, '77.)

CHRYSAROBIN C₃₀H₂₆O₇.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.)

Solvent.	Gms. per 100	Gms. Solvent at:	Solvent.	Gms. per 100 Gms. Solvent at 25°.
Water Alcohol Benzene	0.02I 0.324 4.0	o.046 o.363 (60°)	Chloroform Ether Amyl Alcohol Carbon Disulphide	5·55 o·873 3·33 o·43

CHRYSEN C, 8H12.

SOLUBILITY IN TOLUENE AND IN ABS. ALCOHOL. (v. Becchi.)

100 gms. toluene dissolve 0.24 gm. $C_{18}H_{12}$ at 18°, and 5.39 gms. at 100°.

100 gms. abs. alcohol dissolve 0.097 gm. $C_{18}H_{12}$ at 16°, and 0.170 gm. at b. pt.

CINCHONA ALKALOIDS. (See also Quinine, p. 269.)

SOLUBILITY OF CINCHONINE, CINCHONIDINE, QUININE, AND QUINIDINE IN SEVERAL SOLVENTS AT 18°-22°.

(Müller — Apoth.-Ztg. 18, 233, '03; see also Prunier — J. pharm. chim. [4] 29, 136, '79.)

	Grams of the Alkaloid per 100 Grams Solution.					
Solvent.	Cinchonine C ₁₉ H ₂₂ N ₂ O.	Cinchonidine C ₁₉ H ₂₂ N ₂ O.	Qu C ₂₀ H ₂ Hydrate.	Anhydride.	Quinidine C ₂₀ H ₂₄ N ₂ O ₃ .	
Ether	0.10	0.211	1.619	0.876	0.776	
Ether sat. with H ₂ O	0.123	0.523	5.618	2.794	1.629	
H ₂ O sat. with Ether	0.025	0.0306	0.0667	0.0847	0.031	
Benzene	0.0545	0.099	0.2054	1.700	2.451	
Chloroform	0.6979	9.301	100+	100+	100+	
Acetic Ether	.0.0719	0.3003	4.65	2.469	1.761	
Petroleum Ether	0.0335	0.0475	0.0103	0.0211	0.0241	
Carbon Tetra Chlorid	e 0.0361	0.0508	0.203	0.529	0.565	
Water	0.0239	0.0255	0.574	0.0506	0.0202	
Glycerine (15.5°)	0.50		0.50	• • •		

100 grams chloroform dissolve 0.565 gm. cinchonine at 50°. 100 grams abs. ether dissolve 0.264 gm. cinchonidine at 32°.

(Köhler - Z. anal. Ch. 18, 242, '79.)

SOLUBILITY OF CINCHONINE AND CINCHOTINE SULPHATE, TARTRATE, BITARTRATE, OXALATE, AND HYDROCHLORIDE IN WATER.

(Forst and Böhringer — Ber. 14, 1266, '81.)

Cinchonine Salts.

Cinchotine Salts.

	Cilicitotitiic barcs		Cincilotine Sarts.			
	Formula.	t°.	Gms. per 100 Gms. H ₂ O.	Formula.	t°.	Gms. per 100 Gms. H ₂ O.
2(0	C ₁₉ H ₂₂ N ₂ O)SO ₄ H ₂ .2H ₂ O	13	1.52	2 (C ₁₉ H ₂₄ N ₂ O)SO ₄ H ₂ ·2H ₂ O	13	3.28
2(($C_{19}H_{22}N_2O)C_4H_6O_6.2H_2O$	16	3.0	$2(C_{19}H_{24}N_{2}O)C_{4}H_{6}O_{6}\cdot 2H_{2}O$	ıŏ	1.76
C19	$H_{22}N_2O.C_4H_6O_6.4H_2O$	16	0.99	$C_{19}H_{24}N_2O.C_4H_6O_6.4H_2O$	16	1.28
2(($C_{19}H_{22}N_2O).C_2H_4O_4.H_2O$	20	0.96	$_{2}(C_{19}H_{24}N_{2}O).C_{2}H_{2}O_{4}.H_{2}O$	10	1.16
C_{19}	H ₂₂ N ₂ O.HCl. ₂ H ₂ O	10	4.16	C ₁₉ H ₂₄ N ₂ O.HCl.2H ₂ O	10	2.12

SOLUBILITY OF CINCHONINE SULPHATE AND OF CINCHONIDINE SULPHATE IN SEVERAL SOLVENTS.
(U. S. P.)

Solvent.	Gms. (C ₁₉ H ₂₂ N ₂ O ₂) ₂ H ₂ SO _{4.2} H ₂ O per 100 Gms. Solvent.		Gms. (C ₁₉ H ₂₂ N ₂ O) ₂ .H ₂ SO ₄ . ₃ H ₂ O per 100 Gms. Solvent.		
	At 25°.	At 80°.	At 25°.	At 80°.	
Water	1.72	3 · I	1.60	4.80	
Alcohol	10.0	19.2 (60°)	I.4	3.1 (60°)	
Ether	0.04		0.02	• • •	
Chloroform	1.45		0.11	• • •	
Glycerine	6.7 (15°)				

CINNAMIC ACID C.H.CH:CH.COOH.

SOLUBILITY OF CINNAMIC ACID IN AQUEOUS SOLUTIONS OF SODIUM ACETATE, BUTYRATE, FORMATE, AND SALICYLATE AT 26.4°. (Philip — J. Chem. Soc. 87, 992, '05.)

Calculated from the original results, which are given in terms of molecular quantities per liter.

_	1			
Gms. Na Salt	Gms. C	6H5CH:CH.COOH	er Liter in Solu	tions of:
per Liter.	CH₃COONa.	C ₃ H ₇ COONa.	HCOONa.	C6H4.OH.COONa.
0	0.56	0.56	0.56	0.56
I	1.50	1.30	0.92	0.62
2	2.12	1.85	1.12	0.70
3	2.52	2.25	1.27	0.73
4	2.85	2.60	1.40	0.77
5	3.05	2.90	1.47	0.80
8				0.90

1 liter of aqueous solution contains 0.491 gm. C₆H₅CH:CH.COOH at 25° (Paul).

Solubility of Cinnamic Acid in Aqueous Solutions of Anilin and of Para Toluidin at 25°. (Lowenherz — Z. physik. Chem. 25, 394, '98.)

Original results in terms of molecular quantities per liter.

Grams per Liter. Grams per Liter.

$C_6H_5NH_2$.	$C_6H_5CH: CHCOOH.$	$C_6H_4CH_3NH_2$.	$C_6H_5CH: CHCOOH.$	
0	0.49	0	0.49	
I	I.20	I	1.52	
2	1.65	2	2.20	
3	2.02	3	2.83	
4	2.35	4	$3 \cdot 35$	
6	2.92	5	3.80	

SOLUBILITY OF CINNAMIC ACID IN METHYL, ETHYL, AND PROPYL ALCOHOLS.

(Timofeiew - Compt. rend. 112, 1137, '91.)

4.0	Grams C ₆ H ₅ CH:CH.COOH per 100 Grams of:					
t°.	Сн₃он.	C ₂ H ₅ OH.	C ₃ H ₇ OH.			
0	20.65	15.61	10.63			
19.5	28.91	22.03	15.41			

SOLUBILITY OF BROM CINNAMIC ACIDS.

a Brom and β Brom Cinnamic Acid a Brom Cinnamic Acid in Aq. in Water at 25°.

In Aqueous Anilin.

Solutions of Oxalic Acid at 25°.

In Aqueous p Toluidin.

(Noyes - Z. physik. Chem. 6, 245, '90.) (Paul - Z. physik. Chem. 14, 111, '94.)

	Per 1000 0	c. Solution.		of Solutions.		
Acid.	Grams.	Millimols.	(COOH) ₂ .	C ₆ H ₅ CH:	(COOH)	2. C ₆ H ₅ CH:
·			Ci	Br:COOH.		CBrCOOH.
a, C ₆ H ₅ CH: CBrCOOH		17.32	0	0.0176	0.0	3.995
β, C ₆ H ₅ CBr: CHCOOH	0.5255	2.315	0.0275	0.0140	2.448	3.178
, ,			0.0524	0.0120	4.716	2.028

OITRIO AOID C3H4(OH)(COOH)3.H2O.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Bourgoin — Ann. chim. phys. [5] 13, 406, '78.)

Solvent.	t°. G	Gms. C ₃ H ₄ (OH)(COOH) ₃ .H ₂ O per 100 Gms.			
Solvent.		Solution.	Solvent.		
Water	25	64.8	185		
Water	b. pt.	70.3	250		
Alcohol (90%)	25	34.6	75.9		
Alcohol (U.S.P.)	"	39.2	64.5		
Alcohol (Abs.)	66	43.2	52.8		
Ether	. "	2.21	2.26		
Ether (U.S.P.)	66	5.2	5 · 55		

COBALT BROMIDE CoBr2.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 537, '94.)

t°.	59°•	75°•	97°•
Gms. CoBr, per 100 gms. solution	66.7	66.8	68.1 (blue)

COBALT DOUBLE SALTS.

SOLUBILITY IN WATER.

(Jörgensen — J.pr. Chem. [2] 18, 205, '78; 19, 49, '79; Kurnakoff — J. russ. phys. chem. Ges. 24, 629, '02.)

Name.	Formula.	t°.	Gms. Salt per 100 Gms. H ₂ O.
Chloro purpureo cobaltic bromide	$CoCl(NH_3)_5Br_2$	14.3	0.467
Bromo purpureo cobaltic bromide	$CoBr(NH_3)_5Br_2$	16	0.19
Chloro tetra amine cobaltic chloride	$CoCl(NH_3)_4(OH_2)Cl_2$		2.50
Chloro purpureo cobaltic chloride	CoCl(NH ₃) ₅ Cl ₂	0	0.232
Chloro purpureo cobaltic chloride	CoCl(NH ₃) ₅ Cl ₂	15.5	0.41
Chloro purpureo cobaltic chloride	CoCl(NH ₃) ₅ Cl ₂	46 6	1.03
Luteo cobaltic chloride	$Co(NH_3)_6Cl_3$	0	4.26
Luteo cobaltic chloride	Co(NH ₃) ₆ Cl ₃	46.6	12.74
Roseo cobaltic chloride	Co(NH ₃) ₅ (OH ₂)Cl ₃	0	16.12
Roseo cobaltic chloride	$Co(NH_3)_5(OH_2)Cl_3$	16.2	24.87
Chloro purpureo cobaltic iodide	CoCl(NH ₃) ₅ I ₂	19.2	2.0
Chloro purpureo cobaltic nitrate	$CoCl(NH_3)_5(NO_3)_2$	15	1.25
Chloro purpureo cobaltic sulphate	CoCl(NH ₃) ₅ SO _{4.2} H ₂ O	17.3	0.75
Nitrato purpureo cobaltic nitrate	$Co(NO_3)(NH_3)(NO_3)_2$	16	0.36

COBALT CHLORATE Co(ClO₃)₂.

SOLUBILITY IN WATER. (Meusser — Ber. 35, 1419, '02.)

	t°.	Gms. Co(ClO ₃) ₂ per 100 Gms.	Mols. Co(ClO ₃) ₂ per 100	Solid Phase.	t°.	Gms. Co(ClO ₃) ₂ per 100 Gms.	Mols. Co(ClO ₃) ₂ per 100	Solid Phase.	
		Solution.	Mols. H ₂ O.			Solution.	Mols. H ₂ O.		
-	- I 2	29.97	3.41	Ice	18	64.19	14.28	$Co(ClO_3)_2.4H_2O$.	
-	-21	53.30	9.08	$\text{Co}(\text{ClO}_3)_2.6\text{H}_2\text{O}$.	21	64.39	14.51	66	
-	-19	53.61	9.20	44	35	67.09	16.10	66	
	0	57 - 45	10.75	44	47	69.66	18.29	44	
	10.5	61.83	12.90	44	6 1	76.12	25.39	44	
	Density of solution saturated at 18° = 1.861.								

COBALT CHLORIDE CoCl2.

SOLUBILITY IN WATER. (Etard — Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, '94.)

t°.	Gms. CoCl ₂ per 100 Gms. Solution.	Solid Phase.	t°.	Gms. CoCl ₂ per 100 Gms. Solution.	Solid Phase.
-10	27.0	CoCl ₂ .6H ₂ O (red)	35	38.0	CoCl ₂ .H ₂ O (violet)
0	29.5	"	40	41.0	76
+10	31.5	"	50	47.0	"
20	33 · 5	"	60	47 · 5	CoCl ₂ .H ₂ O (blue)
25	34.5	"	80	49.5	7 74
30	35.5	66	100	51.0	"

SOLUBILITY OF COBALT AMMONIUM CHLORIDES IN WATER. (Kurnakoff — J. russ. phys. chem. Ges. 24, 629, '93; J. Chem. Soc. 64, ii, 509, '93.)

Salt.	Grams per 100 Grams H2O at:			
	°°.	16.9°.	46.6°	
CoCl ₃ .5NH ₃	0.232		1.031	
CoCl ₃ .5NH ₃ .H ₂ O	16.12	24.87		
CoCl ₃ .6NH ₃	4.26		12.74	

SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT 0°. (Engel — Ann. chim. phys. [6] 7, 355, '89.)

Milligram Mols. per 10 cc. Sol.		Sp. Gr. of Solutions.	Gms. per i Solu	tion.		Gms. per 100 cc. Solution.	
₹CoCl₂.	HCl.	Solutions.	CoCl ₂ .	HCl.	CoCl ₂ .	HCl.	
62.4	0	I.343	30.17	0.00	40.5	0	
58.52	3.7	1.328	28.62	0.102	38.0	0.135	
50.8	11.45	1.299	25.39	0.321	33.0	0.417	
37.25	25.2	1.248	19.43	0.738	24.2	0.919	
12.85	55.0	1.167	7.15	1.718	8.34	2.00	
4.75	74.75	1.150	2.68	2.369	3.08	2.72	
12.0	104.5	1.229	6.34	3.099	7 · 79	3.81	
25.0	139.0	1.323	12.27	3.829	16.24	5.07	

SOLUBILITY OF COBALT CHLORIDE IN AQUEOUS ALCOHOL AT 11.5°.
(Bödtker — Z. physik. Chem. 22, 509, '67.)

10 gms. of CoCl₂.6H₂O were added to 20 cc. of alcohol and in addition the amounts of CoCl₂ shown in the second column. The solutions were shaken 2 hours, 5 cc. withdrawn, and the amount of dissolved CoCl₂ determined by evaporation and weighing.

Vol. %	Gms. CoCl ₂ Added.	Gms. per 5	cc. Solution.	Vol. %	Gms. CoCl ₂ Added.		5 cc. Sol.
Alcohol.	Added.	H_2O .	CoCl ₂ .	Alcohol.	Added.	H ₂ O.	CoCl ₂ .
91.3	0.0	1.325	1.168	99 · 3	0.612	0.764	1.459
98.3	0.0	1.134	1.214	99.3	0.813	0.688	r.568
98.3	0.0	1.068	1.181	99 · 3	I.022	0.634	1.713
99.3	0.0	1.045	1.199	99.3	1.240	0.553	1.831
99.3	0.194	0.899	1.204	99.3	1.446	0.483	1.943
99.3	0.400	0.829	1.325	99.3	1.650	0.500	2.183
					0 \		

100 gms. sat. solution in alcohol (0.792 Sp. Gr.) contain 23.66 gms. CoCl₂, Sp. Gr. = 1.0107. (Winkler – J. pr. Chem. 91, 207, '64.)

SOLUBILITY OF COBALT CHLORIDE IN ORGANIC SOLVENTS.

Solvent.	t°.	Gms. per 1	oo Gms. Solven	A. Alanda de	
Solvent.	.	CoCl ₂ .	CoCl ₂ .2H ₂ O		
Acetone	0	9.11	17.16	(St. von Laszczynski — Ber. 27, 2285, '94.)	
"	22.5	9.28	17.06	(St. von Laszczynski Ber. 27, 2285, '94.)	
"	25	8.62		(Krug and McElroy - J. Anal. Ch. 6, 184,'92.)	
"	18	2.75	• • •	(Naumann — Ber. 37, 4332, '04.)	
Ethyl Acetate	14	0.08		(St. von Lasczczynski.)	
"	79	0.26		66	
Ether		0.021	0.0291	(Bödtker - Z. physik. Chem. 22, 509, '97.)	
Glycol		10.7(per	100 g.sol.)	(de Coninck-Bull.acad.roy.Belgique, 359,'05)	

COBALT IODATE Co(IO3)2.

SOLUBILITY IN WATER. (Meusser - Ber. 34, 2435, '01.)

		Solid Phas	se:					
t°.	Co(IO	Co(IO3)2.4H2O.		2.2H ₂ O.	Co(I(Co(IO ₃) ₂ .		
	G.	M.	G.	M.	G.	M.		
	0	0.54	0.028	0.32	0.014			
	18	0.83	0.038	0.45	0.020	1.03	0.046	
	30	1.03	0.046	0.52	0.023	0.89	0.040	
	50	1.46	0.065	0.67	0.030	0.85	0.030	
	60	1.86	0.084			• • •		
	65	2.17	0.098					
	75	• • •		0.84	0.038	0.75	0.033	
	100			I.02	0.045	0.69	0.031	
	-	~ ~	/= O \		4	3.5		

 $G=Gms.\ Co(IO_3)_2$ per 100 gms. solution. $M=Mols.\ Co(IO_3)_2$ per 100 Mols. $H_2O.$

COBALT IODIDE Col2.

SOLUBILITY IN WATER.
(Etard — Compt. rend. 113, 699, '91; Ann. chim. phys. [7] 2, 537, '94.)

The accuracy of these results is doubtful.

t°.	Gms. CoI ₂ per 100 Gms. Solution.	Solid Phase.	t°.	Gms. CoI ₂ per 100 Gms. Solution.	Solid Phase.
-10	55.5	$CoI_2.H_2O$ (green)	25	67.5	CoI ₂ .H ₂ O (olive)
0	58.0	"	30	70.0	- 76
10	61.5	"	40	75.0	Col ₂ .H ₂ O (yellow)
15	63.2	"	50	79.0	
20	65.2	"	80	80.0	"
25	67	"	IIO	81.0	46

COBALT NITRATE Co(NO3)2.

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt 3, 439, '00.)

t°	Gms. Co(NO ₃) ₂ per 100 Gms. Solution.	Mols. Co(NO ₃) ₂ per 100 Mols. H ₂ O	Solid Fliase.	t°.	Gms. Co(NO ₃) ₂ per 1∞ Gms. Solution.	Mols. Co(NO ₃) ₂ per 100 Mols. H ₂ O	Sonu Fhase.
- 26	39 · 45	6.40	$Co(NO_3)_2.9H_2O$	41	55.96	12.5	Co(NO ₃) ₂ .6H ₂ O
- 20	5 42.77	$7 \cdot 35$	44	56	62.88	16.7	84
-21	41.55	6.98	Co(NO ₈) ₂ .6H ₂ O	55	61.74	15.8	Co(NO ₃) ₂ .3H ₂ O
-10	43.69	7.64	46	62	62.88	16.7	46
- 4	44.85	7.99	86	70	64.89	18.2	44
0	45.66	8.26	64	84	68.84	21.7	44
+18	49.73	9.71		91	77.21	33 · 3	•
De	nsity of so	lution s	saturated at	18° =	1.575.		

SOLUBILITY OF COBALT NITRATE IN GLYCOL. (de Coninck — Bull. acad. roy. Belgique, 359, '05.)

100 grams saturated solution contain 80 gms. Cobalt Nitrate.

COBALT RUBIDIUM NITRITE Rb3Co(NO2)6.H2O.

100 grams H₂O dissolve 0.005 gram of the salt.

(Rosenbladt - Ber. 19, 2531, '86.

COBALT SULPHATE CoSO4.7H2O.

SOLUBILITY IN WATER.

(Mulder; Tobler - Liebig's Ann. 95, 193, '55; Koppel - Wetzel - Z. physik. Chem. 52, 395, '05.)

t°.		CoSO ₄ Gms. Water.	Mols. CoSO ₄ per 100 Mols. H ₂ O.	t°.	Gms. C per 100 Solution.	Gms.	Mols. CoSO ₄ per 100 Mols. H ₂ O.
0	20.35	25.55	2.958	35	31.40	45.80	5.31
5	21.90	28.03	3.251	40	32.81	48.85	5.664
10	23.40	30.55	3.540	50	35.56	55.2	
15	24.83	33.05	3.831	60	37.65	60.4	
20	26.58	36.21	4.199	70	39.66	65.7	
25	28.24	39.37	4.560	80	41.18		
30	29.70	42.26	4.903	100	45 - 35	83.0	* *, *

Solubility of Mixtures of $CoSO_4.7H_2O$ and $Na_2SO_4.1oH_2O$ in Water.

(Koppel; Wetzel.)

t°.	Gms 100 Gms CoSO ₄ .	Na ₂ SO ₄ .	Gms 100 Gm CoSO ₄ .	Na ₂ SO ₄ .	Mols 100 Mols CoSO ₄ .	. per s. H ₂ O. Na ₂ SO ₄ .	Solid Phase.
0	16.56	7.63	21.85	10.07	2.54	1.27	CoSO _{4.7} H ₂ O +
5	17.46	9.59	23.94	13.15	2.77	1.67	Na ₂ SO _{4.10} H ₂ O
IO	17.90	11.73	25.41	16.67	2.94	2.11	44
20	17.59	16.43	26.65	24.91	3.09	3.15	CoNa ₂ (SO ₄) _{2.4} H ₂ O
25	17.06	15.70	25.36	23.32	2.95	2.97	44
30	15.94	14.93	23.15	21.61	2.70	2.74	44
35	15.73	14.52	22.54	20.85	2.62	2.64	44
40	14.87	14.22	20.98	20.05	2.46	2.53	44
18.5	18.75	15.61	28.61	23.82	3.32	3.02	CoNa ₂ (SO ₄) ₂₋₄ H ₂ O
20	19.30	15.10	29.42	23.01	3.41	2.92	+ CoSO _{4.7} H ₂ O
25	20.30	13.60	30.74	20.58	3.56	2.61	44
30	21.67	12.05	32.70	18.17	3 · 79	2.30	46
35	22.76	10.43	34.06	15.61	3.95	1.98	44
40	24.05	9.16	35.01	13.72	4.81	1.74	66 9
18.5	16.87	16.97 .	25.50	25.65	2.96	3.25	CoNa ₂ (SO ₄) _{2·4} H ₂ O
20	15.41	18.12	23.18	27.26	2.69	$3 \cdot 45$	+Na ₂ SO ₄ .10H ₂ O
25	10.63	23.26	16.07	35.17	1.86	4.46	66
30	6.01	28.67	9.20	43.74	1.07	5.54	46
35	4.56	32.14	7.19	50.79	0.835	6.44	CoNa2(SO4)2.4H2O
40	4.72	31.78	7 · 45	50.10	0.864	6.34	+Na ₂ SO ₄

SOLUBILITY OF COBALT SULPHATE IN METHYL AND ETHYL ALCOHOL AND IN GLYCOL.

Solvent.		t°.	Gms. per 100 Gms. Solvent.		Observer.	
			CoSO ₄ .	CoSO _{4.7} H ₂ O).`	
Methyl Alcohol	· /	3		42.8	(de Bruyn—Z. physik. Ch. 10, 784, '92.)	
66	66	15		50.9	44	
44	44	18	1.04	54.5	66	
"	(93.5%)	3		13.3	44	
44	(50%)	3		1.8	46	
Ethyl Alcohol (abs.)	3		2.5	66	
Glycol		(per 100 g soluti		(de Coninck—Bull.acad.roy.Belgique, 359, '05.)	

COCAINE C17H21NO4.

COCAINE HYDROCHLORIDE C17H21NO4.HCl.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; at 18°-22°; Müller — Apoth.-Ztg. 18, 248, '03.)

Solvent.	t°.	Gms. per 100 C ₁₇ H ₂₁ NO ₄ .	Gms. Solvent.	Solvent.	t°.	Gms. C ₁₇ H ₂₁ NO ₄ . per 100 Gms. Solvent.
Water	25	0.17	250	Ether+H ₂ O	18-22	34.0
Water	80	0.38	1000	H ₂ O+Ether	18-22	0.254
Alcohol	25	20.0	38	Benzene	18-22	100
Ether (U.S.P.)	25	26.3		CCl ₄	17	18.5
Ether	18-22	11.6		Acetic Ether	18-22	58.99
Chloroform	18-22	100+		Petroleum Ethe	er 18–22	2.37

CODEINE C₁₈H₂₁NO₃.H₂O, also the Phosphate and Sulphate.

COLCHICINE C22H25NO6.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; at 18°-22°, Müller.)

Grams. per 100 Grams Solvent. Solvent. t°. Codeine Codeine C₁₈H₂₁NO₃ H₂O. H₂SO_{4.5} Aq. $C_{22}H_{25}NO_6$. H₃PO_{4.2} Aq. Water 18-22 9.616 ٠. Water 25 1.13 44.9 3.3 4.5 80 Water 1.70 217.0 16.0 5.0 Alcohol 62.5 0.383 0.006 25 . . . Alcohol 60 108.7 I.03 0.27 Ether 8.0 0.64 25 0.075 Ether 18-22 0.126 . . . Ether sat. with H₂O 18-22 0.18 H₂O sat. with Ether 18-22 12.05 . . . Benzene 18-22 0.939 Benzene 25 . . . 1.15 . . . Chloroform 151.5 100+ 25 0.015 Carbon Tetra Chloride 17 0.121 1.328 Acetic Ether 18-22 I.342 Petroleum Ether 18-22 0.058

COLLIDINE (2, 4, 6, Tri Methyl Pyridine) C₅H₂N(CH₂)₂.

SOLUBILITY IN WATER. (Rothmund - Z. physik. Chem. 26, 433, '98.)

t°.	Gms. Collidia	per 100 Gms.		Gms. Collidin per 100 Gms.		
• •	Aq. Layer.	Collidin Layer.	υ.	Aq. Layer.	Collidin Layer.	
5 · 7	(crit. t.) 17.	20				
IO	7.82	41.66	80	I.73	86.12	
20	3.42	54.92	100	1.78	88.07	
30	2.51	62.80	120	1.82	88.98	
40	1.93	70.03	140	2.19	89.10	
60	1.76	80.19	160	2.93	87.2	
			180	3.67		

COPPER ACETATE Cu(C,H,O,),.H,O.

100 grams of glycerine dissolve 10 grams of copper acetate at 15.5°.

COPPER BROMIDE (ous) Cu2Br2.

SOLUBILITY OF CUPROUS BROMIDE IN AQUEOUS SOLUTIONS OF POTAS-SIUM BROMIDE AT 18°-20°. (Bodländer and Storbeck — Z. anorg. Chem. 31, 460, '02.)

	Mi	Liter.		Grams. per Liter.					
KBr.	Total Cu.	Total Br.	Cu (ic).	Cu (ous).	KBr.	Total Cu.	Cu (ic).	Cu (ous).	
0	0.3157	0.4320	0.2096	0.1061	0	0.0201	0.0133	0.0067	
25	0.119		0.012	0.107	2.98	0.0076	0.0007	0.0068	
40	0.200		0.013	0.187	4.76	0.0127	0.0007	0.0119	
60	0.310		0.025	0.285	7.15	0.0197	0.0015	0.0181	
80	0.423		0.012	0.411	9.53	0.0266	0.0007	0.0261	
100	0.584			0.584	11.91	0.0371		0.0371	
120	0.693			0.693	14.29	0.0441		0.0441	
500	8.719			8.719	59.55	0.5540		0.5540	

COPPER CHLORATE (ic) Cu(ClO₃)_{2.4}H₂O.

SOLUBILITY IN WATER. (Meusser — Ber. 35, 1420, '02.)

t°.	Gms. Cu(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Cu(ClO ₃) ₂ per 100 Mol H ₂ O.	Solid s. Phase.	t°	Gms. Cu(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Cu(ClO ₃) ₂ per 100 Mols H ₂ O.	Solid Phase.
— I 2	30.53	3 · 43	Ice	18	62.17	12.84	Cu(ClO ₃) _{2.4} H ₂ O
-31	54.59	9.39	Cu(ClO ₈) _{2.4} H ₂ O	45	66.17	15.28	4.4
-21	57.12	10.41	44	59.6	69.42	17.73	46
+0.8	58.51	II.02	84	71	76.9	25.57	64
De	neity of	colution of	to haterutes	T 80 -	T 605		

Density of solution saturated at 18° = 1.095.

COPPER CHLORIDE (ic) CuCl2.

SOLUBILITY IN WATER.

(Reicher and Deventer - Z. physik. Chem. 5, 560, '90; see also Etard - Ann. chim. phys. [7] 2, 528, '94.)

t°.	Gms. CuCl ₂ per 100 Gms. Solution.	t°.	Gms. CuCl ₂ per 100 Gms. Solution.	t°.	Gms. CuCl ₂ per 100 Gms. Solution.
0	41.4	25	44.0	50	46.65
IO	42.45	30	44.55	60	47 . 7
20	43.5	40	45.6	80	49.8
				100	51.9

Density of solution saturated at $0^{\circ} = 1.511$, at 17.5° = 1.570.

Solubility of Cupric Chloride in Aqueous Solutions of Hydrochloric Acid at o°.

(Engel - Ann. chim. phys. [6] 17, 351, '89.)

Milligram Mols.	per 10 cc. Sol.	Sp Gr. of				Gms. per 100 Gms. Sol.		
2CuCl2.	HCl.	Solutions.	CuCl ₂ .	HCl.	CuCl ₂ .	HCl.		
91.75	0	1.49	61.70	0.0	41.41	0.0		
86.8	4.5	1.475	58.37	1.64	39.58	1.11		
83.2	7.8	1.458	55.95	2.84	38.37	1.95		
79 · 35	10.5	I .435	$53 \cdot 37$	3.83	37.19	2.67		
68.4	20.25	1.389	46.01	7 - 38	33.11	5.31		
50.0	37 · 5	1.319	33.62	13.67	25.50	10.37		
22.8	70.25	1.231	15.33	25.61	12.46	20.80		
23.5	102.5	1.288	15.81	37.36	12.27	29.00		
26.7	128.0	1.323	17.96	46.66	13.57	35.26		
			29.0	Sat. HCl				

Solubility of Cuprous Chloride in Aqueous Solutions of Hydrochloric Acid.

(Engel - Ibid. [6] 17, 372, '89; Compt. rend. 121, 529, '95.)

	HCl.	Sp. Gr. of Solutions.	Gms. per Cu ₂ Cl ₂ .	HCl.	Gms. per 10 Cu ₂ Cl ₂ .	
0.475 1.5 2.9 4.5 8.25 15.5 33.0 Results at	8.975 17.5 26.0 34.5 47.8 68.5 104.0	I.05 I.049 I.065 I.080 I.135 I.261 I.345	0.471 1.486 2.872 4.457 8.172 15.7 32.68	0.327 0.638 0.948 1.257 1.743 2.497 3.827	0 · 448 1 · 418 2 · 697 4 · 127 7 · 199 12 · 46 24 · 30	0.312 0.608 0.932 1.164 1.535 1.980 2.845
7·4 10.8 12.8 16 0	54·4 68·9 75·0 92·0	I · 19 I · 27 I · 29 I · 38	7·33 10.69 12.68 15.84	1.983 2.511 2.734 3.346	6.159 8.422 9.826 11.48	1.666 1.977 2.119 2.424

Copper Chloride, Ammonium Chloride Mixtures in Aqueous Solution at 30° .

(Meerburg - Z. anorg. Chem. 45, 3, '05.)

Grams per 100 Gms. Sat. Solution.		Grams Gms. So	per 100 lid Phase.	Solid Phase	
CuCl ₂ .	NH4Cl.	CuCl ₂ .	NH ₄ Cl.		
0	29.5			NH ₄ Cl	
1.9	28.6	6.0	48.2	NH4Cl + CuCl2.2NH4Cl.2H2O	
3.6	25.9	37.0	34.9	CuCl _{2.2} NH ₄ Cl. ₂ H ₂ O	
10.5	16.5	21.7	23 · I	44	
19.9	9.4	28.5	18.4	64	
29.4	4.9	35.1	15.3	å•	
41.4	2 · I	43.I	13.3	44	
43.2	2.0	51.9	6.6	$CuCl_2.2NH_4Cl.2H_2O + CuCl_2.2H_2O$	
43.9	0			CuCl ₂ .2H ₂ O	

COPPER AMMONIUM CHLORIDE CuCl2.2NH4Cl.2H2O.

SOLUBILITY IN WATER.

(Meerburg.)

t°.	Gms. CuCl _{2.2} NH ₄ C per 100 Gms Solution.		t°.	Gms. CuCl _{2.2} NH ₄ O per 100 Gms Solution.	
-10.5	3.87	Ice	30	27.70	CuCl ₂ .2NH ₄ Cl.2H ₂ O
- 10.8	20.12	Ice	40	30.47	"
-11	20.3	Ice + CuCl ₂ .2NH ₄ Cl.2H ₂ O	50	33.24	44
-10	20.46	CuCl ₂ .2NH ₄ Cl.2H ₂ O	60	36.13	"
0	22.02	44	70	39.35	46
12	24.26	"	80	43.36	"
20	25.95	44			

SOLUBILITY OF CUPROUS CHLORIDE IN AQUEOUS SOLUTIONS OF CUPRIC SULPHATE AT ABOUT 20°.

(Bodländer and Storbeck - Z. anorg. Chem. 31, 22, '02.)

	Mill	imols per		Grams per Liter.					
CuSO4.	Total Cu.	Total Cl.	Cu(ic).	Cu(ous).	CuSO ₄ .	Total Cu.	Total Cl.	Cu(ic).	Cu(ous).
0						0. 183			
0.987	3.602	4.908	3.145	0.457	0.158	0.229	0.174	0.200	0.029
1.975	4.553	4.687	4.131	0.422	0.315	0.290	0.166	0.263	0.027
2.962						0.330			
4.937	7.276	4.329	6.546	0.730	0.788	0.463	0.154	0.416	0.046

Solubility of Cuprous Chloride in Aqueous Solutions of Potassium Chloride at $18^{\circ}-20^{\circ}$ except determinations in 3rd, 7th, 8th, and last line, which are at 16° .

(Bodländer and Storbeck.)

	Millin	nols per Lit	er.		Grams per Liter.				
KCl.	Total Cu.	Total Cl.	Cu(ic).	Cu(ous).	KCI.	Total Cu.	Total Cl.	Cu(ic).	Cu(ous)
0	2.851	5.436	2.222	0.629	0.0	0. 181	0.193	0.141	0.040
2.	5 1.955	6.015	1.421	0.534	0.186	0.124	0.213	0.090	0.034
5	1.522	7.525	1.008	0.514	0.373	0.097	0.267	0,069	0.033
10	1.236	11.735	0.475	0.761	0.746	0.079	0.416	0.030	0.048
20	1.446	21.356	0.324	I.122	1.492	0.092	0.759	0.021	0.071
50	2.411	not det.	0.1088	2.302	3.730	0.153	not det.	0.007	0.146
100	4.702	"	0.000	4.702	7.460	0.299	"	0.000	0.299
200	9.485		0.000	9.485	14.920	0.603	"	0.000	0.603
1000	97.0	66	0,000	97.0	74.60	6.170	££.	0.000	6. 170
2000	384.0	66	0.000	384.0	149.2	24.42	**	0.000	24.420

SOLUBILITY OF COPPER CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE.

(Hunt - Am. J. Sci. [2] 49, 154, '70.)

t*.	Grams CuCl ₂ per 100 cc. Solution of:						
	Sat. NaCl.	15% NaCl.	5% NaCl.				
II	8.9	3.6					
40	11.9	6.0	I.I				
90	16.9	10.3	2.6				

SOLUBILITY OF COPPER CHLORIDE AND POTASSIUM CHLORIDE DOUBLE SALTS AND MIXTURES IN WATER.

(Meyerhoffer - Z. physik. Chem. 5, 102, '90.)

- 2	Cl per 1 Gram Solution.		Mols. per 100	Mols. H ₂ O.	C 11 1	
t°.	Present as CuCl ₂ .	Present as KCl.	CuCl ₂ .	KCl.	Solid Phase.	
39 · 4	0.120	0.107	5.56	9.93	CuCl _{2.2} KCl _{.2} H ₂ O + KCl	
49.9	0.129	0.115	6.39	11.4	66	
60.4	0.142	0.125	7.71	13.6	44	
79.I	0.168	0.142	II.I	18.8	66	
90.5	0.188	0.154	14.9	24.4	66	
93 · 7	0.194	0.156	16.2	26.0	CuCl ₂ .KCl + KCl	
98.8	0.197	0.162	17.5	28.7		
0	0.214	0.021	9.84	1.94	$CuCl_{2.2}KCl_{.2}H_2O + CuCl_{2.2}H_2O$	
39.6	0.232	0.049	12.9	5 · 44	66	
50.1	0.233	0.059	13.7	6.90	64	
52.9	0.241	0.062	14.8	7.63	44	
60.2	0.246	0.066	15.8	8.49	CuCl ₂ .KCl + CuCl ₂ .2H ₂ O	
72.6	0.255	0.063	16.8	8.35	44	
64.2			14.9	11.6	$CuCl_{2.2}KCl_{.2}H_2O + CuCl_2.KCl$	
72.5		• • •	14.8	15.0	CuCl ₂ .KCl	

SOLUBILITY OF CUPRIC CHLORIDE IN SEVERAL SOLVENTS.

(Etard — Ann. chim. phys. [7] 2, 564, '94; de Bruyn — Z. physik. Chem. 10, 783, '92; de Coninck — Compt. rend. 131, 59, '00; St. von Laszczynski — Ber. 27, 2285, '94.)

Solvent.	Grams CuCl ₂ per 100 Grams Sat. Solution at:							
Solvent.	· .	15°.	20°.	40°.	80°.			
Methyl Alcohol	36	40.5 (de B.)	36.5	37.0				
Ethyl Alcohol	32	35.0 (de B.)	35.7	39.0				
Propyl Alcohol	29	• • •	30.5	30.5				
Iso Propyl Alcohol		• • • •		16.0	30.0			
n Butyl Alcohol	15	• • •	15.3	16.0	16.5			
Allyl Alcohol	23		23.0					
Ethyl Formate	10		9.0	8.0				
Ethyl Acetate			3.0	2.5	1.3 (72°)			
Acetone (abs.)	8.86*	8.92†	2.88 (18°)		1.40 (56°)			
Acetone (80%)		• • •	18.9‡					
Ether		0.043 (11°)	0.11					
* (CuCl _{2.2}	Aq.)	† (CuCl _{2.2} Aq.)	‡ (23° C	uCl _{2.2} Ac	1.)			

For the solubility of cupric chloride in mixtures of a number of organic solvents, see de Coninck.

SOLUBILITY OF CUPRIC CHLORIDE IN AQUEOUS ALCOHOL AT 11.5°. (Bödtker — Z. physik. Chem. 22, 507, '97.)

10 gms. of CuCl₂2H₂O and the indicated amounts of CuCl₂ were added to 20 cc. portions of alcohol. The solutions shaken two hours, 5 cc. portions withdrawn.

Vol. %	Gms. CuCl ₂ Added.	Gms. per	5 cc. Solution.	Vol. %	Gms. CuCl ₂ Added.	Gms. per 5	cc. Solution.
Alcohol.	Added.	H ₂ O.	CuCl ₂ .	Alcohol.	Added.	H ₂ O.	CuCl ₂ .
89.3	0.0	0.794	1.137	99.3	0.223	0.330	1.295
92.0	0.0	0.648	1.090	99.3	0.887	0.247	1.639
96.3	0.0	0.478	1.116	99.3	1.540	0.191	2.086
99.3	0.0	0.369	1.208	99 · 3	1.957	0.164	2.400

COPPER NITRATE (ic) Cu(NO₃)₂.

SOLUBILITY IN WATER.

(Funk -- Wiss. Abh. p. t. Reichanstalt, 3, 440, '00.) Gms. Cu(NO₃)₂ per 100 Gms. Gms. Cu(NO₃)₂ per 100 Gms. Mols. Cu(NO₃)₂ Mols. Cu(NO₃)₂ Solid Phase. t°. Solid Phase. per 100 Mols. H₂O. per 100 Mols. H₂O. Solution. Solution. 36.08 Cu(NO₃)_{2.9}H₂O -235.42 55.58 12.0 Cu(NO₃)_{2.6}H₂O 20 6.65 66 .. 40.92 26.4 63.39 16.7 - 20 - 2 T 39.52 6.27 Cu(NO₃)₂.6H₂O 60.01 14.4 Cu(NO₃)_{2.3}H₂O 25 66 7.87 45.00 61.51 15.2 0 40 48.79 66 60 +10 64.17 9.15 17.2 т8 67.51 53.86 II.20 80 20.0 114.5 77.59 $33 \cdot 3$

Density of solution saturated at $18^{\circ} = 1.681$.

COPPER SULPHATE CuSO4.5H2O.

SOLUBILITY IN WATER.

(Etard — Ann. chim. phys. [7] 2, 528, '94; Patrick and Aubert — Trans. Kansas Acad. Sci. 19, '74; at 15°, Cohen — Z. Electrochem. 9, 433, '03; at 25°, Trevor — Z. physik. Chem. 7, 470, '91.)

t°.	Gms. CuSO ₄ pe	t°.	40	Gms. CuSO ₄ per 100 Gms.		
	Solution.	Water.		٠.	Solution.	Water.
0	12.5	14.3		60	28.5	40.0
IO	14.8	17.4		80	35 · 5	55.0
20	17.2	20.7	1	00	43.0	75 - 4
25	18.5	22.7	1	20	44.0	78.6
30	20.0	25.0	1	40	44.5	80.2
40	22.5	28.5	1	60	44.0	78.6
50	25.0	33 · 3	1	:80	43.0	75 - 4

SOLUBILITY OF COPPER SULPHATE IN AQUEOUS SOLUTIONS OF SUL-PHURIC ACID AT 0°. (Engel — Compt. rend. 104, 507, '87.)

Milligram Equiv. per 10 Gms. H ₂ O.		Sp. Gr. of Solutions.	Grams per 100 Grams H ₂ O.	
H ₂ SO ₄ .	CuSO ₄ .	Solutions.	H ₂ SO ₄ .	CuSO ₄ .
0.0	18.6	I.144	0.00	14.85
4.14	17.9	1.143	2.03	14.29
14.6	19.6	1.158	7.16	15.65
31.0	12.4	1.170	15.20	9.90
54.2	8.06	1.195	26.57	6.43
56.25	7 · 75	1.211	27.57	6.19
71.8	5.0	I.224	35.2	3.99

SOLUBILITY OF COPPER SULPHATE IN AQUEOUS SOLUTIONS OF AMMONIUM SULPHATE AT 0°.
(Engel — Compt. rend. 102, 114, '86.)

Milligram Equiv. per 10 cc. Solution.		Sp. Gr. of Solutions.	Grams 100 cc. Sol	Grams per		
(NH ₄) ₂ SO ₄ .	CuSO ₄ .	Solutions.	(NH ₄) ₂ SO ₄ .	CuSO ₄ .		
0.0	18.52	1.144	0.0	14.79		
5 · 45	20.15	1.190	3.61	16.09		
7.0	10.5	1.108	4.63	8.38		
7 · 4	9.1	1.099	4.90	7.26		
8.45	6.425	1.0815	5.59	5.13		
11.35	$3 \cdot 7$	1.071	7.51	2.95		
18.6	1.178	1.082	12.31	0.94		
31.2	1.0	1.116	20.65	0.80		

MIXTURES OF COPPER AMMONIUM SULPHATE AND NICKEL AMMONIUM SULPHATE IN WATER AT 13°-14°.

(Fock — Z. Kryst. Min. 28, 394, '97.)

$CuSO_4.(NH_4)_2SO_4.6H_2O - NiSO_4.(NH_4)_2SO_4.6H_2O.$

	Solution.		o Mols. H ₂ O.	Mol. % in	Solid Phase.
Cu. Salt.	Ni Salt.	Ću Salt.	Ni Salt.	Cu. Salt.	Ni Salt.
0.00	100.00	0.00	0.521	0.00	100.00
33.34	66.66	0.1476	0.295	10.29	89.71
56.05	43.95	0.2664	0.2089	30.59	69.41
73.89	26.20	0.4165	0.1449	52.23	$47 \cdot 77$
79.92	20.08	0.4785	O.I2O2	78.8o	21.20
100.00	0.00	1.0350	0.00	100.0	0.00

MIXTURES OF COPPER AMMONIUM SULPHATE AND ZINC AMMONIUM SULPHATE IN WATER AT 13°-14°.

$CuSO_4.(NH_4)_2SO_4.6H_2O - ZnSO_4.(NH_4)_2SO_4.6H_2O.$

Mol. % in	Solution.	Mols. per 10	o Mols. H ₂ O.	Mol. % in	Solid Phase.
Cu. Salt.	Zn Salt.	Cu Salt.	Zn Salt.	Cu. Salt.	Zn Salt.
4.97	95.03	0.0422	0.8069	2.39	97.6i
10.65	89.35	0.0666	0.5638	4.52	95 - 48
19.24	80.76	0.1218	0.5115	9.03	90.97
30.19	69.81	0.2130	0.4924	14.67	85.33
44 - 44	55.56	0.3216	0.4022	22.62	77 . 38
100.00	0.00	1.035	0.000	100	0.000

SOLUBILITY OF COPPER SULPHATE IN AQUEOUS SOLUTIONS OF MAGNESIUM SULPHATE AT 0°. (Diacon — Jahresber, Chem. 61, '66.)

		(Diacon Juneaber)	Chem. Or, Go.,		
Grams per 1	MgSO ₄ .	Phase.	Grams per 10	MgSO ₄ .	Solid Phase.
0	26.37	MgSO ₄ .6H ₂ O	12.03	15.67	$CuSO_{4.5}H_2O$
2.64	25.91	44	13.61	8.64	44
4.75	25.30	44	14.99	0.00	64
0.01	23.30	$MgSO_4.6H_2O + CuSO_4.5H_2O$			

COPPER SULPHATE, MANGANESE SULPHATE, MIXED CRYSTALS AT 25°. (Stortenbecker — Z. physik. Chem. 34, 112, 'oo.)

CusO ₄ . MnsO ₄ . Cu. Mn. in Solution. in Crystals. Triclinic Crystals with $_5H_2O$. 20.2 0 2.282 0 100 100 19.76 3.69 2.23 0.44 83.5 74.1 97.3 57.7 95.1 31.0 81.3 13.65 31.52 1.54 3.76 29.0 26.1 70.4 11.61 39.41 1.31 4.70 21.8 21.2 42.6 20.0 34.4 9.39 46.77 1.06 5.59 15.9 22.9 13.45* 15.2* 6.47 53.39 0.34 7.03 4.6 20.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with $_7H_2O$. 20.0 28.2 9.39 46.77 1.06 5.58 15.9 23.5 Monoclinic Crystals with $_7H_2O$.	Gms. per 100	Gms. H ₂ O.	Mols. per 100	Mols. H ₂ O.	Mol. % Cu	Mol. % Cu
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Mn.		in Crystals.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Triclinic C	rystals with 5H20				
19.76 3.69 2.23 0.44 83.5 74.1 97.3 57.7 95.1 31.0 81.3 13.05 31.52 1.54 3.76 29.0 26.1 70.4 11.01 39.41 1.31 4.70 21.8 21.2 42.0 20.0 34.4 9.39 46.77 1.06 5.59 15.9 22.9 13.45* 15.2* 6.47 53.39 0.73 6.37 10.27 10.5 3.01 58.93 0.34 7.03 4.6 2.31 2.15 0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H20. 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	20.2	0	2.282	0	100	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					90.5	99.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.76	3.69	2.23	0.44	83.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					74·I	97.3
13.65 31.52 1.54 3.76 29.0 26.1 70.4 21.8 21.2 42.6 20.0 34.4 9.39 46.77 1.06 5.59 15.9 22.9 13.45* 15.2* 6.47 53.39 0.73 6.37 10.27 10.5 3.01 58.93 0.34 7.03 4.6 2.31 2.15 0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H2O. 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*					57 · 7	95.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					31.0	81.3
11.61 39.41 1.31 4.70 21.8 21.2 42.6 20.0 34.4 9.39 46.77 1.06 5.59 15.9 22.9 $13.45*$ $15.2*$ $15.2*$ 10.27 10.5 3.01 58.93 0.34 7.03 4.6 0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with $_{7}H_{2}O$. 20.0 28.2 9.39 46.77 1.06 5.58 15.9 23.5 6.47 53.39 0.73 6.37 10.27 16.0 $4.6*$ $5.8*$	13.65	31.52	1.54	3.76		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						70.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.01	39.41	1.31	4.70	21.8	
9·39 46·77 1·06 5·59 15·9 22·9 13·45* 15·2* 6·47 53·39 0·73 6·37 10·27 10·5 5·0 4·9 3·01 58·93 0·34 7·03 4·6 2·31 2·15 0·0 61·83 0·0 7·375 0·0 100·0 Monoclinic Crystals with 7H2O. 9·39 46·77 1·06 5·58 15·9 23·5 13·45 20·8 6·47 53·39 0·73 6·37 10·27 16·0 4·6* 5·8*					21.2	42.6
6.47 53·39 0·73 6·37 10·27 10·5 3.01 58·93 0·34 7·03 4.6 0.0 61·83 0·0 7·375 0·0 100·0 Monoclinic Crystals with 7H2O. 9·39 46·77 1.06 5·58 15·9 23·5 13·45 20·8 6·47 53·39 0·73 6·37 10·27 16·0 4.6* 5·8*					20.0	34.4
6.47 53.39 0.73 6.37 10.27 10.5 3.01 58.93 0.34 7.03 4.6 0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H2O. 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	9.39	46.77	1.06	5 · 59		
3.01 58.93 0.34 7.03 4.6 0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H2O. 20.0 28.2 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	,				13.45*	15.2*
3.01 58.93 0.34 7.03 4.6 2.31 2.15 0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H2O. 20.0 28.2 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	0.47	53 · 39	0.73	6.37	•	10.5
0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H2O. 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*		0				4.9
0.0 61.83 0.0 7.375 0.0 100.0 Monoclinic Crystals with 7H2O. 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	3.01	58.93	0.34	7.03	4.6	
Monoclinic Crystals with 7H ₂ O. 9.39 46.77 1.06 5.58 15.9 23.5 13.45 20.8 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*					2.31	2.15
9·39 46·77 1·06 5·58 15·9 23·5 6·47 53·39 0·73 6·37 10·27 16·0 4·6* 5·8*		•		7 · 375	0.0	100.0
9.39 46.77 1.06 5.58 15.9 23.5 6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	Monoclinic	Crystals with 7F	I ₂ O.			
6.47 53·39 0·73 6·37 10·27 16·0 4.6* 5.8*					20.0	28.2
6.47 53.39 0.73 6.37 10.27 16.0 4.6* 5.8*	9.39	46.77	1.06	5 - 58	15.9	23.5
4.6* 5.8*					13.45	20.8
6	6.47	53 · 39	0.73	6.37		
014					4.6*	5.8*
0.0 100	0.0	67 .07 ±	0.0	8±*	0.0	100

^{*} Indicates points of labil equilibrium.

COPPER SULPHATE, ZINC SULPHATE, MIXED CRYSTALS IN WATER. (Stortenbecker — Z. physik. Chem. 22, 62, '97.)

		(Stortenbecker — Z.	physik. Chem. 22, 6	02, '97.)
Mols. per 100	Mols. H ₂ O. Zn.	Mol. % Cu in Solution.	Mol. % Cu in Crystals.	
2.28	0	100	100	
1.83	2.08	46.8	94.9	
1.41	3.60	28.1	86.4	Triclinic Crystals with 5H2O.
1.19	5.01	19.2	77.9	J
ı.86	3.36	36.2	40.4	
I.22	4.45	21.5	29.5-31.9	
I.OI	4.72	17.6	24.1-28.	
0.82	5.03	14.0	19.0-22.	Monoclinic Crystals with 7H2O.
0.51	5.59	8.36	12.4-14.9	
0.30	5.56	4.87	7.02	
0.0	6.42	0.0	0	
1.19	5.01	19.2	5.01	
0.51	5.59	8.36	1.97	Rhombic Crystals with 7H2O.
0.267	5.77	4.42	1.15	
0.0	5.94	0.0	0.00)

SOLUBILITY OF COPPER SULPHATE, SODIUM SULPHATE MIXTURES IN WATER.

(Koppel - Z. physik. Chem. 42, 8, 'o1-'o2; Massol and Maldes - Compt. rend. 133, 287, 'o1.)

Gms. per Solu	100 Gms.	Mols. per	100 Mols.	Solid Phase.
CuSO4.	Na ₂ SO ₄ .	CuSO ₄ .	Na ₂ SO ₄ .	Solid Thase.
13.40	6.23	1.88	0.98	$CuSO_{4.5}H_2O + Na_2SO_{4.10}H_2O$
14.90	9.46	2.23	1.56	44
15.18	11.64	2.23	2.02	66
14.34	13.34	2.24	2.34	CuSO ₄ .Na ₂ SO ₄ .6H ₂ O
14.36	12.76	2.23	2.21	44
13.73	12.26	2.10	2.10	66
14.99	13.48	2.37	2.39	$CuSO_4.Na_2SO_4.6H_2O + CuSO_4.5H_2O$
16.41	11.35	2.57	1.99	66
20.56	8.0	3.25	I.47	44
13.53	13.84	2.10	2.41	CuSO ₄ .Na ₂ SO ₄ .6H ₂ O + Na ₂ SO ₄ .10H ₂ O
11.34	15.70	1.76	2.73	66
6.28	21.20	0.98	3.70	
2.607	28.38	0.43	5.21	66
I .475	32.30	0.25	6.18	66
1.494	31.96	0.25	6.08	66
5.38	22.17)
3.69	$25 \cdot 37$			CuSO ₄ .Na ₂ SO ₄ .6H ₂ O + increasing amts. of Na ₂ SO ₄ .10H ₂ O
1.57	32.09)
	Solu CuSO4. 13.40 14.90 15.18 14.34 14.36 13.73 14.99 16.41 20.56 13.53 11.34 6.28 2.607 1.475 1.494 5.38 3.69	13.40 6.23 14.90 9.46 15.18 11.64 14.34 13.34 14.36 12.76 13.73 12.26 14.99 13.48 16.41 11.35 20.56 8.0 13.53 13.84 11.34 15.70 6.28 21.20 2.607 28.38 1.475 32.30 1.494 31.96 5.38 22.17 3.69 25.37	Solution. CusO ₄ . Na ₂ SO ₄ . CusO ₅ . 13.40 6.23 1.88 14.90 9.46 2.23 15.18 11.64 2.23 14.34 13.34 2.24 14.36 12.76 2.23 13.73 12.26 2.10 14.99 13.48 2.37 16.41 11.35 2.57 20.56 8.0 3.25 13.53 13.84 2.10 11.34 15.70 1.76 6.28 21.20 0.98 2.607 28.38 0.43 1.475 32.30 0.25 1.494 31.96 0.25 5.38 22.17 3.69 25.37	Solution. CuSO ₄ . Na ₂ SO ₄ . 13.40 6.23 1.88 0.98 14.90 9.46 2.23 1.56 15.18 11.64 2.23 2.02 14.34 13.34 2.24 2.34 14.36 12.76 2.23 2.21 13.73 12.26 2.10 2.10 14.99 13.48 2.37 2.39 16.41 11.35 2.57 1.99 20.56 8.0 3.25 1.47 13.53 13.84 2.10 2.41 11.34 15.70 1.76 2.73 6.28 21.20 0.98 3.70 2.607 28.38 0.43 5.21 1.475 32.30 0.25 6.18 1.494 31.96 0.25 6.08 5.38 22.17 3.69 25.37

Solubility of Copper Potassium Sulphate $\mathrm{CuK}_2(\mathrm{SO}_4)_2.6\mathrm{H}_2\mathrm{O}$ in Water at 25°.

100 gms. H₂O dissolve 11.14 gms. CuK₂(SO₄)₂.

(Trevor - Z. physik. Chem. 7, 470, '91.

SOLUBILITY OF COPPER SULPHATE IN METHYL AND ETHYL ALCOHOL, ETC.

(de Bruyn - Z. physik. Chem. 10, 786, '92; de Coninck - Bull. acad. roy. Belgique, 257, '05.)

Solvent.	t°.		CuSO _{4.5} H ₂ O.		Y IN AQUEOUS OL AT 15°.
Methyl Alcohol Abs.	18	1.05	15.6		's Ann. 118, 365, '61.)
" 93.5%	18		0.93	,	
" 50%	18		0.40	Wt. % Alcohol.	Gms. CuSO _{4.5} H ₂ O per 100 g. Solvent.
" Abs.	3		13.4	10	15.3
Ethyl Alcohol Abs.	3			20	3.2
Glycol	14		7.6*	40	0.25
Glycerine	15		30.0	·	
<i></i> ,	-3	•	100 g. sol.		

COPPER SULPHIDE CuS.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS. (Stolle — Z. Ver. Zuckerind. 50, 340, '00.)

% Sugar	Gms. CuS per Liter of Aq. Sugar Solution at:				
% Sugar in Solvent.	17.5°.	45°•	75°•		
IO	0.5672	0.3659	1.1345		
30	0.8632	0.7220	1.2033		
50	0.9076	1.0589	1.2809		

COPPER TARTRATE CuC.O.H..3H.O.

SOLUBILITY IN WATER. (Cantoni and Zachoder — Bull. soc. chim. [3] 33, 751, '05.)

t°.	Gms. CuC ₄ O ₆ H _{4·3} H ₂ O per 100 cc. Solution.	t°.	Gms. CuC ₄ O ₆ H _{4.3} H ₂ O per 100 cc. Solution.	t */	Gms. CuC ₄ O ₆ H _{4.3} H ₂ O per 100 cc. Solution.	
15	0.0197	40	0.1420	65	0.1767	
20	0.0420	45	0.1708	70	0.1640	
25	0.0690	50	0.1920	75	0.1566	
30	0.0890	55	0.2124	80	0.1440	
35	0.1205	60	0.1970	85	0.1370	

ORESOL $C_6H_4(OH).CH_3$ o, m and p.

SOLUBILITY IN WATER AT 20°. (Vaubel — J. pr. Chem. [2] 52, 72, '95.)

100 grams of the saturated aqueous solution contain:

2.45 grams o cresol, 2.18 grams m cresol, 1.94 grams p cresol.

DISTRIBUTION OF CRESOL BETWEEN WATER AND ETHER. (Vaubel — J. pr. Chem. [2] 67, 472, '03.)

Composition of Solvent.	Gms. Cresol in H ₂ O Layer.	In Ether Layer.
200 cc. H ₂ O+100 cc. Ether	0.0570	1.0760
200 cc. $H_2O + 200$ c.c. Ether	0.0570 0.0190	1.1144

CUMINIC ACID C3H7C6H4.COOH (p Iso Propyl Benzoic Acid).

SOLUBILITY IN WATER AT 25°. (Paul — Z. physik. Chem. 14, 111, '94.)

1000 cc. sat. solution contain 0.1519 gm. or 0.926 millimol Cuminic Acid.

Pseudo**CUMIDINE** (CH₃)₃.C₆H₂.NH₂ (sym. 5 Amino, 1, 2, 4, Trimethyl benzene).

SOLUBILITY IN WATER. (Lowenherz — Z. physik. Ch. 25, 412, '98.)

t°.	19.4°.	23.7°.	28.7°.
Gms. ψ Cumidine per liter H ₂ O	1.198	1.330	1.498

CYANOGEN CN.

SOLUBILITY IN SEVERAL SOLVENTS AT 20°. (Gay Lussac.)

Solvent.	Vols. CN per 1 Vol. Solvent.
Water	4.5
Alcohol	23.0
Ether	5.0
Oil of Turpentine	5.0

DIDYMIUM SULPHATE Di2(SO4).

SOLUBILITY IN WATER. (Marigs ac — Ann. chim. phys. [3] 38, 170, '53.)

133

t°.	Gms. $Di_2(SO_4)_3$ per 100 Gms. H_2O .	Solid Phase	t°.	Gms.Di ₂ (SO ₄) ₃ per 100 Gms.H ₂ O.	Solid Phase.
12	43.1	$Di_2(SO_4)_3$	3	34.0	$\text{Di}_2(\text{SO}_4)_3.6\text{H}_2\text{O}$
18	25.8	. 66	19	11.7	$Di_2(SO_4)_3.8H_2O$
25	20.6	"	40	8.8	""
25 38	13.0	66	50	6.5	66
50	11.0	"	100	1.8	46

DIDYMIUM POTASSIUM SULPHATE K₂SO₄.Di₂(SO₄)₃.2H₂O. (Marignac.)

100 gms. H₂O dissolve 1.6 grams double salt at 18°.

ERBIUM SULPHATE Er2(SO4)3.

SOLUBILITY IN WATER. (Hoglund.)

100 gms. H₂O dissolve 43.0 gms. Er₂(SO₄)₃ at o°. 100 gms. H₂O dissolve 23.0 gms. Er₂(SO₄)₃.8H₂O at 20°.

ERYTHRITE CH2OH(CHOH)2CH2OH.

100 grams saturated solution in pyridine contain 250 gms. at 26°.
(Holty — J. Physic. Chem. 9, 764, '25,'

ETHANE C.H.

SOLUBILITY IN WATER. (Winkler — Ber. 34, 1421, '01.)

t°.	β.	β'.	q.	t°.	β.	β′.	g.
		0.0982		40	0.0292	0 0271	0.0037
5	0.0803	0.0796	0.0107	50	0.0246	0.0216	0.0029
10	0.0656	0.0648	0.0087	60	0.0218	0.0175	0.0024
		0.0541		70	0.0195	0.0135	0.0018
20	0.0472	0.0462	0.0062	80	0.0183	0.0097	0.0013
		0.0398		90	0.0176	0.0054	0.0007
30	0.0362	0.0347	0.0049	100	0.0172	0.0000	0.0000

 β = Absorption coefficient, *i.e.*, the volume of gas (reduced to o° and 760 mm.) absorbed by 1 volume of the liquid when the pressure of the gas itself without the tension of the liquid amounts to 760 mm.

 $\beta' =$ Solubility, *i.e.*, the volume of gas (reduced to o° and 760 mm.) which is absorbed by one volume of the liquid when the barometer

indicates 760 mm. pressure.

q= the weight of gas in grams which is taken up by 100 grams of the pure solvent at the indicated temperature and a total pressure (that is, the partial pressure of the gas plus the vapor pressure of the liquid at the absorption temperature) of 760 mm.

ETHER $(C_2H_5)_2O$.

RECIPROCAL SOLUBILITY OF ETHER AND WATER. (Klobbie — Z. physik. Chem. 24, 619, '97; Schuncke — Ibid. 14, 334, '94; St. Tolloczko — Ibid. 20, 407, '96.)

olub	dity of Eth	ier in Water.	Solubility of Water in Ethe			
Low	er Layer —	- Aqueous.	Upper I	Upper Layer — Ethereal.		
t°.		per 100 Gms.	Gms. H ₂ O p	er 100 Gms.		
• .	Water.	Solution.	Ether.	Solution.		
0	13.12	11.6	1.01	1.0		
5	11.4	10.2	1.06	1.05		
IO	9.5	8.7	1.12	1.12 (2.6, S.)		
15	8.2	7.6	1.16	1.15		
20	6.95	6.5	I.20	1.20 (2.65, S.)		
25	6.05	5 · 7	1.26	1.26		
30	5 · 4	5.1	1.33	1.32		
*40	4.7	4.5	1.52	1.50		
*50	4.3	4.1	1.73	1.7		
*60	3.8	3.7	1.83	1.8		
*70	3 · 3	3.2	2.04	2.0		
*80	2.9	2.8	2.25	2.2		

^{*} Indicates determinations made by Synthetic Method, for which see page o.

100 cc. H_2O dissolve 8.11 cc. ether at 22°; Vol. of solution 107.145 cc., Sp. Gr. 0.9853.

100 cc. ether dissolve 2.93 cc. H₂O at 22°; Vol. of solution 103.282, Sp. Gr. 0.7164.

(Herz — Ber. 31, 2671, '98.)

For recent determinations of the density of ether, see Christomanos — Z. anorg. Chem. 45, 136, '05.

Solubility of Ether in Aqueous Solutions of Hydrochloric Acid.

(Schuncke - Z. physik. Chem. 14, 334, '94; in 38.52% HCl, Draper - Chem. News, 35, 87, '77.)

(Schulck - 2. physik. Chem. 14, 334, 94, in 30.52/6 ffci, Diapei - Chem. News, 35, 67, 77.)							
In	38.52 % H	ICl. In §	[C1.	Cl. In 20 % HCl.			
t°.	cc. Ether per 100 cc. Solvent.	cc. Ether per 100 cc. Solvent.	Gms. per 1 HCl.	Gram H ₂ O. (C ₂ H ₅) ₂ O.	cc. Ether per 100 cc. Solvent.	Gms. per	1 g. H ₂ O. (C ₂ H ₅) ₂ O.
-6	181	149	0.4622	1.387	67.2	0.253	0.5637
0	177.5	142	0.4622	1.308	58.3	0.253	0.4863
+6	172.5	131.5	0.4622	1.2075	51.1	0.253	0.4231
15	163	121.7 (14°)	0.4622	1.1075	40.5	0.253	0.3299
20	158	116.9 (20.8°	0.4622	1.0005	33.1	0.253	0.2688
26	135	104.2	0.4622	0.9360	27.5	0.253	0.2221
	I	n 12.58% HCl	In 3.65 % HCl.				
t°.	cc. Ethe		Gram H ₂ O. C ₂ H ₅) ₂ O.	cc. Ether	por	per 1 Gran	n H ₂ O. H ₅) ₂ O.

t°.	cc. Ether per		Gram H_2O . $(C_2H_5)_2O$.	cc. Ether per	-	Gram H ₂ O. (C ₂ H ₅) ₂ O.
-6	26.45	0.144	0.2106	19.23	0.0308	0.1454
0	22.19	0.144	0.1748			
+6	19.18	0.144	0.1503	14.31	0.0308	0.1070
15	15.61	0.144	0.1210	11.83	0.0308	0.0868
20	13.76	0.144	0.1059	10.52	0.0308	0.0769
26	12.70	0.144	0.0970	9.24	0.0308	0.0673

SOLUBILITY OF ETHER IN AQUEOUS SALT, ETC., SOLUTIONS AT 18°. (Euler — Z. physik. Chem. 49, 306, '04.)

Aq. Solu- tion of:	Gms. per Liter Added Salt.	Gms. (C ₂ H ₅) ₂ O per 100 cc. Solvent.	Aq. Solu- tion of:	Gms. per Liter Added Salt.	Gms. (C ₂ H ₅) ₂ O per 100 cc. Solvent.
Water	0.0	7.8	Na ₂ SO ₄	59.54	3.7
KNO ₃	101.19	5 · 4	Mannite	91.06	6.7
KCl	73.6	4.7	H ₂ SO ₄	49.0	6.6
LiCl	42.48	5.2	66	122.5	5.65
NaCl	58.5	4.5	"	245.0	4.55

SOLUBILITY OF ETHER IN AQUEOUS ETHYL ALCOHOL AND IN AQUEOUS METHYL ALCOHOL MIXTURES AT 20°.

(Bancroft — Phys. Rev. 3, 122, '95-'96.)

In Ethyl Alcohol.

In Methyl Alcohol.

Per 5	cc. Alcohol.	Per 5	cc. Alcohol.	Per 1 c	c. CH ₃ OH.	Per 1	cc CH₃OH.
cc. H ₂ O.*	cc. (C ₂ H ₅) ₂ O.†	cc. H ₂ O.*	cc. (C ₂ H ₅) ₂ O.†	cc. H ₂ O.	$cc.(C_2H_5)_2O.$	cc. H ₂ O.	cc. (C ₂ H ₅) ₂ O.
50	1.30	4.45	7.0	IO	1.13	0.83	1.80
25	1.70	4.0	7.8	7	0.85	0.64	3.00
10	2.41	3.87	8.0	4	0.60	0.52	5.0
8	3 · 35	3.10	10.0	2.5	0.56	0.44	10.0
6	5.10	2.08	15.0	1.8	0.63	0.45	15.0
5.2	1 6.00	I.77	17.5	1.0	1.23		

^{*} Saturated with ether.

ETHYL ACETATE CH3COOC2H5.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS AT 28°. (Euler — Z. physik. Chem. 31, 365, '99; 49, 306, '04.)

0.1		oc. of Salt	CH ₃ CO per	OC ₂ H ₅ Liter.	Solve	int	Con	c. of Salt	CH ₃ CO	OOC ₂ H ₅ Liter.
Solvent.	Nor	- Gms. per ty. Liter.	Gram Mols.	Grams.	50110			Gms. per Liter.	Gram Mols.	Grams.
Water	0	0	0.825	75.02	NaCl(at		1	14.62	0.76	67.0
KNO_3	$\frac{1}{2}$	50.59	0.77	67.81	"	66	1/2	29.25	0.67	59.0
66	I	101.19	0.72	63.40	66	"	I	58.5	0.51	45.0
66	2	202.38	0.625	55.04	Na ₂ SO ₄		1	71.08	0.465	40.96
KCl	1	18.4	0.747	65.79		(at 18°)	2	35.54	0.61	54.0
"	1/2	36.8	0.685	65.33	66	"	I	71.08	0.42	37.0
46	1	73.6	0.575	50.64	$MgSO_4$		4	16.30	0.733	64.55
66	2	147.2	0.41	36.11	-66		$\frac{1}{2}$	32.6	0.655	57.68
NaCl	1	14.62	0.745	65.61	"		I	65.21	0.505	44.47
66	1/2	29.25	0.677	59.62	ZnSO ₄		1	20.18	0.733	64.55
"	I	58.5	0.545	47.99	44		1/2		0.653	57.50
46	2	117.0	0.315	27.74	"		I	80.73	0.500	44.03

[†] Saturated with water.

SOLUBILITY OF ETHYL ACETATE IN AQUEOUS ETHYL ALCOHOL, METHYL ALCOHOL, AND ACETONE MIXTURES AT 20°.

(Bancroft — Phys. Rev. 3, 122, 131, '95-'96.)

	In Ethyl Alcohol. Per 1 cc. C ₂ H ₅ OH.		hyl Alcohol.		In Acetone. Per 1 cc. (CH ₃) ₂ CO.		
cc. H ₂ O.*	CH ₈ COOC ₂ H _{5.} †	cc. H ₂ O.	CC. CH ₃ COOC ₂ H ₅ .	cc. H ₂ O.	CH ₃ COOC ₂ H ₅ .		
10	0.25	IO	1.08	10	1.01		
8	0.27	- 3	0.68	5	0.60		
4	0.35	1.5	1.69	2	0.43		
2	I.02	1.29	2.50	1.5	0.47		
1.06	2.50	1.0	4.9	1.0	0.63		
0.65	5.0	0.98	7.0	0.8	0.74		
0.54	7.0	1.0	8.0	0.51	1.00		
0.44	10.0	1.03	10.0	0.25	2.00		
				0.20	5.00		

^{*} Saturated with ethyl acetate.

100 cc. H₂O dissolve 7.26 g. ethyl acetate at 28°.

(Euler - Z. physik. Chem. 31, 360, '99.)

100 cc. H₂O dissolve 9.26 cc. ethyl acetate at 20°. 100 cc. ethyl acetate dissolve 2.94 cc. water at 20°.

ETHYL BUTYRATE CaH, COOC2H5.

Solubility in Water and in Aqueous Ethyl Alcohol Mixtures at 20°.

100 g. H₂O dissolve 0.5 g. ethyl butyrate at 22°.

(Traube - Ber. 17, 2304, '84.)

100 cc. $\rm H_2O$ dissolve 0.8 cc. ethyl butyrate at 20°. (Bancroft.) 100 cc. ethyl butyrate dissolve 0.4 – 0.5 cc. $\rm H_2O$ at 20°.

Per 5 cc. $\begin{cases} cc. H_2O & 10 & 6 & 4 & 2.96 & 2.10 \\ cc. C_3H_7COOC_2H_5 & 0.34 & 0.96 & 2.47 & 4.00 & 6.0 \end{cases}$

ETHYL FORMATE HCOOC, H.

100 grams water dissolve 10 grams ethyl formate at 22°. (Traube.)

ETHYL PROPIONATE C2H5COOC2H5.

SOLUBILITY IN WATER AND IN AQUEOUS ETHYL ALCOHOL MIXTURES.
(Bancroft.)

100 grams H₂O dissolve 1.7 grams ethyl propionate at 22°. (Traube.)

		-					•
cc. Alcohol in Mixture.	cc. H	20 to causes of the gi	e separat ven amo s of Ethy	unts of	Alcohol	phase and 3	in cc.
3			2.	32			
6			6.	87			
9			12.	35			
12			19.	17			
15			27.				
15 18			36.				
21			50.	42			
24			00				

[†] Saturated with water.

ETHYL VALERATE C4H,COOC2H5.

ETHYL (Iso) VALERATE (CH₃)₂.CH.CH₂COOC₂H₅.

SOLUBILITY OF EACH IN WATER AND IN AQUEOUS ALCOHOL
MIXTURES AT 20°.
(Bancroft.)

100 cc. water dissolve 0.3 cc. ethyl valerate at 25°.
100 cc. water dissolve 0.2 cc. ethyl iso valerate at 20°.
100 cc. ethyl iso valerate dissolve 0.4+ cc. water at 20°.

		thyl Alcohe and Wat	Mixtures of Ethyl Alcohol, Ethyl Iso Valerate and Water.		
cc. Alcohol.*		cc. Alcohol.*			Ethyl Alcohol. cc. Ethyl Iso Valerate.
3	1.42 7.18	39 45	53.13 63.60	10	O·I5
15	14.13	57	90.53	8	0.23
2I 27	22.40 31.62	72 81	131.0	6 5	0.46 0.72
33	41.62			4	1.23

^{*} cc. Alcohol in mixture. † cc. H_2O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of ethyl valerate.

Di ETHYL KETONE (3 Pentanon) (C2H5)2CO.

SOLUBILITY IN WATER.

(Rothmund - Z. physik. Ch. 26, 433, '98)

Determinations made by Synthetic Method, see page 9.

t°.	Gms. Di Ethyl Ketone per 100 Gms.				t°.	Gms. Di Ethyl Ketone per 100 Gms.		
	Aq. Layer.	Ketone Layer.		Aq. Layer.	Ketone Layer.			
20	4.60		100	3.68	93.10			
40	3 · 43	97 - 42	120	4.05	90.18			
60	3.08	96.18	140	4.76	87.01			
80	3.20	94.92	160	6.10	83.33			

ETHYL BROMIDE C.H.Br.

SOLUBILITY IN ETHER.

(Parmentier - Compt. rend. 114, 1002, '92.)

t°.	-13°.	0.	12.	22.5.	32.
G. C ₂ H ₅ Br per 100 gms. Ether	632	561	462	302	253

SOLUBILITY OF ETHYL BROMIDE, ETC., IN WATER. (Rex — Z. physik. Chem. 55, 355, '06.)

D' 1 10 14	Grams per 100 Grams H ₂ O at:					
Dissolved Substance.	°°.	10°.	20°.	30°.		
Ethyl Bromide	1.067	0.965	0.914	0.896		
Ethyl Iodide	0.441	0.414	0.403	0.415		
Ethylene Chloride	0.922	0.885	0.869	0.894		
Ethylidene Chloride	0.656	0.595	0.550	0.540		

ETHYL CARBAMATE CO(OC₂H₅)NH₂. (See also Urethane, p. 347.)

SOLUBILITY IN SEVERAL SOLVENTS AT 25°.

(U. :	S. P	.)
-------	------	----

Solvent.	Water.	Alcohol.	Ether.	Chloroform.	Glycerine.
Gms. CO(OC ₂ H ₅)NH ₂ per 100 gms. solvent	100+	166	100	77	33

ETHYLENE C2H4.

SOLUBILITY IN WATER AND IN ALCOHOL. (Bunsen and Carius; Winkler - Landolt and Börnstein, Tabellen, 3d ed. p. 604, '06.)

β.	q.	Sol-	ubility in Alcohol.
0.226	0.0281	4.0	Vols. CaH. per
0.191	0.0237	t .	Vols. C ₂ H ₄ per 100 Vols. Alcohol.
0.162	0.0200	0	359 · 5
0.139	0.0171	4	337 · 5
0.122	0.0150	10	308.6
0.108	0.0131	15	288.2
0.098	0.0118	20	271.3
	0.226 0.191 0.162 0.139 0.122 0.108	0.226 0.0281 0.191 0.0237 0.162 0.0200 0.139 0.0171 0.122 0.0150 0.108 0.0131	0.226 0.0281 0.101 0.0237 0.162 0.0200 0 0.139 0.0171 4 0.122 0.0150 10 0.108 0.0131 15

For β and q see Ethane, page 133.

SOLUBILITY OF ETHYLENE IN METHYL ALCOHOL AND IN ACETONE. (Levi - Gazz. chim. ital. 31, II, 513, 'o1.)

Results in terms of the Ostwald Solubility Expression l. See p. 105.

t°.	In Methyl Alcohol.	In Acetone.	t°.	In Methyl Alcohol.	In Acetone.
0	3.3924	4.0652	30	1.8585	ı.8680
IO	2.8831	3.3580	40	1.3432	1.0852
20	2.3718	2.6278	50	0.8259	0.2772
25	2.1154	2.2500	60	0.3506	

The formulas from which the above figures were calculated are:

In Methyl Alcohol,
$$l = 3.3924 - 0.05083 t - 0.00001 t^2$$
.
In Acetone, $l = 4.0652 - 0.06946 t - 0.000126 t^2$.

FATS.

SOLUBILITY OF THE FATTY ACIDS OBTAINED FROM SEVERAL SOURCES IN ALCOHOL AND IN BENZENE. (Dubois and Pade - Bull. soc. chim. [2] 44, '85.)

Crude Fatty Acid of:	Gms.	Gms. Fats per 100 Gms. Benzene at 12 ^c .		
Acid of:	°.	10°.	26°.	Benzene at 12°.
Mutton	2.48	5.02	67.96	14.70
Beef	2.51	6.05	82.23	15.89
Veal	5.00	13.78	137.10	26.08
Pork	5.63	11.23	118.98	27.30
Butter	10.61	24.81	158.2	69.61
Margarine	2.37	4.94	47.06	13.53

FUMARIC ACID COOH.CH:CH.COOH. MALËIC ACID (CH)₂(COOH)₂.

SOLUBILITY IN WATER. (Vaubel — J. pr. Chem. [2] 59, 30, '99.)

100 gms. water dissolve 0.672 gram fumaric acid at 165°. 100 gms. water dissolve 50.0 grams malëic acid at 100°.

FURFUROL C.H.OCHO.

SOLUBILITY IN WATER. (Rothmund — Z. physik. Chem. 26, 475, '98.)

Determinations by Synthetic Method, for which see page 9.

t°.	Gms. C ₄ H ₃ OCl	HO per 100 Gms.	t°.	Gms. C ₄ H ₃ OC	HO per 100 Gms.
ь.	Aq. Layer.	Furfurol Layer.	ь.	Aq. Layer.	Furfurol Layer.
40	8.2	93 · 7	100	18.9	83.5
50	8.6	93.0	110	24.0	78.5
60	9.2	92.0	115	28.0	74.6
70	10.8	90.7	120	34.4	68.1
80	13.0	89.0	122.7	(crit. t.)	0.13
90	15.5	86.6			

GADOLINIUM SULPHATE Gd2(SO4)3.8H2O.

SOLUBILITY IN WATER. (Benedicks — Z. anorg. Chem. 22, 409, '00.)

t°.	Gms. $Gd_2(SO_4)_3$ per 100 Gms H_2O .	Solid Phase.
0	3.98	$Gd_2(SO_4)_3.8H_2O$
IO	3.3	"
14	2.8	"
25	$2 \cdot 4$	"
34.4	2.26	"

GALACTOSE C6H12O6.

100 grams saturated solution in pyridine contain 5.45 grams $C_0H_{12}O_0$ at 26°, density of solution 1.0065. (Holty – J. Physic. Chem. 9, 764, '05)

GALLIC ACID $C_6H_2(OH_3)$ (3, 4, 5) $COOH + H_2O$.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Bourgoin — Ann. chim. phys. [5] 13, 406, '78.)

Solvent.	t°.	Gms. C7H6O5.H2O per 100 Gms.			
Solvent.	ι.	Solvent.	Solution.		
Water	25	I.20	1.18		
Water	100	33 · 3	25.0		
Alcohol (Abs.)		23.3	18.1		
Alcohol (U.S.P.)	25	24.I	19.3		
Alcohol 90%		38.8	18.9		
Ether	25	2.56	2.50		
Glycerine	25	8.3	7.66		

GERMANIUM DIOXIDE GeO.

100 gms. H_2O dissolve 0.405 gm. GeO_2 at 20°, and 1.07 gms. at 100°.

(Winkler - J. pr. Chem. [2] 34, 177, '86; 36, 177, '87.)

GERMANIUM (Mono) SULPHIDE GeS and GERMANIUM (Di) SULPHIDE GeS.

100 gms. H₂O dissolve 0.24 GeS and 0.45 gm. GeS₂.

(Winkler.)

GLASS.

For data on the solubility of glass in water and other solvents, see:

(Cowper — J. Chem. Soc. 41, 254, '82; Emmerling — Liebig's Annalen, 150, 257, '69; Böhling — Z. anal Chem. 23, 518, '84; Kreusler and Herzhold — Ber. 17, 34, '84; Kohlrausch — Ber. 24, 3501, '91; Wied Ann. 44, 577, '91; Förster — Ber. 25, '92; Mylius and Förster — Ber. 22, 1100, '89; Ber. 25, 70, '92; Wartha — Z. anal. Chem. 24, 220, '85, etc.)

GLYCOLIC ACID CH2OH.COOH.

SOLUBILITY IN WATER. (Emich — Monatsh. Chem. 3, 336, '84.)

t°.	20°.	60°.	80°.	1000.
Gms. CH ₂ OH(COOH)	0.033	0.102	0.235	0.850
per 100 gms. H ₂ O	0.033	0.102	0.233	0.030

GLUCINIUM SALTS. (See also Beryllium p. 63).

SOLUBILITY IN WATER AND IN ACETIC ACID SOLUTIONS. (Marignac; Sestini — Gazz. chim. ital. 20, 313, '90.)

Salt.	Formula.	Solvent.	per 100 Gr	ydrous Salt ns. Solvent.
			At 20°.	At 100°.
Glucinium potassium fluoride	GlF ₂ .KF	Water	2.0	5.2
" sodium "	GlF.NaF	"	1.4	2.8
Glucinium hydroxide	$Gl(OH)_2$	Water + CO ₂ sat.	0.0185 (0	GlO)
" phosphate	$Gl_3(PO_4)_2.6H_2O$	2% CH ₃ COOH	0.055	
66 - 66	"	10% "	0.1725	

GLUTARIO ACID (Pyrotartaric) (CH2)3(COOH)2.

SOLUBILITY IN WATER. (Lamouroux — Compt. rend. 128, 998, '99.)

Gms. (CH₂)₃(COOH)₂ per 100 cc. solution o°. 15°. 20°. 35°. 50°. 65°. 42.9 58.7 63.9 79.7 95.7 111.8

GOLD Au.

SOLUBILITY OF GOLD IN POTASSIUM CYANIDE SOLUTIONS. (Maclaurin — J. Chem. Soc. 63, 729, '93.)

Gold disks placed in Nestler tubes with KCN solutions.

Per cent KCN.	Grams .	Grams Au Dissolved in 24 Hours in Nessier Tubes:						
	Full.	⅓ Full.	Oxygen Passed in.	Oxygen + Agitation.				
0.1	0.00195	0.00331						
1.0	0.00162	0.00418	0.00845	0.0187				
5.0	0.0032	0.0046	0.01355	0.0472				
20.0	0.0012	0.00305	0.0115	0.0314				
50.0	0.00043	0.00026	0.00505	8010.0				

GOLD CHLORIDE (Auric) AuCla.

SOLUBILITY IN WATER, ETC.

100 gms. H₂O dissolve 68 grams AuCl₃. AsCl₃ and SbCl₃ each dissolve about 2.5% AuCl₃ at 15°, and 22% at 160°.

SnCl₄ dissolves about 4% AuCl₃ at 160°, and a trace at o°.

(Lindet - Bull. soc. chim. [2] 45, 149, '86.)

GOLD PHOSPHORUS TRI CHLORIDE (Aurous) AuClPCl3.

100 gms. PCl₃ dissolve 1 gram at 15°, and about 12.5 grams at 120°.
(Lindet — Compt. rend. 101, 1492, '85.)

GOLD ALKALI DOUBLE CHLORIDES.

SOLUBILITY OF SODIUM GOLD CHLORIDE, LITHIUM GOLD CHLORIDE, POTASSIUM GOLD CHLORIDE, RHUBIDIUM GOLD CHLORIDE, AND CAESIUM GOLD CHLORIDE IN WATER.

(Rosenbladt — Ber. 19, 2537, '86.)

Grams Anhydrous Salt per 100 Grams Solution

t°.	Grains Amiyurous Sait per 100 Grains Solution.							
	NaAuCl4.	LiAuCl4.	KAuCl4.	RbAuCl4.	CsAuCl.			
IO	58.2	53.1	27.7	4.6	0.5			
20	60.2	57 · 7	38.2	9.0	0.8			
30	64.0	62.5	48.7	13.4	I . 7			
40	69.4	67.3	59.2	17.7	3.2			
50	77 · 5	72.0	70.0	22.2	5 · 4			
60	90.0	76.4	80.2	26.6	8.2			
70		81.0		31.0	12.0			
80		85.7		35 · 3	16.3			
90				39.7	21.7			
100				44.2	27.5			

GUAIACOL $C_6H_4(OH)OCH_3$ 1:2. GUAIACOL CARBONATE C_6H_4 (OCH₃)O₂.CO.

Solubility in Water, Alcohol, etc. (U. S. P.)

Solvent.	t°.	Gms. per 100 Gms. Solvent.		
	• .	Guaiacol.	Guaiacol Carbonate.	
Water	25	1.89		
Alcohol	25		2.08	
Chloroform	25	• • •	66.6	
Ether	25		7.69	
Glycerine	25	100	• • •	

a Tri Phenyl GUANIDINE C6H5N:C(NHC6H5)2.

SOLUBILITY IN MIXTURES OF ALCOHOL AND WATER AT 25°. (Holleman and Antusch — Rec. trav. chim. 13, 292, '94.)

	Gms.			Gms.	
Vol. %	C6H5N:C(NHC6H5)2	Density	Vol. %	C6H5N:C(NHC6H5);	Density
Alcohol.	per 100 Gms.	of Solutions.	Alcohol	per 100 Gms.	of Solutions.
	Solvent.			Solvent.	
100	6.23	0.8021	80	1.06	0.8572
100	0.23		90		
95	3 · 75	0.8158	75	0.67	0.8704
		- 0		- 40	0.8828
90	2.38	0.8309	70	0.48	0.0020
85	1.58	0.8433	60	0.22	0.9048
05	1.50	0.0433	00	0.22	0.9040

HELIUM He.

SOLUBILITY IN WATER. (Estreicher — Z. physik. Chem. 31, 184, '99.)

					Absorption (Coefficient.
t°. Co	Pressure.	vol. of Water.	Vol. of He.	q.	At Bar. Pressure Minus H ₂ O Vapor Tension.	At 760 mm. Pressure.
0				0.000270		0.0150
0.5	764.0	73 - 584	1.093		0.0149	0.0149
5	758.0	73.578	1.062	0.000260	0.0144	0.0146
10	758.0	73.597	1.046	0.000255	0.0142	0.0144
15	757.8	73.641	800.1	0.000246	0.0137	0.0140
20	758.4	73 - 707	0.996	0.000242	0.0135	0.0139
25	762.3	73.793	0.983	0.000238	0.0133	0.0137
30	764.4	73 . 897	0.985	0.000238	0.0133	0.0138
35	764.5	74.0167	0.972	0.000234	0.0131	0.0138
40	762.0	74.147	0.957	0.000232	0.0129	0.0139
45	761.7	74.294	0.947	0.000229	0.0127	0.0140
50	760.9	74.461	0.920	0.000223	0.0124	0.0140

For q and also Absorption Coefficient, see Ethane, page 133.

HEXANE C6H14.

SOLUBILITY IN METHYL ALCOHOL. (Rothmund — Z. physik. Chem. 26, 475, '98.)

Determined by Synthetic Method, see page 9.

	Gms. Hexane	per 100 Gms.		Gms. Hexane	per 100 Gms.
t°.	Alcoholic	Hexane	t°.	Alcoholic	Hexane
	Layer.	Layer.		Layer.	Layer.
10	26.5	96.8	35	43.6	91.2
20	31.6	95.9	40	52.7	85.5
30	38.3	93 · 7	42.6 ((crit. t.) 68	.9

HIPPURIC ACID C6H5CONH.CH2COOH.

SOLUBILITY IN AQ. POTASSIUM HIPPURATE SOLUTIONS AT 20°. (Hoitsema — Z. physik. Chem. 27, 317, '98.)

Density		per Liter Sol.		Liter Solution.	Solid
of Solutions.	$C_9H_9NO_3$.	KC9H8NO3.	$C_9H_9NO_3$.	KC9H8NO3.	Phase.
I.002	0.0182	0	3.276	0.0	C ₉ H ₉ NO ₈
1.003	0.0163	0.011	2.919	2.39	46
1.008	0.0183	0.071	3.278	15.43	66
I.022	0.0234	0.254	4.191	55.18	44
1.114	0.064	1.36	11.47	295 · 4	44
1.182	0.131	2.21	23 . 46	480.1	46
1.192	0.147	2.32	26.32	504.1) C	H ₉ NO ₃ +
1.195	0.153	2.40	27.40	521.4	C ₉ H ₉ NO ₃ .KC ₉ H ₈ NO ₃ .H ₂ O
I.20I	0.133	2.50	23.82	543.1 C	9H9NO3.KC9H8NO3.H2O
1.239	0.084	3.01	15.04	654.0	44
1.282	0.068	3 · 57	12.18		H ₉ NO ₃ .KC ₉ H ₈ NO ₃ .H ₂ O
1.282	0.065	3.58	11.60	777.8)	$+ KC_9H_8NO_3$
1.276	0.031	3.56	5 · 55	773 · 4	KC9H8NO3
I.277	0.011	3 · 55	1.917	771.3	44
I.277	0.00	3.56	• • •	773 - 4	46

HOMATROPINE HYDROBROMIDE C16H21NO3.HBr.

SOLUBILITY IN WATER, ETC. (U. S. P.)

143

100 grams water dissolve 17.5 grams salt at 25°.

100 grams alcohol dissolve 3.08 grams salt at 25°, and 11.5 grams at 60°.

100 grams chloroform dissolve 0.16 gram salt at 25°.

HYDRASTINE $C_{21}H_{21}NO_6$. **HYDRASTINE HYDROCHLORIDE** $C_{11}H_{11}NO_2$.HCl.

SOLUBILITY IN SEVERAL SOLVENTS.
(U. S. P.; Müller — Apoth.-Ztg. 18, 249, '03.)

Solvent.	At 18°-22°.		Solvent.		er 100 Gms. n at 18°-22°.
Water	0.0033	0.025	Ether HO	0.51	0.078 (25°)
Alcohol	0.74 (25°)	5.9(60°)	Ether + H ₂ O	0.80	
Benzene	8.89	• • •	Chloroform	100+	0.35 (25°)
Acetic Ether	4.05		CCl ₄	0.123	• • •
Petroleum Ether	0.073				

HYDRAZINE SULPHATE N2H4.H2SO4.

100 grams water dissolve 3.055 grams $N_2H_4.H_2SO_4$ at 22°. (Curtius and Jay — J. pr. Chem. [2] 39, 39, '89.)

HYDROBROMIC ACID HBr.

SOLUBILITY IN WATER.

(Roozeboom — Z. physik. Chem. 2, 454, '88; Rec. trav. chim. 4, 107, '85; 5, 358, '86; see also Pickering — Phil. Mag. [5] 36, 119, '93.)

t°.		ved(at 760-765mm.) oo Gms.	β.	Gms. HBr Dissolved at Lower Pressures per 100	
	Water.	Solution.		Gms. H ₂ O.	
- 2.5	255.0	71.83		175.0 (10 mm.)	
-15	239.0	70.50		• • •	
0	221.2	68.85	611.6		
+10	210.3	67.76	581.4	108.5 (5 mm.)	
15	204.0	67.10		• • •	
25	193.0	65.88	532.1		
50	171.5	63.16	468.6	• • •	
75	150.5	60.08	406.7		
100	130.0	56.52	344.6	• • •	

For β see Ethane, page 133.

HYDROCHLORIC ACID HC1.

SOLUBILITY IN WATER AT DIFFERENT TEMPERATURES AND PRESSURES.

(Deicke; Roscoe and Dittmar — Liebig's Ann. 112, 334, '59; below o°, Roozeboom — Rec. trav. chim. 3, 104, '84.)

	At Different	Temperatur	es and 760 mm	. Pressure.	At Different F	ressures and o°.
t°.	cc. HCl per 100 cc. H ₂ O.	Density.	Gms. HCl per 100 g. Sol.	Gms. HCl per 100 g. H ₂ O.	Pressures.*	Gms. HCl per 100 g. H ₂ O.
0	525.2	1.2257	45.15	82.31	60	61.3
4	497 · 7	1.2265	44.36	79.73	100	65.7
8	480.3	1.2185	43.83	78.03	150	68.6
12	471.3	1.2148	43.28	76.30	200	70.7
14	462.4	1.2074	42.83	74.92	300	73.8
18	451.2	1.2064	42.34	73.41	400	76.3
23	435.0	1.2014	41.54	71.03	500	78.2
30			40.23	67.3	600	80.0
40	•.••		38.68	63.3	750	82.4
50			37.34	59.6	1000	85.6
60			35.94	56.1	1300	89.5

^{*} Pressures in mm. Hg minus tension of H2O vapor.

SOLUBILITY IN WATER AT TEMPERATURES BELOW 0°:

At a pressure of 760 mm. At pressures below and above 760 mm.

t°.	q.	t°.	q.	t°.	mm. Pressure.	q.
-24	IOI.2	-15	93.3	-23.8		84.2
-21	98.3	10	89.8	-21	334	86.8
- 18.3	96.0	- 5	86.8	-19	580	92.6
 18	95.7	0	84.2	 18	900	98.4
				-17.7	1073	101.4

For value of q, see Ethane, page 133.

SOLUBILITY OF HYDROCHLORIC ACID GAS IN METHYL ALCOHOL, ETHYL ALCOHOL, AND IN ETHER AT 760 MM. PRESSURE.

(de Bruyn - Rec. trav. chim. 11, 129, '92; Schuncke - Z. physik. Chem. 14, 336, '94.)

Grams HCl gas per 100 Grams Solution in: t°. ĆH₃OH. C₂H₅OH. $(C_2H_5)_2O$. 37.51 (-9.2°) -10 54.6 - 5 . . . 37.0 . 0 51.3 45.435.6 44.2 (6.5°) + 5 . . . 33.1 IO 42.7 (II.5°) 30.35 27.62 15 47.0 (18°) 20 41.0 24.9 40.2 (23.5°) 25 . . . 22.18 43.0 (31.7°) 38.1 (32°) 30 19.47

HYDROFLUORIC ACID HF.

100 grams H₂O dissolve III grams HF at 35°.
(Metzner — Compt. rend. 119, 68₃, '94.)

HYDRIODIC ACID HI. IODIC ACID HIO.

For determinations of the freezing points of aqueous solutions of HI, and isolation of the several hydrates at temperatures below oo, see Pickering — Ber. 26, 2307, '93.

SOLUBILITY OF IODIC ACID AND ITS MODIFICATIONS IN WATER. (Groschuff - Z. anorg. Chem. 47, 343, '05.)

				0 10.		
t°.	Grams p Gms. So	Grams per 100 Gms. Solution.		Mols. I ₂ O ₅ Gm. Mols.	Solid	
	HIO3.	I ₂ O ₅ .	H ₂ O.	Solution.	Phase.	
-14	72.8	69.1	12.1	10.8	Ice + HIO,	
0	74·I	70.3	12.8	11.3	HIO ₃	
16	75.1	71.7	13.7	12.0	66	
40	77 · 7	$73 \cdot 7$	15.1	13.2	66	
60	80.0	75.9	17.0	14.5	"	
80	82.5	78.3	19.4	16.3	"	
85	83.0	78.7	20.0	16.7	"	
101	85.2	80.8	22.8	18.6	66	
110	86.5	82.1	24.7	19.8	$HIO_3 + HI_3O_3$	
125	87.2	82.7	25.9	20.6	HI ₃ O ₈	
140	88.3	83.8	27.9	21.8	"	
160	90.5	85.9	32.8	24.7	"	

SOLUBILITY OF IODIC ACID IN NITRIC ACID. (Groschuff.)

Grams HIO3 per 100 Grams.

t°.	Aq. Solution.	27.73% HNO ₃ Solution.	40.88% HNOs Solution.
0	74.1	18.0	9.0
20	75.8	21.0	10.0
40	$77 \cdot 7$	27.0	14.0
60	80.0	38.o	18.0

HYDROGEN H.

SOLUBILITY IN WATER.

(Winkler — Ber. 24, 99, '91; Bohr and Bock — Wied. Ann. 44, 318, '91; Timofejew — Z. physik. Chem. 6, 147, '90.)

t°.	β'.	<u>l.</u>	β.	q.
0	0.0214		0.0214	0.000193
5	0.0203	0.0209 - 0.0241	0.0204	0.000184
10	0.0193	0.0204 - 0.0229	0.0195	0.000176
15	0.0185	0.0200 - 0.0217	0.0188	0.000169
20	0.0178	0.0196 - 0.0205	0.0182	0.000162
25	0.0171	0.0193 - 0.0191	0.0175	0.000156
30	0.0163		0.0170	0.000147
40	0.0153		0.0164	0.000139
50	0.0141		0.0161	0.000129
60	0.0129		0.0160	0.000119
80	0.0085		0.0160	0.000079
100	0.0000		0.0160	0.000000

 $l = Ostwald Solubility Expression, see page 105. For <math>\beta'$, β , and q, see Ethane, page 133.

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF ACIDS AND BASES AT 25°.

(Geffcken - Z. physik. Chem. 49, 268, '04.)

Gram Equiv Acids and	•	Solubility of H (l_{25} = Ostwald Expression) in Solutions of:							
Bases per Liter.	HCl.	HNO3.	$\frac{1}{2}$ H ₂ SO ₄ .	СН3СООН.	CH ₂ ClCOOH	I. КОН.	NaOH.		
	0.0193	0.0193		0.0193			0.0193		
					0.0189				
1.0	0.0179	0.0183	0.0177	0.0191	0.0186	0.0142	0.0139		
2.0	0.0168	0.0174	0.0163	0.0188	0.0180		0.0097		
3.0	0.0159	0.0167	0.0150	0.0186			0.0072		
4.0		0.0160	0.0141	0.0186			0.0055		

The above figures for the concentrations of acids and bases were calculated to grams per liter, and these values with the corresponding l_{25} values for the solubility of hydrogen plotted on cross-section paper. From the resulting curves the following table was read.

Grams Acids		Solubility of H (l_{25} = Ostwald Expression) in Solutions of:						
per Liter.		HNO ₃ .	½H₂SO₄.	СН ₃ СООН.	CH ₂ ClCOOH	. кон.	NaOH.	
0	0.0193	0.0193	0.0193	0.0193	0.0193	0.0193	0.0193	
20	0.0185	0.0189	0.0186	0.0192	0.0191	0.0172	0.0165	
40	0.0179	0.0186	0.0180	0.0191	0.0190	0.0153	0.0140	
60	0.0173	0.0183	0.0174	0.0190	0.0188	0.0135	0.0117	
80	0.0167	0.0180	0.0168	0.0189	0.0187		0.0097	
100	0.0160	0.0179	0.0162	0.0189	0.0185		0.0082	
150		0.0171	0.0148	0.0188	0.0182		0.0058	
200		0.0165	0.0140	0.0186	0.0179			
250		0.0160		0.0184				

For Ostwald Solubility Expression, see page 105.

Solubility of Hydrogen in Aqueous Solutions of Ammonium Nitrate at 20°.

(Knopp - Z. physik. Chem. 43, 103, '04.)

p.	Normality (per 1000 Gms.) H_2O .	Molecular Concentra- tion.	Absorption Coefficient of Hydrogen.	Density of Solutions.
0.00	0.00	0.00	0.0188	
1.037	0.1308	0.002352	0.01872	I.0027
2.167	0.2765	0.004956	0.01845	I.0072
3.378	0 · 4363	0.007799	0.01823	I.0122
4.823	0.6333	0.011280	0.01773	1.0182
6.773	0.9069	0.016447	0.01744	1.0262
11.550	1.6308	0.028525	0.01647	1.04652

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF BARIUM CHLORIDE.

(Braun - Z. physik. Chem. 33, 735, '00.)

Gms. BaCl ₂		Coefficient of Absorption of Hydrogen at:					
per 100 Gms. Solution.	5°.	10°.	15°.	20°.	25°.		
0.00	0.0237	0.0221	0.0206	0.0191	0.0175		
3.29	0.0211	0.0198	0.0185	0.0172	0.0157		
3.6	0.0209	0.0197	0.0184	0.0170	0.0156		
6.45	0.0196	0.0186	0.0173	0.0161	0.0147		
7.00	0.0194	0.0183	0.0172	0.0159	0.0146		

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF CALCIUM CHLORIDE, MAGNESIUM SULPHATE, AND LITHIUM CHLORIDE AT 15°.

(Gordon — Z. physik. Chem. 18, 14, '95.)

Coefficient of Absorption of hydrogen in water at 15° = 0.01883.

In Calcium		Ιı	In Magnesium			In Lithium		
Chloride.		Sulphate.			Chloride.			
Gms. CaCl ₂ per 100 g. Sol.	G. M. CaCl ₂ per Liter.	Absorption Coefficient of H.	Gms. MgSO ₄ per 100 g. Sol.	G.M. MgSO ₄ per Liter.	Absorption Coefficient of H.	Gms. LiCl per 100 g. Sol.	G. M. LiCl per Liter.	Absorption Coefficient of H.
3.47	0.321	0.01619	4.97	0.433	0.01501	3.48	0.835	0.01619
6.10	0.578	0.01450	10.19	0.936	0.01159	$7 \cdot 34$	1.800	0.01370
11.33	I.122	0.01138	23.76	2.501	0.00499	14.63	3.734	0.0099
17.52	1.1827	0.00839						
26.34	2.962	0.00519						

For definition of Coefficient of Absorption, see page 105.

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF POTASSIUM CARBONATE, CHLORIDE, AND NITRATE AT 15°.

(Gordon.)

In Potassium		In Potassium			In Potassium			
Carbonate.			Chloride.			Nitrate.		
Gms. K ₂ CO ₃ per 100 g. Sol.	G. M. K ₂ CO ₃ per Liter.	Absorption Coefficient of H.	Gms. KCl per 100 g. Sol	G. M. KCl per Liter.	Absorption Coefficient of H.	Gms. KNO ₃ per 100 g. Sol.	G. M. KNO ₃ per Liter.	Absorption Coefficient of H.
2.82	0.209	0.01628	3.83	0.526	0.01667	4.73	0.482	0.01683
8.83	0.690	0.01183	7.48	1.051	0.01489	8.44	0.879	0.01559
16.47	1.376	0.00761	12.13	1.755	0.01279	16.59	1.820	0.01311
24.13	2.156	0.00462	19.21	2.909	0.01012	21.46	2.430	0.01180
41.81	4.352	0.00160	22.92	3.554	0.00892			

Solubility of Hydrogen in Aqueous Solutions of Potassium Chloride and Nitrate at 20°. (Knopp — Z. physik. Chem. 43, 103, '04.)

In	Potassiu	ım Chloric	le.	In Potassium Nitrate.			
p.	Normality (per 1000 g. H ₂ O).	Absorption Coefficient.	Density of Solutions.	p.	Normality (per 1000 g. H ₂ O).	Carcinat	Density of Solutions.
	0.1475	0.01823	1.0052	I.224	0.1245	0.01835	1.0059
2.123	0.2907	0.01757	8110.1	2.094	0.2114	81810.0	1.0113
4.070	0.5687	0.01661	1.0243	4.010	0.4127	0.01785	1.0236
6.375	0.9127	0.01531	1.0394	5.925	0.6225	0.01743	1.0359
7.380	1.0682	0.01472	1.0460	7.742	0.8293	0.01667	I .0477
13.612	2.1222	0.01255	1.0875	13.510	1.5436	0.01436	1.0865

SOLUBILITY OF HYDROGEN IN AQUEOUS SODIUM CARBONATE AND SULPHATE SOLUTIONS AT 15°.

(Gordon.)

In Sod	ium Car	bonate.	In Sodium Sulphate.			
Gms. Na ₂ CO ₃ per 100 Gms. Solution.	G.M. Na ₂ CO ₃ per Liter.	Absorption Coefficient of H.	Gms. Na ₂ SO ₄ per 100 Gms. Solution.	G. M. Na ₂ SO ₄ per Liter.	Absorption Coefficient of H.	
2.15	0.207	0.01639	4.58	0.335	0.01519	
8.64	0.438	0.01385	8.42	0.638	0.0154	
11.53	1.218	0.00839	16.69	1.364	0.00775	

SOLUBILITY OF HYDROGEN IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE.
(Braun; Gordon.)

Gms. NaCl	(Coefficient of Absorption of Hydrogen at:						
per 100 Gms. Solution.	5°.	10°.	15°.	20°.	25°.			
1.25	0.0218	0.0205	0.0191	0.0177	0.0162			
3.80	0.0198	0.0188	0.0176	0.0162	0.0148			
4.48	0.0192	0.0182	0.0171	0.0159	0.0143			
6.00	0.0184	0.0175	0.0164	0.0153	0.0138			
14.78			0.0093	• • • -				
23.84			0.00595					

Solubility of Hydrogen in Aqueous Solutions of Sodium $_{\mbox{\scriptsize Nitrate}}.$

In Sodium Nitrate at 20°.	In Sodium Nitrate at 15°
(Knopp.)	(Gordon.)
A	A

p.	Normality (per 1000 Gms. H ₂ O).	Absorption Coefficient of H.	Density of Solutions.	Gms. NaNO ₃ per 100 Gms. Solution.	G. M. NaNO ₃ per Liter.	Absorption Coefficient of H.
1.041	0.1236	0.01839	1.0052	5.57	0.679	0.01603
2.192	0.2634	0.01774	1.0130	11.16	1.413	0.0137
4 · 405	0.5416	0.01694	1.0282	19.77	2.656	0.01052
6.702	0.8442	0.01518	1.04411	$37 \cdot 43$	5.711	0.00578
12.637	1.7354	0.0130	1.08667			

SOLUBILITY OF HYDROGEN IN ALCOHOL. (Timofejew — Z. physik. Chem. 6, 147, '90.)

t°.	Coefficient of Abs. in 98.8% Alcohol.	t°.	Coefficient of Abs. in 99.7% Alcohol.
0	0.0676	4	0.0749
6.2	0.0693	18.8	0.0740
13.4	0.0705		
18.8	0.0740		

SOLUBILITY IN AQUEOUS ALCOHOL SOLUTIONS AT 20° AND 760 MM.

PRESSURE.

(Lubarsch — Wied. Ann. [2] 37, 525, '89.)

Wt. % Alcohol.	Vol. % Absorbed H.	Wt. % Alcohol.	Vol. % Absorbed H.
0.00	1.93	28.57	I.04
9.09	1.43	33 · 33	1.17
16.67	1.29	50.0	2.02
23.08	1.17	66.67	2.55

SOLUBILITY OF HYDROGEN IN AQUEOUS SUGAR SOLUTIONS AT 15°. (Gordon – Z. physik. Chem. 18, 14, '95.)

Gms. Sugar per 100 Gms. Solution.	Gm. Mols. Sugar per Liter.	Absorption Coefficient of H.
16.67	0.520	0.01561
30.08	0.993	0.01284
47.65	1.699	0.00892

Solubility of Hydrogen in Water and in Organic Solvents. Results in terms of the Ostwald Expression, see page 105.

(Just - Z. physik. Chem. 37, 359, 'or.)

Solvent.	l_{25} .	l_{20} .	Solvent.	l_{25} .	120.
Water	0.0199	0.0200	Amyl Acetate o	.0774	0.0743
Anilin	0.0285	0.0303	Xylene o	.0819	0.0783
Amyl Alcohol	0.0301	0.0353	Ethyl Acetate o	.0852	0.0788
Nitro Benzene	0.0371	0.0353	Toluene o	. 0874	0.0838
Carbon Disulphide	0.0375	0.0336	Ethyl Alcohol (98.8%) o	. 0894	0.0862
Acetic Acid	0.0633	0.0617	Methyl Alcohol o	.0945	0.0902
Benzene	0.0756	0.0707	Iso Butyl Alcohol o	.0976	0.0929
Acetone	0.0764	0.0703	-		

SOLUBILITY OF HYDROGEN IN CHLORAL HYDRATE SOLUTIONS AT 20°. (Knopp.)

p.	Normality (per 1000 Gms. H ₂ O).	Molecular Concentration.	Absorption Coefficient of H.	Density of Solutions.
4.91	0.310	0.005594	0.01839	I.0202
7.69	0.504	0.008992	0.01802	1.0320
14.56	1.030	0.018223	0.01712	1.0669
29.50	2.530	0.043601	0.01542	1.1466
38.42	3.770	0.063647	0.01440	1.1982
49.79	6.000	0.097493	0.01353	1.2724
63.90	10.700	0.161660	0.01307	1.3743

SOLUBILITY OF HYDROGEN IN PROPIONIC ACID SOLUTIONS. (Braun.)

G. C₂H₅COOH		Coefficient of Absorption of Hydrogen at:					
per 100 Gms. Solution.	5°.	10°.	15°.	20°.	25°.		
2.63	0.02245	0.0214	0.0200	0.0188	0.0172		
3 · 37	0.0222	0.0212	0.0199	0.0187	0.0171		
5.27	0.0224	0.0212	0.0198	0.0184	0.0171		
6.50	0.0218	0.0209	0.0193	0.0183	0.0169		
9.91	0.0213	0.0203	0.0191	0.0178	0.0160		

SOLUBILITY OF HYDROGEN IN PETROLEUM. (Griewasz and Walfisz — Z. physik. Chem. 1, 70, '87.)

Coefficient of absorption at $20^{\circ} = 0.0582$, at $10^{\circ} = 0.0652$.

HYDROGEN SULPHIDE H.S.

SOLUBILITY IN WATER AND IN ALCOHOL AT to AND 760 MM. PRESSURE. (Bunsen and Carius; Fauser — Math. u Natur. W. Ber. (Ungarn.) 6, 154, '88.)

In Water.				I	n Alcohol.	
t°.	ı Vol. H2	O Absorbs	β.	q.	ı Vol. Alco	hol Absorbs
0	4 · 37 Vols	. H ₂ S(at o° and 7	60 mm.) 4.686	0.710	17.89 Vols	s. H ₂ S(at o° and 760 mm.)
5	3.97	44	4.063	0.615	14.78	64
10	3.59	66	3.520	0.530	11.99	66
15	3.23	44	3.056	0.458	9.54	44
20	2.91	66	2.672	0.398	7.42	
25	2.61	66			5.96 (2	4°)
30	2.33	66				
35	2.08	44				
40	1.86	44	• • •			

For β and q see Ethane, page 133.

Solubility of Hydrogen Sulphide in Aqueous Salt Solutions at 25° .

(McLauchlan - Z. physik. Chem. 44 615, '03.)

Note. — The original results are given in terms of $\frac{l}{l_0}$ which is the iodine titer (l) of the H_2S dissolved in the salt solution divided by the titer (l_0) of the H_2S dissolved in pure water. These figures were multiplied by 2.61 (see 25° results in preceding table) and the products recorded in the following table as volumes of H_2S absorbed by 1 vol. of aqueous solution.

Solution. n NH ₄ Br n NH ₄ Cl n NH ₄ NO ₃ ½n (NH ₄) ₂ SO ₄ ½n (NH ₄) ₂ SO ₄ n NH ₄ C ₂ H ₃ O ₂ n (NH ₂) ₂ CO ½n HCCl ½n H ₂ SO ₄ n C ₄ H ₆ O ₆ 3n C ₄ H ₆ O ₆	Grams Salt per Liter. 98.0 53.4 80.0 33.0 16.5 77.1 60.1 18.22 24.52 150.0 450.0	1.00 0.96 0.99 0.82 0.91 1.09 1.02 0.975 0.905	per i Vol. Šol. 2. 61 2. 40 2. 58 2. 14 2. 37 2. 84 2. 66 6. 2. 54 6. 2. 36 2. 46	Solution. n KBr n KCl n KNO ₃ ½n K ₂ SO ₄ ¼n K ₂ SO ₄ n KI n NaBr n NaCl ½n NaCl n NaNCl ½n NaCl	119.0 74.5 101.0 43.5 21.7 166.0 103.0 58.5 29.2 9 ₃ 85.0	0.945 0.853 0.913 0.78 0.89 0.98 0.935 0.847 0.93 0.893	Vols. H ₂ S per r Vol. Sol 2. 47 2. 22 2. 38 2. 04 2. 32 2. 56 2. 44 2. 21 2. 42 2. 32 1. 90
$3n C_4H_6O_6$ Pure $C_3H_5(OH)_3$	450.0 1000.0			½n Na₂SC ½n Na₂SC			1.90 2.32

HYDROQUINONE $C_6H_4(OH)_2$ 1:4, also Resorcin $C_6H_4(OH)_2$ 1:3 and Pyrocatechin $C_6H_4(OH)_2$ 1:2.

SOLUBILITY IN WATER. (Vaubel — J. pr. Chem. [2] 59, 30, '99.)

100 grams solution contain 6.7 grams hydroquinone at 20°. Sp. Gr. of sol. = 1.012.

100 grams solution contain 63.7 grams resorcin at 20°. 100 grams solution contain 31.1 grams pyrocatechin at 20°.

Solubility of Hydroquinone in Sulphur Dioxide in the Critical Vicinity.

(Centnerswer and Teletow - Z. Electrochem. 9, 799, '03.)

Determinations made by the Synthetic Method, for which see Note, page 9.

t°.	Gms. Hydroquinone per 100 Gms. Sol.	t°.	Gms. Hydroquinone per 100 Gms. Sol.	to. p	Gms. Hydroquinone er 100 Gms. Solution.
63	0.89	117.6	4.46	136.7	10.31
73.5	I.22	123.3	5.66	141.4	13.3
89.2	2.18	134.2	8.31	145.0	14.9

HYDROXYLAMINE $NH_2(OH)$. HYDROXYLAMINE HYDRO-OHLORIDE $NH_2(OH)$.HCl.

SOLUBILITY IN SEVERAL SOLVENTS.

(de Bruyn - Rec. trav. chim. 11, 18, '92; Z. physik. Chem. 10, 783, '92.)

Solvent.	t°.	Grams NH ₂ OH per 100 Gms. Solution.	t°.	Grams NH ₂ (OH).HCl per 100 Gms. Solvent.
Methyl Alcohol (abs.)	5°	35.0	19.75	
Ethyl Alcohol (abs.)	15°	15.0	19.75	4 · 43
Ether (dry)	(b. pt.)	I . 2		
Ethyl Acetate	(b. pt.)	1.6		

For densities of NH₂(OH).HCl solutions, see Schiff and Monsacchi — Z. physik. Ch. 21, 277, '96.

HYOSCYAMINE C17H21NO3.

SOLUBILITY IN SEVERAL SOLVENTS AT 18°-22°. (Müller — Apoth.-Ztg. 18, 249, '03.)

Solvent.	Gms. C ₁₇ H ₂₁ NO ₃ per 100 Gms. Solution.	Solvent.	Gms. C ₁₇ H ₂₁ NO ₃ per 100 Gms. Solution.
Water	0.355	Chloroform	100+
Ether	2.02	Acetic Ether	4.903
Ether sat. with H	I ₂ O 3.913	Petroleum Ether	0.098
Water sat. with 1	Ether 3.125	Carbon Tetra Chloride	0.059
Benzene	0.769		

HYOSCINE HYDROBROMIDE, etc.

SOLUBILITY IN SEVERAL SOLVENTS AT 25°. (U.S.P.)

•	Grams per 100 Grams Solvent.						
Solvent.	Hyoscine Hydrobromide C ₁₇ H ₂₁ NO ₄ .HBr. ₃ H ₂ O.	Hyoscyamine Hydrobromide C ₁₇ H ₂₃ NO ₃ .HBr.	Hyoscyamine Sulphate (C ₁₇ H ₂₃ NO ₃) ₂ .H ₂ SO ₄ .				
Water	66.6	very soluble	very soluble				
Alcohol	6.2	50	15.6				
Ether		0.062	0.04				
Chlorofor	m 0.133	40.0	0.043				

IODINE I.

SOLUBILITY IN WATER.

t°.	Gms. I per Liter Solution.	Authority.
15	0.272-0.283	(Dietz - Pharm. Ztg. 43, 290, '98.)
25	0.279	(McLauchlan - Z. physik. Chem. 44, 617, '03.)
25	0.304	(Herz and Knoch-Z. anorg. Chem. 45, 269, '05.)
25	0.339	(Jakowkin — Z. physik. Chem. 18, 590, '95.)
25	0.340	(Noyes and Seidensticker — Z. physik. Chem. 27, 359, '98.)
30	0.457	(Dietz.)

Solubility of Iodine in Aqueous Potassium Iodide Solutions at 25°.

(Noyes and Seidensticker; Bruner - Z. physik. Chem. 26, 147, '98.)

Millimol	s per Liter.	Gms.	per Liter.	Results by	Bruner.
KI.	(I_2) .	KI.	I.	Gms. KI per 1000 g. Sol.	Gms. Ì per Liter.
0.000	1.342	0.00	0.340	10	0.78*
0.830	1.814	I.37	0.461	20	1.60
1.661	2.235	2.75	0.568	40	3.25
3.322	3.052	5.51	0.775	60	5.04
6.643	4.667	11.03	1.185	80	6.94
13.29	8.003	22.07	2.032	100	8.96
26.57	14.68	44.15	3.728		
53.15	28.03	88.3	7.119		
106.3	55.28	176.6	14.04		

^{*} There is some uncertainty in regard to the position of the decimal point in this column. By calculation from the original it should be one place further to the right.

SOLUBILITY OF IODINE IN AQUEOUS SALT SOLUTIONS AT 25°. (McLauchlan.)

Salt.	Gms. Salt per Liter.	Gms. Dissolved I per Liter.	Salt.	Gms. Salt per Liter.	Gms. Dissolved I per Liter.
Na ₂ SO ₄	29.77	0.160	NH ₄ Cl	53 · 4	0.735
K_2SO_4	43.5	0.238	NaBr	103.0	3.29
$(NH_4)_2SO_4$	33.0	0.246	KBr	119.0	3.801
NaNO ₃	85.0	0.257	$NH_{4}Br$	98.0	4.003
KNO_3	IOI.2	0.266	$NH_4C_2H_3O_3$	77.I	0.440
NH_4NO_3	80.0	0.375	$(NH_4)_2C_2H_4$	86.9	0.980
NaCl	58.5	0.575	H_3BO_3	55.8	0.300
KCl	73.6	0.658			

SOLUBILITY OF IODINE IN ARSENIC TRI CHLORIDE. (Sloan and Mallet — Chem. News, 46, 194, '82.)

t.º.	o°.	15°.	96°.
Gms. I per 100 gms. AsCl	8.42	11.88	36.89

SOLUBILITY OF IODINE IN AQUEOUS ETHYL AND NORMAL PROPYL ALCOHOL SOLUTIONS AT 15°.

(Bruner - Z. physik. Chem. 26, 147, '98.)

In Aq. Ethyl Alcohol.

In Aq. Propyl Alcohol.

		A					
Gms. C ₂ H ₅ OH per 1∞ Gms. Solvent.	Gms. I per 100 cc. Solution.	Gms. C ₂ H ₅ OH per 100 Gms. Solvent.	Gms. I per 100 cc. Sol.	Gms. C ₃ H ₇ OH per 100 Gms. Solvent.	Gms. I per 100 cc. Sol.	Gms. C ₃ H ₇ OH per 1∞ Gms. Solvent.	Gms. I per 100 cc. Sol.
10	0.05	60	1.14	10	0.05	60	2.71
20	0.06	70	2.33	20	0.11	70	4.10
30	0.10	80	4.20	30	0.40	80	6.05
40	0.26	90	7 - 47	40	0.94	90	9.17
50	0.88	100	15.67	50	1.64	100	14.93

SOLUBILITY OF IODINE IN BENZENE, CHLOROFORM, AND IN ETHER. (Arctowski — Z. anorg. Chem. 11, 276, '95-'96.)

In F	Benzene.	In	Chloroform.	Iı	Ether.
t°.	Gms. I per 100 Gms. Solution.	t°.	Gms. I per 100 Gms. Solution.	t°.	Gms. I per 100 Gms. Solution.
4.7	8.08	-49	0.188	-83	15.39
6.6	8.63	$-55\frac{1}{2}$	0.144	-90	14.58
10.5	9.60	-60	0.129	-108	15.09
13.7	10.44	$-69\frac{1}{2}$	0.089		
16.3	11.23	$-73\frac{1}{2}$	0.080		
		+10	1.76 per	100 gms. (CHCl ₃
			(Duncan —	Pharm. J. Tr	ans. 22, 544, '91-'92.

SOLUBILITY OF IODINE IN BROMOFORM, CARBON TETRA CHLORIDE, AND IN CARBON BISULPHIDE AT 25°. (Jakowkin — Z. physik. Chem. 18, 590, '95.)

- 1 liter of saturated solution in CHBr3 contains 189.55 gms. I.
- I liter of saturated solution in CCl₄ contains 30.33 gms. I. I liter of saturated solution in CS₂ contains 230.0 gms. I.

SOLUBILITY OF IODINE IN CARBON BISULPHIDE SOLUTIONS. (Arctowski – Z. anorg. Chem. 6, 404, '94.)

t°.	Gms. I per 100 Gms. Solution.	t°.	Gms. I per 100 Gms. Solution.	t°.	Gms. I per 100 Gms. Solution.
-100	0.32	0	7.89	30	19.26
- 80	0.51	10	10.51	36	22.67
-63	1.26	15	12.35	40	25.22
- 20	4.14	20	14.62	42	26.75
-10	5.52	25	16.92		

SOLUBILITY OF IODINE IN MIXTURES OF CHLOROFORM AND ETHYL ALCOHOL, CHLOROFORM AND NORMAL PROPYL ALCOHOL, CHLOROFORM AND BENZENE, AND CHLOROFORM AND CARBON BISULPHIDE AT 15°.

(Bruner.)

Grams I Dissolved per 100 cc. of Mixtures of:							
CHCl ₃ +C ₂ H ₅ OH.	$CH_3Cl + C_3H_7OH$.	$CH_3Cl + C_6H_6$.	$CH_3Cl + CS_2$.				
15.67	14.93	10.40	17.63				
9 · 43	13.16	9.84	15.93				
8.69	11.20	8.78	14.20				
7.80	8.98	7.74	12.16				
7.09	8.09	6.96	10.20				
6.62	7.82	6.20	9.08				
6.24	7.09	5 · 34	7.72				
$5 \cdot 77$	6.42	4.89	6.42				
5.06	5.54	4.53	5.27				
4.34	4.52	4.07	4.32				
3.62	3.62	3.62	3.62				
	CHCl ₃ +C ₂ H ₅ OH. 15.67 9.43 8.69 7.80 7.09 6.62 6.24 5.77 5.06 4.34	CHCl ₃ +C ₂ H ₅ OH. CH ₃ Cl+C ₃ H ₇ OH. 15.67 14.93 9.43 13.16 8.69 11.20 7.80 8.98 7.09 8.09 6.62 7.82 6.24 7.09 5.77 6.42 5.06 4.34 4.52	CHCl ₃ +C ₂ H ₅ OH. CH ₃ Cl+C ₃ H ₇ OH. CH ₃ Cl+C ₆ H ₆ . 15.67 14.93 9.43 13.16 9.84 8.69 11.20 8.78 7.80 8.98 7.74 7.09 8.09 6.62 7.82 6.20 6.24 7.09 5.34 5.77 6.42 4.89 5.06 5.54 4.34 4.52 4.07				

Solubility of Iodine in Mixtures of Carbon Tetra Chloride and Benzene and in Mixtures of Carbon Tetra Chloride and Carbon Bisulphide at 15°.

(Bruner.	

Gms. CCl ₄ per 100 Gms. of Mixtures.	Gms. I per 100 co	CCl ₄ + CS ₂ .	Gms. CCl ₄ per 100 Gms. of Mixtures.	Gms. I per 100 CCl ₄ + C ₆ H ₆ .	cc. of Mixture
0	10.40	17.6	60	4.90	5 · 55
IO	9 · 44	14.44	70	4.09.	4.50
20	8.53	12.33	80	3.41	3 · 37
30	$7 \cdot 77$	10.34	90	2.74	2.60
40	6.63	8.60	100	2.06	2.06
50	5.70	6.83			

Solubility of Iodine in Aqueous Glycerine Solutions AT 25°.

(Herz and Knoch - Z. anorg. Chem. 45, 269, '05.)

Density of glycerine at 25°/4° = 1.2555; impurities about 1.5%.

Wt.% Glycerine in Solvent.	Millimols I per 100 cc. Solution.	Grams I per 100 cc. Solution.	Density of Solutions at 25°/4°.
0	0.24	0.0304	0.9979
7.15	0.27	0.0342	1.0198
20.44	0.38	0.0482	1.0471
31.55	0.49	0.0621	1.0750
40.95	0.69	0.0875	1.0995
48.7	1.07	0.135	1.1207
69.2	2.20	0.278	1.1765
100.0	9.70	1.223	1.2646

DISTRIBUTION OF IODINE BETWEEN CARBON BISULPHIDE AND AQ. POTASSIUM OXALATE.

(Dawson - Z. physik. Chem. 56, 610, '06; Dawson and McRae - J. Chem. Soc. 81, 1086, '02.)

Concentration	Gms. I per Liter of		Vol. of Solution which Contains	Fraction of I Uncombined
Aq. K ₂ C ₂ O ₄ .	Aq. Layer.	CS ₂ Layer.	r Mol. I.	in Solution.
1.0 Equiv.	2.408	10.82	105.3	0.005495
1.0	3 · 555	16.32	71.37	0.00561
1.0 "	5.766	27.91	43 - 99	0.005915
1.0 "	6.861	34.01	36.98	0.006055
1.2 "	3.525	17.07	71.97	0.005645

DISTRIBUTION OF IODINE BETWEEN AMYL ALCOHOL AND WATER AND BETWEEN AMYL ALCOHOL AND AQUEOUS POTASSIUM IODIDE SOLUTIONS AT 25°.

(Herz and Fischer — Ber. 37, 4752, '04.)

The original results were plotted on cross-section paper, and the following tables made from the curves.

·C.	Millimols I per 10 cc. of H ₂ O and of Aq. KI Layers.						
H ₂ O.	$\frac{N}{10}$ KI.	$\frac{2N}{10}$ KI.	$\frac{3N}{10}$ KI.	$\frac{4N}{10}$ KI.	10N KI.		
0.012	0.135	0.160	0.170	0.170			
0.014	0.150	0.185	0.200	0.200	0.160		
0.018	0.180	0.235	0.255	0.270	0.240		
0.021	0.210	0.280	0.315	0.340	0.315		
0.025	0.230	0.330	0.375	0.410	0.390		
0.029	0.250	0.375	0.430	0.480	0.470		
	0.260	0.420	0.490	0.550	0.555		
	0.270	0.450	0.550	0.620	0.640		
	0.280	0.470	0.605	0.690	0.720		
		0.490	0.700	0.830	0.900		
		0.510	0.790	0.980	I.200		
		0.575					
	0.012 0.014 0.018 0.021 0.025 0.029	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Gms. I per 100 cc.	Gms. I per 100 cc. of H ₂ O and of KI Layers.							
Amyl Alcohol Layer in Each Case.	H ₂ O.	$\frac{N}{10}$ KI.	$\frac{2N}{10}$ KI.	$\frac{3N}{10}$ KI.	$\frac{4N}{10}$ KI.	$\frac{10N}{10}$ KI.		
3	0.014	0.164	0.20	0.21	0.21			
4	0.016	0.196	0.24	0.26	0.26	0.21		
6	0.026	0.252	0.34	0.38	0.40	0.37		
8	0.033	0.297	0.43	0.49	0.54	0.51		
10	0.040	0.328	0.51	0.61	0.67	0.69		
12		0.341	0.58	0.73	0.81	0.84		
14			0.60	0.83	0.95	I.00		
16			0.63	0.91	1.09	I.20		
18			0.64					
25			0.71					

The original figures for 5N/10 and 10N/10 KI solutions give practically identical curves.

Results for the distribution of Iodine between N/10 KI solutions on the one hand, and mixtures in various proportions of $C_6H_6 + CS_2$, $C_6H_6CH_3 + CS_2$, $C_6H_6 + C_6H_6CH_3$, $C_6H_6 + light$ petroleum, $CS_2 + light$ petroleum, $CS_2 + CHCl_3$, $CHCl_3 + C_6H_6$, $CCl_4 + CS_2$ and $CCl_4 + C_6H_6CH_3$ on the other hand, are given by Dawson — J. Chem. Soc., 81, 1086, '02.

DISTRIBUTION OF IODINE BETWEEN WATER AND BROMOFORM, WATER AND CARBON BISULPHIDE, AND WATER AND CARBON TETRA CHLORIDE AT 25°. (Jakowkin — Z. physik. Chem. 18, 590, '95.)

Original results plotted on cross-section paper and table made from curves. Jakowkin points out that the results of Berthelot and Jungfleisch — Ann. chim. phys. [4] 26, 400, '72, are incorrect on account of the presence of HI.

Grams I per Liter of H ₂ O Layer in Each Case.	Grams I per Liter of:					
H ₂ O Layer in Each Case.	CHBr ₃ Layer.	CS ₂ Layer.	CCl. Layer.			
0.05	20	30	4.0			
0.10	45	60	8.5			
0.15	71	91	13.0			
0.20	100	126	17.5			
0.25	130	160	22.0			

IODOFORM CHI3, IODOL C.I.NH (Tetra Iodo Pyrrol).

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Vulpius - Pharm. Centrh. 34, 117, '93.)

Solvent.	t°.	Grams per 100 Grams Solvent.			
Solvent.		CH ₃ I.	C,LNH.		
Water	25	0.0106	0.0204		
Alcohol	25	2.14 (1.43 gms. (V.))	II.I		
Alcohol	b. pt.	(10.0 gms. (V.))			
Ether	25	19.2 (16.6 gms. (V.))	66.6		
Chloroform	25	• • •	0.95		

IRIDIUM DOUBLE SALTS.

SOLUBILITY IN WATER. (Palmaer - Ber. 23, 3817; 24, 2000, '01.)

	(Faillact — Der. 23, 3017, 24, 2090, 91.)									
	Double S	alt.	Formula.	t°.	Gms. per 100 Gms. H ₂ O.					
Irido	Pentamine	Bromide	$Ir(NH_3)_5Br_3$	12.5	0.284					
"	66	Bromonitrate	$Ir(NH_3)_5Br(NO_3)_2$	18	5.58					
66	"	Tri Chloride	Ir(NH ₃) ₅ Cl ₃	15.1	6.53					
66	46	Chloro Bromide	Ir(NH ₃) ₅ ClBr ₂	15	0.47					
66	46	Chloro Iodide	Ir(NH ₃) ₅ ClI ₂	15	0.95					
66	"	Chloro Nitrate	Ir(NH ₃) ₅ Cl(NO ₃) ₂	15.4	1.94					
66	46	Chloro Sulphate	Ir(NH ₃) ₅ ClSO ₄ .2H ₂ O	15.0	0.74					
66	"	Nitrate	$Ir(NH_3)_5(NO_3)_3$	16	0.28					
66	Aquo Penta	amine Bromide	Ir(NH ₃) ₅ (OH ₂)Br ₃	ord. temp.	25.0					
"	i	Chloride	Ir(NH ₃) ₅ (OH ₂)Cl ₃	ord. temp.	74.7					
"	"	Nitrate	Ir(NH3)5(OH2)(NO3)3	17	10.0					

IRON BROMIDE (Ferrous) FeBr2.6H2O.

SOLUBILITY IN WATER. (Etard - Ann. chim. phys. [7] 2, 537, '94.)

t°.	Gms. FeBr ₂ per 100 Gms. Sol.	t°.	Gms. FeBr ₂ per 100 Gms. Sol.	t°.	Gms. FeBr ₂ per 100 Gms. Sol.
- 20	47.0	30	55.0	60	59.0
0	50.5	40	56.2	80	61.5
20	53 · 5			100	64.0

IRON CARBONATE (Ferrous) FeCO3.

roo gms. H₂O saturated with CO₂ at 6-8 atmospheres dissolve 0.073 gram FeCO₃.

IRON CHLORIDE (Ferrous) FeCl₂.4H₂O. Solubility in Water. (Etard.)

t°.	Gms. FeCl ₂ per 100 Gms. Solution.	Solid Phase.	t°.	Gms. FeCl ₂ per 100 Gms. Solution.	Solid Phase.
10	39.2	$FeCl_2.4H_2O$	60	47.0	FeCl ₂ .4H ₂ O
15	40.0	66	80	50.0	"
25	41.5	66	87	51.2	FeCl ₂ .4H ₂ O+FeCl ₂
30	42.2	66	90	51.3	FeCl ₂
40	43.6	"	100	51.4	"
50	45.2	"	120	51.8	66

Solubility of Iron Chloride (Ferric) Fe $_2$ Cl $_6$ in Water. (Roozeboom — Z. physik. Chem. 10, 477, '92.)

(21002000011 = Payont one 20, 4777 927)								
t°.	Mols. Fe ₂ C per 100 Mo H ₂ O.	le Gms. Fe	Cl ₃ per 100 Gms.	t°.	Mols. Fe ₂ C per 100 Mo		Cl ₃ per 100 Gms.	
	H ₂ O.	$\widetilde{\mathrm{H_{2}O}}$.	Solution.		H_2O .	$\widetilde{\mathrm{H_{2}O}}$.	Solution.	
	Solid Phas	e, Fe ₂ Cl _{6.12} F	I ₂ O.		Solid Phase	Fe ₂ Cl _{6.5} H	2O (con.).	
-55	2.75	49.52	33.12	35	15.64	281.6	$73 \cdot 79$	
-27	2.98	53.60	34.93	50	17.50	315.2	75.91	
0	4.13	74.39	42.66	55	19.15	344.8	$77 \cdot 5^{2}$	
+20	5.10	91.85	47 .88	55	20.32	365.9	78.54	
30	5.93	106.8	51.64	Sc	olid Phase, Fe	2Cl ₆ .4H ₂ O		
37	8.33	150.0	60.01	50	19.96	359.3	78.23	
30	II.20	201.7	66.85	55	20.32	365.9	78.54	
20	12.83	231.1	69.79	60	20.70	372.8	78.86	
8	13.7	246.7	71.15	69	21.53	387.7	79.50	
So	lid Phase, l	Fe ₂ Cl _{6.7} H ₂ O.		73 ·	5 25.0	450.2	81.81	
20	11.35	204 - 4	67.14	70	27.9	502.4	83.41	
32	13.55	244.0	70.92	66	29.2	525.9	84.03	
30	15.12	272.4	73.13	S	olid Phase, F	e ₂ Cl ₆ .		
25	15.54	280.0	73.69	66	29.2	525.9	84.03	
So	lid Phase, I	Fe ₂ Cl ₆ .5H ₂ O.		75	28.42	511.4	83.66	
12	12.87	231.8	69.87	80	29.20	525.9	84.03	
27	14.85	267.5	72.78	100	29.75	535.8	84.26	

SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 25°, 35°, AND 45°.

(Mohr — Z. physik. Chem. 27, 197, '98.)

Results at 25°. Results at 35°. Results at 45°.

Mols. per		Mols. per		Mols	. per	0	
100 Mols. H2O.		100 Mo	100 Mols. H ₂ O.		s. H ₂ O.	Solid Phase	
NH ₄ Cl.	Fe ₂ Cl ₆ .	NH ₄ Cl.	Fe ₂ Cl. ₆ .	NH ₄ Cl.	Fe ₂ Cl ₆ .	in Each Case.	
0	10.98	0	13.36	0.0	33.4	Fe ₂ Cl _{6.12} H ₂ O (5.H ₂ O at 45°)	
1.57	10.74	1.41	13.05			Hydrate + Double Salt	
2.48	9.02	3.08	9.28	4.08	9.58	Double Salt	
5.28	$7 \cdot 73$	6.98	7.64			46	
9 · 59	6.77	10.76	6.70	13.09	6.31	66	
9.83	6.70	11.60	6.52	13.54	6.28	Double Salt + Mixed Crystals	
9.65	6.07	12.28	6.08	12.91	5 · 49	Mixed Crystals	
9.93	5.23	11.57	3.98	13.49	4.84	66	
9.92	3.97	11.89	3.38	13.46	4.99	66	
10.31	2.05	13.23	1.38			66	
13.30	0.0	14.79	0.0	16.28	0.0	NH ₄ Cl	

SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AT 15°. (Roozeboom — Z. physik. Ch. 10, 148, '92.)

Mols. per 100	Mols. H ₂ O.	Grams per 10	oo Gms. H ₂ O.	Se	olid		
NH ₄ Cl.	FeCl ₃ .	NH ₄ Cl.	FeCl ₃ .		ase.		
0.0	9.30	0.0	83.88	Fe ₂ Cl _{6.12} H ₂ C)		
1.09	9.57	3.24	86.32	44			
1.36	9.93	4.03	91.61	Fe ₂ Cl _{6.12} H ₂ C	+ Double	e Salt	
2.00	9.27	5.92	83.64	Double Salt			
2.79	8.71	8.31	78.77	44			
4.05	8.09	12.08	73.20	44			
6.41	7.18	19.12	64.83	64			
10.78	6.21	32.04	56.00	44			
7.82	6.75	23.21	60.83	Mixed Crysta	ls containi	ng 7.29%	FeCl ₃
7.62	5.94	22.63	53 · 47	66	44	5.55	44
7.70	5.03	22.90	45 - 42	64	66	4-4	66
7.81	4.34	23.23	39.13	44	44	3.8	64
8.52	2.82	25.33	25.43	44	64	1.64	44
10.95	0.68	32.55	6.15	44	44	0.31	44
11.88	0.0	35.30	0.0	NH ₄ Cl			

SOLUBILITY OF FERRIC CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT DIFFERENT TEMPERATURES. (Roozeboom and Schreinemaker — Z. physik. Chem. 15, 633, '94.)

Mols. per		Gms. per	100 Gms.	Solid		100 Mols. I ₂ O.		r 100 Gms. I2O. Solid
HCl.	FeCl ₃ .	HCl.	FeCl ₃ .	Phase.	HCl.	FeCl ₃ .	HCl.	FeCla. Phase.
	Results	at o°.				Results at	25° (con.)	
0	8.25	0	74.30	1	0.0	29.00	0.0	261.17
7.52	6.51	15.22	58.62		7.5	29.75	15.18	267.9 Fe ₂ Cl ₆
13.37	6.33	27.06	57.01		19.5	35.25	39.46	317.4 .5H ₂ O
16.80	8.70	33.99	78.34		19.5	35.25	39.46	317.4)
18.45	10.23	37.34	92.10	Fe ₂ Cl ₆	20.6	35 · 34	41.68	318.3 Fe ₂ Cl ₆
20.40	15.40	41.28	138.7	.12H ₂ C	31.34	41.58	63.42	374.4 \ \frac{162016}{4H20}
20.10	16.00	40.67	144.I		33.00	43.00	66.77	387.3
19.95	17.70	40.37	159.4		34.65	44.80	70.11	403.4)
19.00	22.75	38.45	204.8		40.41	40.25	81.77	362.4) Fe ₂ Cl ₆
18.05	23.41	36.53	210.8)	39.03	41.38	78.98	372.7 \ .2HCl
18.05	23.40	36.53	210.8	Fe ₂ Cl ₆	35 · 74	45.24	72.33	407.4) +4H ₂ O
19.50	25.93	39.55	233.5	.7H ₂ O		Result	s at 40°.	
24.12	30.04	48.81	270.5	Fe ₂ Cl ₆	. 0	32.4	0.0	291.7 Fe ₂ Cl ₆
26.00	32.16	52.60	289.6	.5H ₂ C	13.4	37.45	27.11	337.3) 5H ₂ O
26.00	32.16	52.60	289.6	Fe ₂ Cl ₆	T 2 4	37.45	27.11	337.3) Fe ₂ Cl ₆
34.60	38.11	70.01	343.2	.4H ₂ C	27.0	50.80	54.64	457.5) .4H ₂ O
37.27	36.60	75.41	329.6	Fe ₂ Cl ₆	0	58.0	0.0	522.3)
34.60	38.11	70.01	343.2	+ 4H ₂ C		50.8	54.64	457.5 Fe ₂ Cl ₆
	Resul	ts at 25°.			42.01	48.64	85.00	438.0)
0.0	10.90	0.0	98.15)	42.50	47:52	86.72	128 O) Fe ₂ Cl ₆
2.33	23.72	4.715	213.6	Fe ₂ Cl ₆	40 07	48.64	85.00	438.0 + $^{1.2}$ HCl + $^{1.2}$ HCl
0.0	24.5	0.0	220.7 .	12.1120	, .			, , , 41120
0.0	23.5	0.0	211.6		R	esults fo	or other	rtemperatures
2.33	23.72	4.715	213.4	Fe ₂ Cl ₆	are	also gi	ven ir	the original
7.50	29.75	15.18	267.9	.7H2C	pap			Ü
0.0	31.50	0.0	283.6					

SOLUBILITY OF THE SALT PAIR FeCl₃. NaCl IN WATER AT 21°. (Hinrichsen and Sachsel — Z. physik. Chem. 50, 94, '04-'05.)

Grams Used.		Gms. p Gms. So		G. Mol		Solid Phase.
FeCl ₃ .	NaCl.	FeCl ₃ .	NaCl.	FeCl ₃ .	NaCl.	Phase.
0	3.6	0	36.10	0	II.2	NaCl
1.8	3.0	24.27	9.10	2.69	2.8	Mix Crystals
3.6	2.5	25.40	8.45	2.81	2.6	44
5 · 5	2.0	26.40	5.25-	2.93	2.54	**
7.2	1.5	38.15	3.90	4.23	I.22	44
9.0	1.0	45.38	2.45	5.03	0.75	44
10.8	0.5	46.75	2.11	5.18	0.65	44
10.8	0.0	83.39	0.0	9.3	0.0	FeCl ₃

SOLUBILITY OF THE SALT PAIR FeCl₃.KCl in Water at 21°. (H. and S.)

Grams Used. FeCla. KCl.		Gms. S	oer 100 olution.	Gm. Mols.	Solid Phase.	
recig.	ACI.	FeCl ₃ .	KCl.	FeCl ₃ .	KCl.	
0	35	0	34.97	0	8.45	KCl
13	28	13.44	24.45	1.49	5.90	Mix Crystals
18	21	23.18	16.54	2.57	3.99	44
23	18.5	28.05	11.69	3.11	2.82	44
23 28	16	35 · 72	11.68	3.96	2.82	44
31	10.5	36.62	11.19	4.06	2.70	Double Salt
36.2	9	37 · 35	13.67	4.14	3.30	44
46.5	6	51.69	7 · 54	5 · 73	1.82	44
15.5	0	83.89	0.0	9.3	0.0	FeCl ₃

SOLUBILITY OF THE SALT PAIR FeCl₃.CsCl in Water at 21°. (H. and S.)

Grams		Gms. g Gms. S	oer 100 olution.	Gm. Mols Mols.		Solid Phase.
FeCl ₃ .	CsCl.	FeCl ₃ .	CsCl.	FeCl ₃ .	CsCl.	Phase.
0	65	0.0	65.0	0.0	6.95	CsCl
0.6	11.6	0.45	55.18	0.05	5.9	FeCl ₃ .CsCl.H ₂ O
1.4	10.2	2.1	52.38	0.23	5.6	44
2.2	8.8	5.24	51.44	0.57	5.5	44
2.0	7 - 4	7.8	47.70	0.86	5.1	FeCl _{3.2} CsCl.H ₂ O
3.8	6.0	8.93	41.15	0.99	4.4	44
4.6	4.6	15.34	25.25	1.70	2.7	44
5 · 4	2.8	21.65	14.96	2.40	1.6	44
6.2	1.4	27.96	8.42	3.10	0.9	44
35.0	0.2	48.71	0.94	5.40	0.1	44
35.0	0.0	83.89	0.0	9.3	0.0	FeCl ₃

100 gms. abs. acetone dissolve 62.9 gms. FeCl₃ at 18°.

(Naumann - Ber. 37, 4332, '04.)

IRON NITRATE (Ferrous) Fe(NO₃)₂.

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt 3, 438, '00.)

t°.	Gms. Fe(NO ₃) ₂ per 100 Gms. Sol.	Mols. Fe(NO ₃) ₂ per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. Fe(NO ₃) ₂ per 100 Gms. Sol.	Mols. Fe(NO ₃) ₂ per 100 Mols. H ₂ O.	Solid Phase.
-27	35.66	5.54	Fe(NO ₃) ₂ .9H ₂ O	-9	39.68	6.57	$Fe(NO_3)_2.6H_2O$
-21.5	36.10	5.64	6.6	0	41.53	7.10	44
-19	36.56	5.76	44	18	45.14	8.23	44
-15.5	37.17	5.91	44	24	46.51	8.70	44
	• • •	0)		60.5	62.50	16.67	66

Density of solution saturated at $18^{\circ} = 1.497$.

IRON OXIDES, HYDROXIDE and SULPHIDE.

SOLUBILITY IN AQUEOUS SUGAR SOLUTIONS.

	(Stolle — Z. Ver Zuckerind. 50, 340, '00.)										
% Sugar	% Sugar One Liter of Sugar Solutions Dissolves Milligrams of:										
% Sugar in Sol-	Fe	2(OH)6	at:	Fe ₂ O;	at:		Fe ₃ O ₄ a	t:		FeS at:	
vent.	17.4°.	45°•	75°.	17.5°.	45°.	17.5°.	45°•	75°.	17.5°.	45°•	75°.
10	3 · 4	3 · 4	6.1	I.4	2.0	10.3	10.3	12.4	3.8	3.8	5 · 3
30	2.3	2.7	3.8	1.4		12.4	10.3	12.4	7.1	9.1	7.2
50	2.3	1.9	3.4	0.8	I.I	14.5	10.3	14.5	9.9	19.8	9.1

IRON PHOSPHATE Fe₂(PO₄)₃.

THE ACTION OF WATER AND OF AQUEOUS SALT SOLUTIONS UPON FERRIC PHOSPHATE.

(Lachowicz - Monatsh. Chem. 13, 357, '92; Cameron and Hurst - J. Am. Chem. Soc. 26, 888, '94.)

The experiments show that the ordinary precipitation methods for the production of ferric phosphate give products which do not conform to the formula $Fe_2(PO_4)_3$. By digesting such samples with water very little is dissolved, but the material is decomposed to an extent depending upon the relative amounts of solid and solvent used. The amount of PO_4 dissolved per gram of $Fe_2(PO_4)_3$ varies from about 0.0026 gram removed by 5 cc. H_2O to 0.0182 gram removed by 800 cc. H_2O at the ordinary temperature.

IRON SULPHATE (Ferrous) FeSO_{4.7}H₂O.

SOLUBILITY IN WATER. (Fränckel — Heidelberg '05, Landolt and Börnstein's Tabellen, 3d ed. p. 537, '06.)

t°.	Gms. FeSO ₄ per 100 Gms. H ₂ O.	Solid Phase.	t°.	Gms. FeSO. per 100 Gms. H ₂ O.	Solid
-1.82	14.98	Ice+FeSO _{4.7} H ₂ O	56.6	-	FeSO _{4.7} H ₂ O + FeSO _{4.4} H ₂ O
0	15.62	FeSO _{4.7} H ₂ O	60	55.02	FeSO _{4.4} H ₂ O
10	20.85	46	70	56.04	44
20	26.42	44	75.8	56.8	$FeSO_4.4H_2O + FeSO_4.H_2O$
30	33.00	66	80	50.6	FeSO ₄ .H ₂ O
40	40.20	44	90	43.0	44
50	48.55	66			

100 grams sat. solution in Glycol contain 6.0 grams FeSO₄ at ordinary temperature. (de Coninck.)

161 IRON POTASSIUM SULPHATE

IRON POTASSIUM SULPHATE (Ferrous) FeSO4.K2SO4.6H2O.

SOLUBILITY IN WATER.

(Tobler - Liebig's Ann. 95, 193, '55.)

t°.	Gms. K ₂ Fe(SO ₄) ₂ per 100 Grams H ₂ O.	t°.	Gms. K ₂ Fe(SO ₄) ₂ per 100 Grams H ₂ O.
0	19.6	35	41.0
IO	24.5	40	45.0
14.5	29.1	55	56.0
16	30.9	65	57 · 3
25	36.5	70	64.2

Solubility of Mixtures of Ferrous Sulphate FeSO_{4.7}H₂O and Sodium Sulphate $\rm Na_2SO_4.1oH_2O$ in Water. (Koppel - Z. physik. Chem. 52, 405, '05.)

t°.	Gms. per 100 Gms. Solution.		Gms. per	100 Gms.	Solid Phase.		
	FeSO ₄ .	Na ₂ SO ₄ .	FeSO4.	Na ₂ SO ₄ .	Solid i	rnase.	
0	14.54	4.93	18.06	6.11	$FeSO_4.7H_2O + Na_2S$	O ₄ .10H ₂ O	
15.5	17.76	11.32	25.05	15.97	66	44	
21.8	16.57	15.32	24.34	22.51	$FeNa_2(SO_4)_2.4H_2O$		
24.92	16.21	15.13	23.62	22.04	66		
35	16.35	14.98	23.91	21.83	66		
40	16.37	15.42	24.01	22.62	44	*	
18.8	18.13	13.8	26.63	20.28	FeNa ₂ (SO ₄) _{2.4} H ₂ O -	FeSO4.7H2O	
23	19.58	12.5	28.82	18.4	44	46	
27	20.97	11.3	30.95	16.64	66	66	
31	22.91	9.71	33.99	14.41	44	46	
35	23.85	9.26	35.61	13.85	44	66	
40	26.32	7.85	39.98	11.92	. 44	46	
18.8	18.23	14.83	27:23	22.16	FeNa ₂ (SO ₄) _{2.4} H ₂ O -	- Na ₂ SO ₄ .10H ₂ O	
23	13.83	18.04	20.31	26.48	36	•6	
28	7.66	24.41	11.28	35.94	46	44	
31	4.58	29.50	6.95	44.75	66	46	
35	4.04	30.49	6.16	46.58	FeNa ₂ SO _{4.4} H ₂ O + N	Va ₂ SO ₄	
40	4.10	30.60	6.27	46.99	64	61	

LANTHANUM BROMATE La(BrO₃)₃.9H₂O.

100 gms. H₂O dissolve 28.5 gms. lanthanum bromate at 15°.

(Marignac.)

LANTHANUM SULPHATE La2(SO4)3. + 9H>6

SOLUBILITY IN WATER.
(Muthmann and Rölig — Ber. 31, 1723, '08.)

t°.	Gms. La2(SO4)3	per 100 Gms.	+ 0	Gms. La2(SO4)3 per 100 Gms.		
	Solution.	n. Water.	٠.	Solution.	Water.	
0	2.91	3.0	50	1.47	1.5	
14	2.53	2.6	75	0.95	0.96	
30	1.86	1.9	100	0.68	0.69	

LEAD Pb.

MUTUAL SOLUBILITY OF LEAD AND ZINC. (Spring and Romanoff — Z. anorg. Chem. 13, 34, '96.)

t°.	Upper %Pb.	Layer.		Layer.		Upper %Pb.	Layer.	Lower %Pb.	Layer.
	98.8				650	83.0			93.0
419			1.5	98.5	740	79.0	21.0	10.0	90.0
450	92.0	8.0			800	75.0	25.0	14.0	86.0
475	91.0	9.0	2.0	98.0	900	59.0	41.0	25.5	74 · 5
584	86.0	14.0	5.0	95.0	010-02	o (crit. te	mp.)		

LEAD ACETATE $Pb(C_2H_3O_2)_2.3H_2O.$

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.)

Solvent.	Grams Pb(C ₂ H ₃ O ₂) ₂ per 100 Grams Solvent at:				
_	25°.	b. pt.			
Water	50	200			
Alcohol	3.3	100			
Alcohol (0.941 Sp. Gr.)	12.5 (per 100 cc. at 15.5°)				
Glycerine	20.0 (15°)				

LEAD BENZOATE Pb(C7H5O2)2.H2O.

SOLUBILITY IN WATER. (Paietta — Gazz. chim. ital. 36, II, 67, '06.)

LEAD BROMATE Pb(BrO2)2.H2O.

100 gms. cold water dissolve 1.33 gms. lead bromate.
(Rammelsberg — Pogg. Annalen. 52, 96, '41; Böttger — Z. physik. Chem. 46, 602, '03.)

LEAD BROMIDE PbBr.

SOLUBILITY IN WATER. (Lichty — J. Am. Chem. Soc. 25, 474, '03.)

t°.	Density of Solutions, H ₂ O at o°.	Gms. PbB	r ₂ per 100	Milligram Mols. PbBr2 per 100			
		cc. Solution.	Gms. H ₂ O.	cc. Solution.	Gms. H ₂ O.		
0	1.0043	0.4554	0.4554	1.242	I.242		
. 15	1.0053	0.7285	0.7305	1.987	1.989		
25	1.0061	0.9701	0.9744	2.646	2.655		
35	1.0060	1.3124	1.3220	3 · 577	3.603		
45	1.0059	1.7259	1.7457	4.705	4.760		
55	1.0046	2.1024	2.1376	5.731	5.827		
65	1.0028	2.516	2.574	6.859	7.016		
80	1.0000	3 · 235	3 · 343	8.819	9.113		
95	0.9995	4.1767	4.3613	11.386	11.890		
100		4.550	4.751	12.40	12.94		

Solubility of Lead Bromide in Aqueous Hydrobromic Acid at 10°.

100 grams $\rm H_2O$ containing 72.0 grams HBr dissolve 55.0 grams PbBr₂ per 100 gms. solvent, and solution has Sp. Gr. 2.06.

(Ditte - Compt. rend. 92, 719, '81.)

LEAD CARBONATE PbCO3.

SOLUBILITY IN WATER BY ELECTRICAL CONDUCTIVITY METHOD. (Kohlrausch and Rose — Z. physik. Chem. 12, 241, '93; Böttger — *Ibid.* 46, 602, '03.)

1 liter of water dissolves 0.0011 - 0.0017 gram PbCO₃ at 20°.

LEAD CHLORATE Pb(ClO₃)₂.

100 grams H₂O dissolve 151.3 grams Pb(ClO₃)₂, or 100 grams sat. solution contain 60.2 gms. Pb(ClO₃)₂ at 18°. Density of solution, 1.947.

(Mylius and Funk — Ber. 30, 1718, '97.)

LEAD CHLORIDE PbCl2.

SOLUBILITY IN WATER.

(Lichty; see also Formanek — Chem. Centrb. 18, 270, '87; Bell — Chem. News, 16, 69, '67; Ditte — Compt. rend. 92, 718, '81.)

t°.	Density of Solutions,	Gms. PbCl	2 per 100	Milligram Mols. PbCl2 per 100			
	H ₂ O at o°.	cc. Solution.	Gms. H ₂ O.	cc. Solution.	Grams H ₂ O.		
0	1.0066	0.6728	0.6728	2.421	2.421		
15	1.0069	0.9070	0.9090	3.265	3.272		
25	1.0072	1.0786	1.0842	3.882	3.903		
35	1.0060	1.3150	I.3244	4.733	4.767		
45	I.0042	1 . 5498	1.5673	5 · 579	5.644		
55	I.0020	1.8019	1 .8263	6.486	6.573		
65	0.9993	2.0810	2.1265	7 - 490	7.651		
80	0.9947	2.5420	2.6224	9.150	9 · 439		
95	0.9894	3.0358	3.1654	10.926	11.394		
100		3.208	3 · 342	11.52	12.01		

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SOLUTIONS OF HYDRO-CHLORIC ACID.

(At 0°, Engel — Ann. chim. phys. [6] 17, 359, '89; at 25°, Noyes — Z. physik. Chem. 9, 623, '92; at different temperatures, Ditte — Compt. rend. 92, 718, '81; see also Bell — J. Chem. Soc. 21, 350, '68.)

Gms. HCl Gms. PbCl ₂ per Liter at:		Gms. HCl per 100	Gms. PbCl ₂ per 100 Gms. Solution at:					
Liter.	o°.	25°.	Gms. H ₂ O.	o°.	20°.	40°.	55°·	80°.
0	5.83	10.79	. 0	8.0	11.8	17.0	21.0	31.0
0.5	4.5	9.0	100	I.2	I · 4	3.2	5 · 5	12.0
I.0	3.6	7.6	150	1.5	2.0	5.0	7 · 5	16.0
2.0	2.2	6.0	200	3.5	5.0	8.2	11.7	21.5
3.0	1.6	5.0	250	6.5	8.0	13.0	16.2	28.5
6	I · 4	3.1	300	10.7	12.5	17.5	22.0	35.0
10	I.2	1.8	400	21.5	24.0			
100	I.2							
200	5.2							
250	10.5							
300	17.5							
400	40.0	• • •						

SOLUBILITY OF LEAD CHLORIDE IN AQUEOUS SALT SOLUTIONS AT 25°.

(Noyes; in HgCl2 solutions at 20°, Formanek — Chem. Centralb. 270, '87.)

In Aqueous Solutions of:

HCl, KCl, Mg and ZnCl ₂ Gr per I	In CaCl ₂ Gram Equiv. per Liter.		Gram	lgCl ₂ Equiv. Liter.	In Ph(NO ₃) ₂ Gram Equiv. per Liter.		
Salt.	PbCl ₂ .	CdCl ₂ .	PbCl ₂ .	HgCl2.	PbCl ₂ .	Pb(NO _a) ₂ .	PbCl ₂ .
0.0	0.0777	0.00	0.0777	0.0	0.0777	0.0	0.0777
0.05	0.050	0.05	0.0601	0.1	0.0992	0.2	0.0832
0.10	0.035	0.10	0.0481				
0.20	0.021	0.20	0.0355			,	

The above results were calculated to grams per liter plotted on crosssection paper, and the figures in the following table read from the curves.

Gms. Salt		Grams PbCl ₂ per Liter in Aqueous Solutions of:								
per Liter.	HC1.	KCl.	MgCl ₂ .	CaCl ₂ .	MnCl ₂ .	ZnCl ₂ .	CdCl ₂ .	H	ζCl ₂ .	Pb(NO ₃) ₂
0	10.79	10.79	10.79	10.79	10.79	10.79	10.79	10.79(N) 9.71(F) 10.79
1	8.5	9.3	7 · 7	8.7	9.5		10.2	11.0	9.8	10.8
2	6.5	8.2	6.5	7.6	8.3		9.7	11.4	10.0	10.85
3	5.2	7.2	5 · 7	6.7	7 · 3		9.2	11.7	10.3	10.87
4	4.3	6.5	5.2	6.0	6.3		8.6	12.0	10.5	10.90
6	3.2	5.3	4 · 4	4.8	5.0		7 · 7	12.7	11.0	10.95
8	2.5	4.5		3.9	4 · I		7.0	13.3	11.6	11.00
10	2.I	3.9		3.3	3 · 5		6.3	14.0	12.2	11.05
14		3.1			2.8	3.0	5 - 4		13.2	11.15
20					• • •		4 . 7		14.8	11.20
40									19.0	11.70

SOLUBILITY OF LEAD CHLORIDE IN GLYCERINE. (Presse - Ber. 7, 599, '74.)

1 part glycerine + 7 parts H₂O dissolve 0.91 per cent PbCl₂.

I part glycerine + 3 parts H₂O dissolve 1.04 per cent PbCl₂. I part glycerine + 1 part H₂O dissolves 1.32 per cent PbCl₂. Pure glycerine dissolves 2.00 per cent PbCl₂.

LEAD CHROMATE PbCrO.

One liter of water dissolves 0.0002 gram PbCrO, at 18° (conductivity method). (Kohlrausch - Z. physik. Chem. 50, 365, '04-'05.)

SOLUBILITY OF LEAD CHROMATE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS.

(Lacland and Lepierre - Bull. soc. chim. [3] 6, 230, '91.)

t°.	Grams KOH per 100 cc.	Grams PbCrO4 per 100 cc.
15	2.308	1.19
60	2 . 308	1.62
80	2.308	2.61
102	2.308	3.85

LEAD CITRATE Pb(C₆H₅O₇)₂.H₂O.

SOLUBILITY IN WATER AND IN ALCOHOL.

100 gms. H_2O dissolve 0.04201 gm. $Pb(C_6H_5O_7)_2$. H_2O at 18°, and 0.05344 gm. at 25°.

100 gms. alcohol (95%) dissolve 0.0156 gm. Pb(C6H5O7)2.H2O at 18°, and 0.0167 gm. at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03.)

LEAD DOUBLE CYANIDES.

SOLUBILITY IN WATER. (Schuler - Sitzber. Akad. Wiss. Wien, 79, 302, '79.)

Double Salt.	Formula.	t°.	Gms. per 100 Gms. H ₂ O.
Lead Cobalticyanide	$Pb_3[Co(CN)_6]_2.7H_2O$	18	56.5
Lead Cobalticyanide	$Pb_3[Co(CN)_6]_2.7H_2O$	19	61.3
Lead Potassium Cobalticyanide		18	14.8
Lead Cobalticyanide Nitrate	$Pb_{3}[Co(CN)_{6}]_{2}.Pb(NO_{3})_{2}.12H_{2}O$		5.9
Lead Ferricyanide Nitrate	$Pb_{3}[Fe(CN)_{6}]_{2}.Pb(NO_{3})_{2}.12H_{2}O$	16	7.5
Lead Potassium Ferricyanide	PbKFe(CN) ₆ .3H ₂ O	16	21.0

LEAD FLUORIDE PbF2.

One liter of water dissolves 0.64 gram PbF2 at 18° (conductivity method). (Kohlrausch - Z. physik. Chem. 50, 365, '04-'05.)

LEAD FORMATE Pb(HCOO)2.

SOLUBILITY OF LEAD FORMATE IN AQUEOUS SOLUTIONS OF BARIUM FORMATE AT 25°.

(Fock - Z. Kryst. Min. 28, 383, '97.)

Mol. % in Solution.		Grams per	Grams per Liter.		In Solid Pha	se Mol. % of
Pb(HCO ₂) ₂ .	Ba(HCO ₂) ₂ .	Pb(HCO ₂) ₂ .	Ba(HCO ₂) ₂ .	Sp. Gr. of Solutions.	Pb(HCO2)2.	Ba(HCO ₂) ₂ .
0.00	100.0		28.54	I.2204	0.0	100
0.29	99.71	1.104	28.65	1.2213	1.72	98.28
0.74	99.26	2.803	28.90	1.2251	5 · 29	94.71
I.24	98.76	5.309	32.24	1.2529	11.94	88.06
2.91	97.09	11.42	29.29	1.2341	24.81	75.19
5.92	94.08	23.11	28.13	1.2355	56.54	43 . 46
100.00	0.0	28.35		1.0911	100.0	0.0

LEAD HYDROXIDE Pb(OH)2.

SOLUBILITY OF LEAD HYDROXIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE. (Moist Lead Hydroxide used, temperature not given.)

(Rubenbauer - Z. anorg. Chem. 30, 336, '02.)

Amt. of N	a Amt. of Pb.	Mol. Dilution	Grams per 100	cc. Solution.
in 20 cc.	in 20 cc.	of NaOH.	NaOH.	Pb(OH)2.
0.2024	0.1012	2.27	1.759	0.590
0.3196	0.1736	I · 44	2.778	010.1
0.5866	0.3532	0.785	5.10	2.056
0.9476	0.4071	0.485	8.235	2.370
1.7802	0.5170	0.258	15.470	3.010

LEAD IODATE Pb(IO3)2.

One liter of water dissolves 0.019 gm. Pb(IO₃)₂ at 18°.

(Kohlrausch; Böttger)

LEAD IODIDE PbI2.

SOLUBILITY IN WATER.

(Lichty - J. Am. Chem. Soc. 25, 471, '03.)

Density.	Grams Ph	I ₂ per 100	Millimols PbI2 per 100		
(H ₂ O at o°.)	cc. Solution.	Grams H ₂ O.	cc. Solution.	Grams H ₂ O.	
1.0006	0.0442	0.0442	0.096	0.096	
0.9998	0.0613	0.0613	0.133	0.133	
0.9980	0.0762	0.0764	0.165	0.166	
0.9951	0.1035	0.1042	0.224	0.226	
0.9915	0.1440	0.1453	0.312	0.315	
0.9872	0.1726	0.1755	0.374	0.381	
0.9827	0.2140	0.2183	0.464	0.473	
0.9745	0.2937	0.3023	0.637	0.656	
0.9671	0.3814	0.3960	0.828	0.859	
	0.420	0.436	0.895	0.927	
	o.9998 o.9980 o.9951 o.9915 o.9872 o.9827 o.9745 o.9671	(Hi ₂ O at o°.) cc. Solution. 1.0006 0.0442 0.9998 0.0613 0.9980 0.0762 0.9951 0.1035 0.9915 0.1440 0.9872 0.1726 0.9827 0.2140 0.9745 0.2937 0.9671 0.3814	1.0006 0.0442 0.0442 0.9998 0.0613 0.0613 0.9980 0.0762 0.0764 0.9951 0.1035 0.1042 0.9915 0.1440 0.1453 0.9872 0.1726 0.1755 0.9827 0.2140 0.2183 0.9745 0.2937 0.3023 0.9671 0.3814 0.3960	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

SOLUBILITY OF LEAD IODIDE IN ACETONE, ANILIN AND AMYL ALCOHOL. (von Laszczynski — Ber. 27, 2285, '94.)

Solvent.	t°.	Grams PbI2 per 100 Grams Solvent.
$(CH_3)_2CO$	59	0.02
$C_6H_5NH_2$	13	0.50
$C_6H_5NH_2$	184	1.10
C_5H_7OH	133.5	0.02

Solubility of Mixtures of Lead Iodide and Potassium Iodide in Water.

(Ditte - Ann. chim. phys. [5] 24, 226, '81; Schreinemaker - Z. physik. Chem. 9, 65, '92.)

	Grams per 1000 Gms. H2O.		Mols. per 100	o Mols. H ₂ O.	Solid	
t°.	PbI ₂ .	KI.	PbI_2 .	K ₂ I ₂ .	Phase.	
5		163		8.8	Double Salt	$+ PbI_2$
20	9	260	0.3	14.1	44	44
28	25	325	0.9	17.6	44	46
39	45	449	8. r	24.3	44	44
67	255	751	9.9	40.7	44	44
80	731	1186	28.5	64.3	44	66
80	519.9	976.4	22.2	52.9	44	44
104.5	1411	1521	55.1	82.5	44	44
120	2151	1812	83.9	98.2	44	
137	2874	2097	112.2	113.8	44	64
175	5603	2947	218.7	159.9	44	44
189		3339		181.0	44	44
9	96.6	1352	$3 \cdot 77$	73 · 3	Double Salt	+KI
13	114.3	1384	4.46	75.05	66	44
23	186.3	1510	7.27	81.08	66	44
50	526.7	1906	20.56	103.3	44	44
64	789.3	2161	30.8	117.2	44	44
83.5	1108.6	2434	43.2	131.9	44	44
92	1273	2566	49 · 7	139.3	44	44
137	2382	3278	93.0	117.7	44	44
165	4187	4227	163.4	229.1	44	44
218	10303		402.3		44	44
241	12803	7998	499 · 9	433.6	44	44
242	12749		497.8		44	44
250	15264	• • •	596.0		44	64

t°.	Gms. PbI _{2.2} KI per 1000 Gms. H ₂ O.	Mols. PbI _{2.2} KI per 1000 Mols. H ₂ O.	Solid Phase.
157	5218	141.07	$\mathrm{PbI_{2.2}KI.2}_{2}^{1}\mathrm{H_{2}O}$
172	6489	175.5	66
186	7903	213.7	44
194	9266	250.6	44
201	11320	306.0	44

LEAD MALATE Pb.C₄H₄O_{5·3}H₂O.

SOLUBILITY IN WATER AND ALCOHOL. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

100 gms. H_2O dissolve 0.0288 gm. $PbC_4H_4O_5.3H_2O$ at 18°, and 0.06504 gm. at 25°.

100 gms. 95% alcohol dissolve 0.0048 gm. PbC4H4O5.3H2O at 18°-

Density of alcohol employed = 0.8092.

LEAD NITRATE Pb(NO₃)₂.

SOLUBILITY IN WATER.

(Mulder; Kremers — Pogg. Ann. 92, 497, '54; at 15°, Michel and Kraft — Ann. chim. phys. [3] 41, 471, '54; at 17°, Euler — Z. physik. Chem. 49, 314, '04.)

Grams Pb(NO3)2 per 100 Gms.			Grams Pb(NO ₃) ₂ per 100 Gms.		
	Solution.		Water.		Solution.
(1) 38.8(2)	27·33 ⁽³⁾	40	69.4	75.0	41.9
48.3	31.6	50	78.7	85.0	45.0
54.0	34.2	60	88.0	95.0	47.8
56.5	35.2	80	107.6	115.0	52.7
60.6	36.9	100	127.0	138.8	57.I
66.0	38.8		52.76*		34.54*
3	Water. ((1) 38.8(2) 4 48.3 54.0 3 56.5 4 60.6	Water. Solution. (1) 38.8(2) 27.33(3) 4 48.3 31.6 5 54.0 34.2 3 56.5 35.2 4 60.6 36.9 7 66.0 38.8	Water. Solution. 5(1) 38.8(2) 27.33(3) 40 4 48.3 31.6 50 5 54.0 34.2 60 3 56.5 35.2 80 4 60.6 36.9 100	Water. Solution. Water. 5(1) 38.8(2) 27.33(3) 40 69.4 4 48.3 31.6 50 78.7 5 54.0 34.2 60 88.0 3 56.5 35.2 80 107.6 4 60.6 36.9 100 127.0 7 66.0 38.8 17° 52.76*	Water. Solution. Water. \$\sigma(1)\$ 38.8\$\$\(\frac{8}{2}\)\$ 27.33\$\$\(\sigma(3)\$\$ 40 69.4 75.0 4 48.3 31.6 50.78.7 85.0 5 54.0 34.2 60.88.0 95.0 3 56.5 35.2 80.107.6 115.0 4 60.6 36.9 100.127.0 138.8 7 66.0 38.8 17° 52.76*

(1) Mulder, (2) Kremers, (3) Average of M and K. Density of saturated solution at 17° = 1.405. (Euler.)

SOLUBILITY OF LEAD NITRATE IN ETHYL AND METHYL ALCOHOL.

Solvent.	Gms. Pb(NO ₃) ₂ per 100 Grams Solvent at:					
Solvent.	40.	8°.	220.	40°.	50°.	
Aq. C ₂ H ₅ OH (Sp. Gr9282)	4.96	5.82	8.77	12.8		(G)
Abs. C ₂ H ₅ OH			0.04 (20.5°)		-	(de B)
Abs. CH ₃ OH			1.37 "			66

(Gerardin — Ann. chim. phys. [4] 5, 129, '65; de Bruyn — Z. physik. Chem. 10, 783, '92.)

SOLUBILITY OF MIXED CRYSTALS OF LEAD NITRATE AND STRONTIUM NITRATE IN WATER AT 25°. (Fock - Z. Kryst. Min. 28, 372, '97.)

Mol. per cen	in Solution.	Gms. per 10	o cc. Solution.	Sp. Gr. of Solutions.	Mol. per cen	in Solid Phase.
Pb(NO ₃) ₂ .	$Sr(NO_3)_2$.	Pb(NO ₃) ₂ .	Sr(NO ₃) ₂ .	Solutions.	Pb(NO ₃) ₂ .	Sr(NO ₃) ₂ .
100	0.0	46.31	0.0	I.4472	100	0.0
87.41	12.39	50.47	4.56	1.4336	99.05	0.95
78.68	21.32	53.92	8.14	1.4288	98.11	1.89
56.39	43.61	45.34	17.81	1.4263	97.02	2 . 98
60.29	39.71	44.48	18.74	1.4245	96.06	3 · 94
33 · 70	66.30	25.23	35.03	1 . 4468	83.84	16.16
24.58	75.42	19.13	37.54	1.4867	32.88	67.12
0.0	100.0	0.0	71.04	1.5141	0.0	100.00

LEAD OXALATE PbC2O4.

One liter of water dissolves 0.0015 gm. PbC2O4 at 18° (conductivity method). (Böttger - Z. physik. Chem. 46, 602, '03; Kohlrausch - Ibid 50, 356, '04-'05.)

LEAD OXIDES. SOLUBILITY IN WATER. (Böttger; Ruer - Z. anorg. Chem. 50, 273, '06.)

No	Description of Oxide.	per Liter.	ner Liter.
ı.	Yellow Oxide, by boiling Pb hydroxide with 10% NaOH		
2.	Red Oxide, by boiling Pb hydroxide with conc. NaOH	0.56×10 ⁻⁴	0.012
	Yellow Oxide, by heating No. 1 to 630°	1.05×10 ⁻⁴	0.023
4.	Yellow Oxide, by heating No. 2 to 740°	1.00 X 10-4	0.022

5. Yellow Oxide, by heating com. yellow brown oxide to 620° 1.09×10⁻⁴ 0.024
6. Yellow Brown Oxide commercially pure 1.10×10⁻⁴ 0.024

7. Yellow Brown Oxide, by long rubbing of No. 5. 1.12×10-4 0.025

Böttger gives for three samples of lead oxide, 0.017, 0.021, and 0.013 gm. per liter respectively.

LEAD PALMITATE, LEAD STEARATE.

100 cc. absolute ether dissolve 0.0138 gm. palmitate and 0.0148 gm. stearate.

(Lidoff - Bull. soc. chim. [3] 10, 356, '93.)

LEAD PHOSPHATE (Ortho) Pb3(PO4)2.

One liter of 4.97 per cent aqueous acetic acid solution dissolves 1.27 gms. Pb₃(PO₄)₂.

(Bertrand — Monit. Scient. [3] 10, 477, '68.)

LEAD SUCCINATE PbC,H,O,.

SOLUBILITY IN WATER AND IN ALCOHOL. (Partheil and Hübner — Archiv. Pharm. 241, 413, 703.)

100 gms. H_2O dissolve 0.0253 gm. $PbC_4H_4O_4$ at 18°, and 0.0285 gm. at 25°.

100 gms. 95% alcohol dissolve 0.00275 gm. PbC₄H₄O₄ at 18°, and 0.003 gm. at 25°.

Density of alcohol used = 0.8002.

LEAD SULPHATE PbSO.

One liter of water dissolves 0.041 gm. PbSO₄, by conductivity method.

(Kohlrausch; Böttger. Dibbits - Z. anal. Chem. 13, 139, '74, finds 0.038 gram by gravimetric method.)

Solubility of Lead Sulphate in Aqueous Solutions of Strong Acids.

(Schultz - Pogg. Ann. 113, 137, '61; Rodwell - J. Chem. Soc. 15, 59, '62.)

In	Aq. H	[₂SO₄.	In	Aq. H	C1.	Ιı	ı Aq. H	NO ₃ .
(a).	(b).	(c).	(a).	(b).	(c).	(a).	(b).	(c).
1.540	63.4	0.003	1.05	10.6	0.14	1.08	11.6	0.33
1.793	85.7	0.011	1.08	16.3	0.35	I.I2	17.5	0.59
1.841	97.0	0.039	1.11	22.0	0.95	1.25	34.0	0.78
			1.14	27.5	2.11	I · 42	60.0	I.OI
			1.16	31.6	2.86			

(a) Sp. Gr. of Aq. Acid. (b) Gms. Acid per 100 Gms. Solution. (c) Gms. PbSO4 per 100 Gms. Solvent.

SOLUBILITY OF LEAD SULPHATE IN AQUEOUS SOLUTIONS OF AMMONIUM ACETATE AND OF SODIUM ACETATE.

(Noyes and Whitcomb — J. Am. Chem. Soc. 27, 756, '05; Dunnington and Long — Am. Ch. J. 22, 217, '99; Dibbits — Z. anal. Chem. 13, 139, '74.)

In Ammonium Acetate.

In Sodium Acetate.

	At 25°	(N. and W.).		At 100° (D. and L.). (D.).				
Millimols p		Grams per	Liter. PbSO ₄ .	G. NH ₄ C ₂ H ₃ O ₂ per 100 cc. Solution.	G.PbSO ₄ per 100 g. Solution.	Gms. per 100 NaC ₂ H ₃ O ₂ .		
0.0	0.134	0.0	0.041	28	7.12	2.05	0.054	
103.5	2.10	7.98	0.636	32	9.88	8.2	0.853	
207.1	4.55	15.96	1.38	37	10.58	41.0	11.23	
414.I	10.10	31.92	3.02	45	11.10			

SOLUBILITY OF MIXTURES OF LEAD HYPOSULPHATE AND STRONTIUM HYPOSULPHATE AT 25°.

(Fock - Z. Kryst. Min. 28, 389, '97.)

Mol. per cent in Solution.		Grams p	Grams per Liter.		Mol. per cent in Solid Phase.		
PbS ₂ O ₆ ,4H ₂ O.	SrS ₂ O ₆ .4H ₂ O.	PbS ₂ O ₆ .	SrS ₂ O ₆ .	Sp. Gr. of Solutions.	PbS ₂ O ₆ .4H ₂ O.	SrS ₂ O ₆ .4H ₂ O.	
0.0	100.0	0.0	145.6	1.1126	0.0	0.001	
1.05	98.95	2.97	151.2	1.1184	0.30	$99 \cdot 7$	
15.31	84.69	40.82	152.5	1.1503	3.87	96.13	
46.80	53.20	149.2	114.5	1.2147	9 . 84	90.16	
62.30	37.70	256.1	85.0	1.2889	19.26	80.74	
75 · 75	24.25	310.3	67.0	1.3252	23.73	76.27	
78.09	21.91	$373 \cdot 7$	70.8	1.3726	32.24	67.76	
88.29	11.71	509.5	45.6	1.4671	49.97	50.13	
100.0	0.00	374.3	0.0	1.6817	0.00	0.00	

LEAD TARTRATE PbC,O6H,.

SOLUBILITY IN WATER.

(Cantoni and Zachoder — Bull. soc. chim. [3] 33, 751, '05; Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

t°.	Gms. PbC ₄ O ₆ H ₄ per 100 cc. Solution.	t°.	Gms. PbC ₄ O ₆ H ₄ per 100 cc. Solution.	t°.	Gms. PbC ₄ O ₆ H ₄ per 100 cc. Solution.
18	0.010 (P. and H.)	50	0.00225	70	0.0032
25	0.0108 "	55	0.00295	75	0.0033
35	0.00105	60	0.00305	80	0.0038
40	0.0015	65	0.00315	85	0.0054

Note. — The positions of the decimal points here shown are just as given in the original communications.

100 gms. alcohol of 0.8092 Sp. Gr. (about 95%) dissolve 0.0028 gm. PbC₄O₆H₄ at 18°, and 0.00315 gm. at 25°. (P. and H.)

LEVULOSE C₆H₁₂O₆.

100 gms. saturated solution in pyridine contain 18.49 gms. $C_6H_{12}O_6$ at 26°, Sp. Gr. 1.0521. (Holty – J. Physic. Chem. 9, 764, '05.)

LIGROIN.

100 cc. H₂O dissolve 0.341 cc. ligröin at 22° Vol. of solution = 100.34, Sp. Gr. 0.9969.

roo cc. ligröin dissolve 0.335 cc. H₂O at 22° Vol. of solution = 100.60, Sp. Gr. 0.6640. (Herz — Ber. 31, 2671, '98.)

LITHIUM BENZOATE C.H.COOLi.

100 gms. $\rm H_2O$ dissolve 33.3 gms. at 25°, and 40.0 gms. at b. pt. 100 gms. alcohol dissolve 7.7 gms. at 25°, and 10.0 gms. at b. pt.

(U.S.P.)

LITHIUM BORATE Li₂OB₂O₃.

SOLUBILITY IN WATER.

Gms. Li₂OB₂O₃ per 100 Gms. H₂O 0 10 20 30 40 45 (Le Chatelier — Compt. rend. 124, 1094, 197.)

LITHIUM BROMATE LiBrO.

100 gms. H₂O dissolve 153.7 gms. LiBrO₃ at 18°, or 100 gms. saturated solution contain 60.4 gms. Sp. Gr. of sol. = 1.833. (Mylius and Funk - Ber. 30, 1718, '97.)

LITHIUM BROMIDE LiBr.

SOLUBILITY IN WATER. (Kremers - Pogg. Ann. 104, 133, '58.)

t°.	Gms. LiBr	per 100 Gms.		t°.	Gms. LiBr per 100 Gms.		
٠.	Water.	Solution.	- '		Water.	Solution.	
0	143	58.8		40	202	66.9	
10	161	61.7		50	214	68.2	
20	177	63.9		60	224	69.I	
25	184	64.8		80	245	71.0	
30	190	65.5	10	00	266	72.7	

100 gms. saturated solution in glycol, C2H4(OH)2.H2O, contain 37.5 gms. LiBr at 14.7°. (de Coninck - Chem. Centr. 76, II, 883, '05.)

LITHIUM CARBONATE Li2CO3.

SOLUBILITY IN WATER.
(Bevade — J. russ. phys. chem. Ges. 16, 591, 84; Bull. soc. chim. [2] 43, 123, '85; Flückiger — Arch.
Pharm. [3] 25, 542, '87; Draper — Chem. News, 55, 169, '87.)

An average curve was constructed from the available results and the following table read from it.

t o.	Gms. Li ₂ CO ₃	per 100 Gms.	t°.	Gms. Li ₂ CO ₃ per 100 Gms.		
	Water.	Solution.	.	Water.	Solution.	
0	1.54	1.52	40	1.17	1.16	
10	1.43	1.41	50	1.08	1.07	
20	1.33	1.31	60	1.01	I.00	
25	1.29	1.28	80	- 0.85	0.84	
30	1.25	I.24	100	0.72	0.71	

Density of saturated solution at o° = 1.017; at 15° = 1.014.

Solubility of Lithium Carbonate in Aqueous Solutions of ALKALI SALTS AT 25°. (Geffcken - Z. anorg. Chem. 43, 197, '05.)

The original results were calculated to gram quantities and plotted on cross-section paper. The figures in the following table were read from the curves.

CIII CIIC	cui ves.							
Gms. Salt		(Grams Li ₂ C	O ₃ per Lite	er in Aqueo	ous Solution	ns of:	
per Liter.	KClO ₃ .	KNO3.	KCl.	NaCl.	K ₂ SO ₄ .	Na ₂ SO ₄ .	NH ₄ Cl.	(NH ₄) ₂ SO ₄ .
0	12.63	12.63	12.63	12.63	12.63	12.63	12.63	12.63
10	12.95	13.05	13.10	13.4	13.9	14.0	16.0	20.7
20	13.10	13.3	13.5	13.9	14.7	15.0	19.2	25.0
30	13.25	13.6	13.8	14.3	15.4	16.0	21.5	28.2
40	13.40	13.8	14.0	14.6	16.0	16.6	23.3	30.8
60	• • •	13.8	14.2	14.5	16.9	17.8	26.0	35.2
80		13.6	14.0	14.4	17.7	18.6	27.6	38.5
100		13.5	13.9	14.2	18.2	19.4	28.4	41.0
120	• • •	13.3	13.7	14.0		19.9	28.7	42.6
140		13.0	13.3			20.4	28.8	43 · 5
170		12.6					28.9	
200		12.2					- 29.0	
							-	

100 gms. aq. alcohol of 0.941 Sp. Gr. dissolve 0.056 gm. Li₂CO₂ at 15.5°.

LITHIUM (Bi) CARBONATE 172

LITHIUM (Bi) CARBONATE LiHCO.

100 grams H₂O dissolve 5.501 grams LiHCO₃ at 13°.

(Bevade - Ber. 17, R 406, '84.)

LITHIUM CHLORATE LiC1O ..

100 grams H₂O dissolve 213.5 grams LiClO₃ at 18°, or 100 grams sat. solution contain 75.8 grams. Sp. Gr. of sol. = 1.815.

(Mylius and Funk - Ber. 30, 1718, '97.)

LITHIUM CHLORAURATE LiAuCl.

SOLUBILITY IN WATER. (Rosenbladt — Ber. 19, 2538, '86.)

t°.	Gms. LiAuCl ₄ per 100 Gms. Solution.	t°.	Gms. LiAuCl ₄ per 100 Gms. Solution.	to. Gn	ns. LiAuCl ₄ per o Gms. Solution.
IO	53.1	40	67.3	60	76.4
20	57 · 7	50	72.0	70	81.0
30	62.5			80	85.7

LITHIUM CHLORIDE LiCI.

SOLUBILITY IN WATER.

(Average curve from results of Gerlach - Z. anal. Chem. 8, 281, '69.)

	Gms. LiCl	per 100 Gms.		Gms. LiCl per 100 Gms.		
t°.	Water.	Solution.	t°.	Water.	Solution.	
0	67	40.1	40	90.5	47 - 5	
IO	72	41.9	50	97.0	49.2	
20	78.5	44.0	60	103.0	51.9	
25	81.5	49.9	80	115.0	53 · 5	
30	84.5	45.8	100	127.5	56.0	

Density of saturated solution at 0°, 1.255; at 15°, 1.275.

Solubility of Lithium Chloride in Aqueous Solutions of Hydrochloric Acid at o°.

(Engel - Ann. chim. phys. [6] 13, 385, '88.)

Milligram 10 cc. S	Mols. per olution.	Gms. per Solut	Sp. Gr. of Solutions.		
LiCl.	HCl.	LiCl.	HCl.	Solutions.	
120	0.0	51.0	0.0	1.255	
97 · 5	22.5	41.4	8.2	1.243	
67.0	66.0	28.5	24.I	1.249	
58.0	81.0	24.6	29.5	1.251	

SOLUBILITY OF LITHIUM CHLORIDE IN SEVERAL SOLVENTS. (von Laszczynski — Ber. 27, 2285, '94; de'Coninck — Chem. Centrh. 76, II, 883, '05.)

	In Acetone. (von L.)				Pyridine. (von L.)	I	In Glycol. (de C.)		
t°.	Gms. LiCl per 100 Gms. (CH ₃) ₂ CO.	t°.	Gms. LiCl per 100 Gms. (CH ₃) ₂ CO.	t°.	Gms. LiCl per 100 Gms. C ₅ H ₅ N.	t°.	Gms. LiCl per 100 Gms. Sat. Sol.		
0	4.60	46	3.76	15°	7.78	15°,	0.11		
12	4.41	53	3.12	100	14.26				
25	4.11	58	2.14						

LITHIUM CHROMATE Li2CrO4.2H2O.

LITHIUM BICHROMATE Li₂Cr₂O₇.2H₂O.

SOLUBILITY IN WATER AT 30°.

(Schreinemaker — Z. physik. Chem. 55, 79, '06; at 18°, Mylius and Funk — Ber. 30, 1718, '97.)

Co	mposition in	Weight per o	Solid	
	olution.		esidue.	Phase.
% CrO ₃ .	% Li ₂ O.	%CrO3.	%Li ₂ O.	
0.0	7.09	• • •		LiOH.H ₂ O
6.986	7.744	4.322	18.538	64
16.564	8.888	10.089	19.556	44
25.811	10.611	15.479	21.106	66
33.618	12.886	24.365	19.398	44
37.411	14.306	44.555	17.411	LiOH.H ₂ O + Li ₂ CrO _{4.2} H ₂ O
37.588	14.381	36.331	18.552	66 44
37 · 495	13.311	51.075	16.384	Li ₂ CrO _{4.2} H ₂ O
40.280	10.858			&c
43 - 404	11.809	53 · 793	14.070	$\text{Li}_2\text{Cr}_2\text{O}_4.2\text{H}_2\text{O} + \text{Li}_2\text{Cr}_2\text{O}_7.2\text{H}_2\text{O}$
45.130	9.515	56.085	10.190	$\text{Li}_2\text{Cr}_2\text{O}_7.2\text{H}_2\text{O}$
47 - 945	7.951	58.029	9.238	44
57.031	6.432	65.560	8.733	44
67.731	5.713	71.687	8.513	Li ₂ Cr ₂ O _{7.2} H ₂ O + CrO ₃
67.814	5.689	80.452	3.780	44 66
65.200	4.661			CrO ₃
63.257	2.141	85.914	0.758	46
62.28				46

A saturated aqueous solution contains:

49.985 per cent Li₂CrO₄, or 100 grams $\rm H_2O$ dissolve 99.94 grams Li₂CrO₄ at 30° (S.).

56.6 per cent Li₂Cr₂O₇, or 100 grams H₂O dissolve 130.4 grams Li₂Cr₂O₇ at 30° (S.).

52.6 per cent Li₂CrO₄, or 100 grams H₂O dissolve 110.9 grams LiCrO₄ at 18° (M. and F.).

Sp. Gr. of sat. solution at 18° = 1.574.

LITHIUM CITRATE C3H4(OH)(COOLi)3.

100 gms. H_2O dissolve 50 gms. citrate at 25°, and 66.6 gms.at b. pt. 100 gms. alcohol of 0.941 Sp. Gr. dissolve 4 gms. citrate at 15.5°. (U.S.P.)

LITHIUM FLUORIDE LiF.

100 grams H_2O dissolve 0.27 gram LiF at 18°. Sp. Gr. of sol. = 1.003.

(Mylius and Funk.)

LITHIUM FORMATE HCOOLi.

SOLUBILITY IN WATER. (Groschuff -- Ber. 36, 179, '03.)

t°.	Gms. HCOOLi per 100 Gms. Solution.	Mols. HCOOLi per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. HCOOLi per 100 Gms. H ₂ O.	Mols. HCOOLi per 100 Mols. H ₂ O.	Solid Phase.
-20	21.14	9.28	HCOOLi.H ₂ O	91	54.16	40.90	HCOOLi.H ₂ O
0	24.42	11.18	44	98	57.05	45.99	HCOOLi
18	27.85	13.36	**	104	57.04	47.11	46
49.5	35.60	19.14	**	120	59.63	51.13	44
74	44.91	28.22	**				

Sp. Gr. sat. sol. at $18^{\circ} = 1.142$.

SOLUBILITY OF NEUTRAL LITHIUM FORMATE IN ANHYDROUS FORMIC ACID.

t°.	Gms. per 100 C	ms. Solution.	Mols. per 100 HCOOLi.	Mols. H ₂ O.	Solid Phase.
0	25.4	47.02	11.80	39.27	HCOOLi
18	25.9	46.92	12.11	39.11	44
39	26.4	46.92	12.42	39.13	44
60	26.9	46.94	12.74	39.13	ět.
79	27.8	47.02	13.36	39.26	44

LITHIUM HYDROXIDE LIOH.

SOLUBILITY IN WATER.

(Dittmar - J. Soc. Ch. Ind. 7, 730, '88; Pickering - J. Chem. Soc. 63, 909, '93.)

t°	Gms. per Solu Li ₂ O.	tion.	Gms. LiOH per 100 Gms. H ₂ O.	t°.	Gms. pe So Li ₂ O.	LiOH.	Gms. LiOH. per 100 Gms H ₂ O.
0	6.67	10.64	12.7	40	7.29	11.68	13.0
IO	6.74	10.80	12.7	50	7.56	12.12	13.3
20	6.86	10.99	12.8	60	7.96	12.76	13.8
25	6.95	11.14	12.9	80	8.87	14.21	15.3
30	7.05	11.27	12.9	100	10.02	16.05	17.5

LITHIUM IODATE Li(IO3).

100 grams $\rm H_2O$ dissolve 80.3 grams LiIO $_3$ at 18°, or 100 grams solution contain 44.6 grams. Sp. Gr. of sol. = 1.568.

(Mylius and Funk - Ber. 30, 1718, '97.)

LITHIUM IODIDE Lil.

SOLUBILITY IN WATER. (Kremers — Pogg. Ann. 104, 133, '58; 111, 60, '60.)

t°.	Gms. LiI p	Gms. LiI per 100 Gms.		t°.	Grams LiI	Grams LiI per 100 Gms.	
	Water.	ater. Solution.	٠.	Water.	Solution.		
0	151	60.2		40	179	64.2	
10	157	61.1		50	187	65.2	
20	165	62.2		60	202	66.9	
25	167	62.6		70	230	69.7	
30	171	63.1		75	263	72:5	

100 grams sat. solution in Glycol (C₂H₄(OH)₂,H₂O) contain 28.0 grams LiI at 15.3°. (de Coninck – Chem. Centrb. 76, II, 883, '05.)

100 cc. saturated solution in Furfurol (C₄H₃O.COH) contain 45.86 gms. LiI at 25°.

100 cc. saturated solution in Nitro Methane (CH₃NO₂) contain 1.219 gms. LiI at 0°, and 2.519 gms. at 25°.

(Walden - Z. physik. Ch. 55, 713, 718, 'o6.)

LITHIUM NITRATE Lino3.

SOLUBILITY IN WATER. (Donnan and Burt — J. Chem. Soc. 83, 335, '03.)

t°.	Gms. LiNO ₃ per 100 Gms. Solution.	Solid Phase.	t°.	Gms. LiNO ₃ per 100 Gms. Solution.	Solid Phase.
0.1	34.8	LiNO _{3.3} H ₂ O	29.87	56.42	LiNO _{3.3} H ₂ O
10.5	37.9	44	29.86	56.68	44
I2.I	38.2	66	29.64	57 - 48	44
13.75	39.3	44	29.55	58.03	44
19.05	40.4	44	43.6	60.8	LiNO _{3.2} H ₂ O
2I.I	42.9	44	50.5	61.3	44
27 · 55	47 · 3	44	55.0	63.0	44
29 - 47	53.67	44	60.0	63.6	44
29.78	55.09	44	64.2	64.9	LiNO ₃
			70.9	66.1	44

Cryohydrate point of the trihydrate, 17.8°. Transition points, 29.6° and 61.1°.

LITHIUM OXALATE Li₂C₂O₄.

SOLUBILITY OF MIXTURES OF LITHIUM OXALATE AND OXALIC ACID IN WATER AT 25°. (Foote and Andrew — Am. Ch. J. 34, 153, '05.)

Mixtures of the two substances were dissolved in water, and the solutions cooled in a thermostadt to 25°.

Gms. per 100 G	ms. Solution.	Mols. per 100	Mols. H ₂ O.	Solid
$H_2C_2O_4$.	Li ₂ C ₂ O ₄ .	$H_2C_2O_4$.	Li ₂ C ₂ O ₄ .	Phase.
10.20		2.274		$H_2C_2O_4.2H_2O$
10.66	2.96	2 · 457	0.622	H ₂ C ₂ O ₄ .H ₂ O and HLiC ₂ O ₄ .H ₂ O
10.55	3.11)	- 437		112020411120 0110 11211020411120
8.08	3.18	1.823	0.6331	Double Salt
2.60	5.03	0.563	0.962}	$HLiC_2O_{4.4}H_2O$ = 39.2 $H_2C_2O_4$ and 44.7 $Li_2C_2O_2$
2.16	6.54)	0.469	I.273	MICO HO - III CO
2.12	1.61	0.409	1.2/3	HLiC ₂ O ₄ .H ₂ O and Li ₂ C ₂ O ₄
• • •	5.87		1.901	$\text{Li}_2\text{C}_2\text{O}_4$

LITHIUM PHOSPHATE Li3PO4.

100 grams H2O dissolve 0.04 gram Li3PO4. (Mayer - Liebig's Ann. 98, 193, '56.)

LITHIUM (Hypo) PHOSPHATE Li, P2O6.7H2O.

100 grams H₂O dissolve 0.83 gram hypophosphate at ord. temp.

(Rammelsberg – J. pr. Ch. [2] 45, 153, '02.)

LITHIUM PERMANGANATE LiMnO4.3H2O.

100 grams water dissolve 71.4 grams permanganate at 16°.

LITHIUM SALTS of Fatty Acids.

SOLUBILITY IN WATER AND IN ALCOHOL OF 0.797 Sp. Gr. AT 18° AND AT 25°.

(Ashoff.)

I.OIO

(Partheil and Ferie - Archiv. Pharm. 241, 554, '03.)

Grams Salt per 100 cc. Sat. Solution in: Salt. Formula. Water at Alcohol at 18°. , 18°. 25°. 25°. $C_{17}H_{35}COOLi$ 0.011 0.0532 Stearate 0.041 0.010 Palmitate C₁₅H₃₁COOLi 0.011 0.018 0.0796 0.0956 Myristate C₁₃H₂₇COOLi 0.0232 0.0234 0.184 0.2100 Laurinate C, H₂₃COOLi 0.158 0.1726 0.418 0.4424

LITHIUM SULPHATE Li2SO4.

Oleate

C₁₇H₃₃COOLi

SOLUBILITY IN WATER.

0.1320

0.9084

0.0674

(Average curve from Kremers - Pogg. Ann. 95, 468, '55; Etard - Ann. chim. phys. [7] 2, 547, '94.)

t°.	Gms. Li ₂ SO ₄ per 100 Gms. Solution.	t°.	Gms. Li ₂ SO ₄ per 100 Gms. Solution.	t°.	Gms. Li ₂ SO ₄ per 100 Gms. Solution.
- 20	18.4	20	25.5	50	24.5
-10	24.2	25	25.3	60	24.2
0	26.1	30	25.1	- 80	23.5
10	25.9	40	24.7	100	23.0

Note. — For equilibrium between lithium sulphate ammonia and water, see Schreinemaker and Cochert — Chem. Weekblad. 2, 771; 3, 157, '06.

EQUILIBRIUM BETWEEN LITHIUM SULPHATE, ALUMINUM SULPHATE,

AND WATER AT 30°. (Schreinemaker and De Waal — Chem. Weekblad. 3, 539, '06.)

Composition in Weight per cent:						
Of Solution.		esidue.	Solid Phase.			
% Al2(SO4)3.	% Li ₂ SO ₄ .	% Al ₂ (SO ₄) ₃ .				
0			Li ₂ SO ₄ .H ₂ O			
5 · 34			66			
14.89	63.70	4.02	66			
20.76	14.72	31 .17	{ Li ₂ SO ₄ .H ₂ O + Al ₂ (SO ₄) ₃ .18H ₂ O			
21.71	61.24	7.22	Li ₂ SO _{4.4} H ₂ O			
22.08	6.92	33.54	Al ₂ (SO ₄) ₃ .18H ₂ O			
24.34	$3 \cdot 77$	37.06	44			
26.12			**			
28.0			66			
	tion. % Al ₂ (SO ₄) ₃ . 0 5 · 34 14 · 89 20 · 76 21 · 71 22 · 08 24 · 34 26 · 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

Note. — For solubility of lithium sulphate in mixtures of alcohol and water at 30°, see Schreinemaker and Van Dorp, Jr. — Chem. Weekblad. 3, 557, '06.

MAGNESIUM BROMATE Mg(BrO₃)₂.6H₂O.

100 cc. sat. solution contain 42 grams Mg(BrO₃)₂, or 0.15 gram mols. at 18°.

(Kohlrausch - Sitzb. K. Akad. Wiss. (Berlin), i, 90, '97.)

MAGNESIUM BROMIDE MgBr₂.6H₂O.

SOLUBILITY IN WATER.

(Menschutkin - Chem. Centrb. 77, I, 646, '06; at 18°, Mylius and Funk - Ber. 30, 1718, '07.)

t°	Grams MgBr2 per 100 Gms.		t°.	Grams MgBr2 per 100 Grams	
•	Solution.	Water.		Solution.	Water.
-10	47.2	89.4	40	50.4	101.6
0	47.9	91.9	50	51.0	104.1
10	48.6	94.5	60	51.8	107.5
18	49.0	96.1	80	53 - 2	113.7
18	50.8	103.4 (M. and F.)	100	54.6	120.2
20	49 · I	96.5	120	56.0	127.5
25	49 · 4	97.6	140	58.0	138.1
30	49.8	99.2 .	160	62.0	163.1

Density of saturated solution at 18° = 1.655 (M. and F.) Etard — Ann. chim. phys. [7] 2, 541, '94, gives solubility results which are evidently too high.

SOLUBILITY OF MAGNESIUM BROMIDE ALCOHOL COMPOUNDS IN THE CORRESPONDING ALCOHOLS.

(Menschutkin -- Chem. Centrb. 77, I, 334, 647, '06.)

In the Corresponding Alcohols.

Results Expressed in Mols. per cent.

t°.	MgBr ₂ .6CH ₃ OH in CH ₃ OH.	MgBr ₂ .6C ₂ H ₅ OH in C ₂ H ₅ OH.	
0	6.0	2.0	
20	6.4	4.6	
40	6.9	8.4	
50	7.2	10.9	
60	7 · 5	14.1	
80	8.25	22.I	
100	9.6	38.6	
150	16.7	100.0 (108.5°	")
100	100.0		

Determinations are also given for the solubility of MgBr₂.6C₃H₇OH

Determinations are also given for the solubility of MgBr₂.6C₃H₇OH in C₃H₇OH, of MgBr₂.6(CH₃)₂C₂H₃OH in (CH₃)₂C₂H₃OH, and of MgBr₂. 6(CH₃)₂C₂H₃OH in (CH₃)₂C₂H₃OH, also of MgBr₂.4(CH₃)₂.CHOH in iso propyl alcohol and in tri methyl carbinol.

For the solubility magnesium bromide mono etherate (MgBr₂. (C₂H₅)₂O) in ethyl ether, see Menschutkin — Chem. Centrb. 77, I, 1868, 'o6; also Z. anorg. Ch. 49, 208, 'o6. For magnesium bromide di etherate (MgBr₂.2C₄H₁₀O) in ethyl ether, see Menschutkin — Z. anorg. Ch. 49, 35, 'o6. For magnesium bromide hexa formic acid and magnesium bromide hexa acetic acid compounds in anhydrous solutions of the corresponding acids, see Iswietja d. Petersburger, Polytechn. Inst. 5, 293, 'o6; Chem. Centrb. 77, II, 1482, 'o6.

MAGNESIUM CARBONATE 178 MAGNESIUM CARBONATE MgCO₃.

SOLUBILITY IN WATER IN PRESENCE OF CARBON DIOXIDE AT 15°.
(Treadwell and Reuter — Z. anorg. Ch. 17, 200, '98.)

cc. CO ₂ per 100 cc.	Partial		Grams per	100 cc. Solution.	
Gas Phase (at o' and 760 mm.).	Pressure of CO ₂ in mm. Hg.	Free CO2.	MgCO ₃ .	Mg(HCO ₃) ₂ .	Total Mg.
18.86	143.3	0.1190		1.2105	0.2016
5 · 47	41.6	0.0866		1.2105	0.2016
4.47	33.8	0.0035		1.2105	0.2016
1.54	11.7		0.0773	1.0766	0.2016
1.35	10.3		0.0765	0.7629	0.1492
1.07	8.2		0.0807	0.5952	0.1224
0.62	4.7		0.0701	0.3663	0.0865
0.60	4.6		0.0758	0.3417	0.0788
0.33	2.5		0.0748	0.2632	0.0655
0.21	1.6		0.0771	0.2229	0.0594
0.14	1.1		0.0710	0.2169	0.0566
0.03	0.3		0.0711	0.2036	0.0545
• • •	• • •		0.0685	0.2033	0.0536
			0.0702	0.1960	0.0529
• • •			0.0625	0.2036	0.0520
			0.0616	0.1954	0.0511
• • •			0.0641	0.1954	0.0518

Therefore at o partial pressure of $\rm CO_2$ and at 15° and mean barometric pressure, one liter of saturated aqueous solution contains 0.641 gram of MgCO₃ plus 1.954 grams Mg(HCO₃)₂.

SOLUBILITY OF MAGNESIUM CARBONATE IN WATER CHARGED WITH CARBON DIOXIDE AT PRESSURES GREATER THAN ONE ATMOSPHERE.

(Engel and Ville - Compt. rend. 93, 340, '81; Engel - Ann. chim. phys. [6] 13, 349, '88.)

Pressure of CO ₂ in Atmospheres.	G. Mge	CO ₃ * per Liter. At 19°.	Pressure of CO ₂ in Atmospheres.	G. Mg	CO ₃ * per Liter. At 19°.
0.5	20.5		4.0	42.8	
I .O	26.5	25.8	4.7		43 · 5
2.0	34.2	33.1 (2.1 At.)	6.0	50.6	48.5 (6.2 At.)
3.0	39.0	37.2 (3.2 At.)	9.0		56.6

SOLUBILITY IN WATER SATURATED WITH CO2 AT ONE ATMOSPHERE.

	(Engel.)									
t°.	Gms. MgCO ₃ * per Liter.	t°.	Gms. MgCO ₃ * per Liter.	t°.	Gms. MgCO ₃ * per Liter.					
5	36	30	21	60	II					
10	31	40	17	80	5					
20	26			100	0					

^{*} Dissolved as Mg(HCO₃)₂.

179 MAGNESIUM CARBONATE

Solubility of Magnesium Carbonate in Aqueous Solutions of Sodium Carbonate at 25°. The solutions being in equilibrium with an atmosphere free from CO₂.

(Cameron and Seidell - J. Physic. Ch. 7, 588, '03.)

Wt. of 1 Liter of Solution.	Grams p	er Liter.	Reacting We	Reacting Weights per Liter.		
of Solution.	Na ₂ CO ₃ .	MgCO ₃ .	Na ₂ CO ₃ .	MgCO ₃ .		
996.8	0.00	0.223	0.000	0.00266		
1019.9	23.12	0.288	0.220	0.00344		
1047.7	50.75	0.510	0.482	0.00620		
1082.5	86.42	0.879	0.820	0.01027		
1118.9	127.3	1.314	I.209	0.01570		
1147.7	160.8	1.636	1.526	0.01955		
1166.1	181.9	1.972	1.727	0.02357		
1189.4	213.2	2.317	2.024	0.02770		

SOLUBILITY OF MAGNESIUM BI CARBONATE AND OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 23°. The solutions being in equilibrium with an atmosphere of CO₂ in the one case, and in equilibrium with air free from CO₂ in the other.

(C. and S.)

In Presence of	CO2 as Gas Phase.		ee from CO2.	
Gms. NaCl per Liter.	Gms. Mg(HCO ₃) ₂ per Liter.	Wt. of 1 Liter.	Gms. NaCl per Liter.	Gms. MgCO ₃ per Liter.
7.0	30.64	996.9	0.0	0.176
56.5	30.18	1016.8	28.0	0.418
119.7	27.88	1041.1	59 · 5	0.527
163.9	24.96	1070.5	106.3	0.585
224.8	20.78	1094.5	147.4	0.544
306.6	10.75	1142.5	231.1	0.460
		1170.1	272.9	0.393
		1199.3	331.4	0.293

SOLUBILITY OF MAGNESIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM SULPHATE AT 24° AND AT 35.5°. The solutions being in equilibrium with an atmosphere free from CO₂.

(Cameron and Seidell.)

Results at 24°.			Results at 35.5.°			
Wt. of 1 Liter.	Gms. Na ₂ SO ₄ per Liter.	Gms. MgCO ₃ per Liter.	Wt. of Liter.	Gms. Na ₂ SO ₄ per Liter.	Gms. MgCO ₃ per Liter.	
997.5	0.00	0.216	995.1	0.32	0.131	
1021.2	25.12	0.586	1032.9	41.84	0.577	
1047.6	54.76	0.828	1067.2	81.84	0.753	
1080.9	95.68	I.020	1094.8	116.56	0.904	
1133.8	160.8	1.230	1120.4	148.56	0.962	
1157.3	191.9	1.280	1151.7	186.7	1.047	
1206.0	254.6	1.338	1179.8	224.0	1.088	
1242.0	305.1	1.388	1236.5	299 · 2	1.130	

MAGNESIUM CHLORATE Mg(ClO3)2.

SOLUBILITY IN WATER. (Meusser - Ber. 35, 1416, '02.)

t°.	Gms. Mg(ClO ₃) ₂ per 100 Gms Solution.	Mols. Mg(ClO ₃) ₂ . per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. Mg(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Mg(ClO ₃) ₂ per 100 Mols. H ₂ O.	Phase.
-18	51.64	10.05	$Mg(ClO_3)_2.6H_2O$	42	63.82	16.16	Mg(ClO ₃) _{2.4} H ₂ O
0	53.27	10.73	44	65.5	69.12	20.08	66
18	56.50	12.22	44	39.5	65.37	17.76	Mg(ClO ₃) _{2.2} H ₂ O
29	60.23	14.25	66	61.0	69.46	21.40	46
35	63.65	16.48	46	68	70.69	22.69	44
				93	(73.71)	(26.38)	44
St	Gr of	caturate	A col at 1 rs	0 - T	=64		

Sp. Gr. of saturated sol. at $+18^{\circ} = 1.504$.

MAGNESIUM CHLORIDE MgCl2.

SOLUBILITY IN WATER.

(van 't Hoff and Meyerhoffer — Z. physik. Chem. 27, 75, '98; Engel; Lowenherz. Results quoted from Landolt and Börnstein — Tabellen, 3d, ed. p. 549, '06.)

t°.	Solution.	Water.	Solid Phase.	t°.		Vater.	Gms* Solid Phase.
-10	II.I	12.5	Ice	0	34.5	52.8	MgCl ₂ .6H ₂ O
-20	16.0	19.0	44	10	34.9	53 · 5	44
-30	19.4	24.0	"	20	35 · 3	54.5	44
-33.	6 20.6	26.0	$Ice + MgCl_2.12H_2O$	22	35.6	55.2	44
-12	26.7	36.5	$MgCl_{2.12}H_{2}O$	25	36.2	56.7	44
-16.	4 30.6	44.04 f.	ot. "	40	36.5	57 · 5	44
_	8 31.6	46.2	MgCl ₂ .1 ₂ H ₂ O + MgCl ₂ .8H ₂ O a	60	37.9	61.0	44
	4 32.3	47.6	∫ MgCl ₂ .12H ₂ O +	80	39.8	66.0	44
		•	MgCl ₂ .8H ₂ Oβ MgCl ₂ .12H ₂ O+	100	42.2	73.0	. 44
	4 33.3	49 · 9	MgCl ₂ .6H ₂ O MgCl ₂ .8H ₂ O β	116.	7 46.2	85.5	MgCl ₂ .6H ₂ O + MgCl ₂ .4H ₂ G
- 9.	6 33.9	51.3	+ MgCl ₂ .6H ₂ O		6 49.1	96.4	MgCl ₂₋₄ H ₂ O
- 3.	4 34 - 4	52.3	∫ MgCl ₂ .8H ₂ O α + MgCl ₂ .6H ₂ O about	_	5 55.8		MgCl2.4H2O+
					56.1		MgCl _{2.2} H ₂ O MgCl _{2.2} H ₂ O

SOLUBILITY OF MAGNESIUM CHLORIDE IN AQUEOUS SOLUTIONS OF Hydrochloric Acid at oo.

(Engel - Compt. rend. 104, 433, '87.)

Milligram Mols. p	er 10 cc. Solution.	Sp. Gr. of Solutions.	Grams per Liter of Solution.		
HCl.	½MgCl ₂ .	Solutions.	HCl.	MgCl ₂ .	
0.0	99.55	1.362	0.0	474.2	
4.095	95.5	1.354	14.93	454.8	
9.5	90.0	1.344	34.63	428.6	
17.0	82.5	1.300	61 .97	393.0	
20.5	79.0	1.297	74.74	376.2	
28.5	71.0	1.281	103.9	338.3	
42.0	60.125		153.1	286.4	
58.75	46.25		214.2	220.3	
76.0	32.0		277 · I	152.0	
			sat. HCl (Ditte)	6.5	

SOLUBILITY OF MIXTURES OF MAGNESIUM CHLORIDE AND OTHER SALTS IN WATER AT 25°.

(Löwenherz - Z. physik. Chem. 13, 479, '94.)

Mixture.	Gram Mols. per 1000 Mols. H2O.	Gms. per Liter of Solution.
MgCl ₂ .6H ₂ O+MgSO ₄ .6H ₂ O	104 MgCl ₂ +14 MgSO ₄	25.0 Cl+4.4 SO4
MgCl ₂ ·7H ₂ O+MgSO ₄ ·6H ₂ O	73 " +15 "	19.5 "+5.3 "
MgCl ₂ .6H ₂ O + MgCl ₂ .KCl.6H ₂ O	106 Cl+1 K ₂ +105 Mg	26.9 Cl+0.3 K+45.7 SO4

Results for the remaining possible combinations of magnesium sulphate and potassium chloride are also given.

MAGNESIUM CHROMATE MgCrO4.7H2O.

100 grams H₂O dissolve 72.3 grams MgCrO₄ at 18°, or 100 grams solution contain 42.0 grams. Sp. Gr. = 1.422.

(Mylius and Funk - Ber. 30, 1718, '97.)

MAGNESIUM POTASSIUM CHROMATE MgCrO, K, CrO, 2H,O.

100 grams H₂O dissolve 28.2 grams at 20°, and 34.3 grams at 60°.

MAGNESIUM PLATINIC CYANIDE MgPt(CN)4.

SOLUBILITY IN WATER.

(Buxhoevden and Tamman - Z. anorg. Ch. 15, 319, '97.)

_	Gms. MgPt(CN)4		Gms. MgPt(CN)4
t°.	per 100 Gms. Solution.	Solid Phase.	t°.	per 100 Gms. Solution.	Solid Phase.
-4.12	24.90	MgPt(CN) ₄ .6.8-8.1H ₂ O	48.7	40.89	MgPt(CN) _{4.4} H ₂ O
0.5	26.9	" (Red)	55	41.33	44
5 · 5	28.65	46	58.1	42.15	44
18.0	32.46	44	69.0	43 · 49	64
36.6	39.53	44	77.8	44.90	44
45.0	41.33	66	87.4	45.52	44
46.2	42.0	66	90.0	45.65	66
42.2	40.21	MgPt(CN)4.4H2O	93.0	45.04	44
46.3	39.85	" (Bright Green)	96.4	44.33	MgPt(CN)4.2H2O
			100.0	44.0	" (White)

MAGNESIUM FLUORIDE MgF.

One liter of water dissolves 0.076 gram MgF₂ at 18° by conductivity method. (Kohlrausch - Z. physik. Ch. 50, 356, 04- '05.

MAGNESIUM HYDROXIDE Mg(OH)2.

One liter of water dissolves 0.008 - 0.009 gm. Mg(OH), at 18° by conductivity method. (Dupre and Brutus - Z. angew. Ch. 16, 55, '03.)

SOLUBILITY OF MAGNESIUM OXIDE IN AQUEOUS SOLUTIONS CONTAINING SODIUM CHLORIDE AND SODIUM HYDROXIDE.

(Maigret - Bull. soc. chim. 33, 631, '05.)

Gms. NaCl	Grams MgO per Liter Solution with Added:					
per Liter.	o.8 g. NaOH per Liter.	4.0 g. NaOH per Liter.				
125	0.07	0.03				
140	0.045					
160	none	none				

MAGNESIUM HYDROXIDE 182

SOLUBILITY OF MAGNESIUM HYDROXIDE IN AQUEOUS SOLUTIONS OF AMMONIUM CHLORIDE AND OF AMMONIUM NITRATE AT 29°.

(Herz and Muhs — Z. anorg. Ch. 38, 140, '04.)

Note. — Pure Mg(OH)₂ was prepared and an excess shaken with solutions of ammonium chloride and of ammonium nitrate of different concentrations.

Concentration of NH ₄ Cl or of NH ₄ NO ₃ . (Normal.)	Acid Required for Liberated NH ₄ OH in 25 cc. (Normal.)	Normal Mg(OH) ₂ .		Grams pe	
.7 (NH ₄ Cl)	0.09835	0.156	0.388	4.55	20.86
0.466 "	0.1108	0.108	0.250	3.15	13.39
0.35 "	0.09835	0.089	0.172	2.60	9.21
0.233 "	0.1108	0.0638	0.106	1.86	5.67
0.175 "	0.1108	0.049	0.0771	I.43	4.13
0.35 (NH ₄ NO ₃)	0.1108	0.0833	0.1834 (NH	$(4NO_3)2.43$	14.69 (NH4NO3)
0.175 "	0.1108	0.0495	0.076	" I.45	6.09 "

MAGNESIUM IODATE Mg(IO3)2.

SOLUBILITY IN WATER.

(Mylius and Funk - Ber. 30, 1722, '97; Wiss. Abh. p. t. Reichanstalt 3, 446, '00.)

t°.	Gms. Mg(IO ₃) ₂ per 100 Gms. Solution.	Mols. Mg(IO ₃); per 100 Mo. H ₂ O.	Solid is. Phase.	t°.	Gms. Mg(IO ₃) ₂ per 100 Gms. Solution	Mols. Mg(IO ₃) ₂ per 100 Mols . H ₂ O.	Solid s. Phase.
0	3.1	0.15	$\mathrm{Mg}(\mathrm{IO_3})_2.1\mathrm{oH_2O}$	0	6.8	0.34	$\mathrm{Mg}(\mathrm{IO_3})_2.4\mathrm{H_2O}$
20	10.2	0.55	44	10	6.4	0.30	44
30	17.4	I.OI	46	18	7.6	0.40	44
35	21.9	1.35	44	20	$7 \cdot 7$	0.40	64
50	67.5	10.0	44	35	8.9	0.47	44
				63	12.6	0.69	44
				100	19.3	1.13	44

Sp. Gr. of solution sat. at $18^{\circ} = 1.078$.

MAGNESIUM IODIDE MgI2.

SOLUBILITY IN WATER.

(Menschutkin — Chem. Centrb. 77, I, 646, 'o6; at 18°, Mylius and Funk — Ber. 30, 1718, '97.)

t°.	Gms. MgI ₂ per 100 Grams Solution.	Solid Phase.	t°.	Grams MgI ₂ per 100 Grams Solution.	Solid Phase.
0	50.0	$MgI_2.8H_2O$	50	61.6	$MgI_2.6H_2O$
10	51.65	44	70	61.85	44
18	53.0 (59.7 M. and F.)	4	90	62.1	66
20	53 · 4	44	110	62.25	4*
25	54 · 4	44	140	62.5	41
30	55 · 4	44	160	63.0	44
40	57.8	44	200	64.1	44
45	59 · 9	44			

Density of saturated solution at 18° = 1.909. (M. and F.)

SOLUBILITY OF MAGNESIUM IODIDE ALCOHOL COMPOUNDS IN THE CORRESPONDING ALCOHOLS.

(Menschutkin - Chem. Centrb. 77, I, 335, 'o6.)

Results expressed in molecular per cent.

t°.	MgI ₂ .6CH ₃ OH in CH ₃ OH.	MgI ₂ .6C ₂ H ₅ OH in C ₂ H ₅ OH.	t°.	MgI ₂ .6CH ₃ OH in CH ₃ OH.	MgI ₂ .6C ₂ H ₅ OH in C ₂ H ₅ OH.
0	6.3	2.3	100	10.5	19.7
IO	6.6	3.1	120	8.11	28.2
20	7.0	4.0	140	13.4	53.6
40	7.8	6.2	160	15.7	80.3 (145°)
60	8.6	9.3	180	18.7	100.0 (146.5°)
80	9.5	13.5	200	23.1	• • •

Solubility of Magnesium Iodide Di Etherate (MgI $_2.2C_4H_{10}O$) in Ethyl Ether.

(Menschutkin - Z. anorg. Ch. 49, 46, '06.)

Synthe	etic Metho page 9.	od used, see	Results in the Critical Vicinity.				
t°.		MgI _{2.2} C ₄ H ₁₀ O.	t°.	Gms. per 10	MgI _{2.2} C ₄ H ₁₀ O.		
5 · 4	1.45	2.2	37.3	19.4	29.3		
11.8	2.43	3 · 7	38.5	22.45	34.4		
15.6	3.46	5 · 3	38.5	26.07	39 - 9		
18.1	5 · 4	8.3	38.5	29.8	45 · 7		
20.4	7 · 55	11.6	38	32.8	50.3		
22.2	11.28	17.3					

Two liquid phases appear near the melting point of the magnesium iodide di etherate. The lower may be considered as a solution of ether in di etherate, and the upper as a solution of the lower layer in ether. The critical temperature is 38.5°.

	Lower I	Upper L	ayer.		
t°.	Gms. per 10	MgI _{2.2} C ₄ H ₁₀ O.	t°.	Gms. per 10	MgI _{2.2} C ₄ H ₁₀ O.
14.8	35.5	54 · 4	18.6	13.57	20.8
20.0	35.8	54.8	23.2	14.4	22.I
28.4	35.5	54.4	24.4	14.6	22.4
33	35 · 7	54.7	32.4	15.82	24.2
35	35.3	54.1			

The solubility of double compounds of magnesium iodide and alkyl esters in the corresponding acetates is given by Menschutkin—Chem. Centrb. 77, I, 647, 'o6. For the solubility of magnesium iodide hexa acetic acid compound in anhydrous acetic acid solutions, see Chem. Centrb. 77, II, 1482, 'o6.

MAGNESIUM NITRATE Mg(NO₃)₂.

SOLUBILITY IN WATER. (Funk — Wiss. Abh. p. t. Reichanstalt 3, 437, '00.)

t°	Gms. Mg(NO ₃) ₂ per 100 Gms. Solution.	Mols. Mg(NO ₃) ₂ per 100 Mols H ₂ O.	Solid Phase.	t°.	Gms. Mg(NO ₃) ₂ per 100 Gms. Solution.	Mols. Mg(NO ₃): per 100 Mo H ₂ O.	
-23	35.44	6.6	$Mg(NO_3)_2.9H_2O$	40	45.87	10.3	$Mg(NO_3)_2.6H_2O$
- 20	36.19	7.0	46	80	53.69	14.6	44
-18	38.03	7.4	46	90	57.81	16.7	44
-18	38.03	7.37	$Mg(NO_3)_2.6H_2O$	89	63.14	20.9	
- 4	5 39.50	7.92	44	77 -	5 65.67	23.2	*
0	39.96	8.08	24	67	67.55	25.1	
+18	42.33	8.9	44		* Reverse	curve-	

Sp. Gr. of solution saturated at $18^{\circ} = 1.384$.

MAGNESIUM OXALATE Mg.C2O4.2H2O.

One liter of water dissolves 0.3 gram MgC_2O_4 at 18° (conductivity method). (Kohlrausch — Z. physik. Ch. 50, 356, '05.)

MAGNESIUM (Hypo) PHOSPHATE Mg₂P₂O_{6.12}H₂O.

One liter of water dissolves 0.066 gram hypophosphate.

(Salzer — Liebig's Ann. 232, 114, '86.)

One liter of water dissolves 5.0 grams magnesium hydrogen hypophosphate ${\rm MgH_2P_2O_{6.4H_2O}}$. (Salzer.)

$\textbf{MAGNESIUM SALICYLATE} \quad \mathrm{Mg}(\mathrm{C_7H_5O_3)_2.4H_2O}.$

One liter of saturated solution contains 8.015 grams of the salt.

(Barthe — Bull. soc. chim. [3] 11, 519, '94.)

MAGNESIUM FLUOSILICATE MgSiF₆.6H₂O.

One liter of water dissolves 652 grams of the salt at 17.5°. Sp. Gr. of solution = 1.235. (Stolba—Chem. Centrb. 578, '77.)

MAGNESIUM SULPHATE MgSO4.

SOLUBILITY IN WATER.

(Mulder; Tilden — J. Ch. Soc. 45, 409, '84; Etard — Compt. rend. 106, 741, '88.)

Etard's results for the lower temperatures are somewhat low. Mulder's and Tilden's results agree very well.

				-			
t°.	Gms. MgSO4 J	Water.	Solid Phase.	t°.	Gms. MgSO _{4 I}	per 100 Gm Wate	Come
0	21.2	26.9	$MgSO_4.7H_2O$	50	33 · 5	50.3	$MgSO_4.6H_2O$
IO	24.0	31.5	64	60	35 · 5	55.0	64
20	26.5	36.2	46	70	37 · 5	59.6	44
25	28.2	38.5	**	80	39.1	64.2	44
30	29.0	40.9	44	90	40.7	,68.9	4.6
40	31.2	45.6	44	100	42.5	73.8	44
				IIO	45 · 5	83.6	44

For temperatures between 123° and 190°, grams MgSO₄ per 100 grams solution = 48.5 -0.4403 t. (Etard).

For densities of aqueous solutions of MgSO₄, see Barnes and Scott— J. Physic. Ch. 2, 542, '98.

185 SOLUBILITY OF MAGNESIUM SULPHATE IN METHYL AND ETHYL ALCOHOLS.

(de Bruyn - Rec. trav. chim. 11, 112, '02.)

Solvent.	t°.	Per 100 Gms. Solvent.	Solvent.	t°.	Per 100 Gms. Solvent.
Abs. CH ₃ OH	18	1.18 gms. MgSO ₄ 41.0 " MgSO _{4.7} H ₂ O	93% Methyl Alc.	17	9.7 gms. MgSO4.7H2O
- 66	17	41.0 " MgSO _{4.7} H ₂ O	50% " "	3-4	4.1 "
66	3-4	29.0 " "	Abs. C ₂ H ₅ OH	3	1.3 " "

Solubility in Aqueous Ethyl Alcohol. (Schiff - Liebig's Ann. 118, 365, '61.)

Wt. per cent Alcohol	IO	20	40
G. MgSO _{4.7} H ₂ O per 100 gms. solvent	64.7	27.1	1.65

SOLUBILITY OF MAGNESIUM SULPHATE IN SATURATED SUGAR SOLUTION AT 31.25°. (Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

100 grams saturated aqueous solution contain 46.52 grams sugar + 14.0 grams MgSO4. 100 grams water dissolve 119.6 grams sugar + 36.0 grams MgSO.

MAGNESIUM POTASSIUM SULPHATE MgK2(SO4)2.6H2O.

SOLUBILITY IN WATER. (Tobler - Liebig's Ann. 95, 193, '55.)

30° $t^{\circ} = 0^{\circ}$ 20° 45° 60° 75° Gms. MgK₂(SO₄)₂ per 100 gms. H₂O 14.1 25.0 30.4 40.5 50.2 59.8

MAGNESIUM SULPHITE MgSO₃.6H₂O.

100 grams cold water dissolve 1.25 grams sulphite; 100 grams boiling water dissolve 0.83 gram. (Hager - Chem. Centrb. 135, '75.)

MALONIC ACID CH2(COOH)2.

SOLUBILITY IN WATER.

(Klobbie — Z. physik. Chem. 24, 622, '97; Miczynski — Monatsh. Ch. 7, 259, '86; Henry — Compt. rend. 99, 1157, '84; Lamouroux — Ibid. 128, '998, '99.)

t°.	Grams CH2(COOH)2 per 100		t°.		Grams CH2(COOH)2 per 100		
	Gms. Solution.*	cc. Solution (L.).		Gn	s. Solution.*	cc. Solution (L.).	
0	52.0	61.0	50		71.0	93.0	
10	56.5	67.0	60		74.5	100.0	
20	60.5	73.0	70			106.0	
25	62.2	76.3	80		82.0	• • •	
30	64.0	80.0	100		89.0	• • •	
40	68.0	86.5	132	(m. pt.)	100.0	• • •	

^{*} Average curve from results of K., M., and H.

SOLUBILITY OF MALONIC ACID IN ETHER. (Klobbie.)

t*.	Gms. CH ₂ (COOH) ₂ per 100 Gms. Solution.	t°.	Gms. CH ₂ (COOH) ₂ per 100 Gms. Solution.	t°.	Gms. CH ₂ (COOH) ₂ per 100 Gms. Solution.
0	6.25	30	10.5	100	46.0
10	7.74	80	33.0	IIO	56.0
20	9.00	90	39.0	120	70.0
25	9.7			132 (m. pt	.) 100.0

100 grams saturated solution of malonic acid in pyridine contain 14.6 grams at 26°.

(Holty - J. Physic. Ch. 9, 764, '05.)

SOLUBILITY OF SUBSTITUTED MALONIC ACIDS IN WATER. (Lamouroux.)

	Grams per 100 cc. Saturated Aqueous Solution.							
t°.	Malonic Acid.	Methyl Malonic Acid.	Ethyl Malonic Acid.	n Propyl Malonic Acid.	n Butyl Malonic Acid.	Iso Amyl Malonic Acid.		
0	61.1	44.3	52.8	45.6	11.6	38.5		
15	70.2	58.5	63.6	60.1	30.4	51.8		
25	76.3	67.9	71.2	70.0	43.8	79.3		
30	92.6	91.5	90.8	94 · 4	79.3	83.4		

MANGANESE BORATE MnH4(BO3)2H2O.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS.

(Hartley and Ramage — J. Ch. Soc. 63, 137, '93.)

Grams MnH ₄ (BO ₃) ₂ per Liter in Solutions of:							
t°.	H ₂ O + trace Na ₂ SO ₄ .	Na ₂ SO ₄ (o. ₂ Gms. per Liter).	Na ₂ SO ₄ (20 Gms. per Liter).	NaCl (20 Gms. per Liter).	CaCl ₂ (20 Gms. per Liter).		
14	0.94	1.7					
18			0.77	1.31	2.91		
40	0.50	0.69 (5:	2°) 0.65		2.44		
60		• • •	0.36	0.60	2.25		
80	0.08	• • •	0.12	0.29	1.35		

MANGANESE BROMIDE MnBr_{2.4}H₂O.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 537, '94.)

t*.	Gms. MnBr ₂ per 100 Gms. Solution.	Solid Phase.	t°.	Gms. MnBr ₂ per 100 Gms. Solution.	Solid Phase.
-20	52.3	MnBr _{2.4} H ₂ O	40	62.8	MnBr _{2.4} H ₂ O
-10	54.2	44	50	64.5	44
0	56.0	44	60	66.3	46
IO	57.6	44	70	68.0	66
20	59.5	44	80	69.2	MnBr.2H2O
25	60.2	44	90	69.3	44
30	61 · 1	84	100	69.5	44

MANGANESE CHLORIDE MnCl2.4H2O.

SOLUBILITY IN WATER.

187

(Etard; Dawson and Williams - Z. physik. Chem. 31, 63, '99.)

t°.	Sp. Gr. of	Grams MnCl ₂ p	er 100 Grams	Mols. MnCl ₂	Solid
	Solutions.	Water.	Solution.	per 100 Mols. H ₂ O	Phase.
- 20		53.8	35.0		MnCl _{2.4} H ₂ Oa
-10		58.7	37.0		44
0		63.4	38.8		44
+10		68.1	40.5		44
20		73.9	42.5		44
25	1.4991	77.18	43.55	80.11	44
30	1.5049	80.71	44.68	11.55	44
40	1.5348	88.59	46.96	12.69	44
50	1.5744	98.15	49.53	14.05	44
57.65	1.6097	105.4	51.33	15.10	44
60	1.6108	108.6	52.06	15.55	MnCl _{2.2} H ₂ O
70	1.6134	110.6	52.52	15.85	44
80		112.7	52.98	16.14	44
90		114.1	53.2	• • •	44
100		115.3	53 · 5	• • •	44
120		8.811	54.3		66
140		119.5	55.0		44

One liter of water dissolves 87.0 grams MnCl₂. One liter of sat. HCl dissolves 19.0 grams MnCl₂ at 12°. (Ditte — Compt. rend. 92, 242, '81.)

MANGANESE FLUO SILICATE MnSiF₆.6H₂O.

100 grams H_2O dissolve 140 grams salt at 17.5°. Sp. Gr. of solution = 1.448. (Stolba — Chem. Centrb. 292, '83.)

MANGANESE NITRATE Mn(NO₃)₂.6H₂O.

SOLUBILITY IN WATER.

(Funk — Wiss. Abh. p. t. Reichanstalt 3, 438, '00.)

t°.	per 100	Mols. Mn(NO ₃) ₂ per 100 Mols. H ₂ O.	Solid Phase.	t°.	per 100	Mols. Mn(NO ₃) ₂ per 100 Mols.H ₂ O.	Phase.
- 29	42.29	$7 \cdot 37$	$Mn(NO_3)_2.6H_2O$.	18	57 - 33	13.5	$Mn(NO_3)_2.6H_2O$.
- 2 6	43.15	7.63	44	25	62.37	16.7	44
-21	44.30	8.0	44	27	65.66	19.2	$Mn(NO_3)_2.3H_2O.$
-16	45.52	8.4	44	29	66.99	20.4	44
- 5	48.88	9.61	66	30	67.38	20.7	66
0	50.49	10.2	46	34	71.31	24.9	44
+11	54.50	12.0	46	35 · 5	76.82	33 · 3	44
Sp.	Gr. of	solution	saturated at	18° =	1.624.		

MANGANESE (Hypo) PHOSPHITE Mn(PH2O2)2H2O.

100 grams $\rm H_2O$ dissolve 15.15 grams salt at 25°, and 16.6 grams at b. pt.

MANGANESE SULPHATE MnSO4.5H2O.

SOLUBILITY IN WATER.

(Cottrell — J. Physic. Ch. 4, 651, '01; Richards and Fraprie — Am. Ch. J. 26, 77, '01. The results of Linebarger — Am. Ch. J. 15, 225, '93, were shown to be incorrect by Cottrell, and this conclusion was confirmed by R. and F.)

t°.	100	InSO ₄ per Gms.	Solid Phase.	t°.		InSO ₄ per Gms.	Solid Phase
	Water.				-		
-10	47.96	32.40	MnSO _{4.7} H ₂ O	16	63.94	38.99	MnSO _{4.4} H ₂ O
0	53.23	34.73	44	18.5	64.19	39.10	66
5	56.24	35.99	44	25	65.32	39.53	44
9	59 - 33	37.24	**	30	66.44	39.93	4
12	61.77	38.19	66	39.9	68.8ı	40.77	44
14.3	63.93	39.00	46	49.9	72.63	42.08	46
5	58,06	36.69	MnSO _{4.5} H ₂ O	41.4	60.87	37.84	MnSO ₄ .H ₂ O
9	59.19	37.18	44	50	58.17	36.76	44
15	61.08	37.91	44	60	55.0	35 · 49	44
25	64.78	39.31	44	70	52.0	34.22	44
30	67.76	40.38	44	80	48.0	32.43	44
35.5	71.61	41.74	44	90	42.5	29.83	44
				100	32.0	24.24	44

SOLUBILITY OF MANGANESE SULPHATE, COPPER SULPHATE MIXED CRYSTALS IN WATER AT 18°.

(Stortenbecker - Z. physik. Chem. 34, 112, '00.)

Mols. per		Mol. pe Cu i			100 Mols.		per cent in:
Cu.	Mn.	Solution.	Crystals.	Cu.	Mn.	Solution.	Crystals.
Solid Pha	ase, CuMn	SO _{4.5} H ₂ O,	Triclinic.	Solid P	hase, CuM	SO _{4.5} H ₂ O.	Triclinic.
2.282	0	100	100	[0.73	6.37	10.27	10.5]
		90.5				5.0	4.9
2.23	0.44	83.5		0.34	7.03	4.60	
		74.1	97 · 3			2.31	2.15
		57 · 7	95.1		$7 \cdot 375$	0.0	0.0
		31.0	81.3	Solid	Phase. CuM	inSO4. Mon	oclinic. 7H2O.
1.54	3.76	29.0				00.4	28.2*
		26.I	70.4			20 · 4	-
1.31	4.70	21.8		00.1	5.58	15.9	23.5]
		21.2	42.6			12.45	20.8
		20.0	34 · 4	[0.73	6.37	10.27	16.0]
11.06	5.58	15.9	22.0]			4.60	5.8*
	3.30		15.2*		± 8	0.0	0.0
		13.9	13.2				

^{*} Indicates meta stabil points.

CuMnSO_{4.5}H₂O = 100-90.8 and 2.11-0 mol. per cent Cu. CuMnSO_{4.7}H₂O = 37.8-4.92 mol. per cent Cu.

SOLUBILITY OF MANGANESE SULPHATE IN GLYCOL.

100 grams saturated solution contain 0.5 gram MnSO₄.

(de Coninck — Bul. acad. roy. Belgique, 359, %5.)

SOLUBILITY OF MANGANESE SULPHATE IN AQUEOUS ETHYL AND PROPYL ALCOHOL SOLUTIONS AT 20°.

180

(Linebarger - Am. Ch. J. 14, 380, '92; Snell - J. Physic. Ch. 2, 474, '98.)

Conc. of Alcohol in Wt. per cent.	Gms. MnSO ₄ p	Propyl Alc.	Conc. of Alcohol in Wt. per cent.	Gms. MnSO ₄ I	Propyl Alc.
34 36	9.5	6.0 4.6	44 48	3.3	I.9 I.4
38	5.8 4.7	3·5 2.8	52	I .4	1.1

MANGANESE POTASSIUM VANADATE MnKV5014.8H2O.

100 grams H₂O dissolve 1.7 grams salt at 18°.

(Radan - Liebig's Ann. 251, 129, '89.)

MANNITE C6H8(OH)6.

SOLUBILITY IN WATER.

(Campetti — Abs. in Z. physik. Chem. 41, 109, '02.)

t°.	Grams C ₆ H ₈ (OH)	6 per 100 Grams
υ.	Water.	Solution.
10	13.94	12.78
15	16.18	14.63
20	18.98	16.86

roo grams of saturated solution of mannite in Pyridine contain 0.47 gram $C_6H_8(OH)_6$ at 26°. (Holty - J. Physic. Ch. 9, 764, '05.)

MANNITOL C₆H₈(OH)₆.

SOLUBILITY IN WATER. (Findlay — J. Ch. Soc. 81, 1219, '02.)

t°.	Wt. of 1 cc. in Grams.	Gms. Mannitol per 100 Gms. H ₂ O.	G.M. Mannitol per 100 G.M.H ₂ O.	t°.	Wt. of 1 cc. in Grams.	Gms. Mannitol per 100 Gms.H ₂ O.	G. M. Mannitol per 100 G.M.H ₂ O.
0	1.044	7 · 59	0.75	50	1.099 (47.7°)	47.01	4.65
10		11.63	1.15	60		60.01	5.94
15	1.05	14.38	I . 42	70	1.148 (68°)	74.50	7.35
20		17.71	1.75	80		91.5	9.04
25		21.39	2.11	90	1.207 (85.9°)	110.8	10.96
30	1.076(31.	1°)25.40	2.51	100	• • •	133.1	13.17
40		35.40	3.50				
				. 4			

Note. — In the original paper the author writes, "grams of substance in 100 grams of solvent (percentage solubility)" and "moles of substance in 100 mols of solvent (percentage molar solubility)," thus implying equivalence of the terms and giving rise to uncertainty as to which is really intended.

MERCURY BROMIDE (ic) HgBr2. Solubility in Water.

t°.	Gms. HgBr ₂ per 100 Gms. H ₂ O.	Authority.
9	1.06	(Lassaigne — J. chim. med. 12, 177, '76.) (Sherrill — Z. physik. Ch. 43, 727, '03.)
25 100	0.61 20–25	(Lassaigne.)

SOLUBILITY OF MERCURIC BROMIDE ORGANIC SOLVENTS.

In Carbon Bisulphide.			In Other Solvents at 18°–20°.			
(Arcte	owski — Z. ano	rg. Ch. 6	, 267, '94.)	(Sulc. — Ibid. 2	5, 401, '00.)	
t°.	Gms. HgBr ₂ per 100 Gms. Solution.		Gms. HgBr ₂ per 100 Gms. Solution.	Solvent.	Formula.	Gms. HgBr ₂ per 100 Gms. Solvent.
-10	0.049	15	0.140	Chloroform	CHCl ₃	0.126
- 5	0.068	20	0.187	Bromoform	CHBr ₃	0.679
o	0.087	25	0.232	Tetra Chlor Methane	CCl_4	0.003
+ 5	0.105	30	0.274	Ethyl Bromide	C_2H_5Br	2.31
10	0.122	-		Ethylene Di Bromide	C2H4Br	2.34

Mercurous bromide Hg₂Br₂. One liter of saturated aqueous solution contains 0.000039 gram Hg₂Br₂ at 25°. (Sherrill)

MERCURY CHLORIDE (ic) HgCl2.

SOLUBILITY IN WATER.

(Etard—Ann. chim. phys. [7] 2, 563, '94; at 25°, Foote and Levy—Am. Ch. J. 35, 238, '06; at room temp. Rohland—Z. anorg. Ch. 18, 328' '98; see also Poggiale—Ann. chim. phys. [3] 8, 468, '43.)

t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.
0	3.5	30	7 . 2	100	38.0
10	4.5	40	9.3	120	59.0
20	5.4 (6.88,R.	60	14.0	140	77.0
25	6.9 (F. and L.)	80	23.1	150	78.5

Solubility of Mercuric Chloride in Aqueous Solutions of Sodium Chloride.

(Homeyer and Ritsert - Pharm. Ztg. 33, 738, '88.)

Per cent Concentration	Gms. HgCl2 per 100 Gms. NaCl Solution at:				
of NaCl Solutions.	15°	65°	1000		
0.5	10	13	44		
I . O	14	18	48		
5.0	30	36	64		
10.0	58	68	IIO		
25.0	120	142	196		
26.0 (saturated	d) 128	152	208		

Solubility of Mercuric Chloride in Aqueous Solutions of Hydrochloric Acid at:

	c	°.		20-2	5° (?).	
(Engel	- Ann. chim.	phys. [6] 17,	362, '89.)		(Ditte — Ibid. [5] 22, 551, '81.)
Mg. Mols. per HCl.	r 100 cc. Sol. ½HgCl.	Gms. per HCl.	100 cc. Sol. HgCl ₂ .	Sp. Gr. of Solutions.	Parts HCl per 100 Parts H ₂ O.	Parts HgCl ₂ per 100 Parts Solution.
4.3	9.7	1.57	13.11	1.117	0.0	6.8
9.9	19.8	3.61	18.04	1.238	5.6	46.8
17.8	35.5	6.49	32.44	1.427	10.1	$73 \cdot 7$
26.9	55.6	9.81	49.04	1.665	13.8	87 .8
32.25	68.9	11.76	58.80	1.811	2I.I	127.4
34.25	72.4	12.48	62.40	1.874	31.0	141.9
41.5	85 5	15.13	75.65	2.023	50.0	148.0
48.1	88 6	17.54	87.70	2.066	69.0	154.0
70.9	95 · 7	25.84	129.20	2.198		

Solubility of Mixtures of Sodium and Mercuric Chloride in Water at 25° .

(Foote and Levy - Am. Ch. J. 35, 239, '06.)

Gms. per 100 G	ms. Solution.	Gms. per 100	Gms. Undissol	ved Residue.	Solid
NaCl.	HgCl ₂ .	NaCl.	HgCl ₂ .	H_2O .	Phase.
26.5	none	100	none	none	NaCl
18.66	51.35		16.39		
18.71	51.32		21.98	}	NaCl and
18.64	51.42		65.42		NaCl.HgCl _{2.2} H ₂ O
18.87	51.26		71.25	Į	
14.97	57.74	16.38	74.18	9.44	Double Salt
14.03	59.69	16.36	74.21	9.43	NaCl.HgCl2.2H2O
13.25	62.16	16.16	74.70	9.14	Calc. Comp. = 16.01% NaCl 74.14% HgCl.9.85% H ₂ O
13.17	62.59	15.96	74.76	9.28	
12.97	62.50		78.20)	NaCl.HgCl ₂₋₂ H ₂ O
13.14	62.48		88.64	- · · · }	and HgCl ₂
13.15	62.55		90.83	J	
Two determ	inations made	at 10.3° gave:			
19.46	46.49	67 . 46	29.19	3.35	
19.48	46.50	22.83	68.85	8.32	

Solubility of Mixtures of Potassium and Mercuric Chlorides in Water at 25°. (Foote and Levy.)

Composition Grams per 1 Solu	oo Grams	Perce of	ntage Compo Undissolved Residue	osition	Solid Phase.
KCl.	HgCl ₂ .	KCl.	HgCl ₂ .	H_2O .	
26.46	none	100	none		KCl
26.24	15.04		3.63	.:.)	
26.43	15.02		26.15	• • • • }	KCl and
26.33	15.02		52.01		2KCl.HgCl ₃ .H ₂ O
26.33	14.92		61.04]	
23.74	18.91	34.61	61.66	3.73	2KCl.HgCl ₂ .H ₂ O
22.36	21.39	34.77	62.02	3.21	Calc. Composition 34.05% KCl, 61.84% HgCl ₂ ,
21.39	23.88	34.05	61.84	3 · 35	4.11% H ₂ O
20.32	27.62		65.24	• • • }	2KCl.HgCl ₂ .H ₂ O and KCl.HgCl ₂ .H ₂ O
20.26	27.38		73.98)	ACI.HgCl2.H2O
17.85	25.34	21.89	75.10	3.01	
9.26	18.95	21.02	73.36	5.62	KCl.HgCl ₂ .H ₂ O
7.80	19.56	20.76	73.06	6.18	Calc. Composition 20.52% KCl, 74.53% HgCl ₂ ,
6.84	22.81	20.75	74.54	4.71	5.47% H ₂ O
6.66	24.32	20.54	73.99	5.47	
6.52	25.13		76.46)	KCl.HgCl2.H2O and
6.64	25.16		80.60	• • • }	KCl.2HgCl ₂ .2H ₂ O
6.27	25.11	12.09	83.20	4.71)	KCl. ₂ HgCl _{2.2} H ₂ O Calc. Composition
5 · 77	24.73	11.87	83.18	4.95	11.43% KCl, 83.05% HgCl ₂ .5.52% H ₂ O
4.68	24.75		84.46	• • • • • • •	
4.66	25.17		93.68		KCl.2HgCl2.2H2O and HgCl2
4.69	24.82		98.50	•••]	-
none	6.90	none	100.00	none	HgCl ₂

Solubility of Mixtures of Rubidium and Mercuric Chlorides in Water at 25°.

(Foote and Levy.)

n of Solution.	Perce of Ur	ntage Compos dissolved Res	sition idue.	Solid Phase.
	RbCl.	HgCl ₂ ,	H ₂ O.	
none	100.0	none	none	RbCl
9.18	88.04	11.24	0.72	
9.49		37.5I		D. C
			2.66	RbCl and 2RbCl.HgCl2.H2O
		. , ,	3.88	
				2RbCl.HgCl2.H2O Calc. Com-
			3.22	position 45.55% RbCl,51.05% HgCl ₂ .3.4% H ₂ O
	.0	•	- \	2RbCl.HgCl ₂ .H ₂ O and 3RbCl.
				2HgCl _{2.2} H ₂ O
_			\	3RbCl.2HgCl ₂ .2H ₂ O
•				Calc. Composition
		•	\	38.55% RbCl, 57.62% HgCl ₂ . 3.82% H ₂ O
			4.16	3RbCl.2HgCl2.2H2O and
20.97	31.40		4.25	RbCl.HgCl ₂ .H ₂ O
20.58	30.34		4.18	
			4.03	RbCl.HgCl ₂ .H ₂ O Calc. Composition
14.25	29.87	65.28	4.85	29.49% RbCl, 66.11% HgCl ₂ ,
10.42	29.33	66.15	4.52	4.40% H ₂ O
10.56	28.59	67.99	3.42	RbCl.HgCl2.H2O and 3RbCl
10.05	26.22	72.20	1.58	4HgCl ₂ .H ₂ O
9.86	25.28	73.38	0.84	
8.71	25.30	73.15	1.55	3KbCl.4HgCl ₂ .H ₂ O Calc. Composition
8.80	25 · 44	73.67	0.89	24.76% RbCl, 74.01% HgCl ₂ , 1.23% H ₂ O
8.70	25.09	73.46	1.45	1.23% H ₂ O
8.33	24.92	73.93	1.15	
8.25	22.79	75.72	1.49	3RbCl.4HgCl ₂ .H ₂ O and RbCl 5HgCl ₂
8.00	12.68	86.74	0.58	3-3-3
7.71	8.40	91.24	• • •	RbCl.5HgCl2
7.64	8.38	91.78		Calc. Composition
7 · 55		91.81		8.20% RbCl, 91.8% HgCl ₂
7.21	8.07	91.58	• • • •	
7.16	6.91	93.15	• • •	RbCl.5HgCl2 and HgCl3
7.42	2.27	97.09	• • •)
6.90	none	100.0	• • •	HgCl ₂
	HgCl ₂ . none 9.18 9.49 9.39 9.47 10.35 19.58 19.94 20.10 20.17 20.55 20.63 20.87 20.97 20.58 18.71 14.25 10.42 10.56 10.05 9.86 8.71 8.80 8.70 8.33 8.25 8.00 7.71 7.64 7.55 7.21 7.16 7.42	HgCl2 R6Cl. None 100.0	Rectangle Rect	Too Grams. No

Solubility of Mercuric Chloride in Methyl, Ethyl Propyl, n Butyl, Iso Butyl and Allyl Alcohols.

(Etard - Ann. chim. phys. [7] 2, 563, '94.)

Note. — For the solubility in Me, Et, and propyl alcohols at room temperature, see Rohland — Z. anorg. Ch. 18, 328, '98; at 8.5°, 20° and 38.2°, see Timofejew — Compt. rend. 112, 1224, '91; in Me and Et alcohols at 25°, see de Bruyn — Z. physik. Ch. 10, 783, '92. The determinations of these investigators agree well with those of Etard, which are given below.

t°.	Grams HgCl ₂ per 100 Grams Saturated Solution in:									
	сн₃он.	C_2H_5OH .	C ₃ H ₇ OH.	$\mathrm{CH_{3}(CH_{2})_{3}OH}.$	(CH ₃) ₂ CHCH ₂ OH.	CH2.CH.CH9OH.				
-30		14.5	15.0		• • •	• • • •				
-20		20.I	15.7	13.5		21.0				
-10	15.2	26.5	16.5	13.7		25.5				
0	20.I	29.8	17.4	14.0	5.2	30.0				
+10	26.3	30.6	18.0	14.3	6.0	37 · 5				
20	34.0	32.0	18.8	14.6	6.8	46.5				
25	40.0	32.5	19.5	15.5	7.2					
30	44.4	$33 \cdot 7$	20.0	16.5	7 · 5					
40	58.6	35.6	23.0	19.6	9.7	• • •				
60	62.5	41.2	29.8	26.5	17.0					
80	66.0	47 · 5	36.8	33.0	24.9					
100	70.1	54.3	43.8		31.7					
120	73.5	61.5	50.6		39.2					
150	78.5			• • •						

SOLUBILITY OF MERCURIC CHLORIDE IN ACETIC ACID. (Etard.)

t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.
20	2.5	70	8.5	110	13.6
30	3.5	80	9.7	120	16.5
40	4.7	90	11.0	130	20.7
50	6.0	100	12.4	140	25.2
60	7.2			160	34.8

SOLUBILITY OF MERCURIC CHLORIDE AND SODIUM CHLORIDE IN ETHYL ACETATE AT 40°.

(Linebarger - Am. Ch. J. 16, 214, '04.)

		(20000000000000000000000000000000000000		nob mrd, 34.7		
Mols. per Ace	100 Mols.		per 100 Gms. cetate.		100 Gms.	Solid Phase.
NaCl.	HgCl ₂ .	NaCl.	HgCl ₂ .	NaCl.	HgCl ₂ .	L masc.
0.8	12.9	6.53	39 · 7	0.53	28.4	HgCl ₂
2.3	12.4	1.53	38.15	1.51	27.61	64
4.3	16.4	2.85	50.44	2.78	33 · 54	64
9.1	22.85	6.05	86.14	5.60	46.28	66
18.5	34.9	12.29	107.4	10.95	51.76	44
20.0	40.0	13.29	123.0	11.73	55.18	HgCl ₂ + NaCl

The double salt (HgCl₂)₂. NaCl is formed under proper conditions.

SOLUBILITY OF MERCURIC CHLORIDE IN ETHYL ACETATE AND IN ACETONE.

(Etard; von Laszcynski — Ber. 27, 2285, '94; Krug and McElroy — J. Anal. Ch. 6, 186, '92; Linebarger — Am. Ch. J. 16, 214, 94; Aten — Z. physik. Ch. 54, 121, '05.)

Note. — The results obtained by the above named investigators were calculated to a common basis and plotted on cross-section paper. The variations which were noted could not be satisfactorily harmonized, and therefore all the results are included in the following table.

SOLUBILITY.

In Ethyl Acetate.

In Acetone.

Grams HgCl ₂ per 100 Grams Solution.					Gms.	HgCl ₂ per	100 Gms. Solution	on.
· ·	Laszcynski.	Aten.	Linebarger.	Etard.	K and McE.	Laszcynski	. Aten.	Etard.
-10		23.0		40			44.0 *	57.0
0	22.0	23.2	32.0	40		49 · 7	43.0 *	61.7
+10	22.2	23.5	32.5	40		52.0	51.0 *-58.9 †	61.7
20	22.5	23.4	32.7	40		54	58.5 †	61.7
25	22.7	23.5	33.0	40	$37 \cdot 4$	55.2	58.2 †	61.7
30	23.0		33.2	40				61.7
40	23.5		33.5	40				61.7
50	24.0		33 · 5	41				61.7
60	24.7			42.5				61.7
80	26.0			45 . 2				61.7
100				48.0				
120				50.8				
150				55.0				
	(*)	Solid ph	ase HgCl ₂ (CI	$H_3)_2$ CO.		(†) Solid	Phase HgCl ₂ .	

100 grams absolute acetone dissolve 143 grams HgCl2 at 18°.

(Naumann - Ber. 37, 4332, '04.)

SOLUBILITY OF MERCURIC CHLORIDE IN SEVERAL SOLVENTS. (Arctowski — Z. anorg. Ch. 6, 267, '94; von Laszcynski; Sulc. — Z. anorg. Ch. 25, 401, '00.)

In Carbon Bisulphide (A.).			enzene n L.).	In Several Solvents at 18-20° (S.).		
t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.	Solvent.	Gms. HgCl ₂ per 100 Gms. Solvent.	
-10	0.010	15	0.537	CHBr ₃	0.486	
0	0.018	41	0.616	CHCl ₃	0.106	
10	0.026	55	0.843	CCl ₄	0.002	
15	0.032	84	1.769	C_2H_5Br	2.010	
20	0.042			$C_2H_4Br_2$	1.530	
25	0.053					
20	0.063					

SOLUBILITY OF MERCURIC CHLORIDE IN ABSOLUTE ETHYL ETHER. (Etard; Laszcynski; Köhler — Z. anal. Ch. 18, 242, '79.)

t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.	t°.	Gms. HgCl ₂ per 100 Gms. Solution.
- 20	6.0	60	6.0	90	7 · 5
0	6.0	70	6.4	100	8.0
20	6.0	80	7.0	110	8.5

SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE (CH₃)₄NCl.6HgCl₂ in Aq. Ether AT 17°. (Strömholm — J. pr. Ch. [2] 66, 443, '02; Z. physik. Chem. 44, 64, '03.)

Molecula	r Concentration	per Liter.	Grams per Liter of Solution.			
H ₂ O.	HgCl ₂ (*).	HgCl ₂ (†).	H ₂ O.	HgCl ₂ (*).	HgCl ₂ (†).	
0.0	0.1515	0.0342	0	41.16	9.26	
0.0656	0.1795	0.0428	1.18	48 . 64	11.60	
0.1311	0.2069	0.0516	2.36	56.08	14.00	
0.1956	0.2339	0.0603	3.52	63.38	16.34	
0.2611	0.2489	0.0690	4.70	70.16	18.70	
0.3267	0.2849	0.0779	5 .88	77.20	21.10	
0.3922	0.3100	0.0866	7.06	84.02	23.48	

^(*) Results in this column are for solutions in contact with the Solid Phase HgCl₂. (†) Results in this column are for solutions in contact with the Solid Phase (CH₃)₄NCl.6HgCl₂.

SOLUBILITY OF MERCURIC CHLORIDE AND OF DOUBLE MERCURIC AND TETRA METHYL AMINE CHLORIDE IN ALCOHOL—ETHER SOLUTIONS AT 17°. (Strömholm.)

Grams C₂H₅OH per Liter. Grams HgCl₂ (*) per Liter. Grams HgCl₂ (†) per Liter.

0.0	41.16	9.26
4.58	50.00	11.87
0.16	58.76	14.38
13.74	66.96	16.90

Solubility of Double Mercuric Chlorides in Aqueous and Pure Ether at 16.6°.

(Strömholm.)

Mol. Conc.	of Hg	Cl ₂ per l	Liter of:	Gms	Gms. HgCl2 per Liter of:			
Pure Ether. E	Aq. ther	Aq. Ether	Aq. Ether (3).	Pure Ether.	Aq. Ether (4).	Aq. Ether (5).	Aq. Ether (6).	Solid Phase.
0.1515 0.	2387	0.2647	0.3196	41.04	64.69	71.71	86.58	HgCl ₂
0.0673 0.						35.05		(CH ₃ .CH ₃ C ₂ H ₄) ₂ SCl.6HgCl ₂
0.0404 0.	0720	0.0835	0.1034			22.61		(CH ₃ .C ₂ H ₅ CH ₃ C ₂ H ₄) ₂ SCl.6HgCl ₂
0.0342		0.0706		9.26		19.10		(CH ₃) ₄ NCl.6HgCl ₂
0.0264						15.39		$(C_2H_5)_3SCl.6HgCl_2$
0.0209 0.	0400	0.0460	0.0594	5.66	10.83	12.48	16.10	(CH ₃ .C ₂ H ₅) ₂ SCl.6HgCl ₂
0.0063		0.0144		1.70		3.90		(CH ₃) ₂ .H ₂ NCl. ₂ HgCl ₂

⁽¹⁾ containing 0.21055 mol. H₂O per liter. (2) 0.2756 mol. H₂O per liter. (3) 0.421 mol. H₂O per liter (4) containing 3.79 gms. H₂O per liter. (5) 4.97 gms. H₂O per liter. (6) 7.59 gms. H₂O per liter.

DISTRIBUTION OF MERCURIC CHLORIDE BETWEEN WATER AND TOLUENE AT 24°.

(Brown - J. Physic. Ch. 2, 50, '98.)

· Gms. HgCl	2 per 100 cc.	Gms. HgC	l ₂ per 100 cc.
H ₂ O Layer.	C ₆ H ₅ CH ₃ Layer.	H ₂ O Layer.	C ₆ H ₅ CH ₃ Layer.
0.442	0.0270	1.816	0.130
0.732	0.0488	3.766	0.292
0.780	0.0542	3.754	0.298
1.192	0.0812	6.688*	0.528*

^{*} This solution saturated.

MERCUROUS CHLORIDE HgCl.

One liter water dissolves 0.002 gram HgCl at 18°, by conductivity method.

(Kohlrausch - Z. physik. Ch. 50, 356, '04-'05.)

SOLUBILITY OF MERCUROUS CHLORIDE (CALOMEL) IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, BARIUM CHLORIDE, CALCIUM CHLORIDE AND OF HYDROCHLORIC ACID AT 25°.

(Richards and Archibald — Proc. Am. Acad. 37, 345, '01-'02.)

Solid phase in each case. Calomel + about o.1 gram of mercury.

In A	queous Na	.С1.	In A	queous Ba	.C1 ₂ .
Sp. Gr. of Solutions.		per Liter.	Sp. Gr. of Solutions.	Grams pe	
Solutions.	NaCl.	HgCl ₂ .	Solutions.	BaCl ₂ .	HgCl2.
	5.85	0.0041	1.088	104.15	0.044
1.040	58.50	0.041	1.134	156.22	0.088
1.078	119.00	0.129	1.174	208.30	0.107
1.093	148.25	0.194	1.263	312.45	0.231
1.142	222.3	0.380			
1.188	202.5	0.643			

Sp. Gr. of	Grams	per Liter.	Sp. Gr. of Solutions.	Grams per Liter.		
Solutions.	CaCl ₂ .	HgCl ₂ .	Solutions.	HCl.	HgCl ₂ .	
	39.96	0.022		31.69	0.034	
	55 · 5	0.033		36.46	0.048	
1.064	0.111	0.081	1.042	95 · 43	0.207	
1.105	138.75	0.118	1.069	158.4	0.399	
1.151	195.36	0.231	1.091	209.2	ö.548	
1.205	257.52	0.322	1.114	267.3	0.654	
I.243	324.67	0.430	1.119	278.7	0.675	
1.315	432 . 9	0.518	1.132	317.3	0.670	
1.358	499 · 5	0.510	1.153	364.6	0.673	

100 grams bromoform, CHBr₃, dissolve 0.055 gram HgCl at 18°-20°.
(Sulc. – Z. anorg. Ch. 25, 401, '00.)

MERCURIC CYANIDE Hg(CN)2.

SOLUBILITY IN SEVERAL SOLVENTS.

Solvent.	t°.	Gms. Hg(CN) ₂ per 100 Gms. Solvent.	Observer.
Water	-0.45	about 11.0	(Guthrie Phil. Mag. [5] 6, 40, '78.)
"	15.2	8.0	(Wittstein.)
"	IOI.I	53.85	(Griffiths.)
Abs. Ethyl Alcohol	19.5	10.1	(de Bruyn — Z. physik. Ch. 10, 784, '92.)
Abs. Methyl Alcohol	19.5	44.2	66
Glycerine	15.5	27.0	

Solubilities of Mercuric Cyanide Double Salts in Water and in Alcohol.

Double Salt.	t°.	Gms. per Water.	Alcohol.	Observer.
Hg(CN) ₂ .2KCN Hg(CN) ₂ .2TlCN Hg(CN) ₂ .2TlCN 2Hg(CN) ₂ .CaBr ₂ .5H ₂ O 2Hg(CN) ₂ .CaBr ₂ .5H ₂ O Hg(CN) ₂ .KCl.H ₂ O Hg(CN) ₂ .KBr.2H ₂ O Hg(CN) ₂ .KBr.2H ₂ O Hg(CN) ₂ .BaI ₂ .4H ₂ O Hg(CN) ₂ .BaI ₂ .4H ₂ O Hg(CN) ₂ .KI		22.7 12.6 9.7 100.0 400.0 14.81 7.49 100.0+ 6.42 250.0 6.2	50.0 100.0 4.42 62.5	(Fromuller — Ber. 11, 92, '78.) " (Custer.) " (Brett.) " (Custer.) (Custer.) (24° B Alc.) (Caillot.)
Hg(CN) ₂ .NaI. ₂ H ₂ O Hg(CN) ₂ .SrI ₂ .6H ₂ O	18°	22.2 14.3	15.4	(90% Alc.) (Custer.) (90% Alc.) "

Solubility of Mercuric Cyanide in Organic Solvents At 18°-20°.

(Sulc - Z. anorg. Ch. 25, 401, '00.)

Formula.	G. Hg(CN) ₂ per 100 Gms. Solvent.
CHBr₃	0.005
CCl ₄	0.001
	0.013
$C_2H_4Br_2$	0.001
	CHBr ₃

MERCURY FULMINATE C2HgN2O2.

One liter of water dissolves 1.738 – 1.784 grams $C_2HgN_2O_2$ at 12°. (Holleman – Rec. trav. chim. 15, 159, '96.)

MERCURIC IODIDE HgI2.

SOLUBILITY IN WATER.

t°.	Grams HgI2 per Liter.	Observer.
18	0.0004 (conductivity method)	(Kohlrausch — Z. physik. Ch. 50, 356, '04-'05.)
17.5	0.040	(Bourgoin — Bull. soc. chim. [2] 42, '84.)
22	0.054	(Rohland — Z. anorg. Ch. 18, 328, '98.)

SOLUBILITY OF MERCURIC IODIDE IN ALCOHOLS.

Alcohol.	Formula.	t°.	Sp. Gr. of Solution.	G. HgI ₂ per 100 Gms. Alcohol.	Observer.
Methyl	CH₃OH	15-20	0.799	3.24	(Rohland.)
"	"	19.5		3. 16	(de Bruyn.)
"	"	66 (b. pt.)		6.512	(Sulc.)
Ethyl	C_2H_5OH	15-20	0.810	1.42	(Rohland.)
"	"	18		1.48	(Bourgoin.)
44	"	19.5		2.09	(de Bruvn.)
66	66	25	0.803	2.19	(Herz and Knoch.)
"	"	78 (b. pt.)		4.325	(Sulc.)
Propyl	C ₃ H ₇ OH ·	15-20	0.816	0.826	(Rohland.)
Amyl	$C_5H_{11}OH$	13		0.66	(Laszcynski.)
"	44	71		3.66	66
"	66	100		5.30	44
"	66	133.5		9.57	44
Iso Propyl	(CH ₃) ₂ CH.OH	81 (b. pt.)		2.266	(Sulc.)
Iso Butyl	(CH ₃) ₂ CHCH ₂ OH	105-107 (b. pt.))	2.433	"

Solubility of Mercuric Iodide in Aqueous Ethyl Alcohol:

At 18°.			At a	≥5°.	
(Bourgoin.)		(Herz and I	Knoch — Z. a	norg. Ch. 4	5 , 266, '05.)
Solvent.	Gms. HgI ₂ per Liter.	Wt.% Alcohol in Solvent.	Millimols.	Grams.	Sp. Gr. of Solutions 25°/4°
Abs. Alcohol	11.86	100	3.86	1.754	0.8033
$H_2O + 80\% 90^{\circ}$ Alc.	2.857	95.82	2.56	1.162	0.8095
$H_2O + 10\% 90^{\circ}$ Alc.	0.086	92.44	1.92	0.873	0.8154
		86.74	1.38	0.623	0.8300
		78.75	0.935	0.425	0.8465
		67.63	0.45	0.204	0.8721

Solubility of Mercuric Iodide in Acetone in Ethyl Acetate and in Benzene.

(Sulc; Krug and McElroy - J. Anal. Ch. 6, 186, '92; Laszcynski - Ber. 27, 2285, '94.)

In Acetone.		In Et	hyl Acetate.	In Benzene.	
t°.	Gms. HgI_2 per 100 Gms. (CH ₃) ₂ CO.	t°.	Gms. HgI ₂ per 100 Gms. CH ₃ COOC ₂ H ₅ .	t°.	Gms. HgI_2 per 100 Gms. C_6H_6
- r	2.83	-20	1.49	15	0.22
18	3.36	+17.5	1.56	60	0.88
25	2.09 (K. and McE.)	21	1.64	65	0.95
40	4.73	40	2.53	84	I.24
58	6.07	55	3.19	80 (b.	pt.) 0.825 (Sulc.)
56 (b	.pt.) 3.249 (Sulc.)	76	4.31		

74-78 (b.pt.) 4.20 (Sulc.)

SOLUBILITY OF MERCURIC IODIDE IN CARBON BISULPHIDE. (Linebarger — Am. Ch. J. 16, 214, '94; Arctowski — Z. anorg. Ch. 6, 267, '94; 11, 274, '95.)

t°.	Gms. HgI ₂ per 100 Gms. Solution.	t°.	Gms. HgI ₂ per 100 Gms. Solution.	t°.	Gms. HgI ₂ per 100 Gms. Solution.
-116	0.017	- 5	0.141	15	0.271
- 93	0.023	0	0.173	20	0.320
- 86.5	0.024	+ 5	0.207	25	0.382
— 10	0.107	10	0.239	30	0.445

SOLUBILITY OF MERCURIC IODIDE IN SEVERAL ORGANIC SOLVENTS. (Sulc — Z. anorg. Ch. 25, 401, '00.)

Solvent.	Formula.	t°.	Gms. HgI ₂ per 100 Gms. Solvent.
Chloroform	CHCl ₃	18-20	0.040
Chloroform	CHCl ₃	61 (b. pt.)	0.163
Bromoform	CHBr ₃	18-20	0.486
Tetra Chlor Methane	CCl ₄	18-20	0.006
Tetra Chlor Methane	CCl.	75 (b. pt.)	0.094
Ethyl Bromide	C_2H_5Br	18-20	0.643
Ethyl Bromide	C_2H_5Br	38° (b. pt.)	0.773
Ethylene Di Bromide	$C_2H_4Br_2$	18-20	0.748
Ethyl Iodide	C_2H_5I	18-20	2.041
Ethylene Di Chloride	$C_2H_4Cl_2$	85.5° (b. pt.	1.200
Iso Butyl Chloride	(CH ₃) ₂ .CHCH ₂ Cl	69 "	0.328
Methyl Formate	HCOOCH ₃	36-38 "	1.166
Ethyl Formate	HCOOC ₂ H ₅	52-55 "	2.150
Methyl Acetate	CH ₃ COOCH ₃	56-59 "	2.500
Acetal	$CH_3CH(OC_2H_5)_2$	105 "	2.000
Epi Chlor Hydrine	CH ₂ .O.CH.CH ₂ Cl	117 "	6.113
Hexane	C_6H_{14}	67	0.072

Solubility of Mercuric Iodide in Ether and in Methylene Iodide.

In Ether.		In Methylene Iodide.		
(Sulc; Laszcynski.)		(Retgers - Z. anorg. Ch. 3, 253, '93.		
t°.	Gms. HgI_2 per 100 Gms. $(C_2H_5)_2O$.	t°.	Gms. HgI ₂ per 100 Gms. CH ₂ I ₂ .	
0	0.62	15	2.5	
36	0.97	100	16.6	
35 (b. pt.) 0.47 (Sulc)	180	58.0	

SOLUBILITY OF MERCURIC IODIDE IN FATTY BODIES. (Mehu — J. pharm. chim. [5] 12, 249, '85.)

Solvent.	t,°. 10	Gms. HgI ₂ per so Gms. Solvent.	Solvent.	t°.	Gms. HgI ₂ per 100 Gms. Solvent.
Bitter Almond Oil	25	0.5	Vaseline	25	0.025
Bitter Almond Oil	100	1.3	Vaseline	100	0.20
Castor Oil	25	4.0	Poppy Oil	25	I .O
Castor Oil	100	20.0	Olive Oil	25	0.4
Nut Oil	100	1.3	Carbolic Acid	100	2.0

100 grams oil of bitter almonds dissolve 5.0 grams HgI₂.KI at 25°. (Mehu.)

MERCURY OXIDE HgO.

SOLUBILITY IN WATER. (Schick — Z. physik. Ch. 42, 163, '01-'02.)

t *.	Grams per 1000 cc. Solution.		
25	o.0518 yellow HgO	0.0513 red HgO	
100	o.410 yellow HgO	0.379 red HgO	

EQUILIBRIUM IN THE SYSTEM, MERCURY OXIDE, SULPHUR TRI-OXIDE, WATER.
(Hoitsema — Z. physik. Chem. 17, 651, '95.)

Results expressed in molecules per sum of 100 molecules of the three components of the system.

Resu	Results at 50°.					
Liquid Ph		Liquid Phase		Solid		
H_2O . SO_3 .	HgO. Phase.	H ₂ O. SO ₃ .	HgO.	Phase.		
98.5 1.24	0.33 3HgO.SO ₃	98.9 0.96	0.17	3HgO.SO3		
96.6 2.49	0.92 "	96.0 3.05	0.93	46		
94.4 3.93	r.65 "	93.2 4.92	1.90	44		
93.9 4.24	1.85 3HgO.SO3 and	92.8 5.10	2.09	44		
94.4 4.52	2.12 3HgO.2SO _{3.2} H ₂ O	92.8 5.16	2.06	66		
93.4 4.65	I.94 3HgO.2SO ₃ .2H ₂ O	92.5 5.34	2.12	44		
92.9* 4.81	2.29 3HgO.SO ₈	92.2 5.57	2.20	3HgO.SO3 and		
92.9 5.11	I . 98 3HgO.2SO ₃ .2H ₂ O			3HgO.2SO3.2H2O		
92.3* 5.20	2.54 3HgO.SO ₃	92.1 5.75	2.11	3HgO.2SO3.2H2O		
92.3 5.58	2 · OQ 3HgO .2SO ₃ .2H ₂ O	92.0 5.80	2.16	44		
92.1 5.81	2.08 "	91.2* 6.27	2.56	3HgO.SO3 and		
91.9 5.97	2.90 3HgO.SO ₃			HgO.SO ₃		
91.9 6.15	2.05 3HgO.2SO ₃ .2H ₂ O	91.5 6.34	2.19	3HgO.2SO2.2H2O		
91.3 6.54	2.13 "			and HgO.SO ₃		
91.2 6.77	2.02 HgO.SO ₈ .H ₂ O	91.3* 6.37	2.30	HgO.SO ₃		
91.3 6.90	1.80 "	91.6 6.69	1.75	44		
91.3 7.67	I.0I "	91.1 8.32	0.57	44		
91.3 7.84	0.89 HgO.SO _{3.H2} O	89.6 10.2	0.23	44		
91.0 8.36	0.69 and HgO.SO ₃	31.6 68.4	0.03	54		
90.5 8.95	0.53 HgO.SO ₃		Ū			
89.2 10.6	0.22 "			-		
75.8 24.2	trace "					
39.2 60.7	trace "					
39.2 00.7		table equilibrium.				

MERCUROUS SULPHATE Hg2SO4.

SOLUBILITY IN WATER, IN SULPHURIC ACID AND IN POTASSIUM SULPHATE AT 25°.

(Drucker — Z. anorg. Ch. 28, 362, 'o1; Wright and Thomson — Phil. Mag. [5] 17, 288; 19, 1, '84-'85; Wilsmore — Z. physik. Ch. 35, 305, 'oo.)

Solvent.	Hg ₂ SO ₄ per Gram Mols.	Liter. Grams.
Water	11.71 10-4	0.058(0.047 W. and T., 0.039 W.)
Aq.H ₂ SO ₄ (1.96 gms. per liter)	8.31 "	0.041
Aq.H ₂ SO ₄ (4.90 gms. per liter)	8.78 "	0.044
Aq.H ₂ SO ₄ (9.80 gms. per liter)	8.04 "	0.040
Aq.K ₂ SO ₄ (34.87 gms. per liter)	9.05 "	0.045

METHANE CH.

SOLUBILITY IN WATER. (Winkler — Ber. 34, 1418, 'o1.)

t°.	β.	β'.	q.	t°.	β.	β'.	q.
0	0.05563	0.05530	0.00396	40	0.02369	0.02198	0.00159
5	0.04805	0.04764	0.00341	50	0.02134	0.01876	0.00136
10	0.04177	0.04127	0.00296	60	0.01954	0.01571	0.00115
		0.03628		70	0.01825	0.01265	0.00093
20	0.03308	0.03233	0.00232	80	0.01770	0.00944	0.00070
25	0.03006	0.02913	0.00209	90	0.01735	0.00535	0.00040
30	0.02762	0.02648	0.00191	100	0.01700	0.00000	0.00000
To	Non-Alea men'	f 0 0	/ 1	That area		_	

For the values of β , β' and q see Ethane, page 133.

SOLUBILITY OF METHANE IN METHYL ALCOHOL AND IN ACETONE. (Levi — Gazz. chim. ital. II, 513, 'o1; abs. in Z. physik. Ch. 41, 110, 'o2.)

In methyl alcohol l (Ostwald expression, see page 105) = 0.5644 - 0.0046 t - 0.0004 t^2 .

In acetone l (Ostwald expression) = $0.5906 - 0.00613t - 0.0000146t^2$. From which is calculated the following values:

	In Methy	l Alcol	nol.		In Acetone.				
t°.	1.	t°.	l.	t°.	l.	t°.	l.		
0	0.5644	40	0.3164	0	0.5906	40	0.3220		
10	0.5144	50	0.2344	10	0.5278	50	0.2476		
20	0.4564	60	0.1444	20	0.4622	60	0.1702		
30	0.3904	70	0.0464	30	0.3936	70	0.0900		

Tetra Chlor METHANE CCl. (Carbon Tetra Chloride).

SOLUBILITY IN WATER.

(Rex — Z. physik. Chem. 55, 355, '06.)

t°. o°. 10°. 20°. 30°. Grams CCl₄ per 100 gms. H₂O 1.097 0.083 0.080 0.085

Tri Phenyl METHANE CH(C₆H₅)₃.

SOLUBILITY IN ANILIN.

(Hartley and Thomas - J. Ch. Soc. 89, 1026, '06.)

By synthetic method, see page 9.

t°.	CH(C ₆ H ₅) ₃ per 100 Gms. So- lution.	cent	Sond	t°.	Gms. CH(C ₆ H ₅); per 100 Gms. So- lution.	cent	Solid
23.0	5 · 4	1.85	CH(C ₆ H ₅) ₃ .C ₆ H ₅ NH ₂ rhombs	71.3	67.9	44.6	CH(C ₆ H ₅) ₃ .C ₆ H ₅ NH ₂ rhombs
35.3	9.5	3.8	44	71.6	, ,	49.1	44
43.0	13.5	5.6	44	71.2	76.3	55.1	44
52.1	21.9	9.7	44	70.6	78.3	57.9	44
61.4	36.5	17.8	44	71.6	82.1	63.5	CH(C ₆ H ₅) ₈ monoclinic
66.0	47.2	25.4	44	74.3	84.9	68.2	44
68.7	54.8	31.6	44	82.1	91.7	80.9	44
70.1	64.6	40.9	44	87.3	96.1	90.2	46

SOLUBILITY OF TRI PHENYL METHANE IN BENZENE. (Linebarger — Am. Ch. J. 15, 45, '93.) (Hartley and Thomas.)

t°.	Gms. $CH(C_6H_5)_3$ per 100 Grams C_6H_6 .	Solid Phase.	t°.	Gms. CH(C ₆ H ₅) ₃ per 100 Gms. Solution.		
3.9	3.90	$C_6H_6 + CH(C_6H_5)_3.C_6H_6$	33	12.6	4 · 4	CH(C ₆ H ₅) ₃ .C ₆ H ₆ rhombs
4.0	4.06	CH(C ₆ H ₅) ₃ .C ₆ H ₆	49 · 4	24.0	8.8	44
12.5	5.18	**	65.6	38.9	17.2	44
16.1	6.83	44	73.8	57 · 5	30.2	44
19.4	-	44	77 · I	67 . 4	39.7	66
23.1	0	44	77.9	76.3	50.7	6k
37 · 5	0	$(C_6H_5)_3CH.C_6H_6 + CH(C_6H_5)_3$	77 · 5	80.2	56.4	ě6
42.0		CH(C ₆ H ₅) ₃	76.2	84.1	62.8	44
44.6		44	74.6	87.5	69.1	CH(C ₆ H ₅) ₃ monoclinic
50.1		44	76.0	89.0	72.2	44
55 - 5		46	78.8	90.5	75.3	44
71.0		44	82.3	93.1	81.3	46
76.2		44	86.6	95.7	87.8	44
,	3-9.01			,,,,,,	-	

Note. — Hartley and Thomas call attention to the inaccuracy of Linebarger's results and the correctness of Kuriloff's determinations (Z. physik. Chem. 22, 547, '97).

SOLUBILITY OF TRI PHENYL METHANE IN CARBON BISULPHIDE. (Etard — Ann. chim. phys. [7] 2, 570, '94; below – 80°, Arctowski — Z. anorg. Ch. 11, 273, '95.)

t°.	Gms. CH(C ₆ H ₅) ₃ per 100 Gms. Solution.	t°.	Gms. CH(C ₆ H ₅) ₃ per 100 Gms. Solution.	t°.	Gms. CH(C ₆ H ₅) ₈ per 100 Gms. Solution.
-113.5	0.98	-40	7 · 5	40	63.7
-102	I . 24	-20	13.7	50	72.4
- QI	1.56	0	25.8	60	78.6
- 8 ₃	1.91	+10	38.7	70	85.6
- 60	3 · 4	20	43 · 2	80	92.2
		30	52.9		

SOLUBILITY OF TRI PHENYL METHANE IN HEXANE AND IN CHLOROFORM. (Etard.)

Gms. CH(C₆H₅)₃ per 100 Gms. Solution in: Gms. CH(C₆H₅)₈ per 100 Gms. Solution in: t°. to. Hexane. Chloroform. Chloroform. Hexane. 48.8 30 12.5 10.5 -50 . . . 56.1 20.0 15.2 40 I.2 -30 63.8 25.8 50 1.6 19.0 - 20 71.7 60 45.7 23.5 -10 2.2 79.8 62.0 70 28.9 3.5 0 80 78.5 87.2 5.6 +10 35.0 8.3 90 97.0 . . . 41.5 20

SOLUBILITY OF TRI PHENYL METHANE IN PYRIDINE. (Hartley and Thomas — J. Ch. Soc. 89, 1028, '06.)

Synthetic method used, see note, page 9.

t°.	Gms. CH(C ₆ H ₅) ₈ per 100 Gms Solution.	. cent	Solid Phase.	t°.	Gms. CH(C ₆ H ₅) ₈ per 100 Gms. Solution.		Solid Phase.
22.8	46.2	22.0	CH(C ₆ H ₅) ₈	59 · 3	75.6	50.3	$CH(C_6H_5)_3$
31.7	53 · 3	27.2	" monoclinic	- 67.8	81.9	59 · 7	46
37.9	57.6	30.7	46	72.8	85.7	66.4	44
48.7	66.6	39.5	44	80.6	91.5	77.2	44
53.1	70.1	43.5	44	86.8	95.8	88.1	44

SOLUBILITY OF TRI PHENYL METHANE IN: (Hartley and Thomas.)

Pyrrole.					Thiophene.				
t°.	Gms. $CH(C_6H_b)_3$ per 100 Gms. Sol.	Mol. per cent CH(C ₆ H ₅)	Solid Phase.	t°.	Gms. CH(C ₆ H ₅) ₃ per 100 Gms. Solution. ($CH(C_6H_5)_3$	Solid Phase.		
24.6	24.3	8.1	CH(C ₆ H ₅) ₃ .C ₄ H ₄ NH	25.7	26.0	10.8	CH(C ₆ H ₅) ₃ .C ₄ H ₄ S		
29.0	29.8	10.4	" rhombs	33 · 5	31.1	13.5	" rhombs		
31.5	33 · 4	12.I	44	44.0	43.6	2I.I	44		
36.8	40.6	15.8	$CH(C_6H_5)_3$	47.6	48.4	24.4	44		
42.7	49.1	20.9	" monoclinic	53.5	58.7	32.9	44		
46.9	56.0	25.9	46	57 · 4	70.2	44 · 7	44		
53.2	63.9	32.8	44	57.6	74.8	50.6	44		
60.0	72.3	41.8	44	62.7	78.7	56.0	CH(C ₆ H ₅) ₃		
63.9	76.7	47 - 4	44	67.0	81.9	60.8	" monoclinic		
68.5	81.9	55.6	44	67.2	82.1	61.3	44		
71.1	84.4	59.8	44	74.2	87.4	70.5	44		
80.0	91.5	74.8	44	79.0	90.3	76.3	44		
89.2	97.6	91.8		87.2	96.2	89.9	46		

METHYL ACETATE, Butyrate and Propionate.

SOLUBILITY IN WATER AT 22°. (Traube — Ber. 17, 2304, '84.)

100 grams H_2O dissolve 25.0 grams CH_3COOCH_3 ; 1.7 grams C_3H_7 $COOCH_3$; 5.0 grams $C_2H_5COOCH_3$.

METHYL IODIDE, Methylene Chloride and Methylene Bromide.

SOLUBILITY OF EACH IN WATER. (Rex — Z. physik. Chem. 55, 355, 'o6.)

t°.	Gran	ms per 100 Grams H	I ₂ O.
	CH₃I.	CH ₂ Cl ₂ .	CH ₂ Br ₂ .
0	1.565	2.363	1.173
10	1.446	2.122	1.146
20	1.419	2.000	1.148
30	I · 429	1.969	1.176

METHYL BUTYRATE, METHYL VALERATE.

SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft -- Phys. Rev. 3, 193, '95.)

100 cc. H₂O dissolve 1.15 cc. methyl butyrate at 20°.

cc. Alcohol	cc. H ₂	O Added.*	cc. Alcohol	cc. H ₂ O Added.* Valerate.	
in Mixture.	Butyrate.	Valerate.	in Mixture.		
3	2.34	1.66	27	41.15	
6	6.96	5.06	30	52.37	
9	12.62	9.03	33	62.25	
12	19.45	13.40	36	74.15	
15	28.13	18.41	39	91.45	
18	33.80	24.00	42	∞	
21	55.64	30.09			
24	∞	36.72			

^{*} cc. H₂O added to cause the separation of a second phase in mixtures of the given amounts of ethyl alcohol and 3 cc. portions of methyl butyrate and of methyl valerate respectively.

METHYL ETHYL KETONE CH., CO.C.H.

SOLUBILITY IN WATER. (Rothmund - Z. physik. Chem. 26, 475, '98.)

By synthetic method, see Note, page 9.

t°·	Gms. Keton	e per 100 Gms.	t°.	Gms. Ketor	Gms. Ketone per 100 Gms.	
£	Aq. Layer.	Ketone Layer.	ne Layer.		Ketone Layer.	
-10	34.5	89.7	90	16.1	84.8	
+10	26.1	90.0	110	17.7	80.0	
30	21.9	89.9	130	21.8	71.9	
50	17.5	89.0	140	26.0	64.0	
70	16.2	85.7	151.8	(crit. temp.)	44.2	

MOLYBDENUM TRIOXIDE MOO.

100 gms. cold H2O dissolve 0.187 gm. MoO3. 100 gms. hot H₂O dissolve 0.104 gm. MoO₃. (Hatchett.)

MORPHINE C17H19NO3.H2O.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.; Müller - Apoth.-Ztg. 18, 257, '03.)

C.	ne Morphir	e per roo	Gms. Solution.		Gms. Morphine p	per 100 Gms.
Solvent. G	At 18°-22°		At 80°.	Solvent.	At 18°-22°.	At 25°.
Water	0.0283	0.030	0.0061	Chloroform	0.0655	0.0555
Alcohol		0.600	1.31 (60°)	Amyl Alcohol		0.8810
Ether	0.0131	0.0224		Ethyl Acetate	0.1861	0.1905
Ether sat. with	Ü			Petroleum		
H,O	0.0004			Ether	0.0854	
H ₀ O sat. with	, ,			Carbon Tetra	a	
Ether	0.0447			Chloride	0.0156	0.032 (17°)
Benzene	0.0625		• • •	Glycerine	0.45 (15.5°)	• • •

SOLUBILITY OF MORPHINE IN AQUEOUS SOLUTIONS OF SALTS AND BASES AT ROOM TEMPERATURE, SHAKEN EIGHT DAYS.

(Dieterich - Pharm. Centrh. 31, 395, '90.)

	In N/10 Sal	lt or Base.	In N/1 Salt or Base.		
Aq. Salt or Base.	Grams pe	r Liter.	Grams per Liter.		
Aq. Sait of Dase.	Salt or Base.	Morphine.	Salt or Base.	Morphine.	
NH ₄ OH	3.51	0.20	35.08	0.505	
$(NH_4)_2CO_3$	4.80	0.031	48.03	0.040	
KOH	4.62	2.78	46.16		
K_2CO_3	6.92	0.20	69.15	0.379	
KHCO ₃	10.02	0.024	100.16	0.040	
NaOH	4.00	3 · 33	40.05		
Na_2CO_3	5.30	0.09	53.03	0.14	
NaHCO ₃	8.41	0.032	84.06	0.044	
Ca(OH) ₂ (sat.)	• • •	1.00 (25°)			

MORPHINE ACETATE CH₃COOH.C₁₇H₁₉NO₃. $_3$ H₂O, Morphine Hydrochloride HCl.C₁₇H₁₉NO₃. $_3$ H₂O, Morphine Sulphate H₂SO₄. (C₁₇H₁₉NO₃)₂. $_5$ H₂O, and Apo Morphine Hydrochloride HCl.C₁₇ H₁₇NO₂.

SOLUBILITY IN SEVERAL SOLVENTS. (U. S. P.)

	Grams per 100 Grams of Solvent.							
Solvent.	Acetate.		Hydrochloride.		Sulphate.		Apo M. Hydrochloride.	
	25°.	80°.	25°.	80°.	25°.	80°.	25°.	80°.
Water	44.9	50.0	5.81	200.0	6.53	166.6	2.53	6.25
Alcohol	4.6	40.0 *	2.4	2.8*	0.22	0.53*	2.62	3.33
Chloroform	0.21					• • •	0.026	• • •
Ether	• • •	• • •		• • •		• • •	0.053	• • •
Glycerine	19.2	• • •	20.0	• • •	• • •	• • •	• • •	• • •
			* 60°.	† ±5	.5°•			

100 gms. $\rm H_2O$ dissolve 1.69 gms. apo morphine hydrochloride at 15.5°, and 2.04 gms. at 25°.

100 gms. 90% alcohol dissolve 1.96 gms. apo morphine hydro chlorde at 25°. (Dolt – Pharm. J. [4] 22, 345, '75.)

100 gms. H₂O dissolve 4.17 gms. morphine sulphate at 15°.

(Power - Am. J. Pharm. March, '82.)

MUSTARD OIL Allyl Isosulphocyanic Ester CS:NC₃H₅ SOLUBILITY IN SULPHUR BY SYNTHETIC METHOD. See Note, p. 9.

	(Alexejew—Ann.							
t°.	_	Grams Mustard Oil per 100 grams.						
		phur Layer.		Mustard Oil Layer.				
90		10		72				
100		12		67				
110		15		62				
I 20		23		51				
124	(crit. temp.)		35					

α NAPHTHYLAMINE p Sulphonic Acid (Naphtion Acid), I: 4
α C₁₀H₆NH₂.SO₂H and α Naphthalamine o Sulphonic Acid, I: 2
α C₁₀H₆NH₂.SO₂H.

SOLUBILITY OF EACH IN WATER. (Dolinski — Ber. 38, 1836, 'o5.)

	Gms. per 100	Gms. H ₂ O.		Gms. per 100 Gms. H ₂ O.		
t°.	p Sulphonic	o Sulphonic	t°.	p Sulphonic	o Sulphonic	
	Ac.	Ac.		Ac.	Ac.	
0	0.027	0.24	50	0.059	0.81	
10	0.029	0.32	60	0.075	1.01	
20	0.031	0.41	70	0.097	1.37	
30	0.037	0.52	80	0.130	1.80	
40	0.048	0.65	90	0.175	2.40	
			100	0.228	3.19	

NAPHTHALENE C₁₀H₈.

SOLUBILITY IN METHYL, ETHYL, AND PROPYL ALCOHOLS. (Speyers—Am. J. Sci. [4] 14, 294, '02; at 19.5°, de Bruyn—Z. physik. Chem. 10, 784, '92; at 11°, Timo feiew—Compt. rend. 112, 1137, '91.)

The original results were calculated to a common basis, plotted on cross-section paper, and the following table read from the curves.

	In Methyl	Alcohol.	In Ethy	l Alcohol.	In Propyl Alcohol.		
t°.	Wt. of 1 cc. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. CH ₃ OH.	Wt. of 1 cc. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. C ₂ H ₅ OH.	Wt. of 1 cc. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. C ₃ H ₇ OH.	
0	0.8194	3.48	0.8175	5.0	0.8285	4 · 45	
10	0.812	5.6	0.814	7.0	0.824	5.6	
20	0.807	8.2	0.810.	9.8	0.821	8.2	
25	0.805	9.6	0.809	11.3	0.820	9.6	
30	0.804	11.2	0.809	13.4	0.820	11.4	
40	0.805	16.2	0.812	19.5	0.823	16.4	
50	0.813	26.0	0.822	35.0	0.837	26.0	
60	0.837	50.0	0.855	67.0	0.867	50.0	
65	0.870		0.890	96.0	0.897	80.0	
70	0.9023 (68°)		0.930	179.0	0.933	134.1 (68.5°)	

SOLUBILITY OF NAPHTHALENE IN AQUEOUS ACETONE. (Cady — J. Physic. Ch. 2, 168, '98.)

t°.	Grams per 100 Grams Solution.							
ι.	Acetone.	Water.	Naphthalene.					
65.5	10.0	89.92	0.05					
55.3	19.91	80.0	o.09					
45	29.92	69.67	0.41					
38	40.81	58.22	0.97					
32.2	48.67	48.68	2.65					
28.5	57 - 43	36.64	5.93					
28.2	60.43	25.75	13.82					

The isotherms for intervals of 10° lie so close together that they are practically indistinguishable for the greater part of their length.

SOLUBILITY OF NAPHTHALENE IN:

	Chloroform.	(Carbon Tetra Chloride.	Carbon Di Sulphide.
	(Speyers; Etard.)	2)	Schröder — Z. physik Ch. 11, 457, '93.) r	. (Arctowski — Compt. rend, 121, 123,'95; Etard.)
t°.	Wt. of r cc. Solution.	Gms. C ₁₀ H ₈ per 100 Grams CHCl ₃ .	Gms. C ₁₀ H ₈ per 100 Gms. Sat. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. Sat. Solution.
-108				0.62
- 82				1.38
- 50				2.3
- 30		8.8		6.6
- 10		15.6		14.1
0	1.393	19.5	9.0	19.9
+ 10	1.355	25.5	14.0	27.5
20	1.300	31.8	20.0	36.3
25	1.280	35.5	23.0	41.0
30	1.255	40.1	26.5	46.0
40	1.205	49.5	35.5	57.2
50	1.150	60.3	47 · 5	67.6
60	1.090	73.1	62.5	79.2
70	1.040	87.2	80.0	90.3

Note. — Speyers' results upon the solubility of $C_{10}H_8$ in CHCl₃, when calculated to grams per 100 grams of solvent, agree quite well with Etard's (Ann. chim. phys. [7] $2~57^{\circ}$, '94 figures, reported on the basis of grams $C_{10}H_8$ per 100 grams saturated solution.

SOLUBILITY OF NAPHTHALENE IN: (Schröder; Etard; Speyers.)

Benzene.		nzene. C	hlor Benzen	ie. Hexane.	Tolu	iene.
	t°.	Gms. C ₁₀ H ₈ per 100 Gms. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. Solution.	Wt. of r cc. Solution.	Gms. C ₁₀ H ₈ per 100 Gms. C ₆ H ₅ .CH ₃ .
	- 50			0.3		• • •
	-20			1.9		
	0			5 · 5	0.9124	
	+10	27.5	24.0	9.0	0.9126	15.0
	20	36.0	31.0	14.0	0.9135	28.0
	25	40.5	35.0	17.5	0.9155	36.0
	30	45.5	39.0	21.0	0.9180	42.0
	40	54.0	48.0	30.8	0.9250	56.0
	50	65.0	57.5	43 · 7	0.9350	69.5
	60	77.5	70.5	60.6	0.9475	83.0
	70	88.0	85.0	7 8.8	0.9640	97 · 5
	80	• • •	• • •	• • •	0.9770	0.111

β NAPHTHOIC ACID $C_{10}H_7COOH$.

One liter of aqueous solution contains 0.058 gram C₁₀H₇COOH at 25°. (Paul – Z. physik. Ch. 14, 111, '94.)

β NAPHTHOL C₁₀H₇OH.

100 grams H₂O dissolve 0.105 gram at 25°, and 1.33 grams at b. pt.; 100 grams alcohol dissolve 164.0 grams at 25°.

NARCEINE.

100 grams pure carbon tetra chloride dissolve 0.011 gram narceine at 17°. (Schindelmeiser — Chem.-Ztg. 25, 129, 'or.)

NEODYMIUM CHLORIDE NdCl3.

100 grams H₂O dissolve 98.7 grams NdCl₃ at 13°, and 140.4 grams at 100°. (Matignon — Compt. rend. 133, 289, '01)

NEODYMIUM SULPHATE Nd2(SO4)3.

SOLUBILITY IN WATER. (Muthmann and Rolig — Ber. 31, 1728, '98.)

t°.	Gms. Nd ₂ (SO ₄) ₃	per 100 Gms.	t°.	Gms. Nd ₂ (SO ₄) ₃ per 100 Gms.		
	Solution.	Water.	٠.	Solution.	Water.	
0	8.7	9.5	50	3.5	$3 \cdot 7$	
16	6.6	7.1	80	2.6	2.7	
30	4.7	5.0	108	2.2	2.3	

NICKEL BROMATE Ni(BrO₃)₂.6H₂O.

100 grams cold water dissolve 27.6 grams nickel bromate.

NICKEL BROMIDE NiBr.

SOLUBILITY IN WATER.

(Etard - Ann. chim. phys. [7] 2, 539, '94.)

t°.	G ms. NiBr ₂ per 100 Gms. Solution.	t°.	Gms. NiBr ₂ per 100 Gms. Solution.	t°.	Gms. NiBr ₂ per 100 Gms. Solution.
- 20	47 · 7	25	57 · 3	80	60.6
-10	50.5	30	58.0	100	60.8
0	53.0	40	59.1	120	60.9
+10	55.0	50	60.0	140	61.0
20	56.7	60	60.4		

NICKEL CHLORATE Ni(ClO₃)₂.

SOLUBILITY IN WATER. (Meusser — Ber. 35, 1419, '02.)

t°.	Gms. Ni(ClO ₃) ₂ per 100 Gms Solution.	Mols. Ni(ClO ₃) ₂ per 100 Mols. H ₂ C	Phase.	t°.	Gms. Ni(ClO ₃) ₂ per 100 Gms. Solution.	Mols. Ni(ClO ₃) ₂ per 100 Mols. H ₂ C	Phase.
- 18	49 · 55	7.84	$Ni(ClO_3)_2.6H_2O$	48	67.60	16.65	$Ni(ClO_3)_2.4H_2O$
- 8	51.52	8.49	44	55	68.78	17.59	44
0	52.66	8.88	44	65	69.05	18.01	44
+18	56.74	10.47	44	79.5	75.50	24.68	44
40	64.47	15.35	44	-13.5	31.85	3.73	Ice
				- 9	26.62	2.90	44

Sp. Gr. of solution saturated at + 18 = 1.661.

NICKEL CHLORIDE NiCla.

SOLUBILITY IN WATER.

(Etard; at 12°, Ditte - Compt. rend. 92, 242, '81.)

t°.	Gms. NiCl ₂ per 100 Gms. Solution.	t°.	Gms. NiCl ₂ per 100 Gms. Solution.	t°.	Gms. NiCl ₂ per 100 Gms. Solution.
-17	29.7	25	40.0	60	45.1
0	35.0	30	40.8	70	46.0
+10	37 · 3	40	42.3	78	46.6
20	39.1	50	43.9	100	46.7

1000 cc. sat. HCl solution dissolve 4.0 grams NiCl₂ at 12°.

100 grams abs. alcohol dissolve 53.71 grams NiCl₂.6H₂O at room temperature.

100 grams abs. alcohol dissolve 10.05 grams NiCl₂at room temperature.
(Bödtker – Z. physik. Chem. 22, 511, '97.)

100 grams abs. alcohol dissolve 2.16 grams NiCl₂.7H₂O at 17°, and 1.4 grams at 3°. (de Bruyn — Rec. trav. chim. 11, 156, '92.)

room temperature. in glycol contain 16.2 grams NiCl₂ at room temperature. (de Coninck — Bul. acad. roy. Belgique, 359, 'o₅.)

NICKEL IODATE Ni(IO3)2.

SOLUBILITY IN WATER.

(Meusser - Ber. 34, 2440, '01.)

t°.	Gms. Ni(IO ₃) ₂ per 100 Gms. Solution.	Mols, Ni(IO ₃) ₂ per 100 Mols H ₂ O.	Solid s. Phase.	t°.	Gms. Ni(IO ₃) ₂ per 100 Gms. Solution.	Mols. Ni(IO ₃) ₂ per 100 Mol H ₂ O.	Solid s. Phase.
0	0.73	0.033	$Ni(IO_3)_2.4H_2O$	18	0.55	0.0245	Ni(IO ₂) ₂ .2H ₂ O (2)
18	1.01	0.045	44	50	0.81	0.035	66
30	I.4I	0.063	44	75	1.03	0.045	44
0	0.53	0.023	$Ni(IO_3)_2.2H_2O(1)$	80	1.12	0.049	46
18	0.68	0.030	44	30	1.135	0.050	Ni(IO ₃) ₂
30	0.86	0.039	44	50	1.07	0.046	44
50	1.78	0.080	66	75	1.02	0.045	46
8	0.52	0.023	$Ni(IO_3)_2.2H_2O(2)$	90	0.988	0.044	44
		(1)	a Dihydrate.	(2)	β Dihydrat	e.	

NICKEL IODIDE Nil.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 546, '94.)

t°.	Gms. NiI ₂ per 100 Gms. Solution.	t°.	Gms. NiI ₂ per 100 Gms. Solution.	t°.	Gms. NiI ₂ per 100 Gms. Solution.
-20	52.0	25	60.7	60	64.8
0	55 · 4	30	61.7	70	65.0
IO	57 · 5	40	63.5	80	65.2
20	59 · 7	50	64.7	90	65.3

NICKEL NITRATE Ni(NO₃)₂.

SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt, 3, 439, '00.)

t°.	Gms. Ni(NO ₃) ₂ per 100 Gms. Solution.	Mols. Ni(NO ₃) ₂ per 100 Mo H ₂ O.	Solid ls. Phase.	· t°.	Gms. Ni(NO ₃) ₂ per 100 Gms. Solution.	Mols. Ni(NO ₃) ₂ per 100 Mols. H ₂ O.	Solid Phase.
-23	39.02	6.31	$\mathrm{Ni(NO_3)_2.9H_2O}$	20	49.06	9.49	$\mathrm{Ni(NO_3)_2.6H_2O}$
-21	39.48	6.43	46	41	55.22	12.1	46
-10	.5 44.13	7.79	44	56.7	62.76	16.7	44
-21	39.94	6.55	$Ni(NO_3)_2.6H_2O$	58	61.61	15.9	$\mathrm{Ni(NO_3)_8.3H_2O}$
-12	.5 41.59	7.01	44	60	61.99	16.0	4.6
-10	42.11	7.16	44	64	62.76	16.6	44
- 6	43.00	7 - 44	44	70	63.95	17.6	44
0	44.32	7.86	44	90	70.16	23.I	44
+18	48.59	9.3	66	95	77.12	33 · 3	44

100 grams sat. solution in glycol contain 7.5 grams Ni(NO₃) at room temperature. (de Coninck.)

NICKEL SULPHATE NiSO4.

SOLUBILITY IN WATER.

(Steele and Johnson - J. Ch. Soc. 85, 116, '04; see also Etard and Mulder.)

t°.	Grams Ni		Solid Phase.	t°.	Grams N 100 (Solution.		Solid Phase.
5	20.47	25.74	$NiSO_{4.7}H_{2}O$	33.0	30.25	43.35	NiSO ₄ .6H ₂ O
0	21.40	27.22	44	35.6	30.45	43.79	' (blue)
9	23.99	31.55	46	44.7	32.45	48.05	6.6
22.6	27.48	37.90	44	50.0	33 - 39	50.15	**
30	29.99	42.46	**	53.0	34.38	52.34	. "
32.3	30.57	44.02	44	54.5	34 · 43	52.50	NiSO ₄ .6H ₂ O
33	31.38	45.74	44	57.0	34.81	53.40	" (green)
34	31.20	45.5	46	60	35 - 43	54.80	44
32.3	30.35	43.57	NiSO _{4.6} H ₂ O	70	37.29	59.44	44
33.0	30.25	43 - 35	" (blue)	80	38.71	63.17	66
34.0	30.49	43.83	46	99	43 - 42	76.71	4.0

Transition points, hepta hydrate \rightleftharpoons hexa hydrate = 31.5°. Hexa hydrate (blue) \rightleftharpoons hexa hydrate (green) = 53.3°.

SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND COPPER SULPHATE. (Fock — Z. Kryst. Min. 28, 387, '97.)

at 35.					
Gms. H ₂ O.					Crystal
NiSO ₄ .	CuSO ₄ .	NiSO ₄ .	CuSO ₄ .	NiSO ₄ .	Form.
583.9	1.57	98.43	0.35	99.65	Rhombic
484.4		92.31	2.12	97 .88	66
553.5			4.77	95.23	Tetragonal
	· .	83.08	6.52	93.48	66
483.8	25.63	74.37		86.17	64
468.0	27.00	72.10	{18.77	81.23	Tetragonal
400.0	27.90	/2.10	(94.91	5.09	Triclinic
at 67°.					
729.3	2.65	97 - 35	0.93	99.07	Monoctinic
706.2	8.31	91.69	2.86	97.14	44
501.6	13.55	86.45	3.92	96.08	44
675.0	16:39	83.61	6.66	93 · 34	44
747.8	24.46	75 · 54	22.32	77.68	{ Monoclinic Triclinic
	Gms. H ₂ O. NiSO ₄ . 583.9 484.4 553.5 506.5 483.8 468.0 at 67°. 729.3 706.2 501.6 675.0	Gms. H ₂ O. Mol. per cent CuSO ₄ . 583.9 I . 57 484.4 7 . 69 553.5 II . 66 506.5 I6.92 483.8 25.63 468.0 27.90 at 67°. 729.3 2.65 706.2 8.31 501.6 I3.55 675.0 I6.39	Gms. H ₂ O. Mol. per cent in Solution. NiSO ₄ . CuSO ₄ . NiSO ₄ . 583.9 1.57 98.43 484.4 7.69 92.31 553.5 11.66 88.34 506.5 16.92 83.08 483.8 25.63 74.37 468.0 27.90 72.10 at 67°. 729.3 2.65 97.35 706.2 8.31 91.69 501.6 13.55 86.45 675.0 16:39 83.61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

SOLUBILITY OF MIXTURES OF NICKEL SULPHATE AND SODIUM SULPHATE, ETC.

(Koppel; Wetzel - Z. physik. Chem. 52, 401, '05.)

t°.		per 100 olution.	Gms.	per 100 H ₂ O.	Mols. I	er 100 H ₂ O.	Solid Phase,
	NiSO ₄ .	Na ₂ SO ₄ .	NiSO4.	Na ₂ SO ₄ .	NiSO4.	Na ₂ SO ₄ .	rnase.
0	16.94	7.61	22.46	10.09	2.61	1.28	N
5	17.99	10.85	25.28	15.24	2.94	1.93	NiSO _{4.7} H ₂ O + Na ₂ SO _{4.10} H ₂ O
10	18.97	13.85	28.26	20.64	3.29	2.61	
20	18.76	17.21	29.31	26.87	3.410	3.404	NiNa ₂ (SO ₄) ₂₋₄ H ₂ O
25	17.85	16.54	27.33	25.33	3.181	3.208	44
30	16.74	15.34	24.64	22.58	2.868	2.861	66
35	16.28	14.91	23.66	21.67	2.753	2.744	"
40	15.35	14.49	21.88	20.65	2.546	2.616	44
18.5	19.61	16.49	30.70	25.80	3.56	3.27)
20	20.13	16.15	31.59	25.35	3.67	3.21	
25	21.20	14.77	33.11	23.06	3.85	2.92	NiNa ₂ (SO ₄) _{2.4} H ₂ O +
30	22.60	12.80	34.98	19.82	4.07	2.59	NiSO _{4.7} H ₂ O
35	23.62	10.78	36.01	16.43	4.19	2.08	
40	24.92	9.39	37.93	14.29	4.41	1.81	J
18.5	16.80	18.93	26.14	29.45	3.04	3.72	
20	15.48	20.18	24.06	31.37	2.80	3.97	NiNa2(SO4)2-4H2O +
25	10.92	24.12	16.81	37.13	1.96	4.70	Na ₂ SO _{4.10} H ₂ O
30	6.40	28.71	9.87	44.25	1.15	5.60	
35	4.54	31.65	7.13	49.59	0.838	6.28	NiNa ₂ (SO ₄) ₂₋₄ H ₂ O +
40	4.63	31.37	7.24	49.03	0.843	6.21	Na ₂ SO ₄

SOLUBILITY OF NICKEL POTASSIUM SULPHATE NIK2(SO4)2.6H2O IN WATER.

(Tobler - Liebig's Ann. 95, 193, '55; v. Hauer - J. pr. Ch. 74, 433, '58.)

t°.	Grams 1	Grams NiK ₂ (SO ₄) ₂ per 100 Gms. H ₂ O.		Grams NiK ₂ (SO ₄) ₂ per 100 Gms. H ₂ O.		
	(Tobler.)	(v. Hauer.)	t°.	(Tobler.)	(v. Hauer.)	
0	5.3		50	30		
10	8.9	* * *	60	35 · 4	20.47	
20	13.8	9.53	70	42.0		
30	18.6	• • •	80	46.0	28.2	
40 .	24.0	14.03				

SOLUBILITY OF NICKEL SULPHATE IN METHYL AND ETHYL ALCOHOLS. (de Bruyn - Z. physik. Ch. 10, 783, '92.)

100 grams abs. ethyl alcohol dissolve 1.3 grams NiSO_{4.7}H₂O at 17°. 100 grams abs. methyl alcohol dissolve 46.0 grams NiSO4.7H2O at 17°, and 24.7 grams at 4°.

100 grams abs. methyl alcohol dissolve 0.5 gram NiSO, at 18°.

100 grams abs. methyl alcohol dissolve 31.6 grams NiSO4.6H2O at 17°. 100 grams 93.5% methyl alcohol dissolve 10.1 grams NiSO4.7H2O at 4°, and 7.8 grams NiSO4.6H2O at 18°.

100 grams 50.0% methyl alcohol dissolve 2.0 grams NiSO_{4.7}H₂O at 4°, and 1.9 grams NiSO_{4.6}H₂O at 18°.

100 grams sat. solution in glycol contain 0.7 grams NiSO, at room temperature.

(de Coninck - Bull. acad. roy. Belgique 350, '05.)

NICOTINE C, H, N.

SOLUBILITY IN WATER.

(Hudson - Z. physik, Chem. 47, 114, '04.)

Determinations made by Synthetic Method, for which see Note, page g. Below 60° and above 210° both liquids are miscible in all proportions; likewise with percentages of nicotine less than 6.8 and above 82 per cent the liquid does not show two layers at any temperature. Below 94° the upper layer is water. Above 94° the upper layer is nicotine. The curve plotted from the following results makes a complete circle.

Percentage of Nicotine in the Mixture.	Temp. of Appearance of Two Layers. Degrees C.	Temperature of Homogeneity. Degrees C.
6.8	94	95
7.8	89	155
10.0	75	• • •
14.8	65	200
32.2	61	210
49.0	64	205
66.8	72	190
80.2	87	170
82.0	129	130

NITROGEN N.

SOLUBILITY IN WATER.

(Winkler — Ber. 24, 3606, '91; Braun — Z. physik. Chem. 33, 732, '00; Bohr and Bock — Wied. Ann. 44, 318, '91.)

t°.	" Coefficier	nt of Absorption	n '' β.	"Solubility" B'.	q.
0	0.0235*	0.0239†	‡	0.0233*	0.00239*
5	0.0208	0.0215	0.0217	0.0206	0.00259
10	0.0186	0.0196	0.0200	0.0183	0.00230
15	0.0168	0.0179	0.0179	0.0165	0.00208
20	0.0154	0.0164	0.0162	0.0151	0.00189
25	0.0143	0.0150	0.0143	0.0139	0.00174
30	0.0134	0.0138		0.0128	0.00161
35	0.0125	0.0127		0.0118	0.00148
40	0.0118	0.0118		0.0110	0.00139
50	0.0109	0.0106		0.0096	0.00121
60	0.0102	0.0100		0.0082	0.00105
80	0.0096			0.0051	0.00069
100	0.0095	0.0100		0.0000	0.00000
	* W.		† B. and B.	‡ B.	

For values of β , β' , and q, see Ethane, page 133.

SOLUBILITY OF NITROGEN IN AQUEOUS SALT SOLUTIONS

POLOBILITY	Or	MITROGEN	114	TIQUEOUS	DALI	DOLUTIO	MO.
(Braun.)							
,	ec -	int of Absorption	n of	N in Parium C	blovido (Colutions of	

	Coeffici	ent of Absorption	n of N in Bariu	m Chloride Solu	tions of:
t°.	13.83 per cent.	per cent.	6.90 per cent.	3.87 per cent.	3.33 per cent.
5	0.0127	0.0137	0.0160	0.0180	0.0183
10	0.0117	0.0125	0.0147	0.0166	0.0168
15	0.0104	0.0114	0.0132	0.0148	0.0150
20	0.0092	0.0098	8110.0	0.0132	0.0135
25	0.0078	0.0086	0.0104	0.0114	0.0119

Coefficient of Absorption of N in Sodium Chloride Solutions of:

t°.	per cent.	8.14 per cent.	6.4 per cent.	per cent.	o.67 per cent.
5	0.0102	0.0127	0.0138	0.0179	0.0200
10°	0.0093	0.0113	0.0126	0.0164	0.0185
15	0.0081	0.0101	0.0113	0.0147	0.0164
20	0.0066	0.0087	0.0098	0.0131	0.0148
25	0.0047	0.0075	0.0083	0.0113	0.0130

SOLUBILITY OF NITROGEN IN ALCOHOL. (Bunsen.)

0° 5° 10° 15° 20° 24° 0.1263 0.1244 0.1228 0.1214 0.1204 0.1198 15° 20° 24° Vols. N * dissolved by I Vol. Alcohol.

^{*} At oo and 760 mm.

Solubility of Nitrogen in Mixtures of Alcohol and Water at 25°.

(Just - Z. physik. Ch. 37, 361, 'or.)

Results in terms of the Ostwald solubility expression, see page 105.

Vol. H ₂ O in Mixture.	Vol. Alcohol in Mixture.	Dissolved N (l ₂₅).
100	0	0.01634
80	20	0.01536
67	33	0.01719
0	100 (99.8% A	lcohol) 0 · 1432

SOLUBILITY OF NITROGEN IN SEVERAL SOLVENTS AT 20° AND 25°. (Just.)

Solvent.	l_{25} .	l_{20} .	Solvent.	l_{25} .	$l_{20}.$
Water	0.01634	0.01705	Toluene	0.1235	0.1186
Aniline	0.03074	0.02992	Chloroform	0.1348	0.1282
Sulphur Dioxide	0.05860	0.05290	Methyl Alcohol		0.1348
Nitro Benzene	0.06255	0.06082	Ethyl Alcohol (99.8%)	0.1432	0.1400
Benzene	0.1159	0.1114	Acetone	0.1460	0.1383
Acetic Acid	0.1190	0.1172	Amyl Acetate	0.1542	0.1512
Xylene	0.1217	0.1185	Ethyl Acetate	0.1727	0.1678
Amyl Alcohol	0.1225	0.1208	Iso Butyl Acetate	0.1734	0.1701

SOLUBILITY OF NITROGEN IN PETROLEUM. COEFFICIENT OF ABSORP-TION AT 10° = 0.135, AT 20° = 0.117. (Gniewasz and Walfisz — Z. physik. Ch. 1, 70, '87.)

Solubility of Nitrogen in Aqueous Propionic Acid and Urea Solutions.

(Braun.)

Coefficient of Absorption of N in C2H5COOH Solutions of: tº. 11.22 per cent. 9.54 per cent. 6.07 per cent. 4.08 per cent. 3.82 per cent. 0.0208 5 0.0195 0.0204 0.0210 0.0200 0.0182 0.0186 0.0163 0.0164 0.0178 0.0192 10 0.0101 0.0167 15 0.0159 0.0169 0.0147 20 0.0146 0.0148 0.0154 0.0155 0.0130 0.0134 0.0134 0.0137 25 0.0137

t°.	Coefficient of Absorption of N in CO(NH ₂) ₂ Solutions of:								
	15.65 per cent.	11.9 per cent.	9.42 per cent.	6.90 per cent.	5.15 per cent.	2.28 per cent.			
5	0.0175	0.0179	0.0190	0.0198	0.0197	0.0199			
IO	0.0162	0.0167	0.0176	0.0183	0.0182	0.0184			
τ5	0.0150	0.0149	0.0158	0.0165	0.0165	0.0171			
20	0.0140	0.0139	0.0146	0.0151	0.0151	0.0155			
25	0.0130	0.0130	0.0133	0.0137	0.0135	0.0139			

NITROUS OXIDE N.O.

SOLUBILITY IN WATER.

(Bunsen; Gordon — Z. physik. Ch. 18, 9, '95; Roth — *Ibid.* 24, 123, '97; Knopp — *Ibid.* 48, 106, '04 Geffcken — *Ibid.* 49, 276, '04.)

	(Coefficient of		Solubility in terms of Ostwald Expression (l).*				
s°.	(B.)	(G.)	(R.)	(K.)	q	(R.)	(K.)	(G.)
5	1.0950	1.0955	1.1403		0.205	1.161		1.067
10	0.9196	0.9200	0.9479		0.171	0.9815		0.9101
15	0.7778	0.7787	o .7896		.0.143	0.8315		0.7784
20	0.6700	0.6700	0.6654	0.6270	0.121	0 7131	0.6739	0.6756
25	0.5961		0.5752		0.104	0.6281		0.5992
			* Cal	culated by C	effcken.			

Note. — Knopp and also Geffcken call attention to the fact that Roth in making his determinations used a rubber tube between the gas burette and the shaking flask, and give this as an explanation of the high results which he obtained.

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SULPHURIC ACID.
(Lunge — Ber. 14, 2183, '81; see also Geffcken's results.)

Sp. Gr. of H ₂ SO ₄	1.84	1.80	1.705	1.45	1.25
Vols. N ₂ O dissolved					
by 100 vols. H ₂ SO ₄	75 - 7	66.0	39.1	41.6	33.0

100 vols. of KOH solution of 1.12 Sp. Gr. absorb 18.7 vols. N_2O . 100 vols. of NaOH solution of 1.10 Sp. Gr. absorb 23.1 vols. N_2O .

Solubility of Nitrous Oxide in Aqueous Solutions of Acids. (Geffcken.)

Results in terms of the Ostwald Solubility Expression (l). See p. 105. In Hydrochloric Acid. In Nitric Acid. In Sulphuric Acid.

Gms. HCl per Liter.		$\underbrace{\frac{\text{Dissolved}}{l_{25}}}_{l_{25}}$	Gms. HNO ₃ per Liter.	N ₂ O D	issolved l_{25} .	Gms. H ₂ SO per Liter.	N ₂ O D	issolved los.
	- 10-							
	0.755		36.52					0.566
	0.738		63.05					0.543
72.90	0.716	0.557	126.10	0.775	0.611	98. 0 8	0.645	0.509
						147.12	0.602	0.482
						196.16	0.562	0.463

Solubility of Nitrous Oxide in Aqueous Solutions of: (Roth.)

		Oxalic	Oxalic Acid.				
t °	Co	efficient of A	Coefficient (COOH) ₂ S	Coefficient of Abs. in (COOH) ₂ Solutions of:			
	3.38%.	4.72%.	8.84%.	9.89%.	13.35%.	0.812%.	
5	1.057	1 .0365	0.9883	0.9635	0.9171	1.1450	1.1094
IO	0.8827	0.8665	0.8296	0.8101	0.7711	0.9526	0.9264
15	0.7388	0.7258	0.6977	0.6826	0.6505	0.7940	0.7745
20	0.6253	0.6147	0.5926	0.5810	0.5555	0.6694	0.6538
25	0.5427	0.5329	0.5143	0.5054	0.4860	0.5784	0.5643

Solubility of Nitrous Oxide in Aqueous Solutions of Propionic Acid at 20°.
(Knopp.)

Gms. C ₂ H ₆ COOH					
per liter Coef. of Absorp-	15.15	60.42	158.4	176.6	344.0
tion of N ₂ O	0.6323	0.6369	0.6504	0.6534	0.7219

SOLUBILITY OF NITROUS OXIDE IN AQUEOUS SALT SOLUTIONS.

Results by Geffcken in terms of the Ostwald expression (l). See page 105.

page 105.					437.0
Salt.	Formula.		lt per Liter.		of N ₂ O.
		Gram Equiv.	Grams.	l_{15} .	125.
Ammonium Chloride	NH₄Cl	0.5	26.76	0.730	0.557
Ammonium Chloride	NH ₄ Cl	1.0	53 · 52	0.691	0.529
Caesium Chloride	CsCl	0.5	84.17	0.710	0.544
Lithium Chloride	LiCl	0.5	21.24	0.697	0.535
Lithium Chloride	LiCl	1.0	42.48	0.623	0.483
Potassium Bromide	KBr	0.5	59.55	0.697	0.536
Potassium Bromide	KBr	1.0	119.11	0.627	0.485
Potassium Chloride	KCl	0.5	37 · 3	0.686	0.527
Potassium Chloride	KCl	1.0	74.6	0.616	0.475
Potassium Iodide	KI	0.5	83.06	0.702	0.541
Potassium Iodide	KI	1.0	166.12	0.633	0.492
Potassium Hydroxide	KOH	0.5	28.08	0.668	0.514
Potassium Hydroxide	KOH	1.0	56.16	0.559	0.436
Rubidium Chloride	RbCl	0.5	60.47	0.695	0.533
Rubidium Chloride	RbCl	1.0	120.95	0.625	0.483
			75	0	. 0

Results by Knopp, in terms of the coefficient of absorption. See page 105.

0 0				
Salt.	Formula.	Normality.	Grams.	Coef. of Absorption of N ₂ O at 20°.
Potassium Nitrate	KNO_3	0.1061	10.74	0.6173
"	66	0.2764	27-94	0.6002
"	"	0.5630	56.97	0.5713
"	"	1.1683	118.2	0.5196
Sodium Nitrate	NaNO ₃	0.1336	11.37	0.6089
"	"	0.3052	25.97	0.5876
"	44	0.6286	53.50	0.5465
"	"	I.I200	95.30	0.4926

Results by Roth, in terms of the coefficient of absorption.

Grams NaCl per	Coefficient of Absorption of N2O at:							
100 Grams Solution.	5°•	10°.	15°.	20°.	25°.			
0.99	1.0609	0.8812	0.7339	0.6191	0.5363			
1.808	1.0032	0.8383	0.7026	0.5962	0.5190			
3.886	0.9131	0.7699	0.6495	0.5520	0.4475			
5 .865	0.8428	0.7090	0.5976	0.5088	0.4224			

Solubility of Nitrous Oxide in Aqueous Salt Solutions. Results by Gordon in terms of coefficient of absorption. See p. 105.

	Concentration of Salt.			Coefficient of Absorption of N2O at:				
Salt.	Grams per 100 Grams Solution.	Gram Mols. per Liter.		50.	10°.	15°.	20°-	
Calcium Chloride	5.79	0.547	(o.819	0.697	0.591	0.500	
	9.86	0.964	(o . 668	0.586	0.509	0.435	
	13.99	1.416		0.510	0.441	0.380	0.328	
Lithium Chloride	1.35	0.319	. (.986	0.831	0.700	0.594	
46	3.85	0.928	(.878	0.743	0.629	0.536	
"	11.48	2 . 883	(0.606	0.512	0.437	0.382	
Lithium Sulphate	2.37	0.219	(934	0.792	0.670	0.569	
"	5.46	0.521	(795	0.665	0.557	0.474	
"	8.56	0.836		5.646	0.555	0.477	0.415	
Magnesium Sulphate	5.90	0.521	(o . 766	0.664	0.561	0.471	
"	7.66	0.687	(o . 708	0.586	0.488	0.414	
"	10.78	0.997		5.569	0.491	0.417	0.346	
Potassium Chloride	4.90	0.676	(o .879	0.751	0.643	0.555	
"	7.64	1.037		0.799	0.693	0.591	0.494	
"	14.58	2.147		5.654	0.574	0.500	0.430	
"	22.08	3.414	•	·544	0.459	0.390	0.339	
Potassium Sulphate	2.62	0.154	- 1	o .986	0.831	0.701	0.605	
"	4.78	0.285		810.c	0.763	0.637	0.542	
Sodium Chloride	6.20	1.107		0.800	0.682	0.585	0.509	
"	8.88	1.614	(0.713	0.603	0.510	0.434	
"	12.78	2.391	- 1	5.634	0.532	0.449	0.386	
Sodium Sulphate	5.76	0.427	(8o8.c	0.677	0.584	0.495	
"	8.53	0.646		5.692	0.574	0.482	0.416	
"	12.44	0.974		0.559	0.486	0.417	0.354	
Strontium Chloride	3.31	0.215		0.928	0.788	0.671	0.578	
"	5 · 73	0.380		o .848	0.709	0.610	0.550	
"	13.24	0.939	(5.644	0.547	0.463	0.390	

SOLUBILITY OF NITROUS OXIDE IN ALCOHOL AND IN AQUEOUS CHLORAL HYDRATE SOLUTIONS AT 20°.

(Bunsen; Knopp - Z. physik. Ch. 48, 106, '04.)

	In Alcohol (B.).	In Aq. Chloral Hydrate (K.).					
t°.	Vols. N ₂ O (at o° and 760 mm.) per 1 Vol. Alcohol.	Normality of C ₂ HCl ₃ O.H ₂ O.	Gms. C ₂ HCl ₃ O.H ₂ O per Liter.	Coef. of Abs. of N ₂ O.			
0	4.178	0.184	30.43	0.618			
5	3 . 844	0.445	73.60	0.613			
10	3.541	0.942	155.8	0.596			
15	3.268	1.165	192.7	0.589			
20	3.025	1.474	243.8	0.579			
24	2.853	1.911	316.4	0.567			

Solubility of Nitrous Oxide in Petroleum. Coefficient of Absorption at 10° = 2.49, at 20° = 2.11.

(Gniewasz and Walfisz — Z. physik. Ch. 1, 70, '87.)

Solubility of Nitrous Oxide in Aqueous Solutions of Glycerine and of Urea.

(Roth.)

t°.	Coefficient of Absorption of N2O in Glycerine Solutions of:						
	3.46 per cent.	6.73 per cent.	12.12 per cent.	16.24 per cent.			
5	1.097	1.055	0.999	0.959			
IO	0.917	0.887	0.841	0.810			
15	0.767	0.745	0.710	0.686			
20	0.647	0.630	0.605	0.585			
25	0.556	0.542	0.527	0.508			

Coefficient of	Absorption	of N ₂ O	in Urea	Solutions	of:
----------------	------------	---------------------	---------	-----------	-----

t°.					
£	3.31 per cent.	4.97 per cent.	6.37 per cent.	7.30 per cent.	9.97 per cent.
5	1.104	1.096	1.088	1.101	1.069
IO	0.921	0.920	0.909	0.921	0.901
15	0.771	0.773	0.761	0.772	0.761
20	0.653	0.656	0.644	0.655	0.651
25	0.569	0.567	0.559	0.570	0.569

NITRIC OXIDE NO.

SOLUBILITY IN WATER. (Winkler — Ber. 34, 14.4, 'or.)

t°.	β.	β'.	q.	t°.	β.	β'.	q.
0	0.0738	0.0734	0.00984				0.00440
5	0.0646	0.0641	0.00860	50	0.0315	0.0277	0.00376
10	0.0571	0.0564	0.00757	60	0.0295	0.0237	0.00324
15	0.0515	0.0506	0.00680	70	0.0281	0.0195	0.00267
20	0.0471	0.0460	0.00618	80	0.0270	0.0144	0.00199
25	0.0430	0.0419	0.00564	90	0.0265	0.0082	0.00114
30	0.0400	0.0384	0.00517	100	0.0263	0.0000	0.00000

For values of β , β' and q, see Ethane, page 133.

SOLUBILITY OF NITRIC OXIDE IN AQUEOUS SULPHURIC ACID SOLUTIONS AT 18°.

(Lunge - Ber. 18, 1391, '85; Tower - Z. anorg. Ch. 50, 382, '06.)

Wt. per cent H ₂ SO ₄ in Solution.	Sp. Gr. at 15°. I .84	Tension of H ₂ O Vapor.	Solubility Coefficient * of NO at 18°. 0.0227 (0.035, L.)
90	1.82	o.i mm.	0.0193
80	I.733	0.4 "	0.0117
70	1.616	1.5 "	0.0113
60	1.503	3.1 "	0.0118 (0.017, L.
50	1.399	6.2 "	0.0120

^{*} Volume of NO (at 760 mm.) per 1 volume of aqueous H2SO4.

SOLUBILITY OF NITRIC OXIDE IN ALCOHOL. (Bunsen.)

t °	o°	5°	100	150	20°	24°
Vols. NO*	0.316	0.300	0.286	0.275	0.266	0.261
absorbed by I vol.		. 0 . 1 . 2				
* At o° and 760 mm.						

OXALIC ACID (COOH)2.2H2O.

SOLUBILITY IN WATER.

(Average curve from results of Alluard; Miczynski — Monatsh. Ch. 7, 258, '86; Henry — Compt. rend. 99, 1157, '84; Lamouroux — Ibid. 128, 998, '99; at 25°, Foote and Andrew — Am. Ch. J. 34, 154, '05.)

t°.	Grams (COOH)	Grams (COOH)2 per 100 Grams		Grams (COOH)2 per 100 Grams		
	H ₂ O.	Solution.	t°.	H ₂ O.	Solution.	
0	3 · 45	3 · 33	40	21.15	17.46	
10	5.55	5.26	50	- 31.53	23.97	
20	8.78	8.07	60	45.55	31.37	
25	11.36	10.21	70	63.82	38.95	
30	13.77	11.91				

SOLUBILITY OF OXALIC ACID IN ALCOHOLS.

(Timofeiew - Compt. rend. 112, 1137, '91; Bourgoin - Ann. chim. phys. [5] 13, 406, '78').

t°.	Grams (COOH) ₂ per 100 Grams of:					
υ.	Methyl Alcohol.	Ethyl Alcohol.	Propyl Alcohol.			
- I	36.26	20.25	9.73			
+20	47.24	26.23	15.14			

SOLUBILITY OF OXALIC ACID IN ABSOLUTE AND IN AQ. ETHER AT 25°. (Bödtker — Z. physik. Ch. 22, 512, '97; Bourgoin.)

100 grams absolute ether dissolve 1.47 grams (COOH)₂.2H₂O. 100 grams absolute ether dissolve 23.59 grams (COOH)₂.

In Aqueous Ether Solutions.

Gms. S	Solid Acid Added pe	r 100 cc. Ether Solution.	Grams per 100	cc. Ether Solution.
	(COOH) _{2.2} H ₂ O.	(COOH) ₂ .	H ₂ O.	(COOH) ₂ .
	(1) 5.0	0.0	1.250	0.742
	(2) 5.0	0.0	0.788	0.720
	5.0	0.0	0.418	1.044
	5.0	2.44	0.360	3.388
	5.0	4.82	0.484	6.038
	5.0	7.14	0.558	8.538
	5.0	9.42	0.632	10.996
	5.0	11.63	0.676	13.316
	5.0	13.79	0.761	15.684

18.18

22.73

5.0

5.0

(1) Ether saturated with water. (2) Ether containing 0.604 per cent water.

0.816

17.818

17.818

100 grams glycerine dissolve 15 grams oxalic acid at 15.5°.

Distribution of Oxalic Acid between Water and Amyl Alcohol

(Herz and Fischer - Ber. 37, 4748, '04.)

Millimols 1/2(COOH)2 per 10 cc.	Grams (COOH)2 per 100 cc.		
Aq. Layer.	Alcoholic Layer.	Aq. Layer.	Alcoholic Layer.	
0.68c6	0.1451	0.306	0.0653	
2.364	0.7233	1.064	0.320	
6.699	2.550	3.015	1.148	
10.029	4.300	4.511	1.934	

OXYGEN O. SOLUBILITY IN WATER.

(Winkler -- Ber. 24, 3609, '91; Bohr and Bock -- Wied. Ann. [2] 44, 318, '91.)

tº.	Coef. of Abs	orption β .	q.	cc. O per Liter H ₂ O.	t°.	Coef. of Abs	orption β .	q.
0	0.0489*	0.0496†	0.00695	10.187		0.0231*	0.0233†	0.00308
5	0.0429	0.0439	0.00607	8.907	50	0.0209	0.0207	0.00266
10	0.0380	0.0390	0.00537	7.873	60	0.0195	0.0189	0.00227
15	0.0342	0.0350	0.00480	7.038	70	0.0183	0.0178	0.00186
20	0.0310	0.0317	0.00434	6.356	80	0.0176	0.0172	0.00138
25	0.0283	0.0290	0.00393	5.776	90	0.0172	0.0169	0.00079
30	0.0261	0.0268	0.00359	5.255	100	0.0170	0.0168	0.00000
			* W.		† B. and	В.		

For values of β and q see Ethane, page 133.

Solubility of the Oxygen of Air in Water.

t°. Solubility * 8.856 8.744 7.08 5.762

* cc. Oxygen per 1000 cc. H₂O saturated with air at 760 mm.

Solubility of Oxygen in Water and in Aqueous Solutions of Acids, Bases and Salts.

(Geficken – Z. physik. Ch. 49, 269, '04.)

Concentration per Liter. Solubility of Oxygen.* Ag. Solution of: [l₁₅°. Gram Equiv. Grams. 125. Water alone 0.0363 0.0308 Hydrochloric Acid 0.5 18.22 0.0344 0.0296 I.O 36.45 0.0327 0.0287 " 2.0 0.0299 0.0267 72.90 Nitric Acid 0.5 36.52 0.0348 0.0302 I.O 63.05 0.0336 0.0295 0.0315 2.0 126.10 0.0284 Sulphuric Acid 0.5 24.52 0.0338 0.0288 O. I 49.04 0.0319 0.0275 66 2.0 98.08 0.0335 0.0251 3.0 147.12 0.0256 0.0220 4.0 196.16 0.0233 0.0200 5.0 245.20 0.0231 0.0194 Potassium Hydroxide 0.5 28.08 0.0291 0.0252 56.16 0.0206 0.1 0.0234 Sodium Hydroxide 0.0288 0.5 20.03 0.0250 I.0 40.06 0.0231 0.0204 80.12 2.0 0.0152 0.0133 Potassium Sulphate 43.59 0.5 0.0294 0.0253 87.18 0.1 0.0237 0.0207 Sodium Chloride 0.5 29.25 0.0308 0.0262 66 58.5 0.0260 O. I 0.0223 66 2.0 119.0 0.0182 0.0158

SOLUBILITY OF OXYGEN IN AQ. POTASSIUM CYANIDE SOLUTIONS AT 20°. (Maclaurin — J. Ch. Soc. 63, 737, '93.)

Gms. KCN per 100 gms. sol. 1 10 20 30 50 Coefficient of absorption of O 0.029 0.018 0.013 0.008 0.003

^{*} In terms of the Ostwald Solubility Expressions. See page 105.

SOLUBILITY OF OXYGEN IN ETHYL ALCOHOL, METHYL ALCOHOL AND IN ACETONE.

(Timofejew - Z. physik. Ch. 6, 151, '90; Levi - Gazz. chim. ital. 31, II, 513, '01.)

t°.	In Ethyl Alcohol of β.	99.7% (Τ.). β'.	In Methyl Alcohol (L.) l =	In Acetone (L.)
0	0.2337	0.2297	0.31864	0.2997
5	0.2301	0.2247	0.30506	0.2835
IO	0.2266	0.2194	0.29005	0.2667
15	0.2232	0.2137	0.27361	0.2493
20	0.2201	0.2073	0.25574	0.2313
25	0.2177 (24°)	0.2017 (24°)	0.23642	0.2127
30	• • •		0.21569	0.1935
40			0.16990	0.1533
50			0.11840	0.1057

For values of β and β' , see Ethane, page 133. l=Ostwald Solubility Expression. See page 105. The formulae expressing the solubility of oxygen in methyl alcohol

and in acetone as shown in the above table are as follows:

In Methyl Alcohol $l = 0.31864 - 0.002572 t - 0.00002866 t^3$. In Acetone $l = 0.2997 - 0.00318 t - 0.000012 t^3$.

SOLUBILITY OF OXYGEN IN AQUEOUS ALCOHOL AT 20° AND 760 MM. (Lubarsch -- Wied. Ann. [2] 37, 525, '89.)

Wt. per cent Alcohol.	Vol. per cent Absorbed O.	Wt. per cent Alcohol.	Vol. per cent Absorbed O.	Wt. per cent Alcohol.	Vol. per cent Absorbed O.
0.00	2.98	23.08	2.52	50.0	3.50
9.09	2.78	28.57	2.49	66.67	4.95
16.67	2.63	33.33	2.67	80.0	5.66

SOLUBILITY OF OXYGEN IN PETROLEUM. COEFFICIENT OF ABSORP-TION AT $10^{\circ} = 0.229$, AT $20^{\circ} = 0.202$. (Gniewasz and Walfisz - Z. physik. Ch. I. 70, '87.)

OZONE O.

SOLUBILITY IN WATER.

(von Mailfert - Compt. rend. 119, 051, '94; Carius; Schone - Ber. 6, 1224, '73.)

		-					
t°.	W.	G.	R.	t°.	W.	G.	R.
0	39.4	61.5	0.641				0.270
			0.562				0.195
8.11	29.9	59.6	0.500	40	4.2	37.6	0.112
			0.482	47	2.4	31.2	0.077
15.0	25.9	56.8	0.456	55	0.6	19.3	0.031
19.0	21.0	55.2	0.381	60	0.0	12.3	0.000

W = Milligrams Ozone dissolved per liter water. G = Milligrams Ozone in one liter of the gas phase above the solutions. R = Ratio of the dissolved to undissolved Ozone (W + G).

SOLUBILITY OF OZOKERITE PARAFFINE OF MELTING POINT 64°-65° AND Sp. Gr. at 20° = 0.917 in Several Solvents at 20°.

(Pawlewski and Filemonowicz - Ber. 21, 2973, '88.)

Gms. Paraffine per 100 Gms. Paraffine per 100								
Solvent.	Gms. Solvent.	cc. Solvent.	Solvent.	Gms. Solvent.	cc. Solvent.			
Carbon Bisulphide	12.99		Acetone	0.262	0.209			
Benzine, boiling below 75°	11.73	8.48	Ethyl Acetate	0. 238				
Turpentine, b.pt. 158°-166°	6.06	5.21	" Alcohol	0.219				
Cumol, com. b.pt. 160°	4.26	3.72	Amyl Alcohol	0.202	0. 164			
" frac. 150°-160°	3.99	3.39	Propionic Acid	0. 165				
Xylene, com.b.pt. 135°-143°	3.95	3.43	Propyl Alcohol	0.141				
" frac. 135°-138°	4.39	3.77	Methyl Alcohol	0.071	0.056			
Toluene, com.b.pt.1080-1100	3.88	3 • 34	Methyl Formate	0.060				
" frac. 108°-109°	3.92	3.41	Acetic Acid	0.060	0. 063			
Chloroform	2.42	3.61	" Anhydride	0.025				
Benzene	1.99	1.75	Formic Acid	0.013	0.015			
Ethyl Ether	1.95		Ethyl Alcohol 75%	0.0003				
Iso Butyl Alcohol, com.		0.228						

PAPAVERINE C₂₀H₂₁NO₄.

100 grams pure carbon tetra chloride dissolve 0.203 gram at 17°.

(Schindelmeiser — Chem.-Ztg. 25, 129, '01.)

PHENANTHRENE C14H10.

SOLUBILITY IN ALCOHOL AND IN TOLUENE.* (Speyers — Am. J. Sci. [4] 14, 295, '02.)

In Alcohol.

In Toluene.

t°.	Gms. C ₁₄ H ₁₀ per 100 Grams C ₂ H ₅ OH.	Sp. Gr. of Solutions (H ₂ O at 4°.)	Gms. $C_{14}H_{10}$ per 100 Grams $C_6H_5.CH_3$	Sp. Gr. of Solutions (H ₂ O at 4°.)
0	3.65	0.814	23.0	0.925
10	3.80	0.807	30.0	0.929
20	4.6	0.801	42.0	0.934
25	5 · 5	0.799	50.0	0.939
30	6.4	0.797	58.0	0.943
40	8.2	0.795	76.0	0.955
50	10.6	0.794	95.0	0.971
60	15.6	0.797	115.0	0.989
70	33.0	0.815	135.0	1.007
80		0.865 (76.4°) 155.0	1.027

^{*} Calculated from the original results which are given in terms of gram molecules of Phenanthrene per 100 gram molecules of solvent, and for irregular intervals of temperature.

Behrend — Z. physik. Ch. 10, 265, '92, finds 2.77 grams phenanthrene per 100 grams alcohol at 12.3°, and 3.09 grams at 14.8°.

SOLUBILITY OF PHENANTHRENE PICRATE IN ABSOLUTE ALCOHOL. (Behrend — Z. physik. Ch. 10, 205, '92.)

t°.	Grams	Grams per 100 Grams Saturated Solution.								
	Picric Acid -	- Phenanthrene =	Phenanthrene Picrate.							
12.3	0.91	0.71	1.62							
14.3	I 00	0.78	1.78							
17.5	1.05	0.82	1.87							

SOLUBILITY OF PHENANTHRENE PICRATE IN ALCOHOLIC SOLUTIONS CONTAINING PICRIC ACID AND ALSO PHENANTHRENE.
(Behrend.)

t°.	Grams Add	ed to 62 cc.	Abs. Alcohol.	Gms. per 100 Gms. Sat. Solution.			
6	P. Picrate +	Picric Ac.+	Phenanthrene.	Picric Ac	- Phenanthrene	= P. Picrate.	
12.3	I · 4	0	0.5	0.534	1.413	I.947	
12.3	1.4	0	0.9	0.409	2.141	2.550	
12.3	0.8	0	2.1	0.354	2.77	3.124	
12.3	0.8	0	4.0	0.139	5.626	5.765	
17.5	1.4	0.1	0	1.159	0.75	1.91	
17.5	I.4	0.2	0	1.285	0.68	1.97	
17.5	1.4	I.0	0	2.45	0.37	2.82	
17.5	1.4	4.0	0	6.15	0.195	6.345	
17.5	I · 4	0.0	2.2	0.423	3.276	3.699	

PHENOL C₆H₅OH. Solubility in Water.

(Alexejew — Wied. Ann. 28, 305, '86; Schreinemaker — Z. physik. Ch. 33, 79, '00; Rothmund — Ibid 26, 474. '98.)

Determinations were made by the "Synthetic Method," for which see Note, page 9.

Grams Phenol per 100 Grams				
Aqueous Layer.	Phenol Layer			
7 · 5	75.0			
8.3	72.I			
8.8	69.8			
9.6	66.9			
12.0	62.7			
14.1	59.5			
16.7	55 · 4			
21.9	49.2			
.) 33	3 · 4			
	7 · 5 8 · 3 8 · 8 9 · 6 12 · 0 14 · 1 16 · 7 21 · 9			

Vaubel — J. pr. Ch. [2] **52**, 73, '95, states that 100 grams sat. aquerus solution contain 6.1 grams phenol at 20°. Sp. Gr. of solution = 1.0057.

Solubility of Phenic Acid (Phenol, C_6H_5OH) in Paraffine and in Benzene. (Schweissinger — Pharm. Zig. '84–'85.)

Colores	Grams	C ₆ H ₅ OH per	100 Grams Sol	vent at:
Solvent.	16°.	21°.	25°.	43°.
Paraffine	1.66			5.0
Benzene	2.5	8.33	10.0	100.0

SOLUBILITY OF PHENOL IN AQUEOUS ACETONE SOLUTIONS. (Schreinemaker.)

	In 4.2 Aceto		In 12.2 Acetor	, 0		24.4% etone.		59.9% etone.
t°.	Grams Pho		Gms. Phe			henol per Gms.		henol per Gms.
£	Aq. Acetone Layer.	Phenol Layer.	Aq. Acetone Layer.	Phenol Layer.	Aq. Acetone Layer.	Phenol Layer.	Aq. Acetone Layer.	Phenol Layer
20							26.0	60.5
30	5.0	74.0	4.0	71.0	6.0	69.5	28.5	57.0
40	5.5	70.0					32.0	52.0
50	5.7	67.0	5.0	67.0	8.0	64.0	34.5\$	49. ℃
60	6.5	61.0					36. 5	46.51
70	9.0	51.0	7.5	57.5	19.0	57.0	(49.5°) 4	1.5
80	14.0	34.0	10.5	49.5	14.0	52.5		
	(84°) 22.5	5	20.4*	30.5*	23.01	47.01		
			(90.3°) 25.	. 0	26.5‡	44.0‡		
					(90.5°) 35	. 0		
	*90°		†85°		187°⋅5	\$45°	1147°-5	

The figures in the above table were read from curves plotted from the original results.

Solubility of Phenol in Aqueous Solutions d Tartaric Acid. (Schreinemaker.)

	In 5.093	% Acid.		In 19.3	4% Acid.		In 40.9	% Acid.
t°. ′	Aq. Acid Layer.	Phenol Layer.	t°.	Gms. Pheno Aq. Acid Layer.	Phenol Layer.	t°.	Aq. Acid Layer.	Phenol Layer.
30	7.5	72.5	50	10.0	77.0	70	13.0	
50	10.5	65.5	60	12.5	72.0	80	16.5	77.0
60	14.5	58.0	70	19.0	64.0	85	20.0	74.0
65	19.5	53.0	75	29.0	56.0	90	26.5	71.0
67.5	25.0	48.5	77	47	.0	95	39.0	63.5
69	47.	5				97	54	.0

DISTRIBUTION OF PHENOL BETWEEN:

AMYL ALCOHOL AND WATER AT 25°. BENZENE AND WATER AT 20°. (Vaubel – J. pr. Ch. [2] 67, 476, 'c.3.)

per 10 cc. per 100 cc. Volumes of Solvents Alcoholic Aqueous Layer. Layer. Layer. Volumes of Solvents used per 1 Gm. Phenol	H ₂ O C ₆ H ₆ Layer. Layer
0.75 0.047 0.705 0.0441 50 cc.H ₂ O + 50 cc.C ₆ 0.9 0.05 0.846 0.047 " +100 cc. " 1.1 0.07 1.035 0.066 " +150 cc. "	0.1188 0.8212
2.6 0.16 2.445 0.150 "+150cc." 54.1 3.83 50.88 3.601 56.3 3.0 52.02 2.667	

DISTRIBUTION OF PHENOL BETWEEN WATER AND BENZENE AND BETWEEN AQUEOUS K₂SO₄ SOLUTIONS AND BENZENE AT 25°.

(Rothmund and Wilsmore — Z. physik. Ch. 40, 623, '02.)

Note. — The original results, which are given in terms of gram mols. per liter, were calculated to grams per liter, and plotted on cross-section paper. The following figures were read from the curves obtained.

Between H₂O and C₂H₆.

Effect of K₂SO₄ upon the Distribution.

	A					
Grams C ₆ H ₅ OH per Liter of:		Gms. K ₂ SO ₄ per Liter		s. C ₆ H ₅ OH iter of:	(2)Gms. C ₆ H ₅ OH per Liter of:	
H ₂ O Layer.	C ₆ H ₆ Layer.	Aq. Solution.	Aq. Layer.	C ₆ H ₆ Layer.	Aq. Layer.	C ₆ H ₆ Layer.
5	10	1.36	17.08	59.96	9.52	26.28
10	28	2.72	16.92	60.63	9.50	26.38
15	52	5 · 44	16.85	60.92	9.46	26.55
20	84	10.89	16.44	62.73	9.35	27.06
25	128	21.79	15.89	65.19	9.09	28.27
30	200	43.59	14.85	69.71	8.68	30.21
35	300	87.18	12.92	78.00	$7 \cdot 79$	34.38
40	410					
45	520					
50	610	(1) First series.		(2) Se	cond series.	

DISTRIBUTION OF PHENOL AT 25° BETWEEN: (Herz and Fischer — Ber. 38, 1143, '05.)

Water and Toluene.

Water and m Xylene.

Millimols per 1		Grams (Millimols (Grams C ₆	
C ₆ H ₅ CH ₃ Layer.	H ₂ O Layer.	C ₆ H ₅ CH ₃ Layer.	H ₂ O Layer.	mC ₆ H ₄ (CH ₃) ₂ Layer.	H ₂ O Layer.	mC ₆ H ₄ (CH ₃) ₂ Layer.	H ₂ O Layer.
I.244	0.724	1.169	0.681	1.610	1.071	1.514	I.007
3.047	1.469	2.865	1.381	4.787	2.726	4.501	2.563
4.667	2.200	4.389	2.068	12.210	5.168	11.22	4.860
6.446	2.861	6.061	2.691	22.718	6.994	21.36	6.577
14.960	4.750	14.07	4.467	34.827	8.124	32.75	7.640
17.725	5.346	16.69	5.027	51.352	9.123	48.28	8.578
47.003	7.706	44.20	7.246	77 · 703	10.050	73 . 07	9.450
53.783	8.087	50.58	7.604				
90.287	9.651	84.89	9.074				

DISTRIBUTION OF PHENOL BETWEEN WATER AND CARBON TETRA
CHLORIDE AT 20°.
(Vaubel – J. pr. Ch. [2] 67, 476, '03.)

Grams Phenol in: Gms. Phenol Volumes of Solvents. H₂O Layer. CCl Layer. 0.8605 50 cc. H₂O+ 10 cc. CCl₄ 0.1285 1 + 20 cc. 0.1900 I 0.7990 + 30 cc. 0.2615 I 0.7275 66 66 + 50 cc. 0.6435 0.3455 66 +100 cc. 0.4680 0.5210 46 66 +150 cc. 0.3645 I 0.6245 66 I +200 cc. 0.3240 0.6650

PHENOLATE of Phenyl Ammonium.

SOLUBILITY IN WATER.

Figures read from Curve. (Alexejew — Wied. Ann. 28, 305, '86.)

By Synthetic Method, See page 9.

t°.		ate per 100 Gms.	t°.		late per 100 Gms.
	Aq. Layer.	Phenolate Layer.		Aq. Layer.	Phenolate Layer.
10	3	94	110	9	76
30	4	93	120	12	69
50	5	91	130	17.5	60
70	6	87.5	140 (cri	t. temp.)	40
90	7	83			

PHENYL (Di) AMINES C₆H₄(NH₂)₂.

SOLUBILITY IN WATER AT 20°. (Vaubel — J. pr. Ch. [2] 52, 73, '95.)

Amine.	Gms. per 100 Gms. Solution.	Sp. Gr. of Solution.
m Phenyl di Amine	23.8	1.0317
p "	$3 \cdot 7$	1.0038

Nitro PHENOLS C.H.OH.NO.

100 grams saturated aqueous solution contain: 0.208 gram ortho, 2.14 grams meta, 1.32 grams para nitro phenol at 20°.

(Vaubel.)

Di Nitro **PHENOL** C₆H₃.OH.(NO₂)₂.

SOLUBILITY IN ALCOHOLS AT 19.5°. (de Bruyn — Z. physik. Ch. 10, 784, '92.)

100 grams abs. methyl alcohol dissolve 6.3 grams $C_6H_3.OH.(NO_2)_2$. 100 grams abs. ethyl alcohol dissolve 3.9 grams $C_6H_3.OH.(NO_2)_2$.

Solubility of Mixtures of s Tri Brom Phenol and s Tri Chlor Phenol in Methyl Alcohol at 25°.

(Thiel - Z. physik. Ch. 43, 667, '03; from Wurfel - Dissertation Marburg, '96.)

Molecular per o	cent C ₆ H ₂ .OH.Br ₃	n Solul	m . 1	
In Solid.	In Solution.	C ₆ H ₂ .OH.Cl ₃ .	C ₆ H ₂ .OH.Br ₃ .	Total.
0	0	0.204	0	0.204
4 · 49	3 · 59	0.194	0.007	0.201
10.13	7.58	0.191	0.016	0.206
16.28	12.15	0.172	0.024	0.196
62.44	13.07	0.204	0.031	0.235
69.88	15.86	0.150	0.028	0.178
81.76	19.01	0.096	0.023	0.118
84.66	24.05	0.069	0.022	0.091
87.53	32.46	0.043	0.021	0.063
93.62	47 . 87	0.021	0.019	0.040
100.0	100.0	0.0	0.019	0.019

PHENYL SALICYLATE (Salol) C₆H₄(OH).COOC₆H₅I:2.

100 grams H₂O dissolve 0.043 gram salicylate at 25°. 100 grams alcohol dissolve 20.0 grams at 25°.

(U.S.P.)

Di PHENYL C.H.C.H.

100 grams absolute methyl alcohol dissolve 6.57 grams at 19.5°. 100 grams abs. ethyl alcohol dissolve 9.98 grams at 19.5°.

(de Bruyn - Z. physik. Ch. 10, 784, '92.)

PHOSPHO MOLYBDIC ACID P2O5.20MOO3.52H2O.

SOLUBILITY IN ETHER.

(Parmentier - Compt. rend. 104, 686, '87.)

o° 8.1° 19.3° 27.4° 32.9° Gms. Acid per 100 gms. Ether 80.6 84.7 96.7 103.9 107.9

PHOSPHORUS P. (yellow)

SOLUBILITY IN BENZENE.

(Christomanos - Z. anorg. Ch. 45, 136, '05.)

t°.	Gms. P per 100 Gms. C ₆ H ₆	Sp. Gr. of j s. Solution.	t°.	Gms. P per	Sp. Gr. of Solution.	t °. ₁	Gms. P per oo Gms. C ₆ H ₆
0	1.513		23	3.399	0.8875	50	6.80
5 8	1.99		25	3.70	0.8861	55	7.32
8	2.31	0.8990	30	4.60		60	7.90
IO	2 · 4	0.8985	35	5.17		65	8.40
15	2.7	0.894	40	5 · 75		70	8.90
18	3.1	0.892	45	6.11		75	9 · 40
20	3.2	0.890				81	10.03

SOLUBILITY OF PHOSPHORUS IN ETHER. (Christomanos.)

t°.	Gms. P per 100 Gms. $(C_2H_5)_2O$.	Sp. Gr. of Solutions.	t°.	Gms. P per 100 Gms. (C ₂ H ₅) ₂ O.	Sp. Gr. of Solutions.	t°.	Gms. P per 100 Gms. (C ₂ H ₅) ₂ O.
0	0.434		15	0.90	0.723	28	1.60
5	0.62		18	I.OI	0.719	30	1.75
8	0.79	0.732	20	1.04	0.718	33	1.80
IO	0.85	0.729	23	I.I2	0.722	35	2.00
			25	1.39	0.728		

100 grams CS2 dissolve about 1750 grams yellow P at room temperature. (Vogel - Jahresber. Chem. 149, '68.)

100 grams alcohol of 0.709 Sp. Gr. dissolve 0.312 gram P cold and 0.416 gram hot. (Buchner) SOLUBILITY OF YELLOW PHOSPHORUS IN SEVERAL SOLVENTS AT 15°.
(Stich — Pharm. Ztg. 48, 343, '03.)

Solvent.	Gms. P per 100 Gms. Solution.
Almond Oil	1.25
Oleic Acid	ĭ .oŏ
Paraffine	1.45
Water	0.0003
Acetic Acid	0.105

PHTHALIC ACIDS C₆H₄(COOH)₂.

SOLUBILITY IN WATER.

(Vaubel - J. pr. Ch. [2] 52, 73, '95; 59, 30, '99.)

Acid.	t°.	Gms. per 100 Gms. Solution.
o Phthalic Acid	14	0.54
Iso Phthalic Acid	25	0.013
Tere Phthalic Acid		almost insoluble

SOLUBILITY OF O PHTHALIC ACID IN ALCOHOL AND IN ETHER AT 15°.

(Bourgoin — Ann. chim. phys. [5] 13, 406, '78.)

G	Grams C ₆ H ₄ (COOH) ₂	o per 100 Grams
Solvent.	Solution.	Solvent.
Absolute Alcohol	9.156	11.70
90 per cent Alcohol	10.478	10.08
Ether	0.679	0.684

PHTHALIC ANHYDRIDE C₆H₄< CO > O.

SOLUBILITY IN WATER. (van der Stadt — Z. physik. Ch. 41, 358, '02.)

All determinations, except first three, made by the Synthetic Method. See page 9.

t°.	Grams C ₈ H ₄ O ₃ p	er 100 Gms. N	fol, per cent	(Grams C8H4	O3 per 100 G	ms. Mol.
t ·.	Water.	Solution.	C ₈ H ₄ O ₃ .	τ.	Water.	Solution.	per cent C ₈ H ₄ O ₃
0	0.00295	0.00295	0.00036	189.5	1076	91.66	56.73
25	0.6194	0.6150	0.0754	188.8	1265	92.68	60.63
50	1.630	1.604	0. 198	187.1	1474	93.65	64.22
135.9	94.3	48.54	10.30	181.8	2332	95.88	73.95
165.4	210.0	67.75	20.36	176.2	3334	97.07	80.23
179.4	319.3	76.13	27.98	169.4	5745	98. 28	87.49
186.2	449.6	81.81	35.37	130.9	37570	99.72	97.89
189.6	546.1	84.50	39.93	131.0	83010	99.86	99.02
191.0	821.5	89.19	50.00	131.2	00	100.00	100.00
190.4	863.4	89.62	51.24				

On page 362 of the original paper the solubility of C₈H₄O₂ at o° is given as 0.2722 gram per 100 grams of solution.

SOLUBILITY OF PHTHALIC ANHYDRIDE IN CARBON BISULPHIDE. (Arctowski — Compt. rend. 121, 123, '95; Etard — Ann. chim. phys. [7] 2, 570, '94.)

t°.	Gms. C ₈ H ₄ O ₃ per 100 Gms. Solution.		ms. C ₈ H ₄ O ₃ er 100 Gms. Solution.	t°.	Gms. C ₈ H ₄ O ₃ per 100 Gms. Solution.
-112.5	0.013	+10	0.3	70	2.3
- 93	0.013	20	0.7	90	3.7
- 77.5	0.016	30 -	0.8	100	5.0
- 40	0.03	40	I.2	120	8.0
- 20	0.06	50	1.3	140	13.3
- 10	0.10	60	1.7	160	20.7
0	0.20			180	30.2

PHYSOSTIGMINE SALICYLATE $C_6H_4(OH)COOH.C_{15}H_{21}N_3O_2$ and Physostigmine Sulphate $H_2SO_4(C_{15}H_{21}N_3O_2)_2$.

SOLUBILITY IN WATER, ALCOHOL, ETC. (U. S. P.)

Solvent.	t°.	Gms. per 100 Gms. Solvent.		
Solvent.	6.	Salicylate.	Sulphate.	
Water	25	1.38	very soluble	
Water	25 80	6.66	"	
Alcohol	25	7.87	"	
Alcohol	60	25.00	"	
Chloroform	25	11.6	"	
Ether	25	0.57	0.083	

PICRIC ACID C.H2.OH.(NO2)3.

SOLUBILITY IN WATER. (Dolinski — Ber. 38, 1836, '05; Findlay — J. Ch. Soc. 81, 1219, '02.)

. 0)	Gms.	C6H3N3O7 pe	er 100 Grams	_ t.		Gms. C ₆ H ₃ N ₃ O ₇ per 100 Grams		
		Solution.		Water.			Solution.	Water	:.
	0	0.67	(D.) 0.68	B (D.) I.05	(F.)	ÓO	2.77 (D.)	2.81(D.)	3.17 (F.)
	10	.80	0.8	I I.Io	7	10	3 · 35	3 · 47	3.89
	20	I.IO	1.1	I I.22		30	4.22	4.41	4.66
	30	1.38	1.4	0 1.55	9)0	5 · 44	5.72	5.49
	40	1.75	1.7	8 1.98	10	00	6.75	7.24	6.33
	50	2.15	2.1	9 2.53					

Dolinski does not refer to the previous determinations of Findlay.

Solubility of Picric Acid in Water and in Aqueous Salt Solutions at 25°.

(Levin - Z. physik. Ch. 55, 520, '06.)

One liter of aqueous solution contains 0.05328 gram mols. = 12.20 grams C₀H₂.OH(NO₂)₃ at 25°.

Gm. Mols. Sa	m. Mols. Salt		ls. Picric Acid	per Liter in A	q. Solutions of	f:
per Liter.	NaCl.	NaNO3.	Na ₂ SO ₄ .	LiCl.	Li ₂ SO ₄ .	NH ₄ Cl.
0.01	0.05524	0.05529	0.05604	0.05480	0.05661	0.05487
0.02	0.05559	0.05872	0.05872	0.05558	0.06053	0.05540
0.05	0.05729	0.06632	0.06632	0.05703	0.06691	0.05771
0.07	0.05862	0.07093	0.07093	0.05878	0.07013	0.05865
0.10	0.05902	0.07670	0.07670	0.06132	0.07437	
0.50	0.0790				0.123	
I.00	0.1180				0.149	
Gm. Mols.		Grams Pic	cric Acid per I	iter in Aq. So	lutions of:	
Salt per Liter	NaCl.	NaNO ₃ .	Na ₂ SO ₄ .	LiCl.	Li ₂ SO ₄ .	NH4Cl.

Gm. Mols.		Citatio 2 testo riote por anti-							
Salt per Liter.	NaCl.	NaNO ₃ .	Na ₂ SO ₄ .	LiCl.	Li ₂ SO ₄ .	NH4Cl.			
0.01	12.66	12.67	12.83	12.55	12.97	12.57			
0.02	12.74	13.45	13.45	12.74	13.87	12.69			
0.05	13.12	15.19	15.19	13.06	15.33	13.22			
0.07	13.43	16.25	16.25	13.47	16.06	13.44			
0.10	13.52	17.57	17.57	14.05	17.04				
0.50	18.09				28.18				
1.00	26.98				34.14				

Solubility in Aq. Cane Sugar.

Solubility in Aq. Grape Sugar.

Gm. Mols. Sugar per Liter.	Picric Ac. per Li Gm. Mols.	Gms.	Sp. Gr. Solution.	Gm. Mols. Grape Sugar per Liter.	Picric Acid pe	Gms.
0.10	0.05202	11.92	I.0122	0.10	0.0530	12.14
0.25	0.04978	11.40	1.0319	0.25	0.0521	11.93
0.50	0.0482	11.04	1.0654	0.50	0.0509	11.66
1.00	0.0443	10.15	1.1294	1.00	0.0474	10.86

SOLUBILITY OF PICRIC ACID IN ABSOLUTE ALCOHOL. (Behrend — Z. physik. Ch. 10, 265, '92.)

100 gms. sat. solution contain 5.53 grams $C_6H_3N_3O_7$ at 12.3°, and 5.92 grams at 14.8°. Sp. Gr. of the latter solution = 0.8255.

SOLUBILITY OF PICRIC ACID IN BENZENE. (Findlay.)

t°.	Gms. C ₆ H ₃ N ₃ O ₇ per 100	Mols. C ₆ H ₃ N ₃ O ₇ per 100	t°.	Gms. C ₆ H ₃ N ₃ O ₇ per 100	Mols. C ₆ H ₃ N ₃ O ₇ per 100
	$Gms. C_6H_6.$	Mols. C_6H_6 .		Gms. C_6H_6 .	Mols. C_6H_6 .
5	3.70	1.26	38.4	26.15	8.88
IO	5.37	1.83	45	33.57	11.40
15	7.29	2.48	55	50.65	17.21
20	9.56	3.25	58.7	58.42	19.83
25	12.66	4.30	65	71.31	24.20
26.5	13.51	4.60	75	96.77	32.92
35	21.38	7.26			

SOLUBILITY OF PICRIC ACID IN ETHER. (Bougault — J. pharm. chim. [6] 18, 116, '03; — Apoth.-Ztg. 21, 74, '06.)

Solvent.	t°.	Gms. C ₆ H ₃ N ₃	O7 per Liter.
Ether of Sp. Gr. 0.721	13	10.8	(B.)
Ether of Sp. Gr. 0.725 (0.8 pt. H ₂ O per 100)	13	36.8	"
Ether of Sp. Gr. 0.726 (1.0 pt. H ₂ O per 100)	13.	40.0	66
Ether saturated with H ₂ O	15	51.2	
H ₂ O saturated with Ether	15	13.8	

DISTRIBUTION OF PICRIC ACID AT 25° BETWEEN: Water and Amyl Alcohol. Water and Toluene.

	(Herz a	nd Fischer -	Ber. 37, 4747	7, '04.)	(H. and F Ber. 38, 1142, '05.)				
	Millimols C ₆ H ₃ N ₃ O ₇ per 10 cc.			Gms. C ₆ H ₃ N ₃ O ₇ per 100 cc.		Millimols C ₆ H ₃ N ₅ O ₇ per 10 cc.		Gms. C ₆ H ₃ N ₃ O ₇ per 100 cc.	
	Aq. Layer.	Alcohol Layer.	Aq. Layer.	Alcohol Layer.	Aq. Layer.	Toluene Layer.	Aq. Layer.	Toluene Layer.	
(0.0553	0.0930	0.127	0.213	0.075	0.126	0.172	0.289	
	0.0920	0.1850	0.211	0.424	0.109	0.230	0.250	0.527	
	0.1613	0.4127	0.369	0.946	0.163	0.482	0.374	1.104	
	. 1869	0.5182	0.428	1.188	0.244	1.026	0.559	2.351	
(3161	1.079	0.724	2.473	0.389	2.347	0.891	5.380	
(0.4471	1.638	I.024	3.753	0.496	3.747	1.137	8.586	
	5624	2.189	1.288	5.017	0.583	5.135	1.336	11.770	
(0.6423	2.549	I.472	5.839					

DISTRIBUTION OF PICRIC ACID AT 25° BETWEEN:

Water and Chloroform.

Water and Bromoform.

(F	Ierz and	Lewy — Z. Ele	ctrochem.	11, 820, '05.)		(H. and L.)			
	pe	Millimols C ₆ H ₃ N ₃ O ₇ per 10 cc.		Gms. C ₆ H ₈ N ₃ O ₇ per 100 cc.		ols C ₆ H ₃ N ₃ O ₇	Gms. C ₆ H ₃ N ₃ O ₇ per 100 cc.		
	Aq. Layer.	Bromoform Layer.	Aq. Layer.	Bromoform Layer.		Chloroform Layer.		Chloroform Layer.	
	0.321	0.365	0.736	0.836	0.207	0.254	0.474	0.582	
	-	0.515		1.180	0.329	0.547	0.754	1.253	
		0.655	1.088	1.501	0.488	1.09	1.118	2.498	
	0.0	0.871	1.317	1.995	0.561	1.41	1.285	0	
	0.674	1.14	1.545	2.612	0.588	1.53	I.348	3.505	

PILOCARPINE HYDROCHLORIDE C₁₁H₁₆N₂O₂.HCl, Pilocarpine Nitrate C₁₁H₁₆N₂O₂.HNO₃, and Piperine C₁₇H₁₉NO₃ in Several Solvents.

		(U. S. P.)				
Solvent.	t°.	Grams per 100 Grams Solvent.				
Solvent.	ь.	C11H16N2O2.HCl.	C ₁₁ H ₁₆ N ₂ O ₂ .HNO ₃ .	C ₁₇ H ₁₉ NO ₃ .		
Water	25	333	25	insoluble		
Alcohol	25	4.35	1.66	6.66		
Alcohol	60	9.09	6.2	22.7		
Chloroform	25	0.18		58.8		
Ether	25			2.8		

SOLUBILITY OF PLATINUM ALLOYS IN NITRIC ACID. (Winkler — Z. anal. Ch. 13, 369, '74.)

A11.	Approx.	Grams Alloy Di	ssolved per 10	o Grams HN	O ₃ Solution of
Alloy.	per cent Pt in Alloy.	1.398 Sp. Gr.	1.298 Sp. Gr.	1.190 Sp.Gr.	1.298 Sp. Gr.:
Pt and Silver	10	57	44	69	37
"	5	69	57	51	35
, "	2.5	62	61	69	
66	1	75	70	76	
Pt and Copper	10	46	27	II	51
"	5	36	34	14	41
"	2.5	51	40	30	
"	I	52	41	37	
Pt and Lead	10	7	9	8	
"	5	8	9	IO	
"	2.5	22	17	11	
"	1+	21	18	23	
Pt and Bismuth	10	14	19	4	3
"	5	21	20	6	18
"	2.5	25	42	8	
"	1	49	64	IO	
Pt and Zinc	10	10	11	19	5
"	5	16	12	6	11
"	2.5	16	24	19	
"	1	20	32	37	
			-		

PLATINUM BROMIDE PtBr.

100 grams sat. aqueous solution contain 0.41 gram PtBr4 at 20°. (Halberstadt — Ber. 17, 2962, '84.)

PLATINIC POTASSIUM BROMIDE K2PtBr6.

100 grams sat. aqueous solution contain 2.02 grams K_2PtBr_6 at 20°. (Halberstadt.)

PLATINIC DOUBLE CHLORIDES of Ammonium, Caesium, Potassium, Rubidium and Thallium.

SOLUBILITY IN WATER. (Crookes — Chem. News 9, 37, 205, '64; Bunsen — Pogg. Ann. 113, 337, '61.)

t°.		Grams p	er 100 Gram	s Water.	
t ·.	(NH ₄) ₂ PtCl ₆ .	Cs ₂ PtCl ₆ .	K ₂ PtCl ₆ .	Rb ₂ PtCl ₆ .	Tl ₂ PtCl ₆ .
0		0.024	0.74	0.184	
10	0.666 (15°)	0.050	0.90	0.154	0.0064 (15°)
20		0.079	I.I2	0.141	
25		0.095	1.26	0.143	
30		0.110	1.41	0.145	• • •
40		0.142	1.76	0.166	• • •
50		0.177	2.17	0.203	• • •
60		0.213	2 . 64	0.253	
70		0.251	3.19	0.329	
80		0.291	3.79	0.417	• • •
90		0.332	4.45	0.521	
100	1.25	0.377	5.18	0.634	0.050

233

SOLUBILITY OF AMMONIUM PLATINIC CHLORIDE AND OF POTASSIUM PLATINIC CHLORIDE IN ALCOHOL AT 15°-20°. (Fresenius; Peligot - Z. anal. Ch. 36, 322, '97.)

c	olvent.	Gms. per Lite	r Solution	Solvent.	Gms. per	Liter Solution.	
		(NH ₄) ₂ PtCl ₆ .	K2PtCl6.		(NH ₄) ₂ PtCl ₆	. K2PtCla.	
55%	Alcohol	0.150		95% Alcohol	0.0037	0.030	
76	"	0.067	0.026			0.0082-0.0023	
85	"		0.180	80 Vol.% Alcohol + 20			
				Vol. % Ether		0.027	
90	46		0.100	Abs. Methyl Alcohol		0.072	

PLATINO AMINES.

SOLUBILITY IN WATER. (Cleve.)

Amine.	Formula.	Gms. per	oo Gms.	. H ₂ O.
Platino Semi Di Amine Chloride	$Pt <_{Cl}^{(NH_3)_2.Cl}$	o. 26 at 0°		
Chloro Platin Amine Chloride	$Cl_2Pt < NH_3Cl NH_3Cl$	0.14 "	3.0	"
Chloro Platin Semi Diamine Chloride			1.54	66

POTASSIUM ACETATE CH3COOK.

SOLUBILITY IN WATER.

100 gms. sat. aq. solution contain 73.65 gms. CH_3COOK , or 100 gms. H_2O dissolve 286.3 gms. at 31.25°.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

100 gms. H₂O dissolve 188 gms. CH₂COOK at 5°, 229 gms. at 13.0°, 492 gms. at 62°. (Osann.)

100 gms. 99 per cent ethyl alcohol dissolve 33.3 gms. CH₃COOK at 15°, and 50.0 gms. at 80°.

POTASSIUM (Di Hydrogen) ARSENATE KH2AsO4.

100 gms. sat. aq. solution contain 15.9 gms. KH2AsO4, or 100 gms. H₂O dissolve 18.86 gms. at 6°. Sp. Gr. of solution = 1.1134. (Field - J. Ch. Soc. 11, 6, '59.)

POTASSIUM BENZOATE KC, H,O, 3H,O.

SOLUBILITY IN WATER. (Paietta - Gazz. chim. ital. 36, II, 67, '06.)

t º 500 17.5° 25° 33·3° 46.6 Gms. KC₇H₅O₂ per 100 Gms. 41.4 42.4 44.0 Solution.

SOLUBILITY OF POTASSIUM BORATES IN WATER AT 30°. (Dukelski — Z. anorg. Chem. 50, 42, '06, complete references given.)

Gms. per 100	Gms. Solution.	Gms. per 100	Gms. Residue.	
K ₂ O.	B ₂ O ₃ .	K ₂ O.	B ₂ O ₃ .	Phase.
47.50				KOH.2H2O
46.36	0.91	46.13	9.02	$K_2O.B_2O_3.2\frac{1}{2}H_2O$
40.51	1.25	41.62	9.71	66
36.82	1.80	39.90	13.19	44
32.74	3.51	37.22	14.58	86
29.63	6.98	35.05	17.92	44
24.84	17.63	30.02	21.70	66
23.30	18.19	26.84	31.49	$K_2O2B_2O_34H_2O$
16.21	13.10	25.12	33.18	**
11.78	9.82	20.57	26.43	44
9.18	8.00	22.38	31.30	46
6.22	9.13	20.87	31.06	64
$7 \cdot 73$	13.37	22.21	36.24	$K_2O2B_2O_34H_2O + K_2O5B_2O_3.8H_2O$
7.81	13.28	17.50	34.18	4
7.71	13.21	11.49	34.81	$K_2O5B_2O_3.8H_2O$
7.63	13.28	12.51	40.52	**
3 · 42	7 · 59	10.77	37 · 35	44
1.80	4.15	5.88	20.00	46
0.51	3.19	18.01	40.89	66
0.33	4.58	7.72	34.21	$K_2O.5B_2O_3.8H_2O + B(OH)_3$
0.31	4.46	3.91	30.68	44
	3.54		• • •	- "

POTASSIUM (Fluo) BORIDE KBF4.

100 gms. $\rm H_2O$ dissolve 0.44 gm. $\rm KBF_4$ at 20°, and 6.27 gms. at 100° (Stolba — Chem. techn. Centr. Anz. 7, 459, '89.)

POTASSIUM BROMATE KBrO3.

SOLUBILITY IN WATER.

(Kremers — Pogg. Ann. 97, 5, '56; Rammelsberg — *Ibid.* 55, 79, '42; Pohl — Sitzber. Akad. Wiss Wien. 6, 595, '51.)

t°.	Gms. KBrO ₃ per 100 Gms.		t°.	Gms. KBrO ₃ per 100 Gms.	
	Water.	Solution.	.	Water.	Solution.
0	3.1	3.0	40	13.2	11.7
10	4.8	4.6	50	17.5	14.9
20	6.9	6.5	60	22.7	18.5
25	8.0	7 · 4	80	34.0	25.4
30	9.5	8.7	100	50.0	$33 \cdot 3$

Sp. Gr. of solution saturated at 19.5° = 1.05.

SOLUBILITY OF POTASSIUM BROMATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND OF SODIUM CHLORIDE.

(Geffcken - Z. physik. Chem. 49, 296, '04.)

In Sodium Nitrate.			In Sodium Chloride.			
	Grams pe NaNO ₃ .	r Liter. KBrO ₃ .	Mols. KBrO ₃ per Liter.	Grams p	per Liter. KBrO ₃ .	Mols. KBrO ₃ per Liter.
	0.0	78.79	0.4715	0.0	78.79	0.4715
	42.54	96.01	0.5745	29.25	82.24	0.5220
	85.09	108.6	0.6497	58.50	93.87	0.5616
I	70.18	128.3	0.7680	117.0	100.9	0.6042
2	55 - 27	150.9	0.9026	175.5	104.3	0.6244
3	40.36	172.3	I.03I	234.0	106.9	0.6400

POTASSIUM BROMIDE KBr.

SOLUBILITY IN WATER.

(Average curve from results of Meusser — Z. anorg. Chem. 44, 79, '05; Etard — Compt. rend. 98, 1432, '84; Ann. chim. phys. [7] 2, 526, '94; de Coppet — Ibid. [5] 30, 416, '83; Tilden and Shenstone — Phil. Trans. 175, 23, '84.)

t°.	Grams KBr p	er 100 Grams	t°.	Grams KBr I	ıms KBr per 100 Grams	
υ.	Solution.	Water.	υ.	Solution.	Water.	
-6.5	20.0	25.0	30	41.4	70 .6	
- 8.5	26.5	35 · 7	40	43.0	75 · 5	
-10.5	29.5	41.8	50	44.5	80.2	
-11.5	31.2	45 · 3	60	46.1	85.5	
-10	31.8	46.7	70	47 · 4	90.0	
- 5	33.3	50.0	80	48.7	95.0	
0	34.9	53 · 5	90	49.8	99.2	
5	36.1	56.5	100	51.0	104.0	
10	37 · 3	59 · 5	110	52.3	109.5	
15	38.5	62.5	140	54.7	120.9	
20	39 · 5	65.2	181	59 · 3	145.6	
25	40.4	67.7				

Solubility of Mixtures of Potassium Bromide and Ammonium BROMIDE IN WATER AT 25°. (Fock - Z. Kryst. Min. 28, 357, '97.)

Grams per Li	ter Solution.	Mol. per ce	nt in Solution.	Sp. Gr. of Solutions.	Mol. per cent	in Solid Phase.
NH₄Br.	KBr.	NH ₄ Br.	KBr.	Solutions.	NH ₄ Br.	KBr.
0.00	558.1	0.0	100	1.3756	0.00	100
6.4	554.2	1.38	98.62	1.3745	0.26	99.74
24.64	536.5	5.29	94.71	I · 3733	1.27	98.73
51.34	516.8	10.77	89.23	1.3721	3.02	96.98
152.9	441.2	29.63	70.37	1.3711	8.42	91.58
262.2	347 - 3	47.84	52.16	1.3715	17.20	82.80
347.6	262.3	61.69	38.31	1.3753	27 . 98	72.02
381.4	260.3	64.03	35.97	1.3753	32.53	67.47
417.8	232.2	68.61	31.39	1.3766	39 · 45	60.55
432.5	222.3	70.27	29.73	I . 3777	variable	variable
480.8	179.9	76.47	23.53	1.3766	98.53	1.47
577 · 3	0.0	100.0	0.0	1.3763	100.0	0.00

Solubility of Potassium Bromide in Aqueous Solutions of Potassium Hydroxide.

(Ditte - Compt. rend. 124, 30, '97.)

Grams per 1000 Grams H2O.		Grams per 1000 Grams H2O		
кон.	KBr.	кон.	KBr.	
36.4	558.4	277.6	248.1	
113.5	433.6	434.7	137.1	
177.2	358.I	579.6	64.8	
231.1	281.2	806.9	33 · 4	

SOLUBILITY OF MIXTURES OF POTASSIUM BROMIDE AND CHLORIDE AND OF MIXTURES OF POTASSIUM BROMIDE AND IODIDE IN WATER.

(Etard — Ann. chim. phys. [7] 3, 275, '07.)

Mixtures of KBr and KCl. Mixtures of KBr and KI.

t°.	Grams per 100	Gms. Solution.	Grams per 100	Grams Solution.
• •	KBr.	KCl.	KBr.	KI.
-20	17.5	10.5	9.2	42.5
0	21.5	10.8	9.9	45.3
10	23.2	11.0	10.2	46.6
20	24.8	II.2	10.5	47 - 5
25	25.5	11.3	10.7	48.0
30	26.3	11.4	10.9	48.6
40	28.0	11.5	II.2	49.6
60	30.6	8.11	11.9	51.3
80	33 · 4	12.1	12.6	52.7
100	35 · 7	12.6	13.2	53.8
120	38.0	12.9	14.0	54.8
150	40.6	13.4	14.9	55.5

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AND OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE, AT 25.2°.

(Touren — Compt. rend. 130, 1252, '00.)

KBr in Aq. KCl Solutions. KCl in Aq. KBr Solutions. Mols. per Liter. Grams per Liter. Mols. per Liter. Grams per Liter. KCl. KBr. KCl. KBr. KBr. KCl. KBr. KCl. 0.0 4.761 0.0 4.18 311.8 0.0 567.0 0.00 0.67 4.22 50.0 502.5 3.85 58.4 287.2 0.49 0.81 3.58 4.15 0.85 101.3 267 ₽1 60.4 494.2 1.31 1.35 3.70 3.19 156.1 238.0 100.7 440.7 1.48 3.54 110.4 421.6 1.78 2.91 211.9 217.1 1.61 3.42 268.0 120.0 2.25 2.58 102.4 407.2 126.8 I.70 173.8 3.34 397 - 7 2.69 2.33 320.4 2.46 2.50 183.5 297.7 281.6 3.775 0.525 625.3

Solubility of Potassium Bromide in Aqueous Solutions of Potassium Nitrate, and of Potassium Nitrate in Aqueous Solutions of Potassium Bromide, at 14.5° and at 25.2°.

(Touren - Compt. rend. 130, 908, '00.)

KBr in Aqueous KNO₃ Solutions. KNO₃ in Aq. KBr Solutions.

Mols. pe	er Liter.	Grams 1	er Liter.	Mols. p	er Liter.	Grams 1	per Liter.
KNO3.	KBr.	KNO₃.	KBr.	KBr.		KBr.	KNO3.
Results at	14.20.			Results a	at 14.20°.		
0.0	4.332	0.0	515.9	0.0	2.228	0.0	225.4
0.362	4.156	36.6	494.9	0.356	2.026	42.4	205.0
0.706	4.093	71.4	487.4	0.784	1.835	93 · 4	185.7
1.235	3.939	124.9	469 · I	1.092	1.730	130.0	175.0
				1.577	1.587	187.8	160.6
Results at	t 25.2°.			2.542	1.406	302.7	142.2
0.0	4.761	0.0	566.2	3.536	1.308	421.1	132.3
0.131	4.72	13.3	561.0	Results	at 25.2°.		
0.527	4.61	53 · 3	549 · I	0.0	3.217	0.0	325.5
0.721	4.54	72.9	540.8	0.38	3.026	45.3	306.2
1.09	4.475	110.3	533.0	0.93	2 . 689	110.8	272.0
1.170	4.44	118.4	528.8	I.37	2.492	163.1	252.2
1.504	4.375	152.2	521.1	1.208	2.216	143.8	224.3
				2.87	1.958	341.8	198.1
				3.55	1.807	422.8	182.8

SOLUBILITY OF POTASSIUM BROMIDE IN ALCOHOLS AT 25°. (de Bruyn — Z. physik. Chem. 10, 783, '92; Rohland — Z. anorg. Chem. 18, 327, '98.)

Alcohol.	Grams KBr Dissolved by 100 Gms. Alcohol at:				
Alcohol.	Room Temp. (R.).	25° (de B.).			
Methyl Alcohol	1.92	1.51 Abs. Alcohol			
Ethyl Alcohol	0.28 (Sp. Gr. 0.81)	0.13 "			
Propyl Alcohol	0.055	• • •			

SOLUBILITY OF POTASSIUM BROMIDE IN AQUEOUS ALCOHOL. (Taylor — J. Physic. Ch. 1, 724, '96-'97.)

		Results a	at 30°.	Results	at 40°.		
t.	per cent Alcohol	Gms. KBr per	100 Gms.	Gms. KBr per	Gms. KBr per 100 Gms.		
	in Solution.	Sat. Solution.	Solvent.	Sat. Solution.	Solvent.		
	0	41.62	71.30	43.40	76.65		
	5	38.98	67.25	40.85	72.70		
	10	36.33	63.40	38.37	69.00		
	20	31.09	56.40	33 · 27	62.30		
	30	25.98	50.15	28.32	56.45		
	40	21.24	44.95	23.22	50.46		
	50	16.27	38.85	18.11	44.25		
	60	11.50	32.50	13.02	37.40		
	70	6.90	24.70	7.98	28.90		
	80	3.09	15.95	3.65	18.95		
	90	0.87	8.80	1.03	10.45		

100 gm. acetone dissolve 0.023 gm. KBr at 25°.

SOLUBILITY OF POTASSIUM BROMIDE AT 25° IN: (Herz and Knoch — Z. anorg. Chem. 45, 262, '05.)

Aqueous Acetone.

Aqueous Glycerine.

cc. Aceton	e Per 100	cc. Sat. S	olution.	Sp. Gr		KBr per 10	o cc. Sol.	Sp. Gr.
per 100 cc. Solvent.	Millimols KBr.	Gms. KBr.	Gms. H ₂ O.	Sp. Gr. Solutions.	Glycerine in Solvent.	Millimols.	Gms.	Solutions
0	481.3	57 - 3	80.6	1.3793	0	481.3	57.32	1.3793
20	366.7	43.67	69.5	1 - 2688	13.28	444 · 3	52.91	1.3704
30	310.5	36.98	62.97	1.2118	25.98	404.0	48.11	1.3655
40	259.0	30.85	55.60	1.1558	45.36	340.5	40.55	1.3594
50	202.9	24.16	47 .60	1 .0918	54.23		36.98	1.3580
60	144.9	17.22	39.15	1.0275	83.84	219.25		1.3603
70	95.3	11.35	29.78	0.9591	100.00	172.65	20.56	1.3691
80	46.5	5.54	20.IO	0.8942				
90	IO.I	I .20	10.15	0.8340				

100 cc. sat. solution of potassium bromide in furfurol (C₄H₃O.COH) contain 0.139 gm. KBr at 25°. (Walden – Z. physik. Chem. 55, 713, '06.)

POTASSIUM BUTYRATE C3H7COOK.

100 grams water dissolve 296.8 grams C3H7COOK, or 100 grams

sat. solution contain 74.8 grams at 31.25°.

100 grams of an aq. solution saturated with sugar and C_3H_7COOK contain 49.19 grams sugar + 34.78 grams C_3H_7COOK + 16.03 grams H_2O at 31.25°. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

POTASSIUM CARBONATE K2CO3.

POTASSIUM (Bi) CARBONATE KHCO3.

SOLUBILITY OF EACH IN WATER. (Mulder; Dibbits — J. pr. Chem. [2] 10, 439, '74.)

t°.	Grams K ₂ CO ₃	per 100 Grams	Grams KHCO3 per 100 Grams			
	Solution.	Water.	Solution.	Water.		
0	47 . 2	89.4	18.3	22.4		
10	52.2	109.0	21.7	-27.7		
20	52.8	112.0	24.9	33.2		
30	53 · 3	114.0	28.1	39.0		
40 "	54.0	117.0	31.2	45 · 3		
60	56.0	127.0	37 · 5	60.0		
100	60.9	156.0				

Köhler (loc. cit.) gives for the solubility of K_2CO_3 in water, 48.91 grams K_2CO_3 per 100 grams solution, or 95.9 grams per 100 grams H_2O at 31.25°. In saturated sugar solution at the same temperature he finds 56.0 grams sugar + 22.24 grams K_2CO_3 + 21.76 grams H_2O per 100 grams sat. solution. Engel (Ann. chim. phys. [6] 13, 366, '88) finds 111.0 grams K_2CO_3 per 100 grams H_2O or 52.6 grams per 100 grams sat. solution at 0°. Sp. Gr. of solution = 1.542. For potassium bi carbonate he finds 23 grams KHCO₃ per 100 grams H_2O , or 18.7 grams per 100 grams solution. Sp. Gr. of solution = 1.127.

Solubility of Potassium Bi Carbonate in Aqueous Solutions of Potassium Carbonate at o°.

		(Enger.)		
Milligram Mols. p	er 10 cc. Solution.	Sp. Gr. of Solutions.	Grams per 1	oo cc. Solution.
½K2CO3.	KHCO ₃	Solutions.	K ₂ CO ₃ .	KHCO ₃ .
0.0	21.15	1.133	0.0	21.2
17.14	15.28	1.182	11.8	15.3
24.10	12.65	1.203	16.7	12.6
34.50	10.25	1.241	23.8	10.3
49.20	7 · 55	1 . 298	34.0	7.6
62.14	5.86	1.350	43.0	5.9
74.60	4.90	1 . 398	51.6	4.9
87.50	3.75	1.448	60.5	3.8
117.75	0.0	1.542	81.4	0.0

Solubility of Potassium Carbonate in Aqueous Solutions of Ethyl and Propyl Alcohols at 20°.

(Linebarger - Am. Ch. J. 14, 380, '92; de Bruyn - Rec. trav. chim. 18, 87, '99.)

In Aq. Ethyl Alcohol. In Aq. Propyl Alcohol.

		Ĭ.		-	1 2
Wt. per cent C ₂ H ₅ OH in Solvent.	Gms. K ₂ CO ₃ per 100 Gms. Sat. Solution.	Wt. per cent C ₂ H ₅ OH in Solvent.	Gms. K ₂ CO ₃ per 100 Gms. Sat. Solution.	Wt. per cent C ₃ H ₇ OH in Solvent.	Gms. K ₂ CO ₃ per 100 Gms. Sat. Solution.
10	24	50	2.5	40	4.3
20	16	55	1.8	45	3.0
30	10	60	I.I	50	2.0
40	5.6	65	0.8	55	1.3
45	4	69	0.4	60	0.8
				65	0.5

100 grams glycerine of 1.225 Sp. Gr. dissolve 7.4 grams K_2CO_3 . (Vogel — N. Rep. Pharm. 16, 557, '67.)

POTASSIUM SODIUM CARBONATE KNaCO3.6H2O.

100 gms. $\rm H_2O$ dissolve 184 gms. salt at 15°. Sp. Gr. of sol. = 1366. (Stolba – J. pr. Chem. 94, 406, '65.)

POTASSIUM URANYL CARBONATE 2K2CO3.(UO2)CO3.

100 gms. H₂O dissolve 7.4 gms. salt at 15°.

POTASSIUM CHLORATE KClO3.

(Ebelmen - Liebig's Ann. [3] 5, 189, '52)

SOLUBILITY IN WATER.

(Gay-Lussac — Ann. chim. phys. 11, 314, 1819; Pawlewski — Ber. 32, 1040, 199; above 100°, Tilden and Shenstone — Proc. Roy. Soc. 35, 345, 81; see also Blarez — Compt. rend. 112, 1213, '91; Etard — Ann. chim. phys. [7] 2, 526, 94; at 99°, Köhler — Z. anal. Chem. 18, 242, '79.)

t°.	Gms. K	Gms. KClO3 per 100 Gms.			Gms. KClO ₃ per 100 Gms.		
t .	Solution.	Wa	ter.	t°.	Solution.	Wa	ter.
0	3.04	3.14	3 · 3*	70	22.55	29.16	32.5*
10	4.27	4.45	5.0	80	26.97	36.93	39.6
20	6.76	7.22	7.1	90	31.36	46.11	$47 \cdot 5$
25	7.56	8.17	8.6	100	35.83	55 · 54	56.0
30	8.46	9.26	IO.I	120	42.4	73 · 7	$73 \cdot 7$
40	11.75	13.31	14.5	136	49 · 7	98.5	99.0
50	15.18	17.95	19.7	190	64.6	183.0	183.0
60	18.97	23.42	26.0	330	96.7	2930.00	

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM BROMIDE AT 13°. (Blarez - Compt. rend. 112, 1213, '91.)

Gms. per 100 Gms. Solution.		Gms. pe Sol	r 100 Gms. ution.	Gms. per 100 Gms. Solution.	
KBr.	KClO ₃ .	KBr.	KClO ₃ .	KBr.	KClO ₃ .
0.20	5.18	I.0	5.04	6.0	3.46
0.60	5.20	2.0	4.60	8.0	2.80
0.8	5.06	3.0	4.2	10.0	2.40
	•	4.0	4.0		

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF OTHER POTASSIUM SALTS AT 140-150. (Blarez.)

0.1.	Gms. per 100	Gms. Solution.	Salt.	Gms. per 100	Gms. Solution.
Salt.	K Salt.	KClO ₃ .	Sait.	K Salt.	KClO ₃ .
KOH	I.43	4.47	KNO_3	2.59	4.51
KCl	1.91	4.45	"	5.18	3.88
"	3.82	3.58	K_2SO_4	2.23	4.71
KBr	3.05	4.49	"	4.46	3.98
66	6.10	3.60	$K_2C_2O_4$	2.42	4.72
KI	4.25	4.59	66	4.85	3.93
66	8.51	3.65			

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 20°. (Winteler - Z. Electrochem. 7, 360, '00.)

Sp. Gr. of	Grams	per Liter.	Sp. Gr. of Solutions.	Grams	per Liter.
Solutions.	KCl.	KClO ₃ .	Solutions.	KCl.	KClO ₃ .
1.050	0	71.1	1.098	120	24.5
1.050	IO	58.o	1.108	140	22.5
1.050	20	49.0	1.119	160	21.0
1.054	40	39 · 5	1.130	180	20.0
1.064	60	34.0	1.140	200	20.0
1.075	80	30.0	1.168	250	20.0
1.086	100	27.0			

SOLUBILITY OF POTASSIUM CHLORATE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE.

(Arrhenius - Z. physik. Chem. 11, 397, '93.)

Results at 19.85°.

Results at 23.87°.

Mols. pe	r Liter.	Grams p	er Liter.	Mols. p	er Liter.	Grams pe	er Liter.
KNO ₃ .	KClO ₃ .	KNO3.	KClO ₃	KNO ₃ .	KClO ₃	KNO ₈ .	KClO ₃ .
0.0	0.570	0.0	69.88	0.0	0.645	0.0	79.09
0.125	0.529	12.65	64.86	0.5	0.515	50.59	63.14
0.25	0.492	25.29	60.33				
1.0	0.374	101.19	45.85				
2.0	0.328	202.38	40.22				

241 SOLUBILITY OF POTASSIUM CHLORATE:

(Taylor - J. Physic. Chem. 1, 720, '96-'97; see also Gerardin - Ann. chim. phys. [4] 5, 148, '65.)

	In A	queous	Alcohol.		In Aqueous Acetone.			
cohol or	Gms. K	30°. ClO ₃ per Gms.	Gms. KC	ms.	At 3 Gms. KC	lO ₃ per ms.	At 40 Gms. KCl	O ₃ per
Solvent	· Solution.	Water.	Solution.	Water.	Solution.	Water.	Solution.	Water.
0	9.23	10.17	12.23	13.93	9.23	10.17	11.23	13.93
5	7.72	8.80	10.48	12.33	8.32	9.56	11.10	13.11
10	6.44	7.65	8.84	10.77	7.63*	9.09	10.28*	12.60
20	4.51	5.90	6.40	8.56	6.09	8.10	8.27	11.26
30	3.21	4.74	4.67	7.00	4.93	7.40	6.69	10.24
40	2.35	4.00	3.41	5 . 88	3.90	6.76	5.36	9.45
50	1.64	$3 \cdot 33$	2.41	4.94	2.90	5.98	4.03	8.40
60	1.01	2.53	1.41	3.69	2.03	5.17	2.86	7 - 35
70	0.54	1.82	0.78	2.63	I.24	4.18	r.68	5.68
80	0.24	I.22	0.34	1.73	0.57	2.88	0.79	3.97
90	0.06	0.62	0.12	1.17	0.18	1.82	0.24	2.45

* Solvent, 9.09 Wt. per cent Acetone.

100 grams glycerine dissolve 3.5 grams KClO₃ at 15.5°. 100 grams sat. solution of KClO₃ in glycol contain 0.9 gram KClO₃. (de Coninck - Bul. acad. roy. Belgique, 359, '05.)

POTASSIUM (Per) CHLORATE KC1O4.

SOLUBILITY IN WATER AND IN ALCOHOL. (Muir - Chem. News, 33, 15, '76; Wenze - Z. angew. Ch. 5, 601, '01.)

	In Water.	(M.)	In Alco	phol. (W.)
t°.	Gms. KClO ₄ per 100 Gms. H ₂ O.	Sp. Gr. of Solutions.	Wt.per cent Alcohol.	Gms. KClO ₄ per 100 Gms. Alcohol.
6	0.7	1.0005	97.2	0.0156
25	1.9	1.0123	95.8	0.020
50	6.45	1810.1	90.0	0.036
TOO	20.0	T.0660		

POTASSIUM CHLORIDE KCI.

SOLUBILITY IN WATER.

(Average curve from the results of Meusser — Z. anorg. Chem. 44, 70, '05; at 31.25°, Köhler — Z. Ver. Zuckerind. 47, 447, '07; Andrae — J. pr. Chem. [2] 29, 456, '84; Gerardin — Ann. chim. phys. [4] 5, 137, '05; de Coppet *Ibid.* [5] 30, 411, '83; Etard *Ibid.* [7] 2, 526, '94; Mulder; above 100°, Tilden and Shenstone — Proc. Roy. Soc. (Lond.) 35, 345, '83.)

to Gms. KCl per 100 Gms.			, G	Gms. KCl per 100 Gms.			Gms. KCl per 100 Gms.	
	Solution.	Water.	· . ~	Solution.		t°. 🥳	Solution.	Water.
- 9	19.3	23.9	40	28.6	40.0	147	41.5	70.8
-4.	20.6	25.9	50	29.9	42.6	180	43 · 7	77 · 5
0	21.6		60	31.3	45.5		Solid Phase	Ice
5	22.7	29.3	70	32.6	48.3	-9	19.3	23.9
10	23.7	31.0	80	33.8	51.1	-8.	17.7	21.5
15	24.5	32.4	90	35.1	54.0	-8	16.7	20.0
20	25.4	34.0	100	36.2	56.7	-7	14.9	17.5
25	26.2	35 · 5	130	39.8	66.0	-6	13.6	15.7
30	27 · I	37.0				-5.5	12.5	14.3

Sp. Gr. of solution sat. at $o = {}^{\circ}1.150$; at $15^{\circ} = 1.172$.

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND AMMONIUM CHLORIDE IN WATER AT 25°. (Fock - Z. Kryst. Min. 28, 353, '97.)

		•				
Grams per Liter Solution. NH4Cl. KCl.		Mol. po in Solu	r cent	Sp. Gr. of Solutions.		per cent in d Phase.
NH ₄ CI.	KCI.	NH ₄ CI.	KCI.		NH4CI.	KCI.
0.00	311.3	0.00	100.0	1.1807	0.0	100
22.81	293.3	9.41	90.59	1.1716	I.2I	98.79
35.39	278.7	15.04	84.96	1.1678	2.11	97.89
89.17	273.2	34.26	65.74	1.1591	6.18	93.82
127.8	234.6	46.59	53 · 44	1.1493	8.90	91.10
147.2	204.2	51.63	48.37	1.1461	10.53	89.47
197.3	157.7	63.56	36.44	1.1391	17.86	82.14
232.5	116.8	73 · 49	26.51	1.1326	60.20	39.80
244.5	123.0	73.48	26.52	1.1329	76.88	23.12
261.9	0.111	79.10	20.90	1.1245	97.51	2.49
259.0	IO2.2	82.14	17.86	1.1212	97.79	2.21
278.6	53.16	87.96	12.04	1.1009	98.85	1.15
320.7	31.24	93 · 45	6.55	1.0912	99 · 33	0.67
273.5	0.00	100.00	0.00	1 .0768	100.0	0.00

Solubility of Mixtures of Potassium Chloride and Potassium BROMIDE AT 25°. (Fock.)

			(LOCK.)				
	per Liter lution. KCl.	Milligra per I KBr.	m Mols. Liter. KCl.	Mol. per cent KCl in Solution.	Sp. Gr. of Solutions.	Mol. per cent KCl in Solid Phase.	
558.1	0.00	4686.2	0.0	0.0	1.3756	0.00	
531.5	23.44	4462.7	314.2	6.16	1.3700	0.00	
503.6	46.57	4228.5	624.3	12.86	1.3648	8.23	
454.6	82.62	3817.8	0.8011	22.49	1.3544	15.68	
379.6	136.6	3188.1	1830.7	36.48	1.3320	33.66	
324.8	166.9	2727.6	2237 . 4	45.06	1.3119	63.51	
218.0	213.9	1830.2	2868.0	60.30	1.2689	82.29	
140.7	250.9	1181.1	3363.9	74.01	1.2455	88.04	
47 · 5	291.7	398.8	3911.4	85.22	1.1977	96.98	
0.0	311.3	0.0	4173.1	100.00	1.1756	100.00	

Solubility of Potassium Chloride in Aqueous Solutions of HYDROCHLORIC ACID AT 0°. (Jeannel — Compt. rend. 103, 381, '86; Engel — Ann. chim. phys. [6] 13, 377, '88.)

M	filligram Mols.	per 10 cc.	Grams per 10	Sp. Gr. of	
	. KCl.	HCl.	KCl.	HCI.	Sp. Gr. of Solutions.
	34.5	0.0	25.73	0.0	1.159
	30.41	3.9	22.69	1.42	1.152
	27.95	6.6	20.84	2.41	1.150
	27.5	7.1	20.51	2.59	1.147
	23.75	II.I	17.71	4.05	1.137
	16.0	23.0	11.93	8.39	I.III
	10.0	34.0	7.46	12.40	1.105
	7.5	41.0	5.60	14.95	1.105
	2.0	65.5	1.49	23.88	1.121
	2.4	148.8 (sat.)	1.52	54.26	I.224
	mak	TTO11 /*	41 4	-	TTO1

100 cc. saturated HCl solution dissolve 1.9 grams KCl at 17°.
(Ditte—Compt. rend. 92, 242, '86.)

1.550

0.9 85.0 1.580

1.1 80.0

243

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS POTASSIUM HYDROXIDE SOLUTIONS.

(Engel - Bull. soc. chim. [3] 6, 16, '91; Winteler - Z. Electrochem. 7, 360, '00.)

	Re	esults at (Engel.)		Results at 20°. (Winteler.)			
Mg. Mo 10 cc. So KCl.	ls. per olution KOH.	Sp. Gr. of Solution.	Gms. po Solu KCl.	tion.		r 100 cc.	Sp. Gr. of Solution.
35.5	0	1.159	26.83	0.0	29.3	1.0	1.185
31.0	2.375	1.146	23.44	1.33	21.1	10.0	1.210
28.3	4.7	1.153	21.39	2.64	14.8	20.0	1.245
23.0	9.9	1.172	17.39	5.56	10.4	30.0	1.295
18.38	15.1	1.195	13.89	8.46	6.8	40.0	1.345
14.43	20.0	1.216	10.91	11.23	4.0	50.0	1.397
11.43	24.63	1.239	8.64	13.83	2.2	60.0	1.450
8.98	29.25	1.261	6.78	16.43	1.4	70.0	1.500

6.28 35.13 1.294 4.74 19.72

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM IODIDE IN WATER.

(Etard - Ann. chim. phys. [7] 3, 275, '94.)

t°.	Grams per 100 (KCl.	Gms. Solution.	t°.	Grams per 100 KCl.	Gms. Solution.
0	$3 \cdot 7$	50.5	.100	6.2	61.0
20	4.2	53.0	110	7 · 3	63.7
40	4.7	55.3	180	8.3	65.5
60	5 · 2	57 - 5	220	9.4	66 <u>3</u>
80	5 · 7	59 · 4	245	10.0	66.5

Solubility of Potassium Chloride in Aqueous Magnesium CHLORIDE SOLUTIONS.

(Precht and Wittgen - Ber. 14, 1667, '81.)

Grams	KCl	per	100	Grams	Sat.	Solution	in:
-------	-----	-----	-----	-------	------	----------	-----

		Granis Acc	1 pcr 100 G1		ation in:
t°.	MgCl ₂ .	15% MgCl ₂ .	$^{21.2\%}_{ m MgCl_2}$.	30% MgCl ₂ .	20% MgCl ₂ .
IO	14.3	9.9	5 · 3	1.9	4.2 KCl+5.7 NaCl
20	15.9	11.3	6.5	2.6	6.0 " +5.9 "
30	17.5	12.7	7.6	3 · 4	6.9 " +6.0 "
40	19.0	14.2	8.8	4.2	7.9 " +6.1 "
50	20.5	15.6	10.0	5.0	8.9 " +6.3 "
60	21.9	17.0	11.2	5.8	9.9 " +6.4 "
80	24.5	19.5	13.6	$7 \cdot 3$	10.9 " +6.6 "
90	25.8	20.8	14.7	8.1	11.9 " +6.7 "
100	27.1	22.I	15.9	8.9	13.0 " +6.9 "

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM NITRATE, AND OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AT SEVERAL TEMPERATURES.

(Touren — Compt. rend. 130, 908, '00; Bodländer — Z. physik. Ch. 7, 360, '91; Nicol — Phil. Mag. (Lond.) 31, 369, '91; Soch — J. Physic. Ch. 2, 46, '98.)

KCl in Aq. KNO₃ Solutions at:

14.5	° (T.).	I	7.5° (B	.).	25.2°	(T.).	20°, et	c. (N.).
Gms. per Liter Solution.		Sp. Gr. Gms. per Liter. Solutions.		Gms. per Liter.		Gms. per 1000 Gms. H ₂ O.		
KNO3.	KCl.	DOILLIOLD	KNO3.	KCl.	KNO3.	KCl.	KNO3.	KCl.
0	288.3	1.173	0.0	293.9	0.0	311.8	0.00	345.2
20.64	284.2	1.198	65.8	275.0	13.76	306.6	56.18	342.15
32.18	282.1	1.210	88.3	273.4	32.18	303.6	168.54	334.39
62.23	276.8	1.225	124.8	265.3	91.26	293.2	at 25	0
82.77	273.5	1.236	148.3	259.8	122.7	287.2	225.8	341.3
115.9	270.7	1.239	152.2	259.6	141.4	284.2	•	
119.1	268.3	1.239	154.9	259.5	182.7	276.0	at 8c	,0
123.4	267.2	1.241	153.3	262.4			1175.0	402.0

KNO₃ in Aq. KCl Solutions at:

14.5°.		25.2	•	20°.		
Grams per Liter Solution.		Grams per Lit	er Solution.	Grams per 1000 Gms. H2O.		
KCl.	KNO ₃ .	KCl.	KNO ₃ .	KCl.	KNO ₃ .	
0.0	225.4	0.0	325.5	0.0	311.1	
13.58	219.8	19.39	312.3	82.9	256.8	
31.63	208.2	49.22	288.7	165.8	221.7	
65.64	185.2	100.7	254.0	248.7	202.0	
132.6	159.5	155.2	224.4	310.8	501.6	
164.4	153.3	207 . 3	203.9			
196.5	144.0	226.8	196.9			
236.9	137.1					

KNO₃ in Aq. KCl at 20.5° (B.). KCl in Aq. KNO₃ at 20.5° (B.).

Gms. per Solut KCl.	ion. KNO ₃ .	Sp. Gr. of Solutions.	Gms. per s Solut KNO ₃ .	roo Gms.	Sp. Gr. of Solutions.
0.0	27.68	1.1625	0.0	29.39	1.1730
4.72	24.39	1.1700	6.58	27.50	1.1980
$7 \cdot 74$	22.44	1.1765	8.88	27.34	1.2100
12.23	20.23	1.1895	12.48	26.53	1.2250
15.15	18.96	1.1983	14.83	25.98	1.2360
19.61	17.67	1.2150	15.22	25.96	1.2390
22.17	17.11	1.2265	15.49	25.95	1.2388
24.96	16 79	1.2400	15.33	26.24	1.2410

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND POTASSIUM SULPHATE IN WATER.

245

t°.	Gms. per 10 H ₂ O KCl. +		Observer.	t°.		100 Gms. 2O. K ₂ SO ₄ .	Observer.
10	30.9	1.32	(Precht and Wittgen.)	40	38.7	1.68	(P. and W.)
15.8	28.0	2.3	(Kopp.)	50	41.3	1.82	44
20	33.4	I.43	(P. and W.)	60	43.8	1.94	66
25	34.76	2.93	(Van't Hoff and Meyerhoffer.)	80	49.2	2.21	64
30	36.1	1.57	(P. and W.)	100	54.5	2.53	4

SOLUBILITY OF MIXTURES OF POTASSIUM CHLORIDE AND SODIUM CHLORIDE IN WATER,

((1) Precht and Wittgen — Ber. 14, 1667, '81; at 25° and at 80°, (3) Soch — J. Physic. Ch. 2, 46, '08; (2) Etard — Ann. chim. phys. [7] 3, 275, '97.)

t°.	Grams per 100	Grams H ₂ O.	t°.	Grams per 100 Grams H ₂ O. KCl. NaCl.			
	KCl.	NaCl.					
0	11.2(1)11.2(2)	30.0(1)30.0(2)	50	22.0(1)19.0(2)	27.7(1)32.3(2)		
10	12.5 12.3	29.7 30.5	60	24.6 20.6	27.2 32.8		
20	14.7 13.8	29.2 31.0	70	27.3 32.5	26.8 34.1		
25	15.8(3)14.5	29.0(3) 31.3	80	30.0(3) 25.2(3)	26.4(3)34.0		
30	17.2 15.4	28.7 31.5	90	32.9 28.4	26.1 32.3		
40	19.5 17.0	28.2 31.9	100	34.7 32.3	25.8 30.6		

Note. — Page and Keightly, Rudorff and also Nicol, give single determinations which lie nearer the results of Precht and Wittgen than to those of Etard.

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, AND OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, AT 20°.

(Nicol - Phil. Mag. (Lond.) 31, 369, '91.)

KCl in Aq. Na	Cl Solutions.	NaCl in Aq. KCl Solutions.		
Grams per 10	o Grams H ₂ O.	Grams per 100	Grams H2O.	
NaCl.	KCl.	KCl.	NaCl.	
0.0	34.52	0.0	35.91	
6.5	29.37	4.14	34.39	
13.0	4.71	8.29	32.71	

.42

19.5

100 gms. 40 per cent by wt. alcohol dissolve 5.87 gms. KCl + 12.25 gms. NaCl at 25°.

12.42 31.30

100 gms. 40 per cent by wt. alcohol dissolve 5.29 gms. KNO₃ + 10.06 gms. KCl at 25°. (Soch – J. Physic. Ch. 2, 46, '98.)

100 gms. abs. ethyl alcohol dissolve 0.034 gm. KCl at 18.5°.
100 gms. abs. methyl alcohol dissolve 0.5 gm. KCl at 18.5°.
(de Bruyn – Z. physik. Ch. 10, 783, '92; Rohland – Z. anorg. Ch. 18, 327, '98)

· SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL. (Gerardin — Ann. chim. phys. [4] 5, 140, '65.)

Interpolated from the original results.

Grams	KCl	per	100	Gms.	Aq.	Alcohol	of	Sp. (Gr.:
-------	-----	-----	-----	------	-----	---------	----	-------	------

t°.	0.9904 = 5.5	o.9848 = 9.35	0.9793 = 13.6	0.9726 = 10.1	0.9573 = 30	0.939	0.8967 = 60	0.8244
	Wt. %.	Wt. %.	Wt. %.	Wt. %.	Wt. %.	Wt. %.	Wt. %.	Wt. %.
0	23.4	19.5	15.5	11.5	7.0	4.0	1.7	0.0
5	25.0	21.0	16.8	12.8	8.0	4.8	2.2	0.0
10	26.4	22.5	18.0	14.0	9.0	5.6	2.7	0.0
15	26.8	24.0	19.2	15.2	10.0	6.4	3.1	0.04
20	29.1	25.3	20.3	16.1	10.8	7.2	3.5	0.06
25	30.4	26.8	21.5	17.1	11.6	7.9	3.9	0.08
30	31.7	28.0	22.6	18.2	12.5	8.5	4.2	0.10
40	34.3	30.8	24.8	20.0	14.0	9.9	4.8	0.20
50	37.0	33 · 5	27.0	21.8	15.5	10.8	5.2	0.30
60	• • •	• • •	• • •	• • •	16.8	11.8	5 · 5	0.40

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ALCOHOL AT:

I5°. I4.5°. (Schiff — Liebig's Ann. 118, 365, '61.) (Bodländer — Z. physik. Ch. 7, 316, '91.)

Sp. Gr.	Wt.	G. KCl per	Sp. Gr. of Sat.	Grams per 100 cc. Solution.			
of Alcohol.	per cent Alcohol.	Alcohol.	Solutions.	C ₂ H ₅ OH.	H ₂ O.	KCl.	
0.984	IO	19.8	1.1720		88.10	29.10	
0.972	20	14.7	1.1542	2.79	85.78	26.85	
0.958	30	10.7	1.1365	4.98	84.00	24.67	
0.940	40	$7 \cdot 7$	1.1075	10.56	79.63	20.56	
0.918	50	5.0	1.1085	15.57	75.24	17.24	
0.896	60	2.8	1.0545	20.66	70.52	14.27	
0.848	80	0.45	1.0455	24.25	67.05	13.25	
Gerardin's	results	at 15° agree	0.9695	40.42	50.18	. 6.35	
well with the above deter-			0.9315	48.73	40.60	3.82	
mination	ıs.		0.8448	68.63	15.55	0.30	

30° and 40°. (Bathrick — J. Physic. Chem. 1, 160, '96.)

Wt.	Gms. KCl r	per 100 Gms. Alcohol.	Wt.	Gms. KCl per 100 Gms. Aq. Alcohol.		
Alcohol.	At 30°.	At 40°.	Alcohol.	At 30°.	At 40°.	
0	38.9	41.8	43.1	II.I	13.1	
5.28	33.9	35.9	55.9	6.8	8.2	
9.43	30.2	33 · 3	65.9	3.6	4 · I	
16.9	24.9	27.6	78 . I	1.3	1.6	
25.1	19.2	21.8	86.2	0.4	0.5	
34.I	15.6	17.2				

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS ACETONE SOLUTIONS.

(Snell - J. Physic. Ch. 2, 484, '98; at 20°, Herz and Knoch - Z. anorg. Ch. 41, 317, '04.)

Per cent Acetone in	KCl per Solut	100 CC.	Gms. per Soluti	100 Gms.	At 40 Gms. per Soluti	100 Gms.	At 50 Gms. per Soluti	100 Gms.
Solvent.	Millimols.	Grams.	Acetone.	KCl.	Acetone.	KCl.	Acetone.	KCl.
0	410.5	30.62	0. 0	27.27	0.0	28.69	0.0	30.0
9.1	351.7	26.23	6.96	23.42	6.79	25.33		
20	286.6	21.38	16.22	18.90	15.75	21.28		
30	223.7	16.69	25.45	15.06	two la	yers	25.67	14.42
40	166.5	12.42	35.52	11.31	"		36.03	9.93
50	115.4	8.61	45.98	8.04	66		46.46	7.07
60	71.2	5.31	56.91	5.12	"		57.37	4.38
70	38.5	2.87	68. 18	2.60	"		68.56	2.22
80	12.9	0.96	78.43	0.76	79.34	0.58	79.25	0.94
90	2.0	0.15	89.88	0.13	89.84	0.16	$81^{\circ} + sa$	t.sol.
100	0.0	0.0	100.0	0.00	100.00	0.00		

Note. — For the 20° results the per cent acetone in the solvent is stated in terms of volume per cent, and the concentration of the second solution is 10 per cent instead of 9.1 which is the concentration of the solvent for the corresponding results at the other temperatures.

At the Temperature 40° and for Concentrations of Acetone between 20 and 80 per cent the Saturated Solution separates into Two Layers having the Following Compositions:

TT.	กก	er	La	yer.
\sim	PP		110	y CI.

Lower Layer.

Grams p	er 100 Grams S	Solution.	Grams pe	er 100 Grams S	olution.
H ₂ O.	(CH ₃) ₂ CO.	KCl.	H ₂ O.	(CH ₃) ₂ CO.	KCl.
55.2	31.82	12.99	28.14	69.42	2.44
53.27	35 · 44	11.29	30.96	65 . 97	3.07
51.23	48.50	10.27	32.64	63 . 79	3.56
50.3+	39.88	9.77	34.07	62.01	3.92
48.02	43.18	8.79	37 - 44	57.67	4.89
46.49	45:34	8.17	38 • 68	56.17	5.25
58.99	25.24	15.77	23.66	74.91	I.43

100 cc. sat. solution of potassium chloride in furfurol (C₄H₃O.COH) contain 0.085 gm. KCl at 25°.

(Walden – Z. physik. Ch. 55, 713,'06.)

SOLUBILITY OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTIONS OF GLYCERINE AT 25°.

(Herz and Knoch - Z. anorg. Ch. 45, 267, '05.)

Sp. Gr. of Glycerine at $25^{\circ}/4^{\circ} = 1.2555$. Impurity about 1.5%.

Wt. per cent Glycerine in Solvent.	KCl per Solut Millimols.	ion. Grams.	Sp. Gr. of Solutions.	Wt. per cent Glycerine in Solvent.	KCl pe Solu Millimols.		Sp. Gr. of Solutions.
0	424.5	31.66	1.180	54.23	238.5	17.79	1.219
13.28	383.4	28.61	1.185	83.84	149.0	11.11	1.259
25.98	339.3	25.31	1.194	100.00	110.6	8.25	1.286
45.36	271.4	20.24	1.211				

100 grams H₂O dissolve 246.5 grams sugar + 44.8 grams KCl at 31.25°, or 100 grams of the sat. solution contain 62.28 grams sugar + 11.33 grams KCl.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

POTASSIUM CHROMATE K2CrO4.

POTASSIUM (Di) CHROMATE K2Cr2O7.

SOLUBILITY OF EACH IN WATER.

(Alluard — Compt. rend. 59, 500, '64; Nordenskjold and Lindstrom — Pogg. Ann. 136, 314, '69; Etard — Ann. chim. phys. [7] 2, 527, '94; Kremers — Pogg. Ann. 92, 497, '54; Tilden and Shenstone — Phil. Trans. 23, 1884.)

	Potassium Chromate.			Potassium Di Chromate.		
t°.	Grams	per 100 Gran	ns Water.	Grams per 100 Grams Water.		
0	58.2*	59.3	60.2‡	5*	5§	
IO	60.0	61.2	62.5	7	7	
20	61.7	63.2	64.5	12	12	
25	62.5	64.2	64.5	16	16	
30	63.4	65.2	66.5	20	20	
40	65.2	67.0	68.6	26	27	
50	66.8	69.0	70.6	34	37	
60	68.6	71.0	72.7	43	47	
70	70.4	73.0	74.8	52	58	
80	72.1	75.0	76.9	61	70	
90	73.9	77.0	79.0	70	82	
100	75.6	79.0	82.2	80	97	
125	79.0			110	145	
150	83.0	• • •	• • •	143	205	
* Etard.	† A	lluard.	‡ N. and L.	§ A., K., T. and	IS.	

SOLUBILITY OF POTASSIUM CHROMATES IN WATER AT 30°. (Schreinemaker — Z. physik. Ch. 55, 83, 'o6.)

Composition in Wt. per cent of: Solid The Residue. The Solution. Phase. Per cent CrO3. Per cent K2O. Per cent CrO3. Per cent K2O. 土 47 KOH.2H2O 0 K2CrO4 0.0 47.16 12.59 47.54 34.602 64 0.1775 10.93 37 - 47 26.602 16.482 66 1.351 32.532 20.584 5.598 37.131 66 39.922 46 19.225 27.966 15.407 29.377 20.67 19.17 K2CrO4+K2Cr2O7 22.61 19.096 17.30 37.64 K2Cr2O7 7.88 11.35 17.93 3.412 25.85 7.82 43.51 3.01 49.45 9.91 K2Cr2O7 + K2Cr2O10 44.46 3.245 53.94 12.40 46.368 2.823 60.314 12.935 K2Cr3O10 K2Cr3O10 + K2Cr4O1 11.684 2.353 63.044 49.357 53.215 1.360 62.958 8.002 K2Cr4O13 62.55 0.796 67.944 6.731 K2Cr4O13 + CrO3 0.621 62.997 70.0 4.0 62.28 0.0 CrO₃

100 gms. sat. solution in glycol C₂H₄(OH)₂.H₂O contain 1.7 gms. K₂CrO₄ at 15.4°.

100 gms. sat. solution in glycol $C_2H_4(OH)_2$. H_2O contain 6.0 gms. $K_2Cr_2O_7$ at 14.6°. (de Coninck — Bull. acad. roy. Belgique, 257, '05.)

POTASSIUM CITRATE C₃H₄(OH)(COOK)₃.H₂O.

SOLUBILITY IN WATER AND IN SATURATED SUGAR SOLUTION AT 31.25°. (Köhler — Z. Ver. Zuckerind. 47, 447, '97.)

100 gms. H₂O dissolve 169.7 gms. C₆H₅O₇K₃, or 100 gms. sat. solu-

tion contain 61.11 gms.

100 gms. H_2O dissolve 198.3 gms. $C_6H_5O_7K_3+303.9$ gms. sugar, or 100 gms. sat. solution contain 32.83 gms. $C_6H_5O_7K_3+50.3$ gms. sugar.

POTASSIUM CYANATE KCNO.

SOLUBILITY IN ALCOHOLIC MIXTURES. (Erdmann — Ber. 26, 2430, '03.)

(Erdma		
Solve	Grams KCNO per Liter Solvent at b. pt.	
80 per cent Alcohol +		62
80 per cent Alcohol +	20 per cent Methyl Alcohol	l 76
80 per cent Alcohol +	10 per cent Acetone	82

POTASSIUM CYANIDE KCN.

100 gms. H₂O dissolve 122.2 gms. KCN, or 100 gms. sat. solution contain 55.0 gms. KCN at 103.3°. (Griffiths.)

100 gms. abs. ethyl alcohol dissolve 0.87 gm. KCN at 19.5°. 100 gms. abs. methyl alcohol dissolve 4.91 gms. KCN at 19.5°.

(de Bruyn - Z. physik, Ch. 10, 783, '92.)

100 gms. glycerine dissolve 32 gms. KCN at 15.5°.

POTASSIUM CHROMOCYANIDE KaCr(CN) 6.

100 gms. H₂O dissolve 32.33 gms. K₃Cr(CN)₆ at 20°. (Moissan – Ann. chim. phys. [6] 4, 136, '85; Christensen – J. pr. Ch. [2] 31, 166,'85.)

POTASSIUM CHROMISULPHOCYANIDE K₂Cr(SCN)_{6.4}H₂O.

100 gms. H2O dissolve 130 gms. salt.

(Karsten - Ann. Suppl. 3, 170.)

POTASSIUM CARBONYL FERROCYANIDE K₃FeCO(CN)₅, 3½H₂O.

100 gms. H₂O dissolve 148 gms. salt at 16°.

(Müller - Compt. rend. 104, 992, '87.)

POTASSIUM FERRICYANIDE KaFe(CN)6.

POTASSIUM FERROCYANIDE K, Fe(CN) 6.3 H2O.

SOLUBILITY OF EACH IN WATER.

(Wallace — J. Ch. Soc. 7, 80, '85; Etard — Ann. chim. phys. [7] 2, 526, '04; Schiff — Liebig's Ann. 113, 350, '60; Michel and Krafft — Ann. chim. phys. [3] 41, 478, '58; Thomsen.)

Note. — The available determinations fall very irregularly when plotted on cross-section paper, and the following figures, which are averages, are therefore hardly more than rough approximations to the true amounts. The figures under K₄Fe(CN)₆ show the limits between which the correct values probably lie.

t°.	Grams per 1		s. H ₂ O.	t°.	Grams per		ns. H ₂ O.
	K ₃ Fe(CN) ₆ .	1241 0	(C14)6.		K ₃ Fe(CN) ₆ .		e(C11)6.
0	31	13		40	60	38	70
IO	36	20	20	60	66	52	83
20	43	25	40	80		66	89
25	46	28	48	100		76	91
30	50	32	57	104.4	82.6		

POTASSIUM FLUORIDE KF.2H2O.

100 gms. H₂O dissolve 92.3 gms. KF, or 100 gms. sat. solution contain 48 gms. KF at 18°. Sp. Gr. of solution = 1.502.

(Mylius and Funk — Ber. 30, 1718, '97.)

SOLUBILITY OF POTASSIUM FLUORIDE IN HYDROFLUORIC ACID AT 21°.
(Ditte — Compt. rend. 123, 1282, '96.)

Gms. per 19	o Gms. H ₂ O.	Gms. per 100	Gms. H ₂ O.	Gms. per 100	Gms. H ₂ O.
HF.	KF.	HF.	KF.	HF.	KF.
0.0	96.3	9.25	29.9	20.68	38.4
1.21	72.0	11.36	29.6	28.60	46.9
1.61	61.0	12.50	30.5	41.98	61.8
$3 \cdot 73$	40.4	13.95	31.4	53.71	74.8
4.03	32.5	15.98	33 · 4	74.20	105.0
6.05	30.4	17.69	35.62	119.20	169.5

70

90

45.9 2.16

52.1 1.68

POTASSIUM FORMATE HCOOK.

SOLUBILITY OF POTASSIUM FORMATE AND OF THE ACID SALT IN WATER.

(Groschuff - Ber. 36, 1785, 1903.)

Solid Phase: HCOOK			Solid Phase: HCOOK, HCOOH,						
	t°.	Gms. HCOOK per 100 Gms. Solution.	Mols. HCOOK per 100 Mols. H ₂ O.	t°	Gms. HCOOK .HCOOH . per 100 Gms. Solution.	Gms. HCOOK per 100 Gms. Solution.	t°.	Gms. HCOOK per 100 Gms Solution.	Mols. HCOOH per 1 Mol. HCOOK.
_	20	72.8	57 · 4	0	60.4	39.0	0	36.3	3.21
+	18	76.8	71.0	25	69.8	45.1	19.5	38.2	2.96
	50	80.7	89.8	50	79.2	51.2	39 · 3	40.8	2.65
	90	86.8	141.0	80	90.7	58.6	60	44.0	2.33

140 96.0 511 157 100.0

120

92.0 247.0

Sp. Gr. of sat. sol. at $18^{\circ} = 1.573$.

Note. — Since the acid salt is less soluble at ordinary temperatures than the neutral salt, it can be precipitated from the solution of the neutral salt by addition of aqueous formic acid. Proceeding in this way an impure product is obtained, giving solubility values (expressed in HCOOK) as shown in the last three columns above.

POTASSIUM FLUOGERMANATE K₂GeF₆.

SOLUBILITY IN WATER. (Winkler: Kruss and Nilson - Ber. 20, 1606, '87.)

100 gms. H₂O dissolve 173.98 gms. K₂GeF₆ at 18°, and 34.07 gms. at 100° (W.).

100 gms. H₂O dissolve 184.61 gms. K₂GeF₆ at 18°, and 38.76 gms. at 100° (K. and N.).

POTASSIUM HYDROXIDE KOH.

SOLUBILITY IN WATER.

(Pickering - J. Ch. Soc. 63, 908, '93; at 15°, Ferchland - Z. anorg. Ch. 30, 133, '02.)

# °. Figure 1.0 Gms. KOH per 100 Gms. Water. Solution. - 22	Solid Phase. KOH.2H ₂ O " " KOH.2H ₂ O +
-20.7 22.5 18.4 " 20 112 52.8 -65.2 44.5 30.8 " 30 126 55.76 -36.2 36.2 26.6 KOH.4H2O 32.5 135 57.44 K -32.7 77.94 43.8 " 50 140 58.33	, 46
-65.2 44.5 30.8 " 30 126 55.76 -36.2 36.2 26.6 KOH.4H2O 32.5 135 57.44 K -32.7 77.94 43.8 " 50 140 58.33	46
-36.2 36.2 26.6 KOH.4H ₂ O 32.5 135 57.44 K -32.7 77.94 43.8 " 50 140 58.33	
-32.7 77.94 43.8 " 50 140 58.33	COH "HO T
0 (KOH.H ₂ O
-33 80 44.4 KOH.4H ₂ O+KOH.2H ₂ O 100 178 64.03	KOH.H ₂ O
	44
-23.2 85 45.9 KOH.2H ₂ O 125 213 68.06	84
0 97 49.2 " 143 311.7 75.73	•
10 103 50.7 "	

Sp. Gr. of sat. solution at $15^{\circ} = 1.5355$.

POTASSIUM IODATE KIO.

SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 97, 5, '56; at 30°, Meerburg - Ch. Weekbl. I, 474, '04.)

t° o° 20° 30° 40° 60° 80° 100° Gms. KIO₃ per 100 gms. H₂O 4.73 8.13 11.73 12.8 18.5 24.8 32.2

100 gms. H₂O dissolve 1.3 gms. potassium hydrogen iodate(KH(IO₃)₂ at 15°, and 5.4 gms. at 17°. (Serullas — Ann. chim. phys. 22, 118.)

100 gms. H₂O dissolve 4.0 gms. potassium di hydrogen iodate KH₂(IO₃)₂ at 15°. (Meineke — Liebig's Ann. 261, 360, '91.)

POTASSIUM IODIDE KI.

Ethyl Alcohol

SOLUBILITY IN WATER.

(Mulder; de Coppet — Ann. chim. phys. [5] 30, 417, '83; Etard — *Ibid.* [7] 2, 526, '94; Meusser — Z. anorg. Ch. 44, 80, '05; see also Tilden and Shenstone — Phil. Trans. 23, '84; Schreinemaker — Z. physik. Chem. 9, 71, '92.)

. (3ms. KI pe	er 100 Gms.			Gms. KI pe	er 100 Gms.
t°.	Water.	Solution.		t°.	Water.	Solution.
-10	115.1	53 · 5		80	192	65.8
- 5	119.8	54.5	•	90	200	66.7
— I	122.2	55.0		100	208	67.5
0	127.5	56.0		IIO	215	68 3
10	136	57.6		120	223	69 0
20	144	59.0			T 0	
25	148	59 · 7			Ice Curv	е
30	152	60.3		- 5	25.7	22 5
40	160	61.5		- 7	42.6	29.9
50	168	62.7		- 9.5	51.5	34.0
60	176	63.7		-11.5	64.7	39.3
70	184	64.8		-14	75.8	42.7

SOLUBILITY OF POTASSIUM IODIDE IN ABSOLUTE ALCOHOLS. (de Bruyn — Z. physik. Ch. 10, 783, '92; Rohland — Z. anorg. Ch. 18, 327, '98.)

100 gms. methyl alcohol dissolve 16.5 gms. KI at 20.5°. 100 gms. ethyl alcohol dissolve 1.75 gms. KI at 20.5°. 100 gms. propyl alcohol dissolve 0.46 gm. KI at 15°-20° (R.).

SOLUBILITY OF POTASSIUM IODIDE IN: 1 Aqueous Ethyl Alcohol at 18°.

of 0.9496 Sp. Gr. Sp. Gr. Gms. KI Gms. KI per Sp. Gr. Weight Gms. KI Weight per cent per 100 Gms Alcohol. Alcohol. t°. per cent Alcohol. per 100 Gms. Gms. Alcohol Alcohol. Alcohol. Alcohol. 5.2 66.4 8 67.4 0.9904 0.9390 45 130.5 9.8 0.9088 48.2 13 69.2 0.9851 119.4 59 0.8464 86 0.9726 23.0 IOO.I II.4 25 75.1 6.2 0.8322 89.9 46 84.7 0.9665 29.0 91 0.9528 38.o 76.9 87.5 55 62 90.2 (Gerardin - Ann. chim. phys. [4] 5, 155, '65.)

SOLUBILITY OF POTASSIUM IODIDE IN ACETONE AND IN PYRIDINE. (von Laszcynski – Ber. 27, 2285, '94; at 25°, Krug and McElroy – J. Anal. Ch. 6, 184, '92.)

Calman	Gms. KI per 100 Gms. Solvent at:					
Solvent.	-2.5°.	10°.	220.	25°.	56°.	119°.
Acetone	3.08		2.38	2.93	I.2I	
Pyridine		0.26	• • •			0.11

100 gms. glycerine dissolve 40 gms. KI at 15.5°.

SOLUBILITY OF POTASSIUM IODIDE IN SEVERAL SOLVENTS. (Walden — Z. physik. Ch. 55, 714, '06.)

Solvent.	Formula.	t°.	Sp. Gr. of Solution.	Gms. KI	per 100
Solvent.		•		cc. Solution.	Gms. Solution.
Water	H_2O	0	1.6699	94.05	56.32
Water	$\mathrm{H_{2}O}$	25	1.7254	102.70	59.54
Methyl Alcohol	CH_3OH	0	0.8964	11.61	12.95
Methyl Alcohol	CH ₃ OH	25	0.9003	13.5-14.3	14.97
Ethyl Alcohol	C_2H_5OH	0	0.8085	1.197	1.479
Ethyl Alcohol	C_2H_5OH	25	0.7908	1.520	1.922
Glycol	$(CH_2OH)_2$	0	1.3954	43.28	31.03
Glycol	$(CH_2OH)_2$	25	1.3888	47.23	33.01
Acetonitril	CH_3CN	0	0.8198	1.852	2.259
Acetonitril	CH ₃ CN	25	0.7938	1.57	2.003
Propionitril	C_2H_5CN	0	0.8005	0.34-0.41	
Propionitril	C_2H_5CN	25	0.7821	0. 32-0. 36	0.0404
Benzonitril	C_6H_5CN	25	1.0076	0.051	0.0506
Nitro Methane	CH_3NO_2	0	1.1627	0.314-0.3	
Nitro Methane	$\mathrm{CH_{3}NO_{2}}$	25	1.1367	0.289-0.3	49 0.307
Nitro Benzene	$\mathrm{C_6H_5NO_2}$	25		0.0019	
Acetone	$(CH_3)_2CO$	0	0.8227	1.732	2.105
Acetone	$(CH_3)_2CO$	25	0.7968	1.038	1.302
Furfurol	$C_4H_3O.COH$	0		15.10	
Furfurol	$C_4H_3O.COH$	25	1.2014	5.93	4.94
Benzaldehyde	C ₆ H ₅ COH	25	1.0446	0.343	0. 328
Salicyl aldehyde	C ₆ H ₄ .OH.COH	0	1.1501	1.257	1.093
Salicyl aldehyde	$C_6H_4.OH.COH$	25	1.1373	0.549	o . 483
Anis aldehyde	C ₆ H ₄ .OCH ₃ .COH	0	1.1223	1.520	1.355
Anis aldehyde	C_6H_4 .OCH $_3$.COH	25	1.1180	0.720	0.644
Ethyl Acetate	CH ₃ COOC ₂ H ₅	25		0.0013	• • •
Methyl Cyan Acetate	CH₂CNCOOCH₃	0	1.1521	3.256	2.827
Methyl Cyan Acetate	CH ₂ CNCOOCH ₃	25	1.1358	2.459	2.165
Ethyl Cyan Acetate	CH ₂ CNCOOC ₂ H ₅	25	1.0628	0.989	0.930

POTASSIUM NITRITE KNO2.

100 gms. H₂O dissolve about 300 gms. KNO₂ at 15.5°.

(Divers - J. Ch. Soc. 75, 86, '99.)

POTASSIUM NITRATE KNO3.

SOLUBILITY IN WATER.

(Mulder; Andrae — J. pr. Ch. [2] 29, 456, '84; Gerardin — Ann. chim. phys. [4] 5, 150, '65; Etard — Ibid. [7] 2, 526, '94; Ost — J. pr. Ch. [2] 17, 233, '78; at 31.25°, Köhler — Z. Ver. Zuckerind. 47, 447, '97; Euler — Z. physik. Ch. 49, 315, '04; Tilden and Shenstone — Phil. Trans. 23, '84; Berkeley — Trans. Roy. Soc. 203 A, 213, '04.)

Average Curve.

t°.	Gms. KNO ₃	Gms. KNO ₃ per 100 Gms.		Gms. KNO3 per 100 Gms.	
	Water.	Solution.	t°.	Water.	Solution.
0	13.3	11.7	70	138	58.0
IO	20.9	17.3	80 °	169	62.8
20	31.6	24.0	90	202	66.9
25	37 · 3	27.2	100	246	71.1
30	45.8	31.4	110	300	75.0
40	63.9	39.0	120	394	79.8
50	85.5	44.0	125	493	83.1
60	110.0	52.0			

Solubility of Mixtures of Potassium Nitrate and Barium Nitrate in Water.

(Euler - Z. physik. Ch. 49, 313, '04.)

t°.	Sp. Gr. of Sat. Solution.	Grams per 100 Grams H ₂ O.
17	1.120	13.26 KNO ₃ + 6.31 Ba(NO ₃) ₂
21.5		17.00 " + 7.58 "
30	1.191	24.04 " + 9.99 "
50	• • •	49.34 " +18.09 "

Solubility of Potassium Nitrate in Aqueous Solutions of Nitric Acid at 0°.

(Engel -- Compt. rend. 104, 913, '87.)

Sp. Gr. of Solutions.	Equivalents	per 10 cc. Solution.	Grams per 100 cc. Solution.			
I .079	12.5 KNO ₃		12.65 KNO ₃	0.00 HNO3		
	9.9 "	5.87 "	10.02 "	3.71 "		
1.093	8.28 "	13.2	8.38 "	8.38 "		
1.117	7 · 4 "	21.55 "	7 · 49 "	13.58 "		
1.144	7.4 "	31.1 "	7 · 49 "	19.47 "		
I . 202	7.6 "	48.0 "	7.68 "	30.04 "		
1.289	10.3 "	68.0 "	10.42 "	42.86 "		
1 · 498	28.3 "	120.5 "	28.64 "	75.95 "		

Solubility of Potassium Nitrate and of Acid Potassium Nitrates in Nitric Acid.

(Groschuff -- Ber. 37, 1490, '04.)

Note. — Determinations made by the so-called thermometric method, *i.e.*, by observing the temperature of the disappearance of the separated, finely divided solid from solutions of known concentration.

t°.		roo Gms. ition. HNO ₃ .	Sol Ph	lid ase.	= t°.	Gms. per Solu KNO ₃ .			iolid hase.
- 6	24.4	75.41	KNO ₃	.2HNO ₃ (¹)	22.5	47.2	52.93	KNO3.	HNO ₃
+14	32.6	67.42	44	(stabil)	23.5	47.8	52.11	66	(stabil)
17	34.8	65.04	66		25.5	48.6	51.46	44	
19.5	37.2	62.90	44		27.0	49.4	50.78	46 .	
22	44.5	55.46	44		29.0	50.1	49.94	KNO ₃ .I	HNO ₃
21.5	47.8	52.11	KNO ₃ .	2HNO ₃ (2)	30.5	50.9	49.15	66	(labil)
21.5	48.6	51.46	44	(labil)	21.0	49 · 4	50.78	KNO ₃	(labil)
20	50.9	49.15	44		39.0	50.9	49.15	44	(stabil)
- 4	37.2	62.81	KNO ₃ .	HNO ₃	50	51.7	48.32	44	
-16.5	44.5	55.46	44	(labil)					
	(1)	Solution in	HNO3.		(2)	Solution in	n KNO3.		

CONDUCT OF ACID POTASSIUM NITRATE TOWARDS WATER.

t°.	Gms. per Solu	tion.	Solid Phase.	t°.	Gms. per :	ion.	Solid Phase.
	KNO ₃ .	HNO ₃ .	, , , , , , , , , , , , , , , , , , ,		KNO ₃ .	HNO ₃ .	*****
22	44.5	55 · 5	KNO _{3.2} HNO ₃	50	38.7	48.3	KNO ₃
20.5	44.I	55.0	"	61	36.o	44.8	44
18	43.8	54.5	44	63	34.5	43.0	6.6
12	43.0	53.6	44	60.5	30.9	39.5	44
6	42.3	52.7		56	27.6	34.4	44
0	41.6	51.8	66	43	20.8	25.9	44
12	41.3	51.4	KNO_3	17	11.7	16.6	66
22	40.9	51.0	44	-5	5.54	6.91	44
40	39.9	49.8	66				

Solubility of Mixtures of Potassium Nitrate and Potassium Chloride in Water.

(Etard — Ann. chim. phys. [7] 3, 283, '94; at 20°, Rüdorff — Ber. 6, 482, '73; Nicol — Phil. Mag. [5] 31, 385, '91.)

	Gms. per Solut KNO ₃ .			Gms. per Solut KNO ₃ .	ion Gms.	t°.	Gms. per Solu KNO ₃ .	tion. KCl.
0	5.0	20.0	30	16.0	21.2	70	39.5	17.5
10	8.0	20.8	40	21.0	21.0	80	45.5	15.8
20	12.6	2I.2	50	27.0	20.0	100	57 · 5	11.6
25	14.0	21.3	60	. 33 · 5	19.0	120	69.0	$7 \cdot 7$

3.58 0.79

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF: (Touren — Compt. rend. 131, 259, 'oo.)

Po	tassium	Carbona	te.	Pota	Potassium Bi Carbonate.				
	Resul	ts at 14.5°.			Results at 14.5°.				
Mols. per Liter. Gms. per		Gms. per	Liter.	Mols. pe	Mols. per Liter.		Grams per Liter.		
K ₂ CO ₃ .		K ₂ CO ₃ .	KNO ₃ .	KHCO3.	KNO3.	KHCO3.	KNO ₃ .		
0.0	2.228	0.0	225	0.0	2.33	0.0	236		
0.48	1.85	66.4	188	0.39	2.17	39.0	220		
1.25	1.39	172.9	141	0.76	2.03	76.0	205		
2.58	0.86	356.9	87	1.16	1.92	116	194		
3.94	0.64	544.9	65	1.55	1.81	155	183		
	Resul	ts at 25°.			Results at 25°.				
0.0	3.217	0.0	326	0.0	3.28	0.0	332		
0.59	2.62	81.6	265	0.89	2.84	89.	287		
1.35	1.97	186.7	199	1.33	2.65	133	268		
2.10	1.46	290.5	148	1.91	2.45	191	249		
2.70	1.14	373.6	115						

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND POTASSIUM SULPHATE IN WATER.
(Euler — Z. physik. Ch. 49, 313, '04.)

495.I

to.	Sp. Gr. of Sat. Solution.	Grams per 100	Grams Water.
15	1.165	24.12 KNO ₃	5.65 K ₂ SO ₄
20	• • •	30.10 "	5.58 "
25	1.210	36.12 "	5.58 "

Solubility of Mixtures of Potassium Nitrate and Sodium Chloride in Water.

(Etard — Ann. chim. phys. [7] 3, 283, '94; the older determinations of Rüdorff, Karsten, Mulder, etc., agree well with those of Etard.)

t°.	Gms. per Solu KNO ₃ .	noo Gms.	t°.	Gms. per Solut KNO ₃ .	noo Gms. tion.	t°.	Gms. per Solu KNO ₃ .	100 Gms. tion.
0	13	24	40	30.5	19	120	73	8.0
IO	16	23	50	36	17	140	77	7.0
20	20	22	60	42.5	15	160	79.5	6.0
25	23	21.5	80	55	12	170	80.5	5 · 5
30	25	20.5	100	67	9.5			

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA AT 20°.

(Carnelly and Thomson - J. Ch. Soc. 53, 782, '88; Nicol - Phil. Mag. 31, 369, '91.)

KNO₃ in Aq. NaNO₃ Solutions. NaNO₃ in Aq. KNO₃ Solutions.

Grams per 100	Grams H ₂ O.	Grams per 100 Grams H ₂ O.			
NaNO3.	KNO ₃	KNO3.	NaNO3.		
0	31.6	0	88		
IO	30.5	IO	90		
20	31.0	20	92		
40	33.0	25	93		
60	35 - 5	30	94		
8 0	41.0	35	96		

SOLUBILITY OF MIXTURES OF POTASSIUM NITRATE AND SILVER NITRATE IN WATER. (Etard — Ann. chim. phys. [7] 3, 283, '94.)

t°.	Gms. per 10 KNO ₃ .	AgNO ₃ .	t°.	Gms. per 10 KNO ₃ .	AgNO ₃ .	t°.	Gms. per 10 KNO ₃ .	AgNO ₃ .
	13.5		30	26.8	49 · 4	80	36.2	55.1
IO	19.0	44.7	40	29.6	51.5	100	38.3	55.3
20	23.0	47.0	50	32.0	54.0	120	40.0	55.6
25	25.0	48.0	60	33 · 5	54.8	140	41.5	55.8

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM NITRATE AND SILVER NITRATE IN WATER AT 25°.

(Herz - Inaug. Diss. (Berlin) '05; Calc. by Fock - Z. Kryst. Min. 28, 405, '97.)

Grams per Liter.		Mg. Mols. pe	r Liter.	Mol. per cent AgNO ₃ in	Mol. per cent AgNO ₃ in	
AgNO ₃ .	KNO3.	AgNO ₃ .	KNO3.	Solution.	Solid Phase.	
45.9	321.8	•270	3180	7.83	0.2896	
110.7	322.6	651.3	3184	16.96	0.6006	
176.8	333 · 7	1040	3298	23.97	0.9040	
259.6	364.0	1528	3597	29.81	1.054	
365.6	456.4	2151	4511	32.28	1.604	
507.9	387.2	2988	3816	43.85	2.439	
745 · 9	398.6	4388	3960	52.70	8.294	

Solubility of Mixed Crystals of Potassium Nitrate and Thallium Nitrate in Water at 25°.

(Fock.)

			(TOCK!)			
Grams per Liter.		Mg. Mols.	per Liter.	Mol. per cent TlNO ₃	Sp. Gr. of	Mol. per cent TINO ₃
TINO3.	KNO3.	TINO3.	KNO3.	in Solution.	Solutions.	in Solid Phase.
0.00	351.0	0.0	3468.2	0.00	1.2632	0.00
2.37	329.0	8.9	3251.5	0.43	1.1903	0.08
6.15	332 · 4	23.1	3285.1	0.70	1.1956	0.20
17.64	333 · 7	66.3	3298.1	1.97	1.2050	0.57
49.74	333 · 3	186.9	3294.4	5 · 37	1.2196	1.78
63.60	321.0	239.0	3172.4	7.01	1.2436	2.19
86.18	330.5	323.8	3265.8	9.02	1.2617	2.77
T 0 0 0	408 0	46= 0	1000 6	9.90	1.2950	∫ 6.00
123.8	428.3	465.2	4232.6		1.2950	27.04
101.3	245.1	380.6	2423.3	13.58	1.2050	93 · 33
116.1	0.0	463.1	0.0	100.00	1.0964	100.00

Solubility of Potassium Nitrate in Aqueous Alcohol Solutions (Gerardin - Ann. chim. phys. [4] 5, 151, '65.) Grams KNO3 per 100 Grams Aqueous Alcohol of Sp. Gr.:

t°.	0.9904	0.9843	0.9793	0.9726	.09571	0.939	0.8967	0.8429
	= 5.5 Wt. %.	$_{\text{Wt.}\%}^{=9.35}$	= 13.6 Wt. %.	W_{t} .%.	Wt.%	Wt. %.	= 60 Wt.%.	₩t.%.
10	17	13	10	7	4.5	3	I	0.2
18	22.5	18.5	14.5	IO	6.2	4.5	1.6	0.3
20	24	20	16	II	7.0	5	2	0.3
25	29	24.5	20	13.5	9.0	6.5	2.5	0.4
30	36	30	25	17	11.5	8	3.0	0.5
40	52	43	36	27	16.5	II	4	0.6
50	72	61	50	38	23.0	16	6	0.7
бо	93	79	69	52	31.0	2 I	8	I . I

SOLUBILITY OF POTASSIUM NITRATE IN AQUEOUS ALCOHOL AT 18°. (Bodländer — Z. physik. Ch. 7, 316, '91.)

Sp. Gr. of Solution.		Gms. per 100 cc. Solution.			Gms. per 100 cc. Solution.			
Solution.	C_2H_5OH .	H ₂ O.	KNO3.	Sp. Gr. of Solution.	C ₂ H ₅ OH.	H ₂ O.	KNO ₃ .	
1.1480		89.80	25.0	1.0120	23.33	69.81	8.06	
1.1085	3.30	87 . 44	20.11	0.9935	28.11	64.74	6.50	
I.IOIO	5.24	86.26	18.60	0.9585	37.53	54.21	4.11	
1.0805	8.69	83.18	16.18	0.9450	42.98	48.15	$3 \cdot 37$	
1.0755	9.06	83.10	15.39	0.9050	51.23	27.32	1.95	
1.0655	14.08	77.93	14.54	0.8722	61.65	24.74	0.83	
1.0490	16.27	76.36	12.27	0.8375	69.60	13.95	0.20	
1.0375	19.97	72.93	10.85					

Solubility of Potassium Nitrate in Aqueous Alcohol and in Aqueous Acetone.

(Bathrick - J. Physic. Ch. 1, 160, '96.)

In Aqueous Alcohol.

In Aqueous Acetone at 40°.

Wt. per cent	Gms. KNO3 per 100 (Wt. per cent	Gms. KNO ₃ per 100 Gms.	
Alcohol.	At 30°.	At 40°.	Acetone.	Solvent.
0	45.6	64.5	0	64.5
8.25	32.3	47 · I	8.5	51.3
17.0	22.4	33 · 3	16.8	38.9
25.7	15.1	24.I	25.2	22.8
35.0	11.4 (34.4°)	16.7	$34 \cdot 3$	24.7
44.9	7.0	11.6 (44°)	44.I	17.0
54.3	4.5	7 · 2 (55°)	53 · 9	11.9
65.0	2.7	$4 \cdot 4$	64.8 *	7.2
75.6	1.3	2.0 (76.3°)	76.0	3.0
88.0	0.4	o.6 (88.5°)	87.6	0.7

100 grams H₂O saturated with sugar and KNO₃ dissolve 224.7 gms. sugar + 41.9 gms. KNO₃, or 100 gms. of the saturated solution contain 61.36 gms. sugar + 11.45 gms. KNO₃ at 31.25°.

(Köhler - Z. Ver Zuckerind. 47, 447, '97.)

POTASSIUM OXALATE K2C2O4.4H2O.

SOLUBILITY OF MIXTURES OF POTASSIUM OXALATE AND OXALIC ACID IN WATER AT 25°.

(Foote and Andrew — Am. Ch. J. 34, 155, '05.)

Gms. per 100 G	ms. Solution.	Mols. per 100	Mols. H ₂ O.	Solid Phase.
H ₂ C ₂ O ₄ .	K2C2O4.	$H_2C_2O_4$.	K2C2O4.	Solid Phase.
10.2		2.274		$H_2C_2O_4.2H_2O$
10.31	0.04	2.302	0.005	$H_2C_2O_4.2H_2O + H_3K(C_2O_4)_2.2H_2O$
9.26	0.13	2 .046	0.016	Double salt H ₃ K(C ₂ O ₄) _{2.2} H ₂ O
3 · 39	0.63	0.707	0.071) Double Sait 1131x(C2O4)/2.211/20
2.06	4.26	0.440	0.495	$H_3K(C_2O_4)2H_2O + HKC_2O_4$
1.16	11.50	0.266	1.427	Double salt HKC ₂ O ₄
0.99	16.93	0.240	2.235)
0.85	21.08	0.221	2.928	$HKC_2O_4 + H_2K_4(C_2O_4)_3.2H_2O$
0.82	21.49	0.211	2.998]
0.64	23.52	0.169	3.361	Double salt H ₂ K ₄ (C ₂ O ₄) _{3.2} H ₂ O
0.57	24.88	0.153	3.617	
0.43	27.52	0.122	4.14	$H_2K_4(C_2O_4)_{3-2}H_2O + K_2C_2O_4.H_2O$
	27.40		4.09	$K_2C_2O_4.H_2O$

Solubility of Potassium Oxalate and Acid Potassium Oxalate in Water.

(Alluard; results at o°, Engel - Ann. chim. phys. [6] 13, 362, '88.)

100 gms. H_2O dissolve 25.24 gms. $K_2C_2O_4$, or 100 gms. of sat. solution contain 20.62 gms. $K_2C_2O_4$ at 0°. Sp. Gr. of solution = 1.161.

Acid	Oxalate in Solutio	Acid (Oxalate in Wa	ter			
H ₂ SO ₄ Corresponding to K n 10 cc. Sol.	n KOH Corresponding to Free Acid in 10 cc.	Sp. Gr. of Solutions.	Gms. 100 cc K ₂ C ₂ O ₄ .		t °. g	ms. KHC ₂ O ₄ per 100 Gms. H ₂ O.	
28.5	0.4	1.164	23.53	0.18	0	2.2	
10.8	0.925		8.91	0.41	IO	3.1	
6.8	1.075	I.042	5.61	0.48	20	5.2	
4.78	1.25	1.031	3.94	0.56	40	10.5	
3.83	1.45	1.025	3.16	0.65	60	20.5	
3 35	1.53	I.022	2.76	0.68	80	34.7	
2.6 (1)	1.85	1.018	2.15	0.83	100	51.5	
2.0 (2)	2.25	1.007	1.65	I.00			
0.45(3)	1.25	I.004	0.37	0.56			

⁽¹⁾ Sat. with acid potassium oxalate. (2) Sat. with both acid oxalate and tetroxalate. (3) Sat. with tetroxalate.

POTASSIUM PERMANGANATE KMnO4.

SOLUBILITY IN WATER.

(Baxter, Boylston, and Hubbard — J. Am. Ch. Soc. 28, 1343, '06; Patterson — Ibid. 28, 1735, '06.)

t°.	Grams	Grams KMnO4 per 100:			Grams KMnO4 per 100:	
· .	Gms. Solution.	Gms. H ₂ O.	cc. Solution (P).	t°.	Gms. Solution.	Gms. H ₂ O.
0	2.75	2.83	2.84	34.8	9.64	10.67
9.8	4.13	4.31		40	11.16	12.56
15.0			5.22	45	12.73	14.58
19.8	5.96	6.34		50	14.45	16.89
24.8	7.06	7 59		55	16.20	19.33
29.8	8.28	9.03	8.69	65	20.02	25.03

Sp. Gr. of saturated solution at $15^{\circ} = 1.035$.

SOLUBILITY OF POTASSIUM PERMANGANATE IN:

Water. Aqueous Acetone Solutions at 13°. (Voerman – Chem. Centrb. 77, I, 125, 'o6.) (Herz and Knoch – Z. anorg. Ch. 41, 317 'o4.)

t°.	Gms. KMnO ₄ per		Solid	cc. Acetone per 100 cc.	KMnO ₄ per 100 cc. Solution.	
	Solution.	Water.	Phase.	Solvent.	Millimols.	Grams.
- 0.18	0.58	0.58	Ice	0	148.5	4.70
- o.27	0.99	1.01	44	10	162.2	5.13
— 0.48	_1.98	2.02	66	20	177.3	5.61
— 0.58	2.91	3.00	$Ice + KMnO_4$	30	208.2	6.59
+10.0	4.01	4.22	KMnO ₄	40	257 - 4	8.14
15	4.95	5.20	66	50	289.7	9.16
25	7.00	7.53	44	60	316.8	10.02
40	10.40	11.61	4.5	70	328.0	10.38
50	14.35	16.75	**	80	312.5	9.89
				90	227.0	7.18
				100	67.0	3.14

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM PERMANGANATE AND POTASSIUM PERCHLORATE AT 7°.

(Muthmann and Kuntze — Z. Kryst. Min. 23, 368, '94; recalculated by Fock — Ibid. 28, 402, '97.)

Milligram Mols. per Liter.		Grams pe	r Liter.	Mol. per cent KMnO4 in
KMnO ₄ .	KClO ₃ .	KMnO4.	KClO ₄ .	Crystals of Solid Phase.
0.0	63.91	0.00	8.86	0.00
29.37	54.48	4.65	7 · 55	2.84
67.73	42.75	10.71	5.93	9.78
79.04	39 · 59	12.50	5 · 49	10.81
99.81	38.63	15.79	5.36	15.96
122.24	34 · 39	19.34	4.77	23.56
119.21	38.91	18.84	5 · 39	24.28
128.08	33 · 77	20.26	4.68	26.40
144.46	33.14	22.86	4.59	34.32
167.81	29.53	26.55	4.09	44.42
183.09	25.19	28.97	3 · 49	67.33
197.82	20.16	31.30	2.80	77.95
233 · 75	28.26	36.98	3.92	94 · 37
264.27	0.00	41.81	0.00	100.00

Solubility of Mixed Crystals of Potassium Permanganate and Rubidium Permanganate at 7° .

(Muthmann and Kuntze, calc. by Fock.)

Milligram M	lols. per Liter.	Grams 1	per Liter.	Mol. per cent KMnO ₄ in
KMnO ₄ .	RbMnO ₄ .	KMnO ₄ .	RbMnO ₄ .	Crystals of Solid Phase.
27.04	22.69	4.28	4.64	3.50
75.00	22.22	11.84	4.54	13.75
120.26	31.29	19.03	6.40	34.29
188.30	38.98	29.80	7 · 97	71.45
198.36	41.29	31.39	8.44	92.50
205.76	42.50	32.56	8.69	99 · 47
225.12	26.00	35.61	5.32	99.32
264.27	0.00	41.81	0.00	100.00

POTASSIUM PHOSPHATE KH₂PO₄ (Monobasic).

One liter aqueous solution contains 249.9 grams at 7°.

(Muthmann and Kuntze.)

POTASSIUM HYPOPHOSPHATE, etc.

SOLUBILITY IN WATER. (Salzer — Liebig's Ann. 211, 1, 82.)

	(5000001 200008 0 1111			
	Salt.	Formula.	Gms. Salt per Gms. H ₂ O	100
			Cold.	Hot.
Potassium	Hypophosphate	$K_4P_2O_6.8H_2O$	400	
"	Hydrogen Hypophosphate	$K_3HP_2O_6.3H_2O$	200	
66	Di Hydrogen Hypophosphate	$K_{2}H_{2}P_{2}O_{6}.3H_{2}O$	33	100
44	Tri Hydrogen Hypophosphate	$KH_3P_2O_6$	66.6	200
44	Penta Hydrogen Hypophosphate	$(E_3H_5(P_2O_6)_2.2H_2)$	O 40	125
"	Hydrogen Phosphite	KH,PO,	172 (20°)	
"	Hypophosphite	KH ₂ PO ₂	200 (25°)	333
66	Hypophosphite	KH ₂ PO ₂ *	14.3 (25°)	
	* Solvent ald	cohol.		

261

POTASSIUM PHOSPHOMOLYBDATE K,PO,.11MOO,.12H2O.

100 gms. H₂O dissolve 0.007 gms. at 30°.

100 gms. aqueous 10 % HNO3 dissolve 0.204 gms. at 30°.

(Donk — Proc. Assoc. Official Agrl. Chemists — Bull. No. 90, Bureau of Chemistry, U.S. Dept. of Agr., '05.)

POTASSIUM SELINATE K2SeO4.

SOLUBILITY IN WATER.

t°. -20°. -5°. +5°. 18°. 97°.

Gms, K₂SeO₄ per 100 gms. solution 51.5 51.7 52.0 52.6 54.9

(Etard — Ann. Chim. phys. [7] 2, 550, '94.)

POTASSIUM STANNATE K2SnO3.3H2O.

100 gms. H_2O dissolve 106.6 gms. at 10°, and 110.5 gms. at 20°. Sp. Gr. at 10° = 1.618 at 20° = 1.627.

(Ordway - Am. J. Sci. [2] 40, 173, '65.)

POTASSIUM SULPHATE K2SO4.

SOLUBILITY IN WATER.

(Mulder; Andrae — J. pr. Ch. 29, 456, '84; Trevor — Z. physik. Ch. 7, 468, 91; Tilden and Shenstone — Phil. Trans. 31, '84; Berkeley — Trans. Roy. Soc. 203 A, 209, '04; see also Etard — Ann. chim. phys. [7] 2, 549, '04.)

t°.	Gms. K ₂ SO Water.	Solution.	t°.	Gms. K ₂ SO ₄	Solution.	t°. Gr	ns. K ₂ SO ₄ Water.	per 100 Gms Solution.
0	7 · 35	6.85		14.76				18.57
10	9.22	8.44	50	16.50	14.16	100	24.I	19.42
20	II.II	10.00	60	18.17	15.38	120	26.5	20.94
25	12.04	10.75	70	19.75	16.49	143	28.8	22.36
30	12.97	11.48	80	21.4	17.63	170	32.9	24.76

Sp. Gr. of solution saturated at $18^{\circ} = 1.083$.

SOLUBILITY OF POTASSIUM SULPHATE IN AQUEOUS AMMONIA SOLUTIONS AT 20°.

(Girard - Bull. soc. chim. [2] 43, 552, '85.)

Gms. NH₃ per 100 cc. solution 0 6.086 15.37 24.69 31.02 Gms. K₂SO₄ per 100 cc. solution 10.80 4.10 0.83 0.14 0.04

Solubility of Mixed Crystals of Potassium Sulphate and Ammonium Sulphate at 25°.

(Fock - Z. Kryst. Min. 28, 375, '97.)

Grams per Liter.		Milligram I	Milligram Mols. per Liter.		Sp. Gr.	Mol. per cent
K ₂ SO ₄ .	(NH ₄) ₂ SO ₄ .	K ₂ SO ₄ .	(NH ₄) ₂ SO ₄ .	K ₂ SO ₄ in Solution.	of Solution.	Mol. per cent K ₂ SO ₄ in Solid Phase.
127.9	0.0	734	0.0	100	1.086	100
135.7	115.7	778.5	874.6	47.1	1.149	91.28
84.20	281.1	483	2126	18.5	I.200	80.05
59.28	355.0	340	2685	11.13	1.226	68.63
40.27	482.7	231	3650	5.98	1.246	27·53
0.00	542.3	0.0	4100	0.00	1.245	0.00

Results are also given for 14°, 15°, 16°, 30°, 46°, and 47°.

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM COPPER SULPHATE AND AMMONIUM COPPER SULPHATE IN WATER.

 $CuSO_4$. K_2SO_4 . $6H_2O$ and $CuSO_4(NH_4)_2SO_4$. $6H_2O$ at $13^{\circ}-14^{\circ}$.

(Fock.)

Mols. per 10	oo Mols. H ₂ O	Mol. per cer	nt K Salt	Mols. per 10	o Mols. H ₂ O	Mol. per ce	ent K Salt
K. Salt.	NH ₄ Salt.	in Solution.	in Solid.	K Salt.	NH ₄ Salt.	in Solution.	in Solid.
0.00	1.035	0.00	0.00	0.2946	0.5096	36.63	58.20
0.0897	0.8618	5.06	10.34	0.3339	0.3319	50.15	$75 \cdot 34$
	0.6490	16.76	33.05	0.4560	0.1961	69.93	83.86
0.2570	0.5887	30.40	46.22	0.4374	0.00	100.00	100.00

SOLUBILITY OF SOME POTASSIUM DOUBLE SULPHATES IN WATER AT 25°.

(Locke - Am. Ch. J. 27, 459, 'o1.)

Double Salt.	Formula.	Gms. Anhydrous Salt per 100 Gms. H ₂ O.
Potassium Cobalt Sulphate	$K_2CO(SO_4)_2.6H_2O$	12.88
" Copper "	$K_2Cu(SO_4)_2.6H_2O$	11.69
" Nickel "	$K_2Ni(SO_4)_2.6H_2O$	6.88
" Zinc	$K_2Zn(SO_4)_2.6H_2O$	13.19

SOLUBILITY OF POTASSIUM NICKEL SULPHATE AND ALSO OF POTASSIUM ZINC SULPHATE IN WATER AT DIFFERENT TEMPERATURES.

	Grams per 10	o Gms. H ₂ O.		Grams per 100 Grams H2O.			
t°.	K ₂ Ni(SO ₄) ₂ .6H ₂ O.	$K_2Zn(SO_4)_2$.6 H_2O .	t°.	K ₂ Ni(SO ₄) ₂ .6H ₂ O.	K ₂ Zn(SO ₄) ₂ .6HO ₂ .		
0	6	13	40	23	45		
10	9	19	50	28	56		
20	14	26	60	35	72		
25	16	30	70	43	88		
30	18	35					

SOLUBILITY OF THE THREE HYDRATES OF POTASSIUM FERRO SULPHATE IN WATER AT DIFFERENT TEMPERATURES.

(Kuster and Thiel - Z. anorg. Ch. 21, 116, '99.)

	K ₂ SO ₄ .FeSO ₄	.6H ₂ O.	K ₂ SO ₄ .FeS	SO _{4.4} H ₂ O.	K_2SO_4 . $FeSO_4$. $_2H_2O$.	
t°.	cc. N/10 KMnO4					O4 Gms. K2SO
	per 2cc. Solution.	.FeSO ₄ per	per 2 cc. Solution.	.FeSO ₄ per 100 cc. Sol.	per 2 cc. Solution.	.FeSO ₄ per 100 cc. Sol.
0.5	12.4	18.36	15.5	22.94	15.4	22.79
17.2	17.0	25.16	18.1	26.79	21.6	31.98
40 · I	24.8	36.72	21.9	32.41	27.6	40.86
60	29.0	42.93	24·I	35.68	28.8	42.63
80	30.6	45.29	27.3	40.46	28.6	42 - 34
90			29.6	43.82	28.9	42.73
95	• • •		29.8	44.11	27.7	41.01

SOLUBILITY OF POTASSIUM SULPHATE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE, BROMIDE, AND IODIDE.

(Blarez - Compt. rend. 112, 939, '91.)

Interpolated from the original results.

Grams Halogen	Grams I	Grams K ₂ SO ₄ per 100 cc. in Aq. Solutions of:				
Salt per 100 cc. Solution.	KCl at 12.5°.	KBr at 14°.	KI at 12.5°.			
0	9.9	10.16	9.9			
2	8.3	9.1	9.2			
4	7.0	8.2	8.4			
6	5 · 7	7 · 4	7 . 7			
8	4.6	6.6	7.2			
IO	3 · 5	6.0	6.6			
12		5 · 5	6.0			

SOLUBILITY OF MIXED CRYSTALS OF POTASSIUM SULPHATE AND POTASSIUM CHROMATE AT 25°.

(Fock - Z. Kryst. Min. 28, 379, '97.)

		Mols. per Liter. K ₂ CrO ₄ .	Grams per Liter. K ₂ SO ₄ . K ₂ CrO ₄ .		Mol. per cent K ₂ SO ₄ in	Sp. Gr.	Mol. per cent K ₂ SO ₄ in
1	12304.	K2C1 O4.	K2504.	K2C1O4.	Solution.	Solution.	Solid Phase.
61	8.1	0.0	107.7	0.00	100.0	1.083	100.0
60	8.4	103	106.0	20.02	85.51	1.092	99.65
34	1.0	691.8	59.46	134.5	33.01	1.141	97 - 30
17	4.8	1496.0	30.47	290.5	10.50	1.231	91.97
II	0.7	2523	19.30	490.5	4.21	1.356	28.43
IO	0.6	2687	17.54	522.3	3.60	I.377	2.41
	0.0	2847 .	0.0	553.5	0.00	1 . 398	0.00
73	4.0	0.0	127.9	0.0	100.0	1.0863	100.0
61	7.0	103.4	107.6	20.I	85.65	1.0934	99.78
46	3	452.7	80.72	88.0	55.55	1.1235	98.49
27	9	948.2	48.64	184.4	22.72	1.1700	96.07
-	3	1469	26.68	285.6	9.41	1.2255	85.73
29	6	2681	51.61	521.2	21.09	1.3688	25.73
	0.0	2715	0.00	527.8	0.00	1.3781	0.00

SOLUBILITY OF POTASSIUM SODIUM SULPHATES IN WATER.

Double Salt.	t°.	Gms. per 100 Gms. H ₂ O.	Authority.
3K2SO4.Na2SO4	103.5	40.8	(Penny — Phil. Mag. [4] 10, 401, '55.)
5K2SO4.Na2SO4	4 · 4	9.2	(Gladstone — J. Ch. Soc. 6, 11, '54.)
66	12.7	10.1	66
"	100.0	25.0	44

SOLUBILITY OF POTASSIUM SULPHATE IN AQUEOUS ALCOHOL. (Gerardin — Ann. chim. phys. [4] 5, 147, '65; Schiff — Liebig's Ann. 118, 362, '61.)

	lcohol of 0.939 = 40 Wt. %.		l of Different ths at 15°.
t°.	Gms. K ₂ SO ₄ per 100 Gms. Alcohol.	Weight per cent Alcohol.	Gms. K ₂ SO ₄ per 100 Gms. Sat. Sol.
40	0.16	10	3.90
80	0.21	20	1.46
60	0.92	30	0.56
		40	0.21

100 gms. glycerine of 1.255 Sp. Gr. dissolve 1.316 gms. K₂SO₄ at ord. temp. (Vogel — Neues Report, Pharm. 16, 557 '67.)

Solubility of Potassium Sulphate in Aqueous Acetic Acid and in Aqueous Phenol Solutions at 25°.

(Rothmund and Wilsmore — Z. physik. Ch. 40, 619, 'oz.)

In A. Acetic Acid In A. Phenol

111	Aq. Ace	die Acid.		in Aq. Filehol.					
Mols. pe	r Liter.	Grams per	r Liter.	Mols. per Li	ter.	Grams pe	r Liter.		
СН₃СООН.	K ₂ SO ₄ .	СН₃СООН.	K ₂ SO ₄ .	C ₆ H ₅ OH.	K ₂ SO ₄ .	C ₆ H ₅ OH.	K ₂ SO ₄ .		
0.0	0.6714	0.0	117.0	0.0	0.6714	0.0	117.0		
0.07	0.6619	4.2	115.4	0.032	0.6598	3.01	115.0		
0.137	0.6559	8.22	114.4	0.064	0.6502	6.02	113.3		
0.328	0.6350	19.68	110.8	0.127	0.6310	11.94	0.011		
0.578	0.6097	34.68	106.3	0.236	0.6042	22.19	105.3		
1.151	0.5556	69.06	96.87	0.308	0.5834	28.97	101.7		
2.183	0.4743	128.58	82.70	0.409	0.5572	38.46	97.2		
				0.464	0.5480	43.63	95.5		
				o.498 (sat.)	0.5377	46.82	93.8		

100 grams water dissolve 10.4 grams $K_2SO_4+219.0$ grams sugar at 31.25°, or 100 grams sat. solution contain 3.18 grams $K_2SO_4+66.74$ grams sugar. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

POTASSIUM ACID SULPHATE KHSO.

SOLUBILITY IN WATER. (Kremers — Liebig's Ann. 92, 497, '54.)

t°	o°	20°	40°	1000
Gms. KHSO ₄ per 100 gms. H ₂ O	36.3	51.4	67.3	121.6

POTASSIUM PERSULPHATE K2S2O8.

100 gms. H₂O dissolve 1.77 gms. K₂S₂O₈ at o°.

(Marshall - J. Ch. Soc. 59, 771, '91.)

POTASSIUM SODIUM THIOSULPHATE KNaS2O3.2H2O.

POTASSIUM SODIUM HYDROGEN SULPHITE KNa₂H(SO₃)₂. ₄H₂O.

100 grams H₂O dissolve 213.7 grams KNaS₂O₃.2H₂O (a) at 15°.

100 grams H₂O dissolve 205.3 grams KNaS₂O_{3.2}H₂O (b) at 15°. 100 grams H₂O dissolve 69.0 grams KNa₂H(SO₃)_{2.4}H₂O at 15°.

(Schwicker — Ber. 22, 1731, '89.)

POTASSIUM SULPHOCYANIDE KSCN.

100 grams H_2O dissolve 177.2 grams KSCN at 0°, and 217.0 grams at 20°. (Rüdorff — Ber. 2, 68, '69.)

SOLUBILITY OF POTASSIUM SULPHOCYANIDE IN ACETONE, AMYL ALCOHOL, ETC.

(von Laszcynski - Ber. 27, 2285, '94.)

I	n Acetone.	In An	nyl Alcohol.	In	Ethyl Aceta	ite.	In Pyridine.
t°.	Gms. KSCN per 100 Gms. (CH ₃) ₂ CO.	t°.	ms. KSCN per 100 Gms. C ₅ H ₁₁ OH.	t°.	Gms. KSCN per 100 Gms. CH ₃ COOC ₂ H ₅ .	t°.	Gms. KSCN per 100 Gms. C ₅ H ₅ N.
22	20.75	13	0.18	0	0.44	0	6.75
58	20.40	65	1.34	14	0.40	20	6.15
		100	2.14	79	0.20	58	4.97
		133.5	3.15			97	3.88
						115	3.21

POTASSIUM (Bi) TARTRATE (Mono) KHC, H,O, Cream of Tartar.

SOLUBILITY OF MONO POTASSIUM TARTRATE IN WATER.

(Alluard — Liebig's Ann. 133, 292, '65; Roelofsen — Am. Ch. J. 16, 466, '94; Blarez — Compt. rend. 112, 434, '91; at 20°, Magnanini — Gazz. chim. ital. 31, II, 542, '01; at 25°, Noyes and Clement — Z. physik. Ch. 13, 413, '94.)

t°.	1	Gms. KHC ₄ H ₄ O ₆ per 100 Gms. Solution.	t°.	Gms. KHC ₄ H ₄ O ₆ per 100 Gms. Solution.			
0	o.30(R.)	0.32 (A.)	o. 35 (B.)	40	0.96	1.3	1.20
10	0.37		0.42	50	1.25	1.8	1.80
20	0.49	o. 53 (M.)	0.60	60		2.4	
25	0.58	0.654 (N. and C.)	0.74	80		4.4	
30	0.69	0.9 (A.)	0.89	100		6.5	

Solubility of Potassium Acid Tartrate (KHC₄H₄O₆) in Normal Solutions of Acids at 20°.

(Ostwald; Huecke - J. pr. Ch. [2] 29, 49, '84.)

Purified tartrate was added in excess to normal solutions of the acids, and after shaking clear 1 cc. portions of each solution were withdrawn and titrated with approximately N/10 Ba(OH)₂ solution; 1 cc. normal acid requiring 10.63 cc. of the Ba(OH)₂ solution.

Acid.	Gms. Acid per 100 cc. Solvent.	cc. N/10 Ba(OH) ₂ per 1 cc. Solution.	Gms. KHC ₄ H ₄ O ₆ per 100 cc. Solution.	Acid.		cc. N/10 Ba(OH) ₂ K per 1 cc. 1 Solution.	per 1co cc
HNO ₃	6.31	5.77*	10.21	C,H,SO,H	11.0	5.01*	8.87
HCl	3.65	5.32	9.42	HO.(CH ₂) ₂ SO ₃ H	12.61	5.33	9.43
HBr	8. 10	5.38	9.75	C ₆ H ₅ SO ₃ H	15.81	5.25	9.20
HI	12.80	5.43	9.61	HČOOH	4.60	0.45	0.80
H ₂ SO ₄	4.90	3.97	7.03	CH ₃ COOH	6.00	0.27	0.48
HCH,SO,	11.21	5.58	12.44	CH,CICOOH	9.45	1.01	1.70
HC2H5SO4	12.61	5.41	9.58	C₂H₅COOH	7.40	0.24	0.42
HC3H7SO		5.21	9.22	C ₈ H ₇ COOH	8.81	0.23	0.41

^{*} The figures in this column show the amount of the Ba(OH)₂ solution in excess of that which would have been required by the normal acid solution alone in each case, viz., 10.63 cc. They, therefore, correspond to the amount of KHC₂H₂O₆ dissolved in 1 cc. of each saturated solution, and when multiplied by 1.77give the grams of KHC₂H₂O₆ per 100 cc. solution.

SOLUBILITY OF MONO POTASSIUM TARTRATE (KHC₄H₄O₆) IN AQUBOUS SOLUTIONS OF ELECTROLYTES AT 25°.

(Noyes and Clement - Z. physik. Ch. 13, 413, '94; Magnanini - Gazz. chim. ital. 31, II, 542, '01.)

Electro-	Gms. F		Gms.		Electro-		Equiv. Liter.	Gram 100	
lyte.	Electro-	KHC ₄ H ₄ O ₆ .	Electro- lyte.	KHC ₄ H ₄ O ₆ .	lyte.	Electro-	KHC ₄ H ₄ O ₆ .	Electro-	KHC ₄ H ₄ O ₆ .
KCl	0.025	0.0254	1.86	0.4788	CH₃COOK	0.05	0.0410	4.01	0.7718
"	0.05	0.0196	3.73	0.3680	ii .	0.10	0.0504	9.82	0.9486
66	0.10	0.0133	7.46	0.2509	"	0.20	0.0634	19.63	1.1930
"	0.20	0.0087	14.92	0.1636	KHSO ₄ (20°)	0.01	0.0375	1.36	0.706
KClO ₃	0.025	0.0256	3.06	0.4821	"	0.02	0.0500	2.72	0.941
"	0.05	0.0197	6.13	0.3716	£ ¢	0.10	0.1597	13.62	3.006
"	0.10	0.0138	12.26	0.2601	KHC2O4* (20°	0.01	0.0369	1.28	0.694
"	0.20	0.0092	24.52	0.1728	"	0.02	0.0424	2.56	0.798
$\mathbf{K}\mathbf{Br}$	0.05	0.0197	5.95	0.3699	"	0.10	0.1132	12.82	2.130
66	0.10	0.0134	11.91	0.2517	HCl	0.013	0.0367	0.45	0.690
"	0.20	0.0087	23.82	0.1629	"		0.0428	0.91	0.806
KI	0.05	0.0196	8.30	0.3687	"	0.050	0.0589	1.82	1.100
46	0.10	0.0132		0.2492	NaCl	0.05	0.0376	2.92	0.708
"	0.20	0.0086	33.22	0.1619	"	0.10	0.0397	5.85	0.748
KNO ₃	0.05	0.0195	5.06	0.3676	"	0.20	0.0428	11.70	0.805
66	0.10	0.0136	10.12	0.2551	NaClO ₃	0.05	0.0382	5.32	0.718
"	0.20	0.0000		0.1696	66	0.10	0.0405	10.65	0.763
K_2SO_4	0.05	0.0208	4.36	0.3921	"	0.20	0.0446	21.30	0.840
""	0.10	0.0147	8.72	0.2769	* Acid potassium	oxalate,			
"	0:20	0.0100	17.44	0.1881					

SOLUBILITY OF MONO POTASSIUM TARTRATE IN AQUEOUS ALCOHOL SOLUTIONS.

(Roelofsen — Am. Ch. J. 16, 466, '94; Wenger — Ibid. 14, 624, '92.)

Note. — The original results were plotted on cross-section paper and the following figures read from the curves.

t°.	Milligrams KHC ₄ H ₄ O ₆ per 10 cc. of Aq. Alcohol of:								
• .	per cent.	20 per cent.	30 per cent.	40 per cent.	60 per cent.	80 per cent,			
0	17	II	7	6	6	6			
10	22	14	. 8	7	6	6			
20	29	18	II	8	6	6			
25	34	21	12	9.5	6.5	5 · 5			
30	40	25	13	II .	7	5 · 5			
40	55	36	19	14	7 · 5	5			
50	87	55	29	19	8	5			

POTASSIUM FLUO TITANATE K2TiF6.H2O.

SOLUBILITY IN WATER.

(Marignac - Ann. chim. phys. [4] 8, 65, '66.)

t° o° 3° 6° 10° 14° 20° Gms. K₂TiF₆ per 100 gms. H₂O 0.55 0.67 0.77 0.91 1.04 1.28

POTASSIUM VANADATE K3V5O14.5H2O.

100 grams H2O dissolve 19.2 grams at 17.5°.

(Radan - Liebig's Ann. 251, 120, '89.)

POTASSIUM ZINC VANADATE KZnV,O,4.8H,O.

100 grams H2O dissolve 0.41 gram of the salt (Radan).

PRASEODYMIUM SULPHATE Pr2(SO4)3.

SOLUBILITY IN WATER.
(Muthmann and Rölig — Ber. 31, 1727, '08.)

t°.	Gms. Pr ₂ per 100 Solution.		Solid Phase.	t°.	Gms. Prz per 100 Solution.		Solid Phase.
0	16.5	19.8	$Pr_2(SO_4)_3.8H_2O$	75	4.0	4.2	Pr ₂ (SO ₄) ₃ .8H ₂ O
18	12.3	14.1	44	85	1.5	1.55	Pr ₂ (SO ₄) ₃ .8H ₂ O +
35	9.4	10.4	64				$Pr_2(SO_4)_3.5H_2O$
55	6.6	7.1	44	95	1.0	I.OI	Pr ₂ (SO ₄) _{3.5} H ₂ O

PROPIONIC ALDEHYDE C.H.COH.

100 grams H2O dissolve 16 grams aldehyde at 20°.

(Vaubel - J. pr. Ch. 59, 30, '99.)

PROPIONITRIL C2H5CN.

SOLUBILITY IN WATER.

Synthetic method used. See Note, page 9.

(Rothmund - Z. physik. Ch. 26, 474, '98.)

t°.	Wt. per cent C ₂ H ₅ CN in:		4.0	Wt. per ce	Wt. per cent C2H5CN in:		
ь.	Aq. Layer.	C ₂ H ₅ CN Layer.	t°.	Aq. Layer.	C ₂ H ₅ CN Layer.		
40	10.7	92.1	95	19.6	78.0		
50	11.6	90.5	100	22.4	75 · 5		
60	12.7	88.5	105	26.0	72.1		
70	13.2	86.1	110	32.0	66.5		
80	14.9	83.4	113.1 (cr	it. temp.) 4	8.3		
90	17.6	80.2					

PROPYL ACETATE, Butyrate and Propionate.

SOLUBILITY OF EACH IN AQUEOUS ALCOHOL MIXTURES. (Bancroft — Phys. Rev. 3, 205, '95, calc. from Pfeiffer.)

cc. Alco-	cc. H ₂ O Add	ded to Cause Se	paration * in:	cc. Alco-	cc. H ₂ O Ad	ded to cause	Separation * in
hol in Mixture.	P. Ace- tate.	P. Buty- rate.	P. Propio- nate.	hol in Mixture.	P. Ace-	P. Buty- rate.	P. Propio- nate.
3	4.50	1.19	1.58	21	58.71	19.68	27.83
6	10.48	3 · 55	4.70	24	00	23.72	33.75
9	17.80	6.13	8.35	30		32.10	47.15
12	26.00	9.05	12.54	36		41.55	63.18
15	35.63	12.31	17.15	42		51.60	83.05
18	47 - 50	15.90	22.27	48		62.40	107 .46
				54		73.85	

^{*} cc. H₂O added to cause the separation of a second phase in mixtures of the given amounts of alcohol and 3 cc. portions of propyl acetate, butyrate and propionate.

SOLUBILITY OF PROPYL ACETATE, FORMATE, AND PROPIONATE IN WATER.

100 cc. H₂O dissolve 1.7 gms. propyl acetate at 22°. 100 cc. H₂O dissolve 2.1 gms. propyl formate at 22°.

(Traube - Ber. 17, 2304, '84.)

100 cc. H₂O dissolve 0.6 cc. propyl propionate at 25°. (Bancroft.)

PROPYL CHLORIDE, Bromide, etc.

SOLUBILITY IN WATER. (Rex — Z. physik. Ch. 55, 355, 'o6.)

Provide Community	Grams P. Compound per 100 Gms. H2O at:					
Propyl Compound.	°°.	10°.	20°.	30°.		
CH ₃ CH ₂ CH ₂ Cl (normal)	0.376	0.323	0.272	0.277		
CH ₃ CH ₂ CH ₂ Br "	0.298	0.263	0.245	0.247		
CH ₃ CH ₂ CH ₂ I "	0.114	0.103	0.107	0.103		
$(CH_3)_2$ CHCl (iso)	0.440	0.363	0.305	0.304		
(CH₃)₂CHBr "	0.418	0.365	0.318	0.318		
(CH ₃) ₂ CHI "	0.167	0.143	0.140	0.134		

PROPYLENE C3H6. SOLUBILITY IN WATER.

(Than — Liebig's Ann. 123, 187, '62.)

t°.	β.	q.
0	0.4465	0.0834
5	0.3493	0.06504
IO	0.2796	0.0519
15	0.2366	0.0437
20	0.2205	0.0405

For values of β and q, see Ethane, page 133.

PYRENE C₁₆H₁₀

Solubility in Toluene and in Absolute Alcohol.

100 gms. toluene dissolve 16.54 gms. pyrene at 18°.
100 gms. absolute alcohol dissolve 1.37 gms. pyrene at 10° and 3.08 gms. at b. pt.

PYROGALLOL C₆H₃(OH)₃ I, 2, 3.

SOLUBILITY IN WATER, ETC. (U. S. P.)

100 gms. water dissolve 62.5 gms. $C_6H_3(OH)_3$ at 25°. 100 gms. alcohol dissolve 100.0 gms. $C_6H_3(OH)_3$ at 25°. 100 gms. ether dissolve 90.9 gms. $C_6H_3(OH)_3$ at 25°.

QUININE C20H24N2O2. (See also Cinchona alkaloids, p. 117.)

SOLUBILITY OF QUININE AND OF QUININE SALTS IN WATER AND OTHER SOLVENTS.

(U. S. P.)

	Grams. Quinine Compound per 100 Grams Solvent in:							
Compound.	V	Vater.	Alcohol.	Ether.	Chloroform.	Glycerine.		
	At 25°.	At 80°.	At 25°.	At 25°.	At 25.	At 25°.		
$C_{20}H_{24}N_2O_2$	0.057	0.123	166.6	22.2	52.6	0.633		
$C_{20}H_{24}N_2O_2.3H_2O$	0.065	0.129	166.6	76.9	62.5	0.472		
$C_{20}H_{24}N_2O_2HCl.H_2O$	5.55	250.0	166.6	0.417	7 122.0	12.2		
$C_{20}H_{24}.N_2O_2.2C_6H_4(OH).$								
COOH.H ₂ O	1.30	2.86	9.09	0.91	2.70	6.25		
$(C_{20}H_{24}N_2O_2)_2.H_2SO_4.7H_2O$	0.139	2.22	1.16		0.25	2.78		
$C_{20}H_{24}N_2O_2.H_2SO_4.7H_2O$	11.77	117.7	5.55	0.056	0.109	5 - 55		
$C_{20}H_{24}N_2O_2$.HBr. H_2O	2.5	33.3	149.2	6.2	• • •	12.5		

SOLUBILITY OF QUININE IN AQUEOUS SOLUTIONS OF CAUSTIC ALKALIES. (Doumer and Deraux — J. pharm. chim. [6] 1, 50, '95.)

METHOD. — A one per cent solution of quinine sulphate containing a very small amount of HCl was gradually added to 200 cc. portions of the caustic alkali solutions of the various concentrations stated, and the point noted at which a precipitate of the appearance corresponding to that of 1 cc. of milk in 100 cc. of water, remained undissolved.

In Aq. Ammonia. In Aq. Sodium Hydrate. In Aq. Pot. Hydrate.

Gms. NH ₃ per 200 cc. Solution.	Gms. Anhydrous Quinine Dissolved.	Gms. NaOH per 200 cc. Solution.	Gms. Anhydrous Quinine Dissolved.	Gms. KOH per 200 cc. Solution.	Gms. Anhydrous Quinine Dissolved.
0.52	0.084	0.007	0.092	0.612	0.088
0.65	0.084	0.012	0.091	1.512	0.082
4.59	0.096	0.740	0.090	3 · 456	0.068
13.08	0.122	2.160	0.079	10.944	0.039
18.88	0.144	3.188	0.056	44.704	0.006
25.19	0.174	6.172	0.044		
35.79	0.184	8.537	0.021		
		17.074	0.015		

SOLUBILITY OF QUININE SALTS IN WATER. (Regnault and Willejean — Chem. Centralb. 18, 252, '87.)

	Salt.		t°.	Gms. Salt per 100 Gms. H ₂ O.		Salt.	t°.	Gms. Salt per
Bro	om Hydra	te (basic)	14	2.06	Salicyla	te (basic)	15	0.114
	66	(neutral)	12	12.33	Sulphat		14	0.139
	66	"	14	13.19	"	66	16	0.153
	66	"	16	14.79	"	66	18	0.160
	66	66	15	14.20	66	(neutral)	15	8.50
Ch	lor Hydra	te (basic)	12	3.80	"	66	17	8.90
	"	"	14	4.14	"	66	18	9.62
	6.6	"	15	4.25	Valerate	e (basic)	12-16	2.50
La	ctate	"	15	10.03				• /
	66	"	37	16.18				

RESORCINOL C₆H₄(OH)₂ I, 3.

Water.

SOLUBILITY IN:

Ethyl Alcohol.

	TT acci	•		Duly 1 111001101.			
(Speyers —	Am. J. Sci. [1] 14, 294, '02.)		(Speyers.)			
Sp. Gr. of Solutions.	Gms.C ₆ H ₄ (O	H) ₂ per 100 Gms. Solution.	Sp. Gr. of Solutions.	Gms. C ₆ H ₄ (O	H) ₂ per 100 Gms. Solution.		
I.IOI	60	37.5	1.033	210	67.8		
1.118	81	44.8	1.036	223	69.0		
1.134	103	50.7	1.041	236	70.3		
1.142	117	53.9	1.045	243	70.8		
1.148	131	56.7	1.048	250	71.4		
1.157	161	58.9	1.056	266	72.7		
1.165	198	66.5	1.065	286	74 · I		
1.172	246	71.1	1.075	311	75 · 7		
1.176	320	76.2	1.087	341	77 · 3		
1.179	487	82.9	1.104	375	78.9		
	Sp. Gr. of Solutions. I . 101 I . 118 I . 134 I . 142 I . 148 I . 157 I . 165 I . 172 I . 176	Sp. Gr. of Solutions Solutions Water	Sp. Gr. of Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solutions Solution Solution	Sp. Gr. of Gms. CoH4 (OH)2 per 100 Gms. Sp. Gr. of Solutions. Solutions. Solutions. Solutions. I . 101 60 37 · 5 I . 033 I . 118 81 44 · 8 I . 036 I . 134 103 50 · 7 I . 041 I . 142 117 53 · 9 I . 045 I . 148 131 56 · 7 I . 048 I . 157 161 58 · 9 I . 056 I . 165 198 66 · 5 I . 065 I . 172 246 71 · I I . 075 I . 176 320 76 · 2 I . 087	Speyers - Am. J. Sci. [4] 14, 294, '02.) Sp. Gr. of Gms. C ₆ H ₄ (OH) ₂ per 100 Gms. Solutions.		

Note. — The original results of Speyers are given in terms of mols. per 100 mols. H₂O.

According to Vaubel, 100 gms. H_2O dissolve 175.5 gms. $C_6H_4(OH)_2$, or 100 gms. sat. solution contain 63.7 gms. at 20°. Sp. Gr. of sol. = 1.1335. (J. pr. Ch. [2] 52, 73, '95.)

SOLUBILITY OF RESORCINOL IN BENZENE. (Rothmund — Z. physik. Ch. 26, 475, '98.)

Synthetic method used. See Note, p. 9.

t°.		OH) ₂ per 100 Gms. C ₆ H ₄ (OH) ₂ Layer.	t°.		OH) ₂ per 100 Gms. C ₆ H ₄ (OH) ₂ Layer
60	4.8	79 · 4	90	13.0	71.3
70	6.6	77.5	100	19.5	65.7
80	9.2	75.0	105	24.6	60.7
			109.3 (0	crit. temp.)	42.4

DISTRIBUTION OF RESORCINOL BETWEEN WATER AND ORGANIC SOLVENTS AT ORDINARY TEMPERATURE.

	(Vaubel — J. pr. Ch. [2] 67, 478, 63.)		
Gms.		Gms. C ₆ F	H ₄ (OH) in:
$C_6H_4(OH)_2$ Used.	Solvents.	H ₂ O Layer.	Organic Solvent Layer.
1.191	60 cc. H_2O+ 30 cc. Ether	0.2014	0.9896
1.191	60 cc. H_2O+ 60 cc. Ether	0.2475	0.9525
0.800	40 cc. H_2O+ 40 cc. Benzene	0.5873	0.2127
0.800	40 cc. H_2O+ 80 cc. Benzene	0.5773	0.2227
0.500	50 cc. H_2O+ 50 cc. CCl_4	0.4885	0.0115
0.500	50 cc. H ₂ O + 100 cc. CCl ₄	0.4880	0.0120
0.500	50 cc. H ₂ O + 150 cc. CCl ₄	0.4880	0.0120

RHODIUM SALTS. SOLUBILITY IN WATER.

(Jorgensen — J. pr. Ch. [2] 27, 433, '83; 34, 394, '86; 44, 51, '91.)							
Salt.	Formula.	t°.	Gms. per 100 Gms. H ₂ O				
Chloro Purpureo Rhodium Chloride	ClRh(NH ₃) ₅ Cl ₂	17	0.56				
Luteo Rhodium Chloride	Rh(NH ₃) ₆ Cl ₃	8	13.3				
Luteo Rhodium Nitrate	$Rh(NH_3)_6(NO_3)_3$	ord. t.	2.I				
Luteo Rhodium Sulphate	[Rh(NHa),la(SO,), rHaO	20	2 2				

RUBIDIUM ALUMS.

SOLUBILITY IN WATER.

(Locke - Am. Ch. J. 27, 174, 'o1.)

43	E	t°.	Gms. Alum per 100 Gms. H2O.		
Alum.	Alum. Formula.		Anhydrous.	Hydrated.	G. Mols.
Rb. Aluminum Alum	RbAl(SO ₄) ₂ .12H ₂ O	25	1.81	3.15	0.0059
44	**	30	2.19		2.0072
4.6	66	35	2.66		0.0087
66	44	40	3.22		0.0106
Rb. Chromium Alum	$RbCr(SO_4)_2 \cdot 12H_2O$	25	2.57	4.34	0.0079
66	**	30	3.17		0.0096
66	66	35	4.11		0.0128
46	66	40	5.97		0.0181
Rb. Vanadium Alum	$RbV(SO_4)_2.12H_2O$	25	5 · 79	9.93	0.0177
Rb. Iron Alum	RbFe(SO ₄) ₂ .12H ₂ O	25	9.74	16.98	0.0294
"	"	30	20.24		0.0617

Biltz and Wilke (Z. anorg. Ch. 48, 299, 'o6) find for the solubility of rubidium iron alum in water, at 6.6°, 4.55 gms. per 100 cc. solution; at 25°, 29.0 gms.; and at 40°, 52.6 gms.

RUBIDIUM FLUOBORIDE RbBF4.

100 gms. H₂O dissolve 0.55 gm. RbBF₄ at 20°, and 1.0 gram at 100°. (Godefiroy — Ber. 9, 1337, '76.)

RUBIDIUM BROMIDE RbBr.

SOLUBILITY IN WATER. (Rimbach — Ber. 38, 1557, 'o5.)

t°.	Gms. RbBr per 100 Gms.		t°.	Gms. RbBr per 100 Gms.	
	Water.	Solution.	٠	Water.	Solution.
0.5	89.6	47.26	39 · 7	131.85	56.87
5.0	98.0	49.50	57 · 5	152.47	60.39
16.0	104.8	51.17	113.5	205.21	67.24

RUBIDIUM CARBONATE Rb2CO3.

100 gms. absolute alcohol dissolve 0.74 gm. Rb₂CO₃.

(Bunsen.)

RUBIDIUM CHLORATE RbClO3.

SOLUBILITY IN WATER. (Reissig — Liebig's Ann. 127, 33, '63.)

t°.	4.7°.	13.0°.	18.2°.	19.00.
Gms. RbClO ₃ per 100 grams H ₂ O	2.8	3.9	4.9	5.1

RUBIDIUM (Per) CHLORATE RbClO4.

100 grams H₂O dissolve 1.08 grams RbClO₄ at 21.3°.

(Longuimine - Liebig's Ann. 121, 123, '62.)

RUBIDIUM CHLORIDE RbCl.

SOLUBILITY IN WATER.

(Rimbach - Ber. 35, 1304, '02; Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 207, '04.)

£°.	Mols. RbCl per Liter.	Gms. RbCl per 100 Gms.		t°.	Mols. RbCl	Gms. RbCl per 100 Gms.	
•		Water.	Solution.		per Liter.	Water.	Solution.
0	5.17	77.0	43 · 5	60	6.90	115.5	53.6
IO	5 · 55	84.4	45.8	70	7.12	121.4	54.8
20	5.88	91.1	47 · 7	80	7.33	127.2	56.0
30	6.17	97.6	49.4	90	7.52	133.1	57 · I
40	6.43	103.5	50.9	100	7.71	138.9	58.9
50	6.67	109.3	52.2	112.9	7.95	146.6	59.5

RUBIDIUM TELLURIUM CHLORIDE Rb. TeCla.

100 gms. Aq. HCl of 1.2 Sp. Gr. dissolve 0.34 gm. Rb₂TeCl₆ at 23°.
100 gms. Aq. HCl of 1.05 Sp. Gr. dissolve 13.09 gms. Rb₂TeCl₆ at 23°.
(Wheeler — Am. J. Sci. [3] 45, 267, '93.)

RUBIDIUM THALLIUM CHLORIDE 3RbClTlCl3.2H2O.

100 gms. H₂O dissolve 13.3 gms. at 18°, and 62.5 gms. at 100°. (Godeffroy – Zeit. allgem. Oster. Apoth. No. 9, '80.)

RUBIDIUM CHROMATE (Mono) Rb₂CrO₄.

SOLUBILITY IN WATER.

(Schreinemaker and Filippo - Chem. Centralb. 77, I, 1321, '06.)

	•				
t°.	Gms. RbCrO ₄ per 100 Gms. Solution.	t°.	Gms. RbCrO ₄ per 100 Gms. Solution.	t.º.	Gms. RbCrO ₄ per 100 Gms. Solution.
- 7	36.65	50	47 - 44	-2.40	15.58
0	38.27	60.4	48.90	-3.25	20.03
IO	40.23	Solid F	hase, Ice	-4.14	24.28
20	42.42	-0.6	6.95	-5.55	30.15
30	44.11	-1.1	7.22	-6.71	34.31
40	46.13	-I.57	9.87	about – 7	36.65

RUBIDIUM (Di) CHROMATE Rb₂Cr₂O₇.

100 grams saturated aqueous solution contain 9.47 grams Rb₂Cr₂O₇ at 30°.

(Schreinemaker and Filippo.)

RUBIDIUM HYDROXIDE RbOH.

100 grams sat. aqueous solution contain 63.39 grams RbOH at 30°. (Schreinemaker and Filippo.)

RUBIDIUM IODATE RbIO₃.

100 grams H₂O dissolve 2.1 grams RbIO₃ at 23°.

(Wheeler - Am. J. Sci. [3] 44, 123, '92.)

RUBIDIUM IODIDE RbI.

100 grams H₂O dissolve 137.5 grams RbI at 6.9°, and 152.0 grams at 17.4°. (Reissig – Liebig's Ann. 127, 33, '63.)

SOLUBILITY OF RUBIDIUM IODIDE IN ORGANIC SOLVENTS. (Walden — Z. physik. Ch. 55, 713, 718, '06.)

Solvent.	Formula.	Grams RbI pe	r 100 cc. Solution.
Acetonitril	CH ₃ CN	1 .478 at 0°	1.350 at 25°
Propionitril	C_2H_5CN	0.274 "	0.305 "
Nitromethane	CH_3NO_2	0.567 "	0.518 "
Acetone	$(CH_3)_2CO$	0.960 "	0.674 "
Furfurol	C₄H₃O.COH		4.930 "

RUBIDIUM BROM IODIDE RbBr2I.

roo gms. sat. aq. solution contain about 44.0 gms. RbBr₂I, and the Sp. Gr. of the solution is 3.84.

(Wells and Wheeler - Am. J. Sci. [3] 43, 475, '92.)

RUBIDIUM NITRATE RbNO₃. Solubility in Water.

(Berkeley - Trans. Roy. Soc. (Lond.) 203 A, 207, '04.)

t°.	Mols. RbNO ₃ Per Liter.	Grams RbNO Water.	O ₃ per 100 Gms. Solution.	t°.	Mols. RbNO ₃ Per Liter.	Gms. RbNO Water	Solution.
0	I.27	19.5	16.3	60	7.99	200	66.7
10	2.04	33.0	24.8	70	9.02	251	71.5
20	3.10	53 · 3	34.6	80	9.93	309	75.6
30	4.34	81.3	44.8	90	10.77	375	78.9
40	5.68	116.7	53 · 9	100	11.54	452	81.9
50	6.88	155.6	60.9	118.3	12.76	617	86.1

RUBIDIUM PERMANGANATE RbMnO4.

One liter of aqueous solution contains 6.03 grams RbMnO₄ at 7°. (Muthmann and Kuntze — Z. Kryst. Min. 23, 377, '94.)

100 cc. sat. aq. solution contain 0.46 gm. RbMnO₄ at 2°, 1.06 gms. at 19° and 4.68 gms. at 60°. (Patterson—J. Am. Ch. Soc. 28, 1735, '06.)

RUBIDIUM SELENATE Rb2SeO4.

100 grams H₂O dissolve 158.9 grams Rb₂SeO₄ at 12°.

(Tutton - J. Ch. Soc. 71, 850, '97.)

RUBIDIUM FLUO SILICATE Rb2SiF6.

100 gms. H₂O dissolve 0.16 gm. Rb₂SiF₆ at o°, and 1.36 gms. at 100°. (Stolba – J. pr. Ch. 101, 1, '67.)

RUBIDIUM SILICO TUNGSTATE Rb,SiW,12O42.

100 gms. $\rm H_2O$ dissolve 0.65 gm. $\rm Rb_8SiW_{12}O_{42}$ at 20°, and 5.1 gms. at 100°. (Godeffroy – Ber. 9, 1363, '76.)

RUBIDIUM SULPHATE Rb2SO4. SOLUBILITY IN WATER.

(Etard — Ann. chim. phys. [7] 2, 550, '94; Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 207, '04.)

t°.	Mols. (Rb ₂ SO ₄ per Liter.	Gms. Rb ₂ SO ₄ Water.	per 100 Gms. Solution.	t°.	Mols. Rb ₂ SO ₄ per Liter.	Gms. Rb ₂ SO ₄ Water.	per 100 Gms. Solution.
0	1.27	36.4	27.3	60	2.15	67.4	40.3
10	1.46	42.6	29.9	70	2.25	71.4	41.7
20	1.64	48.2	32.5	80	2.34	75.0	42.9
30	1.79	53 · 5	34.9	90	2.42	78.7	44.0
40	1.92	58.5	36.9	100	2.49	81.8	45.0
50	2.04	63.1	38.7	102.4	2.50	82.6	45.2

SOLUBILITY OF RUBIDIUM DOUBLE SULPHATES IN WATER AT 25°. (Locke — Am. Ch. J. 27, 459, '01.)

	Per 100 cc. H ₂ O.		Per 100 cc. H ₂ O.		
Formula.	Gms. Mols.	Formula.	Gms. Mols.		
	Anh. Salt. Salt.		Anh. Salt. Salt.		
$Rb_2Cd(SO_4)_2.6H_2O$	76.7 0.1615	$Rb_2Mn(SO_4)_2.6H_2O$	35.7 0.0857		
$Rb_2Co(SO_4)_2.6H_2O$	9.28 0.022	$Rb_2Mg(SO_4)_2.6H_2O$	20.2 0.0521		
Rb ₂ Cu(SO ₄) ₂ .6H ₂ O	10.28 0.0241	$Rb_2Ni(SO_4)_2.6H_2O$	5.98 0.0142		
$Rb_2Fe(SO_4)_2.6H_2O$	24.28 0.0579	$Rb_2Zn(SO_4)_2.6H_2O$	10.10 0.0236		

SALICYLIC ACID C.H.OH.COOH 1:2.

SOLUBILITY IN WATER. (See also p. 61.)

(Average curve from the closely agreeing determinations of Walker and Wood — J. Ch. Soc. 73, 620, '98; at 26.4°, Philip — *Ibid.* 87, 992, '95; at 25°, Paul — Z. physik. Ch. 14, 111, '94; at 20°, Hoitsema — *Ibid.* 27, 315, '98; Hoffmann and Langbeck—*Ibid.* 51, 400, '95. For determinations not in good agreement with the following, see Alexejew — Ann. Physik. Chem. 28, 305, '86; Bourgion — Ann. chim. phys. [5] 15, 165, '78; Ost. — J. pr. Ch. [2] 17, 232, '78.)

t°.	Gms. C ₆ H ₄ OHCOOH per Liter Solution.	t°.	Gms. C ₆ H ₄ OH.COOH per Liter Solution.	t°.	Gms. C ₆ H ₄ OH.COOH per Liter Solution.
0	0.8	25	2.2	60	8.2
10	I.2	30	2.7	70	13.2
20	1.8	40	3 · 7	80	20.5
		50	5.4		

SOLUBILITY OF SALICYLIC ACID (LIQUID) IN WATER. (Alexejew.)

Determinations by Synthetic Method. See Note, page 9. Figures read from curve.

		per 100 Gms.				
t°.	Aqueous	Salicylic Acid				
6.	Layer.	Layer.				
60	7	68				
70	8	64				
80	12	58				
90	19	49				
95 (cr	rit. temp.)	32				

Solubility of Salicylic Acid in Aqueous Salt Solutions at 25° and at 35° .

(Hoffmann and Langbeck - Z. physik. Ch. 51, 407, '05.) C₆H₄.OH.COOH dissolved at 35°. C6H4OHCOOH Normality Gms. dissolved at 25° Salt. of Salt Salt per Gms. per 1000 G. Molecular Gms. per 1000 G. Molecular gms. Sat. Sol. percentage. gms. Sat. Sol. percentage. Solution. Liter. 2.206 2.8851 0.0 0.0 3.197 **KCl** 0.020 2.9216.10 4.2206.10 1.49 2.24 3.23 66 0.100 7.46 2.25 2.9377 3.23 4.2203 " 36.73 2.02 2.6321 0.492 3.01 3.9268 66 1.80 I.004 74.92 2.4759 2.68 3.5003 KNO, 66 " 0.020 2.02 2.25 3.9351 3.25 4.2499 " " 66 0.100 10.12 3.0103 2.30 3.32 $4 \cdot 3334$ 66 66 " 3.1061 0.504 51.10 2.38 3.38 4.4123 " 66 66 4.3848 101.60 3.1249 I.004 2.39 3.36 " 66 NaCl 0.020 1.19 2.23 2.9110 3.22 4.2062 46 " 66 4.1806 0.100 2.22 2.9027 5.953.20 64 " 46 2.6128 0.497 29.50 2.00 2.85 3.7171 " 66 0.988 58.80 2.2487 2.43 I.72 3.1596

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF SODIUM FORMATE, ACETATE, AND BUTYRATE AT 26.4°.

(Philip — J. Ch. Soc. 87, 992, '05.)

Mols. Na Salt per Liter.		OH.COOH per CH ₃ COONa. (Gms. Na Salt per Liter.		онсоон	
	mcoona.	CligCoona.	3117COOIVa	•	ncoona.	LH3COONa.	C ₃ H ₇ COONa
0	1.71	1.71	1.71	0	2.36	2.36	2.36
1	2.35	2.47	2.50	I	3 · 7	3.6	3 · 3
2	3.05	3 · 35	3.48	2	5.0	5.2	4.5
3	$3 \cdot 7$	4.2	4.35	3	6.2	6.75	5.65
4	4.3	5.1	5.3	4	7.2	8.3	6.85
5	4.8	6.1	6.3	5			8.1

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF SODIUM SALICYLATE AT 20.1°.

(Hoitsema - Z. physik. Ch. 27, 315, '98.)

· Sp. Gr.	Gram	s per Liter.	0.111
of Solutions.	C ₆ H ₄ OH COOH.	C ₆ H ₄ OH COONa.	Solid Phase.
I.002	1.823	0.0	C ₆ H ₄ OHCOOH
1.003	1.55	2.705	66
1.009	1.71	17.98	14
1.016	1.97	35.96	66
I.024	2.26	54.74	66
1.034	2.80	79.56	66
1 .098	8.56	270.5	44
1.137	13.11	335 · 7 {	Composition Control Co
1.144	12.56	348.4	C ₆ H ₄ OHCOOH.C ₆ H ₄ OHCOONa
1.215	11.88	542.6	66
1.263	11.19	673.0 C	H4OHCOOH.C6H4OHCOONa +C6H4OHCOONa
1.259	6.63	665.1	C ₆ H ₄ OHCOONa
1.258	2.90	665.5	46
1.257	0.0	660.3	44
	of Solutions. 1.002 1.003 1.009 1.016 1.024 1.034 1.098 1.137 1.144 1.215 1.263 1.259 1.258	of Solutions. CoH,OH COOH. I .002 I .823 I .003 I .55 I .009 I .71 I .016 I .97 I .024 2 .26 I .034 2 .80 I .098 8 .56 I .137 I 3 .11 I .144 I 2 .56 I .215 II .88 I .263 II .19 I .259 6 .63 I .258 2 .90	of Solutions. CaH4OH COONa. I .002 I .823 0.0 I .003 I .55 2.705 I .009 I .71 I7.98 I .016 I .97 35.96 I .024 2.26 54.74 I .034 2.80 79.56 I .098 8.56 270.5 I .137 I 3.11 335.7 I .144 I 2.56 348.4 I .215 II .88 542.6 I .263 II .19 673.0 {CaH4OH COONa. I .259 6.63 665.1 I .258 2.90 665.5

SOLUBILITY OF SALICYLIC ACID IN ALCOHOLS IN ETHER AND IN ACETONE.

(Timofeiew — Compt. rend. 112, 1137, '01; at 15°, Bourgoin — Ann. chim. phys. [5] 13, 405, '78; at 17° and 23°, Walker and Wood — J. Ch. Soc. 73, 620, '98.)

Solvent.	t°.		H ₄ OHCOOH soo Gms.	Solvent.	t°.	per 100	OHCOOH Gms.
CH ₂ OH	-3	40.67		$C_3H_7OH(n)$	-3	26.12	20.71
CH ₃ OH	U	62.48		$C_3H_7OH(n)$	+21	_	27.36
C ₂ H ₅ OH		36.12		(CH ₃),O		50.47	33.55
C ₂ H ₅ OH	+15	49.63	33.17	$(CH_3)_2O$	17		23.4*
C₂H₅OH	21	53.53	34.87	$(CH_3)_2CO$	23		31 3*
C,H,OH 90%	0 15	42.09	29.62	* Per	100 cc. Sa	t. Solution	1.

SOLUBILITY OF SALICYLIC ACID IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL, ISO BUTYL ALCOHOL, DEXTROSE, CANE SUGAR, AND OF LEVULOSE AT 25° AND AT 35°.

(Hoffmann and Langbeck - Z. physik. Ch. 51, 400, '05.)

Aq. Solvent.	Conc. of	Solvent.	C ₆ H ₄ OHCOC solved at a	OH dis-	C ₆ H ₄ OH ₀ solved a	COOH dis-
and portents	Normality.	Gms. per Liter.	Grams molecular pe percentage. sa	Grams r 100 gms. it. solution.	Grams molecular percentage.	Grams per 100 gms. sat. solution.
H_2O	0.0	0.0	2.8851	0.2206	4.1844	0.3197
C ₂ H ₅ OH	0.0249	1.146	2.8966.10-4	0.222	4.2044.10	-4 O. 322
"	0.0560	2.578	2.9150 "	0.223	4.2348 '	6 0.324
"	0.1747	8.04	2.9901 "	0.229		
"	0.2399	11.05			4.4341 '	0.339
"	1.03	47.4	3.5279 "	0.270	5.2816 '	6.404
66	1.638	75 - 44	3.9253 "	0.300		
C ₄ H ₉ OH (iso)	0.020	1.496	2.909 "	0.223	4.229 '	0.324
"	0.051	3.74	2.955 "	0.226	4.209	6.329
"	0.100	7.48	3.033 "	0.232	4.435 '	0.339
"	0.521	38.60	3.718 "	0.285	5.024	6 0.431
$C_6H_{12}O_6$	0.02	3.6	2.886 "	0.221	4.104	6 0.321
66	0.10	18.0	2.898 "	0.222	4.202	6 0.322
"	0.50	89.6	2.954 "	0.226	4.203	6.326
"	1.00	180.0	3.015 "	0.231	4.300	6.334
$C_{12}H_{22}O_{11}$	0.02	6.88	2.885 "	0.221	4.206 '	6 0.322
"	0.10	34.97	2.964 "	0.227	4.287 '	0.320
"	0.50	172.0	3.239 "	0.248	4.697 '	0.300
"	1.10	376.3	3.633 "	0.278	5.236 '	6 0.401
$C_6.H_{12}O_6$	0.02	3.6	2.888 "	0.221		
"	0.06	10.8	2.895 "	0.221		
"	0.25	45.0	2.944 "	C. 225		

SOLUBILITY OF SALICYLIC ACID IN BENZENE.

(Walker and Wood - J. Ch. Soc. 73, 620, '98.)

t°.	Gms. $C_6H_4OHCOOH$ per 100 Gms. C_6H_6 .	t°.	Gms. C ₆ H ₄ OHCOOH per 100 Gms. C ₆ H ₆ .	t°.	Gms. C ₆ H ₄ OHCOOH per 100 Gms. C ₆ H ₆ .
11.7	0.460	30.5	0.991	49 · 4	2.380
18.2	0.579	34.6	1.261	64.2	4.40
		36.6	1.430		

SELENIUM Se.

SOLUBILITY IN CARBON BISULPHIDE.

(Marc - Z. anorg. Ch. 48, 425, '06.)

100 cc. CS_2 dissolve 0.065 gm. amorphous Se at room temperature. Se which is heated to 180° for 6–7 hours is insoluble in CS_2 . Se crystallized from the melt at 200° is insoluble in CS_2 . Se heated once quickly to 140° is very slightly soluble in CS₂.

100 gms. methylene iodide (CH₂I₂) dissolve 1.3 gms. Se at 12°.

(Retgers - Z. anorg. Ch. 3, 346, '93.)

SELENIOUS ACID H2SeO2.

SOLUBILITY IN WATER. (Etard — Ann. chim. phys. [7] 2, 551, '94.)

t°.	Gms. H ₂ SeO ₃ per 100 Gms. Solution.	t°.	Gms. H ₂ SeO ₃ per 100 Gms. Solution.	t *.	Gms. H ₂ SeO ₃ per 100 Gms. Solution.
-10	42.2	25	67.0	60	79 · 3
0	47 - 4	30	70.2	70	79 · 3
+10	55.0	40	77 · 5	80	79 · 3
20	62.5	50	79.2	90	79 · 4

SILICON Si.

SOLUBILITY IN LEAD AND IN ZINC. (Moissan and Siemens — Ber. 37, 2088, '04.)

	In Lead.		In Zinc.
t°.	Gms. Si per 100 Gms. Solution.	t°.	Gms. Si per 100 Gms. Solution.
1250	0.024	600	0.06
1330	0.070	650	0.15
1400	0.150	730	0.57
1450	0.210	800	0.92
1550	0.780	850	1.62

SILICON IODIDES Si2I6, SiI4.

SOLUBILITY IN CARBON BISULPHIDE.

(Friedel and Lachburg — Bull. soc. chim. [2] 12, 92, '69; Friedel — Liebig's Ann. 149, 96, '69.)

100 gms. CS_2 dissolve 19 gms. Si_2I_6 at 19°. 100 gms. CS_2 dissolve 26 gms. Si_2I_6 at 27°.

100 gms. CS₂ dissolve 2.2 gms. SiI₄ at 27°.

SILICO TUNGSTIC ACID H₈SiW₁₂O₄₂.

100 gms. $\rm H_2O$ dissolve 961.5 crystallized silico tungstic acid at 18°, and solution has Sp. Gr. 2.843.

For equilibrium between metallic Silver and mercury (Silver amal gam) and mixed aqueous solutions of their nitrates, determined for mixtures of the two metals in all proportions, see Reinders — Z. physik. Ch. 54, 609, '06.

SILVER ACETATE CH3COOAg.

SOLUBILITY IN WATER.

(Nernst — Z. physik. Ch. 4, 379, '89; Arrhenius — *Ibid*. 11, 396, '93; Goldschmidt — *Ibid*. 25, 93, '98; Nauman and Rucker — Ber. 38, 2203, '05; Raupenstrauch — Monatsh. Ch. 6, 585, '85; Wright and Thompson — Phil. Mag. [5] 17, 288, '84; 19, 1, '85.)

t°.	Gms. Ag(C ₂ H ₃ O ₂) per Liter.	t°.	Gms. Ag(C ₂ H ₃ O ₂) per Liter.	t°.	Gms. Ag(C ₂ H ₃ O ₂) per Liter.
0	7.22	25	11.2	50	16.4
10	8.75	30	12.1	60	18.9
15	9.4	40	14.1	70	21.8
20	10.4			80	25.2

SOLUBILITY OF SILVER ACETATE IN AQUEOUS SOLUTIONS OF:

	Silver	Nitrate.	S	Sodium Acetate.			
Gms. AgNO ₃ per Liter.	10 (77	Ag per Liter at: 19.8°(Arrhenius).	Gms. CH ₃ COOHg per Liter at: per Liter. 16° (N., N. and R.). 18.6°(A.).				
0	10.05	9.85	0	10.05	9.9		
5	8.2	7.9	5	6.3	6.6		
IO	7.0	6.6	IO	4.6	4.9		
15	6.4	5.5	15	3.8	4 · I		
20	5 · 7	4.5	20	3 · 3	3 · 5		
30	4 · 4		30		2.8		
40	3.2		40		2.4		

SILVER Mono Chlor ACETATE CH2ClCOOAg.

One liter aqueous solution contains 12.97 grams CH₂ClCOOAg at 16.9°. (Arrhenius)

Solubility of Silver Mono Chlor Acetate at 16.9° in Aqueous Solutions of:

Silver Nitrate.		Sodium Chlor Acetate.			
Gms. AgNO ₃ per Liter.	Gms. CH ₂ ClCOOAg per Liter.	Gms. CH ₂ ClCOONa per Liter.	Gms. CH ₂ ClCOOAg per Liter.		
0.0	12.97	0.0	12.97		
9.6	10.05	3 .88	10.05		
17.0	. 7.55	7 · 77	8.16		
		15.53	6.02		
		31.07	4.19		
		58.26	3.26		

SILVER Di Propyl ACETATE AgC8H15O2.

100 gms. $\rm H_2O$ dissolve 0.123 gm. $\rm AgC_8H_{15}O_2$ at 11.7°, and 0.190 gm. at 72°.

SILVER Methyl Ethyl ACETATE Ag.CH₃.CH₂.CH(CH₃)COO.

SILVER Di Ethyl ACETATE Ag.[(C2H5)2CH.COO].

SILVER Tri Methyl ACETATE Ag.(CH3)3CCOO.*

SOLUBILITY OF EACH WATER.

(Sedlitzky - Monatsh. Ch. 8, 563, '87; Keppish - Ibid. 9, 589, '88; Stiassny - Ibid. 12, 601, '91.)

t°.	Gms. per 100 Gms. H ₂ O.			t°.	Gms. per 100 Gms. H ₂ O.		
٠.	Ag.C ₅ H ₉ O ₂ .	$AgC_6H_{11}O_2$.	AgC ₅ H ₉ O ₂ .*	٠.	AgC ₅ H ₉ O ₂ .	AgC ₆ H ₁₁ O ₂ .	AgC ₅ H ₉ O ₂ .*
0	I.II2	0.402	I.IO	50	1.602	0.536	1.47
'IO	1.126	0.413	1.15	60	1.827	0.585	1.57
20	1.182	0.432	1.22	70	2.093	0.643	1.68
30	1.280	0.458	I.22	80	2.402		1.80
40	1.420	0.494	I.37				

SILVER BENZOATE C.H.COOAg.

One liter of aqueous solution contains 1.763 gms. C_6H_6COOAg at 14.5°, and 2.607 gms. at 25°.

(Holleman — Z. physik. Ch. 12, 129, '93; Noyes and Schwartz — Ibid. 27, 287, '98.)

SOLUBILITY OF SILVER BENZOATE AT 25° IN AQUEOUS SOLUTIONS OF:

	Nitric Acid (N. and S.).				Chlor Acetic Acid (N. and S.).			
	Millimols	per Liter.	Grams per Liter.		Millimols per Liter.		Grams per Liter.	
	HNO ₃ .	C_6H_5 COOAg.	HNO ₃ .	COOAg.	CH ₂ ClCOOH.	$_{ m CoOAg}^{ m C_6H_5}$	CH ₂ CICOOH.	CooAg,
0	.0	0.01144	0.0	2.607	0.0	0.01144	0.0	2 . 607
0	.004435	0.01395	0.280	3.195	0.00394	0.01385	0.371	3.172
0	.00887	0.01698	0.559	3 .889	0.00787	0 01612	0.744	3.691
0	.00892	0.01715	0.562	3.926	0.01574	0.02093	1.487	4.792
0	.01774	0.02324	1.118	5.321				
0	.02674	0.03071	1.686	7.031				

One liter of cold alcohol dissolves 0.169 gm. C₆H₆COOAg; one liter of boiling alcohol dissolves 0.465 gram. (Liebermann — Ber. 35, 1094, '02.)

SILVER BORATE AgBO₂.

One liter of aqueous solution contains about 9.05 gms. AgBO₂ at 25°.

(Abegg and Cox — Z. physik. Ch. 46, 11, '03.)

SILVER BROMATE AgBrO₃.

SOLUBILITY IN WATER.

t°.	Gms. AgBrO3 per Liter.	Authority.
20	1.586	(Böttger — Z. physik. Ch. 46, 602, '03.)
24.5	1.011	(Noyes - Z. physik. Ch. 6, 246, '90.)
25	1.68	(Longi — Gazz. chim. ital. 13, 87, '83.)

Solubility of Silver Bromate in Aqueous Ammonia and Nitric Acid Solutions at 25°.

	Solvent.	Grams AgBrO ₃ per		
		1000 cc. Sol.	1000 Gms. Sol.	
Ammonia	Sp. Gr. $0.998 = 5\%$	35.10	35.54	
Ammonia	Sp. Gr. $0.96 = 10\%$	443.6	462.5	
Nitric Acid	Sp. Gr. 1.21 = 35%	3.8r	3.12	

SOLUBILITY OF SILVER BROMATE AT 24.5° IN AQUEOUS SOLUTIONS OF:

Silver Nitrate (Noyes).				Potassium Bromate (N.).			
Normal Content.		Gms. per Liter.		Normal Content.		Gms. per Liter.	
AgNO ₃ .	AgBrO ₃ .	AgNO ₃ .	AgBrO ₃ .	KBrO3.	AgBrO ₃ .	KBrO ₃ .	AgBrO ₃ .
0.0	0.0081	0.0	1.911	0.0	0.0081	0.0	1.911
0.0085	0.0051	I · 445	1.203		0.00519	1.42	1.225
0.0346	0.0022	5.882	0.510	0.0346	0.00227	5.78	0.536

SILVER BROMIDE AgBr.

SOLUBILITY IN WATER.

t°.	Gms. AgBr per Liter.	Authority.
20	0.000084	(Böttger — Z. physik. Ch. 46, 602, '03.)
25	0.000137	(Abegg and Cox — Z. physik. Ch. 46, 11, '03.)
100	0.00370	(Böttger — Z. physik. Ch. 56, 93, '06.)
ee also	Holleman - Z. physik, Ch. 12, 120	, '03: Kohlrausch — Ibid. 50, 365, '05.)

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS AMMONIA SOLUTIONS. (Longi — Gazz. chim. ital. 13, 87, '83; at 80°, Pohl — Sitzber. Akad. Wiss. Wien, 41, 267, '60.)

Solvent.	Gms. AgBr 1000 cc. Solvent.	at 12° per 1000 Gms. Solvent.	Gms. AgBr at 80° per 1000 Gms. Solvent.
Ammonia Sp. Gr. 0.998=5%	0.114	0.114	
Ammonia Sp. Gr. 0.96 = 10%	3.33-4.0	3 · 47	• • •
Ammonia Sp. Gr. 0.986			0.51* 1.0†
* Dried AgBr.		† Freshly pptd.	

Solubility of Silver Bromide in Aqueous Solutions of:
Ammonia at o°. Monq Methyl Amine at 11.5°.

(Jarry - Ann. chim. phys. [7] 17, 363, '99.)

(Jarry.)

Grams per 10	dms. per 100 cc. Solution.			
AgBr.	NH ₃ Gas.	AgBr.	NH ₂ CH ₃ .	AgBr.
0.080	26.27	1.067	10.11	0.07
0.096	31.26	1.568	13.17	0.12
0.172	33.89	1 .987	15.13	0.16
0.212	36.52	2 . 669	17.97	0.28
0.349	37.22	2.888	32.58	0.55
0.557	37 · 70	2.930	35.62	0.73
0.722	39.26	2.892	43.11	1.27
0.741	39.95	2.852	48 - 44	2 .89
	AgBr. 0.080 0.096 0.172 0.212 0.349 0.557 0.722	0.080 26.27 0.096 31.26 0.172 33.89 0.212 36.52 0.349 37.22 0.557 37.70 0.722 39.26	AgBr. NH ₈ Gas. AgBr. 0.080 26.27 1.067 0.096 31.26 1.568 0.172 33.89 1.987 0.212 36.52 2.669 0.349 37.22 2.888 0.557 37.70 2.930 0.722 39.26 2.892	AgBr. NH ₃ Gas. AgBr. NH ₂ CH ₃ . 0.080 26.27 1.067 11.01 0.096 31.26 1.568 13.17 0.172 33.89 1.987 15.13 0.212 36.52 2.669 17.97 0.349 37.22 2.888 32.58 0.557 37.70 2.930 35.62 0.722 39.26 2.892 43.11

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM THIO SULPHATE AT 35°.

(Richards and Faber — Am. Ch. J. 21, 186, '99.)

Gms. Cryst. Na Thio Sulphate per Liter.	Gms. AgBr Dissolved per Gram of Thio Sulphate.	Mols. AgBr Dissolved per Mol. of Na ₂ S ₂ O ₃ .
100	0.376	0.496
200	0.390	0.515
300	0.397	0.524
400	0.427	0.564

SOLUBILITY OF SILVER BROMIDE IN AQUEOUS SALT SOLUTIONS. (Valenta — Monatsh. Ch. 15, 250, '94; see also Cohn — Z. physik. Ch. 18, 61, '95.)

Salt Solution.	t°.	Gms. AgBr	per 100 G1	ns. Aq. Solu	tion of Con	centration:
barr boranour		1:100.	5: 100.	10: 100.	15: 100.	20: 100.
Sodium Thio Sulphate	20	0.35	1.90	3.50	4.20	5.80
" Calc. by Cohn	20	0.50	2.40	4.59	6.58	8.40
Sodium Sulphite	25			0.04		0.08
Potassium Cyanide	25		6.55			
" Calc. by Cohn	25		6.85			
Potassium Sulphocyanide	25			0.73		
Ammonium Sulphocyanide	20		0.21	2.04	5.30	
Calcium Sulphocyanide	25			0.53		
Barium Sulphocyanide	25			0.35		
Aluminum Sulphocyanide	25			4.50		
Thio Carbamide	25			1.87		
Thio Cyanime	25	0.08	0.35	0.72		
Potassium Sulphocyanide Ammonium Sulphocyanide Calcium Sulphocyanide Barium Sulphocyanide Aluminum Sulphocyanide Thio Carbamide	25 20 25 25 25 25 25		0.2I 	0·73 2·04 0·53 0·35 4·50 1·87	5·3° 	•••

Note. — Cohn shows that the lower results obtained by Valenta are due to the excess of solid AgBr used and the consequent formation of the less soluble di salt 3(AgS₂O₃Na)₂ instead of the more soluble salt (AgS₂O₃Na)₂Na₂S₂O₃.

100 cc. H_2O containing 10 per cent of normal mercuric acetate, $Hg(C_2H_3O_2)_2 + Aq.$, dissolve 0.0122 gram AgBr at 20°.

100 gms. NaCl in conc. aq. solution dissolve 0.474 gm. AgBr at 15°. 100 gms. NaCl in 21 per cent solution dissolve 0.182 gm. AgBr at 15°. 100 gms. KBr in conc. solution dissolve 2.010 gms. AgBr at 15°.

100 gms. KBr in conc. solution dissolve 3.019 gms. AgBr at 15°.
95 gms. NaCl + 10 gms. KBr in conc. aq. solution dissolve 0.075 gm. AgBr at 15°.

(Schierholz - Sitzber. K. Akad. Wiss. (Vienna) 101, 2b, 4, '90.)

SILVER BUTYRATE C3H7COOAg.

SILVER (Iso) BUTYRATE (CH3)2CHCOOAg.

SOLUBILITY OF EACH IN WATER.

(Goldschmidt — Z. physik. Ch. 25, 93, '98; Arrhenius — *Ibid*. xx, 396, '93; Raupenstrauch — Monatsh Ch. 6, 589, '85.)

t°.	Gms. per 100 Gra	ns H ₂ O.		Grams per 100 Gms. H ₂ O.		
L.	Butyrate.	Iso Butyrate.	٠.	Butyrate.	Iso Butyrate.	
0	0.363	0.796	30	0.561 (1.102 G.	1.060	
10	0.419	0.874	40	0.647		
17.8	0.432 (A.)		50	0.742	1.313	
18.8	0.445 (A.)		60	0.848		
20	0.484 (0.999 G.)	0.961	70	0.901	1.670	
25	(1.044 G.))	80	1.14	1.898	

Solubility of Silver Butyrate in Aq. Solutions of Silver Acetate, Silver Nitrate and of Sodium Butyrate.

(Arrhenius - Z. physik. Ch. 11, 396, '93.)

In Silver Ace	etate at 17.8°.	In Silver Nitrate at 18.8°.			
G. Mols. per Liter.	Grams per Liter.	G. Mols. per Liter.	Grams per Liter.		
CH ₃ C ₃ H ₇ COOAg.	CH_3 C_3H_7 $COOAg$.	$\overline{\text{AgNO}_3}$. $\overline{\text{COOAg}}$.	AgNO ₃ . COOAg.		
0.0 0.0221	0.0 4.32	0.0 0.0228	0.0 4.445		
0.0270 0.0139	4.51 2.71	0.0667 0.0078	11.33 1.521		
0.0506 0.0103	8.45 2.01	0.100 0.0062	17.00 1.209		

In Sodium Butyrate at 18.2°.

	per Liter.	Grams 1	er Liter.		per Liter.	Grams p	er Liter.
C ₃ H ₇ COONa.	C ₃ H ₇ COOAg.	C ₈ H ₇ COONa.	C ₃ H ₇ COOAg.	C ₃ H ₇ COONa.	$_{\mathrm{COOAg.}}^{\mathrm{C_3H_7}}$	C ₃ H ₇ COONa.	C ₃ H ₇ COOAg.
0.0	0.0224	0.0	4.363	0.0658	0.0091	7.24	I.774
0.0066	0.0199	0.73	3.881	0.1315	0.0060	14.47	1.170
0.0164	0.0169	1.81	3.296	0.263	0.0040	28.96	0.780
0.0329	0.0131	3.62	2.555	0.493	0.0027	54.28	0.526

SILVER CAPROATES Ag(C₆H₁₁O₂).

SOLUBILITY IN WATER.

(Keppish — Monatsh. Ch. 9, 589, '88; Stiassny — Ibid. 12, 596, '91; Kulisch — Ibid. 14, 570, '93; König — Ibid. 15, 26, '94; Altschul — Ibid. 17, 568, '96.)

Results in terms of grams salt per 100 grams H₂O.

t°.	Normal (CH ₃ (CH ₂)	Caproate COOAg.	2 Methyl Pentan M 4 Acid CH ₃ .CH.CH ₃ .(CH ₂) ₂ COOAgCH	Acid 4 CH ₃ .CH ₂ CF	Methyl Pentan 4 Acid I ₃ (CH ₂) ₂ CH(CH ₃) .COOAg.
0	0.076 (A·)	0.078(Keppi	sch) 0.168 (König)	0.880 (Kulish)	0.510 (Stiassny)
IO	0.085	0.089	0.162	0.858	0.528
20	0.100	0.107	0.163	0.849	0.550
30	0.123	0.131	0.170	0.854	0.574
40	0.154	0.161	0.183	0.871	0.602
50 .	0.193	0.198	0.203	0.902	0.632
60	0.240	0.243	0.229	0.946	0.666
70	0.295	0.288	0.263	1.003	0.702
80	0.354		0.300	1.073	0.742
90			0.347	1.157	

SILVER CARBONATE Ag₂CO₃.

SOLUBILITY IN WATER.

	t°.	Gms. Ag ₂ CO ₃ per Liter.	Authority.
	15	0.031	(Kremers - Pogg. Ann. 85, 248, '52.)
	25	O.033 (0.00012 gm. atoms Ag.)	(Abegg and Cox — Z. physik. Ch. 46, 11, '03.)
•	100	0.50	(Joulin - Ann. chim. phys. [4] 30, 260, '73.)
	15	O.85 (in H ₂ O sat. with CO ₂)	(Johnson — Ch. News, 54, 75, 86.)

SILVER CHLORATE AgClO3.

100 grams cold water dissolve 10 grams AgClO₃ (Vauquelin); 20 gms. AgClO₃ (Wächter).

SILVER CHLORIDE AgCl.

SOLUBILITY IN WATER.

(A large number of determinations are quoted by Abegg and Cox — Z. physik. Ch. 46, 11, '03; see also Kohlrausch — *Ibid.* 50, 356, '04-'05; Böttger — *Ibid.* 46, 602, '03, 56, 93, '06.)

t°. 14°. 20°. 25°. 42°. 100°. Gms. AgCl per liter 0.0014 0.0016 0.0020 0.0040 0.0218

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF:

Ammonia at o°. Mono Methyl Amine at 11.5.° (Jarry — Ann. chim. phys. [7] 17, 342, '99.) (Jarry.)

Gran	ms per 100 (Grams Solution	Gms. per 100 Gms. Solution.		
NH ₃ Gas.	AgCl.	NH ₃ Gas.	AgCl.	NH ₂ CH ₃ .	AgCl.
1.45	0.49	28.16	6.59	1.78	0.16
1.94	1.36	29.80	7.09	4.44	0.62
5.60	3 - 44	30.19	7.25	5.51	0.83
6.24	4.00	32 · 43	5.87	7.66	1.32
11.77	4.68	34.56	4.77	13.70	3.29
16.36	5.18	37 . 48	3.90	18.69	5 · 43
				36.69	9.93

Solubility of Silver Chloride in Aqueous Solutions of Ammonia.

(Longi — Gazz. chim. ital. 13, 87, '83; at 25°, Valenta — Monatsh. Ch. 15, 250, '94; at 80°, Pohl — Sitzber. Akad. Wiss, Wien, 41, 627, '60.)

Sol	vent.	t°.	Gms. AgCl per 100 Gms. Solvent.
Aq. Ammonia of	o.998 Sp. Gr. = 5%	12	0.233
"	0.96 Sp. Gr. = 10%	18	7.84
"	o.986 Sp. Gr.	80	1.49
"	= 3%	25	1.40
66	= 15%	25	7.58

Solubility of Silver Chloride in Aqueous Solutions of Ammonium Chloride.

(Schierholz — Sitzber. K. Akad. Wiss. (Vienna) 101, 2b, 8, '90; see also Vogel — N. Rep. Pharm. 23, 335, '74. Hahn — Wyandotte Silver Smelting Wks., 1877.)

Solubility at 15°. Solubility at Different Temperatures.

Grams per 10	Gms. Solution.	t°.	Gms. per 100 Gm	s. Solution.
NH4Cl.	AgCl.	• •	NH ₄ Cl.	AgCl.
10.00	0.0050	15	26.31	0.276
14.29	0.0143	40	"	0.329
17.70	0.0354	60	"	0.421
19.23	0.0577	80	"	0.592
21.98	0.110	90	"	0.711
25.31	0.228	100	"	0.856
28.45	0.340 (24.5)	110	"	1.053
. 0				70 0 0

Sat. at ord. temp. 0.157 Sp. Gr. of 26.31 % NH₄Cl solution at 15°=1.08.

Solubility of Silver Chloride in Aqueous Solutions of Aluminum and Ammonium Salts.

(Valenta; see also Cohn - Z. physik. Ch. 18, 61, '95.)

Aq. Salt Solution. to.	Gms. AgCl per 100 Gms. Solvent of Concentration:
Aq. Sait Solution.	1:100. 5:100. 10:100.
Aluminum Sulphocyanide 25	2.02
Ammonium Carbonate 25	0.05
" Sulphocyanide 20	0.08 0.54
" Thio Sulphate 20	0.57 1.32 3.92
	Cohn* 0.64 3.07 5.86

^{*} See Note, p. 281.

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS HYDROCHLORIC ACID SOLUTIONS AT ORDINARY TEMPERATURE.

(Pierre — J. pharm. chim. [3] 12, 237, '47; Vogel.)

r Liter.
0.56
0.18
0.00
0.035

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SALT SOLUTIONS. (Vogel; Hahn; Valenta)

Salt Solution.	Conc. of Salt.	t°.	Gms. AgC	
Barium Chloride	27.32%	24.5	0.057	(H.)
Barium Chloride	saturated	ord. temp.	0.014	(Vg.)
Barium Sulphocyanide	10:100	25	0.20	(Vl.)
Calcium Sulphocyanide	10:100	25	0.15	(Vl.)
Calcium Chloride	41.26%	24.5	0.571	(H.)
Calcium Chloride	saturated	ord. temp.	0.093	(Vg.)
Copper Chloride	"	24.5	0.053	(H.)
Ferrous Chloride	44	"	0.169	(H.)
Ferric Chloride	"	66	0.006	(H.)
Manganese Chloride	"	"	0.013	(H.)
Magnesium Chloride	50:100	25	0.50	(Vl.)
Magnesium Chloride	36.35%	24.5	0.531	(H.)
Magnesium Chloride	saturated	ord. temp.	0.171	(Vg.)
Strontium Chloride	"	46	0.088	(Vg.)
Zinc Chloride	"	24.5	0.0134	(H.)
Potassium Chloride	"	ord. temp.	0.0475	(Vg.)
Potassium Chloride	24.95%	19.6	0.0776	(H.)
Potassium Cyanide	5: 100	25	2.75	(VI.)
Potassium Cyanide	5:100	25	5.24	(Cohn*)
Potassium Sulphocyanide	10: 100	25	0.11	(Vl.)
Sodium Chloride	saturated	ord. temp.	0.095	(Vg.)
Sodium Chloride	25.95%	19.6	0.105	(H.)

^{*} See Note, page 281.

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF POTASSIUM CHLORIDE AT 15°. (Schierholz — Sitzber. K. Akad. Wiss. (Vienna) 101, 2b, 8, '90.)

Grams per 1 Solut	oo Grams	Grams per Solu	100 Grams	
KCl.	AgCl.	KCl.	AgCl.	
10.0	0.000	22.47	0.045	
14.29	0.004	24.0	0.072	
16.66	0.008	25.0	0.084	
20.00	0.020	Sp. Gr. of 25%	KCl sol., = 1	1.179

MIXTURES OF SILVER CHLORIDE AND SILVER HYDROXIDE IN EQUI-LIBRIUM WITH AQ. POTASSIUM HYDROXIDE SOLUTIONS AT 25°. (Noyes and Kohr - J. Am. Ch. Soc. 24, 1144, '02.)

Normality	Millimols	Millimols per Liter.		Grams per Liter.			
of KOH.	KCI.	KOH.	KCl.	KOH.	AgCl.		
0.333	3.414	347.8	0.255	10.05	0.4896		
0.065	0.598	65.0	0.0446	2.00	0.0828		

SOLUBILITY OF SILVER CHLORIDE IN AQ. SOL. OF SODIUM CHLORIDE. (Schierholz; Vogel; Hahn.)

Solubility at 15°.			Solubility at Different Temperatures.			
Gms. per Solut	100 Gms.	t°.	Gms. AgCl per 100 Gms. Solution in:			
NaCl.	AgCl.		14% NaCl	26.3% NaCl.		
10.0	0.0025	15	0.007	0.128		
14.29	0.0071	30	0.011	0.132		
18.18	0.0182	40	0.014	0.158		
21.98	0.0439	50	0.023	0.184		
23.53	0.0706	70	0.042	0.263		
25.64	0.103	80	0.054	0.315		
26.31	0.127	90	0.069.	0.368		
		100	0.090	0.460		
Sp. Gr. of 26.31%	NaCl sol. $= 1.207$.	109	0.107 (104°)	0.571		

SOLUBILITY AT 20°, 50°, AND 90° (CALC. FROM ORIGINAL). (Barlow — J. Am. Chem. Soc. 28, 1446, 'o6.)

Gms. NaCl per 100 cc.	Gms. AgCl dissolved per 100 cc. Solution at:			Gms. NaCl per 100 cc.	Gms. AgCl dissolved per 100 cc. Solution at:			
Solution.	20°.	50°.	90°.	Solution.	20°.	50°.	90°.	
$3 \cdot 43$	81000.0	0.0016	0.0067	11.5	0.0031	0.0124	0.0436	
4.60	0.00025	0.0025	0.0100			0.0191		
	0.00047			23.0	0.0313	0.0889	0.1706	
7.67	0.00125	0.0058	0.0236					

Results are also given for the solubility of silver chloride in aqueous sodium chloride solutions containing hydrochloric acid.

SOLUBILITY OF SILVER CHLORIDE IN AQ. SODIUM NITRATE SOLUTIONS.

t°.	Gms. per 1	oo Gms. H2O.	t°.	Gms. per 100 Gms. H2O.		
• .	NaNO3.	AgCl.	• •	NaNO3.	AgCl.	
5	0.787	0.00086	15-20	0.393	0.00096	
18	0.787	0.00146	"	0.787	0.00133	
30	0.787	0.00233	66	2.787	0.00253	
45-55	0.787	0.00399		(Mulder	:)	

SOLUBILITY OF SILVER CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM THIO SULPHATE, ETC.

(Valenta; Cohn; Richards and Faber - Am. Ch. J. 21, 168, '99.)

Salt Solution.	t°.	Gms. AgCl per 100 Gms. Aq. Solutions of Concentration				
Sait Solution.		1:100.	5:100.	10:100.	15:100.	20:100.
Sodium Sulphite	25			0.44		0.95
Sodium Thio Sulphate	20	0.40	2.00	4.10	5.50	6.10
" Calc. by Co	hn*	0.38	1.83	3.50	5.02	6.41
Sodium Thio Sulphate	35					9.08 †
Thio Carbamide	25			0.83		
Thio Cyanime	25	0.40	1.90	3.90		
* See Note, page 2	81.	† Gms. per	100 CC. SC	lution (R.	and F.).	

SILVER CHROMATE Ag₂CrO₄.

One liter of water dissolves 0.026 gm. Ag₂CrO₄ at 18°, and 0.020 gm. at 25°. (Abegg and Cox-Z. physik. Ch. 46, 11, '03; Kohlrausch — Ibid. 50, 356, '04-'05)

Solubility of Silver Chromate in Aqueous Solutions of Nitrates at 100°.

(Carpenter - J. Soc. Chem. Ind. 5, 286, '86.)

Solvent.	Gms. Salt	Gms. Ag ₂ CrO ₄ per 100 cc. Solution.
Water	0	0.064
Sodium Nitrate	50	0.064
Potassium Nitrate	50	0.192
Ammonium Nitrate	50	0.320
Magnesium Nitrate	50	0.256

SILVER (Di) CHROMATE Ag₂Cr₂O₇.

One liter of aqueous solution contains 0.00019 gram mols. or 0.083 gram Ag₂Cr₂O₇ at 15°. (Mayer — Ber. 36, 1741, '03.)

SILVER CITRATE C.H.O.Ag.

100 gms. H_2O dissolve 0.0277 gm. $C_6H_5O_7Ag_3$ at 18°, and 0.0284 gm. at 25°. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

SILVER CYANIDE AgCN.

One liter of aqueous solution contains 0.000043 gm. AgCN at 17.5° and 0.00022 gm. at 20° (by Conductivity Method).

(Abegg and Cox — Böttger — Z. physik. Ch. 46, 602, '03.)

SOLUBILITY OF SILVER CYANIDE IN AQUEOUS AMMONIA SOLUTIONS. (Longi — Gazz. chem. ital. 13, 87, '83.)

100 gms. aq. ammonia of 0.998 Sp. Gr. = 5% dissolve 0.232 gm. AgCN at 12° .

100 gms. aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 0.542 gm. AgCN at 18°.

SILVER SODIUM CYANIDE AgCN. NaCN.

100 gms. H₂O dissolve 20 gms. at 20°, and more at a higher temperature. 100 gms. 85% alcohol dissolve 4.1 gms. at 20°.

(Baup—Ann. chim. phys. [3] 53, 468, '58.)

SILVER THALLOUS CYANIDE AgCN.TICN.

100 gms. H₂O dissolve 4.7 gms. at 0°, and 7.4 gms. at 16°.
(Fronmiller – Ber 11 92 '78)

SILVER FLUORIDE AgF.

100 gms. H₂O dissolve 181.8 gms. at 15.8°. Sp. Gr. of sol. = 2.61.
(Gore - Proc. Roy. Soc. 18, 158, 170.)

SILVER FULMINATE CAg,(NO,)CN.

One liter of aqueous solution contains 0.075 gm. $C_2Ag_2N_2O_2$ at 13°, and 0.180 gm. at 30°. (Holleman — Rec. trav. chim. 15, 159, '66.)

SILVER HEPTOATE (Önanthylate) AgC,H13O2.

SOLUBILITY IN WATER.

(Laudau - Monatsh. Ch. 14, 709, '93; Altschul - Ibid. 17, 568, '96.)

				***	0	
t°.	Gms. AgC ₇ l	H ₁₈ O ₂ per 100 Gms. H ₂ O.	t°.	Gms. AgC ₇ H	13O2 per 100 Gms. H2	0.
0	0.0635 (La	ndau) 0.0436 (Altschul)	50	0.1652 (Lan	dau) 0.0858 (Alts	chul)
IO	0.0817	0.0494	60	0.1906	0.1036	
20.	0.1007	0.0555	70	0.2185	0.1351	
30	0.1206	0.0617	80	0.2495	0.1688	
40	0.1420	0.0714		_		

SILVER IODATE AgIO3.

One liter of aqueous solution contains 0.04 gram or 0.00014 g. mols. at 18°-20°, and 0.05334 gm. or 0.000189 g. mols. at 25°. (Longi; Böttger; Kohlrausch; Noyes and Kohr — J. Am. Ch. Soc. 24, 1141, '02.)

SOLUBILITY OF SILVER IODATE IN AQUEOUS SOLUTIONS OF AMMONIA AND OF NITRIC ACID AT 25°. (Longi — Gazz. chim. ital. 13, 87, '83.)

100 gms. aq. ammonia of 0.998 Sp. Gr. = 5% dissolve 2.36 gms. AgIO₃. 100 gms. aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 45.41 gms. AgIO₃.

100 gms. aq. nitric acid of 1.21 Sp. Gr. = 35% dissolve 0.096 gm. AgIO₃.

SILVER IODIDE AgI.

One liter of aqueous solution contains 0.000028 gm. AgI at 20°-25°. (Average of several determinations by Kohlrausch, Abegg and Cox, etc. Holleman gives higher figures.)

I liter of aq. ammonia of 0.96 Sp. Gr. = 10% dissolve 0.035 gm. AgI at 12°. (Longi.)

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SALT SOLUTIONS.
(Valenta — Monatsh. Chem. 15, 250, '94; Cohn — Z. physik. Ch. 18, 61, '95.)

Ag. Salt Solution.	t°.	Gms. AgI	per 100 G1	ns. Aq. Sol	ution of Co	ncentration:
Aq. Sait Solution.	υ.	I:100.	5:100.	10:100.	15:100.	20:100.
Sodium Thio Sulphate	20	0.03	0.15	0.30	0.40	0.60
" Calc. by Col	ın*	0.623	2.996	5.726	8.218	10.493
Potassium Cyanide	25		8.28			
" Calc. by Coh			8.568			
Sodium Sulphite	25			0.01		0.02
Ammonium Sulphocyanide	20		0.02	0.08	0.13	
Calcium "	25			0.03		
Barium "	25			0.02		
Aluminum "	25			0.02		
Thio Carbamide	25		*	0.79		
Thio Cyanime	25	0.008	0.05	0.09		
	* See	Note, page	281.			

SOLUBILITY OF SILVER IODIDE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, POTASSIUM BROMIDE AND OF POTASSIUM IODIDE AT 15°.

(Schierholz — Sitzb. K. Akad. Wiss. (Vienna) 101, 2b, 10, '90.)

In Potassi	um Iodide.
Gms. per 100 G	ms. Solution.
KI.	AgI.
59.16	53.13
57.15	40.0
50.0	25.0
40.0	13.0
33 · 3	$7 \cdot 33$
25.0	2.75
21.74	1.576
20.0	0.80
	Gms. per 100 G KI. 59 · 16 57 · 15 50 · 0 40 · 0 33 · 3 25 · 0 21 · 74

100 gms. sat. silver nitrate solution dissolve 2.3 gms. AgI at 11°, and 12.3 gms. at b. pt.

100 gms. pyridine dissolve o.10 gm. AgI at 10°, and 8.60 gms. at 121°. (von Laszcynski – Ber. 27, 2285, '94.)

SILVER MALATE C.H.O.Ag.

100 gms. H₂O dissolve 0.0119 gm. at 18°, and 0.1216 gm. at 25°. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

SILVER NITRATE AgNO3.

SOLUBILITY IN WATER.

(Etard — Ann. chim. phys. [7] 2, 526, '94; Kremers — Pogg. Ann. 92, 497, '54; Tilden and Shenstone — Phil. Trans. 23, '84.)

t°.	Grams AgNO3 per 100 Gms.			t°.	Grams AgNO3 per 100 Gms.		
	Soluti	on.	Water.	٠.	Solution		Water.
-5	48 (Etar	d)		50	79 (Etar	d) 82	455
0	53	55	122	60	81.5	84	525
IO	62	63	170	80	85.5	87	669
20	68	69	222	100	88.5	901	952
25	70.5	72	257	120	91	95	1900
30	72.5	75	300	140	93 · 5	• • • •	
40	76.5	79	376	160	95	• • •	

100 gms. $^2\mathrm{HNO_3.3H_2O}$ dissolve 3.33 gms. AgNO3 at 20°, and 16.6 gms. at 100°.

100 gms. conc. HNO₃ dissolve 0.2 gm. AgNO₃.

(Schultz — Zeit. Chem. [2] 5, 531, '69.)

MUTUAL SOLUBILITY OF SILVER NITRATE AND SODIUM NITRATE IN AQ. ETHYL ALCOHOL.

(Hissnik – Z. physik. Ch. 32, 557, '00.)
Results at 25°. Results at 50°.

(In Aq. Alcohol of d_{20} 0.945 = 37 wt. %.)				(In Aq. Alcohol of d_{17} 0.859 = 75 wt. %.)			
Gms. I	er 100 . Sol.	Wt. per Mix C	cent in rystals.	Gms. p Gms.	Sol.	Wt. pe Mix (r cent in Crystals.
AgNO ₃ .	NaNO ₃ .	AgNO ₃ .	NaNO3.	AgNO ₃ .	NaNO3.	AgNO ₃ .	NaNO3.
47 - 32	0.0	100	0.0	29.78	0.0	100	0.0
44.0I	8.78	99.1	0.9	27.9	2.5	99.5	0.5
36.78	20.42	42.9	57.1	26.4	4.2	99.3	0.7
29.97	23.2	33.6	66.4	23.0	6.3	42.9	57.1
24.56	24.82	27.6	*72.4	18.3	7.1	31.0	69.0
8.02	26.41	9.9	90.1	9.5	8.3	17.5	82.5
0.0	26.77	0.0	100.0	0.0	8.54	0.0	100.0

SOLUBILITY OF SILVER NITRATE IN ALCOHOLS. (de Bruyn — Z. physik. Ch. 10, 783, '92.)

100 gms. abs. methyl alcohol dissolve 3.72 gms. AgNO₃ at 19°. 100 gms. abs. ethyl alcohol dissolve 3.10 gms. AgNO₃ at 19°.

SOLUBILITY OF SILVER NITRATE IN AQUEOUS ETHYL ALCOHOL. (Eder — J. pr. Ch. [2] 17, 45, '78.)

Sp. Gr. of Aq. Alcoholic	Volume	Gms. AgNO	per 100 Gms. A	q. Alcohol at:
Mixture.	per cent Alcohol.	15°.	50°.	75°.
0.815	95	3.8	7 · 3	18.3
0.863	80	10.3		42.0
0.889	70	22.I		
0.912	60	30.5	58.I	89.0
0.933	50	35.8		
0.951	40	56.4	98.3	160.0
0.964	30	73 · 7		
0.975	20	107.0	214.0	340.0
0.986	10	158.0		

100 gms. of a mixture of 1 vol. (95%) alcohol + 1 vol. ether dissolve 1.6 gms. $AgNO_3$ at 15°.

100 gms. of a mixture of 2 vols. (95%) alcohol + 1 vol. ether dissolve 2.3 gms. AgNO₃ at 15°.

100 gms. H₂O sat. with ether dissolve 88.4 gms. AgNO₃ at 15°.

(Eder

100 gms. acetone dissolve 0.35 gm. $AgNO_3$ at 14°, and 0.44 gm. at 18°. (von Lasczynski – Ber. 27, 2285, '94; Naumann – Ber. 37, 4332, '04.)

SILVER NITRITE AgNO2.

SOLUBILITY IN AQUEOUS SOLUTIONS OF SILVER NITRATE AT 18°.
(Naumann and Rucker — Ber. 38, 2293, '05.)

Mols. pe	r Liter.	Grams p	er Liter.	Mols. pe	r Liter	Grams p	er Liter.
ÁgNO ₃ .	AgNO2.	AgNO3.	AgNO ₂ .	AgNO ₃ .	AgNO ₂ .	AgNO ₃ .	AgNO ₂ .
0.0000	0.02067	0.000	3.184	0.02067	0.01435	3.512	2.201
	0.01975					7.024	1 / /
0.00517	0.01900	0.878	2.926	0.08268	0.00961	14.048	1.480
0.01033	0.01689	1.756	2.601				

SILVER OXALATE C2O4Ag2.

One liter of $\rm H_2O$ dissolves 0.035 gm. at 18°, and 0.0365 gm. at 20°. (Böttger; Kohlrausch.)

SILVER OXIDE Ag,O.

One liter of H₂O dissolves 0.021 gm. at 20°, and 0.025 gm. at 25°. (Noyes and Kohr; Böttger; Abegg and Cox.)

SILVER PERMANGANATE AgMnO4.

100 gms. cold water dissolve 0.92 gm.; hot water dissolves more.
(Mitscherlich -- Pogg. Ann. 25, 301, '32.)

SILVER PHOSPHATE Ag₃PO₄.

One liter of water dissolves 0.00644 gm. at 20°.

(Böttger - Z. physik. Ch 46, 602, '03.)

SILVER PROPIONATE C.H.COOAg.

SOLUBILITY IN WATER.

(Raupenstrauch — Monatsh. Ch. 6, 587, '85; Arrhenius — Z. physik. Ch. 11, 396, '93; Goldschmidt — Ibid. 25, 93, '98.)

t°.	Gms. C ₈ H ₅ O ₂ Ag per Liter.	t°.	Gms. C ₃ H ₅ O ₂ Ag per Liter.	t°.	Gms. C ₈ H ₅ O ₂ Ag per Liter.
0	5.12	20	8.36 (8.48)	50	13.35
IO	6.78	25	9.06	70	17.64
18.2	8.36 (A.)	30	9.93 (9.70)	80	20.30

SOLUBILITY OF SILVER PROPIONATE IN AQUEOUS SOLUTIONS OF: (Arrhenius.)

Silver Nitrate at 19.7°. Sodium Propionate at 18.2°. Mols. per Liter. Grams per Liter. Mols. per Liter. Grams per Liter. AgNO₃. C₃H₅O₂Ag. AgNO₃. C₃H₅O₂Ag. C₈H₅O₂Na. C₈H₅O₂Ag. C3H5O2Na. C3H5O2Ag 8.519 0.0462 0.0 0.0471 0.0 0.0 0.0 8.362 0.0133 0.0415 2.289 7.511 0.0167 1.607 0.0393 7.114 4.577 6.86 0.0267 0.0379 3.215 6.244 0.0333 0.0345 0.0533 0.0307 9.059 5.556 0.0667 0.0258 6.429 4.670 0.100 0.0222 16.997 4.019 0.1333 0.0191 12.859 3.456 0.0131 25.718 2.371 0.2667 48.77 1.828

SILVER SALICYLATE C.H.OH.COOAg 1,2.

One liter of aqueous solution contains 0.05 gm. at 23°. (Holleman - Z. physik. Ch. 12, 129, '93.)

0.5000

IOIO.O

SILVER SUCCINATE C.H.O.Ag.

100 gms. H₂O dissolve 0.0176 gm. at 18°, and 0.0199 gm. at 25°. (Partheil and Hübner - Archiv. Pharm. 241, 413, '03)

SILVER SULPHATE Ag2SO4.

SOLUBILITY IN WATER.

(Euler — Z. physik. Ch. 49, 314, '04; Wright and Thomson — Phil. Mag. [5] 17, 288, '84; Wentzel — Dammer's "Handbuch" II, 2, 858; Drucker — Z. anorg. Ch. 28, 362, '01.)

to. Gms. Ag₂SO₄ per Liter. Gm. Mols. Ag₂SO₄ per Liter.

17	7.70	0.0247	(Euler.)
18	7.28	0.0233	(W. and T.)
25	8.01	0.0257	(D.)
100	14.60		(W.)

One liter of aqueous solution in contact with a mixture of silver sulphate and silver acetate contains 3.95 gms. Ag₂SO₄ + 8.30 gms. CH₃COOAg at 17°. Sp. Gr. of solution = 1.0004. (Euler.)

SOLUBILITY OF SILVER SULPHATE AT 25° IN AQUEOUS SOLUTIONS OF: (Drucker.)

Sulphuric Acid.				Potassium Sulphate.			
Mols. per	r Liter.	Grams p	er Liter.	Mols. per	Liter.	Grams p	er Liter.
Ag ₂ SO ₄ .	H ₂ SO ₄ .	Ag ₂ SO ₄ .	H ₂ SO ₄ .	Ag ₂ SO ₄ .	K2SO4.	Ag ₂ SO ₄ .	K2SO4.
0.0260	0.02	8.11	0.98	0.0246	0.02	7.67	1.74
0.0264	0.04	8.23	1.96	0.0236	0.04	7.36	3.49
0.0271	0.10	8.45	4.90	0.0231	0.10	7.20	8.72
0.0275	0.20	8.58	9.81	0.0232	0.20	7.24	17.44

SOLUBILITY OF SILVER SULPHATE AT 18° IN AQUEOUS SOLUTIONS OF:

(Eder - J. pr. Ch. [2] 17, 44, '78.)

Ammonium	Sulphate.	Potassiur	n Sulphate.	Sodium	Sulphate.
Gms. per 10 Solution		Gms. per Soluti		Gms. per Solu	100 Gms
(NH ₄) ₂ SO ₄ .	Ag ₂ SO ₄ .	K ₂ SO ₄ .	Ag ₂ SO ₄ .	Na ₂ SO ₄ .	Ag ₂ SO ₄ .
5	0.66	6	0.60	12	0.65
15	0.85	18	0.76	32	0.80

SILVER SULPHOCYANIDE AgSCN.

One liter of aqueous solution contains 0.0002 gm. at 25°, and 0.0064 gm. at 100°.

(Abegg and Cox — Z. physik. Ch. 45, 11, '03; Böttger — Ibid. 46, 60, '05; 56, 93, '06.)

SOLUBILITY OF MIXTURES OF SILVER THIOCYANATE AND POTAS-SIUM THIOCYANATE IN WATER AT 25°. (Foote — Am. Ch. J. 30, 332, '03.)

Mols. per 100 Mols. H2O. Gms. per 100 Gms. Solution. Solid Phase. KSCN. AgSCN. AgSCN. KSCN. 44.36 KSCN 70.53 KSCN + 2KSCN.AgSCN 51.13 66.55 9.32 4.10 4.60] 10.62 47.98 64.47 Double Salt. 2KSCN.AgSCN = 61.25 11.76 4.72 42.07 53.92% KSCN 38.47 5.23 58.34 13.55 53.21 6.50 2KSCN.AgSCN+ KSCN.AgSCN 17.53 33.71 50.68 7.67 20.43 32.52 20.32 30.29 7.28 49.43 Double Salt. KSCN.AgSCN = 12.26 18.34 4.05 32.51 36.9% KSCN 24.68 3.02 16.41 7.7723.86 KSCN.AgSCN + AgSCN 16.07 7.36 2.90

SILVER TARTRATE CAH4O6Ag2.

100 gms. H_2O dissolve 0.2012 gm. $C_4H_4O_6Ag_2$ at 18°, and 0.2031 gm. at 25°. (Partheil and Hübner — Archiv. Pharm. 241, 413, '03.)

SILVER VALERATES $AgC_5H_9O_2$.

SOLUBILITY IN WATER.

	Gms. per 100 Gms. H ₂ O.			Gms. per 100 Gms. H ₂ O.		
t°.	Normal V.	Iso V.	t°.	Normal V.	Iso V.	
0	0.229	0.177	50	0.474	0.360	
10	0.259	0.211	60	0.552	0.401	
20	0.300	0.246	70	0.636	0.443	
30	0.349	0.283	80	• • •	0.486	
40	0.408	0.321				

100 gms. H₂O dissolve 0.73 gm. silver valerate at 20°.

(Markwald - Ber. 32, 1089, '99.)

SOLUBILITY OF SILVER VALERATE IN AQUEOUS SOLUTIONS OF SILVER ACETATE, SILVER NITRATE AND OF SODIUM VALERATE.

(Arrhenius - Z. physik. Ch. II 396, '93.)

In Silver Acetate at 17.8°.				In S	ilver Nitr	ate at 16.	5°.	
Mols. p	er Liter.	Gms. pe	r Liter.	Mols.	per Liter.	Gms. pe	er Liter.	
C ₂ H ₃ O ₂ Ag.	C ₅ H ₉ O ₂ Ag.	C ₂ H ₃ O ₂ Ag.	C ₅ H ₉ O ₂ Ag.	AgNO ₃ .	C5H9O2Ag.	AgNO ₃ . C	5H ₉ O ₂ Ag.	
0.0	0.0094	0.0	1.96	0.0	0.0094	0.0	1.96	
0.0067	0.0070	1.13	1.46	0.0067	0.0068	1.14	I · 42	
0.0135	0.0057	2.27	1.19	0.0133	0.0051	2.29	1.07	
0.0270	0.0037	4.54	0.77	0.0267	0.0031	4.58	0.65	
0.0505	0.00265	8.48	0.55	0.1000	0.0012	T7.00	0.25	

In Sodium Valerate at 18.6°.

Mols. pe	r Liter.	Grams. per Liter.			
C ₂ H ₃ O ₂ Na.	C ₅ H ₉ O ₂ Ag.	C ₂ H ₃ O ₂ Na.	C ₅ H ₉ O ₂ Ag.		
0.0	0.0095	0.0	1.986		
0.0175	0.0047	2.17	0.982		
0.0349	0.0030	4.32	0.627		
0.0698	0.0018	8.65	0.376		
0.1395	0.0015	17.31	0.313		

SILVER VANADATE Ag₆V₄O₁₃.

One liter of aqueous solution contains 0.047 gram at 14°, and 0.073 gm. at 100°. (Carnelly - Liebig's Ann. 166, 155, '73.)

SODIUM ACETATE CH₃COONa.₃H₂O.

SOLUBILITY IN WATER.

Interpolated from original.

		_	(Schiavor -	- Gazz. c	him. ital. 32,	II, 532, o	2.)
	Gms. C	H ₃ COONa		Gms.	CH ₃ COONa		
tº.	per 10	o Gms.	t°.	per	100 Gms.		
• .	Water.	Solution.	• •	Water.	Solution.		
0	34	25.4	25	53	$34 \cdot 7$		
10	41	29.1	30	57	36.3		
20	40	32.0	40	65	39.4		

100 gms. H₂O dissolve 46.9 gms. CH₃COONa at 31.5°. (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

100 cc. aqueous solution contain 41.11 gms. CH3COONa at 10°. (Enklaar.)

Solubility of Sodium Acetate in Aqueous Solutions of ACETIC ACID.

(Enklaar - Rec. trav. chim. 20, 183, '01.)

Gram Mols		Grams	per Liter.
CH ₃ COOH.	CH ₃ COONa.	ĆH₃COOH.	CH3COONa.
0	5.0	0.0	411.1
0.085	5.0	5.1	410.3
0.12	5.0	7 . 2	410.4

SOLUBILITY OF SODIUM ACETATE IN ABSOLUTE ALCOHOL AT ROOM TEMPERATURE. (Bödtker — Z. physik. Ch. 22, 510, '97.)

100 gms. alcohol dissolve 1.81 gms. CH₃COONa or 7.49 gms. CH₃ COONa.3H₂O.

SOLUBILITY OF SODIUM ACETATE IN AQUEOUS ALCOHOL: At 18°. At Different Temperatures.

(Gerardin - Ann. chim. phys. [4] 5, 158, '65.) (Schiavor.) Gms. CH₃COONa Wt. Degree Gms. per 100 Gms. Alcohol. tº. per cent per 100 Gms. Aq. Alcohol. Alcohol. Alcohol. CH3COONa. CH3COONa.3H2O. 38.0 8 98.4 2.08 5.2 3.459.8 98.4 35.9 12 2.12 3.51 29.8 3.86 23.0 98.4 19 2.33 29.0 27.5 II 90 2.07 3.42 38.0 23.5 13 90 2.13 3.52 63 13.46 45.0 20.4 15 22.32 59.0 14.6 18 63 13.88 23.03 86.0 14.65 21 63 24.30 3.9 91.0 2.I 28.50 23 40 47.27

100 gms. H_2O dissolve 237.6 gms. sugar + 57.3 grams CH_3COONa , or 100 gms. of the saturated solution contain 58.93 gms. sugar + 14.44 gms. CH_3COONa at 31.25°. (Köhler.)

SODIUM ARSENATE Na, AsO, 12H,O.

100 grams aqueous solution contain 21.1 grams Na_3AsO_4 .12 H_2O . (=10.4 gms. Na_3AsO_4) at 17°. Sp. Gr. of solution = 1.1186.

(Schiff — Liebig's Ann. 113, 350, '60.) 100 grams glycerine dissolve 50 gms. sodium arsenate at 15.5°.

(Pharm. Centralh. No. 30, '81.)

SODIUM HYDROGEN ARSENATE Na2HAsO4.12H2O.

100 gms. H_2O dissolve 17.2 gms. Na_2HAsO_4 .12 H_2O (= 7.3 gms. anhydrous) at 0°. 56.0 gms. (= 19.89 gms. anhydrous) at 14°. Sp. Gr. 1.1722, 37.0 gms. anhydrous at 21°, and 140.7 gms. hydrated at 30°. (Schiff — Liebig's Ann. 113, 350, '60; Tilden — J. Ch. Soc. 45, 409, '84.)

SODIUM BENZOATE C₆H₅.COONa.

100 gms. $\rm H_2O$ dissolve 62 gms. at 25°, and 77 gms. at b. pt. 100 gms. alcohol dissolve 2.3 gms. at 25°, and 8.3 gms. at b. pt. (U. S. P.)

SODIUM (Tetra) **BORATE** $Na_2B_4O_7$.10 H_2O (Borax).

SOLUBILITY IN WATER. (Horn and Van Wagener — Am. Ch. J. 30, 347, '03.)

t°.	Gms. Na ₂ B ₄ O ₇ per 100 Gms. H ₂ O.	t°.	Gms. Na ₂ B ₄ O ₇ per 100 Gms. H ₂ O.	t°.	per 10	Na ₂ B ₄ O ₇ o Gms.
5	1.3	50	10.5	60	19.4	20.3
IO	1.6	54	13.3	62	22.0	20.7
21.5	2.8	55	14.2	65	22.0	21.9
30	3.9	56	15.0	70	24	.4
37.5	5.6	57	16.0	80	31	.5
45	8.1			90	41	.0
-				100	52	.5

Transition temperature $Na_2B_4O_7.10H_2O \rightarrow Na_2B_4O_7.5H_2O$ approximately 62°. Sp. Gr. of saturated solution at 15° = 1.032. (Gerlach.)

SOLUBILITY OF SODIUM BORATES IN WATER AT 30°.

(Dukelski - Z. anorg. Ch. 50, 42, '06, complete references given.)

Gms. per 100	Gms. Solution.	Gms. per 100	Gms. Residue.	
K ₂ O.	B ₂ O ₃ .	K ₂ O.	B ₂ O ₃ .	Phase.
42.0				NaOH.H ₂ O
41.37	5.10	43 · 54	4.19	44
38.85	5.55	37.20	11.18	$Na_2O.B_2O_34H_2O$
34.44	$3 \cdot 73$	33.52	10.80	66
29.39	2.51	29.63	10.11	66
26.13	2.75	27.85	15.21	66
23.00	3.82	24.91	11.60	4
16.61	13.69	21.29	20.64	66
21.58	4.63	24.52	19.04	Na ₂ O.B ₂ O _{3.4} H ₂ O + Na ₂ O.B ₂ O _{3.8} H ₂ O
20.58	4.69	21.61	16.59	Na ₂ O.B ₂ O ₃ .8H ₂ O
15.32	6.21	19.70	17.84	44
12.39	9.12	18.05	18.17	66
8.85	10.49	11.72	20.62	Na ₂ O. ₂ B ₂ O ₃ . ₁₀ H ₂ O
5.81	6.94	10.82	21.31	**
1.88	2.41	7.31	15.50	"
1.38	5.16	7.16	17.44	44
2.02	7 · 79	6.24	16.38	46
4.08	17.20	8.96	29.20	$Na_2O2B_2O_31oH_2O + Na_2O5B_2O_31oH_2O$
3.79	15.84	5.68	28.19	Na ₂ O. ₅ B ₂ O _{3.10} H ₂ O
2.26	12.14	5.21	29.19	46
1.99	11.84	5.74	39.66	$Na_2O2B_2O_31OH_2O + B(OH)_3$
1.86	11.18	1.06	28.78	B(OH) ₃
0.64	6.11	0.31	31.19	46
• • •	3.54	• • •	• • •	46

100 gms. alcohol of 0.941 Sp. Gr. dissolve 2.48 gms. sodium borate at 15.5°.

100 gms. glycerine dissolve 60.3 gms. at 15.5°, and 100 gms. at 80°. (U.S.P.)

Gaudolphe — J. pharm. chim. [4] 22, 366, '75 — says that glycerine dissolves its weight of sodium borate at ordinary temperatures.

SODIUM BROMATE NaBrO.

SOLUBILITY IN WATER.

(Kremers - Pogg. Ann. 94, 271, 55; 97, 5, 56.)

Sp. Gr. of saturated solution at $19.5^{\circ} = 1.231$.

(Gerlach.)

SODIUM BROMIDE NaBr. 2H2O.

SOLUBILITY IN WATER.

(Etard — Compt. rend. 98, 1432, '84; de Coppet — Ann. chim. phys. [5] 30, 411, '83.)

t°.	Grams NaBr per 100 Gms. H ₂ O.		t°·	Grams NaBr Gms. H	
-20	57.5*	71.4	50	95-112*	116†
0	66	79.5	60	112	117
10	72	84.5	80	113	119
20	77	90.3	100	114	121
30	82.5	$97 \cdot 3$	120	116	124
40	88.0	105.8	140	118	

* Etard.

† de Coppet.

Transition temperature for NaBr.2H₂O → NaBr is approximately 50°. Kremers — Pogg. Ann. 97, 14, '56 — gives results which fall near those of de Coppet for the NaBr.2H₂O, and near those of Etard for the NaBr section of the curve.

SOLUBILITY OF SODIUM BROMIDE IN AQUEOUS SOLUTIONS OF SODIUM HYDROXIDE AT 17°.

(Ditte - Compt. rend. 124, 30, '97.)

Gms. per 10	o Gms. H ₂ O.	Gms. per 100	Gms. H ₂ O.	Gms. per 100	Gms. H ₂ O.
NaOH.	NaBr.	NaOH.	NaBr.	NaOH.	NaBr.
0.0	91.38	17.17	63.06	28.43	48.00
3.26	79.86	19.12	62.51	36.61	38.41
9.24	68.85	22.35	59.60	46.96	29.37
13.43	64.90	24.74	55.03	54.52	24.76

SOLUBILITY OF SODIUM BROMIDE IN ALCOHOLIC SOLUTIONS.

(Rohland — Z. anorg. Ch. 18 327, '98; Z. anal. Ch. 44, 252, '05; de Bruyn — Z. physik. Ch. 10, 783 '92; Eder — Dingl. polyt. 221, 89, '75.)

Alcohol.	Concentration of Aq. Alcohol.	t°.	Gms. NaBr per 100 Gms. Alcohol.	
Methyl Alcohol	$d_{15} = 0.799$	room temp.	21.7	(R.)
Ethyl "	$d_{15} = 0.810$	66	7.14	44
Propyl "	$d_{15} = 0.816$	"	2.01	44
Ethyl "	90% by vol.	3	4.0 (hyd	rated NaBr)
Methyl "	Absolute	19.5	17.35	(de Bruyn.)
Ethyl "	"	15	6.3 (NaI	Br ₂ H ₂ O) (Eder.)
Ethyl Ether		15	0.08	66

SODIUM CARBONATE Na₂CO_{3.10}H₂O.

SOLUBILITY IN WATER.

(Mulder; Löwel — Ann. chim. phys. [3] 33, 382, '51; at 15°, Reich — Monatsh. Ch. 12, 464, '91; at 32-34.5° Na₂CO₂.7H₂O b, Ketner — Z. physik. Ch. 39, 646, '01-'02.) Solid Phase:

	Na ₂ CO ₃ .10H	I_2O .		$^{7}\mathrm{H}_{2}\mathrm{O}$ (b).	Na ₂ CO _{3.7}	$_7\mathrm{H}_2\mathrm{O}(a)$.
	Gms. Na ₂ CO per 100 Gms		Gms. N			Na ₂ CO ₃ o Gms.
t°.	Water.	Solution.	Water.	Solution.	Water.	Solution.
0	7.0	6.5	20.4	16.9	32.0	24.2
5	9.5	6.9	23.2	18.8	35.0	25.9
10	12.5	11.1	26.2	20.8	37.8	27.4
15	16.4	14.1	29.5	22.8	41.2	29.2
20	21.5	17.7	33.5	25.1	45.5	31.3
25	28.2 (29.8*)	22.0	38.0	27.5		
30	37.8 (40.9*)	27 . 4	43.5	30.3		
32.5	46.2	31.6	(32.1°) 46.6	31.8		
25	46.2	31.6)	(33.3°) 48.6	32.7		
35	•	-	(34.5°) 51.3	33.9		
40	46.1 (49.7*)	31.5			_	
60	46.0 (46.4*)	31.5	Solid Phase N	$a_2CO_3.H_2$	O	
80	45.8 (45.2*)	31.4				
100	45 · 5	31.3				
105	45 · 2	31.1				

* Epple - Dissertation, Heidelberg, p. 26, 1899.

Sp. Gr. of solution saturated at 17.5°, 1.165 (Hager); at 18°, 1.172 (Kohlrausch); at 23°, 1.222 (Schiff); at 30°, 1.342 (Lunge). See also Wegschroeder and Waller — Monatsh. Chem. 26, 685, '05, for Sp. Gr. determinations at other temperatures.

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT 15°. (Reich.)

			(2000				
Gms. per 100 Gms. H ₂ O.			Gms. Na ₂ CO ₃ per 100 Gms.		per 100 H ₂ O.	Gms. NaCl Gm per 100 per	
NaCl.	Na ₂ CO ₈ .10H ₂ O	Gms. Solution.	NaCl Solution.	NaCl.	Na ₂ CO ₃ .10H ₂ O.	Gms. Solution.	
0.0	61.42	0.0	16.42	23.70	39.06	15.96	9.76
4.03	53.86	2.92	14.47	27.93	39.73	18.26	9.62
8.02	48.00	5.80	12.87	31.65	41.44	20.06	9.73
12.02	43.78	8.61	11.62	35.46	43.77	21.75	7.95
16.05	40.96	11.31	10.70	37 - 23	45·27 [*]	22.46	10.13
19.82	39.46	13.71	10.11				

* Both salts in solid phase.

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL AND OF PROPYL ALCOHOL AT 20°. (Linebarger — Am. Ch. J. 14, 380, '92.)

Wt. per cent	Gms. N per 100 G		Wt. per cent	Gms. Na ₂ CO ₃ per 100 Gms. Sol.	
Alcohol.	In Ethyl.	In Propyl.	Alcohol.	In Ethyl.	In Propyl.
28		4.4	48	0.9	1.3
38		2.7	50	0.84	I . 2
44	1.7	1.7	54	0.80	0.9
46	1.13	1.5	62		0.4

SOLUBILITY OF SODIUM CARBONATE IN AQUEOUS SOLUTIONS OF ETHYL ALCOHOL.

(Ketner - Z. physik. Ch. 39, 646, 'o1-'o2.)

Note. — The mixtures were so made that an alcoholic and an aqueous layer were formed, and these were brought into equilibrium with the solid phase.

t°.	Gms. per 100 Gms. Alcoholic Layer.		. Gms. per	100 Gms. A	Solid		
	C ₂ H ₅ OH.	Na ₂ CO ₃ .	H ₂ O.	C ₂ H ₅ OH.	Na ₂ CO ₃ .	H ₂ O.	Phase.
35	62.9	0.3	36.8	1.0	32.4	66.6	Na ₂ CO ₃ .H ₂ O
40	61.0	0.4	38.6	1.2	31.9	66.9	44
49	61.0	0.4	38.6	I.2	31.5	67.3	44
68	55.8	0.9	43 · 3	2.3	28.8	68.9	44
31.2	52.4	0.8	46.8		29.3		$Na_2CO_3.7H_2O$ (b)
31.9	54.8	0.7	44.5	1.7	29.8	68.5	44
32.3	56.1	0.6	43.3	1.5	30.2	68.3	44
33.2	58.1	0.5	42.4	1.4	31.0	67.6	44
27.7	Crit. sol.	±14%	C_2H_5O	H±13% N	Ia ₂ CO ₃ ∃	£73% ₽	I_2O
28.2	23.5	$7 \cdot 3$	69.2	7.9	18.6	73 · 5	Na ₂ CO _{3.10} H ₂ O
29.0	32.7	3.8	63.5	4.3	22.7	73.0	44
29.7	40.0	2.I	57.9	2.9	25.5	71.6	44
30.6	47.8	I.2	51.0	2.3	27.8	69.9	44

Solubility of $\mathrm{Na_2CO_3.10H_2O}$ in Dilute Alcohol at 21°. (Ketner.)

Grams per 100 Grams Solution.			Grams per	Grams per 100 Grams Solution.			
Na ₂ CO ₃ .	C ₂ H ₅ OH.	H ₂ O.	Na ₂ CO ₃ .	C ₂ H ₅ OH.	H ₂ O.		
18.5	0.0	81.5	I.2	39.2	59.6		
12.7	6.2	81.1	0.2	58.2	41.6		
6.9	15.3	77.8	0.1	67.1	32.8		
3.2	26.1	70.7	0.06	$73 \cdot 3$	26.64		

roo gms. saturated solution in glycol contain 3.28-3.4 gms. sodium carbonate. (de Coninck — Bull. acad. roy. Belgique, 359, '05.)

100 gms. H₂O dissolve 229.2 gms. sugar + 24.4 gms. Na₂CO₃, or 100 gms. sat. aq. solution contain 64.73 gms. sugar + 6.89 gms. Na₂CO₂. (Köhler –Z. Ver. Zuckerind. 47, 447, '97.)

SODIUM (Bi) CARBONATE NaHCO3.

SOLUBILITY IN WATER. (Dibbits — J. pr. Ch. [2] 10, 439, '74.)

t°.	Gms. NaHCO ₃	Solution.	t°.	Gms. NaHCO Water.	per 100 Gms. Solution.
0	6.9	6.5	30	II.I	10.0
10	8.15	7 · 5	40	12.7	11.3
20	9.6	8.8	50	14.45	12.6
25	10.35	9.4	60	16.4	13.8

Sp. Gr. of sat. solution at $16^\circ = 1.069$. (Stolba.) 100 gms. alcohol of 0.941 Sp. Gr. dissolve 1.2 gms. NaHCO₃ at 15.5°. 100 gms. glycerine dissolve 8 gms. NaHCO₃ at 15.5°.

SOLUBILITY OF SODIUM BICARBONATE IN AQUEOUS AMMONIUM BICARBONATE SOLUTIONS SATURATED WITH CO₂. (Fedotieff — Z. physik. Ch. 49, 169, '04.)

t°.	Wt. of 1 cc.	Mols.per 100	o Gms. H ₂ O.	Grams per 100	oo Gms. H ₂ O.
E	Solution.	NH4HCO3.	NaHCO3.	NH4HCO3.	NaHCO3.
0	I.072	1.39	0.58	109.4	48.2
"		0.0	0.82	0.0	69.0
15	1.056	0.0	1.05	0.0	88.0
"	1.061	0.29	0.95	23.0	80.0
"	1.065	0.56	0.89	44.0	74.6
"	1.073	1.08	0.79	85.7	66.7
66	1.090	2.16	0.71	170.6	59.2
30		0.0	1.65	0.0	138.6
66		2.91	0.83	23.0	70.0

Solubility of Sodium Bicarbonate in Aqueous Solutions of Sodium Chloride Saturated with ${\rm CO_2}$. (Fedotieff; see also Reich — Monatsh. Ch. 12, 464, '91.)

	(,				,
t°.	Wt. of 1 cc.	Mols. per 100	o Gms. H ₂ O.	Grams per 10	oo Gms. H ₂ O.
υ.	Solution.	NaCl.	NaHCO ₃ .	NaCl.	NaHCO ₃ .
0		0.0	0.82	0.0	69.0
"	1.208	6.0	0.09	350.1	7 · 7
15	1.056	0.0	1.05	0.0	88.0
"	1 .063	0.52	0.82	30.2	68.6
66	1.073	1.03	0.64	60.1	53.6
66	1 .096	2.11	0.41	123.1	34.8
66	1.127	3.20	0.28	187.2	23.0
"	1.158	4.39	0.19	256.9	16.1
66	1.203	6.06	0.12	354.6	10.0
30	1.066	0.0	1.31	0.0	IIO.2
"	1.079	I.02	0.87	59.9	72.8
66	1.100	2.08	0.56	121.9	47 · 3
66	1.127	3.18	0.38	186.3	32.0
66	1.156	4.38	0.27	256.0	22.3
66	1.199	6.12	0.17	358.1	13.9
45	1.077	0.0	1.65	0.0	138.6
66	1.086	1.04	I.I2	60.7	94.0
66	1.115	2.65	0.62	155.2	52.0
"	1.127	3.24	0.52	189.4	43 · 4
"	1.155	4.38	0.37	256.1	30.7
66	1.198	6.18	0.23	361.5	19.5

100 grams alcohol of 0.941 Sp. Gr. dissolve 5.55 grams sodium sulpho carbonate at 15.5°.

SODIUM CHLORATE NaClO3.

SOLUBILITY IN WATER. (Kremers — Pogg. Ann. 97, 4, '56.)

t°.	Grams per	100 Grams	t°.	Grams per 100 Grams		
	Water.	Solution.	•	Water.	Solution.	
0	81.9	45.0	60	147.1	59.5	
12	89.3	47.2	80	175.6	63.7	
20	99.0	49.7	100	232.6	69.9	
40	123.5	55.3	120	333 · 3	76.9	

SOLUBILITY OF SODIUM CHLORATE IN AQUEOUS SODIUM CHLORIDE SOLUTIONS AT 20°.

(Winteler - Z. Electrochem. 7, 360, 'oo.)

Volume Wt.	Grams	per Liter.	Volume Wt.	Grams per Liter.		
of Solutions.	NaCl.	NaClO ₃ .	of Solutions.	NaCl.	NaClO ₃ .	
1.426	5	668	1.365	175	393	
1.419	25	638	1.345	200	338	
1.412	50	599	1.319	225	271	
1.405	75	559	1.289	250	197	
1 . 398	100	522	1.256	275	120	
1.389	125	484	1.235	290	78	
1.379	150	442	1.217	300	55	

100 gms, $\rm H_2O$ dissolve 24.4 gms. $\rm NaCl+50.75$ gms. $\rm NaClO_3$ at 12°. 100 gms. $\rm H_2O$ dissolve 11.5 gms. $\rm NaCl+249.6$ gms. $\rm NaClO_3$ at 122°. (Schlosing—Compt. rend. 73, 1273, '71.) 100 gms. alcohol of 77 Wt. per cent dissolve 2.9 gms. $\rm NaClO_3$ at 16°.

100 gms. alcohol dissolve 1 gm. NaClO₃ at 25°, and 2.5 gms. at b. pt. 100 gms. glycerine dissolve 20 gms. NaClO₃ at 15.5°.

SODIUM CHLORIDE NaCl.

SOLUBILITY IN WATER.

(Mulder; de Coppet — Ann. chim. phys. [5] 30, 411, '83; Andræ — J. pr. Ch. [2] 29, 456, '84; above 100°, Tilden and Shenstone — Phil. Trans. 23, '84; Berkeley — Trans. Roy. Soc. (Lond.) 203 Å, 206, '04; Etard — Ann. chim. phys. [7] 2, 527, '94, gives irregular results.)

t°.	Gms. N	aCl per s. H ₂ O.	Gms. NaCl per 100 g. Sol.	t°.	Gms. I	NaCl per ns. H ₂ O.	Gms. NaCl per 100 g. Sol.
0	35 · 7*	35.63†	26.28†	70	37.8*	37.51	27.27
IO	35.8	35.69	26.29		38.4	38.00	27.54
20	36.0	35.82	26.37	90	39.0	38.52‡	27 .80
25	36.12	35.92	26.43	100	39.8	39.12‡	28.12
30	36.3	36.03	26.49	118		39.8	28.46
40	36.6	36.32	26.65	140		42.I	29.63
50	37.0	36.67	26.83	160		43.6	30.37
60	37 · 3	37.06	27.04	180		44.9	30. 98
		* M .: de C.		† A.		‡ B.	

Solubility of Sodium Chloride in Aqueous Solutions of Ammonium Chloride.

(Fedotieff - Z. physik. Ch. 49, 170, '04.)

t°.	Wt. of 1 cc.	Mols. per 1000	Gms. H ₂ O.		Grams per 1000 Gms. H2O.		
ι.	Solution.	NH₄Cl.	NaCl.	NH4Cl.	NaCl.		
0		0.0	6.09	0.0	356.3		
66	1.185	2.73	4.89	146.1	286.4		
15	I.200	0.0	6.12	0.0	357.6		
	1.191	1.07	5 . 58	57 · 3	326.4		
"	1.183	2.22	5.13	118.9	300.0		
"	1.176	3.48	4.64	186.4	271.6		
"	1.175	3.72	4.55	198.8	266.8		
30		0.0	6.16	0.0	360.3		
"	1.166	4.77	4.26	255 - 4	249.0		
45		0.0	6.24	0.0	365.0		
"		6.02	4.0	322.1	233.9		

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC ACID.

(Engel - Ann. chim. phys. [6] 13, 374, '88; Enklaar - Rec. trav. chim. 20, 183, 'o1.)

	At °.	(Engel.)			At 10	o ^o –10.5	°. (Enkl	aar.)
Mg. Mols.	per 10 cc.	Sp. Gr. of Solution.	Gms. pe	r Liter.	Mols. p	er Liter.	Grams p	er Liter.
HCl.	NaCl.	Solution.	HCl.	NaCl.	HCI.	NaCl.	HCl.	NaCl.
0.0	$54 \cdot 7$	1.207	0.0	32.0	0.0	6.11	0.0	35.77
I.0	53 · 5	I.204	0.365	31.3	0.27	$5 \cdot 77$	9.84	33.76
1.85	52.2	I.202	0.674	30.5	0.35	5.67	12.76	33.19
5.1	48.5	1.196	1.859	28.4	0.43	5.59	15.68	32.71
9.28	44.0	1.185	3.38	25.7	0.57	5.43	20.78	31.77
15.05	$37 \cdot 9$	1.173	5 · 49	22.2	0.72	5.28	26.06	30.89
30.75	23.5	1.141	II.20	13.7	2.60	3.42	94.77	20.0I
56.35	6.1	1.119	20.54	3.6	2.80	3.18	IO2.I	19.04
					3.31	2.74	120.6	16.03

SOLUBILITY OF MIXTURES OF SODIUM CHLORIDE AND OTHER SALTS IN WATER, ETC.

Solvent.	t°.	Gms	s. per 100 Gms. Solvent.	Authority.					
Water	17	26.4	NaCl+22.1NH4Cl*	(Karsten.)					
"	17	34.5	" + 4.1BaCl ₂	66					
"	5	38.3	" $+29.5 \text{ KNO}_3$	44					
"	25	38.5	" +41.14 "	(Soch - J. Physic. Ch. 2, 46, '08.)					
46	80	39.81	" +168.8 "	44					
Alcohol (40%)	25	15.78	" +13.74 "	66					
Water	20	30.54	" +13.95 KCl)	(Quoted by Euler — Z. physik. Ch. 49, 315, '04.)					
"	25	28.90	" +16.12 ")	49, 315, '04.)					
* Sp. Gr. of solution at 17°=1.179.									

SOLUBILITY OF MIXTURES OF SODIUM CHLORIDE AND POTASSIUM SULPHATE IN WATER AT VARIOUS TEMPERATURES. (Precht and Wittgen — Ber. 15, 1666, '82.)

t°.	Grams per 100 Grams H ₂ O.			t.°.	Grams per 100 Grams H2O.		
• •	NaCl	K ₂ SO ₄	KCl		NaCl	K ₂ SO ₄	KCl
10	33 · 4	8.1	3.2	60	36.4	11.9	2.7
20	34.0	8.9	3.1	70	36.6	12.8	3.2
30	34.6	9.6	2.9	80	36.0	12.3	5.1
40	35.2	10.4	2.8	90	35.9	12.4	7.0
50	35.8	II.I	2.8	100	35.6	12.6	8.8

Solubility of Sodium Chloride in Aqueous Solutions of Sodium Bicarbonate Saturated with ${\rm CO}_2$. (Fedotieff.)

t°.	Wt. of I cc.	Mols. per 100	o Gms. H ₂ O.	Grams per 10000 Gms. H2O.		
t.	Solution.	NaHCO ₃ .	NaCl.	NaHCO ₃ .	NaCl.	
0		0.0	6.09	0.0	356.3	
"	1.208	0.09	6.0	$7 \cdot 7$	350.1	
15	1.203	0.0	6.12	0.0	357.6	
"	1.203	0.12	6.06	10.0	354.6	
30	1.196	0.0	6.16	0.0	360.3	
"	1.199	0.17	6.12	13.9	358.I	
45	1.189	0.0	6.24	0.0	356.0	
"	1.198	0.23	6.18	0.23	361.5	

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS.

(Engel; Winteler - Z. Electrochem. 7, 360, '00.)

At o° (Engel).

At 20° (Winteler).

Mg. Mols	per 10 cc.	Sp. Gr. of	Grams 1	per Liter.	Gms. pe	r Liter	Sp. Gr. of
Na ₂ O.	NaCl.	Sp. Gr. of Solutions.	NoOH	NaCl.	NaOH.		Sp. Gr. of Solutions.
_					NaOn.	_	bolutions.
0	54.7	I . 207	0.0	320.0	IO	308	I.200
4.8	49.38	I.22I	38.4	288.Q	50	297	1.230
•	., .				50	-91	1.230
6.73	47.21	1.225	53.8	276.2	100	253	I.250
10.41	42.38	1.236	183.2	247.9	150	213	1.270
	. 0	U	0	/	-30	3	1.2/0
14.78	39.55	1.249	118.2	231.4	200	139	I.305
30.50	24.95	1.295	244.0	146.0	200	TTO	T 000
	24.93	1.295	244.0	140.0	300	112	1.330
37 .88	19.30	1.314	303.0	112.0	400	61	1.375
	, ,	•	0 0			~ ~	0.0
53 · 25	9.41	1.362	426,∙0	55.0	500	30	1.425
					640	18	T 400
					040	10	1.490

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF SODIUM NITRATE AND VICE VERSA.

(Bodländer — Z. physik. Ch. 7, 361, '91; Nicol — Phil. Mag. [5] 31, 369, '91; results at 25° by Soch — J. Physic. Ch. 2, 46, '98.)

NaCl in Aqueous NaNO₃. Results at 15.5° (B.). NaNO₃ in Aqueous NaCl. Results at 15° (B.).

Sp. Gr. of Solutions.	Gms. per 100 cc. Sat. Solution.			Sp. Gr. of Solutions.	Gms. per 100 cc. Sat. Solution.			
Solutions.	NaNO3.	H ₂ O.	NaCl.	Solutions.	NaCl.	H ₂ O.	NaNO3.	
1.2025	0	88.47	31.78	1.3720	0	74.82	62.38	
1.2305	7.53	87.63	27.89	1.3645	4.0	75.69	56.76	
1.2580	13.24	86.25	26.31	1.3585	7.24	75.71	52.09	
1.2810	21.58	82.66	23.98	1.3530	11.36	76.86	47.08	
1.3090	28.18	80.42	22.30	1.3495	15.33	76.96	42.66	
1.3345	33.80	• / 0	20.40	1.3485	17.81	77.14	39.90	
1.3465	37 .88*	$77 \cdot 37$	19.40*	1 . 3485	18.97*	77.15	38.73*	
1.3465	37.64*	$77 \cdot 34$	19.67*	1.3485	19.34*	77 - 49	38.02*	

Results at 20° (N.).

Grams per 100 Grams H ₂ O.				Grams per 100 Grams H2O.			
o N	IaNO ₃	35.91	NaCl	0	NaCl	87.65	NaNO,
14.17	"	32.82	"	6.5	"	77 · 34	"
28.33	"	29.78	"	13.0	"	68.50	66
42.50	"	26.91	"	19.5	"	60.49	66
54.63*	"	24.92*	: "				

100 gms. H₂O dissolve 43.66* gms. NaNO₃ + 26.58* gms. NaCl at 25°.

100 gms. H₂O dissolve 121.6* gms. NaNO₃ + 17.62* gms. NaCl at 80°.

100 gms. aq. alcohol of 40 wt. per cent dissolve 22.78 gms. NaNO₃ + 10.17 gms. NaCl at 25°.

^{*} Indicates solutions saturated with both salts.

SOLUBILITY OF SODIUM CHLORIDE IN ALCOHOLS. (At 18.5°, de Bruyn — Z. physik. Ch. 10, 782, '92; Rohland — Z. anorg. Ch. 18, 327, '98.)

t°.	Alcohol.	Gms. NaCl per 100 Gms. Alcohol.	t°.	Alcohol	Gms. NaCl per 100 Gms. Alcohol
18.5	Abs. Methyl			Methyl $d_{15} = 0.799$	
**	" Ethyl	0.065	"	Ethyl $d_{15} = 0.81$	0.176
			"	Propyl $d_{15} = 0.816$	0.033

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS.

(Bodländer — Z. physik. Ch. 7, 317, '91; Taylor — J. Phys. Ch. 1, 723, '97; also Bathrick — lbid. 1, 159, '96.)

Rest	ılts at 1	1.5° (B.).	Results at 13° (B.).				
Sp. Gr. of Solutions.	Gms. per 100 cc. Solution.			Sp. Gr. of Solutions.		Gms. per 100 cc. Solution.		
Solutions.	C ₂ H ₅ OH.	H_2O .	NaCl.	Solutions.	C ₂ H ₅ OH.	H_2O .	NaCl.	
1.2035	0	86.62	31.73	1.2030	0	88.70	31.60	
1.1865	2.86	86.14	29.66	1.1348	11.87	78.41	23.26	
1.1710	5.41	83.93	27 - 77	1.1144	15.99	74.64	20.81	
1.1548	7.93	81.50	26.05	1.0970	19.39	71.45	18.86	
1.1350	10.84	78. 7 8	24.28	1.0698	24.95	69.80	16.23	
1.1390	II.22	78.62	23-65	1.0295	32.33	57.96	12.66	
1.1088	16.85	73 - 40	20-63	0.9880	40.33	49.34	9.13	
				0.9445	49.28	38.54	5.93	
				0.9075	57.91	29.37	$3 \cdot 47$	
				0.8700	63.86	21.62	1.52	
				0.8400	72.26	11.24	0.50	

Results at 30° and at 40° (T.).

Wt. per cent Alcohol in Solvent.	At 30°, Gms. N	aCl per 100 Gms.	At 40°, Gms. NaCl per 100 Gms		
Alcohol in Solvent.	Solution.	Water.	Solution.	Water.	
0	26.50	36.05	26.68	36.38	
5	24.59	34.29	24.79	. 34 . 69	
10	22.66	32.57	22.90	33.00	
20	19.05	29.40	19.46	30.20	
30	15.67	26.53	16.02	27.25	
40	12.45	23.70	12.75	24.37	
50	9.34	20.60	9.67	21.42	
60	6.36	16.96	6.65	17.82	
70	3.36	12.75	3.87	13.10	
80	1.56	7 · 95	1.69	8.68	
90	0.43	4 · 30	0.50	5.10	

100 gms. alcohol of 0.9282 Sp. Gr. = 54.0% by wt. dissolve at:

100 gms. of a mixture of equal parts of 96% alcohol and 98% ether dissolve 0.11 gm. NaCl.

(Mayer — Liebig's Ann. 98, 205, '56.)

SOLUBILITY OF SODIUM CHLORIDE IN AQUEOUS SOLUTIONS OF:

Acetone at 20°.
(Herz and Knoch — Z. anorg. Ch. 41, 318, '04.)

Glycerine at 25°. (H. and K. – *Ibid.* 45, 267, '05.)

cc. Acetone per 100 cc. Solvent.	cc. S	per 100 Solution.	Wt. per cent Glycerine in Solvent.	NaCl pe cc. Soli Millimols.	r 100 ution.	Sp. Gr. of Solution.
0	537.9	31.47	0.0	545.6	31.93	1.1960
10	464.6	27.18	13.28	501.1	29.31	1.2048
20	394.8	23.10	25.98	448.4	26.23	1.2133
30	330.1	19.32	45.36	370.2	21.66	1.2283
32 (Lower layer	308.5	18.05	54.23	333 · 9	19.54	1.2381
87 Upper layer	7 · 7	0.45	83.84	220.8	12.91	1.2666
88	7 · 3	0.43	100.00*	167.1	9.78	1.2964
90	4.3	0.25	*Sp. Gr. o	of Glycer	ine, 1.2	592.
			Impi	rities al	0011t T.5	0%

roo gms. sat. solution in glycol contain 31.7 gms. NaCl at 14.8°. (de Coninck — Chem. Centralb. 76, II, 883, '05.)

roo gms. H₂O dissolve 236.3 gms. sugar + 42.3 gms. NaCl at 31.25°, or 100 gms. sat. aq. solution contain 62.17 gms. sugar + 11.13 gms. NaCl.

(Köhler – Z. Ver. Zuckerind. 47, 447, '07.)

SODIUM CHROMATES (Mono, Di, etc.)

SOLUBILITY IN WATER.

(Mylius and Funk — Wiss. Abh. p. t. Reichanstalt 3, 451, '00; see also Salkowski — Ber. 34, 1948, '01.)

	Sodium	Mono (Chromate.	Sod	Sodium Di Chromate.		
t°.	Gms. Na ₂ I CrO ₄ per 100 Gms. Solution.	Mols. Na ₂ CrO ₄ per 100 Mols H ₂ O.	Solid Phase.	t°.	Gms. Na ₂ Cr ₂ O ₇ per 100 Gms. Solution.	Cr ₂ O ₇ per	Solid Phase.
0	24.07	3.52 N	a ₂ CrO ₄ .10H ₂ O	0	61.98	11.2	Na ₂ Cr ₂ O _{7.2} H ₂ O
IO	33.41	5 · 55	44	17	63.82	12.1	44
18*	40.10	7 · 43	44	18‡	63.92	12.16	44
18.5	41.65	7.94	44	34.5	67.36	14.2	44
19.5	0	9.01	44	52	71.76		44
21	47.40	10.00	46	72	76.9	22.8	66
25.6		9.52N	a ₂ CrO _{4.4} H ₂ O	81	79.8	27.I	44
31.5		9.90	44	93	81.19	29.6	Na ₂ Cr ₂ O ₇
36	47.98	10.2	44	98	81.25		66
40	48.97	10.6	44			m Tri Chi	romate
45	50.20	11.6	44		Gms. Na ₂		omato.
49 - 5	50.93	11.5	44	to.	Cr ₃ O ₁₀ per	Cr ₃ O ₁₀ per	Solid
54 . 5	52.28	12.2	44	•	Solution.	100 Mols. H ₂ O	Phase.
59 . 5	53 · 39	12.7	44	0	80.03	_	Na ₂ Cr ₃ O ₁₀ .H ₂ O.
65	55.23	13.7	Na ₂ CrO ₄	15†	80.44		44
70	55.15	13.6	46	18	80.60		44
80	55 · 53	13.8	44	55	82.68		44
100	55 · 74	14.0	44	99	85.78		44
. 0	0	1 /	00			-6	1 -4 -00

*Sp. Gr. of sat. sol. at 18° = 1.432. †Sp. Gr. of sat. sol. at 18° = 2.059. ‡Sp. Gr. of sat. solution at 18° = 1.745.

Sodium Tetra Chromate.

Tetra Sodium Chromate.

t°.	Gms. Na ₂ Cr ₄ O ₁₃ per 100 Gms. Solution.	Mols. Na ₂ Cr ₄ O ₁₃ per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. Na ₄ CrO ₅ per 100 Gms. Solution.	Mols. Na ₄ CrO ₅ per 100 Mols. H ₂ O.	Solid Phase.
0	72.96	10.5	Na ₂ Cr ₄ O ₁₃₋₄ H ₂ O	0	33.87	4.11	Na ₄ CrO _{8.13} HO ₂
16	74.19	II.2	66	10	35.58	4.42	44
18*	74.60	11.27	44	18†	37.50	4.81	44
22	76.01	12.3	66	27.	7 40.09	5.38	44
				37	45.13	6.62	44

^{*} Sp. Gr. of sat. solution at 18° = 1.926.

SOLUBILITY OF SODIUM CHROMATES IN WATER AT 30°. (Schreinemaker — Z. physik. Ch. 55, 91, 'o6.)

Composition in weight per cent:

Of Solution. Of Residue.

OI DO	nation.	0110	csiduc.	
%CrO ₃ .	%Na ₂ O.	%CrO ₃ .	% Na ₂ O.	Solid Phase.
0	±42			NaOH.H ₂ O
2.00	41.44	5.83	42.64	NaOH.H ₂ O + Na ₂ CrO ₄
2.04	40.89			Na ₂ CrO ₄
4.23	35.51	27.52	36.57	44
6.64	32.34	27.72	34.60	66
15.19	27.06	37.07	32.20	44
10.22	29.39	15.48	28.41	Na ₂ CrO ₄ + Na ₄ CrO _{5.13} H ₈ O
8.93	28.49	18.09	26.89	Na ₄ CrO _{5.13} H ₂ O
8.62	26.91			64
13.12	23.91	18.57	25.92	66
18.44	22.86			66
19.26	22.98	21.54	25.31	Na ₄ CrO _{5.13} H ₂ O + Na ₂ CrO _{4.4} H ₂ O
17.84	24.21	26.24	24.98	Na ₂ CrO _{4.4} H ₂ O
28.82	17.88	31.97	23.47	66
38.93	16.30	40.70	20.83	£6 ~
48.70	16.49	47 - 49	19.75	Na ₂ CrO _{4.4} H ₂ O + Na ₂ Cr ₂ O _{7.2} H ₂ O
50.68	15.72			Na ₂ Cr ₂ O _{7.2} H ₂ O
58.08	13.89	62.76	17.38	66
66.13	13.70	69.48	16.06	Na ₂ Cr ₂ O _{7.2} H ₂ O + Na ₂ Cr ₃ O _{10.} H ₂ O
65.98	14.15	69.46	15.15	Na ₂ Cr ₃ O ₁₀ .H ₂ O
68.46	10.95	73.88	13.38	Na ₂ Cr ₃ O ₁₀ .H ₂ O + Na ₂ Cr ₄ Q ₁₃ .4H ₂ O
66.88	9.85	71.27	10.67	Na ₂ Cr ₃ O ₁₃₋₄ H ₂ O
70.06	11.85	83.95	9.57	" (?)
69.04	11.04	81.80	6.43	CrO ₃
67.84	9.81	82.85	5.42	44
64.48	4.51	79 - 49	2.71	44
62.28	0.0	100.00		66

100 gms. of a saturated aqueous solution contain at 30°:
46.627 gms. Na₂CrO₄, or 100 gms. H₂O dissolve 87.36 gms. Na₂CrO₄.
66.4 gms. Na₂Cr₂O₇, or 100 gms. H₂O dissolve 197.6 gms. Na₂Cr₂O₇.
100 gms. absolute methyl alcohol dissolve 0.345 gm. Na₂CrO₄ at 25°.

(de Bruyn – Z. physik. Ch. 10, 783, '92.)

[†] Sp. Gr. of sat. solution at 18° = 1.446.

SODIUM CITRATE 2C₃H₄(OH)(COONa)_{3.11}H₂O.

100 gms. H₂O dissolve 90.9 gms. citrate at 25°, and 250 gms. at b. pt. (U.S.P.)

SODIUM (Ferro) CYANIDE Na, Fe(CN)6.

SOLUBILITY IN WATER. (Conroy — J. Soc. Chem. Ind. 17, 104, '98.)

t° 20°. 42°. 80°. 98.5°. Gms. Na₄Fe(CN)₆ per 100 gms. H₂O 17.9 30.2 59.2 63.0

SODIUM FORMATE HCOONA. SOLUBILITY IN WATER. (Groschuff — Ber. 36, 1788, '03.)

1	t°.	Gms. HCOONa per 100 Gms. Solution.	Mols. HCOONa per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. HCOONa per 100 Gms. Solution.	Mols. HCOONa per 100 Mols H ₂ O.	Solid Phase.
-	20	22.80	7.82	HCOONa.3H2O	25.5	50.53	27.0	HCOONa.2H2O
	O	30.47	11.6	66	18	49.22	25.65	HCOONa
+	15	41.88	19.1	44	29	50.44	26.9	44
	18	44.92	21.6	46	54	53.80	30.8	46
	18	11 /3	21.4	HCOONa.2H2O	74.5	56.82	34.8	64
	21	46.86	23.3	44	100.5	61.54	42.35	64
	23	48.22	24.65	46	123	66.20	51.8	44

Sp. Gr. of the saturated solution of the dihydrate at $18^{\circ} = 1.317$.

SOLUBILITY OF SODIUM ACID FORMATE (EXPRESSED AS NEUTRAL SALT) IN AQUEOUS SOLUTIONS OF FORMIC ACID. (Groschuff.)

Gms. Mols. HCOONa HCOONa Gms. Mols. HCOONa HCOONa Solid per 100 Gms. per 100 Mols. Phase. per 100 Gms. per 100 Mols. Phase. Solution. H₂O. Solution. H₂O. 22.35 19.5 HCOONa.HCOOH 45.5 38.85 **HCOONa** 0 43.I 28.45 41.27 25.5 29.62 70 47.5 85 66.5 41.08 47.I 51.2 43.00

SODIUM FLUORIDE NaF.

100 gms. sat. aq. solution contain 4.3 gms. NaF at 18°. Sp. Gr. of solution = 1.044. (Mylius and Funk - Ber. 30, 1718, '97.)

SOLUBILITY OF SODIUM FLUORIDE IN AQUEOUS SOLUTIONS OF HYDROFLUORIC ACID AT 21°. (Ditte — Compt. rend. 123, 1282, '06.)

Grams per 10	∞ Grams H ₂ O.	Grams per 1000	Grams H ₂ O.
0.0 HF	41.7 NaF	83.8 HF	22.9 NaF
10.0 "	41.4 "	129.7 "	23.8 "
45.8 "	22.5 "	596.4 "	48.8 "
56.5 "	22.7 "	777 · 4 "	81.7 "

SODIUM FLUO SILICATE Na2SiF6.

100 gms. H₂O dissolve 0.65 gm. at 17.5°, and 2.45 gms. at 100°. (Stolba – Z. anal. Ch. 11, 199, '72.)

SODIUM HYDROXIDE NaOH.

SOLUBILITY IN WATER.

(Pickering - J. Ch. Soc. 63, 890, '93; Mylius and Funk (Dietz) - Wiss. Abh. p.t. Reichamstalt 3, 450, '00.)

t°.		NaOH Gms. Water.	Solid Phase.	t°.	Gms. per 10	~	Solid Phase.
- 7.8	8.0	8.7	Ice	20	52.2	109	NaOH.H ₂ O
- 20	16.0	19.1	c ₀	30	54.3	119	44
- 28	19.0	23.5	Ice + NaOH.7H2O	40	56.3	129	41
- 24	22.2	28.5	$NaOH7H_2O + NaOH5H_2O$	50	59.2	145	46
-17.7	24.5	32.5	$NaOH5H_2O + NaOH4H_2O \alpha$	60	63.5	174	44
0	29.6	42.0	NaOH.4H2O a		3 69.0	222.	
+ 5	32.2	47 · 5	$NaOH4H_2O \alpha + NaOH_3\frac{1}{2}H_2O$	61.	874.2	288	NaOH.H ₂ O + NaOH
10	34.0	51.5	NaOH.3½H2O	80	75.8	313	NaOH (?)
15.5	38.9	63.53	" f. pt.	IIO	78.5	365	46
5	45.5	83.5	$NaOH{3\frac{1}{2}}H_2O + NaOH2H_2O$	192	83.9	521	46
12	50.7	103.0	$NaOH2H_2O + NaOH.H_2O$	-		_	

Sp. Gr. of sat. solution at 18° = 1.539. For determinations of the Sp. Gr. of sodium hydroxide solution, see Kohlrausch - Wied. Ann. 1, 1879; Wegschnider and Waller -Monatsh. Chem. 26, 685, '05.

SODIUM IODATE NaIO3.

SOLUBILITY IN WATER.

(Gay-Lussac; Kremers - Pogg. Ann. 97, 5, '56.)

 $^{\circ}$. $^{\circ}$ 60° 80°. 100°. 21 27 '34

SODIUM IODIDE NaI.2H₂O.

SOLUBILITY IN WATER.

(de Copper — Ann. chim. phys. [5] 30, 411, '83; see also Etard — Compt. rend. 98, 1434, '84; and Kremers — Pogg. Ann. 97, 14, '56.)

t°.	Grams NaI p	er 100 Gms	 Solid 	t°.	Grams NaI	per 100 Gms.	Solid
υ.	Water.	Solution.	Phase.	٠.	Water.	Solution.	Phase.
- 20	148.0	59 · 7	NaI.2H2O	60	256.8	72.0	$NaI2H_2O$
0	158.7	61.4	6.6	65	278.4	73.6	66
IO	168.6	62.8	44	67	293	74.6	NaI
20	178.7	64.1	8.6	70	294	74.6	66
25	184.2	64.8	46	80	296	74.7	68
30	190.3	65.6	8.6	100	302	75·I	46
40	205.0	67.2	8.6	120	310	75.6	44
50	227.8	69.5	1.6	140	321	76.3	44

SOLUBILITY OF SODIUM IODIDE IN SEVERAL SOLVENTS.

(At 22.5°, de Bruyn - Z. physik. Ch. 10, 783, '92; at ord. temp., Rohland - Z. anorg. Ch. 18, 327, '98; Walden - Z. physik. Ch. 55, 713, 718, 'o6.)

Solvent.	t°.	Gms. NaI per 100 ms. Solvent.	Solvent.	Solu	NaI o Gms. tion.
Absolute Ethyl Alcohol d_{15} 0.810 Ethyl Alcohol	ord. temp.	43.1 58.8	Acetonitril Propionitril	9.09	18.43
Absolute Methyl Alcohol d_{15} 0. 799 Methyl Alcohol d_{15} 0. 816 Propyl Alcohol	ord. temp.	77·7 83.3 26.3	Nitro Methane Acetone Furfurol	o. 34 very so	0.48 luble 25.10

SODIUM MOLYBDATE Na2MoO.

SOLUBILITY IN WATER.

(Funk — Ber. 33, 3697, '00.)

t°.	Gms. Na ₂ MoO ₄ per 100 Gms. Solution.	Mols. Na ₂ MoO ₄ per 100 Mols. H ₂ O.	Solid Phase.	t°.	Gms. Na ₂ MoO ₄ per 100 Gms. Solution.	Mols. Na ₂ MoO ₄ per 100 Mols. H ₂ O.	Solid Phase.
0	30.63	3.86 Na	2MoO4.10H2O	15.5	39.27	5.65 Na ₂	MoO _{4.2} H ₂ O
4	33.83	4.47	66	18	39 - 40	5.70	66
6	35.58	4.83	66	32	39.82	5.78	66
9	38.16	5.39	66	51.5	41.27	6.14	66
IO	39.28	5.65 Na	2MoO4.2H2O	100	45 · 57	7 · 32	46

100 gms. H₂O dissolve 3.878 gms. sodium tri molybdate Na₂Mo₃O₁₀ at 20°, and 13.7 gms. at 100°.

(Ullik - Liebig's Ann. 144, 244, '67.)

SODIUM NITRATE NaNO 3.

SOLUBILITY IN WATER.

(Mulder; Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 211, '04; see also Ditte — Compt. rend. 80, 1164, '75; Maumee — Ibid. 58, 81, '64; Etard — Ann. chim. phys. [7] 2, 527, '94.)

t°.	Gms. Nal Solution.	Water.	Mols. per Liter.	t°.	Gms. Na Solution	NO ₃ per 100 Gms. Water.	Mols. per Liter.
0	42.2	72.9- 73.0*	6.71*	80	59.7	148.0-148.0*	10.35*
10	44.7	80.8-80.5	7.16	100	64.3	180.0-175.8	11.30
20	46.7	87.5-88.0	7.60	120	68.6	218.0-208.8	12.22
25	47.6	91.0- 92.0	7.80	180	78. r	356.7	
30	48.7	94.9- 96.2	8.06	220	83.5	506.0	
40	50.5	102.0-104.9	8.51	225	91.5	1076.0	
50	52.8	112.0-114.0	8.97	313 m.p	t. 100.0	00	
60	54.9	122.0-124.0	9.42				

^{*} Berkeley.

† 119°.

Solubility of Sodium Nitrate in Aqueous Solutions of Nitric Acid at 0°.

(Engel - Compt. rend. 104, 911, '87; see also Schultz - Zeit. Ch. [2] 5, 531, '62.)

Equivalents per	o cc. Solution.	Sp. Gr. of Solutions.	Grams per 1	oo cc. Solution.
NaNO3.	HNO ₃ .	Solutions.	NaNO3.	HNO ₃ .
66.4	0	1.341	56.5	0.00
63.7	2.65	1.338	54.2	1.67
60.5	5 · 7	1.331	51.48	3 · 59
56.9	8.8	1.324	48.42	5 · 55
52.75	12.57	1.312	44.88	7.92
48.7	16.9	1.308	41.44	10.65
39.5	27.0	1.291	33.61	17.02
35.1	32.25	1.285	29.86	20.33
31.1	37 - 25	1.282	26.46	23 . 48
23.5	48 · o	1.276	20.0	30.26
18.0	57.25	1.276	15.32	36.09
12.9	71.0	1.291	10.97	44.76

SOLUBILITY OF MIXTURES OF SODIUM NITRATE AND POTASSIUM NITRATE IN WATER AT 20°.

(Carnelly and Thomson - J. Ch. Soc. 53, 799, '88.)

Per cent NaNO ₃ in Mixtures	Gms. per H ₂		Per cent NaNO ₃ in Mixtures		100 Gms.
Used.	NaNO3.	KNO ₃ .	Used.	NaNO3.	KNO ₃ .
100	86.8	0	45.7	53 · 3	$34 \cdot 7$
90	96.4	13.2	40	45.6	35 · 5
80	98.0	38.5	20	20.8	33 · 3
60	90.0	47.6	10	9.4	31.5
50	66.0	40.0	0	0.0	33.6

100 gms. H₂O dissolve 24.9 gms. NaCl + 53.6 gms. NaNO₃ at 20°. (Rüdorff – Ber. 6, 484, '73; Karsten; Nicol – Phil. Mag. [5] 31, 386, '91.)

Solubility of Sodium Nitrate in Aqueous Solutions of Sodium Hydroxide at 0°.

(Engel - Bull. soc. chim. [3] 6, 16, 91.)

Milligram Mols. per 10 cc. Solution.		.Sp. Gr. of	Grams per 100 cc. Solution.	
Na ₂ O.	NaNO ₃ .	Solutions.	NaOH.	NaNO3.
0.0	66.4	1.341	0.0	56.50
2.875	62.5	1.338	2.30	53.19
6.1	57.15	1.333	4.89	48.63
12.75	47 · 5	1.327	10.21	40.42
26.0	29.5	1.326	20.83	25.10
39.0	17.5	1.332	31.25	14.89
45 . 88	13.19	1.356	36.76	II.22
60.88	6.05	1.401	48.75	5.15

SOLUBILITY OF SODIUM NITRATE IN ALCOHOLS.

100 gms. abs. methyl alcohol dissolve 0.41 gm. NaNO₃ at 25°. 100 gms. abs. ethyl alcohol dissolve 0.036 gm. NaNO₃ at 25°.

(de Bruyn — Z. physik. Ch. 10, 783, '92.)

SOLUBILITY OF SODIUM NITRATE IN AQUEOUS ETHYL ALCOHOL AT DIFFERENT TEMPERATURES.

(Bodländer — Z. physik. Ch. 7, 317, '91; Taylor — J. Physic. Ch. 1, 723, '97; Bathrick — Ibid. 1, 162, '96)

Sp. Gr. of Solutions.	Gms. per 100 cc. Solution.			
Solutions.	C_6H_5OH .	H ₂ O.	NaNO ₃ .	
1.3700	0.0	75.34	61.66	
1.3395	3.08	$73 \cdot 53$	$57 \cdot 34$	
1.3120	6.01	71.81	53 · 39	
1.2845	8.30	70.85	49 - 30	
1.2580	10.91	69.47	45 - 42	
1.2325	13.77	67.12	42.36	
1.2010	16.46	66.16	37 - 48	

Results at 13° (B.).

Re	sults at	16.5°	(B.).
Sp. Gr. of	Gms. per	100 CC.	Solution.
Sp. Gr. of Solutions.	C_6H_5OH .	H ₂ O.	NaNO3.

T 2745 00 75 25 62 20

1.3/45	0.0	15.25	02.20
1.3162	6.16	70.82	54.64
1.2576	11.60	68.10	46.06
1.2140	16.49	65.04	39.87
1.1615	22.17	61.67	32.31
1.0855	32.22	52.92	23.41
1.0558	37.23	48.50	19.85
1.0050	43.98	42.78	13.74
0.9420	52.60	32.13	9 · 47
0.9030	60.00	25.65	4.65
0.8610	63.16	21.31	1.63

Results at 30° (T.).

Results at 40°. (Bathrick.)

Wt. per cent Alcohol in	Gms. N per 100	Gms.	Wt.	Gms. NaNOs per 100 Gms.	
Solvent.	Solution.	Water	Alcohol.	Aq. Alcohol.	
0	49.10	96.45	0	104.5	
5	46.41	91.15	8.22	90.8	
10	43.50	85.55	17.4	73 · 3	
20	37 - 42	74.75	26.0	61.6	
30	31.31	65.10	36.0	48.4	
40	25.14	55.95	42.8	40.6	
50	18.94	46.75	55.3	27.I	
60	12.97	37.25	65.1	18.1	
70	7.81	28.25	77.0	9.4	
90	I.2I	12.25	87.2	4.2	

Solubility of Sodium Nitrate in Aqueous Solutions of Acetone.

Results at 30°.

Results at 40°.

	(Laylor.)		(Datimical)				
Wt. per cent Acetone in Solvent.		NaNO ₃ o Gms. Water.	Wt. per cent Acetone.	Gms. NaNO ₃ per 100 Gms. Aq. Acetone.			
0	49.10	96.45	0.0	105			
5	46.96	93.20	8.47	91.2			
9.09	45.11	90.40	16.8	78.3			
20	40.10	83.70	25.2	66.4			
30	35.08	77.20	34 · 3	57.9			
40	29.80	70.75	44·I	46.2			
50	24.34	64.40	53 · 9	32.8			
60	18.55	59 · 95	64.8	23.0			
70	13.15	50.50	76.0	10.8			
80	7.10	38.20	87.6	3.2			
90	1.98	20.20					

SODIUM NITRITE NaNO2.

100 gms. H₂O dissolve 83.3 gms. at 15°.

(Divers - J. Ch. Soc. 75, 86, '99.)

100 gms. abs. methyl alcohol dissolve 4.43 gms. NaNO₂ at 19.5°. 100 gms. abs. ethyl alcohol dissolve 0.31 gm. NaNO₂ at 19.5°. (de Bruyn – Z. physik. Ch. 10, 783. ⁷02.)

SODIUM RHODO NITRITE Na,Rh2(NO2)12.

100 gms. $\rm H_2O$ dissolve 40 gms. at 17°, and 100 gms. at 100°. (Leidie — Compt. rend. 111, 107, '90.)

SODIUM OXALATE C2O4Na2.

SOLUBILITY IN WATER.

(Souchay and Leussen - Liebig's Ann. 99, 33, '56; Pohl - J. pr. Ch. 56, 216, '52.)

t°. 15.5°. 21.8°. 100°. Gms. Na₂C₂O₄ per 100 gms. H₂O 3.22 3.74 6.33

SOLUBILITY OF MIXTURES OF SODIUM OXALATE AND OXALIC ACID IN WATER AT 25°.

(Foote and Andrew - Am. Ch. J. 34, 154, '05.)

Gms. per 100 Gms. Solution.		Mols. per H ₂ (100 Mols.	Solid Phase.		
H ₂ C ₂ O ₄ .	Na ₂ C ₂ O ₄ .	H ₂ C ₂ O ₄ .	Na ₂ C ₂ O ₄ .	Z Made .		
10.20		2.274		$H_2C_2O_4.2H_2O$		
10.50	0.83	2.370	0.130	$H_2C_2O_42H_2O + HNaC_2O_4.H_2O$		
9.15	0.71	2.032	0.106			
6.88	0.86	1.493	0.125	Double Salt, HNaC ₂ O ₄ .H ₂ O		
1.14	1.25	0.234	0.172	Double Sait, HNaC2O4.H2O		
0.47	3.20	0.098	0.446			
0.42	3.85	0.090	0.541	$HNaC_2O_4.H_2O + Na_2C_2O_4$		
	3.60		0.502	$Na_2C_2O_4$		

SODIUM p NITRO PHENOL C.H.ONa(1).NO2(4).

SOLUBILITY IN WATER AND IN AQUEOUS NORMAL SOLUTIONS OF NON ELECTROLYTES.

(Goldschmidt — Z. physik. Ch. 17, 154, '95.)

t°.	Gms. C ₆ H ₄ .ONa(1).NO ₂ (4) per 100 Gms. Solution in:										
• .	Water.	Alcohol.	Urea.	Glycerine.	Acetone.	Propionitril.	Acetonitril.	Urethane			
23.7	5.597	5.615	6.244	6. 188	6.225	6.257	6.065	6.520			
28.6	6. 721	6.874	7.489	7.440	7.498	7.571	7.328	7.889			
30.6	7.256										
33.6	8. 125	8.318	9.000	9.025	9.025	9. 0 66	8.886	9.507			
35.9	8.851										
36. r	8.883		9.683	9.688	9.665	9.911	9.667	10.248			
40.2	9.881	10.147	10.666	10.777	10.695	10.905	10.667	11.379			
45.2	11.235	11.513	12.068	12.229				12.869			
50.1	12.730	13.133	13.555	13.785							

The solid phase is $C_6H_4ONa.NO_2.4H_2O$ below 36°, and $C_6H_4ONa.NO_2.2H_2O$ above 36° in each case.

SODIUM PHOSPHATES, Ortho, Hydrogen, and Pyro.

SOLUBILITY OF EACH IN WATER.
(Mulder; Poggiale.)

t°.	Gms. 1	Gms. per 100 Gms. Water.			Gms. per 100 Gms. H ₂ O.			
	Na ₃ PO ₄ .	Na ₂ HPO ₄ .	Na ₄ P ₂ O ₇ .		Na ₃ PO ₄ .	Na ₂ HPO ₄ .	Na ₄ P ₂ O ₇ .	
0	1.5	2.5	3.16	40	31.0	63.9	13.50	
10	4·I	3.9	3.95	50	43.0	82.5	17.45	
20	11.0	9.3	6.23	60	55.0	91.6	21.83	
25	15.5	15.4	8.14	80	81.0	96.6	30.04	
30	20.0	24.I	9.95	100	108.0	99.0	40.26	

Solid phases, Na₃PO₄.12H₂O, Na₂HPO₄.12H₂O and Na₄P₂O₇.10H₂O respectively. Sp. Gr. of saturated solution of Na₂HPO₄ at 15°=1.047. 100 gms. alcohol of 0.941 Sp. Gr. dissolve 0.33 gm. sodium phosphate at 15.5°.

SODIUM (Double) PHOSPHATE, FLUORIDE Na₃PO₄.NaF.12H₂O. 100 gms. water dissolve 12 gms. of the double sodium salt at 25°, and 57.5 gms. at 70°. Sp. Gr. of solution at 25° = 1.0329; at 70° = 1.1091.

(Briegleb — Liebig's Ann. 97, 95, 's6.)

SOLUBILITY OF SODIUM PHOSPHITES, ETC., IN WATER.

Salt.	Formula.	t°.	Gms. Salt per 100 Gms. H ₂ O.	Authority.
Hydrogen Phosphite	(NaH)HPO3.21H2O	0	56	(Amat Compt
" >	"	IO	66	(Amat. — Compt. rend. 106, 1351, '88.)
66	. "	42	193	
Hypophosphate	$Na_4P_2O_6$. 10 H_2O	cold	3.3)	
Hydrogen Hypophosphate	Na ₃ HP ₂ O ₆ .9H ₂ O	3		(Salzer — Liebig's Ann. 211, 1, '82.)
Tri Hydrogen "	NaH ₃ P ₂ O ₆ 3H ₂ O	cold	4.5 6.7	Ann. 211, 1, '82.)
Di Hydrogen "	$Na_2H_2P_2O_6.6H_2O$	cold	2.2)	(Salzer - Liebig's
Di Hydrogen "	$Na_2H_2P_2O_6.6H_2O$	b. pt	20.0	(Salzer — Liebig's Ann. 187, 331, '77)
Hypophosphite	(NaH)HPO2.H2O	25	100.0)	(U. S. P.)
Hypophosphite	(NaH)HPO ₂ .H ₂ O	b. pt.		

SODIUM SELENATE Na₂SeO₄.10H₂O. SOLUBILITY IN WATER. (Funk — Ber. 33, 2607, '00.)

				(runk — Ber	. 33, 3097, '00.)			
	t°.	Gms. Na ₂ SeO ₄ per 100 Gms. Solution.	Mols. Na ₂ SeO ₄ per 100 Mols. H ₂ O.	Solid Phase.	t°	Gms. Na ₂ SeO ₄ per 100 Gms. Solution.	Mols. Na ₂ SeO ₄ per 100 Mols. H ₂ O.	Solid Phase.
()	11.74	1.26	Na ₂ SeO ₄ .10H ₂ O	35.2	45 · 47	7.94	Na ₂ SeO ₄
I	5	25.01	3.18	46	39 · 5	45.26	7.87	44
18	3	29.00	3.90	44	50	44 · 49	7.63	66
25	5.2	36.91	5.57	44	75	42.83	7.14	44
2'	7	39.18	6.13	44	100	42.14	6.93	44
30)	44.05	7.50	44				

Sp. Gr. of saturated solution at $18^{\circ} = 1.315$.

SODIUM STANNATE Na₂SnO₃.3H₂O.

100 gms. H_2O dissolve 67.4 gms. at 0°, and 61.3 gms. at 20°. Sp. Gr. of solution at 0° = 1.472; at 20° = 1.438. (Ordway – Am. J. Sci. [2] 40, 173, '65.)

SODIUM SULPHATE Na₂SO₄. Solubility in Water.

(Mulder; Löwel — Ann. chim. phys. [3] 33, 382, '51; Tilden and Shenstone — Proc. Roy. Soc. (Lond.) 35, 345, '83; Etard — Ann. chim. phys. [7] 2, 527, '94; Funk — Ber. 33, 3701, '00; Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 209, '04.)

Gms. Na ₂		Mols.	Solid	40.	Gms. Na	₂ SO ₄ per	Mols.	Solid
		Liter (B.).	Phase.	-	Solution.	Water.	Liter (B.)	
4.76	5.0	0.31 N	a ₂ SO ₄ .10H ₂ O	50	31.8	46.7	2.92	Na ₂ SO ₄
6.0	6.4		46	60	31.2	45.3	2.83	44
8.3	9.0	0.631	44	80	30.4	43.7	2 . 69	44
8.11	13.4		44	100	29.8	42.5	2.60	46
16.3	19.4	1.32	66	120	29.5	41.95		44
21.9	28.0		44	140	29.6	42		44
25.6	34.0		44	160	30.7	44.25		44
29.0	40.8	2.63	44	230	31.7	46.4		44
30.6	44.0		44	. 0	16.3	19.5	• • • •	Na ₂ SO _{4.7} H ₂ O
32.3	47.8		4	5	19.4	24		44
33.6		3.11	44	10	23.I	30		46
	50.6	N	a ₂ SO ₄	15	27.0	37		44
33.4	50.2		64	20	30.6	44		64
32.8	48.8	3.01	64	25	34.6	53		
	Solution. 4.76 6.0 8.3 11.8 16.3 21.9 25.6 29.0 30.6 32.3 33.6 33.6	Solution. Water. 4.76 5.0 6.0 6.4 8.3 9.0 11.8 13.4 16.3 19.4 21.9 28.0 25.6 34.0 29.0 40.8 30.6 44.0 32.3 47.8 33.6 50.65 33.6 50.6 33.4 50.2	NaySO4 per Solution Water Liter (B.)	Solution Water Liter (B.) Solid Phase	Na ₂ SO ₄ per Phase. Na ₂	Na2SO4 per Phase. Na2S	Solution Water Liter (B.) Solid Phase Solid Phase Solid Phase Solid Phase Solid Solution Water	Na ₂ SO ₄ per Solid Phase. 100 Gms. Na ₂ SO ₄ per Solid Phase. 100 Gms. Na ₂ SO ₄ per Solid Phase. 100 Gms. Na ₂ SO ₄ per Solid Phase. 100 Gms. Na ₂ SO ₄ per Solid Na ₂ SO ₄

SOLUBILITY OF MIXTURES OF SODIUM SULPHATE AND MAGNESIUM SULPHATE IN WATER (ASTRAKANITE) Na₂Mg(So₄)₂.4H₂O.

(Roozeboom - Rec. trav. chim. 6, 342, '87; Z. physik. Ch. 2, 518, '88.)

t°.	Mols. per 100 Mols. H ₂ O.		Grams p	er 100 H ₂ O.	Solid	
	Na ₂ SO ₄ .	MgSO4.	Na ₂ SO ₄ .	MgSO ₄ .	Phase.	
22	2.95	4.70	23.3	31.4	Astrakanite	
24.5	3.45	3.68	27.2	24.6	46	
30	3.59	3.59	28.4	24.I	44	
35	3.71	3.71	29.4	24.8	44	
47	3.6	3.6	28.4	24.I	44	
22	2.95	4.70	23.3	31.4	Astrakanite + Na2SO4	
24.5	3 · 45	3.62	27.2	24.2	"	
30	4.58	2.91	36.1	19.1	44	
35	4.3	2.76	33.9	18.44	66	
18.5	3.41	4.27	43.0	45.5	Astrakanite + MgSO4	
22	2.85	4.63	35.2	48.9	44	
24.5	2.68	4.76	32.5	50.3	44	
30	2.3	5.31	25.9	55.0	44	
35	1.73	5.88	23.5	59.4		

SOLUBILITY OF MIXTURES OF SODIUM SULPHATE, POTASSIUM CHLORIDE, POTASSIUM SULPHATE, ETC., IN WATER.

(Meyerhoffer and Saunders - Z. physik. Ch. 28, 469; 31, 382, '99.)

	Sp. Gr. of	Mo	ls. per 100	o Mols. H	₂ O.	a **1 m
t°.	Solutions.	SO ₄	K ₂	Na ₂	Cl ₂	Solid Phase.
*4.4		5.42	14.39	51.83	60.8	K ₃ Na(SO ₄) ₂ +Na ₂ SO ₄ .10H ₂ O+ KCl+NaCl
0.2		3.35	12.78	50.93	60.36	Na ₂ SO ₄ .10H ₂ O+KCl+NaCl
- 0.4		3.59	16. 38	40.75	53.54	$Na_2SO_4.10H_2O+KCl+K_3Na(SO_4)_2$
16.3		4.72	17.58	50.56	63.42	K ₃ Na(SO ₄) ₂ +KCl+NaCl
24.8	1.2484	4.37	20.00	48. 36	64.01	K ₃ Na(SO ₄) ₂ +KCl+NaCl
*16.3	• • •	16.29	9.16	61.06	53.93	K ₃ Na(SO ₄) ₂ +NaCl+Na ₂ SO ₄ .10H ₂ O+ Na ₂ SO ₄
24.5	1.2625	14.45	9.90	58.46	53.91	K ₃ Na(SO ₄) ₂ +NaCl+Na ₂ SO ₄
0.3		2.75	25.77	17.93	40.95	$K_3Na(SO_4)_2+KCl+K_2SO_4$
25.0	1.2034	2.94	36. 20	14.80	48.06	K ₃ Na(SO ₄) ₂ +KCl+K ₂ SO ₄
*17.9	1.2474	13.84	0.0	62.57	48. 70	Na ₂ SO ₄ .10H ₂ O+Na ₂ SO ₄ +NaCl
*30.1	1.2890	50.41	10.08	40.33	0.0	K ₃ Na(SO ₄) ₂ +Na ₂ SO ₄ .10H ₂ O+Na ₂ SO ₄
-21.4				46.61	46.36	NaCl.2H2O+Na2SO4.10H2O
-23.7			10.51	39.58	50.09	NaCl.2H2O+KCl
-10.9		1.45	30.68		29.23	KCl+K ₂ SO ₄
- 3		16.25	10.03	6.21		$K_3Na(SO_4)_2+Na_2SO_4.10H_2O$
- 3		16.24	10.03	6.21		K ₃ Na(SO ₄) ₂ +K ₂ SO ₄
-14		1.39	25.59	8. 78	32.94	K ₃ Na(SO ₄) ₂ +Na ₂ SO _{4.10} H ₂ O+KCl
- 14		1.39	25.59	8.78	32.94	K ₃ Na(SO ₄) ₂ +K ₂ SO ₄ +KCl
-23.3	• • •	0.41	15.15	44.20	58.97	Na ₂ SO ₄ .10H ₂ O+KCl+NaCl.2H ₂ O

^{*} Indicates transition points.

SOLUBILITY OF SODIUM SULPHATE IN AQUEOUS SOLUTIONS OF SULPHURIC ACID.

Gms, per 1000		pherd and Güntl Mols. per 1000		rg. Chem. 49 , 356–61, '06.) n. Solid Phase.
H-SO ₄	Na ₂ SO ₄	H ₂ SO ₄	Na ₂ SO ₄	
0.0	219.0	0.0	1.541	$Na_2SO_4 \cdot 10 H_2O$
28.1	237 - 4	0.286	1.671	"
33.2	247.5	0.338	1.742	"
86.7	320.7	0.884	2.256	$Na_2SO_4 \cdot 10 H_2O + Na_2SO_4$
154.6	335.8	1.576	2.363	$Na_3H(SO_4) \cdot H_2O + Na_2SO_4$
163.5	346.4	1.666	2.437	$Na_3H(SO_4)_2 + Na_2SO_4$
256.3	297 - 4	2.611	2.091	$Na_3H(SO_4)_2 + Na_3H(SO_4)_2 \cdot H_2O$

SOLUBILITY OF SODIUM SULPHATE IN AQUEOUS SOLUTIONS OF SODIUM CHLORIDE AT DIFFERENT TEMPERATURES.

(Seidell - Am. Ch. J. 27, 52, '02.)

Res	Results at 10°.			ılts at 2	1.5°.	Results at 27°.		
Sp. Gr. of Solutions. I .080 I .083 I .102 I .150 I .164 I .192 I .207 I .217 I .223	H	100 Gms. 120. Na ₂ SO ₄ . 9 · 14 6 · 42 4 · 76 3 · 99 3 · 97 4 · 15 4 · 34 4 · 59 4 · 75	Sp. Gr. of Solutions. I.164 I.169 I.199 I.214 I.243 I.244 I.244 I.244 I.245 I.219 I.212 I.197	_	100 Gms.	Sp. Gr. of Solutions. I · 228 I · 230 I · 235 I · 259 I · 253 I · 245 I · 245 I · 238		100 Gms.
			91	33.40	0.00			

Ke	suits at 30°.	Rest	nis at 33.	Res	uits at 35°.
Sp. Gr.	Gms. per 100 Gms.	Sp. Gr.	Gms. per 100 Gms.	Sp. Gr.	Gms. per 100 Gms.
of	H ₂ O.	of	H ₂ O.	of	H ₂ O.
Solutions.	NaCl. Na ₂ SO ₄ .	Solutions.	NaCl. Na ₂ SO ₄ .	Solutions.	NaCl. Na ₂ SO.

of	1	H ₂ O.	of	H	₂ O.	of	F12	J.
Solutions.	NaCl.	Na ₂ SO ₄ .	Solutions.	NaCl.	Na ₂ SO ₄ .	Solutions.	NaCl.	Na ₂ SO
1.281	0.0	39.70	1.329	0.0	48.48	1.324	0.0	47.94
1.282	2.45	38.25	1.323	I.22	46 . 49	1.314	2.14	43.75
1.284	5.61	36.50	1.318	1.99	45.16	1.256	13.57	26.26
1.290	7.91	35.96	1.315	2.64	44.09	1.238	18.78	19.74
1.276	10.61	31.64	1.309	3 · 47	42.61	1.231	31.91	8.28
1.270	12.36	29.87	1.265	12.14	29.32	1.193	35.63	0.00
1.258	15.65	25.02	1.237	21.87	16.83			
1.249	18.44	21.30	1.234	32.84	8.76			
I . 244	20.66	19.06	1.217	33.99	4.63			

34.77

2.75

9.06

1.236 32.43

1.208

SOLUBILITY OF SODIUM SULPHATE IN AQUEOUS ETHYL ALCOHOL. (de Bruyn — Z. physik. Chem. 32, 101, '00.)

4.0	Content	Gms. Na ₂ SO ₄	Gms. per	100 Gms. S	Solution.	Solid
t°.	of Alcohol.	per 100 Gms. Aq. Alcohol.	H_2O .	C ₂ H ₅ OH.	Na ₂ SO ₄ .	Phase.
15	0.7	12.7	88.7	0.0	11.3	Na ₂ SO ₄ .10H ₂ O
66	9.2	6.7	85.1	8.6	6.3	46
"	19.4	2.6	78.6	18.9	2.9	44
66	39.7	0.5	60.0	39.5	0.5	66
"	58.9	0.1	41.1	58.8	0.1	44
"	72.0	0.0	28.0	72.0	0.0	66
66	0.0	37 · 4	72.8	0.0	27.2	Na ₂ SO _{4.7} H ₂ O
66	II.2	16.3	76.5	9.5	14.0	44
"	20.6	7.0	74.3	19.2	6.5	44
66	30.2	2.0	68.4	29.6	2.0	44
25	0.0	28.2	78.1	0.0	21.9	Na ₂ SO _{4.10} H ₂ O
"	10.6	13.9	78.5	9.3	12.2	44
"	24.0	4.5	72.8	22.9	4.3	4.6
66	54.0	0.4	45.6	54.0	0.4	46
36	0.0	49 · 3	67.0	0.0	33.0	Na ₂ SO ₄
"	8.8	29.2	70.6	6.8	22.6	44
66	12.8	22.4	71.2	10.5	18.3	44
66	17.9	15.4	71.1	15.5	13.4	44
"	18.1	15.3	71.0	15.7	13.3	44
16	28.9	5 · 4	66.5	28.4	5.1	44
66	48.7	0.8	50.9	48.3	0.8	44
45	0.0	47 · 9	67.6	0.0	32.4	44
ű	9.0	27.5	71.3	7.1	21.6	44
66	14.5	19.2	71.8	12.1	16.1	44
66	20.6	12.3	70.6	18.4	10.0	44
"	31.0	5.1	65.6	29.5	4.9	44
			-			

Between certain concentrations of the aqueous alcohol the liquid separates into two layers at 25°, 36° and 45°.

t°.		Upper Layer.			Lower Layer	•
t.	Gms. H ₂ O.	Gms. C ₂ H ₅ OH.	Gms. Na ₂ SO ₄ .	Gms. H ₂ O.	Gms. C ₂ H ₅ OH.	Gms. Na ₂ SO ₄
25	66.5	27.3	6.2	67.4	5.1	27.5
	68.1	23.9	8.0	68.5	6.0	25.5
"	68.3	23.1	8.6	68.3	6.7	25.0
36				66.6	4.1	29.3
	57 · 7	38.4	3.9			
"	65.0	28.3	6.7	68.8	5.9	25.3
"	68.1	21.2	10.7	68.9	9.4	21.7
45	61.8	32.9	5.3			
	65.8	25.3	8.9	68.4	8.8	22.8
66	66.0	24.0	10.0	68.6	10.1	21.3

SOLUBILITY OF SODIUM SULPHATE IN AQUEOUS PROPYL ALCOHOL AT 20°.

(Linebarger - Am. Ch. J. 14, 380, '92.)

Gms. C ₃ H ₇ OH per 100 Gms. Alcohol-Water Mixture.	Gms. Na ₂ SO ₄ per 100 Gms. Sat. Solution.	Gms. C ₈ H ₇ OH per 100 Gms. Alcohol-Water Mixture.	Gms. Na ₂ SO ₄ per 100 Gms. Sat. Solution.
42.20	1.99	56.57	0.55
49.77	1.15	60.64	0.44
55.65	0.72	62.81	0.38

100 gms. H_2O dissolve 183.7 gms. sugar + 30.5 gms. Na_2SO_4 at 31.25°, or 100 gms. sat. solution contain 52.2 gms. sugar + 9.6 gms. Na_2SO_4 . (Köhler – Z. Ver. Zuckerind. 47, 447, '97.)

SODIUM (Bi) SULPHATE NaHSO4.

100 gms. H_2O dissolve 28.6 gms. at 25°, and 50.0 gms. at 100°. 100 gms. alcohol dissolve 1.4 gms. at 25°. (U. S. P.)

SODIUM THIO SULPHATE Na, S,O3.

SOLUBILITY IN WATER.

(Young and Burke - J. Am. Chem. Soc. 26, 1417, '04.)

t°.	Solution.	Gms. Water.	Solid Phase.	t°.		2S ₂ O ₃ per Gms. Water.	Solid Phase.
IO	37 · 38	59.69	Pentahydrate (com.)	20	62.11	163.92	Monohydrate
20	41.20	70.07	64	25	62.73	168.32	64
25	43.15	75.90	44	30	63.53	174.20	66
30	45.19	82.45	44	20	55.15	122.68	Dihydrate
35	47.71	91.24	44	25	56.03	127 - 43	**
40	50.83	103.37	66	30	57.13	133.27	66
45	55.33	123.87	46	35	58.13	138.84	44
20	49.38	97.55	Pentahydrate (8)	40	59.17	144.92	44
25	52.15	108.98	44	50	62.28	165.11	44
28	54.48	119.69	46	33.5	58.59	141.48	Tetrahydrate (?)
29.5	55.85	126.50	66	36.2	60.51	153.23	44
30	56.57	130.26	46	36.6	62.80	168.82	44

100 gms. alcohol dissolve 0.0025 gm. $Na_2S_2O_3$ and 0.0034 gm. $Na_2S_2O_{3^*}5H_2O$ at room temperature. (Bödtker – Z. physik. Chem. 22, 510, '97.)

100 gms. alcohol of 0.941 Sp. Gr. dissolve 33.3 gms. at 15.5°.

(See also Parmentier — Compt. rend. 122, 136, '96)

SODIUM SULPHITE Na, SO.

100 gms. H_2O dissolve 14.1 gms. at 0°, 25.8-28.7 gms. at 20°, and 49.5 gms. at 40°. (Kremers – Pogg. Ann. 99, 50, '56.)

SODIUM TELLURIATE Na₂TeO₄.2H₂O.

100 gms. H₂O dissolve 0.77 gm. Na₂TeO₄ at 18°, and 2.0 gms. at 100°. Solid phase Na₂TeO_{4.2}H₂O.

100 gms. H₂O dissolve 1.43 gms. Na₂TeO₄ at 18°, and 2.5 gms. at 50°. Solid phase Na₂TeO₄.4H₂O. (Mylius – Ber. 34, 2208, '01.)

SODIUM TUNGSTATE (Wolframate) Na₂WO_{4.2}H₂O.

SOLUBILITY IN WATER. (Funk - Ber. 33, 3701, '00.)

t°.	Gms. Na ₂ WO ₄ per 100 Gms. Solution.	Mols. Na ₂ WO ₄ per 100 Mols. H ₂ O	Solid Phase.	t°.	Gms. Na ₂ WO ₄ per 100 Gms. Solution.	Mols. Na ₂ WO ₄ per 100 Mols. H ₂ O.	Solid Phase.
-5	30.60	2.70	Na ₂ WO ₄ .10H ₂ O	-3.5	41.67	4.37	Na2WO4 2H2O
-4	31.87	2.86	56	+5	41.73	4.39	64
-3.	5 32.98	3.01	44	18	42.0	4.40	34
-2	34.52	3.23	24	21	42.27	4.48	16
0	36.54	3.52	46	43.5	43.98	4.81	56
+3	39.20	3.95	46	80.5	47.65	5.57	44
5	41.02	4.26	56	100	49.31	5.95	44

Sp. Gr. of sat. solution at 18° = 1.573. For Sp. Gr. determinations of aqueous solutions at 20°, see Pawlewski — Ber. 33, 1223, 'oo.

SODIUM Fluo **ZIRCONATE** 5NaF.ZrF.

100 gms. H₂O dissolve 0.387 gm. at 18°, and 1.67 gms. at 100°.

(Marignac - J. pr. Chem. 83, 202, '61.)

STRONTIUM BENZOATE Sr(C7H5O2)2.H2O.

SOLUBILITY IN WATER. (Paietta - Gazz. chim. ital. 36, II, 67, '06.)

STRONTIUM BROMATE Sr(BrO3)2.

One liter of aqueous solution contains 0.9 gram molecules or 309 gms. Sr(BrO₃)₂ at 18°. (Kohlrausch - Sitzb. K. Akad. Wiss. (Berlin) oo, '07.)

STRONTIUM BROMIDE SrBr, 6H,O.

SOLUBILITY IN WATER.

(Average curve from results of Kremers — Pogg. Ann. 103, 65, '58; and Etard — Ann. chim. phys. [7] 2, 540, '94.)

t°.	Gms. SrBr ₂ p	Water.	t°.	Gms. SrBr ₂ J Solution.	Water.
0	46.0	85.2	40	55.2	123.2
10	48.3	93.0	50	57.6	135.8
20	50.6	102.4	60	60.0	150.0
25	51.7	107.0	80	64.5	181.8
30	52.8	111.9	100	69.0	222.5

Sp. Gr. of sat. solution at 20° approximately 1.70.

100 gms. abs. alcohol dissolve 64.5 gms. SrBr, at o°. Sp. Gr. of solution = 1.21. (Fonzes; Diacon - J. pharm. chim. [6] 1, 59, '95.)

STRONTIUM CARBONATE SrCO.

One liter of water dissolves 0.0082 gm. at 8.8° and 0.0109 gm. at 24° by conductivity method.
(Holleman – Z. physik. Chem. 12, 130, '93; Kohlrausch and Rose – Ibio. 12, 241, '93.)

One liter of water saturated with CO₂ dissolves 1.10 gms. Sr(HCO₃)₂.

STRONTIUM CHLORATE Sr (ClO₃)₂.

100 gms. H₂O dissolve 174.9 gms. Sr(ClO)₂, or 100 gms. sat. solution contain 63.6 gms. at 18°. Sp. Gr. of solution is 1.839.

317

(Mylius and Funk - Ber. 30, 1718, '97.)

STRONTIUM CHLORIDE SrCl2.6H2O.

SOLUBILITY IN WATER.

(Average curve from the results of Mulder; Etard; see also Tilden - J. Chem. Soc. 45, 409, '84.)

t°.		per 100 Gms		t°.	Gms. SrCl ₂ I	er 100 Gms.	Solid
•	Solution.	Water.	Phase.	• .	Solution.	Water	Phase.
- 20	26.0	35.1	SrCl _{2.6} H ₂ O	60	45.0	81.8	SrCl ₂ .6H ₂ O
0	30.3	43.5	66	70	46.2	85.9	SrCl ₂₋₂ H ₂ O
10	32.3	47 · 7	46	80	47 · 5	90.5	66
20	34.6	52.9	66	100	50.2	100.8	6.6
25	35.8	55.8	66	120	53.0	112.8	44
30	37.0	58.7	41	140	55.6	125.2	44
40	39.5	65.3	46	160	58.5	141.0	ef.
50	42.0	72.4	44	180	62.0	163.1	44

Transition temperature about 62.5° . Sp. Gr. of sat. solution at $0^{\circ} = 1.334$; at $15^{\circ} = 1.36$.

Solubility of Strontium Chloride in Aqueous Solutions of Hydrochloric Acid at o°.

(Engel -- Ann. chim. phys. [6] 13, 376, '88.)

Mg. Mols. per	10 cc. Solution.	Sp. Gr. of Solution.	Grams per 100	cc. Solution.
₹SrCl₂.	HCI.	Solution.	SrCl ₂ .	HCl.
51.6	0	1.334	40.9	0.0
44.8	6.r	1.304	35 · 5	2.22
37.85	12.75	1.269	30.0	4.65
27.2	23.3	I.220	21.56	8.49
22.0	28.38	1.201	17.44	10.35
14.0	37 · 25	1.167	11.09	13.58
4.25	52.75	1.133	$3 \cdot 37$	19.23

100 gms. abs. methyl alcohol dissolve 63.3 gms. SrCl₂.6H₂O at 6°. 100 gms. abs. ethyl alcohol dissolve 3.8 gms. SrCl₂.6H₂O at 6°. (de Bruyn – Z. physik. Chem. 10, 787, '92.)

SOLUBILITY OF STRONTIUM CHLORIDE IN AQUEOUS ETHYL ALCOHOL SOLUTIONS AT 18°.

(Gerardin - Ann. chim. phys. [4] 5, 156, '65.)

Sp. Gr. of Aq. Alcohol at o°.	Wt. per cent Alcohol.	Gms. SrCl ₂ per 100 Gms. Alcohol.	Sp. Gr. of Aq. Alcohol at o°.	Wt. per cent Alcohol.	Gms. SrCl ₂ per 100 Gms. Alcohol.
0.000	6	49.81	0.939	45	26.8
0.985	IO	47.0	0.909	59	19.2
0.973	23	39.6	o .846°	86	4.9
0.966	30	35.9	0.832	9r	3.2
0.953	38	30.4			

STRONTIUM CHROMATE SrCrO.

SOLUBILITY IN WATER, ETC., AT 15°. (Fresenius — Z. anal. Chem. 29, 419, '90; 30, 672, '91.)

/==000=			
Solvent.	Gms. SrCrO ₄ per 100 Gms. Solvent.	Solvent.	Gms. SrCrO ₄ per 100 Gms. Solvent.
Water	0.12	Aq. Ethyl Alcohol (29%)	0.0132
Aq. NH ₄ Cl (5%)	0.195	Aq. Ethyl Alcohol (53%)	0.002
Aq. CH.COOH (19	6) I.57	-00	

STRONTIUM FLUORIDE SrF2.

One liter of water dissolves 1.87 mg. equiv. or 0.117 gm. SrF₂ at 18°, by conductivity method.

(Kohlrausch – Z. physik. Chem. 50, 356, '04-'05.)

STRONTIUM HYDROXIDE Sr(OH)2.

SOLUBILITY IN WATER.

(Scheibler - N. Z. Rubenzuckerind. 7, 257; abstract in J. pharm. chim. [5] 8, 540, '83.)

	Grams per 10	oo Grams Solution.	Grams per	Grams per 100 cc. Solution.			
t°.	SrO.	Sr(OH) ₂ .8H ₂ O.	SrO.	$Sr(OH)_2.8H_2O$.			
0	0.35	0.90	0.35	0.90 .			
10	0.48	1.23	0.48	1.23			
20	0.68	1.74	0.68	1.74			
30	I.00	2.57	1.01	2.59			
40	1.48	3.80	1.51	3.87			
50	2.13	5 . 46	2.18	5 · 59			
60	3.03	$7 \cdot 77$	3.12	8.00			
70	4.35	11.16	4.55	11.67			
80	6.56	16.83	7.02	18.01			
90	12.0	30.78	13.64	34.99			
100	18.6	47.71	22.85	58.61			

STRONTIUM IODATE Sr(IO3)2.

100 gms. H₂O dissolve 0.026 gm. at 15°, and 0.72-0.91 gm. at 100°. (Gay-Lussac; Rammelsberg - Pogg. Ann. 44, 575, '38.)

STRONTIUM IODIDE SrI2.6H2O.

SOLUBILITY IN WATER.

(Average curve from the results of Kremers — Pogg. Ann. 103, 65, '58; and Etard — Ann. chim. phys. [7] 2, 528, '74.)

40	Gms. SrI ₂ per	100 Gms	Solid	t°.	Gms. SrI ₂ per	100 Gms.	Solid
ι.	Solution.	Water.	Phase.	٠.	Solution.	Water.	Phase.
0	62.3	165.3	$SrI_2.6H_2O$	90	78.5	365.2	$SrI_{2.2}H_2O$
20	64.0	177.8	**	100	79 · 3	383.1	44
40	65.7	191.5	46	120	80.7	418.1	44
60	68.5	217.5	64	140	82.5	471.5	46
80	73.0	270.4	cs	175	85.6	594.4	41

Transition temperature about 90°. Sp. Gr. of sat. solution at 20° = 2.15.

100 gms. saturated solution of strontium iodide in absolute alcohol contain 2.6 gms. SrI_2 at -20, 3.1 gms. at $+4^\circ$, 4.3 gms. at 39° , and 4.7 gms. at 82° . (Etard.)

STRONTIUM MALATE SrC.H.O.

SOLUBILITY IN WATER.

(Cantoni and Basadonna - Bull. soc. chim. 35, 731, 'o6.)

t°	Gms. per 100 cc. Solution.	t°.	Gms. per 100 cc. Solution.	t°.	Gms. per 100 cc. Solution.
20	0.448	40	1.385	55	2.460
25	0.550	45	I.743	60	2.821
30	0.752	50	2 .098	65	3.148
35	1.036			70	3.360

STRONTIUM MOLYBDATE SrMoO.

100 gms. H₂O dissolve 0.0104 gm. SrMoO₄ at 17°.

(Smith and Bradbury - Ber. 24, 2930, '91.)

STRONTIUM NITRATE Sr(NO3)2.

SOLUBILITY IN WATER.

(Mulder; see also Etard for slightly lower results.)

t°.	Gms.Sr(NO Solution.	3)2 per 100 G1 Water.	ns. Solid Phase.	t°.	Solution.	per 100 Gms. Water.	Solid Phase.
0	28.3	39 · 5	$Sr(NO_3)_2.4H_2O$	40	47 · 7	91.3	Sr(NO ₃)8
10	35 · 5	54.9	66	50	48.1	92.6	**
20	41.5	70.8	66	60	48.5	94.0	**
25	44 · I	79.0	66	80	49 · 3	97 - 2	44
30	46.7	87.6	ę¢.	100	50.3	IOI.I	66

Transition temperature about 31°. Sp. Gr. of sat. solution at 20° = I.44.

100 gms. absolute alcohol dissolve 0.024 gm. Sr(NO₃)₂.

100 gms. rectified spirit dissolve 0.50 gm. Sr(NO₃)₂.

(Hill - Pharm. J. Trans. [3] 19. 420, '88.)

STRONTIUM OXALATE SrC,O,.H,O.

One liter of aqueous solution contains 6.52 mg. equivalent SrC2O. or 0.046 gm. at 18°, conductivity method.

(Kohlrausch - Z. physik. Chem. 50, 356, '04-'05.)

SOLUBILITY OF STRONTIUM OXALATE IN AQUEOUS ACETIC ACID SOLUTIONS AT 26°-27°.

(Herz and Muhs - Ber. 36, 3715, '03.)

Normality	Gms. per 100	cc. Solution.	Normality	Gms. per 100	cc. Solution.
of Acetic Acid.	CH ₃ COOH.	Residue SrC ₂ O ₄ .H ₂ O.	of Acetic Acid.	СК°СООН	Residue SrC ₂ O ₄ .H ₂ O.
0.0	0.0	0.009	3.86	23.16	0.0898
0.58	3.48	0.0526	5.79	34.74	0.0496
1.45	8.70	0.0622	16.26	97.56	0.0060
2.80	17.34	0.0642			

STRONTIUM SALICYLATE Sr(C₆H₄OH.COO)₂.2H₂O.

100 gms. H₂O dissolve 5.55 gms. at 25°, and 28.6 gms. at b. pt. 100 cc. aqueous solution contain 1.830 gms. anhydrous salt.

100 gms. alcohol dissolve 1.5 gms. at 25°, and 9.52 gms. at b. pt.

(U. S. P.; Barthe - Bull. soc. chim. [3] 11, 519, '94.)

STRONTIUM SULPHATE SrSO.

One liter of aqueous solution contains 1.24 mg. equivalents or 0.114 gm. SrSO₄ at 18°, by conductivity method.

(Kohlrausch — Z. physik. Chem. 50, 356. '04-'05; Holleman — *Ibid.* 12, 129, '93; Wolfmann — Öster. Ung. Z. Zuckerind. 25, 997, '97.)

SOLUBILITY OF STRONTIUM SULPHATE IN AQUEOUS SOLUTIONS OF HYDROCHLORIC, NITRIC, CHLORACETIC AND FORMIC ACIDS. (Banthisch — J. pr. Chem. [2] 29, 52, '84.)

cc. of Aq. Acid con- taining I	Gms. pe	l. HCl r 1∞ cc. l.	In Aq. Gms. per Sol		In Aq. CH ₂ Gms. per 1 CH ₂ Cl	oo cc. Sol.	In Aq. HC Gms. per i Sol.	00 CC.
Mg. Equiv. in each case.		SrSO ₄ .	HNO ₃ .	SrSO ₄ .	COOH.	SrSO ₄ .	нсоон.	SrSO ₄ .
0.2	18.23	0.161	31.52	0.381				
0.5	7.29	0.207	12.61	0.307				
1.0	3.65	0.188	6.30	0.217	94 · 47	0.026	46.02	0.024
2.0	1.82	0.126	3.15	0.138	47.23	0.022		
10.0	0.36	0.048	0.63	0.049				

SOLUBILITY OF STRONTIUM SULPHATE IN SULPHURIC ACID SOLUTIONS.

000

t°.	Conc. of H_2SO_4 .	per 100 Gms. Acid.	Authority.
ord.	concentrated	5.68	(Struve Z. anal. Chem. 9, 34, 1870.)
66	fuming	9.77	46
"	91%	0.08	(Varenne and Paulean — Compt. rend. 93, 1016, '81.)
70	Sp. Gr. 1.843 = 99%	6 14.0	(Garside — Chem. News, 31, 245, '75.)

Solubility of Strontium Sulphate in Aqueous Salt Solutions.

(Virck - Chem. Centralb. 402, '62.)

In Aq.	. NaCl.	In Aq.	KCl.			In Aq.	CaCl ₂ .
(a.)	(b.)	(a.)	(b.)	(a.)	(b.)	(a.)	(b.)
8.44	0.165	8.22	0.193	1.59	0.199	8.67	0.176
15.54	0.219	12.54	0.193	4.03	0.206	16.51	0.185
22.17	0.181	18.08	0.251	13.63	0.242	33.70	0.171

(a) = Gms. salt per 100 gms. aq. solution. (b) = Gms. $SrSO_4$ per 100 gms. solvent.

STRONTIUM TARTRATE SrC4H4O6.3H2O.

SOLUBILITY IN WATER.

(Cantoni and Zachoder - Bull. soc. chim. [3] 33, 751, '05.)

t°.	Gms. SrC ₄ H ₄ O ₆ . ₃ H ₂ O per 100 cc. Solution.	t°.	Gms. SrC ₄ H ₄ O ₆ .3H ₂ O per 100 cc. Solution.	t°.	Gms: SrC ₄ H ₄ O ₆ - .3H ₂ O per 100 cc. Solution.
0	0.112	25	0.224	60	0.480
10	0.149	30	0.252	70	0.580
15	0.174	40	0.328	80	0.680
20	0.200	50	0.407	85	0.755

SOLUBILITY OF STRONTIUM TARTRATE IN AQUEOUS SOLUTIONS OF ACETIC ACID AT 26°-27°.

(Herz and Muhs - Ber. 36, 3715, '03.)

Normality of Acetic Acid.		SrC ₄ H ₄ O _{6.3} H ₂ O.	Normality of Acetic Acid.	Gms. per 1	SrC ₄ H ₄ O _{6·3} H ₂ O
0.0	0.0 3.39	0.227	3·77 5.65	21.85 33.90	0.982
1.425	8.15	0.864 0.996	16.89	101.34	0.184

STRONTIUM (Di) TUNGSTATE SrW2O7.3H2O.

100 cc. H2O dissolve 0.35 gm. at 15°.

(Lefort - Ann. chim. phys. [5] 15, 326, '78.)

STRYCHNINE C21H22N2O2.

SOLUBILITY IN SEVERAL SOLVENTS.

(U. S. P.; at 20°, Müller - Apoth.-Ztg. 18 258, '03; Schindelmeiser.)

Solvent.	Gms. C ₂₁ H ₂₂ N ₂ O ₂ per 100 Gms.		Solvent.		2 H ₂₂ N ₂ O ₂ to Gms.
Solvent.	Solution at 20°.	Solvent at 25°.	Solvent.	Solution at 20°.	
Water	0.021	0.016	Petroleum Ether	0.0093	
Water Sat. with Ether	0.0166		Acetic Ether	0.1972	
Ether	0.0432	0.0182	Carbon Tetra Chloride	0. 158	0.645(17°)(S.)
Ether Sat. with H ₂ O	0.0513		Alcohol		0.909
Benzene	0.770		Amyl Alcohol		0.555
Chloroform	100+	16.6	Glycerine		0.25 (15°)

100 gms. pyridine dissolve 1.24 gm. C₂₁H₂₂N₂O₂ at 26°.

(Holty - J. Physic. Chem. 9, 764, '05.)

SOLUBILITY OF STRYCHNINE NITRATE AND SULPHATE IN SEVERAL SOLVENTS.

(U. S. P.)

	Strychni	Strychnine Sulphate.		
C-1	Gms. per 100	Gms. Solvent at:	Gms. per 100 Gn	ns. Solvent at:
Solvent.	25°.	80°.	25°.	80°.
Water	2.38	12.5	3.23	16.6
Alcohol	0.83	1.66 (60°)	1.54	5.0 (60°)
Chloroform	0.64		0.31	
Glycerine	I.66	4.0 (15°)	22.5 (15°)	• • •

SUBERIC ACID C.H.2(COOH)2.

SOLUBILITY IN WATER.

(Lamouroux -- Compt. rend. 128, 998, '99.)

t°.	o°.	15°.	20°.	35°	50 %.	65°.
Gms. $C_6H_{12}(COOH)_2$						
per 100 cc. solution	0.08	0.13	0.16	0.45	0.98	2.22

SUCCINIC ACID (CH2)2(COOH)2.

SOLUBILITY IN WATER.

(Miczynski —, Monatsh. Chem. 7, 263, '86; Van der Stadt — Z. physik. Chem. 41, 355, '02; Lamouroux — Compt. rend. 128, 998, '99; for other concordant results, see Bourgoin — Bull. soc. chim. [2] 21, 110 '74; Henry — Compt. rend. 99, 1157, '84.)

, , , , , , , , , , , , , , , , , , , ,	O (OV) (3000	Gms. Succinic Anhydride	26.1	201		
t°.	Gms. (CH ₂) ₂ (C	cc. Solution.	(CH ₂) ₂ COCOO	H ₂ O.	(CH ₂) ₂ COCOO		
	011150 11200	001 001441021	per Gms. H ₂ O.		(0212)200000		
0	2.80	2.78 (L.)		99.58	0.42		
10	4.51	4.0	3.80	99.32	0.68		
20	6.89	5.8	5 · 77	98.97	1.03		
25	8.06	7.0	6.74	98.80	I.20		
30	10.58	8.5	8.79	98.44	1.56		
40	16.21	12.5	13.42	97.64	2.36		
50	24.42	18.0	19.95	96.53	3 · 47		
60	35.83	24.5	28.77	95.07	4.93		
70	51.07		40.11	93.26	6.74		
80	70.79		54.08	91.12	8.88		
89 . 4	95.45		70.62	88.71	11.29		
104.8	146.3		IOI . 2	84.57	15.43		
115.1	188.5		126.8	81.4	18.6		
134.2	335.4		187.8	74.72	25.28		
159.5	748.2	• • •.	295.2	65.27	34.73		
180.6	1839.0		408.5	57.6	42.4		
182.8	∞		542.3	50.0	50.0		
174.4	• • •		808.5	40.7	59.3		
153.3			2239.0	19.86	80.14		
128.0			8865.0	5.89	94.11		
118.8-119	• • • •		∞	0.00	100.00		

SOLUBILITY OF SUCCINIC ACID IN ALCOHOLS AND IN ETHER. (Timofeiew — Compt. rend. 112, 1137, '91; at 15°, Bourgoin — Ann. chim. phys. [5] 13, 405, '78.)

Gms. (CH2)2(COOH)2 per 100 Gms. Solvent at: Solvent. _ 1°. +15°. + 21.5°. Abs. Methyl Alcohol 10.51 . . . 19.40 Abs. Ethyl 5.06 12.59 9.49 90% " 7.51 Abs. Propyl 2.II 4.79 . . . Abs. Ether 1.265

DISTRIBUTION OF SUCCINIC ACID BETWEEN WATER AND AMYL ALCOHOL AT 20°.

(Herz and Fischer - Ber. 37, 4748, '04.)

Millimols	½C4H6O4	Gms. C ₄ I	H ₆ O ₄ per	Millimol	s ½C4H6O4	Gms. C	$_4\mathrm{H}_6\mathrm{O}_4$
per 10	o cc.	100 cc. per 10 cc.		o cc.	per 10	per 100 cc.	
Alcohol	Aq.	Alcohol	Aq.	Alcohol	Aq.	Alcohol	Aq.
Layer.	Layer.	Layer.	Layer.	Layer.	Layer.	Layer.	Layer.
0.1888	0.2684	0.1114	0.1584	3.899	6.0795	2.302	3.588
0.3643	0.5252	0.215	0.310	5.199	8.099	3.069	4.779
0.7077	1.0373	0.418	0.612	6.334	10.170	3.739	6.000
1.440	2.1266	0.850	1.255	7.119	11.555	4.202	6.821

2.715 4.0495 1.603 2.391

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS ACETONE AT 20°. (Herz and Knoch — Z. anorg. Chem. 41, 320, '04.)

cc. Acetone per		100 cc. Solution.	cc. Acetone per	C ₄ H ₆ O ₄ per 100				
oo cc. Solution.	Millimols.	Grams.	100 cc. Solution.	Millimols.	Grams.			
0	107.8	6.363	60	275 . 7	16.27			
10	127.4	7.519	70	278.5	16.44			
20	155.8	9.194	80	265.3	15.66			
30	186.7	II.02	90	201.9	11.91			
40	225.4	13.30	100	51.5	3.04			
50	254.3	15.01						

SOLUBILITY OF SUCCINIC ACID IN AQUEOUS GLYCERINE SOLUTIONS AT 25°.

(Herz and Knoch - Z. anorg. Chem. 45, 268, '05.)

Wt. % Glycerine in Solvent.	C ₄ H ₆ O ₄ pe Solut Millimols.	Grams.	Sp. Gr. of Solutions.	Wt. % Glycerine in Solvent.	C ₄ H ₆ O ₄ p Solu Millimols.	er 100 cc. tion.	Sp. Gr. of Solutions.
0	133.4	7.874	1.0213	40.95	105.8		1.1120
7.15	128.2	7.566	1.0407	48.70	99.9	5.896	1.1208
20.44	118.3	6.982	1.0644	69.20	88.5	5.223	1.1804
31.55	109.7	6.476	1.0897	100.00*		4.440	1.2530

^{*} Sp. Gr. of Glycerine = 1.2555. Impurity about 1.5 per cent.

SUCCINIMID $C_2H_4 < {CO \atop CO} > NH$.

SOLUBILITY IN WATER AND IN ETHYL ALCOHOL.

Inte	rpolated f	rom origin	(Speyers -	(Speyers - Am. J. Sci. [4] 14, 294, '02,			
	Ir	Water.		In I	Ethyl Alco	hol.	
t°.	Wt. of r cc. Solution.	Mols. per 100 Mols. H ₂ C	Gms. per 100 Cms. H ₂ O.	Wt. of 1 cc. Solution. 1	Mols. per 100 Mols. C ₂ H ₅ OH.	Gms. per 10 Gms. C ₂ H ₅ OH	
Ο.	1.025	1.58	8.69	0.815	0.88	1.89	
IO	1.035	2 · 4	14.0	0.809	1.35	2.7	
20	1.052	4.0	23.0	0.806	2.00	4.1	
25	1.067	5.9	33.0	0.805	2.5	5.3	
30	1.086	8.0	45.0	0.804	3.1	6.8	
40	1.120	12.8	70.0	0.809	4.9	10.5	
50	1.145	17.8	96.0	0.816	7.8	16.0	
60	1.167	22.6	124.0	0.835	12.3	26.5	
70	1.189	27.5	152.0	0.873		• • • •	
80	I.204	32.8		0.954			

SUCCINIC NITRIL (Ethylene Cyanide) CNCH2CH2CN.

t°. Gr	ns. CNCH2CH	2CN per 100 Gr	ns.	Gms. CNCH2 CH	2CN per 100 Gms.
	Aq. Layer.	Nitril Layer.		. Aq. Layer.	Nitril Layer.
18.5	10.2	92.0	53 · 5	33 - 2	66.4
20	0.11	91.5	55	40.3	62.8
39		85.2	55 · 4	(crit. temp.) 5	0.1
45	22.0				

SUGAR C₁₂H₂₂O₁₁ (Cane Sugar.)

SOLUBILITY IN WATER.

(Herzfeld - Z. Ver. Zuckerind. 181, '92; see also Courtonne - Ann. chim. phys. [5] 12, 569, '77.)

t°.	Gms. C ₁₂ H	22O ₁₁ per ms.	t*.	Gms. C ₁₂ H 100 G	22O ₁₁ per ms.
	Solution.	Water.		Solution.	Water.
0	64.18	179.2	40	70.42	238.1
5	64.87	184.7	45	71.32	248.7
10	65.58	190.5	50	72.25	260.4
15	66.33	197.0	60	74.18	287.3
20	67.09	203.9	70	76.22	320.4
25	67.89	211.4	80	78.36	362.1
30	68.70	219.5	90	80.61	415.7
35	69.55	228.4	100	82.97	487.2

Sp. Gr. of sat. solution at $15^{\circ} = 1.329$; at $25^{\circ} = 1.340$.

Solubility of Sugar in Aqueous Salt Solutions at 30°, 50°, and 70°.

Interpolated from original results.

(Schukow - Z. Ver. Zuckerind. 50, 313, '00.)

£°.	Gms. Salt per	Gms	s. C ₁₂ H ₂₂ O ₁₁ pe	er 100 grams H	I ₂ O in Aq. Sol	ution of:
٠.	100 Gms. H ₂ O.	KCl.	KBr.	KNO ₃ .	NaCl.	CaCl ₂ .
30	0	219.5	219.5	219.5	219.5	219.5
66	10	216	218	217	210	197
66	20	22I	220	216	211	189
"	30	228	224	216	219	192
46	40	237	228	217	233	200
66	50			218	250	218
"	ŏо				269	243
50	0	260.4	260.4	260.4	260.4	260.4
66	10	261	262	260	255	239
"	20	266	266	261	260	228
66	30	274	272	262	269	228
86	40	284	276	262	284	236
16	50	296	280	263	302	253
"	60					276
70	0	320.5	320.5	320.5	320.5	320.5
	10	326	324	321	323	295
**	20	334	328	324	330	286
"	30	345	334	327	344	286
46	40	357	341	331	361	295
66	50	370	349	334	384	308
44	60	384	357	337	406	327
			001	001		0 /

SOLUBILITY OF CANE SUGAR IN SATURATED AQUEOUS SALT SOLUTIONS AT 31.25°.

(Köhler - Z. Ver. Zuckerind. 47, 447, '97.)

Salt.	Gms. Sugar	per 100 Gms.	Salt.	Gms. Sugar per 100 Gm:	
Satt.	Solution.	Water.	Sait.	Solution.	Water.
CH ₃ COOK		324.8	Na ₂ CO ₃	64.73	229.2
C ₃ H ₇ COOK	49.19	306.1	KNO ₃	61.36	224.7
$C_3H_4.OH.(COOK)_3$	50.30	303.9	K_2SO_4	66.74	219.0
K ₂ CO ₃	56.0	265.4	CH ₃ COOCa	60.12	190.0
KCl	62.28	246.5	Na ₂ SO ₄	52.20	183.7
CH₃COONa	59.93	237.6	CaCl ₂	42.84	135.1
NaCl	62.17	236.3	MgSO ₄	46.52	119.6

SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS. (Scheibler — Ber. 5, 343, '72; correction Ber. 24, 434, '91.)

	Result	ts at o°.		Results	at 14°.		Results at 40°.
Per cent Alcohol	Sp. Gr.	Gms. Sugar per 100 cc.	Sp. Gr. of Solution		per 100 cc. S		Gms. Sugar per 100 cc.
by Vol.	at 17.5°.	Solution.	at 17.5°.	Sugar.	C_2H_5OH .	H ₂ O.	Solution.
0	1.325	85.8	1 . 326	87.5	0	45.10	
IO	1.299	80.7	1.300	81.5	3.91	44.82	95 · 4
20	1.236	74.2	1.266	74.5	8.52	43.83	90.0
30	1.229	65.5	1.233	67.9	13.74	41.87	82.2
40	1.182	56.7	1.185	58.0	20.24	40.38	74.9
50	1.129	45.9	1.131	47.1	28.13	38.02	63.4
60	1.050	32.9	1.058	33.9	37 . 64	34.47	49.9
70	0.972	18.2	0.975	18.8	46.28	29.57	31.4
80	0.893	6.4	0.895	6.6	61.15	21.95	13.3
90	0.837	0.7	0.838	0.9	71.18	12.83	2.3
97 · 4	0.806	0.08	0.808	0.36	$77 \cdot 39$	3.28	0.5

SOLUBILITY OF CANE SUGAR IN AQUEOUS ALCOHOL SOLUTIONS AT 14°.
(Schrefeld — Z. Ver. Zuckerind. 44, '971 '94.)

Wt. per cent Alcohol.	Wt. per cent Sugar.	Gms. Sugar per 100 cc. Alcohol-H ₂ O Mixture.	Wt. per cent Alcohol.	Wt. per cent Sugar.	Gms. Sugar per 100 cc. Alcohol-H ₂ O Mixture.
0	66.2	195.8	50	38.55	62.7
5	64.25	179.7	60	26.70	36.4
10	62.20	164.5	70	12.25	13.9
20	58.55	141.2	80	4.05	4.2
30	54.05	117.8	90	0.95	0.9
40	47 · 75	91.3	100	0.00	0.0

100 gms. absolute methyl alcohol dissolve 1.18 gms. sugar at 19°. (de Bruyn — Z. physik. Chem. 10, 784, '92.)

SOLUBILITY OF SUGARS IN PYRIDINE AT 26°. (Holty — J. Physic. Chem. 9, 764, '04.)

Sugar.	Formula.	Gms. Sugar per 100 Gms. Solution.	Sp. Gr. of Solutions.
Cane Sugar	$C_{12}H_{22}O_{11}$	6.45	
Milk Sugar	$C_{12}H_{22}O_{11}.H_2O$	2.18	0.9811
Grape Sugar	$C_6H_{12}O_6.H_2O$	7.62	1.0521

SOLUBILITY OF CANE SUGAR IN AQUEOUS ACETONE AT 25°. (Herz and Knoch - Z. anorg. Chem. 41, 322, '04.)

Sp. Gr. of	cc. Acetone	Gms. Sugar	Gms. per 100 cc. Solution.			
Solutions.	Solvent.	Solution.	H ₂ O.	(CH ₃) ₂ CO.	C ₁₂ H ₂₂ O ₁₁ .	
1.3306	0.0	89.8	43 · 3	0.0	89.8	
1 . 2796	20.0	76.7	42.9	8.4	76.7	
1.2491	30.0	72.I	39.5	13.4	72.1	
I.2002	40.0	59 · 3	39.8	20.9	59 · 3	
1.1613	45.0	52.5	39.0	24.6	52.5	

Above 45 cc. acetone per 100 cc. solvent the solution begins to separate into two layers. The lower of these contains 51 gms. sugar per 100 cc. and has Sp. Gr. 1.1522. The upper layer contains so little sugar that the amount could not be determined by the method employed. 100 cc. evaporated in a vacuum desiccator left a residue of 3.68 gms. Above the concentration of 80 cc. acetone per 100 cc. solvent the two layers unite. In pure acetone 100 cc. solution give a residue of 0.18 gram sugar.

SOLUBILITY OF GRAPE SUGAR IN WATER AND IN AO. ALCOHOL.

100 gms. H₂O dissolve 81.68 gms. C₆H₁₂O₆ or 97.85 gms. C₆H₁₂O₆.H₂O at 15°.

100 gms. aq. alcohol of 0.837 Sp. Gr. = 85 wt. per cent dissolve 1.95 gms. C₆H₁₂O₆ at 17.5°.

100 gms. aq. alcohol of 0.880 Sp. Gr. = 66 wt. per cent dissolve

8.10 gms. $C_6H_{12}O_6$ at 17.5°. 100 gms. aq. alcohol of 0.910 Sp. Gr. = 53 wt. per cent dissolve 16.01 gms. $C_6H_{12}O_6$ at 17.5°.

100 gms. aq. alcohol of 0.915 Sp. Gr. = 51 wt. per cent dissolve 32.50 gms. C₆H₁₂O₆ at 17.5°.

SOLUBILITY OF MILK SUGAR IN WATER AND IN ABSOLUTE METHYL ALCOHOL.

100 gms. H₂O dissolve 17.03 gms. C₁₂H₂₂O₁₁.H₂O at 10°, 20.8 gms. at 25° (U. S. P.), 40 gms. at 100°, and 100 gms. at b. pt. 100 gms. abs. methyl alcohol dissolve 0.084 gm. at 10.5°.

(de Bruyn - Z. physik. Chem. 10, 784, '92.)

SULPHANILIC ACID NH2.C6H4SO3H.

SOLUBILITY IN WATER. (Dolinski - Ber. 38, 1836, '05.)

t°.	Gms. Acid pe	r 100 Gms.	t°.	Gms. Acid per 100 Gms.		
	Solution.	Water.	6	Solution.	Water.	
0	0.64	0.64	60	3.01	3.10	
10	0.83	0.84	70	3.65	3.78	
20	1.07	1.08	80	4.32	4.51	
30	I . 47	1.49	90	5.25	5.54	
40	1.94	1.97	100	6.26	6.67	
50	2.44	2.51				

SULPHUR S.

SOLUBILITY IN:

	Tin Tetra C			Amyl Alcoh	ol.
(Gerardin	Ann. chim. ph	ys. [4] 5, 134, '65.)		(Gerardin.)	
t°.	Gms. S per 100 Gms. SnCl ₄ .	Solid Phase.	t°.	Gms. S per 100 Gms. C ₅ H ₁₁ OH.	Solid Phase.
99	5.8	Solid S	95	1.5	Solid S
IOI	6.2	"	110	2.1-2.2	-66
110	8.7-9.1	"	112	2.6-2.7	Liquid S
112	9.4-9.9	Liquid S	120	3.0	ĩ
121	17.0	66	131	5 · 3	"

SOLUBILITY OF SULPHUR IN ETHYL AND METHYL ALCOHOLS.

t°.	Alcohol.	Gms. per 100 Gms. Alcohol.	Authority.
15	Abs. Ethyl	0.051	(Pohl.)
15 18.5	"	0.053	(de Bruyn — Z. physik. Chem. 10, 781, '92.)
b. pt.	"	0.42	(Payen — Compt. rend. 34, 356, '52.)
18.5	Abs. Methyl	0.028	(de Bruyn.)

SOLUBILITY OF SULPHUR IN AQUEOUS ACETONE AT 25°. (Herz and Knoch — Z. anorg. Chem. 45, 263, '05.)

Wt. per cent Acetone	Sulphur pe Solut	Sulphur per 100 cc. Solution.			
in Solvent.	Millimols.	Grams.	Solution.		
100	65.0	2.084	0.7854		
95.36	45.0	I .442	0.7911		
90.62	33.0	1 .058	0.8165		
85.38	25.3	0.811	0.8295		

Solubility of Sulphur in Benzene and in Ethylene Di Bromide.

(Etard — Ann. chim. phys. [7] 2, 571, '94; see also Cossa — Ber. 1, 139, '68.)

In C ₆ H ₆ .			In C ₂ H ₄ Br ₂ .					
t°.	Gms. S per 100 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.	
0	1.0	70	8.0	0	I . 2	50	6.4	
IO	1.3	80	10.5	10	1.7	60	8.4	
20	1.7	90	13.8	20	2.3	70	11.4	
25	2.I	100	17.5	25	2.8	80	16.5	
30	2.4	IIO	23.0	30	3 · 3	90	24.0	
40	3.2	120	29.0	40	4 · 4	100	36.5	
50	4.3	130	36.0					
60	6.0							

100 gms. sat. solution of S in benzoyl chloride, C₇H₇Cl, contain 1 gram S at 0° and 55.8 gms. at 134°.

(Bogousky - J. Soc. Phys. Chim. R. 37, 92, '05)

SOLUBILITY OF SULPHUR IN CARBON BISULPHIDE.

(Etard — Ann. chim. phys. [7] 2, 571, '94; Cossa — Ber. 1, 138, '65; at 10°, Retgers — Z. anorg. Chem
3, 347, '93; below — 77°, Arctowski — Ibid. 11, 274, '95'-96.)

to.	Gms. S per 100 Gms.				t°.	Gms. S pe	100 Gms.	t°.		r 100 Gms.
• .	Solution.	CS ₂	• .	Solution.	CS ₂ .	•	Solution.	CS ₂ .		
-110	3.0	3.I	-10	13.5	15.6	50	59.0	143.9		
-100	3.5	3.6	0	18.0	22.0	60	66.0	194.1		
· – 80	4.0	4.2	10	23.0*	29.9	70	72.0	257.1		
- 60	3.5	3.6	20	29.5	41.8	80	79.0	376.1		
- 40	6.0	6.4	25	33 · 5	50.4	90	86.0	614.1		
- 20	10.5	11.7	30	38.o	61.3	100	92.0	1150.0		
			40	50.0	100.0					
				* 26.4 H	₹.					

Sp. Gr. of solution saturated at 15° containing 26 gms. S per 100 gms. solution = 1.372.

SOLUBILITY OF SULPHUR IN HEXANE (C.H.14).

	(Etaid.)										
t°.	Gms. S per 100 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.	t°.	Gms. S per 100 Gms. Solution.						
-20	0.07	60	1.0	130	5.2						
0	0.16	80	1.7	140	6.0						
20	0.25	100	2.8	160	7.2						
40	0.55	120	4.4	180	8.2						

SOLUBILITY OF SULPHUR IN SEVERAL SOLVENTS.

(Cossa — Ber. 1, 139, '68; Retgers; Cap and Garot — J. pharm. chim. [3] 26, 81 '54; Kleven — Chem. Centralb. 434, '72.)

Solvent.	to. Gms. S per	Solvent.	t°. Gms. S per
$C_6H_5NH_2$	130 85.3	$C_6H_5CH_3$	230 1.48
CHCl ₃	22 I.2I	CH_2I_2	10 10.0 (R.)
$(C_2H_5)_2O$	23.5 0.97	$C_{10}H_4N_2*$	100 10.58
C_6H_5OH	174 16.35	$C_5H_3(OH)_3$	ord. t. 0.05-0.1 (C.and G.)
		* Nicotine	

SOLUBILITY OF SULPHUR IN COAL TAR OIL, LINSEED OIL AND IN OLIVE OIL.

(Pelouze - Compt. rend. 68, 1179, '69; 69, 56, '69; Pohl.)

0 0 0 10 00 1

	Grams S per 100 Grams Coal 1 ar Oil of:							r 100 Gms.
t°.	Sp. Gr.: 0.87 b. pt.: 80°-100°.	0.88 85°-120°.	0.882 120°-220°.	0.885 150°-200°.	1.01 210°-300°.	1.02 220°-300°.	Linseed Oil.	Olive Oil of o.885 Sp. Gr.
15	2.1	2.3	2.5	2.6	6.0	7.0	0.4	2.3
30	3.0	4.0	5.3	5.8	8.5	8.5	0.6	4.3
50	5.2	6.1	8.3	8.7	10.0	12.0	I . 2	9.0
80	11.8	13.7	15.2	21.0	37.0	41.0	2.2	18.0
100	15.2	18.7	23.0	26.4	52.5	54.0	3.0	25.0
IIO		23.0	26.2	31.0	105.0	115.0	3.5	30.0
120		27.0	32.0	38.0	00	∞	4.2	37.0
130			38.7	43.8	00	00	5.6	43.0
						(160°)	10.0	

100 gms. oil of turpentine dissolve 1.35 gms. S at 16°, and 16.2 gms. at b. pt.

(Payer — Compt. rend. 34, 356, '52.)

SULPHUR DIOXIDE SO2.

SOLUBILITY IN WATER.

(Schönfeld — Liebig's Ann. 95, 5, '55; Sims — *Ibid.* 118, 340, '61; Roozeboom — Rec. trav. chim. 3, 46, '84.)

Schönfeld.					Sir	ns.	F	Roozeboom.
t *.	Vols. SO ₂ (760 mm.) 1 Sat. SO ₂ + Aq.	at o° and per 1 Vol. H ₂ O.	Gms. SO ₂ per 100 Gms. H ₂ O at total pressure 760 mm.	t°.	SO ₂ per 1	Gm. H ₂ O.	t°.	SO ₂ Dissolved per 1 pt. H ₂ O at 760 mm. pressure.
0	68.86	79.79	22.83	8	0.168	58.7	0	0.236
5	59.82	67.48	19.31	10	0.154	53.9	2	0.218
IO	51.38	56.65	16.21	14	0.130	45.6	4	0.201
15	43.56	47.28	13.54	20	0.104	36.4	6	0.184
20	36.21	39 · 37	11.29	26	0.087	30.5	7	0.176
25	30.77	32.79	9.41	30	0.078	27.3	8	0.168
30	25.82	27.16	7.81	36	0.065	22.8	IO	0.154
35	21.23	22.49		40	0.058	20.4		
40	17.01	18.77	5.41	46	0.050	17.4	12	0.142
				50	0.045	15.6		

Sp. Gr. of sat. solution at $0^\circ = 1.061$; at 10° , 1.055; at $20^\circ = 1.024$. 1 gm. H₂O dissolves 0.0909 gm. SO₂ = 34.73 cc. (measured at 25°) at 25° and 748 mm. pressure.

(Walden and Centnerszwer - Z. physik. Chem. 42, 462, 'o1-'o2.

SOLUBILITY OF SULPHUR DIOXIDE IN SULPHURIC ACID OF 1.84 Sp. Gr.

Interpolated from original results.

(Dunn - Chem. News, 45, 272, '82.)

t°.	Sp. Gr. of Sat. Solution.	Coefficient of Absorp- tion (760 mm.).	t°.	Sp. Gr. of Sat. Solution.	Coefficient of Absorp- tion (760 mm.)
0		53.0	50	1.8186	9.5
10	1.8232	35.0	60	1.8165	7.0
20	1.8225	25.0	70	1.8140	5 · 5
25	1.8221	21.0	80	1.8112	4.5
30	1.8216	18.0	90	1.8080	4.0
40	1.8205	13.0			

SOLUBILITY OF SULPHUR DIOXIDE IN AQUEOUS SULPHURIC ACID SOLUTIONS.

	(I	ounn; see also	Kolb - Bull.	soc. ind. I	Aulhouse 222	, '72.)	
t°.	Sp. Gr. of H ₂ SO ₄ Solution.	Approximate Per cent H ₂ SO ₄ .	Coefficient of Absorption.	t°.	Sp. Gr. of H ₂ SO ₄ Solution.	Approximate per cent H ₂ SO ₄ .	Coefficient of Absorption
6.9	1.139	20	48.67	15.2	1.173	25	31.82
6.9	1.300	40	45.38	16.8	1.151	21	31.56
8.6	1.482	58	39.91	14.8	1.277	36	30.41
9.8	1.703	78	29.03	15.1	1.458	56	29.87
5.5	1.067	IO	36.78	15.6	1.609	70	25.17
6.0	1.102	15	3.408	15.0	1.739	81	20.83

For Coefficient of Absorption, see Ethane page 133.

SOLUBILITY OF SULPHUR DIOXIDE IN AQUEOUS SALT SOLUTIONS. (Fox — Z. physik. Chem. 41, 461, '02.)

Pesults in terms of the Ostwald Solubility Expression. See page 105.

Aqueous Salt Solution.	Solubility Coef	ficient l of S	SO ₂ in aq.	Solutions of	Concentra	tions:
Salt Solution.	0.5 Normal	1.0 N.	1.5 N.	2.0 N.	2.5 N.	3.0 N.
NH ₄ Cl	$l_{25} = 34.58$	36.37	38.06	39.76	41.37	42.78
NH ₄ Br	$l_{25} = 36.25$	39.46	42.78	46.06	49.17	52.25
NHCNS	$l_{25} = 37.78$	42.74	47.26	52.26	57.0I	61.46
NH ₄ NO ₃	$l_{25} = 33.96$	35.07	36.28	37.27	38.01	39.14
NH ₄ NO ₃	$l_{35} = 23.35$	24.23	24.78	25.57	26.66	27.43
$(NH_4)_2SO_4$	$l_{25} = 33.35$	33.82	34 · 33	34.95	35 - 47	35.96
$(NH_4)_2SO_4$	$l_{35} = 22.91$	23.14	23.49	23.93	24.23	24.60
$CdCl_2$	$l_{25} = 31.66$	30.55	29.46	28.16	27.00	26.06
$CdCl_2$	$l_{35}^{20} = 21.73$	21.23	20.55	20.02	19.23	18.68
$CdBr_2$	$l_{25} = 31.91$	31.01	30.17	29.27	28.15	27.46
$CdBr_2$	$l_{35} = 21.88$	21.46	20.81	20.60	19.70	19.17
CdI_2	$l_{25} = 33.27$	33.76	34.16	34.74	34.98	35.77
CdI_{2}	$l_{35} = 22.75$	23.06	23.36	23.71	23.99	24.30
CdSO ₄	$l_{25} = 31.11$	29.71	28.24	26.58	25.14	23.76
CdSO ₄	$l_{35} = 21.45$	20.43	19.42	18.31	17.41	16.25
KCl	$l_{25} = 34.42$	36.05	37.76	39.32	40.96	42.27
KCl	$l_{35} = 23.74$	25.15	26.54	27.94	28.93	30.02
KBr	$l_{25} = 35.94$	39.11	42.41	44.96	48.87	52.26
KBr	$l_{35} = 24.83$	27 - 49	29.64	31.93	34.12	36.14
KCNS	$l_{25} = 37.57$	42.38	47 .02	51.81	55.87	61.26
KCNS	$l_{35} = 25.63$	28.79	32.03	35.05	38.13	42.94
KI	$l_{25} = 38.66$	44.76	50.58	56.75	62.63	68.36
KI	$l_{35} = 26.30$	30.25	34.64	38.04	41.87	45 - 43
KNO ₃	$l_{25} = 33.80$	34.79	35.77	36.66	37 · 57	38.52
KNO ₃	$l_{35} = 23.27$	24.03	24.79	25.72	26.54	27.33
K ₂ SO ₄	$l_{25} = 33.20$	33.61				
NaBr	$l_{25} = 33.76$	34.54	35.27	36.26	36.84	.37 .74
NaCl	$l_{25} = 32.46$	32.25	31.96	31.76	31.51	31.36
NaCNS	$l_{25} = 35.44$	38.24	40.78	43 · 37	45.86	48.34
Na ₂ SO ₄	$l_{25} = 31.96$	31.14	30.45	29.51	28.66	28.44
Na ₂ SO ₄	$l_{35} = 21.88$	21.35	20.81	20.21	19.75	19.27

SOLUBILITY OF SULPHUR DIOXIDE IN ALCOHOLS AND IN OTHER SOLVENTS.

(de Bruyn — Rec. trav. chim. 11, 128, '92; Schulze — J. pr. Chem. [2] 24, 168, '81.)

In Ethyl Alcohol		ol	In Methy	d Alcohol	In Several Solvents			
	at 760 mm.			at 76	o mm.	at oo and	d 725 m	m. (S.)
t°.		per 100 G		Gms. SO ₂ per		Solvent.	SO ₂ per 1 G1	n.Solvent.
	Solution.	C ₂ H ₅ OH		Solution.	CH ₃ OH.		Grams.	Vols.
0	53.5	115.0		71.1	246.0	Camphor	0.880	308
7	45.0	81.0		59.9	149.4	CH ₃ COOH	I 0.961	318
12.3	39.9	66.4		52.2	109.2	HCOOH	0.821	351
18.2		48.8	(17	.8°) 44.0	78.6	$(CH_3)_2CO$	2.07	589
26.0	24 4	32.3		31.7	46.4	SO ₂ Cl ₂	0.323	189

184.91

137.80

DISTRIBUTION OF SULPHUR DIOXIDE AT 20° BETWEEN: (McCrae and Wilson — Z. anorg. Chem. 35, 11, '03.)

7	Water and Chloroform.						Aq. HCl and Chloroform.			
Gms. SO ₂ per Gm. Equiv. ½SO ₂ Liter in: per Liter in:		Conc.		Gms. SO ₂ per Liter in:		Gm. Equiv. ½SO ₂ per Liter in:				
Aq. Layer.	CHCl ₂ Layer.	Aq. Layer.	CHCl ₃ Layer.	of HCl.	Aq. Layer.	CHCl ₃ Layer.	Aq. Layer.	CHCl ₂ Layer.		
1.738	1.123	0.0543	0.0351	0.05	1.86	1.46	0.0581	0.0456		
1.753	I.I22	0.0547	0.0350	"	3.07	2.83	0.0960	0.0884		
2.346	1.703	0.0732	0.0532	"	4.28	4.07	0.1336	0.1271		
2.628	1.897	0.0821	0.0592	"	5.34	5.42	0.1667	0.1692		
3.058	2.385	0.0955	0.0745	0.10	1.25	I.4I	0.039	0.044		
3.735	3.062	0.1166	0.0956	"	2.78	3.08	0.0868	0.0962		
4.226	3.626	0.1319	0.1132	"	3.86	4.08	0.1199	0.1275		
5.269	4.798	0.1645	0.1498	"	5.161	5.72	0.1612	0.1784		
6.588	6.183	0.2057	0.1930	0.2	1.268	1.51	0.0396	0.0471		
31.92	33.84	0.9968	1.056	66	1.914	2.27	0.0597	0.0710		
33.26	37.25	1 .038	1.163	"	2 . 464	3.04	0.0769	0.0949		
				66	3.967	4.90	0.1239	0.1530		
				0.4	I.202	1.61	0.038	0.0504		
				"	1.894	2.26	0.059	0.0706		

TANNIC ACID C13H9O7COOH.

100 gms. $\rm H_2O$ dissolve about 294 gms. at 25°; 100 gms. alcohol dissolve about 439 gms. at 25°. (U. S. P.)

TARTARIC ACID C2H2(OH)2(COOH)2.

37.0

SOLUBILITY IN WATER. (Leidie — Compt. rend. 95, 87, '82.)

Grams Tartaric Acid per 100 Gms. H2O. Gms. Tartaric Acid per 100 Gms. H2O. Dextro and Laevo Acids. Racemic Racemic Dextro Racemic Racemic Ac. Hydrated. and Laevo Acids. Ac. Hydrated Ac. Anhydrous. Anhydrous. 8.16 115.04 50.0 59.54 0 9.23 50 195.0 78.33 10 125.72 12.32 14.00 60 217.55 64.52 99.88 0.81 20.60 80.56 243.66 20 139.44 70 24.61 80 98.12 124.56 25 147.44 21.4 273 - 33 156.2 306.56 117.20 152.74 30 25.2 29.10 90

SOLUBILITY OF TARTARIC ACID IN ALCOHOL AND IN ETHER AT 15°.

100

343 - 35

43.32

(Bourgoin - Ann. chim. phys. [5] 13, 405, '78.)

	Gms. Tartaric Acid	per 100 Gms.
Solvent.	Sat. Solution.	Solvent.
Absolute Alcohol	20.385	41.135
90% Alcohol	29 . 146	25.604
Absolute Ether	0.389	0.40

TELLURIUM Te.

176.0

40

100 gms. methylene iodide CH₂I₂ dissolve 0.1 gm. Te at 12°.

(Retgers — Z. anorg. Chem. 3, 349, '93.)

TELLURIC ACID H, TeO4.2H2O.

SOLUBILITY IN WATER. (Mylius — Ber. 34, 2208, '01.)

t°.	Gms. H ₂ TeO ₄ per 100 Gms. Sol.	Mols. H ₂ TeO ₄ per Solid 100 Mols. Phase. H ₂ O.	t°.	Gms. H ₂ TeO ₄ per 100 Gms. Sol.	Mols. H ₂ TeO ₄ per roo Mols. H ₂ O.	Solid Phase.
0	13.92	I.51 H2TeO4.6H2O	30	33.36	4.67 Hz	TeO4.2H2O
5	17.84	2.03 "	40	36.38	5 · 33	46
10	26.21	3.31 "	60	43.67	7.04	46
15	32.79	4.41 "	80	51.55	9.93	66
10	25.29	3.15 H2TeO4.2H2O	100	60.84	14.52	46
18	28.90	3.82 "	IIO	67.0	19.0	44

TELLURIUM DOUBLE SALTS

SOLUBILITY OF TELLURIUM DOUBLE BROMIDES AND CHLORIDES
IN AQUEOUS HYDROCHLORIC AND HYDROBROMIC ACIDS
AT 22°.

(Wheeler - Z. anorg. Chem. 3, 432, '93.)

Tellurium Double Salt.	Formula.	Solvent.	Gms. Double Gms.	Salt per 100 Solvent
			of 1.49 Sp. Gr.	of 1.08 Sp. Gr.
Te Caesium Bromide	TeBr ₄ .2CsBr	Aq. HBr	0.02	0.13
Te Potassium Bromide	TeBr ₄ .2KBr	• • • • • • • • • • • • • • • • • • • •	6.57	62.90
Te Rubidium Bromide	TeBr ₄ .2RbB	r "	0.25	3.88
Te Caesium Chloride	TeCl ₄ .2CsCl	Aq. HCl*	0.05	0.78
Te Rubidium Chloride	TeCl ₄ .2RbCl	"	0.34	13.00

^{*} Sp. Gr. of Aq. HCl solutions 1.2 and 1.05 respectively.

THALLIUM ALUMS SOLUBILITY IN WATER AT 25° (Locke — Am. Ch. J. 26, 174, 'o1.)

Salt per 100 Grams H2O. Gms. Gms. Hydrated. Alum. Formula. Gm. Anhydrous. Mols. Tl Aluminum Alum TIAl(SO₄)₂.12H₂O 11.78 7 · 5 0.0177 Tl Vanadium Alum $TlV(SO_4)_2.12H_2O$ 25.6 43.31 0.0573 Tl Chromium Alum TlCr(SO₄)₂.12H₂O 10.48 16.38 0.0212 Tl Iron Alum TlFe(SO₄)₂.12H₂O 36.15 64.6 0.0799

THALLIUM BROMATE TIBrO.

One liter saturated aqueous solution contains 3.463 gms. TlBrO₂ at 19.96° (B.), and 7.355 gms. at 39.75° (N. and A.).

(Böttger — Z. physik. Chem. 46, 602, '03; Noyes and Abbott — Ibid. 16, 132, '95.)

THALLIUM BROMIDE TIBE

One liter saturated aqueous solution contains 0.42 gm. TlBr at 18°, 0.476 gm. at 20°, 0.57 gm. at 25°, and 2.467 gms. at 68.5°.

(Kohlrausch - Z. physik. Chem. 50, 356, '04; Noyes - Ibid. 6, 248, '90; Böttger.)

Solubility of TiBr in Aq. Solutions of TiNO₃ at 68.5°. (Noyes.)

Grain Moice	L	Grams per Diter.				
0.0163 TlNO.	0.00410 TlBr	4.336 TlNO2	1.164 TlBr			
0.0294 "	0.00289 "	7.820 "	0.821 "			
0.0955 "	0.00148 "	25.400 "	0.420 "			

333 HALLIUM CARBONATE AND TH

THALLIUM CARBONATE AND THALLIUM (Per) CHLORATE.
THALLIUM CHLORATE TlClO₃. (See p. 338.)

SOLUBILITY IN WATER. (Muir — J. Chem. Soc. 29, 857, '76.)

t° 0° 20° 50° 80° 100° Gms. TlClO₃ per 100 gms. H₂O 2.80 3.92 12.67 36.65 57.31

SOLUBILITY OF MIXED CRYSTALS OF THALLIUM CHLORATE AND POTASSIUM CHLORATE IN WATER AT 10°.

(Roozeboom — Z. physik. Chem. 8, 532, '91.)

Note. — Solutions of the two salts were mixed in different proportions and allowed to crystallize, such amounts being taken that not more than one or two grams would separate from one liter.

Grams per Soluti	on.	Mg. Mols. 1 Solu	per 1000 cc.	Sp. Gr.		Mol. per cent KClO ₂ in Mixed
TIClO ₃ .	KClO ₃ .	TlClO3.	KClO ₃ .	Solutions.		Crystals.
25.637		89.14		1.0210		0
19.637	6.884	68.27	56.15	I.0222		2.0
12.001	26.100	41.73	212.89	1.0278		12.61
9.036	40.064	31.42	326.79	1.0338		25.01
7.885	46.497	27.42	379.26	1.0359	}	36-30-97-93
7.935	46.535	27.60	$379 \cdot 57$	1 .0360)	30.30 97.93
6.706	46.410	23.32	378.55	1.0357		99.28
6.729	47.109	23.37	384.25	1 .0363		99.60
4.858	47.312	16.89	385.91	1.0345		99.62
2.769	47.134	9.63	384.46	1.0330		99.67
	49.925		407.22	1.0330		100.00

SOLUBILITY OF MIXED CRYSTALS OF THALLIUM CHLORATE AND POTASSIUM CHLORATE IN WATER AT DIFFERENT TEMPERATURES.

(Quoted by Rabe - Z. anorg. Chem. 31, 156, '02.)

100 gms. H_2O dissolve 2.8 gms. $TlClO_3 + 3.3$ gms. $KClO_3$ at 0°. 100 gms. H_2O dissolve 10.0 gms. $TlClO_3 + 1.5$ gms. $KClO_3$ at 15°. 100 gms. H_2O dissolve 12.67 gms. $TlClO_3 + 16.2$ gms. $KClO_3$ at 50°. 100 gms. H_2O dissolve 57.3 gms. $TlClO_2 + 48.2$ gms. $KClO_3$ at 100°:

THALLIUM CHLORIDE TICI.

SOLUBILITY IN WATER.

(Average curve from results of Noyes—Z. physik. Chem. 9, 609, '02; Böttger—Ibid. 46, 602, '03; Kohl-rausch—Ibid. 50, 350, '04; Hebberling; Crookes; Lamy—The results of Berkeley—Trans. Roy. Soc. (Lond.) 203 A, 208, '04 are also given.)

t°.	Gms. TlCl Liter.		t°.	Gms. T	ICl per er.	t°.		TlCl per Liter.	
	2.1 (av.)			3.86		60		10.2	
10	2.5	2.4	30	4.2	4.6		,I2.0		. 0
20	3.3	3.4	40	5.2	6.0	100	18.0	24.I	(99·3°)
			50	6.3	8.0				

THALLIUM CHLORIDE TICI.

SOLUBILITY IN WATER AND IN AQ. SALT SOLUTIONS AT 25°. (Noyes; Noyes and Abbott; Geffcken — Z. physik. Chem. 49, 296, '04J

Aq. Salt Solution.	G. Mols. p	er Liter.	Grams p	er Liter.
	Salt.	TICI.	Salt.	TICI.
Ammonium Nitrate NH ₄ NO ₃	0.0	0.01612	0.0	3.861 (G.)
96	0.5	0.02587	40.02	6.209
44	1.0	0.03121	80.05	7 · 473
	2.0	0.03966	160.10	9.497
Barium Chloride BaCl ₂	0.0283	0.00857	5.895	2.052 (N.)
	0.1468	0.00323	30.59	0.773
Cadmium Sulphate CdSO4	0.030	0.0206	6.255	4.933 (N.)
**	0.0787	0.0254	16.41	6.081
	0.1574	0.0309	32.82	7.399
Hydrochloric Acid HCl	0.0283	0.00836	1.032	2.002 (N.)
44	0.0560	0.00565	2.043	1.353
44	0.1468	0.00316	5.357	0.757
Lithium Nitrate LiNO ₃	0.5	0.02542	34.53	6.085 (G.)
44	1.0	0.03035	69.07	7.266
44	2.0	0.03785	138.14	9.063
44	3.0	0.04438	207.21	10.630
Potassium Chlorate KClO ₃	0.5	0.0237	61.28	5.674 (G.)
Potassium Nitrate KNO ₃	0.015	0.0170	1.517	4.070 (N.)
44	0.030	0.0179	3.033	4.286
44	0.0787	0.0192	7.775	4.597
46	0.1574	0.0212	15.920	5.076
44	0.5	0.0257	50.55	6.153 (G.)
44	1.0	0.0308	101.11	7.375
46	2.0	0.0390	202.22	9.340
Sodium Acetate CH3COONa	0.015	0.0168	1.231	4.023 (N.)
44	0.030	0.0172	2.462	4.118
66	0.0787	0.0185	6.46	4.430
46	0.1574	0.0196	12.92	4.693
Sodium Nitrate NaNOs	0.5	0.02564	42.50	6.139 (G.)
"	I.0	0.03054	85.01	7.313
44	2.0	0.03851	170.02	9.221
44	3.0	0.04544	255.03	10.88
66	4.0	0.05128	340.12	12.28
Sodium Chlorate NaClO2	0.5	0.02320	53.25	5.555 (G.)
46	1.0	0.02687	106.5	6.433
66	2.0	0.03060	213.0	7.326
46	3.0	0.03303	319.5	7.909
66	4.0	0.03850	426.0	0.215
Thallium Bromate TlBrO: (at 39.75		0.01959	5.201	4.600 (N.andA.)
Thallium Nitrate TINO:	0.0283	0.0083	7.518	1.987 (N.)
64	0.0560	0.00571	14.89	1.368
86	0.1468	0.00371	39.05	0.795
Thallium Sulphate Tl ₂ SO ₄	0.0283	0.00332	14.27	2.121 (N.)
14	0.0203	0.00624	28.23	1.494
Thallium Sulphocyanide TISCN	Sat.	0.00024	Sat.	2.849 (N.)
	0.02140	0.0119	5.504	4.326 (N.andA.)
(=- 39-/3 /	0.02149	5.01007	3.304	4.320 (14.41001.)

Solubility of Thallium Chloride in Aqueous Solutions of Salts at 25°.

(Noyes - Z. physik. Chem. 9, 609, '92.)

Aq. Salt Solution.		am. Equiv. per		Gra	ms. per	Liter.	Gran	ns per	Liter.
	Salt.		TICI.	Salt.		TICI.	Salt.		TICI.
NH,Cl	0.0	NH4Cl or HCl	0.01612	0.00		3.861	0.00	HCl	3.861
and also	0.025	44	0.00873	1.338	66	2.101	0.886	44	2.0
HCl	0.05	46	0.00589	2.676		1.421	I.772	46	I.402
	0.10	66	0.00384				3.545	44	0.920
	0.20	44	0.00262	10.704	44	0.649	7.090	44	0.608
CuCl ₂	0.025	CuCl2 or CaCl	20.00002	3.36	CuCl ₂	2.161	3.77	CaCl	2 2 . 161
and also	0.05	44	0.00619		44	1.483	7.55	66	1.483
CaCl ₂	0.10	66	0.00419	13.45	66	1.003	15.11	46	1.003
-	0.20	66	0.00287	26.90	66	o. 688	30.22	66	0.687
$MgCl_2$	0.025	MgCl ₂ or MnC	l ₂ O, OOOO I	2.381	MgClo	2. 158	3.147	MnCle	2 158
and also			0.00618	4.763		1.480	6. 205	16	1.480
MnCl ₂	0.10	66	0.00412	9.526		0.987	12.59	44	0.987
	0.20	44	0.00278	19.052		0.666	25.18	44	0.666
KCl				06		06	,		0.0
		KCl or NaCl		1.86	KCI "	2.086	1.46		2.086
and also		**	0.00592	3.73	44	1.418	, ,	44	1.418
NaCl	0.10		0.00397	7.46		0.951	5.85	**	0.951
	0.20	44	0.00268	14.92	44	0.642	11.70	44	0.642
TlClO ₃		TICIO30rTINO	30.00889	5.276	TICIO	2.129	4.74	TINO	2.129
and also	0.05		0.00626				9.48	44	1.500
TINO ₃	0.10	44	0.00423	• • •			18.96	44	1.014
ZnCl ₂	0.025	ZnCl ₂	0.00899	3.41	ZnCl ₂	2.153			
	0.05	46	0.00627	6.8r	44	1.502			
	0.10	44	0.00412	13.63	64	0.987			
	0.20	66	0.00281	27.26	44	0.673			
CdCl ₂	0.025	CdCl ₂	0.0104	4.53	CdCl ₂	2.491			
_	0.05	44	0.0078	9.16	44	1.868			
	0.10	+6	0.00578	18.33	44	1.385			
	0.20	61	0.00427	36.66	44	1.020			
				Ü					

One liter of water dissolves 2.7 gms. thallo thallic chloride 3TlC1.TlC1, at 15°-17°, and 35.0 grams at 100°.

(Crookes; Lamy; Hebberling.)

THALLOUS CHROMATE Tl2CrO4.

100 gms. H₂O dissolve 0.03 gm. Tl₂CrO₄ at 60°, and 0.2 gm. at 100°. (Browning and Hutchins—Z. anorg. Chem. 22, 380, '00.)

One liter of aq. 31 per cent KOH solution dissolves 18 grams Tl₂CrO₄.

(Lepierre and Lachand — Compt. rend. 113, 196, '91.)

One liter of H₂O dissolves 0.35 gram Thallous Tri Chromate Tl₂Cr₃O₁₀ at 15°, and 2.27 grams at 100°. (Crookes.)

THALLOUS CYANIDE TICN and Double Cyanides.

SOLUBILITY IN WATER. (Fronmüller — Ber. 11, 92, '78.)

Cyanide.	Formula.	Gms. Salt per 100 Gms. H ₂ O.
Tl Cyanide	TICN	at 28.5°, 16.8
Tl Cobalti Cvanide	TI.Co(CN).	at 0° 2.6; at 0.5°, 5.86; at 10.5°, 10.0

Tl Zinc Cyanide 2TlCN.Zn(CN)₂ at 0°, 8.7; at 14°, 15.2; at 31°, 29.6

Tl Ferro Cyanide Tl₄Fe(CN)_{6.2}H₂O at 18°, 0.37 at 101°, 3.93.

THALLOUS FLUORIDE TIF.

100 gms. H₂O dissolve 80 gms. TlF at 15°.

(Buchner - Sitzb. K. Akad. Wiss. (Wein) 52, 2, 644, '65.)

(Lamy.)

THALLIUM IODATE TIIO3.

One liter aq. solution contains 0.578 gram TIIO, at 20°.
(Böttger — Z. physik. Chem. 46, 602, '03.)

THALLIUM IODIDE TIL.

SOLUBILITY IN WATER.

(Average results from Böttger; Kohlrausch; Werther; Crookes; Lamy; Hebberling.)

One liter of 2½ per cent aq. ammonia dissolves 0.761 gm. TlCl.

One liter of 6½ per cent aq. ammonia dissolves 0.758 gm. TlCl.

One liter of 90 per cent alcohol dissolves 0.0038 gm. TlCl. One liter of 50 per cent alcohol dissolves 0.027 gm. TlCl.

(Long - J. Anal. Ch. 2, 243, '88.)

THALLIUM NITRATE TINO ..

SOLUBILITY IN WATER.

(Berkeley — Trans. Roy. Soc. (Lond.) 203 A, 213, '04; see also Etard — Ann. chim. phys. [7] 2, 527, '04; Crookes; Lamy.)

t°.	Gms. TlNO3 per 100 Gms.		t°.	Gms. TlNO ₃ per 100 Gms.		
• •	Solution.	Water.	• .	Solution.	Water.	
0	3.76	3.91	60	31.55	46.2	
IO	5 . 86	6.22	70	41.01	69.5	
20	8.72	9.55	80	52.6	111.0	
30	12.51	14.3	90	66.66	200.0	
40	17.33	20.9	100	80:54	414.0	
50	23.33	30.4	105	85.59	594.0	
			/			

Solid phase. TINO₃ rhombic.

100 gms. H₂O dissolve 43.5 gms. TlNO₃ + 104.2 gms. KNO₃ at 58°. (Rabe – Z. anorg. Chem. 31, 156, '02.)

THALLIUM OXALATE Tl2C2O4.

One liter of saturated aqueous solution contains 15.77 grams $Tl_2C_2O_4$ at 20°, and 18.69 gms. at 25°.

(Böttger - Z. physik. Chem. 46, 602, '03; Abegg and Spencer - Z. anorg. Chem. 46, 406, '05.)

SOLUBILITY OF THALLIUM OXALATE AT 25° IN AQ. SOLUTIONS OF:

Thallium Nitrate. (Abegg and Spencer.)

Potassium Oxalate. (A. and S.)

Mol. Concentration.		Grams per Liter.		Mol. Concentration.		Grams p	er Liter.
TINO3.	Tl ₂ C ₂ O ₄ .	TINO3.	Tl2C2O4.	$K_2C_2O_4$.	Tl ₂ C ₂ O ₄ .	$K_2C_2O_4$.	Tl ₂ C ₂ O ₄ .
0.0	0.03768	0.00	18.69	0.0498	0.0351	8.281	17.42
0.04114	0.0264				0.03565	16.57	
0.0799	0.0195	21.26	9.68	0.2467	0.0390	41.02	19.36
0.1597	0.01235	42.51	6.128	0.4886	0.04506	81.25	22.37
				0.9785	0.05536	162.6	27.48

THALLOUS PHOSPHATE (ortho) Tl₃PO₄.

One liter of sat. aqueous solution contains 4.97 gms. Tl2PO4 at 15° and 6.71 gms. at 100°. (Crookes.)

THALLIUM PICRATE TIOC, H2(NO2)3.

SOLUBILITY IN WATER. (Rabe - Z. physic. Chem. 38, 179, 'o1.)

t°.	Gms. TlOC ₆ H ₂ (NO ₂); per 100 Gms. H ₂ O.	Solid Phase.	t°.	Gms. TlOC ₆ H ₂ (NO ₂ per 100 Gms. HO ₂ .	Solid Phase.
0	0.135	Monoclinic Red	45	I .04	Triclinic Yellow
18	0.36	46	47	I.IO	44
30	0.575	66	50	I . 205	46
40	0.825	66	60	1.73	44
45	1.01	66	70	2.43	66
47	1.14	66	•		46

100 gms. H_2O dissolve 0.132 gm. $C_6H_2(NO_2)_3OT1 + 0.36$ gram C₆H₄(NO₂)₃OK at o°.

100 gms. H_2O dissolve 0.352 gm. $C_6H_2(NO_2)_3OT1 + 0.44$ gram $C_6H_4(NO_2)_3OK$ at 15°.
100 gms. H_2O dissolve 0.38 gm. $C_6H_2(NO_2)_3OT1 + 0.23$ gram C₆H₄(NO₂)₃OK at 20°. (Rabe.)

SOLUBILITY OF THALLIUM PICRATE IN METHYL ALCOHOL. (Rabe.)

t°.	Gms. TlOC ₆ H ₂ (NO ₂ per 100 Gms. CH ₃ OH	Phase.	t°.	Gms. TlOC ₆ H ₂ (NO ₂) ₃ per 100 Gms. CH ₃ OH.	Solid Phase.
0	0.39	Red Form (monoclinic).	45	1.195	Yellow Form (triclinic).
18	0.59	66	48	1.265	66
25	0.70	44	50	1.325	44
30	0.795	46	53	I.4I	44
35	0.90	66	57	1.54	44
40	1.02	66	60	1.65	86
45	1.17	44	65	1.84	4
47	1.265	64			

THALLIUM SULPHATE TI,SO.

SOLUBILITY IN WATER.

(Berkeley - Trans. Roy. Soc. (Lond.) 203 A 211, '04; see also Crookes; Lamy.)

t°.	Gms. Tl ₂ SO ₄ per 100 Gms.		t°.	Gms. Tl ₂ SO ₄ per 100 Gms.		
	Solution.	Water.		Solution.	Water.	
0	2.63	2.70	60	9.89	10.92	
10	3 · 57	3.70	70	11.31	12.74	
20	4.64	4.87	80	12.77	14.61	
30	5.80	6.16	90	14.19	16.53	
50	8.44	9.21	99 · 7	15.57	18.45	

100 gms. H_2O dissolve 4.74 gms. $Tl_2SO_4 + 10.3$ gms. K_2SO_4 at 15°. 100 gms. H_2O dissolve 11.5 gms. $Tl_2SO_4 + 16.4$ gms. K_2SO_4 at 62°. 100 gms. H_2O dissolve 18.52 gms. $Tl_2SO_4 + 26.2$ gms. K_2SO_4 at 100°. (Rabe — Z. anorg. Ch. 31, 156, '02.)

THALLIUM SULPHIDE Tl2S.

One liter of sat. aqueous solution contains 0.215 gm. Tl₂S at 20°.

(Böttger — Z. physic. Chem. 46, 602, '03)

THALLIUM DOUBLE SULPHATES

SOLUBILITY IN WATER AT 25°. (Locke — Am. Ch. J. 27, 459, 'oi.)

Double Sulphate.	Formula.	Salt per 100 cc. H ₂ O.		
		Gms. Anhydrous.	Gram Mols.	
Tl Copper Sulphate	$Tl_2Cu(SO_4)_2.6H_2O$	8.1	0.0122	
Tl Nickel Sulphate	$Tl_2Ni(SO_4)_2.6H_2O$	4.61	0.007	
Tl Zinc Sulphate	$Tl_2Zn(SO_4)_2.6H_2O$	8.6	0.0129	

THALLIUM SULPHOCYANIDE TISCN.

SOLUBILITY IN WATER AND IN AQUEOUS SALT SOLUTIONS.

(Böttger; Noyes; Noyes and Abbott.)

One liter sat. aq. solution contains 3.154 gms. TISCN at 20°, 3.905 gms. at 25°, and 7.269 gms. at 39.75°.

Aq. Salt Solution.	t°.	Gm. Mols. per Liter.		Grams p	er Liter.
Aq. Sait Solution.	ι.	Salt.	TISCN.	Salt.	TISCN.
Thallium Chloride TlCl	25	sat.	0.0107	sat.	2.805 (N.)
Thallium Bromate TlBrOs	39.75	0.01496	0.0221	4.966	5.703 (N.and A.)
Thallium Nitrate TINOs	25		0.00852		
49	25	0.0822	0.00406	21.88	1.064
Potassium Sulphocyanide, KSCN	25		0.0083		2.176 (N.)

THALLIUM CARBONATE T12CO3.

SOLUBILITY IN WATER. (Crookes; Lamy.)

 t° 15.5° 18° 62° 100° 100.8° Gms. Tl₂CO₃ per 100 gms. H₂O 4.2 (C.) 5.23 12.85 27.2 (C.) 22.4

THALLIUM (Per) CHLORATE TICIO.

100 grams H_2O dissolve 10 gms. TlClO₄ at 15°, and 166.6 gms. at 100°. (Roscoe – J. Chem. Soc. 19, 504, '66.)

THALLIUM SULPHITE Tl2SO3.

100 gms. H₂O dissolve 3.34 gms. Tl₂SO₃ at 15.5°.

(Seubert and Elken - Z. anorg. Chem. 2 434, '92.)

THALLIUM VANADATES.

SOLUBILITY IN WATER.

(Carnelly — J. Chem. Soc. [2] 11, 323, '73; Liebig's Ann. 116, 155, '60.)

Vanadate.	Formula.	Gms. Vanadate per 100 Gms. H2O.		
vanadate.	Pormula.	At 15°.	At 100°.	
Tl. meta Vanadate	TlVO ₃	0.087 (11°)	0.21	
" ortho Vanadate	Tl_3VO_3	I.0	I.74	
" pyro Vanadate	$\text{Tl}_4\text{V}_2\text{O}_7$	0.20 (14 ⁰)	0.26	
" Vanadate	$\mathrm{Tl_{12}V_8O_{26}}$	0.107	0.29	

THEOBROMINE C₅H₂(CH₃)₂N₄O₂.

100 gms. carbon tetra chloride dissolve 0.0212 gm. at b. pt. 100 gms. ether dissolve 0.032 gm. at b. pt.

(Göckel - Chem. Centralb. ii, 401, '97.)

80 cc. H₂O containing 14.8 gms. tri sodium phosphate dissolve 3.5 gms. theobromine at 15°.

(Brisse-Moret - J. pharm. chim. [6] 7, 176, '98.)

THORIUM SELENATE Th(SeO4)4.9H2O.

100 gms. H₂O dissolve 0.498 gm. Th(SeO₄)₄ at 0° and 1.972 gms. at 100°.

(Cleve - Bull. Soc. chim. [2] 43, 166, '85.)

THORIUM SULPHATE Th(SO₄)₂.

SOLUBILITY IN WATER.

(Roozeboom - Z. physic. Chem. 5, 201, '90; Demarcay - Compt. rend. 96, 1860, '83.)

t°.	Gms. Th(SO		Solid Phase.	t°.	Gms. Th(S	H ₂ O.	Solid Phase.
0	0.74 (R)	o.88(D)	Th(SO ₄) _{2.9} H ₂ O	0	1.5	o(R)	Th(SO ₄) ₂ .6H ₂ O
IO	0.98	I.02	44	15	1.6		46
20	1.38	1.25	44	30	2 · 4		44
30	1.995	1.85	**	45	3.8	5	"
40	2.998	2.83	66	60	6.6	4	46
50	5.22(51°)	4.86	44	17	9.4	ı (D)	Th(SO ₄) _{2.4} H ₂ O
55	6.76	6.5±	44	40	4.04(R)		
0	1.0		Th(SO ₄) ₂ .8H ₂	50	2.54	1.94 (55°)	44
15	1.38			60	1.63		
25	1.85		66	70	1.09	1.32 (75°)	44
44	3.71		68	95		0.71	*

TIN CHLORIDE (Stannous) SnCl2.

100 gms. H₂O dissolve 83.9 gms. SnCl₂ at o° and 269.8 gms. at 15°, Sp. Gr. of Solutions 1.532 and 1.827 respectively.

(Engel - Ann. chim. phys. [6] 17, 347, '89; Michel and Krafft - Ibid. [3] 41, 478,' 51.)

SOLUBILITY OF STANNOUS CHLORIDE IN AQUEOUS SOLUTIONS OF HYDROCHLORID ACID AT 0°.

		(Engel.)			
Milligram Mols. per 10 cc. Solution.		Sp. Gr.	Grams per 100 cc. Solution.		
HCl.	⅓SnCl₂.	Solution.	HCl.	SnCl ₂ .	
0	74.0	1.532	0.0	70.26	
6.6	66.7	1.489	2.405	63.33	
13.54	63.75	1.472	4.935	60.52	
24.8	68.4	1.524	9.04	64.95	
34.9	81.2	1.625	12.72	77.11	
40.0	94.2	1.724	14.58	89.45	
44.0	117.6	1.883	16.04	111.7	
49 - 4	147.6	2.114	18.01	138.6	
66.0	156.4	2.190	24.05	148.5	
78.0	157.0	2.100	28.43	140.0	

100 gms. acetone dissolve 55.6 gms. SnCl₂ at 18°.

(Naumann - Ber. 37, 4332, '04.)

100 gms. ether dissolve 11.4 gms. SnCl₂.2H₂O at 0°-35.5°.
100 gms. ethyl acetate dissolve 31.2 gms. SnCl₂.2H₂O at - 2°, 35.53 gms. at +22° and 73.44 gms. at 82°. (von Laszcynski – Ber. 27, 2285, '94.)

TIN HYDROXIDE Sn(OH)2.

SOLUBILITY IN AQUEOUS SODIUM HYDROXIDE SOLUTIONS. MOIST TIN HYDROXIDE USED, ORDINARY TEMPERATURE.

(Rubenbauer - Z. anorg. Chem. 30, 335, '02.)

Gms. per 20 cc. Solution.		Mol. Dilution of the	Gms. per Soluti	Mol. Dilution of the	
Na.	Sn.	NaOH.	Na.	Sn.	NaOH.
0.2480	0.1904	1.86	0.8326	0.5560	0.55
0.3680	0.2614	1.25	0.9661	0.7849	0.48
0.6394	0.4304	0.72	2.1234	1.8934	0.23

TIN IODIDE (Stannous) SnI2.

SOLUBILITY IN WATER AND IN AQUEOUS HYDRIODIC ACID. (Young — J. Am. Chem. Soc. 19, 851, '97.)

t°.	Gms. SnI ₂ per 100 Gms. Aqueous HI Solutions of:								
	$6\% = H_2O$.	5.83%.	9.60%.	15.2%.	20.44%.	24.8%.	30.4%.	36.82%.	
20	0.98	0.20	0.23	0.60	1.81	4.20	10.86	25.31	
30	1.16	0.23	0.23	0.64	1.81	4.06	10.28	23.46	
40	1.40	0.33	0.28	0.71	1.90	4.12	10.06	23.15	
50	1.69	0.46	0.38	0.82	2.12	4.34	10.35	23.76	
60	2.07	0.66	0.55	1.11	2.51	4.78	11.03	24.64	
70	2.48	0.91	0.80	1.37	2.92	5 · 43	11.97	25.72	
80	2.95	1.23	1.13	1.83	3.70	6.38	13.30	27.23	
90	3.46	1.65	1.52	2.40	4.58	7.82	15.52	29.84	
100	4.03	2.23	2.04	3.63	5.82	9.60	• • •	34.05	

TIN IODIDE (Stannic) SnI.

SOLUBILITY IN CARBON BISULPHIDE.

(Sneider - Pogg. Ann. 127, 624, '66; Arctowski - Z. anorg. Chem. 11, 274, '95.)

t°. -114°.5 -94° -89° -84° -58° ord. temp.

Gms. SnI₄ per
100 gms. Solution

9.41 10.65 9.68 10.22 16.27 59.2(S.)

100 gms. methylene iodide, CH₂I₂, dissolve 22.9 gms. SnI₄ at 10°. Sp. Gr. of Solution 3.481.

(Retgers - Z. anorg. Chem. 3, 343, '93.)

TIN SULPHATE (Stannous) SnSO4.

100 gms. H₂O dissolve 18.8 gms. SnSO₄ at 19° and 18.1 gms. at 100°. (Marignac.)

TOLUENE C.H.CH.

SOLUBILITY IN SULPHUR.

Figures read from curve, synthetic method used, see Note, page 9.

(Alexejew — Ann. Physik. Ch. 28, 305, '86.)

Gms. C ₆ H ₅ CH S Layer.	Toluene Layer.	t°.	S Layer.	Toluene Layer.
3	73	150	12.5	59
4	71	160	16	53
5	68	170	22	47
7	66	175	25	43
9.5	63	178 crit.	temp.	34
	S Layer. 3 4 5 7	Layer. Layer. 3 73 4 71 5 68 7 66	S Toluene Layer. 3 73 150 4 71 160 5 68 170 7 66 175	S Toluene Layer. S Layer. 3 73 150 12.5 4 71 160 16 5 68 170 22 7 66 175 25

TOLUIC ACIDS (Monomethyl Benzoic Acids) CH3. C6H4. COOH.

SOLUBILITY IN WATER AT 25°. (Paul — Z. physik. Chem. 14, 111, '94.)

	CH ₃ .C ₆ H ₄ .COOH pe	er Liter Solution.
Acid.	Grams.	Millimols.
Meta Toluic Acid	0.9801	7.207
Ortho Toluic Acid	1.1816	8.683
Para Toluic Acid	0.3454	2.540

TOLUIDINE C.H.CH.NH2.

SOLUBILITY IN WATER.

(Vaubel - J. pr. Chem. [2] 52, 72, '95; Lowenherz - Z. physik. Chem. 25, 410, '98.)

t°.	Gms. C ₆ H ₄ CH ₃ .NH ₂ per 1000 Gms. H ₂ O.	Solid Phase.	t°.	Gms. C ₆ H ₄ CH ₃ NH ₂ per 1000 Gms. H ₂ O.	Solid Phase.
20	16.26	Liquid ortho T.	20.8	7 · 39	Para T.
20	0.15	Ortho T.	26.7	9.50	46
20	6.54	Para T.	31.7	11.42	44

SOLUBILITY OF PARA TOLUIDINE IN ETHYL ALCOHOL.

(Interpolated from original results of Speyers - Am. J. Sci. [4] 14, 295, '02.)

t°.	Wt. of 1 cc. Solution.	Mols. per 100 Mols. C ₂ H ₅ OH.	Gms. per 100 Gms. C ₂ H ₅ OH.	t°.	Wt. of 1 cc. Solution.	Mols. per 100 Mols. C ₂ H ₅ OH.	Gms. per 100 Gms. C ₂ H ₅ OH.
0	0.8885	20.72	48.1	20	0.9265	47.0	110.0
5	0.8982	26.0	60.0	25	0.9360	56.0	132.0
IO	0.9080	32.0	74.0	30	0.9460	66.0	156.0
15	0.9180	38.6	90.0				

Distribution of para Toluidine between water and carbon tetra chloride. (Vaubel – J. pr. Chem. [2] 67, 478, '03.)

Gms. p Toluidin Used.	Volumes of Solvents.	Gms. CoH4(CH3)NH2 p in:			
Used.	volumes of Solvents.	H ₂ O Layer.	CCl, Layer.		
1.0	200 cc. H ₂ O + 100 cc. CCl ₄	0.1406	0.8594		
1.0	200 cc. H ₂ O+200 cc. CCl ₄	0.0666	0.9334		

URANYL CHLORIDE UO2Cl2.3H2O.

100 gms. H₂O dissolve 320 gms. UO₂Cl₂ at 18°.

(Mylius and Dietz - Ber. 34, 2774, 'o1.)

URANYL DOUBLE CHLORIDES.

SOLUBILITY OF URANYL AMMONIUM CHLORIDE, U. TETRA METHYL AMMONIUM CHLORIDE, U. TETRA ETHYL AMMONIUM CHLORIDE, U. CAESIUM CHLORIDE, U. RUBIDIUM CHLORIDE, AND U. POTASSIUM CHLORIDE IN WATER.

(Rimbach - Ber. 37, 463, '04.)

Formula of Double Salt.	t°.	Gms. per 100 Gms. Sat. Solution.	Atomic Relation in Sol. Solid Phase.
UO2Cl2.2NH4Cl.2H3O UO2Cl2.2N(CH3)4Cl UO2Cl2.2N(C2H5)4Cl UO2Cl2.2CsCl UO2Cl2.2CsCl UO2Cl2.2RbCl.2H2O " " " " " " " " " "	29.8 80.7 27.1 80.7 29.75 24.8 80.3 14.9 17.5 25.0 41.5 50 71.5 78.5	$\begin{array}{llllllllllllllllllllllllllllllllllll$	IUO2: 1.59NH4: 3.59CI

^{*} $UO_2Cl_2.2N(CH_3)_4Cl$, † $UO_2Cl_2.N(C_2H_5)_4Cl$, ‡ $UO_2Cl_2.2CsCl$, \$ = 57.9 gms. $UO_2Cl_2.2RbCl_2$, | = 65.8 gms. $UO_2Cl_2.2RbCl_3$.

URANYL SODIUM CHROMATE 2(UO2)CrO4.Na2CrO4.10H2O.

100 gms. sat. aqueous solution contains 52.52 gms. (2UO2).CrO4. Na, CrO, at 20°. (Rimbach.)

URANYL POTASSIUM BUTYRATE UO2(C4H2O2)2.KC4H2O2.

The double salt is decomposed by water at ordinary temperatures and the solution gets richer in uranyl butyrate. The solubility at 29.4° in water containing KC₄H₇O₂ is 2.10 gms. UO₂(C₄H₇O₂) + 0.38 gms. KC4H7O2 per 100 gms. solution. The atomic relation being 1:0.64. (Rimbach.)

URANYL NITRATE UO2(NO3)2.6H,O.

SOLUBILITY IN WATER, ETC. (Bucholz; de Coninck -- Compt. rend. 130, 1304, '00.)

100 gms. cold water dissolve 200 gms. UO₂(NO₃)₂.6H₂O. 100 gms. abs. alcohol dissolve 333 gms. UO2(NO3)2.6H2O. 100 gms. 85% alcohol dissolve 3.3 gms. $UO_2(NO_3)_2$.6 H_2O at 12° (de C.) 100 gms. ether dissolve 25 gms. $UO_2(NO_3)_2$.6 H_2O .

100 gms. abs. acetone dissolve 1.5 gms. UO₂(NO₃)₂.6H₂O at 12° (de C.)

For densities of Uranium nitrate solutions in water and other solvents see de Coninck - Compt. rend. 131, 1219, 'co.)

URANYL DOUBLE NITRATES.

SOLUBILITY OF URANYL AMMONIUM NITRATE, U. CAESIUM NITRATE, U. POTASSIUM NITRATE, AND U. RUBIDIUM NITRATE IN WATER. (Rimbach.)

Formula of Salt.	t°.	Gms. per 100 Gms. Sat. Solution. UO2. Total Salt.		Relation lution.
UO2(NO3)2.NH4NO	0.5	29.71 + 2.92NH ₄ =	1UO2: 1.47NF	[4: 3.47NO2
a	24.9	36.46 + 3.54 " = 68.95	":1.46 "	: 3.46 "
44	59.0	44.37 + 2.90 " =	":0.98"	: 2.98 "
"	80.7	44.95 + 2.98 " = 78.95	" :1.00 "	: 3.00 "
$UO_2(NO_3)_2$.CsNO,	16.0	31.39 + 6.59 Cs = 55.4	": 0.44 Cs	
$UO_2(NO_3)_2.KNO_3$	0.5	$31.98 + 1.72 \text{ K} = \dots$		03:0.37 K
**	13.0	33.40 + 2.72 " =	" : 2.57 "	:0.57 "
"	25.0	37.07 + 4.01 " *= 64.82	":1.60 "	
"	45.0	42.18 + 5.16 " =	" :2.84 "	:0.84 "
66	59.0	$41.65 + 6.03 " = \dots$	":3.00 "	:1.00 "
46	80.6	43.71 + 6.38 " =	" :3.01 "	: 1.01 "
$UO_2.(NO_3)_2.RbNO$	3 25.0	35.41 + 4.65Rb = 59.60	" : 1.40 "	:0.45Rb
"	80.0	34.66 +11.01 " = 69.49	":3.00"	:1.01 "
*	+ 23.51	NO ₂ , † +	10.74NO3.	

URANYL AMMONIUM PROPIONATE 2UO2(C3H5O2)2.NH4C3H5O2. 2H₂O and Uranyl Potassium Propionate 2UO₂(C₃H₅O₂)₂.KC₃H₅O₂.

100 gms. aq. solution contain 16.48 gms. 2UO2(C3H5O2)2.NH4C3H5O2 at 20.8°.

10: gms. aq. solution contain 2.362 gms. UO₂(C₃H₅O₂)₂ + 0.82 gm. KC₃H₅O₂ at 29.4°, atomic relation, 1:1.29.

URANYL SULPHATE (UO)2SO4.3H2O.

SOLUBILITY IN WATER, ETC. (Bucholz; de Coninck — Bull. Acad. Roy. Belgique, 350, 'o1.)

100 gms. H_2O dissolve 16.6 gms. $UO_2(SO_4).3H_2O$ at 13.2°, 17.4 gms. at 15.5°, and 22.2 gms. at b. pt.

100 gms. abs. alcohol dissolve 4.0 gms. UO2(SO4).3H2O at 18.2°

and 5.0 gms. at b. pt.

100 gms. 85% alcohol dissolve 2.6 gms. $UO_2(SO_4).3H_2O$ at 16°. 100 gms. 16.2% alcohol dissolve 12.3 gms. $UO_2(SO_4).3H_2O$ at 10°.

URANYL POTASSIUM SULPHATE UO2SO4.K2SO4.2H2O

roo gms. sat. aq. solution contain 10.41 gms. UO₂SO₄. K₂SO₄ at 25° and 23.13 gms. at 70.5°. (Rimbach.)

SOLUBILITY OF UO2SO4.2K2SO4.2H2O+UO2SO4.K2SO4.2H2O IN WATER.

Gms. pe	er 100 Gms. S	olution.	Atomic Relation	in Sol.	Mol. % in So	lid Phase.
$\overline{\mathrm{UO_{2}}}.$	K.	SO ₄ .	UO2. K.	SO ₄ .	Mono Salt.	Di Salt.
0.85	4.19	5.71	I: 35.75:	18.88	29	71
6.70	8.15	12.37	1 : 5.20 :	8.40	76	24
14.29	8.54	15.53	1: 4.13:	3.06	12	88
	0.85 6.70	UO ₂ . K. 0.85 4.19	0.85 4.19 5.71 6.70 8.15 12.37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UO2. K. SO4. UO2. K. SO4. 0.85 4.19 5.71 1:35.75:18.88 6.70 8.15 12.37 1:5.20:8.40	UO2. K. SO4. UO2. K. SO4. Mono Salt. 0.85 4.19 5.71 1:35.75:18.88 29 6.70 8.15 12.37 1:5.20:8.40 76

UREA CO(NH2)2.

SOLUBILITY IN WATER AND IN ALCOHOLS.

(Campetti - Abstract, Z. physic. Chem. 41, 109, '02; Speyers - Am. J. Sci. [4] 14, 259, '02.)

Note. — Speyer's original results are in terms of Mols. $CO(NH_2)_2$ per 100 Mols. H_2O at irregular temperatures.

In Water. In Methyl Alcohol. In Ethyl Alcohol. Gms. Gms. CO(NH₂)₂ per 100 Gms. H₂O. Wt. of 1 cc. CO(NH₂)₂ Wt. of 1 cc. CO(NH₂)₂ Wt. of 1 cc. to. Solution. per 100 Gms. Solution. per 100 Gms Solution. CH₃OH. .C2H5OH. 0.861 0.8213 2.5 1.121 13.8 0 55.9 66.0 85.0 (C) 0.863 16.0 0.814 3.5 10 1.134 0.860 0.800 108.2 (C) 20.0 5.0 1.146 79.0 20 0.876 0.806 6.5 30 1.156 93.0 24.0 0.804 8.5 106.0 0.890 30.0 40 1.165 0.908 0.803 37.0 10.5 1.173 120.0 50 1.180 `0.928 47.0 13.0 60 132.0 1.187 17.5 70 145.0

100 gms. abs. methyl alcohol dissolve 21.8 gms. CO(NH₂)₂ at 19.5°. 100 gms. abs. ethyl alcohol dissolve 5.06 gms. CO(NH₂)₂ at 19.5°. (de Bruyn — Z. physic. Chem. 10, 784, '92.) 100 gms. glycerine dissolve 50 gms. urea at 15.5°.

Phenyl Thio UREA (Phenyl thio carbamide) CS.NH2.NHC6H6.

SOLUBILITY IN WATER.

(Rothmund — Z. physic. Ch. 33, 406, '00; Biltz — *Ibid.* 43, 42, '03; Holeman and Antusch — Rec. trav. chim. 13, 290, '94; Bogdan — Ann. Scien. L'Univ. Jassy 2, 43, '02. '03.)

One liter aq. solution contains 2.12 gms. $CS(NH_2).NHC_0H_5$ at 20° (B.), (R.) and 2.4 gms. at 25°. (H. and A.). Bogdan gives 2.547 gms at 25°.

SOLUBILITY OF PHENYL THIO UREA IN AQUEOUS SALT SOLUTIONS AT 20°.

(Biltz; Rothmund.)

Millimols and also Gms. CS(NH₂)NHC₆H₅ Dissolved per Liter of Aqueous Salt Solution of Concentration:

Salt Solution.	0.125 N Millimols.	ormal Gms.	0.25 Nor Millimols.	mal Gms.	o.5 No Millimols.	Gms.	1.0 Nor Millimols.	rmal Gms.
AlCl ₃	12.95	1.97	12.82	1.96	12.03	1.83	10.69	1.61
NH ₄ NO ₃	14.17	2.15	14.4	2.21	14.53	2.22	14.91	2.27
$\frac{1}{2}(NH_4)_2SO_4$	13.51	2.05	12.84	1.96	11.78	1.79	9.98	1.52
½BaCl₂	13.12	1.99	12.92	1.97	12.22	1.86	10.44	1.59
$\frac{1}{2}$ Ba $(NO_3)_2$	13.98	2.13	13.98	2.13	13.90	2.12		
CsNO ₃	14.53	2.21	14.90	2.27	15.23	2.33		
LiNO ₃	13.96	2.13	13.96	2.13	13.93	2.12	13.73	2.10
½MgSO ₄	13.40	2.04	12.78	1.95	11.54	1.75	9.43	1.43
$KC_2H_3O_2$	13.40	2.04	12.95	1.97	12.14	1.85	10.74	1.62
KBr	13.50	2.05	13.35	2.04	12.80	1.95	11.76	1.79
KClO ₃	13.86	2.11	13.60	2.06	13.12	1.99		
KCl	13.40	2.04	12.73	1.94	12.19	1.85	10.54	1.60
Kl	14.12	2.15	14.48	2.21	14.31	2.18	14.60	2.23
KNO ₃	13.89	2.12	13.85	2.11	13.52	2.05	12.82	1.96
KNO ₂	14.52	2.2I	14.65	2.23	13.80	2.11	12.51	1.92
½K ₂ SO ₄	13.25	2.03	12.49	1.91	II.II	1.69	8.73	1.33
RbNO ₃	14.22	2.16	14.44	2.19	14.39	2.18	14.22	2.17
$\frac{1}{2}$ Na ₂ CO ₃	13.29	2.04	12.52	1.91	11.05	1.68	8.58	1.32
NaClO ₃	13.75	2.09	13.65	2.08	13.07	1.98	12.21	1.86
NaClO ₄	14.15	2.15	14.05	2.14	13.58	2.06	12.56	1.92
NaCl	13.28	2.02	12.83	1.95	11.90	1.81	10.02	1.52
NaI	13.98	2.13	14.07	2.14	14.29	2.18	13.96	2.13
NaNO ₃	13.94	2.12	13.77	2.10	13.32	2.04	12.57	1.92
NaNO ₂	14.34	2.18	13.82	2.11	13.06	1.98	11.52	1.75
½Na₂SÕ₄	13.19	2.00	12.35	1.87	10.85	1.63	8.30	1.27

Solubility of Phenyl Thio Urea at 25° in Aqueous Solutions of.

Potassium Nitrate.

Sodium Nitrate.

	(Bogdan.)		(Bogdan.)			
Gms. Mols. KNO ₃ per 1000 Gms. H ₂ O.	Gms. 1000 Gm KNO ₃ .	S. H ₂ O. CS(NH ₂)	Gms. Mols. NaNO ₃ per 1000 Gms. H ₂ O.		CS(NH ₂) .NHC ₆ H ₅ .	
1.045	105.7	.NHC ₆ H ₅ . 2 ⋅ 38	1.024	87.14	2.26	
0.5123	51.84	2.48	0.5065	43.10 17.28	2.51	
0.1007	5.09	2.56 2.55	o.0986 o.0540	8.39 4.59	2·53 2·54	
0.0333	3.36	2.55	0.0335	2.84	2.54	

Solubility of Phenyl Thio Urea in Mixtures of Ethyl Alcohol and Water at 25°.

(Holleman and Antusch - Rec. trav. chim. 13, 290, '94.)

Vol. per cent Alcohol.	Gms. CS(NH ₂) NHC ₆ H ₅ per 100 Gms. Solvent.	Sp. Gr. of Solutions.	Vol. per cent Alcohol.	Gms. CS(NH ₂) NHC ₆ H ₅ per 100 Gms. Solvent.	Sp. Gr. of Solutions.
100	3.59		65	3.40	0.9018
95	4.44	0.8200	60	2.80	0.9128
90	4.69	0.8389	50	1.87	0.9317
85	4.99	0.8544	40	1.13	0.9486
80	4.70	0.8679	25	0.56	0.9679
75	4 · 45	0.8810	15	0.38	0.9788
70	3.92	0.8915	0	0.24	0.9979

SOLUBILITY OF PHENYL THIO UREA IN AQUEOUS SOLUTIONS OF PROPYL AND OF ETHYL ALCOHOL AT 25°.

(Bagdan.)

In Propyl Alcohol.

6.01

0.100

In Ethyl Alcohol.

	10			•	
G. Mols. C ₃ H ₇ OH per 1000 Gms. H ₂ O.	Gms. per 100	CS(NH ₂) NHC ₆ H ₅ .	$G. Mols.$ $C_2H_5OH per$ 1000 Gms. $H_2O.$	Gms. per 100 C ₂ H ₅ OH.	CS(NH ₂) NHC ₆ H ₅ .
1.035	62.10	3 - 587	1.1010	49.60	3.193
0.5448	32.688	3.124	0.5355	24.12	2.931
0.1059	6.354	2 . 643	0.1094	4.932	2.629
0.05526	3.316	2.599	0.05018	2.26	2.589
0.04854	2.912	2.586	0.03271	1.473	2.577
In Prop	yl Alcohol	at o°.			
I.000	60.06	I.2I			

SOLUBILITY OF PHENYL THIO UREA IN AQUEOUS SOLUTIONS OF ACETONE, MANNITE, CANE SUGAR, DEXTROSE, AND UREA.
(Bagdan.)

I.047

Aqueous Non Electro-	t°.	Gms. per 1000 Gms.		Aqueous Non Electro-	t°.	Gms. per 1000 Gms. H ₂ O.	
lyte.	U	Non Elec- trolyte.	CS(NH ₂) NH.C ₆ H ₅ .	lyte.	t.	Non Elec- trolyte.	CS(NH ₂) NHC ₆ H ₅ .
$(CH_3)_2CO$	25	7.478	2.667	$C_6H_{12}O_6$	25	180.40	3.042
"	"	2.513	2.579	66	"	90.46	2.83
"	"	1.908	2.573	"	"	29.29	2.69
$C_6H_8(OH)_6$	"	182.11	3.04	"	66	18.01	2.654
66	"	91.05	2.78	"	66	9.554	2.603
$C_{12}H_{22}O_{11}$	25	338.6	3 · 457	$CO(NH_2)_2$	66	63.08	3.306
- 77	66	170.4	3.015	"	66	29.93	2.892
"	66	34.36	2.634	"	66	6.132	2.618
"	66	18.28	2.596	"	66	4.942	2.605
"	66	10.09	2.572	66	66	2.009	2.572
66	0	342.18	I .420	"	0	60.11	1.310
66	66	34.22	1.044	66	66	6.01	1.048

URETHANE CO(NH2)OC2H5. SOLUBILITY IN SEVERAL SOLVENTS. (Speyers - Am. J. Sci. [4] 14, 294, '02.) See also Ethyl Carbamate, p. 138.

Interpolated and calculated from the original results which are given in terms of molecules Urethane per 100 Mols. solvent.

	Solub	Se	olubility	in Methy	l Alcohol.		
t°.	Wt. of I cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. H ₂ O.	Gms CO(NH ₂) OC ₂ H ₅ per 100 Gms. H ₂ O.		Wt. of r cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. CH ₃ OH.	Cms. CO(NH ₂) OC ₂ H ₅ per 100 Gms. CH ₃ OH.
0	1.023	3.61	17.8	C	.956	31.18	86.76
10	1.033	6.0	29.7	c	.977	41.0	114.1
15	1.042	15.0	74.2	С	.989	47 - 5	132.1
20	1.060	31.0	153.3	I	.000	54.5	151.7
25	1.073	50.0	247 · 3	I	.013	62.5	173.9
30	1.078	65.0	321.4	I	.024	72.0	200.3
40	1.065	77.0	380.7	1	.045	89.0	247 . 7
	Solubility	y in Ethyl	Alcohol.	So	lubility	in Propyl	Alcohol.
ŧ°.	Wt. of 1 cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. C ₂ H ₅ OH.	Gms. CO(NH ₂) OC ₂ H ₅ per 100 Gms. C ₂ H ₅ OH.		Wt. of 1 cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. C ₃ H ₇ OH.	Gms. CO(NH ₂) OC ₂ H ₅ per 100 Gms. C ₂ H ₇ OH.
0	0.8914	23.91	46.26	С	.880	19.48	28.9
10	0.930	36.0	69.6	С	.906	31.0	46.ó
15	0.950	43.0	89.2		.923	40.0	59.3
20	0.968	50.0	96.7		.942	51.0	75.7
25	0.985	59.0	114.1	c	.963	60.0	89.0
30	I.001	70.0	135.4	c	.983	68.0	100.9
40	1.035	88.0	170.2	1	.025	85.0	126.1
	Solubili	ty in Chlo	roform.	Solubility in Toluene.			
t°	Wt. of i cc. Solu- tion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. CHCl ₃ .	Gms. CO(NH ₂) OC ₂ H ₅ per 100 Gms. CHCl ₃ .	ţ	/t. of r cc. Solu- ion.	Mols. CO(NH ₂) OC ₂ H ₅ per 100 Mols. C ₆ H ₅ CH ₃ .	Gms. CO(NH ₂) OC ₂ H per 100 Gms. C ₆ H ₅ CH ₃
0	1.404	27.56	20.6		.887	I.77	1.71
10	1.340	41	30.6		.874	5.0	4.84
15	1.310	46	34 · 4		.875	10.0	9.68
20	1.280	53	39.6	C	.883	16.0	15.48
25	1.240	60	44.8	C	.902	25.0	24.18
30	1.203	67	50.0	C	.927	44.0	42.58
40	1.125	80	59 · 7	C	.995	85.0	82.24

URIC ACID C5H4N4O3. SOLUBILITY IN WATER. (Blarez and Deniges — Compt. rend. 104, 1847, '87; at 15° Magnier — Bull. Soc. chim. [2] 23, 483, '75.)

Gms. C₅H₄N₄O₃ per 100 Gms. H₂O. Gms. C5H4N4O3. Gms. C₅H₄N₄O₃ t°. to. per 100 Gms. H₂O. per 100 Gms. H₂O. 0.0088 70 0.0305 0 0.002 30 80 0.0390 IO 40 0.0122 0.0037 0.0498 0.0170 90 0.0053 50 15 0.0625 60 100 20 0.006 0.0230

VALERIANIC ACID n CH_s(CH₂)₃COOH (n Propyl acetic acid — Pentane acid) when shaken with water at 16° two layers are formed.

100 gms. of the aqueous layer contains 3.4 gms. $CH_3(CH_2)_3COOH$. 100 gms. of the acid layer contains 90.4 gms. $CH_3(CH_2)_3COOH$.

(Lieben and Rossi - Liebig's Ann. 159, 60, '71.)

YTTRIUM IODATE Y(IO3)2.3H2O.

100 gms. H₂O dissolve 0.53 gm. yttrium iodate.

(Berlin.)

YTTRIUM SULPHATE Y2(SO4)3.

100 gms. H_2O dissolve 15.2 gms. $Y_2(SO_4)_3$ at ord. temperature, 9.3 gms. $Y_2(SO_4)_3.8H_2O$ at ord. temp. and 4.8 gms. $Y_2(SO_4)_3.8HO_2$ at 100°. (Cleve — Bull. soc. chim. [2] 21, 344, '74.)

YTTERBIUM SULPHATE Yb₂(SO₄)₃.8H₂O.

SOLUBILITY IN WATER.

(Cleve - Z. anorg. Chem. 32, 143, '02.)

t°.	Gms. $Yb_2(SO_4)_3$ per 100 gms. H_2O .	t°.	Gms. $Yb_2(SO_4)_3$ per 100 Gms. H_2O .	t°.	Gms. Yb ₂ (SO ₄) ₃ per 100 Gms. H ₂ O.
0	44.2	55	11.5	80	6.92
15.5	34.6	60	10.4	90	5.83
35	19.1	70	7.22	100	4.67

ZINC ACETATE Zn(CH₃COO)₂.2H₂O.

100 gms. $\rm H_2O$ dissolve 40 gms. at $\rm ^25^{\circ}$ and 66.6 gms. at b. pt. 100 gms. alcohol dissolve 2.8 gms. at $\rm ^25^{\circ}$ and 166.0 gms. at b.pt. (U.S. P.)

ZINO BENZOATE Zn(C,H,O,)2.

SOLUBILITY IN WATER.

(Paietta - Gazz. chim. ital. 36, II, 67, '06.)

t°. 15.9° 17° 27.8° 31.3° 37.5° 49.8° 59° Gms. $Zn(C_7H_5O_2)_2$ per

100 gms. aq. solution

tion 2.55 2.49 2.41 2.05 1.87 1.62 1.45

ZINC BROMIDE ZnBr₂.

SOLUBILITY IN WATER.

(Dietz - Wiss. Abh. p. t. Reizhanstalt 3, 431, '00; see also Etard - Ann. chim. phys. [7] 2, 536, '94.)

t°.	Gms. ZnBr ₂ per 100 Gms. Solution.		Solid Phase.	t°.	Gms. ZnBr ₂ per 100 Gms. Solution.	Mols. ZnBr ₂ per 100 Mols.H ₂ O.	Solid Phase.
-15	77.13	27.0	$ZnBr_2.3H_2O$	25	82.46	37.6	$ZnBr_{2}2H_2O$
-10	78.45	29.I	44	30	84.08	42.3	46
- 5	80.64	33.3	4.6	37	86.20	50.0	**
- 8	79.06	30.2	ZnBr ₂ .2H ₂ O	35	85.45	46.9	ZnBr ₂
0	79.55	31.1	46	40	85.53	47 . 4	. 46
+13	80.76	33.5	44	60	86.08	49.5	44
18	81.46	35.1	46	80	86.57	51.5	44
				100	87.05	53.8	44

ZINC CARBONATE ZnCO.

One liter H2O dissolves o.o1 gm. at 15°.

One liter aq. 5.85 per cent NaCl solution dissolves 0.0586 gm. at 14°.

One liter aq. 7.45 per cent NaCl solutions dissolves 0.0477 gm. at 14°. (Cantoni and Passamanik — Ann. chim. anal. appl. 10, 258, '05.)

ZINC CHLORATE ZnClO3.

SOLUBILITY IN WATER.

(Meusser - Ber. 35, 1417, '02; at 18°; Mylius and Funk - Ber. 30, 1718, '97.)

t°.	Gms. Zn(ClO ₃) ₂ per 100 gms. Solution.	Mols. Zn(ClO ₃) ₂ per 100 Mols. H ₂ O	Phase.	t°.	Gms. Zn(ClO ₃) ₂ per 100 Gms. Solution.	Mols. $Zn(ClO_3)_2$ per 100 Mols. H_2O .	Solid Phase.
-18	55.62	9.70	$Zn(ClO_3)_2.6H_2O$	30	76.66	16.20	Zn(ClO ₃) _{2.4} H ₂ O
C	59.19	11.08	. "	40	69.06	17.29	44
8	60.20	11.72	44	55	75.44	24.00	46
15	67.32	15.96	44		Ice curve		
18	66.52	15.39	$\rm Zn(ClO_3)_24H_2O$	-13	30.27	3.36	Ice
				- 9	26.54	2.80	66
				- 9	20.54	2.00	

Sp. Gr. of solution saturated at $18^{\circ} = 1.916$.

ZINC CHLORIDE ZnCl2.

SOLUBILITY IN WATER.

(Mylius and Dietz — Z. anorg. Chem. 44, 217, '05; see also Dietz — Wiss. Abh. p. t. Reichanstalt 3, 429, '00; Etard — Ann. chim. phys. [7] 2, 536, '94.)

t°.	Gms.ZnCl	2 per 100 Gr		±°.	Gms.ZnC		
· ·	Water.	Solution.	Phase.		Water.	Solution.	Phase.
- 5	14	12.3	Ice	9	360	78.3	$.2\frac{1}{2}H_{2}O + .H_{2}O$
-10	25	20.0	44 -	6	385	79 · 4	$ZnCl_{2.2}\frac{1}{2}H_2O$
-40	83	45.3	"	6	298	74.9	$ZnCl_2.1\frac{1}{2}H_2O$
-62	104	51.0	Ice + ZnCl _{2.4} H ₂ O	IO	330	76.8	46
√-50	113	53.0	ZnCl _{2.4} H ₂ O	20	368	78.6	46
-40	127	55.9	44	26	423	80.9	$.1\frac{1}{2}H_2O + ZnCl_2.H_2O$
-30	160	61.5	$.4H_2O + .3H_2O$	26.	3 433	81.2	$.1\frac{1}{2}H_2O + ZnCl_2$
-10	189	65.4	ZnCl2.3H2O	~0	342	$77 \cdot 4$	ZnCl ₂ .H ₂ O
0	208	67.5	44	IO	364	78.4	44
+ 5	230	69.7	44	20	396	79.8	"
6.		4 71.6	44	28	436	81.3	$ZnCl_2.H_2O + ZnCl_2$
5	282	73.8	44	31	477	82.7	ZnCl ₂ .H ₂ O
0	309	75 · 5	$_{3}H_{2}O + _{1}\frac{1}{2}H_{2}O$	25	432	81.2	ZnCl ₂
0	235	70 · I	ZnCl _{2.2} H ₂ O	40	452	81.9	44
6.		71.6	$.2\frac{1}{2}H_2O + .3H_2O$	60	488	83.0	44
10	272	73.I	ZnCl ₂₋₂ H ₂ O	80	543	84.4	66
12.	•	75.2	"	100	615	86.0	66
11.		77.0	$_{.2\frac{1}{2}\mathrm{H}_2\mathrm{O}}+{1\frac{1}{2}\mathrm{H}_2\mathrm{O}}$	262	∞	100.0	44

ZINC CYANIDE Zn(CN)2.

100 cc. concentrated Zn(C₂H₃O₂)₂ + Aq. dissolve 0.4 gm. Zn(CN)₂. 100 cc. concentrated ZnSO₄ + Aq. dissolves 0.2 gm. (Joannis.)

SOLUBILITY OF ZINC CHLORIDE, AMMONIUM CHLORIDE MIXTURES IN WATER. (Meerburg — Z. anorg. Chem. 37, 212, '03.)

Isotherm for o°. Isotherm for 20°. Isotherm for 30°. Gms. per 100 Gms. Solution. Gms. per 100 Gms. Solution. Gms. per 100 Gms. Solution. Solid Solid Solid Phase. Phase. Phase. ZnCl₂. NH4CI ZnCl₂. NH₄Cl. ZnCl₂. NH.Cl. 22.8 26.9 0 NH₄Cl 0.0 NH₄Cl 0.0 29.5 NH₄Cl 66 66 3.523.0 5.1 27.I 9.2 29.4 7 . I 16.0 66 23.5 9.5 27.4 29.7 66 66 10.2 20.2 23.9 12.7 27.5 30.1 15.1 24.7 44 15.7 27.7 24.7 64 30.4 18.0 25.3 66 18.0 27.9 26.3 30.8 NH4CI+a 26.0 66 22.4 23.5 20.0 27.2 30.2 a 24.2 26.1 44 26.0 29.5 NH₄Cl+a 30.I 20.6 6.6 25.7 26.3 28.1 36.8 28.2 NH4Cl+a 29.5 a 6.6 27.5 26.4 32.3 27.7 42.4 27.3 44 a 35.8 43.8 30.7 25.7 44 27.0 27.3 a + b33.9 38.7 26.9 25.3 45.0 24.4 b 38.8 26.6 17.6 24.4 40.2 51.2 44 42.6 24.6 41.9 26.3 66 61.9 a + b10.4 66 43.2 26.0 66.g $44 \cdot 3$ 21.3 ь a + b9.2 ZnCl2+b 44 46.9 6.1 49.2 15.3 21.0 75.6 ь ZnCl₂ 52.6 II.Q 53.2 14.5 7.6 70.3 44 78.5 58.4 66 55.410.0 II.I 66 3.2 66 62.7 8.7 $7 \cdot 5$ 76.9 59.3 66 66 3.564 6.8 66.6 62.1 44 7.9 79.8 1.6 66 60 81.6 0.0 64 $a = \text{ZnCl}_{2.3}\text{NHCl}_{3.}$. $b = \text{ZnCl}_{2.2}\text{NH}_{4}\text{Cl}$.

100 gms. abs. acetone dissolve 43.5 gms. ZnCl₂ at 18°.

(Naumann — Ber. 37, 4332, '04.)

100 gms. glycerine dissolve 50 gms. ZnCl₂ at 15.5°.

ZINC FLUORIDE ZnF2.4H2O.

One liter of water dissolves 16 gms. at 18°.

(Dietz.)

ZINC HYDROXIDE Zn(OH).

One liter of water dissolves 0.0042 gm. ZnO at 18°, conductivity method.

(Dupre and Bratas – Z. angew. Chem. 16, 55, '03.)

SOLUBILITY OF ZINC HYDROXIDE IN ONE PER CENT AQUEOUS SALT SOLUTIONS AT 16°-20°.

(Snyder — Ber. 11, 936, '78.)

The CO₂ free Zn(OH)₂ dissolved is calculated as milligrams Zn per liter of the given salt solution. Additional determinations are also given.

Aq. Salt Solution.	Mgs. Zn per Liter Solution.	Aq. Salt Solution.	Mgs. Zn per Liter Solution.	Aq. Salt Solution.	Mgs. Zn per Liter Solution.
NaCl	51	K ₂ SO ₄	37.5	K_2CO_3	0
KCl	43	MgSO ₄	27	NH ₄ Cľ	95
CaCl ₂	57 · 5	KNO ₃	17.5	NHANO,	77
MgCl ₂		Ba(NO ₃)	25	$(NH_4)_2SC$	88
BaCl.	38				-

Solubility of Zinc Hydroxide in Aqueous Solutions of:

Ammonia and		Bases		Sodium Hydroxide at			
at 17°			Ord. Temp.				
(Herz — Z. anorg.	Chem. 30, 28	1, '02.)	(Rubenbaue	er — <i>Ibid</i> . 30,	333, '02.)		
Normality of	Normality of Dis-	Gms. ZnO	Gms. per 20	cc. Solution	Mol. Dilution of		
the Base.	solved Zn.	Solution.	Na.	Zn.	the NaOH.		
0.0942NH ₃	0.0011	0.00185	0.1012	0.0040	4.50		
0.236 "	0.0110	0.0180	0.1978	0.0150	2.33		
0.707 "	0.059	0.0958	0.4278	0.0442	1.06		
$0.0944NH_2CH_3$	0.0005	8000.0	0.6670	0.1771	0.70		
0.472 "	0.0081	0.0132	0.9660	0.9630	0.48		
0.944 "	0.03	0.0484	1.4951	0.2481	0.31		
$0.068 \text{ NH}_2\text{C}_2\text{H}_5$	0.0003	0.0005	2.9901	0.3700	0.16		
0.51	0.0045	0.0074	Moist Zn	(OH), us	ed. So-		
0.68 "	0.0098	0.0161	lutions	shaken 5	hours.		

ZINC IODATE Zn(IO3)2.

roo gms. H₂O dissolve 0.87 gm. Zn(IO₃)₂ cold and 1.31 gms. hot. (Rammelsberg — Pogg. Ann. 43, 665, '38.)

ZINC IODIDE ZnI2.

SOLUBILITY IN WATER.

(Dietz - Wiss. Abh. p. t. Reichanstalt 3, 432, '00; see also Etard - Ann. chim. phys. [7] 2, 526, '94.)

t°.	Gms. ZnI ₂ per 100 Gms Solution.	Mols. ZnI ₂ per 100 Mols. H ₂ C	Solid Phase.	t°.	of Gms. ZnI ₂ per 100 Gms. Solution.	Mols. ZnI ₂ per 100 Mols H ₂ O.	. Solid Phase.
-10	80.50	23.3	$ZnI_{2.2}H_2O$	0	81.11	24.2	ZnI_2
– 5	80.77	23.7	46	18	81.20	24.4	66
o	81.16	24.3	46	40	81.66	25.1	66
+10	82.06	25.8	66	60	82.37	26.4	44
22	83.12	27.8	44	80	83.05	27.5	66
27	89.52	50.3	46	100	83.62	28.7	66

Sp. Gr. of sat. solution of the anhydrous salt at $18^{\circ} = 2.725$. 100 gms. glycerine dissolve 40 gms. ZnI_2 at 15.5° .

ZINC NITRATE Zn(NO3)2.

SOLUBILITY IN WATER.

(Funk - Wiss. Abh. p. t. Reichanstalt, 3, 438, 'oo.)

t°.	Gms. Zn(NO ₃) ₂ per 100 Gms. Solution.	Mols. ZnNO ₃ per 100 Mols. H ₂ O	Phase.	t°.	Gms. Zn(NO ₃) ₂ per 100 Gms. Solution.	Mols. Zn(NO ₃) ₂ p 100 Mols. H ₂ O	Phase.
-25	40.12	6.36	$Zn(NO_3)_2.9H_2O$	18	53.50	10.9	Zn(NO ₃) ₂ .6H ₂ O
-22.5	40.75	6.54	44	25	55.90	12.0	66
-20	42.03	6.89	44	36.4	63.63	16.7	46
-18	43.59	7 - 34	44	36	64.63	17.4	46
-18	44.63	7.67	Zn(NO ₃) ₂ .6H ₂ O	33.5	65.83	18.3	46
-15	45.26	7.86	44	37	66.38	18.8	Zn(NO ₃) _{2.3} H ₃ O
-13	45.51	7.94	44	40	67.42	19.7	44
-12	45 . 75	8.01	44	41	68.21	20.4	66
0	48.66	0.01	44	43	69.26	21.4	*
+12.5	52.0	10.3	46	45 - 5	77 - 77	33 · 3	*

ZINC OXALATE ZnC2O4.2H2O.

One liter of water dissolve 0.083 Mg. equiv. = 0.0064 gm. $\rm ZnC_2O_4$ at 18°.

(Kohlrausch - Z. physik. Chem. 50, 356, '04-'05.)

ZINC SULPHATE ZnSO4.

SOLUBILITY IN WATER.

(Cohen — Z. physik. Chem. 34, 189, '00; at 50°; Callender and Barnes — Proc. Roy. Soc. 62, 149, '97; Etard — Ann. chim. phys. [7] 2, 536, '94; Poggiale Ibid. [3] 8, 467, '43; Mulder.)

t°.	Gms. ZnSO ₄ Solution.	per 100 Gms Water.	Solid Phase.	t°.	Gms. ZnSO ₄ pe Solution.	Water.	Solid Phase.
- 5	28.21	39.30	$ZnSO_4.7H_2O$	25	38.94	63.74	ZnSO ₄ .6H ₂ O
0.1	29.54	41.93	48	39	41.22	70.06	$.6H_2O + .7H_2O$
9.1	32.01	47.09	44	50	43 · 45	76.84	$ZnSO_4.6H_2O$
15	33.81	50.88	**	70	47 · 5	88.7	$.6\mathrm{H}_2\mathrm{O} + .\mathrm{H}_2\mathrm{O}$
25	36.67	57.90	44	80	46.4	86.6	ZnSO ₄ .H ₂ O
35	39.98	66.61	4.6	90	45 · 5	83.7	44
39	41.21	70.05	44	100	44 · 7	80.8	64
- 5	32.00	47.08	ZnSO ₄ .6H ₂ O	120	41.7	71.5	44
OI	33.09	49.48	44	140	38.0	61.3	44
				160	33.0	49.3	4.6

100 gms. abs. methyl alcohol dissolve 0.65 gm. ZnSO₄ at 18°, 5.90 gms. ZnSO_{4.7}H₂O at 18°.

100 gms. 50 per cent methyl alcohol dissolve 15.7 gms. ZnSO.7H₂O at 18°.

(de Bruyn — Z. physik. Chem. 10, 783, '92.)

SOLUBILITY OF ZINC SULPHATE IN AQUEOUS ETHYL ALCOHOL. (Schiff — Liebig's Ann. 118, 365, '61.)

Concentration of Alcohol	10 per cent	20 per cent	40 per cent
Gms. ZnSO ₄ .7H ₂ O per 100			
Gms. Solution	51.1	39.0	3 · 45

100 gms. glycerine dissolve 35 gms. zinc sulphate at 15.5°.

SOLUBILITY OF ZINC SULPHATE — SODIUM SULPHATE MIXTURES IN WATER,

(Koppel — Gumpery — Z. physik. Chem. 52, 409, '05.)

	Gm. Gm	s. per 100 s. Solution.	G	ms. per 100 Gms. H ₂ O.	Mo Me	ls. per 100 ols. H ₂ O.	Solid
t°.	ZnSO4	Na ₂ SO ₄ .	ZnSC	Na ₂ SO ₄ .	ZnSO4.	Na ₂ SO	Phase.
0	27.19	5.33	40.30	7.90	4.50	I.OI	ZnSO _{4.7} H ₂ O +
5	27.85	6.27	42.28	9.52	4.71	I.2I	Na ₂ SO _{4.10} H ₂ O
25	17.58	15.63	26.32	23.40	2.94	2.96	$ZnNa_2(SO_4)_2.4H_2O$
30	17.66	15.58	26.47	23.44	2.95	2.97	44
35	17.59	15.70	26.36	23.52	2.94	2.98	44
40	17.75	15.72	26.68	23.63	2 . 98	2.99	66
10	29.16	7.16	45.79	11.24	5.11	1.42)
15	30.70	6.40	48.81	10.17	5 · 45	1.29	
20	32.51	5.36	$52 \cdot 34$	8.62	5.84	1.09	ZnNa2(SO4)2.4H2O
25	34.36	4.41	56.15	7.22	6.27	0.91	+ZnSO _{4.7} H ₂ O
30	36.28	3.80	60.55	6.34	6.76	0.81	
35	38.18	3.30	65.25	5.64	7.28	0.71)
38	38.83	2.90	66.64	4.98	$7 \cdot 44$	0.63	ZnNa ₂ (SO ₄) _{2.4} H ₂ O
40	38.26	2.78	64.89	4.71	7.24	0.60	+ZnSO _{4.6} H ₂ O
10	27.91	7.92	43.50	12.34	4.85	1.565	
15	24.28	10.90	36.92	16.71	4.12	2.12	7-N (CO) W
20	19.14	14.58	28.77	21.95	3.21	2.79	ZnNa ₂ (SO ₄) _{2•4} H ₂ O +Na ₂ SO ₄ .10H ₂ O
25	13.31	19.94	19.93	29 .87	2.22	3.785	
30	6.96	27.75	10.67	42.51	1.19	5 · 39)
35	5.61	30.03	8.72	46.61	0.971	5.91	ZnNa2(SO4)2.4H2O
40	5.96	28.65	9.16	43.83	I.02	5 · 555	+Na ₂ SO ₄

ZINC SULPHITE ZnSO3.2H2O.

100 gms. H₂O dissolve 0.16 gm. ZnSO_{4.2}H₂O.

(Houston and Trichborne - Brit. Med. Jour. 1063, '90

ZINC TARTRATE C4H4O6.Zn.2H2O.

SOLUBILITY IN WATER. (Cantoni and Zachoder — Bull. Soc. chim. [3] 33, 751, '05.)

t°.	Gms. C ₄ H ₄ O ₆ .Zn. ₂ H ₂ O per 100 cc. Solution.	t°.	Gms. C ₄ H ₄ O ₆ .Zn. ₂ H ₂ O per 100 cc. Solution.	t°,	Gms. C ₄ H ₄ O ₆ .Zn. ₂ H ₂ O per 100 cc. Solution.
15	0.019	40	0.060	65	0.100
20	0.022	45	0.073	70	0.088
25	- 0.036	50	0.087	75	0.078
30	0.041	55	0.116	80	0.059
35	0.055	60	0.104	85	0.041

ZINC VALERATE (C4H,COO)2Zn.2H2O.

100 gms. H₂O dissolve 2 gms. (C₄H₉COO)₂.Zn.2H₂O at 25°. 100 gms. alcohol dissolve 2.8 gms. at 25°.

(U. S. P.)

ADDENDUM

The distribution results shown in the following table were obtained by agitating together equal volumes of olive oil and aqueous solutions of the several narcotics, and determining the dissolved substance present in the aqueous layer before and after the agitation. The sum of the amount of substance in the oil and aqueous layers, as shown in the table, is the amount originally in 100 cc. of each aqueous solution used.

The work was done for the purpose of testing the Overton-Meyer Theory of Narcosis, that the anesthetic action of certain groups of narcotics is proportional to their distribution between water and the fatty material occurring in the nervous system, and olive oil was selected as the solvent best fulfilling the analytical requirements and at the same time offering a fair resemblance to the fatty substance of the nervous system. The results are believed to be of interest both as solubility studies and on account of their connection with the Theory of Narcosis.

The author is indebted to Dr. Reid Hunt of the Hygienic Laboratory for calling his attention to the papers containing the distribution

results here tabulated.

DISTRIBUTION OF SEVERAL SUBSTANCES BETWEEN WATER AND OLIVE OIL.

(At ord. temp., Baum — Archiv. exp. Pathol. u. Pharmakol, 42, 130, '90; at 3°, 30° and 36°; Meyer — Ibid. 46, 344, '01; at 15°, Harrass — Archiv. internat. Pharmacodynamie et Therapie, 11, 458, '03.)

				stance per	G#1)
Name of Substance.	Formula.	t°.	Water	Olive Oil	$\frac{C(f.)}{C(w.)}$
			layer (w.).	layer (f.).	C(W.)
Sulfonal	$(CH_8)_2C(SO_2.C_2H_5)_2$	ord.	0.0700	0.0686	0.979
Trional	$(CH_3)(C_2H_5)C(SO_2.C_2H_5)_2$	"	0.0404	0.1646	4.074
Tetronal	$(C_2H_5)_2C(SO_2.C_2H_5)_2$	"	0.0462	0.1446	3.756
Di methyl sulphon					0 .0
di methyl methane	$(CH_3)_2C(SO_2.CH_3)_2$	"	0.6072	0.0622	0.103
Di ethyl sulphon me-					
thane	$CH_2.(SO_2.C_2H_5)_2$	66	0.610	0.092	0.151
Ethyl urethane	NH ₂ .CO ₂ .C ₂ H ₅	66	4.52	0.615	0.136
Methyl urethane	NH ₂ .CO ₂ .CH ₃	"	7.50	0.275	0.037
Tertiary butyl alcohol	(CH ₃) ₂ C(OH)CH ₃	66	8.744	1.539	0.176
Amylene hydrate	(CH ₃) ₂ C(OH)CH ₂ .CH ₃	"	6.605	6.605	1.000
Mono acetin	$C_3H_5(OH)_2.(OC_2H_3O)$	66	4.28	0.254	0.059
44	44	3	2.349	0.229	0.000
44	66	36	2.417	0. 161	0.066
Di acetin	$C_3H_5(OH)(OC_2H_3O)_2$	ord.	3.0	0.7	0.234
Tri acetin	C ₃ H ₅ (OC ₂ H ₃ O) ₃	66	2.72	0.80	0.295
Bromal hydrate	CBr ₃ CH(OH) ₂	"	9.81	6.52	0.665
Butyl chloral hydrate	C ₃ H ₄ Cl ₃ .CH(OH) ₂	66	2.04	3.24	1.589
Chloral hydrate	CCl ₃ CH(OH) ₂	"	16.31	3.10	0.190
"	44	"	4.12	0.91	0.22
66	46	3	1.34	0.08	0.053
46	64	30	1.15	0.27	0.237
Salicylamide	OH.C6H4.CH2NH2	3	0.056	0.126	2.25
""	66	36	0.075	0.107	1.40
Benzamide	C ₇ H ₅ ONH ₂	3	1.062	0.706	0.66
66	46	36	1.235	0.533	0.43
Ethyl alcohol	C ₂ H ₅ OH	3	2.60	0.00(6
" "	66	3	3.90	0.07	0.026
44	44	30	2.64	0.14 (
66	66	30	3.82	0.16	0.047
Acetone	(CH ₃) ₂ CO	3	3.07	0.50)	
66	46	3	4.14	0.52	0.146
66	66	3	3.92	0.61)	
"	66	30	2.73	0.73)	
66	66	30	3.86	0.81	0.235
44	64	30	3.71	0.87)	
Valeryl di ethyl amide	CH ₃ (CH ₂) ₃ CON(C ₂ H ₅) ₂	15	0.231	1.339	5.797
Valeryl di methyl amid		15	0.911	0.379	0.416
Valeryl ethyl amide	CH ₃ (CH ₂) ₃ CONH(C ₂ H ₅)	15	1.029	0.261	0.254
Valer amide	CH ₃ (CH ₂) ₃ CONH ₂	15	0.769	0.241	0.313
Lactic acid di ethyl		J			
amide	CH ₃ .CHOH.CON(C ₂ H ₅) ₂	15	1.256	0.194	0.154
Sodium salicylate	C ₆ H ₄ .OH.COON ₃	15	1.444	0.156	0.108
•					

Acenaphthene, 1.	Amido brom benzo sulphonic acid, 57,
Acetamide, 1.	nitro benzoic acids, 60.
Acetanilide, 1.	propionic acid, 10.
Acetic acid, 2-4.	phenols, 6o.
in aq. benzene, 55.	Amines, methyl, etc., 15-17.
Acetnaphthalide, 6.	Ammonia, 17–19.
Acetone, 6-7, 355.	lithium sulphate, water, 176.
in aq. benzene, 55.	Ammonium acid formate, 26.
	acid oxalate, 30.
in aq. ethyl acetate, 136.	
in aq. potassium chloride, 241.	alum, 13. arsenate, 20.
in aq. potassium chloride, 247.	
in aq. potassium nitrate, 258.	benzoate, 20.
in aq. sugar, 326.	bicarbonate, 21–22.
Acetphenetidine, 8.	bicarbonate + NaHCO ₃ , 298.
Acet-toluide, 8.	bichromate, 25.
Acetyl acetone, 9.	bromide, 20.
Acetylene, 8.	bromide + KBr, 235.
Aconitine, 9.	bromo platinate, 20.
Adipic acid, 9.	cadmium bromide, 20, 71.
Air, 10.	cadmium chloride, 73.
Alanine, 10.	cadmium iodides, 77.
Aldehyde, 11.	cadmium sulphate, 33.
propionic, 267.	carbonate, 21.
Alcohols, 11, 355.	carbonate in acetone, 6.
Alcohol in aq. benzene, 55.	cerium nitrate, 111-112.
in aq. ether, 135.	cerium sulphate, 112.
in aq. ethyl acetate, 136.	chloride, 22-25.
in aq. ethyl butyrate, 136.	chloride and CuCl ₂ , 125-126.
in aq. ethyl propionate, 136.	chloride and KCl, 242.
in aq. ethyl valerate, 137.	chloride and NaCl, 299–300.
in aq. methyl butyrate, 204.	chloride and ZnCl ₂ , 350.
in aq. propyl acetate, 267	chromates, 25.
in aq. potassium carbonate, 239,	chromium sulphate, 33.
in aq. potassium chlorate, 241.	cobalt chlorides, 120.
in aq. potassium nitrate, 258.	cobalt sulphate, 33.
in aq. sodium carbonate, 297.	copper sulphate, 33, 129, 262.
in aq. sodium nitrate, 308-9.	fluo boride, 26.
in aq. sodium sulphate, 314.	fluo silicate, 31.
in aq. sugar, 325.	formate, 26.
Allyl isosulphocyanic ester, 205.	iodate, 26.
Aluminum chloride, 12.	iodide, 26–28.
rubidium alum, 271.	iridium sulphate, 34.
sulphate, 12.	iron sulphate, 33.
sulphate + Lithium sulphate, 176.	lead cobalticyanide, 22.
tellurium alum, 332.	magnesium nitrate, 30.
Alums, ammonium, potassium, etc.,	magnesium sulphate, 34.
13.	manganese molybdate, 30.
caesium, 8o.	manganese sulphate, 34.
chromium, 116.	nickel sulphate, 34, 129.
iron ammonium, 33.	nitrate, 24, 28, 30.
rubidium, 271.	oxalate, 30-31.
tellurium, 332.	permanganate, 31.
Amalgam, 278.	persulphate, 35.
Amido benzoic acids, 60.	phosphite, 31.
benzo sulphonic acids, 60.	platinic chloride, 232-233.
believ surprisine acids, oo.	Z

Ammonium salicylate, 31.	Barium iodide, 49.
sodium sulphate, 34.	iodide + BaBr ₂ , 44. iodide + Hg(CN) ₂ , 197.
sodium sulphite, 35.	iodide + $Hg(CN)_2$, 197.
sulphate, 24 , $31-33$. sulphate + K_2SO_4 , 261 .	iso caproate, 45.
sulphate $+ K_2SO_4$, 261.	iso succinate, 53.
sulphocyanide, 35.	malate, 49.
tetra chromate, 25.	malonate, 49.
tri chromate, 25.	molybdate, 49.
tri nitrate, 29.	nitrate, 24, 29, 50-51. nitrate + BaCl ₂ , 46.
uranyl carbonate, 22.	nitrate + BaCl ₂ , 40.
uranyl chlorides, 342.	nitrate + KNO ₃ , 254.
uranyl propionate 343.	nitrite, 51.
uranyl propionate, 343. vanadium sulphate, 34.	oxalate, 51. persulphate, 53.
zinc sulphate, 34, 129.	potassium ferrocyanide, 48.
Amyl acetate, 35.	propionate, 52.
alcohol, 11.	succinate, 53.
butyrate, 35.	sulphate, 52-53.
formate, 35.	tartrate, 53-54.
malonic acid, 186.	Benzamide, 54, 355.
propionate, 35.	Benzaldehyde, 54.
Amylene hydrate, 355.	Benzene, 54-56.
Anethol, 35.	Benzine, 58.
in aq. acetone, 6.	Benzoic acids, 58-62, 341.
Anilin, 36–38.	Benzoic sulphinide, 62.
Anis acid, 38, 61.	Benzophenone, 6, 63.
Anthracene, 39.	Benzo sulphonic acids, 57, 60.
Anthraquinone, 40.	Benzoyl phenyl hydrazine, 57.
Antimony potassium tartrate, 41. tri chloride, 40-41.	Benzyl carbamide, 104.
tri iodide, 41.	Beryllium, see also Glucinium. Beryllium hydroxide, 63.
Apo morphine hydrochloride, 205.	salts, 140.
Argon, 41.	sulphate, 63.
Arsenic iodide, 41.	Beta Naphthol, 208.
pentoxide, 41.	Borax, 293.
tri iodide, 42.	Boric acid, 65-67, 294.
Asparagine, 42.	Boron tri-fluoride, 67.
Astrakanite, 312.	Bismuth, 64.
Atropine, 42.	and Pt alloys, 232.
Aurous, auric, see Gold.	chloride, 64.
Azelaic acid, 43.	iodide, 64.
Azo phenetol, 43.	nitrate, 64.
Barium acetate, 43.	oxide, 64.
acid oxalate, 52. arsenate, 43.	Bromal hydrate, 355. Brom benzene (di), 56.
bromate, 44.	benzoic acid, 60.
bromide, 44.	benzo sulphonic acid, 57.
butyrate, 44.	cinnamic acid, 118.
cadmium chloride, 74.	phenols, 226.
caproate, 45.	Bromine, 67-69.
carbonate, 45.	Brucine, 69.
chlorate, 45.	Butane, 69.
chloride, 24, 46–47. chloride + NaCl, 300.	Butyl acetate, 69.
chloride + NaCl, 300.	alcohol, 12.
chromate, 47.	alcohol tertiary, 355.
citrate, 47.	chloral hydrate, 355.
cyanide, 48.	formate, 69-70.
dibrom, etc., sulphonic acid, 57. ferrocyanide, 48.	malonic acid, 186. Butyric acid (iso), 70.
fluoride, 48.	aldehyde, 69.
formate, 48, 165.	Cadmium ammonium bromide, 20, 71.
hydroxide, 48.	ammonium chloride, 73.
iodate, 49.	ammonium iodides, 77.

Cadmium ammonium sulphate, 33.	Calcium caproate, 86.
barium chloride, 74.	caprylate, 86.
bromide, 70-71.	carbonate, 86.
caesium sulphate, 84.	chlorate, 88.
chlorate, 72.	chloride, 88-89.
cyanide, 76.	chromate, 90.
fluoride, 77.	citrate, 89.
hydroxide, 77. iodide, 77.	di ethyl acetate, 85.
magnesium chloride, 74.	di propyl acetate, 85.
nitrate, 78.	fluoride, 90.
oxalate, 78.	formate, 90. heptoate, 91.
potassium bromide, 71.	hydroxide, 91.
potassium chloride, 76.	hydroxide + CaSO ₄ , 99.
potassium iodide, 78.	iodate, 94.
potassium sulphate, 79.	iodide, 94.
rubidium bromide, 72.	iso butyrate, 86.
rubidium chloride, 75.	iso butyl acetate, 85.
rubidium sulphate, 274.	iso succinate, 97.
sodium bromide, 72.	iso valerate, 104.
sodium iodide, 78.	malate, 94.
sodium sulphate, 80.	malonate, 94.
sulphate, 78–79.	methyl ethyl acetate, 85.
Caesium alums, 15, 80.	methyl pentanate, 86.
cadmium sulphate, 84.	methyl propyl acetate, 85.
carbonate, 81.	nitrate, 95.
chloraurate, 81.	nonate, 96.
chloride, 81.	õenanthate, 91.
chloride + FeCl ₃ , 159.	oxalate, 95.
chlor tellurate, 82.	oxide, 91.
chromium alum, 80. cobalt sulphate, 84.	pelargonate, 96.
copper sulphate, 84.	phosphates, 95–96. potassium ferrocyanide, 90.
fluoboride, 81.	potassium sulphate, 101.
gold chloride, 141.	propionate, 96.
iodate, 82.	selenate, 97.
iodide, 82.	silicate, 97.
indium alum, 80.	succinate, 97.
iron alum, 80.	sulphate, 97-102.
iron sulphate, 84.	sulphide, 102.
magnesium sulphate, 84.	sulphite, 103.
manganese sulphate, 84.	tartrate, 103.
mercuric bromide, 81.	tri methyl acetate, 85.
nickel sulphate, 84.	valerate, 104.
nitrate, 82.	Camphoric acid, 104.
oxalate, 83.	Cane sugar, 324-326.
permanganate, 83.	Caoutchouc, 104.
platinic chloride, 232.	Carbamides, 104.
selenate, 83.	Carbazole, 104.
sulphate, 83.	Carbon bisulphide, 110.
tellurium halides, 332. thallium chloride, 82.	dioxide, 105-107.
uranyl chloride 242	monoxide, 107-110.
uranyl chloride, 342. uranyl nitrate, 343.	oxysulphide, 111. tetra chloride, 201.
vanadium alum, 80.	Carvoxime, 111.
zinc sulphate, 84.	Cerium acetate, 111.
Caffeine, 84.	ammonium nitrate, 111-112.
Calcium acetate, 84–85.	ammonium sulphate, 112.
bicarbonate, 87–88.	butyrate, 111.
bitartrate, 103.	formate, 111.
bromide, 85.	iso butyrate, 111.
bromide + Hg(CN) ₂ , 197.	propionate, 111.
butyrate, 86.	sulphate, 112.
	Chinin, 117.

Chinidin, 117.	Copper rubidium sulphate, 274.
Chlor acetic acid, 5.	sodium sulphate, 131.
Chloral hydrate, 113, 355.	sulphate, 32, 128-131.
hydrate butyl, 355.	sulphate + CuCl ₂ , 126.
Chlor benzene, 56.	sulphate, 32, 128-131. sulphate + CuCl ₂ , 126. sulphate + MnSO ₄ , 188.
benzoic acid, 6o.	sulphate + NiSO ₄ , 211.
Chlorine, 113-114.	sulphide, 131.
monoxide, 115.	tartrate, 132.
tri oxide, 115.	tellurium sulphate, 334.
Chloroform, 115.	Cream of tartar, 265-266.
Chlor phenols, 226.	Cresol, 131.
Chromic acid, 25, 116, 304.	Cumidin (pseudo), 132.
Chromium alums, 116.	Cuminic acid, 132.
ammonium sulphate, 33.	Cuprous, cupric, see Copper.
caesium alum, 80.	Cyanogen, 132.
chloride, 116.	Dextrose in aq. acetone, 7.
double salts, 116.	Di acetin, 355.
potassium cyanide, 250. potassium molybdate, 116.	Di brom benzene, 56. Di chlor acetic acid, 6.
rubidium alum, 271.	Didymium potassium sulphate, 133.
sulphate, 116.	sulphate, 133.
tellurium alum, 332.	Di ethyl amine, 16.
tri oxide, 25, 116, 304.	ethyl ketone, 137.
Chrysarobin, 116.	ethyl sulphone, 355.
Chrysen, 117.	Di methyl sulphone, 355.
Cinchona alkaloids, 117.	Di nitro benzenes, 56-57.
alkaloids salts, 117.	nitro phenols, 226.
Cinnamic acid, 118.	Di phenyl, 227.
Citric acid, 119.	phenyl amine, 17.
Cobalt ammonium chlorides, 120.	Erbium sulphate, 133.
ammonium sulphate, 33.	Erythrite, 133.
bromide, 119.	Ethane, 133.
caesium sulphate, 84.	Ether, 134–135.
chlorate, 119.	in anthraquinone, 40.
chloride, 120-121.	Ethyl acetate, 135-136.
double salts, 119.	alcohol, see Alcohol.
Cobalticyanide of NH ₃ + Pb, 22.	amines, 16.
Cobalt iodate, 121.	ammonium bromide, 20.
iodide, 121.	ammonium chloride, 25. ammonium iodide, 27.
lead cyanide, 165. lead potassium cyanide, 165.	bromide, 137.
nitrate, 121-122.	butyrate, 136.
potassium sulphate, 262.	carbamate, 138.
rubidium nitrite, 122.	Ethylene, 138.
rubidium sulphate, 274.	chloride, 137.
sulphate, 122-123.	cyanide, 323.
Cocaine, 123.	Ethyl formate, 136.
hydrochloride, 123.	Ethylidine chloride, 137.
Codeine, 123.	Ethyl iodide, 137.
salts, 123.	iso valerate, 137.
Colchicine, 123.	ketone, 137.
Collidin, 124.	malonic acid, 186.
Copper and Pt alloys, 232.	methyl ketone, 204.
acetate, 124.	propionate, 136.
ammonium chloride, 125–126.	urethane, 355.
ammonium sulphate, 33, 129.	valerate, 137.
bromide, 124.	Fats, fatty acids, 138.
caesium sulphate, 84.	Ferri ferrocyanide of notassium asa
chloride 124.	Ferri, ferrocyanide of potassium, 250. Formaldehyde, 11.
chloride, 124-128. nitrate, 128.	Fumaric acid, 139.
potassium chloride, 127.	Furfurol, 139.
potassium sulphate, 131, 262.	Gadolinium sulphate, 139.
Lamarana ambanas, var, asa,	,

•	
Galactose, 139.	Iron tellurium alum, 332.
Gallic acid, 139.	amyl acetate, 35.
Germanium dioxide, 140.	amyl alcohol, 11.
potassium fluoride, 251.	amyl formate, 35.
sulphide, 140.	amyl malonic acid. 186.
Glass, 140.	Iso butyric acid, 70.
Glucinium, see also Beryllium.	butyric aldehyde, 69.
Glucinium hydroxide, 63.	butyl acetate, 69-70.
salts, 140.	butyl alcohol, 12.
sulphate, 63.	phthalic acid, 228.
Glutaric acid, 140.	propyl benzoic acid, 132.
Glycolic acid, 140.	Ketone, di ethyl, 137. methyl ethyl, 204.
Gold, 140. alkali chlorides, 140.	Lactic acid di ethyl amide, 355.
caesium chlorides, 81.	Lanthanum bromate, 162.
chloride, 141.	sulphate, 162.
phosphorus tri chloride, 141.	Lead, 162.
Grape sugar, 325-326.	and Pt alloys, 232.
Guaicol, 141.	acetate, 162.
carbonate, 141.	ammonium cobalticyanide
Guanidine, 141.	22.
Helium, 142.	benzoate, 162.
Hexane, 142.	bromate, 162.
Hippuric acid, 142.	bromide, 163.
Homatropine, hydrobromide, 143.	carbonate, 163.
Hydrastine, 143.	chlorate, 163.
chloride, 143.	chloride, 163–165.
Hydrazine sulphate, 143.	chromate, 165.
Hydriodic acid, 145.	citrate, 165. cyanides, 165.
Hydrobromic acid, 143. Hydrochloric acid, 144.	fluoride, 165.
Hydrofluoric acid, 145.	formate, 165.
Hydrogen, 145-149.	hydroxide, 166.
sulphide, 150.	hyposulphate, 170.
Hydroquinone, 150-151.	iodate, 166.
Hydroxy benzoic acids, 61.	iodide, 166–167.
Hydroxylamine, 151.	malate, 167.
hydrochloride, 151.	nitrate, 168.
Hyoscyamine, 151.	nitrate + Ba(NO ₃) ₃ , 50.
Hyoscine hydrobromide, 151.	oxalate, 168.
Indium ammonium sulphate, 34.	oxides, 168.
caesium alum, 80.	palmitate, 169.
Iodic acid, 145.	phosphate, 169. succinate, 169.
Iodine, 152–154. Iodo benzoic acid, 60.	sulphate, 169.
Iron ammonium alum, 33.	tartrate, 170.
ammonium sulphate, 33.	Levulose, 170.
caesium alum, 80.	Ligröin, 170.
caesium sulphate, 84.	Lime, see Calcium hydroxide
chloride, 157-159.	Lithium benzoate, 170.
chloride mix crystals, 159.	bicarbonate, 172.
hydroxide, 160.	bichromate, 173.
lead cyanide, 165.	borate, 170.
nitrate, 160.	bromate, 171.
oxide, 160.	bromide, 171.
phosphate, 160.	carbonate, 171.
potassium sulphate, 161, 262.	chlorate, 172. chloraurate, 172.
rubidium alum, 271. rubidium sulphate, 274.	chloride, 172.
sulphate, 160.	chromate, 173.
sulphate + CdSO 70.	citrate, 173.
sulphate + CdSO ₄ , 79. sulphate + Na ₂ SO ₄ , 161.	fluoride, 173.
sulphide, 160.	formate, 174.

Lithium gold chloride, 141.	Manganese potassium vanadate, 189
hydroxide, 174.	sulphate, 188-189.
hypophosphate, 176.	sulphate + CuSO ₄ , 130.
iodate, 174.	Mannite, 189.
iodide, 175.	Mannitol, 189.
laurinate, 176.	Mercury, 278.
myristate, 176.	bromide, 189-190.
nitrate, 175.	caesium bromide, 81.
oleate, 176.	chloride (ic), 190-196.
oxalate, 175.	chloride (ous), 196.
palmitate, 176.	chloride + BaCl ₂ , 46.
permanganate, 176.	chloride + CsCl, 81.
phosphate, 176.	cyanide, 197.
stearate, 176.	fulminate, 197.
sulphate, 176.	iodide, 197–199.
Magnesium ammonium nitrate, 30.	oxide, 200.
ammonium sulphate, 34.	sulphate, 200.
bicarbonate, 178-179.	tetra methyl amine chloride, 195
bromate, 177.	Methane, 200.
bromide, 177.	Methoxy benzoic acid, 38.
bromide alcoholates, 177.	Methyl acetate, 203.
bromide aliphatic compounds,	alcohol, 136.
177.	amine, 15.
bromide etherates, 177.	amine HgCl ₂ , 195.
cadmium chloride, 74.	ammonium iodide, 26.
caesium sulphate, 84.	benzoic acids, 61, 341.
carbonate, 178-179.	butyrate, 203-204.
carbonate in aq. acetone, 6.	Methylene bromide, 203.
chlorate, 180.	chloride, 203.
chloride, 180-181.	Methyl ethyl ketone, 204.
chromate, 181.	iodide, 203.
fluoride, 181.	malonic acid, 186.
fluosilicate, 184.	phenyl carbamide, 104.
hydroxide, 181-182.	propionate, 203.
hypophosphate, 184.	urethane, 355.
iodate, 182.	valerate, 204.
iodide, 182–183.	Milk sugar, 325-326.
iodide alcoholate, 183.	Molybdenum trioxide, 204.
iodide, alkyl esters, 183.	Monoacetin, 355.
iodide, aliphatic compounds, 183.	Mono chlor acetic acid, 6.
iodide etherate, 183.	Morphine, 204-205.
nitrate, 184.	salts, 205.
oxalate, 184.	Mustard oil, 205.
platinic chloride, 181.	Naphthalene, 206–207.
platinic chromate, 181.	in aq. acetone, 6.
potassium sulphate, 185.	β-Naphthalene picrate, 55.
salicylate, 184.	Naphthoic acid, 207.
sulphate, 184–185.	Naphthol, 208.
sulphate + MgCl ₂ , 181.	Naphthylamine sulphonic acid, 206.
sulphate + Na ₂ SO ₄ , 312.	Naphtion acid, 206.
sulphite, 185.	Narceine, 208.
Maleic acid, 139.	Narcotics, 355.
Malonic acid, 185-186.	Neodymium chloride, 208.
Maltose in aq. acetone, 7.	sulphate, 208.
Manganese ammonium molybdate, 30.	Nickel ammonium sulphate, 34, 129
ammonium sulphate, 34.	bromate, 208.
borate, 186.	bromide, 208.
bromide, 186.	caesium sulphate, 84.
caesium sulphate, 84.	chloride, 208-209.
chloride, 187.	iodate, 209.
fluo silicate, 187.	iodide, 209.
hypophosphate, 187.	nitrate, 210.
nitrate, 187.	potassium sulphate, 212, 262.

Nickel sulphate, 210-212.	Potassium borates, 234.
tellurium sulphate, 334.	boride (fluo), 234.
Nicotine, 212.	bromate, 234-235.
Nitranilines, o , m , and p , 38.	bromide, 235-238.
Nitric oxide, 218.	bromide and chloride, 242.
Nitro benzene, 56-57.	bromide + $Hg(CN)_2$, 197.
benzoic acids, 61-62.	butyrate, 238.
Nitrogen, 213-214.	cadmium bromide, 71.
Nitrous oxide, 215-218.	cadmium chloride, 76.
Nitro phenols, 226.	cadmium iodide, 78.
Olive oil as solvent, 355.	cadmium sulphate, 79.
Ortho boric acid, 65-67.	calcium ferrocyanide, 90.
Oxalic acid, 31, 175, 219, 310.	carbonate, 238-239.
Oxygen, 220-221.	carbonate in aq. acetone, 6.
Ozone, 221.	carbonate in aq. ammonia, 18
Papaverine, 222.	carbonyl ferrocyanide, 250.
Paraffine, 222.	chlorate, 230-241.
Pentane acid, 348.	chlorate, 239-241. chlorate + TlClO ₃ , 335.
Pentanon, 137.	chloride, 24, 241-248.
Petroleum benzine, 58.	chloride, 24, 241–248. chloride + BaCl ₂ , 46.
Phenacetine, 8.	chloride + CaCl ₂ , 89.
Phenanthrene, 222-223.	chloride + FeCl. 150.
picrate, 223.	chloride + FeCl ₃ , 159. chloride + HgCl ₂ , 191.
Phenic acid, 223.	chloride + Hg(CN) ₂ , 197.
Phenol, 223-225.	chloride + KBr, 236.
Phenols (amido), 60.	chloride + KNO. 255
Phenol anilin mixtures, 38.	chloride + KNO ₃ , 255. chloride + NaCl, 300.
Phenolate of phenyl ammonium, 226.	chloride + Na ₂ SO ₄ , 312.
Phenyl ammonium, phenolate, 226.	chromates, 248–249.
amines, 17.	chromates + K ₂ SO ₄ , 263.
di amines, 226.	chromium alum, 116.
guanidine (tri), 141.	chromium molybdate, 116.
hydrazine (benzoyl), 57.	chromisulphocyanide, 250.
methane (tri), 201-203.	chromocyanide, 250.
salicylate, 227.	cobalt sulphate, 262.
thio carbamide, 344-346.	copper chloride, 127.
thio urea. 344-346.	copper sulphate, 131, 262.
thio urea, 344–346. Philocarpine salts, 231.	citrate, 249.
Phosphorus, 227-228.	cyanate, 249.
Phosphomolybdic acid, 227.	cyanide, 249.
Phthalic acids, 228.	di chromate, 248–249.
anhydride, 228–229.	didymium sulphate, 133.
Physostigmine salts, 229.	ferricyanide, 250.
Picric acid, 229–231.	ferrocyanide, 250.
Piperine, 231.	ferrosulphate, 262.
Platino amines, 233.	fluoride, 250.
Platinum alloys, 232.	fluo boride, 234.
Platinum alloys, 232. ammonium bromide, 20.	fluo germanate, 251.
bromide, 232.	fluo titanate, 266.
double chlorides, 232.	formate, 251.
potassium bromide, 232.	gold chloride, 141.
Plumbic, see Lead.	hippurate, 142.
Potassium acetate, 233.	hydroxide, 251.
acid formate, 251.	hypophosphate, 260.
acid nitrate, 257.	hypophosphite, 260.
acid oxalate, 259.	iodate, 252.
acid sulphate, 264.	iodide, 252–253.
alum, 13–14.	iodide and bromide, 236.
antimony tartrate AT	iodide and chloride, 243.
antimony tartrate, 41. arsenate (di hydrogen), 233.	iodide and PbI ₂ , 167.
barium ferrocyanide, 48.	iodide and Hg(CN) ₂ , 197.
benzoate, 233.	iron sulphate, 161.
bicarbonate, 238–239.	lead cobalticyanide, 165.
hitaetento of a off	
30	53

Potassium lead ferricyanide, 165.	Pyrene, 268.
magnesium chloride, 181.	Pyrogallol, 268.
magnesium chromate, 181.	Pyrotartaric acid, 140.
magnesium cyanide, 181.	Quinine and salts, 117, 269.
magnesium sulphate, 185.	Racemic acid, 331.
manganese vanadate, 189.	Resorcinol, 270
mercuric cyanide, 197.	Rhodium salts, 270.
nickel sulphate, 212, 262.	sodium nitrite, 309.
nitrate, 24, 29, 254-258. nitrate + Ba(NO_3) ₂ , 50.	Rubidium alums, 15, 271.
nitrate + $Ba(NO_3)_2$, 50.	bromide, 271.
nitrate + KBr, 237. nitrate + KCl, 244. nitrate + NaCl, 300.	brom iodide, 273.
nitrate + KCl, 244.	cadmium bromide, 72.
mitrate + NaCl, 300.	cadmium chloride, 75.
nitrate + NaNO ₃ , 308.	cadmium sulphate, 274.
nitrite, 254. oxalate, 258–259.	carbonate, 271. chlorate, 271.
perchlorate, 241.	chloride, 272.
perchlorate + KMnO ₄ , 260.	chromate, 272.
persulphate, 264.	cobalt nitrate, 122.
permanganate, 259-260.	cobalt sulphate, 274.
phosphate, 260.	copper sulphate, 274.
phosphite, 260.	di chromate, 272.
phosphomolybdate, 261.	fluo boride, 271.
platinic bromide, 232.	fluo silicate, 273.
platinic chloride, 232-233.	gold chloride, 141.
selinate, 261.	hydroxide, 272.
sodium carbonate, 239.	iodate, 272.
sodium sulphate, 263.	iodide, 272-273.
sodium sulphite, 264.	iron sulphate, 274.
sodium thio sulphate, 264.	nitrate, 273.
stannate, 261.	mercuric chlorides, 192.
sulphate, 24, 32, 261–264. sulphate + KCl, 245.	perchlorate, 271.
sulphate + KCl, 245.	permanganate, 273. permanganate + KMnO ₄ , 260
sulphate + KNO ₃ , 256. sulphate + NaC ₁ , 300. sulphate + Na ₂ SO ₄ , 312.	permanganate + KMnO ₄ , 260
sulphate + NaCl, 300.	platime emoride, 232.
sulphate $+ Na_2SO_4$, 312.	selenate, 273.
sulphocyanide, 265, 291.	silico tungstate, 273.
tartrate, 265–266.	sulphate, 273-274.
tellurium bromide, 332.	tellurium bromide, 332.
thio cyanate, 291. tri chromate, 249.	tellurium chloride, 272, 332
uranyl butyrate, 343.	thallium chloride, 272. uranyl chloride, 342.
uranyl carbonate, 239.	uranyl nitrate, 343.
uranyl chloride, 342.	Saccharine, 61.
uranyl nitrate, 343.	Salicylamid, 355.
uranyl sulphate, 344	Salicylic acid, 61, 274-276.
vanadate, 266.	Salol, 227.
zinc vanadate, 266.	Selenious acid, 277.
Praseodymium sulphate, 267.	Selenium, 276.
Propio nitril, 267.	Senföl, 205.
Propionic acid (amido), 10.	Silicon, 277.
aldehyde, 267.	Silico tungstic acid, 277.
Propylene, 268.	Silver, 278.
Propyl acetate, butyrate, etc., 267-	and Pt alloys, 232.
268.	acetate, 278.
acetic acid, 348.	benzoate, 279.
alcohol in aq. K ₂ CO ₃ , 230.	borate, 279.
ammonium iodide (tetra), 28.	bromate, 279–280.
anisol (p) , 35.	bromide, 280–281. butyrate, 281.
bromide, chloride, etc., 268.	caproates, 282.
formate, 268. malonic acid, 186.	carbonate, 282.
Pseudo cumidin, 132.	chlorate, 282.
	,

Silver chloride, 283-286. chromate, 286. citrate, 286. cyanide, 286. di chromate, 286. di ethyl acetate, 279. di propyl acetate, 278. fluoride, 287. fulminate, 287. heptoate, 287. hydroxide + AgCl, 285. iodate, 287. iodide, 277, 287-288. iso butyrate, 281. malate, 288. methyl ethyl acetate, 279. mono chlor acetate, 278. nitrate, 288-289. nitrate + KNO₃, 257. nitrite, 289. onanthylate, 287. oxalate, 289. oxide, 289. permanganate, 289. phosphate, 289. propionate, 290. salicylate, 290. sodium cyanide, 286. succinate, 290. sulphate, 290-291. sulphate + CaSO₄, 101. sulphocyanide, 291. tartrate, 291. thallous cyanide, 286. thio cyanate, 291. tri methyl acetate, 279. valerates, 291-292. vanadate, 292. Sodium acetate, 292-293. acid formate, 305. alum, 15. ammonium sulphate, 34. ammonium sulphite, 35. arsenate, 293. benzoate, 293. bicarbonate, 22, 297-298. bicarbonate + NaCl, 300. bisulphate, 315. borate, 294. bromate, 294. bromide, 295. cadmium bromide, 72. cadmium iodide, 78. cadmium sulphate, 80. carbonate, 296-297. carbonate in aq. acetone, 6. chlorate, 298-299. chloride, 24, 299-303. chloride + BaCl₂, 46. chloride + CaCl₂, 89. chloride + FeCl₃, 159. chloride + Hg(CN)₂, 191. chloride + KCl, 245.

Sodium chloride + KNO₃, 256. chloride + Na₂CO₃, 298. chloride + NaClO₃, 299. chromates, 303-304. citrate, 305. copper sulphate, 131. ferrocyanide, 305. fluoride, 305. fluoride phosphate, 310. fluo silicate, 305. fluo zirconate, 316. formate, 305. gold chloride, 141. hydrogen arsenate, 293. hydroxide, 306. hydroxide + NaCl, 301. hypophosphates, 311. hypophosphite, 311. iodate, 306. iodide, 306. iodide + Hg(CN)₂, 197. mercuric chloride, 193. mono chromate, 303-304. molybdate, 307. nitrate, 29, 307–309. nitrate + KNO₃, 256. nitrate + NaCl, 301. nitrate + AgNO₃, 288. nitrite, 309. p nitro phenol, 310. oxalate, 309-310. phosphates, 310. phosphites, 311. potassium carbonate, 239. potassium sulphate, 263. potassium sulphite, 264. potassium thio sulphate, 264. rhodonitrite, 309. salicylate, 275, 355. selinate, 311. silver cyanide, 286. stannate, 311. sulphate, 311-315. sulphate + CoSO₄, 122. sulphate + CuSO₄, 131. sulphate + FeSO₄, 161. sulphate + NiSO₄, 211. sulphate + ZnSO₄, 353. sulphite, 315. telluriate, 315. tetra borate, 293. tetra chromate, 304. thio sulphate, 315. tri molybdate, 307. tungstate, 316. uranyl chromate, 343. wolfromate, 316. Stannous, stannic, see Tin. Strontium benzoate, 316. bicarbonate, 316. bromate, 316. bromide, 316. carbonate, 316.

Strontium chlorate, 317.	Thallium alum, 14, 15, 332.
chloride, 317.	bromate, 332.
chromate, 318.	bromide, 332.
di tungstate, 321.	caesium chloride, 82.
fluoride, 318.	carbonate, 338.
hydroxide, 318.	chlorate, 333.
hyposulphate, 170.	chloride, 333–335.
iodate, 318.	chromate, 335.
iodide, 318.	copper sulphate, 338.
iodide + $Hg(CN)_2$, 197.	cyanide, 336.
malate, 319.	fluoride, 336.
molybdate, 319.	iodate, 336.
nitrate, 319. nitrate + $Pb(NO_3)_2$, 168.	iodide, 336.
intrate $+ PD(NO_3)_2$, 108.	nickel sulphate, 338.
oxalate, 319.	nitrate, 336.
salicylate, 319.	nitrate + KNO ₃ , 257.
sulphate, 320.	oxalate, 336-337.
tartrate, 320–321. tungstate (di), 321.	perchlorate, 338. phosphate, 337.
Strychnine and salts, 321.	
Suberic acid aar	picrate, 337. platinic chloride, 232.
Suberic acid, 321. Succinic acid, 322–323.	rubidium chloride, 272.
anhydride, 322.	silver cyanide, 286.
nitril, 323.	sulphate, 338.
Succinimid, 323.	sulphide, 338.
Sugar, 324–326.	sulphite, 339.
in aq. acetone, 7.	sulphocyanide, 338.
+ K. Butyrate, 238.	vanadates, 339.
+ MgSO ₄ , 185.	zinc sulphate, 338.
Sulphanilic acid, 326.	Thallous tri chromate, 335.
Sulphonal, 355.	Thallo thallic chloride, 335.
Sulphonic acids, 57.	Theobromine, 339.
Sulphur, 327-328.	Thio urea (phenyl), 344-346.
in anilin, 36.	Thorium selenate, 339.
in benzene, 56.	sulphate, 339.
dioxide, 329-331.	Tin chloride, 340.
trioxide, HgO and H_2O , 200.	hydroxide, 340.
Syngenite, 101.	iodide, 340–341.
Tannic acid, 331.	sulphate, 341.
Tartar emetic, 41.	Toluene, 341.
Tartaric acid, 331.	Toluidine, 341-342.
Telluric acid, 332.	Toluyl acids, 341.
Tellurium, 331.	Tolyl carbamide, 104.
caesium bromide, 332.	Tri acetin, 355.
caesium chloride, 82, 332.	brom phenols, 226.
chromium alum, 116.	chlor phenols, 226. chlor acetic acid, 6.
mercuric cyanide, 197.	ethyl amine; 16.
potassium bromide, 332.	methyl amine, 15.
rubidium bromide, 332. rubidium chloride, 272, 332.	nitro benzene, 57.
Terephthalic acid, 228.	oxymethylene, 11.
Tetra boric acid, 67.	phenyl amine, 17.
chlor methane, 201.	phenyl guanidine, 141.
ethyl ammonium bromide, 20.	phenyl methane, 201.
ethyl ammonium chloride, 25.	Trional, 355.
ethyl ammonium iodide, 27.	Tungsto silicic acid, 277.
methyl ammonium iodide, 26.	Uranyl ammonium carbonate, 22.
propyl ammonium iodide, 28.	ammonium propionate, 343.
sodium chromate, 304.	chloride, 342.
Tetronal, 355.	
	•

Uranyl double chlorides, 342.
double nitrates, 343.
nitrate, 343.
potassium butyrate, 343.
potassium carbonate, 239.
potassium sulphate, 344.
sodium chromate, 343.
sulphate, 344.
Urea, 344-346.
Urethane, 347.
Uric acid, 347.
Valerianic acid, 348.
Valeramide, etc., 355.
Vanadium ammonium sulphate, 34.
caesium alum, 80.
rubidium alum, 271.
tellurium alum, 332.
Ytterbium sulphate, 348.
Yttrium iodate, 348.
Zinc and Pt alloys, 232.
Zinc acetate, 348.

ammonium sulphate, 34, 129.

Zinc benzoate, 348.
bromide, 348.
caesium sulphate, 84.
carbonate, 349.
chlorate, 349.
chloride, 349-350.
cyanide, 349.
fluoride, 350.
hydroxide, 350-351.
iodate, 351.
iodide, 351.
nitrate, 351.
oxalate, 352.
potassium sulphate, 262.
potassium vanadate, 266.
sulphate, 352-353.
sulphate + CuSO₄, 130.
sulphite, 353.
tartrate, 353.
tellurium sulphate, 334.
valerate, 353.

FOURTEEN DAY USE RETURN TO DESK FROM WHICH BORROWED

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

25Jan'56RF JAN 1 1 1956 LU Due end of William - Maria 13 4 8 LD 21-100m-2,'55 (B139s22)476 General Library University of California Berkeley

395316

QD66 S4 1917.

THE UNIVERSITY OF CALIFORNIA LIBRARY

