Bayesian Statistics

Fabio Sigrist

ETH Zurich, Autumn Semester 2019

Today's topics

- ▶ Hierarchical Bayes models
- Examples of hierarchical Bayes models

Hierarchical Bayes models

Hierarchical Bayes models

- In hierarchical models, the prior $\pi(\theta \mid \xi)$ for θ depends on other parameters ξ , called **hyperparameters**, which also have a prior distribution $\pi(\xi)$
- ▶ This leads to a triple of random variables (ξ, θ, x) with joint density

$$\pi(\xi)\pi(\theta\mid\xi)f(x\mid\theta)$$

Hierarchical Bayes models

- **b** By conditioning on the data x, we obtain the posterior $\pi(\xi, \theta|x)$
 - For complex models, $\pi(\xi, \theta|x)$ usually cannot be determined in closed from and some approximation is needed (see later in the course)
- Often, the primary interest is in the parameter θ , i.e. the marginal posterior $\pi(\theta \mid x)$
- There are two ways to compute it

1. In the first approach, one first computes the marginal prior

$$\pi(\theta) = \int \pi(\theta \mid \xi) \pi(\xi) d\xi$$

and then uses Bayes formula

$$\pi(\theta \mid \mathbf{x}) \propto \pi(\theta) f(\mathbf{x} \mid \theta)$$

2. In some situations, the approach based on the following formula is computationally easier:

$$\pi(\theta \mid \mathbf{x}) = \int \pi(\theta \mid \mathbf{x}, \xi) \pi(\xi \mid \mathbf{x}) d\xi$$
$$\propto \int \pi(\theta \mid \mathbf{x}, \xi) \pi(\xi) f(\mathbf{x} \mid \xi) d\xi$$

▶ One first needs to determine $\pi(\theta \mid x, \xi)$ and $\pi(\xi \mid x)$ or $f(x \mid \xi)$

• $\pi(\xi \mid x)$ can be calculated either by marginalizing the joint posterior over θ

$$\pi(\xi \mid \mathbf{x}) = \int \pi(\theta, \xi \mid \mathbf{x}) d\theta$$

or by using

$$\pi(\xi \mid \mathbf{x}) = \frac{\pi(\theta, \xi \mid \mathbf{x})}{\pi(\theta \mid \mathbf{x}, \xi)}$$

Analogously, $f(x \mid \xi)$ can be obtained by by marginalizing the joint distribution of x and θ given ξ

$$f(x \mid \xi) = \int \pi(x, \theta \mid \xi) d\theta = \int f(x \mid \theta) \pi(\theta \mid \xi) d\theta$$

- For conjugate priors, we have an explicit expression not only for $\pi(\theta \mid x, \xi)$ but often also for $f(x \mid \xi)$
- ▶ Usually, the final integration over ξ to obtain $\pi(\theta \mid x)$ cannot be done in closed form, and some approximation is needed

Examples of hierarchical models

- Normal means
- ► Hierarchical Poisson model
- One-way ANOVA model

Normal means example

Assume the following model:

- Likelihood: $X_1, \ldots X_n$ i.i.d. $\sim \mathcal{N}(\theta, 1)$
- Hierarchical prior:
 - \bullet $\theta \sim \mathcal{N}(\mu, \tau^2), \mu \text{ fix}$
 - $ightharpoonup au^{-2} \sim \mathsf{Gamma}(\gamma, \lambda)$

See blackboard for more details

Clicker question

Hierarchical Poisson model example

Assume the following model:

- ▶ Likelihood: X_j independent \sim Poisson (θ_j) , j = 1, 2, ..., J
- Hierarchical prior:
 - ▶ θ_j i.i.d. ~ Gamma(γ, λ)
 - Some prior $\pi(\gamma, \lambda)$

See blackboard for more details

Clicker question

One-way ANOVA model example

Assume the following model:

- Likelihood: $y_{ij} = \theta_i + \varepsilon_{ij}$, ε_{ij} i.i.d $\sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$, $j = 1, \ldots, n_i, i = 1, \ldots, I$
- Hierarchical prior:
 - $ightharpoonup heta_i ext{ i.i.d } \sim \mathcal{N}(\mu, \tau^2)$
 - For simplification, σ_{ε} is assumed to be known
 - $\pi(\mu, \tau^2) = \pi(\mu)\pi(\tau^2)$ (specified later)

See blackboard for more details

Clicker question