TD D'ÉLECTRICITÉ

Filières : LEESM, LEESI Série N° : 3

EXERCICE: 1

Une couronne cylindrique (C) d'axe Z'Z et de rayon intérieur R_1 et extérieur R de longueur infinie, porte une charge volumique répartie entre les surfaces de deux cylindres avec une densité constante $\rho > 0$ (Figure 2)

- 1. Précisez les invariances du champ électrostatique $\vec{E}(M)$ et déterminer sa direction ?
- **2.** En utilisant le théorème de Gauss, donner les expressions du champ électrostatique $\vec{E}(M)$ en tout point M de l'espace :

a.
$$r \le R_1$$

b.
$$R_1 \le r \le R$$

c.
$$r \ge R$$

- 3. On fait tendre $R_1 \rightarrow R$, la charge totale de la distribution volumique de la couronne cylindrique est alors répartie sur la surface d'un cylindre creux de longueur infinie et de rayon R. Soit σ la densité de charges du cylindre creux.
 - **a.** Exprimer σ en fonction de ρ , R_1 et R?
 - **b.** Retrouver les expressions de $\vec{E}(M)$ crée par un cylindre creux ?
- **4.** On se place maintenant dans le cas où R₁ = 0 et on suppose que le rayon R est négligeable devant la longueur du cylindre chargé. La charge totale de la distribution volumique peut être considérée répartie uniformément sur un fil infini. On désigne par λ la densité linéique du fil.
 - **a.** Exprimer λ en fonction de ρ et R ?
 - **b.** En déduire l'expression du champ $\vec{E}(M)$ crée par le fil ?
 - c. Retrouver $\vec{E}(M)$ crée par un fil de longueur infinie à partir du théorème de Gauss ?
 - **d.** En déduire l'expression du potentiel V(M) crée par le fil infini à une constante additive près qu'on notera K?

EXERCICE: 2

Une sphère de rayon R portant une densité volumique uniforme de charge ρ (constante).

- 1. Déterminer la charge totale de la sphère Q?
- 2. Calculer son énergie électrostatique en utilisant la relation :

$$w = \iiint \frac{1}{2} \varepsilon_0 E^2 d\tau$$

On donne : $d\tau = r^2 \sin \theta \ d\varphi \ d\theta \ dr$ en coordonnées sphérique.

1/2 Pr OUACHA

(C)

EXERCICE: 3

On considère deux fils rectilignes, de longueurs infinies, portant des distributions linéiques de charges de densités constantes $+\lambda$ et $-\lambda$ ($\lambda > 0$). Ces deux fils sont parallèles entre eux et perpendiculaire au plan (Oxy). On désigne par A(-a/2, 0) et B(+a/2, 0)0) les intersections respectives du fil chargé (- λ) et celui chargé à $(+ \Lambda)$ avec le plan (Oxy).

Figure 2

L'origine O du repère (Oxy) est le milieu de AB (AB = a), (Figure 2). Soit M un point du plan (Oxy) repéré en coordonnées polaires par (r, θ) avec r = OM et $\theta = (\overrightarrow{AB}, \overrightarrow{OM})$.

On désigne par V(M) et $\vec{E}(M)$ respectivement le potentiel et le champ électrostatique crées par les deux fils en un point M très éloigné des fils : r >> a.

- 1. En utilisant les résultats de Ex 1-4-d), donner les expressions du potentiel $V_{-\delta}(M)$ crées par le fil en A et du potentiel $V_{+, i}(M)$ crée par le fil en B (à constante additive près).
- 2. Sachant que le point O est pris comme origine du potentiel : V(O) = 0, en déduire l'expression du potentiel V(M) crée par les deux fils ?
- 3. Dans le cadre de l'approximation dipolaire $(r \gg a)$, exprimer les distance AM et BM en fonction de r, a et θ ?
- **4.** Montrer que : $V(M) = \frac{\Lambda a \cos \theta}{2\pi \varepsilon_0 r}$
- 5. Montre que les deux fils chargés se comportent comme un dipôle électrostatique isolé dont on précisera le moment dipolaire \vec{p} ?
- 6. En déduire les composantes radiale et orthoradiale du champ électrostatique $\vec{E}(M)$, son module et sa direction?

On donne: * $\overrightarrow{grad}f = \frac{\partial f}{\partial r}\overrightarrow{u}_r + \frac{1}{r}\frac{\partial f}{\partial \theta}\overrightarrow{u}_\theta + \frac{\partial f}{\partial z}\overrightarrow{u}_Z$ où f(r, θ , z) est une fonction scalaire * pour x << 1, Log $(1+x) \cong x$ (au 1^{er} ordre)

EXERCICE: 4

Soient trois conducteurs A_1 , A_2 et A_3 en équilibre électrostatique ayant les potentiels respectif V₁, V₂ et V₃. La condition des lignes de champ est donnée sur la figure . On prend $V(\infty)=0$

- **1.** Comparer les potentiels V_1 , V_2 et V_3 ?
- **2.** Donner les signes de V_1 , V_2 et V_3 ?
- 3. Peut- ou avoir des lignes de champ qui commencent en A2 et qui partent vers l'infini?

EXERCICE: 5

On charge un condensateur de capacité C sous une différence de potentiel V₀. Puis, ce condensateur étant isolé on le relie à un condensateur de capacité C' initialement neutre.

- 1. Calculer les charge portées par chacun des condensateurs en fonction de C, C' et V₀?
- 2. Calculer la différence de potentiel V aux bornes de C et C' en fonction de C, C' et V₀?

2/2 Pr OUACHA