

Business Analytics

Lecture 7

Simple Linear Regression

Dr Yufei Huang

Review

- Session 6: Hypothesis Testing
 - Null Hypothesis vs. Alternative Hypothesis
 - Set confidence level and significance level
 - Computing the p-value, t-stats
 - Rejecting H₀ to accept H_A requires strong statistical evidence
- Session 7 and 8: simple statistical tool for studying relationships:
 - Regression analysis

Example: Armand's Pizza

Restaurant i	Student Population ('000) X _i	Annual Sales (\$ '000) Y _i
1	2	58
2	6	105
3	8	88
4	8	118
5	12	117
6	16	137
7	20	157
8	20	169
9	22	149
10	26	202

SCHOOL OF MANAGEMENT

Introduction

- Regression refers to the statistical technique of modeling the relationship between variables.
- In simple linear regression, we model the relationship between two variables.
- One of the variables, denoted by Y, is called the dependent variable and the other, denoted by X, is called the independent variable.
- The model we will use to depict the relationship between X and Y will be a straight-line relationship.
- A graphical sketch of the pairs (X, Y) is called a scatter plot.

The Goal

- The basic idea in simple linear regression is to
 - (i) establish a relationship between a dependent variable Y and an independent variable X
 - (ii) quantify the magnitude of the impact of X on Y
 - (iii) find the 95% prediction interval for forecasting

Armand's Pizza: Scatter Plot

Any relationship between Student Population and Annual Sales? We need a statistical model to answer this question.

Model Building

A statistical model separates the systematic component of a relationship from the random component.

In regression, the systematic component is the overall linear relationship, and the random component is the variation around the line.

The Simple Linear Regression Model

The population simple linear regression model:

$$Y= \beta_0 + \beta_1 X + \varepsilon$$
Nonrandom or Random
Systematic Component
Component

where

- Y is the dependent variable, the variable we wish to explain or predict
- X is the independent variable, also called the predictor variable
- ϵ is the error term, the only random component in the model, and thus, the only source of randomness in Y
- β_0 is the intercept of the systematic component of the regression relationship
- β_1 is the slope of the systematic component

Assumptions of the Model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- β_0 Y-intercept of the line
- β_1 the slope of the line
- ε the error
- 1. The error ε is a random variable with mean 0.
- 2. The variance of ε , denoted as σ 2, is the same for all values of X.
- 3. The values of ε are independent.
- 4. The error term ε is Normally distributed.

How to Estimate?

Estimation of a simple linear regression relationship involves finding estimated or predicted values of the intercept and slope of the linear regression line.

The estimated regression equation:

$$Y = b_0 + b_1 X + \varepsilon$$

where

- b_0 estimates the intercept of the population regression line, β_0 ;
- b_1 estimates the slope of the population regression line, β_1 ;
- ε stands for the observed errors the residuals from fitting the estimated regression line $b_0 + b_1 X$ to a set of n points.

The estimated regression line:

$$\hat{Y} = b_0 + b_1 X$$

where \hat{Y} (Y-hat) is the value of Y lying on the fitted regression line for a given value of X.

The method of least squares

- To find coefficients b₀, b_{1,}
- we denote each data point by (x_i,y_i).
- The line gives us an approximated value:
 ŷ_i =b₀+b₁x_i.
- The approximation error of each point is $e_i = |y_i \hat{y}_i|$.
- The Sum of Squares for Errors in regression is:

SSE =
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

To find b₀, b₁, which minimise SSE

SSE =
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Theorem. The following b_0 and b_1 minimise SSE:

(Least Squares Estimator)

$$b_{1} = \frac{SS_{xy}}{SS_{x}},$$

$$b_{0} = \overline{y} - b_{1}\overline{x},$$

where $\overline{x} = mean(X)$, $\overline{y} = mean(Y)$

$$SS_x = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i\right)^2$$

$$SS_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right).$$

What is b₁'s sign in the following relationships?

- It is important to check whether b₁ is significantly different that 0.
- How? Hypothesis testing.

Hypothesis testing for a linear relationship

Hypotheses:

 $H_0: b_1=0$

 $H_1: b_1 \neq 0.$

The test statistic for the existence of a linear relationship between X and Y can be calculated in Excel.

Armand's Pizza: Excel Output

Λ N Ι Ο \ / Λ

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	14200	14200	74.24837	2.54887E-05
Residual	8	1530	191.25		
Total	9	15730			

Intercept 60 9.22603481 6.503336 0.000187 38.72471182 81.27528818 X Variable 5 0.580265238 8.616749 2.55E-05 3.661905096 6.338094904 Estimated b1 Standard error for b1 Test statistic based on confidence level defined for b1		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Estimated b1 Standard error for b1 Test statistic based on confidence for b1	Intercept	60	9.22603481	6.503336	0.000187	38.72471182	81.27528818
Estimated b1 Standard error for on confidence for b1	X Variable	5	0.580265238	8.616749	2.55E-05	3.661905096	6.338094904
		Estimated b1		or for on	confidence	Confide	

SCHOOL OF MANAGEMENT

Regression Results

$$Y = 60 + 5*X$$

Interpretation of coefficients:

- b₀ =60, is the Y-intercept of the line
- b₁ =5, is the slope of the line
- b_1 = 5 means that for a unit increase in X-value, the value of Y increases by 5 units

Forecasting: fit a line using the Least Squares Method:

- Y = 60 + 5X
- Forecast sales for X = 10: y = 60 + 5 * 10 = 110

Significant Relationship

The coefficient is deemed significant at 95% confidence level:

- If the p-value associated with a coefficient is less than 0.05 (the significance level)
- If the t-stat associated with a coefficient is larger than 1.96 (normal distribution) or t(n-2,0.025) (for t distribution)
- If 0 is outside the 95% confidence interval

Then we can reject the null hypothesis ($b_1=0$), namely there is a relationship between X and Y

Is there a relationship?

b₁ is the slope of the line.

Make sure within 95% confidence interval, the line doesn't go flat!

(mean slope) \pm 1.96 (Standard Error of b_1) SCHOOL OF

Is there a relationship?

(mean slope) + 1.96 (Standard Error of b_1)

Make sure within 95% confidence interval, the line doesn't go flat!

(mean slope) \pm 1.96 (Standard Error of b_1)

SCHOOL OF MANAGEMENT

Uncertainty in Forecast

- Prediction Interval
 - With a 95% confidence level, the <u>individual</u> value of y for a given value of x will lie in the interval:

 $\hat{y} \pm 1.96 \times \text{standard error of the estimate}$

When t-distribution is used (i.e., for small sample size), 1.96 needs to be replaced by $t_{(n-2,0.025)}$

- For x = 10, the 95% prediction interval is:

110±2.306×13.829

How Good Is the Fit?

- R² measures how well the regression line fits the data. In the pizza example, R² = 0.90. This means that 90% of the variation in sales is due to the variation in student population. The other 10% of the variation remains unexplained. (0 ≤ R² ≤ 1)
- R² is one of several statistics that should be used in evaluating the quality of the regression model.

≜UCL

Summary

- Regression is useful in testing the relationship between two variables and in forecasting. Excel can generate the regression results.
- How to interpret them:
- 1. Write the equation of the estimated line
 - Sales = $b_0 + b_1$ *(student population) + ε
- 2. Is the coefficient, b₁, significant? Check,
 - p-value < 0.05?</p>
 - t-stats > Z-value from normal distribution (or t-value from t-distribution)
 - does the 95% interval for the coefficient contain 0?
- 3. What is the point forecast for the mean and the 95% prediction interval?

 $\hat{y} \pm 1.96$ standarderror of the estimate

When t-distribution is used (i.e., for small sample size), 1.96 needs to be replaced by t_(n-2,0.025)

4. How good is the fit? Look at the R^2 .

Excel Example: Armand's Pizza

- Download data file from Moodle: Armand's Pizza.xlsx
- Draw scatter plot
- Run regression and interpret the results
- Plot predicted value and draw regression line.
- Hints. 1. For scatter charts in excel, go to INSERT -> Charts -> Scatter
 - 2. For regression in excel, go to DATA -> Data Analysis -> Regression
 - 3. Tick "Line Fit Plots" for the fitted line in regression .

Mini Case: 2016 Rio Olympic Games

- Download Mini Case: 2016 Rio Olympic Games and the related data file from Moodle, and follow the instructions.
 - Hints. 1. For scatter charts in excel, go to INSERT -> Charts -> Scatter
 - 2. For regression in excel, go to DATA -> Data Analysis -> Regression
 - 3. Tick "Line Fit Plots" for the fitted line in regression .

Reference

Chapter 10 of:

Aczel, A., & J. Sounderpandian. 2008. Complete Business Statistics. McGraw-Hill/Irwin, Seventh Edition

