Eserciziario di Dinamica Non Lineare

Edoardo Gabrielli

 $26~\mathrm{marzo}~2021$

Indice

1		roduzione ai sistemi dinamici	2
	1.1	Definire un sistema dinamico	2
	1.2	Esistenza ed unicità delle soluzioni di un IVP	2
	1.4	Mappe ricorsive	2
		Flusso di Fase	
	1.7	Soluzioni Speciali di Sistema dinamico	3
		Campi vettoriali	
2		dio della stabilità delle soluzioni	5
	2.1	Soluzioni stazionarie	5
	2.2	Stabilità delle soluzioni	6
	2.3	Studio della stabilità mediante linearizzazione	6
	2.4	Equazioni differenziali lineari a coeff. costanti	7

Capitolo 1

Introduzione ai sistemi dinamici

1.1 Definire un sistema dinamico

Esercizio 1.1.1: (Σ_2 (della shift map) spazio metrico) Dimostrare che Σ_2 è uno spazio metrico.

Esercizio 1.1.2: (Sulla continuità di σ (per la shift mapt)) dimostrare che σ è continua in $\overline{s} = (0, 0, \dots, 0)$.

1.2 Esistenza ed unicità delle soluzioni di un IVP

Esercizio 1.2.1: (Studio di IVP 1)

Studiare al variare del parametro \boldsymbol{x}_0 il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2\\ x(0) = x_0 \end{cases} \tag{1.2.1}$$

Esercizio 1.2.2: (Studio di IVP 2)

Studiare al variare del parametro a il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{x} \\ x(0) = a \end{cases} \tag{1.2.2}$$

1.4 Mappe ricorsive

Esercizio 1.4.1: (Sulla mappa di Arnold)

Dimostrare che la mappa di Arnold è invertibile se $0 \le k \le 1$.

Soluzione:

Figura 1.1: Mappa di Arnold al variare di k con $\omega = 0.4$ fissato.

Come possiamo vedere in figura 1.1 la mappa non è invertibile per tutti i valori di k.

Prendiamo ad esempio la mappa con k=0.1 e valutiamo ¹ il punto $x_n=0$: la linea blu in figura 1.1, che rappresenta la mappa, a destra di questo punto vale $\omega + \epsilon$, a sinistra di questo punto vale $\omega - \epsilon$. La pendenza della curva in questo punto è quindi positiva.

La presenza della perturbazione oscillante fa si che i due "rami" della mappa si avvicinino l'un l'altro "distorcendosi", di conseguenza se la perturbazione è abbastanza forte è possibile che in un punto tra 0 e 1 il ramo in alto e quello in basso abbiano la stessa x_{n+1} : si perde l'iniettività e quindi l'invertibilità.

Nel grafico la perdita di iniettività si ha quando la mappa oltrepassa la linea tratteggiata (che rappresenta la separatrice tra i rami).

Per capire quando questo succede possiamo studiare la pendenza della mappa nei pressi di $x_n = 0$ (considerandola di fatto come una funzione continua).

$$x_{n+1} = x_n + \omega + kx_n = (1 - k)x_n + \omega. \tag{1.4.1}$$

Se in un intorno (destro) di questo punto la pendenza della curva è negativa allora significa che la mappa è scesa sotto ω e quindi ha perso l'iniettività: deve essere $k \leq 1$ per avere pendenza positiva.

1.6 Flusso di Fase

Esercizio 1.6.1: (Sul flusso di fase)

Verificare la validità delle 3 proprietà per:

$$\varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0\\ 0 & e^{\Gamma t} \end{pmatrix}. \tag{1.6.1}$$

1.7 Soluzioni Speciali di Sistema dinamico

Esercizio 1.7.1: (Sistema in \mathbb{R}^2)

Prendiamo il seguente:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = nt^{n-1}y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -nt^{n-1}x \end{cases}$$
 (1.7.1)

Dimostrare che la soluzione è:

$$x(t) = A\sin(t^n) + B\sin(t^n)$$

$$y(t) = A\cos(t^n) - B\sin(t^n).$$
(1.7.2)

Verificare che $x^2 + y^2 = A^2 + B^2$.

Le soluzioni formano un cerchio di raggio $R^2 = A^2 + B^2$. Nonostante questo la soluzione non è periodica perché:

$$\nexists T \text{ t.c. } t^u = (t+T)^u.$$
(1.7.3)

Esercizio 1.7.2: (Verifica di non periodicità)

Data la seguente equazione differenziale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = (1 + \sin(t)) \cdot x = F(x, t). \tag{1.7.4}$$

Dimostrare che, anche se il coefficiente $1 + \sin t$ è periodico, la soluzione non è periodica risolvendo il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = (1+\sin t) \cdot x\\ x(0) = x_0 \end{cases} \tag{1.7.5}$$

Dimostrare che la seguente funzione è soluzione:

$$x(t) = x_0 e^{1+t-\cos t}. (1.7.6)$$

e che questa funzione non è mai periodica $\forall x_0 \in \mathbb{R}$.

¹Questa corrisponde (circa) alla circle rotation map

Esercizio 1.7.3: (Esercizio con Simulazione)

Presa la seguente equazione differenziale:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g}{l}\sin(\theta) - \frac{\gamma}{ml}\frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{r}{ml}\sin(\Omega t). \tag{1.7.7}$$

Ridefinire la variabile temporale e gli opportuni parametri per ricondurlo a:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\sin(\theta) - b\frac{\mathrm{d}\theta}{\mathrm{d}t} + A\sin(\Omega t). \tag{1.7.8}$$

Verificare numericamente che per $b=0.05,\,a=0.6,\,\Omega=0.7$ il sistema presenta un comportamento asintotico complesso.

1.8 Campi vettoriali

Esercizio 1.8.1: (Su campo vettoriale)

Preso il seguente campo vettoriale:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -(1+x^2). \tag{1.8.1}$$

e sia $x(t_0) = x_0$.

• Verificare che una soluzione è:

$$x(t) = -\tan(t - t_0 - \arctan(x_0)). \tag{1.8.2}$$

• Verificare che $x(t+\tau)$ è ancora soluzione.

Esercizio 1.8.2: (Teorema di Shift e sistemi non autonomi 1)

Preso il sistema

$$\frac{\mathrm{d}x}{\mathrm{d}t} = e^t; \qquad x(0) = x_0.$$
 (1.8.3)

Dimostrare che la soluzione è:

$$x(t) = e^t - 1 + x_0. (1.8.4)$$

e verificare che il teorema di invarianza per shift non è verificato.

Esercizio 1.8.3: (Teorema di Shift e sistemi non autonomi 2)

Dato il sistema

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t); \qquad \text{Soluzione: } \boldsymbol{x}_s(t). \tag{1.8.5}$$

Verificare che, posti $\boldsymbol{x}_{\tau}(t)$ e F_{τ} :

$$\boldsymbol{x}_{\tau}(t) = \boldsymbol{x}_{s}(t+\tau); \qquad F_{\tau}(\boldsymbol{x}_{\tau}, t) = F(\boldsymbol{x}_{\tau}, t+\tau). \tag{1.8.6}$$

Allora si ha che $x_s(t+\tau)$ è soluzione di:

$$\frac{\mathrm{d}\boldsymbol{x}_{\tau}}{\mathrm{d}t} = F_{\tau}(\boldsymbol{x}_{\tau}, t). \tag{1.8.7}$$

In pratica quindi lo shift temporale per un sistema non autonomo richiede di traslare anche il funzionale F.

Esercizio 1.8.4: (Esercizi sul teorema)

Determinare i campi vettoriali associati ai seguenti flussi:

- $\varphi(t,x) = \frac{xe^t}{xe^t x + 1}$.
- $\varphi(t,x) = \frac{x}{(1-2x^2t)^{1/2}}$.
- $\varphi(t, x, y) = (xe^t, \frac{y}{1-yt}).$

Capitolo 2

Studio della stabilità delle soluzioni

2.1 Soluzioni stazionarie

Esercizio 2.1.1: (Stati Stazioari)

Trovare gli stati stazionari dei seguenti SD a tempo continuo autonomi:

• 1)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \epsilon x \frac{\mathrm{d}x}{\mathrm{d}t} + x = 0 \tag{2.1.1}$$

2)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + x^3\\ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y \end{cases}$$
 (2.1.2)

• 3)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y - \mu x - x^2 \end{cases}$$
 (2.1.3)

Esercizio 2.1.2: (Punto fisso della mappa logistica)

Dimostrare che per $0 \le \mu \le 1$ esiste solo uno stato stazionario.

Suggerimento: utilizzare l'espressione

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mu - 2\mu x\tag{2.1.4}$$

con $y = \mu x(1-x)$ e fare uso della geometria analitica.

Esercizio 2.1.3: (Punti stazionari di Mappe ricorsive)

Determinare gli stati stazionari delle seguenti mappe ricorsive:

1.

$$\begin{cases} x_{k+1} = x_k \\ y_{k+1} = x_k + y_k \end{cases}$$
 (2.1.5)

2.

$$\begin{cases} x_{k+1} = x_k^2 \\ y_{k+1} = x_k + y_k \end{cases}$$
 (2.1.6)

2.2Stabilità delle soluzioni

Esercizio 2.2.1: (Oscillatore armonico)

Dato il sistema dinamico a tempo continuo

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x \end{cases} \tag{2.2.1}$$

Dimostrare che $V_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ è stabile secondo Lyapunov e dire se tale soluzione è asintoticamente stabile.

Esercizio 2.2.2: (Stabilità soluzione)

Dato il SD $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \text{ con } \mathbf{x} \in \mathbb{R}^n \text{ e } F : \mathbb{R}^n \to \mathbb{R}^n.$ Assumiamo che $\exists \alpha, \beta \text{ con } (\beta > 0)$:

$$F(\boldsymbol{x}) \cdot \boldsymbol{x} \le \alpha \left| \boldsymbol{x} \right|^2 + \beta \tag{2.2.2}$$

- Dimostrare che le soluzioni sono globalmente definite.
- Dimostrare, nel caso $\alpha < 0$, che esiste r (raggio di una palla in \mathbb{R}^n) e T tali per cui se t > T allora |x(t)| < r.
- Determinare r.

2.3 Studio della stabilità mediante linearizzazione

Esercizio 2.3.1: (Calcolo di DF)

Presa la mappa:

$$F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2^2 \\ x_1 x_2 - x_2 \end{pmatrix} \tag{2.3.1}$$

Calcolare $DF(\mathbf{V}_0)$ nel punto $\mathbf{V}_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Esercizio 2.3.2: (Trovare la tabella di Routh)

Determinare la tabella di Routh corrispondente al seguente polinomio:

$$P(x) = x^3 + 6x^2 + 9x + 4 (2.3.2)$$

Verificare tramite il teorema di Routh-Hurwitz che tutte le radici hanno parte reale negativa. (Le radici sono -1, -4, -1).

2)

Come per il caso precedente analizzare il polinomio:

$$P(x) = x^4 - 4x^3 - 10x^2 + 28x - 15 (2.3.3)$$

Esercizio 2.3.3: (Sulla stabilità degli stati stazionari)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\delta y - \mu x - x^2 \end{cases}$$
 (2.3.4)

Supporre che $\delta, \mu \neq 0$.

- 1. Determinare gli stati stazionari e studiarne la stabilità mediante la linearizzazione del sistema dinamico nell'intorno dello stato stazionario.
- 2. Studiare la stabilità degli stati stazionari utilizzando il teorema di Routh-Hurwitz e confrontare con i risultati in 1.

2.4 Equazioni differenziali lineari a coeff. costanti

Esercizio 2.4.1: (Phase Portrait 3D)

Disegnare il Phase Portrait del seguente SD:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = x_1\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = x_2\\ \frac{\mathrm{d}x_3}{\mathrm{d}t} = -x_3 \end{cases}$$
 (2.4.1)

Esercizio 2.4.2: (Autovettori del sistema e base di autovettori)

Dato il sistema dinamico:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad A = \begin{pmatrix} 3 & 1\\ 0 & 3 \end{pmatrix} \tag{2.4.2}$$

- 1. Trovare autovalori ed autovettori.
- 2. Passare alla rappresentazione $y = P^{-1}x$.
- 3. Determinare x(t).

Esercizio 2.4.3: (Dinamica a partire dalla forma di Jordan)

Sia S dato dalla forma di Jordan

$$S = \begin{pmatrix} \Lambda & 0 \\ 0 & \mu \end{pmatrix} \tag{2.4.3}$$

Dimostrare che:

$$e^{St} = \begin{pmatrix} e^{\Lambda t} & 0\\ 0 & e^{\mu t} \end{pmatrix} \tag{2.4.4}$$

Esercizio 2.4.4: (Applicazione delle forme di Jordan)

Dato il sistema dinamico

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x} \quad \boldsymbol{x} \in \mathbb{R}^2, A = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$
 (2.4.5)

- Trovare la soluzione.
- Disegnare il Phase Portrait.

Esercizio 2.4.5: ()

Sia A una matrice 2×2 reale. Supponiamo che A abbia 2 autovalori complessi coniugati:

$$\Lambda_1, \Lambda_2 = a \pm ib \quad b \neq 0 \tag{2.4.6}$$

Dimostrare che esiste una matrice invertibile P tale che:

$$P^{-1}AP = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \tag{2.4.7}$$