Eksamen på Økonomistudiet. Sommeren 2012

DYNAMISKE MODELLER

Valgfag på 2. årsprøve

Mandag den 4. juni 2012

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2. ÅRSPRØVE 2012 S-2 DM ex

SKRIFTLIG EKSAMEN I DYNAMISKE MODELLER

Mandag den 4. juni 2012

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved

$$\forall z \in \mathbf{C} : P(z) = z^4 + 4z^3 + 7z^2 + 6z + 2.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + 4\frac{d^3x}{dt^3} + 7\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 2x = 0$$

og

$$(**) \qquad \frac{d^4x}{dt^4} + 4\frac{d^3x}{dt^3} + 7\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 2x = 4t^2 + 26t + 32.$$

(1) Vis, at

$$\forall z \in \mathbf{C} : P(z) = (z^2 + 2z + 1)(z^2 + 2z + 2),$$

og bestem dernæst alle rødderne i polynomiet P.

(2) Bestem mængden af de r>0, så alle rødderne i polynomiet P ligger i mængden

$$K(r) = \{ z \in \mathbf{C} \mid |z| \le r \}.$$

- (3) Bestem den fuldstændige løsning til differentialligningen (*), og godtgør, at (*) er globalt asymptotisk stabil.
- (4) Bestem den fuldstændige løsning til differentialligningen (**).
- (5) Lad $a \in \mathbf{R}$. Bestem de $a \in \mathbf{R}$, så differentialligningen

$$\frac{d^4x}{dt^4} + 4\frac{d^3x}{dt^3} + a\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 2x = 0$$

er globalt asymptotisk stabil.

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 4 \\ 0 & 2 & 0 \end{array}\right)$$

og vektordifferentialligningen

$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

- (1) Bestem egenværdierne og de tilhørende egenrum for matricen A.
- (2) Bestem den fuldstændige løsning til vektordifferentialligningen (§).
- (3) Bestem resolventen P(t,0) (svarende til punktet $t_0 = 0$) for vektordifferentialligningen (§).
- (4) Idet

$$P(t,0) = (\mathbf{p}_1(t) \ \mathbf{p}_2(t) \ \mathbf{p}_3(t)),$$

skal man bestemme løsningerne $\mathbf{p}_1(t) + 2\mathbf{p}_3(t)$ og $\mathbf{p}_1(t) + 2\mathbf{p}_3(t) + 3\mathbf{p}_2(t)$.

Opgave 3. Vi betragter vektorfunktionen $\mathbf{f}: \mathbf{R}^2 \to \mathbf{R}^2$ givet ved

$$\forall (x,y) \in \mathbf{R}^2 : \mathbf{f}(x,y) = (x^2 + y^2 - xy, x + 2y^3).$$

- (1) Bestem Jacobimatricen (funktionalmatricen) $D\mathbf{f}(x,y)$ for vektorfunktionen \mathbf{f} i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (2) Vis, at Jacobimatricen $D\mathbf{f}(1,1)$ er regulær, og bestem den inverse matrix $(D\mathbf{f}(1,1))^{-1}$.
- (3) Løs vektorligningen

$$\begin{pmatrix} u \\ v \end{pmatrix} = \mathbf{f}(1,1) + D\mathbf{f}(1,1) \begin{pmatrix} x-1 \\ y-1 \end{pmatrix}$$

med hensyn til

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
.

(4) Vi betragter mængden

$$K = \{(x, y) \in \mathbf{R}^2 \mid -1 \le x \le 1707 \land 0 \le y \le 1783\}.$$

Vis, at mængden

$$\mathbf{f}(K) = \{(u, v) \in \mathbf{R}^2 \mid \exists (x, y) \in K : (u, v) = \mathbf{f}(x, y)\}$$

er kompakt.

Opgave 4. Vi betragter funktionen $F: \mathbf{R}^3 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (t, x, y) \in \mathbf{R}^3 : F(t, x, y) = t^2 x + y^2,$$

og integralet

$$I(x) = \int_0^1 \left(t^2 x + \left(\frac{dx}{dt} \right)^2 \right) dt.$$

- (1) Vis, at for eth vert $t \in \mathbf{R}$ er funktionen F = F(t,x,y) konveks som funktion af $(x,y) \in \mathbf{R}^2$.
- (2) Bestem den funktion $x^*=x^*(t)$, som minimerer integralet I(x), når betingelserne $x^*(0)=1$ og $x^*(1)=3$ er opfyldt.