Algoritmi e Strutture Dati Lezione 7

12 ottobre 2022

Ricerca in un array

```
input Array A, elemento x
output Indice i t.c. A[i] = x
-1, se A non contiene x
```


0 1 1 m 1 m1 FUNTIONE ricercalic (Array A, indice sx, indice dx, clemestox) - indice IF dx < 2x THEN RETURN -1 ELSE m = (sx+dx)/2 // div intera IF X = A[m] THEN RETURN M ELSE IF X (A[m] THEN RETURN ricercaRie (A, SX, m, x) ECSE. RETURN ricerca Ric (A, m+1, sx, x) ricercalizaria (Array A[0..n-1],
elemato x) -> indice ALGORATMO Vicerca Ric (A, D, n, x) RETURN

ALGORNIMO riceralizaria (Array A[0..n-1], elembro a) -> indice FUNTUNE ricercalic (Array A, indice sx, indice dx, clementox) 1- UNITED RETURN -1 RETURN Vicerca Ric (A, D, n, x) m = (sx+dx)/2 // die intera IF X = A[m] THEN RETURN M ELSE IF < A[m] THEN RETURN riceraRic (A, SX, m, x) ELSE REFLEN ricerco. Ric (A, m+1, dx, x) Spar ricerca 19 chanal dx= n sx= 0
2° i < N i-esine chanuta < h $n=2^{1-1}$ $\frac{n}{2^{i-1}}=1$ i= 1+ lg2 n per arrivale arrivale diamata It totale chicanase corsia al più 2+ Ben

FUNTIONE ricercatic (Array A, indice sx, indice ex, clemestox) ALGORNTMO riceralizaria (Array A[0..n-1], elemento a) -> indice 1 dr 2 2x THEN RETURN -1 RETURN Vicerca Ric (A, D, n, x) m = (sx+dx)/2 // die intera IF X = A[m] THEN RETURN M ELSE IF X (A[m] THEN RETURN riceraRia (A, SX, m, x) ELSE REFLEN ricerafic (A, m+1, dx, x) chanate Econsie 5 2+ Can Casto Cartanti O(1) Polen: 7 temps O (25 n) al pi Q (lg n) Speno: record d'atturn Telo soncy Españo d' un vecor d O(1) =D Spario O (leg n)

Algoritmi di ordinamento (sort)

Il problema dell'ordinamento

- Ordinamento interno
 Dati da ordinare in memoria centrale
- Ordinamento esterno
 Dati da ordinare in memoria di massa

Tecniche differenti:

- ⇒ Accesso diretto agli elementi → Tiriaere TP ARRAY
- → Accesso a blocchi di dati Lentezza hardware periferiche

Ordinamento interno

Cosa ordiniamo?

- Vettori (array) di strutture complesse, come oggetti o record (struct in Go e in C)
- Un particolare *campo* è scelto come *chiave* per l'ordinamento
- Per semplicità negli esempi ordiniamo array di interi

Stabilità

Un algoritmo di ordinamento è detto *stabile* se preserva l'ordine relativo tra record con la medesima chiave

Complessità degli algoritmi di ordinamento

- Studieremo principalmente algoritmi di ordinamento basati su confronti tra chiavi
- Spazio Considereremo la memoria utilizzata in aggiunta all'array da ordinare (inclusa la memoria sullo stack nel caso di algoritmi ricorsivi)
- Tempo Stimeremo la complessità in *tempo* di questi algoritmi, in funzione della lunghezza del vettore da ordinare, calcolando prima di tutto il *numero di confronti tra chiavi*

Complessità degli algoritmi di ordinamento

Perché il numero di confronti?

- Operazioni "più costose" utilizzate da questi algoritmi
- Se ciascun confronto viene effettuato in tempo costante il numero di confronti fornisce una stima del tempo di calcolo
- In generale
 il tempo di calcolo può essere stimato moltiplicando
 il numero di confronti per il tempo utilizzato da ciascun confronto

Alcune tecniche di ordinamento interno

basate su confronti

Algoritmi elementari

- per selezione
- per inserimento
- "a bolle"

A(n2) consons

selectionSort insertionSort bubbleSort

Alcune tecniche di ordinamento interno

basate su confronti

Algoritmi elementari

- per selezione
- per inserimento
- "a bolle"

insertionSort bubbleSort

Algoritmi avanzati

- per fusione
- veloce
- basato su "heap"

mergeSort
quickSort

selectionSort

Alcune tecniche di ordinamento interno

basate su confronti

Algoritmi elementari

per selezione

per inserimento

"a bolle"

selectionSort

insertionSort

bubbleSort

Algoritmi avanzati

per fusione

veloce

basato su "heap"

mergeSort

quickSort

heapSort

Sono tutti *in loco*, cioè non necessitano di strutture ausiliarie, eccetto mergeSort e, per certi aspetti, quickSort

Non tutti sono seno stabili

Selection Sort Array A[0.. n-1] PASSO K (K = 0...n - 2)0 ... K-1 K KH ... n-1 Ordinati/ da ordinare positione definitiva più grand di A[o] < A[1] < ... < A[K-1] quell della 0 ... K-1 K KH -.. n-1 A[K-1] < A[j] Ordinati/ da ordnare Per ogni & >K positione definitiva più grand di quell. della A[o] < A[1] < ... < A[K-1] < AKT Parte SX A[K] SA[j] Per ogni j >K

Selection Sort ALGORISMO SERSIONSONT (OUTCOM A[D. 10-1]) FOR KEO TO n-2 DO Micerca la posizione del minimo in A[k.n-1] mek FOR j < K+1 TO n-1 DO IF A[j] < A[m] THEN $m \in \mathcal{I}$ Scambia A[m] con A[K] PASSO K (K=0..n-2) 0 ... K-1 K KH ... n-1 Ordinati/ da ordinaro positione definitiva più grandi di A[o] < N[1] < ... < N[x-1] quell dell 0 ... K-1 K KH ... n-1 A[K-1] < A[j] Ordinasi/ per ogni j >K più grandi di positione definitiva A[o] < A[1] < ... < A[K-1] < Ark? Parte SX ALK] < A[j] Per ogni j >K Selection Sort: nº di confronti

ALGORISMO SERSINGAT (OUTLON A[D. n-1]) FOR KEO TO n-2 DO

Micerca la posizione del minimo in A[K..n-1]

FOR j < K+1 TO n-1 DO IF A[\$] < A[m] THEN n-k-1 common?

 $m \in \bar{j}$

Scambia A[m7 con A[K]

Atot. Confront ?

 $\sum_{K=0}^{n-2} (n-K-1) = \sum_{i=1}^{n-1} (2 \frac{n(n-1)}{2}) = O(n^{2})$

Spario