机器学习第一次作业-朴素贝叶斯分析报告

姓名:王龙涛 学号:2014011406

Goal:

- Implement a Naïve Bayes classifier and test it on a real dataset
- Have basic ideas about:
 - How to implement and apply a machine learning algorithm on a practical dataset
 - How to evaluate its performance
 - · How to analyze your results

Naïve Bayes classifier:

- Assume that: $P(y|x_1,...,x_n) \propto P(y) \prod_{i=1}^n P(x_i|y)$
- Training
 - Estimate P(y) and $P(x_i|y)$
- Test
 - Output $\hat{y} = \operatorname{argmax}_{y} P(y) \prod_{i=1}^{n} P(x_i|y)$

Details:

- The Adult Data set: (http://archive.ics.uci.edu/ml/datasets/Adult)
- Aims at determining whether a person's income exceed a certain amount (50k)
- Each record (a line in the file) corresponds to a person, and has 15 attributes
- The last attributes, (<=50k or >50k), is the class label
- There are continuous and categorical attributes, and some of the values are missing (denoted by "?")

Evaluate the Performance:

- Train my classifier on training set and test it performance test set.
- The accuracy is calculated by \[\frac{\{\text{number of correctly classified records}\}}{\text{number test records}} \].

Issue 1, the impact of the size of training set:

采样率	test1	test2	test3	test4	test5	minimum	maximum	average
0.001	0.80075	0.79031	0.77354	0.7694	0.76973	0.7693631	0.800749	0. 780738
0.01	0.80837	0.8322	0.81715	0.8249	0.80941	0.8083656	0.832197	0.818402
0.05	0.84098	0.84276	0.83564	0.8405	0.83797	0.8356366	0.842762	0.839568
0.5	0.84325	0.83994	0.84116	0.8398	0.84307	0.8397518	0.843252	0.841434
1	0.83895					0.8389533	0.838953	0.838953

从上述实验结果可以看出,随着采样率的不断降低,实验预测结果大体上是呈下降趋势的。 这说明训练集越大,预测结果也就越好。

Issue 2, zero-probabilities:

如果测试集中出现了训练集中没有出现的属性, 我采用了平滑概率的方法,

$$P(x_i = k | y = c) = \frac{\{\#\{y = c, x_i = k\} + \alpha\}}{\#\{y = c\} + M\alpha}$$

对应的程序代码如下:

```
Double n_xi_y = accNum.get(idx).get(key).doubleValue() + bias;
Double n_y = accNum.get(14).get(pos).doubleValue() + cateNum[idx] * bias;
entry.setValue(n_xi_y / n_y);
```

其中,cateNum 为手动设置的 M 参数,大概估计各种属性的可能值。当样率为 1 时,bias 为 0.4 的预测结果最好。

Issue 3, continuous and missing attributes:

Continuous attributes:

对于连续属性,我将其进行了区间化,不同的连续属性分段的区间不同,通过估计和手动调整参数,得到较优的结果。

不同属性分段区间如下,对应代码为 QuickNaiveBayes.java 207 行,decreNum 函数:

3,4,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1					
Attribute	bucket size				
Age	6				
Fnlwgt	99000				
education-num	5				
capital-gain	4000				
capital-loss	220				
hours-per-week	9				

Missing attribute:

对于缺失属性,同不做处理相对比,把缺失当做一种全新的属性的预测结果更优。 所以,代码中,我把缺失当做了一种属性,进行分析和预测。

Program Details:

本程序使用 java 语言编写,安装环境为 jdk8, IDE 推荐 eclipse,程序代码文件为(其他文件没有使用,无需注意):

Design Ideas:

Class QuickNavieBayes:

quickInit()设计用于程序的变量的初始化;quickInfoReader()设计用于从训练集文件中读入数据并解析与统计。quickParseInfo()设计用于数据的解析和统计,decreNum()设计用于连续数据的离散化,程序参数为实际调整至最优。quickPosCal()设计用于计算不同属性的概率,便于朴素贝叶斯使用。quickNavieBayes()设计用于预测不同属性结合的结果。

Class MainDriver:

main()程序入口,调用朴素贝叶斯类,实现程序的调用。

Design Results:

最开始的情况下,即没有加入任何的优化,预测成功率在 72%左右,之后加入了连续属性区间离散化的优化之后,成功率提升至了 80%左右,在之后,考虑到测试集中空属性的问题,加了平滑概率的优化之后,成功率提高到了 83.0%。

但是同其他人做出的 NavieBayes 数据统计结果进行对比,发现 83.0%的成功率同 83.88% ± 0.3还是存在不小的差距的,所以,在做出了上述的成果之后,我进一步深入分析了数据中的特征,对于程序参数进一步的优化。

Futher Analyse:

在不断调整的同时,我发现朴素贝叶斯的成功率一直在83.0%左右,并不能够进一步的提升。而连续函数离散区间化我已经尽可能调整到最优了,那么剩下的就是测试集中的空词条问题,我在平滑概率的程序中是通过估计和手动调整 M 的值的,对应的变量代码如下:

```
public static Integer[] cateNum =
{
    12, 8, 100, 16, 10, 7, 14, 6, 5, 2, 100, 50, 100, 30000
};
```

最初的时候,cateNum 的值是用于调整测试集中空词条的概率的,但是随着一次偶尔的参数调整,我发现了一个很奇怪的现象。当 cateNum 的最后一个参数,即对应 native-country 的 M 值越大时,预测准确率有着明显的提升。

按照正常的估算,native-country 的值应该在 84 左右,但是从下面的统计数据中可以看出,随着 native-country 的值逐渐增大,预测的效果是越好的。

native-country				
M Value	Accuracy			
40	0.830354401			
80	0.830477243			
200	0.830661507			

500	0.830722929
1000	0.831030035
10000	0.834223942
30000	0.838953381
100000	0.843130029
1000000	0.84509551

我初步认为是由于随着 M 值的增大,国家属性对于最终的预测结果的影响会不断降低,所以可以推出国家对于市民的年薪是否超过 50K 的影响并不是很大。

但是后来的研究结果表明,同样,对于其他的属性进行类似的提升,发现预测成功率也是随着提升的,这推翻了我之前的结论,因为这不仅仅是 native-country 属性才导致的这种现象。

经过几天的思考,我仍然没有解决这个问题,希望老师和助教能够给予我帮助和解答。