Chapter 3: Informed Search and Exploration

Dr. Daisy Tang

"It still bothers me that I'm paying a lot of real dollars to a real university so you can get a degree in artificial intelligence."

Informed Search

- Definition:
 - Use problem-specific knowledge beyond the definition of the problem itself
 - Can find solutions more efficiently
- Best-first search
 - Greedy best-first search
 - □ A*
- Heuristics

Best-First Search

- □ Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node
- Implementation: use a data structure that maintains the frontier in a decreasing order of desirability
- Is it really the best?
- Special cases: uniform-cost (Dijkstra's algorithm), greedy search,
 A* search
- \Box A key component is a heuristic function h(n):
 - h(n) =estimated cost of the **cheapest path** from node n to a goal node
 - h(n) = 0 if n is the goal
 - h(n) could be general or problem-specific

Best First Search Algorithm

- 1. initialize the Q with the starting state (node)
- 2. while Q is not empty, do
 - assign the first element of Q to N
 - 2) if N is the goal, return SUCCESS
 - 3) remove N from Q
 - 4) add the children of N to Q
 - 5) sort the entire Q by f(n)
- return FAILURE

Recall Romania Map Example

What's a proper heuristic that measures cheapest path from current node to goal node?

Romania Map with Costs

Greedy Best-First Search

- Evaluation function: f(n) = h(n)
 - estimate the cost from n to goal
- h_{SLD} = straight line distance from n to Bucharest

Analysis of Greedy Best-First

Complete?

- From Iasi to Fagaras
- No can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt → ...

Time?

- O(b^m), but a good heuristic can give dramatic improvement
- Space?
 - $O(b^m)$ -- keeps all nodes in memory
- Optimal?
 - No

In-Class Exercise #3.8

 Draw the search tree generated by Greedy search implemented with tree-search algorithm to find a path from T (Timisoara) to B (Bucharest)

A*: Minimizing Total Est. Cost

 Idea: avoid expanding paths that are already expensive

- Evaluation function f(n) = g(n) + h(n)
 - $g(n) = \cos t$ so far to reach n
 - h (n) = estimated cost from n to goal
 - $\neg f(n)$ = estimated total cost of path through n to goal

In-Class Exercise #3.9

Draw the search tree generated by applying A* and graph-search to find a path from Lugoj to Bucharest using the straight-line distance heuristic. Show the f-cost f(n) for each node.

Admissible Heuristic

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: h_{SLD}(n) (never overestimates the actual road distance)
- □ Theorem: If *h*(*n*) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* -- Proof

Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

- Assume the optimal cost is C*
- $G_2) = g(G_2) + h(G_2) = g(G_2) > C^*$
- f(n) = g(n) + h(n) <= C*
- from the above, we have
 - $f(n) <= C^* < f(G_2)$
- thus G₂ will not be expanded

Case-Study

 A* using Graph-Search returns a suboptimal solution with an h(n) function that is admissible.

Consistency Heuristics

- □ A heuristic is consistent if for every node n, every successor n' of n generated by any action a, $h(n) \le c(n,a,n') + h(n')$
- Triangle inequality
- Every consistent heuristic is also admissible

Proof by induction on the number k of nodes on the shortest path to any goal from n.

$$K = 1$$
, let n' be the goal node; then $h(n) \le c(n, a, n')$

Assume n' is on the shortest path k steps from the goal and that h(n') is admissible by hypothesis, then:

$$h(n) \le c(n,a,n') + h(n') \le c(n,a,n') + h^*(n') = h^*(n)$$

So, h(n) at k+1 steps from the goal is also admissible.

A* With Graph Search

- □ Theorem: If *h*(*n*) is consistent, A* using GRAPH-SEARCH is optimal
- If h is consistent, and n' is a successor of n, we have

```
f(n') = g(n') + h(n')
= g(n) + c(n,a,n') + h(n')
\geq g(n) + h(n)
= f(n)
```

- \square i.e., f(n) is non-decreasing along any path
- Whenever A* selects a node for expansion, the optimal path to that node has been found

Optimality of A*

- A* expands nodes in order of increasing f value
- Assume C* is the optimal cost
 - A* expands all nodes with f(n) < C*
 - A* might then expand some of the nodes right on the "goal contour" $(f(n) = C^*)$ before selecting a goal node
 - □ Uniform-cost search $(h(n) = 0) \rightarrow bands more circular$

Analysis of A*

- Important idea:
 - appropriate h(n) function
 - A* is optimal efficient (no other optimal alg. is guaranteed to expand fewer nodes than A*)
 - pruning while still guaranteeing optimality
- Complete?
 - Yes (unless there are infinitely many nodes with $f \leq f(G)$)
- Optimal?
 - Yes, with finite b and positive path cost
- However, A* is not the answer for all problems
- <u>Time?</u>
 - Exponential in the length of the solution
- Space?
 - Keeps all nodes in memory
 - A* usually runs out of space long before it runs out of time

Heuristic Functions

- Two commonly used functions:
 - $h_1(n) = number of misplaced tiles$
 - e.g., $h_1(n) = 8$ in the above example
 - $h_2(n) = \text{sum of the distances of the tiles from their goal positions, called Manhattan distance}$
 - e.g., $h_2(n) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$ in the above example

Quality of Heuristic

Assume # of nodes generated by A* for a problem is N and the solution depth is d, then b* is the effective branching factor that a uniform tree of depth d would have to have. Thus:

```
N + 1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d
```

- b* might vary across problem instances, but is fairly constant for sufficiently hard problems
- A well-designed heuristic would have a value of b* close to 1

The Comparison

d	Search Cost			Effective Branching Factor		
	IDS	$A^*(h_1)$	A*(h ₂)	IDS	A*(h ₁)	A*(h ₂)
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	. 227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	4	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

Each data point corresponds to 100 instances of the

8-puzzle problem in which the solution depth varies.

Heuristics Domination

- □ If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- \blacksquare then h_2 dominates h_1
- \blacksquare h_2 is better for search
 - A* using h₂ will never expand more nodes than A* using h₁

Inventing Admissible Heuristic

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
 - If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
 - If the rules are relaxed so that a tile can move to any adjacent square, then h₂ (n) gives the shortest solution

Inventing Admissible Heuristic

• If a collection of admissible heuristics h_1 ... h_m is available, and none of them dominates any of the others, we can choose

```
harpin h(n) = \max\{h_1(n), ..., h_m(n)\}
```

 We can also get from sub-problem of a given problem

In-Class Exercise #3.10

The heuristic path algorithm is a best-first search in which the objective function is f(n) = (2-w) x g(n) + w x h(n). For what values of w is the algorithm guaranteed to be optimal? (You may assume that h is admissible.) What kind of search does this perform when w = 0? When w = 1? When w = 2?

In-Class Exercise #3.11

- Prove each of the following statements:
 - Breadth-first search is a special case of uniformcost search.
 - Breadth-first search, depth-first search, and uniform-cost search are special cases of bestfirst search.
 - Uniform-cost search is a special case of A* search.

37

Discussion

Project 1

Summary

- Applying heuristics to reduce search costs
 - Best-first search: h(n)
 - Greedy best-first search: h(n)
 - A^* : f(n) = g(n) + h(n)