Analyzing RANKGEN Across Different Domains

Jimmy Hoang, Jenny Pang, Alexis Wu

Department of Computer Science, Princeton University

Introduction

LLMs have gained traction for their utility in prompt-driven text generation. However, these models can produce outputs that are prone to be **repetitive**, **incoherent**, and/or **ir-relevant** to the prompt.

- Decoding algorithms like top-k sampling often result in inconsistencies, hallucinations, or factual errors [1].
- Models can focus too much on local context, missing long-range dependencies [2], which can cause coherence and consistency problems in longer texts.

To address these shortcomings, RANKGEN [3] was developed.

RANKGEN

- An encoder model that scores text generations based on individual coherence and consistency with human-written prompts, or prefixes.
- Considers two sequences (prefix and continuation) in contrast to other techniques that only examine singular or local tokens → better captures long-distance relationships.
- RANKGEN's four training domains are PG19, Wikipedia, C4-NewsLike, and C4-WebTextLike.
- Trained using large-scale contrastive learning with INBOOK (fluent and sometimes topically-similar but irrelevant and incoherent) and GENERATIVE (relevant but potentially containing hallucinations or repetition) negative samples [3]:

• Can be used in a beam search setup [3]:

• Authors found RANKGEN to outperform other decoding algorithms on automatic metrics and human evaluations.

Research Question

Our research serves to broaden the analysis and explore the capabilities of the RANKGEN model.

To what extent does RANKGEN generalize to unseen, specialized domains? Does RANKGEN outperform other decoding strategies for these domains?

Datasets

RANKGEN's training domains were PG19 (Western literature, reference works, and periodicals), Wikipedia (cleaned page articles), and the C4-NewsLike and C4-WebTextLike datasets (subsets of a cleaned version of Common Crawl's web crawl corpus). To enrich our understanding of RANKGEN's capabilities, we conduct experiments using four domain-specific datasets, each with its own novel characteristics:

- Government Reports: Long-content form data; content will use more policy and bureaucratic related vocabulary than in training data.
- Mathematical Proofs: Sequential data; proofs must follow a certain order to be logical.
- Python code completion: Sequential data; code syntax significantly differs from standard English.
- **Poetry:** Does not strictly abide by standard English grammar rules and can have multiple interpretations.

Methodology

RANKGEN Setup

- RANKGEN-base version, trained on all four original domains to maximize generalizability
- GPT2-Medium as the generator language model
- Beam search size: 2, number of samples: 10, sample length: 20 tokens

Dataset Construction

- Using the NLTK and GPT2 tokenizers, constructed 256-token prefixes and 128-token target continuations
- Constructed 128-token prefixes and 64-token targets for the poetry dataset because of its shorter datapoints. (RANKGEN is robust to prefix length [3].)

Evaluation

- MAUVE scoring as an automatic metric to measure similarity between human-written and generated text
- Human evaluation survey with blind A/B testing on RANKGEN vs. top-k GovReport generation quality

Results

Automatic Metrics (MAUVE Scores)

Dataset	RANKGEN-base	top-k
Wikipedia	86.8	73.8
GovReport	87.1	76.7
MetaMathQA	2.5	8.7
Python code	0.8	1.4
Poetry	42.9	28.8

• RANKGEN's GovReport generations are relevant to the prefix, coherent, and not repetitive:

Prefix	Ground-truth continuation	RANKGEN continuation
GovReport, Table 1 shows seven	In November 2015, we found that	This information is needed to
effects commonly associated with cli-	in order for climate information to	understand and make a deci-
mate change that DOD has docu-	be useful, it must be tailored to	sion about what actions to take
mented. According to a 2010 Na-	meet the needs of each decision	or what measures to take as cli-
tional Research Council report on	maker, such as an engineer respon-	mate change increases. One
making informed decisions about cli-	sible for building a bridge in a spe-	way DOD has demonstrated its
mate change and our October 2009	cific location, a county planner re-	ability to understand and make
report on climate change adaptation,	sponsible for managing develop-	informed decisions about cli-
most decision makers need a basic	ment over a larger region, or a fed-	mate change is by creating sev-
set of information to understand and	eral official managing a national-	eral interactive online climate
make choices about how to adapt to	scale program	change resource databases,
the effects of climate change		-

• RANKGEN is unable to solve the given math problem, beginning to make many unnecessary assumptions. Other generations are incorrect proofs or proposals for additional questions:

Prefix	Ground-truth continuation	RANKGEN continuation
MetaMathQA, Carl	The total cost of the car accident	Let's assume Carl is not insured by any
caused a car accident that	is $$40,000 + $70,000 = $110,000$.	insurance company. Let's assume tha
resulted in \$40,000 worth	Carl's insurance company will	Carl only lives in the Chicago area for
of property damage and	pay 80% of the costs, so they will	a short period of time. Carl has a good
\$70,000 worth of medical	cover 80% of \$110,000 = \$88,000.	credit score and is currently unemployed
bills. If Carl's insurance	This means Carl is responsible	What is Carl's insurance claim history
company will pay 80%	for the remaining 20% of the	and what does this tell us about Carl's
of the costs, leaving Carl	costs, which is 20% of \$110,000 =	ability to pay his insurance claim? Let's
to pay the remaining	\$22,000. Therefore, Carl person-	assume that Carl is a current employee o
20%, how much does Carl	ally owes \$22,000. #### 22000	a non-bank financial company and has ar
personally owe?	The answer is: 22000	auto insurance policy.

• RANKGEN is unable to follow and provide proper Python code to answer the given instructions:

Prefix	Ground-truth continuation	RANKGEN continuation
Python code instructions,	def findMinMax(list):	(or a tuple of lists, or tuple of lists)
Create a Python script to find	min_list = []	#!/usr/bin/env python """ A simple script
the maximum and minimum	$max_list = []$	to find the maximum and minimum values
values for each sublist in a list		for each sublist in a list or a tuple of lists
	for sublist in list:	""" # Find the maximum value from first
	min_list.append(min(sublist))	list list = list [- 1] print'The maximum
	max_list.append(max(sublist))	value is {}'. format (list) print'The mini-
	return min_list, max_list	mum value is {}'. format (list) return max
		(list) # Find the minimum value from first
	list = $[[8, 4], [6, 2, 3], [1,$	list list = list [- 1] print'The minimum
	9, 7]]	value is {}'.
	min_list, max_list = find	

• For poetry, RANKGEN generates a passage that contains some words relevant to the prefix but is nonsensical:

Prefix	Ground-truth continuation	RANKGEN continuation
Poetry,	Let the priest in surplice white,	Every bird of tyrician
Let the bird of loudest lay	That defunctive music can,	wing,ortium The fowl of
On the sole Arabian tree	Be the death-divining swan,	the tyranny wing;DeliveryDate
Herald sad and trumpet be,	Lest the requiem lack his right.	These steeds of the bird of thy
To whose sound chaste wings obey.		wing,ocally Thy fount and your
But thou shrieking harbinger,		lord.
Foul precurrer of the fiend,		
Augur of the fever's end,		
To this troop come thou not near.		
From this session interdict		
Every fowl of tyrant wing,		
Save the eagle, feather'd king;		
Keep the obsequy so strict.		

Results (cont.)

Human Evaluation

- 9 out of 10 questions had a majority in favor of RANKGEN vs. top-k. The last question was a tie.
- On average, a participant preferred RANKGEN for 70% of questions. 58.33% of participants preferred RANKGEN for any given question.
- Distribution of reasons for choosing RANKGEN:

Reasons relating the prefix with the general More topically relevant to the prefix	22.70%
Better continuity / flow / chronology	38.04%
Does not contradict prefix	1.84%
Stylistically closer to prefix	7.98%
Reasons related only to the generated text	(29.45%)
Better commonsense understanding	7.98%
Less repetitive	9.20%
More grammatical	6.13%
Less contradictions	0.00%
More coherent / other	6.13%

Conclusion & Future Work

We replicated [3] on the Wikipedia dataset and saw consistent results. We also investigated RANKGEN's generalizability to other domains by testing on four different datasets. Our key results and findings were as follows:

- RANKGEN achieved high MAUVE and human evaluation scores on government reports, indicating strong generalization to other long-form English content.
- Low MAUVE scores and poor generations for the mathematical proof, Python code instruction, and poetry datasets indicate RANKGEN does not generalize well to domains deviating from standard English syntax and/or those reliant on sequential content.

We suggest the following as future work to verify and further extend our findings:

- Training RANKGEN on math proofs, code outputs, or poetry to investigate whether using text from these specialized domains will improve the quality of the generated output.
- Conducting follow-up human evaluations with more participants and also inviting graduate-level students, lecturers, and domain experts for evaluation.

References

[1] H. Zhang, D. Duckworth, D. Ippolito, and A. Neelakantan. Trading off diversity and quality in natural language generation, 2021.

[2] S. Sun, K. Krishna, A. Mattarella-Micke, and M. Iyyer. Do long-range language models actually use long-range context?, 2021.

[3] K. Krishna, Y. Chang, J. Wieting, and M. Iyyer. Rankgen: Improving text generation with large ranking models, 2022.