

Multirate Processing

87203 – Multimedial Signal Processing 1st Module

Politecnico di Milano – Polo regionale di Como

Agenda

- Ex1: Downsampling
- Ex2: Upsampling
- Ex3: Decimation
- Ex4: Interpolation
- Ex5: Frequency modification with rational factor
- Ex6: Polyphase Decimation
- Ex7: Polyphase Interpolation
- Ex8: Polyphase Filter Banks
- Ex9: Quadrature Mirror Filters

Exercise 1 (1/5)

 Goal: Downsample by factor M the input sequence x

Keep every Mth sample and discard the rest:

$$y(n) = x(nM)$$
 $Y(z) = \frac{1}{M} \sum_{p=0}^{M-1} X \left(e^{-j\frac{2\pi p}{M}} z^{\frac{1}{M}} \right)$

Exercise 1 (2/5)

pseudocode

- built the input signal
 - x=bartlett(N); % triangular signal
- downsample: keep every Mth sample and discard the rest
 - x_down=x(1:M:end); %length(x_down)=length(x)/M
- compare the output and input spectra: see the effect of downsampling
 - Nfft=1024;
 - X=fft(x,Nfft);
 - X_down=fft(x_down,Nfft);

Exercise 1 (3/5)

• HINT: Downsampling expands each 2π -periodic repetition of $X(\omega)$ by a factor of M along the ω axis, and reduces the gain by a factor of M.

(see figure 3 and 4 of ex1)

- Tdown = T*M
- Fs_down=Fs/M

Exercise 1 (4/5)

- HINT: If x(m) is not bandlimited to π / M , aliasing may result from spectral overlap.
- pseudocode
 - build the signal
 - w1=pi/16; w2=pi/8; w3=pi/2;
 - n=[0:200];
 - x = cos(w1*n)+0.5*cos(w2*n)+2*cos(w3*n);
 - downsample (M=4)
 - x_down=x(1:M:end); %length(x_down)=length(x)/M
 - compare the output and input spectra: see the alias

Exercise 1 (5/5)

- N.B.:
 - w1=pi/16 = 0.1963
 - w2=pi/8 = 0.3927
 - w3=pi/2 = 1.5708
- downsample (M=4)
 - w1-->pi/4 = 0.7854
 - w2-->pi/2 = 1.5708
 - w3-->2*pi = 6.2832 ALIAS !!!

Exercise 2 (1/3)

 Goal: Upsample by factor L the input sequence x

■ Insert L − 1 zeros between every sample of the input signal:

$$Y(z) = X(z^L)$$

Exercise 2 (2/3)

- pseudocode
 - built the input signal
 - x=bartlett(N); % triangular signal
 - upsample: insert L-1 zeros between every sample of the input signal
 - x_up = zeros(2*N, 1);
 - x_up(1:2:end) = x; %length(x_up)=L*length(x)
 - compare the output and input spectra: see the effect of downsampling
 - Nfft=1024;
 - X=fft(x,Nfft);
 - X_up=fft(x_up,Nfft);

Exercise 2 (3/3)

 HINT: Upsampling compresses the DFT by a factor L along the ω axis.

(see figure 4 of ex2) Tup = T/L $Fs_up=L*Fs$ Tup = T/L Tup

HINT: Cut the frequencies f such that |f|>π/L,
if you don't want to see the repetition of the
original signal.

Agenda

- Ex1: Downsampling
- Ex2: Upsampling
- Ex3: Decimation
- Ex4: Interpolation
- Ex5: Frequency modification with rational factor
- Ex6: Polyphase Decimation
- Ex7: Polyphase Interpolation
- Ex8: Polyphase Filter Banks
- Ex9: Quadrature Mirror Filters

Exercise 3 (1/14)

Goal: Decimate by a factor M the input sequence x

- Decimation=
 - filtering(to prevent aliasing)
 - downsampling

Exercise 3 (2/14)

- Goal: decimate a speech signal by a factor M=2.
 Perform filtering:
 - In the time domain
 - In the frequency domain
 - In the frequency domain using OLA
- Compare the output and input spectra
- Data:
 - Input signal: `Toms_diner.wav'
 - Original sampling frequency: Fs = 16 kHz
 - As low pass filter you can load the file h_filter.mat

Exercise 3 (3/14)

Perform filtering:

- In the time domain:
 - N_x = length(x);
 - N_h = length(h);
 - y_td = filter(h, 1, x);
 - $% length(y_td)=N_x$
 - xfilt = conv(h,x);
- % length(xfilt)=Nx+Nh-1

Exercise 3 (4/14)

Perform filtering:

- In the frequency domain:
 - N_x = length(x);
 - N_h = length(h);
 - $N = 2^{cil(log_2(N_x + N_h 1))};$
 - % It establishes the closer power of two for FFT transformation
 - X = fft(x, N);
 - H = fft(h, N);
 - y_fd = ifft(X.*H, N);

-

Exercise 3 (5/14)

Perform filtering:

- In the frequency domain using OLA:
 - M=1000;
 Window size
 - x=x(1:floor(length(x)/M)*M);
 - % Reduce the data size to a multiple of the window size
 - K=length(x)/M; % Number of frames (no overlap)
 - $N = 2^{cil(log_2(N_x + N_h 1))}; > M + Nh-1$
 - % It establishes the closer power of two for FFT transformation
 - % N=length of the output of each block
 - y_ola = zeros(length(x)+N-1, 1);

Exercise 3 (6/14)

Perform filtering:

- In the frequency domain using OLA (continued):
 - Hm = fft(h, N);
 - for k=0:K-1
 - xm = x(k*M+1:k*M+M);

%windowing (rect, no overlap)

- Xm = fft(xm, N);
- ym = ifft(Xm.*Hm, N);
- y_ola(k*M +1:k*M+N)=y_ola(k*M+1:k*M+N)+ym;
- end;

Exercise 3 (7/14) Scheme of OLA for R=M:

Exercise 3 (8/14)

- Goal: decimate a signal by a factor M=4.
- Compare the output and input signal in time domain and in frequency domain
- Compare the decimated and the downsampled signals spectra
- See also "d=decimate(x,M);"
- Try to swap the lowpass filter and the downsample command. Can you notice any difference? Why?

Exercise 3 (9/14)

Decimate a signal by a factor M=4.

Pseudocode:

Build the signal

```
w1=pi/16; %=0.1963 <pi/4</p>
```

•
$$w2=pi/8$$
; % =0.3927< $pi/4$

$$x = \cos(w1*n) + 0.5*\cos(w2*n) + 2*\cos(w3*n);$$

$$= x_1 + x_n$$

-

Exercise 3 (10/14)

- Decimate a signal by a factor M=4.
- Pseudocode:
 - Build the filter
 - N=41;
 - fc=1/(2*M) % = 1/8 --> wc = pi/M = 0.7854
 - h = fir1(N,2*fc)
 - Perform filtering
 - xfilt = conv(h,x);
 - Downsampling
 - xdec = xfilt(1:M:end);

Exercise 3 (11/14)

Matlab provides the function:

"h_fir = fir1(N, Fc)" that designs an N-th order FIR filter that has cut-off frequency Fc.

- The cut-off frequency "Fc" must be between 0<Fc< 1.0, with 1.0 corresponding to half the sample rate.
- The filter is real and has linear phase.
- The normalized gain of the filter at Fc is -6 dB.

Exercise 3 (12/14)

- Compare the output and input signals in time domain and in frequency domain
 - length(x_dec) = (length(x)+length(h))/M
 - w1-->pi/4 = 0.7854
 - w2-->pi/2 = 1.5708
 - w3-->2*pi = 6.2832 filtered by h
- Compare the decimated and the downsampled signals in time domain and in frequency domain
 - length(x_dec)> length(x_down) = length(x)/M
 - With the downsampled signal spectra we can see the alias

Exercise 3 (13/14)

- See also "d=decimate(x,M);"
 - Matlab provides the function "d = decimate(x,M)" that resamples the sequence in vector x at 1/M times the original sample rate. The resulting resampled vector d is M times shorter (length(d)=length(x)/M).
 - Before resampling, "decimate" filters the data with an eighth order Chebyshev Type I lowpass filter with cutoff frequency:

 $fc = 0.8 \frac{Fs}{2M}$

 N.B. The filter used by "decimate" is better than ours.

-

Exercise 3 (14/14)

- Try to swap the lowpass filter and the downsample command. Can you notice any difference? Why?
 - CASE 1:
 - xdown=x(1:M:end);
 - hdown=h(1:M:end);
 - xdf=conv(xdown,hdown);
 - CASE2:
 - xdown=x(1:M:end);
 - xdf=conv(xdown,h);
 - SOLUTION: Polyphase filters

Exercise 4 (1/11)

Goal: Interpolate by a factor L the input sequence x

- Decimation=
 - upsampling
 - filtering (to remove repetitions of original spectra)

v[n]

DC gain 2

-

Exercise 4 (2/11)

- Goal: interpolate a signal by a factor M=4.
- Compare the output and input signal in time domain and in frequency domain
- Compare the decimated and the upsampled signals spectra
- See also "d=interp(x,M);"
- Try to swap the upsample command and the lowpass filter. Can you notice any difference? Why?

Exercise 4 (3/11)

Interpolate a signal by a factor M=4.

Pseudocode:

Build the signal

```
w1=pi/16; %=0.1963 <pi/4</p>
```

$$x = \cos(w1*n) + 0.5*\cos(w2*n) + 2*\cos(w3*n);$$

$$= x_1 + x_n$$

Exercise 4 (4/11)

- Pseudocode (continued):
 - Build the filter
 - N=41;
 - fc=1/(2*M) % = 1/8 --> wc = pi/M = 0.7854
 - h = fir1(N,2*fc)
 - Upsampling
 - xup = zeros(M*length(x), 1);
 - xup(1:M:end) = x;
 - Perform filtering
 - xint = filter(M*h, 1, xup);

Exercise 4 (5/11)

- Compare the output and input signals in time domain and in frequency domain
 - length(x_int) = M*length(x)+length(h)
 - w1-->pi/(4*16) = 0.0491
 - w2-->pi/(4*8) = 0.0982
 - w3-->pi/(4*2) = 0.3927
- Compare the interpolated and the upsampled signals in time domain and in frequency domain
 - In x_up we find the M-1 zeros between each two samples of the original signal
 - In the upsampled signal spectra we can see the repetitions of the original spectra

Exercise 4 (6/11)

- See also "int= interp(x,M);"
 - Matlab provides the function "int = interp(x,M)" that resamples data at a higher rate using lowpass interpolation. "int=interp(x,M)" resamples the sequence in vector x at M times the original sample rate. The resulting resampled vector int is M times longer (length(int) = M*length(x)).
 - A symmetric filter, B, allows the original data to pass through unchanged and interpolates between so that the mean square error between them and their ideal values is minimized.
 - N.B. The spectra are near to be coincident.

Exercise 4 (7/11)

- Try to swap the upsample command and the lowpass filter. Can you notice any difference? Why?
 - CASE 1:
 - hd=h(1:M:end); % it become an all pass filter
 - xf = filter(M*hd, 1, x);
 - xfup = zeros(M*length(xf), 1);
 - xfup(1:M:end) = xf; % it is x_up

CASE2:

- xf = filter(M*h, 1, x);
- xfup = zeros(M*length(xf), 1);
- xfup(1:M:end) = xf; % it is x_up
- SOLUTION: Polyphase filters

Exercise 4 (8/11)

Hint: Let's see the effects of three different interpolation filters:

h1 = sinc(n/M)';

h2 = bartlett(2*M+1); 0.5

• h3 = ones(M,1);

Exercise 4 (9/11)

Hint: Let's see the effects of three different interpolation filters:

- h2 = bartlett(2*M+1);
- h3 = ones(M,1);
- wc=pi/4=0.7854;

Exercise 4 (10/11)

- Hint: See what happens when we perform a decimation and interpolation by the same factor M:
 - Pseudocode:
 - Build the input signal
 - Build the filter (wc=pi/M)
 - Apply the filter
 - downsample
 - upsample
 - Apply the filter

Exercise 4 (11/11)

- Build the input signal
- Apply the filter (wc=pi/M)
- downsample (gain=1/2)
- upsample
- Apply the filter (gain=2)

- Ex1: Downsampling
- Ex2: Upsampling
- Ex3: Decimation
- Ex4: Interpolation
- Ex5: Frequency modification with rational factor
- Ex6: Polyphase Decimation
- Ex7: Polyphase Interpolation
- Ex8: Polyphase Filter Banks
- Ex9: Quadrature Mirror Filters

Exercise 5 (1/5)

- **Goal**: decimate a speech signal from the sample frequency 16 kHz to 10 kHz
 - Problem: the input and the target frequencies form a rationale ratio Fout/Fs=r = p/q
 - Therefore, you have upsample the original signal with factor p and then downsample it with a factor q:

Exercise 5 (2/5)

- Hints: Pay attention to the cut-off frequencies of the two low-pass filters:
 - f1 = Fs/(2*p);
 % Cut-off frequency of the first low-pass filter
 - $f2 = Fs_new/(2*q) = (5*Fs)/(2*q)$;
 - % Cut-off frequency of the second low-pass filter. It is now referred to the new sampling frequency (fs*upsample_factor)
 - h1 = fir1(30, 1/p); (pi/5=0.6283)
 - h2 = fir1(30, 1/q); (pi/8=0.3927)
 - N.B.: The cut-off frequency must be between 0 and 1, with 1 corresponding to half the sample rate.

Exercise 5 (3/5)

Pseudocode:

- Build the input signal
 - w1=pi/16;
 - w2=pi/8;
 - w3=pi/2;
 - n=[0:200];
 - x = cos(w1*n)+0.5*cos(w2*n)+2*cos(w3*n);
- Build the filters
 - h1 = fir1(30, 1/p); (pi/5=0.6283)
 - h2 = fir1(30, 1/q); (pi/8=0.3927)

Exercise 5 (4/5)

- Pseudocode(continued):
 - upsample
 - y_up = zeros(length(x)*upsample_factor, 1);
 - y_up(1:upsample_factor:end) = x;
 - Apply the first filter
 - y_up = filter(upsample_factor*h1, 1, y_up);
 - Apply the second filter
 - y_down = filter(h2, 1, y_up);
 - downsample
 - y_down = y_down(1:downsample_factor:end);

Exercise 5 (5/5)

- Fout = (Fs*5/8):
 - w1=pi/16; --> (pi*8)/(16*5) = 0.3141
 - w2=pi/8 ; --> (pi*8)/(8*5) = 0.6283
 - w3=pi/2; --> (pi*8)/(2*5) = 2.5133
 - without alias or any repetition of the original spectra

Agenda

- Ex1: Downsampling
- Ex2: Upsampling
- Ex3: Decimation
- Ex4: Interpolation
- Ex5: Frequency modification with rational factor
- Ex6: Polyphase Decimation
- Ex7: Polyphase Interpolation
- Ex8: Polyphase Filter Banks
- Ex9: Quadrature Mirror Filters

Exercise 6 (1/9)

Goal: Decimate by a factor M the input sequence x

- The direct implementation shown in ex3 is not efficient: the result of several operations is discarded when the output of filtering is decimated.
- Polyphase filters are needed every time we want to achieve computational savings in the decimation phase.

Exercise 6 (2/9)

- Basic ideas:
 - Decompose the filter into its polyphase components
 - Decompose the input signal in subsequences
 - Apply each subfilter to the corrispondent subsequence.
 - Sum the results to obtain the output signal

Exercise 6 (3/9)

- Notation:
 - M downsampling factor
 - L filter length
 - K = ceil(L/M), number of sample for each subfilter
 - L = K*M
- Decomposition of the lowpass filter is accomplished in the following way:

$$e_m(k) = h(kM + m)$$
 for $\begin{cases} k = 0,1,..., K \\ m = 0,1,..., M \end{cases}$

Exercise 6 (4/9)

Decomposition schematization for M = 3 and L = 9

Exercise 6 (5/9)

•
$$H(z) = \sum_{m=0}^{M-1} z^{-m} E_m(z^M)$$
 it works at MT respect to the original filter

•
$$E_m(z) = \sum_{k=0}^{K-1} e_m(k) z^{-k}$$

•
$$e_m(k) = h(kM + m)$$
 for
$$\begin{cases} k = 0,1,...,K \\ m = 0,1,...,M \end{cases}$$
 delayed by m-samples

Exercise 6 (6/9)

- Goal:
 - Decimate a signal from 16kHz to 8kHz
 - Use polyphase implementation of decimation
 - As low pass filter use the h_filter file
- Input:
 - sum of two sinusoids at frequencies 1000 Hz and 4500 Hz
 - f1=1000/16000 --> w1=2*pi*f1=0.3972
 - f2=4500/16000 --> w2=2*pi*f2=1.767

Exercise 6 (7/9)

Decompose the filter into its polyphase components

```
function e = decompose(h, M)
N = length(h);
K = ceil(N/M); %Number of samples in each subfilter
L = M*K;
h=[h;zeros(L-N,1)]; % zero pad
e = zeros(K, M);
for k = 0:K-1 % For each sample
    for m=0:M-1
                       % For each subfilter
        e(k+1,m+1)=h(k*M+m+1);
      %KxM matrix. Each column is a subfilter
    end:
end;
```

-

Exercise 6 (8/9)

for m = 1:M

- Decompose the input signal in subsequences
 x_m = x(m:M:end);
 % shift and downsample
- Apply each subfilter to the corrispondent subsequence.

$$xf_m = conv(x_m, e(:,m));$$

Sum the results to obtain the output signal

$$y = y + xf_m;$$
 % length(y)=(Nx+L-1)/M

end

Exer

Exercise 6 (9/9)

- Compare the output and input signals spectra
 - w1= 0.3972 --> w1*M= 0.7944
 - w2 = 1.767 >pi/2 --> w2*M = 3.534 (alias!!)
 (w2 is stopped by the lowpass filter)

 Compare the output obtained by means polyphase and direct implementations of decimation

Exercise 7 (1/8)

 Goal: Interpolate by a factor M the input sequence x

- The direct implementation shown in ex4 is not efficient.
- Polyphase filters are needed every time we want to achieve computational efficiency in the interpolation phase.

Exercise 7 (2/8)

- Basic ideas:
 - Decompose the filter into its polyphase components
 - Apply each subfilter to the input signal.
 - Upsample each filtered subsequence.
 - Sum the results to obtain the output signal

Exercise 7 (3/8)

- Notation:
 - M upsampling factor
 - L filter length
 - K = ceil(L/M), number of sample for each subfilter
 - L = K*M
- Decomposition of the lowpass filter is exact the same as for decimation:

$$e_m(k) = h(kM + m)$$
 for
$$\begin{cases} k = 0,1,...,K \\ m = 0,1,...,M \end{cases}$$
 delayed by m-samples

Exercise 7 (4/8)

Interpolation schematization:

$$E_m(z) = \sum_{k=0}^{K-1} e_m(k) z^{-k}$$

Exercise 7 (5/8)

- Goal:
 - Interpolate a signal from 16kHz to 32kHz
 - Use polyphase implementation of interpolation
 - As low pass filter use the h_filter file
- Input:
 - sum of two sinusoids at frequencies 1000 Hz and 4500 Hz
 - f1=1000/16000 --> w1=2*pi*f1=0.3972
 - f2=4500/16000 --> w2=2*pi*f2=1.767

Exercise 7 (6/8)

Decompose the filter into its polyphase components

```
function e = decompose(h, M)
N = length(h);
K = ceil(N/M); %Number of samples in each subfilter
L = M*K;
h=[h;zeros(L-N,1)]; % zero pad
e = zeros(K, M);
for k = 0:K-1 % For each sample
    for m=0:M-1
                       % For each subfilter
        e(k+1,m+1)=h(k*M+m+1);
      %KxM matrix. Each column is a subfilter
    end:
end;
```

Exercise 7 (7/8)

for m = 1:M

- Apply each subfilter to the input signal xf(m,:) = conv(x, M*e(:,m));
- Upsample and shift each filtered signal xup(m,:) = zeros((M*length(xf))+M-1, 1); xup(m,m:M:end-(M-1)) = xf(m,:);
- Sum the results to obtain the output signal y = y + xup(m,:); % length(y)=M*(Nx+K-1)

end

Exercise 7 (8/8)

- Compare the output and input signals spectra
 - w1= 0.3972 --> w1/M= 0.1986
 - w2 = 1.767 >pi/2 --> w2/M = 0.8835
 (The original spectra repetitions [pi-0.1986=2.943 and pi-0.8835=2.3066] are cutted by the lowpass filter)
- Compare the output obtained by means polyphase and direct implementations of interpolation

Agenda

- Ex1: Downsampling
- Ex2: Upsampling
- Ex3: Decimation
- Ex4: Interpolation
- Ex5: Frequency modification with rational factor
- Ex6: Polyphase Decimation
- Ex7: Polyphase Interpolation
- Ex8: Polyphase Filter Banks
- Ex9: Quadrature Mirror Filters

Exercise 8 (1/10)

 A filter bank is a set of parallel filters that enables to decompose the input signal into a number of subbands.

Fig. 5.19. Frequency response of a uniform filter bank with M=4 subbands

Exercise 8 (2/10)

•
$$H_0(z) = \sum_{k=0}^{M-1} z^{-k} E_k(z^M)$$
 it works at MT respect to the original filter

•
$$E_m(z) = \sum_{k=0}^{K-1} e_m(k) z^{-k}$$

•
$$e_m(k) = h(kM + m)$$
 for
$$\begin{cases} k = 0,1,..., K \\ m = 0,1,..., M \end{cases}$$
 delayed by m-samples

Exercise 8 (3/10)

We can demonstrate that:

$$H_{m}(z) = H_{0}\left(ze^{j\frac{2\pi m}{M}}\right) = \sum_{k=0}^{M-1} z^{-k}W^{mk}E_{k}(z^{M})$$

$$\begin{bmatrix} H_0(z) \\ H_1(z) \\ \vdots \\ H_{M-1}(z) \end{bmatrix} = \begin{bmatrix} W^{0,0} & W^{0,1} & . & W^{0,M-1} \\ W^{1,0} & W^{1,1} & . & W^{1,M-1} \\ \vdots & \vdots & \ddots & \vdots \\ W^{M-1,0} & W^{M-1,1} & . & W^{M-1,M-1} \end{bmatrix} \begin{bmatrix} E_o(z^M) \\ z^{-1}E_1(z^M) \\ \vdots \\ z^{-(M-1)}E_{M-1}(z^M) \end{bmatrix}$$

Exercise 8 (4/10)

• N.B.: $W^{m,k}$ is the DFT matrix

$$W^{m,k} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ & e^{-j\frac{2\pi}{M}} & e^{-j2\frac{2\pi}{M}} & \dots & e^{-j(M-1)\frac{2\pi}{M}} \\ & & & e^{-j(M-1)\frac{2\pi}{M}} & \dots & e^{-j(M-1)\frac{2\pi}{M}} \\ & & & & & & & & \\ 1 & e^{-j(M-1)\frac{2\pi}{M}} & e^{-j2(M-1)\frac{2\pi}{M}} & \dots & e^{-j(M-1)(M-1)\frac{2\pi}{M}} \end{bmatrix}$$

Exercise 8 (5/10)

Implementation of a polyphase filterbank

Exercise 8 (6/10)

- Goal: Decompose the original signal in M=4 subbands.
- Basic ideas:
 - Compute the filters
 - Apply each subfilter to the input signal
 - Apply the DFT matrix at the filtered signals.

Exercise 8 (7/10)

- Notation:
 - M number of subbands
 - L filter length
 - K = ceil(L/M), number of sample for each subfilter
 - L = K*M
- The low pass filter is:
 - h = fir1(L-1,1/M);

Exercise 8 (8/10)

- Compute the polyphase filters
 - em = zeros(M, length(h));
 - for m = 1:M
 - em(m,m:M:end) = h(m:M:end);
 - end
- N.B.: "em" is a MxL matrix. Each row is a subband filter (we take the null samples).

Exercise 8 (9/10)

out = zeros(M, length(x));
 % each row is one specific subband of the input signal (in the time domain) = is the input convolved with a particular subband filter

```
for m = 1:M
    y = filter(em(m, : ), 1, x);
    out(m,1:length(y)) = y;
end
```

out=fft(out);

Exercise 8 (10/10)

Show the output spectrum for each subband:

```
for m = 1 :M
    subplot(M, 1 ,m),
    plot(abs(fft(out(m,:),1024)))
end
```

Agenda

- Ex1: Downsampling
- Ex2: Upsampling
- Ex3: Decimation
- Ex4: Interpolation
- Ex5: Frequency modification with rational factor
- Ex6: Polyphase Decimation
- Ex7: Polyphase Interpolation
- Ex8: Polyphase Filter Banks
- Ex9: Quadrature Mirror Filters

Exercise 9 (1/8)

 Goal: Obtain a system that allows the perfect recontruction of a signal. Ip. M=2

Fig. 5.21. Bank of two filters

$$y(n) = x(n)$$

Exercise 9 (2/8)

- Goal: Generate the analysis and synthesis filters based on QUADRATURE MIRROR FILTERS conditions:
 - linear phase FIR philter (N even)

$$H_1(\omega) = H_0(\omega - \pi)$$

$$|H_0(\omega)|^2 + |H_0(\omega - \pi)|^2 = \cos t$$

Exercise 9 (3/8)

QUADRATURE MIRROR FILTERS.

$$H_1(z) = H_0(-z)$$

$$h_1(n) = (-1)^n h_0(n)$$

•
$$G_0(z) = H_1(-z)$$

$$g_0(n) = (-1)^n h_1(n)$$

$$G_1(z) = -H_0(-z)$$

$$g_1(n) = (-1)^{n+1} h_0(n)$$

-

Exercise 9 (4/8)

- Pseudocode:
 - Compute the filters
 - Build the signal
 - Analysis:
 - filtering
 - dowmsamplig
 - Synthesis:
 - upsampling
 - filtering
 - Compute the reconstruction error

-

Exercise 9 (5/8)

- Compute the filters:
 - h0 = [sqrt(2)/2, sqrt(2)/2];
 - \bullet h1 = h0.*[1 -1];
 - g0 = h0;
 - g1 = -h1;
- Verify that :
- $T = abs(H0).^2 + abs(H1).^2$;

is constant for each frequency

Exercise 9 (6/8)

- Load the input signal
 - [x Fs Nbits] = wavread('flute2.wav');
 - x = x(:,1);
- Analysis: filtering dowmsamplig
 - % low pass subband
 - y0 = conv(x,h0); % filtering
 - y0 = y0(1:2:end); % downsampling
 - % high pass subband
 - y1 = conv(x,h1); % filtering
 - y1 = y1(1:2:end); % downsampling

E

Exercise 9 (7/8)

- Synthesis: upsampling filtering
 - % low pass subband
 - y0up = zeros(2*length(y0), 1);
 - y0up(1:2:end) = y0;
 - y0up = conv(y0up,g0);
 - % high pass subband
 - y1up = zeros(2*length(y1), 1);
 - y1up(1:2:end) = y1;
 - y1up = conv(y1up,g1);

Exercise 9 (8/8)

- Recontruct the signal
 - y = y0up + y1up;
- Compute the reconstruction error
 - e = x-y ;
 - figure, plot(e)
 - display(['max error:' num2str(max(abs(e)))]);