

Sistemas Digitales (EL225)

Maquinas de Estado Memorias

Recordemos - Tablas

■ ¿Recuerdan?

FF JK			
J	K	Qn+1	Com.
0	0	Qn	Permanece
0	1	0	Reset
1	0	1	Set
1	1	/Qn	Complementno

FF D			
D	Qn+1		
0	0		
1	1		

11 3K			
R	Qn+1	Comentario	
0	Qn	Permanece	
1	0	Reset	
0	1	Set	
1	-	No permitido	
	R 0 1 0	R Qn+1 0 Qn 1 0 0 1	

FF SD

FF T		
Qn+1		
Qn		
/Qn		

Recordemos - Tablas

¿Y estas?

FF JK			
Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	Χ	1
1	1	Χ	0

FF SR			
Qn	Qn+1	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

FF D			
Qn	Qn+1	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

	FF T	
Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

UPC - Sistemas Digitales

Maquinas de Estado Finitas

- ¿Qué son las Máquinas de Estado Finitas?
 - Son Sistemas Secuenciales o circuitos en los cuales la salida depende de las entradas en el instante determinado y de la historia de entradas anteriores.
 - Estos circuitos poseen elementos de memoria que permiten "recordar" los valores previos. Todo esto constituido en un sistema realimentado.
 - □ La configuración puede ser según se muestra en (a) o (b)

Maquinas de Estado Finitas

 Debido a la lógica intermedia, en la temporización aparecen retrasos que pueden ser fijos o independientes de la señal.

UPC - Sistemas Digitales

Maquinas de Estado Finitas

- Los Sistemas Secuenciales se analizan y diseñan en base al tiempo o momento en el cual aparece el siguiente estado. Esta situación se le conoce como sincronización.
- Visto de esta manera tenemos dos tipos de sistemas:
 - Sistemas asíncronos: La sincronización en este caso depende de los retrasos inherentes en los circuitos conformantes. No hay ningún agente externo.
 - Sistemas síncronos: La sincronización depende de una señal externa conocida generalmente como la señal de reloj. Esta señal controla el comportamiento de los elementos de memoria.

Tipos de Máquinas de Estado

 Maquinas de Mealy: Las salidas dependen de los estados y las entradas (salidas asíncronas).

Moore vs Mealy

- La máquina de Moore garantiza que las salidas sean estables durante un ciclo completo de reloj.
- Sin embargo, un cambio en la entrada toma por lo menos un ciclo de reloj para afectar a la salida.
- Las máquinas de Moore pueden requerir más estados.

Moore vs Mealy

- Supongamos el siguiente caso:
 - Un autómata verifica los agujeros en una cinta.
 - El autómata avanza a razón de 1cm/s y cada segundo activa el sensor para saber si hay o no un agujero.
 - Por cada agujero, el autómata valida un "1" y cuando no detecta lo interpreta como un "0".
 - Si la secuencia encontrada es 1101 el autómata enciende una luz verde durante un segundo y luego se apaga.
- ¿Como sería la Máquina de Estado tipo Moore y cual Mealy?

UPC - Sistemas Digitales

Factorización de Máquina de Estado

- El proceso de elaborar máquinas de estado complejas es más sencillo si se puede "factorizar" en máquinas de estado más simples.
- De esta manera, las salidas de algunás máquinas se convierten en entradas de otras. Integrando todo se convierte en una máquina compleja.

Sistemas Digitales

Memorias

Definición

- Una memoria es un dispositivo que almacena números binarios y que pueden accederse electrónicamente.
- La forma de almacenamiento puede ser por:
 - Cableado físico.
 - 2. Campos magnéticos.
 - 3. Campos eléctricos.
 - 4. Operación activa de un circuito electrónico.
- Otra definición: una colección de registros compuestos por flip flops (biestables).
- A cada uno de los registros se le conoce como posición

Características

- Las memorias tienen características que describen su funcionamiento siendo las más importantes :
 - a. Volatilidad: ¿Conserva los datos si se quita la energía?
 - Tiempo de escritura/lectura ¿Cuánto se demora en guardar o leer datos?
 - c. Densidad de información: ¿Cuántos bits hay por cm²?
 - d. Capacidad: ¿Qué cantidad de datos almacena?
 - e. Verificación de errores: ¿Cómo sabemos si el dato es correcto?
 - f. Modo de Acceso:
 - a. Aleatorio: Cualquier posición se accede en el mismo tiempo.
 - Secuencial: Cada posición tarda en accederse de acuerdo a la posición relativa. Pilas y Colas.

UPC - Sistemas Digitales

Direcciones 00 01 Cada una de las posiciones (registros/celdas) 02 debe ser identificado dentro de la memoria. 04 La forma de identificación es a través de una 05 dirección. Esta dirección es un número único asociado a una posición dentro de una memoria. El único formato que se puede utilizar para escribir una dirección, por ser un circuito digital, es el binario y por ende, se debe seleccionar la 2044 dirección en modo binario. 2045 ¿Cómo hacemos para indicarle a la memoria 2046 una dirección? 2047

Direcciones

- El número binario que representa la dirección ingresa de forma paralela a través de unos hilos de conexión que se denomina Bus de Direcciones.
- Este bus interactúa con otros componentes del sistema y su "ancho" está vinculado con el número de posiciones.
- La cantidad de direcciones siempre es 2ⁿ ¿Qué es n?

Control

 Además de los buses vistos hay un conjunto de señales que llegan a otros terminales de la memoria. Estas señales indican Escritura, Lectura, Habilitación, etc., y se les conoce como el Bus de Control

UPC - Sistemas Digitales

- Resumiendo, una memoria tiene:
 - Bus de Direcciones
 - Bus de Datos (uno del tipo bidireccional o dos del tipo unidireccional)
 - Bus de Control

Representación

- Las posiciones de memoria se dibujarán como una pila de pequeños bloques, cada uno identificado con su dirección y el dato que almacene (opcional).
- Las direcciones y los datos se expresan en formato hexadecimal, porque su conversión a partir del binario es sencilla. ¿Cómo se hace la conversión?
- Finalmente para identificar la memoria usamos la siguiente denominación:

samos la s	siguiente denominación:		
$2^{n}xm$	2 ⁿ = Cantidad de Posiciones m = Tamaño en hits del dato	7FFE	C1
	m = Tamaño en bits del dato	7FFF	99

0000

0001

0002

0003

8B

52

ΑF

70

UPC - Sistemas Digitales

Memoria Caché

- Están construidas con RAM estáticas.
- Es una memoria pequeña y muy rápida usada para almacenar las instrucciones y datos más empleados recientemente; en lugar de las memorias grandes y lentas.
- Ayuda a que los sistemas basados en microprocesador tengan un mejor rendimiento.
- ¿Cómo mejora el rendimiento este tipo de memoria?
- La memoria cache está clasificado en niveles que dependen de lo que se grabará y mantendrá.

Unidades de Memoria

- Muchos sistemas trabajan utilizando un chip de memoria de determinada capacidad, pero en ocasiones no es suficiente.
- Esto implica utilizar más de un circuito de memoria lo cual lleva a la formación de una unidad de memoria.
- La unidad de memoria debe configurarse de acuerdo con los buses que el sistema asigna (microprocesador)
- ¿Cómo ubicamos e identificamos cada una de las posiciones de los circuitos de memoria independientes dentro de la unidad?
- Recuerde que cada chip tiene su propio rango de direcciones, ¿lo seguirá conservando en la unidad?

Ejemplos

- Un sistema administra hasta 16KB de memoria y sólo se tienen memorias de 8Kx4 ¿Cómo organizarlas?
- 2. Un sistema de 32KB posee dos tipos de memoria : ROM y RAM el primero de ellos ocupa los primeros 8KB y el segundo los 24 KB siguientes. Si se posee una EPROM de 4KB y dos integrados RAM de 4KB ¿Cuál sería la disposición de los elementos?
- 3. En un sistema de 64KB la ROM utiliza el rango de direcciones 0000H a 3FFFH y la RAM de 8000H a 97FFH. Si tenemos ROM de 4K y RAM de 2KB, dibuje el sistema de memoria.

UPC - Sistemas Digitales

Ejemplos

- Diseñar una unidad de memoria que consta de una EPROM de 8 KB y ocho RAM de 4Kx2. El sistema usa un microprocesador que puede direccionar hasta 64KB. Según el diseño la EEPROM debe instalar en el inicio del rango de direcciones (0000H) y la RAM a partir de la mitad.
- Diseñar una unidad de memoria que consta de una EEPROM de 8 KB y dos RAM de 4Kx4. El sistema donde se instalarán puede manejar hasta 32 KB y siempre la EEPROM debe instalar en el inicio del rango de direcciones (0000H).

Ejemplos

- En una unidad de memoria con 32KB de capacidad máxima se han asignado los siguientes rangos de direcciones:
 - □ ROM de la dirección 0000H a 27FFH
 - RAM de la dirección 2800H hasta el final
 Como se configurarán los siguientes chips:
 - 1 ROM de 4KB
 - 2 RAM de 2KB
 - 2 RAM de 4KB