

Języki automaty i obliczenia

Definicje

- 1. Przez **alfabet** rozumiemy dowolny zbiór, którego elementy nazywane są **literami** bądź **symbolami**, podczas tego wykładu dodatkowo zakładamy, że zbiór ten musi być *skończony*.
- 2. **Słowo** nad alfabetem Σ jest to skończony ciąg liter z alfabetu Σ . Przykładowo: 0101011 jest słowem nad alfabetem $\{0,1\}$, ababa jest słowem nad alfabetem $\{a,b,c\}$.
- 3. Jeśli słowo w ma długość n, to piszemy |w|=n, mówimy też, że słowo w ma n pozycji, liczonych od 1. Jeśli $1 \le i \le |w|$, to przez w[i] oznaczamy i-tą literę słowa w. Jest tylko jedno słowo długości 0, nazywane słowem pustym i oznaczone symbolem ε .
- 4. Konkatenacja słów $u = a_1 \dots a_k$ oraz $v = b_1 \dots b_l$ to słowo $a_1 \dots a_k b_1 \dots b_l$, oznaczane $u \cdot v$ lub uv.
- 5. Przez Σ^* oznaczamy zbiór wszystkich słów (skończonych) nad alfabetem Σ .
- 6. **Językiem** nad alfabetem Σ nazywamy dowolny podzbiór $L \subseteq \Sigma^*$.
- 7. Dla języków L i K definiujemy następujące operacje:
 - (a) $L + K := L \cup K$
 - (b) $LK := \{v \cdot w \mid v \in L, w \in K\}$
 - (c) $L^* := \bigcup_{n \geqslant 0} L^n$, gdzie $L^n = L \dots L$ oraz $L^0 = \varepsilon$
- 8. Wyrażeniami regularnymi sa: \emptyset , ε , $a \in \Sigma$.

Jeśli e, f są wyrażeniami regularnymi to również $e^*, ef, e + f, (e)$ są wyrażeniami regularnymi. Wszystkie wyrażenia regularne są tej postaci.

W naturalny sposób wyrażeniu \mathcal{E} przypisujemy język oznaczany $L(\mathcal{E})$.

- 9. Język L nazywamy **językiem regularnym** jeśli jest generowany przez pewne wyrażenie regularne, to znaczy, że istnieje takie wyrażenie regularne \mathcal{E} , że zachodzi $L = L(\mathcal{E})$.
- 10. Automat niedeterministyczny (NFA nondeterministic finite automaton) jest to model prostego urządzenia mającego skończoną liczbę stanów, reagującego na bodźce w postaci liter alfabetu Σ. Będąc w danym stanie, otrzymując daną literę automat wykonuje tranzycję do jakiegoś stanu (być może tego samego). Wyróżniamy ponadto dwa zbiory stanów (niekoniecznie rozłączne): stany początkowe oraz stany akceptujące. Automaty możemy przedstawiać za pomocą diagramów:

Formalnie jest to piątka $\langle \Sigma, Q, I, F, \delta \rangle$, gdzie Σ to alfabet liter na tranzycjach, Q to zbiór stanów, $I \subseteq Q$ to zbiór stanów początkowych, $F \subseteq Q$ to zbiór stanów końcowych, a $\delta \subseteq Q \times \Sigma \times Q$ to relacja przejścia.

- 11. **Automat deterministyczny** (*DFA* deterministic finite automaton) to szczególny przypadek *NFA*, o dodatkowych warunkach:
 - (1) relacja możliwych przejść δ jest funkcją $\delta:(Q\times\Sigma)\to Q$
 - (2) |I| = 1

Proseminarium 15.12.2022

Warto odnotować, że DFA może mieć liczbę stanów akceptujących różną od 1, a z każdego stanu wychodzi dokładnie $|\Sigma|$ tranzycji, po jednej dla każdej litery alfabetu Σ .

Dla DFA definiujemy $\delta(q, w)$, gdzie $w \in \Sigma^*$ jako stan który otrzymamy idąc z q po słowie w.

- 12. **Biegiem** po słowie w w automacie \mathcal{A} nazywamy ścieżkę w diagramie automatu \mathcal{A} zaczynającą się w jednym ze stanów początkowych która składa się z tranzycji po kolejnych literach słowa w.
- 13. Biegiem akceptującym nazywamy bieg który kończy się w jednym ze stanów akceptujących automatu.
- 14. **Językiem automatu** \mathcal{A} oznaczanym przez $L(\mathcal{A})$ nazywamy zbiór wszystkich słów $\omega \in \Sigma^*$ po których \mathcal{A} ma co najmniej jeden bieg akceptujący.

Twierdzenia

1. Dla każdego automatu niedeterministycznego istnieje równoważny mu automat deterministyczny.

Szkic dowodu:

Automat potęgowy automatu A jest automatem deterministycznym równoważnym A.

Automat potęgowy konstruujemy biorąc jako stany wszystkie podzbiory zbioru stanów, a jako tranzycje przejścia pomiędzy tymi zbiorami po wszystkich literach alfabetu Σ

 $(stan\ q\ jest\ w\ zbiorze\ docelowym\ jeśli\ istnieje\ tranzycja\ z\ jakiegoś\ stanu\ zbioru\ z\ którego\ idziemy\ do\ q).$

2. Wyrażenia regularne, NFA i DFA rozpoznają (opisują) tę samą klasę języków.

Szkic dowodu:

Z automatu niedeterministycznego korzystając z pierwszego twierdzenia można skonstruować automat deterministyczny, który jest szczególnym przypadkiem automatu niedeterministycznego, więc te modele są sobie równoważne.

Z wyrażenia regularnego budujemy automat postępując zgodnie z drzewem parsowania, dla pojedynczej operacji konstrukcja jest prosta.

Z automatu deterministycznego aby uzyskać wyrażenie regularne wprowadzamy automaty z wyrażeniami regularnymi na krawędziach. Najpierw automat sprowadzamy do takiego o jednym stanie końcowym, a następnie usuwamy kolejne stany (modyfikując krawędzi) dochodząc do automatu z jedną krawędzią i dwoma stanami.

3. Lemat o pompowaniu: jeśli L jest regularny, to istnieje stała N taka, że dla każdego słowa $w \in L$ dłuższego niż N, istnieje podział $w = w_1 w_2 w_3$ taki, że $w_2 \neq \varepsilon$, $|w_1 w_2| \leq N$ oraz $w_1 w_2^k w_3 \in L$ dla każdego $k \geq 0$.

Szkic dowodu:

Bierzemy automat danego języka, jeśli ma on N stanów, to dla słów dłuższych niż N bieg ma cykl, z tego cyklu wynika postulowana własność.

- 4. Klasa języków regularnych jest zamknięta na następujące operacje:
 - sumę (suma rozłączna automatów)
 - przecięcie (automat iloczynowy)
 - dopełnienie $(DFA + F \leftrightarrow Q \setminus F)$
 - $L^r = \{a_n a_{n-1} \dots a_1 \mid a_1 a_2 \dots a_n \in L\}$
- 5. Relacja Myhill-Nerode'go: możemy połączyć stany z których dojść możemy tylko po tych samych słowach do stanów akceptujących stworzymy tak automat minimalny deterministyczny danego języka, jeśli klas abstrakcji jest nieskończenie wiele to język nie jest regularny.

Automaty a półgrupy

1. **Półgrupa** jest to zbiór S z łącznym działaniem \cdot nazywanym mnożeniem, co rozumiemy przez:

$$\forall_{a.b.c \in S} \quad (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

2. Monoid jest to półgrupa z elementem neutralnym (oznaczanym przez 1 lub e), czyli takim, który spełnia:

$$\forall_{s \in S} \quad 1 \cdot s = s \cdot 1 = s$$

- 3. Przykładami półgrup są:
 - N z dodawaniem
 - \mathbb{N} z działaniem $a \cdot b = \max(a, b)$
 - ullet Dla dowolnego zbioru X zbiór X^X wszystkich funkcji z $X \to X$ z operacją składania
 - Σ^* z operacją konkatenacji słów
 - Dowolna grupa (G, \cdot)

Wszystkie powyższe przykłady półgrup są monoidami.

Ważnym przykładem półgrupy która nie jest monoidem jest $\Sigma^* \setminus \{\varepsilon\}$ z operacją konkatenacji.

4. Dla danych monoidów (S,\cdot) i (M,\bullet) , homomorfizm z S do M to funkcja $h:S\to M$ spełniająca:

$$\forall_{s_1, s_2 \in S} \quad h(s_1) \bullet h(s_2) = h(s_1 \cdot s_2), \quad h(e_S) = e_M$$

Odnotujmy, że w ogólności homomorfizm nie musi być ani iniekcją, ani suriekcją.

Twierdzenia

- 1. Niech $L \subseteq \Sigma^*$, następujące warunki są równoważne:
 - (a) L jest językiem regularnym.
 - (b) Istnieje monoid **skończony** S oraz homomorfizm $h: \Sigma^* \to S$ i podzbiór $K \subseteq S$ taki, że $L = h^{-1}(K)$.

O monoidzie S mówimy, że jest skończony, gdy moc zbioru jego elementów jest skończona.

Dowód:

- (a) o (b) L jest regularny, więc istnieje DFA rozpoznający L, nazwijmy go \mathcal{A} . Nazwijmy jego zbiór stanów Q. Rozważmy monoid S funkcji Q^Q , z działaniem lewostronnego składania funkcji $(f \cdot g)(a) = g(f(a))$. Niech h(w) = f, dla takiej funkcji f, że $\forall_{q \in Q} \ f(q) = \delta(q, w)$. Oczywiście h jest homomorfizmem, ponieważ wymagane warunki zachodzą. Istotnie $h(\varepsilon) = \lambda x.x$ oraz $h(w_1)h(w_2) = h(w_1w_2)$ jest równoważne $\forall_{q \in Q} \ \delta(q, w_1w_2) = \delta(\delta(q, w_1), w_2)$. Niech K będzie zbiorem funkcji $f: Q \to Q$ o własności $f(q_0) \in F$, gdzie q_0, F to stan początkowy i zbiór stanów końcowych automatu \mathcal{A} . $h(w) \in K \iff \delta(q_0, w) \in F \iff w \in L$, więc $h^{-1}(K) = L$.
- $(b) \to (a)$ Niech S będzie monoidem skończonym. Ustalmy $K \subseteq S$ oraz $h: \Sigma^* \to S$ będące homomorfizmem. Niech $L = h^{-1}(K)$, pokażemy, ze L jest regularny poprzez konstrukcję DFA rozpoznającego L. Zdefiniujmy automat $\mathcal B$ w następujący sposób: zbiór stanów to zbiór elementów S, funkcja tranzycji zadana jest poprzez $\delta(s,a) = s \cdot h(a)$, stan początkowy $q_0 = h(\varepsilon)$, zbiór stanów akceptujących F = K. Na mocy indukcji otrzymujemy, że $h(w) = \delta(q_0, w)$.

$$L(\mathcal{B}) = \{ w \in \Sigma^* \mid \delta(q_0, w) \in K \} = \{ w \in \Sigma^* \mid h(w) \in K \} = h^{-1}(K) = L$$

Więc L jest regularny.

2. Niech S będzie monoidem skończonym. Dla każdego $s \in S$ istnieje $m \in \mathbb{N}$, takie, że s^m jest idempotentem, czyli $s^m s^m = s^m$. Co więcej, jeśli $k \in \mathbb{N}$ i $s^k s^k = s^k$, to $s^k = s^m$ (element jest unikalny).