P22235TR.WPD

Uncertified Translation of Example 20 of DE 3417840

36 parts of the compound of the formula

are dissolved in 200 parts of dimethylformamide. At room temperature, 14 parts of sodium azide and 12 parts of ammonium chloride are added thereto. Then the mixture is stirred at 125° until thin layer chromatography does no longer show starting material. Then, 11 parts of sodium carbonate and 20 parts of n-butyl bromide are added to the reaction mixture and stirring at 125° is continued until the alkylation is complete. The solution is filtered to render it clear, and the filtrate is diluted with water, whereby the compound of the formula

precipitates.

The compound dyes polyester fibers according to the usual dying processes in yellow, fluorescent hues with good fastness.

If in the above example the 36 parts of starting material and the 20 parts of n-butyl bromide are replaced by equivalent parts of the starting materials and alkylating agents set forth in Table 2, col. 1 and col. 2, under the same reaction conditions similar compounds (col. 3) are obtained, which compounds show equally good properties on polyester materials and whose color hue is indicated in col. 4.

D 06 P 1/41

DEUTSCHES PATENTAMT

②1) Aktenzeichen: P 34 17 840.6 Anmeldetag: 14. 5.84 (43) Offenlegungstag: 22.11.84

30 Unionspriorität: 32 33 31 17.05.83 CH 2661-83

(7) Anmelder: CIBA-GEIGY AG, Basel, CH

(74) Vertreter: Zumstein sen., F., Dr.; Assmann, E., Dipl.-Chem. Dr. rer.nat.; Klingseisen, F., Dipl.-Ing.; Zumstein jun., F., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 8000 München (72) Erfinder:

Adam, Jean-Marie, Dr., Rosenau, FR

(54) Tetrazolverbindungen

Neue Tetrazolverbindungen der Formel

worin die Symbole die im Anspruch 1 angegebene Bedeutung haben, Verfahren zu deren Herstellung und deren Verwendung als Farbstoffe zum Färben und Bedrucken von Textilmaterialien und vor allem Papier; es handelt sich bei den neven Verbindungen sowohl um disperse, als auch um saure, basische und kationische Verbindungen.

Patentansprüche

1. Tetrazolverbindungen der Formel I

worin bedeuten:

- F den Rest eines organischen chromophoren Systems mit Ausnahme von Anthrachinon.
- R Wasserstoff, gegebenenfalls substituiertes C_1 - C_1 -Alkyl oder Acyl und
- x die Zahlen 1, 2 oder 3 sowie Mischungen dieser Tetrazolverbindungen.
- 2. Tetrazolverbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass F einen Monoazo-, Polyazo-, Styryl-, Dioxazin-, Chinophthalon und Cumarinrest bedeutet.
- 3. Tetrazolverbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass R eine unsubstituierte C_1 - C_4 -Alkylgruppe bedeutet.
- 4. Tetrazolverbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass x die Zahl 1 bedeutet.
- 5. Verfahren zur Herstellung der Tetrazolverbindungen der Formel I gemäss Anspruch 1 dadurch gekennzeichnet, dass man entweder
- a) eine Verbindung der Formel II

(II)

worin F und x die im Anspruch 1 angegebene Bedeutung haben, mit einem Azid in einem polaren aprotischen Lösungsmittel, gegebenenfalls in Gegenwart eines Lithium- oder Anmoniumsalzes, oder einer Lewis-Säure, bei einer Temperatur von 20 bis 130°C zu einer Tetrazolverbindung der Formel III

worin die Symbole die angegebene Bedeutung haben umsetzt und diese Tetrazolverbindung anschliessend gegebenenfalls alkyliert bzw. acyliert, oder

- b) indem man in einem Eintopfverfahren, ausgehend von der Verbindung der Formel II den Ringschluss zur Tetrazolgruppe und gegebenenfalls die Alkylierung bzw. Acylierung nacheinander ohne Zwischenisolation der Tetrazolverbindung der Formel III durchführt.
- 6. Die gemäss dem Verfahren nach Anspruch 5 erhaltenen Tetrazol-verbindungen.
- 7. Verwendung der Tetrazolverbindungen gemäss Anspruch 1 bzw. der nach Anspruch 5 erhaltenen Tetrazolverbindungen als Farbstoffe zum Färben und Bedrucken von Textilmaterialien und Papier.
- 8. Verwendung gemäss Anspruch 7 zum Färben und Bedrucken von Polyestermaterialien.
- 9. Die gemäss Anspruch 8 gefärbten und bedruckten Materialien.

FO 7.1 DOE/mg/

Dr. F. Zumstein sen. - Dr. E. Asmann Dipl.-Ing. F. Klingseisen - Dr. F. Zamstein jun.

PATENTANWÄLTE

ZUGELASSENE VERTRETER BEIM EUROPAISCHEN PATENTAMT REPRESENTATIVES BEFORE THE EUROPEAN PATENT OFFICE

· Z -

3417840

CIBA-GEIGY AG
Basel (Schweiz)

1-14429 /=

Tetrazolverbindungen

Die Erfindung betrifft neue Tetrazolverbindungen, Verfahren zu deren Herstellung, sowie deren Verwendung als Farbstoffe zum Färben und Bedrucken von Textilmaterialien und Papier.

Die neuen Tetrazolverbindungen entsprechen der Formel I

worin bedeuten:

F den Rest eines organischen chromophoren Systems mit Ausnahme von Anthrachinon,

R Wasserstoff, gegebenenfalls substituiertes C_1 $^-$ C $_1$ $^-$ Alkyl oder Acyl, und

 ${\bf x}$ die Zahlen 1, 2 oder 3 insbesondere 1 sowie Mischungen dieser Tetrazolverbindungen.

F in der Bedeutung des Restes eines organischen, chromophoren Systems stellt beispielsweise einen Mondazo-, Polyazo-, Styryl-, Dioxazin-, Chinophthalon- und Cumarinrest dar.

Bedeutet F einen Azofarbstoffrest, so kommt vor allem ein solcher der Formel DK-N=N-KK in Frage, wobei DK (= Diazokomponete) und KK (= Kupplungskomponente) aromatisch oder heterocyclisch sein können. Als aromatische Diazokomponenten sind beispielsweise genannt: Anilin und Aminoazobenzol.

Als heterocyclische Diazokomponenten sind beispielsweise genannt: Substitutionsprodukte von Aminothiazol, Aminobenzthiazol, Aminoisothiazol, Aminobenzisothiazol, Aminothiadiazol, Aminoimidazol, Aminopyrazol, Aminoindazol und Aminothiophen.

Als aromatische Kupplungskomponenten kommen beispielsweise in Frage: N,N-Dialkylaminoanilin, Hydroxybenzol, Hydroxynaphthalin und methylen-aktive Verbindungen.

Als heterocyclische Kupplungskomponenten kommen beispielsweise in Frage: Pyrazolone, Hydroxychinolone, Hydroxypyridone, Hydroxycumarine, Hydroxyisochinoline, Diamino- und Triaminopyridine und -pyrimidine.

All diese Reste F können weiter substituiert sein; als Substituenten kommen beispielsweise in Frage: Halogen, wie Fluor, Chlor oder Brom; die OH-Gruppe; die SO $_3$ H-Gruppe eine C $_1$ -C $_4$ -Alkoxygruppe (unverzweigt oder verzweigt) wie die Methoxy-, Aethoxy- oder n- und iso-Propoxy-gruppe; eine Phenoxygruppe, gegebenenfalls substituiert durch beispielsweise C $_1$ -C $_4$ -Alkyl (unverzweigt oder verzweigt) oder Halogen (Fluor, Chlor oder Brom); dann die NO $_2$ -Gruppe; die NH $_2$ -Gruppe; eine N-mono- oder N,N-dialkylierte Aminogruppe, wobei als Alkylgruppen solche mit 1 bis 4 Kohlenstoffatomen in Frage kommen und die NH-Phenylgruppe, welche gegebenenfalls im Phenylrest durch C $_1$ -C $_4$ -Alkyl, C $_1$ -C $_4$ -Alkoxy oder durch Halogen substituiert sein kann; desweiteren -CN, -CO $_2$ -H, -CO $_2$ -Alkyl, -CONH-Alkyl, -NHCO-Alkyl, -SO $_2$ NH $_2$, -NHSO $_2$, -SO $_2$ -Alkyl, -O-Acyl und heterocyclische Ringe.

Bedeutet R eine $C_1^{-C}_{10}^{-Alkylgruppe}$, so kann diese unverzweigt oder verzweigt sein. Es handelt sich beispielsweise um folgende Gruppen: Methyl-, Aethyl-, n- und iso-Propyl, n-, sec.- und tert.-Butyl, n- und iso-Octyl- und n- und iso-Nonyl.

Diese Alkylgruppen können substituiert sein; als Substituenten für diese Alkylgruppen kommen beispielsweise in Frage: OH, C,-C,-Alkoxy, Phenoxy, 0-Acyl, 0-Acyl-0xy, $N.R_8.R_9$ und $[N.R_8.R_9.R_{10}]^{\bigoplus}$ An wobei R₈, R₉ und R₁₀ unabhängig voneinander C₁-C₄-Alky1, gegebenenfalls substituiert durch Phenyl und An ein in kationischen Farbstoffen übliches Anion bedeuten. Als derartige Anionen kommen beispielsweise in Frage: organische wie anorganische Ionen, z.B. Halogen, wie Chlorid-, Bromid- oder Jodid-, Rhodanid-, Sulfat-, Methylsulfat-, Aethylsulfat-, Aminosulfonat-, Perchlorat-, Carbonat-, Bicarbonat-, Phosphat-, Phosphormolybdat-, Phosphorwolframat-, Phosphorwolframmolybdat-, Benzolsulfonat-, Naphthalinsulfonat-, 4-Chlorbenzolsulfonat-, Oxalat-, Maleinat-, Formiat-, Acetat-, Propionat-, Lactat-, Succinat-, Chloracetat-, Tartrat-, Methansulfonat- oder Benzoationen, oder komplexe Anionen, wie das von Chlorzinkdoppelsalzen. Der c_1 - c_1 - c_1 0 Alkylrest R kann aber auch substituiert sein durch Phenyl, welcher Phenylrest seinerseits noch substituiert sein kann, beispielsweise durch C₁-C₄-Alkyl, durch Halogen (Fluor, Chlor oder Brom) oder durch $\mathrm{NO}_2;$ es handelt sich beispielseise um den Benzylrest, um den Phenäthylrest, um den p-Chlorbenzylrest und p-Nitrobenzylrest. Schliesslich kann der Alkylrest R noch substituiert sein durch die -X- $(CH_2)_n^{-R}_{11}^{-G}$ -Gruppierung, worin X das Sauerstoff- oder Schwefelatom, n die Zahlen 1-3 und R_{11} einen Aryl-, vor allem Phenylrest darstellt, der gegebenenfalls noch durch beispielsweise OH substituiert sein kann, oder R 11 bedeutet einen heterocyclischen Ring, der gegebenenfalls über ein Sauerstoffatom an die CH₂-Gruppe gebunden ist. Als derartige Reste -X-(CH₂) -R₁₁ kommen beispielsweise in Frage:

```
(2'-Phenoxy)-athoxypropyl.
 (Fury1-2)-methoxypropy1,
 (Tetrahydrofury1-2)-methoxypropy1,
 (3'-Phenyl-(propyloxypropyl,
 (Pheny1)-methoxypropy1,
 (2'-Pyridy1-3-oxy)-äthoxypropy1,
 (p-Chlorpheny1)-methoxypropy1,
(p-Methoxyphenyl)-methoxypropyl,
 (2'-Pyridyl-2)-äthoxypropyl,
(Pyridy1-4)-methoxypropy1,
(Thieny1-2)-methoxypropy1,
(Tetrahydrothieny1-2)-methoxypropyl,
(2 -Phenoxy)-athoxybuty1,
(3'-Phenyl)-propyloxybutyl,
(p-Chlorphenyl)-methoxybutyl,
(p-Methoxyphenyl)-methoxybutyl,
(Phenyl)-methoxypentyl,
(Phenyl)-methylthiopropyl und
(2'-Phenyl)-äthylthiobutyl.
```

Bedeutet R eine Acylgruppe, so handelt es sich um die Gruppe der Formel $-\mathrm{COR}_1$ worin R₁ einen unsubstituierten C₁-C₆-Alkylrest oder einen substituierten (z.B. Halogen, C₁-C₄-Alkoxy, Phenyl)C₁-C₆-Alkylrest oder eine unsubstituierte Phenylgruppe oder eine substituierte (z.B. C₁-C₄-Alkyl, Halogen, OH) Phenylgruppe darstellt; genannt sind beispielsweise die Methylcarbonyl-, Aethylcarbonyl-, n-Propylcarbonyl-, Benzylcarbonyl- und p-Chlorbenzylcarbonylgruppe.

In bevorzugten Tetrazolverbindungen bedeutet R einen unsubstituierten ${\rm C_1}^{-{\rm C_4}}$ -Alkylrest, insbesondere den n-Butylrest.

Die Erfindung bezieht sich des weiteren noch auf Mischungen der erfindungsgemässen Tetrazolverbindungen untereinander. Derartige Mischungen setzen sich beispielsweise zusammen aus:

- a) Isomeren Tetrazolverbindungen worin der Substituent R sich einmal in 1-Stellung und einmal in 2-Stellung des Tetrazolringes befindet;
- b) verschiedenen Tetrazolverbindungen, worin der Substituent R nicht identisch ist:
- c) Mischungen, worin der Tetrazolring (z.B. bezogen auf Azoverbindungen) sich z.B. einmal in m- und einmal in p-Stellung zur Azobrücke befindet, und
- d) Mischungen der Komponenten a) und b), sowie a) und c).

In den erfindungsgemässen Tetrazolverbindungen kann der Substituent R in folgenden Stellen lokalisiert sein:

Der Einfachheit halber wird dieser Sachverhalt hier und im folgenden durch folgende Formel wiedergegeben:

Die neuen Tetrazolverbindungen der Formel I erhält man nach an sich bekannten Methoden; beispielsweise indem man entweder:

a) eine Verbindung der Formel II

$$F - (CN)_{x}$$
 (II)

worin F und x die angegebene Bedeutung haben, mit einem Azid in einem polaren aprotischen Lösungsmittel, gegebenenfalls in Gegenwart eines Lithium- (Li) oder Ammoniumsalzes, oder einer Lewis Säure bei einer Temperatur von 20 bis 130°C zu einer Tetrazolverbindung der Formel III

worin die Symbole die angegebene Bedeutung haben umsetzt und diese Tetrazolverbindung im Tetrazolrest anschliessend gegebenenfalls alkyliert bzw. acyliert, oder

b) indem man in einem Eintopfverfahren, ausgehend von der Verbindung der Formel II den Ringschluss zur Tetrazolgruppe und gegebenenfalls die Alkylierung bzw. Acylierung nacheinander ohne Zwischenisolation der Tetrazolverbindung der Formel III durchführt.

Nach beiden Herstellungsmöglichkeiten erhält man die Tetrazolverbindungen der Formel I.

Zur Durchführung dieser genannten Reaktionen a) und b) werden als Azide Alkaliazide wie Kaliumazid und vor allem Natriumazid, Ammoniumazid oder Lithiumazid verwendet.

Als Li- und Ammoniumsalze kommen beispielsweise Li- und Ammoniumsulfat, Li- und Ammoniumcarbonat, Li- und Ammoniumbicarbonat und vor allem Ammoniumchlorid in Frage; als Lewissäure: AlCl₃, SnCl₄ und TiCl₄.

Als polare aprotische Lösungsmittel kommen beispielsweise in Betracht: stickstoffhaltige Verbindungen, wie Dimethylformamid, Dimethylacetamid, N,N,N',N'-Tetramethylharnstoff, N-Methylpyrrolidon, 1,5-Dimethylpyrrolidon und Pyridin; schwefelhaltige Verbindungen, wie Sulfolan (Tetramethylensulfon) und Sulfolen (2,3- und 2,5-Dihydrothiophen-S-dioxyd) und deren in α - und/oder β -Stellung insbesondere durch Alkyl- oder Hydroxyalkylgruppen substituierte Derivate und

Dimethylsulfoxyd; sowie phosphorhaltige Verbindungen, wie Hexamethylphosphorsäuretriamid und Bis-(dimethylamido)-methanphosphat; ferner noch Tetrahydrofuran.

Das bevorzugte Lösungsmittel ist Dimethylformamid. Die Reaktionstemperatur liegt zwischen 20 und 130°C.

Führt man die Herstellung der Verbindungen der Formel I mittels dem Eintopfverfahren nach der Variante b) durch, so geht man im Einzelnen so vor, dass man zu der Verbindung der Formel II das Azid und Lösungsmittel und gegebenenfalls das Ammonsalz gibt und solange miteinander reagieren lässt, bis im Dünnschichtchromatogramm kein Ausgangsmaterial mehr vorhanden ist, anschliessend gibt man dann die den Rest R einführende Verbindung zu. Bei der R einführenden Verbindung handelt es sich (wenn R einen C₁-C₁₀ Alkylrest bzw. einen Acylrest bedeutet) entweder um ein Alkylierungmittel oder um ein Acylierungsmittel.

Im Falle eines Alkylierungsmittels geht man derart vor, dass man die R entsprechenden Halogenide, vor allem Chloride, in Gegenwart einer Base wie Alkali (Na, K, Li oder NH₄)carbonat, Alkalibicarbonat, Alkaliacetat oder auch Alkalihydroxyd in einem der genannten polaren aprotischen Lösungsmittel, vor allem Dimethylformamid, bei einer Temperatur von etwa 20 bis 130°C, vorzugsweise 100°C, mit den Verbindungen der Formel III (Variante a)) umsetzt, oder diese Verbindungen im Eintopfverfahren (Variante b)) der Reaktionslösung zugibt. Diese Alkylierung kann anstelle der R entsprechenden Halogenide auch mit den R entsprechenden Epoxyden durchgeführt werden. In diesem Falle beträgt die Reaktionstemperatur bei im übrigen gleicher Arbeitsweise 120° bis 135°C, vorzugsweise 130°C.

Im Falle eines Acylierungsmittels, d.h. für den Fall, dass R die -CO-R₁ Gruppe bedeutet, geht man bekannterweise so vor, dass man die entsprechenden Anhydride oder Säurehalogenide, vor allem Säurechlo-

ride, mit den Verbindungen der Formel III (Variante a)) umsetzt, oder diese Verbindungen im Eintopfverfahren (Variante b)) der Reaktions-lösung zugibt. Auch hier arbeitet man in Gegenwart einer Base und eines Lösungsmittels gemäss der Alkylierungsreaktion. Die Reaktionstemperatur beträgt in diesem Falle 20 bis 130°C, vorzugsweise 50°C.

Die Zeit während welcher die Reaktion durchgeführt wird, liegt im Falle der Isolierung der Tetrazolverbindung der Formel III bei etwa 1 bis 18 Stunden. Führt man die Reaktion als Eintopfverfahren ohne Isolierung der Tetrazolverbindung der Formel III durch, so beträgt die Reaktionszeit ca. 4 bis 7, insbesondere 5 Stunden.

Die Ausgangsverbindungen der Formel II sind bekannt.

Die Verbindungen der Formel III sind neu.

Verwendung finden die neuen Tetrazolverbindungen der Formel I vor allem als Farbstoffe zum Färben und Bedrucken von vor allem Textilmaterialien. Es handelt sich bei den neuen Tetrazolverbindungen der Formel I sowohl um Dispersionsfarbstoffe als auch um saure, basische und kationische Farbstoffe.

Dienen die neuen Tetrazolverbindungen als Dispersionsfarbstoffe, so werden diese Farbstoffe vor ihrer Verwendung vorteilhaft in Farbstoff-präparate übergeführt. Hierzu kann man sie zerkleinern, so dass ihre Teilchengrösse im Mittel zwischen 0,01 und 10 Mikron beträgt. Das Zerkleinern kann in Gegenwart von Dispergiermitteln erfolgen. Beispielsweise wird der getrocknete Farbstoff mit einem Dispergiermittel gemahlen oder in Pastenform mit einem Dispergiermittel geknetet und hierauf im Vakuum oder durch Zerstäuben getrocknet. Mit den so erhaltenen Präparaten kann man, nach Zugabe von Wasser, in langer Flotte (Flottenverhältnis grösser als 1:5) oder kurzer Flotte

(Flottenverhältnis 1:1 bis 1:5) färben, klotzen oder bedrucken.

Die neuen Tetrazolverbindungen ziehen aus wässeriger
Suspension ausgezeichnet auf Formkörper aus vollsynthetischen oder
halbsynthetischen hochmolekularen Stoffen auf. Besonders geeignet sind
sie zum Färben, Klotzen oder Bedrucken von Fasern, Fäden oder Vliesen,
Gewebe oder Gewirken aus linearen, aromatischen Polyestern sowie aus
Cellulose-2 1/2-acetat und Cellulosetriacetat. Auch synthetische Polyamide, Polyolefine, Acrylnitrilpolymerisationsprodukte und Polyvinylverbindungen Iassen sich mit ihnen färben und bedrucken. Besonders
wertvolle Färbungen werden auf linearen, aromatischen Polyestern erhalten. Diese sind im allgemeinen Polykondensationsprodukte aus
Terephthalsäure und Glykolen, besonders Aethylenglykol, oder Polykondensationsprodukte aus Terephthalsäure und 1,4-Bis-(hydroxymethyl)hexahydrobenzol.

Man färbt die Polyesterfasern nach an sich bekannten Verfahren in Gegenwart von Carriern bei Temperaturen zwischen etwa 80 und 125°C oder in Abwesenheit von Carriern unter Druck bei etwa 100 bis 140°C nach dem Ausziehverfahren. Ferner kann man diese Fasern mit den wässerigen Dispersionen Klotzen oder Bedrucken und die erhaltene Imprägnierung bei etwa 140° bis 230°C fixieren, z.B mit Hilfe von Wasserdampf, Kontakthitze oder heisser Luft. Cellulose-2-1/2-acetat färbt man vorzugsweise zwischen ungefähr 65 bis 85°C und Cellulosetriacetat bei Temperaturen bis zu 115°C.

Meist gibt man die üblichen Dispergiermittel zu, die vorzugsweise anionisch oder nichtionogen sind und auch im Gemisch miteinander verwendet werden können.

Bekannte anionische Dispergiermittel, die für das Verfahren in Betracht kommen, sind beispielsweise Kondensationsprodukte aus Naphthalinsulfonsäuren und Formaldehyd, insbesondere Dinaphthylmethandisulfonate, Ester von sulfonierter Bernsteinsäure, Türkischrotöl, und Alkalisalze von Schwefelsäureestern der Fettalkohole, z.B. Natriumlaurylsulfat oder Natriumcetylsulfat, Sulfiteelluloseablauge, bzw. deren Alkalisalze, Seifen oder Alkalisulfate von Monoglyzeriden von Fettsäuren. Beispiele bekannter und besonders geeigneter nichtionogener Dispergiermittel sind Anlagerungsprodukte von etwa 3 bis 40 Mol Aethylenoxyd an Alkylphenole, Fettalkohole oder Fettamine und deren neutrale Schwefelsäureester.

Beim Klotzen und Bedrucken wird man die üblichen Verdickungsmittel verwenden, z.B. modifizierte oder nichtmodifzierte natürliche Produkte, beispielsweise Alginate, Britischgummi, Gummi arabicum, Kristallgummi, Johannisbrotkernmehl, Tragant, Carboxymethylcellulose, Hydroxyäthylcellulose, Stärke oder synthetische Produkte, beispielsweise Polyacrylamide oder Polyvinylalkohole.

Handelt es sich bei den neuen Tetrazolverbindungen der Formel I um saure Verbindungen, so finden diese Verwendung als Farbstoffe zum Färben und unter Zusatz von Binde- und Lösungsmitteln zum Bedrucken von mit sauren Farbstoffen anfärbbaren Materialien, insbesondere Textilmaterialien wie Polyamid, Wolle und Baumwolle. Des weiteren dienen die neuen sauren Farbstoffe auch zum Färben von Papier, Halbkartons und Kartons. Man färbt vorzugsweise aus wässerigem neutralem oder saurem Medium nach dem Ausziehverfahren, gegebenenfalls unter Druck oder nach dem Kontinueverfahren. Das Textilmaterial kann dabei in verschiedenartigster Form vorliegen, beispielsweise als Faser, Faden, Gewebe, Gewirke, Stückware und Fertigware, wie Hemden und Pullover.

Die mit den neuen Dispersionsfarbstoffen und sauren Farbstoffen erhaltenen Ausfärbungen auf Textilmaterial weisen eine grünstichig gelbe bis note Nuance auf; es handelt sich dabei um farbstarke Ausfärbungen von hoher Brillanz und teilweise guter Fluoreszenz, die gute Allgemeinechtheiten aufweisen, vor allem sehr nassecht, sublimierecht und

lichtecht sind und einen guten Aufbau auf Textilmaterial besitzen; ferner sind sie säurebeständig.

Handelt es sich bei den neuen Tetrazolverbindungen der Formel I um kationische Verbindungen, so finden diese Verwendung als Farbstoffe zum Färben und unter Zusatz von Binde- und Lösungsmitteln zum Bedrucken von mit kationischen Farbstoffen anfärbbaren Materialien, insbesondere Textilmaterialien, die z.B. aus Homo- oder Mischpolymerisaten des Acrylnitrils bestehen, oder synthetische Polyamide oder Polyester, welche durch saure Gruppen modifiziert sind.

Die folgenden Beispiele veranschaulichen die Erfindung, ohne sie darauf zu limitieren; Temperaturen sind in Grad Celsius angegeben; Teile (T) bedeuten, sofern nicht anderes angegeben ist, Gewichtsteile.

In den Verbindungen der Kol. 2 und 3 der Tabellen bedeuten:

A = Benzylchlorid

B = Diaethylsulfat

C = n-Butylbromid

D = Dimethylsulfat

$$R_2 = -\frac{N}{N} CH_2 - \frac{1}{N}$$

$$R_3 = - N C_2^H_5$$

$$R_4 = -\frac{N}{N} \frac{N}{N} n^{-C} 4^{H} 9$$

$$R_5 = -\frac{N}{N} CH_3$$

Beispiel 1: 27,5 T der Verbindung der Formel

$$C_2H_5$$
 $N - C = C$
 CN
 NCC_2H_4

werden mit 7,2 T Natriumazid in 200 T Dimethylformamid 100° gerührt bis die Dünnschichtchromatographie kein Ausgangsmaterial mehr zeigt. Das Reaktionsgemisch wird dann mit 10,6 T Natriumcarbonat und 16,5 T n-Butylbromid versetzt und bei 100° weiter gerührt bis die Alkylierung vollständig ist. Die Lösung wird klärfiltriert und das Filtrat zur Trockne eingedampft. Man erhält die Verbindung der Formel

$$C_{2}^{H}_{5} = C_{1}^{N} = C_{1}^{N} = C_{1}^{N}$$

$$C_{2}^{H}_{4}$$

$$C_{1}^{N} = C_{1}^{N} = C_{1}^{N}$$

$$C_{2}^{H}_{4}$$

welche sich zum Färben von Polyester eignet, wobei eine brillante Orangefärbung mit guten Echtheiten erhalten wird.

Ersetzt man im obigen Beispiel die 27,5 T der Ausgangsverbindung und die 16,5 T n-Butylbromid durch äquivalente Teile der in der Tabelle 1 Kol. 1 und Kol. 2 angegebenen Ausgangsverbindungen und Alkylierungsmitteln, so erhält man unter den gleichen Reaktionsbedingungen ähnliche Verbindungen (Kol. 3), die auf Polyestermaterialien (PES) gleich gute Eigenschaften aufweisen, und deren Farbton in Kol. 4 angegeben ist.

7	Nugnce auf PES	orange	orange		orange	**************************************	grün- stichig- gelb
3	verbindung	$\begin{bmatrix} 5 \\ N \end{bmatrix} = \begin{bmatrix} CN \\ R \\ CN \end{bmatrix}$	$c_2^{H_5}$ $c_2^{H_5}$ $c_2^{H_5}$ $c_2^{H_5}$ $c_2^{H_5}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} -N - & & & \\ & -N - & & \\ & & & \\ $	$C_2^{H_5}$ $N - C_{H=C}^{C_2}$ $N - C_{H=C}^{C_3}$
2	Airy- lierungs- mittel	A NCC2H4	50% A C 50% B NCC	$\frac{\text{CNC}_2 \text{H}_4 - \text{N}}{\text{C}_2}$	50% A 50% C NCC	$\frac{\text{CNC}_2\text{H}_4 - \text{N} - \text{CNC}_2}{\text{C}_2}$	A NGG
Auspangsverhindung	9	$C_2^{H_5} = C_2^{H_5} = C_2^{H_5}$ $C_2^{H_5} = C_2^{H_5}$	c_2H_5 c_2H_4 c_2H_4 c_2H_4		${^{C}_{2}}^{H_{5}}_{N}$ ${^{NCC}_{2}}^{H_{4}}$ ${^{CN}}_{CN}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bsp.		2	ო		7		٠.

Nugnce auf PES	grün- stichig- gelb	grün- stichig- gelb	orange	
3 Verbindung	$\begin{pmatrix} c_{2}H_{5} & & & & & & \\ c_{-0}-c_{2}H_{4} & & & & & \\ c_{+2} & & & & \\ c_{-0}-c_{2}H_{4} & & & & \\ c_{-3} & & & & \\ c_{-1} & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2 Alky- lierungs- mittel	U	U	Ü	
Ausgangsverbindung	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Bsp.	6	. 1	∞	

	4	Nuance aut PES	grün- stichig- gelb	orange	grün- stichig- gelb
	3	Verbindung	$\begin{array}{c} c_2 H_5 \\ & -c_{H-C} \\ & -c_{H-C} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₂ H ₅ N-CH=C ^R 4 NH-C-O-CH-CH CH ₂ O-CH=C CN
Tabelle 1	2	Alky- lierungs- mittel	U	U	U
		Ausgangsverbindung	$c_{2}^{H_{5}}$ $c_{2}^{H_{5}}$ $c_{2}^{H_{5}}$ $c_{2}^{H_{5}}$ $c_{2}^{H_{5}}$ $c_{3}^{H_{5}}$ $c_{3}^{H_{5}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		Bsp.	ō.	10	. 11

4 Nugnce aur PES	orange	grün- stichig- gelb	orange
3 Verbindung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 Alky- lierungs- mittel	ں ۔	* * * °	O
1 Ausgangsverbindung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Rsp.	12	13	1.4

	. 7	Nuance aut PES		grün- stichíg- gelb		orange	grün- stichig- gelb
		Verbindung		C1CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C ₂ C ₂ H ₅	*	$c_{1CH_{2}CH_{2}}^{C_{4}} c_{H_{2}}^{Q_{4}} \cdots c_{e}^{e} c_{N}^{R_{4}} c_{O_{2}C_{2}H_{5}}^{R_{4}}$	CH3 S C2H5 CH3 CH3 CH3 CH3 CH3 CH3 CH3 C
Tabelle 1	2	Alky- lierungs- mittel	*	U .			U
		Ausgangsverbindung		$c_{1CH_{2}CH_{2}}^{C_{4}H_{9}}$		$c_4^{H_9}$ $c_1 c_{H_2}^{C_4} c_{H_2}$ $c_1 c_{H_2}^{C_4} c_{H_2}$	CH3 CN C2H5 CN C2H5 CN CN C2H5 CN
		Bsp.		15		16.	17

	7	Nugnce	aur PES	orange	grün- stichig- gelb
					*
	3	Verbindung		CH3 S C2 CA CCH3 CC	$c_{H_{3}0_{2}}^{C_{H_{3}}}$ $c_{H_{3}0_{2}}^{C_{H_{3}}}$ $c_{H_{3}}^{C_{H_{3}}}$ $c_{H_{3}}^{C_{H_{3}}}$
Tabelle 1	2	Alky-	nittel	U	U
		Bungangs vero Indund		CH 3 CN 3 CN 5 CN 5 CN 5 CN 5 CN 5 CN 5 CN	CH ₃ O ₂ C, CH ₃ CH ₃ O ₂ C, CH ₃
	Ren	0 0		∞ œ	19

Beispiel 20: 36 T der Verbindung der Formel

werden in 200 T Dimethylformamid gelöst. Hinzu gibt man bei Raumtemperatur 14 T Natriumazid und 12 T Ammoniumchlorid. Man rührt dann bei 125° nach, bis die Dünnschichtchromatographie kein Ausgangsmaterial mehr zeigt. Das Reaktionsgemisch wird dann mit 11 T Natriumcarbonat und 20 T n-Butylbromid versetzt und bei 125° weitergerührt bis die Alkylierung vollständig ist. Die Lösung wird klärfiltriert und das Filtrat mit Wasser verdünnt wobei die Verbindung der Formel

ausfällt.

Die Verbindung färbt Polyesterfasern nach den üblichen Färbeverfahren in gelben, fluoreszierenden Tönen mit guten Echtheiten.

Ersetzt man im obigen Beispiel die 36 T der Ausgangsverbindung und die 20 T n-Butylbromid durch äquivalente Teile der in der Tabelle 2 Kol. 1 und Kol 2. angegebenen Ausgangsverbindungen und Alkylierungsmitteln, so erhält man unter den gleichen Reaktionsbedingungen ähnliche Verbindungen (Kol. 3), die auf Polyestermaterialien gleich gute Eigenschaften aufweisen, und deren Farbton in Kol. 4 angegeben ist.

	4	Nuance	PES		gelb		gelb		gelb
				CH ₃		·/···		C1	()
		Verbindung		я — — — — — — — — — — — — — — — — — — —	C ₂ H ₅	R L	C ₂ H ₅ C ₂ H ₅	A A	C ₂ H ₅
Tabelle 2	2	Alky-	mittel		O		U	** *	U
	1	Ausgangsverbindung		Ch Ch	C ₂ H ₅		$C_2^{H_5}$	CN P CI	$c_2^{H_5}$
	ŗ	Bsp.		. ×	21		. 22	(1)	23

	Nuance aut	PES	,	gelb	gelb		gelb		. gelb	
	3 Verbindung		77	C_2H_5	C,H,C	C ₂ H ₄ R ₅ R II I	C ₂ H ₄ H	C ₂ H ₄ R ₂ R ₂ CN	$c_{2}^{H}s_{N}$	C ₂ H ₅ ′
•	2 Alky-	lierungs- mittel		υ	В		Q .	- - -	ď	
	1 Ausgangsverbindung			C ₂ H ₅ H C ₂ H ₅ C ₂ H ₅	dito		dito	NO J	$c_2^{H_4}$	C ₂ H ₄
	Bsp.			26	25	*	26		2.7	

4 Nuance auf PES	gelb	gelb	gelb	
3 Verbindung	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅ i i i con	
2 Alky- lierungs- mittel	ບີ່ ບໍ່	B C ₂ H ₅	D C ₂ H _S C ₂ H _S	
Ausgangsverbindung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dito	dito	
ტ ი დ	28	29	30	:

7	Nuance auf PES	ge1b	rot	grün- stichig- gelb
3	Verbindung	C ₂ H ₅	C ₂ H ₅ NH C _N	F4 CN
. 2	Alky- lierungs- mittel	Ü	S	Ü
1	Ausgangsverbindung	C ₂ H ₅ C ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Взр.	E.	32	33

Sep. Ausgangsverbindung			
Cansang sverbindung hitters Alky- Lierungs- mitters Cansang sverbindung Lierungs- mitters Cansang sverbindung Cansang cansang sverbindung Cansang sverbindung Cansang sverbindung Cansang cansang sverbindung Cansang cans	hugnce aur PES	gelb	gelb
CLHS ang sverbindung CH3 CH3 CH3 CH3 CH4 CH3 CH3 CH4 CH3 CH4 CH4			
CLHS ang sverbindung CH3 CH3 CH3 CH3 CH4 CH3 CH3 CH4 CH3 CH4 CH4	3 rbindung		HHHH O
CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₄ CH ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₃ H ₆ H ₇ H ₇ H ₈ H ₈ H ₈ H ₈ H ₉		CH ₃ CH ₃ CH ₃ C ₂ C ₂ C ₂ C ₃ C ₃ C ₄ C ₂ C ₂ C ₃ C ₄ C ₂ C ₄	GH 3
CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄ CH ₃ CH ₄	2 Alk lie		0
Bsp. 34			
	Bsp.	35	——————————————————————————————————————

Tabelle 2

Beispiel 37: 5 T der Verbindung der Formel:

$$CH_{3} \stackrel{\text{N}}{\underset{\text{SO}_{3}}{\text{H}}} = N - N = N - N$$

$$(Na-Salz)$$

werden mit 1,5 T Natriumazid und 1,2 T Ammoniumchlorid in 50 T
Dimethylformamid bei 125° gerührt bis die Dünnschichtchromatographie
kein Ausgangsmaterial mehr zeigt. Die ausgefallene Verbindung der
Formel

wird abgenutscht mit wenig Dimethylformamid gewaschen und getrocknet. Sie färbt Papier in gelben Nuancen mit guten Echtheiten. Das Abwasser ist farblos.

Verwendet man statt des oben erwähnten Ausgangsproduktes die beiden Verbindungen der Formeln

bzw.

$$CH_{3} = SO_{3}H \qquad SO_{3$$

und verfährt sonst gleich wie beschrieben, so erhält man ebenfalls die entsprechenden Tetrazolverbindungen welche Papier in ähnlich gelben Farbtönen anfärben.

Beispiel 38: 35 T der Verbindung der Formel

werden mit 8 T Natriumazid und 6 T Ammoniumchlorid in 200 T Dimethylformamid bei 120° gerührt bis die Dümnschichtchromatographie kein
Ausgangsmaterial mehr zeigt. Das Reaktionsgemisch wird dann mit 11 T
Natriumcarbonat und 18 T n-Butylbromid versetzt und bei 100° weitergerührt bis die Alkylierung vollständig ist. Die Lösung wird klärfiltriert und das Filtrat mit Wasser verdünnt wobei ein Gemisch der
Verbindungen der Formel

ausfällt. Es färbt Polyesterfasern in rotstichig gelben Tönen mit guten Echtheiten. Ersetzt man im obigen Beispiel die 35 T der Ausgangsverbindung und die 18 T n-Butylbromid durch äquivalente Teile der in der Tabelle 3 Kol. 1 und Kol. 2 angegebenen Ausgangsverbindungen und Alkylierungsmitteln, so erhält man unter den gleichen Reaktionsbedingungen ähnliche Gemische (Kol. 3), die auf Polyestermaterialien resp. Polyamid gleich gute Eigenschaften aufweisen, und deren Nuance in Kol. 4 angegeben ist.

Die Strukturangabe

hier und im folgenden bedeutet, dass das Gemisch eine Verbindung der Struktur

Verbindung der Struktur

$$R_3$$
 oder R_4 bzw. $n-C_4H_9$ N

enthält wobei des weiteren das Symbol R (z.B. n-C $_4$ H $_9$ bzw. C $_2$ H $_5$) im Tetrazolring sich in α - oder β -Stellung befinden kann.

Nugnce auf		gelb	rot- stichig gelb	rot- stichig gelb	rot- stichig gelb	rot- stichig gelb	
3 Verbindung	CH ₂ CH ₂ OH	CH ₂ CH ₂ CH ₂ CH ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH ₂ CH ₂ -0-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Alky- Ver lierungs- mittel		v ₄ c1	G R 4 A S	R A NC	R K K	D A A D A D A D A D A D A D A D A D A D	
Ausgangsverbindung	NG	CI CH ₃ CH ₂ CH ₂ OH	$NC-\bullet$	NC- $NC NC NC-$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NC, -N=N, -N CH ₂ CH ₂ CN NC N	
Вер.	3 9		05	41	42	43	

7	Nuance aut PES	rot- stichig gelb	rot- stichig gelb	rot- stichig gelb	rot- stichig gelb	rot- stichig gelb
3	Verbindung	$R_{4} = \begin{pmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$R_{4} = \begin{pmatrix} & & & & & & & & & & & & & & & & & &$	R_{4} $\downarrow \qquad \qquad$	$R_{4} \xrightarrow{\text{CH}_{2} \text{CH}_{2} \text{CH}_{2} \text{COCH}_{3}} $ $R_{4} \xrightarrow{\text{CH}_{2} \text{CH}_{2} \text{COCH}_{3}} $ $R_{4} \xrightarrow{\text{CH}_{2} \text{CH}_{2} \text{COCH}_{3}} $	$R_{4} \stackrel{\text{Ce}}{\underset{\text{NG}}{\stackrel{\text{Ce}}{\underset{\text{Ce}}}{\underset{\text{Ce}}{\underset{\text{Ce}}{\underset{\text{Ce}}{\underset{\text{Ce}}{\underset{\text{Ce}}{\underset{\text{Ce}}{\underset{\text{Ce}}}{\underset{\text{Ce}}{\underset{\text{Ce}}}{\underset{\text{Ce}}}{\underset{\text{Ce}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
2	Alky- lierungs- mittel	U	Ü	U	U	U
	Ausgangsverbindung	NC	NC- $NC NC NC-$	NC- $NC NC NC-$	NC	NC
	Bsp.	77	45	97	2.7	8 8

7	Nuance auf PES	rot- stichig gelb	rot- stíchíg gelb	rot- stichig gelb	rot- stichig gelb (auf Poly- amid)
		CH ₂ CH ₂ OH CH ₂ CH ₂ OH	$\begin{array}{c} c_2^{H_5} \\ c_2^{H_5} \end{array}$	G2H5 CH2-	CH ₂
3	Verbindung	NC NHCOCH3	NC NHCOCH3	NC NHCOCH ₃	NC CH ₃
2	Alky- lierungs- mittel	R	n R	Ω ^M M	E H
		CH ₂ CH ₂ OH	C2H5	CH ₂ -	CH2- SO3H
	Ausgangsverbindung	NC	NC	NC	NCN=NN-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
	0.650	2,2 %	50 N	5 2	52.2

TO =	7	Nuance auf PES		rot- stichig gelb	rot- stichíg gelb	
	3	Verbindung		$\begin{bmatrix} R_4 & & & \\ & & & $	$\begin{bmatrix} R_4 - I \\ I \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} I \\ I \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} I \\ I \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} I \\ I \end{bmatrix} = \begin{bmatrix} $	
Tabelle 3	2	Abky- lierungs- mittel	·	Ů		
		Ausgangsverbindung		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Bsp.	-	. K	5.4	

Beispiel 55: Man mischt 1 T des trockenen, coupagefreien Farbstoffs gemäss Beispiel 1 in einer Glasperlmühle zusammen mit 1 T Dinapthylmethandisulfonat (Na-Salz) und Wasser und mahlt das Gemisch solange bis eine Korngrösse von etwa 2 µ oder kleiner erreicht ist. Die entstehende Paste, bestehend aus dem Farbstoff, Dispergator und Wasser wird anschliessend mit 3 Teilen Natriumligninsulfonat versetzt. Die erhaltene Paste wird sodann der Sprühtrocknung unterworfen, wobei ein pulverförmiges Färbepräparat erhalten wird.

Dieses Färbepräparat kann zum Färben von Polyestermaterialien, z.B. nach dem HT-Verfahren, verwendet werden, wobei das Färbebad eine gute Dispersionsstabilität aufweist. Man erhält eine orangefarbene Polyesterfärbung mit guter Lichtechtheit.

Beispiel 56: 2 T des gemäss Beispiel 1 erhaltenen Farbstoffes werden in 4000 T Wasser dispergiert. Zu dieser Dispersion gibt man 12 T des Natriumsalzes von o-Phenylphenol sowie 12 T Diammoniumphosphat und fürbt 100 T Garn aus Polyäthylenglykoltherephthalat 90 Minuten lang bei 95 bis 98° in dieser Flotte.

Die Färbung wird anschliessend gespült und mit wässeriger Natronlauge und einem Dispergator nachbehandelt. Man erhält so eine brillante licht- und sublimierechte orange Färbung.

Beispiel 57: 1 T des gemäss Beispiel 1 erhaltenen Farbstoffes wird mit 2 T einer 50 Zigen wässerigen Lösung des Natriumsalzes der Dinaphthylmethandisulfonsäure nass vermahlen und getrocknet.

Dieses Farbstoffpräparat wird mit 40 T einer 10 %igen wässerigen Lösung des Natriumsalzes der N-Benzylheptadecyl-benzimidazoldisulfonsäure verrührt und 4 T einer 40 %igen Essigsäurelösung zugegeben. Durch Verdünnen mit Wasser wird daraus ein Färbebad von 4000 T bereitet. In dieses Bad geht man bei 50° mit 100 T eines Polyesterfaserstoffes ein, steigert die Temperatur innert einer halben Stunde auf 120 bis 130° und färbt eine Stunde in geschlossenem Gefäss bei dieser Temperatur. Anschliessend wird gut gespült. Man erhält eine brillante orange Färbung von guter Lichtechtheit.

Beispiel 58: Polyäthylenglykolterephthalatgewebe wird auf einem Foulard bei 40° mit einer Flotte folgender Zusammensetzung imprägniert:

- 20 T des gemäss Beispiel 1 erhaltenen Farbstoffes fein dispergiert in
- 10 T Natriumalginat
- 20 T Triäthanolamin
- 20 T. Octylphenolpolyglykoläther und
- 930 T Wasser.

Das auf ca. 100 % abgequetsche Gewebe wird bei 100° getrocknet und anschliessend während 30 Sekunden bei einer Temperatur von 210° fixiert. Die gefärbte Ware wird mit Wasser gespült, geseift und getrocknet. Man erhält eine brillante, lichtechte orange Färbung.