习题二

学号,作者姓名,邮箱

2017年4月2日

1 [10pts] Lagrange Multiplier Methods

请通过拉格朗日乘子法(可参见教材附录B.1)证明《机器学习》教材中式(3.36)与式(3.37)等价。即下面公式(1.1)与(1.2)等价。

$$\min_{\mathbf{w}} -\mathbf{w}^{\mathrm{T}} \mathbf{S}_{b} \mathbf{w}
\text{s.t.} \quad \mathbf{w}^{\mathrm{T}} \mathbf{S}_{w} \mathbf{w} = 1$$
(1.1)

$$\mathbf{S}_b \mathbf{w} = \lambda \mathbf{S}_w \mathbf{w} \tag{1.2}$$

Proof. 此处用于写证明(中英文均可)

2 [20pts] Multi-Class Logistic Regression

教材的章节3.3介绍了对数几率回归解决二分类问题的具体做法。假定现在的任务不再是二分类问题,而是多分类问题,其中 $y\in\{1,2\ldots,K\}$ 。请将对数几率回归算法拓展到该多分类问题。

- (1) [**10pts**] 给出该对率回归模型的"对数似然"(log-likelihood);
- (2) [10pts] 计算出该"对数似然"的梯度。

提示1: 假设该多分类问题满足如下K-1个对数几率,

$$\ln \frac{p(y=1|\mathbf{x})}{p(y=K|\mathbf{x})} = \mathbf{w}_1^{\mathrm{T}} \mathbf{x} + b_1$$

$$\ln \frac{p(y=2|\mathbf{x})}{p(y=K|\mathbf{x})} = \mathbf{w}_2^{\mathrm{T}} \mathbf{x} + b_2$$

$$\dots$$

$$\ln \frac{p(y=K-1|\mathbf{x})}{p(y=K|\mathbf{x})} = \mathbf{w}_{K-1}^{\mathrm{T}} \mathbf{x} + b_{K-1}$$

提示2: 定义指示函数 $\mathbb{I}(\cdot)$,

$$\mathbb{I}(y=j) = \begin{cases} 1 & \text{\textit{x}} y \text{\textit{\$}} \pm j \\ 0 & \text{\textit{x}} y \text{\textit{π}} \text{\textit{\$}} \pm j \end{cases}$$

Solution. 此处用于写解答(中英文均可)

3 [35pts] Logistic Regression in Practice

对数几率回归(Logistic Regression, 简称LR)是实际应用中非常常用的分类学习算法。

- (1) [**30pts**] 请编程实现二分类的LR, 要求采用牛顿法进行优化求解, 其更新公式可参考《机器学习》教材公式(3.29)。详细编程题指南请参见链接: http://lamda.nju.edu.cn/ml2017/PS2/ML2_programming.html
- (2) [**5pts**] 请简要谈谈你对本次编程实践的感想(如过程中遇到哪些障碍以及如何解决, 对编程实践作业的建议与意见等)。

Solution. 此处用于写解答(中英文均可)

4 [35pts] Linear Regression with Regularization Term

给定数据集 $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_m, y_m)\}$, 其中 $\mathbf{x}_i = (x_{i1}; x_{i2}; \cdots; x_{id}) \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, 当我们采用线性回归模型求解时, 实际上是在求解下述优化问题:

$$\hat{\mathbf{w}}_{LS}^* = \arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2, \tag{4.1}$$

其中, $\mathbf{y} = [y_1, \cdots, y_m]^{\mathrm{T}} \in \mathbb{R}^m, \mathbf{X} = [\mathbf{x}_1^{\mathrm{T}}; \mathbf{x}_2^{\mathrm{T}}; \cdots; \mathbf{x}_m^{\mathrm{T}}] \in \mathbb{R}^{m \times d}$, 下面的问题中, 为简化求解过程, 我们暂不考虑线性回归中的截距(intercept)。

在实际问题中, 我们常常不会直接利用线性回归对数据进行拟合, 这是因为当样本特征很多, 而样本数相对较少时, 直接线性回归很容易陷入过拟合。为缓解过拟合问题, 常对公式(4.1)引入正则化项, 通常形式如下:

$$\hat{\mathbf{w}}_{reg}^* = \underset{\mathbf{w}}{\arg\min} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \Omega(\mathbf{w}), \tag{4.2}$$

其中, $\lambda > 0$ 为正则化参数, $\Omega(\mathbf{w})$ 是正则化项, 根据模型偏好选择不同的 Ω 。

下面, 假设样本特征矩阵**X**满足列正交性质, 即 $\mathbf{X}^{\mathrm{T}}\mathbf{X} = \mathbf{I}$, 其中 $\mathbf{I} \in \mathbb{R}^{d \times d}$ 是单位矩阵, 请回答下面的问题(需要给出详细的求解过程):

- (1) [$\mathbf{5pts}$] 考虑线性回归问题, 即对应于公式(4.1), 请给出最优解 $\hat{\mathbf{w}}_{\mathbf{LS}}^*$ 的闭式解表达式;
- (2) **[10pts**] 考虑岭回归(ridge regression)问题, 即对应于公式(4.2)中 $\Omega(\mathbf{w}) = \|\mathbf{w}\|_2^2 = \sum_{i=1}^d w_i^2$ 时, 请给出最优解 $\hat{\mathbf{w}}_{\mathbf{Ridge}}^*$ 的闭式解表达式;
- (3) [**10pts**] 考虑LASSO问题, 即对应于公式(4.2)中 $\Omega(\mathbf{w}) = \|\mathbf{w}\|_1 = \sum_{i=1}^d |w_i|$ 时, 请给出最优解 $\hat{\mathbf{w}}_{\mathbf{LASSO}}^*$ 的闭式解表达式;
 - (4) [**10pts**] 考虑 ℓ_0 -范数正则化问题,

$$\hat{\mathbf{w}}_{\ell_0}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_0, \tag{4.3}$$

其中, $\|\mathbf{w}\|_0 = \sum_{i=1}^d \mathbb{I}[w_i \neq 0]$,即 $\|\mathbf{w}\|_0$ 表示**w**中非零项的个数。通常来说,上述问题是NP-Hard问题,且是非凸问题,很难进行有效地优化得到最优解。实际上,问题(3)中的LASSO可以视为是近些年研究者求解 ℓ_0 -范数正则化的凸松弛问题。

但当假设样本特征矩阵 \mathbf{X} 满足列正交性质,即 $\mathbf{X}^{\mathrm{T}}\mathbf{X} = \mathbf{I}$ 时, ℓ_0 -范数正则化问题存在闭式解。请给出最优解 $\hat{\mathbf{w}}_{\ell_0}^*$ 的闭式解表达式,并简要说明若去除列正交性质假设后,为什么问题会变得非常困难?

Solution. 此处用于写解答(中英文均可)