EE 368 机器人运动与控制方法(Robotic Motion and Control) Reference Solutions to Assignment #2

Q-1. Assign link frames to the RPR planar robot shown in Figure Q-1, give the D-H table (linkage parameters).

Figure Q-1

Solution: The frames are as shown, and the parameters are on the right-hand side below:

Q-2. For the two-link manipulator shown in Figure Q-2(a), the link-transformation matrices, ${}_{1}^{0}T$ and ${}_{2}^{1}T$, were constructed. Their product is

$${}_{2}^{0}T = \begin{bmatrix} c\theta_{1}c\theta_{2} & -c\theta_{1}s\theta_{2} & s\theta_{1} & l_{1}c\theta_{1} \\ s\theta_{1}c\theta_{2} & -s\theta_{1}s\theta_{2} & -c\theta_{1} & l_{1}s\theta_{1} \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The link-frame assignments used are indicated in Figure Q-4(b). Note that frame $\{0\}$ is coincident with frame $\{1\}$ when θ_1 = 0. The length of the second link is l_2 . Find an expression for the vector ${}^0P_{in}$, which locates the tip of the arm relative to the $\{0\}$ frame.

Figure Q-2

Solution:

$$\begin{bmatrix} {}^{0}P_{TIP} \\ 1 \end{bmatrix} = {}^{0}_{2}T \begin{bmatrix} {}^{2}P_{TIP} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{c}_{1}c_{2} & {}^{-}c_{1}s_{2} & s_{1} & L_{1}c_{1} \\ s_{1}c_{2} & {}^{-}s_{1}s_{2} & {}^{-}c_{1} & L_{1}s_{1} \\ s_{2} & c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} L_{2} \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} L_{1}c_{1} + L_{2}c_{1}c_{2} \\ L_{1}s_{1} + L_{2}s_{1}c_{2} \\ L_{2}s_{2} \\ 1 \end{bmatrix} \Rightarrow {}^{0}P_{TIP} = \begin{bmatrix} L_{1}c_{1} + L_{2}c_{1}c_{2} \\ L_{1}s_{1} + L_{2}s_{1}c_{2} \\ L_{2}s_{2} \end{bmatrix}$$

Q-3. Sketch the fingertip workspace of the three-link manipulator illustrated in Figure Q-3, for the case of I_1 = 15, I_2 = 10, and I_3 = 3.

Figure Q-3

Solution:

Q-4. For the cases of (1) both the desired orientation and position of the tip frame with respect to the base frame are given as:

$${}_{3}^{0}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and (2) only the desired position of the tool frame is given as: ${}^{3}P_{tool} = [l_{3} \ 0 \ 0]^{T}$, derive the inverse kinematics of the three-link manipulator in Figure Q-3, knowing that

$${}_{3}^{0}T = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(c_{2}l_{2}+l_{1}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(c_{2}l_{2}+l_{1}) \\ s_{23} & c_{23} & 0 & s_{2}l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Solution: For Case (1),

 $_T^ST$ is given, so compute: $_w^BT = _S^BT$ $_T^ST$ $_T^WT^{-1}$. Now $_W^BT = _3^0T$ that we write out as:

$${}_{3}^{0}T = \begin{bmatrix} R_{11} & R_{12} & R_{13} & P_{x} \\ R_{21} & R_{22} & R_{23} & P_{y} \\ R_{31} & R_{32} & R_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & S_{1} & C_{1}(C_{2}L_{2} + L_{1}) \\ S_{1}C_{23} & -S_{1}S_{23} & -C_{1} & S_{1}(C_{2}L_{2} + L_{1}) \\ S_{23} & C_{23} & 0 & S_{2}L_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equate elements (1, 3): $S_1 = R_{13}$, equate elements (2, 3): $-C_1 = R_{23}$, $\theta_1 = \operatorname{atan2}(R_{13}, -R_{23})$. If both $R_{13} = 0$ and $R_{23} = 0$, the goal is unattainable.

Equate elements (1, 4): $P_x = C_1(C_2L_2 + L_1)$, equate elements (2, 4): $P_y = S_1(C_2L_2 + L_1)$. If $C_1 \neq 0$ then $C_2 = \frac{1}{L_2}(\frac{P_x}{C_1} - L_1)$, else $C_2 = \frac{1}{L_2}(\frac{P_y}{S_1} - L_1)$. Equate elements (3, 4): $P_Z = S_2L_2$,

so,
$$\theta_2 = \operatorname{atan2}(\frac{P_Z}{L_2}, C_2)$$
.

Equate elements (3, 1): $S_{23} = R_{31}$, equate elements (3, 2): $C_{23} = R_{23}$, so, $\theta_3 = \operatorname{atan2}(R_{31}, R_{32}) - \theta_2$.

If both R_{31} , and R_{32} are zero, the goal is unattainable.

For Case (2), Assume ${}^3P_{tool} = L_3\hat{X}_3$, then

$${}^{3}P_{tool} = \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix} = \begin{bmatrix} L_{1}C_{1} + L_{2}C_{1}C_{2} + L_{3}C_{1}C_{23} \\ L_{1}S_{1} + L_{2}S_{1}C_{2} + L_{3}S_{1}C_{23} \\ L_{2}S_{2} + L_{3}S_{23} \end{bmatrix}$$

First, $S_1 = \frac{P_y}{L_1 + L_2 C_2 + L_3 C_{23}}$, $C_1 = \frac{P_x}{L_1 + L_2 C_2 + L_3 C_{23}}$, so $\theta_1 = \text{atan2}(P_y, P_x)$ or $\theta_1 = \text{atan2}(-P_y, -P_x)$ since the sign of the " $L_1 + L_2 C_2 + L_3 C_{23}$ " term may be + or -.

Next, define
$$\alpha = \begin{cases} \frac{P_x}{C_1} - L_1 & \text{ if } C_1 \neq 0 \\ \frac{P_y}{S_1} - L_1 & \text{ if } S_1 \neq 0 \end{cases}$$
 . And we have
$$L_2C_2 + L_3C_{23} = \alpha \\ L_2S_2 + L_3S_{23} = P_z \end{cases}$$

square and add the two equations to get:

$$L_2^2 + L_3^2 + 2L_2L_3C_3 = \alpha^2 + P_z^2$$
, $C_3 = \frac{1}{2L_2L_3}(\alpha^2 + P_z^2 - L_2^2 - L_3^2)$, $S_3 = \pm \sqrt{1 - C_3^2}$, $\theta_3 = \text{atan2}(S_3, C_3)$.

Finally,
$$L_3C_{23} = \alpha - L_2C_2$$
, $L_3S_{23} = P_z - L_2S_2$, so $\theta_2 = \text{atan2}(P_z - L_2S_2, \alpha - L_2C_2) - \theta_3$.

- Q-5. (a) Describe a simple algorithm for choosing the nearest solution from a set of possible solutions.
 - (b) There exist 6-DOF robots for which the kinematics are NOT closed-form solvable. Does there exist any 3-DOF robot for which the (position) kinematics are NOT closed-form solvable?

Solution:

- (a) To derive the "nearest" solution, we would like to minimize the rotation of each joint. Denote the starting angle of each joint as θ_{jo} (for *j*-th joint), and the final position of each joint as θ_{iF} .
 - For each proposed solution, compute: $S = \sum_{j=1}^{N} \left| \theta_{jF} \theta_{jo} \right|$. And choose the "nearest" as the one that minimizes S. Sometimes a weighting factor is used (to penalize motion of "large" joints, for example) and so the score for each proposed solution is $S = \sum_{j=1}^{N} W_j \left| \theta_{jF} \theta_{jo} \right|$.
- (b) No. Pieper's method gives the closed form solution for any 3-DOF manipulator. (See Pieper's thesis for all the cases if interested).
- Q-6. A_BR is a 3 x 3 matrix with eigenvalues 1, and e^{+ai} , and e^{-ai} , where $i=\sqrt{-1}$. What is the physical meaning of the eigenvector of A_BR associated with the eigenvalue 1?

Solution:

If V_i is an eigenvector of R corresponding to eigenvalue λ , then

$$RV_i = \lambda V_i$$

If the eigenvalue with V_i is $\lambda = 1$, then

$$RV_i = V_i$$

Hence the vector V_i is not changed by the rotation R. So V_i is the axis of rotation.