Métodos para PPI

Professor: Yuri Frota

www.ic.uff.br/~yuri/pi.html

yuri@ic.uff.br

Essa vai ser outra aula teórica

Como encontrar solução ótima de um PPI ?

- usar limitantes:

200000000

$$z = \max \{c^T x : x \in \mathbb{X} \subseteq \mathbb{Z}\}$$

 \overline{Z} limitante superior de Z

 \underline{Z} limitante inferior de Z

Como encontrar solução ótima de um PPI?

- usar limitantes:

$$z = \max \{c^T x : x \in \mathbb{X} \subseteq \mathbb{Z}\}\$$

limitante superior de Z

limitante inferior de Z

Algoritmo:

Iteração

800000000

limite superior

$$\overline{Z}^0 \ge \overline{Z}^1 \ge \overline{Z}^2 \ge \dots$$

 $\underline{Z}^0 \le \underline{Z}^1 \le \underline{Z}^2 \le \dots$

limite inferior

$$Z^0 \le Z^1 \le Z^2 \le \dots$$

Como encontrar solução ótima de um PPI ?

- usar limitantes:

$$z = \max \{c^T x : x \in \mathbb{X} \subseteq \mathbb{Z}\}\$$

 \overline{Z} limitante superior de Z

Z limitante inferior de Z

Algoritmo:

Iteração

)

1)

....

limite superior

$$\overline{Z}^0 \ge \overline{Z}^1 \ge \overline{Z}^2 \ge \dots$$

limite inferior

$$\underline{Z}^0 \le \underline{Z}^1 \le \underline{Z}^2 \le \dots$$

Condição de Parada:

200000000

$$\underline{Z}^i = \overline{Z}^i \quad \text{ou} \quad \overline{Z}^i - \underline{Z}^i < \epsilon$$

Como encontrar solução ótima de um PPI?

- usar limitantes:

$$z = \max \{c^T x : x \in \mathbb{X} \subseteq \mathbb{Z}\}\$$

 \overline{Z} limitante superior de Z

 \underline{Z} limitante inferior de Z

Algoritmo:

Iteração

0)

1)

.

....

limite superior

$$\overline{Z}^0 \ge \overline{Z}^1 \ge \overline{Z}^2 \ge \dots$$

limite inferior

$$Z^0 \le Z^1 \le Z^2 \le \dots$$

Condição de Parada:

Reproveded

$$\underline{Z}^i = \overline{Z}^i$$
 ou $\overline{Z}^i - \underline{Z}^i < \epsilon$

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc

- heurísticas sobre o modelo (técnicas de arredondamento)

Problema de coloração

200000000

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas

Problema de coloração

200000000

modelo reduzido

LNS (Large Neighborhood Search):

- Destroi
- Repara

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI

A soma de um grupo de variáveis tem que ser maior que um valor

200000

ótimo Variáveis na solução: 1 azul + 2 verde + 3 amarelo + 4 azul + 5 verde = 5 Buscar na vizinhança: 1 azul + 2 verde + 3 amarelo + 4 azul + 5 verde >= 4

domínio das variáveis reduzido

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI
 - utilizar informações da metaheurística para extrair padrões

200000000

Roteamento

- 1) Guardar todas as rotas geradas durante a heurística
- 2) resolver um problema (MIP) de cobertura de vértices por rotas

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI
 - utilizar informações da metaheurística para extrair padrões

200000000

Roteamento

- 1) Guardar todas as rotas geradas durante a heurística
- 2) resolver um problema (MIP) de cobertura de vértices por rotas

<u>Ideia 2)</u>

1) Fixar algumas rotas e resolver o subproblema para os vértices não fixos

Essa ideia não utiliza padrões

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI
 - utilizar informações da metaheurística para extrair padrões

200000000

K-Árvore máxima (arestas tem pesos, encontrar a árvore com árvore com k arestas de peso máximo)

- 1) Guardar arestas que mais se repetem nas melhores soluções da heurística (a cada busca local)
- 2) resolver um problema da K-árvore (MIP) com estas arestas fixas na solução (contanto que não tenham ciclos)

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI
 - utilizar informações da metaheurística para extrair padrões

800000000

OU...

K-Árvore máxima

- 1) Guardar arestas que mais se repetem nas melhores soluções da heurística (a cada busca local)
- 2) resolver um problema da K-árvore (MIP) no subgrafo gerado por estas arestas

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI
 - utilizar informações da metaheurística para extrair padrões

200000000

OU 2 ...

K-Árvore máxima

- 1) Guardar arestas que <u>nunca aparecem</u> nas melhores soluções da heurística (a cada busca local)
- 2) resolver um problema da K-árvore (MIP) no subgrafo gerado por retirar estas arestas

Como conseguir limites inferiores (primais):

- heurísticas, metaheurísticas, métodos aproximativos, etc
 - heurísticas sobre o modelo (técnicas de arredondamento)
 - matheuristicas
 - metaheurísticas + matheuristicas
 - Vizinhanças de PPI
 - utilizar informações da metaheurística para extrair padrões

800000000

Como conseguir limites superiores (duais):

200000000

-relaxações lineares: relaxar as restrições de integralidade e resolver o PPL.

Haaaaa, então é por isso que é bom as relaxações serem apertadas (fortes)

Como conseguir limites superiores (duais):

20000000

- -relaxações lineares: relaxar as restrições de integralidade e resolver o PPL.
- -resolver o dual da relaxação linear do problema

- <u>ideia</u>: dividir para conquistar -> particionar o conjunto solução do problema em subproblemas (subconjuntos) disjuntos:
 - resolver o problema para instancias menores
 - combinar as soluções dos subproblemas para obter a solução do problema original

- <u>ex geral</u>: Vamos enumerar as soluções deste problema com uma árvore de enumeração:

$$\max z = c^T x$$
$$Ax = b$$

20000000

$$x \in \mathbb{B}^3$$

representa todas soluções onde $x_1=1$

- <u>ex geral</u>: Vamos enumerar as soluções deste problema com uma árvore de enumeração:

$$\max z = c^T x$$
$$Ax = b$$

$$x\in\mathbb{B}^3$$

representa todas soluções onde $x_1=1$

- <u>ex geral</u>: Vamos enumerar as soluções deste problema com uma árvore de enumeração:

$$\max z = c^T x$$
$$Ax = b$$
$$x \in \mathbb{B}^3$$

800000000

cada folha representa uma solução

- <u>ex geral</u>: Vamos enumerar as soluções deste problema com uma árvore de enumeração:

$$\max z = c^T x$$
$$Ax = b$$
$$x \in \mathbb{B}^3$$

cada folha representa uma solução

sol: x₁=0, x₂=1, x₃=0

basta enumerarmos todas as soluções e pegar a melhor!

inviável

- <u>enumeração implícita:</u> enumerar soluções (branch) e utilizar limitantes para podar (bound) ramos da árvore que não contenham a solução ótima.

200000000

- <u>enumeração implícita:</u> enumerar soluções (branch) e utilizar limitantes para podar (bound) ramos da árvore que não contenham a solução ótima.

<u>Definições</u>:

200000000

- Branching em um nó: uma variável é escolhida para ter seu valor limitado

- <u>enumeração implícita:</u> enumerar soluções (branch) e utilizar limitantes para podar (bound) ramos da árvore que não contenham a solução ótima.

<u>Definições</u>:

- Branching (ramificação) em um nó: uma variável é escolhida para ter seu valor limitado
- Um nó podado, não sofrerá mais branching

- <u>enumeração implícita:</u> enumerar soluções (branch) e utilizar limitantes para podar (bound) ramos da árvore que não contenham a solução ótima.

<u>Definições</u>:

- Branching (ramificação) em um nó: uma variável é escolhida para ter seu valor limitado
- Um nó podado, não sofrerá mais branching
- O objetivo é podar todos os nós da árvore usando limitantes

- Tipos de poda:

por <u>Otimalidade</u>:

o nó 2 pode ser podado pois sabemos que qualquer ramificação a partir de 2 terá solução ótima 20.

$$\underline{Z} = \max\{\underline{Z}, 20\}$$

solução viável encontrada, atualiza limite inferior

- Tipos de poda:

20000000

por <u>limitante</u>:

Primeiro observamos que $\underline{Z}=21$ (melhor solução encontrada) pois

$$\underline{Z} = \max_{\mathsf{K}} \{\underline{Z}^k\}$$

$$\bar{Z}^3 = 25$$
 $Z^3 = 21$

- <u>Tipos de poda:</u>

800000000

por <u>limitante</u>:

Primeiro observamos que \underline{Z} = 21 (melhor solução encontrada) pois

$$\underline{Z} = \max_{K} \{\underline{Z}^k\}$$

Vemos então que podemos podar o nó 2 pois qualquer solução a partir de 2 será no máximo 20, logo, o ótimo ñ está nesse ramo

- Tipos de poda:

por <u>inviabilidade</u>:

800000000

Seja um PPI que tenha a inequação: $8x_1 + 5x_2 + 3x_3 + 3x_4 \le 12$

Vemos que o nó 3 pode ser podado pois em qualquer solução onde $x_1=x_2=1$

temos que a inequação é inválida

- Concluindo:

200000000

Nós i que não podem ser podados:

•
$$\overline{Z}^i \neq \underline{Z}^i$$
 e

•
$$\overline{Z}^i > \underline{Z}$$
 e

• o nó é viável

Concluindo:

800000000

Nós que não podem ser podados:

•
$$\overline{Z}^i \neq \underline{Z}^i$$
 e

o nó é viável

- Chamamos de nós ativos do período, os que não foram podados e nem ramificados naquele momento

- Concluindo:

800000000

Nós que não podem ser podados:

•
$$\overline{Z}^i \neq \underline{Z}^i$$
 e

•
$$\overline{Z}^i > \underline{Z}$$
 e

o nó é viável

- Ordem de percurso na árvore de enumeração: dado que temos um conjunto de nós ativos, qual escolher para ser analisado ?

- Concluindo:

Nós que não podem ser podados:

- $\overline{Z}^i \neq \underline{Z}^i$ e
- $\overline{Z}^i > \underline{Z}$ e
- o nó é viável
- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem de percurso na árvore de enumeração: dado que temos um conjunto de nós ativos, qual escolher para ser analisado ?

Estratégias:

$$x_{1}=0$$
 $x_{2}=1$
 $x_{3}=1$
 $x_{4}=0$

bom para encontrar soluções viáveis rapidamente

Profundidade

- Concluindo:

Nós que não podem ser podados:

•
$$\overline{Z}^i \neq \underline{Z}^i$$
 e

•
$$\overline{Z}^i > \underline{Z}$$
 e

• o nó é viável

- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem de percurso na árvore de enumeração: dado que temos um conjunto de nós ativos, qual escolher para ser analisado ?

Estratégias:

$$x_{1}=0$$
 $x_{2}=1$
 $x_{3}=1$
 $x_{4}=0$

Profundidade

diversidade no espaço de solução

Largura

- Concluindo:

Nós que não podem ser podados:

•
$$\overline{Z}^i \neq \underline{Z}^i$$
 e

•
$$\overline{Z}^i > \underline{Z}$$
 e

• o nó é viável

- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem de percurso na árvore de enumeração: dado que temos um conjunto de nós ativos, qual escolher para ser analisado?

Estratégias:

$$x_{1}=0$$
 $x_{2}=1$
 $x_{3}=1$
 $x_{4}=0$

Profundidade

 $x_{2}=0$ $x_{2}=0$ $x_{2}=1$

Largura

000

Ordenado por limitante

tende a melhorar os limitantes encontrados

- Concluindo:

Nós que não podem ser podados:

•
$$\overline{Z}^i \neq \underline{Z}^i$$
 e

•
$$\overline{Z}^i > \underline{Z}$$
 e

• o nó é viável

os pacotes usam heurísticas para escolher a ordem. Podem inclusive alternar entre tipos de ordem durante a execução

- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem de percurso na árvore de enumeração: dado que temos um conjunto de nós ativos, qual escolher para ser analisado?

Estratégias:

Profundidade

Largura

Ordenado por limitante

tende a melhorar os limitantes encontrados

- Concluindo:

200000000

Nós que não podem ser podados:

- $\overline{Z}^i \neq \underline{Z}^i$ e
- $\overline{Z}^i > \underline{Z}$ e
- o nó é viável

Tipos de poda:

- Otimalidade
- Limitante
- Inviabilidade

- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem das variáveis a serem ramificadas: dado que temos um conjunto de variáveis fracionárias, qual escolher para ser ramificada ?

- Concluindo:

Nós que não podem ser podados:

- $\overline{Z}^i \neq \underline{Z}^i$ e
- $\overline{Z}^i > \underline{Z}$ e
- o nó é viável

Tipos de poda:

- Otimalidade
- Limitante
- Inviabilidade

- Chamamos de nós ativos do período, os que não foram podados e nem ramificados naquele momento
- Ordem das variáveis a serem ramificadas: dado que temos um conjunto de variáveis fracionárias, qual escolher para ser ramificada?

Estratégias:

$$x_1 = 0.2$$
 $x_2 = 0.9$ $x_3 = 0.4$

Mais "fracionária"

Concluindo:

Nós que não podem ser podados:

- $\overline{Z}^i \neq \underline{Z}^i$ e
- $\overline{Z}^i > \underline{Z}$ e
- o nó é viável

Tipos de poda:

- Otimalidade
- Limitante
- Inviabilidade

- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem das variáveis a serem ramificadas: dado que temos um conjunto de variáveis fracionárias, qual escolher para ser ramificada?

Estratégias:

$$x_1 = 0.2$$
 $x_2 = 0.9$

$$x_2 = 0.9$$

$$x_3 = 0.4$$

$$\sum x_i = y$$

Mais "fracionária"

Variáveis de decisão estratégicas

- Concluindo:

Nós que não podem ser podados:

- $\overline{Z}^i \neq \underline{Z}^i$ e
- $\overline{Z}^i > \underline{Z}$ e
- o nó é viável

- Otimalidade
- Limitante
- Inviabilidade

- Chamamos de nós ativos do período, os que não foram podados e nem ramificados naquele momento
- Ordem das variáveis a serem ramificadas: dado que temos um conjunto de variáveis fracionárias, qual escolher para ser ramificada?

Estratégias:

$$x_1 = 0.2$$

$$x_2 = 0.9$$

$$x_3 = 0.4$$

$$\sum x_i = y$$

Variáveis de decisão estratégicas

Strong Branching

Mais "fracionária"

Concluindo:

Nós que não podem ser podados:

- $\overline{Z}^i \neq \underline{Z}^i$ e
- $\overline{Z}^i > \underline{Z}$ e
- o nó é viável

Tipos de poda:

- Otimalidade
- Limitante
- Inviabilidade

e outras...

- Chamamos de <u>nós ativos</u> do período, os que não foram podados e nem ramificados naquele momento
- Ordem das variáveis a serem ramificadas: dado que temos um conjunto de variáveis fracionárias, qual escolher para ser ramificada?

Estratégias:

$$x_1 = 0.2$$
 $x_2 = 0.9$

$$\kappa_2 = 0.9$$

$$x_3 = 0.4$$

$$\sum x_i = y$$

Variáveis de decisão estratégicas

Strong Branching

Mais "fracionária"

- Algoritmo:

800000000

- Algoritmo:

200000000

- 1) Selecione novo nó ativo P (se não tem novo nó ativo -> FIM)
- 2) Seja \bar{Z}^p o valor ótimo de Relax(P)

- Algoritmo:

200000000

- 1) Selecione novo nó ativo P (se não tem novo nó ativo -> FIM)
- 2) Seja \bar{Z}^p o valor ótimo de Relax(P)
- 3) Se Relax(P) inviável ou $\bar{Z}^p \le \underline{Z}$ então volte para 1)

poda por inviabilidade e limite

- Algoritmo:

200000000

- 1) Selecione novo nó ativo P (se não tem novo nó ativo -> FIM)
- 2) Seja \bar{Z}^p o valor ótimo de Relax(P)
- 3) Se Relax(P) inviável ou $\bar{Z}^p \le \underline{Z}$ então volte para 1)
- 4) Se Relax(P) inteiro e $\bar{Z}^p > \underline{Z}$ então $\underline{Z} = \bar{Z}^p$ e volte para 1)

atualiza melhor solução

se a solução for inteira mas não melhorar a melhor solução corrente, também vai para o passo 1)

- Algoritmo:

- 1) Selecione novo nó ativo P (se não tem novo nó ativo -> FIM)
- 2) Seja \bar{Z}^p o valor ótimo de Relax(P)
- 3) Se Relax(P) inviável ou $\bar{Z}^p \le \underline{Z}$ então volte para 1)
- 4) Se Relax(P) inteiro e $\bar{Z}^p > \underline{Z}$ então $\underline{Z} = \bar{Z}^p$ e volte para 1)
- 5) Seja x uma variável com valor fracionário \tilde{x} em Relax(P)
 - Criar P_1 com x<= $PISO(\tilde{x})$
 - Criar P_2 com $x > = TETO(\tilde{x})$

- volte para 1)

200000000

ramificação

Exemplo:

Bossosos

$$\max 4x_1 - x_2$$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

Resolvendo a relaxação pelo método gráfico

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

solução: $x_1^* = 20/7, x_2^* = 3$

limite sup. : $\bar{Z} = 59/7$

limite inf. $\underline{Z} = -\infty$

Bossosos

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

solução: $x_1^* = 20/7, x_2^* = 3$

limite sup. : $\bar{Z} = 59/7$

limite inf. $\underline{Z} = -\infty$

200000000

Ramificação: $x_1 \le 2$, $x_1 \ge 3$

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_1 \le 2$

200000000

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_1 \le 2$

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_1 \le 2$

solução: $x_1^* = 2, x_2^* = 1/2$ limite sup. : $\bar{Z} = 15/2$

limite inf. $\underline{Z} = -\infty$

busca em largura

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_1 >= 3$

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_1 >= 3$

(3)

iii via vei

poda por inviabilidade

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta: x₂ >=1

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_2 >= 1$

solução: $x_1^*=2, x_2=1$ limite sup. : $\bar{Z}=7$

 $\underline{Z} = 7$ limite inf.

solução inteira <u>Z</u> = 7

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta: x₂ <=1

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_2 \le 1$

solução: $x_1^*=3/2, x_2=0$ limite sup. : $\overline{Z}=6$

limite inf. $\underline{Z} = 7$

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \le 3 \tag{3}$$

$$x_1, x_2 \in \mathbb{Z}$$

acrescenta : $x_2 \le 1$

solução: $x_1^* = 3/2, x_2 = 0$ limite sup. : $\bar{Z} = 6$

Z = 7limite inf.

corte por limitante \bar{Z} = 6 <= Z = 7

não tem mais nós solução ótima Z = 7

Exemplo: $\max 4x_1 - x_2$

$$7x_1 - 2x_2 \le 14$$
 (1)

$$2x_1 - 2x_2 \le 3$$
 (2)

$$x_2 \leq 3$$

$$x_1, x_2 \in \mathbb{Z}$$

 $x_2 <= 0$

solução: $x_1^* = 3/2, x_2 = 0$ limite sup. : $\bar{Z} = 6$

limite sup. :

Z = 7limite inf.

(3)

 X_{2}

não tem mais nós solução ótima Z = 7

- O desempenho do método Branch-and-bound está ligado a formulação do problema:
 - Se a formulação é forte (apertada) -> afeta a qualidade dos limitantes
 - Se a formulação tem degeneração -> afeta a velocidade dos limitantes
 - Se a formulação tem simetria -> afeta a velocidade dos limitantes
 - etc

Uma forma de melhorarmos as formulações é aplicar novas restrições ao modelo, i.e., cortes !

Primeiro, vamos apresentar algumas definições

200000000

- Um <u>poliedro</u> é definido como o conjunto de pontos viáveis definidos pelas restrições lineares de um PPL

- Um <u>poliedro</u> é definido como o conjunto de pontos viáveis definidos pelas restrições lineares

200000000

de um PPL - Uma inequação $a^Tx \leq \beta$ é dita <u>válida</u> para um poliedro P, se para toda solução x \in P, esta solução satisfaz $a^Tx \leq \beta$

- Um <u>poliedro</u> é definido como o conjunto de pontos viáveis definidos pelas restrições lineares
- de um PPL - Uma inequação $a^Tx \leq \beta$ é dita <u>válida</u> para um poliedro P, se para toda solução x \in P, esta solução satisfaz $a^Tx \leq \beta$ - Uma inequação válida $b^Tx \leq \beta$ é dita <u>ativa</u> em um ponto x' \in P, se $b^Tx' = \beta$

Teorema

200000000

$$X = \{x \in \mathbb{B}^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \le -2\}$$

o que podemos concluir a partir de x_2 e x_4 ?

- Exemplos de desigualdades válidas

200000000

$$X = \{x \in \mathbb{B}^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \le -2\}$$

o que podemos concluir a partir de x₂ e x₄ ?

$$x_2 + x_4 \ge 1$$

- Exemplos de desigualdades válidas

Bopoodoo

o que podemos concluir a partir de x_2 e x_4 ?

$$x_2 + x_4 \ge 1$$

o que podemos concluir a partir de x_1 , x_2 e x_4 ?

- Exemplos de desigualdades válidas

Bossosos

o que podemos concluir a partir de x_2 e x_4 ?

$$x_2 + x_4 \ge 1$$

o que podemos concluir a partir de x_1 , x_2 e x_4 ?

$$2x_1 \le x_2 + x_4$$

- Exemplos de desigualdades válidas

200000000

$$X = \{x \in \mathbb{R} : x_1 + x_2 \ge 3; 2x_1 - 3x_2 \ge 5\}$$

Combinação Linear

200000000

$$X = \{x \in \mathbb{R} : x_1 + x_2 \ge 3; 2x_1 - 3x_2 \ge 5\}$$

$$x_1 + x_2 \ge 3$$

$$2x_1 - 3x_2 \ge 5$$

$$3x_1 - 2x_2 \ge 8$$

Combinação Linear

- Exemplos de desigualdades válidas

200000000

$$X = \{x \in \mathbb{Z}^4 : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$$

arredondamento positivo inteiro

200000000

$$X = \{x \in \mathbb{Z}^4 : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$$

vamos dividir por 11

$$\frac{13x_1}{11} + \frac{20x_2}{11} + \frac{11x_3}{11} + \frac{6x_4}{11} \ge \frac{72}{11}$$

arredondamento positivo inteiro

800000000

vamos dividir por 11

$$\frac{13x_1}{11} + \frac{20x_2}{11} + \frac{11x_3}{11} + \frac{6x_4}{11} \ge \frac{72}{11}$$

como as vaiáveis são positivas

$$\lceil 1, ... \rceil x_1 + \lceil 1, ... \rceil x_2 + x_3 + \lceil 0, ... \rceil x_4 \ge \frac{72}{11}$$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{72}{11}$$

arredondamento positivo inteiro

Deixou mais largo

vamos dividir por 11

$$\frac{13x_1}{11} + \frac{20x_2}{11} + \frac{11x_3}{11} + \frac{6x_4}{11} \ge \frac{72}{11}$$

como as vaiáveis são positivas

$$\lceil 1, ... \rceil x_1 + \lceil 1, ... \rceil x_2 + x_3 + \lceil 0, ... \rceil x_4 \ge \frac{72}{11}$$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{72}{11}$$

Deixou mais largo

arredondamento

positivo

inteiro

como os coeficientes e as variáveis são inteiros 200000000

$$2x_1 + 2x_2 + x_3 + x_4 \ge \lceil 6, \dots \rceil$$
$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

Deixou mais acoxado

- Exemplos de desigualdades válidas

200000000

$$X = \{x \in \mathbb{Z}^4 : 2x_1 + 3x_2 \le 5; x_1 + 2x_2 \le 3\}$$

misturando as técnicas

- Exemplos de desigualdades válidas

$$X = \{x \in \mathbb{Z}^4 : 2x_1 + 3x_2 \le 5; x_1 + 2x_2 \le 3\}$$

$$2x_1 + 3x_2 \le 5$$

$$x_1 + 2x_2 \le 3$$

$$3x_1 + 5x_2 \le 8$$

Sepondoo!

combinação linear

misturando as técnicas

Exemplos de desigualdades válidas

$$X = \{x \in \mathbb{Z}^4 : 2x_1 + 3x_2 \le 5; x_1 + 2x_2 \le 3\}$$

$$2x_1 + 3x_2 \le 5$$

$$x_1 + 2x_2 \le 3$$

$$3x_1 + 5x_2 \le 8$$

800000000

combinação linear

$$x_1 + \lfloor 1, \ldots \rfloor x_2 \leq 2, \ldots$$
 divide por 3 e piso (var. pos.)

misturando as técnicas

Deixou mais largo

Exemplos de desigualdades válidas

$$X = \{x \in \mathbb{Z}^4 : 2x_1 + 3x_2 \le 5; x_1 + 2x_2 \le 3\}$$

$$2x_1 + 3x_2 \le 5$$

$$x_1 + 2x_2 \le 3$$

$$3x_1 + 5x_2 \le 8$$

20000000

combinação linear

$$x_1 + \lfloor 1, \ldots \rfloor x_2 \leq 2, \ldots$$
 divide por 3 e piso (var. pos.)

$$x_1 + x_2 \leq \lfloor 2, ... \rfloor$$
 var. e coef. inteiros

misturando as técnicas

Deixou mais largo

Deixou mais acoxado

Exemplos de desigualdades válidas

$$X = \{x \in \mathbb{Z}^4 : 2x_1 + 3x_2 \le 5; x_1 + 2x_2 \le 3\}$$

$$2x_1 + 3x_2 \le 5$$

$$x_1 + 2x_2 \le 3$$

$$3x_1 + 5x_2 \le 8$$

combinação linear

$$x_1 + \lfloor 1, \ldots \rfloor x_2 \leq 2, \ldots$$
 divide por 3 e piso (var. pos.)

$$x_1 + x_2 \le \lfloor 2, \ldots \rfloor$$

var. e coef. inteiros

$$x_1 + x_2 \le 2$$

misturando as técnicas

Deixou mais largo

Deixou mais acoxado

Exemplos de desigualdades válidas

$$X = \{x \in \mathbb{Z}^4 : 2x_1 + 3x_2 \le 5; x_1 + 2x_2 \le 3\}$$

$$2x_1 + 3x_2 \le 5$$

$$x_1 + 2x_2 \le 3$$

$$3x_1 + 5x_2 \le 8$$

combinação linear

$$x_1 + \lfloor 1, \ldots \rfloor x_2 \leq 2, \ldots$$
 divide por 3 e piso (var. pos.)

$$x_1 + x_2 \le \lfloor 2, \dots \rfloor$$

var. e coef. inteiros

$$x_1 + x_2 \le 2$$

misturando as técnicas

Deixou mais largo

Deixou mais acoxado

essa técnica é muito forte e foi formalizada por **Chvatal-Gomery**

- Cortes de <u>Chvatal – Gomery</u>:

200000000

Seja
$$X = P \cap \mathbb{Z}_+$$
 onde $P = \{x \in \mathbb{R}_+ : Ax \leq b\}$, para $A_{m \times n}$ e $u \in \mathbb{R}_+^n$

- Cortes de <u>Chvatal – Gomery</u>:

Bossospa

Seja
$$X = P \cap \mathbb{Z}_+$$
 onde $P = \{x \in \mathbb{R}_+ : Ax \leq b\}$, para $A_{m \times n}$ e $u \in \mathbb{R}_+^n$

$$\sum_{j=1}^{n} (\sum_{i=1}^{m} u_i a_{ij}) x_j \le ub$$

combinação linear

- Cortes de <u>Chvatal – Gomery</u>:

Berocoago

Seja
$$X = P \cap \mathbb{Z}_+$$
 onde $P = \{x \in \mathbb{R}_+ : Ax \leq b\}$, para $A_{m \times n}$ e $u \in \mathbb{R}_+^n$

$$\sum_{i=1}^{n} (\sum_{i=1}^{m} u_i a_{ij}) x_j \le ub$$
 combinação linear

$$\sum_{j=1}^n \ \lfloor (\sum_{i=1}^m u_i a_{ij}) \rfloor \ x_j \leq ub$$
 variáveis positivas

Deixou mais largo

- Cortes de Chvatal – Gomery:

200000000

Seja
$$X = P \cap \mathbb{Z}_+$$
 onde $P = \{x \in \mathbb{R}_+ : Ax \leq b\}$, para $A_{m \times n}$ e $u \in \mathbb{R}_+^n$

$$\sum_{i=1}^{n} (\sum_{i=1}^{m} u_i a_{ij}) x_j \le ub$$
 combinação linear

$$\sum_{j=1}^n \ \lfloor (\sum_{i=1}^m u_i a_{ij}) \rfloor \ x_j \leq ub \qquad \qquad \text{variáveis positivas}$$

Deixou mais largo

$$\sum_{i=1}^{n} \left\lfloor \left(\sum_{i=1}^{m} u_i a_{ij}\right) \right\rfloor \quad x_j \leq \left\lfloor ub \right\rfloor \qquad \text{variáveis e coeficientes inteiros}$$

Deixou mais acoxado

Cortes de <u>Chvatal – Gomery</u>:

 $X = P \cap \mathbb{Z}_+$ onde $P = \{x \in \mathbb{R}_+ : Ax \leq b\}$, para $A_{m \times n}$ e $u \in \mathbb{R}_+^n$ Seja

$$\sum_{i=1}^{n} (\sum_{i=1}^{m} u_i a_{ij}) x_j \le ub$$
 combinação linear

$$\sum_{j=1}^n \ \lfloor (\sum_{i=1}^m u_i a_{ij}) \rfloor \ x_j \leq ub$$
 variáveis positivas

Deixou mais largo

Teorema: Toda desigualdade validade para X pode ser obtida por uma sequencia finita de aplicações do procedimento de Chvatal-Gomery

- Tudo bem, sei gerar alguns cortes, mas dado uma solução ótima de um PPL vinda do SIMPLEX, existe uma maneira fácil de corta-la?

isso é interessante pois no branch-and-bound resolvemos a relaxação dos problemas (SIMPLEX) a cada nó da árvore de enumeração para conseguir limites inferiores

se gerarmos cortes nessas relaxações (SIMPLEX) podemos melhorar o valor do limitante.

Lembra do SIMPLEX?

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

$$ar{z} = c_B^T B^{-1} b \in \mathbb{R}$$
 $c_j - z_j = (c_N^T - c_B^T B^{-1} N)_j$; $(c - z)$ é um vetor
 $ar{x}_{B_i} = (B^{-1} b)_i$; $B^{-1} b$ é um vetor
 $[B^{-1} N]_{ij} = y_{ij}$; $B^{-1} N$ é uma matriz

max
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a. $x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$ $i = 1, \dots, m$
 $x_j \ge 0$ $i \in I_N \cup I_B$

- Chamamos de <u>formato padrão</u> em relação a uma base B

Sabemos que cada solução básica equivale a um vértice do poliedro e que a solução ótima está num vértice

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

 $\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$

Seja B a base ótima da relaxação, temos que:

200000000

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$
 $x_j \ge 0$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Bossosso

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$

$$x_j \geq 0$$

Cortes de Chvatal-Gomery aplicados no ótimo do PPL

 $\max \ \bar{z} + \sum (c_j - z_j) x_j$

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Vamos aplicar o procedimento C-G

800000000

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$
 (1)

s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \ge 0$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \ge 0$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u} \quad (1)$$

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

20000000

var. posit.

vamos supor os y_{uj} positivos

Deixa mais largo

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u} \quad (1)$$

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

var. posit.

vamos supor os y_{uj} positivos

Deixa mais largo

$$x_{B_u} + \sum_{i=1}^{n} \lfloor y_{uj} \rfloor x_j \le \lfloor \overline{x}_{B_u} \rfloor$$

var. e coef. inteiros

Deixa mais acoxado

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$
 (1)

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

var. posit.

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \lfloor \overline{x}_{B_u} \rfloor$$

var. e coef. inteiros

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

Somando (1) com (2) (x-1):

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$

$$-x_{B_u} - \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \ge -\lfloor \overline{x}_{B_u} \rfloor$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$
 (1)

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

var. posit.

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \lfloor \overline{x}_{B_u} \rfloor$$

var. e coef. inteiros

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

Somando (1) com (2) (x-1):

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$

$$-x_{B_u} - \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \ge -\lfloor \overline{x}_{B_u} \rfloor$$

$$\sum_{j \in I_N} (y_{uj} - \lfloor y_{uj} \rfloor) x_j \ge \overline{x}_{B_u} - \lfloor \overline{x}_{B_u} \rfloor$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$
 (1)

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

var. posit.

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \lfloor \overline{x}_{B_u} \rfloor$$

var. e coef. inteiros

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

Somando (x-1):

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$

$$-x_{B_u} - \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \ge -\lfloor \overline{x}_{B_u} \rfloor$$

$$\sum_{j \in I_N} (y_{uj} - \lfloor y_{uj} \rfloor) x_j \ge \overline{x}_{B_u} - \lfloor \overline{x}_{B_u} \rfloor$$

$$f_{u0}$$

Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$
 (1)

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

var. posit.

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \lfloor \overline{x}_{B_u} \rfloor$$

var. e coef. inteiros

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$$
 $x_i \ge 0$

Somando (x-1):

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$

$$\sum_{j \in I_N} f_{uj} x_j \ge f_u$$
onde
$$0 \le f_{uj} < 1$$

$$0 < f_{u0} < 1$$

$$-x_{B_u} - \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \ge -\lfloor \overline{x}_{B_u} \rfloor$$

$$\sum_{j \in I_N} (y_{uj} - \lfloor y_{uj} \rfloor) x_j \ge \overline{x}_{B_u} - \lfloor \overline{x}_{B_u} \rfloor$$

$$f_{u0}$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Seja B a base ótima da relaxação, temos que:

Seja X_{Bu} a variável fracionária na solução (ou uma delas)

$$x_{B_u} = \overline{x}_{B_u} - \sum_{j \in I_N} y_{uj} x_j$$

Vamos aplicar o procedimento C-G

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$
 (1)

$$x_{B_u} + \sum_{j \in I_u} \lfloor y_{uj} \rfloor x_j \le \overline{x}_{B_u}$$

var. posit.

$$x_{B_u} + \sum_{j \in I_N} \lfloor y_{uj} \rfloor x_j \le \lfloor \overline{x}_{B_u} \rfloor$$

var. e coef. inteiros

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

Somando (x-1):

$$x_{B_u} + \sum_{j \in I_N} y_{uj} x_j = \overline{x}_{B_u}$$

$$\sum_{j \in I_N} f_{uj} x_j \ge f_{u0}$$
onde
$$0 \le f_{uj} < 1$$

$$0 < f_{u0} < 1$$

$$-x_{B_u} - \sum_{j \in I_N} [y_{uj}] x_j \ge -[\overline{x}_{B_u}]$$

$$\sum_{j \in I_N} (y_{uj} - \lfloor y_{uj} \rfloor) x_j \ge \overline{x}_{B_u} - \lfloor \overline{x}_{B_u} \rfloor$$

$$f_{uj}$$

porque corta o ponto ótimo fracionário do PPL?

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

Ex:

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 \le 11$$

$$7x_1 + 2x_2 \le 21$$

$$x_1, x_2 \in \mathbb{Z}$$

Bossosso

s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 \le 11$$

$$7x_1 + 2x_2 \le 21$$

$$x_1, x_2 \in \mathbb{Z}$$

20000000

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 11$$

$$7x_1 + 2x_2 + x_4 = 21$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

max
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a. $x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$
 $x_j \ge 0$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2 \qquad \max 3x_1 + 4x_2$$

$$x_1 + 2x_2 \le 11$$

$$7x_1 + 2x_2 \le 21$$

$$x_1, x_2 \in \mathbb{Z}$$

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 0$$

$$7x_1 + 2x_2 + x_4 = 0$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 11$$

$$7x_1 + 2x_2 + x_4 = 21$$

Aplicando o SIMPLEX descobrimos base ótima $I_R = \{1,2\}$ com PPL na forma base:

$$\max \frac{317}{13} - \frac{25}{13}x_3 - \frac{2}{13}x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

repare que os custos estão negativos, logo otimalidade

max
$$\bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a. $x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j,$
 $x_j \ge 0$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 \le 11$$

$$7x_1 + 2x_2 \le 21$$

$$x_1, x_2 \in \mathbb{Z}$$

 $\max 3x_1 + 4x_2$

$$x_1 + 2x_2 + x_3 = 11$$

$$7x_1 + 2x_2 + x_4 = 21$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$\max \frac{317}{13} - \frac{25}{13}x_3 - \frac{2}{13}x_4 = \frac{31}{13}$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$x_1 = [0, \dots] x_3 + [0, \dots] x_4 \le \frac{31}{13}$$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

tornar coef. inteiros

Mais largo

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 \le 11$$

$$7x_1 + 2x_2 \le 21$$

 $x_1, x_2 \in \mathbb{Z}$

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 11$$

 $7x_1 + 2x_2 + x_4 = 21$
 $x_1, x_2, x_3, x_4 \in \mathbb{Z}$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

Aplicando o SIMPLEX descobrimos base ótima $I_B = \{1,2\}$ com PPL na forma base:

$$\max \frac{317}{13} - \frac{25}{13} x_3 - \frac{2}{13} x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$x_1 - \lceil 0, \dots \rceil x_3 + \lfloor 0, \dots \rfloor x_4 \le \frac{31}{13}$$

$$x_1 - x_3 \le \frac{31}{13}$$

tornar coef. inteiros

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2 x_1 + 2x_2 \le 11 7x_1 + 2x_2 \le 21 x_1, x_2 \in \mathbb{Z}$$

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 11$$

$$7x_1 + 2x_2 + x_4 = 21$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

Aplicando o SIMPLEX descobrimos base ótima $I_B = \{1,2\}$ com PPL na forma base:

$$\max \frac{317}{13} - \frac{25}{13}x_3 - \frac{2}{13}x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$x_1 = [0, ...]x_3 + [0, ...]x_4 \le \frac{31}{13}$$

$$x_1 - x_3 \le \frac{31}{13}$$

$$x_1 - x_3 \le [2, \dots]$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

tornar coef. inteiros

Mais acoxado

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2$$
 $x_1 + 2x_2 \le 11$
 $7x_1 + 2x_2 \le 21$
 $x_1, x_2 \in \mathbb{Z}$

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 11$$

 $7x_1 + 2x_2 + x_4 = 21$
 $x_1, x_2, x_3, x_4 \in \mathbb{Z}$

Aplicando o SIMPLEX descobrimos base ótima $I_B = \{1,2\}$ com PPL na forma base:

$$\max \frac{317}{13} - \frac{25}{13} x_3 - \frac{2}{13} x_4$$

C-G
$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$x_1 - [0, ...]x_3 + [0, ...]x_4 \le \frac{31}{13}$$
 $x_1 - x_3 \le \frac{31}{13}$

$$x_1 - x_3 \le [2, \dots]$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

$$x_1 - x_3 \le 2$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Ex:

$$\max 3x_1 + 4x_2 x_1 + 2x_2 \le 11 7x_1 + 2x_2 \le 21 x_1, x_2 \in \mathbb{Z}$$

$$\max 3x_1 + 4x_2$$

$$x_1 + 2x_2 + x_3 = 11$$

$$7x_1 + 2x_2 + x_4 = 21$$

 $x_2 \in \mathbb{Z} \qquad x_1, x_2, x_3, x_4 \in \mathbb{Z}$

Aplicando o SIMPLEX descobrimos base ótima $I_R = \{1,2\}$ com PPL na forma base:

$$\max \frac{317}{13} - \frac{25}{13} x_3 - \frac{2}{13} x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$56 \quad 7 \quad 1$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$
 (1)

$$x_1 - [0, \dots] x_3 + [0, \dots] x_4 \le \frac{31}{13}$$

$$x_1 - x_3 \le \frac{31}{13}$$

$$x_1 - x_3 \le |2, \dots|$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_j \geq 0$$

$$x_1 - x_3 \le 2$$
 (2)

Somando (1) e (2) (x-1):

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Somando (x-1):
$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$-x_1 + x_3 \ge -2$$

corte C-G

$$\frac{12}{13}x_3 + \frac{2}{13}x_4 \ge \frac{5}{13}$$

corta solução ótima fracionária

$$\max \frac{317}{13} - \frac{25}{13}x_3 - \frac{2}{13}x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_i \geq 0$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Somando (x-1):
$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$-x_1 + x_3 \ge -2$$

corte C-G

$$\frac{12}{13}x_3 + \frac{2}{13}x_4 \ge \frac{5}{13}$$

corta solução ótima fracionária

$$\max \frac{317}{13} - \frac{25}{13}x_3 - \frac{2}{13}x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

$$\max \ \bar{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_i \geq 0$$

Como do lado esquerdo só aparecem variáveis não básicas e do lado direito o valor é sempre maior que zero, o corte C-G sempre corta a solução fracionária

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Somando (x-1):
$$x_1 - \frac{1}{13}x_3 + \frac{2}{13}x_4 = \frac{31}{13}$$

$$-x_1 + x_3 \ge -2$$

corte C-G

$$\frac{12}{13}x_3 + \frac{2}{13}x_4 \ge \frac{5}{13}$$

corta solução ótima fracionária

$$\max \frac{317}{13} - \frac{25}{13}x_3 - \frac{2}{13}x_4$$

$$x_1 = \frac{31}{13} + \frac{1}{13}x_3 - \frac{2}{13}x_4$$

$$x_2 = \frac{56}{13} - \frac{7}{13}x_3 + \frac{1}{13}x_4$$

$$x_1, x_2, x_3, x_4 \in \mathbb{Z}$$

insere nova restrição na solução

$$\frac{12}{13}x_3 + \frac{2}{13}x_4 - x_5 = \frac{5}{13}$$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \bar{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_i \geq 0$$

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

Graficamente:

Exercício

- Cortes de Chvatal-Gomery aplicados no ótimo do PPL

E se gerarmos mais um corte CG no exemplo apresentado. Veja que agora aplicando o SIMPLEX descobrimos base ótima $I_B = \{1,2,4\}$ com PPL na forma base:

$$\max 24 - x_3 - x_5$$

20000000

$$x_1 = 2 + x_3 - x_5$$

$$x_2 = \frac{9}{2} - x_3 + \frac{1}{2}x_5$$

$$x_4 = \frac{5}{2} - 6x_3 + \frac{13}{2}x_5$$

$$x_4 = \frac{5}{2} - 6x_3 + \frac{13}{2}x_5$$

$$x_1, x_2, x_3, x_4, x_5 \in \mathbb{Z}$$

$$\max \ \overline{z} + \sum_{j \in I_N} (c_j - z_j) x_j$$

s.a.
$$x_{B_i} = \overline{x}_{B_i} - \sum_{j \in I_N} y_{ij} x_j$$
,

$$x_i \geq 0$$

E ai continua o método....

Até a próxima

200000000

