ОЗНАЧЕННЯ КРАТНИХ ІНТЕГРАЛІВ

ОЗНАЧЕННЯ 1. Нехай $A \in \mathcal{K}_p, \ f: A \to \mathbb{R}$ – обмежена функція. Інтегральною сумою, що відповідає функції f, розбиттю простору порядку n та набору точок $\xi_Q \in Q, \ Q \in \pi^{(n)}, Q \subset A_{(n)},$ назвемо вираз

$$S_n(f, \{\xi_Q\}) = \sum_{Q \in \pi^{(n)}, Q \subset A_{(n)}} f(\xi_Q) m(Q).$$

Зауваження. Якщо $A_{(n)}=\varnothing$, вважатимемо, що $S_n(f,\{\xi_Q\})=0.$

Означення 2. Нехай $A \in \mathcal{K}_p, \ f: A \to \mathbb{R}$ – обмежена функція. Якщо існує скінченна границя $\lim_{n\to\infty} S_n(f,\{\xi_Q\}) = I$, тобто

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ \forall \{\xi_Q\} : |S_n(f, \{\xi_Q\}) - I| < \varepsilon,$$

то функцію f називають інтегровною на множині A, а число I називають інтегралом від функції f по множині A.

Позначення.
$$I = \int\limits_A f(\vec{x}) d\vec{x} = \int\limits_A f(x_1,...,x_p) dx_1...dx_p.$$
 У випадку $p=1$ маємо звичайний інтеграл Рімана.

У випадку
$$p=2$$
 маємо подвійний інтеграл $I=\int\limits_A f(x_1,x_2)dx_1dx_2=\int\limits_A \int f(x_1,x_2)dx_1dx_2.$

У випадку
$$p=3$$
 маємо потрійний інтеграл $I=\int\limits_A f(x_1,x_2,x_3)dx_1dx_2dx_3=\int\limits_A \int\limits_A \int f(x_1,x_2,x_3)dx_1dx_2dx_3.$

Властивості інтеграла.

- 1. Нехай $A\in \mathcal{K},\ c\in \mathbb{R}$ і $f(x)=c,\ x\in A.$ Тоді $\int cd\vec{x}=cm(A).$
- 2. Нехай $A \in \mathcal{K}, \ c_1, c_2 \in \mathbb{R}$ і $f_1, f_2 : A \to \mathbb{R}$ обмежені на A. Тоді $\int_A (c_1 f_1(\vec{x}) + c_2 f_2(\vec{x})) d\vec{x} = c_1 \int_A f_1(\vec{x}) d\vec{x} + c_2 \int_A f_2(\vec{x}) d\vec{x}.$
- $\overset{A}{A}$ 3. Нехай $A,B\in \mathfrak{K},\ m(\overset{A}{A}\cap B)=0,$ і $\overset{A}{f}:A\cup B\to \mathbb{R}$ обмежена на $A\cup B.$ Тоді $\int\limits_{A\cup B}f(\vec{x})d\vec{x}=\int\limits_{A}f(\vec{x})d\vec{x}+\int\limits_{B}f(\vec{x})d\vec{x}.$
- 4. Нехай $A\in\mathcal{K},$ і $f:A\to\mathbb{R}$ інтегровна на A. Тоді |f| інтегровна на A і $|\int f(\vec{x})d\vec{x}|\leq \int |f(\vec{x})|d\vec{x}.$
- 5. Нехай $A\in\mathcal{K},\,f^{^{A}}:A\to\mathbb{R}$ інтегровна на A і $f(\vec{x})\geq0,\,\,\vec{x}\in A.$ Тоді $\int f(\vec{x})d\vec{x}\geq0.$
- 6. Нехай $A \in \mathcal{K}, f_1, f_2 : A \to \mathbb{R}$ інтегровні на A і $f_1(\vec{x}) \geq f_2(\vec{x}), \ \vec{x} \in A$. Тоді $\int_{A}^{A} f_1(\vec{x}) d\vec{x} \geq \int_{A}^{A} f_2(\vec{x}) d\vec{x}$.
- 7. (Теорема про середнє). Нехай $A \in K$ опукла множина, тобто разом з будь-якими двома своїми точками містить відрізок, що їх з'єднує, $f \in C(A)$. Тоді $\exists \vec{x}_0 \in A : \int f(\vec{x}) d\vec{x} = f(\vec{x}_0) m(A)$.
- 8. Нехай $B\in\mathcal{K},\ f:\stackrel{A}{B}\to\mathbb{R}$ обмежена на B, інтегровна на $B_{(n)},\ n\geq 1.$ Тоді існує границя $J=\lim_{n\to\infty}\int\limits_{B_{(n)}}f(\vec{x})d\vec{x},\ f$ інтегровна на B

 $i \int_{B} f(\vec{x}) d\vec{x} = J.$

ДОВЕДЕННЯ. 1. $S_n(f, \{\xi_Q\}) = cm(A_{(n)}) \to cm(A), \ n \to \infty.$

- 2. $S_n(c_1f_1+c_2f_2,\{\xi_Q\})=c_1S_n(f_1,\{\xi_Q\})+c_2S_n(f_2,\{\xi_Q\})$. Перейдемо в цій рівності до границі при $n\to\infty$.
- 3. $A_{(n)}$ і $B_{(n)}$ не мають спільних брусів, тому $S_n(f, \{\xi_Q(A \cup B)\}) = S_n(f, \{\xi_Q(A)\}) + S_n(f, \{\xi_Q(B)\}), n \geq 0$. Перейдемо в цій рівності до границі при $n \to \infty$.
- 4. $|S_n(f, \{\xi_Q\})| \leq S_n(|f|, \{\xi_Q\}), \ n \geq 0$. Перейдемо в цій нерівності до границі при $n \to \infty$.
- 5. $S_n(f, \{\xi_Q\}) \ge 0, \ n \ge 0$. Перейдемо в цій нерівності до границі при $n \to \infty$.
- 6. $S_n(f_1, \{\xi_Q\})| \geq S_n(f_2, \{\xi_Q\}), \ n \geq 0$. Перейдемо в цій нерівності до границі при $n \to \infty$.

- 7. Застосувати до функції f, що розглядається на відрізку, що з'єднує точки, в яких досягаються її максимум і мінімум, теорему Коші про середнє значення.
- 8. Нехай функція f обмежена сталою C. Границя існує, бо ця послідовність фундаментальна:

$$|a_n - a_k| = \left| \int_{B_{(n)} \setminus B_{(k)}} f(\vec{x}) d\vec{x} \right| \le Cm(B_n \setminus B_{(k)}) = C(m(B_{(n)}) - m(B_{(k)})) \to 0,$$

$$k, n \to \infty.$$

Тоді

$$|S_n(f, \{\xi_Q\}) - J| \le |S_n(f, \{\xi_Q(B_{(N)})\}) - J| + |S_n(f, \{\xi_Q(B \setminus B_{(N)}^0)\})| \le$$

$$\le \left| S_n(f, \{\xi_Q(B_{(N)})\}) - \int_{B_{(N)}} f(\vec{x}) d\vec{x} \right| + \left| \int_{B_{(N)}} f(\vec{x}) d\vec{x} - J \right| + Cm(B \setminus B_{(N)}) < \varepsilon,$$

якщо обрати N так, що останні доданки менші за $\frac{\varepsilon}{3}$ кожен, а потім обрати $n \geq N$ так, що перший доданок менший за $\frac{\varepsilon}{3}$.

ТЕОРЕМА 1. Нехай $A\in\mathcal{K}_p,\ f\in C(A)$. Тоді f інтегровна на множині A.

ІДЕЯ ДОВЕДЕННЯ. Якщо m(A)=0, то $A_{(n)}=\varnothing,$ $n\geq 0,$ отже інтеграл існує і рівний нулю. Припустимо, що m(A)>0.

Якщо A – компактна, то, користуючись рівномірною неперервністю, можна показати фундаментальність послідовності інтегральних сум, рівномірну по наборах $\{\xi_Q\}$.

Отже, послідовність інтегральних сум фундаментальна, а тому збіжна.

Якщо ж множина не є компактною, то доведене твердження потрібно застосувати до множин $A_{(n)}$, а потім скористатися восьмою властивістю інтеграла.

Означення 3. Нехай $A\subset \mathbb{R},\ u,v:A\to \mathbb{R},\ u(x)\leq v(x),\ x\in A.$ Тоді множину

$$C = \{(x_1, x_2) \mid x_1 \in A, \ u(x_1) \le x_2 \le v(x_1)\}$$

в площині називають циліндричною в напрямку осі Ox_2 .

Нехай $A \subset \mathbb{R}^2$, $u, v : A \to \mathbb{R}$, $u(\vec{x}) \leq v(\vec{x})$, $\vec{x} \in A$. Тоді множину

$$C = \{(x_1, x_2, x_3) \mid (x_1, x_2) \in A, \ u(x_1, x_2) \le x_3 \le v(x_1, x_2)\}$$

в просторі \mathbb{R}^3 називають циліндричною в напрямку осі Ox_3 .

В обох випадках множину A називають основою множини C і позначають A=baC.

Зауваження. 1. Аналогічно визначаються циліндричні множини в просторах більших розмірностей і в напрямках інших осей.

2. Множина є циліндричною в напрямку осі Ox_p тоді й лише, тоді, коли її перетин з кожною прямою, перпендикулярною площині $x_p = 0$ є або порожня множина, або точка, або відрізок.

Приклади. 1. Множина $\{(x_1, x_2) \mid x_1 \in [0, 1], 0 \le x_2 \le |x_1|\}$ є циліндричною в напрямку осі Ox_2 , але не є циліндричною в напрямку осі Ox_1 , бо її перетин з прямою $x_2 = \frac{1}{2}$ є об'єднанням двох відрізків.

- 2. Кожен брус є циліндричною множиною вздовж кожної осі.
- 3. Множина $[-2,2]^3 \setminus (-1,1)^3$ не є циліндричною вздовж жодної осі. У вигляді об'єднання якої мінімальної кількості циліндричних множин її можна подати?

ТЕОРЕМА 2. Нехай C — циліндрична множина, її основа baC компактна та вимірна, а функції u,v неперервні. Тоді множина C компактна та вимірна і $m(C)=\int\limits_{C}(v(\vec{x})-u(\vec{x}))d\vec{x}.$

ІДЕЯ ДОВЕДЕННЯ. Множина компактна в \mathbb{R}^p , якщо вона обмежена і замкнена. Оскільки baC — обмежена і функції u,v обмежені (бо неперервні на компакті), то з означення циліндричної множини випливає, що всі координати її точок обмежені, отже обмежена і вся множина C.

Замкненість множини C отримаємо граничним переходом в нерівностях.

Внутрішню міру C можна записати, як суму мір "стовпчиків обмежених функціями u, v над брусками з $(baC)_{(n)}$. Тоді отримаємо інтегральну суму для наведеного інтеграла. Для зовнішньої міри - аналогічно.

Зауваження. Враховуючи третю властивість інтеграла, кожну множину, що є об'єднанням циліндричних множин, які перетинаються по множинах міри нуль, можна вважати вимірною і рахувати її міру, як суму мір частин.

ТЕОРЕМА 3. Нехай A – циліндрична множина в \mathbb{R}^p з компактною вимірною основою baA і функціями $u,v\in C(baA),\ f\in C(A),$ $g(x_1,...,x_{p-1})=\int\limits_{u(x_1,...,x_{p-1})}f(x_1,...,x_p)dx_p,\ (x_1,...,x_{p-1})\in baA.$ Тоді $\int\limits_A f(\vec{x})d\vec{x}=\int\limits_{ba}g(x_1,...,x_{m-1})dx_1...dx_{m-1}$

тобто

$$\int_{A} f(\vec{x}) d\vec{x} = \int_{baA} \left(\int_{u(x_{1},...,x_{p-1})}^{v(x_{1},...,x_{p-1})} f(x_{1},...,x_{p}) dx_{p} \right) dx_{1}...dx_{m-1}.$$

ДОВЕДЕННЯ. Враховуючи теорему про середнє для одновимірного інтеграла від неперервної функції

$$S_{n}(g, \{\xi_{Q}(baA)\}) = \sum_{Q \in \pi_{p-1}^{(n)}, Q \subset baA} \int_{u(\xi_{1Q}, \dots, \xi_{p-1Q})}^{v(\xi_{1Q}, \dots, \xi_{p-1Q})} f(\xi_{1Q}, \dots, \xi_{p-1Q}, x_{p}) dx_{p} m(Q) \sim$$

$$\sim \sum_{Q \in \pi_{p}^{(n)}, Q \subset A} \int_{a_{p}(Q)}^{b_{p}(Q)} f(\xi_{1Q}, \dots, \xi_{p-1Q}, x_{p}) dx_{p} m(baQ) =$$

$$= \sum_{Q \in \pi_{p}^{(n)}, Q \subset A} f(\xi_{1Q}, \dots, \xi_{p-1Q}, \xi_{pQ}) m(baQ) (b_{p}(Q) - a_{p}(Q)) =$$

$$= \sum_{Q \in \pi_{p}^{(n)}, Q \subset A} f(\xi_{1Q}, \dots, \xi_{p-1Q}, \xi_{pQ}) m(Q) =$$

$$= S_{n}(f, \{\xi_{Q}(A)\}) \rightarrow \int_{A} f(\vec{x}) d\vec{x}, \quad n \to \infty.$$

Наслідок. Якщо $A \subset \mathbb{R}^3$, а baA в свою чергу є циліндричною множиною, основою якої є відрізок [a,b], то застосувавши доведену теорему двічі, отримаємо формулу для розстановки меж у потрійному інтегралі:

 $\int_{A} f(\vec{x}) d\vec{x} = \int_{a}^{b} \left(\int_{u_{1}(x_{1})}^{v_{1}(x_{1})} \left(\int_{u(x_{1},x_{2})}^{v(x_{1},x_{2})} f(x_{1},x_{2},x_{3}) dx_{3} \right) dx_{2} \right) dx_{1}.$

На цих формулах ґрунтується розтановка меж у подвійних та потрійних інтегралах по циліндричних множинах: спочатку з'ясовуємо, на якому відрізку набуває значень одна зі змінних і пишемо інтеграл по ній, потім фіксуємо цю змінну і шукаємо проміжок, на якому змінюється друга змінна. Потім (для потрійного інтеграла) — проміжок зміни третьої змінної при двох фіксованих. Яку змінну обирати, як першу, другу і третю, залежить від задачі.

ЗАМІНА ЗМІННОЇ В КРАТНИХ ІНТЕГРАЛАХ

ЛЕМА 1. Нехай $\vec{f}: \mathbb{R}^m \to \mathbb{R}^m$ — лінійне відображення, що задається матрицею F. Тоді для кожної вимірної множини $A \subset \mathbb{R}^m$ її образ $\vec{f}(A)$ вимірний і $m(\vec{f}(A)) = |\det F| \cdot m(A)$.

ДОВЕДЕННЯ. З алгебри відомо, що матрицю F можна подати у вигляді добутку елементарних матриць $F_1F_2...F_p$, де кожна елементарна матриця є або діагональною, або матрицею вигляду $I + \lambda E(i,j)$, де I – одинична матриця, E(i,j) – матриця, в якій елемент на місці (i,j) рівний 1, а всі інші – нулю. Оскільки $\det F = \det F_1 \cdot \det F_2 \cdot ... \cdot \det F_p$, то доведення досить провести лише у випадку, коли F – елементарна матриця.

I. Нехай $A = \prod_{k=1}^m [a_k, b_k]$ — брус. Тоді якщо F — діагональна матриця,

то $F(A) = \prod_{k=1}^m [f_{kk}a_k, f_{kk}b_k]$ і шукане твердження випливає з прикладу

1. Якщо ж $F = I + \lambda E(i, j)$, то

$$F(A) = \{ \vec{y} \in \mathbb{R}^m \mid y_k \in [a_k, b_k], \ k \neq i, \ y_i \in [a_i + \lambda y_j, b_i + \lambda y_j] \}.$$

Ця множина є декартовим добутком бруса $\prod_{k \neq i,j} [a_k,b_k]$ і паралелогра-

ма, тому за властивістю 1 є вимірною і $m(f(A)) = \prod_{k=1}^{m} (b_k - a_k)$.

II. Нехай A – довільна вимірна множина. Тоді $(\vec{f}(A))_{(n)} \supset (\vec{f}(A_{(i)}))_{(n)}$ і $m_*(\vec{f}(A)) \geq m(\vec{f}(A_{(k)})) = |\det F| \cdot m(A_{(k)}), \ k \geq 1$, тому $m_*(\vec{f}(A)) \geq |\det F| \cdot m(A)$. Аналогічно $m^*(\vec{f}(A)) \leq |\det F| \cdot m(A)$, отже $\vec{f}(A)$ – вимірна множина і $m(\vec{f}(A)) = |\det F| \cdot m(A)$.

НАСЛІДОК. Якщо $\vec{f}(\vec{x}) = F\vec{x} + \vec{x}_0, \ \vec{x} \in \mathbb{R}^m, \ \vec{x}_0 \in \mathbb{R}^m,$ то твердження леми залишається правильним.

ТЕОРЕМА 1. Нехай $A \subset \mathbb{R}^m$ – відкрита множина, $B \subset A$ – компактна вимірна множина, відображення $\vec{g}:A \to \mathbb{R}^m$ задовольняє умови:

- 1) \vec{g} бієкція між B і $\vec{g}(B)$;

(2) $\vec{g} \in C^1(A, \mathbb{R}^m);$ (3) $J(\vec{x}) = \frac{\partial(g_1, \dots, g_m)}{\partial(x_1, \dots, x_m)}(\vec{x}) \neq 0$ на B. Тоді множина $\vec{g}(B)$ компактна, вимірна і справджується формула $m(\vec{g}(B)) = \int_{\mathcal{B}} \left| \frac{\partial(g_1, \dots, g_m)}{\partial(x_1, \dots, x_m)} \right| d\vec{x}.$

Якщо додатково $f \in C(\vec{g}(B), \mathbb{R}),$ то справджується формула заміни змінної

$$\int_{\vec{g}(B)} f(\vec{y}) d\vec{y} = \int_{B} f(\vec{g}(\vec{x})) \left| \frac{\partial(g_1, \dots, g_m)}{\partial(x_1, \dots, x_m)} \right| d\vec{x}.$$

ІДЕЯ ДОВЕДЕННЯ. 1. Якщо множину B наблизити множиною $B_{(n)}$ і розбити її на бруси, то при великих n на кожному брусі Q з великою точністю $\vec{g}(x) \approx \vec{g}(x_0) + \vec{g}'(x_0)(x - x_0)$, де x_0 – центр бруса. Але це лінійне відображення

$$\vec{h}(x) = \vec{g}'(x_0)x + (\vec{g}(x_0) - \vec{g}'(x_0)x_0)$$

переводить брус у паралелепіпед, міра якого є міра бруса, домножена (за лемою) на

$$|\det \vec{g}'(x_0)| = \left| \frac{\partial(g_1, ..., g_m)}{\partial(x_1, ..., x_m)}(x_0) \right|.$$

Тому інтегральну суму для інтеграла від f по g(B) можна наближено записати, як

$$\sum_{Q \subset B_{(n)}} f(g(x_0(Q)) \left| \frac{\partial(g_1, ..., g_m)}{\partial(x_1, ..., x_m)} (x_0(Q)) \right| m(Q).$$

З іншого боку цей вираз є інтегральною сумою для правого інтеграла. При $n \to \infty$ отримаємо потрібне.

НАСЛІДОК. Якщо умови теореми порушуються на множині $T \subset B$ нульової міри, то твердження залишається правильним, бо теорему можна застосувати на множині $(B\backslash T)_{(n)}$ і перейти до границі при $n\to\infty$ (аналогічно п. 2 доведення).

Наприклад, можна робити заміну, переходячи до полярних, циліндричних або сферичних координат.