$$X \sim N(\mu, \sigma^2)$$
 - - - - - \longrightarrow X_1, X_2, \dots, X_n

Suppose X_1, X_2, \ldots, X_n is a random sample from a normal population. We have seen that we should use the <u>sample mean \overline{X} to estimate the population mean μ and the sample variance S^2 to estimate the population variance σ^2 .</u>

 \overline{X} and S^2 are random variables. \$ 64,000 question

How are \overline{X} and S^2 distributed ? The answer is given by the following considerations

Any linear combination of Independent normal random variables is again normal

so
$$\overline{X}$$
 is normal. Since $E(\overline{X}) = \mu$ and $V(\overline{X}) = \frac{\sigma^2}{n}$ we have

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Suppose Z, Z_2, \dots, Z_n are independent standard normal random variables. Then

$$Z_1^2 + \ldots + Z_b^2 \sim \chi^2(n)$$
 (*)

Chi-squared with n degrees of

Now
$$Z_i = \frac{X_i - \mu}{\sigma} \sim N(0, 1)$$

So

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2 \sim \chi^2(n)$$

Now replace μ by its estimation \overline{X} Rule of thumb - every time you replace a quantity by its estimator you lose one degree of freedom in the chi-squared distribution

So by the "rule of thumb"

$$Y = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi^2(n-1)$$

Now
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

So $Y = \frac{n-1}{\sigma^2}S^2$ and we obtain the critical

$$\frac{n-1}{\sigma^2}S^2\sigma\chi^2(n-1) \tag{**}$$

Remark

This isn't a proof because we used "the rule of thumb" but the result is true

Bottom Line

Theorem

Let $X_1, X_2, ..., X_n$ be a random Sample from a normal population with mean μ and variance σ^2 . Then

(i)
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

(ii)
$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$$

(iii) \overline{X} and S^2 are independent.

The above statement is on exact statement but if we take a large sample (n > 30) from <u>any</u> population with mean μ and variance σ^2 we may assume

Theorem (Cont.)

to a good approximation that the population has $N(\mu,\sigma^2)$ distribution and we have by CLT

Theorem

If $X_1, X_2, ..., X_n$ is a <u>large</u> (n > 30) random sample from <u>any</u> population with mean μ and variance σ^2 then

- (i) $\overline{X} \approx N(\mu, \frac{\sigma^2}{n})$
- (ii) $S^2 \approx \chi^2(n-1)$
- (iii) \overline{X} and S^2 are approximately independent. (then are not independent unless the population is normal.)