Fundamentele limbajelor de programare

C07

Denisa Diaconescu Traian Serbănută

Departamentul de Informatică, FMI, UB

Lambda calcul cu tipuri simple

(cont.)

Ce problemă vrem să rezolvăm în cursul de astăzi?

Type Inference

Pentru un lambda termen M fără tipuri, vrem să adnotăm termenul M cu tipuri obținând \overline{M} și să rezolvăm problema

?
$$\vdash \overline{M}$$
:?

(să găsim un context și un tip, pentru a avea o judecată legală).

Exemple:

• Pentru termenul $(\lambda z. \lambda u. z) (y x)$, am putea obține

$$\{x:\alpha,y:\alpha\to\beta\}\vdash (\lambda z:\beta.\lambda u:\gamma.z)(yx):\gamma\to\beta$$

Pentru termenul x x nu putem să rezolvăm problema.

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma . M) : \sigma \to \tau} (\to_I)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \, N : \tau} \; (\to_{E})$$

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma . M) : \sigma \to \tau} (\to_I)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \, N : \tau} \; (\to_E)$$

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma. M) : \sigma \to \tau} (\to_I)$$

$$\frac{\Gamma \vdash M \colon \sigma \to \tau \quad \Gamma \vdash N \colon \sigma}{\Gamma \vdash M \: N \colon \tau} \; (\to_E)$$

$$\Gamma \vdash M : \sigma \triangleright C$$

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma. M) : \sigma \to \tau} (\to_I)$$

$$\frac{\Gamma \vdash M \colon \sigma \to \tau \quad \Gamma \vdash N \colon \sigma}{\Gamma \vdash M \: N \colon \tau} \; (\to_{E})$$

$$\Gamma \vdash M : \sigma \triangleright C$$

$$\frac{}{\Gamma \cup \{x : \tau\} \vdash x : \sigma \triangleright \{\sigma = \tau\}} (var^*)$$

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma. M) : \sigma \to \tau} \; (\to_I)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau} \ (\to_E)$$

$$\Gamma \vdash M : \sigma \triangleright C$$

$$\frac{}{\Gamma \cup \{x : \tau\} \vdash x : \sigma \triangleright \{\sigma = \tau\}} (var^*)$$

$$\begin{array}{cccc} \Gamma, x \colon \sigma & \vdash & M \colon \tau' \, \triangleright \, C' \\ \underline{C = C' \cup \{\tau \stackrel{.}{=} \sigma \rightarrow \tau'\}} \\ \Gamma \vdash (\lambda x \colon \sigma \ldotp M) \colon \tau \vdash C \end{array} (\rightarrow_{I}^{*})$$

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma . M) : \sigma \to \tau} \; (\to_I)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau} \ (\to_E)$$

$$\Gamma \vdash M : \sigma \triangleright C$$

$$\frac{}{\Gamma \cup \{x : \tau\} \vdash x : \sigma \triangleright \{\sigma \stackrel{\cdot}{=} \tau\}} (var^*)$$

$$\begin{array}{cccc} \Gamma, x : \sigma & \vdash & M : \tau' \, \triangleright \, C' \\ \underline{C = C' \cup \{\tau \stackrel{.}{=} \sigma \rightarrow \tau'\}} \\ \Gamma \vdash (\lambda x : \sigma . \, M) : \tau \vdash C \end{array} (\rightarrow_I^*)$$

$$\Gamma \vdash M : \tau_1 \triangleright C_1 \qquad \Gamma \vdash N : \tau_2 \triangleright C_2
\underline{C = C_1 \cup C_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \tau\}}
\Gamma \vdash M N : \tau \triangleright C \qquad (\rightarrow_E^*)$$

Sistemul $\lambda \rightarrow$

$$\Gamma \vdash M : \sigma$$

$$\overline{\Gamma \vdash x : \sigma}$$
 (var) dacă $x : \sigma \in \Gamma$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma. M) : \sigma \to \tau} \; (\to_I)$$

$$\frac{\Gamma \vdash M \colon \sigma \to \tau \quad \Gamma \vdash N \colon \sigma}{\Gamma \vdash M \: N \colon \tau} \; (\to_E)$$

 σ , τ variabile de tip

Sistemul $\lambda \rightarrow$ cu constrângeri

$$\Gamma \vdash M : \sigma \triangleright C$$

$$\frac{}{\Gamma \cup \{x : \tau\} \vdash x : \sigma \triangleright \{\sigma \stackrel{\cdot}{=} \tau\}} (var^*)$$

$$\begin{array}{cccc} \Gamma, x : \sigma & \vdash & M : \tau' \, \triangleright \, C' \\ \underline{C = C' \cup \{\tau \stackrel{.}{=} \sigma \rightarrow \tau'\}} \\ \Gamma \vdash (\lambda x : \sigma . \, M) : \tau \vdash C \end{array} (\rightarrow_{I}^{*}) \end{array}$$

$$\begin{array}{c|c} \Gamma \vdash M : \tau_1 \triangleright C_1 & \Gamma \vdash N : \tau_2 \triangleright C_2 \\ \hline C = C_1 \cup C_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \tau\} \\ \hline \Gamma \vdash M \, N : \tau \triangleright C \\ \end{array} (\rightarrow_E^*)$$

 $\sigma, \tau, \tau', \tau_1, \tau_2$ variabile de tip

Sistemul $\lambda \rightarrow$ cu constrângeri

O judecată de forma $\Gamma \vdash M : \sigma \triangleright C$ este legală dacă constrângerile din C au o "soluție".

De exemplu, judecata de mai jos este legală

$$\{x : \alpha, y : \alpha \to \beta\} \vdash (\lambda z : \beta. \lambda u : \gamma. z) (y x) : \gamma \to \beta \triangleright \mathbf{C}, \text{ unde}$$

$$\mathbf{C} = \{\delta \stackrel{.}{=} \beta, \tau_1' \stackrel{.}{=} (\gamma \to \delta), \tau_1 \stackrel{.}{=} (\beta \to \tau_1'), \sigma_1 \stackrel{.}{=} \alpha \to \beta, \sigma_2 \stackrel{.}{=} \alpha,$$

$$\sigma_1 \stackrel{.}{=} \sigma_2 \to \tau_2, \tau_1 \stackrel{.}{=} (\tau_2 \to (\gamma \to \beta)) \}$$

 ${\it C}$ are "soluție" și spune, de exemplu, că ar trebui ca $\alpha=\sigma_2$ și $\beta=\delta.$

În slide-urile următoare dăm mai multe detalii despre ce înseamnă acest lucru.

Type Inference

Fie *M* un lambda termen fără tipuri.

Construim un context Γ_M pentru M:

$$\Gamma_M = \{x : X \mid x \in FV(M)\}$$

(toate variabilele de tip X introduse mai sus sunt noi și distincte)

Adnotăm M cu tipuri pentru variabilele legate obținând \overline{M} prin inducție după structura lui M astfel:

- dacă M = x, atunci $\overline{M} = M$
- dacă $M=M_1~N_1$, atunci $\overline{M}=\overline{M_1}~\overline{N_1}$
- dacă M = \(\lambda x. \, N\), atunci \(\overline{M} = \lambda x : X. \overline{N}\), unde X este o variabilă de tip nouă

Type Inference

Fie *M* un lambda termen fără tipuri.

Dacă există o constrângere de tipuri C_M și o variabilă de tip nouă V astfel încât

$$\Gamma_M \vdash \overline{M} : V \triangleright C_M$$

este o judecată legală, atunci M este typable. (soluția o găsim prin C_M)

Type Inference - Exemplul 1

```
Fie M_1 = (\lambda z. \lambda u. z) (y x).
        Obtinem \Gamma_{M_1} = \{x : X, y : Y\} și \overline{M_1} = (\lambda z : Z. \lambda u : U. z) (y x).
      \Gamma_{M_1} \cup \{z: Z, u: U\} \vdash z: \delta \triangleright D
      C'_1 = D \cup \{\tau'_1 \stackrel{\cdot}{=} (U \rightarrow \delta)\}
  \overline{\Gamma_{M_1} \cup \{z : Z\} \vdash \lambda u \colon U.z \colon \tau_1' \triangleright C_*'} \ (\rightarrow_I^*)
                                                                                                                  \Gamma_{M_1} \vdash y : \sigma_1 \triangleright C'_2 \quad \Gamma_{M_1} \vdash x : \sigma_2 \triangleright C''_2
                                                                                                                 \frac{C_2 = C_2' \cup C_2'' \cup \{\sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2\}}{\Gamma_{M_1} \vdash y \times : \tau_2 \triangleright C_2} \ (\rightarrow_E^*)
  C_1 = C'_1 \cup \{\tau_1 \stackrel{\cdot}{=} (Z \rightarrow \tau'_1)\}
            \Gamma_{M_1} \vdash \lambda z : Z. \lambda u : U.z : \tau_1 \triangleright C_1 \qquad (\rightarrow_i^*)
   C_{M_1} = C_1 \cup C_2 \cup \{\tau_1 = (\tau_2 \to V)\}
                                                                          \Gamma_{M_1} \vdash (\lambda z : Z. \lambda u : U. z) (y x) : V \triangleright C_{M_1}
D = \{\delta = Z\}
                                                                                                                    C_2' = \{\sigma_1 \stackrel{\cdot}{=} Y\}
C'_1 = \{\delta = Z, \tau'_1 = (U \rightarrow \delta)\}\
                                                                                                                    C_2'' = \{\sigma_2 = X\}
C_1 = \{\delta = Z, \tau'_1 = (U \rightarrow \delta), \tau_1 = (Z \rightarrow \tau'_1)\}\
                                                                                                         C_2 = \{\sigma_1 = Y, \sigma_2 = X, \sigma_1 = \sigma_2 \rightarrow \tau_2\}
                              C_{M_1} = \{\delta = Z, \tau'_1 = (U \rightarrow \delta), \tau_1 = (Z \rightarrow \tau'_1), \sigma_1 = Y, \sigma_2 = X,
                                                                  \sigma_1 = \sigma_2 \rightarrow \tau_2, \tau_1 = (\tau_2 \rightarrow V)
```

Constrângerile C_{M_1} au "soluție". Ce înseamnă asta?

Type Inference - Exemplul 2

Fie
$$M_2 = x x$$
.
Obţinem $\Gamma_{M_2} = \{x : X\}$ şi $\overline{M_2} = M_2$.

$$\begin{array}{ll} \{x:X\} \vdash x:\tau_1 \mathrel{\triangleright} C_1 & \{x:X\} \vdash x:\tau_2 \mathrel{\triangleright} C_2 \\ \hline C_M = C_1 \cup C_2 \cup \{\tau_1 \stackrel{\cdot}{=} \tau_2 \rightarrow V\} \\ \hline \{x:X\} \vdash (x\,x): V \mathrel{\triangleright} C_{M_2} \end{array} \ (\rightarrow_E^*)$$

$$C_1 = \{\tau_1 \stackrel{.}{=} X\}$$

$$C_2 = \{\tau_2 \stackrel{.}{=} X\}$$

$$C_{M_2} = \{\tau_1 \stackrel{.}{=} X, \tau_2 \stackrel{.}{=} X, \tau_1 \stackrel{.}{=} \tau_2 \rightarrow V\}$$

Constrângerile C_{M_2} nu au "soluție". Ce înseamnă asta?

Type Inference - Exemplul 2

Fie
$$M_2 = x x$$
.
Obţinem $\Gamma_{M_2} = \{x : X\}$ şi $\overline{M_2} = M_2$.

$$\begin{array}{ll} \{x:X\} \vdash x: \tau_1 \triangleright C_1 & \{x:X\} \vdash x: \tau_2 \triangleright C_2 \\ \hline C_M = C_1 \cup C_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow V\} \\ \hline \{x:X\} \vdash (x\,x): V \triangleright C_{M_2} \end{array} \ (\rightarrow_E^*)$$

$$C_1 = \{\tau_1 = X\}$$
 $C_2 = \{\tau_2 = X\}$
 $C_{M_0} = \{\tau_1 = X, \tau_2 = X, \tau_1 = \tau_2 \rightarrow V\}$

Constrângerile C_{M_2} nu au "soluție". Ce înseamnă asta?

Constrângerile au "soluție" dacă se pot unifica.

Termeni

Alfabet:

- ullet o multime de simboluri de funcții de aritate cunoscută
- V o multime numărabilă de variabile
- \mathcal{F} și \mathcal{V} sunt disjuncte

Termeni peste \mathcal{F} si \mathcal{V} :

$$t ::= x | f(t_1, ..., t_n)$$

- n ≥ 0
- x este o variabilă
- f este un simbol de functie de aritate n

Pentru ușurință, considerăm funcțiile în forma prefixată.

Termeni

Notatii:

- constante: simboluri de functii de aritate 0
- x, y, z, ... pentru variabile
- a, b, c, ... pentru constante
- f, g, h, ... pentru simboluri de funcții arbitrare
- *s*, *t*, *u*, . . . pentru termeni
- var(t) mulțimea variabilelor care apar în t
- ullet ecuații s = t pentru o pereche de termeni
- ullet $\mathit{Trm}_{\mathcal{F},\mathcal{V}}$ mulțimea termenilor peste \mathcal{F} și \mathcal{V}

Termeni

Exemple:

- f(x, g(x, a), y) este un termen, unde f are aritate 3, g are aritate 2, a este o constanta
- $var(f(x, g(x, a), y)) = \{x, y\}$

Legătura cu teoria tipurilor

Multimea tipurilor simple $\mathbb{T} = \mathbb{V} \mid \mathbb{T} \to \mathbb{T}$

În acest caz, avem alfabetul:

- $\mathcal{F} = \{\rightarrow\}$, iar aritatea lui \rightarrow este 2
- $\mathcal{V} = \mathbb{V}$

Dacă avem și alte tipuri, extindem $\mathcal F$ cu noi simboluri. De exemplu,

- Unit, Void cu aritate 0 (deci constante)
- Bool, Nat cu aritate 0 (deci constante)
- Maybe, List cu aritate 1
- × cu aritate 2
- ...

Substituții

O substituție Θ este o funcție (parțială) de la variabile la termeni,

$$\Theta: \mathcal{V} \to \mathsf{Trm}_{\mathcal{F},\mathcal{V}}$$

Exemplu:

În notația uzuală, $\Theta = \{a/x, g(w)/y, b/z\}.$

Substituția Θ este identitate pe restul variabilelor.

Notație alternativă $\Theta = \{x \mapsto a, y \mapsto g(w), z \mapsto b\}.$

Substituții

Substituțiile sunt o modalitate de a înlocui variabile cu alți termeni.

Substituțiile se aplică simultan pe toate variabilele.

Aplicarea unei substituții Θ unui termen t:

$$\Theta(t) = \begin{cases} \Theta(x), \text{ dacă } t = x \\ f(\Theta(t_1), \dots, \Theta(t_n)), \text{ dacă } t = f(t_1, \dots, t_n) \end{cases}$$

Exemplu:

- $\bullet \ \Theta = \{x \mapsto f(x,y), y \mapsto g(a)\}\$
- t = f(x, g(f(x, f(y, z))))
- $\Theta(t) = f(f(x, y), g(f(f(x, y), f(g(a), z))))$

Substituții

Două substituții Θ_1 și Θ_2 se pot compune

$$\Theta_1;\Theta_2$$

(aplicăm întâi Θ_1 , apoi Θ_2).

Exemplu:

- $\bullet \ \ t = h(u, v, x, y, z)$
- $\Theta_1 = \{x \mapsto f(y), y \mapsto f(a), z \mapsto u\}$
- $\Theta_2 = \{ y \mapsto g(a), u \mapsto z, v \mapsto f(f(a)) \}$
- $(\Theta_1; \Theta_2)(t) = \Theta_2(\Theta_1(t)) = \Theta_2(h(u, v, f(y), f(a), u)) = h(z, f(f(a)), f(g(a)), f(a), z)$
- $(\Theta_2; \Theta_1)(t) = \Theta_1(\Theta_2(t)) = \Theta_1(h(z, f(f(a)), x, g(a), z))$ = h(u, f(f(a)), f(y), g(a), u)

Unificare

Doi termeni t_1 și t_2 se unifică dacă există o substituție Θ astfel încât

$$\Theta(t_1) = \Theta(t_2).$$

În acest caz, Θ se numește un unificator al termenilor t_1 și t_2 .

Un unificator Θ pentru t_1 și t_2 este cel mai general unificator (cmgu,mgu) dacă pentru orice alt unificator Θ' pentru t_1 și t_2 , există o substituție Δ astfel încât

$$\Theta' = \Theta; \Delta.$$

Unificatori

Exemplu:

- t = x + (y * y) = +(x, *(y, y))
- t' = x + (y * x) = +(x, *(y, x))
- $\Theta = \{x \mapsto y\}$
 - $\Theta(t) = y + (y * y)$
 - $\bullet \ \ \Theta(t') = y + (y * y)$
 - Θ este cmgu
- $\Theta' = \{x \mapsto 0, y \mapsto 0\}$
 - $\Theta'(t) = 0 + (0 * 0)$
 - $\Theta'(t') = 0 + (0 * 0)$
 - $\Theta' = \Theta$; $\{y \mapsto 0\}$
 - Θ' este unificator, dar nu este cmgu

Quiz time!

https://tinyurl.com/C07-Quiz1

Vacanță plăcută!