

INFORME 12 LABORATORIO: CURVA DE BOMBA

Estudiante:

Teresa Almonacid F

Alumna Ing. Civil Mecánica

Docentes:

Cristóbal Galleguillos K.

Tomás Herrera M.

Escuela Ingeniería Mecánica PUCV

11 de diciembre del 2020

Contenido

1.	INTRODUCCIÓN	3
1.1.	OBJETIVO DEL ENSAYO	3
2.	INSTRUMENTOS UTILIZADOS	4
3.	TABLA VALORES MEDIDOS:	4
4.	FÓRMULAS	5
4.1.	DATOS CALCULADOS	7
4.2.	GRÁFICOS	9
4.3.	GRÁFICO CAUDAL V/S RENDIMIENTO	9
4.4.	GRÁFICO CAUDAL V/S POTENCIA	10
4.4.	1. PREGUNTAS	11
4.5.	GRÁFICO DE PHI V/S PSI	12
4.5.	1. PREGUNTAS	13
CON	ICLUSIÓN	14

1. INTRODUCCIÓN

En el siguiente informe se calculan y grafican las curvas características de una bomba centrífuga Leader M18 ubicada en la escuela de ingeniería mecánica de la PUCV

1.1. OBJETIVO DEL ENSAYO

- Comprender el comportamiento de una bomba centrífuga
- Trazar las curvas características de la bomba

2. INSTRUMENTOS UTILIZADOS

- 1. Motor de corriente continua tipo basculante el cual es el encargado de medir la Fx que permitirá calcular posteriormente la potencia eléctrica
- 2. Venturímetro: encargado de medir el caudal debido a la variación de presión en mmca
- 3. Válvulas de compuerta: regulan en flujo del caudal.
- 4. Estanque: almacena el agua y a su vez provee de agua a la bomba haciendo recircular el agua.

3. TABLA VALORES MEDIDOS:

Los datos conseguidos en el ensayo fueron los siguientes:

Tabla 1

					VALORES	MEDIDOS				
					3070	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	Patm
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

Tabla 2

					VALORES	MEDIDOS				
					2900	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7

Tahla 3

					VALORES	MEDIDOS				
					2700	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

4. FÓRMULAS

Caudal corregido:

$$Q = Q_x * \frac{n}{n_x}$$
 [m3/s] Ecuación 5.1

Donde: Qx= caudal

Presión aspiración:

$$p_{ax} = 0.1 * pax\% - 10 - \frac{cpax}{1000}$$
 mca Ecuación 5.2

Donde: cpax=115 mm

Presión de descarga:

$$pdx = 0.4 * pdx\% + \frac{cpdx}{1000}$$
 mca Ecuación 5.3

Donde: cpdx=165 mm

Altura:

$$H_x = -pax + pdx$$
 mca Ecuación 5.4

Altura corregida:

$$H = H_{\chi} * \left(\frac{n}{n_{\chi}}\right)^{2}$$
 mca Ecuación 5.5

Potencia eléctrica:

$$N_{Elec} = 0.007355 * F_x * n_x ~kW$$

Ecuación 5.6

Potencia eléctrica corregida

Ne=
$$N_{ex} * \left(\frac{n}{n_x}\right)^3$$
 kW

Ecuación 5.7

Potencia hidráulica:

$$N_h = \gamma * Q * H kW$$

Ecuación 5.8

Donde: γ: peso específico del agua N/m3

Rendimiento global:

$$\eta_{gl} = \frac{N_h}{N_{Elec}} * 100 \%$$

Ecuación 5.9

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{n*D_2*\pi}{60} \text{ m/s}$$

Ecuación 5.10

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600*\pi*D_2B_2}$$
 m/s

Ecuación 5.11

Phi:

$$\phi = \frac{cm_2}{U_2}$$

Ecuación 5.12

Psi:

$$\psi = \frac{2*g*H}{U_2^2}$$

Ecuación 5.13

4.1. DATOS CALCULADOS

Los datos se calcularon en base a las ecuaciones mostradas en el apartado anterior.

Tabla 4

							ALCULADOS						
	3070 RPM												
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm2	Φ	Ψ
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
0,0312	0,03114927	-1,165	2,765	3,93	3,9172299	3,48296025	3,47164276	1,19578468	34,4443471%	26,522896	2,50381819	0,094402142	0,10925371
0,03	0,02994148	-0,915	5,605	6,52	6,49458918	3,80082864	3,78601542	1,90568475	50,3348386%	26,522896	2,40673482	0,090741781	0,18113768
0,0285	0,02844441	-0,635	7,925	8,56	8,52663855	4,04969242	4,03390929	2,37684485	58,9216236%	26,522896	2,28639807	0,086204692	0,23781266
0,0272	0,02714694	-0,415	9,965	10,38	10,3395453	4,1854363	4,16912412	2,75073318	65,9786828%	26,522896	2,18210623	0,082272548	0,28837563
0,0255	0,02544199	-0,175	11,805	11,98	11,9255544	4,27732232	4,25788312	2,97341626	69,8332052%	26,522896	2,04505975	0,077105447	0,3326103
0,023	0,02294022	0,055	13,925	13,87	13,7979949	4,32398979	4,30154212	3,10198471	72,1133171%	26,522896	1,84396442	0,069523495	0,3848337
0,0215	0,02144412	0,405	16,685	16,28	16,1954836	4,34662848	4,32406328	3,40351929	78,7111350%	26,522896	1,72370587	0,064989354	0,45170099
0,0185	0,01845192	0,645	18,645	18	17,9065543	4,27871241	4,25649979	3,23802046	76,0723745%	26,522896	1,48318877	0,055921072	0,4994237
0,016	0,01595841	0,885	19,845	18,96	18,8615706	4,14288027	4,12137282	2,94980747	71,5734199%	26,522896	1,28275786	0,04836417	0,52605963
0,0125	0,01247156	1,135	21,925	20,79	20,6955155	3,82469562	3,80731348	2,52943321	66,4361687%	26,522896	1,00248027	0,037796788	0,57720936
0,008	0,00797921	1,315	22,925	21,61	21,4978133	3,50899695	3,49078025	1,68104798	48,1567976%	26,522896	0,64137893	0,024182085	0,59958589
0	0	1,935	25,005	23,07	22,9502338	2,55817197	2,54489141	0	0,0000000%	26,522896	0	0	0,6400947

Tabla 5

	VALORES CALCULADOS 2900RPM												
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm2	Ф	Ψ
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
0,033	0,0329659	-0,965	2,645	3,61	3,60254261	2,92516441	2,91610506	1,16385829	39,911398%	25,0542014	2,64984117	0,105764344	0,11260223
0,0285	0,02847055	-0,725	5,245	5,97	5,95766742	3,13868006	3,12895944	1,66225693	53,124911%	25,0542014	2,28849919	0,091341933	0,18621477
0,0272	0,02717189	-0,485	6,725	7,21	7,19510587	3,30949258	3,29924295	1,91594541	58,07227%	25,0542014	2,18411151	0,087175459	0,22489255
0,0255	0,02547365	-0,245	8,725	8,97	8,95147014	3,45895353	3,44824102	2,23466067	64,805814%	25,0542014	2,04760454	0,081726993	0,27979003
0,0235	0,02347571	-0,065	10,605	10,67	10,6479583	3,52300823	3,51209733	2,44969064	69,750078%	25,0542014	1,88700811	0,075317033	0,33281602
0,0215	0,02148518	0,225	12,365	12,14	12,1232725	3,58582728	3,57841855	2,55261309	71,333553%	25,0542014	1,72700658	0,068930817	0,37892891
0,0192	0,01917355	0,445	14,365	13,92	13,8816793	3,60965748	3,59476208	2,60837901	72,560547%	25,0542014	1,54119487	0,061514428	0,43389024
0,0162	0,01618884	0,695	16,245	15,55	15,5285739	3,58582728	3,57841855	2,46361734	68,846540%	25,0542014	1,30127937	0,051938569	0,48536611
0,0134	0,01338615	0,885	17,885	17	16,9648821	3,4162504	3,40567014	2,22552605	65,347669%	25,0542014	1,07599611	0,042946734	0,53025982
0,01	0,00998967	1,115	19,405	18,29	18,2522173	3,18138319	3,17153032	1,78686881	56,34090%	25,0542014	0,80298217	0,032049801	0,57049718
0	0	1,345	20,645	19,3	19,2468686	2,92617204	2,91409707	0	0%	25,0542014	0	0	0,60158632

Tabla 6

	VALORES CALCULADOS 2700RPM												
0			ander.	11				NIL		112	2		
Qx	Q	pax	pdx	Hx	н	Nex	Ne	Nh	ηgl	U2	cm2	Φ	Ψ
m3/s	m3/s	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
0,0285	0,0284789	-0,685	2,485	3,17	3,16530892	2,30529236	2,30017707	0,8834164	38,406452%	23,3263255	2,28917092	0,098136799	0,11413595
0,0272	0,02716981	-0,435	4,365	4,8	4,78935108	2,46519006	2,45699099	1,2752325	51,902205%	23,3263255	2,18394433	0,093625734	0,17269629
0,0255	0,0254717	-0,265	5,965	6,23	6,2161786	2,58447345	2,57587765	1,55169892	60,239621%	23,3263255	2,04744781	0,087774125	0,2241454
0,024	0,02397336	-0,115	7,405	7,52	7,5033167	2,66399571	2,65513542	1,7628214	66,392900%	23,3263255	1,9270097	0,082610941	0,27055753
0,022	0,02198372	0,125	9,205	9,08	9,06656308	2,74250298	2,73641755	1,95330411	71,381800%	23,3263255	1,76707931	0,075754722	0,32692568
0,02	0,0199778	0,365	10,925	10,56	10,5365724	2,7832791	2,77402208	2,0628761	74,364084%	23,3263255	1,60584142	0,068842451	0,37993185
0,018	0,01798002	0,595	13,005	12,41	12,3824681	2,7832791	2,77402208	2,18184311	78,652694%	23,3263255	1,44525728	0,061958206	0,44649187
0,016	0,01598816	0,795	14,605	13,81	13,7895635	2,74250298	2,73641755	2,1606031	78,9573618%	23,3263255	1,28514859	0,055094344	0,49722947
0,014	0,01398964	1,015	16,125	15,11	15,0876397	2,5835173	2,57778465	2,06849195	80,243008%	23,3263255	1,12450501	0,048207551	0,54403601
0,011	0,01098779	1,245	17,565	16,32	16,2837937	2,34590667	2,33810433	1,75344469	75%	23,3263255	0,88321278	0,037863348	0,5871674
0	0	1,375	18,285	16,91	16,8724848	2,08745933	2,08051656	0	0	23,3263255	0	0	0,60839465

4.2. GRÁFICOS

4.3. GRÁFICO CAUDAL V/S RENDIMIENTO

4.4. GRÁFICO CAUDAL V/S POTENCIA

4.4.1. PREGUNTAS

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones óptimas de operación de esta bomba cuando se logra el mayor rendimiento global, que en el caso de este ensayo es cuando el rendimiento global es de aproximadamente 80,24 % con una velocidad de 2700 [rpm], caudal de 0,01398 [m³/s].

¿Las curvas tiene la forma esperada?

Si, las curvas poseen la forma esperada para el ensayo

¿Cuál es la potencia máxima consumida?

La potencia máxima se da en el punto mas alto de la curva, esto se da cuando se ensaya la bomba a las 3700 rpm con una potencia máxima de aproximadamente 4,34 kW

¿Qué tipo de curvas son?

Tanto la curva de caudal v/s potencia como de caudal v/s rendimiento son curvas del tipo sin sobre carga

4.5. GRÁFICO DE PHI V/S PSI

4.5.1. PREGUNTAS

¿La nube de puntos que conforman esta curva son muy dispersos?

Del gráfico podemos observar que los puntos están bastante compactos, lo que quiere decir que no son muy dispersos. Esto puede deberse a que la dimensiones del rodete fueron constante para todos los ensayos.

Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo.

Debido a la forma descendente que tiene la curva H/Q, podemos decir que es una bomba centrífuga de media velocidad; ya que este tipo de curvas es característica en ese tipo de bombas

Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta 3.4.3.2.

$$Nsq = \frac{n * \sqrt{Q}}{H^{\frac{3}{4}}}$$

Donde:

-n=2700 [rpm]

-Q=174,87 [gpm]

-H= 36,224 [ft]

Entonces el valor de Nsq es igual= 985,655

Acercándose mucho al valor de la eficiencia calculada, por los que las características constructivas y operacionales si concuerdan con la bomba centrifuga de velocidad media específica.

CONCLUSIÓN

De lo visto en el informe se puede concluir que os datos calculados se encontraban en el rango esperado, mientras que las curvas tenían la forma características para este tipo de bombas centrifuga de lo que se puede desprender que la bomba en líneas generales trabaja de manera eficiente y por los datos se puede inferir que no hubo cavitación.

La bomba alcanza un punto óptimo de funcionamiento cuando trabaja a 2700 rpm, con siguiendo una eficiencia de aproximadamente 80% y una altura de 15,08 mca.