

EXPRESS MAIL LABEL NO.

EL 701 019 784 US

ALIGNMENT OF SEMICONDUCTOR WAFERS AND OTHER ARTICLES

Alexander J. Berger

5

Frank E. Kretz

BACKGROUND OF THE INVENTION

The present invention relates to alignment of semiconductor wafers and other articles.

Fabrication of integrated circuits from a semiconductor wafer involves many processing steps, and the wafer may have to be aligned as it goes from one step to the next. For example, before a wafer is diced, it has to be attached to an adhesive film stretched over a frame, which requires accurate alignment of the wafer to the frame. Alignment is performed using a piece of equipment called aligner. A robot picks up the wafer and places it on the aligner. The aligner adjusts the position of the wafer in the horizontal plane to cause the center of the wafer to occupy a predetermined position. Then the aligner rotates the wafer to place the wafer into some predetermined rotational orientation, i.e. with some feature (a notch or a flat) on the wafer's circumference in a predetermined position. Then the robot picks up the wafer again and carries the wafer to a target station for the next processing step.

20 SUMMARY

Some embodiments of the present invention eliminate the need to use an aligner. The wafer is aligned while held by the robot. The wafer processing becomes faster and more economical, and throughput is increased. Also, the wafer damage is reduced due to elimination of the wafer transfer to and from the aligner. In addition, the wafer position is more precise at the target station because the positioning errors involved in the robot picking up the wafer from the aligner are eliminated.

The invention is not limited by the embodiments and advantages described above, but is defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram illustrating a wafer processing system according to one embodiment of the present invention.

5 Figs. 2, 3 are perspective views of a robot's end effector according to one embodiment of the present invention.

Fig. 4 is a perspective and cross sectional view of a portion of the end effector of Figs. 2, 3.

Fig. 5 is a cross sectional view of the end effector of Figs. 2, 3.

10 Fig. 6 is a perspective view illustrating an alignment operation according to one embodiment of the present invention.

Figs. 7-9 are top views illustrating an alignment operation according to one embodiment of the present invention.

Fig. 10 is a perspective view illustrating an alignment operation according to one embodiment of the present invention.

15 DESCRIPTION OF PREFERRED EMBODIMENTS

In Fig. 1, a semiconductor wafer 120 is being transported from a station 121 to a station 122 by a robot 124. The wafer is being held by the robot's end effector 130 attached to the robot's arm 134. Arm 134 is attached to a robot body 124B which itself may include a number of moving arms. In one example, end effector 130 is attached to a 20 robot of type GBY7S available from Genmark Automation of Sunnyvale, California.

The robot is controlled by its computer 140, which in turn may receive commands from, and send information to, a programmable logic controller (PLC) 150. Computer 140 and PLC 150 are controlled by software of the present invention. The invention is not limited to any particular robot or robot control mechanism.

25 Stations 121, 122 can be any stations involved in wafer storage or processing. Examples include wafer storage cassettes, horizontal wafer shipment containers ("pods"), etch and deposition equipment, film frame machines that attach adhesive film frames to wafers, dicing equipment. Before the wafer is placed on station 122, it is aligned at station 170. Alignment involves adjusting the XY position and the rotational orientation 30 of the wafer relative to end effector 130. See e.g. the following U.S. patents: 6,164,894; 5,456,179; 5,452,078. The wafer is aligned in end effector 130. Alignment station 170

does not need a wafer holder or a platform to hold the wafer. The end effector does not need to release the wafer to perform the alignment.

Fig. 2 is a perspective view showing a top and a side of one embodiment of end effector 130. Fig. 3 shows the same side and the bottom. Fig. 4 shows a vertical cross section of a portion of the end effector along a line IV-IV in Fig. 2. Fig. 5 shows how a vertical cross-section might look along a line V-V in Fig. 2 (Fig. 5 is not an accurate representation of some features as noted below). Figs. 6-10 illustrate a wafer alignment operation at station 170.

In the embodiment of Figs. 2-5, the end effector is a non-contact type. It holds the wafer with gas vortices emitted from openings 210 (Figs. 3, 5) in its flat bottom surface. Only a few of the openings are labeled in the drawings. Gas vortex end effectors are described in U.S. patent no. 6,095,582 issued August 1, 2000 to Siniaguine et al. and incorporated herein by reference. See also U.S. patent application no. 09/632,236 filed August 4, 2000 by S. Casarotti et al.; U.S. patent application no. 15 09/633,086 filed August 4, 2000 by S. Kao; U.S. patent application no. 09/877,366 entitled "Article Holders that Use Gas Vortices to Hold an Article in a Desired Position", filed June 8, 2001 by S. Kao. The end effector of Figs. 2-5 has a body 220 made of a top plate 220T and a bottom plate 220B. A number of vortex chucks 230 (Fig. 5) are positioned in a hollow region between the two plates. Each opening 210 is an opening of one such chuck. (Fig. 5 does not accurately represent the chucks' position.) A tangential passage 232 in the chuck's cylindrical sidewall enters the chuck tangentially to the sidewall. Gas supplied under pressure through a passage in arm 134 and an opening 240 enters the chucks through passages 232. The chucks' sidewalls shape the gas flow in each chuck into a vortex. The vortices exit through openings 210 and create an attraction force that draws the wafer towards the body 220. At the same time, the gas creates a cushion that prevents the wafer from touching the body 220.

Top plate 220T has a central portion 250 (Fig. 4) and a peripheral portion 260. Peripheral portion 260 extends sidewise from the bottom of central portion 250 and forms a horizontal shelf surrounding the central portion 250. A ring 270 rotates around the end effector's body 220. Ring 270 has a horizontal portion 270H which slides over the shelf 260. Teflon strip or strips 280 (Fig. 4) are attached to the top surface of shelf 260 and/or the bottom surface of the ring's horizontal portion 270H to reduce friction between the

ring 270 and the shelf 260. Vertical portion 270V of ring 270 surrounds the end effector body 220.

Spring steel plates 310 are attached to the top surface of central portion 250 with bolts 320 (Fig. 2). Bolts 320 are inserted into holes 322 (Fig. 4) each of which passes through central portion 250 and terminates inside bottom plate 220B. Each plate 310 physically contacts the top surface of the ring's horizontal portion 270H. The friction between plates 310 and the ring's horizontal portion 270H prevents the ring from rotating uncontrollably around body 220 but allows the ring to be rotated at alignment station 170.

Ring 270 has outward protrusions 330. A pad 340 (Figs. 3,5) is attached to the bottom surface of each outward protrusion. Wafer 120 is pressed against these pads 340 when drawn to the end effector by the gas vortices or other forces (depending on the type of the end effector). The friction between the pads and the wafer prevents the wafer from unintentionally sliding horizontally relative to the end effector. This friction also causes the wafer to rotate when the ring 270 is rotationally driven at alignment station 170.

At station 170, the wafer is moved in the end effector to cause the center of the wafer to coincide with the center of the end effector (we will refer to this stage as "XY positioning"). Then the wafer is rotated in the end effector to align the wafer rotationally. The XY positioning involves techniques similar to those described in U.S. patent application attorney docket no. M-11881 US, entitled "Article Holders and Article Positioning Methods", filed by A.J. Berger and F.E. Kretz on the same day as the present application and incorporated herein by reference. The XY positioning involves the robot pushing the wafer against an object or objects. The wafer slides on pads 340 without the end effector losing hold of the wafer. One embodiment is illustrated in Figs. 6-9. Fig. 6 is a perspective view, and Figs. 7-9 are top views. Here the objects against which the wafer is pushed are two sets of vertical pins. One set of pins consists of pins 510.1, 510.2, 510.3, 510.4 ("pins 510"). The other set consists of pins 520.1, 520.2, 520.3, 520.4 ("pins 520"). Pins 510, 520 are mounted on a support plate 530. Pins 510 are positioned along a circle 540 (Fig. 7) of the same radius as wafer 120. Pins 520 are positioned along a circle 550 of the same radius as wafer 120. Pins 510.1, 510.2 are symmetric to pins 510.4, 510.3 with respect to a horizontal axis 560. Pins 520.1, 520.2 are symmetric to pins 520.4, 520.3 with respect to the same axis 560.

If wafers may have notches or flats, the pins are positioned so that any two of the pins are farther apart than the maximum lateral dimension of the notch or flat. (This is

just an exemplary implementation which does not limit the invention. In other embodiments, the pins may be positioned closer to each other than the length of a flat for example.)

As shown in Figs. 6, 7, the end effector brings the wafer 120 to station 170 with
5 the wafer above the pins 510, 520, and the end effector lowers the wafer so that the wafer
is positioned between the pins, without touching the pins. The end effector's center CE is
positioned at a predetermined point on axis 560. The wafer's center CW may be shifted
relative to the end effector's center CE due to a positioning error. The maximum error is
determined by a particular application, and may be a function of maximum positioning
10 errors at source station 121. We will assume, for the sake of illustration, that the
maximum positioning error Emax of the wafer in the end effector at the stage of Fig. 6,
i.e. the maximum distance between the centers CE and CW, is 1.25 mm. The wafer is
positioned so that it does not touch the pins 510, 520 when the error is not more than
1.25 mm.

15 As shown in Fig. 8, the end effector moves to the left along axis 560 to bring the
wafer in contact with pins 510. The pins push the wafer into the circle 540. The wafer
slides on the end effector pads 310 and changes its position relative to the end effector
until the wafer position coincides with circle 540. In this position, the wafer contacts all
20 of pins 510, or it may contact three of pins 510 with the forth pin being against the
wafer's notch or flat. To insure that the wafer becomes positioned in circle 540, the
center CE of the end effector is moved to the left of the center of circle 540 by the
distance Emax = 1.25 mm or more, for example, 25 to 51 mm. (In Fig. 7, the center of
circle 540 coincides with the center CW of wafer 120.)

As shown in Fig. 9, the end effector now moves to the right along axis 560. The
25 end effector's center CE moves along the axis into the center of circle 550. Wafer 120
comes in contact with at least three of pins 520. Pins 520 steer the wafer into circle 550
as the wafer slides on pads 310. Now the wafer's center CW coincides with the end
effector's center CE.

As shown in Fig. 10, station 170 also includes a motor 610 (e.g. a computer
30 controlled stepper or servo motor) which rotates a wheel 620. After the stage of Fig. 9,
the end effector moves into a position in which an edge of wheel 620 physically contacts
the top surface of the ring's horizontal portion 270H, causing the ring to rotate. A sensor
630 scans the edge of the rotating wafer 120 and provides signals to the computer (not

shown) controlling the motor 610. The signals indicate whether the sensor has detected a notch, a flat, or some other alignment mark on the wafer. Responding to these signals, the computer controls the motor 610 to position the wafer into a desired rotational orientation relative to the end effector. Suitable sensors and motor control algorithms are 5 described, for example, in U.S. patents 6,164,894 (issued December 26, 2000), 5,456,179 (issued August 13, 1996), 5,452,078 (issued September 19, 1995), all incorporated herein by reference.

When the alignment has been completed, the end effector places the wafer on destination station 122 (Fig. 1).

10 The invention is not limited to any particular number of pins 510, 520, or their positioning. The pins do not have to be positioned symmetrically with respect to any axis. Also, article 120 and end effector 130 do not have to be round or symmetric. The pins can be replaced by other objects, vertical or otherwise, as described in the aforementioned U.S. patent application attorney docket no. M-11881. Either pins 510 or 15 pins 520 can be omitted in some embodiments. The invention is not limited to any particular positioning of pins 510, 520, motor 610 or sensor 630 relative to each other. The sensor may be positioned close to the motor, below the motor for example.

In some embodiments, the XY positioning operations of Figs. 6-9 are omitted if the XY positioning errors are within the allowable tolerances.

20 The invention is not limited to any particular alignment mechanism at station 170. For example, motor 610 can be coupled to end effector 130 using some other coupling means than wheel 620. Sensor 630 may be a through-beam type, a retroreflective type, a CCD camera, or some other type, known or to be invented.

In some embodiments, station 170 is part of robot 124 or destination station 122. 25 For example, sensor 630, motor 610, and/or wheel 620 can be attached to the end effector or some other part of the robot.

Spring steel plates 310 allow ring 270 and wafer 120 to move up relative to end effector body 220 if the end effector presses the wafer against some surface at station 122. The surface may be that of a sticky tape, e.g. a dicing tape. See the aforementioned 30 U.S. patent application no. 09/632,236 filed August 4, 2000 by S. Casarotti et al., entitled “Detection and Handling of Semiconductor Wafers and Wafer-Like Objects”, incorporated herein by reference. Spring steel plates 310 allow the ring and the wafer to yield when the wafer is pressed against the surface, so wafer damage is avoided. The

invention is not limited to any particular number or position of plates 310. Plates 310 can be made of a material other than spring steel, or can be omitted.

The invention is not limited to any particular structures or materials. For example, strips 280 (Fig. 4) can be made of something other than Teflon, or may be omitted or replaced with other friction reducing devices (e.g. bearings). Outward protrusions 330 on ring 270 can be omitted. Pads 340 can be positioned elsewhere on the ring's bottom surface. The invention is not limited to the presence of shelf 260 in the end effector's body, or to any particular shape of the end effector, or any particular coupling between the end effector body 220 and ring 270. Ring 270 may be replaced with some other rotational member, for example, a half-ring or a number of rotational arms extending from arm 134. The ring or other member need not surround the body 220. The ring may be positioned under the body. In some embodiments, ring 270 is omitted. The entire end effector 130 is rotatable on arm 134 around a vertical axis passing through the end effector and/or the center of the wafer. The end effector may be a non-vortex type. For example, the end effector may hold the wafer with a non-vortex gas flow using the Bernoulli effect. The end effector may be of a vacuum type. If the end effector has a rotatable ring 270, gas inlets for creating the vacuum may be located on the bottom of ring 270. The end effector may also hold the wafer with electrostatic or magnetic forces, with a mechanical clamp, or by other means, known or to be invented. The wafer may be positioned above the end effector. Non-horizontal positioning of the wafer and the end effector is within the scope of the invention.

The invention is not limited to semiconductor wafers. Article 120 may be include a stack of wafers bonded together to provide vertical integrated circuits. See U.S. patent no. 6,184,060 issued February 6, 2001 to O. Siniaguine and incorporated herein by reference. The article may include a combination of semiconductor and non-semiconductor wafers. See U.S. patent application no. 09/791,977 filed on February 22, 2001 by O. Siniaguine and incorporated herein by reference. In other embodiments, the article is a flat-panel display or some other type extending generally along a plane.

The invention is not limited to end effector article holders. Holder 130 may be a hand-held article holder. A human operator may align the wafer in the end effector by pushing and rotating the wafer with the operator's hand. The operator's hand may push the wafer or the ring 270 or both. Holder 130 may also be part of non-electronically-

controlled equipment. Other embodiments and variations are within the scope of the invention, as defined by the appended claims.

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000