MOO i EMO

Inteligentne Systemy Wspomagania Decyzji

Optymalizacja wielokryterialna

- Problem optymalizacji jest opisany przez więcej niż jedno kryterium
- Optymalizowane kryteria są często w pewnym stopniu sprzeczne.

```
min lub \max f_1(x)
```

min lub $\max f_2(x)$

. . .

min lub $\max f_m(x)$

przy ograniczeniach $x \in \mathcal{X}$

 Celem optymalizacji wielokryterialnej jest konstrukcja zbioru rozwiązań możliwie najlepiej przybliżających front Pareto.

Metoda sumy ważonej

$$\min_{x} \sum_{i=1}^{m} w_i \cdot f_i(x)$$

przy ograniczeniach $x \in \mathcal{X}$

$$\sum_{i=1}^{m} w_i = 1$$
$$w_i \ge 0$$

Uwaga:

Powyższe sformułowanie jest poprawne wyłącznie, gdy wszystkie funkcje celu są minimalizowane

Metoda sumy ważonej


```
w1 = (\frac{1}{3}, \frac{2}{3})
w2 = (\frac{3}{5}, \frac{2}{5})
w3 = (\frac{3}{4}, \frac{1}{4})
```

Metoda sumy ważonej

 $w1=(\frac{1}{3}, \frac{2}{3}) \rightarrow a$ $w2=(\frac{3}{5}, \frac{2}{5}) \rightarrow f$ $w3=(\frac{3}{4}, \frac{1}{4}) \rightarrow g$

Metoda ε- ograniczeń

$$\min_{x} f_i(x)$$

przy ograniczeniach $x \in \mathcal{X}$

$$f_i(x) \leq \epsilon_i \text{ dla } j = 1, \dots, m \text{ i } i \neq j$$

Uwaga:

Powyższe sformułowanie jest poprawne wyłącznie, gdy wszystkie funkcje celu są minimalizowane

Metoda ε- ograniczeń

- a) min f1, ε_2 =11
- b) min f1, ϵ_{2}^{-} =7,5
- c) min f2, $\varepsilon_1^-=7$

Metoda ε- ograniczeń

a) min f1, $\epsilon_2 = 11 -> g$ b) min f1, $\epsilon_2 = 7.5 -> d$ c) min f2, $\epsilon_1 = 7 -> d$

Kroki algorytmu:

- 1. Wybór *n* osobników do populacji początkowej
- 2. Generowania pokolenia potomnego:
 - a. Wybór rodziców przy pomocy selekcji turniejowej
 - b. Tworzenie *n* osobników do pokolenia potomnego z wykorzystaniem krzyżowania
 - c. Mutacja osobników z pokolenia potomnego
- 3. Wybór nowej populacji
 - a. Połącz pokolenie rodziców z pokoleniem potomnym
 - b. Z tak utworzonego zbioru wybierz *n* najlepszych osobników do kolejnego pokolenia

Kroki algorytmu:

- 1. Wybór n osobników do populacji początkowej
- 2. Generowania pokolenia potomnego:
 - a. Wybór rodziców przy pomocy selekcji turniejowej
 - b. Tworzenie n osobników do pokolenia potomnego z wykorzystaniem krzyżowania
 - c. Mutacja osobników z pokolenia potomnego
- 3. Wybór nowej populacji
 - a. Połącz pokolenie rodziców z pokoleniem potomnym
 - b. Z tak utworzonego zbioru wybierz n najlepszych osobników do kolejnego pokolenia

Algorytm przydziału do frontów niezdominowania:

```
i \leftarrow 1
P_i \leftarrow \text{zbi\'or} wszystkich rozwiazań
while P_i \neq \emptyset do
F_i \leftarrow \text{zbi\'or} wariantów niezdominowanych w P_i
P_{i+1} \leftarrow P_i/F_i
i \leftarrow i+1
end while
```


Wyznacz fronty niezdominowania

Wyznacz fronty niezdominowania F_1 ={a, d, f, g}, F_2 ={b, c, i, j}, F_3 ={e, h}

Obliczenie wartości odległości zatłoczenia (crowding distance)

$$cd(s) = \sum_{i=1}^{m} (s_i^+ - s_i^-)$$

 \boldsymbol{s}_{i}^{+} - rozwiazanie o wyższej wartości na i-tymkryterium od \boldsymbol{s} bezpośrednio z nim sasiadujące

 \boldsymbol{s}_i^- - rozwiazanie o niższej wartości na i-tymkryterium od \boldsymbol{s} bezpośrednio z nim sasiadujące

Uwaga:

Przy obliczaniu odległości zatłoczenia uwzględniamy tylko warianty w ramach jednego frontu niezdominowania

Oblicz odległość zatłoczenia dla wariantu d

Oblicz odległość zatłoczenia dla wariantu d $cd_1(d) = 4$, $cd_2(d) = 4$, cd(d)=8

Porównywanie osobników między sobą:

$$x_i > x_j$$

Wtedy i tylko wtedy, gdy:

- x_i jest na niższym froncie niezdominowania niż x_i
- x_i jest na tym samym froncie niezdominowania, ale ma wyższą odległość zatłoczenia