Homework 7

Vincent La December 1, 2016

Distribution of S_{100}

Expectation

We know that S_{100} is the sum of 100 i.i.d. $\{-1,1\}$ -valued Bernolli random variables, i.e. $S_{100} = \sum_{i=1}^{100} \xi_i$ Thus, $\mathbb{E}(\xi_1 + \xi_2 + ... + \xi_1 00) = \mathbb{E}(\xi_1) + \mathbb{E}(\xi_2) + ... + \mathbb{E}(\xi_1 00) = 100 \cdot \mathbb{E}(\xi_1)$ By conditioning, $100 \cdot \mathbb{E}(\xi_1) = 100 \cdot ((1/2 \cdot 1) + (1/2 \cdot -1)) = 100 \cdot 0 = 0$

Variance

Since the variance of one Bernolli random variable is $p(1-p) = 0.5^2$, the variance of 100 of them should be $100 * 0.5^2 = 25$.

Distribution

Since we're taking 10000 samples, by the Central Limit Theorem S_{100} should be Normally distributed according to the mean and variance described above.

Graph

Our calculations can be confirmed in the graph below.

Distribution of the Minimum Hitting Time

Since the expectation of the minimum hitting time for some $x \in (Z)$ is infinite, I've decided to stop the random walk at 1000 steps.

Graph of a Poisson Process with Rate 2

Expected Value of N(10)

Theoreticaly, $\mathbb{E}(N(10)) = 10 \cdot \lambda = 10 \cdot 2 = 20$. My Python calculation is very close to this amount.