Image Formation

Computer Vision (CS0029)

Type of Images

- Binary image
 - Simplest image type
 - Digital image with all pixel values 0 or 1
 - Usually, 0 is black and 1 is white in display
 - Useful to studying object shape

	0	1	2	3
0	1	1	0	0
1	1	1	0	0
2	1	1	1	1

Type of Images

- Grayscale image
 - Monochrome digital image with one intensity value per pixel
 - Grayscale value for 8-bit are 0-255
 - 0: darkest, 255-brightest

	0	1	2	3	
0	133	128	0	0	
1	112	104	255	234	
2	90	32	12	9	

Type of Images

- RGB image
 - Color digital image with three intensity values/bytes per piexel (24bit color)
 - Red, Green, Blue
 - Some image formats use 8-bit colormap

В		()	11	1	3	3	24	40	
	J	12	28	21	2	4	3	1	2	
R	\vdash		12	28	()	()	3	5
			10)4	25	55	23	34		Н
	9	0	32		12		9			

Digital Image formats

- Too many image format in use
 - PPM, PNG, JPG, BMP,
- Two components in a digital image file
- Image file header
 - Info on image dimension, type, date of creation etc.
- Pixel data
 - Stream of data in raster order (row-by-row)
 - Bytes, ASCII(decimal)
- May have compressed image

Plain PPM Format

- P3: magic number to confirm the image format
- 4 4: 4x4 image
- 255: the maximum value of a channel is 255
- The rest of the data: pixel values

Digital Image Format

- Data Compression
 - Many images have local pixel correlations
 - Compression may reduce image size considerably
 - The compression is lossless if it can recover image exactly
 - RLE 0000011110111110000000001111 5(0) 4(1) 1(0) 5(1) 9(0) 4(1)
 - The compression is lossy if it cannot reconstruct exactly
 - JPEG

RGB to Grayscale

- A monochrome luminance signal (Y) can be created by combining RGB signals
- NTSC broadcast TV quantization formula:
 - Y= 0.299R + 0.587G + 0.114B

Python with OpenCV

```
import cv2
img = cv2.imread('ntnu.png')
#get the pixel RGB at 50,100
pixel = img[50,100]
print(pixel)
#set pixels in a region to red
img[10:20, 50:90]= [0, 0, 255]
cv2.imshow("Original Image", img)
if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
```


img[50,100]: the first number is for vertical axis and the second number is for horizontal axis

Note: the order of RGB in Python-Opencv is [B, G, R]