Sangaku Circle Geometry

Background:

- 1630-1850, Japan was isolated. Culture flourished, including Mathematics.
- Geometrical problems were painted on tablets, which were hung in temples
- For all social classes, not limited to mathematicians

Preliminaries:

- (1) The radius from the centre of the circle to the point of tangency is perpendicular to the tangent.
- (2) The line connecting the centres of two tangent circles passes through the point of tangency.
- (3) The Pythagorean Theorem

Result 1:

 \odot A, \odot B, and \odot C have radii r_1 , r_2 , and r_3 respectively. They are tangent to each other and are all tangent to line PQ. Then r_1 , r_2 , and r_3 have the following relationship:

$$\frac{1}{\sqrt{r_3}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$$

Proof:

Construct AH_1 such that $AH_1 \perp BQ$ at H1.

Since AB connects the centres of two tangent circles, AB passes through the point of tangency. AB $= r_1 + r_2$

Since \bigcirc A and \bigcirc B are tangent to PQ at P and Q respectively, then AP \perp PQ, and BQ \perp PQ. From AH1 \perp BQ, AP \perp PQ, and BQ \perp PQ, we have that PQ = AH₁, and QH₁ = AP. Thus, in \triangle ABH₁,

PQ = AH1 =
$$\sqrt{AB^2 - BH_1^2}$$
 = $\sqrt{AB^2 - (BQ - QH_1)^2}$ = $\sqrt{AB^2 - (BQ - AP)^2}$
= $\sqrt{(r_1 + r_2)^2 - (r_1 - r_2)^2}$
= $\sqrt{r_1 r_2}$

Similarly, we construct right triangles $\triangle ACH_2$ and $\triangle BCH_3$. We get

$$\text{PR} = \sqrt{r_1 r_3}$$
 , and $\text{QR} = \sqrt{r_2 r_3}$

Since PQ = QR + PQ,

$$\sqrt{r_1 r_2} = \sqrt{r_2 r_3} + \sqrt{r_1 r_3}$$

$$\frac{1}{\sqrt{r_3}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}} \text{ as required.}$$

Result 2:

In the diagram, $\odot A$, $\odot B$, $\odot C$, and $\odot D$ are all tangent to the sides of the rectangle PQRS. $\odot A$, $\odot B$, $\odot C$, and $\odot D$ are tangent to each other, and are all tangent to $\odot E$. If the length of the rectangle PQRS is a and the width is b, then:

$$a = \sqrt{5}b$$

Proof:

Let r_1 , r_2 , and r_3 be the radii of $\odot A$, $\odot C$, and $\odot E$ respectively.

 \odot A, \odot C, and \odot B is tangent to PQ at A₁, C₁, and B₁ respectively.

 $\odot A$, $\odot D$, and $\odot B$ is tangent to RS at A_2 , D_1 , and B_2 respectively.

Then, $AA_1 \perp PQ$, and $AA_2 \perp RS$.

Since
$$\angle P = \angle S = \angle PA_1A = \angle SA_2A_1 = 90^\circ$$
,

points A₁, A, and A₂ are collinear,

$$PA_1A_2S$$
 is a rectangle, so $A_1A_2 = PS = a = 2r_1$. $\odot A$ has radius $r_1 = \frac{1}{2}a$.

Similarly, $B_1B_2=QR=a=r_1$. $\odot B$ also has radius $r_1=\frac{1}{2}a$.

Consider $\odot A$, $\odot C$ and their common tangent PQ.

By the work in Result 1, $A_1C_1 = 2\sqrt{r_1r_2}$.

Smilarly,

$$B_1C_1 = 2\sqrt{r_1r_2}$$

$$A_2D_1 = 2\sqrt{r_1 \cdot DD_1}$$

$$B_2 D_1 = 2\sqrt{r_1 \cdot DD_1}$$

From PQ = RS, we have that

$$PA_1 + A_1C_1 + B_1C_1 + QB_1 = SA_2 + A_2D_1 + B_2D_1 + RB_2$$

$$r_1 + 2\sqrt{r_1r_2} + 2\sqrt{r_1r_2} + r_1 = r_1 + 2\sqrt{r_1 \cdot DD_1} + 2\sqrt{r_1 \cdot DD_1} + r_1$$

$$DD_1 = r_2$$

Hence, $\odot C$ and $\odot D$ have the same radius r_2 .

Since $\odot A$ and $\odot B$ are both tangent to $\odot C$ and $\odot D$,

$$AC = BC = AD = BD = r_1 + r_2$$

Since $\odot E$ is tangent to $\odot A$, $\odot B$, $\odot C$, and $\odot D$,

$$CE = DE = r_2 + r_3$$

$$AE = BE = r_1 + r_3$$

Thus, \triangle AEC \cong \triangle BEC \cong \triangle AED \cong \triangle BED

$$\angle AEC = \angle BEC = \angle AED = \angle BED$$

Since $\angle AEC + \angle BEC + \angle AED + \angle BED = 360^{\circ}$, we have that $\angle AEC = 90^{\circ}$

We know that AA_1C_1E is also a rectangle, since the four interior angles are all right angles.

Thus,
$$A_1C_1 = AE$$

 $2\sqrt{r_1r_2} = r_1 + r_3$
 $r_3 = 2\sqrt{r_1r_2} - r_1$
Also, $AA_1 = C_1E$
 $r_2 = 2r_1 + r_3$
 $r_3 = r_2 - 2r_1$

We now have two ways to write r_3 :

$$\left\{ \begin{array}{l} r_3 = 2\sqrt{r_1 r_2} - r_1 \\ r_3 = r_1 - 2r_2 \end{array} \right.$$

Solving the equations, we get that $r_2 = \frac{3-\sqrt{5}}{2}r_1$, $(r_2 < r_1)$.

Therefore,
$$\frac{a}{b} = \frac{PQ}{PS} = \frac{r_1 + 2\sqrt{r_1 r_2} + 2\sqrt{r_1 r_2} + r_1}{2r_1} = \frac{2\sqrt{r_1 r_2} + r_1}{r_1} = \frac{2\cdot\sqrt{\frac{3-\sqrt{5}}{2}}r_1^2 + r_1}{r_1} = \frac{(\sqrt{5}-1)r_1 + r_1}{r_1} = \sqrt{5}$$

$$a = \sqrt{5}b \text{ as required.}$$

Result 3:

In the diagram, the biggest circle \odot A has radius r. \odot A is internally tangent to an infinite number of circles \odot B, \odot O₁, \odot O₂, \odot O₃, \odot O₄ and so on, which are also tangent to each other as shown in the diagram. The tiny in-laid circles \odot T₁, \odot T₂, \odot T₃, and so on, have radii t₁, t₂, t₃, and so on respectively. Each of them is tangent to exactly three circles. The following equation holds:

$$n = \frac{1}{2} \left(\sqrt{\frac{r}{t_n} - 14} + 1 \right)$$

Proof:

Set up the complex plane with the real-axis tangent to $\bigcirc A$, and the imaginary-axis passing through points B, A and O_1 , as shown in the diagram.

Map all the circles by the inversion function $f(z) = \frac{1}{z}$.

 \odot A and \odot B are mapped to two parallel lines, a: $w = -\frac{1}{2r}i$, and b: $w = -\frac{1}{r}i$ respectively.

The circles $\odot O_1$, $\odot O_2$, $\odot O_3$, $\odot O_4$, and so on, are mapped to $\odot O_1$ ', $\odot O_2$ ', $\odot O_3$ ', $\odot O_4$ ', and so on, with radii r_1 ', r_2 ', r_3 ', r_4 ', and so on respectively. Notice that $\odot O_n$ ' is tangent to $\odot O_{n-1}$ ' and $\odot O_{n+1}$ ' for all $i \geq 2$.

The circles $\odot T_1$, $\odot T_2$, $\odot T_3$, $\odot T_4$, and so on, are mapped to $\odot T_1$ ', $\odot T_2$ ', $\odot T_3$ ', and so on, with radii t_1 ', t_2 ', t_3 ', t_4 ', and so respectively. Notice that $\odot T_n$ ' is tangent to $\odot O_n$ ', $\odot O_{n+1}$ ', and b, for all $i \ge 1$.

$$\bigcirc$$
 O_n' has radius $r_n = \frac{1}{2} \left(\frac{1}{r} - \frac{1}{2r} \right) = \frac{1}{4r}$, $n \ge 1$.

By Result 1,
$$\frac{1}{\sqrt{t_{n'}}} = \frac{1}{\sqrt{r_n}} + \frac{1}{\sqrt{r_{n+1}}}$$

$$\frac{1}{\sqrt{t_{n'}}} = \frac{1}{\sqrt{\frac{1}{4r}}} + \frac{1}{\sqrt{\frac{1}{4r}}}$$

 \bigcirc T_n' has radius $t_n' = \frac{1}{16r}$, $n \ge 1$.

The centre of $\odot T_n$ ' is at $c_n' = \frac{1}{4r}(1-2n) - \frac{15}{16r}i$, $n \ge 1$.

Hence, the defining equation of $\odot T_n$ ' is $|w - c_n'|^2 = t_n'^2$

$$(w - c_n')\overline{w - c_n'} = t_n'^2$$

$$w\overline{w} - c_n'\overline{w} - \overline{c_n'}w + (|c_n'|^2 - t_n'^2) = 0$$

Let
$$=\frac{1}{z}$$
, so $\overline{w} = \frac{1}{\overline{z}}$.

$$\frac{1}{\sqrt{2}} - \frac{c_{n'}}{\sqrt{2}} - \frac{\overline{c_{n'}}}{\sqrt{2}} + \left(|c_{n'}|^2 - t_{n'}^2 \right) = 0$$

Multiplying by both sides by $z\bar{z}$,

$$1 - c_n'z - \overline{c_n'z} + (|c_n'|^2 - t_n'^2)z\bar{z} = 0$$

Since
$$|c_n'|^2 = \left(\frac{1}{4r}\right)^2 (1 - 2n)^2 + \left(\frac{15}{16r}\right)^2 > \left(\frac{1}{16r}\right)^2 = t_n'^2$$
, then $|c_n'|^2 - t_n'^2 > 0$.

Dividing both sides by $|c_n'|^2 - t_n'^2$,

$$z\bar{z} - \frac{\overline{c_{n'}}}{|c_{n'}|^2 - t_{n'}|^2} \bar{z} - \frac{c_{n'}}{|c_{n'}|^2 - t_{n'}|^2} z + \frac{1}{|c_{n'}|^2 - t_{n'}|^2} = 0$$

Rewriting
$$\frac{1}{|c_n'|^2 - {t_n'}^2}$$
 as $\frac{|c_n'|^2}{\left(|c_n'|^2 - {t_n'}^2\right)^2} - \frac{{t_n'}^2}{\left(|c_n'|^2 - {t_n'}^2\right)^2}$,

$$z\bar{z} - \frac{\overline{c_{n'}}}{|c_{n'}|^2 - {t_{n'}}^2}\bar{z} - \frac{{c_{n'}}}{|c_{n'}|^2 - {t_{n'}}^2}z + \frac{|{c_{n'}}|^2}{\left(|{c_{n'}}|^2 - {t_{n'}}^2\right)^2} - \frac{{t_{n'}}^2}{\left(|{c_{n'}}|^2 - {t_{n'}}^2\right)^2} = 0$$

$$\left|z - \frac{t_n'}{|c_n'|^2 - t_n'^2}\right|^2 = \left(\frac{t_n'}{|c_n'|^2 - t_n'^2}\right)^2$$

Therefore, the radius of
$$\odot T_n$$
 is $\frac{{t_n}'}{|{c_n}'|^2 - {t_n}'^2} = \frac{\frac{1}{16r}}{\left(\frac{1}{4r}\right)^2 (1-2n)^2 + \left(\frac{15}{16r}\right)^2 - \left(\frac{1}{16r}\right)^2}$, $n \ge 1$.

Multiplying top and bottom by $16r^2$,

$$t_n = \frac{r}{(1-2n)^2 + \frac{225}{16} - \frac{1}{16}}$$

$$t_n = \frac{r}{(1-2n)^2 + 14}$$

$$(1-2n)^2 + 14 = \frac{r}{t_n}$$

$$(1-2n)^2 = \frac{r}{t_n} - 14$$

$$1 - 2n = -\sqrt{\frac{r}{t_n} - 14} \text{ (since } n \in \mathbb{N}, \ 1 - 2n < 0)$$

$$n = \frac{1}{2} \left(\sqrt{\frac{r}{t_n} - 14} + 1 \right) \text{ as required.}$$

Reference:

https://www.youtube.com/watch?v=XncBGCTgeTk