[fee stamp]

Patent Application

March 4, 1974

To: Hideo Saitoh, Commissioner, Japanese Patent Office

1. Title of Invention:

A Method for Manufacturing an Indazole Derivative

2. Inventor

Name: Yasuo Fujimura (and 5 others)

Address: 2-2-2 Otaniso, Matsubara, Setagaya-ku, Tokyo

3. Applicant:

Name (designation): (331) Chugai Pharmaceutical Co.

Representative: Kimio Ueno

Address: 5-5-1 Ukima, Kita-ku, Tokyo

4. Agent

Name: Masao Kobayashi, Patent Attorney (6404) [seal] Soyo Bldg. No. 24, Shibanishikubo Sakuragawa-cho, Minato-ku, Tokyo 105 Tel.: (591) 0914

5. List of Attached Documents

(1) Specification	. 1 copy
(2) Drawings—	1 copy
(3) Duplicate of application	1 copy
(4) Power of attorney	1 copy

Specification

Title of the Invention

A Method for Manufacturing an Indazole Derivative

Claims

Method for manufacturing an indazole derivative having the following general formula:

$$\underset{\text{COCH}_2N}{\overset{X}{\swarrow}}\underset{R_2}{\overset{X}{\swarrow}}$$

(wherein X is a hydrogen atom, a halogen atom, or a lower alkyl group and R_1 and R_2 are hydrogen atoms, lower alkyl groups, alkyl groups, or optionally substituted aryl groups), characterized in that a compound having the following general formula:

(19) Japanese Patent Office Official Gazette for Unexamined Patent Applications

(11) Japanese Unexamined Patent Application (Kokai) No. S50-116470

(43) Disclosure Date:

9-11-75

(21) Patent No.:

S49-24148

(22) Filing Date:

3-4-74

Request for Examination: Not yet submitted (Total of 5 pages)

JPO File Nos. 7306 44	
6855 44	
7169 44	
7138 44	
(52) Japan Classification	(51) Int. Cl. ²
16 E36	C07D231/56
16 E432.1	C07D401/06
16E451.1	CO7D413/06
16 F462	C07D403/06//

A61K 31/41
A61K 31/44
A61K 31/495
A61K 31/535
C07D401/06
C07D231/56
C07D295/14)
(C07D413/06
C07D295/14)
(C07D403/06
C07D231/56
C07D231/56
C07D295/14)

cocн, x'
(wherein X is as defined above and X' is a halogen atom) is

reacted with an amine having the following formula:

HN
$$\stackrel{R_1}{\sim}$$

(wherein R_1 and R_2 are as defined above and R_1 and R_2 may be linked to form an optionally substituted heterocycle).

Detailed Description of the Invention

The present invention concerns a method for manufacturing a novel indazole derivative having the following general formula:

General Formula I

(wherein X is a hydrogen atom, a halogen atom, or a lower alkyl group, R_1 and R_2 are hydrogen atoms, lower alkyl

groups, allyl groups or optionally substituted aryl groups, and R_1 and R_2 may be linked to form an optionally substituted heterocycle).

According to the present invention, Compound I is manufactured by reacting a compound having General Formula II below:

Formula II

(wherein X is as defined above and X' is a halogen atom) with a compound having General Formula III below

Formula III

(wherein R₁ and R₂ are as defined above).

In the compounds of General Formula I and III, R_1 and R_2 may be the same or different, or R_1 and R_2 may be linked to form a heterocycle. Examples of heterocyclic residues include a morpholino group, a piperidino group, and a piperazino group, and this heterocyclic residue may be substituted with a hydroxyl group, a lower alkyl group, a halogenoalkyl group, a phenyl group, a substituted phenyl group, a benzyl group, a substituted benzyl group, etc.

In practical application of the present invention, the reaction between the compound of Formula II and the compound of Formula III may be carried out in a suitable organic solvent such as chloroform or benzene. The reaction is ordinarily carried out at room temperature or above for a period of 30 minutes to 12 hours, and preferably at a temperature of 25-60°C.

The amount of the compound of Formula III to be used should preferably be a molar excess with respect to the compound of Formula II so that the former compound itself can act as a dehalogenating agent. Moreover, other dehalogenating agents may also be used, such as an equimolar or molar excess amount of sodium hydroxide.

In isolating and purifying the target Compound (I) from the reaction mixture, one may use methods such as column chromatography or recrystallization. The target Compound (I) may also be made into an inorganic acid salt such as a hydrochloride or sulfate or an organic acid salt such as an oxalate by a common method.

The compound of Formula I obtained according to the invention is a novel compound having outstanding CNS inhibiting actions such as an antidepressant action, an antiinflammatory action, and a circulatory system action, and is therefore useful as a drug.

Working Example 1

2 g of 1-bromoacetyl-3-phenyl-5-chloroindazole is dissolved in 30 mL of chloroform, 1.096 g of formalin is

added dropwise under ice cooling, and the mixture is allowed to stand for one hour at room temperature. The precipitated crystals are then filtered off, and the filtrate is washed with water, dried with sodium sulfate, and concentrated to obtain 1.5 g of 1-morpholinoacetyl-3-phenyl-5-chloroindazole. After being recrystallized from acetone, this substance shows a melting point of 180-182°C.

Molecular analysis values: As C₁₉H₁₈N₃O₂Cl:

-	С	H	N
Calculated value (%)	64.14	5.10	11.81
Measured value (%)	64.19	5.04	11.86

Working Example 2

3.15 g of 1-bromoacetyl-3-phenylindazole and 1.91 g of morpholine are treated in the same manner as in Working Example 1 to obtain 3.0 g 1-moropholinoacetyl-3-phenylindazole having a melting point of 160-161°C.

Elemental analysis values: As C₂₀H₁₉N₃O₂:

·	С	Н	N
Calculated value (%)	71.01	5.96	13.08
Measured value (%)	70.86	5.88	13.09

Working Example 3

3.15 g of 1-bromoacetyl-3-phenylindazole and 1.61 g of diethylamine are treated in the same manner as in Working Example 1 to obtain 1-diethylaminoacetyl-3-phenylindazole in the form of an oily substance. When this substance is treated with ether/hydrochloric acid, one obtains 3.2 g of 1-diethylaminoacetyl-3-phenylindazole hydrochloride having a melting point of 204-206°C.

Elemental analysis values: As C₁₉H₂₂N₃OCl:

	С	H	N
Calculated value (%)	66.37	6.45	12.22
Measured value (%)	66 55	6.28	12 15

Working Example 4

When 3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 1.61 g of diethylamine are treated in the same manner as in Working Example 1, one obtains 1.9 g of 1-diethylaminoacetyl-3-phenyl-5-chloroindazole having a melting point of 99-101°C.

Elemental analysis values: As C₁₉H₂₀N₃OCl:

	С	H	N
Calculated value (%)	66.76	5.90	12.29
Measured value (%)	67.03	5.92	12.24

Working Example 5

When 3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 1.87 g of piperidine are treated in the same manner as in Working Example 1, one obtains 2.5 g of 1-piperidinoacetyl-3-phenyl-5-chloroindazole having a melting point of 162-164°C.

Elemental analysis values: As C₂₀H₂₀N₃OCl:

C H N
Calculated value (%) 67.89 5.70 11.87
Measured value (%) 67.53 5.62 11.69

Working Example 6

When 3.29 g of 1-bromoacetyl-3-phenyl-5-methylindazole and 1.87 g of piperidine are treated in the same manner as in Working Example 1, one obtains 2.8 g of 1-piperidinoacetyl-3-phenyl-5-methylindazole having a melting point of 122-124°C.

Elemental analysis values: As C₂₁H₂₃N₃O:

Licitional analysis		2123-	
•	С	H	N
Calculated value (%)	75.65	6.95	12.60
Measured value (%)	75.27	6.91	12.49

Working Example 7

When 3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 2.05 g of aniline are treated in the same manner as in Working Example 1, one obtains 3.0 g of 1-analinoacetyl-3-phenyl-5-chloroindazole having a melting point of 144-145°C.

Elemental analysis values: As C₂₁H₁₆N₃OCl:

Dicilionium armin and		- 21 10	J
	С	H	N
Calculated value (%)	69.71	44.6	11.61
Measured value (%)	69.41	4.33	11.52

Working Example 8

When 3.29 g of 1-bromoacetyl-3-phenyl-5-methylindazole and 2.05 g of aniline are treated in the same manner as in Working Example 1, one obtains 1.8 g of 1-analinoacetyl-3-phenyl-5-methylindazole having a melting point of 134-135°C.

Elemental analysis values: As C₂₂H₁₉N₃O:

Ticiticitati anariyoro		- 2213-	J
	C	H	N
Calculated value (%)	77.40	5.61	12.31
Measured value (%)	77.55	5.59	12.35

Working Example 9

When 3.15 g of 1-bromoacetyl-3-phenylindazole and 2.88 g of diallyl amine are treated in the same manner as in Working Example 1, one obtains 1-diallylaminoacetyl-3-phenylindazole in the form of an oily substance. When this substance is treated with ether/hydrochloric acid, one obtains 1.5 g of 1-diallylaminoacetyl-3-phenylindazole hydrochloride having a melting point of 178°C.

Elemental analysis values: As C21H22N3OCl:

Liciticital almiysis va			.,
•	С	H	N
Calculated value (%)	68.56	6.03	11.42
Measured value (%)	68.27	6.02	11.36

Working Example 10

When 6.30 g of 1-bromoacetyl-3-phenylindazole and 6.65 g of anthranilic acid methyl ester are treated in the same

manner as in Working Example 1, one obtains 1.3 g of 1-(2'-methoxycarbonylanilino)-acetyl-3-phenylindazole having a melting point of 190-192°C.

Elemental analysis values: As C23H29N3O3:

		- 2327-	· J - J.	
		С	H	N
	Calculated value (%)	71.68	4.97	10.90
	Measured value (%)	71.70	4.84	10.71

Working Example 11

3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole is dissolved in 50 mL of chloroform, 2 g of sodium carbonate dissolved in 20 mL of water is added, 1.95 g of N-phenylpiperazine is added dropwise under ice cooling, and the mixture is stirred for 30 minutes at room temperature. The organic layer is separated, washed with water, and dried with sodium sulfate to obtain a residue, which is then subjected to column chromatography to obtain 3.3 g of 1-(N-phenylpiperazino)-acetyl-3-phenyl-5-chloroindazole. After recrystallization from acetone, this substance has a melting point of 176-178°C.

Elemental analysis values: As C₂₅H₂₃N₄OCl:

	C	H	N
Calculated value (%)	69.68	5.38	13.00
Measured value (%)	69.94	5.37	12.97

Working Example 12

When 3.15 g of 1-bromoacetyl-3-phenylindazole and 2.52 g of N-(4-chlorobenzyl)-piperidine are treated in the same manner as in Working Example 11, one obtains 1-[N-(4'-chlorobenzyl)-piperidino]-acetyl-3-phenylindazole in the form of an oily substance. When this substance is treated with ether/hydrochloric acid, one obtains 1.5 g of 1-[N-(4'-chlorobenzyl)-piperidino-acetyl-3-phenylindazole hydrochloride having a melting point of 234°C (decomposition).

Elemental analysis values: As C₂₀H₂₇N₄OCl₃ • 2H₂O:

	C	H	N
Calculated value (%)	56.38	5.64	10.11
Measured value (%)	56.61	5.24	10.05

Working Example 13

When 3.15 g of 1-bromoacetyl-3-phenylindazole and 1.54 g of N-propylpiperazine are treated in the same manner as in Working Example 11, one obtains 1.8 g of 1-(N-propylpiperazino)-acetyl-3-phenylindazole having a melting point of 101-103°C.

Elemental analysis values: As C₂₂H₂₆N₄O:

	С	Н	N
Calculated value (%)	72.90	7.23	15.46
Measured value (%)	72.87	7.23	15.54

Working Example 14

When 3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 2.76 g of N-(3-trifluoromethylphenyl)-

piperazine are treated in the same manner as in Working Example 11, one obtains 3.0 g of 1-[N-(3'-trifluoromethylphenyl)-piperazino]-acetyl-3-phenyl-5-chloroindazole having a melting point of 174-175°C.

Elemental analysis values: As $C_{26}H_{22}N_4OClF_3$:

C H NCalculated value (%) 62.59 4.45 11.23

Measured value (%) 62.50 4.36 11.20

Working Example 15

When 1.37 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 1.0 g of 4-(4'-chlorophenyl)-4-hydroxypiperidine are treated in the same manner as in Working Example 11, one obtains 0.9 g of 1-[4'(4''-chlorophenyl)-4'-hydroxypiperidino]-acetyl-3-phenyl-5-chloroindazole having a melting point of 222-224°C.

Elemental analysis values: As $C_{26}H_{23}N_3O_2Cl_2$:

C H N

Calculated value (%) 65.01 4.82 8.75

Measured value (%) 65.39 4.79 8.68

Working Example 16

When 5.24 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 3.98 g of N-(4-nitrobenzyl)-piperazine are treated in the same manner as in Working Example 11, one obtains 5.9 g of 1-[N-(4'-nitrobenzyl)-piperazino]-acetyl-3-phenyl-5-chloroindazole having a melting point of 154-156°C.

Elemental analysis values: As $C_{26}H_{24}N_5O_3Cl$: C H NCalculated value (%) 63.74 4.94 14.29
Measured value (%) 65.38 4.79 13.99

Working Example 17

3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole is dissolved in 50 mL of chloroform, 2.81 g of m-chloroaniline is added, and the mixture is refluxed for 10 hours. The precipitated crystals are filtered off, the filtrate is washed with water and dried with sodium sulfate, and the residue is then subjected to column chromatography to obtain 0.8 g of 1-(3'-chloroanalino)-acetyl-3-phenyl-5-chloroindazole having a melting point of 168-170°C.

 $\begin{array}{cccc} Elemental \ analysis \ values: \ As \ C_{21}H_{15}N_3OCl_2: \\ C & H & N \\ Calculated \ value \ (\%) & 63.65 & 3.82 & 10.60 \\ Measured \ value \ (\%) & 63.64 & 3.69 & 10.57 \end{array}$

Working Example 18

When 3.49 g of 1-bromoacetyl-3-phenyl-5-chloroindazole and 2.71 g of 3-methoxyaniline are treated in the same manner as in Working Example 17, one obtains 2.8 g of 1-(3'-methoxyanalino)-acetyl-3-phenyl-5-chloroindazole having a melting point of 151-152°C.

Elemental analysis values: As $C_{22}H_{18}N_3O_2CI$: C H NCalculated value (%) 67.43 4.63 10.72
Measured value (%) 67.12 4.45 10.52 Applicant: Agent:

Chugai Pharmaceutical Co.

Masao Kobayashi, Patent Attorney

6. Additional inventors

Name: Hiroyuki Nagano

Address: 1-20-406, Nishiageodai 1-danchi, 845-1 Oaza

Koshikiya, Ageo-shi, Saitama Prefecture

Name: Minoru Shindo

Address: 5-11-12 Minamisawa Kurume-shi, Higashi-

Kurume-shi, Tokyo

Name: Morio Kakimoto

Address: 728-28 Oaza Imafuku, Kawagoe-shi, Saitama

Prefecture

Name: Tsuneo Iwasaka

Address: 6-202, Shirakobato Danchi, 340, Oaza

Kamiazatsutsumishita, Ageo-shi, Saitama

Prefecture

Name: Yugo Ikeda

Address: 5-2-16 Hon-cho, Hoya-shi, Tokyo

[Translator's Note: Remaining characters at lower left are a repetition of the headings on the title page and have therefore been omitted; numbers are included on title page.]

(A.000A)

(19) 日本国特許庁

公開特許公報

T8500

特許庁長

1. 発明の名称

インタソール誘導体の製法

2. 発 明 者 東京都世田谷区松原2の2の2 大谷在 住 所 (外5名) 夫

3. 特許出願人

氏 名

東京都北区浮間 5 の 5 の 1 住 所 (331)中外製薬株式会社 氏 名 (名称) 代表者 上 野 公 夫

4. 代 理 人

東京都港区芝西久保桜川町24番地 正 小

電話 (591) 0 9 1 4 番

5. 添付書類の目録

発明の名称

インダソール誘導体の製法

特許請求の範囲

一般式

(式中×は水素原子、ハロゲン原子又は低級ア ルキル基、 X'はハロゲン原子を示す) で表わさ れる化合物を一般式

$$HN < R_1$$

(式中 R. 及び R. は水素原子、低級アルキル基、 アリル基又は間換されていてもよいアリール茶 を示し、 Ri と Ri は連結して置換されていても よい異項環を形成してもよい)で表わされるア ミンと反応させるととを特徴とする、一般式

①特開昭 50-116470

④公開日 昭50.(1975) 9.11

②特願昭 49-24148

②出願日 昭49 (1974) 3.4

未請求 審査請求

(全5頁)

庁内整理番号 7306 44 6855 44 7169 44 7138 44

52日本分類 16 E36

E431.1 E451.1 E462

(51) Int. Cl². C09D231/56

C07D4D1/06 C07D413/06 C070403/06/ A61K 31/41 461K 31/44

A61K 31/495 A61K 31/535

的共打へつづく

(式中×、R₁及びR₂は前記の意味を有する)で 表わされるインタゾール誘導体の製法。

発明の詳細な説明

本発明は、一般式

(式中×は水素原子、ハロゲン原子又は低級ブ ル基を示し、P. 及びR. は水素原子、低級 アルキル基、アリル基文はVアリール基を示し、 場合により R₁ と R₂ は連結答して置換されてい なインダゾール誘導体の製法に関する。 本発明によれば、」の化合物は一般式

563

(式中 x は前記の意味を有し、 x'はハロゲン原子を示す)で表わされる化合物に一般式

$$HN \stackrel{R_1}{\underset{R_2}{\longleftarrow}}$$

(式中 R₁ 及び R₂ は前記の意味を有する)で表わされる化合物を反応させることにより製造される。

式 J 及び式 ■の化合物において R, 及び R, は
同一でも異なつてもよく、また R, と R, は連結
して異項環を形成してもよい。 異項環 基とし
ては、たとえばモルホリノ基、 ピペリジノ 基等があげられ、 この 異項環 著は
水酸基、低級 アルキル基、 ハロゲノアルキル基、
フェニル基、 置換フェニル基、 ポンジル基、 置換
ベンジル 基等によつて 置換されていてもよい。
本発明を実施するに 際して式 ■の化合物との 反応は、適宜な有機溶媒たとえ

ばクロロホルム、ペンゼン等の中で行なわれる。 反応は室温ないしそれ以上の温度に加温して通常 3 0 分ないし1 2 時間、好ましくは25~60℃ への温度で 1 時間になわれる。

3 Tr 4

式』の化合物の使用量は、それ自身脱ハロゲン化剤としても作用させるために式』の化合物に対して過剰モル量使用することが好ましい。 また他の脱ハロゲン化剤たとえば当モル量又は 過剰モル機の炭酸ナトリウムを用いてもよい。 目的化合物は、

反応混合物より目的化合物(1)を単離、精製するには、たとえばカラムクロマトグラフィー、再結晶等が用いられる。目的化合物(1)は常法によりたとえば塩酸塩、硫酸塩等の無機酸塩又は
作酸塩等の有機酸塩とすることもできる。

本発明により得られる式」の化合物は新規化合物であつて、中枢抑制作用、抗うつ作用、抗 炎症作用、循環器系作用等に優れた作用を有し、 医薬品として有用である。

実施例 1

1ープロムアセチルー3ーフエニルー5ーク

ロルインダゾール 2 9 を クロロホルム 3 0 配 に 溶解し、 氷冷下にモルホリン 1.0 9 6 9 を 滴下し、室源で 1 時間放置する。 析出した結晶を が取し、 戸液を水洗し、 芒硝で乾燥したの ち濃縮すると、 1 ーモルホリノアセチルー 3 ーフェニルー 5 ークロルインダゾール 1.5 9 が得られる。 このものはアセトンから再結晶したのち 1.8 0 ~ 1.8 2 ℃の 融点を示す。

元素分析値: C10H18 N8 O2C1 として

 計算值份
 64.14
 5.10
 11.81

 実測值份
 64.19
 5.04
 11.86

実施例 2

1 ープロムアセチルー 3 ーフエニルインダゾール 3.15 をとモルホリン 1.9 1 を実施例 1 と同様に処理すると、触点 1 6 0 ~ 1 6 1 ℃の1 ーモルホリノアセチルー 3 ーフエニルインダゾール 3.0 をが得られる。

元素分析値: CaeHiaNaO。として

計算值(%) 7 1.0 1 5.9 6 1 3.0 8

実測値(%) 70.86 5.88 13.09

実施例 3

1ープロムアセチルー3ーフェニルインダゾール3159とジエチルアミン1619を実施例1と同様に処理すると、1ージエチルアミノアセチルー3ーフェニルインダゾールが油状物として得られる。このものをエーテルー塩酸で処理すると、融点204~206℃の1ージェチルアミノアセチルー3ーフェニルインダゾール塩酸塩3.29が得られる。

元 累 分 析 値 : C₁₉ H₂₂ N₃ OC1 と し て

 計算値的
 C
 H
 N

 4 5
 1 2.2 2

 実測値例
 6 6.5 5
 6.2 8
 1 2.1 5

爽施例 4

1 ープロムアセチルー 3 ーフエニルー 5 ークロルインダゾール 3.49 g とジエチルアミン 1.61 gを実施例 1 と同様に処理すると、触点99~101℃の1ージエチルアミノアセチルー3ーフエニルー5ークロルインダゾール 1.9 g が 4.5 h る。

特開 昭50-116470(3)

元素分析値: C19 H20 N3OC7 として

6 6.7 6 5. 9 O 1 2 2 9 計算値(%)

実測値紛 6 7. 0 3 5. 9 2 1 2.4 4

実施例 5

1 - プロムアセチルー 3 - フエニルー 5 - ク ロルインダソール 3.49 まとピペリジン 1.87 gを與施例1と同様に処理すると、触点162 ~164℃の1ーピペリジノアセチルー3ーフ エニルー 5 ークロ・ルインダゾール 2.5 星が得ら ・れる。

元素分析値: C20H20N3OC1 として

67.89 5. 7 O 1 1.8 7 計算值%

67.53 5.62 .11.69 実測値(%)

実施例 6

1-プロムアセチルー3-フエニルー5-メ .チルインダゾール 3.298とピペリジン 1.87 まを実施例1と同様に処理すると、融点122 ~124℃の1ーピペリジノアセチルー3一フ. エニルー5ーメチルインダゾール2.88が得ら れる。

元 実 分 析 値 : Caz Hao Na O と し て

7 7 4 0 5.61 1 2.3 1 計算值(%)

5.5 9 1 2.3 5 7 7 5 5 寒測値(%)

実施例 9

1 ープロムアセチルー 3 ーフエニルインダゾ ール 3. 1 5 g とシアリルアミン 2. 8 8 g を実施 例1と同様に処理すると、1ージアリルアミノ アセチルー3ーフエニルインダゾールが油状物 として得られる。このものをエーテルー塩酸で 処理すると、融点178℃の1ージアリルアミ ノアセチルー3一フエニルインダゾール塩酸塩 1.5 9が得られる。

元素分析値: C21H22N3 OC1 として

6 8.5 6 . . 6.0 3 1 1.4 2 計算值%)

1 1.36 68.27 6.02 寒測値(%)

实施例 1 0

1ープロムアセチルー3ーフエニルインダゾ ール 6.30 8とアントラニル酸メチルエステル 6.659を実施例1と同様に処理すると、融点 190~192001-(2'-メトキシカルポ

元素分析値: C21 H23 N3Oとして

6.95 7 5.6 5 計算值(%)

寒測 值% 7 5. 2 7 6. 9 1 1 2.4 9

寒 施 例 7

1-プロムアセチルー3-フエニルー5-ク ロルインダノール 3.49 をとアニリン 2.0 5 を を実施例1と同様に処理すると、融点144~ 1450の1ーアニリノアセチルー3ーフエニ ルー5ークロルインダゾール 3.0 分が得られる。

元素分析値: C21 H16 N8 OC1 として

446 1161 6 9.7 1 計館値(%)

6, 9, 4 1 4.83 11.52 寒湖值%

実施例 8

オポプロムオセチルーるーフエニルー 5 ーメ チルインダソール 3.29 8とアニリン 2.05 8 を実施例1と同様に処理すると、融点134~ 1 3 5 0 0 1 - アニリノアセチルー 3 - フェニ ルー5ーメチルインダゾール1.89が得られる。

ニルアニリノ)ーアセチルー3ーフエニルイン メソール 1. 3.8が得られる。

元素分析値: Caa Hao Na Oa として

4.97· 7 1.68 1.0.90 計算值(%)

7-1.70 4.84 1 0. 7 1 寒測値(%)

实施例 1 1

1-プロムアセチルー3-フェニルー5-ク ロルインダゾール 3.499をクロロホルム 5 0 ml に容解し、水20ml に炭酸ナトリウム2 8km 解した溶液を加え、氷冷下にNーフエニルピペ ラジン1959を満下し、宮温で30分間攪拌 する。有機屑を分取し、水洗し、芒硝で乾燥し たのち残査をカラムクロマトグラフィーで処理 すると、1-(N-フェニルピペラジノ)-ア セチルー3ーフエニルー5ークロルインダゾー ル33gが得られる。このものはアセトンから

元素分析値: Can Haa N4 OC1 として

69.68 5.58 1 5.00 計算値(%)

突測値(%) 6.9.9.4 5. 3 7 1 2.9 7

実施例 1 2

1 ープロムアセチルー3 ーフエニルインダゾール 3.15 g と N ー (4 ー クロルベンジル)ーピペラジン 2.5 2 g を実施例 1 1 と同様に処理すると、1 ー [N ー (4'ークロルベンジル)ーピペラジノ]ーアセチルー3 ー フエニルインダゾールが油状物として得られる。このものをエーテルー塩酸で処理すると、融点 2.3 4 ℃ (分解)の1ー[N ー (4'ークロルベンジル)ーピペラジノ]ーアセチルー3 ーフエニルインダゾール塩酸塩 1.5 gが得られる。

元案分析値: C₂₀H₂₇N₄OCl₃・2H₂Oとして C H N 計算値的 5 6.3 8 5.6 4 1 0.1 1 実御値的 5 6.6 1 5.2 4 1 0.0 5

突施例 1 3

1 ープロムアセチルーる一フエニルインダゾール 3.15 gと N ープロピルピペラジン 1.5 4 gを実施例 1 1 と同様に処理すると、融点 1 0 1 ~ 1 0 3 ℃の 1 ー (N ープロピルピペラジノ) ーアセチルー 3 ーフェニルインダゾール 1.8 g が得られる。

~ 2 2 4 ℃の 1 ー (4'ー (4"ー クロルフエニル)' ー 4'ーヒドロキンピペリジノ] ー アセチルー 3 ーフエニルー 5 ークロルインダゾール 0.9 gが 得られる。

元条分析値: C₂₀H₂₃N₃O₂Cl₂として C 計算値(%) 6.5.01 4.8 2 8.7 5 実測値(%) 6.5.3 9 4.7 9 8.6 8

実施例 1 6

1 ープロムアセチルー 3 ーフエニルー 5 ークロルインダゾール 5.2 4 g と N ー (4 ーニトロペンジル) ーピペラジン 3.9 8 g を実施例 1 1 と同様に処理すると、触点 1 5 4 ~ 1 5 6 ℃の1 ー (N ー (4 ーニトロペンジル) ーピペラジノ) ーアセチルー 3 ーフエニルー 5 ークロルインダゾール 5.9 gが得られる。

元案分析値: C₂₀H₃₄N₃O₃Cl として C 計算値的 6 3.7 4 4.9 4 1 4.2 9 実測値的 6 3.5 8 4.7 9 1 3.9 9

奥施例 1 7

1ープロムアセチルー3ーフエニルー5ーク

元素分析値: C₂₂H₂₆N₄O として

計算值 (%) 7 2.9 0 7.2 3 1 5.4 6 実 制 値 (%) 7 2.8 7 7.2 3 1 5.5 4

奥施例1 4

1 ープロムアセチルー 3 ーフエニルー 5 ークロルインダゾール 3.49 &とドー(3ートリフルオロメチルフエニル)ーピペラジン 2.76 を実施例 1 1 と同様に処理すると、 酸点 1 7 4 ~ 1 7 5 ℃の 1 ー [ドー(3'ートリフルオロメチルフエニル)ーピペラジノ]ーアセチルー 3 ーフエニルー 5 ークロルインダゾール 3.0 9がひられる。

元素分析値: C₂₀H₂₂N₄OC1F₃として 計算値向 6 2.5 9 4.4 5 1 1.2 3 実測値的 6 2.5 0 4.3 6 1 1.2 0

实施例 15

1 ープロムアセチルー 3 ーフエニルー 5 ークロルインダソール 1 3 7 8 と 4 ー (4 ー 9 ロルフェニル) ー 4 ー ヒドロキンピペリシン 1 0 8 を実施例 1 1 と同様に処理すると、 融点 2 2 2

ロルインダゾール 3.49 fをクロロホルム 5 0 ml に 将解し、 m ークロルアニリン 2.8 1 fを加え 1 0 時間加熱 滑流する。 析出した 結晶を が去し、 严液を 水洗し、 芒硝で 乾燥したの 5 残変を カラムクロマトグラフィーで処理すると、 融点 1 68~170℃の1ー(3'ークロルアニリノ)ーアセチルー 3ーフェニルー 5ークロルインダ ソール 0.8 fが 4 られる。

元素分析値: C₂₁H₁₃N₃OC1₂として C H 計算値的 6 3.65 3.82 1 0.60 実棚値的 6 3.64 3.69 1 0.57

埃施例 1 8

1 ープロムアセチルー3 ーフエニルー5 ークロルインダゾール 3 4 9 9 と3 ーメトキシアニリン 2 7 1 9を実施例 1 7 と同様に処理すると、触点 1 5 1~ 1 5 2 ℃の1ー(3 ーメトキシアニリノ)ーアセチルー3 ーフエニルー5 ークロルインダゾール 2 8 9 が 得られる。

元 架 分析 値 : C zz Hzs N s Oz C 1 と して

計算值的 67.43 4.63 1 0.7 2 実測值的 67.12 4.45 1 0.5 2 出願人 中外製業株式会社 代理人 弁理士 小 林 正 雄 ・ 6.前記以外の発明者 アゲオ シオオアザコシキ ヤ 埼玉県上尾市大字小 敷谷 8 4 5 の 1 ダンチ ニンアゲ オダイ 西上尾分 1 団地 1-20-406 +# 洋 氏名 ヒガンダ ク ル メ シミナミサワ 東京都東張久留米市南沢5の11の12 と ドゥ 氏名 埼玉県川越市大字今福 7 2 8 の 2 8 住所 æij ,夫 柿 ₹ 氏名 フケオ シオオアサカミアザツツミンタ 埼玉県上尾市大字上字堤下 3 4 0 住所. シラコバト 団地 6-202 勞 岩 氏名 東京都保谷市本町5の2の16 住所 ... 175 . 29 五 池 氏名

庁内整理番号

(52)日本分類

(COTD401/06 COTD231/56 COTD413/06 COTD231/56 COTD295/14

51 Int. C12.