Lab: Artificial Examples and Sets

Havin Lim

March 4, 2023

1 Problem 1: Foundations

- a. $\{1,2,3\} \in S$
- b. $(\{1,2,4,5\} \in S \land \{3,4,5\} \in S) \lor \{4,8\} \in S$
- c. $(x * 3 + 1) \in U$
- d. $x \in U \lor y \in U \lor (x+y) \in U$
- e. $\overline{S_1} \vee S_2$

2 Problem 2: Corners

a. The following claim is not always true.

If we assume if S_1 is $\{1,2,3,4\}$ and S_2 is $\{2,3,4,5\}$, the union of these two sets would be $\{1,2,3,4,5\}$, not $\{1,2,3,4,2,3,4,5\}$.

- b. The empty set would be considered as the subset of any other set, including itself. If we assume a random set, let's say $S = \{1,2,3\}$, when we consider the power set of this set it would show $\mathcal{P}(S) = \{\varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$. Since the power set shows all the subsets of a set, \varnothing would be also considered the subset of any other set including itself.
- c. No, there would be no such thing as a "negative" set. Consider the two sets $S_1 = \{1,2,3\}$ and $S_2 = \{1,2,3,4\}$. When we do the subtraction S_1 S_2 , the result would be an empty set (\emptyset) , not a negative set, because all the elements present in S_1 is also present in S_2 .
- d. Yes. In set theory for Cartesian Product the \varnothing would correspond to the multiplication of zero. Consider doing the Cartesian Product on a set $S_1 = 1,2,3,4$ with \varnothing . The Cartesian Product is considering set of all ordered pairs

- (a,b), but in this case since the second set is an empty set there would be no ordered pair, resulting in an empty set.
- e. Yes. In the arithmetic perspective the exponential, for example x^y would be considered as an arithmetic analog to the power set operation. For example, if we try to construct a power set of 3 elements, it produces a total of 8 subsets. Whereas in the mathematical analog, the 2^3 would produce the result of 8, which is the number of subsets from the power set. In addition, the power set of an empty set would be itself (\emptyset) , and nothing else.

3 Problem 3: Trickiness

- 1. Let's say $T = \{1,2,3,4\}$. The partition of this set, S_1 and S_2 , can exist in many forms, but as an example we would define it as $S_1 = \{1,2\}$ and $S_2 = \{3,4\}$.
- 2. In the real world an example of a partition could be distributing items among different group of people. Let's say that a new school semester is beginning and we are trying to distribute pencil, pen, crayon, and eraser to new students. The set T would be $T = \{\text{pencil}, \text{pen}, \text{crayon}, \text{eraser}\}$ To make this more efficient we would use partition set by saying $S_1 = \{\text{pencil}, \text{pen}\}$, and $S_2 = \text{crayon}$, eraser. Two subsets are disjoint and each category is only considered in one of the subsets, so we can call it a partition set. By using subset in this case we can easily distribute the items equally among the students.
- 3. a. The two partition sets should not overlap each other's element, meaning that same elements can't exist in the pair of sets twice.
- b. After creating the two partition sets, they need to cover the entire set (the set these partition sets were created from) without any of the elements left.

4 Problem 4: The Other Side

To prove the $\overline{A} \cup \overline{B}$ is also true. Let's assume that the left-hand-side is true, this means that \overline{A} and \overline{B} are both true. This again means that A and B are false, because if one of them were true, the result for the claim $\overline{A} \cap \overline{B}$ is false. Since A and B are both false, $A \cup B$ would be also false because for this to be true at least one of the values should be true, but we already know that both A and B are false. By proving that $A \cup B$ is false, this implies that $\overline{A} \cup \overline{B}$ is true.

5 Problem 5: Pivots

a. An artificial example of a S would be $S = \{1, 2, 3\}$, and $\{a\}$ will be 1. Following this choice the elements in the partition T_1 and T_2 can be $T_1 = \{0, 2, 3, \{2, 3\}\}$ and $T_2 = \{1, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$. These two are considered the partition sets of S because they have at least one element in each set, and disjoint. In addition, the union of the two sets are equal to the definition defined in the problem, $T_1, T_2 \subseteq \mathcal{P}(S)$.

b.