# CS 457, Fall 2019

Drexel University, Department of Computer Science Lecture 9

#### Hash Tables

- Use a hash function h
  - Function h maps U to slots of hash table
  - Given key k, compute the slot h(k)
  - This reduces the required table size

CHAINED-HASH-INSERT(T, x)

1 insert x at the head of list T[h(x.key)]

CHAINED-HASH-SEARCH(T, k)

search for an element with key k in list T[h(k)]

CHAINED-HASH-DELETE (T, x)

delete x from the list T[h(x.key)]

- But what if we get a collision?
  - Two distinct keys could be mapped to the same slot
  - How can we try to avoid this?
  - The function needs to be deterministic
- We can address that using chaining
  - Place colliding keys to same linked list
  - How does this affect the running time?



- Given a hash table with m slots that stores n elements:
  - Worst case running time for searching is  $\Theta(n)$  plus time to compute hash function
  - This is no better than the time achieved by a single linked list...
  - Simple uniform hashing: any element is equally likely to hash into any of the slots
- What about the average-case running time for search?
  - Let n/m be the load factor  $\alpha$  for hash table T
  - Let  $n_j$  be the length of the list T[j] for  $j \in \{0, 1, ..., m-1\}$
  - The expected value of  $n_i$  for uniform hashing is  $\mathbb{E}[n_i] = \alpha$
  - Assume that computing the hash value h(k) takes O(1) time

#### Theorem 11.1

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time  $\Theta(1+\alpha)$ , under the assumption of simple uniform hashing.

- Given a hash table with m slots that stores n elements:
  - Worst case running time for searching is  $\Theta(n)$  plus time to compute hash function
  - This is no better than the time achieved by a single linked list...
  - Simple uniform hashing: any element is equally likely to hash into any of the slots
- What about the average-case running time for search?
  - Let n/m
  - Number of examined elements is:  $X = \sum_{j=1}^{m} \frac{1}{m} (1 + n_j)$

So, 
$$E[X] = \sum_{j=1}^{m} \frac{1}{m} (1 + E[n_j]) = \sum_{j=1}^{m} \frac{1}{m} (1 + \frac{n}{m}) = 1 + \frac{n}{m}$$

- /

#### Theorem 11.1

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time  $\Theta(1+\alpha)$ , under the assumption of simple uniform hashing.

- Given a hash table with m slots that stores n elements:
  - Worst case running time for searching is  $\Theta(n)$  plus time to compute hash function
  - This is no better than the time achieved by a single linked list...
  - Simple uniform hashing: any element is equally likely to hash into any of the slots
- What about the average-case running time for search?
  - Let n/m be the load factor  $\alpha$  for hash table T
  - Let  $n_j$  be the length of the list T[j] for  $j \in \{0, 1, ..., m-1\}$
  - The expected value of  $n_j$  for uniform hashing is  $\mathbb{E}[n_j] = \alpha$
  - Assume that computing the hash value h(k) takes O(1) time

#### Theorem 11.2

In a hash table in which collisions are resolved by chaining, a successful search takes average-case time  $\Theta(1+\alpha)$ , under the assumption of simple uniform hashing.

- For keys  $k_i$  and  $k_j$  we define indicator variable  $X_{ij} = \mathbb{I}\{h(k_i) = h(k_j)\}$
- For simple uniform
- Assume that
- Expected num

For simplicity, this assumes that  $k_i$  is the key of the i-th element to be added to the hash table!

= 1/m

 $\gamma$  to be any of the n elements

essful search is:

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\sum_{i,j}^{n}\right)\right]$$

Verify this for the following instance:



- For keys  $k_i$  and  $k_j$  we define indicator variable  $X_{ij} = \mathbb{I}\{h(k_i) = h(k_j)\}$
- For simple uniform hashing, we get  $\Pr\{h(k_i) = h(k_j)\} = 1/m$
- lacktriangle Assume that element being searched for is equally likely to be any of the n elements
- Expected number of elements examined in a successful search is:

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E\left[X_{ij}\right]\right) \text{ (by linearity of expectation)}$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right)$$

$$=1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E\left[X_{ij}\right]\right) \text{ (by linearity of expectation)}$$

$$=\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right)$$

$$=1+\frac{1}{nm}\sum_{i=1}^{n}(n-i)$$

$$=1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right)$$

$$=1+\frac{1}{nm}\left(n^{2}-\frac{n(n+1)}{2}\right) \text{ (by equation (A.1))}$$

$$=1+\frac{n-1}{2m}$$

$$=1+\frac{\alpha}{2}-\frac{\alpha}{2n}.$$

# Today's Lecture

- More probabilistic analysis and randomized algorithms
  - Bucket Sort
  - Binary trees

#### Sorting in Linear Time

- Assume that the input is drawn from uniform distribution from interval [0, 1)
- Can we use this information to get a faster algorithm, in the worst case sense?
- Can we use this information to get a faster algorithm, in the average case sense?

```
BUCKET-SORT (A)

1 let B[0. n-1] be a new array

2 n = A.length

3 for i = 0 to n-1

4 make B[i] an empty list

5 for i = 1 to n

6 insert A[i] into list B[\lfloor nA[i] \rfloor]

7 for i = 0 to n-1

8 sort list B[i] with insertion sort

9 concatenate the lists B[0], B[1], \ldots, B[n-1] together in order
```



### Bucket Sort (Running Time)

- Let  $n_i$  be the number of elements in B[i] (random variable)
- What is the running time, T(n) of bucket sort as a function of  $n_i$ ?

$$- T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

• If we let  $X_{ij}=\mathbb{I}\{A[j] \text{ falls in bucket } i\}$  , then  $n_i=\sum_{j=1}^n X_{ij}$ 

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E\left[O(n_i^2)\right] \text{ (by linearity of expectation)}$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(E\left[n_i^2\right]\right) \text{ (by equation (C.22))}.$$

It suffices to show that  $\sum_{i=0}^{n-1} O(\mathrm{E}[n_i^2])$  is  $\Theta(n)$ 

#### Bucket Sort (Running Time)

- So, it suffices to show that  $\sum_{i=0}^{n-1} O(\mathrm{E}[n_i^2])$  is  $\Theta(n)$
- What is the value of  $E[n_i^2]$ ?

$$E[n_{i}^{2}] = E\left[\left(\sum_{j=1}^{n} X_{ij}\right)^{2}\right]$$

$$= E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^{n} X_{ij}^{2} + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^{n} E[X_{ij}^{2}] + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} E[X_{ij} X_{ik}],$$

#### Bucket Sort (Running Time)

- So, it suffices to show that  $\sum_{i=0}^{n-1} O(\mathrm{E}[n_i^2])$  is  $\Theta(n)$
- What is the value of  $\mathrm{E}[n_i^2]$ ?

$$E[n_{i}^{2}] = E\left[\left(\sum_{j=1}^{n} X_{ij}\right)^{2}\right]$$

$$= E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^{n} X_{ij}^{2} + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^{n} E[X_{ij}^{2}] + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} E[X_{ij} X_{ik}],$$

$$E[X_{ij}^2] = 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{n}.$$

$$E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]$$
$$= \frac{1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2}.$$

#### Simple Indicator Variables Example

#### Randomized-Loops (n)

```
1. c=0

2. for x=1 to n

3. k=\operatorname{Random}(1,n) // Random number from 1 to n

4. for y=1 to k

5. c=c+1

6. return c
```

- What is the expected running time of Randomized-Loops(n)?
  - Let  $X_{ij} = \mathbb{I}\{\text{The value of } k \text{ in the } i\text{--th outer loop iteration is equal to } j\}$
  - Then we wish to compute expected value of  $X = \sum_{i=1}^n \sum_{j=1}^n j X_{ij}$
  - Taking the expectation, we get

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} j \ X_{ij}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} j \ \mathbf{E}[X_{ij}] = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{j}{n} = \sum_{i=1}^{n} \frac{n+1}{2} = \frac{n(n+1)}{2}$$