TEORIA PODEJMOWANIA DECYZJI – LABORATORIUM

Zadanie 4 – Programowanie dynamiczne.

Opis rozwiązania

W celu zaprezentowania zagadnienia z zadania 4 wybraliśmy wariant pierwszy. Graf, przedstawiony w treści zadania w postaci graficznej przekształciliśmy do formatu csv o następującej strukturze:

Wierzchołek	Wierzchołek	Nazwa	Koszt:
startowy:	końcowy:	krawędzi:	
1	4	Α	14
1	5	В	13
2	4	С	18
2	5	D	11
3	5	E	14
4	6	F	10
4	7	G	13
4	8	Н	15
5	6	I	10
5	7	J	12
5	8	K	0
6	9	L	20
7	9	М	19
8	9	N	10

Tabela 1. Specyfikacja grafu

Po przekształceniu grafu do tej postaci wyznaczona została strategia oraz rozwiązanie optymalne.

Wyniki

Optimal strategy: 9 :: 0 8 => N => 9 :: 10 7 => M => 9 :: 19 6 => L => 9 :: 20 5 => K => 8 => N => 9 :: 10 4 => H => 8 => N => 9 :: 25 3 => E => 5 => K => 8 => N => 9 :: 24 2 => D => 5 => K => 8 => N => 9 :: 21 1 => B => 5 => K => 8 => N => 9 :: 23 Optimal solution: 2 => D => 5 => K => 8 => N => 9 :: 21

Wnioski

- Rozwiązanie optymalne pozwala wyznaczyć optymalny stan startowy grafu.
- Strategia optymalna to zbiór optymalnych ścieżek prowadzących od danego wierzchołka do wierzchołka końcowego.
- Rozwiązanie optymalne wybieramy spośród strategii optymalnych dla wierzchołków początkowych.