Lösungen zu den Übungen der Mathematik-Lehrveranstaltungen für DM-Zweitsemester

Erarbeitet von Tutorinnen und Tutoren im Rahmen der Lehrveranstaltung

Fachdidaktisches Praktikum: Mathematik der Digitalen Medien

Betreut von Prof. Dr. Thomas Schneider und Prof. Dr. Ruxandra Lasowski

Hochschule Furtwangen University Fakultät Digitale Medien Sommersemester 2017

Hinweis:

Dass Lösungen zu den Übungsblättern ausgearbeitet und Studierenden zur Verfügung gestellt werden, versteht sich als zusätzliches und freiwilliges Service-Angebot. Trotz größtmöglicher Sorgfalt beim Erstellen und bei der Korrektur der Lösungen kann keine Gewähr für Fehlerfreiheit übernommen werden. In Zweifelsfällen sind Studierende gehalten, unmittelbar Verbindung mit dem/den Dozenten der Lehrveranstaltungen Mathematik und Simulation, Mathematische Grundlagen von Computergrafik und Gestaltung bzw. Geometrische und statistische Modellierung aufzunehmen.

Die Musterlösungen sind nur für die Hörerinnen und Hörer dieser Lehrveranstaltungen bestimmt. Sie dürfen weder ganz noch auszugsweise veröffentlicht oder an Dritte weitergegeben werden. Dies betrifft insbesondere die Veröffentlichung auf sozialen Netzwerken oder Plattformen (FELIX, fuugle, etc.) sowie die Weitergabe des Dokuments in gedruckter oder digitaler Form (über Cloud-Dienste, Messenger oder sonstige Systeme). Das Recht zur Veröffentlichung liegt bei den Dozenten Prof. Dr. Ruxandra Lasowski und Prof. Dr. Thomas Schneider.

Inhaltsverzeichnis

	KB – Mathematische Grundlagen von Computergrafik und Ge-	
sta	ltung	1
Übungs	einheit 3	3
P5	Analyse einiger Kavalierprojektionen	10
P7	Kuboktaeder	15
H3	Castellum	17
T1	Parallelprojektionen in die Aufrissebene	18
T2	Parallelprojektionen in die Aufrissebene	21
T3	Parallelprojektionen in die Aufrissebene	22
T4	Parallelprojektionen in die Aufrissebene	24
Übungs	einheit 7	27
P12	Berechnung einer Parallelprojektion- Schrägprojektion	30
H17	Ergänzung zur Aufgabe P12	39
H18	Orthogonale isometrische Parallelprojektion	40

Teil I

MKB – Mathematische Grundlagen von Computergrafik und Gestaltung

Übungseinheit 3

Prof. Dr. T. Schneider

Wintersemester 2017/18

Präsenzübungen

Aufgabe P 5. Analyse einiger Kavalierprojektionen

Untersuchen Sie einige spezielle Kavalierprojektionen (siehe Tafel). Die Bildebene ist jeweils die x_2 - x_3 -Ebene. Die Projektionsrichtung liegt immer in derjenigen Ebene , welche die x_1 -Achse enthält und den Winkel zwischen der x_2 -Achse und der x_3 -Achse halbiert. Diese Ebene ist durch die Gleichung $x_2=x_3$ gegeben. Im Folgenden bezeichne E_1' stets den Schnittpunkt der durch E_1 verlaufenden Projektionsgeraden mit der Bildebene. Bei den hier untersuchten Parallelprojektionen ergibt sich stets $\alpha=45^\circ$, der Skalierungsfaktor s_1 variiert je nachdem, wie flach oder steil die Projektionsrichtung gewählt wird.

- (a) Die Projektionsrichtung sei um 45° zur x_2 - x_3 -Ebene geneigt. Bestimmen Sie die Länge der Strecke $s_1 = \overline{OE'_1}$.
- (b) Die Projektionsgerade habe die Steigung $m_2=\frac{2}{1}$. Bestimmen Sie die Länge der Strecke $s_1=\overline{OE'_1}$ sowie den Neigungswinkel δ_2 der Projektionsgeraden zur x_2 - x_3 -Ebene.
- (c) Die Projektionsgerade habe die Steigung $m_3=\frac{1}{2}$. Bestimmen Sie die Länge der Strecke $s_1=\overline{OE'_1}$ sowie den Neigungswinkel δ_3 der Projektionsgeraden zur x_2 - x_3 -Ebene.
- (d) In der Schule haben Sie zur Darstellung räumlicher Objekte möglicherweise immer wieder eine Axonometrie verwendet, bei der $s_1=\frac{\sqrt{2}}{2}$ und $\alpha=45^\circ$ galt. Welchen Neigungswinkel δ muss die Projektionsgerade zur x_2 - x_3 -Ebene haben, damit sich $s_1=\frac{\sqrt{2}}{2}$ ergibt?

Aufgabe P 6. Fortsetzung der Analyse – Projektion auf verschiedene Ebenen

- (a) Die Bildebene werden nun so "tiefergelegt", dass sie **parallel zur** x_2 - x_3 -Ebene ist und den Punkt (-1,0,0) enthält. Untersuchen Sie, wie die Punkte O, E_1 , E_2 und E_3 projiziert werden, wenn die Projektionsrichtung so ist wie in der ersten Teilaufgabe von P 5. Sind die Skaliserungsfaktoren s_1 , s_2 und s_3 gegenüber P 5 verändert?
- (b) Was verändert sich, wenn Sie die Bildebene π um eine weitere Längeneinheit "tieferlegen", so dass sie den Punkt (-2,0,0) enthält.
- (c) Wiederholen Sie diese Analyse für die Projektionsrichtungen, die in den übrigen Teilaufgaben von P 5 angegeben sind.
- (d) Versuchen Sie einen Ergebnissatz zu formulieren, der die von Ihnen beobachteten Sachverhalte bei Parallelprojektionen zusammenfasst:
 - Wenn man bei gegebenem räumlichen Dreibein $(O; E_1, E_2, E_3)$ und gegebener Projektionsrichtung unterschiedliche zueinander parallel liegende Bildebenen wählt, so verändert sich zwar die Lage ..., die ... bleiben jedoch unverändert.

Aufgabe P 7. Kuboktaeder

Die Einheitslänge in dieser Aufgabe sei $10\,\mathrm{cm}$. Zeichnen Sie einen Würfel mit Einheitskantenlänge $10\,\mathrm{cm}$ in einer Kavalierprojektion. Um Überdeckungen hinten liegender Kanten durch vordere Kanten möglichst zu vermeiden, können Sie zum Beispiel $\overrightarrow{OE_1} = \left(\begin{smallmatrix} 2\,\mathrm{cm} \\ 4\,\mathrm{cm} \end{smallmatrix} \right)$ oder auch $\overrightarrow{OE_1} = \left(\begin{smallmatrix} 4\,\mathrm{cm} \\ 2\,\mathrm{cm} \end{smallmatrix} \right)$ wählen.

- (a) Wie groß ist dann der Skalierungsfaktor s_1 ?
- (b) "Schneiden Sie" die acht Ecken des Würfels durch Ebenen "ab", welche die von den Ecken ausgehenden Kanten halbieren. Wieviele Flächen, Ecken und Kanten besitzt der so entstehende Kuboktaeder?
- (c) Bestimmen Sie die Anzahl e der Ecken, die Anzahl f der Flächen und die Anzahl k der Kanten für den Würfel.
- (d) Überprüfen Sie, ob die Anzahl e der Ecken, die Anzahl f der Flächen und die Anzahl k der Kanten **für den Kuboktaeder** die Eulersche Polyederformel erfüllt:

$$e - k + f = 2.$$

Hausübungen

Aufgabe H 3. Castellum

Im Folgenden sind der Grundriss sowie der Aufriss eines Castells gegeben. Fertigen Sie hieraus eine parallelperspektivische Darstellung in Militärperspektive an.

Aufgabe H 4. Dynamische veränderbare Darstellungen mit Geogebra

Versuchen Sie mit Geogebra eine Datei zur parallelperspektivischen Darstellung des Kuboktaeders von Aufgabe P 7 zu erstellen, die es Ihnen ermöglicht, die axonometrischen Angaben interaktiv zu verändern. Sie können sich der "Schieberegler"bedienen, die Geogegebra zur Verfügung stellt.

Tutoriumsübungen

Aufgabe T 1. Parallelprojektionen in die Aufrissebene

- (a) Zeichnen Sie einen Pyramidenstumpf mit quadratischem Grundriss (die Kantenlänge dürfen Sie wählen), dessen Spitze im Punkte S=(0,0,5) liegt. Der Boden des Pyramidenstumpfs liegt in der x_1 - x_2 -Ebene, der Deckel 3 Einheiten darüber. Verwenden Sie hierzu
 - \bullet die Kavalierprojektion mit den axonometrischen Angaben $\,\alpha\,=\,135^{\circ}$, $\,\beta\,=\,90^{\circ}$, $\,s_1\,=\,$
 - $\frac{\sqrt{2}}{2},\ s_2=1$ und $s_3=1.$ die Militärprojektion mit den Angaben $\alpha=135^\circ$, $\beta=135^\circ$, $s_1=1,\,s_2=1$ und
- (b) Zeichnen Sie separat einen Grundriss des Pyramidenstumpfbodens. Fügen Sie zum Grundrissquadrat einen Inkreis hinzu. Markieren Sie die Punkte, an denen der Kreis das Quadrat berührt.
- (c) Fügen Sie nun zu Ihren zuvor angefertigten parallelperspektivischen Darstellungen die Projektionsbilder des o.g. Kreises hinzu. Hinweis: Dieser Kreis erscheint als Ellipse, die Berührpunkte mit dem Bild des Grundrissquadrats werden "richtig" übertragen.
- (d) Zeichnen Sie nun in einer Ihrer zuvor angefertigten Darstellungen einen Kegelstumpf ein, der nach oben bzw. unten vom Deckel bzw. vom Boden des Pyramidenstumpfes begrenzt wird.

Aufgabe T 2. Parallelprojektionen in die Aufrissebene

Wir wollen ebene Dreibeine (O', E'_1, E'_2, E'_3) untersuchen, die durch Projektion eines kartesischen räumlichen Dreibeins (O, E_1, E_2, E_3) auf die x_2 - x_3 -Ebene entstehen. Im projizierten Bild zeigt die x_2 -Achse jeweils nach rechts, die x_3' -Achse nach oben. Um die Projektionsrichtung im Raum anzugeben, verwenden wir "geographische Koordinaten", d.h. den Längengrad φ und den Breitengrad θ des Durchstoßpunktes der Projektionsgeraden durch die im Ursprung zentrierte Einheitskugel (vgl. die Skizze).

(a) Beschreiben Sie, welche Parallelprojektionen das räumliche Dreibein jeweils auf die folgenden ebenen Dreibeine abbilden.

Aufgabe T 3. Günstige und weniger günstige Parallelperspektiven

(a) Skizzieren Sie einen achsenparallelen Quader mit Breite 2, Höhe 1 und Tiefe 3, dessen linke hintere untere Ecke am Punkt (0,2,0) liegt. Verwenden Sie hierzu die Kavalierprojektion mit den axonometrischen Angaben

$$\alpha = 135^{\circ}, \ \beta = 90^{\circ}, \ s_1 = \frac{\sqrt{2}}{2}, \ s_2 = 1, \ s_3 = 1.$$

(b) Skizzieren Sie den Quader nun in Kavalierprojektion mit den axonometrischen Angaben $\alpha=90^\circ$, $\beta=90^\circ$, $s_1=1$, $s_2=1$, $s_3=1$. Ist dies in punkte Anschaulichkeit eine günstige Projektion?

Aufgabe T 4. Koordinatenquader – Koordinatenbestimmung

Übertragen Sie die folgende Figur auf Ihr Papier, zeichnen Sie den Koordinatenquader von P und lesen Sie die Koordinaten des Punktes P ab. Der eingezeichnete Punkt P' soll in der Grundrissebene liegen.

Übertragen Sie die folgende Figur auf Ihr Papier, zeichnen Sie den Koordinatenquader von P und lesen Sie die Koordinaten des Punktes P ab. Der eingezeichnete Punkt P' soll in der Grundrissebene liegen.

P5 Analyse einiger Kavalierprojektionen

Abbildung 1: Rote Ebene = Bildebene $(x_2 = x_3)$, blaue Ebene = Menge der möglichen Projektionsgeraden $(x_1 = 0)$, grüne Gerade = Schnittgerade der beiden Ebenen diese bezeichnen wir als die Menge aller möglichen Punkte E_1' . Rote Achse = E_1 , blaue Achse = E_3 , grüne Achse = E_2

$$1 = \sqrt{x^2 + x^2} \tag{0.1}$$

$$1 = \sqrt{2} \cdot x \tag{0.2}$$

$$1 = \sqrt{x^2 + x^2}$$

$$1 = \sqrt{2} \cdot x$$

$$x = \frac{1}{\sqrt{2}}$$

$$(0.1)$$

$$(0.2)$$

$$(0.3)$$

$$s_1' = \begin{pmatrix} 0\\ \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} \tag{0.4}$$

$$s_1 = \overline{OE'_1}$$

$$s_1 := 1$$

$$(0.5)$$

$$(0.6)$$

$$s_1 \coloneqq 1 \tag{0.6}$$

b)

$$s_1 = \overline{OE_1'} \tag{0.7}$$

$$s_1 := 2 \tag{0.8}$$

$$\tan(\delta) = \frac{\text{Gegenkathete}}{\text{Ankathete}} \tag{0.9}$$

$$\delta = \tan^{-1}\left(\frac{1}{2}\right) \tag{0.10}$$

$$\delta = 26.57^{\circ} \tag{0.11}$$

c)

$$s_1 = \overline{OE_1'} \tag{0.12}$$

$$s_1 \coloneqq \frac{1}{2} \tag{0.13}$$

$$s_1 = \delta E_1 \tag{0.12}$$

$$s_1 := \frac{1}{2} \tag{0.13}$$

$$\tan(\delta) = \frac{\text{Gegenkathete}}{\text{Ankathete}} \tag{0.14}$$

$$\delta = \tan^{-1}\left(\frac{2}{1}\right) \tag{0.15}$$

$$\delta = \tan^{-1}\left(\frac{2}{1}\right) \tag{0.15}$$

$$\delta = 63.43^{\circ} \tag{0.16}$$

d)

$$s_1 = \overline{OE_1'} \tag{0.17}$$

$$s_1 \coloneqq \frac{\sqrt{2}}{2} \tag{0.18}$$

$$s_{1} = \overline{OE'_{1}}$$

$$s_{1} := \frac{\sqrt{2}}{2}$$

$$\tan(\delta) = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$

$$\delta = \tan^{-1}\left(\frac{2}{\sqrt{2}}\right)$$

$$(0.17)$$

$$(0.18)$$

$$(0.19)$$

$$\delta = \tan^{-1}\left(\frac{2}{\sqrt{2}}\right) \tag{0.20}$$

$$\delta = 54.74^{\circ} \tag{0.21}$$

P7 Kuboktaeder

Kuboktaeder:

Ecken(e): 12

Kanten(k): 24

Flächen:(f): 14

Die eulersche Polyederformel lautet: e - k + f = 2. Wenn man die Werte für die Ecken, Kanten und Flächen des Kuboktaeder einsetzt bekommt man: 12 - 24 + 14 = 2. Daraus erschließt sich, dass die eulersche Polyederformel erfüllt ist.

H3 Castellum

T1 Parallelprojektionen in die Aufrissebene

a)

18

c)

d)

T2 Parallelprojektionen in die Aufrissebene

a)

Bild 1:
$$\theta = 0^{\circ}$$
 $\phi = 0^{\circ}$
Bild 2: $\theta = 0^{\circ}$ $\phi = 90^{\circ}$
Bild 3: $\theta = 45^{\circ}$ $\phi = 90^{\circ}$

Bild
$$2:\theta = 0^{\circ}$$
 $\phi = 90^{\circ}$

Bild 3:
$$\theta = 45^{\circ}$$
 $\phi = 90^{\circ}$

T3 Parallelprojektionen in die Aufrissebene

T4 Parallelprojektionen in die Aufrissebene

P = (5,4,2);

P = (3,3,-2)

Übungseinheit 7

Prof. Dr. T. Schneider

Wintersemester 2017/18

Präsenzübungen

Mit unseren Werkzeugen aus der Analytischen Geometrie sind wir nun in der Lage, Parallelprojektionen zu berechnen. Was das im Einzelnen heißen soll, wird nun erklärt:

- Zur Spezifikation einer Parallelprojektion wird zunächst eine **Bildebene** B festgelegt, z.B. durch eine Hesse'sche Normalengleichung (HNG) der Form $\vec{n} \cdot (\vec{x} \vec{p}) = 0$.
- Zweitens wird ein Richtungsvektor \vec{r} festgelegt, der die Projektionsrichtung(en) ‡ spezifiziert.
- Wenn A ein Punkt im Raum mit Ortsvektor \vec{a} ist, so erhält man dessen Projektionsbild A', in der Bildebene indem man den Schnittpunkt derjenigen (Projektions-)Geraden g_A , die durch A verläuft und \vec{r} als Richtungsvektor hat, mit der Bildebene bestimmt: $A' = g_A \cap B$.
- Für jeden Raumpunkt A müssen wir eine eigene Parametergleichung $\vec{x} = \vec{a} + t \, \vec{r}$ für die entsprechende Projektionsgerade q_A aufstellen.
- Um nun zu einem gegebenen Raumpunkt A den Bildpunkt A' zu berechnen, setzt man den Ausdruck $\vec{a}+t\,\vec{r}$ anstelle von \vec{x} in die HNG $\vec{n}\cdot(\vec{x}-\vec{p})=0$ der Bildebene B ein. Die sich ergebende Gleichung

$$\vec{n} \cdot (\vec{a} + t \, \vec{r} - \vec{p}) = 0$$

löst man nach $\,t\,$ auf, den so gefundenen Wert $\,t^*\,$ setzt man in die Parametergleichung der Geraden ein und erhält

$$\vec{a}' = \vec{a} + t^* \vec{r}.$$

Aufgabe P 12. Berechnung einer Parallelprojektion – Schrägprojektion

Im Folgenden wollen wir die Kavalier- oder Kabinettprojektion betrachten, die sich ergibt, wenn man als Bildebene die x_2 - x_3 -Koordinatenebene und als Richtungsvektor für die Projektionsgeraden den Vektor $\vec{r} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ verwendet.

- (a) Bestimmen Sie eine Hesse'sche Normalengleichung für die x_2 - x_3 -Koordinatenebene. Diese enthält u.a. den Koordinatenurspung O=(0,0,0) sowie die Punkte $E_2=(0,1,0)$ und $E_3=(0,0,1)$.
- (b) Berechnen Sie die Projektionsbilder O', E_1' , E_2' und E_3' der Punkte O, $E_1=(1,0,0)$, E_2 und E_3 .
- (c) Zeichnen Sie die Punkte O', E_1' , E_2' und E_3' .
- (d) **Bestimmen Sie** die axonometrischen Angaben $s_1 = \left\|\overrightarrow{O'E_1'}\right\|$, $s_2 = \left\|\overrightarrow{O'E_2'}\right\|$, $s_3 = \left\|\overrightarrow{O'E_3'}\right\|$ sowie $\alpha = \angle\left(\overrightarrow{O'E_1'}, \overrightarrow{O'E_3'}\right)$ und $\beta = \angle\left(\overrightarrow{O'E_2'}, \overrightarrow{O'E_3'}\right)$ für diese Parallelprojektion.
- (e) Berechnen Sie die Projektionsbilder der Punkte $A=(1,1,0),\ B=(1,0,1),\ C=(0,1,1)$ und D=(1,1,1).
- (f) Ergänzen Sie Ihre Skizze aus Teilaufgabe (c) um die Punkte A', B', c' und D'. Vervollständigen Sie das Projektionsbild des Einheitswürfels mit den noch fehlenden Kanten.

 $^{^{\}ddagger}$ Die tatsächlich verwendete Projektionsrichung ist entweder gleich der Richtung von \vec{r} oder von $-\vec{r}$. Wenn man ganz präzise formulieren möchte, müsste man sagen, dass der Richtungsvektor \vec{r} die **Parallelklasse** festlegt, der alle Projektionsgeraden angehören.

Hausübungen

Aufgabe H 17. Ergänzungen zur Aufgabe P 12

- (a) Diskutieren Sie, was sich gegenüber der vorigen Aufgabe verändert, wenn Sie als Bildebene nicht die x_2 - x_3 -Koordinatenebene, sondern die hierzu parallele Ebene mit der Gleichung $x_1=-2$ verwenden.
- (b) Die Parallelprojektion der vorigen Aufgabe hat u.a. den Nachteil, dass das Projektionsbild des Einheitswürfels für unser Auge eher wie ein Quader wirkt. Welchen Richtungsvektor für die Projektionsgeraden müssen Sie wählen, damit sich bei gleichbleibendem Winkel $\alpha=45^\circ$ der Skalierungsfaktor $s_1=\frac{1}{\sqrt{2}}$ ergibt

Aufgabe H 18. Orthogonale isometrische Parallelprojektion

Wir betrachten nun die Parallelprojektion auf die Bildebene B, welche die Punkte $E_1=(1,0,0),\ E_2=(0,1,0)$ und $E_3=(0,0,1)$ enthält. Als Richtungsvektor für die Projektionsgeraden wählen wir $\vec{r}=\left(\begin{smallmatrix}1\\1\\1\end{smallmatrix}\right)$.

(a) Bestimmen Sie einen Normalenvektor \vec{n} für die Bildebene. Falls Sie einen solchen nicht direkt "erraten" können, setzen Sie $\vec{u}:=\overrightarrow{E_2E_3}=\begin{pmatrix} 0\\-1\\1\end{pmatrix}$ und $\vec{v}:=\overrightarrow{E_2E_1}=\begin{pmatrix} 1\\-1\\0\end{pmatrix}$ und berechnen Sie das Kreuzprodukt

$$\vec{n} = \vec{u} \times \vec{v}.$$

- (b) Bestimmen Sie die Projektionsbilder der Punkte $E_1=(1,0,0),\ E_2=(0,1,0)$ und $E_3=(0,0,1)$ und berechnen Sie das Projektionsbild des Punktes O.
- (c) Berechnen Sie die Längen der Strecken $\overline{O'E'_1}$, $\overline{O'E'_2}$ und $\overline{O'E_3}$.

Hinweis: Damit haben Sie die Skalierungsfaktoren s_1 , s_2 und s_3 bestimmt.

P12 Berechnung einer Parallelprojektion- Schrägprojektion

a)
$$O = (0,0,0), E_2 = (0,1,0), E_3 = (0,0,1)$$

Berechnung der Richtungsvektoren $\overline{OE_2}$ und $\overline{OE_3}$

$$\overline{OE_2} = \begin{pmatrix} 0 - 0 \\ 0 - 1 \\ 0 - 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$
(0.22)

$$\overline{OE_3} = \begin{pmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$
(0.23)

Auufstellen der Hesse'schen Normalengleichung

$$\vec{n_0} \cdot [\vec{x} - \vec{p}] = 0 \tag{0.24}$$

$$\vec{n_0} = \overline{OE_2} \times \overline{OE_3} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \tag{0.25}$$

$$\vec{n_0} \cdot [\vec{x} - \vec{p}] = 0 \tag{0.26}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} = 0 \tag{0.27}$$

Aufpunkt \vec{p} kann hierbei sowohl $E_2=(0,1,0)$ als auch $E_3=(0,0,1)$ sein.

b) Richtungsvektor der Projektionsgeraden $\vec{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $E_1 = (1,0,0)$

Für jeden Punkt O, E_1, E_2, E_3 muss eine Parametergleichung der Form $\vec{x} = \vec{a} + t \cdot \vec{r}$ aufgestellt werden.

$$O := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.28}$$

$$E_1 := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.29}$$

$$E_2 := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.30}$$

$$E_3 := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.31}$$

Diese Parametergleichungen werden nun in der Hesse'schen Normalform der Ebene anstelle von \vec{x} eingesetzt.

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0$$
 (0.32)

$$\rightsquigarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} = 0 \tag{0.33}$$

$$0 + 0 + 0 + t + 0 + 0 - 0 + 0 + 0 = 0 (0.35)$$

$$\sim t = 0 \tag{0.36}$$

t einsetzen in $O := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$O' := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (0.37)

Für E_1

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.38}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right] = 0 \tag{0.39}$$

$$1 + 0 + 0 + t + 0 + 0 - 0 + 0 + 0 = 0 (0.41)$$

t einsetzen in $E_1 := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$E_1' := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$$
 (0.43)

Für E_2

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.44}$$

$$0 + 0 + 0 + t + 0 + 0 - 0 - 0 - 0 = 0 (0.47)$$

t einsetzen in $E_2 := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$E_2' := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (0) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 (0.49)

Für E_3

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.50}$$

$$0 + 0 + 0 + t + 0 + 0 - 0 - 0 - 0 = 0 (0.53)$$

t einsetzen in $E_3 := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$E_3' := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + (0) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{0.55}$$

c)

d)
$$s_1 = ||\overrightarrow{OE_1'}||, \ s_2 = ||\overrightarrow{OE_2'}||, \ s_3 = ||\overrightarrow{OE_3'}||, \ \alpha \angle (\overrightarrow{OE_1'}, \overrightarrow{OE_3'}), \ \beta \angle (\overrightarrow{OE_2'}, \overrightarrow{OE_3'})$$

$$s_1 = \sqrt{1^2 + 0^2 + 0^2} \rightsquigarrow s_1 = 1 \tag{0.56}$$

$$s_2 = \sqrt{0^2 + 1^2 + 0^2} \leadsto s_1 = 1 \tag{0.57}$$

$$s_1 = \sqrt{0^2 + (-1)^2 + (-1)^2} \rightsquigarrow s_1 = \sqrt{2}$$
 (0.58)

$$\cos(\alpha) = \frac{\overrightarrow{OE'_1} \cdot \overrightarrow{OE'_3}}{|\overrightarrow{OE'_1}| \cdot |\overrightarrow{OE'_2}|} \rightsquigarrow \cos(\alpha) = \frac{\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\sqrt{2} \cdot 1} \rightsquigarrow \cos(\alpha) = \frac{0 + 0 - 1}{\sqrt{2}}$$
(0.59)

$$\cos(\beta) = \frac{\overrightarrow{OE_2'} \cdot \overrightarrow{OE_3'}}{|\overrightarrow{OE_2'}| \cdot |\overrightarrow{OE_3'}|} \rightsquigarrow \cos(\beta) = \frac{\begin{pmatrix} 0\\1\\0 \end{pmatrix} \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix}}{1 \cdot 1} \rightsquigarrow \cos(\beta) = \frac{0 + 0 + 0}{1} \tag{0.61}$$

$$\sim \cos^{-1}(0) = 90^{\circ}$$
 (0.62)

e)
$$A = (1, 1, 0), B = (1, 0, 1), C = (0, 1, 1), D = (1, 1, 1),$$
 Bildebene: $\vec{n_0} \cdot (\vec{x} - \vec{p}) = 0,$ $\vec{n_0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, Projektionsrichtung: $r = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Für jeden Punkt A,B,C,D muss eine Parametergleichung der Form $\vec{x}=\vec{a}+t\cdot\vec{r}$ aufgestellt werden.

$$A := \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.63}$$

$$B := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.64}$$

$$C := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.65}$$

$$D := \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.66}$$

Für A

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.67}$$

$$\sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \left[\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right] = 0 \tag{0.68}$$

$$1 + 0 + 0 + t + 0 + 0 - 0 - 0 - 0 = 0 (0.70)$$

t einsetzen in $A' := \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$A' := \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$
 (0.72)

Für B

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.73}$$

$$1 + 0 + 0 + t + 0 + 0 - 0 - 0 - 0 = 0 (0.76)$$

 $t \text{ einsetzen in } B := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$

$$B' := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \tag{0.78}$$

Für C

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.79}$$

$$0 + 0 + 0 + t + 0 + 0 - 0 - 0 - 0 = 0 (0.82)$$

t einsetzen in $C := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$C' := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + (0) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \tag{0.84}$$

Für D

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.85}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \left[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right] = 0 \tag{0.86}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} t \\ t \\ t \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \tag{0.87}$$

$$1 + 0 + 0 + t + 0 + 0 - 0 - 0 - 0 = 0 (0.88)$$

$$t$$
 einsetzen in $D := \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$D' := \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (0.90)

f)

H17 Ergänzung zur Aufgabe P12

a) Wenn man bei gegebenem räumlichen Dreibein O, E1, E2, E3 und gegebener Projektionsrichtung unterschiedliche zueinander parallel liegende Bildebenen wählt, so verändert sich zwar die Lage der Projektionspunkte , die Skalierungsfaktoren bleiben jedoch unverändert.

b

der Richtungsvektor müsstet einsetzen in $D:=\vec{x}=\begin{pmatrix}1\\\frac{1}{2}\\\frac{1}{2}\end{pmatrix}$ betragen.

H18 Orthogonale isometrische Parallelprojektion

a)

Der Normalenvektor ist $\vec{n_0} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$). Um die Nachzurpüfen können wir das Kreizprodukt

aus
$$\vec{u} := \overline{E_2 E_3} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 und $\vec{v} := \overline{E_2 E_1} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

$$\vec{n_0} = \vec{u} \times \vec{v} \tag{0.91}$$

$$\vec{n_0} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \tag{0.92}$$

$$\vec{n_0} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{0.93}$$

b) Projektionbilder von
$$E_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$O := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.94}$$

$$E_1 := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.95}$$

$$E_2 := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.96}$$

$$E_3 := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{0.97}$$

 $\overline{40}$

Für E_1

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.98}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right] = 0 \tag{0.99}$$

$$\rightsquigarrow \begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} t\\t\\t \end{pmatrix} - \begin{pmatrix} 1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} = 0 \tag{0.100}$$

$$1 + 0 + 0 + t + t + t - 1 - 0 - 0 = 0 (0.101)$$

t einsetzen in $E_1 := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$E_1' := \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (0) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 (0.103)

Für E_2

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.104}$$

$$1 + 0 + 0 + t + t + t - 1 - 0 - 0 = 0 (0.107)$$

$$t$$
 einsetzen in $E_2 := \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$E_2' \coloneqq \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (0) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \tag{0.109}$$

Für E_3

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0$$
 (0.110)

$$0 + 0 + 1 + t + t + t - 1 - 0 - 0 = 0 (0.113)$$

$$t$$
 einsetzen in $E_3 := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$E_3' := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + (0) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (0.115)

Für O

 $\overline{42}$

$$\vec{n_0} \cdot (\vec{a} + t \cdot \vec{r} - \vec{p}) = 0 \tag{0.116}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{bmatrix} = 0 \tag{0.117}$$

$$\rightsquigarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} t \\ t \\ t \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0 \tag{0.118}$$

$$0 + 0 + 0 + t + t + t - 1 - 0 - 0 = 0 (0.119)$$

 $t \text{ einsetzen in } O := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$O' := \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightsquigarrow \vec{x} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$
 (0.121)

c) Bestimmen von $s_1 = \overline{O'E_1'}, s_2 = \overline{O'E_2'}, s_3 = \overline{O'E_3'}.$

$$\overline{O'E'_1} = \begin{pmatrix} 1 - \frac{1}{3} \\ 0 - \frac{1}{3} \\ 0 - \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{pmatrix} \tag{0.122}$$

$$\rightsquigarrow |\overline{O'E_1'}| = \frac{\sqrt{2}}{3} \tag{0.124}$$

$$\overline{O'E_2'} = \begin{pmatrix} 0 - \frac{1}{3} \\ 1 - \frac{1}{3} \\ 0 - \frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} \tag{0.125}$$

$$\Rightarrow |\overline{O'E_2'}| = \sqrt{-\frac{2^2}{3} + \frac{2^2}{3} - \frac{1}{3}^2}$$
 (0.126)

$$\overline{O'E3'} = \begin{pmatrix} 0 - \frac{1}{3} \\ 0 - \frac{1}{3} \\ 1 - \frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$
(0.128)

$$\Rightarrow |\overline{O'E_3'}| = \sqrt{-\frac{2^2}{3} - \frac{1}{3}^2 + \frac{2^2}{3}}$$
 (0.129)