Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

16 novembre 2022

Alberi evolutivi — Filogenesi

Evoluzione

Effetti visibili in generazioni

Evoluzione

- Effetti visibili in generazioni
- Mutazioni casuali

Mutazioni reali

Mutazione fantasiosa

Evoluzione in un individuo

Cellule accumulano mutazioni durante la vita

Evoluzione basata su caratteri

Regola 1 (semplice

Ogni carattere è acquisito esattamente una volta nell'albero.

	Α	J	Η	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

	Α	J	Η	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

Problema

	A	J	Η	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

Problema

■ Input: matrice binaria M

	Α	J	Η	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

Problema

- Input: matrice binaria M
- Output: un albero che spiega M, se esiste

A	J	Н	L	V
0	0	0	0	0
0	0	0	0	1
0	1	0	0	1
0	1	0	1	1
1	1	0	1	1
1	1	1	1	1
	-		0 0 0 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 1 0 0

Problema

- Input: matrice binaria M
- Output: un albero che spicga M, se esiste

	Α	J	Н	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

Problema

- Input: matrice binaria M
- Output: un albero che spiega M, se esiste

Algorithm di Gusfield — lineare

	Α	J	Η	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

Problema

- Input: matrice binaria M
- Output: un albero che spiega M, se esiste

Algorithm di Gusfield — lineare

Radix Sort delle colonne, in ordine decrescente (anche del numero di 1)

Α	J	Н	L	V
0	0	0	0	0
0	0	0	0	1
0	1	0	0	1
0	1	0	1	1
1	1	0	1	1
1	1	1	1	1
	0 0 0 0 1 1	A J 0 0 0 0 0 1 0 1 1 1 1 1	A	A J H L 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1

Problema

- Input: matrice binaria M
- Output: un albero che spiega M, se esiste

Algorithm di Gusfield — lineare

- Radix Sort delle colonne, in ordine decrescente (anche del numero di 1)
- 2 Costruire l'albero, una specie alla volta

Cambio di state

Cambio di stato

■ Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco

Cambio di stato

- Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco
- Un carattere c è perso ⇒ lo stato di c passa da 1 a 0 in un arco (mutazione ricorrente)

Cambio di stato

- Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco
- Un carattere c è perso ⇒ lo stato di c passa da 1 a 0 in un arco (mutazione ricorrente)

Modelli di evoluzione

Ogni carattere c è acquisito esattamente una volta nell'albero.

Cambio di stato

- Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco
- Un carattere c è perso ⇒ lo stato di c passa da 1 a 0 in un arco (mutazione ricorrente)

Modelli di evoluzione

Ogni carattere c è acquisito esattamente una volta nell'albero.

1 Filogenesi perfetta: nessuna mutazione ricorrente, nessuna perdita

Cambio di stato

- Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco
- Un carattere c è perso ⇒ lo stato di c passa da 1 a 0 in un arco (mutazione ricorrente)

Modelli di evoluzione

Ogni carattere c è acquisito esattamente una volta nell'albero.

- 1 Filogenesi perfetta: nessuna mutazione ricorrente, nessuna perdita
- 2 Dollo: mutazioni ricorrenti senza limiti, ma senza perdite

Cambio di stato

- Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco
- Un carattere c è perso ⇒ lo stato di c passa da 1 a 0 in un arco (mutazione ricorrente)

Modelli di evoluzione

Ogni carattere c è acquisito esattamente una volta nell'albero.

- 1 Filogenesi perfetta: nessuna mutazione ricorrente, nessuna perdita
- 2 Dollo: mutazioni ricorrenti senza limiti, ma senza perdite
- 3 Camin-Sokal: Perdite senza limiti, ma senza mutazioni ricorrenti

Piccola (topologia nota) vs grande (topologia ignota)

- Piccola (topologia nota) vs grande (topologia ignota)
- Algoritmo di Fitch

- Piccola (topologia nota) vs grande (topologia ignota)
- Algoritmo di Fitch
- Algoritmo di Sankoff

- Piccola (topologia nota) vs grande (topologia ignota)
- Algoritmo di Fitch
- Algoritmo di Sankoff
- Confronto

Istanza

Istanza

Matrice M con n specie e insieme di m caratteri C.

Istanza

- Matrice M con n specie e insieme di m caratteri C.
- Albero T, le cui foglie corrispondono alle specie di M

Istanza

- Matrice M con n specie e insieme di m caratteri C.
- Albero T, le cui foglie corrispondono alle specie di M
- Per ogni carattere $c \in C$, un costo w_c fra ogni coppia di stati

Istanza

- Matrice M con n specie e insieme di m caratteri C.
- Albero T, le cui foglie corrispondono alle specie di M
- Per ogni carattere $c \in C$, un costo w_c fra ogni coppia di stati

Soluzioni ammissibili

Per ogni carattere $c \in C$, una etichettatura λ_c che assegna ad ogni nodo uno degli stati possibili per C

Istanza

- Matrice M con n specie e insieme di m caratteri C.
- Albero T, le cui foglie corrispondono alle specie di M
- Per ogni carattere $c \in C$, un costo w_c fra ogni coppia di stati

Soluzioni ammissibili

Per ogni carattere $c \in C$, una etichettatura λ_c che assegna ad ogni nodo uno degli stati possibili per C

Funzione obiettivo

 $\min \sum_{c \in C} \sum_{(x,y) \in E(T)} w_c(\lambda_c(x), \lambda_c(y))$, dove E(T) è l'insieme di lati di T

Algoritmo Sankoff

Osservazione

Ogni carattere può essere gestito separatamente

Algoritmo Sankoff

Osservazione

Ogni carattere può essere gestito separatamente

Programmazione dinamica

Algoritmo Sankoff

Osservazione

Ogni carattere può essere gestito separatamente

Programmazione dinamica

P[x, z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z

Osservazione

Ogni carattere può essere gestito separatamente

- P[x, z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z
- P[x, z] = 0, se x è una foglia con etichetta z

Osservazione

Ogni carattere può essere gestito separatamente

- P[x, z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z
- P[x, z] = 0, se x è una foglia con etichetta z
- $P[x, z] = +\infty$, se x è una foglia con etichetta diversa da z

Osservazione

Ogni carattere può essere gestito separatamente

- P[x,z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z
- P[x, z] = 0, se x è una foglia con etichetta z
- $P[x, z] = +\infty$, se x è una foglia con etichetta diversa da z
- $P[x,z] = \sum_{f \in F(x)} \min_s \{w(z,s) + P[f,s]\}, dove F(x) è l'insieme dei figli di x in T, se x è un nodo interno$

Osservazione

Ogni carattere può essere gestito separatamente

- P[x, z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z
- P[x, z] = 0, se x è una foglia con etichetta z
- $P[x, z] = +\infty$, se x è una foglia con etichetta diversa da z
- $P[x,z] = \sum_{f \in F(x)} \min_s \{w(z,s) + P[f,s]\}$, dove F(x) è l'insieme dei figli di x in T, se x è un nodo interno
- soluzione ottimale $\min_s \{P[r, s]\}$, dove r è la radice di T

Solo per il caso non pesato, albero T binario

Algoritme

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

Solo per il caso non pesato, albero T binario

Algoritme

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

 $S(x) = \lambda_c(x)$, se x è una foglia

Solo per il caso non pesato, albero T binario

Algoritme

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_1) \cap S(f_r)$, dove f_1 e f_r sono i figli di x in T, se $S(f_1) \cap S(f_r) \neq \emptyset$

Come estendere Fitch ad albero generico (sempre caso non pesato)?

Solo per il caso non pesato, albero T binario

Algoritme

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_1) \cap S(f_r)$, dove f_1 e f_r sono i figli di x in T, se $S(f_1) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_1) \cup S(f_r)$, dove f_1 e f_r sono i figli di x in T, se $S(f_1) \cap S(f_r) = \emptyset$

Solo per il caso non pesato, albero T binario

Algoritme

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_1) \cap S(f_r)$, dove f_1 e f_r sono i figli di x in T, se $S(f_1) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_1) \cup S(f_r)$, dove f_1 e f_r sono i figli di x in T, se $S(f_1) \cap S(f_r) = \emptyset$

Unificazione

B(x): insieme degli stati z tali che P[x, z] è minimo. B(x) = S(x)

Distanza

 $d: S \times S \longrightarrow \mathbb{R}^+$ tale che:

Distanza

1
$$d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$$

Distanza

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$
- **2** $d(a, b) = d(b, a), \forall a, b \in S \text{ (simmetria)}$

Distanza

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$
- **2** $d(a, b) = d(b, a), \forall a, b \in S \text{ (simmetria)}$
- 3 $d(a, b) \le d(a, c) + d(c, b), \forall a, b, c \in S$ (disuguaglianza triangolare)

definizione

definizione

1
$$d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$$

definizione

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$
- **2** $d(a, b) = d(b, a), \forall a, b \in S$ (simmetria)

definizione

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$
- **2** $d(a, b) = d(b, a), \forall a, b \in S \text{ (simmetria)}$
- 3 $d(a, b) ≤ d(a, c) + d(c, b), \forall a, b, c ∈ S$ (disuguaglianza triangolare)

definizione

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a, b \in S$
- **2** $d(a, b) = d(b, a), \forall a, b \in S \text{ (simmetria)}$
- 3 $d(a, b) \le d(a, c) + d(c, b), \forall a, b, c \in S$ (disuguaglianza triangolare)
- max{d(a, b), d(a, c), d(c, b)} ottenuto da almeno 2 casi, \forall a, b, c ∈ S

Ultrametrica e orologio molecolare.

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

Condizione dei 4 punti

Si consideri:

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

Condizione dei 4 punti

Si consideri:

$$1 D[v,w] + D[x,y]$$

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

Condizione dei 4 punti

Si consideri:

- 1 D[v,w] + D[x,y]
- 2 D[v, x] + D[w, y]

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

Condizione dei 4 punti

Si consideri:

- 1 D[v, w] + D[x, y]
- 2 D[v, x] + D[w, y]
- D[v,y] + D[w,x]

Algoritmo per matrice di distanze additive.

Tripla degenere

Siano x, y, z tre specie e sia D la matrice di distanza. Allora la tripla (x,y,z) è degenere se D[x,y] + D[x,z] = D[y,z].

Algoritmo per matrice di distanze additive.

Tripla degenere

Siano x, y, z tre specie e sia D la matrice di distanza. Allora la tripla (x, y, z) è degenere se D[x, y] + D[x, z] = D[y, z].

Sbilancio

Siano x, y, z tre specie e sia D la matrice di distanza. Allora lo sbilancio di x rispetto a (y, z) è S(x, y, z) = D[x, y] + D[x, z] - D[y, z].

Unweighted Pair Group with Arithmetic Mean

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, \cdot)$, ottenendo C

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, \cdot)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, \cdot)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $h(C) \leftarrow \frac{1}{2}D(C_1, C_2)$

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, \cdot)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $h(C) \leftarrow \frac{1}{2}D(C_1, C_2)$
- $h(C) h(C_1)$ etichetta (C, C_1) ; $h(C) h(C_2)$ etichetta (C, C_2)

- Unweighted Pair Group with Arithmetic Mean
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, \cdot)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $h(C) \leftarrow \frac{1}{2}D(C_1, C_2)$
- $h(C) h(C_1)$ etichetta (C, C_1) ; $h(C) h(C_2)$ etichetta (C, C_2)
- UPGMA produce ultrametrica

Neighbor Joining.

■
$$D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$$

Neighbor Joining.

■
$$D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$$

■
$$u(C) \leftarrow \frac{1}{\text{num. cluster-2}} \sum_{C_3} D(C, C_3)$$

■
$$D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$$

- $u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) u(C_1) u(C_2)$, ottenendo C

- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- $u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) u(C_1) u(C_2)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$

- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- $u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) \mathfrak{u}(C_1) \mathfrak{u}(C_2)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $\frac{1}{2}$ (D(C₁, C₂) + u(C₁) u(C₂)) etichetta (C, C₁)

■
$$D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$$

- $u(C) \leftarrow \frac{1}{\text{num. cluster-2}} \sum_{C_3} D(C, C_3)$
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) u(C_1) u(C_2)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $\frac{1}{2}$ (D(C₁, C₂) + u(C₁) u(C₂)) etichetta (C, C₁)
- $\frac{1}{2}$ (D(C₁, C₂) + u(C₂) u(C₁)) etichetta (C, C₂)

Probabilità di transizione fra stati (A, C, G, T).

J. Felsenstein. Theoretical Evolutionary Genetics

- Probabilità di transizione fra stati (A, C, G, T).
- dipende dal tempo trascorso fra i due eventi

J. Felsenstein. Theoretical Evolutionary Genetics

- Probabilità di transizione fra stati (A, C, G, T).
- dipende dal tempo trascorso fra i due eventi
- tasso istantaneo di mutazione

J. Felsenstein. Theoretical Evolutionary Genetics

- Probabilità di transizione fra stati (A, C, G, T).
- dipende dal tempo trascorso fra i due eventi
- tasso istantaneo di mutazione
- probabilità di mutazione *in una generazione*: somma su ogni riga = 1
- J. Felsenstein. Theoretical Evolutionary Genetics

Modelli di evoluzione: Jukes-Cantor.

ogni mutazione è equiprobabile

Modelli di evoluzione: Jukes-Cantor.

- ogni mutazione è equiprobabile
- 1 μ: nessuna mutazione

Modelli di evoluzione: Jukes-Cantor.

- ogni mutazione è equiprobabile
- 1 μ: nessuna mutazione
- $\mu/3$: mutazione

Distinzione transizioni (A \leftrightarrow G, C \leftrightarrow T), transversioni

- Distinzione transizioni (A \leftrightarrow G, C \leftrightarrow T), transversioni
- 1 μ: nessuna mutazione

- Distinzione transizioni (A \leftrightarrow G, C \leftrightarrow T), transversioni
- 1 μ: nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione

- Distinzione transizioni (A \leftrightarrow G, C \leftrightarrow T), transversioni
- 1 μ: nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione A \leftrightarrow C o G \leftrightarrow T

- Distinzione transizioni (A \leftrightarrow G, C \leftrightarrow T), transversioni
- 1 μ: nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione A \leftrightarrow C o G \leftrightarrow T
- $=\frac{1}{2(R+1)}\mu$: probabilità di trasversione A \leftrightarrow T o C \leftrightarrow G

- Distinzione transizioni (A \leftrightarrow G, C \leftrightarrow T), transversioni
- 1 μ: nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione A \leftrightarrow C o G \leftrightarrow T
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione A \leftrightarrow T o C \leftrightarrow G
- R = $\frac{R}{R+1}\mu/\left(2\frac{1}{2(R+1)}\mu\right)$: rapporto probabilità di transizioni / probabilità trasversioni

Modelli di evoluzione: General time-reversible

matrice simmetrica

Modelli di evoluzione: General time-reversible

- matrice simmetrica
- consequenza: alberi senza radice

Massima verosimiglianza.

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. (https://creativecommons.org/licenses/by-sa/4.0/). Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

Attribuzione — Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.