Building UTxO-Optimized Dapps

Lars Brünjes & Marvin Bertin

Introduction

Outline

- What is a blockchain anyway?
- Smart contracts and DApps
- Accounting models account based and EUTxO
- Advantages of the EUTxO-model

What is a Blockchain?

Ledger
By RaphaelQS, licensed under CC0 1.0

Decentralised!

- Everybody can participate.
- Data is distributed.

Ledger
By RaphaelQS, licensed under CC0 1.0

Decentralised!

- Everybody can participate.
- Data is distributed.

Write-only

- Like writing with ink that becomes indelible once dried.
- Consensus on the "dried" parts.

Ledger
By RaphaelQS, licensed under CC0 1.0

Decentralised!

- Everybody can participate.
- Data is distributed.
- Write-only
 - Like writing with ink that becomes indelible once dried.
 - Consensus on the "dried" parts.
- All the fancy crypto is there to make this possible!

Ledger
By RaphaelQS, licensed under CC0 1.0

What are Smart Contracts & DApps?

Digital signatures authorize payments.

• Digital signatures authorize payments.

 The blockchain keeps track of movement of value.

Smart Contracts

Digital signatures authorize payments.

The blockchain keeps track of movement of value.

 Payment validity is determined by "arbitrary logic"

Smart Contracts

Digital signatures authorize payments.

The blockchain keeps track of movement of value.

- Payment validity is determined by "arbitrary logic"
- "Arbitrary" data can be stored and processed.

DApps

- DApps ("decentralized apps") are Apps interacting with the blockchain.
- They combine traditional components like a website and database with smart contracts and the ability to query the blockchain and submit transactions.
- They provide a user-friendly interface to the blockchain.
- Typical applications are DEX's ("decentralized exchanges"), NFT
 marketplaces and multiplayer games, but we've only just begun to explore the
 realm of the possible.

Accounting Models: The Current Standard

The account-based model

- Used by Ethereum and others.
- Similar to how banks do it: Accounts have balances, and transactions decrease one balance and increase another accordingly.
- The state of the system is given by the current balance on each account.
- A transaction updates the balances.

Alice starts with ETH 100, Bob with ETH 50

Account	Balance
Alice	100
Bob	50
Charlie	0

Alice sends ETH 10 to Bob

Account	Balance
Alice	100
Bob	50
Charlie	0

Account	Balance
Alice	90
Bob	60
Charlie	0

Alice and Bob send ETH 55 each to Charlie

Account	Balance
Alice	100
Bob	50
Charlie	0

Account	Balance
Alice	90
Bob	60
Charlie	0

Account	Balance
Alice	35
Bob	5
Charlie	110

Smart contracts in the account-based model

- Accounts not only hold value, but also optional functions and data.
- A transaction calls a function of an account, which can call functions of other accounts. If one of those functions fails, the transaction fails.
- The functions can transfer value and modify data.
- Functions "see" the whole current state of the blockchain.

Accounting Models: Cardano's

(E)UTxO-Model

The UTxO-model

- Used by Bitcoin, Cardano and others.
- Somewhat similar to coins: Users control several UTxO's (unspent transaction outputs), who have to be spent completely or not at all.
- The state of the system is given by the current set of UTxO's.
- A transaction "spends" some UTxO's and creates new ones, but never modifies anything else.

Alice starts with \$\pm4100\$, Bob with \$\pm50\$

Alice sends ★10 to Bob

Alice and Bob send #55 each to Charlie

The EUTxO-model (extended UTxO-model)

- Adds smart contract capability to Cardano.
- In addition to value, Cardano UTxO's can optionally carry data.
- Instead of addresses given by cryptographic keys, UTxO's can "sit" at addresses given by a "validator", a piece of code.
- During validation, that code is executed in the context of the transaction being validated (and nothing else).

Advantages of the (E)UTxO-Model

Key differences between the models

Account based	EUTxO
Transactions modify balances and data "in place".	Everything is immutable. All that changes is the UTxO-set.
Whether a transaction is valid or not depends of the state of the whole blockchain.	Validation context is the transaction with its inputs and outputs and nothing else.
The effect of a transaction is generally not know upon submission.	The effect of a transaction is deterministic and known upon submission.
Transaction can fail and still cost money.	Failing transactions are free.

 Since the validation context is restricted to a transaction with its inputs and outputs, it is much easier to understand and analyze what can and can not happen.

- Since the validation context is restricted to a transaction with its inputs and outputs, it is much easier to understand and analyze what can and can not happen.
- As long as transaction inputs and outputs do not overlap, they are independent, and their order does not matter.

- Since the validation context is restricted to a transaction with its inputs and outputs, it is much easier to understand and analyze what can and can not happen.
- As long as transaction inputs and outputs do not overlap, they are independent, and their order does not matter.
- State can be split into many UTxO's, facilitating concurrency and enabling Layer-2-technologies like Hydra.

- Since the validation context is restricted to a transaction with its inputs and outputs, it is much easier to understand and analyze what can and can not happen.
- As long as transaction inputs and outputs do not overlap, they are independent, and their order does not matter.
- State can be split into many UTxO's, facilitating concurrency and enabling Layer-2-technologies like Hydra.
- This makes writing correct and highly performant smart contracts much easier, provided they fully embrace the model.

How to build scalable UTxO-optimized DApps

Most Web3 DApps are specifically designed for EVM account-base smart contracts

Account-based blockchains properties:

- Global state wallets & contracts
- Mutable account address
- Sequential single-threaded Tx
- On-chain computation
- Non-deterministic transactions

Web3 protocol architectures are design to fit EVM paradigm

- Liquidity pools
- AMMs
- Monolithic dapps

EUTxO blockchains like Cardano employ a fundamentally different smart contract paradigm

UTXO Properties

- Distributed state wallets & contracts
- Immutable UTxOs
- Transaction parallelism, multi-threaded
- Off-chain computation, onchain verification
- Transaction are deterministic

Key Advantages

- 1 UTxO Tx = many account Txs
- Transaction multitasking
- Transaction parallelism

User Wallet &

Script Address

User Wallet &

Script Address

Account

Copying EVM dapp architecture is leads to anti-patterns and poor performance

UTxO Contention

• A UTXO can be used once per block

Anti-patterns to avoid on Cardano

- Track state in a single UTxO (global state)
- Many users need to interact with one UTxO

A complete redesign of dapp protocol is required to take advantage of UTxO's unique feature such as determinism, parallelism, scalability and composability

A UTxO-optimized design makes for simpler & more scalable DApps

Protocols architectures that benefit from UTxOs

- Highly parallelizable algorithms
- State fragmentation grows with number of users
- State machine models

UTxOs are very powerful. If used correctly allow to build both different and better dapps compared to EVM dapps. However, novel protocol designs must be embraced.

Most DApps on Cardano are inefficient designed because they are inspired by EVM protocols

Automatic Market Maker (AMM) DEX is an anti-pattern on Cardano

- Liquidity pools => contention issues
- Yield LP tokens => unnecessary complexity
- Impermanent loss => pool artifact

Order batchers do not address root cause

- Add complexity
- Lead to centralization

Cardano devs need to unlearn EVM-based design and build dapps from the ground-up based on first principles.

UTxO paradigm is very powerful if used correctly

Fragmentation smart contract state

- Each UTxO has 1 owner
- Split pools into individual liquidity positions
- Turn swaps into individual orders
- Replace LP token with UTxO reference

Fragmented dapp is easily compatible with Layer 2 solutions

- Hydra Isomorphic State Channels
- ZK rollups Zero-knowledge proofs

UTxO fragmentation must grow with number of users. UTxO-optimized dapps are especially compatible with layer-2 scaling solution

Order-Book: The ideal UTxO design pattern

2 Step Process

- 1) Users place orders on-chain
- 2) Off-chain bots match & process orders

Highly scalable & decentralized

- Decoupled order creation and processing
- Fully parallelizable user interaction
- Decentralized order processing

Maximize throughput without interference

Order-Book design pattern decouples the spending & the creation of script outputs, leading to a highly scalable and decentralized app.

Genius DApp Ecosystem

Genius DEX: highly parallelized, decentralized & scalable

Genius X Launchpad: the most advanced and regulatory-compliant Token Sale Platform on Cardano

Genius Yield Farming & Staking: earn triple yield!

Genius' blockchain infrastructure is powered by Maestro!

Fund, build & scale
The developer
platform for Cardano

Cardano's 1st ISPO Marketplace!

SCAT DAO

Building a DAO for decentralized audits, research, and safety on Cardano.

Thank You!

Join the Genius Yield Community

geniusyield.co