(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(II)特許出願公開番号 特開2000-147499

(P2000-147499A)

(43)公開日 平成12年5月26日(2000.5.26)

(51) Int.Cl.7

識別記号

FΙ

デーマコート*(参考)

G 0 2 F 1/1335 1/1343 530

G02F 1/1335

5 3 0

2H091

1/1343

2H092

審査請求 未請求 請求項の数8 OL (全 8 頁)

(21)出願番号

特願平10-317570

(22)出願日

平成10年11月9日(1998.11.9)

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出願人 000003964

日東電工株式会社

大阪府茨木市下穂積1丁目1番2号

(72)発明者 小村 真一

茨城県日立市大みか町七丁目1番1号 株

式会社日立製作所日立研究所内

(74)代理人 100074631

弁理士 髙田 幸彦 (外1名)

最終頁に続く

(54) 【発明の名称】 反射型液晶表示装置

(57)【要約】

【課題】反射型液晶表示装置の照明装置における導光板 と反射型液晶表示装置の表面ににおける多重反射による コントラストの低下を防止する。

【解決手段】反射型液晶表示装置の反射型液晶パネルの表面に屈折率をマッチングさせた粘着剤12で導光フィルム11を貼り付け、液晶パネルを構成する上側透明基板22の側端面から照明光を入射し、前記導光フィルム11の表面に設けたプリズム部11aにより液晶パネル側に向けて反射させる。

11 ··· 導光フィルム 11a ··· ブリズム部 11b ··· 平坦部 12 ··· 粘着層 13 ··· ランブ 14 ··· 反射ウェルム

42 ··· 平坦化膜 51 ··· 下侧透明证極 52 ··· 上侧透明電極 60 ··· TN液晶

13 … ランブ 60 … TN液晶 14 … 反射フィルム 61 … シール 16 … 環境光源 70 … 位相板 21 … 下側基板 80 … 光致散産 22 … 上側透明基板 90 … 偏光板 22a … 突出端節

30 … 反射膜 41 … カラーフィルタ

【特許請求の範囲】

【請求項1】透明な電極と反射板とを備えた下側基板 と、前記透明な電極に対向する透明な電極を備えた透明 な上側基板と、前記下側基板と前記上側基板の間に挟持 した液晶とを備え、前記上側基板の前記液晶に接する面 と反対側の面から入射し、前記下側基板に設けた前記反 射板で反射し、再び前記上側基板の前記液晶に接する面 と反対側の面から出射する光で表示するように構成した 反射型液晶パネルと、この反射型液晶パネルを照明する 照明装置を備えた反射型液晶表示装置において、前記照 10 明装置は、前記反射型液晶パネルの端面側に配置され、 この反射型液晶パネルの端部から照明光を入射する照明 ランプ装置と、前記反射型液晶パネルの表面に、この反 射型液晶パネルの表面の部材と屈折率が略等しい粘着剤 で貼り付けた該反射型液晶パネルの表面の部材と屈折率 が略等しいフィルムを備え、このフィルムの前記粘着剤 に接する面と反対側の面に、前記照明ランプ装置から反 射型液晶パネルに入射されて該反射型液晶パネルの表面 に出射する照明光を該反射型液晶パネル側に向けて反射 させる光反射手段を設けたことを特徴とする反射型液晶 20 表示装置。

1

【請求項2】請求項1において、前記下側基板は、光を 反射する電極を備えたことを特徴とする反射型液晶表示 装置。

【請求項3】請求項1または2において、前記照明装置は、前記反射型液晶パネルの端部において、前記上側基板の端部を前記下側基板の端部よりも外側に突出させ、前記照明ランプ装置は、光源を前記上側基板の端部に沿って配置し、この光源を覆うようにしたリフレクタを前記上側基板の前記突出した端部における上下面に密着さ 30 せるように設けたことを特徴とする反射型液晶表示装置。

【請求項4】請求項1~3の1項において、前記上側基板の前記液晶に接する面と反対側の面に少なくとも1枚の複屈折性を有する複屈折性フィルムを設置し、更にこの複屈折性フィルムの前記上側基板に接する面と反対側の面に偏光板を設置したことを特徴とする反射型液晶表示装置。

【請求項5】請求項4において、前記光反射手段によって反射された光が前記偏光板に到達したときには、この 40 偏光板の透過軸と略平行な直線偏光となるようにしたことを特徴とする反射型液晶表示装置。

【請求項6】請求項5において、前記複屈折性フィルムは、光学的に等方的な部材で構成したことを特徴とする 反射型液晶表示装置。

【請求項7】請求項6において、前記光反射手段はプリズムであり、前記偏光板の透過軸は、前記プリズムの長手方向に平行であることを特徴とする反射型液晶表示装置。

【請求項8】請求項1~3の1項において、前記液晶

は、二色性色素が添加されていることを特徴とする反射 型液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、照明装置を備えた 反射型液晶表示装置に関する。

[0002]

【従来の技術】反射型液晶表示装置は、低消費電力を長所とし、携帯情報端末用ディスプレイ等として広く用いられている。しかしながら、環境光を利用する反射型であるために、暗い場所では表示が見にくいという課題がある。

【0003】この課題を解決するために、従来の反射型 液晶表示装置は、バックライトを備え付け、且つ、反射 板に半透過タイプのものを用いて構成し、明るい場所で はバックライトを消して反射型液晶表示装置として用 い、暗い場所ではバックライトを点灯して透過型液晶表 示装置として用いる。しかしながら、半透過タイプの反 射板は、反射率も透過率も低いために、反射型で用いる ときも透過型で用いるときも光の利用効率が悪い。

【0004】更に、この方式では、透過型でも反射型でも使用できる液晶表示モードを用いなければならない。ところが、近年報告されている反射型カラー液晶表示装置では、例えば、S. Fujiwara, et al., Proc. IDW'97, pp. 879(1997)に記載のように、光を透過しない反射板が液晶パネルの内部に設けられており、透過型として使用してバックライトで照明することは不可能である。

【0005】このような課題を解決する手段として、フロントライトシステムが提案されている。フロントライトシステムは、C.-Y. Tai, Proc. SID 95, pp. 375(1995)に記載のように、表面に微細なプリズムを設けた導光板の側面から光を入射する照明方法である。

【0006】このフロントライトシステムを採用すると図3に示したような反射型液晶表示装置を構成を提案することができる。

【0007】表面に反射膜30とカラーフィルタ41と平坦化膜42と下側透明電極51を形成した下側基板21と、裏面に上側透明電極52を形成した上側透明基板22は、その周縁にシール61を介在させて対面してその間にTN液晶60を封入し、上側透明基板22の表面に位相板70と光拡散層80と偏光板90を形成してカラーの反射型液晶パネルを構成するこの反射型液晶パネルを照明する照明装置は、その表面に多数のプリズム部11aが形成され、反射型液晶パネルの全面に対向するように配置された導光板17と、この導光板17の側端面に設置した照明ランプ13と反射フィルム14からなる光源ランプ装置を備える。

【0008】導光板17に側端面から入射した照明光の うち、この導光板17の表面のプリズム部11aに照射 50 される光路201の光は、この導光板17の裏面に向か

って導光板面に略垂直な方向に内部全反射する。この反 射光(光路202)は、導光板17の裏面から出射し、 その下側に設置された反射型液晶パネルを照明する。

【0009】反射型液晶パネルで反射した光(光路20 3) は、導光板17に裏面から再入射して表面に到達す る。導光板17の表面における平坦部11bに対するプ リズム部11aの割合を小さくしておけば、表面に到達 した殆どの光は、プリズム部11aに当たることなくそ のまま出射される。このようなフロントライトシステム とができる。

【0010】一方、明るい場所ではライトを消して使用 する。環境光源16からの環境光(光路101)は、導 光板17を透過して反射型液晶パネルに照射され、この 反射型液晶パネルで反射した反射光は、導光板17を透 過して出射する(光路102)。このとき、前述したよ うに、導光板17の表面における平坦部11bに対する プリズム部11aの割合は非常に少ないために、このプ リズム部11aの影響は少なく、導光板17を設置しな い構成の通常の反射型液晶表示装置と同等の性能で機能 20

【0011】一方、特開平5-158033号公報に は、液晶表示素子の上側の透明基板を利用し、その側端 面から液晶側に全部反射するように照明光を導入する反 射型液晶表示装置が開示されているが、反射板側に偏光 板を持たない方式の液晶表示装置では、画像表示を行う ことができない。

[0012]

【発明が解決しようとする課題】前記したようにフロン トライトシステムを採用した反射型液晶表示装置は、導 30 光板17の裏面と反射型液晶パネルの間に間隙18が存 在するために、該部の界面での屈折率差に起因する界面 反射による多重反射が起ることによる表示画像のコント ラストの低下という課題がある。

【0013】すなわち、環境光源16から発せられた光 路101に沿った入射光の一部は空気の間隙18の間で 多重反射を繰り返し、光路104, 104, に沿って出 射する。また、反射膜30で反射された光102の一部 も同様に空気の間隙18で多重反射を繰り返した後に光 路104、104'の方向に出射する。この多重反射に 40 よって光路104、104'に沿った出射光は、正常な 光路102に沿った出射光に混合する。

【0014】同様の多重反射は、照明ランプ13からの 入射光(光路202)と、それに対する反射光(光路2 03) に対しても起こり、光路204, 204'に沿っ た多重反射光が正常な光路203に沿った出射光に混じ るためにコントラストが低下する。すなわち、導光板1 7に側端面から入射した照明光のうち、導光板17の表 面のプリズム部11aに照射された照明光(光路20

反射型液晶パネルに入射するが (光路202)、このと き、その一部の光は導光板17の裏面と反射型液晶パネ ルの表面の間で多重反射して該導光板17の表面から出 射される(光路204, 204')。

【0015】また、反射型液晶パネルに入射後に該反射 型液晶パネルの反射板で反射された光の一部も、同様 に、導光板の裏面と反射型液晶パネルの表面の間で多重 反射される。

【0016】これらの多重反射光が、反射型液晶パネル によれば、暗い場所でも反射型液晶表示装置を用いるこ 10 による画像表示光に混じって観測されるために、表示画 像のコントラストが低下してしまう。

> 【0017】これらの多重反射の原因は、導光板17と 液晶パネルの間に間隙18が存在することにあるので、 この間隙18を接着剤等で満たして消滅させることも考 えられる。しかしながら、照明ランプ13からの照明光 を反射型液晶パネルの全面に効率良く導くための導光板 17は、約2mm程度の分厚いものになって柔軟性に欠 けるために、固い部材である両者間に気泡が残留しない ように均一に接着することは困難である。

> 【0018】本発明の目的は、前記課題を解決し、高コ ントラストの画像表示が可能な照明装置を備えた反射型 液晶表示装置を提供することにある。

[0019]

【課題を解決するための手段】本発明は、照明光は、反 射型液晶パネルの側端面から入射し、この反射型液晶パ ネルの表面にこの反射型液晶パネルの表面の部材と屈折 率が概略等しい粘着剤で貼り付けた該反射型液晶パネル の表面の部材と屈折率が略等しいフィルムに設けた光反 射手段で該反射型液晶パネル側に向けて反射させるよう にしたものである。

【0020】反射型液晶パネルとフィルムが屈折率が概 略等しい粘着剤で貼り合わせてあるために、この反射型 液晶パネルの側端面から入射した光は、反射型液晶パネ ルの表面およびフィルムの界面で反射されることなくフ ィルム内部に透過してフィルム表面の光反射手段に照射 される。光反射手段に照射された光は、反射されて反射 型液晶パネル面に対して略垂直な方向に光路をかえ、反 射型液晶パネルに入射する。

【0021】反射型液晶パネルの反射板で反射された光 は、再びフィルムに入射するが、フィルム表面における 光反射手段の平坦部に対する割合が非常に少ないため に、殆ど光反射手段に当たることなく、そのままフィル ムの表面から出射する。

【0022】このように光反射手段で反射された光の光 路は、反射型液晶パネルに入射する環境光の光路と略等 しいために、環境光を用いた表示(反射モード)でも、 ライトを点灯した場合(フロントライトモード)でも良 好な表示が可能となる。

【0023】フィルムと反射型液晶パネルは屈折率が略 1) は全反射されて該導光板17の裏面から出射されて 50 等しい粘着剤で張り合わせてあるので、フィルムの裏面 5

および反射型液晶パネル表面での反射は殆どなく、従来 技術の課題であった多重反射による表示画像のコントラ ストの低下は起こらない。

【0024】また、導光板を薄いフィルム状として反射型液晶パネルと容易に密着させることができるようにしたが、照明光は、このフィルムに較べてはるかに厚く、前記従来技術で用いられている導光板と同等の厚さの液晶パネルの側端面から入射させるために、高い効率を得ることが可能である。

[0025]

【発明の実施の形態】以下、本発明の実施形態を図面を 用いて説明する。図1および図2は、本発明の第1の実 施形態を示すフロントライトシステムを採用した反射型 液晶表示装置で、図1は縦断斜視図、図2は縦断側面図 である。

【0026】下側基板21上には、反射膜30と、カラーフィルタ41と、平坦化膜42と、下側透明電極51 を順次に設ける。

【0027】上側透明基板22上には、上側透明電極52を形成し、対向する下側透明電極51と上側透明電極2052の間のシール61に囲まれた領域にTN液晶60を封入する。図1では、下側基板21と上側透明基板22の間の2辺にシール61を図示しているが、実際には4辺に設けてTN液晶60が漏れないようにしている。

【0028】上側透明基板22の表面には、位相板70 と、光拡散層80と、偏光板90と、粘着層12と、導 光フィルム11を順次に設ける。

【0029】照明ランプ装置は、上側透明基板22の側端面から照明光を入射するように、照明ランプ13をこの上側透明基板22の端面に沿って設置する。照明ラン 30プ13で発生した光を効率良く上側透明基板22へ入射するために、照明ランプ13を囲んで反射フィルム(リフレクタ)14を設置する。照明光を入射する上側透明基板22の端部は、下側基板21の端部よりも外側に突出させた突出端部22aに形成し、照明ランプ13は、この突出端部22aに沿って配置し、この照明ランプ13を覆うようにした反射フィルム14は、両端部を上側透明基板22の突出端部22aにおける上下面に密着するように取り付けて光漏れを防止する。

【0030】偏光板90の吸収軸と、位相板70のリタ 40 ーデーションと光学軸と、TN液晶のツイスト角とリターデーションは、下側透明電極51と上側透明電極52 の間にオン状態の電圧が印加されているときに無彩色な明表示となり、オフ状態の電圧が印加されているときに無彩色な暗表示状態となるように選ぶ。これにより、従来のカラー液晶表示装置と同様に、カラーフィルタ41 と組み合わせることによってカラー表示を可能にする。

【0031】光拡散層80は、反射板30で鏡面反射された反射光に適度な拡散性を付与し、良好な明表示を実現するように設ける。この光拡散層80を省略すると、

明表示状態のときの鏡となってしまい、良好な表示を実現することができない。尚、光拡散層80には、後方散乱の少ない部材を選ぶ。

【0032】導光フィルム11の表面には、上側透明基板22の側端面から入射された照明光が照射されたときに、照射された照明光を導光フィルム11の裏面に向けて反射させるための複数のプリズム部11aを設ける。このプリズム部11aは、照明ランプ13からの照明光が入射する上側透明基板22の側端面と平行に形成した複数の溝によって構成し、照明ランプ13からの距離が遠いほど、プリズムとして機能する部分の面積が大きになるようにしてある。仮に、総ての溝の形状を同一にすると、プリズム部11aに照射される照明光の強度が照明ランプ13に近いほど強いために、不均一な照明になってしまう。そこで、この実施形態では、前述のように、照明ランプ13からの距離に対応して溝の形状を変えることによって、均一な照明を実現するようにしている。

【0033】この実施形態における反射型液晶表示装置 の作用について、図2を用いて詳細に説明する。

【0034】明るい場所で使用するときには、照明ランプ13を点灯せずに、環境光源16からの照明により表示する。室内の天井灯や屋外の太陽のような環境光源16からの環境光が光路101に沿って入射される。入射した環境光は、導光フィルム11、粘着層12、偏光板90、光拡散層80、位相板70、上側透明基板22、上側透明電極52、TN液晶60、下側透明電極51、平坦化層42、カラーフィルタ41の順に透過して反射板30に入射し、ここで反射される。

【0035】反射板30で反射した光は、光路102に沿って、逆に、カラーフィルタ41、平坦化層42、下側透明電極51、TN液晶60、上側透明電極52、上側透明基板22、位相板70、光拡散層80、偏光板90、粘着層12の順に透過して導光フィルム11の表面から出射する。使用者は、この光を表示画像として観測する。

【0036】導光フィルム11の表面におけるプリズム部11aの割合は、平坦部11bに較べて非常に小さいので、光路103、102に沿う殆どの光は平坦部11bを透過して出射するために、プリズム部11aによる屈折や反射の影響は殆ど受けない。ここで、厳密にいうと、光拡散層80を透過する際に、散乱のために光路が変わるが、この光路の変化は、コントラストを低下させないように構成したこの実施形態の作用には殆ど影響しないので、簡単のために、光路は変わらないものとして説明する。

【0037】一方、暗い場所では照明ランプ13を点灯して用いる。照明ランプ13から発した照明光は、上側透明基板22の突出端部22aの側端面から入射し、その一部は、例えば光路201に沿って、位相板70、光

8

拡散層80、偏光板90、粘着層12、導光フィルム1 1の順に透過し、導光フィルム11の表面において、プ リズム部11aに照射される。この光路201の照明光 は、プリズム部11aによって反射されて光路を光路2 02に変え、粘着層12、偏光板90、光拡散層80、 位相板70、上側透明基板22、上側透明電極52、T N液晶60、下側透明電極51、平坦化層42、カラー フィルタ41の順に透過して反射板30に入射し、ここ で反射される。この光路202は、環境光の光路101 と略平行であるので、光路203に沿った反射光を観測 10 することによって、環境光源16を用いた場合、すなわ ち反射モードの表示と同等の表示が実現する。

【0038】光路201の照明光は偏光板90を透過す る際に、その一部が吸収されて直線偏光となる。この照 明光が、プリズム部11aで反射されて光路を光路20 2に変え、粘着層12を透過するときに偏光状態が変化 しなければ、その直線偏光は偏光板90の透過軸と平行 であるために、吸収されることなくこの偏光板90を透 過する。しかしながら、偏光状態が変化していると、光 路202の照明光の一部も偏光板90によって吸収され 20 てしまい、表示に使用する照明光の強度が減少してしま う。この実施形態においては、偏光状態を変化させない ために、導光フィルム11には、光学的に等方な部材 (複屈折のないポリマーフィルム) を用いた。

【0039】また、プリズム部11aで反射された照明 光は、このプリズム部11aの溝の方向に偏光するため に、偏光板90の透過軸とプリズム部11aの溝の方向 を平行に用いることにより、効率を最も高くすることが

【0040】この実施形態では、導光フィルム11と偏 30 光板90を該導光フィルム11および偏光板90と略等 しい屈折率の粘着層12で接着しているために、従来装 置のような多重反射は起こらず、従って、高いコントラ ストの画像表示を実現することができる。しかも、この 実施形態では、照明ランプ13からの照明光の入射は、 1 mmの厚さの上側透明基板 2 2 の側端面から行うよう にしているので、導光フィルム11は、粘着剤12で偏 光板90に貼り付けるときの作業性を考慮して200μ mの厚さにして柔軟性を高めているので、気泡を残留さ せることなく容易に均一に接着することができる。

【0041】以上に説明したように、この実施形態によ れば、照明ランプ13の点灯時も非点灯時も良好なコン トラストの画像表示を実現することができるフロントラ イトシステムの反射型液晶表示装置を提供することがで

【0042】因に、この実施形態において、照明ランプ 13には、通常の液晶表示装置のバックライトに用いて いる冷陰極管を用いた。反射フィルム14は、フィルム の表面に銀の薄膜を形成したものを用いた。導光フィル ム11は、金型で形成したプリズム形状をフィルムに転 50 射フィルム14を設置する。

写して作製した。

【0043】TN液晶60のツイスト角は75°で、液 晶材料には屈折率異方性が0.8の材料を選び、厚さを $3 \mu \text{ m } \geq 1 \text{ L.c.}$

【0044】偏光板90の吸収軸は、TN液晶60の上 側透明基板側の配向方向と平行にした。

【0045】位相板70は、光学軸が偏光板90の吸収 軸と45°の角度をなすように設置し、そのリターデー ションは550nmの波長に対して、135nmとし

【0046】このように、TN液晶60と偏光板90と 位相板70を選ぶことによって、無彩色の明表示および 暗表示を実現することができるために、カラーフィルタ 41と組み合わせることによって良好な反射型カラー表 示を実現することができる。

【0047】カラーフィルタ41は、通常のバックライ ト付きカラー液晶表示装置に用いられているものよりも 淡色のものを用いた。具体的には、透過率が70%のカ ラーフィルタを用いた。平坦化膜42は、カラーフィル タ表面の凹凸を平坦にし、TN液晶の厚さを均一にする ために用いた。

【0048】光拡散層80は、粘着剤にポリマーのビー ズを分散させたものを用いた。

【0049】下側基板21および上側透明基板22に は、厚さ1mmのガラス板を用いた。

【0050】反射膜30は下側基板21の表面にアルミ 膜を形成して作製した。

【0051】なお、TN液晶60の代わりにツイスト角 が200°から300°程度のSTN液晶を用いれば、 精細度の高い表示が可能である。また、TN液晶を用い ても、以下に説明する第2の実施例のように、TFTを 用いれば精細度の高い表示が可能である。

【0052】図4は、本発明の第2の実施形態を示す縦 断側面図である。下側基板21上には、画素毎にTFT 53および下側拡散反射電極54を形成し、TFT53 によって下側拡散反射電極54の電位を制御する。

【0053】上側透明基板22上には、上側透明電極5 2を形成し、対向する下側拡散反射電極54と上側透明 電極52の間のシール61に囲まれた領域にゲストホス ト(GH)液晶62を封入している。このゲストホスト 液晶62は、微量の二色性色素を添加した液晶で、上側 透明電極52と下側拡散反射電極54の間に電圧を印加 たときには透明になり、印加しないときには光を吸収す るように機能する。

40

【0054】上側透明基板22の表面には、粘着層12 によって導光フィルム11を接着して設置する。この上 側透明基板 2 2 の側端面から照明光を入射するように照 明ランプ13を設置し、光を効率良くこの上側透明基板 22へ入射するように、この照明ランプ13を囲んで反 【0055】下側拡散反射電極54は、鏡面反射ではなく、反射光に適度な拡散性を付与するように機能するので、良好な明表示を実現することができる。

【0056】この実施形態において、照明ランプ13には、通常の液晶表示装置のバックライトに用いている冷陰極管を用いた。反射フィルム14は、フィルムの表面に銀の薄膜を形成したものを用いた。導光フィルム11は、金型に形成したプリズム形状をフィルムに転写して作製した。

【0057】GH液晶62は、ネマチック液晶に少量の 10 二色性色素とカイラル剤を添加したものを用いた。二色 性色素には黒色のものを用いたことにより、無彩色の明 表示と暗表示を実現することができ、第1の実施形態と 同様にカラーフィルタ41と組み合わせることによって 良好な反射型カラー表示を実現することができる。

【0058】カラーフィルタ41は、通常のバックライト付きカラー液晶表示装置に用いているものよりも淡色のものを用いた。具体的には透過率が70%のカラーフィルタを用いた。

【0059】下側基板21および上側透明基板22には、厚さ1mmのガラス板を用いた。

【0060】TFT53は、アモルファスシリコンを用いて下側基板21上に作製した。

【0061】下側拡散反射電極54は、凹凸形状を形成したレジスト上にアルミ膜を形成することによって作製した。TFT53の電極と下側拡散反射電極54は、前記レジストに設けたスルーホールを介して接続した。

【0062】この実施形態のように、GH液晶や拡散反射板と組み合わせた場合においても、第1の実施形態と同様の作用により、点灯時も非点灯時も良好なコントラ 30 ストの画像表示を実現することができる。

10

【0063】なお、この実施形態ではGH液晶を用いたが、第1の実施形態と同様に、TN液晶を用いても同等の効果を得ることができる。

[0064]

【発明の効果】本発明によれば、高コントラストの画像 表示が可能な照明装置を備えた反射型液晶表示装置を容 易に実現することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態を示す反射型液晶表示) 装置の縦断斜視図である。

【図2】本発明の第1の実施形態における反射型液晶表示装置の縦断側面図である。

【図3】フロントライトシステムを採用した反射型液晶 表示装置の縦断側面図である。

【図4】本発明の第2の実施形態を示す反射型液晶表示 装置の縦断側面図である。

【符号の説明】

11…導光フィルム、11a…プリズム部、11b…平坦部、12…粘着層、13…ランプ、14…反射フィル20 ム、16…環境光源、21…下側基板、22…上側透明基板、22a…突出端部、41…カラーフィルタ、42…平坦化膜、51…下側透明電極、52…上側透明電極、53…TFT、54…下側拡散反射電極、60…TN液晶、61…シール、62…GH液晶、70…位相板、80…光拡散層、90…偏光板、101…環境光の入射光路、102…環境光の反射光路、104…環境光の多重反射の光路、201…フロントライトの導光光路、202…フロントライトの入射光路、203…フロントライトの反射光路、204…フロントライトの多重の対の光路。

【図4】

❷ 4

11 … 導光フィルム lla ... lla … ブリズム部 llb … 平坦部

12 ... 粘着層 13 ...

反射フィルム 14 ... 16 ... 環境光源 21 ... 下側基板

22 ... 上侧透明基板 22a ··· 突出端部

41 … カラーフィルタ

52 ··· 上側透明電極 53 ··· TFT

62 ··· GH液晶 80 … 光拡散層

90 … 偏光板

フロントページの続き

(72)発明者 舟幡 一行

茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内

(72)発明者 矢野 周治

大阪府茨木市下穂積一丁目1番2号 日東 電工株式会社内

(72)発明者 梅本 清司

大阪府茨木市下穂積一丁目1番2号 日東 電工株式会社内

(72)発明者 檜山 郁夫

茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内

Fターム(参考) 2H091 FA16Z FA21X FA42X FD06

LA30

2H092 GA19 HA05 NA01 PA08 PA11 PA12