Задания

14 февраля 2021 г.

Если M — моноид, то мы будем обозначать \mathbf{C}_M категорию с одним объектом * и множеством морфизмов $\mathrm{Hom}_{\mathbf{C}_M}(*,*)=M,$ операция композиции и тождественный морфизм в которой определяются как соответствующие операции в M.

Предпорядок (X, \leq) — это множество X с рефлексивным и транзитивным бинарным отношением \leq . Задать структуру предпорядка на множестве — это то же самое, что и задать на нем структуру категории, в которой между любой парой объектов существует максимум один морфизм. Если (X, \leq) — предпорядок, то мы будем обозначать соответствующую ему категорию как $\mathbf{C}_{(X,\leq)}$. Множество объектов этой ктаегории равно X, а множество морфизмов $\mathrm{Hom}_{\mathbf{C}_{(X,\leq)}}(x,y)$ состоит из одного элемента, если $x\leq y$, и пусто в противном случае.

- 1. Изоморфны ли следующие объекты категории $\Lambda_{\rm ID}$? Если да, напишите функции, устанавливающие изоморфизм.
 - (a) Bool и Maybe Bool.
 - (b) Either Bool Bool и Bool \times Bool.
 - (c) Nat и Maybe Nat.
 - (d) Nat и List Nat.

Решение

- (a) Her
- (b) HeT
- (c) HeT
- (d) Her
- 2. Пусть M некоторый моноид. Определим тогда категорию \mathbf{C}_M как категорию с одним объектом и множеством морфизмов равным M. Композиции и тождественный морфизм определяются из структуры моноида. Какие морфизмы являются изоморфизмами в следующих категориях?
 - (a) $C_{(N,+)}$.

- (b) $\mathbf{C}_{(\mathbb{N},*)}$.
- (c) $\mathbf{C}_{(\mathbb{Z},+)}$.
- (d) $\mathbf{C}_{(\mathbb{Z},*)}$.
- (e) $\mathbf{C}_{(\mathbb{Q},+)}$.
- (f) $\mathbf{C}_{(\mathbb{Q},*)}$.
- 3. Предпорядок называется частичным порядком, если из условия, что $x \leq y$ и $y \leq x$, следует, что x = y. Чему в категориальных терминах соотвествует это свойство? (Другими словами, утверждается, что предпорядок (X, \leq) является порядком тогда и только тогда, когда категория $\mathbf{C}_{(X, \leq)}$ обладает некоторым свойством, которое обсуждалось на лекции. Что это за свойство?)
- 4. Опишите следующие моноиды и группы:
 - (a) $Aut_{Set}(A)$, где A множество букв русского алфавита.
 - (b) $Aut_{\mathbf{FinSet}}(A)$, где A множество букв русского алфавита.
 - (c) $\operatorname{Endo}_{\mathbf{C}_M}(*)$, где M некоторый моноид.
 - (d) $\operatorname{Endo}_{\mathbf{Grp}}(\mathbb{Z})$.
 - (e) $\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z})$.
 - (f) $\operatorname{Endo}_{\mathbf{Ring}}(\mathbb{Z}),$ где \mathbf{Ring} категория колец с единицей.

```
\begin{aligned} &\forall f \in \operatorname{Endo}_{\mathbf{Ring}}(\mathbb{Z}): \\ &\forall z \in \mathbb{Z}.f(z) = z \cdot f(1) \\ &\forall z \in \mathbb{Z}.z \cdot f(1) = f(z) = f(1 \cdot z) = f(1) \cdot z \cdot f(1) \Rightarrow f(1) = 0 \lor f(1) = 1 \\ &\textit{3navum} \quad f(.) \equiv 0 \lor f = id \end{aligned}
```

(g) $\mathrm{Aut}_{\mathbf{C}}(X),$ где \mathbf{C} – скелетная категория, и X – произвольный объект $\mathbf{C}.$

Просто группа (??)

- (h) $\operatorname{Endo}_{\mathbf{Vec}}(\mathbb{R}^n)$.
 - $\forall f \in \text{Endo}_{\mathbf{Vec}}(\mathbb{R}^n) :$

 $f: \mathbb{R}^n \to \mathbb{R}^n$ — линейный оператор

 $\mathrm{Endo}_{\mathbf{Vec}}(\mathbb{R}^n)$ изоморфен моноиду из матриц $n \times n$ с операцией умножения

- (i) $\operatorname{Aut}_{\mathbf{Num}}(n)$.
 - $\forall f \in \mathrm{Aut}_{\mathbf{Num}}(n): f \in [0..n]^n$ изоморфизм Значит $\mathrm{Aut}_{\mathbf{Num}}(n)$ множество перестановок из n элементов
- (j) $\mathrm{Endo}_{\mathbf{C}_{(X,\leq)}}(x)$, где x произвольный элемент X. $\mathrm{Endo}_{\mathbf{C}_{(X,\leq)}}(x)=\{x\leq x\}$ операцией композиции по транзитивности
- Какие из следующих категорий являются скелетными: Set, FinSet, Grp, Vec, Λ, Mat, Num?

- (a) **Set** нет, так как $\{0\}$ изоморфен $\{1\}$, но не равны
- (b) \mathbf{FinSet} нет, аналогично \mathbf{Set}
- (c) **Grp** нет, $(\mathbb{R}, +)$ изоморфна $(\mathbb{R}^{>0}, \cdot)$
- (d) Vec нет, $i\mathbb{R}$ изоморфен \mathbb{R} , но не равен
- (e) Λ нет, $a \to a \to b \to a$ изоморфен $a \to b \to a \to a$: $f = \lambda \ h \ a \ b. \ h \ b \ a$ $f \circ f = \lambda \ x. \ f(fx) = \lambda \ x. \ f(\lambda \ b \ a. \ x \ a \ b) = \lambda \ x \ a \ b. \ x \ a \ b = \lambda \ x. \ x = id$
- (f) **Mat** да
- (g) **Num** да
- Какие из следующих категорий являются группоидами: Set, FinSet, Grp, Vec, Λ, Mat, Num?
 - (a) **Set** нет, есть инъекции, например
 - (b) **FinSet** нет, есть инъекции, например
 - (c) ${f Grp}$ нет, можно построить гомоморфизм в группу из одного нейтрального элемента
 - (d) $\mathbf{Vec} \mathbf{Het}, \mathbb{R}^3 \to \mathbb{R}^2$
 - (e) Λ нет, есть терм с типом $(a \to a \to b) \to (a \to b \to b)$
 - (f) **Mat** нет, есть необратимые матрицы
 - (g) **Num** нет, $(2) \in \text{Hom}_{\mathbf{Num}}(1,2)$ не является изоморфизмом, так как $\text{Hom}_{\mathbf{Num}}(2,1) = \{(1,1)\}$
- 7. Какие из следующих категорий могут быть скелетными и в каких случаях?
 - (a) Дискретные категории. Всегда скелетные
 - (b) Категории вида \mathbf{C}_M . Всегда скелетные
 - (c) Категории предпорядка. Если это частичный порядок
 - (d) Группоиды. Когда $\operatorname{Hom}(A,B) \neq \emptyset \Rightarrow A=B$
- 8. Какие из следующих категорий могут быть группоидами и в каких случаях?
 - (a) Дискретные категории. Всегда группоиды.
 - (b) Категории вида \mathbf{C}_M . Когда M — группа

- (c) Категории предпорядка. Когда это дискретные категории
- (d) Скелетные категории. Когда это дискретные категории
- 9. Пусть $f, f': X \to Y$ и $g, g': Y \to X$ морфизмы в некоторой категории C. Докажите, что если диаграммы

коммутируют и f = f', то X и Y изоморфны.

Перевернем первый треугольник и склеим со вторым.

Так как они коммутировали, то полученная диаграмма будет коммутировать.

Отсюда: $id_X \circ g' = g \circ id_Y \Rightarrow g = g'$ $g \circ f = id_X, \ f \circ g = id_Y \Rightarrow X$ изоморфен Y

- 10. Приведите пример, показывающий, что условие f=f' в предыдущем задании является необходимым.
- 11. Какие из следующих категорий являются малыми: Set, FinSet, Grp, Vec, Λ , Mat, Num, \mathbf{C}_M , $\mathbf{C}_{(X,\leq)}$?
 Все, кроме: Set, FinSet, Grp, Vec
- 12. Какие из следующих категорий являются локально малыми: **Set**, **FinSet**, **Grp**, **Vec**, Λ , **Mat**, **Num**, \mathbf{C}_M , $\mathbf{C}_{(X,\leq)}$? Bce