СРЕДСТВА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Цилькер Б. Я., Орлов С. А. «Организация ЭВМ и систем» - СПб.: Питер, 2007 Брайдо В.Л. «Вычислительные системы, сети и телекомуникации» - СПб.: Питер 2004

Универсальные ЭВМ

Специализированные ЭВМ

1. Широкий круг решаемых задач (что можно формализовать и описать математически)

1. Узкий круг решаемых задач (проблемная ориентация)

2.Решение с желаемой точностью за желаемое время

2.Требования по точности и быстродействию точно заданы

3. Устройства ввода-вывода ориентированы на пользователя-

3. Устройства ввода-вывода ориентированы на подключение датчиков, испольнительных органов

человека
4. Эксплуатоционные требования «мягкие» (на уровне пожеланий)

4.Жесткие требования по надежности, пыле-, влаго-, вибро-, ударо-, радиоционно- и др. защищенности.

5. Стационарные, транспортируемые (мобильные)

5.Стационарные, транспортируемые (мобильные)

Цифровые средства ВТ

Квантование по амплитуде

$$0 \leq \Delta_{\kappa e} \leq 1, \delta_{\kappa e} = \frac{\Delta_{\kappa e}}{2^n} \cdot 100\%$$

Квантование по времени

$$\Delta t_i = \begin{cases} Var \rightarrow f(t_i) - f(t_{i-1}) = 1, \\ Const \rightarrow f(t_i) - f(t_{i-1}) \leq 1. \end{cases}$$

 $\uparrow n$ \rightarrow $\downarrow \delta$ разрядность погрешность

Цифровые, или дискретные, алгоритмы решения задач

Дифференциальные уравнения

Алгебраические уравнения

$$f(t) \approx f(t_i) \rightarrow \frac{df(t)}{dt} \approx \frac{\Delta f(t_i)}{\Delta t_i}$$

Метод Адамса

Метод Рунге-Кутты

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Цифровые, или дискретные, элементы и узлы

$$n = 7 \to \delta_{\kappa G} = \frac{1}{128} \cdot 100\% \approx 1\%$$

$$n = 8 \to \delta_{\kappa G} = \frac{1}{256} \cdot 100\% \approx 0.5\%$$

$$n = 10 \to \delta_{\kappa G} = \frac{1}{1024} \cdot 100\% \approx 0.1\%$$

$$n = 16 \to \delta_{\kappa G} = \frac{1}{65536} \cdot 100\% \approx 0.0015\%$$

$$n = 7 \to \delta_{\kappa G} = \frac{1}{4294967296} \cdot 100\% \approx 2.33 \cdot 10^{(-8)}\%$$

$$n = 7 \rightarrow \delta_{\kappa e} = \frac{1}{18446744073709551616} \cdot 100\% \approx 5.4 \cdot 10^{(-18)}\%$$

Особенности цифровой ВТ

- * Высокая точность, определяемая разрядностью и точностью (сложностью) алгоритмов
- * Широкий круг решаемых задач
- * Отсутсвие явной (линейной) корреляции между сложностью решаемой задачи и сложностью (объемом) оборудования
- * Развитое математическое и программное обеспечение, наличие широкого перечна ППП
- * Высокая надежность, технологичность и ремонтопригодность
- * Постоянно улучшающиеся ценовые, весо-габаритные и прочие потребительские характеристики
- * Время решения задач больше и определяется:
 - · Вычислительной сложностью (количеством операций), которая зависит от вида задачи и требуемой точности;
 - Быстродействием аппаратных средств.

Аналоговые вычислительные машины

Непрерывные (аналоговые) сигналы

Непрерывные методы решения задач

Аналоговая элементная база

Аналоговая элементная база

Параметр	Идеальное значение	Реальное значение
К	$-\infty$	500.000
I	0	10-50 нА
U_{ϵ}	0	10-50 мкВ
R _{bx}	∞	1 МОм
R _{вых}	0	10 Ом

$$\sum_{i=1}^{n} I_{i} + I_{oc} = I_{ex},$$

$$\sum_{i=1}^{n} \frac{U_{i} - U_{\varepsilon}}{R_{i}} + \frac{U_{y}}{R_{oc}} = I_{ex},$$

$$npu \quad U_{\varepsilon} \to 0, I_{ex} \to 0$$

$$U_{y} = -\sum_{i=1}^{n} U_{i} \frac{R_{i}}{R_{oc}}$$

$$\frac{U_x}{R} + C \frac{dU_y}{dt} = 0$$
,

$$U_y = \frac{-1}{R \cdot C} \int_0^t U_x dt$$

Особенности аналоговой ВТ

- * Низкая точность, определяемая погрешностями решающих элементов
- * Ограниченный круг решаемых задач (по сложности алгоритма и виду функций)
- * Линейная связь аппаратных затрат со сложностью алгоритма
- * Отсутсвие четких алгоритмов проктирования
- * Низкая надежность, технологичность и ремнотопригодность

*Время решения задач малое и определятеся суммарным временем переходного процессса в последовательно соединенной цепочке решающих блоков

Аналогово — цифровые вычислительные комплексы

Области применения:

- * Авиация
- * Геология
- * Ядерная физика
- * и др

Цифровая часть — одна или несколько ЭВМ для решения фрагментов задачи, требующего высокой точности, но при низком быстродействии

Аналоговая часть — одна или несколько ABM для решения фрагмента задачи, требующего высокого быстродействия, но при низкой точности

АЦП — аналогово-цифровой преобразователь

ЦАП — цифро-аналоговый преобразователь

Эволюция СВТ

Поколения компьютеров: нестрогая классификация ВС по степени развития АС и По

0 поколение Механическая эра 1492 – 1945	 Абак – Первые счеты — Вавилон- 3000 лет до н.э. Счеты с косточками – Китай – 500 лет до н.э. 1492 – Леонардо да Винчи — Сумматор на зубчатых колесах 1832 – Машина Бэббиджа — Разностная машина — Англия 1937 – Машина Тьюринга — Кембрилжский университет
2 19 2 10	 1937 – Машина Тьюринга — Кембриджский университет
	– 1938 – Конрад Цузе — Машина Z1 — Механический
	программируемый вычислитель — Германия
	 1943 – Марк-1 — электромеханический программно-управляющий
	вычислитель — Гарвардский университет

I поколение — 1946 — ENIAC (до 1955г) – Джон фон Нейман —	проект EDVAC – хранимая
Электронные в памяти программа	
лампы — 1947-1957 — МЭСМ — С.А. Лебедев	
1937 — 1953 — — 1952 — UNIVAC — первая коммерчески успешная 3 — 1953 — БЭСМ	J BM

II поколение Транзисторы 1954-1962	 — TRADIC — Bell Labs для ВВС США (ОЗУ на ферритовых сердечниках, индексные регистры, FPU, процессоры Вв/Выв.) — «Супер-ЭВМ» - LARC, IBM 7090 — «Урал-1, 4, 11, 14»; БЭСМ; «Минск-1, 2, 22, 32»; «Днепр» — Фортран, Алгол, Кобол
--	--

III поколение Микросхемы 1963 – 1972	* Закон Гордона Мура (один из основателей Intel «Плотность транзисторов на кремниевой подложке удваивается каждые 18-24 месяца, соответственно в два раза растет производительность и в два раза падает их рыночная стоимость») — Параллельные системы — Сеймур Крей — CDC-6600 (1 MFLOPS), CDC-7600 (10 MFLOPS) — Конвейерно-векторные ВС: TI-ASC, STAR-10 — БЭСМ-6, M-220, M-222, Мир-1
IV поколение	- IBM PC-XT IBM PC-AT

IV поколение
БИС, СБИС
1972 – 1984

— IBM PC-XT, IBM PC-AT, ...
— Intel 8080, Intel 8086, 8018, 80286, 80387, 80486 ...;
— Электроника-60 (85), Искра и др.;
— DEC PDP-11;
— RISC

VI поколение — многомашинные ВК; Микросхемы — «взрыв» глобальных систем 1990 —

Архитектура компьютеров

4 принципа фон Неймана

* Принцип двоичного кодирования

S число Данные: S E M Форматы КОп АЧ Команды:

* Принцип программного управления

Алгоритм → программа → команды (память)

* Принцип однородности памяти

Принстонская архитектура: Команды и данные — в одной памяти и внешние неразличимы

Гарвардская архитектура: Память данных и память команд разделены

* Принцип адресности «Слова» хранятся в ячейках памяти с «адресами»

Архитектура Джона фон Неймана

