《数字电子技术基础》复习题

sikouhjw

2019年6月13日

这份题是 cdh 老师在最后一节课给出来的

٠,	填空题
1.	$(1010.011)_{\rm B} = ($ $)_{\rm H} (-25)_{\rm H} = ($ $)_{\rm B}.$
2.	-25 的原码和补码分别为 ()、().
3.	逻辑函数 $Y(A,B,C) = AC + BC'$ 对应的或非一或非式为 ().
4.	函数式 $Y = A + (B + C')(A + B' + C)(A + B + C)$ 的化简结果为 ().
5.	逻辑函数式 $Y(A,B,C)=A'BC+AC+B'C$ 的最大项之积式为 $Y=\prod M$ (),最小项之和式为 $Y=\sum m$ ().
6.	显示译码器 $74LS48$ 芯片中的 $LT'=0$ 时,输出 $abcdefg=($),当该芯片正常工作状态下,当输出 $abcdefg$ 为 1110011 时,数码管显示字形为 ().
7.	一个四位二进制递减计数器的初态为 0000, 经过 18 个计数脉冲后, 该计数器的状态为 ().
8.	利用触发器和门电路实现 63 进制计数器时, 至少需要 () 个触发器.
9.	描述时序逻辑电路状态转换全部过程的方法有()、()、()和 ().
10.	JK 触发器中当 $J=0$, $K=1$ 时, Q^* 为 (), D 触发器的特性方程为 ().
11.	欲将一个存在移位寄存器中的二进制数乘以 (64)10 需要 () 个移位脉冲.
12.	消除竞争一冒险现象的方法有 3 种, 分别是 ()、() 和 ().
_,	综合题
1.	利用反演定理求函数 $Y = ((AB + C)' + D)' + C$ 的反函数.
2.	利用卡诺图化简下列逻辑函数式:
	Y(A, B, C, D) = ((A' + B')D)' + (A'B' + BD)C' + A'C'BD + D'.
3.	利用卡诺图化简下列具有无关项的逻辑函数式:

 $Y(A, B, C, D) = \sum m(2, 3, 7, 8, 11, 14) + d(0, 5, 10, 15).$

4. 逻辑电路如图所示, 已知各触发器的初始状态均为"1", 要使各触发器 $Q_2Q_1Q_0$ 翻转到"101", 需要加入几个时钟脉冲?

5. 写出输出 Y 与输入 A、B 之间的逻辑函数式, 并说明其功能.

- 6. 在下图所示的施密特触发器电路中,已知 $R_1=10\,\mathrm{k}\Omega$, $R_2=30\,\mathrm{k}\Omega$, G_1 和 G_2 为 CMOS 反相器, $V_{DD}=15\,\mathrm{V}$. 试计算电路的阈值电压 V_{T+} 、 V_{T-} 和回差电压 $\triangle V_T$.
- 7. 举重比赛中有 A、B、C 三名裁判, A 为主裁, 当两名或两名以上裁判 (必须包括 A 在内) 认为运动员上举杠铃合格, 才能认为成功, 试分别用 74LS138 和八选一数据选择器 74LS151 配合适当的门电路设计该逻辑电路.
- 8. 利用同步十六进制加法计数器 74LS161 (或十进制加法计数器 74LS160) 设计一个 35 进制的计数器 电路 (可以附加必要的门电路).

