- 1. For each of the following boolean expressions, decide if it is (i) valid (ii) satisfiable (iii) unsatisfiable. (give all applicable properties, with justification.)
 - (a) (5) $A \land \neg A \land \neg B$
 - (b) (10) $(A \implies B) \land (B \implies C) \land (C \implies \neg A)$
 - (c) (5) $(A \implies B) \lor (B \implies A)$
- **2.** Coloring a map:
 - (a) (10) A map is a set of n countries $C_1, \ldots C_n$, plus a specification of which countries C_i are adjacent to which countries C_j . A feasible 2-coloring assigns one of two colors to each country, such that no adjacent countries are the same color. (For example, the squares of a chessboard have a feasible 2-coloring.)

Given a map, explain how to construct a CNF expression that is satisfiable iff a feasible 2-coloring exists for the map.

- (b) (5) Explain how to use a CNF satisfiability-checker to prove that two given countries (call them C_1 and C_2) must be the same color in any feasible 2-coloring of a given map.
- **3.** Induction Proof:
 - (10) Consider the following:

Theorem 0.1: For all integers $n \ge 1$, we have 5n - 5 = 0.

Plainly this "theorem" is false. What is wrong with the following "proof"?

Proof: We use strong induction on N.

- Base case (n = 1): $5 \cdot 1 5 = 0$.
- Inductive step:

$$5(n+1)-5 = 2(5n-5)-(5(n-1)-5)$$

= 2(0) - 0
= 0.

4. Modular Arithmetic:

If $13x = 5 \pmod{46}$, what is x? (Short answer.)

5. Modular Arithmetic:

What is the maximum number of solutions for x in the range $\{0, \ldots, N-1\}$ for any equation of the form $ax = b \pmod{N}$, when gcd(a,N) = d? (Short answer: an expression possibly involving N, a, b, and/or d.)

6. Trees

Given an n-vertex tree, Bob added 10 edges to it, then Alice removed 5 edges and the resulting graph has 3 connected components. How many edges must be removed to remove all cycles in the resulting graph? (An expression that may contain n.)

7. Quantifiers: Does the below statements always hold regardless of P's value. a. $(\forall n \in N)(P(n))$ b. $(P(0) \land P(1)) \rightarrow ((\forall n \in N)(n \ge 1 \rightarrow P(n)))$ c. $((\forall n \in N)(n \text{ is odd} \rightarrow P(n))) \rightarrow ((\forall n \in N)(n \ge 1 \rightarrow P(n)))$ d. $(\forall n \in N)(P(2n))$ **8.** Short Answer: (a) What is $3^{240} \pmod{77}$? (b) What is $3^{16} * 3^{-1} \mod 7$? (Hint: the multiplicative inverse of 3 is 5 modulo 7 and repeated squaring.) (c) Given an RSA scheme for large primes p and q where q we can set <math>e = p and get a valid construction. (True or False.) (d) What is d for RSA scheme with (N = 143, e = 11)?

- **9.** Polynomials & Error Correction
 - (a) How many different degree $\leq d$ polynomials modulo p contain d points; $(x_1, y_1), \dots, (x_d, y_d)$. (Assume that p > d.)
 - (b) What is the maximum number of times that a degree 4 polynomial, P(x), and a degree 2 polynomial, Q(x), can intersect? (That is, what is the maximum number of x-values where P(x) = Q(x).)
 - (c) What is the minimum modulus that could be used to send the message 3,4,3 through a channel that drops 3 packets?
 - (d) What is the polynomial that encodes the message 3,3,0 modulo 7. (Use the x values 0,1,2 in your encoding.)
 - (e) What is the error polynomial for Berlekamp-Welsh for a message (mod 11) where errors appeared at x = 2 and x = 4?
 - (f) We are working modulo seven, (mod 7), in this problem. We have polynomials

$$p_1(1) = 3$$
 $p_1(2) = 0$ $p_1(3) = 0$

$$p_2(1) = 1$$
 $p_2(2) = 1$ $p_2(3) = 0$

$$p_3(1) = 0$$
 $p_3(2) = 0$ $p_3(3) = 1$

Describe a polynomial p(x) where p(1) = 5, p(2) = 3 and p(3) = 1 in terms of polynomials $p_1(x)$, $p_2(x)$, and $p_3(x)$. (Remember this is all (mod 7).)

10. True or False

1. $(\neg P \Longrightarrow R) \land (\neg P \Longrightarrow \neg R) \equiv P$

○ True

○ False

2. $\forall x \in \mathbb{N}, (P(x) \land (\exists y \in \mathbb{N}, Q(x, y)) \equiv \forall y \in \mathbb{N}, \exists x \in \mathbb{N}, P(x) \land Q(x, y).$

○ True

○ False

3. $(\neg P(0) \land \forall n \in \mathbb{N}, (P(n) \Longrightarrow P(n-1))) \equiv \forall n \in \mathbb{N}, \neg P(n)$

○ True

○ False

4. $\forall x, ((P(x) \Longrightarrow Q(x)) \land Q(x)) \equiv \forall x, P(x)$

○ True

5. $P \lor Q \equiv \neg P \Longrightarrow Q$

○ False

○ True ○ False

11. Strong Induction vs Strengthening Hypothesis

Use induction to prove that $1 + \frac{1}{2} + \cdots + (\frac{1}{2})^n \le 2$? (Hint: strengthen the statement.)

12. Graphs!

Consider a directed graph where every pair of vertices u and v are connected by a single directed arc either from u to v or from v to u. Show that every vertex has a directed path of length at most two to **the vertex with maximum in-degree.** Note that this is quite similar to a homework problem but asks for a more specific answer. (Hint: Our solution doesn't require induction.)

13.	Short Graph Questions				
	For all $n \ge 3$, the complete graph on n vertices, K_n has more edges than the d -dimensional hypercube for $d = n$. (True or False)				
	The complete graph with n vertices where p is an odd prime can have all its edges covered with x Rudrata cycles: a cycle where each vertex appears exactly once. What is the number, x , of such cycles in a cover? (Answer should be an expression that depends on n .)				
14.	Quick Proofs				
	Prove or disprove that for integers a, b , if $a + b \ge 1016$ that either a is at least 508 or b is at least 508.				
15. RSA and CRT					
	Given an RSA public key pair $(N, e = 3)$, somehow you obtain d . Give an efficient algorithm to find p and q ? (Hint: e is 3.)				

16.	Modular Arithmetic Short Answers		
	1. What is $2^{24} \pmod{35}$?		
	2. What is the $x \pmod{105}$ where $x = 1 \pmod{3}$, $x = 0 \pmod{5}$ and $x = 0$	mod 7)?	
	3. How many numbers in $\{0, \dots, 104\}$ are relatively prime to 105?		
	4. What is 2 ⁴⁹ (mod 105)?		
	5. What is the multiplicative inverse of 3 modulo 37?		

17. Modular Short Answers

1. (Short Answer.) Give a number y modulo 35, where $y = 0 \pmod{5}$ and $y = 1 \pmod{7}$.

2. (Short Answer.) Give a number y modulo 35, where $y = 1 \pmod{5}$ and $y = 0 \pmod{7}$.

3. (Short Answer)Give a number y modulo 35, where $y = 4 \pmod{5}$ and $y = 3 \pmod{7}$.

4. (True/False) The public key d is relatively prime to (p-1)(q-1).

 \bigcirc True

O False

5. Consider an RSA scheme where p = 23, q = 5 and e = 3. What is d?

	Asii s wildtei ii i Review				
18.	. True False Exercises				
	(a)	A proposition a	nd its contrapo	apositive cannot both be true.	
		Circle one:	True	False	
	(b)	The proposition	$(A \wedge B) \vee (\neg A$	$\wedge B) \vee \neg B$ can never be false.	
		Circle one:	True	False	
(c) The hypercube graph always has an Eulerian tour.				nas an Eulerian tour.	
	. ,	Circle one:	True	False	
	(d)	If $f: A \rightarrow B$ is a	n injective (1-1) function, then there exists a surjective (onto) function $g: B \rightarrow A$.	
	. ,	Circle one:	True	False	
	(e)	If $gcd(a, b) = d$	then a has no	factor larger than d .	
	(-)	Circle one:	True	False	
	(f)	In RSA with m	odulus n — 0	1 and encryption power $e = 5$, the decryption power is $d = 73$	
	(1)	because $de = 36$		[] - [- [- [- [- [- [- [- [- [
		Circle one:	True	False	

(h) For any $d \in \mathbb{N}$, the set of polynomials of degree d with integer coefficients is countable. Circle one: **True** False