

OVERLAPPING MODULES DETECTION TECHNIQUES

Camila Riccio Rengifo

Data preprocessing

Modules detection

Usual approach (WGCNA)

Important genes

1PC from LFC matrix 5.143 modules 4.131 genes Phenotypic trait genes x mod Shoot K content 3x3 Shoot biomass 3x2 Root biomass 4x1

16 DE genes 2 named genes

Eigengene per module

LASSO

GO enrichment

PPI networks

genotype	Module 1	•••	Module 5143
101	-1.772555		5.628090
105	1.444241		3.260164
4	-1.364746		-1.689424
9	-2.122829		2.862661

Lipoxygenase

Lipoxygenase

Input:

Adjacency matrix $A \in \{0,1\}^{N \times N}$

The similarity between two links e_{ik} and e_{jk} is computed using the Jaccard index

$$S(e_{ik}, e_{jk}) = \frac{|n_+(i) \cap n_+(j)|}{|n_+(i) \cup n_+(j)|}$$

Output:

Affiliation matrix $F \in \{0, 1\}^{N \times C}$

Partition density:

For a network with *M* links and *C* subsets

$$D = \frac{2}{M} \sum_{c} m_{c} \frac{m_{c} - (n_{c} - 1)}{(n_{c} - 2)(n_{c} - 1)}$$

where m_c is the number of links in subset c and n_c is the number induced nodes.

NOCD

Input:

Adjacency matrix $A \in \{0,1\}^{N \times N}$ Attribute matrix $X \in \mathbb{R}^{N \times D}$ Real affiliation matrix $Z \in \{0,1\}^{N \times C}$

Output:

Affiliation matrix $F \in \mathbb{R}^{N \times C}_{\geq 0}$ Threshold $\to F \in \{0, 1\}^{N \times C}$

$$F := GCN_{\theta}(A, X)$$

$$= ReLU(\hat{A} ReLU(\hat{A}XW^{(1)})W^{(2)})$$

NOCD EXAMPLE

Dataset: $fb_{-}0$

|V| = 347

|E| = 2519

NOCD EXAMPLE

• Coverage: what percentage of the edges is explained by at least one community? (i.e. if (u, v) is an edge, both nodes share at least one community) Higher is better.

Coverage
$$(C_1, ..., C_K) = \frac{1}{|E|} \sum_{u,v \in E} \mathbb{1}[z_u^T z_v > 0]$$

• **Conductance**: average conductance of the detected communities (weighted by community size). Lower is better.

$$\operatorname{outside}(C) = \sum_{u \in C, v \notin C} A_{uv}$$

$$\operatorname{inside}(C) = \sum_{u \in C, v \in C, v \neq u} A_{uv}$$

$$\operatorname{Conductance}(C) = \frac{\operatorname{outside}(C)}{\operatorname{inside}(C) + \operatorname{outside}(C)}$$

$$AvgCond = \frac{1}{\sum_{i} |C_{i}|} \sum_{i} Conductance(C_{i}) \cdot |C_{i}|$$

• **Density**: average density of the detected communities (weighted by community size). Higher is better.

$$\rho(C) = \frac{\text{\# existing edges in } C}{\text{\# of possible edges in } C}$$

$$\text{AvgDensity} = \frac{1}{\sum_{i} |C_{i}|} \sum_{i} \rho(C_{i}) \cdot |C_{i}|$$

• Clustering coefficient: average clustering coefficient of the detected communities (weighted by community size). Higher is better.

$$\operatorname{ClustCoef}(C) = \frac{\text{\# existing triangles in } C}{\text{\# of possible triangles in } C}$$
$$\operatorname{AvgCC} = \frac{1}{\sum_{i} |C_{i}|} \sum_{i} \operatorname{ClustCoef}(C_{i}) \cdot |C_{i}|$$

• **NMI**: overlapping normalized mutual information. Quantify how similar or different a given set of real clusters are versus the set of clusters found by an algorithm.

	NOCD	HLC
# Comm.	24	136
Coverage	0.9146	0.8654
Density	2.314e-01	8.395e-01
Conductance	0.2140	0.6877
Clustering	5.947e-02	6.715e-01
NMI	0.1139	0.0473

El futuro Gobie es de todos de Co

Aliados

Apoyan

