Key to Final Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 2 (5 points)

Answer the questions on the answer sheet.

Exercise 3 (5 points)

- 1. Wire the flip-flops (figure 1) in order to design a modulo-14 asynchronous up counter.
- 2. Wire the flip-flops (figure 2) in order to design a modulo-14 asynchronous down counter.
- 3. Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuit.

Exercise 4 (6 points)

The table shown on the <u>answer sheet</u> gives the sequence of a counter we want to design. This counter should be made up of JK flip-flops.

- 1. Complete the table shown on the <u>answer sheet</u>.
- 2. Write down the most simplified expressions of J and K for each flip-flop on the <u>answer sheet</u>. <u>Complete the Karnaugh maps for the solutions that are not obvious</u>. An obvious solution does not have any logical operations apart from the complement (for instance: J0 = 1, $K1 = \overline{Q2}$).

Key to Final Exam S2

Key to Final Exam S2 2/6

Last name:	First name:	Group:
------------	-------------	--------

ANSWER SHEET

Exercise 1

1.

Number	er S E		umber S E M		M
217.25	217.25 0 10000110		10110010100000000000000		
0.21875	0.21875 0 01111100		11000000000000000000000		

2.

IEEE-754 Representation	Associated Representation
423E 0000 0000 0000 ₁₆	15×2^{33}
8003 8000 0000 0000 ₁₆	-7×2^{-1027}
7FF0 0000 0000 0000 ₁₆	$+\infty$

Exercise 2

Question	Answer
A memory has a depth of 64 Ki words. How many address lines does this memory have?	16 lines
A memory has an 8-bit data bus and a 16-bit address bus. In a power of two, what is the capacity in bits of this memory?	2 ¹⁹ bits
An M1 memory has a 16-bit data bus and a 32-bit address bus. Two M1 memories are connected in series to build an M2 memory. What is the size of the address bus of the M2 memory?	
A microprocessor has a 20-bit address bus. Three address lines are used for selecting the devices. With the linear address decoding, what is the maximum number of address lines that a device connected to this microprocessor can have?	17 lines
A microprocessor has a 24-bit address bus. Using the linear address decoding, we connect this microprocessor to the following devices. • a ROM device (20 address lines) • a RAM device (15 address lines) • a peripheral device (10 address lines) How many bits are unused in the case of the RAM device?	6 bits

Exercise 3

Figure 1

Figure 2

Exercise 4

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
1	1	1	Φ	0	Φ	1	Φ	1
1	0	0	Φ	0	0	Φ	1	Φ
1	0	1	Φ	0	1	Φ	Φ	1
1	1	0	Φ	1	Φ	0	0	Φ
0	1	0	0	Φ	Φ	1	1	Φ
0	0	1	0	Φ	0	Φ	Φ	1
0	0	0	1	Φ	1	Φ	1	Φ

Do not use Karnaugh maps for obvious solutions.

$$J0 = \overline{Q2} + \overline{Q1}$$

$$J1 = \overline{Q2}. \overline{Q0} + Q2.Q0 = \overline{Q2 \oplus Q0}$$

$$J2 = \overline{Q1}.\overline{Q0}$$

$$K0 = 1$$

		Q1 Q0					
	K1	00 01 11 1					
03	0	Φ	Ф	Ф	1		
Q2	1	Φ	Φ	1	0		

$$\mathbf{K1} = \overline{\mathbf{Q2}} + \mathbf{Q0}$$

		Q1 Q0							
	K2	00 01 11 10							
02	0	Φ	Φ	Φ	Φ				
Q2	1	0	0	0	1				

$$K2 = Q1.\overline{Q0}$$

$Computer\ Architecture-EPITA-S2-2017/2018$ Feel free to use the blank space below if you need to: