2024-01-25

Exercices

- 1. Calculer la représentation irréductible de $\mathbb{Z}_2 \times \mathbb{Z}_2$
- 2. Q_8 : Groupe des quaternions (8 éléments)

$$\{1, -1, i, j, k - i, -j, -k\}$$

avec

$$ii = jj = kk = -1$$
 $-ji = ij = -k$

- (a) Calculer les classes de conjugasion dans Q_8
- (b) Déterminer les représentations irréductible (il y en a 5, dimension 1 et 2)
- (c) Dresser la tables des caractère de Q_8
- 3. Décomposer $R: S_3 \to \mathrm{GL}(6,\mathbb{C})$ en irréductibles
- 4. Calculer $\rho_{\mathrm{std}} \otimes \rho_{\mathrm{std}} : S_3 \to \mathrm{GL}(\mathbb{C}^2 \otimes \mathbb{C}^2)$

Solutions:

1.

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$$

abélien \implies toute représentation irréductible est de dim 1 On a (0,1) + (0,1) = (0,0)

$$\rho(0,1)\rho(0,1) = 1 = \rho(0,1)^2 \implies \rho(0,1) \in \{1,-1\}$$

$$\rho_2(nm) = (-1)^n$$
 $\rho_{3(n,m)} = (-1^m)$ $\rho_4 = (-1)^n (-1)^m$ $\rho_1 = \text{repr. triv} = 1$

2. (a)

$$\{1\},\{-1\},\{i,-i\},\{j,-j\},\{k,-k\}$$

<u>Démarche</u>:

$$jij^{-1} = ji(-j) = -k(-j) = kj = -i$$

. . .

Pareil pour tout les éléments

(b) Si $\rho:Q_8\to\mathbb{C}^*$ est de rang 1. Comme $i^4=1,\,\rho(i)\in\{1,i,-1,-i\}$ (de même pour j et k)

$$(-1)^2 = 1 \implies \rho(-1) \in \{-1, 1\}$$

On a

$$\rho_{\text{triv}}(g) = 1$$

Supposons $\rho(i)=i \implies \rho(-1)=-1$ Je vois pas très bien le reste de la démarche mais on arrive à une contradiction en prennant $\rho(i)=i$ ou $\rho(i)=-1$ (même chose pour j et k évidemment) On doit donc prendre $\rho(i)\in\{1,-1\},\ \rho(j)\in\{1,-1\},\ \rho(k)\in\{1,-1\}$

On fait le c) tout de suite pour s'aider (voir 2b)

	e	i	$\mid j \mid$	$\mid k \mid$	-1
$\rho_{ m triv}$	1	1	1	1	1
$\overline{\rho_1}$	1	-1	1	-1	1
$\overline{\rho_2}$	1	-1	-1	1	1
ρ_3	1	1	-1	-1	1
ρ_4	2	0	0	0	-2

TABLE 1 – Tableau de char de C_8

Fin de la periode d'Exercices

Rappel d'algèbre linéaire sur les projections

V espace vectoriel

 $P:V\to V$ L application linéaire t.q. $P^2=P$ est appelé une projection (sur le sous-espace Im(P))

 $\underline{\operatorname{Ex}}:P:\mathbb{C}^2\to\mathbb{C}^2$ est une projection

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad P^2 = P$$

Proposition : Si P est une projection, tr(P) = dim(ImP)

Démonstration On a $V = \text{KerP} \oplus \text{ImP}$

1. $\operatorname{car} \operatorname{dim}(V) = \operatorname{dim}(\operatorname{KerP}) + \operatorname{dim}(\operatorname{Im}(P))$

2. et si $v \in (\text{KerP}) \cap (\text{ImP})$ P(v) = 0 mais aussi $v = P(u) \implies 0 = P(v) = P(P(u)) = P(u) = v$ $\implies v = 0$

Si $v \in \operatorname{Im}(P) P(V) = V$

$$\Rightarrow P|_{\operatorname{Im}(P)} = \mathbb{1}_{\operatorname{Im}(P)}$$
et $P|_{\operatorname{KerP}} = 0_{\operatorname{KerP}}$

$$\Rightarrow P = \begin{pmatrix} \mathbb{1}_{\operatorname{ImP}} & 0 \\ 0 & 0_{\operatorname{ImP}} \end{pmatrix} \text{ dans certaines bases}$$

$$\Rightarrow \operatorname{tr}(P) = \operatorname{tr}(\mathbb{1}_{\operatorname{ImP}}) = \operatorname{dimImP}$$

??? d'irréducitbilité est relations d'orthogonalité

Soit $\rho: G \to GL(V)$

définissons $V^G = \{v \in V | \rho(g)v = v \forall g \in G\}$ le sous-espace des invariants

Exercice

Montrer que V^G est un sous-espace vectoriel de V

et $P: V \to V$

$$P(V) = \frac{1}{|G|} \sum_{g \in G?} \rho(g)v$$

Prop : P est une projection sur V^G

Démonstration : ON veut montrer

1.
$$ImP = V^G$$
 et

2.
$$P^2 = P$$

1. Supposons $v \in \text{ImP}$

$$\implies v = P(u) = \frac{1}{|G|} \sum_{g \in G} \rho(g) u$$

alors

$$\rho(h)v = \rho(h)\cdots$$

Il a effacé avant que j'ai eu le temps de noter : (

$$= \frac{1}{|G|} \sum_{g \in G} \rho(g) h = P(u) = v$$

$$\implies ImP \subset V^G$$

Inversement, si $v \in V^G$

alors $P(v) = \frac{1}{|G|} \sum_{g \in G} \rho(g) v$

$$= \frac{1}{|G|} \sum_{g \in G} v = \frac{|G|}{|G|} v = v$$

$$\implies P^2 = P(P(v)) = P(v)$$

$$\dim(V^{G)} = tr(P) = tr\left(\frac{1}{|G|} \sum_{g \in G} \rho(g)\right) = \frac{1}{|G|} \sum_{g \in G} tr(\rho(G)) = \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)$$

En particulier, si ρ est irréductible est non-trivial alors

$$\sum_{g \in G} \chi_{\rho}(g) = 0$$

 $\underline{\operatorname{Ex}}:S_3$

. . .