Subgradient Method. Specifics of non-smooth problems.

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

ℓ_1 -regularized linear least squares

ℓ_1 induces sparsity

@fminxyz

Norms are not smooth

$$\min_{x \in \mathbb{R}^n} f(x),$$

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do not require smoothness.

Figure 1: Norm cones for different p - norms are non-smooth

Wolfe's example

Wolfe's example

Figure 2: Wolfe's example. **Open in Colab**

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate

• If f(x) is differentiable, then $g = \nabla f(x_0)$

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient calculus

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$
- Not all continuous convex functions are differentiable.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

An important property of a continuous convex function f(x) is that at any chosen point x_0 for all $x \in \text{dom } f$ the inequality holds:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

graph of the function is the global estimate from below for the function.

- If f(x) is differentiable, then $g = \nabla f(x_0)$ Not all continuous convex functions are
- differentiable.

We wouldn't want to lose such a nice property.

Figure 3: Taylor linear approximation serves as a global lower bound for a convex function

Subgradient calculus

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

♥ റ ഉ

A vector g is called the **subgradient** of a function $f(x): S \to \mathbb{R}$ at a point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The set of all subgradients of a function f(x) at a point x_0 is called the **subdifferential** of f at x_0 and is denoted by $\partial f(x_0)$.

Figure 4: Subdifferential is a set of all possible subgradients

Find $\partial f(x)$, if f(x) = |x|

Find $\partial f(x)$, if f(x) = |x|

Subdifferential properties
• If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = {\nabla f(x_0)}.$

- If $x_0 \in \mathbf{ri}S$, then $\partial f(\dot{x_0})$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

n Subgradient calculus

- If $x_0 \in \mathbf{ri}S$, then $\partial f(\dot{x_0})$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

♥ ೧ Ø

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.
- The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$
- If $\partial f(x_0) \neq \emptyset$ $\forall x_0 \in S$, then f(x) is convex on S.

Subdifferential of a differentiable function

Let $f:S\to\mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0\in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0)=\emptyset$ or $\partial f(x_0)=\{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

- If x₀ ∈ riS, then ∂f(x₀) is a convex compact set.
 The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

Subgradient calculus

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

$$f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$$

- If x₀ ∈ riS, then ∂f(x₀) is a convex compact set.
 The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = \{\nabla f(x_0)\}$. Moreover, if the function f is convex, the first scenario is impossible.

Proof

Subgradient calculus

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

$$f(x_0 + tv) \ge f(x_0) + t\langle s, v \rangle$$

Subdifferential properties • If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set.

- - The convex function f(x) is differentiable at the point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

Subdifferential of a differentiable function

Let $f: S \to \mathbb{R}$ be a function defined on the set S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Proof

1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition

which implies:

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\begin{split} \langle \nabla f(x_0), v \rangle &= \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle \\ \text{2. From this, } \langle s - \nabla f(x_0), v \rangle \ge 0. \text{ Due to the arbitrariness of } v \text{, one can set} \end{split}$$

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

leading to $s = \nabla f(x_0)$.

of the subgradient, we have

- If $x_0 \in \mathbf{ri}S$, then $\partial f(x_0)$ is a convex compact set. • The convex function f(x) is differentiable at the
- point $x_0 \Rightarrow \partial f(x_0) = \{\nabla f(x_0)\}.$ • If $\partial f(x_0) \neq \emptyset \quad \forall x_0 \in S$, then f(x) is convex on S.

Subdifferential of a differentiable function

S in a Euclidean space \mathbb{R}^n . If $x_0 \in \mathbf{ri}(S)$ and f is differentiable at x_0 , then either $\partial f(x_0) = \emptyset$ or $\partial f(x_0) = {\nabla f(x_0)}.$ Moreover, if the function f is convex, the first scenario is impossible.

Let $f: S \to \mathbb{R}$ be a function defined on the set

Proof

- 1. Assume, that $s \in \partial f(x_0)$ for some $s \in \mathbb{R}^n$ distinct
- from $\nabla f(x_0)$. Let $v \in \mathbb{R}^n$ be a unit vector. Because x_0 is an interior point of S, there exists $\delta > 0$ such that $x_0 + tv \in S$ for all $0 < t < \delta$. By the definition of the subgradient, we have

which implies:

$$\frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

for all $0 < t < \delta$. Taking the limit as t approaches 0 and using the definition of the gradient, we get:

$$\langle \nabla f(x_0), v \rangle = \lim_{t \to 0; 0 < t < \delta} \frac{f(x_0 + tv) - f(x_0)}{t} \ge \langle s, v \rangle$$

2. From this, $\langle s - \nabla f(x_0), v \rangle > 0$. Due to the arbitrariness of v, one can set

$$v = -\frac{s - \nabla f(x_0)}{\|s - \nabla f(x_0)\|},$$

leading to $s = \nabla f(x_0)$.

3. Furthermore, if the function f is convex, then according to the differential condition of convexity $f(x) \geq f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$ for all $x \in S$. But

by definition, this means $\nabla f(x_0) \in \partial f(x_0)$.

 $f(x_0 + tv) > f(x_0) + t\langle s, v \rangle$ Subgradient calculus

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets S_i , i =

$$\overline{1,n}$$
. Then if $\bigcap_{i=1}^n \mathbf{r} \mathbf{i} S_i \neq \emptyset$ then the function $f(x) =$

$$\sum\limits_{i=1}^{n}a_{i}f_{i}(x),\;a_{i}>0$$
 has a subdifferential $\partial_{S}f(x)$ on

the set $S = \bigcap_{i=1}^{n} S_i$ and

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Moreau - Rockafellar theorem (subdifferential of a linear combination)

Let $f_i(x)$ be convex functions on convex sets $S_i, i = \overline{1,n}$. Then if $\bigcap_{i=1}^n \mathbf{ri} S_i \neq \emptyset$ then the function $f(x) = \overline{1,n}$

 $\sum_{i=1}^n a_i f_i(x), \ a_i>0$ has a subdifferential $\partial_S f(x)$ on the set $S=\bigcap_{i=1}^n S_i$ and

$$\partial_S f(x) = \sum_{i=1}^n a_i \partial_{S_i} f_i(x)$$

Dubovitsky - Milutin theorem (subdifferential of a point-wise maximum)

Let $f_i(x)$ be convex functions on the open convex set $S\subseteq \mathbb{R}^n,\ x_0\in S$, and the pointwise maximum is defined as $f(x)=\max_i f_i(x)$. Then:

$$\partial_S f(x_0) = \mathbf{conv} \left\{ igcup_{i \in I(x_0)} \partial_S f_i(x_0)
ight\}, \quad I(x) = \{i \in [x_0] \}$$

mn ,y,z Subgradient calculus

•
$$\partial(\alpha f)(x) = \alpha \partial f(x)$$
, for $\alpha \ge 0$

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \geq 0$ $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions
- $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f convex function

- $\partial(\alpha f)(x) = \alpha \partial f(x)$, for $\alpha \ge 0$
- $\partial(\sum f_i)(x) = \sum \partial f_i(x)$, f_i convex functions
- $\partial (f(Ax+b))(x) = A^T \partial f(Ax+b)$, f convex function
- $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$.

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The idea is very simple: let's replace the gradient $\nabla f(x_k)$ in the gradient descent algorithm with a subgradient g_k at point x_k :

$$x_{k+1} = x_k - \alpha_k q_k,$$

where g_k is an arbitrary subgradient of the function f(x) at the point x_k , $g_k \in \partial f(x_k)$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

Subgradient Method

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\ 2\alpha_k \langle g_k, x_k - x^* \rangle &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - \|x_{k+1} - x^*\|^2 \end{aligned}$$

Let us sum the obtained equality for $k = 0, \dots, T-1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

 Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x_k x^* \rangle \le f(x_k) f(x^*) = f(x_k) f^*$.

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for $k = 0, \dots, T - 1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{D}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle q_k, x_k x^* \rangle <$ $f(x_k) - f(x^*) = f(x_k) - f^*.$
- We additionally assume, that $||a_k||^2 < G^2$

Subgradient Method

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - \|x_{k+1} - x^*\|^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x_k x^* \rangle \le f(x_k) f(x^*) = f(x_k) f^*$.
- We additionally assume, that $\|g_k\|^2 \leq G^2$ • We use the notation $R = \|x_0 - x^*\|_2$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$

 $\sum \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$

 $\sum \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

 $\sum \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^*=\frac{R}{G}\sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\langle g_k,x_k-x^*\rangle\leq GR\sqrt{T}.$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

Important notes:

 Obtaining bounds not for x_T but for the arithmetic mean over iterations x̄ is a typical trick in obtaining estimates for

monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average

methods where there is convexity but no

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^*=\frac{R}{G}\sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\langle g_k,x_k-x^*\rangle\leq GR\sqrt{T}.$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

Important notes:

• Obtaining bounds not for x_T but for the arithmetic mean over iterations \overline{x} is a

typical trick in obtaining estimates for methods where there is convexity but no monotonic decreasing at each iteration.

There is no guarantee of success at each iteration, but there is a guarantee of success on average

ullet To choose the optimal step, we need to know (assume) the number of iterations in advance. Possible solution: initialize T

in advance. Possible solution: initialize T with a small value, after reaching this number of iterations double T and restart the algorithm. A more intelligent way: adaptive selection of stepsize.

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ \langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) G^2 \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ \langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) G^2 \\ \sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=1}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2 \right) G^2 \end{split}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \leq \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \leq GR\sqrt{T} \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \leq \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \leq GR\sqrt{T} \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \leq \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \leq GR\sqrt{T} \end{aligned}$$

Which leads to exactly the same bound of $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ on the primal gap. In fact, for this class of functions, you can't get a better result than $\frac{1}{\sqrt{T}}$.

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{G} \sqrt{\frac{1}{K}}$, subgradient method

satisfies
$$f(\overline{x})-f^* \leq \frac{G\|x_0-x^*\|_2}{\sqrt{K}} \qquad \overline{x} = \frac{1}{K}\sum^{K-1}x_i$$

• $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{C} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G||x_0 - x^*||_2}{\sqrt{K}}$$
 $\overline{x} = \frac{1}{K} \sum_{k=0}^{K-1} x_k$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).
- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G||x_0 - x^*||_2}{\sqrt{K}}$$
 $\overline{x} = \frac{1}{K} \sum_{k=0}^{K-1} x_k$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).
- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).
- There is no monotonic decrease of objective.

♥ດ

Theorem

Let f be a convex G-Lipschitz function. For a fixed step size $\alpha = \frac{\|x_0 - x^*\|_2}{G} \sqrt{\frac{1}{K}}$, subgradient method satisfies

$$f(\overline{x}) - f^* \le \frac{G||x_0 - x^*||_2}{\sqrt{K}}$$
 $\overline{x} = \frac{1}{K} \sum_{k=0}^{K-1} x_i$

- $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ is slow, but already hits the lower bound $\left(\mathcal{O}\left(\frac{1}{T}\right)\right)$ in the strongly convex case).
- Proved result requires pre-defined step size strategy, which is not practical (usually one cas just use several diminishes strategies).
- There is no monotonic decrease of objective.
- Convergence is slower, than for the gradient descent (smooth case). However, if we will go deeply for the
 problem structure, we can improve convergence (proximal gradient method).

 $f \to \min_{x,y,z}$

⊕ O Ø

Theorem

Let f be a convex G-Lipschitz function and $f_k^{\text{best}} = \min_{i=1,\dots,k} f(x^i)$. For a fixed step size α , subgradient method satisfies

$$\lim_{k \to \infty} f_k^{\mathsf{best}} \le f^* + \frac{G^2 \alpha}{2}$$

Theorem

Let f be a convex G-Lipschitz function and $f_k^{\text{best}} = \min_{i=1}^k f(x^i)$. For a diminishing step size α_k (square summable but not summable. Important here that step sizes go to zero, but not too fast), subgradient method satisfies

$$\lim_{k \to \infty} f_k^{\mathsf{best}} \le f^*$$

Linear Least Squares with l_1 -regularization

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$$

Algorithm will be written as:

$$x_{k+1} = x_k - \alpha_k \left(A^{\top} (Ax_k - b) + \lambda \operatorname{sign}(x_k) \right)$$

where signum function is taken element-wise.

LLS with I_1 regularization. 2 runs. $\lambda = 1$

Regularized logistic regression

Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}$ for $i = 1, \dots, n$, the logistic regression function is defined as:

$$f(\theta) = \sum_{i=1}^{n} \left(-y_i x_i^T \theta + \log(1 + \exp(x_i^T \theta)) \right)$$

This is a smooth and convex function with its gradient given by:

$$\nabla f(\theta) = \sum_{i=1}^{n} (y_i - s_i(\theta)) x_i$$

where $s_i(\theta) = \frac{\exp(x_i^T \theta)}{1 + \exp(x_i^T \theta)}$, for $i = 1, \dots, n$. Consider the regularized problem:

$$f(\theta) + \lambda r(\theta) \to \min_{\theta}$$

where $r(\theta) = \|\theta\|_2^2$ for the ridge penalty, or $r(\theta) = \|\theta\|_1$ for the lasso penalty.

Support Vector Machines

Let
$$D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^n, y_i \in \{\pm 1\}\}$$

We need to find $\theta \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$\min_{\theta \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \|\theta\|_2^2 + C \sum_{i=1}^m \max[0, 1 - y_i(\theta^\top x_i + b)]$$

