Smart Crop Prediction

A Comprehensive Analysis of Machine Learning Models"

Ajay K Mashapari

Outline

- Project Duration: 2024
- Models Analyzed: 15+ across classification and regression
- Dataset Features: Weather, Soil, Agricultural Practices

Project Overview

Objectives & Scope:

- Classification Goals:
 - Predict yield categories (0-4)
 - Identify key performance drivers
 - Achieve >80% accuracy
- Regression Goals:
 - Precise yield prediction in tons/hectare
 - RMSE target < 0.5
 - R² target > 0.9

Data Preprocessing Steps

Data Cleaning & Preparation:

- Feature Engineering:
 - Standardization of numeric features
 - One-hot encoding for categorical variables
 - SMOTE for class balancing
- Features Processed:
 - Numeric: Rainfall, Temperature, Days to Harvest
 - Categorical: Region, Soil Type, Crop, Weather
 - Binary: Fertilizer, Irrigation

Imbalance issue

```
# Count occurrences
value_counts = df_C['yield_category'].value_counts()
counts = value_counts[['A','B', 'C', 'D', 'E']]

# Print the counts
print("Value Counts:")
print(counts)
Value Counts:
```

Solution: Undersampling

```
: import pandas as pd
  import numpy as np
  # Set random seed for reproducibility
  np.random.seed(42)
  # Sample 20000 from each category
  df C bal = pd.concat([
      df_C[df_C['yield_category'] == 'A'].sample(n=20000, random_state=42),
      df_C[df_C['yield_category'] == 'B'].sample(n=20000, random_state=42),
      df_C[df_C['yield_category'] == 'C'].sample(n=20000, random_state=42),
      df_C[df_C['yield_category'] == 'D'].sample(n=20000, random_state=42),
      df_C[df_C['yield_category'] == 'E'].sample(n=20000, random_state=42)
  ])
  # Verify the new counts
  print("New Value Counts:")
  print(df_C bal['yield_category'].value_counts())
  # Visualize the balanced distribution
  import matplotlib.pyplot as plt
  plt.figure(figsize=(10, 6))
  df_C_bal['yield_category'].value_counts().plot(kind='bar')
  plt.title('Balanced Distribution of Categories')
  plt.xlabel('Category')
  plt.ylabel('Count')
  plt.tight_layout()
  plt.show()
  # Save the balanced dataset if needed
  # balanced df num.to csv('balanced dataset.csv', index=False)
  New Value Counts:
  yield_category
      20000
       20000
       20000
       20000
       20000
  Name: count, dtype: int64
```


Balancing method:

Original dataset had significant imbalance (Category C: 409,999 vs Category A: 20,183)
Used random sampling to extract exactly 20,000 samples from each category
Resulted in perfectly balanced dataset with equal representation

Model Selection(Classification)

- Models Evaluated:
 - Decision Trees
 - Random Forest
 - XGBoost
- Comparison Criteria:
 - Accuracy, Precision, Recall
 - F1-Score, AUC-ROC

Classification Analysis - Model Performance

- XGBoost Configuration (Best Model):
- Parameters:
 - n_estimators=100
 - subsample=0.9 Performance Metrics:
- Accuracy: 81.35%
- Precision: 81.19%
- Recall: 81.35%
- F1-Score: 81.24%
- AUC: 0.9681

XGBoost Model Performance Metrics

Configuration: n_estimators=100, subsample=0.9

Accuracy	Precision
81.35%	81.19%
Recall	F1-Score
81.35%	81.24%

AUC

96.81%

Average Metrics by Model Type

Model	Accuracy	Precision	Recall	F1	AUC
Random Forest	0.6554	0.6150	0.6554	0.6213	0.8482
XGBoost	0.8125	0.8110	0.8125	0.8113	0.9679

Best Model Performance by Metric

Metric	Model	Parameters	Score	ID
Accuracy	XGBoost	n_estimators: 100, subsample: 0.9	0.8136	19
Precision	XGBoost	n_estimators: 100, subsample: 0.9	0.8119	19
Recall	XGBoost	n_estimators: 100, subsample: 0.9	0.8136	19
F1	XGBoost	n_estimators: 100, subsample: 0.9	0.8124	19
AUC	XGBoost	n_estimators: 100, subsample: 0.7	0.9682	17

Classification Results - Detailed Analysis

1. Confusion Matrix:

- 1. Strong diagonal pattern
- 2. Minimal cross-category confusion

2.ROC Analysis:

- 1. Class 0: AUC = 0.99
- 2. Class 1: AUC = 0.95
- 3. Class 2: AUC = 0.96
- 4. Class 3: AUC = 0.95
- 5. Class 4: AUC = 0.99

Regression Model Comparison

- Model Performance Rankings:
- 1.Ridge Regression (Best):
 - 1. RMSE: 0.499271
 - 2. R²: 0.913234
- 2. Linear Regression:
 - 1. Baseline performance
- 3.XGBoost Variations:
 - 1.5 different configurations
- 4.Lasso Regression:
 - 1.4 different alpha values

Best Regression Model Analysis

- Ridge Regression Details:
- Configuration: alpha=100.0
- Performance Metrics:
 - RMSE: 0.499271
 - R²: 0.913234
 - CV Mean R²: 0.912958
 - CV Std R²: 9.43e-05

Regression Diagnostics

Detailed Analysis:

- 1.Residual Plot:
 - 1. Random scatter around zero
 - 2. Consistent spread
- 2. Outlier Detection:
 - 1.< 10% outliers identified
- 3. Residual Distribution:
 - 1. Normal distribution
 - 2. Centered at zero
- 4.Q-Q Plot:
 - 1. Strong diagonal alignment

Feature Importance Analysis

Key Drivers of Yield:

- 1. Fertilizer Usage (1.4 score)
- 2.Rainfall (1.3 score)
- 3.Irrigation (1.2 score)
- 4. Temperature (0.2 score) Impact Analysis:
- Agricultural inputs dominate
- Weather factors significant
- Soil characteristics moderate impact

Feature Importance Analysis

Real-World Applications

- 1. Agricultural Planning:
 - 1. Yield prediction accuracy: ±0.5 tons/hectare
 - 2.91.32% variance explained
- 2. Financial Planning:
 - 1. Revenue forecasting
 - 2. Risk assessment
- 3. Resource Optimization:
 - 1. Input planning
 - 2. Resource allocation
- 4. Market Intelligence:
 - 1. Supply prediction
 - 2. Price forecasting

Model Selection Guidelines

- When to Use Classification:
- Categorical yield predictions
- Risk category assessment
- General planning
- When to Use Regression:
- Precise yield estimates
- Financial projections
- Resource planning

Implementation Strategy

Data Requirements:

Weather data
Soil information
Agricultural practices

Model Deployment:

Regular retraining
Performance monitoring

Integration Points:

Farm management systems
Financial planning tools [Image
Type: Implementation roadmap(if
possible need to make it)]

ML Model Implementation Roadmap

Decision Support on Irrigation and Fertilization

Objective: Determine whether fertilization or irrigation is needed in different environment and local crop growing costs.

Basic Idea

Result

6

5

Cluster

F&I

Corps

0

4.7697

6.0376

3.3030

4.5067

4.8001

5.9884

3.2937

4.5174

4.7660

5.9849

2

3

0

2

3

0

2

3

Maize

Cotton

4.7631

5.9931

3.2997

4.4709

4.7855

6.0174

3.3149

4.5195

4.8167

5.9532

4.8251

6.0359

3.3340

4.5628

4.7756

6.0010

3.3033

4.5355

4.7051

5.9889

4.8195

5.9903

3.2818

4.5251

4.7785

6.0209

3.3211

4.4993

4.8174

5.9459

4.8024

5.9904

3.2589

4.5006

4.8410

5.9848

3.2473

4.4763

4.8389

5.9879

4.8276

5.9976

3.2796

4.4667

4.7561

5.9834

3.3424

4.5265

4.8515

6.0318

4.7891

5.9877

3.2712

4.4802

4.7848

6.0150

3.3051

4.5042

4.8257

6.0491

1

2

3

4

COTPS	ı Qı								ricia i		ricciard	_						
	0	3.2959	3.3274	3.3134	3.2759	3.3133	3.3466	3.3213	3.2915	3.2606	3.2887	3.2870	3.3410	3.3755	3.2912	3.3086	3.2981	3.2884
Dica	1	4.4829	4.5279	4.4424	4.5243	4.4789	4.5387	4.5286	4.5069	4.5146	4.4644	4.5029	4.5038	4.5666	4.5286	4.4646	4.5247	4.5464
Rice	2	4.7669	4.8002	4.7866	4.8477	4.8075	4.8027	4.8032	4.8104	4.7909	4.7947	4.8110	4.8110	4.8137	4.8196	4.7971	4.8192	4.7672
	3	6.0025	6.0194	6.0384	5.9963	5.9572	5.9853	6.0249	5.9817	5.9867	6.0205	6.0100	6.0132	6.0682	6.0380	6.0006	5.9947	5.9500
	0	3.3162	3.2592	3.2893	3.2749	3.2904	3.2713	3.3027	3.3621	3.3471	3.2952	3.4100	3.3242	3.3178	3.2420	3.3004	3.3142	3.3326
Darloy	1	4.4771	4.5034	4.4637	4.4227	4.5481	4.4612	4.4725	4.4999	4.4790	4.5057	4.4895	4.4544	4.4780	4.4843	4.4674	4.5257	4.4909
Barley	2	4.8369	4.7787	4.7653	4.7845	4.8771	4.7793	4.7649	4.8300	4.8263	4.8199	4.7849	4.8389	4.7456	4.8124	4.8195	4.8178	4.8052
	3	6.0506	6.0127	5.9878	5.9971	6.0596	5.9398	6.0248	6.0181	6.0018	5.9977	6.0194	6.0395	5.9647	6.0138	6.0097	5.9913	6.0161
	0	3.2773	3.3255	3.2807	3.3585	3.2970	3.3248	3.3588	3.3215	3.2693	3.2932	3.2464	3.3083	3.3636	3.3110	3.3483	3.3100	3.2290
Soy	1	4.4960	4.5189	4.4519	4.5556	4.5326	4.4914	4.5183	4.5331	4.4857	4.4922	4.5229	4.5113	4.5350	4.4943	4.5008	4.4832	4.5051
bean	2	4.7839	4.7862	4.7748	4.7920	4.8588	4.7538	4.7873	4.8018	4.7875	4.7908	4.7459	4.7716	4.8415	4.8219	4.8100	4.7684	4.8072
	2	0000	0460	0404		E 0274	6 0 5 2 2	C 040C	E 0047	C 0222	C 0404	F 0040	C 0272	C 0242	L 0070	L 0740	F 0.007	C 02F2

8

Yield Tons Per Hectare

9

10

11

12

13

15

14

16

	0	3.2773	3.3255	3.2807	3.3585	3.2970	3.3248	3.3588	3.3215	3.2693	3.2932	3.2464	3.3083	3.3636	3.3110	3.3483	3.3100	3.2290
Soy	1	4.4960	4.5189	4.4519	4.5556	4.5326	4.4914	4.5183	4.5331	4.4857	4.4922	4.5229	4.5113	4.5350	4.4943	4.5008	4.4832	4.5051
bean	2	4.7839	4.7862	4.7748	4.7920	4.8588	4.7538	4.7873	4.8018	4.7875	4.7908	4.7459	4.7716	4.8415	4.8219	4.8100	4.7684	4.8072
	3	6.0000	6.0168	6.0191	6.0373	5.9271	6.0523	6.0196	5.9917	6.0332	6.0191	5.9940	6.0272	6.0313	5.9978	5.9718	5.9607	6.0252
	0	3.2602	3.3412	3.2937	3.3237	3.3234	3.3512	3.3280	3.3242	3.2775	3.3149	3.3053	3.2528	3.2634	3.3091	3.3096	3.3287	3.2913
\	1	4.4639	4.4911	4.5295	4.4662	4.5255	4.4787	4.4379	4.5567	4.4643	4.5069	4.5194	4.4592	4.5047	4.5021	4.4900	4.5054	4.4866
Wheat	2	4.7007	4.7624	4.0054	4.0405	4.002.4	4.0276	4 7004	4.0455	4 04 07	4.700C	4.0260	4.0544	4.0400	4 0275	4.0266	4 7044	4 775 4

4.8455

6.0006

3.3457

4.5127

4.8002

5.9881

3.3339

4.5127

4.8634

5.9879

4.8107

6.0138

3.3282

4.4702

4.8685

5.9736

3.3618

4.4998

4.7513

5.9852

4.7806

5.9923

3.3119

4.4781

4.7980

5.9992

3.2559

4.4800

4.8108

5.9862

4.8360

5.9660

3.2716

4.5234

4.7488

6.0102

3.3160

4.4673

4.8094

5.9637

4.8511

5.9613

3.3138

4.5601

4.7747

5.9832

3.2777

4.4795

4.7469

6.0375

4.8188

5.9470

3.3077

4.4791

4.8435

5.9880

3.2458

4.5333

4.7896

5.9887

4.8275

5.9889

3.3050

4.5266

4.7256

5.9907

3.3203

4.5290

4.7947

5.9703

4.8266

5.9230

3.2922

4.4941

4.7916

5.9554

3.3093

4.5321

4.7474

6.0525

4.7844

5.9530

3.2788

4.4885

4.7337

5.9398

3.3443

4.4363

4.8736

5.9787

4.7754

6.0267

3.2721

4.4725

4.8554

5.9805

3.2810

4.4743

4.7875

6.0180

Real-World Application

There is a farmer who wants to grow rice and the environment of his fiel belongs to cluster 0.

	Fertilizer	Irrigation
Cost	\$10	\$15

	Rice
Price	\$10

	Cluster	0	
Corps	F&I	U	Income
	0	3.2959	\$32.96
Diag	1	4.4829	\$29.83
Rice	2	4.7669	<mark>\$37.67</mark>
	3	6.0025	\$35.03

So, the farmer should only fertilize the rice to get the most Income.

Thank You