Spatial Analysis and Modeling

Modeling Spatial Heterogeneity

Corso di formazione su ML e DL Fondazione LINKS 25/09/2025

What is spatial heterogeneity?

- Relationships between predictors X and outcome Y can vary across space : local contexts modulate effect sizes.
- Formal view: model parameters depend on location, e.g. $y(\mathbf{s}) \approx \mathbf{x}(\mathbf{s})^{\top} \boldsymbol{\beta}(\mathbf{s})$, where \mathbf{s} denotes spatial location and $\boldsymbol{\beta}(\mathbf{s})$ are spatially varying coefficients.
- Examples:
 - Housing markets: the marginal effect of floor area, $\beta_{area}(s)$, differs by neighborhood.
 - \circ Environmental response: pollutant-health coefficient $\beta_{\mathrm{pollutant}}(\mathbf{s})$ may be larger near industrial corridors.
 - \circ Service access: the effect of distance to a hospital, $\beta_{\rm dist}({f s})$, depends on local transport infrastructure.
- Implication: assuming a global constant β can bias estimates and obscure important local patterns (keeping residual spatially correlated).

Types of Spatial Nonstationarity

1. First-Order Nonstationarity

- ullet Mean varies spatially: $\mathbb{E}[Y(s)] = \mu(s)$
- Example: House prices vary by neighborhood characteristics

2. Second-Order Nonstationarity

- Covariance structure varies: $\mathrm{Cov}[Y(s_i),Y(s_j)]=C(s_i,s_j)$
- Example: Spatial dependence stronger in urban vs. rural areas

3. Parameter Nonstationarity

- Regression coefficients vary: $eta_k = eta_k(s)$
- Example: Effect of income on education varies by region

Detecting spatial heterogeneity — practical diagnostics

Visual inspection

 Map raw outcome, key predictors, and model residuals (standardized). Spatial patterns in residuals are an immediate hint.

Global spatial autocorrelation

 Compute Moran's I (or Geary's C) on outcome and on residuals. Significant positive autocorrelation in residuals suggests missing spatially varying effects.

Local indicators

 Run LISA / local Moran and Getis-Ord Gi* to find hot/cold spots and localized clustering of residuals or errors.

Model comparisons (global vs local)

 Fit a global model and a local/partitioned model (GWR, spatially varying coefficients, or regionwise models). Large improvements in CV/AICc or predictive error point to heterogeneity.

Coefficient diagnostics

• Estimate location-wise coefficients (GWR, local fits, hierarchical SVC). Map estimates and their uncertainties; systematic spatial variation in coefficients is direct evidence.

Spatial cross-validation tests

 Use spatially blocked/buffered CV. If predictive performance drops under spatial CV vs random CV, spatial dependence/heterogeneity is important and may bias naive evaluation.

Quick checklist to run:

- 1. Map outcome & residuals.
- 2. Compute Moran's I on residuals.
- 3. Inspect variogram (range, sill, anisotropy).
- 4. Run LISA / Getis-Ord for local clusters.
- 5. Compare global vs local model CV/AICc.
- 6. Map local coefficients and their SEs; test significance/permute.

Use multiple diagnostics together — visual + global + local + predictive checks — to build robust evidence of spatial heterogeneity.

1. Spatial coordinate features

Include (x,y) or basis functions (splines, RBF) as predictors.

- Pros: simple, fast; good for smooth global trends.
- Cons: misses complex, non-isotropic/local boundaries.
- Use when change is gradual and you need a quick baseline.

2. Geographically Weighted Regression (GWR)

- Pros: interpretable local coefficients; diagnostic maps.
- **Cons**: computationally heavy, sensitive to bandwidth and collinearity, assumes isotropy in kernel.

3. Decomposition-based ensembles (partition & local models)

Partition space (clustering, administrative units, road network), fit local models, combine.

- **Pros**: flexible region shapes and models per region.
- Cons: partitioning is nontrivial; boundary discontinuities; maintenance overhead.
- Good for clearly segmented regimes (urban/rural, climate zones).

4. Multi-Task Learning (MTL) with spatial regularization

- Tasks = locations/zones ; learn parameters $\Theta = [\theta_1, \dots, \theta_n]$ with a graph-Laplacian penalty: $\min_{\Theta} \sum_{i} \mathcal{L}_i(\theta_i) \ + \ \lambda \operatorname{tr} \big(\Theta \, L \, \Theta^\top \big)$
- **Pros**: encourages smoothness across neighbors (penalizes $\|\theta_i \theta_j\|$ for connected pairs), borrows strength where labels are scarce.
- Cons: requires differentiable losses and careful task definition; heavier optimization and tuning of λ and the Laplacian L.
- Best when many related local prediction tasks with limited per-location data; common variants include shared feature layers, low-rank coupling, and semi-supervised graph regularization.

5. Hierarchical and multi-scale models

What they are

• Hierarchical spatial models (aka multi-level spatial models) embed **spatial structure as** latent layers in a probabilistic model.

Why they are useful (intuition + examples)

- Separate sources of variation: covariate effects ($\mathbf{X}\boldsymbol{\beta}$), structured spatial residuals ($\boldsymbol{\phi}$), and uncorrelated noise ($\boldsymbol{\varepsilon}$), clarifying interpretation and reducing confounding.
- Provide principled uncertainty quantification (posterior and predictive intervals for β , $\phi(\cdot)$, and predictions).
- Support **multi-scale** modeling and **data fusion** (e.g. combine coarse areal counts and point observations by sharing latent fields).

Main modeling approaches (short catalog)

- CAR/GMRF (areal data)
 - Discrete-area priors (ICAR / proper CAR). Efficient: sparse precision (Q).
 - Use when data are aggregated over polygons (districts, counties).
- Gaussian Processes (GP; point-referenced)
 - Continuous covariance models (Matérn, exponential). Estimate range/scale parameters.
 - Use when locations are points and smooth continuous dependence is plausible.
- **SPDE** → **GMRF** (mesh-based approximation)
 - Represent Matérn GP as a sparse GMRF via FEM mesh (Lindgren et al., 2011).
 - Scales to larger datasets with INLA-style workflows.
- Hierarchical GLMMs with spatial random effects
 - Combine link functions (Poisson, binomial) with CAR/GP latent effects.

Python tooling & workflows

- **PyMC** (pymc): flexible Bayesian models; user-defined CAR/GP priors; NUTS or MAP inference for moderate sizes.
- **Stan / cmdstanpy**: specify CAR/GP as multivariate normals with precision/covariance matrices; powerful but can be slow for large n.
- **GPyTorch** / **GPflow** : scalable GP toolkits (sparse/approximate GPs) for large point-referenced data and deep GP variants.
- **R-INLA** (recommended for heavy SPDE/GMRF use): fast approximate Bayesian inference for SPDE/GMRF; callable from Python when needed.

Geographic Weighted Regression

The Core Problem

- Global models assume spatial stationarity: $\beta_k = {
 m constant}$
- Reality: Relationships vary across space due to:
 - Contextual effects: Local institutions, culture, policies
 - Scale effects: Processes operate at different spatial scales
 - Heterogeneity: Different causal mechanisms in different regions

GWR Solution

- Local regressions at each location s_0
- Distance-weighted observations: closer points get higher weights
- Spatial adaptation: Coefficients vary smoothly across space

GWR Mathematical Formulation

Basic Model

For location $s_0=(u_0,v_0)$, the GWR model is:

$$y_i = eta_0(u_i,v_i) + \sum_{k=1}^p eta_k(u_i,v_i) x_{ik} + arepsilon_i$$

- This writes the response y_i at observation location $s_i=(u_i,v_i)$ as a linear function whose coefficients $\beta_k(u_i,v_i)$ vary with space.
- Intuition: instead of one global slope for each predictor, GWR fits a different slope at (or around) each location so local relationships can differ across the study area.
- ε_i is the local residual (assumed mean zero); it captures variation not explained by the spatially varying linear predictor.

Local Estimation

At each location s_0 , coefficients are estimated by:

$$\hat{eta}(s_0) = rg\min_{eta} \sum_{i=1}^n w(s_i, s_0) \left[y_i - \sum_{k=0}^p eta_k x_{ik}
ight]^2$$

- This is a weighted least-squares objective centered at the target location s_0 .
- The weight function $w(s_i,s_0)$ assigns larger weights to observations near s_0 and smaller weights to distant observations (common choices: Gaussian kernel, bi-square, or nearest-neighbor).
- Conceptually: we fit a regression using nearby data only, but rather than a hard cutoff we smoothly downweight farther points.

Interpretation

• What is computed at each location s_0 :

- $\circ~$ Assign each observation a weight based on its distance to $s_0.$
- $\circ~$ Solve weighted least squares to estimate local coefficients $\hat{eta}(s_0)$.
- \circ Weights $W(s_0)$ are determined by the chosen **kernel** and **bandwidth**; closer points have more influence.

Meaning of symbols:

- y: observed outcomes.
- \circ X: predictor matrix (including intercept).
- $\circ \ W(s_0)$: diagonal matrix of spatial weights for s_0 .
- \circ $\hat{eta}(s_0)$: locally estimated intercept and slopes, varying by location.

How to interpret results:

- \circ Map each $\hat{eta}_k(s_0)$ to visualize spatial variation in predictor effects.
- \circ Local predictions: $X(s_0) \cdot \hat{eta}(s_0)$.
- \circ Local R^2 and residuals indicate model fit at each location.

Practical notes:

- \circ **Bandwidth controls smoothness**: small \to more local detail (**higher variance**); large \to smoother, closer to global (**higher bias**).
- \circ Check local standard errors, t-values, and use multiple testing corrections.
- \circ Watch for **local multicollinearity** and edge effects—these can destabilize $\hat{eta}(s_0)$.
- If predictors operate at different scales, use MGWR (variable-specific bandwidths) for more robust inference.

Kernel Functions in GWR

1. Gaussian Kernel

$$w(s_i,s_0)=\exp\left(-rac{d_{i0}^2}{2b^2}
ight)$$

2. Bisquare Kernel

$$w(s_i,s_0) = egin{cases} \left(1-rac{d_{i0}^2}{b^2}
ight)^2 & ext{if } d_{i0} \leq b \ 0 & ext{if } d_{i0} > b \end{cases}$$

3. Exponential Kernel

$$w(s_i,s_0) = \exp\left(-rac{d_{i0}}{b}
ight)$$

Where $d_{i0} = ||s_i - s_0||$ and b is the bandwidth parameter.

GWR — Intuition (fixed kernel)

- For each location x, weight observations by distance via a **kernel**.
- Fit a local regression; move across space; map local coefficients and local R².

- *x* regression point
- data point

GWR — Intuition (adaptive kernel)

- Adaptive kernels vary their bandwidth: larger where data are sparse, smaller where dense.
- Often yields more stable local fits when polygon/point densities vary.

- *x* regression point
- data point

Example

(data distribution)

Model Diagnostics and Validation

1. Spatial Stationarity Tests

Monte Carlo Test

Test H_0 : $eta_k(s)=eta_k$ (constant) vs H_1 : $eta_k(s)
eq eta_k$

Procedure:

- ullet Calculate observed variance: $V_k = ext{Var}[\hat{eta}_k(s)]$
- Generate random permutations of coordinates
- Recalculate variance for each permutation
- Compare observed variance to permutation distribution

Interpretation:

- The p-value for each coefficient is the proportion of permutations where the permuted variability ≥ the observed variability.
- If p-value is small (say p-value < 0.05) you reject the null hypothesis of parameter stationarity for that coefficient and conclude its local estimates vary more than expected by chance.

2. Local Multicollinearity Diagnostics

Local Condition Number

$$ext{CN}_i = rac{\lambda_{ ext{max}}(X_i^T W_i X_i)}{\lambda_{ ext{min}}(X_i^T W_i X_i)}$$

Rule of thumb: ${
m CN}_i>30$ indicates multicollinearity. It measures how much your local predictor variables are linearly dependent (collinear) when you weight observations around that location.

Local Variance Inflation Factor

$$ext{VIF}_{ki} = rac{1}{1 - R_{ki}^2}$$

Where R_{ki}^2 is the local R^2 from regressing x_k on other predictors.

3. Significance Testing

Local t-statistics

$$t_{ki} = rac{\hat{eta}_{ki}}{ ext{SE}(\hat{eta}_{ki})}$$

Multiple Testing Corrections

- Why corrections are needed: Many location × variable tests increase false positives (declaring an effect significant when it is actually due to chance).
 - \circ Bonferroni: $lpha_{adj}=lpha/n$
 - FDR: Benjamini-Hochberg procedure
 - Permutation: Spatial permutation tests

• Practical tips:

- Report adjusted significance levels and corrected p-values.
- Use permutation tests to account for spatial dependence.
- Consider the effective number of tests when interpreting results.

What do we interpret from GWR?

Coefficient Maps

- Sign patterns: Positive/negative effects across space
- Magnitude variation: Strength of relationships
- Spatial clustering: Similar effects in nearby areas

Local \mathbb{R}^2 Maps

- Model fit variation: Where the model works well/poorly
- Spatial patterns: Regions of high/low predictability
- **Diagnostic tool**: Identify problematic areas

Statistical Significance

- Significant coefficients: Reliable local estimates
- Spatial patterns: Clusters of significant effects
- Multiple testing: Corrected significance levels

Critical Limitations and Methodological Challenges

1. Statistical Issues

Multiple Testing Problem

- Issue: n locations $\times p$ variables = np hypothesis tests
- Consequence: Inflated Type I error rate
- Solutions:
 - \circ Bonferroni correction: $lpha_{adj} = lpha/(np)$
 - False Discovery Rate (FDR) control
 - Spatial permutation tests
 - Focus on spatial patterns, not individual tests

Local Multicollinearity

- Cause: Overlapping kernels create correlated local regressors
- Diagnosis: Local condition numbers, VIF
- Thresholds: CN > 30, VIF > 10
- Solutions:
 - Variable selection/regularization
 - Increase bandwidth
 - Remove highly correlated variables

2. Methodological Limitations

Bandwidth Sensitivity

- Problem: Results highly dependent on bandwidth choice
- Impact: Different bandwidths → different conclusions
- Mitigation:
 - Sensitivity analysis across bandwidth range
 - Cross-validation for bandwidth selection
 - Report bandwidth selection criteria

Kernel Choice Effects

- Gaussian: Smooth, continuous weights
- Bisquare: Sharp cutoff, may create discontinuities
- Impact: Different kernels → different results
- Recommendation: Test multiple kernels, report sensitivity

3. Spatial and Computational Issues

Edge Effects

- Problem: Unstable estimates at study area boundaries
- Cause: Asymmetric local samples
- Solutions:
 - Buffer zones around study area
 - Adaptive bandwidths
 - Report edge effect diagnostics

Small Sample Problems

- Issue: Local regressions with few observations
- Consequence: Unstable, unreliable estimates
- **Detection**: Local effective sample size
- Solutions:
 - Minimum sample size requirements
 - Adaptive bandwidths
 - Spatial aggregation

4. Interpretation Challenges

Causality vs. Correlation

- Warning: GWR coefficients are not necessarily causal
- Reality: Spatial correlation ≠ spatial causation
- Best Practice:
 - Use for exploratory analysis
 - Combine with theoretical knowledge
 - Consider omitted variable bias

Scale Dependence

- Problem: Results depend on spatial units (MAUP)
- Solution: Test sensitivity to different aggregations
- MGWR Advantage: Explicitly models scale differences

5. Computational Considerations

Computational Complexity

- **GWR**: $O(n^2)$ for each location
- MGWR: $O(n^2 \times p)$ for bandwidth selection
- Large datasets: May require sampling or parallel processing
- **Memory**: Store $n \times n$ weight matrices

Software Limitations

- mgwr: Limited to Gaussian kernels
- Memory: Large datasets may exceed RAM
- Convergence: MGWR may not converge with poor starting values

MGWR: Multiscale Geographically Weighted Regression

The Multiscale Problem

Standard GWR: All variables/predictors use the same bandwidth b (that can be adaptive)

- Reality: Different processes operate at different spatial scales
- Example:
 - Income effects: Regional scale (large bandwidth)
 - Local amenities: Neighborhood scale (small bandwidth)
 - Climate: Continental scale (very large bandwidth)

MGWR

Variable-specific bandwidths : Each predictor k has its own bandwidth b_k

$$\hat{eta}_k(s_0) = rg\min_{eta_k} \sum_{i=1}^n w_k(s_i, s_0) \left[y_i - \sum_{j=0}^p eta_j x_{ij}
ight]^2$$
 where $w_k(s_i, s_0) = K\left(rac{d_{i0}}{b_k}
ight)$

Practical reasoning & guidance

- Workflow: run a global model \rightarrow run GWR to inspect coefficient surfaces \rightarrow if some coefficients look very smooth and others very noisy, try MGWR.
- Report: per-variable bandwidths (with units or effective sample sizes), coefficient maps, and a comparison to GWR (e.g., AICc, cross-validation).
- Communication tip: explain bandwidths in plain terms (e.g., "var1 varies at neighborhood scale; var2 varies regionally") rather than only reporting numbers.
- Common pitfalls: MGWR is computationally heavier and can overfit if bandwidths are too small; standardize predictors before bandwidth search; interpret cautiously where local multicollinearity or small local samples occur.

Advantages

- 1. Scale-specific modeling: Captures processes at their natural scales
- 2. **Reduced overfitting**: Prevents over-smoothing of local processes
- 3. Improved interpretation: Clearer understanding of spatial scales
- 4. **Better prediction**: More accurate local estimates

When to use GWR vs MGWR

Decision Framework

Use GWR when:

- Exploratory analysis: Initial investigation of spatial patterns
- Single scale processes: All variables operate at similar scales
- Computational constraints: Limited resources for complex models
- Simple relationships: Linear relationships expected

Use MGWR when:

- Multiscale processes: Variables operate at different scales
- Theoretical knowledge: Different scales expected a priori
- Improved fit: GWR shows poor fit or unstable results
- Policy relevance: Scale-specific interventions needed

References

Foundational Literature

Seminal Books

- Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley.
- Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons.

Key Journal Articles

- Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). *Annals of the American Association of Geographers*, 107(6), 1247-1265.
- Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., & Harris, P. (2022). A roadmap for handling multiscale modelling using geographically weighted regression. *Geographical Analysis*, 54(1), 1-25.
- Brunsdon, C., Fotheringham, A. S., & Charlton, M. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. *Geographical Analysis*, 28(4), 281-298.

Methodological Advances

MGWR and Extensions

- Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). MGWR: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.
- Wolf, L. J., Anselin, L., Arribas-Bel, D., & Oshan, T. M. (2020). A comparison of multiscale geographically weighted regression and multiscale spatial filtering approaches. *Geographical Analysis*, 52(4), 540-560.

Spatiotemporal Extensions

- Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatiotemporal variation in house prices. *International Journal of Geographical Information Science*, 24(3), 383-401.
- Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47(4), 431-452.

Software and Implementation

Python Libraries

- mgwr: Multiscale Geographically Weighted Regression
 - GitHub: https://github.com/pysal/mgwr
 - Documentation: https://mgwr.readthedocs.io/
- **PySAL**: Python Spatial Analysis Library
 - Website: https://pysal.org/
 - GWR module: https://pysal.org/spreg/

R Packages

- **GWmodel**: Geographically Weighted Models
 - CRAN: https://cran.r-project.org/package=GWmodel
- **spgwr**: Geographically Weighted Regression
 - CRAN: https://cran.r-project.org/package=spgwr

Online Resources and Tutorials

Comprehensive Guides

- GDSL-UL SAN 09: Geographically Weighted Regression https://gdsl-ul.github.io/san/09-gwr.html
- Deepnote [PYTHON] GWR and MGWR https://deepnote.com/app/carlos-mendez/PYTHON-GWR-and-MGWR-71dd8ba9-a3ea-4d28-9b20-41cc8a282b7a

Tutorials and Examples

- Spatial Analysis and Modeling Course Materials
 - https://gdsl-ul.github.io/san/
- PySAL Tutorials
 - https://pysal.org/notebooks/
- GWmodel Tutorial
 - https://cran.r-project.org/web/packages/GWmodel/vignettes/GWmodel.html