COURS D'ALGEBRE1. CHAPITRE 1.LOGIQUE ET RAISONNEMENT

Département Mathématiques.

PRESENTATION Dr. André Souleye Diabang

18 février 2022

Plan

- 1. LOGIQUE.
 - 1. Vocabulaire usuel
 - 2. Calcul propositionnel
 - 3. Les Quantificateurs : \forall et \exists .

2 II. RAISONNEMENTS.

- Vocabulaire usuel
 Calcul propositionne
 - . Les Quantificateurs : ∀ et ∃.

Plan

- 1. LOGIQUE.
 - 1. Vocabulaire usuel
 - 2. Calcul propositionnel
 - 3. Les Quantificateurs : ∀ et ∃.

② II. RAISONNEMENTS.

- Vocabulaire usuel
 Calcul propositionnel
- 3. Les Quantificateurs : ∀ et ∃.

Axiome

Un axiome est un énoncé supposé vrai à priori et que l'on ne cherche pas à démontrer.

Axiome

Un axiome est un énoncé supposé vrai à priori et que l'on ne cherche pas à démontrer.

Exemple. Le cinquième axiome d'Euclide.

« par un point extérieur à une droite, il passe une et une seule droite parallèle à cette droite »

- Vocabulaire usuel
 Calcul propositionne
- 3. Les Quantificateurs : ∀ et ∃.

Proposition.

Une proposition est un énoncé pouvant être vrai ou faux.

- Vocabulaire usuel
 Calcul propositionnel
- Axiome, Proposition, Théorème, Corollaire, Lemme, Conjecture.

Proposition.

Une proposition est un énoncé pouvant être vrai ou faux.

Exemple. Le cinquième axiome d'Euclide.

« tout nombre premier est impair »

- Vocabulaire usuel
 Calcul propositionnel
- Axiome, Proposition, Théorème, Corollaire, Lemme, Conjecture.

Proposition.

Une proposition est un énoncé pouvant être vrai ou faux.

Exemple. Le cinquième axiome d'Euclide.

- « tout nombre premier est impair »
- « tout carré de réel est un réel positif »

Proposition.

Une proposition est un énoncé pouvant être vrai ou faux.

Exemple. Le cinquième axiome d'Euclide.

- « tout nombre premier est impair »
- « tout carré de réel est un réel positif »

Remarque

Le mot proposition est clair : on propose quelque chose, mais cela reste à démontrer.

- Vocabulaire usuel
 Calcul propositionn
- 3. Les Quantificateurs : ∀ et ∃.

Théorème.

Un théorème est une proposition vraie.

Théorème.

Un théorème est une proposition vraie. Par abus de langage, le mot proposition désigne souvent, dans la pratique des cours de mathématiques,

Conjecture.

Théorème.

Un théorème est une proposition vraie. Par abus de langage, le mot proposition désigne souvent, dans la pratique des cours de mathématiques, un théorème intermédiaire et même on a tendance à appeler proposition la plupart des théorèmes pour réserver le mot théorème aux plus grands d'entre eux.

Théorème.

Un théorème est une proposition vraie. Par abus de langage, le mot proposition désigne souvent, dans la pratique des cours de mathématiques, un théorème intermédiaire et même on a tendance à appeler proposition la plupart des théorèmes pour réserver le mot théorème aux plus grands d'entre eux.

Exemples

Théorème de Pythagore, Thales.

Théorème.

Un théorème est une proposition vraie. Par abus de langage, le mot proposition désigne souvent, dans la pratique des cours de mathématiques, un théorème intermédiaire et même on a tendance à appeler proposition la plupart des théorèmes pour réserver le mot théorème aux plus grands d'entre eux.

Exemples

Théorème de Pythagore, Thales.

Le théorème des valeurs intermédiaires dit que l'image d'un intervalle de $\mathbb R$ par une fonction continue à valeurs réelles, est un intervalle de $\mathbb R$.

- Vocabulaire usuel
 Calcul propositionnel
- 3. Les Quantificateurs : ∀ et ∃.

Corollaire.

Un corollaire à un théorème est un théorème qui est conséquence de ce théorème.

- Vocabulaire usuel
 Calcul propositionnel
- Axiome, Proposition, Théorème, Corollaire, Lemme, Conjecture.

Corollaire.

Un corollaire à un théorème est un théorème qui est conséquence de ce théorème.

Exemple de corollaire du théorème des valeurs intermédiaires.

Si une fonction définie et continue sur un intervalle de $\mathbb R$ à valeurs réelles,

Corollaire.

Un corollaire à un théorème est un théorème qui est conséquence de ce théorème.

Exemple de corollaire du théorème des valeurs intermédiaires.

Si une fonction définie et continue sur un intervalle de $\mathbb R$ à valeurs réelles, prend au moins une valeur positive et au moins une valeur négative

Corollaire.

Un corollaire à un théorème est un théorème qui est conséquence de ce théorème.

Exemple de corollaire du théorème des valeurs intermédiaires.

Si une fonction définie et continue sur un intervalle de $\mathbb R$ à valeurs réelles, prend au moins une valeur positive et au moins une valeur négative alors cette fonction s'annule au moins une fois dans cet intervalle.

- Vocabulaire usuel
 Calcul propositionnel
- Axiome, Proposition, Théorème, Corollaire, Lemme,

Conjecture.

Lemme.

Un lemme est un théorème préparatoire à l'établissement d'un théorème de plus grande importance.

Lemme.

Un lemme est un théorème préparatoire à l'établissement d'un théorème de plus grande importance.

Conjecture.

Une conjecture est une proposition que l'on suppose vraie sans parvenir à la démontrer

- Vocabulaire usuel
 Calcul propositionnel
- 3. Les Quantificateurs : ∀ et

Proposition

On rappelle qu'une proposition est un énoncé pouvant être vrai ou faux. On dit alors que les deux valeurs de vérité d'une proposition sont vrai ou faux.

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et

Proposition

On rappelle qu'une proposition est un énoncé pouvant être vrai ou faux. On dit alors que les deux valeurs de vérité d'une proposition sont vrai ou faux.

Equivalence logique

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et

Proposition

On rappelle qu'une proposition est un énoncé pouvant être vrai ou faux. On dit alors que les deux valeurs de vérité d'une proposition sont vrai ou faux.

Equivalence logique

- Deux propositions équivalentes P et Q sont deux propositions simultanément vraies simultanément fausses.

- 1. Vocabulaire usuel 2. Calcul propositionnel

Proposition

On rappelle qu'une proposition est un énoncé pouvant être vrai ou faux. On dit alors que les deux valeurs de vérité d'une proposition sont vrai ou faux.

Equivalence logique

- Deux propositions équivalentes P et Q sont deux propositions simultanément vraies simultanément fausses.
- On dira par la suite que deux propositions équivalentes sont deux propositions ayant les mêmes valeurs de vérité.

- Vocabulaire usuel
 Calcul propositionnel
 - 3. Les Quantificateurs : ∀ et

Proposition

On rappelle qu'une proposition est un énoncé pouvant être vrai ou faux. On dit alors que les deux valeurs de vérité d'une proposition sont vrai ou faux.

Equivalence logique

- Deux propositions équivalentes P et Q sont deux propositions simultanément vraies simultanément fausses.
- On dira par la suite que deux propositions équivalentes sont deux propositions ayant les mêmes valeurs de vérité.
- Cette phrase peut se visualiser dans un tableau appelé table de vérité dans lequel on fait apparaîtres les différentes valeurs de vérité possibles.

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : ∀ et :

A partir de P et Q, on peut en construire :

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : \forall et

A partir de P et Q, on peut en construire : $-P \lor Q$,

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : \forall et

A partir de P et Q, on peut en construire : $-P \lor Q$, $P \land Q$,

ISM

- Vocabulaire usuel
 Calcul propositionnel
- . Calcul propositionnel . Les Quantificateurs : ∀ et

A partir de P et Q, on peut en construire : $-P \lor Q$, $P \land Q$, \overline{P} ,

- 1. Vocabulaire usuel
- 2. Calcul propositionnel

A partir de P et Q, on peut en construire : $-P \lor Q$, $P \land Q$, \overline{P} , $P \Longrightarrow Q$,

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : ∀ et ∃.

Théorème.1

- Vocabulaire usuel
 Calcul propositionnel
- . Les Quantificateurs : ∀ et ∃.

Théorème.1

$$T_1. \ \overline{P} \Longleftrightarrow P$$

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : \forall et \exists .

Théorème.1

$$T_1. \overline{\overline{P}} \iff P$$

$$T_2. P \wedge P \iff P$$

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : ∀ et ∃.

Théorème.1

$$T_1. \overline{\overline{P}} \iff P$$

$$T_2$$
. $P \land P \iff P$ et $P \lor P \iff P$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃

Théorème.1

$$T_1. \ \overline{P} \Longleftrightarrow P$$

$$T_2. P \wedge P \iff P \text{ et } P \vee P \iff P$$

$$T_3 \ \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q}$$

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : ∀ et :

Théorème.1

$$T_1. \overline{P} \iff P$$

$$T_2$$
. $P \land P \iff P$ et $P \lor P \iff P$

$$T_3 \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q} \text{ et } \overline{P \wedge Q} \Longleftrightarrow \overline{P} \vee \overline{Q}$$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃.

Théorème.1

$$T_1. \ \overline{P} \Longleftrightarrow P$$

$$T_2$$
. $P \land P \iff P$ et $P \lor P \iff P$

$$T_3 \ \overline{P \lor Q} \Longleftrightarrow \overline{P} \land \overline{Q} \text{ et } \overline{P \land Q} \Longleftrightarrow \overline{P} \lor \overline{Q}$$

$$T_4 P \lor Q \Longleftrightarrow Q \lor P$$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃

Théorème.1

$$T_1. \ \overline{P} \Longleftrightarrow P$$

$$T_2$$
. $P \land P \iff P$ et $P \lor P \iff P$

$$T_3 \ \overline{P \lor Q} \Longleftrightarrow \overline{P} \land \overline{Q} \text{ et } \overline{P \land Q} \Longleftrightarrow \overline{P} \lor \overline{Q}$$

$$T_4 P \lor Q \iff Q \lor P \text{ et } P \land Q \iff P \land Q.$$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃

Théorème.1

$$T_{1}. \overline{\overline{P}} \iff P$$

$$T_{2}. \underline{P \land P} \iff \underline{P} \text{ et } \underline{P} \lor \underline{P} \iff P$$

$$T_{3} \overline{P \lor Q} \iff \overline{P} \land \overline{Q} \text{ et } \overline{P \land Q} \iff \overline{P} \lor \overline{Q}$$

$$T_{4} \underline{P} \lor Q \iff \underline{Q} \lor \underline{P} \text{ et } \underline{P} \land Q \iff P \land Q.$$

$$T_{5} (\underline{P} \lor Q) \lor R \iff \underline{P} \lor (\underline{Q} \lor R)$$

- Vocabulaire usuel
 Calcul propositionnel
 - 3. Les Quantificateurs : ∀ et ∃

Théorème.1

$$T_{1}. \overline{\overline{P}} \iff P$$

$$T_{2}. P \land P \iff P \text{ et } P \lor P \iff P$$

$$T_{3} \overline{P \lor Q} \iff \overline{P} \land \overline{Q} \text{ et } \overline{P \land Q} \iff \overline{P} \lor \overline{Q}$$

$$T_{4} P \lor Q \iff Q \lor P \text{ et } P \land Q \iff P \land Q.$$

$$T_{5} (P \lor Q) \lor R \iff P \lor (Q \lor R) \text{ et}$$

$$(P \land Q) \land R \iff P \land (Q \land R)$$

- Vocabulaire usuel
 Calcul propositionnel
- 3. Les Quantificateurs : ∀ et ∃

Théorème.1

$$T_{1}. \overline{P} \iff P$$

$$T_{2}. P \land P \iff P \text{ et } P \lor P \iff P$$

$$T_{3} \overline{P \lor Q} \iff \overline{P} \land \overline{Q} \text{ et } \overline{P \land Q} \iff \overline{P} \lor \overline{Q}$$

$$T_{4} P \lor Q \iff Q \lor P \text{ et } P \land Q \iff P \land Q.$$

$$T_{5} (P \lor Q) \lor R \iff P \lor (Q \lor R) \text{ et}$$

$$(P \land Q) \land R \iff P \land (Q \land R)$$

$$T_{6} (P \lor Q) \land R \iff (P \land R) \lor (Q \land R)$$

- Vocabulaire usuel
 Calcul propositionnel
 - 3. Les Quantificateurs : \forall et

Théorème.1

$$T_{1}. \overline{P} \iff P$$

$$T_{2}. P \land P \iff P \text{ et } P \lor P \iff P$$

$$T_{3} \overline{P \lor Q} \iff \overline{P} \land \overline{Q} \text{ et } \overline{P \land Q} \iff \overline{P} \lor \overline{Q}$$

$$T_{4} P \lor Q \iff Q \lor P \text{ et } P \land Q \iff P \land Q.$$

$$T_{5} (P \lor Q) \lor R \iff P \lor (Q \lor R) \text{ et}$$

$$(P \land Q) \land R \iff P \land (Q \land R)$$

$$T_{6} (P \lor Q) \land R \iff (P \land R) \lor (Q \land R) \text{ et}$$

$$(P \land Q) \lor R \iff (P \lor R) \land (Q \lor R)$$

- 1. Vocabulaire usuel
- 2. Calcul propositionnel
 - Les Quantificateurs : v et =.

 $T_2. P \wedge P \iff P$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : \forall et \exists .

 $T_2. P \wedge P \iff P$

On a n = 1 donc le nombre de vérités est $2^1 = 2$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃

 T_2 . $P \wedge P \iff P$

$$A = (P \wedge P)$$
,

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : \forall et \exists .

 $T_2. P \wedge P \iff P$

$$A = (P \wedge P)$$
,

- 1. Vocabulaire usuel
- 2. Calcul propositionnel

 $T_2. P \wedge P \iff P$

$$A = (P \wedge P),$$

Р	Α
V	V

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et

 $T_2. P \wedge P \iff P$

$$A = (P \wedge P),$$

Р	Α
V	V
F	F

- 1. Vocabulaire usuel
- 2. Calcul propositionnel

$$T_3 \ \overline{P \lor Q} \Longleftrightarrow \overline{P} \land \overline{Q}$$

On a n=2 donc le nombre de vérités est $2^2=4$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃

$$T_3 \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q}$$

- Vocabulaire usuel
 Calcul propositionnel
 - Calcul propositionnel
 - Les Quantificateurs : \forall et \exists .

$$T_3 \ \overline{P \lor Q} \Longleftrightarrow \overline{P} \land \overline{Q}$$

$$P \mid Q \mid A \mid \overline{A} \mid \overline{P} \mid \overline{Q} \mid B$$

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et ∃

$$T_3 \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q}$$

	~	, , l	\overline{A}	,	\overline{Q}	Ь
V	٧	٧	F	F	F	F

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et

$$T_3 \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q}$$

Р	Q	Α	\overline{A}	\overline{P}	\overline{Q}	В
٧	٧				F	F
٧	F	٧	F	F	V	F

- Vocabulaire usuel
 Calcul propositionnel
- 3. Les Quantificateurs : ∀ et :

$$T_3 \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q}$$

v	
• • • • •	' '
v F v F F	VF
F V v F V	FF

- Vocabulaire usuel
 Calcul propositionnel
 - . Les Quantificateurs : ∀ et

$$T_3 \overline{P \vee Q} \Longleftrightarrow \overline{P} \wedge \overline{Q}$$

Р	Q	Α	Ā	\overline{P}	\overline{Q}	В
V	٧	٧	F	F	F	F
V	F	٧	F	F	V	F
F	V	٧	F	V	F	F
F	F	F	V	٧	V	V

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : \forall et \exists .

Négation, Contraposée et Réciproque d'une implication.

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : ∀ et ∃.

Négation, Contraposée et Réciproque d'une implication.

– La négation de $(P \Longrightarrow Q) \Longleftrightarrow (\overline{P} \lor Q)$ est $P \land \overline{Q}$.

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : \forall et \exists .

Négation, Contraposée et Réciproque d'une implication.

- La négation de $(P \Longrightarrow Q) \Longleftrightarrow (\overline{P} \lor Q)$ est $P \land \overline{Q}$.
- La contraposée de $P \Longrightarrow Q$ est $\overline{Q} \Longrightarrow \overline{P}$.

- Vocabulaire usuel
 Calcul propositionnel
 - Les Quantificateurs : \forall et \exists .

Négation, Contraposée et Réciproque d'une implication.

- La **négation** de $(P \Longrightarrow Q) \Longleftrightarrow (\overline{P} \lor Q)$ est $P \land \overline{Q}$.
- La contraposée de $P \Longrightarrow Q$ est $\overline{Q} \Longrightarrow \overline{P}$.
- La réciproque de $P \Longrightarrow Q$ est $Q \Longrightarrow P$.

- 1. Vocabulaire usuel
- 3. Les Quantificateurs : ∀ et ∃.

Soient E un ensemble et P(x) une proposition dont les valeurs de vérité sont fonction des éléments x de E.

Soient E un ensemble et P(x) une proposition dont les valeurs de vérité sont fonction des éléments x de E.

Exemple: $x^2 = 1$ dépendant d'un réel x. On ne peut pas dire que la phrase $x^2 = 1$ est vraie ou fausse tant qu'on ne sait pas ce que vaut x. Une telle propositon, dont les valeurs de vérité sont fonction d'une (ou plusieurs) variable(s) s'appelle un **prédicat**.

- Vocabulaire usuel
 Calcul proposition
- 3. Les Quantificateurs : ∀ et ∃.

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : ∀ et ∃.

Le quantificateur \forall et \exists

– Pour tous les éléments x de E, la proposition P(x) est vraie, s'écrit en abrégé $\forall x \in E, P(x)$.

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : ∀ et ∃.

- Pour tous les éléments x de E, la proposition P(x) est vraie, s'écrit en abrégé $\forall x \in E, P(x)$.
- Il existe au moins un élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists x \in E, P(x)$.

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : ∀ et ∃.

- Pour tous les éléments x de E, la proposition P(x) est vraie, s'écrit en abrégé $\forall x \in E, P(x)$.
- Il existe au moins un élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists x \in E, P(x)$.
- Il existe un seul et un seul élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists ! x \in E, P(x)$.

- Pour tous les éléments x de E, la proposition P(x) est vraie, s'écrit en abrégé $\forall x \in E, P(x)$.
- Il existe au moins un élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists x \in E, P(x)$.
- Il existe un seul et un seul élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists ! x \in E, P(x)$. Exemple : $\forall x \in [1, +\infty[, x^2 \ge 1.$

- Vocabulaire usuel
 Calcul propositionne
- 3. Les Quantificateurs : ∀ et ∃.

- Pour tous les éléments x de E, la proposition P(x) est vraie, s'écrit en abrégé $\forall x \in E, P(x)$.
- Il existe au moins un élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists x \in E, P(x)$.
- Il existe un seul et un seul élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists ! x \in E, P(x)$. Exemple : $\forall x \in [1, +\infty[, x^2 \ge 1.$

$$\forall x \in \mathbb{R}^*, \exists n \in \mathbb{N}, x^n = 1.$$

Le quantificateur \forall et \exists

- Pour tous les éléments x de E, la proposition P(x) est vraie, s'écrit en abrégé $\forall x \in E, P(x)$.
- Il existe au moins un élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists x \in E, P(x)$.
- Il existe un seul et un seul élément x de E, la proposition P(x) est vraie, s'écrit en abrégé $\exists ! x \in E, P(x)$. Exemple : $\forall x \in [1, +\infty[, x^2 \ge 1.$

 $\forall x \in \mathbb{R}^{\star}$, $\exists n \in \mathbb{N}$, $x^{n} = 1$.

 $\forall n \in \mathbb{N}, \ n(n+1) \text{ est divisible par 2}.$

- Vocabulaire usuel
 Calcul appropriations
- 3. Les Quantificateurs : ∀ et ∃.

Théorème 2.

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : ∀ et ∃.

Théorème 2.

La négation de $\forall x \in E, P(x)$ est $\exists x \in E, nonP(x)$.

- 1. Vocabulaire usuel
- 3. Les Quantificateurs : ∀ et ∃.

Théorème 2.

La négation de $\forall x \in E, P(x)$ est $\exists x \in E, nonP(x)$. La négation de $\exists x \in E, P(x)$ est $\forall x \in E, nonP(x)$.

- Vocabulaire usuel
 Calcul proposition
 - 3. Les Quantificateurs : \forall et \exists .

Exercices

Exercice 01

Soient P, Q et R trois propositions. Montrer les équivalences suivantes :

- 1. Vocabulaire usuel
- 3. Les Quantificateurs : ∀ et ∃.

Exercice 01

Soient P, Q et R trois propositions. Montrer les équivalences suivantes :

1.
$$((P \lor Q) \Longrightarrow R) \Longleftrightarrow ((P \Longrightarrow R) \land (Q \Longrightarrow R))$$

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : \forall et \exists .

Exercice 01

Soient P, Q et R trois propositions. Montrer les équivalences suivantes :

1.
$$((P \lor Q) \Longrightarrow R) \Longleftrightarrow ((P \Longrightarrow R) \land (Q \Longrightarrow R))$$

2.
$$((P \land Q) \Longrightarrow R) \iff ((P \Longrightarrow R) \lor (Q \Longrightarrow R))$$

- 1. Vocabulaire usuel
- 3. Les Quantificateurs : \forall et \exists .

Exercice 01

Soient P, Q et R trois propositions. Montrer les équivalences suivantes :

1.
$$((P \lor Q) \Longrightarrow R) \Longleftrightarrow ((P \Longrightarrow R) \land (Q \Longrightarrow R))$$

2.
$$((P \land Q) \Longrightarrow R) \Longleftrightarrow ((P \Longrightarrow R) \lor (Q \Longrightarrow R))$$

3.
$$(P \Longrightarrow (Q \land R)) \Longleftrightarrow ((P \Longrightarrow Q) \land (P \Longrightarrow R))$$

- Vocabulaire usuel
 Calcul propositionne
- 3. Les Quantificateurs : ∀ et ∃.

Exercice 02

Examiner les relations logiques existant entre les assertions suivantes :

- A. Tous les hommes sont mortels .
- B. Tous les hommes sont immortels.
- C. Aucun homme n'est mortel.
- D. Aucun homme n'est immortel.
- E. Il existe des hommes immortels.
- F. Il existe des hommes mortels.

- 1. Vocabulaire usuel
- 3. Les Quantificateurs : ∀ et ∃.

Exercice 03

Evaluer les formules suivantes en considérant uniquement les valeurs des variables données :

- 1. $Q \Longrightarrow (P \Longrightarrow R)$, avec Q (fausse)
- 2. $Q \wedge (P \vee Q)$; avec Q (vraie)
- 3. $P \lor (Q \Longrightarrow R)$; avec Q (fausse)

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : \forall et \exists .

Exercice 04

A l'aide de la méthode des tables de vérité, dites si la proposition suivante est une tautologie.

$$((P \Longrightarrow Q) \land (Q \Longrightarrow R)) \Longrightarrow (P \Longrightarrow R)$$

- Vocabulaire usuel
 Calcul proposition
 - 3. Les Quantificateurs : ∀ et ∃.

Exercice 05

Ecrire à l'aide des quantificateurs les propositions suivantes :

- 1. Le carré de tout réel est positif.
- 2. Certains réels sont strictement supérieurs à leur carré.
- 3. Aucun entier n'est supérieur à tous les autres.

- 1. Vocabulaire usuel
- 3. Les Quantificateurs : ∀ et ∃.

Exercice 06

Nier les propositions suivantes :

- (1) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$;
- (2) $\forall x \in \mathbb{R}, f(x) \geq 2$;
- (3) $\exists x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, si x < y, alors f(x) > f(y).
- (4) Tous les habitants de la rue de Dakar qui ont les yeux bleus gagneront au loto et prendront leur retraite avant 50 ans.
- (5) Dans toutes les prisons tous les détenus détestent tous les gardiens.

- Vocabulaire usuel
 Calcul propositions
- 3. Les Quantificateurs : ∀ et ∃.

Exercice 07

Donner la négation, la contraposée et la réciproque des propositions suivantes :

- (1) Si un nombre entier est multiple de 10, alors son chiffre des unités est 0.
- (2) Si xy = 0, alors (x=0 ou y=0).
- (3) Si ABC est un triangle rectangle en A, alors

$$BC^2 = AB^2 + AC^2.$$

- Vocabulaire usuel
 Calcul proposition not a control of the control of the
- 3. Les Quantificateurs : ∀ et ∃.

Exercice 08

(1) Dénomtrer par contraposée la proposition suivante Si x et y sont des réels distincts de 1, et si $x \neq y$, alors

$$\frac{1}{x-1} \neq \frac{1}{y-1}.$$

- (2) La proposition : "Tout entier positif est somme de trois carrés" est-elle vraie?
- (3) Montrer par récurrence :

$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- $10^n (-1)^n$ est divisible par 11.
- (4) Montrer par Absurde $2 + \sqrt{2} \notin \mathbb{Q}$.

Plan

- 1. LOGIQUE.
 - 1. Vocabulaire usuel
 - 2. Calcul propositionnel
 - 3. Les Quantificateurs : ∀ et ∃.

2 II. RAISONNEMENTS.

Voici des méthodes classiques de raisonnements

Voici des méthodes classiques de raisonnements

Raisonnement direct.

On veut montrer que l'assertion " $P \Longrightarrow Q$ " est vraie. On suppose que P est vraie et on montre qu'alors que Q est vraie.

Voici des méthodes classiques de raisonnements

Raisonnement direct.

On veut montrer que l'assertion " $P \Longrightarrow Q$ " est vraie. On suppose que P est vraie et on montre qu'alors que Q est vraie.

Exemple

Montrer que si a, et $b \in \mathbb{Q}$, alors $a + b \in \mathbb{Q}$.

Raisonnement Cas par cas.

Si l'on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre l'assertion pour les x dans une partie A de E, puis pour les x n'appartenant pas à A. C'est la méthode de disjonction ou du cas par cas

Raisonnement Cas par cas.

Si l'on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre l'assertion pour les x dans une partie A de E, puis pour les x n'appartenant pas à A. C'est la méthode de disjonction ou du cas par cas

Exemple

Montrer que pour tout $x \in \mathbb{R} |x-1| \le x^2 - x + 1$.

ISM

Raisonnement par contraposée.

Si l'on souhaite montrer l'assertion " $P \Longrightarrow Q$ ", on montre que si non(Q) est vraie alors non(P) est vraie.

Raisonnement par contraposée.

Si l'on souhaite montrer l'assertion " $P \Longrightarrow Q$ ", on montre que si non(Q) est vraie alors non(P) est vraie.

Exemple

Montrer que pour tout $x \in \mathbb{N}$ si n^2 est pair alors n est pair.

ISM

Raisonnement par absurde.

Pour montrer " $P \Longrightarrow Q$ " repose sur le principe suivant : on suppose à la fois que P est vraie et que Q est fausse et on cherche une contradiction.

Raisonnement par absurde.

Pour montrer " $P \Longrightarrow Q$ " repose sur le principe suivant : on suppose à la fois que P est vraie et que Q est fausse et on cherche une contradiction.

Exemple

Soient $a, b \ge 0$. Montrer que si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a = b.

ISM