N°75 p183

Il faut étudier les limites des deux fonctions encadrant f(x) $\lim_{x \to +\infty} \frac{2x^2 + 3}{3x^2 - x} = \frac{2}{3} \text{ et } \lim_{x \to +\infty} \frac{2x^2 + 5x}{3x^2 - x} = \frac{2}{3} \text{ donc, d'après le théorème des gendarmes, } \lim_{x \to +\infty} f(x) = \frac{2}{3}.$

N°77 p183

1. Pour tout réel $x, -1 \leqslant \sin x \leqslant 1 \Leftrightarrow -2 \leqslant 2 \sin x \leqslant 2 \Leftrightarrow x - 2 \leqslant x + 2 \sin x \leqslant x + 2$. Donc, pour tout x > 0, $\frac{x-2}{x} \leqslant \frac{x+2\sin x}{x} \leqslant \frac{x+2}{x}$. Or, $\lim_{x \to +\infty} \frac{x-2}{x} = \lim_{x \to +\infty} \frac{x+2}{x} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x \to +\infty} f(x) = 1$.

De même, pour tout x < 0, en divisant par un nombre négatif, l'inégalité change de sens donc $\frac{x-2}{x} \geqslant \frac{x+2\sin x}{x} \geqslant \frac{x+2}{x}.$

Or, $\lim_{x \to -\infty} \frac{x-2}{x} = \lim_{x \to -\infty} \frac{x+2}{x} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x \to -\infty} f(x) = 1$.

2. Pour tout réel $x, -1 \le \cos x \le 1 \Leftrightarrow 1 \le 2 + \cos x \le 3$. Donc pour tout x > 0, $x^3 \le (2 + \cos(x))x^3 \le 3x^3$. Or, $\lim_{x \to +\infty} x^3 = +\infty$ donc, d'après un théorème de comparaison, $\lim_{x \to +\infty} g(x) = +\infty$. De même, pour tout x < 0, on a $x^3 < 0$ donc $x^3 \ge (2 + \cos(x))x^3$. Or, $\lim_{x \to -\infty} x^3 = -\infty$ donc, d'après

un théorème de comparaison, $\lim_{x \to -\infty} g(x) = -\infty$.

3. Pour tout réel x, $-1 \leqslant \sin x \leqslant 1 \Leftrightarrow x-1 \leqslant x+\sin x \leqslant x+1$, donc, pour tout x>1, $\frac{1}{x-1} \geqslant \frac{1}{x+\sin x} \geqslant \frac{1}{x+1}$, car la fonction inverse est strictement décroissante sur $]0; +\infty[$, et donc $\frac{x}{x-1} \geqslant \frac{x}{x+\sin x} \geqslant \frac{x}{x+1}$, pour tout x>1. Or, $\lim_{x\to +\infty} \frac{x}{x-1} = \lim_{x\to +\infty} \frac{x}{x+1} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x \to +\infty} h(x) = 1$.

De même, pour tout $x<-1,\,\frac{1}{x-1}\geqslant\frac{1}{x+\sin x}\geqslant\frac{1}{x+1}$, car la fonction inverse est strictement décroissante sur $]-\infty;0[.$

Donc $\frac{x}{x-1} \leqslant \frac{x}{x+\sin x} \leqslant \frac{x}{x+1}$ pour tout x < -1. Or, $\lim_{x \to -\infty} \frac{x}{x-1} = \lim_{x \to -\infty} \frac{x}{x+1} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x \to -\infty} h(x) = 1$.

4. Pour tout réel x, $-1 \leqslant \sin x \leqslant 1 \Leftrightarrow -3 \leqslant 3 \sin x \leqslant 3 \Leftrightarrow x^2 - 3 \leqslant 3 \sin x \leqslant x^2 + 3$. Or, $\lim_{x \to +\infty} x^2 - 3 = 1$ $+\infty$ donc, d'après un théorème de comparaison, $\lim_{x\to+\infty} k(x) = +\infty$. Et $\lim_{x\to-\infty} x^2 - 3 = +\infty$ donc, d'après un théorème de comparaison, $\lim_{x\to -\infty} k(x) = +\infty$.

N°80 p183

- 1. Soit $x \ge 0$. $\sqrt{x+2} \sqrt{x} = \frac{(\sqrt{x+2} \sqrt{x})(\sqrt{x+2} + \sqrt{x})}{\sqrt{x+2} + \sqrt{x}} = \frac{2}{\sqrt{x+2} + \sqrt{x}}$.
- 2. Pour tout $x \ge 0$, $x+2 \ge x$ d'où $\sqrt{x+2} \ge \sqrt{x}$, car la fonction racine carrée est croissante sur $[0; +\infty[$. De plus, $\lim_{x\to +\infty} \sqrt{x} = +\infty$ donc, d'après un théorème de comparaison, $\lim_{x\to +\infty} \sqrt{x+2} = +\infty$.
- 3. Par somme, $\lim_{x \to +\infty} \left(\sqrt{x+2} + \sqrt{x} \right) = +\infty$ donc, par quotient, $\lim_{x \to +\infty} f(x) = 0$.