

Planification de personnel et affectation de projets

Table of contents

- 1. Modélisation du problème d'optimisation multi-objectif
- 2. Calcul de la surface des solutions non-dominées

- 3. Visualisation des solutions dans l'espace des objectifs
- 4. Élaboration d'un modèle de préférences

Conclusion

Modélisation

Modélisation Variables ajoutées à la modélisation

- works_on_job: Matrice de deux dimensions correspondant respectivement aux membres du staff et aux projets. Les valeurs *works_on_job[i, j*] sont binaires et indiquent si la personne *i* travaille sur le projet *j*.
- max_nb_of_jobs: Entier indiquant le nombre de projets maximal parmi les membres du staff.
- job_worked_on: Matrice de deux dimensions correspondant respectivement aux projets et aux jours. Les valeurs job_worked_on[i, j] sont binaires et indiquent si quelqu'un travaille sur le projet i le jour j.
- max_duration_of_job: Entier indiquant la durée du projet le plus long
- **start_date_projects**: Liste de longueur égale au nombre de projets. Les valeurs sont des entiers qui correspondent au jour de démarrage de chaque projet

maximiser
$$\sum_{j \in \mathcal{J}} (Y_j \times g_j - L_j \times c_j)$$
 (1)

$$\min \max_{i \in \mathcal{S}} \sum_{j \in \mathcal{J}} works_on_job_{i,j} \tag{2}$$

 $\text{minimiser } \max_{j \in \mathcal{J}} (E_j - start_date_project_j)$ (3)

Gurobi

- benefice
- (2) max_nb_of_jobs
- (3) max_duration_of_jobs

- **Définition de** *works_on_job* **:** Indique si la personne *i* travaille sur le projet *j*. (11) et (12)
- **Définition de max_nb_of_jobs :** Indique si quelqu'un a travaillé sur le projet *j* le jour *t*. (13) et (14)
- **Définition de start_date_projects :** Journée entre 1 et H (horizon). (15)

Contraintes liées à la linéarisation des fonctions objectifs MinMax (2) et (3) :

- **Définition de** *max_nb_of_jobs* : Nombre de projets maximal pour le staff. (22)
- **Définition de** *max_duration_of_job* : Durée du plus long projet. (23)

Modélisation

Définition des contraintes

s.t.
$$\sum_{\substack{j \in \mathcal{J} \\ k \in \mathcal{Q}}} X_{i,j,k,t} \le 1 \quad (\forall i, \forall t)$$
 (4)

$$\sum_{\substack{j \in \mathcal{J} \\ k \in \mathcal{Q}}} X_{i,j,k,t} = 0 \quad (\forall i, \forall t \in \mathcal{V}_i)$$
 (5)

$$X_{i,j,k,t} = 0 \quad (\forall i, \forall j, \forall k \in \mathcal{Q} \setminus (Q_i^S \cup \mathcal{Q}_j^J), \forall t)$$
 (6)

$$Y_j \times n_{j,k} \le \sum_{\substack{i \in \mathcal{S} \\ t \in \mathcal{H}}} X_{i,j,k,t} \quad (\forall j, \forall k \in \mathcal{Q}_j^J)$$
 (7)

$$\sum_{\substack{i \in \mathcal{S} \\ t \in \mathcal{H}}} X_{i,j,k,t} \le n_{j,k} \quad (\forall j, \forall k \in \mathcal{Q}_j^J)$$
 (8)

$$X_{i,j,k,t} \times t \le E_j \quad (\forall i, \forall j, \forall k, \forall t)$$
 (9)

$$E_j - d_j \le L_j \quad (\forall j) \tag{10}$$

$$\sum_{\substack{k \in \mathcal{Q} \\ t \in \mathcal{H}}} X_{i,j,k,t} \leq M \times works_on_job_{i,j} \quad (\forall i, \forall j) \quad (11)$$

$$\sum_{\substack{k \in \mathcal{Q} \\ t \in \mathcal{H}}} X_{i,j,k,t} - 1 \ge M \times (1 - works_on_job_{i,j}) \quad (\forall i, \forall j)$$

(12)

$$\sum_{\substack{i \in \mathcal{S} \\ k \in \mathcal{Q}}} X_{i,j,k,t} \le M' \times job_worked_on_{k,t} \quad (\forall j, \forall t)$$
 (13)

$$\sum_{\substack{i \in \mathcal{S} \\ k \in O}} X_{i,j,k,t} - 1 \ge M' \times (1 - job_worked_on_{k,t}) \quad (\forall j, \forall t)$$

$$X_{i,j,k,t} \times t \ge start_date_project_j \quad (\forall i, \forall j, \forall k, \forall t)$$
 (14)

$$start_date_project_j \in \mathcal{H} \ (\forall j)$$
 (15)

$$X_{i,j,k,t} \in \{0,1\} \quad (\forall i, \forall j, \forall k, \forall t)$$
(16)

$$Y_j \in \{0, 1\} \quad (\forall j) \tag{17}$$

$$E_j \in \mathcal{H} \ (\forall j)$$
 (18)

$$L_j \in \mathbb{N} \ (\forall j)$$
 (19)

On reformule (2) et (3) en linéarisant ces fonctions objectifs MinMax. On obtient donc les nouvelles fonctions objectifs (20) et (21), ainsi que les contraintes supplémentaires (22) et (23).

minimiser
$$max_nb_of_jobs$$
 (20)

minimiser
$$max_duration_of_jobs$$
 (21)

s.t.
$$\sum_{j \in \mathcal{J}} works_on_job_{i,j} \leq max_nb_of_jobs \quad (\forall i)$$
(22)

$$E_j - start_date_project_j \le max_duration_of_jobs \ (\forall j)$$
 (23)

Calcul des solutions non-dominées

Calcul des solutions non-dominées

• Nous avons mis en place une méthode pour obtenir l'ensemble des solutions non-dominées sur nos 3 datasets.

	-benefice	max_nb_projets	max_duree_projet	
	-65	2	4	
Small	-20	2	1	
	0	0	0	
Medium	-390	5	19	
	-413	5	21	
	-817	7	35	
Large	-780	8	33	

Visualisation des solutions

Visualisation des solutions

Représentation des solutions dans l'espace des objectifs (x=-benefice_financier, y=max_nb_projets, z=max_duree_projet).

Noir : solutions non-dominées · Bleu : solutions dominées · Vert : Point idéal · Rouge : Point de Nadir

Modèle de préférences

Modèle de préférences

- Modèle de préférence par pondération linéaire : chaque objectif est pondéré en fonction de son importance pour le décideur.
- Point de départ : classement arbitraire simulant les décisions d'un décideur fictif.
- Entraînement d'un modèle de **régression linéaire** pour trouver les pondérations correspondant aux préférences du décideur fictif.
- Classement des solutions grâce aux pondérations trouvées.

Modèle de préférences

	-benefice	max_nb_projets	max_duree_projet	
Small	-65	2	4	
Medium	-390	5	19	
Large	-817	7	35	

Solutions retenues pour chaque dataset

Conclusion

Conclusion

Emploi du temps de Liam pour le Job1 (solution 0)

	Jour 0	Jour 1	Jour 2	Jour 3	Jour 4
Compétence A	0.0	-0.0	1.0	-0.0	-0.0
Compétence B	0.0	1.0	0.0	0.0	-0.0
Compétence C	0.0	0.0	0.0	0.0	0.0

Assignation des membres du personnel sur chaque projet pour la solution 0

	Job 0	Job 1	Job 2	Job 3	Job 4
Olivia	0.0	-0.0	0.0	1.0	1.0
Liam	1.0	0.0	1.0	0.0	0.0
Emma	1.0	0.0	1.0	0.0	0.0

Visualisation des plannings (pour le dataset small)

