Cram Review → AP Physics 1

Flipping Physics Review

- Basic measurement
 - Vector → Direction and magnitude
 - Scalar → Magnitude only
 - Component vectors → Seperate vectors representing a dimension along the x and y axis of a 2-dimensional vector at an angle with either the horizontal or vertical axis
- Kinematics
 - Distance
 - Path traveled
 - Scalar
 - Displacement
 - Straight-line distance

- Speed
 - $\blacksquare \quad Speed = \frac{distance}{time}$
 - Scalar
- Velocity

 - Vector
- Acceleration

 - Vector
- Motion graphs

Free-fall motion

$$a_y = -g = -9.81 \frac{m}{s^2}$$

$$g_{Earth} = +9.81 \frac{m}{s^2}$$

- Uniformly Accellerated Motion (UAM)
 - Describes motion of object when acceleration is constant

•
$$v_f = v_i + a\Delta t$$

$$x = x_0 + v_{x_0} + \frac{1}{2}a_x t^2$$

■
$$v_x^2 = v_{x_0}^2 + 2a_x(x - x_0)$$

• $v_f^2 = v_i^2 + 2a\Delta x$

$$v_f^2 = v_i^2 + 2a\Delta x$$

- Not on reference table
- 5 UAM variables

•
$$v_f, v_i, a, \Delta x, \Delta t$$

Projectile Motion

the Motion	
x-direction	y-direction
$a_x = 0$	Free Fall
Constant Velocity	$a_y = -g = -9.81 \frac{m}{s^2}$
$v_x = \frac{\Delta x}{\Delta t}$	UAM Equations
Δt (scalar)	

- Relative motion
 - Vector diagrams
 - Bector components
 - Make right triangle
 - Find resultant vector
- Center of mass (qualitatively)
 - Being able to analyze a diagram and determine the center of mass between two points/objects
 - Translational motion
 - Whole object or system of objects at its center of mass

Dynamics

- Inertial mass
 - Measure of a objects inertia
 - Measure of an object resistance to acceleration
 - More inertial mass, more resistance to acceleration
- Gravitaitonal mass
 - What is used to determine the weight or force of gravity of an object
 - \blacksquare $\overrightarrow{F_a} = m\overrightarrow{g}$
- o Inertial mass and gravitational mass are experimentally identical
- Newton's First Law
 - At rest → rest
 - In motion → constant velocity
 - Does not stay in motion just has a constant speed and direction
 - Unless net external force
 - Must clarify that it is a net external force
- Newton's Second Law

 - Identify the object(s) and direction
 - Draw free body diagrams (force diagrams)
 - Do not break forces into components on AP test unless it specifically states it
 - ullet Force of gravity = weight = down = $\overrightarrow{F_g} = m ec{g}$
 - Force Normal = ⊥ to surface = push
 - $\bullet \quad N = \frac{kg \cdot m}{s^2}$
 - Force of friction = \parallel to surface = opposes motion = independent of F_a
 - Static friction = non-moving friction = do not slide relative to one another
 - Kinetic friction = moving friction = do slide relative to one another
 - $\circ \quad \left| \overrightarrow{F_f} \right| \le \mu \left| \overrightarrow{F_N} \right|$
 - $\blacksquare \quad \overrightarrow{F_{kf}} = \mu_k \overrightarrow{F_N}$
 - $\blacksquare \quad \overrightarrow{F_{sf}} \le \mu_s \overrightarrow{F_N}$
 - $\blacksquare \quad \overrightarrow{F_{sf_{max}}} = \mu_s \overrightarrow{F_N}$
 - lacksquare $\mu_{\scriptscriptstyle S}>\mu_{k}$ (for same two surfaces)

- o Newton's Third Law
 - $\blacksquare \quad \overrightarrow{F_{12}} = \overrightarrow{F_{21}}$
 - For every action there is an equal and opposite reaction
 - Incline
 - $\bullet \quad \mathit{F}_{g_{\parallel}} = mgsin\theta$
 - $F_{g_{\perp}} = mgcos\theta$

- Translational Equilibrium
 - $\Sigma \vec{F} = 0 = m\vec{a} \Rightarrow \vec{a} = 0$
 - At rest
 - Constant velocity

- Work, Energy, and Power
 - Work and energy are scalars
 - $\circ \quad \Delta E = W = F_{\parallel} d = F d cos \theta$
 - \blacksquare $F_{\parallel} = F cos \theta$
 - ullet heta is the angle between the force and displacement
 - Change in energy of a system
 - Work \rightarrow Joules, I, $N \cdot m$
 - Kinetic energy
 - $\blacksquare \quad KE = K = \frac{1}{2}mv^2$
 - Can never be negative because mass is never negative and velocity is squared

$$\blacksquare \quad KE = \frac{1}{2}mv^2 \Rightarrow (kg)\left(\frac{m}{s}\right)^2 = \frac{kg \cdot m^2}{s^2} \Rightarrow KE = \left(kg \cdot \frac{m}{s^2}\right)(m) = N \cdot m = J$$

- o Elastic potential energy
 - $\blacksquare PE_e = U_s = \frac{1}{2}kx^2$
 - x is the displacement from the equilibrium position/rest position
 - k is the spring constant which measures how much force it takes to compress or expand a spring
 - Energy stored in a spring
 - Can also desribe energy elastic/stretchy material such as a rubber band
 - lacktriangle Can never be negative because k is never negative and x is squared
- Gravitational potential energy
 - $\blacksquare \quad PE_g = mgh \& \Delta U_g = mg\Delta y$
 - Energy associated with a gravitational field
 - Can be negative if the object is below the horizontal zero line (base line)
- Conservation of mechanical energy
 - $\blacksquare \quad ME_i = ME_f$
 - No friction
 - No energy added by an applied force, (F_a)
 - Identify initial and final points
 - Indetify zero line
 - $W_f = \Delta ME \Rightarrow F_f dcos\theta = ME_f ME_i$
 - Still no energy added by (F_a)

- Power

 - How long it takes to change energy on a system or to do work on a system
 - $P \Rightarrow watts = \frac{J}{s}$
 - \circ 746 watts = 1 hp
- Hooke's law
 - $\blacksquare \quad |\overrightarrow{F_S}| = k|\overrightarrow{x}|$
 - Based on the graph...
 - $\bullet \quad slope = \frac{\overrightarrow{rise}}{run} = \frac{F_s}{x} = k \quad \stackrel{\bigcirc{S}}{\underset{\longrightarrow}{\text{Sign}}}$ $\bullet \quad k \Rightarrow \frac{N}{m}$

$$\circ \quad \vec{p} = m\vec{v} \Rightarrow \frac{kg \cdot m}{s}$$

- o Conservation of momentum
 - $\blacksquare \quad \Sigma \overrightarrow{p_i} = \Sigma \overrightarrow{p_f}$
 - Do not need to identify starting and ending point

- 2D collisions
 - Need 2 separate equations for each dimension
 - $\bullet \quad \Sigma \overrightarrow{p_{\iota x}} = \Sigma \overrightarrow{p_{f x}}$
 - $\bullet \quad \Sigma \overrightarrow{p_{iy}} = \Sigma \overrightarrow{p_{fy}}$
 - Types of collisions
 - Elastic
 - Objects bounce off one another
 - o Momentum and kinetic energy are conserved
 - Perfectly inelastic
 - Objects stick together
 - Momentum is conserved but kinetic energy is *not* conserved
 - Inelastic
 - Momentum is conserved kinetic energy is *not* conserved

o Impulse

 Created by manipulating Newton's second law and putting it in terms of momentum

■ Impulse approximation

$$\bullet \quad \Sigma \vec{F} = \overrightarrow{F_{impact}}$$

$$\bullet \quad \vec{J} = \overrightarrow{F_{impact}} \Delta t$$

- Impulse is constant
- Increase in Δt decreases F_{impact}

- Rotaional Kinematics
 - Angular velocity

$$\blacksquare \quad \vec{\omega} = \frac{\Delta \vec{\theta}}{\Delta t} \Rightarrow \left(\frac{rad}{s} or \frac{rev}{min}\right)$$

■ $1 rev = 360^{\circ} = 2\pi \ radians$

o Uniformly Angularly Accelerated Motion (U α M)

- o In motion...
 - If $\vec{\omega}$ is constant, $\vec{\alpha}$ is $0\frac{rad}{s^2}$

- o Angular vs. tangential
 - $\mathbf{v}_{t} = r\vec{\omega}$
 - ullet v_t is still a linear value so it is measured in $rac{m}{s}$
 - Tangential acceleration is centripital acceleration acted upon by the centripetal force
 - $\overrightarrow{a_c} = \frac{\overrightarrow{v_t^2}}{r} = r\overrightarrow{\omega^2}$
 - Centripetal force
 - Not a new force; never in free body diagrams
 - $\circ \quad \Sigma \overrightarrow{F_{ln}} = m \overline{a_c}$
 - \circ Force towards the center of the circle which is (+)
- Period and frequency
 - Period
 - Time per cycle
 - Measured in s or $\frac{sec}{cycle}$
 - $\bullet \quad T = \frac{1}{f}$
 - Frequency
 - Cycles per second
 - $s^{-1} = \frac{cycles}{sec} = Hz$

STOPPED, FULL PLAYLIST NOT FINISHED...

Rotational Dynamics
Universal Gravitation
Simple Harmonic Motion
Equations to Memorize

Cram Review

- Understanding the test
 - MCQ
 - Try not to spend more than 2 minutes per MCQ
 - Look out for "except" and "NOT"
 - For final 5 dual response: For credit *both* must be correct
 - o FRQ
 - 25 minutes for QQT & Experimental FRQs at most
 - 13 minutes for SAQ & paragraph at most
 - Pay attention to varoables/equations required
 - Be careful of changing scenarios
 - Explain, explain, explain!!
 - Make sure reader can distinguish which part of the question is being answered
 - Asnwer the questions where you can maximize you points first
 - Show steps in the solution & show work!
 - When asked to justify:
 - Explain with words how the answer was derived
 - Explain with words how the answer must be correct
- Common pitfalls
 - Paragraph response
 - ALWAYS PAY ATTENTION TO PICTURES
 - Use C.E.R.
 - Claim → A statement that responds to the question
 - Evidence → Provide scientific data to support the claim
 - Can use bullet points
 - Sufficent evidence
 - Reasoning → Use scientific principles and knolegde
 - Paragraph fromat
 - Why the evidence supports the claim
 - Use transitions like...
 - This implies...
 - This suggests...
 - This confirms...
 - Try to use physics vocabulary (especially listed in the reference sheet)

- Graphing
 - Use at least 3/4s of the graph paper
 - No components
 - For free body diagrams
 - o Make sure arrow TOUCHES AND LABEL IT
 - Propotional lengths
 - $\bullet \quad v = \frac{2\pi r}{T}$
 - Straight vertical line slope is undefined!
 - Straight horizontal line slope means there is none
 - Label each axis on graphs!
 - Don't add breaks on the graphs
 - Transform graph to a straight continuous slope
- Quick content review
 - Simple harmonic motion
 - Amplitude (A)
 - Largest restoring force
 - Greatest acceleration
 - \blacksquare Frequency (f)
 - Period (T)
 - Spring

$$\circ \quad T = 2\pi \sqrt{\frac{m}{k}}$$

$$\circ$$
 $F = -kx$

$$\circ PE_e = \frac{1}{2}kx^2$$

- x is how far the spring was extended
- Gravity does not matter
- Mass is controlled by spring constant
- Pendulum

$$\circ \quad T = 2\pi \sqrt{\frac{l}{g}}$$

- Gravity matters
- o Mass is controlled by gravity and length of string

- o Rotational motion
 - Linear to rotational
 - $x = r\theta$
 - $v = r\omega$
 - $a = r\alpha$
 - Torque
 - $\tau = I\alpha$
 - Inertia coefficient will be provided
 - $\tau = Fl$
 - \circ l is the lever arm; distance from pivot to applied force
 - F should be perpendicular to the object
 - Kinetic energy
 - Translational

$$\circ \quad KE = K = \frac{1}{2}mv^2$$

- o From one stop to another
- Rotational

$$\circ \quad KE_R=K_R=I\omega^2$$

- Momentum
 - Linear

$$\circ$$
 $p = mv$

Rotational

$$\circ$$
 $L = I\omega$

- Force
 - Atwood machine & interacting objects
 - Approaches...
 - View as one entire block and solve through acceleration
 - o Individual blocks with forces