Tableau 11, Part 1

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Sampling from a dichotomous population

Fixed but unknown proportion p

Sampling from a dichotomous population

Bernoulli trial with success probability p

 $X \sim Bernoulli(p)$

$$X = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Random sample: repeated independent trials

X_1	X_2	X_3	X_4	X_5	X_6	X ₇	X_8	X9	X ₁₀	X ₁₁	X ₁₂
0	1	1	0	0	0	0	0	0	0	1	0

Random sample: repeated independent trials

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Random sample: repeated independent trials

Fixed but unknown proportion q = 1 - p

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n$

Random sample: repeated independent trials

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n$

Is the relative frequency of accumulated successes in the sample, S_n/n , a good approximation to the fixed but unknown population proportion p?

* Maximum likelihood: The value S_n/n is the maximum likelihood estimate of the bias p: it gives the largest a posteriori probability of obtaining the observed number of successes S_n .

- * Maximum likelihood: The value S_n/n is the maximum likelihood estimate of the bias p: it gives the largest a posteriori probability of obtaining the observed number of successes S_n .
- * Maxima: The mass function of S_n/n attains its maximum value in a small neighbourhood of p.

- * Maximum likelihood: The value S_n/n is the maximum likelihood estimate of the bias p: it gives the largest a posteriori probability of obtaining the observed number of successes S_n .
- * Maxima: The mass function of S_n/n attains its maximum value in a small neighbourhood of p.
- * Expectation: Its expectation is p: $E(S_n/n) = p$.

- * Maximum likelihood: The value S_n/n is the maximum likelihood estimate of the bias p: it gives the largest a posteriori probability of obtaining the observed number of successes S_n .
- * Maxima: The mass function of S_n/n attains its maximum value in a small neighbourhood of p.
- * Expectation: Its expectation is p: $E(S_n/n) = p$.
- * Variance: Graphical evidence suggests that the mass function of S_n/n gets increasingly concentrated in a small neighbourhood of p when n is large. The variance provides more evidence in support of this observation:

$$Var(S_n) = npq \text{ or } \frac{1}{n} \sqrt{Var(S_n)} = \frac{\sqrt{pq}}{\sqrt{n}}.$$

- * Maximum likelihood: The value S_n/n is the maximum likelihood estimate of the bias p: it gives the largest a posteriori probability of obtaining the observed number of successes S_n .
- * Maxima: The mass function of S_n/n attains its maximum value in a small neighbourhood of p.
- * Expectation: Its expectation is p: $E(S_n/n) = p$.
- * Variance: Graphical evidence suggests that the mass function of S_n/n gets increasingly concentrated in a small neighbourhood of p when n is large. The variance provides more evidence in support of this observation:

$$Var(S_n) = npq \text{ or } \frac{1}{n} \sqrt{Var(S_n)} = \frac{\sqrt{pq}}{\sqrt{n}}.$$

