Heap sort:

```
Let H = min-ordered binary heap, initially empty A[1...n] = input array

for (k=1; k<=n; k++)
    H.insert (A[k]);

for (k=1; k<=n; k++)
    A[k] = H.removeMin();
```

Analysis of heap sort:

- Each operation insert, removeMin takes $\theta(\lg n)$ time.
- So θ (n lg n) total time for n inserts, n removeMins.

In-place Heap sort:

```
Use a max-ordered binary heap.
Store this heap in the same array A[1..n].
Values in A[1...k] are currently in the heap, so heap size is k.
```

```
for (k=1; k<=n; k++)
    A.insert (A[k]);
for (k=n; k>=1; k--)
    A[k] = A.removeMax();
```

1	2	3	4	5	6	7	8
26	48	17	31	50	9	21	16
<mark>26</mark>							
<mark>48</mark>	<mark>26</mark>						
<mark>48</mark>	<mark>26</mark>	<mark>17</mark>					
<mark>48</mark>	<mark>31</mark>	<mark>17</mark>	<mark>26</mark>				
<mark>50</mark>	<mark>48</mark>	<mark>17</mark>	<mark>26</mark>	<mark>31</mark>		_	
<mark>50</mark>	<mark>48</mark>	<mark>17</mark>	<mark>26</mark>	<mark>31</mark>	<mark>9</mark>		
<mark>50</mark>	<mark>48</mark>	<mark>21</mark>	<mark>26</mark>	<mark>31</mark>	<mark>9</mark>	<mark>17</mark>	
<mark>50</mark>	<mark>48</mark>	<mark>21</mark>	<mark>26</mark>	<mark>31</mark>	<mark>9</mark>	<mark>17</mark>	<mark>16</mark>
<mark>48</mark>	<mark>31</mark>	<mark>21</mark>	<mark>26</mark>	<mark>16</mark>	<mark>9</mark>	<mark>17</mark>	50
<mark>31</mark>	<mark>26</mark>	<mark>21</mark>	<mark>17</mark>	<mark>16</mark>	<mark>9</mark>	48	
<mark>26</mark>	<mark>17</mark>	<mark>21</mark>	<mark>9</mark>	<mark>16</mark>	31		
<mark>21</mark>	<mark>17</mark>	<mark>16</mark>	<mark>9</mark>	26		-	
<mark>17</mark>	<mark>9</mark>	<mark>16</mark>	21				
<mark>16</mark>	<mark>9</mark>	17					
<mark>9</mark>	16						
9	Heap elements highlighted in yellow						

Analysis of in-place heap sort:

- Each operation insert, removeMax takes $\theta(\lg n)$ time.
- So θ (n lg n) total time for n inserts, n removeMaxes.

Note: there is a faster way to build the heap in only $\theta(n)$ time, but it would still take $\theta(n \mid g \mid n)$ time to do the n removeMaxes.

```
How to build the heap in \theta(n) time?

To build a max-ordered heap in array A[1..n]:

Build-Heap (A[1..n]) {
	for (q=n/2; q>=1; q++)
	A.moveDown (q);
}
```

Example:

Analysis:

```
In the preceding example with n=15,
8 values cannot move down (when 8 \le q \le 15) (leaf nodes)
4 values move down 1 level (when 4 \le q \le 7)
2 values move down 2 levels (when 2 \le q \le 3)
```

1 value moves down 3 levels (when q=1) (root node)

More generally,

$$\approx$$
 n/4 values move down \leq 1 level (parents of leaves)

...

1 value moves down \leq lg n-1 levels (root node)

So the total number of swaps is at most:

$$1*n/4 + 2*n/8 + 3*n/16 + 4*n/32 + 5*n/64 + ...$$

Reorganize this sum to obtain:

Each above column is an bounded by an infinite geometric sum with ratio ½.

The sum of an infinite geometric series with first term f and ratio r is f/(1-r).

Summing each column yields:

$$n/2 + n/4 + n/8 + n/16 + n/32 + ...$$

But this is another infinite geometric sum with ratio $\frac{1}{2}$. Its sum is $(\frac{n}{2}) / (\frac{1-\frac{1}{2}}{2}) = n$.

Therefore the total number of swaps in Build-Heap is at most n, and the worst-case running time of Build-Heap is $\theta(n)$.