Contents

	(0.0.1 Słówko o notacji w tych notatkach
1	Wyk	ład 1 - 04.10.2018
	1.1	Ogólnie o przedmiocie
	1.2	Książki polecane
	1.3	Parametry Słońca
	1.4	Warstwy Słońca
	1.5	Paralaksa heliocentryczna
	1.6	Pomiar odległości poprzez jasność absolutną i obserwowalną
	1.7	Supernowe IA
	1.8	Jasność bolometryczna

0.0.1 Słówko o notacji w tych notatkach

 $2e33 = 2 * 10^33$. To wyjątkowo wygodna notacja rodem z Pythona.

1 Wykład 1 - 04.10.2018

1.1 Ogólnie o przedmiocie

• Dopuszczalne 4 nieobecności

1.2 Książki polecane

- Stellar Structure and evolution
- Stellar Interiors (second edition)
- Collins Fundamentals of Stellar Astrophysics
 - bardziej skupiona na procesach fizycznych zamiast na ewolucji

1.3 Parametry Słońca

- Masa 2e30 kg, w CGS (używany w astrofizyce) 2e33 grama
- Promień 7e8 kg
- Jasność L 4e33 erg/s
 - erg jednostka energii w CGS 1e-7 J
 - * z grecka "praca".
 - * praca jaką siła jednej dyny wykonuje przesuwając ciało o centymetr
 - \cdot 1 dyn = 1e-5 N
- Temperatura efektywna 5780 K
 - Temperatura efektywna to temperatura ciała doskonale czarnego, które wyemitowałoby taką samą ilość mocy przez promieniowanie
 - https://en.wikipedia.org/wiki/Effective_temperature#/media/File:EffectiveTemperature_300dpi_e.png
- Zawartość wodoru X ~ 74%, helu ~ 25%, metali ~ 1%
 - Metale w astronomii to cokolwiek cięższego nad hel :D

1.4 Warstwy Słońca

• Jądro

- generuje energię przez fuzje
- Strefa promienista
 - przenosi energię przez dyfuzję (czyli wolno)
- Otoczka konwektywna
 - przenosi energię przez wielkoskalowe ruchy konwektywne
 - * to już wtedy pewnie podchodzi pod MHD

1.5 Paralaksa heliocentryczna

- Co 6 miesięcy Ziemia trafia na przeciwne punkty na orbicie wokół Słońca
 - odległość między tymi punktami to 2 AU
- Między tymi dwoma punktami obserwujemy ruchy gwiazd względem siebie
- Odległość taka, że (mając promień orbity 1 AU) obserwowalna pozycja gwiazdy zmienia się o 1 sekundę kątową daje definicję parseka
 - $-~1~{\rm pc} = 206265~{\rm AU} \sim 3{\rm e}16~{\rm m}$
 - jak dać radiana to wychodzi 1 AU
- https://en.wikipedia.org/wiki/Stellar_parallax#/media/File:Stellarparallax_parsec1.svg

1.6 Pomiar odległości poprzez jasność absolutną i obserwowalną

$$M = m - 5\log_{10} d + 5 - A$$

gdzie M to **jasność absolutna**, m to **jasność obserwowalna**, d to oczywiście odległość, zaś A to stała (coś z wymieraniem). Dla gwiazd ledwo widzialnych m=6. Syriusz ma m=-1.4, a Słońce m=26.5.

1.7 Supernowe IA

Maksymalizują masy białych karłów (poprzez akrecję z towarzyszących im gwiazd).

Białe karły wyglądają wszystkie tak samo, jak eksplodują.

1.8 Jasność bolometryczna

Jasność