Уральский федеральный университет имени первого Президента России Б.Н.Ельцина

Институт радиоэлектроники и информационных технологий — радиотехнический факультет

Департамент информационных технологий и автоматики

ОТЧЕТ

по практическим занятиям по дисциплине "Теория управления"

Преподаватель: доцент Осипова И. А.

Студент: Дубровин Р. В.

Группа: РИ-320942

СОДЕРЖАНИЕ

Практическое работа №1	Error! Bookmark not defined.
Практическое работа №2	8
Практическая работа №3	Error! Bookmark not defined.
Практическое работа №4	Error! Bookmark not defined.

Практическая работа №1

«Анализ и систематизация учебных дисциплин»

1. Цель работы

Сформировать полное представление о пройденных дисциплинах и распределить их по логическим группам, чтобы понять преобладающую образовательную траекторию.

2. Исходные данные

Из электронной зачетной книжки перенесены все дисциплины по семестрам (семестры 1–6), вместе с тем отметив повторяющиеся курсы:

Семестр Дисциплины

- Математика базовый уровень; Проектная деятельность, сем. 1; Английский В1 р.1; Английский В1 р.2; Векторный анализ; Доп. главы математики; Основы С#; ПП образовательная игра
- Web-технологии; Основы работы с MySQL; Основы теории вероятностей; Прохождение курса Skillbox.Python; Работа с Яндекс.Игры (2D игра)
- Электронная коммерция (разработка продукта и защита перед инвесторами); 3 Алгоритмы и анализ сложности Python; Промт-инжиниринг; Работа с моделью для сегментации спутниковых изображений; Продвижение в соцсетях
- Курс бизнес-аналитика Альфа-банк; Программирование нейронных сетей 1; 4 Тактический трёхмерный бой; Технологии распределённого реестра (smart-контракты); Agile-подходы
- Теория управления; Бизнес-аналитик no-code; Виртуализация и облачные технологии; Гейм-дизайн Unity; Моделирование систем; Программирование нейронных сетей 2; Продвижение в соцсетях
- 6 Производственная практика (или «Теория управления», если практика совпадает?)

3. Методика

1. Сбор дисциплин

Все названия дисциплин скопированы из своей электронной зачетки в Obsidian.

2. Группировка по темам

На основе содержания курса и практических задач выделены следующие группы:

- Программирование
 - Python (Программирование)
 - С# (Программирование)
- Разработка игр
- Электронная коммерция
- Математика
- Машинное обучение
- Бизнес-аналитика
- Английский
- Программные технологии
 - Блокчейн (Программные технологии)
 - No-code (Программные технологии)
- Искусственный интеллект
- Облачные вычисления
- Базы данных
- Моделирование

3. Разметка в Obsidian

Для каждой дисциплины создана заметка с метаданными: #Math, #ProgrammingPython, #AI, #Database, #E-comercce, #GameDev, #Tech.

В теле заметки перечислены ключевые темы и ключевые проекты/задачи, которые выполнялись по курсу.

4. Анализ количества

Подсчитано число дисциплин в каждой группе.

4. Результаты

	Группа	Кол-во дисциплин
	Математика	4
Python	Программирование на	5
	Машинное обучение	3
	Бизнес-аналитика	2
	Электронная коммерция	4
	Разработка игр	5
	Виртуализация & блокчейн	2

5. Выводы

• Наибольшее представительство показали группы Программирование на Python и Разработка игр, по 5 дисциплин каждая.

- В учебе я сочетал интерес к *Программированию на Руthon* и *Разработке игр*, что подтверждается равным представлением этих направлений (по 5 курсов каждый).
- Математика (4 курса) и Электронная коммерция (4 курса) дополняют профиль.
- Наименее представлены *Виртуализация* и *Компьютерные технологии* (по 1 курсу), что указывает на слабую специализацию в этих областях на текущем этапе.

Практическая работа выполнена, получена структурированная карта учебных курсов и определены приоритетные направления обучения.

Практическое работа №2

«Построение минимального остовного дерева (МОД) для групп дисциплин»

1. Цель работы

Построить связное дерево, отражающее взаимосвязи между основными тематическими группами дисциплин на основе учебного плана. Определить силу связей между группами и визуализировать граф в Gephi.

2. Исходные данные

- Узлы: 14 тематических групп дисциплин:
 - 1. Математика
 - 2. Программирование на Python
 - 3. Программирование на С#
 - 4. Электронная коммерция
 - 5. Разработка игр
 - 6. Машинное обучение
 - 7. Бизнес-аналитика
 - 8. Английский
 - 9. Блокчейн
 - 10. Бизнес-аналитика No-code
 - 11. Промт-инжиниринг
 - 12. Облачные вычисления

- 13. Базы данных
- 14. Моделирование
- Рёбра: полный неориентированный граф, каждая пара групп соединена ребром с целочисленным весом 1...6. Вес отображает «длину» чем меньше значение, тем сильнее связь (большая важность влияния).

3. Этапы выполнения

- 1) Построена таблица всех парных связей между группами.
- 2) Каждой паре присвоен вес (целое число от 1 до 6), отражающий степень влияния одной группы на другую (1 сильная связь, 6 —

		Программир ование на Python	Программир ование на <u>С</u> #	Разработка игр	Электронная коммерция		Бизнес- аналитика	Английский	Блокчейн	Бизнес- аналитика No-code				Моделирова ние
Математика		1	2 5	1	. 3	1	. 4	1 4		4 6	5 2	2	1	. 4
Программир														
ование на														
Python	2		1	4	4		5	1 (5	4 3	1	. 2	5	1
Программир														
ование на С#	5	1	L	3	1	. 1	1	1 (5 1	. 2	2 6	2	4
Разработка														
игр	1	. 4	1 3		6	1		5 2	2 .	1 4	4	. 2	3	2
Электронная	l .		_	_										
коммерция	6	•	6	6		- 6		5 6	5	5 6	6	6	6	6
Машинное	l .	_			_								_	
обучение	1		1	1	. 6			2 6)	5	1		3	6
Бизнес-	l .			_						_				
аналитика	4	1	1	. 5	2	2			,	9	4		2	. 3
Английский	4	(5 6	2	4	6	5 (5		3 5	2		4	5
Блокчейн	4	. 4	1 5	4	3	6	5 !	5 3	3	1	. 3	3 2	: 6	4
Бизнес-														
аналитика														
No-code	6	3	3 1	4	1	. 3	3	1 5	5	1	4	. 6	. 2	3
Промт-														
инжиниринг	2	1	1 2	4	3	1	4	1 2	2	3 4		3	4	4
Облачные														
вычисления] 2	1	2 6	2	5	(5 (5 5	5	2 6	3	3	6	3
Базы данных	1		5 2	3	6	3	3	2 4	1	5 2	4	. 6		1
Моделирова														
ние	6	6	6	6	6	. 6	5 (5 6	5	5 6	6	5 6	6	

слабая).

- 3) На основе таблицы составлен edges.csv, содержащий все 91 возможную связь.
- 4) Также составлен nodes.csv, включающий 14 групп с соответствующими ID и названиями.
- 5) Данные импортированы в Gephi:
 - Узлы как Nodes table
 - Рёбра как Edges table, тип undirected
- 6) Визуализирован связный граф.

3. Результат

Получен взвешенный неориентированный граф, отражающий связи между всеми тематическими направлениями. Толщина рёбер соответствует силе связи. Некоторые связи были заданы вручную (например, сильная связь между Python и ML), другие определены на основе логики обучения.

4. Вывод

Построенный граф позволяет наглядно проследить, какие направления учебного плана наиболее тесно взаимосвязаны. Выделяются плотные кластеры (Python ↔ GameDev, ML ↔ Базы данных), а также более слабо связанные области (например, Электронная коммерция). Этот граф станет основой для построения минимального остовного дерева в следующей работе.

Практическая работа № 2 полностью выполнена.

Практическая работа №3

Построение минимального остовного дерева (МОД)

Цель работы

На основе связного дерева из предыдущей практики построить минимальное остовное дерево (МОД), включающее все группы дисциплин и минимизирующее суммарную длину связей (веса рёбер). Использовать алгоритм Прима для построения дерева.

Этапы выполнения

1. Использован ранее построенный граф.

ld ^	Label	
1	Математика	
10	Бизнес-аналитика No-code	
11	Промт-инжиниринг	
12	Облачные вычисления	
13	Базы данных	
14	Моделирование	
2	Программирование на Python	
3	Программирование на С#	
4	Разработка игр	
5	Электронная коммерция	
6	Машинное обучение	
7	Бизнес-аналитика	
8	Английский	
9	Блокчейн	

2. Применён алгоритм Прима

Шаг 1: Инициализация

Параметр Значение

Параметр	Значение
Начальная вершина	1 (Математика)
Множество	{1}
Ребра в <d></d>	(0, 1, 0) — начальная условная запись
Комментарий	Начало построения дерева.
Шаг 2: Первая из Параметр	терация Значение
Рассматриваемы ребра	е Все ребра из вершины 1: 1-2 (3), 1-3 (3), 1-5 (3), 1-8 (3),, 1-14 (6)
Выбранное ребре	о 1-2 (3) (минимальный вес среди ребер вершины 1)
Выбранное ребромм	
Множество верп	иин {1, 2} Ребро 1-2 добавлено в <d></d> .

Параметр Значение

Рассматриваемые Ребра из вершин {1, 2}: **2-5** (**2**), **1-3** (**3**), **2-3** (**3**), **2-7** (**4**),

ребра ..., 2-14 (6)

Выбранное ребро 2-5 (2) (минимальный вес)

Множество вершин $\{1, 2, 5\}$

Комментарий Ребро **2-5** добавлено в **<D>**.

Шаг 4: Третья итерация

Параметр Значение

Рассматриваемые Ребра из вершин {1, 2, 5}: **5-11** (**3**), **5-6** (**3**), **5-12** (**3**), **5-13**

ребра (3), ...

Выбранное ребро 5-11 (3) (минимальный вес)

Множество вершин {1, 2, 5, 11}

Комментарий Ребро 5-11 добавлено в <**D**>.

Шаг 5: Четвертая итерация

Параметр Значение

Рассматриваемые Ребра из вершин {1, 2, 5, 11}: **11-12** (**1**), **11-13** (**1**), **11-6**

Параметр	Значение
ребра	(3),
Выбранное ребро	11-12 (1) (минимальный вес)
Множество вершин	{1, 2, 5, 11, 12}
Комментарий	Ребро 11-12 добавлено в <d></d> .
Шаг 6: Пятая итераі	ция
Параметр	Значение
Рассматриваемые	Ребра из вершин {1, 2, 5, 11, 12}: 11-13 (1), 12-13 (2), 12-
ребра	8 (2),
Выбранное ребро	11-13 (1) (минимальный вес)
Множество вершин	{1, 2, 5, 11, 12, 13}
Комментарий	Ребро 11-13 добавлено в <d></d> .
Шаг 7: Шестая итер	ация
Параметр	Значение

14

Ребра из вершин {1, 2, 5, 11, 12, 13}: **12-8** (**2**), **13-6** (**3**), **12-**

Рассматриваемые

Параметр	Значение
ребра	6 (3),
Выбранное ребро	12-8 (2) (минимальный вес)
Множество вершин	H {1, 2, 5, 8, 11, 12, 13}
Комментарий	Ребро 12-8 добавлено в <d></d> .
Шаг 8: Седьмая итс	ерация
Параметр	Значение
Рассматриваемые	Ребра из вершин {1, 2, 5, 8, 11, 12, 13}: 8-7 (2), 8-10
ребра	(2), 8-9 (3),
Выбранное ребро	8-7 (2) (минимальный вес)
Множество вершин	H {1, 2, 5, 7, 8, 11, 12, 13}
Комментарий	Ребро 8-7 добавлено в <d></d> .
Шаг 9: Восьмая итс	ерация
Параметр	Значение
Рассматриваемые	Ребра из вершин {1, 2, 5, 7, 8, 11, 12, 13}: 7-10 (2), 7-9

Параметр	Значение
ребра	(3), 7-14 (6),
Выбранное ребро	7-10 (2) (минимальный вес)
Множество верши	H {1, 2, 5, 7, 8, 10, 11, 12, 13}
Комментарий	Ребро 7-10 добавлено в <d></d> .

Шаг 10: Девятая итерация

Параметр	Значение
Р ассматриваемые	Ребра из вершин {1, 2, 5, 7, 8, 10, 11, 12, 13}: 10-9 (1), 10-
ребра	14 (6),
Выбранное ребро	10-9 (1) (минимальный вес)
Множество вершин	{1, 2, 5, 7, 8, 9, 10, 11, 12, 13}
Комментарий	Ребро 10-9 добавлено в <d></d> .

Шаг 11: Десятая итерация

Параметр	Значение
Рассматриваемые	Ребра из вершин {1, 2, 5, 7, 8, 9, 10, 11, 12, 13}: 9-14

Параметр	Значение
ребра	(6), 9
Выбранное ребро	9-14 (6) (единственное доступное для вершины 14)
Множество вершин	{1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 14}
Комментарий	Ребро 9-14 добавлено в <d></d> .

- 3. Построен подграф, включающий все 14 узлов и 13 рёбер.
- 4. Полученный результат экспортирован в edges_min.csv.

Результат

Ребра		Bec
1-2	3	
2-5	2	
5-11	3	
11-12	1	
11-13	1	
12-8	2	
8-7	2	

P	'ебра		Bec
7-10		2	
10-9		1	
9-14		6	
3-11		3	
6-11		3	
4-1		6	

Сумма: 35

Вывод

Построенное МОД отражает структуру наиболее значимых взаимосвязей между всеми направлениями. Оно избавлено от избыточных и слабых связей, позволяя сфокусироваться на ядре учебной траектории. Дерево показывает, какие знания и темы являются ключевыми узлами в образовательной программе.

Практическая работа №4

Сетевое планирование последовательности изучения дисциплинарных групп

Цель работы

Используя методы сетевого планирования, определить оптимальную последовательность изучения тематических групп дисциплин для освоения выбранных профессиональных направлений. Построить сетевой график и рассчитать критический путь, определив наиболее значимые (критические) группы и резервы времени.

Исходные данные

Мы ранее составляли группы из дисциплин (курсов), потому за продолжительность изучения возьмем именно количество курсов.

Группы дисциплин (работы)

Код	Название группы дисциплин	Условная продолжительность (курс)
A	Математика	4
В	Программирование на Python	5
C	Программирование на С#	4
D	Разработка игр	6
E	Машинное обучение	5
F	Базы данных	3
G	Промт-инжиниринг	2
Н	Бизнес-аналитика	4
I	Бизнес-аналитика No-code	3

Код	Название группы дисциплин	Условная продолжительность (курс)
J	Блокчейн	4
K	Облачные вычисления	3
L	Моделирование	4
M	Электронная коммерция	2
N	Английский	2

Зависимости между группами

(формат: «работа зависит от»)

- **А (Математика)** ← нет зависимостей (основная дисциплина)
- **B** (**Python**) ← A (Математика),
- **С** (**С**#) ← A (Математика),
- **E** (Машинное обучение) ← A (Математика),
- **D** (Разработка игр) \leftarrow C (C#), B (Python)
- G (Промт-инжиниринг) Е (Машинное обучение)
- F (Базы данных) ← А (Математика)
- **К (Облачные вычисления)** F (Базы данных)
- **J (Блокчейн)** ← F (Базы данных)
- **H** (**Бизнес-аналитика**) ← A (Математика)
- $I(No\text{-code}) \leftarrow H(Бизнес-аналитика)$
- L (Моделирование) нет зависимостей (параллельно)
- **М (Электронная коммерция)** ← нет зависимостей (параллельно)

• N (Английский) — нет зависимостей (параллельно)

Методология

- Используем модель «Действие-на-вершине» (AoN):
- Узлы графа группы дисциплин.
- Рёбра зависимости (например, $A \to B$ означает, что B изучается после A).
- Критический путь рассчитан методом СРМ.

Этапы выполнения

1. Построение сетевого графика

- Каждая группа дисциплин представлена как вершина сети (работа).
- Связи между ними обозначают логические зависимости (предшественники).
- Используем длительности для расчёта временных характеристик.

2. Расчёт по методу критического пути (СРМ)

• Расчет временных параметров

Код	ES	EF	LS	LF	Резерв
A	0	4	0	4	0

Код	ES	EF	LS	LF	Резерв
В	4	9	4	9	0
C	4	8	5	9	1
D	9	15	9	15	0
E	4	9	7	12	3
F	4	7	6	9	2
G	9	11	12	14	3
H	4	8	6	10	2
I	8	11	10	13	2
J	7	11	9	13	2
K	7	10	9	12	2
Finish	15	15	15	15	0

Критический путь:

Старт — A (Математика) — B (Python) — D (Разработка игр) — Финиш

Длительность: 4 + 5 + 6 = 15 курсов.

3. Построение диаграммы

• Сформирована таблица событий, отображающая старт/финиш всех групп.

Резервы:

• Английский, Моделирование— имеют положительные резервы (выполняются параллельно или позже).

Вывод

- 1. Минимальный срок освоения профессии 15 недель.
- 2. Критический путь включает базовые и профильные дисциплины.
- 3. Резервы позволяют гибко планировать второстепенные модули.

Сетевой график позволил определить **оптимальную стратегию изучения групп дисциплин**, выявить критические этапы и понять, какие темы требуют особого внимания. Критический путь показал, какие направления (например, ML + Промт-инжиниринг или бизнес-аналитика + No-code) определяют общую продолжительность учебной траектории.

Практическая работа №5 (6)

Построение минимального квазиэйлерового цикла и цепи

Цель работы

Построить минимальный квазиэйлеров цикл и цепь для заданного графа дисциплин, используя алгоритмы оптимизации.

Исходные данные: минимальное дерево

Анализ графа

Степени вершин:

Дисциплина (ID)	Степень	Чётность
1	2	Чётная
2	2	Чётная
3	1	Нечётная
4	1	Нечётная
5	2	Чётная
6	1	Нечётная
7	2	Чётная

Дисциплина (ID)	Степень	Чётность
8	2	Чётная
9	2	Чётная
10	2	Чётная
11	5	Нечётная
12	2	Чётная
13	1	Нечётная
14	1	Нечётная

Нечётные вершины: 3, 4, 6, 11, 13, 14 (6 вершин).

Для эйлеровой цепи или цикла требуется 0 или 2 нечётные вершины.

1. Построение минимального квазиэйлерового цикла

Алгоритм Китайского почтальона

Добавление фиктивных рёбер:
 Необходимо соединить нечётные вершины попарно,
 минимизируя суммарный вес добавленных рёбер.

Оптимальные пары:

Пара вершин	Минимальный путь	Bec
3–11	3-11 (существующее ребро)	3

Пара вершин	Минимальный путь	Bec
4–1	4–1 (существующее ребро)	6
6–11	6-11 (существующее ребро)	3
10.11	10 11 10 0 7 10 0 14	1+1+2+2+
13–14	13-11-12-8-7-10-9-14	2+1+6=13

Суммарный вес добавок: 3+6+3+13=25.

2. Построение цикла:

После добавления рёбер все вершины становятся чётными. Используем алгоритм Хирхольцера для построения эйлерова цикла:

$$1 \rightarrow 2 \rightarrow 5 \rightarrow 11 \rightarrow 3 \rightarrow 11 \rightarrow 6 \rightarrow 11 \rightarrow 12 \rightarrow 8 \rightarrow 7 \rightarrow 10 \rightarrow 9 \rightarrow 14 \rightarrow 9 \rightarrow 10 \rightarrow 7 \rightarrow 8 \rightarrow 12 \rightarrow 11 \rightarrow 13 \rightarrow 14 \rightarrow 9 \rightarrow 10 \rightarrow 7 \rightarrow 8 \rightarrow 12 \rightarrow 11 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 1$$

3. Суммарный вес цикла:

Вес всех исходных рёбер: 3+2+3+1+1+2+2+2+1+6+3+3+6=33.

С добавленными рёбрами: 33+25=58.

2. Построение минимальной квазиэйлеровой цепи

1. Выбор начальной и конечной точек:

Оставляем нечётными вершины 3 и 14. Остальные делаем чётными, добавив фиктивные рёбра:

Пара вершин	Минимальный путь	Bec
4–1	4–1	6
6–11	6–11	3
13–11	13–11	1

Суммарный вес добавок: 6+3+1=10.

2. Построение цепи:

Начинаем в вершине 3, заканчиваем в вершине 14:

$$3 \rightarrow 11 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5 \rightarrow 11 \rightarrow 6 \rightarrow 11 \rightarrow 12 \rightarrow 8 \rightarrow 7 \rightarrow 10$$
$$\rightarrow 9 \rightarrow 14$$

3. Суммарный вес цепи:

Исходные рёбра: 3+2+6+3+3+1+2+2+2+1+6=27.

С добавленными рёбрами: 27+10=37.

Результаты

- Минимальный квазиэйлеров цикл успешно построен.
- Маршрут включает все связи между дисциплинами и минимальное количество повторяющихся рёбер.
- Построена также цепь, в которой маршрут начинается и заканчивается в двух вершинах с нечётной степенью.

Выводы

• Учебный граф сам по себе не является эйлеровым (имеет более двух вершин с нечётной степенью).

- Построение минимального квазиэйлерова цикла позволило оптимизировать маршрут прохождения через все связи между образовательными группами.
- Данный метод полезен для анализа структуры курсов, выявления перегруженных направлений и оптимального построения образовательной траектории.