元素及其化合物

胡译文

目录

1	Flas	hback		7
	1.1	氧化性		7
	1.2	元素氧	.化图解	7
2	Na			9
	2.1	Na 单原	质	9
		2.1.1	物理性质	9
		2.1.2	化学性质	9
		2.1.3	钠的制取	10
		2.1.4	钠的用途	10
		2.1.5	焰色反应	10
	2.2	Na 的化	と合物	10
		2.2.1	氧化钠和过氧化钠	10
		2.2.2	碳酸钠和碳酸氢钠	11
3	镁和	铝	1	13
	3.1	铝单质	i	13
		3.1.1	物理性质	13
		3.1.2	化学性质	13
		3.1.3	制备	14

	3.2	氧化铝	5
		3.2.1 物理性质	5
		3.2.2 化学性质	5
	3.3	氢氧化铝	5
		3.3.1 化学性质	5
	3.4	铝离子	6
	3.5	偏铝酸根	7
	3.6	氢氧化铝	7
		3.6.1 物理性质	7
		3.6.2 制备 1	8
	3.7	总结	8
4	Fe	1	0
4	4.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.1		
		4.1.1 物理性质	
		4.1.2 化学性质	
	4.2	铁的氧化物	
	4.3	铁的水化物	
		4.3.1 比较Fe(OH) ₂ 和Fe(OH) ₃	
		4.3.2 Fe(OH) ₂ 和Fe(OH) ₃ 的转化	
	4.4	铁三角(铁、亚铁盐、铁盐) 2	:1
5	Si	2	23
	5.1	硅单质	
		5.1.1 物理性质	
		5.1.2 化学性质	
	5.2	硅的氧化物	
	5.2	5.2.1 物理性质	
		5.2.2 化学性质	
		- J. L.	, T

	5.3	佳的水化	2物(硅質		り (住)	蛟)	 		 	•	 		 	 •	٠	 25
		5.3.1 特	勿理性质				 		 		 		 			 25
		5.3.2	化学性质				 		 		 		 	 		 25
		5.3.3 常	引备				 		 		 		 			 26
	5.4	硅酸盐					 		 		 		 			 26
		5.4.1 特	物理性质				 		 		 		 	 		 26
		5.4.2	化学性质				 		 		 		 	 		 26
		5.4.3 積	圭酸盐的	拆分			 		 		 		 			 26
	5.5	用途与俗	}称				 		 		 		 			 27
		5.5.1 F	用途				 		 		 		 			 27
		5.5.2 指	谷称				 		 		 		 	 		 27
6	Cl															28
U	CI	(01	> 与形													
			含氯酸 . 													
		6.0.2	5素				 	 •	 		 	•	 	 •		 28
	6.1	盐酸					 		 		 		 			 29
		6.1.1 物	勿理性质				 		 		 		 			 29
		6.1.2	匕学性质				 		 		 		 			 29
		6.1.3 #	引备				 		 		 		 			 30
	6.2	氯气					 		 		 		 	 		 30
		6.2.1 物	勿理性质				 		 		 		 	 		 30
		6.2.2	化学性质				 		 		 		 	 		 30
		6.2.3 常	引备				 		 		 		 			 31
		6.2.4	余杂				 		 		 		 			 32
		6.2.5 第	貳水				 		 		 		 			 32
		6.2.6 堂	&别				 		 		 		 	 		 32
	6.3	次氯酸					 		 		 		 	 		 32
		6.3.1	化学性质				 		 		 		 	 		 32

	6.4	含氯酸	登盐
		6.4.1	NaClO
		6.4.2	Ca(ClO) ₂
		6.4.3	Cl ₂ 逐渐通入FeI ₂ 和FeBr ₂ 混合溶液
		6.4.4	Cl ₂ 逐渐通入Na ₂ CO 溶液
_	C		
7	S	T★ /l / /=	35 -
	7.1	硫化氢	
		7.1.1	物理性质
		7.1.2	化学性质
		7.1.3	制备 36
	7.2	硫单质	ā
		7.2.1	物理性质
		7.2.2	化学性质
	7.3	二氧化	公硫
		7.3.1	物理性质
		7.3.2	化学性质
		7.3.3	硫酸型酸雨
		7.3.4	除杂
		7.3.5	制备
	7.4	三氧化	
		7.4.1	物理性质
		7.4.2	化学性质
		7.4.3	除杂
	7.5	, , , , , ,	₹
	7.5	7.5.1	、 · · · · · · · · · · · · · · · · · · ·
	7.6	T	
	7.6	1710,000	######################################
		7.6.1	物理性质

		7.6.2	化学性质	2
		7.6.3	制备	2
	7.7	含硫酸	盐	3
		7.7.1	FeSO ₄	3
		7.7.2	CuSO ₄	3
		7.7.3	$Na_2S_2O_3$	3
_				
8	N		44	
	8.1	氨气 .		
		8.1.1	物理性质	1
		8.1.2	尾气处理防倒吸	4
		8.1.3	喷泉实验	4
		8.1.4	化学性质	4
		8.1.5	检验与验满	5
		8.1.6	制备	5
		8.1.7	用途	5
	8.2	氮气.		5
		8.2.1	物理性质	5
		8.2.2	化学性质	5
		8.2.3	制备	5
	8.3	氮的氧	i化物	6
		8.3.1	物理性质	6
		8.3.2	化学性质	6
		8.3.3	酸酐	
	8.4	硝酸.	47	
	0.7	8.4.1	************************************	
		8.4.2		
		8.4.3	制备	3

	8.4.4	固氮
8.5	盐	
	8.5.1	硝酸盐分解规律 49
	8.5.2	铵盐分解规律

1 Flashback

1.1 氧化性顺序

氧化性
$$F_2 > O_2 > Cl_2 > Br_2 > Fe^{3+} > I_2 > S$$

$$F^- < H_2O < Cl^- < Br^- < Fe^{2+} < I^- < S^{2-} < 惰性电极$$

还原性

金属活动顺序表

• 钾钙钠镁铝: K Ca Na Mg Al

• 锌铁锡铅氢: Zn Fe Sn Pb H

• 铜汞银铂金: Cu Hg Ag Pt Au

$$\begin{split} K > Ca > Na > Mg > Al > Zn > Fe > Sn > Pb > H^{+} > Cu > Hg > Ag > Pt > Au \\ K^{+} < Ca^{2+} < Na^{+} < Mg^{2+} < Al^{3+} < H_{2}O < Zn^{2+} < Fe^{2+} < Sn^{2+} < Pb^{2+} < H^{+} < Cu^{+} < Hg^{+} < Fe^{3+} \\ < Ag^{+} < AuCl_{4}^{-} \end{split}$$

1.2 元素氧化图解

2 Na

2.1 Na 单质

2.1.1 物理性质

- 银白色固体, 有金属性光泽
- 密度介于水和煤油之间,用煤油或石蜡保存
- 熔点低
- 质地较软,可以用小刀切割

2.1.2 化学性质

与非金属单质反应

•
$$\left\{ \begin{array}{l} 4\,\mathrm{Na} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{Na}_2\mathrm{O} \\ \\ 2\,\mathrm{Na} + \mathrm{O}_2 \stackrel{\Delta}{\longrightarrow} \mathrm{Na}_2\mathrm{O}_2 \end{array} \right.$$

- $2 \text{ Na} + \text{S} \longrightarrow \text{Na}_2 \text{S}$
- $2 \text{ Na} + \text{H}_2 \xrightarrow{\Delta} 2 \text{ NaH}$

•
$$\left\{ \begin{array}{l} 2\,\text{Na} + \text{Br}_2 \longrightarrow 2\,\text{NaBr} \\ \\ 2\,\text{Na} + \text{Cl}_2 \xrightarrow{\square\square} 2\,\text{NaCl} \end{array} \right.$$

与水反应 $2 \text{ Na} + 2 \text{ H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2 \uparrow$

浮 钠的密度比水小

溶 反应放热,钠的熔点低

游生成氢气推动钠

响 反应剧烈

红 生成NaOH 遇到酚酞变红

与盐酸反应 2 Na + 2 HCl → 2 NaCl + H₂↑

与碱反应 实质是先与水反应,产物再和盐反应。

与盐溶液反应 实质是先与水反应,产物再和盐反应(钠不能与盐溶液发生置换反应)。

• 钠与硫酸铜溶液
$$\left\{ \begin{array}{l} 2\,Na + 2\,H_2O \longrightarrow 2\,NaOH + H_2 \uparrow \\ \\ 2\,NaOH + CuSO_4 \longrightarrow Na_2SO_4 + Cu(OH)_2 \downarrow \end{array} \right.$$

与
$$\mathbf{CO_2}$$
 反应
$$\left\{ \begin{array}{l} 4\,\mathrm{Na} + \mathrm{CO_2} \stackrel{\Delta}{\longrightarrow} 2\,\mathrm{Na_2O} + \mathrm{C} \\ 4\,\mathrm{Na} + 3\,\mathrm{CO_2} \stackrel{\Delta}{\longrightarrow} 2\,\mathrm{Na_2CO_3} + \mathrm{C} \end{array} \right.$$

2.1.3 钠的制取

$$\left\{ \begin{array}{l} 2\,\text{NaCl}\,(l) \xrightarrow{\ \square\ \square} 2\,\text{Na} + \text{Cl}_2\,\uparrow \\ \\ 2\,\text{NaOH}\,(l) \xrightarrow{\ \square\ \square} 2\,\text{Na} + \text{O}_2\,\uparrow + \text{H}_2\,\uparrow \end{array} \right.$$

2.1.4 钠的用途

- 冶炼金属: 4 Na + TiCl₄(l) → 4 NaCl + Ti
- 原子反应导热剂
- 钠光灯

2.1.5 焰色反应

钠盐: 黄色火焰

2.2 Na 的化合物

2.2.1 氧化钠和过氧化钠

比较氧化钠和过氧化钠

名称	氧化钠	过氧化钠					
化学式	Na ₂ O	Na ₂ O ₂					
物理性质 白色固体		淡黄色固体					
氧化物类型	碱性氧化物	过氧化物					
获取	$4 \text{ Na} + \text{O}_2 \longrightarrow 2 \text{ Na}_2\text{O}$	$2 \operatorname{Na} + \operatorname{O}_2 \xrightarrow{\Delta} \operatorname{Na}_2 \operatorname{O}_2$					
与水反应	$Na_2O + H_2O \longrightarrow 2$ NaOH 白色粘稠物	$2 \operatorname{Na_2O_2} + 2 \operatorname{H_2O} \longrightarrow 4 \operatorname{NaOH} + \operatorname{O_2} \uparrow$ 白色粘稠物					
与酸反应	$Na_2O + 2H^+ \longrightarrow 2Na^+ + H_2O$	$2 \operatorname{Na_2O_2} + 4 \operatorname{H}^+ \longrightarrow 4 \operatorname{Na}^+ + 2 \operatorname{H_2O} + \operatorname{O_2} \uparrow$					
与CO ₂ 反应	$Na_2O + CO_2 \longrightarrow Na_2CO_3$	$2 \operatorname{Na_2O_2} + 2 \operatorname{CO_2} \longrightarrow 2 \operatorname{Na_2CO_3} + \operatorname{O_2}$					
用途	制取烧碱	漂白剂、消毒剂、供氧剂					

过氧化钠的强氧化性

- 与SO₂ 反应: Na₂O₂ + SO₂ → Na₂SO₄
- 投入FeCl₂ 溶液中生成Fe(OH)₃ 沉淀
- 投入氢硫酸, 氧化硫化氢成硫单质, 溶液浑浊
- 氧化SO₃²⁻ 成SO₄²⁻
- 使品红溶液褪色

2.2.2 碳酸钠和碳酸氢钠

碳酸钠Na2CO3

- 俗名: 纯碱、苏打
- 与盐酸反应: Na₂CO₃ + 2 HCl → 2 NaCl + H₂O + CO₂↑
- 与Ca(OH)₂ 溶液反应: Na₂CO₃ + Ca(OH)₂ → CaCO₃ ↓ + 2 NaOH
- 与BaCl₂ 溶液反应: Na₂CO₃ + BaCl₂ → BaCO₃ ↓ + 2 NaCl

碳酸氢钠NaHCO3

• 俗名: 小苏打

• 与盐酸反应: NaHCO₃ + HCl → NaCl + H₂O + CO₂↑

• 与过量Ca(OH)₂ 溶液反应: Ca₂⁺ + OH⁻ + HCO₃⁻ → CaCO₃ ↓ + H₂O

- 与少量Ca(OH)₂ 溶液反应: Ca₂⁺+2OH⁻+2HCO₃⁻+Ca(OH)₂ → CaCO₃↓+2H₂O+CO₃²⁻
- 与BaCl。溶液反应: 无明显现象
- 受热分解: $2 \text{ NaHCO}_3 \xrightarrow{\Delta} \text{Na}_2 \text{CO}_3 + \text{H}_2 \text{O} + \text{CO}_2 \uparrow$

相互转换
$$Na_2CO_3 \stackrel{CO_2+H_2O或H^+}{\overbrace{\Delta(因体)_\square OH^-}} NaHCO_3$$

鉴别Na₂CO₃ 和NaHCO₃

固体 根据热稳定性加热,能产生使澄清石灰水变浑浊的气体的是NaHCO3

溶液

- 与可溶性钙、钡盐生成沉淀的是Na2CO3
- 与足量盐酸反应剧烈的是NaHCO3
- 逐滴加盐酸先生成气体的是NaHCO3
- 等物质的量 pH 值较大的是Na₂CO₃

3 镁和铝

3.1 铝单质

3.1.1 物理性质

银白色固体、导电性优良(Ag>Cu>Al)、熔点低、密度小

3.1.2 化学性质

与非金属单质反应

- $4 \text{ Al} + 3 \text{ O}_2 \xrightarrow{\text{k.m.}} 2 \text{ Al}_2 \text{O}_3$ (铝在氧气中无法剧烈燃烧)
- 铝在空气中生成致密的氧化膜,阻止反应;但硝酸汞可以阻止致密的氧化膜生成,剧烈反应,俗称"铝汞齐"。
- $2 \text{ Al} + 3 \text{ Cl}_2 \xrightarrow{\text{点燃}} 2 \text{ AlCl}_3$ (铝在氯气中可以剧烈燃烧) $_{\text{分子晶体}}$
- $2 Al + N_2 \xrightarrow{\overline{\text{Bla}}} 2 AlN$ 原子晶体
- $2 \text{ Al} + 3 \text{ S} \xrightarrow{\Delta} \text{Al}_2 \text{S}_3$

与热水反应

- $Mg + H_2O($ 沸水 $) \longrightarrow Mg(OH)_2 + H_2 \uparrow$
- $2 Al + 6 H_2O \longrightarrow 2 Al(OH)_3 + 3 H_2 \uparrow$

铝(镁)热反应 可以与 FeO、 Fe_2O_3 、 Fe_3O_4 、 Cr_2O_3 、 MnO_2 、 V_2O_5 等氧化物反应。用于焊接金属、冶炼难溶金属。

- $2 \text{ Al} + \text{Fe}_2\text{O}_3 \xrightarrow{\overline{\text{Bla}}} \text{Al}_2\text{O}_3 + 2 \text{ Fe}$
- $2 \text{ Al} + \text{Cr}_2\text{O}_3 \xrightarrow{\text{\bar{n}}} \text{Al}_2\text{O}_3 + 2 \text{ Cr}$

两性

- 与非氧化性酸: 2 Al + 6 H⁺ → 2 Al₃⁺ + 3 H₂↑
- 与氧化性酸: 在冷的浓硫酸或浓硝酸中钝化.
- 与强碱: 2Al+2NaOH+6H₂O → 2NaAlO₂+4H₂O+3H₂↑

3.1.3 制备

工业制铝

$$2 \text{ Al}_2\text{O}_3(l) \xrightarrow{\text{冰晶石}} 4 \text{ Al} + 3 \text{ O}_2 \uparrow$$

熔融冰晶石(Na₃AIF₆)可以溶解Al₂O₃,是助熔剂,而非催化剂。

- 1. 粉碎
- 2. NaOH 溶液浸泡: Al₂O₃ + 2 OH⁻ → 2 AlO₂⁻ + H₂O
- 3. 过滤
- 4. 通入 CO_2 : $CO_2 + AlO_2^- + 2H_2O \longrightarrow Al(OH)_3 \downarrow + HCO_3^-$
- 5. 过滤
- 6. 煅烧: 2 Al(OH)₃ → Ak₂O₃ + 3 H₂O
- 7. 电解: $2 Al_2O_3(l) \xrightarrow{\text{冰晶石}} 4 Al + 3 O_2 \uparrow$

工业制镁

- $Mg_2^+ + 2OH^- \longrightarrow Mg(OH)_2 \downarrow$
- $Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + H_2O$
- $MgCl_2(1) \xrightarrow{\underline{\mathfrak{Me}}} Mg + Cl_2 \uparrow$

海水提镁

$$CaCO3 \longrightarrow CaO \longrightarrow Ca(OH)_2 \longrightarrow Mg(OH)_2 \longrightarrow MgCl_2 \xrightarrow{\text{通电}} Mg$$

其中氯元素可以循环: $Cl_2 \longrightarrow HCl \longrightarrow MgCl_2 \longrightarrow Cl_2$

3.2 氧化铝

3.2.1 物理性质

- 熔点高、硬度大。
- 俗称: 刚玉、宝石。
- 用途: 氧化铝坩锅、装饰品、蓝宝石保护层

3.2.2 化学性质

两性

- $\bullet \ Al_2O_3 + 6\,H^+ \longrightarrow 2\,Al^{3+} + 3\,H_2O$
- $Al_2O_3 + 2OH^- \longrightarrow 2AlO_2^- + H_2O$

3.3 氢氧化铝

3.3.1 化学性质

两性

与强碱反应

- 2 Al + 6 H⁺ → 2 Al³⁺ + 3 H₂↑ (非氧化性酸)
- $\bullet \ Al_2O_3 + 6\,H^+ \longrightarrow 2\,Al^{3+} + 3\,H_2O$
- $\bullet \ Al(OH)_3 + 3\,H^+ \longrightarrow Al^{3+} + 3\,H_2O$

与强碱反应

- $2 \text{ Al} + 2 \text{ OH}^- + 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ AlO}_2^- + 3 \text{ H}_2 \uparrow$
- $Al_2O_3 + 2OH^- \longrightarrow 2AlO_2^- + H_2O$
- $Al(OH)_3 + OH^- \longrightarrow AlO_2^- + 2H_2O$

Al(OH)₃ 的电离

- $Al(OH)_3 \rightleftharpoons H^+ + AlO_2^- + H_2O$
- $Al(OH)_3 \Longrightarrow Al^{3+} + 3OH^-$

受热分解

3.4 铝离子

与 NaOH 的相互滴加 缓慢滴加并搅拌

将 NaOH 滴入 Al3+ 溶液中

- 1. 先出现白色沉淀: Al³⁺ + 3 OH⁻ → Al(OH)₃↓
- 2. 后沉淀消失: Al(OH)₃ + OH⁻ → AlO₂⁻ + 2H₂O

将 Al3+ 滴入 NaOH 溶液中

- 1. 先无明显现象: $Al^{3+} + 4OH^{-} \longrightarrow AlO_{2}^{-} + H_{2}O$
- 2. 后产生白色沉淀: Al³⁺ + 3 AlO₂⁻ + 6 H₂O → 4 Al₃(OH)₃↓

与氨水反应 $Al^{3+} + NH_3 \cdot H_2O \longrightarrow Al(OH)_3 \downarrow + 3NH_4^+$

双水解反应

- $Al^{3+} + 3HCO_3^- \longrightarrow Al(OH)_3 \downarrow + 3CO_2 \uparrow$
- $Al^{3+} + 3CO_3^{2-} + 3H_2O \longrightarrow Al(OH)_3 \downarrow + 3HCO_3^{-}$
- $Al^{3+} + 3AlO_2^- + 6H_2O \longrightarrow 4Al(OH)_3 \downarrow$
- $2 \text{ Al}^{3+} + 3 \text{ S}^{2-} + 6 \text{ H}_2\text{O} \longrightarrow 2 \text{ Al}(\text{OH})_3 \downarrow + 3 \text{ H}_2\text{S} \uparrow$

•
$$AlO_2^- + NH_4^+ + H_2O \longrightarrow 4Al(OH)_3 \downarrow + NH_3 \uparrow$$

•
$$2 \text{ Al}^{3+} + 3 \text{ SiO}_3^{2-} + 6 \text{ H}_2\text{O} \longrightarrow 2 \text{ Al}(\text{OH})_3 \downarrow + 3 \text{ H}_2 \text{SiO}_3 \downarrow$$

3.5 偏铝酸根

与强酸相互滴加 缓慢滴加并搅拌

将 H₂SO₄ 滴入 AlO₂ - 溶液中

- 1. 先出现白色沉淀: AlO₂ + H + + H₂O → Al(OH)₃↓
- 2. 后沉淀消失: Al(OH)₃ + 3H⁺ ---- Al³⁺ + 3H₂O

将 AlO2- 滴入 H2SO4 溶液中

- 1. 先无明显现象: $AlO_2^- + 4H^+ \longrightarrow Al^{3+} + 2H_2O$
- 2. 后产生白色沉淀: Al³⁺ + 3 AlO₂⁻ + 6 H₂O → 4 Al₃(OH)₃↓

与碳酸反应 立即生成 Al(OH)₃ 沉淀且不溶解。

与铵盐溶液反应
$$NH_4^+ + AlO_2^- + H_2O \longrightarrow Al(OH)_3 \downarrow + NH_3 \uparrow$$

3.6 氢氧化铝

3.6.1 物理性质

• 白色胶状沉淀

3.6.2 制备

•
$$Al^{3+} + NH_3 \cdot H_2O \longrightarrow Al(OH)_3 \downarrow + 3 NH_4^+$$

•
$$AlO_2^- + 2H_2O + CO_2 \longrightarrow Al(OH)_3 \downarrow + HCO_3^-$$

•
$$Al^{3+} + 3AlO_2^- + 6H_2O \longrightarrow 4Al_3(OH)_3 \downarrow$$

3.7 总结

4 Fe

4.1 铁单质

4.1.1 物理性质

- 银白色固体, 有金属性光泽:
- 容易被磁铁吸引;
- 地壳中居第四位:

4.1.2 化学性质

铁元素性质活泼,有较强的还原性,主要化合价为+2价和+3价。

与非金属单质反应

- $3 \operatorname{Fe} + 2 \operatorname{O}_2 \xrightarrow{\text{\not h}$} \operatorname{Fe}_3 \operatorname{O}_4$
- $2 \operatorname{Fe} + 3 \operatorname{Cl}_2 \xrightarrow{\text{\not h}$} \operatorname{FeCl}_3$
- Fe + S $\xrightarrow{\Delta}$ FeS

与水反应 铁在高温下与水蒸气反应 $3 \operatorname{Fe} + 4 \operatorname{H}_2 \operatorname{O}(g) \xrightarrow{\operatorname{\underline{ala}}} \operatorname{Fe}_3 \operatorname{O}_4 + 4 \operatorname{H}_2$

与酸反应 铁遇到冷的浓硫酸或浓硝酸会钝化。

- 与非还原性酸: $Fe + 2H^+ \longrightarrow Fe^{2+} + H_2 \uparrow$
- 与还原性酸: Fe+4H⁺+NO₃⁻ → Fe³⁺+NO↑+2H₂O

与盐溶液反应

- 置换反应: Fe + Cu²⁺ → Fe²⁺ + Cu
- 与氯化铁溶液: Fe+2Fe³⁺ → 3Fe²⁺

4.2 铁的氧化物

名称	氧化亚铁	氧化铁	四氧化三铁
俗称	-	铁红	磁性氧化铁
化学式	FeO	Fe ₂ O ₃	Fe ₃ O ₄
化合价	+2	+3	+2, +3
物理性质	黑色粉末	红褐色粉末	黑色晶体
与CO 反应	$FeO + CO \xrightarrow{\Delta} Fe + CO_2$	$Fe_2O_3 + 3 CO \xrightarrow{\Delta} 2 Fe + 3 CO_2$	$Fe_3O_4 + 4CO \xrightarrow{\Delta}$ $3 Fe + 4CO_2$
与H ₂ 反应	$FeO + H_2 \xrightarrow{\Delta} Fe + H_2O$	$Fe_2O_3 + 3 H_2 \xrightarrow{\Delta}$ $2 Fe + 3 H_2O$	$Fe_3O_4 + 4H_2 \xrightarrow{\Delta}$ $3Fe + 4H_2O$
与酸反应	$FeO + 2H^{+} \longrightarrow Fe^{2+} + H_{2}O$	$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O$	$Fe_{3}O_{4} + 8 H^{+} \longrightarrow Fe^{2+} + 2 Fe^{3+} + 4 H_{2}O$

4.3 铁的水化物

4.3.1 比较Fe(OH)₂ 和Fe(OH)₃

名称	氢氧化亚铁	氢氧化铁						
化学式	Fe(OH) ₂	Fe(OH) ₃						
物理性质	白色固体	红褐色固体						
与酸反应	$Fe(OH)_2 + 2H^+ \longrightarrow Fe^{2+} + 2H_2O$	$Fe(OH)_3 + 3H^+ \longrightarrow Fe^{3+} + 3H_2O$						
受热分解	$Fe(OH)_2 \xrightarrow{\Delta} FeO + H_2O$	$2 \operatorname{Fe}(\operatorname{OH})_3 \xrightarrow{\Delta} \operatorname{Fe}_2\operatorname{O}_3 + 3 \operatorname{H}_2\operatorname{O}$						
制备	$FeCl_2 + 2 \text{ NaOH} \longrightarrow Fe(OH)_2 \downarrow + 2 \text{ NaCl}$	$FeCl_3 + 3 \text{ NaOH} \longrightarrow Fe(OH)_3 \downarrow + 3 \text{ NaCl}$						

4.3.2 Fe(OH)₂ 和Fe(OH)₃ 的转化

 $Fe(OH)_2$ 在空气中可以迅速被氧化成 $Fe(OH)_3$ 。现象是由**白色絮状沉淀**迅速变成灰绿色,最后变成<mark>红褐色</mark>。

$$4\,Fe(OH)_2+O_2+2\,H_2O \longrightarrow 4\,Fe(OH)_3$$

4.4 铁三角 (铁、亚铁盐、铁盐)

亚铁盐 含有 Fe^{2+} 的溶液呈浅绿色, Fe^{2+} 既有氧化性,又有还原性。

铁盐 含有 Fe^{3+} 的溶液呈<mark>棕黄色</mark>, Fe^{3+} 具有氧化性。含有 Fe^{3+} 的盐溶液遇到KSCN 溶液时变成红色。

5 Si

5.1 硅单质

5.1.1 物理性质

- 分类: 无定形硅、晶体硅(结构类似金刚石,原子晶体)
- 灰黑色晶状固体
- 质地较脆
- 半导体

5.1.2 化学性质

与非金属单质反应

- $Si + O_2 \xrightarrow{\overline{\triangleright} \mathbb{Z}} SiO_2$
- $Si + 2 Cl_2 \xrightarrow{\Delta} SiCl_4$
- $Si + 2F_2 \longrightarrow SiF_4$
- $Si + C \xrightarrow{\overline{\text{Bla}}} SiC$ $\underline{\text{sin}}$

与水反应
$$Si + H_2O + 2 NaOH \longrightarrow Na_2SiO_3 + 2 H_2 \uparrow$$
 野外制氢

精炼

- 1. $Si + Cl_2 \xrightarrow{\Delta} SiCl_4$
- 2. SiCl₄ + 2 H₂ = 高温 4 HCl + Si

5.2 硅的氧化物

最简式: SiO₂ (分子晶体)

5.2.1 物理性质

• 透明、硬度大、熔点高

5.2.2 化学性质

酸性氢化物

与唯一一种酸氢氟酸反应
$$SiO_2 + 4 HF \longrightarrow SiF_4 \uparrow + 2 H_2 O$$
 (气标! 气标!!)

与碱性氧化物反应 氧化硅与碱性氧化物反应,不与水反应(与水反应产物为硅酸,是沉淀,阻止反应进行)

•
$$SiO_2 + CaO \xrightarrow{\overline{\text{Alg}}} CaSiO_3$$

与碱性盐反应

•
$$\underbrace{\mathrm{SiO}_2 + \mathrm{Na}_2\mathrm{CO}_3} \xrightarrow{\begin{subarray}{c} egin{subarray}{c} \egin{subarray}{c} egin{subarray}{c} egin{subarray$$

与碳反应

•
$$SiO_2 + 2C \xrightarrow{\overline{\land} \exists \exists} Si + 2CO \uparrow$$

•
$$SiO_2 + 3C \xrightarrow{\overline{a}} SiC + 3CO \uparrow$$

精炼

2.
$$Mg_2Si + 4HCl \longrightarrow 2MgCl_2 + SiH_4 \uparrow$$

3.
$$SiH_4 + 2O_2 \longrightarrow SiO_2 + 2H_2O$$
 (自然)

5.3 硅的水化物(硅酸、原硅酸)

硅酸: H₂SiO₃、、原硅酸: H₄SiO₄

5.3.1 物理性质

白色胶状沉淀

5.3.2 化学性质

弱酸性 不使酸碱指示剂变色

硅酸电离
$$\left\{ \begin{array}{l} H_2SiO_3 \Longleftrightarrow H^+ + HSiO_3^- \\ \\ H_2SiO_3^- \Longleftrightarrow H^+ + SiO_3^{2-} \end{array} \right.$$

原硅酸电离
$$\begin{cases} H_4SiO_4 \Longleftrightarrow H^+ + H_3SiO_4^- \\ H_3SiO_4^- \Longleftrightarrow H^+ + H_2SiO_4^{2-} \\ H_2SiO_4^- \Longleftrightarrow H^+ + HSiO_4^{3-} \\ HSiO_4^- \Longleftrightarrow H^+ + SiO_4^{4-} \end{cases}$$

不稳定沉淀

•
$$H_4SiO_4 \longrightarrow H_2SiO_3 + H_2 \uparrow$$

•
$$H_2SiO_3 \xrightarrow{\Delta} SiO_2 + H_2O$$

•
$$H_2SiO_3 \xrightarrow{\Delta} SiO_2 \cdot xH_2O + H_2O$$

与强碱反应

与氢氧化钠反应 H₂SiO₃ + 2 NaOH → Na₂SiO₃ + 2 H₂O

不与氨气反应 SiO₃²⁻ + 2 NH₄⁺ → H₂SiO₃ ↓ + 2 NH₃↑

5.3.3 制备

$$\mathbf{SiO_2}$$
 无法一步变成 $\mathbf{H_2SiO_3}$
$$\left\{ egin{array}{l} \mathrm{SiO_2} + 2\,\mathrm{NaOH} & \longrightarrow \mathrm{Na_2SiO_3} + \mathrm{H_2O} \\ \mathrm{Na_2SiO_3} + 2\,\mathrm{HCl} & \longrightarrow 2\,\mathrm{NaCl} + \mathrm{H_2SiO_3} \downarrow \end{array} \right.$$

5.4 硅酸盐

5.4.1 物理性质

 K_2SiO_3 和 Na_2SiO_3 溶于水,其余硅酸盐微溶于水。

5.4.2 化学性质

$$\bullet \left\{ \begin{array}{l} Na_2SiO_3 + CO_2 + H_2O \longrightarrow Na_2CO_3 + H_2SiO_3 \downarrow \\ \\ Na_2SiO_3 + 2CO_2 + 2H_2O \longrightarrow 2NaHCO_3 + H_2SiO_3 \downarrow \\ \\ \hline Na_2SiO_3 + 6HF \longrightarrow SiF_4 \uparrow + 2NaF + 3H_2O \\ \\ \hline \underbrace{CaSiO_3 + 6HF \longrightarrow SiF_4 \uparrow + CaF_2 + 3H_2O}_{\text{产物硅酸不稳定生成SiO}_2, \; 继续与氢氟酸反应} \right.$$

5.4.3 硅酸盐的拆分

• Na₂SiO₃: Na₂O · SiO₂

• CaSiO₃: CaO · SiO₂

• Al₂(Si₂O₅)(OH)₄): Al₂O₃ · 2SiO₂ · 2H₂O

5.5 用途与俗称

5.5.1 用途

• Si (不透明): 硅芯片、太阳能电池板

• SiO_2 (透明): 玻璃、石英玻璃、硅胶 ($mSiO_2 \cdot nH_2O$, 干燥剂)、光导纤维

• SiO₃²⁻ 盐: 水泥、陶瓷、防火材料等无机非金属材料

• H₂SiO₃: 制硅胶

5.5.2 俗称

· SiO₂: 水晶、玛瑙、石英

• Na₂SiO₃ 水溶液: 水玻璃

• Na₂SiO₃: 泡花碱

6 Cl

氯相关

6.0.1 含氯酸

从上至下,酸性递增,氧化性递减。

• HCIO: 次氯酸

• HClO₂: 亚氯酸

• HClO₃: 氯酸

• HClO₄: 高氯酸

6.0.2 卤素

• F: 无正价, 氧化性最强的单质

• Cl: 黄绿色气体

• Br: 常温下唯一液态非金属单质, 保存液溴需水封, 海水元素

• I: 易升华

• AgF: 可溶于水

• AgCl: 白色沉淀

• AgBr: 淡黄色沉淀

• AgI: 黄色沉淀, 用于人工降雨

海水提溴

海水 $\stackrel{\hbox{\tiny \tiny max}}{\longrightarrow}$ 盐卤 $\stackrel{\hbox{\tiny \tiny @} \lambda \text{Cl}_2}{\longrightarrow}$ $\text{Br}_2(\text{aq})$ $\stackrel{\text{\tiny \tiny w} \text{h} \text{De} \text{=} \text{q}}{\longrightarrow}$ $\text{Br}_2(g)$ $\stackrel{\text{\tiny h} \text{b} \text{n} \text{n} \text{q} \text{q}}{\longrightarrow}$ 溴酸盐和溴盐溶液 $\stackrel{\text{\tiny $\hat{\text{A}}$ h \text{m} \text{b} \text{b} \text{c}}}{\longrightarrow}$ $\text{Br}_2(g)$

$$\begin{cases} Cl_2 + 2 Br^- \longrightarrow Br_2 + 2 Cl^- \\ 3 Br_2 + 3 CO_3^{2-} \longrightarrow 5 Br^- + BrO_3^- + 3 CO_2 \\ 5 Br^- + BrO_3^- + 6 H^+ \longrightarrow 3 Br_2 + 3 H_2O \end{cases}$$

海带提碘

海带 \longrightarrow 烧碱灰 $\xrightarrow{\text{2nk}}$ $\xrightarrow{\text{Cl}_2}$ I_2

拟卤素 CN、SCN、OCN 氰 硫氰 氧氰

6.1 盐酸

6.1.1 物理性质

无色、有刺激性气味液体。

6.1.2 化学性质

酸性 产物中有盐

- $2H^+ + Fe \longrightarrow Fe^{2+} + H_2 \uparrow$
- $H^+ + OH^- \longrightarrow H_2O$
- $2 H^+ + CaO \longrightarrow Ca_2^+ + H_2O$
- $2 H^+ + CO_3^{2-} \longrightarrow CO_2 \uparrow + H_2O$

氧化性 盐酸的氧化性由H⁺ 体现

•
$$2 H^+ + Fe \longrightarrow Fe^{2+} + H_2 \uparrow$$

还原性

•
$$\underbrace{4 \, \text{HCl}(\dot{\mathbb{R}}) + \text{MnO}_2 \xrightarrow{\Delta} \text{MnCl}_2 + \text{CL}_2 \uparrow + 2 \, \text{H}_2\text{O}}_{\text{\text{gh}\text{\text{gh}}}}$$

$$\begin{cases} 16\,\text{HCl} + 2\,\text{KMnO}_4 & \longrightarrow 2\,\text{KCl} + 5\,\text{Cl}_2\,\uparrow + 2\,\text{MnCl}_2 + 8\,\text{H}_2\text{O} \\ 14\,\text{HCl} + \text{K}_2\text{Cr}_2\text{O}_7 & \longrightarrow 2\,\text{KCl} + 3\,\text{Cl}_2\,\uparrow + 2\,\text{CrCl}_3 + 7\,\text{H}_2\text{O} \\ 6\,\text{HCl} + \text{KClO}_3 & \longrightarrow \text{KCl} + 3\,\text{Cl}_2\,\uparrow + 3\,\text{H}_2\text{O} \\ 14\,\text{HCl} + \text{PbO}_2 & \longrightarrow \text{PbCl}_2 + \text{Cl}_2\,\uparrow + 2\,\text{H}_2\text{O} \\ 6\,\text{HCl} + \text{NaBiO}_3 & \longrightarrow \text{NaCl} + \text{Cl}_2\,\uparrow + \text{BiCl}_2 + 3\,\text{H}_2\text{O} \end{cases}$$

6.1.3 制备

工业

1.
$$2 \text{ NaCl} + 2 \text{ H}_2\text{O} \xrightarrow{\bar{\mathbf{m}}\mathbf{e}} 2 \text{ NaOH} + \text{H}_2\uparrow + \text{Cl}_2\uparrow$$

$$2. \ H_2 + Cl_2 \xrightarrow{\text{点燃}} 2\,HCl$$

实验室

• NaCl +
$$H_2SO_4(\mbox{$\stackrel{\Delta}{\raisebox{-.6ex}{\sim}}$}) \xrightarrow{\Delta} NaHSO_4 + HCl \uparrow$$

•
$$2 \text{ NaCl} + \text{H}_2 \text{SO}_4(\ref{x}) \xrightarrow{\Delta} \text{Na}_2 \text{SO}_4 + 2 \text{ HCl} \uparrow$$

6.2 氯气

6.2.1 物理性质

- 黄绿色气体
- 密度大于空气, 加压易液化
- 难溶于饱和食盐水, 可溶于水, 易溶于CCl₄。

6.2.2 化学性质

助燃性 强氧化性

• H₂ + Cl₂ ^{点燃}→ 2 HCl(苍白色火焰)

•
$$Cu + Cl_2 \xrightarrow{\text{$\pm k$}} CuCl_2$$

• 磷在氯气中燃烧产生白色烟雾
$$\left\{ \begin{array}{l} 2\,P + 5\,\text{Cl}_2 \xrightarrow{\text{点燃}} 2\,\text{PCl}_5(\text{烟}) \\ \\ 2\,P + 3\,\text{Cl}_2 \xrightarrow{\text{点燃}} 2\,\text{PCl}_3(\overline{\textbf{\textit{g}}}) \end{array} \right.$$

$$\bullet \left\{ \begin{array}{l} PCl_3 + 3 \, H_2O \longrightarrow H_3PO_3 + 3 \, HCl \\ \\ PCl_5 + 4 \, H_2O \longrightarrow H_3PO_4 + 5 \, HCl \end{array} \right.$$

氢化性和还原性

$$\begin{array}{c} \bullet \\ \left\{ \begin{array}{l} H_2O + Cl_2 \Longleftrightarrow HCl + HClO \\ \\ H_2O + Cl_2 \Longleftrightarrow H^+ + Cl^- + HClO \end{array} \right. \\ \\ \left\{ \begin{array}{l} NaOH + Cl_2 \longrightarrow NaCl + \underset{84 \, \text{消毒液、漂白粉}}{NaClO} + H_2O \\ \\ 2\,Ca(OH)_2 + 2\,Cl_2 \longrightarrow CaCl_2 + \underset{\text{漂白精、漂白粉}}{Ca(ClO)_2} + 2\,H_2O \end{array} \right. \\ \\ \left\{ \begin{array}{l} 6\,NaOH + 3\,Cl_2 \stackrel{\Delta}{\longrightarrow} 5\,NaCl + NaClO_3 + 3\,H_2O \\ \\ 6\,KOH + 3\,Cl_2 \stackrel{\Delta}{\longrightarrow} 5\,KCl + KClO_3 + 3\,H_2O \end{array} \right. \end{array}$$

$$\bullet \ 2\,H_2O+Cl_2+SO_2 \longrightarrow HCl+H_2SO_4$$

6.2.3 制备

工业

•
$$2 \text{ NaCl} + 2 \text{ H}_2\text{O} \xrightarrow{\underline{\mathfrak{Me}}} 2 \text{ NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$$

•
$$2 \operatorname{NaCl}(1) \xrightarrow{\underline{\mathfrak{M}}} 2 \operatorname{Na} + \operatorname{Cl}_2 \uparrow$$

实验室

• $MnO_2 + 4HCl(汉) \xrightarrow{\Delta} Cl_2 \uparrow + MnCl_2 + 2H_2O$

6.2.4 除杂

- Cl₂ (HCl): 饱和食盐水 (溶液度: HCl > NaCl > Cl₂)
- HCl (Cl₂): CCl₄
- CO₂ (HCl): 饱和NaHCO₃ 溶液

6.2.5 氯水

成分

- 分子: H₂O、Cl₂、HClO
- 离子: Cl-、H+、ClO-、OH-

检验

- Cl₂: FeCl₂ 溶液由浅绿色变为<mark>棕黄色</mark>
- Cl-: 加入硝酸酸化的AgNO3溶液,产生白色沉淀
- HCIO: 有色布条褪色
- H+: pH 试纸先变红,再褪色

6.2.6 鉴别

湿润淀粉碘化钾试纸变为蓝色 $Cl_2 + 2 KI \longrightarrow 2 KCl + I_2$

6.3 次氯酸

化学式 HCIO

6.3.1 化学性质

见光分解 2 HClO $\stackrel{\mathcal{H}}{\longrightarrow}$ 2 HCl + O₂ ↑

酸性 $H_2CO_3 > HCIO > HCO_3$

氧化性
$$HCIO + SO_2 + H_2O \longrightarrow HCl + H_2SO_4$$

6.4 含氯酸盐

6.4.1 NaClO

次氯酸钠的变质
$$\left\{ \begin{array}{l} CO_2 + NaClO + H_2O \longrightarrow HClO + NaHCO_3 \\ \\ 2\,HClO \stackrel{\mathcal{H}}{\longrightarrow} 2\,HCl + O_2 \, \uparrow \end{array} \right.$$

$$SO_2$$
 通入NaClO₃ 溶液 $ClO^- + SO_2 + H_2O \longrightarrow Cl^- + 2H^+ + SO_4^{2-}$

6.4.2 Ca(ClO)₂

次氯酸钙的变质
$$\left\{ \begin{array}{l} CO_2 + Ca(ClO)_2 + H_2O \longrightarrow 2\,HClO + CaCO_3 \downarrow \\ \\ 2\,HClO \stackrel{\mathcal{H}}{\longrightarrow} 2\,HCl + O_2 \uparrow \end{array} \right.$$

$$\mathbf{SO_2}$$
 通入 $\mathbf{Ca(ClO_3)_2}$ 溶液 $\mathbf{Ca^{2+}} + \mathbf{ClO^-} + \mathbf{SO_2} + \mathbf{H_2O} \longrightarrow \mathbf{Cl^-} + \mathbf{2H^+} + \mathbf{CaSO_4} \downarrow$

6.4.3 Cl₂ 逐渐通入FeI₂ 和FeBr₂ 混合溶液

$$1. \ Cl_2 + 2\,I^- \longrightarrow 2\,Cl^- + I_2$$

$$2. \ Cl_2 + 2 \, Fe^{2+} \longrightarrow 2 \, Cl^- + 2 \, Fe^{3+}$$

$$3. \ Cl_2 + 2\,Br^- \longrightarrow 2\,Cl^- + Br_2 \,\uparrow$$

4.
$$5 \text{ Cl}_2 + 6 \text{ H}_2 \text{O} + \text{I}_2 \longrightarrow 12 \text{ H}^+ + 2 \text{ IO}_3^- + 10 \text{ Cl}^-$$

6.4.4 Cl₂逐渐通入Na₂CO 溶液

$$H_2O + Cl_2 \Longrightarrow HCl + HClO$$
 (1)

$$HCl + Na_2CO_3 \longrightarrow NaCl + NaHCO_3$$
 (2)

$$HCl + NaHCO_3 \longrightarrow NaCl + H_2O + CO_2 \uparrow$$
 (3)

$$HClO + Na_2Co_3 \Longrightarrow NaClO + NaHCO_3$$
 (4)

注意HCIO 和NaHCO3 不反应。

1.
$$2 \text{Na}_2\text{CO}_3 + \text{Cl} + \text{H}_2\text{O} \longrightarrow 2 \text{NaHCO}_3 + \text{NaCl} + \text{NaClO} (1+2+4)$$

2.
$$Cl_2 + Na_2CO_3 + H_2O \longrightarrow NaCl + NaHCO_3 + HClO$$
 (1+2)

3.
$$Na_2CO_3 + 2Cl_2 + H_2O \longrightarrow CO_2 \uparrow + 2NaCl + 2HClO (1+2+3)$$

7 S

7.1 硫化氢

7.1.1 物理性质

- 无色、有刺激性气味(臭鸡蛋味)、有毒气体
- 能溶于水
- H₂S 水溶液俗称氢硫酸, 有毒
 - 碘酸: HIO
 - 碘化氢: HI
 - 氢碘酸: HI 水溶液

7.1.2 化学性质

弱酸性

与碱生成对应酸式/正盐

与一些盐反应

- H₂S + CuSO₄ → CuS ↓ + H₂SO₄ (强酸置弱酸)

不稳定性 高温易分解

可燃性

- $2 H_2 S + 3 O_2 \xrightarrow{\text{fight}} 2 SO_2 + 2 H_2 O$
- $2 H_2 S + O_2 \xrightarrow{\text{!!}} 2 S + 2 H_2 O$

强还原性

•
$$2 H_2 S + SO_2 \longrightarrow 3 S \downarrow + 2 H_2 O$$

•
$$2 H_2 S(aq) + O_2 \longrightarrow 2 S \downarrow + 2 H_2 O$$

•
$$H_2S + X_2 \longrightarrow 2HX + S \downarrow$$

$$\bullet \left\{ \begin{array}{l} H_2S + H_2O_2 \longrightarrow 2\,H_2O + S \downarrow \\ \\ H_2S + 4\,H_2O_2 \longrightarrow H_2SO_4 + 4\,H_2O \end{array} \right.$$

7.1.3 制备

向上双管排气法收集除杂: NaOH

•
$$FeS + H_2SO_4 \longrightarrow H_2S \uparrow + FeSO_4$$

•
$$ZnS + H_2SO_4 \longrightarrow H_2S \uparrow + ZnSO_4$$

7.2 硫单质

7.2.1 物理性质

- 黄色硫固体/淡黄色硫粉/白色纳米尺度的硫
- 难溶于水、微溶于酒精、易溶于二硫化碳
- 熔沸点低, 存在多种同素异形体

7.2.2 化学性质

与金属反应 主要生成低价化合物

•
$$S + Fe \xrightarrow{\Delta} FeS$$

•
$$S + 2 Cu \xrightarrow{\Delta} Cu2S$$
 硫化亚铜

•
$$\underbrace{S + Hg \longrightarrow HgS}_{\mathbb{R}^{+}}$$

与非金属反应

•
$$S + 3 F_2 \longrightarrow SF6$$
 $\mathfrak{F}E$
 $\mathfrak{F}E$

•
$$S + O_2 \xrightarrow{\Delta \vec{u} \leq k} SO_2$$

•
$$S + H_2 \stackrel{\widehat{\text{Bla}}}{\longleftrightarrow} H_2 S$$

还原性

•
$$\begin{cases} S + 4 \operatorname{HNO}_3(浓) \xrightarrow{\Delta} SO_2 \uparrow + 4 \operatorname{NO}_2 \uparrow + 2 \operatorname{H}_2 O \\ \\ S + 2 \operatorname{H}_2 SO_4(浓) \xrightarrow{\Delta} 3 \operatorname{SO}_2 \uparrow + 2 \operatorname{H}_2 O \end{cases}$$

•
$$S + 3 H_2O_2 \longrightarrow H_2SO_4 + 2 H_2O$$

除硫粉

- 1. 用CS₂ 洗涤
- 2. 用热的氢氧化钠溶液洗涤: $3S + 6NaOH \xrightarrow{\Delta} 2Na_2S + Na_2So_3 + 3H_2O$

歧化和归中

・硫单质:
$$\left\{ \begin{array}{c} \underbrace{S + OH^- \stackrel{\Delta}{\longrightarrow} S^{2-} + SO_3{}^{2-} + H_2O}_{\text{碱性歧化}} \\ \\ \underbrace{S^{2-} + SO_3{}^{2-} + H^+ \longrightarrow S \downarrow + H_2O}_{\text{酸性归中}} \end{array} \right.$$

• 卤素加热:
$$\begin{cases} X_2 + OH^- \xrightarrow{\Delta} X^- + XO_3^- + H_2O \\ \\ X^- + XO_3^- + H^+ \longrightarrow X_2 \uparrow + H_2O \end{cases}$$

• 卤素不加热:
$$\left\{ \begin{array}{l} X_2 + OH^- \longrightarrow X^- + XO^- + H_2O \\ \\ X^- + XO^- + H^+ \longrightarrow X_2 \uparrow + H_2O \end{array} \right.$$

7.3 二氧化硫

7.3.1 物理性质

- 无色、刺激性气味、有毒气体
- 易溶干水

7.3.2 化学性质

酸性

• 与强碱:
$$\begin{cases} SO_2 + 2 \, NaOH \longrightarrow Na_2SO_3 + H_2O \\ \\ SO_2 + NaOH \longrightarrow NaHSO_3 \\ \\ SO_2 + Ca(OH)_2 \longrightarrow CaSO_3 \downarrow + H_2O \end{cases}$$

• 与碱性氧化物: $\begin{cases} \underbrace{SO_2 + CaO \longrightarrow CaSO_3}_{\frac{\alpha}{\alpha}} \\ 2 CaSO_3 + O_2 \stackrel{\Delta}{\longrightarrow} 2 CaSO_4 \end{cases}$

• 与水反应:
$$\begin{cases} SO_2 + H_2O \Longrightarrow H_2SO_3 \\ H_2SO_3 \Longrightarrow H^+ + HSO_3^- \\ HSO_3^- \Longrightarrow H^+ + SO_3^{2-} \end{cases}$$

• 酸性比盐酸弱: 不与BaCl₂ 溶液反应生成沉淀

• 与 BaCl
$$_2$$
 和 NH $_3$ · H $_2$ O 溶液:
$$\left\{ \begin{array}{l} SO_2 + 2\,NH_3 \cdot H_2O \longrightarrow (NH_4)_2SO_3 + H_2O \\ \\ (NH_4)_2SO_3 + BaCl_2 \longrightarrow BaSO_3 \downarrow + 2\,NH_4Cl \end{array} \right.$$

• 与 BaCl₂ 和Cl₂ 溶液:
$$\begin{cases} SO_2 + 2 H_2O + Cl_2 \longrightarrow H_2SO_4 + 2 HCl \\ \\ H_2SO_4 + BaCl_2 \longrightarrow 2 HCl + BaSO_4 \downarrow \end{cases}$$

氧化性 $2 \text{ H}_2\text{S} + \text{SO}_2 \longrightarrow 3 \text{ S} \downarrow + \text{H}_2\text{O}$ (仅此一个反应能体现氧化性)

•
$$SO_2$$
 通入 Na_2S 溶液:
$$\begin{cases} SO_2 + H_2O \longrightarrow H_2SO_3 \\ \\ H_2SO_3 + Na_2S \longrightarrow Na_2SO_3 + H_2S \uparrow \\ \\ 2H_2S + SO_2 \longrightarrow 3S \downarrow + H_2O \end{cases}$$

还原性

•
$$SO_2 + H_2O_2 \longrightarrow H_2SO_4$$

•
$$SO_2 + Na_2O_2 \longrightarrow Na_2SO_4$$

•
$$SO_2 + 2 Fe^{3+} + 2 H_2 O \longrightarrow 2 Fe^{2+} + SO_4^{2-} + 4 H^+$$

•
$$5 SO_2 + 2 MnO_4^- + 2 H_2O \longrightarrow 2 Mn^{2+} + 5 SO_4^{2-} + 4 H^+$$

•
$$SO_2 + HClO + H_2O \longrightarrow 3H^+ + Cl^- + SO_4^{2-}$$

•
$$NO_2 + SO_2 \longrightarrow NO + SO_3$$

$$\bullet \left\{ \begin{array}{l} SO_2 + 2\,H_2O + X_2 \longrightarrow H_2SO_4 + 2\,HX \\ \\ SO_2 + 2\,H_2O + Cl_2 \longrightarrow H_2SO_4 + 2\,HCl \end{array} \right.$$

漂白性 SO_2 使品红溶液褪色,加热后红色复现。原理:与特定有机染料结合,生成无色或浅色物质:加热可逆

• SO₂ 通入酸性高锰酸钾溶液褪色: 还原性

• SO₂ 通入品红溶液褪色:漂白性

7.3.3 硫酸型酸雨

•
$$SO_2 \longrightarrow SO_3 \longrightarrow H_2SO_4$$

•
$$SO_2 \longrightarrow H_2SO_3 \longrightarrow H_2SO_4$$

7.3.4 除杂

• SO₂ (CO₂): NaHSO₃ 溶液

• CO₂ (SO₂): NaHCO₃ 溶液或酸性高锰酸钾溶液

• SO₂ (HCl): NaHSO₃ 溶液

• SO₂ (Cl₂): 无法分开

7.3.5 制备

$$\bullet \left\{ \begin{array}{l} Na_2SO_3 + H_2SO_4(\square) \longrightarrow Na_2SO_4 + CO_2\uparrow + H_2O \\ \\ Na_2SO_3 + H_2SO_4 \stackrel{\Delta}{\longrightarrow} Na_2SO_4 + CO_2\uparrow + H_2O \end{array} \right.$$

• 装置: 固液加热. 含沸石

• 除杂(水): 浓硫酸或无水氯化钙

• 收集: 向上排空气(易溶于水,不能用排水法)

• 验满: 湿润的蓝色石蕊试纸(酸性)或品红试纸(漂白性)

• 尾气处理: 氢氧化钠溶液、放倒吸(工业用氨水,产物可做化肥)

7.4 三氧化硫

7.4.1 物理性质

无色

• 常温液体、标况固体

• 溶于浓硫酸

7.4.2 化学性质

酸性氧化物,与水反应生成硫酸,放热。

$$SO_3 + CaO \longrightarrow CaSO_4SO_3 + 2\,NaOH \longrightarrow Na_2SO_4 + H_2O$$

40

7.4.3 除杂

弱酸气体混有强酸气体杂质时,用弱酸的酸式盐溶液除杂。也可以利用杂质的氧化性或还原性除杂。

- CO₂ (SO₂): 酸性高锰酸钾溶液、Fe₂(SO₄)₃ 溶液、NaHCO₃ 溶液
- H2S (HCI): 饱和NaHS 溶液
- CO₂ (H₂S): 酸性高锰酸钾溶液、Fe₂(SO₄)₃ 溶液、CuSO₄ 溶液

7.5 亚硫酸

7.5.1 化学性质

不稳定性

•
$$H_2SO_3 \xrightarrow{\Delta} H_2O + SO_2 \uparrow$$

还原性

- $2 H_2 SO_3 + O_2 \rightleftharpoons H_2 SO_4$
- $H_2SO_3 + Cl_2 + H_2O \Longrightarrow H_2SO_4 + 2HCl$
- $H_2SO_3 + H_2O_2 \Longrightarrow H_2SO_4 + H_2O$

酸性 亚硫酸是中强酸

- NaHCO3: 显碱性
- NaHSO3: 显酸性

7.6 硫酸

7.6.1 物理性质

- 无色粘稠状液体、不易挥发
- 吸水性
- 溶于水放热

7.6.2 化学性质

酸性

脱水性 (注意区分吸水性) 酸性干燥剂

强氧化性

• 与金属反应: 可与金属活动顺序表中铜及之前的物质反应. 常温下使铁、铝钝化。 $- \text{Cu} + 2 \text{H}_2 \text{SO}_4$ (浓) $\xrightarrow{\Delta} \text{CuSO}_4 + \text{SO}_2 \uparrow + 2 \text{H}_2 \text{O}_4$

• 与非金属反应:
$$\left\{ \begin{array}{l} C + 2\,H_2SO_4(\Dotantom{λ}) \stackrel{\Delta}{\longrightarrow} CuSO_4 + SO_2 \uparrow + 2\,H_2O \\ \\ S + 2\,H_2SO_4(\Dotantom{λ}) \stackrel{\Delta}{\longrightarrow} 3\,SO_2 \uparrow + 2\,H_2O \end{array} \right.$$

• 与非金属反应:
$$\begin{cases} C + 2 \operatorname{H}_2 \operatorname{SO}_4(\Dot{x}) & \xrightarrow{\Delta} \operatorname{CuSO}_4 + \operatorname{SO}_2 \uparrow + 2 \operatorname{H}_2 \operatorname{O} \\ \\ \operatorname{S} + 2 \operatorname{H}_2 \operatorname{SO}_4(\Dot{x}) & \xrightarrow{\Delta} 3 \operatorname{SO}_2 \uparrow + 2 \operatorname{H}_2 \operatorname{O} \end{cases}$$
• 与化合物反应:
$$\begin{cases} 2 \operatorname{Br}^- + \operatorname{SO}_4{}^{2-} + 4 \operatorname{H}^+ \longrightarrow \operatorname{Br}_2 + \operatorname{SO}_2 \uparrow + 2 \operatorname{H}_2 \operatorname{O} \\ \\ 2 \operatorname{Fe}^{2+} + \operatorname{SO}_4{}^{2-} + 4 \operatorname{H}^+ \longrightarrow 2 \operatorname{Fe}^{3+} + \operatorname{SO}_2 \uparrow + \operatorname{H}_2 \operatorname{O} \end{cases}$$

7.6.3 制备

工业

沸腾炉 煅烧黄铁矿

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \xrightarrow{\Delta} 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

接触室 V₂O₅ 附着于网上

$$2\,SO_2 + O_2 \xrightarrow{\square\,\square\,\square} 2\,SO_3$$

吸收塔

$$SO_3 + H_2O \longrightarrow H_2SO_4$$
 实际用浓硫酸吸收
$$\left\{ \begin{array}{l} H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7 \\ \text{焦硫酸} \\ H_2S_2O_7 + H_2O \longrightarrow 2\,H_2SO_4 \end{array} \right.$$

7.7 含硫酸盐

7.7.1 FeSO₄

$$FeSO_4 \xrightarrow{\Delta} Fe_2O_3 + SO_2 \uparrow + SO_3 \uparrow$$

7.7.2 CuSO₄

$$\left\{ \begin{array}{l} CuSO_4 \overset{\Delta}{\longrightarrow} CuO + SO_2 \\ \\ CuSO_4 \overset{\Delta(\mbox{$\not$$}\mbox{$\not$$}\mbox{E}\mbox{a}\mbox{b}\mbox{b}\mbox{b}\mbox{c}\mbox{u}\mbox{O}\mbox{b}\mbox{b}\mbox{b}\mbox{c}\mbox{b}\mbox{b}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mbox{b}\mbox{c}\mb$$

制备
$$\left\{ \begin{array}{l} 2\,Cu + 2\,H_2SO_4(\Re) + O_2 \stackrel{\Delta}{\longrightarrow} 2\,CuSO_4 + 2\,H_2O \\ \\ Cu + H_2SO_4(\Re) + H_2O_2 \longrightarrow CuSO_4 + 2\,H_2O \end{array} \right.$$

$7.7.3 \text{ Na}_2\text{S}_2\text{O}_3$

- 无法在酸性条件下存在: $Na_2S_2O_3 + 2HCl \longrightarrow 2NaCl + H_2O + SO_2 \uparrow + S \downarrow$
- 生成: Na₂So₃ + S → Na₂S₂O₃
- 除氯剂: $Na_2S_2O_3 + 4Cl_2 + 10 NaOH \longrightarrow 8 NaCl + 2 Na_2So_4 + 5 H_2O$
- 测定空气中 I_2 含量: $2 Na_2S_2O_3 + I_2 \longrightarrow B = Na_2S_4O_6 + 2 NaI$

8 N

8.1 氨气

8.1.1 物理性质

- 无色、刺激性气体
- 极易溶于水
- 加压易液化(制冷剂)

8.1.2 尾气处理防倒吸

 NH_3 或HCl 等气体极易溶于水,直接通入水中会使水倒吸。在水层下放CCl₄ 层并将气体通入,可以防止倒吸。(NH_3 和HCl 不溶于CCl₄)

8.1.3 喷泉实验

气体	液体
NH ₃	水或稀H ₂ SO ₄
HCl	水或NaOH 溶液
Cl ₂	
CO ₂	NaOH
SO ₂	溶液
H ₂ S	

8.1.4 化学性质

可燃性

• $4\,\mathrm{NH_3} + 3\,\mathrm{O_2} \xrightarrow{\Delta \overline{\mathrm{g}}, \mathrm{l}} 2\,\mathrm{N_2} + 6\,\mathrm{H_2O}$

碱性 唯一的碱性气体

•
$$NH_3 + HCl \longrightarrow NH_4Cl$$
 白烟

•
$$NH_3 + H_2O \Longrightarrow NH_3 \cdot H_2O \Longrightarrow NH_4^+ + OH^-$$

还原性

• 催化氧化: $4 \text{ NH}_3 + 5 \text{ O}_2 \stackrel{\text{Pt}}{\rightleftharpoons} 4 \text{ NO} + 6 \text{ H}_2 \text{O}$

・
$$\left\{ \begin{array}{l} 2\,\mathrm{NH_3} + 3\,\mathrm{Cl_2} \longrightarrow \mathrm{N_2} + 6\,\mathrm{HCl} \\ \\ 8\,\mathrm{NH_3} + 3\,\mathrm{Cl_2} \longrightarrow \mathrm{N_2} + 6 \mathop{\mathrm{NH_4Cl}}_{\mathrm{白烟:}} \\ \end{array} \right. \\ \left. \begin{array}{l} \mathrm{6\,M_3} \\ \mathrm{6\,M_3} \end{array} \right.$$

• $2 \text{ NH}_3 + \text{CuO} \xrightarrow{\Delta} 3 \text{ Cu} + \text{N}_2 + 3 \text{ H}_2 \text{O}$

8.1.5 检验与验满

• 检验: NH; 能使湿润红色石蕊试纸变蓝(没有紫色石蕊试纸)。

• 验满: 沾取少量浓盐酸, 置于瓶口, 出现白烟。

8.1.6 制备

•
$$Ca(OH)_2 + 2 NH_4Cl \xrightarrow{\Delta} CaCl_2 + 2 NH_3 \uparrow + 2 H_2O$$

8.1.7 用途

制硝酸、氮肥、制冷剂

8.2 氮气

8.2.1 物理性质

• 无色无味气体、难溶于水

8.2.2 化学性质

氮气常温下不活泼 (氮氮三键)、高温下 (氮原子) 活泼。

- $N_2 + 3 H_2 \stackrel{\overline{\text{ als. als.}}}{\underbrace{\text{ als. als.}}} 2 NH_3$
- $N_2 + O_2 \xrightarrow{\overline{\beta} \underline{\mathbb{A}}} 2 NO$

8.2.3 制备

• NaNO₂ + NH₄Cl $\xrightarrow{\Delta}$ NaCl + N₂ \uparrow + 2 H₂O

8.3 氮的氧化物

8.3.1 物理性质

• NO: 无色气体、有毒、难溶于水

• NO₂: 红棕色气体、有毒、与水反应

• N₂O₄: 无色气体、有毒、与水反应、化学性质类似NO₂、标况非气体

8.3.2 化学性质

一些实际发生的反应

- 2 NO + O₂ → NO₂ (迅速转变为<u>红棕色</u>)
- 3 NO₂ + H₂O ---- 2 HNO₃ + NO(歧化)
- $\bullet \ 2\,NO_2 \Longrightarrow N_2O_4$
- $\bullet \ 2\,\text{NO}_2 + 2\,\text{NaOH} \longrightarrow \text{NaNO}_2 + \text{NaNO}_3 + \text{H}_2\text{O}$
- $\bullet \ \, NO + NO_2 + 2\,NaOH \longrightarrow 2\,NaNO_3 + H_2O$

推导反应 (只能用于计算)

•
$$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

•
$$4 \text{ NO}_2 + \text{O}_2 + 2 \text{ H}_2\text{O} \longrightarrow 4 \text{ HNO}_3$$

•
$$4 \text{ NO} + 3 \text{ O}_2 + 2 \text{ H}_2\text{O} \longrightarrow 4 \text{ HNO}_3$$

与氮的氢化物反应

•
$$6 \text{ NO} + 4 \text{ NH}_3 \xrightarrow{\Delta} 5 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

•
$$6 \text{ NO}_2 + 8 \text{ NH}_3 \xrightarrow{\Delta} 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$$

•
$$N_2O_4 + 3 N_2H_4 \xrightarrow{\Delta} 3 N_2 + 4 H_2O$$
 \swarrow

8.3.3 酸酐

将可电离的H⁺配合O分解。

$$H_2SO_4 \longrightarrow SO_3 + H_2O2 HNO_3 \longrightarrow N_2O_5 + H_2O$$

化学性质 与碱反应生成盐和水

与酸性氧化物的关系 酸酐是酸性氧化物或非氧化物,酸性氧化物一定是酸酐。

8.4 硝酸

8.4.1 物理性质

• 无色、有刺激性气味

8.4.2 化学性质

氧化性 活泼金属与硝酸反应时不生成氢气。

$$\bullet \left\{ \begin{array}{l} Cu + 4\,HNO_3(\mbox{$\not$$}\mbox{\sim}) \longrightarrow Cu(NO_3)_2 + 2\,NO_2 \, \uparrow + 2\,H_2O \\ \\ Cu + 8\,HNO_3(\mbox{$\not$$}\mbox{\sim}) \longrightarrow 3\,Cu(NO_3)_2 + 2\,NO \, \uparrow + 4\,H_2O \end{array} \right.$$

$$\left\{ \begin{array}{l} Zn+4\,HNO_3(\mbox{\iffiltrightarpoonup$}{$\langle$} Zn+4\,HNO_3(\mbox{\iffiltrightarpoonup$}{$\langle$} Zn+8\,HNO_3(\mbox{\iffiltrightarpoonup$}{$\langle$} Zn+8\,HNO_3(\mbox{\iffiltrightarpoonup$}{$\langle$} Zn+10\,HNO_3(\mbox{\iffiltrightarpoonup$}{$\langle$} Zn+10\,HNO_3(\$$

不稳定性

• 4 HNO₃ $\xrightarrow{\Delta}$ 4 NO₂ \uparrow + O₂ \uparrow + 2 H₂O

漂白性 浓硝酸可以漂白石蕊溶液

8.4.3 制备

1.
$$N_2 + 3 H_2$$
 高温、高压 $2 NH_3$ 催化剂

3.
$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

$$4. \ 3 \, \text{NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \, \text{HNO}_3 + \underset{\textcircled{\tiny{2}}}{\text{NO}}$$

5.
$$(HNO_3 + NH_3 \longrightarrow NH4NO3)$$

装置: 硬质石英玻璃

现象:催化剂一明一暗,有红棕色气体和白色烟雾生成。

8.4.4 固氮

固氮 将游离态的氮 (氮气) 转化为化合态的氮

自然固氮

高能固氮 雷雨发庄稼

- 1. $N_2 + O_2 \xrightarrow{\text{ind}} 2 \text{ NO}$
- 2. $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$
- 3. $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

生物固氮 大豆根瘤菌

人工固氮 合成氨

8.5 盐

8.5.1 硝酸盐分解规律

- K 到 Mg: 亚硝酸盐和氧气 $(2 \text{ NaNO}_3 \xrightarrow{\Delta} 2 \text{ NaNO}_2 + \text{O}_2 \uparrow)$
- Al 到 Cu: 金属氧化物、二氧化氮和氧气 $(2 Pb(NO_3)_2 \xrightarrow{\Delta} 2 PbO + 4 NO_2 \uparrow + O_2 \uparrow)$
- Hg 到 Ag: 金属单质、二氧化氮和氧气($2 \text{ AgNO}_3 \stackrel{\Delta}{\longrightarrow} 2 \text{ Ag} + 2 \text{ NO}_2 + \text{O}_2 \uparrow$)

8.5.2 铵盐分解规律

- $NH_4NO_3 \xrightarrow{\Delta} N_2O \uparrow + 2H_2O$
- $NH_4HCO_3 \xrightarrow{\Delta} NH_3 \uparrow + CO_2 \uparrow + H_2O$
- $NH_4Cl \xrightarrow{\Delta} N_2O\uparrow + HCl\uparrow$
- $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 \uparrow + CrO_3 + 4H_2O$