Maximum Network Flow

- > Flow Networks
- >Flows in network and value of flow
- > Residual Networks
- >Augmenting paths
- > Maximum-flow problem
- >Cuts of flow networks
- >Max-flow min-cut theorem
- >Ford-Fulkerson method
- ➤ Maximum Bipartite Matching Problem

Maximum Network Flow Problem

Flow network models many examples of a network

- ➤ liquids flowing through pipes
- > parts through assembly lines
- > current through electrical network
- ➤ information through communication network
- > goods transported on the road

Types of Networks

- Internet
- Telephone
- Cell
- Highways
- Rail
- · Electrical Power
- Water
- Sewer
- Gas
- etc...

Sample Network Examples

Network	Nodes	Arcs	Flow
communication	telephone exchanges, computers, satellites	cables, fiber optics, microwave relays	voice, video, packets
circuits	gates, registers, processors	wires	current
mechanical	joints	rods, beams, springs	heat, energy
hydraulic	reservoirs, pumping stations, lakes	pipelines	fluid, oil
financial	stocks, companies	transactions	money
transportation	airports, rail yards, street intersections	highways, railbeds, airway routes	freight, vehicles, passengers
chemical	sites	bonds	energy

Maximum Flow Problem

- How can we maximize the flow in a network from a source or set of sources to a destination or set of destinations?
- Suppose China wanted to know how quickly India could get supplies through its Road network to its Arunachal Pradesh.
 - solving the max flow problem
- Beside above he also wish to know which Road it could destroy most easily so that to cut off the Arunachal state from the rest of country
 - min cut problem
- Is these two problems are closely related?
 - Yes!. max flow problem also solves the min cut problem of figuring out the cheapest way to cut off the country from its Arunachal Pradesh

Network Flow Concepts

- · Source vertex s
 - where material is produced
- Sink vertex t
 - where material is consumed
- · For all other vertices what goes in must go out
 - Flow conservation

·Instance:

- ·A Network is a directed graph 6
- ·Edges represent pipes that carry flow
- •Each edge (u,v) has a maximum capacity c(u,v)
- · A source node s in which flow arrives
- · A sink node t out which flow leaves

Task: determine maximum rate of material flow from source to sink

Problem

- Use a graph to model material that flows through conduits.
- Each edge represents one conduit, and has a capacity, which is an upper bound on the flow rate
- · Can think of edges as pipes of different sizes.
- Want to compute max rate that we can ship material from a designated source to a designated sink.

Flow Network

- Each edge (u,v) has a nonnegative capacity c(u,v).
- If (u,v) is not in E, assume c(u,v)=0.
- We have a source s, and a sink t.
- Assume that every vertex v in V is on some path from s to t.
- e.g., $c(s,v_1)=16$; $c(v_1,s)=0$; $c(v_2,v_3)=0$

Flow in a Network

• For each edge (u,v), the flow f(u,v) is a real-valued function that must satisfy 3 conditions:

Capacity constraint: $\forall u,v \in V$, $f(u,v) \leq c(u,v)$

Skew symmetry: $\forall u,v \in V$, f(u,v) = -f(v,u)

Flow conservation: $\forall u \in V - \{s,t\}, \sum_{v \in V} f(u,v) = 0$

- skew symmetry condition implies that f(u,u)=0.
- show only the positive flows in the flow network.

Example of a Flow

capacity

- $f(v_2, v_1) = 1$, $c(v_2, v_1) = 4$.
- $f(v_1, v_2) = -1$, $c(v_1, v_2) = 10$.
- $f(v_3, s) + f(v_3, v_1) + f(v_3, v_2) + f(v_3, v_4) + f(v_3, t) =$ 0 + (-12) + 4 + (-7) + 15 = 0

Value of a flow

• The value of a flow is given by

$$| f | = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, t)$$

total flow leaving s = the total flow arriving in t.

Example:

$$|f| = f(s, v_1) + f(s, v_2) + f(s, v_3) + f(s, v_4) + f(s, t) =$$

11 + 8 + 0 + 0 + 0 = 19

$$|f| = f(s, t) + f(v_1, t) + f(v_2, t) + f(v_3, t) + f(v_4, t) =$$

$$0 + 0 + 0 + 15 + 4 = 19$$

flow in a network

• assumed that there is only flow in one direction at a time.

 Sending 7 trucks from Edmonton to Calgary and 3 trucks from Calgary to Edmonton has the same net effect as sending 4 trucks from Edmonton to Calgary.

Multiple Sources Network

- · We have several sources and several targets.
- · Want to maximize the total flow from all sources to all targets.
- Reduce to max-flow by creating a supersource and a supersink:

Residual Networks

residual capacity of an edge (u,v) in a network with a flow f

$$c_f(u,v) = c(u,v) - f(u,v)$$

 residual network of a graph G induced by a flow f is the graph including only the edges with positive residual capacity

$$G_f = (V, E_f)$$
, where $E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$

Augmenting Paths

- An augmenting path *p* is a simple path from s to t on the residual network.
- more flow can be put from s to t through p
- maximum capacity by which we can increase the flow on p →residual capacity of p.

$$c_f(p) = \min\{c_f(u,v): (u,v) \text{ is on } p\}$$

Maximum Flow Problem

- Graph G(V,E) is a flow network
 - Directed graph, each edge has **capacity** $c(u,v) \ge 0$
 - Two special vertices: source s, and sink t
 - For any other vertex v, there is a path $s \rightarrow ... \rightarrow v \rightarrow ... \rightarrow t$
- Flow is a function $f: V \times V \rightarrow R$
 - Capacity constraint: For all $u, v \in V$: $f(u,v) \le c(u,v)$
 - Skew symmetry: For all $u, v \in V$: f(u,v) = -f(v,u)
 - Flow conservation: For all $u \in V \{s, t\}$:

$$\sum_{v \in V} f(u, v) = f(u, V) = 0, \text{ or }$$

$$\sum_{v \in V} f(v, u) = f(V, u) = 0$$

Ford-Fulkerson method

a way how to find the max-flow

contains 3 important ideas:

- -residual networks
- augmenting paths
- -cuts of flow networks

Computing Max Flow

Classic Method:

- Identify augmenting path
- Increase flow along that path
- Repeat

Ford-Fulkerson - pseudo code

- 1 initialize flow f to 0
- 2 while there exits an augmenting path p
- 3 do augment flow f along p
- 4 return f

Cuts of Flow Networks

A cut (S,T) of a flow network is a partition of V into S and T=V-S such that $s \in S$ and $t \in T$.

Cut ({s,v1,v2}, {v3,v4,t})

21

Net Flow across the Cut (S,T)

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v)$$

f(S,T) = 12 - 4 + 11 = 19 Cut ($\{s,v1,v2\}, \{v3,v4,t\}$)

Capacity of a Cut (S,T)

23

Augmenting Paths and Cuts

• Capacity of the cut = maximum possible flow through the cut = 12 + 7 + 4 = 23

- The network has a capacity of at most 23.
- In this case, the network does have a capacity of 23, because this is a minimum cut.

Net Flow of a Network

• The net flow across any cut is the same and equal to the flow of the network |f|.

Bounding the Network Flow

• The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Max-Flow Min-Cut Theorem

- If f is a flow in a flow network G=(V,E), with source s and sink t, then the following conditions are equivalent:
 - 1. f is a maximum flow in G.
 - 2. The residual network G_f contains no augmented paths.
 - 3. |f| = c(S,T) for some cut (S,T) (a min-cut).

Tells us that a flow is maximum if and only if its residual network contains no augmenting path

27

Basic Ford-Fulkerson Algorithm

```
FORD-FULKERSON(G, s, t)
    for each edge (u, v) \in E[G]
2
         do f[u, v] \leftarrow 0
3
             f[v,u] \leftarrow 0
4
   while there exists a path p from s to t in the residual network G_f
5
         do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}
6
             for each edge (u, v) in p
7
                  do f[u, v] \leftarrow f[u, v] + c_f(p)
8
                      f[v,u] \leftarrow -f[u,v]
```


Analysis

- If capacities are all integer, then each augmenting path raises |f| by ≥ 1.
- If max flow is f*, then need ≤ |f*| iterations → time is O(E|f*|).
- running time is **not polynomial** in input size. It depends on |f*|, which is not a function of |V| or |E|.
- If capacities are rational, can scale them to integers.
- If irrational, FORD-FULKERSON might never terminate!

35

When |f*| is large

- With time O ($E |f^*|$), the algorithm is **not** polynomial.
- Ford-Fulkerson may perform very badly if we are unlucky:

|f*|=2,000,000

Augmenting Path

Residual Network

37

Run Ford-Fulkerson on this example

Augmenting Path

Residual Network

Run Ford-Fulkerson on this example

- Repeat 999,999 more times...
- · Is better than this?

39

The Edmonds-Karp Algorithm

- A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.
- · Bound on FORD-FULKERSION can be improved
- Select the augmenting path using **breadth-first search** on residual network.
- The augmenting path p is the shortest path from s to t in the residual network (treating all edge has unit weight (distance).

```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in E[G]
2
         do f[u, v] \leftarrow 0
3
             f[v,u] \leftarrow 0
4
  while there exists a path p from s to t in the residual network G_f
5
         do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}
6
             for each edge (u, v) in p
7
                  do f[u, v] \leftarrow f[u, v] + c_f(p)
8
                      f[v,u] \leftarrow -f[u,v]
```

The Edmonds-Karp Algorithm - example

• The Edmonds-Karp algorithm halts in only 2 iterations on this graph.

41

Maximum Bipartite Matching Problem

An application of Max Flow

Bipartite Graph

- A bipartite graph is a graph G=(V,E) in which V can be divided into two parts L and R such that every edge in E is between a vertex in L and a vertex in R.
 - vertices in L represent skilled Peoples and vertices in R represent jobs.
 - Each person can do only some of the jobs.
 - An edge connects workers to jobs they can perform.

43

Bipartite Matching

- bipartite matching gives an assignment of machines to tasks.
- matching a set L of machines with a set R of tasks to be performed simultaneously
- Want to get as many tasks done as possible
- Needs maximum matching
 - one that contains as many edges as possible
 - Is this one is maximum matching ????

• A matching in a graph is a subset *M* of *E*, such that for all vertices *v* in *V*, at most one edge of *M* is incident on *v*.

45

Maximum Bipartite Matching

- A **maximum matching** is a matching of maximum cardinality (maximum number of edges).
- Given a bipartite graph G = (L ∪ R, E), find an S ⊆ L × R that is a matching and is as large as possible.
 - S is a perfect matching if every vertex is matched.

A Maximum Matching

- No matching of cardinality 4, because only one of v and u can be matched.
- In the workers-jobs example a max-matching provides work for as many people as possible.

47

Solving the Maximum Bipartite Matching Problem

- Reduce the maximum bipartite matching problem on graph **G** to the max-flow problem on a corresponding flow network **G**'.
- · Solve using Ford-Fulkerson method.

Corresponding Flow Network

- To form the corresponding flow network G' of the bipartite graph G:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.
 - Assign a capacity of 1 to all edges.
- Claim: max-flow in G' corresponds to a max-bipartite-matching on G.

Solving Bipartite Matching as Max Flow

Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$.

Let G' = (V', E') be its corresponding flow network.

If M is a matching in G,

then there is an integer-valued flow f in G' with value |f| = |M|.

Conversely if f is an integer-valued flow in G',

then there is a matching M in G with cardinality |M| = |f|.

Thus $\max |M| = \max(\text{integer } |f|)$

Integrality Theorem

- If the capacity function c takes on only integral values, then:
 - 1. The maximum flow f produced by the Ford-Fulkerson method has the property that |f| is integer-valued.
 - 2. For all vertices u and v the value f(u,v) of the flow is an integer.
- So max|M| = max |f|

