$$z^2 = w \ (\ w \in \mathbb{C}$$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$z^2 = w$ ($w \in \mathbb{C}$

▶ Start ▶ End

$z^2 = w \ (\ w \in \mathbb{C})$

$$\forall w \in \mathbb{C},$$

$z^2 = w \ (\ w \in \mathbb{C})$

▶ Start ▶ End

 $\forall w \in \mathbb{C}, \exists z$

$z^2 = w \ (\ w \in \mathbb{C})$

→ Start → End

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C}$$

$$z^2 = w \ (\ w \in \mathbb{C})$$

 $\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t.}$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

For every complex number w

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

For every complex number w , there exists

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

For every complex number w , there exists at least one complex number z

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
,

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$
 $a^2 - b^2 + 2abi = c + di$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$
 $a^2 - b^2 + 2abi = c + di$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$ $\begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases}$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$ $\begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases}$ $\begin{cases} b^2 = a^2 - c \end{cases}$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$ $\begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases}$ $\begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$(a + bi)^2 = c + di$$

$$a^2 - b^2 + 2abi = c + di$$

$$2ab = d$$

$$4a^2(a^2 - c) = d^2$$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$ $\begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases}$ $\begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$
 $4a^2(a^2 - c) = d^2$ $4a^4 - 4ca^2 - d^2 = 0$

$$z^2 = w \ (\ w \in \mathbb{C})$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$
 $(a + bi)^2 = c + di$ $\begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases}$ $\begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$
 $4a^2(a^2 - c) = d^2$ $4a^4 - 4ca^2 - d^2 = 0$ $a^2 = \frac{c \pm \sqrt{c^2 + d^2}}{2}$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$(a + bi)^2 = c + di \begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases} \begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$$

$$4a^2(a^2 - c) = d^2 \quad 4a^4 - 4ca^2 - d^2 = 0 \quad a^2 = \frac{c \pm \sqrt{c^2 + d^2}}{2}$$

$$\begin{cases} a = \pm \sqrt{\frac{c + \sqrt{c^2 + d^2}}{2}} \end{cases}$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$(a + bi)^2 = c + di \begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases} \begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$$

$$4a^2(a^2 - c) = d^2 \quad 4a^4 - 4ca^2 - d^2 = 0 \quad a^2 = \frac{c \pm \sqrt{c^2 + d^2}}{2}$$

$$\begin{cases} a = \pm \sqrt{\frac{c + \sqrt{c^2 + d^2}}{2}} \\ b = \pm sgn(d)\sqrt{\frac{-c + \sqrt{c^2 + d^2}}{2}} \end{cases}$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$(a + bi)^2 = c + di \begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases} \begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$$

$$4a^2(a^2 - c) = d^2 \quad 4a^4 - 4ca^2 - d^2 = 0 \quad a^2 = \frac{c \pm \sqrt{c^2 + d^2}}{2}$$

$$\begin{cases} a = \pm \sqrt{\frac{c + \sqrt{c^2 + d^2}}{2}} \\ b = \pm sgn(d)\sqrt{\frac{-c + \sqrt{c^2 + d^2}}{2}} \end{cases} sgn(d)$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$(a + bi)^2 = c + di \begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases} \begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$$

$$4a^2(a^2 - c) = d^2 \quad 4a^4 - 4ca^2 - d^2 = 0 \quad a^2 = \frac{c \pm \sqrt{c^2 + d^2}}{2}$$

$$\begin{cases} a = \pm \sqrt{\frac{c + \sqrt{c^2 + d^2}}{2}} \\ b = \pm sgn(d)\sqrt{\frac{-c + \sqrt{c^2 + d^2}}{2}} \end{cases} \quad sgn(d) = \begin{cases} -1 & \text{if } d < 0 \end{cases}$$

$$\forall w \in \mathbb{C}, \exists z \in \mathbb{C} \text{ s.t. } z^2 = w$$

Let
$$z = a + bi$$
, $w = c + di$ $(a, b, c, d \in \mathbb{R})$

$$(a + bi)^2 = c + di \begin{cases} a^2 - b^2 = c \\ 2ab = d \end{cases} \begin{cases} b^2 = a^2 - c \\ 4a^2b^2 = d^2 \end{cases}$$

$$4a^2(a^2 - c) = d^2 \quad 4a^4 - 4ca^2 - d^2 = 0 \quad a^2 = \frac{c \pm \sqrt{c^2 + d^2}}{2}$$

$$\begin{cases} a = \pm \sqrt{\frac{c + \sqrt{c^2 + d^2}}{2}} \\ b = \pm sgn(d)\sqrt{\frac{-c + \sqrt{c^2 + d^2}}{2}} \end{cases} \quad sgn(d) = \begin{cases} -1 & \text{if } d < 0 \\ 1 & \text{if } d \ge 0 \end{cases}$$

Github:

https://min7014.github.io/math20210128001.html

Click or paste URL into the URL search bar, and you can see a picture moving.