EMBEDDED SYSTEMS:

INTRODUCTION TO ARM® CORTEXTM-M MICROCONTROLLERS

Volume 1

Fourth Edition

Jonathan W. Valvano

Fourth *edition*May 2013

ARM and uVision are registered trademarks of ARM Limited.

Cortex and Keil are trademarks of ARM Limited.

Stellaris is a registered trademark Texas Instruments.

Code Composer Studio is a trademark of Texas Instruments.

All other product or service names mentioned herein are the trademarks of their respective owners.

In order to reduce costs, this college textbook has been self-published. For more information about my classes, my research, and my books, see http://users.ece.utexas.edu/~valvano/

For corrections and comments, please contact me at: valvano@mail.utexas.edu. Please cite this book as: J. W. Valvano, Embedded Systems: Introduction to ARM® CortexTM-M Microcontrollers, Volume 1, http://users.ece.utexas.edu/~valvano/, ISBN: 978-1477508992.

Copyright © 2013 Jonathan W. Valvano

All rights reserved. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, web distribution, information networks, or information storage and retrieval, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

ISBN-13: 978-1477508992 ISBN-10: 1477508996

Table of Contents

Preface to the Fourth Edition	ix
Preface	X
Acknowledgements	χi
1. Introduction to Computers and Electronics	1
1.1. Review of Electronics	2
1.2. Binary Information Implemented with MOS transistors	7
1.3. Digital Logic	
1.4. Digital Information stored in Memory	16
1.5. Numbers	17
1.6. Character information	29
1.7. Computer Architecture	
1.8. Flowcharts and Structured Programming	
1.9. Concurrent and Parallel Programming	
1.10. Exercises	
2. Introduction to Embedded Systems	47
2.1. Embedded Systems	48
2.2. Applications Involving Embedded Systems	50
2.3. Product Development Cycle	53
2.4. Successive Refinement	
2.5. Quality Design	60
2.5.1. Quantitative Performance Measurements	60
2.5.2. Qualitative Performance Measurements	61
2.5.3. Attitude	61
2.6. Debugging Theory	63
2.7. Switch and LED Interfaces	66
2.8. Introduction to C	69
2.9. Exercises	77
3. Introduction to the ARM® Cortex™-M Processor	7 9

3.1. Cortex™-M Architecture	80
3.1.1. Registers	80
3.1.2. Reset	82
3.1.3. Memory	82
3.1.4. Operating Modes	85
3.2. The Software Development Process	85
3.3. ARM® Cortex™-M Assembly Language	88
3.3.1. Syntax	88
3.3.2. Addressing Modes and Operands	90
3.3.3. Memory Access Instructions	95
3.3.4. Logical Operations	97
3.3.5. Shift Operations	99
3.3.6. Arithmetic Operations	101
3.3.7. Stack	118
3.3.8. Functions and Control Flow	120
3.3.9. Assembler Directives	122
3.3.10. First Example Project	123
3.4. Simplified Machine Language Execution	127
3.5. CISC versus RISC	131
3.6. Details Not Covered in this Book	132
3.7. Exercises	
4. Introduction to Input/Output	137
4.1. Stellaris® LM3S/TM4C I/O pins	138
4.1.1. LM3S811 I/O pins	139
4.1.2. LM3S1968 I/O pins	141
4.1.3. Stellaris® LM4F120/TM4C123 LaunchPad I/O pins	144
4.2. Basic Concepts of Input and Output Ports	148
4.2.1. I/O Programming and the Direction Register	150
4.2.2. Switch Inputs and LED Outputs	156
4.3. Phase-Lock-Loop	166

	4.4. SysTick Timer	170
	4.5. OLED Display Driver and the printf Function	175
	4.6. Debugging monitor using an LED	179
	4.7. Performance Debugging	179
	4.7.1. Instrumentation	179
	4.7.2. Measurement of Dynamic Efficiency	180
	4.8. Exercises	181
	4.9. Lab Assignments	183
5.	. Modular Programming	185
	5.1. C Keywords and Punctuation	186
	5.2. Modular Design using Abstraction	
	5.2.1. Definition and Goals	190
	5.2.2. Functions, Procedures, Methods, and Subroutines	192
	5.2.3. Dividing a Software Task into Modules	193
	5.2.4. How to Draw a Call Graph	196
	5.2.5. How to Draw a Data Flow Graph	198
	5.2.6. Top-down versus Bottom-up Design	199
	5.3. Making Decisions	200
	5.3.1. Conditional Branch Instructions	200
	5.3.2. Conditional if-then Statements	202
	5.3.3. switch Statements	207
	5.3.4. While Loops	209
	5.3.5. Do-while Loops	210
	5.3.6. For Loops	210
	5.4. *Assembly Macros	212
	5.5. *Recursion	214
	5.6. Writing Quality Software	218
	5.6.1. Assembly Language Style Guidelines	218
	5.6.2. Comments	223
	5.6.3. Inappropriate I/O and Portability	224

5.7. How Assemblers Work	225
5.8. Functional debugging	226
5.8.1. Stabilization	226
5.8.2. Single Stepping	227
5.8.3. Breakpoints without Filtering	227
5.8.4. Instrumentation: Print Statements	
5.9. Exercises	228
5.10. Lab Assignments	230
6. Pointers and Data Structures	231
6.1. Indexed Addressing and Pointers	232
6.2. Arrays	
6.3. Strings	240
6.4. Structures	242
6.5. Finite State Machines with Linked Structures	244
6.5.1. Abstraction	244
6.5.2. Moore Finite State Machines	245
6.5.3. Mealy Finite State Machines	250
6.6. *Dynamically Allocated Data Structures	252
6.6.1. *Fixed Block Memory Manager	253
6.6.2. *Linked List FIFO	254
6.7. *Matrices	257
6.8. *Tables	262
6.9. Functional Debugging	265
6.9.1. Instrumentation: Dump into Array without Filtering	265
6.9.2. Instrumentation: Dump into Array with Filtering	266
6.10. Exercises	
6.11. Lab Assignments	
7. Variables, Numbers, and Parameter Passing	271
7.1. Local versus global	272
7.2. Stack rules	274

7.4. Stack frames 7.5. Parameter Passing	
7.5.1. Parameter Passing in C	282 284 iables287
7.5.2. Parameter Passing in Assembly Language	284 iables287
	iables287
7.5.3. C Compiler Implementation of Local and Global Vari	
1 1	280
7.6. Fixed-point Numbers	
7.7. Conversions	293
7.8. LCD Interface with the HD44780 Controller	295
7.9. *IEEE Floating-point numbers	300
7.10. Exercises	305
7.11. Lab Assignments	308
8. Serial and Parallel Port Interfacing	309
8.1. General Introduction to Interfacing	310
8.2. Universal Asynchronous Receiver Transmitter (UART	
8.2.1. Asynchronous Communication	314
8.2.2. LM3S/TM4C UART Details	316
8.2.3. UART Device Driver	318
8.3. Synchronous Serial Interface, SSI	320
8.4. Scanned Keyboards	
8.5. Binary actuators	325
8.5.1. Interface	325
8.5.2. Electromagnetic and Solid State Relays	327
8.5.3. Solenoids	328
8.6. *Pulse-width modulation	329
8.7. *Stepper motors	
8.8. Exercises	
8.9. Lab Assignments	336
9. Interrupt Programming and Real-time Systems	337
9.1. I/O Synchronization	337

	9.2. Interrupt Concepts	342
	9.3. Interthread Communication and Synchronization	346
	9.4. NVIC on the ARM® Cortex™-M Processor	348
	9.5. Edge-triggered Interrupts	353
	9.6. SysTick Periodic Interrupts	360
	9.7. Timer Periodic Interrupts	362
	9.8. Hardware debugging tools	
	9.9. Profiling	367
	9.9.1 Profiling using a software dump to study execution pattern	367
	9.9.2. Profiling using an Output Port	368
	9.9.3. *Thread Profile	369
	9.10. Exercises	370
	9.11. Lab Assignments	372
1	0. Analog I/O Interfacing	373
	10.1. Approximating continuous signals in the digital domain	373
	10.2. Digital to Analog Conversion	375
	10.3. Music Generation	377
	10.4. Analog to Digital Conversion	381
	10.4.1. LM3S/TM4C ADC details	382
	10.4.2. ADC Resolution	385
	10.6. Real-time data acquisition	386
	10.7. Exercises	387
	10.8. Lab Assignments	389
1	1. Communication Systems	391
	11.1. Introduction	391
	11.2. Reentrant Programming and Critical Sections	
	11.3. Producer-Consumer using a FIFO Queue	399
	11.3.1. Basic Principles of the FIFO Queue	399
	11.3.2. FIFO Queue Analysis	405
	11.3.3. FIFO Queue Implementation	406

11.3.4. Double Buffer	409
11.4. Serial port interface using interrupt synchronization	410
11.5. *Distributed Systems	414
11.6. Exercises	417
11.7. Lab Assignments	419
Appendix 1. Glossary	420
Appendix 2. Solutions to Checkpoints	433
Appendix 3. How to Convert Projects from Keil to CCS	441
Appendix 4. Assembly Reference	443
Index	474
Reference Material	482

Preface to the Fourth Edition

There are many new features added to this fourth edition. This fourth edition now focuses on the LM4F120 and TM4C123, which are new ARM® CortexTM-M4 microcontrollers from Texas Instruments. The new development platform based on the LM4F120 and TM4C123 is called Stellaris LaunchPad. Material in this book on the TM4C also applies to the LM4F because Texas Instruments rebranded the LM4F series as TM4C (same chips new name), and rebranded StellarisWareTM as TivaWareTM. These new microcontrollers run at 80 MHz, include single-precision floating point, have two 12-bit ADCs, and support DMA and USB. A wonderful feature of these new boards is their low cost. As of May 2013, the boards are available on TI.com as part numbers EK-LM4F120XL or EK-TM4C123GXL for \$12.99. They are also available from \$13 to \$20 at regular electronics retailers like arrow.com, newark.com, mouser.com and digikey.com. The book can be used with either a LM3S or TM4C microcontroller. Although the book focuses on the M4, the concepts apply to the M3, and the web site associated with this book has example projects based on the LM3S811, LM3S1968, and LM3S8962. Additional material on C programming, floating point, and debugging were added in the fourth edition.

(see Section 6.5.2)