(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出順公開番号 特開2002-304331

(43)公開日 平成14年10月18日(2002.10.18)

(P2002-304331A)

(51) Int.Cl.7		徽別記号	FΙ		デ	-73-1*(参考)
G06F	13/00	301	G06F	13/00	301Q	5 B 0 1 4
	3/06	305		3/06	305K	5B065
	13/10	3 4 0		13/10	340A	5 B O 8 3

審査請求 有 請求項の数8 OL (全 7 頁)

(21)出願番号	特願2001-106927(P2001-106927)	(71)出額人	000004237
			日本電気株式会社
(22) 出願日	平成13年4月5日(2001.4.5)		東京都港区芝五丁目7番1号
		(72)発明者	三木 健一
			東京都港区芝五丁目7番1号 日本電気株
			式会社内
		(74)代理人	
		(I-D) QEA	弁理士 高橋 勇
			开理工 間報 另

最終頁に続く

(54) 【発明の名称】 冗長パス制御装置及び方法

(57)【要約】

【課題】 リザーブされた論理ディスクに対しても、代替パスを用いてアクセスする。

【解決手段】 パス冗長化ドライパ3は、論理ディスク 1 3が他のインンエータ5によってリザープされている ためにリトライ処理が異常終了した場合は、代替パスの イニシエータ6から強制リザーブコマンドが発行さる。 コントローラ12は、強制リザーブコマンドが発行され ると、代替パスのイニシエータ6によるリザーブ状態に 論理ディスク13を設定し値す。

【特許請求の範囲】

【請求項1】 1/0アクセスパスに隨害が発生した場 合に、イニシエータを含む代替パスを用いて論理ディス クに対してリトライ処理を行う冗長パス制御装置におい

1

前記論理ディスクが他のイニシエータによってリザーブ されているために前記リトライ処理が異常終了した場合 は、前記代替パスのイニシエータによるリザーブ状態に 前記論理ディスクを設定し直す冗長パス制御手段、

を備えたことを特徴とする冗長パス制御装置。

【請求項2】 前記冗長パス制御手段は、

前記論理ディスクが他のイニシエータによってリザーブ されているために前記リトライ処理が異常終了した場合 は、前記代替パスのイニシエータから強制リザープコマ ンドを発行する第一の制御手段と、

前記強制リザープコマンドが発行されると、前記代替パ スのイニシエータによるリザーブ状態に前記論理ディス クを設定し直す第二の制御手段と、

を備えた詰求項1記載の冗長パス制御装置。

クアレイ装置を構成している、

請求項1又は2記載の冗長パス制御装置。

【請求項4】 前記イニシエータがHBA(Host Bus Adapter) である、

請求項1、2又は3記載の冗長パス制御装置。

【請求項5】 1/0アクセスパスに障害が発生した場 合に、イニシエータを含む代替パスを用いて論理ディス クに対してリトライ処理を行う冗長パス制御方法におい て、

されているために前記リトライ処理が異常終了した場合 は、前記代替パスのイニシエータによるリザーブ状態に 前記論理ディスクを設定し直す冗長パス制御ステップ、 を備えたことを特徴とする冗長パス制御方法。

【請求項6】 前記冗長パス制御ステップは、 前記論理ディスクが他のイニシエータによってリザーブ

されているために前記リトライ処理が異常終了した場合 は、前記代替パスのイニシエータから強制リザープコマ ンドを発行する第一の制御ステップと、

前記強制リザープコマンドが発行されると、前記代替パ 40 スのイニシエータによるリザーブ状能に前記論理ディス クを設定し直す第二の制御ステップと、

を備えた請求項5記載の冗長パス制御方法。

【請求項7】 前記論理ディスクが複数集まってディス クアレイ装置を構成している、

請求項5又は6記載の冗長パス制御方法。

【請求項8】前記イニシエータがHBA(Host B us Adapter) である、

請求項5、6又は7記載の冗長パス制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、1/0アクセスパ スに隨害が発生した場合に、イニシエータを含む代替パ スを用いて論理ディスクに対してリトライ処理を行う、 冗長パス制御装置及び方法に関する。

[0002]

【従来の技術】パス冗長化ドライパ3'は、1/0アク セスパスの構成要素すなわちHBA(Host Bus Adapter) 5、6、インタフェースケーブル3

10 1、32、コントローラ11'、12'等における障害 (故障) が発生した場合においても、ホストコンピュー タ1上で動作するアプリケーション7の運用に影響を与 えないために、代替パスにてリトライ処理を行う手段を 提供するものである。すなわち、冗長化されたディスク アレイ装置10とホストコンピュータ1上で動作するソ フトウェア (パス冗長化ドライバ3') とにより、論理 ディスク13~15に対するI/Oパスの冗長性を実現 することができる。

【0003】また、ホストコンピュータ1上で動作する 【請求項3】 前記論理ディスクが複数集まってディス 20 アプリケーション7が使用する任意の論理ディスク13 ~15に対し、図示しない他のアプリケーション又は他 のホストコンピュータからアクセスができないように占 有(リザーブ)する場合がある。一般的に、この占有状 態は、以前占有を行ったイニシエータ(ここではHBA が該当) からの解除コマンドによって解除されるか、又 はHW (ハードウェア) によるリセットによって強制的 に解除される。

[0004]

【発明が解決しようとする課題】ここで例えば、ホスト 前記論理ディスクが他のイニシエータによってリザーブ 30 コンピュータ1上で動作するアプリケーション7が、H BA5、インタフェースケーブル31及びコントローラ 11 経由で論理ディスク13を占有しつつ使用してい る場合を考えると、次のような問題点が発生する。

【0005】第一の問題点は、次のような場合に、パス 冗長化ドライバ3'の機能が意味をなさなくなることで ある。パス冗長化ドライバ3'は、ホストコンピュータ 1上で動作するアプリケーション7が論理ディスク13 に対するI/O要求を行った実行結果をドライバ4から 受け取り、正常終了又は異常終了の判断を行う。このと き、異常終了と判断し、更にその原因がパスの構成要素 (HBA5、インタフェースケーブル31又はコントロ ーラ11') における障害(故障)であると判断したと する。その結果、代替パスを用いて、すなわち論理ディ スク13に対しHBA6、インタフェースケーブル32 及びコントローラ12'経由で、異常終了した1/0の リトライ処理を試みる。しかし、論理ディスク13は他 のイニシエータ(HBA5)により占有状態にあるた め、読み出し/書き込み等ができなく、結果としてアプ リケーション7のI/O要求は異常終了することとな

50 る。したがって、パス冗長化ドライバ3 は所期の目的

を果たすことができない。

【0006】第二の問題点は、HWにより強制的にリセ ットを行い占有状態を解除した場合、コントローラ1 1', 12'が初期化されることによりホストコンピュ -タ1側から受け取った処理中の一つ又は複数のI/O 要求がすべて破棄されてしまうため、ホストコンピュー タ1側で余計なリトライ処理が発生することである。ま た、パス (ホストインタフェース) をリセットした場合 は、パスに接続されている全てのデバイス(単体デバイ ス20、21) も初期化されることとなるため、ホスト 10 コンピュータ1側に更に多くの負担(リトライ処理)を かけることである。

3

【0007】また、論理ディスク13~15上のデータ 整合性の保護を目的として、ホストコンピュータ1が任 意の論理ディスク13~15を占有している場合を考え ると、次のような問題点が発生する。

【0.008】第三の問題点は、あるホストコンピュータ から実施した論理ディスクに対する占有状態を一時的に 解除状態にすることは、まったく意図しないホストコン ピュータからのアクセスを許すこととなるので、論理デ 20 ィスク内のデータを破壊する恐れがあることである。

[00009]

【発明の目的】そこで、本発明の目的は、既にリザーブ されている論理ディスクに対しても、代替パスを用いて アクセスできるようにした、冗長パス制御装置及び方法 を提供することにある。

[0.01.0]

【課題を解決するための手段】本発明に係る冗長パス制 御装置(又は冗長パス制御方法)は、1/0アクセスパ スに障害が発生した場合に、イニシエータを含む代替パ 30 理ディスク13~15のいずれかに対する I/Oの実行 スを用いて論理ディスクに対してリトライ処理を行うも のであり、論理ディスクが他のイニシエータによってリ ザーブされているためにリトライ処理が異常終了した場 合は、代替パスのイニシエータによるリザーブ状態に論 理ディスクを設定し直す冗長パス制御手段(又は冗長パ ス制御ステップ)を備えている(請求項1,5)。

【0011】論理ディスクに対して代替パスを用いてリ トライ処理を実行したところ、その論理ディスクが既に 他のイニシエータによってリザーブされていたため、リ トライ処理が異常終了したとする。すると、冗長パス制 40 御手段(又は冗長パス制御ステップ)は、その論理ディ スクを、代替パスのイニシエータによるリザーブ状態に 設定し直す。これにより、その論理ディスクに対して、 代替パスを用いてアクセスできるようになる。

【0012】また、冗長パス制御手段(又は冗長パス制 御ステップ) は、論理ディスクが他のイニシエータによ ってリザープされているためにリトライ処理が異常終了 した場合は、代替パスのイニシエータから強制リザーブ コマンドを発行する第一の制御手段(又は第一の制御ス 替パスのイニシエータによるリザーブ状能に論理ディス クを設定し直す第二の制御手段(又は第二の制御ステッ プ)とを備えた、としてもよい(詰求項2.6)。

【0013】更に、論理ディスクが複数集まってディス クアレイ装置を構成している(請求項3,7)、又はイ ニシエータがHBAである(請求項4,8)、としても LU.

[0014]

【発明の実施の形態】以下、本発明に係る冗長パス制御 装置の実施形態を、図面に基づき説明する。なお、本発 明に係る冗長パス制御方法は、本発明に係る冗長パス制 御装置で使用されるものである。したがって、本実施形 態を説明することにより、本発明に係る冗長パス制御方 法の一実施形態も説明したことにする。

【0015】図1は、本発明に係る冗長パス制御装置の 一実施形態を示すプロック図である。以下、この図面に 基づき説明する。なお、特許請求の範囲における第一の 手段及び第二の手段は、それぞれ本実施形態におけるパ ス冗長化ドライバ及びコントローラに相当する。

【0016】ホストコンピュータ1のHBA5.6は、 それぞれインタフェースケーブル31,32を介してデ ィスクアレイ装置10のコントローラ11.12に接続 されている。ホストコンピュータ1は、ディスクアレイ 装置10内の論理ディスク13~15に対するI/Oを 実行する。ドライバ4は、HBA5、6を制御し1/0 処理を行う。

【0017】パス冗長化ドライバ3は、次のような動作 をする。ファイルシステム2から受け取った I/Oを、 ドライバ4に引き渡す。ディスクアレイ装置10内の論 結果を、HBA5、6を介してドライバ4から受け取 り、正常終了又は異常終了の判断を行う。異常終了の原 因がパスの構成要素(HBA5.6、インタフェースケ ープル31,32、コントローラ11,12等) におけ る障害(故障)と判断した場合は、代替パスを用いて、 異常終了したI/Oのリトライ処理を行う。

【0018】ディスクアレイ装置10のコントローラ1 1. 12は、それぞれ内部パス16. 17を介して各論 理ディスク13~15に接続されている。 コントローラ 11.12のいずれからも、各論理ディスク13~15 に対してアクセスすることができる。

【0019】例えば、パス冗長化ドライバ3は、論理デ ィスク13が他のイニシエータ5によってリザープされ ているためにリトライ処理が異常終了した場合は、代替 パスのイニシエータ6から強制リザープコマンドを発行 する。コントローラ12は、強制リザープコマンドが発 行されると、代替パスのイニシエータ6によるリザーブ 状態に論理ディスク13を設定し直す。

【0020】図2は、ホストコンピュータ1から受け取 テップ)と、強制リザーブコマンドが発行されると、代 50 った I / Qコマンド処理過程の一部を示したフローであ

(3)

り、これらの処理はディスクアレイ装置10のコントロ ーラ11、12により実行される。図3は、ドライバ4 から受け取った I / Oの実行結果に対し、正常終了又は 異常終了の判断を行い、異常終了の原因がパスの構成要 素(HBA5, 6、インタフェースケーブル31, 3 2、コントローラ11、12等) における障害(故障) と判断した場合は、代替パスを用いて、異常終了したⅠ / 0のリトライ処理をする過程の一部を示したフローで あり、これらの処理はパス冗長化ドライバ3により実施 される。以下、図1乃至図3に基づき、本実施形態の冗 10 レイ装置10にて強制リザープ手段を設ける。 長パス制御装置の動作を説明する。

【0021】ホストコンピュータ1上で動作するアプリ ケーション7によってディスクアレイ装置10に書き込 まれるデータ (ライト1/0) は、アプリケーション 7、ファイルシステム2、パス冗長化ドライバ3、ドラ イバ4、HBA5、インタフェースケーブル31を介し てコントローラ11に至り、指定された論理ディスク1 3~15のいずれかに書き込まれる。

【0022】ホストコンピュータ1上で動作するアプリ ケーション7によってディスクアレイ装置10から読み 20 12)。 出されるデータ(リードI/O)は、指定された論理デ ィスク $1.3 \sim 1.5$ のいずれかより、コントローラ1.1、 インタフェースケーブル31を介してHBA5に至り、 ドライパ4、パス冗長化ドライパ3、ファイルシステム 2を経てアプリケーション7に至る。

【0023】また、ホストコンピュータ1による各1/ Oの実行結果については、HBA5、ドライバ4、ファ イルシステム2及びアプリケーション7の各レイヤによ って判断が行われ、必要に広じて何らかの処置が行われ るのが一般的である。ここで、パス冗長化ドライバ3 は、ドライバ4から受け取った 1/0の実行結果につい て正常終了又は異常終了の判断を行い、異常終了の原因 がパスの構成要素(HBA、インタフェースケーブル、 コントローラ等) における隨害(故障) と判断した場合 は、代替パスを用いて、異常終了した1/0のリトライ 処理を行う。

【0024】次に、アプリケーション7が論理ディスク 13をリザーブした状態について説明する。

【0025】リザープコマンドとは、特定のイニシエー タ (HBA) が指定した論理ディスクを排他的に占有す 40 リアし (S109)、終了処理へ移行する (S11 るためのコマンドである。例えば、HBA5からコント ローラ11経由で論理ディスク13を指定してリザーブ が行われている場合、HBA5からコントローラ11経 由による論理ディスク13に対するI/O(リード又は ライト)は、障害などの問題のない限り正常終了する。 しかし、HBA6からコントローラ12経由で論理ディ スク13に対して発行された1/0(リード又はライ ト) は、「Reservation Conflic † 」というエラーメッセージと共に異常終了する。 【0026】これらのことからわかるように、リザーブ 50 ローラ等)における障害(故障)と判断した場合は、代

コマンドによって占有された論理ディスク13に対する I/Oに対し、パス冗長化ドライバ3は、その機能をう まく働かせることができない。

【0027】この問題を解決するための方法を図2及び 図3のフローを用いて説明する。

【0028】図2は、ディスクアレイ装置10のコント ローラ11.12により実施され、ホストコンピュータ 1から受け取った 1/0コマンド処理過程の一部を示し たフローである。本問題を解決するために、ディスクア

【0029】まず、ホストコンピュータ1から受け取っ たコマンドが、まず正しく実行できるものであるか否か を判断する(S101)。正しく実行することができな いコマンドであれば、異常終了処理へ移行する(S11 正しく実行可能なコマンドであれば、それが既存 のコマンドであるか、又は新たに設けた強制リザーブコ マンドであるかを判断する(S102)。 強制リザーブ コマンドであればフラグをクリアし(S103)、そう でなければ既存コマンドデコード処理へ移行する(S1

【0030】続いて、指定された論理ディスクが既にリ ザープされているか否かを判断する(S104)。リザ ープされていなければ、強制リザープコマンドを発行し たイニシエータによるリザーブ状態に設定する(S10 7)。既にリザープされている場合は、そのリザーブが 強制リザープコマンドを発行したイニシエータとは別の イニシエータによるリザープであるかを判断する(S1) 05)。強制リザープコマンドを発行したイニシエータ からのリザープであれば、終了処理へ移行する(S11 30 3)。強制リザープコマンドを発行したイニシエータと は別のイニシエータによるリザープであった場合は、フ

 $(S107)_{\circ}$ 【0031】続いて、フラグの確認を行ない(S10 8)、フラグがセットされていなければ、終了処理へ移 行する(S110)。フラグがセットされている場合 は、他のイニシエータからリザープされているため、そ のリザーブ状態を解除するとともに使用したフラグをク

ラグをセットし(S106)、強制リザープコマンドを 発行したイニシエータによるリザーブ状態に設定する

【0032】図3は、パス冗長化ドライバ3により実施 され、代替パスによるリトライ処理過程の一部を示した フローである。

【0033】まず、パス冗長化ドライバ3は、ディスク アレイ装置10内の論理ディスク1~15に対する1/ 〇の実行結果をドライバ4から受け取り、正常終了又は 異常終了の判断を行う。そして、異常終了の原因がパス の構成要素(HBA、インタフェースケーブル、コント

替パスを用いて、異常終了した I/Oのリトライ処理を 行う(\$201)。続いて、リトライ結果を判断し(\$ 202) 、異常がなければ正常終了処理(S209)へ 移行する。

【0034】異常があれば、異常の原因が他のイニシエ ータによってリザーブされた論理ディスクによるもので あるか否かを判断する(S203)。他に紀因する異常 の場合は、異常終了処理へ移行する(S210)。一 方、異常の原因が他のイニシエータによってリザーブさ 対して強制リザープコマンドを実施する(S204)。 【0035】続いて、その結果の判断を行なう(S20 5)。強制リザープコマンドが正常終了でなければ、異 常終了処理へ移行する(S211)。強制リザープコマ ンドが正常終了であれば、論理ディスクに対する占有が 本イニシエータに変更されているため、ステップ202 にて異常終了となった I / Oを同一パスにて再度リトラ イを実施する(S206)。続いて、ステップ206の 結果を判断し(S207)、リトライが成功した場合は 正常終了処理へ移行し(S208)、失敗であれば異常 20 謎できる。 終了処理へ移行する(S212)。 【0036】以上により、リザーブされた論理ディスク

に対するI/Oパス冗長化システムを実現する。 【0037】なお、本発明は、言うまでもなく、上記実

施形態に限定されるものではない。例えば、次のような 実施の形態を採り得る。

【0038】 HBA5、6の数は、OSの種類、ドライ バ4、又はホストコンピュータ1等のHWによって制限 され、パス冗長化ドライバ3に対して制限はない。コン トローラ11,12の数、及びインタフェースケーブル 30 【符号の説明】 31. 32を介して各コントローラ11. 12とホスト コンピュータ1等を接続するためのポート数に制限はな い。HBA5、6とコントローラ11、12とを直接イ ンタフェースケーブル31,32で接続したものを例示 したが、これらの途中にハプ又はスイッチ等が介在して もかまわない。

【0039】ホストコンピュータ1に接続されるディス クアレイ装置10の数に制限はない。ディスクアレイ装 置10に接続されるホストコンピュータ1の数に制限は ない。ディスクアレイ装置10内の論理ディスク13~ 40 13~15 論理ディスク 1 4 の数に制限はない。本発明はディスクアレイ装置 1 0のみに限定されるものではない。

[0040]

【発明の効果】本発明に係る冗長パス制御装置及び方法 によれば、論理ディスクが他のイニシエータによって既 にリザーブされているためにリトライ処理が異常終了し た場合に、代替パスのイニシエータによるリザーブ状態 に当該論理ディスクを設定し直すことにより、当該論理 ディスクに対して代替パスを用いてアクセスすることが できる。換言すると、パスの構成要素(HBA、インタ フェースケーブル、コントローラ等) における障害(故 障) 時に、論理ディスクを占有して使用するアプリケー 響を与えることのないよう代替パスでのリトライが可能

れた論理ディスクによるものである場合は、同一パスに 10 ションが存在する場合も、アプリケーションの運用に影 となる。

【0041】また、HWによるリセットによって強制的 に占有の解除を行わないため、ホストコンピュータ側へ の余計なリトライ処理の発生を抑止できる。

【0042】更に、論理ディスクに対する占有状態を一 時的にでも解除状態にしないことにより、全く意図しな いホストコンピュータからのアクセスを許す契機を与え ないので、論理ディスク内のデータを破壊する危険を回

【図面の簡単な説明】

【図1】本発明に係る冗長パス制御装置の一実施形態を 示すプロック図である。

【図2】図1の冗長パス制御装置におけるコントローラ の動作の一例を示すフローチャートである。

【図3】図1の冗長パス制御装置におけるパス冗長化ド ライバの動作の一例を示すフローチャートである。 【図4】従来の冗長パス制御装置示すブロック図であ Z.

1 ホストコンピュータ

2 ファイルシステム 3 パス冗長化ドライバ

4 ドライバ

5. 6 HBA

7 アプリケーション

30~33 インタフェースケープル

10 ディスクアレイ装置 11.12 コントローラ

16.17 内部パス

20.21 単体デバイス

フロントページの続き

F ターム(参考) 58014 EB04 FA04 GA15 GD22 GD32 HA11 58065 BA01 CA30 EA05 EA12 58083 AA05 BB03 CC01 CD06 EE08 EF14