CMP418: Algorithm and Complexity Analysis (3 units)

Lecture 5: Divide and Conquer

MR. M. YUSUF

2

Outline

- Mergesort
- ► Master Theorem
- Quicksort
- ► Hoare Partition
- ► Binary Tree Traversals Related Properties
 - ► Binary Tree Traversal

What is Divide and Conquer (DnC)?

- ▶ DnC is probably the best-known general algorithm design technique.
- ► Thus, not every DnC algorithm is necessarily more efficient than even a brute-force solution.
- ► The time spent on executing the DnC plan turns out to be significantly smaller than solving a problem by a different method.
- DnC yields some of the most important and efficient algorithms in computer science.
- ▶ DnC ideally suited for parallel computations, in which each subproblem can be solved simultaneously by its own processor.

4

How Divide and Conquer Techniques Works

- A problem is divided into several subproblems of the same type, ideally of about equal size.
- The subproblems are solved (typically recursively, though sometimes a different algorithm is employed, especially when subproblems become small enough).
- If necessary, the solutions to the subproblems are combined to get a solution to the original problem.

A Typical Case of Divide-and-conquer technique

Case Study to Add n Numbers

Is it more efficient than brute force?

Let's see with an example

Bad! not all divide and conquer works!!

of additions is same as in brute force, needs stack for recursion...

8

Using Divide-and-Conquer Recurrence Relation

- ▶ Usually in DnC a problem instance of size n is divided into two instances of size n/2
- More generally, an instance of size n can be divided into b instances of size $\frac{n}{b}$, with a of them needing to be solved
- ▶ Assuming that n is a power of b (n = b^m), we get

This the general DnC recurrence Relation

This the general DnC recurrence Relation

- Here, f(n) accounts for the time spent in dividing an instance of size n into subproblems of size $\frac{n}{h}$ and combining their solution
- For adding n numbers, a = b = 2 and f(n) = 1

9

Outline

- ➤ Mergesort
- ► Master Theorem
- ➤ Quicksort
- ► Hoare Partition
- ► Binary Tree Traversals Related Properties
 - ► Binary Tree Traversal

Master Theorem

$$T(n) = aT(\frac{n}{b}) + f(n), a \ge 1, b > 1$$
If $f(n) \in \Theta(n^d)$ where $d \ge 0$ then

For adding n numbers with divide and conquer technique, the number of additions A(n) is:

$$A(n) = 2A(n/2)+1$$

Here,
$$a = ?$$
, $b = ?$, $d = ?$ $a = 2$, $b = 2$, $d = 0$

Which of the 3 cases holds?
$$a = 2 > b^d = 2^0$$
, case 3

So, A(n)
$$\in \Theta(n^{\log_2 2})$$

Or, A(n) $\in \Theta(n)$

Master Theorem: Example

```
T(n) = aT(n/b)+f(n), a \ge 1, b > 1
If f(n) \in \Theta(n^d) where d \ge 0, then
T(n) = 2T(n/2) + 6n - 1?
                                                         a = 3, b = 2, f(n) ∈ Θ(n^1), so d = 1
             T(n) = 3 T(n/2) + n
                                                         Case 3: I(n) \in \Theta(n^{\log_2 3}) = \Theta(n^{1.5850})
                   a=3 > b^d=2^1
             T(n) = 3 T(n/2) + n^2
                                                         a = 3, b = 2, f(n) \in \Theta(n^2), so d = 2
                  a=3 < b^d=2^2
                                                         Case 1: T(n) \in \Theta(n^2)
             T(n) = 4 T(n/2) + n^2
                                                         a = 4, b = 2, f(n) \in \Theta(n^2), so d = 2
                   a=4 = b^d=2^2
                                                         Case 2: T(n) \in \Theta(n^2 \lg n)
```

T(n) = 0.5 T(n/2) + T/n T(n) = 2 T(n/2) + n/lgn $T(n) = 64 T(n/8) - n^2 lgn$ $T(n) = 2^n T(n/8) + n$ $T(n) = 2^n T(n/8) +$

12

First Snippet of Mergesort Algorithm

```
ALGORITHM Mergesort(A[0..n-1])

//sorts array A[0..n-1] by recursive mergesort

//Input: A[0..n-1] to be sorted

//Output: Sorted A[0..n-1]

if n > 1

copy A[0..[n/2]-1] to B[0.. [n/2]-1]

copy A[[n/2]..n-1] to C[0..[n/2]-1]

Mergesort(B[0..[n/2]-1])

Mergesort(C[0..[n/2]-1])

Merge(B, C, A)
```


3

Second Snippet of Mergesort Algorithm

```
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p-1] and C[0..q-1] both sorted
//Output: Sorted array A[0..p+q-1] of elements of B and C
i <- 0; j <- 0; k <- 0;
while i < p and j < q do
    if B[i] ≤ C[i]
         A[k] <- B[i]; i <- i+1
    else
         A[k] \leftarrow C[i]; i \leftarrow i+1
    k < -k+1
if i = p
    copy C[i..q-1] to A[k..p+q-1]
else
    copy B[i..p-1] to A[k..p+q-1]
```

Mergesort Algorithm Comparison...

```
ALGORITHM Mergesort(A[0..n-1])
//sorts array A[0..n-1] by recursive
mergesort
//Input: A[0..n-1] to be sorted
//Output: Sorted A[0..n-1]
if n > a
    copy A[0..\lfloor n/2 \rfloor-1] to B[0..\lfloor n/2 \rfloor-1]
    copy A[\lfloor n/2 \rfloor..n-1] to C[0..[n/2 \rfloor-1]
    Mergesort(B[0..\lfloor n/2 \rfloor-1])
    Mergesort(C[0..[n/2]-1])
    Merge(B, C, A)
```

```
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p-1] and C[0..q-1] both sorted //Output: Sorted array A[0..p+q-1] of elements of B
//and C
i <-0; i <-0; k <-0;
while i < p and j < q do
     if B[i] \leq C[j]
           A[k] \leftarrow B[i]; i \leftarrow i+1
     else
           A[k] <- C[i]; i <- i+1
     k < -k+1
if i = p
     copy C[i..q-1] to A[k..p+q-1]
else
     copy B[i..p-1] to A[k..p+q-1]
```

Merge Sort Algorithm: Example

Summary of Mergesort Algorithm

- ▶ Worst-case of Mergesort is ⊕(nlogn)
- ► Average-case is also ⊕(nlogn)
- ▶ It is stable but quicksort and heapsort are not
- Possible improvements
 - ▶ Implement bottom-up. Merge pairs of elements, merge the sorted pairs, so on... (does not require recursion-stack anymore)
 - ► Could divide into more than two parts, particularly useful for sorting large files that cannot be loaded into main memory at once: this version is called "multiway mergesort"
- ▶ Not in-place, needs linear amount of extra memory
 - ▶ Though we could make it in-place, adds a bit more "complexity" to the algorithm 1/14/2020

Exercise

Attempt question 1, 2 and 6 of exercise 5.1 on page 174

M. Yusuf 4/14/2020

Outline

- ➤ Mergesort
- Master Theorem
- **▶** Quicksort
- ► Hoare Partition
- ► Binary Tree Traversals Related Properties
 - ► Binary Tree Traversal

Quicksort Algorithm

- ► A divide and conquer based sorting algorithm, discovered by **C. A. R.**Hoare (British) in 1960 while trying to sort words for a machine translation project from Russian to English
- ▶ Instead of "Merge" in Mergesort, Quicksort uses the idea of partitioning which we already have seen with "Lomuto Partition"
- ▶ In Mergesort all work is in combining the partial solutions.
- In Quicksort all work is in dividing the problem, Combining does not require much work!

How to Quicksort

M. Yusuf 4/14/2020

Quicksort Algorithm...

- As a partition algorithm we could use "Lomuto Partition"
- But we shall use the more sophisticated "Hoare Partition" instead

```
ALGORITHM Quicksort(A[l..r])
//Sorts a subarray by quicksort
//Input: Subarray of A[0..n-1] defined by its
//left and right indices I and r
//Output: Subarray A[I..r] sorted in
nondecreasing
//order
if | < r
   s <- Partition(A[l..r]) // s is a split position
   Quicksort(A[l..s-1])
   Quicksort(A[s+1]..r)
```

We can replace the partition part with any partitioning algorithm like Lomuto Partition or Hoare Partition

22

Outline

- Mergesort
- Master Theorem
- Quicksort
- **▶** Hoare Partition
- ► Binary Tree Traversals Related Properties
 - ► Binary Tree Traversal

Quicksort Algorithm: Hoare Partitioning

- When using "Hoare Partition"
- We start by selecting a "pivot"
- There are various strategies to select the pivot,
- we shall use the simplest:
- we shall select pivot, p =A[I], the first element of A[I..r]

```
ALGORITHM HoarePartition(A[I..r])
//Output: the split position
p <- A[I]
i <- |; | <- r+1
repeat
    repeat i < -i+1 until A[i] \ge p
    repeat | < - | - | until A[j] \le p
    swap( A[i], A[j] )
until i ≥ j
swap(A[i], A[j]) // undo last swap when i≥j
swap( A[I], A[i] )
return i
```

How to Sort with Quicksort Algorithm

If A[i] < p, we continue incrementing i, stop when A[i] \geq p If A[j] > p, we continue decrementing j, stop when A[j] \leq p

Quicksort Example

If A[j] > p, we continue decrementing j, stop when A[j] ≤ p

25

If A[i] < p, we continue incrementing i, stop when A[i] ≥ p

 1
 2
 3
 4
 5
 8
 9
 7

 1
 2
 3
 4
 5
 8
 7
 9

 1
 2
 3
 4
 5
 7
 8
 9

 1
 2
 3
 4
 5
 7
 8
 9

 1
 2
 3
 4
 5
 7
 8
 9

When ever j and j crosses each other, we swap pivot element with element at j

4/14/2020

Quicksort Algorithm...

```
ALGORITHM Quicksort(A[l..r])
if I < r
    s <- HoarePartition ( A[l..r] )
    Quicksort( A[l..s-1] )
    Quicksort( A[s+1]..r )</pre>
```

```
ALGORITHM HoarePartition(A[l..r])
//Output: the split position
p <- A[I]
i <- |; i <- r+1
repeat
    repeat i < -i+1 until A[i] \ge p
    repeat j <- j-1 until A[j] \le p
    swap( A[i], A[j] )
until i ≥ j
swap(A[i], A[j]) // undo last swap when i≥j
swap( A[I], A[i] )
return j
```

Quicksort Operation

- (a) Array's transformations with pivots shown in bold.
- (b) Tree of recursive calls to Quicksort with input values I and r of subarray bounds and split position s of a partition obtained.

Solving Quicksort with Master Theorem

$$T(n) = \alpha T(n/b) + f(n), \alpha \ge 1, b > 1$$

If $f(n) \in n^d$ with $d \ge 0$, then


```
ALGORITHM Quicksort(A[l..r])

if I < r

s <- Partition( A[l..r] )

Quicksort( A[l..s-1] )

Quicksort( A[s+1]..r )
```

$$C_{worst}(n) = (n+1) + (n-1+1) + ... + (2+1) = (n+1) + ... + 3$$

= $(n+1) + ... + 3 + 2 + 1 - (2+1) = \sum_{1}^{n+1} i - 3$
= $\frac{(n+1)(n+2)}{2} - 3 \in \Theta(n^2)$!

So, Quicksort's fate depends on its average-case!

How can we Improve the Performance of Quicksort Algorithm

- ▶ Recall that for Quicksort, C_{best}(n) ≈ nlgn
- Quicksort is usually faster than Mergesort or Heapsort on randomly ordered arrays of nontrivial sizes
- Some possible improvements
 - ▶ Randomized quicksort: selects a random element as pivot
 - ▶ Median-of-three: selects median of left-most, middle, and right-most elements as pivot
 - ▶ Switching to insertion sort on very small subarrays, or not sorting small subarrays at all and finish the algorithm with insertion sort applied to the entire nearly sorted array
 - ▶ Modify partitioning: three-way partition
 - ▶ These improvements can speed up by 20% to 30%
- Weaknesses Not Stable

M. Yusuf 4/14/2020

Exercise

- 1. Attempt question 1, of exercise 5.2 on page 181
- 2. Given that $T(n) = 2T(\frac{n}{2}) + 1$, T(1) = 1, Derive the complexity class of the algorithm
- 3. Use master theorem to compute the following
 - a) $T(n) = 9T(\frac{n}{2}) + 1$,
 - b) $T(n) = 3T(\frac{n}{9}) + n^3$,
 - c) $T(n) = 4T(\frac{n}{2}) + n^2$,

M. Yusuf

31

Outline

- Mergesort
- Master Theorem
- Quicksort
- ► Hoare Partition
- ▶ Binary Tree Traversals Related Properties
 - ► Binary Tree Traversal

Binary Tree Traversals and Related Properties

- We discuss how the divide-and-conquer technique can be applied to binary trees.
- ▶ A **binary tree T** is defined as a finite set of nodes that is either empty or consists of a **root** and **two disjoint** binary trees T_L and T_R called, respectively, the left and right subtree of the root.

M. Yusuf

Binary Search Tree

```
ALGORITHM Height(T)
//Compute recursively the height of a binary tree
//Input: A binary tree T
//Output: The height of tree T

If T = 0
    return -1
else
    return max{height(T<sub>left</sub>), Height(T<sub>right</sub>)} + 1
```

Divide and Conquer: Binary Search Tree

- ► The most important divide-and-conquer algorithms for binary trees are the three classic traversals namely;
- the preorder traversal, the root is visited before the left and right subtrees are visited
- 2. the inorder traversal, the root is visited after visiting its left subtree but before visiting the right subtree.
- 3. the **postorder** traversal, the root is visited after visiting the left and right subtrees.

Binary Tree Traversal: Example

preorder: a, b, d, g, e, c, f inorder: d, g, b, e, a, f, c postorder: g, d, e, b, f, c, a

Exercise

- 1. Attempt question 1, of exercise 5.2 on page 181
- 2. Given that $T(n) = T(\frac{n}{2}) + 1$, T(1) = 0, Derive the complexity class of the algorithm

M. Yusuf 4/14/2020

Thank You

M. Yusuf 4/14/2020