Week 3: Risk and Evaluation of Alternatives

- Making Decisions in Low-Uncertainty vs. High-Uncertainty Settings
- ◆ Example: Evaluating a Wireless Data Plan
- Reward and Risk
- Connecting Random Inputs and Random Outputs
- Simulating Uncertain Outcomes in Excel
- ◆ Interpreting Simulation Results: "Short" vs. "Long" Simulations
- ◆ Using Histograms to Visualize Simulation Results

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

♦ See DataPlan10.xlsx

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

We are interested in analyzing the distribution of the monthly payment

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

◆ But first, let us look at the simulated values of monthly data usage

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

◆ Why? Because we know its true probability distribution...

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

So we can compare the sample mean and standard deviation with the true values

Simulation Run	Data Usage, U (GB)
1	11.9319952
2	24.0282690
3	25.6828047
4	21.7321587
5	34.2335329
6	16.5820597
7	30.7079676
8	36.9010808
9	20.3471859
10	28.3229996
Sample Mean	25.0470054
Sample St. Dev.	7.787935101

So we can compare the sample mean and standard deviation with the true values

Simulation Run	Data Usage, U (GB)
1	11.9319952
2	24.0282690
3	25.6828047
4	21.7321587
5	34.2335329
6	16.5820597
7	30.7079676
8	36.9010808
9	20.3471859
10	28.3229996
Sample Mean	25.0470054
Sample St. Dev.	7.787935101

In this simulation, 10 values for monthly data usage "drawn" from the normal distribution with mean of 23 and standard deviation of 5 averaged to about 25.047.

Sample mean is an approximation to the true value of the expected data usage

Simulation Run	Data Usage, U (GB)
1	11.9319952
2	24.0282690
3	25.6828047
4	21.7321587
5	34.2335329
6	16.5820597
7	30.7079676
8	36.9010808
9	20.3471859
10	28.3229996
Cample Macs	25 0470054
Sample Mean	25.0470054
Sample St. Dev.	7.787935101

In this simulation, 10 values for monthly data usage "drawn" from the normal distribution with mean of 23 and standard deviation of 5 produced a sample standard deviation of about 7.788.

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

◆ The sample mean of the simulated values for monthly payment is about \$253, and the sample standard deviation is about \$92

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

◆ The more simulation runs we conduct...

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977

... the closer the sample mean and standard deviation will be to the true values

	А	В	С	D	Е	F
1	DataPlan_0.xlsx	Wireless Data Plan	Simulation Run	Data Usage, U (GB)	Payment, P (\$)	
2	Operations Analytics MOOC		1	11.93199518	160	
3			2	24.02826903	220.4240354	
4	Data Allowance (GB)	20	3	25.68280473	245.242071	
5	Fixed Payment (\$)	160	4	21.7321587	185.9823805	
6	Rate Above Allowance (\$/GB)	15	5	34.23353286	373.5029929	
7			6	16.58205969	160	
8	Expected Data Usage (GB)	23	7	30.7079676	320.619514	
9	St. Dev. of Data Usage (GB)	5	8	36.90108082	413.5162123	
10			9	20.34718585	165.2077878	
1001			1000	23.1895728	207.843592	
1002						
1003			Sample Mean	23.28418394	220.1594691	
1004			Sample St. Dev.	4.877547328	58.23620041	

DataPlan1000.xlsx

Comparing Results for n=10 and n=1000 simulation runs (seed = 123)

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6 <i>n</i> =1	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
		02 40007077
Sample St. Dev.	7.787935101	92.19007977
	7.787935101 Data Usage, U (GB) 11.93199518	
Simulation Run	Data Usage, U (GB)	Payment, P (\$)
Simulation Run	Data Usage, U (GB) 11.93199518	Payment, P (\$) 160
Simulation Run 1 2	Data Usage, U (GB) 11.93199518 24.02826903	Payment, P (\$) 160 220.4240354
Simulation Run 1 2 3 4	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587	Payment, P (\$) 160 220.4240354 245.242071
Simulation Run 1 2 3 4	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587	Payment, P (\$) 160 220.4240354 245.242071 185.9823805
Simulation Run 1 2 3 4 5 n=10	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587	Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929
Simulation Run 1 2 3 4 5 n=10	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587 00 34.23353286 16.58205969	Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160
Simulation Run 1 2 3 4 5 n=10 6	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587 00 34.23353286 16.58205969 30.7079676	Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160 320.619514
Simulation Run 1 2 3 4 5 n=10 6 7 8	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587 00 34.23353286 16.58205969 30.7079676 36.90108082	Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160 320.619514 413.5162123
Simulation Run 1 2 3 4 5 n=10 6 7 8	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587 00 34.23353286 16.58205969 30.7079676 36.90108082 20.34718585	Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160 320.619514 413.5162123 165.2077878
Simulation Run 1 2 3 4 5 n=10 6 7 8	Data Usage, U (GB) 11.93199518 24.02826903 25.68280473 21.7321587 00 34.23353286 16.58205969 30.7079676 36.90108082 20.34718585	Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160 320.619514 413.5162123 165.2077878

♦ See DataPlan10.xlsx and DataPlan1000.xlsx

Comparing Results for n=10 and n=1000 simulation runs (seed = 123)

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6 n=1	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sample St. Dev.	7.787935101	92.19007977
Ciarriation Bros	Data Hasas H/CD)	Day D (¢)
	Data Usage, U (GB)	
1	11.93199518	160
2	24.02826903	220.4240354
3	25.68280473	245.242071
4	21.7321587	185.9823805
5 <i>n</i> =10	34.23353286	373.5029929

16.58205969

30.7079676

36.90108082

20.34718585

23.1895728

23.28418394

4.877547328

160

320.619514

413.5162123

165.2077878

207.843592

220.1594691

58.23620041

◆ The sample mean and sample standard deviation for monthly data usage simulated for n=1000 runs (approximately, 23.2842 and 4.8775) are much closer to the true values of 23 and 5 than the corresponding sample mean and standard deviation for n=10 simulation runs

8

1000

Sample Mean

Sample St. Dev.

Comparing Results for n=10 and n=1000 simulation runs (seed = 123)

Simulation Run	Data Usage, U (GB)	Payment, P (\$)
1	11.9319952	160
2	24.0282690	220.4240354
3	25.6828047	245.242071
4	21.7321587	185.9823805
5	34.2335329	373.5029929
6 <i>n</i> =1	16.5820597	160
7	30.7079676	320.619514
8	36.9010808	413.5162123
9	20.3471859	165.2077878
10	28.3229996	284.8449946
Sample Mean	25.0470054	252.9339988
Sumple Wieam	25.0 17 505 1	
Sample St. Dev.	7.787935101	92.19007977
Sample St. Dev.	7.787935101	92.19007977
Sample St. Dev.	-	92.19007977
Sample St. Dev.	7.787935101 Data Usage, U (GB)	92.19007977 Payment, P (\$)
Sample St. Dev. Simulation Run 1	7.787935101 Data Usage, U (GB) 11.93199518	92.19007977 Payment, P (\$) 160
Sample St. Dev. Simulation Run 1 2	7.787935101 Data Usage, U (GB) 11.93199518 24.02826903	92.19007977 Payment, P (\$) 160 220.4240354
Sample St. Dev. Simulation Run 1 2 3 4	7.787935101 Data Usage, U (GB)	92.19007977 Payment, P (\$) 160 220.4240354 245.242071
Sample St. Dev. Simulation Run 1 2 3 4	7.787935101 Data Usage, U (GB)	92.19007977 Payment, P (\$) 160 220.4240354 245.242071 185.9823805
Sample St. Dev. Simulation Run 1 2 3 4 5	7.787935101 Data Usage, U (GB)	92.19007977 Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929
Sample St. Dev. Simulation Run 1 2 3 4 5 n=10	7.787935101 Data Usage, U (GB)	92.19007977 Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160
Sample St. Dev. Simulation Run 1 2 3 4 5 —10 6	7.787935101 Data Usage, U (GB)	92.19007977 Payment, P (\$) 160 220.4240354 245.242071 185.9823805 373.5029929 160 320.619514

23.28418394

4.877547328

220.1594691 58.23620041 ♦ In a similar way, the sample mean and sample standard deviation for monthly payment simulated for n=1000 runs (approximately, \$220.1995 and \$58.2362) are much closer to the true (unknown to us) values than the corresponding sample mean and standard deviation for n=10 simulation runs

Longer simulations produce more precise estimates for the reward and risk measures

Sample Mean

Sample St. Dev.

Random Seed Value?

So, what random seed value should one use when running a simulation?

Comparing Results for *n*=10 and *n*=1000 simulation runs for different seed values

Simulated data usage values

<i>n</i> =10	seed = 123	seed = 1826	seed = 19104
Sample Mean, GB	25.05	19.48	24.72
Sample St. Dev., GB	7.79	5.21	3.20

<i>n</i> =1000	seed = 123	seed = 1826	seed = 19104
Sample Mean, GB	23.28	23.08	23.04
Sample St. Dev., GB	4.88	4.90	4.96

 Random seed value does not matter much when you run a simulation with large number of simulation runs

Visualizing Simulation Results Using Histograms

- Histograms are often useful for gaining intuition about the random inputs and the random outputs involved in a simulation
- ◆ In the data plan example, the random input is the data usage *U*, and the random output is the monthly payment *P*

Histogram of Simulated Values of Data Usage U (n=1000, seed = 123)

- ◆ See DataPlan1000_Histogram.xlsx
- ♦ This "bar" indicates the frequency (number of occurrences) for the values of $10 < U \le 11$

Histogram of Simulated Values of Monthly Payment P(n=1000, seed = 123)

See DataPlan1000_Histogram.xlsx

Histogram of Simulated Values of Monthly Payment P(n=1000, seed = 123)

◆ The input (values of U) was drawn from a normal distribution – but the output looks nothing like a normal distribution

Histogram of Simulated Values of Monthly Payment P(n=1000, seed = 123)

 In general, one must use simulation to understand the shape of the distribution and its parameters for an output random variable

Making Best Decisions in High-Uncertainty Settings: A Roadmap

Decide upon **reward** and **risk** measures

For each competing decision, use **simulation** to estimate reward and risk measures

Use **reward** as an **objective** and **risk measures** as **constraints** to find the best decision

Data Plan Example:

- Reward measure = expected monthly payment
- Risk measure = standard deviation of monthly payment

Data Plan Example:

- Estimate of expected monthly payment = \$220.1995
- Estimate of standard deviation of monthly payment = \$58.2362

Simulation in Practice: Commercial Simulation Packages

- If you are interested in going beyond Excel's Analysis ToolPak add-in, there exists a number of commercial simulation packages
- ◆ A recent comparison of simulation software packages by the OR/MS Today can be accessed here: http://www.orms-today.org/surveys/Simulation/Simulation.html
- Some commercial packages, in addition to simulating uncertain outcomes, provide capabilities to fit data to a wide range of probability distributions

Simulation in Practice

- Wireless Data Plan example uses one random input (monthly data usage), and analyzes one random output (monthly payment)
- In practice, simulation can be used in the models with many random inputs and many random outputs
- Examples of the use of simulation: articles published in *Interfaces*

Optimizing Capital Investment Decisions at Intel Corporation
Karl G. Kempf, Feryal Erhun, Erik F. Hertzler, Timothy R. Rosenberg, and Chen Peng
Interfaces 2013, 43:1, 62-78.

<u>Kroger Uses Simulation-Optimization to Improve Pharmacy Inventory Management</u>
Xinhui Zhang, Doug Meiser, Yan Liu, Brett Bonner, Lebin Lin Interfaces 2014, 44:1, 70-84.

 As is the case with optimization, simulation in practice is often used hand-in-hand with other analytics techniques