Create a Tableau Story Project_PISA Data

By Shilin Li

Date: August 3rd, 2018

Data Wrangling

Gather

First, we download PISA data from <u>Data Set Options</u> (https://docs.google.com/document/d/1w7KhqotVi5eoKE3I_AZHbsxdr-NmcWsLTliZrpxWx4w/pub? embedded=true), then import it from local.

In [1]:

import necessary library
import pandas as pd

In [2]:

load only the first five rows of dataset to have a quick view
pd.read_csv('pisa2012.csv', nrows=5)

Out[2]:

	Unnamed: 0	CNT	SUBNATIO	STRATUM	OECD	NC	SCHOOLID	STIDSTD	ST
0	1	Albania	80000	ALB0006	Non- OECD	Albania	1	1	10
1	2	Albania	80000	ALB0006	Non- OECD	Albania	1	2	10
2	3	Albania	80000	ALB0006	Non- OECD	Albania	1	3	9
3	4	Albania	80000	ALB0006	Non- OECD	Albania	1	4	9
4	5	Albania	80000	ALB0006	Non- OECD	Albania	1	5	9

```
In [3]:
```

```
# load the full dataset
df = pd.read_csv('pisa2012.csv', encoding='latin-1')
df.head()
```

/Users/shilinli/anaconda3/lib/python3.6/site-packages/IPython/core/i nteractiveshell.py:2698: DtypeWarning: Columns (15,16,17,21,22,23,24,25,26,30,31,36,37,45,65,123,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,475) have mixed types. Specify dtype option on import or set low memory=False.

interactivity=interactivity, compiler=compiler, result=result)

Out[3]:

	Unnamed: 0	CNT	SUBNATIO	STRATUM	OECD	NC	SCHOOLID	STIDSTD	ST
0	1	Albania	80000	ALB0006	Non- OECD	Albania	1	1	10
1	2	Albania	80000	ALB0006	Non- OECD	Albania	1	2	10
2	3	Albania	80000	ALB0006	Non- OECD	Albania	1	3	9
3	4	Albania	80000	ALB0006	Non- OECD	Albania	1	4	9
4	5	Albania	80000	ALB0006	Non- OECD	Albania	1	5	9

5 rows × 636 columns

In [4]:

Out[4]:

	CNT	STIDSTD	ST04Q01	ST27Q01	ST27Q02	ST27Q03	PV1MATH	PV2MATH	P۱
0	Albania	1	Female	Two	One	None	406.8469	376.4683	34
1	Albania	2	Female	Three or more	Three or more	Three or more	486.1427	464.3325	45
2	Albania	3	Female	Three or more	Two	Two	533.2684	481.0796	48
3	Albania	4	Female	Three or more	Two	One	412.2215	498.6836	41
4	Albania	5	Female	Two	One	Two	381.9209	328.1742	40

5 rows × 23 columns

Assess

Access is the second step, we will access them visually and programmatically, then recording any quality and tidiness issues found. Those issues will be resolved in the third step, cleaning.

```
In [5]:
df1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 485490 entries, 0 to 485489
Data columns (total 23 columns):
           485490 non-null object
CNT
           485490 non-null int64
STIDSTD
ST04Q01
           485490 non-null object
           477079 non-null object
ST27Q01
ST27Q02
           476548 non-null object
ST27Q03
           473459 non-null object
PV1MATH
           485490 non-null float64
           485490 non-null float64
PV2MATH
PV3MATH
           485490 non-null float64
           485490 non-null float64
PV4MATH
PV5MATH
           485490 non-null float64
           485490 non-null float64
PV1READ
PV2READ
           485490 non-null float64
           485490 non-null float64
PV3READ
           485490 non-null float64
PV4READ
           485490 non-null float64
PV5READ
           485490 non-null float64
PV1SCIE
           485490 non-null float64
PV2SCIE
           485490 non-null float64
PV3SCIE
           485490 non-null float64
PV4SCIE
           485490 non-null float64
PV5SCIE
ST49Q07
           312425 non-null object
           479597 non-null float64
WEALTH
dtypes: float64(16), int64(1), object(6)
memory usage: 85.2+ MB
In [6]:
for item in list(df1):
    print(df1[item].unique())
['Albania' 'United Arab Emirates' 'Argentina' 'Australia' 'Austria'
 'Belgium' 'Bulgaria' 'Brazil' 'Canada' 'Switzerland' 'Chile' 'Colom
bia'
 'Costa Rica' 'Czech Republic' 'Germany' 'Denmark' 'Spain' 'Estonia'
 'Finland' 'France' 'United Kingdom' 'Greece' 'Hong Kong-China' 'Cro
atia'
 'Hungary' 'Indonesia' 'Ireland' 'Iceland' 'Israel' 'Italy' 'Jordan'
 'Japan' 'Kazakhstan' 'Korea' 'Liechtenstein' 'Lithuania' 'Luxembour
q'
 'Latvia' 'Macao-China' 'Mexico' 'Montenegro' 'Malaysia' 'Netherland
 'Norway' 'New Zealand' 'Peru' 'Poland' 'Portugal' 'Qatar' 'China-Sh
anghai'
 'Perm(Russian Federation)' 'Florida (USA)' 'Connecticut (USA)'
```

```
'Massachusetts (USA)' 'Romania' 'Russian Federation' 'Singapore' 'S
erbia'
  'Slovak Republic' 'Slovenia' 'Sweden' 'Chinese Taipei' 'Thailand'
  'Tunisia' 'Turkey' 'Uruguay' 'United States of America' 'Vietnam']
                                     3 ..., 33804 33805 33806]
           1
                        2
['Female' 'Male']
['Two' 'Three or more' 'One' nan 'None']
['One' 'Three or more' 'Two' nan 'None']
['None' 'Three or more' 'Two' 'One' nan]
[ 406.8469
                          486.1427
                                                533.2684 ...,
                                                                                  178.4624 169.8941
                                                                                                                              824.7468]
[ 376.4683
                        464.3325 481.0796 ..., 173.9445 759.8613
                                                                                                                               758.7708]
[ 344.5319 453.4273 489.6479 ...,
                                                                                 787.5915 807.3765
                                                                                                                               808.3892]
[ 321.1637 472.9008 490.4269 ...,
                                                                                 128.7662
                                                                                                        190.458
                                                                                                                               771.7791]
                                                 533.2684 ..., 828.9531
[ 381.9209
                        476.0165
                                                                                                        838.3783
                                                                                                                               761.6529]
                                                                                                                               672.9741]
[ 249.5762 406.2936 401.21
                                                                     . . . ,
                                                                                 693.7544
                                                                                                        612.0262
                                                                                                                               737.4415]
[ 254.342
                          349.8975
                                                404.3872 ..., 650.7822
                                                                                                        653.2462
[ 406.8496
                        400.7334
                                                 387.7067 ...,
                                                                                693.7544 654.7538
                                                                                                                               597.1101]
[ 175.7053
                        369.7553 431.3938 ...,
                                                                                674.5779 623.7757
                                                                                                                               721.7323
[ 218.5981
                        396.7618
                                                401.21
                                                                     ..., 715.2008 625.9801
                                                                                                                               685.0032]
[ 341.7009
                                                499.6643 ...,
                        548.9929
                                                                                 715.5352 690.3581
                                                                                                                               691.2906]
[ 408.84
                          471.5964 428.7952 ..., 715.5352 690.3581
                                                                                                                               698.7505]
                                                                                                                               782.0216]
[ 348.2283 471.5964 492.2044 ..., 679.1682 687.5606
[ 367.8105 443.6218 512.7191 ..., 837.1317 714.6028
                                                                                                                               701.5479
[ 392.9877 454.8116 499.6643 ..., 718.3327
                                                                                                        696.8855
                                                                                                                               697.818 ]
['Never or rarely' nan 'Sometimes' 'Often' 'Always or almost always'
]
[-2.92 \quad 0.69 \quad -0.23 \quad -1.17 \quad -0.95 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.23 \quad -2.59 \quad -1.46 \quad -0.49 \quad -1.82 \quad -0.73 \quad -2.23 \quad -2.2
1.6
 -1.74 0.34 -2.3 -2.05 nan -1.39 1.71 -0.18 0.04 -0.82 -1.7 -
2.27
 -3.34 - 0.24 - 1.16 - 0.66 0.16 0.68 - 1.41 0.31 - 1.94 - 3.92 - 1.86
0.67
 -0.71 -1.26 2.85 -0.11 -0.93 -0.58 0. -0.21 0.29 -1.42 -3.04
2.8
 -0.53 1.12 -1.01 -2.08 -2.78 -1.81 -2.31 -0.88 -1.67 -5.03 0.19 -
0.4 - 1.
 -0.99 -0.59 -2.1 -2.28 -0.92 -2.25 -0.43 -0.98 -0.1 -2.26 -1.49 -
1.38
    1.16 - 2.18 - 1.91 - 0.81 - 1.09 - 0.61 - 1.92 - 1.15 - 1.32 - 2.17 - 1.55
0.2
 -1.51 -1.75 -1.97 -0.74 -2.71 -0.26 -1.72 -2.85 -2.98 -0.77 0.28 -
 -1.83 -1.99 -1.64 -0.2 -1.77 -3.03 -2.12 -0.91 -0.28 -1.43 0.23
0.01
 -1.35 -0.34 -1.05 -1.08 -1.59 -1.06 -2.82 -0.94 -0.27 -1.22 -2.36 -
0.86
 -3.26 0.59 -2.16 0.61 -3.24 -1.18 -1.45 -1.3 -0.55 -4.09 -2.48 -
1.88
  -2.57 -1.89 -0.76 -2.45 -1.03 -2.68 -1.25 0.12 -2.38 -2.72 -2.88 -
0.6
 -0.39 0.32 -0.09 -0.36 -1.61 -0.01 -1.87 -2.61 -1.69 -1.66 -0.37 -
0.67
 -1.53 -1.76 -3.28 -0.8 -1.28 0.43 -0.64 -1.19 -2.89 -1.24 -0.38 -
```

```
0.83
        1.66 - 0.13 - 0.89 - 3.09 - 1.1 - 3.16 - 1.34 - 1.47 - 2.24 - 2.73 -
 -1.8
4.59
               0.14 - 0.08 - 2.19 - 1.11 2.77 - 3.57 - 1.62 - 0.68 - 2.34 -
-1.63 - 1.5
2.21
 -0.47 - 1.93 \quad 0.38 - 2.49 \quad 0.48 - 0.51 - 4.51 - 1.07 - 1.54 - 3.3 \quad -0.65 -
1.44
 -2.02 -1.04 -0.56  0.65 -2.83 -0.3  -0.78
                                                0.41 - 1.48 - 1.2
1.33
 -3.45 - 1.4 - 2.14
                      1.23 - 0.29 - 0.54 - 0.63
                                                0.25 - 0.9 - 2.47 - 0.04 -
2.56
 -2.01 - 1.36 - 0.44 \quad 0.97 - 0.75 - 2.13 - 2.63
                                                1.11 - 0.5
                                                             0.63 - 2.06 -
2.55
 -2.43 -1.27 -2.11 -3.62 -2.04 -1.65 -1.21 1.65 0.91 -2.22 -1.23 -1.24
0.84
 -1.96 -1.79 -1.84 -4.68 -0.35 1.08 -3.21 -0.06 -0.48 -0.02 -4.88 -
2.07
               0.98 - 0.25 - 0.14 \quad 2.76 - 1.29 \quad 0.11
  0.76 - 2.2
                                                        3.09
                                                               1.
                                                                     0.37 -
1.31
  1.98
        0.49
               1.04 1.99
                            1.42 - 0.46 - 1.73
                                                0.54
                                                        3.
                                                               3.03
                                                                     1.88 -
1.58
  0.72
        1.26 \quad 0.88 \quad -1.68
                            0.36 - 0.79 - 0.33 0.5
                                                        0.07 - 0.52
                                                                     1.29
3.07
        0.58 - 0.16 - 0.05
                            0.09
                                   0.42 \quad 0.51 \quad -1.13
                                                        3.08 - 0.41
  2.97
                                                                     0.84 -
1.85
 -4.77
               0.52 - 0.72
                             0.99
                                   1.41 \quad 1.96 \quad -0.57
        2.15
                                                        1.81 1.61
                                                                     1.24 -
0.07
 -3.63
        0.86
               1.75
                      2.84
                             0.77
                                    1.6
                                          2.53 - 0.17
                                                        0.96
                                                               1.84 - 0.22
1.85
               1.38
                      1.43
                             1.01
                                    0.93
                                          3.06
                                                0.45
                                                        1.55
                                                               1.62
  0.83 - 2.46
                                                                     1.67
1.3
                      2.54
                             0.87 \quad 1.4 \quad -0.69
                                                        2.81
  2.73
        1.45
               0.22
                                                 0.85
                                                               2.96
                                                                     1.59
2.12
  1.78
        3.05
               1.17
                      1.73
                             0.27 - 1.56 1.83
                                                 2.17
                                                        0.46 - 0.62
                                                                     2.89
0.05
 -4.38
        1.95
               2.68
                      1.37
                             0.03 \quad 0.7 \quad -0.15
                                                2.79
                                                        1.93 \quad 0.02 \quad -0.31
0.94
 -0.03
        0.81
               0.66 - 3.47 - 2.86
                                   2.67 2.98 -3.29 -1.95
                                                             2.08
                                                                     1.05
0.53
  0.08
        0.35
               1.33
                     0.6
                             0.26
                                    2.83
                                          0.73 1.18
                                                       1.86
                                                              1.9
                                                                     1.1
1.27
                             0.18
                                    1.28 \quad 2.26 \quad -0.42 \quad -1.02
  1.36
        0.71
               1.77
                      1.21
                                                              0.89 - 2.33 -
0.19
        0.33
               2.99
                      1.69
                             0.57
                                    1.39 -1.12 1.06 -3.54
                                                              1.72 1.19 -
  2.82
2.69
 -1.14 -2.09 -0.12 -3.07 -2.37 0.62 -1.37 -3.46 -1.57 -1.98 -3.52
0.3
 -5.35 -1.52 -3. -0.87 -2.96 -4.18 -2.81 -0.96 0.24 -2.44 0.44 -
0.7
      -1.78 -2.54 -2.77 -3.48 -0.32 0.17 1.14 -2.15 -2.99 -2.
 -1.9
2.6
 -2.58 - 0.85 - 1.46 - 2.65 - 3.56 - 3.02 - 2.66 - 2.91 - 2.03 - 1.92 - 3.12
2.02
```

```
0.79
              3.02 - 2.03
                         0.13
                                1.35
                                      2.22
                                            1.74 - 5.28
                                                        0.1
                                                               1.34
  0.8
0.15
  1.91
        0.95
              0.06 1.8
                          1.87
                                0.78
                                      1.58 2.62 -3.99 -3.19
                                                               1.22 -
2.64
        0.64
              1.57 - 2.74
                          1.25
                                0.56
                                      1.07 - 0.45 - 2.42
                                                         1.79
  1.82
                                                               1.13
3.04
                   1.15 - 3.66
              1.68
        2.01
                                1.94
                                      1.76
                                            2.44
                                                   3.01
                                                         0.39
                                                               2.87
  2.93
0.75
                         1.7
                                1.03
  1.09 - 5.12
              2.59
                   0.21
                                      1.64
                                            0.4
                                                   1.02
                                                        0.74
                                                               1.53
2.13
-0.97 0.82
             1.97 - 5.34
                         0.92 - 3.32 - 4.05 - 3.13 - 3.72 - 4.85
2.5
 -2.84 -2.35 -4.16 -2.4 0.55 -2.41 1.2 -3.89 -4.65 -5.08 -3.91
2.36
  2.91 - 3.27 \ 2.4 \ 2.43 - 3.12 - 2.97 - 3.8 - 4.35 \ 2.9 - 3.14 - 3.23 -
2.67
-4.21 -2.39 -3.01 -2.76 -1.71 -2.95 -3.59 -3.08 -3.06 -3.2 -3.5 -
3.53
-2.7
      -2.62 -5.07 -3.25 -3.88 -2.32 -2.29 -3.87 -3.15 2.55 -3.85 -
2.93
-4.73 - 4.5 - 3.39 - 4.64  1.49 - 3.9  -2.94 - 3.18
                                                  1.32
                                                         2.27 - 3.84 -
3.61
-2.8 -3.86 2.28 -4.6 -4.02 -3.41 -3.78 -4.03
                                                   2.41
                                                         1.31
2.86
  2.78 -5.48 2.58 2.63 -5.24 2.3
                                    1.56 1.89 -5.11 -3.31
2.9
 -5.04 -3.33 -2.52 -2.53 1.5
                                2.29 - 3.44 - 5.45 - 3.83 - 3.1 - 5.4
0.47
-4.26 -4.36 -4.17 -3.42 -4.13 -5.63 -4.23 -5.42 -4.31 -3.17 -3.6
4.24
-4.49 -3.35 -3.38 -4.46 -4.37 -5.47 -3.55 -3.82 -3.73 -4.44 0.9 -
3.36
-5.43 -4.48 -3.77 2.88 -4.42 -3.81 -3.11 -5.17 -3.51 -5.32 -4.99
2.42
  2.64 -4.07 -5.01 -4.78 1.47 2.95 2.52 2.61 -4.15 2.92 3.13
2.
 -4.12 -3.43 -3.4 -4.34 -2.75 -3.67 -3.74 -5.53 -3.64 -3.65 -5.33 -
5.27
 -5.52 -3.05 -4. -4.3 -4.32 -3.96 -4.29 -5.3 -4.01 -3.98 -2.87 -
5.31
  2.14
        3.25 - 4.19  2.74  2.38  1.44 - 4.7  -4.8  -3.7  -4.58  1.51  -
4.67
 -3.94
                    2.39 -3.79 3.11 2.25 -4.96 -4.04 -5.19 -3.37 -
        2.47 - 5.2
5.13
-5.1
       -4.84 -4.83 -4.52 -3.22 -3.76 -3.97 -3.49 -3.71 -4.81 -4.97 -
5.16
-4.92 -4.72 -5.06 2.51 -3.93 -5.15 -4.25 -5.14 1.54 -3.95 -6.65
3.16
        2.35 - 5.26 - 4.93 - 4.71 - 5.09 - 5.36 - 4.14 - 3.75 2.18 - 4.11 -
  3.15
4.56
        2.66 -3.58 2.16 2.75 2.31 2.19 2.45 2.37
                                                              -4.75
 -4.86
                                                         2.6
2.46
        2.49 - 3.69 - 4.62 - 4.89
                               3.18 - 4.66
                                            2.33 - 4.87 - 5.
  2.69
                                                              -4.27 -
```

```
4.79
-6.08 -6. -4.55 -4.53 -4.2 ]
```

Quality

- Column names are ambiguous;
- Using plausible values to obtain score;
- Adding gender count columns

Tidiness

- Drop useless columns
- Melt apparatus columns;

Save the new dataframe

Clean

```
In [7]:
```

```
# make a copy
df_clean = df1.copy()
```

```
In [8]:
# rename the column names
df clean.rename(columns={
                'CNT': 'country',
                 'STIDSTD': 'student id',
                 'ST04Q01': 'gender',
                 'ST27Q01': 'cellular phone',
                 'ST27Q02': 'TV',
                'ST27Q03': 'computers',
                 'ST49Q07': 'computer programming',
                'WEALTH': 'family wealth index'
                }, inplace = True)
list(df_clean)
Out[8]:
['country',
 'student id',
 'gender',
 'cellular phone',
```

'TV',

'computers', 'PV1MATH', 'PV2MATH', 'PV3MATH', 'PV4MATH', 'PV5MATH', 'PV1READ', 'PV2READ', 'PV3READ', 'PV4READ', 'PV5READ', 'PV1SCIE', 'PV2SCIE', 'PV3SCIE', 'PV4SCIE', 'PV5SCIE',

'computer_programming',
'family wealth index']

In [9]:

```
# calculate the math, read and science score
df_clean['math_score'], df_clean['reading_score'], df_clean['science_score'] = \
df_clean[['PV1MATH', 'PV2MATH', 'PV3MATH', 'PV4MATH', 'PV5MATH']].mean(axis=1), \
df_clean[['PV1READ', 'PV2READ', 'PV3READ', 'PV4READ', 'PV5READ']].mean(axis=1), \
df_clean[['PV1SCIE', 'PV2SCIE', 'PV3SCIE', 'PV4SCIE', 'PV5SCIE']].mean(axis=1)
df_clean.head()
```

Out[9]:

	country	student_id	gender	cellular_phone	TV	computers	PV1MATH	PV2MATH
0	Albania	1	Female	Two	One	None	406.8469	376.4683
1	Albania	2	Female	Three or more	Three or more	Three or more	486.1427	464.3325
2	Albania	3	Female	Three or more	Two	Two	533.2684	481.0796
3	Albania	4	Female	Three or more	Two	One	412.2215	498.6836
4	Albania	5	Female	Two	One	Two	381.9209	328.1742

5 rows × 26 columns

In [10]:

```
In [11]:
```

```
# randomly check the new dataframe
df_tableau.sample(5)
```

Out[11]:

	country	student_id	gender	cellular_phone	TV	computers	computer_pro
173525	Estonia	2630	Female	Three or more	One	Two	Never or rarely
220775	Hungary	4197	Male	Two	Two	One	NaN
336879	Mexico	21177	Male	Two	Two	None	Often
184257	Finland	8583	Female	Three or more	None	One	Often
133172	Germany	72	Female	Three or more	Two	Three or more	Never or rarely

In [12]:

Out[12]:

	country	student_id	gender	computer_programming	math_score	reading_
1335141	Norway	252	Male	Often	467.83768	423.4889
531931	Belgium	5055	Male	NaN	527.03692	428.6214
51999	Bulgaria	2016	Female	Never or rarely	558.50600	618.7715
554477	Brazil	13722	Male	NaN	348.11496	378.8205
680234	United Kingdom	5628	Female	Never or rarely	608.43590	565.3144

```
In [13]:
```

```
# add gender count columns
male_count = []
female_count = []

for item in df_tableau.gender:
    if item == 'Male':
        male_count.append(1)
        female_count.append(0)
    else:
        male_count.append(0)
        female_count.append(1)

df_tableau['male_count'] = male_count
df_tableau['female_count'] = female_count

df_tableau.sample(5)
```

Out[13]:

	country	student_id	gender	computer_programming	math_score	reading_s
308430	Latvia	2369	Female	NaN	367.27684	375.39490
275955	Jordan	4293	Male	Always or almost always	381.37558	364.06482
1124961	Spain	8399	Female	NaN	502.34462	531.31800
932377	Sweden	3293	Male	Often	446.96214	433.11228
796096	Macao- China	239	Male	Never or rarely	503.82458	462.38324

Save the new dataframe

```
In [14]:
# save the new dataframe to local
df_tableau.to_csv('pisa_tableau_2012.csv', encoding='utf-8', index=False)
```

```
from subprocess import call
call(['python', '-m', 'nbconvert', 'Wrangle_Act_Create a Tableau Story Project.i
pynb'])
```

```
Out[15]:
```

In [15]: