PARADOX OF PREDICTABILITY

EQGW 2025

MICROEVOLUTION

Within species
Small time scale (ys, gens)
Reduced magnitude

MACROEVOLUTION

Multiple species

Large time scale (mys, geological time)

Larger magnitude

MICROEVOLUTION

Within species
Small time scale (ys, gens)
Reduced magnitude

MACROEVOLUTION

Multiple species

Large time scale (mys, geological time)

Larger magnitude

Population dynamics

Infinitesimal model of trait variation

Models of trait evolution based on evolutionary processes

Directional selection

$$R = Sh^{2}$$

$$\Delta \bar{z}(t) = \left[\bar{z}_{w}(t) - \bar{z}(t)\right] \frac{\sigma_{a}^{2}}{\sigma_{p}^{2}}$$

Models of trait evolution based on evolutionary processes

Directional selection

$$R = Sh^{2}$$

$$\Delta \bar{z}(t) = \left[\bar{z}_{w}(t) - \bar{z}(t)\right] \frac{\sigma_{a}^{2}}{\sigma_{p}^{2}}$$

Genetic Drift

$$\sigma_b^2(t) = \sigma_a^2 \frac{t}{N}$$

Models of trait evolution based on evolutionary processes

Directional selection

$$R = Sh^2$$

$$\Delta \bar{z}(t) = \left[\bar{z}_w(t) - \bar{z}(t)\right] \frac{\sigma_a^2}{\sigma_p^2}$$

Genetic Drift

$$\sigma_b^2(t) = \sigma_a^2 \frac{\tau}{N}$$

Null model

USING GENETIC DRIFT AS A NULL MODEL OF MACROEVOLUTION

Make assumptions of quantitative genetic traits Generate null expectation under drift Calculate empirical rates of evolution Confront them

$$\sigma_b^2(t) = \sigma_a^2 \frac{t}{N}$$

Consistent with ...?

Climbing new peaks is very fast (given the availability of additive genetic variance), so large scale macroevolutionary dynamics are the result of peak dynamics

YES.

YES. Well, sort of.

YES. Well, sort of. But in a practical sense, not really...

YES. Well, sort of. But in a practical sense, not really...

GENETIC DRIFT

Univariate case - rate of evolution is a function of additive genetic variance and a constant

Multivariate case- rates of evolution are a function of additive genetic variance for each trait and a constant (t/Ne)

$$\sigma_b^2(t) = \sigma_a^2 \frac{t}{N}$$
Univariate

$$\Sigma(t) = G\frac{t}{N}$$

Multivariate

Divergence should be proportional to the amount of intraspecific variation

Fig. 5.—Bivariate plot of RD_A against \bar{s}_A in Eumeces

GENETIC DRIFT

$$\Sigma(t) = G\frac{t}{N}$$

- Under genetic drift divergence should be proportional to the amount of intraspecific variation
- Variation and divergence are proportional
- It's possible that traits are evolving neutrally

"PARADOX OF PREDICTABILITY"

Tsuboi et al. 2024

- Species can reach peaks rapidly (unlikely to be maladapted)
- Rates of evolution are too slow, implying strong influence of stabilizing selection
- Evolution is likely dominated by peak distribution and stabilizing selection
- Peak distribution should have no relation to phenotypic variation
- Still, the amount of trait variation predicts how traits will evolve on large time scales.

$$\mathbf{B} = \frac{t}{N_{\rm e}}\mathbf{G},$$

$$\log(\text{var}_{\text{B}}) = a + b[\log(\lambda)]$$

t/Ne -> Nuisance parameter

Problems?

