Отчет по лабораторной работе № 2 «Применение многослойной нейронной сети для аппроксимации функций»

студента Шамаева Сергея группы	<u>Б21-514</u> . Дата сдачи:	
Ведущий преподаватель:	оценка:	_ подпись:
_		
Вариа	нт №	

Цель работы: изучение математической модели многослойной нейронной сети и решение с её помощью задачи аппроксимации функций.

1. Подготовка данных

Аппроксимируемая функция	Число	Число	Диапазон изменения
Аппроксимирусмая функция	входов	выходов	аргументов
$\sin(x^2) + \cos(x)$	1	1	[-5; 5]

Формирование обучающей, валидационной и тестовой выборок:

	Обучающая	Валидационная	Тестовая	Всего
%	60	30	10	100
Объём выборки	120	60	20	200

График аппроксимируемой функции:

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Предобработка данных:

	Метод	Параметры метода	Формула расчёта
Предобработка входов	-		
Предобработка выходов	-		

2. Обучение и тестирование нейронной сети с одним скрытым слоем

Параметры архитектуры сети:

Число входов	Число выходов	Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
1	1	40	y = tanhx	Linear $y = h$

Схема нейронной сети:

Параметры обучения:

Метод обучения	Скорость обучения α	Режим обучения	Функция потерь
GD	0.04	stochastic	Quadratic loss

Метод инициализации сети: инициализация Хавьера Критерий обучения:

$$E(w) = \frac{1}{n} \sum_{i=1}^{n} E^{(i)}(w) \rightarrow \min_{w}$$

Критерий останова: количество эпох.

Зависимость выхода y(x) сети от входа сети (изобразить три графика: до обучения, после обучения и график аппроксимируемой функции):

Зависимость выходов $y_k(x)$ нейронов скрытого слоя от входа сети (изобразить на одном графике):

До обучения

После обучения

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Зависимость ошибки сети $E(\tau)$ на обучающей, валидационной и тестовой выборках от времени обучения:

Отметить на графике начало переобучения (если наблюдается)

Нейронов скрытого слоя

Выходного нейрона

Показатели качества обученной нейросетевой модели:

	Обучающая	Валидационная	Тестовая
Макс. абс. ошибка	0.579	0.609	0.377
С.к.о. ошибки	0.498	0.569	0.223
RMSE	0.706	0.754	0.472

Обученная нейросетевая модель обладает способностью к генерализации данных. Для улучшения качества аппроксимации требуется использовать сеть с меньшим числом нейронов, изменить параметры метода обучения, изменить режим обучения.

3. Улучшение качества аппроксимации

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Параметры архитектуры сети:

Число входов	Число выходов	Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
1	1	10	y = tanhx	Linear $y = h$

Параметры обучения:

Метод обучения	Скорость обучения α	Режим обучения	Функция потерь	
GD	0.04	batch	Quadratic loss	

Метод инициализации сети: инициализация Хавьера Критерий обучения:

$$E(w) = \frac{1}{n} \sum_{i=1}^{n} E^{(i)}(w) \rightarrow \min_{w}$$

Показатели качества обученной нейросетевой модели:

_	Обучающая	Валидационная	Тестовая
Макс. абс. ошибка	0.390	0.463	0.222
С.к.о. ошибок	0.292	0.373	0.107
RMSE	0.540	0.611	0.327

Выводы: При стохастическом режиме обучения, изменение весов слишком сильное и чувствительное к конкретным точкам. Из-за этого loss функция не имеет свойств гладкости. В связи с этим, был выбран batch режим обучения. Можно заметить, что после 300 эпох изменений в loss функциях нет, то есть можно остановить обучение. Также, при слишком большом количестве нейронов (40), они дублируют друг друга, в связи с тем было уменьшено их количества до 10.