

Linear Transformations

Mathematical Foundation

Agenda

- Basic Matrix Transformations
- Determinant
- Matrix Inverse
- Determinant and Inverse for special matrices
- Orthogonal matrix & Gram-Schmidt Process
- Eigen Values and Vectors
- Eigen basis and transformations
- Python Notebook

Basic Matrix Transformations

 Transformation matrix is a matrix that transforms one vector into another vector. The positional vector of a point is changed to another positional vector of a new point, with the help of a transformation matrix.

Types:

- Scale Transformation
- Reflection Transformation
- Projection Transformation
- Rotation Transformation

Scale Transformation

- A scaling transform changes the size of an object by expanding or contracting all vertices along the three axes by three scalar values specified in the matrix.
- The s_x , s_y , and s_z values represent the scaling factor in the X, Y, and Z dimensions, respectively. Applying a

$$\mathbf{M} = \left(\begin{array}{cccc} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

$$\begin{pmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
v_x \\
v_y \\
v_z \\
1
\end{pmatrix} = \begin{pmatrix}
s_x v_x \\
s_y v_y \\
s_z v_z \\
1
\end{pmatrix}$$

Scale Transformation

0 1.5

Reflection Transformation

• A reflection is a transformation that maps a figure to its reflection image. The figure on the right is the reflection image of a drawing and the point A over the line m. This transformation is called R_m , and we write $A = R_m(A)$.

Reflection about y axis

Reflection about x axis

Reflection about the origin

Reflection Transformation

Transform

Projection Transformation

- In linear algebra, a projection matrix is a matrix associated to a linear operator that maps vectors into their projections onto a subspace.
- The rule for this mapping is that every vector v is projected onto a vector T(v) on the line of the projection.

Projection Transformation

Transform

Rotation Transformation

- A rotation matrix rotates an object about one of the three coordinate axes, or any arbitrary vector.
- The following three matrices \mathbf{R}_X , \mathbf{R}_Y and \mathbf{R}_Z and represent transformations that rotate points through the angle θ in radians about the coordinate origin.

$$\mathbf{R}_{X}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) & 0 \\ 0 & -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{Y}(\theta) = \begin{pmatrix} \cos(\theta) & 0 & -\sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{Z}(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation Transformation

This file is meant for personal use by somnath1690@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Determinant

Determinant for 2x2 matrix and 3x3 matrix - explanation with example

Intuition with area of graph transformed

 $T:R^n \rightarrow R^n$. If you take a figure $S \subseteq R^n$, then $T(S) \subseteq R^n$.

Area when n = 2

For orientation preserving transformations:

1D - length,

2D - area

3D - volume

Volume when n=3

the content of T(S) will be the determinant times the content of S.

For an orientation reversing transformation the factor is the negation of the determinant.

Determinant effect: Scaling of Area

€onsider The Following Transformation Matrix T applied on unit square which transforms unit square to parallelogram . Then The Area of parallelogram is Det(T)* area of unit square

$$T = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
 then Area(P) = Det(T) * area of unit square det(T) = 4

Matrix Multiplication

$$C_{m\times p} = A_{m\times n} \ B_{n\times p} \qquad c_{ij} = \sum a_{ik} \ b_{kj} \ \text{for k=1 to n for each ij}$$

A columns needs to be equal to B rows, to have a possible multiplication.

C₁₁=a₁₁ b₁₁+a₁₂h b_{file2}is meant for personal use by compath 1690@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Matrix Properties: Not Commutative

$$A_{n\times n} B_{n\times n} \neq B_{n\times n} A_{n\times n}$$

 $c_{11} = a_{11} b_{11} + a_{12} b_{12} + \dots + a_{1n} b_{n1}$

AxB need not be equal to BxA

$$c_{11} = b_{11} a_{11} + b_{12} a_{12} + \dots + b_{1n} a_{n1}$$

Matrix Properties: Not Commutative

$$A_{n\times n} B_{n\times n} \neq B_{n\times n} A_{n\times n}$$

$$\left(\begin{array}{ccc}
2 & 1 \\
3 & 1
\end{array}\right)
\left(\begin{array}{ccc}
1 & 0 \\
1 & 2
\end{array}\right)
\left(\begin{array}{ccc}
3 & 2 \\
4 & 2
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 \\
1 & 2
\end{array}\right)
\left(\begin{array}{ccc}
2 & 1 \\
3 & 1
\end{array}\right)
\left(\begin{array}{ccc}
2 & 1 \\
8 & 3
\end{array}\right)$$

Matrix Operations (Dot/ Inner product)

	Α		В		С		
	2	1	1 0	1	3		
	3	1	1 2		4		
A*(B*C)	2	1	1	3		7 8	17 20
	3	1	5	11			20
(A*B)*C		3	2	1	3	7	17
		4	2	2	4	8	20

Identity Matrix Transformation

Transform

Identity Matrix & Matrix Inverse

As seen earlier, say for a 3 X 3 Matrix, Identity Matrix would be

Matrix Inverse (A⁻¹ is a Matrix which reverses/ nullifies the transformations caused by Matrix A

$$AI = A$$

$$A A^{-1} = I$$

Matrix Transform can be viewed as Changing PES

New Basis

$$\left(\begin{array}{ccc}
2 & & 1 \\
0 & & 3
\end{array}\right)
\left(\begin{array}{ccc}
2 \\
1
\end{array}\right)$$

Revisiting the Simultaneous Equations

2D example for easy visualization

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \qquad \begin{bmatrix} a \\ b \end{bmatrix} \equiv \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A \qquad X = B$$

$$A X = B$$

$$A^{-1} (A X) = A^{-1}B$$

$$(A^{-1}A) X = A^{-1}B$$

Physical Meaning of Matrix Inverse

$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \qquad \begin{bmatrix} a \\ b \end{bmatrix} \equiv \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A \qquad X = B$$

- Applying a transformation of A on the vector X results in the vector B
- To find X, we need to apply a transformation on B which would inverse/reverse the effect of the transformation of A
- The A⁻¹ transforms a inverse of the transformation introduced by A
- If we know the vector (B) in the transformed space, we can get the vector X by removing the effect of the transform
 This file is meant for personal use by somnath1690@gmail.com only.

 Sharing or publishing the contents in part or full is liable for legal action.

Physical Meaning of Matrix Inverse on Space

 Applying a transformation of A on the the space (Light blue) results in the space (Dark blue)

Physical Meaning of Matrix Inverse on Space

- Say, we have the transformed space, we need to apply a transformation on the same, which
 would inverse/reverse the effect of the transformation of A
- The A⁻¹ transforms a inverse of the transformation introduced by A
- If we know the vector (B) in the transformed space, we can get the vector X by removing the
 effect of the transform

Physical Meaning of Matrix Inverse (Example)

Gaussian Elimination to get Matrix Inverses (1/5)

$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 11 \\ 15 \\ 19 \end{bmatrix}$$

$$\mathbf{R_3 -> R_3 - R_2 - R_1}$$

$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 0 & -1 & -6 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 11 \\ 15 \\ -7 \end{bmatrix}$$

Gaussian Elimination to get Matrix Inverses (2/5)

Gaussian Elimination to get Matrix Inverses(3/5)

Gaussian Elimination to get Matrix Inverses (4/5)

Gaussian Elimination to get Matrix Inverses (5/5)

Orthogonal Matrix

A matrix with orthonormal row and column vectors is called an orthogonal matrix.

Some useful properties:

- An orthogonal matrix Q is necessarily invertible (with inverse $Q^{-1} = Q^{T}$),
- The determinant of any orthogonal matrix is either +1 or −1.
- As a linear transformation, an orthogonal matrix preserves the inner product of vectors, such as a rotation, reflection or rotoreflection. In other words, it is a unitary transformation.

Orthogonal Matrix (Examples)

$$\begin{array}{ccccc}
v_1 & v_2 & v_3 \\
\hline
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1 & 0 \\
1/\sqrt{2} & 0 & -1/\sqrt{2}
\end{array}$$

 $V_1.V_2 = V_2.V_3 = V_1.V_3 = 0$

$$v_1.v_2 = v_2.v_3 = v_1.v_3 = 0$$

$$|v_1| = |v_2| = |v_3| = 0$$
 $|v_1| = |v_2| = |v_3| = 0$

Gram - Schmidt Process

Converts a matrix of column vectors u_1, u_2, \dots, u_n to an orthogonal matrix v1, v2.... v_n

The steps in Gram-Schmidt process

- Normalize the first column vectors (u₁) of the matrix to compute v₁
- Compute w₂ by removing the vector projection of u₂ in v₁ from u₂ and normalizing the vector w₂ shall provide v₂
- Compute w₃ by removing the vector projection of u₃ in v₁ and v₂ from u₃ and normalizing the vector w₃ shall provide v₃
-
- Compute w_n by removing the vector projection of u_n in v₁,v₂ to v_{n-1} from u_n and normalize the vector w_n shall provide v_n

Gram-Schmidt Process- Explanation

This file is meant for personal use by sommation of grading m only. Sharing or publishing the contents in part or full is liable for legal action.

= (0, 3, 4)

Gram-Schmidt Process- Explanation (Continued)

$$\begin{pmatrix}
 u_1 & u_2 & u_3 \\
 2 & 2 & 4 \\
 0 & 3 & 5 \\
 0 & 4 & 5
\end{pmatrix}$$

$$u_3 = (4,5,5)$$

 $w_3 = u_3 - (u_3 \cdot v_1) v_1 - (u_3 \cdot v_2) v_2$
 $= (4,5,3) - 4(1,0,0) - 7(0,3/5,4/5)$
 $= (0,4/5,-3/5)$
 $v_3 = w_3/|w_3| = (0,4/5,-3/5)$

$$v_1 = (1, 0, 0)$$

$$v_2 = (0,3/5,4/5)$$

$$v_2 = (0,4/5, -3/5)$$

Gram-Schmidt Process (through python code)


```
    2
    3
    4

    3
    4
    5

    5
    6
    5
```

```
array([[ 0.32444284, 0.78039897, 0.57601367], [ 0.48666426, 0.34684399, 0.57851808], [ 0.81110711, -0.52026598, -0.57751631]])
```

Revisiting the Changing basis through transform

- Lets assume that $\{u_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \}$ be basis vector
- Let $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ be vector with respect to $\{u_1, u_2\}$
- Then How to rotate by 45 degree $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ in $\{u_1, u_2\}$
- First transform $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ to with respect to standard basis $\Rightarrow \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- Then rotate the result by 45 degree $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- Again Transform result to $\{u_1, u_2\}$ i.e $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 1 \end{bmatrix}$ This file is meant for personal use by somr at 1690 pm all.com only.

 Sharing or publishing the contents in part or full is liable for legal action.

Revisiting the Changing basis through transform PES

New Basis

$$\left(\begin{array}{ccc}
2 & & 1 \\
0 & & 3
\end{array}\right)
\left(\begin{array}{ccc}
2 \\
1
\end{array}\right)$$

Rotation in the New Basis (1/2)

New Basis (B)

$$\mathbf{R} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$

Rotation in the New Basis (2/2)

B⁻¹ of the transformed space and Vector (5,3) of new space

B-1

$$\begin{pmatrix}
1/\sqrt{2} & 1/\sqrt{2} \\
1/\sqrt{2} & -1/\sqrt{2}
\end{pmatrix}$$

B of the normal space and the rotated vector in the new space

Rotation(in old basis) in the New Basis

Eigen Vector and Eigen Values- Physical Significance

Eigen - means 'Characteristic' or Special

For this Transformation, The horizontal and vertical vectors are the Eigen vectors.

Eigen Vector and Eigen Values- Physical Significance

For this Transformation, The light red vectors are the Eigen vectors

array([[0.85065081,

0.38196601+0.j]

-0.52573111],

Eigen Vector and Eigen Values- Physical Significance

The eigen vectors and values remain the same for any Transformation

PES

Eigen Vector and Eigen Values- Derivation

$$A X = \lambda X$$

$$A X - \lambda X = 0$$

$$(A - \lambda I) X = 0$$

$$1 \qquad 1 \qquad x_1 \\ y_1 \qquad = \lambda \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

$$(\mathbf{A}-\lambda \mathbf{I}) \qquad \qquad \mathbf{X} = \mathbf{0}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \mathbf{\lambda} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Eigen Vector and Eigen Values

Determinant of $(A-\lambda I) = 0$

$$\lambda = 2.618$$

$$0.618 x_1 = y_1$$

$$x_1/y_1=1/(0.618)$$

$$\lambda = 0.3813$$

$$\mathbf{x_1}$$

$$(2-0.3813) x_1+y_1=0$$

$$x_1/y_1 = -1/(1.618)$$

Significance of Eigen values and Eigen

vectors

- Eigen vectors represent those axes of perception/learning along which we can know/understand/perceive things around us in very effective way(s).
- For example, a 2D image captures most of the information captured by 3D image. The front facing 2D place with the X and Y axis is sufficient to understand the 3D object.
- This helps in differentiating different objects in 3D with just its 2D representation (a 2D image).
- The magnitude of change in the eigen space is the eigen value which helps in differentiation. Hence eigen vectors with higher values are significant and lower ones are discarded.

Eigen basis and Transformations

$$E^{-1}TE = D$$

 $T = EDE^{-1}$

Where, E is the Eigen vectors matrix of T and D is the Diagonal matrix of corresponding eigen values

$$=EDIDE^{-1}$$

$$=ED^2E^{-1}$$

$$T^n = ED^nE^{-1}$$

Eigen basis and Transformations

Eigen basis and Transformations

Appendix

Rotation transformation:

- Determinant of matrix A: B = det(A)
- To calculate rank : from numpy.linalg import matrix_rankrank = matrix_rank(A)
- Inverse of matrix: from numpy.linalg import inv inv_A = inv(A)
- Eigen Values and Eigen Vectors: import scipy.linalg as la

eigvals, eigvecs = la.eig(T) #T is a Matrix

Thank You