Разработка среды для построения структур белковых алгоритмов

Рак Алексей

23 мая 2018 г.

План

🚺 Среда

2 Алгоритм выравнивания

Отражения предостать предоставляющий предо

PyMOL

Структурное выравнивание

• $CA \leq \sigma$

- $CA \leq \sigma$
- GDT_TS

- $CA \leq \sigma$
- GDT_TS
- ALo

- $CA \leq \sigma$
- GDT_TS
- ALo
- MaxSub

- $CA \leq \sigma$
- GDT_TS
- ALo
- MaxSub
- TM-score

- $CA \leq \sigma$
- GDT_TS
- ALo
- MaxSub
- TM-score
- Q-score

Альфа-карбоны

Пространство допустимых решений

$$t = (\alpha, \beta, \gamma, u, v, w)$$

$$I = [0, 2\pi] \times [0, \pi] \times [0, 2\pi] \times [-M_x, m_x] \times [-M_y, M_y] \times [-M_z, M_z]$$

$$M_x = \frac{m_x^a + m_x^b}{2}$$

$$M_y = \frac{m_y^a + m_y^b}{2}$$

$$M_z = \frac{m_z^a + m_z^b}{2}$$

$$r_{lpha,\gamma} = rac{6\sqrt{2}\pi R_b}{arepsilon} \ r_{eta} = rac{3\sqrt{2}\pi R_b}{arepsilon} \ s_{eta} = 1 + rac{2\sqrt{3}M_{eta}}{arepsilon} \ s_{eta} = 1 + rac{2\sqrt{3}M_{eta}}{arepsilon} \ d_{eta} = rac{arepsilon}{3\sqrt{2}R_b} \ d_{eta} = rac{arepsilon}{\sqrt{3}} \ d_{eta} = rac{arepsilon}{\sqrt{3}} \ d_{eta}$$

Временная сложность

В arepsilon-сети находится $O(rac{n^6}{arepsilon^6})$ ячеек.

Для подсчёта результата метрики требуется $O(n^2)$ времени.

Общая сложность алгоритма $O(\frac{n^8}{arepsilon^6})$.

Поиск оптимального решения

```
1: \varepsilon \leftarrow 1

2: t_{\varepsilon}^{\sigma} \leftarrow \text{EPSILON} - \text{OPTIMAL}(a, b, \sigma, \varepsilon)

3: t_{e}ps^{\sigma-\varepsilon} \leftarrow \text{EPSILON} - \text{OPTIMAL}(a, b, \sigma - \varepsilon, \varepsilon)

4: \varepsilon \leftarrow \frac{\varepsilon}{2}

5: while |S(a, t_{\varepsilon}^{\sigma}(b), \sigma + \varepsilon)| - |S(a, t_{\varepsilon}^{\sigma-\varepsilon}(b), \sigma) > 0 do

6: t_{\varepsilon}^{\sigma} \leftarrow \text{EPSILON} - \text{OPTIMAL}(a, b, \sigma, \varepsilon)

7: t_{e}ps^{\sigma-\varepsilon} \leftarrow \text{EPSILON} - \text{OPTIMAL}(a, b, \sigma - \varepsilon, \varepsilon)

8: \varepsilon \leftarrow \frac{\varepsilon}{2}

9: end while

10: return t_{\varepsilon}^{\sigma-\varepsilon}
```

База данных Scope

Набор для тестирования содержит 195 пар белков связанных на различных условиях согласно структурной классификации SCOP: 57 family пар, 75 superfamily пар, и 63 fold-пары.

Таблица: Общее число пар в тестовом наборе, которые могут быть наложены на расстояние не превосходящем 3 Å

	MAX-PAIRS	LGA	TM-alogn	Mammoth	Mustang
Family	4689	4585	4460	4264	4231
Superfamily	4378	4247	4140	3713	3319
Flod	2870	2720	2634	2100	1834

База данных Scope

Набор для тестирования содержит 195 пар белков связанных на различных условиях согласно структурной классификации SCOP: 57 family пар, 75 superfamily пар, и 63 fold-пары.

Таблица: Общее число пар в тестовом наборе, которые могут быть наложены на расстояние не превосходящем 5 $\hbox{\normalfont\AA}$

	MAX-PAIRS	LGA	TM-alogn	Mammoth	Mustang
Family	5261	5130	5059	5019	4983
Superfamily	5240	5033	4928	4702	4532
Flod	3575	3409	3279	2842	2816