ゼミノート#3

Sheaves on a Site, continued.

七条彰紀

2018年11月6日

1 Propositions : Sheaves.

定理 1.1

C:: site とする. 忘却関手

$$Fgt \colon \mathbf{Sh}(\mathbf{C}) \to \mathbf{PSh}(\mathbf{C}).$$

は left adjoint functor :: Shff を持つ.

注意 1.2

以下で述べる *Shff* の構成は "plus construction"と呼ばれる. Kay Werndli "Sheaves From Scratch" §3.5 では etale bundle という物を用いた構成をしている.

証明のために幾つか定義しておく.

定義 **1.3** ([5], Tag 00W1)

 $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ と、 $X \in \mathbf{C}$ の cover :: $\mathcal{U} = \{U_i \to X\} \in \mathrm{Cov}(X)$ に対し、

$$H^0(\mathcal{U}, \mathcal{F}) = \text{equalizer of } \left[\prod_{i \in I} \mathcal{F}(U_i) \Longrightarrow \prod_{(i,j) \in I \times I} \mathcal{F}(U_i \times_X U_j) \right]$$

ここで二つの並行射はそれぞれ $\operatorname{res}_{U_i}^{U_i \times U_j}, \operatorname{res}_{U_j}^{U_i \times U_j}$ である。すなわち,ここにある並行射は sheaf の定義にあるものである。この diagram は圏 **Sets** の中のものなので,**index ::** I が集合ならばこの equalizer は常に存在する。 $(H^0$ という記号は,これが $\mathcal F$ の 0 次 Čech cohomology であることによる。)

直ちに分かるとおり、 $\mathrm{Cov}(X)$ は細分を射として圏を成し、 $H^0(-,\mathcal{F})$ は圏 $\mathrm{Cov}(X)$ から **Sets** への反変関手である. \mathcal{F}^+ は

$$\mathcal{F}^+(X) = \operatorname{colim}_{\mathcal{U} \in \operatorname{Cov}(X)} H^0(\mathcal{U}, \mathcal{F}) = \operatorname{colim}(\operatorname{Cov}(X) \to^{H^0(-, \mathcal{F})} \mathbf{Sets}).$$

と定義される $^{\dagger 1}$. 任意の $\mathcal{U} \in \mathrm{Cov}(X)$ について、常に標準的全射 $\iota_{\mathcal{U}} \colon H^0(\mathcal{U}, \mathcal{F}) \to \mathcal{F}^+(X)$ が存在する.

$$(\tilde{s}_U|_W)_{W\ni W\subseteq U\in\mathcal{U}}=(\tilde{t}_V|_W)_{W\ni W\subseteq V\in\mathcal{V}}$$

となる.

^{†1} 定義から, $s,t\in\mathcal{F}^+(X)$ が等しいとは, 以下が成り立つこと: s,t へそれぞれ写る $(\tilde{s}_U)_{U\in\mathcal{U}}\in H^0(\mathcal{U},\mathcal{F}), (\tilde{t}_V)_{V\in\mathcal{V}}\in H^0(\mathcal{V},\mathcal{F})$ が存在し, \mathcal{U},\mathcal{V} の共通のある細分 \mathcal{W} において

 $H^0(\{\operatorname{id}_X\colon X\to X\},\mathcal{F})=\mathcal{F}(X)$ であり、しかも任意の cover of X は id_X の細分であるから、X 毎に標準的な射 $\theta\colon \mathcal{F}(X)\to \mathcal{F}^+(X)$ が存在する.

$$\mathcal{F}(X) \xrightarrow{\theta} \mathcal{F}^{+}(X)$$

$$\downarrow \qquad \qquad \uparrow \qquad \uparrow$$

$$\mathcal{F}(X) \in \left\{ H^{0}(\mathcal{U}, \mathcal{F}) \xrightarrow{\theta} H^{0}(\mathcal{U}', \mathcal{F}) \right\}_{\mathcal{U}, \mathcal{U}'}$$

定義 1.4

presheaf :: $P \in \mathbf{PSh}(\mathbf{C})$ は以下を満たす時 separated であるという.

$$\forall X \in \mathbf{C}, \quad \forall \{U_i \to X\}_i \in \text{Cov}(X), \quad \mathcal{P}(X) \to \prod_{i \in I} \mathcal{P}(U_i) :: \text{ inj.}$$

補題 1.5 (A)

site :: \mathbf{C} , presheaf :: $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ を考える. 任意の $X \in \mathbf{C}$, $\mathcal{U} \in \mathrm{Cov}(X)$, $U_0 \in \mathcal{U}$ について,以下の図式は可換である.

(証明). 適当に $(\tilde{s}_U)_{U \in \mathcal{U}} \in H^0(\mathcal{U}, \mathcal{F})$ をとり、 $s = \iota_{\mathcal{U}}((\tilde{s}_U)_{U \in \mathcal{U}}) \in \mathcal{F}^+(X)$ とする.

 $(\tilde{s}_U)_{U\in\mathcal{U}}$ から $(\tilde{s}_U|_{U\times U_0})_{U\in\mathcal{U}}$ への 2 本の射が一致するのは, $H^0(\mathcal{U},\mathcal{F})$ の定義から従う

$$\tilde{s}_U|_{U\times U_0} = \tilde{s}_{U_0}|_{U\times U_0}$$

が理由である.

補題 1.6 (B)

任意の $X \in \mathbb{C}$ と $U, V \in \text{Cov}(X)$ に対し、U, V の共通の細分が存在する.

(証明). 具体的に

$$\mathcal{U} \times \mathcal{V} = \{U \times V \to U \to X \mid U \in \mathcal{U}, \mathcal{V} \in \mathcal{V}\} = \{U \times V \to V \to X \mid U \in \mathcal{U}, \mathcal{V} \in \mathcal{V}\}$$

と取れば良い.

補題 1.7

site :: \mathbf{C} , presheaf :: $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ について以下が成り立つ.

(a) \mathcal{F}^+ :: separated.

(b) \mathcal{F}^+ :: sheaf if \mathcal{F} :: separated.

(c) $\theta \colon \mathcal{F} \to \mathcal{F}^+ :: \text{ iso if } \mathcal{F} :: \text{ sheaf.}$

(d) $\theta \colon \mathcal{F} \to \mathcal{F}^+ :: universal,$

(証明).

■ \mathcal{F}^+ :: separated. $X \in \mathbb{C}$ をとり、 $s, t \in \mathcal{F}^+(X)$ をとる. ある cover of $X :: \mathcal{U} \in \text{Cov}(X)$ について

$$\forall U \in \mathcal{U}, \ s|_U = t|_U$$

が成り立つと仮定してs=tを示す.

まず、 $\iota_{\mathcal{U}'}\big((\tilde{s}_{\mathcal{U}'})_{\mathcal{U}'\in\mathcal{U}'}\big)=s$ となる様に $\mathcal{U}'\in\mathrm{Cov}(X)$ と $(\tilde{s}_{\mathcal{U}'})\in H^0(\mathcal{U}',\mathcal{F})$ をとる。 \mathcal{U}' を必要に応じて更に細かくとれば、t についても同様の $(\tilde{t}_{\mathcal{U}'})\in H^0(\mathcal{U}',\mathcal{F})$ が存在するように出来る。さらに、 \mathcal{U}' を \mathcal{U} の細分とする。

この時、補題 $A \ge U'$ が U の細分であることと仮定から

$$s|_{U'} = \theta(\tilde{s}_{U'}) = \theta(\tilde{t}_{U'}) = s|_{U'} \ (\in \mathcal{F}^+(U')).$$

したがって $\mathcal{F}^+(U')$ の定義から,各 U' について以下のような条件を満たす $\mathcal{V}_{U'}\in\mathcal{V}(U')$ が存在する: $(\tilde{s}_V')_{V\in\mathcal{V}_{U'}}, (\tilde{s}_V')_{V\in\mathcal{V}_{U'}}\in H^0(\mathcal{V}_{U'}, \mathcal{F})$ であって

$$\iota\left((\tilde{s}'_V)_{V\in\mathcal{V}_{U'}}\right) = s|_{U'}, \quad \iota\left((\tilde{t}'_V)_{V\in\mathcal{V}_{U'}}\right) = t|_{U'}$$

となるならば $(\tilde{s}_V')_{V\in\mathcal{V}_{U'}}=(\tilde{t}_V')_{V\in\mathcal{V}_{U'}}$ となる.これら $\mathcal{V}_{U'}$ 達を束ねて \mathcal{U}' の細分 $\mathcal{V}=\{V\to U'\to U\to X\}\in\mathrm{Cov}(X)$ を得る. $(\tilde{s}_{U'}),(\tilde{t}_{U'})$ も細分して

$$\tilde{s} = (\tilde{s}_{U'}|_V)_{V \ni V \subset U' \in \mathcal{U}'}, \ \tilde{t} = (\tilde{t}_{U'}|_V)_{V \ni V \subset U' \in \mathcal{U}'} \in H^0(\mathcal{U}^2, \mathcal{F})$$

を得る.

以上の議論から、各U'について

$$\forall U' \in \mathcal{U}', \ \forall V \in \mathcal{V}, \ V \subseteq U' \implies \tilde{s}'_V = \tilde{t}'_V \in H^0(\mathcal{V}, \mathcal{F}).$$

 \mathcal{V} は \mathcal{U}' の細分だから,これは結局 $\tilde{s}=\tilde{t}$ ということである.さらに, \tilde{s},\tilde{t} は $(\tilde{s}_{U'})_{U'\in\mathcal{U}'},(\tilde{t}_{U'})_{U'\in\mathcal{U}'}$ の細分^{†2} であり,したがって $\iota_{\mathcal{V}}(\tilde{s})=s,\iota_{\mathcal{V}}(\tilde{t})=t$.以上より,s=t.

■ \mathcal{F}^+ :: sheaf if \mathcal{F} :: separated. \mathcal{F} :: separated 故に $\mathcal{F}(X) \to H^0(\mathcal{U}, \mathcal{F})$:: inj なので θ :: inj. cover of X :: $\mathcal{U} = \{U_i \to X\}_{i \in I} \in \operatorname{Cov}(X)$ と、以下を満たす元 $(s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}^+(U_i)$ をとる:

$$\forall i, i' \in I, \quad s_i|_{U_i \times U_{i'}} = s_{i'}|_{U_i \times U_{i'}}$$
 (*)

すると補題 A より,

$$\theta(\tilde{s}_{i,j}) = s_i|_{U_{i,j}}$$

 $[\]dagger^2$ 被覆の細分に合わせた呼び方である. 多分, $H^0(-,\mathcal{F})$ の元に用いるのは独自の用法.

となる $\{U_{i,j} \to U_i\} \in \mathrm{Cov}(U_i)$ と $\tilde{s}_{i,j} \in \mathcal{F}(U_{i,j})$ がとれる. 各被覆の包含関係は以下の通り.

(*) から,

$$\theta(\tilde{s}_{i,j}|_{U_{i,j}\times U_{i',j'}}) = s_i|_{U_{i,j}\times U_{i',j'}} = s_{i'}|_{U_{i,j}\times U_{i',j'}} = \theta(\tilde{s}_{i',j'}|_{U_{i,j}\times U_{i',j'}}).$$

 θ :: inj より, $\tilde{s}_{i,j}|_{U_{i,j}\times U_{i',j'}}=\tilde{s}_{i',j'}|_{U_{i,j}\times U_{i',j'}}$. したがって $(\tilde{s}_{i,j})\in H^0(\{U_{i,j}\to U\},\mathcal{F})$ であり,ここから $s\in\mathcal{F}^+(X)$ が得られる.最後に,各i について

$$\forall j, \ \theta(s_{i,j}) = s|_{U_{i,j}} = (s|_{U_i})|_{U_{i,j}} = s_i|_{U_{i,j}}$$

なので、 \mathcal{F} :: separated より、 $s|_{U_i} = s_i$.

■ θ : $\mathcal{F} \to \mathcal{F}^+$:: **iso if** \mathcal{F} :: **sheaf.** \mathcal{F} :: sheaf であるとき,定義から任意の $\mathcal{U} \in \text{Cov}(X)$ について $H^0(\mathcal{U},\mathcal{F}) \cong \mathcal{F}(X)$. なので θ :: iso.

■ θ : $\mathcal{F} \to \mathcal{F}^+$:: universal. $Shff(-) = ((-)^+)^+$ とすると、これが sheafification functor となる. その UMP を見よう. $\mathcal{F} \in \mathbf{PSh}(\mathbf{C}), \mathcal{G} \in \mathbf{Sh}(\mathbf{C})$ とする. θ : $\mathrm{id}_{\mathbf{Sh}(X)} \to Shff$ の naturality から、次の可換図式が 得られる.

$$\begin{array}{ccc}
\mathcal{F} & \longrightarrow Shff \mathcal{F} \\
\downarrow & & \downarrow \\
\mathcal{G} & \stackrel{\sim}{\longrightarrow} Shff \mathcal{G}
\end{array}$$

 $\theta_{\mathcal{G}}\colon \mathcal{G} \to \mathit{Shff}\mathcal{G}$:: iso だから, $\mathcal{F} \to \mathcal{G}$ から $\mathit{Shff}\mathcal{F} \to \mathcal{G}$ が得られた.次に,以下で示す可換図式 (1) が与えられたとしよう.全体を Shff で写し, $\mathit{Shff}|_{\mathbf{Sh}(X)} \cong \mathrm{id}_{\mathbf{Sh}(X)}$ を用いて可換図式 (2) が得られる.

したがって f = g. 以上で existence & uniqueness が示せた.

 $proof\ of\ Thm(1.1)$. 私のノート $^{\dagger 3}$ の Ex1.12 で θ の UMP(universal map property, [1]) から left adjointness を証明している.

命題 1.8

topos has small limits and small cocomplete.

(証明). 前半は small product と equalizer を構成すればよい. 後半は $Shff: \mathbf{PSh}(\mathbf{C}) \to \mathbf{Sh}(\mathbf{Cat}C)$ が left adjoint functor 故に colimit と交換することを用いれば良い.

^{†3 [2]} ch.I sec.1 の演習問題への解答: https://github.com/ShitijyouA/MathNotes/blob/master/Hartshorne_AG_Ch2/section1_ex.pdf

以下の2つはセミナー内で将来証明を扱う.

定理 1.9 ([4] 4.1.2)

 $X \to Y$:: morphism of schemes とする. representable sheaf:: \underline{X} は $\operatorname{Fppf}(Y)$ 上の sheaf である. したがって fppf topology より荒い位相を持つ site, 特に big et ale site:: $\operatorname{ET}(Y)$ でも sheaf である.

命題 1.10

任意の presheaf は colimit of representable sheaves として表現できる

(証明). 証明は(各点) 左 Kan 拡張を用いて,

$$\mathcal{P} = (\operatorname{Lan}_y y)(\mathcal{P}) = \operatorname{colim}(y \downarrow \mathcal{P} \to^{\pi_1} \mathbf{C} \to^y \mathbf{PSh}(\mathbf{C})).$$

ここで $y \colon \mathbf{C} \to \mathbf{PSh}(\mathbf{C})$ は米田埋め込みである.([1] $\operatorname{Prop}8.10$ でも同じ命題が証明されている.)

注意 1.11

Kan 拡張についての資料をメモしておく. alg-d 氏の公開しているノートが日本語で読める上丁寧で、おすすめ. 英語で書かれた Web にある資料では、Jan Pavlík "Kan Extensions in Context of Concreteness" ^{†4}もある.

以下はセミナー内でこれ以上現れないが、Topos theory の重要な定理である.

定理 1.12 (Giraud's theorem)

category :: T について, T が topos であることと T が以下のような圏であることは同値.

- (G1) a locally small category with a small generating set,
- (G2) with all finite limits,
- (G3) with all small coproducts, which are disjoint, and pullback-stable,
- (G4) where all congruences have effective quotient objects, which are also pullback-stable.

参考: https://ncatlab.org/nlab/show/Grothendieck+topos#Giraud.

2 Definitions : Points and Stalks.

以下は small/big etale site のみで使われるものである.

定義 2.1 (Geometric Point, Etale Neighborhood, [4] 1.3.15.)

- (i) X :: scheme に対し、k :: separabely closed field を用いて \bar{x} : Spec $k \to X$ と表される射を geometric point と呼ぶ.
- (ii) geometric point :: \bar{x} : Spec $k \to X$ について, \bar{x} の etale neighborhood とは $U \to X$ が etale である

^{†4} http://arxiv.org/abs/1104.3542v1

ような以下の可換図式のことである.

(iii) geometric point :: \bar{x} : Spec $k \to X$ について, \bar{x} の 2 つの etale neighborhood :: U_1, U_2 を考える. この時, U_1 と U_2 の間の射とは, 以下の図式を可換にする morphism of schemes :: η : $U_1 \to U_2$ のことである.

注意 2.2

geometric point の定義に separabely closed field でなく algebraically closed field を用いることもある.

注意 2.3

より一般的な point of site の定義が存在する([5] Tag 04JU). これは etale か否かに依らず採用できる.しかしこの一般的な定義は複雑であるし,我々は small/big etale site しか扱わないので,我々は以上の定義のみ用いる.

定義 **2.4** (Stalk, [4] 1.3.15.)

X :: scheme, $\mathcal{F} \in \operatorname{Et}(X)$ あるいは $\mathcal{F} \in \operatorname{ET}(X)$ とする. さらに \bar{x} : Spec $k \to X$:: geometric point とする. \bar{x} に対して \bar{x} の etale neighborhood が成す圏を $I_{\bar{x}}$ とする,

(i) $I_{\bar{x}}$ を用いて stalk of \mathcal{F} at \bar{x} を

$$\mathcal{F}_{\bar{x}} := \lim_{U \in I_{\bar{x}}} \mathcal{F}(U)$$

と定義する.

(ii) $U \in I_{\bar{x}}$ について, $\mathcal{F}(U)$ から $\mathcal{F}_{\bar{x}}$ への標準的射がある.この射による $s \in \mathcal{F}(U)$ の像を $s_{\bar{x}}$ と表し,germ of s at \bar{x} と呼ぶ.

3 Definitions: Morphism of Shaves.

定義 3.1 (Injective, Surjective)

(同値な条件を列挙したいので、命題 (5.2, 5.3) を参照せよ.)

4 Examples: Morphism of Shaves.

(良い例を見つけていない.)

5 Propositions: Morphism of Shaves.

定義 5.1 (Kernel, Image.)

 $(im \phi O categorical な定義は https://www.wikiwand.com/en/Image_(category_theory)$ 等にもある.)

命題 5.2

site :: \mathbf{C} 上の sheaf of sets :: \mathcal{F} , \mathcal{G} の間の morphism ϕ : $\mathcal{F} \to \mathcal{G}$ をとる. ϕ について以下の 3 つは同値.

- 1. $\forall U \in \mathbf{C}, \ \phi_U : \mathcal{F}(U) \to \mathcal{G}(U) :: \text{inj},$
- 2. $\forall x :: \text{ geometric point}, \quad \phi_x : \mathcal{F}_x \to \mathcal{G}_x :: \text{ inj},$
- 3. ϕ :: mono.

この同値な条件を満たす射 ϕ は injective であるという.

(証明). morphism between sheaves on a scheme の場合と全く同じである.

命題 5.3

 $\mathbf{C}, \mathcal{F}, \mathcal{G}, \phi \colon \mathcal{F} \to \mathcal{G}$ を前の命題と同様にとる. ϕ について以下の 4 つは同値.

- 1. $\forall U \in \mathbf{C}, \forall s \in \mathcal{G}(U), \exists \{U_i \to U\} \in \mathrm{Cov}(U), \exists t_i \in \mathcal{F}(U_i), \phi_{U_i}(t_i) = s|_{U_i}.$
- 2. $\forall x :: \text{ geometric point}, \quad \phi_x \colon \mathcal{F}_x \to \mathcal{G}_x :: \text{ surj},$
- 3. ϕ :: epi.

この同値な条件を満たす射 ϕ は surjective であるという.

(証明). こちらも, morphism between sheaves on a scheme の場合と全く同じである. 一つだけ証明しよう.

 $\blacksquare \phi :: surj \implies \phi :: epi.$ 以下の図式を考える.

$$\mathcal{F} \xrightarrow{\phi} \mathcal{G} \xrightarrow{\alpha \atop \beta} \mathcal{H}$$

さらに、 $\alpha\circ\phi=\beta\circ\phi$ であると仮定する.示したいのは $\alpha=\beta$ である.したがって任意の $U\in\mathbf{C}$ 上の section :: $t\in\mathcal{G}(U)$ について $\alpha_U(t)=\beta_U(t)$ を示せば良い.仮定 ϕ :: surj より,t に対し,以下を満たす $\{U_i\to U\}\in\mathrm{Cov}(U)$ と $s_i\in\mathcal{F}(U_i)$ がとれる.

$$\phi_{U_i}(s_i) = t|_{U_i} \in \mathcal{G}(U_i).$$

ここで $t|_{U_i}$ は射 $\mathcal{G}(U_i \to U)$: $\mathcal{G}(U) \to \mathcal{G}(U_i)$ による t の像である. 仮定より,

$$\alpha_{U_i} \circ \phi_{U_i}(s_i) = \alpha_{U_i}(t|_{U_i}) = \beta_{U_i}(t|_{U_i}) = \beta_{U_i} \circ \phi_{U_i}(s_i).$$

したがって $(\alpha_U(t))|_{U_i}=(\beta_U(t))|_{U_i}$ を得る. \mathcal{H} :: sheaf, 特に \mathcal{H} :: separated presheaf なので $\alpha_U(t)=\beta_U(t)$.

命題 5.4

 $\mathbf{C}, \mathcal{F}, \mathcal{G}, \phi \colon \mathcal{F} \to \mathcal{G}$ を前の命題と同様にとる. $\phi :: \mathrm{iso}(=\mathrm{inj}+\mathrm{surj})$ と $\phi :: \mathrm{epi}+\mathrm{mono}$ は同値.

(証明). inj \iff mono, surj \iff epi は上のとおりなので、これらを単に合わせただけである.

6 Definitions: Morphism of Topoi.

定義を2つ再掲する.

定義 6.1

T,T':: topoi とする. morphism of topoi :: $f:T\to T'$ とは、以下の 3 つの射 (2 functor and 1 isomorphism.) からなる.

$$f_*: T \to T', \quad f^*: T' \to T, \quad \phi: \operatorname{Hom}_T(f^*(-), -) \xrightarrow{\cong} \operatorname{Hom}_{T'}(-.f_*(-)).$$

定義 6.2

 $f: \mathbf{C} \to \mathbf{C}'$ を functor of sites とする. この時, $F \in \mathbf{PSh}(\mathbf{C})$ について

$$f_*F(-) := F(f(-))$$

とおくと, $f_*F \in \mathbf{PSh}(\mathbf{C}')$ が得られる. f :: continuous functor ならば, $\mathcal{F} \in \mathbf{Sh}(\mathbf{C})$ に対し同様にして $f_*\mathcal{F} \in \mathbf{Sh}(\mathbf{C}')$ が得られる.

これを用いた別の stalk の定義の仕方がある.

定義 6.3 (Stalk, another definition)

1 点からなる空間には一意に位相が入る。そこで一点空間上の sheaf が成す圏を pt と書く.

- (i) point of topos T とは、morphism of topoi $x: pt \to T$ のことである.
- (ii) $\mathcal{F} \in \mathbf{T}$ と point :: $x: pt \to \mathbf{T}$ について、 $\mathcal{F}_x := x^* \mathcal{F}$ を stalk of \mathcal{F} at x と呼ぶ.
- (iii) morphism of sheaves :: $f: \mathcal{F} \to \mathcal{G}$ が isomorphism であることと $x^*f: x^*\mathcal{F} \to x^*\mathcal{G}$ が isomorphism であることが同値(特に $x^*f:$ iso ならば f: iso) であるとき、T: having enough points という.

7 Propositions: Topoi.

命題 7.1

C, C:: site とする. C, C' は small category であると仮定する.

- (i) $f: \mathbf{C} \to \mathbf{C}'$ を functor of sites とする. この時, functor $:: f_*: \mathbf{PSh}(\mathbf{C}) \to \mathbf{PSh}(\mathbf{C}')$ は left adjoint functor を持つ.
- (ii) $f: \mathbf{C} \to \mathbf{C}'$ を continuous functor とする. この時, functor :: $f_*: \mathbf{Sh}(\mathbf{C}) \to \mathbf{Sh}(\mathbf{C}')$ は left adjoint functor を持つ.

(証明). (ii) は (i) から従う. 実際, f_* : $\mathbf{PSh}(\mathbf{C}) \to \mathbf{PSh}(\mathbf{C}')$ の left adjoint functor を f^p とすると, $f^* = \mathit{Shff}\, f^p$ と置けばこれが f_* : $\mathbf{Sh}(\mathbf{C}) \to \mathbf{Sh}(\mathbf{C}')$ の left adjoint functor となる. 証明は Shff :: left adjoint を用いて直接行えば良い. なので (i) のみ示す.

 $f: \mathbf{C} \to \mathbf{C}'$ と $\mathcal{F} \in \mathbf{PSh}(\mathbf{C})$ について、 $f_*\mathcal{F}$ は Kan 拡張の言葉(記号は [3] のもの)を用いて $(f^{op})^{-1}\mathcal{F}$ と書ける.ここで $f^{op}: \mathbf{C}^{op} \to (\mathbf{C}')^{op}$ は射の反転で得られる関手である.したがって、 f_* の左随伴は左 Kan

拡張 Lan fop である. 各点左 Kan 拡張を計算すると,

$$(\operatorname{Lan}_{f^{op}}\mathcal{F})(U) = \operatorname{colim}\left(\ (U \downarrow f)^{op} = f^{op} \downarrow U \xrightarrow{\pi_1} \mathbf{C}^{op} \xrightarrow{\mathcal{F}} \mathbf{Sets}\ \right).$$

ここで $U \downarrow f^{op}$ は Comma 圏で、 π_1 は射影 $[f(V) \to U] \mapsto V$ である。 $f^{op} \downarrow U$ は \mathbf{C}^{op} の部分圏だから、特にこれは small colimit. **Sets** :: cocomplete なのでこの colimit は存在する.

系 7.2

 f_* は limit と交換し、 f^* は colimit と交換する.

注意 7.3

実際に small となる有用な site となると、おそらく殆ど無い。実際、 $\mathrm{ET}(X),\mathrm{Et}(X)$ は large である。しかし $\mathrm{Et}(X)$:: essentially small (i.e. equivalent to small category) なので、適当に $\mathrm{Et}(X)$ の部分圏を取って、その上の category of presheaves が一致するように出来るかも知れない。なお、 Sch/X は essentially small で さえ無い。

しかし、small でないと我々の議論は立ち行かなくなる。なので technical ではあるが、Grothendieck 宇宙の存在を仮定する(宇宙公理を仮定することと同値)などして任意の圏を small とする。

参考文献

- [1] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, U.S.A., 2 edition, 8 2010
- [2] Robin Hartshorne. Algebraic Geometry (Graduate Texts in Mathematics. 52). Springer, 1st ed. 1977. corr. 8th printing 1997 edition, 4 1997.
- [3] Saunders Mac Lane. Categories for the Working Mathematician (Graduate Texts in Mathematics). Springer, 2nd ed. 1978. softcover reprint of the original 2nd ed. 1978 edition, 2010.
- [4] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [5] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.