Mid-term Examination
Date: March 30th, 2016
Duration: 90 minutes

SUBJECT:	Electronic Devices
Dean of School of Electrical Engineering	Lecturer: Tran Van Su, Msc.
Signature:	Signature:
Full name: Tran Van Su	Full name: Tran Van Su

INTRODUCTIONS:

- 1. Only one NOTE of A4-PAPER and calculators allowed during the exam. Books, other materials, and computers are prohibited.
- 2. Answer all questions.

Question 1 (25 Marks)

The Op-Amp used for the design has the approximated frequency response of the voltage gain shown in Fig. 1

- a. Design and plot the inverting amplifier with input resistance of $4K\Omega$ and the 3-dB frequency of 20KHz. (10 Marks)
- b. Design and plot the circuit with the bandwidth of 10^6 Hz. (10 Marks)
- c. Find the bandwidth of the amplifier if the voltage gain is 25dB. (5 Marks)

Question 2 (25 Marks)

An ideal op-amp is connected as Fig. 2a.

- a. If $R_1 = 0$, design R to obtain the differentiator shown in Fig. 2b with $C = 0.01 \mu F$. (10 Marks)
- b. What is the amplitude and phase of the voltage gain at $\omega = 10$ rad/s and at 1000rad/s for question a (R₁ = 0). (5 Marks)
- c. Determine R_1 to limit the absolute of the high frequency gain $|A_v| \approx 100$ with the value of R obtained from question 1. (10 Marks)

Question 3 (25 Marks)

Fig. 3

The constant-voltage-drop model is used for the diode (D) in Fig. 3 with $V_{Do} = 0.65V$. The ideality factor n = 1.

- a) Find the current i_D. (10 Marks)
- b) Find the voltage v_D. (10 Marks)
- c) Compute the DC and AC power dissipated on Diode. (5 Marks)

Question 4 (25 Marks)

A zener diode exhibits a constant voltage of 7.5 V for current not less than 6 mA. It is to be used in the design of a shunt regulator shown in Fig. 4. The load current varies over the range 0 to I_{Lmax} .

- a) Find I_{Lmax}. (10 Marks)
- b) If $I_L = 10$ mA, compute the maximum power dissipation of the zener diode? (5 Marks)
- c) Compute the power dissipated on R if $i_L = 0$. (5 Marks)
- d) If I_S varies from 20mA to 30 mA and I_L varies from 5mA to 20mA. Determine R. (5 marks).

Fig. 4