

Course > Unit 2: ... > Part A ... > 2. Lect...

2. Lecture 4

The following exercises can be done after lecture 4.

4-1

1/1 point (graded)

The image of the unit square (the set of x and y such that $0 \le x \le 1$ and $0 \le y \le 1$) under matrix multiplication by

$$\begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix}$$

is a line segment. The rightmost endpoint of this segment is a point of the form $\binom{a}{b}$. Find a.

$$a = 3$$
 Answer: 3

Solution:

The image of $egin{pmatrix} x \ y \end{pmatrix}$ under this transformation is

$$\left(egin{array}{cc} 3 & -1 \ -6 & 2 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight) = \left(egin{array}{c} 3x - y \ -6x + 2y \end{array}
ight).$$

The first coordinate is maximized by letting $oldsymbol{x}=oldsymbol{1}$ and $oldsymbol{y}=oldsymbol{0}$. Hence $oldsymbol{a}=oldsymbol{3}$.

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

4-2

0/5 points (graded)

True or false: If $\bf A$ is an $n \times n$ matrix, and $\mathbb C^n$ has a basis consisting of eigenvectors of $\bf A$, then $\bf A$ has $\bf n$ distinct eigenvalues.

Solution:

False.

If $\bf A$ has $\bf n$ distinct eigenvalues, then it is guaranteed that $\mathbb C^n$ has a basis consisting of eigenvectors. But there are also some matrices $\bf A$ with repeated eigenvalues (such as $\bf I$) such that $\mathbb C^n$ still has a basis consisting of eigenvectors.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

4-3

5/5 points (graded)

What is the characteristic polynomial of $\begin{pmatrix} 1 & 4 \\ 5 & 9 \end{pmatrix}$?

(Type $m{L}$ to denote the variable $m{\lambda}$ in the polynomial.)

L^2-10*L-11

✓ Answer: L^2-10*L-11

4/14/2018

$$L^2-10\cdot L-11$$

FORMULA INPUT HELP

Solution:

The characteristic polynomial is $\lambda^2-10\lambda-11$.

The characteristic polynomial of a 2×2 matrix **A** is

$$\lambda^2 - \operatorname{tr}(\mathbf{A})\lambda + \det(\mathbf{A})$$

For the given matrix $\bf A$, the trace is $\bf 10$ and the determinant is $\bf -11$. Alternative solution: The characteristic polynomial is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det\begin{pmatrix} \lambda - 1 & -4 \\ -5 & \lambda - 9 \end{pmatrix} = (\lambda - 1)(\lambda - 9) - (-4)(-5) = \lambda^2 - 10\lambda - 11.$$

(One could also use $\det(\mathbf{A} - \lambda \mathbf{I})$; there is no need to change the sign when the size of the matrix is even.)

Submit

You have used 1 of 7 attempts

1 Answers are displayed within the problem

4-4

5/5 points (graded)

What is the characteristic polynomial of $\begin{pmatrix} 0 & 438 & 691 \\ 0 & 1 & 300 \\ 0 & 0 & 2 \end{pmatrix}$?

(Type $oldsymbol{L}$ to denote the variable $oldsymbol{\lambda}$ in the polynomial.)

L^3-3*L^2+2*L

✓ Answer: L^3-3*L^2+2*L

$$L^3-3\cdot L^2+2\cdot L$$

Solution:

The characteristic polynomial is $\lambda(\lambda-1)(\lambda-2)=\lambda^3-3\lambda^2+2\lambda$.

The matrix $\lambda I - A$ is upper triangular with diagonal entries λ , $\lambda - 1$, $\lambda - 2$, so its determinant is $\lambda(\lambda - 1)(\lambda - 2)$.

Submit

You have used 2 of 10 attempts

1 Answers are displayed within the problem

2. Lecture 4

Topic: Unit 2: Linear Algebra, Part 2 / 2. Lecture 4

Hide Discussion

Add a Post

Show all posts ▼ by recent activity ▼

There are no posts in this topic yet.

×

Learn About Verified Certificates

© All Rights Reserved