Rešenja – Prijemni ispit 2024/2025 – OET

Zadatak 1. U vakumu se nalazi provodna kugla naelektrisana nepoznatom količinom elektriciteta Q. Poluprečnik kugle je r. Pri pomeranju tačkastog naelektrisanja $Q_p = 2$ pC iz tačke A u tačku B elektrostatička sila izvrši rad od 270 pJ. Tačke A i B su na rastojanju r_A , odnosno r_B od centra kugle. Poznato je r = 3 mm, $r_A = 5$ cm i $r_B = 2$ cm. Odrediti:

- 1) Napon U_{AB} ;
- 2) Naelektrisanje Q i potencijal V kugle u odnosu na referentnu tačku u beskonačnosti i
- 3) Jačinu elektrostatičkog polja u centru kugle.

Slika 1.

Rešenje:

a)
$$U_{AB} = \frac{A}{Q_p} = 135 \text{ V}$$

b)
$$U_{AB} = V_A - V_B = k Q \left(\frac{1}{r_A} - \frac{1}{r_B} \right) = k Q \frac{r_B - r_A}{r_B r_A},$$

$$Q = \frac{U_{AB} r_A r_B}{k(r_B - r_A)} = -0.5 \text{ nC}.$$

$$V = k \frac{Q}{r} = -1500 \text{ V}$$

c) Kako je kugla naelektrisana po površini iz uslova elektr
statičke ravnoteže je $\,E_0=0\,.\,$

Zadatak 2. Naći ukupnu otpornost između tačaka A i B sa Slike 2.

Slika 2.

Rešenje:

Slika 2.1.

$$R = R + \frac{R}{2} + \frac{R}{2} = 2R .$$

Zadatak 3. Na krajevima provodnosti $G=20\,\mathrm{mS}$ (videti Sliku 3) izmeren je napon $U_{AB}=-40\,\mathrm{V}$. Kolika je unutrašnja provodnost G_i izvora i kako izgleda ekvivalentni naponski izvor ako je $I_g=0.85\,\mathrm{A}$?

Rešenje:

Za vrednost napona $U_{{\scriptscriptstyle AB}}$ struja I označenog smera je

$$I=U_{\it BA}G=0,8$$
 A , tako da je $I_{\it Gi}=I_{\it g}-I=0,05$ A . Kako se napon $U_{\it AB}$ može izraziti kao
$$U_{\it AB}=-\frac{I_{\it Gi}}{G_{\it i}} \ \ {\rm to} \ {\rm je} \ \ G_{\it i}=1,25 \ {\rm mS} \ .$$

Ekvivalentni naponski izvor ima elektromotornu silu:

$$E = \frac{I_g}{G_i} = 680 \text{ V i vezan je u seriju sa provodnošću } G_i \text{, odnosno unutrašnjom otpornošću}$$

$$R_i = \frac{1}{G_i} = 800\Omega \text{.}$$

Ekvivalentna šema sa naponskim generatorom data je na Slici 3.1.

Slika 3.1.

Zadatak 4. Na Slici 4 su prikazana tri beskonačno duga pravolinijska provodnika sa strujama $I_1 = 100 \, \mathrm{A}$, $I_2 = 150 \, \mathrm{A}$ i $I_3 = 300 \, \mathrm{A}$. Odrediti intenzitet vektora elektromagnetne sile kojom provodnici sa strujama I_1 i I_3 deluju na dužinu od $l = 1 \, \mathrm{m}$ provodnika sa strujom I_2 .

Rešenje:

$$F = I_2 l B = I_2 l \sqrt{\left(\mu_0 \frac{I_1}{2\pi a}\right)^2 + \left(\mu_0 \frac{I_3}{2\pi b}\right)^2},$$

$$F = 0.31 \,\mathrm{N}$$
.

Zadatak 5. Za kolo naizmenične struje prikazano na Slici 5 poznato je $X_{\rm L}$ = 100 Ω , R = 16 Ω , $X_{\rm C}$ = 12 Ω i $U_{\rm C}$ = 24 V. Izračunati efektivnu vrednost struje I.

Slika 5.

Rešenje:

$$I_{1} = \frac{U_{C}}{X_{C}} = 2 \text{ A},$$

$$\underline{Z} = \frac{j X_{L} (R - j X_{C})}{R + j (X_{L} - X_{C})} = (20 - j10) \Omega,$$

$$Z = \sqrt{20^{2} + 10^{2}} = 10\sqrt{5} \Omega,$$

$$\underline{U} = \underline{I}_{1} (R - j X_{C}) \implies U = I_{1} \sqrt{R^{2} + X_{C}^{2}} = 40 \text{ V},$$

$$I = \frac{U}{Z},$$

$$I = \frac{4}{\sqrt{5}} = 0.8\sqrt{5} \text{ A}.$$

Zadatak 6. Na Za kolo prostoperiodične struje na Slici 6 poznati su: $\underline{I}_{\rm g} = 0.9 \cdot (1-{\rm j}2){\rm A}$, $\underline{E} = 0.9 \cdot (14-{\rm j}2){\rm V}$, $\underline{Z} = (10+{\rm j}20)\Omega$, $\underline{Z}_p = (90-{\rm j}20)\Omega$. Odrediti aktivnu snagu prijemnika Z_p .

Rešenje:

Primenom Tevenenove teoreme dobija se

$$\underline{E}_{T} = \underline{U}_{12}^{'} = -\underline{Z}\underline{I}_{g} + \underline{E} = (-32.4 - j1.8) \text{ V},$$

$$\underline{Z}_{T} = \underline{Z} = (10 + j20) \Omega,$$

$$\underline{Z}_{p}$$

$$\underline{Z}_{p}$$

$$Slika 6.3.$$

$$\underline{I}_{p} = \frac{\underline{E}_{T}}{\underline{Z}_{T} + \underline{Z}_{p}} = (-0.324 - j0.018)A,$$

$$I_{p}^{2} = 0.31^{2} + 0.02^{2} = 0.1053 A^{2},$$

$$P = R_{p}I_{p}^{2} = 9.477 W.$$

Универзитет у Крагујевцу Факултет техничких наука у Чачку Основне академске студије 01.07.2024. године

Пријемни испит из

МАТЕМАТИКЕ

1. Израчунати вредност израза:

$$\frac{((-12)^{-8})^{-2} \cdot 75^{-4} \cdot (-4)^{-9}}{(25^{-2})^4 \cdot 18^6 \cdot 10^4}.$$

Решење:

Задати бројни израз можемо написати на следећи начин:

$$\frac{((-12)^{-8})^{-2} \cdot 75^{-4} \cdot (-4)^{-9}}{(25^{-2})^4 \cdot 18^6 \cdot 10^4} = \frac{(-2^2 \cdot 3)^{16} \cdot (3 \cdot 5^2)^{-4} \cdot (-2^2)^{-9}}{(5^2)^{-8} \cdot (2 \cdot 3^2)^6 \cdot (2 \cdot 5)^4}$$

$$= \frac{(-1)^{16} \cdot 2^{32} \cdot 3^{16} \cdot 3^{-4} \cdot 5^{-8} \cdot (-1)^{-9} \cdot 2^{-18}}{5^{-16} \cdot 2^6 \cdot 3^{12} \cdot 2^4 \cdot 5^4}$$

$$= \frac{(-1)^7 \cdot 2^{14} \cdot 3^{12} \cdot 5^{-8}}{2^{10} \cdot 3^{12} \cdot 5^{-12}} = -2^4 \cdot 3^0 \cdot 5^4 = -(2 \cdot 5)^4$$

$$= -10^4 = -10000.$$

2. Решити једначину:

$$\sqrt{3x+4} = 2\sqrt{x} - \sqrt{x-4}.$$

Решење:

Дата једначина има смисла ако је $x \ge 4$. Квадрирањем

$$\sqrt{3x+4} = 2\sqrt{x} - \sqrt{x-4}$$

добија се једначина

$$3x + 4 = 4x - 4\sqrt{x^2 - 4x} + x - 4,$$

односно

$$x - 4 = 2\sqrt{x^2 - 4x}.$$

Поновним квадрирањем добијамо једначину

$$x^2 - 8x + 16 = 4x^2 - 16x$$
.

односно

$$3x^2 - 8x - 16 = 0.$$

Решења ове једначине су x=4 или $x=-\frac{4}{3}$. Провером утврђујемо да x=4 задовољава почетни услов $x\geq 4$, па закључујемо да x=4 јесте решење полазне једначине.

3. Решити једначину:

$$3 \cdot 4^{x} + \frac{1}{3} \cdot 9^{x+2} = 6 \cdot 4^{x+1} - \frac{1}{2} \cdot 9^{x+1}$$

Решење:

Једначину можемо представити у облику

$$3 \cdot 4^x + \frac{1}{3} \cdot 9^x \cdot 81 = 6 \cdot 4^x \cdot 4 - \frac{1}{2} \cdot 9^x \cdot 9,$$

односно

$$3 \cdot 4^x - 24 \cdot 4^x = -\frac{9}{2} \cdot 9^x - 27 \cdot 9^x.$$

Одавде је

$$-21 \cdot 4^x = -\frac{63}{2} \cdot 9^x,$$

односно $\left(\frac{4}{9}\right)^x = \frac{3}{2}$, па је решење ове једначине $x = -\frac{1}{2}$.

4. Решити једначину

$$\sin x + \sin 2x + \sin 3x + \sin 4x = 0.$$

Решење:

На леву страну једначине применимо формуле за трансформацију збира тригонометријских функција у производ на следећи начин:

$$\sin x + \sin 2x + \sin 3x + \sin 4x = (\sin x + \sin 2x) + (\sin 3x + \sin 4x)$$

$$= 2 \sin \frac{x + 2x}{2} \cos \frac{x - 2x}{2} + 2 \sin \frac{3x + 4x}{2} \cos \frac{3x - 4x}{2}$$

$$= 2 \sin \frac{3x}{2} \cos \frac{x}{2} + 2 \sin \frac{7x}{2} \cos \frac{x}{2} = 2 \cos \frac{x}{2} \left(\sin \frac{3x}{2} + \sin \frac{7x}{2} \right)$$

$$= 2 \cos \frac{x}{2} \left(2 \sin \frac{\frac{3x}{2} + \frac{7x}{2}}{2} \cos \frac{\frac{3x}{2} - \frac{7x}{2}}{2} \right) = 4 \cos \frac{x}{2} \sin \frac{5x}{2} \cos x.$$

Дату једначину можемо записати у облику

$$4\cos\frac{x}{2}\sin\frac{5x}{2}\cos x = 0,$$

па је $\cos\frac{x}{2}=0$ или $\sin\frac{5x}{2}=0$ или $\cos x=0,$ односно $x=\pi+2k\pi$ или $x=\frac{2k\pi}{5}$ или $x=\frac{\pi}{2}+k\pi,$ за $k\in\mathbf{Z}.$

5. Одредити вредност параметра m тако да права 2x-y+3=0 буде нормална на праву (2m-1)x+(m+1)y-2=0.

Решење:

Како праве треба да су узајамно нормалне, производ њихових коефицијената мора бити једнак -1. Напишимо праву (2m-1)x+(m+1)y-2=0 у експлицитном облику. Важи да је

$$(m+1)y = -(2m-1)x + 2,$$

односно

$$y = -\frac{2m-1}{m+1}x + \frac{2}{m+1}.$$

Такође, праву 2x-y+3=0 напишимо у експлицитном облику y=2x+3. На основу експлицитних облика правих, можемо закључити да су им коефицијенти праваца $k_1=2$ и $k_2=-\frac{2m-1}{m+1}$. Њиховим множењем, добијамо једначину

$$-\frac{2m-1}{m+1} \cdot 2 = -1 \quad / \cdot (m+1) \neq 0.$$

Коначно добијамо

$$(-2m+1) \cdot 2 = -1 \cdot (m+1),$$

односно

$$-4m + 2 = -m - 1$$
,

одакле је m=1.

6. Наћи пети члан развоја бинома $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^n$ ако је однос коефицијената трећег и другог члана једнак $\frac{7}{2}$.

Решење:

Како је однос коефицијената трећег и другог члана биномног развоја једнак $\frac{7}{2}$, то важи да је

$$\frac{\binom{n}{2}}{\binom{n}{1}} = \frac{7}{2},$$

односно

$$\frac{\frac{n \cdot (n-1)}{2}}{\frac{n}{1}} = \frac{n-1}{2} = \frac{7}{2}.$$

Добијамо да је n-1=7, тј. n=8.

Пети члан развоја бинома једнак је

$$\binom{8}{4} \left(\sqrt{x}\right)^4 \cdot \left(\frac{1}{\sqrt{x}}\right)^4 = \frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2} = 70.$$

пало на земљу $(g = 10 \text{ m/s}^2)$?

него на површини Земље?

за 2 cm?

a) 230 km

a) 1,1 mJ

a) 80 m

занемарљива ($g = 10 \text{ m/s}^2$). Колико је убрзање система?

a) 2 m/s^2 6) 3 m/s^2 B) 5 m/s^2

г) 200 m

г) 1125 km

г) 8,8 mJ

ПРИЈЕМНИ ИСПИТ ИЗ ФИЗИКЕ

1. Са висине од 245 m у односу на земљу започињу да слободно падају два тела у временском размаку од 3 s. На којој висини се налази тело које је касније кренуло у тренутку када је тело које је прво кренуло

в) 165 m

B) 708 km

в) 4,4 mJ

 Γ) 7 m/s²

3. Полупречник Земље износи 6370 km. На коликој висини је убрзање силе Земљине теже за 19 % мање

4. Тело масе 10 g осцилује хармонијски, при чему је амплитуда осциловања 10 cm, а период 0,628 s. За колико ће се променити кинетичка енергија тела у равнотежном положају ако му се амплитуда повећа

5. Електрични отпор проводника A је 20Ω . Проводник B је пет пута краћи од проводника A, а површина попречног пресека му је два пута већа од површине попречног пресека проводника A. Ако су

б) 125 m

б) 552 km

б) 2,2 mJ

2. Два тела маса 2 kg и 5 kg су спојена неистегљивим, лаким концем преко котура занемарљиве масе као на слици. Коефицијент трења између лакшег тела и хоризонталне подлоге је 0,05, а сва остала трења су

проводници направљени од истог материјала, колики је електрични отпор проводника Б?							
a) 1 Ω	6) 1,5 Ω	в) 1,8 Ω	<u>r) 2 Ω</u>				
6. У колу н а) 6 W	а слици одредити б) 12 W		звија на отпорнику г) 27 W	R_2 ? $R_3 = 2\Omega$	$R_1=3\Omega$ $R_2=2\Omega$ $E=26 V$		
7. Колика је висина предмета ако се реалан лик висине 30 cm фомира иза сабирног сочива жижне даљине							
20 cm? Растојање предмета од темена сочива је 50 cm.							
	a) 25 cm	б) 30 cm	<u>в) 45 cm</u>	г) 50 cm			
8. Закочни напон од 4,5 V је измерен током експеримента при којем се емитују електрони са површине метала чији је излазни рад 2,2 eV. Колико износи таласна дужина зрачења које је узроковало фотоелектрични ефекат? (h = $6.62 \cdot 10^{-34}$ Js, e = $1.6 \cdot 10^{-19}$ C).							
a) 165	5 ,6 nm <u>6</u>)	185,4 nm	в) 2,396 ·10 ⁻⁷ m	г) 4,221 ·10 ⁻⁷ m	1		
9. Однос највећих таласних дужина спектралних линија у Лајмановој и Балмеровој серији спектра атома водоника је:							
	a) 5/36	<u>6) 5/27</u>	в) 7/20	г) 15/36			
10. Колика је активност 1 μ g полонијума (Po ²¹⁰), ако је време полураспада полонијума 138 дана? (N _A = 6,02·10 ²³ mol ⁻¹)							
a)	1,4·10 ⁶ Bq	б) 5,3·10 ⁷	Bq в) 8,7·10	⁷ Bq <u>Γ) 1,7·10⁸ Bq</u>			

REŠENJA:

1. Iz uslova zadatka je
$$h=S_A-S_B$$
, $S_A=\frac{1}{2}\cdot g\cdot t_A^2$, $t_A=\sqrt{\frac{2\cdot S_A}{g}}=7s$, $t_B=t_A-\Delta t=4s$, $S_B=\frac{1}{2}\cdot g\cdot t_B^2=80$ m, $h=245$ m -80 m $=$ **165** m (B)

2. Jednačina kretanja lakšeg tela $m_1=2$ kg $m_1\cdot a=T_{21}-F_{tr1}$,

jednačina kretanja težeg tela m_2 = 5 kg $m_2 \cdot a = m_2 \cdot g - T_{12}$, us uslove $T_{12} = T_{21}$ i $F_{tr1} = \mu \cdot m_1 \cdot g$ posle sabiranja jednačina $(m_1 + m_2) \cdot a = m_2 \cdot g - \mu \cdot m_1 \cdot g$, odakle je $a = g \cdot (m_2 - \mu \cdot m_1) / (m_1 + m_2) = 7$ m/s² (Γ)

3. Iz uslova zadatka imamo $\frac{g(h)}{g_0} = 0.81 \text{ a kako je } \frac{g(h)}{g_0} = \frac{\gamma \frac{M}{(R+h)^2}}{\gamma \frac{M}{R^2}} = \frac{R^2}{(R+h)^2} \text{ sledi da je}$

$$0.81 = \frac{R^2}{(R+h)^2}, \qquad h = \frac{R}{\sqrt{0.81}} - R = 707.8 \,\text{km} \approx 708 \,\text{km}$$
 (B)

4.
$$m = 10 g = 10^{-2} kg$$
 $x_0' = 10 cm = 0.1 m$ $T = 0.628 s$ $x_0'' = 12 cm = 0.12 m$ $\Delta E_k = ?$

Pri harmonijskom oscilovanju tela kinetička energija je najveća u ravnotežnom položaju, kao i brzina tela. U ravnotežnom položaju E_k tela jednaka ukupnoj energiji E_0 , dok je $E_p = 0$.

$$E_{k,max}' = E_0' = \frac{1}{2}kx_0'^2$$
 , $E_{k,max}'' = E_0'' = \frac{1}{2}kx_0''^2$

$$k = m\omega^2$$
 , $\omega = \frac{2\pi}{T} = 10 \frac{rad}{s}$

Zamenom k u jednačine za $E_{k,max}$ i $E_{k,max}$ dobija se:

$$E_{k,max}' = \frac{1}{2}m\omega^2 x_0'^2 = 5 \text{ mJ}, E_{k,max}'' = \frac{1}{2}m\omega^2 x_0''^2 = 7.2 \text{ mJ}$$
 i $\Delta E_k = E_{k,max}'' - E_{k,max}' = 2.2 \text{ mJ}$ (6)

5. Iz
$$R_A = \rho \frac{l_A}{S_A} = 20\Omega$$
 i $R_B = \rho \frac{l_B}{S_B}$ sledi da je $\frac{R_A}{R_B} = \frac{\rho \frac{l_A}{S_A}}{\rho \frac{l_B}{S_B}} = \frac{l_A}{l_B} \cdot \frac{S_B}{S_A}$, tj. $\frac{20\Omega}{R_B} = \frac{5l_B}{l_B} \cdot \frac{2S_A}{S_A} = 5 \cdot 2 = 10$, $R_B = \frac{20\Omega}{10} = 2\Omega$. (Γ)

- 6. Struja koja protiče kroz otpornik R₃ i paralelnu vezu otpornika R₁ i R₂ je
- $I = \frac{E}{r + R_3 + \frac{R_1 \cdot R_2}{R_1 + R_2}} = 5 A$, a napon na paralelnoj vezi otpornika $U_{12} = I R_{12} = 6 V$, odakle je struja kroz otpornik R_2

 $I_2=U_{12}/R_2=3~A$, pa se konačno za snagu na otporniku R_2 dobija $P_2=R_2\cdot I_2^2=$ **18 W** (B)

7. Jednačina tankog sočiva je $\frac{1}{f} = \frac{1}{p} + \frac{1}{l} \Rightarrow l = \frac{f \cdot p}{p - f} = \frac{100}{3} cm$,

Uvećanje sočiva se definiše kao $u = \frac{l}{p} = \frac{L}{P} \Rightarrow P = L \cdot \frac{p}{l} = 45 \text{ cm}$ (B)

8. Kada u vakuumskoj cevi prestane da teče fotoelektrična struja pri nekom zakočnom naponu U_z , tada je E_k fotoelektrona jednaka radu elektrostatičkog polja e $\cdot U_z$, gde je e naelektrisanje elektrona. Ajnštajnova relacija fotoelektričnog efekta glasi:

$$h{\cdot}\nu = h\cdot c/\ \lambda = A_i + E_k = A_i + eU_z.$$

Iz ove jednačine je
$$\lambda = \frac{h \cdot c}{A_i + e \cdot U_z} = 185,4 \text{ nm}$$
 (6)

9. Lajman-ova max talasna dužina $1/\lambda_{21} = R_y \cdot (1 - \frac{1}{4})$ Balmer-ova max talasna dužina $1/\lambda_{32} = R_y \cdot (\frac{1}{4} - \frac{1}{9})$

Količnik talasnih dužina je $\lambda_{21}/\lambda_{32} = 5/27$ (6)

$$10. \ m = 1 \mu g = 10^{-6} \ g \qquad M = 210 \ g/mol \qquad T_{1/2} = 138 \ dana = 138 \cdot 86400 \ s = 1,19 \cdot 10^7 \ s$$

$$N_A = 6,02 \cdot 10^{23} \ mol^{-1} \qquad A = ?$$

(1) $n = \frac{m}{M} = \frac{N_n}{N_A}$, gde je n - broj molova, m - masa polonijuma Po, M - molarna masa Po, N_n - broj neraspadnutih jezgara polonijuma Po, N_A - Avogadrov broj.

Aktivnost je: $A = \lambda \cdot N_n$, gde je λ – radioaktivna konstanta.

$$\lambda = \frac{ln2}{T_{1/2}}$$
, gde je $T_{1/2}$ - vreme poluraspada Po.

Iz relacije (1) sledi: $N_n = \frac{mN_A}{M}$. Zamenom λ i N_n u relaciju za aktivnost dobija se:

$$A = \frac{ln2}{T_{1/2}} \cdot \frac{mN_A}{M} \approx 1,7 \cdot 10^8 \text{ Bq} \qquad (\Gamma)$$

ПРИЈЕМНИ ИСПИТ ИЗ ИНФОРМАТИКЕ

Студијски програми: Информационе технологије, Рачунарско и софтверско инжењерство, Информационе технологије у машинству

Кандидат решава задатке у овом тесту и у добијеној свесци, а решења уноси искључиво у ОБРАЗАЦ ЗА ОДГОВОРЕ. Решења се у образац уносе ИСКЉУЧИВО ХЕМИЈСКОМ ОЛОВКОМ ПЛАВЕ БОЈЕ. **На крају, кандидат ПРЕДАЈЕ само ОБРАЗАЦ СА ОДГОВОРИМА**, док овај ТЕСТ И СВЕСКУ У КОЈОЈ ЈЕ ВЕЖБАО ЗАДРЖАВА. У случају да у коверти заврши овај ТЕСТ и/или СВЕСКА ЗА ВЕЖБАЊЕ, кандидат ће бити ДИСКВАЛИФИКОВАН. Коришћење калкулатора није дозвољено!

Укупан број поена који може да се оствари на тесту је 60. Задаци 1-20 вреде по 2 поена, док задаци 21-24 вреде по 5 поена. За сваки задатак 1-20 понуђено је по 5 одговора од којих је само један тачан. Кандидат на основу добијеног решења и понуђених одговора заокружује САМО ЈЕДАН ОДГОВОР у обрасцу за одговоре под бројем који одговара броју тог задатка.

Код задатка 21, на основу алгоритамске шеме, треба уписати у образац за одговоре вредност која ће бити одштампана за дату комбинацију улазних вредности. Задаци 22-24 се решавају у обрасцу за одговоре у делу за те задатке (3 празне стране): задатак 22 се решава цртањем АЛГОРИТАМСКЕ ШЕМЕ, док се задаци 23 и 24 решавају ПИСАЊЕМ ПРОГРАМСКОГ КОДА у програмском језику по свом избору. Саветује се кандидатима да шему, односно програмски код, упрограмски код, управа и празне стране и програмски код, управа и празне стране и програмски код, управа и празне стране и празне стране и програмски код, управа и празне стране и празне и празне стране и празне стране и празне ст

1.	Колико износи збир бинарних бројева 10111 и 101111 (изражен такође б А) 1 111110 Б) 111011 В) 1000110 Г) 1 011010	бинарним бројем)? Д) ништа од понуђеног				
2.	, , , , , , , , , , , , , , , , , , , ,	д) ништа од понујеног				
۷.) 11000 Д) ништа од понуђеног				
3.	Колико простора (у битовима) заузима текст 007_FTN у меморији?	•				
	A) 6	<u>) 56</u> Д) 64				
4.	7 7 1 1 33					
	А) ништа Б) оверклок процесора В) брисање система Г) ресет В	BIOS-а Д) ресет L2 кеша				
5.		T) DAM II) CCD				
6	А) L1 кеш Б) L2 кеш В) регистар Који систем у својој основи нема Linux?	Γ) RAM <u>Δ) SSD</u>				
6.		наведени системи имају у основи Linux				
7.		** *				
) png Д) xls				
8.	Како се зове Windows-ов квар од којег није могућ опоравак?					
	A) Kernel Panic <u>B) Blue Screen of Death</u> B) My Win Crushed	Г) Black Screen Д) Safe Mode				
9.	Како се назива злонамерни програм који се самостално шири кроз мреж	•				
) адвер Д) ништа од понуђеног				
10.	Који појам је уљез?A) Windows 3.11B) Windows MEB) Windows 2000Γ)) Windows 8.1 <u>Д)Windows 10.1</u>				
11.	. Како се зове основна компонента виртуализатора, која може радити непо					
) хипервизор Д) ништа од понуђеног				
12.	2. Који од следећих програмских језика НИЈЕ објектно-оријентисан?					
	, · · · · · · · · · · · · · · · · · · ·) С# Д) сви су објектно-оријентисани				
13.	 Како се назива мрежа равноправних рачунара, где је сваки рачунар исто. А) peer to peer Б) ботнет В) equity-net 	овремено и клијент и сервер?) клијент-сервер Д) ништа од понуђеног				
1.4	А. Ако је брзина преноса података 4 Мbps. колико је приближно времена по					
14.) 15 секунди Д) два и по сата				
1.5	•	•				
15.	5. Који уређај се користи за повезивање рачунара преко телефонске линије А) свич Б) модем B) access point Γ)	е?) појачивач Д) ништа од понуђеног				
16	5. Како се зове јединствен идентификатор, који има свака мрежна картица:					
10.) USB ID Д) NET ID				
17.	7. Како се зове протокол на којем се заснива WWW?	,				
	· · · · · · · · · · · · · · · · · · ·) HSTS Д) UDP				
18.	Који од понуђених појмова НЕ спада у ову групу? (Пронаћи уљеза)					
) ppt Д) rtf				
19.	 Када се, у Excel-у, на податке са слике десно примени формула =COUNT A1:A3, "<8"), који ће се резултат добити? 	TIFS(B1:B3, ">5",				
	A1.A3, <8), који не се резултат добити: A) 1 B) 2 B) 3 Г) 4 Д) 5	1 5				
	20 Кана се у ЕусеТу на полатие са	слике лево примени				
	А В С 20. Када ес, у Ехесту, на податке са с формула	3 6 4				
	2 8 9 5 =IF(B2>8, C1*0.1,A1*10) који ће се резул	птат добити?				
	3 6 4 6 A) 1 B) 3					

21. За дате улазне вредности за променљиве К и N, које ће вредности бити исписане на излазу?

Ул	Излаз	
K	N	Р
6	7	9
-3	-9	2
6	11	9
7	14	10
3	8	13

22. НАЦРТАТИ АЛГОРИТАМСКУ ШЕМУ помоћу које се рачуна средња вредност непарних бројева у интервалу од А до В.

23. Написати програм којим се уносе два троцифрена броја а и b и за већи број од та два броја се рачуна сума његових цифара. Исписати тај број као и израчунату суму цифара на екран. (Не треба проверавати да ли унети бројеви имају 3 цифре, то се подразумева.)

(Дат је и алгоритам; решење може бити написано у произвољном језику)

```
#include <stdio.h>
int main() {
    int a, b, max, suma, i;
    printf("Uneti prvi trocifreni broj: ");
    scanf("%d", &a);
    printf("Uneti drugi trocifreni broj: ");
    scanf("%d", &b);
    if (a > b) {
        max = a;
    } else {
        max = b;
    }
    suma = 0;
for (i = 1; i \le 3; i++) {
        suma = suma + max % 10;
        max = max / 10;
    }
 printf("Suma = %d\n", suma);
    return 0;
}
```

24. Написати програм који за унета три цела броја проверава да ли они могу бити странице правоуглог троугла и, ако могу, наћи и одштампати површину тог троугла.

```
#include <stdio.h>
int main() {
    int a, b, c;
    int max, sum_of_squares, square_of_max;
    // Unos tri cela broja
    printf("Unesite tri cela broja: ");
    scanf("%d %d %d", &a, &b, &c);
    // Određivanje najveće stranice i sume kvadrata preostalih stranica
    if (a >= b \&\& a >= c) {
        max = a;
        sum_of_squares = b * b + c * c;
    } else if (b >= a && b >= c) {
        max = b;
        sum_of_squares = a * a + c * c;
    } else {
        max = c;
        sum_of_squares = a * a + b * b;
    }
    // Kvadrat najduže stranice
    square_of_max = max * max;
    // Provera da li važi Pitagorina teorema
    if (square_of_max == sum_of_squares) {
        double area = 0.5 * a * b;
        printf("Brojevi su stranice pravouglog trougla.\n");
        printf("Povrsina trougla je: %.2f\n", area);
    } else {
        printf("Brojevi nisu stranice pravouglog trougla.\n");
    }
    return 0;
```

Овај папир се не предаје!