Co-data course: GRridge

Mark van de Wiel^{1,2,3}, Putri Novianti¹, Magnus Münch^{1,4}

¹Dep of Epidemiology and Biostatistics, VU University medical center
²Dep of Mathematics, VU University, Amsterdam, NL
³MRC Biostatistics unit, Cambridge University, UK (Visiting Fellow)
⁴Mathematical Institute, Leiden University, NL

Our group: www.bigstatistics.nl

Setting

Prediction or Diagnosis

Primary data

- ▶ Variables i = 1, ..., p; Individuals j = 1, ..., n; p > n
- ightharpoonup Focus on binary response Y_j (e.g. case vs control)
- Measurements $\mathbf{X}_j = (X_{1j}, \dots, X_{pj})$
- ▶ Goal: find f such that $Y_i \approx f(\mathbf{X}_i)$
- Here, f: logistic regression
- Some form of regularization required

Focus

Differential regularization based on prior information:
co-data

Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data

Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data

Primary Data

Use of co-data

Groups: Co-data determine *G* prior groups of variables

Idea: Use different penalty weights $\lambda = \lambda_1, \dots, \lambda_G$ across G co-data-based groups.

Use of co-data

Groups: Co-data determine *G* prior groups of variables

Idea: Use different penalty weights $\lambda = \lambda_1, \dots, \lambda_G$ across G co-data-based groups. G = 3:

E.g. Ridge:
$$\operatorname{argmax}_{\beta} \{ \mathcal{L}(\mathbf{Y}; \beta) - \sum_{g=1}^{G} \lambda_g ||\beta_g||_2 \}$$

- → **CV** not attractive
- ightarrow GRridge estimates λ by Empirical Bayes (EB)

Fitting

Likelihood contains term $\mathbf{X}'\boldsymbol{\beta}$. Write $\lambda_g = \lambda_g' \lambda$

$$\begin{split} \mathrm{argmax}_{\beta} & \{ \mathcal{L}(\mathbf{Y}; \mathbf{X}'\beta) - \lambda \sum_{g=1}^{G} \lambda_g' ||\beta_g||_2 \} \\ & \equiv \\ & \mathrm{argmax}_{\tilde{\beta}} \{ \mathcal{L}(\mathbf{Y}; \tilde{\mathbf{X}}'\tilde{\boldsymbol{\beta}}) - \lambda ||\tilde{\boldsymbol{\beta}}||_2 \}, \end{split}$$

where

$$ilde{\mathbf{X}}=\mathbf{X}(\mathrm{diag}(oldsymbol{\lambda}'))^{-1/2}$$
 and $ilde{oldsymbol{eta}}_g=oldsymbol{eta}_g(\lambda_g')^{1/2}$

→ Existing software used for fitting (glmnet, penalized)

Iteration

One may iterate the hyper-parameter estimation:

$$\text{argmax}_{\tilde{\boldsymbol{\beta}}}\{\mathcal{L}(\boldsymbol{Y};\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{\beta}})-\lambda||\tilde{\boldsymbol{\beta}}||_2\},\ \tilde{\boldsymbol{X}}=\boldsymbol{X}(\text{diag}(\boldsymbol{\lambda}'))^{-1/2}$$

ightarrow Same group-structure on $ilde{oldsymbol{eta}}$:

$$\operatorname{argmax}_{\boldsymbol{\beta}} \{ \mathcal{L}(\mathbf{Y}; \tilde{\mathbf{X}}'\tilde{\boldsymbol{\beta}}) - \lambda \sum_{g=1}^{G} \lambda_{g}'' ||\tilde{\boldsymbol{\beta}}_{g}||_{2} \}$$

Effective penalty multiplier: $\lambda_g' \lambda_g''$

Convergence is monitored by cross-validated likelihood

Multiple partitions I

Current solution: Iterative. Suppose first partition $\mathcal G$ has been used.

Different group-structure \mathcal{H} on $\tilde{\boldsymbol{\beta}}$:

$$\operatorname{argmax}_{\boldsymbol{\beta}} \{ \mathcal{L}(\mathbf{Y}; \tilde{\mathbf{X}}'\tilde{\boldsymbol{\beta}}) - \lambda \sum_{h=1}^{H} \lambda_h'' ||\tilde{\boldsymbol{\beta}}_h||_2 \}$$

Effective penalty multiplier for variable k: $\lambda'_{g(k)}\lambda''_{h(k)}$

Disadvantage: order may matter, although partitions are interwoven with iterations

Multiple partitions II

A nicer solution is implemented in gren:

$$\begin{split} \hat{\boldsymbol{\beta}} := \underset{\boldsymbol{\beta}}{\text{argmax}} \ell(\boldsymbol{Y}; \boldsymbol{\beta}) - \frac{\lambda_1}{2} \sum_{g=1}^G \sum_{h=1}^H \sqrt{\lambda_g' \lambda_h''} \sum_{\substack{j \in \mathcal{G}_g \\ \cap \mathcal{H}_h}} |\beta_j| \\ - \frac{\lambda_2}{2} \sum_{g=1}^G \sum_{h=1}^H \lambda_g' \lambda_h'' \sum_{\substack{j \in \mathcal{G}_g \\ \cap \mathcal{H}_h}} \beta_j^2 \end{split}$$

Overlapping groups*

Prior modeled as:

$$eta_{\it k} \sim {\it N}(0, \sum_{g_{\it k} \in \mathcal{J}_{\it k}} \sigma_{g_{\it k}}^2/|\mathcal{J}_{\it k}|)$$

ightarrow Set of \emph{G} estimation equations ightarrow $\hat{\sigma}_{\ell}^2$

Set $\lambda_{\ell} \propto \hat{\sigma}_{\ell}^{-2}$

Data

Data set 1

- Methylation data on cervical tissue, p = 40,000, n = 37
- Classification: Normal vs CIN3 (Precursor)
- Co-data: Location of the probes, 6 groups
- Reference: Farkas et al. (2013), Epigenetics
- Also analysed in: Van de Wiel et al. (2016), Stat Med

Data set 2

- RNAseq data from blood platelets, p = 18,410, n = 81
- Classification: Breast vs. Colon cancer
- Co-data: Several (see course text)
- Reference: Best et al. (2015), Cancer Cell
- Also analysed in: Novianti et al. (2017), Bioinformatics

Getting started

Instructions and Exercises:

See https://magnusmunch.github.io/co-data_learning/