

수치모델 앙상블을 활용한 강수량 예측

순서

1 개요

2 데이터 분석

3 모델링

4 분석 결과

5 회고 / 기대 효과

기습 폭우로 인한 문제 해결						
농업	재해	도로				
병해충 초기 방제 미흡	집, 차량 등 침수 피해	포트홀 토사 도로 유입				

가설: 수치 모델 앙상블 강수 확률 자료를 활용해 누적 강수량의 계급 구간을 예측할 수 있다.

분석 환경 및 데이터 설명

분석 환경

복합 개발 환경(IDE)

Visual Studio Code (VScode)

🥐 Python 버전

3.8.19

● learn 버전

1.3.2

데이터 설명

변수	설명	변수	설명	변수	설명
TM_FC	기준 발표시각	V02	0.2 mm 이상 누적 확률	V07	10.0 mm 이상 누적 확률
TM_EF	예측 시간	V03	0.5 mm이상 누적 확률	V08	20.0 mm이상 누적 확합
DH	기준시각-예측 시간	V04	1.0 mm이상 누적 확률	V09	30.0 mm이상 누적 확률
STN	AWS 지점 코드	V05	2.0 mm이상 누적 확률	vv	실강수량
V01	0.1 mm 이상 누적 확률	V06	5.0 mm이상 누적 확률	class_interval	강수계급

예측시간 (ef_time) 에 따른 실강수량(vv) 확인

시간에 따른 주기성

장마철에 가장 많은 강수량 확인

각 변수와 실강수량(vv) 산점도 선형 관계가 없음

비선형 모델링

결측치, 이상치 처리

```
vv = -999 → 제거 후 학습 진행
```

vv = 203.2 12 STN (특정지역) 에서 발견 → 유지하고 학습 진행

변수 채택

fc_time (발표시각) → 변수 제외

ef_year, ef_month, ef_day, ef_hour → ef_datetime 변수 변환 후 채택

class_interval → 변수 제외, 학습 이후 vv에 맞춰 생성

Feature Engineering

변수명	변경 전	변경후	비고
ef_year	A, B, C	2001, 2002, 2003	숫자형 변환
stn4contest	STN001, STN002	1, 2	숫자형 변환
season	v01 ~ v09	장마(1), 장마 아닌 기간(0)	변수 추가
mean, min, max	v01 ~ v09	그룹별 평균, 최댓값, 최솟값	변수 추가
recent		dh 가장 작은 v01 ~ v09	변수 추가
ef_hour_sin ef_hour_cos ef_hour		sine / cosine 변환	변수 추가

```
# 시간 관련 피처 생성 (Sine/Cosine 변환)

def add_sin_cos_features(df, col):

    df[col + '_sin'] = np.sin(2 * np.pi * df[col] / df[col].max())

    df[col + '_cos'] = np.cos(2 * np.pi * df[col] / df[col].max())

    return df
```

데이터 스케일링 - MinMaxScaler 채택

평가 지표

$$CSI = \frac{H}{H + F + M}$$

- H 강수로 예측하여 구간 예측에 성공한 값
- F 강수로 예측하여 구간 예측에 실패한 값
- M 무강수로 예측하여 구간 예측에 실패한 값
- C 무강수로 예측하여 구간 예측에 성공한 값 (평가에서 제외)

모델 성능 검증

학습 모델 선정

1 Random Forest Regressor

CSI: 0.07862532677313668

RandomForestRegressor(max_depth=8, max_features='sqrt')

2 Gradient Boosting Regressor

CSI: 0.031742298097814314

GradientBoostingRegressor(learning rate=0.01)

3 MLP 신경망

CSI: 0.031785628067916634

XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=0.8, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.01, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=8, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=100, n_jobs=None, num parallel tree=None, random state=None, ...)

+ 이외에도 Catboost, LightGBM 등 다양한 모델링 결과

성능이 우수한 Random Forest Regressor 채택 MSE: 10.600161936801628 R2: 0.3957689028841904 CSI: 0.07862532677313668

RandomForestRegressor(max_depth=8, max_features='sqrt')

(과제1) 수치모델 앙상블을 활용한 강수량 예측

참가번호 240480 의 정확도는 CSI: 0.119 입니다. 2개년 학습 후 예측 CSI **0.078**

3개년 학습 후 예측 CSI **0.119**

3개년이 아닌 더 많은 과거 데이터로 학습한다면 학습 검증과 예측 검증 사이의 간극을 좁힐 수 있을 것으로 기대

회고

스케일링 부분에서 실수 발견

```
MSE: 10.600161936801628
R2: 0.3957689028841904
CSI: 0.07862532677313668
RandomForestRegressor(max_depth=8, max_features='sqrt')
```


MSE: 10.619806924115275 R2: 0.39464909808232784 CSI: 0.08304759690823502

RandomForestRegressor(max_depth=8, max_features='sqrt')

성능 개선 확인

지점 (stn4contest) 변수 별로 분리해서 학습

```
MSE: 10.619806924115275
R2: 0.39464909808232784
CSI: 0.08304759690823502
RandomForestRegressor(max_depth=8, max_features='sqrt')
```


MSE: 15.669329074328 R2: 0.37386875379164475 CSI: 0.10376687988628287

RandomForestRegressor(max_depth=8, max_features='sqrt')

성능 개선 확인

CSI 점수 개선

장마 예보 개선 재해 예방 대응 강화 에너지 생산 사용 최적화 도로 교통 관리

