

01/18

FIG. 1A

FIG. 1B
120

FIG. 1C

FIG. 1D

02/18

FIG. 1E

FIG. 1F

FIG. 1G

FIG. 1H

03/18

FIG. 2

04/18

FIG. 3A

05/18

1	/	2	\	3	-	4	-	5	D	6	C	7	C	8	\	9	
10	\	11	(12)	13)	14)	15	/	16)	17)	18	
19	\	20	\	21	x	22	x	23	x	24	c	25	c	26	-	•	

FIG. 3B

CHARACTER DATA ANALYSIS PROCESS

FIG. 3C

07/18

FIG. 3D FIG. 3E

08/18

1	A	K	V	W	X	Y	Z	M	258
A	1	1	2	1	1	1	1		
B	64	5	8	18	1	16	1	20	
2	A	K	M	N	V	W	X	Y	207
A	1	1	1	1	2	1	1		
B	64	5	20	57	8	18	1	16	
3	A	E	F	G	H	I	J	L	T
A	1	3	2	1	1	2	1	1	2
B	64	103	21	15	47	57	1	32	80
4	B	D	E	F	H	I	J	K	L
A	1	1	1	2	1	1	1	1	2
B	13	32	103	21	47	57	1	5	32
5	B	P	R	S	140	6	C	G	O
A	2	1	1	1			A	1	1
B	13	15	48	51			B	22	18
6	C	G	O	Q	S	152	8	C	D
A	1	1	1	1			A	1	1
B	22	15	63	1	51		B	22	18
7	C	G	O	Q	S	152	8	C	D
A	1	1	1	1			A	1	1
B	22	15	63	1	51		B	22	18
8	D	O	Q	96	10	Q	152	8	C
A	1	1	1				A	1	1
B	32	63	1				B	22	18
9	D	O	Q	96	10	Q	152	8	C
A	1	1	1				A	1	1
B	32	63	1				B	22	18

FIG. 3F

09 / 18

FIG. 4A

10/18

FIG. 4B

11/18

FUNCTIONAL DEFINITION OF CELL BLOCKING - PHASE 3

FIG. 4C

12/18

FIG. 5A

FIG. 5B

MICRO-FEELER - ANALOG SOURCE DATA

COUPLED TO RESISTIVE POTENTIOMETERS THAT ARE
MULTI-TURN CYCLICAL OUTPUT
(NO STOPS ON SHAFT ROTATION)

FIG. 5C

RESISTANCE (VOLTS) VERSUS TIME

14/18

FIG. 6A

FIG. 6B

FIG. 6C

15/18

SYMMETRIC MULTI-DOMAIN - ANALOG SOURCE DATA

ROTATION OF DOMAINS ON AN AXIS PRODUCE EITHER
INCREASING OR DECREASING CURRENTS FROM
TIGHT TO LOOSE COIL BINDINGS.

FIG. 6D

CURRENT VERSUS TIME
OUTPUT FROM COIL
FOR DIFFERENT MAGNET
SWEEPS ACROSS THE COIL,

16/18

ASYMMETRIC MULTI-DOMAIN - ANALOG SOURCE DATA

MAGNETIC POLES ARE DISTRIBUTED IN A CHARACTERIZED,
NON-UNIFORM PATTERN THAT MAPS VARIATIONS OF CURRENT,
SLOPE/RISE, AND TIME TO A UNIQUE VALUE.

FIG. 6E

CURRENT VERSUS TIME
OUTPUT FROM COIL
FOR DIFFERENT MAGNET
SWEEPS ACROSS THE COIL,
AND AS DOMAIN SIZES AND
MAGNETIC FIELD STRENGTH
VARY SO DOES THE PERIOD

17/18

SYMMETRIC UNI-DOMAIN - ANALOG SOURCE DATA

ROTATION OF DOMAINS ON AN AXIS PRODUCE EITHER
INCREASING OR DECREASING CURRENTS FROM
TIGHT TO LOOSE COIL BINDINGS.

FIG. 6F

CURRENT VERSUS TIME
OUTPUT FROM COIL
FOR DIFFERENT MAGNET
SWEEPS ACROSS THE COIL,

MICRO FEELER OR INDUCTION COIL INPUT DEVICE

FIG. 7