HEURISTIC ANALYSIS Implement a Planning Search, AI nanodegree, Udacity Developed by Maha Ezzat

Implement a Planning Search

We are required to plan a set of actions to reach the goal state starting from the initial state.

The possible actions are:

Action(Load(c, p, a),

```
PRECOND: At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a) EFFECT: \neg At(c, a) \wedge In(c, p))
```

Action(Unload(c, p, a),

```
PRECOND: In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
EFFECT: At(c, a) \wedge \neg In(c, p)
```

Action(Fly(p, from, to),

```
PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
EFFECT: \neg At(p, from) \land At(p, to))
```

We have three problems to be solved:

```
Init(At(C1, SFO) \( \Lambda \) At(C2, JFK)
\( \Lambda \) At(P1, SFO) \( \Lambda \) At(P2, JFK)
\( \Lambda \) Cargo(C1) \( \Lambda \) Cargo(C2)
\( \Lambda \) Plane(P1) \( \Lambda \) Plane(P2)
\( \Lambda \) Airport(JFK) \( \Lambda \) Airport(SFO))

Goal(At(C1, JFK) \( \Lambda \) At(C2, SFO))
```

• Problem 2

Init(At(C1, SFO)
$$\land$$
 At(C2, JFK) \land At(C3, ATL) \land At(P1, SFO) \land At(P2, JFK) \land At(P3, ATL) \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Plane(P1) \land Plane(P2) \land Plane(P3) \land Airport(JFK) \land Airport(SFO) \land Airport(ATL)) Goal(At(C1, JFK) \land At(C2, SFO) \land At(C3, SFO))

• Problem 3

Init(At(C1, SFO)
$$\land$$
 At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD) \land At(P1, SFO) \land At(P2, JFK) \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Cargo(C4) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD)) Goal(At(C1, JFK) \land At(C3, JFK) \land At(C2, SFO) \land At(C4, SFO)

Optimal Solution

Using the following search strategies:

- Breadth First Search
- Depth Limited Search
- Depth First Graph Search
- Uniform Cost Search
- A* h1 Heuristic Function
- A* h_Ignore Precondition Function
- A* h_Levelsum Function

We find the optimal solution for each problem is:

Problem 1	Problem 2	Problem 3
Load(C1, P1, SFO)	Load(C1, P1, SFO)	Load(C1, P1, SFO)
Load(C2, P2, JFK)	Load(C2, P2, JFK)	Load(C2, P2, JFK)
Fly(P1, SFO, JFK)	Load(C3, P3, ATL)	Fly(P1, SFO, ATL)
Unload(C1, P1, JFK)	Fly(P1, SFO, JFK)	Load(C3, P1, ATL)
Fly(P2, JFK, SFO)	Unload(C1, P1, JFK)	Fly(P2, JFK, ORD)
Unload(C2, P2, SFO)	Fly(P2, JFK, SFO)	Load(C4, P2, ORD)
	Unload(C2, P2, SFO)	Fly(P1, ATL, JFK)
	Fly(P3, ATL, SFO)	Unload(C1, P1, JFK)
	Unload(C3, P3, SFO)	Unload(C3, P1, JFK)
		Fly(P2, ORD, SFO)
		Unload(C2, P2, SFO)
		Unload(C4, P2, SFO)

Searching Results

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
Breadth First Search	Yes	6	0.05 sec	44	57	184
Depth Limited Search	No	50	0.14 sec	96	248	291
Depth First Graph Search	No	20	0.03 sec	21	22	84
Uniform Cost Search	Yes	6	0.06 sec	55	57	224

Problem 2

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
Breadth First Search	Yes	9	11.6 sec	3346	4612	30534
Depth Limited Search	No	50	24 min	213491	1967093	1967471
Depth First Graph Search	No	1085	11.3 sec	1124	1125	10017
Uniform Cost Search	Yes	9	17.2 sec	4778	4780	43379

Note: Depth Limited Search takes more than 10 min to find the result in the second problem.

Problem 3

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
Breadth First Search	Yes	12	56.5 sec	14120	17673	124926
Depth Limited Search	-	-	-	-	-	-
Depth First Graph Search	No	660	5.3 sec	677	678	5608
Uniform Cost Search	Yes	12	72.2 sec	17792	17794	156001

Note: Depth Limited Search takes more than 10 min to find the result in the third problem.

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yes^a	$\mathrm{Yes}^{a,b}$	No	No	Yes^a	$\mathrm{Yes}^{a,d}$
Time	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	$O(b^m)$	$O(b^{\ell})$	$O(b^d)$	$O(b^{d/2})$
Space	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	O(bm)	$O(b\ell)$	O(bd)	$O(b^{d/2})$
Optimal?	Yes ^c	Yes	No	No	Yesc	$\mathrm{Yes}^{c,d}$

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b; b optimal if step costs are all identical; b if both directions use breadth-first search.

As illustrated in the AIMA book [1]:

- Depth First Graph search is the faster search and requires the least memory but unfortunately it does not give an optimal solution.
- Depth Limited Search is the worst search with respect to the speed and memory.
- The best search is the Breadth First Search according to speed and memory.

Best Heuristic Function

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
A* h1 Heuristic Function	Yes	6	0.06 sec	55	57	224
A* h_lgnore Precondition Function	Yes	6	0.06 sec	34	36	142
A* h_Levelsum Function	Yes	6	0.9 sec	9	11	43

Problem 2

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
A* h1 Heuristic Function	Yes	9	16.4 sec	4778	4780	43379
A* h_lgnore Precondition Function	Yes	9	5.9 sec	1369	1371	12539
A* h_Levelsum Function	Yes	9	64.4 sec	78	80	763

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
A* h1 Heuristic Function	Yes	12	75.5 sec	17792	17794	156001
A* h_lgnore Precondition Function	Yes	12	21.9 sec	4555	4557	40238
A* h_Levelsum Function	Yes	12	295.8 sec	253	255	2309

- A* h_Ignore Precondition Function has the minimum elapsed time of execution since it is required no-time to be executed, but it expands the highest number of nodes.
- A* h_Levelsum Function requires minimum memory since it expands the least number of nodes, however it requires the maximum execution time.
- A* h_Ignore Precondition is the best heuristic function since it's significantly has the minimum execution time.

Best Search Strategy

Problem 1

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
Breadth First Search	Yes	6	0.05 sec	44	57	184
A* h_lgnore Precondition Function	Yes	6	0.06 sec	34	36	142

Problem 2

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
Breadth First Search	Yes	9	11.6 sec	3346	4612	30534
A* h_lgnore Precondition Function	Yes	9	5.9 sec	1369	1371	12539

Problem 3

Search Strategy	Optimal	Path length	Time elapsed	Expansions	Goal Tests	New Nodes
Breadth First Search	Yes	12	56.5 sec	14120	17673	124926
A* h_lgnore Precondition Function	Yes	12	21.9 sec	4555	4557	40238

• The best searching strategy is A* h_ignore prediction Function, because it has the least elapsed time and requires the least memory.

References

[1] Russell, S., & Norvig, P. (2010). Artificial intelligence (3rd ed., pp. 91). New Jersey: PEARSON.