Assignment 2 -Data Visualization and Preprocessing

Team Member 1 - Deeksha R (310619104022)

```
In [1]:
         import matplotlib.pyplot as plt
         import pandas as pd
         import numpy as np
         import tensorflow as tf
         import seaborn as sns
         from sklearn.compose import ColumnTransformer
         from sklearn.pipeline import Pipeline
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
```

2. Load the data set

```
In [4]:
          df = pd.read_csv(r"./Churn_Modelling.csv")
In [5]:
          df.head()
            RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
Out[5]:
                                                                                               Balance 1
         0
                           15634602
                                                                                          2
                                                                                                  0.00
                      1
                                     Hargrave
                                                      619
                                                                France
                                                                        Female
                                                                                 42
                      2
                                                                                              83807.86
         1
                           15647311
                                           Hill
                                                      608
                                                                 Spain
                                                                       Female
                                                                                 41
                      3
                           15619304
                                         Onio
                                                       502
                                                                France
                                                                       Female
                                                                                             159660.80
         3
                      4
                           15701354
                                          Boni
                                                      699
                                                                France
                                                                       Female
                                                                                 39
                                                                                                  0.00
                      5
                           15737888
                                       Mitchell
                                                      850
                                                                                 43
                                                                                          2 125510.82
                                                                 Spain
                                                                       Female
```

3. Data Visualizations

3.1. Univariate Analysis

```
In [6]:
         sns.displot(df['Age'], kde=True)
        <seaborn.axisgrid.FacetGrid at 0x1f63a02fa30>
```

Out[6]:

3.2. Bi - Variate Analysis

In [7]: sns.relplot(x='CreditScore', y='Age', data=df)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x1f63a024160>

In [8]:
sns.catplot(x='Gender', y='Age', hue='HasCrCard', data=df)

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1f647affeb0>

3.3. Multi - Variate Analysis

```
In [9]: sns.pairplot(df)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x1f6483b69a0>

In [10]: sns.regplot(x='Balance', y='EstimatedSalary', data=df)

Out[10]: <AxesSubplot:xlabel='Balance', ylabel='EstimatedSalary'>

4. Descriptive Statistics

df.describe()

\cap		+	Γ	1	1	7	0
U	и	L	L	+	+	J	0

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumO
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	100
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	
4							>

5. Handle the Missing values

```
In [12]:
          df.isnull().sum()
         RowNumber
                            0
Out[12]:
         CustomerId
                            0
         Surname
                            0
         CreditScore
         Geography
         Gender
         Age
                            0
         Tenure
         Balance
         NumOfProducts
         HasCrCard
                            0
         IsActiveMember
         EstimatedSalary
         Exited
         dtype: int64
```

6. Find the outliers and replace the outliers

```
In [13]:
          sns.boxplot(x='CreditScore',data=df)
         <AxesSubplot:xlabel='CreditScore'>
```

Out[13]:


```
In [14]:
Q1 = df['CreditScore'].quantile(0.25)
Q3 = df['CreditScore'].quantile(0.75)
IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
df['CreditScore']=np.where(df['CreditScore']>upper_whisker,upper_whisker,np.where(df)
```

```
In [15]: sns.boxplot(x='CreditScore',data=df)
```

Out[15]: <AxesSubplot:xlabel='CreditScore'>

7. Check for Categorical columns and perform encoding

```
In [16]:
    df['Geography'].unique()
    ct= ColumnTransformer([('oh', OneHotEncoder(), [4])], remainder="passthrough")
```

8. Split the data into dependent and independent variables.

```
1, 1, 1],
                [2, 15647311, 'Hill', 608.0, 'Spain', 'Female', 41, 1, 83807.86,
                 1, 0, 1],
                [3, 15619304, 'Onio', 502.0, 'France', 'Female', 42, 8, 159660.8,
                 3, 1, 0],
                [4, 15701354, 'Boni', 699.0, 'France', 'Female', 39, 1, 0.0, 2, 0,
                 0],
                [5, 15737888, 'Mitchell', 850.0, 'Spain', 'Female', 43, 2,
                 125510.82, 1, 1, 1]], dtype=object)
In [18]:
          x=ct.fit transform(x)
          #INDEPENDENT VARIABLES
          x[0:5,:]
         array([[1.0, 0.0, 0.0, 1, 15634602, 'Hargrave', 619.0, 'Female', 42, 2,
Out[18]:
                 0.0, 1, 1, 1],
                [0.0, 0.0, 1.0, 2, 15647311, 'Hill', 608.0, 'Female', 41, 1,
                 83807.86, 1, 0, 1],
                [1.0, 0.0, 0.0, 3, 15619304, 'Onio', 502.0, 'Female', 42, 8,
                 159660.8, 3, 1, 0],
                [1.0, 0.0, 0.0, 4, 15701354, 'Boni', 699.0, 'Female', 39, 1, 0.0,
                 2, 0, 0],
                [0.0, 0.0, 1.0, 5, 15737888, 'Mitchell', 850.0, 'Female', 43, 2,
                 125510.82, 1, 1, 1]], dtype=object)
In [19]:
          #DEPENDENT VARIABLES
          y[0:5,:]
         array([[1.0134888e+05, 1.0000000e+00],
Out[19]:
                [1.1254258e+05, 0.0000000e+00],
                [1.1393157e+05, 1.0000000e+00],
                [9.3826630e+04, 0.0000000e+00],
                [7.9084100e+04, 0.0000000e+00]])
         9. Scale the independent variables
In [20]:
          sc= StandardScaler()
          x[:,8:12]=sc.fit_transform(x[:,8:12])
          x[0:5,:]
         array([[1.0, 0.0, 0.0, 1, 15634602, 'Hargrave', 619.0, 'Female',
Out[20]:
                 0.29351742289674765, -1.041759679225302, -1.2258476714090163,
                 -0.911583494040172, 1, 1],
                [0.0, 0.0, 1.0, 2, 15647311, 'Hill', 608.0, 'Female',
                 0.19816383219544578, -1.387537586562431, 0.11735002143511637,
                 -0.911583494040172, 0, 1],
                [1.0, 0.0, 0.0, 3, 15619304, 'Onio', 502.0, 'Female',
                 0.29351742289674765, 1.0329077647974714, 1.333053345722891,
                 2.5270566192762067, 1, 0],
                [1.0, 0.0, 0.0, 4, 15701354, 'Boni', 699.0, 'Female',
                 0.007456650792842043, -1.387537586562431, -1.2258476714090163,
                 0.8077365626180174, 0, 0],
                [0.0, 0.0, 1.0, 5, 15737888, 'Mitchell', 850.0, 'Female',
                 0.3888710135980495, -1.041759679225302, 0.7857278997960621,
                 -0.911583494040172, 1, 1]], dtype=object)
         10. Split the data into training and testing
```

x train, x test, y train, y test = train test split(x,y,test size=0.3, random state=

In [21]:

```
In [22]: | x_train
          array([[1.0, 0.0, 0.0, ..., 0.8077365626180174, 1, 1],
Out[22]:
                 [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 0],
                 [1.0, 0.0, 0.0, \ldots, -0.911583494040172, 0, 1],
                 [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 0],
                 [0.0, 0.0, 1.0, \ldots, 0.8077365626180174, 1, 1],
                 [0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 0]], dtype=object)
In [23]:
          x_test
         array([[0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 1],
Out[23]:
                 [1.0, 0.0, 0.0, \ldots, -0.911583494040172, 1, 0],
                 [0.0, 0.0, 1.0, \ldots, -0.911583494040172, 1, 1],
                 [1.0, 0.0, 0.0, \ldots, 0.8077365626180174, 1, 1],
                 [1.0, 0.0, 0.0, \ldots, -0.911583494040172, 1, 1],
                 [0.0, 1.0, 0.0, ..., -0.911583494040172, 1, 1]], dtype=object)
In [24]:
          y_train
          array([[5.5796830e+04, 1.0000000e+00],
Out[24]:
                 [1.9823020e+04, 0.0000000e+00],
                 [1.3848580e+04, 0.0000000e+00],
                 [1.8142987e+05, 0.0000000e+00],
                 [1.4875016e+05, 0.0000000e+00],
                 [1.1885526e+05, 1.0000000e+00]])
In [25]:
          y_test
         array([[1.9285267e+05, 0.0000000e+00],
Out[25]:
                 [1.2870210e+05, 1.0000000e+00],
                 [7.5732250e+04, 0.0000000e+00],
                 [1.6740029e+05, 0.0000000e+00],
                 [7.0849470e+04, 0.0000000e+00],
                 [3.3759410e+04, 1.0000000e+00]])
```