Announcements for Monday, 09DEC2024

- End-of-Semester Surveys due Monday, 16DEC2024, at 11:59 PM (EST)
- Week 14 Homework Assignments available on eLearning
 - Graded and Timed Quizzes 12a & 12b "Gases Intermolecular Forces" due Wednesday, 11DEC2024, at 6:00 PM (EST)
- Final Exam Conflict Requests
 - Due by Friday, 13DEC2024, 11:59 PM
 - See Canvas Announcement from 09DEC2024
- Final Exam is Wednesday, 18DEC2024, 4:00-7:00 PM (EST)
 - Coverage: Chapters E-11
 - Exam details and locations will be announced on Canvas

ANY GENERAL QUESTIONS? Feel free to see me after class!

Hydrogen Bonding (H-Bonding)

aqueous solution of acetone

Ion-Dipole Forces

- occurs when an ionic compound is mixed with a polar compound
 - first discussed in Chapter 8
 - example NaCl(s) + H₂O(ℓ)
- only exhibited in *mixtures*
- stronger than H-bonding
- responsible for the ability of ionic substances to form solutions with water
- more to come in Chapter 13

dipoles interact with the charges of the ions

Try This

- Identify the most predominant intermolecular forces occurring in pure samples of the following matter:
- a) $PCl_3(\ell)$ dipole-dipole
- b) PCl₅(s) dispersion forces
- c) HCN(g) dipole-dipole
- d) $Ca(NO_3)_2(aq)$ ion-dipole
- e) CH₃NH₂(g) hydrogen bonding
- f) $C_{10}H_{22}(\ell)$ dispersion forces

Try This On Your Own

Choose the compound that is most likely a gas at room temperature: $BBr_3 CH_3OH BF_3 C_{20}H_{40}Cl_2 CF_3COOH$

To Summarize

TABLE 11 .4 Types of Intermolecular Forces

Туре	Present In	Molecular Perspective	Strength
Dispersion	All molecules and atoms	δ- : δ+ ···· δ- : δ+	0.05–20+ kJ/mol
Dipole-dipole	Polar molecules	δ+ δ- ···· δ+ δ-	3–20+ kJ/mol
Hydrogen bonding	Molecules containing H bonded to F, O, or N	δ^+ δ^+ $\delta^ \delta^ \delta^ \delta^-$	10–40 kJ/mol
lon-dipole	Mixtures of ionic compounds and polar compounds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30–100+ kJ/mol

Physical Properties of Liquids – Surface Tension

- surface tension = energy required to increase the surface area of a liquid by a certain amount
- liquids with high surface tensions spread out less easily than liquids with low surface tension
- surfaces of liquids with high surface tensions resist penetration

surface tension increases as intermolecular forces increase

Physical Properties of Liquids – Viscosity

VS.

• viscosity = the resistance of a liquid to flow

motor oil

 viscosity increases with increasing strength of IMFs and increasing size of molecules

viscosity decreases as temperature increases

Physical Properties of Liquids – Capillary Action

 capillary action = the ability for a liquid to flow up a narrow tube against the force of gravity

a balance of two different forces

- cohesive forces = between molecules within the liquid
- adhesive forces = between molecules in liquid and the surface of the tube

© 2018 Pearson Education, Inc.

Phase Changes – Vaporization vs. Condensation

- vaporization = $(\ell) \rightarrow (g)$
 - IMFs within the liquid must be overcome
 - endothermic process
- condensation = $(g) \rightarrow (\ell)$
 - IMFs capture molecules from the gas phase
 - exothermic process

rate of vaporization can be increased by

- 1. increasing the temperature
- 2. increasing the surface area of the liquid exposed to the air

Heat of Vaporization (ΔH_{vap})

- ΔH_{vap} = the amount of energy needed to convert 1 mole of a substance from a liquid to a gas at a given temperature (usually boiling point or room temperature)
- substances with high heats of vaporizations have strong intermolecular forces

TABLE 11.7 Heats of Vaporization of Several Liquids at Their Boiling Points and at 25 °C

Liquid	Chemical Formula	Normal Boiling Point (°C)	ΔH _{vap} (kJ/mol) at Boiling Point	$\Delta H_{ m vap}({ m kJ/mol})$ at 25 (°C)
Water	H ₂ O	100.0	40.7	44.0
Rubbing alcohol (isopropyl alcohol)	C ₃ H ₈ O	82.3	39.9	45.4
Acetone	C ₃ H ₆ O	56.1	29.1	31.0
Diethyl ether	C ₄ H ₁₀ O	34.6	26.5	27.1

• at 100 °C, $H_2O(\ell) \rightarrow H_2O(g) \Delta H = +40.7 \text{ kJ/mol}$

© 2018 Pearson Education, Inc.

- for water vapor at 100 °C, $\Delta H_{condensation} = -(\Delta H_{vap}) = -40.7$ kJ/mol
- note that these enthalpy changes can be used as conversion factors

For Example

What mass of acetone (C_3H_6O) can be vaporized at 25 °C by 1000. kJ of energy? The enthalpy of condensation for acetone at 25 °C is -31.0 kJ/mol. **1.87 kg**

$$\Delta H_{condensation} = -31.0 \text{ kJ/mol}$$
, so $\Delta H_{vap} = +31.0 \text{ kJ/mol}$

$$1000. \text{ kJ} \times \frac{1 \text{ mol C}_3 \text{H}_6 \text{O}}{+31.0 \text{ kJ}} \times \frac{58.08 \text{ g}}{1 \text{ mol C}_3 \text{H}_6 \text{O}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 1.87 \text{ kg}$$

$$\frac{1 \text{ mol mass}}{1000 \text{ g}} = 1.87 \text{ kg}$$

Vapor Pressure

- vapor pressure = the pressure of a gas in dynamic equilibrium (?!?) with its liquid
- dynamic equilibrium = a state in which two opposing physical/chemical processes occur at the same rate
 - at equilibrium the system does not appear to undergo macroscopic changes
 - changes at *microscopic* level continue
 - example: vaporization in a sealed flask
- weaker intermolecular forces in liquid = more particles in gas phase = higher vapor pressures
- liquids with weak IMFs are *volatile*
 - acetone in nail polish remover
- increasing temperature = increasing thermal energy of liquid to overcome IMFs = increasing vapor pressure

© 2018 Pearson Education, Inc. water in a closed flask

Vapor Pressure and Boiling Point

- boiling point of a liquid = the temperature at which the vapor pressure of a liquid equals the external pressure
 - when external pressure is 1 atm = *normal* boiling point
- when vapor pressure equals external pressure, molecules within the interior of the liquid are able to escape into the gas phase
- if the external pressure around a liquid is reduced, boiling can occur at lower temperatures
 - water boils at approximately 78 °C on Mount Everest (P_{ext} = 0.32 atm)

© 2018 Pearson Education, Inc.

 the vapor can be converted back into liquid by decreasing temperature and *usually* by increasing pressure