

- 01 Introduction
- 02 Algorithm Design
- 03 Results
- 04 Discussion

- 01 Introduction
- 02 Algorithm Design
- 03 Results
- 04 Discussion

Background and significance

- Classifying WBCs is needed during clinical diagnose of bloodbased disease.
- Classification cannot be efficiently done by automated hematology analyzer.
- If the process is automated, it can largely reduce the burden of medical staff as well as improve efficiency.

Aim of the project

Convolutional Neuron Network(CNN)

https://www.apriorit.com

- The core building block in CNN is convolutional layer
- Convolutional layer uses kernel to extract features from images.

Convolutional Neuron Network(CNN)

Advantage:

It can extract features from a part of the object and perform object recognition, so it has a high performance in classifying partially visible cells. CNN is good at classifying images.

Disadvantage:

Training CNN is computationally demanding.

- 01 Introduction
- 02 Algorithm Design
- 03 Results
- 04 Discussion

2-class model

Algorithm Design

4-class model

- 01 Introduction
- 02 Code implementation
- 03 Results
- 04 Discussion

BCCD dataset:

410 images in total:

- 88 eosinophils
- 33 lymphocytes
- 21 monocytes
- 207 neutrophils

Augmentation

~125,000 images in total:

- ~3,000 images for each cell type in the training set
- ~600 images for each cell type in the testing set.

Results — 2-class model

Overall accuracy: 0.9324

	Precision		
Mononuclear	1.00		
Polynuclear	0.89		

Overall AUC: 0.993 (area under curve)

Increase accuracy

Overall testing accuracy: 0.8343

Results — 4-class model

Reduce overfitting

(loffe and Szegedy, 2015)

Results — 4-class model

BCCD dataset + LIT dataset:

410 images + 189 images in total

- 88 eosinophils + 39 eosinophils
- 33 lymphocytes + 52 lymphocytes
- 21 monocytes + 48 monocytes
- 207 neutrophils + 50 neutrophils

Augmentation

- ~ 12,400 images in total:
- ~2700 images for each cell type in the training folder
- ~600 images for each cell type in the test folder.

Results — 4-class model

Overall accuracy: 0.9226

	Precision		
Neutrophil	0.85		
Eosinophil	0.99		
Monocyte	0.89		
Lymphocyte	0.99		

Overall AUC: 0.975 (area under curve)

Code implementation

Command line execution:

python3 classify_WBC.py [-h] [-m 1/2] [-f filename] [-d directory] [-o output_file.csv]

	Filenames	Predictions	NEUTRO	EOSINO	MONOC	LYMPHO
0	_12_2599.jpeg	EOSINOPHIL	0.367759	0.631308	0.00041	0.00051
1	_2_1226.jpeg	EOSINOPHIL	0.397907	0.593848	0.00461	0.00362
2	_1_5031.jpeg	NEUTROPHIL	0.951597	0.048372	2.91676	8.499132
3	_3_625.jpeg	EOSINOPHIL	0.251063	0.747483	0.00043	0.001010
4	_5_1744.jpeg	EOSINOPHIL	0.027477	0.972497	3.65024	2.41422
5	_11_9310.jpeg	EOSINOPHIL	0.214300	0.77787	0.00239	0.005428

Input Output

- 01 Introduction
- 02 Code implementation
- 03 Results
- 04 Discussion

Discussion — limitation:

Some cells have low resolution

Neutrophil

Eosinophil

Problem with augmentation

Neutrophil

Lymphocyte

Discussion — possible improvements

Picture segmentation:

- Allows input of images containing multiple WBCs, which is more suitable for clinical use
- Take images of blood smear samples from patients as input and calculate the percentage of each WBC subtype.
- Require a new training and testing dataset

Discussion — possible improvements

Classical CNN designs:

VGGNet ConvNet D=64 Pool D=256 D=512 D=512 D=512 D=512 D=4096 D=4096 D=1000 Convolution Pooling Softmax Other

Reference

https://cn.bing.com/images/search?view=detailV2&ccid=LDi4FcGp&id=0B073BBC14AC47115510C7138AC3CEE0FD7 A13FE&thid=OIP.LDi4FcGpHSI9NYZVIpliZAHaCk&mediaurl=https%3a%2f%2fwww.apriorit.com%2fimages%2farticles%2faction-detection-using-dnn%2ffigure-

1.jpg&exph=330&expw=950&q=convolutional+neuron+network&simid=608054270189178525&ck=3EE257942FE72F5E A90051A3B86FC956&selectedIndex=144&FORM=IRPRST&ajaxhist=0

https://cn.bing.com/images/search?view=detailV2&ccid=CeFN%2bzdp&id=141FFE42CB3A49C42672390CBCBFD0A63 E244024&thid=OIP.CeFN-

zdpx81x000V5UI76AHaEK&mediaurl=http%3a%2f%2fimage.slidesharecdn.com%2fdeeplearningclass2-louismonier-160501185826%2f95%2fdeep-learning-class-2-deep-learning-for-images-i-see-what-you-mean-12-638.jpg%3fcb%3d1462253453&exph=359&expw=638&q=VGGnet&simid=608009714292754417&ck=D2598136096CF12FD94E86473E0370CD&selectedIndex=3&FORM=IRPRST&ajaxhist=0

BCCD, Blood Cell Images. 2019. Available online: URL https://www.kaggle.com/paultimothymooney/blood-cells/home. (accessed on 28.10.2020).

LISC: Leukocyte Images for Segmentation and Classification. 2019. Available online: URL http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data. htm. (accessed on 25.09.2019).

https://blog.csdn.net/shuzfan/article/details/50738394