Interfacing an external LCD to the MSP430 Microcontroller and Onboard LCD:

• Engr.Shahzada Fahim Jan

- LCDs are economical
- easily programmable
- have no limitation of displaying special & even custom characters (unlike in seven segments), animations, and so on.
- A 16×2 LCD means it can display 16 characters per line and there are 2 such lines
- In this LCD each character is displayed in a 5×7 pixel matrix.
- This LCD has two registers, namely, Command and Data.

- The command register stores the command instructions given to the LCD.
- A command is an instruction given to LCD to do a predefined task like initializing it, clearing its screen, setting the cursor position, controlling the display, etc.
- The data register stores the data to be displayed on the LCD. The data is the ASCII value of the character to be displayed on the LCD.

Pin	Symbol	Input/output	Details
1	Vss	-	GND
2	Vcc	-	+5V
3	Vee	-	Contrast Control
4	RS	Input	RS=0 Command Register
			RS=1 Data Register
5	R/W	Input	R/W=0 for Write
			R/W=1 for Read
6	EN	Input/output	Enable
7	DB0	Input/output	8 bit data bus
8	DB1	Input/output	8 bit data bus
9	DB2	Input/output	8 bit data bus
10	DB3	Input/output	8 bit data bus
11	DB4	Input/output	8 bit data bus
12	DB5	Input/output	8 bit data bus
13	DB6	Input/output	8 bit data bus
14	DB7	Input/output	8 bit data bus
15	LED+	-	Backlight of LCD to VCC
16	LED-	-	Backlight of LCD to GND

• 2) RS (Register Select):

•

- The RS pin is used to select command code register or data register. If RS=0 the command code register is selected which allows us to send the instructions to LCD. If RS=1 the data register is selected which allows us to send data to be displayed on LCD.
- 3) RW(Read/Write):

•

- R/W input allows the user to write information to the LCD or read info from it.
- R/W =1 when reading
- R/W = 0 when writing
- 4) EN (Enable):
- when data or command is sent to LCD a high-to-low pulse must applied to the PIN. So Enable pin is toggled by sending first 1 and then 0.

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register				
1	Clear display screen				
2	Return home				
4	Decrement cursor (shift cursor to left)				
6	Increment cursor (shift cursor to right)				
5	Shift display right				
7	Shift display left				
8	Display off, cursor off				
A	Display off, cursor on				
С	Display on, cursor off				
Е	Display on, cursor blinking				
F	Display on, cursor blinking				
10	Shift cursor position to left				
14	Shift cursor position to right				
18	Shift the entire display to the left				
1C	Shift the entire display to the right				
80	Force cursor to beginning to 1st line				
C0	Force cursor to beginning to 2nd line				
38	2 lines and 5x7 matrix				

Interfacing external LCD (proteus)

```
#include <MSP430.h>
 #include <stdint.h>
 #define rs BIT6
#define e BIT7
 void disp num(int numb);
 void delay (uint32 t a)
    uint32 t i;
    for (i=0; i<a; i++);
```

```
to send data to LCD
void writedata(uint8 t t)
   P70UT |= rs; // This is our data
   P8OUT = t; //Data transfer
   P70UT |= e;
   delay (150);
   P70UT &= ~e;
   delay (150);
```

```
23 // for writhing command to LCD
24 void writecmd(uint8 t z)
2.5
        P70UT &= ~rs; // This is command
2.6
27
        P8OUT = z; //Data transfer
        P70UT |= e; // E = high
2.8
29
       delay (150);
30
        P7OUT &= ~e; // E = low
31
       delay (150);
```

```
// initialize the LCD
33
    void lcdinit(void)
34
35
36
        delay (15000);
37
        writecmd (0x30);
38
        delay (4500);
39
        writecmd (0x30);
40
        delay (300);
41
        writecmd (0x30);
42
        delay(650);
       writecmd(0x38); //function set
43
        writecmd(0x0c); //display on, cursor off, blink off
44
        writecmd(0x01); //clear display
45
        writecmd(0x06); //entry mode, set increment
46
47
        writedata('a');
48
        writedata('d');
49
        writedata('c');
       writecmd (0xC0);
50
        writedata('1');
```

```
52 L}
53
   // return to 0 location on LCD
54
    void Return(void) //Return to 0 location on LCD
55
56
       writecmd (0x02);
57
       delay (100);
58
59
    int main (void)
60
61
       BCSCTL1 = CALBC1 1MHZ; //calibration 1Mhz
62
       DCOCTL = CALDCO 1MHZ;
63
       P8DIR=0xFF; //output lines to LCD
64
       P7DIR=e | rs;
65
       lcdinit();
66
```

```
75
        //display number
76
       void disp num(int numb) //displays number on LCD
77
   □{
78
    unsigned char UnitDigit = 0; //It will contain unit digit of numb
79
     unsigned char TenthDigit = 0, hun,th,tnth; //It will contain 10th position digit of numb
80
     if (numb<0)
81
82
     numb = -1*numb; // Make number positive
83
     writedata('-'); // Display a negative sign on LCD
84
85
     tnth=(numb/10000)%10;// Ten 1000th digit
     if( tnth != 0) // If it is zero, then don't display
86
87
        writedata(tnth+0x30);
     th=(numb/1000)%10; // 1000th digit
88
89
     if( th != 0) // If it is zero, then don't display
90
     writedata (th+0x30);
91
     hun=(numb/100) %10;
92
     writedata(hun+0x30);
     TenthDigit = (numb/10%10); // Finds Tenth Digit
93
94
     writedata (TenthDigit+0x30); // Make Char of TenthDigit and then display it on LCD
95
     UnitDigit = numb%10;
96
     writedata(UnitDigit+0x30); // Make Char of UnitDigit and then display it on LCD
97
```


17.3.5 LCDVCTL Register

LCD_E Voltage Control Register

Figure 17-23. LCDVCTL Register

15	14	13	12	11	10	9	8
	LCDCF	PFSELX			VLO	CDx	
rw-{0}	rw-{0}	rw-{0}	rw-{0}	rw-{0}	rw-{0}	rw-{0}	rw-{0}
7	6	5	4	3	2	1	0
LCDCPEN	LCDREFEN	LCDSELVDD		Rese	erved		LCDREFMODE
rw-{0}	rw-{0}	rw-{0}	r0	r0	r0	r0	rw-{0}

Table 17-14. LCDVCTL Register Description

Bit	Field	Туре	Reset	Description
15-12	LCDCPFSELX	RW	Oh	Charge pump frequency selection. Clock source can be XT1, ACLK, VLO (4-bit, if f _{SOURCE} = f _{ACLK} = 32.768 kHz) 0000b = 32.768 kHz / 1 / 8 = 4.096 kHz 0001b = 32.768 kHz / 2 / 8 = 2.048 kHz 0010b = 32.768 kHz / 3 / 8 = 1.365 kHz 0011b = 32.768 kHz / 4 / 8 = 1.024 kHz 0100b = 32.768 kHz / 5 / 8 = 819 Hz 0101b = 32.768 kHz / 6 / 8 = 682 Hz 0110b = 32.768 kHz / 7 / 8 = 585 Hz 0111b = 32.768 kHz / 8 / 8 = 512 Hz 1000b = 32.768 kHz / 9 / 8 = 455 Hz 1001b = 32.768 kHz / 10 / 8 = 409 Hz 1010b = 32.768 kHz / 11 / 8 = 372 Hz 1011b = 32.768 kHz / 12 / 8 = 341 Hz 1100b = 32.768 kHz / 13 / 8 = 315 Hz 1101b = 32.768 kHz / 13 / 8 = 315 Hz 1101b = 32.768 kHz / 14 / 8 = 292 Hz 1110b = 32.768 kHz / 15 / 8 = 273 Hz
	14.00	5144	01	1111b = 32.768 kHz / 16 / 8 = 256 Hz

11-8	VLCDx	RW	0h	Internal reference voltage select on R13. Only valuable when LCDCPEN = 1 and LCDREFEN = 1.
				0000b = 2.60 V
				0001b = 2.66 V
				0010b = 2.72 V
				0011b = 2.78 V
				0100b = 2.84 V
				0101b = 2.90 V
				0110b = 2.96 V
				0111b = 3.02 V
				1000b = 3.08 V
				1001b = 3.14 V
				1010b = 3.20 V
				1011b = 3.26 V
				1100b = 3.32 V
				1101b = 3.38 V
				1110b = 3.44 V
				1111b = 3.50 V

7	LCDCPEN	RW	l	Charge pump enable 0b = Charge pump disabled ⁽¹⁾
			I	1b = Charge pump enabled when V_{LCD} is generated internally (VLCDEXT = 0) and VLCDx > 0 or VLCDREFx > 0.

Table 17-14. LCDVCTL Register Description (continued)

Field	Туре	Reset	Description
LCDREFEN	RW	0h	Internal reference voltage enable on R13
			0b = Internal reference voltage disabled
			1b = Internal reference voltage enabled
		- 3,6	LCDREFEN RW 0h

Onboard LCD of MSP430FR4133

```
MSP430FR413x Demo - LCD E, Display a string "123456" on LCD in LPM3.5 mode.
    //
    //
        Description: Displays "123456" in sequence to the LCD display.
                    f(LCD) = 32768Hz/((7+1)*16) = 256Hz.
    //
                    MSP430 works in LPM3.5 mode for ultra low power.
    //
    //
                   ACLK = default REFO \sim 32768Hz,
    //
                    MCLK = SMCLK = default DCODIV ~1MHz.
    //
    //
                    MSP430FR4133
    //
13
    //
                           XINI--
15
    // GND --|RST
                                   ~32768Hz
16
                          XOUT | --
    // I--0.1uF--|R13
    // |--0.1uF--|R23 (L3)COM3|-----
18
19
    // |--0.1uF--|R33 (L2)COM2|-----|
    // -- | LCDC2 (L1) COM1 | -----| | |
20
    // 4.7uF | (L0)COM0|-----||||
22
    //
             --|LCDC1
                          L4~L39|---| 1 2 3 4 5 6 |
23
    //
24
                  except L27~L35|
    //
25
    //
                                       TI LCD
```

```
77
     #define pos1 4
78
     #define pos2 6
     #define pos3 8
79
80
     #define pos4 10
     #define pos5 2
81
82
     #define pos6 18
83
84
     const char digit[10] =
85
    □ {
86
          0xFC,
87
          0x60,
88
          0xDB,
89
          0xF3,
90
          0x67,
91
          0xB7,
92
          0xBF,
93
          0xE4,
94
          0xFF,
95
          0xF7
96
     L};
97
```

```
// Digit A1 - L4
// Digit A2 - L6
// Digit A3 - L8
// Digit A4 - L10
// Digit A5 - L2
// Digit A6 - L18
   "0"
   "1"
   "2"
  "3"
   "4"
  "5"
// "6"
   "7"
// "8"
// "9"
```

```
98
      int main ( void )
 99
     □{
100
          WDTCTL = WDTPW | WDTHOLD;
                                                                       // Stop watchdog timer
101
102
          // Configure XT1 oscillator
103
          P4SELO |= BIT1 | BIT2;
                                                                       // P4.2~P4.1: crystal pins
104
          do
105
106
              CSCTL7 &= ~ (XT10FFG | DC0FFG);
                                                                       // Clear XT1 and DCO fault flag
107
              SFRIFG1 &= ~OFIFG;
108
           }while (SFRIFG1 & OFIFG);
                                                                       // Test oscillator fault flag
109
          CSCTL6 = (CSCTL6 & \sim (XT1DRIVE 3)) | XT1DRIVE 2;
110
           // Higher drive strength and current consumption for XT1 oscillator
111
112
113
          // Disable the GPIO power-on default high-impedance mode
114
          // to activate previously configured port settings
115
          PM5CTL0 &= ~LOCKLPM5;
116
117
          // Configure LCD pins
118
          SYSCFG2 |= LCDPCTL;
119
          // R13/R23/R33/LCDCAP0/LCDCAP1 pins selected
120
```

```
121
         LCDPCTLO = 0xFFFF;
122
         LCDPCTL1 = 0x07FF;
123
         LCDPCTL2 = 0x00F0;
                                                                     // L0~L26 & L36~L39 pins selected
124
125
          LCDCTL0 = LCDSSEL 0 | LCDDIV 7;
                                                                     // flcd ref freq is xtclk
126
127
          // LCD Operation - Mode 3, internal 3.08v, charge pump 256Hz
128
          LCDVCTL = LCDCPEN | LCDREFEN | VLCD 6 | (LCDCPFSEL0 | LCDCPFSEL1 | LCDCPFSEL2 | LCDCPFSEL3);
129
130
          LCDMEMCTL |= LCDCLRM;
                                                                     // Clear LCD memory
131
132
          LCDCSSEL0 = 0x000F;
                                                                     // Configure COMs and SEGs
133
                                                                     // L0, L1, L2, L3: COM pins
          LCDCSSEL1 = 0x0000;
134
          LCDCSSEL2 = 0x0000;
135
136
         LCDM0 = 0x21;
                                                                     // L0 = COM0, L1 = COM1
137
                                                                     // L2 = COM2, L3 = COM3
         LCDM1 = 0x84;
138
```

```
136
          LCDM0 = 0x21;
                                                                       // L0 = COM0, L1 = COM1
137
          LCDM1 = 0x84;
                                                                       // L2 = COM2, L3 = COM3
138
139
          // Display "123456"
140
          LCDMEM[pos1] = digit[1];
141
          LCDMEM[pos2] = digit[2];
142
          LCDMEM[pos3] = digit[3];
143
          LCDMEM[pos4] = digit[4];
144
          LCDMEM[pos5] = digit[5];
145
          LCDMEM[pos6] = digit[6];
146
147
          LCDCTL0 |= LCD4MUX | LCDON;
                                                                       // Turn on LCD, 4-mux selected
148
149
          PMMCTL0 H = PMMPW H;
                                                                       // Open PMM Registers for write
150
          PMMCTLO L |= PMMREGOFF L;
                                                                       // and set PMMREGOFF
151
152
           bis SR register (LPM3 bits | GIE);
                                                                       // Enter LPM3.5
153
          no operation();
                                                                       // For debugger
154
155
156
```

157

TASKS:

- 1) Write Your Name on First Line and registration Number on second line of LCD (use proteus or attach external LCD with MSP).
- 2) Write last four digit of your registration Number On the Onboard LCD of msp430fr4133.