Határozatlan integrál

Alapintegrálok és a parciális integrálás tétele

Elméleti áttekintés

1. Definíció. Legyen $]a,b[\subset \mathbb{R}$ nemüres, nyílt intervallum, $f:]a,b[\to \mathbb{R}$ függvény. Az $F:]a,b[\to \mathbb{R}$ differenciálható függvényt az f függvény **primitív függvény**ének vagy **határozatlan integrál**jának nevezzük, ha

$$F'(x) = f(x)$$

teljesül minden $x \in]a,b[$ esetén. Az F függvényre a továbbiakban az $\int f$ vagy az $\int f(x)dx$ jelölést használjuk.

1. Tétel. Ha $f, F:]a, b[\to \mathbb{R}$ és F' = f, akkor $G:]a, b[\to \mathbb{R}$ pontosan akkor primitív függvénye f-nek, ha létezik olyan $C \in \mathbb{R}$, hogy

$$F(x) = G(x) + C \qquad (x \in]a, b[)$$

2. Tétel (A határozatlan integrál linearitása). Legyenek $f,g:]a,b[\to \mathbb{R}$ olyan függvények, melyekre létezik $\int f$ és $\int g$, legyenek továbbá $\alpha,\beta \in \mathbb{R}$ tetszőleges konstansok. Ekkor létezik $\int \alpha \cdot f + \beta \cdot g$ is, és létezik olyan $C \in \mathbb{R}$, hogy

$$\int \alpha \cdot f(x) + \beta \cdot g(x)dx = \alpha \int f(x)dx + \beta \int g(x)dx + C.$$

3. Tétel (A parciális integrálás tétele). Ha az $f, g:]a, b[\to \mathbb{R}$ függvények differenciálhatóak $]a, b[-n, és létezik <math>\int f' \cdot g$, akkor létezik $\int f \cdot g'$ is, és létezik olyan $C \in \mathbb{R}$ konstans, hogy

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx + C. \quad (x \in]a, b[)$$

Alapintegrálok

1. $\int e^x dx = e^x$ $\int \sin(x) dx = -\cos(x)$

2. $\int a^x dx = \frac{1}{\ln a} a^x$ 8. $\int \operatorname{tg}(x) \, dx = -\ln|\cos(x)|$

3. $\int \ln(x) dx = x \ln(x) - x$ $\int \operatorname{ctg}(x) dx = \ln|\sin(x)|$

4. $\int \log_a(x) dx = \frac{1}{\ln a} (x \ln(x) - x)$ $\int \arccos(x) dx = x \arccos(x) - \sqrt{1 - x^2}$

5. $\int x^{\alpha} dx = \begin{cases} \frac{1}{\alpha + 1} x^{\alpha + 1} & \text{ha } \alpha \neq -1, \\ \ln|x| & \text{ha } \alpha = -1, \end{cases}$ $\int \arcsin(x) dx = x \arcsin(x) + \sqrt{1 - x^2}$ 12.

6. $\int \cos(x) dx = \sin(x) \qquad \qquad \int \arctan(x) dx = x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$

13.
$$\int \operatorname{arcctg}(x) \, dx = x \operatorname{arcctg}(x) + \frac{1}{2} \ln(1 + x^2)$$

24.

25.

29.

30.

31.

32.

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg}(x)$$

$$\int \cosh(x) \, dx = \sinh(x)$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x)$$

$$\int \sinh(x) \, dx = \cosh(x)$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = -\arccos(x)$$

16.
$$\int \tanh(x) \, dx = \ln|\cosh(x)|$$

$$\int \frac{dx}{1+x^2} = \arctan(x)$$

17.
$$\int \coth(x) dx = \ln|\sinh(x)|$$

$$\int \frac{dx}{1+x^2} = -\operatorname{arcctg}(x)$$

18.
$$\int \operatorname{arcosh}(x) dx = x \operatorname{arcosh}(x) - \sqrt{x^2 + 1}$$

$$\int \frac{dx}{\cosh^2 x} = \tanh(x)$$

19.
$$\int \operatorname{arsinh}(x) \, dx = x \operatorname{arsinh}(x) - \sqrt{x^2 + 1}$$

$$\int \frac{dx}{\sinh^2 x} = -\coth(x)$$

$$\int \operatorname{arsinh}(x) \, dx = x \operatorname{arsinh}(x) - \sqrt{x^2 + 1}$$

$$\int \frac{dx}{\sqrt{x^2 + 1}} = \operatorname{arsinh}(x)$$

$$\int \operatorname{artanh}(x) dx = x \operatorname{artanh}(x) + \frac{1}{2} \ln|1 - x^2|$$

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \operatorname{arcosh}(x)$$

$$\int \operatorname{arcoth}(x) dx = x \operatorname{arcoth}(x) + \frac{1}{2} \ln|x^2 - 1|$$

$$\int \frac{dx}{1 - x^2} = \operatorname{artanh}(x)$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg}(x)$$
 33.

$$\int \frac{dx}{x^2 - 1} = -\operatorname{arcoth}(x)$$

Feladatok

20.

21.

1. Feladat. Legyen

$$f(x) = 2x \qquad (x \in \mathbb{R}).$$

Határozzuk meg az f függvény F primitív függvényét úgy, hogy,

(i)
$$F(0) = 0$$

(iii)
$$F(a) = 0 \ (a \in \mathbb{R} \ adott)$$

(v)
$$F(1) = 5$$

$$(ii) \ F(1) = 0$$

(*iv*)
$$F(0) = 3$$

$$(vi) \ F(a) = 6 \ (a \in \mathbb{R} \ adott)$$

teljesüljön.

2. Feladat. Legyen F(x) = |x| $(x \in \mathbb{R})$. Igazoljuk, hogy ekkor minden $x \in \mathbb{R} \setminus \{0\}$ esetén

$$F'(x) = sign(x)$$
.

Igaz-e, hogy F a sign függvény primitív függvénye \mathbb{R} -en?

3. Feladat. Mutassuk meg, hogy az

$$f(x) = \begin{cases} 1, & ha \ x > 0 \\ 0, & ha \ x \le 0 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek \mathbb{R} -en nem létezik primitív függvénye.

4. Feladat. *Igazoljuk, hogy az s*(x) = |x| ($x \in \mathbb{R}$) *függvények az*

$$S(x) = \begin{cases} -\frac{x^2}{2}, & ha \ x < 0 \\ \frac{x^2}{2}, & ha \ x \ge 0 \end{cases}$$

módon megadott S : $\mathbb{R} \to \mathbb{R}$ függvény primitív függvénye.

5. Feladat. Határozzuk meg az alábbi függvények primitív függvényeit.

(i)
$$\int x^5 dx \qquad (x) \qquad \int (3-x^2)^3 dx, \qquad (xviii) \qquad \int \frac{\sqrt[4]{x}\sqrt[4]{x}}{\sqrt[4]{x}} dx,$$
(ii)
$$\int x^{-3} dx, \qquad (xi) \qquad \int x^2 (5-x^4) dx, \qquad (xix) \qquad \int 3x^4 + \frac{4}{x^5} dx,$$
(iii)
$$\int \sqrt[4]{x} dx, \qquad (xix) \qquad \int 3x^4 + \frac{4}{x^5} dx,$$
(iv)
$$\int \sqrt[4]{x} dx, \qquad (xiii) \qquad \int (xi) \qquad \int (xix) \qquad \int (xix$$

6. Feladat. A parciális integrálás tételének felhasználásával számítsuk ki a következő határozatlan integrálo-