Euler Bernoulli Beam Bending

$$\frac{1}{\rho} = \frac{M(x)}{EI}$$

At small deflections, curvature may be simplified to

$$\frac{1}{\rho} = \frac{d^2y}{dx^2}$$

Therefore

$$\frac{d^2y}{dx^2} = -\frac{M}{EI}$$

$$\frac{dy}{dx} = \int_0^x -\frac{M}{EI}dx + A$$

$$y(x) = \int_0^x \int_0^x \left(-\frac{M}{EI} dx + C \right) dx + B$$

Beam Equations

	SIMPLY SUPPORTED BEAMS				
Beam	Slope	Deflection	Elastic Curve		
V P P P P P P P P P P P P P P P P P P P	$\theta_1 = -\theta_2 = -\frac{PL^2}{16EI}$	$v_{\text{max}} = -\frac{PL^3}{48EI}$	$v = -\frac{Px}{48EI} (3L^2 - 4x^2)$ for $0 \le x \le \frac{L}{2}$		
θ_1 θ_2 θ_3 θ_4	$\theta_1 = -\frac{Pb(L^2 - b^2)}{6LEI}$ $\theta_2 = +\frac{Pa(L^2 - a^2)}{6LEI}$	$v = -\frac{Pa^2b^2}{3LEI}$ at $x = a$	$v = -\frac{Pbx}{6LEI}(L^2 - b^2 - x^2)$ for $0 \le x \le a$		
	$\theta_1 = -\frac{ML}{3EI}$ $\theta_2 = +\frac{ML}{6EI}$	$v_{\text{max}} = -\frac{ML^2}{9\sqrt{3} EI}$ $\text{at } x = L\left(1 - \frac{\sqrt{3}}{3}\right)$	$v = -\frac{Mx}{6LEI}(2L^2 - 3Lx + x^2)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\theta_1 = -\theta_2 = -\frac{wL^3}{24EI}$	$v_{\text{max}} = -\frac{5wL^4}{384EI}$	12 $v = -\frac{wx}{24EI}(L^3 - 2Lx^2 + x^3)$		
θ_1 θ_2 x	$\theta_1 = -\frac{wa^2}{24LEI}(2L - a)^2$ $\theta_2 = +\frac{wa^2}{24LEI}(2L^2 - a^2)$	14 $v = -\frac{wa^3}{24LEI}(4L^2 - 7aL + 3a^2)$ at $x = a$	$v = -\frac{wx}{24LEI}(Lx^3 - 4aLx^2 + 2a^2x^2 + 4a^2L^2$ $-4a^3L + a^4) \text{for } 0 \le x \le a$ $v = -\frac{wa^2}{24LEI}(2x^3 - 6Lx^2 + a^2x + 4L^2x - a^2L)$ 15 \text{for } a \le x \le L		
ν θ ₁	16 $\theta_1 = -\frac{7w_0 L^3}{360 EI}$ $\theta_2 = +\frac{w_0 L^3}{45 EI}$	17 $v_{\text{max}} = -0.00652 \frac{w_0 L^4}{EI}$ at $x = 0.5193L$	18 $v = -\frac{w_0 x}{360 LEI} (7L^4 - 10L^2 x^2 + 3x^4)$		

Cantilever Beams

BEAM DEFLECTION FORMULAE

BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION
1. Cantilever Be	am — Concentrated load P at t	the free end	
$ \begin{array}{c c} P & X \\ \delta_{mix} \end{array} $	$\Theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI}(3l - x)$	$\delta_{\max} = \frac{Pl^3}{3EI}$
2. Cantilever Be	am — Concentrated load P at	any point	
a P b δ_{max}	$\Theta = \frac{P\alpha^2}{2\mathcal{E}I}$	$y = \frac{Px^2}{6EI}(3\alpha - x) \text{ for } 0 < x < \alpha$ $y = \frac{P\alpha^2}{6EI}(3x - \alpha) \text{ for } \alpha < x < I$	$\delta_{\max} = \frac{P\alpha^2}{6BI} (3I - \alpha)$
3. Cantilever Be	am - Uniformly distributed lo	oad ω (N/m)	
$\begin{array}{c c} \omega & \downarrow & x \\ \hline \\ y & l & \uparrow \end{array}$	$\Theta = \frac{\omega l^3}{6EI}$	$y = \frac{\omega x^2}{24BI} \left(x^2 + 6l^2 - 4lx \right)$	$\delta_{\max} = \frac{\omega l^4}{8EI}$
4. Camtilever Be	am - Uniformly varying load	Maximum intensity ω ₀ (N/m)	
$\omega = \frac{\omega_o}{l}(l-x)$ $\omega = \frac{x}{l}$ δ_{max}	$\Theta = \frac{\omega_{\bullet} l^3}{24 EI}$	$y = \frac{\omega_{\bullet} x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$	$\delta_{\max} = \frac{\omega_{\bullet} l^{\bullet}}{30 EI}$
5. Cantilever Be	am — Couple moment M at th	e free end	
$ \begin{array}{c c} & \downarrow & x \\ \hline y & & \delta_{\text{min}} \\ \end{array} $	$\Theta = \frac{Ml}{EI}$	$y = \frac{Mx^2}{2EI}$	$\delta_{\text{maxt}} = \frac{Ml^2}{2EI}$

Typical Laminate

598

Lamina Stress/Strain Relationship

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_6 \end{pmatrix}$$

Where

$$Q_{11} = \frac{E_{11}}{1 - v_{12}v_{21}}$$

$$Q_{12} = \frac{v_{12}E_{22}}{1 - v_{12}v_{21}} = \frac{v_{21}E_{11}}{1 - v_{12}v_{21}}$$

$$Q_{22} = \frac{E_{22}}{1 - v_{12}v_{21}}$$
$$Q_{66} = G_{12}$$

$$Q_{66} = G_{12}$$

Rotated

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \end{pmatrix} = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{pmatrix}$$

Laminate Plates

Stiffness Matrices

$$\binom{N}{M} = \binom{A \mid B}{B \mid D} \binom{\varepsilon^{\circ}}{\kappa}$$

$$\begin{pmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_{xx}^{o} \\ \varepsilon_{yy}^{o} \\ \gamma_{xy}^{o} \end{pmatrix} \xrightarrow{\Xi} \begin{pmatrix} \Xi & \Xi & \Xi \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_{xx}^{o} \\ \varepsilon_{yy}^{o} \\ \gamma_{xy}^{o} \end{pmatrix} \xrightarrow{\Xi} \begin{pmatrix} \Xi & \Xi & \Xi \\ A_{12} & A_{23} & A_{24} \\ A_{14} & A_{25} & A_{26} \end{pmatrix}$$

$$+\begin{pmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{pmatrix}\begin{pmatrix} K_{xx} \\ K_{yy} \\ 2K_{xy} \end{pmatrix}$$

Stiffness Matrices

$$A_{ij} = \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k - h_{k-1})$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k^2 - h_{k-1}^2)$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k^3 - h_{k-1}^3)$$

References

- Beer And Johnston, Mechanics of Materials
- Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E. & Fearing, R. S. Microrobot Design Using Fiber Reinforced Composites. *J. Mech. Des.* 130, 52304 (2008).
- Wood, R. J., Steltz, E. & Fearing, R. S. Optimal energy density piezoelectric bending actuators. Sensors Actuators A Phys. 119, 476–488 (2005).
- Chou, Tsu-Wei. Microstructural design of fiber composites. Cambridge University Press, 2005.

