

Context-Free Path Querying via Matrix Equations

Yuliya Susanina

JetBrains Research, Programming Languages and Tools Lab Saint-Petersburg State University

27.05.2020

Context-Free Path Querying (CFPQ)

- Context-free grammar $G = (N, \Sigma, R)$ $\mathcal{L}(G_S) = \{ \omega \mid S \Rightarrow_G^* \omega \}, S \in N$
- Directed graph $D = (V, E, \sigma)$, $\sigma \subseteq \Sigma$, $E \subseteq V \times \sigma \times V$ $m\lambda n$ — path from m to n in D, λ — a unique word of this path

Context-Free Path Querying (CFPQ)

- Context-free grammar $G = (N, \Sigma, R)$ $\mathcal{L}(G_S) = \{ \omega \mid S \Rightarrow_G^* \omega \}, S \in N$
- Directed graph $D = (V, E, \sigma)$, $\sigma \subseteq \Sigma$, $E \subseteq V \times \sigma \times V$ $m\lambda n$ — path from m to n in D, λ — a unique word of this path
- $R_A = \{(m, n) \mid m\lambda n \text{path B } D, \lambda \in \mathcal{L}(G_A)\}$

Context-Free Path Querying (CFPQ)

- Context-free grammar $G = (N, \Sigma, R)$ $\mathcal{L}(G_S) = \{ \omega \mid S \Rightarrow_G^* \omega \}, S \in N$
- Directed graph $D = (V, E, \sigma)$, $\sigma \subseteq \Sigma$, $E \subseteq V \times \sigma \times V$ $m\lambda n$ — path from m to n in D, λ — a unique word of this path
- $R_A = \{(m,n) \mid m\lambda n \text{path в } D, \lambda \in \mathcal{L}(G_A)\}$

Computational mathematics

- Both rich theoretical foundations and constantly improving modifications/implementations
- Parallel techniques and GPGPU
- Approximate computational methods to accelerate CFPQs processing

Main goal

• To propose a new way to reduce CFPQ to a problem with available high-performance solutions — to solving the systems of equations over real numbers \mathbb{R}

Reduction from Solving Boolean Matrix Equations

$$S o aSb \mid ab$$
 $T_E \in \mathbb{M}^{|V| \times |V|} : (T_E)_{ij} = 1 \iff (i,j) \in R_E \ \forall E \in (N \cup \Sigma)$

Reduction from Solving Boolean Matrix Equations

Reduction from Solving Matrix Equations over $\mathbb R$

$$\{\mathcal{T}_{S}^{k}\}: \quad \mathcal{T}_{S}^{0} = \mathbf{0} \\ \{\mathcal{T}_{S}^{k}\}: \quad \mathcal{T}_{S}^{k+1} = \epsilon (T_{a}\mathcal{T}_{S}^{k}T_{b} + T_{a}T_{b})$$

$$\mathcal{T}_{\mathcal{S}}^{\infty}$$
 -least solution $\mathcal{T}_{\mathcal{S}} = \epsilon (T_a \mathcal{T}_{\mathcal{S}} T_b + T_a T_b)$, where ϵ such that $\mathcal{T}_{\mathcal{S}}^k \leq 1 \quad \forall k$

Reduction from Solving Matrix Equations over $\mathbb R$

$$\{\mathcal{T}_S^k\}: \begin{array}{l} \mathcal{T}_S^0 = \mathbf{0} \\ \mathcal{T}_S^{k+1} = \epsilon (T_a \mathcal{T}_S^k T_b + T_a T_b) \end{array}$$

$$\mathcal{T}_S^{\infty} - \text{least solution } \mathcal{T}_S = \epsilon (T_a \mathcal{T}_S T_b + T_a T_b),$$
 where ϵ such that $\mathcal{T}_S^k \leq \mathbf{1} \quad \forall k$
$$(\mathcal{T}_S^{k+1})_{ij} > 0 \iff (\mathcal{T}_S^{k+1})_{ij} = 1$$

$$ceil(\mathcal{T}_S^{\infty}) = \mathcal{T}_S^{\infty}$$

Methods for Solving Equations

- Linear equations
 - ► Sylvester equations: AXB + CXD = F
 - ▶ Linear systems Ax = b
- Nonlinear equations
 - Newton's method

$$X = G(X) \Rightarrow F(X) = X - G(X) = \mathbf{0}$$

$$X_{i+1} = X_i - (F'(X_i))^{-1} F(X_i) \iff \begin{cases} F'(X_i) H_i = -F(X_i) \\ X_{i+1} = X_i + H_i \end{cases}$$

First implementation

- SciPy
 - ▶ sSLV to solve as a sparse linear system
 - ▶ dNWT to find a root of a function with Newton's method
- Comparative analysis of matrix-based approach and equation-based approach (in ms)

Ontology	V	dNWT	sSLV	dGPU	sCPU	sGPU
bio-meas	341	284	35	276	91	24
people-pets	337	73	49	144	38	6
funding	778	502	184	1246	344	27
wine	733	791	171	722	179	6
pizza	671	334	161	943	256	23

Results

- Equation-based approach for CFPQ was proposed
- The feasibility of using both accurate and approximate methods of computational mathematics was assessed
- The evaluation on a set of conventional benchmarks showed that our approach comparable with the matrix-based approach and applicable for real-world data processing
- ACM SIGMOD 2020 Student Research Competition:
 Yuliya Susanina. Context-Free Path Querying via Matrix Equations.
 (accepted to participate in the second round)

Future Work

- Employ high-performance solvers which utilize GPGPU and distributed computations
- Determine the subclasses of (system of) polynomial equations the solution of which can be reduced to CFPQ
- Try to construct a bidirectional reduction between CFPQ and these subclasses, thereby finding efficient solutions for both these problems