Multinomial Logistic Models

Multinomial Logistic: Intuition

- In binomial logit the response variable has 2 possible values (e.g., "good mail" and "spam"), so we can easily quantify this variable with 2 dummy variables coded 0 (e.g., good mail) and 1 (e.g., spam)
- If the response variable has more than 2 categories we have a multinomial logistic situation
- For example, if we are trying to find the type of **home** location a person is likely to purchase (e.g., rural, suburban, urban).

- We first select the "reference" category (e.g., rural) that will be coded 0 in both models.
- We then fit two binomial models, one for suburban vs. rural and another for urban vs. rural.
- More generally, a response variable with **K** categories can be modeled with K-1 binomial logistic models. The category left out is called the "reference" category.
 - Multinomial logistic regression fits all the binomials together

Multinomial Logistic Details

- A multinomial model can solved by fitting binomial logistic models one by one, but this yields separate fit statistics for model
- A multinomial logistic model fits all the binomials together and provides fit statistics for the model as a whole
- The response variable Y has K categories
 - We select one of them as the "reference" category k_R
 - ➤ We estimate logistic **coefficients** for the other *K-1* categories
 - In **binomial** logistic, a coefficient for X_I represents the increase in log odds of Y = I, relative to Y = 0, when X_I increases by I unit.
 - In multinomial logistic, the coefficient for a predictor X_{1k} for the k^{th} category represents the increase in log odds of Y = k, relative $Y = k_R$, when X_1 increases by 1 unit.

Multinomial Logistic Interpretation

For a **multinomial logit** model:

$$Logit(Y) = \beta_{01} + \beta_{11}(X_1) + \beta_{21}(X_2) + \beta_{31}(X_3) + \dots$$

$$\beta_{02} + \beta_{12}(X_1) + \beta_{21}(X_2) + \beta_{31}(X_3) + \dots$$

$$\beta_{02} + \beta_{1K-1}(X_1) + \beta_{2K-1}(X_2) + \beta_{3K-1}(X_3) + \dots + \varepsilon$$

- *Y* has *K* categories (e.g., Freshman, Sophomore, Junior, Senior withdrawing from school)
- Logit(Y) is the log odds of the response variable being in category k (e.g., Junior), relative to the reference category k_R (e.g., Freshman)
- β_{ik} is the **effect** of variable X_i (e.g., GPA) on the log odds of Y = k
- But odds and log odds are always relative to something (e.g., leaving vs. staying)
- So, β_{ik} measures how much the log odds Y of being k, relative to the reference category k_R (e.g., Freshman), change when X_i (e.g., GPA) goes up by 1 unit.

Multinomial Logit: Fit Statistics

- The vglm(){VGAM} function in R reports the:
 - Log-Likelihood
 - **Deviance** (2LL) \rightarrow −2 * *Log Likelihood*
 - ➤ AIC → calculated by adding 2 * Number of Variables

Confusion Matrix:

$$Error Rate = \frac{Incorrect}{Total} = \frac{Off - Diagonal}{T}$$

$$Sensitivity_{Class} = \frac{Correct_{Class}}{Total_{Class}} = \frac{TP_A}{A_A}; \frac{TP_B}{A_B}; \frac{TP_C}{A_C}$$

$$Specificity_{Class} = \frac{Correct_{NotClass}}{Total_{NotClass}} = \frac{TP_A + TPC}{TOtal_{NotClass}}$$

$$\frac{TP_B + TPC}{A_B + AC} (for A); \frac{TP_A + TPC}{A_A + AC} (for B); \frac{TP_A + TPB}{A_A + AB} (for C)$$

Pred	Actual			Total
	A	В	C	Total
Α	TP_A	P _{A/B}	P _{A/C}	P _A
В	P _{B/A}	TP _B	P _{B/C}	P _B
С	P _{C/A}	P _{C/B}	TP _C	P _C
Total	A _A	A _B	Ac	Т

vglm() {VGAM} → "Vector Generalized Linear Model" function in the {VGAM} "Vector Generalized and Additive Model" package is a function to fit multinomial logistic; "vector" refers to the fact that the response variable is no longer binary, but a vector of categorical values.

Note: there are other packages that can fit multinomial logit models, with their own strengths, difficulties and challenge for you to explore, e.g.:

```
multinom() {nnet} and glmnet() {glmnet}

vglm.fit =
   vglm(y~x1+x2+etc., family=multinomial(refLevel=1),
   data=dataName) → refLevel=1 indicates the first category in the
response variable will be left out as a baseline

Like binary logistic with glm() → logLik(vglm.fit);-
2*logLik(vglm.fit); deviance(vglm.fit); and AIC(vglm.fit)
work well with a vglm() object
```


KOGOD SCHOOL of BUSINESS

