🚀 Absolute Value — Explained Simply

Imagine you're walking on a straight road — like a number line. You start at 0. Move right \rightarrow you hit positive numbers. Move left \rightarrow you hit negative numbers.

Now, here's the key idea:

And distance is always non-negative. You can't say "I'm –5 meters away." Distance ignores direction.

So:

- |5| = 5 (5 units away from 0, on the right)
- |-4| = 4 (4 units away from 0, on the left)
- |0| = 0 (you're standing at 0, no distance at all)

That's it. Absolute value is just "how far from zero, no matter left or right."

Tormal Definition (in plain words)

For any real number a:

$$|a| = a$$
, if $a >= 0$
 $|a| = -a$, if $a < 0$

In English:

- If a is already positive or zero → leave it as is.
- If a is negative → flip the sign.

Watch out (Common Misunderstanding)

When you see "+a" or "-a," don't automatically assume +a means positive and -a means negative.

Why? Because a itself could be negative.

Example:

• If
$$a = -3 \rightarrow \text{then } -a = -(-3) = +3 \text{ (positive)}$$

• If
$$a = -3 \rightarrow \text{then } +a = -3 \text{ (still negative)}$$

So the plus and minus in front are operations, not "labels" of positive/negative.

Examples

- 1. $|5| = 5 \rightarrow 5$ is already non-negative
- 2. $|-4/7| = 4/7 \rightarrow \text{strip the minus}$
- 3. $|0| = 0 \rightarrow \text{zero is neutral}$

 ← Rule of thumb: Absolute value = number without the minus sign.

Solving Equations with Absolute Value

Example 1

Solve: |x - 3| = 4

Meaning: "distance of x from 3 is 4"

Case 1: $x - 3 = 4 \rightarrow x = 7$ Case 2: $x - 3 = -4 \rightarrow x = -1$

Solutions: x = 7 or x = -1

Example 2

Solve:
$$|3x - 2| = |5x + 4|$$

Rule: If two numbers have the same absolute value, then they are either equal OR exact opposites.

Case 1:
$$3x - 2 = 5x + 4$$

$$\rightarrow$$
 -2 - 4 = 5x - 3x

$$\rightarrow$$
 -6 = 2x

$$\rightarrow$$
 x = -3

Case 2:
$$3x - 2 = -(5x + 4)$$

$$\rightarrow$$
 3x - 2 = -5x - 4

$$\rightarrow$$
 3x + 5x = -4 + 2

$$\rightarrow$$
 8x = -2

$$\rightarrow$$
 x = $-1/4$

Solutions: x = -3 or x = -1/4

Feynman Takeaway

Absolute value is nothing mysterious.

It's just distance from zero.

Every problem is asking: "How far is this number (or expression) from zero?"

Relationship Between Square Roots and Absolute Values

First, let's recall the basics:

Example:

• The square roots of 9 are +3 and -3, because $3^2 = 9$ and $(-3)^2 = 9$

So we say:

- Positive square root of 9 = 3
- Negative square root of 9 = -3

By definition, the symbol \sqrt{a} always means the positive square root (sometimes called the principal square root).

Thus:

 $\sqrt{9} = 3$

 $\sqrt{0} = 0$

Common Mistake

A very common error is to assume:

$$\sqrt{(a^2)} = a$$

This is not always true.

It only works when $a \ge 0$.

Example:

If
$$a = -4$$
, then

$$a^2 = (-4)^2 = 16$$

$$\sqrt{(a^2)} = \sqrt{16} = 4$$

But a = -4, not +4 So $\sqrt{(a^2)} \neq a$ in this case.

The Correct Relationship

To fix this problem, we use **absolute value**.

The real rule is:

$$\sqrt{(a^2)} = |a|$$

Why? Because absolute value always gives the non-negative version.

Examples:

1. If
$$a = 5 \rightarrow \sqrt{(a^2)} = \sqrt{25} = 5 = |5|$$

2. If
$$a = -5 \rightarrow \sqrt{(a^2)} = \sqrt{25} = 5 = |-5|$$

So the absolute value guarantees that the square root always matches the **non-negative root**.

- Every positive number has two square roots (one positive, one negative).
- The symbol \sqrt{a} always refers to the *positive* root.
- $\sqrt{(a^2)}$ is **not equal to a**, it is equal to |a|.

Think of it like this:

Squaring a number hides the sign.

Taking a square root gives back the distance from zero.

That distance is exactly what absolute value means.

Theorem: Square Root and Absolute

Value

Statement:

For any real number a,

$$\sqrt{(a^2)} = |a|$$

Proof (explained simply)

- 1. Start with a².
 - o If a = +a, then $a^2 = (+a)^2$
 - o If a = -a, then $a^2 = (-a)^2$ Either way, squaring makes the result positive.

So both +a and -a are square roots of a2.

- 2. Now recall: $\sqrt{(a^2)}$ means the non-negative square root of a^2 .
- If $a \ge 0$, then +a is already non-negative. So $\sqrt{(a^2)} = +a$.
- If a < 0, then –a is the non-negative choice (because a is negative, but –a flips it positive). So $\sqrt{(a^2)}$ = −a.

3. Put it all together:

$$\sqrt{(a^2)} = a, \text{ if } a \ge 0$$

$$\sqrt{(a^2)} = -a, \text{ if } a < 0$$

And this is exactly the definition of absolute value.

▼ Final Result

 $\sqrt{(a^2)} = |a|$

Feynman Takeaway

Squaring wipes out the sign (both +a and –a collapse into the same result). Taking a square root asks: "Which root is non-negative?" That's why $\sqrt{(a^2)}$ is not "a" but "absolute a."

Square root of a square is the **absolute value** of the number.

Properties of Absolute Value

Theorem: If a and b are real numbers, then

- (a) $|-a| = |a| \rightarrow a$ number and its negative have the same absolute value.
- (b) $|ab| = |a| |b| \rightarrow$ the absolute value of a product is the product of the absolute values.
- (c) $|a/b| = |a| / |b| \rightarrow$ the absolute value of a ratio is the ratio of the absolute values.

Proofs Explained

$$(a) |-a| = |a|$$

Why?

Squaring wipes out the sign.

$$(-a)^2 = a^2$$

So $\sqrt{(a^2)} = |a|$

Thus |-a| = |a|

(b) |ab| = |a| |b|

Think of squaring again:

$$(ab)^2 = (a^2)(b^2)$$

Take square root:

This works for any number of factors:

Special case:

If all numbers are the same (say all equal to a), then

$$|a^{n}| = |a|^{n}$$

(c)
$$|a/b| = |a| / |b|$$

For division, the same rule applies.

$$(a/b)^2 = (a^2) / (b^2)$$

Take square root:

|a/b| = |a| / |b| (as long as $b \neq 0$).

Examples

- 1. |-4| = |4| = 4
- 2. |(2)(-3)| = |-6| = 6 = |2||-3| = (2)(3) = 6
- 3. |5/4| = 5/4 = |5| / |4| = 5/4

Feynman Takeaway

- Absolute value ignores signs flipping negative to positive when needed.
- Multiplication and division keep the same rule: you can "pull out" the absolute value across factors or fractions.
- Think of it as a *distance rule*: distance doesn't care about direction, even when you multiply or divide.

Geometric Interpretation of Absolute

Value

Absolute value comes up naturally in distance problems — because distance is always non-negative.

Imagine a number line (a straight road). Pick two points:

- Point A at coordinate a
- Point B at coordinate b

The distance **d** between A and B is:

$$d = |a - b|$$

Why does this work?

Case 1: If a < b

- Then b − a is positive
- Distance d = b a = |b a|

Case 2: If a > b

• Then b – a is negative

But distance can't be negative, so we flip it:

 The second seco

$$a - b = -(b - a) = |b - a|$$

Case 3: If a = b

- Then the two points overlap
- Distance d = 0 = |b a|

Key Formula

For any two real numbers a and b:

Distance between a and b = |a - b|

Feynman Takeaway

Absolute value is really just distance on the number line.

- Between 2 and $7 \rightarrow |7 2| = 5$
- Between -3 and $4 \rightarrow |4 (-3)| = |4 + 3| = 7$
- Between -5 and $-2 \rightarrow |-2 (-5)| = |3| = 3$

Theorem: Distance Formula

If A and B are points on a coordinate line with coordinates **a** and **b**, then the distance **d** between them is:

d = |b - a|

This is why absolute value has such a natural **geometric meaning** — it always measures distance.

Table of Common Expressions

EXPRESSION	GEOMETRIC INTERPRETATION ON A COORDINATE LINE
x-a	The distance between x and a
x+a	The distance between x and -a
x	The distance between x and origin

Why is this powerful?

These forms show up everywhere in algebra, especially in inequalities. For example:

• $|x - a| < k \rightarrow "x$ is less than k units away from a"

• $|x - a| > k \rightarrow$ "x is more than k units away from a"

So absolute value inequalities are really distance statements.

Examples

- 1. |x-5| < 2
 - \rightarrow x is within 2 units of 5
 - \rightarrow Interval: 3 < x < 7
- 2. |x + 3| > 4
 - \rightarrow Distance from -3 is greater than 4

Feynman Takeaway

Absolute value isn't just a symbol.

It's a distance measure on the number line.

- |x a| = how far x is from a
- |x| = how far x is from 0
- Inequalities like |x a| < k are just saying "stay close," while |x a| > k says "stay far."

Problem: Solve |x - 3| < 4

Step 1: Translate the inequality into distance language

|x - 3| < 4 means:

"The distance between x and 3 is less than 4."

So x must stay within 4 units of 3.

Step 2: Rewrite as a double inequality

-4 < x - 3 < 4

Step 3: Solve for x

Add 3 to all sides:

$$-4 + 3 < x - 3 + 3 < 4 + 3$$

-1 < x < 7

Final Answer

The solution set is all x values between -1 and 7.

In interval notation:

(-1, 7)

Feynman Takeaway

Absolute value inequalities are really just distance rules.

- |x-3| < 4 means: "x is less than 4 units away from 3."
- That gives a clean interval around 3: from –1 up to 7.
- ← Always think: absolute value = distance, then translate into a range.

Example

Solve:

 $|x + 2| \ge 4$

Step 1: Recall the definition of absolute value.

For any expression inside | |, we split into two cases:

 $|x + 2| \ge 4$ means either

- 1. $x + 2 \ge 4$ or
- 2. $x + 2 \le -4$

Case 1:

 $x + 2 \ge 4$

Subtract 2:

x ≥ 2

Case 2:

 $x + 2 \le -4$

Subtract 2:

x ≤ -6

Step 3: Combine the two results.

So the solution is:

 $x \ge 2 \text{ OR } x \le -6$

Step 4: Write in set/interval notation.

V Final Answer:

The solution set is $(-\infty, -6] \cup [2, \infty)$

The Triangle Inequality

It is **not always true** that

$$|a + b| = |a| + |b|$$

For example:

Take
$$a = 2, b = -3$$

Then

$$a + b = 2 + (-3) = -1 \rightarrow |a + b| = |-1| = 1$$

But

$$|a| + |b| = |2| + |-3| = 2 + 3 = 5$$

So,
$$|a + b| \neq |a| + |b|$$

✓ The Correct Statement (Theorem 1.2.5):

For any real numbers a and b,

$$|a + b| \le |a| + |b|$$

This is called the **Triangle Inequality**.

(It is so important that it even connects to the famous *Heisenberg Uncertainty Principle* in quantum physics.)

Proof (Step by Step)

We know from earlier properties:

- |a| ≥ a and |a| ≥ -a
- $|b| \ge b$ and $|b| \ge -b$

That means:

- -|a| ≤ a ≤ |a|
- $-|b| \le b \le |b|$

Now add these two inequalities:

$$(-|a| \le a \le |a|)$$

+
 $(-|b| \le b \le |b|)$
= $-(|a| + |b|) \le (a + b) \le (|a| + |b|)$

This tells us:

• (a + b) is trapped between -(|a| + |b|) and (|a| + |b|)

So by definition of absolute value:

$$|a + b| \le |a| + |b|$$

✓ Final Result:

$$|a + b| \le |a| + |b|$$

This is the **Triangle Inequality**.