	14.5 Chain rule
	Wednesday, January 30, 2019 9:03 AM
	$\frac{dy}{dx} = \frac{dy}{dh} \cdot \frac{dh}{dx}$
	Assume Z=ZIX,y), and assume 7 is a function oft, y is a function
	of t, Then $\frac{dz}{dt} = \frac{d\overline{z}}{dx}, \frac{dx}{dt} + \frac{d\overline{z}}{dx}, \frac{dy}{dt}$
	e.g. $z = x^3y^2 + 7y^2x$, where $x = sint$, $y = cost$.
	$\frac{\partial z}{\partial t} = (3x^3y^3 + 7y^3)\cos t + (2x^3y + 21y^2x)(-sint)$
	$\frac{dz}{dt}\Big _{t=D} = 7$
	$\frac{\partial S}{\partial S} = \frac{\partial S}{\partial X} + \frac{\partial S}{\partial S} \cdot \frac{\partial A}{\partial S} $
-	To by to divide
	$\frac{\partial f}{\partial S} = \frac{\partial x}{\partial S} \cdot \frac{\partial f}{\partial X} + \frac{\partial y}{\partial S} \cdot \frac{\partial f}{\partial X}$
•	In general, $Z(X_1,, X_n)$, and $X_1(t_1,, t_m)$ then
	$\frac{\partial^2}{\partial t_i} = \frac{\partial^2}{\partial t_i} \cdot \frac{\partial^2}{\partial t_i} + \dots + \frac{\partial^2}{\partial t_n} \cdot \frac{\partial^2}{\partial t_i}$
f.(. $u(x,y,z) = x^4y + y^2z^3$, $x=r.s.e^t$, $y=rs^2e^{-t}$, $z=r^2s$ when
	r=2, \$=1, t=0
	$\frac{92}{5n} = \frac{9x}{9n} \cdot \frac{92}{9x} + \frac{98}{9n} \cdot \frac{92}{9n} + \frac{92}{9n} \cdot \frac{92}{9n}$
	$= 47^{3}y \cdot re^{t} + (x^{4} + 2z^{3}y) \cdot 2rse^{-t} + 3z^{2} \cdot y^{2} \cdot (r^{2}sint)$
	x = 2, y = 2, 2 = D
0	1 = 16 × 4× 2 + 16×2×2 + 0
	= 16x 2 = 160+32=192

	6 Directional Derivatives & the Gradient Vector esday, February 6, 2019 9:05 AM	
• REM	for $f(x,y)$, directional vector $ \frac{2f}{\partial x}\Big _{(x_0,y_0)} = \int_{x} (x,y) = \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h} \text{in direction of } i $	
• Pick	$\frac{\partial f}{\partial y} _{(x_0,y_0)} = f_y(x_0,y_0) = \lim_{h \to 0} \frac{f(x_0,y_0+h) - f(x_0,y_0)}{h} \text{in direction of}$ $\vec{u} = \langle a_1 b_2, \vec{u} = 1 \text{Unit Vector!}$	
Dire	$\lim_{h \to 0} \frac{\Delta \tilde{z}}{h} = \frac{f(\tilde{x}_0 + ha, y_0 + ha) - f(\tilde{x}_0, y_0)}{h}$ $\lim_{h \to 0} \frac{\Delta \tilde{z}}{h} = \frac{f(\tilde{x}_0 + ha, y_0 + ha) - f(\tilde{x}_0, y_0)}{h}$ $\lim_{h \to 0} \frac{d\tilde{z}}{h} = \frac{f(\tilde{x}_0 + ha, y_0 + ha) - f(\tilde{x}_0, y_0)}{h}$ $\lim_{h \to 0} \frac{d\tilde{z}}{h} = \frac{f(\tilde{x}_0 + ha, y_0 + ha) - f(\tilde{x}_0, y_0)}{h}$ $\lim_{h \to 0} \frac{d\tilde{z}}{h} = \frac{f(\tilde{x}_0 + ha, y_0 + ha) - f(\tilde{x}_0, y_0)}{h}$ $\lim_{h \to 0} \frac{d\tilde{z}}{h} = \frac{f(\tilde{x}_0 + ha, y_0 + ha) - f(\tilde{x}_0, y_0)}{h}$	
Du	fixo, yo) = $\lim_{h\to 0} \frac{f(x_0 + hay_0 + hb) - f(x_0, y_0)}{h}$: the lape of the tangent line on too, yo)	
then	Define $g(h) = f(x_0 + ha, y_0 + hb)$, $\vec{u} = \langle a, b \rangle$ wit vector $\lim_{h \to 0} g(h) = g'(0)$ $f(x_0 + ha, y_0 + hb) - f(x_0, y_0)$ h h $= D_h(x_0, y_0)$	
	$\frac{g'(0)}{da} = \frac{\partial f}{\partial h}, \frac{\partial h}{\partial h} = \frac{\partial f}{\partial h}, \frac{\partial h}{\partial h} = \frac{\partial h}{\partial h}, \frac{\partial h}{\partial h} = \partial $	
0 1	\vec{u} is unit vector, then $\vec{u} = \langle \cos\theta, \sin\theta \rangle$ for some θ . Def(x,y) = free,y) cose+fy(x,y) sine	
	Find Du(x, y) if $f(x,y) = x^3 - 3xy + 4y^2$, $\vec{u} \Rightarrow unit vector with argle \frac{\pi}{6}, \vec{u} = \langle as_{\frac{\pi}{6}}, sin_{\frac{\pi}{6}} \rangle = \langle \frac{\pi}{2}, \frac{1}{2} \rangle$	
	$u = \langle u \rangle_{\mathcal{F}}$, $v \in \mathcal{F}$, $v \in \mathcal{F}$	

$\int x = 3x^2 - 3y = 3 - 6 = -3$ $\int y = -3x + 8y = -3 + 16 = 13$
$D_{11} = -\frac{313}{5} + \frac{13}{5}$
· Let f be a differentiable function with two variables, fix, y). The gradies
vector \vec{r} grad $\vec{f} = \nabla \vec{f} = \langle \vec{f}_x, \vec{f}_y \rangle = \int_{\vec{r}} \hat{i} + \int_{\vec{u}} \hat{j} \hat{j}$ (can only be taken by a sular field) Defix,y) = $\nabla \vec{f} \cdot \vec{u} = \nabla \vec{f} \cdot \vec{u} \cdot \cos\theta = \nabla \vec{f} \cdot \cos\theta$
$= \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle \cdot \vec{u}$
e.g. Find Duf(x,y), f(x,y) = x²y²-4y3 at (2,-1) in the direction of $\vec{v} = 2\hat{i} + 5\hat{j}$
$\overrightarrow{V} = \langle 2, 3 \rangle \Rightarrow \overrightarrow{\overrightarrow{V}} = \langle \frac{2}{19}, \frac{5}{19} \rangle$ Remember to convert to
f = 21y2 = 4 unit vector.
$\frac{\partial f}{\partial y} = 2x^2y - 2y^2 = -8 - 12 = -20$
$D_{i}f(x,y) = \frac{8}{\sqrt{29}} - \frac{160}{\sqrt{29}} = -\frac{92}{\sqrt{29}}$
• $D_u f(x,y) = \nabla f \cdot d$ is maximum when \vec{u} is the same direction with \vec{v}
= IT 1-cost & 0 = omaximum
Theorem. Let f be a differentiable function of two (or three) variables
The man value of Dufer, y) = of 1, and it occurs when it has the same
clirection as ∇f
• We can describe the gradient of f as the vector that points in the
same direction as the direction of fastest increase or the direction of steepest ascent of is fast decrease
The gradient vector is perpendicular to level curve.
Jangent plane to level surface at Pixo, yo, 20)
- F _x (x ₀ , y ₀ , z ₀)(x-x ₀) + F _y (x ₀ , y ₀ , z ₀) (y-y ₀) + F _z (x ₀ , y ₀ , z ₀) (z-z ₀) = 0
direction of normal line: VF

Prob

Thursday, February 7, 2019 10:12 AM

Suppose you are climbing a hill whose shape is given by the equation $z = 1500 - 0.005x^2 - 0.01y^2$, where x, y, and z are measured in meters, and you are standing at a point with coordinates (100, 120, 1306). The positive x-axis points east and the positive y-axis points north.

(a) If you walk due south, will you start to ascend or descend?

you start to ascend or descend?

$$\frac{\partial z}{\partial x} = -0.01x = 1, \quad \frac{\partial z}{\partial y} = -0.02y = -\frac{12}{5}$$

$$\nabla z = \frac{12}{5} > 0, \text{ ascend}$$

At what rate?

 $0.02 \cdot 120$

✓ vertical meters per horizontal meter

(b) If you walk northwest, will you start to ascend or descend?

$$\vec{\mathcal{U}} = \langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$$

$$\nabla \mathcal{Z} = -\frac{\sqrt{2}}{10}$$

At what rate? (Round your answer to two decimal places.)

$$-\frac{7\sqrt{2}}{10}$$

vertical meters per horizontal meter

(c) In which direction is the slope largest? $\boxed{<-0.01\cdot 100, -0.02\cdot 120>} \ \ \checkmark$

direction of < fx, fx>

V2= 1/2 + 1/2

VX+1/2 + 1/2

VX-1/2 + 1/2

VX-1/

What is the rate of ascent in that direction?

✓ vertical meters per horizontal meter

At what angle above the horizontal does the path in that direction begin? (Round your answer to two decimal places.)

68.96 • •

 $\tan\theta = \frac{13}{5} = \text{sope.}$