	EPITA	/	53
--	--------------	---	----

Décembre 2016 GROUPE :.....

Partiel 1 de Physique (Durée:1h30)

Les calculatrices et les documents ne sont pas autorisés.

Exercice 1 Distribution discrète (4 points)

On considère trois charges ponctuelles +q, +q et -q, placées respectivement aux points O, A et B. Le point M appartient à la médiatrice du segment AB. On pose OA = OB = a et l'angle $\alpha = (OM,OB)$.

- 1-a) Représenter sur le schéma ci-dessus les vecteurs champs électrostatiques créés par les trois charges au point M, ainsi que le champ total $\vec{E}(M)$.
 - b) Exprimer les normes $E_O(M)$, $E_A(M)$ et $E_B(M)$, en fonction de k, q, a et α , ainsi que celle du vecteur champ total : E(M).

2- Exprimer le potentiel électrique V(M) créé au point M, en fonction de k, q, a et α.

Exercice 2 Distribution continue

(4 points)

On rappelle ici qu'un élément de longueur de charge dQ situé au point P d'un fil de charge linéique constante, crée un champ électrique élémentaire $dE_x(M) = \frac{k.\lambda}{x} \cos(\alpha) d\alpha$ où α est tel qu'indiqué cidessous.

1-En utilisant ce résultat calculer les normes des vecteurs $\vec{E}_{AC}(O)$, $\vec{E}_{CB}(O)$ et $\vec{E}_{BA}(O)$, créés au centre O par la distribution continue de charges suivante. Représenter ces vecteurs.

Où ABC est un densité constan	n triangle équilatéral α nte positive λ et [AB]	de côté 2a. Les seg porte une charge d	ments [AC] et [BC] le densité constante	portent une charge négative – λ .	de
L2) En déduire l	'expression du cham	o total créé au poin	t O en fonction de l	x, λ et a	
					:

Exercice 3 Théorème de Gauss (6 points)

Un fil de longueur **infiniment grande h**, porte une charge Q positive répartie avec une densité constante.

1- Utiliser les symétries et invariances pour donner la direction du vecteur champ électrique créé par le fil en un point M extérieur au fil. On place le fil sur un axe (Oz).

- 3- On couvre le fil de charge Q par un cylindre creux de même axe (Oz), de même hauteur h, de rayon R, chargé en surface latérale avec une densité σ constante et positive.
- a) Donner les expressions du champ électrique E(r) dans les régions r < R et r > R.

b) En déduire les expressions du potentiel électrique V(r) dans les régions r < R et r > R.
Exercice 4 Electrocinétique Partie A (3 points)
On considère un conducteur cylindrique d'axe $O\vec{z}$ et de rayon R, traversé par un courant I de dens
variable $J(r) = J_0 \frac{r^2}{R^2}$, où J_0 et R sont des constantes.
1- Exprimer le courant total I traversant le conducteur en fonction de R et J_0 . Faire le calcul pour $J_0 = 10^6 \text{A/m}^2$ et R = 3mm. On pose $\pi \approx 3$

2- Exprimer en fonction de r le courant I' qui traverse une section de rayon r < R.
<u>Partie B</u> (3 points)
Un fil conducteur en cuivre, de conductivité $\gamma = 10^8 \Omega^{-1}$.m ⁻¹ , de longueur L = 1m et de rayon R=1 mm est traversé par un courant I de densité \vec{J} uniforme de valeur $J = 2.10^7 \text{A/m}^2$.
Calculer:
1- La valeur du courant I traversant le conducteur. On pose $\pi \approx 3$
2- Le champ électrique à l'intérieur du conducteur. Représenter les grandeurs \vec{I} , \vec{J} et \vec{E} .
3- La différence de potentiel U entre les bornes du conducteur.
4- La résistance R du conducteur.
5- La densité électronique n_{e-} , sachant que la vitesse moyenne des charges est : $V_{mov} = 0.2 ms^{-1}$.
On donne: $q_{e-} = -1.6.10^{-19} C$.
On doing: $q_{e_{-}} = -1.0.10$

Formulaire

1- Théorème de Gauss :

2- Elément de surface latérale d'un cylindre de rayon r et de hauteur h :

$$dS_{lat} = rd\theta.dz$$

3- Composantes du gradient en coordonnées cylindriques

$$gra\vec{d} = \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \cdot \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial z} \end{pmatrix}$$