

Introduction to Data Science FS 2023

Prof. Dr. rer. nat. habil. Ralf-Peter Mundani DAViS

Something about me... (keine latente Information ©)

- Ralf-Peter Mundani
 - Studium Informatik (TUM)
 - Promotion Informatik / Computational Engineering (U Stuttgart)
 - Habilitation HPC (TUM)
 - Gastprofessor KAUST, KSA (2011)
 - Adjunct Teaching Professor (PD) TUM (seit 2014)
 - Dozent FHGR (seit 2019)
- Interessen
 - Numerische Simulation
 - Hoch- und Höchstleistungsrechnen
 - Data Science

Kursinhalte / Umsetzung

- Inhalte
 - Vorhersagemodellen
 - Klassifikationsverfahren
 - überwachtes Lernen / Kreuzvalidierung
 - lineare Algebra / Singulärwertzerlegung / PCA
 - Tensorfaktorisierung
 - unüberwachtes Lernen / Beispiele Tensorfaktorisierung

- Vorlesung + integrierte Übung
- Nachbereitung (freiwillig)
- Lernertragskontrolle (Prüfungswoche, schriftlich, 60 Minuten)

Quelle: der-querschnitt.de

Kursinhalte / Umsetzung

- Voraussetzungen / Erwartungen
 - Umgang mit Windows / Linux / MacOS / you_name_it
 - gute Kenntnisse in Python
 - exzellente Kenntnisse in Mathematik ©
 - Mitarbeit
 - Interesse & Spass am Ausprobieren

"Let's get ready to rumble."

Michael Buffer

Motivation...?

Motivation...!

Flussfahrt mit Huhn Ziege Alternativ (schwieriger): drei Geschwisterpaare (Bruder/Schwester) ein Boot für zwei Personen kein Bruder lässt seine Schwester allein mit anderen Brüdern zurück

Gefangenendilemma (nicht Spieltheorie ©): gerechte Brotteilung

Ab sofort nicht im Handel erhältlich...

Data Science: mehr als nur ein Hype...?

Data Science: mehr als nur ein Hype...!

Data Science: mehr als nur ein Hype...!

- Ausgangslage & Begrifflichkeiten
 - Daten / latente Informationen
 - Analysen / Auswertungen
 - Modelle / Vorhersagen / Klassifikationen
 - Lernen / Lernerfolge
 - überwachtes Lernen (engl. supervised learning)
 - unüberwachtes Lernen (engl. unsupervised learning)
 - Algorithmen / Programme
 - Exploration / Visualisierung
- Ziel: (neue) Erkenntnisse gewinnen / besseres Verständnis / bessere Prognosen

Bevor wir starten...

- Python: benötigte Pakete
 - numpy: Paket für wissenschaftliches Rechnen (insb. numerische Algorithmen)
 - matplotlib: Paket für Visualisierung von Daten
 - scikit-learn: Paket mit verschiedenen Data Science-Werkzeugen
- Programmierumgebung
 - PyCharm
 - Integrated Development and Learning Environment (IDLE Shell)
 - Jupyther Notebook
 - ...you name it...

Klassifikations-/Vorhersagemodelle

• viele Aufgaben lassen sich (mathematisch) als Klassifikations-/Vohersageproblem ausdrücken

- Fragen über Fragen
 - welche Algorithmen, welche Modelle
 - löst meine Algorithmus das Problem richtig' oder 'löse ich das richtige Problem'

Klassifikations-/Vorhersagemodelle

- typische Vertreter
 - lineare Regression (bekannt aus der Statistik)
 - *k*-nächste-Nachbarn (*k-nearest neighbours* oder *k-NN*)
 - *k*-Mitten (*k-means*)
- Vorgehen
 - mathematisches Grundlagen
 - algorithmisches Design
 - prototypische Umsetzung
 - Spass beim Ausprobieren ☺

- lineare Regression
 - eine der am meisten genutzten statistischen Methoden
 - drückt die mathematische Beziehung zwischen zwei Variablen aus
 - Annahme: lineare Zusammenhang zwischen Antwort- und Prädiktorvariable
 - Linearität vereinfacht möglichen tatsächlichen Zusammenhang, ABER sie ist ein guter Startpunkt für weitere Untersuchungen
- oder frei nach Hamlet: linear oder nicht-linear, das ist hier die Frage...?
 - je mehr Waren verkauft werden, desto höher der Umsatz
 - 2) jede infizierte Person, steckt zwei weitere Personen an

- warum lineare Regression...?
 - um Beziehungen besser zu verstehen / besser beschreiben zu können
 - etwa: gibt es einen Zusammenhang zwischen Anzahl der Freunde in sozialen Medien und der Zeit, die eine Person täglich auf derartigen Plattformen verbringt
- Ausgangspunkt: Geradengleichung

•
$$y = f(x) = \beta_0 + \beta_1 * x$$

- Preisfrage: Bedeutung...?
 - $\beta_1 = 0, 1, \infty$

Mal wieder ein bisschen Statistik ©

- lineare Regression
 - Ausgangslage: n Punkte mit Koordinaten (x_i, y_i)
 - gesucht: Modell für Zusammenhang zwischen Prädiktor- (x) und Antwortvariable (y)
 - wichtig: Modell soll Tendenz / Abweichung berücksichtigen
 - Aufgabe: finde optimale Gerade

$$y = f(x) = \beta_0 + \beta_1 * x,$$

d.h. finde beste Werte β_0 , β_1 für gegebene Punkte (x_i, y_i)

• Frage: was ist optimale Gerade...?

Mal wieder ein bisschen Statistik ©

- lineare Regression
 - Definition von Optimalität (least squares method)
 - Gerade f(x) liegt optimal zu allen Punkten $(x_i, y_i) \leftrightarrow \text{vertikale Abstände}$ (genauer: Quadrat der Abstände) zwischen den Punkten und der Regressionsgeraden minimal
 - Bestimmung der Abstände (Residuum)

$$r_i = y_i - \hat{y}_i \stackrel{f(x)}{=} y_i - \beta_0 - \beta_1 * x_i$$

Summe der Fehlerquadrate (RSS)

$$RSS(\beta_0, \beta_1) = \sum_i r_i^2$$
$$= \sum_i (y_i - \beta_0 - \beta_1 * x_i)^2$$

- kurzes Pythonmezzo
 - Daten in Python einlesen und plotten
 - Nutzung der Bibliotheken numpy, matplotlib
- Textdatei (CSV) laden

```
import numpy as np
data = np.loadtxt("meine_textdatei.txt", delimiter=",")
```

Ausgabe einzelner Zeilen und Spalten mit ":"

```
print(data[:,0])
print(data[:,1])
```


Daten plotten


```
import matplotlib.pyplot as plt
plt.xlabel('Text')
plt.ylabel('Text')
plt.title('Text')
plt.axis([xmin, xmax, ymin, ymax])
plt.grid(True)
plt.plot(data_x, data_y, style)<sup>1</sup>  # x: data[:,0], y: data[:,1]
plt.show()
```

¹ siehe auch https://matplotlib.org/api/markers api.html

einlesen und plotten (als rote Punkte mittels 'ro') der Datei 'smp_data.txt'

© Sidney Harris

Phantastische Regressionswesen und wo sie zu finden sind...

- ...zurück zur Regressionsgeraden
 - Gegeben: $RSS(\beta_0, \beta_1) = \sum_i r_i^2$
 - lacksquare Gesucht: eta_0 und eta_1 sodass $\min_{eta_0,eta_1}\sum_i r_i^2$

- aus der Analysis: Minimum einer Funktion durch Ableitung
 - $RSS(\beta_0, \beta_1) = \sum_i (y_i \beta_0 \beta_1 * x_i)^2$
 - Ableitung nach β₀

$$\sum_{i} 2(y_i - \beta_0 - \beta_1 * x_i)(-1) = \left(-\sum_{i} y_i + \sum_{i} \beta_0 + \sum_{i} \beta_1 * x_i = 0 \right)$$
 (1)

Ableitung nach β₁

$$\sum_{i} 2(y_{i} - \beta_{0} - \beta_{1} * x_{i})(-x_{i}) = \left(-\sum_{i} x_{i} * y_{i} + \sum_{i} \beta_{0} * x_{i} + \sum_{i} \beta_{1} * (x_{i})^{2} = 0\right)$$
 (2)

- damit erhalten wir Formeln zur Berechnung von β_0 und β_1
 - aus (1) folgt

$$n * \beta_0 + \beta_1 \sum_i x_i = \sum_i y_i$$

$$\beta_0 = \frac{1}{n} \sum_i y_i - \frac{1}{n} * \beta_1 \sum_i x_i$$
 (3)
$$(\beta_0 = \bar{y} - \beta_1 * \bar{x})$$

• aus (2) folgt

$$\beta_0 \sum_i x_i + \beta_1 \sum_i (x_i)^2 = \sum_i x_i * y_i$$
 (4)

• aus (3) in (4) folgt

$$\beta_1 = \frac{n \sum_{i} x_i * y_i - \sum_{i} x_i \sum_{i} y_i}{n \sum_{i} (x_i)^2 - (\sum_{i} x_i)^2}$$

• Berechnung der Regressionsgeraden $y = f(x) = \beta_0 + \beta_1 * x$

$$\beta_0 = \frac{1}{n} \sum_i y_i - \frac{1}{n} * \beta_1 \sum_i x_i$$

$$\beta_0 = \frac{1}{n} \sum_i y_i - \frac{1}{n} * \beta_1 \sum_i x_i \qquad \beta_1 = \frac{n \sum_i x_i * y_i - \sum_i x_i \sum_i y_i}{n \sum_i (x_i)^2 - (\sum_i x_i)^2}$$

- aus unseren Daten 'smp data.txt' folgt
 - $\beta_0 = -45.50$
 - $\beta_1 = 57.88$

• Frage: geht's auch einfacher...?

Paket: scikit-learn (Machine Learning in Python)

Modell aufsetzen und trainieren


```
from sklearn.linear_model import LinearRegression as lr
model = lr()
model.fit(xdata, ydata)
```

■ Problem: xdata ist Spaltenvektor → Daten umformen (numpy.reshape)

```
xdata = data[:,0].reshape((-1, 1))
ydata = data[:,1]
```

Bedeutung von (-1, 1): unbekannte Anzahl an Zeilen bei genau einer Spalte → Spaltenvektor

Paket: scikit-learn (Machine Learning in Python)

das ganze Programm...

```
4
```

```
import ...
data = np.loadtxt('smp_data.dat', delimiter=',')
xdata = data[:,0].reshape((-1,1))
ydata = data[:,1]
model = lr()
model.fit(xdata, ydata)
y_pred = model.predict(xdata)  # Vorhersage bestimmen...
plt.plot(xdata, y_pred, 'b-')
plt.plot(xdata, ydata, 'ro')
plt.show()
```


- mittels Regressionsgerade lässt sich für jeden x-Wert der zugehörige y-Wert abschätzen
- ABER: wie viel Vertrauen haben wir in diese Ergebnisse

modifizierte Gleichung

$$y = f(x) = \beta_0 + \beta_1 * x + \varepsilon$$

mit ε als Fehler (oder Residuum oder Rauschen)

- Frage: kann es eine bessere Gerade geben mit kleineren Fehlern...? ×
- Frage: können wir den Fehler berechnen...? ✓
- Frage: lässt sich damit eine Aussage über die Streuung treffen…? ✓
- Berechnung des Fehlers
 - zur Erinnerung: $r_i = y_i \hat{y}_i$
 - damit ergibt sich mittlere quadratische Abweichung: $MSE = \frac{\sum_{i} r_{i}^{2}}{n}$

• MSE ist ein gutes Mass für die Varianz (vgl. Varianz aus der Statistik), d.h. wie stark die vorhergesagten Werte (\hat{y}_i) von den tatsächlichen / beobachteten Werten (y_i) variieren

- Bestimmtheitsmass R²
 - drückt Anteil der Variabilität in den Messwerten aus

■ Berechnung:
$$r2_score = 1 - \frac{\sum_{i} r_i^2}{\sum_{i} (y_i - \bar{y})^2}$$

from sklearn.metrics import r2_score
r2_score(y_true, y_pred)

Vorsicht: je kleiner der MSE, desto kleiner der Fehler, aber je kleiner R^2 , desto höher die Variabilität (\rightarrow desto schlechter die Güte der Regressionsgeraden)

- kleines Fehlerquiz
 - für drei Datensätze A, B und C wurde eine lineare Regression durchgeführt

- folgende Werte wurden für Bestimmtheitsmass und mittlere quadratische Abweichung ermittelt R^2 : 0.0, 0.7, 1.0 sowie MSE: 0.0, 0.6, 1.0
- Frage: welche Werte gehören zu welchem Datensatz...?

- Kreuzvalidierung (engl. cross validation)
 - Datensatz wird in zwei Teile zerlegt (z.B.)
 - Trainingsdaten (80%
 - Testdaten (20%)
 - Modell wird mit Trainingsdaten trainiert
 - MSE der Testdaten berechnen und mit MSE der Trainingsdaten vergleichen
 - sind die Werte nahezu identisch
 - Modell ist brauchbar
 - andernfalls Gefahr des Under- / Overfitting (Unter- / Überanpassung)

Kreuzvalidierung im praktischen Einsatz

- Werte
 - $val_ts \in [0, 1] \rightarrow Gr{o}sse (in [\%]) der Testdaten (<math>\Rightarrow train_size = 1 val_ts$)
 - val_rs [int] → bestimmt zufällige Durchmischung der Daten vor dem Split
- Aufgabe
 - Aufteilung der Daten (val_ts = 0.2) und Bestimmung des Fehlers (MSE, R²)

• Kreuzvalidierung: Ergebnisse

 $MSE = 8807.15, R^2 = 0.67$

Praktische Übung

Datensatz: Diabetes (aus dem Paket sklearn)


```
from sklearn import datasets
diabetes_x, diabetes_y = datasets.load_diabetes(return_X_y=True)
diabetes_x = diabates_x[:, np.newaxis, 2]
```

- Aufgabe
 - Datensatz in Trainings- und Testdaten aufteilen (80% : 20%)
 - Modell trainieren
 - Modell testen und Fehler (*MSE*, *R*²) bestimmen
 - Ergebnisse plotten

Praktische Übung

Datensatz: Diabetes (aus dem Paket sklearn)

$$R^2$$
_train = 0.338

$$R^2$$
_test = 0.362

Fragen...?

