1. Transformation des fonctions intégrables et de Schwartz

1.1. Premières propriétés

1. DÉFINITION. La transformée de Fourier d'une fonction $f \in L^1(\mathbf{R}^n)$ est la fonction

$$\hat{f} = \mathscr{F}(f) : \begin{vmatrix} \mathbf{R}^n \longrightarrow \mathbf{C}, \\ \xi \longmapsto \int_{\mathbf{R}^n} e^{-ix \cdot \xi} f(x) \, \mathrm{d}x. \end{vmatrix}$$

2. Exemple. Soit a>0. La transformée de la fonction $g\colon x\in \mathbf{R}\longmapsto e^{-a|x|^2}$ s'écrit

$$\mathscr{F}(g)(\xi) = \left(\frac{\pi}{a}\right)^{n/2} e^{-|\xi|/4a}.$$

3. DÉFINITION. Le produit de convolution de deux fonctions $f,g\in \mathrm{L}^1(\mathbf{R}^n)$ est la fonction

$$f \star g \colon \begin{vmatrix} \mathbf{R}^n \longrightarrow \mathbf{C}, \\ x \longmapsto \int_{\mathbf{R}^n} f(x - y) g(y) \, \mathrm{d}y. \end{vmatrix}$$

- 4. Proposition. Soient $f, g \in L^1(\mathbf{R}^n)$ et $a, \xi \in \mathbf{R}^n$. Alors
 - si $q(x) = f(x)e^{iax}$ pour $x \in \mathbb{R}^n$, alors $\hat{q}(\xi) = \hat{f}(\xi a)$ pour $\xi \in \mathbb{R}^n$;
 - si g(x) = f(x a) pour $x \in \mathbf{R}^n$, alors $\hat{g}(\xi) = \hat{f}(\xi)e^{-ia\xi}$ pour $\xi \in \mathbf{R}^n$;
 - on a $\widehat{f} \star \widehat{g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$ pour $x \in \mathbf{R}^n$;
 - si $g(x) = f(x/\lambda)$ pour $x \in \mathbf{R}^n$ avec $\lambda > 0$, alors $\hat{g}(\xi) = \lambda \hat{f}(\lambda \xi)$ pour $\xi \in \mathbf{R}^n$.
- 5. Théorème. Soit $f \in L^1(\mathbf{R}^n)$. Alors la fonction \hat{f} est continue, tend vers 0 en l'infini et vérifie $\|\hat{f}\|_{\infty} \leq \|f\|_1$.
- 6. Exemple. Soit a>1. La transformée de l'indicatrice $\mathbf{1}_{[-a,a]}$ est la fonction

$$\xi \in \mathbf{R} \longmapsto \frac{2\sin a\xi}{\xi},$$

donc la transformée de la fonction triangle $\mathbf{1}_{[-a,a]}\star\mathbf{1}_{[-a,a]}$ est la fonction

$$\xi \in \mathbf{R} \longmapsto \left(\frac{2\sin a\xi}{\xi}\right)^2$$

7. DÉFINITION. Une fonction $\varphi \in \mathscr{C}^{\infty}(\mathbf{R}^n)$ est de Schwartz si toutes ses dérivées sont à décroissance rapide, c'est-à-dire que leur produit par tout polynôme est borné. Cela revient à dire que, pour tout entier $p \in \mathbf{N}$, la quantité

$$N_p(\varphi) := \sum_{|\alpha|, |\beta| \leq p} \sup_{x \in \mathbf{R}^n} ||x^{\alpha} \partial^{\beta} \varphi(x)|| < +\infty.$$

- 8. NOTATION. On note $\mathscr{S}(\mathbf{R}^d)$ l'ensemble des fonctions de Schwartz sur \mathbf{R}^n .
- 9. Exemple. Toute fonction de classe \mathscr{C}^{∞} à support compact est de Schwartz.
- 10. LEMME. Soit $\varphi \in \mathscr{S}(\mathbf{R}^n)$. Alors la fonction $\hat{\varphi}$ est de classe \mathscr{C}^1 et

$$\partial_j(\mathscr{F}\varphi)(\xi) = \mathscr{F}(x \longmapsto -ix_j\varphi(x))(\xi)$$
 et $\mathscr{F}(\partial_j\varphi)(\xi) = i\xi\hat{\varphi}(\xi)$

pour tout vecteur $\xi \in \mathbf{R}^n$.

11. COROLLAIRE. Soient $f \in L^1(\mathbf{R})$ et $k \in \mathbf{N}$. Si la fonction $x \in \mathbf{R} \longmapsto x^k f(x)$ est intégrable, alors la fonction \hat{f} est k-fois dérivable. Réciproquement, si la fonction f est de classe \mathscr{C}^k et sa dérivée k-ième est intégrable, alors

$$\mathscr{F}(f^{(k)})(\xi) = (i\xi)^k \hat{f}(\xi) \quad \text{et} \quad \xi^k \hat{f}(\xi) \xrightarrow[\xi \to \infty]{} 0.$$

12. THÉORÈME. La transformation de Fourier sur $\mathscr{S}(\mathbf{R}^n)$ est à valeurs dans $\mathscr{S}(\mathbf{R}^n)$ et, pour tout entier $p \in \mathbf{N}$, il existe une constante $C_p > 0$ telle que

$$\forall \varphi \in \mathscr{S}(\mathbf{R}^n), \qquad N_p(\hat{\varphi}) \leqslant C_p N_{p+n+1}(\varphi).$$

1.2. Formule d'inversion de Fourier

13. Théorème (formule d'inversion de Fourier). Soit $f \in L^1(\mathbf{R}^n)$ une fonction telle que $\hat{f} \in L^1(\mathbf{R}^n)$. Alors

$$\forall x \in \mathbf{R}^n, \quad f(x) = \frac{1}{(2\pi)^n} \text{ avec } \overline{\mathscr{F}}\hat{f}(x) \coloneqq \int_{\mathbf{R}^n} e^{\xi \cdot x} \hat{f}(\xi) \, \mathrm{d}\xi.$$

- 14. COROLLAIRE. La transformation de Fourier $\mathscr{F}:\mathscr{S}(\mathbf{R}^n)\longrightarrow\mathscr{S}(\mathbf{R}^n)$ est un isomorphisme d'espaces vectoriels.
- 15. APPLICATION. Une variable X de loi de Cauchy de paramètre a > 0 est de fonction caractéristique $\xi \in \mathbf{R} \longmapsto \mathbf{E}[e^{i\xi X}] = e^{-a|\xi|}$.
- 16. Théorème (d'unicité). Soit $f \in \mathcal{S}(\mathbf{R}^n)$ une fonction telle que $\hat{f} = 0$ sur \mathbf{R}^n . Alors f = 0 presque partout.

1.3. Application: les polynômes orthogonaux

17. DÉFINITION. Soit I un intervalle de \mathbf{R} . Une fonction poids sur I est une fonction mesurable $\rho\colon I\longrightarrow \mathbf{R}_+^*$ telle que

$$\forall n \in \mathbf{N}, \qquad \int_{I} |x|^{n} \rho(x) \, \mathrm{d}x < +\infty.$$

L'ensemble $L^2(I,\rho)$ des fonctions de carré intégrable pour la mesure ρdx est muni du produit scalaire définit par l'égalité $\langle f,g\rangle=\int_I f\overline{g}\rho$.

- 18. Remarque. Grâce au procédé de Gram-Schmidt appliqué à la famille $(X^n)_{n \in \mathbb{N}}$, il existe une unique famille étagée orthogonale de polynômes unitaires, les polynômes orthogonaux.
- 19. Théorème. Soient $\rho: I \longrightarrow \mathbf{R}_+^*$ une fonction poids et $\alpha > 0$ un réel vérifiant

$$\int_{I} e^{\alpha|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

Alors la famille des polynômes orthogonaux est une base hilbertienne de $L^2(I, \rho)$.

2.1. Extension aux distributions tempérées

20. DÉFINITION. Une distribution $u \in \mathcal{D}'(\mathbf{R}^n)$ sur l'espace \mathbf{R}^n est tempérée s'il existe un entier $p \in \mathbf{N}$ et une constante $C \geqslant 0$ tels que

$$\forall \varphi \in \mathscr{C}_0^{\infty}(\mathbf{R}^n), \qquad |\langle u, \varphi \rangle| \leqslant CN_p(\varphi).$$

- 21. NOTATION. L'ensemble des distributions tempérées sur \mathbb{R}^n est noté $\mathscr{S}'(\mathbb{R}^n)$.
- 22. PROPOSITION. Soit $\varphi \in \mathscr{S}(\mathbf{R}^n)$. Alors il existe une suite $(\varphi_k)_{k \in \mathbf{N}}$ de $\mathscr{C}_0^{\infty}(\mathbf{R}^n)$ telle que

$$\forall p \in \mathbf{N}, \qquad N_p(\varphi - \varphi_k) \longrightarrow 0.$$

23. THÉORÈME. Soit $u \in \mathscr{S}'(\mathbf{R}^n)$. Alors la forme linéaire $\varphi \longmapsto \langle u, \varphi \rangle$ de $\mathscr{C}_0^{\infty}(\mathbf{R}^n)$ se prolonge en une unique forme linéaire sur $\mathscr{S}(\mathbf{R}^n)$ qui satisfait

$$\forall \varphi \in \mathscr{S}(\mathbf{R}^n), \qquad |\langle u, \varphi \rangle| \leqslant CN_p(\varphi).$$

24. DÉFINITION. La transformée de Fourier d'une distribution $u \in \mathscr{S}'(\mathbf{R}^n)$ est la distribution $\hat{u} \in \mathscr{S}'(\mathbf{R}^n)$ définie par l'égalité

$$\forall \varphi \in \mathscr{S}(\mathbf{R}^n), \qquad \langle \hat{u}, \varphi \rangle = \langle u, \hat{\varphi} \rangle.$$

- 25. Théorème. La transformation de Fourier $u \in \mathscr{S}'(\mathbf{R}^n) \longmapsto \hat{u} \in \mathscr{S}'(\mathbf{R}^n)$ est un isomorphisme de **R**-espaces vectoriels.
- 26. Proposition. Si $u_i \longrightarrow u$ dans $\mathscr{S}'(\mathbf{R}^n)$, alors $\hat{u}_i \longrightarrow \hat{u}$ dans $\mathscr{S}'(\mathbf{R}^n)$.
- 27. EXEMPLE. La transformée de Fourier de la distribution $1 \in \mathcal{S}'(\mathbf{R}^n)$ est égale à la distribution $(2\pi)^n \delta_0$.

2.2. Extension aux fonctions de carrés intégrables

- 28. Théorème (*Plancherel*). Il existe une application $f \in L^2(\mathbf{R}^n) \longrightarrow \hat{f} \in L^2(\mathbf{R}^n)$ satisfaisant les points suivants :
 - lorsque $f \in L^1(\mathbf{R}^n) \cap L^2(\mathbf{R}^n)$, la fonction \hat{f} est la transformée de Fourier de la fonction f:
 - pour toute fonction $f \in L^2(\mathbf{R}^n)$, on a $\|\hat{f}\|_2 = \|f\|_2$;
 - l'application : est un isomorphisme;
 - pour toute fonction $f \in L^2(\mathbf{R}^n)$, en notant

$$\phi_A(\xi) := \int_{|x| \leqslant A} f(x)e^{-ix\xi} dx \quad \text{et} \quad \psi_A(\xi) := \int_{|x| \leqslant A} \hat{f}(x)e^{-ix\xi} dx$$

avec A > 0 et $t \in \mathbf{R}$, on a

$$\|\phi_A - \hat{f}\|_2 \xrightarrow[A \to +\infty]{} 0$$
 et $\|\psi_A - \hat{f}\|_2 \xrightarrow[A \to +\infty]{} 0$.

29. COROLLAIRE. Soit $f \in L^2(\mathbf{R}^n)$ une fonction telle que $\hat{f} \in L^1(\mathbf{R}^n)$. Alors pour presque tout vecteur $x \in \mathbf{R}^n$, on a

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbf{R}^n} e^{ix \cdot \xi} \hat{f}(\xi) \, \mathrm{d}x.$$

3. Applications

3.1. Formule de Poisson

30. Théorème. Soient $F \in L^1(\mathbf{R}) \cap \mathscr{C}^0(\mathbf{R})$ une fonction intégrable et continue. On suppose qu'il existe deux constantes M > 0 et $\alpha > 1$ telles que

$$\forall x \in \mathbf{R}, \qquad |F(x)| \leqslant M(1+|x|)^{-\alpha}$$

et que

$$\sum_{n=-\infty}^{+\infty} |\hat{F}(n)| < +\infty.$$

Alors

$$\sum_{n=-\infty}^{+\infty} F(n) = \sum_{n=-\infty}^{+\infty} \hat{F}(n).$$

31. Application. Pour tout t > 0, on a

$$\sum_{n \in \mathbf{Z}} e^{-\pi n^2/t} = \sqrt{t} \sum_{n \in \mathbf{Z}} e^{-\pi n^2 t}.$$

32. Remarque. La fonction $t \mapsto \sum_{n \in \mathbb{Z}} e^{-\pi n^2/t}$ joue un rôle dans la résolution de l'équation de la chaleur.

3.2. Équation de la chaleur

33. DÉFINITION. Soit $f \colon \mathbf{R} \longrightarrow \mathbf{R}$ une fonction. L'équation de la chaleur est le problème de Cauchy

$$\begin{cases} \partial_t u(x,t) = \partial_{xx} u(x,t), & x \in \mathbf{R}, \ t > 0, \\ \lim_{t \to 0} u(x,t) = f(x) & x \in \mathbf{R}. \end{cases}$$
 (1)

- 34. PROPOSITION. On suppose que la fonction f est bornée et de classe \mathscr{C}^2 . Alors il existe une solution $u \colon \mathbf{R} \times \mathbf{R}_+^* \longrightarrow \mathbf{R}$ au problème (1).
- 35. Remarque. Il n'y pas unicité de la solution car la fonction v définie par l'égalité

$$v(x,t) = \begin{cases} xt^{-3/2}e^{-x^2/4t} & \text{si } t \neq 0, \\ 0 & \text{sinon.} \end{cases}$$

est solution de l'équation (1) avec f = 0 et n'est pas nulle.