

Expectation, Median, Quantiles

MATH/STAT 394: Probability I Summer 2021 A Term

Introduction to Probability D. Anderson, T.Seppäläinen, B. Valkó

§ 3.3

Aaron Osgood-Zimmerman

Department of Statistics

Practice solution

Practice

The time (in min.) to wait for my bus can be modeled as an exponential r.v.

I know that the average time I need to wait for the bus is 10 min.

What is the prob. that I would wait more than 15min?

Hint:

- 1. Compute $\mathbb{E}[X]$ for $X \sim \mathsf{Exp}(\lambda)$.
- 2. Deduce how you could know λ if you only knew the expected time.

Solution

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \lambda e^{-\lambda x} dx$$
$$= \left[-xe^{-\lambda x} \right]_{0}^{+\infty} - \int_{0}^{+\infty} -e^{-\lambda x} dx = 0 + \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{0}^{+\infty} = \frac{1}{\lambda}$$

Take-away: If you know that a r.v. is exponential and you don't know the parameter λ , you can get it from the value of the mean (a.k.a. the expectation)

Practice solution

Practice

The time (in min.) to wait for my bus can be modeled as an exponential r.v.

I know that the average time I need to wait for the bus is 10 min.

What is the prob. that I would wait more than 15min?

Hint:

- 1. Compute $\mathbb{E}[X]$ for $X \sim \mathsf{Exp}(\lambda)$.
- 2. Deduce how you could know λ if you only knew the expected time.

Solution (continued)

- We know that $X \sim \mathsf{Exp}(\lambda)$ with lambda a priori unknown and $\mathbb{E}[X] = 10$
- Since $\mathbb{E}[X] = \frac{1}{\lambda}$ so we deduce that $\lambda = 1/10$
- Therefore we can compute

$$\mathbb{P}(X \ge 15) = e^{-\lambda \cdot 15} = e^{-15/10} \approx 0.22$$

Infinite and undefined expectations

Expectation of a function of a r.v

Properties of the expectation

Linearity of the expectation

Infinite expectations

Exercise

Consider the following gamble. You flip a fair coin.

- If it is heads, you get 2 dollars and the game ends,
- If it is tails, the prize is doubled and you flip the coin again

Continue like that: every tails double the prize and at the first heads you get the prize.

What is your expected gain?

Solution

- ullet Denote $Y\sim \operatorname{Geom}(1/2)$ the number of flips before getting a heads and X your gain
- Then

$$\mathbb{E}[X] = \sum_{k=1}^{+\infty} 2^k \mathbb{P}(Y = k) = \sum_{k=1}^{+\infty} 1 = +\infty$$

- So even if the game surely ends (because $\mathbb{P}(Y \leq +\infty) = 1$), your expected gain is infinite.
- Called the St Petersburg Paradox first considered by N. Bernoulli

Undefined expectation

Exercise

John and Lucy flip a fair coin until seeing a tail.

If the number k of flips is odd, Lucy pays 2^k dollars to John, if k is even, John pays 2^k dollars to Lucy.

Denote by X the gain of John. What is $\mathbb{E}[X]$?

Solution

- Let $Y \sim \text{Geom}(1/2)$, s.t. $\mathbb{P}(Y = k) = 2^{-k}$
- We have that $\mathbb{P}(X=2^k)=\mathbb{P}(Y=k)=2^{-k}$ for k odd, $\mathbb{P}(X=-2^k)=\mathbb{P}(Y=k)=2^{-k}$ for k even
- Therefore if we want to sum up the average of the first n gains we get

$$\sum_{k=1}^{n} (-1)^{k} 2^{k} \mathbb{P}(Y = k) = \sum_{k=1}^{n} (-1)^{k} = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$$

• Therefore $\mathbb{E}[X] = \lim_{n \to +\infty} \sum_{k=1}^{n} (-1)^k 2^k \mathbb{P}(Y = k)$ is not defined.

Recap

Discrete r.v.

- $\mathbb{E}[X] = \sum_{k \in \mathcal{X}} kp(k)$
- If $X \sim \text{Ber}(p)$, $\mathbb{E}[X] = p$
- If $X \sim \text{Geom}(p)$, $\mathbb{E}[X] = \frac{1}{p}$
- If $X \sim \text{Bin}(n, p)$, $\mathbb{E}[X] = np$

Continuous r.v.

- $\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) dx$
- If $X \sim \text{Unif}([a, b])$, $\mathbb{E}[X] = \frac{a+b}{2}$
- If $X \sim \operatorname{Exp}(\lambda)$, $\mathbb{E}[X] = \frac{1}{\lambda}$

Finite, infinite, undefined expectations

• An expectation can be finite, infinite (positive or negative) or undefined

Infinite and undefined expectations

Expectation of a function of a r.v

Properties of the expectation

Linearity of the expectation

Motivation

- Given a r.v. X, we can always define a new r.v. as Y = g(X) through a given function g
- We may then want to know:
 - The p.d.f./p.m.f. of Y (this will be seen later)
 - The expectation of Y

Example Roll a fair die and define the gain of a player as

$$W = \begin{cases} -1 & \text{if the roll is 1, 2 or 3} \\ 1 & \text{if the roll is 4} \\ 3 & \text{if the roll is 5 or 6} \end{cases}$$

What is $\mathbb{E}[W]$? Solution

Define X the face of the die and

• Then W = g(X) and

$$g: \begin{cases} \{1, \dots, 6\} & \to \mathbb{R} \\ k & \to \begin{cases} -1 & \text{if } k \in \{1, 2, 3\} \\ 1 & \text{if } k = 4 \\ 3 & \text{if } k \in \{5, 6\} \end{cases} \end{cases}$$

 $\mathbb{E}[W] = -1 \cdot (\mathbb{P}(X=1) + \mathbb{P}(X=2) + \mathbb{P}(X=3)) + 1 \cdot \mathbb{P}(X=4) + 3 \cdot (\mathbb{P}(X=5) + \mathbb{P}(X=6))$ $=g(1)\mathbb{P}(X=1) + g(2)\mathbb{P}(X=2) + g(3)\mathbb{P}(X=3) + g(4)\mathbb{P}(X=4) + g(5)\mathbb{P}(X=5) + g(6)\mathbb{P}(X=6)$ $=-1\cdot\frac{1}{2}+1\cdot\frac{1}{6}+3\cdot\frac{1}{2}=\frac{2}{3}$

8 / 15

Theorem

Let X be a r.v. that takes values in \mathcal{X} and $g: \mathcal{X} \to \mathbb{R}$ be some function.

$$\mathbb{E}[g(X)] = \sum_{k \in \mathcal{X}} g(k)p(k) \qquad \text{if X is discrete with $p.m.f.$ p}$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx \qquad \text{if X is continuous with $p.d.f.$ f}$$

Proof For the discrete case,

$$\mathbb{E}[g(X)] = \sum_{y} y \mathbb{P}(g(X) = y) = \sum_{y} y \sum_{k:g(k)=y} \mathbb{P}(X = k)$$

$$= \sum_{y} \sum_{k:g(k)=y} y \mathbb{P}(X = k)$$

$$= \sum_{y} \sum_{k:g(k)=y} g(k) \mathbb{P}(X = k)$$

$$= \sum_{y} g(k) \mathbb{P}(X = k)$$

For the continuous case, we take this result as granted

Example

A stick of length 1 is broken at a random location. Let X be the length of the longer piece.

What is $\mathbb{E}(X)$?

Solution

- ullet Let U denote the random location where the stick is broken. Then $U\sim {\sf Unif}[0,1].$
- Since X is the bigger broken piece, we have X = g(U), where

$$g(u) = \max(u, 1 - u) = \begin{cases} 1 - u, & \text{if } u < 1/2 \\ u, & \text{if } u \ge 1/2. \end{cases}$$

Thus

$$\mathbb{E}[X] = \mathbb{E}[g(U)] = \int_0^{1/2} (1 - u) du + \int_{1/2}^1 u du = \frac{3}{4}.$$

Infinite and undefined expectations

Expectation of a function of a r.v

Properties of the expectation

Linearity of the expectation

Properties of the expectation

Motivation

- The expectation is a useful characterization to compute
- Yet it may be cumbersome to do the computations each time (e.g. binomial)
- Can we use some properties to simplify the computations?

Infinite and undefined expectations

Expectation of a function of a r.v

Properties of the expectation

Linearity of the expectation

Linearity of the Expectation

As an application of the expectation of a function of a r.v. we have the following result

Theorem

Let X be a r.v. and a, $b \in \mathbb{R}$, then

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

Proof (For the continuous case, the discrete case can be treated similarly)

$$\mathbb{E}[aX+b] = \int_{-\infty}^{+\infty} (ax+b)f(x)dx = a\int_{-\infty}^{+\infty} xf(x)dx + b\int_{-\infty}^{+\infty} f(x)dx = a\mathbb{E}[X] + b$$

Linearity of the expectation

More generally we have this very useful result

Theorem

Let X, Y be r.v. on the same sample space, then

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Proof Proof is detailed in STAT395, you can have a look in the supp. slides for the discrete case

Corollary

Let $X_1, ..., X_n$ be n r.v. defined on the prob. sample space and $g_1, ..., g_n$ be n functions, we have that

$$\mathbb{E}[g_1(X_1)+\ldots+g_n(X_n)]=\mathbb{E}[g_1(X_1)]+\ldots+\mathbb{E}[g_n(X_n)]$$

Linearity of the expectation

Exercise

Using the previous theorem, compute the expectation of $X \sim \text{Bin}(n, p)$

Solution

- $X \sim \text{Bin}(n,p)$ can be described as the sum of $n Y_i \overset{i.i.d.}{\sim} \text{Ber}(p)$ i.e. $X = Y_1 + \ldots + Y_n$.
- Therefore using that $\mathbb{E}[Y_i] = p$ for any i,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[Y_i] = np$$

Practice next lecture

Practice

The annual maximum one-day rainfall can be modeled by a r.v. X with p.d.f.

$$f(x) = \begin{cases} \frac{2}{\pi} \frac{1}{x^2 + 1} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

What is the expectation of X?

Infinite and undefined expectations

Expectation of a function of a r.v

Properties of the expectation

Linearity of the expectation

Linearity of the expectation*

Theorem Let X, Y be r.v. on the same prob. space, then

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Proof For the discrete case, summing over all the possible values of X and Y denoted resp. k, ℓ .

$$\begin{split} \mathbb{E}[X+Y] &= \sum_{k,\ell} (k+\ell) \mathbb{P}(X=k,Y=\ell) \\ &= \sum_{k} k \sum_{\ell} \mathbb{P}(X=k,Y=\ell) + \sum_{\ell} \ell \sum_{k} \mathbb{P}(X=k,Y=\ell) \end{split}$$

Now by def. the events $A_{\ell}=\{Y=\ell\}$ form a partition of the sample space $\Omega.$ Therefore

$$\sum_{\ell} \mathbb{P}(X=k,Y=\ell) = \sum_{\ell} \mathbb{P}(\{X=k\} \cap A_{\ell}) = \mathbb{P}(X=k) \qquad \text{(by the law of total prob.)}$$

So we get that

$$\mathbb{E}[X+Y] = \sum_{k} k \mathbb{P}(X=k) + \sum_{k} \ell \mathbb{P}(Y=\ell) = \mathbb{E}[X] + \mathbb{E}[Y]$$