1 МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Определение. Неотрицательная функция $\rho: X \times X \to \mathbb{R}_+$ называется *метрикой* в множестве X, если она задана на прямом произведении $X \times X \doteqdot \{(x,y) \mid x,y \in X\}$ и выполняются следующие свойства:

- а) симметричность $\rho(x,y) = \rho(y,x)$ при всех $x,y \in X$;
- b) неравенство треугольника $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$ при всех $x,y,z \in X$;
- c) невырожденность $\rho(x,y)=0$ тогда и только тогда, когда x=y.

Пара (X, ρ) называется метрическим пространством. Если выполнены (a) и (b), то ρ называется полуметрикой, а (X, ρ) полуметрическим пространством.

Последовательность $\{x_n\}\subset X$ называется сходящейся $x_n\to x$ к точке $x\in X$, если для любого $\varepsilon>0$ существует число $N\in\mathbb{N}$, т.ч. $\rho(x,x_n)<\varepsilon$ при всех $n\geqslant N$.

Последовательность $\{x_n\} \subset X$ называется последовательностью Коши́, если для любого $\varepsilon > 0$ существует число $N \in \mathbb{N}$, т.ч. $\rho(x_n, x_m) < \varepsilon$ при всех $n, m \geqslant N$.

Если всякая последовательность Коши является сходящейся к некоторой точке $x \in X$, то метрическое пространство (X, ρ) называется *полным*.

Определение. Пусть E обозначает *линейное пространство* над полем \mathbb{F} действительных $\mathbb{F} = \mathbb{R}$ или комплексных $\mathbb{F} = \mathbb{C}$ чисел. Неотрицательная функция $p: E \to \mathbb{R}_+$ называется *нормой* в E, если выполняются следующие свойства:

- а) однородность $\boldsymbol{p}(\lambda x) = |\lambda| \boldsymbol{p}(x)$ при всех $\lambda \in \mathbb{F}$ и $x \in \boldsymbol{E}$;
- b) неравенство треугольника $p(x+y) \leqslant p(x) + p(y)$ при всех $x, y \in E$;
- c) невырожденность p(x) = 0 тогда и только тогда, когда x = 0.

Норма обозначается через $p(x) \doteqdot \|x\|$ и пара (E,p) называется нормированным пространством. Полное нормированное пространство будем называть банаховым пространством. Если выполнены (a) и (b), то $p(x) \doteqdot \|x\|$ называется полунормой, а пара (E,p) полунормированным пространством. Метрика или полуметрика в этих пространствах определяются по формуле $\rho(x,y) \doteqdot \|x-y\|$.

Определение. Функция $q: E \times E \to \mathbb{F}$ называется *скалярным произведением* в линейном пространстве E над полем \mathbb{F} и обозначаемая через $q(x,y) \doteqdot \langle x,y \rangle$, если выполняются следующие свойства:

- а) $q(x,y) = \overline{q(y,x)}$ при всех $x,y \in E$;
- b) $q(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 q(x_1, y) + \lambda_2 q(x_2, y)$ при всех $x_1, x_2, y \in E$ и $\lambda_1, \lambda_2 \in \mathbb{F}$;
- c) $q(x,x)\geqslant 0$ при всех $x\in {m E}$ и q(x,x)=0 тогда и только тогда, когда x=0.

Пространство, в котором задано скалярное произведение $q(x,y) \doteqdot \langle x,y \rangle$, называется евклидовым пространством (E,q). Функция $||x|| \doteqdot \sqrt{\langle x,x \rangle}$ называется евклидовой нормой, а $\rho(x,y) \doteqdot ||x-y||$ называется евклидовой метрикой.

Пример 1. Нормированное пространство $\mathbb{F}^n \doteqdot \{x = (x_1, \dots, x_n) \mid x_k \in \mathbb{F}, k = 1, \dots, n\}$, состоящее из конечных последовательностей $x = (x_1, \dots, x_n)$ действительных или комплексных чисел $x_k \in \mathbb{F}$ со скалярным произведением $\langle x, y \rangle \doteqdot \sum_{k=1}^n x_k \overline{y_k}$ и нормой $\|x\| \doteqdot \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}$ называется конечномерным евклидовым пространством.

Пример 2. Функция $f: X \to \mathbb{F}$ называется *ограниченной* на множестве X, если существует число c>0, т.ч. $|f(x)|\leqslant c$ при всех $x\in X$. Нормированное пространство ${\bf B}(X)\doteqdot \{f\mid f: X\to \mathbb{F} \text{ ограничена}\}$, состоящее из ограниченных функций с нормой $\|f\|\doteqdot \sup_{x\in X}|f(x)|$, называется *пространством ограниченных функций*.

Пример 3. Функция $f: X \to \mathbb{F}$ называется *непрерывной* на пространстве (X, ρ) , если для любых $x \in X$ и $\varepsilon > 0$ существует $\delta > 0$, т.ч. $|f(x) - f(y)| < \varepsilon$ для всех $y \in X$, $\rho(x,y) < \delta$. Пространство $C(X) \doteqdot \{f \mid f: X \to \mathbb{F} \text{ непрерывна и ограничена}\}$, состоящее из ограниченных и непрерывных функций с нормой $||f|| \doteqdot \sup_{x \in X} |f(x)|$, называется *пространством непрерывных функций*.

Лемма. Пространства $\boldsymbol{B}(X)$ и $\boldsymbol{C}(X)$ являются ба́наховыми.

 \mathcal{L} оказательство. Если $\{f_n\}$ — последовательность Коши в $\mathbf{B}(X)$, то для любого $\varepsilon>0$ существует $N\in\mathbb{N}$, т.ч. $|f_n(x)-f_m(x)|<\varepsilon$ при всех $x\in X$ и при всех $n,m\geqslant N$. По критерию Коши равномерной сходимости она сходится равномерно $f_n\rightrightarrows f$, т.е. для любого $\varepsilon>0$ существует $N\in\mathbb{N}$, т.ч. $|f_n(x)-f(x)|<\varepsilon$ при всех $x\in X$ и $n\geqslant N$. Отсюда $\|f_n-f\|<\varepsilon$ при $n\geqslant N$. Так как $\|f\|\leqslant \|f_n-f\|+\|f_n\|$, то $f\in \mathbf{B}(X)$.

Поскольку равномерно сходящаяся последовательность непрерывных функций сходится к непрерывной функции, то C(X) является замкнутым подпространством в B(X) и, следовательно, также будет ба́наховым пространством.

Открытые и замкнутые шары в метрическом пространстве (X, ρ) обозначаются через $U_r(x) \doteqdot \{y \in X \mid \rho(x,y) < r\}; \; S_r(x) \doteqdot \{y \in X \mid \rho(x,y) \leqslant r\}; \; U_r \doteqdot U_r(0); \; S_r \doteqdot S_r(0).$ Для каждого множества $A \subset X$ введем следующие обозначения:

 $\mathring{A}\doteqdot \{x\in X\mid \exists\ r>0\,,\ extbf{\emph{U}}_r(x)\subset A\}$ — множество внутренних точек;

 $\tilde{A} \doteqdot \{x \in X \mid \exists \ r > 0, \ U_r(x) \cap A = x\}$ — множество изолированных точек;

 $\overline{A}\doteqdot \{x\in X\mid \forall\ r>0\,,\ U_r(x)\cap A\neq\emptyset\}$ — множество точек прикосновения;

 $\acute{A} \doteq \{x \in X \mid \forall \ r > 0, \ (U_r(x) \setminus x) \cap A \neq \emptyset\}$ — множество предельных точек.

Множества \mathring{A} и \overline{A} называются внутренностью и замыканием множества A.

Если $\mathring{A} = A$, то множество A называется omкрытым.

Если $\overline{A} = A$, то множество A называется замкнутым.

Если $\overline{A} = X$, то множество A называется всюду плотным.

Если $\overset{\circ}{A} = \emptyset$, то множество A называется нигде не плотным.

Определение. Метрическое пространство (X, ρ) называется *сепара́бельным*, если в нем существует счетное и всюду плотное подмножество $A \subset X$.

Рассмотрим свойства операции замыкания в метрическом пространстве (X, ρ) .

- **1.** $\overline{A} = \{x \in X \mid \exists x_n \in A, m.u. x_n \rightarrow x\}.$
- **2.** $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. $\overline{\overline{A}} = \overline{A}$.

В самом деле, $x \in \overline{A}$ тогда и только тогда, когда существуют последовательность точек $x_n \in A$, т.ч. $x_n \in A \cap U_{1/n}(x)$. Отсюда следует, что $\rho(x, x_n) < 1/n$, т.е. $x_n \to x$.

Если $x \in \overline{A \cup B}$, то существуют точки $x_n \in A \cup B$, т.ч. $x_n \to x$. Тогда существует подпоследовательность точек x_{n_k} , принадлежащих A или B, т.ч. $x_{n_k} \to x$. Поэтому справедливо включение $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$. Обратное включение очевидно.

Так как $A \subset \overline{A}$, то имеем $\overline{A} \subset \overline{\overline{A}}$. Пусть $x \in \overline{\overline{A}}$, тогда найдется последовательность $x_n \in \overline{A}$, т.ч. $x_n \to x$. Кроме того, для каждого n найдется последовательность $x_{nm} \in A$, т.ч. $x_{nm} \to x_n$. Выберем подпоследовательность m_n , т.ч. $\rho(x_{nm_n}, x_n) < 1/n$. Тогда по неравенству треугольника $\rho(x_{nm_n}, x) \leqslant \rho(x_{nm_n}, x_n) + \rho(x_n, x) \to 0$, т.е. $x_{nm_n} \to x \in \overline{A}$.

Определение. Отображение $F: X \to Y$ метрических пространств (X, ρ_X) и (Y, ρ_Y) называется *непрерывным*, если для любого $x \in X$ и для любого $\varepsilon > 0$ существует $\delta > 0$, т.ч. $\rho_Y(F(x), F(y)) < \varepsilon$ выполняется для всех $y \in X$, $\rho_X(x, y) < \delta$.

Отображение $F: X \to Y$ называется *изометричным*, если $\rho_Y(F(x), F(y)) = \rho_X(x, y)$ для всех $x, y \in X$. Если, кроме того, образ F(X) = Y, то отображение называется *изометрией*, а пространства X и Y называются *изометричными*.

Например, в силу неравенства треугольника $|\rho(x,y)-\rho(x_0,y_0)| \le \rho(x,x_0)+\rho(y,y_0)$ метрика $\rho(x,y)$ является непрерывной функцией двух переменных.

Теорема (о пополнении). Для каждого метрического пространства (X, ρ_X) существует такое полное метрическое пространство (Y, ρ_Y) и изометричное отображение $F: X \to Y$, что его образ $F(X) \subset Y$ является всюду плотным в Y. При этом любые два таких полных пространства являются изометричными.

Доказательство. Пусть $f_x(y) \doteqdot \rho_X(x,y) - \rho_X(x_0,y)$, где точка $x_0 \in X$ фиксирована. Тогда $|f_x(y)| \leqslant \rho_X(x,x_0)$ для всех $y \in X$, т.е. $f_x \in C(X)$ при всех $x \in X$. Определим отображение $F: X \to C(X)$ по формуле $F(x) \doteqdot f_x$ и положим $Y \doteqdot \overline{F(X)}$. Так как

$$\rho_Y(F(x_1), F(x_2)) = \sup_{y \in X} |f_{x_1}(y) - f_{x_2}(y)| = \sup_{y \in X} |\rho_X(x_1, y) - \rho_X(x_2, y)| = \rho_X(x_1, x_2),$$

то отображение F является изометричным. Пусть существуют два отображения $F:X\to Y$ и $F_1:X\to Y_1$, удовлетворяющие условиям теоремы. Тогда для каждого $y\in Y$ найдется последовательность $x_n\in X$, т.ч. $F(x_n)\to y$. Отсюда $F_1(x_n)\to y_1\in Y_1$. Определим отображение $I:Y\to Y_1$ по формуле $I(y)\doteqdot y_1$. Тогда при всех $y,y'\in Y$

$$\rho_{Y}(y,y') = \lim_{n \to \infty} \rho_{Y}(F(x_n), F(x'_n)) = \lim_{n \to \infty} \rho_{X}(x_n, x'_n) = \lim_{n \to \infty} \rho_{Y_1}(F_1(x_n), F_1(x'_n)) = \rho_{Y_1}(y_1, y'_1).$$

Таким образом, отображение I является изометрией пространств Y и Y_1 .

Пример 4. Пополнением пространства P всех многочленов $P(x) = \sum_{k=1}^n a_k x^k$ с коэффициентами из поля $\mathbb F$ действительных или комплексных чисел с метрикой $\rho(P,Q) \doteqdot \max_{x \in [a,b]} |P(x) - Q(x)|$ является пространство C[a,b] непрерывных функций. В самом деле, по теореме Веерштрасса для каждой функции $f \in C[a.b]$ и для любого $\varepsilon > 0$ существует $P \in P$, т.ч. $\rho(f,P) = \max_{x \in [a,b]} |f(x) - P(x)| < \varepsilon$. Отсюда P всюду плотно в C[a.b]. Поскольку C[a.b] полно, то оно будет пополнением P.

Определение. Отображение $F: X \to X$ метрического пространства (X, ρ) в себя называется *сжимающим*, если для некоторого $0 < \lambda < 1$ выполняется неравенство $\rho(F(x), F(y)) \leqslant \lambda \rho(x, y)$ при всех $x, y \in X$.

Каждое сжимающее отображение является непрерывным, т.к. для любого $\varepsilon>0$ выполняется неравенство $\rho(F(x),F(y))\leqslant \lambda\rho(x,y)<\varepsilon$, если $\rho(x,y)<\delta=\varepsilon/\lambda$.

Теорема (принцип сжимающих отображений). Для всякого сжимающего отображения $F: X \to X$ полного метрического пространства (X, ρ) в себя существует единственная неподвижная точка $x \in X$, т.е. F(x) = x.

Доказательство. Пусть $x_0 \in X$, $x_1 \doteqdot F(x_0)$, $x_2 \doteqdot F(x_1)$, ..., т.е. мы имеем $x_n = F^n(x_0)$. Тогда, применяя неравенство треугольника, получим при n < m и $0 < \lambda < 1$

$$\rho(x_n, x_m) \leqslant \sum_{k=n}^{m-1} \rho(x_k, x_{k+1}) = \sum_{k=n}^{m-1} \rho(F^k(x_0), F^k(x_1)) \leqslant \sum_{k=n}^{m-1} \lambda^k \rho(x_0, x_1) \leqslant \frac{\lambda^n}{1 - \lambda} \rho(x_0, x_1).$$

Поэтому $\{x_n\}$ является последовательностью Коши и, следовательно, существует предел $\lim x_n = x \in X$. Так как $F(x_{n-1}) = x_n$, то, переходя к пределу и используя непрерывность отображения F, получим F(x) = x. Если существует еще одна точка $y \in X$, т.ч. F(y) = y, то из неравенства $\rho(x,y) = \rho(F(x),F(y)) \leqslant \lambda \rho(x,y)$ следует, что $\rho(x,y) = 0$, т.е. имеет место равенство x = y.

Лемма (о вложенных шарах). Если в полном метрическом пространстве (X, ρ) последовательность вложенных шаров $S_{r_1}(x_1) \supset S_{r_2}(x_2) \supset \dots$ имеет радиусы, т.ч. $\lim r_n = 0$, то пересечение $\bigcap_{n=1}^{\infty} S_{r_n}(x_n) \neq \emptyset$ не пусто.

Доказательство. Поскольку по условию $\rho(x_n, x_m) \leqslant r_n$ при n < m и $\lim r_n = 0$, то $\{x_n\}$ является последовательностью Коши и, следовательно, существует предел $\lim x_n = x$. Переходя к пределу в неравенстве $\rho(x_n, x_m) \leqslant r_n$ при $m \to \infty$, мы получим $\rho(x_n, x) \leqslant r_n$. Таким образом, точка $x \in X$ принадлежит $x \in \bigcap_{n=1}^{\infty} S_{r_n}(x_n)$.

Определение. Множество $A \subset X$ в метрическом пространстве (X, ρ) называется множеством *первой категории*, если является счетным объединением $A = \bigcup_{n=1}^{\infty} A_n$ нигде не плотных множеств $A_n \subset X$. Множество $A \subset X$ называется множеством второй категории, если оно не является множеством первой категории.

Теорема (Бэ́ра). *Каждое полное метрическое пространство* (X, ρ) является множеством второй категории.

Доказательство. Предположим обратное, т.е. $X = \bigcup_{n=1}^{\infty} A_n$, где множества A_n нигде не плотны. Так как $\overline{A_1}$ не имеет внутренних точек, то существуют точка $x_1 \in X \setminus \overline{A_1}$ и шар $S_{r_1}(x_1) \subset X \setminus \overline{A_1}$. Так как $\overline{A_2}$ не имеет внутренних точек, то существуют точка $x_2 \in S_{r_1}(x_1) \setminus \overline{A_2}$ и шар $S_{r_2}(x_2) \subset S_{r_1}(x_1) \setminus \overline{A_2}$ и т.д. Получили последовательность вложенных шаров $S_{r_1}(x_1) \supset S_{r_2}(x_2) \supset \dots$ Выберем радиусы $r_n > 0$, т.ч. $\lim r_n = 0$. По лемме существует точка $x \in \bigcap_{n=1}^{\infty} S_{r_n}(x_n)$. Тогда по построению $x \notin A_n$ при всех n, что невозможно. Таким образом, X не является множеством первой категории. \square

Пример 5. Множество $\mathbb{Q} \subset \mathbb{R}$ рациональных чисел является множеством первой категории, т.к. состоит из счетного объединения точек. Если бы множество $\mathbb{J} \subset \mathbb{R}$ иррациональных чисел являлось множеством первой категории, тогда объединение $\mathbb{R} = \mathbb{Q} \cup \mathbb{J}$ множеств первой категории образовало бы множество первой категории. По теореме Бэ́ра множество действительных чисел \mathbb{R} не является множеством первой категории. Получили противоречие. Значит множество рациональных чисел \mathbb{J} является множеством второй категории.

Пример 6. Построим последовательность вложенных замкнутых шаров в полном метрическом пространстве с пустым пересечением. Рассмотрим множество всех натуральных чисел $\mathbb N$ с метрикой $\rho(n,m)\doteqdot 1+\frac{1}{n+m}$ при $n\neq m$ и $\rho(n,n)=0$. Замкнутые шары $S_{r_n}(n)=\{n,n+1,\ldots\},\ r_n=1+\frac{1}{2n},$ являются вложенными и их

Замкнутые шары $S_{r_n}(n) = \{n, n+1, \ldots\}, r_n = 1 + \frac{1}{2n}$, являются вложенными и их пересечение пусто. Нетрудно заметить, что метрическое пространство (\mathbb{N}, ρ) полно, поскольку всякая ее последовательность Коши стационарна (начиная с некоторого номера является постоянной). Поэтому по теореме Бэра пространство \mathbb{N} является множеством второй категории. В этом пространстве все множества открыты и замкнуты, т.е. (\mathbb{N}, ρ) имеет дискретную топологию. Поэтому в нем не существует нигде не плотных множеств, кроме пустого множества \emptyset .

Пример 7. Конечномерное евклидово пространство \mathbb{R}^n является сепарабельным. В самом деле, пусть $\mathbb{Q}^n \doteqdot \{q = (q_1, \ldots, q_n) \mid q_k \in \mathbb{Q}\}$ множество конечных последовательностей рациональных чисел $q_k \in \mathbb{Q}$. Так как \mathbb{Q} всюду плотно в \mathbb{R} , то для любых $x \in \mathbb{F}^n$ и $\varepsilon > 0$ существует $q \in \mathbb{Q}^n$, т.ч. $\|x - q\| = \left(\sum_{k=1}^n |x_k - q_k|^2\right)^{1/2} < \varepsilon$. Поэтому \mathbb{Q} счетное и всюду плотное подмножество евклидова пространства \mathbb{R}^n .

Пример 8. Пространство C[a,b] непрерывных функций $f:[a,b] \to \mathbb{F}$ на отрезке $[a,b] \subset \mathbb{R}$ является сепарабельным. В самом деле, для каждой функции $f \in C[a,b]$ и для любого $\varepsilon > 0$ существует многочлен $P(x) = \sum_{k=0}^n a_k x^k$ с коэффициентами $a_k \in \mathbb{F}$ из поля \mathbb{F} , т.ч. $\|f-P\| < \varepsilon/2$. Поскольку множество (комплексно) рациональных чисел $\mathbb{Q}_{\mathbb{F}}$ всюду плотно в \mathbb{F} , то существует многочлен $Q(x) = \sum_{k=0}^n q_k x^k$ с такими коэффициентами $q_k \in \mathbb{Q}_{\mathbb{F}}$, т.ч. $\|P-Q\| < \varepsilon/2$. Так как по неравенству треугольника $\|f-Q\| \leqslant \|f-P\| + \|P-Q\| < \varepsilon$, то множество всех многочленов Q(x) с коэффициентами из $\mathbb{Q}_{\mathbb{F}}$ является всюду плотным в пространстве C[a,b]. Кроме того, оно является счетным. Поэтому пространство C[a,b] будет сепарабельным.

Пример 9. В евклидовом пространстве выполняется равенство параллелограмма $\|x+y\|^2+\|x-y\|^2=2\|x\|^2+2\|y\|^2$. В самом деле, имеем $\|x\pm y\|^2=\langle x\pm y, x\pm y\rangle=\langle x,x\rangle\pm(\langle x,y\rangle+\langle y,x\rangle)+\langle y,y\rangle=\|x\|^2\pm\Re\langle x,y\rangle+\|y\|^2$. Складывая эти два равенства, получим равенство параллелограмма.

Пример 10. Пространство ограниченных функций B(X) не является евклидовым пространством, если множество X содержит более, чем одну точку. В самом деле, пусть $x_1, x_2 \in X$, где $x_1 \neq x_2$. Определим следующие две функции

$$f_1(x) = \begin{cases} 1, & x = x_1; \\ 0, & x \neq x_1, \end{cases}$$
 $f_2(x) = \begin{cases} 1, & x = x_2; \\ 0, & x \neq x_2, \end{cases}$

Тогда имеют место равенства $||f_1|| = ||f_2|| = ||f_1 \pm f_2|| = 1$. Следовательно, равенство параллелограмма не выполняется.

Пример 11. Если множество X бесконечно, то пространство B(X) несепарабельно. В самом деле, предположим, что $C \subset B(X)$ является счетным и всюду плотным подмножеством. Рассмотрим множество $M \subset B(X)$ всех функций, которые принимают только значения 0 и 1. Тогда $\|f-g\|=1$ для всех $f,g \in M, f \neq g$. В силу всюду плотности C в каждом шаре радиуса 1/3 с центром в точке $f \in M$ существует хотя бы один элемент множества C. Так как множество M несчетно, то множество C также несченто. Получили противоречие.

Пример 12. Пусть $1\leqslant p<\infty$ и ℓ_p обозначает пространство последовательностей $x=\{x_n\}$ действительных или комплексных чисел $x_n\in\mathbb{F}$, т.ч. $\sum_{n=1}^\infty |x_n|^p<\infty$. В этом пространстве определим норму $\|x\|_{\ell_p}\doteqdot \left(\sum_{n=1}^\infty |x_n|^p\right)^{1/p}$. Тогда $\ell_p\subset\ell_q$ при всех p< q. В самом деле, для этого докажем, что выполняется неравенство

$$\left(\sum_{n=1}^{\infty}|x_n|^q\right)^{1/q}\leqslant \left(\sum_{n=1}^{\infty}|x_n|^p\right)^{1/p}$$
 при всех $1\leqslant p< q<\infty$ и $x=\{x_n\}\in \ell_p$.

Если разделить левую часть на правую, то достаточно рассмотреть только случай, когда $\sum_{n=1}^{\infty}|x_n|^p=1$. В этом случае $|x_n|\leqslant 1$ и $\sum_{n=1}^{\infty}|x_n|^q\leqslant \sum_{n=1}^{\infty}|x_n|^p=1$ при всех $1\leqslant p< q<\infty$. Таким образом, $\|x\|_{\boldsymbol{\ell}_q}\leqslant \|x\|_{\boldsymbol{\ell}_p}$ при всех $1\leqslant p< q<\infty$.

Пример 13. Пространства ℓ_p при всех $1\leqslant p<\infty$ банаховы и сепарабельные. В самом деле, ℓ_p является нормированным пространством. Докажем его полноту.

Пусть $x^{(k)} = \{x_n^{(k)}\}$ является последовательностью Коши, т.е. для любого $\varepsilon > 0$ найдется такое N, что $\|x^{(k)} - x^{(l)}\|_{\ell_p} < \varepsilon$ при всех $k, l \geqslant N$. Отсюда $|x_n^{(k)} - x_n^{(l)}| < \varepsilon$ при всех $k, l \geqslant N$ и $n \geqslant 1$. Поэтому $\{x_n^{(k)}\}$ является последовательностью Коши при всех $n \geqslant 1$ и значит существует предел $\lim_{k \to \infty} x_n^{(k)} = x_n$. Тогда, полагая $x = \{x_n\}$ и переходя к пределу в неравенстве $|x_n^{(k)} - x_n^{(l)}| < \varepsilon$, получим, что $\|x^{(k)} - x\|_{\ell_p} \leqslant \varepsilon$ при всех $k \geqslant N$. В силу неравенства треугольника $\|x\|_{\ell_p} \leqslant \|x^{(k)}\|_{\ell_p} + \|x^{(k)} - x\|_{\ell_p} < \infty$. Таким образом, последовательность $x^{(k)}$ сходится к $x \in \ell_p$ в метрике ℓ_p .

Для доказательства сепарабельности ℓ_p заметим, если элемент $x=\{x_n\}\in\ell_p$, то существует предел $\lim_{m\to\infty} s_m(x)=x$ в ℓ_p , где $s_m(x)=\{y_n\}$ обозначает финитную последовательность, равную $y_n=x_n$ при $n\leqslant m$ и $y_n=0$ при n>m. Действительно, $\|x-s_m(x)\|_{\ell_p}=\left(\sum_{n=m+1}^\infty |x_n|^p\right)^{1/p}\to 0$. Следовательно, множество финитных последовательностей всюду плотно в ℓ_p и значит в ℓ_p всюду плотно подпространство, состоящее из всех финитных последовательностей рациональных чисел. Поскольку это подпространство является счетным, то ℓ_p будет сепарабельным.

2 ТОПОЛОГИЧЕСКИЕ ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Определение. Пусть 2^X обозначает множество всех подмножеств множества X, включая пустое множество \emptyset . *Топологией* в множестве X называется такая система множеств $\tau \subset 2^X$, что выполняются следующие аксиомы.

- а) $A\kappa c$ иома объединения: $\bigcup_{i\in I}A_i\in au$ для всякой системы $\{A_i\}_{i\in I}\subset au$;
- b) $A\kappa cuoma$ пересечения: $\bigcap_{k=1}^n B_k \in \tau$ для всякой конечной системы $\{B_k\}_{k=1}^n \subset \tau;$
- c) Аксиома невырожденности: пустое множество $\emptyset \in \tau$ и множество $X \in \tau$.

Топологическим пространством (X,τ) называется множество X, в котором задана топология $\tau \subset \mathbf{2}^X$, В топологическом пространстве множества $A \in \tau$ называются открытыми, а их дополнения $A' \doteqdot X \setminus A$ замкнутыми. Открытое множество O(x), содержащее точку $x \in X$, называется окрестностью этой точки x. Топологическое пространство называется хаусдововым, если для любых двух различных точек $x,y \in X$, $x \neq y$, существуют непересекающиеся окрестности $O(x) \cap O(y) = \emptyset$.

Система множеств $eta \subset au$ называется базой топологии au, если любое множество топологии $A \in au$ является объединением $A = \bigcup_{i \in I} B_i$ множеств $B_i \in eta$.

Система окрестностей $\beta(x)$ точки $x \in X$ называется локальной базой в точке x, если любая окрестность O(x) точки x содержит некоторую окрестность из $\beta(x)$. Совокупность локальных баз всех точек образует локальную базу топологии τ .

С помощью базы окрестностей, как в метрическом пространстве, можно ввести понятия внутренних, предельных, изолированных точек и точек прикосновения, а также понятия замыкания, всюду плотного и нигде не плотного множества.

1. Совокупность систем множеств $\beta(x)$, где $x \in X$, образует локальную базу некоторой топологии в X, если каждое множество из $\beta(x)$ содержит точку x и для любых $A \in \beta(x)$, $B \in \beta(y)$, $z \in A \cap B$ существует $C \in \beta(z)$, т.ч. $C \subset A \cap B$.

Докажем, что множества, которые являются объединением элементов системы $\beta \doteqdot \bigcup_{x \in X} \beta(x)$ образуют топологию τ в X. Ясно, что $\emptyset, X \in \tau$. Очевидно также, что объединение любой системы множеств из τ принадлежит τ . Кроме того, заметим, что если $A = \bigcup_{i \in I} A_i$ и $B = \bigcup_{j \in J} B_j$, где $A_i, B_j \in \beta$, то $A \cap B = \bigcup_{i \in I, j \in J} A_i \cap B_j$. Так как из условия вытекает, что множество $A_i \cap B_j$ является объединением элементов β , то $A \cap B \in \tau$. Таким образом, по индукции пересечение любого конечного числа множеств из τ принадлежит τ .

2. В метрическом пространстве (X, ρ) система τ_X всех открытых множеств в X является топологией. Открытые шары $U_r(x)$ образуют локальную базу топологии τ_X метрического пространства.

В самом деле, если $x\in\bigcup_{i\in I}A_i$, то $x\in A_i$ при некотором $i\in I$ и значит существует шар $U_r(x)\subset A_i\subset\bigcup_{i\in I}A_i$. Если $x\in\bigcap_{k=1}^nB_k$, то существуют шары $U_{r_k}(x)\subset B_k$ при всех $k=1,\ldots,n$. Пусть $r\doteqdot\min_{1\leqslant k\leqslant n}r_k$, тогда $U_r(x)\subset\bigcap_{k=1}^nB_k$. Поэтому по определению система всех открытых шаров $U_r(x)$ образует локальную базу топологии τ .

3. Топология произведения $X \doteqdot X_1 \times X_2$ метрических пространств (X_1, ρ_{X_1}) и (X_2, ρ_{X_2}) определяется метрикой $\rho_X^{(1)}(x,y) \doteqdot \rho_{X_1}(x_1,y_1) + \rho_{X_2}(x_2,y_2)$ при все $x,y \in X$.

Метрику в произведении $X_1 \times X_2 = \{x = (x_1, x_2) \mid x_1 \in X_1, x_2 \in X_2\}$ можно также определить другим эквивалентным способом, например, по евклидовой формуле

$$ho_X^{(2)}(x,y))\doteqdot\sqrt{
ho_{X_1}^2(x_1,y_1)+
ho_{X_2}^2(x_2,y_2)}$$
 при всех $x,y\in X$.

Тогда, применяя элементарные неравенства $\rho_X^{(1)}(x,y)/2 \leqslant \rho_X^{(2)}(x,y) \leqslant \rho_X^{(1)}(x,y)$, легко доказать, что топология X в метрике $\rho_X^{(1)}$ совпадает с топологией X в метрике $\rho_X^{(2)}$.

Определение. Отображение $f: X \to Y$ топологических пространств называется непрерывным, если для любого $A \in \tau_Y$ прообраз $f^{-1}(A) \in \tau_X$. Отображение $f: X \to Y$ называется *открытым*, если для любого $A \in \tau_X$ образ $f(A) \in \tau_Y$.

Отображение $f: X \to Y$ топологических пространств называют *гомеоморфизмом*, если оно является биективным, непрерывным и открытым отображением.

Теорема. Пусть (X, ρ_X) и (Y, ρ_Y) являются метрическими пространствами. Тогда следующие условия отображения эквивалентны:

- а) отображение $f: X \to Y$ является непрерывным;
- b) для каждого $x \in X$ и для любого $\varepsilon > 0$ существует $\delta > 0$, т.ч.выполняется неравенство $\rho_Y(f(x), f(y)) < \varepsilon$ для всех $y \in X$, $\rho_X(x,y) < \delta$;
- с) для любой сходящейся последовательности $x_n \to x$ в X ее образ является сходящейся последовательностью $f(x_n) \to f(x)$ в Y.

Доказательство. Пусть выполнено условие (а) и $\varepsilon > 0$. Тогда для каждого $x \in X$ существует шар $U_{\delta}(x) \subset f^{-1}(U_{\varepsilon}(f(x)))$, что равносильно (b). Пусть выполнено (b) и последовательность сходится $x_n \to x$ в X, т.е. для заданного $\delta > 0$ существует N, т.ч. $\rho_X(x,x_n) < \delta$ для всех $n \geqslant N$. В силу (b) выполняется $\rho_Y(f(x),f(x_n)) < \varepsilon$ для всех $n \geqslant N$. Отсюда $f(x_n) \to f(x)$, т.е. выполнено (c). Пусть $A \subset Y$ замкнутое множество. Если $x_n \in f^{-1}(A)$ и $x_n \to x$, то по условию (c) получим $f(x_n) \to f(x)$, а из замкнутости $f(x) \in A$, т.е. $x \in f^{-1}(A)$. Поэтому прообраз замкнутого множества замкнут. Это равносильно тому, что прообраз открытого множества открыт.

Лемма. В полунормированном пространстве (E, p) операции сложения x + y и умножения λx на число $\lambda \in \mathbb{F}$ являются непрерывными.

Доказательство. Для доказательства непрерывности операции λx умножения на число используем неравенство треугольника и однородность полунормы \boldsymbol{p} , тогда мы получим $\boldsymbol{p}(\lambda x - \lambda_0 x_0) \leqslant |\lambda - \lambda_0| \, \boldsymbol{p}(x-x_0) + |\lambda - \lambda_0| \, \boldsymbol{p}(x_0) + |\lambda_0| \, \boldsymbol{p}(x-x_0) < \varepsilon$, если $|\lambda_0| < a$, $\boldsymbol{p}(x_0) < b$, $\boldsymbol{p}(x-x_0) < \varepsilon/3a$, $|\lambda - \lambda_0| < \varepsilon/3b < a$. Непрерывность операции сложения x+y можно доказать простым применением неравенства треугольника $\boldsymbol{p}(x+y-x_0-y_0) \leqslant \boldsymbol{p}(x-x_0) + \boldsymbol{p}(y-y_0) < \varepsilon$, если $\boldsymbol{p}(x-x_0) < \varepsilon/2$ и $\boldsymbol{p}(y-y_0) < \varepsilon/2$. \square

Определение. Пусть (X, ρ_X) и (Y, ρ_Y) являются метрическими пространствами. Отображение $f: X \to Y$ называется равномерно непрерывным, если для любого $\varepsilon > 0$ существует $\delta > 0$, т.ч. $\rho_Y(f(x), f(y)) < \varepsilon$ для всех $x, y \in X$, $\rho_X(x, y) < \delta$.

Система $\{f_i\}_{i\in I}$ отображений $f_i: X\to Y$ называется равностепенно непрерывной, если для любого $\varepsilon>0$ существует $\delta>0$, т.ч. $\rho_Y(f_i(x),f_i(y))<\varepsilon$ для всех индексов $i\in I$ и для всех $x,y\in X$, $\rho_X(x,y)<\delta$.

Пример 1. Метрика $\rho(x,y)$ в метрическом пространств (X,ρ) равномерно непрерывна по совокупности переменных, так как если $x=(x_1,x_2), y=(y_1,y_2)\in X\times X$ и выполняется неравенство $\rho^{(1)}(x,y)=\rho(x_1,y_1)+\rho(x_2,y_2)<\varepsilon$, то получаем $|\rho(x_1,x_2)-\rho(y_1,y_2)|\leqslant |\rho(x_1,x_2)-\rho(y_1,x_2)|+|\rho(y_1,x_2)-\rho(y_1,y_2)|\leqslant \rho(x_1,y_1)+\rho(x_2,y_2)<\varepsilon$.

Теорема (принцип продолжения по непрерывности). Пусть задано равномерно непрерывное отображение $f: A \to Y$, определенное на всюду плотном подмножестве $A \subset X$ метрического пространства (X, ρ_X) , со значениями в полном метрическом пространстве (Y, ρ_Y) . Тогда существует единственное равномерно непрерывное отображение $g: X \to Y$, т.ч. g(x) = f(x) при всех $x \in A$.

Доказательство. В силу равномерной непрерывности отображения f для любого $\varepsilon>0$ существует $\delta>0$, т.ч. $\rho_Y(f(x),f(y))<\varepsilon$ для всех $x,y\in A$: $\rho_X(x,y)<\delta$. Так как A всюду плотно в X, то для каждого $x\in X$ существуют $x_n\in A$, т.ч. $x_n\to x$.

Выберем число N, т.ч. $\rho_X(x_n,x_m)<\delta$ при всех $n,m\geqslant N$. Тогда $\rho_Y(f(x_n),f(x_m))<\varepsilon$ при всех $n,m\geqslant N$. Поэтому $\{f(x_n)\}$ последовательность Коши и значит существует предел $g(x)\doteqdot \lim f(x_n)$. Если взять другую сходящуюся последовательность $y_n\to x$, то, полагая $z_n\doteqdot x_k$ при n=2k-1 и $z_n\doteqdot y_k$ при n=2k, мы получим, что $z_n\to x$. Тогда $g(x)=\lim f(z_n)=\lim f(x_n)=\lim f(y_n)$. Поэтому значение g(x) не зависит от выбора сходящейся последовательности и определение отображения g корректно.

Пусть $x,y \in X$ и $\rho_X(x,y) < \delta$. Выберем последовательности точек $x_n,y_n \in A$, т.ч. $x_n \to x$ и $y_n \to y$. Тогда существует N, т.ч. $\rho_X(x_n,y_n) < \delta$ при всех $n \geqslant N$. В силу равномерной непрерывности отображения f имеем неравенство $\rho_Y(f(x_n),f(y_n)) < \varepsilon$ при всех $n \geqslant N$. Переходя к пределу в этом неравенстве, получим $\rho_Y(g(x),g(y)) \leqslant \varepsilon$. Таким образом, отображение $g: X \to Y$ равномерно непрерывно.

Определение. Пара (E, ρ) называется *метрическим линейным пространством*, если E линейное пространство, в котором определена метрика $\rho(x, y)$, т.ч.

- а) метрика инвариантна $\rho(x+z,y+z) = \rho(x,y)$ при всех $x,y,z \in E$;
- b) операция умножения на число $f(\pmb{\lambda},x)\doteqdot \pmb{\lambda} x,\; f:\mathbb{F}\times \pmb{E}\to \pmb{E},$ непрерывна.

Функция $||x|| \doteqdot \rho(x,0)$ называется *квазинормой*. Она удовлетворяет неравенству треугольника $||x+y|| \leqslant ||x|| + ||y||$, симметрична ||-x|| = ||x|| и не вырождена. Однако свойство однородности $||\lambda x|| = |\lambda| \, ||x||$ может не выполняться. Полное метрическое линейное пространство называется *пространством Фреше*.

Определение. Множество $A \subset E$ в метрическом линейном пространстве (E, ρ) называется *ограниченным*, если система отображений $\{f_x\}_{x\in A}$, где $f_x : \mathbb{F} \to E$, т.ч. $f_x(\lambda) \doteqdot \lambda x$, является равностепенно непрерывной в нуле, т.е. для любого $\varepsilon > 0$ существует такое $\delta > 0$, что $\|\lambda x\| < \varepsilon$ при всех $|\lambda| < \delta$ и $x \in A$.

1. Ограниченное множество A в метрическом линейном пространстве (E, ρ) содержится в некотором шаре, т.е. $M \subset U_r$. В нормированном пространстве это условие является необходимым и достаточным для ограниченности.

В самом деле, по определению ограниченности множества A для любого $\varepsilon > 0$ существует $n \in \mathbb{N}$, т.ч. $\|x/n\| < \varepsilon$ при $x \in A$. Поскольку $\|x\| \leqslant n\|x/n\| < n\varepsilon$ при всех $x \in A$, то множество $A \subset U_{n\varepsilon}$ содержится в шаре U_r . Обратно предположим, что в нормированном пространстве множество $A \subset U_r$ содержится в шаре U_r . Тогда получим $\|\lambda x\| = |\lambda| \|x\| < \varepsilon$, если $|\lambda| < \varepsilon/r$ и $x \in A$.

2. Всякая сходящаяся последовательность $x_n \to x$ в метрическом линейном пространстве (E, ρ) является ограниченной.

Так как $x_n \to x$ и операции умножения непрерывна в нуле, то для любого $\varepsilon > 0$ существуют $m \in \mathbb{N}$ и $\delta > 0$, т.ч. $\|\lambda(x_n - x)\| < \varepsilon/2$ при всех n > m и $|\lambda| < \delta$. Далее в силу непрерывности в нуле по переменной λ мы можем выбрать $\delta > 0$ настолько малым, чтобы $\|\lambda x\| < \varepsilon/2$ и $\|\lambda(x_n - x)\| < \varepsilon/2$ при $n \leqslant m$ и $|\lambda| < \delta$. Следовательно, получаем $\|\lambda x_n\| \leqslant \|\lambda x\| + \|\lambda(x_n - x)\| < \varepsilon$ при всех $n \in \mathbb{N}$ и $|\lambda| < \delta$.

Определение. Отображение $f: E \to F$ метрических линейных пространств E и F называется *ограниченным*, если для каждого ограниченного множества $A \subset E$ в пространстве E его образ $B = f(A) \subset F$ является ограниченным множеством в пространстве F.

Отображение $f: \mathbf{E} \to \mathbf{F}$ линейных пространств \mathbf{E} и \mathbf{F} называется линейным над полем \mathbb{F} , если f(x+y) = f(x) + f(y) и $f(\lambda x) = \lambda f(x)$ при всех $x,y \in \mathbf{E}$ и $\lambda \in \mathbb{F}$.

Теорема. Пусть $f: E \to F$ линейное отображение метрических линейных пространств. Тогда следующие условия эквивалентны: отображение непрерывно в нуле; отображение равномерно непрерывно; отображение ограничено.

Доказательство. Если f непрерывно в нуле, то для любого $\varepsilon > 0$ найдется $\delta > 0$, т.ч. $\|f(x) - f(y)\| = \|f(x - y)\| < \varepsilon$ при $\|x - y\| < \delta$, т.е. f равномерно непрерывно.

Если $M\subset E$ ограничено, то для любого $\varepsilon>0$ существует $\delta>0$, т.ч. $\|\lambda x\|<\varepsilon$ при всех $|\lambda|<\delta$ и $x\in M$. Так как f непрерывно в нуле, то существует $\varepsilon>0$, т.ч. $\|\lambda f(x)\|=\|f(\lambda x)\|< r$ при всех $|\lambda|<\delta$ и $x\in M$. Поэтому образ f(M) ограничен.

Пусть последовательность $x_n \to 0$. Выберем индексы n_k , т.ч. $\|x_n\| < 1/k^2$ при всех $n \geqslant n_k$, а затем положим $\lambda_n \doteqdot k$ при $n_k \leqslant n < n_{k+1}$. Тогда имеем $\lambda_n \to \infty$ и $\lambda_n x_n \to 0$, так как $\|\lambda_n x_n\| \leqslant \lambda_n \|x_n\| < 1/k$. Поскольку последовательность $\{\lambda_n x_n\}$ ограничена, то по условию образ $\{f(\lambda_n x_n)\}$ ограничен. Значит по определению ограниченного множества $f(x_n) = f(\lambda_n x_n)/\lambda_n \to 0$, т.е. отображение f непрерывно в нуле.

Теорема (принцип равностепенной непрерывности). Предположим, что задана система $\{f_i\}_{i\in I}$ непрерывных линейных отображений $f_i: E \to F$ пространства Фреше́ (E, ρ_E) в метрическое линейное пространство (F, ρ_F) и для любого $x \in E$ множества $M_x \doteqdot \{y = f_i(x) \mid i \in I\}$ являются ограниченными в пространстве F. Тогда эта система отображений $\{f_i\}_{i\in I}$ равностепенно непрерывна.

Доказательство. При каждом $\varepsilon > 0$ рассмотрим следующие множества:

$$B_n \doteq \bigcap_{i \in I} \left\{ x \in E \left| \left\| \frac{f_i(x)}{n} \right\| \leqslant \frac{\varepsilon}{2} \right\}, \quad n = 1, 2, \dots \right\}$$

Так как все отображения f_i непрерывны и квазинорма является непрерывной функцией, то все множества в этом пересечении являются замкнутыми. Поэтому пересечение B_n замкнутых множеств будет также замкнутым. В силу условия ограниченности множества M_x для любого $\varepsilon > 0$ существует $n \in \mathbb{N}$, т.ч. $\|f_i(x)/n\| \leqslant \varepsilon/2$ при всех $i \in I$. Поэтому имеет место равенство $E = \bigcup_{n=1}^{\infty} B_n$.

В силу теоремы Бэ́ра существуют такие $n\in\mathbb{N},\ \delta>0$ и $y\in E$, что $U_{\delta}(y)\subset B_n$. Это равносильно неравенству $\|f_i(y+z)/n\|\leqslant \varepsilon/2$ при всех $z\in U_{\delta}$ и $i\in I$. Применяя линейность отображений и неравенство треугольника, получим

$$\left\| \frac{f_i(z)}{n} \right\| \leqslant \left\| \frac{f_i(z+y)}{n} \right\| + \left\| \frac{f_i(y)}{n} \right\| \leqslant \varepsilon$$
 при всех $z \in U_\delta$ и $i \in I$.

Если $z \in U_{\delta_n}$, где $\delta_n \doteqdot \delta/n$, то по неравенству треугольника $\|nz\| \leqslant n\|z\| < \delta$, т.е. $nz \in U_{\delta}$. Таким образом, получаем $\|f_i(z)\| = \|f_i(nz)/n\| \leqslant \varepsilon$ при всех $z \in U_{\delta_n}$ и $i \in I$, т.е. система отображений $\{f_i\}_{i \in I}$ равностепенно непрерывна в нуле. Следовательно, в силу линейности f_i она будет равностепенно непрерывной.

Следствие 1 (принцип равномерной ограниченности). В предположениях теоремы система отображений $\{f_i\}_{i\in I}$ является равномерно ограниченной, т.е. для каждого ограниченного множества $A\subset E$ существует ограниченной множество $B\subset F$, т.ч. образ $f_i(A)\subset B$ при всех $i\in I$.

В самом деле, если $A \subset E$ ограниченное множество, то для любого $\varepsilon > 0$ существует $\delta > 0$, т.ч. $\|\lambda x\| < \varepsilon$ при всех $x \in A$ и $|\lambda| < \delta$. Поскольку в силу доказанной теоремы система отображений $\{f_i\}_{i \in I}$ равностепенно непрерывна в нуле, то для любого r > 0 существует такое $\varepsilon > 0$, что $\|\lambda f_i(x)\| = \|f_i(\lambda x)\| < r$ при всех $i \in I$, $|\lambda| < \delta$ и $x \in A$. Следовательно, объединение $B = \bigcup_{i \in I} f_i(A)$ образов ограниченного множества $A \subset E$ является ограниченным множеством в пространстве F. Таким образом, $f_i(A) \subset B$ при всех $i \in I$.

Следствие 2 (принцип непрерывности операции умножения). Пусть в линейном пространстве E задана инвариантная метрика $\rho(x,y)$ и операция умножения $f(\lambda,x)=\lambda x$ непрерывна по каждой переменной $\lambda\in\mathbb{F}$ и $x\in E$ в отдельности относительно метрической топологии в пространстве E. Тогда эта операция является непрерывной по совокупности переменных $(\lambda,x)\in\mathbb{F}\times E$.

Проверим непрерывность операции умножения $f(\lambda,x)=\lambda x$ в точке (λ_0,x_0) . В силу неравенства $\|\lambda x-\lambda_0 x_0\|\leqslant \|(\lambda-\lambda_0)(x-x_0)\|+\|(\lambda-\lambda_0)x_0\|+\|\lambda_0(x-x_0)\|$ нам достаточно доказать непрерывность в точке (0,0). Для этого следует рассмотреть систему отображений $f_x:\mathbb{F}\to\mathbb{R}_+$, где $f_x(\lambda)\doteqdot\|\lambda x\|$ при всех $\|x\|\leqslant\delta$. Заметим, что теорема остается справедливой, если вместо условия линейности использовать следующие два свойства этих функций: $f_x(\lambda+\mu)\leqslant f_x(\lambda)+f_x(\mu)$ и $f_x(n\lambda)\leqslant nf_x(\lambda)$. Таким образом, система отображений $\{f_x(\lambda)\}$ равностепенно непрерывна в нуле и значит операция умножения непрерывна по совокупности переменных в нуле.

Пример 2. Пространство последовательностей $s \doteqdot \{x = \{x_n\} \mid x_n \in \mathbb{F}\}$ с метрикой $\rho(x,y) \doteqdot \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$ является пространством Фреше́.

Операции сложения и умножения на число $\lambda \in \mathbb{F}$ последовательностей задаются следующими формулами: $x+y\doteqdot \{x_n+y_n\}$, $\lambda x\doteqdot \{\lambda x_n\}$. Поэтому s является линейным пространством. Проверим свойства метрики: симметричность $\rho(x,y)=\rho(y,x)$ очевидна; невырожденность, если $\rho(x,y)=0$, то $x_n-y_n=0$ при всех $n\in \mathbb{N}$ и значит x=y; неравенство треугольника, т.к. функция $\varphi(t)=\frac{t}{1+t}$ возрастающая при $t\geqslant 0$, то имеем $\frac{|x_n-y_n|}{1+|x_n-y_n|}\leqslant \frac{|x_n-z_n|}{1+|x_n-z_n|}+\frac{|z_n-y_n|}{1+|z_n-y_n|}$ и поэтому $\rho(x,y)\leqslant \rho(x,z)+\rho(z,y)$. Кроме того, $\rho(x+z,y+z)=\rho(x,y)$ при всех $x,y,z\in s$. Следовательно, метрика является инвариантной на пространстве s.

Теперь мы докажем, что сходимость в метрическом пространстве s совпадает со сходимостью по координатам последовательности, т.е. если $x_m \to x$ при $m \to \infty$ в пространстве s, где $x_m = \{x_{mn}\}$ и $x = \{x_n\}$, то для всех $n \in \mathbb{N}$ имеет место $x_{mn} \to x_n$ при $m \to \infty$. Предположим, что последовательность $x_m \to x$ сходится в s, тогда для любого $\varepsilon > 0$ существует $N \in \mathbb{N}$, т.ч. $\rho(x_m, x) < \varepsilon$ при всех $m \geqslant N$. Так как $\frac{1}{2^n} \frac{|x_{mn} - x_n|}{1 + |x_{mn} - x_n|} \leqslant \rho(x_m, x) < \varepsilon$, то $|x_{mn} - x_n| < \frac{2^n \varepsilon}{1 - 2^n \varepsilon}$, если $m \geqslant N$ и $\varepsilon > 0$ достаточно мало. Отсюда следует, что $x_{mn} \to x_n$ при $m \to \infty$ для всех $n \in \mathbb{N}$.

Обратно, предположим, что $x_{mn} \to x_n$ при $m \to \infty$ для всех $n \in \mathbb{N}$. Для любого $\varepsilon > 0$ выберем $M \in \mathbb{N}$, т.ч. $|x_{mn} - x_n| < \varepsilon/4$ при всех $m \geqslant M$ и $n = 1, \ldots, N$, а число $N \in \mathbb{N}$ так, чтобы $1/2^N < \varepsilon/4$. Тогда при всех $m \geqslant M$ получим неравенство

$$\rho(x_m,x) \leqslant \sum_{n=1}^{N-1} \frac{1}{2^n} \frac{|x_{mn} - x_n|}{1 + |x_{mn} - x_n|} + \sum_{n=N}^{\infty} \frac{1}{2^n} \frac{|x_{mn} - x_n|}{1 + |x_{mn} - x_n|} \leqslant \sum_{n=1}^{N-1} \frac{\varepsilon}{2^{n+2}} + \sum_{n=N}^{\infty} \frac{1}{2^n} < \varepsilon.$$

В силу эквивалентности сходимости в s покоординатной сходимости, для того чтобы проверить непрерывность операции умножения в s нам достаточно доказать непрерывность операции умножения в поле \mathbb{F} . Для этого используем числовое неравенство $|\lambda x - \lambda_0 x_0| \le |\lambda - \lambda_0| |x - x_0| + |\lambda - \lambda_0| |x_0| + |\lambda_0| |x - x_0| < \varepsilon$, если выполняются неравенства $|\lambda_0| < a$, $|x_0| < b$, $|x - x_0| < \varepsilon/3a$, $|\lambda - \lambda_0| < \varepsilon/3b < a$.

Доказательства полноты этого метрического пространства вытекает из полноты поля $\mathbb F$ действительных или комплексных чисел, поскольку сходимость в метрике пространства s равносильна сходимости по координатам последовательности.

Пример 3. Пространство s не является нормированным пространством.

Предположим, что существует норма в s. Пусть $e_n \doteqdot \{0,\dots,0,1,0\dots\}$, где на n-том месте стоит 1, а остальные равны нулю. Положим $x_n \doteqdot e_n/\|e_n\|$. Тогда имеем $\rho(x_n,0) = \frac{1}{2^n} \frac{1}{\|e_n\|+1} \to 0$ при $n \to \infty$, т.к. только одна координата x_n не равна нулю. Однако это не возможно, поскольку $\|x_n\| = 1$ при всех $n \in \mathbb{N}$.

Пример 4. Контрпример к принципу равностепенной непрерывности и принципу равномерной ограниченности.

Рассмотрим в пространстве s подпространство $f \subset s$, состоящее из всех финитных последовательностей. Очевидно, это подпространство не является полным, т.к. его замыкание совпадает с пространством s. Таким образом, f не является пространством Фреще. Определим линейные функционалы $\alpha_n(x) \doteqdot x_n$, $n=1,2,\ldots$ Так как они непрерывны на s, то они будут непрерывны на подпространстве f. Заметим, что при каждом фиксированном $x \in f$ множество $M_x \doteqdot \{x_n = \alpha_n(x) \mid n \in \mathbb{N}\}$ ограничено в \mathbb{F} . Однако эти функционалы не являются равностеменно непрерывными в нуле на пространстве f, т.к. в каждой окрестности нуля

$$O(n_1,\ldots,n_m,\varepsilon) \doteq \{x = \{x_n\} \in f \mid |x_{n_k}| < \varepsilon, k = 1,\ldots,m\}, \quad \varepsilon > 0,$$

эти функционалы равномерно не ограничены. Кроме того, существуют ограниченные множества, например, $A \doteqdot \{x = \{x_n\} \in \boldsymbol{f} \mid |x_n| \leqslant n, n = 1, 2, \dots\}$, образы которых $\alpha_n(A) \subset \mathbb{F}$ равномерно неограничены, т.к. $\bigcup_{n=1}^{\infty} \alpha_n(A) = \mathbb{F}$.

Пример 5. Пусть P пространство всех многочленов $P(x) = \sum_{k=1}^n a_k x^k$ с коэффициентами из поля $\mathbb F$ действительных или комплексных чисел. Найти пополнение пространства P относительно заданной метрики $(1 \leqslant p < \infty)$

$$ho(P,Q) = \Bigl(\sum_{k=1}^{n ee m} |a_k - b_k|^p\Bigr)^{1/p}\,,$$
 где $P(x) = \sum_{k=1}^n a_k x^k$ и $Q(x) = \sum_{k=1}^m b_k x^k$

Нетрудно заметить, что эта метрика совпадает с метрикой в подпространстве финитных последовательностей пространства ℓ_p . Покажем, что множество финитных последовательностей всюду плотно в ℓ_p . Пусть $x=\{x_n\}\in \ell_p$ и $y=\{y_n\}$, т.ч. $y_n=x_n$ при $n\leqslant N$ и $y_n=0$ при n>N. Тогда имеем $\|x-y\|_{lp}=\left(\sum_{n=N+1}^\infty |x_n|^p\right)^{1/p}\to 0$ при $N\to\infty$ в силу сходимости этого ряда. Отсюда следует всюду плотность финитных последовательностей в ℓ_p . Поскольку ℓ_p полно, то оно будет пополнением пространства P.

3 КОМПАКТНЫЕ МНОЖЕСТВА

Подмножество $M \subset X$ называется *компактным* в топологическом пространстве (X,τ) , если для всякого открытого покрытия $M \subset \bigcup_{i \in I} B_i$, где $B_i \in \tau$, существует конечное подпокрытие $M \subset \bigcup_{k=1}^n B_{i_k}$, где индексы $i_k \in I$. Компактное топологическое пространство (X,τ) называется коротко *компактом*.

1. Любое замкнутое подмножество $M \subset X$ компактного топологического пространства (X, τ) является компактным.

Действительно, пусть $M \subset \bigcup_{i \in I} B_i$, где $B_i \in \tau$. Тогда, добавив к этому покрытию открытое множество $A = X \setminus M$, мы получим открытое покрытие X. Взяв конечное подпокрытие X и вычитая из него A получим конечное подпокрытие M.

2. При непрерывном отображении $f: X \to Y$ топологического пространства (X, τ_X) в топологическое пространство (Y, τ_Y) образ $f(M) \subset Y$ любого компактного множества $M \subset X$ является компактным.

Действительно, пусть $f(M) \subset \bigcup_{i \in I} B_i$, где $B_i \in \tau_Y$. тогда $M \subset \bigcup_{i \in I} A_i$, где $A_i = f^{-1}(B_i) \in \tau_X$ в силу непрерывности отображения f. По условию компактности M существует конечное подпокрытие $M \subset \bigcup_{k=1}^n A_{i_k}$, где $i_k \in I$. Поэтому $f(M) \subset \bigcup_{k=1}^n B_{i_k}$.

3. Всякое компактное подмножество $M \subset X$ в хаусдорфовом топологическом пространстве (X, τ) является замкнутым.

В самом деле, пусть $y \notin M$. Поскольку топология хаусдорфова, то для каждого $x \in M$ существуют непересекающиеся окрестности $O(x) \cap O(y) = \emptyset$. Так как множество M покрывается окрестностями O(x), то существует конечное подпокрытие, т.е. $M \subset \bigcup_{i=1}^n O(x_i)$. Следовательно, взяв пересечение соответствующих окрестностей точки y, мы получим окрестность O(y), которая не пересекается с M. Таким образом, множество M является замкнутым.

4. Всякое биективное и непрерывное отображение $f: X \to Y$ компакта X в хаусдорфово пространство Y является гомеоморфизмом.

В самом деле, любое замкнутое подмножество $M \subset X$ по свойству 1 является компактным. Поэтому по свойству 2 его образ $f(M) \subset Y$ будет компактным и значит замкнутым. Таким образом, образ всякого замкнутого множества является замкнутым. Поэтому образ всякого открытого множества является открытым.

Определение. Пусть (X, ρ) — метрическое пространство и задано число $\varepsilon > 0$. Множество $C \subset X$ называется ε -сетью множества $M \subset X$, если для любого $y \in M$ существует $x \in C$, т.ч. $\rho(x,y) \leqslant \varepsilon$, т.е. выполняется включение $M \subset \bigcup_{x \in C} S_{\varepsilon}(x)$.

Множество $M \subset X$ называется вполне ограниченным, если для каждого $\varepsilon > 0$ существует конечная ε -сеть $C = \{x_k\}_{k=1}^n$ для множества M.

1. Вполне ограниченное множество $M \subset X$ содержится в некотором шаре.

Пусть $C=\{x_k\}_{k=1}^n$ 1-сеть множества M и $r_1\doteqdot\max_{2\leqslant k\leqslant n}\rho(x_1,x_k)+1$. По условию 1-сети для любого $y\in M$ найдется x_k , т.ч. $\rho(x_1,y)\leqslant \rho(x_1,x_k)+\rho(x_k,y)\leqslant r_1$. Поэтому имеет место включение $M\subset S_{r_1}(x_1)$.

2. Если множество $M \subset X$ является вполне ограниченным, то его замыкание \overline{M} будет также вполне ограниченным.

Пусть $C = \{x_k\}_{k=1}^n$ образует ε -сеть для множества M. Поскольку множество M содержится в замкнутом множестве $\bigcup_{k=1}^n S_{\varepsilon}(x)$, то его замыкание $\overline{M} \subset \bigcup_{k=1}^n S_{\varepsilon}(x)$. Поэтому C является ε -сетью множества \overline{M} .

3. Каждое вполне ограниченное множество $M \subset E$ в метрическом линейном пространстве (E, ρ) является ограниченным.

В силу непрерывности операции умножения для любого $\varepsilon>0$ существуют $\delta>0$, т.ч. $\|\lambda x\|<\varepsilon/2$ при всех $|\lambda|<\delta$ и $\|x\|\leqslant\delta$. Пусть $C=\{x_k\}_{k=1}^n$ является δ -сетью множества M. Выберем $\delta>0$, т.ч. $\max_{1\leqslant k\leqslant n}\|\lambda x_k\|<\varepsilon/2$ при всех $|\lambda|<\delta$. Тогда для каждого $x\in M$ существует x_k , т.ч. $\|\lambda x\|\leqslant\|\lambda x_k\|+\|\lambda(x-x_k)\|<\varepsilon$ при всех $|\lambda|<\delta$.

Пример 1. Докажем, что каждое ограниченное множество $M \subset \mathbb{R}^n$ в евклидовом пространстве \mathbb{R}^n будет вполне ограниченным. Рассмотрим куб $[a,b]^n$, содержащий множество M. Разобьем куб на кубики с ребром $\delta \doteqdot (b-a)/k$. Тогда вершины кубиков $\{x_j\}_{j=1}^m$, где $m \doteqdot (k+1)^n$, образуют конечную ε -сеть для множества M, где число $\varepsilon \doteqdot \sqrt{n}\delta/2$, равное половине диагонали кубика, достаточно мало при $k \to \infty$.

Теорема. В метрическом пространстве (X, ρ) следующие условия, которым удовлетворяет множество $M \subset X$, являются эквивалентными:

- a) компактность: для всякого открытого покрытия $M\subset \bigcup_{i\in I}B_i$ существует конечное подпокрытие $M\subset \bigcup_{k=1}^n B_{i_k}$, где $i_k\in I$.
- b) счетная компактность: каждое бесконечное подмножество $A \subset M$ имеет предельную точку $x \in \acute{A}$, т.ч. $x \in M$;
- c) секвенциальная компактность: для каждой последовательности $\{x_n\}\subset M$ существует сходящаяся подпоследовательность $x_{n_k}\to x$, т.ч. $x\in M$.
- d) критерий компактности Xа́усдорфа: множество $M \subset X$ является вполне ограниченным и полным.

Доказательство. $a)\Rightarrow b)$. Пусть $A\subset M$ является бесконечным множеством. Если M не имеет предельных точек из \acute{A} , то для всякой точки $x\in M$ существует r>0, т.ч. множество $U_r(x)\cap A=x$. Поскольку шары $U_r(x)$ покрывают M, то выбирая конечное подпокрытие, заключаем, что A конечно. Получили противоречие.

- $b)\Rightarrow c)$. Мы можем считать, что последовательность $A=\{x_n\}\subset M$ состоит из различных точек. По условию b) существует $x\in A$, т.ч. $x\in M$. Тогда существует подпоследовательность $\{x_{n_k}\}$, т.ч. $x_{n_k}\in U_{1/k}(x)$. Отсюда следует $x_{n_k}\to x\in M$.
- $c)\Leftrightarrow d$). Полнота M вытекает из свойства c). Докажем вполне ограниченность. Пусть $\varepsilon>0$ и точка $x_0\in M$. Тогда существует точка $x_1\in M$, т.ч. $\rho(x_1,x_0)>\varepsilon$, иначе точка $\{x_0\}$ образует ε -сеть M. Аналогично, существует точка $x_2\in M$, т.ч. $\rho(x_2,x_0)>\varepsilon$ и $\rho(x_2,x_1)>\varepsilon$, иначе $\{x_0,x_1\}$ образуют ε -сеть M, и т.д. По индукции существует $x_n\in M$, т.ч. $\rho(x_n,x_k)>\varepsilon$ при $k=1,\ldots,n-1$. Если процесс выбора точек оборвется на некотором шаге n, то $\{x_k\}_{k=1}^n$ образует конечную ε -сеть для M. Иначе последовательность $\{x_n\}$ не имеет сходящейся подпоследовательности.

Обратно, пусть $\{x_n\}\subset M$. В силу условия вполне ограниченности существует конечное покрытие M шарами радиуса $r_1=1$. Следовательно, найдется шар $S_{r_1}(y_1)$, который содержит бесконечную подпоследовательность $\{x_n^{(1)}\}\subset \{x_n\}$. Аналогично существует конечное покрытие M шарами радиуса $r_2=1/2$ и найдется шар $S_{r_2}(y_2)$, который содержит бесконечную подпоследовательность $\{x_n^{(2)}\}\subset \{x_n^{(1)}\}$, и т.д. По индукции при $r_k=1/k$ существует подпоследовательность $\{x_n^{(k)}\}\subset \{x_n^{(k-1)}\}$,

По индукции при $r_k=1/k$ существует подпоследовательность $\{x_n^{(k)}\}\subset \{x_n^{(k-1)}\}$, содержащаяся в некотором шаре $S_{r_k}(y_k)$. Обозначим через $z_n\doteqdot x_n^{(n)}$ диагональную подпоследовательность. Так как $\rho(z_n,z_m)\leqslant \rho(z_n,y_n)+\rho(y_n,z_m)\leqslant 2r_n$ при m>n, то $\{z_n\}$ последовательность Коши. В силу полноты M она имеет предел в M.

 $d)\Rightarrow a)$. Пусть задано открытое покрытие $M\subset\bigcup_{i\in I}B_i$. Покажем вначале, что найдется такое $\varepsilon>0$, что для любого $x\in M$ существует индекс $i\in I$, т.ч. $S_{\varepsilon}(x)\subset B_i$. Иначе найдутся такие точки $x_n\in M$, что $S_{r_n}(x_n)\not\subset B_i$ при всех $i\in I$, где $r_n=1/n$. По условию существует подпоследовательность $x_{n_k}\to x\in M$. Так как $x\in B_i$ при некотором $i\in I$, то найдется шар $S_{2r}(x)\subset B_i$. Выберем n_k , т.ч. $r_{n_k}< r$ и $\rho(x_{n_k},x)< r$. Тогда $S_{r_{n_k}}(x_{n_k})\subset S_r(x_{n_k})\subset S_{2r}(x)\subset B_i$, что противоречит нашему предположению.

Пусть $\{y_k\}_{k=1}^m$ конечная ε -сетью для множестве M. По доказанному существует индекс $i_k \in I$, т.ч. $S_{\varepsilon}(y_k) \subset B_{i_k}$. Поэтому $M \subset \bigcup_{k=1}^m S_{\varepsilon}(y_k) \subset \bigcup_{k=1}^m B_{i_k}$.

Лемма. Непрерывное отображение $f: X \to Y$ метрических пространств, заданное на компакте X, является равномерно непрерывным.

Предположим обратное. Тогда существуют $\varepsilon > 0$ и последовательности $\{x_n\}$ и $\{y_n\}$, т.ч. $\rho_X(x_n,y_n) < 1/n$ и $\rho_Y(f(x_n),f(y_n)) \geqslant \varepsilon$ при всех n. В силу компактности X найдутся сходящиеся подпоследовательности $x_{n_k} \to x$ и $y_{n_k} \to y$. Так как по условию $\rho_X(x_{n_k},y_{n_k})\to 0$, то x=y. В силу непрерывности отображения f существует n_k , т.ч. $\rho_Y(f(x_{n_k}),f(y_{n_k}))\leqslant \rho_Y(f(x_{n_k}),f(x)))+\rho_Y(f(y),f(y_{n_k}))<\varepsilon$. Получили противоречие.

Определение. Множество $M\subset X$ в метрическом пространстве (X, ρ) называется $npe\partial компактным$, если его замыкание \overline{M} компактно.

Например, в силу критерия Ха́усдорфа в полном метрическом пространстве (X, ρ) множество является предкомпактным тогда и только тогда, когда оно вполне ограничено (т.к. его замыкание является вполне ограниченным и полным).

Теорема (Арце́ла-Аско́ли). Множество $M \subset C(X)$ в пространстве непрерывных функций на компакте X, тогда и только тогда предкомпактно, когда оно ограничено и равностепенно непрерывно.

Доказательство. Необходимость. Так как M предкомпактно, то оно будет вполне ограниченным и значит ограничено. Докажем равностепенную непрерывность. По условию для любого $\varepsilon>0$ существует $\varepsilon/3$ -сеть $\{f_k\}_{k=1}^n$ множества M. Тогда для любого $f\in M$ существует f_k , т.ч. $|f(x)-f_k(x)|\leqslant \varepsilon/3$ при всех $x\in X$. Поскольку функции f_k равномерно непрерывны, то существует $\delta_k>0$, т.ч. $|f_k(x)-f_k(y)|<\varepsilon/3$ при всех $x,y\in X$, $\rho(x,y)<\delta_k$. Обозначим через $\delta \doteqdot \min_{1\leqslant k\leqslant n}\delta_k$, тогда

$$|f(x) - f(y)| \le |f(x) - f_k(x)| + |f_k(x) - f_k(y)| + |f_k(y) - f(y)| < \varepsilon$$

при всех $x,y \in X$, $\rho(x,y) < \delta$. Таким образом, M равностепенно непрерывно.

Достаточность. Из условия равностепенной непрерывности M для любого $\varepsilon>0$ существует $\delta>0$, т.ч. $|f(x)-f(y)|<\varepsilon/3$ для всех $f\in M$ и $x,y\in X$, $\rho(x,y)\leqslant \delta$. Пусть $\{x_j\}_{j=1}^m$ является δ -сетью компакта X, а $F:M\to \mathbb{F}^m$ обозначает отображение, заданное по формуле $F(f)\doteqdot \{f(x_j)\}_{j=1}^m$. Поскольку $F(M)\subset \mathbb{F}^m$ ограничено, то оно вполне ограничено. Пусть $\{f_k\}_{k=1}^n\subset M$ элементы прообраза $\varepsilon/3$ -сети $\{F(f_k)\}_{k=1}^n$ множества F(M). Для любого $x\in X$ выберем индекс f, т.ч. f0, f3. Отсюда получим

$$|f(x) - f_k(x)| \le |f(x) - f(x_j)| + |f(x_j) - f_k(x_j)| + |f_k(x_j) - f_k(x)| < \varepsilon.$$

Таким образом, $\{f_k\}_{k=1}^n$ образует ε -сеть множества M. Значит множество $M \subset C(X)$ является вполне ограниченным и, следовательно, будет предкомпактным.

Пример 2. Рассмотрим пространства ℓ_p последовательностей $x = \{x_n\}, x_n \in \mathbb{F},$ имеющих конечную величину нормы $||x||_{\ell_p} < \infty$, где

$$||x||_{\ell_p} \doteqdot \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$
 при $1 \leqslant p < \infty$.

Ранее было доказано, что ℓ_p при $1\leqslant p<\infty$ является сепарабельным банаховым пространством. Покажем, что если $x,y\in\ell_p$, то выполняется неравенство Γ ёльдера:

$$\sum_{n=1}^{\infty} |x_n y_n| \leqslant \|x\|_{\ell_p} \|y\|_{\ell_q}$$
 при $1 < p,q < \infty$ и $1/p + 1/q = 1$.

Вначале докажем *неравенство Ю́нга*: $ab \leqslant a^p/p + b^q/q$ при $a,b \in \mathbb{R}_+$. Функции $\varphi(t) = t^{p-1}$ и $\varphi^{-1}(t) = t^{q-1}$ взаимно обратные на полуоси \mathbb{R}_+ , т.к. 1/(p-1) = q-1. Поэтому площадь прямоугольника $[0,a] \times [0,b]$ в декартовой системе координат оценивается сверху суммой интегралов

$$ab \leqslant \int_0^a t^{p-1} dt + \int_0^b t^{q-1} dt = a^p/p + b^q/q.$$

Знак равенства имеет место только в том случае, если $a^{p-1} = b$, т.е. когда выполняется равенство $a^p = ab = b^q$. Таким образом, неравенство Ю́нга доказано.

Пусть $A=\sum_{n=1}^{\infty}|x_n|^p$ и $B=\sum_{n=1}^{\infty}|y_n|^q$. Если один из этих интегралов равен нулю, то утверждение верно. Иначе, полагая $a_n\doteqdot|x_n|/A^{1/p}$ и $b_n\doteqdot|y_n|/B^{1/q}$ в неравенстве Ю́нга , а затем суммируя обе его части по n, мы получим

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} \frac{|x_n|}{A^{1/p}} \frac{|y_n|}{B^{1/q}} \leqslant \frac{1}{p} \sum_{n=1}^{\infty} \frac{|x_n|^p}{A} + \frac{1}{q} \sum_{n=1}^{\infty} \frac{|y_n|^q}{B} = 1/p + 1/q = 1.$$

Отсюда следует неравенство Гёльдера. Знак равенства имеет место тогда и только тогда, когда выполняется равенство $|x_n|^p/A = |y_n|^q/B$ при всех n.

Докажем, что если $x,y \in \ell_p$, то выполняется *неравенство Минко́вского*:

$$\|x+y\|_{\ell_p}\leqslant \|x\|_{\ell_p}+\|y\|_{\ell_p}$$
 при $1\leqslant p<\infty$.

При этом, если 1 , то равенство будет выполняться тогда и только тогда, когда элементы <math>x и y удовлетворяют равенству $x = \lambda y$ при некотором $\lambda \geqslant 0$.

В случае p=1 неравенство очевидно. В случае $1 введем следующие обозначения <math>A = \sum_{n=1}^{\infty} |x_n|^p$ и $B = \sum_{n=1}^{\infty} |y_n|^p$, $C = \sum_{n=1}^{\infty} |x_n + y_n|^p$. Применяя неравенство Гёльдера и учитывая, что (p-1)q = p, получим

$$C = \sum_{n=1}^{\infty} |x_n + y_n|^p \leqslant \sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} + \sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1} \leqslant A^{1/p} C^{1/q} + B^{1/p} C^{1/q}.$$

Поделив на множитель $C^{1/q}$, получим неравенство Минко́вского. Знак равенства имеет место только в том случае, когда $|x_n+y_n|=|x_n|+|y_n|$ и $|x_n|^p/A=|y_n|^p/B=|x_n+y_n|^p/C$ при всех n. Тогда из первого равенства вытекает, что $x_n=c_ny_n$ при всех n, где $c_n\geqslant 0$. Из второго равенства получим, что $c_n^p=A/B$ для тех n, которые удовлетворяют неравенству $y_n\neq 0$. Отсюда получим $x=\lambda y$, где $\lambda=(A/B)^{1/p}$.

Пример 3. Рассмотрим пространство ℓ_p , состоящее из всех последовательностей $x=\{x_n\},\ x_n\in\mathbb{F},\ \text{т.ч.}$ квазинорма $\|x\|_{\ell_p}<\infty$ конечна, где квазинорма равна

$$||x||_{\ell_p} \doteqdot \sum_{n=1}^{\infty} |x_n|^p$$
 при $0 .$

Пространство ℓ_p при $0 является сепарабельным пространством Фреше с метрикой <math>\rho(x,y) = \|x-y\|_{\ell_p}$. Докажем свойства квазинормы.

Ясно, что квазинорма $\|x\|_{\ell_p}$ симметрична и невырождена. Для доказательства неравенства треугольника достаточно доказать элементарное числовое неравенство $|a+b|^p \leqslant |a|^p + |b|^p$ при $0 , где <math>a,b \in \mathbb{F}$. Так как $|a+b| \leqslant |a| + |b|$, то нужно рассмотреть только случай положительных чисел 0 < a < b. Если поделить на b^p , то требуется доказать неравенство $(t+1)^p \leqslant t^p + 1$ при 0 < t < 1. Рассмотрим функцию $\varphi(t) = t^p$ при t > 0. Ее производная $\varphi'(t) = pt^{p-1}$. По формуле конечных приращений имеем $\varphi(t+1) - \varphi(t) = p\xi^{p-1} < pt^{p-1} < 1$ в случае $p \leqslant t^{1-p} < 1$, где

 $t < \xi < t+1$. С другой стороны, $\pmb{\varphi}(t+1) - \pmb{\varphi}(1) = p \xi^{p-1} t < pt < p^2 t^p < t^p$ в случае $0 < t^{1-p} \leqslant p$, где $1 < \xi < t+1$. Таким образом, применяя указанное неравенство

$$||x+y||_{\ell_p} \doteq \sum_{n=1}^{\infty} |x_n+y_n|^p \leqslant \sum_{n=1}^{\infty} |x_n|^p + \sum_{n=1}^{\infty} |y_n|^p = ||x||_{\ell_p} + ||y||_{\ell_p},$$

мы заключаем, что $\|x\|_{\ell_p}$ является квазинормой. Поскольку выполняется равенство $\|\lambda x\|_{\ell_p} = |\lambda|^p \|x\|_{\ell_p}$, то также как в лемме (лекция 2) легко проверить, что операция умножения непрерывна. Поэтому (E, ρ) будет линейным метрическим пространством. Полнота и сепарабельность доказывается аналогично случаю $1 \leqslant p < \infty$.

Для каждого $x\in \ell_p$ обозначим через $s_m(x)=y=\{y_n\}$ финитную последовательность, т.ч. $y_n=x_n$ при $n\leqslant m$ и $y_n=0$ при n>m. Тогда эта последовательность $s_m(x)\to x$ при $m\to\infty$ сходится в метрике ℓ_p в случае $1\leqslant p<\infty$, т.к. величина

$$\|x-s_m(x)\|_{\ell_p}=ig(\sum_{n=m+1}^\infty|x_n|^pig)^{1/p} o 0$$
 при $m o\infty$

в силу сходимости ряда.

Теорема (Ри́сса). Множество $M \subset \ell_p$ тогда и только тогда предкомпактно в пространстве ℓ_p при $1 \leq p < \infty$, когда выполняются следующие два условия:

- а) множество M ограничено в пространстве ℓ_p ;
- b) для любого $\varepsilon > 0$ существует $m \in \mathbb{N}$, т.ч. $\|x s_m(x)\|_{\ell_p} < \varepsilon$ при всех $x \in M$.

Доказательство. Необходимость. Ограниченность $M \subset \ell_p$ вытекает из его вполне ограниченности. Докажем второе условие. Пусть $A = \{x^{(k)}\}_{k=1}^l$ является $\varepsilon/3$ -сетью множества M. Для каждого k выберем $m_k \in \mathbb{N}$, т.ч. $\|x^{(k)} - s_{m_k}(x^{(k)})\|_{\ell_p} < \varepsilon/3$, а затем возьмем среди них наибольшее $m = \max_{1 \le k \le l} m_k$. Так как A является $\varepsilon/3$ -сетью, то для любого $x \in M$ найдется k, т.ч. $\|x - x^{(k)}\|_{\ell_p} \le \varepsilon/3$, и по неравенству треугольника

$$||x - s_m(x)||_{\ell_p} \le ||x - x^{(k)}||_{\ell_p} + ||x^{(k)} - s_m(x^{(k)})||_{\ell_p} + ||s_m(x^{(k)} - x)||_{\ell_p} < \varepsilon$$

при всех $x \in M$, т.е. выполнено второе условие (b).

Достаточность. Пусть задано $\varepsilon > 0$. Рассмотрим множество $M_m \doteqdot \{s_m(x) \mid x \in M\}$ в пространстве ℓ_p , где m определяется из второго условия для $\varepsilon/3$. Поскольку M_m содержится в конечномерном подпространстве ℓ_p и является ограниченным в ℓ_p , то оно будет вполне ограниченным в пространстве ℓ_p .

Для заданного $\varepsilon > 0$ обозначим через $\{y^{(k)}\}_{k=1}^l$ $\varepsilon/3$ -сеть множества M_m , а через $\{x^{(k)}\}_{k=1}^l$ элементы прообраза $y^{(k)} = s_m(x^{(k)})$. Тогда для каждого $x \in M$ найдется k, т.ч. $\|s_m(x) - s_m(x^{(k)})\|_{\ell_p} \leqslant \varepsilon/3$. Применяя неравенство треугольника, получим

$$||x-x^{(k)}||_{\ell_p} \leq ||x-s_m(x)||_{\ell_p} + ||s_m(x)-s_m(x^{(k)})||_{\ell_p} + ||s_m(x^{(k)})-x^{(k)}||_{\ell_p} < \varepsilon.$$

Таким образом, $\{x^{(k)}\}_{k=1}^l$ образует $\pmb{\varepsilon}$ -сеть \pmb{M} . Поэтому \pmb{M} вполне ограничено в $\pmb{\ell}_p$ и значит является предкомпактным в пространстве $\pmb{\ell}_p$.

Замечание. Из неравенства $\|x\|_{\ell_p} \leqslant \|x\|_{\ell_1}$ вытекает, что если множество $M \subset \ell_1$ предкомпактно, то оно будет также предкомпактным в любом ℓ_p , 1 .

4 НОРМИРОВАННЫЕ ПРОСТРАНСТВА

Всюду далее через E и F будем обозначать *линейные пространства* над полем \mathbb{F} действительных $\mathbb{F} = \mathbb{R}$ или комплексных $\mathbb{F} = \mathbb{C}$ чисел. Напомним, что функция $p: E \to \mathbb{R}_+$ называется *нормой* в E, если выполняются следующие свойства:

- а) однородность: $\boldsymbol{p}(\boldsymbol{\lambda}x) = |\boldsymbol{\lambda}|\boldsymbol{p}(x)$ при всех $\boldsymbol{\lambda} \in \mathbb{F}$ и $x \in \boldsymbol{E}$;
- b) неравенство треугольника: $\boldsymbol{p}(x+y) \leqslant \boldsymbol{p}(x) + \boldsymbol{p}(y)$ при всех $x,y \in \boldsymbol{E}$;
- c) невырожденность: p(x) = 0 тогда и только тогда, когда x = 0.

Норма обозначается через $p(x) \doteqdot ||x||$ и пара (E,p) называется нормированным пространством. Полное нормированное пространство E называется ба́наховым пространством. Если выполнены (a) и (b), то $p(x) \doteqdot ||x||$ называется полунормой, а пара (E,p) полунормированным пространством. Метрика или полуметрика в этих пространствах определяются по формуле $\rho(x,y) \doteqdot ||x-y||$.

Определение. Отображение $f: E \to \mathbb{F}$ называется линейным функционалом (или просто функционалом) над полем \mathbb{F} действительных или комплексных чисел, если

$$f(\lambda_1x_1+\lambda_2x_2)=\lambda_1f(x_1)+\lambda_2f(x_2)$$
 при всех $\lambda_1,\lambda_2\in\mathbb{F}$ и $x_1,x_2\in \boldsymbol{E}$.

Через E^* обозначается линейное пространство всех линейных функционалов. Hорма функционала $f: E \to \mathbb{F}$ вычисляется по формулам:

$$\|f\|\doteqdot \sup_{x
eq 0}rac{|f(x)|}{\|x\|}=\sup_{x\in oldsymbol{S}}|f(x)|\,,$$
 где $oldsymbol{S}\doteqdot \{x\in oldsymbol{E}\mid \|x\|\leqslant 1\}$ единичный шар.

Функционал $f: E \to \mathbb{F}$ называется *ограниченным*, если $||f|| < \infty$. Это равносильно тому, что он отображает ограниченные множества в ограниченные и, следовательно, как показано ранее, равносильно его непрерывности в (E,p). Через (E',p') обозначается *сопряженное пространство* к E, состоящее из всех непрерывных функционалов $f: E \to \mathbb{F}$ на пространстве E с нормой $p'(x) \doteqdot ||f||$.

Определение. Два нормированных пространства (E, p_E) и (F, p_F) называются изоморфными или эквивалентными $(E, p_E) \simeq (F, p_F)$, если найдется биективное линейное отображение $f: E \to F$, для которого f и f^{-1} непрерывны.

Два нормированные пространства $({m E},{m p}_E)$ и $({m F},{m p}_F)$ называются изометрически изоморфными или просто изометричными $({m E},{m p}_E)=({m F},{m p}_F)$, если существует биективное линейное и изометричное отображение $f:{m E} \to {m F}$, т.е. для которого выполняется равенство $\|f(x)\|_F = \|x\|_E$ при всех $x \in {m E}$.

Ясно, что изометричные пространства являются изоморфными. Если нормированные пространства изоморфны и одно из них является полным или сепарабельным, то другое также будет соответственно полным или сепарабельным. Из следующей теоремы вытекает, что нормированные пространства одной и той же конечной размерности являются изоморфными.

Теорема. Всякое нормированное пространство E конечной размерности над полем \mathbb{F} изоморфно евклидову пространству \mathbb{F}^n , где $n=\dim E$.

Доказательство. Пусть $\{e_k\}_{k=1}^n$ обозначает базис E. Поэтому для каждого $x \in E$ найдется единственный элемент $\lambda \doteqdot \{\lambda_k\}_{k=1}^n \in \mathbb{F}^n$, т.ч. $x = \sum_{k=1}^n \lambda_k e_k$. Определим отображение $f: E \to \mathbb{F}^n$ по формуле $f(x) \doteqdot \lambda$ при всех $x \in E$. Тогда отображение f является линейным и биективным. Рассмотрим функцию $\phi(\lambda) \doteqdot \|x\|$. Применяя неравенство треугольника и неравенство Коши́, получим

$$|\varphi(\lambda) - \varphi(\lambda')| \le ||x - x'|| \le \sum_{k=1}^{n} |\lambda - \lambda'| ||e_k|| \le ||\lambda - \lambda'||_{\mathbb{F}^n} \left(\sum_{k=1}^{n} ||e_k||^2\right)^{1/2}.$$

Поэтому функция $\varphi(\lambda)$ непрерывна. В силу компактности единичной сферы в \mathbb{F}^n величина нижней грани $a\doteqdot\inf_{\|\lambda\|_{\mathbb{F}^n=1}}\varphi(\lambda)$ положительна, а величина верхней грани $b\doteqdot\sup_{\|\lambda\|_{\mathbb{F}^n=1}}\varphi(\lambda)$ конечна. Следовательно, в силу свойства однородности функции $\varphi(\lambda)$ получим $a\|\lambda\|_{\mathbb{F}^n}\leqslant\|x\|\leqslant b\|\lambda\|_{\mathbb{F}^n}$ при всех $x\in E$ и $\lambda\in\mathbb{F}^n$. В силу этих неравенств отображения f и f^{-1} являются непрерывными.

Следствие 1. Всякое нормированное пространство E конечной размерности является банаховым, а всякое его ограниченное и замкнутое подмножество $M \subset E$ является компактным.

 $\mathfrak I$ то утверждение вытекает из полноты пространства $\mathbb F^n$ и теоремы Хаусдо́рфа.

Следствие 2. В линейном пространстве **E** конечной размерности $n = \dim \mathbf{E}$ любые две нормы $||x||_1$ и $||x||_2$ эквивалентны $||x||_1 \sim ||x||_2$, т.е. существует такое число $c \geqslant 1$, что $c^{-1}||x||_1 \leqslant ||x||_2 \leqslant c \, ||x||_1$ при всех $x \in \mathbf{E}$.

Пусть $f(x)=\lambda$ обозначает изоморфизм $f: E \to \mathbb{F}^n$. Используя обозначения теоремы, имеем $\|x\|_1\leqslant b_1\|\lambda\|_{\mathbb{F}^n}\leqslant b_1a_2^{-1}\|x\|_2$ и $\|x\|_2\leqslant b_2\|\lambda\|_{\mathbb{F}^n}\leqslant b_2a_1^{-1}\|x\|_1$. Поэтому, полагая $c\doteqdot \max\{b_1a_2^{-1},b_2a_1^{-1}\}$, получим неравенство $c^{-1}\|x\|_1\leqslant \|x\|_2\leqslant c\,\|x\|_1$.

Определение. Пусть $L \subset E$ — подпространство нормированного пространства. Величина $\rho(x,L) \doteqdot \inf_{y \in L} \|x-y\|$ называется наилучшим приближением элемента $x \in E$ подпространством L. Всякий элемент $y_0 \in L$, для которого $\rho(x,L) = \|x-y_0\|$, называется элементом наилучшего приближения подпространством L.

Теорема (о существовании наилучшего приближения). *Если подпространство* $L \subset E$ имеет конечную размерность $\dim L < \infty$, то для всякого $x \in E$ существует элемент $y_0 \in L$ наилучшего приближения.

Доказательство. Пусть $x \in E$, тогда имеем $\rho(x,L) \leqslant \|x\|$. Рассмотрим множество $K_x \doteqdot \{y \in L \mid \|x-y\| \leqslant \|x\|\}$. Поскольку K_x является замкнутым, ограниченным и содержится в конечномерном пространстве, то в силу следствия 1 оно компактно. Поэтому непрерывная функция $\varphi_x(y) \doteqdot \|x-y\|$ достигает своей нижней грани на компакте K_x . Следовательно, существует $y_0 \in K_x$, т.ч. $\varphi_x(y_0) = \inf_{y \in K_x} \varphi_x(y)$.

Определение. Нормированное пространство **E** называется *строго нормированным*, если из равенства ||x+y|| = ||x|| + ||y|| следует, что $x = \lambda y$ при $\lambda \geqslant 0$.

Теорема (о единственности наилучшего приближения). Если пространство E является строго нормированным, то для каждого $x \in E$ может существовать не более одного элемента наилучшего приближения подпространством $L \subset E$.

Доказательство. Пусть $\rho(x,L) = \|x - y_0\| = \|x - y_1\|$, где $y_0, y_1 \in L$. Тогда имеем

$$\rho(x,L) \leqslant \left\| x - \frac{y_0 + y_1}{2} \right\| = \left\| \frac{x - y_0}{2} + \frac{x - y_1}{2} \right\| \leqslant \left\| \frac{x - y_0}{2} \right\| + \left\| \frac{x - y_1}{2} \right\| = \rho(x,L).$$

Следовательно, вместо неравенств имеют место равенства. Поэтому в силу условия строгой нормированности $x-y_1=\lambda(x-y_0)$ при некотором $\lambda\geqslant 0$. Если $\lambda=1$, то $y_0=y_1$. Если $\lambda\neq 1$, то $x=(y_1-\lambda y_0)/(1-\lambda)\in L$ и значит $x=y_0=y_1$.

Элемент $x \in E$ называют *ортогональным* подпространству $L \subset E$ и обозначают через $x \perp L$, если $||x-y|| \geqslant ||x||$ при всех $y \in L$, т.е. $\rho(x,L) = ||x||$. Применяя теорему существования наилучшего приближения конечномерным подпространством L, мы получим, что перпендикуляр $x \perp L$ с нормой ||x|| = 1 существует для таких L.

Лемма (Ф. Ри́сса о почти перпендикуляре). Пусть $L \subset E$ является замкнутым подпространством нормированного пространства. Тогда для любого $0 < \varepsilon < 1$ существует $x \in E \setminus L$, т.ч. ||x|| = 1 и $||x - y|| > 1 - \varepsilon$ при всех $y \in L$.

Доказательство. Пусть $x_0 \in E \setminus L$, тогда $d \doteqdot \rho(x_0, L) > 0$. Выберем элемент $y_0 \in L$, т.ч. $||x_0 - y_0|| < d/(1 - \varepsilon)$. Тогда если $x \doteqdot (x_0 - y_0)/||x_0 - y_0||$, то при всех $y \in L$ имеем

$$||x-y|| = \left\| \frac{x_0 - y_0}{\|x_0 - y_0\|} - y \right\| = \frac{\|x_0 - y_1\|}{\|x_0 - y_0\|} \geqslant \frac{d}{\|x_0 - y_0\|} > 1 - \varepsilon,$$

где элемент $y_1 \doteq y_0 + ||x_0 - y_0|| y \in L$.

Теорема. Замкнутый единичный шар $S \doteqdot \{x \in E \mid ||x|| \leqslant 1\}$ в нормированном пространстве E является компактным в том и только в том случае, когда пространство E имеет конечную размерность $\dim E < \infty$.

Доказательство. Необходимость. Предположим, что $\dim E = \infty$. Если $x_1 \in S$ и $L_1 \doteqdot \operatorname{sp}\{x_1\}$ обозначает линейную оболочку x_1 , то по лемме существует $x_2 \in S \setminus L_1$, т.ч. $\|x_2 - x_1\| > 1/2$. Аналогично, если $L_2 \doteqdot \operatorname{sp}\{x_1, x_2\}$ обозначает линейную оболочку x_1 и x_2 , то существует $x_3 \in S \setminus L_2$, т.ч. $\|x_3 - x_1\| > 1/2$, $\|x_3 - x_2\| > 1/2$ и т.д. По индукции имеем $L_n \doteqdot \operatorname{sp}\{x_1, \ldots, x_n\}$ и существует $x_{n+1} \in S \setminus L_n$, т.ч. $\|x_{n+1} - x_k\| > 1/2$ при всех $k = 1, \ldots, n$. Таким образом, последовательность $\{x_n\}$ не имеет сходящейся подпоследовательности. т.е. шар S некомпактный.

Достаточность. Предположим, что существует изоморфизм $f: \mathbf{E} \to \mathbb{F}^n$, где $n = \dim \mathbf{E}$. Тогда образ шара $f(\mathbf{S}) \subset \mathbb{F}^n$ является замкнутым и ограниченным множеством в \mathbb{F}^n . Поэтому множество $f(\mathbf{S})$ компактно в \mathbb{F}^n и, следовательно, единичный шар \mathbf{S} компактен в силу непрерывности обратного отображения $f^{-1}: \mathbb{F}^n \to \mathbf{E}$. \square

Определение. Отображение A: E o F называется линейным оператором, если

$$A(\lambda_1x_1+\lambda_2x_2)=\lambda_1Ax_1+\lambda_2Ax_2$$
 при всех $\lambda_1,\lambda_2\in\mathbb{F}$ и $x_1,x_2\in E$.

Hорма линейного оператора A: E o E вычисляется по формулам:

$$\|A\|\doteqdot\sup_{x
eq 0}rac{\|Ax\|}{\|x\|}=\sup_{x\in oldsymbol{S}}\|Ax\|\,,$$
 где $oldsymbol{S}\doteqdot\{x\in oldsymbol{E}\mid\,\|x\|\leqslant 1\}$ единичный шар .

Линейный оператор $A: E \to F$ называется *ограниченным*, если $||A|| < \infty$. Это равносильно тому, что он отображает ограниченные множества в ограниченные и, следовательно, как показано ранее, равносильно его непрерывности. Далее через $\mathscr{L}(E,F)$ обозначается пространство всех ограниченных операторов из E в F.

Теорема. Если F — банахово пространство, то пространство ограниченных операторов $\mathcal{L}(E,F)$ является банаховым пространством,.

Доказательство. Сложение операторов A+B и их умножение λA на число $\lambda \in \mathbb{F}$ определяются по формулам $(A+B)(x) \doteqdot Ax + Bx$ и $(\lambda A)(x) \doteqdot \lambda Ax$. Очевидно, что $\|\lambda A\| = |\lambda| \|A\|$ и $\|A+B\| = \sup_{x \in S_1} \|Ax + Bx\| \leqslant \|A\| + \|B\|$. Следовательно, $\mathscr{L}(E,F)$ является нормированным пространством. Докажем его полноту.

Пусть $\{A_n\}$ есть последовательность Коши́ в $\mathscr{L}(\boldsymbol{E},\boldsymbol{F})$. Тогда для любого $\varepsilon>0$ существует N, т.ч. $\|A_n-A_m\|<\varepsilon$ при всех $n,m\geqslant N$. Из определения операторной нормы вытекает неравенство $\|A_nx-A_mx\|<\varepsilon\|x\|$ при всех $x\in \boldsymbol{E}$ и $n,m\geqslant N$. Следовательно, $\{A_nx\}$ есть последовательность Коши́ в \boldsymbol{F} при всех $x\in \boldsymbol{E}$. В силу полноты \boldsymbol{F} существует предел $Ax\doteqdot \lim_{n\to\infty}A_nx$. Ясно, что A является линейным оператором. Переходя к пределу в неравенстве, указанном выше, получим, что $\|A_nx-Ax\|\leqslant \varepsilon\|x\|$ при всех $x\in \boldsymbol{E}$ и $n\geqslant N$, т.е. $\|A_n-A\|\leqslant \varepsilon$ при $n\geqslant N$. Поэтому $A_n\to A$ сходится по норме. Так как $\|A\|\leqslant \|A_n\|+\|A_n-A\|$, то $A\in\mathscr{L}(\boldsymbol{E},\boldsymbol{F})$.

Следствие 3. Сопряженное пространство $E' = \mathcal{L}(E, \mathbb{F})$ к нормированному пространству E является банаховым пространством.

Определение. Банаховой алгеброй называется такое банахово пространство E, которое образует алгебру с единицей $e \in E$, т.е. задано билинейное произведение $x \cdot y \in E$ двух элементов $x, y \in E$, удовлетворяющее равенствам: $e \cdot x = x \cdot e = x$,

$$(\lambda_1x_1+\lambda_2x_2)\cdot y=\lambda_1x_1\cdot y+\lambda_2x_2\cdot y,\quad x\cdot (\lambda_1y_1+\lambda_2y_2)=\lambda_1x\cdot y_1+\lambda_2x\cdot y_2,$$

и, кроме того, выполняются следующие свойства: $\|e\|=1$ и $\|x\cdot y\|\leqslant \|x\|\,\|y\|$.

Следствие 4. Если E является ба́наховым пространством, то пространство $\mathscr{L}(E) \doteqdot \mathscr{L}(E,E)$ является банаховой алгеброй.

В самом деле, произведение операторов $A\cdot B(x)\doteqdot A(Bx)$ является билинейным, т.к. $(\lambda_1A_1+\lambda_2A_2)\cdot B=\lambda_1A_1\cdot B+\lambda_2A_2\cdot B$ и $A\cdot (\lambda_1B_1+\lambda_2B_2)=\lambda_1A\cdot B_1+\lambda_2A\cdot B_2$. При этом выполняется неравенство $\|A\cdot B\|\leqslant \sup_{x\in S_1}\|A(Bx)\|\leqslant \|A\|\,\|B\|$. Тождественное отображение $I(x)\doteqdot x$ является единицей этой алгебры, т.к. $I\cdot A=A\cdot I=A$ и $\|I\|=1$.

Пример 1. Рассмотрим пространство C(X) непрерывных функций $f: X \to \mathbb{F}$ на компактном метрическом пространстве (X, ρ) . Относительно операций сложения и умножения функций пространство C(X) является банаховой алгеброй с единицей e(x)=1 при всех $x\in X$. Оператор $A:C(X)\to C(X)$, определенный по формуле $Af(x)\doteqdot \varphi(x)f(x)$, где $\varphi\in C(X)$ некоторая фиксированная функция, называется оператором умножения на заданную функцию φ . Докажем, что его норма равна $\|A\|=\|\varphi\|_C$ норме функции φ в пространстве C(X). В самом деле, поскольку

$$||Af||_{C} \doteq \sup_{x \in X} |\varphi(x) f(x)| \leqslant \sup_{x \in X} |\varphi(x)| \sup_{x \in X} |f(x)| = ||\varphi||_{C} ||f||_{C},$$

то $\|A\|\leqslant \|\pmb{\phi}\|_{\pmb{C}}$. Докажем, что это неравенство, на самом деле, является равенством. Пусть $\sup_{x\in X}|\pmb{\phi}(x)\|=|\pmb{\phi}(x_0)|$ в точке $x_0\in X$. Рассмотри непрерывную функцию

$$f(x) \doteqdot egin{cases} r-
ho(x_0,x), & ext{ecли }
ho(x_0,x) \leqslant r; \ 0, & ext{ecли }
ho(x_0,x) > r. \end{cases}$$

Тогда получим $\|f\|_{C} = r$ и $\|Af\|_{C} \doteqdot \sup_{x \in X} |\varphi(x)f(x)| = |\varphi(x_0)| |f(x_0)| = \|\varphi\|_{C} \|f\|_{C}$. Следовательно, $\|A\| = \|\varphi\|_{C}$. Таким образом, алгебра функций C(X) изометрична подалгебре операторов умножения на заданную функцию в пространстве C(X).

Пример 2. Рассмотрим пространство C[0,1] непрерывных функций с нормой $\|f\| \doteqdot \sup_{x \in [0,1]} |f(x)|$. Докажем, что для каждой функции $h \in C[0,1]$ уравнение

$$f(x) + \int_0^1 \frac{f(t)}{x+t+2} dt = h(x), \quad x \in [0,1],$$

относительно неизвестной функции $f \in C[0,1]$ имеет единственное решение. Для этого определим оператор $Af(x) = h(x) - \int_0^1 \frac{f(t)}{x+t+2} \, dt$ при всех $f \in C[0,1]$ и покажем, что он является сжимающим отображением в пространстве C[0,1]. В самом деле, имеем

$$\|Af - Ag\|_{C} = \sup_{x \in [0,1]} \left| \int_{0}^{1} \frac{f(t) - g(t)}{x + t + 2} dt \right| \leqslant \frac{1}{2} \sup_{t \in [0,1]} |f(t) - g(t)| = \frac{1}{2} \|f - g\|_{C}$$

Значит по принципу сжимающих отображений существует единственная функция $f \in C[0,1]$, т.ч. Af = f, т.е. уравнение имеет единственное решение.

Пример 3. Рассмотрим пространство ℓ_1 последовательностей $x=\{x_n\}$ с конечной нормой $\|x\|_{\ell_1} \doteqdot \sum_{n=1}^\infty |x_n| < \infty$. Докажем, что для каждой последовательности $h=\{h_n\} \in \ell_1$ система уравнений

$$x_n + \sum_{k=1}^{\infty} \frac{x_k}{(n+k)^2 + 10} = h_n, \quad n = 1, 2, \dots$$

относительно неизвестных $x=\{x_n\}$ имеет единственное решение. Для этого определим оператор $Ax_n=h_n-\sum_{k=1}^{\infty}\frac{x_k}{(n+k)^2+10}$, где $n\in\mathbb{N}$, при всех $x=\{x_n\}\in\boldsymbol{\ell}_1$ и

покажем, что он является сжимающим отображением в пространстве ℓ_1 . В самом деле, имеем

$$||Ax - Ay||_{\ell_1} = \left\| \left\{ \sum_{k=1}^{\infty} \frac{x_k - y_k}{(n+k)^2 + 10} \right\} \right\|_{\ell_1} \leqslant \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{|x_k - y_k|}{(n+k)^2 + 10} \leqslant c \, ||x - y||_{\ell_1},$$

где

$$c = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2 + 10} \le \int_{1}^{\infty} \frac{dx}{x^2 + 10} = \frac{1}{\sqrt{10}} \operatorname{arctg} \frac{x}{\sqrt{10}} \Big|_{1}^{\infty} < \frac{\pi}{2\sqrt{10}} < \frac{\pi}{6} < 1.$$

Значит по принципу сжимающих отображений существует единственная последовательность $x \in \ell_1$, т.ч. Ax = x, т.е. система уравнений имеет единственное решение.

Лемма. Пусть $F: X \to X$ отображение полного метрического пространства (X, ρ) , т.ч. при некотором п отображение

$$F^n: X \to X$$
, где $F^n \doteq \underbrace{F \cdot F \cdot \ldots \cdot F}_n$

является сжимающим. Тогда существует единственная неподвижная точка $x \in X$, т.е. F(x) = x.

Доказательство. По принципу сжимающих отображений существует точка $x \in X$, т.ч. $F^n(x) = x$. Тогда $\rho(x, F(x)) = \rho(F^n(x), F^{n+1}(x)) \leqslant \lambda \rho(x, F(x))$, где $0 < \lambda < 1$, что невозможно. Поэтому F(x) = x. Если имеется еще одна точка $y \in X$, т.ч. F(y) = y, то $\rho(x,y) = \rho(F^n(x), F^n(y) \leqslant \lambda \rho(x,y)$, что опять невозможно. Значит x = y.

Пример 4. Рассмотрим пространство C[0,1] непрерывных функций с нормой $\|f\| \doteqdot \sup_{x \in [0,1]} |f(x)|$. Докажем, что для каждой функции $h \in C[0,1]$ и для любого числа $\lambda \in \mathbb{F}$ уравнение

$$f(x) + \lambda \int_0^x f(t) dt = h(x), \quad x \in [0, 1],$$

относительно неизвестной функции $f \in C[0,1]$ имеет единственное решение. Для этого рассмотрим оператор $Af(x) \doteqdot h(x) - \lambda \int_0^x f(t) \, dt$. Тогда получим следующую последовательность неравенств

$$|Af(x) - Ag(x)| \leq |\lambda| \int_0^x |f(t) - g(t)| dt \leq |\lambda| x \|f - g\|_C,$$

$$|A^2 f(x) - A^2 g(x)| \leq |\lambda| \int_0^x |Af(t) - Ag(t)| dt \leq |\lambda|^2 \frac{x^2}{2} \|f - g\|_C,$$

$$|A^n f(x) - A^n g(x)| \leq |\lambda| \int_0^x |A^{n-1} f(t) - A^{n-1} g(t)| dt \leq |\lambda|^n \frac{x^n}{n!} \|f - g\|_C,$$

Следовательно, $\|A^nf - A^ng\|_{C} \leqslant \frac{|\lambda|^n}{n!} \|f - g\|_{C}$. Так как при достаточно большом n величина $\frac{|\lambda|^n}{n!} < 1$, то отображение A^n является сжимающим. Поэтому в силу леммы существует единственная неподвижная точка $f \in C[0,1]$, т.ч. Af = f, т.е. уравнение имеет единственное решение.

Пример 5. Рассмотрим пространство C[0,1] непрерывных функций с нормой $\|f\| \doteqdot \sup_{x \in [0,1]} |f(x)|$. Докажем, что в этом пространстве множество функций

$$f(x) = \sum_{n=1}^{\infty} \frac{a_n}{x^2 + n^2}$$
, где $\sum_{n=1}^{\infty} |a_n| \leqslant c$,

является предкомпактным. Для этого используем теорему Арцела-Асколи. Так как $|f(x)|| \leqslant \sum_{n=1}^{\infty} |a_n| \leqslant c$, то это множество функций равномерно ограничено. Кроме того, производные также равномерно ограничены, т.к.

$$|f'(x)| = \left| \sum_{n=1}^{\infty} \frac{2xa_n}{(x^2 + n^2)^2} \right| \leqslant \sum_{n=1}^{\infty} 2|a_n| \leqslant 2c.$$

В силу формулы конечных приращений Лагранжа, получим $|f(x)-f(y)| \le 2c|x-y|$. Следовательно, множество функций равностепенно непрерывно. Таким образом, по теореме Арцела-Асколи указанное множество функций предкомпактно.

Пример 6. В пространстве ℓ_p , $1 \le p < \infty$, множество $M = \{x = \{x_n\} \mid |x_n| \le a_n, n \in \mathbb{N}\}$ компактно тогда и только тогда, когда последовательность $a = \{a_n\} \in \ell_p$.

Необходимость. Так как $M \subset \ell_p$ и $a = \{a_n\} \in M$, то следовательно $a = \{a_n\} \in \ell_p$. Достаточность. Пусть $a = \{a_n\} \in \ell_p$, тогда $\|x\|_{\ell_p} \leqslant \|a\|_{\ell_p}$ при всех $x \in M$. Поэтому множество M ограничено в пространстве ℓ_p . Для каждого $x \in \ell_p$ обозначим через $s_m(x) = y = \{y_n\}$ финитную последовательность, т.ч. $y_n = x_n$ при $n \leqslant m$ и $y_n = 0$ при n > m. Тогда эта последовательность $s_m(x) \to x$ при $m \to \infty$ сходится в метрике ℓ_p в случае $1 \leqslant p < \infty$, т.к. величина

$$\|x-s_m(x)\|_{\ell_p}=ig(\sum_{n=m+1}^\infty |x_n|^pig)^{1/p} o 0$$
 при $m o\infty$

в силу сходимости ряда. Следовательно, для любого $\varepsilon > 0$ существует $m \in \mathbb{N}$, т.ч. $\|a-s_m(a)\|_{\ell_p} < \varepsilon$. Отсюда мы получим $\|x-s_m(x)\|_{\ell_p} \leqslant \|a-s_m(a)\|_{\ell_p} < \varepsilon$ при всех $x \in M$. Таким образом, применяя критерий предкомпактности в пространстве ℓ_p (теорема Рисса), заключаем, что множество M будет предкомпактным. Кроме того, поскольку из сходимости в пространстве ℓ_p следует покоординатная сходимость последовательности, то множество M замкнуто в ℓ_p и значит компактно.

5 ЛИНЕЙНЫЕ ФУНКЦИОНАЛЫ

Определение. Множество X называется y порядоченным, если в этом множестве задано o том e называется e довлетворяющее следующим условиям: 1) $x \le x$; 2) если $x \le y$ и $y \le z$, то $x \le z$; 3) если $x \le y$ и $y \le z$, то x = y.

Множество $A \subset X$ называется *цепью*, если $x \leqslant y$ или $y \leqslant x$ для всех пар $x, y \in A$. Элемент $y \in X$ называется *мажорантой* множества A, если $x \leqslant y$ при всех $x \in A$. Элемент $x \in X$ называется *максимальным* в X, если из $x \leqslant y$ следует x = y.

Например, отношением порядка является *отношение включения* множеств, т.е. $A \leq B$, если $A \subset B$. Следующая лемма принимается за аксиому в теории множеств.

Лемма (Цо́рна). Если любая цепь $A \subset X$ упорядоченного множества X имеет мажоранту, то в множестве X существует максимальный элемент.

Пусть $L \subset M \subset E$ подпространства линейного подпространства E. Линейный функционал $g:M \to \mathbb{F}$ называется *продолжением* линейного функционала $f:L \to \mathbb{F}$, если g(x)=f(x) для всех $x \in L$. В каждом множестве линейных функционалов, заданных на некоторых подпространствах E, *отношение продолжения* является *отношением порядка* и обозначается через $\{f,L\} \leqslant \{g,M\}$.

Теорема (Ха́на-Ба́наха). Если линейный функционал $f: L \to \mathbb{F}$ определён на линейном подпространстве $L \subset \mathbf{E}$ полунормированного пространства (\mathbf{E}, p) и $|f(x)| \leq p(x)$ при всех $x \in L$, то существует такое его продолжение $g: \mathbf{E} \to \mathbb{F}$ на все пространство \mathbf{E} , что $|g(x)| \leq p(x)$ при всех $x \in \mathbf{E}$.

Доказательство. Вначале рассмотрим действительный случай $\mathbb{F}=\mathbb{R}$. Пусть $e_1\notin L$ и $M_1\doteqdot \operatorname{sp}\{e_1,L\}$ линейная оболочка e_1 и L. Поскольку при всех $x,y\in L$

$$f(x) + f(y) = f(x+y) \le p(x+y) \le p(x-e_1) + p(y+e_1),$$

то $f(x) - p(x - e_1) \leqslant p(y + e_1) - f(y)$ при всех $x, y \in L$. Поэтому существует $c_1 \in \mathbb{R}$, т.ч. $f(x) - p(x - e_1) \leqslant c_1 \leqslant p(y + e_1) - f(y)$ при всех $x, y \in L$. Заменяя x и y на x/λ , а затем умножая на λ , получим $f(x) \pm \lambda c_1 \leqslant p(x \pm \lambda e_1)$ при всех $\lambda > 0$ и $x \in L$.

Определим на подпространстве M_1 функционал по формуле $g_1(z)\doteqdot f(x)+\lambda c_1$, где $z=x+\lambda e_1$, $x\in L$ и $\lambda\in\mathbb{R}$. Тогда $g_1(x)=f(x)$ при всех $x\in L$ и по доказанному $g_1(z)\leqslant p(z)$ при всех $z\in M_1$. Так как p(-z)=p(z), то $|g_1(z)|\leqslant p(z)$ при всех $z\in M_1$. Таким образом, построили продолжение функционала f на подпространство M_1 . Если существует элемент $e_2\notin M_1$, то аналогично можно доказать существование продолжения g_2 функционала g_1 на подпространство $M_2\doteqdot \operatorname{sp}\{M_1,e_2\}$ и т.д.

Рассмотрим множество всех продолжений $\{g,M\}$ функционала f, заданного на подпространстве $L \subset E$, которые будут удовлетворять условию теоремы. Определим в этом множестве отношение порядка, как отношение продолжения. Тогда для каждой цепи продолжений $\{g_i,M_i\}_{i\in I}$ имеется мажоранта $\{g,M\}$, где $M=\cup_{i\in I}M_i$ и $g|_{M_i}=g_i$. Следовательно, по лемме Цо́рна существует максимальный элемент.

Поскольку по доказанному выше каждый функционал можно продолжить на более широкое подпространство, то максимальное продолжение определено на всем E.

Переход от действительного к комплексному случаю производится следующим образом. Пусть f(x) = u(x) + iv(x), где $u(x) = \Re f(x)$ и $v(x) = \Im f(x)$. Так как в силу линейности f(ix) = if(x), то u(ix) + iv(ix) = iu(x) - v(x). Поэтому v(x) = -u(ix) и f(x) = u(x) - iu(ix). Пусть функционал h определяет продолжение функционала u в действительном случае. Тогда для функционала $g(x) \doteqdot h(x) - ih(ix)$ выполняется свойство линейности g(ix) = h(ix) - ih(-x) = i(h(x) - ih(ix)) = ig(x).

Следовательно, функционал g является линейным над полем $\mathbb{F}=\mathbb{C}$ и задает продолжение функционала f. Докажем неравенство $|g(x)|\leqslant p(x)$ при всех $x\in E$. Если $g(x)=e^{i\theta}|g(x)|$, то $|g(x)|=e^{-i\theta}g(x)=g(e^{-i\theta}x)=h(e^{-i\theta}x)\leqslant p(e^{-i\theta}x)=p(x)$. Таким образом, функционал g удовлетворяет условиям теоремы.

Следствие 1. Если $L \subset E$ подпространство в нормированном пространстве E, то для каждого $f \in L'$ существует $g \in E'$, т.ч. $g|_L = f$ и $||g|| = ||f||_L$.

Для доказательства определим $p(x)\doteqdot \|f\|_L\|x\|$ при всех $x\in E$. Тогда по теореме существует функционал g, т.ч. $g|_L=f$ и $|g(x)|\leqslant \|f\|_L\|x\|$ при всех $x\in E$. Поэтому имеем $\|g\|\leqslant \|f\|_L$, а в силу условия $g|_L=f$ справедливо обратное неравенство $\|g\|\geqslant \|f\|_L$. Таким образом, имеет место равенство $\|g\|=\|f\|_L$.

Следствие 2. Если $L \subset E$ подпространство в нормированном пространстве E, то для каждого $x \in E \setminus L$ существует $f \in E'$, т.ч. ||f|| = 1, f(y) = 0 при всех $y \in L$ и $f(x) = \rho(x, L)$, где $\rho(x, L) = \inf_{y \in L} ||x - y||$.

Определим функционал $f(\lambda x + y) \doteqdot \lambda d$ на линейной оболочке $M \doteqdot \operatorname{sp}\{x, L)$, где $\lambda \in \mathbb{F}, \ y \in L$ и $d = \rho(x, L)$. Поскольку $|\lambda d| \leqslant \|\lambda x + y\|$ по определению $\rho(x, L)$, то $\|f\|_M \leqslant 1$. С другой стороны, для любого $0 < \varepsilon < 1$ найдется $y \in L$, т.ч. $\|x - y\| < \frac{d}{1 - \varepsilon}$. Так как $d = |f(x - y)| \leqslant \|f\|_M \|x - y\| < \|f\|_M \frac{d}{1 - \varepsilon}$, то $\|f\|_M > 1 - \varepsilon$. Поэтому $\|f\|_M = 1$. Применяя следствие 1 получим функционал, удовлетворяющий следствию 2.

Определение. В нормированном пространстве E множество $\Pi \subset E$ называется nлоскостью, если $(1-t)x+ty \in \Pi$ при всех $t \in \mathbb{R}$ и $x,y \in \Pi$. Модуль этой плоскости равен $|\Pi| \doteqdot \inf_{x \in \Pi} \|x\|$ расстоянию $\rho(0,\Pi)$ от точки 0 до множества Π .

Например, для каждого $f \in E^*$ множество $H \doteqdot \{x \in E \mid f(x) = c\}$, определяемое уравнением f(x) = c, называется *гиперплоскостью* в пространстве E. Заметим, что гиперплоскость H замкнута тогда и только тогда, когда функционал $f \in E'$ непрерывен. В самом деле, если $f \in E'$ и $x_n \to x$, где $x_n \in H$, то $f(x) = \lim f(x_n) = c$ и поэтому $x \in H$. Обратно, предположим, что гиперплоскость $H \ne E$ замкнута. При помощи сдвига на некоторый элемент мы можем считать, что $c \ne 0$, т.е. $0 \notin H$. Так как множество $E \setminus H$ открыто и $0 \in E \setminus H$, то найдется шар $S_r(0)$ радиуса r > 0 с центром в нуле, т.ч. $S_r(0) \subset E \setminus H$. Отсюда |f(x)| < |c| при всех $x \in S_r(0)$ и, следовательно, |f(x)| < |c|/r при всех $x \in S$. Поэтому $||f|| \leqslant |c|/r$.

Теорема (Мазура). Для всякой плоскости $\Pi \subset E$ существует гиперплоскость $H \subset E$, т.ч. $\Pi \subset H$ и $|\Pi| = |H|$.

Доказательство. Если $x \in \Pi$, то $L \doteqdot \Pi - x$ линейное подпространство E. В силу следствия 2 найдется $f \in E'$, т.ч. ||f|| = 1, f(y) = 0 при всех $y \in L$ и f(x) = d, где $d = \rho(x, L)$. Пусть $H \doteqdot \{y \in E \mid f(y) = d\}$, тогда $\Pi \subset H$ и выполняются равенства

$$|H| = \inf_{y \in H} ||y|| = \inf_{f(y)=0} ||x - y|| = \frac{|f(x)|}{\sup_{f(y)=0} \frac{|f(\lambda x - y)|}{||\lambda x - y||}} = \frac{|f(x)|}{||f||} = d$$

Поскольку $d = \rho(x, L) = \inf_{y \in L} \|x - y\| = \inf_{y \in \Pi} \|y\| = |\Pi|$, то теорема доказана.

Определение. Систему элементов $\{e_i\}_{i=1}^n \subset E$ будем называть биортогональной системе функционалов $\{f_j\}_{j=1}^n \subset E'$, если $f_j(e_i) = \delta_{ij}$, где δ_{ij} символ Кронекера, т.е. $\delta_{ij} = 0$, если $i \neq j$, и $\delta_{ij} = 1$, если i = j.

Лемма 1. Если система функционалов $\{f_j\}_{j=1}^n \subset E'$ линейно независима, то существует биортогональная ей система элементов $\{e_i\}_{i=1}^n \subset E$.

Доказательство. При n=1 имеем $f_1 \neq 0$. Поэтому найдется $e_1 \in {\pmb E}$, т.ч. $f_1(e_1)=1$. По индукции предположим, что для n-1 утверждение верно. Тогда существуют $x_i \in {\pmb E}$, т.ч. $f_j(x_i)=0$ при $i \neq j$ и $f_i(x_i)=1$, где $i,j=1,\ldots,n-1$. Для каждого $x \in {\pmb E}$ положим $y \doteqdot x - \sum_{i=1}^{n-1} f_i(x) x_i$. Тогда $f_j(y)=0$ при всех $j=1,\ldots,n-1$ и $x \in {\pmb E}$.

Если $f_n(y)=0$ при всех $x\in E$, то $f_n(x)=\sum_{i=1}^{n-1}f_i(x)f_n(x_i)$ при всех $x\in E$, что противоречит условию линейной независимости. Поэтому найдется элемент $x\in E$, т.ч. $f_n(y)\neq 0$. Определяя $e_n\doteqdot y/f_n(y)$ и $e_i\doteqdot x_i-f_n(x_i)e_n$ при $i=1,\ldots,n-1$, получим биортогональную систему элементов $\{e_i\}_{i=1}^n$ в пространстве E.

Лемма 2. Пусть система функционалов $\{f_j\}_{j=1}^n \subset E'$ линейно независима, функционал $f \in E'$, $\{c_i\}_{i=1}^n \subset \mathbb{F}$ и $c \in \mathbb{F}$. Обозначим через $H_i \doteqdot \{x \in E \mid f_i(x) = c_i\}$ и $H \doteqdot \{x \in E \mid f(x) = c\}$ гиперплоскости в пространстве E. Тогда если $\bigcap_{i=1}^n H_i \subset H$, то существуют $\lambda_i \in \mathbb{F}$, т.ч. $f = \sum_{i=1}^n \lambda_i f_i$ и $c = \sum_{i=1}^n \lambda_i c_i$.

Доказательство. Рассмотрим систему функционалов $\{f_i\}_{i=0}^n$, где $f_0=f$. Докажем, что она является линейно зависимой. В самом деле, предположим, что $\{f_i\}_{i=0}^n$ линейно независима. Тогда в силу леммы 1 существует биортогональная система элементов $\{e_i\}_{i=0}^n$. Положим $c_0=c+1$ и $x=\sum_{i=0}^n c_i e_i$. В силу биортогональности получим $f_i(x)=c_i$, $i=0,1,\ldots,n$. Однако это невозможно, поскольку по условию из $f_i(x)=c_i$, $i=1,\ldots,n$, следует $f_0(x)=f(x)=c\neq c_0$. Получили противоречие.

Теорема (Хелли). Пусть система функционалов $\{f_j\}_{j=1}^n \subset \mathbf{E}'$ линейно независима и числа $\{c_i\}_{i=1}^n \subset \mathbb{F}$. Тогда для любого $\varepsilon > 0$ существует элемент $x \in \mathbf{E}$, т.ч. $f_i(x) = c_i$, $i = 1, \ldots, n$, и $||x|| < C + \varepsilon$, где C > 0 вычисляется по формуле

$$C \doteq \sup \left\{ \sum_{i=1}^{n} \lambda_i c_i \mid \lambda_i \in \mathbb{F}, \ m.u. \ \left\| \sum_{i=1}^{n} \lambda_i f_i \right\| = 1 \right\}.$$

Доказательство. Обозначим через $\Pi\doteqdot \bigcap_{i=1}^n H_i$ плоскость, образованную пересечением гиперплоскостей $H_i\doteqdot \{x\in E\mid f_i(x)=c_i\}$ в пространстве E. По теореме Мазура существует гиперплоскость $H\doteqdot \{x\in E\mid f(x)=c\}$, т.ч. $\Pi\subset H$ и $|\Pi|=|H|$. Не ограничивая общности, мы можем считать, что норма $\|f\|=1$. Тогда, применяя лемму 2, мы получим $f=\sum_{i=1}^n \lambda_i f_i$, при этом $c=\sum_{i=1}^n \lambda_i c_i$. Следовательно, мы имеем неравенство $|\Pi|=|H|=|c|=|\sum_{i=1}^n \lambda_i c_i|\leqslant \sup|\sum_{i=1}^n \lambda_i c_i|$, где верхняя грань берется по всем $\lambda_i\in \mathbb{F}$, т.ч. $\|\sum_{i=1}^n \lambda_i f_i\|=\|f\|=1$ (см. доказательство теоремы Мазура). Таким образом, $|\Pi|\leqslant C$. Наконец, вспоминая определение модуля этой плоскости, получим, что любого $\varepsilon>0$ существует $x\in \Pi$, т.ч. $\|x\|< C+\varepsilon$.

Определение. Бесконечная система элементов $\{e_i\}_{i\in I}$ линейного пространства E называется линейно независимой, если каждая ее конечная подсистема $\{e_{i_k}\}_{k=1}^n$ линейно независима. Линейно независимая система элементов $\{e_i\}_{i\in I}$ называется базисом Гамеля в линейном пространстве E, если для каждого $x \in E$ существует конечная система чисел $\{\lambda_k\}_{k=1}^n$, т.ч. $x = \sum_{k=1}^n \lambda_k e_{i_k}$, где $i_k \in I, k = 1, \ldots, n$

Лемма. B каждом линейном пространстве E существует базис Γ а́меля.

Доказательство. Пусть $\mathfrak S$ обозначает множество всех линейно независимых систем в линейном пространстве E, упорядоченная отношением включения. Так как каждая цепь в $\mathfrak S$ имеет мажоранту, равную объединению всех множеств цепи, то по лемме Цорна множество $\mathfrak S$ имеет максимальный элемент, который является максимальной линейно независимой системой в E, т.е. базисом Гамеля.

Пример 1. Если нормированное пространство E имеет бесконечную размерность $\dim E = \infty$, то существует разрывный линейный функционал.

В самом деле, пусть $\{e_i\}_{i\in I}$ базис Гамеля в E. Мы можем считать, что нормы $\|e_i\|=1$ при всех $i\in I$. Так как базис Гамеля бесконечный, то в нем существует счетная линейно независимая подсистема $\{e_{i_n}\}_{n=1}^{\infty}$. Определим линейный функционал на базисе $f(e_i)=n$, если $i=i_n$, и $f(e_i)=0$, если $i\neq i_n$, а затем продолжим его по линейности на все пространство E. Полагая $x_n=\frac{1}{n}e_{i_n}$, получим $\|x_n\|=\frac{1}{n}\to 0$. Однако $f(x_n)=1$ при всех $n\in\mathbb{N}$ и, следовательно, функционал f не является непрерывным.

Определение. Счетная система элементов $\{e_n\}_{n=1}^{\infty}$ называется базисом Ша́удера в нормированном пространстве E, если для каждого $x \in E$ существует единственная система чисел $\{\lambda_n\}_{n=1}^{\infty} \subset \mathbb{F}$, т.ч. $x = \sum_{n=1}^{\infty} \lambda_n e_n$, где ряд сходится по норме.

Заметим, что в силу единственности разложения в сходящийся ряд такая система элементов $\{e_n\}_{n=1}^{\infty}$ является линейно независимой. При этом система линейных функционалов $\{f_n\}_{n=1}^{\infty}$, определяемая по формуле $f_n(x) \doteqdot \lambda_n$, если $x = \sum_{n=1}^{\infty} \lambda_n e_n$, образуют биортогональную систему к системе $\{e_n\}_{n=1}^{\infty}$.

Лемма. Если в нормированном пространстве E существует базис Ша́удера, то это пространство является сепарабельным.

Доказательство. Пусть $x \in E$ и $x = \sum_{n=1}^{\infty} \lambda_n e_n$ его разложение по базису Шаудера. Так как этот ряд сходится по норме, то для любого $\varepsilon > 0$ найдется число n, т.ч. $\|\sum_{r=n+1}^{\infty} \lambda_k e_k\| < \varepsilon/2$. Выберем (комплексно) рациональные числа $r_k \in \mathbb{Q}$ так, чтобы $|\lambda_k - r_k| < \varepsilon/2c_n$ при всех $k = 1, \ldots, n$, где $c_n \doteqdot \sum_{k=1}^n \|e_k\|$. Тогда, полагая $y = \sum_{k=1}^n r_k e_k$ применяя неравенство треугольника, мы получим неравенство

$$||x-y|| \leqslant \left\| \sum_{k=1}^{n} (\lambda_k - r_k) e_k \right\| + \left\| \sum_{k=n+1}^{\infty} \lambda_k e_k \right\| \leqslant \sum_{k=1}^{n} |\lambda_k - r_k| ||e_k|| + \varepsilon/2 < \varepsilon.$$

Таким образом, множество всех конечных сумм $y = \sum_{k=1}^{n} r_k e_k$, где $r_k \in \mathbb{Q}$, является счетным и всюду плотным подмножеством пространства E.

Пример 2. В любом конечномерном нормированном пространстве E размерности $\dim E = n$ всякий линейный функционал $f : E \to \mathbb{F}$ является непрерывным.

В самом деле, пусть $\{e_k\}_{k=1}^n$ образует базис в E. Тогда каждого $x \in E$ существует единственная система чисел $\{\lambda_k\}_{k=1}^n$, т.ч. $x = \sum_{k=1}^n \lambda_k e_k$. Тогда имеем

$$|f(x)| = \left| \sum_{k=1}^{n} \lambda_k f(e_k) \right| \leq \sum_{k=1}^{n} |\lambda_k| |f(e_k)| \leq c \|\lambda\|_{\ell_1},$$

где $\|\lambda\|_{\ell_1} = \sum_{k=1}^n |\lambda_k|$ и $c = \sum_{k=1}^n |f(e_k)|$. Поскольку $\|x\|_1 \doteqdot \|\lambda\|_{\ell_1}$, если $x = \sum_{k=1}^n \lambda_k e_k$, является нормой в E и любые две нормы в E эквивалентны, то существует $c_1 > 0$, т.ч. $\|x\|_1 \leqslant c_1 \|x\|$ при всех $x \in E$. Поэтому $|f(x)| \leqslant c \, c_1 \|x\|$ и, следовательно, линейный функционал f является ограниченным, а значит непрерывным.

Пример 3. Доказать, что сопряженное пространство ℓ_p' к пространству ℓ_p является изометричным пространству ℓ_q , где 1 и <math>1/p + 1/q = 1.

Покажем вначале, что элементы $e_i \doteqdot \{\delta_{ij}\}_{j=1}^\infty$, где $i \in \mathbb{N}$, образуют базис Ша́удера в пространстве ℓ_p . Для этого необходимо доказать, что ряд $x = \sum_{i=1}^\infty x_i e_i$ сходится к элементу $x = \{x_i\}_{i=1}^\infty$ в метрике ℓ_p . Обозначим через $s_n(x) = \sum_{i=1}^n x_i e_i$ частичную сумму этого ряда. Тогда для каждого $x \in \ell_p$ последовательность $s_n(x) \to x$ при $n \to \infty$ сходится в метрике ℓ_p в случае 1 , т.к. величина

$$\|x-s_n(x)\|_{\ell_p}=\Bigl(\sum_{i=n+1}^\infty |x_i|^p\Bigr)^{1/p} o 0$$
 при $n o\infty$

стремится к нулю в силу сходимости ряда. Если теперь $f \in \ell_p'$ является непрерывным линейным функционалом на пространстве ℓ_p , то имеем равенство

$$f(x) = \lim_{n \to \infty} f(s_n(x)) = \lim_{n \to \infty} \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^\infty x_i f(e_i) = \sum_{i=1}^\infty x_i y_i,$$

где $y_i\doteqdot f(e_i)$. Пусть элемент $y=\{y_i\}_{i=1}^\infty$. Применяя неравенство Гёльдера, получим

$$|f(x)| = \left|\sum_{i=1}^{\infty} x_i y_i\right| \leqslant \sum_{i=1}^{\infty} |x_i y_i| \leqslant ||x||_{\ell_p} ||y||_{\ell_q}.$$

Следовательно, норма функционала $\|f\| \leqslant \|y\|_{\ell_q}$. Рассмотрим последовательность

$$x = \{x_i\}_{i=1}^{\infty}$$
, где $x_i \doteqdot \overline{\mathrm{sign}(y_i)} \frac{|y_i|^{q-1}}{(\sum_{i=1}^n |y_i|^q)^{1/p}}$, если $i \leqslant n$, и $x_i = 0$, если $i > n$.

Здесь $\mathrm{sign}(z)\doteqdot z/|z|$ при $z\in\mathbb{C}$. Тогда имеем $f(x)=(\sum_{i=1}^n|y_i|^q)^{1/q}\leqslant \|f\|$, т.к. $\|x\|_{\boldsymbol\ell_p}=1$. Отсюда мы получим $\|f\|=\|y\|_{\boldsymbol\ell_q}<\infty$. Поэтому последовательность $y\in\boldsymbol\ell_q$ и значит пространство $\boldsymbol\ell_p'$ изометрично пространству $\boldsymbol\ell_q$.

Пример 4. Доказать, что сопряженное пространство ℓ'_1 к пространству ℓ_1 является изометричным пространству ℓ_{∞} , состоящему из всех ограниченных последовательностей $x = \{x_i\}_{i=1}^{\infty}$ с нормой $\|x\|_{\ell_{\infty}} \doteqdot \sup_{i \in \mathbb{N}} |x_i|$.

Покажем вначале, что элементы $e_i \doteqdot \{\delta_{ij}\}_{j=1}^{\infty}$, где $i \in \mathbb{N}$, образуют базис Ша́удера в пространстве ℓ_1 . Для этого необходимо доказать, что ряд $x = \sum_{i=1}^{\infty} x_i e_i$ сходится к элементу $x = \{x_i\}_{i=1}^{\infty}$ в метрике ℓ_1 . Обозначим через $s_n(x) = \sum_{i=1}^n x_i e_i$ частичную сумму этого ряда. Тогда для каждого $x \in \ell_1$ последовательность $s_n(x) \to x$ при $n \to \infty$ сходится в метрике ℓ_1 , т.к. величина

$$\|x-s_n(x)\|_{\boldsymbol\ell_1} = \sum_{i=n+1}^\infty |x_i| o 0$$
 при $n o \infty$

стремится к нулю в силу сходимости ряда. Если теперь $f \in \ell_1'$ является непрерывным линейным функционалом на пространстве ℓ_1 , то имеем равенство

$$f(x) = \lim_{n \to \infty} f(s_n(x)) = \lim_{n \to \infty} \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^\infty x_i f(e_i) = \sum_{i=1}^\infty x_i y_i,$$

где $y_i \doteqdot f(e_i)$. Пусть элемент $y = \{y_i\}_{i=1}^{\infty}$. Применяя очевидное неравенство, получим

$$|f(x)| = \left|\sum_{i=1}^{\infty} x_i y_i\right| \leqslant \sum_{i=1}^{\infty} |x_i y_i| \leqslant ||x||_{\ell_1} ||y||_{\ell_{\infty}}.$$

Следовательно, норма функционала $||f|| \le ||y||_{\ell_{\infty}}$. Рассмотрим последовательность

$$x=\{x_i\}_{i=1}^\infty$$
, где $x_i\doteqdot \overline{\mathrm{sign}(y_i)}$ при $i=n\,,$ и $x_i=0$ при $i
eq n\,.$

Тогда $x \in \ell_1$ и $f(x) = |y_n| \leqslant ||f||$, т.к. норма $||x||_{\ell_1} = 1$. Поэтому норма функционала $||f|| = ||y||_{\ell_\infty}$ и значит пространство ℓ_1' изометрично пространству ℓ_∞ .

Пример 5. Доказать, что сопряженное пространство c_0' к пространству c_0 всех последовательностей $x = \{x_i\}_{i=1}^{\infty}$, стремящихся к нулю, с нормой $||x||_{c_0} \doteqdot \sup_{i \in \mathbb{N}} |x_i|$, является изометричным пространству ℓ_1 .

Покажем вначале, что элементы $e_i \doteqdot \{\delta_{ij}\}_{j=1}^\infty$, где $i \in \mathbb{N}$, образуют базис Ша́удера в пространстве c_0 . Для этого необходимо доказать, что ряд $x = \sum_{i=1}^\infty x_i e_i$ сходится к элементу $x = \{x_i\}_{i=1}^\infty$ в метрике c_0 . Обозначим через $s_n(x) = \sum_{i=1}^n x_i e_i$ частичную

сумму этого ряда. Тогда для каждого $x \in c_0$ последовательность $s_n(x) \to x$ при $n \to \infty$ сходится в метрике c_0 , т.к. величина

$$\|x-s_n(x)\|_{{m c}_0}=\sup_{i\geqslant n+1}|x_i| o 0$$
 при $n o\infty$

стремится к нулю в силу того, что $x_i \to 0$. Если теперь $f \in c_0'$ является непрерывным линейным функционалом на пространстве c_0 , то имеем равенство

$$f(x) = \lim_{n \to \infty} f(s_n(x)) = \lim_{n \to \infty} \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^\infty x_i f(e_i) = \sum_{i=1}^\infty x_i y_i,$$

где $y_i \doteqdot f(e_i)$. Пусть элемент $y = \{y_i\}_{i=1}^{\infty}$. Применяя очевидное неравенство, получим

$$|f(x)| = \left|\sum_{i=1}^{\infty} x_i y_i\right| \leqslant \sum_{i=1}^{\infty} |x_i y_i| \leqslant ||x||_{c_0} ||y||_{\ell_1}.$$

Следовательно, норма функционала $||f|| \le ||y||_{\ell_1}$. Рассмотрим последовательность

$$x=\left\{x_i
ight\}_{i=1}^{\infty}$$
, где $x_i\doteqdot \overline{\mathrm{sign}(y_i)}$ при $i\leqslant n$, и $x_i=0$ при $i>n$.

Тогда $x \in c_0$ и $f(x) = \sum_{i=1}^n |y_i| \le ||f||$, т.к. $||x||_{c_0} = 1$. Поэтому норма функционала $||f|| = ||y||_{\ell_1}$ и значит пространство c_0' изометрично пространству ℓ_1 .

Пример 6. Продолжить линейный функционал $\alpha(P) = P'(1)$ с сохранением его нормы, заданный на пространстве алгебраических многочленов $P(x) = ax^2 + bx + c$, т.е. $\deg P \leqslant 2$, на пространство непрерывных функций C[-1,1].

Для продолжения функционала $\alpha(P)=P'(1)$ в C[-1,1], где $P(x)=ax^2+bx+c$, представим его в виде линейной комбинации значений P(-1), P(0), P(1), т.е.

$$\alpha(P) = 2a + b = \lambda_1 P(1) + \lambda_2 P(0) + \lambda_3 P(-1).$$

Подставляя в это равенство вместо P(x) одночлены x^2 , x, 1, получим следующую систему линейных уравнений с тремя неизвестными

$$\begin{cases} 2 = \lambda_1 + \lambda_3; \\ 1 = \lambda_1 - \lambda_3; \\ 0 = \lambda_1 + \lambda_2 + \lambda_3. \end{cases}$$

Решая эту систему уравнений, находим $\lambda_1 = 3/2$, $\lambda_2 = -2$ и $\lambda_3 = 1/2$. Таким образом, получаем продолжение функционала на пространство C[-1,1] по формуле

$$\alpha(f) = \frac{3}{2}f(1) - 2f(0) + \frac{1}{2}f(-1), \quad f \in \mathbb{C}[-1, 1].$$

Экстремальным многочленом является многочлен Чебышева $T(x)=2x^2-1$, т.к. T(1)=T(-1)=1, T(0)=-1 и $\alpha(T)=4$. Поэтому норма функционала $\|\alpha\|=4$.

6 ТОПОЛОГИЯ СИЛЬНОЙ И СЛАБОЙ СХОДИМОСТИ

Определение. Локально выпуклым пространством (E, \mathfrak{P}) называется линейное пространство E, в котором определена система полунорм \mathfrak{P} и локальная база β топологии пространства E состоит из окрестностей следующего вида:

$$O(x)\doteqdot \{y\in oldsymbol{E}\mid \max_{1\leqslant i\leqslant n}oldsymbol{p}_i(y-x) где $x\in oldsymbol{E},\ arepsilon>0,\ oldsymbol{p}_i\in \mathfrak{P},\ i=1,\dots,n\in \mathbb{N}\,.$$$

Топология этого пространства (E,\mathfrak{P}) называется локально выпуклой, поскольку ее локальная база β_0 состоит из выпуклых множеств. В этом пространстве (E,\mathfrak{P}) множество $M \subset E$ называется ограниченным, если $\sup_{x \in M} p(x) < \infty$ при всех $p \in \mathfrak{P}$. Последовательность $\{x_n\} \subset E$ называется сходящейся κ x, если для любых $\varepsilon > 0$ и $p \in \mathfrak{P}$ существует N, т.ч. $p(x_n - x) < \varepsilon$ при всех $n \geqslant N$.

Например, нормированное пространство (E, p) является локально выпуклым, в нем система полунорм состоит из одной нормы p(x) = ||x||. Рассмотрим локально выпуклые топологии в пространстве ограниченных операторов $\mathcal{L}(E, F)$.

Равномерной топологией или топологией равномерной сходимости в $\mathscr{L}(\boldsymbol{E},\boldsymbol{F})$ называется локально выпуклая топология, определяемая нормой $\boldsymbol{p}(A) = \|A\|$.

Сильной топологией или топологией сильной сходимости в $\mathscr{L}({m E},{m F})$ называется локально выпуклая топология системы полунорм ${m p}_x(A) = \|Ax\|, \ x \in {m E}.$

Слабой топологией или топологией слабой сходимости в $\mathscr{L}({\pmb E},{\pmb F})$ называется локально выпуклая топология системы полунорм ${\pmb p}_{f,x}(A) = |f(Ax)|, \ f \in {\pmb F}', \ x \in {\pmb E}$.

Поскольку имеют место неравенства $|f(Ax)| \leqslant \|f\| \|Ax\| \leqslant \|f\| \|A\| \|x\|$ при всех $f \in F', A \in \mathcal{L}(E,F), x \in E$, то всякая слабая окрестность содержит сильную окрестность, а всякая сильная окрестность содержит равномерную окрестность. Значит слабая топология слабее сильной, а сильная топология слабее равномерной и, следовательно, из равномерной сходимости вытекает сильная сходимость, а из сильной сходимости вытекает слабая сходимость. Если размерность пространства $\dim E < \infty$ конечна, то все эти три топологии и соответствующие три сходимости совпадают, т.к. они однозначно определяются на элементах базиса в E.

Теорема (Ба́наха-Штейнга́уза). Если E является банаховом пространством, а F нормированным пространством, то система операторов $\{A_i\}_{i\in I} \subset \mathcal{L}(E,F)$ сильно ограничена, тогда и только тогда, когда она равномерно ограничена.

Доказательство. Если система операторов $\{A_i\}_{i\in I}$ сильно ограничена, то в силу принципа равностепенной непрерывности получаем, что она является равностепенно непрерывной. Поэтому для любого $\varepsilon>0$ существует $\delta>0$, т.ч. $\|A_ix\|<\varepsilon$ при всех $\|x\|\leqslant \delta$ и $i\in I$. Отсюда $\|A_i\|=\sup_{\|x\|\leqslant 1}\|A_i(x)\|=\sup_{\|x\|\leqslant \delta}\|A_i(x/\delta)\|\leqslant \varepsilon/\delta$ при всех $i\in I$, т.е. система операторов является равномерно ограниченной.

Обратно, применяя неравенство $\sup_{i \in I} \|A_i x\| \le \|x\| \sup_{i \in I} \|A_i\|$ при всех $x \in E$, из равномерной ограниченности получим сильную ограниченность.

Следствие. Если E банахово пространство и последовательность операторов $\{A_n\} \subset \mathcal{L}(E,F)$ сходится сильно κ A, то $A \in \mathcal{L}(E,F)$ и $||A|| \leq \underline{\lim} ||A_n||$.

Так как существует предел $\lim A_n(x) = A(x)$ при всех $x \in E$, то последовательность $\{A_n\}$ сильно ограничена. Поэтому в силу теоремы Ба́наха-Штейнга́уза мы получаем, что $\sup \|A_n\| < \infty$. Выберем индексы n_k так, чтобы $\varliminf \|A_n\| = \lim \|A_{n_k}\|$. Тогда $\lVert A(x)\rVert = \lim \|A_{n_k}(x)\rVert \leqslant \lim \|A_{n_k}\| = \varliminf \|A_n\|$ при всех $x \in S$. Поэтому имеем $\lVert A\rVert \leqslant \varliminf \|A_n\| \leqslant \sup \|A_n\| \leqslant \sup \|A_n\| < \infty$, т.е. $A \in \mathcal{L}(E, F)$.

Пример 1. Рассмотрим контрпример к теореме Банаха-Штейнгауза.

Пусть c_0 есть пространство всех последовательностей $x=\{x_n\}$, стремящихся к нулю, с обычной нормой $\|x\|_{c_0}=\sup|x_n|$. Рассмотрим его подпространство $f\subset c_0$, состоящее из всех финитных последовательностей. В силу принципа продолжения по непрерывности получим, что их сопряженные пространства являются изометричными, т.е. $f'=c'_0=\ell_1$. Определим линейные функционалы $\alpha_n(x)\doteqdot nx_n$, $n=1,2,\ldots$ Они непрерывны на c_0 и значит непрерывны на f. Кроме того, для каждого фиксированного $x\in f$ предел $\lim_{n\to\infty}\alpha_n(x)=0$ равен нулю. Однако нормы этих функционалов не ограничены, поскольку $\|\alpha_n\|=n$.

Теорема (критерий сильной сходимости операторов). Пусть E и F являются банаховыми пространствами. Последовательность операторов $\{A_n\} \subset \mathcal{L}(E,F)$ тогда и только тогда сходится сильно к $A \in \mathcal{L}(E,F)$, когда $\sup \|A_n\| < \infty$ и существует множество $M \subset E$, т.ч. линейная оболочка $\operatorname{sp} M$ всюду плотна в E и предел $\lim A_n(x) = A(x)$ при всех $x \in M$.

Доказательство. Необходимость этого утверждения вытекает из следствия. Для доказательства достаточности обозначим через $L \doteqdot \operatorname{sp} M$ линейную оболочку M. В силу линейности операторов существует предел $\lim A_n(y) = A(y)$ при всех $y \in L$. Поскольку L всюду плотно, то для любых $x \in E$ и $\varepsilon > 0$ существует $y \in L$, т.ч. $\|x-y\| < \varepsilon/4c$, где $c \doteqdot \sup \|A_n\| > 0$. Выберем N, т.ч. $\|A_n(y) - A_m(y)\| < \varepsilon/2$ при всех $n,m \geqslant N$. Так как $\|A_n(x) - A_n(y)\| \leqslant \|A_n\| \|x-y\| < \varepsilon/4$, то при всех $n,m \geqslant N$

$$||A_n(x) - A_m(x)|| \le ||A_n(x) - A_n(y)|| + ||A_n(y) - A_m(y)|| + ||A_m(y) - A_m(x)|| < \varepsilon.$$

Отсюда $\{A_n(x)\}$ является последовательностью Коши при всех $x \in E$ и значит в силу полноты F существует предел $\lim A_n(x) \doteqdot A(x)$ при всех $x \in E$. Применяя следствие теоремы Ба́наха-Штейнга́уза, мы получим, что $A \in \mathcal{L}(E, E)$.

Пример 2. Рассмотрим в пространстве ℓ_p при $1 \leqslant p < \infty$ последовательность операторов $(A_n x)_k = x_k$, если k < n, и $(A_n x)_k = 0$, если $k \geqslant n$. Она сходится сильно к тождественному оператору I(x) = x, поскольку $\|A_n x - x\|_{\ell_p} = (\sum_{k=n}^{\infty} |x_k|^p)^{1/p} \to 0$ при всех $x \in \ell_p$. Однако она не сходится равномерно к I, т.к. $\|A_n - I\| = 1$.

Рассмотрим в пространстве ℓ_p при $1 последовательность операторов <math>(A_n x)_k = 0$, если $k \leqslant n$, $(A_n x)_k = x_{k-n}$, если k > n. Она сходится слабо к нулевому оператору 0(x) = 0, т.к. $|f(A_n x)| = |\sum_{k=n+1}^\infty x_{k-n} y_k| \leqslant ||x||_{\ell_p} (\sum_{k=n+1}^\infty |y_k|^q)^{1/q} \to 0$ при всех $y \in \ell_q$, где 1/p + 1/q = 1. Однако не сходится сильно к 0, т.к. $||A_n x|| = ||x||$.

Сильной* топологией сопряженного пространства E' к нормированному пространству E называется локально выпуклая топология, определяемая его нормой $p(f) \doteqdot \|f\|$, а сходимость по норме называется сильной сходимостью.

Cлабой* топологией или топологией слабой* сходимости называется локально выпуклая топология в E', определяемая системой полунорм $p_x(f) \doteqdot |f(x)|, x \in E$. Последовательность $\{f_n\}$ сходится слабо* к f, если $\lim f_n(x) = f(x)$ при всех $x \in E$. Если считать фунуционалы из E' операторами из $\mathcal{L}(E.\mathbb{F})$, то из свойств сильной сходимости операторов мы получим свойства слабой* сходимости функционалов:

- **1.** Из сильной сходимости следует слабая* сходимость. Если размерность $\dim(E) < \infty$ конечна, то эти сходимости равносильны.
- **2.** Если **E** банахово пространство и последовательность $\{f_n\} \subset \mathbf{E}'$ сходится слабо* κ функционалу f, то $f \in \mathbf{E}'$ и $||f|| \leq \underline{\lim} ||f_n||$.
- **3.** Если E банахово пространство, то множество $M \subset E'$ слабо * ограничено, тогда и только тогда, когда M является сильно ограниченным.

Теорема (критерий слабой* сходимости в E'). Пусть E банахово пространство. Последовательность $\{f_n\} \subset E'$ тогда и только тогда сходится слабо* к $f \in E'$, когда $\sup \|f_n\| < \infty$ и существует $M \subset E$, т.ч. линейная оболочка $\sup M$ всюду плотна в E и предел $\lim f_n(x) = f(x)$ при всех $x \in M$.

Определение. Подпространство ${\pmb F}\subset {\pmb E}'$ называется *томальным* на ${\pmb E}$, если из условий $x\in {\pmb E}$ и f(x)=0 при всех $f\in {\pmb F}$ следует, что элемент x=0.

Каноническим вложением $J: E \hookrightarrow E''$ во второе сопряженное пространство E'' называется отображение $J(x) \doteqdot \delta_x$, где $\delta_x(f) \doteqdot f(x)$, $f \in E^*$, функционал Дира́ка.

Лемма 1. Для каждой линейно независимой система элементов $\{e_i\}_{i=1}^n \subset E$ и тотального подпространства $F \subset E'$ соответствующую биортогональную систему функционалов $\{f_j\}_{i=1}^n \subset F$ в подпространстве F.

Доказательство. Используя каноническое вложение и тотальность подпространства ${m F}$, заметим, что система $\{e_i\}_{i=1}^n$ линейно независима тогда и только тогда, когда соответствующая система функционалов $\{\delta_{e_i}\}_{i=1}^n \subset {m F}'$ линейно независима. Таким образом, применяя лемму, доказанную на прошлой лекции, получим биортогональную систему функционалов $\{f_j\}_{j=1}^n \subset {m F}$ в подпространстве ${m F}$.

Лемма 2. Подпространство $F \subset E'$ является слабо * плотным в E', тогда и только тогда, когда оно тотально на пространстве E.

Доказательство. Пусть ${m F}\subset {m E}'$ слабо* плотно и f(x)=0 при всех $f\in {m F}$. Так как слабая* окрестность $O(g)\doteqdot \{f\in {m E}'|\,|g(x)-f(x)|<\epsilon\}$ точки $g\in {m E}'$ содержит $f\in {m F}$, то $|g(x)|=|g(x)-f(x)|<\epsilon$ при всех $\epsilon>0$. Отсюда g(x)=0 при всех $g\in {m E}'$. Пусть функционал $f(\lambda x)=\lambda \|x\|$ задан на линейной оболочке $L\doteqdot {\rm sp}\{x\}$ при всех $\lambda\in {\mathbb F}$. Поскольку $\|f\|_L=1$, то по следствию из теоремы Ха́на-Ба́наха существует $g\in {m E}'$, т.ч. $g(x)=\|x\|$ и $\|g\|=\|f\|_L=1$. Поэтому элемент x=0, т.е. ${m F}$ тотально.

Обратно, пусть $O(g)\doteqdot \{f\in {\pmb E}'|\sup_{1\leqslant i\leqslant n}|g(e_i)-f(e_i)|<{\pmb \varepsilon}\}$ определяет слабую* окрестностью точки $g\in {\pmb E}'$. Можно считать, что $\{e_i\}_{i=1}^n\subset {\pmb E}$ линейно независима. Из леммы 1 имеем биортогональную систему $\{f_j\}_{j=1}^n\subset {\pmb F}$. Построим функционал $f(x)=\sum_{j=1}^n g(e_j)f_j(x)\in {\pmb F}$, т.ч. $f(e_i)=g(e_i)$ при $i=1,\ldots,n$. Тогда $f\in O(g)$.

Теорема. Каноническое отображение $J: E \hookrightarrow E''$ является изометричным, его образ J(E) является слабо* плотным в пространстве E'' и состоит из всех функционалов, которые непрерывны в слабой* топологии пространства E'.

Доказательство. Пусть $f \in E'$ и $\|f\| \leqslant 1$, тогда $|\delta_x(f)| = |f(x)| \leqslant \|x\|$. Поэтому имеем $\|J(x)\| = \|\delta_x\| \leqslant \|x\|$. Докажем равенство $\|\delta_x\| = \|x\|$. Применяя, также как в лемме 2, теорему Ха́на-Ба́наха для каждого $x \in E$ построим функционал $g \in E'$, т.ч. $\|g\| = 1$ и $g(x) = \|x\|$. Тогда $\delta_x(g) = \|x\|$ и, следовательно, $\|\delta_x\| = \|x\|$. Таким образом, каноническое отображение изометрично. Поскольку подпространство J(E) тотально на E', то по лемме 2 оно является слабо* плотным в E''.

Если функционал $\alpha \in E''$ является слабо* непрерывным в нуле, то существует слабая* окрестность нуля $O \doteqdot \{f \in E' | \sup_{1 \leqslant i \leqslant n} |f(e_i)| < \delta\}$, т.ч. $|\alpha(f)| < \varepsilon$ для всех $f \in O$. Тогда имеет место неравенство $|\alpha(g)| \leqslant c \sup_{1 \leqslant i \leqslant n} |g(e_i)|$ при всех $g \in E'$, где $c = \varepsilon/\delta$. Мы можем считать, что система $\{e_i\}_{i=1}^n$ линейно независима и значит существует биортогональная система функционалов $\{f_j\}_{j=1}^n \subset E'$. Так как любой элемент $g \in E'$ допускает представление $g(x) = \sum_{i=1}^n g(e_i) f_i(x) + h(x)$, где $h(e_i) = 0$ при $i = 1, \ldots, n$, то из указанного выше неравенства следует, что $\alpha(h) = 0$. Отсюда имеем $\alpha(g) = \sum_{i=1}^n g(e_i) \alpha(f_i) = \delta_e(g)$ при всех $g \in E'$, где $e = \sum_{i=1}^n \alpha(f_i) e_i$. Осталось заметить, что слабая* непрерывность функционала Дирака $\delta_e \in J(E)$ вытекает из неравенства $|\delta_e(g)| = |g(e)| < \varepsilon$, где $g \in O \doteqdot \{f \in E' \mid |f(e)| < \varepsilon\}$.

Замечание. Если каноническое вложение $J: E \to E''$ является сюръективным, то пространство E называется $pe\phi$ лексивным. Например, нетрудно доказать, что все конечномерные нормированные пространства будут рефлексивны. По meopeme \mathcal{I} же́ймса сепарабельное банахово пространство E рефлексивно в том и в том случае, когда всякий функционал $f \in E'$ достигает своей нормы на единичном шаре S, т.е. существует $x \in S$, т.ч. $f(x) = \|f\|$.

Сильной топологией в нормированном пространстве E, называется локально выпуклая топология, определяемая его нормой $p(x) \doteqdot \|x\|$, а сходимость по норме в пространстве E называется сильной сходимостью.

Слабой топологией пространства E называют локально выпуклую топологию, определяемую системой полунорм $p_f(x)\doteqdot |f(x)|$, где $f\in E'$. Последовательность $\{x_n\}$ называется сходящейся слабо κ $x\in E$, если $\lim f(x_n)=f(x)$ при всех $f\in E'$. При помощи канонического вложения $J:E\hookrightarrow E''$ и свойств слабой* сходимости функционалов, мы получим свойства слабой сходимости:

1. Из сильной сходимости следует слабая сходимость. Если размерность $\dim(E) < \infty$ конечна, то эти сходимости равносильны.

- **2.** Если последовательность $\{x_n\} \subset E$ сходится слабо κ $x \in E$, то $||x|| \leq \underline{\lim} ||x_n||$.
- **3.** Если множество $M \subset E$ слабо ограничено, тогда и только тогда, когда M является сильно ограниченным.

Теорема (критерий слабой сходимости в E). Последовательность элементов $\{x_n\} \subset E$ тогда и только тогда сходится слабо к $x \in E$, когда $\sup \|x_n\| < \infty$ и существует множество $M \subset E'$, т.ч. линейная оболочка $\sup M$ всюду плотна в E' и предел $\lim f(x_n) = f(x)$ при всех $f \in M$.

Пример 3. Последовательность $\{f_n\} \subset C[a,b]$ сходится слабо в том и только в том случае когда является равномерно ограниченной и сходится $f_n(x) \to f(x)$ в любой точке $x \in [a,b]$. Для доказательства необходимости достаточно рассмотреть функционалы Дирака $\delta_x \in C'[a,b]$, тогда имеем $\delta_x(f_n) = f_n(x) \to f(x) = \delta_x(f)$.

Для доказательства достаточности всякий функционал $\alpha \in C'[a,b]$ представим в виде интеграла Ри́мана-Сти́лтьеса $\alpha(f) = \int_a^b f \, dF$. Поскольку этот интеграл от непрерывной функции совпадает с интегралом Лебе́га-Сти́лтьеса, то мы можем применить теорему Лебе́га о предельном переходе под знаком интеграла.

Рассмотрим последовательность $\delta_{x_n} \subset C'[a,b]$ функционалов Дира́ка, т.е. имеем $\delta_{x_n}(f) \doteqdot f(x_n)$ при всех $f \in C[a,b]$. Тогда если $x_n \to x$, то $\delta_{x_n}(f) = f(x_n) \to f(x) = \delta_x(f)$ в силу непрерывности функций $f \in C[a,b]$. Поэтому $\delta_{x_n} \to \delta_x$ сходится слабо* в C'[a,b]. Однако $\{\delta_{x_n}\}$ не сходится по норме, т.к. $\|\delta_{x_n} - \delta_x\| = 2$ при всех $x_n \neq x$.

Пусть E является $cenapaбельным банаховым пространством. Тогда существует счетная и всюду плотная система элементов <math>A = \{a_k\}$ пространства E. Определим метрику в сопряженном пространстве E' следующей формулой:

$$ho(f,g)\doteqdot\sum_{k=1}^\inftyrac{1}{2^k}rac{|f(a_k)-g(a_k)|}{1+|f(a_k)-g(a_k)|}$$
 при всех $f,g\in oldsymbol{E}'$.

Проверим аксиомы метрики. Симметричность $\rho(f,g)=\rho(g,f)$ очевидна. Так как функция $\varphi(t)=t/(t+1)$ возрастает на полуоси \mathbb{R}_+ и является полуаддитивной $\varphi(t+s)\leqslant \varphi(t)+\varphi(s)$ при всех $t,s\in\mathbb{R}_+$, то выполняется неравенство треугольника $\rho(f,g)\leqslant \rho(f,h)+\rho(h,g)$. Пусть $\rho(f,g)=0$, тогда $f(a_k)=g(a_k)$ при всех k. Так как множество A всюду плотно в E, то для любого $x\in E$ существуют $a_{k_n}\in A$, т.ч. $a_{k_n}\to x$. Отсюда в силу непрерывности $f(x)=\lim f(a_{k_n})=\lim g(a_{k_n})=g(x)$.

Лемма. Если E — сепарабельное банахово пространство, то ограниченная последовательность функционалов $\{f_n\} \subset E'$ тогда и только тогда сходится слабо*, когда она сходится в метрическом пространстве (E', ρ) .

Доказательство. Необходимость. Для каждого $\varepsilon > 0$ выберем m, т.ч. $1/2^m < \varepsilon/2$. Поскольку последовательность сходится $f_n(x) \to f(x)$ в каждой точке $x \in E$, то найдется N, т.ч. $|f_n(a_k) - f(a_k)| < \varepsilon/2$ при всех $n \geqslant N$ и $k = 1, \ldots, m$. Тогда имеем

$$ho(f_n,f)\leqslant \sum_{k=1}^mrac{1}{2^k}rac{arepsilon/2}{1+arepsilon/2}+\sum_{k=m+1}^\inftyrac{1}{2^k} при всех $n\geqslant N$.$$

Достаточность. Для любого $\varepsilon > 0$ выберем N, т.ч. $\rho(f_n,f) < \varepsilon$ при всех $n \geqslant N$. Тогда для любого k имеем $|f_n(a_k) - f(a_k)| < 2^k \varepsilon (1 + |f_n(a_k) - f(a_k)|)$ при всех $n \geqslant N$. Отсюда вытекает неравенство $|f_n(a_k) - f(a_k)| \leqslant 2^k \varepsilon / (1 - 2^k \varepsilon)$ при всех $0 < \varepsilon < 1/2^k$ и $n \geqslant N$. Следовательно, существует предел $\lim f_n(a_k) = f(a_k)$ в каждой точке $a_k \in A$. Поэтому, применяя критерий слабой* сходимости функционалов, мы получим, что последовательность сходится $f_n(x) \to f(x)$ при всех $x \in E$.

Теорема. Если E — сепарабельное банахово пространство, то множество $M \subset E'$ слабо * компактно в сопряженном пространстве E' тогда и только тогда, когда оно является ограниченным и слабо * замкнутым.

Доказательство. Необходимость. Так как функционал Дирака δ_x является слабо* непрерывным, то он достигает своей верхней грани на слабом* компакте $M \subset E'$. Поэтому $\sup_{f \in M} |f(x)| = \sup_{f \in M} |\delta_x(f)| < \infty$. Отсюда множество M слабо* ограничено и значит по свойству 3 оно будет ограниченным в пространстве E'.

Докажем слабую* замкнутость M. Пусть $g \notin M$. Поскольку слабая* топология хаусдорфова, то для каждого $f \in M$ существуют непересекающиеся окрестности $O(f) \cap O(g) = \emptyset$. Так как множество M покрывается окрестностями O(f), то существует конечное подпокрытие, т.е. $M \subset \bigcup_{i=1}^n O(f_i)$. Следовательно, взяв пересечение соответствующих окрестностей точки g, мы получим окрестность O(g), которая не пересекается с M. Таким образом, множество M является слабо* замкнутым.

Достаточность. По лемме слабая* сходимость ограниченной последовательности функционалов $\{f_n\}\subset E'$ равносильна ее сходимости в метрическом пространстве (E',ρ) . Поэтому всякое слабо* замкнутое множество является замкнутым в метрической топологии, т.е. слабая* топология слабее метрической. Отсюда всякое множество компактное в метрической топологии будет компактным и в слабой* топологии. Для доказательства компактности в метрическом пространстве (E',ρ) ограниченного и слабо* замкнутого множества M достаточно показать, что всякая последовательность $\{f)n\}\subset M$ имеет слабо* сходящуюся подпоследовательность. Поскольку последовательность чисел $\{f_n(a_1)\}$ является ограниченной, то для нее существует сходящаяся подпоследовательность $\{f_n^{(1)}(x_1)\}$. Аналогично, поскольку последовательность чисел $\{f_n^{(1)}(a_2)\}$ является ограниченной, то для нее существует сходящаяся подпоследовательность $\{f_n^{(2)}(a_2)\}$, и т.д.

Таким образом, диагональная последовательность $f_{n_k} = f_k^{(k)}$ сходится в каждой точке множества A. Следовательно, будут выполнены условия критерия слабой* сходимости последовательности функционалов $\{f_{n_k}\}$ в пространстве E'. Поэтому эта последовательность сходится $f_{n_k}(x) \to f(x)$ при всех $x \in E$. В силу слабой* замкнутости множества M ее предел принадлежит $f \in M$.

Следствие. На каждом ограниченном и слабо* замкнутым множестве $M \subset E'$ слабая* топология совпадает с метрической.

В самом деле, в силу доказательства достаточности этой теоремы множество M компактно в метрической топологии. А так как слабая* топология слабее метрической, то рассматривая тождественное отображение метрического компакта M в хаусдарфово пространство M со слабой* топологией, заключаем, что оно является гомеоморфизмом.

7 АБСОЛЮТНО НЕПРЕРЫВНЫЕ ФУНКЦИИ

Определение. Говорят, что функция $F:[a,b] \to \mathbb{R}$ имеет ограниченную вариацию на отрезке [a,b], если величина ее вариации на отрезке [a,b]

$$\mathbf{V}_{a}^{b}(F) \doteq \sup_{\tau} \sum_{i=1}^{n} |F(x_{i}) - F(x_{i-1})| < \infty$$

конечна, где верхняя грань берется по всем разбиениям $\tau \doteqdot \{a = x_0 < \ldots < x_n = b\}$. Через $\mathbf{BV}[a,b]$ обозначается пространство всех функции ограниченной вариации на отрезке [a,b] с нормой $\|F\|_{\mathbf{BV}} \doteqdot |F(a)| + \mathbf{V}_a^b(F)$.

Имеют место следующие свойства функции ограниченной вариации:

1. *Echu* $F \in BV[a,b]$, mo $V_a^b(F) = V_a^c(F) + V_c^b(F)$ npu a < c < b.

Если разбиение $\tau \doteqdot \{a = x_0 < \ldots < x_k < \ldots < x_n = b\}$ содержит точку $c = x_k$, то

$$\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| \leqslant \sum_{i=1}^{k} |F(x_i) - F(x_{i-1})| + \sum_{i=k+1}^{n} |F(x_i) - F(x_{i-1})| \leqslant \bigvee_{a}^{c} (F) + \bigvee_{c}^{b} (F).$$

Если разбиение не имеет точки c, то ее добавим, при этом указанное неравенство сохранится. Отсюда $\mathbf{V}_a^b(F) \leqslant \mathbf{V}_a^c(F) + \mathbf{V}_c^b(F)$. Выберем разбиения [a,c] и [c,b], т.ч.

$$\bigvee_{a}^{c}(F) < \sum_{i=1}^{k} |F(x_i) - F(x_{i-1})| + \frac{\varepsilon}{2} \quad \text{if} \quad \bigvee_{c}^{b}(F) < \sum_{i=k+1}^{n} |F(x_i) - F(x_{i-1})| + \frac{\varepsilon}{2}.$$

где $\varepsilon > 0$ и $c = x_k$. Тогда, складывая эти неравенства, получим $\mathbf{V}_a^c(F) + \mathbf{V}_c^b(F) \leqslant \sum_{i=1}^n |F(x_i) - F(x_{i-1})| + \varepsilon \leqslant \mathbf{V}_a^b(F) + \varepsilon$. Отсюда следует, что $\mathbf{V}_a^c(F) + \mathbf{V}_c^b(F) \leqslant \mathbf{V}_a^b(F)$.

2. Если $F \in BV[a,b]$, то функция $V(x) \doteqdot V_a^x(F)$ неубывающая, при этом, если F(x) непрерывна слева, то функция V(x) также непрерывна слева.

Первое утверждение очевидно. Для доказательства второго выберем разбиение $a=x_0<\ldots< x_{k-1}=x< x_k=c$, т.ч. $\mathbf{V}_a^c(F)<\sum_{i=1}^k|F(x_i)-F(x_{i-1})|+\varepsilon/2$, при этом мы можем считать, что $|F(c)-F(x)|<\varepsilon/2$ при всех $x\in(c-\delta,c)$, где $\delta>0$ и $\varepsilon>0$. Следовательно, при всех $x\in(c-\delta,c)$ выполняется неравенство

$$V(c) - V(x) \le \bigvee_{a}^{c} (F) - \sum_{i=1}^{k-1} |F(x_i) - F(x_{i-1})| < \bigvee_{a}^{c} (F) - \sum_{i=1}^{k} |F(x_i) - F(x_{i-1})| + \varepsilon/2 < \varepsilon.$$

Таким образом, функция V(x) непрерывна слева в точке $c \in (a,b]$.

3. Разложение Жорда́на. Если функция $F \in BV[a,b]$ имеет ограниченную вариацию, то существуют неубывающие функции α и β , т.ч.

$$F(x) = F(a) + \alpha(x) - \beta(x)$$
, $V(x) = \alpha(x) + \beta(x)$, $\alpha(a) = \beta(a) = 0$.

Эти неубывающие функции α и β вычисляются по следующим формулам:

$$\alpha(x) \doteqdot \frac{1}{2} \Big\{ V(x) + F(x) - F(a) \Big\}, \quad \beta(x) \doteqdot \frac{1}{2} \Big\{ V(x) - F(x) + F(a) \Big\}.$$

где $V(x) = \mathbf{V}_a^x(F)$. Так как функция F имеет ограниченную вариацию на отрезке [a,x], то $|F(x)-F(a)| \leqslant \mathbf{V}_a^x(F)$. Поэтому функции $\alpha(x)$ и $\beta(x)$ неубывающие. При этом, если F(x) непрерывна слева, то $\alpha(x)$ и $\beta(x)$ будут непрерывны слева.

4. Теорема Лебе́га. Если функция $F \in BV[a,b]$ имеет ограниченную вариацию, то существует производная F'(x) п.в. на отрезке [a,b] (без доказательства).

Интегралом Римана-Стилтьеса по функции $F \in BV[a,b]$ называется предел интегральных сумм $R_{\tau}(f)$ Римана-Стилтьеса, когда диаметр разбиения $d_{\tau} \to 0$, т.е.

$$\int_a^b f \, dF \doteqdot \lim_{d_\tau \to 0} R_\tau(f) \,, \text{ где } R_\tau(f) \doteqdot \sum_{k=1}^n f(\xi_k) (F(x_k) - F(x_{k-1})) \text{ и } \xi_k \in [x_{k-1}, x_k] \,.$$

Здесь $\tau \doteqdot \{a = x_0 < \ldots < x_n = b\}$ разбиение [a,b] и $d_{\tau} \doteqdot \max_{1 \leqslant k \leqslant n} (x_k - x_{k-1})$. Если $F(x) = F(a) + \alpha(x) - \beta(x)$ разложение Жорда́на, то он равен разности интегралов

$$\int_{a}^{b} f dF = \int_{a}^{b} f d\alpha - \int_{a}^{b} f d\beta.$$

Определение. Пусть функция $F \in BV[a,b]$ ограниченной вариации и непрерывна слева, а $F(x) = F(a) + \alpha(x) - \beta(x)$ есть ее разложение Жорда́на. По неубывающим и непрерывным слева функциям $\alpha(x)$ и $\beta(x)$ определим меры Лебе́га-Сти́лтьеса μ_{α} и μ_{β} . Разность мер $\phi_{F} \doteqdot \mu_{\alpha} - \mu_{\beta}$ называется обобщенной мерой или зарядом Лебе́га-Сти́лтьеса. При этом заряд ϕ_{F} определяется на пересечении $\Sigma_{F} \doteqdot \Sigma_{\alpha} \cap \Sigma_{\beta}$ σ -алгебр Σ_{α} и Σ_{β} измеримых множеств соответствующих мер μ_{α} и μ_{β} .

 $\mathit{Интегралом}$ $\mathit{Леб\'era-Cm\'uлтьесa}$ по заряду $\pmb{\phi}_F$ называется разность интегралов

$$\int_{a}^{b} f \, d\varphi_{F} \doteqdot \int_{a}^{b} f \, d\mu_{\alpha} - \int_{a}^{b} f \, d\mu_{\beta}$$

по мерам Лебе́га-Сти́лтьеса μ_{α} и μ_{β} на [a,b]. Функция $f:[a,b] \to \mathbb{F}$ называется интегрируемой по заряду ϕ_F , если она интегрируема по мерам μ_{α} и μ_{β} .

Лемма. Интеграл Ри́мана-Сти́лтьеса по $F \in BV[a,b]$ существует для всякой непрерывной функции $f \in C[a,b]$ и равен интегралу Лебе́га-Сти́лтьеса. Он не зависит от изменения функции F(x) на счетном множестве точек $x \in (a,b)$.

Доказательство. Суммы Римана-Сти́лтьеса $R_{\tau}(f,\xi,F)$ совпадают с интегралами Лебе́га-Сти́лтьеса от простых функций $h_{\tau}(x)=f(\xi_k)$ при $x\in [x_{k-1},x_k)$ и $k=1,\ldots,n$. Поскольку функция f(x) равномерно непрерывна, то $|f(x)-f(\xi_k)|<\varepsilon$ при всех $x\in [x_{k-1},x_k]$ и $d_{\tau}<\delta$. Поэтому $h_{\tau}\rightrightarrows f$ сходится равномерно при $d_{\tau}\to 0$. По теореме Лебе́га о мажорируемой сходимости существует предел интегралов от простых функций и значит f интегрируема по F в смысле Ри́мана-Сти́лтьеса.

Теорема (Ри́сса о представлении). Если $\alpha \in C'[a,b]$ непрерывный линейный функционал на пространстве C[a,b], то существует единственная функция $F \in BV[a,b]$ ограниченной вариации, т.ч. $\alpha(f) = \int_a^b f \, dF$ для всех $f \in C[a,b]$, где F(a) = 0, F(x) непрерывна слева в (a,b) и ее вариация $\mathbf{V}_a^b(F) = \|\alpha\|$.

Доказательство. Применяя следствие из теоремы Ха́на-Ба́наха, продолжим α на пространство ${m B}[a,b]$. Определим $F(t)\doteqdot\alpha(u_t)$, где $u_t(x)\doteqdot\chi_{[a,t)}(x)$ при $a\leqslant t< b$ и $u_b(x)=1$. Тогда F(a)=0. Докажем, что функция $F\in {m BV}[a,b]$. Пусть $\tau=\{t_k\}_{k=0}^n$ задает разбиение отрезка [a,b] и $\theta_k\doteqdot\arg(F(t_k)-F(t_{k-1}))$, тогда имеем

$$\sum_{k=1}^{n} |F(t_k) - F(t_{k-1})| = \sum_{k=1}^{n} e^{-i\theta_k} \alpha(u_{t_k} - u_{t_{k-1}}) = \alpha\left(\sum_{k=1}^{n} e^{-i\theta_k} \chi_{[t_{k-1},t_k)}\right) \leqslant \|\alpha\|.$$

поскольку $|\sum_{k=1}^n e^{-i\theta_k} \chi_{[t_{k-1},t_k)}(x)| = 1$. Поэтому $\mathbf{V}_a^b(F) \leqslant \|\alpha\|$ и $F \in \boldsymbol{BV}[a,b]$. Для каждой $f \in \boldsymbol{C}[a,b]$ введём ступенчатые функции $f_{\tau}(x) \doteqdot \sum_{k=1}^n f(\xi_k)(u_{t_k}(x) - u_{t_{k-1}}(x))$, где $\xi_k \in [t_{k-1},t_k]$. Эти функции $f_{\tau} \rightrightarrows f$ сходятся равномерно на [a,b], когда диаметр разбиения $d_{\tau} \to 0$. Отсюда в силу непрерывности $\alpha \in \boldsymbol{B}'[a,b]$ получим

$$\alpha(f) = \lim_{d_{\tau} \to 0} \alpha(f_{\tau}) = \lim_{d_{\tau} \to 0} \sum_{k=1}^{n} f(\xi_{k}) \big(F(t_{k}) - F(t_{k-1}) \big) = \int_{a}^{b} f \, dF.$$

Поскольку $F \in BV[a,b]$ имеет не более счетного числа точек разрыва и интеграл Ри́мана-Сти́лтьеса не зависит от изменения F на счётном множестве точек (a,b), то F можно считать непрерывной слева в (a,b). Так как при $||f||_{C} \leqslant 1$

$$|\alpha(f)| = \left| \int_a^b f \, dF \right| \leqslant \sup_\tau \sum_{k=1}^n |f(\xi_k)| \, |F(t_k) - F(t_{k-1})| \leqslant \bigvee_a^b (F) \,, \text{ to } \|\alpha\| = \bigvee_a^b (F) \,.$$

Докажем единственность. Пусть функция $g_n \in C[a,b]$, т.ч. $g_n(x) = 1$ при $x \in [a,t_n]$, $g_n(x) = 0$ при $x \in [t,b]$, а в интервале (t_n,t) является линейной. Тогда в силу непрерывности F слева $|\alpha(g_n) - F(t_n)| = \left| \int_{t_n}^t g_n dF \right| \leqslant \mathbf{V}_{t_n}^t(F) \to 0$ при $t_n \nearrow t$, т.е. имеет место равенство $\lim \alpha(g_n) = \lim_{n \to \infty} F(t_n) = F(t)$ при всех $t \in (a,b]$.

Следствие. Сопряжённое пространство C'[a,b] к пространству C[a,b] изометрично подпространству $BV_0[a,b]$ всех функций $F \in BV[a,b]$, т.ч. F(a) = 0, F(x) непрерывна слева в (a,b) и ее норма равна $\|F\|_{BV_0} \doteqdot V_a^b(F)$.

Определение. Пусть (X, Σ, μ) измеримое пространство с полной, σ -аддитивной и σ -конечной мерой μ , заданной на σ -алгебре Σ измеримых множеств в X. Далее через $L(X,\mu)$ обозначается пространство всех функций, интегрируемых по Лебегу на множестве X относительно меры μ .

Функция $\varphi: \Sigma \to \mathbb{R}$ называется *зарядом* (или обобщенной мерой) на множестве X, если она является σ -аддитивной функцией, заданной на σ -алгебре Σ . Заряд называется *абсолютно непрерывным* на X (обозначается $\varphi \ll \mu$), если для любого $\varepsilon > 0$ существует $\delta > 0$, т.ч. $|\varphi(A)| < \varepsilon$ при всех $A \in \Sigma$ меры $\mu(A) < \delta$.

Теорема (Радо́на-Никоди́ма). *Если заряд является абсолютно непрерывным* $\phi \ll \mu$ на X, то существует функция $f \in L(X,\mu)$ интегрируемая по Лебегу, m.u. $\phi(A) = \int_A f \, d\mu$ для всех множеств $A \in \Sigma$ (без доказательства).

Указанная функция $f \in L(X,\mu)$ называется *производной Радо́на-Никоди́ма* и обозначается через $f \doteqdot d\varphi/d\mu$. Докажем, что ее единственность с точностью до эквивалентности. Пусть $f,g \in L(X,\mu)$, т.ч. $\int_A f d\mu = \int_A g d\mu$ при всех $A \in \Sigma$. Положим $A_n \doteqdot \{x \in X \mid f(x) - g(x) > 1/n\}$, тогда мера $\mu(A_n) \leqslant n \int_{A_n} (f-g) d\mu = 0$ и значит множество $\{x \in X \mid f(x) - g(x) > 0\} = \bigcup_{n=1}^{\infty} A_n$ имеет меру нуль. Аналогично множество $\{x \in X \mid f(x) - g(x) < 0\}$ имеет меру нуль. Поэтому функции $f \sim g$ эквивалентны.

Теорема (критерий абсолютной непрерывности). Заряд является абсолютно непрерывным $\phi \ll \mu$ на множестве X тогда u только тогда, когда $\phi(A)=0$ для каждого множества $A \in \Sigma$ меры нуль $\mu(A)=0$.

Доказательство. Необходимость очевидна, т.к. если имеет место $\mu(A)=0<\delta$ при всех $\delta>0$, то $|\varphi(A)|<\varepsilon$ для любого $\varepsilon>0$ и, следовательно, $\varphi(A)=0$.

Для доказательства достаточности применим теорему Радо́на-Никоди́ма, тогда существует функция $f \in L(X,\mu)$, т.ч. $\varphi(A) = \int_A f \, d\mu$ при всех $A \in \Sigma$. Поскольку $f = f_+ - f_-$, то достаточно рассмотреть случай, когда функция f неотрицательна. Полагая $E_n \doteqdot \{x \in X \mid f(x) \leqslant n\}$, имеем $E_n \nearrow X$ и в силу свойства непрерывности снизу $\lim \varphi(E_n) = \varphi(X)$. Следовательно, для любого $\varepsilon > 0$ существует число n, т.ч. $\varphi(X \setminus E_n) < \varepsilon/2$. Отсюда для всех $A \in \Sigma$ с мерой $\mu(A) < \delta \doteqdot \varepsilon/2n$ получим

$$\varphi(A) = \int_A f d\mu = \int_{A \cap E_n} f d\mu + \int_{A \setminus E_n} f d\mu \leqslant n\mu(A) + \varphi(X \setminus E_n) < \varepsilon.$$

Таким образом, заряд является абсолютно непрерывным.

Определение. Функция $F:[a,b] \to \mathbb{R}$ называется абсолютно непрерывной, если для любого $\varepsilon>0$ существует $\delta>0$, т.ч. для всякой системы непересекающихся интервалов $\bigsqcup_{k=1}^n (a_k,b_k) \subset [a,b]$ с суммой длин $\sum_{k=1}^n (b_k-a_k) < \delta$ выполняется неравенство $\sum_{k=1}^n |F(b_k)-F(a_k)| < \varepsilon$. Через AC[a,b] обозначается пространство всех абсолютно непрерывных функций с нормой $\|F\|\doteqdot |F(a)| + \int_a^b |F'(t)| \, dt$.

1. Если $F \in \text{Lip}[a,b]$, т.е. при некотором c>0 выполняется условие Ли́пшица $|F(x)-F(y)| \leqslant c\,|x-y|$ при всех $x,y\in[a,b]$, то $F\in AC[a,b]$.

В самом деле, для всякой системы интервалов $\bigsqcup_{k=1}^n (a_k,b_k) \subset [a,b]$ с суммой длин $\sum_{k=1}^n (b_k-a_k) < \delta < \varepsilon/c$ выполняется неравенство $\sum_{k=1}^n |F(b_k)-F(a_k)| < c\delta < \varepsilon$.

2. Если $F \in AC[a,b]$, то $F \in BV[a,b]$. Поэтому производная F'(x) абсолютно непрерывной функции по теореме Лебега существует п.в. на [a,b].

Для каждого $\varepsilon>0$ выберем $\delta>0$, как было указано в определении абсолютной непрерывности. Рассмотрим разбиение отрезка [a,b] на интервалы равной дилины $(x_k-x_{k-1})=\frac{(b-a)}{n}<\delta$, тогда получим $\mathbf{V}_a^b(F)=\sum_{k=1}^n\mathbf{V}_{x_{k-1}}^{x_k}(F)\leqslant n\varepsilon$.

3. Если $F(x) = F(a) + \alpha(x) - \beta(x)$ разложение Жорда́на функции $F \in AC[a,b]$, то функции $\alpha, \beta \in AC[a,b]$ абсолютно непрерывны.

Докажем, что функция $V(x) = \mathbf{V}_a^x(F)$ абсолютно непрерывна. Для любого $\varepsilon > 0$ выберем $\delta > 0$, как было указано в определении абсолютной непрерывности, т.ч.

$$\sum_{k=1}^n |F(b_k) - F(a_k)| < arepsilon/2$$
, если $\bigsqcup_{k=1}^n (a_k, b_k) \subset [a,b]$ и $\sum_{k=1}^n (b_k - a_k) < \delta$.

Поскольку $F \in \boldsymbol{BV}[a_k,b_k]$, то существует разбиение $a_k = x_{k,0} < x_{k,1} < \ldots < x_{k,n_k} = b_k$, т.ч. $\mathbf{V}_{a_k}^{b_k}(F) < \sum_{l=1}^{n_k} |F(x_{k,l}) - F(x_{k,l-1})| + \varepsilon/2^{k+1}$. Тогда выполняется неравенство

$$\sum_{k=1}^{n} |V(b_k) - V(a_k)| = \sum_{k=1}^{n} \sum_{a_k}^{b_k} (F) < \sum_{k=1}^{n} \sum_{l=1}^{n_k} |F(x_{k,l}) - F(x_{k,l-1})| + \varepsilon/2 < \varepsilon,$$

Поэтому V(x) абсолютно непрерывна. Поскольку $\alpha(x) \doteqdot \{V(x) + F(x) - F(a)\}/2$ и $\beta(x) \doteqdot \{V(x) - F(x) + F(a)\}/2$, то они также абсолютно непрерывны.

Лемма 1. Если $F \in AC[a,b]$ абсолютно непрерывна, то найдется $f \in L[a,b]$ интегрируемая по Лебегу, т.ч. $F(x) = F(a) + \int_a^x f(t) dt$ при всех $x \in [a,b]$.

Доказательство. Так как функция F абсолютно непрерывна, то она имеет ограниченную вариацию. Рассмотрим ее разложение Жорда́на $F(x) = F(a) + \alpha(x) - \beta(x)$. Так как $\alpha(x)$ и $\beta(x)$ абсолютно непрерывны, то меры Лебе́га-Сти́лтьеса μ_{α} и μ_{β} , а также заряд Лебе́га-Сти́лтьеса $\phi_F \doteqdot \mu_{\alpha} - \mu_{\beta}$ будут абсолютно непрерывными относительно меры Лебега. Значит в силу теоремы Радо́на-Никоди́ма существуют функции $f_{\alpha}, f_{\beta}, f \doteqdot f_{\alpha} - f_{\beta} \in \mathbf{L}[a,b]$ интегрируемые по Лебегу, т.ч.

$$F(x) - F(a) = \mu_{\alpha}([a,x)) - \mu_{\beta}([a,x)) = \int_{a}^{x} f_{\alpha}(t) dt - \int_{a}^{x} f_{\beta}(t) dt = \int_{a}^{x} f(t) dt.$$

Таким образом, получаем равенство $F(x) = F(a) + \int_a^x f(t) dt$ при всех $x \in [a,b]$.

Лемма 2. Если F неубывающая функция на [a,b], то $\int_a^b F'(t) dt \leqslant F(b) - F(a)$. Если, кроме того, $F \in \text{Lip}[a,b]$, то это неравенство является равенством.

Доказательство. Рассмотрим функцию $F_n(t) \doteqdot n(F(t+1/n)-F(t))$, где $F(t) \doteqdot F(b)$ при $t \in [b,b+1]$. Поскольку по теореме Лебега предел $\lim F_n(t) = F'(t)$ существует п.в. на отрезке [a,b], то по теореме Фату́ выполняется неравенство

$$\int_{a}^{b} F'(t) dt \leqslant \underline{\lim}_{n \to \infty} \int_{a}^{b} F_n(t) dt = \underline{\lim}_{n \to \infty} \left(n \int_{b}^{b + \frac{1}{n}} F(t) dt - n \int_{a}^{a + \frac{1}{n}} F(t) dt \right) \leqslant F(b) - F(a).$$

Если функция $F \in \operatorname{Lip}[a,b]$ удовлетворяет условию Липшица, то будет выполняться неравенство $|F_n(t)| \leq c$ при всех $x \in [a,b]$. Следовательно, в силу теоремы Лебе́га о мажорируемой сходимости имеют место равенства

$$\int_{a}^{b} F'(t) dt = \lim_{n \to \infty} \int_{a}^{b} F_n(t) dt = \lim_{n \to \infty} \left(n \int_{b}^{b + \frac{1}{n}} F(t) dt - n \int_{a}^{a + \frac{1}{n}} F(t) dt \right) = F(b) - F(a).$$

Таким образом, лемма доказана полностью.

Теорема (формула Ньюто́на-Ле́йбница для абсолютно непрерывных функций). Если $F \in AC[a,b]$, то $F'(x) \in L[a,b]$ и $F(x) = F(a) + \int_a^x F'(t) dt$ при $x \in [a,b]$.

Доказательство. Мы можем считать, что F(a)=0. Тогда при помощи леммы 1 найдется функция $f\in \boldsymbol{L}[a,b]$, т.ч. $F(x)=\int_a^x f(t)\,dt$ при всех $x\in [a,b]$. Представляя функцию в виде $f=f_+-f_-$, где $f_\pm\doteqdot\max\{\pm f,0\}$, мы сведем доказательство к случаю, когда функция $f(x)\geqslant 0$ неотрицательна, а функция F(x) неубывающая. Нам осталось доказать, что имеет место равенство F'(x)=f(x) п.в. на [a,b].

Пусть $F_n(x)\doteqdot \int_a^x f_n(t)\,dt$, где $f_n(t)\doteqdot \min\{f(t),n\}$. Тогда $F_n\in \mathrm{Lip}[a,b]$ и по лемме 2 получим $F_n(x)=\int_a^x F_n'(t)\,dt$ при всех $x\in [a,b]$. В силу единственности производной Радо́на-Никоди́ма $F_n'(x)=f_n(x)$ п.в. на [a,b]. Тогда $F(x)-F_n(x)=\int_a^x (f-f_n)(t)\,dt$. Так как здесь подынтегральная функция неотрицательна, то функция $F(x)-F_n(x)$ неубывающая и существует неотрицательная производная $F'(x)-F_n'(x)\geqslant 0$ п.в. на отрезке [a,b]. Поэтому $F'(x)\geqslant F_n'(x)=f_n(x)$ п.в. на [a,b].

Переходя к пределу в этом неравенстве получим, что $F'(x) \geqslant f(x)$ п.в. на [a,b]. Отсюда $\int_a^b F'(t) - f(t) \, dt \geqslant 0$. С другой стороны, по леммы 2 выполняется обратное неравенство $\int_a^b (F'-f)(t) \, dt \leqslant 0$. Таким образом, этот интеграл $\int_a^b (F'-f)(t) \, dt = 0$ равен нулю. Поскольку подынтегральная функция является неотрицательной п.в. на отрезке [a,b], то функция F'(x)-f(x)=0 равна нулю п.в. на [a,b].

Пример 1. Рассмотрим пример непрерывной и п.в. дифференцируемой функции $f:[a,b] \to \mathbb{R}$, которая не является абсолютно непрерывной, т.е. $f \notin AC[a,b]$.

Как известно, функция Ка́нтора $k:[0,1]\to [0,1]$ является на [0,1] монотонной и непрерывной, а ее производная равна нулю k'(x)=0 п.в. на отрезке [0,1], т.к. на каждом дополнительном интервале к канторову множеству $C\subset [0,1]$ она равна константе, а канторово множество имеет меру нуль $\mu(C)=0$. Отсюда имеем

$$1 = k(1) - k(0) \neq \int_0^1 k'(t) dt = 0,$$

т.е. $k \notin AC[0,1]$ не является абсолютно непрерывной. В частности, $k \notin Lip[0,1]$.

Пример 2. Если функция $f \in {\bf BV}[a,b]$ имеет ограниченную вариацию, то ее вариация вычисляется по формуле ${\bf V}_a^b(f) = \int_a^b |f'(x)| \, dx$.

В самом деле, пусть $\tau = \{a = x_0 < \ldots < x_n = b\}$ разбиение отрезка [a,b]. Тогда, применяя формулу Нью́тона-Ле́йбница, получим

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f'(x) \, dx \right| \le \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f'(x)| \, dx = \int_{a}^{b} |f'(x)| \, dx$$

Отсюда $\mathbf{V}_a^b(f)\leqslant \int_a^b |f'(x)|\,dx.$ С другой стороны, если $V(x)=\mathbf{V}_a^x(f)$, то по лемме 2

$$\mathbf{V}_{a}^{b}(f) = V(b) - V(a) \geqslant \int_{a}^{b} V'(x) dx \geqslant \int_{a}^{b} |f'(x)| dx.$$

т.к. $\mathbf{V}_{x}^{y}(f)\geqslant |f(y)-f(x)|$ и, следовательно, $V'(x)\geqslant |f'(x)|$ при п.в. $x\in [a,b]$.

Замечание. В силу доказанного в этой задаче имеем $\int_a^b V'(x) \, dx = \int_a^b |f'(x)| \, dx$ и $V'(x) \geqslant |f'(x)|$ при п.в. $x \in [a,b]$. Поэтому V'(x) = |f'(x)| при п.в. $x \in [a,b]$, т.к. если интеграл Лебега от неотрицательной функции $\int_a^b V'(x) - |f'(x)| \, dx = 0$ равен нулю, то эта функция равна нулю почти всюду на отрезке [a,b].

Пример 3. Выяснить при каких $\alpha > 0$ функция $f(x) = x^{\alpha} \sin \frac{1}{x}$ и f(0) = 0 имеет ограниченную вариацию на отрезке [0,1], т.е. $f \in \boldsymbol{BV}[0,1]$.

Выберем точки $x_n=\frac{2}{\pi(2n+1)}$ из отрезка [0,1], т.ч. $\sin\frac{1}{x_n}=(-1)^n$, где $n=0,1,\ldots$ Тогда вариация функции f оценивается снизу величиной сходящегося ряда

$$\mathbf{V}_{0}^{1}(f) \geqslant \sum_{n=1}^{\infty} |f(x_{n}) - f(x_{n-1})| = \left(\frac{2}{\pi}\right)^{\alpha} \sum_{n=1}^{\infty} \left(\frac{1}{(2n+1)^{\alpha}} + \frac{1}{(2n-1)^{\alpha}}\right) \sim \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}.$$

Последний ряд сходится тогда и только тогда, когда $\alpha>1$. Поэтому, если функция $f\in {\bf BV}[0,1]$, то $\alpha>1$. Обратно, если $\alpha>1$, то $f'(x)=\alpha x^{\alpha-1}\sin\frac{1}{x}-x^{\alpha-2}\cos\frac{1}{x}$ и

$$\mathbf{V}_{0}^{1}(f) \leqslant \int_{0}^{1} |f'(x)| \, dx \leqslant \alpha \int_{0}^{1} x^{\alpha - 1} dx + \int_{0}^{1} x^{\alpha - 2} dx = \frac{1}{\alpha} + \frac{1}{\alpha - 1} < \infty.$$

Пример 4. Выяснить при каких $\alpha > 0$ функция $f(x) = x^{\alpha} \sin \frac{1}{x}$ и f(0) = 0 будет абсолютно непрерывной на отрезке [0,1], т.е. $f \in AC[0,1]$.

Допустим, что функция $f \in AC[0,1]$ абсолютно непрерывна. Тогда $f \in BV[0,1]$ имеет ограниченную вариацию, и, следовательно, по предыдущей задаче $\alpha > 1$. Пусть теперь $\alpha > 1$. Так как производная $f'(x) = \alpha x^{\alpha-1} \sin \frac{1}{x} - x^{\alpha-2} \cos \frac{1}{x}$ является интегрируемой по Лебегу, то по формуле Нью́тона-Ле́йбница $f(x) = \int_0^x f'(t) \, dt$ при всех $x \in [0,1]$. Используя теорему об абсолютной непрерывности неопределенного интеграла Лебега, заключаем, что f(x) абсолютно непрерывна.

Пример 5. Пусть функции $f \in AC[a,b]$ и $g \in AC[c,d]$ абсолютно непрерывны, функция g(x) строго возрастает на отрезке [c,d] и $[g(c),g(d)] \subset [a,b]$. Тогда сложная функция F(x) = f(g(x)) является абсолютно непрерывной на отрезке [c,d].

По определению абсолютной непрерывности для любого $\varepsilon>0$ существует $\eta>0$, т.ч. для всякой системы непересекающихся интервалов $\bigsqcup_{k=1}^n (a_k,b_k) \subset [g(c),g(d)]$ с суммой длин $\sum_{k=1}^n (b_k-a_k) < \eta$ выполняется неравенство $\sum_{k=1}^n |f(b_k)-f(a_k)| < \varepsilon$. Кроме того, существует такое $\delta>0$, что для всякой системы непересекающихся интервалов $\bigsqcup_{k=1}^n (c_k,d_k) \subset [c,d]$ с суммой длин $\sum_{k=1}^n (d_k-c_k) < \delta$ будет выполняется неравенство $\sum_{k=1}^n (g(d_k)-g(c_k)) < \eta$. Следовательно, получаем

$$\sum_{k=1}^n |F(d_k) - F(c_k)| < arepsilon$$
 , если $\bigsqcup_{k=1}^n (c_k, d_k) \subset [c, d]$ и $\sum_{k=1}^n (d_k - c_k) < \delta$.

Таким образом, функция $F \in AC[c,d]$ абсолютно непрерывна. Заметим еще, что если исключить условие строгой монотонности функции g(x), то утверждение этой задачи не верно.

8 **IPOCTPAHCTBA** $L_p(X,\mu)$, $1 \le p \le \infty$

Пусть (X, Σ, μ) — измеримое пространство с полной и σ -конечной мерой μ , а \mathbb{F} обозначает поле действительных $\mathbb{F} = \mathbb{R}$ или комплексных $\mathbb{F} = \mathbb{C}$ чисел.

Определение. Комплекснозначная функция $f: X \to \mathbb{C}$ называется измеримой, если f = u + iv, где $u \doteqdot \Re f$ и $v \doteqdot \Im f$ измеримые функции, и интегрируемой по Лебегу, т.е. $f \in L(X, \mu)$, если u и v интегрируемы по Лебегу, при этом интеграл

$$\int_X f d\mu \doteqdot \int_X u d\mu + i \int_X v d\mu.$$

1. Если $f,g\in {m L}(X,{m \mu})$ и ${m \lambda}\in {\mathbb F}$, то ${m \lambda} f,f+g\in {m L}(X,{m \mu})$ и выполняются равенства

$$\int_X (\lambda f) d\mu = \lambda \int_X f d\mu \ u \ \int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu.$$

Пусть $\lambda=a+ib$, f=u+iv, g=p+iq, тогда имеем $\lambda f=(au-bv)+i(av+bu)$ и f+g=(u+p)+i(v+q). Отсюда по определению интеграла получим

$$\int_{X} (\lambda f) d\mu = \left(a \int_{X} u d\mu - b \int_{X} v d\mu \right) + i \left(a \int_{X} v d\mu + b \int_{X} u d\mu \right) = \lambda \int_{X} f d\mu.$$

$$\int_{X} (f+g) d\mu = \int_{X} (u+p) d\mu + i \int_{X} (v+q) d\mu = \int_{X} f d\mu + \int_{X} g d\mu.$$

Таким образом, $L(X,\mu)$ является линейным пространством над полем \mathbb{F} .

2. Если $f \in L(X,\mu)$, то модуль $|f| \in L(X,\mu)$ и $|\int_X f d\mu| \le \int_X |f| d\mu$.

Так как $|f|\leqslant |u|+|v|$, то $|f|\in oldsymbol{L}(X,oldsymbol{\mu})$. Если $\int_X f\,doldsymbol{\mu}=oldsymbol{e}^{oldsymbol{i}oldsymbol{ heta}}|\int_X f\,doldsymbol{\mu}|$, то получаем

$$\left| \int_X f \, d\mu \right| = \Re \left(e^{-i\theta} \int_X f \, d\mu \right) = \int_X \Re \left(e^{-i\theta} f \right) d\mu \leqslant \int_X |f| \, d\mu.$$

3. Если $f_1 \sim g_1$ и $f_2 \sim g_2$, то $f_1 + f_2 \sim g_1 + g_2$ и $\lambda f_1 \sim \lambda g_1$. При этом если $f \sim g$ и $f \in L(X, \mu)$, то $g \in L(X, \mu)$ и интегралы равны.

По условию $f_1=g_1$ на множестве $X\setminus A_1$ и $f_2=g_2$ на множестве $X\setminus A_2$, где $\mu(A_1)=\mu(A_2)=0$. Тогда $f_1+f_2=g_1+g_2$ на множестве $X\setminus (A_1\cup A_2)$, где $\mu(A_1\cup A_2)=0$, и $\lambda f_1=\lambda g_1$ на множестве $X\setminus A_1$, где $\mu(A_1)=0$. Следовательно, $f_1+f_2\sim g_1+g_2$ и $\lambda f_1\sim \lambda g_1$ эквивалентны. Таким образом, пространство классов эквивалентности измеримых функций является линейным пространством над полем $\mathbb F$. Последнее утверждение вытекает из свойства интеграла Лебега.

Определение. Множество $L_{\infty}(X,\mu)$ всех классов эквивалентности ограниченных измеримых функций $f:X\to \mathbb{F}$ с нормой $\|f\|_{L_{\infty}}\doteqdot\inf_{\mu(A)=0}\sup_{x\in X\setminus A}|f(x)|$ называется пространством существенно ограниченных функций. Таким образом, $L_{\infty}(X,\mu)$ является факторпространством пространства $B(X,\Sigma)$ всех ограниченных измеримых функций по подпространству функций, эквивалентных нулю. Далее мы будем обращаться с классами эквивалентности как с обычными функциями.

Норма $\|f\|_{L_\infty}$ называется *существенной верхней гранью модуля функции* |f|. Покажем, что указанная нижняя грань достигается на некотором множестве меры нуль. Выберем множества $A_n \subset X$, т.ч. $\mu(A_n) = 0$ и $|f(x)| \leqslant \|f\|_{L_\infty} + 1/n$ при всех $x \in X \setminus A_n$. Тогда их объединение $N_f = \bigcup_{n=1}^\infty A_n$ имеет меру нуль $\mu(N_f) = 0$ и значит существенная верхняя грань равна верхней грани $\|f\|_{L_\infty} = \sup_{x \in X \setminus N_f} |f(x)|$.

Докажем свойства нормы. Если $\|f\|_{L_\infty}=0$, то по доказанному выше имеем $f\sim 0$. Однородность нормы $\|\lambda f\|_{L_\infty}=|\lambda\|f\|_{L_\infty}$ очевидна. Выберем множества N_f и N_g меры нуль $\mu(N_f)=\mu(N_g)=0$, т.ч. $\|f\|_{L_\infty}=\sup_{x\in X\setminus N_f}|f(x)|$ и $\|g\|_{L_\infty}=\sup_{x\in X\setminus N_g}|g(x)|$. Полагая $N=N_f\cup N_g$, получим $\mu(N)=0$ и выполняется неравенство

$$\|f+g\|_{\boldsymbol{L}_{\infty}}\leqslant \sup_{\boldsymbol{x}\in X\backslash N}|f(\boldsymbol{x})+g(\boldsymbol{x})|\leqslant \sup_{\boldsymbol{x}\in X\backslash N}|f(\boldsymbol{x})|+\sup_{\boldsymbol{x}\in X\backslash N}|g(\boldsymbol{x})|\leqslant \|f\|_{\boldsymbol{L}_{\infty}}+\|g\|_{\boldsymbol{L}_{\infty}}.$$

Теорема. Пространство $L_{\infty}(X,\mu)$ является ба́наховым пространством.

Доказательство. Пусть $\{f_n\}$ последовательность Коши в пространстве $\mathbf{L}_{\infty}(X,\mu)$ и множество $N = \bigcup_{n,m=1}^{\infty} N_{(f_n-f_m)}$ имеет меру нуль $\mu(N) = 0$. Так как выполняются равенства $\|f_n - f_m\|_{\mathbf{L}_{\infty}} = \sup_{x \in X \setminus N} |f_n(x) - f_m(x)|$, то $\{f_n\}$ является последовательностью Коши в пространстве $\mathbf{B}(X \setminus N)$ ограниченных функций на множестве $X \setminus N$ и в силу его полноты имеет предел $f_n \rightrightarrows f \in \mathbf{B}(X \setminus N)$. Полагая функцию f(x) = 0 при всех $x \in N$, мы получим ограниченную измеримую функцию $f \in \mathbf{B}(X)$, при этом из равномерной сходимости на $X \setminus N$ следует, что $\lim_{n \to \infty} \|f - f_n\|_{\mathbf{L}_{\infty}} = 0$.

Определение. Пространством $L_p(X,\mu)$ суммируемых функций степени $p\geqslant 1$ называется множество классов эквивалентности измеримых функций $f:X\to \mathbb{F}$, т.ч. $|f|^p\in L(X,\mu)$ и норма определяются по формуле $\|f\|_{L_p}\doteqdot \left(\int_X |f|^p d\mu\right)^{1/p}$.

Пространство $L_p(X,\mu)$ является факторпространством пространства измеримых функций, т.ч. $|f|^p \in L(X,\mu)$, по подпространству функций, эквивалентных нулю. Мы будем обращаться с классами эквивалентности как с обычными функциями. Если функции $f,g \in L_p(X,\mu)$, то $|f+g|^p \leqslant 2^p (|f|^p + |g|^p)$ и значит $f+g \in L_p(X,\mu)$. Поэтому $L_p(X,\mu)$ является линейным пространством. Докажем свойства нормы.

Неравенство Гёльдера. Если $f,g:X\to\mathbb{F}$ являются измеримыми функциями, то

$$\int_X |fg|\,d\mu\leqslant \|f\|_{L_p}\|g\|_{Lq}$$
 при $1\leqslant p,q\leqslant \infty$ и $1/p+1/q=1$.

Пусть $1 < p,q < \infty$. Докажем неравенство Ю́нга: $ab \leqslant a^p/p + b^q/q$ при $a,b \in \mathbb{R}_+$. Функции $y = x^{p-1}$ и $x = y^{q-1}$ взаимно обратные на полуоси \mathbb{R}_+ , т.к. 1/(p-1) = q-1. Поэтому площадь прямоугольника ab оценивается суммой интегралов

$$ab \leqslant \int_0^a x^{p-1} dx + \int_0^b y^{q-1} dy = a^p/p + b^q/q.$$

Знак равенства имеет место только тогда, когда $a^{p-1} = b$, т.е. $a^p = b^q$.

Пусть $A = \int_X |f|^p d\mu$ и $B = \int_X |g|^q d\mu$. Если один из этих интегралов равен нулю или бесконечности, то утверждение верно. Иначе, полагая в неравенстве Юнга $a \doteqdot |f|/A^{1/p}$ и $b \doteqdot |g|/B^{1/q}$, а затем интегрируя обе его части, получим

$$\int_{X} ab \, d\mu \leqslant \int_{X} |f|^{p} d\mu / pA + \int_{X} |g|^{q} d\mu / qB = 1/p + 1/q = 1.$$

Отсюда получаем неравенство Гёльдера. Знак равенства в неравенстве Гёльдера имеет место тогда и только тогда, когда выполняется равенство $|f|^p/A = |g|^q/B$ п.в. на множестве X. При p=1 и $q=\infty$ неравенство Гёльдера очевидно.

Неравенство Минко́вского. Если $f,g:X o\mathbb{F}$ измеримые функции, то

$$\|f+g\|_{\boldsymbol{L}_p}\leqslant \|f\|_{\boldsymbol{L}_p}+\|g\|_{\boldsymbol{L}_p}$$
 при $1\leqslant p\leqslant \infty$.

При этом в случае $1 равенство будет выполняться тогда и только тогда, когда <math>f = \lambda \, g$ п.в. на X, где $\lambda \geqslant 0$. В случае p = 1 неравенство очевидно, а случае $p = \infty$ оно было доказано выше. Рассмотрим случай $1 . Введем обозначения <math>A = \int_X |f|^p \, d\mu$, $B = \int_X |g|^p \, d\mu$, $C = \int_X |f+g|^p \, d\mu$. Применяя неравенство Гёльдера и учитывая, что (p-1)q = p, имеем неравенство

$$C = \int_X |f + g|^p d\mu \leqslant \int_X |f| |f + g|^{p-1} d\mu + \int_X |g| |f + g|^{p-1} d\mu \leqslant A^{1/p} C^{1/q} + B^{1/p} C^{1/q}.$$

Поделив на множитель $C^{1/q}$, получим неравенство Минко́вского. Равенство имеет место тогда и только тогда, когда равенства |f+g|=|f|+|g| и $|f|^p/A=|g|^p/B$ выполняются п.в. на множестве X. Тогда из первого равенства следует, что f=hg п.в. на X, где $h\geqslant 0$ п.в. на X. Из второго равенства следует, что $h^p=A/B$ п.в. на множестве $X(g\neq 0)$. Отсюда $f=\lambda\,g$ п.в. на X, где $\lambda=(A/B)^{1/p}\geqslant 0$. Следовательно, пространство $L_p(X,\mu)$ является строго нормированным при $1< p<\infty$.

Обобщенное неравенство Минко́вского. Пусть (X_1, Σ_1, μ_1) и (X_2, Σ_2, μ_2) два измеримых пространства с полными и σ -конечными мерами μ_1 и μ_2 . Если функция $f: X_1 \times X_2 \to \mathbb{F}$ измерима на произведении этих измеримых пространств, то

$$\left(\int_{X_1} \left(\int_{X_2} |f_{x_1}| d\mu_2\right)^p d\mu_1\right)^{1/p} \leqslant \int_{X_2} \left(\int_{X_1} |f_{x_2}|^p d\mu_1\right)^{1/p} d\mu_2$$
 при $1 .$

Здесь функции $f_{x_1}(x_2) \doteqdot f(x_1, x_2)$ и $f_{x_2}(x_1) \doteqdot f(x_1, x_2)$ обозначают сечения функции $f(x_1, x_2)$ по переменным x_1 и x_2 соответственно. Поскольку по теореме Фуби́ни функция $g(x_1) \doteqdot \int_{X_2} |f_{x_1}| \, d\mu_2$ определена п.в. и измерима на X_1 , то, изменяя порядок интегрирования и применяя неравенство Гёльдера, имеем

$$\int_{X_1} g^p d\mu_1 = \int_{X_2} \left(\int_{X_1} |f_{x_2}| g^{p-1} d\mu_1 \right) d\mu_2 \leqslant \int_{X_2} \left(\int_{X_1} |f_{x_2}|^p d\mu_1 \right)^{1/p} d\mu_2 \left(\int_{X_1} g^p d\mu_1 \right)^{1/q}.$$

где (p-1)q=p. Осталось поделить обе части неравенства на последнюю скобку и мы получим обобщенное неравенство Mинко́вского.

Теорема. $L_p(X,\mu)$ при $1\leqslant p<\infty$ является банаховым пространством.

Доказательство. Пусть $\{f_n\}$ последовательность Коши́ в пространстве ${m L}_p(X,\mu)$. Выберем $n_1 < n_2 < \ldots$, т.ч. $\|f_i - f_j\|_{{m L}_p} < 2^{-k}$ при всех $i,j \geqslant n_k$, и положим

$$g(x) \doteq |f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)|.$$

Поскольку частичные суммы $g_n(x) = |f_{n_1}(x)| + \sum_{k=1}^n |f_{n_{k+1}}(x) - f_{n_k}(x)|$ монотонно сходятся $g_n(x) \nearrow g(x)$ и в силу неравенства Минко́вского $\|g_n\|_{\mathbf{L}_p} \leqslant \|f_{n_1}\|_{\mathbf{L}_p} + 1$, то по теореме о монотонной сходимости $g \in \mathbf{L}_p(X,\mu)$. Поэтому функция g(x) является п.в. конечной на X и следующий ряд сходится абсолютно

$$f(x)\doteqdot f_{n_1}(x)+\sum_{k=1}^{\infty}(f_{n_{k+1}}(x)-f_{n_k}(x))=\lim_{k o\infty}f_{n_k}(x)$$
 п.в. на X .

При этом из неравенства $|f(x)|\leqslant g(x)$ вытекает, что $f\in \boldsymbol{L}_p(X,\mu)$. Поскольку

$$|f(x)-f_{n_k}(x)|\leqslant \sum_{l=k}^{\infty}|f_{n_{l+1}}(x)-f_{n_l}(x)|$$
 п.в. на $X\,,$

то по теореме о монотонной сходимости $\|f - f_{n_k}\|_{L_p} < 2/2^k$, т.е. $\lim \|f - f_{n_k}\|_{L_p} = 0$. Поскольку последовательность Коши $\{f_n\}$ содержит сходящуюся к f по норме $L_p(X,\mu)$ подпоследовательность $\{f_{n_k}\}$, то при всех $n\geqslant n_k$

$$||f - f_n||_{\mathbf{L}_p} \le ||f - f_{n_k}|| + ||f_{n_k} - f_n|| < 3/2^k.$$

Следовательно, последовательность $\{f_n\}$ сходится к f в $L_p(X,\mu)$.

Следствие. Если $\{f_n\} \subset L_p(X,\mu)$ при $1 \leq p \leq \infty$ последовательность Коши, то найдется подпоследовательность $\{f_{n_k}\}$, т.ч. $f_{n_k} \to f$ сходится п.в. на X.

Это утверждение вытекает из доказательства указанных выше теорем.

Лемма. Множество $H(X,\mu)$ простых интегрируемых функций $h: X \to \mathbb{F}$ всюду плотно в пространстве $L_p(X,\mu)$ при всех $1 \leqslant p \leqslant \infty$.

Доказательство. Представим функцию $f \in L_p(X,\mu)$ в виде линейной комбинации $f = u + iv = (u_+ - u_-) + i(v_+ - v_-)$, где $u_\pm = \max\{\pm u,0\}$ и $v_\pm = \max\{\pm v,0\}$ являются неотрицательными и измеримыми. Тогда существуют простые неотрицательные функции $g_n^\pm \in H(X,\mu)$ и $h_n^\pm \in H(X,\mu)$, т.ч. $g_n^\pm \nearrow u_\pm$ и $h_n^\pm \nearrow v_\pm$ будут сходиться всюду на X. Если функция f ограничена, то ограничены также функции u_\pm и v_\pm и, следовательно, сходимость будет равномерной. Пусть $f_n \doteqdot (g_n^+ - g_n^-) + i(h_n^+ - h_n^-)$ простые измеримые функции, тогда, применяя неравенство Минковского и теорему о монотонной сходимости, мы получим, что

$$||f - f_n||_{\mathbf{L}_p} \leq ||u_+ - g_n^+||_{\mathbf{L}_p} + ||u_- - g_n^-||_{\mathbf{L}_p} + ||v_+ - h_n^+||_{\mathbf{L}_p} + ||v_- - h_n^-||_{\mathbf{L}_p} \to 0.$$

т.е. множество $H(X,\mu)$ простых измеримых функций всюду плотно в $oldsymbol{L}_p(X,\mu)$. \Box

8 Пространства $\boldsymbol{L}_p(X,\mu)$ при $1\leqslant p\leqslant \infty$

Теорема (Штейнга́уза о представлении). Для каждого непрерывного линейного функционала $\alpha \in L_1'(X,\mu)$ существует единственная функция $g \in L_\infty(X,\mu)$, для которой $\alpha(f) = \int_X f g \, d\mu$ при всех $f \in L_1(X,\mu)$ и норма $\|\alpha\| = \|g\|_{L_\infty}$.

Доказательство. Так как функционал α является непрерывным, то он ограничен. Поэтому существует c>0, т.ч. $|\alpha(f)|\leqslant c$ для всех функций $\|f\|_{L_1}\leqslant 1$, где $c\doteqdot \|\alpha\|$. Рассмотрим функцию $\varphi(A)\doteqdot\alpha(\chi_A)$, определенную на классе измеримых множеств $A\in \Sigma$ конечной меры $\mu(A)<\infty$. В силу линейности функционала α получим

$$\varphi\Big(\bigsqcup_{k=1}^n A_k\Big) = \alpha\Big(\sum_{k=1}^n \chi_{A_k}\Big) = \sum_{k=1}^n \alpha\big(\chi_{A_k}\big) = \sum_{k=1}^n \varphi(A_k),$$

т.е. функция $\varphi(A)$ является конечно-аддитивной. Если $A = \bigsqcup_{n=1}^{\infty} A_n$, где $A, A_n \in \Sigma_X$ множества конечной меры, то из счетной аддитивности меры μ следует, что ряд $\chi_A = \sum_{n=1}^{\infty} \chi_{A_n}$ сходится в $L_1(X,\mu)$. Поэтому в силу непрерывности функционала α имеем $\varphi(A) = \sum_{n=1}^{\infty} \varphi(A_n)$, т.е. функция $\varphi(A)$ является σ -аддитивной. Поскольку $|\varphi(A)| \leqslant c \, \mu(A)$, то функция $\varphi(A)$ абсолютно непрерывна, т.е. $\varphi \ll \mu$.

Пусть $X = \bigsqcup_{n=1}^{\infty} X_n$ разбиение на множества конечной меры $\mu(X_n) < \infty$. Так как на X_n функция $\varphi(A)$ абсолютно непрерывна, то по теореме Радона-Никодима она имеет представление интегралом Лебега $\varphi(A) = \int_A g_n d\mu$ на классе измеримых множеств $A \subset X_n$, где $g_n \in L_1(X_n,\mu)$ и $g_n = 0$ вне X_n . Полагая $g \doteqdot \sum_{n=1}^{\infty} g_n$, мы получим представление $\varphi(A) = \int_A g d\mu$ для всех множеств $A \in \Sigma$ конечной меры. Отсюда функционал $\alpha(h) = \int_X hg d\mu$ для всех простых функций $h \in H(X,\mu)$.

Если множество $A_n = \{x \in X_n \, | \, |g(x)| > a\}$ имеет положительную меру $\mu(A_n) > 0$, то имеет место неравенство $a < \int_X h_n g \, d\mu = \alpha(h_n) \leqslant c$, где $h_n(x) \doteqdot e^{-i \arg g} \chi_{A_n}(x) / \mu(A_n)$. Таким образом, если $a \geqslant c$, то множество A_n имеет меру нуль $\mu(A_n) = 0$ и значит норма $\|g\|_{\boldsymbol{L}_\infty} \leqslant c$, т.е. функция $g \in \boldsymbol{L}_\infty(X,\mu)$. Пусть $f \in \boldsymbol{L}_1(X,\mu)$. Рассмотрим теперь простые функции $f_n \in H(X,\mu)$, которые были указаны в лемме. Поскольку $f_n \to f$ сходится по норме $\boldsymbol{L}_1(X,\mu)$, то, используя непрерывность функционала, а затем применяя теорему Лебега о мажорируемой сходимости, получим

$$\alpha(f) = \lim_{n \to \infty} \alpha(f_n) = \lim_{n \to \infty} \int_X f_n g \, d\mu = \int_X f g \, d\mu$$

представление для всех функций $f \in \boldsymbol{L}_1(X,\mu)$. Поэтому норма $\| \boldsymbol{\alpha} \| = \| g \|_{\boldsymbol{L}_{\infty}}$.

Теорема (Ри́сса о представлении). Для каждого непрерывного линейного функционала $\alpha \in L'_p(X,\mu)$ существует единственная функция $g \in L_q(X,\mu)$, для которой $\alpha(f) = \int_X fg \, d\mu$ при всех $f \in L_p(X,\mu)$ и норма $\|\alpha\| = \|g\|_{L_q}$, где $1 \leqslant p < \infty$ и 1/p + 1/q = 1 (без доказательства).

В случае p=1 эта теорема Штейнга́уза о представлении была доказана выше. В случае $1 доказательство во многом повторяет указанные рассуждения. Таким образом, эти теоремы Ри́сса и Штейнга́уза устанавливают изометрический изоморфизм сопряжённого пространства <math>\boldsymbol{L}_p^*(X,\mu)$ на пространство $\boldsymbol{L}_q(X,\mu)$ при всех $1 \leqslant p < \infty$, где 1/p+1/q=1 и $1 < q \leqslant \infty$.

Пример 1. В силу неравенства Гёльдера $oldsymbol{L}_q[a,b] \subset oldsymbol{L}_p[a,b]$ при $1 \leqslant p < q < \infty$

$$\|f\|_{\boldsymbol{L}_p} = \left(\int_a^b |f(x)|^p dx\right)^{1/p} \leqslant \left(\int_a^b dx\right)^{1/pr} \left(\int_a^b |f(x)|^q dx\right)^{1/q} = (b-a)^{1/p-1/q} \|f\|_{\boldsymbol{L}_q},$$
 при всех $f \in \boldsymbol{L}_q[a,b]$, где $1/r + p/q = 1$ и $1/pr = 1/p - 1/q$.

Пример 2. Выяснить сильную, слабую и слабую* сходимость последовательности функций $f_n(x) = x^n$ в пространстве C[0,1].

Если эта последовательность сходится по норме $\|f\|_{C} \doteqdot \max_{x \in [0,1]} |f(x)|$, то она сходится равномерно на отрезке [0,1], а если сходится слабо, то она сходится в каждой точке. Рассмотрим линейные функционалы Дирака $\delta_{x_0}(f) = f(x_0)$, где $x_0 \in [0,1]$, на пространстве C[0,1]. Так как $\|\delta_{x_0}\| = 1$, то $\delta_{x_0} \in C^*[0,1]$. При этом предел $\lim \delta_{x_0}(f_n) = 1$, если $x_0 = 1$, и $\lim \delta_{x_0}(f_n) = 0$, если $x_0 \in [0,1]$. Поэтому эта последовательность сходится поточечно к разрывной функции и, следовательно, не сходится сильно и слабо в пространстве C[0,1]. Слабый* предел в пространстве C[0,1] не определен, т.к. пространство C[0,1] не является сопряженным пространством ни к какому нормированному пространству.

Пример 3. Выяснить сильную, слабую и слабую* сходимость последовательности функций $f_n(x) = x^n$ в пространстве $\boldsymbol{L}_p[0,1]$ при $1 \le p < \infty$.

Так как нормы функций в пространстве $oldsymbol{L}_p[0,1]$ этой последовательности

$$||x^n||_{L_p} = \left(\int_0^1 x^{np} dx\right)^{1/p} = \left(\frac{x^{np+1}}{np+1}\Big|_0^1\right)^{1/p} = \frac{1}{(np+1)^{1/p}} \to 0,$$

стремятся к нулю, то эта последовательность сходится сильно к нулю. Поскольку из сильной сходимости следует слабая и слабая* сходимости, то получаем, что она сходится слабо и слабо* к нулю в пространстве $\boldsymbol{L}_p[0,1]$.

Пример 4. Выяснить сильную, слабую и слабую* сходимость последовательности функций $f_n(x) = \sin nx$ в пространстве $L_p[0,\pi]$ при $1 \le p < \infty$.

Всякий линейный функционал $\alpha \in L_p'[0,\pi]$ представляется интегралом Лебега $\alpha(f) = \int_0^\pi f(x)g(x)\,dx$, где $f \in L_p[0,\pi]$, $g \in L_q[0,\pi]$ и 1/p+1/q=1. В силу леммы Римана-Лебега предел интегралов $\lim \alpha(\sin nx) = \lim \int_0^\pi \sin nx \, g(x)\,dx = 0$ равен нулю для любой функции $g \in L_q[0,\pi]$. Поэтому слабый предел этой последовательности в пространстве $L_p[0,\pi]$ равен нулю при всех $1 \leqslant p < \infty$. Аналогичным образом, слабый* предел последовательности в пространстве $L_p[0,\pi]$ равен нулю при всех 1 . В случае <math>p = 1 слабый* предел в пространстве $L_1[0,\pi]$ не определен, т.к. пространство $L_1[0,\pi]$ не является сопряженным пространством ни к какому нормированному пространству. Так как нормы функций в пространстве $L_p[0,\pi]$

$$\|\sin nx\|_{L_p} = \left(\int_0^{\pi} |\sin nx|^p dx\right)^{1/p} = \left(\frac{1}{n} \int_0^{\pi n} |\sin x|^p dx\right)^{1/p} = \left(\int_0^{\pi} |\sin x|^p dx\right)^{1/p} = c,$$

где $c \neq 0$ не зависит от n, то эта последовательность не сходится сильно. В самом деле, из того, что она сходится слабо к нулю в пространстве $L_p[0,\pi]$, следует, что ее сильным пределом в этом пространстве может быть только нуль.

9 ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА

Определение. Скалярным произведением в линейном пространстве E над полем \mathbb{F} называется функция $q: E \times E \to \mathbb{F}$ двух переменных $x,y \in E$, обозначаемая через $\langle x,y \rangle \doteq q(x,y)$ и обладающая следующими свойствами:

- a) $q(x,y) = \overline{q(y,x)}$ при всех $x,y \in E$;
- b) $q(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 q(x_1, y) + \lambda_2 q(x_2, y)$ при всех $x_1, x_2, y \in E$ и $\lambda_1, \lambda_2 \in \mathbb{F}$;
- c) $q(x,x) \geqslant 0$ при всех $x \in E$ и q(x,x) = 0 тогда и только тогда, когда x = 0.

Пространство E, в котором определено скалярное произведение $\langle x,y \rangle \doteqdot q(x,y)$, называется евклидовым пространством (E,q). Функция $\|x\| \doteqdot \sqrt{\langle x,x \rangle}$ называется евклидовой нормой, а $\rho(x,y) \doteqdot \|x-y\|$ называется евклидовой метрикой.

1. Неравенство Коши́-Буняко́вского: $|\langle x,y\rangle| \leq ||x|| \, ||y|| \, npu \, scex \, x,y \in E$.

Пусть
$$z = tx + \lambda y$$
, где $\lambda \doteqdot \langle x, y \rangle / |\langle x, y \rangle|$ и $\langle x, y \rangle \neq 0$. Тогда при всех $t \in \mathbb{R}$ имеем $\langle z, z \rangle = t^2 \langle x, x \rangle + t \left(\overline{\lambda} \langle x, y \rangle + \lambda \langle y, x \rangle \right) + |\lambda|^2 \langle y, y \rangle = t^2 ||x||^2 + 2t |\langle x, y \rangle| + ||y||^2 \geqslant 0$.

Так как дискриминант этого трехчлена не положительный, то $|\langle x,y\rangle|^2 - \|x\|^2 \|y\|^2 \le 0$. При этом равенство в этом неравенстве имеет место тогда и только тогда, когда $z = tx + \lambda y = 0$ при некотором $t \in \mathbb{R}$, т.е. когда элементы x и y линейно зависимы.

2. Неравенство треугольника: $||x+y|| \le ||x|| + ||y||$ при всех $x, y \in E$.

Применяя неравенство Коши́-Буняко́вского, получим неравенство треугольника $\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\Re\langle x, y \rangle + \langle y, y \rangle \leqslant \|x\|^2 + 2\|x\| \|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$

Равенство выполняется в том и только в том случае, когда $\Re\langle x,y\rangle=\|x\|\|y\|$, т.е. когда элементы x и y линейно зависимыми $x=\lambda y$, где $\Re\lambda=|\lambda|\geqslant 0$, и значит $\lambda\geqslant 0$. Поэтому евклидово пространство E является строго нормированным.

3. Равенство параллелограмма: $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ при $x,y \in E$.

Складывая два равенства $\langle x\pm y, x\pm y\rangle = \langle x, x\rangle \pm 2\Re\langle x, y\rangle + \langle y, y\rangle$, получим равенство параллелограмма $\langle x+y, x+y\rangle + \langle x-y, x-y\rangle = 2\langle x, x\rangle + 2\langle y, y\rangle$.

Теорема (Дж. фон Не́ймана). Нормированное пространство E в том и только в том случае является евклидовым пространством, когда в нем выполняется равенство параллелограмма.

Доказательство достаточности приведено в учебнике Колмого́рова и Фомина́. Например, пространство B(X) ограниченных функций не является евклидовым пространством. В самом деле, если $f(x)=\chi_A(x)$ и $g(x)=\chi_B(x)$, где $A\cap B=\emptyset$, то не выполняется равенство параллелограмма, т.к. $\|f\|=\|g\|=\|f+g\|=\|f-g\|=1$, за исключением тривиального случая, когда X состоит из одной точки.

4. Непрерывность скалярного произведения (как функции двух переменных).

Для любого $\varepsilon > 0$ выберем $\delta > 0$ и c > 0, т.ч. $\|x_0\| < c$, $\|y_0\| < c$, $\delta^2 + 2c\delta < \varepsilon$. Тогда, если $\|x - x_0\| < \delta$ и $\|y - y_0\| < \delta$, то по неравенству Коши́-Буняко́вского

$$|\langle x, y \rangle - \langle x_0, y_0 \rangle| \leq |\langle x - x_0, y - y_0 \rangle| + |\langle x - x_0, y_0 \rangle| + |\langle x_0, y - y_0 \rangle| \leq$$

$$\leq ||x - x_0|| \, ||y - y_0|| + ||x - x_0|| \, ||y_0|| + ||x_0|| \, ||y - y_0|| < \varepsilon.$$

5. Неравенство Бе́ппо Ле́ви. Если $L \subset E$ линейное подпространство евклидова пространства E, то для всех $x \in E$ и $y, z \in L$ выполняется неравенство

$$||y-z|| \le \sqrt{||x-y||^2 - d^2} + \sqrt{||x-z||^2 - d^2}, \quad e\partial e \ d = \rho(x,L).$$

Пусть $u \doteqdot (ty+z)/(t+1) \in L$, тогда $||x-u|| \geqslant d$ и выполняется неравенство $||t(x-y)+(x-z)||^2 = ||(t+1)(x-u)||^2 \geqslant (t+1)^2 d^2$ при всех $t \in \mathbb{R}$.

Раскрывая левую норму и перенося правую часть этого неравенства влево, получим

$$t^2(\|x-y\|^2-d^2)+2t(\Re\langle x-y,x-z\rangle-d^2)+(\|x-z\|^2-d^2)\geqslant 0$$
 при всех $t\in\mathbb{R}$.

Так как дискриминант этого трехчлена не положительный, то имеем неравенство $\Re\langle x-y,x-z\rangle-d^2\leqslant \sqrt{(\|x-y\|^2-d^2)(\|x-z\|^2-d^2)},$ из которого следует, что

$$\begin{split} \|y-z\|^2 &= \|(x-y)-(x-z)\|^2 = \|x-y\|^2 - 2\Re\langle x-y,x-z\rangle + \|x-z\|^2 = \\ &= \left(\|x-y\|^2 - d^2\right) - 2\left(\Re\langle x-y,x-z\rangle - d^2\right) + \left(\|x-z\|^2 - d^2\right) \leqslant \\ &\leqslant \left(\|x-y\|^2 - d^2\right) + 2\sqrt{\left(\|x-y\|^2 - d^2\right)\left(\|x-z\|^2 - d^2\right)} + \left(\|x-z\|^2 - d^2\right). \end{split}$$

Замечая, что это полный квадрат, получим неравенство Беппо Леви.

Определение. Элементы $x,y \in E$ называются *ортогональными* и обозначаются через $x \perp y$, если их скалярное произведение $\langle x,y \rangle = 0$. Элемент $x \in E$ называется *ортогональным подпространству* $L \subset E$ и обозначается $x \perp L$, если $\langle x,y \rangle = 0$ при всех $y \in L$. Два подпространства $L, M \subset E$ называются *ортогональными* и обозначаются через $L \perp M$, если $\langle x,y \rangle = 0$ для всех $x \in L$ и $y \in M$.

Лемма. Элемент $y \in L$ является наилучшим приближением элемента $x \in E$ тогда и только тогда, когда выполняется условие $x-y \perp L$.

Доказательство. Необходимость. Пусть $\langle x-y,z\rangle\neq 0$ при некотором $z\in L\setminus 0$. Тогда, пологая $u\doteqdot y+\lambda z\in L$ и подставляя $\lambda\doteqdot \langle x-y,z\rangle/\langle z,z\rangle$, получим равенство

$$||x - u||^2 = ||(x - y) - \lambda z||^2 = ||x - y||^2 - 2\Re \overline{\lambda} \langle x - y, z \rangle + |\lambda|^2 \langle z, z \rangle = ||x - y||^2 - |\lambda|^2 ||z||^2.$$

Откуда следует неравенство $||x-u|| < ||x-y|| = \rho(x,L)$, что невозможно.

Достаточность. Пусть $\langle x-y,z\rangle=0$ при всех $z\in L$. Тогда при всех $z\in L$ имеем

$$||x - y||^2 = \langle x - y, x - y \rangle = \langle x - y, x - z \rangle \le ||x - y|| \, ||x - z||.$$

Поэтому $||x-y|| \leqslant ||x-z||$ при всех $z \in L$, т.е. $\rho(x,L) = ||x-y||$.

Теорема. Пусть задана $\{x_k\}_{k=1}^n \subset E$ линейно независимая система элементов евклидова пространства E и $L \doteqdot \operatorname{sp}\{x_k\}_{k=1}^n$ линейная оболочка. Тогда величина наилучшего приближения элемента $x \in E$ подпространство L вычисляется по следующей формуле:

$$\rho(x,L) = \sqrt{\frac{D(x_1, \dots, x_n, x)}{D(x_1, \dots, x_n)}}, \quad e \partial e \ D(x_1, \dots, x_n) \doteq \det \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_n, x_1 \rangle \\ \cdots & \cdots & \cdots \\ \langle x_1, x_n \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}$$

обозначает определитель Грама.

Доказательство. Поскольку евклидово пространство E строго нормировано, то по доказанному ранее элемент наилучшего приближения существует и единственный. Пусть $d^2 \doteqdot \rho(x,L)^2 = \|x-y\|^2 = \langle x-y,x-y\rangle$, где $y \in L$. Поскольку $\langle x-y,y\rangle = 0$, то $\langle y,x\rangle = \langle x,x\rangle - d^2$. Кроме того, из равенств $\langle x-y,x_k\rangle = 0$ следует, что $\langle y,x_k\rangle = \langle x,x_k\rangle$ при $k=1,\ldots,n$. Подставляя в эти равенства выражение $y=\sum_{k=1}^n \lambda_k x_k$, мы получим систему уравнений относительно неизвестных $\lambda_1,\ldots,\lambda_n\in\mathbb{F}$

$$\begin{cases}
\lambda_1 \langle x_1, x_1 \rangle + \dots + \lambda_n \langle x_n, x_1 \rangle &= \langle x, x_1 \rangle \\
\dots &= \dots \\
\lambda_1 \langle x_1, x_n \rangle + \dots + \lambda_n \langle x_n, x_n \rangle &= \langle x, x_n \rangle \\
\lambda_1 \langle x_1, x \rangle + \dots + \lambda_n \langle x_n, x \rangle &= \langle x, x \rangle - d^2.
\end{cases}$$

Так как эта система уравнений имеет решение, то по теореме Кро́некера-Капе́лли ранг расширенной матрицы равен рангу матрицы коэффициентов. Следовательно, определитель расширенной матрицы равен нулю. Записывая последний столбец определителя расширенной матрицы в виде суммы двух столбцов, в результате мы получим $D(x_1, \ldots, x_n, x) - d^2D(x_1, \ldots, x_n) = 0$, что требовалось доказать.

Определение. Γ и́льбертовым пространством H называется полное евклидово пространство относительно евклидовой метрики.

Пример 1. Примером ги́льбертова пространства является пространство $L_2(X, \mu)$, в котором скалярное произведение и норма определяются по следующим формулам:

$$\langle f,g \rangle \doteqdot \int_X f(x) \overline{g(x)} \, d\mu \,, \quad \|f\|_{\boldsymbol{L}_2} \doteqdot \left(\int_X |f(x)|^2 d\mu \right)^{1/2}, \quad \text{где } f,g \in \boldsymbol{L}_2(X,\mu) \,.$$

При $p \neq 2$ пространства $L_p(X,\mu)$ не являются ги́льбертовыми, кроме тривиального случая, когда размерность пространства равна единице, т.к. для $f(x) = \chi_A(x) \neq 0$ и $g(x) = \chi_B(x) \neq 0$, где $A \cap B = \emptyset$, не выполняется равенство параллелограмма.

Частным случаем пространства $L_2(X,\mu)$, когда множество X является счетным и мера каждой его точки равна единице, является пространство ℓ_2 , состоящее из последовательностей $x=\{x_n\}_{n=1}^\infty,\ x_n\in\mathbb{F},\$ удовлетворяющих условию $\sum_{n=1}^\infty |x_n|^2<\infty.$ Скалярное произведение и норма в ℓ_2 определяются по следующим формулам:

$$\langle x,y \rangle \doteqdot \sum_{n=1}^{\infty} x_n \overline{y_n} \quad \|x\|_{\ell_2} \doteqdot \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{1/2} \quad \text{где } x = \{x_n\}_{n=1}^{\infty}, \ y = \{y_n\}_{n=1}^{\infty} \in \ell_2.$$

Теорема (о наилучшем приближении). Если $L \subset H$ замкнутое подпространство в ги́льбертова пространства H, то для каждого $x \in H$ существует единственный элемент $y \in L$ наилучшего приближения подпространством L.

Доказательство. Пусть $d=\rho(x,L)\doteqdot\inf_{y\in L}\|x-y\|$. Тогда существуют $y_n\in L$, т.ч. $d^2\leqslant\|x-y_n\|^2<1/n^2+d^2$. По неравенству Бе́ппо Ле́ви $\|y_n-y_m\|<1/n+1/m$, т.е. $\{y_n\}$ является последовательностью Коши́ в L. В силу полноты пространства \boldsymbol{H} и замкнутости подпространства L получим, что $\limsup_n=y\in L$. Переходя к пределу в неравенстве $d\leqslant\|x-y_n\|<\sqrt{d^2+1/n^2}$, имеем $\|x-y\|=\lim\|x-y_n\|=d$.

Таким образом, мы доказали существование элемента наилучшего приближения. Единственность элемента наилучшего приближения вытекает из ранее доказанной теоремы, т.к. ги́льбертово пространство \boldsymbol{H} является строго нормированным.

Теорема (об ортогональном разложении). Пусть $L \subset H$ является замкнутым подпространством в гильбертовом пространстве H. Тогда пространство H представляется в виде прямой суммы $H = L \oplus L^{\perp}$ подпространства L и его ортогонального дополнения $L^{\perp} \doteqdot \{x \in H \mid x \perp L\}$.

Доказательство. В силу теоремы о наилучшем приближении для каждого $x \in H$ существует единственный элемент $y \in L$, т.ч. $\rho(x,L) = \|x-y\|$. Пусть $z \doteqdot x-y$. Тогда по лемме получим $z \in L^{\perp}$. Таким образом, имеем разложение x = y+z, где $y \in L$ и $z \in L^{\perp}$. Докажем единственность этого разложения. Пусть $x = y_1 + z_1 = y_2 + z_2$, где $y_1, y_2 \in L$ и $z_1, z_2 \in L^{\perp}$. Из этого равенства следует, что $y_1 - y_2 = z_2 - z_1 \in L \cap L^{\perp}$. Поэтому $y_1 - y_2 = z_1 - z_2 = 0$, т.е. $y_1 = y_2$ и $z_1 = z_2$.

Следствие. Биортогональное дополнение $M \doteqdot L^{\perp \perp}$ подпространства $L \subset H$ совпадает c его замыканием $M = \overline{L}$. Поэтому подпространство $L \subset H$ всюду плотно в ги́льбертовом пространстве H тогда и только тогда, когда $L^{\perp} = 0$.

В самом деле, по теореме $\boldsymbol{H}=\overline{L}\oplus\overline{L}^\perp$ и значит $\overline{L}=\overline{L}^{\perp\perp}$. Нам осталось доказать равенство $L^\perp=\overline{L}^\perp$. Для любого $y\in\overline{L}$ существуют $y_n\in L$, т.ч. $y_n\to y$. Если $x\in L^\perp$, то $\langle x,y\rangle=\lim\langle x,y_n\rangle=0$ при всех $y\in\overline{L}$. Поэтому $L^\perp\subset\overline{L}^\perp$, а поскольку выполняется очевидное включение $\overline{L}^\perp\subset L^\perp$, то справедливо равенство $L^\perp=\overline{L}^\perp$.

Если $L\subset H$ всюду плотно, то $\overline{L}=H$. Тогда в силу доказанного выше получим $L^\perp=\overline{L}^\perp=H^\perp=0$. Обратно, если $L^\perp=0$, то $\overline{L}^\perp=L^\perp=0$. Поэтому в силу теоремы $H=\overline{L}\oplus\overline{L}^\perp=\overline{L}$, т.е. подпространство L является всюду плотным в H.

Пример 2. Оператор P(x) = y, где $y \in L$ элемент наилучшего приближения для $x \in H$, называется *ортогональным проектором* на подпространство L. Докажем, что ортогональный проектор является линейным и его норма равна $\|P\| = 1$.

Если $P(x_1)=y_1$ и $P(x_2)=y_2$, то по лемме $x_1-y_1\perp L$ и $x_2-y_2\perp L$. Отсюда $(x_1+x_2)-(y_1+y_2)\perp L$. Поэтому по лемме $P(x_1+x_2)=y_1+y_2$. Кроме того, если P(x)=y, то, применяя аналогичные рассуждения, мы получим $P(\lambda x)=\lambda y$ при всех $\lambda\in\mathbb{F}$. Поэтому оператор P является линейным. Так как при разложении в прямую

сумму x=y+z, где P(x)=y и z=x-P(x), то из ортогональности $y\perp z$ вытекает равенство $\langle x,x\rangle=\langle y+z,y+z\rangle=\langle y,y\rangle+\langle z,z\rangle$, т.е. $\|x\|^2=\|y\|^2+\|z\|^2$ при всех $x\in \boldsymbol{H}$. Поэтому имеет место неравенство $\|P(x)\|\leqslant \|x\|$ при всех $x\in \boldsymbol{H}$ и, следовательно, норма проектора равна $\|P\|\leqslant 1$. Поскольку P(y)=y при всех $y\in L$, то $\|P\|=1$.

Пример 3. Линейный оператор $A: E \to E$ в евклидовом пространстве E называется *эрмитовым* или *симмметричным*, если $\langle Ax,y \rangle = \langle x,Ay \rangle$ при всех $x,y \in E$. Построим неограниченный эрмитовый оператор в евклидовом пространстве.

Пусть $E \subset \ell_2$ подпространство финитных последовательностей $x = \{x_i\}_{i=1}^{\infty}$, где $x_i \in \mathbb{F}$, т.е. имеющих конечное число ненулевых координат x_n . Определим оператор по формуле Ax = y, где $y = \{y_n\}_{n=1}^{\infty}$ и $y_n \doteqdot nx_n$ при всех $n \in \mathbb{N}$. Тогда оператор A будет эрмитовым и неограниченным. Действительно, имеем $\langle Ax,y \rangle = \sum_{n=1}^{\infty} nx_n\overline{y_n} = \sum_{n=1}^{\infty} x_n\overline{ny_n} = \langle x,Ay \rangle$ при всех $x,y \in E$. Если $e_i \doteqdot \{\delta_{ij}\}_{j=1}^{\infty}$, где δ_{ij} символ Кронекера, т.е. $\delta_{ii} = 1$ и $\delta_{ij} = 0$ при $i \ne j$, то мы получим $Ae_n = ne_n$ и, следовательно, $\|Ae_n\| = n$, где $\|e_n\| = 1$. Поэтому норма оператора $\|A\| = \infty$.

Пример 4. Линейный оператор $P: \mathbf{H} \to \mathbf{H}$, имеющий свойства *непрерывности*, *идемпотентности* $P^2 = P$ и *симметричности* $\langle Px,y \rangle = \langle x,Py \rangle$ при всех $x,y \in \mathbf{H}$, является ортогональным проектором на подпространство $L \doteqdot P(\mathbf{H})$.

По теореме об ортогональном разложении x=y+z, где y=P(x) и $z=x-P(x)\doteqdot Q(x)$, тогда оператор $Q: \mathbf{H} \to \mathbf{H}$ также обладает свойствами непрерывности, идемпотентности и симметричности. При этом x=P(x)+Q(x) при всех $x\in \mathbf{H}$. Положим $L\doteqdot P(\mathbf{H})$ и $M\doteqdot Q(\mathbf{H})$. Используя идемпотентность и симметричность, получим $\langle y,z\rangle=\langle P(x),x-P(x)\rangle=\langle x,P(x)-P^2(x)\rangle=0$ для всех $y\in L$ и $z\in M$. Отсюда $L\perp M$ и при этом $L\cap M=0$. Поскольку $Q(y)=(I-P)(P(x))=(P-P^2)(x)=0$ выполняется тогда и только тогда, когда $y=P(x)\in L$, то $L=\ker Q$. Аналогично имеем $M=\ker P$. Следовательно, L и M будут замкнутыми подпространствами. Значит имеет место ортогональное разложение в прямую сумму $\mathbf{H}=L\oplus M$, где $M=L^\perp$ и $L=M^\perp$. Таким образом, операторы P и Q является ортогональными проекторами.

Пример 5. Последовательность элементов $\{x_n\}_{n=1}^{\infty}$ гильбертова пространства \boldsymbol{H} называется слабо сходящейся κ элементу $x \in \boldsymbol{H}$, если предел $\lim_{n \to \infty} \langle x_n, y \rangle = \langle x, y \rangle$ при всех $y \in \boldsymbol{H}$. Покажем, что если последовательность $\{x_n\}_{n=1}^{\infty}$ ортогональна, то следующие условия равносильны: а) ряд $\sum_{n=1}^{\infty} \|x_n\|^2$ сходится; b) ряд $\sum_{n=1}^{\infty} x_n$ сходится сильно; c) ряд $\sum_{n=1}^{\infty} x_n$ сходится слабо.

Пусть $s_n \doteqdot \sum_{k=1}^n x_k$ образуют частичные суммы ряда. Тогда, если выполнено условие а), то $\|s_n - s_m\|^2 = \sum_{k=n+1}^m \|x_k\|^2 \to 0$ при $n \to \infty$. Поэтому $\{s_n\}_{n=1}^\infty$ является последовательностью Коши и значит имеет предел в \boldsymbol{H} , т.е. ряд $\sum_{n=1}^\infty x_n$ сходится сильно. Если выполнено условие b), тогда, так как из сильной сходимости следует слабая сходимость, то ряд $\sum_{n=1}^\infty x_n$ сходится слабо. Если выполнено условие c), тогда последовательность $\{s_n\}_{n=1}^\infty$ сильно ограничена и значит $\|s_n\|^2 = \sum_{k=1}^n \|x_k\|^2 \leqslant c$ при всех $n \in \mathbb{N}$. Поэтому ряд $\sum_{n=1}^\infty \|x_n\|^2$ сходится.

Пример 6. Если последовательность $\{x_n\}_{n=1}^{\infty}$ в гильбертовом пространстве \boldsymbol{H} сходится слабо к элементу $x \in \boldsymbol{H}$ и $\lim_{n \to \infty} \|x_n\| = \|x\|$, то она сходится сильно.

В самом деле, по условию слабой сходимости для любого $y \in \mathbf{H}$ существует предел $\lim_{n\to\infty}\langle x_n,y\rangle=\langle x,y\rangle$. Тогда существует сильный предел $\lim_{n\to\infty}x_n=x$, т.к.

$$\lim_{n \to \infty} ||x_n - x||^2 = \lim_{n \to \infty} \{ ||x_n||^2 + ||x||^2 - 2\Re\langle x_n, x \rangle \} = 2||x||^2 - 2\langle x, x \rangle = 0.$$

В частности, если последовательность линейных операторов $A_n : \mathbf{H} \to \mathbf{H}$ сходится слабо $A_n \to A$ и выполняется условие $||A_n x|| \to ||Ax||$ при всех $x \in \mathbf{H}$, то она сходится сильно. Отсюда немедленно следует, что для *изометричных* операторов, а значит и для *унитарных*, понятие слабой и сильной сходимости совпадают.

Пример 7. Гильбертово пространство ${\pmb H}$ является секвенциально слабо полным. Докажем, что каждая слабая последовательность Коши $\{x_n\}_{n=1}^{\infty}\subset {\pmb H}$ является слабо сходящейся. По условию существует предел $\lim_{n\to\infty}\langle x,x_n\rangle$ при всех $x\in {\pmb H}$. Тогда последовательность $\{\langle x,x_n\rangle\}_{n=1}^{\infty}$ ограничена и значит $\{x_n\}_{n=1}^{\infty}$ является слабо ограниченной. Так как из слабой ограниченности следует сильная ограниченность, то линейный функционал ${\pmb \alpha}(x)=\lim_{n\to\infty}\langle x_n,x\rangle$ является ограниченным, поскольку по неравенству Коши́-Буняко́вского $|{\pmb \alpha}(x)|\leqslant \|x\|\sup \|x_n\|$, т.е. $\|{\pmb \alpha}\|\leqslant \sup \|x_n\|$. Тогда по теореме Ри́сса-Фреше́ о представлении существует элемент $y\in {\pmb H}$, т.ч. ${\pmb \alpha}(x)=\langle x,y\rangle$ при всех $x\in {\pmb H}$. Таким образом, существует слабый предел $\lim_{n\to\infty}x_n=y$.

Пример 8. Найти ортогональное дополнение в пространстве $L_2[0,1]$ к следующим подпространствам: а) многочленов от x; b) многочленов от x^2 ; c) многочленов с нулевым свободным членом; d) многочленов с нулевой суммой коэффициентов.

Мы покажем, что во всех этих случаях ортогональное дополнение равно нулю.

- а) Из курса действительного анализа известно, что для каждой $f\in L_2[0,1]$ и для любого $\varepsilon>0$ найдется $g\in C[0,1]$, т.ч. $\|f-g\|_{L_2}<\varepsilon/2$. По теореме Вейерштрасса существует многочлен $P(x)=\sum_{k=0}^n a_k x^k$, т.ч. $\|g-P\|_C<\varepsilon/2$. Тогда по неравенству треугольника $\|f-P\|_{L_2}\leqslant \|f-g\|_{L_2}+\|g-P\|_{L_2}\leqslant \|f-g\|_{L_2}+\|g-P\|_C<\varepsilon$. Значит в силу доказанного выше следствия ортогональное дополнение равно нулю.
- b) Достаточно сделать в интеграле замену переменных $y=x^2$ и рассмотреть вместо пространства $L_2[0,1]$ пространство $L_2([0,1],\mu)$ с мерой $d\mu \doteq dy/2\sqrt{y}$ на отрезке [0,1]. В остальном доказательство аналогично предыдущему.
- с) Рассуждая как в случае а), требуется доказать, что многочлены с нулевым свободным членом всюду плотны в подпространстве $M\subset C[0,1]$ функций g, т.ч. g(0)=0. Это следует из неравенства $\|(g(x)-g(0))-(P(x)-P(0))\|_C\leqslant 2\|g-P\|_C$. Для доказательства всюду плотности подпространства M в пространстве $L_2[0,1]$, полагаем $g_{\delta}(x)=\chi_{\delta}(x)g(x)$, где $\chi_{\delta}(x)=1$ при $x\in [\delta,1]$ и $\chi_{\delta}(x)=x/\delta$ при $x\in [0,\delta]$. Используя неравенство $\|f-g_0\|_{L_2}\leqslant \|f-g\|_{L_2}+\left(\int_0^\delta |f(x)|^2dx\right)^{1/2}$ и абсолютную непрерывность интеграла Лебега, заключаем, что M всюду плотно в $L_2[0,1]$.
- d) Доказательство проводится также, как в случае c), нужно только заменить точку x=0 на точку x=1.

Пример 9. Построить пример линейного подпространства $M \subset E$ евклидова пространства E, у которого ортогональное дополнение $M^{\perp} = 0$ равно нулю, однако M не является всюду плотным в пространстве E.

Рассмотрим пространство непрерывных функций E = C[-1,1] как линейное подпространство гильбертова пространства $H = L_2[-1,1]$ с соответствующим скалярным произведением. Пусть M подпространство, состоящее из многочленов, ортогональных характеистической функции $\chi_{[0,1]}(x)$ отрезка [0,1], которая равна 1 на отрезке [0,1] и равна 0 на полуинтервале [-1,0). Тогда $M \subset E$ имеет ортогональное дополнение в пространстве E равное нулю $M^\perp = 0$, поскольку его ортогональное дополнение в пространстве H является линейной оболочкой разрывной функции $\chi_{[0,1]}(x)$. Однако M не является всюду плотным в E, т.к. иначе в силу всюду плотности E в H подпространство M будет всюду плотным в H, что невозможно.

Пример 10. Доказать, что операция умножения операторов в пространстве $\mathscr{L}(H)$ непрерывна в равномерной топологии и разрывна в сильной и слабой топологиях. Доказательство для равномерной топологии вытекает из следующих неравенств

$$||AB - A_0B_0|| \le ||(A - A_0)(B - B_0)|| + ||(A - A_0)B_0|| + ||A_0(B - B_0)|| \le$$

 $\le ||A - A_0|| ||B - B_0|| + ||A - A_0|| ||B_0|| + ||A_0|| ||B - B_0||$

Поэтому, если $\|A-A_0\| < \delta$ и $\|B-B_0\| < \delta$, то $\|AB-A_0B_0\| < \delta^2 + (\|A_0\| + \|B_0\|)\delta < \varepsilon$. Покажем, что в сильной топологии операция возведения в квадрат A^2 не является непрерывной. В самом деле, если операция непрерывна, то множество операторов из пространства $\mathcal{L}(\boldsymbol{H})$, удовлетворяющих уравнению $A^2=0$, будет собственным сильно замкнутым подмножеством в $\mathcal{L}(\boldsymbol{H})$. Мы придем к противоречию, если докажем, что это множество операторов всюду плотно в $\mathcal{L}(\boldsymbol{H})$. Рассмотрим произвольную сильную окрестность в пространстве $\mathcal{L}(\boldsymbol{H})$

$$O(A_0) \doteq \{A \in \mathcal{L}(\boldsymbol{H}) \mid ||Ax_k - A_0x_k|| < \varepsilon, k = 1, ..., n\},\$$

где система $\{x_k\}_{k=1}^n\subset \boldsymbol{H}$ является линейно независимой (в противном случае их можно заменить на систему линейно независимых векторов с той же линейной оболочкой). Теперь для любого $\varepsilon>0$ найдем элементы $y_k\in \boldsymbol{H}$, т.ч. $\|A_0x_k-y_k\|<\varepsilon$, где $k=1,\ldots,n$, при этом система $\{y_k\}_{k=1}^n$ линейно не зависит от системы $\{y_k\}_{k=1}^n$, т.е. линейная оболочка $\mathrm{sp}\{y_k\}_{k=1}^n$ пересекается с линейной оболочкой $\mathrm{sp}\{x_k\}_{k=1}^n$ только в нуле. Выберем конечномерный оператор $A:\boldsymbol{H}\to\boldsymbol{H}$, равный нулю на ортогональном дополнении к подпространству $\mathrm{sp}\{x_k,y_k\}_{k=1}^n$, и такой, что $Ax_k=y_k$ и $Ay_k=0$, где $k=1,\ldots,n$. Таким образом, линейный оператор A, удовлетворяет уравнению $A^2=0$ и принадлежит указанной окрестности $O(A_0)$. Следовательно, операция умножения операторов разрывна в сильной топологии. Поскольку слабая топология слабее сильной, то сильно плотное множество будет слабо плотным. Поэтому операция операция умножения также разрывна в слабой топологии.

10 ОРТОНОРМИРОВАННЫЕ СИСТЕМЫ

Пусть H является гильбертовом пространством над полем $\mathbb F$ действительных или комплексных чисел, а H' обозначает его сопряженное пространство.

Теорема (Ри́сса-Фреше́ о представлении). Для каждого $\alpha \in \mathbf{H}'$ существует единственный элемент $y \in \mathbf{H}$, т.ч. $\alpha(x) = \langle x, y \rangle$ при всех $x \in \mathbf{H}$ и $\|\alpha\| = \|y\|$.

Доказательство. Поскольку $\alpha \in H'$ является непрерывным функционалом, то его ядро $L = \ker(\alpha) \doteqdot \{x \in H \mid \alpha(x) = 0\}$ образует замкнутое подпространство в H. Если $L^{\perp} = 0$, то в силу следствия теоремы об ортогональном разложении L = H, т.е. $\alpha = 0$. Если $\alpha \neq 0$, то существует элемент $z \in L^{\perp}$, т.ч. $\|z\| = 1$. Для каждого $x \in H$ рассмотрим элемент $u = \alpha(x)z - \alpha(z)x \in L$, т.ч. $\alpha(u) = 0$. Отсюда получаем равенство $\langle u, z \rangle = \alpha(x)\langle z, z \rangle - \alpha(z)\langle x, z \rangle = \alpha(x) - \langle x, y \rangle = 0$ при $x \in H$, где $y \doteqdot \overline{\alpha(z)}z$. Таким образом, имеет место представление $\alpha(x) = \langle x, y \rangle$ для всех $x \in H$.

Для доказательства единственности представления допустим, что $\langle x, y_1 \rangle = \langle x, y_2 \rangle$ при всех $x \in \boldsymbol{H}$. Тогда $\langle x, y_1 - y_2 \rangle = 0$ при всех $x \in \boldsymbol{H}$ и, следовательно, $y_1 - y_2 = 0$. Из неравенства Коши́-Буняко́вского вытекает неравенство $|\alpha(x)| = |\langle x, y \rangle| \leqslant ||x|| \, ||y||$. При этом, если x = y/||y||, то $|\alpha(x)| = ||y||$. Поэтому норма $||\alpha|| = ||y||$.

Определения. Система элементов $\{e_n\}_{n=1}^{\infty} \subset E$ в евклидовом пространстве E называется называется *ортогональной*, если $e_n \perp e_m$ при всех $n \neq m$, и называется *ортонормированной*, если, кроме того, $\|e_n\| = 1$ при всех $n \in \mathbb{N}$.

Система элементов $\{e_n\}_{n=1}^{\infty} \subset E$ называется замкнутой в пространстве E, если ее замкнутая линейная оболочка $\overline{\operatorname{sp}}\{e_n\}_{n=1}^{\infty} = E$.

Система элементов $\{e_n\}_{n=1}^{\infty}\subset E$ называется *полной* в пространстве E, если ее ортогональное дополнение равно нулю $\{e_n\}_{n=1}^{\infty}{}^{\perp}=0$.

Пусть далее $\{e_n\}_{n=1}^{\infty}\subset E$ обозначает ортонормированную систему в евклидовом пространстве E. Для каждого $x\in E$ определим коэффициенты Фурье $c_n\doteqdot \langle x,e_n\rangle$ относительно заданной ортонормированной системы. Тогда ряд $x\sim \sum_{n=1}^{\infty}c_ne_n$ будем называть рядом Фурье элемента x. Если для каждого $x\in E$ ряд Фурье сходится, т.е. последовательность его частичных сумм $s_n\doteqdot \sum_{k=1}^nc_ke_k$ имеет предел $x=\lim s_n$, то система $\{e_n\}_{n=1}^{\infty}$ называется ортонормированным базисом пространства E.

1. Неравенство Бесселя. Если $c_n \doteqdot \langle x, e_n \rangle$, то $\sum_{n=1}^{\infty} |c_n|^2 \leqslant ||x||^2$ при всех $x \in \mathbf{E}$.

Действительно, поскольку система $\{e_n\}_{n=1}^{\infty}$ является ортонормированной, то для частичных сумм ряда Фурье $s_n \doteqdot \sum_{k=1}^n c_k e_k$ при всех $n \in \mathbb{N}$ выполняется неравенство

$$||x - s_n||^2 = \langle x - s_n, x - s_n \rangle = \langle x \cdot x \rangle - 2\Re \langle x, s_n \rangle + \langle s_n, s_n \rangle = ||x||^2 - \sum_{k=1}^n |c_k|^2 \geqslant 0.$$

2. Равенство Парсева́ля. Равенство Парсева́ля $||x||^2 = \sum_{n=1}^{\infty} |c_n|^2$, где $c_n \doteqdot \langle x, e_n \rangle$, выполняется тогда и только тогда, когда ряд Фурье элемента $x \in E$ сходится.

В самом деле, по доказанному выше $||x-s_n||^2=||x||^2-\sum_{k=1}^n|c_k|^2$. Следовательно, $||x-s_n||\searrow 0$ стремится к нулю тогда и только тогда, когда $||x||^2=\sum_{n=1}^\infty|c_n|^2$.

3. Обобщенное равенство Парсева́ля. Равенство Парсева́ля $||x||^2 = \sum_{n=1}^{\infty} |c_n|^2$ выполняется в E тогда и только тогда, когда в E справедливо обобщенное равенство Парсева́ля $\langle x,y \rangle = \sum_{n=1}^{\infty} c_n \overline{d_n}$, где $c_n = \langle x,e_n \rangle$ и $d_n = \langle y,e_n \rangle$.

Так как $\langle x+\lambda y,e_n\rangle=c_n+\lambda d_n$, то применяя равенство Парсева́ля, получим

$$||x + \lambda y||^2 = \sum_{n=1}^{\infty} |c_n + \lambda d_n|^2 = \sum_{n=1}^{\infty} |c_n|^2 + 2\sum_{n=1}^{\infty} \Re(c_n \overline{\lambda d_n}) + |\lambda|^2 \sum_{n=1}^{\infty} |d_n|^2.$$

Поскольку $\|x+\lambda y\|^2 = \|x\|^2 + 2\Re(\overline{\lambda}\langle x,y\rangle) + |\lambda|^2 \|y\|^2$, то $\Re(\overline{\lambda}\langle x,y\rangle) = \sum_{n=1}^{\infty} \Re(c_n \overline{\lambda d_n})$. Полагая здесь $\lambda = 1$, а затем $\lambda = i$, получим обобщенное равенство Парсева́ля

$$\langle x,y\rangle = \Re\langle x,y\rangle + i\Im\langle x,y\rangle = \sum_{n=1}^{\infty}\Re(c_n\,\overline{d_n}) + i\sum_{n=1}^{\infty}\Im(c_n\,\overline{d_n}) = \sum_{n=1}^{\infty}c_n\overline{d_n}.$$

Теорема (замкнутости Стекло́ва). Ортонормированная система $\{e_n\}_{n=1}^{\infty}$ тогда и только тогда замкнута в евклидовом пространстве E, когда выполняется равенство Парсева́ля $||x||^2 = \sum_{n=1}^{\infty} |c_n|^2$ при все $x \in E$, где $c_n \doteqdot \langle x, e_n \rangle$.

Доказательство. Необходимость. Если $\{e_n\}_{n=1}^{\infty}$ замкнута, то для всех $x \in E$ и $\varepsilon > 0$ существует $y = \sum_{k=1}^{n} \lambda_k e_k$, т.ч. $\|x-y\| < \varepsilon$. Пусть $L_n \doteqdot \operatorname{sp}\{e_k\}_{k=1}^n$ обозначает линейную оболочку системы $\{e_k\}_{k=1}^n$. Поскольку $x-s_n \perp L_n$, то суммы s_n является наилучшим приближением элемента x подпространством L_n . Поэтому имеет место неравенство $\|x-s_m\| \leqslant \|x-s_n\| \leqslant \|x-y\| < \varepsilon$ при всех $m \geqslant n$. Отсюда ряд Фурье сходится в E и, следовательно, выполняется равенство Парсева́ля.

Достаточность. Пусть выполняется равенство Парсева́ля $\|x\|^2 = \sum_{n=1}^{\infty} |c_n|^2$. Так как $\|x-s_n\|^2 = \|x\|^2 - \sum_{k=1}^n |c_k|^2$, то для любого $\varepsilon > 0$ существует n, т.ч. $\|x-s_n\| < \varepsilon$. Поэтому система $\{e_n\}_{n=1}^{\infty}$ является замкнутой в евклидовом пространстве \boldsymbol{E} .

Следствие. Ортонормированная система $\{e_n\}_{n=1}^{\infty}$ замкнута в гильбертовом пространстве **H** тогда и только тогда, когда она является полной.

В самом деле, если $\{e_n\}_{n=1}^\infty$ является замкнутой, то в силу теоремы замкнутости имеет место равенство Парсева́ля. Поскольку из условия $\langle x, e_n \rangle = 0$ при всех $n \in \mathbb{N}$ вытекает, что $\|x\|^2 = \sum_{n=1}^\infty |c_n|^2 = 0$, то x = 0. Значит система будет полной. Обратно, если система полна, то ее ортогональное дополнение $\{e_n\}_{n=1}^\infty = 0$ равно нулю. Поэтому в силу следствия теоремы об ортогональном разложении $\overline{\mathrm{sp}}\{e_n\}_{n=1}^\infty = E$, т.е. система является замкнутой в пространстве H.

Пример 1. В бесконечномерных евклидовых пространствах из свойства полноты ортонормированной системы не следует ее замкнутость, т.е. существуют полные ортонормированные системы, которые не являются ортонормированным базисом.

Пусть M подпространство евклидова пространства $E \doteqdot C[-1,1]$, построенное на предыдущей лекции (пример 9). Оно состоит из алгебраических многочленов и его ортогональное дополнение в E равно $M^{\perp} = 0$. Поскольку многочлены, имеющие рациональные коэффициенты, всюду плотны в M и их счетное число, то, выбирая линейно независимую систему и применяя метод ортогонализации Гра́ма-Шми́дта, можно построить ортонормированную систему многочленов из M, которая будет полной в евклидовом пространстве E, но не является замкнутой.

Лемма (метод ортогонализации Гра́ма-Шми́дта). Для каждой линейно независимой системы элементов $\{x_n\}_{n=1}^{\infty}$ в евклидовом пространстве E существует ортонормированная система $\{e_n\}_{n=1}^{\infty}$, т.ч. ее элементы e_n являются линейными комбинациями элементов $\{x_k\}_{k=1}^n$.

Доказательство. Пусть $y_1=x_1$ и $e_1\doteqdot y_1/\|y_1\|$. Далее полагаем $y_2=x_2-\langle x_2,e_1\rangle e_1$ и определим $e_2\doteqdot y_2/\|y_2\|$, и т.д. На n-том шаге полагаем $y_n=x_n-\sum_{k=1}^{n-1}\langle x_n,e_k\rangle e_k$ и определим $e_n\doteqdot y_n/\|y_n\|$. Поскольку система $\{x_k\}_{k=1}^n$ линейно независима, то $y_n\neq 0$ при всех n. Таким образом, матрица A_n преобразования системы $\{x_k\}_{k=1}^n$ в систему $\{e_k\}_{k=1}^n$ является треугольной, т.е. имеет вид

$$\begin{cases} e_1 &= a_{11}x_1 \\ e_2 &= a_{21}x_1 + a_{22}x_2 \\ \cdots &\cdots &\cdots \\ e_n &= a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n \end{cases} A_n = \begin{pmatrix} a_{11} \\ a_{21} & a_{22} \\ \cdots &\cdots &\cdots \\ a_{n1} & a_{n2} &\cdots & a_{nn} \end{pmatrix},$$

где $a_{kk}=1/\|y_k\|\neq 0$ при $k=1,\ldots,n$. Обратная матрица также будет треугольной. Поэтому система $\{e_n\}_{n=1}^\infty$ является замкнутой тогда и только тогда, когда будет замкнута система $\{x_n\}_{n=1}^\infty$. Явное выражение элементов e_n имеет вид

$$e_n = \frac{1}{\sqrt{D_n D_{n-1}}} \det \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_n, x_1 \rangle \\ \cdots & \cdots & \cdots \\ \langle x_1, x_{n-1} \rangle & \cdots & \langle x_n, x_{n-1} \rangle \\ x_1 & \cdots & x_n \end{pmatrix},$$

где $D_n \doteqdot D(x_1,\ldots,x_n) = \det\{\langle x_k,x_l \rangle\}_{k,l=1}^n$ обозначают определители Гра́ма.

Пример 2. Рассмотрим примеры классических ортогональных многочленов. Они получаются методом ортогонализации системы степеней $\{x^k\}_{k=0}^{\infty}$ относительно скалярного произведения в пространстве $L_2(X,\mu)$, т.е.

$$\langle f,g
angle \doteqdot \int_X f(x)\,\overline{g(x)}\,d\mu(x)\,,$$
 где $f,g \in oldsymbol{L}_2(X,\mu)$ и $X \subset \mathbb{R}\,.$

- а) Многочлены Лежандра: $P_n(x) \doteqdot c_n \left(\frac{d}{dx}\right)^n (1-x^2)^n$, где X = [-1,1] и $d\mu(x) = dx$.
- b) Многочлены Чебышёва: $T_n(x) \doteqdot c_n \cos n \arccos x$, где X = [-1,1] и $d\mu(x) = \frac{dx}{\sqrt{1-x^2}}$.
- с) Многочлены Лагерра: $L_n(x) \doteqdot c_n e^x \Big(\frac{d}{dx} \Big)^n x^n e^{-x}$, где $X = \mathbb{R}_+$ и $d\mu(x) = e^{-x} dx$.
- d) Многочлены Эрмита: $H_n(x) \doteqdot c_n e^{x^2} \left(\frac{d}{dx}\right)^n x^n e^{-x^2}$, где $X = \mathbb{R}$ и $d\mu(x) = e^{-x^2} dx$.

Здесь функция $d\mu(x)$ определяет борелевскую меру по формуле $\mu(A)\doteqdot \int_A d\mu(x)$, где $A\subset X$, а константы $c_n\in\mathbb{R}$ подобраны так, чтобы система многочленов образовывала ортонормированную систему в пространстве $\boldsymbol{L}_2(X,\mu)$. Доказательство их ортогональности проводится при помощи интегрирования по частям и замены переменных. Все эти системы полны в соответствующих пространствах $\boldsymbol{L}_2(X,\mu)$.

Теорема (Ри́сса-Фи́шера). *Каждое сепарабельное ги́льбертово пространство* H изометрически изоморфно либо конечномерному евклидову пространству \mathbb{F}^n , либо бесконечномерному пространству ℓ_2 .

Доказательство. В силу условия сепарабельности в пространстве \boldsymbol{H} существует замкнутая система элементов $\{x_n\}_{n=1}^{\infty}$. Отбрасывая из этой системы элементы, которые линейно выражаются через предыдущие, мы получим замкнутую линейно независимую систему элементов в пространстве \boldsymbol{H} . Рассмотрим случай, когда эта система является бесконечной, т.е. размерность $\dim \boldsymbol{H} = \infty$. В случае, когда эта система конечна, т.е. $\dim \boldsymbol{H} < \infty$, доказательство полностью аналогично.

Применяя метод ортогонализации Гра́ма-Шми́дта, мы построим замкнутую в ${\pmb H}$ ортонормированную систему $\{e_n\}_{n=1}^\infty$. В силу теоремы Стекло́ва и свойства 2 всякий элемент $x\in {\pmb H}$ представляется сходящимся в ${\pmb H}$ рядом Фурье $x=\sum_{n=1}^\infty c_n e_n$, где $c_n=\langle x,e_n\rangle$ его коэффициенты Фурье́. Определим отображение $F:{\pmb H}\to {\pmb \ell}_2$ по формуле F(x)=c, где $c=\{c_n\}_{n=1}^\infty$. Ясно, что F линейное отображение. Поскольку по теореме Стекло́ва выполняется равенство Парсева́ля $\|F(x)\|_{{\pmb \ell}_2}=\|x\|$ при всех $x\in {\pmb H}$, то отображение F является изометричным. Осталось доказать, что образ этого отображения $F({\pmb H})$ совпадает с пространством ${\pmb \ell}_2$.

Для каждого элемента $c=\{c_n\}\in \ell_2$ рассмотрим последовательность частичных сумм $s_n\doteqdot \sum_{k=1}^n c_k e_k$ ряда Фурье $\sum_{n=1}^\infty c_n e_n$. Так как по свойству ортогональности

$$\|s_m-s_n\|^2=\sum_{k=n+1}^m\sum_{j=n+1}^mc_k\overline{c_j}\langle e_k,e_j\rangle=\sum_{k=n+1}^m|c_k|^2 o 0$$
 при $n,m o\infty$,

то $\{s_n\}$ является последовательностью Коши и в силу полноты пространства ${\pmb H}$ существует предел $\lim s_n = x$ по норме ${\pmb H}$. Применяя непрерывность скалярного произведения, получим $\langle x, e_n \rangle = \lim_{m \to \infty} \langle s_m, e_n \rangle = c_n$ при всех $n \in \mathbb{N}$, т.е. F(x) = c Таким образом, $F: {\pmb H} \to \ell_2$ является биективным и изометричным отображением гильбертова пространства ${\pmb H}$ на пространство ℓ_2 .

Пример 3. Тригонометрическая система функций $e_n(z) \doteqdot \frac{1}{\sqrt{2\pi}} z^n$, где $z = e^{i\theta}$ и $n \in \mathbb{Z}$, является ортонормированным базисом в гильбертовом пространстве $\mathbf{L}_2(C,\mu)$ на окружности $C \doteqdot \{z \in \mathbb{C} \mid |z| = 1\}$ с лебеговой мерой $d\mu(z) = d\theta$.

В самом деле, вычисляя скалярное произведение, получим

$$\langle e_n,e_m
angle = rac{1}{2\pi} \int_0^{2\pi} e^{i(n-m) heta} d heta = rac{e^{2\pi i(n-m)}-1}{2\pi i(n-m)} = \delta_{nm} \doteqdot egin{cases} 0 & ext{при } n
eq m; \ 1 & ext{при } n = m. \end{cases}$$

Докажем замкнутость этой системы. Так как множество непрерывных функций всюду плотно в $L_2(C,\mu)$, то для любой $f\in L_2(C,\mu)$ и для любого $\varepsilon>0$ найдется $g\in C[0,2\pi]$, т.ч. $\|f-g\|_{L_2}<\varepsilon/2$. Изменяя g на достаточно малом отрезке $[0,\delta]$ мы можем считать, что $g(0)=g(2\pi)$. По теореме Вейерштрасса об аппроксимации найдется тригонометрический полином $T(z)=\sum_{k=-n}^n c_k z^k$, т.ч. $\|g-T\|_C<\varepsilon/2\sqrt{2\pi}$. Так как $\|g-T\|_{L_2}\leqslant \sqrt{2\pi}\|g-T\|_C<\varepsilon/2$, то $\|f-T\|_{L_2}\leqslant \|f-g\|_{L_2}+\|g-T\|_{L_2}<\varepsilon$. Отсюда система замкнута и значит образует ортонормированный базис в $L_2(C,\mu)$.

При помощи теоремы Ри́сса-Фи́шера определяется изометрический изоморфизм пространства $L_2(C,\mu)$ на пространство ℓ_2 по формуле F(f)=c, где $c=\{c_n\}_{n\in\mathbb{Z}}$ обозначает совокупность всех коэффициентов Фурье́ функции $f\in L_2(C,\mu)$. По теореме Стекло́ва будет выполняться равенство Парсева́ля $\|F(f)\|_{\ell_2} = \|f\|$ при всех $f\in L_2(C,\mu)$ и, следовательно, указанное отображение $F:L_2(C,\mu)\to \ell_2$ является изометрическим изоморфизмом на пространство ℓ_2 .

Пример 4. Пусть $d\mu(z) = dx \otimes dy$ мера Лебе́га на комплексной плоскости $\mathbb{C} = \mathbb{R}^2$, где z = x + iy. Пространство Бе́ргмана $A_2(D)$ состоит из аналитических функций в области $D \subset \mathbb{C}$, т.ч. $\int_D |f(z)|^2 d\mu(z) < \infty$. Скалярное произведение в пространстве $A_2(D)$ вводится, как обычно, по формуле

$$\langle f,g
angle \doteqdot \int_D f(z)\,\overline{g(z)}\,d\mu(z)\,,$$
 где $f,g \in oldsymbol{A}_2(D)\,.$

Докажем, что пространство $A_2(D)$ является гильбертовым пространством.

Линейность пространства $A_2(D)$ и свойства скалярного произведения вытекают из свойств интеграла Лебе́га. Докажем полноту. Пусть r_0 есть радиус наибольшего круга с центром в точке $z_0 \in D$, содержащийся в D. Если функция $f \in A_2(D)$, то $f(z) = \sum_{n=0}^{\infty} a_k (z-z_0)^n$ представляется равномерно сходящимся степенным рядом в круге $D_r(z_0) \doteqdot \{z \in \mathbb{C} \mid |z-z_0| < r\}$ при $r < r_0$. Интегрируя этот ряд и переходя к полярным координатам, получим

$$\int_{D_r(z_0)} f(z) d\mu(z) = \sum_{n=0}^{\infty} a_k \int_{D_r(z_0)} (z - z_0)^n d\mu(z) = \sum_{n=0}^{\infty} a_k \int_0^r \int_0^{2\pi} t^{n+1} e^{in\theta} d\theta dt = a_0 \pi r^2.$$

Поскольку $a_0=f(z_0)$, то, применяя неравенство Коши́-Буняко́вского, имеем

$$|f(z_0)| = rac{1}{\pi r^2} \Big| \int_{D(z_0)} f(z) \, d\mu(z) \Big| \leqslant rac{1}{\sqrt{\pi} r} \|f\|_{A_2} o rac{1}{\sqrt{\pi} r_0} \|f\|_{A_2} \; ext{при } r o r_0 \, .$$

Пусть $K \subseteq D$ компактное множество, тогда найдется $\varepsilon > 0$, т.ч. $r_0 > \varepsilon$ при всех $z_0 \in K$. Поэтому, если $\{f_n\}$ последовательность Коши́ в $A_2(D)$, то при всех $z_0 \in K$

$$|f_n(z_0)-f_m(z_0)|\leqslant rac{1}{\sqrt{\pi}arepsilon}\|f_n-f_m\|_{oldsymbol{A}_2} o 0$$
 при $n,m o\infty$.

Следовательно, по теореме Вейерштра́сса последовательность сходится равномерно на каждом компакте $K \subseteq D$ к аналитической функции f в области D. В то же время из полноты $L_2(D,\mu)$ вытекает, что последовательность $\{f_n\}$ сходится в метрике $L_2(D,\mu)$ к некоторой функции, равной f п.в. на D. Таким образом, $f \in A_2(D)$.

Пример 5. Функции $e_n(z)\doteqdot\sqrt{\frac{n+1}{\pi}}z^n$, где $n\in\mathbb{Z}_+$, образуют ортонормированный базис пространства Бе́ргмана $A_2\doteqdot A_2(D)$ в единичном круге $D\doteqdot\{z\in\mathbb{C}\mid |z|<1\}$. Если $f\in A_2$, то ее ряд Фурье́ сходится равномерно на каждом компакте $K\subseteq D$ и

$$f(z) = \sum_{n=0}^{\infty} c_n e_n(z)$$
, где $c_n \doteqdot \langle f, e_n \rangle$ коэффициенты Фурье́.

Вычислим скалярное произведение этих функций в пространстве $oldsymbol{A}_2$

$$\langle e_n, e_m \rangle = \frac{\sqrt{(n+1)(m+1)}}{\pi} \int_0^1 \int_0^{2\pi} t^{n+m+1} e^{i(n-m)\theta} d\theta dt = 2 \frac{\sqrt{(n+1)(m+1)}}{n+m+2} \delta_{nm}$$

Значит система функций $\{e_n\}_{n=0}^{\infty}$ является ортонормированной в пространстве A_2 . Рассмотрим частичные суммы $s_n(z) \doteqdot \sum_{k=0}^n c_n e_n(z)$ ряда Фурье́ функции $f \in A_2$. Применяя неравенство, доказанное в предыдущей задачи, получим

$$|s_n(z_0)-s_m(z_0)|\leqslant rac{1}{\sqrt{\pi}arepsilon}\|s_n-s_m\|_{oldsymbol{A}_2} o 0$$
 при $n,m o\infty,$

где $|z_0| \leqslant 1 - \varepsilon$. Следовательно, ряд Фурье сходится равномерно к функции f на каждом компакте $K \in D$. Поэтому, если $f \perp e_n$ при $n = 0, 1, \ldots$, то все коэффициенты ряда Фурье́ равны нулю и значит функция f = 0.

Каждая функция $f \in A_2$ разлагается в ряд Фурье́ $f = \sum_{n=0}^{\infty} c_n e_n$, сходящийся в метрике $L_2(D,\mu)$. Тогда последовательность коэффициентов Фурье́ квадратично суммирума $\sum_{n=0}^{\infty} |c_n|^2 < \infty$ и, следовательно, радиус сходимости степенного ряда $\sum_{n=0}^{\infty} \sqrt{\frac{n+1}{\pi}} \, c_n z^n$ не меньше 1. Таким образом, в силу указанного изоморфизма в теореме Ри́сса-Фи́шера пространство A_2 можно рассматривать, как пространство аналитических функций в единичном круге D, для которых последовательность коэффициентов $c_n \doteqdot \frac{1}{n!} \sqrt{\frac{\pi}{n+1}} \, f^{(n)}(0)$ квадратично суммируема $\sum_{n=0}^{\infty} |c_n|^2 < \infty$ и норма функции $f \in A_2$ вычисляется по формуле $\|f\|_{A_2} = \left(\sum_{n=0}^{\infty} |c_n|^2\right)^{1/2}$.

Пример 6. Пусть $e_n(z) = \frac{1}{\sqrt{2\pi}} z^n$, где $n \in \mathbb{Z}$ и $z = e^{i\theta}$, тригонометрическая система функций на окружности $C \doteqdot \{z \in \mathbb{C} \mid |z| = 1\}$, которая образует ортонормированный базис в гильбертовом пространстве $L_2(C,\mu)$ с лебеговой мерой $\mu(z) = d\theta$ на C.

Пространством Харди называется подпространство ${m H}_2\subset {m L}_2(C,\mu)$, состоящее из функций $f\in {m L}_2(C,\mu)$, у которых все коэффициенты Фурье с отрицательными индексами $c_n=\langle f,e_n\rangle=0$ при $n=-1,-2,\ldots$ равны нулю. Функции $f\in {m H}_2$ мы будем рассматривать, как аналитические функции в единичном круге ${m D}$.

В самом деле, если $f = \sum_{n=0}^{\infty} c_n e_n$ есть разложение в ряд Фурье, сходящийся в метрике $\mathbf{L}_2(C,\mu)$, то ряд $\sum_{n=0}^{\infty} |c_n|^2 < \infty$ сходится и значит радиус сходимости степенного ряда $\sum_{n=0}^{\infty} \frac{c_k}{\sqrt{2\pi}} z^k$ не меньше 1. Поэтому этот ряд задает аналитическую функцию в единичном круге D. Таким образом, в силу указанного изоморфизма в теореме Рисса-Фишера пространство Харди \mathbf{H}_2 можно рассматривать, как пространство аналитических функций в единичном круге D, для которых последовательность коэффициентов $c_n \doteqdot \frac{\sqrt{2\pi}}{n!} f^{(n)}(0)$ квадратично суммируема $\sum_{n=0}^{\infty} |c_n|^2 < \infty$ и норма функции $f \in \mathbf{H}_2$ вычисляется по формуле $\|f\|_{\mathbf{H}_2} = \left(\sum_{n=0}^{\infty} |c_n|^2\right)^{1/2}$.

Пример 7. $3a\partial aua$ Дирихле о сопряженной функции. Доказать, что каждой действительнозначной функции $u\in L_2(C,\mu)$ соответствует единственная действительнозначная функция $v\in L_2(C,\mu)$, т.ч. $f=u+iv\in H_2$ и $\langle v,e_0\rangle=0$.

Такая функция v называется сопряженной к функции u в пространстве $L_2(C,\mu)$. Соответствующее преобразование $\Gamma: L_2(C,\mu) \to L_2(C,\mu)$, т.ч. $\Gamma(u) = v$, действительного пространства $L_2(C,\mu)$ называется nреобразованием Γ ильберта.

Пусть функция $f \in \mathbf{H}_2$. Рассмотрим ее разложение в ряд Фурье $f = \sum_{n=0}^{\infty} c_n e_n$ и положим $u = \Re f$ действительной части f. Поскольку $|u| \leqslant |f|$, то $u \in \mathbf{L}_2(C,\mu)$. Тогда функция u разлогается в ряд Фурье $u = \sum_{n=-\infty}^{\infty} a_n e_n$ и, кроме того, имеем

$$u = \frac{1}{2} \left(f + \overline{f} \right) = \frac{1}{2} \left(\sum_{n=0}^{\infty} c_n e_n + \sum_{n=0}^{\infty} \overline{c_n} e_{-n} \right) = \Re c_0 e_0 + \sum_{n=1}^{\infty} \frac{c_n}{2} e_n + \sum_{n=-1}^{\infty} \frac{\overline{c_n}}{2} e_n.$$

Сравнивая эти два разложения в ряд Фурье, получим следующие равенства:

$$a_0=\Re c_0$$
 $a_n=egin{cases} c_n/2 & ext{при } n>0\,; \ \overline{c_n}/2 & ext{при } n<0\,. \end{cases}$

Таким образом, если задано разложение в ряд Фурье функции $u = \sum_{n=-\infty}^{\infty} a_n e_n$, т.ч. $a_n = \overline{a_{-n}}$, т.к. функция u принимает действительные значения, то коэффициенты Фурье функции f можно вычислить по следующим формулам:

$$c_0 = a_0$$
; $c_n = 2a_n = 2\overline{a_{-n}} = a_n + \overline{a_{-n}}$ при всех $n > 0$.

Поскольку последовательность $\{a_n\}_{n=-\infty}^{\infty}$ квадратично суммируема, то последовательность $\{c_n\}_{n=0}^{\infty}$ также квадратично суммируема. Поэтому функция $f = \sum_{n=0}^{\infty} c_n e_n$ принадлежит пространству \mathbf{H}_2 . Что касается функции $v = \Im f$, то легко получить явное выражение ее коэффициентов Фурье. Действительно, мы имеем

$$v = \frac{1}{2i} \left(f - \overline{f} \right) = \frac{1}{2i} \left(\sum_{n=0}^{\infty} c_n e_n - \sum_{n=0}^{\infty} \overline{c_n} e_{-n} \right) = \Im c_0 e_0 + \sum_{n=1}^{\infty} \frac{c_n}{2i} e_n - \sum_{n=-1}^{\infty} \frac{\overline{c_n}}{2i} e_n.$$

Сравнивая это разложение с разложением функции $v=\sum_{n=-\infty}^\infty b_n e_n$, мы получим

$$b_0=\Im c_0=0\,;\quad b_n=egin{cases} c_n/2m{i}=-m{i}a_n & ext{при } n>0\,; \ -\overline{c_n}/2m{i}=m{i}a_n & ext{при } n<0\,. \end{cases}$$

Эти равенства можно выразить коротко $b_n = -i \operatorname{sign}(n) a_n$ при всех $n \in \mathbb{Z}$. Таким образом, коэффициенты Фурье разложения функции v определяются однозначно.

11 ЛОКАЛЬНО ВЫПУКЛЫЕ ПРОСТРАНСТВА

Напомним, что полунормой в линейном пространстве E называется неотрицательная функция $p: E \to \mathbb{R}_+$, удовлетворяющая условию однородности $p(\lambda x) = |\lambda| p(x)$ и неравенству треугольника $p(x+y) \leqslant p(x) + p(y)$ при всех $\lambda \in \mathbb{F}$ и $x,y \in E$.

Определение. Локально выпуклым пространством (E, \mathfrak{P}) называется линейное пространство E, в котором определена система полунорм \mathfrak{P} и локальная база β его топологии состоит из окрестностей точек $x \in E$ следующего вида:

$$O(x)\doteqdot \{y\in oldsymbol{E}\mid \max_{1\leqslant i\leqslant n}oldsymbol{p}_i(y-x) где $oldsymbol{arepsilon}>0,$ $oldsymbol{p}_i\in \mathfrak{P},$ $i=1,\ldots,n\in \mathbb{N}\,.$$$

Топология этого пространства (E,\mathfrak{P}) называется локально выпуклой, поскольку ее локальная база β состоит из выпуклых множеств. В этом пространстве (E,\mathfrak{P}) множество $M \subset E$ называется ограниченным, если $\sup_{x \in M} p(x) < \infty$ при всех $p \in \mathfrak{P}$. Последовательность $\{x_n\} \subset E$ называется сходящейся κ x, если для любых $\varepsilon > 0$ и $p \in \mathfrak{P}$ существует N, т.ч. $p(x_n - x) < \varepsilon$ при всех $n \geqslant N$. Последовательность $\{x_n\}$ называется последовательностью Коши, если для любых $\varepsilon > 0$ и $p \in \mathfrak{P}$ найдется N, т.ч. $p(x_n - x_m) < \varepsilon$ при всех $n, m \geqslant N$. Пространство (E,\mathfrak{P}) называется полным, если всякая последовательность Коши является сходящейся.

В системе полунорм $\mathfrak P$ на пространстве E введем отношение порядка $p_1\leqslant p_2$, если $p_1(x)\leqslant p_2(x)$ при всех $x\in E$. Система полунорм $\mathfrak P$ называется направленной, если для любых $p_1,p_2\in \mathfrak P$ найдется $p_3\in \mathfrak P$, т.ч. $p_1\leqslant p_3$ и $p_2\leqslant p_3$. Всякую систему $\mathfrak P$ можно преобразовать в направленную $\vec{\mathfrak P}$, состоящую из $p(x)\doteqdot \max_{1\leqslant i\leqslant n}p_i(x)$, где $p_i\in \mathfrak P$, $i=1,\ldots,n\in \mathbb N$. При этом локальная база топологии E не изменится.

1. Линейное отображение $f: E \to F$ локально выпуклых пространств (E, \mathfrak{P}) и (F, \mathfrak{Q}) тогда и только тогда непрерывно, когда для любого $q \in \mathfrak{Q}$ найдутся c > 0 и $p \in \vec{\mathfrak{P}}$, т.ч. $q(f(x)) \leqslant c \, p(x)$ при всех $x \in E$.

Действительно, линейное отображение f непрерывно тогда и только тогда, когда оно непрерывно в нуле. Поэтому, если f непрерывно в нуле, то для любых $\varepsilon > 0$ и $\mathbf{q} \in \mathfrak{Q}$ найдутся $\delta > 0$ и $\mathbf{p} \in \mathbf{\vec{\mathfrak{P}}}$, т.ч. $\mathbf{q}(f(x)) < \varepsilon$ для всех $x \in \mathbf{E}$, удовлетворяющих неравенству $\mathbf{p}(x) \leqslant \delta$. Следовательно, имеем $\mathbf{q}(f(x)) < (\varepsilon/\delta) \mathbf{p}(x)$ при всех $x \in \mathbf{E}$, т.ч. $\mathbf{p}(x) = \delta$. В силу однородности полунорм и отображения это неравенство будет выполнено при всех $x \in \mathbf{E}$. Обратно, если имеем $\mathbf{q}(f(x)) \leqslant c \mathbf{p}(x)$ при всех $x \in \mathbf{E}$, то отображение f, очевидно, непрерывно в нуле и значит является непрерывным.

Говорят, что полунорма q мажорирует $p \ll q$ полунорму p на пространстве E, если существует c>0, т.ч. $p(x)\leqslant c\,q(x)$ для всех $x\in E$. Две системы полунорм $\mathfrak P$ и $\mathfrak Q$ на пространстве E называются эквивалентными $\mathfrak P\sim\mathfrak Q$, если для любого $p\in\mathfrak P$ найдется $q\in\vec{\mathfrak Q}$, т.ч. $p\ll q$, и для любого $q\in\mathfrak Q$ найдется $p\in\vec{\mathfrak P}$, т.ч. $q\ll p$.

2. Две системы полунорм $\mathfrak P$ и $\mathfrak Q$ на пространстве E тогда и только тогда эквивалентны $\mathfrak P \sim \mathfrak Q$, когда они задают одну и ту же топологию в E.

Для доказательства $\mathfrak{P} \sim \mathfrak{Q}$ достаточно применить свойство 1 к тождественному отображению $I: E \to E$, т.ч. I(x) = x при всех $x \in E$. Тогда каждая окрестность локальной базы для \mathfrak{P} будет окрестностью локальной базы для \mathfrak{Q} и наоборот.

Топологическое пространство (E, τ) называется $xaycdop\phioвым$, если для любых точек $x,y \in E, x \neq y$, существуют непересекающиеся окрестности $O(x) \cap O(y) = \emptyset$.

3. Локально выпуклое пространство (E, \mathfrak{P}) является хаусдорфовым тогда и только тогда, когда для любого $x \neq 0$ существует $p \in \mathfrak{P}$, т.ч. p(x) > 0.

В самом деле, если пространство ${m E}$ хаусдорфово, то для любого $x \ne 0$ найдется окрестность нуля $O \in {m \beta}(0)$, т.ч. $x \notin O$. Откуда ${m p}(x) \geqslant {m \epsilon}$ при некоторых ${m p} \in {\mathfrak P}$ и ${m \epsilon} > 0$. Обратно, если $x \ne y$, то существует ${m p} \in {\mathfrak P}$, т.ч. ${m p}(x-y) \geqslant {m \epsilon} > 0$. Тогда окрестности $O(x) = \{z \in {m E} \mid {m p}(z-x) < {m \epsilon}/2\}$ и $O(y) = \{z \in {m E} \mid {m p}(z-y) < {m \epsilon}/2\}$ не пересекаются, т.к. иначе получим ${m p}(x-y) \leqslant {m p}(x-z) + {m p}(z-y) < {m \epsilon}$ при некотором $z \in O(x) \cap O(y)$.

Теорема (о метризуемости). Хаусдорфово локально выпуклое пространство тогда и только тогда является метрическим линейным пространством, когда его топология может быть задана счетной системой полунорм.

Доказательство. Если (E,\mathfrak{P}) является метрическим линейным пространством, то его топология задается инвариантной метрикой $\rho(x,y)$, при этом открытые шары U_{r_n} , где $r_n=1/n$, составляют локальную базу в нуле его метрической топологии. Следовательно, для каждого $O \in \beta(0)$ существует $n \in \mathbb{N}$, т.ч. $U_{r_n} \subset O$.

С другой стороны, т.к. $\beta(0)$ является локальной базой топологии пространства (E,\mathfrak{P}) , то для каждого $n\in\mathbb{N}$ существует $\varepsilon_n>0$ и конечное множество $\mathfrak{Q}_n\subset\mathfrak{P}$, т.ч. $O_n\doteqdot\{x\in E\mid \max_{p\in\mathfrak{Q}_n}p(x)<\varepsilon_n\}\subset U_{r_n}$. Таким образом, счетная система полунорм $\mathfrak{Q}\doteqdot\bigcup_{n=1}^\infty\mathfrak{Q}_n$ образует локальную базу в нуле топологии пространства (E,\mathfrak{P}) .

Предположим теперь, что система полунорм $\mathfrak{P}=\{p_n\}_{n=1}^\infty$ счетна и определим квазинорму по формуле $\|x\|\doteqdot \sum_{n=1}^\infty 2^{-n}\min\{p_n(x),1\}$. Легко проверяются, что она невырождена, симметрична и удовлетворяет неравенству треугольника. Поэтому функция $\rho(x,y)\doteqdot \|x-y\|$ определяет инвариантную метрику в E и шары $U_{r_n}\subset E$, где $r_n=2^{-n}$, образуют локальную базу в нуле его метрической топологии.

Так как в топологии пространства (E,\mathfrak{P}) квазинорма $\|x\|$ является непрерывной, то шары U_{r_n} являются открытыми множествами в топологии пространства (E,\mathfrak{P}) и, следовательно, топология в (E,\mathfrak{P}) сильнее метрической. С другой стороны, шар U_{r_n} содержится в множестве $O_n \doteqdot \{x \in E \,|\, p_n(x) < 1\}$, т.к. если имеет место обратное неравенство $p_n(x) \geqslant 1$, то $\|x\| \geqslant 1/2^n$. Поэтому топология в (E,\mathfrak{P}) слабее метрической. Таким образом, топологии (E,\mathfrak{P}) и (E,ρ) совпадают.

Пример 1. Классическим примером локально выпуклого пространства является пространство $C(\mathbb{R}^m)$ непрерывных функций $\varphi: \mathbb{R}^m \to \mathbb{F}$ в евклидовом пространстве \mathbb{R}^m , в котором задана система полунорм следующего вида:

$$oldsymbol{p}_n(oldsymbol{arphi}) \doteqdot \sup_{\|x\| \leqslant n} |oldsymbol{arphi}(x)|\,,$$
 где $n \in \mathbb{N}\,.$

Сходимость последовательности функций относительно этой системы полунорм совпадает с равномерной сходимостью на каждом компактном множестве в \mathbb{R}^m . Так как в силу критерия Коши равномерно сходящееся последовательность непрерывных функций сходится к непрерывной функции, то это пространство полно. По доказанной теоремы пространство $C(\mathbb{R}^m)$ является метрическим пространством с метрикой $\rho(\varphi_1,\varphi_2)\doteqdot \|\varphi_1-\varphi_2\|$, где $\|\varphi\|\doteqdot \sum_{n=1}^\infty 2^{-n}\min\{p_n(\varphi),1\}$ является квазинормой в пространстве $C(\mathbb{R}^m)$. Таким образом, $C(\mathbb{R}^m)$ задает локально выпуклое пространством Фреше, т.е. полное метрическое линейное пространство.

Пример 2. Еще одним классическим примером локально выпуклого пространства является пространство $C^{(k)}(\mathbb{R}^m)$ непрерывных функций $\varphi: \mathbb{R}^m \to \mathbb{F}$, у которых существует и непрерывны частные производные до порядка k включительно. Система система полунорм в этом пространстве определяется следующим образом:

$$m{p}_n(m{\phi}) \doteq \sup_{\|x\| \leqslant n, \, |m{lpha}| \leqslant k} |\partial^{m{lpha}} m{\phi}(x)| \, , \,$$
 где $n \in \mathbb{N} \, .$

Здесь выражение $\partial^{\alpha} \varphi(x) \doteqdot \partial_{1}^{\alpha_{1}} \dots \partial_{m}^{\alpha_{m}} \varphi(x)$ обозначает дифференциальный оператор порядка $|\alpha| \doteqdot \alpha_{1} + \dots + \alpha_{m}, \ \partial_{j}^{\alpha_{j}} \varphi(x) \doteqdot \partial^{\alpha_{j}} \varphi(x) / \partial x_{j}^{\alpha_{j}}$ задает частные производные по переменной x_{j} , а $\alpha = (\alpha_{1}, \dots, \alpha_{m}) \in \mathbb{Z}_{+}^{m}$ является мультииндексом.

Сходимость последовательности функций относительно этой системы полунорм совпадает с равномерной сходимостью на каждом компактном множестве в \mathbb{R}^m вместе с частными производными до порядка k включительно. Так как в силу критерия Коши равномерно сходящееся последовательность вместе с производными сходится к такой функции, у которой существуют соответствующие производные, то это пространство полно. По доказанной выше теореме пространство $C^{(k)}(\mathbb{R}^m)$ является метрическим линейным пространством с метрикой $\rho(\varphi_1,\varphi_2) \doteqdot \|\varphi_1 - \varphi_2\|$, где $\|\varphi\| \doteqdot \sum_{n=1}^{\infty} 2^{-n} \min\{p_n(\varphi),1\}$ является квазинормой в пространстве $C^{(k)}(\mathbb{R}^m)$. Таким образом, $C^{(k)}(\mathbb{R}^m)$ образует локально выпуклое пространством Фреше, т.е. полное метрическое линейное пространство.

Пример 3. Рассмотрим пространств $L_{loc}(\mathbb{R}^m)$ локально интегрируемых функций $\varphi: \mathbb{R}^m \to \mathbb{F}$, т.е. интегрируемых по Лебегу на каждом компактном множестве в \mathbb{R}^m . Система система полунорм в $L_{loc}(\mathbb{R}^m)$ определяется следующим образом:

$$oldsymbol{p}_n(oldsymbol{arphi})\doteqdot\int_{\|x\|\leqslant n}|oldsymbol{arphi}(x)|\,dx$$
, где $n\in\mathbb{N}$.

Сходимость последовательности функций относительно этой системы полунорм совпадает со сходимостью в пространстве $L_1(K,\mu)$ относительно меры Лебега на каждом компактном множестве $K \subseteq \mathbb{R}^m$. Так как пространство $L_1(K,\mu)$ полно, то пространство $L_{\ell oc}(\mathbb{R}^m)$ также полно. По доказанной выше теореме оно является метрическим линейным пространством с метрикой $\rho(\varphi_1,\varphi_2) \doteqdot \|\varphi_1-\varphi_2\|$, где $\|\varphi\| \doteqdot \sum_{n=1}^{\infty} 2^{-n} \min\{p_n(\varphi),1\}$ является квазинормой в $L_{\ell oc}(\mathbb{R}^m)$. Таким образом, $L_{\ell oc}(\mathbb{R}^m)$ образует локально выпуклое пространством Фреше́.

Определение. Подространство E' пространства всех линейных функционалов E^* , состоящее из непрерывных функционалов относительно топологии в (E,\mathfrak{P}) , называется сопряженным пространством к (E,\mathfrak{P}) . Топология локально выпуклого пространства (E,\mathfrak{P}) называется его сильной топологией.

Слабая топология τ_w в локально выпуклом пространстве (E,\mathfrak{P}) определяется системой полунорм $p_f(x)\doteqdot|f(x)|,\ f\in E'.$ Слабая* топология τ_{w*} в сопряженном пространстве E' определяется системой полунорм $p_x(f)\doteqdot|f(x)|,\ x\in E$.

Сильная* топология au_{s^*} сопряженного пространства $m{E}'$ определяется системой полунорм $m{p}_A(f) = \sup_{x \in A} |f(x)|$, где A любое ограниченное множество в $(m{E}, \mathfrak{P})$.

Определение. Пусть $E_1 \subset E_2 \subset ...$ возрастающая последовательность локально выпуклых пространств (E_n, \mathfrak{P}_n) , т.ч. 1) E_n является подпространством линейного пространства E и объединение этих подпространств $\bigcup_{n=1}^{\infty} E_n = E$; 2) сужение системы полунорм $\vec{\mathfrak{P}}_{n+1}$ на подпространство E_n совпадает с $\vec{\mathfrak{P}}_{n+1}|_{E_n} = \vec{\mathfrak{P}}_n$.

Обозначим через $\mathfrak D$ множество всех допустимых полунорм p на E, которые на каждом E_n мажорируются $p\ll q$ некоторой полунормой $q\in\vec{\mathfrak P}_n$.

Локально выпуклое пространство (E,\mathfrak{D}) называется *индуктивным пределом* последовательности локально выпуклых пространств (E_n,\mathfrak{P}_n) .

1. Сужение топологии индуктивного предела (E,\mathfrak{D}) на подпространство E_n совпадает с топологией пространства (E_n,\mathfrak{P}_n) .

Так как каждая допустимая полунорма из $\mathfrak D$ мажорируется на подпространстве E_n полунормой из $\vec{\mathfrak P}_n$, то топология $(E_n, \mathfrak P_n)$ сильнее суженной топологии $(E, \mathfrak D)$. Обратно, пусть $p_n \in \mathfrak P_n$. Поскольку по условию $\vec{\mathfrak P}_{m+1}|_{E_m} = \vec{\mathfrak P}_m$, то по индукции существуют $p_{m+1} \in \vec{\mathfrak P}_{m+1}$, т.ч. $p_{m+1}|_{E_m} = p_m$ при всез $m \geqslant n$. Обозначим через p полунорму на E, которая на каждом E_m совпадает с p_m при $m \geqslant n$. Тогда $p \in \mathfrak D$ и $p_n = p|_{E_n}$. Поэтому суженная топология $(E, \mathfrak D)$ сильнее топологии $(E_n, \mathfrak P_n)$.

2. Если все пространства (E_n, \mathfrak{P}_n) являются хаусдорфовыми, то их индуктивный предел (E, \mathfrak{D}) будет хаусдорфовым пространством.

В самом деле, если $x\neq 0$ и $x\in \pmb E_n$, то существует $\pmb p_n\in \mathfrak P_n$, т.ч. $\pmb p_n(x)>0$. Тогда, как показано выше, найдется $\pmb p\in \mathfrak D$, т.ч. $\pmb p_n=\pmb p|_{\pmb E_n}$. Отсюда $\pmb p(x)>0$.

3. Линейное отображение $f: E \to F$ индуктивного предела (E, \mathfrak{D}) в локально выпуклое пространство (F, \mathfrak{Q}) в том и только в том случае непрерывно, если все его сужения $f|_{E_n}$ непрерывны на подпространстве (E_n, \mathfrak{P}_n) .

Поскольку топология (E_n, \mathfrak{P}_n) совпадает с сужением топологии (E, \mathfrak{D}) на E_n , то непрерывность $f|_{E_n}$ следует из непрерывности f. Обратно, если все сужения $f|_{E_n}$ непрерывны, то для любого $q \in \mathfrak{Q}$ найдутся $c_n > 0$ и $p_n \in \vec{\mathfrak{P}}_n$, т.ч. $q(f(x)) \leqslant c_n p_n(x)$ при всех $x \in E_n$. Поэтому $q \cdot f \in \mathfrak{D}$ и значит отображение f непрерывно.

Пусть $C^\infty(X)$ пространство бесконечно дифференцируемых функций $\varphi: X \to \mathbb{F}$ на открытом множестве $X \subset \mathbb{R}^m$, у которых существуют все частные производные, а $C_0^\infty(Y)$ его подпространство функций с компактным носителем $\operatorname{supp} \varphi \Subset Y \subset X$.

Напомним, что носителем функции $\sup \varphi$ называется замыкание множества тех точек $x \in \mathbb{R}^m$, для которых функция $\varphi(x) \neq 0$ не равна нулю. Далее выражение $\partial^{\alpha} \varphi(x) \doteqdot \partial_1^{\alpha_1} \dots \partial_m^{\alpha_m} \varphi(x)$ обозначает дифференциальный оператор $\partial^{\alpha} \doteqdot \partial_1^{\alpha_1} \dots \partial_m^{\alpha_m}$ порядка $|\alpha| \doteqdot \alpha_1 + \dots + \alpha_m$, где $\partial_j^{\alpha_j} \varphi(x) \doteqdot \partial^{\alpha_j} \varphi(x) / \partial x_j^{\alpha_j}$ задает частные производные по переменной x_j порядка α_j и $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{Z}_+^m$ является мультииндексом.

Лемма. Локально выпуклое пространство $\mathscr{E}(X) = \mathbf{C}^{\infty}(X)$ с системой полунорм $\mathbf{p}_{k,K}(\boldsymbol{\phi}) \doteqdot \sup_{|\boldsymbol{\alpha}| \leqslant k, x \in K} |\partial^{\boldsymbol{\alpha}} \boldsymbol{\phi}(x)|$, где $K \in X$ произвольный компакт в открытом множестве $X \subset \mathbb{R}^m$ и $k \in \mathbb{N}$, является пространством Фреше́.

Доказательство. Рассмотрим последовательность компактов $K_1 \subset K_2 \subset \ldots$, т.ч. $K_n \doteqdot \{x \in X \mid \|x\| \leqslant n, \rho(x, \partial X) \geqslant 1/n\}$, где $\rho(x, \partial X) \doteqdot \inf_{x \in \partial X} \|x - y\|$ расстояние от точки x до границы ∂X . Так как всякий компакт $K \subseteq X$ содержится в некотором K_n , то система полунорм $p_{k,K}$ эквивалентна системе полунорм p_{n,K_n} , $n \in \mathbb{N}$.

В силу теоремы метризуемости в пространстве $\mathscr{E}(X)$ можно ввести квазинорму $\|\phi\| = \sum_{n=1}^{\infty} 2^{-n} \min\{p_{n,K_n}(\phi),1\}$ и инвариантную метрику $\rho(\phi_1,\phi_2) \doteqdot \|\phi_1 - \phi_2\|$, для которой топология совпадает с топологией локально выпуклого пространства $\mathscr{E}(X)$. Докажем полноту этого метрического линейного пространства.

Пусть $\{\varphi_i\}_{i=1}^\infty$ последовательность Коши в пространстве $\mathscr{E}(X)$. Тогда для любого $0<\varepsilon<1$ существует N, т.ч. $2^{-n}p_{n,K_n}(\varphi_i-\varphi_j)\leqslant \|\varphi_i-\varphi_j\|<\varepsilon$ при всех $i,j\geqslant N$. В силу критерия Коши последовательность $\{\varphi_i\}_{i=1}^\infty$ сходится равномерно вместе со всеми производными на каждом компакте K_n . Отсюда пределы этой последовательности и всех ее производных будут непрерывны. Следовательно, существует функция $\varphi\in C^\infty(X)$, т.ч. $\varphi_i\to \varphi$ сходится в метрике $\mathscr{E}(X)$.

Следствие. Для каждого компакта $K \subseteq X$ в открытом множестве $X \subset \mathbb{R}^m$ локально выпуклые пространства $\mathscr{D}(K) = C_0^{\infty}(K)$, в которых введена система норм $p_k(\phi) \doteq \sup_{|\alpha| \leqslant k, x \in X} |\partial^{\alpha} \phi(x)|$, где $k \in \mathbb{N}$, образуют пространства Фреше́.

Определение. Пусть $X \subset \mathbb{R}^m$ открытое множество и задана такая возрастающая последовательность компактов $K_1 \subset K_2 \subset \ldots$, что $X = \bigcup_{n=1}^{\infty} \mathring{K_n}$. Тогда имеют место включения $\mathscr{D}(K_1) \subset \mathscr{D}(K_2) \subset \ldots$ и $\mathscr{D}(X) \doteqdot \bigcup_{n=1}^{\infty} \mathscr{D}(K_n) = C_0^{\infty}(X)$.

Пространством основных функций $\mathcal{D}(X)$ на открытом множестве X называется индуктивный предел последовательности пространств Фреше́ $\mathcal{D}(K_n)$. Сопряженное пространство $\mathcal{D}'(X)$ к пространству $\mathcal{D}(X)$, в котором введена слабая* топология, называется пространством обобщенных функций.

Определение индуктивного предела не зависит от выбора последовательности компактов. В самом деле, если $K_1 \subset K_2 \subset \ldots \Subset X$ и $X = \bigcup_{n=1}^\infty \mathring{K}_n$, то всякий компакт $K \Subset X$ содержится в некотором \mathring{K}_n . Иначе существует последовательность точек $x_n \in K \setminus \mathring{K}_n$, которые являются ближайшими точками к границе ∂X . Поскольку $x_k \notin K_n$ при всех $k \geqslant n$, то эта последовательность не имеет предельных точек в X. Однако в силу компактности множества K существует сходящаяся подпоследовательность $x_{n_k} \to x \in K \subset X$. Таким образом, мы получили противоречие.

Пример 4. Примеры основных функций из пространства $\mathscr{D}(\mathbb{R}^m)$.

Пусть $e(t)\doteqdot e^{-1/t}$ при всех t>0 и $e(t)\doteqdot 0$ при всех $t\leqslant 0$. По правилу Лопита́ля e(t) будет бесконечно дифференцируемой в точке x=0. Поэтому $\xi(x)\doteqdot e(1-\|x\|^2)$ при всех $x\in\mathbb{R}^m$ является бесконечно дифференцируемой, $0\leqslant \xi(x)\leqslant 1$ и имеет носитель $\sup \xi\subset S\doteqdot \{x\in\mathbb{R}^m\mid \|x\|\leqslant 1\}$ в единичном шаре пространства \mathbb{R}^m .

Система функций $\theta_r(x) \doteqdot c_r \xi(x/r)$ называется аппроксимативной единицей, где константы $c_r > 0$ подобраны так, чтобы ее интеграл $\int_{\mathbb{R}^m} \theta_r(x) \, dx = 1$. Функции $\theta_r(x)$ при всех $x \in \mathbb{R}^m$ являются бесконечно дифференцируемыми, неотрицательными и имеют носитель $\sup \theta_r \subset S_r \doteqdot \{x \in \mathbb{R}^m \mid \|x\| \leqslant r\}$ в шаре радиуса r > 0.

Рассмотрим функцию $\eta(x)\doteqdot\int_{S_{3/4}}\theta_{1/4}(x-y)\,dy$. Ясно, что $\eta(x)=1$ при $x\in S_{1/2}$ и $\eta(x)=0$ при $x\notin S$. При этом функция $\eta(x)$ при всех $x\in \mathbb{R}^m$ будет бесконечно дифференцируемой, $0\leqslant \eta(x)\leqslant 1$ и имеет носитель $\mathrm{supp}\,\eta\subset S$ в единичном шаре.

Теорема (Боре́ля). Для всякой последовательности чисел $\{c_{\alpha}\}_{\alpha\in\mathbb{Z}_{+}^{m}}$ и любой точки $x_{0}\in\mathbb{R}^{m}$ существует функция $\pmb{\varphi}\in\mathscr{D}(\mathbb{R}^{m})$, т.ч. $\partial^{\alpha}\pmb{\varphi}(x_{0})=c_{\alpha}$.

$$arphi(x) \doteqdot \sum_{n=0}^{\infty} c_n \frac{(x-x_0)^n}{n!} \eta\left(\frac{x-x_0}{r_n}\right),$$
 где $r_n \searrow 0$ и $\sum_{n=0}^{\infty} |c_n| r_n < \infty$.

Почленно дифференцируя этот ряд k раз, получим равномерно сходящийся ряд, т.к. носитель $\sup \eta \subset [-1,1]$. Поэтому производные $\varphi^{(k)}(x_0) = c_k$ при всех $k \in \mathbb{Z}_+$.

Пример 5. Примеры обобщенных функций из пространства $\mathscr{D}'(\mathbb{R})$.

Обобщенная функция $\delta(x-x_0)\in \mathscr{D}'(\mathbb{R})$, т.ч. $\langle \delta(x-x_0), \phi \rangle \doteqdot \phi(x_0)$ при всех $\phi \in \mathscr{D}(\mathbb{R}^m)$, называется δ -функцией в точке $x_0 \in \mathbb{R}$. В частности, $\langle \delta(x), \phi \rangle \doteqdot \phi(0)$.

Обобщенная функция $\mathcal{P}_x^1 \in \mathscr{D}'(\mathbb{R})$ называется главным значением $\frac{1}{x}$ и определяется по формуле $\langle \mathcal{P}_x^1, \pmb{\varphi} \rangle \doteq \lim_{\epsilon \to +0} \int_{|x|>\epsilon} \frac{\pmb{\varphi}(x)}{x} dx$ при всех $\pmb{\varphi} \in \mathscr{D}(\mathbb{R})$. Тогда имеем

$$\left\langle \mathcal{P} \frac{1}{x}, \varphi \right\rangle = \lim_{\varepsilon \to +0} \left(\int_{\varepsilon}^{a} + \int_{-a}^{-\varepsilon} \right) \frac{\varphi(x)}{x} dx = \int_{0}^{a} \frac{\varphi(x) - \varphi(-x)}{x} dx,$$

где $\varphi \in \mathscr{D}(-a,a)$. Так как по формуле Лагранжа $|\langle \mathscr{P}^1_x, \varphi \rangle| \leqslant 2a\,p_1(\varphi)$, где $p_1 \in \mathfrak{P}$ допустимая полунорма, то функционал \mathscr{P}^1_x является непрерывным.

Пример 6. Имеет место формула $Cox \acuteouxozo$ $\frac{1}{x\pm i0}=\mathcal{P}\frac{1}{x}\mp\pi i\delta(x)$, где обобщенные функции $\frac{1}{x\pm i0}$ определяются по формулам $\langle \frac{1}{x\pm i0}, \pmb{\varphi} \rangle \doteqdot \lim_{\varepsilon \to +0} \int_{\mathbb{R}} \frac{\pmb{\varphi}(x)}{x\pm i\varepsilon} dx$ при $\pmb{\varphi} \in \mathscr{D}(\mathbb{R})$.

В самом деле, для любой основной функции $oldsymbol{arphi}\in\mathscr{D}(-a,a)$ мы имеем

$$\lim_{\varepsilon \to +0} \int_{-a}^{a} \frac{\varphi(x)}{x \pm i\varepsilon} dx = \lim_{\varepsilon \to +0} \left(\int_{-a}^{a} \frac{x \mp i\varepsilon}{x^{2} + \varepsilon^{2}} \left(\varphi(x) - \varphi(0) \right) dx + \varphi(0) \int_{-a}^{a} \frac{x \mp i\varepsilon}{x^{2} + \varepsilon^{2}} dx \right) =$$

$$= \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{x} dx \mp i\varphi(0) \lim_{\varepsilon \to +0} \int_{-a}^{a} \frac{\varepsilon dx}{x^{2} + \varepsilon^{2}} = \int_{0}^{a} \frac{\varphi(x) - \varphi(-x)}{x} dx \mp \pi i\varphi(0).$$

12 ОБОБЩЕННЫЕ ФУНКЦИИ

Напомним некоторые определения предыдущей лекции. Через $C_0^\infty(X)$ обозначается пространство бесконечно дифференцируемых функций $\boldsymbol{\varphi}$ с компактым носителем $\mathrm{supp}\,\boldsymbol{\varphi} \in X$ и системой полунорм $\mathfrak{P} = \{\boldsymbol{p}_k\}_{k \in \mathbb{Z}_+},$ где $X \subset \mathbb{R}^m$ открытое множество и $\boldsymbol{p}_k(\boldsymbol{\varphi}) \doteqdot \mathrm{sup}_{|\boldsymbol{\alpha}| \leqslant k, x \in X} |\partial^{\boldsymbol{\alpha}} \boldsymbol{\varphi}(x)|$. Его подпространство $\mathscr{D}(K) \subset C_0^\infty(X)$ всех функций с носителем $\mathrm{supp}\,\boldsymbol{\varphi} \subset K$ в компакте $K \in X$ является пространством Фреше́.

Локально выпуклое пространство $\mathscr{D}(X) = C_0^\infty(X)$ с системой всех допустимых полунорм \mathfrak{D} называется пространством *основных функций*. При этом полунорма \boldsymbol{p} называется ∂ опустимой, если для любого компакта $K \in X$ существует полунорма $\boldsymbol{p}_k \in \mathfrak{P}$, т.ч. она мажорирует $\boldsymbol{p} \ll \boldsymbol{p}_k$ полунорму \boldsymbol{p} на подпространстве $\mathscr{D}(K)$.

Сопряженное пространство $\mathscr{D}'(X)$, которое состоит из непрерывных линейных функционалов $f: \mathscr{D}(X) \to \mathbb{F}$, определенных на $\mathscr{D}(X)$, называется пространством обобщенных функций. Значение обобщенной функции $f \in \mathscr{D}'(X)$ (как линейного функционала) на функции $\varphi \in \mathscr{D}(X)$ обозначается скобкой $\langle f, \varphi \rangle \doteqdot f(\varphi)$.

Множество $M \subset \mathscr{D}(X)$ называется *ограниченным* в пространстве $\mathscr{D}(X)$ основных функций, если $\sup_{\phi \in M} p(\phi) < \infty$ для всех допустимых полунорм $p \in \mathfrak{D}$. Говорят, что последовательность функций $\{\phi_n\}_{n=1}^{\infty} \subset \mathscr{D}(X)$ сходится κ функции $\phi \in \mathscr{D}(X)$, если $\lim_{n \to \infty} p(\phi_n - \phi) = 0$ при всех $p \in \mathfrak{D}$. Говорят, что $\{\phi_n\}_{n=1}^{\infty} \subset \mathscr{D}(X)$ является *последовательностью Коши*, если $\lim_{n,m \to \infty} p(\phi_n - \phi_m) = 0$ при всех $p \in \mathfrak{D}$.

1. Для всякого ограниченного множества $M \subset \mathcal{D}(X)$ найдется компакт $K \subseteq X$, т.ч. $M \subset \mathcal{D}(K)$ и множество M является ограниченным в $\mathcal{D}(K)$.

Предположим обратное. Тогда существуют такие последовательности вложенных компактов $K_n \subseteq X$, $X = \bigcup_{n=1}^{\infty} \mathring{K}_n$, функций $\varphi_n \in M$ и точек $x_n \in X \setminus K_n$, что $\varphi_n(x_n) \neq 0$. Так как любой компакт K_n содержит лишь конечное число точек x_n , то полунорма $p(\varphi) \doteq \sup_{n \in \mathbb{N}} |n\varphi(x_n)/\varphi_n(x_n)|$ является допустимой, т.е. $p \in \mathfrak{D}$. При этом имеет место неравенство $p(\varphi_n) \geqslant n \to \infty$, что противоречит ограниченности M.

2. Всякая сходящаяся последовательность $\{\varphi_n\}_{n=1}^{\infty}$ является ограниченным множеством в пространстве $\mathcal{D}(X)$.

Действительно, если последовательность $\{ \boldsymbol{\varphi}_n \}_{n=1}^{\infty} \subset \mathcal{D}(X)$ сходится к функции $\boldsymbol{\varphi} \in \mathcal{D}(X)$, то $|\boldsymbol{p}(\boldsymbol{\varphi}_n) - \boldsymbol{p}(\boldsymbol{\varphi})| \leqslant \boldsymbol{p}(\boldsymbol{\varphi}_n - \boldsymbol{\varphi}) \to 0$ при $n \to \infty$ для всех $\boldsymbol{p} \in \mathfrak{D}$. Поэтому последовательность чисел $\{ \boldsymbol{p}(\boldsymbol{\varphi}_n) \}_{n=1}^{\infty}$ ограничена и, следовательно, выполняется неравенство $\sup_{n \in \mathbb{N}} \boldsymbol{p}(\boldsymbol{\varphi}_n) < \infty$ для всех допустимых полунорм $\boldsymbol{p} \in \mathfrak{D}$.

3. Пространство основных функций $\mathcal{D}(X)$ является полным.

Докажем, что всякая последовательность Коши $\{\varphi_n\}_{n=1}^{\infty} \subset \mathscr{D}(X)$ в пространстве основных функций $\mathscr{D}(X)$ является сходящейся. Так как выполняется неравенство $|p(\varphi_n)-p(\varphi_m)|\leqslant p(\varphi_n-\varphi_m)$, то последовательность чисел $\{p(\varphi_n)\}_{n=1}^{\infty}$ ограничена, т.е. $\sup_{n\in\mathbb{N}}p(\varphi_n)<\infty$ для всех $p\in\mathfrak{D}$. По свойству 1 последовательность $\{\varphi_n\}_{n=1}^{\infty}$ содержится в некотором $\mathscr{D}(K)$ и в силу полноты $\mathscr{D}(K)$ является сходящейся.

Теорема. Сопряженное пространство $\mathcal{D}'(X)$ полно в слабой* топологии.

Доказательство. Если $\{f_n\}$ есть последовательность Коши в топологии $\mathscr{D}'(X)$, то существует предел $\langle f_n, \varphi \rangle \to \langle f, \varphi \rangle$ при всех $\varphi \in \mathscr{D}(X)$. Тогда f является линейным функционалом и согласно свойству индуктивного предела $\mathscr{D}(X)$ нам достаточно проверить его непрерывность на каждом подпространстве $\mathscr{D}(K) \subset \mathscr{D}(X)$. Поэтому по принципу равностепенной непрерывности в $\mathscr{D}(K)$ для любого $\varepsilon > 0$ найдутся $k \in \mathbb{N}$ и $\delta > 0$, т.ч. $|\langle f_n, \varphi \rangle| < \varepsilon$ при всех $n \in \mathbb{N}$ и для всех $\varphi \in \mathscr{D}(K)$, т.ч. $p_k(\varphi) < \delta$. Переходя к пределу в неравенстве, получим, что $|\langle f, \varphi \rangle| \leqslant \varepsilon$ при всех $\varphi \in \mathscr{D}(K)$, т.ч. $p_k(\varphi) < \delta$. Отсюда f непрерывен на $\mathscr{D}(K)$ и значит непрерывен на $\mathscr{D}(X)$. \square

В силу доказанных ранее утверждений имеют место следующие свойства:

- а) последовательность $\varphi_n \to \varphi$ в том и только в том случае сходится в топологии пространства $\mathcal{D}(X)$, когда 1) существует компакт $K \subseteq X$, т.ч. $\mathrm{supp}\,\varphi_n \subset K$ при всех $n \in \mathbb{N}$, и 2) предел $\lim_{n \to \infty} p_k(\varphi_n \varphi) = 0$ для всех полунорм $p_k \in \mathfrak{P}$;
- b) линейный функционал $f: \mathscr{D}(X) \to \mathbb{F}$ тогда и только тогда является непрерывным на пространстве $\mathscr{D}(X)$, т.е. $f \in \mathscr{D}'(X)$, когда из сходимости $\varphi_n \to \varphi$ в пространстве $\mathscr{D}(X)$ следует сходимость $\langle f, \varphi_n \rangle \to \langle f, \varphi \rangle$ в \mathbb{F} ;
- с) линейный оператор $A: \mathscr{D}(X) \to E$, отображающий $\mathscr{D}(X)$ в локально выпуклое пространство E, тогда и только тогда является непрерывным, когда из сходимости $\varphi_n \to \varphi$ в пространстве $\mathscr{D}(X)$ следует сходимость $A\varphi_n \to A\varphi$ в E;
- d) если последовательность обобщенных функций $\{f_n\}$ слабо* сходится в $\mathscr{D}'(X)$, т.е. если $\langle f_n, \varphi \rangle \to \langle f, \varphi \rangle$ для каждой функции $\varphi \in \mathscr{D}(X)$, то $f \in \mathscr{D}'(X)$;
- е) всякая локально интегрируемая функция $f\in L_{\ell oc}(X,\mu)$ задает обобщенную функцию $f\in \mathscr{D}'(X)$ по формуле $\langle f,\pmb{\varphi}\rangle\doteqdot\int_X f(x)\pmb{\varphi}(x)\,dx$ при всех $\pmb{\varphi}\in \mathscr{D}(X)$.

Действительно, поскольку выполняется неравенство $\left|\int_X f(x) \pmb{\varphi}(x) \, dx\right| \leqslant c \pmb{p}_0(\pmb{\varphi})$, где $\pmb{\varphi} \in \mathcal{D}(X)$, $\sup \pmb{\varphi} \in K$, $c = \int_K |f(x)| \, dx$ и полунорма $\pmb{p}_0 \in \mathfrak{P}$ является допустимой, то этот линейный функционал f является непрерывным.

Рассмотрим действия с обобщенными функциями $f \in \mathscr{D}'(X)$.

1. Произведение обобщенной функции $f \in \mathscr{D}'(X)$ на функцию $g \in C^{\infty}(X)$ определяется по формуле $\langle gf, \pmb{\varphi} \rangle \doteqdot \langle f, g\pmb{\varphi} \rangle$ при всех $\pmb{\varphi} \in \mathscr{D}(X)$.

Непрерывность функционала gf на $\mathscr{D}(X)$ вытекает из непрерывности оператора $M_g(\pmb{\varphi})\doteqdot g\pmb{\varphi}$ умножения на функцию $g\in \pmb{C}^\infty(X)$ на пространстве $\mathscr{D}(X)$.

2. Операторы сдвига $\tau_a f$ и растяжения $\rho_{\lambda} f$ обобщенной функции $f \in \mathscr{D}'(\mathbb{R}^m)$ определяются по формулам $\langle \tau_a f, \varphi \rangle \doteqdot \langle f, \tau_{-a} \varphi \rangle$ и $\langle \rho_{\lambda} f, \varphi \rangle \doteqdot |\lambda|^m \langle f, \rho_{\lambda^{-1}} \varphi \rangle$ при всех $\varphi \in \mathscr{D}(\mathbb{R}^m)$ и $\lambda \neq 0$, где $\tau_a \varphi(x) \doteqdot \varphi(x-a)$ и $\rho_{\lambda} \varphi(x) \doteqdot \varphi(\lambda^{-1} x)$.

Непрерывность функционалов $\tau_a f$ и $\rho_{\lambda} f$ в $\mathscr{D}(\mathbb{R}^m)$ вытекает из непрерывности соответствующих операторов сдвига τ_a и растяжения ρ_{λ} на пространстве $\mathscr{D}(\mathbb{R}^m)$.

3. Пусть $A: \mathbb{R}^m \to \mathbb{R}^m$ линейное отображение, т.ч. определитель $\det A \neq 0$. Тогда замена переменных y = A(x) обобщенной функции $f \in \mathscr{D}'(X)$ определяется по формуле $\langle T_A f, \varphi \rangle \doteqdot \langle f, | \det A | T_{A^{-1}} \varphi \rangle$ при всех $\varphi \in \mathscr{D}(\mathbb{R}^m)$, где $T_A \varphi(y) = \varphi(A^{-1}(y))$.

Непрерывность функционала $T_A f$ на пространстве $\mathscr{D}(X)$ следует из непрерывности оператора замены переменных $T_A \phi$ в пространстве $\mathscr{D}(X)$.

4. Производные обобщенной функции $f \in \mathscr{D}'(X)$ степени $\alpha \in \mathbb{Z}_+^m$ определяются по формуле $\langle \partial^{\alpha} f, \varphi \rangle \doteqdot (-1)^{|\alpha|} \langle f, \partial^{\alpha} \varphi \rangle$ для всех $\varphi \in \mathscr{D}(X)$, где $|\alpha| = \sum_{k=1}^m \alpha_k$.

Непрерывность функционала $\partial^{\alpha} f$ в $\mathscr{D}(X)$ вытекает из непрерывности оператора дифференцирования $\partial^{\alpha} \varphi$ на пространстве $\mathscr{D}(X)$.

5. Формула Ле́йбница $\partial_i(gf) = (\partial_i g)f + g(\partial_i f)$, где $g \in \mathbf{C}^{\infty}(X)$ и $\partial_i = \frac{\partial}{\partial x_i}$, $i = 1, \dots, n$.

В самом деле, применяя обычную формулу Ле́йбница из курса математического анализа, получим при всех $\phi \in \mathscr{D}(X)$ следующие равенства

$$\langle \partial_i(gf), \varphi \rangle = -\langle f, g(\partial_i \varphi) \rangle = \langle f, (\partial_i g) \varphi - \partial_i(g\varphi) \rangle = \langle (\partial_i g) f, \varphi \rangle + \langle g(\partial_i f) \varphi \rangle.$$

Определение. Говорят, что обобщенные функции $f,g\in \mathscr{D}'(X)$ совпадают f=g на открытом множестве $Y\subset X$, если $\langle f, \pmb{\varphi}\rangle = \langle g, \pmb{\varphi}\rangle$ для всех $\pmb{\varphi}\in \mathscr{D}(Y)$. Говорят, что обобщенные функции $f,g\in \mathscr{D}'(X)$ совпадают f(x)=g(x) в точке $x\in X$, если они совпадают в некоторой окрестности точки $x\in X$. Замкнутое множество в X

$$supp f = \{x \in X \mid f(x) \neq 0\} = X \setminus \{x \in X \mid f(x) = 0\}$$

называется носителем обобщенной функции $f \in \mathscr{D}'(X)$.

Лемма (о локализации). Если обобщенные функции $f,g \in \mathcal{D}'(X)$ совпадают в каждой точке $x \in Y$ открытого множества $Y \subset X$, то они совпадают на Y.

Доказательство. Рассмотрим все открытые шары $U_{2r}(x)$, содержащиеся в Y, для которых f=g. Так как основная функция $\varphi\in \mathscr{D}(Y)$ имеет компактный носитель $K=\operatorname{supp} \varphi\subset Y$, то существует конечное подпокрытие компакта $K\subseteq \bigcup_{j=1}^n U_{r_j}(x_j)$. Определим основные функции $\varepsilon_i\in \mathscr{D}(X)$ по формуле

$$\varepsilon_i(x) \doteq \vartheta_{r_i}(x-x_i)/\sum_{j=1}^m \vartheta_{r_j}(x-x_j), \quad i=1,\ldots,n,$$

где $\vartheta_r(x)$ аппроксимативная единица. Так как носитель функции ε_i содержится в шаре $\sup \varepsilon_i \subset U_{2r_i}(x_i)$ и их сумма равна $\sum_{i=1}^n \varepsilon_i(x) = 1$ на множестве K, то получаем $\langle f, \varphi \rangle = \sum_{i=1}^n \langle f, \varepsilon_i \varphi \rangle = \sum_{i=1}^n \langle g, \varepsilon_i \varphi \rangle = \langle g, \varphi \rangle$ для всех $\varphi \in \mathscr{D}(Y)$.

Рассмотрим структуру сопряженного пространства $\mathscr{E}'(X)$ к локально выпуклому пространству $\mathscr{E}(X) = C^{\infty}(X)$ с системой полунорм $p_{k,K}(\varphi) \doteqdot \sup_{|\alpha| \leqslant k, x \in K} |\partial^{\alpha} \varphi(x)|$, где $k \in \mathbb{Z}_+$ и $K \Subset X$. Эта система полунорм в $\mathscr{E}(X)$ эквивалентна счетной системе полунорм p_{n,K_n} , где $K_n \doteqdot \{x \in X \mid ||x|| \leqslant n, \rho(x,\partial X) \geqslant 1/n\}$ и число $n \in \mathbb{N}$, т.ч. $K_n \neq \emptyset$. Заметим, что $\mathscr{D}(X) \subset \mathscr{E}(X)$ и локально выпуклая топология на $\mathscr{D}(X)$ сильнее его суженной топологии из пространства $\mathscr{E}(X)$, т.к. всякая полупнорма $p_{k,K}$ являются допустимой на пространстве основных функций $\mathscr{D}(X)$.

Теорема. Обобщенная функция $f \in \mathcal{D}'(X)$ имеет компактный носитель тогда и только тогда, когда существует $g \in \mathcal{E}'(X)$, т.ч. $g|_{\mathcal{D}(X)} = f$. При этом такой функционал $g \in \mathcal{E}'(X)$ является единственным.

Доказательство. Необходимость. Рассмотрим основные функции $\eta_n \in \mathscr{D}(X)$, где

$$\eta_n(x)\doteqdot \int_{\mathbb{R}^m} heta_{1/4n}(x-y) \chi_{K_{4n/3}}(y)\, dy = egin{cases} 1, \ ext{если } x\in K_n; \ 0, \ ext{если } x
otin K_{2n}. \end{cases}$$

Определим линейный функционал $g \in \mathscr{E}'(X)$ по формуле $\langle g, \varphi \rangle \doteqdot \langle f, \eta_n \varphi \rangle$ при всех $\varphi \in \mathscr{E}(X)$, где число $n \in \mathbb{N}$ выбрано, т.ч. $\mathrm{supp}\, f \subset K_n$. Так как линейный оператор $A_n \varphi \doteqdot \eta_n \varphi$ является непрерывным в пространстве $\mathscr{E}(X)$, то $g \in \mathscr{E}'(X)$. Поскольку $\mathrm{supp}\, f \subset K_n$ и функция $\varphi(x) - \eta_n(x) \varphi(x) = 0$ при всех $x \in K_n$, то

$$\langle g, \varphi \rangle = \langle f, \eta_n \varphi \rangle = \langle f, \varphi \rangle - \langle f, \varphi - \eta_n \varphi \rangle = \langle f, \varphi \rangle$$
 при всех $\varphi \in \mathscr{D}(X)$.

Достаточность. Если функционал $g \in \mathscr{E}'(X)$, то $f \doteqdot g|_{\mathscr{D}(X)}$ будет непрерывным линейным функционалом на пространстве $\mathscr{D}(X)$, так как индуктивная топология $\mathscr{D}(X)$ сильнее суженной топологии из пространства $\mathscr{E}(X)$. Поскольку функционал $g \in \mathscr{E}'(X)$ непрерывен, то найдутся $n \in \mathbb{N}$ и $c_n > 0$, т.ч. $|\langle g, \varphi \rangle| \leqslant c_n p_{n,K_n}(\varphi)$ при всех $\varphi \in \mathscr{E}(X)$. Следовательно, имеем $\langle g, \varphi \rangle = 0$ при всех $\varphi \in \mathscr{D}(X)$, т.ч. $\sup \varphi \subset X \setminus K_n$. Таким образом, носитель $\sup f \subset K_n$ является компактным.

Единственность. Допустим, что существуют $g_1,g_2\in\mathscr{E}(X)$, т.ч. $\langle g_1,\varphi\rangle=\langle g_2,\varphi\rangle$ при всех $\varphi\in\mathscr{D}(X)$. Для каждой функции $\varphi\in\mathscr{E}(X)$ полагаем $\varphi_n(x)\doteqdot\eta_n(x)\varphi(x)$. Тогда имеем $\varphi_n\in\mathscr{D}(X)$ и $\varphi_n\to\varphi$ в $\mathscr{E}(X)$ при $n\to\infty$. Отсюда следует, что имеет место равенство $\langle g_1,\varphi\rangle=\lim\langle g_1,\varphi_n\rangle=\lim\langle g_2,\varphi_n\rangle=\langle g_2,\varphi\rangle$ при всех $\varphi\in\mathscr{E}(X)$.

Следствие. Отображение $\mathscr{E}'(X) \hookrightarrow \mathscr{D}'(X)$, которое каждой $f \in \mathscr{E}'(X)$ ставит в соответствие $g \doteqdot f|_{\mathscr{D}(\mathbb{R}^m)}$, является непрерывным и инъективным, а его образ состоит из всех обобщенных функций с компактным носителем.

Инъективность следует из единственности. Для доказательства непрерывности возьмем $U=\{f\in \mathscr{D}'(X)|\max_{1\leqslant k\leqslant n}|\langle f,\phi_k\rangle|<\epsilon\}$ слабую* окрестность нуля в $\mathscr{D}'(X)$, тогда $V=\{g\in \mathscr{E}'(X)|\max_{1\leqslant k\leqslant n}|\langle g,\phi_k\rangle|<\epsilon\}$ является слабой* окрестностью нуля в $\mathscr{E}'(X)$. Так как $V\subset U$, то указанное отображение непрерывно.

Теорема (Шва́рца о локальной структуре). Для всякой обобщенной функции $f \in \mathscr{D}'(X)$ и каждого компактного множества $K \subseteq X$ существуют непрерывная функция $g \in C(X)$ и $\alpha \in \mathbb{Z}_+^m$, т.ч. $\langle f, \varphi \rangle = \langle \partial^{\alpha} g, \varphi \rangle$ для всех $\varphi \in \mathscr{D}(K)$.

Доказательство. Применяя формулу замены переменных, мы можем считать, что $K \subset [0,1]^m \subset X$. Если функционал $f \in \mathscr{D}'(X)$ является непрерывным, то он будет непрерывным на подпространстве $\mathscr{D}(K) \subset \mathscr{D}(X)$ по системе полунорм

$$m{p}_k(m{\phi})\doteqdot \sup_{|lpha|\leqslant k,x\in X}\left|\partial^{lpha}m{\phi}(x)
ight|,$$
 где $k\in\mathbb{Z}_+$ и $m{\phi}\in\mathscr{D}(K)$.

Поэтому существуют $k\in\mathbb{Z}_+$ и $c_k>0$, т.ч. $|\langle f,\pmb{\varphi}\rangle|\leqslant c_k\,\pmb{p}_k(\pmb{\varphi})$ для всех $\pmb{\varphi}\in\mathscr{D}(K)$. Так как $\pmb{\varphi}(0)=0$, то по формуле Лагра́нжа получим $\sup_{x\in K}|\pmb{\varphi}(x)|\leqslant \sup_{x\in K}|\partial_j\pmb{\varphi}(x)|$ при всех $j=1,\ldots,m$. Из этого неравенства, полагая $D\doteqdot\partial_1\ldots\partial_m$, мы имеем

$$\sup_{x\in K}|\partial^{\alpha}\varphi(x)|\leqslant \sup_{x\in K}|D^{k}\varphi(x)|\,,\,\,\text{где}\,\,|\alpha|\leqslant k\,\,\,\text{и}\,\,\,\varphi\in\mathscr{D}(K)\,.$$

По формуле Ньютона-Лейбница для функций многих переменных мы получим

$$oldsymbol{arphi}(x) = \int_{[0,x]} D\,oldsymbol{arphi}(y)\,dy$$
, где $[0,x] \subset [0,1]^m$ и $x \in \mathbb{R}^m$. Следовательно, имеем $|\langle f, oldsymbol{arphi}
angle| \leqslant c_k \, oldsymbol{p}_k(oldsymbol{arphi}) \leqslant c_k \, \sup_{x \in K} |D^k oldsymbol{arphi}(x)| \leqslant c_k \int_K |D^{k+1} oldsymbol{arphi}| \, dx$ при всех $oldsymbol{arphi} \in \mathscr{D}(K)$.

Поскольку линейное отображение $D^{k+1}: \mathscr{D}(K) \to \mathscr{D}(K)$ является непрерывным и взаимно однозначным на пространстве $\mathscr{D}(K)$, то корректно определен линейный функционал $F_k(\phi) \doteqdot \langle f, D^{-k-1}\phi \rangle$ на образе оператора D^{k+1} . В силу доказанного выше неравенства функционал непрерывен в метрике $L_1(K,\mu)$. По теореме Ха́на-Ба́наха существует непрерывное продолжение функционала F_k на пространство $L_1(K,\mu)$, а в силу теоремы Штейнга́уза существует функция $f_k \in L_\infty(K,\mu)$, т.ч. $F_k(\phi) = \int_K f_k(x)\phi(x)\,dx$ при всех $\phi \in \mathscr{D}(K)$. Пусть $f_k(x) = 0$ для всех $x \in [0,1]^m \setminus K$. Тогда, интегрируя по частям, мы получим при всех $\phi \in \mathscr{D}(K)$

$$\langle f, \varphi \rangle = \int_{[0,1]^m} f_k(x) D^{k+1} \varphi(x) \, dx = (-1)^{|\alpha|} \int_{[0,1]^m} g(x) \, \partial^{\alpha} \varphi(x) \, dx = \langle \partial^{\alpha} g, \varphi \rangle \,,$$

где функция $g(x)\doteqdot (-1)^{m(k+1)}\int_{[0,x]}f_k(y)\,dy$ является непрерывной на отрезке $[0,1]^m$ и мультииндекс равен $\alpha\doteqdot (k+2,\dots,k+2)$.

Если существует такое $n\in\mathbb{Z}_+$, что для любого компакта $K\Subset Y$ найдется c>0, т.ч. $|\langle f, \pmb{\varphi} \rangle| \leqslant c\,p_n(\pmb{\varphi})$ при всех $\pmb{\varphi} \in \mathscr{D}(K)$, то говорят, что обобщенная функция $f\in \mathscr{D}'(X)$ имеет порядок не выше n на множестве $Y\subset X$. Наименьшее такое число n называется nopsdkom обобщенной функции $f\in \mathscr{D}'(X)$ на множестве $Y\subset X$. Если же такого числа n не существует, то говорят, что $f\in \mathscr{D}'(X)$ имеет $f\in \mathscr{D}'(X)$ имеет $f\in \mathscr{D}'(X)$ имеет $f\in \mathscr{D}'(X)$ имеет $f\in \mathscr{D}'(X)$ имеет конечный порядок.

Пример 1. Докажем, что пространство основных функций $\mathscr{D}(\mathbb{R})$ неметризуемо и значит имеет несчетную систему допустимых полунорм.

Рассмотрим функцию $\xi \in \mathscr{D}(\mathbb{R})$ с носителем на отрезке [-1,1], которая была построена на предыдущей лекции, и положим $\varphi_{n,m}(x) = \frac{1}{n} \xi(\frac{x}{m})$. Тогда ее производные $\varphi_{n,m}^{(k)} \rightrightarrows 0$ равномерно стремятся к нулю при $n \to \infty$ для каждого фиксированного $m \in \mathbb{N}$. Поэтому последовательность функций $\varphi_{n,m} \to 0$ при $n \to \infty$ сходится к нулю в топологии пространства основных функций $\mathscr{D}(\mathbb{R})$ при всех $m \in \mathbb{N}$.

Если топология $\mathscr{D}(\mathbb{R})$ метризуема некоторой метрикой $\rho(\varphi, \psi)$, то существует последовательность чисел $\{m_n\}_{n=1}^{\infty}$, т.ч. $\rho(\varphi_{n,m_n}, 0) < \frac{1}{n}$ при всех $n \in \mathbb{N}$. Поэтому

последовательность $\phi_{n,m_n} o 0$ сходится к нулю в топологии метрики и, следовательно, сходится к нулю в топологии $\mathscr{D}(\mathbb{R})$. Однако это невозможно, т.к. носители функций $\mathrm{supp}\, \phi_{n,m_n} = [-m_n,m_n]$ не содержатся на одном компакте. Таким образом, топология пространства основных функций $\mathscr{D}(\mathbb{R})$ является неметризуемой. В силу теоремы о меризуемости локально выпуклого пространства система допустимых полунорм является несчетной. Аналогичным образом, легко можно доказать, что пространство основных функций $\mathscr{D}(X)$ также является неметризуемым, где $X\subset\mathbb{R}^m$ непустое открытое множество евкидова пространства \mathbb{R}^m .

Пример 2. Обобщенные функции, которые представляются в интегральном виде $\langle f, \pmb{\varphi} \rangle = \int_X f(x) \pmb{\varphi}(x) \, dx$ при всех $\pmb{\varphi} \in \mathscr{D}(X)$, где $f \in \pmb{L}_{\ell oc}(X, \pmb{\mu})$ локально интегрируемая функция по мере Лебега μ на множестве $X \subset \mathbb{R}^m$, называются регулярными. Рассмотрим примеры нерегулярных обобщенных функций. Пусть

$$\left\langle \frac{1}{x\pm i0}, \varphi \right\rangle \doteq \lim_{\varepsilon \to +0} \int_{\mathbb{R}} \frac{\varphi(x)}{x\pm i\varepsilon} dx$$
 при всех $\varphi \in \mathscr{D}(\mathbb{R})$.

Поскольку функции $rac{1}{x\pm iarepsilon}\in m{L}_{\ell oc}(\mathbb{R})$ являются локально интегрируемыми на \mathbb{R} при каждом $\varepsilon > 0$, то они определяют регулярные обобщенные функции. По теореме о слабой* полноте пространства обобщенных функций, функционалы, заданные по указанной выше формуле, определяют обобщенные функции из пространства $\mathscr{D}'(\mathbb{R})$. Предположим, что они являются регулярными. Тогда существуют локально интегрируемые функции $f_{\pm} \in \boldsymbol{L}_{\ell oc}(\mathbb{R}, \mu)$, т.ч. имеет место равенство

$$\int_{\mathbb{R}} f_{\pm}(x) oldsymbol{arphi}(x) \, dx = \lim_{oldsymbol{arepsilon}
ightarrow +0} \int_{\mathbb{R}} rac{oldsymbol{arphi}(x)}{x \pm i oldsymbol{arepsilon}} \, dx$$
 при всех $oldsymbol{arphi} \in \mathscr{D}(\mathbb{R})$.

Если носитель $\operatorname{supp} \varphi$ не содержит нуля, то по теореме Лебега о мажорируемой сходимости этом равенстве можно перейти к пределу при arepsilon o +0. Тогда имеем

$$\int_{\mathbb{R}} f_{\pm}(x) oldsymbol{arphi}(x) \, dx = \int_{\mathbb{R}} rac{oldsymbol{arphi}(x)}{x} \, dx$$
 при всех $oldsymbol{arphi} \in \mathscr{D}(\mathbb{R} \setminus 0)$.

Следовательно, $f_{\pm}(x)=\frac{1}{x}$ п.в. на \mathbb{R} . Отсюда получим $f_{\pm}\notin \boldsymbol{L}_{loc}(\mathbb{R})$, т.к. $\frac{1}{x}\notin \boldsymbol{L}_{loc}(\mathbb{R})$. Таким образом, обобщенные функции $\frac{1}{x+i0}$ не являются регулярными.

Пример 3. При помощи определенных выше обобщенных функций дадим другое доказательство формулы Сохо́цкого $\frac{1}{x\pm i0}=\mathcal{P}\frac{1}{x}\mp \pi i\delta(x)$. Рассмотрим обобщенные функции $\ln(x\pm i0)$, определенные по формуле

$$\left\langle \ln(x\pm i0), \pmb{\varphi} \right
angle \doteq \lim_{arepsilon o +0} \int_{\mathbb{R}} \ln(x\pm iarepsilon) \pmb{\varphi}(x) \, dx$$
 при всех $\pmb{\varphi} \in \mathscr{D}(\mathbb{R})$.

Поскольку при каждом $m{arepsilon}>0$ функции $\ln(x\pm im{arepsilon})\in m{L}_{\ell oc}(\mathbb{R})$ локально интегрируемы на \mathbb{R} , то они определяют регулярные обобщенные функции. По теореме о слабой* полноте пространства обобщенных функций, функционалы, заданные по указанной выше формуле, определяют обобщенные функции из пространства $\mathscr{D}'(\mathbb{R}).$ Из курса

комплексного анализа нам известно, что $\ln(x \pm i\varepsilon) = \ln\sqrt{x^2 + \varepsilon^2} + i\arg(x \pm i\varepsilon)$, где аргумент комплексного числа выбирается из условия $|\arg(x \pm i\varepsilon)| < \pi$. Так как

$$\lim_{arepsilon o +0} rg(x \pm i arepsilon) = egin{cases} 0 \,, & ext{если } x > 0 \,; \ \pm \pi \,, & ext{если } x < 0 \,; \end{cases}$$

то получаем, что $\ln(x \pm i0) = \ln|x| \pm i\theta(-x)$, где локально интегрируемая функция

$$\theta(x) = \begin{cases} 1, & \text{если } x > 0; \\ 0, & \text{если } x < 0; \end{cases}$$

называется функцией Хевиса́йда. Так как функции $\ln |x|$ и $\theta(-x)$ локально интегрируемы, то они задают регулярные обобщенные функции. Поэтому обобщенная функция $\ln(x \pm i0)$ также регулярна. Вычислим ее обобщенную производную $\ln |x|$

$$\langle \ln(x \pm i0)', \varphi \rangle = -\langle \ln(x \pm i0), \varphi' \rangle = -\lim_{\varepsilon \to +0} \int_{\mathbb{R}} \ln(x \pm i\varepsilon) \varphi'(x) dx = \lim_{\varepsilon \to +0} \int_{\mathbb{R}} \frac{\varphi(x)}{(x \pm i\varepsilon)} dx.$$

Следовательно, $\ln(x \pm i0)' = \frac{1}{x \pm i0}$. Теперь вычислим обобщенную производную

$$\begin{split} \langle \ln|x|', \varphi \rangle &= - \langle \ln|x|, \varphi' \rangle = - \int_{\mathbb{R}} \ln|x| \, \varphi'(x) \, dx = - \lim_{\varepsilon \to +0} \int_{|x| \geqslant \varepsilon} \ln|x| \, \varphi'(x) \, dx = \\ &= - \lim_{\varepsilon \to +0} \left(\ln \varepsilon (\varphi(\varepsilon) - \varphi(-\varepsilon)) + \int_{|x| \geqslant \varepsilon} \frac{\varphi(x)}{x} \, dx \right) = \left\langle \mathcal{P} \frac{1}{x}, \varphi \right\rangle. \end{split}$$

Таким образом, мы получаем, что обобщенная производная $\ln |x|' = \mathcal{P} \frac{1}{x}$. Наконец, вычислим обобщенную производную функции Хевиса́йда $\theta(-x)$

$$\langle \theta(-x)', \varphi \rangle = -\langle \theta(-x), \varphi' \rangle = -\int_{-\infty}^{0} \varphi'(x) dx = -\varphi(0) = -\langle \delta(x), \varphi \rangle.$$

Отсюда $\theta(-x)' = -\delta(x)$. Таким образом, поскольку $\ln(x \pm i0)' = \ln|x|' \pm i\theta(-x)'$, то мы получаем формулу Сохо́цкого $\frac{1}{x \pm i0} = \mathcal{P}\frac{1}{x} \mp \pi i\delta(x)$.

Пример 4. Доказать, что предел обобщенных функций $\frac{1}{arepsilon^m}f(rac{x}{arepsilon})$ при arepsilon o +0 равен

$$\lim_{arepsilon o +0} rac{1}{arepsilon^m} f\Big(rac{x}{arepsilon}\Big) = c \, oldsymbol{\delta}(x) \,,$$
 где $f \in oldsymbol{L}_1(\mathbb{R}^m, oldsymbol{\mu})$ и $c = \int_{\mathbb{R}} f(x) \, dx.$

Для доказательства заметим, что функции $\frac{1}{\varepsilon^m}f(\frac{x}{\varepsilon})$ интегрируемы на $\mathbb R$ при всех $\varepsilon>0$. Поэтому, производя замену переменных в интеграле Лебега, мы получим

$$\lim_{\varepsilon \to +0} \left\langle \frac{1}{\varepsilon^m} f\left(\frac{x}{\varepsilon}\right), \varphi \right\rangle = \lim_{\varepsilon \to +0} \frac{1}{\varepsilon^m} \int_{\mathbb{R}} f\left(\frac{x}{\varepsilon}\right) \varphi(x) dx = \lim_{\varepsilon \to +0} \int_{\mathbb{R}} f\left(\frac{x}{\varepsilon}\right) \varphi(x) d\left(\frac{x}{\varepsilon}\right) = \lim_{\varepsilon \to +0} \int_{\mathbb{R}} f(x) \varphi(\varepsilon x) dx = \varphi(0) \int_{\mathbb{R}} f(x) dx = \langle c \delta(x), \varphi \rangle.$$

При переходе к пределу под знаком интеграла мы использовали теорему Лебега о мажорируемой сходимости.