Chapter 3: Growth of Functions

Introduction

When we look at input sizes large enough to make only the order of growth of the running time relevant, we are studying **asymptotic** efficiency of algorithms. That is, we are concerned with how the running time increases with the size of the input *in the limit*, as the size of the input increases without bound.

Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

Asymptotic Notation: informal introduction

- *O*-notation (big-Oh): The *O*-notation characterizes an upper bound on the asymptotic behavior of a function. It says that a function grows no faster than a certain rate, based upon its highest order term. Example: $7n^3 + 100n^2 20n + 6$ would be $O(n^3)$. It is also $O(n^4)$.
- Ω -notation (big-Omega) The Ω -notation characterizes a lower bound on the asymptotic behavior of a function. It says that a function grows at least as fast as a certain rate, based (again) upon its highest order term. Example: $7n^3 + 100n^2 20n + 6$ would be $\Omega(n^3)$. It is also $\Omega(n^2)$, and $\Omega(n)$.
- Θ -notation (big-Theta) The Θ -notation characterizes a tight bound on the asymptotic behavior of a function. It says that a function grows precisely at a certain rate, based on its highest order term. Example: $7n^3 + 100n^2 20n + 6$ would be $\Theta(n^3)$. However, it isn't $\Theta(n^2)$ or $\Theta(n^4)$.

Note: If a function is both O((f(n))) and $\Omega(f(n))$ for some function f(n), then we have shown that the function is $\Theta(f(n))$.

Example: Do an informal asymptotic analysis of insertion sort.

Asymptotic Notation: formal definition

• O-notation: asymptotically upper bound

- Definition: For a given function g(n), we denote by O(g(n)) to be the set of functions:

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c, \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$

- Alternative Definition: for two given functions f(n) and g(n):

$$f(n) = O(g(n)) \iff \lim_{n \to \infty} \frac{g(n)}{f(n)} = c \text{ or } \infty$$

- We can use the alternative definition to show

$$f(n) = \frac{1}{2}n^2 - 4n + 100 = O(n^2) \quad \text{since } \lim_{n \to \infty} \frac{n^2}{\frac{1}{2}n^2 - 4n + 100} = 2$$

$$= O(n^3) \quad \text{since } \lim_{n \to \infty} \frac{n^3}{\frac{1}{2}n^2 - 4n + 100} = \infty$$

$$= O(\infty) \quad \text{since } \lim_{n \to \infty} \frac{\infty}{\frac{1}{2}n^2 - 4n + 100} = \infty$$

- Another example:

$$f(n) = 10 + \frac{1}{n} = O(1) \text{ since } \lim_{n \to \infty} (10 + \frac{1}{n}) = 10$$
 (1)

(2)

• Ω -notation: asymptotically lower bound

- Definition: For a given function g(n), we denote by $\Omega(g(n))$ to be the set of functions:

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c, \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}$

- Alternative Definition: for two given functions f(n) and g(n):

$$f(n) = \Omega(g(n)) \Longleftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = c \text{ or } 0$$

- We can use the definition to show

$$f(n) = \frac{1}{2}n^2 - 4n + 100 = \Omega(n^2) \quad \text{since } \lim_{n \to \infty} \frac{n^2}{\frac{1}{2}n^2 - 4n + 100} = 2$$

$$= \Omega(n) \quad \text{since } \lim_{n \to \infty} \frac{n}{\frac{1}{2}n^2 - 4n + 100} = 0$$

$$= \Omega(1) \quad \text{since } \lim_{n \to \infty} \frac{1}{\frac{1}{2}n^2 - 4n + 100} = 0$$

- For example:

INSERTION-SORT(n) =
$$\Omega(1)$$

= $\Omega(n)$
 $\neq \Omega(n^2)$, since best-case take time proportional to n

• Θ-notation: asymptotically tight bound

- Definition: For a given function g(n), we denote by $\Theta(g(n))$ to be the set of functions:

$$\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$

- Alternative Definition: For two given functions f(n) and g(n):

$$f(n) = \Theta(g(n)) \iff \lim_{n \to \infty} \frac{g(n)}{f(n)} = c$$

- We can use the definition to show $f(n) = \frac{1}{2}n^2 - 4n + 100 = \Theta(n^2)$, since

$$\lim_{n \to \infty} \frac{n^2}{\frac{1}{2}n^2 - 4n + 100} = 2$$

- Without using definition, we can determine the Θ -notation (as well as other notations) of a function f(n) by throwing away lower-order terms and ignores the leading coefficient of the highest-order term.

For example,

$$f(n) = \frac{1}{2}n^2 - 4n + 100 = \Theta(n^2)$$

– People often use big-O notation to describe the running time of an algorithm rather than using Θ -notation (but they often mean to use Θ). However, Θ -notation tells people more exact running time of an algorithm. For example:

Insertion-Sort(A) =
$$O(n^2)$$
 for all input n
Insertion-Sort(A) $\neq \Theta(n^2)$
 $\neq \Theta(n)$

The worst case of Insertion-Sort(A) = $\Theta(n^2)$

- Theorem: for any two functions f(n) and g(n), $f(n) = \Theta(g(n)) \Longrightarrow f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

· Properties of asymptotics

- Transitivity

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$
 $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$
 $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$

- Reflexivity

```
f(n) = \Theta(f(n))

f(n) = O(f(n))

f(n) = \Omega(f(n))
```

- Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

- Transpose Symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$

- **Trichotomy**: For any two numbers a and b, exactly one of the following must hold: a < b, a = b, a > b. Not all functions are asymptotically comparable. For example: n and $n^{1+\sin n}$ cannot be asymptotically compared.
- Based on the above properties, we can draw an analogy to comparing two numbers a and b:

$$f(n) = O(g(n))$$
 is similar to $a \le b$
 $f(n) = \Omega(g(n))$ is similar to $a \ge b$
 $f(n) = \Theta(g(n))$ is similar to $a = b$

Asymptotic notations in equations

- $2n^2 + 3n + 1 = 2n^2 + \Theta(n) \Longrightarrow 2n^2 + 3n + 1 = 2n^2 + f(n)$, where $f(n) = \Theta(n)$. In this case, f(n) = 3n + 1

This example shows that we can mix asymptoics in equations. For example, we replaced lower order terms above by $\Theta(n)$ so we could focus on the more important terms.

-
$$T(n) = O(n) + \Theta(n) + \Omega(n) \Longrightarrow T(n) = \Omega(n)$$

This example shows how to combine three asymptotic components in an equation. T(n) consists of the sum of the following three terms:

- * O(n) which is growing at a rate $\leq n$,
- * $\Theta(n)$ so growing at the same rate as n, and
- * $\Omega(n)$ so growing at a rate greater than n.

If we combine those three, the best we can say is $\Omega(n)$ since that will be the dominant term for T(n). This is because something growing faster than n will be growing bigger than two other terms growing at a rate equal to or less than n.

Categories of functions

growth rate	slowest	\rightarrow	\rightarrow	\rightarrow	fastest
run time	fastest	←	←	←	slowest
categories	constant	logarithms	polynomials	exponentials	super exponentials
examples	5	$\log_2 n$	n^2	$2^{n/2}$	$(\log n)^n$
	1	$\log_{10} n$	n^3	2^n	n!
	10000	$100\log_e n$	$n^{0.1}$	3^n	n^n

- For logarithm functions, the base does not matter. $\log_{10} n = \Theta(\log_2 n)$ or $\log_e n = \Theta(\log_2 n)$
- For exponential functions, the base matters. $2^{n/2} = \sqrt{2^n} = O(2^n)$, but $2^{n/2} \neq \Theta(2^n)$
- Comparison between polynomials and exponentials: n^a and b^n No matter how big the a is and how small the b > 1 is, the exponential b^n will always outgrow the polynomial n^a if n approaches ∞ .

For example, 1.000001^n will out-grow $n^{1,000,000}$ when $n \to \infty$

- Review Section 3.3 from the textbook: Discrete mathematics that is useful for analysis. Floors and ceilings, Modular arithmetic, Polynomials, Exponentials, Logarithms, Factorials (pay attention to Stirling's Approximation), and Fibonacci numbers.
- **Review Calculus**: The derivative rule and *L'Hôpital's rule* are useful for obtaining limits of more complex functions.
- **Summations**: Arithmetic series and Geometric series sums are commonly found during analysis of algorithms.
 - Simple Arithmetic series:

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

Here is a common variation:

$$1+2+3+\ldots+n-1=\frac{n(n-1)}{2}$$

- General Arithmetic Series: Each term a_i is separated from the previous term a_{i-1} by a constant.

$$a_1 + a_2 + \ldots + a_n = \frac{(a_1 + a_n)}{2}n$$

- Simple Geometric Series:

$$1+2+2^2+2^3+\ldots+2^n=2^{n+1}-1$$

Here is a common variation:

$$1+2+2^2+2^3+\ldots+2^{n-1}=2^n-1$$

- General Geometric Series:

For $x \neq 1$, we have:

$$1 + x + x^2 + x^3 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$$

If |x| < 1, then the sum is $\frac{1}{x-1}$.

Practice Problems

- Exercise 3.2-2.
- Exercise 3.2-3.
- Problem 3-2.

Math review

- Derivative rules: https://www.mathsisfun.com/calculus/derivatives-rules.html
- *L'Hôpital's rule*: https://www.mathsisfun.com/calculus/l-hopitals-rule. html