Output Layers and Loss Functions

Course 3, Module 3, Lesson 2

Machine Learning Algorithm Design

Artificial Neural Networks

Tasks: Classification and Regression

- Classification: Given input x map it to one of k classes or categories.
 - o Image classification, semantic segmentation
- Regression: Given input x map it to a real number
 - Depth prediction, bounding box estimation

 Car

- **Softmax output layers** are most often used as the output of a classifier, to represent the **probability distribution** over *K* different classes
- The Softmax output layer is comprised of:
 - A linear transformation:

$$z = W^T h + b$$

Followed by the **Softmax** function:

$$Softmax(z_i) = \frac{\exp(z_i)}{\sum_{j} \exp(z_j)}$$

Classification: Cross-Entropy Loss Function

 By considering the output of the softmax output layer as a probability distribution, the Cross Entropy Loss function is derived using maximum likelihood as:

$$L(\theta) = -\log(Softmax(z_i)) = (-z_i) + (\log \sum_{j} \exp(z_j))$$

$$L(\theta) = -z_i + \log \sum_j \exp(z_j) = -13 + \log(\exp(13) + \exp(-7) + \exp(11)) = 0.12$$

$$L(\theta) = -z_i + \log \sum_j \exp(z_j) = -13 + \log(\exp(13) + \exp(-7) + \exp(14)) = 1.31$$

Regression: Linear Output Layers

 Linear Output Units are based only on an affine transformation with no non-linearity

$$z = W^T h + b$$

• Linear Output Units are usually used with the Mean Squared Error loss function to model the mean of a probability distribution:

$$L(\theta) = \sum_{i} (z_i - f^*(x_i))^2$$

Summary

- To build a machine learning model you need:
 - A model
 - A loss function
 - An optimization procedure
- Loss functions are chosen based on the task at hand
- Next: Optimization

