Name:	

Chapter 3 Review Quiz

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- ____
- 1. Which of the following is not included in an equilibrium expression?
 - a. gas in a heterogeneous system
 - b. gas in a homogeneous system
 - c. liquid in a heterogeneous system
 - d. liquid in a homogeneous system

2. The equation for a chemical reaction is given below.

$$2A(g) + 4B(I) f D(s) + 3E(aq)$$

The equilibrium expression for this reaction is:

a.
$$\frac{[D][E]}{[A][B]}$$

b.
$$\frac{[D][E]^3}{[A]^2[B]^4}$$

d.
$$\frac{\left[E\right]^3}{\left[A\right]^2}$$

- ▼
- 3. The equilibrium expression for a gaseous chemical reaction is given below.

$$\frac{\left[\mathsf{HCl}\right]^{\mathsf{x}} \times \left[\mathsf{O}_{2}\right]}{\left[\mathsf{Cl}_{2}\right]^{2} \times \left[\mathsf{H}_{2}\mathsf{O}\right]^{2}}$$

Determine the value of *x*.

- a. 1
- b. 2
- c. 3
- d. 4
- | ▼ |
- 4. In a chemical system, the reaction quotient is greater than the equilibrium constant. This indicates that:
 - a. the forward reaction is favoured to reach equilibrium.
 - b. the reverse reaction is favoured to reach equilibrium.
 - c. the concentration of reactants is greater than the concentration of products.
 - d. the concentration of products is greater than the concentration of reactants.
- ____
- ▼ 5. The equilibrium constant for a chemical reaction at a specific temperature is 0.0013 This indicates that:
 - a. the forward reaction is favoured to reach equilibrium.
 - b. the reverse reaction is favoured to reach equilibrium.
 - c. the concentration of reactants is greater than the concentration of products.
 - d. the concentration of products is greater than the concentration of reactants.
- | ▼ |
- ▼ 6. The units for concentrations of all species in the equilibrium expression must be in:

- a. ppm.
- b. g/L.
- c. kg/L.
- d. mol/L.

▼ 7. Given the reaction:

$$2NO(g) + Br_2(g) f 2NOBr(g)$$

The equilibrium constant for this reaction at 1000 K is 1.32×10^{-2} .

Calculate the equilibrium constant for the following reaction:

NOBr (g)
$$f$$
 NO (g) + $\frac{1}{2}$ Br₂ (g)

- a. 75.8
- b. 8.70
- c. 0.115
- d. 1.32×10^{-2}

▼ 8. Calculate the equilibrium constant for the reaction:

Given that, at equilibrium at 1200° C, the [I₂] = 3.00×10^{-3} mol/L and [I] = 2.87×10^{-3} mol/L

- a. 2.75×10^{-3}
- b. 0.957
- c. 1.04
- d. 362

▼ 9. 2NO (g) + Cl_2 (g) f 2NOCl (g)

Initially, 2 moles of NO and 2 moles of Cl₂ were added to a 2L reaction vessel.

At equilibrium, there was 0.96 mol/L NOCl present in the reaction vessel.

The temperature remained constant throughout the investigation.

What is the equilibrium constant for this reaction?

- a. 46
- b. 2.8×10^2
- c. 1.1×10^3
- d. 1.4×10^4

▼ 10. Which of the following can be used to measure equilibrium concentrations?

- a. Colorimeter and universal indicator
- b. Light meter and thermometer
- c. pH meter and colorimeter
- d. pH meter and thermometer

▼ 11. In colourimetry, the Beer–Lambert Law is used because there is:

- a. a linear relationship between absorbance and concentration.
- b. a parabolic relationship between absorbance and concentration.
- c. an inverse relationship between absorbance and concentration.
- d. an inverse square relationship between absorbance and concentration.

■ 12. Fe³⁺ (aq) + SCN⁻ (aq) f FeSCN²⁺ (aq)

Blue light (470 nm) was used for the colourimetry experiment for the reaction above because:

- a. the iron(III) ion preferentially reflects this light.
- b. the iron(III) ion preferentially absorbs this light.
- c. the iron(III) thiocyanate ion preferentially reflects this light.
- d. the iron(III) thiocyanate ion preferentially absorbs this light.

▼ 13.

$$Cu(s) + 2Ag^{+}(aq) f 2Ag(s) + Cu^{2+}(aq)$$

The equilibrium constant for this reaction is 3.1×10^9 .

Measurements were taken and it was found that the concentration of Cu²⁺ was 0.88 mol/L and the concentration of Ag⁺ was 0.050 mol/L. Which reaction will be favoured for the system to reach equilibrium?

- a. The forward reaction will be favoured since $Q > K_{eq}$.
- b. The forward reaction will be favoured since $Q < K_{eq}$.
- c. The reverse reaction will be favoured since $Q > K_{eq}$.
- d. The reverse reaction will be favoured since $Q < K_{eq}$.

$$K_{\rm eq}$$
 36

The equilibrium concentration of ${\rm O_2}$ is 8.0×10^{-2} mol/L.

What is the concentration of ozone, O₃?

a.
$$3.8 \times 10^{-3} \text{ mol/L}$$

b.
$$4.7 \times 10^{-2} \text{ mol/L}$$

c.
$$8.0 \times 10^{-2} \text{ mol/L}$$

d.
$$1.2 \times 10^{-1} \text{ mol/L}$$

▼ 15. 2NH₃ (g)
$$f$$
 N₂ (g) + 3H₂ (g) $K_{eq} = 6.58 \times 10^{-3}$ at 500K

$$K_{\rm eq} = 6.58 \times 10^{-3}$$
 at 500K

Initially, only ammonia was present in the reaction vessel. At equilibrium, the concentration of nitrogen was 0.00400 mol/L.

Calculate the concentration of ammonia present when the system reached equilibrium.

- a. 1.02×10^{-3} mol/L
- b. $1.05 \times 10^{-3} \text{ mol/L}$
- c. $2.43 \times 10^{-3} \text{ mol/L}$
- d. $4.93 \times 10^{-2} \text{ mol/L}$
- ▼ 16. A chemical reaction has reached equilibrium. The investigation for this reaction is repeated at a higher temperature. What is the effect on the reaction of raising the temperature?
 - a. The time for the reaction to reach equilibrium is less and the equilibrium constant remains the same.
 - b. The time for the reaction to reach equilibrium is less and the equilibrium constant is smaller for an exothermic reaction.
 - c. The time for the reaction to reach equilibrium is less and the equilibrium constant is smaller for an endothermic reaction.
 - d. The time for the reaction to reach equilibrium is the same and the equilibrium constant remains the same.

▼ 17. In solubility equilibria:

- a. the precipitate is written on the right-hand side, the reaction quotient is called the ionic product and the equilibrium constant is called the solubility product.
- b. the precipitate is written on the right-hand side, the reaction quotient is called the solubility product and the equilibrium constant is called the ionic product.
- c. the precipitate is written on the left-hand side, the reaction quotient is called the ionic product and the equilibrium constant is called the solubility product.
- d. the precipitate is written on the left-hand side, the reaction quotient is called the solubility product and the equilibrium constant is called the ionic product.

Formula of acid K _a
HCN 6.2×10^{-10}
HF 6.6×10^{-4}
0.2 × 10

Hypochlorous acid	HCIO	2.9×10^{-8}
Nitrous acid	HNO ₂	7.2×10^{-4}

Rank these acids in terms of increasing degree of ionisation.

- a. $HCN < HCIO < HF < HNO_2$
- b. $HCIO < HCN < HF < HNO_2$
- c. $HNO_2 < HF < HCIO < HCN$
- d. $HCN < HCIO < HNO_2 < HF$
- ▼ 19. Which statement about K_p is correct?
 - a. K_p for gases is the same as K_c for solutions.
 - b. K_p can be determined for both homogeneous systems and heterogeneous systems, which contain gases and solutions.
 - c. K_p can be calculated if the mole fractions of all gaseous species in a gaseous reaction are known.
 - d. K_p can be calculated if the partial pressures of all gaseous species in a gaseous reaction are known.
- ▼ 20. Ammonia gas is produced by the reaction of nitrogen gas and hydrogen gas.

At a particular temperature T, the system reaches equilibrium. The partial pressure of ammonia is found to be 0.0060 atm while nitrogen's is 0.094 atm. K_p for this reaction is 1.61.

What is the partial pressure for hydrogen?

- a. 0.34 atm
- b. 0.062 atm
- c. 0.040 atm
- d. 2.4×10^{-4} atm

