

 École polytechnique fédérale de Lausanne

EPFL

The main tasks

Overview of the main task

- Analyse and edit a video in Python
- Extract the position and the meaning of the objects on the image
 - a. Digits
 - b. Operators
 - c. Robot
- 3. Robustness against
 - a. Rotation
 - b. Color
- Solve an equation as a String
- Assess the efficiency and robustness of our code

Handling video in Python

A video is an array of frames (images), with a given frame rate (FPS).

Free and open-source command line tool for video edition: ffmpeg

- ffmpeg -i INPUT -f image2 images/image%03d.png
- **ffmpeg** -f image2 -framerate 2 -i images/image%03d.png OUTPUT

Can be used in Python with package 'os'

os.system("ffmpeg_command")

EPFL Object extraction

From the first image of the video:

- Threshold to remove the background
- Object labeling algorithm (lab01) applied successively with selection of the obtained regions to remove unwanted objects
- Reshaping of final objects to have definite shape: 28x28 pixels

Object classification

Rotation invariant

- Makes use of the colors
- '%' and '=' are classified with number of regions.
- Uses skeleton-based method for classifying operators (counting the number of endings)
- CNN (keras) trained with MNIST for the numbers

2 classifiers available

Rotation and color invariant

- Doesn't use the colors
- '%' and '=' are classified with number of regions.
- CNN trained with a larger dataset:
 MNIST with operators '+' from the
 CROHME dataset (we didn't included '-' to avoid confusion with 1)
- Heuristic rules are used to detect operators (really low certitude means it's an operator)

EPFL

Rotation invariant CNN

About our CNN:

- Done with Keras
- Trained with 5 epochs
- Data-augmentation
- Class balancing

How to make a CNN rotation invariant?

- Data augmentation during training the dataset (takes about 5 minutes)
- Classification rule uses 36-folds averaged results

Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	26, 26, 32)	320
activation_13 (Activation)	(None,	26, 26, 32)	0
conv2d_10 (Conv2D)	(None,	24, 24, 32)	9248
activation_14 (Activation)	(None,	24, 24, 32)	0
max_pooling2d_5 (MaxPooling2	(None,	12, 12, 32)	0
conv2d_11 (Conv2D)	(None,	10, 10, 64)	18496
activation_15 (Activation)	(None,	10, 10, 64)	0
conv2d_12 (Conv2D)	(None,	8, 8, 64)	36928
activation_16 (Activation)	(None,	8, 8, 64)	0
max_pooling2d_6 (MaxPooling2	(None,	4, 4, 64)	0
flatten_3 (Flatten)	(None,	1024)	0
dense_5 (Dense)	(None,	512)	524800
activation_17 (Activation)	(None,	512)	0
dropout_3 (Dropout)	(None,	512)	0
dense_6 (Dense)	(None,	10)	5130
activation 18 (Activation)	(None,	10)	0

Total params: 594,922 Trainable params: 594,922 Non-trainable params: 0

EPFL

Efficiency assessment

We used GIMP to create fake images and assess our code the best we could

- Adding more numbers
- Adding more rotations
- Changing light settings

Demo Time

Let's see if it works!

 École polytechnique fédérale de Lausanne