LAB 5: ĐỒ THỊ

1 Bài tập

- 1. Tập tin "graph1.txt" chứa thông tin của Ma trận kề (Bảng 1). Đọc tập tin và xuất ra thông tin của Danh sách kề tương ứng.
- 2. Tập tin "graph2.txt" chứa thông tin của Danh sách kề (Bảng 1). Đọc tập tin và xuất ra thông tin của Danh sách kề tương ứng.

Ma trận kề	Danh sách kề
9	9
0 0 1 0 0 1 0 0 0	2 2 5
0 0 0 0 0 0 1 0 0	1 6
0 0 0 0 0 0 1 0 0	1 6
0 0 0 0 1 0 0 0 0	1 4
0 0 0 0 0 1 0 0 0	1 5
0 0 0 1 0 0 0 1 0	2 3 7
0 0 0 0 0 0 0 0 0	0
0 0 1 0 0 0 0 0 1	2 2 8
0 0 0 0 0 0 0 0 0	0

Bảng 1: Ma trận kề và Danh sách kề

- 3. Cài đặt các hàm để cung cấp những thông tin sau đây của một đồ thị cho trước:
 - Đồ thị có hướng hay không có hướng.
 - Số lương canh và đỉnh.
 - Bậc của từng đỉnh cho đồ thị vô hướng. Bậc trong và bậc ngoài cho đồ thị có hướng.
 - Danh sách các đỉnh treo / đỉnh lá.
 - Đồ thị đã cho có là đồ thị đặc biệt không: Đồ thị đầy đủ, Đồ thị vòng, Đồ thị hai phía, Đồ thị hai phía đầy đủ.
 - Số lượng thành phần liên thông. Có bao nhiều trong số đó là cây?
 - Số lượng đỉnh cắt và canh cầu.
- 4. Tạo một Đồ thị vô hướng cơ sở từ một đồ thị có hướng cho trước.
- 5. Tạo một Đồ thị bù từ một đồ thị vô hướng cho trước, xuất ra ma trận kề tương ứng.
- 6. Tạo một Đồ thị ngược từ một đồ thị có hướng cho trước, xuất ra ma trận kề tương ứng.
- 7. Xác định chu trình Euler từ một đồ thị cho trước sử dụng thuật toán Hiehozer.

- 8. Tìm cây khung cho một đồ thị đã cho, sử dụng:
 - Duyệt DFS

- Duyệt BFS
- 9. Tìm cây khung cho một đồ thị đã cho, sử dụng:
 - Thuật toán Prim.

- Thuật toán Kruskal.
- 10. Xác định sự liên kết giữa 2 đỉnh trong đồ thị cho trước.
- 11. Tìm đường đi ngắn nhất giữa 2 đỉnh bất kỳ trong một đồ thị cho trước, sử dụng:
 - Thuật toán Dijkstra

• Thuật toán Floyd-Warshall

• Thuật toán Bellman-Ford