Intelligent Systems - Re-take Exam (Block 2): Test (1.75 points)

ETSINF, Universitat Politècnica de València, January 24th, 2025

Group, surname(s) and name: 1,

Tick only one choice among the given options. Score: $\max(0, (\text{correct answers-wrong answers}/3) \cdot 1.75/6)$.

The figure on the right represents the decision boundary and the two regions of a binary classifier. Which of the following weight vectors (in homogeneous notation) defines a **non-equivalent** classifier to the one of the figure?

A)
$$\mathbf{w}_1 = (0, 0, -1)^t$$

and
$$\mathbf{w}_2 = (-0.5, 0, 0)^t$$
.

B)
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$

B)
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$
 and $\mathbf{w}_2 = (0, 0, 1)^t$.

C)
$$\mathbf{w}_1 = (-0.5, 0, 0)^t$$
 and $\mathbf{w}_2 = (0, 0, -1)^t$.

and
$$\mathbf{w}_2 = (0, 0, -1)^t$$
.

D) All the above weight vectors define non-equivalent classifiers to the one of the figure.

Given the following probability distributions for the random variables:

	$P(A=0\mid B,C)$				P(B, C)			
В	0	0	1	1	0	0	1	1
\mathbf{C}	0	1	0	1	0	1	0	1
	0.462	0.383	0.248	0.128	0.482	0.357	0.018	0.143

Which is the value of $P(A = 1, B = 0 \mid C = 1)$?

A)
$$P(A = 1, B = 0 \mid C = 1) \le 0.25$$

B)
$$0.25 < P(A = 1, B = 0 \mid C = 1) \le 0.50$$

C)
$$0.50 < P(A = 1, B = 0 \mid C = 1) \le 0.75$$

D)
$$0.75 < P(A = 1, B = 0 \mid C = 1) \le 1.00$$

Let \mathbf{x} be a object that we want to classify in one among C classes. Which expression is a minimum error classifier (or choose the last option if all three classifiers are of minimum error)?

A)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} \log p(c \mid \mathbf{x}) - \log p(\mathbf{x})$$

B)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg max}} \log p(c \mid \mathbf{x}) \cdot \log p(\mathbf{x})$$

C)
$$c(\mathbf{x}) = \underset{c}{\operatorname{arg max}} \frac{\log p(c|\mathbf{x})}{\log p(\mathbf{x})}$$

D) All three classifiers are of minimum error.

- 4 Let's suppose that we are applying the Perceptron algorithm, to a set of 3 bidimensional learning samples for a problem of 2 classes. After processing the first 2 samples, the weight vectors $\mathbf{w}_1 = (0, -1, 1)^t$, $\mathbf{w}_2 = (0, 1, -1)^t$ were obtained. Next, the sample ($\mathbf{x}_3 = (3, 4), c_3 = 2$) is processed, which of the following values of margin b is the minimum needed to update the weights with this sample?
 - A) 0.0
 - B) 0.1
 - C) 1.0
 - D) 10.0
- For a four-class classification problem of objects of type $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in the table. Show the interval of the Bayes probability of error, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 \le \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

\mathbf{x}		1			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.3	0.1	0.1	0.3
0	1	0.3	0.3	0.2	0.2
1	0	0.3	0.2	0.3	0.2
1	1	0.1	0.3	0.3	0.3

6 The figure below shows a dataset of 8 two-dimensional points:

What is the number of clusters that minimizes the sum of squared errors (SEC) of this dataset?

- A) 1
- B) 3
- C) 6
- D) 8

Intelligent Systems - Re-take Exam (Block 2): Problem (2 points) ETSINF, Universitat Politècnica de València, January 24th, 2025

Group, surname(s) and name: 1,

Problem: Logistic regression

The following table shows per rows a training set of 2 samples with 2 dimensions that belong to 2 classes:

n	x_{n1}	x_{n2}	c_n
1	-1	1	1
2	1	1	2

In addition, the following table represents an initial weight matrix with the weights of each class per columns:

\mathbf{w}_1	\mathbf{w}_2
0.	0.
-0.5	0.5
0.	0.

Answer the following questions:

- 1. (0.5 points) Compute the vector of logits for each training sample.
- 2. (0.25 points) Apply the softmax function to the vector of logits for each training sample.
- 3. (0.25 points) Classify every training sample. In case of a tie, choose any class.
- 4. (0.5 points) Compute the gradient of the function NLL at the point of the initial weight matrix.
- 5. (0.5 points) Update the initial weight matrix applying gradient descent with learning rate $\eta = 1.0$.