

а.

Pour que $f(x)=\dfrac{1}{x+2}$ soit définie, le dénominateur x+2 ne doit pas être égal à zéro, car la division par zéro est impossible en mathématiques.

$$x+2\neq 0 \\ x\neq -2$$

Cela signifie que x ne peut pas être -2. Donc le domaine de définition de f est tous les nombres réels sauf -2, noté $\setminus \{-2\}$. Cela signifie que x peut être n'importe quel nombre réel sauf -2.

b.

Pour que $f(x)=\sqrt{x-1}$ soit définie, l'expression sous la racine carrée x-1 doit être positive ou nulle, car on ne peut pas prendre la racine carrée d'un nombre négatif.

$$egin{array}{ccc} x-1 & 0 \\ x & 1 \end{array}$$

Cela signifie que x doit être supérieur ou égal à 1. Donc le domaine de définition de f est $[1;+\infty[$, ce qui signifie tous les nombres réels supérieurs ou égaux à 1.

c.

Pour que $f(x)=rac{1}{x^2-1}$ soit définie, le dénominateur x^2-1 ne doit pas être égal à zéro, car la division par zéro est impossible.

$$x^2-1\neq 0$$

$$(x-1)(x+1)\neq 0$$

Cela signifie que x ne peut pas être 1 ou -1. Donc le domaine de définition de f est tous les nombres réels sauf 1 et -1, noté $\ \ \{-1;1\}$.

d.

Pour que $f(x)=\sqrt{(x-1)(x+2)}$ soit définie, l'expression sous la racine carrée (x-1)(x+2) doit être positive ou nulle, car on ne peut pas prendre la racine carrée d'un nombre négatif.

$$(x-1)(x+2) = 0$$

Cela signifie que x doit être dans les intervalles où le produit (x-1)(x+2) est positif ou nul. Donc le domaine de définition de f est $]-\infty;-2]\cup[1;+\infty[$, ce qui signifie tous les nombres réels inférieurs ou égaux à -2 et supérieurs ou égaux à 1.

e.

Pour que $f(x)=\sqrt{x-1}\sqrt{x+2}$ soit définie, les deux expressions sous les racines carrées x-1 et x+2 doivent être positives ou nulles, car on ne peut pas prendre la racine carrée d'un nombre négatif.

$$x-1$$
 0 x 1 $x+2$ 0

Cela signifie que x doit être supérieur ou égal à 1. Donc le domaine de définition de f est $[1;+\infty[$, ce qui signifie tous les nombres réels supérieurs ou égaux à 1.

Pour que $f(x)=\dfrac{1}{x^2+1}$ soit définie, le dénominateur x^2+1 ne doit pas être égal à zéro. Cependant, x^2+1 est toujours positif pour tout x réel, car un carré est toujours positif et x^2+1 est toujours supérieur à 1.

$$x^2 + 1 \neq 0$$

Cela signifie que x peut être n'importe quel nombre réel. Donc le domaine de définition de f est tous les nombres réels, noté $\ .$

g.

Pour que $f(x)=\frac{1}{\sqrt{x}}$ soit définie, l'expression sous la racine carrée x doit être positive ou nulle, et le dénominateur \sqrt{x} ne doit pas être égal à zéro.

Cela signifie que x doit être supérieur ou égal à 0. Donc le domaine de définition de f est $[0;+\infty[$, ce qui signifie tous les nombres réels supérieurs ou égaux à 0.

h.

Pour que $f(x)=rac{1}{x^2}$ soit définie, le dénominateur x^2 ne doit pas être égal à zéro, car la division par zéro est impossible.

$$x^2
eq 0$$

Cela signifie que x ne peut pas être 0. Donc le domaine de définition de f est tous les nombres réels sauf 0, noté $\setminus \{0\}$.

▼ Solution

а.

La fonction f(x)=4 est une fonction constante.

Domaine de définition : Tous les nombres réels, noté $\,$. La fonction est définie pour tout x réel.

Domaine de dérivabilité : Tous les nombres réels, noté . La fonction est dérivable partout.

Dérivée : La dérivée d'une constante est 0. Donc, $f^\prime(x)=0$.

La fonction f(x)=x est la fonction identité.

Domaine de définition : Tous les nombres réels, noté $\,$. La fonction est définie pour tout x réel.

Domaine de dérivabilité : Tous les nombres réels, noté . La fonction est dérivable partout.

Dérivée : La dérivée de x est 1. Donc, $f^{\prime}(x)=1$.

La fonction $f(x)=x^2$ est la fonction carrée.

Domaine de définition : Tous les nombres réels, noté $\,$. La fonction est définie pour tout x réel.

Domaine de dérivabilité : Tous les nombres réels, noté . La fonction est dérivable partout.

Dérivée : La dérivée de x^2 est 2x. Donc, $f^\prime(x)=2x$.

La fonction $f(x)=x^3$ est la fonction cubique.

Domaine de définition : Tous les nombres réels, noté $\,$. La fonction est définie pour tout x réel.

Domaine de dérivabilité : Tous les nombres réels, noté . La fonction est dérivable partout.

Dérivée : La dérivée de x^3 est $3x^2$. Donc, $f^\prime(x)=3x^2$. e.

La fonction $f(x)=\sqrt{x}$ est la fonction racine carrée.

Domaine de définition : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction est définie pour $x\geq 0$.

Domaine de dérivabilité : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction n'est pas dérivable en x=0.

Dérivée : La dérivée de \sqrt{x} est $\frac{1}{2\sqrt{x}}$. Donc, $f'(x)=\frac{1}{2\sqrt{x}}$.

La fonction $f(x)=rac{1}{x}$ est la fonction inverse.

Domaine de dérivabilité : Tous les nombres réels sauf zéro, noté $\setminus \{0\}$. La fonction est dérivable partout sauf en x=0. **Dérivée :** La dérivée de $\frac{1}{x}$ est $-\frac{1}{x^2}$. Donc, $f'(x)=-\frac{1}{x^2}$.

а.

La fonction $f(x)=\dfrac{1}{x+2}$ est dérivable partout où elle est définie, sauf aux points où le dénominateur est zéro.

Domaine de définition : Tous les nombres réels sauf -2, noté $\setminus \{-2\}$. La fonction n'est pas définie en x=-2 car la division par zéro est impossible.

ь.

La fonction $f(x)=\sqrt{x-1}$ est dérivable partout où elle est définie, sauf aux points où le radicande est nul.

Domaine de définition : Tous les nombres réels supérieurs ou égaux à 1, noté $[1;+\infty[$. La fonction est définie pour $x\geq 1$.

Domaine de dérivabilité : Tous les nombres réels strictement supérieurs à 1, noté $]1;+\infty[$. La fonction n'est pas dérivable en x=1 car la dérivée de $\sqrt{x-1}$ tend vers l'infini.

La fonction $f(x)=rac{1}{x^2-1}$ est dérivable partout où elle est définie, sauf aux points où le dénominateur est zéro.

d.

La fonction $f(x)=\sqrt{(x-1)(x+2)}$ est dérivable partout où elle est définie, sauf aux points où le radicande est nul.

Domaine de définition : Tous les nombres réels où $(x-1)(x+2)\geq 0 \text{, noté }]-\infty;-2]\cup[1;+\infty[\text{. La fonction est définie pour }x\leq -2\text{ ou }x\geq 1\text{.}$

Domaine de dérivabilité : Tous les nombres réels strictement supérieurs à 1 et strictement inférieurs à -2, noté $]-\infty;-2[\cup]1;+\infty[$. La fonction n'est pas dérivable en x=1 et x=-2 car la dérivée tend vers l'infini.

e.

La fonction $f(x)=\sqrt{x-1}\sqrt{x+2}$ est dérivable partout où elle est définie, sauf aux points où les radicandes sont nuls.

Domaine de définition : Tous les nombres réels supérieurs ou égaux à 1, noté $[1;+\infty[$. La fonction est définie pour $x\geq 1$.

Domaine de dérivabilité : Tous les nombres réels strictement supérieurs à 1, noté $]1;+\infty[$. La fonction n'est pas dérivable en x=1 car la dérivée tend vers l'infini.

f.

La fonction $f(x)=rac{1}{x^2+1}$ est dérivable partout où elle est définie.

Domaine de définition : Tous les nombres réels, noté $\,$. La fonction est définie pour tout x réel.

Domaine de dérivabilité : Tous les nombres réels, noté . La fonction est dérivable partout.

g.

La fonction $f(x)=rac{1}{\sqrt{x}}$ est dérivable partout où elle est définie, sauf aux points où le radicande est nul.

Domaine de définition : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction est définie pour x>0.

positifs, noté $]0;+\infty[$. La fonction est dérivable partout où elle est définie.

La fonction $f(x)=rac{1}{x^2}$ est dérivable partout où elle est définie, sauf aux points où le dénominateur est zéro.

Domaine de définition : Tous les nombres réels sauf 0, noté \{0\}. La fonction n'est pas définie en x=0 car la division par zéro est impossible.

Domaine de dérivabilité : Tous les nombres réels sauf 0, noté $\setminus \{0\}$. La fonction est dérivable partout où elle est définie.

▼ Solution

f(x) = 2x avec k = 2 et u(x) = x.

Domaine de définition de : Tous les nombres réels, noté . La fonction u(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de : Tous les nombres réels, noté . La fonction f(x)=2x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction f(x)=2x est dérivable partout.

Dérivée de : f'(x) = 2u'(x) = 2.

 $f(x)=5x^2$ avec k=5 et $u(x)=x^2$.

Domaine de définition de : Tous les nombres réels, noté . La fonction $u(x)=x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^2$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels, noté . La fonction $f(x)=5x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $f(x)=5x^2$ est dérivable partout.

Dérivée de : f'(x) = 5u'(x) = 10x.

 $f(x)=-4x^3$ avec k=-4 et $u(x)=x^3$.

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^3$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^3$ est dérivable partout.

Dérivée de : $u'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels, noté . La fonction $f(x)=-4x^3$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $f(x)=-4x^3$ est dérivable partout.

Dérivée de : $f'(x)=-4u'(x)=-12x^2$.

 $f(x) = \frac{4}{x}$ avec k = 4 et $u(x) = \frac{1}{x}$.

Domaine de définition de : Tous les nombres réels sauf

Domaine de dérivabilité de : Tous les nombres réels sauf zéro, noté $\setminus \{0\}$. La fonction $u(x) = rac{1}{x}$ est dérivable partout sauf en x=0 .

Dérivée de : $u'(x)=-rac{1}{x^2}$.

Domaine de définition de : Tous les nombres réels sauf zéro, noté $\setminus \{0\}$. La fonction $f(x) = \frac{4}{x}$ est définie pour tout

Domaine de dérivabilité de : Tous les nombres réels sauf zéro, noté $\setminus \{0\}$. La fonction $f(x) = \frac{4}{x}$ est dérivable partout sauf en x=0 .

Dérivée de : $f'(x)=4u'(x)=-rac{4}{x^2}$.

 $f(x)=2\sqrt{x}$ avec k=2 et $u(x)=\sqrt{x}$.

ou nuls, noté $[0;+\infty[$. La fonction $u(x)=\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $u(x)=\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $u'(x) = \frac{1}{2\sqrt{x}}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $f(x)=2\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=2\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de $: f'(x) = 2u'(x) = \frac{1}{\sqrt{x}}.$

$$f(x)=-rac{1}{x}$$
 avec $k=-1$ et $u(x)=rac{1}{x}.$

Domaine de dérivabilité de $\,$: Tous les nombres réels sauf zéro, noté $\,\setminus\,\{0\}$. La fonction $u(x)=\frac{1}{x}$ est dérivable partout sauf en x=0.

Dérivée de : $u'(x)=-rac{1}{x^2}.$

Domaine de dérivabilité de $\,$: Tous les nombres réels sauf zéro, noté $\,\setminus\,\{0\}$. La fonction $f(x)=-\frac{1}{x}$ est dérivable partout sauf en x=0.

Dérivée de : $f'(x) = -u'(x) = \frac{1}{x^2}$.

а.

 $\int f(x)=x^2+3x$ avec $u(x)=x^2$ et v(x)=3x .

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^2$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction v(x)=3x est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction v(x)=3x est dérivable partout.

Dérivée de : v'(x) = 3.

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=x^2+3x$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=x^2+3x$ est dérivable partout.

Dérivée de \qquad : f'(x)=u'(x)+v'(x)=2x+3.

 $f(x)=x^3-2x^2$ avec $u(x)=x^3$ et $v(x)=-2x^2$.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=x^3$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^3$ est dérivable partout.

Dérivée de : $u'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels, noté . La fonction $v(x)=-2x^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $v(x)=-2x^2$ est dérivable partout.

Dérivée de $\;\;:\;v'(x)=-4x$.

Domaine de définition de : Tous les nombres réels, noté La fonction $f(x)=x^3-2x^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté . La fonction $f(x)=x^3-2x^2$ est dérivable partout.

Dérivée de \quad : $f'(x)=u'(x)+v'(x)=3x^2-4x$.

с.

 $f(x) = 2x^2 + 3x + 1$ avec $u(x) = 2x^2$ et v(x) = 3x + 1.

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=2x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction $u(x)=2x^2$ est dérivable partout.

Dérivée de : u'(x) = 4x.

Domaine de définition de : Tous les nombres réels, noté . La fonction v(x)=3x+1 est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction v(x)=3x+1 est dérivable partout.

Dérivée de \quad : v'(x)=3 .

Domaine de définition de : Tous les nombres réels, noté . La fonction $f(x)=2x^2+3x+1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction $f(x)=2x^2+3x+1$ est dérivable partout.

Dérivée de : f'(x)=u'(x)+v'(x)=4x+3.

d.

 $f(x)=x^2+2\sqrt{x}$ avec $u(x)=x^2$ et $v(x)=2\sqrt{x}$.

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^2$ est définie pour tout x réel.

. La fonction $u(x)=x^2$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de $\,$ Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $v(x)=2\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $v(x)=2\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $v'(x) = \frac{1}{\sqrt{x}}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $f(x)=x^2+2\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de $\,$: Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=x^2+2\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $f'(x)=u'(x)+v'(x)=2x+rac{1}{\sqrt{x}}$.

 $f(x)=5x^3-rac{3}{x}$ avec $u(x)=5x^3$ et $v(x)=-rac{3}{x}.$

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=5x^3$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=5x^3$ est dérivable partout.

Dérivée de : $u'(x) = 15x^2$.

Dérivée de : $v'(x) = \frac{3}{x^2}$.

Dérivée de : $f'(x)=u'(x)+v'(x)=15x^2+rac{3}{x^2}$ f.

 $f(x) = -\sqrt{x} + rac{1}{x}$ avec $u(x) = -\sqrt{x}$ et $v(x) = rac{1}{x}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $u(x)=-\sqrt{x}$ est définie pour x>0 .

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $u(x)=-\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de $: u'(x) = -rac{1}{2\sqrt{x}}.$

Dérivée de : $v'(x) = -rac{1}{x^2}$

strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=-\sqrt{x}+rac{1}{x}$ est définie pour x>0 .

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=-\sqrt{x}+rac{1}{x}$ est dérivable partout sauf en x=0 .

Dérivée de : $f'(x)=u'(x)+v'(x)=-rac{1}{2\sqrt{x}}-rac{1}{x^2}.$

```
а.
```

f(x)=3x avec u(x)=3 et v(x)=x.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction u(x)=3 est dérivable partout.

Dérivée de : u'(x)=0.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction v(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction v(x)=x est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction f(x)=3x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction f(x)=3x est dérivable partout.

Dérivée de : f'(x) = u'(x)v(x) + u(x)v'(x) = 3.

f(x) = 4x imes x avec u(x) = 4x et v(x) = x.

Domaine de définition de : Tous les nombres réels, noté . La fonction u(x)=4x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction u(x)=4x est dérivable partout.

Dérivée de : u'(x) = 4.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction v(x)=x est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction f(x)=4x imes x est dérivable partout.

Dérivée de $: \ f'(x)=u'(x)v(x)+u(x)v'(x)=4x+4x=8x \, .$

 $f(x) = x^2 imes x$ avec $u(x) = x^2$ et v(x) = x.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction $u(x)=x^2$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels, noté . La fonction v(x)=x est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction v(x)=x est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de définition de : Tous les nombres réels, noté La fonction $f(x)=x^2 imes x$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction $f(x)=x^2 imes x$ est dérivable partout.

Dérivée de $: f'(x) = u'(x)v(x) + u(x)v'(x) = 2x^2 + x^2 = 3x^2$.

 $f(x)=5x^2 imes 3x^2$ avec $u(x)=5x^2$ et $v(x)=3x^2$.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=5x^2$ est définie pour tout x réel.

. La fonction $u(x)=5x^2$ est dérivable partout.

Dérivée de : u'(x) = 10x.

Domaine de définition de : Tous les nombres réels, noté La fonction $v(x)=3x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $v(x)=3x^2$ est dérivable partout.

Dérivée de : v'(x) = 6x.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $f(x)=5x^2\times 3x^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=5x^2\times 3x^2$ est dérivable partout.

Dérivée de :

 $f'(x) = u'(x)v(x) + u(x)v'(x) = 10x \times 3x^2 + 5x^2 \times 6x = 60x^3$.

 $f(x)=x^3 imes x$ avec $u(x)=x^3$ et v(x)=x .

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=x^3$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^3$ est dérivable partout.

Dérivée de : $u'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels, noté La fonction v(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction v(x)=x est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de définition de : Tous les nombres réels, noté La fonction $f(x)=x^3 imes x$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=x^3 imes x\,$ est dérivable partout.

Dérivée de

 $f'(x)=u'(x)v(x)+u(x)v'(x)=3x^2 imes x+x^3 imes 1=4x^3$. F

f(x) = (x+1)(2x-1) avec u(x) = x+1 et v(x) = 2x-1.

Domaine de définition de : Tous les nombres réels, noté . La fonction u(x)=x+1 est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction u(x)=x+1 est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction v(x)=2x-1 est dérivable partout.

Dérivée de : v'(x)=2.

Domaine de définition de : Tous les nombres réels, noté La fonction f(x)=(x+1)(2x-1) est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction f(x)=(x+1)(2x-1) est dérivable partout.

Dérivée de

 $f'(x) = u'(x)v(x) + u(x)v'(x) = 1 \times (2x - 1) + (x + 1) \times 2 = 4x.$

g. $f(x)=(1-x^2)(3x+1)$ avec $u(x)=1-x^2$ et v(x)=3x+1 .

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=1-x^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=1-x^2$ est dérivable partout.

Domaine de définition de : Tous les nombres réels, noté La fonction v(x)=3x+1 est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction v(x)=3x+1 est dérivable partout.

Dérivée de : v'(x) = 3.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $f(x)=(1-x^2)(3x+1)$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $f(x)=(1-x^2)(3x+1)$ est dérivable partout.

Dérivée de :

$$f'(x)=u'(x)v(x)+u(x)v'(x)=-2x(3x+1)+(1-x^2) imes 3=-9x^2-$$
h.

 $f(x)=x\sqrt{x}$ avec u(x)=x et $v(x)=\sqrt{x}$.

Domaine de définition de : Tous les nombres réels, noté . La fonction u(x)=x est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction u(x)=x est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $v(x)=\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $v(x)=\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $v'(x) = \frac{1}{2\sqrt{x}}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $f(x)=x\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=x\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $f'(x)=u'(x)v(x)+u(x)v'(x)=\sqrt{x}+\frac{x}{2\sqrt{x}}=\frac{3\sqrt{x}}{2}$. i. $f(x)=x imes\frac{1}{x}$ avec u(x)=x et $v(x)=\frac{1}{x}$.

Domaine de définition de : Tous les nombres réels, noté La fonction u(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x est dérivable partout.

Dérivée de : u'(x) = 1.

Dérivée de : $v'(x)=-rac{1}{x^2}$.

Dérivée de \qquad : $f'(x)=u'(x)v(x)+u(x)v'(x)=rac{1}{x}-rac{1}{x^2}=0$.

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$ La fonction $u(x)=x^2$ est définie pour tout x réel.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $v(x)=\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $v(x)=\sqrt{x}$ est dérivable partout sauf en x=0 .

��ศรจึงée de $\;\;\; : \; v'(x) = rac{1}{2\sqrt{x}} \,.$

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $f(x)=x^2 imes\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=x^2\times\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de :

$$f'(x)=u'(x)v(x)+u(x)v'(x)=2x\sqrt{x}+x^2 imes rac{1}{2\sqrt{x}}=rac{5x\sqrt{x}}{2}$$
 .

 $f(x)=x^3 imesrac{1}{x}$ avec $u(x)=x^3$ et $v(x)=rac{1}{x}.$

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^3$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^3$ est dérivable partout.

Dérivée de $\quad : \ u'(x) = 3x^2 \, .$

Domaine de dérivabilité de $\,$: Tous les nombres réels sauf zéro, noté $\,\setminus\,\{0\}$. La fonction $v(x)=\frac{1}{x}$ est dérivable partout sauf en x=0.

Dérivée de : $v'(x) = -\frac{1}{x^2}$.

Dérivée de

$$f'(x) = u'(x)v(x) + u(x)v'(x) = 3x^2 imes rac{1}{x} + x^3 imes - rac{1}{x^2} = 2x$$
 .

 $f(x)=\sqrt{x} imesrac{1}{x}$ avec $u(x)=\sqrt{x}$ et $v(x)=rac{1}{x}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $u(x)=\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $u(x)=\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $u'(x) = \frac{1}{2\sqrt{x}}$.

 Dérivée de : $v'(x) = -\frac{1}{x^2}$.

Domaine de définition de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=\sqrt{x} imes \frac{1}{x}$ est définie pour x>0 .

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=\sqrt{x} imes \frac{1}{x}$ est dérivable partout sauf en x=0.

Dérivée de :

$$f'(x) = u'(x)v(x) + u(x)v'(x) = rac{1}{2\sqrt{x}} imes rac{1}{x} + \sqrt{x} imes - rac{1}{x^2} = -rac{1}{2x\sqrt{x}}.$$

```
a. f(x)=(x+1)^2 avec u(x)=x+1.
```

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x+1 est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $f(x)=(x+1)^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=(x+1)^2$ est dérivable partout.

Dérivée de f'(x)=2u(x)u'(x)=2(x+1) imes 1=2x+2 . b.

 $f(x)=(x-1)^2$ avec u(x)=x-1.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction u(x)=x-1 est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de : Tous les nombres réels, noté La fonction $f(x)=(x-1)^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté . La fonction $f(x)=(x-1)^2$ est dérivable partout.

Dérivée de f'(x)=2u(x)u'(x)=2(x-1) imes 1=2x-2 . c.

 $f(x)=(1-x)^2$ avec u(x)=1-x.

Domaine de définition de : Tous les nombres réels, noté La fonction u(x)=1-x est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=1-x\,$ est dérivable partout.

Dérivée de : u'(x) = -1.

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=(1-x)^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $f(x)=(1-x)^2$ est dérivable partout.

Dérivée de f'(x)=2u(x)u'(x)=2(1-x) imes (-1)=-2+2x .

 $f(x) = (x^2 + 1)^2$ avec $u(x) = x^2 + 1$.

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^2+1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^2+1$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels, noté . La fonction $f(x)=(x^2+1)^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction $f(x)=(x^2+1)^2$ est dérivable partout. Dérivée de $:f'(x)=2u(x)u'(x)=2(x^2+1) imes 2x=4x^3+4x$.

 $f(x)=(x^3+1)^2$ avec $u(x)=x^3+1.$

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^3+1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^3+1$ est dérivable partout.

Dérivée de : $u'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels, noté La fonction $f(x)=(x^3+1)^2$ est définie pour tout x réel.

. La fonction $f(x)=(x^3+1)^2$ est dérivable partout.

Dérivée de $f'(x) = 2u(x)u'(x) = 2(x^3+1) imes 3x^2 = 6x^5 + 6x^2$. f.

$$f(x)=(\sqrt{x}-1)^2$$
 avec $u(x)=\sqrt{x}-1$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $u(x)=\sqrt{x}-1$ est dérivable partout sauf en x=0.

Dérivée de :
$$u'(x) = \frac{1}{2\sqrt{x}}$$
.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $f(x)=(\sqrt{x}-1)^2$ est définie pour x>0.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=(\sqrt{x}-1)^2$ est dérivable partout sauf en x=0.

Dérivée de : $f'(x)=2u(x)u'(x)=2(\sqrt{x}-1) imes rac{1}{2\sqrt{x}}=1-rac{1}{\sqrt{x}}$.

$$f(x) = \left(rac{1}{x} + 1
ight)^2$$
 avec $u(x) = rac{1}{x} + 1$.

Dérivée de :
$$u'(x) = -\frac{1}{x^2}$$
.

Domaine de définition de $\,$: Tous les nombres réels sauf zéro, noté $\,\setminus\,\{0\}$. La fonction $f(x)=\left(\frac{1}{x}+1\right)^2$ est définie pour tout $x\neq 0$.

Domaine de dérivabilité de : Tous les nombres réels sauf zéro, noté $\setminus \{0\}$. La fonction $f(x) = \left(\frac{1}{x} + 1\right)^2$ est dérivable partout sauf en x=0.

Dérivée de

$$f'(x) = 2u(x)u'(x) = 2\left(\frac{1}{x} + 1\right) imes -\frac{1}{x^2} = -\frac{2}{x^2}\left(\frac{1}{x} + 1\right).$$

$$f(x) = (x^2 - 1)^2$$
 avec $u(x) = x^2 - 1$.

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^2-1$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^2-1$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels, noté . La fonction $f(x)=(x^2-1)^2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $f(x)=(x^2-1)^2$ est dérivable partout.

Dérivée de :
$$f'(x)=2u(x)u'(x)=2(x^2-1) imes 2x=4x^3-4x$$
 .

а

$$f(x)=rac{1}{x+1}$$
 avec $u(x)=x+1$.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x+1 est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de : Tous les nombres réels sauf -1, noté -1. La fonction $f(x)=\frac{1}{x+1}$ est définie pour tout $x \neq -1$.

Domaine de dérivabilité de : Tous les nombres réels sauf -1, noté $\setminus \{-1\}$. La fonction $f(x)=\frac{1}{x+1}$ est dérivable partout sauf en x=-1.

Dérivée de :
$$f'(x)=-rac{u'(x)}{u(x)^2}=-rac{1}{(x+1)^2}$$

b.

$$f(x)=rac{1}{1-x}$$
 avec $u(x)=1-x$.

Domaine de définition de : Tous les nombres réels, noté . La fonction u(x)=1-x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=1-x est dérivable partout.

Dérivée de : u'(x) = -1.

Domaine de dérivabilité de : Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x)=\frac{1}{1-x}$ est dérivable partout sauf en x=1.

Dérivée de :
$$f'(x) = -\frac{u'(x)}{u(x)^2} = -\frac{-1}{(1-x)^2} = \frac{1}{(1-x)^2}$$

c.

$$f(x) = rac{1}{x^2 + 1}$$
 avec $u(x) = x^2 + 1$.

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^2+1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté $. \ \ \, \text{La fonction} \,\, u(x) = x^2 + 1 \,\, \text{est dérivable partout.}$

Dérivée de : u'(x) = 2x.

Domaine de définition de $\,$: Tous les nombres réels, noté $\,$ La fonction $f(x)=\frac{1}{x^2+1}$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté $. \ \ \text{La fonction} \ f(x) = \frac{1}{x^2+1} \ \text{est dérivable partout}.$

Dérivée de :
$$f'(x)=-rac{u'(x)}{u(x)^2}=-rac{2x}{(x^2+1)^2}$$
 .

d.

$$f(x)=rac{1}{x^3+1}$$
 avec $u(x)=x^3+1$.

Domaine de définition de : Tous les nombres réels, noté $\,$ La fonction $u(x)=x^3+1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^3+1$ est dérivable partout.

Dérivée de : $u'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels sauf -1, noté -1. La fonction $f(x)=\frac{1}{x^3+1}$ est définie pour tout $x\neq -1$.

Domaine de dérivabilité de : Tous les nombres réels sauf -1, noté $\setminus \{-1\}$. La fonction $f(x)=\frac{1}{x^3+1}$ est dérivable

 $\ \ \, \text{D\'eriv\'ee de} \quad \textbf{:} \ \, f'(x) = -\frac{u'(x)}{u(x)^2} = -\frac{3x^2}{(x^3+1)^2}.$

e.

 $f(x) = rac{1}{(x-1)(x+2)}$ avec u(x) = (x-1)(x+2).

Domaine de définition de : Tous les nombres réels, noté . La fonction u(x)=(x-1)(x+2) est définie pour tout x réel. Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=(x-1)(x+2) est dérivable partout.

Dérivée de : u'(x) = (x+2) + (x-1) = 2x + 1.

Domaine de définition de : Tous les nombres réels sauf 1 et -2, noté $\setminus \{-2;1\}$. La fonction $f(x)=\frac{1}{(x-1)(x+2)}$ est définie pour tout $x \neq 1$ et $x \neq -2$.

Domaine de dérivabilité de : Tous les nombres réels sauf 1 et -2, noté $\setminus \{-2;1\}$. La fonction $f(x)=\frac{1}{(x-1)(x+2)}$ est dérivable partout sauf en x=1 et x=-2.

Dérivée de : $f'(x)=-rac{u'(x)}{u(x)^2}=-rac{2x+1}{((x-1)(x+2))^2}$

 $f(x)=rac{1}{1-x^3}$ avec $u(x)=1-x^3$.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=1-x^3$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=1-x^3$ est dérivable partout.

Dérivée de : $u'(x) = -3x^2$.

Domaine de définition de : Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x)=\frac{1}{1-x^3}$ est définie pour tout $x \neq 1$.

Domaine de dérivabilité de : Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x)=\frac{1}{1-x^3}$ est dérivable partout sauf en x=1.

Dérivée de : $f'(x) = -\frac{u'(x)}{u(x)^2} = -\frac{-3x^2}{(1-x^3)^2} = \frac{3x^2}{(1-x^3)^2}$. g.

 $f(x)=rac{1}{x^2-1}$ avec $u(x)=x^2-1$.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^2-1$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de dérivabilité de : Tous les nombres réels sauf 1 et -1, noté $\setminus \{-1;1\}$. La fonction $f(x)=\frac{1}{x^2-1}$ est dérivable partout sauf en x=1 et x=-1.

Dérivée de $f'(x) = -rac{u'(x)}{u(x)^2} = -rac{2x}{(x^2-1)^2} \, .$

 $f(x)=rac{1}{x^2-3x+2}$ avec $u(x)=x^2-3x+2$.

Domaine de définition de $\,$: Tous les nombres réels, noté La fonction $u(x)=x^2-3x+2$ est définie pour tout x réel.

Domaine de dérivabilité de $\,$: Tous les nombres réels, noté $\,$. La fonction $u(x)=x^2-3x+2$ est dérivable partout.

Dérivée de : u'(x)=2x-3.

Domaine de définition de : Tous les nombres réels sauf 1 et 2, noté $\setminus \{1;2\}$. La fonction $f(x)=\dfrac{1}{x^2-3x+2}$ est définie

Dérivée de : $f'(x)=-rac{u'(x)}{u(x)^2}=-rac{2x-3}{(x^2-3x+2)^2}$. i. $f(x)=rac{1}{\sqrt{x}}$ avec $u(x)=\sqrt{x}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $u(x)=\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $u(x)=\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $u'(x) = \frac{1}{2\sqrt{x}}$.

Domaine de définition de $\,$: Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=\frac{1}{\sqrt{x}}$ est définie pour x>0.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=\frac{1}{\sqrt{x}}$ est dérivable partout sauf en x=0.

Dérivée de $: \ f'(x)=-\frac{u'(x)}{u(x)^2}=-\frac{\frac{1}{2\sqrt{x}}}{(\sqrt{x})^2}=-\frac{1}{2x\sqrt{x}}.$ $\mathbf{j.}$ $f(x)=\frac{1}{1+\sqrt{x}} \ \text{avec} \ u(x)=1+\sqrt{x}.$

Domaine de définition de $\,\,\,\,\,\,\,\,\,\,$: Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $u(x)=1+\sqrt{x}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $u(x)=1+\sqrt{x}$ est dérivable partout sauf en x=0.

Dérivée de : $u'(x) = \frac{1}{2\sqrt{x}}$.

Domaine de définition de : Tous les nombres réels positifs ou nuls, noté $[0;+\infty[$. La fonction $f(x)=\frac{1}{1+\sqrt{x}}$ est définie pour $x\geq 0$.

Domaine de dérivabilité de : Tous les nombres réels strictement positifs, noté $]0;+\infty[$. La fonction $f(x)=\dfrac{1}{1+\sqrt{x}}$ est dérivable partout sauf en x=0.

Dérivée de $f'(x)=-rac{u'(x)}{u(x)^2}=-rac{rac{1}{2\sqrt{x}}}{(1+\sqrt{x})^2}.$

 $f(x)=rac{x}{x+1}$ avec u(x)=x et v(x)=x+1 .

Domaine de définition de : Tous les nombres réels, noté La fonction u(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de : Tous les nombres réels, noté La fonction v(x) = x + 1 est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction v(x)=x+1 est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de définition de : Tous les nombres réels sauf -1, noté $\setminus \{-1\}$. La fonction $f(x) = rac{x}{x+1}$ est définie pour tout

Domaine de dérivabilité de : Tous les nombres réels sauf -1, noté $\setminus \{-1\}$. La fonction $f(x) = \frac{x}{x+1}$ est dérivable partout sauf en x=-1.

Dérivée de

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{1 \times (x+1) - x \times 1}{(x+1)^2} = \frac{1}{(x+1)^2}.$$

 $f(x)=rac{x^2}{x-1}$ avec $u(x)=x^2$ et v(x)=x-1 .

Domaine de définition de : Tous les nombres réels, noté La fonction $u(x)=x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^2$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels, noté . La fonction v(x) = x - 1 est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction v(x)=x-1 est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de définition de $\ \ :$ Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x) = rac{x^2}{x-1}$ est définie pour tout $x \neq 1$.

Domaine de dérivabilité de : Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x) = \frac{x^2}{x-1}$ est dérivable partout sauf en x=1

Dérivée de

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{2x \times (x-1) - x^2 \times 1}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2}.$$

 $f(x)=rac{x}{x^2+1}$ avec u(x)=x et $v(x)=x^2+1$.

Domaine de définition de : Tous les nombres réels, noté La fonction u(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x est dérivable partout.

Dérivée de : u'(x) = 1.

Domaine de définition de : Tous les nombres réels, noté La fonction $v(x)=x^2+1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $v(x)=x^2+1$ est dérivable partout.

Dérivée de : v'(x) = 2x.

La fonction $f(x)=rac{x}{x^2+1}$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $f(x)=rac{x}{x^2+1}$ est dérivable partout.

$$f'(x) = rac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = rac{1 imes (x^2+1) - x imes 2x}{(x^2+1)^2} = rac{1 - x^2}{(x^2+1)^2} \,.$$

$$f(x)=rac{x^3}{x+2}$$
 avec $u(x)=x^3$ et $v(x)=x+2$.

Domaine de définition de : Tous les nombres réels, noté . La fonction $u(x)=x^3$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^3$ est dérivable partout.

Dérivée de : $u'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels, noté La fonction v(x)=x+2 est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction v(x)=x+2 est dérivable partout.

Dérivée de : v'(x) = 1.

Domaine de définition de : Tous les nombres réels sauf -2, noté $\setminus \{-2\}$. La fonction $f(x) = \frac{x^3}{x+2}$ est définie pour tout

Domaine de dérivabilité de : Tous les nombres réels sauf -2, noté $\setminus \{-2\}$. La fonction $f(x)=rac{x^3}{x+2}$ est dérivable partout sauf en x=-2.

Dérivée de

$$f'(x) = rac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = rac{3x^2 imes (x+2) - x^3 imes 1}{(x+2)^2} = rac{2x^3 + 6x^2}{(x+2)^2}.$$

 $f(x)=rac{x^2}{x^3-1}$ avec $u(x)=x^2$ et $v(x)=x^3-1$.

Domaine de définition de : Tous les nombres réels, noté . La fonction $u(x) = x^2$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $u(x)=x^2$ est dérivable partout.

Dérivée de : u'(x) = 2x.

Domaine de définition de : Tous les nombres réels, noté . La fonction $v(x)=x^3-1$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction $v(x)=x^3-1$ est dérivable partout.

Dérivée de : $v'(x) = 3x^2$.

Domaine de définition de : Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x) = rac{x^2}{x^3-1}$ est définie pour tout $x \neq 1$.

Domaine de dérivabilité de : Tous les nombres réels sauf 1, noté $\setminus \{1\}$. La fonction $f(x) = rac{x^2}{x^3-1}$ est dérivable partout sauf en x=1.

Dérivée de

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{2x \times (x^3 - 1) - x^2 \times 3x^2}{(x^3 - 1)^2} = \frac{-x^4 - 2x}{(x^3 - 1)^2}$$

 $f(x)=rac{x}{x^2-2x-3}$ avec u(x)=x et $v(x)=x^2-2x-3$.

Domaine de définition de : Tous les nombres réels, noté La fonction u(x)=x est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté . La fonction u(x)=x est dérivable partout.

Dérivée de : u'(x) = 1.

La fonction $v(x)=x^2-2x-3$ est définie pour tout x réel.

Domaine de dérivabilité de : Tous les nombres réels, noté

. La fonction $v(x)=x^2-2x-3$ est dérivable partout.

Dérivée de : v'(x) = 2x - 2.

Domaine de définition de $\ \ :$ Tous les nombres réels sauf -1

et 3, noté $\setminus \{-1;3\}$. La fonction $f(x)=rac{x}{x^2-2x-3}$ est

définie pour tout $x \neq -1$ et $x \neq 3$.

Domaine de dérivabilité de $\,$: Tous les nombres réels sauf -1

et
$$3$$
, noté $\setminus \{-1;3\}$. La fonction $f(x)=rac{x}{x^2-2x-3}$ est

dérivable partout sauf en x=-1 et x=3.

Dérivée de :

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{1 \times (x^2 - 2x - 3) - x \times (2x - 2)}{(x^2 - 2x - 3)^2} = \frac{-x^2 - 2x + 2}{(x^2 - 2x - 3)^2}.$$