湖南师范大学2021—2022学年第一学期2021年级物电、信工、化工院相关专业期中课程

高等数学 A 考核试题

考试时量: 100 分钟 课程代码: 考核方式: 闭卷 试卷类型:

题 号	_	=	三	四	五	六	总 分	合分人	复查人
应得分	28	24	40	8			100		
得 分									

得分	评卷人	评卷人 复查人	

先题(每小题 4 分, 共 28 分).

1、下列函数在给定区间上有界的是

② $y = \frac{1}{r^2}, x \in (1, +\infty)$

- ① $y = \frac{x+1}{x-1}, x \in (1,2)$
- 3 $y = x \sin x, x \in (-\infty, +\infty)$ 4 $y = \ln(x+1), x \in (-1,1)$
- 2、当 $x \to 0$ 时,下列无穷小量中与 x^2 不等价的是

)

- ① $\ln(1+2x^2)$ ② $\sqrt{1+2x^2}-1$ ③ $\sqrt{1+x^2}-\sqrt{1-x^2}$
- $4 \arcsin(x^2)$

3、下列函数中在x=0处可导的是

)

)

①
$$y = \sqrt[3]{x^2}$$
 ② $y = \begin{cases} \sin x, & x \le 0 \\ x^2, & x > 0 \end{cases}$ ③ $y = \begin{cases} x^2 \sin \frac{1}{x}, & x \ne 0 \\ 0, & x = 0 \end{cases}$ ④ $y = |x|$

4、设f(x)可导且 $\lim_{x\to 2} \frac{f(x)-1}{(x-2)^2} = -1$,则下列结论中正确的是

)

- ① x = 2为 f(x) 的极大值点; ② x = 2为 f(x) 的极小值点; ③ (2,1) 为曲线 y = f(x) 的拐点; ④以上都不对.
- 5、设 f(x) = (x+2)(x+1)(x-3)(x-4),则方程 f'(x) = 0的根的个数为
- ① 至少4个 ② 至少3个 ③ 4个

6、设函数 f(x) 在 $x = x_0$ 处取得极大值,则必有

)

① $f'(x_0) = 0$

- ② $f''(x_0) < 0$
- ③ $f'(x_0) = 0$ 且 $f''(x_0) < 0$ ④ $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在

7、设 f(x) 为二阶可导的奇函数,当 $x \in (0, +\infty)$ 时, f'(x) > 0, f''(x) > 0, 则当 $x \in (-\infty, 0)$ 时, 有

① f'(x) > 0, f''(x) > 0

2f'(x) < 0, f''(x) > 0

③ f'(x) > 0, f''(x) < 0

4 f'(x) < 0, f''(x) < 0

得分	评卷人	复查人

二、填空题(每小题 4 分,共 24 分).

$$1 \cdot \lim_{x \to \infty} \left(\frac{x+a}{x-2a} \right)^{2x} = \underline{\qquad} .$$

2、设
$$f(x) = x \cos x$$
, 则 $f^{(21)}(0) =$ ______.

3、设
$$e^{x+y} + \cos(xy) = \sin 3x + 2$$
,则 $\frac{dy}{dx}\Big|_{x=0} =$ _____

4、函数
$$y = 2x + \frac{8}{x}$$
 的单调递减区间为______.

5、当
$$x \to 0$$
 时, $\tan x - x$ 是关于 x 的_____阶无穷小.
6、设 $f(x) = \frac{1}{1 + 2^{\frac{1}{x}}}$,则 $x = 0$ 为其______间断点.

得分	评卷人	复查人		

三、计算题(每小题8分,共40分).

$$1、求极限 \lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right).$$

2、求曲线
$$y = \frac{x^2 - 3x + 2}{x^2 - 1} \arctan \frac{1}{x}$$
 的渐近线.

3、读
$$y = \left(\frac{1}{x}\right)^x (x > 0)$$
,求 dy.

4、设
$$\begin{cases} x = \ln \sqrt{1 + t^2}, \\ y = t - \arctan t \end{cases}, \dot{x} \frac{d^2 y}{dx^2}.$$

5、设函数
$$f(x) =$$

$$\begin{cases} x^{\alpha} \cos \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$
,问 α 为何值时, $f(x)$ 在 $x = 0$ 处可导,且导函数连续?

得分	评卷人	复查人	
			四、

四、证明题(8分).

设 f(x)在[0,1]上连续, 在(0,1) 可导, 且 f(0) = f(1) = 0, 证明

- (1) 存在 $\xi \in (0,1)$, 使得 $\xi f'(\xi) + f(\xi) = 0$.
- (2) 存在 $\eta \in (0,1)$, 使得 $f'(\eta)=2\eta f(\eta)$.