Khôlles de Mathématiques - Semaine 9

Kylian Boyet, George Ober, Hugo Vangilluwen

29 novembre 2023

1 Dans un ensemble totalement ordonné, toute partie finie non vide possède un plus grand élément et un plus petit élément.

Démonstration. Soit (E, \preccurlyeq) un ensemble totalement ordonné, considérons pour tour $n \in \mathbb{N}^*$ la propriété.

 \mathcal{H}_n : toute partie de E de cardinal n admet un plus petit et un plus grand élément

- * Initialisation $n \leftarrow 1$ Soit $A \in \mathcal{P}(E)$ fixée telle que |A| = 1 A est non vide, donc $\exists a \in A : A = \{a\}$ a est le plus petit et le plus grand élément, donc \mathcal{H}_1 est vraie.
- * Hérédité Soit $n \in \mathbb{N}^*$ fixé quelconque tel que \mathcal{H}_n est vraie. Soit $A \in \mathcal{P}(E)$ fixée quelconque tel que |A| = n + 1

$$A \neq \emptyset \implies \exists a \in A : A = (A \setminus \{a\}) \cup \{a\}$$

Or, $|A \setminus \{a\}| = n$ donc \mathcal{H}_n s'applique et $A \setminus \{a\}$ possède un plus grand et plus petit élément

$$\begin{cases} m &= \min A \setminus \{a\} \\ M &= \max A \setminus \{a\} \end{cases}$$

- \Diamond Construisons le plus grand élément de A
 - \bullet Supposons $M \preccurlyeq a$ D'une part $a \in A$ D'autre part

$$\forall x \in A, \quad \text{si } x = a, x \preccurlyeq a \text{ (r\'eflexivit\'e)} \\ \text{sinon } x \in A \setminus \{a\} \implies x \preccurlyeq M \preccurlyeq a \implies x \preccurlyeq a \\ \right\} \implies \forall x \in A, x \preccurlyeq a$$

Donc A admet un plus grand élément, et c'est a.

• Sinon, si $M \succ a$, mais $M \in A$ et

$$\forall x \in A, \quad \begin{array}{l} \text{si } x = a, x \preccurlyeq M \\ \text{sinon } x \in A \setminus \{a\} \implies x \preccurlyeq \max(A \setminus \{a\}) = M \end{array} \right\} \implies \forall x \in A, x \preccurlyeq a$$

Donc A admet un plus grand élément, et c'est M

 \Diamond On procède de même pour construire le le plus petit élément de A avec m.

Donc \mathcal{H}_{n+1} est vraie. Donc toute partie finie non vide d'un ensemble totalement ordonné possède un plus petit et un plus grand élément.

Étudions l'importance des hypothèses :

- * Importance de la finitude de la partie :
 - On sait qu'une partie infinie d'un ensemble totalement ordonné n'admet pas de plus grand élément : [0,1[dans $(\mathbb{R},\leq), \mathbb{N}$ dans (\mathbb{R},\leq) .
- * Importance du caractère total de l'ordre : on connait des ensembles finis partiellement ordonnés qui n'ont pas de plus grand élément :
 - $\{3,12\}$ dans $(\mathbb{R},=)$ n'admet pas de plus grand élément
 - $\{[1,2],[3,4]\}$ dans $(\mathcal{P}(\mathbb{R}),\subset)$ n'admet pas de plus grand élément
 - $\{2,3\}$ dans $(\mathbb{N},|)$ non plus.

2 Si A admet un plus grand élément c'est aussi sa borne supérieure. Si A admet une borne supérieure dans A c'est sont plus grand élément.

Soit (E, \leq) un ensemble ordonné, et A une partie non-vide de E.

Si A admet un plus grand élément alors A admet une borne supérieure et sup $A = \max A$.

Si A admet une borne supérieure appartenant à elle-même alors A admet un plus grand élément et max $A = \sup A$.

Démonstration. Soient un tel ensemble E et une telle partie A et notons M son plus grand élément. Posons l'ensemble des majorants de A, $M(A) = \{m \in E \mid \forall a \in A, \ a \leqslant m\}$. Par définition :

$$\forall m \in M(A), M \leqslant m,$$

car $M \in A$, mais comme $M \in M(A)$, on a directement que $M = \min M(A) = \sup A$.

Pseudo-réciproquement, soit A une partie de E admettant une borne supérieure dans elle même, notons cette borne S.

Comme $S \in M(A)$, par définition, S est plus grand que tous les éléments de A mais appartient à A, donc de tous les éléments de A, S est le plus grand.

3 Caractérisation par les ε de la borne supérieure

Soit $A \in \mathcal{P}(\mathbb{R})$ une partie non vide et majorée. Soit $\sigma \in \mathbb{R}$

$$\sigma = \sup A \iff \left\{ \begin{array}{l} \forall a \in A, a \leqslant \sigma \\ \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : \sigma - \varepsilon < a \leqslant \sigma \end{array} \right.$$

Démonstration. \star Supposons $\sigma = \sup A$

- Par définition $\sup A = \min M(A)$ donc $\sigma \in M(A)$ donc $\forall a \in A, a \leq \sigma$
- Soit $\varepsilon > 0$ fixé quelconque

$$\sigma = \min M(A) \iff \sigma - \varepsilon \notin M(A) (\operatorname{sinon} \sigma - \varepsilon \geqslant \min M(A) = \sigma \implies \varepsilon \leqslant 0)$$
$$\iff \exists a \in A : \sigma - \varepsilon < a \leqslant \sigma$$

* Réciproquement, supposons

$$\left\{ \begin{array}{l} \forall a \in A, a \leqslant \sigma \\ \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : \sigma - \varepsilon < a \leqslant \sigma \end{array} \right.$$

- D'après la première propriété, $\sigma \in M(A)$
- Montrons que σ est le plus petit des minorants par l'absurde en supposant qu'il existe $M \in M(A)$ tel que $M < \sigma$. On a $\sigma M > 0$ donc on peut appliquer la deuxième propriété pour $\varepsilon \leftarrow \sigma M$

$$\exists a \in A : \sigma - (\sigma - M) < a$$

Fixons un tel a. On a donc trouvé un $a \in A$ tel que M < a ce qui contredit le fait que M soit un majorant de A. Donc il n'existe pas de majorant plus petit que σ . Donc A admet une borne supérieure qui est σ .

4 Montrer que si A et B sont deux parties non vides majorées de \mathbb{R} , alors $\sup(A+B)=\sup A+\sup B$

Démonstration. Soient A et B deux parties non vides et majorées de \mathbb{R} . On note A+B l'ensemble

$$A + B = \{a + b \mid (a, b) \in A \times B\}$$

C'est aussi une partie non vide de \mathbb{R} .

Soit $x \in (A+B)$ fixé quelconque. Par définition de A+B, $\exists (a,b) \in A \times B : x=a+b$

$$\left. \begin{array}{l} a \leqslant \sup A \\ b \leqslant \sup B \end{array} \right\} \implies x = a + b \leqslant \sup A + \sup B$$

On a donc montré que sup $A + \sup B$ est un majorant de A + B, donc A + B admet un majorant, donc A + B est une partie non vide majorée de \mathbb{R} , donc A + B admet une borne supérieure.

Par définition de la borne supérieure, car $\sup(A+B)$ est le plus petit élément de l'ensemble des majorants :

$$\sup(A+B) \leqslant \sup A + \sup B$$

De plus $\sup(A+B)$ est un majorant de A+B donc, pour $(a,b) \in A \times B$ fixés, on a

$$a + b \le \sup(A + B) \iff a \le \sup(A + B) - b$$

en relâchant le caractère fixé de a, on a

$$\forall a \in A, a \leq \sup(A+B) - b$$

donc $\sup(A+B)-b$ est un majorant de A, donc plus petit que $\sup A$, d'où

$$\sup A \leqslant \sup(A+B) - b \iff b \leqslant \sup(A+B) - \sup A$$

Donc en relâchant le caractère fixé de b on a

$$\forall b \in B, b \leq \sup(A+B) - \sup A$$

donc $\sup(A+B) - \sup A$ est un majorant de B donc plus petit que $\sup B$ d'où

$$\sup B \leqslant \sup(A+B) - \sup A \iff \sup A + \sup B \leqslant \sup(A+B)$$

Donc par double inégalité

$$\sup A + \sup B = \sup(A + B)$$