Name: Aniruddh Kulkarni

Roll No: 1081

Subject: Machine Learning

Practical: Practical 2

Date: 17-12-21

```
In [3]:
         # Lab assignment 2
          # Data Visualisation
          # Go to Kaggle and download the wheat seeds dataset
          import numpy as np
In [4]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          df = pd.read csv('seeds.csv')
In [5]:
          df.head()
In [6]:
Out[6]:
            Area Perimeter Compactness Kernel.Length Kernel.Width Asymmetry.Coeff Kernel.G
         0 15.26
                      14.84
                                   0.8710
                                                 5.763
                                                               3.312
                                                                               2.221
         1 14.88
                      14.57
                                   0.8811
                                                 5.554
                                                              3.333
                                                                               1.018
         2 14.29
                      14.09
                                   0.9050
                                                  5.291
                                                              3.337
                                                                               2.699
         3 13.84
                      13.94
                                   0.8955
                                                 5.324
                                                              3.379
                                                                               2.259
         4 16.14
                      14.99
                                  0.9034
                                                 5.658
                                                              3.562
                                                                               1.355
          df["Type"].value counts()
In [7]:
Out[7]: 2
               68
               66
               65
         Name: Type, dtype: int64
          df.describe()
In [8]:
```

Out[8]:		Area	Perimeter	Compactness	Kernel.Length	Kernel.Width	Asymmetry.Coe
	count	199.000000	199.000000	199.000000	199.000000	199.000000	199.00000
	mean	14.918744	14.595829	0.870811	5.643151	3.265533	3.69921
	std	2.919976	1.310445	0.023320	0.443593	0.378322	1.47110
	min	10.590000	12.410000	0.808100	4.899000	2.630000	0.76510
	25%	12.330000	13.470000	0.857100	5.267000	2.954500	2.57000
	50%	14.430000	14.370000	0.873400	5.541000	3.245000	3.63100
	75%	17.455000	15.805000	0.886800	6.002000	3.564500	4.79900
	max	21.180000	17.250000	0.918300	6.675000	4.033000	8.31500

```
In [9]: # matplotlib
# plot
df.plot(kind = 'scatter', x = "Kernel.Length", y = "Kernel.Width")
```

Out[9]: <AxesSubplot:xlabel='Kernel.Length', ylabel='Kernel.Width'>


```
In [10]: df.plot(kind = 'scatter', x = 'Compactness', y = 'Kernel.Groove')
```

```
Out[10]: <AxesSubplot:xlabel='Compactness', ylabel='Kernel.Groove'>
```

```
6.50
   6.25
   6.00
Kernel.Groove
   5.75
   5.50
   5.25
   5.00
   4.75
   4.50
                  0.82
                              0.84
                                           0.86
                                                       0.88
                                                                   0.90
                                                                                0.92
                                        Compactness
```

```
In [11]: df.plot(kind = 'scatter', x = 'Perimeter', y = 'Asymmetry.Coeff')
```

Out[11]: <AxesSubplot:xlabel='Perimeter', ylabel='Asymmetry.Coeff'>


```
In [12]: # use of seaborn library
sns.jointplot(x = 'Perimeter', y = 'Compactness', data = df, size = 5)
```

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:2015: UserWa rning: The `size` parameter has been renamed to `height`; please update you r code.

warnings.warn(msg, UserWarning)

Out[12]: <seaborn.axisgrid.JointGrid at 0x7fadalacef40>

In [13]: sns.jointplot(x = 'Area', y = 'Kernel.Width', data = df, size = 5)

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:2015: UserWa rning: The `size` parameter has been renamed to `height`; please update you r code.

warnings.warn(msg, UserWarning)

Out[13]: <seaborn.axisgrid.JointGrid at 0x7fada1b6a040>

In [14]: # plot three types of seeds with three different colours
sns.FacetGrid(df, hue = 'Type', size = 5).map(plt.scatter, "Perimeter", "C

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWar ning: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[14]: <seaborn.axisgrid.FacetGrid at 0x7fadb22456a0>

In [15]: sns.FacetGrid(df, hue = 'Type', size = 5).map(plt.scatter, "Area", "Kernel

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWar ning: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[15]: <seaborn.axisgrid.FacetGrid at 0x7fadb22ee100>


```
In [16]: # boxplot is used to identify the outliers
sns.boxplot(x = "Type", y = "Compactness", data = df)
```

Out[16]: <AxesSubplot:xlabel='Type', ylabel='Compactness'>


```
In [17]: sns.boxplot(x = 'Type', y = 'Kernel.Length', data = df)
```

Out[17]: <AxesSubplot:xlabel='Type', ylabel='Kernel.Length'>

In [19]: # here boxplot gives the range of points which we are looking for and the
sns.boxplot(x = 'Type', y = 'Perimeter', data = df)

Out[19]: <AxesSubplot:xlabel='Type', ylabel='Perimeter'>

In [20]: # with the help of stripplot we are superimposing our coloured dots on the
ax = sns.boxplot(x = 'Type', y = 'Compactness', data = df)
ax = sns.stripplot(x = 'Type', y = 'Compactness', data = df, jitter = True)


```
In [21]: bx = sns.boxplot(x = 'Type', y = 'Asymmetry.Coeff', data = df)
bx = sns.stripplot(x = 'Type', y = 'Asymmetry.Coeff', data = df, jitter = !
```


Out[22]: <AxesSubplot:xlabel='Type', ylabel='Compactness'>


```
In [25]: sns.violinplot(x = 'Type', y = 'Kernel.Length', data = df, size = 10)
```

Out[25]: <AxesSubplot:xlabel='Type', ylabel='Kernel.Length'>


```
In [26]: # kdeplot
sns.FacetGrid(df, hue = 'Type', size = 5).map(sns.kdeplot, "Compactness").
```

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWar ning: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[26]: <bound method Grid.add_legend of <seaborn.axisgrid.FacetGrid object at 0x7f adb27f30d0>>

In [27]: sns.FacetGrid(df, hue = 'Type', size = 5).map(sns.kdeplot, "Kernel.Length"

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:316: UserWar ning: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[27]: <bound method Grid.add_legend of <seaborn.axisgrid.FacetGrid object at 0x7f ada1cd16a0>>

In [28]: # pairplot to be used when we'll implement multivariate regression
sns.pairplot(df, hue = "Type", size = 3)

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:1912: UserWa rning: The `size` parameter has been renamed to `height`; please update you r code.

warnings.warn(msg, UserWarning)

Out[28]: <seaborn.axisgrid.PairGrid at 0x7fadb27e3dc0>


```
In [41]: import warnings
    warnings.filterwarnings("ignore")
    sns.pairplot(df , hue = 'Area', size = 5)
```

Out[41]: <seaborn.axisgrid.PairGrid at 0x7fadd0ee0ca0>

In [39]:

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:1912: UserWa rning: The `size` parameter has been renamed to `height`; please update you r code.

warnings.warn(msg, UserWarning)

Out[39]: <seaborn.axisgrid.PairGrid at 0x7fadb4594b20>

In [40]: sns.pairplot(df, hue = 'Area', size = 3, diag_kind = 'hist')

/opt/anaconda3/lib/python3.8/site-packages/seaborn/axisgrid.py:1912: UserWa rning: The `size` parameter has been renamed to `height`; please update you r code.

warnings.warn(msg, UserWarning)

Out[40]: <seaborn.axisgrid.PairGrid at 0x7fadc169f3a0>

