Tutorial 1

$$y = 100 - 2p$$

 $50 p = 50 - \frac{4}{2}$
 $TR : 50y - \frac{4^{2}}{2}$

$$7 MC = MR$$
 $2y = 509 - \frac{4^2}{2}$
 $2 = 50 - \frac{1}{2}.2y$
 $4 = 48$ so $p = 26$

$$y = 10p^{-3} = \frac{10}{p^3}$$
 so $p^3 = \frac{1}{10} = \frac{310}{4^{1/3}}$
Rev: $p = y = \frac{3410y}{4^{1/3}} = \frac{310}{y^{-2/3}} = \frac{310}{y^{-2/3}} = \frac{310}{y^{-2/3}}$
 $\therefore MR = \frac{2}{3} \cdot 310 y^{-1/3}$

$$\frac{3}{3} \cdot 3\sqrt{10} \cdot 4^{-1/3} = 2$$

$$\frac{2}{3} \cdot 3\sqrt{10} = 2$$

$$4^{1/3} = \frac{2}{3} \cdot 3\sqrt{10}$$

$$4 = (\frac{2}{3} \cdot 3\sqrt{10})^{3}$$

$$4 = 0.37 \quad p = 3$$

Shortcut: elasticity =-3

$$MC = P(1 + \frac{1}{E})$$

sconstant elasticity (cobb-douglas)

a)
$$p = 100 + y$$
 $p = 50 - \frac{1}{2}$
 $R = 100y - y^2$ $R = 50y - \frac{1}{2}$
 $MR = 100 - 2y$ $MR = 50 - y$
 $MC = MR$ $MC = MC$
 $100 - 2y = 20$ $20 = 50 - y$
 $y = 40$ $y = 50$
 $p = 60$ $p = 65$

VA T GOOD GENERAL COOL

So
$$y = 200 - 3p$$
 and $p = \frac{200 - 9}{3}$

Revenue:
$$\frac{200 \, y}{3} - \frac{y^2}{3}$$
 MR: $\frac{200}{3} - \frac{2}{3} \, y$

$$\frac{MR}{200} = MC$$

$$\frac{200}{3} - \frac{2}{3}4 = 20$$

$$\frac{140}{3}$$

$$\frac{2}{3}4 = \frac{140}{3}$$

witotu