Basics on Linear Programming

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

March 22, 2019

Linear Programs (LP's)

A linear program is an optimization problem of the form

$$\min c^T x$$

$$A_1 x \leq b_1$$

$$A_2 x = b_2$$

$$A_3 x \geq b_3$$

$$x \in \mathbb{R}^n$$

$$c \in \mathbb{R}^n, b_i \in \mathbb{R}^{m_i}, A_i \in \mathbb{R}^{m_i \times n}, i = 1, 2, 3$$

- \blacksquare x is the vector of variables
- lacktriangle $c^T x$ is the cost or objective function
- $lack A_1x \leq b_1$, $A_2x = b_2$ and $A_3x \geq b_3$ are the constraints

Notes on the Definition of LP

■ Solving minimization or maximization is equivalent:

$$\max\{ f(x) \mid x \in S \} = -\min\{ -f(x) \mid x \in S \}$$

Satisfiability problems are a particular case: take arbitrary cost function, e.g., c = 0

Equivalent Forms of LP's (1)

- This form is not the most convenient for algorithms WLOG we can transform such a problem as follows
- 1. Split = constraints into \geq and \leq constraints

$$\min c^T x$$

$$A_1 x \le b_1$$

$$A_2 x = b_2$$

$$A_3 x \ge b_3$$

$$\min c^T x$$

$$A_1 x \le b_1$$

$$A_2 x \le b_2$$

$$A_2 x \ge b_2$$

$$A_3 x \ge b_3$$

Now all constraints are \leq or \geq

Equivalent Forms of LP's (2)

2. Transform \geq constraints into \leq constraints by multiplying by -1

$$\min c^T x \qquad \qquad \min c^T x
A_1 x \le b_1 \qquad \Longrightarrow \qquad A_1 x \le b_1
A_2 x \ge b_2 \qquad \qquad -A_2 x \le -b_2$$

Now all constraints are ≤

Equivalent Forms of LP's (3)

3. Replace variables x by y-z, where y, z are vectors of fresh variables, and add constraints $y \ge 0$, $z \ge 0$

$$\min c^T x \\
Ax \le b$$

$$\min c^T y - c^T z \\
Ay - Az \le b \\
y, z \ge 0$$

Now all constraints are \leq and all variables have to be \geq 0

Equivalent Forms of LP's (4)

4. Add a slack variable to each \leq constraint to convert it into =

$$\min c^T x \qquad \qquad \min c^T x
Ax \le b \qquad \Longrightarrow \qquad Ax + s = b
x \ge 0 \qquad \qquad x, s \ge 0$$

Now all constraints are = and all variables have to be ≥ 0

Equivalent Forms of LP's (5)

Example:

Equivalent Forms of LP's (6)

■ In the end we get a problem in standard form:

```
\min c^T x Ax = b x \ge 0 c \in \mathbb{R}^n, b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, n \ge m, \operatorname{rank}(A) = m
```

- These transformations are not strictly necessary (they increase no. of constraints and variables), but are convenient in a first formulation of the algorithms
- Often variables are identified with columns of the matrix, and constraints are identified with rows

Methods for Solving LP's

- Simplex algorithms
- Interior-point algorithms

Methods for Solving LP's

- Simplex algorithms
- Interior-point algorithms

Basic Definitions (1)

$$\min c^T x$$
$$Ax = b$$
$$x \ge 0$$

- lacktriangle Any vector x such that Ax = b is called a solution
- lacktriangle A solution x satisfying $x \geq 0$ is called a feasible solution
- An LP with feasible solutions is called feasible; otherwise it is called infeasible
- A feasible solution x^* is called optimal if $c^T x^* \le c^T x$ for all feasible solution x
- A feasible LP with no optimal solution is unbounded

Basic Definitions (2)

$$\min -x - 2y$$
 $x + y + s_1 = 3$
 $x + s_2 = 2$
 $y + s_3 = 2$
 $x, y, s_1, s_2, s_3 \ge 0$

- $(x, y, s_1, s_2, s_3) = (-1, -1, 5, 3, 3)$ is solution but not feasible
- $(x, y, s_1, s_2, s_3) = (1, 1, 1, 1, 1)$ is a feasible solution

Basic Definitions (3)

$$\min -x - \beta y$$

 $x + y + s_1 = \alpha$
 $x + s_2 = 2$
 $y + s_3 = 2$
 $x, y, s_1, s_2, s_3 \ge 0$

- If $\alpha = -1$ the LP is not feasible
- If $\alpha = 3, \beta = 2$ then $(x, y, s_1, s_2, s_3) = (1, 2, 0, 1, 0)$ is the only optimal solution
- There may be more than one optimal solution: If $\alpha = 3$ and $\beta = 1$ then $\{(1, 2, 0, 1, 0), (2, 1, 0, 0, 1), (\frac{3}{2}, \frac{3}{2}, 0, \frac{1}{2}, \frac{1}{2})\}$ are optimal

Basic Definitions (4)

Basic Definitions (5)

Unbounded LP

Basic Definitions (6)

y

LP is bounded, but set of feasible solutions is not

Bases (1)

Let us denote by a_1 , ..., a_n the columns of ARecall that $n \ge m$, rank(A) = m.

- A matrix of m columns $(a_{k_1}, ..., a_{k_m})$ is a basis if the columns are linearly independent
- Note that a basis is a square matrix!
- If $(a_{k_1},...,a_{k_m})$ is a basis, then the variables $(x_{k_1},...,x_{k_m})$ are called basic
- We usually denote

```
by \mathcal{B} the list of indices (k_1,...,k_m), and by \mathcal{R} the list of indices (1,2,...,n)-\mathcal{B}; and by \mathcal{B} the matrix (a_i \mid i \in \mathcal{B}), and by \mathcal{R} the matrix (a_i \mid i \in \mathcal{R})
x_{\mathcal{B}} the basic variables, x_{\mathcal{R}} the non-basic ones
```

Bases (2)

- \blacksquare (s_1, s_2, x) do not form a basis
- \blacksquare (s_1, s_2, s_3) form a basis, where $x_{\mathcal{B}} = (s_1, s_2, s_3)$, $x_{\mathcal{R}} = (x, y)$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Bases (3)

 \blacksquare If B is a basis, then the following holds

$$Bx_{\mathcal{B}} + Rx_{\mathcal{R}} = b$$

Hence:

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

Non-basic variables determine values of basic ones

■ If non-basic variables are set to 0, we get the solution

$$x_{\mathcal{R}} = 0, x_{\mathcal{B}} = B^{-1}b$$

Such a solution is called a basic solution

If a basic solution satisfies $x_{\mathcal{B}} \geq 0$ then it is called a basic feasible solution, and the basis is feasible

Bases (4)

Basis (s_1, s_2, s_3) is feasible

Bases (5)

Basis (x, y, s_1) is **not** feasible

Bases (6)

A basis is called degenerate when at least one component of its basic solution $x_{\mathcal{B}}$ is null

Geometry of LP's (1)

- Set of feasible solutions of an LP is a convex polyhedron
- Basic feasible solutions are vertices of the convex polyhedron

Geometry of LP's (2)

$$\min -x - 2y$$
$$x + y + s_1 = 3$$

- $x + s_2 = 2$ $y + s_3 = 2$ $x, y, s_1, s_2, s_3 \ge 0$
- $\blacksquare \quad x_{\mathcal{B}_1} = (y, s_1, s_2)$
- $\mathbf{x}_{\mathcal{B}_3} = (x, y, s_3)$
- $x_{\mathcal{B}_4} = (x, s_1, s_3)$
- $x_{\mathcal{B}_5} = (s_1, s_2, s_3)$

Geometry of LP's (3)

■ Theorem (Minkowski-Weyl)

Let P be an LP.

A point x is a feasible solution to P iff

there exist basic feasible solutions $v_1, ..., v_r \in \mathbb{R}^n$ and vectors $r_1, ..., r_s \in \mathbb{R}^n$ such that

$$x = \sum_{i=1}^{r} \lambda_i v_i + \sum_{j=1}^{s} \mu_j r_j$$

for certain λ_i, μ_j such that $\sum_{i=1}^r \lambda_i = 1$ and $\lambda_i, \mu_j \geq 0$.

■ Theorem (Fundamental Theorem of Linear Programming)

Let P be an LP.

Then exactly one of the following holds:

- 1. *P* is infeasible
- 2. *P* is unbounded
- 3. P has an optimal basic feasible solution

It is sufficient to investigate basic feasible solutions!

Proof: Assume P feasible and with optimal solution x^* .

Let us see we can find a basic feasible solution as good as x^* .

By Minkowski-Weyl theorem, we can write

$$x^* = \sum_{i=1}^r \lambda_i^* v_i + \sum_{j=1}^s \mu_j^* r_j$$

where $\sum_{i=1}^r \lambda_i^* = 1$ and $\lambda_i^*, \mu_j^* \geq 0$. Then

$$c^T x^* = \sum_{i=1}^r \lambda_i^* c^T v_i + \sum_{j=1}^s \mu_j^* c^T r_j$$

Proof: Assume P feasible and with optimal solution x^* . Let us see we can find a basic feasible solution as good as x^* .

By Minkowski-Weyl theorem, we can write

$$x^* = \sum_{i=1}^r \lambda_i^* v_i + \sum_{j=1}^s \mu_j^* r_j$$

where $\sum_{i=1}^r \lambda_i^* = 1$ and $\lambda_i^*, \mu_j^* \geq 0$. Then

$$c^T x^* = \sum_{i=1}^r \lambda_i^* c^T v_i + \sum_{j=1}^s \mu_j^* c^T r_j$$

If there is j such that $c^T r_j < 0$ then objective value can be decreased by taking μ_j^* larger. Contradiction!

Proof: Assume P feasible and with optimal solution x^* .

Let us see we can find a basic feasible solution as good as x^* .

By Minkowski-Weyl theorem, we can write

$$x^* = \sum_{i=1}^r \lambda_i^* v_i + \sum_{j=1}^s \mu_j^* r_j$$

where $\sum_{i=1}^r \lambda_i^* = 1$ and $\lambda_i^*, \mu_j^* \geq 0$. Then

$$c^T x^* = \sum_{i=1}^r \lambda_i^* c^T v_i + \sum_{j=1}^s \mu_j^* c^T r_j$$

- If there is j such that $c^T r_j < 0$ then objective value can be decreased by taking μ_j^* larger. Contradiction!
- Otherwise $c^T r_j \ge 0$ for all j. Assume $c^T x^* < c^T v_i$ for all i.

$$c^T x^* \ge \sum_{i=1}^r \lambda_i^* c^T v_i > \sum_{i=1}^r \lambda_i^* c^T x^* = c^T x^* \sum_{i=1}^r \lambda_i^* = c^T x^*$$

Proof: Assume P feasible and with optimal solution x^* .

Let us see we can find a basic feasible solution as good as x^* .

By Minkowski-Weyl theorem, we can write

$$x^* = \sum_{i=1}^r \lambda_i^* v_i + \sum_{j=1}^s \mu_j^* r_j$$

where $\sum_{i=1}^r \lambda_i^* = 1$ and $\lambda_i^*, \mu_j^* \geq 0$. Then

$$c^T x^* = \sum_{i=1}^r \lambda_i^* c^T v_i + \sum_{j=1}^s \mu_j^* c^T r_j$$

- If there is j such that $c^T r_j < 0$ then objective value can be decreased by taking μ_j^* larger. Contradiction!
- lacksquare Otherwise $c^T r_j \geq 0$ for all j. Assume $c^T x^* < c^T v_i$ for all i.

$$c^T x^* \ge \sum_{i=1}^r \lambda_i^* c^T v_i > \sum_{i=1}^r \lambda_i^* c^T x^* = c^T x^* \sum_{i=1}^r \lambda_i^* = c^T x^*$$

Contradiction! Thus there is i such that $c^T x^* \ge c^T v_i$; in fact, $c^T x^* = c^T v_i$ by the optimality of x^* .