$\exp: \mathcal{M}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ est surjective

Dans ce développement, on démontre que l'exponentielle de matrices est surjective en utilisant des théorèmes d'analyse.

Lemme 1. Soit $M \in GL_n(\mathbb{C})$. Alors $M^{-1} \in \mathbb{C}[X]$ (ie. M^{-1} est un polynôme en M).

[**I-P**] p. 396

Démonstration. D'après le théorème de Cayley-Hamilton, $\chi_M(M) = 0$. Or, en notant $\chi_M = \sum_{k=0}^n a_k X^k$, on a $a_0 = (-1)^n \det(M)$, d'où

$$0 = M^n + \dots + a_1 M + (-1)^n \det(M) I_n$$

En notant $Q=X^{n-1}+a_{n-1}X^{n-2}+\cdots+a_2X+a_1$, on en déduit que $(-1)^{n+1}\det(M)I_n=Q(M)M$. D'où

$$M^{-1} = \frac{(-1)^{n+1}}{\det(M)} Q(M) \in \mathbb{C}[M]$$

ce qu'il fallait démontrer.

Lemme 2. Soit $M \in \mathcal{M}_n(\mathbb{C})$. Alors, $\exp(M) \in \mathrm{GL}_n(\mathbb{C})$.

Démonstration. *M* et –*M* commutent, donc

$$\exp(M) \exp(-M) = \exp(M - M) = I_n = \exp(-M) \exp(M)$$

Ainsi $\exp(M)$ est inversible, d'inverse $\exp(-M)$.

Notation 3. Soit $C \in \mathcal{M}_n(\mathbb{C})$. On note $\mathbb{C}[C]^* = \mathbb{C}[C] \cap \mathrm{GL}_n(\mathbb{C})$.

Lemme 4. Soit $C \in \mathcal{M}_n(\mathbb{C})$. $\mathbb{C}[C]^*$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{C})$.

Démonstration. $I_n \in \mathbb{C}[C]$ et $I_n \in GL_n(\mathbb{C})$, donc $I_n \in \mathbb{C}[C]^*$.

- Soit $M \in \mathbb{C}[C]^*$. Comme $M \in \mathrm{GL}_n(\mathbb{C})$, M^{-1} existe, est inversible, et, par le Lemme 1, $M^{-1} \in \mathbb{C}[C]$.
- Enfin, $\mathbb{C}[C]^*$ est clairement stable par multiplication.

Lemme 5. exp est différentiable en 0 et,

$$d \exp_0 = I_n$$

Démonstration. Soit $H \in \mathcal{M}_n(\mathbb{C})$.

$$\exp(0+H) - \exp(H) = \sum_{k=0}^{+\infty} \frac{H^k}{k!}$$
$$= I_n + H + \sum_{k=2}^{+\infty} \frac{H^k}{k!}$$

Soit $\|.\|$ une norme d'algèbre sur $\mathcal{M}_n(\mathbb{C})$. On a :

$$\left\| \sum_{k=2}^{+\infty} \frac{H^k}{k!} \right\| \le \sum_{k=2}^{+\infty} \left\| \frac{H^k}{k!} \right\|$$

$$\le \sum_{k=2}^{+\infty} \frac{\|H\|^k}{k!}$$

$$= e^{\|H\|} - \|H\| - 1$$

En effectuant un développement limité de l'exponentielle réelle à l'origine, on obtient bien $\left\|\sum_{k=2}^{+\infty} \frac{H^k}{k!}\right\| = o(\|H\|)$.

Théorème 6. $\exp: \mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.

Démonstration. Fixons $C \in \mathcal{M}_n(\mathbb{C})$ pour le reste de la démonstration. Comme $\mathbb{C}[C]$ est un sousespace vectoriel de l'espace $\mathcal{M}_n(\mathbb{C})$, il est de dimension finie et est donc fermé. En particulier, $\exp(C) \in \mathbb{C}[C]$. Le Lemme 2 combiné au Lemme 4, nous dit que $\exp: \mathbb{C}[C] \to \mathbb{C}[C]^*$ est bien définie. Il s'agit de plus d'un morphisme de groupes. En effet, $\forall A, B \in \mathbb{C}[C]$, on a AB = BA, d'où $\exp(A) \exp(B) = \exp(A + B) = \exp(B) \exp(A)$.

Montrons que $\mathbb{C}[C]^*$ est un ouvert connexe de $\mathbb{C}[C]$. Notons qu'il s'agit bien d'un ouvert de $\mathbb{C}[C]$, car c'est l'intersection de $\mathbb{C}[C]$ avec $\mathrm{GL}_n(\mathbb{C})$ qui est ouvert dans $\mathcal{M}_n(\mathbb{C})$. Ensuite, soient $A, B \in \mathbb{C}[C]^*$. On pose

$$P = \det((1 - X)A + XB)$$

P ne s'annule ni en 0, ni en 1 par inversibilité de *A* et *B*. *P* a un nombre fini de racines car n'est pas nul : on peut trouver une fonction continue γ : $[0,1] \to \mathbb{C}$ qui évite ces racines. Ainsi,

$$\forall t \in [0,1], (1-\gamma(t))A + \gamma(t)B \in \mathbb{C}[C]^*$$

donc $\mathbb{C}[C]^*$ est connexe par arcs, donc est en particulier connexe.

Il s'agit maintenant de montrer que $\exp(\mathbb{C}[C])$ est un ouvert-fermé de $\mathbb{C}[C]^*$. Commençons par montrer qu'il est ouvert en montrant qu'il contient un voisinage de chacun de ses points. Par le théorème d'inversion locale appliqué à $\exp:\mathbb{C}[C]\to\mathbb{C}[C]$ (qui est bien \mathscr{C}^1 sur l'espace de Banach $\mathbb{C}[C]$ et, par le Lemme 5, $\det(\det \exp_0) \neq 0$): il existe U un voisinage de 0 dans $\mathbb{C}(C)$ et un ouvert V de $\mathbb{C}(C)$ contenant $\exp(0) = I_n$ tels que $\exp:U\to V$ soit un difféomorphisme de classe \mathscr{C}^1 . Soit $A\in\mathbb{C}[C]$. Posons

$$f_A: \begin{array}{ccc} \mathbb{C}[C] & \to & \mathbb{C}[C] \\ M & \mapsto & \exp(A)^{-1}M \end{array}$$

et montrons que $\exp(A)V = f^{-1}(V)$. Pour tout $B \in V$, $f_A(\exp(A)B) = \exp(A)^{-1}(\exp(A)B) = B \in V$, donc $\exp(A)V \subseteq f^{-1}(V)$.

Soit $B \in f^{-1}(V)$, alors $f_A(B) \in V$. Or, $f_A(B) = \exp(A)^{-1}B$, donc $B = \exp(A)f_A(B) \in \exp(A)V$. On en déduit que $\exp(A)V = f^{-1}(V)$ et que $\exp(A)V$ est un ouvert par continuité de f.

Comme V contient I_n , $\exp(A)V$ est un voisinage de $\exp(A)$. Or, $\exp(A)V$ est inclus dans $\mathbb{C}[C]$ car pour tout $B \in V$, il existe $M \in \mathbb{C}[C]$ tel que $\exp(M) = B$. Ainsi,

$$\exp(A)B = \exp(A)\exp(M) = \exp(A+M) \in \exp(\mathbb{C}[C])$$

On en déduit que $\exp(\mathbb{C}[C])$ est un ouvert.

Posons maintenant $O = \mathbb{C}[C]^* \setminus \exp(\mathbb{C}[C])$ et montrons que

$$O = \bigcup_{A \in O} A \exp(\mathbb{C}[C]) \tag{*}$$

Soient $A \in O$ et $B \in \exp(\mathbb{C}[C])$. Alors $AB \in \mathbb{C}[C]^*$. Supposons par l'absurde que $AB \in \exp(\mathbb{C}[C])$. Il existe donc $M \in \exp(\mathbb{C}[C])$ tel que AB = M et $A = MB^{-1}$. Comme $\exp(\mathbb{C}[C])$ est un groupe multiplicatif, alors $A \in \exp(\mathbb{C}[C])$: absurde. On conclut que

$$\bigcup_{A \in O} A \exp(\mathbb{C}[C]) \subseteq O$$

Réciproquement, supposons que $M \in O$. Comme $I_n \in \exp(\mathbb{C}[C])$, alors $M \in M\exp(\mathbb{C}[C])$. On en déduit (*), ainsi que la fermeture de $\exp(\mathbb{C}[M])$ par passage au complémentaire.

 $\exp(\mathbb{C}[M])$ est un ouvert fermé non vide (car contient I_n) de $\mathbb{C}[M]^*$, alors $\exp(\mathbb{C}[M]) = \mathbb{C}[M]^*$. Pour conclure, si $M \in \mathrm{GL}_n(\mathbb{C})$, alors $M \in \mathbb{C}[M]$ et donc $M \in \mathbb{C}[M]^*$. Ainsi, $M \in \exp(\mathbb{C}[M])$, et exp est bien surjective.

Application 7. $\exp(\mathcal{M}_n(\mathbb{R})) = \operatorname{GL}_n(\mathbb{R})^2$, où $\operatorname{GL}_n(\mathbb{R})^2$ désigne les carrés de $\operatorname{GL}_n(\mathbb{R})$.

Démonstration. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Alors,

$$\exp(M) = \exp\left(\frac{M}{2}\right)^2$$

d'où $\exp(\mathcal{M}_n(\mathbb{R}))\subseteq \mathrm{GL}_n(\mathbb{R})^2$. Réciproquement, soit $A\in\mathrm{GL}_n(\mathbb{R})^2$. Posons $B=A^2$. D'après le Théorème 6,

$$\exists P \in \mathbb{C}[X] \text{ telle que } A = \exp(P(A))$$

Comme A est une matrice réelle, alors en passant au conjugué, on obtient $A = \exp(\overline{P}(A))$. Ainsi,

$$B=A^2=\exp((P+\overline{P})(A))\in \exp(\mathcal{M}_n(\mathbb{R}))$$

d'où $GL_n(\mathbb{R})^2 \subseteq \exp(\mathcal{M}_n(\mathbb{R})).$

Bibliographie

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

 $\verb|https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487. html.$