## Copyright Warning

-----

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be 'used for any purpose other than private study, scholarship or research.' If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of 'fair use,' that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgement, fulfillment of the order would involve violation of copyright law.



**Borrower: VTU** 

**Lending String:** 

CQG,\*MDY,SMD,NRU,BMU,NJM,XQM,MAN,FPR,EYL,C

TX

Patron:

Journal Title: SIAM journal on scientific computing.

ISSN: 1095-7197

Volume: 31Issue: 1 Month/Year: 2008Pages:

Article Author: A.J. Laub and J. Xia

Article Title: Statistical Condition Estimation for the

Roots of Polynomials

Imprint: [Philadelphia]: Society for Industrial and Applied

Mathematics, ©1993-

ILL Number: 225299350

4/24/2024 2:40:37 PM

Call #: Online

Location:

Mail

**Shipping Address:** 

ILL DAVID W. HOWE MEMORIAL LIBRARY

UNIVERSITY OF VERMONT 538 MAIN ST.

BURLINGTON, Vermont 05405

Fax: 802-656-4238

Odyssey: 132.198.59.39

e-mail: illhwlib@uvm.edu

TN: 327442

Notes:Billing Notes: Email: illhwlib@uvm.edu. Accept invoices, IFM or IFLA vouchers ,FEIN 03-0179440 BLDSC ac# 51-1380

Notice: This Material may be protected by Copyright Law (Title 17 US Code). For private

study, scholarship or research only.

## STATISTICAL CONDITION ESTIMATION FOR THE ROOTS OF POLYNOMIALS

A. J. LAUB\* AND J. XIA<sup>†</sup>

**Abstract.** This paper presents fast and reliable condition estimates for the roots of a real polynomial based on the method of statistical condition estimation (SCE) by Kenney and Laub. Using relative perturbations, we provide both a basic implementation of SCE and an advanced one via the condition of eigenvalues of the corresponding companion matrix. New results for estimating the condition of eigenvalues are given. Fast structured calculations of the eigenvalues of the companion matrix are used, and fast structured manipulations of the Schur decomposition and the invariant subspaces of the companion matrix are presented. The overall process is based on fast operations for sequentially semiseparable structures with small off-diagonal ranks. The cost of obtaining the condition estimates for all the roots is  $O(n^2)$  where n is the degree of the polynomial. Numerical examples are used to demonstrate the accuracy and efficiency of the proposed methods.

**Key words.** statistical condition estimation, polynomial roots, companion matrix, sequentially semiseparable structure, structured QR iterations, invariant subspace

AMS subject classifications. 65H05, 65F15, 65F30, 65F35

1. Introduction. The problem of computing the roots of real polynomials numerically arises in many different applications. It is important to assess the accuracy of the numerical roots. In this paper, we are interested in the condition of the roots of real polynomials, that is, the sensitivity of the roots with respect to small perturbations in the polynomial coefficients. A lot of theoretical discussions have been given for polynomials with known roots (see, e.g., [10], [11], [20], [22], [23]).

Here, we use the method of statistical condition estimation (SCE) [16] to numerically estimate the condition of polynomial roots. The SCE method has been shown to be both reliable and efficient for many problems including linear systems [17], linear least squares problems [18], eigenvalue problems [13], matrix functions [16], control problems [14], etc. SCE provides a way to estimate the componentwise local sensitivity of any differentiable function at a given point. It is generally flexible and accommodates a wide range of perturbation types such as structured perturbations. Thus SCE often gives less conservative estimates than methods that do not respect such structure. In SCE, a small random perturbation is introduced to the input, and the change in the output, with appropriate scaling, is used to produce the condition estimate. Explicit bounds on the probability of accuracy of the estimate exist.

The idea of SCE can be illustrated with a general real-valued function  $f: \mathbb{R}^m \to \mathbb{R}$ . By Taylor's theorem we have

(1.1) 
$$f(p + \delta z) - f(p) = \delta d^T z + O(\delta^2),$$

where  $\delta$  is small,  $||z||_2 = 1$ , and  $d^T \equiv \nabla f(p)$  is the gradient of f. It is clear that the following is true up to first order in  $\delta$ :

$$(1.2) |f(p+\delta z) - f(p)| \approx \delta ||d||_2.$$

That is,  $||d||_2$  can be considered as a local condition number which gives a good approximation error  $\delta ||d||_2$  in numerical computations of f(p) (with  $\delta$  on the order of

<sup>\*</sup>Department of Electrical Engineering and Department of Mathematics, University of California, Los Angeles, CA 90095 (laub@ucla.edu).

<sup>&</sup>lt;sup>†</sup>Department of Mathematics, University of California, Los Angeles, CA 90095 (jxia@math.ucla.edu).

the machine epsilon  $\varepsilon_{\text{mach}}$ ). According to [16], if z is selected uniformly and randomly from the unit m-sphere  $S_{m-1}$  (denoted  $z \in U(S_{m-1})$ ), then the expected value  $E(|d^Tz|/\omega_m)$  is  $||d||_2$ , where  $\omega_m$  is the Wallis factor [16]. We can then use

$$\nu = |d^T z|/\omega_m$$

as a condition estimator. The accuracy of the estimate is given by the probability relationship [16]

$$\Pr(||d||_2/\gamma \le \nu \le \gamma ||d||_2) \approx 1 - \frac{2}{\gamma \pi}, \ \gamma > 1.$$

We can use multiple samples of z, denoted  $z^{(j)}$ , to increase the accuracy [16]. For example, a 2-sample condition estimator is given by  $\nu^{(2)} = \frac{w_2}{w_m} \sqrt{|d^T z^{(1)}|^2 + |d^T z^{(2)}|^2}$ , where  $[z^{(1)}, z^{(2)}]$  is orthonormalized after  $z^{(1)}$  and  $z^{(2)}$  are selected uniformly and randomly from  $U(S_{m-1})$ . The accuracy of  $\nu_i^{(2)}$  is given by

$$\Pr(||d||_2/\gamma \le \nu^{(2)} \le \gamma ||d||_2) \approx 1 - \frac{\pi}{4\gamma^2}, \ \gamma > 1.$$

Usually, a few samples are sufficient for good accuracy. These results can be conveniently extended to vector-valued functions.

Since the roots x of a polynomial  $\mathbf{p}(x)$  depend continuously on the coefficients, the general idea of SCE also applies to polynomial root problems. In a basic implementation of SCE, we perturb the nonzero coefficients (one type of structured perturbations) and solve the perturbed problem. If we consider relative perturbations in both the coefficients and the roots, we get estimates of the condition numbers in [10], [11].

To avoid any possible difficulty in choosing an appropriate amount of perturbation  $\delta$  or in finding the correct correspondence between the original roots and the perturbed roots, we propose an advanced estimation scheme. In this scheme, the roots of the polynomial  $\mathbf{p}(x)$  are considered as the eigenvalues of the companion matrix C corresponding to  $\mathbf{p}(x)$ , and the condition of the roots is transferred to the structured condition of the eigenvalues of C. We give new formulas for the condition of both single eigenvalues and complex conjugate eigenpairs.

The companion matrix is a special sparse structured matrix. This fact, firstly, leads to the development of fast eigensolvers [2], [3], [4], [8], and secondly, leads to an SCE implementation with structured perturbations. Those fast companion matrix eigensolvers cost only  $O(n^2)$  flops, as compared with the traditional  $O(n^3)$ complexity for a general matrix, where n is the degree of  $\mathbf{p}(x)$ . The estimate of the sensitivity of average eigenvalues has been discussed in [13]. In that paper, only the average eigenvalue of the leading diagonal block of T is considered, where  $C = UTU^T$ is a Schur decomposition of C. Here, for problems with distinct eigenvalues, we derive specific condition estimates for both single real eigenvalues and complex pairs of eigenvalues. What's more, to consider all the eigenvalues, certain manipulations of T and the invariant subspaces corresponding to the eigenvalues need to be considered, or more specifically, the diagonal blocks of T may need to be swapped [9]. We provide some theoretical results for the invariant subspaces. The manipulations of the Schur decomposition can be costly (usually,  $O(n^3)$ ) for a general matrix. However, we can take advantage of the special structure of C and reduce the cost needed for estimating the condition of its eigenvalues to  $O(n^2)$ . This is possible since the matrices involved in the QR iterations for C have special rank structures, and thus can be represented by

some compact low-rank matrices [8]. These low-rank structures were previously used to quickly solve for the eigenvalues, and can also be used here to efficiently transform U and T so that we can compute the condition estimates to the eigenvalues using the technique in [13].

The low-rank structures we use are called sequentially semiseparable (SSS) structures [6], [7]. When a matrix has small off-diagonal ranks, it can be represented by a compact SSS matrix which makes many matrix algorithms very efficient. For example, we can solve a compact SSS linear system in linear complexity. In fact, SSS representations have been used to develop the fast eigensolvers in [2], [8].

With SSS structures, our SCE methods are very efficient. Especially, the second SCE scheme (based on the condition of eigenvalues) provides a fast and reliable way of estimating the condition of the polynomial roots. The swappings of related diagonal blocks and the solutions of related systems are all in fast structured forms. There is no need to choose the perturbation  $\delta$  in SCE. What's more, for each additional sample in SCE, the extra cost is insignificant. That means, we can gain high accuracy without increasing the cost much. Only real operations are involved in the estimations. Our numerical experiments indicate that the method accurately estimates the conditions defined in [10], [11], and it provides results which are less conservative than other condition estimators. For convenience, in this paper we focus on real polynomials with distinct (real or complex) roots. There is a good potential for similar techniques to be extended to a general real polynomial or other structured eigenvalue problems (see Subsection 4.7).

We also give some theoretical results for the invariant subspaces corresponding to the eigenvalues, especially complex eigenpairs. They are used to construct certain matrices in the condition estimation.

The rest of this paper is organized as follows. In Section 2 we show the condition numbers of polynomial roots and their SCE estimation. Section 3 provides the basic implementation of SCE which gives estimates to the theoretical condition numbers. In Section 4 the more advanced scheme based on SCE for the eigenvalues of companion matrices is presented. Numerical examples are shown in Section 5 to demonstrate the reliability and efficiency of the estimators.

- 2. SCE with relative perturbations and condition of polynomial roots. We first discuss SCE with relative perturbations, and then show how SCE can be used to estimate the condition numbers of polynomial roots.
- **2.1. SCE with relative perturbations.** SCE with relative perturbations is an extension of SCE with absolute perturbations in [16]. Consider a real-valued function  $f(p): \mathbb{R}^m \to \mathbb{R}$  with  $p = (p_j)$ . To measure the sensitivity of the relative error in terms of the relative input, we perturb an entry  $p_j$  to  $\tilde{p}_j$  and assume the perturbed output is  $\tilde{f}$ . Then define

$$\kappa_j = \lim_{\tilde{p}_j \to p_j} \left| \frac{\tilde{f} - f}{f} \middle/ \frac{\tilde{p}_j - p_j}{p_j} \right|,$$

and we use

$$\kappa = ||\kappa_{1:m}||_2$$

as the condition number. Replace (1.1) by

(2.1) 
$$\frac{f(p+\delta Sz) - f(p)}{f(p)} = \delta \frac{d^T Sz}{f(p)} + \mathcal{O}(\delta^2),$$

where  $S = \operatorname{diag}(p)$ . Then the expected value  $\mathrm{E}(|d^TSz|/\omega_m)$  is  $||d^TS||_2$ . On the other hand, we notice that

(2.2) 
$$\kappa = \frac{1}{f(p)}||d^T S||_2.$$

Thus, we can use

$$\nu = \frac{1}{\omega_m} \left| \frac{d^T S z}{f(p)} \right|$$

as an estimate to the condition number (2.2). The results can be extended to vectorvalued functions  $f: \mathbb{R}^m \to \mathbb{R}^n$ . Define

(2.3) 
$$\kappa_{i,j} = \lim_{\tilde{p}_j \to p_j} \left| \frac{\tilde{f}_i - f_i}{f_i} \middle/ \frac{\tilde{p}_j - p_j}{p_j} \right|, \ \kappa_i = ||\kappa_{i,1:m}||_2,$$

where  $\kappa \equiv (\kappa_i)$  is the condition vector. Then we can use

(2.4) 
$$\nu_i = \frac{1}{\omega_m} \left| \frac{d_i^T S z}{f_i(p)} \right|$$

as an estimate to the condition number  $\kappa_i$  of  $f_i$ , where  $d_i^T \equiv \nabla f_i(p)$ . Note that the original SCE mainly focuses on absolute perturbations to the input and the corresponding condition estimator is  $\frac{1}{\omega_m} \frac{|d_i^T z|}{f_i(p)}$ .

2.2. Condition of polynomial roots. Consider a real polynomial

$$\mathbf{p}(x) = \sum_{k=0}^{n} a_k x^k = \prod_{i=1}^{n} (x - x_i),$$

where we assume  $a_n \equiv 1$ . For simplicity, we assume  $\mathbf{p}(x)$  has distinct roots. Let f be the function given by the problem of finding the roots of  $\mathbf{p}(x)$ . Then m = n. Discussions on the conditions of roots of polynomials can be found in [11], [20], [21]. The condition number  $\kappa_{i,j}$  in (2.3) can be shown to have the following form:

(2.5) 
$$\kappa_{i,j} = \left| \frac{a_j x_i^{j-1}}{\mathbf{p}'(x_i)} \right| = \left| \frac{a_j x_i^{j-1}}{\prod\limits_{k \neq i} (x_i - x_k)} \right|.$$

In SCE, (2.4) is one way to estimate the condition number  $\kappa_i = ||\kappa_{i,1:n}||_2$ .

3. Basic SCE scheme for polynomial roots. There are two ways to estimate  $\kappa_{i,j}$ . One is to find the roots of a perturbed polynomial and to estimate the condition of the roots by (2.4). The other way is to consider the condition of the eigenvalues of the companion matrix corresponding to  $\mathbf{p}(x)$ . The second way will be discussed in the next section. In the first way, we solve for the roots  $x_i$  of  $\mathbf{p}(x)$  and also the roots  $\tilde{x}_i$  of the perturbed polynomial  $\tilde{\mathbf{p}}(x)$  where each coefficient  $\tilde{a}_j = a_j(1 + \delta z_j)$  with  $z \equiv (z_j) \in \mathrm{U}(S_{n-1})$ . Then an SCE condition estimator for  $x_i$  is

$$\nu_i = \frac{1}{\omega_n} \frac{|\tilde{x}_i - x_i|}{\delta |x_i|},$$

where we have dropped an  $O(\delta)$  term. The cost for solving a polynomial root problem is  $O(n^2)$  by using the fast eigensolver in [8]. This eigensolver computes the roots by finding the eigenvalues of the companion matrix corresponding to  $\mathbf{p}(x)$ :

(3.1) 
$$C = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \cdots & -a_0 \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0 \end{bmatrix}.$$

Hessenberg QR iterations are used to find the eigenvalues of C. In the meantime, the eigensolver takes advantage of a low-rank property [2], [3], [8].

Theorem 3.1. All off-diagonal blocks of the QR iterates which are orthogonally similar to C have ranks no larger than 3.

Based on this property, the fast eigensolver in [8] performs structured bulge chasing by representing all QR factors of the QR iterates with compact semiseparable matrices (Subsection 4.2). When the QR iterates converges we obtain a block upper triangular matrix T with  $1 \times 1$  or  $2 \times 2$  diagonal blocks. The matrix T also has off-diagonal ranks no larger than 3, and can be related to C by  $C = UTU^T$ , where U is an accumulation of Givens rotations used in the structured QR iterations.

We summarize this SCE method in the following algorithm, where **x** denotes the vector of roots of  $\mathbf{p}(x)$ .

Algorithm 1. (k-sample SCE for the roots of  $\mathbf{p}(x)$ )

- 1. Solve for the roots  $\mathbf{x}$  of  $\mathbf{p}(x)$  using the fast eigensolver in [8].
- 2. Generate  $z^{(1)}, \ldots, z^{(k)} \in U(S_{r-1})$ . Orthonormalize  $[z^{(1)}, \ldots, z^{(k)}]$ , say, by a QR factorization.
- 3. Choose  $\delta$ .
- 4. For j = 1, ..., k,
  - (a) Solve for the roots  $\tilde{\mathbf{x}}$  of  $\tilde{\mathbf{p}}(x)$  where  $\tilde{\mathbf{p}}(x)$  has coefficient vector  $\tilde{a} = a \cdot (1 + \delta z^{(j)})$  (componentwise multiplication).
  - (b) Order  $\tilde{\mathbf{x}}$  so that the perturbed roots match the original ones.
  - (c) Calculate  $\nu^{(j)} = |\tilde{\mathbf{x}} \mathbf{x}|/(\delta |\mathbf{x}|)$  (componentwise division).
- 5. Calculate the k-sample componentwise SCE condition vector

$$\kappa_{\text{SCE}} = \frac{\omega_k}{\omega_r} \sqrt{|\nu^{(1)}|^2 + \dots + |\nu^{(k)}|^2}.$$

Remark 3.2. Potential shortcomings of this algorithm include the ambiguity in deciding the correspondence between the original roots and the perturbed ones (especially when clustered roots exist), and the difficulty in choosing the small parameter  $\delta$  to get accurate results. The choice of  $\delta$  is generally a complicated issue. It may not be too small. We usually choose  $\delta$  to be  $\sqrt{||\mathbf{x}||}\varepsilon_{\text{mach}}$ , where  $\varepsilon_{\text{mach}}$  is the machine epsilon. This choice approximately balances the approximation error and the rounding error. See, e.g., [15, Chapter 3] for further discussions. In practice, this choice of  $\delta$  has worked well in SCE implementations. On the other hand, Algorithm 2 below does not involve  $\delta$  explicitly and does not need to match the roots.

4. SCE for polynomial roots via the condition of eigenvalue problems. Alternatively, for a given polynomial  $\mathbf{p}(x)$  we can avoid the problem of choosing  $\delta$  and consider the condition of its roots via the condition of the eigenvalues of the corresponding companion matrix (3.1).

4.1. Condition estimation for eigenvalue problems. Use structured SCE for eigenvalue problems [13] by considering the companion matrix (3.1). Assume we have a block Schur decomposition of C

(4.1) 
$$C = UTU^T, \ U = \begin{bmatrix} U_1, U_c \end{bmatrix}, \ T = \begin{bmatrix} T_1 & H \\ 0 & T_c \end{bmatrix}$$

where U is orthogonal, and  $T_1$  and  $T_c$  have orders  $n_1$  and  $n - n_1$ , respectively. When the spectra of  $T_1$  and  $T_c$  are well-separated, the sensitivity of the average eigenvalue of  $T_1$  is well-defined. Denote the average eigenvalue by

$$\mu(T_1) = \frac{\operatorname{trace}(T_1)}{n_1}.$$

In SCE, we introduce an  $n \times n$  structured perturbation matrix

$$\delta E = \begin{bmatrix} \delta e^T \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ n-1 \end{bmatrix},$$

where  $e^T = [-a_{n-1}z_{n-1}, -a_{n-2}z_{n-2}, \dots, -a_0z_0]$ . That is,  $\delta E$  is a relative perturbation matrix. As derived in [13], when  $\delta$  is small enough the average eigenvalue of  $T_1$  is perturbed to

(4.3) 
$$\mu(\tilde{T}_1) \approx \mu(T_1 + \delta B) = \mu(T_1) + \delta \mu(B),$$

where  $B = U_1^T E U_1 + Y^T U_c^T E U_1$ , and Y is an  $(n - n_1) \times n_1$  matrix that satisfies a Sylvester equation

$$(4.4) H = T_1 Y^T - Y^T T_c.$$

Based on (4.3), SCE provides a relative condition estimate to  $\mu(T_1)$  in the following form:

(4.5) 
$$\nu = \frac{1}{\omega_n |\mu(T_1)|} |\mu(U_1^T E U_1 + Y^T U_c^T E U_1)|.$$

Using these results, for a problem with distinct eigenvalues we can further derive specific estimates for real single eigenvalues and complex eigenpairs.

**4.1.1. Condition estimation for single real eigenvalues.** When  $T_1$  is a  $1 \times 1$  block (eigenvalue),  $U_1$  is a column vector, and we denote it by  $u_1$ . We write  $T_1$  as  $t_1$ , and Y as y. Then (4.4) becomes a linear system

$$(4.6) (t_1 I - T_c^T) y = H^T.$$

The estimator  $\nu$  in (4.5) can also be simplified, since  $EU_1$  is a multiple of the first unit vector of dimension n. That is,

(4.7) 
$$B = \gamma u_{11} + \gamma y^T r_c,$$

$$\nu = \frac{1}{\omega_n |t_1|} |B|,$$

where  $\gamma = e^T u_1$ , the scalar  $u_{11}$  is the first element of  $u_1$ , and  $r_c^T$  is the first row of  $U_c$ .

**4.1.2.** Condition estimation for complex conjugate pairs of eigenvalues. When  $T_1$  is a  $2 \times 2$  block, we need to solve the Sylvester equation (4.4). Using

Kronecker products we can write the equation as

$$(4.8) (I_{n-2} \otimes T_1 - T_c^T \otimes I_2) \operatorname{vec} Y^T = \operatorname{vec} H,$$

where vecH denotes the column vector formed by stacking the columns of H from left to right. The computation of  $B = U_1^T E U_1 + Y^T U_c^T E U_1$  can also be simplified as

$$(4.9) B = \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \begin{bmatrix} e^T u_1 & e^T u_2 \end{bmatrix} + Y^T r_c \begin{bmatrix} e^T u_1 & e^T u_2 \end{bmatrix},$$

where  $U_1 = [u_1, u_2]$  with its first row  $[u_{11}, u_{12}]$ .

To get condition estimates for the eigenvalues of  $T_1$  we assume that  $T_1$  has a complex conjugate pair of eigenvalues  $\lambda_1$  and  $\lambda_2$ , and that  $\delta E$  perturbs  $\lambda_1$  and  $\lambda_2$  to  $\lambda_1 + \delta_1$  and  $\lambda_2 + \delta_2$ , respectively. That is,  $\lambda_1 + \delta_1$  and  $\lambda_2 + \delta_2$  are the eigenvalues of  $T_1 + \delta B$  as in (4.3). Clearly,  $\lambda_1 + \delta_1$  and  $\lambda_2 + \delta_2$  are complex conjugate. Let

$$T_1 = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}.$$

We have

$$(\lambda_1 + \delta_1) + (\lambda_2 + \delta_2) = \operatorname{trace}(T_1 + \delta B),$$
  
$$(\lambda_1 + \delta_1)(\lambda_2 + \delta_2) = \det(T_1 + \delta B).$$

Using the facts that  $\lambda_1 + \lambda_2 = \operatorname{trace}(T_1)$  and  $\lambda_1 \lambda_2 = \det(T_1)$  we can easily get

$$\delta_1 + \delta_2 = \delta \alpha,$$
$$\lambda_2 \delta_1 + \lambda_1 \delta_2 \approx \delta \beta,$$

where we have dropped the  $\delta^2$  term in the approximation, and  $\alpha = b_{11} + b_{22}$ ,  $\beta = t_{11}b_{22} + t_{22}b_{11} - t_{12}b_{21} - t_{21}b_{12}$ . Clearly, we have

$$\delta_1 = \delta \frac{\alpha \lambda_1 - \beta}{\lambda_1 - \lambda_2}, \quad \delta_2 = \delta \frac{\beta - \alpha \lambda_2}{\lambda_1 - \lambda_2} (= \bar{\delta}_1),$$

which are first order approximations to the perturbations in  $\lambda_1$  and  $\lambda_2$ , respectively. Therefore, in SCE we can use

(4.10) 
$$\nu \equiv \frac{1}{\omega_n |\lambda_1|} \left| \frac{\alpha \lambda_1 - \beta}{\lambda_1 - \lambda_2} \right| \left( = \frac{1}{\omega_n |\lambda_2|} \left| \frac{\beta - \alpha \lambda_2}{\lambda_1 - \lambda_2} \right| \right)$$

$$= \frac{1}{\omega_n \sqrt{\det(T_1)}} \sqrt{\frac{\alpha^2 \det(T_1) - \alpha \beta \operatorname{trace}(T_1) + \beta^2}{[\operatorname{trace}(T_1)]^2 - 4 \det(T_1)}}$$

as the (relative) condition estimator for  $\lambda_1$  and  $\lambda_2$ . We see that only real operations are involved in (4.10).

By considering the condition for the eigenvalues of C, we can avoid the difficulty of choosing  $\delta$ , as can be seen from (4.7) and (4.10). However, the cost of computing Y and  $\nu$  can be more than  $O(n^2)$ . This makes the total cost for all eigenvalues to be at least  $O(n^3)$ . In addition, to obtain the sensitivity for other eigenvalues, we need to swap the diagonal entries of T so as to bring a particular diagonal block to the upper left position. Noticing that C is structured and so are T and U, we can reduce the cost for each  $\nu$  to O(n) and thus the total cost for all eigenvalues to  $O(n^2)$ . We review certain matrix structures in the next subsection.

**4.2. Review of SSS structures.** The computations of the estimators (4.7) and (4.10) involve matrix operations such as block permutations and Sylvester equation solutions. To efficiently perform these operations we use certain compact low-rank structures, called sequentially semiseparable, or SSS structures [6], [7]. These structures take advantage of the low-rank property of matrices such as those in (4.1). An SSS matrix looks like

(4.11) 
$$\begin{bmatrix} \mathcal{D}_{1} & \mathcal{U}_{1}\mathcal{V}_{2}^{T} & \mathcal{U}_{1}\mathcal{W}_{2}\mathcal{V}_{3}^{T} & \mathcal{U}_{1}\mathcal{W}_{2}\mathcal{W}_{3}\mathcal{V}_{4}^{T} \\ \mathcal{P}_{2}\mathcal{Q}_{1}^{T} & \mathcal{D}_{2} & \mathcal{U}_{2}\mathcal{V}_{3}^{T} & \mathcal{U}_{2}\mathcal{W}_{3}\mathcal{V}_{4}^{T} \\ \mathcal{P}_{3}\mathcal{R}_{2}\mathcal{Q}_{1}^{T} & \mathcal{P}_{3}\mathcal{Q}_{2}^{T} & \mathcal{D}_{3} & \mathcal{U}_{3}\mathcal{V}_{4}^{T} \\ \mathcal{P}_{4}\mathcal{R}_{3}\mathcal{R}_{2}\mathcal{Q}_{1}^{T} & \mathcal{P}_{4}\mathcal{R}_{3}\mathcal{Q}_{2}^{T} & \mathcal{P}_{4}\mathcal{Q}_{3}^{T} & \mathcal{D}_{4} \end{bmatrix},$$

where the matrices  $\{\mathcal{D}_i\}$ ,  $\{\mathcal{U}_i\}$ ,  $\{\mathcal{W}_i\}$ ,  $\{\mathcal{V}_i\}$ ,  $\{\mathcal{P}_i\}$ ,  $\{\mathcal{R}_i\}$ ,  $\{\mathcal{Q}_i\}$  are called (SSS) generators. (For convenience, we also use  $\mathcal{D}_i(T)$ ,  $\mathcal{U}_i(T)$ , etc. to denote the generators of an SSS matrix T.) In the SSS form (4.11) the upper off-diagonal block numbers 1, 2, and 3 are represented by

$$\mathcal{U}_1\left(\begin{array}{ccc} \mathcal{V}_2^T & \mathcal{W}_2\mathcal{V}_3^T & \mathcal{W}_2\mathcal{W}_3\mathcal{V}_4^T \end{array}\right), \ \left(\begin{array}{ccc} \mathcal{U}_1\mathcal{W}_2 \\ \mathcal{U}_2 \end{array}\right)\left(\begin{array}{ccc} \mathcal{V}_3^T & \mathcal{W}_3\mathcal{V}_4^T \end{array}\right), \ \left(\begin{array}{ccc} \mathcal{U}_1\mathcal{W}_2\mathcal{W}_3 \\ \mathcal{U}_2\mathcal{W}_3 \\ \mathcal{U}_3 \end{array}\right)\mathcal{V}_4^T,$$

respectively. Thus, SSS representations can clearly reflect the off-diagonal rank structures of the matrix. An SSS matrix is said to be compact if the sizes of all  $W_i$  and  $\mathcal{R}_i$  are small and are close to the maximum off-diagonal rank of the matrix. SSS matrices can be used to efficiently represent matrices whose off-diagonal blocks have small ranks. For these matrices, algorithms such as system solution, matrix addition, and matrix multiplication are very efficient. In fact, those algorithms often have linear complexity.

As an example, the cost of solving a compact order-n SSS system is only  $\mathrm{O}(n)$  [7]. Here, instead of reviewing the complicated general SSS solver, we briefly present a forward substitution algorithm for a lower triangular SSS system Ly=b where the lower triangular matrix L has compact SSS representation. This is sufficient for solving related linear systems in our condition estimation for polynomial roots. We assume the system to be

$$\begin{bmatrix}
\mathcal{D}_{1} & & & & & 0 \\
\mathcal{P}_{2}\mathcal{Q}_{1}^{T} & \mathcal{D}_{2} & & & & \\
\mathcal{P}_{3}\mathcal{R}_{2}\mathcal{Q}_{1}^{T} & \mathcal{P}_{3}\mathcal{Q}_{2}^{T} & \mathcal{D}_{3} & & \\
\vdots & & \vdots & \vdots & \ddots & \\
\mathcal{P}_{l}\mathcal{R}_{l-1}\cdots\mathcal{R}_{2}\mathcal{Q}_{1}^{T} & \mathcal{P}_{l}\mathcal{R}_{l-1}\cdots\mathcal{R}_{3}\mathcal{Q}_{2}^{T} & \cdots & \mathcal{P}_{l}\mathcal{Q}_{l-1}^{T} & \mathcal{D}_{l}
\end{bmatrix}
\begin{bmatrix}
y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{l}
\end{bmatrix}$$

$$= \begin{bmatrix}
b_{1} \\ b_{2} \\ b_{3} \\ \vdots \\ b_{l}
\end{bmatrix} - \begin{bmatrix}
0 \\ \mathcal{P}_{2} \\ \mathcal{P}_{3}\mathcal{R}_{2} \\ \vdots \\ \mathcal{P}_{l}\mathcal{R}_{l-1}\cdots\mathcal{R}_{2}
\end{bmatrix} \xi,$$

$$\vdots \\
\mathcal{P}_{l}\mathcal{R}_{l-1}\cdots\mathcal{R}_{2}
\end{bmatrix} \xi,$$

where the generators have sizes O(1), and the parameter  $\xi$  is initially a zero vector. In the *i*-th step of the substitution process, we solve a block lower diagonal system

$$\mathcal{D}_i y_i = b_i - \mathcal{P}_i \xi$$

for  $y_i$  and update  $\xi$  by  $\mathcal{R}_i \xi + \mathcal{Q}_i^T y_i$ , where  $\mathcal{P}_1$  is assumed to be a zero matrix. Each such step costs O(1). Thus the total cost of the solver is O(n).

## 4.3. Solving the Sylvester equation (4.4).

**4.3.1.** Solving (4.6) for single eigenvalues. When  $T_1 \equiv t_1$  is a single eigenvalue, (4.4) becomes a linear system (4.6) with coefficient matrix  $L = t_1 I - T_c^T$ . Since T has a compact SSS form with off-diagonal ranks no larger than 3, the matrix L is also an SSS matrix with off-diagonal ranks no larger than 3, and we can easily identify its generators. See Table 4.1. Thus, we can solve (4.6) with the forward substitution algorithm in Subsection 4.2.

| $\mathcal{D}_i(L)$                         | $\mathcal{P}_i(L)$ | $Q_i(L)$   | $\mathcal{R}_i(L)$ |  |  |  |
|--------------------------------------------|--------------------|------------|--------------------|--|--|--|
| $t_1 I_{n_{i+1}} - \mathcal{D}_{i+1}(T)^T$ | $-v_{i+1}$         | $-u_{i+1}$ | $-w_{i+1}^T$       |  |  |  |
| TADLE 4.1                                  |                    |            |                    |  |  |  |

SSS generators of L in terms of the generators of T, where  $n_{i+1} = 1$  or 2 is the order of  $\mathcal{D}_{i+1}(T)$ .

**4.3.2.** Converting (4.4) to a triangular SSS system for double blocks. When  $T_1$  is a  $2 \times 2$  block, the matrix  $T_c^T$  in (4.8) is a lower triangular SSS matrix. We can easily verify that  $T_c^T \otimes I_2$  is also a lower triangular SSS matrix. Its generators are shown in Table 4.2.

| $n_i$ | $\mathcal{D}_i(T_c^T\otimes I_2)$  | $\mathcal{P}_i(T_c^T \otimes I_2)$                                                                                   | $Q_i(T_c^T \otimes I_2)$                                                                                     | $\mathcal{R}_i(T_c^T\otimes I_2)$  |  |  |  |  |  |
|-------|------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|
| 1     | $\mathcal{D}_i(T_c^T) \otimes I_2$ | $I_2 \otimes \mathcal{P}_i(T_c^T)$                                                                                   | $I_2 \otimes \mathcal{Q}_i(T_c^T)$                                                                           | $I_2 \otimes \mathcal{R}_i(T_c^T)$ |  |  |  |  |  |
| 2     | $\mathcal{D}_i(T_c^T)\otimes I_2$  | $\left[egin{array}{c} I_2 \otimes \mathcal{P}_{i,1}(T_c^T) \ I_2 \otimes \mathcal{P}_{i,2}(T_c^T) \end{array} ight]$ | $\begin{bmatrix} I_2 \otimes \mathcal{Q}_{i,1}(T_c^T) \\ I_2 \otimes \mathcal{Q}_{i,2}(T_c^T) \end{bmatrix}$ | $I_2 \otimes \mathcal{R}_i(T_c^T)$ |  |  |  |  |  |
|       | Table 4.2                          |                                                                                                                      |                                                                                                              |                                    |  |  |  |  |  |

TABLE 4.2

SSS generators of  $T_c^T \otimes I_2$  in terms of the generators of  $T_c^T$ , where  $n_i$  is the order of  $\mathcal{D}_i(T_c^T)$ , and  $\mathcal{P}_i(T_c^T) = \begin{bmatrix} \mathcal{P}_{i,1}(T_c^T) \\ \mathcal{P}_{i,2}(T_c^T) \end{bmatrix}$ ,  $\mathcal{Q}_i(T_c^T) = \begin{bmatrix} \mathcal{Q}_{i,1}(T_c^T) \\ \mathcal{Q}_{i,2}(T_c^T) \end{bmatrix}$ .

Therefore, the coefficient matrix of (4.8),  $I_{n-2} \otimes T_1 - T_c^T \otimes I_2$ , has the same generators as  $-T_c^T \otimes I_2$  except that the diagonal generator corresponding to  $\mathcal{D}_i(-T_c^T \otimes I_2)$  is  $T_1 - \mathcal{D}_i(T_c^T) \otimes I_2$  if  $n_i = 1$ , and  $I_2 \otimes T_1 - \mathcal{D}_i(T_c^T) \otimes I_2$  if  $n_i = 2$ . Again, the forward substitution strategy in Subsection 4.2 can be used to solve (4.8). The total cost is still O(n).

**4.4. Swapping diagonal blocks.** To estimate the condition of eigenvalues of  $T_i$  other than  $T_1$  we can reorder the diagonal blocks of T by successively swapping adjacent diagonal blocks (see, e.g., [1], [9], [19]). In general, consider a submatrix

$$\left[\begin{array}{cc} T_i & H_i \\ 0 & T_j \end{array}\right],$$

where  $T_i$  and  $T_j$  have orders  $n_i$  and  $n_j$ , respectively, with  $n_i, n_j = 1$  or 2, and  $T_i$  and  $T_j$  have no eigenvalue in common. As discussed in [1], [9], [19], find an orthogonal matrix  $G_i$  which is a product of one or two Givens matrices such that

$$(4.13) G_i \begin{bmatrix} -X \\ I_{n_i} \end{bmatrix} = \begin{bmatrix} M_j \\ 0 \end{bmatrix},$$

where X is the unique solution to

$$(4.14) T_i X - X T_i = H_i.$$

Then

$$G_i \begin{bmatrix} T_i & H_i \\ 0 & T_j \end{bmatrix} G_i^T = \begin{bmatrix} M_j T_j M_j^{-1} & \bar{H}_i \\ 0 & M_i T_i M_i^{-1} \end{bmatrix},$$

where  $M_i$  is the bottom  $n_j \times (n_i + n_j)$  submatrix of  $G_i \begin{bmatrix} I_{n_i} \\ 0 \end{bmatrix}$ . Thus  $T_i$  and  $T_j$  have been swapped. In order to bring  $T_i$  to the (1,1) block position, we need i-1 orthogonal matrices  $G_k$ ,  $k=i-1,\ldots,2,1$ . Each  $G_k$  is used to swap  $T_k$  with  $T_{k+1}$ . Each  $G_k$  is applied to the k-th and (k+1)-st block rows of T, and  $G_k^T$  is applied to the k-th and (k+1)-st block columns of T. Since T is in SSS form, the application of  $G_k$  to T can be very efficient. However, since it is usually not straightforward to get a new SSS form for T after each  $G_k$  is applied, we simply use the SSS form of T to compute all  $G_k$  and then combine all these transformation matrices into another SSS matrix. Then we find the SSS form of the product of three SSS matrices

$$\tilde{T} = GTG^T$$

using the SSS multiplication formulas in [5], [8].

The detailed procedure is as follows. We consider T in the following form:

$$T = \begin{bmatrix} \cdots & \cdots & u_1 w_2 \cdots w_{k-1} v_k^T & u_1 w_2 \cdots w_k v_{k+1}^T & \cdots \\ \vdots & \vdots & & \vdots & & \vdots \\ & T_{k-1} & H_k & u_{k-1} w_k v_{k+1}^T & \vdots \\ & T_k & H_{k+1} & & & & \\ & & T_{k+1} & & & & & \\ 0 & & & & \ddots & & \end{bmatrix},$$

where  $H_k = u_{k-1}v_k^T$ ,  $H_{k+1} = u_k v_{k+1}^T$ , and each  $T_k$  has order  $n_k$ . (For notational convenience,  $u_1$  and  $u_2$  are used in the SSS representation of T in this subsection and should not be confused with those anywhere else.) A transformation matrix  $G_k$  can be computed for  $\begin{bmatrix} T_k & H_{k+1} \\ 0 & T_{k+1} \end{bmatrix}$  as discussed in (4.13)-(4.14).

Apply  $G_k$  to the k-th and (k+1)-st block rows of T. It is sufficient to update the following blocks

$$G_k \left[ \begin{array}{cc} T_k & H_{k+1} \\ 0 & T_{k+1} \end{array} \right] = \left[ \begin{array}{cc} \hat{T}_k & \hat{H}_k \\ \hat{H}'_k & \hat{T}_{k+1} \end{array} \right].$$

Then apply  $G_k^T$  to the k-th and (k+1)-st block columns of T:

$$\begin{bmatrix} u_1 w_2 \cdots w_{k-1} v_k^T & u_1 w_2 \cdots w_k v_{k+1}^T \\ \vdots & & \vdots \\ H_k & u_{k-1} w_k v_{k+1}^T \\ \hat{T}_k & \hat{H}_k \\ \hat{H}_k' & \hat{T}_{k+1} \end{bmatrix} G_k^T = \begin{bmatrix} \begin{bmatrix} u_1 w_2 \cdots w_{k-1} \\ \vdots \\ u_{k-2} w_{k-1} \\ u_{k-1} \end{bmatrix} \begin{bmatrix} v_k^T & w_k v_{k+1}^T \end{bmatrix} G_k^T \\ \begin{bmatrix} \tilde{T}_k & \tilde{H}_{k+1} \\ 0 & \tilde{T}_{k+1} \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} u_1 w_2 \cdots w_{k-1} \\ \vdots \\ u_{k-2} w_{k-1} \\ u_{k-1} \end{bmatrix} \begin{bmatrix} \hat{v}_k^T & \hat{v}_{k+1}^T \end{bmatrix} \\ \vdots & \vdots \\ \vdots \\ \hat{H}_k & u_{k-1} w_k \hat{v}_{k+1}^T \\ \tilde{T}_k & \tilde{H}_{k+1} \\ 0 & \tilde{T}_{k+1} \end{bmatrix},$$

$$\tilde{T}_k & \tilde{H}_{k+1} \\ \tilde{T}_k & \tilde{H}_{k+1} \\ 0 & \tilde{T}_{k+1} \end{bmatrix},$$

where  $\begin{bmatrix} \hat{v}_k \\ \hat{v}_{k+1} \end{bmatrix} \begin{bmatrix} n_{k+1} \\ n_k \end{bmatrix} = G_k \begin{bmatrix} v_k \\ v_{k+1} w_k^T \end{bmatrix}$ ,  $\hat{H}_k = u_{k-1}^T \hat{v}_k$ . Note that  $n_{k+1}$  is now the order of  $\tilde{T}_k$  and the row dimension of  $\hat{v}_k$ . That is, we have swapped the diagonal blocks via the SSS generators.

Next, we can compute a transformation  $G_{k-1}$  based on the matrix  $\begin{bmatrix} T_{k-1} & H_k \\ 0 & \tilde{T}_k \end{bmatrix}$ , and the process repeats. We can see that to obtain the transformation matrices  $G_k$  we only need to update  $v_k$ ,  $H_k$ ,  $T_k$ , and  $T_{k+1}$ .

Therefore, in order to bring  $T_i$  to the upper left position (possibly with similarity transformations), we compute  $G_k, k = i - 1, ..., 2, 1$  with the above procedure. The total cost is no more than O(n). All the matrices  $G_k$  are then combined into a matrix G, which turns out to have small off-diagonal ranks also. We can conveniently write G in a compact SSS form. There are different situations based on the sizes of diagonal blocks of T.

**4.4.1. Single past single or single past double.** Assume  $T_i$  is a scalar, and has row or column index  $\iota$  in T. Then in any swapping process for  $\begin{bmatrix} T_k & H_{k+1} \\ 0 & T_{k+1} \end{bmatrix}$ , the block  $T_{k+1}$  is always a scalar.

If  $T_k$  is also a scalar, then  $G_k$  is simply a Givens rotation matrix

$$G_k = \left[ \begin{array}{cc} c_j & s_j \\ -s_j & c_j \end{array} \right],$$

where j is the row or column index of the upper left entry of  $T_k$  in T. If  $T_k$  is a  $2 \times 2$  block, then according to (4.13),  $G_k$  has the form

$$G_k = \left[ \begin{array}{ccc} c_j & s_j & 0 \\ -s_j & c_j & 0 \\ 0 & 0 & 1 \end{array} \right] \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & c_{j+1} & s_{j+1} \\ 0 & -s_{j+1} & c_{j+1} \end{array} \right].$$

It is clear that we can assemble all  $G_k$  into the matrix

$$G = Q_1 Q_2 \cdots Q_{\iota},$$

where

$$Q_j = \operatorname{diag}\left(I_{j-1}, \left[\begin{array}{cc} c_j & s_j \\ -s_j & c_j \end{array}\right], I_{n-j-1}\right).$$

The matrix G has the following form

$$(4.15) G = \begin{pmatrix} c_0c_1 & c_0s_1c_2 & c_0s_1s_2c_3 & \dots & \dots & c_0s_1\cdots s_tc_{t+1} \\ -s_1 & c_1c_2 & c_1s_2c_3 & \dots & \dots & c_1s_2\cdots s_tc_{t+1} \\ & -s_2 & c_2c_3 & \dots & \dots & c_2s_3\cdots s_tc_{t+1} \\ & & \ddots & \ddots & \vdots & \vdots \\ & & & -s_{t-1} & c_{t-1}c_t & c_{t-1}s_tc_{t+1} \\ 0 & & & -s_t & c_tc_{t+1} \end{pmatrix},$$

where  $c_0 = c_n = 1$ . Clearly, G is an orthogonal matrix with the ranks of both its upper and lower off-diagonal blocks bounded by 1. This can be verified by examining the off-diagonal blocks, or by the CS decomposition [12, Section 2.6]. Obviously, G is also an SSS matrix with generators as shown in Table 4.3 (see also [8]).

| $\mathcal{D}_i(G)$ | $\mathcal{U}_i(G)$ | $\mathcal{V}_i(G)$ | $W_i(G)$ | $\mathcal{P}_i(G)$ | $Q_i(G)$ | $\mathcal{R}_i(G)$ |  |  |
|--------------------|--------------------|--------------------|----------|--------------------|----------|--------------------|--|--|
| $c_{i-1}c_i$       | $c_{i-1}s_i$       | $c_i$              | $s_i$    | 1                  | $-s_i$   | 0                  |  |  |
| TABLE 4.3          |                    |                    |          |                    |          |                    |  |  |

SSS generators of G.

Therefore, after all the swapping steps, the matrix T is transformed into a new matrix  $\tilde{T} = GTG^T$ , which is a product of three compact SSS matrices. By Theorem 3.1 and the fact that the off-diagonal ranks of G are bounded by 1, the matrix  $\tilde{T}$  is a matrix with off-diagonal ranks at most 5. The formulas in [5], [8] for the product of SSS matrices can be used to provide a compact SSS form for  $\tilde{T}$ .

**4.4.2.** Double past single or double past double. Assume  $T_i$  is a  $2 \times 2$  block, and its (1,1) entry has row or column index  $\iota$  in T. Then in any swapping process for  $\begin{bmatrix} T_k & H_{k+1} \\ 0 & T_{k+1} \end{bmatrix}$ , the block  $T_{k+1}$  is always a  $2 \times 2$  block.

If  $T_k$  is a scalar, then according to (4.13),  $G_k$  has the form

(4.16) 
$$G_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{j+1} & s_{j+1} \\ 0 & -s_{j+1} & c_{j+1} \end{bmatrix} \begin{bmatrix} \hat{c}_j & \hat{s}_j & 0 \\ -\hat{s}_j & \hat{c}_j & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where j is the row or column index of the upper left entry of  $T_k$  in T. If  $T_k$  is a  $2 \times 2$  block, then

$$(4.17) G_{k} = \begin{bmatrix} 1 & & & & 0 \\ & c_{j+1} & s_{j+1} \\ & -s_{j+1} & c_{j+1} \\ 0 & & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & & c_{j+2} & s_{j+2} \\ 0 & & -s_{j+2} & c_{j+2} \end{bmatrix} \\ \times \begin{bmatrix} \hat{c}_{j} & \hat{s}_{j} & 0 \\ -\hat{s}_{j} & \hat{c}_{j} & & \\ & & 1 \\ 0 & & & 1 \end{bmatrix} \begin{bmatrix} 1 & & & 0 \\ & \hat{c}_{j+1} & \hat{s}_{j+1} \\ & -\hat{s}_{j+1} & \hat{c}_{j+1} \\ 0 & & & 1 \end{bmatrix}.$$

It is clear that we can assemble all  $G_k$  into the matrix

$$G = Q \cdot \hat{Q} \equiv (Q_2 Q_3 \cdots Q_{\iota+1}) \cdot (\hat{Q}_1 \hat{Q}_2 \cdots \hat{Q}_{\iota}),$$

where

$$Q_j = \operatorname{diag}\left(I_{j-1}, \left[\begin{array}{cc} c_j & s_j \\ -s_j & c_j \end{array}\right], I_{n-j-1}\right), \ \hat{Q}_j = \operatorname{diag}\left(I_{j-1}, \left[\begin{array}{cc} \hat{c}_j & \hat{s}_j \\ -\hat{s}_j & \hat{c}_j \end{array}\right], I_{n-j-1}\right).$$

This result uses the fact that  $Q_j$  (or  $\hat{Q}_j$ ) and  $Q_k$  (or  $\hat{Q}_k$ ) commute when |j-k| > 1. As an example, we assemble two matrices  $G_{k-1}$  and  $G_k$ , where  $G_k$  has the form (4.17), written as  $Q_{j+1}Q_{j+2}\hat{Q}_j\hat{Q}_{j+1}$ , and  $G_{k-1}$  has the form (4.16) but with k replaced by k-1 and j replaced by j-1, written as  $Q_j\hat{Q}_{j-1}$ . The resulting matrix is

$$(Q_j\hat{Q}_{j-1})\cdot(Q_{j+1}Q_{j+2}\hat{Q}_j\hat{Q}_{j+1})=(Q_jQ_{j+1}Q_{j+2})\cdot(\hat{Q}_{j-1}\hat{Q}_j\hat{Q}_{j+1}),$$

where we have used the fact that  $\hat{Q}_{j-1}$  and  $(Q_{j+1}Q_{j+2})$  commute.

We can see that both Q and  $\hat{Q}$  have forms similar to (4.15). Thus, the orthogonal matrix G is a product of two SSS matrices, and according to the SSS multiplication formulas in [5], [8] the off-diagonal blocks of G have ranks no larger than 2. Again, we can use the SSS multiplication formulas to obtain  $\tilde{T} = GTG^T$ .

**4.5.** Computing the first row of U. Denote the first row of U by  $r^T$ . Note that the fast eigensolver in [8] provides U in the form of a sequence of  $2 \times 2$  Givens rotation matrices. The total number of these Givens matrices is  $O(n^2)$ . Thus, the application of these matrices on the right to  $e_1^T$ , the first unit vector of length n, yields the initial  $r^T$ . This costs  $O(n^2)$  operations. Later, for each diagonal block  $T_i$ , the vector  $r^T$  needs to be updated when T is updated by the swapping process. According to the previous subsection, U is updated to  $UG^T$ ; thus the updated vector

$$\tilde{r}^T = r^T G^T.$$

Since  $G^T$  is represented by no more than 2n Givens rotation matrices, the computation of  $\tilde{r}^T$  for each  $T_i$  costs no more than O(n).

In addition, the inner product of  $r^T$  with another vector as in (4.7) costs O(n).

**4.6.** Computing  $U_1$ . If  $T_1 \equiv \lambda$  is a single entry (eigenvalue), then  $U_1 \equiv u_1$  is a corresponding eigenvector. It is clear that we can choose

(4.19) 
$$u_1 = \tilde{u}_1/||\tilde{u}_1||_2 \text{ with } \tilde{u}_1 = (\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1)^T.$$

In the meantime, we need to make sure that the first entry of  $u_1$  matches the first entry of  $r^T$ , or more specifically, we need to match the signs.

If  $T_1$  is a  $2 \times 2$  block, then  $U_1$  provides an orthonormal basis for the invariant subspace of C corresponding to the eigenvalues contained in  $T_1$ . That is,

$$CU_1 = U_1T_1.$$

Assume the two eigenvalues of  $T_1$  are  $\lambda_1, \lambda_2 = \rho(\cos\theta \pm i\sin\theta)$ . Since  $\lambda_1$  and  $\lambda_2$  have the corresponding eigenvectors  $u_1 = (\lambda_1^{n-1}, \dots, \lambda_1, 1)^T$  and  $u_2 = (\lambda_2^{n-1}, \dots, \lambda_2, 1)^T$ , respectively, we can get the following relationship

$$(4.20) C\tilde{U}_1 = \tilde{U}_1 \tilde{T}_1,$$

where

$$(4.21) \quad \tilde{U}_{1} = \begin{bmatrix} \rho^{n-1}\cos(n-1)\theta & \rho^{n-1}\sin(n-1)\theta \\ \vdots & \vdots & \vdots \\ \rho^{2}\cos 2\theta & \rho^{2}\sin 2\theta \\ \rho\cos\theta & \rho\sin\theta \\ 1 & 0 \end{bmatrix}, \quad \tilde{T}_{1} = \rho \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}.$$

We know the first row of  $U_1$  (from the previous subsection), and can find  $U_1$  based on  $\tilde{U}_1$ .

LEMMA 4.1. For the matrices  $T_1$  in (4.1) and  $\tilde{T}_1$  in (4.21) which are both  $2 \times 2$ , there exists a similarity transformation matrix  $F_1$  such that  $\tilde{T}_1F_1 = F_1T_1$ . One such example is

(4.22) 
$$F_1 = \begin{bmatrix} 0 & \rho \sin \theta \\ t_{21} & \rho \cos \theta - t_{11} \end{bmatrix},$$

where  $[t_{11}, t_{21}]^T$  is the first column of  $T_1$ .

This result can be easily verified using the fact that  $T_1$  and  $\tilde{T}_1$  have the same eigenvalues, and thus the same traces and determinants. The result enables us to write (4.20) as

$$C\hat{U}_1 = \hat{U}_1 T_1$$
,

where

$$(4.23) \hat{U}_1 = \tilde{U}_1 F_1.$$

The matrix  $F_1$  such as (4.22) is invertible, since  $\rho \sin \theta \neq 0$ ,  $t_{21} \neq 0$  due to the fact that  $T_1$  has a pair of complex eigenvalues.

LEMMA 4.2. For the matrices  $U_1$  in (4.1) and  $\hat{U}_1$  in (4.23) which are both  $n \times 2$ , there exists a matrix  $F_2$  such that  $\hat{U}_1F_2 = U_1$ .

*Proof.* Given  $r_1^T$  (the first row of  $U_1$ ) and  $\hat{r}_1^T \equiv \rho^{n-1}[\cos(n-1)\theta, \sin(n-1)\theta]F_1$  (the first row of  $\hat{U}_1$ ), we can find such a matrix  $F_2$ . Clearly,  $F_2$  satisfies

$$\hat{r}_1^T F_2 = r_1^T, \ T_1 F_2 = F_2 T_1.$$

Since  $\lambda_1, \lambda_2 \equiv \rho(\cos\theta \pm i\sin\theta) \neq 0$  and  $F_1$  is invertible, we have  $\hat{r}_1^T \neq 0$ . Thus,  $\hat{r}_1^T \equiv (\hat{r}_{11}, \hat{r}_{12}) \neq 0$ .

If  $\hat{r}_{11} \neq 0$ , we can construct a Sylvester equation based on (4.24)

$$(4.25) (T_1 + \begin{bmatrix} \hat{r}_1^T \\ 0 \end{bmatrix}) F_2 - F_2 T_1 = \begin{bmatrix} r_1^T \\ 0 \end{bmatrix}.$$

Since  $\hat{r}_{11} \neq 0$ , we have that  $T_1 + \begin{bmatrix} \hat{r}_1^T \\ 0 \end{bmatrix}$  and  $T_1$  have different traces. These two matrices are also  $2 \times 2$ . Thus they have different eigenvalues. The above equation then has a unique solution  $F_2$ . Similarly, if  $\hat{r}_{12} \neq 0$ , we can solve a different Sylvester equation

$$(4.26) (T_1 + \begin{bmatrix} 0 \\ \hat{r}_1^T \end{bmatrix})F_2 - F_2T_1 = \begin{bmatrix} 0 \\ r_1^T \end{bmatrix}.$$

This proof gives a way to compute such a matrix  $F_2$ .

THEOREM 4.3. Assume that the real matrix C in (3.1) has a Schur decomposition as in (4.1), where the leading block  $T_1$  of T is  $2 \times 2$  and has a complex pair of eigenvalues. Then there exists a unique  $U_1$  with two linearly independent columns and with the first row given such that  $CU_1 = U_1T_1$ .

*Proof.* Assume that there exists another matrix  $U'_1$  with two linearly independent columns and with the first row  $r_1^T$  being the first row of  $U_1$ , such that  $CU'_1 = U'_1T_1$ . Since both  $U_1$  and  $U'_1$  are bases for the invariant subspace of C corresponding to the eigenvalues  $\lambda_1, \lambda_2$  of  $T_1$ , there exists a matrix R such that  $U'_1 = U_1R$ , and

$$(4.27) r_1^T = r_1^T R.$$

Thus,

$$CU_1R = U_1RT_1 = U_1T_1R,$$

which leads to

$$RT_1 = T_1R$$
.

Multiplying by  $r_1^T$  on the left and using (4.27) we have

$$(4.28) r_1^T T_1 = r_1^T T_1 R.$$

The equations (4.27) and (4.28) indicate that R has an eigenvalue 1 with the corresponding left eigenvectors  $r_1^T$  and  $r_1^TT_1$ . Clearly,  $r_1^T$  and  $r_1^TT_1$  are linearly independent, since  $T_1$  has a complex pair of eigenvalues. Therefore, R = I.

In particular, here  $U_1$  has two orthonormal columns. The previous results give us a procedure for computing  $U_1$  from  $\tilde{U}_1$ . That is, we first get  $F_1$  in (4.22) and thus  $\hat{U}_1$ . Then compute  $F_2$  from (4.25) or (4.26). Finally,

$$(4.29) U_1 = \hat{U}_1 F_2 = \tilde{U}_1 F_1 F_2,$$

which costs O(n) with direct computations since  $F_1$  and  $F_2$  are  $2 \times 2$  matrices.

**4.7. Implementation issues and the algorithm.** Before presenting the algorithm we address some implementation issues.

When n is large, a small  $|\lambda|$  in (4.19) can make the first entry of  $r^T$  small. Thus, it may not be reliable to decide the sign of the first entry of  $u_1$  based on the first entry of  $r^T$ . To avoid this problem, we can introduce an auxiliary vector  $b^T$  which is the last row of U. When  $|\lambda|$  is small, the first entry of  $b^T$  is used to decide the sign of the last entry of  $u_1$  and thus the signs of other entries in  $u_1$ .

Similarly, if  $|\rho|$  is small, the matrix  $F_2$  computed from (4.25) or (4.26) may be inaccurate. This is because, the nonzero entry (or entries) in  $\hat{r}_1^T$  is small, and the coefficient matrices of  $F_2$  in (4.25) or (4.26) are close to each other. Again, we can use the vector  $b^T$  and replace  $r_1^T$  in (4.25) and (4.26) by the first two entries of  $b^T$ .

So far, we have been concentrated on distinct roots. If  $\mathbf{p}(x)$  has multiple roots, the previous steps can be simplified, since some swapping steps can be omitted. We also need to modify the condition estimators for multiple roots. Extensions to other structured eigenvalue problems are also possible. More details are expected to appear in future work.

We now summarize the major steps in an algorithm. The complexity of the algorithm is  $O(n^2)$  which can be easily verified.

Algorithm 2. (k-sample SCE for the roots of  $\mathbf{p}(x)$  via the condition of a structured eigenvalue problem)

- 1. Use the fast eigensolver in [8] to find a Schur decomposition (4.1) for the companion matrix C corresponding to  $\mathbf{p}(x)$ . Store the SSS generators of T and the first row  $r^T$  of U. 2. Generate  $z^{(1)}, \ldots, z^{(k)} \in \mathrm{U}(S_{r-1})$ . Orthonormalize  $[z^{(1)}, \ldots, z^{(k)}]$ .
- 3. For each diagonal block  $T_i$  of T
  - (a) If  $T_i$  is a single entry
    - i. Update T as in Subsection 4.4.1 and update  $r^T$  as in Subsection 4.5.
    - ii. Solve a lower block triangular SSS system (4.6).
    - iii. Compute  $u_1$  via (4.19).
    - iv. For each j = 1, ..., k, set e to be  $-a \cdot z^{(j)}$  (componentwise multiplication). Calculate an estimate  $\nu_i^{(j)}$  by (4.5).
  - - i. Update T as in Subsection 4.4.2 and update  $r^T$  as in Subsection 4.5.
    - ii. Solve a lower block triangular SSS system (4.8).
    - iii. Compute  $U_1$  via (4.29).
    - iv. For each j = 1, ..., k, set e to be  $-a \cdot z^{(j)}$  (componentwise multiplication). Calculate an estimate  $\nu_i^{(j)}$  by (4.10) using (4.9).
- 4. Calculate the k-sample componentwise SCE condition vector

$$\kappa_{\text{SCE}} = \frac{\omega_k}{\omega_n} \sqrt{|\nu^{(1)}|^2 + \dots + |\nu^{(k)}|^2}.$$

5. Numerical experiments. Algorithms 1 and 2 both give satisfactory results for many problems. Algorithm 1 solves two polynomial root problems and is generally straightforward. When solving the perturbed problem we can use the original roots as the shifts in the structured QR iterations. For each new sample, we need to solve an additional perturbed problem. If each solve costs  $\alpha n^2$  then a k-sample SCE estimate costs about  $k\alpha n^2$ . The algorithm also has potential shortcomings as mentioned in Remark 3.2.

On the other hand, Algorithm 2 avoids those potential problems of Algorithm 1. There is no  $\delta$  explicitly involved in the algorithm. We do not need to explicitly solve a perturbed problem or to order the roots. In addition, it can be very efficient for multiple samples, since each additional sample requires about one or two vector inner products (see (4.9)) near the final stage of the condition estimation. Most work is independent of the random perturbations (we call this the precomputation). This makes the total cost of a k-sample SCE estimate with algorithm 2 to be  $\hat{\alpha}n^2 + 2kn^2$ , where the  $\hat{\alpha}n^2$  is the cost of the precomputation. Since  $\hat{\alpha}$  is usually much larger than 1, the cost of each additional sample of estimation is insignificant.

We apply the algorithms to some classical examples. The following notations are used in the results:

| $\hat{\kappa}_{	ext{SCE}}$ | SCE by Algorithm 1 (with relative perturbations) |
|----------------------------|--------------------------------------------------|
| $\kappa_{ m SCE}$          | SCE by Algorithm 2 (with relative perturbations) |
| $\kappa_{\mathrm{exact}}$  | Exact condition numbers by (2.5)                 |
| $\kappa_{ m MATLAB}$       | Condition estimates by MATLAB function condeig   |

Example 5.1. Consider Wilkinson's polynomial

$$\mathbf{p}(x) = (x-1)(x-2)\cdots(x-n),$$

where n = 8. The roots are  $x_j = j, j = 1, ..., n$ .

The exact condition number for  $x_j$  is  $\frac{(j+n)!-j^nj!}{(j!)^2(n-j)!}$  [11]. Choose  $\delta=10^{-8}$  in Algorithm 1. Apply SCE with two samples. The same random perturbations  $z^{(1)},\ldots,z^{(k)}$  are used for both SCE algorithms. The condition numbers are in Table 5.1. Both algorithms 1 and 2 provide very similar results.

|                            | $x_1$     | $x_2$  | $x_3$  | $x_4$  | $x_5$  | $x_6$  | $x_7$  | $x_8$  |  |
|----------------------------|-----------|--------|--------|--------|--------|--------|--------|--------|--|
| $\hat{\kappa}_{	ext{SCE}}$ | 1.83e1    | 2.26e2 | 1.96e3 | 6.66e3 | 1.53e4 | 2.14e4 | 1.50e4 | 4.08e3 |  |
| $\kappa_{ m SCE}$          | 1.83e1    | 2.26e2 | 1.96e3 | 6.66e3 | 1.53e4 | 2.14e4 | 1.50e4 | 4.07e3 |  |
| $\kappa_{\mathrm{exact}}$  | 3.58e1    | 5.87e2 | 4.21e3 | 1.57e4 | 3.28e4 | 3.85e4 | 2.37e4 | 5.97e3 |  |
|                            | Table 5.1 |        |        |        |        |        |        |        |  |

SCE for Example 5.1.

For Algorithm 1, we also calculate the relative errors  $\max_j |\frac{\hat{\kappa}_{\text{SCE}} - \kappa_{\text{exact}}}{\kappa_{\text{exact}}}|$  with different choices of  $\delta$  ranging from  $2^{-33} (\approx 1.2 \times 10^{-10})$  to  $2^{-13} (\approx 1.2 \times 10^{-4})$  so as to demonstrate the sensitivity of the condition estimates in terms of  $\delta$ . See Figure 5.1. We see that the errors are close to 1 or smaller and the estimates are pretty accurate. The condition estimate is insensitive to  $\delta$  over a relatively large range around  $\sqrt{||\mathbf{x}||} \varepsilon_{\text{mach}}$  (see Remark 3.2).



Fig. 5.1. Relative errors  $\max_{j} |\frac{\hat{\kappa}_{\text{SCE}} - \kappa_{\text{exact}}}{\kappa_{\text{exact}}}|$  by Algorithm 1 with different  $\delta$  for Example 5.1.

Example 5.2. Consider

$$\mathbf{p}(x) = (x - 2^{-1})(x - 2^{-2}) \cdots (x - 2^{-n}).$$

The roots are  $x_j = 2^{-j}, \ j = 1, ..., n$ .

The exact condition numbers are bounded by  $2\prod_{j=1}^{+\infty}\left(\frac{1+2^{-j}}{1-2^{-j}}\right)^2\approx 136.32$  [11]. Since both algorithms 1 and 2 provide very similar results, we only report one set. For n=8 the condition numbers with two samples in SCE are in Table 5.2.

On the other hand, the MATLAB function condeig applied to the companion matrix reports large condition numbers for the roots. The condition estimates  $\kappa_{\text{MATLAB}}$  are included to roughly show that our algorithms give less conservative results, although it should be emphasized that condeig measures a different condition number and also ignores the structure of the companion matrix. It is generally an  $O(n^3)$  process.

|                           | $x_1$  | $x_2$  | $x_3$  | $x_4$  | $x_5$   | $x_6$  | $x_7$  | $x_8$  |
|---------------------------|--------|--------|--------|--------|---------|--------|--------|--------|
| $\kappa_{ m SCE}$         | 5.63   | 14.4   | 31.8   | 37.1   | 11.3    | 17.6   | 17.0   | 7.84   |
| $\kappa_{\mathrm{exact}}$ | 8.31   | 24.8   | 39.2   | 46.8   | 46.8    | 39.2   | 25.1   | 8.99   |
| $\kappa_{ m MATLAB}$      | 5.68E2 | 7.24E4 | 3.18E6 | 5.81E7 | 4.73 E8 | 1.72E9 | 2.64E9 | 1.33E9 |

Table 5.2 SCE for Example 5.1.

The relative errors in the condition estimates by Algorithm 1 with different choices of  $\delta$  are shown in Figure 5.2. In this example, again, the estimate is very accurate at around  $\delta = \sqrt{||\mathbf{x}||} \varepsilon_{\text{mach}}$ . In both this example and the previous one, the error gets large only when  $\delta$  is too small or too large. Again, we point out that Algorithm 2 does not have the problem of choosing an appropriate  $\delta$ .



Fig. 5.2. Relative errors  $\max_{j} |\frac{\hat{\kappa}_{\text{SCE}} - \kappa_{\text{exact}}}{\kappa_{\text{exact}}}|$  by Algorithm 1 with different  $\delta$  for Example 5.2.

Example 5.3. Consider the polynomial

$$\mathbf{p}(x) = x^n - 1.$$

The solutions are the roots of unity  $x_i = e^{i2\pi j/n}, j = 1, \dots, n$ .

As mentioned in [11],  $\kappa_j = \frac{1}{n}$ , j = 1, ..., n in (2.5). For n = 8, applying SCE with two samples we get an estimate of  $\kappa_{\text{SCE}} = 0.133$  compared to the exact condition number  $\kappa_{\text{exact}} = 0.125$ .

We also apply the 1-sample algorithm 2 to  $\mathbf{p}(x)$  with larger degrees n. For each n, we count the number of floating point operations for the main condition estimation step 3 in Algorithm 2 (denoted by flops<sub>n</sub>) and report  $\frac{\mathrm{flops}_n}{\mathrm{flops}_{n/2}}$  in the last row of Table

5.3. The ratios  $\frac{\text{flops}_n}{\text{flops}_{n/2}}$  are close to 4, which is consistent with the  $O(n^2)$  complexity of the algorithm.

| n                                               | 32     | 64     | 128    | 256    | 512    | 1024   |
|-------------------------------------------------|--------|--------|--------|--------|--------|--------|
| $\kappa_{ m SCE}$                               | 0.0587 | 0.0212 | 0.0129 | 0.0055 | 0.0023 | 0.0010 |
| $\kappa_{\mathrm{exact}}$                       | 0.0313 | 0.0156 | 0.0078 | 0.0039 | 0.0020 | 0.0010 |
| $\frac{\mathrm{flops}_n}{\mathrm{flops}_{n/2}}$ | 4.52   | 4.23   | 4.11   | 4.05   | 4.03   | 4.01   |

Table 5.3

SCE for Example 5.3 with different n.

In the current preliminary MATLAB implementation of the algorithms, the condition estimation step 3 in Algorithm 2 (mainly the precomputation) takes more time than the root finding step, although they are of the same order. However, each additional sample costs little as compared with the precomputation. In addition, although it is possible to test the first two examples with large degrees, calculations of the coefficients or the roots may be inaccurate.

**Acknowledgements.** The authors are very grateful to the editor and the referees for their valuable comments.

## REFERENCES

- Z. BAI, J. W. DEMMEL, AND A. MCKENNEY, On computing condition numbers for the nonsymmetric eigenproblem, ACM Trans. Math. Soft. 19 (1993), pp. 202–223.
- [2] D. BINDEL, S. CHANDRESEKARAN, J. DEMMEL, D. GARMIRE, AND M. GU, A fast and stable nonsymmetric eigensolver for certain structured matrices, Technical report, University of California, Berkeley, CA, 2005.
- [3] D. A. BINI, F. DADDI, AND L. GEMIGNANI, On the shifted QR iteration applied to companion matrices, Electron. Trans. Numer. Anal., 18 (2004), pp. 137–152.
- [4] D. A. BINI, Y. EIDELMAN, L. GEMIGNANI AND I. GOHBERG, Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices, Technical Report no.1587, Department of Mathematics, University of Pisa, 2005.
- [5] S. CHANDRASEKARAN, P. DEWILDE, M. GU, T. PALS, X. SUN, A.-J. VAN DER VEEN, AND D. WHITE, Fast stable solvers for sequentially semi-separable linear systems of equations and least squares problems, Technical report, University of California, Berkeley, CA, 2003.
- [6] S. CHANDRASEKARAN, P. DEWILDE, M. Gu, T. PALS, X. Sun, A.-J. VAN DER VEEN, AND D. WHITE, Some fast algorithms for sequentially semiseparable representations, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 341–364.
- [7] S. CHANDRASEKARAN, P. DEWILDE, M. GU, T. PALS, AND A.-J. VAN DER VEEN, Fast stable solver for sequentially semi-separable linear systems of equations, in High Performance Computing-HiPC 2002: 9th International Conference, Lecture Notes in Comput. Sci., 2552, Springer-Verlag, Heidelberg, 2002, pp. 545–554.
- [8] S. CHANDRASEKARAN, M. GU, J. XIA, AND J. ZHU, A fast eigensolver for companion matrices, Operator Theory: Advances and Applications, Birkhauser Verlag, 179 (2007), pp. 111–143.
- [9] J. J. Dongarra, S. Hammarling, and J. H. Wilkinson, Numerical considerations in computing invariant subspaces, SIAM J. Matrix Anal. Appl., 13 (1992), 145–161.
- [10] W. Gautschi, On the condition of algebraic equations, Numer. Math., 21 (1973), pp. 405–424.
- [11] W. GAUTSCHI, Questions of numerical condition related to polynomials, G.H. Golub, ed., Studies in Numerical Analysis, MAA Studies in Math., 24 (1984), 140-177.
- [12] G. GOLUB AND C. V. LOAN, Matrix Computation, The Johns Hopkins University Press, Baltimore, MD, 3rd edition, 1996.

- [13] T. Gudmundsson, C. S. Kenney, and A. J. Laub, Small-sample statistical estimates for the sensitivity of eigenvalue problems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 868–886.
- [14] T. Gudmundsson, C. S. Kenney, A. J. Laub, and M. S. Reese, Applications of small-sample statistical condition estimation in control, Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design, (1996), pp. 164–169.
- [15] N. J. HIGHAM, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, 2008.
- [16] C. S. Kenney and A. J. Laub, Small-sample statistical condition estimates for general matrix functions, SIAM J. Sci. Comput., 15 (1994), pp. 36–61.
- [17] C. S. KENNEY, A. J. LAUB, AND M. S. REESE, Statistical condition estimation for linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 566-583.
- [18] C. S. Kenney, A. J. Laub, and M. S. Reese, Statistical condition estimation for linear least squares, SIAM J. Math. Anal. Appl., 19 (1998), pp. 906–923.
- [19] G. W. Stewart, Algorithm 506: HQR3 and EXCHNG: Fortran subroutines for calculating and ordering eigenvalues of a real upper Hessenberg matrix, ACM Trans. Math. Software, 2 (1976), pp. 275–280.
- [20] J. H. WILKINSON, Rounding Errors in Algebraic Processes, Englewood Cliffs, N. J., Prentice-Hall, 1963.
- [21] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford, U.K., Clarendon, 1965.
- [22] J. R. WINKLER, Condition numbers of a nearly singular simple root of a polynomial, Appl. Numer. Math., 38 (2001), pp. 275–285.
- [23] H. ZHANG, Numerical condition of polynomials in different forms, Electron. Trans. Numer. Anal., 12 (2001), pp. 66–87.