Modelo EGARCH en Econometría Financiera

Jean Pierre Lozano Rengifo

Curso de Econometría Financiera

2025

Objetivo de la Clase

- Comprender el fundamento teórico del modelo EGARCH.
- Interpretar los coeficientes del modelo.
- Conocer su formulación matemática completa.
- Compararlo con modelos GARCH clásicos.
- Entender cuándo y por qué usarlo.

Motivación

- Volatilidad condicional.
- Clustering de volatilidad.
- Asimetría o efecto apalancamiento.
- EGARCH fue propuesto por Nelson (1991) para capturar estos fenómenos.

Modelo de Media

$$r_t = \mu + \varepsilon_t$$
, $\varepsilon_t = z_t \sigma_t$, $z_t \sim i.i.d.(0,1)$

Modelo EGARCH(p,q)

$$\log(\sigma_t^2) = \omega + \sum_{i=1}^q \beta_i \log(\sigma_{t-i}^2) + \sum_{j=1}^p \alpha_j \left(\frac{|\varepsilon_{t-j}|}{\sigma_{t-j}} - \sqrt{\frac{2}{\pi}} \right) + \sum_{j=1}^p \gamma_j \left(\frac{\varepsilon_{t-j}}{\sigma_{t-j}} \right)$$

Parámetros del Modelo

- ω : Nivel base de log-varianza.
- β: Persistencia de la volatilidad.
- α : Tamaño de shocks pasados (efecto simétrico).
- ullet γ : Efecto asimétrico o apalancamiento.

Ventajas del EGARCH

- No requiere restricciones de no negatividad.
- Captura asimetría directamente.
- Varianza siempre positiva por construcción.
- Mejor ajuste en activos con efecto apalancamiento.

Comparación con GARCH(1,1)

Característica	GARCH(1,1)	EGARCH(1,1)
Forma funcional	Lineal	Log-lineal
Requiere $\alpha, \beta \geq 0$	Sí	No
Captura asimetría	No	Sí
$\sigma_t^2 > 0$ garantizado	No directamente	Sí por construcción

Fundamento Logarítmico

- Transformación a escala aditiva.
- Elimina restricciones no lineales.
- Permite respuesta exponencial ante shocks.

Reformulación

$$\sigma_t^2 = \exp\left(\omega + \beta \log(\sigma_{t-1}^2) + \alpha \left(\frac{|\varepsilon_{t-1}|}{\sigma_{t-1}} - \sqrt{\frac{2}{\pi}}\right) + \gamma \frac{\varepsilon_{t-1}}{\sigma_{t-1}}\right)$$

Interpretación de γ

- γ < 0: malas noticias aumentan más la volatilidad.
- $\gamma = 0$: modelo simétrico (como GARCH).
- $\gamma > 0$: asimetría inversa (menos común).

Estimación y validación

- Estimación por máxima verosimilitud.
- Verificar estacionariedad.
- Evaluar significancia de γ .
- Considerar distribución t o GED si residuos no normales.

Aplicaciones del EGARCH

- Retornos bursátiles.
- Valor en Riesgo (VaR).
- Modelado de crisis financieras.
- Forecasting de volatilidad para derivados.