ALGEBRA (TEAM)

Problem 1. Let $G = GL_2(\mathbb{C})$.

- (1) Prove all finite dimensional representations of G over \mathbb{C} are completely reducible.
- (2) Find all irreducible finite dimensional representations of G over \mathbb{C} .

Problem 2. Let K and L over \mathbb{Q} be field extensions of prime degrees. Show that if $[KL:\mathbb{Q}] < [K:\mathbb{Q}][L:\mathbb{Q}]$, then the Galois closure of K/\mathbb{Q} equals to the Galois closure of L/\mathbb{Q} .

Problem 3. Let G be a finite group. Let N be a minimal nontrivial normal subgroup of G (i.e., N does not properly contain any other nontrivial normal subgroup of G). Show that N is isomorphic to a direct product $L \times ... \times L$ of copies of a single simple group L.