

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 11

Franco Bruña y Dante Pinto 3 de Diciembre, 2021

Pregunta 1

Para cada uno de los siguientes FSA, escriba su definición y entregue una breve explicación de su utilidad.

- DFA.
- NFA y ε -NFA.
- Transductor.
- Autómata de un patrón.
- k-DFA y Lazy Autómata.
- PDA y PDA alternativo.
- k-PDT.
- Bottom-up PDA.
- Autómata característico.

El objetivo de esta pregunta era repasar las distintas definiciones, pero dado que tienen acceso a las clases para estudiarlas, no tiene mucho sentido escribirlas aquí.

Pregunta 2

Decimos que $\alpha \in (V \cup \Sigma)^*$ es una right-sentential form si $S \stackrel{*}{=} \alpha$. Es decir, son todas las palabras (de variables o terminales) que produce una gramática con derivaciones por la derecha.

2.1

Considerando la gramática $S \to 0S1 \mid 01$, indica cuál es el handle de cada una de las siguientes right-sentential forms:

- 1. 000111
- $2. \ 00S11$

Solución

Queremos el primer handle para ambos casos, es decir, el primer sufijo del stack luego de una serie de shifts tal que este sea reducible a través de la gramática. Para cada caso respectivamente nos queda:

- 1. 01
- $2. \ 0S1$

2.2

Repita lo mismo del 2.1 para $S \to SS+ \mid SS* \mid a$ y las siguientes right-sentential forms:

- 1. SSS + a * +
- 2. SS + a * a +
- 3. aaa * a + +

Solución

De manera análoga al ejercicio anterior:

- 1. SS+
- 2. SS+
- 3. *a*

2.3

Haga, paso por paso, el bottom-up parsing para las siguientes palabras y gramáticas:

- 1. 000111 usando la gramática de 2.1.
- 2. aaa * a + + usando la gramática de 2.2.

Solución

Para el caso de 000111

Stack	Input	Handle	Operación
\$	000111\$		Shift
\$0	00111\$		Shift
\$00	0111\$		Shift
\$000	111\$		Shift
\$0001	11\$	01	Reduce $S \to 01$
\$00S	11\$		Shift
\$00S1	1\$	0S1	Reduce $S \to 0S1$
\$0S	1\$		Shift
\$0S1	\$	0S1	Reduce $S \to 0S1$
\$S	\$		Accept

Y en el caso de aaa * a + +:

Stack	Input	Handle	Operación
\$	aaa*a++\$		Shift
\$a	aa*a++\$	a	Reduce $S \to a$
\$S	aa*a++\$		Shift
\$Sa	a * a + + \$	a	Reduce $S \to a$
\$SS	a * a + + \$		Shift
\$SSa	*a + +\$	a	Reduce $S \to a$
\$SSS	*a + +\$		Shift
\$SSS*	a++\$	SS*	Reduce $S \to SS*$
\$SS	a++\$		Shift
\$SSa	++\$	a	Reduce $S \to a$
\$SSS	++\$		Shift
\$SSS+	+\$	SS+	Reduce $S \to SS+$
\$SS	+\$		Shift
\$SS+	\$	SS+	Reduce $S \to SS+$
\$S	\$		Accept

Pregunta 3

Para cada gramática libre de contexto \mathcal{G} a continuación, encuentre la determinización $\det[\mathcal{G}]$ de su autómata característico char $[\mathcal{G}]$:

Debido a la complejidad de los autómatas, estos se dibujaron a mano y se adjuntan a continuación.

1.
$$S \rightarrow SS \mid a \mid b$$

Construyendo el autómata característico, encontramos:

Realizando la determinización del autómata anterior, tenemos:

$$2. \ S \rightarrow (L) \mid a$$

$$L \rightarrow LS \mid S$$

Construyendo el autómata característico, encontramos:

Dado que ya encontramos el autómata, podemos facilitar la determinización olvidándolos de los labels y determinizando el autómata como si lo haríamos con cualquier otro.

El autómata (sin determinizar) al abstraerse de los labels es:

Finalmente, realizando la determinización del autómata anterior, tenemos:

Pregunta 4

Sea \mathcal{G} una gramática libre de contexto y char $[\mathcal{G}]$ su autómata característico.

1. Demuestre que existe \mathcal{G} tal que $\mathcal{L}(\mathcal{G})$ es un lenguaje finito y $\mathcal{L}(\text{char}[\mathcal{G}])$ es un lenguaje infinito. Sea \mathcal{G} una gramática dada por:

$$S \to aXX \to XX|\varepsilon$$

Es claro que la única palabra que puede producir esta gramática es a, por lo que su lenguaje es finito. Por otra parte, se puede ver que aX^n será prefijo reducible para todo n>0, con handle $X\to XX$. Además, todos estos prefijos son también viables, pues para cada uno de ellos existirá una derivación tal que el lado derecho de la derivación corresponde a X^n o aX^n , por lo tanto, el lenguaje del autómata característico de esta gramática, es infinito.

2. Demuestre que existe \mathcal{G} tal que $\mathcal{L}(\mathcal{G})$ es un lenguaje infinito y $\mathcal{L}(\operatorname{char}[\mathcal{G}])$ es un lenguaje finito. Sea \mathcal{G} una gramática dada por:

$$S \to Sa|a$$

Esta gramática corresponde al lenguaje $L = \{a^n : n \ge 0\}$, el cual claramente es infinito.

Por otra parte, podemos ver que los prefijos viables que son reducibles en esta gramática son solamente a y Sa, por lo que el lenguaje definido por su autómata característico será finito.