

A12002 — ARTIFICIAL INTELLIGENCE SPRING 2024 - LECTURE 34-36

Presented By: Mr. Sandesh Kumar Slides are taken from UC Berkeley

Bayes Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
 - A subset of the general class of graphical models
- Use local causality/conditional independence:
 - the world is composed of many variables,
 - each interacting locally with a few others
- Outline
 - Representation
 - Exact inference
 - Approximate inference

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: absence of arc encodes conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Traffic

Variables:

• *T*: There is traffic

■ *U*: I'm holding my umbrella

R: It rains

Example: Smoke alarm

Variables:

• F: There is fire

• *S*: There is smoke

■ A: Alarm sounds

Example: Ghostbusters

- Variables:
 - G: The ghost's location
 - $C_{1,1}$, ... $C_{3,3}$: The observation at each location
- Want to estimate:
 P(G | C_{1,1}, ... C_{3,3})

- This is called a *Naïve Bayes* model:
 - One discrete query variable (often called the class or category variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable

Example: Car Insurance

Example: Car Won't Start

Bayes Net Syntax and Semantics

Bayes Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its parent variables in the graph
 - CPT (conditional probability table); each row is a distribution for child given values of its parents

G	P(C _{1,1} G)			
	g	У	0	r
(1,1)	0.01	0.1	0.3	0.59
(1,2)	0.1	0.3	0.5	0.1
(1,3)	0.3	0.5	0.19	0.01

Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

Variables

■ B: Burglary

■ E: Earthquake

A: Alarm goes off

■ J: John calls

M: Mary calls

Example: Alarm Network

true

false

0.95

0.05

P(E)		
true false		
0.002	0.998	

В	Е	P(A B,E)	
		true	false
true	true	0.95	0.05
true	false	0.94	0.06
false	true	0.29	0.71
false	false	0.001	0.999

Α	P(M A)	
	true false	
true	0.7	0.3
false	0.01	0.99

Number of *free parameters* in each CPT:

Parent range sizes $d_1, ..., d_k$

Child range size d
Each table row must sum to 1

 $(d-1) \prod_i d_i$

Bayes net global semantics

Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

Exploits sparse structure: number of parents is usually small

Size of a Bayes Net

How big is a joint distribution over N variables, each with d values?

How big is an N-node net if nodes have at most k parents?

$$O(N * d^k)$$

- Both give you the power to calculate $P(X_1, X_2, ..., X_N)$
- Bayes Nets: huge space savings with sparsity!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Example

0.1

0.95

0.9

0.05

true

false

P(E)		
true false		
0.002 0.998		

P(b,-	¬e, a,	$\neg j, \neg m$) =		
P(b)	P(¬e)	P(a b,⊸e) P(−j a)	P(¬m	a)

В	Е	P(A B,E)	
		true	false
true	true	0.95	0.05
true	false	0.94	0.06
false	true	0.29	0.71
false	false	0.001	0.999

=.001x.998x.94x.1x.3=.000028

Α	P(M A)		
	true	false	
true	0.7	0.3	
false	0.01	0.99	

Conditional independence in BNs

Compare the Bayes net global semantics

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

with the chain rule identity

$$P(X_1,...,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$$

- Assume (without loss of generality) that $X_1,...,X_n$ sorted in topological order according to the graph (i.e., parents before children), so $Parents(X_i) \subseteq X_1,...,X_{i-1}$
- So the Bayes net asserts conditional independences $P(X_i \mid X_1,...,X_{i-1}) = P(X_i \mid Parents(X_i))$
 - To ensure these are valid, choose parents for node X_i , that "shield" it from other predecessors

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Example: Burglary

Example: Burglary

- Alarm
- Burglary
- Earthquake

Α	P(B A)	
	true	false
true	?	
false		

Α	В	P(E A,B)	
		true	false
true	true		
true	false		
false	true		
false	false		

Example: Traffic

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

+t	+r	1/3
	-r	2/3

-t	+r	1/7
	ŗ	6/7

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Rain*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
 - Global joint probability = product of local conditionals
- Allows for flexible tradeoff between model accuracy and memory/compute efficiency

Naïve Bayes

Sparse Bayes Net

Joint Distribution