2. Grafico, funzione composta, funzione inversa

In questi esercizi è spesso richiesto di disegnare il grafico di funzioni o di equazioni. Questi vanno fatti con carta e penna, partendo dalla conoscenza dei grafici delle funzioni elementari (mai "per punti"). Suggeriamo tuttavia di acquisire familiarità con strumenti e software grafici e utilizzarli frequentemente.

- **2.1** Per ognuna delle equazioni [a],[b],[c],[d],[e],[f] nelle variabili x e y più sotto
 - [i] disegnarne il grafico e precisare in quali casi esse definiscono una funzione della variabile y rispetto alla variabile x.
 - [ii] in caso positivo scrivere il dominio della funzione
 - [iii] in caso negativo spezzare il grafico in due sottoinsiemi che siano ciascuno il grafico di una funzione e scrivere l'espressione di queste funzioni.
 - [a] $(x-1)^2 + y^2 = 1$

[b] $(x-1)^2 = 0$,

 $[c] y = |\sin(x)|,$

 $[d] y = x^2,$

[e] $y^2 = x$,

- [f] $y^3 + 1 = x$.
- **2.2** Tracciare il grafico della funzione f(x) = |1 |x + 1|| e stabilire se è monotona. In caso negativo trovare gli intervalli in cui lo è, specificando se è crescente, decrescente, strettamente crescente, strettamente decrescente.
- 2.3 Dire se sono vere le affermazioni in [i] e [ii]; se sono vere, provare, se sono false, fare un controesempio.
 - [i] il prodotto di una funzione crescente e di una decrescente è una funzione crescente.
 - [ii] il prodotto di una funzione crescente e di una decrescente è una funzione decrescente.

Sugg: Si consideri $f(x)=x^2$ in $(0,\infty)$ e la si moltiplichi prima per $g(x)=\frac{1}{x}$ poi per $g(x)=\frac{1}{x^3}$.

 ${\bf 2.4}$ Sian $f(x)=\frac{x}{x-1}.$ Tracciare il grafico di fe di

$$-f(x);$$
 $f(-x);$ $|f(x)|;$ $f(|x|);$ $f(x) + 1;$ $f(x-1);$ $f(2x).$

- **2.5** È data la funzione $f(x) = x^2 4x + 3$. Disegnare il grafico di f e delle seguenti funzioni
 - a) f(x-1);
- b) f(2x);
- c) f(-x);

d) |f(x)|;

- e) f(|x|)
- **2.6** È data la funzione $f(x) = (x 3)^2$.

Eseguire, analiticamente e graficamente, le seguenti operazioni nell'ordine assegnato, cioè in modo che ogni operazione agisca sul risultato della precedente:

- 1) traslare di 1 nella direzione e verso del semiasse positivo delle ascisse
- 2) operare una riflessione rispetto all'asse delle ordinate
- 3) operare una traslazione di 1 nella direzione e verso del semiasse negativo delle ordinate.
- 4) dilatare di un fattore 3.
- 2.7 Determinare il dominio delle seguenti funzioni

a)
$$f(x) = \sqrt{\frac{2x+1}{x^2 - 5x + 6}};$$
 b) $g(x) = \frac{\sqrt{1 - 4x^2}}{x + 1}$

- **2.8** Trovare dominio e immagine della funzione $f(x) = 1 \sqrt{x+2}$ e tracciarne il grafico.
- **2.9** Trovare l'insieme di definizione della funzione $f(x) = \sqrt{x^2 1} + \sqrt{4 x}$.

I seguenti tre esercizi sono sulla soluzione di disequazioni irrazionali. Si suggerisce di consultare lo schema riassuntivo nelll'Appendice.

2.10 Risolvere la disequazione $\sqrt[3]{x^2 + 2x} \ge x$.

Sol: La radice dispari è definita su tutto $\mathbb R$ quindi il primo membro è definito ovunque. Poichè la funzione potenza dispari è crescente, elevando alla terza si conserva il verso della disuguaglianza. Si ottiene:

$$x^2 + 2x \ge x^3$$
 cioè $x(x^2 - x - 2) \le 0$ cioè $x \in (-\infty, -1] \cup [0, 2]$.

2.11 Risolvere la disequazione $\sqrt[2]{x^2 - 16} > x$.

Sol: La radice pari è definita su $[0, +\infty)$; quindi il primo membro è definito solo se $x \in (-\infty, -4] \cup [4, +\infty)$ Distinguiamo ora i casi $x \ge 0$ e x < 0. Nel primo caso, elevando al quadrato si ottiene il sistema

$$\begin{cases} x \ge 0 \\ x^2 - 16 \ge 0 \\ x^2 - 16 > x^2 \end{cases}$$

Nel secondo caso la disequazione è soddisfatta, quindi si ottiene il sistema

$$\begin{cases} x < 0 \\ x^2 - 16 \ge 0 \end{cases}$$

La soluzione è l'unione delle soluzioni dei due sistemi. Un semplice calcolo porta all'insieme -soluzione

$$(-\infty, -4] \cup (\frac{8}{\sqrt{3}}, +\infty).$$

2.11bis Siano $f(x) = \sqrt{x^2 - 2x}$ e g(x) = 1 + x. Risolvere la disequazione $f(x) \ge g(x)$. Disegnare i grafici di f e g.

8

Sol: La disequazione è soddisfatta per i valori di $x\in U\cup V$ dove Ue V sono gli insiemi - soluzione soluzioni dei due sistemi

$$U: \begin{cases} x^2 - 2x \ge 1 + x^2 + 2x \\ 1 + x \ge 0 \end{cases} V: \begin{cases} x^2 - 2x \ge 0 \\ 1 + x < 0 \end{cases}$$

E si ha $U = [-1, -\frac{1}{4}]$ e $V = (-\infty, -1]$. Quindi la disequazione assegnata è soddisfatta per $x \in (-\infty, -\frac{1}{4}]$.

Figure 3: Funzioni $f(x) = \sqrt{x^2 - 2x}$ e g(x) = 1 + x.

2.12 Per ciascuna delle seguenti coppie di funzioni risolvere la disequazione $f(x) \leq g(x)$ e disegnare i grafici di f e g.

$$f(x) = \sqrt{6x - 5},$$
 $g(x) = -x;$ $f(x) = \sqrt[5]{x - 1},$ $g(x) = 1;$

2.13 Per ciascuna delle seguenti coppie di funzioni risolvere la disequazione $f(x) \leq g(x)$ e disegnare i grafici di f e g.

$$f(x) = x - 2$$
 $g(x) = \sqrt{x^2 + 4x}$; $f(x) = 2x$ $g(x) = \sqrt{x^2 + 24}$;

2.11bis Siano $f(x) = \sqrt{x^2 - 2x}$ g(x) = 1 + x.

Risolvere la disequazione $f(x) \geq g(x)$. Disegnare i grafici di $f \in g$.

Sol: La disequazione è soddisfatta per i valori di $x\in U\cup V$ dove Ue Vsono gli insiemi - soluzione dei due sistemi

$$U: \begin{cases} x^2 - 2x \ge 1 + x^2 + 2x \\ 1 + x \ge 0 \end{cases} V: \begin{cases} x^2 - 2x \ge 0 \\ 1 + x < 0 \end{cases}$$

rispettivamente. Si ha $U=[-1,-\frac{1}{4}]$ e $V=(-\infty,-1]$. Quindi la disequazione assegnata è soddisfatta per $x\in(-\infty,-\frac{1}{4}]$.

- **2.14** Stabilire in quali intervalli la funzione $f(x) = 1 + (x-2)^2$ è invertibile. Determinare, se possibile, le eventuali funzioni inverse precisandone per ciascuna l'insieme di definizione. Disegnare il grafico delle inverse.
- **2.15** Siano $f(x) = x^2 5x + 6$ e $g(x) = \sqrt{x}$. Dire dove è definita la funzione $g \circ f$.

2.16 Dimostrare che nell'intervallo (0,1] la funzione $f(x) = (1-x^n)^{\frac{1}{n}}, n > 0$, è inversa di se stessa verificando che

$$(f \circ f)(x) = f(f(x)) = x.$$

2.17 Dimostrare che ciascuna delle funzioni

$$f(x) = x,$$
 $g(x) = -x,$ $h(x) = \frac{1}{x},$ $s(x) = \frac{1-x}{1+x},$ $x \neq -1$

è inversa di se stessa.

2.18 Determinare il dominio delle seguenti funzioni

$$f(x) = \log(x^2 - 1);$$
 $d) \ g(x) = \begin{cases} 2^x & \text{se } x \le 1 \\ \log(x) & \text{se } x \ge 1 \end{cases}.$

- **2.19** Stabilire in quali intervalli la funzione $f(x) = 2^{(x-1)} + 3$. è invertibile. Determinare, se possibile, le eventuali funzioni inverse precisandone per ciascuna l'insieme di definizione. Disegnare il grafico delle inverse.
- **2.20** Disegnare il grafico della funzione $\sin(3x)$ e quello di $\sin(\frac{x}{3})$.
- 2.21 Trovare il dominio delle seguenti funzioni:

$$h(x) = \sqrt{\sin(x) - 1/2};$$
 $g(x) = \frac{1}{3 - \sin(2x)}$

Sol: Poichè $sin(\frac{\pi}{6}) = \frac{1}{2}$ la disequazione assegnata è soddisfatta negli intervalli

$$\frac{\pi}{6} + 2k\pi \le x \le \frac{5}{6}\pi + 2k\pi \qquad \qquad k \in \mathbb{Z}$$

La seconda funzione è definita dappertutto in quanto la funzione seno ha immagine in [-1,1].

2.22 Trovare il dominio delle seguenti funzioni:

$$f(x) = \log(|x - 2|);$$
 $g(x) = \frac{1}{1 - \sin(2x)}$
 $h(x) = \sqrt{1/2 - \cos x};$ $\ell(x) = \frac{1}{1 + x^2}.$

Sol: Poichè il logaritmo è definito solo per valori positivi del suo argomento, il dominio di f è $\mathbb{R} \setminus \{2\}$. Il dominio di g è: $\{x \in \mathbb{R} : x \neq \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}\}$. Troviamo il dominio di h. Poichè la radice pari è definita per valori non negativi del suo argomento, deve essere

$$\cos(x) \le 1/2.$$

Risolviamo questa disequazione limitandoci prima ad un intervallo di ampiezza uguale ad 2π . È conveniente scegliere l'intervallo $[-\pi,\pi]$; I valori di x in questo intervallo per cui $\cos(x)=1/2$ sono $x=\pm\frac{\pi}{4}$, quindi $\cos(x) \le 1/2$ per $-\pi \le |x| \le \pi/3$ cioè in $[-\pi, -\frac{\pi}{3}] \cup [\frac{\pi}{3}, \pi]$. L'insieme di definizione di h è dunque

$$[-\pi + 2k\pi, -\frac{\pi}{3} + 2k\pi] \cup [\frac{\pi}{3} + 2k\pi, \pi + 2k\pi]$$

È consigliabile disegnare anche i grafici della funzione coseno e della retta y = 1/2. La funzione ℓ è definita su tutto \mathbb{R} .

2.23 Trovare il dominio delle seguenti funzioni:

$$f(x) = \arccos(x-1); \qquad g(x) = \log_2|x+1|$$

$$\begin{split} f(x) &= \arccos(x-1); & g(x) &= \log_2|x+1| \\ h(x) &= \arcsin(\log_2 x); & \ell(x) &= \frac{1}{\log(|x|)}. \end{split}$$

Sol: La funzione $y = \arccos$ è definita in [-1,1], quindi f è definita in [0,2]. La funzione g è definita per $x \neq 1$.

L'insieme di definizione di h è l'insieme degli $x \in \mathbb{R}$ tali che

$$-1 \le \log_2(x) \le 1 \qquad x > 0.$$

Ma

$$-1 \le \log_2(x)$$
 $x > 0 \iff 2^{-1} \le x$ e $\log_2(x) \le 2$, $x > 0 \iff 0 < x \le 4$.

Quindi l'insieme di definizione di $h \in [\frac{1}{2}, 4]$.

L'insieme di definizione di ℓ è $\mathbb{R} \setminus \{-1,0,1\}$; l'argomento del logaritmo deve essere positivo, quindi deve essere $x \neq 0$ inoltre deve essere $\log(x) \neq 0$ e quindi $|x| \neq 1$.

- **2.24** Disegnare il grafico di $\sin(x-\frac{\pi}{4})$ e quello di $\sin(x)-\frac{\pi}{4}$.
- **2.25** Disegnare la funzione periodica di periodo minimo 2 che nell'intervallo [-1,1] è uguale a 1-|x|.
- **2.26** Disegnare la funzione periodica di periodo minimo 1 che in (0,1] è uguale a: x^2 .
- **2.27** Per ciascuna delle due coppie di funzioni in [a] e [b] dire se esistono le funzioni $(f \circ g)$ e $(g \circ f)$ e in caso positivo precisarne il dominio

[a]
$$f(x) = \sin(x)$$
 e $g(x) = 1 - \sqrt{x}$;

[b]
$$f(x) = 1 + \frac{1}{x}$$
 e $g(x) = x + 1$.

- **2.28** Siano $f(x) = x^2 5x + 6$ e $g(x) = \cos x$; dire se esistono le funzioni $(f \circ g)$ e $(g \circ f)$; e in caso positivo precisarne il dominio.
- **2.29** Per ciascuna delle due coppie di funzioni in [a] e [b] dire se esistono le funzioni $(f \circ g)$ e $(g \circ f)$; in caso positivo precisarne il dominio.

$$f(x) = \cos(x), \quad g(x) = 1 - x^2;$$
 $f(x) = |x|, \quad g(x) = x^3.$