

Session 4 Lab 5: Accelerometer data collection from embedded target

Benoît Miramond, Pierre-Emmanuel Novac

April 29, 2021

1 Installation for the RF Things board

1.1 Arduino IDE

Download and install Arduino IDE 1.8.13 from https://www.arduino.cc/en/software. Install the support package for the Lacuna LS-200 board with an STM32L4 microcontroller:

- Open the Preferences panel from the File menu.
- Add the following URL to the Additional Boards Manager URLs: https://github.com/piernov/arduino-STM32L4/releases/download/0.0.28-lacuna-9p1/package_STM32L4_Lacuna_boards_index.json
- Open the Board Manager from the Tools → Board: menu.
- · Search for STM32L4.
- Select and install STM32L4 Boards (Lacuna) (version 0.0.28-lacuna-9p1).

1.1.1 Linux only

Place the udev rules file stm32dfu.udev.rules (from Moodle) in /etc/udev/rules.d, then reload udev rules:

```
sudo mv ~/Downloads/stm32dfu.udev.rules /etc/udev/rules.d/
sudo udevadm control --reload
sudo udevadm trigger
```

1.1.2 Windows only

- Download Zadig at https://zadig.akeo.ie/ and execute it.
- Put the board in bootloader mode (see Appendix A).
- Select STM32 BOOTLOADER in the list.
- · Make sure WinUSB driver is selected.
- Click Install Driver.
- · Wait for it to finish.

1.2 MicroAl GUI

Ubuntu: install the package microai-gui_0.1.1-1_amd64.deb (from Moodle).

Windows: extract the package microai-gui_0.1.1_win32.zip (from Moodle).

1.3 Serial bridge

The serial bridge serial_client.py (from Moodle) requires Python 3 (3.6 or newer) and the pyserial library.

Ubuntu: install the python3-serial package.

Windows: install Python 3.9 from https://www.python.org/downloads/ and type python -m pip install pyserial in a PowerShell prompt.

2 Deploy the Arduino sketch onto the board

- Open the S5Lab1 sketch from the S5Lab1 directory (from Moodle) with the Arduino IDE.
- In the Tools \rightarrow Boards menu, select the STM32L4 (Lacuna) \rightarrow Lacuna-LS200 board.
- In the Tools → Port menu, select the serial port corresponding to the Lacuna-LS200 board.
- Click on the right arrow in the toolbar to compile and deploy the sketch.
- After deployment, open the Serial Monitor from the Tools menu to confirm that the board is communicating.
- If some data is being received, close the Serial Monitor.

3 Collect and label data inside MicroAl GUI

- Open MicroAl GUI from the application menu under Ubuntu or by running the executable on Windows.
- Open a Terminal and run the *serial_client.py* script. You can pass the appropriate serial port as a parameter, such as COM4 on Windows (check in Device Manager).
- Click on Start at the bottom of the MicroAl GUI window. The accelerometer graph should start displaying realtime acceleration data.
- Capture some data and click on Stop once done.
- Hold the Shift key and drag with middle click (or hold Ctrl+Shift and drag with right click) across the accelerometer graph to select a range of data.
- Click on *Label* and select *Positive* to mark positively labeled data. Every unlabelled data is assumed to be negative.
- Once all positive data has been labeled, click Save and enter a filename.
- Data will be exported as x_<filename>.csv and y_<filename>.csv in the directory it is executed from or the home directory.

Warning: the current revision of the board has a hardware issue that will cause the communication to crash very often. The serial bridge should recover automatically, but you will see a lot of incorrect data. Please do your best to capture the data and label positively appropriately.

A Bootloader/DFU mode

Bootloader or DFU mode is a special mode of the USB controller inside the STM32 microcontroller that allows reflashing a firmware (even if the current firmware is corrupt).

To put the board into bootloader mode:

- · Unplug the USB cable.
- Press and hold the BOOT button next to the microUSB port.
- · Plug the USB cable in.
- The board should now be recognized as STM Device in DFU Mode or STM32 BOOTLOADER

B Common issues

B.1 Cannot open DFU device 0483:df11 (Windows)

See Section 1.1.2

B.2 dfu-util: File not found (Linux)

Install the 32-bit glibc to run 32-bit binary. The package is called libc6-i386 on Ubuntu.

B.3 Board goes into bootloader mode but the countdown goes all the way up to 10 and fails. (Linux)

Run:

 \sim /. arduino15/packages/lacunaspace/hardware/stm32l4/0.0.28-lacuna-9/tools/linux/dfu-util-l If there is a permission error, see Section 1.1.1.

B.4 Permission denied while trying to open /dev/ttyACMO (Linux)

Add your user to the dialout (or uucp on some distributions) group to obtain permissions for the serial port: sudo usermod -G dialout -a (who ami)

You need to log out and log back in after joining a group.

B.5 Input/output error, Port not found, acm_port_activate - usb_submit_urb(ctrl irq) failed (Linux)

If deployment fails with an error such as Error opening serial port '/dev/ttyACMO'. (Port not found), opening a terminal to the port fails with Input/output error and the kernel log (dmesg) shows an error similar to cdc_acm 1-5.3:1.0: acm_port_activate - usb_submit_urb(ctrl irq) failed, you may be hit by a bug introduced in recent kernel releases (from April 7, 2021 to April 27, 2021). Please upgrade to the latest release (from April 28, 2021 onwards).

B.6 Deployment fails for another reason

You can try to put the board in bootloader mode (see Appendix A) and deploy again.