MAE3145: Final Exam

December 14, 2016

Last Name First Name Student ID

Prob. 1	Prob. 2	Prob. 3	Prob. 4	Prob. 5	Total
(20)	(15)	(20)	(15)	(10)	(80)

Problem 1 (20pt) Mark whether each statement written in *italic font* is True or False.

- (a) The orbital radius of the Earth is 149.6×10^6 km, and the orbital radius of the Jupiter is 778.6×10^6 km. The standard Hohmann transfer from the Earth to the Jupiter is always more efficient that the bi-elliptic Hohmann transfer between them. [True, False]
- (b) Spacecraft A and B are on the same orbit. The chaser spacecraft A executes a phasing maneuver to catch the target spacecraft B after one revolution at the point A. Then, the chaser spacecraft A should increase its velocity at the beginning of the phasing maneuver. [True, False]

(c) Consider a satellite on a circular orbit around the Earth. Changing the orbital inclination by 15° requires more Δv than that to make it completely escape from the Earth gravitational field. [True, False]

Problem 2 (15pt) Spacecraft A is on a circular orbit ① around the Earth, and Spacecraft B is on an elliptic orbit ② around the Earth.

$$\mu = 398600 \,\mathrm{km}^3/\mathrm{s}^2$$
, $r_A = 8000 \,\mathrm{km}$, $e_2 = 0.4$.

We wish to design a phase maneuver of Spacecraft A such that rendezvous between Spacecraft A and B occurs at the point A after one revolution. After the rendezvous, Spacecraft A is transferred to Orbit ②. Let Orbit ③ be the phasing orbit of Spacecraft A, and let C be the apoapsis of Orbit ③.

(a) Find the time t_{BA} for Spacecraft B to return to the point A.

(b) Find the period T_3 and the apoapsis distance r_C of the phasing orbit ③.

(c)	Find the velocity	change $\Delta v_A = v_{A_0}$	- v _A .	at the beginning of the phasing maneuver.
(0)	I ma me verserry	$CHange = c_A - c_{A_3}$	$^{\circ}A_1$	at the segming of the phasing maneaver.

(d) Find the velocity change
$$\Delta v_{A'}=v_{A_2}-v_{A_3}$$
 at the end of the phasing maneuver.

(e) Show that the total velocity change to complete the phasing maneuver is
$$1.2933\,\mathrm{km/s}.$$

Problem 3 (20pt) Consider a spacecraft on a circular orbit with radius r_P . We wish to rotate the orbital plane by δ without changing the orbit shape and size. In the class, we found that the required velocity change for one-impulse plane change maneuver is given by

$$\Delta v = 2v\sin\frac{\delta}{2}, \quad \text{where} \quad v = \sqrt{\frac{\mu}{r_P}}.$$
 (1)

This cost of a plane change is quite high. In this question, we try to reduce the cost of a plane change by designing a series of maneuvers. Let the initial circular orbit be denoted by \bigcirc , and the terminal rotated circular orbit be \bigcirc . The proposed maneuver from \bigcirc to \bigcirc is composed of the following three steps:

- ① \rightarrow ② at P: transfer the spacecraft to an elliptic orbit ②,
- $-2\rightarrow3$ at A: perform a plane change maneuver at the apoapsis A of the elliptic orbit 2,
- $3 \rightarrow 4$ at P: transfer the spacecraft to the rotated circular orbit 4 at the periapsis P.

Let the apoapsis distance of the transferring elliptic orbits be $r_A > r_P$. These orbits are illustrated as follows:

 \Longrightarrow plane change maneuver at A by δ

	Description	Inclination	Periapsis	Apoapsis	Velocity at the beginning	Velocity at the end
Orbit ①	Initial circular orbit	0	r_P	r_P	V_{P_1}	-
Orbit ②	Hohmann transfer orbit	0	r_P	r_A	V_{P_2}	V_{A_2}
Orbit ③	Hohmann transfer orbit	δ	r_P	r_A	V_{A_3}	V_{P_3}
Orbit 4	Target circular orbit	δ	r_P	r_P	V_{P_4}	-

(a) Find Δv_P to transfer the spacecraft from the initial circular orbit ① to the elliptic orbit ② at P.

(b) Find Δv_A required to rotate the orbital plane of Orbit ② by δ at A, transferring the spacecraft to Orbit ③.

(c) Find $\Delta v_{P'}$ to transfer the spacecraft from the elliptic orbit 3 to the terminal circular orbit 4 at P.

(d) The ratio of the total velocity change $\Delta v_T = |\Delta v_P| + |\Delta v_A| + |\Delta v_{P'}|$ of this maneuver to the velocity change Δv of the one-impulse maneuver at (1) can be written as

$$\frac{\Delta v_T}{\Delta v} = \sqrt{\frac{2}{\rho(1+\rho)}} + \frac{1}{\sin \delta/2} \bigg\{$$
 \(\begin{aligned} \left\ \frac{\sin \delta/2}{\left\} \end{aligned} \\ \end{aligned}, \tag{2}

where $\rho=\frac{r_A}{r_P}>1.$ Find the expression in the braces $\{\ \}$. (Hint: $|\Delta v_{P'}|=|\Delta v_P|$).

(e) Suppose that $\rho = 2$, and $\delta = 60^{\circ}$. Using (2), determine which is more energy efficient between the proposed three-impulse maneuver with the cost of Δv_T , and the one-impulse maneuver with the cost of Δv .

Problem 4 (15pt) The international Cassini mission to the Saturn made use of gravity assist from the Venus. In this question, we develop the rendezvous condition for a Hohmann transfer from the Earth to the Venus. The locations of the Earth and the Venus at the departure and the arrival are illustrated as follows.

$$\mu_S = 1.327 \times 10^{11} \,\mathrm{km}^3/\mathrm{s}^2$$
, $R_E = 149.6 \times 10^6 \,\mathrm{km}$, $R_V = 108.2 \times 10^6 \,\mathrm{km}$.

(a) Find the travel time t_{EV} from the Earth to the Venus along the Hohmann transfer orbit between them.

- (b) Let ϕ be the phase angle of the Venus relative to the Earth, i.e. $\phi = \theta_V \theta_E$, and let ϕ_0 be the value of the phase angle at departure. The rotation angle of the Venus during the Hohmann transfer is given by $n_V t_{EV}$. Mark the angles ϕ_0 and $n_V t_{EV}$ in the above diagram.
- (c) Find ϕ_0 for a rendezvous between the Venus and the spacecraft to occur at the end of the Hohmann transfer. (Hint: $\phi_0 < 0$)