

Introduction

Combinational logic Circuit

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Decoder

Decoder:

- 'n' inputs to '2n' outputs.
- It has no select lines.
- Used in many applications such as memory system, code conversion, implementation of function.

Decoder Example

2:4 Decoder:

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-HCT Gandhinagar

1

First Step:

Truth Table Formation

Input of Decoder Output of Decoder

Second Step:

Determining Boolean Expression

Input of Decoder Output of Decoder

لــــــــ	Щ,				
	'				
I,	I ₀	Y ₃	\mathbf{Y}_2	Y,	Y,
0	0	0	0	0	1
0	1	0	0	(<u>-</u>)	0
1	0	0	1	0	0
1	1	1	0	0	0

$$Y_0 = I_1' \cdot I_0'$$

$$Y_1 = I_1' \cdot I_0$$

$$Y_2 = I_1 \cdot I_0'$$

$$1_2 - 1_1 \cdot 1_0$$

$$\mathbf{Y}_3 = \mathbf{I}_1 \cdot \mathbf{I}_0$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Third Step:

Realization of Boolean Expression by Logic Gates

$$Y_0 = I_1' \cdot I_0'$$

$$Y_1 = I_1' . I_0$$

$$\mathbf{Y}_2 = \mathbf{I}_1 \cdot \mathbf{I}_0'$$

$$\mathbf{Y}_3 = \mathbf{I}_1 \cdot \mathbf{I}_0$$

$$I_1$$
 $Y_2 = I_1 \cdot I_0$, I_0

$$I_1 \longrightarrow I_0 \longrightarrow I_1 . I_0$$

Decoder Example

3:8 Decoder:

3:8 Decode

First Step:

Truth Table Formation

In	Output of Decoder									
I_2	I_1	\mathbf{I}_0	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

3.8 Deco

Second Step:

Determining Boolean Expression

In	put of	Dec	oder	Output of Decoder						
I ₂	I,	I ₀	Y ₇	Y ₆	Y ₅	Y.	Y ₃	\mathbf{Y}_2	Yı	Y ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	<u> </u>	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

 $Y_0 = I_2' . I_1' . I_0'$

$$Y_1 = I_2' . I_1' . I_0$$

$$Y_2 = I_2' . I_1 . I_0'$$

$$Y_4 = I_2 . I_1' . I_0'$$

$$Y_5 = I_2 . I_1' . I_0$$

$$Y_6 = I_2 . I_1 . I_0$$

$$Y_7 = I_2 . I_1 . I_0$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

.

3:8 Decoder

Third Step:

Realization of Boolean Expression by Logic Gates

$$Y_0 = I_2' . I_1' . I_0'$$

$$Y_1 = I_2' . I_1' . I_0$$

$$Y_2 = I_2' . I_1 . I_0'$$

$$Y_3 = I_2' . I_1 . I_0$$

$$Y_4 = I_2 . I_1' . I_0'$$

$$Y_5 = I_2 . I_1' . I_0$$

$$Y_6 = I_2 . I_1 . I_0$$

$$Y_7 = I_2 . I_1 . I_0$$

Numerical

- 1. Implement the following Boolean function using
 - (i) A Demultiplexer and external gates
 - (ii) A Decoder and external gates.

$$F1(A, B, C) = \Sigma m(1, 3, 5, 7)$$

$$F2(A, B, C) = \Sigma m(2, 3, 6, 7)$$

Numeric

- 1. Implement the following Boolean function using
 - (i) A Demultiplexer and external gates
 - (ii) A Decoder and external gates.

F1(A, B, C) =
$$\Sigma$$
m(1, 3, 5, 7)
F2(A, B, C) = Σ m(2, 3, 6, 7)

(i) Implementation using a Demultiplexer and external gates

Dr. Yash Agrawal @ DA-IICT Gandhinagar

13

Numerical

1. Implement 4:16 Decoder using two 3:8 Decoders.

3:8 Decoder

- 3 Inputs
- 8 Outputs

4:16 Decoder

- 4 Inputs
- 16 Output

Numerio

- 1. Implement the following Boolean function using
 - (i) A Demultiplexer and external gates
 - (ii) A Decoder and external gates.

F1(A, B, C) =
$$\Sigma$$
m(1, 3, 5, 7)
F2(A, B, C) = Σ m(2, 3, 6, 7)

(ii) Implementation using a Decoder and external gates

Dr. Yash Agrawal @ DA-IICT Gandhinagar

1.

Implement 4:16 Decoder using 3:8 Decoder

To implementing 4:16 Decoder using 3:8 Decoder, Enable signal can be utilized

- 1. Implement Full Adder using a suitable Decoder.
- 2. Implement 5:32 Decoder using 2:4 Decoder(s) and one 1:8 Demultiplexer.

(More than one 2:4 decoders can be used)

Dr. Yash Agrawal @ DA-IICT Gandhinagar

