On the Convergence of Iterative Methods

John Doe

Department of Mathematics, University of Example
john.doe@example.edu
January 2024

Abstract

We investigate the convergence properties of various iterative methods for solving linear systems. Our main result establishes a new sufficient condition for convergence that generalizes previous work in this area.

Keywords: iterative methods, convergence, linear systems, numerical analysis

1. Introduction

Iterative methods play a crucial role in solving large-scale linear systems that arise in scientific computing and engineering applications.

Definition 1.1: Iterative Method

An iterative method for solving Ax = b is a sequence of approximations $\{x_k\}$ generated by the recurrence relation $x_{\{k+1\}} = Bx_k + c$ where B is the iteration matrix and c is a constant vector.

Theorem 1.2: Convergence Criterion

The iterative method converges if and only if the spectral radius of the iteration matrix satisfies $\rho(B) < 1$.

Proof Let $e_k = x_k - x^*$ be the error at iteration k, where x^* is the exact solution. Then $e_{\{k+1\}} = Be_k$, which implies $e_k = B^k e_0$. The method converges if and only if $\lim_{k \to \infty} B^k = 0$, which is equivalent to $\rho(B) < 1$.

2. Analysis of Specific Methods

2.1. Jacobi Method

The Jacobi method uses the iteration matrix $B = D^{-1}(L+U)$ where A = D - L - U.

Proposition 2.3: Jacobi Convergence

If A is strictly diagonally dominant, then the Jacobi method converges.

Proof For strictly diagonally dominant matrices, we have $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for all i. This implies $\rho(B) < 1$ by the Gerschgorin circle theorem.

2.2. Gauss-Seidel Method

The Gauss-Seidel method typically converges faster than Jacobi for the same matrix.

Lemma 2.4: Comparison Lemma

For any matrix A, the spectral radius of the Gauss-Seidel iteration matrix is less than or equal to that of the Jacobi iteration matrix.

Corollary 2.5: Gauss-Seidel Convergence

If the Jacobi method converges, then the Gauss-Seidel method also converges.

3. Numerical Examples

3.1. Simple 2x2 System

Consider the system $((2,1),(1,3))((x_1),(x_2))=((5),(6))$ This matrix is strictly diagonally dominant, so both Jacobi and Gauss-Seidel methods converge.

Remark 3.6: Implementation Note

In practice, one should check the condition number of the matrix as well as the spectral radius to predict convergence behavior.