${\mathfrak r}_1^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2k^2(r_1+r_5)+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 (r_1 + r_5) - t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\mathfrak{r}_{1}^{\#1}_{+\alpha\beta}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha_{\beta}$	$\frac{1}{\sqrt{2} \; (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2}\;(k\!+\!k^3)(2r_1\!+\!r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{\#2}$ †	0	0	0	0
$\omega_{0^{-}}^{\#1}$ †	0	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

_	$\sigma_{2}^{\#1}{}_{lphaeta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#_1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}~lpha}^{$ #1}	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	- 1-	<u>t</u> 1 3	<u>i k t 1</u> 3	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3} \bar{l} k t_1$	$\frac{k^2t_1}{3}$	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	-	0	0	0

$\sigma_{0}^{\#1}$	0	0	0	0
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$ au_0^{\#1}$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

Lagrangian density

$-t_1 \; \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - r_5 \partial_i \omega^{\kappa\lambda}_{\ \kappa} \partial^i \omega_{\lambda\ \alpha}^{\ \alpha} - \frac{2}{3} r_1 \partial^\beta \omega^{\theta\alpha}_{\ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \kappa} - \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{\ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} +$
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\theta\kappa\lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\kappa\lambda\theta} +$
$2r_5\partial_\theta\omega_{\lambda}^{\alpha}_{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta} - \frac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{3}t_1\partial^\alpha f_{\kappa}^{\lambda}\partial^\kappa f_{\alpha\lambda} +$
$t_1 \omega_{\kappa\alpha}^{ \alpha} \partial^{\kappa} f'_{\ \ \prime} + t_1 \omega_{\kappa\lambda}^{ \lambda} \partial^{\kappa} f'_{\ \ \prime} + 2 t_1 \partial^{\alpha} f_{\ \kappa\alpha} \partial^{\kappa} f'_{\ \ \prime} - t_1 \partial_{\kappa} f^{\lambda}_{\ \ \lambda} \partial^{\kappa} f'_{\ \ \prime} +$
$\frac{1}{3} t_1 \omega_{i\theta\kappa} \partial^{\kappa} f^{i\theta} + \frac{4}{3} t_1 \omega_{i\kappa\theta} \partial^{\kappa} f^{i\theta} - \frac{1}{3} t_1 \omega_{\theta i\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3} t_1 \omega_{\theta \kappa i} \partial^{\kappa} f^{i\theta} -$
$t_1 \omega_{_{I}\alpha}^{\alpha} \partial^{_{K}} f^{_{}}_{_{}} - t_1 \omega_{_{I}\lambda}^{\lambda} \partial^{_{K}} f^{_{}}_{_{}} + \frac{1}{3} t_1 \partial^{_{\alpha}} f^{_{}\lambda}_{} \partial^{_{K}} f_{\alpha}^{} + \frac{1}{3} t_1 \partial_{_{K}} f_{\alpha}^{} \partial^{_{K}} \partial^{_{K}} \partial^{_{K}} \partial^{_{K}} \partial^{_{K}} \partial^{_{K}} \partial^{_{K}} \partial^{_{K}} \partial$
$\frac{2}{3} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f_{\lambda}^{\theta} - t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + \frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} +$
$\frac{2}{3} r_1 \partial^{\beta} \omega_{I}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{I} - \frac{8}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{I} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa}$

|--|

SO(3) irreps	#
$\sigma_{0}^{\#1} == 0$	1
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	1

Massive particle		
Pole residue:	$-\frac{1}{r_1} > 0$	
Polarisations:	5	
Square mass:	$-\frac{t_1}{2r_1} > 0$	
Spin:	2	
Parity:	Odd	

? /	Quadratic pole				
 ?	Pole residue:	$\frac{1}{(2r_1+r_5)t_1^2p^2} > 0$			
\	Polarisations:	2			