## 極座標変換による2重積分

## 2021年10月19日

## 1 極座標変換による2重積分

座標変換の中でも、特によく用いられるのが次の極座標変換である.

$$x = r\cos\theta$$
$$y = r\sin\theta$$

ただし  $r \geq 0$  である.  $\theta$  の値の範囲については  $0 \leq \theta < 2\pi$  とするのが標準的であるが,  $-\pi < \theta < \pi$  などと設定することもある. 極座標変換については

$$\frac{\partial(x,y)}{\partial(r,\theta)} = r$$

となることから次の結果が得られる.

定理 1.1.  $D \subset \mathbb{R}^2$  上で積分可能な関数 f(x,y) について

$$\iint_D f(x, y) dxdy = \iint_{D'} f(r\cos\theta, r\sin\theta) r drd\theta$$

が成り立つ. ただし,

$$D' = \{ (r, \theta) \mid (r \cos \theta, r \sin \theta) \in D \}$$

である.

極座標変換が特に有用なのは次の場合である.

- 積分を行う領域 D の極座標による表示が簡単な形であるとき.
- 被積分関数が原点からの距離  $\sqrt{x^2+y^2}$  のみに依存しているとき.

## 2 計算の例

例 1. R > 0 とする.  $D = \{(x,y) \mid x^2 + y^2 \le R^2\}$  のとき,

$$\iint_D e^{-(x^2+y^2)} \mathrm{d}x \mathrm{d}y$$

を求めよ.

解答. 極座標で表示すると D は長方形

$$[0,R]\times[0,2\pi]$$

となる. また被積分関数は原点からの距離のみに依存している. そこで極座標に変換すると

$$\iint_D e^{-(x^2+y^2)} dx dy = \iint_{[0,R] \times [0,2\pi]} e^{-r^2} r dr d\theta$$

となる. この積分は実行できて、値は  $\pi(1-e^{-R^2})$  である.

例 2.  $D = \{(r, \theta) \mid r \le 1 + \cos \theta\}$  のとき、D を図示し、その面積を求めよ.

解答. D を図示すると次のようになる.



D の面積は

$$\iint_D 1 \mathrm{d}x \mathrm{d}y$$

で定義される. これを極座標に変換すると

$$\iint_D 1 dx dy = \int_0^{2\pi} \left( \int_0^{1 + \cos \theta} r dr \right) d\theta$$

となる. 右辺の積分を実行すると  $\frac{3}{2}\pi$  を得る.