

HOTEL BUSINESS CASE

By: Aaron Xiao

INTRODUCTION

 Hotels must be able to predict their cancelation rates reasonably well to ensure that they do not overbook or under-book rooms

BACKGROUND

- A city hotel chain approached our data analytics team and would like to know the number of possible cancelations the hotel could receive, in order to overbook their rooms appropriately.
- The owner of the city hotel wants to know by how much they should overbook their facilities to ensure that the hotel can operate at maximum capacity.

ANALYTICAL QUESTION

- Understanding business question:
 - o Predict cancelation rate
 - Cancelation rate varies based on characteristics of bookings

Analytical question: Who is likely to cancel their hotel bookings?

DATA

Hotel Booking Demands Dataset:

- July 2015 to August 2017
- 119,320 records
- 32 columns
- 2 types of hotels: City & Resort

Final Data:

- City Hotel
- Eliminate redundant or irrelevant columns
- 79,330 records, 12 columns

COLUMNS FINAL DATASET

Column Name	Type of Variable	Coding	Description	
is_canceled	Numeric	Dummy Coded (0,1)	Target variable; whether booking was canceled	
lead_time	Numeric	Continuous (numeric)	Days booked in advance of arrival	
is_repeated_guest	Numeric	Dummy Coded (0,1)	Whether guest is a repeated guest	
previous_cancelations	Numeric	Dummy Coded (0,1)	Whether there were any previous cancelations	
booking_changes	Numeric	Dummy Coded (0,1)	Whether there were any booking changes	
required_car_parking_sp aces	Numeric	Dummy Coded (0,1)	Whether parking spaces were required	
total_of_special_requests	Numeric	Dummy Coded (0,1)	Whether special requests were made	
season	Character	4 Categories: Spring, Summer, Fall, Winter	Season of arrival	
haskid	Numeric	Dummy Coded (0,1)	Whether booking has children or babies	
countrygrp	Character	12 Categories: Portugal, France, Great Britain, Germany, Spain, Other Europe, Africa, Asia, Latin America, Middle Easy, North America, Other	Country guests are from	
distribution	Character	4 Categories: Direct, Corporate, Travel Agent/Tour Operator, Other	Channel through which the booking was made	
deposit	Numeric	Dummy Coded (0,1)	Whether deposit was made	

Distribution of hotel_data\$countrygrp

TRAIN/TEST SPLIT

- Selected the attributes in our final columns shown in slide 6 of this presentation
- We split them into 80% training data and 20% testing data and check the distribution of the "is_canceled" attribute
- In situations where we have categorical variables (factors) but need to use them in analytical methods that require numbers (in our case is Logistic Regression), we need to create dummy variables. We did this for "season", "countrygrp", and "distribution"

LOGISTIC REGRESSION

```
summary(mod lr)
mod_lr <- glm(is_canceled ~ ., data = training2, family = "binomial")
```

Deviance Residuals:

```
Median 3Q
 Min
       1Q
                            Max
-3.5266 -0.7725 -0.4509 0.1538 3.3992
```

Coefficients:

	Estimate Std. Error z-value Pr(> z)
(Intercept)	-1.000e+00 1.057e-01 -9.463 < 2e-16 ***
lead_time	2.870e-03 1.226e-04 23.421 < 2e-16 ***
Season	4.352e-01 2.993e-02 14.543 < 2e-16 ***
Haskid	5.476e-01 3.721e-02 14.719 < 2e-16 ***
Countrygrp	-3.737e-01 9.429e-02 -3.963 7.39e-05 ***
Distribution	1.122e+00 6.758e-02 16.597 < 2e-16 ***
is_repeated_guest	-2.530e+00 1.561e-01 -16.207 < 2e-16 ***
previous_cancellations	3.849e+00 1.463e-01 26.302 < 2e-16 ***
booking_changes	-1.063e+00 3.474e-02 -30.595 < 2e-16 ***
deposit_typeNon Refund	5.676e+00 2.202e-01 25.783 < 2e-16 ***
deposit_typeRefundable	2.035e+00 5.763e-01 3.532 0.000412 ***
car_parking_spaces	-1.527e+01 5.641e+01 -0.271 0.786655
total_of_special_requests	-8.645e-01 2.170e-02 -39.846 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1) Null deviance: 86196 on 63463 degrees of freedom Residual deviance: 55658 on 63437 degrees of freedom

AIC: 55712

Prob_Im <- predict(object = mod_Ir, newdata = testing2, type = "response")</pre> Pred_lm <- ifelse(Prob_lm >= 0.45, "yes", "no")

DECISION TREE MODELING

Summary(Decision Tree)

mod_tree <- rpart(is_canceled ~ ., data = training, method = "class")

Variables actually used in tree construction:
[1] deposit_type previous_cancellations

Root node error: 26424/63464 = 0.41636

n= 63464

	CP	nsplit	rel error	xerror	xstd
1	0.38642900	0	1.0000000	1.0000000	0.004699725
2	0.04166667	1	0.6135710	0.6138359	0.004158498
3	0.01000000	2	0.5719043	0.5721692	0.004061393

Variable importance

deposit_type previous_cancellations lead_time 77 16 8

Pred_dt <- predict(mod_tree, testing, type = "class")</pre> AUC: 0.7193 Accuracy: 0.7623 0 .58 .42 100% yes deposit_type = No Deposit no 0 .70 .30 84% previous_cancellations = 0 3 0 17 .83 .71 .29 .00 1.00 Rattle 2020-Apr-24 18:42:33 AS

RANDOM FOREST MODELING

randomForest(is_canceled ~ ., method = "class", data = training, na.action = na.fail, nodesize = 1, importance = TRUE, ntree = 200, ntry = 8)

•AUC: 0.8094 •Accuracy: 0.8222

BEST MODEL

OHighest AUC

OHighest Accuracy

RESULT SUMMARY

DEPLOYMENT AND RECOMMENDATIONS

- Feed booking data directly into model
 - Real-time predictions on cancelation rates
- Allow overbooking until hotel capacity is reached based on "no-cancel" predictions → then STOP overbooking
- Cancelation rates determined on case-by-case basis
 - Allows more accuracy and flexibility based on booking characteristics

THANKYOU