# Encapsulated Bacteria Session 5: Genome upload and annotation

Genomics and Clinical Microbiology 2025
Keith Jolley, Made Krisna, Kasia Parfitt, Martin Maiden
Department of Biology



## Scenario recap: fine typing results

| specimen         | age   | town | serogroup | abcZ | adk | aroE | fumC | gdh | pdhC | pgm | ST   | СС    | PorA     | FetA  |
|------------------|-------|------|-----------|------|-----|------|------|-----|------|-----|------|-------|----------|-------|
| 6                | 6 mo  | А    | В         | 3    | 6   |      | 24   | 11  | 6    |     |      | 41/44 | P1.7-2,4 | F1-21 |
| 7                | 5 mo  | Α    | В         | 3    | 6   | 9    | 24   | 11  | 6    | 9   | 6697 | 41/44 | P1.7-2,4 | F1-21 |
| 8                | 5 mo  | А    | В         | 3    | 6   | 9    | 24   | 11  | 6    | 9   | 6697 | 41/44 | P1.7-2,4 | F5-12 |
| 9                | 10 mo | В    | В         | 4    | 5   | 2    |      |     |      | 20  |      |       |          |       |
| 2                | 15 mo | А    | В         | 3    | 6   | 9    | 24   | 11  | 6    | 9   | 6697 | 41/44 | P1.7-2,4 | F5-12 |
| 5                | 3 yrs | Α    | В         |      | 6   | 9    | 24   | -   | 6    |     |      | 41/44 | P1.7-2,4 |       |
| non-<br>typeable | 9 mo  | В    | -         | -    | -   | -    | -    | -   | -    | -   | -    | -     | -        | -     |

# Meningococcal disease: still with us Peltola, H. (1983). *Rev Infect Dis* **5**, 71-91.



**Vieusseux, G.** (1806). Mémoire sur la maladie qui a regné a Genêve au printemps de 1805. *J Med Chir Pharm* **11**, 163-182.



https://www.gov.uk/government/news/recent-increase-in-group-b-meningococcal-disease-among-teenagers-and-young-adults
Accessed 26<sup>th</sup> January 2022.

## Meningitis and Invasive Meningococcal Disease

- Meningitis:
  - Inflammation of the meninges (tissues around the brain).
- Invasive Meningocococcal Disease (IMD):
  - Invasion by the bacterium Neisseria meningitidis (the meningococcus);
  - Can be meningitis or septicaemia (blood poisoning).
- Severe and frequently fatal:
  - Survivors frequently suffer squelae,
    - Digit or limb loss
    - Brain damage, deafness.



**Rodrigues, C. M. C. & Maiden, M. C. J.** (2018). A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy. *F1000Res* **7,** 401.

### Carriage, disease, and social distancing, 1917



**Glover, J. A.** (1918). The Cerebro-Spinal Fever Epidemic of 1917 at X Depot. *J Hyg (Lond)* **17**, 350-365.



**Glover, J. A.** (1918). "Spacing out" in the Prevention of Military Epidemics of Cerebro-Spinal Fever. *Br Med J.* **2**, 509-512.

#### Meningococcal Disease and carriage

#### IMD Europe 2000-2002



Frosch, M. & Maiden, M. C. (2007). The European networking for combating meningococcal disease. *FEMS Microbiol Rev* **31**, 1-2.

**Brehony, C., Jolley, K. A. & Maiden, M. C**. (2007). Multilocus sequence typing for global surveillance of meningococcal disease. *FEMS Microbiol Rev* **31**, 15-26.

#### Carriage Germany 1999-2001



Claus, H., Maiden, M. C., Wilson, D. J., McCarthy, N. D., Jolley, K. A., Urwin, R., Hessler, F., Frosch, M. & Vogel, U. (2005). Genetic analysis of meningococci carried by children and young adults. *J Infect Dis* **191**, 1263-1271.

### **Carriage Studies**



| UK Meningococcal Carriage Study                                                                                                                                                            |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Today's Date /                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| Q2   amx male   female                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Q3 What is your home postcode?                                                                                                                                                             |  |  |  |  |  |  |  |  |
| Q5 Do you <u>currently</u> have a cold or sore throat? NO NO YES                                                                                                                           |  |  |  |  |  |  |  |  |
| Q6 Are you <u>currently</u> taking or have you recently stopped taking antibiotics?  not taken in the stopped in the stopped in the yes, currently taking past month last month last week. |  |  |  |  |  |  |  |  |
| Q7 How many cigarettes do you smoke in a typical day? 0 1-5 6-10 11-20 more than 20                                                                                                        |  |  |  |  |  |  |  |  |
| Q8 How many times have you smoked an e-cigarette <u>in the last week?</u> 0 1-2 3-6 7 or more                                                                                              |  |  |  |  |  |  |  |  |
| Q9 How many times have you smoked a waterpipe (shisha, hookah, hubbly bubbly) <u>in the last month?</u> 0 1 2 3-4 5 or more                                                                |  |  |  |  |  |  |  |  |
| Q10 Does any other person at home smoke cigarettes? NO YES, outside the house YES, inside the house                                                                                        |  |  |  |  |  |  |  |  |
| Q11 How many days <u>in the last week</u> have you been to a party, pub, bar or night club?                                                                                                |  |  |  |  |  |  |  |  |
| Q12 How many people have you kissed (kissing with tongues, not just lips or cheeks) in the last week?  0 1 2-3 4 or more                                                                   |  |  |  |  |  |  |  |  |
| Q13a Do you have a regular girlfriend or boyfriend? NO NO YES                                                                                                                              |  |  |  |  |  |  |  |  |
| Q13b If YES: do they smoke cigarettes? NO YES do they smoke shisha? NO YES                                                                                                                 |  |  |  |  |  |  |  |  |
| Q14 What is your ethnic group?  White Asian/Asian British Black/African/Caribbean/Black British Mixed/multiple ethnic Other ethnic group                                                   |  |  |  |  |  |  |  |  |
| Thank you for completing this questionnaire                                                                                                                                                |  |  |  |  |  |  |  |  |
| UKMENCAR4 Questionnaire v1.2 11/08/14 REC REF 14/SC/1163                                                                                                                                   |  |  |  |  |  |  |  |  |

Bratcher, H. B., Rodrigues, C. M. C., Finn, A., Wootton, M., Cameron, J. C., Smith, A., Heath, P., Ladhani, S., Snape, M. D., Pollard, A. J., Cunningham, R., Borrow, R., Trotter, C., Gray, S. J., Maiden, M. C. J. & MacLennan, J. M. (2019). UKMenCar4: A cross-sectional survey of asymptomatic meningococcal carriage amongst UK adolescents at a period of low invasive meningococcal disease incidence. *Wellcome Open Res* 4, 118.

# IMD: the 'tip of the iceberg'

- For the meingococcus the great majority infections are not observed:
  - an 'accidental' pathogen.
- Asymptomatic infections, carriage, are major drivers of transmission.
- Eliminating disease requires knowledge of transmission,
  - and in its absence disease control is difficult or impossible.



#### Meningococcal Transmission, Infection, and Invasion



The meningococcus is ordinarily a commensal, causing disease rarely.

Invasion plays no role in transmission, so it can be thought of as an **accidental pathogen**.

Trotter, C. L. & Maiden, M. C. (2009). Meningococcal vaccines and herd immunity: lessons learned from serogroup C conjugate vaccination programs. *Expert Rev Vaccines* 8, 851-861.

## BIGSdb and Population genomics

- Open source
- Web-based
- Links:
  - Sequence data (all types);
  - Provenance information (what, where);
  - Phenotype information (how).
- Contains:
  - Sequence bins;
  - Allele/scheme databases;
  - Isolate records;
  - Links to literature.

Jolley, K. A. & Maiden, M. C. (2010). BIGSdb: Scalable analysis of bacterial genome variation at the population level. *BMC Bioinformatics* **11**, *595*.



### BIGSdb and the PubMLST platform



Jolley, K. A., Bray, J. E. & Maiden, M. C. J. (2018). Openaccess bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. *Wellcome Open Res* **3**, 124.

#### The of the outbreak and its context

- Five months after the specimen 9 was submitted, a further specimen (specimen 10) from another case of meningococcal septicaemia was received.
- This was from a 6 month-old child, a relative of all the previous cases.
- Following this case, a carriage study (throat swabs) was carried out of the extended family (n=112) from which all the reported cases emanated.
  - 14 meningococci were cultured and one PCR positive was obtained (carriage rate 13.4%)
- Following subculture, DNA was extracted and sequenced for the chromosomal DNA obtained from eight B:P1.7-2,4:ST-6697(cc41/44) meningococci (carriage rate 7.14%) obtained in the carriage study. This was also done for the isolates from specimens 7 and 10.
  - These data have been assembled.

#### Exercise

- The PubMLST database contains:
  - the outbreak specimens (genome and other sequence data);
  - the 8 carried isolates from the outbreak strain obtained from the extended family;
  - reference and and historical isolates;
  - a range of analysis tools.
- Upload your assembled genomes and annotate them for comparative analysis.
- Discussion Points:
  - What do these data tell you about the relationships between carried and diseaseassociated meningococci?
  - What additional information would be useful, in addition to the microbiological/genomic data?
  - What public health action, if any, is required?
  - What is your understanding of this outbreak now?

