What is claimed:

4

5

6

7

8

9

10

11

12

1

2

3

4

5

1	1.	A semiconductor device having a non-volatile memory transistor,
2	comprising:	
3	a semi	conductor layer;

a floating gate disposed over the semiconductor layer through a first dielectric layer as a gate dielectric layer;

a second dielectric layer that contacts at least a part of the floating gate and is capable of functioning as a tunneling dielectric layer;

a control gate formed over the second dielectric layer; and

an impurity diffusion layer that forms a source region or a drain region formed in the semiconductor layer,

wherein a conduction layer is provided above the floating gate, and the conduction layer entirely overlaps the floating gate.

- A semiconductor device having a non-volatile memory transistor according 2. to claim 1, wherein the conduction layer outwardly protrudes from an end of the floating gate as viewed in a plan view, and a width of a portion of the conduction layer that outwardly protrudes from the end of the floating gate as viewed in a plan view is $0.5\ \mu m$ or smaller.
- A semiconductor device having a non-volatile memory transistor according 3. 1 to claim 1, wherein a side end of the conduction layer formed above the floating gate and an 2 end of the floating gate are aligned with each other. 3
- A semiconductor device having a non-volatile memory transistor according 4. 1 to claim 1, wherein a width of the conduction layer above a region other than a region where 2 the floating gate is formed is narrower than a width of the conduction layer above the region 3 where the floating gate is formed. 4

1	5.	A semiconductor device having a non-volatile memory transistor according
2	to claim 1, w	herein the conduction layer is electrically connected to the semiconductor layer.

- 6. A semiconductor having a non-volatile memory transistor device, comprising:
- 3 a semiconductor layer;

2

6

7

9

10

11

12

13

- a floating gate disposed over the semiconductor layer through a first dielectric layer

 as a gate dielectric layer;
 - a second dielectric layer that contacts at least a part of the floating gate and is capable of functioning as a tunneling dielectric layer;
- a control gate formed over the second dielectric layer; and
 - an impurity diffusion layer that forms a source region or a drain region formed in the semiconductor layer,
 - wherein a plurality of conduction layers are formed at different levels above the floating gate, and the floating gate is entirely overlapped by the plurality of conduction layers as viewed in a plan view.
- 7. A semiconductor device having a non-volatile memory transistor according to claim 6, wherein at least one of the conduction layers outwardly protrudes from an end of the floating gate as viewed in a plan view, and a width of a portion of the conduction layer that outwardly protrudes from the end of the floating gate as viewed in a plan view is 0.5 μm or smaller.
- 8. A semiconductor device having a non-volatile memory transistor according to claim 6, wherein a side end of the at least one of the conduction layers and an end of the floating gate are aligned with each other.
- 9. A semiconductor device having a non-volatile memory transistor according to claim 6, wherein the conduction layer is electrically connected to the semiconductor layer.

2

3

4

5

6

7

1

2

3

4

1	10.	A semiconductor device having a non-volatile memory transistor, comprising
2	a non-volatile	memory transistor including a semiconductor layer, a floating gate disposed
3	above the sen	niconductor layer, and a control gate formed above the floating gate, wherein a
4	conduction la	yer is provided vertically above the floating gate at least in a region where the
5	control gate is	s not disposed vertically above the floating gate.

- 11. A semiconductor device having a non-volatile memory transistor, comprising a non-volatile memory transistor including a semiconductor layer, a floating gate disposed above the semiconductor layer, and a control gate formed above the floating gate, wherein a conduction layer is provided above the non-volatile memory transistor and a portion of the conduction layer is located vertically above the floating gate, and
- a width of the conduction layer located vertically above the floating gate is formed to be greater than a width of the floating gate.
- 12. A semiconductor device having a non-volatile memory transistor according to claim 11, wherein a width of the conduction layer located other than vertically above the floating gate is formed to be smaller than a width of the conduction layer located vertically above the floating gate.
- 1 13. A semiconductor device having a non-volatile memory transistor according 2 to claim 12, wherein the conduction layer is a wiring layer.
- 1 14. A semiconductor device having a non-volatile memory transistor according 2 to claim 13, wherein the wiring layer is a lowermost wiring layer.

1	15. A semiconductor device having a non-volatile memory transistor, comprising	ıg
2	non-volatile memory transistor including a semiconductor layer, a floating gate disposed	
3	bove the semiconductor layer, and a control gate disposed above the floating gate,	
4	wherein a plurality of conduction layers having a multiple layered structure are	
5	provided above the non-volatile memory transistor, and	
6	at least one conduction layer among the plurality of conduction layers is provided	
7	rertically above the floating gate at least in a region where the control gate is not disposed	
8	rertically above the floating gate.	

- 1 16. A semiconductor device having a non-volatile memory transistor according 2 to claim 15, where the conduction layers are wiring layers.
- 1 17. A semiconductor device having a non-volatile memory transistor according to claim 15, further comprising:
- a first dielectric layer that defines a gate dielectric layer disposed between the semiconductor layer and the floating gate;
- a second dielectric layer that contacts at least a part of the floating gate and is capable of functioning as a tunneling dielectric layer; and
 - an impurity diffusion layer that forms a source region or a drain region formed in the semiconductor layer.
- 1 18. A semiconductor device having a non-volatile memory transistor according 2 to claim 1, wherein the non-volatile memory transistor comprises a first circuit region, and 3 wherein the semiconductor device further comprises a second circuit region mix-mounted 4 therein.
- 1 19. A semiconductor device having a non-volatile memory transistor according 2 to claim 18, wherein the second circuit region includes at least a logic circuit.

8

9

10

1	20. A semiconductor device having a non-volatile memory transistor according
2	to claim 10, further comprising:
3	a first dielectric layer that defines a gate dielectric layer disposed between the
4	semiconductor layer and the floating gate;
5	a second dielectric layer that contacts at least a part of the floating gate and is
6	capable of functioning as a tunneling dielectric layer; and
7	an impurity diffusion layer that forms a source region or a drain region formed in the
8	semiconductor layer,
1	21. A semiconductor device having a non-volatile memory transistor according
2	to claim 15, wherein the non-volatile memory transistor comprises a first circuit region, and
3	wherein the semiconductor device further comprises a second circuit region mix-mounted
4	therein.
1	22. A semiconductor device having a non-volatile memory transistor according
2	to claim 21, wherein the second circuit region includes at least a logic circuit.
1	23. A semiconductor device having a non-volatile memory transistor, comprising
2	a semiconductor layer;
3	a floating gate disposed over the semiconductor layer through a first dielectric layer
4	comprising a gate dielectric layer;
5 .	a second dielectric layer that contacts at least a part of the floating gate and is
6	capable of functioning as a tunneling dielectric layer;

one or more conduction layers formed over the floating gate, the floating gate

including an upper surface, wherein a line normal to any portion of the upper surface will

a control gate formed over the second dielectric layer; and

contact at least one of the one or more conduction layers over the floating gate.

1	24. A method for manufacturing a semiconductor device having a non-volatile	
2	memory transistor, comprising:	
3	forming a first dielectric layer comprising a gate dielectric layer on a substrate;	
4	forming a floating gate over the gate dielectric layer;	
5	forming a second dielectric layer that contacts at least a part of the floating gate and	
6	is capable of functioning as a tunneling dielectric layer;	
7	forming a control gate over the second dielectric layer;	
8	forming an impurity diffusion layer that forms a source region or a drain region in	
9	the semiconductor layer; and	
10	forming a conduction layer above the floating gate so that a portion of the	
11	conduction layer is positioned vertically above the floating gate, where the portion of the	
12	conduction layer overlaps the entire floating gate.	
1	25. A method for manufacturing a semiconductor device having a non-volatile	
2	memory transistor, comprising:	
3	forming a floating gate above a semiconductor layer;	
4	forming a control gate above the floating gate; and	
5	forming a conduction layer vertically above the floating gate at least in a region	
6	where the control gate is not disposed vertically above the floating gate.	

26. A method as in claim 25, comprising forming the conduction layer to have a width greater than that of the floating gate in a region where the conduction layer is disposed vertically above the floating gate.

1	27. A method for manufacturing a semiconductor device having a non-volatile
2	memory transistor, comprising:
3	forming a floating gate above a semiconductor layer;
4	forming a control gate above the floating gate,
5	forming a plurality of conduction layers having a multiple layered structure above
6	the non-volatile memory transistor, and
7	wherein at least one of the conduction layers is formed vertically above the floating
8	gate at least in a region where the control gate is not disposed vertically above the floating
9	gate