Lunar Contour Crafting – A Novel Technique for ISRU-Based Habitat Development

Behrokh Khoshnevis - University of Southern California

Melanie P. Bodiford, Kevin H. Burks, Ed Ethridge, & Dennis Tucker - NASA/Marshall Space Flight Center Won Kim - NASA/Jet Propulsion Laboratory

Houssam Toutanji – University of Alabama in Huntsville Michael R. Fiske – Morgan Research Corporation

Paper No. AIAA-2005-XXXX Presented To: AIAA 43rd Aerospace Sciences Meeting & Exhibit Reno, NV January 11, 2005

Habitat Structures - Introduction

- Habitat Structures at MSFC is one element of the In-Situ Fabrication and Repair (ISFR) Program
- ISFR develops technologies for fabrication, repair and recycling of tools, parts, and habitats/structures using in-situ resources
- ISRU-based habitat structures are considered Class III (iaw NASA 1997 Habitat Development Roadmap (Cohen & Kennedy)) and apply primarily to Spirals 3 (Moon) and 5 (Mars)
- Habitat Structures Purpose:
- Develop Lunar and/or Martian habitat structures for manned missions that maximize the use of in-situ resources to address the following agency topics:
- Bioastronautics Critical Path Roadmap (BCPR, Rev. E)) risks
 - Risks 31-35 (Radiation Health), 43-44 (ALS) & 49 (SHFE)
- Strategic Technical Challenges defined in H&RT Formulation Plan, v. 3.0
- Margins & Redundancy Reusability
- Modularity

- Autonomy

Robotic Networks

- Affordable Logistics Pre-positioning
 - Space Resource Utilization

Habitat Structures - Introduction

- Habitat Structures Top-Level Requirements
- Support a pressurized (shirtsleeve) environment for the crew
- Protect the crew from a worst case radiation (GCR & SPE)
- Protect the crew from micrometeorites and exhaust plumes
- Initially, be able to be fabricated in advance of a manned crew so as to provide immediate protection (semi-autonomous construction)
- Early, achievable, and visible milestones and successes are
- Development should be evolutionary and scalable
- Present a psychologically/ergonomically compatible living environment for the crew
- Maximize utilization of in situ resources

Habitat Structures - Interfaces

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov

Cooling Heating

Power

for Spiral "N" Applications

Maturation/Extension

-Technology

EVA

Parts and Supplies

Habitat Structures - Construction Products

Raw Regolith

Blocks

Thin Films/ Inflatables

Reinforced

Concrete

Deployable Metal Structures

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov

What is Contour Crafting?

- as solid freeform fabrication or rapid prototyping to construction, particularly - Developed at USC, CC is the application of layered fabrication (also known with concrete
- Computer-controlled, CC delivers superior surface finish and accurate planar or complex geometries
- Terrestrial applications for low income and Army field housing

- Utilities and/or radiation-shielding materials can be incorporated
- System has been demonstrated at a subscale level, utilizing batch processing

- Can envision large gantry system or multiple robots constructing largescale terrestrial facilities
- High degree of automation lends CC to other planetary applications

Elements of Lunar Contour Crafting

- -Process Development
- USC, MSFC
- Robotic Operations for Lunar Construction
- JPL, USC, MSFC
- Concrete Development
- UAH, MSFC
- Glass Reinforcement Development
- MSFC
- Integrated Testing
- MSFC, USC, JPL, UAH

Process Development

- Refinement of nozzle, top and side trowel materials and configuration
- Refinement of ability to generate nonorthogonal surfaces (side trowel orientation control
- Incorporation of integrated flow start/stop capability
- Variable-position nozzle for tight inside corners
- Integrated cleaning system

- Three-dimensional head movement, 6 DOF delivery
 - Continuous processing vs batch processing
- Incorporation of utilities such as:
 - -Electrical -Plumbing
- -Radiation shielding materials

Infrastructure Support

- Electrical and plumbing components can be integrated into wall (better on ID for surface applications)

Radiation shielding components can be integrated into wall, or on either surface

Robotic Operations for Lunar Construction

- Robotic configurations include gantry system and/or multiple, independently controlled robots
- System can be designed for mobility in the event that crews must change habitat locations
- Telescoping and/or foldable beams can be used for main cross beam, guide rails, and vertical supports

- Proximity controls can be incorporated for later structures development with a manned presence
- Completely autonomous control on the Moon must be demonstrated in order to be a successful tech demo for future Mars applications (time delay)

Concrete Development

- 1994 STS GAS Can experiment prepared traditional concrete samples with mixed results
 - Techniques include:
- Wet-mix method
- Dry-mix/Steam Injection (DMSI)
- Waterless Regolith Mix (WRM)

	Compressive	Tensile Strength mPa
	ou cugui, iiii a	Strength, mr a
LRS/Sulfur	62	7.4
Mix		
LRS/Portland	35	2.5
Cement		

- Constraints include:
- Volume change/softening of S at 96°C
- Combination of low temperature and low pressure on S sublimation
- Effect of thermal cycles on strength
 - Current research includes:
- Additions of Dicyclopentadiene to improve strength
- Effects of glass fiber additions on strength

Glass Reinforcement Development

- Lunar regolith is comprised of up to 80% glassy materials, depending on regolith "maturity"
- Mechanical properties of lunar-derived glass are expected to be significantly higher than terrestrial glass, based on lack of water during glass formation
- Current work includes:
- -Use of solar-powered furnace to melt LRS, fabricate glass beads and/or fibers
- -Evaluation of additives required to tune optical properties of LRS-derived glass
- Applications for glass products include:
- electrical and thermal insulation
- braided cables
- reinforcement in structural materials
- struts
- compression members in tensegrity structures
- optical elements

Test Status

- Currently modifying prototype hardware by:
- Addition of limit switches
- Addition of "home" or "stop" position
- Addition of a third axis of motion to aid in development of more complex shapes

- Software upgrades
- Use of LRS-based concrete
- Addition of capability for continuous processing for future operations
- Addition of solenoid "shutter" and pressure relief for stop/start operations and air purging of system

SFR Habitat Structures Capability Evolution Roadmap

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov

Habitat Structures – Fabrication Challenges

- Lunar soil (regolith) is well characterized, but from limited locations (Apollo, Luna, Surveyor)
- Probable South Pole location of Moon base is essentially uncharacterized
- Lack of large quantities of high quality Lunar Regolith Simulant
- Design must support high tensile loads due to pressurized environment habitat is a pressure vessel!
- Pre-manned mission construction requires complex robotics and teleoperations
- Integration of utilities and radiation shielding materials
- Configuration-specific technical challenges, for example:
- Reinforced Concrete
- Extruded in place vs pre-cast, pre-stressed
- Steel vs glass rod reinforcement
- Water-based vs waterless concrete
- Hermeticity

15

Near-Term Development Activities

- Lunar regolith simulant characterization
- JSC-1 (NASA/JSC)
- JPT-1890 (Jensan Scientific)
- Concrete development/testing
- Sulfur & LRS-based concrete testing in work
- Significant improvements in tensile & compressive strength over Portland cement-based concrete
- Effects of simulant on materials properties to be evaluated
- Testing with prototype Contour Crafting system in MDL
- Compacted block development/testing
- Binderless compacted JSC-1 LRS block did not hold together
- Evaluating potential binders
- Radiation shielding modeling/testing of candidate configurations
- Evaluation of all technologies with respect to acceptance criteria (being defined), including TRL and RD³ assessment
- Definition of technology exit criteria