Recitation 4/28

Sungwoo Jeong Tuesday 10AM, 11AM

April 28, 2020

Markov Matrix

 $M \in \mathbb{R}^{n \times n}$ is called *Markov matrix* if it has following properties

- All the entries are positive or zero
- Sum of any column is 1.

Markov matrix is used to express a probabilistic behaviors. For example, we have two cities A, B. A resident of A moves to B a year later with probability 0.2 and a resident in B moves to city A a year later with probability 0.1. Then the matrix equation of population of year n can be expressed as,

$$\begin{pmatrix} \operatorname{pop}(\mathbf{A})_n \\ \operatorname{pop}(\mathbf{B})_n \end{pmatrix} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix} \begin{pmatrix} \operatorname{pop}(\mathbf{A})_{n-1} \\ \operatorname{pop}(\mathbf{B})_{n-1} \end{pmatrix}$$

An important property of Markov matrix is that they always have eigenvalue one. (Why?)

An eigenvector π corresponding to $\lambda = 1$ is called startionary vector, as they satisfy $M\pi = \pi$.

(Fact 1) All the eigenvalues of M have absolute value smaller or equal to 1.

(Fact 2) If all the entries are positive, the eigenvalue 1 has multiplicity one.

(Fact 3) If all the entries are positive and M has linearly independent eigenvectors then $M^n u$ approaches the direction of π , for any vector u.

Differential Equations

We will discuss a differential equations,

$$\frac{d}{dt}x(t) = Ax(t)$$

where $A \in \mathbb{R}^{n \times n}$ and $x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$, a vector valued function of $t \in \mathbb{R}$. So in other words, the deriva-

tives of x_i can be expressed as linear combination of x_1, x_2, \ldots, x_n .

Here, a matrix exponential is used. Recall we defined matrix exponential of matrices who has eigendecomposition (i.e. diagonalizable matrices) as

$$e^{A} = X \begin{pmatrix} e^{\lambda_{1}} & & \\ & \ddots & \\ & & e^{\lambda_{n}} \end{pmatrix} X^{-1}$$

where $A = X\Lambda X^{-1}$ is the eigendecomposition of A. Another definition of matrix exponential can be defined as

$$e^A = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots$$

For differential equations above, a matrix valued function e^{tA} is used. Assume $x(t) = e^{tA}y$ where $y \in \mathbb{R}^n$ is just a vector. We have

$$\frac{d}{dt}x(t) = Ae^{tA}y = Ax(t)$$

and we need to use the initial condition to find y.

Symmetric Matrix

 $A \in \mathbb{R}^n$ be symmetric matrix, i.e. $A^T = A$. Then we have following important identities.

- 1. All eigenvalues are in \mathbb{R} .
 - Recall that eigenvalues are usually complex try eigvals(randn(10, 10)) in Julia
- 2. Eigenvectors are orthogonal to each other (except for colinear ones belong to same eigenvalue) (Why?)
- 3. A is diagonalizable

Thus we have a new eigendecomposition when we select orthonormal eigenvectors

$$A = X\Lambda X^T$$

Symmetric Positive Definite Matrix

(Formal Definition) Symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called *Positive Definite* if for any vector $x \in \mathbb{R}^n$ we have $x^T A x > 0$. Similarly, A is *Positive Semidefinite* if $x^T A x \geq 0$ and *Negative Definite* if $x^T A x < 0$ for all vectors x.

(Easier Definition) Symmetric matrix A is Positive definite if all eigenvalues are positive.

- Easy way to construct a positive (semi)definite matrix : A^TA for any matrix A. (Why?)

Similar Matrices

Matrices $A, B \in \mathbb{R}^{n \times n}$ are called similar if there exists an invertible matrix P such that $A = PBP^{-1}$.

Diagonalization in terms of similar? How can we define Diagonalizable?

If A, B are similar, then they have same

- Eigenvalues
- Trace(Sum of diagonal)
- Determinants
- Rank

Problems

1. Assume A, B are similar matrices. What is the trace of A - B?

- 2. (a) For symmetric positive definite matrix A, we always have a symmetric matrix $B = \sqrt{A}$ by applying square roots to eigenvalues on eigendecomposition. Then we have $B^2 = B^T B = A$. Can we always find non-symmetric B such that $A = B^T B$?
- (b) For symmetric positive definite A, Cholesky decomposition is defined as $A = LL^T$ where L is lower triangular matrix. Prove it exists, by using (a) and QR decomposition.

ANSWERS

- 1. Trace is a linear function so trace of A B is zero.
- 2.(a) We can use SVD. Let eigendecomposition of $A = V\Lambda V^T$. We can take $B = USV^T$ with some random orthogonal matrix U, and S being the diagonal matrix with diagonals being square root values of diagonals of Λ . Then $B^TB = A$ and B is not a symmetric matrix.
- (b) From (a) we have B such that $B^TB = A$. Let QR decomposition of B be B = QR. Then $B^TB = R^TQ^TQR = R^TR$ and if we take $L = R^T$ a lower triangular matrix, we have $A = LL^T$ so it exists by existence of QR decomposition.

Appendix. Why Symmetric matrices have linearly independent eigenvectors?

There are lots of proofs out there but this proof is one we can understand within the scope of this course! Reference) https://math.stackexchange.com/questions/1842366/eigenvalue-of-multiplicity-k-of-a-real-symmetric-matrix-has-exactly-k-linearly-i/18446861844686