- **57.** a. 24.7°
 - **b.** It will pass through the bottom surface because $\theta_i < \theta_c \ (\theta_c = 41.8^\circ).$
- **59.** 1.38
- **61.** 58.0 m
- **63.** a. 4.83 cm
 - **b.** The lens must be moved 0.12 cm.
- **65.** 1.90 cm

15 CHAPTER

Practice A, p. 531

- 1. $5.1 \times 10^{-7} \text{ m} =$ $5.1 \times 10^2 \, \text{nm}$
- **3.** 0.125°

Practice B, p. 538

- 1. 0.02°, 0.04°, 0.11°
- **3.** 11
- **5.** 6.62×10^3 lines/cm

15 Review, pp. 548-551

- **5.** θ would decrease because λ is shorter in water.
- **9.** 630 nm
- **11.** 160 μm
- **19.** 3.22°
- **21.** a. 10.09°, 13.71°, 14.77° **b.** 20.51°, 28.30°, 30.66°
- **29.** 432.0 nm
- **31.** 1.93×10^{-3} mm = 3λ ; a maximum

CHAPTER

Practice A, p. 566

- 1. 230 N (attractive)
- **3.** 0.393 m

Practice B, p. 568

1. 47 N, along the negative x-axis; 157 N, along the positive *x*-axis; 11.0×10^1 N, along the negative x-axis

Practice C, p. 570

- 1. x = 0.62 m
- **3.** 5.07 m

Practice D, p. 575

- 1. 1.66×10^5 N/C, 81.1° above the positive *x*-axis
- **3. a.** 3.2×10^{-15} N, along the negative *x*-axis **b.** 3.2×10^{-15} N, along
 - the positive x-axis

16 Review, pp. 581-585

- **15.** $3.50 \times 10^3 \text{ N}$
- **17.** 91 N (repulsive)
- **19.** 1.48×10^{-7} N, along the +x direction
- **21.** 18 cm from the 3.5 nC charge
- **33.** 5.7×10^3 N/C, 75° above the positive *x*-axis
- **35.** a. 5.7×10^{-27} N, in a direction opposite **E**
 - **b.** 3.6×10^{-8} N/C
- **37. a.** 2.0×10^7 N/C, along the positive *x*-axis
 - **b.** $4.0 \times 10^1 \text{ N}$
- **41.** 7.2×10^{-9} C
- **43.** $v_{electron} = 4.4 \times 10^6 \text{ m/s};$ $v_{proton} = 2.4 \times 10^3 \text{ m/s}$
- **45.** $5.4 \times 10^{-14} \text{ N}$
- **47.** 2.0×10^{-6} C
- **49.** 32.5 m
- **51.** a. 5.3×10^{17} m/s²
 - **b.** 8.5×10^{-4} m
 - c. $2.9 \times 10^{14} \text{ m/s}^2$
- **53.** a. positive
 - **b.** 5.3×10^{-7} C
- **55.** a. 1.3×10^4 N/C

b. 4.2×10^6 m/s

CHAPTER

Practice A, p. 599

- 1. 6.4×10^{-19} C
- 3. $2.3 \times 10^{-16} \text{ J}$

Practice B, p. 607

- 1. a. 4.80×10^{-5} C
 - **b.** 4.50×10^{-6} J
- **3. a.** 9.00 V **b.** 5.0×10^{-12} C

Practice C, p. 609

- 1. 4.00×10^2 s
- 3. 6.00×10^2 s
- **5. a.** 2.6×10^{-3} A
 - **b.** 1.6×10^{17} electrons
 - **c.** 5.1×10^{-3} A

Practice D, p. 615

- **1.** 0.43 A
- **3. a.** 2.5 A
 - **b.** 6.0 A
- **5.** 46 Ω

Practice E, p. 621

- 1. 14Ω
- **3.** 1.5 V
- **5.** $5.00 \times 10^2 \,\mathrm{A}$

17 Review, pp. 626-631

- **9.** $-4.2 \times 10^5 \,\mathrm{V}$
- **19.** 0.22 J
- **23.** $\nu_{a\nu g} >> \nu_{drift}$
- **33. a.** 3.5 min
 - **b.** 1.2×10^{22} electrons
- **41.** 3.4 A
- **49.** 3.6×10^6 I
- **51.** the 75 W bulb
- **53.** $2.0 \times 10^{16} \, \text{J}$