

UNIVERSIDAD DE ANTIOQUIA

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Final - Series de Tiempo I

Profesor: Duván Cataño

- 1. Suppose we would like to predict a single stationary series x_t with zero mean and autocorrelation function $\gamma(h)$ at some time in the future, say, t + l, for l > 0.
 - a) If we predict using only x_t and some scale multiplier A, show that the mean-square prediction error

$$MSE(A) = \mathbb{E}[(x_{t+l} - Ax_t)^2]$$

is minimized by the value

$$A = \rho(l)$$
.

b) Show that the minimum mean-square prediction error is

$$MSE(A) = \gamma(0)[1 - \rho^{2}(l)].$$

c) Show that if $x_{t+l} = Ax_t$, then $\rho(l) = 1$ if A > 0, and $\rho(l) = -1$ if A < 0.

 $2.\,$ Una serie de 400 observaciones presentó los siguientes resultados:

con $\bar{x}_t = 8 \text{ y } \mu_0 = 9.$

- a) Explique por qué podemos ajustar a la serie un modelo $\operatorname{AR}(2).$
- b) Obtenga las estimativas $\hat{\phi_1}$ y $\hat{\phi_2}$ del modelo AR(2) utilizando las ecuaciones de Yule-Walker.
- c) Verifique que el modelo ajustado satisface las condiciones de estacionaridad.
- d) Usando $\hat{\phi}_1$ y $\hat{\phi}_2$ como verdaderos, describa el comportamiento general de la ACF de ese proceso.

3. Suponga que el modelo $(1 - B^4)x_t = a_t + a_{t-1} - 0, 5a_{t-4}$, donde $\sigma_a^2 = 2, 25$, fue ajustado a las observaciones de una serie de datos trimestrales con una muestra de T = 100. Suponga que las observaciones y residuos de los últimos cuatro trimestres son dadas por:

Trimestre	I	Π	III	IV
x_t	124	121	129	139
a_t	2	-1	1	3

- a) Encuentre las predicciones $x_{100}(l)$, para l=1,2,3,4.
- b) Construya los intervalos de predicción con $\alpha=0,05.$

4. Suponga que el modelo ajustado para \boldsymbol{x}_t ha sido

$$x_t - x_{t-1} = (1 - 0, 5B)b_t,$$

pero los residuos b_t no son aleatorios. Si el modelo posteriormente identificado para b_t fue un ARIMA(0,1,1), con $\theta = -0, 8$, ¿cuál es el modelo que debemos considerar para x_t ?