
NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004
BY BONNIE MCBRIDE AND SANFORD GORDON
REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem case=LMPHR o/f=2,4,6,8,10,
 rocket frozen nfz=1 tcest,k=3800
 p,bar=20,25,30,
react
 oxid=H2O(L) wt=100
 oxid=CH3OH(L) wt=100
 oxid=NH3(L) wt=100
 fuel=Sasoll Wax 6003 wt=100 t,k=298.16
 h,kj/mol=-953.071 C 32 H 66

WARNING!! Wax NOT RECOGNIZED (INPUT)

WARNING!! LITERAL EXPECTED FOR 6003 (INPUT)

end

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc,BAR = 20.000000 25.000000 30.000000

Pc/P =

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS =

NFZ= 1 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY
EXPLODED FORMULA

O: H2O(L) 0.333333 0.0000000E+00 0.00 0.0000
H 2.00000 0 1.00000

C: CH3OH(L) 0.333333 0.000000E+00 0.00 0.0000
C 1.00000 H 4.00000 0 1.00000

O: NH3(L) 0.333333 -0.860604E+04 239.72 0.0000
N 1.00000 H 3.00000
F: Sasoll 1.000000 -0.114627E+06 298.16 0.0000
C 32.00000 H 66.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) LAST thermo.inp UPDATE: 9/09/04

g 7/97 *C tpis79 *CH g 4/02 CH2

g 4/02	CH3	g11/00	CH2OH	g 7/00	CH3O
g 8/99	CH4	g 7/00	СНЗОН	srd 01	СН300Н
g 8/99	*CN	g12/99	CNN	tpis79	*CO
g 9/99	*CO2	tpis91	COOH	tpis91	*C2
g 6/01	C2H	g 1/91	C2H2,acetylene	g 5/01	C2H2, vinylidene
g 4/02	CH2CO, ketene	g 3/02	O(CH)20	srd 01	но (СО) 20Н
g 7/01	C2H3, vinyl	g 9/00	CH3CN	g 6/96	CH3CO,acetyl
g 1/00	C2H4	g 8/88	C2H4O,ethylen-o	g 8/88	CH3CHO, ethanal
g 6/00	СНЗСООН	srd 01	ОНСН2СООН	g 7/00	C2H5
g 7/00	C2H6	g 8/88	CH3N2CH3	g 8/88	С2Н5ОН
g 7/00	СН3ОСН3	srd 01	CH302CH3	g 7/00	CCN
tpis91	CNC	srd 01	OCCN	tpis79	C2N2
g 8/00	C20	tpis79	*C3	n 4/98	C3H3,1-propynl
n 4/98	C3H3,2-propynl	g 2/00	C3H4,allene	g 1/00	C3H4, propyne
g 5/90	C3H4,cyclo-	g 3/01	C3H5,allyl	g 2/00	C3H6,propylene
g 1/00	C3H6,cyclo-	g 6/01	C3H6O,propylox	g 6/97	C3H6O, acetone
g 1/02	C3H6O,propanal	g 7/01	C3H7,n-propyl	g 9/85	C3H7,i-propyl
g 2/00	С3Н8	g 2/00	C3H8O,1propanol	g 2/00	C3H8O,2propanol
srd 01	CNCOCN	g 7/88	C302	g tpis	*C4
g 7/01	C4H2,butadiyne	g 8/00	C4H4,1,3-cyclo-	n10/92	C4H6, butadiene
n10/93	C4H6,1butyne	n10/93	C4H6,2butyne	g 8/00	C4H6, cyclo-
	C4H8,1-butene	n 4/88	C4H8,cis2-buten	n 4/88	C4H8, tr2-butene
n 4/88	C4H8, isobutene	g 8/00	C4H8,cyclo-	g10/00	(СНЗСООН) 2
n10/84	C4H9,n-butyl	n10/84	C4H9,i-butyl	g 1/93	C4H9,s-butyl
g 1/93	C4H9,t-butyl	g12/00	C4H10,n-butane	g 8/00	C4H10,isobutane
g 6/01	C4N2	g 8/00	*C5	g 5/90	C5H6,1,3cyclo-
g 1/93	C5H8,cyclo-	n 4/87	C5H10,1-pentene	g 2/01	C5H10,cyclo-
n10/84	C5H11, pentyl	g 1/93	C5H11,t-pentyl	n10/85	C5H12,n-pentane
n10/85	C5H12,i-pentane	n10/85	CH3C (CH3) 2CH3	g 2/93	C6H2
g11/00	C6H5, phenyl	g 8/00	C6H5O, phenoxy	g 8/00	C6H6
g 8/00	C6H5OH, phenol	g 1/93	C6H10,cyclo-	n 4/87	C6H12,1-hexene
g 6/90	C6H12,cyclo-	n10/83	C6H13,n-hexyl	g 6/01	C6H14,n-hexane
g 7/01	C7H7, benzyl	g 1/93	C7H8	g12/00	C7H16, cresol-mx
n 4/87	C7H14,1-heptene	n10/83	C7H15,n-heptyl	n10/85	C7H16,n-heptane
n10/85	C7H16,2-methylh	n 4/89	C8H8, styrene	n10/86	C8H10,ethylbenz
n 4/87	C8H16,1-octene	n10/83	C8H17,n-octyl	n 4/85	C8H18, n-octane
n 4/85	C8H18, isooctane	n10/83	C9H19,n-nonyl	g 3/01	C10H8, naphthale
n10/83 g 6/97	C10H21, n-decyl	g 8/00 g 6/01	C12H9,o-bipheny	g 8/00	C12H10,biphenyl
_	*H	_	HCN	g 1/01	HCO HNC
tpis89 g 7/00	HCCN HNCO	g 6/01 g10/01	HCCO	g 6/01	HNO2
g 7/00 g 5/99	HNO3	g 4/02	HNO HO2	tpis89 tpis78	*H2
g 5/99 g 5/01		g 4/02 g 6/01	HCOOH	q 8/89	H2O
g 6/99	HCHO, formaldehy H2O2	g 6/01		g 5/97	*N
			(HCOOH) 2		
g 6/01 tpis89	NCO NH3	g 4/99	*NH NH2OH	g 3/01 tpis89	NH2 *NO
g 4/99	NO2	tpis89 j12/64	NO3	tpis78	*N2
g 4/99 g 6/01	NCN	g 5/99	N2H2	tpis/o	
g 4/99	N2H4	g 3/99 g 4/99	N20	g 4/99	
tpis89	N204	g 4/99	N205	tpis89	N3
g 4/99	N3H	g 4/99 g 5/97	*0	g 4/02	*OH
tpis89	*02	g 3/9/ g 8/01	03	n 4/83	C(gr)
n 4/83	C(gr)	n 4/83	C(gr)	g11/99	H2O(cr)
g 8/01	H2O(L)	g 8/01	H2O(L)	9/ //	
5 3,01	· - \ - /	5 -/ 0 -	- \-/		

O/F = 2.000000

ENTHALPY	EFFECTIVE FUE: h(2)/R	L EFFECTIVE OXIDA h(1)/R	NT MIXTURE h0/R
(KG-MOL)(K)/KG	-0.25423813E+0	3 -0.16844346E+03	-0.19704169E+03
KG-FORM.WT./KG	bi(2)	bi(1)	b0i
* H	0.14638481E+0	0.13733597E+00	0.14035225E+00
*0	0.0000000E+0	0.28905870E-01	0.19270580E-01
*C	0.70974455E-0	1 0.10403058E-01	0.30593524E-01
*N	0.0000000E+0	0 0.19572704E-01	0.13048470E-01
POINT ITN	Т Н	O C	N
1 22 11	39.222 -7.808	-35.287 -1.060	-12.331
ADD C(gr) 1 3 11	37.142 -7.733	-34.927 -1.714	-12.340

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.816773 PHI,EQ.RATIO=-1.776024

	CHAMBER	THROAT
Pinf/P	1.0000	1.8064
P, BAR	20.000	11.072
T, K	1137.14	1010.07
RHO, KG/CU M	2.7483 0	1.7129 0
H, KJ/KG	-1638.31	-2044.23
U, KJ/KG	-2366.02	-2690.63
G, KJ/KG	-18643.6	-17149.2
S, $KJ/(KG)(K)$	14.9544	14.9544
M, (1/n)	12.992	12.992
MW, MOL WT	11.861	11.861
Cp, $KJ/(KG)(K)$	3.2479	3.1400
GAMMAs	1.2454	1.2560
SON VEL, M/SEC	952.0	901.0
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000 CSTAR, M/SEC 1295.9

CF	0.6953
Ivac, M/SEC	1618.4
Isp, M/SEC	901.0

MOLE FRACTIONS

CH4	0.13599	*CO	0.12361	*CO2	0.01614
C2H4	0.00001	C2H6	0.00002	HCN	0.00001
*H2	0.48682	H20	0.07269	NH3	0.00054
*N2	0.07711	C(gr)	0.08708		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1152.828 -7.650 -34.555 -1.736 -12.244

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	N ENERGY	TEMP
		(SEE NOTE)) KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-953071.000	298.160

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.816773 PHI,EQ.RATIO=-1.776024

		CHAMBER	THROAT
Pir	nf/P	1.0000	1.8044
P,	BAR	25.000	13.855
T,	K	1152.83	1025.49
RHO	O, KG/CU M	3.4137 0	2.1268 0
Η,	KJ/KG	-1638.31	-2046.34
U,	KJ/KG	-2370.64	-2697.79
G,	KJ/KG	-18714.1	-17236.0
s,	KJ/(KG)(K)	14.8121	14.8121

M, (1/n)	13.088	13.088
MW, MOL WT	12.015	12.015
Cp, $KJ/(KG)(K)$	3.2583	3.1492
GAMMAs	1.2422	1.2527
SON VEL, M/SEC	953.8	903.4
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1301.2
CF	0.6943
Ivac, M/SEC	1624.5
Isp, M/SEC	903.4

MOLE FRACTIONS

CH4	0.14417	*CO	0.12515	*CO2	0.01612
C2H4	0.00001	C2H6	0.00002	HCN	0.00001
*H2	0.47964	H20	0.07414	NH3	0.00061
*N2	0.07808	C(gr)	0.08205		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1165.877 -7.582 -34.251 -1.754 -12.165

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-953071.000	298.160

2.00000 %FUEL= 33.333333 R,EQ.RATIO= 6.816773 PHI,EQ.RATIO=-1.776024 0/F=

Pinf/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG G, KJ/KG	1165.88 4.0757 0 -1638.31 -2374.38	1.8027 16.642 1038.35 2.5385 0 -2048.02 -2703.58			
S, KJ/(KG)(K)					
M, (1/n) MW, MOL WT Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC MACH NUMBER	12.145 3.2671 1.2395 955.2	12.145 3.1572 1.2500 905.2			
PERFORMANCE PAR	RAMETERS				
Ae/At CSTAR, M/SEC CF Ivac, M/SEC Isp, M/SEC		1.0000 1305.5 0.6934 1629.4 905.2			
MOLE FRACTIONS					
CH4 C2H4 *H2 *N2	0.15111 0.00001 0.47356 0.07889	C2H6 H2O	0.12642 0.00003 0.07536 0.07780		0.01613 0.00001 0.00067

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 4.000000

	EFFECTIVE FUEL	EFFECTIVE OXIDANT	MIXTURE
ENTHALPY	h(2)/R	h(1)/R	h0/R
(KG-MOL)(K)/KG	-0.25423813E+03	-0.16844346E+03	-0.18560240E+03
KG-FORM.WT./KG	bi(2)	bi(1)	b0i
*H	0.14638481E+00	0.13733597E+00	0.13914574E+00

*0			0.0000000E+00	0.28	905870E-01	0.23124696	E-01
*C			0.70974455E-01	0.10	403058E-01	0.22517338	E-01
*N			0.0000000E+00	0.19	572704E-01	0.15658164	E-01
POINT	ITN	Т	Н	0	С	N	
1	4	1189.967	-7.779	-34.162	-1.787	-12.363	
REMOVE	E C(gr) 1193.629	-7.760	-33.922	-2.101	-12.371	
Τ.	J	11/3.029	7.700	33.322	2.101	12.3/1	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3 (L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.956067 PHI,EQ.RATIO=-0.888012

	CHAMBER	THROAT
Pinf/P	1.0000	1.8338
P, BAR	20.000	10.906
T, K	1193.63	1039.77
RHO, KG/CU M	2.3439 0	1.4673 0
H, KJ/KG	-1543.19	-2026.67
U, KJ/KG	-2396.46	-2769.95
G, KJ/KG	-20893.4	-18882.7
S, KJ/(KG)(K)	16.2113	16.2113
M, (1/n)	11.631	11.631
MW, MOL WT	11.631	11.631
Cp, $KJ/(KG)(K)$	3.1935	3.0903
GAMMAs	1.2884	1.3009
SON VEL, M/SEC	1048.5	983.3
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1386.1
CF	0.7094
Ivac, M/SEC	1739.2
Isp, M/SEC	983.3

MOLE FRACTIONS

CH4	0.08080	*CO	0.16560	*C02	0.01547
C2H6	0.00001	HCN	0.00001	*H2	0.57437
H20	0.07243	NH3	0.00052	*N2	0.09079

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	Н	0	С	N
1	3	1210.730	-7.672	-33.534	-2.160	-12.277

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.956067 PHI,EQ.RATIO=-0.888012

CHAMBER	THROAT
1.0000	1.8317
25.000	13.648
1210.73	1056.24
2.9051 0	1.8180 0
-1543.19	
-2403.74	-2780.98
-20978.1	-18985.1
16.0522	16.0522
11.698	11.698
11.698	11.698
3.2041	3.0998
1.2851	1.2975
1051.6	987.0
0.000	1.000
	1.0000 25.000 1210.73 2.9051 0 -1543.19 -2403.74 -20978.1 16.0522 11.698 11.698 3.2041 1.2851 1051.6

PERFORMANCE PARAMETERS

Ae/At 1.0000
CSTAR, M/SEC 1393.3
CF 0.7084
Ivac, M/SEC 1747.6
Isp, M/SEC 987.0

MOLE FRACTIONS

CH4	0.08409	*CO	0.16384	*C02	0.01543
C2H4	0.00001	C2H6	0.00001	HCN	0.00002
*H2	0.56893	H20	0.07581	NH3	0.00059
*N7	0 09128				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1225.007 -7.601 -33.218 -2.208 -12.200

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-953071.000	298.160

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 4.956067 PHI,EQ.RATIO=-0.888012

CHAMBER THROAT
Pinf/P 1.0000 1.8300
P, BAR 30.000 16.394
T, K 1225.01 1070.02

RHO, KG/CU M	3.4622 0	2.1660 0
H, KJ/KG	-1543.19	-2033.14
U, KJ/KG	-2409.70	-2790.02
G, KJ/KG	-21048.9	-19071.0
S, KJ/(KG)(K)	15.9229	15.9229
M, (1/n)	11.754	11.754
MW, MOL WT	11.754	11.754
Cp, $KJ/(KG)(K)$	3.2131	3.1080
GAMMAs	1.2823	1.2946
SON VEL, M/SEC	1054.1	989.9
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1399.2
CF	0.7075
Ivac, M/SEC	1754.5
Isp, M/SEC	989.9

MOLE FRACTIONS

CH4	0.08687	*CO	0.16235	*C02	0.01540
C2H4	0.00001	С2Н6	0.00001	HCN	0.00002
*H2	0.56433	H20	0.07867	NH3	0.00066
*N2	0.09169				

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 6.000000

ENTHALPY (KG-MOL) (K	()/KG	EFFECTIVE FUEL h(2)/R -0.25423813E+03		TIVE OXIDANT h(1)/R 844346E+03	MIXTURE h0/R -0.18069984E+03
KG-FORM.WI	./KG	bi(2)		bi(1)	bOi
* H		0.14638481E+00	0.13	733597E+00	0.13862866E+00
*0		0.0000000E+00	0.28	905870E-01	0.24776460E-01
*C		0.70974455E-01 0.1040		403058E-01	0.19056115E-01
*N		0.0000000E+00	0.19	572704E-01	0.16776604E-01
POINT ITN	Т	Н	0	С	N
1 5	1234.366	-7.776	-33.035	-2.753	-12.407

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.335832 PHI,EQ.RATIO=-0.592008

	CHAMBER	THROAT
Pinf/P	1.0000	1.8456
P, BAR	20.000	10.837
T, K	1234.37	1066.20
RHO, KG/CU M	2.1643 0	1.3577 0
H, KJ/KG	-1502.43	-2029.39
U, KJ/KG	-2426.51	-2827.58
G, KJ/KG	-22138.3	-19854.0
S, KJ/(KG)(K)	16.7178	16.7178
M, (1/n)	11.106	11.106
MW, MOL WT	11.106	11.106
Cp, KJ/(KG)(K)	3.1813	3.0854
GAMMAs	1.3077	1.3204
SON VEL, M/SEC	1099.3	1026.6
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1435.0
CF	0.7154
Ivac, M/SEC	1804.1
Isp. M/SEC	1026.6

MOLE FRACTIONS

CH4	0.03706	*CO	0.15964	*C02	0.01492
HCN	0.00001	*H2	0.60927	H2O	0.08570
NH3	0.00048	*N2	0.09292		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	Н	0	С	N
1	3	1251.320	-7.687	-32.680	-2.789	-12.312

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.335832 PHI,EQ.RATIO=-0.592008

	CHAMBER	THROAT
Pinf/P	1.0000	1.8436
P, BAR	25.000	13.561
T, K	1251.32	1082.42
RHO, KG/CU M	2.6832 0	1.6826 0
H, KJ/KG	-1502.43	-2033.17
U, KJ/KG	-2434.15	-2839.12
G, KJ/KG	-22213.3	-19948.5
S, $KJ/(KG)(K)$	16.5512	16.5512
M, (1/n)	11.167	11.167
MW, MOL WT	11.167	11.167
Cp, KJ/(KG)(K)	3.1905	3.0932
GAMMAs	1.3044	1.3170
SON VEL, M/SEC	1102.4	1030.3
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1442.2
CF	0.7144
Ivac, M/SEC	1812.5
Isp, M/SEC	1030.3

MOLE FRACTIONS

CH4	0.03994	*CO	0.15801	*C02	0.01482
HCN	0.00001	*H2	0.60425	H2O	0.08903
инз	0 00055	*N2	0 09339		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	H	0	C	N
1	3	1265.541	-7.615	-32.390	-2.819	-12.235

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-953071.000	298.160

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 4.335832 PHI,EQ.RATIO=-0.592008

	CHAMBER	THROAT
Pinf/P	1.0000	1.8419
P, BAR	30.000	16.288
T, K	1265.54	1096.05
RHO, KG/CU M	3.1983 0	2.0050 0
H, KJ/KG	-1502.43	-2036.26
U, KJ/KG	-2440.43	-2848.64
G, KJ/KG	-22277.3	-20028.8
S, KJ/(KG)(K)	16.4158	16.4158
M, (1/n)	11.218	11.218
MW, MOL WT	11.218	11.218
Cp, KJ/(KG)(K)	3.1984	3.1000
GAMMAs	1.3016	1.3142
SON VEL, M/SEC	1105.0	1033.3

MACH NUMBER 0.000 1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000
CSTAR, M/SEC 1448.1
CF 0.7135
Ivac, M/SEC 1819.5
Isp, M/SEC 1033.3

MOLE FRACTIONS

CH4	0.04238	*CO	0.15662	*C02	0.01474
HCN	0.00002	*H2	0.59999	H20	0.09185
инз	0 00061	*N12	0 09378		

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 8.000000

			EFFECTIVE FUEL	EFFEC	TIVE OXIDANT	MIXTURE
ENTHA:	LPY		h(2)/R		h(1)/R	h0/R
(KG-M	OL) (K)	/KG	-0.25423813E+03	-0.16	844346E+03	-0.17797620E+03
KG-FO	RM.WT	./KG	bi(2)		bi(1)	bOi
* H			0.14638481E+00	0.13	733597E+00	0.13834140E+00
*0			0.0000000E+00	0.28	905870E-01	0.25694107E-01
*C			0.70974455E-01	0.10	403058E-01	0.17133213E-01
*N			0.0000000E+00	0.19	572704E-01	0.17397959E-01
POINT	ITN	Т	Н	0	С	N
1	4	1274.325	-7.809	-32.229	-3.343	-12.444

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

REACTANT WT FRACTION ENERGY TEMP

		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.025714 PHI,EQ.RATIO=-0.444006

	CHAMBER	THROAT
Pinf/P	1.0000	1.8505
P, BAR	20.000	10.808
T, K	1274.33	1096.85
RHO, KG/CU M	2.0560 0	1.2908 0
H, KJ/KG	-1479.78	-2035.96
U, KJ/KG	-2452.55	-2873.25
G, KJ/KG	-23120.8	-20663.1
S, KJ/(KG)(K)	16.9824	16.9824
M, (1/n)	10.892	10.892
MW, MOL WT	10.892	10.892
Cp, $KJ/(KG)(K)$	3.1802	3.0870
GAMMAs	1.3158	1.3285
SON VEL, M/SEC	1131.4	1054.7
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1469.1
CF	0.7179
Ivac, M/SEC	1848.6
Isp, M/SEC	1054.7

MOLE FRACTIONS

CH4	0.01717	*CO	0.15503	*CO2	0.01440
HCN	0.00001	*H2	0.62240	H20	0.09603
инз	0 00042	*N2	0 09453		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1289.570 -7.717 -31.932 -3.338 -12.348

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-953071.000	298.160

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.025714 PHI,EQ.RATIO=-0.444006

	CHAMBER	THROAT
Pinf/P	1.0000	1.8487
P, BAR	25.000	13.523
T, K	1289.57	1111.42
RHO, KG/CU M	2.5518 0	1.6016 0
H, KJ/KG	-1479.78	-2039.40
U, KJ/KG	-2459.50	-2883.76
G, KJ/KG	-23160.6	-20725.0
S, KJ/(KG)(K)	16.8124	16.8124
$M_{,}$ (1/n)	10.944	10.944
MW, MOL WT	10.944	10.944
Cp, $KJ/(KG)(K)$	3.1880	3.0936
GAMMAs	1.3129	1.3255
SON VEL, M/SEC	1134.1	1057.9
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1475.5
CF	0.7170
Ivac, M/SEC	1856.1
Isp, M/SEC	1057.9

MOLE FRACTIONS

CH4	0.01961	*CO	0.15359	*CO2	0.01429
HCN	0.00001	*H2	0.61803	H2O	0.09903
NH3	0.00049	*N2	0.09495		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	Н	0	С	N
1	3	1302.579	-7.643	-31.683	-3.340	-12.269

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 4.025714 PHI,EQ.RATIO=-0.444006

	CHAMBER	THROAT
Pinf/P	1.0000	1.8472
P, BAR	30.000	16.241
T, K	1302.58	1123.87
RHO, KG/CU M	3.0440 0	1.9100 0
H, KJ/KG	-1479.78	-2042.26
U, KJ/KG	-2465.33	-2892.60
G, KJ/KG	-23199.2	-20782.0
S, KJ/(KG)(K)	16.6742	16.6742
M, (1/n)	10.989	10.989
MW, MOL WT	10.989	10.989
Cp, $KJ/(KG)(K)$	3.1948	3.0994
GAMMAs	1.3103	1.3230
SON VEL, M/SEC	1136.4	1060.6
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1480.9
CF	0.7162
Ivac, M/SEC	1862.4
Isp, M/SEC	1060.6

MOLE FRACTIONS

CH4	0.02171	*CO	0.15234	*C02	0.01420
HCN	0.00002	*H2	0.61425	H20	0.10161
NH3	0.00055	*N2	0.09531		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 10.000000

		EFFECTIVE FUEL	L EFFEC	CTIVE OXIDANT	MIXTURE
ENTHALPY	-	h(2)/R		h(1)/R	h0/R
(KG-MOL)	(K)/KG	-0.25423813E+03	-0.16	5844346E+03	-0.17624298E+03
KG-FORM.	WT./KG	bi(2)		bi(1)	bOi
* H		0.14638481E+00	0.13	3733597E+00	0.13815859E+00
*0		0.0000000E+00	0.28	3905870E-01	0.26278064E-01
*C		0.70974455E-01	0.10	0403058E-01	0.15909549E-01
*N		0.0000000E+00	0.19	9572704E-01	0.17793368E-01
POINT IT	'N T	Н	0	С	N
1 4	1317.43	-7.852	-31.417	-3.941	-12.485

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.839643 PHI,EQ.RATIO=-0.355205

		CHAMBER	THROAT
Pi	nf/P	1.0000	1.8517
Ρ,	BAR	20.000	10.801
T,	K	1317.43	1132.97

RHO, KG/CU M	1.9752 0	1.2403 0
H, KJ/KG	-1465.37	-2044.69
U, KJ/KG	-2477.93	-2915.47
G, KJ/KG	-24046.7	-21464.3
S, $KJ/(KG)(K)$	17.1404	17.1404
M, (1/n)	10.818	10.818
MW, MOL WT	10.818	10.818
Cp, $KJ/(KG)(K)$	3.1867	3.0938
GAMMAs	1.3178	1.3305
SON VEL, M/SEC	1155.2	1076.4
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1498.0
CF	0.7185
Ivac, M/SEC	1885.4
Isp, M/SEC	1076.4

MOLE FRACTIONS

CH4	0.00764	*CO	0.15056	*C02	0.01390
HCN	0.00001	*H2	0.62556	H2O	0.10591
NH3	0.00036	*N2	0.09606		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1329.286 -7.756 -31.201 -3.878 -12.384

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMPHR

REACTANT WT FRACTION ENERGY TEMP (SEE NOTE) KJ/KG-MOL K

OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.000000	-953071.000	298.160

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.839643 PHI,EQ.RATIO=-0.355205

	CHAMBER	THROAT
Pinf/P	1.0000	1.8503
P, BAR	25.000	13.511
T, K	1329.29	1144.32
RHO, KG/CU M	2.4560 0	1.5419 0
H, KJ/KG	-1465.37	-2047.30
U, KJ/KG	-2483.27	-2923.56
G, KJ/KG	-24022.3	-21465.5
S, $KJ/(KG)(K)$	16.9692	16.9692
M, (1/n)	10.858	10.858
MW, MOL WT	10.858	10.858
Cp, $KJ/(KG)(K)$	3.1927	3.0989
GAMMAs	1.3155	1.3282
SON VEL, M/SEC	1157.2	1078.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1502.9
CF	0.7178
Ivac, M/SEC	1891.1
Isp, M/SEC	1078.8

MOLE FRACTIONS

CH4	0.00949	*CO	0.14943	*C02	0.01382
HCN	0.00001	*H2	0.62218	H20	0.10826
NH3	0.00042	*N2	0.09638		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1339.893 -7.678 -31.010 -3.838 -12.303

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMPHR

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	Sasoll	1.0000000	-953071.000	298.160

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.839643 PHI,EQ.RATIO=-0.355205

	CHAMBER	THROAT
Pinf/P	1.0000	1.8491
P, BAR	30.000	16.224
T, K	1339.89	1154.50
RHO, KG/CU M	2.9337 0	1.8414 0
H, KJ/KG	-1465.37	-2049.60
U, KJ/KG	-2487.98	-2930.72
G, KJ/KG	-24015.5	-21479.6
S, $KJ/(KG)(K)$	16.8298	16.8298
$M_{,}$ (1/n)	10.894	10.894
MW, MOL WT	10.894	10.894
Cp, KJ/(KG)(K)	3.1981	3.1035
GAMMAs	1.3134	1.3261
SON VEL, M/SEC	1158.9	1081.0
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1507.2
CF	0.7172
Ivac, M/SEC	1896.1
Isp, M/SEC	1081.0

MOLE FRACTIONS

CH4	0.01115	*CO	0.14841	*C02	0.01375
HCN	0.00001	*H2	0.61914	H2O	0.11038
NH3	0.00049	*N2	0.09667		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS