NEUROFYZIOLOGIE – ZKOUŠKOVÉ OTÁZKY, ZS 2023

OKRUH 1 – OBECNÁ NEUROFYZIOLOGIE

Legenda:
důležité pojmy
důležité hodnoty
vysvětlení funkce
dělení na typy
příklady

1. DISTRIBUCE IONTŮ NA BUNĚČNÉ MEMBRÁNĚ, KLIDOVÝ MEMBRÁNOVÝ POTENCIÁL

- membrána nervové buňky fosfolipidová dvojvrstva
 - tvořena vhodně uspořádanými lipidy a proteiny s malým množstvím vázaných cukrů
 - membrány zajišťují aktivní regulaci složení nitrobuněčného prostředí
 - hydrofilní polární hlavičky orientovány ven z buňky, nepolární hydrofobní proti sobě
 - hydrofilní hlavičky směrem k vodnému prostředí
- ionty jsou sice malé, ale přes membránu neprojdou prostupují skrze iontové kanály
 - ionty neprochází přes membránu kvůli svému hydratačnímu obalu (prostřednictvím dipólových reakcí
 jsou ionty přitahovány k molekulám vody), membrána je hydrofobní
 - v membráně existují **iontové kanály** = integrální membránové proteiny energeticky umožňující průchod iontů lipidovou dvojvrstvou
- výsledkem aktivních procesů (specifické iontové pumpy), které vytvářejí a udržují různé koncentrace iontů na obou stranách membrány je membránový potenciál
 - membránový potenciál = rozdílné napětí na vnitřní a vnější straně membrány
 - vnitřek membrány je negativní oproti vnějšku
- **klidový membránový potenciál** (KMP) stálý potenciál
 - výsledkem rovnováhy ustálené na základě koncentračního a elektrického gradientu jednotlivých iontů
 - příčinou vzniku je různé rozložení náboje, nerovnoměrné rozložení náboje mezi ICT A ECT
 - když se pohyb iontů v obou směrech vyrovná = rovnovážný potenciál
 - pohyb iontů po směru koncentračního gradientu vs. gradientu náboje
 - hodnoty v rozmezí -50 až -90 mV (neurony -70 mV, svaly -90 mV)
 - pro celou buňky je to nějaká hodnota mezi hodnotami pro jednotlivé rovnovážné potenciály jednotlivých iontů záleží na poměru koncentrací iontů, jejich pohybu, kolik daných iontů se pohybuje přes membránu v daném čase atd.
 - součet potenciálů pro jednotlivé ionty převážený jejich propustností → viz Goldmannova rovnice
 - mechanismy udržování KMP:
 - rozdílná koncentrace iontů
 - uvnitř buněk (ICT) převažují draselné ionty K+ a proteinové A- (Na+ a Cl jsou zde ve velmi malém množství)
 - vně buňky (ECT) převaha Na+ a Cl-
 - draslík se může pohybovat skrze membránu, protože i klidu je pro něj membrána dobře propustná
 - tzn. draslík se pohybuje ven z buňky (ve směru koncentračního gradientu, protože v ICT je ho hodně) → to způsobí lokální změnu náboje membrány (protože K mají kladný náboj)
 → tato změna náboje narůstá tak dlouho, než vykompenzuje koncentrační gradient (koncentrační a nábojový gradient jdou proti sobě) a tu chvíli se potenciál ustanoví na rovnovážné hodnotě
 - rozdílná propustnost membrány pro různé ionty
 - iontové kanály jsou propustné pro K+ (leak K+ kanály) ale už ne pro Na+ (v klidu)
 - jejich propustnost ovlivňuje koncentrace Ca2+ iontů

- činnost Na+/K+ ATPázy (sodno-draselná pumpa)
 - Na+ průběžně pumpován z buňky ven a K+ dovnitř = 2 K+ dovnitř a 3 Na+ ven
 - tím se udržuje stále vyšší koncentrace uvnitř buňky (udržuje dynamickou rovnováhu)
 - při této pumpě se spotřebovává energie (ATP)
- výpočet rovnovážného napětí pro určitý iont Nernstova rovnice
 - R ... plynová konstanta, T ... teplota, z ... mocenství jednoho iontu, F ... Faradayova konstanta
- $E_{ion} = \frac{RT}{zF} . ln \frac{[ION]_{out}}{[ION]_{in}}$
- přirozený logaritmus podílu koncentrací iontu venku / uvnitř
- rovnovážné potenciály se liší pro konkrétní koncentrace iontů uvnitř a vně buňky
- udává hodnotu elektrického gradientu, v momentu vyrovnání se elektrické síly s koncentrační silou pro konkrétní iont
- rovnovážné potenciály pro jednotlivé ionty: draslík: -90 mV, sodík: +60 mV, chlorid: -70 mV

lon	[Out]	[ln] mM	Ratio	E _{ion} (37°C) mV
K+	5	140	1:28	-88
Na+	150	15	10:1	+61
Ca ²⁺	2	0.0002	10000:1	+120
CI-	110	10	11:1	-63

- Goldmannova rovnice pro rovnovážný potenciál celé buňky
 - P ... relativní propustnost membrány pro daný iont
 - součet koncentrací převážený propustností

$$E = rac{RT}{F} \ln rac{P_{Na^+}[Na_o^+] + P_{K^+}[K_o^+] + P_{Cl^-}[Cl_i^-]}{P_{Na^+}[Na_i^+] + P_{K^+}[K_i^+] + P_{Cl^-}[Cl_o^-]},$$

2. FORMY TRANSPORT LÁTEK PŘES BUNĚČNOU MEMBRÁNU

- transport přes buněčnou membránu
 - pasivní transport
 - není potřeba energie, hnací silou je koncentrační spád, funguje na principu difuze
 - nespotřebovává energii, probíhá samovolně závisí na propustnosti membrány pro jednotlivé ionty
 - prostá difuze (vyrovnávání koncentračních gradientů)
 - transport látek po koncentračním spádu, nepotřebuje přenašeče

- transport aminokyselin, glukózy
- ionty přestupují kvůli elektrochemickému gradientu = rozdíl napětí a koncentrací na vnitřní a vnější straně buněčné membrány (gradient náboje, který chtějí ionty vyrovnat chci, aby elektrochemický potenciál byl 0); chemický gradient koncentrace a membránový potenciál
 - klidový membránový potenciál (KMP) = (-50 mV až -90 mV)
 - ICF (intracelular fluid) vnitřek buňky je záporný
- iontové kanály jsou selektivní filtr pouze pro jeden iont
 - napěťové řízené iontové kanály
 - ligandem řízené iontové kanály
- aktivní transport

- nutno dodat energii spotřeba ATP
- umožňuje transport i proti směru koncentračního gradientu
- specializované membránové proteiny iontové pumpy (iontové kanály vybavené enzymem ATPáza), přenašečové proteiny (kanály vybavené enzymem ATPáza)
- primární, sekundární transport
- primární transport energie ze štěpení ATP
 - sodno-draselná-ATPáze (pumpa Na⁺/K⁺ ATPáza)
 - zajišťuje neustálý poměr koncentrací ke tvorbě akčního potenciálu tvoří klidové rozložení
- sekundární transport kotransport (spřažení) s přenosem jiné látky ve směru koncentračního gradientu
 - symport (částice přenášeny stejným směrem transportovaná substance i hnací iont) x antiport (... opačným směrem)
- aktivní transport může jít i proti elektrochemickému gradientu (energeticky "do kopce"), tím pádem je potřeba energie (ATP)
- primární transport energie z hydrolýzy ATP se spotřebuje přímo pro transport (mechanismus pump)
- např. Na+K+ATPáza odpovídá za homeostázu intracelulární koncentrace Na+, K+
 - 3 ionty Na+ ven, 2 ionty K+ dovnitř
- **iontové kanály** (součást pasivního transportu)
 - = integrální membránový protein propojující EC a IC prostor
 - prosté (neustále otevřené) x speciální (otevření pomocí stimulu např. změna napětí, vazba ligandu)
 - uzpůsobeny pro odpovědi na fyzikální a chemické stimuly, velmi různorodé
 - 3 základní vlastnosti: vedou ionty napříč membránou; jsou selektivní pro specifické ionty; fungují
 v odpovědi na elektrické/chemické/mechanické signály
 - př. kanály svalů a nervů vedou ionty extrémní rychlostí (až 100 miliónů iontů za sekundu)
 - všestrannost (versatilita) neuronální signalizace je založena na aktivaci různých typů kanálů
 - typ a množství otevřených iontových kanálů určuje vodivost membrány nezávisí na míře otevření kanálu, ale na frekvenci, se kterou se kanál otevírá
 - s nízkou frekvencí se kanály otevírají samovolně, ale pro signalizaci je důležité hromadné otevíraní ve vlnách
 - pravděpodobnost otevření kanálu ovlivněno faktory:
 - membránový potenciál
 - vazba ligandu
 - mechanické napětí membrány
 - intracelulární signální poslové a metabolity
 - funkční stavy: otevřený kanál / zavřený / refrakterní
 - projevuje se změnou konformace
 - z otevřeného stavu může kanál vstoupit do refrakterního, kdy jej nelze aktivovat
 - u napěťově řízených inaktivace (uzavření kanálu a nelze jej otevřít dalším posunem napětí do kladných hodnot, ale pouze nastolením KMP)
 - u ligandem řízených desenzitizace (při dlouhodobé vazbě s ligandem na něj ztratí kanál citlivost)
 - napětím řízení x ligandem řízené
 - napětím řízené kanály selektivní pro konkrétní ionty (Na+, K+, Ca2+)
 - depolarizace membrány (nárůst napětí do kladných hodnot) → změna konformace kanálu ze zavřeného do otevřeného stavu → tok iontů → uzavření kanálu, dočasná inaktivace, dokud se nenastolí KMP
 - ligandem řízené kanály "ionotropní receptory"
 - neselektivní (většinou) propustné pro několik iontů najednou

- funkce konvertovat chemický signál neurotransmitteru opět na elektrický signál zprostředkovaný ionty
 - modulovány alosterickými ligandy, blokátory, ionty
- vazba ligandu (neurotransmitteru) způsobí změnu konformace → otevření kanálu → uzavření kanálu → desenzitizace v důsledku dlouhodobého vystavení ligandu
- základní neurotransmitery (ligandy): acetylcholin, glutamát, GABA, glycin

3. AKČNÍ POTENCIÁL, MECHANISMUS VZNIKU

- změna napětí KMP na membráně; signál, který se dále šíří po axonu a vyvolává kontrakci svalu
- všechny buňky v těle vykazují klidový membránový potenciál, ale jen ty vzrušivé (nerv, sval) jsou schopné měnit vodivost membrány pro ionty vlivem podráždění (tj. akční potenciál)
- akční potenciál vznikne jen když elektrický potenciál na membráně Em překročí prahový potenciál
 - vzniká změnou klidové rovnováhy (KMP) na membráně tuhle změnu způsobí šířící se napětí, které mění aktivitu napěťové řízených iontových kanálů
 - odpověď "všechno nebo nic" nezávisí na velikosti podnětu
 - podrážděním pro vznik může být např. otevření postsynaptických kanálů pro kationty působením neurotransmiteru
- co se děje s potenciálem?
 - membránový potenciál se zvyšuje nad hodnotu -90 mV (zvyšuje se až dokonce do kladných hodnot +20 až +30 mV) fáze depolarizace
 - zpětné snížení hodnoty repolarizace
 - snížení až pod hodnotu KMP hyperpolarizace
 - absolutní a relativní refrakterní fáze kdy ani extrémně silné podněty nemohou vybavit AP (v
 depolarizované membráně chybí aktivovatelné Na+ kanály, všechny jsou inaktivovány (viz 2) iontové
 kanály)
 - díky absolutní refrakterní fázi nepřichází AP moc blízko za sebou a taky udržuje vedení AP v jednom směru
- co se děje s vodivostí membrány pro ionty?
 - při depolarizaci se aktivuje víc a víc kanálů pro Na+ (Na+ proudí do buňky – membránový potenciál je víc a víc kladný)
 - potom jsou kanály pro Na+ inaktivovány → tím se otevřou K+ kanály (ty nejsou inaktivovatelné) → obrácení potenciálu (repolarizace) obnovení klidového potenciálu
 - při depolarizaci se navíc otevřely i napěťově řízené kanály pro K+ (K+ proudí z buňky ven) – napomáhá repolarizaci
- hrotový potenciál (fáze depolarizace a následné repolarizace) trvá asi 1
 ms
 - prahové napětí pro vybavení AP napětí o 5 až 15 mV vyšší než
 KMP
- prahové potenciálu se dosáhne, pokud se sečte dost postsynaptických potenciálů (EPSP, IPSP)
 - příval pozitivního náboje = excitační postsynaptický potenciál (EPSP)
 - příval negativního náboje = inhibiční postsynaptický potenciál (IPSP)
 - tyhle postsynaptické potenciály způsobí jenom malou změnou KMP, ale když se sečtou dokážou společně dosáhnout prahového potenciálu (typicky okolo 55 mV, ale záleží na tkáni)

4. ŠÍŘENÍ AKČNÍHO POTENCIÁLU, VLIV MYELINU

- průběh AP:
 - AP se v buňce šíří postupným otevírání dalších a dalších Na+ kanálů až se buňka dostane do kladných hodnot (depolarizace) → poté inaktivace sodíkových kanálů Na+
 - draselné kanály K+ se otevřou až když se inaktivují sodíkové kanály → draslík proudí ven (repolarizace)
- AP vzniká v iniciačním segmentu axonu tj. mezi začátkem axonu a prvním myelizovaným segmentem
 - je to velmi excitabilní část = velká hustota napěťově řízených Na+ kanálů
- pasivní elektrické vlastnosti axonu:
 - pasivní přenos signálu max. několik milimetrů
 - jak přenést signál na delší vzdálenosti? > pomocí **myelinové pochvy** (izolace vlákna od okolí)
 - pasivní myelizovaný axon povede napěťoví skokově, takže ho donese dál, ale také se bude utlumovat
 - myelizované axony jsou pouze ty s průměrem větším než 10 um
 - abychom mohli vést signál opravdu daleko a neutlumoval se, tak jsou v Ranvierových zářezech nakupené napěťové závislé Na+ a K+ kanály → aktivně generují napěťový signál
 - tzn. Na+ kanály se rychle otevřou a pak inaktivují, pak se pomalu otevřou K+ kanály a repolarizují zářez
- při šíření AP dochází k iontovým tokům napříč membránou, šíření je podmíněno místními proudy, které tečou mezi vzbuzeným a nevzbuzeným místem membrány
- myelinizovaná vlákna tam, kde je myelin nejsou žádné napěťově řízené kanály = ionty nemohou prostupovat do buňky
- Ranvierovy zářezy tam, kde jsou iontové kanály = mohou přecházet ionty do buňky
- saltatorní vedení vzruchu = šíření skoky
 - to co se děje v úsecích, kde je myelin (defacto náboj skáče po Ranvierových zářezech), ale přesněji pod myelinem dochází k **saltatornímu vedení** přenáší se tam kladný náboj
 - když jsou úseky (mezi kterými se šíří depolarizační vlna) prodlouženy (např. izolací myelinovou pochvou) lokální proudy působí až v dalším neizolovaném úseku → to urychluje přenos vzruchu
 - spotřebovává menší energii pro vedení signálu
- vlastnosti šíření AP:
 - AP se šíří bez dekrementu neutlumuje se jeho amplituda
 - rychlost šíření závisí na struktuře nervového vlákna a elektrických vlastnostech membrány; zvětšuje se s průměrem vlákna
- myelizované axony (nebo axony s větším průměrem) vedou signál lépe než malé a nemyelizované
- vznik AP závisí na integraci příchozího signálů v dendritech samotná integrace závisí na:
 - synaptických signálech (ESPS nebo ISPS, viz 3)
 - morfologie dendritů
 - pasivní elektrické vlastnosti dendritů
 - pasivní součet podprahových vstupů

5. SYNAPTICKÝ PŘENOS – DĚJE NA SYNAPSI

- **synapse** = propojení nervových buněk mezi sebou (také některých svalových buněk) a taky propojení nervové buňky se senzorickými a efektorovými buňkami
- elektrické synapse x chemické synapse
- elektrická synapse přímý tok elektrického proudu, pro ionty vodivá spojení buňka-buňka
 - elektrická synapse = kanál mezi presynaptickou a postsynaptickou částí v lipofilní membráně
 - k vedení podráždění např. v hladkém svalu, srdečním svalu
 - menšina všech synapsí, obvykle je to excitační typ
 - výhody: velmi rychlé spojení (nemají zpoždění); nevýhody: nelze je regulovat (oproti chemické synapsi)
 - princip: lipofilní membrány (post a presynaptické části) se k sobě přitlačí (secvaknou se) → vytvoří se spojující hydrofilní kanálek (konexon) mezi 2 částmi v lipofilní membráně (z proteinu konexinu)
 - propustnost elektrických synapsí (těchto kanálků) je do 1500 Daltonů tzn. jsou propustné pouze pro malé molekuly
- chemická synapse
 - obecně:
 - přenášení informace prostřednictvím neurotransmiteru
 - nejenom pro jednoduché spojení 1:1, ale jsou také přepojovacími prvky NS
 - může na nich být přenos impulsů inhibován nebo facilitován nebo zpracován s jinými informacemi
 - jsou pomalým spojením zpoždění minimálně o 0,5 ms

celý mechanismus:

po axonu přichází akční potenciál → uvolňuje neurotransmiter, který difunduje do synaptické štěrbiny → postsynapticky se naváže na receptory → podle druhu neurotransmiteru a receptoru je postsynaptická membrána drážděna nebo utlumena → sumace signálů → postsynaptický akční potenciál

presynaptické mechanismy:

- na základě podnětu (AP přicházející po axonu) se vylije neurotransmiter z váčků (vezikul) na chemické synapsi v presynaptickém zakončení axonu (presynaptickém neuronu)
- váčky jsou napěchované danou molekulou, látka se pak pomalu uvolňuje difunduje do úzké synaptické štěrbiny
- recyklace váčku ATP protonová pumpa pomocí vodíku dostane dovnitř danou látku (jako kulaté otevírací dveře v obchoďáku)
- signálem pro vylití je příchod AP čím vyšší frekvence, tím víc váčků se otevře
 - AP způsobuje na presynaptické membráně častější otevírání napěťově řízených kanálů pro Ca2+

• postsynaptické mechanismy:

- příjem na receptorech postsynaptického receptoru naváže se na ně
 - receptory mohou zesilovat signál, aplikovat zpětnou vazbu nebo signál utlumovat
- transmiter (mediátor) se naváže na receptor
 - konformační změnou se otevře gate (průchod kanálem) přímá transmise (interakce)
 - o receptor je bezprostřední součástí molekuly kanálu (ionotropní receptor)
 - např. nikotinový acetylcholinový receptor při působení acetylcholinu se kanál otevírá častěji než bez něj
 - o sodíkové Na+ ionty tečou dovnitř (depolarizace)

nepřímá transmise

 přítomnost G-proteinu, který řídí kanál sám nebo prostřednictvím druhého posla

- výhodou je velké zesílení (jeden G-protein je schopen otevřít třeba 1000 kanálů), ale za to je to pomalejší
- postsynaptické potenciály: EPSP, IPSP (viz 3)
 - excitační postsynaptický potenciál (EPSP) způsoben excitačními mediátory,
 v postsynaptické membráně se otevírají Na+ kanály → depolarizace buňky
 - jeden EPSP představuje pouze podprahovou depolarizační změnu aby došlo k prahové hodnotě APOD. musí mít sečteno dost EPSP
 - inhibiční PSP otevření K+ a Cl– kanálů tzn. proud kladných iontů ven z buňky a záporných do buňky, membrána je hyperpolarizovaná pohybem iontů a snižuje se excitabilita neuronu
- síla synapse
 - mění se v čase v závislosti na míře a frekvenci její aktivace, taky na koncentraci Ca2+ kde?
 - závisí na množství váčků v presynaptické membráně, na poštu AMPA a NMDA receptorů

6. ZÁKLADNÍ NEUROTRANSMITERY A JEJICH RECEPTORY, DRUHY RECEPTORŮ

- neuromediátory = mediátory přítomné v presynaptickém neuronu
 - uvolňování váčků (vezikul) je závislé na přítomnosti Ca2+
 - neuromediátory mají specifické postsynaptické receptory
 - dělí se na neurotransmitery a neuromodulátory
 - neurotransmitery hrají hlavní roli v rychlém přenosu vzruchů
 - glutamát, GABA, glycin, acetylcholin
 - neuromodulátory spíše modulují excitabilitu neuronů
 - serotonin, dopamin, noradrenalin, acetylcholin, histamin, ATP
- receptory jsou jednotlivé neurotransmitery (receptory, které vedou neurotransmiter glutamát)
 - glutamátové receptory excitační neurotransmiter (v mozku?)
 - AMPA receptory jednoduchý Na+ kanál
 - NMDA receptory normálně je ucpaný Mg2+ ionty
 - proto je nutné ho nejprve depolarizovat, aby Mg2+ vypadl ven
 - depolarizaci udělají vedlejší AMPA receptory
 - "silent synapses" nepoužitelné NMDA receptory, protože vedle sebe nemají AMPA receptory
 - NMDA receptor vede Ca2+
 - ketaminy působí jako antagonisté NMDA receptorů (anestetika, disociační účinek nerušení vnímaní obrazu a zvuku, halucinogeny)
 - receptory pro GABA hlavní inhibiční neurotransmiter v mozku
 - GABA_A ionotropní (receptor je bezprostřední součástí kanálu)
 - ligandem řízený kanál propustný pro Cl-
 - inhibice skrze hyperpolarizaci
 - GABA_B metabotropní (receptory spřažené s G-proteinem)
 - inhibice prostřednictvím druhých poslů -> hyperpolariazce nebo blokace napěťově řízených Ca2+ kanálů
 - souvisí s úzkostnými poruchami lexaurin se váže se na GABA receptor, aby se zapnula inhibice, benzodiazepiny (zesilují působení neurotransmiteru GABA – vyvolávají sedativní, myorelaxační, hypnotický účinek)
 - při poruše inhibice epilepsie
 - receptory pro glycin hlavní inhibiční neurotransmiter v míše
 - GlyR receptory blokovány strychninem
 - kofein antagonista
 - cannabinoidy zesilují jeho působení

- receptory pro acetylcholin (ACh) excitační neurotransmiter v PNS i CNS; v mozku neuromodulátor
 - účinkuje na nervosvalové ploténce (zvláštní druh chemické synapse mezi motoneuronem a motorickou jednotkou kosterního svalu)
 - po vyplavení do synaptické štěrbiny se váže na **nikotinové receptory** (nAChR)
 - změna MP → intracelulární vyplavení Ca2+ (zásadní pro svalovou kontrakci)
 - jedním z mnoha neurotransmiterů ve vegetativním systému
 - klinický význam Alzheimerova choroba (řešení blokátorem acetylcholinu), závislost na nikotinu
 - receptory pro Ach obecně jako acetylcholinové receptory AChR:
 - muskarinový acetylcholinový receptor (metabotropní) vybuzení muskarinem
 - nikotinový acetylcholinový receptor (ionotropní) vybuzení nikotinem
- neuromodulárory
 - dopamin
 - ovlivňuje motivaci a pocity
 - souvisí se schizofrenií, Parkinsonem (nedostatek dopaminu)
 - závislosti: kokain (reguluje vyšší množství dopaminu), (met)amfetamin (=pervitin); léčba
 ADHD
 - serotonin
 - depresivní a úzkostlivé poruchy
 - SSRI antidepresiva blokátory SER inhibitoru, který ho recykluje zpátky (zpětné vychytávání serotoninu)
 - katechiny adrenalin a noradrenalin
- druhy receptorů:
 - metabotropní spřažené s G-proteinem
 - pomalejší než ionotropní, ale hodně zesilují
 - GABA-B
 - ionotropní přímá vazba mezi navázáním neurotransmiteru a otevřeným nebo zavřeným iontovým kanálem
 - AMPA, NMDA, GABA-A

7. MEDIÁTOROVÉ SYSTÉMY A JEJICH FYZIOLOGICKÝ VÝZNAM

- mediátorové systémy jsou přestavovány **neurotransmitery**, **jádry**, ve kterých se neurotransmitery syntetizují a **drahami**, kterými jsou neurotransmitery uvolňovány a následně vázány na receptory
- <u>5 kroků neurotransmise:</u> uptake (syntéza), skladování, uvolnění, navázání na receptory, inaktivace
- cholinergní systém
 - tvořen neurony syntetyzující acetylcholin (Ach)
 - syntetizován je v nervových zakončeních z cholinu a acetylkoenzymu A
 - jádra jsou uložena v hemisférách
 - excitační vliv
 - <u>funkce</u>: procesy paměti a učení, motoriky, regulace bdění a spánku, motivace a odměňování
 - úloha v nervosvalovém přenosu, modulace bolesti
- monoaminonergní systém (metabotropní receptory)

katecholaminergní systém

- noradrenergní (noradrenalin, regulace mozkové cirkulace, pozornost, bdělost)
- dopaminergní (Parkinson, porucha paměti a pozornosti
 při snížené koncentraci)
- **serononinergní systém** (serotonin regulace nálady, chování, bolest;

- histaminergní systém

- histamin
- bdělost, bolest, motorika, termoregulace

deprese, poruchy spánku)

antihistaminika

glutamátový systém

- ionotropní receptory AMPA, NMDA
- hlavní excitační mediátor
- tvorba a ukládání paměťových stop

GABAergní systém

- ionotropní GABA-A-, metabotropní GABA-B
- inhibiční, úzkost

8. NERVOSVALOVÁ PLOTÉNKA, MECHANIKA SVALOVÉ KONTRAKCE

- nervosvalová ploténka = zvláštní typ chemické synapse
 - funkce **přenos vzruchu** z **motoneuronu** na vlákno **kosterní svaloviny** (aby kosterní sval pracoval, musí přijít neurální aktivace)
 - neurony, které inervují kosterní svaly (vůlí ovladatelné svaly) = α-motoneurony
 - neurotransmiterem nervosvalové ploténky acetylcholin
 - váže se na N-cholinergní receptory (ionotropní) nikotinový acetylcholinový receptor (NAChrR), které jsou v subsynaptické membráně svalové buňky (=sarkolema)
 - kanál je specifický pro kationty (Na+, K+, Ca2+)
 - KMP svalu = 90 mV
 - dochází k depolarizace (z –90 mV) proudění Na+ do buňky a lehce K+ z buňky → ploténkový potenciál
 - k postsynaptickému vybavení akčního potenciálu je nutno vyprázdnit asi 100 vezikul s acetylcholinem
 - malý počet váčků se uvolňuje stále svalový tonus
 - princip přenosu signálu:
 - vzruch na motoneurony způsobí vylití vezikul s acetylcholinem do synaptické štěrbiny
 - na postsynapické části (sarkolemě) se naváže acetylcholin na nikotinové receptory → způsobí otevření Na+, K+ a Ca2+ kanálů (napěťově řízených) → depolarizace (vznik AP na sarkolemě)

• princip svalové kontrakce:

- depolarizace sarkoplazmatického retikula

 uvolnění Ca2+
- vápník se naváže na troponin → ten změní konfiguraci a umožní trypomyozinu zanořit se do aktinových vláken a odkrýt aktivní místa aktinu
- hlavy myozinu se natahují po aktivních místech aktinu a kloužou po něm vytvářejí můstky
- myozinové hlavy aktivně přitahují aktinová vlákna zakotvená do protilehlých Z proužků → zkrácení sarkomery → zkrácení myofibril → zkrácení (stah) svalu
- intenzita stahu závisí na frekvenci
 - u svalů není absolutní refrakterní perioda lze je přetížit
- pro zrušení synaptického přenosu se acetylcholin rozloží pomocí acetylcholinesterázy anebo difunduje ze štěrbiny ven
- sarkolema = buněčná membrána svalového vlákna
- mechanika svalová kontrakce
 - 2 typy svalové kontrakce: izometrická x izotonická
 - izometrická negeneruje pohyb, mění se tonus, ale nemění se délka svalu
 - izotonická (dynamická) generuje pohyb, mění se délka svalu, ale nemění se tonus

9. HEMATOENCEFALICKÁ BARIÉRA, PRŮTOK KRVE MOZKEM A JEHO REGULACE

- hemato = krev, encefalo = mozek; liquor = mozkomíšní mok
- hematoencefalická bariéra = bariéra mezi krví (cévou nebo spíš kapilárou) a mozkem (resp. mozkomíšním mokem)
 - omezuje přestup látek z krve do mozku
 - dobře propouští O2, H2O, CO2 a další látky rozpustné v lipidech jako ethanol nebo nikotin
 - některé látky se přes bariéru transportují pomocí speciálních mechanismů glukóza, aminokyseliny
 - jiné látky nemohou přestoupit vůbec např. bílkoviny (problém v podávání léků)
 - morfologie z krevní strany endotelové buňky těsně nalehlé na sebe, bazální membrána a ze strany mozkové tkáně je vrstva astrocytů (gliové buňky)
 - <u>funkce</u> udržuje homeostázu (stabilní prostředí), chrání mozek před škodlivinami, naopak prostup živin do mozku
- průtok krve mozkem (=perfúze), regulace
 - mozek velmi dobře prokrven (potřebuje hodně krve, hodně kyslíku a hodně energie glukózy)
 - mozkem proteče okolo 700 ml za minutu
 - autoregulace perfúze udržuje konstantní průtok krve mozkem při změnách systémového krevního oběhu
 - cerebrální perfúze (Cerebral Blood Flow), mozkový perfúzní tlak (Cerebral Perfusion Pressure)
 CPP = MAP ICP
 - mechanismus autoregulace
 - při zvýšení systémového tlaku kompenzatorní vazokonstrikce v CNS
 - při poklesu tlaku vazodilatace cerebrálního řečiště (tím se udržuje konstantní tlak)
 - velikosti lebky je konstantní a CSF (liquor) nestačitelný → intrakraniální objem je konstantní (cca 1700 ml) – 80 % mozková tkáň, 10 % krve v cévách, 10 % liquor

$$V_{ic} = V_{blood} + V_{CSF} + V_{brain}$$

- několik způsobů regulace
 - neurogenní (autonomní) regulace inervace sympatikem
 - myogenní detekce tlaku pomocí svalů
 - metabolická rozdíl mezi metabolismem mozku a dodávaným kyslíkem, působí prostřednictvím vazoaktivní látky, např. CO2, O2, nebo změny pH
 - CO2 pomáhá udržet tonus hladké svaloviny (hodně CO2 vazodilatace)

10. REFLEX A JEHO JEDNOTLIVÉ SOUČÁSTI, KLASIFIKACE REFLEXŮ

- reflex = odpověď organismu na dráždění receptorů, která je zprostředkovaná reflexním obloukem
 - mimovolní, rychlá a stereotypní odpověď na periferní podnět
 - nejenom svalové reflexy
 - reflexní oblouk = soubor struktur zapojených do realizace oblouku
 - receptor → dostředivá dráha (aferentní) → centrum (mozek/mícha) → odstředivá (eferentní) dráha (motoneuron) → efektor (výkonný orgán sval, žláza)
 - oblouk je přesně anatomicky určen (lze pak diagnostikovat neurologická poranění); těla neuronů sedí v gangliích
 - reflexní centrum integrační centrum interneurony a eferentní neuron přijímá informaci nejen
 z receptorů, ale i z nadřazených center CNS
 - <u>účel reflexů:</u> ochrana organismu, korekce na změnu (nechtěné protažení svalu vede ke zkrácení na žádanou délku)
 - monosynaptický reflex x polysynaptický reflex
 - mono nejjednodušší typ, dva neurony vedou vzruch přes jednu synapsi

- monosynaptický napínací reflex krátká reflexní doba, protože je v rámci jednoho orgánu (napíná se ten samý sval jako byl podrážděn), patelární reflex
- vlastní proprioceptivní reflexy
- poly zapojení 3 a více neuronů (interneurony) zapojení přes několik synapsí
 - čím více interneuronů, tím větší má CNS možnosti modifikovat reflexní odpověď
 - relativně dlouhá reflexní doba
 - únikový flexorový reflex reakce na bolestivý podnět; obrácený napínací reflex, extenzorový a zkřížený extenzorový reflex
- nepodmíněné x podmíněné
 - nepodmíněné zcela automatické, vrozené, geneticky kódované v míše
 - př. kýchací, kašlací, zornicový, sací, úchopový, obranné reflexy, pupilární reflex, zvracecí, dýchací
 - podmíněné pouze dočasné (posilují nebo slábnou), získané formou učení
 - dráha není trvalá vyhasínání (když něco umíme, liší se daná reflexní dráha v rychlosti)
 - centrum kůra mozku
 - př. Pavlovi psy spojení nepodmíněného reflexu (slintání na jídlo) s podmíněným (reakce na zvoneček); otočení na jméno

OKRUH 2 – SPECIÁLNÍ NEUROFYZIOLOGIE

11. ZÁKLADNÍ ANATOMIE A FUNKCE MÍCHY

- fylogeneticky nejstarší oblast CNS
- uložena v páteřním kanále (od mozkového kmene, končí v úrovni obratlů L1-L2), obalena plenami
 - v dolní oblasti pod bedry, sestupují nervové kořeny do páteřního kanálu (pokračují v něm) → tvoří cauda equina
- rozdělena na 31 segmentů (8x krční, 12x hrudní, 5x bederní, 5x křížový, 1x kostrční)
 - 31 párů míšních nervů
- základní anatomie míchy
 - dlouhá asi 45 cm, tenké trubice nervové tkáně
 - uzavřena do 3 membrán (pleny) tvrdá plena, míšní pavučnice, omozečnice; chráněna obratli
 - segmenty páteřní míchy
 - C1 až C8 (krční)
 - T1 +až T12 (hrudní)
 - L1 až L5 (bederní) zde končí mícha
 - S1 až S5 (křížový)
 - Co (kostrč)
 - motýlek na příčném řezu dva typy nervové tkáně – bílá a šedá hmota
- | Cervical pleasus | Cervical pl
- **šedá hmota** "motýlek uvnitř" těla a dendrity neuronů, synapse a přenos informace mezi neurony
 - **přední míšní rohy** zejména těla neuronů eferentních drah (**motoneurony**)
 - zadní míšní rohy interneurony (přepojovací neurony uvnitř CNS)
- **bílá hmota** "okolo motýlka" vysoký podíl svazků myelizovaných axonů, tvoří páteřní dráhy
 - axony vzestupných a sestupných drah

- u mozku je šedá hmota (šedá kůra mozková) naopak na povrchu
- **míšní dráhy** seskupení vláken bíle hmoty
 - vzestupné x sestupné dráhy
 - vzestupné senzitivní, první neuron je ve spinálním gangliu (těla aferentních neuronů leží mimo míchu), povrchová citlivost, propriocepce, hluboká citlivost; Lemniskální systém, Anterolaterální systém (viz 30)
 - sestupné vedou motorické signály; pyramidové přímo z motorické kůry mozku, extrapyramidové – z mozkového kmene
- **přední a zadní míšní kořeny** vystupují z míchy -> následně se spojují v nervový svazek
- mícha obsahuje motorický a senzitivní vlákna, taky vegetativní vlákna (sympatikus)

funkce míchy

- komunikační kanál mezi mozkem a zbytkem těla
- tvoří centrum pro jednoduché reflexy nejnižší reflexní centrum (míšní reflexy)
- přepojovací funkce přepojení a integrace eferentních signálů (z vyšších center CNS)
- poranění míchy
 - kvadruplegie přerušení krční oblasti
 - paraplegie přerušení hrudní oblasti
 - míšní šok náhlý výpadek nervových funkcí v důsledku poranění

12. VOLNÍ ŘÍZENÍ HYBNOSTI

- základní typy pohybů reflex / rytmické pohyby (mimovolní) / volní (cílená) motorika
- volní motorika řeč, manipulace s objekty
 - cílený pohyb, který nepotřebuje externí input a dá se modifikovat (podle vůle)
 - rozhodnutí, motivace, plán, vykonání pohybu, učení, flexibilita
 - funkčně doprovázena opěrnou motorikou (udržuje rovnováhu, vzpřímený postoj
 - aby volné motorika dávala smysl musí jít probíhat současně s opětnou motorikou, a navíc se senzorikou (informace z periferie)
- volní regulace motoriky motorický kortex (kůra)
 - primární motorický kortex řídí volní pohyby
 - eferenční kopie do mozečku, somatosenz. kortexu, sluch kortexu.
 - premotorická kůra
 - sekvence pohybů, procedurální učení, kontext
 - mirror neurons aktivní při provádění akce i při sledování ostatních (porozumění úmyslu ostatních)
- úmyslná motorika:
 - 1) <u>rozhodnutí</u> podnět k provedení vychází z **asociační kůry** + strategie s využitím somatosenzoriky (celkově **motorická kůra**)
 - 2) <u>programování</u> (s využitím naučených programů) pohybové vzorce a programy uloženy v **bazálních gangliích** (a mozečku)
 - 3) <u>povel k pohybu</u> z **motorické kůry** k **motoneuronům** (přes reflexní, míšní dráhy)
 - 4) <u>provedení pohybu</u> (se stálou korekcí zpětnovazebními informacemi z motorických systémů a z periferie) korekce z mozečku

MOTORICKÁ KŮRA vymyslí, co chceme udělat → v BAZÁLNÍCH GANGLIÍCH se najde vhodný program → přes MOZEČEK vyšleme do míchy (GENERÁTOR) – ta vybaví vhodný output, který je stále korigován zpětnou vazbou přes mozeček (PROPRIOCEPCE)

MOTORICKÁ KŮRA BAZÁLNÍ GANGLIA Desired output Stored program Internal feedback Comparator MOZEČEK Feedback

Cerebral corte

Hypothalamus (regulates body function)

- mozeček porovnává pohyby které chceme vykonat s tím, jak se aktuálně svaly hýbou
- *mícha* α-motoneurony inervují svaly
- propriocepce senzory po těle nám informují o poloze těla v prostoru
- pyramidová dráha
 - hlavní motorická dráha zahájení volních pohybů (volní motorika), zejména pro jemnou motoriku důležitá
 - vede z mozkové kůry do míchy (tructus corticospinalis), tvoří ji pyramidové buňky
 - **kříží** se v **prodloužené míše** pak vede větší část zkřížená v postranních provazcích a menší nezkřížená část v předních provazcích
- porucha pyramidového systému
 - obrna = zánik schopnosti volní pohybové aktivity
 - paréza částečná, plegie kompletní
 - **centrální, spastická** (křečovitá) **paralýza** léze horního motoneuronu
 - CMP (cévní mozková příhoda)
 - periferní, chabá paralýza léze dolního motoneuronu
 - svalová atrofie, hypotonie (ochabnutí)

13. ÚLOHA BAZÁLNÍCH GANGLIÍ V REGULACI MOTORIKY

- bazální ganglie (nuclei basales) = nakupení šedé hmoty v hloubi
 bílé hmoty mozkových hemisfér
 - zapojena do řízení a ovlivňování motoriky nejsou odpovědná za samotnou motorickou eferentaci (za to je zodpovědná mozková kůra)
 - zapojena do několika signálních okruhů asociační okruhy
 - <u>anatomie bazálních ganglií</u> základní jádro *striatum* (vstupní místo bazálních ganglií)
 - dělí se na nucleus caudatus a putamen
 - další jádro globulus pallidus a substantia nigra
 - uloženy hluboko v mozku, blízko thalamu
- úloha v řízení pohybu

Basal ganglia (movement, reward)

> Thalamus (sensory gateway

> > Hippocampus

- aktivují se před zahájením pohybu podílejí se na jeho plánování a na kontrole složitých pohybových vzorců (např. psaní, hra s míčem, řeč)
- zapojení bazálních ganglií
 - přímá x nepřímá dráha podpora pohybů x potlačení pohybů
 - dráhy jsou přepojené přes struktury motorický kortex → striatum → glubulus pallidus
 (další jádro bazálních ganglií) / susbtantia nigra → thalamus
 - při pohybu jsou aktivní obě dráhy přímá je aktivační, nepřímá inhibiční
 - v klidu není aktivní ani jedna dráha
 - dopaminem můžeme regulovat excitabilitu drah
- funkce bazálních ganglií
 - plánování a kontrola komplexních pohybových vzorců
 - automatická selekce chování (mentální výkony jako přizpůsobení chování v emocionálním kontextu
 - učení pohybových vzorců
 - iniciace pohybu, aktivace začátku pohybu (ale samotný podnět přichází z motorického kortexu)
 - provedení pohybu sekvence jednoduchých pohybů, automatické (nevyžaduje soustředění)
 - kognitivní kontrola motorické aktivity
- stimulant působící na bazální ganglia **dopamin** ovlivňuje pars compacta
 - dopamin udržuje rovnováhu mezi inhibicí a excitací dopaminových receptorů → důležité pro normální funkci motorického systému
 - při **Parkinsonově chorobě** přerušena dodávka dopaminu do *putamen* porucha kontroly pohybu
- poruchy bazálních ganglií
 - Parkinsonova choroba hypokineticko/ hypertonický syndrom
 - pomalý začátek pohybu, omezený rozsah a síla, klidový tremor = třes
 - degenerativní onemocnění substatia nigra, které produkují dopamin
 - inhibiční dráha je příliš aktivní
 - Huntingtonova chorea hyperkineticko/hypotonický syndrom

14. ÚLOHA MOZEČKU V REGULACI MOTORIKY

- <u>anatomie mozečku</u> (*cerebellum*)
 - 3 laloky lobus anterior, posterior, flocculonodularis
 - charakteristická kresba šedé a bílo hmoty "strom života"
 - obsahuje hodně neuronů (tolik co celý zbytek mozku)
- funkce:
 - řídicí centrum hybnosti aferentně i eferentně propojen s kůrou a periferií
 - v průběhu pohybu dostává četné aferentní informace (hmat, polohocit, pohybocit) a podněty
 z mozkové kůry
 - tvoří a kontroluje vědomý a nevědomý pohyb společně s motorickou kůrou, thalemem, bazálními ganglii
 - koordinace pohybů (prostorová a časová koordinace), stabilita těla při stoji i pohybu, výkon co nejpřesnějších pohybů
 - motorické učení motorické přizpůsobení při novém průběhu pohybu
 - plánování, provádění a kontrola pohybů
 - je to *komparátor* (viz 12) porovnává zamýšlený pohyb a tím právě prováděným (využití externí senzorického feedbacku z pohybu)
 - funkční rozdělení mozečku:
 - Vestibulocerebellum vestibulární aparát, kontrola rovnováhy
 - Spinocerebellum koordinace částí končetin, propriocepce

- Cerebrocerebellum plánování sekvencí volních pohybů
- symptomy poškození funkce mozečku
 - porucha koordinace snížení přesnosti, porucha rovnováhy, nepřiměřené pohyby (ataxie)
 - přestřelené pohyby (dysmetrie)

15. EEG

- = elektroencefalografie = snímaní elektrické aktivity mozku
- funkční vyšetřovací metoda epilepsie, poruchy spánku
- zdrojem EEG signálu jsou kapacitní proudy vyvolané postsynaptickými potenciály
 - synaptická aktivita (bez příspěvku AP) pyramidových neuronů (na jejich apikálních dendritech) – hlavně EPSP (excitační postsynap. potenciál)
 - pyramidové neurony mají apikální dendrity kolmé k povrchu mozku
 - hlavní projekční neurony v kůře
 - vyskytují se v mozkové kůře primární motorická kůra
 - EEG odpovídá aktivitě korových neuronů v blízkosti elektrody
 - signál záleží na poloze elektrody ve vztahu ke generátoru proudu →
- dendrity a tělo neuronu tvoří elektrický dipól
 - amplituda a tvar EEG signálu záleží na orientaci a vzdálenosti zdrojových dipólů vzhledem k elektrodě
 - dipóly, které jsou kolmé z povrchu lebky generují největší amplitudu, naopak ty rovnoběžné negenerují žádnou (obráceně je to u MagnetoEncafaloGrafie)
- velmi slabý signál řádově 100 uV; vzorkovací frekvence 200 Hz až 2 kHz
- elektrody pro EEG skalpové, intrakraniální, extracelulární záznam AP, lokální potenciály
 - systém 10-20
 - montáž = poloha a zapojení elektrod
 - referenční montáž měření vůči referenci (ušní lalůčky)
 - bipolární montáž jedna skalpová elektroda vůči jiné skalpové
 - longitudinální x transverzální bipolární zapojení
- základní EEG rytmy
 - alfa (8-13 Hz) aktivita mozku při zavřených očích (bdělá nečinnost)
 - beta (13-30 Hz) bdělá aktivita (nárůst po otevření očí), při REM fázi spánku?
 - **delta** (0,5-4 Hz) hluboký spánek, část NREM
 - theta (4-8 Hz) spánek

- patch clamp intracelulární měření
 - záznam z jedné jediné buňky (na mozkových řezech nebo buněčných kulturách)
 - přisátí pipety na buňku měření napětí/ proudu
 - voltage clamp (ovládáme napětí, měříme proud) / current clamp
- high-density EEG
 - až 256 elektrod, lepší rozlišení

16. EVOKOVANÉ POTENCIÁLY, VYUŽITÍ V DIAGNOSTICE

- odezva mozku na vnější stimul
 - projev raných fází zpracování senzorických informací
- hodně malé oproti spontánní aktivitě při měření nutno zprůměrovat přes několik realizací, aby se vyrušila spontánní aktivita
- sluchové x zrakové x somatosenzorické EP (x motorické EP)
 - sluchové (AEP)
 - krátko trvající zvuky
 - elektrody pro měření na spánkové kosti nebo přímo v bubínku
 - nejmenší amplituda 0,5 až 1 uV
 - zrakové (VEP)
 - amplituda 5-10 uV
 - stroboskopická výbojka, pulzní LED panely, pattern reversal (blikání černá/bílá)
 - elektrody v okcipitální oblasti

•

- somatosenzorické (SEP) hmatové
 - amplituda 5-10 uV
 - elektrostimulace končetin krátké impulsy
 - elektrody v centrální oblasti
 - diagnostika roztroušené sklerózy
- motorické (MEP)
 - elektrická nebo magnetické stimulace mozkové kůry snímaní svalové odpovědi
 - snadno detekovatelné není nutné průměrovat
- klinický význam zhodnocení funkčního stavu senzorické dráhy, posouzení u malých dětí
- ERP (event-relaed potencials) = reakce na myšlenku

17. SPÁNEK A BDĚNÍ – FÁZE SPÁNKU, ŘÍZENÍ

- spánek = stav přirozeného bezvědomí, ze kterého můžeme být probuzeni stimulací
 - = pravidelně se opakující fyziologický stav zotavování (ovlivňuje ho střídání dne a noci), doprovázen změnami vědomí
 - aktivní fyziologický děj, nevyhnutelný pro přežití
 - snížená citlivost na vnější a vnitřní podněty
 - reverzibilní ztráty vědomí (na rozdíl od kóma, hibernace)
- polysomnografie = záznam fyziologických signálů ve spánku
 - pulzní oxymetrie, EEG, EOG (napětí oka), airflow, EMG
- <u>fáze spánku:</u>
 - NON-REM hluboký spánek
 - nízká (neurální) aktivita mozku
 - konsolidace epizodní paměti
 - nízký metabolismus, útlum sympatikus (ten zvyšuje srdeční činnost)
 - pokles dechové a tepové frekvence
 - svalový tonus zachován do jisté míry
 - REM = Rapid Eye Movement "paradoxní spánek"
 - živé sny
 - EEG podobné bdění
 - ztráta napětí svalů
- pořadí spánkového cyklu: NREM 1 až 4 → REM
- jeden spánkový cyklus trvá 90 až 120 min; za nos 4 až 6 cyklů
- odpojení senzorických vstupů od cortexu

spánkové EEG

- bdění především beta-aktivita + alfa-aktivita (při zavřených očích)
- NREM fáze théta-rytmus (při usínání), sleep spindle, K-komplex, delta-rytmus (nastupující hluboký spánek)
- REM fáze podobné bdění **beta-rytmus**
- hypnogram = záznam spánkových cyklů
- spánek jako adaptivní proces šetření energií, potřeba chránit se, adaptace spánku podle životních podmínek
- spánek jako restorativní proces sekrece hormonů, přestavba metabolických drah, odklizení toxinů, podpora imunity
 - NREM fyzický odpočinek, plasticita nervového systému, konsolidace paměťových stop (epizodní paměť)
 - REM vývoj mozku, kognitivní funkce, emoční inteligence, stabilita, kreativita (sny), paměť (procedurální)

bdění = stav připravenosti a pohotovosti organismu k reakci na podněty

- charakteristická činnost retikulární formace (ARAS)
- ARAS = Ascendetní Retikulární Aktivační Systém (ascending arousal system)
 - zajišťuje bdělost stupeň bdělosti a úroveň vědomí
 - vědomí podmíněno skupinami neuronů v retikulární formaci mozkového kmene
 - tyto neurony vysílají nespecifické aktivační impulzy do talamu
 - transmitery je acetylcholin
 - je to cholinergní systém
 - proti němu je aminergní systém
 - v bdělém stavu oba systémy velice aktivní

 přepínač bdění/ spánek je v hypotalamu v poloze bdělost tato poloha je stabilizována neurony laterálního hypothalamu neurotransmiter: orexin (reguluje v laterálním hypothalamu celý ARAS)
 - to vede k vyplavování histaminu, dopaminu, serotoninu, noradrenalinu, acetylcholinu a glutamátu (neurotransmitery bdělosti)
 - nespecifický systém integrace senzorických vstupů, výstupy se dostávají do talamu a hypothalamu
 tím ovlivňuje vědomí
 - během REM fáze spánek odpojí aminergní systém a při NREM tlumí oba systémy (aminergní i cholinergní)
- navození spánku
 - VLPO = ventrolateral preoptické jádro v předním hypothalamu
 - uvolňuje GABA a galanin → inhibuje orexinové neurony a produkci histaminu → inhibice ARAS
- spánkové patologie: narkolepsie (pořád se chce spát), spánková apnoe (chrápání), insomnie, náměsíčnost, noční děsy, sny bez svalové atonie, spánkový paralýza

18. CHRONOBIOLOGIE

- chronos = čas
- chronotyp = genetická predispozice pro určitý rozvrh (cirkadiánní systém)
- chronobiologie = zabývá se periodickými (cyklickými) fenomény v živých organismech biologické rytmy
 - řada procesů v celém organismu vykazující periodicitu
 - **cirkadiánní rytmy** sekrece hormonů, teploty jádra, příjem potravin, tělesná aktivita, rytmus spánku a bdění
- biologické hodiny
 - centrální oscilátor vnitřní rytmicity suprachiasmatická jádra SCN (nucleus suprachiasmaticus)
 - uložena v předním hypothalamu
 - SCN navozují cirkadiánní rytmy hlavní oscilátor těla

- mají vnitřní periodicitu (okolo 24 hodin)
- nutnost synchronizace se světelným dnem mají přímé spojení se sítnicí
 - světlo působí na sítnici (retina) → retino-hypothalamický trakt → SCN → úprava molekulární oscilátoru v buňkách SCN → přenos informace o čase do dalších jader hypothalamu → komunikace s periferními oscilátory v orgánech a tkáních
- zajišťují homeostázu organismu
- melatonin "hormon tmy"
 - produkován epifýzou, jeho produkce je řízena SCN
 - v různých tkáních jsou receptory pro melatonin
 - pomáhá synchronizaci periferních pacemarkerů
- chronoterapie = podávání léčiv v optimální dobu
 - denní rytmus v krevní tlaku
 - podávání melatoninu pro zlepšení adaptace na nové časové pásmo, synchronizace nevidomých

19. PAMĚŤ, DRUHY PAMĚTI

- **paměť** = schopnost ukládání informací a vybavování
- učení = proces vytváření paměťové stopy, změna chování vlivem vnějšího světa
 - funkční projevem paměti je adaptivní změna chování na základě předchozí zkušenosti
- klasifikace paměti dle:
 - trvání krátkodobá x střednědobá x dlouhodobá
 - charakteru informace
 - účastnících se struktur
 - buněčných a síťových mechanismů

- KRÁTKODOBÁ PAMĚŤ prefrontální kortex (centrum pozornosti)
 - krátkodobá epizodická po nedávné události
 - aktivní soustředění na vnímání okolí
 - limitovaná kapacita
 - regulace toku informací do dvou "rehearsal" systémů cirkulace informace
 - řečová smyčka
 - vizuální smyčka
- DLOUHODOBÁ PAMĚŤ
 - IMPLICITNÍ (NEDEKLADATIVNÍ)
 - přímá zkušenost nezávisí na vědomých procesech, nevyžaduje vědomé vybavení
 - konkrétní obsah verbálně nedeklarovatelný, člověk si je vědom pouze důsledku (např. umím řídit auto)

- pomalé učení repetice stimulu
- méně plastická paměť, více spojeno s podmínkami učení
- zapojení percepčních, motorických a emočních okruhů
- např. hra na hudební nástroj, řízení, pohybové vzorce
- NEASOCIATIVNÍ UČENÍ x ASOCIATIVNÍ UČENÍ
 - neasociativní změna chování na konkrétní senzorický stimul
 - o habituace, dehabituace, senzitizace
 - asociativní změna v důsledku časové souvislosti mezi vícero podněty
 - o Pavlovi psi klasické podmiňování, operativní podmiňování
- PROCEDURÁLNÍ PAMĚŤ "vědět jak" motorické (automatické) dovednosti, zvyky, řečové stereotypy
- PRIMING vystavení určitému stimulu ovlivní odpověď na další stimul

EXPLICITNÍ (DEKLARATIVNÍ)

- "vědět co" vědomá paměť pro události a znalosti obsah je deklarovatelný
- není zapotřebí opakování, vědomé vybavování
- abstraktní uložení informace
- mediální temporální lalok, závisí na hipokampu (vybavení informace)
 - při spánku v NREM fázi konsolidace informací → přehrávání informací v hippokampu → přesun do kortikálních oblastí

SÉMATINTICKÁ x EPIZODICKÁ PAMĚŤ

- sémantická fakta, informace o objektech, význam slov
- epizodická "autobiografie", události, osobní zkušenosti
- hlavním úložištěm asociační oblasti
- orientace v prostoru závisí na hippocampu

20. PODSTATA VZNIKU PAMĚŤOVÉ STOPY

- paměťová stopa = ENGRAM = mechanistickým podkladem uložení dané vzpomínky v neuronálních sítím mozku
 - nutno podmínkou pro vznik je **neuronální plasticita** = změna funkce a struktury neuronálních sítí v důsledku učení

fáze paměti:

- 1) kódování zprocesování nové informace (důležitá forma, rozsah, motivace a pozornost)
- 2) konsolidace přeměna nestabilní nově získané informace na trvalejší formu
- 3) uložení mechanismy trvalých (anatomických) změn v příslušných anatomických oblastech
- 4) vybavení oživení a **použití** informace (nejefektivnější, pokud se děje ve stejném kontextu)

- princip:

- vstup → zpracování v senzorickém kortexu → krátkodobá paměť → konsolidace → dlouhodobá paměť → vybavení → pracovní paměť → použití informace
- nebo po krátkodobé paměti rovnou použijeme v pracovní paměti
- nebo po krátkodobé paměti rovnou zapomeneme

- mechanismy učení a paměti

- opakování stimulu způsobí změnu synaptického přenosu mezi dvěma (a více) neurony
- long-term potentiation / depression (LTP/LTD)
 - potenciace = zesílení účinku
 - změna účinnosti synapse

- dlouhodobé zvýšení nebo snížení (nad nebo pod klidovou hodnotu) synaptických odpovědí post synaptického neuronu (EPSP) po dráždění presynaptických terminálů
- LTP trvalé posilování synapsí na základě nedávných vzorců aktivity
- LTD nízkofrekvenční dlouhodobé dráždění

• ..

OKRUH 3 – NEUROFYZIOLOGIE SENZORICKÝCH SYSTÉMŮ

21. OKO JAKO OPTICKÝ APARÁT

- optický aparát oka složený z několika hraničních ploch a médií (složený optický systém)
 - při zjednodušení "redukované oko"
 - mozek adaptován na zmenšený převrácený obraz reality
 - když bod "fixujeme" zobrazí se právě ve žluté skvrně (místo nejostřejšího vidění)
- **lomivost oka** = převrácená hodnota přední ohniskové vzdálenosti [D dioptrie]
 - 2/3 lomivosti oka zajišťuje rohovka, 1/3 lomivosti oka zajišťuje čočka (akomodace ostření)
 - úprava optické mohutnosti (=lomivosti čočky)
 - krátkozrakost rozptylky, dalekozrakost spojky
 - ostrý obraz vzniká vždy na sítnici
 - akomodační šířka mění se s věkem (děti 14 D, dospělí 10 D, starší lidé 0 D → presbyopie (vetchozrakost) spojky na čtení

f ohnisková vzdálenost čočky
a vzdálenost bodového zdroje
b vzdálenost roviny ostrosti na opačné straně čočky

- rozlišovací schopnost = schopnost oka rozlišit 2 co nejblíže ležící body
 - obraz (bod) se na sítnici zobrazuju jako malý rozptylový proužek
 - 2 body lze rozlišit, když je mezi jejich obrazy na sítnici alespoň jeden volný (světlem nezasažený)
 čípek
 - hraniční zorný úhel 1 úhlová minuta
 - vysoká rozlišovací schopnost žluté skvrny sítnice → souvisí se zrakovou ostrostí
- zraková ostrost
 - určuje kvalitu vidění, posuzování zrakové schopnosti
 - závisí na hustotě světločivých buněk v příslušném místě sítnice a jejich funkčním zapojení
 - největší zraková ostrost je v místě fovea centralis (= žlutá skvrna) "centrální zraková ostrost"
 - dáno maximální hustotou čípků v této oblasti "
 - gangliové buňky k nim zapojené zde mají nejmenší receptivní pole → 1 čípek na 1 neuron
 - 2 body lze rozlišit právě tehdy, když z nich vycházejí paprsky svírající úhel 1 úhlová minuta
- adaptace oka (na intenzitu světla) = schopnost zraku přizpůsobit se různým hladinám osvětlení
 - úprava průsvitu duhovky (ovládá vegetativní nervový systém rychlá (do 1 sec), reflexní odpověď)
 - spoluurčuje hloubku ostrosti (největší při nejmenším průsvitu)
 - změna citlivosti fotoreceptorů čípky se adaptují rychleji než tyčinky
 - fotopické vidění za plného osvětlení, přes čípky, lepší barevnost a větší rozlišení
 - skotopické vidění za tmy, přes tyčinky, odstíny šedé, větší citlivost
 - mezopické vidění za nízkého osvětlení

- podkladem adaptace oka je rozklad světločivných pigmentů (rodopsin)
 - tyčinky obsahují rodopsin působením světla se rodopsin rozkládá na svoje složky (retinal a opsin) a mění barvu na žlutou reverzibilní a velmi rychlá reakce
 - při příliš silném osvětlení se retinal mění na retinol (mění barvu na bílou) reverzibilní, ale pomalá reakce
 - přechod tma-světlo → rychlá adaptace (adaptace na světlo)
 - přechod světlo-tma → pomalá adaptace (adaptace na tmu) trvá, než se vytvoří zásoby rodopsinu

22. FUNKCE SÍTNICE, RECEPTIVNÍ POLE

- **sítnice** (retina)
 - zaznamenává a předzpracuje
 - slepá skvrna (odstup optického nervu) žádné receptory
 - **žlutá skvrna** (*fovea centralis*) pouze čípky
- světločivné receptory sítnice = čípky a tyčinky
 - neuronální buňky jejich dendrit je přeměněn na světločivý výběžek, axony se napojují na další neurony (bipolární neurony)
 - tma buňku depolarizuje (-40 mV), světlo buňku hyperpolarizuje (-80 mV)
 - tyčinky (rod) světlo / tma (černobílé vidění)
 - nejvíc jich je ve žluté skvrně, periferně ubývají
 - morfologie dlouhý vnější + vnitřní segment
 - vnější segment membranózní disky s fotopigmentem
 - mitochondrie ve vnitřním segmentu
 - **čípky** (cone) **barevné** vidění, je jich více než čípků
 - nahromaděny 30° od žluté skvrny
 - kratší buňka kratší vnější segment disky splynuté s membránou
- funkce sítnice
 - zajišťuje fototransdukci a předzpracování zrakových informací
 - receptory sítnice zachycují světlo a přeměňují ho na elektrické impulzy
 - transformace světla na kódovanou informaci AP
 - konektivita sítnice (průběh zrakové dráhy)
 - fotoreceptory → bipolární buňky → gangliové buňky
- receptorový potenciál depolarizační receptorový potenciál vede ke vzniku AP
- laterální inhibice redukce aktivity sousedních neuronů
 - silnější podnět bude posílen, slabší potlačen zesílení kontrastu
- receptivní pole (Receptive Field) = oblast sítnice, do které se sbírá informace do 1 gangliové buňky
 - skupina fotoreceptorů, které posílají informace do určité bipolární buňky nebo gangliové buňky

23. OPTICKÉ DRÁHY, ZRAKOVÁ CENTRA V MOZKU

- zraková dráha
 - multisynaptická, 4neuronová senzitivní dráha
 - 1. neurony světločivné buňky (tyčinky a čípky)
 - <u>2. neurony</u> **bipolární** neurony
 - napojené svými dendrity na axony světločivných buněk
 - ON/OFF buňky inhibiční / excitační buňky
 - o mají různé receptory pro glutamát
 - OFF buňka nechá výstup stejný, ON ho převrátí
 - 3. neurony gangliové buňky
 - opustí oka a tvoří nervus opticus
 - 4. neurony buňky corpus genicularis laterale CGL
 - sítnice → zrakový nerv (nervus opticus) → chiasma opticum (křížení) → tractus opticus → zrakový thalamus (CGL = corpus geniculatum laterale)
 → primární zraková kůra (okcipitální lalok) (+ sekundární zraková oblast zraková paměť)

- to, co je v zorném poli (úplně) vpravo "jde" vlevo
- předměty, které se nachází v nazálních polorovinách (u nosu) zorného pole se zobrazí v temporálních polovinách sítnice -> převrácený obraz reality na sítnici
- vlákna z temporální sítnice dále zůstávají na stejné straně → věci z nasální poloroviny zpracovává ta stranově stejná hemisféra jako oko
- vlákna z nasální strany sítnice (tzn. laterální strany obrazu) se kříží v chiasma opticum

funkce zrakové dráhy

- převod obrazu vnějšího světa do mozkové kůry
- odbočky ze zrakové dráhy umožňují řízení reflexů, okohybných pohybů i motoriky celého těla
 - odbočka do hypothalamu (SCN) ovlivňuje vegetativní funkce a cirkadiánní rytmus
- odbočky:
 - ventrální proud ("what pathway") rozpoznávání zrakových obiektů
 - dorzální proud ("where pathway") vnímaní pohybu, využití pro motoríku

24. SLUCH, FUNKCE STŘEDNÍHO A VNITŘNÍHO UCHA, PŘEVOD ZVUKOVÝCH VLN NA ELEKTRICKÉ SIGNÁLY

- jak to jde postupně?
 - 1) příjem zvukových vln ušním boltcem a zvukovodech (zevní ucho)
 - končí bubínkem změny akustického tlaku rozkmitají bubínek
 - vedení vzduchem
 - 2) **střední ucho** převodní systém
 - kmity bubínku se přenáší sluchovými kůstkami na membránu oválného okýnka (mechanické vedení)
 - kladívko → kovadlinka → třmínek → oválné okénko
 - akustický reflex, ochranný reflex

- 3) vnitřní ucho vlastní detektor
 - labyrint (skládá se z polokruhovitých chodbiček a hlemýždě (=cochlea))
 - vedení tekutinou (perilymfa)
- funkce středního ucha
 - kmity z bubínku zde přenáší sluchové kůstky na oválné okénko **převodní systém**
 - poměr ploch bubínku a oválného okénka udává zvýšení tlaku 22x
 - snaží se přenést zvuk, co možná nejvíc beze ztráty
 - ale mezi prostředími vzduch (zevního o ucha) a kapalina (vnitřního ucha) velká impedance
 - proto je tlak zesilován 22x (poměrem ploch)
- funkce vnitřního ucha vlastní detektor
 - skládá se z vestibulárního orgánu (viz 26) a hlemýždě (=cochlea)
 - to celé dohromady je labyrint
 - blanitý (vyplněno endolymfou) x kostěný labyrint (perilymfou)
 - součástí je Cortiho orgán vytváří nervový (elektrický) impuls z mechanické energie zvukových vln
 - uložen v cochlee, na bazilární membráně
 - vnitřní a zevní vláskové buňky
 - vnitřní vláskové buňky detekce (vlastní receptory mechanotransdukce)
 - zevní vláskové buňky zesilují zvuk (kochleární zesilovač)
 - vlna mechanického vlnění, která se šíří bazilární membránou stimuluje vláskové buňky
 Cortiho orgánu
 - zvuk → vlnění perilymfy a následně endolymfy → vlnění bazilární membrány →
 detekce vláskovými buňkami, které jsou zavzaté v tektoriální membráně
 - v cochlee tonotopická organizace vláskových buněk (podle tónu frekvence)
 - transformace frekvence na umístění různá pružnost a tloušťka basilární membrány
 - tektoriální membrána → ohyb stereocilií (=vlásečky vláskových buněk)
 - → otevření mechanicky řízených kanálů → depolarizace → ribbon synapse vláskových buněk → glutamát
 - ribbon synapse = speciální typ synapse umožňující multivesikulární uvolňování neurotransmiterů (rychlý přenos a synaptický přenos)
 - o na jeden ribbon se naváže přes 100 vezikul s neurotransmitery
 - endokochleární potenciál
 - endolymfatický prostor vůči perilymfě vykazuje stálý potenciál +80 mV (rozdíl v koncentraci
 K+)
 - tento potenciál je udržován aktivními transportními procesy
 - má význam pro mechanotransdukci vláskovými buňkami
 - kochleární nerv = sluchový nerv
 - tvořen senzorickými vlákny ze smyslových receptorů ve vnitřním uchu
 - přenos elektrických impulsů z vláskových buněk do mozku
 - funkce: ve vnitřním uchu se nacházejí smyslové orgány pro sluch a rovnováhu (vestibulární orgán)

25. SLUCHOVÉ DRÁHY, SLUCHOVÁ CENTRA V MOZKU

- sluchová dráha = 4neuronová dráha (vzestupná)
 - přenáší informace z Cortiho orgánu vnitřního ucha do primární sluchové kůry
 - bipolární buňky spojeny dendrity s vláskovými buňkami → mozkový kmen (kochleární jádra dorzální a ventrální) → střední mozek (colliculi inferiores) → corpus geniculatum mediale (CGM) v thalamu → primární sluchová kůra (gyrus nad temporálním lalokem)
 - větší část vláken je překřížena

- sluchový nerv → kochleární jádro → střední mozek → CGM v thalamu → sluchová kůra (primární, sekundární)
- *mozkový kmen = prodloužená mícha + Varolův most + střední mozek
- sluchová centra v mozku
 - primární sluchová kůra na horní ploše gyru nad temporálním lalokem
 - zajišťování uvědomování si jednotlivých tónů a zvuků
 - sekundární sluchová kůra v gyru nad temporálním lalokem
 - analýza, rozeznání a komplexnější vnímaní zvuků a hlasů
 - eferentní vlákna vedou do řečových a asociačních center (Wernickeho centrum řeči)
 - mozkový kmen, thalamus (CGM), cortex

26. VESTIBULÁRNÍ APARÁT – ŘÍZENÍ ROVNOVÁHY

- smyslový organ pro zajištění rovnováhy hlavy a těla v prostoru
 - registruje statickou polohu hlavy v prostoru a dynamické zrychlení na ni působící
- nachází se v labyrintu vnitřního ucha v blanitém labyrintu
 - skládá se z 5 částí každá má své vláskové buňky
 - sakulus a utrikulus = membranózní vaky uvnitř vestibulárního labyrintu
 - detekují lineární zrychlení (přímočaré pohyby hlavy) + odchylky od svislé polohy hlavy
 - jejich vláskové buňky jsou zanořeny do membrány (rosolovitá krycí hmota), která obsahuje těžké krystalky uhličitanu vápenatého (kalcitové krystaly)
 - tyto krystalky posouvají membránu v důsledků pohybů hlavy
 - polokruhovité kanálky jsou uvnitř pokryty vláskovými buňkami
 - vláskové buňky zanořeny do kupuly
 - registrují úhlové zrychlení (otáčivé pohyby)
 - když jsou cilie (=řasinky) v klidu uvolňují vláskové buňky glutamát
 - když se hlava otáčí → změní se tlak působením setrvačnosti endolymfy → ohnout se cilie → změní vodivost iontových kanálů → stoupá frekvence AP
- vestibulární vzestupná dráha
 - do 4 vestibulárních jader v mozkovém kmeni (zpracovávána i informace z propriocepce a zraku) >
 do míchy / do mozečku / k jádrům okohybných nervů
- vestibulární reflexy
 - udržují rovnováhu těla a konstantní obraz na sítnici

27. ČICH A CHUŤ

- čich
 - rozlišení asi 10 000 pachů
 - čichový epitel umístěn jev v malé ploše nosní dutiny
 - obsahuje podpůrné buňky a buňky tvořící hlen (pro očišťování sliznice)
 - vlastní buňky bipolární neurony s řasinkami na povrchu
 - chuť a čich jsou velmi propojeny
 - čichová informace předzpracována v čichových bulbech
 - mechanismus transdukce
 - odorant navázaný na bílkovinu (→ stane se rozpustným ve vodě) → naváže se na GPCR receptor → aktivace enzymu adenylátcyklázy (AC) → vytvoří v buňce cAMP (cyklický adenosinmonofosfát) → otevření neselektivních kanálu → ionty Ca2+ do ICF → elektrický potenciál (depolarizace)
 - čichová dráha
 - 2neuronová (nezkřížená)

- čichová buňka epitelu → mitrální buňka v bulbus olfactorius → bez přepojení v thalamu do temporálního laloku
- jediná dráha, která neprochází thalamem!

- chuť

- chuťový pohárek (místo, kde se vyskytují chuťové receptory) tvoří asi 150 sekundárních smyslových buněk
 - chuťové receptory na jazyku a taky na měkkém patře
 - obnovují se ve dvoutýdenním cyklu
 - cca 5000 chuťových pohárků
- chuťové kvality: sladká, hořká, slaná, kyselá + umami ("masitý", "chutný", chuť glutamátu)
 - receptory rozmístěny po celém povrchu jazyka, avšak s rozdílnou hustotou a rozdílným prahem citlivosti

• transdukce chuti

- iontové kanály
 - slaná chuť dána vyšší koncentrací Na+ iontů
 - kyselá chuť dána H+ ionty (blokují výtok K+ iontovým kanálem)
- metabotropní receptory (GPCR = "G-protein coupled receptors")
 - **hořká** nejvíce senzitivní
 - sladká cukry aktivují receptor (cukry, ketony, alkoholy, peptidy)
 - umami glutamát

chuťová dráha

 chuťové centrum mozkového kmene → thalamus → mozková kůra (chuťové centrum nad temporálním lalokem)

28. PROPRIOCEPCE

PROPRIOCEPCE (= hluboká senzibilita)

- silový, polohový a pohybový smysl
- vestibulární orgán (statokinetické čidlo v labyrintu vnitřního ucha) + mechanoreceptory kůže + proprioceptory (svalová vřeténka, Golgiho tělíska, kloubní receptory)
- komplexní proprioceptivní analyzátor systém hlubokého čití
 - kinestézie = cit pro pohyb a vnímání pohybu podrážděním receptorů ve svalech, šlachách, okostici a v kloubních pouzdrech

svalová vřeténka

- leží paralelně k extrafuzálním vláknům kosterních svalů
- při natahování svalu působí proti jeho přetržení
- aktivace vřetének prodloužením svalu, slouží k regulaci délky svalu
- monosynaptický reflex (např. patelární) krátká reflexní doba (30 ms), rychlá korekce nechtěných změn délky svalu a tím i postavení kloubu
- tvořena až 10 svalovými vlákny ve vazivovém pouzdru
 - intrafusální vlákna (kontrakce jen na koncích) × extrafusální vlákna (kontrakce po celé délce)
 - dva typy intrafusálních vláken:
 - **s jaderným vakem** dynamická odpověď inervujících vláken na natažení (rychlá adaptace); centrální umístění ve vřeténku
 - s jaderným řetězcem statická odpověď (pomalá adaptace); laterální umístění
 - oba typy intrafusálních vláken jsou inervovány γ-motoneurony (upínají se na kotraktilní část; jejich aktivita jde na příčně pruhovanou část)
 - čím více γ-motoneuronů, tím vyšší senzibilita svalového vřeténka

- eferentně inervují kontraktilní konce intrazuálních vláken, tím mohou měnit jejich délku i citlivost na protažení
- dva typy senzorických nervových zakončení
 - primární anulospirální inervují oba typy intrafusálních vláken (dynamická i statická složka odpovědi); receptory pro protažení intrafuzálních vláken, vedou do míchy informace o jejich délce a změně délky
 - sekundární keříčková inervuje převážně vlákna s jaderným řetězcem v jejich koncových částech (statická odpověď)

Golgiho šlachová tělíska

- zapojena v sérii ke kosterním svalům
- aktivace pasivním natažením i aktivní kontrakcí svalu
- inervace pomalejšími nervy (pomalejší adaptace)
- bisynaptický reflex (šlápnutí na ostrý předmět)
- monitorují napětí příslušné šlachy a tím i navazujícího svalu
- drážděna už kontrakcí několika málo motorických jednotek
- slouží k regulaci svalového napětí při přepětí šlapy se aktivuje bisynaptický inverzní myotatický reflex
 - reflexní excitace inhibičních interneuronů v míše
 - aferentní vlákna lb (aktivace GŠ) \rightarrow informace do míchy \rightarrow přechod na interneurony lb (90% jich je inhibičních) \rightarrow tlumení aktivity α-motoneuronů (inhibice) \rightarrow relaxace svalu
 - tím se snižuje tonus svalu
- čití z kloubů
 - mechanoreceptory z kloubního pouzdra
 - natažení kloubních šlach
 - volná zakončení v kosti poškození chrupavky není bolestivé, protože tam nejsou nervová zakončení
- nervová vlákna
 - Aα, Aβ nejtlustší myelizovaná vlákna, vnější čití z kůže
 - ze svalových vřetének, šlachových receptorů a mechanoreceptorů kůže
 - C vlákna bolest (aferentní vlákna z kůže, "pomalá bolest" jednotky m/s)
 - končí v druhém segmentu rohu míchy
- Lemniskální systém dráha zadních provazců
 - taktilní čití a propriocepce
 - informace z kůže a z pohybového ústrojí jdou do zadních rohů míchy → dráhy zadních provazců → thalamus → cortex
 - úkolem je rychle dopravit informace taktilních podnětech do mozkové (somatosenzorické) kůry
 - **dermatom** = oblast kůže inervovaná z jednoho míšního segmentu
 - částečně se překrývají, protože každé místo na kůži je inervováno alespoň ze 2 míšních kořenů

29. BOLEST

NOCICEPCE = vnímání podnětů pomocí nociceptorů

- **nociceptory** aktivovány podněty, které by mohly poškodit tkáň
 - mají malou nebo žádnou adaptaci (nelze potlačit bolest)
 - obsahují je všechny tkáně kromě mozku, jater, plic atd.
 - většina vláken jsou pomalu vedoucí C-vlákna (méně než 1 m/s) (zbytek jsou myelizovaná vlákna Αδ)
 - hyperstézie = zvýšená vnímavost těla k somatosenzitivním podnětům
 - mechanické × mechanicko-termické × polymodální

- **bolest** nepříjemná senzorická nebo emocionální zkušenost, která se objevuje s poškozením tkáně
 - součástí bolesti je emocionální zkušenost
 - aktivace nociceptorů bez pocitu bolesti (potlačení bolesti ve vypjatých situacích)
 - bolest bez aktivace nociceptorů fantomové bolesti
 - dělení bolesti:
 - somatická povrchová (rychlá × pomalá) × hluboká (svaly, klouby)
 - viscerální z pouzder vnitřních orgánů
 - při poranění nejprve rychlá bolest (Aδ vlákna), později tupá pomalá bolest (C vlákna) trvá déle, hůře lokalizovatelná
- mediátory v přenosu bolesti
 - ...
- anterolaterální systém
 - 3 dráhy vedoucí dotyk, teplo, bolest, menší část taktilního čití (hrubšího)
 - probíhají míchou přední provazce míchy
 - \rightarrow thalamus \rightarrow somasenzorická kůra

30. SOMATOSENZORICKÝ SYSTÉM OBECNĚ (DRUHY RECEPTORŮ, PŘEVOD ENERGIE NA SIGNÁL) + TAKTILNÍ ČITÍ A TERMOCEPCE

somatosenzorický = týkající se smyslových vjemů z tělesných oblastí somatosenzorika (somatoviscerální senzibilita) = všechny vjemy, které jsou vyvolány podrážděním smyslových orgánů těla

- dílčí oblasti propriocepce (svaly), nocicepce (bolest) a kožní (povrchová) citlivost (exterocepce)
- zapojeny nejtlustší a nejrychlejší myelizovaná vlákna (až 120 m/s)
- 3 nervové dráhy: periferie → mícha → thalamus → cortex
- základní dělení:
 - exterocepce (kožní čití) dotek, tlak, vibrace, textura, chlad, bolest, šimrání, vlhkost
 - **interocepce** hluboké čití z kloubů, svalů a vazů (propriocepce, vůlí ovlivnitelné); čití z vegetativního systému (vůlí neovlivnitelné)
- druhy receptorů
 - dělení podle funkce:
 - mechanoreceptory nízký práh aktivace (vítr, peříčko)
 - termoreceptory relativní, reakce na změnu
 - nociceptory receptory na bolest, volná nervová zakončení, vysoký práh aktivace
 - podle histologie:
 - opouzdřené konec nervu je obalen pouzdrem
 - volná nervová zakončení (nociceptory)
 - podle prahu: nízký × vysoký práh aktivace
 - podle adaptace: rychle (Meissner, Valter-paccini) × pomalu (Ruffini, Merkel)
- senzorická jednotka gangliová buňka + její axonální větvění
 - aktivuje receptivní pole
 - denzita senzorických jednotek (souvisí s nahuštěním receptivních polí)
 - čím více malých receptivních polí vedle sebe, tím lepší čití
 - nejvyšší denzita je v distálních oblastech (konečky prstů, rty, ústní dutina) -> vysoká rozlišovací schopnost pro taktilní podněty (nervová vlákna vedou podněty z velmi malé oblasti kůže (malá receptivní pole))
- receptivní pole oblast kůže, kterou když podráždíme, tak se aktivuje jedna senzorická jednotka
- diskriminační čití vzdálenost 2 bodů stimulace, které dokážeme rozeznat jako 2 body

- dvoubodový simultánní prostorový práh vzdálenost, od které lze vnímat dva současné tlakové podněty jako dva samostatné
- na prstech cca 1 mm, na zádech cca 60 mm
- Neuron x pseudounipolárnígangliová buňka
- dráždivá × vzrušivá membrána
 - dráždivá reakce podle velikosti stimulu
 - vzrušivá reakce "všechno nebo nic", buď dosáhne prahu nebo ne
- kódování intenzity podnětu ve frekvenci akčního potenciálu

SOMATOSENZORICKÉ OBLASTI MOZKU

- primární somatosenzorická kůra (S1)
 - somatotopické uspořádání čím větší hustota receptorů, tím větší oblast
 - Brodmanovy arey 3b, 3a, 1, 2
 - vysoce plastická
- sekundární somatosenzorická oblast (S2)
 - taktilní rozpoznávání předmětů
 - integrace somatosenzorických informací se zrakovými
- Brown-Séquardův syndrom
 - příznaky po jednostranném přetětí nebo útlaku míchy
 - lze z něho demonstrovat funkci míšních drah
 - na poškození straně dochází k obrně, ztrátě propriocepce, ztráta taktilního čití, hyperstézie nad místem poškození
 - na kontralaterální straně dochází k porušení bolestivého a tepelného čití

TERMOCEPCE

- termoreceptory chladové (pro teploty pod 36 °C) × tepelné (teploty nad 36 °C)
- čím je nižší teplota (v rozsahu 36–20 °C), tím je vyšší frekvence akčního potenciálu z chladových receptorů
 - u tepelných receptorů je to obráceně
- mezi teploty 20 a 40 °C dochází k rychlé adaptaci termorecepce (vodu o 25 °C vnímáme jako studenou jenom první chvilku)
 - na rozdíl od extrémnějších teplot, které registrujeme delší dobu jako studené nebo jako teplé (ochrana před poklesem teploty jádra a před poškozením kůže)
- v ústech je velká hustota termoreceptorů