Retrieval-Augmented Generation (RAG) for LLMs

Concepts & Techniques for building efficient RAG systems

What & Why RAG?

RAG is a process where external data is *retrieved* and then passed to the LLM when doing the *generation* step.

From ChatGPT

RAG Step 1: Indexing

Indexing is a pipeline for ingesting data from a source and indexing it. This usually happens offline.

• DocumentLoaders

Text splitters

Embeddings.

VectorStore

RAG Step 2: Retrieval and generation

The actual RAG chain, which takes the user query at run time and retrieves the relevant data from the index, then passes that to the model

Vector store-backed retriever

```
db = FAISS.from_documents(texts, embeddings)

retriever = db.as_retriever()

docs = retriever.get_relevant_documents(what did he say)
```

Maximum marginal relevance retrieval

```
retriever = db.as_retriever(search_type="mmr")

docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")
```

Similarity score threshold retrieval

```
retriever = db.as_retriever(
    search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5}
)

docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")
```

Specifying top k

```
retriever = db.as_retriever(search_kwargs={"k": 1})

docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")
len(docs)
```

ParentDocument

- Conflicting desires when splitting
- Small documents
 and their
 embeddings can
 most accurately
 reflect their
 meaning. If too
 long, then the
 embeddings can
 lose meaning
- We want to have long enough documents that the <u>context of</u> <u>each chunk is</u> <u>retained</u>.

<u>MultiQueryRetriever</u>

• **Prompt:** You are an Al language model assistant. Your task is to generate three different versions of the given user question to retrieve relevant documents from a vector database. By generating multiple perspectives on the user question, your goal is to help the user overcome some of the limitations of the distance-based similarity search.

Deep Dive into the Internals of Langchain Vector Store Retriever

Advanced Retrievers Contextual Compression

 Prompt: Given the following question and context, extract any part of the context *AS IS* that is relevant to answer the question. If none of the context is relevant return NO OUTPUT. Remember, *DO NOT* edit the extracted parts of the context.

Ensemble

```
# initialize the bm25 retriever and faiss retriever
bm25_retriever = BM25Retriever.from_texts(
    doc_list_1, metadatas=[{"source": 1}] * len(doc_list_1)
bm25_retriever.k = 2
                                        BM25 : Syntactic
doc_list_2 = [
    "You like apples",
   "You like oranges",
                                         FAISS: Semantic
embedding = OpenAIEmbeddings()
faiss_vectorstore = FAISS.from_texts(
    doc_list_2, embedding, metadatas=[{"source": 2}] * len(doc_list_2)
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": 2})
# initialize the ensemble retriever
ensemble retriever = FnsembleRetriever(
    retrievers=[bm25_retriever, faiss_retriever], weights=[0.5, 0.5]
```

Multi Vector

- Smaller chunks: split a document into smaller chunks, and embed those (this is ParentDocumentRetrie ver).
- Summary: create a summary for each document, embed that along with (or instead of) the document.
- Hypothetical
 questions: create
 hypothetical questions
 that each document
 would be appropriate
 to answer, embed
 those along with (or
 instead of) the
 document
- Multi-Vector Retriever for RAG on tables, text, and images

Some more advanced Retrievers

Name	When to Use	Description
Self Query	If users are asking questions that are better answered by fetching documents based on metadata rather than similarity with the text.	This uses an LLM to transform user input into two things: (1) a string to look up semantically, (2) a metadata filer to go along with it. This is useful because oftentimes questions are about the METADATA of documents (not the content itself).
Time- Weighted Vectorstore	If you have timestamps associated with your documents, and you want to retrieve the most recent ones	This fetches documents based on a combination of semantic similarity (as in normal vector retrieval) and recency (looking at timestamps of indexed documents)
Long-Context Reorder	If you are working with a long-context model and noticing that it's not paying attention to information in the middle of retrieved documents.	This fetches documents from an underlying retriever, and then reorders them so that the most similar are near the beginning and end. This is useful because it's been shown that for longer context models they sometimes don't pay attention to information in the middle of the context window.

• Lost in the Middle: How Language Models Use Long Contexts

Assignment

Retrieval-Augmented Generation for Large Language Models: A Survey 18 Dec 2023

- This comprehensive review paper offers a detailed examination of the progression of RAG paradigms, encompassing the Naive RAG, the Advanced RAG, and the Modular RAG.
- The paper highlights the stateof-the-art technologies embedded in each of the critical components(which includes the retrieval, the generation and the augmentation techniques), providing a profound understanding of the advancements in RAG systems.
- Furthermore, this paper introduces the metrics and benchmarks for assessing RAG models, along with the most upto-date evaluation framework.