K-means clustering

Herman Kamper

2024-01, CC BY-SA 4.0

K-means clustering algorithm

- Randomly assign each item $\mathbf{x}^{(n)}$ to one of the K clusters.
- repeat until cluster assignments stop changing:
 - (a) for cluster k=1 to K: Calculate the cluster centroid μ_k as the mean of all the items assigned to cluster k.
 - (b) for item n=1 to N: Assign item $\mathbf{x}^{(n)}$ to the cluster with the closest centroid.

Initialisation

$K\operatorname{-means}$ example

Iteration: 1 (centroid update)

Iteration: 1 (item assignment)

Iteration: 2 (centroid update)

$K{\operatorname{-}}{\operatorname{means}}$ example

Iteration: 2 (item assignment)

$K\operatorname{-means}$ example

Iteration: 3 (centroid update)

$K{\operatorname{-}}{\operatorname{means}}$ example

Iteration: 3 (item assignment)

K-means clustering algorithm details

Notation

 C_k denotes the set of indices of items assigned to cluster k.

 $|C_k|$ denotes the number of items in cluster k.

Example:
$$C_4 = \{205, 12, 303\}, |C_4| = 3$$

Inner loop

(a) Centroid update:

Update the centroids $\mu_1, \mu_2, \dots, \mu_K$ while keeping the cluster assignments C_1, C_2, \dots, C_K fixed.

$$\boldsymbol{\mu}_k = \frac{1}{|C_k|} \sum_{i \in C_k} \mathbf{x}^{(i)}$$

(b) Cluster assignment update:

Update the cluster assignments C_1, C_2, \ldots, C_K while keeping the centroids $\mu_1, \mu_2, \ldots, \mu_K$ fixed.

$$\arg\min_{k} \left\| \mathbf{x}^{(n)} - \boldsymbol{\mu}_{k} \right\|^{2}$$

Loss

$$J(C_1, C_2, \dots, C_K, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_K) = \sum_{k=1}^K \sum_{i \in C_k} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_k\|^2$$

Effect of random initialisation

Sum of squared distances to centroids: 68.26

Sum of squared distances to centroids: 66.97

Videos covered in this note

- K-means clustering 1 Algorithm (16 min)
- *K*-means clustering 2 Details (14 min)

Reading

- ISLR 12.4.1
- ISLR 12.4.3 Only the content regarding K-means clustering is examinable (not hierarchical clustering).