PREDICTION FOR WEEK 0

Clustering

Divide patients into clusters and adapt each linear regression to the cluster to define similar characteristics and get informations from multiple individuals

PREDICTION FOR WEEK 0

Different subsets of features starting from 9 features:

- fvc_slope
- fvc_mean
- fvc_std
- percent_mean
- Age
- Sex_encoded
- SmokingStatus_encoded
- n_observations
- weeks_range

Best one: Minimal (fvc_slope, sex, smokingstatus)

Cluster 0: FVC slope \rightarrow -1.94

- Only Male
- 80 ex-smoker
- 7 currently smokes
- FVC Decline slow/stable
- MAE 1174.14
- R² 0.004

Cluster 1: FVC slope \rightarrow -4.18

- Only Female
- 23 Never smoked
- FVC Decline moderate
- MAE 167.79
- $R^2 0.003$

Cluster 2: FVC slope \rightarrow -14.12

- Only Male
- 26 ex-smoker
- 3 never smoked
- Rapid FVC decline
- MAE 456.58
- $R^2 0.055$

Cluster 3: FVC slope → -3.86

- Only Male
- 23 never smoked
- FVC Decline moderate
- MAE 532.50
- R² 0.054

Cluster 4: FVC slope → -2.37

- Only Female
- 12 ex-smoker
- 2 currently smokes
- FVC Decline slow/stable
- MAE 68.46
- $R^2 0.087$

Validation made on the 18 patients with week 0 so the values of MAE and R² are very apporoximate.

Comparison between methods:

- Cluster based on FVC_slope, Sex, Smoking Status
 - MAE : 622.04
- Individual (based on individual slope → not cluster)
 - MAE: 127.62
- Cluster based on all 9 features
 - MAE: 536.12

The MAE increases for the first method respect to clustering with 9 features, but the clusters become much more interpretable.

Best approach between the three methods

- Hybrid Approach
 - Use individual method for patients with a good fit,
 - Use optimized clusters for patients with variable data, and far from week 0

Use individual method if MAE% value better than cluster:

- MAE%< 5 and distance from week 0 < 15 → personal high confidence
- MAE%<10 → personal medium confidence
- MAE%<12 → personal low confidence

else use cluster estimate → cluster optimized

With this new method:

- Personal high confidence (n=87)
 - Avg R²: 0.450
 - Distance week0: 6.7 weeks
 - Avg MAE: 67
- Personal medium confidence (n=49)
 - ∘ Avg R²: 0.358
 - Distance week0: 21.1 weeks
 - Avg MAE: 98.0
- Cluster optimized (n=20)
 - \circ Avg R²: 0.479
 - Distance week0: 46.5 weeks
 - Avg MAE: 74.2
- Personal low confidence (n=1)
 - Avg R²: 0.394
 - Distance week0: 13.0 weeks
 - Avg MAE: 128.3

Problem → Is it Reliable?

We work with predicted values of Week 0.

We'll have a final prediction of the progression based on a starting prediction, there could be a big error propagation.

Possible other ways:

- Work with predicted values at week 0 but weight data, giving much more importance to the 18 patients we know and less to the ones predicted (especially the ones with low confidence)
- Eliminate FVC at week 0 for everyone, use only CT scans as baseline (extracting from there the FVC?) therefore final output cannot be decline based on baseline FVC but a definite value
- Incorporate the prediction of the FVC baseline at time as an output of the model itself, so final output (FVC baseline, FVC 1year, FVC 2year, Progression Yes/No)