

FUNDAMENTOS EN COMPUTACIÓN. FÍSICA Y ASTRONOMÍA. QUIZ III-Sol

1. Describir un algoritmo que dados dos números a y b muestre cuál de los dos es el mayor.

1. Análisis de la solución	 Las entradas son a y b, no dice nada más de ellas. La salida que nos pide es indicar cual de esos números es mayor. Para hallar la solución tenemos: Un numero x₁ es menor a otro x₂ si está colocado a la izquierda de él en la recta numérica y el símbolo que nos indica menor que es: (<), si está a la derecha se dice que es mayor y el símbolo que nos indica mayor que es: (>). En caso que no se cumpla ninguna de las dos se dice que son iguales (x₁ = x₂). La solución es verificar si el número es mayor o menor con operadores lógicos > o <. 		
2. Algoritmo	Algoritmo Mayor o Menor Entrada: a, b Salida: Mayor, menor, igual 1. Imprimir "Este programa determina si un número es mayor, menos o igual que otro. Por favor introduzca dos valores: " 2. Leer a, b 3. Si a < b entonces 4. Imprimir "El valor", a, "es menor que ", b 5. Si no 6. Si a>b entonces 7. Imprimir "El valor", a, "es mayor que ", b 8. Sino 9. Imprimir "el valor", a, "es igual que", b 10. Fin Si 11. Fin Si Fin Programa		
3. Prueba de escritorio	Conjunto de valores $\{a,b\} \rightarrow \{2,1\}, \{-5,4\} \text{ y } \{8,8\}$ 2. Leer 2,1 3. 2<1? No \rightarrow 5 6. 2>1? Sí \rightarrow 7 2. Leer -5,4 35<4? Sí \rightarrow 4 35<4? Sí \rightarrow 4 6. 8>8? No \rightarrow 8,9		

2. Describir un algoritmo que dados dos números naturales N y M (N>M) diga si el número N es múltiplo de M.

1. Análisis de la solución

2. Algoritmo

- 1. Las entradas son N y M donde N debe ser mayor que M y ambas son números naturales.
- 2. La salida es saber si N es múltiplo de M.
- 3. Para hallar la solución tenemos: Un **múltiplo** de un número **M** es el que lo contiene un número entero de veces. En otras palabras, un múltiplo es un número tal que, dividido por M, **da por resultado un número entero o que el resto de la división euclídea es cero.** Los múltiplos tienen las propiedades que todo número entero es múltiplo de 1 y de sí mismo. Cero (0) es múltiplo de cualquier número. Si a es un múltiplo de b, entonces b es un divisor de a.
- 4. La solución es dividir N entre M y verificar que su resultado sea un entero, siempre que M sea diferente de 0 y ambos números sean naturales.

Algoritmo Múltiplos

Entrada: N, M

Salida: Si es múltiplo o no.

- 1. Cargar Math #Librería matemática
- 2. Imprimir "Este programa determina si un número N es múltiplo de M. Por favor introduzca el valor N y M, donde N debe ser mayor que M"
- 3. Leer N, M
- 4. Si N<0 | | M<0 | | N int(N) != 0 | | M int(M)!=0
- 5. Imprimir "N=", N," y M=", M, " deben ser naturales"
- 6. Fin del Programa
- 7. Fin Si
- 8. Si N==M || M==0 || N==0 entonces
- 9. Imprimir "Recuerde que todo número es múltiplo de sí mismo. Si M es cero, sólo 0 puede ser múltiplo de 0 o si N es cero, cero es múltiplo de cualquier número"
- 10. Fin del Programa
- 11. Fin Si
- 12. Si N < M entonces
- 13. Imprimir "El valor N= ", N, "debe ser mayor que el valor M= ", M
- 14. Sino
- 15. Si N MOD M == 0
- 16. Imprimir "N es múltiplo de M"
- 17. Sinc
- 18. Imprimir "N no es múltiplo de M"
- 19. Fin Si
- 20. Fin Si

Fin Programa

	Conjunto de valores {۱	N,M \rightarrow {-2.2,2}, {5.3,4	4}, {1,0}, {8,8}, {1,2},	{4,2}, {9,4}
	3. Leer -2.2,2	3. Leer 5.3,4	3. Leer 1,0	3. Leer 8,8
	42.2<0? o 2<0? o	4. 5.3<0? o 4<0? o	4. 1<0? o 0<0? o	4. 8<0? o 8<0? o 8-8!
	-2.2+2!=0? o 2-2!=0?	5.3-5!=0? o 4-4=0?	1-1!=0? o 0-0!=0?	=0? o 8-8!=0? No \rightarrow 7
<u>.</u> 9	Sí → 5,6	Sí → 5,6	No \rightarrow 7	8. 8=8? o 8=0? 8=0? Sí
<u>;</u>			8. 1=0? o 0=0?	→ 9,10
escritorio			1=0? Sí \rightarrow 9,10	
de 0	3. Leer 1,2	3. Leer 4,2	3. Leer 9,4	
a	4. 1<0? o 2<0? o 1-1!	4. 4<0? o 2<0? o 4-	4. 9<0? o 4<0? o	
Prueba	=0? o 2-2!=0? No →	4!=0? o 2-2!=0? No	9-9!=0? o 4-4!=0?	
4	7	→ 7	No \rightarrow 7	
က	8. 1=2? o 1=0? 2=0?	8. 4=2? o 4=0? 2=0?	8. 9=4? o 9=0?	
	No → 11	No → 11	4=0? No → 11	
	12. 1<2 Sí → 13	12. 4<2 No → 14	12. 9<4 No → 14	
		15. 4 MOD 2=0? Sí	15. 9 MOD 4=0?	
		→ 16	No → 17,18	

3. Describir un algoritmo que dados dos números naturales N y M (N<M) diga si el número N es divisor de M.

1. Análisis de la solución

- 1. Las entradas son N y M donde N debe ser menor que M y ambas son números naturales.
- 2. La salida es saber si N es divisor de M.
- 3. Para hallar la solución tenemos: Se dice que un número entero b es divisible entre un entero a (distinto de cero) si existe un entero c tal que: b = a*c, siendo a un divisor de b. Esto es equivalente a decir, que b es «exactamente divisible» por a, o bien, que el resto de la división euclídea es cero. Los divisores tienen las propiedades que todo número entero es divisor de sí mismo. Cualquier número es divisor de 0 y 1 es divisor de cualquier número. Si a es un divisor de b, entonces b es un múltiplo de a.
- 4. La solución es dividir M entre N y verificar que su resultado sea un entero, siempre que N sea diferente de 0 y ambos números sean naturales.

Algoritmo Divisores

Entrada: N, M

Salida: Si es divisor o no.

- 1. Cargar Math #Librería matemática
- 2. Imprimir "Este programa determina si un número N es divisor de M. Por favor introduzca el valor N y M, donde N debe ser menor que M"
- 3. Leer N, M
- 4. Si N<0 || M<0 || N int(N) != 0 || M int(M)!=0
- 5. Imprimir "N=", N," y M=", M, " deben ser naturales"
- 6. Fin del Programa
- 7. Fin Si
- 8. Si N==M || M==0 || N==0 || N==1 entonces
- 9. Imprimir "Recuerde que todo número es divisor de sí mismo. Si N es cero, cero no es divisor de ningún número, si es N es 1, 1 es divisor de cualquier número. Si M es cero, cualquier número pude ser su divisor"
- 10. Fin del Programa
- 11. Fin Si
- 12. Si N > M entonces
- 13. Imprimir "El valor N=", N, "debe ser menor que el valor M=", M
- 14. Sino
- 15. Si M MOD N == 0
- 16. Imprimir "N es divisor de M"
- 17. Sino
- 18. Imprimir "N no es divisor de M"
- 19. Fin Si
- 20. Fin Si

Fin Programa

2. Algoritmo

	Conjunto de valores {I	N,M \rightarrow {-2.2,2}, {5.3,4	4}, {1,0}, {8,8}, {2,1},	{2,4} , {4,9}
de escritorio	42.2<0? o 2<0? o		4. 1<0? o 0<0? o 1-1!=0? o 0-0!=0?	4. 8<0? o 8<0? o 8-8! =0? o 8-8!=0? No → 7 8. 8=8? o 8=0? 8=0?
3. Prueba de e	4. 1<0? o 2<0? o 1-1! =0? o 2-2!=0? No → 7 8. 1=2? o 1=0? 2=0? 2=1 No → 11	4!=0? o 2-2!=0? No → 7	4. 9<0? o 4<0? o 9-9!=0? o 4-4!=0? No \rightarrow 7 8. 9=4? o 9=0? 4=0? 9=1? No \rightarrow 11	

4. Describir una rutina que dado un ángulo x en grados devuelva el mismo angulo en radianes.

1. Análisis de la solución	 Las entradas son x y es un ángulo en grados, no hay restricciones, x es un número real. La salida que nos pide es dar su valor en radianes x_rad, no hay restricciones el resultado es un número real. Para hallar la solución tenemos: La longitud de una curva está limitada a L=θ*r, tal que para una circunferencia es igual a L=2πr El radián es la unidad de ángulo plano en el Sistema Internacional de Unidades. Representa el ángulo central en una circunferencia y abarca un arco cuya longitud es igual a la del radio. Su símbolo es rad. Por lo tanto θ de una circunferencia es igual a 			
1. A	 2π radianes, donde θ de una circunferencia es igual a 360 grados. 4. La solución es θ_rad = θ_grad*π/180 y puede ser escrita como aproximación, dado a que π es un irracional, o en función de π. 			
2. Algoritmo				
orio	Conjunto de valores $\{x\} \rightarrow \{-3\}, \{500\} \text{ y } \{45\} \{\text{op}\} \rightarrow \{1\}, \{2\} \text{ y } \{9\}$			
3. Prueba de escritorio	3. Leer -3 5. Leer 1 6. op=1? \rightarrow Sí, va a 7 7. x_rad=-3*pi/180 3. Leer 500 5. Leer 2 6. op=1? \rightarrow No, va a 9 10. op=2? \rightarrow Sí, va a 11 11. x_rad= 500/180 3. Leer 45 5. Leer 9 6. op=1? \rightarrow No, va a 9 10. op=2? \rightarrow No, va a 11 11. x_rad= 500/180			

5. Describir un algoritmo de dado dos números naturales N y M (N>M) determine el cociente (C) y el residuo (R) de la división de N entre M. Ejemplo: si N = 27 y M = 4, el cociente de 27/4 es 6 y el residuo 3.

1. Análisis de la solución

2. Algoritmo

- 1. Las entradas son N y M donde N debe ser mayor que M y ambas son números naturales.
- 2. La salida es el cociente (C) y el residuo (R) de la división de N entre M
- 3. Para hallar la solución tenemos: La división entre N y M, números naturales, es un número racional positivo, todo número racional pude escribirse en base decimal de la forma A= Aent + Adec, donde la parte decimal está compuesta por dígitos multiplicados por 10^{-n} , ejemplo 9.3=9+3* $10^{-1}=9+0.3$. Entonces una división euclídea es igual N/M = C + R/M o N=C*M + R, donde C es el cociente y R es el residuo, según esto tenemos: N/M= Aent + Adec, tal que N = Aent*M + Adec*M, donde se le conoce a C=Aent y R=Adec*M como residuo.
- 4. La solución es dividir N entre M, siempre que M sea diferente de 0 y ambos números sean naturales y hallar el cociente como C=[N/M] y R=(N/M C)*M.

Algoritmo División euclídea

Entrada: N, M Salida: C, R.

- 1. Cargar Math #Librería matemática
- 2. Imprimir "Este programa calcula el cociente y el residuo de la división euclídea entre dos números. Por favor introduzca el valor N y M, donde N debe ser mayor que M"
- 3. Leer N, M
- 4. Si N<0 | M<0 | N int(N) != 0 | M int(M)!=0
- 5. Imprimir "N=", N," y M=", M, " deben ser naturales"
- 6. Fin del Programa
- 7. Fin Si
- 8. Si M==0 entonces
- 9. Imprimir "M debe ser distinto de 0"
- 10. Fin del Programa
- 11. Fin Si
- 12. Si N < M entonces
- 13. Imprimir "El valor N=", N, "debe ser mayor que el valor M=", M
- 14. Sino
- 15. A=N/M
- 16. C = int(A)
- 17. $R = (N C^*M)$
- 18. Imprimir "El cociente de la División euclídea N/M es", C, "y el residuo es", R
- 19. Fin Si

Fin Programa

Conjunto de valores $\{N,M\} \rightarrow \{-2.2,2\}, \{5.3,4\}, \{1,0\}, \{1,2\}, \{27,6\}$

torio	3. Leer -2.2,2 42.2<0? o 2<0? o -2.2+2! =0? o 2-2!=0? Sí → 5,6	3. Leer 5.3,4 4. 5.3<0? o 4<0? o 5.3-5!=0? o 4-4=0? Sí → 5,6	3. Leer 1,0 4. 1<0? o 0<0? o 1-1!=0? o 0-0!=0? No \rightarrow 7 8. 0=0? Sí \rightarrow 9,10
3. Prueba de escritorio	3. Leer 1,2 4. 1<0? o 2<0? o 1-1!=0? o 2-2!=0? No \rightarrow 7 8. 2=0? No \rightarrow 11 12. 1<2 Sí \rightarrow 13	3. Leer 27,6 4. 27<0? o 6<0? o 27-27!=0? o 6-6!=0? No → 7 8. 6=0? No → 11 12. 27<6 No → 14 15. A=27/6=4,5 16. C=int(4,5)=4 17. R=(27-4*M)=3	

1. Análisis de la solución	 Las entradas son N y es un número natural. La salida que nos pide son los N primeros pares. Para hallar la solución tenemos: Los números pares son aquellos que pueden ser escritos de la forma 2*n donde n es un número natural desde 1 hasta infinito, el primer par es 2*1, el segundo 2*2 y así sucesivamente. La solución es hallar los pares con las sucesión 2*i donde i va desde 1 hasta el valor n, siendo éste un número natural. 			
2. Algoritmo	Algoritmo Pares Entrada: N Salida: p1,p2,p3 pN 1. Carga Math #Librería matemática 2. Imprimir "Este programa arroja los primeros N números pares. Por favor introduzca un número natural: " 3. Leer N 4. Si N<0 N - int(N) != 0 5. Imprimir "N= ", N, "debe ser natural" 6. Fin del programa 7. Fin Si 8. Imprimir "Los primeros pares son: " 9. Para i desde 1 hasta N paso 1 10. p=2*i 11. Imprimir p 12. Fin Para			
3. Prueba de escritorio	Fin Programa Conjunto de valores {N} \rightarrow {-3}, {2.5} y {6} 3. Leer -3 43<0 -3+3!=0 Sí \rightarrow 5,4 3. Leer 2.5 4. 2.5<0 2.5-2!=0 Sí \rightarrow 5,4 7,8 9. i desde 1 hasta 6 10. p=2*1, p=2*2, p=2*3, p=2*4, p=2*5 y p=2*6			

7. Escribir un algoritmo tal que dado un número natural n encuentre la suma de los enteros desde 1 hasta n.

1. Análisis de la solución	 Las entradas son N y es un número natural. La salida que nos pide es la suma de los enteros de 1 a N. Para hallar la solución tenemos: La suma de número enteros de 1 hasta N sería sum=1+2+3+ + N, lo cual es una serie convergente: \[\sum_{1}^{N} i = \frac{N(N+1)}{2} \] La solución es hallar la solución de la serie, siempre que N sea natural. 			
2. Algoritmo	Algoritmo Suma enteros Entrada: N Salida: sum=1+2+N 1. Carga Math #Librería matemática 2. Imprimir "Este programa arroja la suma de N números enteros desde 1. Por favor introduzca un número natural: " 3. Leer N 4. Si N<0 N - int(N) != 0 5. Imprimir "N= ", N, "debe ser natural" 6. Fin del programa 7. Fin Si 8. sum=N*(N+1)/2 9. Imprimir "La suma es", sum Fin Programa			
3. Prueba de escritorio	Conjunto de valores {N} \rightarrow {-3}, {2.5} y {6} 3. Leer -3 43<0 -3+3!=0 Sí \rightarrow 5,4 3. Leer 2.5 4. 2.5<0 2.5-2!=0 Sí \rightarrow 5,4 4. 6<0 6-6!=0 No \rightarrow 7 8. sum=6*(7)/2=21			

8. Elabore un algoritmo que calcule el factorial de cualquier número n.

1. Análisis de la solución	 Las entradas son N y dice que es un número cualquiera. La salida que nos pide es el factorial de N. Para hallar la solución tenemos: El factorial de un entero positivo n, el factorial de n o n factorial se define en principio como el producto de todos los números enteros positivos desde 1 (es decir, los números naturales) hasta n. El factorial de 0 se define como 1 La solución es hallar la multiplicación de los números de 1 a N, siempre que N sea un entero positivo. El factorial de 0 se define como 1 		
2. Algoritmo	Algoritmo Suma enteros Entrada: N Salida: sum=1+2+N 1. Carga Math #Librería matemática 2. Imprimir "Este programa arroja el factorial de N. Por favor introduzca un número natural: " 3. Leer N 4. Si N<0 N - int(N) != 0 5. Imprimir "N= ", N, "debe ser natural" 6. Fin del programa 7. Fin Si 8. Si N==0 9. Imprimir "Por definición el factorial de 0 es 1" 10. Sino 11. fact=1 12. Para i desde 1 hasta N paso 1 13. fact=fact*i 14. Fin Para 15. Imprimir "EL factorial de ", N, "es ",fact 16. Fin Si Fin Programa		
	Conjunto de valores $\{N\} \rightarrow \{-3\}, \{2.5\}, 0 y \{6\}$		
	3. Leer -3 43<0 -3+3! =0 Sí \rightarrow 5,4 3. Leer 2.5 4. 2.5<0 2.5- 2!=0 Sí \rightarrow 5,4 2. Leer 0 4. 0<0 0-0! =0 No \rightarrow 7 8. 0=0? Sí \rightarrow 9 3. Leer 6 4. 6<0 6-6!=0 No \rightarrow 7 8. 0=0? No \rightarrow 10 11. fact=1 12 Para i desde 1 hasta 6 fact=1*1,		

				fact=1*2,fact=2*3,fact=6*4,fact=2 4*5,fact=120*6
critorio				
9. H <u>a</u> cer	un algoritmo que	lea los nombres y	edades de dos p	personas e imprima cual de ellas tiene

9. Hacer un algoritmo que lea los nombres y edades de dos personas e imprima cual de ellas tiene másadad.

3. Pr

1. Análisis de la solución

2. Algoritmo

- 1. Las entradas son dos variables de palabras nombreA, nombreB y dos variables numéricas edadA, edadB.
- 2. La salida que nos pide es indicar cual de esas personas es mayor.
- 3. Para hallar la solución tenemos: Un numero x_1 es menor a otro x_2 si está colocado a la izquierda de él en la recta numérica y el símbolo que nos indica menor que es: (<), si está a la derecha se dice que es mayor y el símbolo que nos indica mayor que es: (>). En caso que no se cumpla ninguna de las dos se dice que son iguales ($x_1 = x_2$).
- 4. La solución es verificar si la edad es mayor o menor con operadores lógicos > o <.

Algoritmo Mayor o Menor Edad

Entrada: NombreA, edadA, nombreB, edadB

Salida: Mayor, menor, igual

- 1. Imprimir "Este programa determina si una persona es mayor a otra. Por favor introduzca el nombre y la edad de la persona A: "
- 2. Leer nombreA, edadA
- 3. Imprimir "Este programa determina si una persona es mayor a otra. Por favor introduzca el nombre y la edad de la persona B: "
- 4. Leer nombreB, edadB
- 5. Si edadA < edadB
- 6. Imprimir nombreA "es menor que ", nombreB
- 7. Si no
- 8. Si edadA>edadB entonces
- 9. Imprimir nombreA "es mayor que ", nombreB
- 10. Sino
- 11. Imprimir nombreA "tiene la misma edad que ", nombreB
- 12. Fin Si
- 13. Fin Si

Fin Programa

escritorio	Conjunto de valores {nombreA, edadA, nombreB, edadB} \rightarrow {A,10,B,15}, {A,36,B,13} y {A,8,B,8}			
esc	2. Leer A,10	2. Leer A,36	2. Leer A,8	
de	4. Leer B,15	4. Leer B,13	4. Leer B,8	
þa	5. 10<15? Sí \rightarrow 4	5. 36<13? No \rightarrow 6	5. 8<8? No \rightarrow 6	
Prueba		7. 35>13? Sí \rightarrow 8	7. 8>8? No \rightarrow 10,11	
က်				