Graphentheoretische Konzepte und Algorithmen

Thema 01 Grundbegriffe der Graphentheorie

Julia Padberg

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Padbera (HAW Hamburg)

BAI3-GKA

Anwendungen von Graphkonzepten

Teilgebiet der Mathematik, dessen Anfänge bis ins 18. Jahrhundert zurückreichen (Leonhard Eulers

"Königsberger Brückenproblem"

Von großer praktischer Bedeutung sind Methoden der Graphentheorie, wenn aus einer Menge diskreter Handlungsmöglichkeiten eine optimale Handlung auszuwählen

Padberg (HAW Hamburg)

BAI3-GKA

THM 01

Beispiel

Eine Firma kann für 5 verschiedene Projekte p_1, \ldots, p_5 je eine Informatikstudentin einstellen.

Es bewerben sich insgesamt 5 Personen s_1, \ldots, s_5 , die aber aufgrund ihrer jeweiligen Vorkenntnisse und Fähigkeiten immer nur für gewisse Projekte geeignet sind.

Zur Entscheidungsfindung stellt der Abteilungsleiter die Liste der Personen und die Liste der Projekte einander gegenüber und verbindet eine Person und ein Projekt mit einer Linie, wenn die Person in diesem Projekt einsetzbar ist. Auf diese Weise erhält er folgendes Schema:

THM 01

Beispiel

Er entscheidet sich daraufhin, drei Personen einzustellen, und zwar:

Person	für Projekt
<i>S</i> ₁	p 5
<i>S</i> ₂	<i>p</i> ₁
<i>\$</i> 3	p_3

Fallen Ihnen andere Lösungen ein, die mehr BewerberInnen berücksichtigen?

Thema Paarungen:

maximale Paarung: $s_i - p_i$ für $i \in \{1, 2, 3, 5\}$

Wieso nicht mehr?

Padberg (HAW Hamburg) BAI3-GKA 3 Padberg (HAW Hamburg) BAI3-GKA

Denksportaufgaben

- 1. Läßt sich das "Haus vom Nikolaus" zeichnen, ohne einmal den Stift abzusetzen und ohne eine Linie doppelt zu zeichnen?
- 2. Auf einem Grundstück, auf dem drei Gebäude stehen, befindet sich je ein Anschluß für Wasser, Strom und Erdgas. Ist es möglich, jedes der Gebäude an jede der Versorgungseinrichtungen so anzuschließen, daß jede Anschlußleitung nur auf dem Grundstück verläuft und sich keine zwei Anschlußleitungen überschneiden?

Padberg (HAW Hamburg)

BAI3-GKA

Visualisierung von Graphen

- ▶ Beim Zeichnen eines Graphen in der Graphentheorie kommt es auf die geometrische Position der Knoten normalerweise nicht an.
- Man bemüht sich aber um eine möglichst übersichtliche Darstellung.

Unter Umständen kann durch eine geschickte Darstellung die Charakteristik der durch den Graphen repräsentierten Beziehungen wesentlich verdeutlicht werden.

- Z.B. Programmablaufschemata, Prozeßdarstellungen im allgemeinen, ein S-/U-Bahn Netz etc.
- ► Im Gegensatz dazu ist der Bereich visuelle Sprachen ganz stark mit der geometrischen Darstellung befasst.

Padberg (HAW Hamburg)

BAI3-GKA

Beispiel

BSP:

Dies ist ein Graph mit 5 Knoten und 8 Kanten

Die Kante e₃ kann auch als v₃v₅ oder als v₅v₃ bezeichnet werden. Bei e7 und e8 kann diese Bezeichnung nicht verwendet werden, da sie in diesem Fall nicht eindeutig ist!

5

Ungerichteter Graph

Definition

Sei G = (V, E) ein ungerichteter Graph, dann bezeichne $s_{-}t: E \to \mathcal{P}(V)$ die Menge der durch eine Kante verbundenen Knoten. Man schreibt auch e = qs für $s_{-}t(e) = \{q, s\}$.

BSP:

Es gilt u.a. $s_{-}t(e_1) = \{v_1, v_2\}, s_{-}t(e_4) = \{v_5\} \text{ und } s_{-}t(e_8) = \{v_2, v_4\}.$

Gerichteter Graph

Definition

Eine Kante, die genau einen Anfangs und einen Endknoten besitzt, heißt eine gerichtete Kante

(oder ein Pfeil, englisch arc).

Ein Graph, dessen Kanten sämtlich gerichtet sind, heißt ein gerichteter Graph (oder ein Digraph). Wenn gerichtete Kanten durch Knotenpaare e = qs bezeichnet werden, wird der Anfangsknoten stets zuerst genannt.

Beispiel

BSP:

Durch Richten aller Kanten des obigen Graphen entsteht beispielsweise der folgende Digraph:

Padberg (HAW Hamburg)

BAI3-GKA

Padberg (HAW Hamburg)

BAI3-GKA

THM 01

Quelle und Ziel einer Kante

Definition

Sei G = (V, E) ein gerichteter Graph, dann bezeichnet $s, t : E \to V$ den Knoten, die für eine Kante Anfangsknoten (s) bzw. Endknoten (t) ist.

s bzw. t stehen für die englischen Begriffe source und target.

BSP:

Es gilt: $s(e_1) = v_2$, $t(e_1) = v_1$, $s(e_4) = v_5$, $t(e_4) = v_5$ und $s(e_8) = v_4$, $t(e_8) = v_2$.

Padberg (HAW Hamburg) BAI3-GKA THM 01 Grundbegriffe

Aufgabe 1:

Gegeben sei $G = (\{a, b, c, d, e\}, \{z, y, x, v, u, t\})$

mit $s: z \mapsto a$ und $t: z \mapsto b$ $y \mapsto c$ $v \mapsto a$ $x \mapsto a$ $X \mapsto C$ $v \mapsto d$ $V \mapsto e$

> $u \mapsto b$ $u \mapsto e$

 $t \mapsto h$ $t \mapsto b$

Bitte zeichnen Sie diesen Graphen:

Lösung

Padberg (HAW Hamburg) BAI3-GKA Grundbegriffe

Mengen

Definition: Cantor'sche Menge

Georg Cantor (3.3. 1845 - 6. 1. 1918, dt. Mathematiker)

- Eine **Menge** ist eine Zusammenfassung **wohlunterschiedenen** Objekten zu einem Ganzen, wenn vor der Zusammenfassung einwandfrei entschieden werden kann, ob ein Objekt der Gesamtheit angehört oder nicht.
- ▶ Man schreibt $a \in A$ für "a ist Element der Menge A", a ∉ A für "a ist nicht Element der Menge A".

13

THM 01 Grundbegriffe

Padberg (HAW Hamburg)

Grundbegriffe

Rechenregeln

Potenzmenge

Kardinalität

Mengenfamilien

Wesentliches aus der Mengenlehre

Mengendefinition, Teilmenge, Element

Mengenoperationen, Venn-Diagramme: Vereinigung, Schnitt, Komplement,

Produkt, disjunkte Vereinigung, Differenz

Noch 'nen paar Begriffe

Definition

 \triangleright Sei G ein gerichteter Graph. Der Graph H, der entsteht, wenn alle gerichteten Kanten von G durch ungerichtete Kanten ersetzt werden, heißt der *G* zugrundeliegende ungerichtete Graph.

BAI3-GKA

► Ein Graph, der sowohl gerichtete als auch nicht gerichtete Kanten besitzt, wird als gemischter Graph bezeichnet.

Definition (Adjazenz und Inzidenz)

Zwei Knoten, die durch eine Kante verbunden sind, heißen adjazent (oder benachbart). Wenn v eine (Anfangs- oder) Endknoten der Kante e ist, heißen v und e inzident.

Padberg (HAW Hamburg)

Grundbegriffe

BAI3-GKA

Abbildung

THM 01

Definition

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem $a \in A$ eindeutig ein bestimmtes $b = f(a) \in B$ zuordnet: $f : A \longrightarrow B$.

Für die Elementzuordnung verwendet man die Schreibweise $a \mapsto b = f(a)$ und bezeichnet b als das Bild von a, bzw. a als ein Urbild von b.

- Eigenschaften: injektiv, surjektiv, bijektiv
- Komposition
- Identität, Umkehrabbildung
- Bild, Urbild, Kern

Padberg (HAW Hamburg)

BAI3-GKA

Padberg (HAW Hamburg)

15

THM 01 Grundbegriffe

Definition (Multigraph)

- 1. Eine Menge $\mathcal{E} \subseteq E$ von Kanten, deren Anfangs- und Endknoten übereinstimmen, d.h. $\forall e_1, e_2 \in \mathcal{E} : s_-t(e_1) = s_-t(e_2)$, bzw. im Falle gerichteter Kanten $\forall e_1, e_2 \in \mathcal{E} : s(e_1) = s(e_2) \land t(e_1) = t(e_2)$, wird als *Mehrfachkante* bezeichnet. Eine Menge $\mathcal{E} \subseteq E$ von Kanten, deren Knoten übereinstimmen, d.h. $\forall e_1, e_2 \in \mathcal{E} : s_-t(e_1) = s_-t(e_2)$, bzw. im Falle gerichteter Kanten $\forall e_1, e_2 \in \mathcal{E} : s(e_1) = s(e_2) \land t(e_1) = t(e_2)$ oder $s(e_1) = t(e_2) \land t(e_1) = s(e_2)$, wird als *parallele Kante* bezeichnet.

2. Ein Graph mit Mehrfachkanten heißt ein Multigraph.

THM 01 Grundbegriffe

Aufgabe 2:

Wie unterscheiden sich parallele Kante und Mehrfachkanten

- ▶ bei ungerichteteten Graphen? Gar nicht!
- bei gerichteten Graphen? Mehrfachkanten müssen die gleiche Richtung haben, parallele müssen nicht unbedingt die gleiche Richtung haben.

Padberg (HAW Hamburg)

BAI3-GKA

17

THM 01 Grundbegriffe

Padberg (HAW Hamburg)

BAI3-GKA

THM 01 Grundbegrii

Definition (Schlichter und einfacher Graph)

- 1. Eine Kante $e \in E$: s(e) = t(e) bzw. $|s_{t}(e)| = 1$ heißt eine Schlinge.
- 2. Ein Graph ohne Schlingen oder Mehrfachkanten heißt ein schlichter Graph.
- 3. Ein schlichter Graph ohne parallele Kanten heißt ein *einfacher Graph*.

Beispiel

BSP:

Hier sind die Knoten v_2 und v_4 durch eine Mehrfachkante miteinander verbunden und v_5 ist Endknoten einer Schlinge.

Padberg (HAW Hamburg) BAI3-GKA 19 Padberg (HAW Hamburg)

20

Teilgraph

Definition

Sei G = (V, E) ein Graph. Jeder Graph H = (W, F) mit $W \subseteq V$ und $F \subseteq E$ heißt ein **Teilgraph** von G, geschrieben $H \subseteq G$.

Ein Teilgraph entsteht aus *G* durch Entfernen

- einiger Knoten
- und einiger Kanten
- wobei das Entfernen von Knoten das Entfernen der damit inzidenten Kanten impliziert.

BAI3-GKA

Grundbegriffe

Padberg (HAW Hamburg)

Aufgabe 3:

THM 01

Das Straßennetz einer Stadt wird als Graph aufgefaßt, dadurch dass jede Kreuzung oder Einmündung durch einen Knoten und jedes Straßenstück zwischen zwei (im Verlauf dieser Straße unmittelbar aufeinander folgenden) Knoten durch eine Kante dargestellt wird. Sind die folgenden Graphen Teilgraphen? Wenn ja, sind sie dann auch Untergraphen?

BAI3-GKA

Ein Graph H = (W, F) mit $W \subseteq V$ heißt ein **Untergraph** von

E enthält, die zwei Knoten aus W verbinden.

Ein Untergraph entsteht aus G

durch Entfernen einiger Knoten

Das wird mit $H \sqsubseteq G$ oder durch H = G[W] notiert.

▶ einschließlich der mit ihnen inzidenten Kanten.

G = (V, E), wenn seine Kantenmenge F genau diejenigen Kanten aus

Untergraphen sind somit spezielle Teilgraphen, da bei Teilgraphen

Teilgraphen sind aber i.allg. keine Untergraphen, da ein Teilgraph

die gleichen Manipulationen vorgenommen werden können.

BAI3-GKA

z.B. nur durch Entfernung von Kanten entstehen kann.

- 1. Das Netz aller vierspurig ausgebauten Straßen.
 - Teilgraph, aber kein Untergraph.
- Das Straßennetz eines Stadtteils.

Teilgraph und Untergraph.

Padberg (HAW Hamburg)

Beispiel

THM 01

Für den Graphen

sind beide folgenden Graphen H_1 , H_2 Teilgraphen, aber nur H_2 ist auch ein Untergraph von G:

Padberg (HAW Hamburg)

BAI3-GKA

Untergraph

Definition

Grundbegriffe

Padberg (HAW Hamburg)

THM 01 Kürzeste Wege

Kantenfolge

Definition

In einem Graphen G = (V, E) ist eine **Kantenfolge** eine Folge, deren Glieder abwechselnd Knoten und Kanten sind:

$$V_0 e_1 V_1 e_2 V_2 \dots e_k V_k$$

wobei $0 < k \in \mathbb{N}$ und für i = 1, ..., k gilt: $s_{-}t(e_i) = \{v_{i-1}, v_i\}$. Für gerichtete Kanten e_i müssen darüber hinaus $s(e_i) = v_{i-1}$ und $t(e_i) = v_i$ sein. Im Fall $v_0 = v_k$ heißt die Kantenfolge geschlossen.

Definition

Eine Kantenfolge heißt ein **Weg** von v_0 nach v_k , wenn alle Knoten v_0, \ldots, v_k (und damit auch alle Kanten e_1, \ldots, e_k) voneinander verschieden sind.

Padberg (HAW Hamburg)

BAI3-GKA

THM 01

25

1 Kürzeste Wege

Padberg (HAW Hamburg)

06

THM 01 Kürzeste Weg

"Breadth First Search"-Technik (BFS)

Algorithmus

Gegeben sei ein Graph G mit zwei ausgezeichneten Knoten s und t.

- Schritt 1: Man kennzeichne den Knoten s mit 0 und setze i = 0.
- Schritt 2: Man ermittle alle nichtgekennzeichneten Knoten in *G*, die zu dem mit *i* gekennzeichneten Knoten benachbart sind. Falls es derartige Knoten nicht gibt, ist t nicht mit s über einen Weg verbunden.

Falls es derartige Knoten gibt, sind sie mit i + 1 zu kennzeichnen.

- Schritt 3: Wenn **t** gekennzeichnet wurde, folgt Schritt 4, wenn nicht, erhöhe man *i* um eins und gehe zu Schritt 2.
- Schritt 4: Die Länge des kürzesten Weges von s nach t ist i + 1. Der Algorithmus wird beendet.

THM 01 Kürzeste Wege

Kürzeste Wege

Gesucht sind Methoden zum Auffinden eines Weges von einem Knoten s zu einem anderen Knoten t vorgestellt, bei der die kleinstmögliche Anzahl an Kanten einbezogen wird. Ein derartiger Weg – sollte er existieren – wird als **kürzester Weg** von s nach t bezeichnet.

BSP:

Im Falle des folgenden Graphen geht man z.B. so vor, daß zuerst s mit 0, danach a, f mit 1 und dann b, d, e mit 2 gekennzeichnet werden. Anschließend wird c, t folgerichtig die 3 zugeordnet. Da t mit 3 gekennzeichnet ist, ist 3 die Länge des kürzesten Weges von s nach t.

BAI3-GKA

Padberg (HAW Hamburg) BAI3-GKA 27 Padberg (HAW Hamburg) BAI3-GKA

Kürzester Weg für BFS

Die Kennzeichnung des Knoten a wird dabei mit $\lambda(a)$ bezeichnet.

Algorithmus

Verwendung der Kennzeichnung, die durch den BFS-Algorithmus erzeugt wurde. Der rückverfolgende Algorithmus erzeugt einen Weg $v_0, v_1, \ldots, v_{\lambda(t)}$, so daß $v_0 = s$; $v_{\lambda(t)} = t$ ist.

Schritt 1: Man setze $i = \lambda(t)$ und ordne $v_i = t$ zu.

Schritt 2: Man ermittle einen Knoten u, der zu v_i benachbart ist und mit $\lambda(u) = i - 1$ gekennzeichnet ist. Man ordne $v_{i-1} = u$ zu.

Wenn i = 1 ist, ist der Algorithmus beendet. Wenn nicht, erniedrige man i um eins und gehe zu Schritt 2.

BAI3-GKA

BSP: (Fortsetzung)

Kürzeste Wege

Für diesen Graphen gilt $\lambda(t) = 3$.

Ein zu $v_3 = t$ benachbarter Knoten ist e mit $\lambda(e) = 2$ also $v_2 = e$.

Eine zu $v_2 = e$ benachbarter Knoten ist f mit $v_1 = f$.

Zum Schluss die zu f benachbarte s mit $\lambda(s) = 0$ und $v_0 = s$.

Dies ergibt den kürzesten Weg $v_0v_1v_2v_3 = sfet$ von s nach t.

Padberg (HAW Hamburg)

Padberg (HAW Hamburg)

BAI3-GKA

THM 01

Aufgabe 4:

Ermitteln Sie mit BFS den kürzesten Weg zwischen a und f:

Lösung der Aufgabe 4

Padberg (HAW Hamburg) BAI3-GKA 31 Padberg (HAW Hamburg) BAI3-GKA

Isomorphie

Definition

Zwei Graphen G = (V, E) und H = (W, F) heißen isomorph (geschrieben: $G \cong H$), wenn es zwei bijektive Abbildungen

$$\varphi: V \to W, \quad \psi: E \to F$$

gibt, so daß für alle $u, v \in V$ und $e \in E$ gilt:

$$e = uv \Longleftrightarrow \psi(e) = \varphi(u)\varphi(v)$$

In bestimmten Anwendungen der Informatik besteht die Aufgabe darin, einen vorgegebenen Graphen (im Sinne eines vorgegebenen Musters) in einem anderen Graphen zu finden bzw. einen ähnlichen Graphen zu finden.

Padberg (HAW Hamburg)

Padberg (HAW Hamburg)

BAI3-GKA

33

Spezielle Graphen

Vollständige Graphen

Definition

Ein schlichter, ungerichteter Graph mit *n* Knoten heißt **vollständig**, wenn je zwei Knoten durch eine Kante verbunden sind. Er wird dann mit dem Symbol K_n bezeichnet.

BSP:

Die ersten vier vollständigen Graphen sind:

$$K_1: \cdot K_2: \longrightarrow K_3: \bigwedge K_4:$$

BAI3-GKA

THM 01

Abstrakte Graphen

Beispiel

Die folgenden beiden Graphen sind isomorph:

Die geforderten bijektiven Abbildungen können beispielsweise sein:

$$egin{array}{lll} arphi(s) &:= & \mathbf{w} & & \psi(a) &:= & \mathbf{g} \\ arphi(t) &:= & \mathbf{x} & & \psi(b) &:= & \mathbf{f} \\ arphi(u) &:= & \mathbf{z} & & \psi(c) &:= & \mathbf{h} \\ arphi(v) &:= & \mathbf{y} & & \psi(d) &:= & \mathbf{i} \\ \psi(e) &:= & \mathbf{j} \end{array}$$

Aufgabe 5: Geben Sie bitte eine weitere geeignete Abbildung an.

Padberg (HAW Hamburg)

BAI3-GKA

Spezielle Graphen

Aufgabe 6:

Geben Sie bitte K₅ an:

Lösung

35

Lösung

Von der ersten Knoten aus, kann ich n − 1 ziehen, von der zweiten n − 2, usf. bis zur letzten Knoten, für die alle Kanten schon gezogen sind.

Also: $|E| = \sum_{i=1}^{n-1} i$

- 2. An *n* Knoten beginnen n-1 Kanten, die aber jeweils zwei inzidente Knoten haben, also: $\frac{n(n-1)}{2}$
- ► Geben Sie die Grundzüge des Induktionsbeweises für 1. an.

Padberg (HAW Hamburg) BAI3-GKA

THM 01 Spezielle Graphen

Leere Graphen

Definition

Ein Graph G = (V, E) mit $E = \emptyset$ heißt leerer Graph.

THM 01 Spezielle Graphen

Lösung von Aufgabe 7

Lösung

- ▶ Induktionsanfang ist K_1 mit keiner Kante, $0 = |E| = \sum_{i=1}^{0} i$.
- Induktionsbehauptung für $K_n = (V_n, E_n)$ mit $V_n = \{v_1, \dots, v_n\}$ gilt $|E_n| = \sum_{i=1}^{n-1} i$.
- ▶ Induktionsschritt: ZZ für K_{n+1} gilt $|E_{n+1}| = \sum_{i=1}^{n} i$. Weil $K_{n+1}[V_n] = K_n$, hat K_{n+1} die Kanten $E_{n+1} = E_n \cup \{(v_{n+1}, v_i) | 1 \le i \le n\}$.

Also ist
$$|E_{n+1}| = |E_n \cup \{(v_{n+1}, v_i)|1 \le i \le n\}|$$

= $|E_n| + |\{(v_{n+1}, v_i)|1 \le i \le n\}|$
= $(\sum_{i=1}^{n-1} i) + n = \sum_{i=1}^{n} i$

Padberg (HAW Hamburg)

BAI3-GKA

1 01 Spezielle Graphen

Bipartiter Graph

Definition

37

Ein ungerichteter Graph G = (V, E) heißt **bipartit**, wenn sich seine Knotenmenge V derart in zwei disjunkte Teilmengen X, Y zerlegen läßt ($V = X \cup Y; X \cap Y = \emptyset$), dassjede Kante von G genau eine Endknoten in X und eine Endknoten in Y besitzt.

BSP:

In dem folgenden bipartiten Graphen sind zur Verdeutlichung die Elemente der beiden Teilmengen von Knoten unterschiedlich dargestellt:

Padberg (HAW Hamburg) BAI3-GKA 39 Padberg (HAW Hamburg)

Planare Graphen

Definition

Ein Graph G = (V, E) heißt **planar**, wenn er in der Ebene so gezeichnet werden kann, dass jeder Punkt, den zwei Kanten gemeinsam haben, ein Knoten ist.

... also wenn er kreuzungsfrei ist.

BSP: Graph G

THM 01 Knotengrad

Knotengrad

Definition

Sei $v \in V$ ein Knoten eines Graphen G = (V, E).

- 1. Falls G ungerichtet ist, ist die Zahl d(v) definiert als $d(v) = |\{e \in E | v \in s_{-}t(e)\}| + |\{e \in E | v \in s_{-}t(e) \land |s_{-}t(e)| = 1\}|$, d.h. die Anzahl der Kanten, deren Endknoten v ist (dabei werden Schlingen doppelt gezählt, was durch den zweiten Summanden zum Ausdruck kommt!). d(v) heißt **Grad des Knotens** v.
- 2. Falls G gerichtet ist, ist die Zahl $d_-(v)$ [bzw. $d_+(v)$] definiert als $d_-(v) = |\{e \in E | s(e) = v\}|$ bzw. $d_+(v) = |\{e \in E | t(e) = v\}|$, d.h. die Anzahl der Kanten, deren Ausgangsknoten [bzw. Endknoten] v ist. $d_-(v)$ [bzw. $d_+(v)$] heißt **Ausgangsgrad** [bzw. **Eingangsgrad**] des Knotens v.

THM 01 Spezielle Graphen

Gewichtete Graphen

Definition

Ein schlichter Graph G = (V, E) heißt **kantenbewertet**, wenn es eine Funktion von $L : E \to \mathbb{R}$ gibt.

... also wenn jede Kante eine (abstrakte) Länge hat ist.

BSP:

Padberg (HAW Hamburg) BAI3-GKA

THM 01 Knotengrad

Beispiel

1. Dieser Graph hat Knoten mit Graden 2,3 und 4:

2. In diesem Digraphen haben alle Knoten den Ausgangsgrad 2 oder 0 und den Eingangsgrad 1 oder 0:

Padberg (HAW Hamburg) BAI3-GKA 43 Padberg (HAW Hamburg) BAI3-GKA

Maximalgrad und Minimalgrad

Definition

Den Maximalgrad bezeichnen wir mit $\Delta(G) = \max_{v \in V} d(v)$ und den Minimalgrad mit $\delta(G) = \min_{v \in V} d(v)$. Der Graph G heißt k-regulär, wenn d(v) = k für alle $v \in V$.

Padbera (HAW Hamburg) BAI3-GKA 45

Satz

Für die Knotengrade eines ungerichteten Graphen G = (V, E) gilt:

Knotengrade eines ungerichteten Graphen

$$\sum_{v \in V} d(v) = 2 \cdot |E|$$

Beweis: Beweis durch vollständige Induktion über | E |: Im Fall |E| = 0 (d.h. der Graph besitzt keine Kanten) ist die Behauptung richtig. Jedes Hinzufügen einer Kante in einen (ungerichteten) Graphen erhöht die Summe der Knotengrade um 2, die Anzahl der Kanten aber um 1. q.e.d.

Padberg (HAW Hamburg)

BAI3-GKA

THM 01

Beweis

Beweis durch vollständige Induktion über |E| in G:

|A:|E|=0 also keine Kanten, also d(v)=0, dann aber auch $\sum_{v \in V} d(v) = 0 + 0 \cdots + 0 = 0 = 2 \cdot |E|$

IB: Für G = (V, E) sei |E| = n beliebig aber fest und es gelte:

$$\sum_{v \in V} d(v) = 2 \cdot |E|$$

IS: Für G' = (V', E') mit $E' = E \cup \{e_{neu}\}$ für $e_{neu} \notin E$ ist $|E'| = |E \cup \{e_{neu}\}| = n + 1.$ Zu zeigen ist für G', dass $\sum_{v \in V'} d'(v) = 2 \cdot |E'|$ gilt, wobei d' die Knotengrade in G' bezeichnet.

THM 01 Knotengrad

Beweis (ff)

IS(ff): Dann gibt es 5 Fälle:

- Neue Kante zwischen zwei alten Knoten, also $V \subseteq V'$ und $s_{-}t(e_{neu}) \cap V = \{v, w\}$: Dann gilt aber d'(v) = d(v) + 1 und d'(w) = d(w) + 1 und damit $\sum_{v \in V'} d'(v) = \sum_{v \in V} d(v) + 2$
- Neue Kante, ein alter und eine neuer Knoten, also $V \cup \{v_{neu}\} \subseteq V'$, $v_{neu} \notin V$ aber $v_{neu} \in s_{-}t(e_{neu})$ und $s_{-}t(e_{neu}) \cap V = \{v\}$: Dann gilt aber d'(v) = d(v) + 1 und $d'(v_{neu}) = 1$ und damit $\sum_{v \in V'} d'(v) = \sum_{v \in V} d(v) + 1 + d'(v_{neu}) = \sum_{v \in V} d(v) + 2$
- 3. Neue Schlinge, nur ein alter Knoten, also $V \subseteq V'$, $|s_{-}t(e_{neu})| = 1$ und $s_{-}t(e_{neu}) \cap V = \{v\}$: Dann gilt aber d'(v) = d(v) + 2 und damit $\sum_{v \in V'} d'(v) = \sum_{v \in V} d(v) + 2$

4. Neue Kante, zwei neue Knoten, also $V \cup \{v_{neu}, w_{neu}\} \subseteq V'$, $v_{neu} \neq w_{neu}$, $s_{-}t(e_{neu}) = \{v_{neu}, w_{neu}\}$ und

 $s_{-}t(e_{neu}) \cap V = \emptyset$: Dann gilt aber $d(v_{neu}) = d'(w_{neu}) = 1$ und damit

Dann gilt aber $d(v_{neu}) = d'(w_{neu}) = 1$ und damit $\sum_{v \in V'} d'(v) = \sum_{v \in V} d(v) + d'(v_{neu}) + d'(w_{neu}) = \sum_{v \in V} d(v) + 2$

5. Neue Schlinge, nur ein neuer Knoten, also $V \cup \{v_{neu}\} \subseteq V'$, $s_t(e_{neu}) = \{v_{neu}\}$ und $s_t(e_{neu}) \cap V = \emptyset$: Dann gilt aber $d'(v_{neu}) = 2$ und damit $\sum_{v \in V'} d'(v) = \sum_{v \in V} d(v) + d'(v_{neu}) = \sum_{v \in V} d(v) + 2$

Dann gilt in *G'* in allen 5 Fällen:

$$\sum_{v \in V'} d'(v) = \sum_{v \in V} d(v) + 2$$

$$= 2 \cdot |E| + 2$$

$$= 2 \cdot (|E| + 1)$$

$$= 2 \cdot |E \uplus \{e_{neu}\}|$$

$$= 2 \cdot |E'|$$

Padberg (HAW Hamburg)

BAI3-GKA

ZKV

Motivation für Matrizen zur Speicherung von Graphen

Eine Beschreibung durch Matrizen oder Listen,

Speicherung von Graphen

- um eine wenig aufwendige Speicherung von Graphen zu ermöglichen.
- um durch Charakteristika der Matrizen auf Charakteristika dieser Graphen schließen zu können oder um Algorithmen auf Graphen mittels effizienten Matrizenoperationen realisieren zu können.
- die Matrizen für sich alleine sind reine Matrizen.
 Diese Festlegung wird bei Realisierungen im Rechner durch die Zugriffsfunktionen vorgenommen.
- Festlegung, wie der Graph in einer Matrix repräsentiert ist.

Padberg (HAW Hamburg)

BAI3-GKA

__

THIN OT WELL.

Matrizen

► Eine Matrix *A* ist eine rechteckige Tabelle mit *m* Zeilen und *n* Spalten der Form:

$$A := \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right)$$

- Man nennt die Matrix dann auch $m \times n$ -Matrix¹ und notiert $A := (a_{ii})$ für bekanntes n und m
- Einzelne Zeilen der Matrix nennt man dann Zeilenvektoren.
- Einzelne Spalten der Matrix nennt man dann Spaltenvektoren.

THM 01 \

1 WDH: Mati

Matrizen

- ► Gilt $\forall i, j : a_{ij} = 0$ dann heißt A auch Nullmatrix.
- ▶ Ist m = n, dann heißt A quadratisch und es ist:
 - $(a_{11}, a_{22}, \dots, a_{nn})$ Diagonalkomponente
 - Gilt $a_{ii} = 0$ für i > j, dann heißt A (obere) Dreiecksmatrix
 - Gilt $a_{ii} = 0$ für $i \neq j$, dann heißt A Diagonalmatrix
 - Gilt $a_{ij} = 0$ für $i \neq j$ und $a_{ii} = 1$, dann heißt A Einheitsmatrix. E_n bezeichnet dabei die $n \times n$ -Einheitsmatrix.
 - Gilt $\forall i, j : a_{ij} = a_{ji}$, dann heißt A symmetrisch.
- ► Zwei Matrizen werden als typgleich bezeichnet, falls beide $m \times n$ -Matrizen über dem gleichen Körper sind.
- Es seien A, B Matrizen.

Dann A = B

gdw. A, B sind vom gleichen Typ und $\forall i, j : a_{ij} = b_{ij}$

Padberg (HAW Hamburg)

BAI3-GKA

51

Padberg (HAW Hamburg)

¹Eselsbrücke: $m \times n$ dann ist das Element ganz recht und ganz unten a_{mn}

Matrixaddition

Man kann Matrizen addieren.

$$A + B := \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & \vdots & & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Dafür müssen sie aber die "gleiche Form" haben:

Also A und B sind beides $m \times n$ -Matrizen.

Padberg (HAW Hamburg)

WDH: Matrizer

BAI3-GKA

BAI3-GKA

53

55

WDH: Matrizen

THM 01

Aufgabe 8:

Berechnen Sie bitte:

Berechnen Sie bitte:

$$7 \cdot \begin{pmatrix} 0 & 1 & -2 & 0 \\ 1 & -1 & 2 & 3 \\ 1 & 3 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & -14 & 7 & 7 \\ 2 & 7 & -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 7 & -14 & 0 \\ 7 & -7 & 14 & 21 \\ 7 & 21 & -7 & 7 \end{pmatrix} + \begin{pmatrix} 1 & 1 & -1 & 0 \\ -1 & -14 & 7 & 7 \\ 2 & 7 & -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 8 & -15 & 0 \\ 6 & -21 & 21 & 28 \\ 9 & 28 & -8 & 8 \end{pmatrix}$$

Multiplikation mit Skalaren

Man kann Matrizen

mit einer Zahl multiplizieren.

$$c \cdot A := c \cdot \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} c \cdot a_{11} & c \cdot a_{12} & \dots & c \cdot a_{1n} \\ c \cdot a_{21} & \vdots & & \vdots \\ a_{m2} & a_{m2} & a_{m2} & a_{m2} & a_{mn} \end{pmatrix}$$

Padberg (HAW Hamburg)

Matrixmultiplikation

Man kann eine Matrix mit einer Matrix multiplizieren.

Bei der Matrixmultiplikation werden Zeilen der ersten Matrix mit Spalten der zweiten Matrix multipliziert und addiert.

- ▶ Um den Eintrag c_{ii} also i-te Zeile, j-te Spalte der Lösungsmatrix zu bekommen, multipliziert man die Elemente der i-ten Zeile der ersten Matrix mit den Elementen der j-ten Spalte der zweiten Matrix und bildet die Summe aus allen Produkten.
- ▶ Dabei ist $C = A \cdot B$ definiert durch $C = (c_{ij})$ mit $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$
- Rechenregeln
 - Assoziativität: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
 - Distributivität:

$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$(A+B) \cdot C = A \cdot C + B \cdot C$$

$$A \cdot (\lambda \cdot B) = (\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B)$$

Matrixmultiplikation

Ist A eine $l \times n$ -Matrix, dann muss B eine $n \times m$ -Matrix sein und C ist dann $l \times m$ -Matrix.

Also müssen die Zeilen der linken Matrix genauso lang sein wie die Spalten der rechten Matrix, sonst passt die Spalte nicht auf die Zeile.

Padberg (HAW Hamburg) BAI3-GKA

Padberg (HAW Hamburg)

BAI3-GKA

THM 01 WDH: Matri

HM 01 WDH: Matrize

Transponieren einer Matrix

Die transponierte Matrix A^T einer $m \times n$ -Matrix $A = (a_{jk})$ ist eine $n \times m$ Matrix

$$A^T = (a_{ik})^T = (a_{ki})$$

wobei die Zeilen in Spalten und die Spalten in Zeilen verwandelt werden.

Für die Transposition gilt:

1.
$$(A^T)^T = A$$

Für das Transponieren von Produkten C = AB gilt:

2.
$$C^{T} = B^{T}A^{T}$$

3.
$$C = (B^T A^T)^T$$

$$4. (cA)^T = cA^T$$

Aufgabe 9:

Berechnen Sie bitte:

1.
$$\begin{pmatrix} 0 & 1 & -2 & 0 \\ 1 & -1 & 2 & 3 \\ 1 & 3 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ -1 & -1 \\ 2 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -5 & -3 \\ 7 & 9 \\ -3 & -2 \end{pmatrix}$$

$$2. \begin{pmatrix} 1 & -1 & 2 & 3 & 2 \\ 0 & 1 & 1 & -2 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 3 & -5 \\ 0 & -3 \\ 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1 & -8 \\ 6 & -13 \\ 0 & -3 \end{pmatrix}$$

Matrixdarstellung ungerichteter Graphen

Definition

Die Adjazenzmatrix $A(G) := (a_{ij})$ des ungerichteten Graphen G(V, E) ist eine symmetrische $|V| \times |V|$ -Matrix mit:

 $a_{ij} :=$ Anzahl der Kanten mit den Endknoten v_i und v_j

BSP:

59

Der Graph G(V, E)

hat diese Adjazenzmatrix:

$$A(G) = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

Padberg (HAW Hamburg) BAI3-GKA

Padberg (HAW Hamburg)

Aufgabe 10:

Geben Sie bitte die Adjazenzmatrix für diesen Graphen G an:

Lösung

$$A(G) = \left(\begin{array}{cccc} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

Ist die Adjazenzmatrix eines ungerichteten Graphen immer symmetrisch? Warum?

Padberg (HAW Hamburg)

BAI3-GKA

Aufgabe 11:

Wie können Sie mit der Adjazenzmatrix Maximal- bzw. Minimalgrade eines schlingenfreien Graphen berechnen?

Lösung

Adjazenzmatrix:

i-te Zeilensumme $= d(v_i)$

i-te Spaltensumme = $d(v_i)$

und davon dann das Maximum bzw. das Minimum.

Padberg (HAW Hamburg)

BAI3-GKA

THM 01

Inzidenzmatrix des ungerichteten Graphen

Definition

Die **Inzidenzmatrix** $M(G) := (m_{ii})$ des ungerichteten Graphen G(V, E) ist eine $|V| \times |E|$ -Matrix mit:

$$m_{ij} := \begin{cases} 0, & \text{falls } v_i \text{ nicht inzident ist mit } e_j \\ 1, & \text{falls } v_i \text{ einer der Endknoten von } e_j \text{ ist } \\ 2, & \text{falls } v_i \text{ der Endknote der Schlinge } e_j \text{ ist } \end{cases}$$

BSP:

Der Graph G(V, E)

Padberg (HAW Hamburg)

hat die Inzidenzmatrix

$$M(G) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 2 & 1 \end{pmatrix}$$

$$M(G) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

BAI3-GKA

THM 01 WDH: Matrizen

Aufgabe 12:

Geben Sie bitte die Inzidenzmatrix für diesen Graphen *G* an:

Lösung

Padberg (HAW Hamburg)

Nachbarschaft

Definition ((Abgeschlossene) Nachbarschaft)

Sei $W \subseteq V$ eines Graphen G = (V, E). Dann ist die Nachbarschaft von W:

$$N_G(W) = \{v | w \in W \text{ und } (w, v) \in E\}$$

und die (abgeschlossene) Nachbarschaft von W:

$$cN_G(W) = N_G(W) \cup W$$

Padberg (HAW Hamburg)BAI3-GKA65

THM 01 WDH: Matri

Nachbarschaftsliste für ungerichtete Graphen

Für Graphen

- ▶ mit niedrigen Knotengraden (d.h. $d(v_i) << |V|$)
- und ohne Mehrfachkanten

Eine derartige Liste stellt jedem Knoten seine Nachbarn gegenüber.

BSP:

Der Graph G = (V, E)

Knoten hat gemeinsame Kanten mit

V₁: V₂, V₃, V₄ V₂: V₁, V₃ V₃: V₁, V₂, V₄ V₄: V₁, V₃, V₄

Padberg (HAW Hamburg)

BAI3-GKA

11 WDU: Motriz

Matrixdarstellung für gerichtete Graphen

Definition (Adjazenzmatrix)

Für einen gerichteten Graphen werden die Einträge der Adjazenzmatrix folgendermaßen definiert:

 $a_{ij} :=$ Anzahl der Kanten mit Anfangsknoten v_i und Endknoten v_i

BSP:

Der gerichtete Graph H

hat die (nicht symmetrische) Adjazenzmatrix:

$$A(H) = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Padberg (HAW Hamburg) BAI3-GKA

THM 01 WDH: Matr

Aufgabe 13:

Geben Sie bitte die Adjazenzmatrix für diesen Graphen *G* an:

Lösung

$$A(G) = \left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

Aufgabe 14:

Wie können Sie mit Hilfe der Adjazenzmatrix des Graphen G, den Graphen berechnen, der den gleichen zugrundeliegenden Graphen hat, aber dessen Kanten alle in die andere Richtung zeigen?

Lösung

Gegeben G, dann berechnet man $A(G)^T$.

Padberg (HAW Hamburg)

BAI3-GKA

69

Inzidenzmatrix für schlingenfreie gerichtete Graphen

Definition

Für einen schlingenfreien, gerichteten Graphen werden die Einträge *m*_{ii} der Inzidenzmatrix folgendermaßen definiert:

$$m_{ij} := \left\{ egin{array}{ll} 0, & ext{falls } v_i ext{ nicht inzident ist mit } e_j \ -1, & ext{falls } v_i ext{ die Anfangsknoten von } e_j ext{ ist} \ +1, & ext{falls } v_i ext{ die Endknoten von } e_j ext{ ist} \end{array}
ight.$$

BSP:

Der gerichtete Graph H

hat die Inzidenzmatrix:

$$M(H) = \begin{pmatrix} -1 & +1 & -1 & +1 & 0 & 0 \\ +1 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & +1 & +1 \\ 0 & 0 & +1 & 0 & 0 & -1 \end{pmatrix}$$

Padberg (HAW Hamburg)

BAI3-GKA

Nachbarschaftsliste für gerichtete Graphen

Eine derartige Liste stellt jeder Anfangsknoten die zugehörigen Endknoten gegenüber.

BSP:

Der gerichtete Graph H

Anfangsknoten		hat Kanten mit Endknoten
<u>v₁</u>	:	V_2, V_4
<i>V</i> ₂	:	v_1, v_3
<i>V</i> ₃	:	<i>V</i> ₁
<i>V</i> ₄	:	<i>V</i> ₃

WDH: Matrizen

Aufgabe 15:

- 1. Wie können Sie anhand Inzidenzmatrix eines schlingenfreien Graphen den Grad eines bestimmten Knotens bestimmen?
- 2. Wie können Sie der Adjazenzmatrix eines Graphen G ansehen, dass G bipartit ist?
- 3. Wie erhalten Sie aus der Adjazenzmatrix eines Graphen G die Adjazenzmatrix eines Teil- oder Untergraphen *H*?

Padberg (HAW Hamburg) BAI3-GKA 71 Padberg (HAW Hamburg) BAI3-GKA

Lösung der Aufgabe 15

Lösung

Anzahl der +1 in der *i*-ten Zeile = $d(v_i)$, bzw. $d_+(v_i)$ Anzahl der -1 in der *i*-ten Zeile = $d_{-}(v_{i})$

- 2. Sie kann durch gleichzeitige Zeilen- und Spaltenvertauschung in die Form gebracht werden: A =wobei die Nullen für quadratische Nullmatrizen und die Sterne für beliebige Matrizen stehen.
- entfernten Knoten gehören. Teilgraph: in der verbliebenen Matrix die Einträge um Eins

Padberg (HAW Hamburg)

BAI3-GKA

73

THM 01 Wege und Kreise

Wege und Kreise

Padberg (HAW Hamburg)

Definition

Eine Kantenfolge heißt ein **Weg** von v_0 nach v_k , wenn alle Knoten v_0, \ldots, v_k (und damit auch alle Kanten e_1, \ldots, e_k) voneinander verschieden sind.

BAI3-GKA

► Eine geschlossene Kantenfolge heißt ein Kreis², wenn alle Knoten v_0, \ldots, v_{k-1} und alle Kanten e_1, \ldots, e_k voneinander verschieden sind und $v_0 = v_k$ gilt.

Definition (Erreichbarkeit)

Ein Knoten *u* heißt von einem Knoten *v* aus **erreichbar**, wenn entweder u = v ist oder es eine Kantenfolge gibt, in der v vor u auftritt.

Inzidenzmatrix:

3. Untergraph: Streichen der Zeilen und Spalten, die zu dem

vermindern, die zu den entfernten Kanten gehören.

ungerichteter

gerichteter

gemischter

Multi-

Übersicht

▶ einfacher Graph ←→ Speicherung

schlichter

vollständiger

bipartiter

planar

kantenbewerteter

Inzidenzmatrix

Adjazenzmatrix

Nachbarschaftslisten

Wege und Kreise THM 01

WDH: Kantenfolge

Definition

In einem Graphen G = (V, E) ist eine **Kantenfolge** eine Folge, deren Glieder abwechselnd Knoten und Kanten sind:

$$v_0 e_1 v_1 e_2 v_2 \dots e_k v_k$$

wobei $0 < k \in \mathbb{N}$ und für i = 1, ..., k gilt: $s_{-}t(e_i) = \{v_{i-1}, v_i\}$. Für gerichtete Kanten e_i müssen darüber hinaus $s(e_i) = v_{i-1}$ und $t(e_i) = v_i$ sein. Im Fall $v_0 = v_k$ heißt die Kantenfolge geschlossen.

²bei gerichteten Graphen auch oft **Zyklus**

ist y f v g y h w b v a u eine Kantenfolge.

Ein Weg in diesem Graphen ist beispielsweise x d y f v b w, und ein Beispiel für einen Kreis ist uavbwhyeu.

Padberg (HAW Hamburg)

BAI3-GKA

77

79

THM 01 Wege und Kreise

Anwendung

Konfliktgraph in Datenbanken

Padberg (HAW Hamburg)

Im Konfliktgraph eines Schedules stellen die beteiligten Transaktionen die Knoten dar.

BAI3-GKA

Ein Pfeil führt von einer Transaktion T_i zu einer Transaktion T_i , wenn beide Transaktionen auf dasselbe Datenbank-Objekt zugreifen - und zwar T_i vor T_i - wobei mindestens eine der Operationen eine Schreiboperation ist.

Enthält der Konfliktgraph keine Zyklen, so ist der Schedule konflikt-serialisierbar. Damit ist der zugehörige Schedule konsistenzerhaltend.

Wege und Kreise

Zyklenfreiheit eines gerichteten Graphen

Satz

Sei G = (V, E) ein gerichteter Graph und es gelte $\forall v \in V : d_{-}(v) > 0$ oder $\forall v \in V : d_+(v) > 0$, dann besitzt G einen Kreis.

Aufgabe 16: Versuchen Sie bitte einen Graphen zu zeichnen, der diese Bedingungen NICHT erfüllt.

also $\forall v \in V : d_{-}(v) > 0$ oder $\forall v \in V : d_{+}(v) > 0$ aber kein Kreis.

Padberg (HAW Hamburg)

Matrixberechnung für Grapheigenschaften

Satz

Sei G ein gerichteter Graph mit der Inzidenzmatrix M(G). Dann gilt:

BAI3-GKA

- 1. Eine Menge von Kanten von G enthält einen Kreis von G genau dann, wenn die zugehörigen Spalten von M(G) linear abhängig sind und bei der Darstellung des Nullvektors als Linearkombination dieser Spaltenvektoren alle Vektoren nur mit 0 oder +1 multipliziert werden.
- 2. Der zugrundeliegende ungerichtete Graph werde mit G bezeichnet.

Eine Menge von Kanten von G enthält einen Kreis von G genau dann, wenn die zugehörigen Spalten von M(G) linear abhängig sind. Bei der Darstellung des Nullvektors als Linearkombination dieser Spaltenvektoren werden alle Vektoren nur mit −1, 0 oder +1 multipliziert.

Padberg (HAW Hamburg) BAI3-GKA

Aufgabe 17:

▶ Geben Sie bitte die Inzidenzmatrix M(G) für diesen Graphen Gan:

- Was müssen Sie tun, um zu zeigen, dass der Graph keinen Zyklus hat? Das Gleichungsystem M(G) lösen und zeigen, dass es keine Lösung nur mit 1'en und 0'en gibt.
- ► Tun Sie's!!

Padberg (HAW Hamburg)

BAI3-GKA

THM 01 Transitive Hülle

im ungerichteten Graphen

Definition

Gegeben ein ungerichteter Graph G = (V, E).

Dann ist die Kantenrelation die symmetrische Relation über V, die genau die Kanten umfasst.

Die Hülle der Kantenrelation E^+ ist die kleinste transitive Relation, die E beinhaltet.

Definition

Gegeben ein ungerichteter Graph G = (V, E).

Dann ist die **transitive Hülle** von *G* der Graph $G^+ = (V, E^+)$, der genau dann eine Kante $e \in E^+$ mit $s_t(e) = \{v_i, v_i\}$ enthält, wenn es in G einen Weg (oder Kreis) von v_i nach v_i gibt.

Wege und Kreise

Lösung von Aufgabe 17

Gauß'sche Diagonalverfahren

Lösung

$$M(G) = \begin{pmatrix} -1 & 0 & -1 & -1 \\ +1 & -1 & 0 & 0 \\ 0 & +1 & +1 & +1 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$e_4 = -1$$
 und $e_3 = 0$ dann $e_2 = 1$ und $e_1 = 1$

$$e_4=0$$
 und $e_3=-1$ dann $e_2=1$ und $e_1=1$

Lösungsraum :
$$k_1 \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} + k_2 \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

also keine Lösung nur mit 1'en und 0'en, ausser der trivialen.

THM 01

Transitive Hülle

Padberg (HAW Hamburg)

im gerichteten Graphen

BAI3-GKA

Definition

Gegeben ein gerichteter Graph G = (V, E).

Dann ist die **Kantenrelation** die Relation über *V*, die genau die Kanten von einem zu einem anderen Knoten umfasst.

Die Hülle der Kantenrelation E^+ ist die kleinste transitive Relation, die E beinhaltet.

Definition

Gegeben ein gerichteter Graph G = (V, E).

Dann ist die **transitive Hülle** von G der Graph $G^+ = (V, E^+)$, der genau dann eine Kante $e \in E^+$ mit $s(e) = v_i$ und $t(e) = v_i$ enthält, wenn es in G einen Weg (oder Kreis) von v_i nach v_i gibt.

BAI3-GKA

Padberg (HAW Hamburg) BAI3-GKA 83 Padberg (HAW Hamburg)

Ausflug in die Relationen

Relationen

Definition

Eine **Relation** *R* ist eine Teilmenge des kartesischen Produkts von *A* und B. Man sagt a steht in Relation zu b und schreibt aRb:

a R b genau dann, wenn $(a, b) \in R \subseteq A \times B$.

BSP:

- \triangleright < und < sind Relationen auf $\mathbb{N} \times \mathbb{N}$
- ▶ die Teilerrelation: *nTm* genau dann, wenn *n* Teiler von *m* dann ist $T = \{(n, m) | \text{ es existiert } k \in \mathbb{N} \text{ mit } k \cdot n = m\}$
- $P_3 := \{(x, x+3) | x \in \mathbb{N}\} = \{(1,4), (2,5), (3,6), ...\}$
- $P_n := \{(x, x + n) | x \in \mathbb{N}\}$

Padberg (HAW Hamburg)

BAI3-GKA

Padberg (HAW Hamburg)

THM 01

Ausflug in die Relationen

Äguivalenzrelationen

Definition

Ist eine Relation reflexiv, symmetrisch und transitiv, so wird sie Äquivalenzrelation genannt.

Definition

Gegeben eine Äquivalenzrelation R über der Menge A. Dann ist $[a] = \{x | (a, x) \in R\}$ die Äquivalenzklasse von $a \in A$.

► Eine Äquivalenzrelation unterteilt die Menge *A* in disjunkte Teilmengen die Äquivalenzklassen: $[a] \cap [b] = \emptyset \iff (a, b) \notin R$

BAI3-GKA

▶ Die Vereinigung aller Äquivalenzklassen ergibt wieder die Ausgangsmenge: $\bigcup_{a \in A} [a] = A$

Ausflug in die Relationen

Eigenschaften von Relationen

Definition

Eine Relation $R \subseteq A^2$ in einer Menge A heißt

- reflexiv, wenn jedes Element in Relation zu sich selbst steht: für alle $a \in A : (a, a) \in R$
- > symmetrisch, wenn die Reihenfolge der Elemente keine Rolle spielt: $(a, b) \in R$, dann $(b, a) \in R$
- antisymmetrisch, wenn aus der Symmetrie die Identität folgt: $(a,b) \in R$ und $(b,a) \in R$, dann a = b
- transitiv, wenn aus einer Kette das mittlere Element entfernt werden kann: $(a, b) \in R$ und $(b, c) \in R$, dann $(a, c) \in R$

BAI3-GKA

THM 01

Ausflug in die Relationen

Äquivalenzabschluss

- ▶ Reflexiver Abschluss r(R) von $R \subseteq A \times A$: $r(R) = R \cup \{(a, a) | a \in A\}$
- Symmetrischer Abschluss s(R): $s(R) = R \cup \{(b, a) | (a, b) \in R\}$
- ▶ Transitiver Abschluss t(R): $t(R) = \bigcup_{i \le n} R^i$, so dass $R^n = R^{n+1}$ oder informeller $t(R) = \{(a, c) | \text{ es ex.} b_1, b_2, ..., b_n,$

mit $(a, b_1), (b_i, b_{i+1}), (b_n, c) \in t(R)$

Satz (Erzeugte Äquivalenzrelation):

t(s(r(R))) ist Äquivalenzrelation.

Bemerkung:

s(t(r(R))) i.a. nicht transitiv.

Padberg (HAW Hamburg) BAI3-GKA THM 01 Komponente

Zusammenhang von Knoten

Definition (Zusammenhang)

- In einem ungerichteten Graphen heißen zwei Knoten u und v zusammenhängend, wenn u = v ist oder es einen Weg von u nach v gibt.
- In einem gerichteten Graphen heißen zwei Knoten u und v stark zusammenhängend, wenn u = v ist oder es einen Weg von u nach v gibt und es einen Weg von v nach u gibt.
- 3. In einem gerichteten Graphen heißen zwei Knoten *u* und *v* **schwach zusammenhängend**, wenn sie in dem zugrundeliegenden ungerichteten Graphen zusammenhängend sind.

Padberg (HAW Hamburg) BAI3-GKA 89

Zusammenhangskomponenten

im gerichteten Graphen

Definition (Starke Zusammenhangskomponente)

In einem gerichteten Graphen G=(V,E) heißen die größten Untergraphen von G, die nur stark zusammenhängende Knoten enthalten **starke (Zusammenhangs-)Komponenten**.

Der Graph *G* heißt **stark zusammenhängend**, falls *G* genau eine starke Komponente besitzt.

Definition (Schwache Zusammenhangskomponente)

In einem gerichteten Graphen G = (V, E) heißen die Zusammenhangskomponenten auf dem zugrundeliegenden ungerichteten Graph schwache (Zusammenhangs-)Komponenten. Der Graph G heißt schwach zusammenhängend, falls G genau eine schwache Komponente besitzt.

THM 01 Komponent

Zusammenhangskomponenten

im ungerichteten Graphen

Definition (Zusammenhangskomponente)

In einem ungerichteten Graphen G = (V, E) heißen die größten Untergraphen von G, die nur zusammenhängende Knoten enthalten (**Zusammenhangs-)Komponenten**.

Der Graph *G* heißt **zusammenhängend**, falls *G* genau eine Komponente besitzt.

Padberg (HAW Hamburg)

BAI3-GKA

3-GKA

BSP:

THM 01

1. Ungerichteter Graph mit drei Komponenten:

2. Schwach zusammenhängender Digraph:

3. Stark zusammenhängender Digraph:

Padberg (HAW Hamburg) BAI3-GKA 91 Padberg (HAW Hamburg) BAI3-GKA

Aufgabe 18:

Gegeben sei ein schlichter Graph G, der

- ▶ 9 Knoten.
- 4 starke Komponenten und
- 2 schwache Komponenten hat, und
- ▶ mindestens einen Knoten mit Ausgangsgrad $d_{-}(v) = 6$ hat.
- Geben Sie bitte ein Beispiel für *G* an:
- 2. Kann es einen wie oben beschrieben Graphen geben, der aber einen Knoten mit $d_{-}(v) \ge 8$ hat?

Padberg (HAW Hamburg)

BAI3-GKA

95

Komponenten

Padberg (HAW Hamburg)

Satz

THM 01

In einem ungerichteten Graphen G = (V, E) ist die Relation $R \subseteq V \times V$, wobei $(u, v) \in R \Leftrightarrow u$ und v sind zusammenhängend, eine Äguivalenzrelation auf der Knotenmenge V. Die zu den Äquivalenzklassen [v] gehörenden Untergraphen von G[[v]] sind die **Zusammenhangskomponenten**.

Satz

In einem gerichteten Graphen G = (V, E) ist die Relation $R \subseteq V \times V$, wobei $(u, v) \in R \Leftrightarrow u$ und v sind stark zusammenhängend, eine Äguivalenzrelation auf der Knotenmenge V. Die zu den Äquivalenzklassen [v] gehörenden Untergraphen von G[[v]] sind die starken Zusammenhangskomponenten.

BAI3-GKA

Lösung von Aufgabe 18

Lösung

1. $d_{-}(v7) = 6$ in

2. Nein: Weil im schlichten Graphen weder Mehrfachkanten noch Schlingen erlaubt sind, muss der Knoten mit $d_{-}(v) = 8$ mit den 8 anderen in Verbindung stehen. Dann gibt es aber keine 2 schwache Komponenten. Also, geht das nicht.

Padberg (HAW Hamburg)

BAI3-GKA

Aufgabe 19:

THM 01

Bitte geben Sie für den folgenden gerichteten Graphen G

- 1. die Äquivalenzrelation R_{sK} für den starken Zusammenhang an
- 2. und die entsprechenden Äquivalenzklassen
- 3. und die entsprechenden Untergraphen.

Padberg (HAW Hamburg) BAI3-GKA

Lösung von Aufgabe 19

Lösung

- 1. $R_{sK} = t(s(r(\{(a,b),(b,c),(c,d)\})))$
- 2. $[a] = \{a, b, c, d\}$ $[e] = \{e\}$ $[f] = \{f\}$
- 3. G[[a]] und G[[e]] und G[[f]]

Padberg (HAW Hamburg)

BAI3-GKA

Padberg (HAW Hamburg)

THM 01 Komponer

Schnitte

Lösung von Aufgabe 20

Lösung

THM 01

Beweis:

- ⇒ Sei G = (V, E) zusammenhängend. **Z.z.** ist: G^+ ist vollständig, also für je zwei beliebige Knoten $u, v \in V$ gibt es eine Kante $e \in E^+$ mit $s_-t(e) = \{u, v\}$.
 - Wenn G = (V, E) zusammenhängend ist, dann gibt es für je zwei beliebige Knoten $u, v \in V$ einen Weg $u = v_0 e_1 v_1 e_2 ... e_n v_n = v$. Also gibt es eine Kante $e \in E^+$ mit $s_-t(e) = \{u, v\}$, also ist G^+ vollständig.
- \Leftarrow : Sei G = (V, E) nicht zusammenhängend. **Z.z.** ist: G^+ ist nicht vollständig.

Wenn G = (V, E) nicht zusammenhängend ist, dann gibt es (mindestens) zwei Knoten $u, v \in V$, so dass es keinen Weg zwischen u und v gibt. Also gibt es auch keine Kante $e \in E^+$ mit $s_-t(e) = \{u, v\}$, also ist G^+ nicht vollständig.

Padberg (HAW Hamburg) BAI3-GKA

THM 01 Kompone

Aufgabe 20:

Satz

Ein ungerichteter, schlichter Graph G ist genau dann zusammenhängend, wenn seine transitive Hülle G^+ ohne die Schlingen vollständig ist.

- 1. Diskutieren Sie mit Ihren Nachbarn, warum der Satz wahr ist.
- 2. Wie müssen Sie vorgehen, um das zu beweisen.
- 3. Beweisen Sie bitte den Satz.

Wirklich simpel.

100

Definition (Schnittknoten und Schnittkanten)

In einem zusammenhängenden Graphen G = (V, E) heißt ein Knoten v ein **Schnittknoten**, falls der Untergraph H von G mit Knotenmenge $V \setminus \{v\}$ nicht zusammenhängend ist. Entsprechend heißt eine Kante e eine **Schnittkante**, falls der Teilgraph $F(V, E \setminus \{e\})$ von G nicht zusammenhängend ist.

BAI3-GKA

BSP:

99

Dieser Graph besitzt einen Schnittknoten, aber keine Schnittkante:

Padberg (HAW Hamburg) BAI3-GKA

THM 01 Komponenten

Aufgabe 21:

Geben Sie bitte Schnittkanten und Schnittknoten dieses Graphes an:

Lösung

Schnittknoten: a und b

Schnittkanten: e1

Padberg (HAW Hamburg)

BAI3-GKA

101

Padberg (HAW Hamburg)

Komponenten Wahr oder Falsch für schlichte Graphen 1. Eine Kante zwischen zwei Schnittknoten ist eine Schnittkante. wahr oder | X | falsch 2. Wenn ein zusammenhängender Graph einen Kreis enthält, wahr oder X falsch dann gibt es keinen Schnittknoten 3. Wenn es nur einen Weg von den Knoten v zu dem Knoten w gibt, dann gibt es auf diesem Weg mindestens eine Schnittkante. X wahr oder falsch 4. Wenn es einen Schnittknoten gibt, gibt es auch eine Schnittkante. wahr oder | X | falsch 5. Wenn es eine Schnittkante gibt, gibt es genau einen Schnittknoten. wahr oder X falsch 6. Wenn es eine Schnittkante gibt, gibt es mindestens zwei Schnittknoten.

BAI3-GKA

wahr oder X falsch