

Skript Analysis I.

Mitschrift der Vorlesung "Analysis I." von Prof. Dr. Wilhelm Winter

Jannes Bantje

5. September 2014

Aktuelle Version verfügbar bei:

GitHub (inklusive Sourcecode)
https://github.com/JaMeZ-B/latex-wwu♂

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Analysis I., WiSe 2012", gelesen von Prof. Dr. Wilhelm Winter. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an j.bantje@wwu.de♂ (gerne auch mit annotieren PDFs)
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: TEX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss!

Vorlesungshomepage

http://wwwmath.uni-muenster.de/u/wilhelm.winter/wwinter/analysis_I.html

Hinweis

Verglichen mit den neueren Mitschriften ist dieses Skript in einem deutlich schlechteren Zustand, hauptsächlich in technischer Hinsicht, aber auch die inhaltliche Fehlersuche war bei weitem nicht so intensiv...damals hatte ich gerade erst angefangen mich mit MEX zu beschäftigen.

Ich plane nicht, daran in näherer Zukunft etwas zu verändern, da dies ziemlich viel Zeit in Anspruch nehmen würde, die anderweitig besser investiert ist. Sollte jemand Lust dazu haben, wäre die wichtigste Baustelle das Inhaltsverzeichnis, in dem kurze Beschreibungen der Sätze, Lemmata, etc. fehlen. Außerdem müssen die Labels eindeutig werden. Wie man dies handhaben kann, sieht man gut in den Dateien der späteren Semester.

¹zB. https://try.github.io/levels/1/challenges/1♂, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

0	Meng	en und Abbildungen 1
	0.1	Cantor über Mengen:
	0.2	Definition
	0.3	Definition
	0.4	
	0.5	Frage: Ist es wichtig, dass S nicht leer ist?
	0.6	Definition: Seien X, Y Mengen
	0.7	Definition
	0.8	Definition
	0.9	Proposition
	0.5	- 10position - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		P. 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		liche Zahlen und vollständige Induktion 4
	1.1	Definition
	1.2	Exkurs
		1.2.1 Axiom (Axiom der unendlichen Mengen)
		1.2.2 Satz
		1.2.3 Bemerkung
	1.0	•
	1.3	Das Prinzip der vollständigen Induktion
	1.4	Beweis
	1.5	Beispiele
	1.6	Definition
	1.7	Proposition
	1.8	Satz
	1.0	
	1.9	Satz 7
	1.10	Der Binomische Lehrsatz
		1.10.1 Beweis
2	Anaed	ordnete Körper 8
	2.1	Definition
	2.2	Bemerkung
		<u> </u>
	2.3	Beispiele
	2.4	Definition
	2.5	Bemerkungen
	2.6	Bemerkung
	2.7	Proposition: Bernoullische Ungleichung
	2.8	Definition
	2.9	Bemerkungen
	2.10	Proposition
	2.11	Beispiele
	2.12	Definition
	2.13	Definition Supremumsprinzip
	2.14	Bemerkungen
	2.15	Beispiele
		·
	2.16	Definition und Satz
	2.17	Definition und Proposition
	2 1 0	Evkure: Das Zahlansvetom 15

3	Interv	/allschachtelungen	16				
	3.1	Definition	16				
	3.2	Satz (Intervallschachtelungsprinzip)	16				
	3.3	Satz	16				
4	Abzäh	nlbarkeit	18				
	4.1	Definition	18				
	4.2	Beispiele	18				
	4.3	Satz	19				
5	Folgo	Folgen und Grenzwerte 19					
3	5.1	Definition	19				
	5.2	Beispiele	19				
	5.3	Definition	20				
	5.4	Beispiele	20				
	5.5	Bemerkung	21				
		<u> </u>					
	5.6	Proposition	21				
	5.7	Proposition	22				
	5.8	Beispiel	23				
	5.9	Bemerkung	23				
6	Vollst	ändigkeit	24				
	6.1	Definition	24				
	6.2	Beispiele	24				
	6.3	Satz von Bolzano-Weierstraß	24				
	6.4	Bemerkung	25				
	6.5	Definition	25				
	6.6	Satz	26				
	6.7	Beispiel	26				
	6.8	Definition	26				
	6.9	Bemerkung	27				
	6.10	Satz	27				
	6.11	Bemerkung	27				
_	5 ''						
7	Reihe		28				
	7.1		28				
	7.2	Beispiel: geometrische Reihe	28				
	7.3	Satz: Cauchy'sches Konvergenzkriterium	28				
	7.4	Bemerkung	28				
	7.5	Satz	28				
	7.6	Beispiel: Harmonische Reihe	29				
	7.7	Leibnizkriterium	29				
	7.8	Beispiel	30				
	7.9	Definition	30				
	7.10	Proposition	30				
	7.11	Majorantenkriterium	31				
	7.12	Beispiel	31				
	7.13	Satz: Quotientenkriterium	32				
	7.14	Bemerkung	32				
	7.15	Cauchyprodukt von Reihen	32				
	7.16	Beispiele	34				

8	Die Ex	rponentialreihe 35
	8.1	Definition und Satz
	8.2	Satz: Funktionalgleichung von $\exp(.)$
	8.3	Corollar
9	Stetig	e Funktionen 36
	9.1	Definition
	9.2	Beispiele
	9.3	Defintion
	9.4	Beispiele
	9.5	Proposition
	9.6	Proposition
	9.7	Proposition
	9.8	Beispiel
	9.9	Bemerkung
	9.10	Satz: Zwischenwertsatz
	9.11	Beispiel
	9.12	Satz
	9.13	Definition
	9.14	Bemerkung
	9.15	Satz
	9.16	Definition
	9.17	Satz
	9.18	Bemerkung
	9.19	Beispiel
	9.20	Definition und Satz
	9.21	Definition und Proposition
	9.22	Bemerkung
	9.23	Satz
	9.24	Definition
	9.25	Beispiele
10	Die ko	omplexen Zahlen 48
	10.1	Definition
	10.2	Definition
	10.3	Proposition
	10.4	Corollar
	10.5	Defintion
	10.6	Proposition
	10.7	Satz
	10.8	Definition
	10.9	Bemerkung
		Satz (Majorantenkriterium)
		Satz (Quotientenkriterium)
	10.12	
	10.12	
		Definition
		Bemerkung
	10.15	
	TO.T/	geometrische Interpretation

11	Winke		53
	11.1	Definition	53
	11.2	Bemerkung	53
	11.3	Proposition	53
	11.4		54
	11.5	Satz: Additionstheoreme	54
	11.6	Corollar	55
	11.7	Satz	55
	11.8	Proposition	56
	11.9	Proposition	57
	11.10	Propostion	57
	11.11	Definition und Satz	57
			57
		<u> </u>	60
			61
		<u> </u>	61
			_
12	Differ	rentiation	62
	12.1		62
	12.2		62
	12.3		63
	12.4	'	64
	12.5		65
	12.6	'	65
	12.7		66
	12.8	·	66
	12.9		67
		'	67
			67
		·	67
			68
			68
		· · · · · · · · · · · · · · · · · · ·	68
			68
			69
			69
			69
		` ' '	ი9 70
	12.20	beispiel	10
12	Integr	ration	70
כו	13.1		70 70
	13.2		70 71
	13.3		71 71
	13.4	· ·	72 72
	13.5		73 73
	13.6		73 73
	13.7		73
	13.8	'	74
	13.9	I control of the cont	74
			74
		I control of the cont	75
	13.12	Bemerkung	76

13.13	Mittelwertsatz der Integralrechnung	76
13.14	Hauptsatz der Differential- und Integralrechnung	77
13.15	Bemerkung	78
13.16	Beispiele	78
13.17	Satz: Substitutionsregel	79
13.18	Beispiel	79
13.19	Satz: Partielle Integration	80
13.20	Beispiel	80
Abbildun	gsverzeichnis	Α

Inhaltsverzeichnis

0 Mengen und Abbildungen

0.1 Cantor über Mengen:

"Zusammenfassung vor bestimmten wohlunterschiedenen Objekten unserer Anschauung und unseres Denkens zu einem Ganzen"

0.2 Definition

(i) Teilmenge

$$A \subset B$$
 falls gilt $x \in A \Rightarrow x \in B$

(ii) Vereinigung

$$A \cup B := \{x \mid x \in A \text{ oder } x \in B\}$$

(iii) Durchschnitt

$$A \cap B := \{x \mid x \in A \text{ und } x \in B\}$$

(iv) Differenz

$$A \backslash B := \{ x \mid x \in A \quad \mathsf{und} \quad x \not\in B \}$$

(v) Potenzmenge, Menge aller Teilmengen von A

$$\mathcal{P}(A) := \{ C \mid C \subset A \}$$

(vi) kartesisches Produkt

$$A\times B:=\{(x,y)\mid x\in A\quad \text{und}\quad y\in B\}$$

(vii) ∅ sei die leere Menge

0.3 Definition

Sei S ein System von Mengen

(i)

$$\underset{M \in S}{\cup M} := \{x \mid x \in M \quad \text{für ein} \quad M \in S\}$$

(ii)

$$\underset{M \in S}{\cap} M := \{x \mid x \in M \quad \text{für jedes} \quad M \in S\}$$

alternativ: Sei $S=(M_i)_{i\in I}$ für eine Indexmenge I

$$\bigcup_{i \in I} M_i := \{ x \mid x \in M_i \quad \text{für ein} \quad i \in I \}$$

$$\bigcap_{i \in I} M_i := \{ x \mid x \in M_i \quad \text{für jedes} \quad i \in I \}$$

0.4 Proposition (de Morgensche Regeln)

Sei X eine Menge und $S\subset \mathcal{P}(X)\neq\emptyset$ ein nichtleeres System von Teilmengen. Dann gilt:

(i)

$$X \backslash (\underset{M \in S}{\cup} M) = \underset{M \in S}{\cap} (X \backslash M)$$

(ii)

$$X \backslash (\underset{M \in S}{\cap} M) = \underset{M \in S}{\cup} (X \backslash M)$$

Beweis:

(i)

$$\begin{split} &\Leftrightarrow x \in X \backslash (\underset{M \in S}{\cup} M) \\ &\Leftrightarrow x \in X \quad \text{und} \quad x \not \in M \quad \text{für jedes} \quad M \in S \\ &\Leftrightarrow x \in X \backslash M \quad \text{für jedes} \quad M \in S \\ &\Leftrightarrow x \in \underset{M \in S}{\cap} (X \backslash M) \end{split}$$

(ii) Übung!!!

0.5 Frage: Ist es wichtig, dass S nicht leer ist?

0.6 Definition: Seien X,Y Mengen

Eine Abbildung $f:X\to Y$ ist eine Vorschrift, welche jedem $x\in X$ genau ein $y\in Y$ zuordnet. Wir schreiben dann:

$$y = f(x)$$
 oder $x \mapsto y$

formaler: Eine Abbildung $f:X\to Y$ ist eine Teilmenge $f\subset X\times Y$ sodass gilt

$$\forall x \in X \ \exists! \ y \in Y : (x, y) \in f$$

 $\{(x, f(x)) \mid x \in X\} \subset X \times Y$ heißt auch 'Graph von f'.

Seien X, Y, Z Mengen, $f: X \to Y$ $g: Y \to Z$

Dann ist $g \circ f : X \to Z$

0.7 Definition

Seien X,Y Mengen und $f:X\to Y$ eine Abbildung, $A\subset X,B\subset Y$ Teilmengen

(i)

$$f(A) := \{ y \in Y \mid \exists x \in A : f(x) = y \}$$

In diesem Zusammenhang heißt f(A) auch 'Bild von A unter f'.

(ii)

$$f^{-1}(B) := \{ x \in X \mid \exists y \in B : f(x) = y \}$$

In diesem Zusammenhang heißt $f^{-1}(B)$ auch 'Urbild von B unter f'.

0.8 Definition

Seien X,Y Mengen, $f:X\to Y$ eine Abbildung

(i) f heißt injektiv, falls gilt:

$$x, x' \in X, f(x) = f(x') \Longrightarrow x = x'$$

alternativ:

$$x, x' \in X, x \neq x' \Longrightarrow f(x) \neq f(x')$$

(ii) f heißt surjektiv, falls gilt:

$$\forall y \in Y \,\exists x \in X : f(x) = y$$

alternativ:

$$f(X) = Y$$

(iii) f heißt bijektiv , falls f injektiv und surjektiv ist.

0.9 Proposition

Sei $f:X\to Y$ bijektiv, dann existiert genau eine Umkehrabbildung (genau ein Inverses) $f^{-1}:Y\to X$ mit der Eigenschaft

$$f \circ f^{-1} = id_y$$
 bzw. $f^{-1} \circ f = id_x$

wobei

$$id_y: Y \to Y, y \mapsto y \quad \text{und} \quad id_x: X \to X, x \mapsto x$$

Beweis:

$$y \mapsto f^{-1}(y) := \mathsf{dasjenige} \ x \in X \, \mathsf{mit} \, f(x) = y$$

 $\left. \begin{array}{l} f \;\; \text{ist surjektiv} : \text{ein solches} \; x \; \text{existiert} \\ f \;\; \text{ist injektiv} : \text{es existiert h\"ochstens ein solches} \;\; x \end{array} \right\} = f^{-1} \text{ist wohldefiniert}$

$$f\circ f^{-1}(y)=f(f^{-1}(y))=f(x)=y\quad ({\rm dasjenige}\ x\in X\ {\rm mit}\ f(x)=y)$$

Das heißt: $\forall y \in Y \Rightarrow f \circ f^{-1} = id_y$

Analog folgt daraus $f^{-1} \circ f = id_x$

Sein nun $g:Y\to X$ eine weiter Abbildung mit der Eigenschaft $f\circ g=id_y$ und $g\circ f=id_x$. Dann gilt

$$\forall y \in Y \quad f(g(y)) = y \quad \text{d.h. } g(y) \text{ ist dasjenige } x \in X \text{ mit } f(x) = y$$

$$\Longrightarrow g(y) = f^{-1}(y) \Rightarrow g = f^{-1}$$

1 Natürliche Zahlen und vollständige Induktion

1.1 Definition

Wir definieren die Menge der natürlichen Zahlen als

$$\mathbb{N} := \{0, 1, 2, 3, \dots, \}$$

1.2 Exkurs

$$\begin{split} 0 &:= \emptyset \\ 1 &:= \{\emptyset\} \quad \text{(Potenzmenge der leeren Menge)} \\ 2 &:= \{\emptyset, \{\emptyset\}\} \\ 3 &:= \{\emptyset, \{\emptyset\}, \{\emptyset\{\emptyset\}\}\} \\ &:= \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \} \end{split}$$

1.2.1 Axiom (Axiom der unendlichen Mengen)

Es existiert eine Menge N mit:

- $(N1) \quad {\rm Die \; Elemente \; von } \; N \; {\rm sind \; Mengen}$
- (N2) $\emptyset \in N$
- (N3) $n \in N \Longrightarrow n \cup \{n\} \in N$

1.2.2 Satz

Es existiert eien kleinste Menge, welche die Eigenschaften (N1), (N2), (N3) erfüllt. Diese Menge nennen wir die natürlichen Zahlen $\mathbb N$.

1.2.3 Bemerkung

Die Existenz unendlicher Mengen ist nicht trivial! zum Vergleich: Die Menge aller Mengen $\frac{1}{2}$.

1.3 Das Prinzip der vollständigen Induktion

Es sei $(A(n))_{n\in N}$ ein System von Aussagen. Es gelte:

(IA)
$$A(0)$$
 ist wahr

(IS)
$$\forall n \in N : A(n) \text{ wahr} \Longrightarrow A(n+1) \text{ wahr}$$

Dann ist A(n) wahr für alle $n \in N$.

1.4 Beweis

1.3 ist äquivalent zu dem Satz 1.2.2

1.5 Beispiele

(i)
$$A(n): \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

• (IA):
$$\sum\limits_{k=1}^{0}k=0=rac{0(0+1)}{2}\implies A(0)$$
 ist wahr

• (IS): Sei A(n) wahr (IV)

$$\begin{split} \sum_{k=1}^{n+1} k &= (\sum_{k=1}^n k) + (n+1) \\ &\stackrel{\text{(IM)}}{=} \frac{n(n+1)}{2} + (n+1) \\ &= \frac{n(n+1) + 2(n+1)}{2} \\ &= \frac{(n+1)(n+2)}{2} \\ &= \frac{(n+1)((n+1)+1)}{2} \\ &\stackrel{\text{\Longrightarrow}}{=} A(n+1) \text{ ist wahr} \\ &\stackrel{\text{\Longrightarrow}}{=} A(n) \text{ist wahr für alle } n \in \mathbb{N} \end{split}$$

(ii) A(n) Für alle $x \neq 1$ gilt:

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

(Summenformel für die geometrische Reihe)

• (IA):
$$\sum\limits_{k=0}^{0}x^{k}=x^{0}=1=rac{1-x^{0+1}}{1-x}\quad\Longrightarrow A(0)$$
 ist wahr

• (IS): Sei A(n) wahr (IV)

$$\begin{split} \sum_{k=0}^{n+1} x^k &= \left(\sum_{k=0}^n x^k\right) + x^{n+1} \\ &\stackrel{\text{(IV)}}{=} \frac{1-x^{n+1}}{1-x} + x^{n+1} \\ &= \frac{1-x^{n+1}+(1-x)x^{n+1}}{1-x} \\ &= \frac{1-x^{n+1}+x^{n+1}-x^{n+2}}{1-x} \\ &= \frac{1-x^{(n+1)+1}}{1-x} \\ &\Longrightarrow A(n+1) \text{ ist wahr} \\ &\Longrightarrow A(n) \text{ist wahr für alle } n \in \mathbb{N} \end{split}$$

1.6 Definition

(i) Für $n \in \mathbb{N}$ setzen wir:

$$\boxed{n! := \prod_{k=1}^n k = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n}$$

$$(0! := \prod_{n=1}^0 k = 1 \quad \text{nach Konvention})$$

$$(0! := \prod_{n=1}^{0} k = 1 \quad \text{nach Konvention})$$

(ii) Für $n, k \in \mathbb{N}$ setzen wir:

$$\binom{n}{k} = \prod_{j=1}^{k} \frac{n-j+1}{j}$$

$$= \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{1 \cdot 2 \cdot \dots \cdot k}$$

$$= \frac{n!}{\underbrace{n(n-1) \cdot \dots \cdot (n-k+1)(n-k)!}}$$

$$= \frac{n!}{k!(n-k)!}$$

1.7 Proposition

(i)
$$\binom{n}{k} = 0$$
 falls $k > n$

(ii)
$$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$
 (falls $k \ge 0$)

(iii)
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 falls $k < n$

Beweise für (i) und (ii) schenken wir uns...

(iii)

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)! (n-k)!} + \frac{(n-1)!}{k! (n-1-k)!}$$

$$= \frac{(n-1)! k + (n-1)! (n-k)}{k! (n-k)!}$$

$$= \frac{(n-1)! (k+n-k)}{k! (n-k)!}$$

$$= \frac{n!}{k! (n-k)!}$$

$$= \binom{n}{k}$$

1.8 Satz

Die Anzahl der Anordnungen einer n-elementigen Menge ist n!Eine Anordnung der Menge $\{x_1,\ldots,x_n\}$ ist eine Bijektion $\{1,\ldots,n\}\longrightarrow \{x_1,\ldots,x_n\}$

1.8.1 Beweis

• I.A.: n=0 Es gibt genau eine Abbildung $\emptyset \to \emptyset$, die sogenannte "leere Abbildung"(Abb.: $f \subset \emptyset \times \emptyset = \emptyset$). Diese ist bijektiv.

$$0! = 1$$

(konkreter für n=1 existiert genau eine Bijektion $\{1\} \longrightarrow \{x_1\}$)

• I.S.: Der Satz sei bewiesen für ein $n\in\mathbb{N}$ Sei $M:=\{x_1,x_2,\dots,x_{n+1}\}$ eine Menge mit n+1 Elementen. Gesucht:

$$\text{M\"achtigkeit von } F := \left\{ f: \{1,\dots,n+1\} \rightarrow \{x_1,\dots,x_{n+1}\} \mid f \text{ bijektiv} \right\}$$

Setze: $F_k := \{ f \in F \mid f(n+1) = x_k \}$ dann ist

$$\#F_k = \#\left\{f: \{1,\ldots,n\} \to M \setminus \{x_k\} \mid f \text{ bijektiv}\right\}$$

Außerdem gilt: $F = \dot{\bigcup}_{k=1,\dots,n+1} F_k$, also:

$$#F = \sum_{k=1}^{n+1} #F_k = \sum_{k=1}^{n+1} n! = \underbrace{n! + n! + \dots + n!}_{n+1}$$
$$= (n+1)n! = (n+1)!$$

1.9 Satz

Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist $\binom{n}{k}$. Insbesondere ist $\binom{n}{k}$ ganzzahlig.

1.10 Der Binomische Lehrsatz

Für $x,y\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Insbesondere:

Für y = x = 1

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Für x=1 , y=-1

$$0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$$

1.10.1 Beweis

• I.A.: (n = 0)

$$(x+y)^0 = 1 = {0 \choose 0} x^0 y^0 = \sum_{k=0}^{0} {0 \choose k} x^{0-k} y^k$$

• I.S.: Der Satz sei bewiesen für ein $n \in \mathbb{N}$

$$\begin{split} &(x+y)^{n+1} = (x+y)^n (x+y) \\ &\stackrel{\text{(IM)}}{=} \left(\sum_{k=0}^n \binom{n}{k} x^{n-k} y^k \right) \cdot (x+y) \\ &= \left(\sum_{k=0}^n \binom{n}{k} x^{n-k+1} y^k \right) + \left(\sum_{k=0}^n \binom{n}{k} x^{n-k} y^{k+1} \right) \\ &= x^{n+1} + \left(\sum_{k=1}^n \binom{n}{k} x^{n-k+1} y^k \right) + \left(\sum_{k=0}^{n-1} \binom{n}{k} x^{n-k} y^{k+1} \right) + y^{n+1} \\ &= x^{n+1} + \left(\sum_{k=1}^n \binom{n}{k} x^{n-k+1} y^k \right) + \left(\sum_{k=1}^n \binom{n}{k-1} x^{n-(k-1)} y^{(k-1)+1} \right) + y^{n+1} \\ &= x^{n+1} + \left(\sum_{k=1}^n \binom{n}{k} + \binom{n}{k-1} \right) x^{n-k+1} y^k \right) + y^{n+1} \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n-k+1} y^k \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} x^{n-k+1} y^k \\ &= \text{q.e.d.} \end{split}$$

2 Angeordnete Körper

2.1 Definition

Ein Körper $(K,+,\cdot)$ ist eine Menge K mit Abbildungen ("Operationen")

$$+: K \times K \longrightarrow K$$

 $(x,y) \longmapsto x+y$

$$\begin{array}{c}
\cdot : K \times K \longrightarrow K \\
(x, y) \longmapsto x \cdot y
\end{array}$$

sodass gilt:

(A1)
$$\forall x, y, z \in K : (x+y) + z = x + (y+z)$$
 (Assoziativität)

(A2)
$$\forall x, y \in K : x + y = y + x$$
 (Kommutativität)

(A3)
$$\exists 0 \in K : \forall x \in K : x + 0 = x$$
 (Existenz der Null)

(A4)
$$\forall x \in K \ \exists -x \in K : x + (-x) = 0$$
 (Existenz des Inversen)

8

\implies (K,+) ist eine abelsche Gruppe

(M1)
$$\forall x, y, z \in K \setminus \{0\} : (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
 (Assoziativität)

(M2)
$$\forall x, y \in K \setminus \{0\} : x \cdot y = y \cdot x$$
 (Kommutativität)

(M3)
$$\exists 1 \in K \setminus \{0\} : \forall x \in K \setminus \{0\} : x \cdot 1 = x$$
 (Existenz der Eins)

(M4)
$$\forall x \in K \setminus \{0\} \ \exists x^{-1} \in K : x \cdot x^{-1} = 1$$
 (Existenz des Inversen)

(D1)
$$\forall x, y, z \in K : x(y+z) = xy + xz$$
 (Distributivität)

 $\Longrightarrow (K,\cdot)$ ist eine abelsche Gruppe

 \implies + und \cdot sind kompatibel

2.2 Bemerkung

(i) $0, 1, -x, x^{-1}$ sind durch ihre Eigenschaften eindeutig bestimmt

(ii)
$$\forall x \in K: -(-x)=x$$
 $\forall x \in K^*: (x^{-1})^{-1}=x$ $\left(K^*:=K\backslash\{0\}\right)$ da x^{-1} Element des Körpers ist

(iii)
$$\forall x, y \in K : -(x+y) = (-x) + (-y) = -x - y$$
 (Subtraktion eingeführt)

(iv)
$$\forall x \in K : x \cdot 0 = 0$$

(v)
$$\forall x, y \in K : x \cdot y = 0 \Longrightarrow x = 0 \lor y = 0$$

(vi)
$$\forall x, y \in K : (-x) \cdot y = -(x \cdot y), \quad (-1)x = -x$$

(vii)
$$\forall x, y \in K : (-x) \cdot (-y) = x \cdot y$$

Beweis:

(i) Sei $\bar{0} \in K$ ein Element mit:

$$(\overline{\mathsf{A3}}) \quad \forall x \in K : \bar{0} + x = x$$

$$0 \underset{(\overline{A3})}{=} \bar{0} + 0 \underset{(A3)}{=} \bar{0}$$

2.3 Beispiele

- (i) $(\mathbb{Q}, +, \cdot)$
- (ii) $(\mathbb{R},+,\cdot)$
- (iii) $(\mathbb{C}, +, \cdot)$
- (iv) $\mathbb{F}_2 := \{0,1\}$ mit <Tabellen>
- (v) $(\mathbb{Z},+,\cdot),(\mathbb{N},+,\cdot)$ sind keine Körper $(\mathbb{Z}\setminus\{0\},\cdot)$ ist keine abelsche Gruppe $(\mathbb{N},+)$ ist keine abelsche Gruppe

2.4 Definition

Ein Körper $(K,+,\cdot)$ heißt **angeordneter Körper**, falls eine Teilmenge $K_+^* \subset K$ mit folgenden Eigenschaften existiert:

(01)

$$\forall x \in K^*: \quad \text{entweder} \ x \in K_+^*$$

$$\quad \text{oder} \ -x \in K_+^*$$

$$\quad \text{oder} \ x = 0$$

D.h. K^* ist eine disjunkte Vereinigung von K_+^* und $\{-x \mid x \in K_+^*\}$

(02)

$$\forall x, y \in K_+^* : x + y \in K_+^*$$

(03)

$$\forall x, y \in K_+^* : x \cdot y \in K_+^*$$

 $(K,+,\cdot)$ heißt **archimedisch angeordnet** falls zusätzlich gilt:

(A)
$$\forall x, y \in K_+^* : \exists n \in \mathbb{N} \text{ mit } n \cdot x - y \in K_+^*$$

Wir schreiben

$$\begin{split} & 0 < x, & \text{falls } x \in K_+^* \\ & 0 \leq x, & \text{falls } x \in K_+^* \cup \{0\} =: K_+ \\ & x < y, & \text{falls } y - x > 0 \\ & x \leq y, & \text{falls } y - x \geq 0 \end{split}$$

2.5 Bemerkungen

Sei $(K,+,\cdot,<)$ ein geordneter Körper. Dann gilt

(i)
$$<$$
 ist transitiv, d.h. $x < y < z \Rightarrow x < z$

(ii)
$$0 < x \Leftrightarrow -x < 0$$

(iii)
$$x < y \Rightarrow (\forall a \in K : x + a < y + a)$$

(iv)
$$x < y$$
, $x' < y' \Longrightarrow x + x' < y + y'$

$$\text{(v)} \ \, x < y, \ \, 0 < a \Longrightarrow ax < ay$$

(vi)
$$0 < x < y$$
, $0 < a < b \Longrightarrow 0 < ax < by$

(vii)
$$x \neq 0 \Longrightarrow x^2 > 0$$

(viii)
$$0 < x < y \Longrightarrow 0 < y^{-1} < x^{-1}$$

(ix)
$$0 < 1$$

Beweis: Übung!

2.6 Bemerkung

Sei $(K,+,\cdot,<)$ ein angeordneter Körper. Definiere: Abbildung $\iota:\mathbb{N}\to K$ wie folgt

$$n \mapsto n_K$$

$$\iota(0) = 0_K$$

Falls $\iota(n)$ definiert ist, so definiere:

$$\iota\underbrace{(n+1)}_{\text{Nachfolger von }n\;\in\;K}:=\iota(n)\underbrace{+}_{\text{Addition in }K\;\text{Eins in }K}\underbrace{1_K}$$

Es gilt
$$\forall m,n\in\mathbb{N}: m\neq n \Longrightarrow \iota(m)\neq \iota(n)$$
 (mit Induktion)

$$\Longrightarrow \iota$$
 ist injektiv

Außerdem gilt:

$$\forall n \in \mathbb{N} : \iota(n) < \iota(n+1)$$
$$\forall n \in \mathbb{N}, x \in K : nx = \iota(n) \cdot x$$

$$(nx := \underbrace{x + x + x + \ldots + x}_{n\text{-mal}})$$

Beweis: <Induktion>

2.7 Proposition: Bernoullische Ungleichung

Sei $(K, +, \cdot, <)$ ein geordneter Körper. Dann gilt

$$\forall x > -1, n \in \mathbb{N} : \boxed{(1+x)^n \ge 1 + nx}$$

$$(a^n := \underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n\text{-mal}})$$

Beweis: Sei $x \ge -1$.

$$\mathsf{A}(n): (1+x)^n \ge 1 + nx$$

I.A.

A(0):
$$(1+x)^0 = 1 = 1 + 0x$$

I.S.

Sei A(n) wahr.

 $\Longrightarrow A(n+1)$ ist wahr

 \Longrightarrow A(n) ist wahr für alle $n\in\mathbb{N}$

 $x \ge -1$ war beliebig

2.8 Definition

Sei $(K,+,\cdot,<)$ ein angeordneter Körper. Definiere den **Absolutbetrag**

$$|.|:K\to K_+$$

durch

$$x\mapsto |x|:=\begin{cases} x & \text{, falls } x\geq 0\\ -x & \text{, falls } x<0 \end{cases}$$

2.9 Bemerkungen

(i)
$$|x| \ge 0$$
, $|x| = 0 \iff x = 0$, $x \le |x|$

(ii)
$$|-x| = |x|$$

(iii)
$$|x \cdot y| = |x| \cdot |y|$$

(iv)
$$|x+y| \leq |x| + |y| \quad \Big(\bigwedge \operatorname{-Ungleichung} \Big)$$
 (Beweis durch Quadrieren)

(v)
$$|x+y| \ge \Big||x|-|y|\Big|$$
 (umgekehrte \triangle -Ungleichung)

Beweis: Übung! (iv) und (v)

2.10 Proposition

Sei $(K,+,\cdot,\geq)$ ein archimedisch angeordneter Körper

(i)
$$\forall x \in K_+ \ \exists ! n \in \mathbb{N} : n \le x < n+1$$

Wir schreiben $[x]$ für dieses n . (Gauß-Klammer)

(ii)
$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N}^* : n^{-1} < \varepsilon$$

(iii) Sei
$$b>1$$
. $\forall L\in\mathbb{N}:\exists n\in\mathbb{N}:b^n>L$

(iv) Sei
$$0 < b < 1$$
. $\forall \varepsilon > 0 : \exists n \in \mathbb{N} : 0 < b^n < \varepsilon$

Beweis: (Widerspruchsbeweis)

(i) Angenommen es gäbe kein solches n. Das heißt

$$\forall n \in \mathbb{N} : n > x \text{ oder } x \ge n+1$$

Sei A(
$$n$$
): $x \ge n$

$$x \ge 0$$
 \checkmark A(0) ist wahr

I.S.

$$x \stackrel{\text{I.V.}}{\geq} n$$
$$\Rightarrow n \not> x$$

nach Annahme $\Rightarrow x \ge n+1$

Also ist A(n+1) wahr

$$\Longrightarrow \forall n: x \geq n \not \sqsubseteq \Longrightarrow$$
Annahme war falsch $\ \Box$

2.11 Beispiele

- (i) \mathbb{Q} , \mathbb{R} sind archimedisch angeordnet
- (ii) \mathbb{F}_2 , \mathbb{C} nicht angeordnet wegen 1+1=0, bzw. $i^2=-1 \not\geq 0$

2.12 Definition

Sei $(K,+,\cdot,<)$ ein angeordneter Körper, $M\subset K$ eine Teilmenge.

(i) $s \in K$ heißt obere (untere) Schranke für M, falls gilt:

$$\forall x \in M : x < s \quad (\forall x \in M : x > s)$$

- (ii) M heißt nach oben (unten) beschränkt, falls es eine obere (untere) Schranke besitzt. M heißt beschränkt: M besitzt ein obere und untere Schranke
- (iii) $s \in K$ heißt **Supremum** von M

$$\sup M = s$$

falls s die kleinste obere Schranke für M ist, d.h.

- a) s ist obere Schranke für M
- b) falls s' weitere obere Schranke für M ist, so gilt $s \leq s'$

 $s \in K$ heißt **Infimum** von M

$$\inf M = s$$

falls s die größte untere Schranke für M ist, d.h.

- a) s ist untere Schranke für M
- b) falls s' weitere untere Schranke für M ist, so gilt $s \geq s'$

2.13 Definition Supremumsprinzip

Ein angeordneter Körper heißt vollständig angeordnet, falls jede nach oben beschränkte Teilmenge ein Supremum besitzt.

2.14 Bemerkungen

- (i) Auch wenn $\sup M$ existiert, gilt $\underline{\mathrm{nicht}}$ immer $\sup M \in M$ (gilt analog für $\inf M$)
- (ii) Wenn $\sup M$ (inf M) existiert, so ist es eindeutig bestimmt (2.12 (iii)b))
- (iii) Jede nach oben beschränkte Teilmenge besitzt ein Supremum
 ⇔

jede nach unten beschränkte Teilmenge besitzt ein Infimum Übung! Multiplikation mit -1

2 Angeordnete Körper 13

2.15 Beispiele

Sei K archimedisch angeordnet.

Aus 2.6 folgt $\mathbb{N} \subset K$

$$M := \left\{ n^{-1} \mid n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\} \subset K_+^*$$

M ist beschränkt: 0 ist untere Schranke, denn $x^{-1} > 0$ für alle $x \in K_+^*$ (2.5 (viii)) 1 ist obere Schranke, denn $1 \le n$ für alle $n \in \mathbb{N}^*$, also $1 \ge 1^{-1} \ge n^{-1}$ für alle $n \in \mathbb{N}^*$

Beweis Infimum:

$$\inf M = 0$$
 (2.12 (iii) a) \checkmark

2.12(iii) b):

Sei s' weitere untere Schranke von M. Falls s'>0, so existiert nach 2.10(ii) ein $n\in\mathbb{N}^*$ mit $M\ni n^{-1}< s'$

$$\Rightarrow s'$$
 ist keine untere Schranke $\mbox{\em \em \font } s' \leq 0$

Beweis Supremum

$$\sup M = 1 \longrightarrow \mathsf{trivial!}$$

2.16 Definition und Satz

Es existiert ein (bis auf **Isomorphie** eindeutig bestimmter) vollständig angeordneter Körper; diesen nennen wir \mathbb{R} .

Eindeutigkeit bis auf Isomorphie:

Sei K ein weiterer vollständig angeordneter Körper. Dann existiert eine Bijektion

$$\begin{split} \alpha: K \to \mathbb{R} & \text{ mit } \alpha(0_K) = 0_{\mathbb{R}} \\ & \alpha(1_K) = 1_{\mathbb{R}} \\ & \alpha(x +_K y) = \alpha(x) +_{\mathbb{R}} \alpha(y) \\ & \alpha(x \cdot_K y) = \alpha(x) \cdot_{\mathbb{R}} \alpha(y) \\ & x <_K y \Rightarrow \alpha(x) <_{\mathbb{R}} \alpha(y) \end{split}$$

$$\alpha\Big(\sup_{\text{mit } <_K} M\Big) = \sup_{\text{mit } <_{\mathbb{R}}} \alpha(M)$$

ohne Beweis □

2.17 Definition und Proposition

Wir definieren die rationalen Zahlen

$$\mathbb{Q} := \left\{ m \cdot n^{-1}, -m \cdot n^{-1} \mid m \in \mathbb{N}, n \in \mathbb{N}^* \right\} \subset \mathbb{R}$$

Diese bilden einen archimedisch angeordneten Körper.

Wir definieren die ganzen Zahlen

$$\mathbb{Z} := \big\{ n, -n \mid n \in \mathbb{N} \big\} \subset \mathbb{R}$$

2.18 Exkurs: Das Zahlensystem

- \c^n jedes Element n hat einen Nachfolger n+1
- Q Hinzufügen von multiplikativen Inversen
- \mathbb{R}_{\downarrow} Hinzufügen von Suprema beschränker Mengen
- ${\Bbb C}$ Hinzufügen von Lösungen algebraischer Gleichungen (zB $x^2=-1$)

2 Angeordnete Körper 15

3 Intervallschachtelungen

3.1 Definition

Für $a < b \in \mathbb{R}$ setze

[a,b] $:= \{x \in \mathbb{R} \mid a \le x \le b\}$ abgeschlossenes Intervall

offenes Intervall

 $\begin{array}{ll} (a,b) & := \{x \in \mathbb{R} \mid a < x < b\} \\ [a,b) & := \{x \in \mathbb{R} \mid a \le x < b\} \\ (a,b] & := \{x \in \mathbb{R} \mid a < x \le b\} \\ \end{array}$ nach rechts halboffenes Intervall

nach links halboffenes Intervall

3.2 Satz (Intervallschachtelungsprinzip)

Sei $[a_n, b_n], n \in \mathbb{N}$ Intervalle mit

(i)
$$\forall n \in \mathbb{N}[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$

(ii)
$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : b_{n_0} - a_{n_0} < \varepsilon$$

Dann existiert genau ein $x\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]$

Beweis:

(i)
$$\Rightarrow [a_m, b_m] \subset [a_n, b_n]$$
 falls $m \geq n$

$$\Rightarrow a_m \leq b_n$$
 für alle $m, n \in \mathbb{N}$

$$\Rightarrow \forall n \in \mathbb{N} : b_n \text{ ist obere Schranke für } A := \{a_m \mid m \in \mathbb{N}\} \ (\star)$$

$$\Rightarrow$$
 A ist nach oben beschränkt

Aus dem Supremumsprinzip folgt: $\sup A \in \mathbb{R}$ existiert

$$\Rightarrow \sup A \leq b_n$$
 für alle $n \in \mathbb{N}$

$$\Rightarrow a_n \leq \sup A \leq b_n$$
 für alle $n \in \mathbb{N}$

$$\Rightarrow \sup A \in [a_n, b_n]$$
 für alle $n \in \mathbb{N}$

$$\Rightarrow x = \sup A \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$$

(ii) Falls $s,s' \in \bigcap_{n \in \mathbb{N}} [a_n,b_n]$ mit s < s' so existiert $n_0 \in \mathbb{N}$ mit:

$$b_{n_0} - a_{n_0} < s' - s \qquad \underbrace{s' - s}_{\varepsilon} > 0$$

Andererseit gilt:

$$s', s \in [a_{n_0}, b_{n_0}] \Rightarrow s' - s \le b_{n_0} - a_{n_0} < s' - s$$

3.3 Satz

Sei $0 < x \in \mathbb{R}$ und $k \in \mathbb{N}^*$.

Dann existiert genau ein $0 < y \in \mathbb{R}$ mit $y^k = x$. Wir schreiben auch $y = x^{\frac{1}{k}} = \sqrt[k]{x}$

Beweis:

A. Für
$$x = 1$$
 setze $y := 1$

B. Sei nun x > 1

B.1 Wir konstruieren induktiv

$$a_0, a_1, a_2, a_3, \ldots$$
 und $b_0, b_1, b_2, b_3, \ldots$

Setze nun $a_0 := 1, b_0 := x$

Falls nun $1 \leq a_n < b_n$ mit $a_n^k \leq x \leq b_n^k$ bereits konstruiert sind, definiere $a_{n+1}, b_{n+1} \in \mathbb{R}$ wie folgt:

$$\begin{split} a_{n+1} &:= \begin{cases} a_n, & \text{falls } (\frac{a_n+b_n}{2})^k \geq x \\ (\frac{a_n+b_n}{2})^k, & \text{falls } (\frac{a_n+b_n}{2})^k < x \end{cases} \\ b_{n+1} &:= \begin{cases} \frac{a_n+b_n}{2}, & \text{falls } (\frac{a_n+b_n}{2})^k \geq x \\ b_n, & \text{falls } (\frac{a_n+b_n}{2})^k < x \end{cases} \end{split}$$

Dann gilt:

$$a_{n+1}^k \le x < b_{n+1}^k$$

und

$$1 \le a_{n+1} < b_{n+1}$$

Induktion liefert $a_0, a_1, a_2, a_3, \ldots$

Nach Konstruktion gilt für alle $n \in \mathbb{N}$:

(i)
$$a_n^k \le x \le b_n^k$$
 und $1 \le a_n \le a_{n+1} < b_{n+1} \le b_n$

(ii)
$$b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1}) = \frac{1}{2}\frac{1}{2}(b_{n-2} - a_{n-2}) = \ldots = \frac{1}{2^n}(x-1)$$

B.2 Sei $\varepsilon > 0$. Nach 2.10 (iv) existiert

$$\begin{split} n_0 \in \mathbb{N} \text{ mit } \frac{1}{2^{n_0}} &= \left(\frac{1}{2}\right)^{n_0} < \frac{\varepsilon}{x-1} \\ &\stackrel{\text{(ii)}}{\Longrightarrow} \quad b_{n_0} - a_{n_0} = \frac{1}{2^{n_0}} \cdot (x-1) < \varepsilon \\ &\stackrel{\text{3.2}}{\Longrightarrow} \quad \exists ! y \in \bigcap_{n \in \mathbb{N}} [a_n, b_n] \\ &\Longrightarrow \quad y^k \in \bigcap_{n \in \mathbb{N}} [a_n^k, b_n^k] \end{split}$$

B.3 Wegen (i) gilt auch $a_n^k \leq a_{n+1}^k < b_{n+1}^k \leq b_n^k$, also

$$\left[a_{n+1}^k, b_{n+1}^k\right] \subseteq \left[a_n^k, b_n^k\right]$$

Weiter gilt:

$$b_n^k - a_n^k = (b_n - a_n)(b_n^{k-1} + b_n^{k-2}a_n + \dots + b_n a_n^{k-2} + a_n^{k-1})$$

$$\leq (b_n - a_n) \cdot k \cdot x^{k-1}$$

$$= (\frac{1}{2})^n (x - 1) \cdot k \cdot x^{k-1}$$

Sei arepsilon'>0. Nach 2.10(iv) existiert $n_1\in\mathbb{N}$ mit $(rac{1}{2})^{n_1}<rac{arepsilon'}{(x-1)kx^{k-1}}$, also $b_{n_1}^k-a_{n_1}^k<arepsilon'$

$$\stackrel{\text{3.2}}{\Longrightarrow} \exists ! x' \in \bigcap_{n \in \mathbb{N}} [a_n^k, b_n^k]$$

3 Intervallschachtelungen 17

$$\mathbf{B.1(i)} \\ \Longrightarrow x' = x$$

$$\implies y^k = x' = x$$

- **C.** Der Fall x < 1 folgt aus $1 < \tilde{x} < \frac{1}{x}$
- **D.** Falls $0 < y < y' \in \mathbb{R}$, so gilt auch $0 < y^k < y'^k$, also ist y mit $y^k = x$ eindeutig.

4 Abzählbarkeit

4.1 Definition

Sei $M \neq \emptyset$ eine Menge.

- M heißt **abzählbar**, falls eine Surjektion $\mathbb{N} \to M$ existiert
- M heißt **abzählbar unendlich**, falls M abzählbar und nicht endlich ist
- M heißt **überabzählbar**, falls M nicht abzählbar ist

 $(M \text{ ist endlich} \Leftrightarrow \exists n \in \mathbb{N} \text{ und Bijektion } \{1, \dots, n\} \to M)$

4.2 Beispiele

(i) ℕ ist abzählbar, denn

 $\mathrm{id}:\mathbb{N} \to \mathbb{N}$ ist surjektiv

(ii) \mathbb{Z} ist abzählbar

definiert eine Surjektion $\alpha:\mathbb{N}\to\mathbb{Z}$

(iii) ℚ ist abzählbar

definiert eine Surjektion $\beta: \mathbb{N} \to \mathbb{Q}$

(Dieses β ist nicht injektiv, kann aber zu Bijektion modifiziert werden. Wie?)

(iv) Allgemein zeigt man:

Eine abzählbare Vereinigung von abzählbaren Mengen ist abzählbar

$$A_0,A_1,A_2,\dots$$
abzählbarer Mengen $\implies \bigcup_{n\in\mathbb{N}}A_n$ abzählbar

18

4.3 Satz

 \mathbb{R} ist nicht abzählbar.

Beweis: Angenommen es gäbe eine Surjektion $\alpha: \mathbb{N} \to \mathbb{R}$ Wir konstruieren Intervalle $[a_n, b_n]$ wie folgt:

I.A. Wähle $a_0 := \alpha(0) + 1, b_0 := \alpha(0) + 2$. Dann

$$\alpha(0) \not\in [a_0, b_0] \text{ und } b_0 - a_0 = 1 = (\frac{1}{3})^0$$

I.S. Seien $a_0 \le a_1 \le \ldots \le a_n < b_n \le \ldots \le b_1 \le b_0$ bereits konstruiert mit:

$$\alpha(n) \not\in [a_n, b_n] \text{ und } b_n - a_n = (\frac{1}{3})^n$$

Dann sei $[a_{n+1},b_{n+1}]$ das erste Drittel von $[a_n,b_n]$, das $\alpha(n+1)$ nicht enthält.

In Formeln:

$$[a_{n+1},b_{n+1}] := \begin{cases} [a_n\,,a_n+(\frac{1}{3})^{n+1}]\,, & \text{falls } \alpha(n+1) \not\in [a_n,a_n+(\frac{1}{3})^{n+1}] \\ [a_n+(\frac{1}{3})^{n+1}\,,a_n+\frac{2}{3^{n+1}}], & \text{falls } \alpha(n+1) \in [a_n,a_n+(\frac{1}{3})^{n+1}] \\ [a_n+\frac{2}{3^{n+1}}\,,b_n], & \text{falls } \alpha(n+1) = a_n+(\frac{1}{3})^{n+1} \end{cases}$$

Dann gilt $\alpha(n+1) \not\in [a_{n+1},b_{n+1}]$, $b_{n+1}-a_{n+1}=(\frac{1}{3})^{n+1}$ und $a_n \leq a_{n+1} < b_{n+1} \leq b_n$

Nach dem Intervallschachtelungsprinzip (Satz 3.2) existiert genau ein $x\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]$

Dann gilt $x=\alpha(n)$ für ein $n\in\mathbb{N}$ (α ist surjektiv nach Annahme), aber

$$x = \alpha(n) \notin [a_n, b_n]$$

5 Folgen und Grenzwerte

Im Folgenden schreiben wir \mathbb{K} für \mathbb{Q} oder \mathbb{R}

5.1 Definition

Eine Folge in $\mathbb K$ ist eine Abbildung $\mathbb N \to \mathbb K$. Wir schreiben oft

$$(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$$
 oder (a_0,a_1,a_2,a_3,\ldots)

wobei $a_n = a(n)$ ist.

$$\{a_n \mid n \in \mathbb{N}\}$$

ist die der Folge $(a_n)_{n\in\mathbb{N}}$ unterliegende Menge. Wir fassen auch $(a_{n_0},a_{n_0+1},a_{n_0+2},\ldots)$ als Folge auf $(a_n)_{n\geq n_0}$

5.2 Beispiele

(i)
$$a_n = a$$
 für alle $n \in \mathbb{N} \leadsto (a, a, a, a, \ldots)$

(ii)
$$a_n = \frac{1}{n+1} \rightsquigarrow (\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$$

(iii) Fibonacci-Zahlen $(a_n)_{n\in\mathbb{N}}$ rekursiv definiert durch

$$a_0 := 1$$
 $a_1 := 1$
 $a_{n+1} := a_n + a_{n-1}$
 $\sim (1, 1, 2, 3, 5, 8, 13, 21, 34, \dots)$

(iv)
$$a_n = \frac{n}{2^n} \rightsquigarrow (0, \frac{1}{2}, \frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \ldots)$$

(v)
$$a_n = (-1)^n \rightsquigarrow (1, -1, 1, -1, 1, -1, \ldots)$$

5.3 Definition

Sei a_n eine Folge in $\mathbb K$ und sei $a\in\mathbb K$

(i) Wir sagen $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen a,

$$a_n \xrightarrow{n \to \infty} a, \qquad \lim_{n \to \infty} a_n = a$$

falls gilt:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |a_n - a| < \varepsilon$$

- (ii) $(a_n)_{n\in\mathbb{N}}$ divergiert, falls sie gegen kein $a\in\mathbb{K}$ konvergiert
- (iii) $(a_n)_{n\in\mathbb{N}}$ divergiert bestimmt gegen unendlich (bzw. $-\infty$)

$$a_n \xrightarrow{n \to \infty} \infty, \qquad \lim_{n \to \infty} a = \infty$$

falls gilt

$$\forall L \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : a_n > L$$

(iv) $(a_n)_n$ heißt nach oben (nach unten) beschränkt, falls $\{a_n \mid n \in \mathbb{N}\}$ nach oben (nach unten) beschränkt ist.

5.4 Beispiele

(i) $a_n=a$ für alle $n\in\mathbb{N}$, dann gilt $\lim_{n\to\infty}a_n=a$ Sei $\varepsilon>0$. Wähle $n_0:=0$. Für $n\geq n_0$ gilt

$$|a_n - a| = |a - a| = 0 < \varepsilon$$

(ii)
$$(a_n)_n = \frac{1}{n+1}$$
 $\lim_{n \to \infty} \underbrace{\frac{1}{n+1}}_{a_n} = 0$

Sei $\varepsilon > 0$. Wähle $n_0 \in \mathbb{N}$ mit $n_0 > \frac{1}{\varepsilon}$. Für $n \geq n_0$ gilt

$$\left|\frac{1}{n+1} - 0\right| = \frac{1}{n+1} < \frac{1}{n_0} < \varepsilon$$

(iii) $(a_n)_n$ Fibonacci-Zahlen ($a_0=a_1=0, a_{n+1}=a_{n-1}+a_n$). Dann gilt $\lim_{n\to\infty}a_n=\infty$.

Induktion liefert $a_n \geq n$ für alle $n \in \mathbb{N}$. Zu $L \in \mathbb{K}$ wähle n_0 größer als L. Dann gilt für $n \geq n_0$

$$a_n > n > n_0 > L$$

(iv)
$$(a_n)_n = \frac{n}{2^n}$$
 $\lim_{n \to \infty} \frac{n}{2^n} = 0$

Nach Blatt 2, Aufgabe 3a gilt $n^2 < 2^n \ \, \forall n \geq 4$ Sei $\varepsilon > 0$. Wähle $n_0 > \max(4, \frac{1}{\varepsilon})$. Für $n \geq n_0$ gilt

$$\left|\frac{n}{2^n} - 0\right| = \frac{n}{2^n} = \underbrace{\frac{n^2}{2^n}}_{\leq 1} \cdot \underbrace{\frac{1}{n}}_{\leq \frac{1}{n_0}} \leq 1 \cdot \frac{1}{n_0} < \varepsilon$$

(v)
$$(a_n)_n = ((-1)^n)_{n \in \mathbb{N}}$$
 divergiert

Für jedes
$$a\in\mathbb{K}$$
 gilt $\left|(-1)^n-a\right|\geq 1$ oder $\left|(-1)^{n+1}-a\right|\geq 1$, weil $\left|(-1)^n-(-1)^{n+1}\right|=2$

$$\Rightarrow \exists \varepsilon > 0 \ \forall n_0 \in \mathbb{N} \ \exists n \ge n_0 : \left| (-1)^n - a \right| \ge \varepsilon$$
$$\Rightarrow \neg \left(\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \left| (-1)^n - a \right| < \varepsilon \right)$$

5.5 Bemerkung

Jede konvergente Folge ist beschränkt, aber nicht jede beschränkte Folge ist konvergent.

Beweis:

1. Sei
$$\lim_{n\to\infty}a_n=a$$
 , dann existiert $n_0\in\mathbb{N}$ mit $|a_n-a|<1$ für alle $n\geq n_0$ Sei $L:=\max\big\{|a_0|,|a_1|,|a_2|,\ldots,|a_{n_0}|,1+|a|\big\}$. Dann gilt:

$$\begin{aligned} |a_n| &\leq L \text{ für } n < n_0 \\ |a_n| &= |a_n - a + a| \leq 1 + |a| \leq L \text{ für } n \geq n_0 \text{ also} \\ &- L \leq a_n < L \text{ für alle } n \in \mathbb{N} \end{aligned}$$

2. Beispiel 5.4(v)

5.6 Proposition

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{K} . Falls $(a_n)_n$ gegen $a\in\mathbb{K}$ konvergiert und gegen $a'\in\mathbb{K}$ konvergiert, so gilt a=a' (Dies rechtfertigt die Schreibweise $\lim_{n\to\infty}a_n=a$)

$$\begin{array}{l} \underline{\textbf{Beweis:}} \text{ Falls } a \neq a' \text{ setze } \varepsilon := \frac{|a-a'|}{2} > 0 \\ \text{Wegen } a_n \xrightarrow[n \to \infty]{} a \text{ existiert } n_0 \in \mathbb{N} \text{ mit } |a_n - a| < \varepsilon \text{ für } n \geq n_0 \\ \text{Wegen } a_n \xrightarrow[n \to \infty]{} a' \text{ existiert } n_0' \in \mathbb{N} \text{ mit } |a_n - a'| < \varepsilon \text{ für } n \geq n_0' \\ \end{array}$$

5 Folgen und Grenzwerte 21

Für $\bar{n} := \max(n_0, n'_0)$ gilt dann

$$|a - a'| = |a - a_{\bar{n}} + a_{\bar{n}} - a'| \le |a - a_{\bar{n}}| + |a' - a_{\bar{n}}| < \varepsilon + \varepsilon = |a - a'|$$

5.7 Proposition

Seien $(a_n)_n$, $(b_n)_n$ konvergierende Folgen in \mathbb{K} und seien $\lambda, \mu \in \mathbb{K}$.

(i) Dann konvergieren die Folgen $(\lambda a_n + \mu b_n)_{n \in \mathbb{N}}$ und $(a_n \cdot b_n)_{n \in \mathbb{N}}$ und es gilt

$$\lim_{n \to \infty} (\lambda a_n + \mu b_n) = \lambda \cdot \lim_{n \to \infty} a + \mu \lim_{n \to \infty} b$$

sowie

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a \cdot \lim_{n \to \infty} b$$

 $(\Rightarrow$ konvergente Folgen (=: C) bilden einen Vektorraum)

$$C \to \mathbb{R}$$
 $(a_n)_{n \in \mathbb{N}} \mapsto \lim_{n \to \infty} a_n$ ist linear

(ii) Falls $\lim_{n\to\infty}b_n\neq 0$, so existiert ein $n_0\in\mathbb{N}$ mit $b_n\neq 0$ für alle $n\geq n_0$ und für die Folge $(\frac{a_n}{b_n})_{n\geq n_0}$ gilt:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Beweis:

(i) Wir zeigen nur die Formel für das Produkt: Sei $a:=\lim_{n\to\infty}a_n$ und $b:=\lim_{n\to\infty}b_n$.

Nach 5.5 sind $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ beschränkt. Das heißt

$$L > 0 \ \forall n \in \mathbb{N} : |a_n|, |b_n| \le L$$

Sei $\varepsilon>0$. Dann existieren $n_0\in\mathbb{N}$ mit $|a_n-a|,|b_n-b|<\frac{\varepsilon}{2L}$ falls $n\geq n_0$ Dann gilt für $n\geq n_0$

$$|a_n b_n - ab| = |a_n (b_n - b) + (a_n - a)b|$$

$$\leq |a_n| \cdot |b_n - b| + |a_n - a| \cdot |b|$$

$$< L \cdot \frac{\varepsilon}{2L} + \frac{\varepsilon}{2L} \cdot L$$

$$= \varepsilon$$

(ii) Sei wieder $a:=\lim_{n \to \infty} a_n$, $0 \neq b:=\lim_{n \to \infty} b_n$

Sei L>0 wie eben, also $|a_n|\leq L$ für alle $n\in\mathbb{N}$ Da $b\neq 0$ existiert $n_0\in\mathbb{N}$ mit $|b_n-b|\leq \frac{|b|}{2}$ für alle $n\geq n_0$, also

$$|b_n| = |b + b_n - b| \ge |b| - |b_n - b| = \frac{|b|}{2} \ge 0$$
 für $n \ge n_0$

Sei nun $\varepsilon > 0$. Dann existiert $n_1 \in \mathbb{N}$ mit

$$|a_n-a|<\frac{|b|\varepsilon}{4} \text{ und } |b_n-b|<\frac{|b|^2}{4L}\varepsilon \quad \text{ falls } n\geq n_1$$

Dann gilt für $n \geq n_0, n_1$

$$\begin{split} \left| \frac{a_n}{b_n} - \frac{a}{b} \right| &= \left| \frac{a_n b - b_n a}{b_n b} \right| \\ &< 2 \frac{|a_n b - b_n a|}{|b|^2} \\ &\leq 2 \frac{|a_n b - ab| + |ab - b_n a|}{|b|^2} \\ &\leq \frac{2}{|b|^2} \left(\underbrace{|a_n - a| \cdot |b| + |a| \cdot \underbrace{|b_n - b|}_{\frac{|b|^2}{4L}\varepsilon}} \right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

5.8 Beispiel

Sei $c_n=rac{4n^3+n}{n^3+n^2+1}, n\in\mathbb{N}.$ Für $n\geq 1$ gilt:

$$c_n = \frac{4 + \frac{1}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^3}} \approx \frac{a_n}{b_n}$$

$$\lim_{n \to \infty} c_n = \frac{4}{1} = 4$$

5.9 Bemerkung

Seien $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\in\mathbb{K}$ konvergent mit $a_n\leq b_n$ für alle $n\in\mathbb{N}$. Dann gilt:

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

<u>Aber:</u> $a_n < b_n$ für alle $n \in \mathbb{N}$ impliziert **nicht(!)**

$$\lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$$

Beweis: Falls

$$b := \lim_{n \to \infty} b_n < a := \lim_{n \to \infty} a_n$$

Dann existiert $n_0 \in \mathbb{N}$ mit

$$|a_n-a|, |b_n-b|<rac{a-b}{2}$$
 falls $n\geq n_o$

Dann folgt aus

$$|a_n - a| < \frac{a - b}{2}$$

$$\Rightarrow a - a_n < \frac{a - b}{2}$$

$$\Rightarrow a - \frac{a - b}{2} < a_n$$

folgender Widerspruch:

$$a_n > a - \frac{a-b}{2} = \frac{a+b}{2} = b + \frac{a-b}{2} > b_n$$

5 Folgen und Grenzwerte 23

6 Vollständigkeit

6.1 Definition

(i) Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ eine Folge und sei $(n_k)_{k\in\mathbb{N}}\subset\mathbb{N}$ eine Folge mit

$$n_0 < n_1 < n_2 < \dots$$

Dann heißt $(a_{n_k})_{k\in\mathbb{N}}$ eine **Teilfolge** von $(a_n)_{n\in\mathbb{N}}$

(ii) $a \in \mathbb{K}$ heißt **Häufungspunkt** von $(a_n)_{n \in \mathbb{N}}$, falls $(a_n)_{n \in \mathbb{N}}$ eine Teilfolge $(a_{n_k})_{k \in \mathbb{N}}$ mit

$$a = \lim_{k \to \infty} a_{n_k}$$

besitzt.

6.2 Beispiele

(i) $(2k)_{k\in\mathbb{N}}$ ist Teilfolge von $(n)_{n\in\mathbb{N}}$

(ii) $(1,-1,1,-1,1,\ldots)$ besitzt Teilfolgen

$$(1,1,1,1,1,\ldots),(-1,-1,-1,-1,-1,-1,-1,1,1,\ldots),(-1,-1,1,1,-1,-1,1,1,\ldots)\ldots$$

6.3 Satz von Bolzano-Weierstraß

Jede beschränkte Folge in ℝ besitzt einen Häufungspunkt.

Beweis: Sei $(c_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ beschränkt, dann existieren $A,B\in\mathbb{R}$ mit

$$A \le c_n \le B$$
 für alle $n \in \mathbb{N}$

1. Wir konstruieren induktiv

$$a_0, a_1, a_2, \ldots \in \mathbb{R}$$
 und $b_0, b_1, b_2, \ldots \in \mathbb{R}$

mit

- (i) $[a_{k+1},b_{k+1}]\subset [a_k,b_k]$ für alle $k\in\mathbb{N}$
- (ii) $b_k a_k \leq 2^{-k} \cdot (B A)$ für alle $k \in \mathbb{N}$
- (iii) $[a_k,b_k]$ enthält unendlich viele Glieder der Folge $(c_n)_{n\in\mathbb{N}}$

Induktionsanfang

Setze:

$$a_0 := A \quad b_0 := B$$

dann gelten (ii) und (iii)

Induktionsschritt

Seien a_0,\dots,a_k und b_0,\dots,b_k mit (i), (ii), (iii) bereits konstruiert. Setze:

$$a_0,\dots,a_k \text{ und } b_0,\dots,b_k \text{ fint (i), (ii), (iii) Beleits Konstrulett. Setze.}$$

$$a_{k+1}:=\begin{cases} a_k, & \text{falls unendlich viele Glieder von } (c_n)_{n\in\mathbb{N}} \text{ in } [a_k,\frac{a_k+b_k}{2}] \text{ liegen } \\ \frac{a_k+b_k}{2}, & \text{sonst} \end{cases}$$

$$b_{k+1}:=\begin{cases} \frac{a_k+b_k}{2}, & \text{falls unendlich viele Glieder von } (c_n)_{n\in\mathbb{N}} \text{ in } [a_k,\frac{a_k+b_k}{2}] \text{ liegen } \\ b_n, & \text{sonst} \end{cases}$$

$$b_{k+1} := \begin{cases} \frac{a_k + b_k}{2}, & \text{ falls unendlich viele Glieder von } (c_n)_{n \in \mathbb{N}} \text{ in } [a_k, \frac{a_k + b_k}{2}] \text{ liegender for a constant of } b_n, & \text{ sonst} \end{cases}$$

$$\Rightarrow [a_{k+1}, b_{k+1}]$$
 erfüllt (i), (ii), (iii)

Wegen (i) und (ii) gilt nach Satz 3.2 (Intervallschachtelungsprinzip)

$$\exists ! c \in \bigcap_{k \in \mathbb{N}} [a_k, b_k]$$

2. Wir definieren induktiv die Teilfolge $(c_{n_k})_{k\in\mathbb{N}}$ mit $c_{n_k}\in[a_k,b_k]$ für alle $k\in\mathbb{N}$

Induktionsanfang

$$n_0 \vcentcolon= 0$$
 , dann $c_{n_0} = c_0 \in [A,B] = [a_0,b_0]$

Induktionsschritt

Seien $n_0 < n_1 < n_2 < \ldots < n_k \in \mathbb{N}$ mit

$$c_{n_l} \in [a_l, b_l]$$
 für $l = 0, \dots, k$

bereits definiert.

 $[a_{k+1},b_{k+1}]$ enthält unendlich viele Folgenglieder der Folge $(c_n)_{n\in\mathbb{N}}$, also existiert $N>n_k$ mit

$$c_N \in [a_{k+1}, b_{k+1}]$$

Setze $n_k + 1 := N$

3.
$$\lim_{k\to\infty} c_{n_k} = c$$

Sei $\varepsilon>0$. Wähle $k_0\in\mathbb{N}$ so groß, dass $2^{-k_0}(B-A)<\varepsilon$. Für $k\geq k_0$ gilt dann:

$$c_{n_k}, c \in [a_k, b_k]$$

Also gilt:

$$|c_{n_k} - c| \le b_k - a_k < 2^{-k}(B - A) < \varepsilon$$

6.4 Bemerkung

Man kann zeigen:

 ${\tt Bolzano-Weierstra} \textbf{\& + Archimedisches Axiom} \Leftrightarrow \textbf{Ordnungsvollst} \\ \textbf{\"{andigkeit}}$

6.5 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}\subset K$ heißt (streng) **monoton wachsend**, falls gilt

$$a_n \le a_{n+1}$$
 bzw. $a_n < a_{n+1}$

Eine Folge heißt $(a_n)_{n\in\mathbb{N}}\subset K$ heißt (streng) **monoton fallend**, falls gilt

$$a_n \ge a_{n+1}$$
 bzw. $a_n > a_{n+1}$

Eine Folge heißt monoton, falls sie monoton wachsend oder fallend ist.

6 Vollständigkeit 25

6.6 Satz

Jede beschränkte monotone Folge in $\mathbb R$ konvergiert.

Beweis:

Sei o.E.d.A. $(a_n)_{n\in\mathbb{N}}$ monoton wachsend und beschränkt. Aus 6.3 folgt $\Rightarrow (a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ mit

$$\lim_{k \to \infty} a_{n_k} = a \in \mathbb{R}$$

Es genügt zu zeigen:

$$a = \lim_{n \to \infty} a_n$$

Sei $\varepsilon > 0$.

$$\exists K \in \mathbb{N} : |a_{nk} - a| < \varepsilon \quad \text{falls } k \ge K$$

Setze $N := n_k$. Sei nun $n \ge N$

$$\exists K' \ge K \in N : n_{K'} \ge n \ge N = n_K$$

wegen Monotonie gilt

$$\begin{split} &\Rightarrow a_{n_K} = a_N \le a_n \le a_{n_{K'}} \\ &\Rightarrow |a - a_n| \le \max\left\{|a - a_{n_K}|, |a - a_{n_{K'}}|\right\} < \varepsilon \end{split} \ \Box$$

6.7 Beispiel

Sei $k \in \mathbb{N}^*, x \in \mathbb{R}_+^*$ und $(a_n)_{n \in \mathbb{N}}$ wie im Beweis von 3.3

$$[a_n,b_n], n\in\mathbb{N}$$
 war Intervallschachtelung mit $\sqrt[k]{x}\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]$

 $[a_n,b_n]\supset [a_{n+1},b_{n+1}]\Rightarrow (a_n)_{n\in\mathbb{N}}$ ist monoton wachsend und beschränkt, also konvergent. Man zeigt

$$\lim_{n\to\infty}a_n=\sqrt[k]{x}$$
 wie in Aufgabe 4, Blatt 3

Außerdem gilt

$$\left|\sqrt[k]{x}-a_n\right| \leq b_n-a_n$$

$$=\frac{1}{2}n(x-1) \qquad \text{(für } x>1\text{)}$$

 \sim 3.3 liefert Methode, $\sqrt[k]{x}$ zu approximieren und den Fehler abzuschätzen.

6.8 Definition

 $(a_n)_{n\in\mathbb{N}}$ heißt **Cauchy-Folge**, falls gilt:

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : \forall m, n \geq n_0 : |a_m - a_n| < \varepsilon$$

(Zu jedem $\varepsilon>0$ existiert ein $n_0\in\mathbb{N}$, sodass gilt: wann immer $m,n\geq n_0$, so gilt $|a_n-a_m|<\varepsilon$)

26 6 Vollständigkeit

6.9 Bemerkung

Jede konvergente Folge ist Cauchy

Beweis:

Sei $(a_n)_{n\in\mathbb{N}}$ konvergent mit $\lim_{n\to\infty}a_n=a$

Sei $\varepsilon > 0$. Da (a_n) konvergiert, existiert ein $n_0 \in \mathbb{N}$ mit :

$$|a_n-a|<\frac{\varepsilon}{2}\quad \text{falls } n\geq n_0$$

Falls $n, m \ge n_0$ gilt:

$$|a_m - a_n| < |a_m - a| + |a - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

6.10 Satz

 ${\mathbb R}$ ist vollständig, das heißt jede Cauchy-Folge konvergiert

Beweis:

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ Cauchy

- 1. $(a_n)_{n\in\mathbb{N}}$ ist beschränkt (warum?)
- 2. 6.3 \Rightarrow $(a_n)_{n\in\mathbb{N}}$ besitzt konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ mit $\lim_{k\to\infty}a_{n_k}=a$
- 3. Es genügt zu zeigen $\lim_{n\to\infty}a_n=a$ Sei $\varepsilon>0$.

$$\begin{split} (a_n)_{n\in\mathbb{N}} \text{ ist Cauchy } &\Rightarrow \exists \, \overline{n_0} \in \mathbb{N} : \forall m,n \geq \overline{n_0} : |a_m - a_n| < \frac{\varepsilon}{2} \\ &a_{n_k} \xrightarrow{k \to \infty} a \Rightarrow \exists k_0 \in \mathbb{N} : \forall k \geq k_0 : |a_{n_k} - a_n| < \frac{\varepsilon}{2} \\ &n_k \to \infty \Rightarrow \exists k_1 \geq k_0 : n_{k_1} \geq \overline{n_0} \end{split}$$

Falls $n \ge n_0$, so gilt:

$$|a_n - a| \le \underbrace{\left| a_n - a_{n_{k_1}} \right|}_{\le \frac{\varepsilon}{2}} + \underbrace{\left| a_{n_{k_1}} - a \right|}_{\le \frac{\varepsilon}{2}} < \varepsilon$$

6.11 Bemerkung

(i) Sei $k\in\mathbb{N}^*$ und x eine Primzahl Sei $(a_n)_{n\in\mathbb{N}}$ wie in 3.3 (bzw. 6.7), dann:

$$(a_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$$

 $\Rightarrow a_n\xrightarrow{n\to\infty}\sqrt[k]{x}$
 $\Rightarrow (a_n)_{n\in\mathbb{N}}$ ist Cauchy

Aber:

$$\lim_{n\to\infty}a_n=\sqrt[k]{x}\not\in\mathbb{Q}$$
 \Rightarrow in \mathbb{Q} konvergiert nicht jede Cauchy-Folge

(ii) Vollständigkeit + archimedisches Axiom ⇔ Ordnungsvollständigkeit

7 Reihen

7.1 Definition

Sei $(a_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ eine Folge. Wir definieren die Folge der Partialsummen $(s_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ durch:

$$s_n := \sum_{k=0}^n a_k$$

Falls $(s_n)_{n\in\mathbb{N}}$ konvergiert, bezeichnen wir oft auch den Limes mit $\sum\limits_{k=0}^{\infty}a_k$.

 $(s_n)_{n\in\mathbb{N}}$ wird ebenfalls mit $\sum\limits_{k=0}^{\infty}a_k$ bezeichnet.

7.2 Beispiel: geometrische Reihe

Sei |x| < 1 und $a_k := x^k$

$$s_n = \sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} \xrightarrow{n \to \infty} \frac{1}{1 - x}$$

7.3 Satz: Cauchy'sches Konvergenzkriterium

Sei $(a_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ eine Folge reeller Zahlen. $\sum\limits_{k=0}^\infty a_k$ konvergiert genau dann, wenn gilt:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > m > N : \left| \sum_{k=m}^{n} a_k \right| < \varepsilon$$

Beweis:

$$\sum_{k=0}^{\infty} a_k \text{ konvergiert } \Leftrightarrow (s_n)_{n \in \mathbb{N}} \text{ ist Cauchy (da in } \mathbb{R})$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \geq m \geq N : |s_n - s_{m+1}| < \varepsilon \qquad \square$$

7.4 Bemerkung

$$\sum_{k=0}^{\infty} a_k \text{ konvergiert} \Longrightarrow \lim_{n \to \infty} a_n = 0$$

Beweis:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \ge N : \underbrace{\left| \sum_{k=n}^{n} a_k \right|}_{|a_n| = |a_n - 0|} < \varepsilon \qquad \Box$$

7.5 Satz

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge.

Dann gilt: Die Reihe $\sum\limits_{k=0}^{\infty}a_k$ konvergiert genau dann, wenn sie beschränkt ist.

28 7 Reihen

Beweis: Es gilt:

$$s_{n+1} = \sum_{k=0}^{n+1} a_k = \sum_{k=0}^{n} a_k + a_{n+1} = s_n + a_{n+1}$$

$$\geq s_n$$

 \Longrightarrow $(s_n)_{n\in\mathbb{N}}$ ist monoton wachsend $(s_n)_{n\in\mathbb{N}}$ ist beschränkt $\overset{6.6}{\Rightarrow}$ $(s_n)_{n\in\mathbb{N}}$ konvergiert

← ist klar (warum?)

7.6 Beispiel: Harmonische Reihe

$$\sum_{k=0}^{\infty} \frac{1}{k+1}$$
 divergiert

$$s_{2^{n}} = \sum_{k=1}^{2^{n}} \frac{1}{k} = (1) + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\sum_{k=2^{n-1}+1}^{\frac{2}{n}} \frac{1}{k}\right) \ge (n+1) \cdot \frac{1}{2}$$

 $\Rightarrow (s_n)_{n \in \mathbb{N}}$ nicht beschränkt $\stackrel{7.5}{\Longrightarrow}$ Divergenz

7.7 Leibnizkriterium

Sei $(a_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ monoton fallend mit $\lim_{k\to\infty}a_k=0$. Dann konvergiert $\sum_{k=0}^\infty(-1)^k\cdot a_k$

Beweis: Für $n \in \mathbb{N}$ setze $s_n := \sum\limits_{k=0}^n (-1)^k a_k$. Dann gilt:

$$\begin{aligned} s_{2n+2} - s_{2n} &= -a_{2n+1} + a_{2n+2} \le 0 \\ s_{2n+3} - s_{2n+1} &= a_{2n+2} - a_{2n+3} \ge 0 \\ s_{2n+1} - s_{2n} &= -a_{2n+1} \le 0 \end{aligned}$$

Nebenrechnung:

$$s_{2n+2} - s_{2n} = \sum_{k=0}^{2n+2} (-1)^k \cdot a_k - \sum_{k=0}^{2n} (-1)^k \cdot a_k$$
$$= \sum_{k=2n+1}^{2n+2} (-1)^k \cdot a_k$$
$$= (-1)^{2n+1} \cdot a_{2n+1} + (-1)^{2n+2} \cdot a_{2n+2}$$
$$= -a_{2n+1} + a_{2n+2}$$

 $\Rightarrow (s_{2n})_{n\in\mathbb{N}}$ ist monoton fallend $\Rightarrow (s_{2n+1})_{n\in\mathbb{N}}$ ist monoton wachsend

$$\forall n \in \mathbb{N}: \quad s_1 \leq s_3 \leq \ldots \leq s_{2n+1} \leq s_{2n} \leq \ldots \leq s_4 \leq s_2 \leq s_0$$

7 Reihen 29

 $\begin{array}{l} \Rightarrow (s_{2n})_{n\in \mathbb{N}}, (s_{2n+1})_{n\in \mathbb{N}} \text{ sind beschränkt} \\ \stackrel{6.6}{\Rightarrow} (s_{2n})_{n\in \mathbb{N}}, (s_{2n+1})_{n\in \mathbb{N}} \text{ konvergieren, sei} \end{array}$

$$S := \lim_{n \to \infty} s_{2n} \qquad S' := \lim_{n \to \infty} s_{2n+1}$$

Es gilt S = S', da

$$S - S' = \lim_{n \to \infty} s_{2n} - \lim_{n \to \infty} s_{2n+1} = \lim_{n \to \infty} \underbrace{(s_{2n} - s_{2n+1})}_{= a_{2n+1}} = \lim_{n \to \infty} a_{2n+1} = 0$$

Noch zu zeigen: $\lim_{n\to\infty} s_n = S$

Sei $\varepsilon > 0$. $\exists N, N' \in \mathbb{N}$ mit:

$$\begin{array}{ll} \text{falls } n \geq N & : |s_{2n} - S| & < \varepsilon \\ \text{falls } n \geq N' & : |s_{2n+1} - S| & < \varepsilon \end{array}$$

Setze $\overline{N} := \max(2N, 2N'+1)$, dann gilt, falls $m \geq \overline{N}$

$$|s_m - S| < \varepsilon$$

7.8 Beispiel

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} \quad \text{und} \quad \sum_{k=0}^{\infty} (-1)^k \frac{1}{2k+1}$$

sind konvergent. Wir werden sehen, dass die Werte dieser Reihen $\ln 2$ bzw. $\frac{\pi}{4}$ sind.

7.9 Definition

$$\sum\limits_{k=0}^{\infty}a_k$$
 konvergiert absolut, falls $\sum\limits_{k=0}^{\infty}|a_k|$ konvergiert

7.10 Proposition

Absolute Konvergenz \Rightarrow_{\Leftarrow} Konvergenz

Beweis: \Rightarrow

Sei $\sum\limits_{k=0}^{\infty}a_k$ absolut konvergent. Sei $\varepsilon>0$. Nach dem Cauchy-Kriterium (7.3) existiert ein $N\in\mathbb{N}$ mit

$$\left| \sum_{k=m}^{n} a_k \right| \leq \sum_{k=m}^{n} |a_k| < \varepsilon \quad \text{falls } n > m > N$$

Wieder nach dem Cauchy-Kriterium konvergiert $\sum_{k=0}^{\infty} a_k$.

Beweis: ∉

 $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ konvergiert, aber konvergiert nicht absolut, denn

$$\sum_{k=1}^{\infty} \left| (-1)^{k+1} \frac{1}{k} \right| = \sum_{k=0}^{\infty} \frac{1}{k}$$

divergiert (harmonische Reihe)

7.11 Majorantenkriterium

Seien $(a_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ und $(c_k)_{k\in\mathbb{N}}\subset\mathbb{R}_+$ Folgen mit

$$|a_k| < |c_k| \ \forall k \in \mathbb{N}$$

Falls $\sum\limits_{k=0}^{\infty}c_k$ konvergiert, so konvergiert $\sum\limits_{k=0}^{\infty}a_k$ absolut. Es gilt

$$\left| \sum_{k=0}^{\infty} a_k \right| \le \sum_{k=0}^{\infty} |a_k| \le \sum_{k=0}^{\infty} c_k$$

Beweis:

Sei $\varepsilon > 0$.

$$\exists N \in \mathbb{N}: \left|\sum_{k=m}^n c_k\right| < arepsilon \quad \mathsf{falls} \; n > m > N$$

Aber

$$\sum_{k=m}^n |a_k| \leq \left| \sum_{k=m}^n c_k \right| \Rightarrow \sum_{k=0}^\infty a_k \text{ konvergiert}$$

$$\begin{vmatrix}
\sum_{k=0}^{n} a_k \\
n \to \infty
\end{vmatrix} \leq \sum_{k=0}^{n} |a_k| \leq \sum_{k=0}^{n} c_k \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\begin{vmatrix}
\sum_{k=0}^{\infty} a_k \\
k = 0
\end{vmatrix} \leq \sum_{k=0}^{\infty} |a_k| \leq \sum_{k=0}^{\infty} c_k$$

Bemerkung: (5.9)

$$d_n \xrightarrow{n \to \infty} D, \qquad e_n \xrightarrow{n \to \infty} E, \qquad 0 \le d_n \le e_n \forall n \in \mathbb{N}$$

 $\Rightarrow D \leq E$

7.12 Beispiel

Für $s \in \mathbb{Q}$ gilt:

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \begin{cases} \text{konvergiert} & \text{, falls } s>1\\ \text{divergiert} & \text{, falls } s<1 \end{cases}$$

$$(s=\tfrac{p}{q}\ x^s=x^{\tfrac{p}{q}}=\sqrt[q]{x^p}=(\sqrt[q]{x})^p\ \mathrm{mit}\ p\in\mathbb{Z}, q\in\mathbb{Z}^*)$$

Fall "'s > 1":

7 Reihen 31

 $s_k = \sum\limits_{n=1}^k \frac{1}{n^s}$ Falls $2^l - 1 \ge k$, so gilt:

$$s_k \le s_{2^l - 1} = 1 + \left(\frac{1}{2^s} + \frac{1}{3^s}\right) + \dots + \left(\frac{1}{(2^{l-1})^s} + \dots + \frac{1}{(2^l - 1)^s}\right)$$

$$\le 1 + \frac{2^l}{2^s} + \dots + \frac{2^{l-1}}{(2^{l-1})^s}$$

$$= (2^{1-s})^0 + (2^{1-s})^1 + \dots + (2^{1-s})^{l-1}$$

$$= \sum_{k=0}^{l-1} (2^{1-s})^k \underset{(0 < 2^{1-s} < 1)}{=} \frac{1 - (2^{1-s})^l}{1 - 2^{1-s}} \xrightarrow{l \to \infty} \frac{1}{1 - 2^{1-s}}$$

 \Rightarrow Konvergenz von s_k , denn s_{2^l-1} konvergiert nach dem Majorantenkriterium

Fall "s < 1":

$$s_k = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots + \frac{1}{k^s}$$

 $\ge 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$

(kontrapositives Majorantenkriterium)

7.13 Satz: Quotientenkriterium

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}^*$ eine Folge. Falls $0\leq \theta<1$ existiert mit $\left|\frac{a_{n+1}}{a_n}\right|\leq \theta$ für alle $n\in\mathbb{N}$, so konvergiert $\sum_{n=0}^\infty a_n$ absolut.

Beweis:

Induktion liefert $|a_n| \leq |a_0| \cdot \theta^n$ für $n \in \mathbb{N}.$ Es gilt

$$\left(\sum_{n=0}^k |a_n| \le \right) \sum_{n=0}^k |a_0| \cdot \theta^n = |a_0| \sum_{n=0}^k \theta^n \xrightarrow{k \to \infty} |a_0| \frac{1}{1-\theta}$$

$$\Rightarrow \sum_{n=0}^\infty |a_0 \theta^n| \text{ ist konvergente Majorante für } \sum_{n=0}^\infty |a_n|$$

7.14 Bemerkung

in 7.13 genügt es, wenn ein $n_0\in\mathbb{N}$ existiert mit $a_n\neq 0$ und $|\frac{a_{n+1}}{a_n}|\leq \theta$ für alle $n\geq n_0$.

7.15 Cauchyprodukt von Reihen

Seien $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ absolut konvergent. Setze

$$c_n := \sum_{k=0}^{n} a_{n-k} \cdot b_k$$

32 7 Reihen

Dann konvergiert $\sum_{n=0}^{\infty} c_n$ absolut und es gilt

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$$

Beweis:

Setze:

$$A := \sum_{n=0}^{\infty} a_n \qquad B := \sum_{n=0}^{\infty} b_n \qquad S_m := \sum_{n=0}^m c_n \qquad D_m := \left(\sum_{n=0}^m a_n\right) \cdot \left(\sum_{n=0}^m b_n\right)$$

Es gilt $\lim_{m \to \infty} D_m = A \cdot B$. Zu zeigen:

$$\lim_{m \to \infty} (D_m - S_m) = 0$$

Es gilt

$$D_m = \sum_{\substack{0 \le i \le m \\ 0 \le j \le m}} a_i b_j = \sum_{i,j \le m} a_i b_j$$

Weiter gilt

$$S_m = \sum_{n=0}^m \left(\sum_{k=0}^n a_{n-k} b_k \right) = \sum_{n=0}^m \left(\sum_{i+j=n} a_i b_j \right) = \sum_{i+j \le m} a_i b_j$$

Also

$$D_m - S_m = \sum_{(i,j) \in \Delta_m} a_i b_j$$

$$\operatorname{mit} \Delta_m := \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i,j \leq m, i+j > m\}$$

Setze

$$E_m := \left(\sum_{n=0}^m |a_n|\right) \cdot \left(\sum_{n=0}^m |b_n|\right) = \sum_{i,j \le m} |a_i| \cdot |b_j|$$

 \Rightarrow Zu $\varepsilon>0$ existiert ein $m_0\in\mathbb{N}$ mit $|E_m-E_{m_0}|<\varepsilon$ falls $m\geq m_0$

 $\Rightarrow (E_m)_{m \in \mathbb{N}}$ konvergiert

Setze nun:

$$\Gamma_m := \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} \mid i,j \leq m \right\} \backslash \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} \mid i,j \leq m_0 \right\}$$

Falls nun $m>2m_0$, so gilt $\Delta_m\subset\Gamma_m$

7 Reihen 33

Es folgt

$$E_m - E_{m_0} = \sum_{(i,j) \in \Gamma_m} |a_i \cdot b_j|$$

Es folgt

$$\begin{split} |D_m - S_m| &= \left| \sum_{(i,j) \in \Delta_m} a_i \cdot b_j \right| \\ &\leq \sum_{(i,j) \in \Delta_m} |a_i \cdot b_j| \\ &\leq \sum_{(i,j) \in \Gamma_m} |a_i \cdot b_j| \\ &< \varepsilon \quad \text{falls } m > 2m_0 \end{split}$$

$$\Rightarrow \lim_{n \to \infty} (D_m - S_m) = 0$$

Absolute Konvergenz von $\sum\limits_{n=0}^{\infty}c_n$:

 $\sum\limits_{n=0}^{\infty}|c_n|$ wird majorisiert durch $\sum\limits_{n=0}^{\infty}\overline{c_n},$ wo

$$\overline{c_n} := \sum_{k=0}^n |a_{n-k} \cdot b_k|$$

Aber $\sum\limits_{n=0}^{\infty}\overline{c_n}$ konvergiert, wie eben gesehen

7.16 Beispiele

(i)
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$
 konvergiert

Für $n \geq 3$ gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)^2 2^n}{2^{n+1} n^2} = \frac{1}{2} \left(1 + \frac{1}{n} \right)^2 \le \frac{1}{2} \left(1 + \frac{1}{3} \right)^2 = \underbrace{\frac{8}{9}}_{1 = 0} < 1$$

 $Quotientenkriterium \Rightarrow Konvergenz$

(ii) Für $\sum_{n=1}^{\infty} \frac{1}{n}$ gilt:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} < 1$$

aber $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert

(iii) Aber: $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ konvergiert, obwohl

$$\left|\frac{b_{n+1}}{b_n}\right| = \frac{n^2}{(n+1)^2} < 1 \text{ mit } \frac{n^2}{(n+1)^2} \xrightarrow{n \to \infty} 1$$

34

8 Die Exponentialreihe

8.1 Definition und Satz

Für jedes $x \in \mathbb{R}$ konvergiert die Exponentialreihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

absolut. Den Limes bezeichnen wir mit $\exp(x)$. Wir setzen

$$e := \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Falls $N\in\mathbb{N}$ und $|x|<\frac{N}{2}+1$ gilt

$$\left| \sum_{n=N+1}^{\infty} \frac{x^n}{n!} \right| \le 2 \frac{|x|^{N+1}}{(N+1)!}$$

Beweis:

- Klar für x=0
- Für $x \neq 0$ und $n \geq 2|x|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \frac{|x|}{n+1} \le \frac{1}{2}$$

Quotientenkriterium ⇒ absolute Konvergenz

· Restgliedabschätzung

$$\begin{split} & \left| \sum_{n=N+1}^{\infty} \frac{x^n}{n!} \right| \leq \sum_{n=N+1}^{\infty} \frac{|x|^n}{n!} \\ &= \frac{|x|^{N+1}}{(N+1)!} \left(1 + \frac{|x|}{N+2} + \frac{|x|^2}{(N+2)(N+3)} + \frac{|x|^3}{(N+2)(N+3)(N+4)} + \ldots \right) \\ &\leq \frac{|x|^{N+1}}{(N+1)!} \left(1 + \frac{|x|}{N+2} + \frac{|x|^2}{(N+2)^2} + \frac{|x|^3}{(N+2)^3} + \ldots \right) \\ &= \frac{|x|^{N+1}}{(N+1)!} \sum_{k=0}^{\infty} \left(\frac{|x|}{N+2} \right)^k \\ &\leq \frac{|x|^{N+1}}{(N+1)!} \sum_{k=0}^{\infty} \left(\frac{1}{2} \right)^k \\ &= \frac{|x|^{N+1}}{(N+1)!} \cdot \frac{1}{1-\frac{1}{2}} = 2 \cdot \frac{|x|^{N+1}}{(N+1)!} \end{split}$$

8.2 Satz: Funktionalgleichung von exp(.)

Für $x,y\in\mathbb{R}$ gilt

$$\exp(x+y) = \exp(x) \cdot \exp(y)$$

 $\exp(x)=\sum_{n=0}^{\infty}rac{x^n}{n!}$ und $\exp(y)=\sum_{n=0}^{\infty}rac{y^n}{n!}$ konvergieren absolut. Es gilt

$$c_n := \sum_{k=0}^n \frac{x^{n-k}}{(n-k)!} \cdot \frac{y^k}{k!} = \frac{1}{n!} \sum_{k=0}^n \underbrace{\frac{n!}{(n-k)! \cdot k!}} x^{n-k} \cdot y^k \stackrel{\text{1.10}}{=} \frac{1}{n!} \cdot (x+y)^n$$

Also

$$\exp(x+y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = \sum_{n=0}^{\infty} c_n \stackrel{7.15}{=} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \cdot \left(\sum_{n=0}^{\infty} \frac{y^n}{n!}\right) = \exp(x) \cdot \exp(y)$$

8.3 Corollar

Für $x \in \mathbb{R}$ gilt $\exp(-x) = \exp(x)^{-1}$ und $\exp(x) > 0$. Für $k \in \mathbb{Z}$ gilt $\exp(k) = e^k$

Beweis:

 $\exp(x) \cdot \exp(-x) \stackrel{8.2}{=} \exp(x - x) = \exp(0) = 1$

 $\Rightarrow \exp(-x) = \exp(x)^{-1}$ Für $x \geq 0$ gilt $\exp(x) = \sum\limits_{n=0}^{\infty} \frac{x^n}{n!} \geq 1 > 0$ Für x < 0 gilt $\exp(-x) > 0$, also auch $\exp(x) = \exp(-x)^{-1} > 0$

• Für k = 0 gilt $\exp(0) = 1 = e^0$. Induktion: Für $k \in \mathbb{N}$ gilt

$$\exp(k+1) = \exp(k) \cdot \exp(1)$$
$$= \exp(k) \cdot e$$
$$= e^k \cdot e = e^{k+1}$$

$$\Rightarrow \exp(k) = e^k \ \forall k \in \mathbb{N}$$
$$\exp(-k) = (\exp(k))^{-1} = (e^k)^{-1} = e^{-k} \ \forall k \in \mathbb{N}$$

9 Stetige Funktionen

9.1 Definition

Sei $D \subset \mathbb{R}$. Sei $f: D \to \mathbb{R}$ eine Funktion. f heißt stetig in $x_0 \in D$, falls gilt

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in D : (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

f heißt **stetig**, falls f stetig ist in x_0 ist für jedes $x_0 \in D$.

9.2 Beispiele

(i) $id : \mathbb{R} \to \mathbb{R}$ ist stetig.

Sei $x_0 \in \mathbb{R}$. Sei $\varepsilon > 0$. Setze $\delta := \varepsilon$. Falls $|x - x_0| < \delta$, so gilt

$$\left| \operatorname{id}(x) - \operatorname{id}(x_0) \right| = |x - x_0| < \delta = \varepsilon$$

(ii) $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ ist stetig.

Sei $x_0 \in \mathbb{R}$. Sei $\varepsilon > 0$. Setze $\delta := \min\{1, \frac{\varepsilon}{2|x_0|+1}\}$.

Sei nun $x \in \mathbb{R}$ mit $|x - x_0| < \delta$. Dann

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |x - x_0| \cdot |x + x_0|$$

$$\leq |x - x_0| \cdot (|x - x_0| + 2|x_0|)$$

$$\leq \frac{\varepsilon}{2|x_0| + 1} (1 + 2|x_0|)$$

$$= \varepsilon$$

(iii) $f: \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto \sqrt{x}$ ist stetig

Sei $x_0\in\mathbb{R}_+$. Sei $\varepsilon>0$. Setze $\delta:=\frac{\varepsilon^2}{2}$. Sei nun $x\in\mathbb{R}_+$ mit $|x-x_0|<\delta$. Falls $x\geq x_0$ gilt, dann

$$|f(x) - f(x_0)|^2 = |\sqrt{x} - \sqrt{x_0}|^2$$

$$= |x - \sqrt{xx_0} - \sqrt{xx_0} + x_0|$$

$$\leq |x - \sqrt{xx_0}| + |\sqrt{xx_0} - x_0|$$

$$= x - \sqrt{x}\sqrt{x_0} + \sqrt{x}\sqrt{x_0} - x_0$$

$$\leq x - \sqrt{x_0}\sqrt{x_0} + \sqrt{x}\sqrt{x} - x_0$$

$$= x - x_0 + x - x_0$$

$$\leq 2 \cdot |x - x_0|$$

$$\leq 2 \cdot \delta$$

$$= 2 \cdot \frac{\varepsilon^2}{2} = \varepsilon^2$$

$$\Rightarrow |f(x) - f(x_0)| < \varepsilon$$
 Ebenso für $x < x_0$

9 Stetige Funktionen 37

 $\text{(iv)} \ \ f:\mathbb{Q}\to\mathbb{R} \quad f(x):= \begin{cases} 1, & \text{ falls } x>\sqrt{2} \\ -1, & \text{ falls } x<\sqrt{2} \end{cases} \ \text{ ist stetig.}$

Beweis: Übung!

- $\text{(v)} \ \ f: \mathbb{R} \to \mathbb{R} \quad f(x) := \begin{cases} 1, & \text{falls } x \in \mathbb{Q} \\ 0, & \text{falls } x \not \in \mathbb{Q} \end{cases} \ \text{ist in keinem Punkt stetig.}$
- (vi) $\exp:\mathbb{R}\to\mathbb{R}$ ist stetig. $\label{eq:constraint} \mbox{\"{U}bung!}$

9.3 Defintion

 $f:D\to\mathbb{R}$ heißt **Lipschitz stetig**, falls $L\in\mathbb{R}_+$ existiert mit:

$$\forall x, y \in D : |f(x) - f(y)| \le L \cdot |x - y|$$

9.4 Beispiele

- (i) $x \mapsto ax + b$ ist Lipschitz mit L = |a|
- (ii) $x \mapsto |x|$ ist Lipschitz mit L=1
- (iii) $f:[a,\infty) \to \mathbb{R}$ $x \mapsto \sqrt{x}$ ist Lipschitz für a>0. Ist nicht Lipschitz für a=0
- (iv) $g:\mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ ist nicht Lipschitz. <u>Aber:</u> $g|_{[a,b]}$ ist Lipschitz

$$g|_{[a,b]}:[a,b]\to\mathbb{R}\quad x\mapsto x^2$$

(v) Lipschitz stetig \Rightarrow stetig $\left(\delta = \frac{\varepsilon}{L}\right)$

9.5 Proposition

Sei $f:D\to\mathbb{R}$, $\bar{x}\in D$.

Dann sind folgende Aussagen äquivalent:

- (i) f ist stetig in \bar{x}
- (ii) für jede Folge $(x_n)_{n\in\mathbb{N}}\subset D$ mit $\lim_{n\to\infty}x_n=\bar{x}$ gilt:

$$\lim_{n \to \infty} f(x_n) = f(\bar{x})$$

Beweis: (i)⇒(ii)

 $\overline{\text{Sei }(x_n)_{n\in\mathbb{N}}}\subset D$ eine Folge mit $\lim_{n\to\infty}x_n=\bar{x}.$ Sei $\varepsilon>0.$

f ist stetig in $\bar{x} \Longrightarrow \exists \delta > 0$ mit

$$|x - \bar{x}| < \delta \Longrightarrow |f(x) - f(\bar{x})| < \varepsilon$$

 $x_n \xrightarrow{n \to \infty} \bar{x} \Rightarrow \exists N \in \mathbb{N} \text{ mit } |x_n - \bar{x}| < \delta \ \ \forall n \geq N.$ Dann gilt für $n \geq N$

$$|x_n - \bar{x}| < \delta \stackrel{(\star)}{\Rightarrow} |f(x_n) - f(\bar{x})| < \varepsilon \Rightarrow f(x_n) \xrightarrow{n \to \infty} f(\bar{x})$$

 $(ii) \Rightarrow (i)$

 $\overline{\text{Angenommen: }}f$ ist nicht stetig in \bar{x} . Das heißt

$$\exists \varepsilon > 0: \forall \delta > 0: \exists x \in D: |x - \bar{x}| < \delta \quad \text{und} \quad |f(x) - f(\bar{x})| \ge \varepsilon$$

Es folgt

$$\forall n \in \mathbb{N} \ \exists x_n \in D: |x_n - \bar{x}| < \frac{1}{n+1} \ \ \text{und} \ \ |f(x_n) - f(\bar{x})| \geq \varepsilon$$

Dann gilt:

$$x_n \xrightarrow{n \to \infty} \bar{x}$$
, aber $f(x_n) \xrightarrow{n \to \infty} f(\bar{x})$

Wir haben gezeigt: \neg (i) $\Rightarrow \neg$ (ii), also (ii) \Rightarrow (i)

9.6 Proposition

Seien $f,g,h:D\to\mathbb{R}$ stetig in $\bar{x}\in D$. Dann sind f+g und $f\cdot g$ stetig in \bar{x} . Falls $h(x)\neq 0$ für alle $x\in D$, so ist $\frac{f}{h}$ stetig in \bar{x} .

Beweis:

 $\overline{\text{Sei }(x_n)}_{n\in\mathbb{N}}\subset D \text{ mit } x_n\xrightarrow{n\to\infty} \bar{x}. \text{ Dann gilt}$

$$\stackrel{9.5}{\Longrightarrow}\stackrel{\text{(ii)}}{\Longrightarrow}^{\text{(ii)}} f+g$$
 stetig in \bar{x} . Ebenso $f\cdot g$ und $\frac{f}{h}$

9.7 Proposition

Seien $f:D\to\mathbb{R}$, $g:E\to\mathbb{R}$ Funktionen mit $E\supset f(D)$. Falls f stetig in $\bar x\in D$ und g stetig ist in $f(\bar x)\in E$, dann gilt $g\circ f$ ist stetig in $\bar x$

Beweis:

 $\overline{\text{Sei }(x_n)_{n\in\mathbb{N}}}\in D \text{ eine Folge mit } x_n\xrightarrow{n\to\infty} \bar{x}.$

$$f$$
 stetig in $\bar{x} \Rightarrow f(x_n) \xrightarrow{n \to \infty} f(\bar{x})$

Wir haben jetzt:

$$(f(x_n))_{n\in\mathbb{N}}\subset E \qquad f(x_n)\xrightarrow{n\to\infty} f(\bar{x})$$

Es folgt:

$$g \text{ stetig in} f(\bar{x}) \Rightarrow g\big(f(x_n)\big) \xrightarrow{n \to \infty} g\big(f(\bar{x})\big) = (g \circ f)(\bar{x})$$

9.8 Beispiel

Eine Polynom p ist eine Funktion der Form

$$x \mapsto p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 \dots + \alpha_n x^n$$

wo $\alpha_i \in \mathbb{R}$ (Dann $p : \mathbb{R} \to \mathbb{R}$)

9 Stetige Funktionen 39

- (i) Polynome sind stetig auf \mathbb{R}
- (ii) Seien p,q Polynome $D:=\{x\in\mathbb{R}\mid q(x)\neq 0\}$ Dann ist $\frac{p}{q}$ stetig auf D ($\frac{p}{q}$ heißt rationale Funktion)

9.9 Bemerkung

"' ε - δ -Definition" von Stetigkeit lässt sich geometrisch interpretieren.

9.10 Satz: Zwischenwertsatz

Sei $a \leq b$ und $f:[a,b] \to \mathbb{R}$ stetig. Zu jedem γ zwischen f(a) und f(b) existiert ein $c \in [a,b]$ mit $f(c) = \gamma$

Beweis:

O.E.d.A sei $f(a) \le \gamma \le f(b)$. Setze $[a_0,b_0] := [a,b]$ dann gilt $\gamma \in \big[f(a_0),f(b_0)\big]$. Seien $[a_n,b_n]$ bereits konstruiert mit

(i)
$$\gamma \in [f(a_n), f(b_n)]$$

(ii)
$$[a_n b_n] \subset [a_{n-1}, b_{n-1}]$$
 und $b_n - a_n = 2^{-n}(b-a)$

Dann gilt

$$\gamma \in \left[f(a_n), f(b_n) \right] \subset \left[f(a_n), f\left(\frac{a_n + b_n}{2}\right) \right] \cup \left[f\left(\frac{a_n + b_n}{2}\right), f(b_n) \right]$$

Setze

$$[a_{n+1},b_{n+1}] := \begin{cases} \left[a_n,\frac{a_n+b_n}{2}\right], & \text{falls } \gamma \in \left[f(a_n),f\left(\frac{a_n+b_n}{2}\right)\right] \\ \left[\frac{a_n+b_n}{2},b_n\right], & \text{sonst} \end{cases}$$

Induktion \sim Intervallschachtelung $[a_n,b_n]n\in\mathbb{N}$ mit

$$\exists c \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$$

Außerdem $a_n \xrightarrow{n \to \infty} c$ und $b_n \xrightarrow{n \to \infty} c$

$$f \text{ ist stetig } \Longrightarrow f(a_n) \xrightarrow{n \to \infty} f(c) \ \land \ f(b_n) \xrightarrow{n \to \infty} f(c)$$

 $f(a_n) \le \gamma \le f(b_n)$ für $n \in \mathbb{N}$

$$\Rightarrow f(c) = \lim_{n \to \infty} f(a_n) \le \gamma \le \lim_{n \to \infty} f(b_n) = f(c)$$

$$\Rightarrow \gamma = f(c)$$

9.11 Beispiel

Jedes Polynom ungeraden Grades besitzt eine Nullstelle.

9.12 Satz

Sei $a \leq b$. Jede stetige Funktion $f:[a,b] \to \mathbb{R}$ nimmt ihr Maximum und ihr Minimum an. D.h. es gibt $s,t \in [a,b]$ mit

$$\begin{array}{ll} f(s) &= \sup & \{f(x) \mid x \in [a,b]\} \\ f(t) &= \inf & \{f(x) \mid x \in [a,b]\} \end{array}$$

Beweis:

Setze

$$M := \sup \{ f(x) \mid x \in [a, b] \} \in \mathbb{R} \cup \{ \infty \}$$

 $(M = \infty \text{ falls } \{f(x) \mid x \in [a, b]\} \text{ nicht nach oben beschränkt ist)}$

Dann existiert eine Folge $(y_n)_{n\in\mathbb{N}}\subset\{f(x)\mid x\in[a,b]\}$ mit $y_n\xrightarrow{n\to\infty}M$ (warum?) \Rightarrow es existiert eine Folge $(x_n)_{n\in\mathbb{N}}\subset[a,b]$ mit $f(x_n)=y_n\xrightarrow{n\to\infty}M$

Nach Bolzano-Weierstraß $\Rightarrow x_n$ besitzt konvergente Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$. Sei $s:=\lim_{k\to\infty}x_{n_k}$ Es gilt $a\le x_{n_k}\le b$ für alle $k\in\mathbb{N}$. Also muss gelten:

$$\begin{array}{ll} \Rightarrow & a \leq \lim\limits_{k \to \infty} x_{n_k} \leq b \\ \\ \Rightarrow & s \in [a,b] \\ f \ \mathsf{stetig} \ \Rightarrow & M = \lim\limits_{n \to \infty} f(x_n) = \lim\limits_{k \to \infty} f(x_{n_k}) = f(\lim\limits_{k \to \infty} x_{n_k}) = f(s) \end{array}$$

 $f \leadsto -f$ ergibt Aussage für das Minimum

9.13 Definition

 $f:D\to\mathbb{R}$ ist gleichmäßig stetig, falls gilt

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x, x' \in D : (|x - x'| < \delta \Rightarrow |f(x) - f(x')| < \varepsilon)$$

9.14 Bemerkung

gleichmäßig stetig
$$\Longrightarrow_{\not=}$$
 stetig

Beweis:

"'(⇒)" ist trivial

"'≠""∶

 $f^{'}\colon (0,\infty) o \mathbb{R} \quad x \mapsto \frac{1}{x}$ ist stetig. Sei $\varepsilon=1$. Sei $\delta>0$. Wähle $n\in \mathbb{N}^*$ mit $|\frac{1}{n}-\frac{1}{2n}|<\delta$. Dann

$$\left| f\left(\frac{1}{n}\right) - f\left(\frac{1}{2n}\right) \right| = |n - 2n| = n \ge \varepsilon$$

9.15 Satz

Sei $f:[a,b]\to\mathbb{R}$ stetig

 $\Rightarrow f$ ist gleichmäßig stetig

Beweis:

Annahme: f ist nicht gleichmäßig stetig. dann

$$\exists \varepsilon > 0 \ \forall \delta > 0 : \exists x, x' \in D : |x - x'| < \delta \land |f(x) - f(-x)| \ge \varepsilon$$

41

Zu
$$\delta = \frac{1}{n+1}$$
 existieren $x_n, x_n' \in [a,b]$ mit $|x_n - x_n'| < \frac{1}{n+1}$ und $|f(x_n) - f(x_n')| \ge \varepsilon$

$$\rightsquigarrow$$
 Folgen $(x_n)_{n\in\mathbb{N}}, (x_n)_{n\in\mathbb{N}}\subset [a,b]$

Bolzano-Weierstraß \sim konvergente Teilfolgen $(x_{n_k})_{k\in\mathbb{N}}$ und $(x'_{n_k})_{k\in\mathbb{N}}$. Dann gilt

$$\overline{x} := \lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} x'_{n_k} \in [a, b]$$

f stetig \Rightarrow

$$\lim_{k \to \infty} f\left(x_{n_k}\right) = f\left(\lim_{k \to \infty} x_{n_k}\right) = f(\overline{x}) = f\left(\lim_{k \to \infty} x'_{n_k}\right) = \lim_{k \to \infty} f\left(x'_{n_k}\right)$$

$$\Rightarrow \left|f\left(x_{n_k}\right) - f\left(x'_{n_k}\right)\right| \xrightarrow{k \to \infty} 0 \quad \not \not z \text{ zu } |f(x_n) - f(x'_n)| \ge \varepsilon$$

Korrektur: Wähle zuert Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$ mit $(x_{n_k})\xrightarrow{k\to\infty} \overline{x}$. $(x'_{n_k})_{k\in\mathbb{N}}\subset [a,b]$ besitzt konvergente Teilfolge $(x'_{n_{k_l}})_{l\in\mathbb{N}}$, die auch gegen \overline{x} konvergiert.

9.16 Definition

 $f:D\to\mathbb{R}$ heißt (streng) monoton wachsend, falls gilt

$$x, x' \in D, x < x' \Rightarrow f(x) \le f(x')$$
 $(\Rightarrow f(x) < f(x'))$

 $f:D\to\mathbb{R}$ heißt (streng) monoton fallend, falls gilt

$$x, x' \in D, x < x' \Rightarrow f(x) \ge f(x')$$
 $(\Rightarrow f(x) > f(x'))$

9.17 Satz

Sei $a \leq b, f : [a, b] \to \mathbb{R}$ stetig und streng monoton wachsend (oder auch streng monoton fallend).

Dann ist $f:[a,b] \to [f(a),f(b)]$ (bzw. $f:[a,b] \to [f(b),f(a)]$) bijektiv und die Umkehrabbildung f^{-1} ist ebenfalls stetig und streng monoton wachsend bzw. streng monoton fallend.

Beweis:

Sei f O.E.d.A streng monoton wachsend.

f injektiv: trivial (aufgrund der strengen Monotonie)

f surjektiv:

$$a < xb \Rightarrow f(a) < f(x) < f(b)$$

$$\Rightarrow f\left([a,b]\right) \subset [f(a),f(b)]$$
 nach dem Zwischenwertsatz gilt
$$f\left([a,b]\right) = [f(a),f(b)]$$

 $\Rightarrow f$ ist bijektiv

Sei nun $f^{-1}:[f(a),f(b)]\to [a,b]$ die Umkehrfunktion von f.

 f^{-1} ist streng monoton wachsend: klar (warum?)

Beweis der Stetigkeit von f^{-1} (Widerspruchsbeweis)

Angenommen f^{-1} ist nicht stetig. Dann existiert $\overline{y} \in [f(a), f(b)]$ und eine Folge $(y_n)_{n \in \mathbb{N}} \subset [f(a), f(b)]$ mit $\lim_{n \to \infty} y_n = \overline{y}$, aber $f^{-1}(y_n) \not\xrightarrow{n \to \infty} f^{-1}(\overline{y})$

$$\Rightarrow \exists \varepsilon > 0$$
 und Teilfolge $(y_{n_k})_{k \in \mathbb{N}}$ mit $|f^{-1}(y_{n_k}) - f^{-1}(\overline{y})| \geq \varepsilon \ \forall k \in \mathbb{N}$

(Negation 9.5 (ii))

Nach Bolzano-Weierstraß existiert eine Teilfolge der Teilfolge $f^{-1}\left((y_{n_k})_{k\in\mathbb{N}}\right)$

$$f^{-1}\left(y_{n_{k_l}}\right)_{l\in\mathbb{N}}$$

mit

$$\lim_{l\to\infty} f^{-1}\left(y_{n_{k_l}}\right) = \overline{x} \quad \text{für ein} \quad \overline{x} \in [a,b]$$

Dann gilt: $\left|f^{-1}\left(y_{n_{k_l}}\right)-f^{-1}(\overline{y})\right|\geq \varepsilon$ also auch $\left|\overline{x}-f^{-1}(\overline{y})\right|\geq \varepsilon$. Andererseits gilt:

$$\overline{y} = \lim_{l \to \infty} y_{n_{k_l}} = \lim_{l \to \infty} f \circ f^{-1} \left(y_{n_{k_l}} \right) \stackrel{f \text{ stetig}}{=} f \left(\lim_{l \to \infty} f^{-1} \left(y_{n_{k_l}} \right) \right) = f(\overline{x})$$

also auch

$$f^{-1}(\overline{y}) = f^{-1}\left(f(\overline{x})\right) = \overline{x} \qquad \mbox{2}$$

9.18 Bemerkung

Allgemeiner gilt: Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ stetig und streng monoton wachsend (streng monoton fallend). Dann ist f(I) ein Intervall und $f: I \to f(I)$ ist bijektiv. $f^{-1}: f(I) \to I$ ist wieder streng monoton wachsend (streng monoton fallend) und stetig.

Beweis:

Übung Blatt 4 Aufgabe 1

9.19 Beispiel

Sei $k \in \mathbb{N}^*$, dann ist $f: \mathbb{R}_+ \to \mathbb{R}_+$ $x \mapsto x^k$ streng monoton wachsend (Bemerkung 2.5(vi) + Induktion)

 \Rightarrow \exists stetige und streng monoton wachsende Umkehrfunktion $f^{-1}:\mathbb{R}_+ o \mathbb{R}_+$

Wegen Eindeutigkeit der k-ten Wurzel gilt

$$f^{-1}(y) = \sqrt[k]{y}$$
 (vergleiche Satz 3.3)

9.20 Definition und Satz

 $\exp: \mathbb{R} \to (0, \infty)$ besitzt eine stetige und streng monoton wachsende Umkehrfunktion $\ln: (0, \infty) \to \mathbb{R}$. Es gilt

$$ln(x \cdot y) = ln(x) + ln(y) \qquad \text{für } x, y \in (0, \infty)$$

Beweis:

exp ist stetig und streng monoton wachsend nach Übung.

 $\exp: \mathbb{R} \to (0, \infty)$ ist surjektiv nach Zwischenwertsatz (warum?)

43

П

 $9.17/9.18 \Rightarrow$ Umkehrfunktion $\ln: (0,\infty) \to \mathbb{R}$ stetig und streng monoton wachsend

$$\ln(x \cdot y) = \ln\left(\exp\left(\ln(x)\right) \cdot \exp\left(\ln(y)\right)\right)$$
$$= \ln\left(\exp(\ln x + \ln y)\right)$$
$$= \ln x + \ln y$$

9.21 Definition und Proposition

Für a>0 setzen wir

$$a^x := \exp(x \cdot \ln a) \quad x \in \mathbb{R}$$

Es gilt $a^{x+y}=a^x\cdot a^y, x,y\in\mathbb{R}$. Für $x=\frac{p}{q}\in\mathbb{Q}$ stimmt die Definition mit der früheren überein, das heißt

$$\exp\left(\frac{p}{q} \cdot \ln a\right) = \sqrt[q]{a^p}$$

Beweis:

(i)

$$a^{x+y} = \exp((x+y)\ln a)$$

$$= \exp(x\ln a + y\ln a)$$

$$= \exp(x\ln a) \cdot \exp(y\ln a)$$

$$= a^x \cdot a^y$$

(ii)

$$\begin{split} \left(\exp\left(\frac{p}{q}\ln a\right)\right)^q &= \exp\underbrace{\left(\frac{p}{q}\ln a + \frac{p}{q}\ln a + \ldots + \frac{p}{q}\ln a\right)}_{q\text{-mal}} \\ &= \exp(p\cdot \ln a) \\ &= a^p \\ &\exp\left(\frac{p}{q}\ln a\right) = \sqrt[q]{a^p} \end{split}$$

wegen Eindeutigkeit der q-ten Wurzel

9.22 Bemerkung

(i) Für a>0 gilt $\lim_{n\to\infty} \sqrt[n]{a}=1$

(ii)

$$(a^x)^y = a^{xy}$$

$$a^x b^x = (ab)^x$$

$$(a^{-1})^x = a^{-x}$$

$$\ln a^x = x \cdot \ln a \qquad a, b > 0 \ x, y \in \mathbb{R}$$

44

Beweis:

(i)

$$a^{\frac{1}{n}} = \exp\left(\frac{1}{n} \cdot \ln a\right) \xrightarrow[\text{exp stetig}]{n \to \infty} \exp(0) = 1$$

(ii) Übung

9.23 Satz

Sei $f:\mathbb{R} \to \mathbb{R}$ stetig mit $f(x+y) = f(x) \cdot f(y) \forall x,y \in \mathbb{R}$. Dann gilt

$$f\underbrace{\qquad }_{\text{genau \"{a}quivalent}}0 \quad \left(f(x)=0 \ \, \forall x\right)$$

oder

$$f(x) = a^x \text{ mit } a = f(1) > 0$$

9.24 Definition

Sei $f:D\to\mathbb{R}$ eine Funktion, $a\in[-\infty,+\infty]=\mathbb{R}\cup\{-\infty\}\cup\{+\infty\}$ ein Punkt, so dass eine Folge $(a_n)_{n\in\mathbb{N}}\subset D$ existiert mit $\lim_{n\to\infty}a_n=a$ Sei $b\in[-\infty,+\infty]$

(i) Wir schreiben $\lim_{x \to \infty} f(x) = b$ falls gilt:

Für jede Folge
$$(x_n)_{n\in\mathbb{N}}\subset D$$
 mit $\lim_{n\to\infty}x_n=a$ gilt $\lim_{n\to\infty}f(x_n)=b$

(ii) Wir schreiben $\lim_{x \searrow a} f(x) = b$, falls gilt

Für jede Folge
$$(x_n)_{n\in\mathbb{N}}\subset D\cap(a,\infty)$$
 mit $\lim_{n\to\infty}x_n=a$ gilt $\lim_{n\to\infty}f(x_n)=b$

(falls eine Folge $(a_n)_{n\in\mathbb{N}}\subset D\cap(a;\infty)$ exisitert mit $\lim_{n\to\infty}a_n=a$)

(iii) Analog für $\lim_{x \nearrow a} f(x) = b$

9.25 Beispiele

(i) Für $k \in \mathbb{N}$ gilt:

$$\lim_{x\to\infty}\frac{e^x}{x^k}=\infty \qquad \left(\frac{e^x}{x^k}:(0,\infty)\to\mathbb{R}\right)$$

Für x>0 gilt

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} > \frac{x^{k+1}}{(k+1)!} \quad \text{also} \quad \frac{e^x}{x^k} > \frac{x}{(k+1)!} \xrightarrow{x \to \infty} \infty$$

Genauer: Sei $(x_n)_{n\in\mathbb{N}}\subset (0,\infty)$ eine Folge mit $\lim_{n\to\infty}x_n=\infty$. Zu zeigen:

$$\lim_{n\to\infty}\frac{e^{x_n}}{x_n^k}=\infty$$

Sei $K \in \mathbb{R}$. Wähle $N \in \mathbb{N}$ so, dass $x_n \geq K \cdot (k+1)!$ falls $n \geq N$. Dann gilt

$$\frac{e^{x_n}}{x_n^k} > \frac{x_n}{(k+1)!} \geq K \quad \text{ falls } n \geq N$$

(ii) Für $k \in \mathbb{N}$ gilt

$$\lim_{x \to \infty} x^k e^{-x} = 0 \quad \xrightarrow{x \neq 0} \quad \lim_{x \to \infty} \left(\frac{e^x}{x^k} \right)^{-1} = 0$$

Es gilt

$$\lim_{x \searrow 0} x^k e^{\frac{1}{x}} = 0$$

da (Substitution $y_n := \frac{1}{x_n}$)

$$\lim_{y \to \infty} \left(\left(\frac{1}{y}\right)^k \cdot e^y \right) = \lim_{y \to \infty} \frac{e^y}{y^k} = \infty$$

(iii) $\lim_{x \to \infty} \ln x = \infty$, $\lim_{x \searrow 0} \ln x = -\infty$

 $\ln:(0,\infty)\to\mathbb{R}$ ist streng monoton wachsend

Falls
$$x > e^K$$
, so gilt $\ln x > \ln(e^K) = K$

$$\Rightarrow \lim_{x \to \infty} \ln x = \infty$$

$$\lim_{x \to \infty} \ln x = \lim_{y \to \infty} \ln \frac{1}{y} = \lim_{y \to \infty} \ln y^{-1} = \lim_{y \to \infty} -\ln y = -\lim_{y \to \infty} \ln y = -\infty$$

(iv) Für $\alpha>0$ gilt $\lim_{x\to\infty}\frac{\ln x}{x^\alpha}=0$ Sei $(x_n)_{n\in\mathbb{N}}\subset(0,\infty)$ eine Folge mit $\lim_{n\to\infty}x_n=\infty$. Dann

$$\lim_{n \to \infty} \frac{\ln x_n}{x_n^{\alpha}} = \lim_{n \to \infty} (\ln x_n) x_n^{-\alpha}$$

$$= \frac{1}{\alpha} \cdot \lim_{n \to \infty} (\alpha \ln x_n) x_n^{-\alpha}$$

$$= \frac{1}{\alpha} \lim_{n \to \infty} (\alpha \ln x_n) e^{-\alpha \ln x_n}$$

$$= 0$$

 $(\mathbf{v}) \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{e^x - 1}{x} = 1$

$$|e^x - (1-x)| \le |x^2|, \text{ falls } |x| \le \frac{3}{2}$$

Also:

$$\left|\frac{e^x-(1+x)}{x}\right| \le |x|, \text{ falls } 0 < |x| \le \frac{3}{2}$$

$$\left|\frac{e^x-(1+x)}{x}\right| = \left|\frac{e^x-1}{x}-1\right| \Longrightarrow \lim_{x\to 0} \left|\frac{e^x-1}{x}-1\right| = 0$$

(vi) Für $\alpha>0$ gilt $\lim_{x\searrow 0}x^{\alpha}=0$

Sei
$$(x_n)_{n\in\mathbb{N}}\subset (0,\infty)$$
 mit $\lim_{n\to\infty}x_n=0.$ Dann gilt

$$\lim_{n \to \infty} \alpha \ln x_n \stackrel{\text{(iii)}}{=} -\infty$$

Nach (ii) gilt (mit
$$k = 0$$
)

$$\lim_{y \to -\infty} e^y = \lim_{x \to \infty} e^{-x} = 0$$

Also:
$$\lim_{n\to\infty} x_n^{\alpha} = \lim_{n\to\infty} e^{\alpha \ln x_n} = 0$$

Mit $0^{\alpha}=0$ erhalten wir eine stetige Funktion $[0,\infty)\to\mathbb{R} \ x\mapsto x^{\alpha}$

9 Stetige Funktionen 47

10 Die komplexen Zahlen

10.1 Definition

(i) Wir definieren

$$\mathbb{C} := \mathbb{R} \times \mathbb{R}$$

mit Operationen $+,\cdot:\mathbb{C}\times\mathbb{C}\to\mathbb{C}$ gegeben durch

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$

 $(\mathbb{C},+,\cdot)$ bildet einen Körper mit $0_{\mathbb{C}}=(0,0),1_{\mathbb{C}}=(1,0)$ und

$$(x,y)^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right) \ , \quad \text{falls } (x,y) \neq 0_{\mathbb{C}}$$

- (ii) Die Abbildung $\mathbb{R} \to \{x,0 \mid x \in \mathbb{R}\} \subset \mathbb{C} \ x \mapsto (x,0)$ ist ein Isomorphismus. Mit dieser Indentifikation und i := (0,1) schreiben wir $(x,y) = x + i \cdot y$
- (iii) Es gilt $i^2 = -1$
- (iv) Wir definieren $\operatorname{Re}(x+iy) \coloneqq x$, $\operatorname{Im}(x+iy) \coloneqq y$. Es gilt $z = z' \Leftrightarrow \operatorname{Re}(z) = \operatorname{Re}(z') \wedge \operatorname{Im}(z) = \operatorname{Im}(z')$. Außerdem gilt

$$z = \operatorname{Re}(z) + i\operatorname{Im}(z), \text{ für } z \in \mathbb{C}$$

(v) Für $z=x+iy\in\mathbb{C}$ definieren wir das komplex Konjugierte

$$\overline{z} := x - iy$$

Das heißt $\overline{z} = \operatorname{Re}(z) - i \operatorname{Im}(z)$. Es gilt daher

- a) $Re(z) = \frac{1}{2}(z + \bar{z})$
- b) $Im(z) = \frac{1}{2i}(z \bar{z})$
- d) $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$
- e) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- (vi) Wir definieren $|.|:\mathbb{C}\to\mathbb{R}_+$ durch $|z|:=\sqrt{z\cdot\overline{z}}$ (falls z = x + iy, dann $z\overline{z} = x^2 + y^2 \ge 0$) (Für $z \in \mathbb{R}$ stimmen die Definitionen überein.)

Es gilt

- a) $|z| \ge 0$, $|z| = 0 \Leftrightarrow z = 0$
- b) $|z_1 + z_2| \le |z_1| + |z_2|$
- c) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$

Das heißt C ist mit |.| ein bewerteter Körper Beweis: Übung!

10.2 Definition

Eine Folge $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ konvergiert gegen $z\in\mathbb{C}$, falls gilt:

$$\forall \varepsilon>0\,\exists N\in\mathbb{N}: |z_n-z|<\varepsilon \text{ falls } n\geq N$$

10.3 Proposition

 $(z_n)_{n\in\mathbb{N}}$ konvergiert $\Leftrightarrow (\operatorname{Re}(z_n))_{n\in\mathbb{N}}, (\operatorname{Im}(z_n))_{n\in\mathbb{N}}$ konvergieren

In diesem Fall gilt $\operatorname{Re}(\lim_{n \to \infty} z_n) = \lim_{n \to \infty} (\operatorname{Re}(z_n)) \quad \operatorname{Im}(\lim_{n \to \infty} z_n) = \lim_{n \to \infty} (\operatorname{Im}(z_n))$

Beweis:

Sei
$$(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$$
 Folge, sei $z_n=x_n+iy_n, n\in\mathbb{N}$

Sei $\lim_{n\to\infty}z_n=:z=x+iy$. Sei $\varepsilon>0$. Sei $N\in\mathbb{N}$, so dass gilt

$$|z_n - z| < \varepsilon \text{ falls } n \ge N$$

Dann gilt

$$|x_n - x| = |\operatorname{Re}(z_n - z)| \le |z_n - z| < \varepsilon$$

$$|y_n - y| = |\operatorname{Im}(z_n - z)| \le |z_n - z| < \varepsilon$$

Nebenrechnung:

$$|\operatorname{Re}(w)| \le |w|$$
 $|w| = \sqrt{w\bar{w}} = \sqrt{\operatorname{Re}(w)^2 + \operatorname{Im}(w)^2} \ge \sqrt{\operatorname{Re}(w)^2} = |\operatorname{Re}(w)|$

Sei $\lim_{n\to\infty}x_n=:x, \lim_{n\to\infty}y_n=:y.$ Setze z:=x+iy. Sei $\varepsilon>0.$ Sei $N\in\mathbb{N}$ so dass

$$|x_n - x|, |y_n - y| < \frac{\varepsilon}{2}, \text{ falls } n \ge N$$

Dann gilt:

$$\begin{split} |z_n-z| &= |(x_n-x)+i(y_n-y)| \\ &\leq |x_n-x|+|i(y_n-y)| \\ &= |x_n-x|+\underbrace{|i|}_{=1}\cdot|y_n-y| \\ &< \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text{falls } n\geq N \end{split}$$

10.4 Corollar

Seien $(w_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ Folgen mit $\lim_{n\to\infty}w_n=:w$ und $\lim_{n\to\infty}z_n=:z$, $\lambda,\mu\in\mathbb{C}$.

Dann konvergieren $(\lambda w_n + \mu z_n)_{n \in \mathbb{N}}, (w_n \cdot z_n)_{n \in \mathbb{N}}, (\overline{w_n})_{n \in \mathbb{N}}$ und es gilt

(a)
$$\lim_{n \to \infty} (\lambda w_n + \mu z_n) = \lambda \cdot w + \mu \cdot z$$

(b)
$$\lim_{n\to\infty} w_n \cdot z_n = w \cdot z$$

(c)
$$\lim_{n\to\infty} \overline{w_n} = \overline{w}$$

Falls $z_n \neq 0 \ \ \forall n \in \mathbb{N} \ \text{und} \ z \neq 0$, so gilt $\lim_{n \to \infty} \frac{w_n}{z_n} = \frac{w}{z}$

Beweis:

$$\overline{w_n} = \underbrace{\operatorname{Re}(w_n)}_{n \to \infty} + i \underbrace{\left(-\operatorname{Im} w_n\right)}_{n \to \infty} + \operatorname{Im}(w)$$

10.3
$$\Rightarrow \bar{w}_n \xrightarrow{n \to \infty} \text{Re}(w) + i \cdot (-\text{Im}(w)) = \bar{w}$$
 Rest: Übung!

10.5 Defintion

 $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ heißt Cauchyfolge, falls gilt

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : |z_n - z_m| < \varepsilon \text{ falls } n, m \ge N$$

10.6 Proposition

 $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ ist Cauchy $\Leftrightarrow (\operatorname{Re} z_n)_{n\in\mathbb{N}}, (\operatorname{Im} z_n)_{n\in\mathbb{N}}$ sind Cauchy

Beweis:

Analog zu 10.3 (benutze wieder:

$$|w| \le |\operatorname{Re} w| + |\operatorname{Im} w| \le |w| + |w|$$

10.7 Satz

C ist vollständig, d.h. jede Cauchy-Folge konvergiert.

Beweis:

$$(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$$
 Cauchy \Rightarrow 10.6

$$(\operatorname{Re} z_n)_{n\in\mathbb{N}}, (\operatorname{Im} z_n)_{n\in\mathbb{N}}\in\mathbb{R}$$
 sind Cauchy

 \mathbb{R} vollständig $\Rightarrow (\operatorname{Re} z_n)_{n\in\mathbb{N}}, (\operatorname{Im} z_n)_{n\in\mathbb{N}}$ konvergieren

$$10.3 \Rightarrow (z_n)_{n \in \mathbb{N}}$$
 konvergiert

10.8 Definition

Sei $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ eine Folge.

a) Wir schreiben $\sum\limits_{n=0}^{\infty}z_n$ für die Folge $(s_k)_{k\in\mathbb{N}}$ der Partialsummen

$$s := \sum_{n=0}^{k} z_n$$

im Falle der Konvergenz bezeichnet $\sum\limits_{n=0}^{\infty}z_n$ auch den Limes.

b) $\sum\limits_{n=0}^{\infty}z_n$ konvergiert absolut, falls $\sum\limits_{n=0}^{\infty}|z_n|$ konvergiert

10.9 Bemerkung

absolute Konvergenz \Rightarrow Konvergenz

Beweis:

Wie 7.10

10.10 Satz (Majorantenkriterium)

Sei $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ und $(c_n)_{n\in\mathbb{N}}\subset\mathbb{R}_+$ Folgen mit

$$|z_n| \le c_n$$
 für alle $n \in \mathbb{N}$

Falls $\sum\limits_{n=0}^{\infty}c_n$ konvergiert, so konvergiert $\sum\limits_{n=0}^{\infty}z_n$ absolut und es gilt

$$\left| \sum_{n=0}^{\infty} z_n \right| \le \sum_{n=0}^{\infty} |z_n| \le \sum_{n=0}^{\infty} c_n$$

Beweis:

wie 7.11

10.11 Satz (Quotientenkriterium)

Sei $(z_n)_{n\in\mathbb{N}}\subset\mathbb{C}^*$ eine Folge. Falls $0\leq \theta<1$ existiert mit

$$\left| rac{z_{n+1}}{z_n}
ight| \leq heta$$
 für alle $n \in \mathbb{N}$

so konvergiert $\sum\limits_{n=0}^{\infty}z_n$ absolut.

Beweis:

wie 7.13

10.12 Satz

Für jedes $z\in\mathbb{C}$ konvergiert $\sum\limits_{n=0}^{\infty}\frac{z^n}{n!}$ absolut. Den Limes bezeichnen wir mit $\exp(z)$.

Falls $N \in \mathbb{N}$ und $|z| \leq \frac{N}{2} + 1$, so gilt

$$\sum_{n=N+1}^{\infty} \frac{z^n}{n!} \le \frac{2 \cdot |z|^{N+1}}{(N+1)!}$$

Außerdem gilt $\exp(\overline{z}) = \overline{\exp(z)}$

Beweis:

Konvergenz und Restgliedabschätzung wie in 8.1

Konjugation: benutze:

$$\sum_{n=0}^{k} \frac{(\overline{z})^n}{n!} = \sum_{n=0}^{k} \frac{\overline{(z^n)}}{n!} = \overline{\sum_{n=0}^{k} \frac{z^n}{n!}} \xrightarrow{k \to \infty} \exp(\overline{z}) = \overline{\exp(z)}$$

10 Die komplexen Zahlen 51

10.13 Satz

Für $w,z\in\mathbb{C}$ gilt

$$\exp(w+z) = \exp(w) \cdot \exp(z)$$

Beweis:

Wie 8.2 (einschließlich Cauchy-Produkt von Reihen)

10.14 Definition

Sei $D \subset \mathbb{C}$, $f: D \to \mathbb{C}$ eine Funktion, $z_0 \in D$. f heißt stetig in z_0 , falls gilt

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall z \in D : (|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \varepsilon)$$

f heißt stetig, falls f stetig ist in jedem Punkt von D ist.

10.15 Bemerkung

Stetigkeit in z_0 lässt sich auch mit Hilfe von Folgen charakterisieren. (Übung!)

10.16 Satz

 $\exp:\mathbb{C} \to \mathbb{C}$ ist stetig.

Beweis:

$$\overline{\exp(z)} \exp(-z) = \exp(0) = 1 \text{ für alle } z \in \mathbb{C}. \Rightarrow \forall z \in \mathbb{C} : \exp(z) \neq 0. \text{ Sei } z_0 \in \mathbb{C}. \text{ Sei } \varepsilon > 0.$$
 Sei $\delta := \min\left\{2, \frac{\varepsilon}{|\exp(z_0)| \cdot 2}\right\}$. Für $z \in \mathbb{C}$ mit $|z - z_0| < \delta$ gilt:

$$|\exp(z) - \exp(z_0)| = |\exp(z_0) \cdot (\exp(z - z_0) - 1)|$$

$$\leq |\exp(z_0)| \cdot |\exp(z - z_0) - 1|$$

$$\leq |\exp(z_0)| \cdot |r_2(z - z_0)|$$

$$\leq |\exp(z_0)| \cdot 2|z - z_0|$$

$$< |\exp(z_0)| \cdot 2\delta$$

$$\leq \varepsilon$$

10.17 geometrische Interpretation

 $\mathsf{jetzt:}\ z = e^{ix} := \exp(ix)\ \mathsf{Dann}$

$$|e^{ix}| = \sqrt{e^{ix}e^{ix}}$$

$$= \sqrt{e^{ix}e^{\overline{ix}}}$$

$$= \sqrt{e^{ix}e^{-ix}} = e^{0} = 1$$

11 Winkelfunktion

11.1 Definition

Wir definieren Funktionen

(i) $\cos: \mathbb{R} \to \mathbb{R} \quad x \mapsto \operatorname{Re}(e^{ix})$

(ii) $\sin: \mathbb{R} \to \mathbb{R}$ $x \mapsto \operatorname{Im}(e^{ix})$

11.2 Bemerkung

(i) $e^{ix} = \cos x + i \sin x$ (Euler'sche Formel)

(ii) $\cos x, \sin x \in [-1,1]$ für alle $x \in \mathbb{R}$, da $|\operatorname{Re}(e^{ix})|, |\operatorname{Im}(e^{ix})| \leq |e^{ix}| = 1$

11.3 Proposition

 $\forall x \in \mathbb{R}$:

(i)
$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$$

(ii)
$$\sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$$

(iii)
$$\cos(-x) = \cos x$$

11 Winkelfunktion

(iv)
$$\sin(-x) = -\sin x$$

(v)
$$\cos^2 x + \sin^2 x = 1$$

Beweis:

(ii)

$$z - \overline{z} = \operatorname{Re}(z) + i\operatorname{Im}(z) - \left(\operatorname{Re}(z) - i\operatorname{Im}(z)\right)$$
$$= 2i\operatorname{Im}(z)$$

(iii)

$$\cos(-x) = \operatorname{Re}(e^{-ix}) \stackrel{\text{10.12}}{=} \operatorname{Re}\left(\overline{e^{ix}}\right)$$
$$= \operatorname{Re}(e^{ix})$$
$$= \cos x$$

(v)

$$\cos^2 x + \sin^2 x = (\operatorname{Re}(e^{ix}))^2 + (\operatorname{Im}(e^{ix}))^2$$
$$= |e^{ix}|^2$$
$$= 1$$

11.4 Satz

 $\cos, \sin : \mathbb{R} \to [-1, 1]$ sind stetig.

Beweis:

Sei $x_0 \in \mathbb{R}$. Sei $\varepsilon > 0$ gegeben. $\exp : \mathbb{C} \to \mathbb{C}$ ist stetig, daher existiert $\delta > 0$, so dass gilt:

$$z \in \mathbb{C}, |z - ix_0| < \delta \Longrightarrow |\exp(z) - \exp(ix_0)| < \varepsilon$$

Sei $x \in \mathbb{R}$ ein Punkt mit $|x - x_0| < \delta$. Dann gilt:

$$|\underbrace{ix}_{z} - ix_{0}| = |i| \cdot |x - x_{0}| = |x - x_{0}| < \delta$$

und wir erhalten

$$|\cos x - \cos x_0| = |\operatorname{Re}(e^{ix}) - \operatorname{Re}(e^{ix_0})|$$

$$= |\operatorname{Re}(e^{ix} - e^{ix_0})|$$

$$\leq |e^{ix} - e^{ix_0}|$$

$$< \varepsilon$$

[bzw. mit 11.3]

11.5 Satz: Additionstheoreme

 $\forall x, y \in \mathbb{R}$:

$$cos(x + y) = cos x cos y - sin x sin y$$

$$sin(x + y) = cos x sin y + sin x cos y$$

Beweis:

$$\cos(x+y) + i\sin(x+y) = e^{i(x+y)} = e^{ix}e^{iy}$$
$$= (\cos x + i\sin x)(\cos y + i\sin y)$$
$$= \cos x\cos y - \sin x\sin y + i(\cos x\sin y + \sin x\cos y)$$

11.6 Corollar

 $\forall x, y \in \mathbb{R}$:

$$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$
$$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Beweis:

 $\overline{\text{Setze }u}:=\frac{x+y}{2}$, $v:=\frac{x-y}{2}$, dann

$$x = u + v$$
 , $y = u - v$

$$\sin x - \sin y = \sin(u+v) - \sin(u-v)$$

$$= \cos u \sin v + \sin u \cos v - (\sin u \cos(-v) + \cos u \sin(-v))$$

$$= 2\cos u \sin v$$

$$= 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

11.7 Satz

Für $x \in \mathbb{R}$ gilt:

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \dots$$

$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \pm \dots$$

Die Reihen konvergieren absolut.

Weiter gilt

$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + r_{2n+2}(x)$$
$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + r_{2n+3}(x)$$

wobei $|r_m(x)| \leq rac{|x|^m}{m!}$ falls $|x| \leq m+1$, m=2n+2, 2n+3

Beweis:

• absolute Konvergenz: exp(x) ist Majorante

11 Winkelfunktion 55

 $\cos x = \operatorname{Re}(e^{ix}) = \operatorname{Re}\left(\lim_{n \to \infty} \sum_{k=0}^{n} \frac{(ix)^{k}}{k!}\right)$ $= \operatorname{Re}\left(\lim_{n \to \infty} \left(\sum_{k=0}^{2n+1} \frac{(ix)^{k}}{k!}\right)\right)$ $= \operatorname{Re}\left(\lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{(ix)^{2k}}{(2k)!} + \sum_{k=0}^{n} \frac{(ix)^{2k+1}}{(2k+1)!}\right)\right)$ $= \lim_{n \to \infty} \operatorname{Re}\left(\sum \dots + \sum \dots\right)$ $= \lim_{n \to \infty} \left(\operatorname{Re}\left(\sum_{k=0}^{n} \frac{i^{2k}x^{2k}}{(2k)!} + \sum_{k=0}^{n} \frac{i^{2k+1}x^{2k+1}}{(2k+1)!}\right)\right)$ $= \lim_{n \to \infty} \left(\operatorname{Re}\left(\sum_{k=0}^{n} \frac{(-1)^{k}x^{2k}}{(2k)!} + i\sum_{k=0}^{n} \frac{(-1)^{k}x^{2k+1}}{(2k+1)!}\right)\right)$ $= \lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{(-1)^{k}x^{2k}}{(2k)!} + i\sum_{k=0}^{n} \frac{(-1)^{k}x^{2k+1}}{(2k+1)!}\right)\right)$

ebenso für $\sin x$

Restglied:

$$|r_{2n+2}(x)| = \left| \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \right|$$
$$= \left| \frac{x^{2n+2}}{(2n+2)!} \right| \cdot |(1 - a_1 + a_2 - a_3 + \ldots)|$$

wo $0 \le a_k = a_{k-1} \frac{x^2}{(2n+2k+1)(2n+2k+2)} \le a_{k-1}, \text{ mit } k \ge 1 \text{ (durch simples Anstarren!)}$

Es gilt

$$0 \le (\underbrace{1 - a_1}_{\ge 0} + \underbrace{a_2 - a_3}_{\ge 0} + \underbrace{a_4 - a_5}_{\ge 0} + \ldots) \le 1$$

Es folgt

$$|r_{2n+2}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!} \ , \quad m=2n+3 \ {
m analog}$$

11.8 Proposition

$$\cos(2) \le -\frac{1}{3}$$

Beweis:

$$\cos(2) = 1 - \frac{2^2}{2} + r_4(2) = -1 + r_4(2)$$

56

$$|r_4(2)| \le \frac{2^4}{4!} = \frac{2}{3} \quad \Rightarrow \quad \cos(2) \le -\frac{1}{3}$$

11.9 Proposition

$$\forall x \in (0, 2] : \sin x > 0$$

Beweis:

$$\sin x = x + r_3(x)$$

$$|r_3(x)| < \frac{|x|^3}{3!} = |x| \frac{|x|^2}{3 \cdot 2} < |x| \quad \Rightarrow \quad \sin x > 0$$

11.10 Propostion

 \cos ist auf [0,2] streng monoton fallend.

Beweis:

Sei $0 \le y \le x \le 2$.

$$\cos x - \cos y = -2 \underbrace{\sin\left(\frac{x+y}{2}\right)}_{>0} \underbrace{\sin\left(\frac{x-y}{2}\right)}_{>0} < 0$$

 $\Rightarrow \cos \text{ auf } [0,2]$ streng monoton fallend

11.11 Definition und Satz

 \cos hat in (0,2) genau eine Nullstelle. Das Zweifache dieser Nullstelle nennen wir π .

Beweis:

$$\cos(0) = \text{Re}(e^{i0}) - 1$$
 , $\cos(2) < -\frac{1}{3}$

 \cos stetig $\Rightarrow \exists$ Nullstelle in (0,2)

 \cos ist streng monoton fallend $\Rightarrow \exists!$ Nullstelle

11.12 Bemerkung

(i)
$$e^{i\frac{\pi}{2}} = i$$

•
$$e^{i\pi}=-1$$
 (Eulersche Identität)

•
$$e^{i\frac{3\pi}{2}} = -i$$

•
$$e^{2\pi i} = 1$$

Beweis:

11 Winkelfunktion 57

(i)
$$\operatorname{Re}(e^{i\frac{\pi}{2}}) = \cos\frac{\pi}{2} = 0 \quad |e^{i\frac{\pi}{2}}| = 1 \Rightarrow \operatorname{Im}(e^{i\frac{\pi}{2}})^2 = 1$$

 $\mathrm{Im}(e^{i\frac{\pi}{2}})=\sin\frac{\pi}{2}>0$ Rest: Funktionalgleichung

(ii)
$$\cos(x+2\pi) = \cos x$$

•
$$\sin(x+2\pi) = \sin x$$

$$da \ e^{ix} = e^{i(x+2\pi)}$$

•
$$\cos(x+\pi) = -\cos x$$

•
$$\sin(x+\pi) = -\sin x$$

$$da e^{ix} = -e^{i(x+\pi)}$$

•
$$\cos(x + \frac{\pi}{2}) = -\sin x$$

•
$$\sin(x + \frac{\pi}{2}) = \cos x$$

da

$$\cos\left(x + \frac{\pi}{2}\right) + i\sin\left(x + \frac{\pi}{2}\right) = e^{i(x + \frac{\pi}{2})}$$

$$= e^{ix} \cdot e^{i\frac{\pi}{2}} = e^{ix} \cdot i = (\cos x + i\sin x) \cdot i$$

$$= -\sin x + i\cos x$$

Es genügt daher, das Verhalten von \cos auf $[0, \frac{\pi}{2}]$ zu kennen.

(iii) Für die Nullstellen gilt

$$\{x \in \mathbb{R} \mid \cos x = 0\} = \left\{\frac{\pi}{2} + k \cdot \pi \mid k \in \mathbb{Z}\right\}$$

$$\{x \in \mathbb{R} \mid \sin x = 0\} = \{k \cdot \pi \mid k \in \mathbb{Z}\}\$$

Beweis:

$$\begin{split} 0 &= \cos\frac{\pi}{2} = -1^k \cos(\frac{\pi}{2} + k \cdot \pi) \\ \Rightarrow & \text{ für } k \in \mathbb{Z} \text{ ist } \frac{\pi}{2} + k \cdot \pi \text{ Nullstelle von } \cos \theta \end{split}$$

 $11.11 \Rightarrow \cos$ hat keine Nullstellen in $\left[0, \frac{\pi}{2}\right)$

$$\cos x = \cos(-x) \ \Rightarrow \ \cos$$
 hat keine Nullstelle in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

 $\cos(x+k\cdot\pi)=(-1)^k\cos x\Rightarrow\cos$ hat keine Nullstellen in $\left(k\cdot\pi-\frac{\pi}{2},k\cdot\pi+\frac{\pi}{2}\right)$. Nullstellen von \sin analog.

(iv)
$$\forall x\in\mathbb{R}:\underbrace{e^{ix}=1}_{\Leftrightarrow\sin x=0\;\text{und}\;\cos x\geq 0}\Leftrightarrow x=k\cdot 2\pi\;\text{für ein}\;k\in\mathbb{Z}$$

(v) \cos ist auf dem $[0,\pi]$ streng monoton fallend und auf $[\pi,2\pi]$ streng monoton wachsend. \sin ist auf $[-\frac{\pi}{2},\frac{\pi}{2}]$ streng monoton wachsend und auf $[\frac{\pi}{2},\frac{3\pi}{2}]$ streng monoton fallend.

Beweis:

 \cos streng monoton fallend auf $[0,\frac{\pi}{2}]$ nach 11.11

$$\cos x = -\cos(x-\pi) = -\underbrace{\cos(\pi-x)}_{\text{streng monoton wachsend auf }[\frac{\pi}{2},\pi]}$$

$$\cos x \begin{cases} \geq 0, & x \in [0, \frac{\pi}{2}] \\ \leq 0, & x \in [\frac{\pi}{2}, \pi] \end{cases}$$

 $\Rightarrow \cos$ streng monoton fallend auf $[0,\pi]$

$$\cos 0 = 1$$
 $\cos \pi = -1$ $\sin -\frac{\pi}{2} = -1$ $\sin \frac{\pi}{2} = 1$

stetig auf Intervallen

 $\Rightarrow \cos: [0,\pi] \to [-1,1]$ besitzt stetige Umkehrfunktion

$$\arccos: [-1,1] \rightarrow [0,\pi]$$

 $\sin:[-\frac{\pi}{2},\frac{\pi}{2}]\to[-1,1]$ besitzt stetige Umkehrfunktion

$$\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$$

(vi)

11 Winkelfunktion 59

11.13 Satz: Polarzerlegung

Jedes $0 \neq z \in \mathbb{C}$ lässt sich eindeutig in der Form

$$z = r \cdot e^{i\varphi}$$
 , $r > 0$, $\varphi \in [0, 2\pi)$

schreiben. Insbesondere gilt: Die Abbildung

$$[0,2\pi) \to \{z \mid |z|=1\} \subset \mathbb{C}$$

ist bijektiv.

Beweis:

 $\overline{\text{Setze }r}:=|z| \text{ und }w:=\tfrac{z}{r}\text{, dann }|w|=\left|\tfrac{z}{r}\right|=\tfrac{|z|}{|r|}=1 \text{ und } \mathrm{Re}(w)\in[-1,1]\text{. Setze }$

$$\varphi := \begin{cases} \arccos\big(\operatorname{Re}(w)\big) \in [0,\pi], & \text{falls } \operatorname{Im}(w) \geq 0 \\ \arccos\big(-\operatorname{Re}(w)\big) + \pi \in (\pi,2\pi), & \text{falls } \operatorname{Im}(w) < 0 \end{cases}$$

Dann gilt

$$\begin{split} e^{i\varphi} &= \cos \varphi + i \sin \varphi \\ &= \begin{cases} \operatorname{Re}(w) + i \operatorname{Im}(w), & \text{falls } \varphi \in [0,\pi], \operatorname{Im} w \geq 0 \\ \operatorname{Re}(w) + i \operatorname{Im}(w), & \text{falls } \varphi \in (\pi, 2\pi), \operatorname{Im}(w) < 0 \end{cases} \\ &= w \end{split}$$

Nebenrechnung:

$$\cos(\arccos(-\operatorname{Re}(w)) + \pi) = -\cos(\arccos(-\operatorname{Re}(w))) = -(-\operatorname{Re}(w)) = \operatorname{Re}(w)$$

$$\Rightarrow r \cdot e^{i\varphi} = r \cdot w = z$$

Eindeutigkeit: Sei $z=r\cdot e^{i\varphi}=s\cdot e^{i\psi}$, wo r,s>0 und $\varphi,\psi\in[0,2\pi)$

$$\Rightarrow r = |r| \cdot |e^{i\varphi}| = |z| = |s| \cdot |e^{i\psi}| = s$$

$$\begin{array}{l} 1 = \frac{z\overline{z}}{r \cdot s} = e^{i\varphi} \cdot e^{-i\psi} = e^{i(\varphi - \psi)} \\ \varphi - \psi \stackrel{11.12}{=} k \cdot 2\pi \text{ für ein } k \in \mathbb{Z} \text{ , } \varphi, \psi \in [0, 2\pi) \Rightarrow k = 0 \Rightarrow \varphi = \psi \end{array} \qquad \square$$

60 Il Winkelfunktion

11.14 Bemerkung

$$z=r\cdot e^{i\varphi}, w=s\cdot e^{i\psi} \; \mathrm{dann}$$

$$z\cdot w = r\cdot s\cdot e^{i(\varphi+\psi)}$$

"Beträge multiplizieren, Winkel addieren"

11.15 Corollar

Für $n\in\mathbb{N}^*$ besitzt die Gleichung $z^n=1$ genau n Lösungen, $e^{i\frac{2\pi k}{n}}$, $k=0,1,\dots,n-1$

Beweis:

$$e^{irac{2\pi k}{n}}$$
 ist Lösung für $k=0,1,\ldots,n-1$. Sei nun z eine Lösung. Dann $z=re^{iarphi}$, $r=|z|=1$.

$$2=z^n=e^{i\varphi n}\Rightarrow \varphi\cdot n=k\cdot 2\pi$$
 für ein $k\in\mathbb{Z}$

$$\Rightarrow \varphi = \frac{2\pi k}{n}$$
 für eine $k \in \mathbb{Z}$, $0 \leq k \leq n-1$

11 Winkelfunktion 61

12 Differentiation

12.1 Definiton

Sei $D \subset \mathbb{R}$, $f:D \to \mathbb{R}$ eine Funktion und $\overline{x} \in D$ ein Punkt, so dass eine Folge in D mit Limes \overline{x} existiert.

f heißt differenzierbar in \overline{x} falls der Limes

$$f'(\overline{x}) := \lim_{\substack{x \to \overline{x} \\ x \in D \setminus \{\overline{x}\}}} \frac{f(x) - f(\overline{x})}{x - \overline{x}} \in \mathbb{R}$$

existiert. $f'(\overline{x})$ heißt Ableitung von f im Punkt \overline{x} , wir schreiben auch

$$\frac{df}{dx}(\overline{x})$$
 , $Df(\overline{x})$

d.h. für jede Folge $(x_n)_{n\in\mathbb{N}}\subset D\backslash\{\overline{x}\}$ mit $x_n\xrightarrow{n\to\infty}\overline{x}$, konvergiert

$$\left(\frac{f(x_n) - f(\overline{x})}{x_n - \overline{x}}\right)_{n \in \mathbb{N}}$$

gegen ein und denselben Grenzwert.

12.2 Bemerkung

- (i) Falls $D \subset \mathbb{R}$ ein echtes Intervall ist, so existiert für jedes $\overline{x} \in D$ eine Folge in D mit Limes \overline{x} .
- (ii) Falls f in \overline{x} differenzierbar ist, so gilt

$$f'(\overline{x}) = \lim_{\substack{h \to 0 \\ h \neq 0 \\ (\overline{x} + h \in D)}} \frac{f(\overline{x} + h) - f(\overline{x})}{h}$$

(iii)

(iv) D, f, \overline{x} wie in 12.1

f differenzierbar in \overline{x} , genau dann, wenn $\varphi:D\to\mathbb{R}$ existiert mit

a) φ ist stetig in \overline{x}

b)
$$f(x) = f(\overline{x}) + (x - \overline{x})\varphi(x)$$
, $x \in D$

Beweis:

← Übung!

⇒ Übung mit

$$\varphi(x) := \begin{cases} \frac{f(x) - f(\overline{x})}{x - \overline{x}}, & \text{ falls } x \in D \backslash \{\overline{x}\} \\ f'(\overline{x}), & \text{ falls } x = \overline{x} \end{cases}$$

12.3 Beispiel

(i) $f(x) = x^n$ ($n \in \mathbb{N}$) ist auf \mathbb{R} differenzierbar.

 $n \in \mathbb{N}^*$:

$$\frac{f(x) - f(\overline{x})}{x - \overline{x}} = \frac{x^n - \overline{x}^n}{x - \overline{x}} = x^{n-1} + x^{n-2}\overline{x} + \dots + x\overline{x}^{n-2} + \overline{x}^{n-1}$$

 $x\to \overline{x}:\quad n\cdot \overline{x}^{n-1}$

n=0:

$$\frac{f(x) - f(\overline{x})}{x - \overline{x}} = \frac{1 - 1}{x - \overline{x}} = 0 \to 0$$

(ii) $f(x) = e^x$

$$\frac{f(\overline{x}+h)-f(\overline{x})}{h} = \frac{e^{\overline{x}+h}-e^{\overline{x}}}{h} = e^{\overline{x}} \cdot \frac{e^h-1}{h} \xrightarrow[\text{wegen 9.25 (v)}]{h \to 0} e^{\overline{x}}$$

(iii) $f(x) = x^{-1}$ ist auf $\mathbb{R} \setminus \{0\}$ differenzierbar

$$\begin{split} \frac{f(\overline{x}+h)-f(\overline{x})}{h} &= \frac{1}{h}(\frac{1}{\overline{x}+h}-\frac{1}{x}) \\ &= \frac{1}{h}\frac{\overline{x}-(\overline{x}+h)}{(\overline{x}+h)\overline{x}} \\ &= -\frac{1}{(\overline{x}+h)\overline{x}}\xrightarrow{h\to 0} -\frac{1}{\overline{x}^2} = f'(\overline{x}) \end{split}$$

(iv) $f(x) = \sin x$

$$\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\sin h}{h} - 1 = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\sin h - h}{h}$$

$$= \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{h + r_3(h) - h}{h}$$

$$= \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{r_3(h)}{h} = 0$$

Restgliedabschätzung:

$$\left| \frac{r_3(h)}{h} \right| = \frac{|r_3(h)|}{|h|} \le \frac{\frac{|h|^3}{3!}}{|h|} = \frac{|h|^2}{6} \quad \text{für } |h| \le 4$$

Es folgt (mit den Additionstheoremen 11.6)

$$\begin{split} \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\sin(\overline{x} + h) - \sin(\overline{x})}{h} &= \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{2\cos(\frac{\overline{x} + h + \overline{x}}{2})\sin(\frac{\overline{x} + h - \overline{x}}{2})}{h} \\ &= \lim_{\substack{h \to 0 \\ h \neq 0}} \cos\left(\frac{\overline{x} + h + \overline{x}}{2}\right) \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\sin(\frac{\overline{x} + h - \overline{x}}{2})}{\frac{h}{2}} \\ &= \lim_{\substack{h \to 0 \\ h \neq 0}} \cos\left(\overline{x} + \frac{h}{2}\right) \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\sin\frac{h}{2}}{\frac{h}{2}} \\ &= \cos(\overline{x}) \cdot 1 = \cos\overline{x} = \sin'(\overline{x}) \end{split}$$

(v) Analog: $\cos'(\overline{x}) = -\sin(\overline{x})$, $\overline{x} \in \mathbb{R}$

12.4 Satz

 $f,g:D o\mathbb{R}$ differenzierbar in $\overline{x}\in D$, $\lambda,\mu\in\mathbb{R}$. Dann sind $\lambda f+\mu g$ und $f\cdot g$ differenzierbar in \overline{x} und

$$(\lambda \cdot f + \mu \cdot g)'(\overline{x}) = \lambda \cdot f'(\overline{x}) + \mu \cdot g'(\overline{x})$$
$$(f \cdot g)'(\overline{x}) = f'(\overline{x}) \cdot g(\overline{x}) + f(\overline{x}) \cdot g'(\overline{x})$$

Falls $g(x) \neq 0$ für alle $x \in D$, so ist $\frac{f}{g}$ in \overline{x} differenzierbar mit

$$\left(\frac{f}{g}\right)'(\overline{x}) = \frac{f'(\overline{x})g(\overline{x}) - f(\overline{x})g'(\overline{x})}{g(\overline{x})^2}$$

Beweis:

$$\begin{split} &\frac{(\lambda \cdot f + \mu \cdot g)(\overline{x} + h) - (\lambda \cdot f + \mu \cdot g)(\overline{x})}{h} \\ &= \lambda \frac{f(\overline{x} + h) - f(\overline{x})}{h} + \mu \frac{g(\overline{x} + h) - g(\overline{x})}{h} \\ &\xrightarrow{h \to 0} \lambda f'(\overline{x}) + \mu g'(\overline{x}) \end{split}$$

$$\begin{split} \frac{(fg)(\overline{x}+h)-(fg)(\overline{x})}{h} &= \frac{f(\overline{x}+h)g(\overline{x}+h)-f(\overline{x})g(\overline{x})}{h} \\ &= \frac{f(\overline{x}+h)-f(\overline{x})}{h} \cdot g(\overline{x}+h)+f(\overline{x}) \cdot \frac{g(\overline{x}+h)-g(\overline{x})}{h} \\ &\xrightarrow{h \to 0} f'(\overline{x}) \cdot g(\overline{x})+f(\overline{x})g'(\overline{x}) \end{split}$$

Haben benutzt: g ist stetig in \overline{x} nach Übung. (nach 12.2(iv) gilt

$$g(x) = g(\overline{x}) + (x - \overline{x})\varphi(x)$$

 $\mathsf{mit}\ \varphi:D\to\mathbb{R}\ \mathsf{stetig}\ \mathsf{in}\ \overline{x})$

$$\frac{\frac{f}{g}(\overline{x}+h) - \frac{f}{g}(\overline{x})}{h} = \frac{1}{g(\overline{x}+h)g(\overline{x})} \left(\frac{(f(\overline{x}+h) - f(\overline{x}))g(\overline{x})}{h} - \frac{f(\overline{x})(g(\overline{x}+h) - g(\overline{x}))}{h} \right)$$

$$\xrightarrow{h \to 0} \frac{1}{g(\overline{x})^2} \cdot (f'(\overline{x}) \cdot g(\overline{x}) - f(\overline{x})g'(\overline{x}))$$

64 12 Differentiation

12.5 Beispiel

(i)
$$f(x) = x^{-n} = \frac{1}{x^n}, n \in \mathbb{N}$$

$$f'(x) = \frac{0 \cdot x^n - 1 \cdot n \cdot x^{n-1}}{(x^n)^2} = -n \cdot x^{n-1-2n} = -nx^{-n-1}$$

also
$$\frac{dx^k}{dx} = kx^{k-1}$$
 für alle $k \in \mathbb{Z}$

(ii) $\tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ definiert durch $\tan(x) = \frac{\sin x}{\cos x}$

$$\tan'(x) = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}$$

12.6 Satz

 $I \subset \mathbb{R}$ echtes Intervall, $f: I \to \mathbb{R}$ stetig und streng monoton. Sei $g: f(I) \to I$ die Umkehrfunktion (9.18).

Falls f in $\overline{x} \in I$ differenzierbar ist mit $f'(\overline{x}) \neq 0$, so ist g in $f(\overline{x}) \in f(I)$ differenzierbar mit

$$g'(f(\overline{x})) = \frac{1}{f'(\overline{x})}$$

Falls also f in I differenzierbar ist mit $f'(x) \neq 0$ für alle $x \in I$, so ist g differenzierbar in f(I) und

$$g'(y) = \frac{1}{f'(g(y))}$$
 , $y \in f(I)$

Beweis:

Wollen:

$$\lim_{\substack{y \to f(\overline{x}) \\ y \neq f(\overline{x})}} \frac{g(y) - g(f(\overline{x}))}{y - f(\overline{x})}$$

Sei $(y_n)_{n\in\mathbb{N}}\subset f(I)\setminus\{f(\overline{x})\}$ eine Folge mit $\lim_{n\to\infty}y_n=f(\overline{x})=:\overline{y}$. g ist stetig nach 9.18, also

$$\overline{x} = g \circ f(\overline{x}) = g(\overline{y}) = g\left(\lim_{n \to \infty} y_n\right) = \lim_{n \to \infty} g(y_n)$$

 $g(y_n) \neq g(\overline{y})$ da g bijektiv

$$g'(f(\overline{x})) = \lim_{n \to \infty} \frac{g(y_n) - g(\overline{y})}{y_n - \overline{y}} = \lim_{n \to \infty} \frac{1}{\frac{y_n - \overline{y}}{g(y_n) - g(\overline{y})}}$$

$$= \lim_{n \to \infty} \frac{1}{\frac{f(g(y_n)) - f(g(\overline{y}))}{g(y_n) - g(\overline{y})}}$$

$$= \frac{1}{f'(g(\overline{y}))}$$

$$= \frac{1}{f'(\overline{x})}$$

12.7 Beispiel

(i)
$$\ln'(y) = \frac{1}{\exp(\ln(y))} = \frac{1}{y}$$

(ii) Für $y \in (-1,1)$ gilt

$$\arcsin'(y) = \frac{1}{\sin'(\arcsin y)} = \frac{1}{\cos(\underbrace{\arcsin y}_{\in(-\frac{\pi}{2},\frac{\pi}{2})})} = \frac{1}{\sqrt{1-\sin^2(\arcsin y)}} = \frac{1}{\sqrt{1-y^2}}$$

Nebenrechnung $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$\cos(x) = |\cos(x)| = \sqrt{\cos^2(x)} = \sqrt{1 - \sin^2(x)}$$

(iii) $\arctan: (-\infty, \infty) \to (-\frac{\pi}{2}, \frac{\pi}{2})$ Umkehrfunktion von tan. (Übung!)

$$\arctan'(y) = \frac{1}{1+u^2}$$

12.8 Satz (Kettenregel)

Seien $f:D\to\mathbb{R}$ und $g:E\to\mathbb{R}$ Funktionen mit $f(D)\subset E$. Falls f in $\overline{x}\in D$ und g in $f(\overline{x})\in E$ differenzierbar sind, so ist $g\circ f$ differenzierbar in \overline{x} und es gilt

$$(g \circ f)'(\overline{x}) = g'(f(\overline{x})) \cdot f'(\overline{x})$$

Beweis:

Sei $\overline{y} := f(\overline{x})$. Definiere $\varphi : E \to \mathbb{R}$ durch

$$\varphi(y) := \begin{cases} \frac{g(y) - g(\overline{y})}{y - \overline{y}}, & \text{ falls } y \neq \overline{y} \\ g'(\overline{y}), & \text{ falls } y = \overline{y} \end{cases}$$

Dann ist φ stetig in \overline{y} und es gilt

$$q(y) - q(\overline{y}) = \varphi(y) \cdot (y - \overline{y}) \quad , y \in E$$

Wir erhalten

$$\begin{split} \frac{g \circ f(x) - g \circ f(\overline{x})}{x - \overline{x}} &= \frac{g\big(f(x)\big) - g\big(f(\overline{x})\big)}{x - \overline{x}} \\ &= \varphi(f(x)) \frac{f(x) - f(\overline{x})}{x - \overline{x}} \\ &\xrightarrow{x \to \overline{x}} \underbrace{\varphi\big(f(\overline{x})\big)}_{f \text{ stetig in } \overline{x}} \cdot f'(\overline{x}) = g'\big(f(\overline{x})\big) \cdot f'(\overline{x}) \end{split}$$

12.9 Beispiel

(i) $a \in \mathbb{R}$ $f : \mathbb{R}_+^* \to \mathbb{R}$ $x \mapsto x^a = \exp(a \ln x)$

$$f'(x) = \exp'(a \ln x) \cdot \frac{d(a \ln x)}{dx}$$
$$= \exp(a \ln x) \cdot a \cdot x^{-1}$$
$$= ax^{a-1}$$

(ii) allgemein:

$$\frac{d e^{f(x)}}{dx} = f'(x)e^{f(x)}$$

12.10 Definition

Sei $f:D\to\mathbb{R}$ in D differenzierbar. Dann ist $f':D\to\mathbb{R}$ eine Funktion. Falls f' in D differenzierbar ist, so heißt f in D <u>zweimal differenzierbar</u> und f''(x):=(f')'(x). Wir schreiben auch $D^2f(x)$, $\frac{d^2f}{dx^2}(x)$, $f^{(2)}(x)$.

f heißt $\underline{k\text{-mal differenzierbar}}$ in D, falls f (k-1)-mal differenzierbar ist und $f^{(k-1)}$ differenzierbar ist.

$$f^{(k)}(x) := (f^{(k-1)})'(x)$$
, $D^k f(x)$, $\frac{d^k f}{dx^k}(x)$

f heißt $\underline{\infty ext{-oft differenzierbar}}$ oder glatt, falls f $k ext{-mal diffrenzierbar}$ ist für jedes $k\in\mathbb{N}$

$$f^{(0)}(x) = f(x)$$

12.11 Beispiel

Polynome, e^x , $\sin(x)$, $\cos(x)$, ...sind glatt.

$$f(x) := \begin{cases} x^2, & \text{falls } x > 0 \\ -x^2, & \text{falls } x < 0 \end{cases}$$

ist 1-mal differenzierbar, aber nicht 2-mal denn f'(x) = 2|x|

12.12 Definition

 $f:D\to\mathbb{R}$ hat in $\overline{x}\in D$ ein **lokales Maximum (Minimum)**, falls ein $\varepsilon>0$ existiert, so dass

$$f(x) \leq f(\overline{x}) \forall x \in D \cap (\overline{x} - \varepsilon, \overline{x} + \varepsilon)$$

D.h.

$$f\mid_{D\cap(\overline{x}-\varepsilon,\overline{x}+\varepsilon)}$$

besitzt Maximum (Minimum) in \overline{x} .

12 Differentiation 67

12 Differentiation

12.13 Satz

 $f:(a,b)\to\mathbb{R}$ besitze in $\overline{x}\in(a,b)$ ein lokales **Extremum** (d.h. Maximum oder Minimum) und sei in \overline{x} differenzierbar. Dann gilt $f'(\overline{x})=0$.

Beweis:

O.E.d.A besitzt f in \overline{x} ein lokales Maximum.

Dann existiert ein $\varepsilon>0$ so , dass $f(x)\leq f(\overline{x})$ für alle $x\in(\overline{x}-\varepsilon,\overline{x}+\varepsilon)$. Es folgt

$$0 \ge \lim_{\substack{x \searrow \overline{x} \\ x \ne \overline{x}}} \frac{f(x) - f(\overline{x})}{x - \overline{x}} = \lim_{\substack{x \to \overline{x} \\ x \ne \overline{x}}} \frac{f(x) - f(\overline{x})}{x - \overline{x}}$$
$$= \lim_{\substack{x \searrow \overline{x} \\ x \ne \overline{x}}} \frac{f(x) - f(\overline{x})}{x - \overline{x}}$$
$$\ge 0$$

12.14 Bemerkung

 $f'(\overline{x})=0$ ist notwendig, aber nicht hinreichend für Existenz eines lokalen Extremums. zB $f(x)=x^3$, f'(0)=0

12.15 Satz von Rolle

Sei a < b und $f: [a,b] \to \mathbb{R}$ stetig mit f(a) = f(b). Sei f in (a,b) differenzierbar. Dann exisitiet $\overline{x} \in (a,b)$ mit $f'(\overline{x}) = 0$

Beweis:

Trivial falls f konstant. Andernfalls existiert ein $x_0 \in (a,b)$ mit $f(x_0) > f(a)$ oder $f(x_0) < f(a) = f(b)$. f stetig auf [a,b] besitzt also Maximum und Minimum (nach 9.12). O.E. sei das Maximum von f größer als $f(x_0) > f(a) = f(b)$. Das Maximum werde in $\overline{x} \in (a,b)$ angenommen. $\Rightarrow f$ hat in $\overline{x} \in (a,b)$ ein lokales Maximum. $\Rightarrow f'(\overline{x}) = 0$

12.16 Mittelwertsatz

Sei a < b und $f : [a,b] \to \mathbb{R}$ stetig. Sei f in (a,b) differenzierbar. Dann existiert ein $\overline{x} \in (a,b)$ mit

$$\frac{f(b) - f(a)}{b - a} = f'(\overline{x})$$

Beweis:

Definiere: $F:[a,b]\to\mathbb{R}$ durch $F(x)=f(x)-\frac{f(b)-f(a)}{b-a}\cdot(x-a)$. Dann ist F stetig auf [a,b] und differenzierbar auf (a,b). Außerdem gilt F(a)=f(a)=F(b).

⇒ Rolle

$$\exists \ \overline{x} \in (a,b) \ \mathrm{mit} \ f'(\overline{x}) = \frac{f(b) - f(a)}{b - a} = F'(\overline{x}) = 0$$

12.17 Korollar

Sei a < b, $f : [a, b] \to \mathbb{R}$ stetig auf [a, b], differenzierbar auf (a, b) mit f'(x) = 0 für alle $x \in (a, b)$. Dann ist f konstant.

Beweis:

Für $a \le x < y \le b$ gilt

$$\frac{f(y) - f(x)}{y - x} = f'(\overline{x}) = 0 \implies f(y) = f(x)$$

für ein $\overline{x} \in (x,y)$

12.18 Korollar

Sei $\lambda \in \mathbb{R}$ und $f : \mathbb{R} \to \mathbb{R}$ differenzierbar mit $f'(x) = \lambda \cdot f(x)$. Dann gilt

$$f(x) = f(0) \cdot e^{\lambda \cdot x}$$

Beweis:

Setze: $F(x) := f(x) \cdot e^{-\lambda x}$, dann ist F differenzierbar mit

$$F'(x) = f'(x) \cdot e^{-\lambda x} + f(x)(-\lambda e^{-\lambda x}) = 0$$

 $\Rightarrow F$ ist konstant mit

$$f(x) \cdot e^{-\lambda x} = F(x) = F(0) = f(0)$$

Multiplizieren mit $e^{-\lambda x}$

12.19 Satz (l'Hospital)

Seien $f, g(a, b) \to \mathbb{R}$ differenzierbar und $g'(x) \neq 0$ für alle $x \in (a, b)$. Es gelte entweder oder

a)
$$\lim_{x\searrow a} f(x) = \lim_{x\searrow a} g(x) = 0$$

b)
$$\lim_{x \searrow a} f(x) = \lim_{x \searrow a} g(x) = \infty$$

12 Differentiation 69

Falls $\lim_{x\searrow a} \frac{f'(x)}{g'(x)}$ existiert, so auch $\lim_{x\searrow a} \frac{f(x)}{g(x)}$ und

$$\lim_{x \searrow a} \frac{f'(x)}{g'(x)} = \lim_{x \searrow a} \frac{f(x)}{g(x)}$$

Ebenso für $\lim_{x \nearrow b} \dots$

Eine Verallgemeinerung des Mittelwertsatzes. liefert

$$\frac{f}{g}$$

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{\frac{f(b) - f(a)}{b - a}}{\frac{g(b) - g(a)}{b - a}} = \frac{f'(\overline{x})}{g'(\overline{x})}$$

12.20 Beispiel

(i) $\lim_{x \to \infty} \frac{e^{\alpha x}}{x}$ für $\alpha > 0$ Bedingung b) von obigem Satz

$$= \lim_{x \to \infty} \frac{\alpha \cdot e^{\alpha x}}{1} = \infty$$

 $\alpha, \beta > 0$

$$\lim_{x \to \infty} \frac{e^{\alpha x}}{x^{\beta}} = \lim_{x \to \infty} \left(\frac{e^{\frac{\alpha}{\beta}x}}{x}\right)^{\beta} = \infty$$

ebenso:

$$\lim_{x\to\infty}\frac{e^{\alpha x}}{|p(x)|}\ \ ,\ \ a>0\ \ ,\ \ p\ {\rm ein\ Polynom}$$

(ii)

$$\lim_{x \searrow 0} x \ln(x) = \lim_{x \searrow 0} -\frac{-\ln x}{\frac{1}{x}}$$

$$= -\lim_{x \searrow 0} -\frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \searrow 0} x = 0$$

Folgerung:

$$\lim_{x \searrow 0} x^x = \lim_{x \searrow 0} e^{x \ln x} = \exp\left(\lim_{x \searrow 0} x \ln x\right) = e^0 = 1$$

13 Integration

13.1 Definition

 $f:[a,b]
ightarrow \mathbb{R}$ heißt **Treppenfunktion**, falls eine Zerlegung

$$a = x_0 < x_1 < \ldots < x_n = b$$

existiert, sodass für jedes $k=1,\ldots,n$ $f\mid_{(x_{k-1},x_k)}$ konstant ist.

 $\mathcal{T}([a,b]) := \{ \text{ Treppenfunktionen auf } [a,b] \}$

13.2 Bemerkung

 $\mathcal{T}([a,b])$ ist ein \mathbb{R} -Vektrorraum.

Beweis:

 $f,g\in\mathcal{T}([a,b])$, $\lambda,\mu\in\mathbb{R}$

$$a = x_0 < x_1 < \ldots < x_n = b \quad \text{Zerlegung für } f$$

$$a = y_0 < y_1 < \ldots < y_m = b \quad \text{Zerlegung für } g$$

Dann existiert eine Zerlegung

$$a = z_0 < z_1 < \ldots < z_q = b$$

so dass für jedes $l \in \{1,\ldots,q\}$ $k \in \{1,\ldots,n\}$ und $r \in \{1,\ldots,m\}$ existieren mit $(z_{l-1},z_l) \subset (x_{k-1},x_k) \cap (y_{r-1},y_r)$.

$$\{x_0,\ldots,x_n\}\cup\{y_0,\ldots,y_m\}=\underbrace{\{z_0,\ldots,z_q\}}_{\text{aufsteigend}}$$

Dann ist aber $(\lambda f + \mu g)\mid_{(z_{l-1},z_l)} = \lambda f\mid_{(z_{l-1},z_l)} + \mu g\mid_{(z_{l-1},z_l)}$ konstant.

13.3 Definition und Proposition

Sei $f \in \mathcal{T}([a,b])$. Wir definieren das **Integral**

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \sum_{k=1}^{n} \gamma_{k} \cdot (x_{k} - x_{k-1}),$$

wo

$$a = x_0 < x_1 < \ldots < x_n = b$$

Eine Zerlegung ist, so dass

$$f|_{(x_{k-1},x_k)} \equiv \gamma_k$$
 , $k \in \{1,\ldots,n\}$

 $\int_a^b f(x) \, \mathrm{d}x$ ist unabhängig von der Zerlegung für f

Beweis:

Sei $a=x_0 < x_1 < \ldots < x_n = b$ bzw $a=y_0 < y_1 < \ldots < y_m = b$ Zerlegungen für f mit $f\mid_{x_{k-1},x_k} \equiv \gamma_k$ bzw $g\mid_{y_{r-1},r_k} \equiv \delta_k$.

Sei $a=z_0 < z_1 < \ldots < z_q = b$ eine Zerlegung, so dass für jedes $l \in \{1,\ldots,q\}$ $k_l \in \{1,\ldots,n\}$ und $r_l \in \{1,\ldots,m\}$ existieren mit

$$(z_{l-1}, z_l) \subset (x_{k_l-1}, k_{k_l}) \cap (y_{r_l-1}, y_{r_l})$$

 $\{z_0, \dots, z_q\} \supset \{x_1, \dots, x_n\} \cup \{y_0, \dots, y_m\}$

Dann gilt

$$\{1,\ldots,q\} = \bigcup_{k=1}^{n} \{l \mid k_l = k\}$$

also auch

$$\bigcup_{\{l|k_l=k\}} [z_{l-1}, z_l] = [x_{k-1}, x_k]$$

und

$$\sum_{\{l|k_l=k\}} (z_l - z_{l-1}) = x_k - x_{k-1}$$

Setze: $\zeta_l := \gamma_{k_l} (= \delta_{r_l})$

$$\sum_{l \in \{1, \dots, q\}} \zeta_l(z_l - z_{l-1}) = \sum_{k \in \{1, \dots, n\}} \sum_{\{l \mid k_l = k\}} \zeta_l(z_l - z_{l-1})$$

$$= \sum_{k \in \{1, \dots, n\}} \left(\sum_{\{l \mid k_l = k\}} \gamma_{k_l}(z_l - z_{l-1}) \right)$$

$$= \sum_{k \in \{1, \dots, n\}} \left(\sum_{\{l \mid k_l = k\}} \gamma_k(z_l - z_{l-1}) \right)$$

$$= \sum_{k \in \{1, \dots, n\}} \gamma_k \cdot \sum_{\{l \mid k_l = k\}} (z_l - z_{l-1})$$

$$= \sum_{k \in \{1, \dots, n\}} \gamma_k \cdot (x_k - x_{k-1})$$

Ebenso: $\sum_{l \in \{1,...,q\}} \zeta_l(z_l - z_{l-1}) = \sum_{r \in \{1,...,m\}} \delta_r(y_r - y_{r-1})$

13.4 Propostion

 $f,g \in \mathcal{T}([a,b])$, $\lambda,\mu \in \mathbb{R}$

(i)

$$\int_{a}^{b} (\lambda f + \mu g)(x) dx = \lambda \cdot \int_{a}^{b} f(x) dx + \mu \cdot \int_{a}^{b} g(x) dx$$

(ii)

$$\left| \int_a^b f(x) \mathrm{d}x \right| \leq \int_a^b |f(x)| \mathrm{d}x \leq (b-a) \cdot \sup \left\{ |f(x)| \mid x \in [a,b] \right\}$$

(iii)

$$f \le g \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Beweis:

Sei $a=z_0<\ldots< z_n=b$ Zerlegung für f und g (wie 13.3) mit $f\mid_{z_{k-1},z_k}\equiv \gamma_k$ bzw $g\mid_{z_{k-1},z_k}\equiv \delta_k$

(i)

$$\int_{a}^{b} (\lambda f + \mu g)(x) dx = \sum_{k=1}^{n} (\lambda \gamma_{k} + \mu \delta_{k}) \cdot (z_{k} - z_{k-1})$$

$$= \lambda \cdot \sum_{k=1}^{n} \gamma_{k} \cdot (z_{k} - z_{k-1}) + \mu \sum_{k=1}^{n} \delta_{k} \cdot (z_{k} - z_{k-1})$$

$$= \int_{a}^{b} f(x) dx$$

$$= \int_{a}^{b} f(x) dx$$

- (ii) analog
- (iii) analog

13.5 Definition

Sei M eine Menge. Für $f:M\to\mathbb{K}$ beschränkt definieren wir

$$||f||_{\infty,M} := \sup \left\{ |f(x)| \mid x \in M \right\} \in \mathbb{R}_+$$

Wir schreiben oft auch $||f||_{\infty}$

13.6 Proposition

 $||.||_{\infty}$ ist eine **Norm**, d.h.

(i)
$$||f||_{\infty} \ge 0$$
 und $||f||_{\infty} = 0$ genau dann wenn $f = 0$

(ii)
$$||\lambda \cdot f||_{\infty} = |\lambda| \cdot ||f||_{\infty}$$

(iii)
$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

Beweis: (iii)

$$\begin{split} \sup\{|(f+g)(x)| \mid x \in M\} &= \sup\{|f(x)+g(x)| \mid x \in M\} \\ &\leq \sup\{|f(x)|+|g(x)| \mid x \in M\} \\ &\leq \sup\{|f(x)|+|g(y)| \mid x,y \in M\} \\ &= \sup\{|f(x)| \mid x \in M\} + \sup\{|g(y)| \mid y \in M\} \\ &= ||f||_{\infty} + ||g||_{\infty} \end{split}$$

Rest Eigenschaften von |.|

13.7 Definition

 $f:[a,b]\to\mathbb{R}$ heißt **Regelfunktion**, falls gilt:

$$\forall \varepsilon > 0 \ \exists g \in \mathcal{T}([a, b]) : ||f - g||_{\infty} < \varepsilon$$

 $\mathcal{R}([a,b]) := \{ \text{Regelfunktionen auf } [a,b] \}$

13.8 Proposition

Für $f:[a,b] \to \mathbb{R}$ sind äquivalent:

(i)
$$f \in \mathcal{R}([a,b])$$

(ii)
$$\forall \overline{x} \in [a,b)$$
 existiert $\lim_{\substack{x \searrow \overline{x} \\ x \neq \overline{x}}} f(x)$ und $\forall \overline{x} \in (a,b]$ existiert $\lim_{\substack{x \nearrow \overline{x} \\ x \neq \overline{x}}} f(x)$

Beweis: (Skizze) (ii) \Rightarrow (i)

Annahme $f \notin \mathcal{R}([a,b])$. Finde $\varepsilon > 0$ und Intervallschachtelung $[a_n,b_n], n \in \mathbb{N}$ mit $\not\exists g \in \mathcal{T}([a_n,b_n])$ mit $\Big|\Big|f\Big|_{[a_n,b_n]} - g\Big|\Big|_{\infty,[a_n,b_n]} < \varepsilon$

$$\Longrightarrow \exists \, \overline{x} \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$$

Wegen (ii) existiert $N \in \mathbb{N}$ mit

$$\left| f(t) - \lim_{\substack{x \nearrow \overline{x} \\ x \neq \overline{x}}} f(x) \right| < \varepsilon \quad , \quad t \in [a_N, \overline{x})$$

$$\left| f(t) - \lim_{\substack{x \searrow \overline{x} \\ x \neq \overline{x}}} f(x) \right| < \varepsilon \quad , \quad t \in (\overline{x}, b_N]$$

$$\not \not z \text{ zu IVS}$$

(i) \Rightarrow (ii) Übung!

13.9 Beispiel

(i)
$$f:[a,b]\to\mathbb{R}$$
 stetig $\Rightarrow f\in\mathcal{R}([a,b])$

(ii)
$$f:[a,b] \to \mathbb{R}$$
 monoton $\Rightarrow f \in \mathcal{R}([a,b])$ Übung!

(iii)
$$\chi_{[0,1]\cap\mathbb{Q}}\not\in\mathcal{R}([a,b])$$
 , wo

$$\chi_{[0,1]\cap\mathbb{Q}}(x) = \begin{cases} 1, & \text{falls } x \in [0,1] \cap \mathbb{Q} \\ 0, & \text{sonst} \end{cases}$$

Übung!

13.10 Definition und Satz

Für $f \in \mathcal{R}([a,b])$ definieren wir

$$\int_{a}^{b} f(x) dx := \lim_{n \to \infty} \int_{a}^{b} g_n(x) dx$$

wo $(g_n)_{n\in\mathbb{N}}\subset\mathcal{T}([a,b])$ eine Folge ist mit

$$||g_n - f||_{\infty} \xrightarrow{n \to \infty} 0$$

Insbesondere existiert der Limes und hängt nicht von der Wahl der Folge $(g_n)_{n\in\mathbb{N}}$ ab. Weiter gilt:

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx \qquad \int_{a}^{a} f(x) dx := 0$$

Beweis:

 $\overline{\text{Sei }(g_n)_{n\in\mathbb{N}}}\subset\mathcal{T}([a,b]) \text{ mit } ||g_n-f||_{\infty}\xrightarrow{n\to\infty}0 \text{ (warum existiert }(g_n)_{n\in\mathbb{N}}\text{?)}.$ Setze $I_n:=\int_a^b g_n(x)\mathrm{d}x$, dann ist $(I_n)_{n\in\mathbb{N}}$ Cauchyfolge: Sei $\varepsilon>0$. Wähle $N\in\mathbb{N}$ so, dass $||g_n-f||_{\infty}<\frac{\varepsilon}{2\cdot(b-a)}$ falls $n\geq N$. Dann gilt für $n,m\geq N$:

$$\begin{split} |I_n - I_m| &= \left| \int_a^b g_n(x) \mathrm{d}x - \int_a^b g_m(x) \mathrm{d}x \right| \\ &= \left| \int_a^b (g_n - g_m)(x) \mathrm{d}x \right| \\ &\leq ||g_n - g_m||_{\infty} (b - a) \\ &\leq \left(||g_n - f||_{\infty} + ||f - g_n||_{\infty} \right) (b - a) \\ &< 2 \cdot \frac{\varepsilon}{2(b - a)} (b - a) = \varepsilon \end{split}$$
 13.4.(ii)

 $\Rightarrow (I_n)$ konvergiert, also existiert $\lim_{n \to \infty} \int_a^b g_n(x) \mathrm{d}x$.

Sei nun $(h_n)_{n\in\mathbb{N}}\subset\mathcal{T}([a,b])$ weitere Folge mit (\star) $||h_n-f||_{\infty}\xrightarrow{n\to\infty}0$. Setze $J_n:=\int_a^bh_n(x)\mathrm{d}x$.

$$(g_0, h_0, g_1, h_1, \ldots)$$

erfüllt auch (*).

$$\rightsquigarrow (I_0, J_0, I_1, J_1, \ldots)$$
 konvergiert

 $\Rightarrow (I_n)_{\mathbb{N}}$ und $(J_n)_{\mathbb{N}}$ konvergieren gegen denselben Limes.

13.11 Proposition

 $f,g\in\mathcal{R}([a,b])$, $\lambda,\mu\in\mathbb{R}$.

(i)

$$\int_{a}^{b} (\lambda \cdot f + \mu \cdot g)(x) dx = \lambda \cdot \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

(ii)

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx \le (b-a) \cdot ||f||_{\infty}$$

(iii)

$$f \le g \Rightarrow \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$

Beweis:

 $\overline{\text{Seien }(d_n)_{n\in\mathbb{N}}} \text{ und } (e_n)_{n\in\mathbb{N}} \subset \mathcal{T}([a,b]) \text{ mit } ||d_n-f||_{\infty} \text{ , } ||e_n-f||_{\infty} \xrightarrow{n\to\infty} 0$

(i) Dann gilt

$$||\lambda \cdot d_n + \mu \cdot e_n - (\lambda \cdot f + \mu \cdot g)||_{\infty} \xrightarrow{n \to \infty} 0$$

$$\int_{a}^{b} (\lambda f + \mu g)(x) dx = \lim_{n \to \infty} \int_{a}^{b} (\lambda d_{n} + \mu e_{n})(x) dx$$
$$= \lim_{n \to \infty} \left(\lambda \cdot \int_{a}^{b} d_{n}(x) dx + \mu \cdot \int_{a}^{b} e_{n}(x) dx \right)$$
$$= \lambda \cdot \int_{a}^{b} f(x) dx + \mu \cdot \int_{a}^{b} g(x) dx$$

13.12 Bemerkung

a < b < c , $f \in \mathcal{R}([a,c])$. Dann gilt $f\mid_{[a,b]} \in \mathcal{R}([a,b])$, $f\mid_{[b,c]} \in \mathcal{R}([a,b])$ und

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Beweis:

Klar für Treppenfunktionen, damit auch für Limites.

13.13 Mittelwertsatz der Integralrechnung

 $f:[a,b] o \mathbb{R}$ stetig und $g \in \mathcal{R}([a,b]), g \geq 0$. Dann existiert $\overline{x} \in [a,b]$ mit :

$$\int_{a}^{b} f(x)g(x)dx = f(\overline{x}) \cdot \int_{a}^{b} g(x)dx$$

Insbesondere (für $g \equiv 1$) existiert $\overline{\overline{x}} \in [a, b]$ mit

$$\int_{a}^{b} f(x) dx = f(\overline{\overline{x}}) \cdot (b - a)$$

Beweis:

Setze

$$\begin{split} M := \sup \Big\{ f(x) \mid x \in [a,b] \Big\} &= \max \Big\{ f(x) \mid x \in [a,b] \Big\} \\ m := \inf \Big\{ f(x) \mid x \in [a,b] \Big\} &= \min \Big\{ f(x) \mid x \in [a,b] \Big\} \end{split}$$

Dann gilt: (benutze: $m \cdot g(x) \le f(x)g(x)$ und $f(x)g(x) \le M \cdot g(x)$)

$$m \cdot \int_{a}^{b} g(x) dx = \int_{a}^{b} m \cdot g(x) dx \le \int_{a}^{b} f(x) g(x) dx$$
$$\le \int_{a}^{b} M g(x) dx$$
$$= M \cdot \int_{a}^{b} g(x) dx$$

$$\Rightarrow \exists \mu \in [m, M] : \int_a^b f(x)g(x) dx = \mu \cdot \int_a^b g(x) dx$$

76

$$\begin{split} m &= \min \left\{ f(x) \mid x \in [a,b] \right\} \\ &\Rightarrow \exists x_{\min} \in [a,b] : f(x_{\min}) = m \text{ und } \exists x_{\max} \in [a,b] : f(x_{\max}) = M \end{split}$$

$$\mathsf{ZWS} \Rightarrow \exists \overline{x} \in [a,b] : F(\overline{x}) = \mu$$

13.14 Hauptsatz der Differential- und Integralrechnung

Sei I ein echtes Intervall , $a \in I$ und $f: I \to \mathbb{R}$ stetig. Wir definieren $F: I \to \mathbb{R}$ durch

$$F(t) := \int_{a}^{t} f(x) \mathrm{d}x$$

- (i) F ist **Stammfunktion** von f, d.h. F ist differenzierbar auf I mit F'(t) = f(t) für alle $t \in I$.
- (ii) Ist $G:I \to \mathbb{R}$ weitere Stammfunktion von f, so gilt

$$F(t) = G(t) - G(a) =: G(x) \Big|_{a}^{t}$$

für alle $t \in I$

Beweis:

Sei $t_0 \in I$. Für $t_0 < t \in I$ gilt

$$\left| \frac{F(t) - F(t_0)}{t - t_0} - f(t_0) \right| = \frac{|F(t) - F(t_0) - f(t_0)(t - t_0)|}{t - t_0}$$

$$= \frac{\left| \frac{F(t) - F(t_0) - \int_{t_0}^t f(t_0) dx}{t - t_0} \right|}{t - t_0}$$

$$= \frac{\left| \int_a^t f(x) dx - \int_a^t f(x) dx - \int_{t_0}^t f(t_0) dx \right|}{t - t_0}$$

$$= \frac{\left| \int_a^t f(x) dx + \int_{t_0}^t f(x) dx - \int_a^t f(x) dx - \int_{t_0}^t f(t_0) dx \right|}{t - t_0}$$

$$= \frac{\left| \int_a^t f(x) dx - \int_{t_0}^t f(t_0) dx \right|}{t - t_0}$$

$$= \frac{\left| \int_{t_0}^t (f(x) - f(t_0)) dx \right|}{t - t_0}$$

$$\leq \frac{\sup\{|f(x) - f(t_0)| \mid x \in [t_0, t]\} \cdot (t - t_0)}{t - t_0}$$

$$= \frac{t \searrow t_0}{t}$$

ebenso für
$$t_0 > t \in I$$
 $\Rightarrow \lim_{\substack{t \to t_0 \\ t \neq t_0}} \frac{F(t) - F(t_0)}{t - t_0} = f(t_0)$

beweis (ii)

$$(G - F)'(t) = f(t) - f(t) = 0 \forall t$$

 $\Rightarrow G - F$ konstant (Korollar 12.17)

$$G - F \equiv G(a) - F(a) = G(a)$$

13.15 Bemerkung

Der Satz lässt sich auch für Regelfunktionen formulieren mit $\lim_{x \nearrow x_0} \dots$ und $\lim_{x \searrow x_0} \dots$

13.16 Beispiele

(i)
$$-1 \neq s \in \mathbb{R}$$

$$\int_{a}^{b} x^{s} dx = \frac{x^{s+1}}{s+1} \bigg|_{a}^{b} \left(= \frac{b^{s+1} - a^{s+1}}{s+1} \right)$$

wir schreiben auch

$$\int x^s \mathrm{d}x = \frac{x^{s+1}}{s+1} + c$$

Beweis:

Sei $f(t)=t^s$, dann ist $G(t):=rac{t^{s+1}}{s+1}$ Stammfunktion, denn G'(t)=f(t). Also gilt

$$\int_{a}^{b} f(t)dt = G(b) - G(a) = G(x) \Big|_{a}^{b}$$

(ii) Für
$$s = -1$$
 gilt $(0 < a < b)$

$$\int_{a}^{b} x^{-1} \mathrm{d}x = \ln(x) \Big|_{a}^{b}$$

denn

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln x = \frac{1}{x} = x^{-1} \quad \text{ für } x > 0$$

(a < b < 0)

$$\int_{a}^{b} x^{-1} \mathrm{d}x = \ln(-x) \Big|_{a}^{b}$$

da

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(-x) = \frac{1}{-x}(-1) = \frac{1}{x} = x^{-1}$$

Wir schreiben auch

$$\int x^{-1} \mathrm{d}x = \ln|x| + C$$

$$\int \exp(x) dx = \exp(x) + C$$

(iv)

$$\int \sin(x)dx = -\cos(x) + C$$
$$\int \cos(x)dx = \sin(x) + C$$

$$\int \frac{1}{1+x^2} dx = \arctan(x) + C$$

(vi)
$$-\frac{\pi}{2} < a < b < \frac{\pi}{2}$$

$$\int_{a}^{b} \frac{1}{\cos^{2} x} dx = \tan(x) \Big|_{a}^{b}$$

13.17 Satz: Substitutionsregel

 $I,[a,b]\subset\mathbb{R}$ Intervalle. $f:I\to\mathbb{R}$ stetig, $g:[a,b]\to I$ **stetig differenzierbar**(d.h. g' existiert und ist stetig). Dann gilt

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(x)dx$$

Beweis:

Sei $G: I \to \mathbb{R}$ Stammfunktion von f, d.h. G'(t) = f(t) für $t \in I$.

$$(G \circ g)'(t) = G'(g(t)) \cdot g'(t)$$
$$= f(g(t)) \cdot g'(t)$$

 \Rightarrow

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = (G \circ g)(x) \Big|_{a}^{b} = G(g(b)) - G(g(a))$$
$$= G(x) \Big|_{g(a)}^{g(b)} = \int_{g(a)}^{g(b)} f(x) dx$$

79

13.18 Beispiel

(i)

$$\int_{a}^{b} f(x+\lambda) dx = \int_{a+\lambda}^{b+\lambda} f(x) dx$$

(ii)

$$\int_a^b f(x^2) \mathrm{d}x = \frac{1}{2} \int_{a^2}^{b^2} f(x) \mathrm{d}x$$

(iii) $g:[a,b] \to \mathbb{R}^*$ ist stetig differenzierbar $0 \not\in [a,b]$

$$\int_{a}^{b} \frac{g'(x)}{g(x)} dx = \ln|g(x)| \Big|_{a}^{b}$$

Insbesondere ($-\frac{\pi}{2} < a < b < \frac{\pi}{2}$)

$$\int_{a}^{b} \tan x dx = \int_{a}^{b} \frac{\sin(x)}{\cos(x)} dx = -\int_{a}^{b} \frac{\cos'(x)}{\cos(x)} = -\ln(\cos(x)) \Big|_{a}^{b}$$

13.19 Satz: Partielle Integration

 $f,g:[a,b]
ightarrow \mathbb{R}$ stetig differenzierbar. Dann gilt

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Beweis:

 $\operatorname{F\"{u}r} F := f \cdot g \operatorname{gilt}$

$$f(x)g(x)\Big|_a^b = \int_a^b F'(x) = \int_a^b f(x)g'(x) + \int_a^b f'(x)g(x)$$

13.20 Beispiel

(i)

$$\int_a^b \ln x \cdot 1 dx = x \cdot \ln(x) \Big|_a^b - \int_a^b \frac{x}{x} dx = x \cdot \ln(x) \Big|_a^b - x \Big|_a^b = x \cdot \ln(x) - 1 \Big|_a^b$$

(ii)

$$\int_0^1 x^n (1-x)^m dx = \frac{n! \cdot m!}{(n+m+1)}$$

(iii) Betrachte $f:[-1,1] \to \mathbb{R}$, $f(t) = \sqrt{1-t^2}$

Für $b \in [0,1)$ gilt

$$\int_{0}^{b} f(x) dx = \int_{0}^{b} f(x) \cdot 1 dx$$

$$= f(x) \cdot x \Big|_{0}^{b} - \int_{0}^{b} x f'(x) dx$$

$$= \sqrt{1 - x^{2}} \cdot x \Big|_{0}^{b} - \int_{0}^{b} x (-2x) \frac{1}{2} \frac{1}{\sqrt{1 - x^{2}}} dx$$

$$= \sqrt{1 - b^{2}} b + \int_{0}^{b} \frac{x^{2}}{\sqrt{1 - x^{2}}} dx$$

$$= \sqrt{1 - b^{2}} b + \int_{0}^{b} \frac{1}{\sqrt{1 - x^{2}}} dx - \int_{0}^{b} \frac{1}{\sqrt{1 - x^{2}}} dx + \int_{0}^{b} \frac{x^{2}}{\sqrt{1 - x^{2}}} dx$$

$$\int_{0}^{b} f(x) dx = \sqrt{1 - b^{2}} b + \int_{0}^{b} \frac{1}{\sqrt{1 - x^{2}}} dx - \int_{0}^{b} \sqrt{1 - x^{2}} dx$$

 \Rightarrow

$$2 \cdot \int_0^b \sqrt{1 - x^2} dx = \sqrt{1 - b^2} b + \int_0^b \frac{1}{\sqrt{1 - x^2}} dx$$
$$= \sqrt{1 - b^2} b + \arcsin(x) \Big|_0^b$$
$$\xrightarrow{b \to 1} 0 + \arcsin 1 = \frac{\pi}{2}$$

Abbildungsverzeichnis

Abbildungsverzeichnis A