PHY-112

AKIFUL ISLAM (AZW)

Spring-24 | Class-15

Principles of Physics-II

Define Electric Current

An **electron current** is a net motion of electrons (in a conductor) sustained by an internally established electric field.

An **electric current** is the net (positive) charge flowing per unit time, through a cross-section of a conducting wire.

Defining Electric Current in terms of Charge flowing, Drift Velocity:

$$I = q_e i_e = \frac{\Delta Q}{\Delta t}$$
$$I = q_e i_e = n_e q_e A v_d$$

THEORY OF METALLIC CONDUCTION

Suppose an electron just had a collision with an ion and has rebounded with velocity \vec{v}_0 . The acceleration of the electron between collisions is

$$a_x = \frac{F_E}{q_e} = \frac{m_e E}{q_e}$$

E causes the x-component of the electron's velocity to increase linearly with time:

$$v_x = v_{0x} + a_x \Delta t = v_{0x} + \left(\frac{q_e E}{m_e}\right) \Delta t$$

The electron speeds up, with increasing K, until its next collision with an ion.

A New Look at Drift Velocity

The average speed at which the electrons are pushed along by the electric field is

$$v_d = \bar{v}_x = \left(\frac{q_e \tau}{m_e}\right) E,$$

where τ is the average value of Δt is the mean time between two successive collisions.

A New Look at Drift Velocity

The average speed at which the electrons are pushed along by the electric field is

$$i_e = n_e \left(\frac{q_e \tau A}{m_e}\right) E,$$

where τ is the average value of Δt is the mean time between two successive collisions.

The electron current is directly proportional to the electric field strength.

THE CURRENT DENSITY IN A WIRE

The electron current in a wire of cross-section area A to be

$$I = q_e i_e = (n_e q_e v_d) A$$

Define Electric Current Density:

$$J = \frac{I}{A} = n_e q_e v_d$$

measured in A m^{-2} .

Current Density is a **vector**. It points in the direction the charge carriers feel a net drift motion due to the applied \vec{E} .

$$I = \int \vec{J} \cdot \vec{A} = JA$$

TESTING CONCEPTS (1)

Q: A 1.0 A current passes through a 1.0 mm-diameter copper wire. What are the current density and the drift speed of the electrons in the wire? The electron density for copper as $8.5\times10^{28}\,\mathrm{m}^{-3}.$

OHM'S LAW IN THE MAKING: CONDUCTIVITY AND RESISTIVITY

Relating Current Density with Electric Field Intensity

$$J = \left(\frac{n_e q_e^2 \tau}{m_e}\right) E$$
$$J = \sigma E$$
$$E = \rho J; \quad \therefore \sigma = \frac{1}{\rho}$$

$$\begin{split} \sigma &= \frac{n_e q_e^2 \tau}{m_e} \text{ is conductivity; measured in } \Omega^{-1} \, \text{m}^{-1}, \\ \rho &= \frac{m_e}{n_e q_e^2 \tau} \text{ is resistivity; measured in } \Omega \, \text{m}. \end{split}$$

WHAT IS RESISTANCE?

The potential difference creates an electric field inside the conductor and causes charges to flow through it.

Equipotential surfaces are perpendicular to the electric field.

Ohm's Law

Ohm's Law in 3D,
$$E=\frac{\Delta V}{L}=\rho\frac{I}{A} \quad \Rightarrow \Delta V=\left(\frac{\rho L}{A}\right)I$$
 with Resistance, $R=\frac{\rho L}{A};$ measured in Ω Ohm's Law (Experimental Form) $I=\frac{\Delta V}{R}$

Testing Concepts (2)

Q: The wires are all made of the same material. Rank in order, from largest to smallest, the resistances R_A to R_E of these wires. Explain.

What does Ohm's Law Say about Circuits?

- Current is caused by an electric field exerting forces on the charge carriers
- The current density, and hence the current I=JA, depends linearly on the strength of the electric field. To double the current, you must double the strength of the electric field that pushes the charges along
- The current density also depends on the *conductivity* of the material. Different conducting materials have different σ because they have different values of the electron density n_e and, especially, different values of the mean time τ between electron collisions with the lattice of atoms.

Testing Concepts (3)

Q: A 2.0 mm-diameter Aluminum wire carries a current of 800 mA. The conductivity of the Aluminum wire is $3.5\times10^7\Omega^{-1}\,\rm m^{-1}.$

- What is the electric field strength inside the wire?
- What is the resistivity of the wire?
- Find the resistance of 1m section of that same wire.

TESTING CONCEPTS (4)

Q: A 15 cm-long Nichrome wire is connected across the terminals of a $1.5\,\rm V$ battery. The conductivity of the Nichrome wire is $6.7\times10^5\Omega^{-1}\,\rm m^{-1}.$

- What is the electric field inside the wire?
- What is the current density inside the wire?
- If the current in the wire is 2.0 A, what is the wire's diameter?

TESTING CONCEPTS (5)

Q: Rank in order, from largest to smallest, the current densities J_A to J_D in these four wires.

Next Stop: Kirchhoff's Rules and Circuit Analysis

KIRCHHOFF'S LAWS AND THE BASIC CIRCUIT

To analyze a circuit means to find:

- The potential difference across each circuit component.
- The current in each circuit component.

Work out the Following by Yourself Before Class-16

Resistors in Series and Parallel connection in a circuit. Follow the same procedure adopted in Capacitor connection from **Class-13**.

COMBINATIONS OF RESISTORS: SERIES

The voltage across each resistor is not the same. The total voltage across the series combination equals the sum of the voltages across each resistor.

$$R_{\text{eq}} = R_1 + R_2 + R_3 = \sum_{i=1}^{n} R_i$$

COMBINATIONS OF RESISTORS: PARALLEL

The voltage across each resistor is the same. The total current through the parallel combination is the sum of the currents through each individual resistor.

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \sum_{i=1}^{n} \frac{1}{R_i}$$