COL226 Assignment 1

Student Kavya Chopra Entry number 2021CS10081

Terminology

- 1. List representation: The list representation of a string representing a base 10 number consists of all its digits represented in the form of an SML list. For instance "3456" will be represented as [3,4,5,6]. The algorithm of generating this from a list is trivial.
- 2. Processed list: Let the base 10 representation of a number be $a_0a_1....a_k$. Then, if k is even, the processed list representation looks like $[[a_0], [a_1a_2]....[a_{k-1}a_k]]$. If k is odd, then we have $[[a_0a_1], [a_2a_3]....[a_{k-1}a_k]]$.

Pseudocode

Algorithm 1 Find maximum digit

```
1: function findDigit(number, digit, dividend)
2:  x ← (number*10 + digit)*digit
3:  if x ≤ dividend then
4:  return (digit, x)
5:  else
6:  return findDigit(number, digit - 1, dividend)
7:  end if
```

Algorithm 2 Performing long division

```
1: function findRoot(immediate_dividend, square_root, further_dividend)
2:  x ← findDigit(2*square_root, 9, immediate_dividend)
3:  y ← immediate_dividend - x.second
4:  if further_dividend.empty() then
5:  return (square_root*10 + x.first, y)
6:  else
7:  return findRoot(100 * y+further_dividend[0], square_root*10 + x.first, further_dividend[1:])
8:  end if
```

Algorithm 3 Initiating long division

```
1: function isgrtld(string)
```

- 2: $x \leftarrow \text{processedList(listRepresentation(string))}$
- 3: **return** findRoot(x[0], 0, x[1:])

Proof

Base Case: A number has 0 digits, in which case the algorithm returns (0,0), or the number has 1 digit n, in which the algorithm returns (x,r) where x is the maximum digit such that $x^2 < n$, and $r = n - x^2$. We can see that x is indeed the integer square root of n, as by the maximality of x we have $x^2 < n < (x+1)^2$

Induction Hypothesis: Let us assume that for all k < n, this algorithm returns the correct value of (sqrt, remainder).

Inductive Step: We proceed by strong induction. We shall now induct on the number of digits of n. Let that be x. Clearly, x >= 2, else this reduces to a base case. Let $n = a_1 a_2 a_x$. Now consider the number $m = a_1 a_2 a_{x-2}$.

Evidently m < n, and in fact $n = 100m + a_{x-1}a_x$. Let is qrtld(m) = (p,q).

Claim 1: There exists numbers r and h such that r = 10p + h, where 0 <= h <= 9 and isqrtld(n) = (r, $n - r^2$) **Proof**: By the definition of isqrtld, we have $m = p^2 + q$. Clearly, we have $p^2 <= m < (p+1)^2$, so $p^2 <= m < (p+1)^2 - 1$. Also, since $n = 100m + a_{x-1}a_x$, so $100p^2 <= 100m <= n < 100m + 100 <= 100(p+1)^2$, so $(10p)^2 <= n < (10p+10)^2$. So, 10p <= r < 10p+10, and 10p <= r <= 10p+9, proving our claim.

Claim 2: Finding the maximum digit d such that $(20p+d)d <= 100q+a_{x-1}a_x$ gives us the square root r=10p+d **Proof**: The maximality of d ensures that (20p+d)d <= n < (20p+d+1)(d+1). For the sake of contradiction, let us assume r=10p+h, where $h \neq d$. Then, we have $(10p+h)^2 <= n < (10p+h+1)^2$, and so $(20p+h)h <= n-100p^2 < (20p+h+1)(h+1)$ and since $p^2 = m-q$, we have $(20p+h)h <= (n-100m)+100q = a_{x-1}a_x + 100q < (20p+h+1)(h+1)$. But $100q+a_{x-1}a_x$ is the new dividend for our computation, and h is the maximum such digit such that $(20p+d)d <= 100q+a_{x-1}a_x$. Consequently, h=d, and by contradiction, we're done

Main Claim: The output of the long division is $(r, n - r^2)$

Proof: findDigit, by definition, computes the maximum digit h such that $(20\text{square_root}+h)h <= \text{immediate_dividend}$. Consider the computation after the algorithm has finished computing the answer for the first x-2 digits of n. It then calls findRoot $(100*q+a_{x-1}a_x,\ p,\])$ Then, the immediate dividend for the last step is $100*q+a_{x-1}a_x$, and square_root= p. So, findDigit computes the required d, and we get the square root r=10p+d, and the remainder, denoted by t, is $100q+a_{x-1}a_x-(20p+d)d$. But note that $t+r^2=100q+a_{x-1}a_x+100p^2=100m+a_{x-1}a_x=n$. Thus, $t=n-r^2$. Moreover, since there's no further dividend (evidenced by the empty list), the computation is completed, and we're done.

This completes our proof of correctness of the algorithm.