Negative Logic OR Grate

Negative logic means
$$V(0) = 5V$$

$$V(1) = 40V$$

$$V(1) V(2) V(3) V(3)$$

$$V(1) V(1) V(1) V(1)$$

$$V(1) V(1) V(1) V(1)$$

Case 1:

A = V(0) = 5V

B = V(0) = 5V

Both D1 & D2 are in reverse bias. So, the circuit will work like -

- no ewvent flow

- no voltage drop accross across R $V_0 = 5V = V(0)$

Case 2 :

A = V(0) = 5V

B = V(I) = OV

Herre, D, is in reverse bias

D2 is in forward bias

Applying KVL,
$$-5V + iR + V_r + iR_f + iR_s = 0$$

$$\Rightarrow i = \frac{5 - V_r}{R + R_f + R_s}$$

$$= \frac{5 - 0.6}{R + R_f + R_s}$$

$$= \frac{4.4}{R + R_f + R_s}$$

According to piecessise linear mode Usually, R is much larger than Rs+Rf i.e R>> Rs+Rf $\therefore i = \frac{A \cdot A}{R}$ $V_0 = 5 - iR = 5 - \frac{4.4}{R} \cdot R = 5 - 4.4$ Case 3 % A = V(I) = OVB= V(0) = 5V Here, Di is in forward bias & D2 is in reverse bias OV my Vr

Case 4:

Both D, & D2 we in forward Bias.

Applying KVL,

$$-5 + iR + V_r + \frac{1}{2}R_f + \frac{1}{2}R_s = 0$$

 $\Rightarrow i \left(R + \frac{R_f}{2} + \frac{R_s}{2}\right) = 5 - V_r$
 $\Rightarrow i = \frac{5 - V_r}{R + \frac{R_f}{2} + \frac{R_s}{2}}$
 $= \frac{5 - 0.6}{R + \frac{1}{2}(R_f + R_s)}$
Since, $R >> R_f + R_s$
 $\therefore i = \frac{4.4}{R}$
So, $V_0 = 0.6 V = V(1)$

Sdeal Parameters
$$R = 2.2 \text{ K} \Omega$$

$$R_s = 50 \Omega$$

$$R_f = 100 \Omega$$