Ёлки на островах

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 1024 мегабайта

Питомник реликтовых ёлок состоит из n островов. На i-м острове растёт p_i ёлок. Изначально $p_i = i$. Также заданы m пар чисел $(a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m)$ — параметры роста.

Биологи заметили следующую закономерность: в начале i-го года количество деревьев на островах меняется следующим образом: на островах с 1 до $a_{(i-1) \bmod m+1} - 1$ и с $b_{(i-1) \bmod m+1} + 1$ до n количество деревьев не меняется, а на всех островах с номерами между $a_{(i-1) \bmod m+1}$ -th и $b_{(i-1) \bmod m+1}$ последовательность p_i инвертируется, то есть если $a_i = x, b_i = y$, то последовательность q_1, q_2, \ldots, q_n , которая была в начале прошлого года, в начале текущего года будет иметь вид $q_1, \ldots, q_{x-1}, q_y, q_{y-1}, \ldots, q_x, q_{y+1}, \ldots, q_n$.

Биологов интересует ответы на следующие запросы: на каком количестве островов в начале k_i -го года будет верно равенство $p_i = i$?

Формат входных данных

Первая строка входных данных содержит три целых числа n, m и q ($1 \le n \le 10^5, 1 \le m \le 10, 1 \le q \le 10^5$) — количество островов, количество пар параметров роста и количество запросов, соответственно.

Каждая из последующих m строк содержит по два числа a_i и b_i $(1 \leqslant a_i \leqslant b_i \leqslant n) - i$ -я пара параметров.

Каждая из последующих q строк содержит целое число k_i ($1 \le k_i \le 10^9$) — данные i-го запроса.

Формат выходных данных

Для каждого запроса выведите одно целое число — ответ на запрос.

Пример

стандартный ввод	стандартный вывод
5 2 1	3
3 5	
1 3	
998244353	