Ideal Gas and Kinetic of Gases TL;DRs

An OS Creation of Shazin

Gas Laws:

Bovle's Law:

"If **Temperature** is constant, the **volume** of a gas with a specific mass is disproportional to the *pressure* applied to the gas."

Mathematical interpretation: $P_1V_1 = P_2V_2$

$$P_1V_1 = P_2V_2$$

Charles's Law:

" In a constant **pressure** the **volume** of a gas is proportional to it's **temperature.**"

Mathematical implementation: $\left| \frac{V_1}{T_1} = \frac{V_2}{T_2} \right|$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Gay-Lussac's Law:

"In a constant **volume and mass** pressure increases in a proportional rate to temperature"

Mathematical implementation: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Avogadro's Law:

" In a constant **pressure** and **temperature** the **volume** is directly proportional to the **number of** *moles* of the gas"

Mathematical implementation: $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

Graham's Law (Law for Diffusion Rate):

" Diffusion rate is inversely proportional (disproportional) to the square root of it's molar mass"

Mathematical implementation: $\frac{t_2}{t_1} = \frac{r_1}{r_2} = \sqrt{\frac{m_2}{m_1}}$

$$\frac{t_2}{t_1} = \frac{r_1}{r_2} = \sqrt{\frac{m_2}{m_1}}$$

**Note: The molar mass is actually the mass of an atom. It means it is the mass given in the periodic table not the mass of of the sample.

Combined Gas Law:
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Equation of density of a Gas: $\rho_1 T_1 = \rho_2 T_2$

$$\rho_1 T_1 = \rho_2 T_2$$

Ideal Gas Equation:

$$PV = nRT$$

Here, P = Pressure; V = Volume; n = Number of Moles; T = Temperature; R = Ideal Gas Constant = 8.314 JK⁻¹ mole⁻¹;

Pressure of Fluid:

The pressure effective in an object drowned in a fluid is, $P=h \rho g$

Here, h = height of the fluid, $\rho = density$ of the fluid and g = gravitational acceleration.

Tips for Math related to Pressure in Fluid:

Tip:1 If the pressure of atmosphere is given P_1 then the pressure in the fluid P_2 should be

$$P_2 = P_1 + h \rho g$$

Tip:2 If The pressure of a balloon in air is P_1 , it's pressure when drowning in a fluid should be

$$P_2 = P_1 + h\rho g$$