Typische Bestandteile von Syntaxdiagrammen

- 1. Terminalsymbol
- 2. Nichtterminalsymbol
- 3. Schleife
 - 3.1 0-mal oder beliebig oft
 - 3.2 1-mal oder beliebig oft
- 4. Verzweigung
 - 4.1 ohne Alternative
 - 4.2 mit Alternative

Rücksprungalgorithmus

- Vergabe von Rücksprungmarken durch fortlaufende Nummerierung aller Nichtterminalsymbole
- ▶ Abgeleitetes Wort und Markenkeller werden jeweils unmittelbar vor dem Einsprung in ein neues Syntaxdiagramm sowie nach dem Verlassen eines Syntaxdiagramms notiert.
 - Beim Erreichen eines Nichtterminalsymbols wird die Rücksprungmarke auf den Keller gelegt und am Beginn des jeweiligen Syntaxdiagramms fortgesetzt.
 - ▶ Am Ende eines Syntaxdiagrammms wird die oberste Rücksprungmarke gestrichen und bei der entsprechende Marke fortgesetzt.
- Der Algorithmus endet erfolgreich, wenn das Wort erzeugt wurde und der Markenkeller leer ist.

Einfache Syntaxdiagrammsysteme

- 1. $W(S) = \{(ab)^n \mid n \in \mathbb{N}\}\$
- 2. $W(S) = \{a^n b^n \mid n \in \mathbb{N}\}\$
- 3. $W(S) = \{a^{2n}b^n \mid n \in \mathbb{N}\}\$
- 4. $W(S) = \{a^{2n}bc^n \mid n \in \mathbb{N}^+\}$
- 5. $W(S) = \{a^n b^m \mid n, m \in \mathbb{N}, n \ge m\}$

Idee: Komplizierte Sprachen in bekannte Teile zerlegen

Übung 2 (b)

Wort	Markenkeller
a	1
а	31
aa	131
aaa	2131
aaa	32131
aaaaccb	32131
aaaaccb	2 131
aaaaccbd	1/31
aaaaccbdb	31
aaaaccbdb	1
aaaaccbdbb	-

Übung 3

Rekursive Definition aussagenlogischer Formeln:

- 1. Atome p, q sind Formeln
- 2. Formeln von der Form $\neg F$ sind Formeln, wenn F Formel ist
- 3. Formeln von der Form $(F \circ G)$ sind Formeln, wenn F und G Formeln sind und \circ ein binärer Junktor ist (hier stellvertretend \vee)

EBNF-Definition

Sei V eine endliche Menge von syntaktischen Variablen und sei Σ eine endliche Menge von Terminalsymbolen mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ , bezeichnet durch $T(\Sigma,V)$, ist die kleinste Menge $T\subseteq (V\cup\Sigma\cup\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{[}\})^*$, sodass folgende Eigenschaften gelten:

- 1. $V \subseteq T$
- 2. $\Sigma \subset T$
- 3. Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- 4. Wenn $\alpha_1,\alpha_2\in T$, so auch $\widehat{(}\alpha_1\widehat{|}\alpha_2\widehat{)}\in T,\alpha_1\alpha_2\in T.$

Übung 4

Folgende Ausdrücke liegen nicht in $T(\Sigma, V)$:

- \blacktriangleright (c), da $C \notin V$
- (d), da ∪ nicht in EBNF vorhanden
- ► (f), da (und) zu | fehlen
- ▶ (g), da * nicht in EBNF vorhanden