

Problema del caballo

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Problema del caballo

Se conoce como "problema del caballo"

a encontrar una serie de movimientos del caballo de ajedrez que partiendo de una posición del tablero.

Recorra todos los casilleros

y regrese a la casilla inicial sin volver a pisar dos veces la misma casilla

Es un caso particular de aplicación

De ciclo hamiltoneano

Problema del caballo (cont.)

Para el tablero de ajedrez 8x8

Se conocen al menos desde el 840 dos soluciones (1 camino y 1 ciclo)

Caminos posibles con tableros 8x8

Brendan McKay, en 1997

Calculó 13.267.364.410.532 posibles ciclos hamiltoeanos

http://users.cecs.anu.edu.au/~bdm/papers/knights.pdf

Problema del caballo - generalización

Se puede generalizar el tablero

Cuadrados de nxn

Rectangulares nxm

Irregulares

Euler en 1766

"Solution d'une question curieuse qui ne paroit soumise a aucune analyse"

trabajo sobre el problema para diferentes tamaños de tableros

Problema del caballo para tableros cuadrados

Para tableros cuadrados nxn

En "Solution of the knight's Hamiltonian path problem on chessboards" (1991)

https://core.ac.uk/download/pdf/81943311.pdf

Axel Conrad et-al probaron que

si n≥5 se puede encontrar un camino hamiltoneano.

si n≥6 se puede encontrar un ciclo hamiltoneano.

Ambos en tiempo polinomial

Problema del caballo para tableros rectangulares

Allen J. Schwenk en 1991

En "Which Rectangular Chessboards Have a Knight's Tour?

https://www.mimuw.edu.pl/~rytter/TEACHING/ALCOMB/schwenk.pdf

Probó que

para tableros de mxn con m≤n

Existe un ciclo hamiltoeanos a menos que

m y n sean ambos impares

$$m = 1,2 o 4$$

$$m = 3 y n = 4,608$$

Presentación realizada en Junio de 2020