em Documentation

Release 0.1a1

Marcell Marosvigyi

CONTENTS

1	College Elektrische en Magnetische velden 1.1 Elektrische velden	1		
2	Software	3		
3	Indices and tables	5		
Py	Python Module Index			
In	dex	9		

COLLEGE ELEKTRISCHE EN MAGNETISCHE VELDEN

Elektrische velden

Krachtveld en elektrisch veld

Elektrische kracht ten gevolge van twee ladingen q_1 en q_2

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

Elektrisch veld

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$$

Kracht op en testlading q in een elektrisch veld:

$$\vec{F} = q\vec{E}$$

Superpositie

$$\vec{E} = \vec{E_1} + \vec{E_2} + \vec{E_3} + \cdots$$

CHAPTER

TWO

SOFTWARE

Contents:

class em.BField

Calculate the Magnetic Field using wire elements.

$$B = \frac{\mu_0 \cdot I}{2\pi r}$$

We calculate \vec{B} as being perpendicular to \vec{r}

 $class \; \texttt{em.EField}$

Calculate the Electric Field using point charges.

$$E = \frac{1}{4\pi\varepsilon_0} \frac{|q|}{r^2}$$

We calculate \vec{E} as being parallel to \vec{r}

 $class \; \texttt{em.Field}$

The main field object, E and B are derived from this

Contains the meshgrid and plot functions

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

е

em, 3

B
BField (class in em), 3
E
EField (class in em), 3
em (module), 3
F
Field (class in em), 3
P
plot() (em.Field method), 3