Aufgabe 1.

	$f: A \to B$				$g: B \to C$					$h: C \to A$				
	3			×	a	×					\triangle			×
a)	2		×		b		×		•		0		×	
	1	×			\overline{c}			×				×		
			0	Δ		1	2	3				a	b	c
					h	$\circ g \circ .$	f = f	id_A						

- b) Wenn $f(a) = c_1$ und $g(b) = c_2$ für $c_1 \neq c_2$ und beliebige $a \in A, b \in B$ und $c_1, c_2 \in C$ dann ist der Schnitt \emptyset .
- c) Für zwei Funktionen $f:A\to A$ und $g:A\to A$ gilt dann $g\circ f=id_A$ wenn $g=f^{-1}$. Demnach müsste für $f\circ f=id_A$ gelten, dass $f=f^{-1}$. Es gibt keine solche Funktion.

Aufgabe 2.

- a) Injektiv und nicht surjektiv.
- b) Injektiv und surjektiv.
- c) Injektiv und nicht surjektiv.
- d) Weder injektiv noch surjektiv.
- e) Injektiv und surjektiv. (Unter der Annahme, dass der Bildbereich dieser Funktion die Menge aller derzeit vergebenen Matrikelnummern und nicht $\mathbb N$ o. Ä. ist.)

Aufgabe 3. Durch den gegebenen Ausdruck wird eine Funktion definiert. Jedes x hat mindestens einen Ausgabewert und kein x führt zu mehr als einem Ausgabewert. Konkret für Fallunterscheidungen gilt, dass jedes x von genau einem Fall abgedeckt werden muss.