

海量数据搬运工Datastream

顾费勇 2012-11-28

大纲

- Datastream产生的原因
- Datastream的结构和特征
- Datastream关键技术点分享
- Datastream应用场景
- Datastream未来展望

场景1

• BI, xx应用想做下日志的统计分析, 收集一

下吧

场景2

• 线上的服务器日志做下分析吧,可能有

DDOS

场景3

要拿数据库增量数据,建索引、反攻击、 做分析,写点程序吧

BI

• 问题:每个产品数据都不相同,不同部门代码 复用率低

• 后果: BI、反垃圾、搜索引擎的同学都要疯了

• 解决方案: 我们搞个统一的收集数据的平台吧

Datastream应运而生

• 我们不生产数据,我们是数据的搬运工

数据消费者

大纲

- Datastream产生的原因
- Datastream的结构和特征
- Datastream关键技术点分享
- Datastream应用场景
- Datastream未来展望

- Datastream是一个数据传输平台,用于连通数据源和终端用户的桥梁 他最大的作用就是:
 - ▶让终端用户对数据获取方式透明
 - ▶让终端用户对数据的格式透明

系统框架

系统特征

特性	说明
搬运节点线性扩展	集群中节点可动态增减,个别节点宕机 不影响集群
数据来源多样化	可支持多种数据源,新数据源支持简单
数据存储终端多样化	可根据产品需要支持不同类型的数据存储终端
数据分流和复制	根据产品需要对数据进行分流和复制
输出数据格式统一	统一采用结构化JSON的数据输出格式, 产品端提取数据简单
强大的管理平台	管理平台有各种强大的向导功能
远程控制	所有的Datastream客户端都通过管理平 台统一做远程控制,无需登录服务器

大纲

- Datastream产生的原因
- Datastream的结构和特征
- Datastream关键技术点分享
- Datastream应用场景
- Datastream未来展望

关键技术点

- 一、异构数据源解析
- 二、数据分流
- 三、数据可靠传输
- 四、数据传输效率

一、异构数据源解析

• Datastream从扩展性上来看能支持各种各样的数据源,目前支持一下数据源:

- >文本文件
- ➤Syslog日志
- ➤ Mysql binlog

• 主要是应用服务器的日志文件

通过一个轻量级的agent来tail服务器本地日志并发送到datastream

文本日志解析的特点

- 支持各种滚动方式的日志
- 支持断点续传
- 轻量级,占用系统资源少
- 对应用无侵入
- 支持多行相关联日志输出为一行(例如java异常,结构化的JSON, xml等)

tailFile多行解析的实例

```
2012-11-29 13:18:45,769 648222525 [catalina-exec-302] DEBUG - {
"checkIfCompleted" : true,
"checkIfResume" : true,
"doUploadControl" : false,
"file" : {
   "description" : "",
   "doc" : {
     "md5": "e2c9ee18aa18fddbba538f567d7fb235",
      "size" : 10163640,
      "type" : 0
   "fileName" : "qq2009preview_chs.exe",
   "incomplete" : {
      "local" : {
         "path" : ""
      "ownerId": 4000030838,
      "temporary" : null
   "ownerId": 4000030838,
   "parentId": 485304124798,
   "type" : 0
"nameConflictPolicy" : 1,
"renamePolicy": 0
```


- 这是一个通用的日志协议,不受编程语言限制,来源有
- ▶服务器系统日志
- ▶应用的重要日志
- ▶Apache,nginx等代理日志

Syslog日志

Syslog日志解析特征

- 平台无关
- 应用侵入性低

Mysql binlog来源

• Mysql binlog是mysql增量数据的记录,对于 实时计算有相当大的作用

Mysql binlog解析关键技术

- 全自动化用户配置
- Binlog转换JSON
- 反向查询
- 事务支持
- 强顺序性保证

全自动化用户配置

• 全自动加载数据库表结构,支持分布式数

据库

图 添	加FK 🖪 添加BK				
~	字段名称	字段类型		主键	均衡字段
~	id	BIGINT	笔记id	4	
~	user_id	BIGINT	用户id		
~	course_id	BIGINT	课程id		4
~	gmt_create	BIGINT	笔记创建时间		
~	gmt_modified	BIGINT	笔记修改时间		
~	title	VARCHAR	提问标题		
~	replied_num	SMALLINT	问答已回答数量		
~	best_reply_id	BIGINT	最佳答案id		
~	active_flag	SMALLINT	是否删除标记,0-删除,1-存在		
~	content	TEXT	问题补充		
~	browse_count	BIGINT	浏览数		
~	agree_count	BIGINT	问题顶的次数		
~	disagree_count	BIGINT	问题踩的次数		

二进制binlog转换为JSON

●可以根据用户配置将数据库中的增量数据 转换成结构化的JSON,供产品使用

属性名称	属性类型	数据库	表	表字段	是否监控	关键属性	是否发送	操作
id	NUMBER	edu	ask	id	是 🕶	是 🕶	是 💌	Х
user_id	NUMBER	edu	ask	user_id	是 🕶	是 🕶	是 🕶	Х
course_id	NUMBER	edu	ask	course_id	是 🕶	是 🕶	是 🕶	Х
gmt_create	NUMBER	edu	ask	gmt_create	是 🕶	是 🕶	是 🕶	Х
title	STRING	edu	ask	title	是 🕶	是 🕶	是 🕶	Х
replied_num	NUMBER	edu	ask	replied_num	是 🕶	是 🕶	是 💌	Х
best_reply_id	NUMBER	edu	ask	best_reply_id	是 🕶	是 🕶	是 🕶	Х
active_flag	NUMBER	edu	ask	active_flag	是 🕶	是 🕶	是 🕶	Х
content	STRING	edu	ask	content	是 🕶	是 🕶	是 🕶	Х
labels	STRING	edu	ask	labels	是 🕶	是 🕶	是 💌	Х
title2	STRING	edu	ask	title	是 🕶	是 🕶	是 🕶	Х
labels2	STRING	edu	ask	labels	是 🕶	是 🕶	是 🕶	Х
browse_count	NUMBER	edu	ask	browse_count	是 🕶	是 🕶	是 💌	Х
agree_count	NUMBER	edu	ask	agree_count	是 🕶	是 🕶	是 💌	Х
disagree_count	NUMBER	edu	ask	disagree_count	是 🕶	是 🕶	是 🕶	Х
								V

反向查询

• 反向查询

有些应用(比如实时索引),需要变化的数据关联的其他数据构成完整数据

- 支持mysql事务,一个事务内的操作会封装 为一个在一个JSON内,同时保持事务的执 行顺序
- 过大的事务会进行切割,避免内存消耗过大

- binlog的顺序如果出错,可能会导致后端产品最终数据状态的错误,因此datastream在处理Binlog时采取了强顺序性的保证
- ➤ 每个mysql节点的事务操作顺序依次发送
- ▶ 事务内操作保持顺序
- ➤ MQ消费客户端的ack机制保证消费的顺序性和不遗漏消息
- ➤ MQ消费客户端异常退出会重新获取上次未完成的消息

二、数据分流

- 日志分流规则的基础为数据标签
- 数据标签唯一标志一类数据的分流方式

数据分流隔离机制

- 不同数据标签之前数据传输隔离,保证不同流 量的产品之间传输速度不会相互影响
- 不同分流方式之间隔离,保证某个数据终端岩 机或传输速度慢不会影响其他分流方式

三、数据可靠传输

- 持久化机制
 - ▶收到消息先做持久化后发送
- ACK机制
 - >确保后端模块已收到数据,否则重发
- 异常数据处理
 - ➤无法处理的异常数据保存在制定位置,可追溯来源

数据可靠传输

- 全面覆盖的监控程序
 - ▶监控所有进程的正确执行
 - ▶监控系统有无异常日志
 - ▶监控系统吞吐量是否不足有延迟
 - ▶监控产品数据流量异常波动
 - ▶监控产品有无不符合协议的日志

四、数据传输效率

- 分布式处理,可线性拓展
- 数据批量传输,批量ACK
- 采用thrift序列化机制
- 采用nio优化数据持久化效率
- 多线程处理日志并保证顺序性(如日志过滤)

大纲

- Datastream产生的原因
- Datastream的结构和特征
- Datastream关键技术点分享
- Datastream应用场景
- Datastream未来展望

Datastream应用场景

- 一般产品需要数据做哪些操作呢?
 - ▶存储备份
 - ▶条件查询
 - ▶分析运算
 - ▶构建索引

Datastream都能满足

Datastream应用场景

- Datastream目前可以支持以下应用场景:
 - ▶离线数据分析
 - ▶实时数据分析
 - ▶实时索引
 - ▶日志归档
 - ▶日志统计报表
 - ▶日志报警监控

大纲

- Datastream产生的原因
- Datastream的结构和特征
- Datastream关键技术点分享
- Datastream应用场景
- Datastream未来展望

Datastream未来展望

- Datastream项目将来会更好地发挥搬运工角色,做一个效率更高,安全性更好的搬运工
- 后期会考虑实现如下的功能:
 - >数据追踪系统,提升数据安全性,类似快递
 - ▶更好地与后端数据服务整合
 - ▶非结构化日志转为结构化日志

未来的Datastream

Q&A