Dijkstra's Algorithm – Single Source Shortest Path

What is shortest path ?

shortest length between two vertices for an unweighted graph:

smallest cost between two vertices for a weighted

graph: В В 210 What is the Shortest path from E 450 to D in both 30 60 the graphs unweighted weighted graph graph 200 130 \Box

What is shortest path ?

shortest length between two vertices for an unweighted graph:

smallest cost between two vertices for a weighted

graph: В В 210 450 30 60 unweighted weighted graph graph 200 130 D \bigcap Ε

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

Input:

- Directed graph G = (V, E)
- Weight function w : $E \rightarrow R$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$

Shortest-path weight from u to v:

$$\delta(u, v) = \min \{ w(p) : u \stackrel{p}{\leadsto} v \text{ if there exists a path from } u \text{ to } v \}$$
otherwise

• Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

G = (V, E) ⇒ find a shortest path from a given source vertex s to each vertex v ∈ V

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Optimal Substructure of Shortest Paths

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbb{R}$,

- A shortest path $p = \langle v_1, v_2, \dots, v_k \rangle$ from v_1 to v_k v_i
- A subpath of p: $p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: p_{ij} is a shortest path from v_i to v_j

Proof:
$$p = v_1 \stackrel{p_{1i}}{\leadsto} v_i \stackrel{p_{ij}}{\leadsto} v_j \stackrel{p_{jk}}{\leadsto} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{jk}) < w(p)

Shortest-Path Representation

For each vertex $v \in V$:

- $d[v] = \delta(s, v)$: a **shortest-path estimate**
 - Initially, d[v]=∞
 - Reduces as algorithms progress
- π[v] = predecessor of v on a shortest
 path from s
 - If no predecessor, $\pi[v] = NIL$
 - $-\pi$ induces a tree—shortest-path tree
- Shortest paths & shortest path trees are not unique

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$
- 2. do d[v] $\leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v \Rightarrow update d[v] and $\pi[v]$

RELAX(u, v, w)

```
    if d[v] > d[u] + w(u, v)
    then d[v] ← d[u] + w(u, v)
    π[v] ← u
```

- All the single-source shortest-paths algorithms
 - start by calling INIT-SINGLE-SOURCE
 - then relax edges
- The algorithms differ in the order and how many times they relax each edge

Dijkstra's Algorithm

- Single-source shortest path problem:
 - No negative-weight edges: $w(u, v) > 0 \forall (u, v) \in E$
- Maintains two sets of vertices:
 - S = vertices whose final shortest-path weights have already been determined
 - -Q = vertices in V S: min-priority queue
 - Keys in Q are estimates of shortest-path weights (d[v])
- Repeatedly select a vertex u ∈ V S, with the minimum shortest-path estimate d[v]

Dijkstra's Algorithm

```
Algorithm ShortestPaths(v, cost, dist, n)
3 4
     // dist[j], 1 \leq j \leq n, is set to the length of the shortest
         path from vertex v to vertex j in a digraph G with n
         vertices. dist[v] is set to zero. G is represented by its
5
6
7
8
        cost adjacency matrix cost[1:n,1:n].
          for i := 1 to n do
          { // Initialize S.
9
               S[i] := false; dist[i] := cost[v, i];
10
          S[v] := \mathbf{true}; \ dist[v] := 0.0; // \ \mathrm{Put} \ v \ \mathrm{in} \ S.
11
12
          for num := 2 to n-1 do
13
14
               // Determine n-1 paths from v.
15
               Choose u from among those vertices not
               in S such that dist[u] is minimum;
16
               S[u] := \mathbf{true}; // \operatorname{Put} u \text{ in } S.
17
               for (each w adjacent to u with S[w] = false) do
18
19
                    // Update distances.
                    if (dist[w] > dist[u] + cost[u, w]) then
20
21
                              dist[w] := dist[u] + cost[u, w];
22
23
```

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. S ← Ø
- 3. Q ← V[G]
- 4. while $Q \neq \emptyset$
- 5. **do** $u \leftarrow EXTRACT-MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. **do** RELAX(u, v, w)

Example

Dijkstra's Pseudo Code

Graph G, weight function w, root s

```
DIJKSTRA(G, w, s)
   1 for each v \in V
  2 \operatorname{do} d[v] \leftarrow \infty
  3 \ d[s] \leftarrow 0
  4 S \leftarrow \emptyset > \text{Set of discovered nodes}
  5 \ Q \leftarrow V
  6 while Q \neq \emptyset
             \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
                  S \leftarrow S \cup \{u\}
                 for each v \in Adj[u]
                                                                                relaxing
                         do if d[v] > d[u] + w(u, v)
                                                                                edges
                                  then d[v] \leftarrow d[u] + w(u, v)
```

Find shortest path from s to t.

$$S = \{ \}$$

Q = { s, 2, 3, 4, 5, 6, 7, t }

d	S	2	3	4	5	6	7	t
	0	∞	8	8	8	8	8	8

$$S = \{ \}$$

Q = { s, 2, 3, 4, 5, 6, 7, t }

d	S	2	3	4	5	6	7	t
	0	∞	8	8	8	8	8	8

d	S	2	3	4	5	6	7	t
	0	9	8	8	8	14	15	8

$$S = \{ s \}$$

 $Q = \{ 2, 3, 4, 5, 6, 7, t \}$

d	S	2	3	4	5	6	7	t
	0	9	8	8	8	14	15	8

$$S = \{ s, 2 \}$$

 $Q = \{ 3, 4, 5, 6, 7, t \}$

d	S	2	3	4	5	6	7	t
	0	9	8	8	8	14	15	8

$$S = \{ s, 2 \}$$

 $Q = \{ 3, 4, 5, 6, 7, t \}$

d	S	2	3	4	5	6	7	t
	0	9	33	8	8	14	15	8

$$S = \{ s, 2, 6 \}$$

 $Q = \{ 3, 4, 5, 7, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	8	44	14	15	8

$$S = \{ s, 2, 6, 7 \}$$

 $Q = \{ 3, 4, 5, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	8	44	14	15	8

$$S = \{ s, 2, 6, 7 \}$$

 $Q = \{ 3, 4, 5, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	8	35	14	15	59

$$S = \{ s, 2, 6, 7 \}$$

 $Q = \{ 3, 4, 5, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	8	35	14	15	59

$$S = \{ s, 2, 3, 6, 7 \}$$

 $Q = \{ 4, 5, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	8	34	14	15	51

$$S = \{ s, 2, 3, 6, 7 \}$$

 $Q = \{ 4, 5, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	8	34	14	15	51

$$S = \{ s, 2, 3, 5, 6, 7 \}$$

 $Q = \{ 4, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	45	34	14	15	50

$$S = \{ s, 2, 3, 5, 6, 7 \}$$

 $Q = \{ 4, t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	45	34	14	15	50

$$S = \{ s, 2, 3, 4, 5, 6, 7 \}$$

 $Q = \{ t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	45	34	14	15	50

$$S = \{ s, 2, 3, 4, 5, 6, 7 \}$$

 $Q = \{ t \}$

d	S	2	3	4	5	6	7	t
	0	9	32	45	34	14	15	50

$$S = \{ s, 2, 3, 4, 5, 6, 7, t \}$$

 $Q = \{ \}$

d	S	2	3	4	5	6	7	t
	0	9	32	45	34	14	15	50

$$S = \{ s, 2, 3, 4, 5, 6, 7, t \}$$

 $Q = \{ \}$

Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array

- Good for dense graphs (many edges)
- |V| vertices and |E| edges
- Initialization O(|V|)
- While loop O(|V|)
 - Find and remove min distance vertices O(|V|)
- Potentially | E | updates
 - Update costs O(1)

Total time
$$O(|V^2| + |E|) = O(|V^2|)$$

Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than |V²| edges) Dijkstra's implemented more efficiently by *priority queue*

- Initialization O(|V|) using O(|V|) buildHeap
- While loop O(|V|)
 - Find and remove min distance vertices O(log |V|) using O(log |V|) deleteMin
- Potentially |E| updates
 - Update costs O(log |V|) using decreaseKey

Total time $O(|V|\log|V| + |E|\log|V|) = O(|E|\log|V|)$

• |V| = O(|E|) assuming a connected graph

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. S ← Ø
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. while $Q \neq \emptyset \leftarrow$ Executed O(V) times
- 5. do $u \leftarrow EXTRACT-MIN(Q) \leftarrow O(IgV)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u]$
- 8. do RELAX(u, v, w) \leftarrow O(E) times; O(IgV)

Running time: O(VlgV + ElgV) = O(ElgV)

Dijkstra's Running Time

- Extract-Min executed | V| time
- Decrease-Key executed |E| time
- Time = $|V| T_{\text{Extract-Min}} + |E| T_{\text{Decrease-Key}}$
- T depends on different Q implementations

Q	T(Extract -Min)	T(Decrease- Key)	Total
array	<i>O</i> (<i>V</i>)	<i>O</i> (1)	O(V ²)
binary heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (lg <i>V</i>)	<i>O</i> (<i>E</i> lg <i>V</i>)
Fibonacci heap	<i>O</i> (lg <i>V</i>)	O(1) (amort.)	$O(V \lg V + E)$

An Example

An Example

Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

Color Flaza

Genter Flaza

Gen

From Computer Desktop Encyclopedia

© 1998 The Computer Language Co. Inc.

Applications of Dijkstra's Algorithm

- One particularly relevant this week: epidemiology
- O Prof. Lauren Meyers (MIT, Biology Dept.) uses networks to model the spread of infectious diseases and design prevention and response strategies.
- O Vertices represent individuals, and edges their possible contacts. It is useful to calculate how a particular individual is connected to others.
- O Knowing the shortest path lengths to other individuals can be a relevant indicator of the potential of a particular individual to infect others.

Drawbacks of Dijkstra algorithm

- The major disadvantage of the algorithm is the fact that it does a blind search there by consuming a lot of time waste of necessary resources.
- Another disadvantage is that it cannot handle negative edges. This leads to acyclic graphs and most often cannot obtain the right shortest path.

References

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap21.htm

https://www.youtube.com/watch?v=nZ0nFTvQez0

https://www.youtube.com/watch?v=E_AgyAl8lsc

https://brilliant.org/wiki/fibonacci-heap/

https://www.academia.edu/37584931/9_Dijkstra_pptx?auto=download