

Homework 5

A Novel Application of the Rocket-Equation

Calculating the Fuel Budget for an Orbital Phasing

TT&C Satellite

- TT&C satellite used to monitor pacific coast battle has failed
- NACSOC has decided to transfer the functions of a spare Atlantic battle group satellite to the pacific until a replacement can be launched
- ... design an Orbital phasing Maneuver that Allows Transfer of a GEO Synchronous Communication Satellite from 40.40' west Longitude To 118.15' west longitude

Phasing Maneuver

$$Modulus [T_{phasing} - T_{Solar day}] = \frac{\Delta longitude}{\omega_{Geo}}$$

MAE 5540 - Propulsion Systems

Medicides & Ferospece

Phasing Maneuver (part 2)

Design a Reverse
 Orbital Maneuver
 that Puts the Satellite
 Back to the Original
 Longitude after
 Mission has been
 accomplished

MAE 5540 - Propulsion Systems

What To Compute

- Compute
 - ... Phasing Orbit Parameters
 - ... Phasing Orbit Period
 - ... Required Delta V₁, Delta V₂
- Assume $R_{min} > 32,000 \text{ km}$ (to stay above Van Allen belts)
- Note: It may take Multiple orbits of Phasing Orbit to accomplish this task

What To Compute (cont'd)

- Compute
 - ... Burn time for Transfer Orbit Insertion
 - ... Burn Time for Final Orbit Insertion
 - ... Required Fuel Budget for Delta V1, Delta V2

Parameters of the Problem

Solar Day: 23 hrs, 56 min, 4.1 seconds

Gravitational Parameter: $\mu = \frac{3.9860044 \times 10^5}{\text{sec}^2}$

Original Longitude: 40 deg, 40 min West

Destination Longitude: 118 deg, 15 min West

Parameters of the Problem (cont'd)

Specific Impulse

Fuel	Oxidzer	Isp(s)
Liquid propellants		
Hydrogen (LH2)	Oxygen (LOX)	450
Kerosene (RP-4)	Oxygen (LOX)	260
Monomethyl hydr	azine Nitrogen Tetraoxide	310
Solid propellants		
Powered Al	Ammonium Perchlorate	270

Parameters of the Problem (Concluded)

- $F_{thruster} = 0.500 \text{ kNt}$
- Spacecraft mass

1000 kg "Dry"