

Machine Learning for Data Science

Philippe Besse, Sébastien Gerchinovitz, Béatrice Laurent

Machine Learning for Data Science CERFACS – May 2019

Credits: Aurélien Garivier

Outline

Machine Learning: when Artificial Intelligence meets Big Data

The Learning Models

Machine Learning Methodology

Artificial Intelligence (AI): Definition

Intelligence exhibited by machines

- emulate cognitive capabilities of humans (big data: humans learn from abundant and diverse sources of data).
- a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".

Ideal "intelligent" machine =

flexible rational agent that perceives its environment and takes actions that maximize its chance of success at some goal.

Founded on the claim that human intelligence

"can be so precisely described that a machine can be made to simulate it."

Artificial Intelligence: Tension

Operational goals

- Autonomous robots for not-too-specialized tasks
- In particular, vision + understand and produce language

Tension between operational and philosophical goals

- As machines become increasingly capable, facilities once thought to require intelligence are removed from the definition. For example, optical character recognition is no longer perceived as an exemplar of "artificial intelligence"; having become a routine technology.
- Capabilities still classified as AI include advanced Chess and Go systems and self-driving cars.

Machine Learning (ML): Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

ML: Learn from and make predictions on data

- Algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions...
- ...rather than following strictly static program instructions: useful when designing and programming explicit algorithms is unfeasible or poorly efficient.

Within Data Analytics

- Machine Learning used to devise complex models and algorithms that lend themselves to **prediction** - in commercial use, this is known as *predictive analytics*.
- www.sas.com: "Produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data.
- evolved from the study of pattern recognition and computational learning theory in artificial intelligence.

Machine Learning: Typical Problems

- spam filtering, text classification
- optical character recognition (OCR)
- search engines
- recommendation platforms
- speach recognition software
- computer vision
- bio-informatics, DNA analysis, medicine
- etc.

For each of these tasks, it is possible but very inefficient to write an explicit program reaching the prescribed goal.

It proves much more successful to have a machine infer what the good decision rules are.

Related Fields

- Computational Statistics: focuses in prediction-making through the use of computers together with statistical models (ex: Bayesian methods).
- **Statistical Learning**: ML by statistical methods, with statistical point of view (probabilistic guarantees: consistency, oracle inequalities, minimax)
 - ightarrow more focused on *correlation*, less on *causality*
- Data Mining (unsupervised learning) focuses more on exploratory data analysis: discovery of (previously) unknown properties in the data. This is the analysis step of Knowledge Discovery in Databases.
- Importance of **probability** and **statistics**-based methods \rightarrow **Data Science** (Michael Jordan)
- Strong ties to **Mathematical Optimization**, which delivers methods, theory and application domains to the field

[Src: Bouzeghoub, Mastodons: Une approche interdisciplinaire des Big Data]

Qu'est-ce qu'une (très grande) masse de données ?

[Src: Bouzeghoub, Mastodons: Une approche interdisciplinaire des Big Data]

Complexité multidimensionnele des Big Data

Défis accompagnant les chgts

repenser les outils algorithmiques et mathématiques

Machine Learning and Statistics

- Data analysis (inference, description) is the goal of statistics for long.
- Machine Learning has more operational goals (ex: consistency is important in the statistics literature, but often makes little sense in ML).
 Models (if any) are instrumental.
 - Ex: linear model (nice mathematical theory) vs Random Forests.
- Machine Learning/big data: no separation between statistical modelling and optimization (in contrast to the statistics tradition).
- In ML, data is often here before (unfortunately)
- No clear separation (statistics evolves as well).

ML and its neighbors

ML journals

ML conferences

Outline

The Learning Models

What ML is composed of

Unsupervised Learning

- (many) observations on (many) individuals
- need to have a simplified, structured overview of the data
- taxonomy: untargeted search for homogeneous clusters emerging from the data
- Examples:
 - customer segmentation
 - image analysis (recognizing different zones)
 - exploration of data

Example

Supervised Learning

- observations = pairs (X_i, Y_i)
- goal = learn to predict Y_i given X_i
- regression (when *Y* is continuous)
- classification (when Y is discrete)
- statistical technique: linear models, and much more!

Example: Character Recognition

Input space ${\mathcal X}$	64×64 images
Output space ${\cal Y}$	$\{0,1,\ldots,9\}$
Joint distribution $P(x, y)$?
Prediction function $h \in \mathcal{H}$	
Risk $R(h) = P(h(X) \neq Y)$	
Sample $\{(x_i, y_i)\}_{i=1}^n$	MNIST dataset
Empirical risk	
$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{h(x_i) \neq y_i\}$	
Learning algorithm	
$\phi_n: (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{H}$	NN,boosting
Expected risk $R_n(\phi) = \mathbb{E}_n[R(\phi_n)]$	
Empirical risk minimizer	
$\hat{h}_n = \operatorname{argmin}_{h \in \mathcal{H}} \hat{R}_n(h)$	
Regularized empirical risk minimizer	
$\hat{h}_n = \operatorname{argmin}_{h \in \mathcal{H}} \hat{R}_n(h) + \lambda C(h)$	

[Src: https://en.wikipedia.org/wiki/Reinforcement_learning]

- area of machine learning inspired by behaviourist psychology
- how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.
- Model: random system (typically: Markov Decision Process)
 - agent
 - state
 - actions
 - rewards
- sometimes called approximate dynamic programming, or neuro-dynamic programming

Markov decision process

A Markov Decision Process is defined as a tuple M = (X, A, p, r):

- X is the state space,
- A is the action space,
- p(y|x,a) is the transition probability with

$$p(y|x, a) = \mathbb{P}(x_{t+1} = y|x_t = x, a_t = a),$$

• r(x, a, y) is the reward of transition (x, a, y).

Example: the Retail Store Management Problem

At each month t, a store contains x_t items of a specific goods and the demand for that goods is D_t . At the end of each month the manager of the store can order a_t more items from his supplier. Furthermore we know that:

- The cost of maintaining an inventory of x is h(x).
- The cost to order a items is C(a).
- The income for selling q items is f(q).
- If the demand D is bigger than the available inventory x, customers that cannot be served leave.
- The value of the remaining inventory at the end of the year is g(x).
- Constraint: the store has a maximum capacity *M*.

Reinforcement Learning and its neighbors

Outline of the training program

- Day 1 Panorama of machine learning.
 Unsupervised learning:
 - Principal Component Analysis
 - Agglomerative Hierarchical Clustering
 - k-means, k-medoids, and variants
 - Overview of other methods: spectral clustering, Affinity Propagation, dbscan
- Day 2 Supervised learning 1/2:
 - Gaussian linear model, logistic regression, model selection
 - LASSO and variants
 - Support Vector Machines

Outline of the training program

Day 3 Supervised learning 2/2:

- Decision trees
- Bagging, Random Forests, Boosting
- Neural networks, introduction to deep learning

Day 4 Other learning paradigms:

- Sequential learning, multi-armed bandit problems
- Super-learning and expert aggregation
- Reinforcement learning (introduction)

Outline

Machine Learning: when Artificial Intelligence meets Big Data

The Learning Models

Machine Learning Methodology

ML Data

n-by-p matrix X

- *n* examples = observation points
- p features = characteristics measured for each example

Questions to consider:

- Are the features centered?
- Are the features normalized? bounded?

In scikitlearn, all methods expect a 2D array of shape (n, p) often called

```
X (n_samples, n_features)
```

Data repositories

- Inside R: package datasets
- Inside scikitlearn: package sklearn.datasets
- UCI Machine Learning Repository
- Challenges: Kaggle, etc.

The big steps of data analysis

- Extracting the data to expected format
- Exploring the data
 - detection of outliers, of inconsistencies
 - descriptive exploration of the distributions, of correlations
 - data transformations
- Random partitioning of the data: (see also: cross-validation)
 - · learning sample
 - validation sample
 - test sample
- For each algorithm: parameter estimation using training and validation samples
- 6 Choice of final algorithm using testing sample, risk estimation

Machine Learning tools: R

Machine Learning tools: python

scikitlearn:

http://scikit-learn.org/stable/index.html

Knime, Weka and co: integrated environments

