On robust estimation of high-dimensional covariance matrices

Karina Ashurbekova

GIPSA-lab, INRIA

July 18, 2019

No machine learning today! ©

Sample Covariance Matrix

Warm-up: covariance matrix ©

- $X = (X_1, \dots, X_p)$ p-variate random vector
- Covariance matrix:

$$\Sigma = \begin{bmatrix} \mathbb{E}[(X_1 - \mathbb{E}(X_1))(X_1 - \mathbb{E}(X_1))] & \dots & \mathbb{E}[(X_1 - \mathbb{E}(X_1))(X_\rho - \mathbb{E}(X_\rho))] \\ & \dots & \\ \mathbb{E}[(X_\rho - \mathbb{E}(X_\rho))(X_1 - \mathbb{E}(X_1))] & \dots & \mathbb{E}[(X_\rho - \mathbb{E}(X_\rho))(X_\rho - \mathbb{E}(X_\rho))] \end{bmatrix}$$
(1)

• Problem: estimate the covariance matrix from the i.i.d. observations $X_1 = (X_{11}, \dots, X_{1p}), \dots, X_n = (X_{n1}, \dots, X_{np})$

Why covariance estimation?

How to estimate the covariance matrix?

- We have a data matrix $\mathbf{X} = [\mathbf{X}_1, \dots \mathbf{X}_n]^T$ (n rows (samples) and p columns (dimension))
- The sample covariance matrix:

$$\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_{i} - \widehat{\mathbf{X}}) (\mathbf{X}_{i} - \widehat{\mathbf{X}})^{T},$$

$$\widehat{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$$
(2)

• Problem:

- The eigenstructure of S tends to be systematically distorted unless ^P/_P is small ⇒
- Larger eigenvalues are overestimated; smaller eigenvalues are underestimated

How to estimate the covariance matrix?

- We have a data matrix $\mathbf{X} = [\mathbf{X}_1, \dots \mathbf{X}_n]^T$ (n rows (samples) and p columns (dimension))
- The sample covariance matrix:

$$\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_{i} - \widehat{\mathbf{X}}) (\mathbf{X}_{i} - \widehat{\mathbf{X}})^{T},$$

$$\widehat{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$$
(2)

• Problem:

- The eigenstructure of S tends to be systematically distorted unless ^P/₂ is small ⇒
- Larger eigenvalues are overestimated; smaller eigenvalues are underestimated

How to estimate the covariance matrix?

- We have a data matrix $\mathbf{X} = [\mathbf{X}_1, \dots \mathbf{X}_n]^T$ (n rows (samples) and p columns (dimension))
- The sample covariance matrix:

$$\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_{i} - \widehat{\mathbf{X}}) (\mathbf{X}_{i} - \widehat{\mathbf{X}})^{T},$$

$$\widehat{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$$
(2)

Problem:

- The eigenstructure of S tends to be systematically distorted unless ^p/_a is small ⇒
- Larger eigenvalues are overestimated; smaller eigenvalues are underestimated

Eigenvalues structure for the range $\frac{p}{n}$

Larger eigenvalues are overestimated; smaller eigenvalues are underestimated.

Too bad 😉

p > n. What can we do?

Shrink!

 To ensure non-singularity, Ledoit and Wolf (2004) proposed a shrinkage estimator of the covariance matrix:

$$\widehat{\Sigma} = \alpha_1 S + \alpha_2 I$$

- Use $\widehat{\Sigma}$ that shrinks S towards to a structure (e.g., a scaled identity matrix) using a tuning (shrinkage) parameter α_2
- Why?
 - Mean Squared Error $MSE(\widehat{\Sigma}) = \mathbb{E}\left[\|\widehat{\Sigma} \Sigma\|_F^2\right]$ can be reduced by introducing some bias!
 - Positive definiteness of $\widehat{\Sigma}$ can be ensured!

Shrink!

 To ensure non-singularity, Ledoit and Wolf (2004) proposed a shrinkage estimator of the covariance matrix:

$$\widehat{\Sigma} = \alpha_1 S + \alpha_2 I$$

- Use $\widehat{\Sigma}$ that shrinks ${\bf S}$ towards to a structure (e.g., a scaled identity matrix) using a tuning (shrinkage) parameter α_2
- Why?
 - Mean Squared Error $MSE(\widehat{\Sigma}) = \mathbb{E}\left[\|\widehat{\Sigma} \Sigma\|_F^2\right]$ can be reduced by introducing some bias!
 - Positive definiteness of Σ can be ensured!

Shrink!

 To ensure non-singularity, Ledoit and Wolf (2004) proposed a shrinkage estimator of the covariance matrix:

$$\widehat{\Sigma} = \alpha_1 S + \alpha_2 I$$

- Use $\widehat{\Sigma}$ that shrinks \boldsymbol{S} towards to a structure (e.g., a scaled identity matrix) using a tuning (shrinkage) parameter α_2
- Why?
 - Mean Squared Error $MSE(\widehat{\Sigma}) = \mathbb{E}\left[\left\|\widehat{\Sigma} \Sigma\right\|_F^2\right]$ can be reduced by introducing some bias!
 - Positive definiteness of $\widehat{\Sigma}$ can be ensured!

How to estimate α_1 and α_2 ?

Find α_1^* and α_2^* that minimize Mean Squared Error (MSE):

$$MSE(\widehat{\Sigma}) = \mathbb{E}\left[\left\|\widehat{\Sigma} - \Sigma\right\|_F^2\right] = \mathbb{E}\left[\left\|\alpha_1 S + \alpha_2 I - \Sigma\right\|_F^2\right]$$

Theorem

The optimal parameters α_1^* and α_2^* are

$$\alpha_{2}^{*} = (1 - \alpha_{1}^{*}) \frac{tr(\Sigma)}{p},$$

$$\alpha_{1}^{*} = \frac{p\left(\frac{ptr(\Sigma^{2})}{tr(\Sigma)^{2}} - 1\right)\left(\frac{tr(\Sigma)}{p}\right)^{2}}{\mathbb{E}\left[tr(S^{2})\right] - p\left(\frac{tr(\Sigma)}{p}\right)^{2}}$$

Thus $\widehat{\Sigma}$ is a convex combnation of ${\it S}$ and $\frac{tr(\Sigma)}{p}{\it I}$

How to estimate α_1 and α_2 ?

Find α_1^* and α_2^* that minimize Mean Squared Error (MSE):

$$MSE(\widehat{\Sigma}) = \mathbb{E}\left[\left\|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\right\|_F^2\right] = \mathbb{E}\left[\left\|\alpha_1 \boldsymbol{S} + \alpha_2 \boldsymbol{I} - \boldsymbol{\Sigma}\right\|_F^2\right]$$

Theorem

The optimal parameters α_1^* and α_2^* are:

$$\alpha_{2}^{*} = \left(1 - \alpha_{1}^{*}\right) \frac{tr(\Sigma)}{p},$$

$$\alpha_{1}^{*} = \frac{p\left(\frac{ptr(\Sigma^{2})}{tr(\Sigma)^{2}} - 1\right)\left(\frac{tr(\Sigma)}{p}\right)^{2}}{\mathbb{E}\left[tr(S^{2})\right] - p\left(\frac{tr(\Sigma)}{p}\right)^{2}}$$

Thus $\widehat{\Sigma}$ is a convex combnation of ${\it S}$ and $\frac{tr(\Sigma)}{p}{\it I}$

Bias-variance trade-off

LW estimator:

$$\widehat{\Sigma} = \alpha S + (1 - \alpha) \frac{tr(\Sigma)}{p} I$$

- $\frac{tr(\Sigma)}{\rho}I$: all bias no variance.
- $m{S}$: all variance no bias ($m{S}$ is unbiased estimation of Σ i. e.

$$\mathbb{E}(\boldsymbol{S}) = \boldsymbol{\Sigma})$$

Figure: Shrinkage intensity: $1 - \alpha$

A Bayesian interpretation of shrinkage Bayes' rule:

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta) * p(\theta)}{p(\mathbf{X})}$$

$$posterior = \frac{likelihood * prior}{evidence}$$

Maximum A Posteriori Estimation:

$$\theta_{MAP} = \arg \max_{\theta} p(\mathbf{X}|\theta) p(\theta) =$$

$$= \arg \max_{\theta} \log p(\mathbf{X}|\theta) + \log p(\theta)$$

Thus:

- Laplacian prior $\Rightarrow l_1$ -regularization (lasso)
- Wishart-inverse prior ⇒ shrinkage

Difference between lasso and shrinkage:

- lasso impose the sparsity on the elements of covariance matrix
- shrinkage no! shrinkage affects only eigenvalues.

A Bayesian interpretation of shrinkage

Bayes' rule:

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta) * p(\theta)}{p(\mathbf{X})}$$

$$posterior = \frac{likelihood * prior}{evidence}$$

Maximum A Posteriori Estimation:

$$\theta_{MAP} = \arg \max_{\theta} p(\mathbf{X}|\theta) p(\theta) =$$

$$= \arg \max_{\theta} \log p(\mathbf{X}|\theta) + \log p(\theta)$$

Thus

- Laplacian prior $\Rightarrow l_1$ -regularization (lasso)
- Wishart-inverse prior ⇒ shrinkag

Difference between lasso and shrinkage:

- lasso impose the sparsity on the elements of covariance matrix
- shrinkage no! shrinkage affects only eigenvalues.

A Bayesian interpretation of shrinkage

Bayes' rule:

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta) * p(\theta)}{p(\mathbf{X})}$$

$$posterior = \frac{likelihood * prior}{evidence}$$

Maximum A Posteriori Estimation:

$$\theta_{MAP} = arg \max_{\theta} p(\mathbf{X}|\theta)p(\theta) =$$

$$= arg \max_{\theta} \log p(\mathbf{X}|\theta) + \log p(\theta)$$

Thus:

- Laplacian prior $\Rightarrow l_1$ -regularization (lasso)
- Wishart-inverse prior ⇒ shrinkage

Difference between lasso and shrinkage:

- lasso impose the sparsity on the elements of covariance matrix!
- shrinkage no! shrinkage affects only eigenvalues.

But...

LW shrinkage approach is based on the sample covariance matrix *S*!

- we know how to deal with p > n case only for the Gaussian data
- but if the data is corrupted? (outliers, noise)
 - Sample Covariance Matrix is sensitive to outliers.
 Why?

$$S = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T} =$$

$$= \sum_{i=1}^{n} w_{i} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T},$$

$$w_{i} = \frac{1}{n}$$

- consider the distance $d_i = \sqrt{(\boldsymbol{X}_i \widehat{\boldsymbol{X}})^T \Sigma^{-1} (\boldsymbol{X}_i \widehat{\boldsymbol{X}})}$
- $w_i = \frac{1}{n}$, normal samples and outliers contribute to **S** equally

LW shrinkage approach is based on the sample covariance matrix *S*!

- we know how to deal with p > n case only for the Gaussian data
- but if the data is corrupted? (outliers, noise)
 - Sample Covariance Matrix is sensitive to outliers.
 Why?

$$S = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T} =$$

$$= \sum_{i=1}^{n} w_{i} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T},$$

$$w_{i} = \frac{1}{n}$$

- consider the distance $d_i = \sqrt{(\boldsymbol{X}_i \widehat{\boldsymbol{X}})^T \Sigma^{-1} (\boldsymbol{X}_i \widehat{\boldsymbol{X}})}$
- $w_i = \frac{1}{n}$, normal samples and outliers contribute to **S** equally

LW shrinkage approach is based on the sample covariance matrix *S*!

- we know how to deal with p > n case only for the Gaussian data
- but if the data is corrupted? (outliers, noise)
 - Sample Covariance Matrix is sensitive to outliers. Why?

$$S = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T} =$$

$$= \sum_{i=1}^{n} w_{i} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T},$$

$$w_{i} = \frac{1}{n}$$

- consider the distance $d_i = \sqrt{(\boldsymbol{X}_i \widehat{\boldsymbol{X}})^T \Sigma^{-1} (\boldsymbol{X}_i \widehat{\boldsymbol{X}})}$
- $w_i = \frac{1}{n}$, normal samples and outliers contribute to **S** equally

What to do in the case of noisy data/data with outliers

consider the assumption that data comes form heavy-tailed distribution

 Problem: estimate the covariance matrix in high-dimensional case for heavy-tailed distributions.

What to do in the case of noisy data/data with outliers

consider the assumption that data comes form heavy-tailed distribution

 Problem: estimate the covariance matrix in high-dimensional case for heavy-tailed distributions.

Heavy-tailed distributions

Elliptical distribution

• The probability density function of the elliptical distribution is:

$$f(\mathbf{x}) = C_{p,g} |\Sigma|^{-1/2} g\left((\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right),$$

where g(t) is non-negative generator function, $C_{p,g}$ is the normalisation constant

Elliptical family

Gaussian Multivariate-t Laplace Cauchy Logistic

- $X_i \sim \text{elliptical } (0, \Sigma)$ (we don't specify which distribution in elliptical family)
- Normalized sample $Z_i \triangleq \frac{X_i \mu}{\|X_i \mu\|_2}$
 - pdf, Angular Central Gaussian Distribution:

$$f(z) = C|\Sigma|^{-1/2}(z^T\Sigma^{-1}z)^{-p/2}$$

negative log-likelihood function:

$$\frac{n}{2}\log|\Sigma| + \frac{p}{2}\sum_{i=1}^{n}\log(\boldsymbol{Z}_{i}\boldsymbol{\Sigma}^{-1}\boldsymbol{Z}_{i})$$

$$\Sigma = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i^T \Sigma^{-1} Z_i}$$

- $X_i \sim \text{elliptical } (0, \Sigma)$ (we don't specify which distribution in elliptical family)
- Normalized sample $Z_i \triangleq \frac{X_i \mu}{\|X_i \mu\|_2}$
 - pdf, Angular Central Gaussian Distribution:

$$f(z) = C|\Sigma|^{-1/2}(z^T\Sigma^{-1}z)^{-p/2}$$

negative log-likelihood function:

$$\frac{n}{2}\log|\Sigma| + \frac{p}{2}\sum_{i=1}^{n}\log(Z_{i}\Sigma^{-1}Z_{i})$$

$$\Sigma = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i^T \Sigma^{-1} Z_i}$$

- $X_i \sim \text{elliptical } (0, \Sigma)$ (we don't specify which distribution in elliptical family)
- Normalized sample $Z_i \triangleq \frac{X_i \mu}{\|X_i \mu\|_2}$
 - pdf, Angular Central Gaussian Distribution:

$$f(\mathbf{z}) = C|\mathbf{\Sigma}|^{-1/2}(\mathbf{z}^T\mathbf{\Sigma}^{-1}\mathbf{z})^{-p/2}$$

negative log-likelihood function:

$$\frac{n}{2}\log|\Sigma| + \frac{p}{2}\sum_{i=1}^{n}\log(Z_{i}\Sigma^{-1}Z_{i})$$

$$\Sigma = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i^T \Sigma^{-1} Z_i}$$

- $X_i \sim \text{elliptical } (0, \Sigma)$ (we don't specify which distribution in elliptical family)
- Normalized sample $Z_i \triangleq \frac{X_i \mu}{\|X_i \mu\|_2}$
 - pdf, Angular Central Gaussian Distribution:

$$f(\mathbf{z}) = C|\mathbf{\Sigma}|^{-1/2}(\mathbf{z}^T\mathbf{\Sigma}^{-1}\mathbf{z})^{-p/2}$$

negative log-likelihood function:

$$\frac{n}{2}\log|\Sigma| + \frac{p}{2}\sum_{i=1}^{n}\log(\boldsymbol{Z}_{i}\Sigma^{-1}\boldsymbol{Z}_{i})$$

$$\Sigma = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i^T \Sigma^{-1} Z_i}$$

- $X_i \sim \text{elliptical } (0, \Sigma)$ (we don't specify which distribution in elliptical family)
- Normalized sample $Z_i \triangleq \frac{X_i \mu}{\|X_i \mu\|_2}$
 - pdf, Angular Central Gaussian Distribution:

$$f(\mathbf{z}) = C|\mathbf{\Sigma}|^{-1/2}(\mathbf{z}^T\mathbf{\Sigma}^{-1}\mathbf{z})^{-p/2}$$

negative log-likelihood function:

$$\frac{n}{2}\log|\Sigma| + \frac{p}{2}\sum_{i=1}^{n}\log(\boldsymbol{Z}_{i}\boldsymbol{\Sigma}^{-1}\boldsymbol{Z}_{i})$$

$$\Sigma = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i^T \Sigma^{-1} Z_i}$$

Tyler's estimator:

$$\Sigma = \sum_{i=1}^{n} w_i \mathbf{Z}_i \mathbf{Z}_i^T$$

$$w_i = \frac{p}{n} \frac{1}{\mathbf{Z}_i^T \Sigma^{-1} \mathbf{Z}_i}$$

- Why is Tyler's estimator robust to outliers? ©
 - consider distance $d_i = \sqrt{Z_i^T \Sigma^{-1} Z_i}$
 - $w_i \propto \frac{1}{d^2}$, outliers are down-weighted
- Fixed-point equation, iterative algorithm:

$$\widetilde{\Sigma}_{t+1} = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i \widehat{\Sigma}_t^{-1} Z_i}$$

$$\widehat{\Sigma}_{t+1}$$

$$\widehat{\Sigma}_{t+1} = \frac{\Sigma_{t+1}}{tr(\widetilde{\Sigma}_{t+1})/p}$$

Tyler's estimator:

$$\sum = \sum_{i=1}^{n} w_i \mathbf{Z}_i \mathbf{Z}_i^T$$

$$w_i = \frac{p}{n} \frac{1}{\mathbf{Z}_i^T \sum_{i=1}^{n-1} \mathbf{Z}_i}$$

- Why is Tyler's estimator robust to outliers? ©
 - consider distance $d_i = \sqrt{Z_i^T \Sigma^{-1} Z_i}$
 - $w_i \propto \frac{1}{d^2}$, outliers are down-weighted
- Fixed-point equation, iterative algorithm:

$$\widetilde{\Sigma}_{t+1} = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i \widehat{\Sigma}_t^{-1} Z_i}$$

$$\widehat{\Sigma}_{t+1} = \frac{\widetilde{\Sigma}_{t+1}}{tr(\widetilde{\Sigma}_t)/p}$$

Tyler's estimator:

$$\sum = \sum_{i=1}^{n} w_i \mathbf{Z}_i \mathbf{Z}_i^T$$

$$w_i = \frac{p}{n} \frac{1}{\mathbf{Z}_i^T \sum_{i=1}^{n-1} \mathbf{Z}_i}$$

- Why is Tyler's estimator robust to outliers?
 - consider distance $d_i = \sqrt{Z_i^T \Sigma^{-1} Z_i}$
 - $w_i \propto \frac{1}{d^2}$, outliers are down-weighted
- Fixed-point equation, iterative algortihm

$$\widehat{\Sigma}_{t+1} = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i \widehat{\Sigma}_t^{-1} Z_i}$$

$$\widehat{\Sigma}_{t+1} = \frac{\widehat{\Sigma}_{t+1}}{tr(\widehat{\Sigma}_{t+1})/p}$$

Tyler's estimator:

$$\Sigma = \sum_{i=1}^{n} w_i Z_i Z_i^T$$

$$w_i = \frac{p}{n} \frac{1}{Z_i^T \Sigma^{-1} Z_i}$$

- Why is Tyler's estimator robust to outliers?
 - consider distance $d_i = \sqrt{Z_i^T \Sigma^{-1} Z_i}$
 - $w_i \propto \frac{1}{d_i^2}$, outliers are down-weighted
- Fixed-point equation, iterative algorithm:

$$\widetilde{\Sigma}_{t+1} = \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i \widehat{\Sigma}_t^{-1} Z_i}$$

$$\widehat{\Sigma}_{t+1} = \frac{\widetilde{\Sigma}_{t+1}}{tr(\widetilde{\Sigma}_{t+1})/p}$$

How to deal with small sample scenario? Shrink! As for the sample covariance matrix

Shrinkage covariance matrix: modified Tyler's estimator

• Modified Tyler's estimator [Chen et al. [2011]]

$$\widetilde{\Sigma}_{t+1} = (1 - \rho) \frac{p}{n} \sum_{i=1}^{n} \frac{Z_i Z_i^T}{Z_i \widehat{\Sigma}_t^{-1} Z_i} + \rho I, \ \rho \in [0, 1]$$

$$\widehat{\Sigma}_{t+1} = \frac{\widetilde{\Sigma}_{t+1}}{tr(\widetilde{\Sigma}_{t+1})/p}$$

- the second step solves the identifiability issue
- Provable convergence
- Systematic way of choosing parameter ρ

Shrinkage covariance matrix: modified Tyler's estimator

Modified Tyler's estimator [Chen et al. [2011]]

$$\begin{split} \widetilde{\Sigma}_{t+1} &= (1 - \rho) \frac{p}{n} \sum_{i=1}^{n} \frac{\boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{T}}{\boldsymbol{Z}_{i} \widehat{\Sigma}_{t}^{-1} \boldsymbol{Z}_{i}} + \rho \boldsymbol{I}, \ \rho \in [0, 1] \\ \widehat{\Sigma}_{t+1} &= \frac{\widetilde{\Sigma}_{t+1}}{tr(\widetilde{\Sigma}_{t+1})/p} \end{split}$$

- the second step solves the identifiability issue
- Provable convergence
- Systematic way of choosing parameter ρ

Ok! But what if the mean value is unknown (cannot use Tyler's estimator anymore). We still want to deal with heavy-tailed data!

My work ©

- Problem: estimate the covariance matrix in high-dimensional case for heavy-tailed distributions with the unknown mean vector
 - Consider the specific distirbution in the class of elliptical

My work ☺

- Problem: estimate the covariance matrix in high-dimensional case for heavy-tailed distributions with the unknown mean vector
 - Consider the specific distirbution in the class of elliptical

Small Sample Regime & Robust Mean-Covariance Estimators

Elliptical distribution

• fix the distribution in the elliptical family:

$$f(\mathbf{x}) = C_{p,g} |\Sigma|^{-1/2} g\left((\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

• find the MAP estimator:

$$\widehat{\Sigma}_{\rho} = (1 - \rho) \frac{1}{n} \sum_{i=1}^{n} u(t) (\boldsymbol{X}_{i} - \boldsymbol{\mu}) (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\mathsf{T}} + \rho \boldsymbol{I},$$

$$u(t) = -2 \frac{g'(t)}{g(t)},$$

$$t = (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\mathsf{T}} \widehat{\Sigma}_{\rho}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu})$$

- we find the ho which minimize $\mathsf{MSE}(\widehat{\Sigma}) = \mathbb{E}\left[\left\|\widehat{\Sigma} \Sigma\right\|_F^2\right]$
 - no formula here, too long ...

Elliptical distribution

• fix the distribution in the elliptical family:

$$f(\mathbf{x}) = C_{p,g} |\Sigma|^{-1/2} g\left((\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right),$$

• find the MAP estimator:

$$\begin{split} \widehat{\boldsymbol{\Sigma}}_{\rho} &= (1 - \rho) \frac{1}{n} \sum_{i=1}^{n} u(t) (\boldsymbol{X}_{i} - \boldsymbol{\mu}) (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} + \rho \boldsymbol{I}, \\ u(t) &= -2 \frac{g'(t)}{g(t)}, \\ t &= (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\top} \widehat{\boldsymbol{\Sigma}}_{\rho}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu}) \end{split}$$

- we find the ρ which minimize $\mathrm{MSE}(\widehat{\Sigma}) = \mathbb{E}\left[\left\|\widehat{\Sigma} \Sigma\right\|_F^2\right]$
 - no formula here, too long ..

Elliptical distribution

• fix the distribution in the elliptical family:

$$f(\mathbf{x}) = C_{p,g} |\mathbf{\Sigma}|^{-1/2} g\left((\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right),$$

find the MAP estimator:

$$\widehat{\boldsymbol{\Sigma}}_{\rho} = (1 - \rho) \frac{1}{n} \sum_{i=1}^{n} u(t) (\boldsymbol{X}_{i} - \boldsymbol{\mu}) (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\mathsf{T}} + \rho \boldsymbol{I},$$

$$u(t) = -2 \frac{g'(t)}{g(t)},$$

$$t = (\boldsymbol{X}_{i} - \boldsymbol{\mu})^{\mathsf{T}} \widehat{\boldsymbol{\Sigma}}_{\rho}^{-1} (\boldsymbol{X}_{i} - \boldsymbol{\mu})$$

- we find the ho which minimize $\mathsf{MSE}(\widehat{\Sigma}) = \mathbb{E}\left[\left\|\widehat{\Sigma} \Sigma\right\|_F^2\right]$
 - no formula here, too long ...

Example: Multivariate t-distribution

ullet Multivariate t-distribution with degree of freedom u

$$t_p(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma},\nu) = \frac{\Gamma(\frac{\nu+p}{2})}{(\pi\nu)^{p/2}\Gamma(\frac{\nu}{2})|\boldsymbol{\Sigma}|^{1/2}} \Big[1 + \frac{\delta(\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{\Sigma})}{\nu}\Big]^{-\frac{\nu+p}{2}},$$

 $\delta(x, \mu, \Sigma) = (x - \mu)^T \Sigma^{-1} (x - \mu)$ is the Mahalanobis distance between x and μ

• t-distribution has heavier tail than normal

MAP estimation

- $\boldsymbol{X}_i \sim t_p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\nu})$
- Algorithm:

$$\widehat{\boldsymbol{\mu}}_{t+1} = \frac{\sum_{i=1}^{n} \tau_{i}^{t+1} \boldsymbol{X}_{i}}{\sum_{i=1}^{n} \tau_{i}^{t+1}}, \ \tau_{i}^{t+1} = \frac{\nu + \rho}{\nu + (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) \widehat{\boldsymbol{\Sigma}}_{t}^{-1} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t})}$$

$$\widehat{\boldsymbol{\Sigma}}_{t+1} = (1 - \rho) \frac{\rho + \nu}{n} \sum_{i=1}^{n} \frac{(\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t})^{T}}{(\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) \widehat{\boldsymbol{\Sigma}}_{t}^{-1} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) + \nu} + \rho \boldsymbol{I},$$

ullet ho can be find by minimizing $\mathsf{MSE}(\widehat{oldsymbol{\Sigma}}_{t+1})$

MAP estimation

- $X_i \sim t_p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)$
- Algorithm:

$$\widehat{\boldsymbol{\mu}}_{t+1} = \frac{\sum_{i=1}^{n} \tau_{i}^{t+1} \boldsymbol{X}_{i}}{\sum_{i=1}^{n} \tau_{i}^{t+1}}, \ \tau_{i}^{t+1} = \frac{\nu + p}{\nu + (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) \widehat{\boldsymbol{\Sigma}}_{t}^{-1} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t})}$$

$$\widehat{\boldsymbol{\Sigma}}_{t+1} = (1 - \rho) \frac{p + \nu}{n} \sum_{i=1}^{n} \frac{(\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t})^{T}}{(\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) \widehat{\boldsymbol{\Sigma}}_{t}^{-1} (\boldsymbol{X}_{i} - \widehat{\boldsymbol{\mu}}_{t}) + \nu} + \rho \boldsymbol{I},$$

ullet ho can be find by minimizing $\mathsf{MSE}(\widehat{\Sigma}_{t+1})$

Optimal parameter

Theorem

The optimal shrinkage parameter ρ for the t-distribution with $\nu > 0$ degrees of freedom:

$$\rho^* = \frac{tr(\Sigma^2)\left(1+\frac{\nu}{p}-\frac{2}{p}\right)+p(\nu+p)}{tr(\Sigma^2)\left(\left(n+1\right)\left(\frac{\nu}{p}+1\right)+\frac{2}{p}(n-1)\right)+\left(p+\nu\right)(p-n)-2n}$$

- ullet ho^* depends on $tr(oldsymbol{\Sigma}^2),
 u$ which are unknown
 - to estimate $tr(\Sigma^2)$ we use the normalized sample covariance matrix:

$$\widehat{\boldsymbol{R}} = \frac{p}{n} \sum_{i=1}^{n} \frac{(\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})(\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}})^{T}}{\|\boldsymbol{X}_{i} - \widehat{\boldsymbol{X}}\|^{2}}$$

 \bullet To estimate degrees of freedom parameter ν we use extreme values theory, tail-index

Optimal parameter

Theorem

The optimal shrinkage parameter ρ for the t-distribution with $\nu > 0$ degrees of freedom:

$$\rho^* = \frac{tr(\Sigma^2)\left(1+\frac{\nu}{p}-\frac{2}{p}\right)+p(\nu+p)}{tr(\Sigma^2)\left(\left(n+1\right)\left(\frac{\nu}{p}+1\right)+\frac{2}{p}(n-1)\right)+\left(p+\nu\right)(p-n)-2n}$$

- ho^* depends on $tr(\Sigma^2),
 u$ which are unknown
 - to estimate $tr(\Sigma^2)$ we use the normalized sample covariance matrix:

$$\widehat{R} = \frac{p}{n} \sum_{i=1}^{n} \frac{(X_i - \widehat{X})(X_i - \widehat{X})^T}{\|X_i - \widehat{X}\|^2}$$

 \bullet To estimate degrees of freedom parameter ν we use extreme values theory, tail-index

Experiments

Multivariate t-distribution, $\nu = \{1, 3\}$

Figure: AR(r) process: comparison of covariance estimators when p=50 and $r\in\{0.1,0.5,0.9\}$ and the samples are from multivariate t-distribution distribution with $\nu\in\{1,2,3,6,10\}$ degrees of freedom; μ is fixed to be 5 in all simulations $\mu\in\{0.1,0.5,0.9\}$

Multivariate t-distribution, $\nu = \{6, 10\}$

Figure: AR(r) process: comparison of covariance estimators when p=50 and $r\in\{0.1,0.5,0.9\}$ and the samples are from multivariate t-distribution distribution with $\nu\in\{1,2,3,6,10\}$ degrees of freedom; μ is fixed to be 5 in all simulations $\mu\in\{0.1,0.5,0.9\}$

Gaussian distribution

Figure: AR(r) process: $[\Sigma]_{ij} = \varrho^{|i-j|}$, $\varrho \in (0,1)$. Comparison of covariance estimators when p=50 and $r \in \{0.1,0.5,0.9\}$ and the samples are from multivariate normal distribution; μ is fixed to be 5 in all simulations

Application

ICC values

CHEN, YILUN, WIESEL, AMI, & HERO, ALFRED O. 2011. Robust shrinkage estimation of high-dimensional covariance matrices. *IEEE Transactions on Signal Processing*, **59**(9), 4097–4107.

TYLER, DAVID E. 1987. A distribution-free M-estimator of multivariate scatter. *The Annals of Statistics*, 234–251.