Bayesian model selection

Seminar physics 760 – Computational Physics

DOMINIC SCHÜCHTER

✓ dschuechter@uni-bonn.de | • dschuechter

JAKOB KRAUSE **№** krause@hiskp.uni-bonn.de | **?** krausejm

Tutor: Andreas Wirzba

■ a.wirzba@fz-juelich.de

Introduction

Bayes' Theorem – a quick reminder

$$\operatorname{prob}(\boldsymbol{\theta}|y) = p(\boldsymbol{\theta}|y) = \frac{p(y|\boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(y)}$$

with

- ightharpoonup posterior $p(\theta|y)$
- ightharpoonup likelihood $p(y|\boldsymbol{\theta})$
- ightharpoonup prior $p(\theta)$
- ► marginal likelihood $p(y) = \int_{-\infty}^{+\infty} d\theta p(y|\theta) p(\theta)$

This can be used for model selection (?)

Table of Contents

1. Theory

Parameter estimation Model comparison

2. Methods

Monte-Carlo-Sampling SAVAGE-DICKEY-Density-Ratio (SDDR)

3. Examples

Coin Flip Fitting a polynomial of unknown degree

4. Summary

1. Theory

Parameter estimation Model comparison

2. Methods

Monte-Carlo-Sampling SAVAGE-DICKEY-Density-Ratio (SDDR)

3. Examples

Coin Flip Fitting a polynomial of unknown degree

4. Summary

Parameter estimation

JAN and MARIUS already talked about this, so here we only sketch the basics again

marginal posterior
$$p(\theta_i|y, M) = \int p(\boldsymbol{\theta}|y, M) \prod_{j \neq i} d\theta_j$$
 (1)

best fit value(s)
$$p(\theta|y, M) = \max \Leftrightarrow \theta = \hat{\theta}$$

 $\langle \theta \rangle = \int_{-\infty}^{\infty} d\theta p(\theta|y, M) \cdot \theta$ (2)

[sivia]

Model comparison

Bayes factor

$$p(M_i|y) = \frac{p(M_i) \cdot p(y|M_i)}{p(y)}. \quad (3)$$

$$O_{ij} := \underbrace{\frac{p(M_i|y)}{p(M_j|y)}}_{\text{posterior odds}}$$

$$= \underbrace{\frac{p(y|M_i)}{p(y|M_j)} \cdot \frac{p(M_i)}{p(M_j)}}_{\text{BAYES Factor prior odds}}$$

$$= B_{ij} \cdot \frac{p(M_i)}{p(M_j)}.$$
(4)

How do we turn BAYES' theorem into a tool for model comparison?

$ \ln B_{ij} $	Odds	Strength of evidence
< 1.0	$\lesssim 3:1$	Inconclusive
1.0	$\sim 3:1$	Weak evidence
2.5	$\sim 12:1$	Moderate evidence
5.0	$\sim 150:1$	Strong evidence

Table 1: Empirical scale for evaluating the strength of evidence when comparing two models M_i vs. M_j , adapted from [Trotta_2008]

[Trotta_2008]

Model comparison

BAYESIAN complexity

$$C_b = -2 \int d\theta p(\theta|y, M) \log(\mathcal{L}(\theta)) + 2 \log(\mathcal{L}(\tilde{\theta})), \tag{5}$$

$$C_b = \overline{\chi^2(\boldsymbol{\theta})} - \chi^2(\tilde{\boldsymbol{\theta}}), \tag{6}$$

- ▶ describes how many model parameters the data is able to constrain
- ▶ is a useful tool for examining models with an increasing number of parameters

[kunz]

1. Theory

Parameter estimation Model comparison

2. Methods

Monte-Carlo-Sampling SAVAGE-DICKEY-Density-Ratio (SDDR)

3. Examples

Coin Flip

Fitting a polynomial of unknown degree

4. Summary

Monte-Carlo-Sampling

Benefits of Monte-Carlo-Sampling

$$\langle \boldsymbol{\theta} \rangle \approx \int p(\boldsymbol{\theta}|y) \boldsymbol{\theta} d\boldsymbol{\theta} = \frac{1}{N} \sum_{t=0}^{N-1} \boldsymbol{\theta}^{(t)}, \quad (7)$$

$$\langle f(\boldsymbol{\theta}) \rangle \approx \frac{1}{N} \sum_{t=0}^{N-1} f(\boldsymbol{\theta}^{(t)}).$$
 (8)

also, marginal posterior distributions are obtained trivially by binning values of θ_i ignoring $\theta_{i\neq i}$ [Trotta_2008]

Figure 1: ArviZ [ArviZ] and PyMC3 [PyMC3]

Monte-Carlo-Sampling

But how exactly do we get samples $\theta^{(t)}$?

Sequential Monte Carlo (SMC)

First let us introduce an auxiliary temperature parameter $\beta \in [0,1]$ and write

$$p(\boldsymbol{\theta}|y)_{\beta} = \frac{p(y|\boldsymbol{\theta})^{\beta} \cdot p(\boldsymbol{\theta})}{Z_{\beta}} \tag{9}$$

with $Z_{\beta} = \int d\boldsymbol{\theta} p(y|\boldsymbol{\theta})^{\beta} \cdot p(\boldsymbol{\theta}).$

Main idea: gradually sample from simple distribution ($\beta=0$) to complex/true distribution ($\beta=1$) using Metropolis-Hastings

SMC then allows us to estimate the marginal likelihood as

$$\hat{p}(y) = \prod_{i} \frac{\widehat{Z_{\beta_i}}}{Z_{\beta_{i-1}}}.$$
(10)

[SMC_PEPE; PyMC3_SMC]

SAVAGE-DICKEY-Density-Ratio (SDDR)

consider model M_j with free parameters ω, ψ and a submodel M_i with one free parameter ψ and fixed $\omega = \omega_{\star}$. Let us further assume separable priors

$$p(\omega, \psi|M_j) = p(\omega|M_j)p(\psi|M_i).$$

We can then write the BAYES factor as

Savage Dickey-Density-Ratio

$$B_{ij} = B_{ji}^{-1} = \frac{p(\omega|y, M_j)}{p(\omega|M_j)} \Big|_{\omega = \omega_*} (SDDR).$$
 (11)

[trotta]

1. Theory

Parameter estimation Model comparison

2. Methods

Monte-Carlo-Sampling SAVAGE-DICKEY-Density-Ratio (SDDR)

3. Examples

Coin Flip Fitting a polynomial of unknown degree

4. Summary

- ▶ remember the flipping of a biased coin from the lecture
- ▶ we want to verify that the coin is biased by using the BAYES factor
- \blacktriangleright two models: M_1 assumes a fair coin, M_2 assumes biased coin

Posterior of the coin flip problem

$$p(\theta|y, M_i) = \frac{p(y|\theta, M_i) \cdot p(\theta|M_i)}{p(y|M_i)}$$
(12)

to get $p(y|M_i) = \int_{-\infty}^{+\infty} d\theta p(y|\theta, M_i) p(\theta|M_i)$ we need to specify a prior $p(\theta|M_i)$ and a likelihood $p(y|\theta, M_i)$

Choosing a prior

$$f(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
$$:= \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}.$$
[PyMC3_BF]

Figure 2: Beta-distribution as $prior\ p(\theta|M_i)$ for the two different models

10/22

Choosing a likelihood

Since we can assume i.i.d. outcomes of the coin flip a natural choice is a Binomial distribution. If we observe k heads out of N coin throws (y = (N, k))

$$p(y|\theta, M_i) = {N \choose k} \theta^k (1-\theta)^{N-k}.$$

We simulated data for N = 50 and the biased coin with p(H) = 0.25.

Finally computing the BAYES factor

$$p(y|M_i) \propto \int_0^1 d\theta \frac{1}{B(\alpha,\beta)} \cdot \theta^{\alpha+k-1} \cdot (1-\theta)^{N-k+\beta-1} = \frac{B(\alpha+k,\beta+N-k)}{B(\alpha,\beta)}$$

$$\Rightarrow B_{21} = B_{12}^{-1} = \frac{B(\alpha_2+k,\beta_2+N-k) \cdot B(\alpha_1,\beta_1)}{B(\alpha_1+k,\beta_1+N-k) \cdot B(\alpha_2,\beta_2)} = 9.5839$$

Can we reproduce this numerically?

 $[PyMC3_BF]$

let us obtain 2000 samples from the posterior distribution using the same *likelihood* and *priors* via the SMC algorithm provided by PyMC3

Figure 3: The marginal posterior for $\alpha = \beta = 50$ (3a) and $\alpha = 5, \beta = 13$ (3b) of 2000 samples. HDI means highest density interval. The highlighted green intervals denote the expected value.

We find
$$B_{21} = B_{12}^{-1} = 9.5829 \pm 0.4719$$
 (noice! \checkmark)

We wish to determine the true model underlying the generated data depicted in the figure below

Figure 4: N=25 datapoints distributed with a gaussian noise of $\sigma=0.7$. Linear? Quadratic? Cubic?

we want to find the correct model by using

- ► Bayes factor
- ► SDDR (as sanity check)
- ► BAYESIAN complexity

We will tackle this problem numerically by sampling from the $posterior \rightarrow$ we need to assign priors and likelihoods again

a suitable choice for *prior* and *likelihood* are normal distributions, since the noise is Gaussian [sivia].

Choosing a prior

The *priors* for the fit-parameters a_{α} are each described by a normal distribution with $\mu_{\text{prior}} = 0$ and $\sigma_{\text{prior}} = 2$

Choosing a likelihood

$$p(y|\boldsymbol{\theta}, M_i) = \prod_{k=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(f(y_k; \boldsymbol{\theta}) - y_k)^2}{2\sigma^2}\right].$$

where $f(y_k; \boldsymbol{\theta})$ is the fit function $f_i(x) = \sum_{\alpha=0}^{i} a_{\alpha} x^{\alpha}$, with i = 1, 2, 3

Now lets generate 2000 samples following the *posterior*

Figure 5: Result of parameter estimation with SMC. The data was generated with $\sigma = 0.7$

Comparison M_1 vs. M_2	$\ln(B_{12}(\sigma=0.7))$
square vs. linear	8.5507 ± 0.053
cubic vs. linear	7.6225 ± 0.094
square vs. cubic	0.9371 ± 0.1093

Table 2: Results of BAYES factor via SMC

Comparison M_1 vs. M_2	$\ln(B_{12}(\sigma=0.7))$
square vs. linear	$> 2.4301 \pm 0.27613$
square vs. cubic	0.8091 ± 0.0265

Table 3: Results of BAYES factor via SDDR.

Figure 6: Computation of the SDDR ($\sigma = 0.7$)

18/22

UNI

19/22

What about the complexity?

Figure 7: Numerical computation of the complexity C_b , 3 parameters are supported.

And the true regression line is...

$$f(x; \boldsymbol{\theta}) = a \cdot x^2 + b \cdot x + c$$
$$= 2 \cdot x^2 + 3 \cdot x + 1.$$
(again, nice! \checkmark)

Figure 8: True regression line

1. Theory

Parameter estimation Model comparison

2. Methods

Monte-Carlo-Sampling SAVAGE-DICKEY-Density-Ratio (SDDR)

3. Examples

Coin Flip Fitting a polynomial of unknown degree

4. Summary

Summary

Theory and methods

- ► Bayesian statistics provides the Bayes factor and Bayesian complexity as measures of model comparison
- ► Monte-Carlo-techniques can be used to compute both quantities

Examples

- ➤ We can say with weak to moderate confidence that the coin is biased
- ➤ We can say with weak to moderate evidence that the quadratic model is favoured over the others
- ► The Bayesian complexity diverges for dim $\theta > 3$

Outlook

► Highly scalable

▶ physics, actually

References I

