Actividad de puntos evaluables - Escenario 6

Fecha de entrega 4 de oct en 23:55

Puntos 100

Preguntas 8

Disponible 1 de oct en 0:00 - 4 de oct en 23:55

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- 10. Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- 11. Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- 12. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica! ;Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Historial de intentos

	Intento	Hora	Puntaje
MANTENER	Intento 2	41 minutos	87.5 de 100

	Intento	Hora	Puntaje	
MÁS RECIENTE	<u>Intento 2</u>	41 minutos	87.5 de 100	
	Intento 1	60 minutos	87.5 de 100	

① Las respuestas correctas estarán disponibles del 4 de oct en 23:55 al 5 de oct en 23:55.

Puntaje para este intento: 87.5 de 100

Entregado el 2 de oct en 23:09

Este intento tuvo una duración de 41 minutos.

Pregunta 1	12.5 / 12.5 pts
Al integrar $\int_0^{\pi/4} \sin^5(2x)dx$ obtenemos	
O 4	
O 4/5	
O 2/5	
\[\frac{4}{15} \]	

Pregunta 2	12.5 / 12.5 pts
El resultado de $\int \frac{x}{x-6} dx$ es:	
$\circ x - 6\ln(x + 6) + C$	
$-x + 6\ln(x + 6) + C$	
$(x-6)+6\ln(x-6)+C$	
○ x + 6ln(x + 6) + C	

Pregunta 3 12.5 / 12.5 pts

Si \mathbf{f} es continua y $\int_0^4 f(x)dx = 10$

Entonces la $\int_0^2 f(2x)dx$ es igual a:

- 5
- 0 10
- $\frac{1}{5}$
- 20

Pregunta 4

12.5 / 12.5 pts

Para integrar $\int \frac{dx}{x\sqrt{4+x^2}} dx$ la figura auxiliar adecuada es:

Figura A.

Figura B.

Figura C.

Figura D.

Si no puede ver la imagen, clic aquí \Rightarrow (https://drive.google.com/open? id=0B6r_sPTKSmqHNjNEWXNydIVTMmc)

- Figura B
- Figura A
- Figura D
- Figura C

psid=1).
se obtiene:

14.5

15

18

16.5

Incorrecto

Pregunta 7 0 / 12.5 pts

La integral que permite calcular el área No. 1 es:

$$\int_{-3}^{-1} ((x+2)^2 - (-x-4)^2) dx$$

$$\int_{-3}^{-1} ((x+2) - (-x-4)) dx$$

Pregunta 8 12.5 / 12.5 pts

La solución de la ecuación diferencial $\frac{dy}{dx} = \frac{x^2}{y}$ es

$$y = 2(x^3/3 + K)$$

$$y = \sqrt{x^3/3}$$

$$y = \sqrt{2(x^3/3 + K)}$$

$$y = \sqrt{(x^3/3 + K)}$$

Puntaje del examen: 87.5 de 100

×