EECE.4810/EECE.5730: Operating Systems

Spring 2017

Programming Project 1
Due 3:15 PM, Wednesday, 4/26/17

1. Introduction

This project reviews fundamentals of multiprocessing covered earlier in the semester. You will write a program that generates multiple processes using the UNIX fork() function, handles their return using wait(), and generates output from both parent and child processes to demonstrate the correctness of your approach.

This assignment is worth a total of 75 points. The given grading rubric in Section 3 applies to students in both EECE.4810 and EECE.5730.

2. Project Submission

Your submission must meet the following requirements:

- You should submit a single file named OS program1.c.
- Programs must be submitted via e-mail sent to both Dr. Geiger (Michael Geiger@uml.edu) and Peter Mack (Peter Mack1@uml.edu)
- You may work in pairs (groups of 2) on this assignment. If you work in a group, please list the names of both group members in a header comment at the top of your submission, as well as in the email you use to submit your code.

3. Specification and Grading Rubric

As noted above, the program should use fork() to start each new process and wait() to collect the return status (and possibly check the PID) of each. <u>At present, the assignment does not contain any sample output, but I will update it shortly with outputs to demonstrate each of the cases in the rubric below.</u>

Your assignment will be graded according to the rubric on the following page; partial credit may be given if you successfully complete part of a given objective. Please note that you should not submit separate files for each objective—your sole submission will be judged on how many of the tasks below it accomplishes successfully. The rubric may also be used as an outline for developing your program—for example, first write a program that accomplishes objective A, then modify it to accomplish objective B, and so on.

In the rubric, objective A is the base case—you cannot complete any of the other objectives without completing that one, and the number of points listed with that objective is essentially the minimum you can earn with a working program. For each additional objective, the number of points is an additional number

3. Specification and Grading Rubric (continued)

Objectives and grading rubric:

A. (15 points) Your program creates a single child process, printing at least one message from both the parent and child process indicating the PIDs of those processes. Your parent process should wait for the child to terminate and print a message once the child has completed.

Instructor: M. Geiger Programming Project 1

- B. (+10 points) Your program creates multiple child processes without using a loop, printing messages at the start and end of each process as described in part A.
 - <u>Note:</u> For this objective and all others that follow, the child processes should run simultaneously, not sequentially. In other words, you should start all child processes, <u>then</u> start using wait() to check for child processes finishing. You should not wait for the first child process to finish before starting the second.
- C. (+10 points) Your program uses a loop to create ten (10) child processes, printing messages at the start and end of each process as described in part A.
- D. (+10 points) Your program is almost identical to part C, but the number of child processes is based on a command line argument passed to your executable. (For example, if your executable is named "proj1", executing the command ./proj1 6 will run a version of your program that creates 6 child processes. Assume the maximum number of child processes is 25.
- E. (+10 points) Your program is almost identical to part D, but the program is able to discern when each of its child processes completes and print an appropriate message. (For example, when the first child process completes, print a message saying, "Child 1 (PID xxxxx) finished", where xxxxx would be replaced by the actual PID.
- F. (+10 points) Your program is almost identical to Part E, but each child process starts a new program, replacing the address space of the parent process with that of the new program. For this part, all child processes should start the same program.
- G. (+10 points) Your program is almost identical to Part F, but each child process starts one new program from a set of five possible new programs. Source code for the new programs is on the website. The five test programs are as follows:
 - 1. test1.c: Prints values from 0 to 4, along with the square of each value.
 - 2. test2.c: Calculates and prints the square root of the PID.
 - 3. test3.c: Determines whether the PID is odd or even.
 - 4. test4.c: Calculates and prints the number of digits in the PID.
 - 5. test5.c: Uses a recursive quicksort function to sort an array of ten integers.

Instructor: M. Geiger Programming Project 1

4. Hints

This section will be expanded in the coming days with more useful information; at this point, my primary goal is to allow you to start the assignment as soon as possible!

Useful functions: The multiprocess examples covered in Lectures 2 and 3 should serve as a starting point for your program. The following additional functions may be useful:

- pid t getpid(): Returns the process ID of the currently running process.
- int atoi(char *str): Converts str to the corresponding integer value—for example, atoi("33") = 33.
- int sprintf(char *str, const char *format, ...): Prints the string specified by format and the following arguments to the string str. For example, if x = 7, sprintf(s, "x = %d", x) writes the string "x = 7" to the string s.

Makefiles: On the Linux machines in Ball 410, you should use the C compiler GCC to compile your code. Repeated compilation is most easily done using the make utility, which requires you to write a makefile for your code. Reference material for writing makefiles is easily found online; I found the following website to be a good basic makefile introduction, which is all you should need for this assignment:

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

5. Test Cases

This section provides sample outputs for programs meeting each objective listed in Section 3. Your outputs should match these general forms and must provide all information required for each objective. Your outputs will likely include different PIDs, and statements may be in a different order than these test cases (and from one run of your program to the next).

A. Single child process:

```
Parent pid is 4810
Started child with pid 4811
Child (PID 4811) finished
```

B. Multiple child processes, no loop: two child processes is the minimum required for this case.

```
Parent pid is 5730
Started child 1 with pid 5731
Started child 2 with pid 5732
Child (PID 5731) finished
Child (PID 5732) finished
```

- C. *Ten child processes from a loop:* output will be similar to part B, only with ten statements apiece indicating the start and end of each child.
- D. *Number of child processes based on command-line argument:* output will be similar to Part C, with only (major) difference being number of children.
- E. *Program can differentiate which child finishes:* example below assumes three children. The main difference between Part E and Parts B-D is each message indicating a child has finished contains both the PID and an identifier ("child 1") indicating the order in which that child was created.

```
Parent pid is 5769
Started child 1 with pid 5770
Started child 2 with pid 5771
Started child 3 with pid 5772
Child 2 (PID 5771) finished
Child 1 (PID 5770) finished
Child 3 (PID 5772) finished
```

5. Test Cases (continued)

F. *All child processes start same executable:* the example below starts 3 copies of "test1". Note that, while each output from that program starts with "T1" to make it clear which test program is running, outputs from the different child processes are interleaved, making it difficult to tell which process is generating each output line.

Instructor: M. Geiger

Programming Project 1

```
Parent pid is 8556
Started child 1 with pid 8557
Started child 2 with pid 8558
Started child 3 with pid 8559
Running program test1 in process 8558
T1: i 0, i^2 0
T1: i 1, i^2 1
T1: i 2, i^2 4
T1: i 3, i^2 9
T1: i 4, i^2 16
Running program test1 in process 8557
T1: i 0, i^2 0
T1: i 1, i^2 1
Running program test1 in process 8559
T1: i 2, i^2 4
T1: i 0, i^2 0
T1: i 3, i^2 9
T1: i 1, i^2 1
T1: i 4, i^2 16
T1: i 2, i^2 4
T1: i 3, i^2 9
T1: i 4, i^2 16
Child 2 (PID 8558) finished
Child 3 (PID 8559) finished
Child 1 (PID 8557) finished
```

Instructor: M. Geiger Programming Project 1

G. Each child process starts one of five executables: the example below shows a test run with 6 child processes. Note that child 1 and child 6 start the same executable ("test1").

```
Parent pid is 8574
Started child 1 with pid 8575
Started child 2 with pid 8576
Started child 3 with pid 8577
Started child 4 with pid 8578
Running program test1 in process 8575
T1: i 0, i^2 0
T1: i 1, i^2 1
T1: i 2, i^2 4
T1: i 3, i^2 9
T1: i 4, i^2 16
Started child 5 with pid 8579
Started child 6 with pid 8580
Child 1 (PID 8575) finished
Running program test3 in process 8577
T3: PID 8577 is odd
Running program test2 in process 8576
T2: sqrt of PID 8576 is 92.61
Running program test4 in process 8578
T4: PID 8578 has 4 digits
Child 3 (PID 8577) finished
Child 2 (PID 8576) finished
Child 4 (PID 8578) finished
Running program test1 in process 8580
T1: i 0, i^2 0
T1: i 1, i^2 1
T1: i 2, i^2 4
T1: i 3, i^2 9
T1: i 4, i^2 16
Child 6 (PID 8580) finished
Running program test5 in process 8579
T5: QS L[0-9]
T5: 0S L[0-3]
T5: QS L[0-2]
T5: QS L[5-9]
T5: QS L[5-7]
T5: QS L[5-6]
T5: Final list = 1 2 3 4 5 6 7 8 9 10
Child 5 (PID 8579) finished
```