ME131 Vehicle Dynamics and Control

HW2: Systems / Introduction to ROS

Assigned: 2/6/2019 Due: 2/13/2019, 11:59pm (On bCourses)

Please submit your homework solutions on bCourses as a single PDF of your solutions. When videos are required, please only submit the link as part of the solution PDF document. Late homeworks will not be accepted.

Problem 1 PI Controller Design (30pt)

Consider the standard closed-loop system shown in Figure 1 below. The transfer functions of the plant P, and of the controller C, are

$$P(s) = \frac{1}{s-1}, \quad C(s) = \frac{K_p s + K_I}{s}$$

Figure 1: The standard closed-loop system.

1.1 (10pt) Let $K_P = 2$ and $K_I = 1$.

Fill in the table with the correct **steady-state** response of the closed-loop system output. Write your steps in the blank pages next.

(Note, $\mu(t)$ denotes the unit step function, i.e., $\mu(t) = 0$ for t < 0 and $\mu(t) = 1$ for $t \ge 0$)

Input r(t)	Input d(t)	Input n(t)	Closed-loop response at steady state y_{ss}
$2\mu(t)$	$\mu(t)$	$3\mu(t)$	
$2\sin(5t)$	$\sin(t)$	$3\mu(t)$	

- 1.2 (10pt) Design the controller gains, K_P and K_I so that the unit-step forced response of $G_{r\to y}(s)$ satisfies the following performance specifications:
 - Percent overshoot $PO \approx 10\%$.
 - 5% settling time $t_s \leq 20$ sec.
 - Rise time 5 sec $\leq t_r \leq 10$ sec. (Use the second order approximation for t_r : $t_r \approx \frac{0.8+1.1\xi+1.4\xi^2}{\omega_n}$, where ξ is the damping ratio and ω_n is the natural frequency of the system.)
- 1.3 (10pt) Write a Matlab function implementing the PI controller in discrete time with the following format:

$$u = controller(e, \Delta t)$$

Submit your controller.m file. $\,$

Lab Deliverables

- 1. (10pt) Python function for Forward Euler discretized kinematic bicycle model from Sec.2.c. Submit the entire system_model_simulation.py file.
- 2. (10pt) Python function for the adaptive cruise controller from Sec.2.d. Submit your final controller.py file after tuning your gains in the ROS simulator.
- 3. (10pt) The simulated vehicle's speed plotted against the reference velocity, from Sec.2.j.
- 4. (10pt) Video from Sec.3.a showing the simulated BARC vehicle controlled from your keyboard.
- 5. (10 pt) Rqt_graph during teleoperation, along with a short description of your system's components, from Sec. 3.b.
- 6. (10pt) The teleoperation launch file from Sec.3.c.