MATH 5301 Elementary Analysis - Homework 8

Jonas Wagner

2021, October 29th

Problem 1

Show that the norms $\|\cdot\|_1$, $\|\cdot\|_p$ for p>1, and $\|\cdot\|_\infty$ are equivalent.

 $\textbf{Definition 1.} \ \textit{For} \ \|\cdot\|_a, \|\cdot\|_b \ \textit{on} \ \textit{S}, \ \|\cdot\|_a \ \textit{is said to be stronger then} \ \|\cdot\|_b \ \textit{if}$

$$\forall \{x_n\} \subset S : x_n \xrightarrow[d_a]{} x \implies x_n \xrightarrow[d_b]{} x$$

Definition 2. $\|\cdot\|_a$ and $\|\cdot\|_b$ are said to be equivalent, $\|\cdot\|_a \sim \|\cdot\|_b$, if $\|\cdot\|_a$ is stronger then $\|\cdot\|_b$ and $\|\cdot\|_b$ is stronger then $\|\cdot\|_a$. This means that

$$\left\|\cdot\right\|_{a} \sim \left\|\cdot\right\|_{b} \iff \exists \alpha, \beta \in \mathbb{R}_{>0} : \forall_{x \in S} \alpha \left\|\cdot\right\|_{b} \leq \left\|\cdot\right\|_{a} \leq \beta \|x\|_{b}$$

Definition 3. The following norms are defined as

a.
$$\|\cdot\|_1 := \|x\|_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \dots + |x_n|$$

b.
$$\|\cdot\|_2 := \|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \left(|x_1|^2 + |x_2|^2 + \dots + |x_n|^2\right)^{1/2}$$

c.
$$\|\cdot\|_p := \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = \left(|x_1|^p + |x_2|^p + \dots + |x_n|^p\right)^{1/p}, \ p > 1$$

$$d. \|\cdot\|_{\infty} := \|x\|_{\infty} = \max_{i=1}^{n} |x_i| = \max(|x_1|, |x_2|, \dots, |x_n|)$$

Theorem 1. The norms $\|\cdot\|_1, \|\cdot\|_p$, and $\|\cdot\|_{\infty}$ are equivalent.

Proof.

Lemma 1. $\|\cdot\|_1 \sim \|\cdot\|_p$

Proof. $\|\cdot\|_1 \sim \|\cdot\|_p$ is true iff

 $\forall_x \exists_{\alpha,\beta \in \mathbb{R}_+}$:

$$\alpha \|x\|_{p} \le \|x\|_{1} \le \|x\|_{p}$$

$$\alpha \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \le \sum_{i=1}^{n} |x_{i}| \le \beta \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

From the Holder's inequality we have

$$||x||_{1} = \sum_{i=1}^{n} |x_{i}| = \sum_{i=1}^{n} |x_{i}|(1)$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \left(\sum_{i=1}^{n} |1|^{(1-p)}\right)^{1/(1-p)}$$

$$\leq n^{1/(1-p)} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

So for $0 < \alpha \le n^{1/(1-p)}$ and $\beta \ge n^{1/(1-p)}$,

$$\alpha \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \leq \sum_{i=1}^{n} |x_i| \leq \beta \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

$$\left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \leq n^{1/(1-p)} \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

$$\leq n^{1/(1-p)} \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

Therefore,

$$||x||_p \le ||x||_1 \le n^{\frac{1}{1-p}} ||x||_p$$

which proves $\|\cdot\|_1 \sim \|\cdot\|_p$.

Lemma 2. $\|\cdot\|_1 \sim \|\cdot\|_{\infty}$

Proof. $\|\cdot\|_1 \sim \|\cdot\|_{\infty}$ is true iff

 $\forall_x \exists_{\alpha,\beta \in \mathbb{R}_+}$:

$$\alpha \|x\|_{\infty} \le \|x\|_1 \le \beta \|x\|_{\infty}$$
$$\alpha \max_{i=1}^n |x_i| \le \sum_{i=1}^n |x_i| \le \beta \max_{i=1}^n |x_i|$$

Clearly, this is true for when $\alpha \in (0,1]$. Similarly, when $\beta \geq n$ then $\sum_{i=1}^n \max_{i=1}^n |x_i|$ and then clearly greater then the $||x||_1$; therefore $||\cdot||_1 \sim ||\cdot||_{\infty}$.

From, Lemma ??, Lemma 1, and Lemma 2, it is clear that $\forall_{p>1}$:

$$||x||_{\infty} \le ||x||_{p} \le ||x||_{1} \le n^{1/1-p} ||x||_{p} \le n ||x||_{\infty}$$

Therefore, $\left\|\cdot\right\|_1 \sim \left\|\cdot\right\|_p \sim \left\|\cdot\right\|_{\infty} \, (\forall_{p>1}).$

Let $(S, \|\cdot\|)$ and $(S', \|\cdot\|')$ to be two normed spaces. Show that the following norms on $S \times S'$ are equivalent.

a.
$$||(x,y)||_1 = ||x|| + ||y||'$$

b.
$$\|(x,y)\|_2 = \sqrt{\|x\|^2 + (\|y\|')^2}$$

c.
$$||(x,y)||_p = (||x||^p + (||y||')^p)^{1/p}$$

d.
$$||(x,y)||_{\infty} = \max\{||x|| + ||y||'\}$$

Theorem 2. The norms $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_p$, and $\|\cdot\|_{\infty}$ are all equivalent on $S \times S'$.

Proof.

Lemma 3. $\left\| \cdot \right\|_1 \sim \left\| \cdot \right\|_2$

Proof. $\|\cdot\|_1 \sim \|\cdot\|_2$ is true iff

$$\forall_{(x,y)\in S\times S'}\exists_{\alpha,\beta\in\mathbb{R}_+}$$
:

$$\alpha \|(x,y)\|_{2} \leq \|(x,y)\|_{1} \leq \|(x,y)\|_{2}$$

$$\alpha (\|x\|^{2} + (\|y\|')^{2})^{1/2} \leq \|x\| + \|y\|' \leq \beta (\|x\|^{2} + (\|y\|')^{2})^{1/2}$$

From the Holder's inequality we have

$$\begin{aligned} \|(x,y)\|_1 &= \|x\| + \|y\|' \\ &= \left(\|x\|(1) + \|y\|'(1) \right) \\ &\leq \left(\|x\|^2 + (\|y\|')^2 \right)^{\frac{1}{2}} \left(1^2 + 1^2 \right)^{1 - \frac{1}{2}} \\ &= (2)^{\frac{1}{2}} \left(\|x\|^2 + (\|y\|')^2 \right)^{\frac{1}{2}} \\ &= \sqrt{2} \sqrt{\|x\|^2 + (\|y\|')^2} \\ \|(x,y)\|_1 &\leq \sqrt{2} \|(x,y)\|_2 \end{aligned}$$

Similarily,

$$\begin{split} \|(x,y)\|_2 &= \sqrt{\|x\|^2 + (\|y\|')^2} \\ &= \left(\|x\| \|x\| + \|y\|' \|y\|'\right)^{\frac{1}{2}} \\ &\leq \left(\left(\|x\|^2 + \left(\|y\|'\right)^2\right)^{\frac{1}{2}}\right)^2 \left(\left(\|x\|^2 + \left(\|y\|'\right)^2\right)^{\frac{1}{2}}\right)^2 \\ &= 2 \Big(\|x\|^2 + \left(\|y\|'\right)^2\Big) \end{split}$$

So.... this isn't complete... need to do it still... figure out why you can just take 1/epsilon for it to work...

Let X be a vector space and V be a normed space. The function $f: X \to V$ is called bounded if $\exists M: \forall_{x \in X} \implies \|f(x)\| < M$. Consider the set $\mathcal{B}(X,V)$ of all bounded functions from $X \to V$.

a)

Show that $\mathcal{B}(X,V)$ is a vector space. do the thing...

b)

Show that the function $\mathcal{B}(X,V) \to \mathbb{R}_+$:

$$\|f\|_{\infty} := \sup_{x \in X} \|f(x)\|$$

defines a norm on $\mathcal{B}(X, V)$.

Show the things that the norm needs... (mainly triangular inequality)

Let A be a dense set in metric space (S,d), let (V,d_1) be a complete metric space, and $f:A\to Y$ be a uniformly continuous function.

- a) Show that if $\{x_n\}$ is a Cauchy sequence in A then $\{f(x_n)\}$ is a Cauchy sequence in Y.
- b) Show that there is only one continuous function $g: X \to Y$ so that g(x) = f(x) for all $x \in \mathbb{N}$

Let $(L, \|\cdot\|)$ be a Banach space. Let L_0 be a closed subspace of L. Define the factor-space L/L_0 as $l_1 := L/L_0 = \{x + y : x \in L, y \in L_0\}$. In other works, L_1 consists of all subsets of L obtained from L_0 by shifting all its elements by some element x.

- a) Show that L_1 is a vector space.
- **b**)

Define the function $\|\cdot\|: L_1 \to \mathbb{R}_+$ as $\|x\|_1 = \inf_{x-y \in L_0} \|y\|$. Show that this function defines a norm on the space L_1 .

c) Show that L_1 is a Banach space.

Let C([-1,1]) be the space of all continuous real-valued functions f(x) with $x \in [-1,1]$. Let $||f||_{\infty} := \sup_{x \in [-1,1]} |f(x)|$. Find the distance from point $p = x^{2021}$ to the space P_{2020} of all polynomials of degree less than or equal to 2020.