MS-C2111 Stochastic Processes

Lecture 8

Poisson processes

Jukka Kohonen Aalto University

Contents

Superposed Poisson processes

Compound Poisson processes

Thinned Poisson processes

Renewal processes

Contents

Superposed Poisson processes

Compound Poisson processes

Thinned Poisson processes

Renewal processes

Poisson process

- $N: \mathbb{R}_+ \to \mathbb{Z}_+$ is a Poisson process with intensity $\lambda > 0$ if
 - (i) N(0) = 0
- (ii) $N(t) N(s) =_{st} Poi(\lambda(t-s))$ for all s < t
- (iii) N has independent increments:

$$(s_1, t_1], \ldots, (s_k, t_k]$$
 disjoint \Longrightarrow $N(t_1) - N(s_1), \ldots, N(t_k) - N(s_k)$ independent

N(s,t] = N(t) - N(s) equals the count of independently scattered time instants in (s,t]

$$N(t+h) - N(t) =_{st} Poi(\lambda h) =_{st} N(h) - N(0) =_{st} N(h)$$

The expected number of time instants on the unit interval (t, t+1] is $\mathbb{E}(N(t, t+1]) = \mathbb{E}(N(1)) = \lambda$

Superposed Poisson processes

Theorem

If N_1, N_2, \ldots are independent Poisson processes with intensities λ_j , then $N(t) = \sum_j N_j(t)$ is a Poisson process with intensity $\lambda = \sum_j \lambda_j$.

Proof.

- (i) $N(0) = \sum_{i} N_{i}(0) = 0$. OK
- (ii) $N(t) N(s) = \sum_j (N_j(t) N_j(s)) =_{st}$?

Lemma

If $N_j =_{\mathrm{st}} \mathsf{Poi}(\lambda_j)$ are independent, then $\sum_j N_j =_{\mathrm{st}} \mathsf{Poi}(\sum_j \lambda_j)$.

Proof.

$$G_{N_j}(z) = \mathbb{E}(z^{N_j}) = \sum_{n=0}^{\infty} z^n \left(e^{-\lambda_j} \frac{\lambda_j^n}{n!} \right) = e^{-\lambda_j} e^{\lambda_j z} = e^{\lambda_j (z-1)}$$

$$G_{\sum_{j} N_{j}}(z) = \mathbb{E}(z^{\sum_{j} N_{j}}) = \prod_{j} \mathbb{E}(z^{N_{j}}) = \prod_{j} e^{\lambda_{j}(z-1)} = e^{\sum_{j} \lambda_{j}(z-1)}$$

Because pgf determines the distribution,

$$\sum_{i} N_{j} =_{\mathrm{st}} \mathrm{Poi}(\sum_{i} \lambda_{j}).$$

Superposed Poisson processes

Theorem

If N_1, N_2, \ldots are independent Poisson processes with intensities λ_j , then $N(t) = \sum_j N_j(t)$ is a Poisson process with intensity $\lambda = \sum_j \lambda_j$.

Proof.

(i)
$$N(0) = \sum_{i} N_{i}(0) = 0$$
. OK

(ii)
$$N(t) - N(s) = \sum_{j} (N_j(t) - N_j(s)) =_{\text{st}} \mathsf{Poi}(\lambda(t-s))$$
. OK

(iii) Independent increments? If $(s_1, t_1]$ ja $(s_2, t_2]$ disjoint,

$$N_j(s_1, t_1] \perp \!\!\!\perp N_j(s_2, t_2)$$
 for all j

$$\implies \sum_{j} N_j(s_1, t_1] \perp \!\!\!\perp \sum_{j} N_j(s_2, t_2] \implies N(s_1, t_1) \perp \!\!\!\perp N(s_2, t_2]$$

Analogously, when $(s_1, t_1], \dots, (s_k, t_k]$ disjoint. OK

Contents

Superposed Poisson processes

Compound Poisson processes

Thinned Poisson processes

Renewal processes

Example: Länsiväylä

The average flow of cars crossing the Helsinki–Espoo border on weekdays equals $\lambda = 40 \text{ cars/min}$

• The average number of people per car is m=1.9 with standard deviation $\sigma=1.2$

What is the expectation and standard deviation of the number of people crossing the border per hour?

The number of cars crossing the border during [0, t] is naturally modeled using a Poisson process N(t) with intensity λ .

How to model the number of people crossing the border during [0, t]?

Compound Poisson process

We can add randomness to point pattern $X = \{T_1, T_2, ...\}$ by defining

$$\tilde{X} = \{(T_1, Z_1), (T_2, Z_2), \dots\},\$$

where Z_1, Z_2, \ldots are independent of X and of each other.

We may interpret Z_i as the reward at time instant T_i \Longrightarrow The cumulative reward from time interval [0, t] is

$$S(t) = \sum_{i=1}^{\infty} Z_i 1(T_i \leq t) = \sum_{i=1}^{N(t)} Z_i, \quad N(t) = \sum_{i=1}^{\infty} 1(T_i \leq t)$$

S(t) is a compound Poisson process when N(t) is a Poisson process and Z_1, Z_2, \ldots are IID

Compound Poisson process

Theorem

The mean and variance of a compound Poisson process $S(t) = \sum_{i=1}^{N(t)} Z_i$ at time instant t are given by

$$\mathbb{E}(S(t)) = \lambda mt,$$

$$Var(S(t)) = \lambda (m^2 + \sigma^2)t,$$

where $\lambda = \mathbb{E}(N(1))$, $m = \mathbb{E}(Z_i)$ and $\sigma^2 = \text{Var}(Z_i)$.

Proof.

By conditioning on the event $\{N(t) = n\}$ one can verify that

$$\mathbb{E}(S(t)) = \mathbb{E}(N(t))\mathbb{E}(Z_i),$$

 $Var(S(t)) = \mathbb{E}(N(t)) Var(Z_i) + Var(N(t))(\mathbb{E}(Z_i))^2.$

$$\mathbb{E}(N(t)) = \lambda t$$
, $Var(N(t)) = \lambda t$.

Compound Poisson process

Theorem

A compound Poisson process $S(t) = \sum_{i=1}^{N(t)} Z_i$ has independent increments.

Proof.

Choose disjoint $l_k = (s_k, t_k], k = 1, 2.$

Under the occurrence of events

$$A_k = \{N(s_k) = m_k, N(t_k) = m_k + r_k\}$$
 the random numbers

$$D_k = S(t_k) - S(s_k) = \sum_{i=m_k+1}^{m_k+r_k} Z_i$$
 are independent

$$\mathbb{P}(D_1 \in B_1, D_2 \in B_2, A_1, A_2) = \cdots$$

The claim follows by summing over possible m_1, m_2, r_1, r_2 .

Example: Länsiväylä

On average $\lambda=40$ cars/min cross the Helsinki–Espoo border with m=1.9 people per car on average (standard deviation $\sigma=1.2$).

During [0, t] the border is crossed by

- $N(t) = \sum_{i=1}^{\infty} 1(T_i \le t)$ cars
- $S(t) = \sum_{i=1}^{\infty} Z_i 1(T_i \leq t)$ people

where

- T_i = border crossing time of the i-th car
- Z_i = number of people in the *i*-th car

Natural assumptions \implies S(t) is a compound Poisson process.

The number of people during one hour (t = 60) satisfies

$$\mathbb{E}(S(60)) = \lambda mt = 40 \times 1.9 \times 60 = 4560$$

$$(Var(S(60)))^{1/2} = (\lambda(m^2 + \sigma^2)t)^{1/2} = (40 \times (1.9^2 + 1.2^2) \times 60)^{1/2} = 110.09$$

Contents

Superposed Poisson processes

Compound Poisson processes

Thinned Poisson processes

Renewal processes

Example: Länsiväylä

On average $\lambda=40$ cars/min cross the Helsinki–Espoo border with $p_1=30\%$ of the cars only carrying the driver.

During [0, t] the border is crossed by

- $N(t) = \sum_{i=1}^{\infty} 1(T_i \le t)$ cars
- $N_1(t) = \sum_{i=1}^{\infty} \theta_i \, 1(T_i \leq t)$ solo drivers
- $N_2(t) = \sum_{i=1}^{\infty} (1 \theta_i) 1(T_i \le t)$ other drivers

where
$$\theta_i = 1(Z_i = 1) =_{st} Ber(p_1)$$

What is the probability of $\{N_2(1) \le 20\}$ given $\{N_1(1) \ge 30\}$?

 $N_1(t)$ is a thinned (harvennettu) Poisson process which is obtained by removing 70% of the events of N(t).

Thinned Poisson process

Theorem

If $\theta_1, \theta_2, \ldots$ are IID and independent of a Poisson process N(t), then $N_1(t) = \sum_{i=1}^{\infty} \theta_i 1(T_i \leq t)$ and $N_2(t) = \sum_{i=1}^{\infty} (1 - \theta_i) 1(T_i \leq t)$ are mutually independent Poisson processes.

Proof.

 $\mathit{N}_1(t)$ is a compound Poisson process $\implies \bot\!\!\!\bot$ increments

$$G_{\theta_i}(z) = \mathbb{E}(z^{\theta_i}) = (1-p_1)z^0 + p_1z^1$$

$$G_{N_1(t)}(z) = G_{N(t)}(G_{\theta_i}(z)) = e^{\lambda t(G_{\theta_i}(z)-1)} = e^{\lambda t p_1(z-1)}$$

$$N_1(t) =_{\mathrm{st}} \mathrm{Poi}(\lambda p_1 t).$$

 N_1 is a Poisson process with intensity λp_1 .

 N_2 is a Poisson process with intensity $\lambda(1-p_1)$.

Are N_1 and N_2 independent? (They appear not.)

Thinned Poisson process

Proof.

Are N_1 and N_2 independent? The event $N_1(s,t] = j$ ja $N_2(s,t] = k$ occurs precisely when the interval (s,t] contains N(s,t] = j + k events, out which j are selected into N_1 .

$$\mathbb{P}(N_{1}(t) = j, N_{2}(t) = k) = \mathbb{P}\left(N(t) = j + k\right) \cdot {j + k \choose j} p_{1}^{j} (1 - p_{1})^{k}
= e^{-\lambda t} \frac{(\lambda t)^{j+k}}{(j+k)!} {j + k \choose j} p_{1}^{j} (1 - p_{1})^{k}
= \cdots
= \mathbb{P}(N_{1}(t) = j) \mathbb{P}(N_{2}(t) = k)$$

Example: Länsiväylä

On average $\lambda=40$ cars/min cross the Helsinki–Espoo border with $p_1=30\%$ of the cars only carrying the driver.

During [0, t] the border is crossed by

- $N(t) = \sum_{i=1}^{\infty} 1(T_i \le t)$ cars
- $N_1(t) = \sum_{i=1}^{\infty} \theta_i 1(T_i \le t)$ solo drivers
- $N_2(t) = \sum_{i=1}^{\infty} (1 \theta_i) 1(T_i \le t)$ other drivers

where
$$\theta_i = 1(Z_i = 1) =_{st} Ber(p_1)$$

What is the probability of $\{N_2(1) \leq 20\}$ given $\{N_1(1) \geq 30\}$?

 N_1 and N_2 are independent Poisson processes, so that

$$\mathbb{P}(N_2(1) \le 20 \mid N_1(1) \ge 30) = \mathbb{P}(N_2(1) \le 20)$$

Information about other types of cars does not help in predicting type-2 cars.

General thinning

Theorem

If N is a Poisson process with intensity λ , and Z_1, Z_2, \ldots are IID random variables, independent of N, then the thinned processes

$$N_{\times}(t) = \sum_{i=1}^{\infty} 1(Z_i = x)1(T_i \leq t)$$

are mutually independent Poisson processes with intensities $\lambda_x = \lambda \mathbb{P}(Z_i = x)$.

Contents

Superposed Poisson processes

Compound Poisson processes

Thinned Poisson processes

Renewal processes

Example: Bus stop

The interarrival times of buses τ_1, τ_2, \ldots are assumed independent and distributed according to a probability density f. What is the expected waiting time for a passenger who arrives to the bus stop independently and uniformly at random?

Renewal process

A renewal process is the counting process of a random point pattern $\{T_1, T_2, \dots\}$ defined by $T_n = \sum_{k=1}^n \tau_k$ where the interpoint distances $\tau_1, \tau_2, \dots \geq 0$ are IID.

Example: $\tau_k =_{\text{st}} \text{Exp}(\lambda) \implies \text{Poisson process}$

Forward recurrence time

Let $B_t = T_{N(t)+1} - t$ be distance from t to the next point of random point pattern.

Under sufficient regularity: $t\mapsto B_t$ is a continuous-time Markov process on state space \mathbb{R}_+

What is the invariant distribution?

Forward recurrence time process

Assume that (B_t) has an invariant distribution on \mathbb{R}_+ with probability density $f_+(x)$. (Draw a picture.) In statistical equilibrium (assuming such exists for large t):

$$\mathbb{E}(\#\mathsf{UCR} \ \mathsf{of} \ x \ \mathsf{during} \ (t,t+h)) \approx \mathbb{P}(B_t \in (0,h)) \, \mathbb{P}(\tau > x) \approx f_+(0) h \, \mathbb{P}(\tau > x)$$

$$\mathbb{E}(\#\mathsf{DCR} \text{ of } x \text{ during } (t, t+h)) \approx \mathbb{P}(B_t \in (x, x+h)) \approx f_+(x)h$$

$$\implies f_+(0)\,\mathbb{P}(\tau > x) = f_+(x)$$

$$\implies \dots \implies f_+(x) = \frac{\mathbb{P}(\tau > x)}{\mathbb{E}(\tau)}.$$

Rigorous analysis can be done by applying Lotka–Volterra type differential equations, see [Asm03].

Theorem

In a statistical equilibrium, the remaining waiting for the next time instant is a random variable τ_+ which has a distribution characterized by the density function

$$f_+(t) = \frac{\mathbb{P}(\tau_k > t)}{\mathbb{E}(\tau_k)}.$$

Example

If $\tau_k = c$ is nonrandom, then $f_+(t) = \frac{1}{c} \mathbb{1}(0 < t \le c)$ is the uniform distribution on [0, c].

Example

If $\tau_k =_{\mathrm{st}} \mathsf{Exp}(\lambda)$, then $f_+(t) = \frac{\mathbb{P}(\tau_k > t)}{\mathbb{E}(\tau_k)} = \frac{e^{-\lambda t}}{1/\lambda} = \lambda e^{-\lambda t}$. Remaining waiting time $\tau_+ =_{\mathrm{st}} \mathsf{Exp}(\lambda)$, mean λ^{-1} time units. (Waiting time paradox!)

References

Søren Asmussen.

Applied Probability and Queues.

Springer, second edition, 2003.

Sources

Photos

1. Image courtesy of think4photop at FreeDigitalPhotos.net