Tutorial 8 Fourier's theorem

- f(x + 2L) = f(x) for all x and $f(x) = \begin{cases} -1, & -L < x < 0, \\ 1, & 0 \le x \le L, \end{cases}$
 - (a) Sketch the function f(x) in the range -2L < x < 2L.
 - (b) To what does the series converge when x = -L, 0, $\frac{L}{2}$, $\frac{3L}{2}$.

- (b) At X=-1, f(x) is one continuous, so the Famier Series converges to =[f(-1)+f(-1+)] $\frac{1}{2} [f(o^{-}) + f(o^{+})] = \frac{1}{2} (-1+1) = 0$ At X=0, ----At $X = \frac{1}{2}$, for is antinuous, so the Fourier Series converges to $f(\frac{1}{2}) = 1$.
- 2. The function f(x) is defined $f(x) = \begin{cases} -x, & -L \le x < 0 \\ x, & 0 \le x < L \end{cases}$ and f(x + 2L) = f(x).
- - (a) Sketch f(x) in -3L < x < 3L.
 - (b) State the values the Fourier series will converge to at $x = -\frac{L}{2}$, $0, \frac{L}{3}$, L.
 - (c) Find the Fourier series of f(x) and give the first three non-zero terms.
 - (d) By choosing an appropriate value for x in the Fourier series for f(x), show that

(b). Because fix) is continuous everywhere, so the Fourier Series

to the value of fix everywhere.

At
$$x=\frac{1}{2}$$
, $f(x)=\frac{1}{2}$.

At
$$N=1$$
, $f(L)=1$.

 $\mathcal{U}'=1$, $V=\frac{L}{m}$, $\sin\frac{n\lambda}{L}$

(c). Because f(-x) = f(x), f(x) is an even function, so bn = 0, $n = 1, 2, 3, \cdots$

$$a_0 = \frac{1}{21} \int_{-L}^{L} f(x) dx = \frac{1}{2} \int_{0}^{L} f(x) dx = \frac{1}{2} \int_{0}^{L} f(x) dx = \frac{1}{2} \left[\frac{1}{2} \chi^{2} \right]_{0}^{L} = \frac{L}{2}$$

 $a_n = \pm \int_{-L}^{L} f(x) \cos \frac{\pi x}{L} x dx = \pm \int_{0}^{L} f(x) \cos \frac{\pi x}{L} dx = \pm \int_{0}^{L} f(x) \cos \frac{\pi x}{L} dx$. Let $u = \chi$, $v' = us \frac{\pi x}{L}$.

$$=\frac{2}{L}\left[x.\frac{1}{nx}\sin\frac{nx}{2}x\right]^{L}-\frac{2}{L}\left[\frac{1}{nx}\sin\frac{nx}{2}x\right]dx$$

$$=\frac{2}{1}(0-0)-\frac{2}{n\pi}\int_{0}^{L}\sin\frac{\pi}{L}ds$$

$$=\frac{-2}{1\pi}\cdot\frac{1}{m\pi}\cdot(1)\left[\omega_{1}\frac{m}{L}\chi\right]_{0}^{L}=\frac{2L}{m_{\pi}^{2}}\left(\omega_{3}m_{1}-1\right).$$

Therefore, the Fourier series of for is

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2L}{n^n \pi^n} (\omega_n m_{-1}) \omega_n \frac{m}{L} \alpha.$$

$$n=0, \quad n=\frac{1}{2}.$$

$$h=1$$
, $a_1 \cos \frac{\pi}{2} \propto = \frac{-2L}{\pi^2} \cos \frac{\pi}{2} \propto$

$$N=2$$
, $Q_2 \otimes \frac{2\pi}{L} = 0$

$$n=3$$
, $a_3 a_3 \frac{37}{2} x = \frac{-2L}{9\pi^2} a_3 \frac{37}{2} x$.

So the first three non-zero terms are, $\frac{1}{2}$, $\frac{-21}{2^2}$ ws $\frac{70}{2}$, $\frac{-21}{92^2}$ cs $\frac{32}{2}$ %.

(d). Take 40, then the Fourier series becomes

$$f(0) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2L}{n^2 \pi^2} (\cos n\pi - 1), \quad \cos n\pi = \begin{cases} 1, & n = 2m & \text{even} \end{cases}.$$

$$f(0) = 0 = \frac{1}{2} + \frac{\infty}{m} = \frac{2L}{(2m+1)^2 \pi^2} (-1+1)$$

$$\frac{1}{m} = \frac{-4L}{(2m+1)^2 \pi^2} = -\frac{L}{2} \quad \text{i. } \frac{\infty}{m} = \frac{1}{(2m+1)^2} = \frac{\pi^2}{8}$$

- 3. The function f(x) is defined $f(x) = \begin{cases} x, -L \le x < 0 \\ L, 0 \le x < L \end{cases}$, f(x + 2L) = f(x).
 - (a) Sketch f(x) in -3L < x < 3L.
 - (b) To what does the series converge when $x = -\frac{L}{2}$, 0, $\frac{L}{2}$, L.
 - (c) Find its Fourier series.

(d) Give the first three non-zero terms.

(b). At $\Delta = -\frac{1}{2}$, fix is continuous, so the Fainer series converges to $f(-\frac{1}{2}) = -\frac{1}{2}$.

A X = 0, fix is discontinuous, $- - - - - - \frac{1}{2} [f(o^{-}) + f(o^{+})] = \frac{1}{2} (o + 1) = \frac{1}{2}$.

(c). $a = \frac{1}{21} \int_{-1}^{1} f(x) dx = \frac{1}{21} \int_{-1}^{0} \chi dx + \frac{1}{21} \int_{0}^{1} L dx = \frac{1}{21} \cdot \left[\frac{1}{2} \chi^{2} \right]_{-1}^{0} + \frac{1}{21} \cdot \left[\frac{1}{2$

 $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \omega_1 \frac{n \lambda}{L} x dx = \frac{1}{L} \left(\int_{-L}^{0} \chi_{00} \frac{n \lambda}{L} dx + \int_{0}^{L} L \omega_1 \frac{n \lambda}{L} x dx \right) = \frac{1}{L} (I + II)$

 $I = \int_{L}^{\infty} x \, \omega_{1} \frac{dx}{dx} \, dx$, Let u=x, $V=\frac{1}{2} \omega_{1} \frac{dx}{dx}$, u'=1, $V=\frac{1}{2} \omega_{1} \frac{dx}{dx}$.

= [x. In sin In x] - - J - L has sin In olx

 $= 0 - \frac{1}{n\pi} \cdot \frac{-1}{n\pi} \cdot \left[\omega_s / \Sigma_{\alpha} \right]_{-1}^{0} = \frac{1^2}{n^2 \pi^2} \cdot \left(1 - \omega_s n_{\alpha} \right).$

 $I = \int_0^1 L \cos \frac{\pi}{4} \alpha ds = 1 \cdot \frac{1}{m_0} \left[\sin \frac{\pi}{4} \alpha \right]_0^1 = 0$

 $a_n = \frac{1}{L} \cdot (I + I) = \frac{1}{L} \cdot \frac{I^2}{n^2 \pi^2} (I - \omega n \pi) = \frac{L}{n^2 \pi^2} \cdot (I - \omega n \pi).$

bn = I [fax) sin mads = I [asin mads + I]. L sin mads

$$= \frac{1}{L}(I+I).$$

$$J = \int_{-L}^{0} \chi \sin \frac{m}{L} x dx, \quad Jet \quad \mathcal{U} = \chi, \quad V' = \sin \frac{n\chi \chi}{L}.$$
then $\mathcal{U} = 1$, $V = -\frac{1}{n\chi} \cos \frac{n\chi}{L} x$.

$$= \left[\chi \cdot \frac{-L}{n\pi} \omega_{L}^{n} \chi\right]_{-L}^{0} - \int_{-L}^{0} \frac{-L}{n\pi} \omega_{L}^{n} \chi dx$$

$$= 0 - (-1) \frac{-1}{nN} w_{NN} + \int_{-1}^{0} \frac{1}{nN} w_{NN} dx$$

$$= \frac{-1^2}{n\pi} \omega n\pi + \frac{L}{m} \cdot \frac{1}{m} \left[\sin \frac{\pi}{2} \alpha \right]_c^0$$

$$= -\frac{L^2}{\hbar x} \omega m$$

$$I = \int_0^L \int_0^L \sin \frac{n\pi}{2} x dx = -\int_0^L \frac{1}{n\pi} \left[\cos \frac{n\pi}{2} x \right]_0^L = -\frac{L^2}{n\pi} \cdot \left(\cos n\pi - 1 \right).$$

:,
$$b_{n-1}(1+I) = \frac{1}{L} \cdot \frac{1^{2}}{n\pi}(1-2\omega n\pi) \cdot = \frac{L}{n\pi}(1-2\omega n\pi).$$

$$f_{N}=\frac{L}{4}+\frac{\infty}{n-1}\frac{L}{N^{2}\chi^{2}}(+\omega n\chi)\omega \frac{n\chi}{L}\chi+\frac{L}{n\chi}(-2\omega n\chi)\sin \frac{n\chi}{L}\chi$$

(d).
$$n=0$$
, $a_0 = \frac{1}{4}$.

$$n=2$$
, $\alpha_2 \omega_3 = \alpha + b_2 \sin^2 \alpha = \frac{L}{4\pi^2} \cos^2 \alpha + \frac{L}{2\pi} (-1) \sin^2 \alpha = -\frac{L}{2\pi} \sin^2 \alpha x$.