分章测试题(3)详细解答

1. (1) 9; (2)
$$k \neq 9$$
; (3) 2; (4) 2.

3. 解:正交化:
$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{[\boldsymbol{\alpha}_2, \boldsymbol{\beta}_1]}{[\boldsymbol{\beta}_1, \boldsymbol{\beta}_1]} \boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix},$$

$$\boldsymbol{\beta}_{3} = \boldsymbol{\alpha}_{3} - \frac{[\boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{1}]}{[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{1}]} \boldsymbol{\beta}_{1} - \frac{[\boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{2}]}{[\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{2}]} \boldsymbol{\beta}_{2} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 3 \end{pmatrix},$$

单位化:
$$\boldsymbol{e}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$
, $\boldsymbol{e}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-1\\2\\0 \end{pmatrix}$, $\boldsymbol{e}_3 = \frac{1}{2\sqrt{3}} \begin{pmatrix} -1\\1\\1\\3 \end{pmatrix}$.

4. 证明: 由于(
$$\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}$$
) $\sim \begin{pmatrix} 1 & 0 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix}$,

所以 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 R^4 中的一组基,且 $x_1 = 6, x_2 = -1, x_3 = -1, x_4 = 4$.

所以向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩为 3, $\alpha_1, \alpha_2, \alpha_3$ 是 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个极大线性无关组,

$$\perp \!\!\! \perp \boldsymbol{\alpha}_4 = 2\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3$$
.

6. 证明: 若 R(A) = n,则 A 可逆,且 $|A| \neq 0$,由 $AA^* = |A|E$,知 $A^* = |A|A^{-1}$,所

以 A^* 可逆,于是 $R(A^*)=n$.

若 R(A) = n-1,则 A 至少存在一个代数余子式 $A_{ij} \neq 0$,因此 $R(A^*) \geq 1$. 另一方面,由 R(A) = n-1,知 |A| = 0,故 $AA^* = |A|E = O$,从而 $R(A) + R(A^*) \leq n$,故 $R(A^*) \leq 1$,于是 $R(A^*) = 1$.

若 $R(A) \le n-2$,则 A 的所有代数余子式 A_{ij} $(i,j=1,2,\cdots,n)$ 全为零,故 $A^*=O$,所以 $R(A^*)=0$.

综上所述,有
$$R(A^*) = \begin{cases} n, \, \stackrel{.}{\preceq} \, R(A) = n, \\ 1, \, \stackrel{.}{\preceq} \, R(A) = n - 1, \\ 0, \, \stackrel{.}{\preceq} \, R(A) \leq n - 2. \end{cases}$$