BÀI TẬP CUNG VÀ GÓC LƯỢNG GIÁC -CÔNG THỨC LƯỢNG GIÁC

Dang 1. LÝ THUYẾT

- A Luôn cùng chiều quay kim đồng hồ.
- (B) Luôn ngược chiều quay kim đồng hồ.
- Có thể cùng chiều quay kim đồng hồ mà cũng có thể là ngược chiều quay kim đồng hồ
- (D) Không cùng chiều quay kim đồng hồ và cũng không ngược chiều quay kim đồng hồ.

CÂU 2. Trên đường tròn lượng giác, mỗi cung lượng giác $\stackrel{\frown}{AB}$ xác định:

- $oldsymbol{A}$) Một góc lượng giác tia đầu OA, tia cuối OB.
- (\mathbf{B}) Hai góc lượng giác tia đầu OA, tia cuối OB.
- \bigcirc Bốn góc lượng giác tia đầu OA, tia cuối OB.
- (\mathbf{D}) Vô số góc lượng giác tia đầu OA, tia cuối OB.

CÂU 3. Khẳng định nào sau đây là đúng khi nói về "đường tròn lượng giác"?

- (A) Mỗi đường tròn là một đường tròn lượng giác.
- (\mathbf{B}) Mỗi đường tròn có bán kính R=1 là một đường tròn lượng giác.
- $igcolon{c}$ Mỗi đường tròn có bán kính R=1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.
- lacktriangle Mỗi đường tròn có bán kính R=1, tâm trùng với gốc tọa độ, được định hướng và lấy điểm A(1;0) làm điểm gốc là một đường tròn lượng giác.

🖶 Dạng 2. ĐỔI TỪ ĐỘ SANG RADIAN VÀ NGƯỢC LẠI

CÂU 1. Trên đường tròn cung có số đo 1 rad là?

- (A) Cung có độ dài bằng 1.
- (B) Cung tương ứng với góc ở tâm 60°.
- (C) Cung có độ dài bằng đường kính.
- (D) Cung có độ dài bằng nửa đường kính.

CÂU 2. Khẳng định nào sau đây là đúng?

(A) π rad = 1°.

 $(\mathbf{C}) \pi \text{ rad } = 180^{\circ}.$

 $\mathbf{D} \pi \text{ rad } = \left(\frac{180}{\pi}\right)^{\circ}.$

CÂU 3. Khẳng định nào sau đây là đúng?

 $(\mathbf{A}) 1 \text{ rad} = 1^{\circ}.$

(B) 1 rad = 60° .

(C) $1 \text{ rad} = 180^{\circ}$.

CÂU 4. Nếu một cung tròn có số đo là a° thì số đo radian của nó là

- \bigcirc 180 πa .
- **B** $\frac{180\pi}{a}$.
- $\mathbf{C} \frac{a\pi}{180}$

CÂU 5. Nếu một cung tròn có số đo là $3a^{\circ}$ thì số đo radian của nó là

- $\mathbf{c} \frac{180}{a\pi}$.
- \bigcirc $\frac{60}{a\pi}$.

CÂU 6. Đổi số đo của góc 70° sang đơn vị radian.

- $\triangle \frac{70}{-}$.
- **B** $\frac{7}{18}$.
- \bullet $\frac{7\pi}{18}$
- $\bigcirc \frac{7}{18\pi}$

CÂU 7. Đổi số đo của góc 108° sang đơn vị radian.

- $\mathbf{B} \frac{\pi}{10}$.
- $\bigcirc \frac{3\pi}{2}$.
- $\bigcirc \frac{\pi}{4}$.

ĐIỂM:

Be yourself; everyone else is already taken.

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

◆ Địa chỉ: KDC Mỹ Điền, TT. Tuy F	Phước 🗣	🕜 HÀM SỐ LƯ	ỢNG GIÁC VÀ PHƯƠN	G TRÌNH LƯỢNG GIÁC
QUICK NOTE	CÂU 8. Đổi số đo conghìn.	của góc $45^{\circ}32'$ sang	đơn vị radian với độ ch	ính xác đến hàng phầr
	A 0,7947.	B 0,7948.	© 0,795.	\bigcirc 0,794.
	CÂU 9. Đổi số đo d	của góc $40^{\circ}25'$ sang	đơn vị radian với độ ch	ính xác đến hàng phầr
	trăm.		0.7074	(A)
	(A) 0,705.	B 0,70.	© 0,7054.	D 0,71.
	CÂU 10. Đổi số đo 503π			251π
	$-\frac{503\pi}{720}$.	B $\frac{503\pi}{720}$.	$\mathbf{c} \frac{251\pi}{360}$.	$(\mathbf{D}) - \frac{231\pi}{360}$.
	CÂU 11. Đổi số đo	của góc $\frac{\pi}{-}$ rad sang	đơn vị độ, phút, giây.	
	(A) 15°.	12 (B) 10°.	© 6°.	(D) 5°.
		_	\smile	• •
	CAU 12. Đổi số đo	của góc $-\frac{6\pi}{16}$ rad sar	ng đơn vị độ, phút, giây.	
	A 33°45′.	B $-29^{\circ}30'$.	\bigcirc -33°45′.	\bigcirc -32°55.
	CÂU 13. Đổi số đo	của góc -5 rad sang	đơn vị độ, phút, giây.	
	\bigcirc -286°44′28″.	B) $-286^{\circ}28'44''$		D $286^{\circ}28'44''$.
	CÂU 44 Dể: -ế ‡-	3	ter i to ilki iloi	
	CÂU 14. Đổi số đo	~ 4		
	(A) 42°97′18″.	B) 42°58′.	© 42°97′.	D 42°58′18″.
	CÂU 15. Đổi số đo		đơn vị độ, phút, giây.	
	(A) -114°59′15″.	B) $-114^{\circ}35'$.	© $-114^{\circ}35'29''$.	(D) $-114^{\circ}59'$.
		🗁 Dang 3. Đ	Ộ DÀI CUNG TRÒN	
			•	
	CÂU 1. Mệnh đề nà			
		g tròn tỉ lệ với độ dài	_	
	×	ng tròn tỉ lệ với bán k		
		g tròn tỉ lệ với bán kí ng tròn tỉ lệ nghịch vo		
				. π
	CÂU 2. Tính độ dài	ℓ của cung trên đườn	ng tròn có bán kính bằng	$20 \text{ cm và số đo } \frac{\pi}{16}.$
	A $\ell = 3.93 \text{ cm}.$	B $\ell = 2.94 \text{ cm}.$	$\ell = 3{,}39 \text{ cm}.$	D $\ell = 1.49 \text{ cm}.$
	CÂU 3. Tính độ dài	của cung trên đường	g tròn có số đo 1,5 và bán	ı kính bằng 20 cm.
	A 30 cm.	B 40 cm.	© 20 cm.	D 60 cm.
	CÂU 4. Một đường	tròn có đường kính b	ằng 20 cm. Tính độ dài c	ủa cung trên đường tròn
	có số đo 35° (lấy 2 ch		ang - 0 cm. 1mm ay aar c	an cang tron auong tron
	A 6,01 cm.	B 6,11 cm.	© 6,21 cm.	D 6,31 cm.
	CÂU 5. Tính số đọ	cung có đô dài của c	ung bằng $\frac{40}{3}$ cm trên đư	ờng tròn có bán kính 90
	cm.	cung co dọ dai của c	ang bang 3 cm tien du	ong tron to ban kinii 20
	A 1,5 rad.	B $0,67 \text{ rad.}$	© 80°.	D 88°.
	CÂU 6. Một cung t	ròn có độ dài bằng	2 lần bán kính. Số đo r	adian của cung tròn đớ
	là		_	
	A 1.	B) 2.	© 3.	D 4.
	CÂU 7. Trên đường	tròn bán kính R , cu	ng tròn có độ dài bằng 7	l 5 độ dài nửa đường tròn
	thì có số đo (tính bằi		()
	\mathbf{A} $\pi/2$.	\mathbf{B} $\pi/3$.	\bigcirc $\pi/4$.	\bigcirc $\pi/6$.
	CÂU 8. Một cũng có	ó đô dài 10 cm, có số	đo bằng radian là 2,5 thì	đường tròn của cung đá
	có bán kính là			
	A 2,5 cm.	B 3,5 cm.	© 4 cm.	D 4,5 cm.

	-	p quay được 2 vòng tro	ng 5 giây. Hỏi trong 2 giây,	QUICK NOTE
	1 góc bao nhiêu độ.	<u></u> 3	\bigcirc 5	
	$(\mathbf{B}) \frac{\pi}{8}$.	\bigcirc $\frac{3}{5}\pi$.	$(\mathbf{D}) \frac{1}{3}\pi.$	
CÂU 10. Một bán	nh xe có 72 răng. Số đ	lo góc mà bánh xe đã q	uay được khi di chuyển 10	
răng là	400	2 2 00	(A) 000	
(A) 30°.		© 50°.	D 60°.	
	🗁 Dạng 4.	GÓC LƯỢNG GIÁC		
	(0, 0)	00000/ 10000 N/4	Z + 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	
góc $(Ox, Oy) = 182$		$= 22^{\circ}30' + k360^{\circ}$. Vol gl	á trị k bằng bao nhiêu thì	
		© $k = -5$.	$(\mathbf{D}) k = 5.$	
		π . Tìm k để $10\pi < \alpha <$		
		$\mathbf{C} k = 6.$		
_	_	_	_	
CAU 3. Một chiếc của góc lượng giác		giờ OG chỉ số 9 và kim	phút OP chỉ số 12. Số đo	
$\mathbf{A} \frac{\pi}{2} + k2\pi, k \in$		B $-270^{\circ} + k36$	$0^{\circ}, k \in \mathbb{Z}$	
2 $270^{\circ} + k360^{\circ}$				
$(C) 270^{\circ} + k300^{\circ}$	$\kappa \in \mathbb{Z}$.		∈ ℤ.	
			thuộc đường tròn sao cho	
cung lượng giác AI lượng giác AN bằn		/ là điểm đối xứng với <i>l</i>	M qua trục Ox , số đo cung	
\mathbf{A} -45° .	6	(B) 315°.		
© 45° hoặc 315	5°.	B 315° . D $-45^{\circ} + k360$	$^{\circ}, k \in \mathbb{Z}.$	
CÂU 5. Trên đười	ng tròn với điểm gốc là		ng tròn sao cho cung lượng	
giác AM có số đo			a trục Oy , số đo cung AN	
là (A) 120°.		B -240° .		
C −120° hoặc	240°.	$(\mathbf{D}) 120^{\circ} + k360^{\circ}$	$k \in \mathbb{Z}$.	
^		\smile	thuộc đường tròn sao cho	
			điểm M qua gốc tọa độ O ,	
số đọ cung lượng g	iác AN bằng	_		
A 255°. C −105° hoặc	2772	B -105° . D $-105^{\circ} + k36$		
_				
CÂU 7. Cho bốn d	cung (trên một đường	tròn định hướng): $\alpha =$	$-\frac{5\pi}{6}, \beta = \frac{\pi}{3}, \gamma = \frac{25\pi}{3}, \delta =$	
	o có điểm cuối trùng n			
	δ . B β và γ ; α v		$oldsymbol{oldsymbol{oldsymbol{eta}}}eta,\gamma,\delta.$	
•	<u> </u>	0	9	
	ọc lượng giác sau ở trẻ quả SAI trong các kết		đơn vị, cùng tia đầu và tia	· · · · · · · · · · · · · · · · · · ·
		$\frac{1}{2}$. © $-\frac{\pi}{3}$ và $\frac{155\pi}{3}$	$\frac{\pi}{2}$ và $\frac{281\pi}{2}$.	
•	10 0	0 0		
CAU 9. Trên đười thành tạm giác đềi		A, cung lượng giác nào	o có các điểm biểu diễn tạo	· · · · · · · · · · · · · · · · · · ·

 $\bigcirc \frac{k\pi}{2}$.

 \bigcirc $k\pi$.

QUICK NOTE			ất của đường tròn lượng	g giác. Hãy chọn kết quả
	đúng trong các kết qu $ \mathbf{A} \sin \alpha > 0. $	ua sau day. $\mathbf{B} \cos \alpha < 0.$	\bigcirc $\tan \alpha < 0$.	\bigcirc $\cot \alpha < 0$.
	CÂU 2. Cho α thuộ	c góc phần tư thứ ha	i của đường tròn lượng	giác. Hãy chọn kết quả
	đúng trong các kết qu	*		
	$(\mathbf{A})\sin\alpha > 0;\cos\alpha$		$\mathbf{B})\sin\alpha < 0;\cos\alpha$	
	$(\mathbf{C})\sin\alpha > 0;\cos\alpha$	$\epsilon < 0$.	$(\mathbf{D})\sin\alpha < 0;\cos\alpha$	> 0.
	CÂU 3. Cho α thuộc đây là SAI ?	c góc phần tư thứ ba	của đường tròn lượng g	iác. Khẳng định nào sau
	\triangle $\sin \alpha > 0$.	$lackbox{\textbf{B}}\cos \alpha < 0.$	\bigcirc $\tan \alpha > 0$.	$\bigcirc \cot \alpha > 0.$
		c góc phần tư thứ tư	của đường tròn lượng g	iác. Khẳng định nào sau
	đây là đúng? $(\mathbf{A}) \sin \alpha > 0.$	\bigcirc $\cos \alpha > 0$.	\bigcirc $\tan \alpha > 0$.	\bigcirc $\cot \alpha > 0$.
	•			\hat{a} y nếu $\sin \alpha, \cos \alpha$ cùng
	dấu?			· , · · · · · · · · · · · · · · · · · ·
	A Thứ II.		B Thứ IV.	T
	C Thứ II hoặc I	<i>V</i> .	$ig(oldsymbol{D} ig)$ Thứ I hoặc II .	1.
	CÂU 6. Điểm cuối củ $\stackrel{\frown}{\mathbf{A}}$ Thứ I .	ủa góc lượng giác $lpha$ ở g	óc phần tư thứ mấy nếu $\stackrel{ullet}{oxt(oldsymbol{B})}$ Thứ II hoặc I	
	$lue{\mathbf{C}}$ Thứ II hoặc I	III.		
	CÂU 7. Điểm cuối ci	ủa góc lượng giác $lpha$ ở g	óc phần tư thứ mấy nếu	$\cos \alpha = \sqrt{1 - \sin^2 \alpha}.$
	lacklack Thứ $II.$		$lackbox{\textbf{B}}$ Thứ I hoặc II	
	lacktriangle Thứ II hoặc I	III.	$lackbox{f D}$ Thứ I hoặc IV	
	CÂU 8. Điểm cuối c	ủa góc lượng giác α ở	góc phần tư thứ mấy n	$ \acute{\rm eu} \ \sqrt{\sin^2} \alpha = \sin \alpha. $
	lacklacklack Thứ $III.$		$lackbox{\textbf{B}}$ Thứ I hoặc II	
	$oldsymbol{\mathbb{C}}$ Thứ I hoặc II	•	D Thứ <i>III</i> hoặc .	IV.
	CÂU 9. Cho $2\pi < \alpha$	$<\frac{5\pi}{2}$. Khẳng định nà	ao sau đây đúng?	
	$(\mathbf{A}) \tan \alpha > 0; \cot \alpha$	2	B) $\tan \alpha < 0$; $\cot \alpha$	$\alpha < 0$.
	$\cot \alpha > 0; \cot \alpha$		$(\mathbf{D})\tan\alpha < 0;\cot\alpha$	
	CÂU 10. Cho $0 < \alpha$	$x < \frac{\pi}{2}$. Khẳng định nào	o sau đây đúng?	
	_	4 _		$0. \bigcirc \sin\left(\alpha - \pi\right) < 0.$
	CÂU 11. Cho $0 < \alpha$	$x < \frac{\pi}{2}$. Khẳng định nào	o sau đây đúng?	
	\bigcirc $\cot\left(\alpha + \frac{\pi}{2}\right) >$	<u> </u>	\bigcirc $\cot\left(\alpha + \frac{\pi}{2}\right) \geqslant$	0.
	$\mathbf{C}\tan\left(\alpha+\pi\right)<0$		$\mathbf{D}\tan\left(\alpha+\pi\right)>0$	
	CÂU 12. Cho $\frac{\pi}{2} < c$	$\alpha < \pi$. Giá trị lượng gi	iác nào sau đây luôn dư	ong?
		$lackbox{\textbf{B}}\cot\left(\frac{\pi}{2}-\alpha\right).$	_	$ (\mathbf{D}) \tan (\pi + \alpha). $
		$\alpha < \frac{3\pi}{2}$. Khẳng định n		
	(2)	4	(0)	
	$ (\mathbf{A}) \tan \left(\frac{3\pi}{2} - \alpha \right) $	< 0.	\mathbf{B} $\tan\left(\frac{3\pi}{2} - \alpha\right)$	> 0.
	\bigcirc $\tan\left(\frac{3\pi}{2} - \alpha\right)$	≤ 0 .	\bigcirc $\tan\left(\frac{3\pi}{2} - \alpha\right)$	$\geqslant 0.$
	(2)		(2)	
	_	_	a biểu thức $M = \cos\left(-\frac{1}{2}\right)$	- '
	$ (A) M \geqslant 0. $		$(\mathbf{C}) M \leqslant 0.$	
	CÂU 15. Cho $\pi < \alpha$	$x<rac{3\pi}{2}$. Xác định dấu c	của biểu thức $M = \sin\left(\frac{1}{2}\right)$	$\left(\frac{\pi}{2} - \alpha\right) \cdot \cot\left(\pi + \alpha\right)$.
	_	" _	$\bigcirc M\leqslant 0.$	"

🖶 Dạng 6. TÍNH GIÁ TRỊ LƯỢNG GIÁC

CÂU 1. Tính giá trị của $\sin \frac{47\pi}{6}$

(A)
$$\sin \frac{47\pi}{6} = \frac{\sqrt{3}}{2}$$
. (B) $\sin \frac{47\pi}{6} = \frac{1}{2}$. (C) $\sin \frac{47\pi}{6} = \frac{\sqrt{2}}{2}$. (D) $\sin \frac{47\pi}{6} = -\frac{1}{2}$.

$$\mathbf{B} \sin \frac{47\pi}{6} = \frac{1}{2}$$

$$\mathbf{\hat{c}}\sin\frac{47\pi}{6} = \frac{\sqrt{2}}{2}$$

CÂU 2. Tính giá trị của cot $\frac{89\pi}{c}$

$$\mathbf{B}\cot\frac{89\pi}{6} = -\sqrt{3}.$$

$$\mathbf{C}\cot\frac{89\pi}{6} = \frac{\sqrt{3}}{3}.$$

$$\mathbf{D}\cot\frac{89\pi}{6} = -\frac{\sqrt{3}}{3}.$$

CÂU 3. Tính giá trị của $\cos \left[\frac{\pi}{4} + (2k+1)\pi \right]$.

$$\mathbf{A} \cos \left[\frac{\pi}{4} + (2k+1)\pi \right] = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{C}\cos\left[\frac{\pi}{4}+\left(2k+1\right)\pi\right]=-\frac{1}{2}.$$

CÂU 4. Tính giá trị của $\cos \left[\frac{\pi}{3} + (2k+1) \pi \right]$.

$$\mathbf{A} \cos \left[\frac{\pi}{3} + (2k+1)\pi \right] = -\frac{\sqrt{3}}{2}.$$

$$\mathbf{B}\cos\left[\frac{\pi}{3} + (2k+1)\,\pi\right] = \frac{1}{2}.$$

$$\mathbf{C}\cos\left[\frac{\pi}{3} + (2k+1)\,\pi\right] = -\frac{1}{2}.$$

$$\mathbf{D}\cos\left[\frac{\pi}{3} + (2k+1)\,\pi\right] = \frac{\sqrt{3}}{2}.$$

CÂU 5. Tính giá trị biểu thức $P = \frac{(\cot 44^{\circ} + \tan 226^{\circ})\cos 406^{\circ}}{\cos 316^{\circ}} - \cot 72^{\circ}\cot 18^{\circ}.$ **(A)** P = 1. **(B)** P = 1. **(C)** $P = -\frac{1}{2}$. **(D)** $P = \frac{1}{2}$.

$$\bigcirc P = 1$$

$$P = -\frac{1}{2}$$
.

CÂU 6. Tính giá trị biểu thức $P = \sin\left(-\frac{14\pi}{3}\right) + \frac{1}{\sin^2\frac{29\pi}{4}} - \tan^2\frac{3\pi}{4}$

(A)
$$P = 1 + \frac{\sqrt{3}}{2}$$
. **(B)** $P = 1 - \frac{\sqrt{3}}{2}$. **(C)** $P = 2 + \frac{\sqrt{3}}{2}$. **(D)** $P = 3 - \frac{\sqrt{3}}{2}$.

B
$$P = 1 - \frac{\sqrt{3}}{2}$$

(c)
$$P = 2 + \frac{\sqrt{3}}{2}$$

D
$$P = 3 - \frac{\sqrt{3}}{2}$$
.

CÂU 7. Tính giá trị biểu thức $P = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$.

(A)
$$P = -1$$
.

$$\mathbf{B}) P = 0.$$

(C)
$$P = 1$$
.

$$(\mathbf{\tilde{D}}) P = 2.$$

CÂU 8. Tính giá trị biểu thức $P=\sin^2 10^\circ + \sin^2 20^\circ + \sin^2 30^\circ + \ldots + \sin^2 80^\circ$.

$$(\mathbf{A}) P = 0.$$

B
$$P = 2$$
.

(C)
$$P = 4$$
.

$$\mathbf{D}) P = 8$$

CÂU 9. Tính giá trị biểu thức $P = \tan 10^{\circ} \cdot \tan 20^{\circ} \cdot \tan 30^{\circ} \dots \tan 80^{\circ}$.

B
$$P = 1$$
.

C
$$P = 4$$
.

D
$$P = 8$$
.

CÂU 10. Tính giá trị biểu thức $P = \tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \dots \tan 89^{\circ}$.

$$(\mathbf{A}) P = 0.$$

$$(\mathbf{B}) P = 1.$$

$$(\mathbf{C}) P = 2.$$

D
$$P = 3$$
.

🖶 Dạng 7. TÍNH ĐÚNG SAI

CÂU 1. Với góc α bất kì. Khẳng định nào sau đây đúng?

(A) $\sin \alpha + \cos \alpha = 1$.

B) $\sin^2 \alpha + \cos^2 \alpha = 1$.

 $(\mathbf{C})\sin^3\alpha + \cos^3\alpha = 1.$

 $(\mathbf{D})\sin^4\alpha + \cos^4\alpha = 1.$

CÂU 2. Với góc α bất kì. Khẳng định nào sau đây đúng?

- $(\mathbf{A})\sin 2\alpha^2 + \cos^2 2\alpha = 1.$
- $\mathbf{B})\sin\left(\alpha^2\right) + \cos\left(\alpha^2\right) = 1.$
- (**c**) $\sin^2 \alpha + \cos^2 (180^\circ \alpha) = 1$.
- $(\mathbf{D})\sin^2\alpha \cos^2(180^\circ \alpha) = 1.$

CÂU 3. Mệnh đề nào sau đây là SAI?

- $(\mathbf{A}) 1 \leqslant \sin \alpha \leqslant 1; -1 \leqslant \cos \alpha \leqslant 1.$
- **B** $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} (\cos \alpha \neq 0).$
- \mathbf{C} $\cot \alpha = \frac{\cos \alpha}{\sin \alpha} (\sin \alpha \neq 0).$
- $(\mathbf{D})\sin^2(2018\alpha) + \cos^2(2018\alpha) = 2018.$

മ	ш		Ν	\sim T	_
-			w	OI	
	•			•	_

CÂU 4. Mệnh đề nào sau đây là SAI?

$$\mathbf{\hat{A}} \ 1 + \tan^2 \alpha = \frac{1}{\sin^2 \alpha}$$

$$\mathbf{B} \ 1 + \cot^2 \alpha = \frac{1}{\cos^2 \alpha}.$$

$$(\mathbf{C})\tan\alpha + \cot\alpha = 2.$$

$$(\mathbf{D}) \tan \alpha . \cot \alpha = 1.$$

CÂU 5. Để $\tan x$ có nghĩa khi

CÂU 6. Điều kiện trong đẳng thức $\tan \alpha \cdot \cot \alpha = 1$ là

$$\mathbf{B} \ \alpha \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

CÂU 7. Điều kiện để biểu thức $P = \tan\left(\alpha + \frac{\pi}{3}\right) + \cot\left(\alpha - \frac{\pi}{6}\right)$ xác định là

$$\mathbf{B} \ \alpha \neq \frac{2\pi}{2} + k\pi, k \in \mathbb{Z}.$$

CÂU 8. Mệnh đề nào sau đây đúng?

$$\mathbf{B} \cos 30^{\circ} < \cos 60^{\circ}.$$

$$(c) \tan 45^{\circ} < \tan 60^{\circ}.$$

$$\bigcirc$$
 cot 60° > cot 240° .

CÂU 9. Mệnh đề nào sau đây đúng?

$$(\mathbf{A}) \tan 45^{\circ} > \tan 46^{\circ}.$$

(B)
$$\cos 142^{\circ} > \cos 143^{\circ}$$
.

$$(\mathbf{c})\sin 90^{\circ}13' < \sin 90^{\circ}14'.$$

$$\bigcirc$$
 cot $128^{\circ} > \cot 126^{\circ}$.

🖶 Dang 8. CÁC CUNG LIÊN QUAN ĐĂC BIÊT

CÂU 1. Chọn mệnh đề đúng trong các mệnh đề sau:

$$(\mathbf{A})\cos\left(\frac{\dot{\pi}}{2} - \alpha\right) = \sin\alpha.$$

$$\mathbf{B}\sin\left(\pi+\alpha\right)=\sin\alpha.$$

CÂU 2. Với mọi số thực α , ta có $\sin\left(\frac{9\pi}{2} + \alpha\right)$ bằng

$$\bigcirc$$
 - $\sin \alpha$.

$$\bigcirc$$
 $\cos \alpha$.

$$(\mathbf{c})\sin\alpha$$
.

$$\bigcirc$$
 $-\cos \alpha$.

CÂU 3. Cho $\cos \alpha = \frac{1}{3}$. Khi đó $\sin \left(\alpha - \frac{3\pi}{2}\right)$ bằng

$$\bigcirc -\frac{2}{3}$$
.

B
$$-\frac{1}{3}$$
.

$$\bigcirc \frac{1}{3}$$
.

(D)
$$\frac{2}{3}$$
.

CÂU 4. Với mọi $\alpha \in \mathbb{R}$ thì tan $(2017\pi + \alpha)$ bằng

$$\bigcirc$$
 $-\tan \alpha$

$$\bigcirc$$
 B $\cot \alpha$.

$$\mathbf{C}$$
 $\tan \alpha$

$$\bigcirc$$
 $-\cot \alpha$.

CÂU 5. Đơn giản biểu thức $A = \cos\left(\alpha - \frac{\pi}{2}\right) + \sin(\alpha - \pi)$, ta được

$$A = \cos \alpha + \sin \alpha.$$

$$(\mathbf{D}) A = 0.$$

CÂU 6. Rút gọn biểu thức $S=\cos\left(\frac{\pi}{2}-x\right)\sin\left(\pi-x\right)-\sin\left(\frac{\pi}{2}-x\right)\cos\left(\pi-x\right)$ ta được

$$\mathbf{B} S = \sin^2 x - \cos^2 x.$$

$$\mathbf{D} S = 1.$$

$$(\mathbf{D}) S = 1.$$

CÂU 7. Cho $P = \sin(\pi + \alpha) \cdot \cos(\pi - \alpha)$ và $Q = \sin(\frac{\pi}{2} - \alpha) \cdot \cos(\frac{\pi}{2} + \alpha)$. Mệnh đề nào dưới đây là đúng?

B
$$P + Q = -1$$
. **C** $P + Q = 1$. **D** $P + Q = 2$.

$$\bigcirc P + Q = 1.$$

CÂU 8. Biểu thức lượng giác $\left[\sin\left(\frac{\pi}{2}-x\right)+\sin\left(10\pi+x\right)\right]^2+\left[\cos\left(\frac{3\pi}{2}-x\right)+\cos\left(8\pi-x\right)\right]^2$ có giá trị bằng?

$$\bigcirc \frac{1}{2}$$

$$\bigcirc$$
 $\frac{3}{4}$.

CÂU 9. Giá trị biểu thức $P = \left[\tan\frac{17\pi}{4} + \tan\left(\frac{7\pi}{2} - x\right)\right]^2 + \left[\cot\frac{13\pi}{4} + \cot\left(7\pi - x\right)\right]^2$

bằng

$$\mathbf{A} \frac{1}{\sin^2 x}$$

$$\bigcirc \frac{2}{\sin^2 x}$$

CÂU 10. Biết rằng $\sin\left(x-\frac{\pi}{2}\right)+\sin\frac{13\pi}{2}=\sin\left(x+\frac{\pi}{2}\right)$ thì giá trị đúng của $\cos x$ là

- **(A)** 1.

CÂU 11. Nếu cot $1,25 \cdot \tan(4\pi + 1,25) - \sin(x + \frac{\pi}{2}) \cdot \cos(6\pi - x) = 0$ thì $\tan x$ bằng

(**A**) 1.

 $(\mathbf{C}) 0.$

(D) Một giá trị khác.

CÂU 12. Biết A, B, C là các góc của tam giác ABC, mệnh đề nào sau đây đúng:

- $(\mathbf{A})\sin\left(A+C\right) = -\sin B.$
- $(\mathbf{B})\cos\left(A+C\right) = -\cos B.$
- $(\mathbf{C})\tan\left(A+C\right) = \tan B.$

 $(\mathbf{D})\cot(A+C)=\cot B.$

CÂU 13. Biết A, B, C là các góc của tam giác ABC, khi đó

- $(\mathbf{A})\sin C = -\sin\left(A + B\right).$
- **(B)** $\cos C = \cos (A + B).$

 $(\mathbf{C})\tan C = \tan\left(A + B\right).$

 $(\mathbf{D})\cot C = -\cot(A+B).$

CÂU 14. Cho tam giác ABC. Khẳng định nào sau đây là **SAI**?

 $(A) \sin \frac{A+C}{2} = \cos \frac{B}{2}.$

 \bigcirc $\cos \frac{A+C}{2} = \sin \frac{B}{2}$.

 $(\mathbf{C})\sin\left(A+B\right) = \sin C.$

 $(\mathbf{D})\cos(A+B)=\cos C.$

CÂU 15. A,B,C là ba góc của một tam giác. Hãy tìm hệ thức \mathbf{SAI} :

- $(\mathbf{A})\sin A = -\sin\left(2A + B + C\right).$
- $\mathbf{B} \sin A = -\cos \frac{3A + B + C}{2}.$
- \bigcirc $\cos C = \sin \frac{A+B+3C}{2}$.
- $(\mathbf{D})\sin C = \sin\left(A + B + 2C\right).$

🖶 Dạng 9. TÍNH BIỂU THỨC LƯỢNG GIÁC

CÂU 2. Cho góc α thỏa mãn $\cos \alpha = -\frac{\sqrt{5}}{3}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $\tan \alpha$.

- (A) $\tan \alpha = -\frac{3}{\sqrt{5}}$. (B) $\tan \alpha = \frac{2}{\sqrt{5}}$. (C) $\tan \alpha = -\frac{4}{\sqrt{5}}$. (D) $\tan \alpha = -\frac{2}{\sqrt{5}}$.

CÂU 3. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\frac{2017\pi}{2} < \alpha < \frac{2019\pi}{2}$. Tính $\sin \alpha$. **(A)** $\sin \alpha = -\frac{3}{5}$. **(B)** $\sin \alpha = \frac{3}{5}$. **(C)** $\sin \alpha = -\frac{4}{5}$. **(D)** $\sin \alpha = \frac{4}{5}$.

CÂU 4. Cho góc α thỏa mãn $\cos \alpha = -\frac{12}{13}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $\tan \alpha$.

- (A) $\tan \alpha = -\frac{12}{5}$. (B) $\tan \alpha = \frac{5}{12}$. (C) $\tan \alpha = -\frac{5}{12}$. (D) $\tan \alpha = \frac{12}{5}$.

CÂU 5. Cho góc α thỏa mãn tan $\alpha=2$ và $180^{\circ}<\alpha<270^{\circ}$. Tính $P=\cos\alpha+\sin\alpha$.

- **(A)** $P = -\frac{3\sqrt{5}}{5}$.

- **B** $P = 1 \sqrt{5}$. **C** $P = \frac{3\sqrt{5}}{2}$. **D** $P = \frac{\sqrt{5} 1}{2}$.

CÂU 6. Cho góc α thỏa $\sin \alpha = \frac{3}{5}$ và $90^{\circ} < \alpha < 180^{\circ}$. Khẳng định nào sau đây đúng?

- (A) $\cot \alpha = -\frac{4}{5}$. (B) $\cos \alpha = \frac{4}{5}$.

CÂU 7. Cho góc α thỏa $\cot \alpha = \frac{3}{4}$ và $0^{\circ} < \alpha < 90^{\circ}$. Khẳng định nào sau đây đúng?

- (A) $\cos \alpha = -\frac{4}{5}$. (B) $\cos \alpha = \frac{4}{5}$. (C) $\sin \alpha = \frac{4}{5}$.

	•	-			-
O	ш	CK	Ν	\mathbf{O}	13

CÂU 8. Cho góc α thỏa mãn $\sin \alpha = \frac{3}{5}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \frac{\tan \alpha}{1 + \tan^2 \alpha}$

$$P = \frac{3}{7}.$$

B
$$P = \frac{3}{7}$$
. **C** $P = \frac{12}{25}$.

A
$$P = \frac{19 + 2\sqrt{2}}{9}$$
. **B** $P = \frac{19 - 2\sqrt{2}}{9}$

$$\mathbf{C} P = \frac{26 - 2\sqrt{9}}{9}$$

$$\mathbf{D} P = \frac{26 + 2\sqrt{2}}{9}$$

CÂU 10. Cho góc α thỏa mãn $\sin(\pi + \alpha) = -\frac{1}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \tan\left(\frac{7\pi}{2} - \alpha\right)$.

$$\bigcirc P = \frac{\sqrt{2}}{4}$$

(A)
$$P = 2\sqrt{2}$$
. **(B)** $P = -2\sqrt{2}$. **(C)** $P = \frac{\sqrt{2}}{4}$.

CÂU 11. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{5}$ và $-\frac{\pi}{2} < \alpha < 0$. Tính $P = \sqrt{5 + 3 \tan a} + 1$ $\sqrt{6-4\cot a}$.

B
$$P = -4$$
.

(C)
$$P = 6$$
.

CÂU 12. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{5}$ và $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Tính $P = \sqrt{\tan^2 \alpha - 2 \tan \alpha + 1}$.

(A)
$$P = -\frac{1}{3}$$
. **(B)** $P = \frac{1}{3}$. **(C)** $P = \frac{7}{3}$.

B
$$P = \frac{1}{3}$$
.

©
$$P = \frac{7}{3}$$

CÂU 13. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < 2\pi$ và $\tan\left(\alpha + \frac{\pi}{4}\right) = 1$. Tính $P = \cos\left(\alpha - \frac{\pi}{6}\right) + \frac{\pi}{4}$

(A)
$$P = \frac{\sqrt{3}}{2}$$
. (B) $P = \frac{\sqrt{6} + 3\sqrt{2}}{4}$. (C) $P = -\frac{\sqrt{3}}{2}$. (D) $P = \frac{\sqrt{6} - 3\sqrt{2}}{4}$.

$$\bigcirc P = -\frac{\sqrt{3}}{2}.$$

CÂU 14. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < 2\pi$ và $\cot\left(\alpha + \frac{\pi}{3}\right) = -\sqrt{3}$. Tính giá trị của biểu thức $P = \sin\left(\alpha + \frac{\pi}{6}\right) + \cos\alpha$.

(A)
$$P = \frac{\sqrt{3}}{2}$$
. **(B)** $P = 1$.

$$P=1.$$

$$\bigcirc P = -1$$

©
$$P = -1$$
. **D** $P = -\frac{\sqrt{3}}{2}$.

CÂU 15. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \frac{\sin^2 \alpha - \cos \alpha}{\sin \alpha - \cos^2 \alpha}$. **(A)** $P = \frac{30}{11}$. **(B)** $P = \frac{31}{11}$. **(C)** $P = \frac{32}{11}$.

(A)
$$P = \frac{30}{11}$$
.

B
$$P = \frac{31}{11}$$

$$P = \frac{32}{11}$$

$$\mathbf{D} P = \frac{34}{11}.$$

CÂU 16. Cho góc α thỏa mãn $\tan \alpha = 2$. Tính $P = \frac{3 \sin \alpha - 2 \cos \alpha}{5 \cos \alpha + 7 \sin \alpha}$. **(a)** $P = -\frac{4}{9}$. **(b)** $P = \frac{4}{19}$.

$$P = -\frac{4}{19}$$
.

$$P = \frac{4}{10}$$
.

CÂU 17. Cho góc α thỏa mãn $\cot \alpha = \frac{1}{3}$. Tính $P = \frac{3 \sin \alpha + 4 \cos \alpha}{2 \sin \alpha - 5 \cos \alpha}$

$$\mathbf{A} P = -\frac{15}{13}$$

B
$$P = \frac{15}{13}$$
.

$$\bigcirc P = -13$$

CÂU 18. Cho góc α thỏa mãn $\tan \alpha = 2$. Tính $P = \frac{2\sin^2 \alpha + 3\sin \alpha \cdot \cos \alpha + 4\cos^2 \alpha}{5\sin^2 \alpha + 6\cos^2 \alpha}$. **(B)** $P = \frac{9}{65}$. **(C)** $P = -\frac{9}{65}$. **(D)** $P = \frac{24}{29}$.

$$P = \frac{9}{13}.$$

B
$$P = \frac{9}{65}$$
.

$$\bigcirc P = -\frac{9}{65}.$$

CÂU 19. Cho góc α thỏa mãn $\tan \alpha = \frac{1}{2}$. Tính $P = \frac{2\sin^2 \alpha + 3\sin \alpha \cdot \cos \alpha - 4\cos^2 \alpha}{5\cos^2 \alpha - \sin^2 \alpha}$ **(A)** $P = -\frac{8}{13}$. **(B)** $P = \frac{2}{19}$. **(C)** $P = -\frac{2}{19}$. **(D)** $P = -\frac{8}{19}$.

(A)
$$P = -\frac{8}{13}$$

B
$$P = \frac{2}{19}$$

©
$$P = -\frac{2}{19}$$

$$P = -\frac{8}{19}$$

CÂU 20. Cho góc α thỏa mãn $\tan \alpha = 5$. Tính $P = \sin^4 \alpha - \cos^4 \alpha$. **(A)** $P = \frac{9}{13}$. **(B)** $P = \frac{10}{13}$. **(C)** $P = \frac{11}{13}$. **(D)** $P = \frac{12}{13}$.

A
$$P = \frac{9}{13}$$

B
$$P = \frac{10}{13}$$
.

$$\bigcirc P = \frac{11}{13}.$$

$$P = \frac{12}{12}$$
.

CÂU 21. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = \frac{5}{4}$. Tính $P = \sin \alpha \cdot \cos \alpha$.

(A)
$$P = \frac{9}{16}$$
. **(B)** $P = \frac{9}{32}$. **(C)** $P = \frac{9}{8}$.

B
$$P = \frac{9}{32}$$
.

(c)
$$P = \frac{9}{8}$$
.

CÂU 22. Cho góc α thỏa mãn $\sin \alpha \cos \alpha = \frac{12}{25}$ và $\sin \alpha + \cos \alpha > 0$. Tính $P = \sin^3 \alpha + \cos \alpha$

(A)
$$P = \frac{91}{125}$$
.

B
$$P = \frac{49}{25}$$
.

©
$$P = \frac{7}{5}$$
.

CÂU 23. Cho góc α thỏa mãn $0<\alpha<\frac{\pi}{4}$ và $\sin\alpha+\cos\alpha=\frac{\sqrt{5}}{2}$. Tính $P=\sin\alpha-\cos\alpha$.

$$\bigcirc P = \frac{1}{2}$$

$$P = -\frac{1}{2}$$
.

B
$$P = \frac{1}{2}$$
. **C** $P = -\frac{1}{2}$. **D** $P = -\frac{\sqrt{3}}{2}$.

CÂU 24. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = m$.. Tính $P = |\sin \alpha - \cos \alpha|$.

$$(\mathbf{A}) P = 2 - n$$

(B)
$$P = 2 - m^2$$
.

$$(\mathbf{C}) P = m^2 - 2.$$

$$(\mathbf{D}) P = \sqrt{2 - m^2}.$$

CÂU 25. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha = 2$. Tính $P = \tan^2 \alpha + \cot^2 \alpha$.

$$(\mathbf{A}) P = 1.$$

$$(\mathbf{B}) P = 2.$$

$$\widehat{\mathbf{C}} P = 3.$$

$$(\mathbf{D}) P = 4$$

CÂU 26. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha = 5$. Tính $P = \tan^3 \alpha + \cot^3 \alpha$.

(A)
$$P = 100$$
.

$$(\mathbf{B}) P = 110$$

$$(\mathbf{C}) P = 112.$$

$$(\mathbf{D}) P = 115.$$

CÂU 27. Cho góc α thỏa mãn $\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{2}$. Tính $P = \tan^2 \alpha + \cot^2 \alpha$.

(A)
$$P = 12$$
.

B
$$P = 14$$
.

$$(\hat{\mathbf{C}}) P = 16.$$

$$(D) P = 18.$$

CÂU 28. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\tan \alpha - \cot \alpha = 1$. Tính $P = \tan \alpha + \cot \alpha$.

(B)
$$P = -1$$
.

$$\mathbf{C} P = -\sqrt{5}.$$

$$(\widehat{\mathbf{D}}) P = \sqrt{5}.$$

CÂU 29. Cho góc α thỏa mãn $3\cos\alpha+2\sin\alpha=2$ và $\sin\alpha<0$. Tính $\sin\alpha$. **(a)** $\sin\alpha=-\frac{5}{13}$. **(b)** $\sin\alpha=-\frac{12}{13}$. **(c)** $\sin\alpha=-\frac{9}{13}$. **(d)** $\sin\alpha=-\frac{12}{13}$.

$$\mathbf{\hat{A}}\sin\alpha = -\frac{5}{13}.$$

$$\mathbf{B}\sin\alpha = -\frac{7}{13}.$$

$$\mathbf{c} \sin \alpha = -\frac{9}{13}.$$

$$\mathbf{D}\sin\alpha = -\frac{12}{13}.$$

CÂU 30. Cho góc α thỏa mãn $\pi < \alpha < \frac{3\pi}{2}$ và $\sin \alpha - 2\cos \alpha = 1$. Tính $P = 2\tan \alpha - 2\cos \alpha$

B
$$P = \frac{1}{4}$$
.

$$(c) P = \frac{1}{6}.$$

Dạng 10. RÚT GỌN BIỂU THỰC

CÂU 1. Rút gon biểu thức $M = (\sin x + \cos x)^2 + (\sin x - \cos x)^2$.

(A) M = 1.

(B) M = 2.

(C) M = 4.

 $(\mathbf{D}) M = 4 \sin x \cdot \cos x.$

CÂU 2. Mệnh đề nào sau đây là đúng?

- **B** $\sin^4 x + \cos^4 x = \frac{5}{8} + \frac{3}{8}\cos 4x.$
- $\mathbf{C}\sin^4 x + \cos^4 x = \frac{3}{4} + \frac{7}{4}\cos 4x.$

CÂU 3. Mênh đề nào sau đây là đúng?

- $(\mathbf{A})\sin^4 x \cos^4 x = 1 2\cos^2 x.$
- $\mathbf{B})\sin^4 x \cos^4 x = 1 2\sin^2 x \cos^2 x.$
- $(\mathbf{C})\sin^4 x \cos^4 x = 1 2\sin^2 x.$
- $(\mathbf{D})\sin^4 x \cos^4 x = 2\cos^2 x 1.$

CÂU 4. Rút gon biểu thức $M = \sin^6 x + \cos^6 x$.

- $(\mathbf{A}) M = 1 + 3\sin^2 x \cos^2 x.$
- **(B)** $M = 1 3\sin^2 x$.

 \bigcirc $M = 1 - \frac{3}{2}\sin^2 2x.$

 $\mathbf{D} M = 1 - \frac{3}{4} \sin^2 2x.$

CÂU 5. Rút gọn biểu thức $M = 2 (\sin^4 x + \cos^4 x + \cos^2 x \sin^2 x)^2 - (\sin^8 x + \cos^8 x)$.

- **B**) M = -1.
- **(C)** M = 2.

CÂU 6. Rút gọn biểu thức $M = \tan^2 x - \sin^2 x$.

 $(\mathbf{A}) M = \tan^2 x.$

 $\mathbf{B}) M = \sin^2 x.$

 $(\mathbf{C}) M = \tan^2 x \cdot \sin^2 x.$

(D) M = 1.

CÂU 7. Rút gọn biểu thức $M = \cot^2 x - \cos^2 x$.

 $(\mathbf{A}) M = \cot^2 x.$

 $\mathbf{B}) M = \cos^2 x.$

(C) M = 1.

(**D**) $M = \cot^2 x \cdot \cos^2 x$.

CÂU 8. Rút gọn biểu thức $M = (1 - \sin^2 x) \cot^2 x + (1 - \cot^2 x)$.

- \mathbf{A} $M = \sin^2 x$.
- **(B)** $M = \cos^2 x$.
- **(c)** $M = \sin^2 x$.
- **(D)** $M = \cos^2 x$.

)	ł	Ε	į	С	ţ	C	t	ገ	í:		K	[)	C	>	١	V	1ý	7	£	Э	į	è	r	١,		Γ	Γ.	Τ
							(\$	Ò	Į	J	(C)	K			١	()								
•							•	•	•	•	•	•	•		•						-			-		Ī			

CÂU 9. Rút gọn biểu thức
$$M = \sin^2 \alpha \tan^2 \alpha + 4 \sin^2 \alpha - \tan^2 \alpha + 3 \cos^2 \alpha$$
.

$$(A) M = 1 + \sin^2 \alpha.$$
 (B) $M = \sin \alpha.$

$$\mathbf{C}M = 2\sin\alpha.$$

$$\bigcirc$$
 $M=3$

CÂU 10. Rút gọn biểu thức $M = (\sin^4 x + \cos^4 x - 1) (\tan^2 x + \cot^2 x + 2)$.

$$(\mathbf{A}) M = -4.$$

$$(\mathbf{B}) M = -2.$$

$$(\mathbf{C}) M = 2.$$

$$\bigcirc$$
 $M=4$

CÂU 11. Đơn giản biểu thức $P = \sqrt{\sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha}$.

$$\mathbf{B}) P = \sin \alpha.$$

$$(\mathbf{C}) P = \cos \alpha.$$

$$\widehat{\mathbf{D}}) P = |\cos \alpha|.$$

CÂU 12. Đơn giản biểu thức $P = \frac{1 + \sin^2 \alpha}{1 - \sin^2 \alpha}$.

$$(\mathbf{A}) P = 1 + 2 \tan^2 \alpha.$$

$$\mathbf{(B)} P = 1 - 2\tan^2\alpha.$$

$$\bigcirc P = -1 + 2\tan^2\alpha.$$

$$(\mathbf{D}) P = -1 - 2 \tan^2 \alpha.$$

$$\mathbf{A} P = -\frac{2\cos\alpha}{\sin^2\alpha}$$

$$\mathbf{B} P = \frac{2^{\text{SII}}}{\sin^2 \alpha}$$

$$\mathbf{C} P = \frac{2}{1 + \cos \alpha}.$$

CÂU 14. Đơn giản biểu thức $P = \frac{1 - \sin^2 \alpha \cos^2 \alpha}{\cos^2 \alpha} - \cos^2 \alpha$.

(B)
$$P = 1$$
.

$$(\mathbf{C}) P = -\cos^2 \alpha. \qquad (\mathbf{D}) P = \cot^2 \alpha.$$

$$(\mathbf{D}) P = \cot^2 \alpha$$

CÂU 15. Đơn giản biểu thức $P = \frac{2\cos^2 x - 1}{\sin x + \cos x}$

$$(\mathbf{B}) P = \cos x - \sin x.$$

$$\mathbf{C} P = \cos 2x - \sin 2x.$$

CÂU 16. Đơn giản biểu thức $P = \frac{\left(\sin \alpha + \cos \alpha\right)^2 - 1}{\cot \alpha - \sin \alpha \cos \alpha}$. **A** $P = 2 \tan^2 \alpha$. **B** $P = \frac{\sin \alpha}{\cos^3 \alpha}$. **C** $P = 2 \cot^2 \alpha$.

$$P = 2 \tan^2 \alpha$$

$$P = \frac{\sin \alpha}{\cos^3 \alpha}$$

$$\bigcirc P = 2\cot^2\alpha.$$

CÂU 17. Đơn giản biểu thức $P = \left(\frac{\sin \alpha + \tan \alpha}{\cos \alpha + 1}\right)^2 + 1.$

$$\bigcirc P = 2.$$

(B)
$$P = 1 + \tan \alpha$$
. **(C)** $P = \frac{1}{\cos^2 \alpha}$.

$$P = \frac{1}{\cos^2 \alpha}.$$

$$\mathbf{D} P = \frac{1}{\sin^2 \alpha}.$$

CÂU 18. Đơn giản biểu thức $P = \tan \alpha \left(\frac{1 + \cos^2 \alpha}{\sin \alpha} - \sin \alpha \right)$.

$$(\mathbf{A}) P = 2.$$

$$\mathbf{B}) P = 2\cos\alpha.$$

$$\bigcirc P = 2 \tan \alpha.$$

$$(\mathbf{D}) P = 2\sin\alpha.$$

CÂU 19. Đơn giản biểu thức $P = \frac{\cot^2 x - \cos^2 x}{\cot^2 x} + \frac{\sin x \cos x}{\cot x}$

$$\bigcirc P = -1.$$

$$\bigcirc P = \frac{1}{2}$$

CÂU 20. Hệ thức nào sau đây là SAI?

$$\mathbf{\hat{A}} \frac{\sin^2 \alpha + 1}{2\left(1 - \sin^2 \alpha\right)} + \frac{1 + \cos^2 \alpha}{2\left(1 - \cos^2 \alpha\right)} + 1 = \left(\tan \alpha + \cot \alpha\right)^2.$$

$$\mathbf{c} \frac{\sin x + \tan x}{\tan x} = 1 + \sin x + \cot x$$

🖶 Dạng 11. TÍNH GIÁ TRỊ LƯỢNG GIÁC

CÂU 1. Rút gọn biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ$.

(B)
$$M = \frac{\sqrt{3}}{2}$$
. **(C)** $M = \frac{1}{4}$.

$$\bigcirc M = \frac{1}{4}.$$

CÂU 2. Tính giá trị của biểu thức $M=\cos^4 15^\circ - \sin^4 15^\circ + \cos^2 15^\circ - \sin^2 15^\circ$.

B
$$M = \frac{1}{2}$$
.

©
$$M = \frac{1}{4}$$
.

CÂU 3. Tính giá trị của biểu thức $M = \cos^6 15^\circ - \sin^6 15^\circ$.

B
$$M = \frac{1}{2}$$
.

$$\bigcirc M = \frac{1}{4}$$

CÂU 4. Giá trị của biểu thức $\cos\frac{\pi}{30}\cos\frac{\pi}{5}+\sin\frac{\pi}{30}\sin\frac{\pi}{5}$ là

B
$$-\frac{\sqrt{3}}{2}$$
.

$$\mathbf{c} \frac{\sqrt{3}}{4}$$
.

$$\bigcirc \frac{1}{2}$$
.

CÂU 5. Giá trị của biểu thức $P = \frac{\sin\frac{5\pi}{18}\cos\frac{\pi}{9} - \sin\frac{\pi}{9}\cos\frac{5\pi}{18}}{\cos\frac{\pi}{4}\cos\frac{\pi}{12} - \sin\frac{\pi}{4}\sin\frac{\pi}{12}}$ là

- **(A)** 1.
- $\bigcirc \frac{\sqrt{2}}{2}$.
- $\bigcirc \frac{\sqrt{3}}{2}.$

CÂU 6. Giá trị đúng của biểu thức $\frac{\tan 225^\circ - \cot 81^\circ \cdot \cot 69^\circ}{\cot 261^\circ + \tan 201^\circ}$ bằng

B
$$-\frac{1}{\sqrt{3}}$$
.

$$\bigcirc$$
 $\sqrt{3}$.

$$\bigcirc -\sqrt{3}.$$

CÂU 7. Giá trị của biểu thức $M = \sin \frac{\pi}{24} \sin \frac{5\pi}{24} \sin \frac{7\pi}{24} \sin \frac{11\pi}{24}$ bằng **(A)** $\frac{1}{2}$.

$$\bigcirc \frac{1}{2}$$
.

B
$$\frac{1}{4}$$
.

$$\frac{1}{8}$$
.

$$\bigcirc \frac{1}{16}$$
.

CÂU 8. Giá trị của biểu thức $M=\sin\frac{\pi}{48}\cos\frac{\pi}{48}\cos\frac{\pi}{24}\cos\frac{\pi}{12}\cos\frac{\pi}{6}$ là

$$\bigcirc$$
 $\frac{1}{32}$.

B
$$\frac{\sqrt{3}}{8}$$
.

$$\mathbf{C} \frac{\sqrt{3}}{16}$$
.

D
$$\frac{\sqrt{3}}{32}$$
.

CÂU 9. Tính giá trị của biểu thức $M = \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$. **(a)** $M = \frac{1}{16} \cos 10^{\circ}$. **(b)** $M = \frac{1}{2} \cos 10^{\circ}$. **(c)** $M = \frac{1}{4} \cos 10^{\circ}$. **(d)** $M = \frac{1}{8} \cos 10^{\circ}$.

$$\mathbf{A} M = \frac{1}{16} \cos 10^{\circ}.$$

$$\mathbf{C} M = \frac{1}{4} \cos 10^{\circ}$$

$$M = \frac{1}{8} \cos 10^{\circ}.$$

CÂU 10. Tính giá trị của biểu thức $M = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

B
$$M = -\frac{1}{2}$$
.

©
$$M = 1$$
.

$$\bigcirc M=2.$$

Dạng 12. TÍNH ĐÚNG SAI

CÂU 1. Công thức nào sau đây sai?

- $(\mathbf{A})\cos(a-b) = \sin a \sin b + \cos a \cos b.$
- $(\mathbf{B})\cos(a+b) = \sin a \sin b \cos a \cos b.$
- $(\mathbf{C})\sin(a-b) = \sin a \cos b \cos a \sin b.$
- $(\mathbf{D})\sin(a+b) = \sin a \cos b + \cos a \sin b.$

CÂU 2. Khẳng định nào sau đây đúng?

- $(\mathbf{A})\sin(2018a) = 2018\sin a \cdot \cos a.$
- **(B)** $\sin(2018a) = 2018\sin(1009a) \cdot \cos(1009a)$.
- $(\mathbf{C})\sin(2018a) = 2\sin a\cos a.$
- $(\mathbf{D})\sin(2018a) = 2\sin(1009a) \cdot \cos(1009a).$

CÂU 3. Khẳng định nào sai trong các khẳng định sau?

- $(\mathbf{A})\cos 6a = \cos^2 3a \sin^2 3a.$
- **(B)** $\cos 6a = 1 2\sin^2 3a$.

 $(\mathbf{C})\cos 6a = 1 - 6\sin^2 a.$

 $(\mathbf{D})\cos 6a = 2\cos^2 3a - 1.$

CÂU 4. Khẳng định nào sai trong các khẳng định sau? $(\widehat{\textbf{A}}) \sin^2 x = \frac{1-\cos 2x}{2}.$ $(\widehat{\textbf{B}}) \cos^2 x = \frac{1+\cos 2x}{2}.$

CÂU 5. Khẳng định nào đúng trong các khẳng định sau?

- $(\mathbf{A}) \sin a + \cos a = \sqrt{2} \sin \left(a \frac{\pi}{4} \right).$
- $\mathbf{B}\sin a + \cos a = \sqrt{2}\sin\left(a + \frac{\pi}{4}\right).$
- $\mathbf{C}\sin a + \cos a = -\sqrt{2}\sin\left(a \frac{\pi}{4}\right).$

CÂU 6. Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

1) $\cos x - \sin x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$.

QUICK NOTE		$= \sqrt{2}\cos\left(x + \frac{\pi}{4}\right).$ $= \sqrt{2}\sin\left(x - \frac{\pi}{4}\right).$		
		_ ' + '		
		$= \sqrt{2}\sin\left(\frac{\pi}{4} - x\right).$	(a) a	
	(A) 1.	(B) 2.	© 3.	(D) 4.
		thức nào sau đây đúng? $3\cos a - 4\cos^3 a$.	\bigcirc $\cos 3a = 4 \cos 3a$	or ³ a 2 aor a
	I ×	$3\cos a - 4\cos a.$ $3\cos^3 a - 4\cos a.$	$(\mathbf{D})\cos 3a = 4\cos 3a$	
		thức nào sau đây đúng?		
		$3\sin a - 4\sin^3 a.$	$\mathbf{B}\sin 3a = 4\sin 3a$	$n^3 a - 3\sin a.$
	$\sin 3a =$	$3\sin^3 a - 4\sin a.$	$\mathbf{\hat{D}}\sin 3a = 4\sin 3a$	$a - 3\sin^3 a.$
	CÂU 9. Nếu c	os(a+b) = 0 thì khẳng	định nào sau đây đúng?	
		$2b) = \sin a .$	$\bigcirc \sin\left(a+2b\right) $	
	$ \sin(a + \sin(a)) $	$2b) = \cos a .$	$(\mathbf{D}) \left \sin \left(a + 2b \right) \right $	$ = \cos b .$
		$\sin(a+b) = 0$ thì khẳng	_	
	I × '	$ 2b\rangle = \sin a .$ $ 2b\rangle = \cos a .$	$ \begin{array}{c c} \textbf{(B)} & \cos{(a+2b)} \\ \hline \textbf{(D)} & \cos{(a+2b)} \end{array} $	
		Dạng 13. VẬN DỤ	NG CÔNG THỰC LƯỢI	NG GIÁC
	CÂU 1. Rút g	$ on M = \sin(x - y)\cos y $	$+\cos(x-y)\sin y$.	
		, -, -	$\mathbf{B} M = \sin x.$	
	\bigcirc $M = \sin$	$x\cos 2y$.	$(\mathbf{D}) M = \cos x \cot x$	os $2y$.
	CÂU 2. Rút g	$on M = \cos(a+b)\cos(a+b)$	$(a-b) - \sin(a+b)\sin(a+b)$	-b) .
	M = 1 -	$-2\cos^2 a$.		$\sin^2 a$.
	$\bigcirc M = \cos$	34a.	$\mathbf{D} M = \sin 4a.$	
		$ on M = \cos(a+b)\cos(a+b) $		
			$ \mathbf{B} M = 1 + 2 s $	$\sin^2 b$.
			$\mathbf{(D)}M=\sin 4b.$	
	CAU 4. Giá tr (A) 18°.	rị nào sau đây của x thỏa (\mathbf{B}) 30°.	a mãn $\sin 2x \cdot \sin 3x = \cos x$ $(\mathbf{C}) 36^{\circ}.$	os $2x \cdot \cos 3x$?
	•		6 30 .	45 .
		thức nào sau đây đúng? $\sin(b-a)$	2 1	1
	_	$\cot b = \frac{\sin(b-a)}{\sin a \cdot \sin b}.$	$\mathbf{B} \cos^2 a = \frac{1}{2} \left(\right.$	
	$(\mathbf{c})\sin\left(a+b\right)$	$b) = \frac{1}{2}\sin 2(a+b).$	\bigcirc $\tan(a+b) =$	$=\frac{\sin(a+b)}{\cos a\cdot\cos b}.$
	CÂU 6. Chọn	công thức đúng trong cá	ic công thức sau:	
	$\triangle \sin a \cdot \sin a$	$b = -\frac{1}{2}\left[\cos\left(a+b\right) - \cos\left(a+b\right)\right]$	s(a-b)].	
		$n b = 2 \sin \frac{a+b}{2} \cdot \cos \frac{a-b}{2}$	•	
		a. 4		
	$\cot 2a =$			
		$\sin^2 a - \cos^2 a.$	(
		$on M = \cos\left(x + \frac{\pi}{4}\right) - \cos\left(x$	\ T /	
		$2\sin x$. B $M = -\sqrt{2}$	$2\sin x$. $\bigcirc M = \sqrt{2}\cos x$	$\mathbf{x}. \qquad \mathbf{D} M = -\sqrt{2}\cos x.$
	CÂU 8. Tam g	giác ABC có $\cos A = \frac{4}{5}$ v	$v a \cos B = \frac{5}{12}$. Khi đó co	os C bằng
	$\triangle \frac{56}{65}$.	F 0	$\mathbf{c} \frac{13}{65}$.	\bigcirc $\frac{33}{65}$.
	0.5	00	1	1 1
	CÂU 9. Cho A	A,B,C là ba góc nhọn t	thỏa mãn $\tan A = \frac{1}{2}$, ta	$\operatorname{n} B = \frac{1}{5}, \tan C = \frac{1}{8}.$ Tổng
	A+B+C bằn	10	_	-

$$\bigcirc \mathbf{B} \frac{\pi}{5}$$
.

$$\bigcirc \frac{\pi}{4}$$
.

$$\bigcirc \frac{\pi}{3}$$
.

CÂU 10. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \sin A + \sin B + \sin C$ tương đương với

$$\begin{array}{c} \textbf{B} \ P = 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}. \\ \textbf{D} \ P = 2\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}. \end{array}$$

$$\mathbf{C} P = 2\cos\frac{\mathring{A}}{2}\cos\frac{\mathring{B}}{2}\cos\frac{\mathring{C}}{2}.$$

$$\mathbf{\hat{D}} P = 2\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}.$$

CÂU 11. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \sin 2A + \sin 2B + \sin 2C$ tương đương với:

$$(\mathbf{A}) P = 4\cos A \cdot \cos B \cdot \cos C.$$

$$\mathbf{(B)} P = 4\sin A \cdot \sin B \cdot \sin C.$$

$$(\mathbf{C}) P = -4\cos A \cdot \cos B \cdot \cos C.$$

$$(\mathbf{\overline{D}}) P = -4\sin A \cdot \sin B \cdot \sin C$$

CÂU 12. Cho A, B, C là các góc của tam giác ABC (không phải tam giác vuông). Khi đó

$$\mathbf{B} P = -\tan\frac{A}{2} \cdot \tan\frac{B}{2} \cdot \tan\frac{C}{2}.$$

$$P = -\tan \cdot \tan B \cdot \tan C.$$

CÂU 13. Cho A, B, C là các góc của tam giác ABC. Khi đó $P = \tan \frac{A}{2} \cdot \tan \frac{B}{2} + \tan \frac{B}{2}$ $\tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2}$ tương đương với

(B)
$$P = -1$$
.

$$lacktriangle$$
 Đáp án khác.

CÂU 14. Trong $\triangle ABC$, nếu $\frac{\sin B}{\sin C} = 2\cos A$ thì $\triangle ABC$ là tam giác có tính chất nào sau đây?

(\mathbf{A}) Cân tại B.

(**B**) Cân tại A.

(**C**) Cân tại C.

(**D**) Vuông tại B.

CÂU 15. Trong $\triangle ABC$, nếu $\frac{\tan A}{\tan C} = \frac{\sin^2 A}{\sin^2 C}$ thì $\triangle ABC$ là tam giác gì?

(A) Tam giác vuông.

(**B**) Tam giác cân.

(C) Tam giác đều.

(**D**) Tam giác vuông hoặc cân.

🖶 Dạng 14. TÍNH BIỂU THỰC LƯỢNG GIÁC

CÂU 1. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \alpha = \frac{4}{5}$. Tính $P = \sin 2 (\alpha + \pi)$.

B
$$P = \frac{24}{25}$$
.

(A)
$$P = -\frac{24}{25}$$
. **(B)** $P = \frac{24}{25}$. **(C)** $P = -\frac{12}{25}$.

CÂU 2. Cho góc α thỏa mãn $0 < \alpha < \frac{\pi}{2}$ và $\sin \alpha = \frac{2}{3}$. Tính $P = \frac{1 + \sin 2\alpha + \cos 2\alpha}{\sin \alpha + \cos \alpha}$

(A)
$$P = -\frac{2\sqrt{5}}{3}$$
. **(B)** $P = \frac{3}{2}$.

$$\bigcirc P = -\frac{3}{2}$$

$$\mathbf{C} P = -\frac{3}{2}. \qquad \mathbf{D} P = \frac{2\sqrt{5}}{3}.$$

CÂU 3. Biết $\sin{(\pi - \alpha)} = -\frac{3}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \sin{\left(\alpha + \frac{\pi}{6}\right)}$.

(A)
$$P = -\frac{3}{5}$$
. **(B)** $P = \frac{3}{5}$.

©
$$P = \frac{-4 - 3\sqrt{3}}{10}$$
. **©** $P = \frac{4 - 3\sqrt{3}}{10}$.

$$\mathbf{D} P = \frac{4 - 3\sqrt{3}}{10}$$

CÂU 4. Cho góc α thỏa mãn $\sin\alpha=\frac{3}{5}$. Tính $P=\sin\left(\alpha+\frac{\pi}{6}\right)\sin\left(\alpha-\frac{\pi}{6}\right)$. **(A)** $P=\frac{11}{100}$. **(B)** $P=-\frac{11}{100}$. **(C)** $P=\frac{7}{25}$. **(D)** $P=\frac{10}{11}$.

$$\triangle P = \frac{11}{100}$$
.

B
$$P = -\frac{11}{100}$$
.

©
$$P = \frac{7}{25}$$
.

$$P = \frac{10}{11}$$

CÂU 5. Cho góc α thỏa mãn $\sin \alpha = \frac{4}{5}$. Tính $P = \cos 4\alpha$. **(A)** $P = \frac{527}{625}$. **(B)** $P = -\frac{527}{625}$. **(C)** $P = \frac{524}{625}$.

A
$$P = \frac{527}{625}$$
.

B
$$P = -\frac{527}{625}$$
.

$$\bigcirc P = \frac{524}{625}$$

(D)
$$P = -\frac{524}{625}$$

CÂU 6. Cho góc α thỏa mãn $\sin 2\alpha = -\frac{4}{5}$ và $\frac{3\pi}{4} < \alpha < \pi$. Tính $P = \sin \alpha - \cos \alpha$.

A
$$P = \frac{3}{\sqrt{5}}$$
.

©
$$P = \frac{\sqrt{5}}{3}$$

B
$$P = -\frac{3}{\sqrt{5}}$$
. **C** $P = \frac{\sqrt{5}}{3}$. **D** $P = -\frac{\sqrt{5}}{3}$.

ລແ	ICK	NC	
SII	IIC K	MC) 2

QUI	CK	N	\mathbf{O}	13
\circ	$\mathbf{v}_{\mathbf{N}}$			•

CÂU 7. Cho góc α thỏa mãn $\sin 2\alpha = \frac{2}{3}$. Tính $P = \sin^4 \alpha + \cos^4 \alpha$.

B
$$P = \frac{17}{81}$$
.

©
$$P = \frac{7}{9}$$
.

CÂU 8. Cho góc α thỏa mãn $\cos \alpha = \frac{5}{13}$ và $\frac{3\pi}{2} < \alpha < 2\pi$. Tính $P = \tan 2\alpha$. **(A)** $P = -\frac{120}{119}$. **(B)** $P = -\frac{119}{120}$. **(C)** $P = \frac{120}{119}$. **(D)** $P = \frac{119}{120}$.

$$P = -\frac{120}{119}.$$

B
$$P = -\frac{119}{120}$$
.

$$\bigcirc P = \frac{120}{119}.$$

CÂU 9. Cho góc α thỏa mãn $\cos 2\alpha = -\frac{2}{3}$. Tính $P = (1 + 3\sin^2\alpha) (1 - 4\cos^2\alpha)$.

A
$$P = 12$$
.

B
$$P = \frac{21}{2}$$
.

©
$$P = 6$$
.

CÂU 10. Cho góc α thỏa mãn $\cos \alpha = \frac{3}{4}$ và $\frac{3\pi}{2} < \alpha < 2\pi$. Tính $P = \cos \left(\frac{\pi}{3} - \alpha\right)$.

$$P = \frac{3 + \sqrt{21}}{8}$$

B
$$P = \frac{3 - \sqrt{21}}{8}$$
.

(A)
$$P = \frac{3+\sqrt{21}}{8}$$
. (B) $P = \frac{3-\sqrt{\frac{4}{21}}}{8}$. (C) $P = \frac{3\sqrt{3}+\sqrt{7}}{8}$. (D) $P = \frac{3\sqrt{3}-\sqrt{7}}{8}$.

$$\mathbf{D} P = \frac{3\sqrt{3} - \sqrt{7}}{8}$$

CÂU 11. Cho góc α thỏa mãn $\cos \alpha = -\frac{4}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \tan \left(\alpha - \frac{\pi}{4}\right)$.

(A)
$$P = -\frac{1}{7}$$
. **(B)** $P = \frac{1}{7}$.

B
$$P = \frac{1}{7}$$
.

$$\mathbf{C} P = -7$$

CÂU 12. Cho góc α thỏa mãn $\cos 2\alpha = -\frac{4}{5}$ và $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Tính $P = \cos\left(2\alpha - \frac{\pi}{4}\right)$.

(A)
$$P = \frac{\sqrt{2}}{10}$$
. **(B)** $P = -\frac{\sqrt{2}}{10}$. **(C)** $P = -\frac{1}{5}$.

(c)
$$P = -\frac{1}{5}$$
.

CÂU 13. Cho góc α thỏa mãn $\cos \alpha = -\frac{4}{5}$ và $\pi < \alpha < \frac{3\pi}{2}$. Tính $P = \sin \frac{\alpha}{2} \cdot \cos \frac{3\alpha}{2}$. **(a)** $P = -\frac{39}{50}$. **(b)** $P = \frac{49}{50}$.

$$P = -\frac{39}{50}$$

B
$$P = \frac{49}{50}$$
.

$$P = -\frac{49}{50}$$

$$P = \frac{39}{50}$$
.

CÂU 14. Cho góc α thỏa mãn $\cot\left(\frac{5\pi}{2} - \alpha\right) = 2$. Tính $P = \tan\left(\alpha + \frac{\pi}{4}\right)$.

(A)
$$P = \frac{1}{2}$$
.

©
$$P = 3$$
.

$$\bigcirc P = 4$$

CÂU 15. Cho góc α thỏa mãn cot $\alpha = 15$. Tính $P = \sin 2\alpha$. **(A)** $P = \frac{11}{113}$. **(B)** $P = \frac{13}{113}$. **(C)** $P = \frac{15}{113}$.

(A)
$$P = \frac{11}{113}$$
.

B
$$P = \frac{13}{113}$$

$$\mathbf{C} P = \frac{15}{113}$$

$$\bigcirc P = \frac{17}{113}.$$

CÂU 16. Cho góc α thỏa mãn $\cot \alpha = -3\sqrt{2}$ và $\frac{\pi}{2} < \alpha < \pi$. Tính $P = \tan \frac{\alpha}{2} + \cot \frac{\alpha}{2}$.

(A)
$$P = 2\sqrt{19}$$
. **(B)** $P = -2\sqrt{19}$.

$$(\mathbf{\hat{c}}) P = \sqrt{19}.$$

$$\widehat{\mathbf{D}}) P = -\sqrt{19}.$$

CÂU 17. Cho góc α thỏa mãn $\tan \alpha = -\frac{4}{3}$ và $\alpha \in \left(\frac{3\pi}{2}; 2\pi\right]$. Tính $P = \sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}$

$$\mathbf{B} P = -\sqrt{5}.$$

B
$$P = -\sqrt{5}$$
. **C** $P = -\frac{\sqrt{5}}{5}$. **D** $P = \frac{\sqrt{5}}{5}$.

$$\mathbf{D} P = \frac{\sqrt{5}}{5}$$

CÂU 18. Cho góc α thỏa mãn $\tan \alpha = -2$. Tính $P = \frac{\sin 2\alpha}{\cos 4\alpha + 1}$. **(A)** $P = \frac{10}{9}$. **(B)** $P = \frac{9}{10}$. **(C)** $P = -\frac{10}{9}$. **(D)** $P = -\frac{9}{10}$.

$$P = -\frac{10}{9}$$

CÂU 19. Cho góc α thỏa mãn $\tan \alpha + \cot \alpha < 0$ và $\sin \alpha = \frac{1}{5}$. Tính $P = \sin 2\alpha$.

(A)
$$P = \frac{4\sqrt{6}}{25}$$
.

(A)
$$P = \frac{4\sqrt{6}}{25}$$
. **(B)** $P = -\frac{4\sqrt{6}}{25}$. **(C)** $P = \frac{2\sqrt{6}}{25}$.

$$\bigcirc P = \frac{2\sqrt{6}}{25}$$

CÂU 20. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \alpha + 2\cos \alpha = -1$. Tính $P = \sin 2\alpha$.

$$P = \frac{2\sqrt{6}}{5}$$

$$\bigcirc P = -\frac{24}{25}$$

B
$$P = \frac{2\sqrt{6}}{5}$$
. **C** $P = -\frac{24}{25}$. **D** $P = -\frac{2\sqrt{6}}{5}$.

CÂU 21. Biết $\sin a = \frac{5}{13}; \cos b = \frac{3}{5}; \frac{\pi}{2} < a < \pi; 0 < b < \frac{\pi}{2}$. Hãy tính $\sin (a + b)$.

$$igatheref{A} rac{56}{65}$$
.

B
$$\frac{63}{65}$$
.

$$\mathbf{C} - \frac{33}{65}$$

$$\bigcirc$$
 0.

CÂU 22. Nếu biết rằng $\sin \alpha = \frac{5}{13} \left(\frac{\pi}{2} < \alpha < \pi \right), \cos \beta = \frac{3}{5} \left(0 < \beta < \frac{\pi}{2} \right)$ thì giá trị đúng của biểu thức $\cos(\alpha - \beta)$ là

A
$$\frac{16}{65}$$
.

B
$$-\frac{16}{65}$$
.

$$\bigcirc \frac{18}{65}$$

$$\bigcirc$$
 $-\frac{18}{65}$.

CÂU 23. Cho hai góc nhọn a; b và biết rằng $\cos a = \frac{1}{3}; \cos b = \frac{1}{4}$. Tính giá trị của biểu

 \bullet $-\frac{117}{144}$. \bullet $-\frac{119}{144}$.

CÂU 24. Nếu a,b là hai góc nhọn và $\sin a = \frac{1}{3}; \sin b = \frac{1}{2}$ thì $\cos 2 (a+b)$ có giá trị bằng

(A) $\frac{7-2\sqrt{6}}{18}$. (B) $\frac{7+2\sqrt{6}}{18}$. (C) $\frac{7+4\sqrt{6}}{18}$. (D) $\frac{7-4\sqrt{6}}{19}$.

CÂU 25. Cho $0<\alpha,\beta<\frac{\pi}{2}$ và thỏa mãn $\tan\alpha=\frac{1}{7},\;\tan\beta=\frac{3}{4}.$ Góc $\alpha+\beta$ có giá trị

 $\frac{\pi}{2}$.

CÂU 26. Cho x,y là các góc nhọn và dương thỏa mãn $\cot x = \frac{3}{4}$, $\cot y = \frac{1}{7}$. Tổng x+y

 \triangle $\frac{\pi}{4}$.

 \bigcirc $\frac{3\pi}{4}$.

 \mathbf{c} $\frac{\pi}{2}$.

CÂU 27. Nếu α, β, γ là ba góc nhọn thỏa mãn $\tan (\alpha + \beta) \cdot \sin \gamma = \cos \gamma$ thì

CÂU 28. Biết rằng $\tan a = \frac{1}{2} \left(0 < a < 90^{\circ}\right)$ và $\tan b = -\frac{1}{3} \left(90^{\circ} < b < 180^{\circ}\right)$ thì biểu thức $\cos(2a-b)$ có giá trị bằng

 $\bigcirc -\frac{\sqrt{10}}{10}$.

B $\frac{\sqrt{10}}{10}$.

 \bigcirc $-\frac{\sqrt{5}}{5}$.

CÂU 30. Nếu $\tan{(a+b)} = 7$, $\tan{(a-b)} = 4$ thì giá trị đúng của $\tan{2a}$ là **(A)** $-\frac{11}{27}$. **(B)** $\frac{11}{27}$. **(C)** $-\frac{13}{27}$.

 $igatharpoonup -rac{11}{27}$

CÂU 31. Nếu $\sin \alpha \cdot \cos (\alpha + \beta) = \sin \beta$ với $\alpha + \beta \neq \frac{\pi}{2} + k\pi, \alpha \neq \frac{\pi}{2} + l\pi, (k, l \in \mathbb{Z})$ thì

 $(\mathbf{A})\tan\left(\alpha+\beta\right)=2\cot\alpha.$

(B) $\tan (\alpha + \beta) = 2 \cot \beta$.

(**C**) $\tan (\alpha + \beta) = 2 \tan \beta$.

 $(\mathbf{D})\tan{(\alpha+\beta)}=2\tan{\alpha}.$

CÂU 32. Nếu $\alpha + \beta + \gamma = \frac{\pi}{2}$ và $\cot \alpha + \cot \gamma = 2 \cot \beta$ thì $\cot \alpha \cdot \cot \gamma$ bằng **(A)** $\sqrt{3}$. **(B)** $-\sqrt{3}$. **(D)** -3

CÂU 33. Nếu tan α và tan β là hai nghiệm của phương trình $x^2 + px + q = 0 \ (q \neq 1)$ thì $\tan (\alpha + \beta)$ bằng

 $\bigcirc \mathbf{B} - \frac{p}{q-1}$.

 $\bigcirc \frac{2p}{1-a}$.

CÂU 34. Nếu tan α ; tan β là hai nghiệm của phương trình $x^2 - px + q = 0$ $(p \cdot q \neq 0)$. Và cot α ; cot β là hai nghiệm của phương trình $x^2 - rx + s = 0$ thì tích P = rs bằng (\mathbf{A}) pq. (\mathbf{B}) $\frac{p}{q^2}$. (\mathbf{C}) $\frac{1}{pq}$. (\mathbf{D}) $\frac{q}{p^2}$.

CÂU 35. Nếu tan α và tan β là hai nghiệm của phương trình $x^2 - px + q = 0 \ (q \neq 0)$ thì giá trị biểu thức $P = \cos^2(\alpha + \beta) + p\sin(\alpha + \beta) \cdot \cos(\alpha + \beta) + q\sin^2(\alpha + \beta)$ bằng:

 $(\mathbf{A}) p.$

Dang 15. RÚT GON BIỂU THỨC

CÂU 1. Rút gọn biểu thức $M = \tan x - \tan y$.

 $(\mathbf{A}) M = \tan(x - y).$

 $\mathbf{C} M = \frac{\sin(x-y)}{\cos x \cdot \cos y}$

				_
\boldsymbol{a}	W	CK	Ν	П.
	W	$\mathbf{L} \cdot \mathbf{N}$	II N	

CÂU 2. Rút gọn biểu thức $M=\cos^2\left(\frac{\pi}{4}+\alpha\right)-\cos^2\left(\frac{\pi}{4}-\alpha\right)$.

(A) $M = \sin 2\alpha$.

(B) $M = \cos 2\alpha$.

 $(\mathbf{C}) M = -\cos 2\alpha.$

 $\mathbf{D} M = -\sin 2\alpha.$

CÂU 3. Chọn đẳng thức đúng

 $\mathbf{A} \cos^2\left(\frac{\pi}{4} + \frac{a}{2}\right) = \frac{1 - \sin a}{2}.$ $\mathbf{C} \cos^2\left(\frac{\pi}{4} + \frac{a}{2}\right) = \frac{1 - \cos a}{2}.$

CÂU 4. Gọi $M = \frac{\sin(y-x)}{\sin x \cdot \sin y}$ thì

 $\mathbf{(A)} M = \tan x - \tan y$

 $(\mathbf{C}) M = \cot y - \cot x.$

CÂU 5. Gọi $M = \cos x + \cos 2x + \cos 3x$ thì

 $(\mathbf{A}) M = 2\cos 2x (\cos x + 1).$

B $M = 4\cos 2x \cdot \left(\frac{1}{2} + \cos x\right)$.

(**C**) $M = \cos 2x (2\cos x - 1)$.

(D) $M = \cos 2x (2\cos x + 1).$

CÂU 6. Rút gọn biểu thức $M = \frac{\sin 3x - \sin x}{2\cos^2 x - 1}$

(A) $\tan 2x$.

 $(\mathbf{B})\sin x.$

 $(\mathbf{C}) 2 \tan x$.

(**D**) $2\sin x$.

CÂU 7. Rút gọn biểu thức $A = \frac{1+\cos x + \cos 2x + \cos 3x}{2\cos^2 x + \cos x - 1}$

 $(\mathbf{A})\cos x.$

(B) $2\cos x - 1$.

(**C**) $2\cos x$.

(D) $\cos x - 1$.

CÂU 8. Rút gọn biểu thức $A = \frac{\tan \alpha - \cot \alpha}{\tan \alpha + \cot \alpha}$

 (\mathbf{A}) 0.

(B) $2\cos^2 x$.

 $(\mathbf{D})\cos 2x.$

CÂU 9. Rút gọn biểu thức $A = \frac{1 + \sin 4\alpha - \cos 4\alpha}{1 + \sin 4\alpha + \cos 4\alpha}$

(A) $\sin 2\alpha$.

(B) $\cos 2\alpha$.

(C) $\tan 2\alpha$.

(**D**) $\cot 2\alpha$.

 $\frac{3-4\cos2\alpha+\cos4\alpha}{3+4\cos2\alpha+\cos4\alpha}$ có kết quả rút gọn bằng **CÂU 10.** Biểu thức A=

 $(\mathbf{A}) - \tan^4 \alpha$.

(B) $\tan^4 \alpha$.

 $(\mathbf{C}) - \cot^4 \alpha$.

 $(\mathbf{D})\cot^4\alpha$.

CÂU 12. Rút gọn biểu thức $A = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha}$

(A) $\tan \alpha$.

(B) $2 \tan \alpha$.

(**c**) $\tan 2\alpha + \tan \alpha$.

(**D**) $\tan 2\alpha$.

CÂU 13. Rút gọn biểu thức $A = \frac{1 - \sin a - \cos 2a}{\sin 2a}$

 (\mathbf{A}) 1.

(B) $\tan \alpha$.

(**D**) $2 \tan \alpha$.

CÂU 14. Rút gọn biểu thức $A=\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}$ được kết quả là

 \bigcirc $\tan \frac{x}{2}$.

 \bigcirc cot x.

 \mathbf{C} $\tan^2\left(\frac{\pi}{4}-x\right)$.

 $(\mathbf{D})\sin x.$

CÂU 15. Rút gọn biểu thức $A = \sin \alpha \cdot \cos^5 \alpha - \sin^5 \alpha \cdot \cos \alpha$.

 $\mathbf{A} \frac{1}{2} \sin 2\alpha.$

 $\mathbf{B} - \frac{1}{2}\sin 4\alpha. \qquad \mathbf{C} \frac{3}{4}\sin 4\alpha.$

 $\bigcirc 1 \sin 4\alpha.$

Dạng 16. TÌM GIÁ TRỊ LỚN NHẤT-GIÁ TRỊ NHỎ NHẤT

CÂU 1. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = 3 \sin x - 2$.

(A) M = 1, m = -5. (B) M = 3, m = 1.

(**C**) M = 2, m = -2. (**D**) M = 0, m = -2.

$$\mathbf{C} P \geqslant 0, \forall x \in \mathbb{R}.$$

$$(\mathbf{D}) P \geqslant 2, \forall x \in \mathbb{R}.$$

CÂU 3. Biểu thức
$$P = \sin\left(x + \frac{\pi}{3}\right) - \sin x$$
 có tất cả bao nhiêu giá trị nguyên?

(**A**) 1.

$$\bigcirc$$
 4.

CÂU 4. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^2 x + 2\cos^2 x$.

$$(A)$$
 $M = 3, m = 0.$

(B)
$$M = 2, m = 0.$$

$$\bigcirc$$
 $M = 2, m = 1.$

$$(\mathbf{D}) M = 3, m = 1.$$

CÂU 5. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P= $8\sin^2 x + 3\cos 2x$. Tính $T = 2M - m^2$.

$$(\mathbf{A}) T = 1.$$

$$(\mathbf{B}) T = 2.$$

(c)
$$T = 112$$
.

(D)
$$T = 130$$
.

CÂU 6. Cho biểu thức $P = \cos^4 x + \sin^4 x$. Mệnh đề nào sau đây là đúng?

$$(\mathbf{B}) P \leqslant 1, \forall x \in \mathbb{R}.$$

$$\mathbf{C} P \leqslant \sqrt{2}, \forall x \in \mathbb{R}.$$

CÂU 7. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^4 x - \cos^4 x$.

$$(A) M = 2, m = -2.$$

(B)
$$M = \sqrt{2}, m = -\sqrt{2}.$$

$$\bigcirc$$
 $M = 1, m = -1.$

D
$$M = 1, m = \frac{1}{2}.$$

CÂU 8. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = \sin^6 x + \cos^6 x$.

$$\mathbf{A} M = 2, m = 0.$$

B
$$M = 1, m = \frac{1}{2}.$$

(B)
$$M = 1, m = \frac{1}{2}$$
. **(C)** $M = 1, m = \frac{1}{4}$. **(D)** $M = \frac{1}{4}, m = 0$.

CÂU 9. Tìm giá trị lớn nhất M và nhỏ nhất m của biểu thức $P = 1 - 2 |\cos 3x|$.

$$(A) M = 3, m = -1.$$

B
$$M = 1, m = -1$$

(A)
$$M = 3, m = -1$$
. (B) $M = 1, m = -1$. (C) $M = 2, m = -2$. (D) $M = 0, m = -2$.

$$M = 0, m = -2.$$

CÂU 10. Tìm giá trị lớn nhất M của biểu thức $P = 4\sin^2 x + \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right)$.

$$\bigcirc M = \sqrt{2} + 3$$

B
$$M = \sqrt{2} - 1$$
. **C** $M = \sqrt{2} + 1$. **D** $M = \sqrt{2} + 2$.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•						•	•	•	•	•	•	•	•	•		•		•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

BÀI TẬP CUN	G VÀ GÓC LƯỢNG GIÁC - CÔNG THỨC LƯỢNG GIÁC	1
	► Dạng 1.LÝ THUYẾT	
	► Dạng 2.ĐỔI TỪ ĐỘ SANG RADIAN VÀ NGƯỢC LẠI	
	► Dạng 3. ĐỘ DÀI CUNG TRÒN	2
	► Dạng 4. GÓC LƯỢNG GIÁC	3
	► Dạng 5. XÁC ĐỊNH DẤU CỦA CÁC GIÁ TRỊ LƯỢNG GIÁC	3
	► Dạng 6.TÍNH GIÁ TRỊ LƯỢNG GIÁC	5
	► Dạng 7. TÍNH ĐÚNG SAI	5
	► Dạng 8. CÁC CUNG LIÊN QUAN ĐẶC BIỆT	6
	► Dạng 9.TÍNH BIỂU THỨC LƯỢNG GIÁC	7
	► Dạng 10.RÚT GỌN BIỂU THỨC	9
	► Dạng 11.TÍNH GIÁ TRỊ LƯỢNG GIÁC	10
	► Dạng 12.TÍNH ĐÚNG SAI	11
	► Dạng 13. VẬN DỤNG CÔNG THỨC LƯỢNG GIÁC	12
	► Dạng 14. TÍNH BIỂU THỨC LƯỢNG GIÁC	13
	► Dạng 15. RÚT GỌN BIỂU THỨC	15
	► Dạng 16. TÌM GIÁ TRỊ LỚN NHẤT-GIÁ TRỊ NHỎ NHẤT	16

