ask

11

15

- A rhodamine dye or a salt thereof, comprising a rhodamine-type parent xanthene ring having attached to the xanthene C9 carbon a phenyl group that is further substituted with an ortho carboxy or ortho sulfonate group or a salt thereof, one to three substituted or unsubstituted aminopyridinium groups and a substituted or unsubstituted alkylthio, arylthio or heteroarylthio group, said rhodamine dye optionally including one or more linking moieties.
 - 2. The rhodamine dye of Claim 1 which comprises the structure:

$$\begin{pmatrix} R \\ N \end{pmatrix} \qquad \qquad \begin{pmatrix} Y \\ N \end{pmatrix} \qquad \qquad \begin{pmatrix} COOH \\ S-Z \end{pmatrix}$$

wherein:

n is 1, 2, or 3;

Y is a rhodamine-type parent xanthene ring attached to the illustrated phenyl group at the xanthene C9 carbon;

each R is independently selected from the group consisting of (C_1-C_6) alkyl and heteroalkyl, (C_5-C_{20}) aryl and heteroaryl, (C_6-C_{26}) arylalkyl and heteroalkyl, (C_5-C_{20}) arylaryl and heteroaryl-heteroaryl, or when taken together, R is (C_4-C_{10}) alkyldiyl, (C_4-C_{10}) alkyleno,

20 heteroalkyldiyl and heteroalkyleno;

S is sulfur:

Z is (C_1-C_{12}) alkyl, (C_1-C_{12}) alkyl substituted with one or more of the same or different W¹ groups, (C_5-C_{20}) aryl and heteroaryl, and (C_5-C_{20}) aryl and heteroaryl substituted with one or more of the same or different W² groups;

W¹ is selected from the group consisting of -X, -R, $\neq O$, -OR, -SR, =S, -NRR, =NR, $-CX_3$, -CN, -OCN, -SCN, -NCO, -NCS, -NO, $-NO_2$, $=N_2$, $-N_3$, $-S(O)_2O^{-}$, $-S(O)_2OH$, $-S(O)_2R$, -C(O)R, -C(O)X, -C(S)R, -C(S)X, -C(O)OR, $-C(O)O^{-}$, -C(S)OR, -C(O)SR, -C(O)NRR, -C(O)NRR, -C(O)NRR, and -C(O)NRR;

 W^2 is selected from the group consisting of -R, -OR, -SR, -NRR, $-S(O)_2O^2$,

 $-S(O)_2OH, -S(O)_2R, -C(O)R, -C(O)X, -C(S)R, -C(S)X, -C(O)OR, -C(O)O^*, -C(S)OR, -C(O)O^*$ -C(O)SR, -C(S)SR, -C(O)NRR, -C(S)NRR and -C(NR)NRR;

each X is independently a halogen; and

5

3. The rhodamine dye of Claim 2 in which L is selected from a hydrophobic moiety, a charged group, a member of a pair of specific binding molecules, a photo-activatable group and a reactive functional group.

10

dan!

The state of the s

ļauk

The rhodamine dye of Claim 2 where Z has the form Z^1 -L-R_x, or a salt thereof, 4. wherein:

 Z^1 is (C_1-C_{12}) alkyldiyl, (C_1-C_{12}) alkyldiyl independently substituted with one or more of the same or different W1 groups, or

(C₅-C₁₄) aryldiyl, and aryldiyl, heteroaryldiyl and heteroaryldiyl independently substituted with one or more of the same or different W² groups;

L is a bond or a linker; and

 R_x is a reactive functional group.

5. The rhodamine dye of Claim\4 in which Y is selected from:

20

(Y-1)

(Y-2)

;

5

$$(Y-3) \qquad R^{15} \qquad R^{6'} \qquad R^{5} \qquad R^{4} \qquad R^{3} \qquad R^{16} \qquad R^{17} \qquad R^{17$$

; and

$$(Y-4) \qquad R^{15} \stackrel{R^{6'}}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{$$

and a salt thereof, wherein;

R¹ and R² when taken alone, are independently hydrogen or (C₁-C₆) alkyl;

 R^3 and R^3 when taken alone, are independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_5-C_{14}) are and arylaryl, or when taken together is (C_4-C_6) alkyldiyl or alkyleno, or when individually taken together with R^2 or R^4 is (C_2-C_6) alkyldiyl or (C_2-C_6) alkyleno;

 R^4 , when taken alone, is selected from the group consisting of hydrogen and (C_1-C_6) alkyl, or when taken together with $R \setminus C_2-C_6$ alkyldiyl or alkyleno;

 R^5 , when taken alone, is selected from the group consisting of hydrogen and (C_1-C_6) alkyl, or when taken together with R^6 or R^6 is (C_2-C_6) alkyldiyl or alkyleno;

 R^6 and R^6 when taken alone, are selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_5-C_{14}) aryl and arylaryl, or when taken together are (C_4-C_6) alkyldiyl or alkyleno, or when individually taken together with R^5 or R^7 is (C_2-C_6) alkyldiyl or alkyleno;

R⁷, when taken alone, is selected from the group consisting of hydrogen and (C_1-C_6) alkyl, or when taken together with R⁶ or R^{6'} is (C_2-C_6) alkyldiyl or alkyleno;

 R^8 , when taken alone, is selected from the group consisting of hydrogen and (C_1-C_6) alkyl;

R⁹ indicates the point of attachment to the *ortho*-carboxyphenyl bottom ring; and R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ are each independently selected from the group consisting of hydrogen and (C₁-C₆) alkyl, or

6. The rhodamine dye of Claim 5 wherein R², when taken together with R³ or R³ is (C₂-C₆) alkyldiyl or alkyleno.

== 10

The state of the s

14

1.77

7. The rhodamine dye of Claim 6 wherein: alkyl is methanyl, ethanyl or propanyl; aryl is phenyl or naphthyl;

arylaryl is biphenyl;

alkyldiyl or alkyleno bridges formed by taking R² together with R³ or R³, R⁷ together with R⁶ or R⁶, or R⁴ together with and R³ or R³, are ethano, propano, 1,1-dimethylethano, 1,1-dimethylpropano and 1,1,3-trimethylpropano;

aryleno bridges formed by taking R¹ together with R² are benzo or naphtho; alkyldiyl or alkyleno bridge formed by taking R³ together with R³, or R⁶ together with R⁶, is butano;

alkyldiyl or alkyleno bridges formed by taking R⁵ together with R⁶ or R^{6'} are ethano, 20 propano, 1,1-dimethylethano, 1,1-dimethylpropano and 1,1,3-trimethylpropano; and aryleno bridge formed by taking R¹⁰, R¹¹, R¹² and R¹³ together, or R¹⁸, R¹⁹, R²⁰ and R²¹ together, is benzo.

8. The rhodamine dye of Claim 6 in which L is a bond.

- 9. The rhodamine dye of Claim 4 in which R_{χ} is selected from the group consisting of carboxyl, carboxylate, ester and activated ester.
- 10. The rhodamine dye of Claim 4 in which Z¹ is selected from the group consisting of 30 (C₁-C₁₂) alkyleno, (C₁-C₁₂) alkano, (C₅-C₁₀) aryldiyl and heteroaryldiyl, phenyldiyl, phena-1,4-diyl, naphthadiyl, naphtha-2,6-diyl, pyridindiyl and purindiyl.

The rhodamine dye of Claim 4 in which Y is selected from the group consisting of: 11. 5 (Y-20a) To the state of th (Y-21a) (Y-22a) H_2N (Y-23a) 15 (Y-24a)

1,1,1

- 12. The rhodamine dye of Claim 4 in which L is a bond.
- 13. The rhodamine dye of Claim 4 in which R_{χ} is selected from the group consisting of carboxyl, carboxylate, ester and activated ester.
- 14. The rhodamine dye of Claim in which Z¹ is selected from the group consisting of 15 (C₁-C₁₂) alkyleno, (C₁-C₁₂) alkano, (C₅-C₁₀) aryldiyl and heteroaryldiyl, phenyldiyl, phena-1,4-diyl, naphthadiyl, naphtha-2,6-diyl, pyridindiyl and purindiyl.
 - 15. The rhodamine dye of Claim 4 which comprises the structure:

or a salt thereof.

- 16. The rhodamine dye of Claim 15 in which Y is selected from the group consisting of Y-1, Y-2, Y-3 and Y-4.
- 17. The rhodamine dye of Claim 15 in which Y is selected from the group consisting of Y-20a, Y-21a, Y-22a, Y-23a, Y-24a, Y-35a, Y-36a, Y-36a, Y-39a, Y-41a, Y-42a, Y-43a, Y-44a, Y-45a and Y-46a.
 - 18. The rhodamine dye of Claim 2 which has the structure:

15

$$\begin{pmatrix} R \\ V \end{pmatrix} \begin{pmatrix} R \\ V \end{pmatrix} \end{pmatrix} \begin{pmatrix} R \\ V \end{pmatrix} \begin{pmatrix} R \\ V \end{pmatrix} \begin{pmatrix} R \\ V \end{pmatrix} \end{pmatrix} \begin{pmatrix} R \\ V \end{pmatrix}$$

wherein:

Y¹ is a rhodamine-type parent xanthene ring attached to the illustrated phenyl group at the xanthene C9 carbon;

L is a bond or linker attached to a xanthene nitrogen atom or a xanthene C4 carbon;

n is 1, 2, or 3; and

 R_x is a reactive functional group.

19. The rhodarnine dye of Claim 18 in which Y¹ is selected from the group consisting

of:

10	(Y-1b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
The state of the s	(Y-2b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
15	(Y-3b)	$R^{14} \xrightarrow{R^{15}} \stackrel{R^{6'}}{{}{}{}{}{}{{$
20	(Y-4b)	R^{14} R^{15} R^{16} R^{16} R^{17} R^{18} R^{18} R^{18} R^{18} R^{19}

wherein the dashed line at the nitrogen or C4 atom indicates the point of attachment of substituent L.

20. The rhodamine dye of Claim 19 wherein: alkyl is methanyl, ethanyl or propanyl; aryl is phenyl or naphthyl;

arylaryl is biphenyl;

15

alkyldiyl or alkyleno bridges formed by taking R² together with R³, R⁴ together

with R³, R⁵ together with R⁶, or R⁷ together with R⁶, are ethano, propano, 1,1-dimethylpropano and 1,1,3-trimethylpropano;

aryleno bridges formed by taking R^{10} , R^{11} , R^{12} and R^{13} together or R^{18} , R^{19} , R^{20} and R^{21} together are benzo.

5

21. The rhodamine dye of Claim 18 in which L is selected from the group consisting of (C_1-C_6) alkyldiyl, (C_1-C_6) alkano, (C_5-C_{20}) aryldiyl, phenyldiyl, phena-1,4-diyl, naphthyldiyl, naphtha-2,6-diyl, naphtha-2,7-diyl, (C_6-C_{26}) arylalkyldiyl $-(CH_2)_i-\phi$ and $-(CH_2)_i-\psi$, where each i is independently an integer from 1 to 6, ϕ is (C_5-C_{20}) aryldiyl, phenyldiyl or phena-1,4-diyl and ψ is naphthyldiyl, naphtha-2,6-diyl or naphtha-2,7-diyl.

The state of the s

22. The rhodamine dye of Claim 18 in which R_x is selected from the group consisting of carboxyl, carboxylate, ester and activated ester.

23. The rhodamine doe of Claim 18 in which Z is selected from the group consisting of (C_1-C_{12}) alkyl, (C_1-C_{12}) alkanyl, (C_3-C_{10}) aryl and heteroaryl, phenyl, naphthyl, naphth-1-yl, naphth-2-yl, pyridyl and purinyl.

20 of:

24. The rhodamine dye of Claim 18 in which Y¹ is selected from the group consisting

wherein R⁹ and the dash at the nitrogen or C4 atom indicates the point of attachment of L.

25. The rhodamine dye of Claim 18 which has the structure:

or a salt thereof.

- 26. The rhodamine dye of Claim 25 in which Y¹ is selected from the group consisting of Y-1b, Y-2b, Y-3b, Y-4b, Y-1c, Y-2c, Y-3c and Y-4c.
- 27. The rhodamine dye of Claim 25 in which Y¹ is selected from the group consisting of Y-20b, Y-20c, Y-21b, Y-21c, Y-22b, Y-22c, Y-23b, Y-23c, Y-24b, Y-24c, Y-25b, Y-25c, Y-10 31b, Y-31c, Y-34b, Y-34c, Y-35b, Y-35c, Y-36b, Y-36c, Y-37b, Y-39b, Y-39c, Y-41c, Y-42b, Y-43b, Y-43c, Y-46b and Y-46c.
- An energy-transfer dye pair comprising a donor dye linked to an acceptor dye,
 wherein the donor dye or the acceptor dye is a compound according to Claim 1 and either or both
 of said donor and acceptor dyes include an optional linking morety.
 - 29. The dye pair of Claim 28 which has the structure:

or a salt thereof, wherein:

5

n==

Lines there thank there

14

|suk

15

electrophile;

R 1 is a covalent linkage formed upon reaction between a nucleophile and an

L" is a bond or a linker;

n is 1, $\frac{\lambda}{2}$, or 3; and

DD/AD is a donor dye or an acceptor dye which includes a linking moiety.

30. The dye pair of Claim 29 in which Y is selected from the group consisting of Y-1, Y-2, Y-3, Y-4, Y-20a, Y-21a, Y-22a, Y-23a, Y-24a, Y-25a, Y-31a, Y-34a, Y-35a, Y-36a, Y-39a, Y-41a, Y-42a, Y-43a, Y-44a, Y-46a.

31. The dye pair of Claim 29 in which L is a bond.

32. The dye pair of Claim 29 in which R^{41} has the formula $-C(O)NR^{45}$, where R^{45} is hydrogen or (C_1-C_6) alkyl.

- 33. The dye pair of Claim 29 in which Z^1 is selected from the group consisting of (C_1-C_{12}) alkyleno, (C_1-C_{12}) alkano, (C_5-C_{10}) aryldiyl and heteroaryldiyl, phenyldiyl, phena-1,4-diyl, naphthadiyl, naphtha-2,6-diyl, pyridindiyl and puriodiyl.
- 25 34. The dye pair of Claim 29 in which L" is $-R^{43}-Z^3-C(O)-R^{44}-R^{45}$, wherein R^{43} is (C_1-C_6) alkyldiyl, preferably (C_1-C_3) alkano, and is bonded to R^{42} , where R^{42} is O, S or NH; Z^3 is 5-6 membered cyclic alkenyldiyl and heteroalkenyldiyl, (C_5-C_{14}) aryldiyl and heteroaryldiyl; R^{44} is O, S or NH; and R^{45} is (C_1-C_6) alkyldiyl, preferably (C_1-C_3) alkano.

5

- 35. The dye pair of Claim 29 in which DD/AD is a fluorescein dye in which the linking moiety is a reactive functional group and wherein L" is attached to the fluorescein dye at the xanthene C4 carbon.
- 36. The dye pair of Claim 29 which has the structure:

wherein, R⁵⁰ is a carboxyl, a salt, ester or activated ester thereof.

- 37. The dye pair of Claim 36 in which Y is selected from the group consisting of Y-1, Y-2, Y-3, Y-4, Y-20a, Y-21a, Y-22a, Y-23a, Y-24a, Y-25a, Y-31a, Y-34a, Y-35a, Y-36a, Y-39a, 15 Y-41a, Y-42a, Y-43a, Y-44a, Y-45a and Y-46a.
 - 38. The dye pair of Claim 28 which has the structure:

20

$$\begin{array}{c|c}
 & L-R^{41}-L"-DD/AD \\
 & Y^1 & O \\
 & & OH \\
 & & S-Z
\end{array}$$

wherein:

R⁴¹ is a covalent linkage formed upon reaction between a nucleophile and an electrophile;

L" is a bond or a linker;

n is 1, 2, or 3; and

DD/AD is a donor dye or an acceptor dye which includes a linking moiety.

- 39. The dye pair of Claim 38 in which Y¹ is selected from the group consisting of Y-1b, Y-2b, Y-3b, Y-4b, Y-1c, Y-2c, Y-2c, Y-4c, Y-20b, Y-20c, Y-21b, Y-21c, Y-22b, Y-22c, Y-23b, Y-23c, Y-24b, Y-24c, Y-25b, Y-25c, Y-31b, Y-31c, Y-34b, Y-34c, Y-35b, Y-35c, Y-36b, Y-36c, Y-37b, Y-39b, Y-39c, Y-41c, Y-42b, Y-43b, Y-43c, Y-46b and Y-46c.
 - 40. The dye pair of Claim 38 in which L is (C_1-C_6) alkyldiyl or (C_1-C_3) alkano.
- 41. The dye pair of Claim 38 in which R^{41} is an amide of the formula $-C(O)NR^{45}$, where R^{45} is hydrogen or (C_1-C_6) alkyl.
- 42. The dye pair of Claim 38 in which Z is selected from the group consisting of (C_1-C_{12}) alkyl, (C_1-C_{12}) alkanyl, (C_5-C_{10}) aryl and heteroaryl, phenyl, naphth-1yl, naphth-2-yl, pyridyl and purinyl.
- 25 43. The dye pair of Claim 38 in which L" is $-R^{43} Z^3 C(O) R^{44} R^{45}$, wherein R^{43} is (C_1-C_6) alkyldiyl, preferably (C_1-C_3) alkano, and is bonded to R^{42} , where R^{42} is O, S or NH; Z^3 is 5-6 membered cyclic alkenyldiyl and heteroalkenyldiyl, (C_5-C_{14}) aryldiyl and heteroaryldiyl; R^{44} is

O, S or NH; and R^{45} is (C_1-C_6) alkyldiyl, preferably (C_1-C_3) alkano.

- 44. The dye pair of Claim 38 in which DD/AD is a fluorescein dye in which the linking moiety is a reactive group R_x and wherein L" is attached to the fluorescein dye at the 5 xanthene C5 carbon.
 - 45. The dye pair of Claim 38 which has the structure:

10 wherein:

Y¹ is selected from the group consisting of Y-20b, Y-20c, Y-21b, Y-21c, Y-22b, Y-22c, Y-23b, Y-23c, Y-24b, Y-24c, Y-25b, Y-25c, Y-31b, Y-31c, Y-34b, Y-34c, Y-35b, Y-35c, Y-36b, Y-36c, Y-37b, Y-39b, Y-39c, Y-41c, Y-42b, Y-43b, Y-43c, Y-46b and Y-46c; and R⁵⁰ is a carboxyl, a salt, ester or activated ester thereof.

15

46. The dye pair of Claim 45 in which Y¹ is selected from the group consisting of Y-1b, Y-2b, Y-3b, Y-4b, Y-1c, Y-2c, Y-3c, Y-4c, Y-20b, Y-20c, Y-21b, Y-21c, Y-22b, Y-22c, Y-23b, Y-23c, Y-24b, Y-24c, Y-25b, Y-25c, Y-31b, Y-31c, Y-34b, Y-34c, Y-35b, Y-35c, Y-36b, Y-36c, Y-37b, Y-39b, Y-39c, Y-41c, Y-42b, Y-43b, Y-43c, Y-46b and Y-46c.

A labeled nucleoside/tide or nucleoside/tide analog comprising the rhodamine dye of Claim 2 where Z has the form Z¹-L-R⁴6-L'-NUC, wherein:

R⁴⁶ is a linkage formed by reaction between an electrophile and a nucleophile; and -L'-NUC taken\together has the structure:

wherein:

./1

205

20

B is a nucleobase;

L' is (C_1-C_{20}) alkyldiyl and heteroalkyldiyl, (C_1-C_{20}) alkyleno and heteroalkyleno, (C_2-C_{20}) alkyno and heteroalkyno or (C_2-C_{20}) alkeno and heteroalkeno;

R₇₀ and R₇₁, when taken alone, are each independently selected from the group consisting of hydrogen, hydroxyl and a moiety which blocks polymerase-mediated template-directed polymerization, or when taken together form a bond such that the illustrated 15 sugar is 2',3'-didehydroribose; and

R₇₂ is selected from the group consisting of hydroxyl, a phosphate ester having

ester analog, or a salt thereof.

48. The labeled nucleoside/tide or nucleoside/tide analog of Claim 47 where Z has the form Z¹-L-R⁴¹-L"-DD/AD-L³-R⁴⁶-L'-NUC, or a salt thereof, wherein:

10

A THE THE THE TANK

 \mathbb{R}^{41} is a covalent linkage formed upon reaction between a nucleophile and an electrophile;

L" is a bond or a linker;

DD/AD is a donor dye or an acceptor dye which includes a linking moiety; and.

L³ is a bond or a linker.

49. The labeled nucleoside/tide or nucleoside/tide analog of Claim 47 where Y has the form Y¹-R⁴¹-L"-DD/AD-L³-R⁴⁶-L'-NUC, or a salt thereof wherein:

$$Y^1$$
 is Y-1, Y-2, Y-3, or Y-4;

R⁴¹ is a covalent linkage formed upon reaction between a nucleophile and an electrophile;

L" is a bond or a linker;

DD/AD is a donor dye or an acceptor dye which includes a linking moiety; and.

L³ is a bond or a linker.

50. A labeled nucleoside/tide or nucleoside/tide analog of Claim 47 where Y has the form Y¹-R⁴¹-L"-DD/AD and Z has the form X¹-L-R⁴⁶-L'-NUC, or a salt thereof; wherein:

Y¹ is Y-1, Y-2, Y-3, or Y-4

R⁴¹ is a covalent linkage formed upon reaction between a nucleophile and an

20 electrophile;

L" is a bond or a linker;

DD/AD is a donor dye or an acceptor dye which includes a linking moiety; and Z^1 is (C_1-C_{12}) alkyldiyl, (C_1-C_{12}) alkyldiyl independently substituted with one or more of the same or different W^1 groups, (C_5-C_{14}) aryldiyl, and (C_5-C_{14}) aryldiyl, heteroaryldiyl and 25 heteroaryldiyl independently substituted with one or more of the same or different W^2 groups.

- 51. The labeled nucleoside/tide or nucleoside/tide analog of Claim 47, 48, 49 or 50 which is enzymatically incorporatable.
- 30 52. The labeled nucleoside/tide or nucleoside/tide analog of Claim 47, 48, 49 or 50 which is a terminator.

Man tant tan H

The state of the s

...15

54. The labeled nucleoside/tide or nucleoside/tide analog of Claim 47 in which L' is selected from the group consisting of:

propargyl, where the terminal sp carbon is covalently attached to nucleobase B and the terminal methylene (sp^3) carbon is covalently attached to F_x ; and

 $-C = C - CH_2 - CH_2 - CH_2 - NR^{47} - R^{48}$, where R^{47} is hydrogen or $(C_1 - C_6)$ alkyl and R^{48} is $-C(O) - (CH_2)_r$, $-C(O) - CHR^{49}$, $-C(O) - C = C - CH_2$ or $-C(O) - \phi - (CH_2)_r$, where each r is 10 independently an integer from 1 to 5 and ϕ is C_6 aryldiyl or heteroaryldiyl and R^{49} is hydrogen,

- (C_1-C_6) alkyl or a side chain of an encoding or non-encoding amino acid, and where the terminal *sp* carbon is covalently attached to nucleobase B and the other terminal group is covalently attached to F_x .
- 55. The labeled nucleoside/tide or nucleoside/tide analog of Claim 48 or Claim 49 in which L³ is a bond, R⁴⁶ the formula $(C(O)-NHR^{51})$, where R⁵¹ is hydrogen or (C_1-C_6) alkyl.
- The labeled nucleoside tide or nucleoside/tide analog of Claim 47 in which nucleobase B is a purine, a 7-deazapurine an 8-aza,7-deazapurine, a pyrimidine, a normal nucleobase or a common analog of a normal nucleobase.
 - 57. The labeled nucleoside/tide or nucleoside/tide analog of Claim 47 or Claim 48 in which Y is selected from the group consisting of Y-1, Y-2, Y-3 and Y-4.
 - The labeled nucleoside/tide or nucleoside/tide analog of Claim 47 or Claim 48 in which Y is selected from the group consisting of Y-20a, Y-21a, Y-22a, Y-23a, Y-24a, Y-25a, Y-31a, Y-34a, Y-35a, Y-36a, Y-39a, Y-41a, Y-42a, Y-43a, Y-44a, Y-45a and Y-46a.
 - 59. The labeled nucleoside/tide or nucleoside/tide analog of Claim 49 or Claim 50 in 30 which Y¹ is selected from the group consisting of Y-1b, Y-2b, Y-3b, Y-4b, Y-1c, Y-2c, Y-3c and Y-4c.

62.

The labeled nucleoside/tide or nucleoside/tide analog of Claim 49 or Claim 50 in which Y1 is selected from the group consisting of Y-20b, Y-20c, Y-21b, Y-21c, Y-22b, Y-22c, Y-23b, Y-23c, Y-24b, Y-24c, Y-25b, Y-25c, Y-31b, Y-31c, Y-34b, Y-34c, Y-35b, Y-35c, Y-36b, Y-36c, Y-37b, Y-39b, Y-39c, Y-41c, Y-42b, Y-43b, Y-46b and Y-46c.

5

A polynucleotide labeled with a rhodamine dye according to Claim 1 or an 61. energy-transfer dye pair according to Claim 28.

enzymatically extending a primer-target hybrid in the presence of a mixture of enzymaticallyextendable nucleotides capable of supporting continuous primer extension and a terminator, wherein said primer or said terminator is labeled with a rhodamine dye according to Claim 1 or an energy-transfer dye pair according to Claim 28.

A method of generating a labeled primer extension product, comprising the step of

63. The method of Claim 62 in which the terminator has the structure:

20

wherein R_{70} and R_{71} , when taken alone, are each independently selected from the group consisting of hydrogen, halide, and any moiety which blocks polymerase-mediated template-directed polymerization.

64. The method of Claim 62 in which the terminator is a mixture of four different 25 terminators, one which terminates at a template A, one which terminates at a template G, one which terminates at a template C and one which terminates at a template T or U.

65. The method of Claim 62 in which each of the four different terminators is labeled with a different, spectrally-resolvable fluorophore.

- 5
- 67. A method of detecting a rhodamine dye-antibody conjugate, in which said conjugate is a rhodamine dye-antibody conjugate according to Claim 66, comprising the steps of:
 - (a) binding the conjugate to a peptide or protein, and
 - (b) detecting the rhodamine dye-antibody conjugate bound to the peptide or protein.
- 10

| a = 1

The state of the s

- 68. The method of Claim 67 in which the conjugate is bound to the peptide or protein in the presence of a second antibody specific for kinding said peptide or protein.
- 69. The method of Claim 68 in which the second antibody is bound to a solid bead or 15 particle.

Line Community of the c

add