Expectation Maximization Algorithm

CS385 Machine Learning - Clustering

Outline

- Gaussian Distribution & Gaussian Learning
- Gaussian Mixture Model
- Expectation Maximization Algorithm (with GMM)
- Relation to K-means

Gaussian/Normal Distribution – univariate

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Gaussian/Normal Distribution - Multivariate

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

μ: (50,50) _ [1 0.5

 Σ : $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$

μ: d dimensional mean vector

Σ: k×k covariance matrix

 $|\Sigma|$: determinant of Σ

Gaussian Learning - univariate

X

1

3

4

5

6

7

9

Assuming that the dataset follow a normal distribution,

Dataset is described by the normal distribution PDF

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Objective of Learning: estimate parameters (μ , σ)

ML Estimation method

X

1

3

4

5

6

9

data set X is i.i.d

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(x_n|\mu,\sigma^2\right)$$
Taking log

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

Partial derivation

Maximizing it with respect to μ

Maximizing it with respect to σ^2

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

$$(\mu, \sigma^2) =$$

Gaussian Learning - multivariate

\sim	2	ta.	C	Δt
u	а	ιa		てし

MLE

$$μ: (5,5) Σ: \begin{bmatrix} 1.33 & 0 \\ 0 & 1.33 \end{bmatrix}$$

covariance:
$$\operatorname{cov}(X,Y) = \frac{1}{n} \sum_{i=1}^n (x_i - E(X))(y_i - E(Y))$$

	X1	X2
X1	cov(X1,X1)	cov(X1,X2)
X2	cov(X2,X1)	cov(X2,X2)

	X1	X2
X1	1.33	0
X2	0	1.33

Gaussian Mixture Model – Motivation

Single Gaussian distribution which has been fitted to (learnt from) the data using maximum likelihood.

fails to capture the two clusters in the data

The distribution is given by a linear combination of two Gaussians

Gaussian Mixture Model

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\sum_{k=1}^{K} \pi_k = 1$$

one dimension GMM three Gaussians (each scaled by a coefficient) in blue and their sum in red

two dimension GMM three Gaussians with coefficient

Gaussian Mixture Model – probability view

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\sum_{k=1}^{K} \pi_k = 1$$

The sum and product rule

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

Gaussian Mixture Model – probability view

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\sum_{k=1}^{K} \pi_k = 1$$

The sum and product rule

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

K-means review

EM with K-means-like iteration

K=2

2 Gaussians

initialization

- How many parameters?
- K is set as $2 \rightarrow 2$ clusters
- Each cluster described by a single Gaussian
- ullet Each Gaussian has two parameters μ and Σ
- Each object described by a GMM, and the prior of cluster is needed.

Initialization - example

- P(C=blue)=0.6, then P(C=red)=0.4
- Cluster Blue:
 - μ =(-1.5,1.5) /* all the values are made up */
 - Σ : $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Cluster Red:
 - $\mu = (1.5, -1)$
 - Σ : $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

E-step

 For each object X(green dot), calculate p(X) using current values for the parameters

•
$$p(C = Blue|X) = \frac{p(X|C=Blue)p(C=Blue)}{p(X|C=Blue)p(C=Blue)+p(X|C=Red)p(C=Red)}$$

$$= \frac{N(X|\mu_{blue}, \Sigma_{blue})p(C=Blue)}{N(X|\mu_{blue}, \Sigma_{blue})p(C=Blue) + N(X|\mu_{red}, \Sigma_{red})p(C=Red)}$$

X1	X2	P(C=Blue X)	P(C=Red X)
0.6	1.6	0.8	0.2
-1.3	1.5	0.72	0.28
-0.44	0.4	0.1	0.9
1.5	-1.5	0.5	0.5
	•••		

M-step – Expectation Maximization

• Re-estimate the parameters by Expectation Maximization

• The expectation (log)
$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k) \qquad \qquad p(\mathbf{x}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}) p(\mathbf{x}|\mathbf{x},\mathbf{x}) \\ = p(\mathbf{z}) p(\mathbf{x}|\mathbf{x},\mathbf{x}) \\ = p(\mathbf{z}|\mathbf{x},\mathbf{x}) p(\mathbf{x}|\mathbf{x}) \\ = p(\mathbf{z}|\mathbf{x},\mathbf{x}) p(\mathbf{x}|\mathbf{x}) \\ = p(\mathbf{z}|\mathbf{x},\mathbf{x}) p(\mathbf{x}|\mathbf{x}) \\ = p(\mathbf{z}|\mathbf{x}) p(\mathbf{x}|\mathbf{x}) \\ = p(\mathbf{z}|\mathbf{x},\mathbf{x}) p(\mathbf{x}|\mathbf{x}) \\ = p(\mathbf{z}|\mathbf{x}) p(\mathbf{x}|\mathbf{x}) p(\mathbf{x}|\mathbf{x}) p(\mathbf{x}|\mathbf{x})$$

Expectation Maximization

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

M-step — Expectation Maximization

 Re-estimate the parameters by Expectation Maximization

•
$$\mu_{\text{blue}}^{\text{new}} = \frac{1}{N_{hype}} \sum_{n=1}^{N} p(C = Blue | X_n) X_n$$

•
$$\mu_{\text{blue}}^{\text{new}} = \frac{1}{N_{blue}} \sum_{n=1}^{N} p(C = Blue | X_n) X_n$$

• $\Sigma_{\text{blue}}^{\text{new}} = \frac{1}{N_{blue}} \sum_{n=1}^{N} p(C = Blue | X_n) (X_n - \mu_{\text{blue}}^{\text{new}})^{\mathsf{T}}$

•
$$p(c = blue) = \frac{N_{blue}}{N}$$

X1	X2	P(C=Blue X)	P(C=Red X)
0.6	1.6	0.8	0.2
-1.3	1.5	0.72	0.28
-0.44	0.4	0.1	0.9
1.5	-1.5	0.5	0.5
	•••		

$$N_{blue} = \sum_{n=1}^{N} p(C = Blue | X_n)$$

Evaluate the log likelihood

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

$$\sum_{n=1}^{N} \ln \{ \sum_{k=1}^{K} p(C = k) p(X_n | C = k) \}$$

$$\sum_{n=1}^{N} \ln \{ \sum_{k=1}^{K} p(C=k) N(X_n | \mu_k, \Sigma_k) \}$$

X1	X2	P(C=Blue X)	P(C=Red X)
0.6	1.6	0.8	0.2
-1.3	1.5	0.72	0.28
-0.44	0.4	0.1	0.9
1.5	-1.5	0.5	0.5

Termination: Check for convergence of either the parameters or the log likelihood

If the convergence criterion is not satisfied, go to E-step