Math143Hw10

Trustin Nguyen

December 2, 2023

Exercise 1: Prove the following statements from lecture:

(a) Let $J \subseteq k[x_1, ..., x_{n+1}]$ be ideals. If $\sqrt{J} \supseteq (x_1, ..., x_{n+1})$, show that there exists an integer N such that $J \supseteq (x_1, ..., x_{n+1})^N$, i.e. J contains all homogeneous polynomials of degree $\ge N$.

Proof. Since \sqrt{J} is finitely generated, we know that $x_1^{k_1}, x_2^{k_2}, \ldots, x_{n+1}^{k_{n+1}} \in J$ for some powers k_1, \ldots, k_{n+1} . Let $N = (n+1) \max(k_1, \ldots, k_{n+1})$. By the pigeonhole principle, an arbitrary homogeneous polynomial in $(x_1, \ldots, x_n)^N$ must be divisible by some $x_i^{\max(k_1, \ldots, k_{n+1})}$. So $x_1^{k_1}, \ldots, x_{n+1}^{k_{n+1}}$ generate $(x_1, \ldots, x_n)^N$ and possible more, so $(x_1, \ldots, x_{n+1})^N \subseteq J$.

(b) Show that a projective algebraic set $X \subseteq \mathbb{P}^n$ is irreducible if and only if $\mathbb{I}(X)$ is prime. (You may do this directly or you might see how to reduce it to the affine case, which you can quote from lecture.)

Proof. If X is empty, then $\mathbb{I}(X) = \mathbb{k}[x_1, \dots, x_{n+1}]$ which is prime. Otherwise, $\mathbb{I}(X) = \mathbb{I}(C(X))$. We have that $\mathbb{I}(X)$ is prime iff $\mathbb{I}(C(X))$ is prime, iff $\mathbb{I}(X)$ is irreducible.

Next is to prove that C(X) irreducible iff X irreducible. If X is reducible, then

$$X = A \cup B$$

and therefore,

$$C(X) = \{(x_1, \dots, x_{n+1}) : [x_1, \dots, x_{n+1}] \in A \cup B\}$$

$$= \{(x_1, \dots, x_{n+1}) : [x_1, \dots, x_{n+1}] \in A\} \cup \{(x_1, \dots, x_{n+1}) : [x_1, \dots, x_{n+1}] \in B\}$$

$$= C(A) \cup C(B)$$

Since A, B are projective algebraic sets killed by some homogeneous polynomials, C(A) are points killed by those same polynomials. Which shows that C(X) is a union of algebraic sets and is reducible.

If C(X) is reducible, we have:

$$C(X) = A \cup B$$

Because C(X) is a union of lines through the origin, we know that each line is irreducible, so each line must be in either A or B. So A, B are cones to some sets:

$$C(X) = C(A') \cup C(B')$$

Since C(A'), C(B') algebraic sets of lines through the origin, we know that it is the vanishing of some homogeneous polynomials. Call them $V_A(F_1, \ldots, F_r)$, $V_B(G_1, \ldots, G_s)$. These polynomials also kill the points in A', B' respectively. So A', B' are projective algebraic sets.

So C(X) irreducible iff X irreducible, which finishes the proof.

Exercise 2: Let U_1, \ldots, U_{n+1} be the affine charts on \mathbb{P}^n and let $X \subseteq \mathbb{P}^n$ be any subset.

(a) Prove that if X is closed in the Zariski topology on \mathbb{P}^n , then $X \cap U_i$ is closed in the Zariski topology on each $U_i \cong \mathbb{A}^n$.

Proof. Since X is a projective algebraic set, $X = \mathbb{V}(F_1, ..., F_r)$ for homogeneous poly F_i . Then

$$X \cap U_i = \{p = [x_1 : \dots : 1 : \dots : x_{n+1}] : F_i(p) = 0\}$$

which is the same as:

$$X \cap U_i = V(F_1(x_1, ..., 1, ..., x_{n+1}), ..., F_r(x_1, ..., 1, ..., x_{n+1}))$$

which shows that $X \cap U_i$ is an algebraic subset of $U_i \cong \mathbb{A}^n$.

(b) Prove that if $W \subseteq U_i$ is open in the Zariski topology on $U_i \cong \mathbb{A}^n$, then $W \subseteq \mathbb{P}^n$ is open in the Zariski topology on \mathbb{P}^n .

Proof. Since $W \subseteq U_i$ open in U_i , we know that $W_{U_i}^c$ is closed. We have:

$$U_i \cup U_i^c = \mathbb{P}^n$$

Then the complement of W in \mathbb{P}^n is the union of the complement of W in U_i and the complement of W in U_i^c . Since $W \subseteq U_i$, then $W \cap U_i^c = \emptyset$. So

$$W=W^{\operatorname{c}}_{\operatorname{U}_{\operatorname{i}}}\cup\operatorname{U}^{\operatorname{c}}_{\operatorname{i}}=W^{\operatorname{c}}_{\operatorname{U}_{\operatorname{i}}}\cup\operatorname{\mathbb{V}}(x_{\operatorname{i}})$$

This is the union of two closed sets, which means that the complement of W in \mathbb{P}^n is closed, so W in \mathbb{P}^n is open.

(c) Prove that if $X \cap U_i$ is closed in the Zariski topology on each $U_i \cong \mathbb{A}^n$, then X is closed in the Zariski topology on \mathbb{P}^n .

Proof. To show that $\mathbb{P}^n \setminus X = \bigcup_i U_i \setminus (U_i \cap X)$, we first have that $\bigcup_i U_i \setminus (U_i \cap X) \subseteq \mathbb{P}^n \setminus X$ because an element in $U_i \setminus (U_i \cap X)$ is not an element in X, but an element in \mathbb{P}^n . So an element in the union is not an element in X, but an element of \mathbb{P}^n .

For the other inclusion, $\mathbb{P}^n \setminus X \subseteq \bigcup_i U_i \setminus (U_i \cap X)$ if we have $X = \mathbb{P}^n$, then we are done as the empty set is a subset of all sets. Suppose that we have $[x_1 : \cdots : x_{n+1}] \in \mathbb{P}^n \setminus X$ and $X \neq \mathbb{P}^n$. Then not all x_i are 0. Say that $x_j \neq 0$. Then it lies in U_j . But because the point is not in X also, it lies in $U_j \setminus (U_i \cap X)$. So we have $\mathbb{P}^n \setminus X \subseteq \bigcup_i U_i \setminus (U_i \cap X)$.

Because each $U_i \cap X$ is closed on each U_i , we know that $U_i \setminus (U_i \cap X)$ is open in U_i . By the previous problem, we have that $U_i \setminus (U_i \cap X)$ is open in \mathbb{P}^n . Then $\bigcup_i U_i \setminus (U_i \cap X)$ is open in \mathbb{P}^n . So $\mathbb{P}^n \setminus X$ is open and therefore X is closed in \mathbb{P}^n . \square

(d) Conclude that $X \subseteq \mathbb{P}^n$ is closed (resp. open) if and only if $X \cap U_i$ is closed (resp. open) for each i.

Proof. $X \subseteq \mathbb{P}^n$ closed $\to X \cap U_i$ closed on U_i for each i by part a, and the converse by part c.

 $X \subseteq \mathbb{P}^n$ open implies that $X \cap U_i$ open on U_i for each i: If $X \subseteq \mathbb{P}^n$ open, $X \cap U_i$ is open on \mathbb{P}^n because each U_i is open in \mathbb{P}^n .

 $X \cap U_i$ open on each U_i implies that $X \subseteq \mathbb{P}^n$ is open by part b.

Exercise 3: Practice with homogenization. Given an ideal $I \subseteq k[x_1, ..., x_n]$, recall that we write

$$H(I) = (\{H(f) : f \in I\}) \subseteq k[x_1, ..., x_{n+1}]$$

for the homogenization. Given a homogeneous ideal $J \subseteq k[x_1, \dots, x_{n+1}]$, let

$$J' = \{F(x_1, ..., x_n, 1) : F \in J\} \subseteq k[x_1, ..., x_n],$$

called the dehomogenization.

(a) (Optional) Check that J' is an ideal. You don't need to write this part up.

Proof. Let $f,g \in J'$. Then $f = F(x_1, \ldots, x_n, 1), g = G(x_1, \ldots, x_n, 1)$ where F, G homogeneous polynomials in J. Let $\deg F = n$, $\deg G = m$ where $m \le n$. Then $F + x_{n+1}^{n-m}G$ is homogeneous of degree n. It also lies in J. Then

$$f + g = F(x_1, ..., x_n, 1) + G(x_1, ..., x_n, 1)$$

= $F(x_1, ..., x_n, 1) + 1^{n-m}G(x_1, ..., x_n, 1)$

So $f + g \in J'$ because it is the evaluation of $F + x_{n+1}^{n-m}G$ for $x_{n+1} = 1$.

Suppose that $f \in J'$, $g \in k[x_1,...,x_n]$. Then $f = F(x_1,...,x_n,1)$ for some $F \in J$. Since J is an ideal, we know that $F(x_1,...,x_n,x_{n+1})g \in J$. We let

$$G = F(x_1, ..., x_{n+1})g = G_0 + G_1 + ... + G_d$$

and we can homogenize G by multiplying each form in G by various powers of x_{n+1} . This is possible because J homogeneous so each form lies in J:

$$G' = G_0 x_{n+1}^d + G_1 x_{n+1}^{d-1} + \dots + G_{d-1} x_{n+1} + G_d$$

Then we have $G'(x_1,...,x_n,1) = F(x_1,...,x_n,1)g = fg \in J'$.

(b) Prove that if $J \subseteq k[x_1, \dots, x_{n+1}]$ is a radical homogeneous ideal, then J' is radical.

Proof. Suppose that $F^d(x_1,...,x_n,1) \in J'$. We want to show that $F(x_1,...,x_n,1) \in J'$. Since $F^d(x_1,...,x_n,1) \in J'$, we know that:

$$F^d(x_1,\ldots,x_{n+1}) \in J$$

where F^d homogeneous by the definition of J'. Since J is radical, $F \in J$. Suppose that F is not homogeneous. Then

$$F = f_0 + f_1 + \cdots + f_k$$

and

$$F^{d} = (f_0 + f_1 + \cdots + f_k)^{d}$$

Take the lowest nonzero homogeneous form f_j where j < k. Then $f_j^d \neq 0$ and therefore, $F^d = f_j^d + \dots + f_k^d$. So F^d is not homogeneous contradiction. So F is homogeneous and $F(x_1, \dots, x_n, 1) \in J'$ which concludes the proof.

(c) Prove that if $I \subseteq k[x_1, ..., x_n]$ is radical, then $H(I) \subseteq k[x_1, ..., x_{n+1}]$ is radical.

Proof. We want to show that if

$$f^{n} = f_{0} + f_{1} + \cdots + f_{d} \in H(I)$$

then $f \in H(I)$ if I is radical. Since H(I) homogeneous, we know that each $f_i \in H(I)$. Because

$$H(I) = (\{H(f) : f \in I\})$$

each f_i , homogeneous of degree i can be written as a sum of homogenized polynomials from I which generate H(I), let's say g_{i_i} of degree i. Then

$$f_{i}(x_{1},...,x_{n+1}) = g_{i_{1}}(x_{1},...,x_{n+1}) + \cdots + g_{i_{j}}(x_{1},...,x_{n+1})$$

$$f_{i}(x_{1},...,x_{n},1) = g_{i_{1}}(x_{1},...,x_{n},1) + \cdots + g_{i_{j}}(x_{1},...,x_{n},1)$$

where each $g_{i_j}(x_1,\ldots,x_n,1)\in I$. So we know that $f^n(x_1,\ldots,x_n,1)\in I$. Then $f(x_1,\ldots,x_n,1)\in I$. But because

$$H(I) = (\{H(f) : f \in I\})$$

we have

$$H(f(x_1,...,x_n,1)) = f(x_1,...,x_{n+1}) \in H(I)$$

which shows that H(I) is radical.

Exercise 4: Intersections of linear spaces. The vanishing of a linear equation on projective space is called a *hyperplane*. Let

$$\Lambda_1 = \mathbb{V}(a_{1,1}x_1 + \dots + a_{1,n+1}x_{n+1}), \dots, \Lambda_m = \mathbb{V}(a_{m,1}x_1 + \dots + a_{m,n+1}x_{n+1})$$

be hyperplanes in \mathbb{P}^n with $m \leq n$. Show that $\Lambda_1 \cap \cdots \cap \Lambda_m \neq \emptyset$.

Proof. Since we are looking for points in the intersection of \mathbb{P}^n , we want to find the points $[x_1 : \cdots : x_{n+1}]$ that satisfy the system:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n+1}x_{n+1} = 0$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n+1}x_{n+1} = 0$$

$$\vdots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n+1}x_{n+1} = 0$$

From linear algebra, we are finding the kernel of T for the matrix:

$$T = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n+1} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n+1} \end{bmatrix}$$

This maps an n + 1 dimensional space onto one of m dimensions, where n + 1 > m, so there is a non-trivial kernel, which means that there are nonzero solutions $[x_1 : \cdots : x_{n+1}]$, which is what we wanted.

Exercise 5: Let $I \subseteq k[x_1, ..., x_{n+1}]$ be a homogeneous ideal. Let $S_d \subseteq k[x_1, ..., x_{n+1}]/I$ be the set of degree d forms.

(a) Prove that S_d is a finite-dimensional vector space.

Proof. We first have that S_d is the image of the map

$$\varphi: k[x_1, ..., x_{n+1}] \to k[x_1, ..., x_{n+1}]/I$$

obtained from some restricted domain which is the set of homogeneous polynomials of degree d.

To show closure under addition: If \overline{F} , $\overline{G} \in S_d$, we have F, $G \in k[x_1, ..., x_{n+1}]$ of degree d. The sum of homogeneous polynomials of degree d is also of degree d. Then the image of F + G is $\overline{F} + \overline{G} \in S_d$.

Closure under multiplication from k: Suppose that $\overline{F} \in S_d$. Then we have $F \in k[x_{11},\ldots,x_{n+1}]$ of degree d. Then kF is also of degree d. So $k\overline{F} \in S_d$.

Finite dimensional. There are a finite number of generators for homogeneous polynomials of degree d in $k[x_1,...,x_{n+1}]$. Notice that

$$H_d = \{x_1^{i_1} \cdots x_{n+1}^{i_{n+1}} : i_1, \dots, i_{n+1} \geqslant 0, i_1 + \dots + i_{n+1} = d\}$$

generate homogeneous polynomials of degree d in $k[x_1,...,x_{n+1}]$. Then if we have a form $f \in k[x_1,...,x_{n+1}]/I$ where $f = \varphi(F)$ for

$$F = \sum a_i x_1^{i_1} \cdots x_{n+1}^{i_{n+1}}$$

homogeneous of degree d, then

$$\phi(F) = \sum \alpha_i \phi(x_1^{i_1} \cdots x_{n+1}^{i_{n+1}})$$

We find that

$$\{\phi(x_1^{i_1}\cdots x_{n+1}^{i_{n+1}}): x_1^{i_1}+\cdots + x_{n+1}^{i_{n+1}}\in H_d\}$$

span the image. We can reduce this to linearly independent basis by removing the linearly dependent terms. So S_d is a finite dimensional vector space.

(b) (Extra Credit) Can you give an upper bound on the dimension of S_d in terms of n and d?

Proof. By the previous problem, our basis for S_d is a subset of

$$\mathcal{B}_{d} = \{ \phi(x_{1}^{i_{1}} \cdots x_{n+1}^{i_{n+1}}) : x_{1}^{i_{1}} + \cdots + x_{n+1}^{i_{n+1}} \in H_{d} \}$$

where

$$H_d = \{x_1^{i_1} \cdots x_{n+1}^{i_{n+1}} : i_1, \dots, i_{n+1} \geqslant 0, i_1 + \dots + i_{n+1} = d\}$$

We have that $|\mathcal{B}_d| \leq |\mathsf{H}_d|$ because we have a surjective mapping from $\mathsf{H}_d \to \mathcal{B}_d$ by taking ϕ of the elements of H_d . So we can always match distinct element of \mathcal{B}_d with distinct elements of H_d . So $|\mathsf{H}_d|$ is the upper bound. Using stars and bars, we get $\binom{d+n}{n}$ number of elements of H_d . So $\binom{d+n}{n}$ is the upper bound.