

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Continuous Random Variates: applications

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

Noi modelliamo processo arrivi e processo servizi.

Discrete Simulation Continuous RV applications

For our application framework, we will look at:

• arrival process model

• service process model

Prof. Vittoria de Nitto Personè 2

In particolare processi di interrarrivo, siamo partiti da una sequenza random R1, R2, R3 e considerando poi i tempi di arrivo come di seguito:

Gli arrivi sono ordinati in ordine crescente per costruzione (sommo valori positivi). Questo è alla base della costruzione di ssg2 ed ssg3

Nel caso dell'inventory system, invece di generare un numero di richieste di arrivo, e spalmarlo flat in un tempo, generavo istanze di domande, generando tempo interrarivo come esponenziale e sommando.

```
Discrete Simulation Continuous RV applications

Example

• programs sis3 and sis4 generate demand instances in this way, with Exponential(1/\(\alpha\)) interdemand times.

The demand rate corresponds to an average of

• \(\alpha = 30.00\) actual demands per time interval in sis3

• \(\alpha = 120.00\) potential demands per time interval in sis4

double GetDemand(long) *amount)

/** generate a demand instance with rate 120

* add generate a corresponding demand amount with rate 30 per time

* and generate a corresponding demand amount per demand instance

* "

* Interval and exactly one unit of demand per demand instance

* "

* SelectStream(0);

* time = START;

SelectStream(0);

* time = START;

SelectStream(0);

* time = START;

* SelectSt
```

In generale, indipendentemente dal caso particolare, un processo di arrivi stazionario (media arrivo 1/lambda mantenuto anche se vado a infinito), lo posso costruire come già fatto: prendo sequenza interrarivi positivi, ma sono variabili random indipendenti e identicamente distribuite.

All'inizio sono partito con arrivi random, e assunto poi fossero esponenziali. In realtà ciò che succede è che, partendo da cose random con interrarrivi esponenziali, considero arrivi di Poisson, con istanti di arrivi di Poisson che sono delle Erlang!

che relazione c'è tra arrivi random(=uniformi), esponenziali e poisson? considero intervallo fisso di lunghezza 't', con 'n' arrivi, in questo tempo prendo random un sottointervallo di lunghezza 'r'

Discrete Simulation Continuous RV applications

random arrivals → Poisson

Theorem 1

Let:

- A₁, A₂, A₃, ... be an iid sequence of *Uniform*(0, t) random variables ("unsorted" arrivals).
- the discrete random variable X be the number of A_i that fall in a fixed subinterval of length r = pt interior to (0, t)

If n is large and r/t small, X is indistinguishable from a $Poisson(\lambda r)$ random variable with $\lambda = n/t$

'X' mi conta gli Ai che cadono in quell'intervallino.

Prof. Vittoria de Nitto Personè

9

9

Discrete Simulation Continuous RV applications

Conclusions on random arrivals

- if many arrivals occur at random with a rate of λ, the number of arrivals X that will occurr in an interval of length r is Poisson(λr)
- The probability of x arrivals in an interval with length r is

$$Pr(X = x) = \frac{e^{-\lambda r} (\lambda r)^{x}}{x!} \qquad x = 0,1,2,...$$

- The probability of <u>no arrivals</u> is: $Pr(X=0) = e^{-\lambda r}$
- The probability of at least one arrival is

$$Pr(X > 0) = 1 - Pr(X = 0) = 1 - e^{-\lambda r}$$
 (complements and 1)

For a fixed λ , the probability of at least one arrival increases with increasing interval length r

Prof. Vittoria de Nitto Personè

Discrete Simulation Continuous RV applications

Random Arrivals → Exponential Interarrivals

- If R represents the time between consecutive arrivals, the possible values of R are r > 0
- Consider arrival time A_i selected at random and an interval of length r beginning at A_i

- $R = A_{i+1}$ A_i will be less than r iff there is at least one arrival in this interval
- the cdf of R is $Pr(R \le r) = Pr \text{ (at least one arrival in } r) = 1 e^{-\lambda r}$
- R is an *Exponential*(1/λ) random variable

Prof. Vittoria de Nitto Personè

11

11

Discrete Simulation Continuous RV applications

Theorem 2

If arrivals occur at random with rate λ , the corresponding interarrival times form an iid sequence of *Exponential*($1/\lambda$) RVs.

This result justifies the use of *Exponential* interarrival times in programs ssq2, ssq3, sis3, sis4

- If we know only that arrivals occur at random with a constant rate λ, the function GetArrival in ssq2 and ssq3 is appropriate
- If we know only that demand instances occur at random with a constant rate λ, the function GetDemand in sis3 and sis4 is appropriate

Prof. Vittoria de Nitto Personè

12

Posso generare Poisson cosi:

Generando variabili uniformi in (0,t) e ordinarle OPPURE, come nell'algoritmo 1, contando gli a(i) (nell'esempio ne ho

Discrete Simulation Continuous RV applications

Summary of Poisson arrival processes

Given a fixed time interval (0, t), there are two ways of generating a realization of a stationary Poisson arrival process with rate λ

- 1. Generate the number of arrivals: $n = Poisson(\lambda t)$ Generate a Uniform(0,t) random variate sample of size n and sort to form $0 < a_1 < a_2 < a_3 < ... < a_n$
- 2. use algorithm 1 with Exponential($1/\lambda t$)
- · Statistically, the two approaches are equivalent
- The first approach is computationally more expensive, especially for large n
- The second approach is always preferred

Prof. Vittoria de Nitto Personè

14

La moda è valore più probabile, nell'esponenziale è 0, che è anche un tempo di interrarivo. Allora dovrebbero essere molto probabili arrivi simultanei (non visti). Cioè se vedo interrarivi di Poisson ho comportamenti a cluster, mentre se vedo i singoli interrarivi, l'aspetto 'cluster' si vede molto meno.

15

Nel confronto hanno stessa media. Ovviamente devo considerare la varianza (che è diversa), questo viene dal fatto che la moda dell'esponenziale è 0.

Per i servizi ho solo linee guida, non posso dire che siano random semplicemente come nel caso degli arrivi.

Discrete Simulation Continuous RV applications

Service Process Models

differently from the case of arrival processes, there are no well-defined "default", only application-dependent guidelines:

- Uniform(a, b) service times are usually inappropriate since they rarely "cut off" at a maximum value b
- Service times are positive, so they cannot be $Normal(\mu, \sigma)$ unless truncated to positive values
- Positive probability models "with tails", such as the Lognormal(a, b) distribution, are candidates
- iobs UNIX
- web file size
- Internet topology
- IP packet flow
- ٠...
- If service times are the sum of n iid Exponential(b) sub-task times, then the Erlang(n, b) model is appropriate

Prof. Vittoria de Nitto Personè

17

17

Discrete Simulation Continuous RV applications

Program ssq4

- ssq4 is based on program ssq3, but with a more realistic Erlang(5, 0.3) service time model The corresponding service rate is 2/3
- As in program ssq3, ssq4 uses Exponential(2) random variate interarrivals.

The corresponding arrival rate is 1/2

Prof. Vittoria de Nitto Personè

19

Discrete Simulation Continuous RV applications Example • suppose using a Normal(1.5,2.0) random variable to model service times · Truncate distribution so that • Service times are non-negative (a=0)· Service times are less than 4 (b=4)/* a is 0.0 */ $\alpha = cdfNormal(1.5, 2.0, a);$ β = 1.0 - cdfNormal(1.5, 2.0, b); /* b is 4.0 * • the result: $\alpha = 0.2266$ and $\beta = 0.1056$ the truncated Normal(1.5,2.0) random variable has a mean of 1.85 (not 1.5) and a standard deviation of 1.07 (not 2.0) Why is the mean increased????? Prof. Vittoria de Nitto Personè 20

Discrete Simulation Continuous RV applications

Exercises

• Exercise 7.3.1

Prof. Vittoria de Nitto Personè

23