The order of a complex is the maximum order of its simplices. A complex Σ^d of order d is also called a d-complex. A d-complex is regular if each simplex is an s-face of a d-simplex. Two simplices σ_1 and σ_2 in a complex Σ are s-adjacent if they have a common s-face; they are s-connected if a sequence of simplices in Σ exists, beginning with σ_1 and ending with σ_2 , such that any two consecutive terms of the sequence are s-adjacent. In the following, face and adjacency (without prefix) of a d-simplex stand for (d-1)-face and (d-1)-adjacency. $K^s(\Sigma^d)$ $(0 \le s \le d)$ denotes the set of s-simplices belonging to Σ^d , and $|K^s|$ denotes their number. With some abuse of language, we call K^s the s-skeleton. The set of vertices of Σ^d is therefore $K^0(\Sigma^d)$, and the set of d-simplices is $K^d(\Sigma^d)$.