

BIO306: Bioinformatics

Lecture 4

Haplotype and Linkage disequilibrium

Wenfei JIN PhD jinwf@sustc.edu.cn Department of Biology, SUSTech

Linkage disequilibrium have significant implication for gene mapping

Single Nucleotide Polymorphisms

 Main form of variation between individual genomes: single nucleotide polymorphisms (SNPs)

```
... ataggtccCtatttcgcgcCgtatacacgggActata ... ataggtccGtatttcgcgcTgtatacacgggTctata ... ataggtccCtatttcgcgcCgtatacacgggTctata ... ataggtccCtatttcgcgcTgtatacacgggTctata ... ataggtccCtatttcgcgcTgtatacacgggTctata ...
```

- High density in the human genome: ≈ 1x10⁷ out of 3×10⁹ base pairs
- Vast majority bi-allelic → 0/1 encoding

Haplotypes

```
... ataggtccCtatttcgcgcCgtatacacgggActata ... ataggtccGtatttcgcgcTgtatacacgggTctata ... ataggtccCtatttcgcgcCgtatacacgggTctata ... ataggtccCtatttcgcgcTgtatacacgggTctata ... ataggtccCtatttcgcgcTgtatacacgggTctata ...
```

<u>Haplotype:</u> The combination of alleles occurring on the same chromosome

N SNPs - How many Haplotypes are possible?

2^N (ie very large diversity possible)

Let's consider the history of two neighboring alleles

Alleles that exist today arose through ancient mutation events...

One allele arose first, and then the other...

Recombination generates new arrangements for ancestral alleles

Mutations and recombination generated the haplotyes

AC 4 haplotypes GC GT AT

From genotype to haplotype

genotype

sample	SNP1	SNP2	
1	AT	CG	
2	AT	CC	
3	TT	CG	
4	AT	CC	
5	AA	CG	
6	AT	GG	

unphased data

phased data

How Do You Construct Haplotypes?

1. Collect extended family members

How Do You Construct Haplotypes?

2. Allele-specific PCR

Reconstruct haplotype from genotype

- CLARK'S algorithm
 - Parsimony-based method
- E-M algorithm
 - Likelihood-based method
- PHASE algorithm
 - Bayesian method

Haplotype reconstruction:

Clark's algorithm (1990)

- Choose individuals that are homozygous at every locus (e.g. TT//AA//CC)
 - Haplotype: TAC
- Choose individuals that are heterozygous at just one locus (e.g. TT//AA// CG)
 - Haplotypes: TAC or TAG
- Tally the resulting known haplotypes.
- For each known haplotype, look at all remaining unresolved cases: is there
 a combination to make this haplotype?
 - Known haplotype: TAC
 - Unresolved pattern: AT//AA//CG
 - Inferred haplotype: TAC/AAG. Add to list.
 - Known haplotype: TAC and TAG
 - Unresolved pattern: AT//AA//CG
 - Inferred haplotypes: TAC and TAG. Add both to list.
- Continue until all haplotypes have been recovered or no new haplotypes can be found this way.

PHASE

coalescence-based Bayesian Haplotype inference: Stephens et al (2001)

- Bayesian model to approximate the posterior distribution of haplotype configurations for each phase-unknown genotype.
- G = (G₁, ..., G_n) observed multilocus genotype frequencies
- H = (H₁, ..., H_n) corresponding unknown haplotype pairs
- F = (F₁, ..., F_M) M unkown population haplotype frequencies
- EM algorithm: Find F that maximizes P(G|F). Choose H that maximizes P(H|F^{EM}, G).

SNP1 [A / a] SNP2 [B / b]

Major Allele Freq: p(A) p(B)

Minor Allele Freq: p(a) p(b)

Independently Segregating SNPs:

Haplotype Frequency $p(ab) = p(a) \times p(b)$

Linkage Equilibrium

(How many haplotypes in total?)

Linkage Disequilibrium

Haplotype Frequency $p(ab) \neq p(a) \times p(b)$

Linkage Equilibrium

•
$$p(AB)=p(A)p(B)$$

•
$$p(Ab)=p(A)p(b)=p(A)(1-p(B))$$

•
$$p(aB)=p(a)p(B)=(1-p(A))p(B)$$

•
$$p(ab)=p(a)p(b)=(1-p(A))(1-p(B))$$

* LINKAGE EQUILIBRIUM *

SNP1	SNP2 Allele		Square!
Allele	В	b	
Α	p(A)p(B)	p(A)p(b)	p(A)
а	p(a)p(B)	p(a)p(b)	p(a)
	p(B)	p(b)	

Not a Punnett

Example:

$$p(A)p(B)+p(a)p(B)=p(B){ p(A)+p(a)}$$

= $p(B)$

Major Allele Freq: p(A) p(B)

Minor Allele Freq: p(a) p(b)

Linkage Disequilibrium

Haplotype Frequency p(ab) = p(a) p(b) + D

D=p(ab)-p(a)p(b)

(sign of D is generally arbitrary, unless comparing D values between populations or studies)

D: Lewontin's LD Parameter (Lewontin 1960)

Linkage Disequilibrium

- D=p(AB)-p(A)p(B)
- p(AB) = p(A)p(B) + D
- p(Ab)=p(A)p(b)-D
- p(aB)=p(a)p(B)-D
- p(ab)=p(a)p(b)+D

* LINKAGE DISEQUILIBRIUM *

SNP1	SNP2 Allele				
Allele	В	b			
Α	p(A)p(B)+D	p(A)p(b)-D	p(A)		
a	p(a)p(B)-D	p(a)p(b)+D	p(a)		
	p(B) ↓	p(b)			
•	(B)+D + p(a))+p(a)} = p(•			

	b	В		
а	0.16	0.04	p(a)=0.20	What is the LD?
				≠ 0
Α	0.14	0.66	P(A) = 0.80	p(ab) / p(a) p(b)
p(b)=0.30 p(B)=0.70				
				p(ab) = p(a) p(b) + D
$0.16 = 0.2 \times 0.3 + D$				
D = 0.1				

Since
$$p(ab) = p(a)p(b) + D$$

+D was used and D is +ve here, but arbitrary
eg can relabel alleles A,B as minor

Range of D values (-ve to +ve)

D has a minimum and maximum value that depends on the allele frequencies of the markers

Since haplotype frequencies cannot be -ve

$$p(aB) = p(a)p(B) - D \ge 0$$
 $D \le p(a)p(B)$

$$p(Ab) = p(A)p(b) - D \ge 0$$
 $D \le p(A)p(b)$

These cannot both be true, so $D \le min(p(a)p(B), p(A)p(b))$

$$p(ab) = p(a)p(b) + D \ge 0 \qquad D \ge -p(a)p(b)$$

$$p(AB) = p(A)p(B) + D \ge 0$$
 $D \ge -p(A)p(B)$

These cannot both be true, so $D \ge max(-p(a)p(b), -p(A)p(B))$

* Similar equations if we had defined p(ab) = p(a)p(b) - D

D is hard to interpret

- Sign is arbitrary ...
 - A common convention is to set A, B to be the common allele and a, b to be the rare allele
- Range depends on allele frequencies
 - Hard to compare between markers

D' – A scaled version of D (Lewontin, 1964)

Standardize D by rescaling to a proportion of its maximal value for the given allele frequencies (D')

 $D' = D/D_{max}$

D'

D' = D /
$$D_{max}$$

 $D_{max} = max (-p(A)p(B), -p(a)p(b))$ D < 0
 $D_{max} = min (p(A)p(b), p(a)p(B))$ D > 0
Again, sign of D' depends on definition

- D' = 1 or -1 if one of p(AB), p(Ab), p(aB), p(ab) = 0
- = <u>Complete LD</u> (ie only 3 haplotypes seen)
- D'=1 or -1 suggests that no recombination has taken place between markers
- Beware rare markers may not have enough power/sample size to detect 4th haplotype

D' Interpretation

	b	В			b	В	
а	0.06	0.14	p(a)=0.20	а	0.2	0	p(a)=0.20
Α	0.24	0.56	p(A)=0.80	Α	0.1	0.7	P(A)=0.80
p(b)=0.30 p(B)=0.70				p(b)=0.30 p(B)=0.70			

D=0; D_{max} undefined

$$D=D_{max} = 0.14$$
; $D' = +1$

D'=1 (perfect LD using D' measure

- No recombination between marker
- Only 3 haplotypes are seen

More on D'

Pluses:

 If allele frequencies are similar, high D' means the markers are good surrogates for each other

Minuses:

- D' estimates inflated in small samples
- D' estimates inflated when one allele is rare

Δ^2 (also called r²)

$$r^2=D^2/p(A)(1-p(A))p(B)(1-p(B))$$

- Ranges between 0 and 1
 - 1 when the two markers provide identical information
 - 0 when they are in perfect equilibrium
- Expected value is 1/2n

More on r²

• r² = 1 implies the markers provide exactly the same information

- The measure preferred by population geneticists
- Measures loss in efficiency when marker A is replaced with marker B in an association study
 - With some simplifying assumptions (e.g. see Pritchard and Przeworski, 2001)

$D'=1 \text{ and } r^2=1$

Definition

The case D'=1 is called *Complete LD*.

Intuition for Complete LD: two SNPs are not separated by recombination. In this case, there are **at most** 3 of the 4 possible haplotypes present in the population.

Definition

The case $r^2 = 1$ is called *Perfect LD*.

The case of perfect LD happens if and only if the two SNPs have not been separated by recombination, but also have the same allele frequencies.

When does linkage equilibrium hold?

Equilibrium or Disequilibrium?

- We will present simple argument for why linkage equilibrium holds for most loci
- Balance of factors
 - Genetic drift (a function of population size)
 - Random mating
 - Distance between markers

— ...

Why Equilibrium is Reached...

- Eventually, random mating and recombination should ensure that mutations spread from original haplotype to all haplotypes in the population...
- Simple argument:
 - Assume fixed allele frequencies over time

Independence test (p-value)

Fisher exact test

$$Pr(a,b,c,d) = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

2x2 table test

$$X^{2} = \frac{\left(\frac{(a+b)(a+c)}{n} - a\right)^{2}}{\frac{(a+b)(a+c)}{n}} + \frac{\left(\frac{(a+b)(b+d)}{n} - b\right)^{2}}{\frac{(a+b)(b+d)}{n}} + \frac{\left(\frac{(c+d)(a+c)}{n} - c\right)^{2}}{\frac{(c+d)(a+c)}{n}} + \frac{\left(\frac{(b+d)(c+d)}{n} - d\right)^{2}}{\frac{(c+d)(a+c)}{n}} + \frac{\left(\frac{(b+d)(c+d)}{n} - d\right)^{2}}{\frac{(b+d)(c+d)}{n}} + \frac{\left(\frac{(a+b)(b+d)}{n} - b\right)^{2}}{\frac{(a+b)(b+d)}{n}} + \frac{\left(\frac{(a$$

Creation of LD

- Easiest to understand when markers are physically linked
- Creation of LD
 - Mutation
 - Founder effect
 - Admixture
 - Inbreeding / non-random mating
 - Selection
 - Population bottleneck or stratification
 - Epistatic interaction
- LD can occur between unlinked markers
- Gametic phase disequilibrium is a more general term

Destruction of LD

- Main force is recombination
- Gene conversion may also act at short distances (~ 100-1,000 bases)
- LD decays over time (generations of interbreeding)

Probability Recombination occurs = θ

Probability Recombination does not occur = 1- θ

Initial LD between SNP1 - SNP2: D_0

After 1 generation

Preservation of LD:

$$D_1 = D_0(1-\theta)$$

After t generations:

$$D_t = D_0 (1-\theta)^t$$

NB: Overly simple model - does not account for allele frequency drift over time

Linkage Disequilibrium (D)

Visualizing LD metrics

Not usually worried about sign of D'

International HapMap

Project

- Initiated Oct 2002
- Collaboration of scientists worldwide
- Goal: describe common patterns of human DNA sequence variation
- Identify LD and haplotype distributions
- Populations of different ancestry (European, African, Asian)
 - Identify common haplotypes and population-specific differences
- Has had major impact on:
 - Understanding of human population history as reflected in genetic diversity and similarity
 - Design and analysis of genetic association studies

LD in Human Populations

Haplotype Blocks

N SNPs = 2^N Haplotypes possible, ie very large diversity possible

But: we do not see the full extent of haplotype diversity in human populations

Extensive LD especially at short distances eg ~20kbases.

Haplotypes are broken into blocks of markers with high *mutual* LD separated by recombination hotspots

Non-uniform LD across genome

Haplotype Blocks

Table 5. Haplotype block partition results for the three populations.

Population	Blocks	Average size, kb*	Required SNPs†
African-American	235,663	8.8	570,886
European-American	109,913	20.7	275,960
Han Chinese	89,994	25.2	220,809

^{*}Average distance spanned by segregating sites in each block. common haplotype patterns with frequencies of 5% or higher.

†Minimum number of SNPs required to distinguish

Haplotype blocks: at least 80% of observed haplotypes with frequency >= 5% could be grouped into common patterns

Whole Genome Patterns of Common DNA Variation in Three Human Populations, Science 2005, Hinds et al.

Length of LD spans

Example: Large block of LD on chromosome 17 Cluster of common (frequent SNPs In high LD) 518 SNPs, spanning 800 kb 25% in EUR, 9% in AFR, missing in CHN Genes:

Microtubule-associated protein tau Mutations associated with a variety of neurodegeneartive disorders

Gene coding for a protease similar to presentlins

Mutations result in Alzheimer's disease Gene for corticotropin-releasing hormone receptor

 Immune, endocrine, autonomic, behavioral response to stress

Chromosome 17 LD Region

Thank you for your attention!