MACS205: Méthode de Monte-Carlo

1 Introduction

Soit (S, S, μ) un espace mesuré où μ est une mesure positive. Soit $\varphi \colon S \to \mathbf{R}$ une fonction intégrable. On cherche à approcher $I(\varphi) = \int \varphi \, d\mu = \mathbf{E}_{\mu}(\varphi)$. Deux cas de figure :

- φ est une fonction continue avec une expression analytique et on arrive à calculer son intégrale,
- l'intégrale de φ est incalculable.

Les méthodes de type Monte-Carlo considérées sont de la forme suivante :

- 1. tirer aléatoirement des points $X_1, ..., X_n$ sur S,
- 2. calculer $\varphi(X_1), \ldots, \varphi(X_n)$,
- 3. trouver une transformation de $(X_1, \varphi(X_1)), \dots, (X_n, \varphi(X_n))$ qui approche $I(\varphi)$.

2 La méthode de Monte-Carlo

Algorithme 1: Monte-Carlo

Générer $X_1,...,X_n$ de façon indépendante sous μ ;

Calculer $\varphi(X_1), \ldots, \varphi(X_n)$;

Sorties : $\hat{I}_n(\varphi) = \hat{I}_n^{(mc)}(\varphi) = \frac{1}{n} \sum_i \varphi(X_i)$

Prop. Si $\int |\varphi| d\mu < \infty$, $\hat{I}_n(\varphi)$ est non-biaisée et fortement consistante. Si de plus $\int |\varphi|^2 d\mu < \infty$ alors $Var(\hat{I}_n(\varphi)) = \frac{1}{n} Var(\varphi(X_1)) = \frac{1}{n} \sigma^2$ et $\sqrt{n} \left(\hat{I}_n(\varphi) - I(\varphi) \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$.

2.1 Estimation de l'erreur

On estime σ^2 par $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (\varphi(X_i) - \hat{I}_n(\varphi))^2$.

Prop. Si $\int |\varphi|^2 d\mu < \infty$ alors $\hat{\sigma}^2$ est sans biais et fortement consistant et $\frac{\sqrt{n}}{\hat{\sigma}} (\hat{I}_n(\varphi) - I(\varphi)) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.

Intervalle de confiance : $\mathbf{P}(I(\varphi) \in \hat{C}(\alpha)) \xrightarrow{n \to \infty} 1 - \alpha \text{ avec } \forall \alpha \in]0;1[$, $\hat{C}(\alpha) = \left[\hat{I}_n(\varphi) - \frac{\hat{\sigma}^2}{\sqrt{n}}\Phi^-\left(1 - \frac{\alpha}{2}\right), \hat{I}_n(\varphi) - \frac{\hat{\sigma}^2}{\sqrt{n}}\Phi^-\left(\frac{\alpha}{2}\right)\right].$

2.2 Inégalités de concentrations

Th (Inégalité de Hoeffding). Soit X_1, \dots, X_n i.i.d telles que $\forall i \in [[1;n]], a \leq X_i \leq b$ p.s. Alors

$$\mathbf{P}\left(\left|\sum_{i=1}^{n} (X_i - \mathbf{E}(X_i))\right| > \varepsilon\right) \leqslant 2 \cdot \exp\left(-\frac{2\varepsilon^2}{n(b-a)^2}\right).$$

2.3 Déterministe vs aléatoire en "grande" dimension

Méthode déterministe des sommes de Riemann : soit $\varphi : [0;1]^d \longrightarrow \mathbf{R}$, on se donne n^d points équidistants $x_\alpha = \left(\frac{i_1}{n}, \dots, \frac{i_d}{n}\right)$ où $(i_1, \dots, i_d) \in [[1;n]]^d$. On calcule $I_n^{(rs)}(\varphi) = \frac{1}{n^d} \sum_{i=1}^n \varphi(x_\alpha)$.

Prop. Si $\varphi: [0;1]^d \longrightarrow \mathbb{R}$ est *L*-lipschitzienne alors $\left|I_n^{(rs)}(\varphi) - I(\varphi)\right| \leqslant L \frac{\sqrt{d}}{n}$.

Avec Monte-Carlo la méthode de même ordre se fait avec évaluation en n^d v.a tirées selon $\mathcal{U}([0;1]^d)$ et l'on a $\mathrm{Var}\left(\hat{I}_{n^d}(\varphi)\right) = \frac{1}{n^d}\sigma^2$ et $\mathbf{E}\left[\left|\hat{I}_{n^d}(\varphi) - I(\varphi)\right|\right] \leqslant \frac{\sigma}{n^{d/2}}$.

1

2.4 Méthode des variables antithétiques

Soit $Z \sim \mu$ v.a telle que $\mathbb{E}[\varphi(Z)^2] < \infty$ et $\{Z_k, k \ge 0\}$ i.i.d selon μ . On a $\hat{I}_n^{(av)}(\varphi) = \frac{1}{2n} \sum_{i=1}^n (\varphi(Z_i) + \varphi(L(Z_i)))$.

Ex. $U_1, \ldots, U_n \sim \mathcal{U}([a;b])$ et L(u) := a + b - u, ou si $Z \sim \mathcal{N}(\mu, 1)$ alors $2\mu - Z \sim \mathcal{N}(\mu, 1)$.

Prop. Si $\mathbf{E} |\varphi(Z)|^2 < \infty$ alors :

- $\operatorname{Var}(\hat{I}_{2n}(\varphi)) \geqslant \operatorname{Var}(\hat{I}_n^{(av)}) \iff \operatorname{Cov}(\varphi(Z), \varphi(L(Z))) \leqslant 0$,
- si φ est réelle croissante et $\varphi \circ L$ décroissante (ou inversement), $\text{Cov}(\varphi(Z), \varphi(L(Z))) \leqslant 0$.

Lem. Soit Z une v.a réelle, $g: \mathbb{R} \to \mathbb{R}$ croissante avec $\mathbb{E}[g(Z)^2] < \infty$ et $\tilde{g}: \mathbb{R} \to \mathbb{R}$ décroissante avec $\mathbb{E}[\tilde{g}(Z)^2] < \infty$. Alors $\text{Cov}(g(Z), \tilde{g}(Z)) \leq 0$.

3 Méthode des variables de contrôle

Le contexte est comme Monte-Carlo avec une variable observée en plus : $((X_1, Z_1), \dots, (X_n, Z_n))$ i.i.d dans $S \times \mathbf{R}$, $X_1 \sim \mu$ et $\mathbf{E}[Z_1]$ est connu. Soit $\varphi \colon S \to \mathbf{R}$ tel que $\mathbf{E}[\varphi(X_1)] < \infty$, on cherche $I_{\mu} = \mathbf{E}[\varphi(X_1)]$.

On peut se ramener à $\mathbf{E}Z_1 = 0$, et on pose $\hat{I}_n^{(cv)} = \frac{1}{n} \sum_{i=1}^n (\varphi(X_i) - Z_i)$.

Prop. Si $\mathbf{E}|\varphi(X_1)| < \infty$ et $\mathbf{E}|Z_1| < \infty$, $\hat{I}_n^{(cv)}$ est sans biais et fortement consistant. Si de plus $\mathbf{E}[|\varphi(X_1)|^2] < \infty$ et $\mathbf{E}[|Z_1|^2] < \infty$ alors :

- $\operatorname{Var}\left(\hat{I}_{n}^{(cv)}\right) = \frac{1}{n}\operatorname{Var}(\varphi(X_{1}) Z_{1})$ et $\hat{I}_{n}^{(cv)}$ est asymptotiquement normal avec variance $\sigma^{2} = \operatorname{Var}(\varphi(X_{1}) Z_{1})$, i.e $\sqrt{n}\left(\hat{I}_{n}^{(cv)} I\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^{2})$,
- un estimateur consistant de σ^2 est $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left((\varphi(X_i) Z_i) \hat{I}_n^{(cv)} \right)^2$.

Rem. Cela comprend Monte-Carlo : $Z_1 = 0$, et les variables antithétiques : $Z_1 = \frac{1}{2}(\varphi(X_1) - (\varphi \circ L)(X_1))$.

Rem. VC est plus performante que MC si $Var(\varphi(X_1) - Z_1) \leq Var(\varphi(X_1))$.

Pour prévenir d'une mauvaise variable de contrôle, on définit l'estimateur $\frac{1}{n}\sum_{i=1}^{n}(\varphi(X_i)-\beta Z_i)$, à utiliser si $\operatorname{Var}(\varphi(X_1)-\beta Z_1) \leqslant \operatorname{Var}(\varphi(X_1))$. C'est vérifié avec $\beta^* = \operatorname{arg\,min}_{\beta}\operatorname{Var}(\varphi(X_1)-\beta Y_1) = \operatorname{E}[\varphi(X_1)Z_1]/\operatorname{E}[Z_1^2]$.

3.1 Propriétés asymptotiques : $Z_1 \in \mathbb{R}^m$

On estime $I = \mathbf{E}[\varphi(X_1)]$ par $\hat{I}_n^{(cv)}(\beta) = \frac{1}{n} \sum_{i=1}^n (\varphi(X_i) - \beta^T Z_i)$ où $\beta \in \mathbf{R}^m$ et $\mathbf{E}Z_1 = 0$.

La valeur théorique pour minimiser la variance, si $\mathbf{E} \left[Z_1 Z_1^\mathsf{T} \right]$ est inversible, est $\beta^* = \mathbf{E} \left[Z_1 Z_1^\mathsf{T} \right]^{-1} \mathbf{E} \left[Z_1 \varphi(X_1) \right]$. En pratique on l'estime. Notons $Z_{n,m} = \begin{pmatrix} Z_1 & \cdots & Z_n \end{pmatrix}^\mathsf{T} \in \mathbf{R}^{n \times m}$, et $\varphi_i = (\varphi(X_1), \dots, \varphi(X_n))^\mathsf{T} \in \mathbf{R}^n$.

Alors $\hat{\beta}_n = (Z_{n,m}^\mathsf{T} Z_{n,m})^+ Z_{n,m}^\mathsf{T} \varphi_n = \left(\frac{1}{n} \sum Z_i Z_i^\mathsf{T}\right)^{-1} \frac{1}{n} \sum Z_i \varphi(X_i)$ (en notant A^+ l'inverse généralisé de A).

Prop. Supposons $\mathbf{E}|\varphi(X_1)| < \infty$, $\forall k \in [[1;m]], \mathbf{E}|\varphi(X_1)Z_{k,1}| < \infty$ et $\mathbf{E}[Z_1Z_1^{\mathsf{T}}]$ existe et est inversible. Alors $\hat{I}_n^{(cv)}(\hat{\beta}_n) \xrightarrow{\mathrm{p.s.}} I$ (fortement consistant). Si de plus $\mathbf{E}|\varphi(X_1)|^2 < \infty$, alors $\sqrt{n} \Big(\hat{I}_n^{(cv)}(\hat{\beta}_n) - I \Big) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma_m^2)$ avec $\sigma_m^2 = \mathrm{Var} \Big(\varphi(X_1) - \beta^{*\mathsf{T}} Z_1 \Big)$.

Rem. L'estimation de $\hat{\beta}_n$ n'a pas d'effet en l'asymptotique (c'est comme si on connnaissait β^*). *Rem.* D'autres estimateurs de β^* peuvent être légitimes sous condition d'inversibilité et de consistance.

Rem. On a $\forall m \geqslant 0$, $\sigma_{m+1} \leqslant \sigma_m$ et σ_0^2 correspond à la variance de Monte-Carlo. Un estimateur de la variance de $\hat{I}_n^{(cv)}(\hat{\beta}_n)$ est donné par $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(\varphi(X_i) - \hat{\beta}_n^\mathsf{T} Z_i - \hat{I}_n^{(cv)}(\hat{\beta}_n) \right)^2$.

Prop. Supposons $\mathbf{E}|\varphi(X_1)|^2 < \infty$, $\forall k \in [[1;m]], \mathbf{E}|\varphi(X_1)Z_{k,1}| < \infty$ et $\mathbf{E}[Z_1Z_1^{\mathsf{T}}]$ est inversible. Alors $\hat{\sigma}^2 \xrightarrow[n \to \infty]{} \sigma_m^2$.

3.2 Complexité du calcul

Règles du temps de calcul : générer X_1 , générer $Z_{1,k}$ pour un k et évaluer $\varphi(X_1)$ comptent chacun pour une opération élémentaire.

Méthode	Nombre d'opérations élémentaires
Monte Carlo	O(n)
Calcul de \hat{eta}_n	$O(m^2n + m^3)$

Variables de contrôle (avec $\hat{\beta}_n$ donné) O(mn)

Donc la méthode avec variable de contrôle est mieux que Monte Carlo lorsque $\frac{\sigma_m}{\sigma_0} \leqslant \frac{1}{m}$.

4 Échantillonage préférentiel

Contexte : estimation de $I_{\lambda} = \int \varphi \, d\lambda$ où $\varphi \colon S \to \mathbf{R}$ est intégrable et $S \subseteq \mathbf{R}^d$.

Def. Si $g: \mathbb{R}^d \to \mathbb{R}$, on définit son support comme l'ensemble fermé $S_g = \{x \in \mathbb{R}^d \mid g(x) \neq 0\}$.

L'échantillonage d'importance se base sur la formule suivante : pour toute densité f telle que $S_f \supset S_{\varphi}$,

$$I_{\lambda} = \int_{S_{\varphi}} \varphi(x) \, \mathrm{d}x = \int_{S_{f}} \varphi(x) \, \mathrm{d}x = \int_{S_{f}} \frac{\varphi(x)}{f(x)} f(x) \, \mathrm{d}x = \mathbf{E}_{X \sim f} \left[\frac{\varphi(X)}{f(X)} \right]$$

L'échantillonage d'importance "naïf" consiste à générer $X_1, \dots, X_n \sim f$ i.i.d puis appliquer Monte-Carlo :

$$\hat{I}_n^{(is)} = \frac{1}{n} \sum_{i=1}^n \frac{\varphi(X_i)}{f(X_i)}.$$

La distribution associée à f est appelée distribution d'échantillonage, ou bien l'échantilloneur.

Prop. Si $\int |\varphi| < \infty$ et $S_{\varphi} \subseteq S_f$, $\hat{I}_n^{(is)} \xrightarrow{\text{p.s.}} I_{\lambda}$. Si de plus $\int \frac{\varphi^2(x)}{f(x)} dx < \infty$ alors :

•
$$\sqrt{n} \left(\hat{I}_n^{(is)} - I_{\lambda} \right) \xrightarrow{\mathcal{L}} \mathcal{N} \left(0, r_f^2(\varphi) \right) \text{ avec } r_f^2(\varphi) = \text{Var} \left(\frac{\varphi}{f} \right) = \int \left(\frac{\varphi(x)}{f(x)} - I_{\lambda} \right)^2 f(x) \, \mathrm{d}x$$

•
$$\frac{\sqrt{n}}{\hat{r}_n} \left(\hat{I}_n^{(is)} - I_{\lambda} \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$
 avec $\hat{r}_n^2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{\varphi(X_i)}{f(X_i)} - \hat{I}_n^{(is)} \right)^2$ l'estimateur de la variance.

Cette méthode est naïve car f n'est pas choisie par rapport à φ .

Rem. Si on cherche $\mathbf{E}[\varphi(Z)]$ où $Z \sim g$, alors prendre $g \cdot \varphi$ à la place de φ .

Par ailleurs il existe deux méthodes de réduction de la variance où l'on s'adapte à φ :

- variable de contrôle : approcher φ dans une certaine base \to pas de choix d'échantilloneur,
- changer la mesure d'échantillonage.

4.1 Réduction de la variance

On remarque que $r_f^2(\varphi) = 0 \iff \varphi/f \stackrel{\text{p.p}}{=} I_{\lambda}$.

Th. Si $\int |\varphi| < \infty$, alors parmi les densités f telle que $\int \frac{\varphi^2}{f} d\lambda < \infty$, i.e. $S_{\varphi} \subseteq S_f$, le minimiseur de $r_f^2(\varphi)$ est unique et donné par $f^* = \frac{|\varphi|}{\int |\varphi| d\lambda}$. La variance associée est $r_{f^*}^2(\varphi) = \left(\int |\varphi| d\lambda\right)^2 - \left(\int \varphi d\lambda\right)^2$.

4.2 Échantillonage préférentiel paramétrique

On se donne une famille paramétrique $\mathcal{F} = \{f_{\theta}, \theta \in \Theta\}$ de densités par rapport à la mesure de Lebesgue pour lesquelles on sait générer des v.a, avec $\Theta \subset \mathbf{R}^q, q \geqslant 1$. On suppose $\forall \theta \in \Theta, S_{\varphi} \subseteq S_{f_{\theta}}$.

Soit $\theta^* \in \operatorname{arg\,min}_{\theta \in \Theta} r_{f_\theta}^2(\varphi) = \operatorname{arg\,min}_{\theta \in \Theta} \int \frac{\varphi^2}{f_\theta} \, \mathrm{d}\lambda$. On cherche à estimer par simulation cette variance. On utilise l'algorithme suivant, avec en entrée $n \in \mathbf{N}^*$, \mathcal{F} et f_0 l'échantillon initial.

(i) Soit $n_1 < n$ et $n_2 = n - n_1$. Générer $X_1, ..., X_{n_1} \sim f_0$ i.i.d.

(ii) Calculer
$$\hat{\theta}_{n_1}^{(1)} = \operatorname{arg\,min}_{\theta \in \Theta} \hat{\psi} n_1^{(1)}(\theta)$$
 où $\hat{\psi}_{n_1}^{(1)}(\theta) := \frac{1}{n_1} \sum_{i=1}^{n_1} \frac{\varphi(X_i)^2}{f_{\theta}(X_i) f_{\theta}(X_i)}$.

(iii) Générer $Z_1, \ldots, Z_{n_2} \sim f_{\hat{\theta}_{n_1}}$

(iv) Calculer
$$\frac{1}{n_2} \sum_{i=1}^{n_2} \frac{\varphi(Z_i)}{f_{\hat{\theta}_{n_1}^{(1)}}(Z_i)}$$
 ou $\frac{1}{n} \left(\sum_{i=1}^{n_1} \frac{\varphi(X_i)}{f_0(X_i)} + \sum_{i=1}^{n_2} \frac{\varphi(Z_i)}{f_{\hat{\theta}_{n_1}^{(1)}}(Z_i)} \right)$.

On peut aussi utiliser la méthode par vraisemblance où l'on remplace $\hat{\psi}_{n_1}^{(1)}$ par $\hat{\psi}_{n_1}^{(2)}$: $\theta \mapsto \frac{1}{n_1} \sum_{i=1}^{n_1} \ln \left(\frac{f_{\theta}(X_i)}{|\varphi(X_i)|} \right) \frac{|\varphi(X_i)|}{f_{\theta}(X_i)}$. On appelle $\hat{I}_{n,1}^{(is)}$ et $\hat{I}_{n,2}^{(is)}$ les deux estimateurs obtenus. Lem. Supposons Θ compact, ψ continue sur Θ , qu'il existe un unique $\theta^* \in \arg\min_{\theta \in \Theta} \psi(\theta)$,

Lem. Supposons Θ compact, ψ continue sur Θ , qu'il existe un unique $\theta^* \in \arg\min_{\theta \in \Theta} \psi(\theta)$, que $\sup_{\theta \in \Theta} \left| \hat{\psi}(\theta) - \psi(\theta) \right| \xrightarrow{\mathbf{P}} 0$ et que $\hat{\theta}_{n_1}$ minimise $\hat{\psi}$. Alors $\left| \hat{\theta}_{n_1} - \theta^* \right| \xrightarrow{\mathbf{P}} 0$.

Prop. $\hat{I}_{n,1}^{(is)}$ et $\hat{I}_{n,2}^{(is)}$ sont des estimateurs sans biais de I_{λ} .

Prop. Soit $v_0 = \operatorname{Var}\left(\frac{\varphi(X_1)}{f_0(X_1)}\right)$. Supposons $v_0 < \infty$ et $\sup_{\theta \in \Theta} \int \frac{\varphi(x)^2}{f_\theta(x)} \, \mathrm{d}x < \infty$. Alors on a $\operatorname{Var}\left(\hat{I}_{n,1}^{(is)}\right) = \frac{1}{n_2} \left(\operatorname{E}[\psi^{(1)}(\hat{\theta}_{n_1})] - I_\lambda^2 \right)$ et $\operatorname{Var}\left(\hat{I}_{n,2}^{(is)}\right) = \frac{1}{n^2} \left[n_1 v_0 + n_2 \left(\operatorname{E}[\psi^{(1)}(\hat{\theta}_{n_1})] - I_\lambda^2 \right) \right]$.

Prop. Supposons $\mathbf{E} \left[\psi^{(1)}(\hat{\theta}_{n_1}) - \psi^{(1)}(\theta^*) \right] = \frac{\sigma^2}{n_1} + o\left(\frac{1}{n_1}\right)$ et $v_0 > v(\theta^*) = \psi^{(1)}(\theta^*) - I_{\lambda}^2$. On a :

$$\lim_{n} \sqrt{n} \inf_{1 \leqslant n_1 \leqslant n} \left(\mathbf{E} \left[n \left(\hat{I}_{n,2}^{(is)} - \int \varphi \right)^2 \right] - \mathbf{E} \left[n \left(\hat{I}_n^{(is*)} - \int \varphi \right)^2 \right] \right) = 2\sigma \sqrt{v_0 - v(\theta^*)}$$

si $v(\theta^*) > 0$,

$$\lim_{n} \sqrt{n} \inf_{1 \leqslant n_{1} \leqslant n} \left(\mathbf{E} \left[n \left(\hat{I}_{n,1}^{(is)} - \int \varphi \right)^{2} \right] - \mathbf{E} \left[n \left(\hat{I}_{n}^{(is*)} - \int \varphi \right)^{2} \right] \right) = 2\sigma \sqrt{v(\theta^{*})}$$

et si $v(\theta^*) = 0$,

$$\lim_{n} n \inf_{1 \leqslant n_1 \leqslant n} \mathbf{E} \left[n \left(\hat{I}_{n,1}^{(is)} - \int \varphi \right)^2 \right] = 4\sigma^2$$

La complexité est en $O(n + n_1^2 + n_2) = O(n)$.