Module 7. An Introduction to Powder Metallurgy

Extracted from: https://www.youtube.com/watch?v=q7fE343QYP4

WHAT MANUFACTURING OPTIONS DO WE HAVE TO MAKE A SELF LUBRICATED BEARING FOR THESE HIGH-SPEED SPINNING DISKS IN A CHEMICAL REACTOR?

WHAT MANUFACTURING OPTIONS DO WE HAVE TO MAKE A SELF® LUBRICATED BEARING FOR THESE HIGH-SPEED SPINNING DISKS IN A CHEMICAL REACTOR?

Self Lubricant Material, Porous Oil-Impregnated Bronze

(Bearing Pad for High Speed Rotating Disks)

WHAT MANUFACTURING OPTIONS DO WE HAVE TO MAKE THIS?

A Complex Part in a Spherical Parallel Robot

EXAMPLE OF PM PARTS

Car Connecting Rod

Parts in Automotive Carrier System, and Clutches

EXAMPLE OF PM PARTS

Stator Core for Electric Motors,

Made from soft magnetic composite,
and Iron

Rotor core for hybrid electric motors,

Made from Copper steel

PM PARTS EVERY WHERE

Extracted from: https://www.youtube.com/watch?v=q7fE343QYP4

Zero waste

- Zero waste
- Produced to net shape, eliminating the need for post processing

- Zero waste
- Produced to net shape, eliminating the need for post processing
- Production of porous metal parts, such as oil-impregnated bearing and self lubricated gears

- Zero waste
- Produced to net shape, eliminating the need for post processing
- Production of porous metal parts, such as oil-impregnated bearing and self lubricated gears
- Making parts with certain metals such as Tungsten (difficult to fabricate by other methods)

- Zero waste
- Produced to net shape, eliminating the need for post processing
- Production of porous metal parts, such as oil-impregnated bearing and self lubricated gears
- Making parts with certain metals such as Tungsten (difficult to fabricate by other methods)
- Metal alloy combinations can be formed

- Zero waste
- Produced to net shape, eliminating the need for post processing
- Production of porous metal parts, such as oil-impregnated bearing and self lubricated gears
- Making parts with certain metals such as Tungsten (difficult to fabricate by other methods)
- Metal alloy combinations can be formed
- Dimensional accuracy with tolerance $\pm 0.1mm$ can be achieved.

- Zero waste
- Produced to net shape, eliminating the need for post processing
- Production of porous metal parts, such as oil-impregnated bearing and self lubricated gears
- Making parts with certain metals such as Tungsten (difficult to fabricate by other methods)
- Metal alloy combinations can be formed
- Dimensional accuracy with tolerance $\pm 0.1mm$ can be achieved.
- PM process can be automated.

PRODUCTION OF METALLIC POWDER

PRODUCTION OF METALLIC POWDER

- Blending or Mixing
- Add lubricant (oil)
- Pressing
- Sintering

- Blending or Mixing
- Add lubricant (oil)
- Pressing
- Sintering

Extracted from: https://www.youtube.com/watch?v=07U4HWjYcqo

- Blending or Mixing
- Add lubricant (oil)
- Pressing
- Sintering

Required Pressure:

- Ferrous Powder: 400-700 MPa
- Aluminium alloy Powder: 100-400 MPa
- Copper and Bronze alloy: 400 MPa

- Blending or Mixing
- Add lubricant (oil)
- Pressing
- Sintering

Extracted from: https://www.youtube.com/watch?v=07U4HWjYcqo

- Blending or Mixing
- Add lubricant (oil)
- Pressing
- Sintering

- Blending or Mixing
- Add lubricant (oil)
- Pressing
- Sintering

Extracted from: https://www.youtube.com/watch?v=PetwxkqM-kQ

1. Machining

For geometrical features that cannot be achieved by pressing, like threats, side

holes

2. Oil Impregnation

For self-lubricated bearing or gears, usually Bronze or Iron about 10% volume oil, by immersing the sintered parts in a bath of hot oil.

3. Infiltration

3. Infiltration

By Polymer

For pressure tight parts, Liquid Polymer seep into the pore spaces and then solidify.

3. Infiltration

By Polymer

For pressure tight parts, Liquid Polymer seep into the pore spaces and then solidify.

By Other Metal

For improve toughness, strength or other physical properties, The pores of PM part are filled with a molten metal, the melting point of filler must be below that of the PM part

Part Features to avoid:

Part Features to avoid:

Outside Corner radius

Part Features to avoid:

Outside Corner radius

Recommended

