Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan IR Book, Chapter 17: Hierarchical Clustering (Slides modified by Scott Sanner)

Dendrogram: Hierarchical Clustering Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Hierarchical Agglomerative Clustering (HAC)

Starts with each doc in a separate cluster
then repeatedly joins the closest pair of clusters, until there is only one cluster.

The history of merging forms a binary tree or hierarchy.

Closest pair of clusters

Many variants to defining closest pair of clusters

Single-link
Similarity of the most cosine-similar (single-link)

Complete-link
Similarity of the "furthest" points, the least cosine-similar

Centroid
Clusters whose centroids (centers of gravity) are the most cosine-similar

Average-link
Average cosine between pairs of elements

Single Link Agglomerative Clustering

• Use maximum similarity of pairs: $sim(c_i,c_j) = \max_{\substack{x \in c_i, y \in c_j \\ \text{(long and thin) clusters}}} sim(x,y)$ • Can result in "straggly" (long and thin) clusters due to chaining effect.

• After merging c_i and c_j , the similarity of the resulting cluster to another cluster, c_k , is: $sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$

ntroduction to Information Retrieva

Sec. 17.2

Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is O(N²).
- In each of the subsequent N-2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(N²) performance, computing similarity to each other cluster must be done in constant time.
 - Often $O(N^3)$ if done naively or $O(N^2 \log N)$ if done more cleverly

troduction to Information Retrieva

Centroid HAC

- •The similarity of two clusters is the average intersimilarity the average similarity of documents from the first cluster with documents from the second cluster.
- •A naive implementation of this definition is inefficient ($O(N^2)$), but the definition is equivalent to computing the similarity of the centroids:

SIM-CENT
$$(\omega_i, \omega_j) = \vec{\mu}(\omega_i) \cdot \vec{\mu}(\omega_j)$$

- •Hence the name: centroid HAC
- Note: this is the dot product, not cosine similarity!

4

14

ntroduction to Information Retrieva

Exercise: Compute centroid clustering

troduction to Information Retrievo

Centroid clustering

ntroduction to Information Retrieval

The Inversion in centroid clustering

- In an inversion, the similarity increases during a merge sequence. Results in an "inverted" dendrogram.
- ■Below: Similarity of the first merger $(d_1 \cup d_2)$ is -4.0, similarity of second merger $((d_1 \cup d_2) \cup d_3)$ is \approx -3.5.

troduction to Information Retrieva

Inversions

- •Hierarchical clustering algorithms that allow inversions are inferior.
- The rationale for hierarchical clustering is that at any given point, we've found the most coherent clustering of a given size.
- •Intuitively: smaller clusterings should be more coherent than larger clusterings.
- •An inversion contradicts this intuition: we have a large cluster that is more coherent than one of its subclusters.

1

Introduction to Information Retrieva

Sec. 17

Group-average agglomerative clustering (GAAC)

- GAAC also has an "average-similarity" criterion, but does not have inversions
- Similarity of two clusters = average similarity of all pairs within merged cluster.

$$sim(c_i, c_j) = \frac{1}{|c_i \cup c_j|} \sum_{\vec{x} \in (c_i \cup c_j)} \sum_{\vec{y} \in (c_i \cup c_j)} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link.
- Two options:
 - Averaged across all ordered pairs in the merged cluster
 - Averaged over all pairs between the two original clusters
- No clear difference in efficacy

ntroduction to Information Retrieval

Sec. 17.3

Computing Group Average Similarity

Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

Can compute similarity of clusters in constant time!

$$sim(c_i, c_j) = \frac{(\vec{s}(c_i) + \vec{s}(c_j)) \bullet (\vec{s}(c_i) + \vec{s}(c_j)) - (|c_i| + |c_j|)}{(|c_i| + |c_j|)(|c_i| + |c_j| - 1)}$$

Introduction to Information Retrieval

Which HAC clustering should I use?

- •Don't use centroid HAC because of inversions.
- •In most cases: GAAC is best since it isn't subject to chaining and sensitivity to outliers.
- •However, we can only use GAAC for vector representations.
- •For other types of document representations (or if only pairwise similarities for document are available): use complete-link.
- *There are also some applications for single-link (e.g., duplicate detection in web search).

21

Flat or hierarchical clustering?

- \blacksquare For high efficiency, use flat clustering (or perhaps bisecting k-means)
- •For deterministic results: HAC
- •When a hierarchical structure is desired: hierarchical algorithm
- *HAC also can be applied if K cannot be predetermined (can start without knowing K)

22

22

ntroduction to Information Retrieva

Outline

- Recap
- 2 Introduction
- Single-link/ Complete-link
- 4 Centroid/ GAAC
- S Variants
- 6 Labeling clusters

2

Efficient single link clustering

```
SINGLELINK CLUSTERING (d_1, ..., d_N)

1 for n \leftarrow 1 to N

2 do for i \leftarrow 1 to N

3 do C[n][j] sim \leftarrow SIM(d_n, d_i)

4 C[n][j] sim \leftarrow SIM(d_n, d_i)

5 I[n] \leftarrow n

8 for n \leftarrow 1 to N - 1

9 do i_1 \leftarrow arg \max_{i \neq i \neq j = 1} NBM[i] sim

10 i_2 \leftarrow I[NBM[i_1] index]

11 A.APPEND((i_1, i_2))

12 for i \leftarrow 1 to N

13 do if I[j] = i \land i \neq j, \land i \neq j_2

14 then C[i_1][j], sim \leftarrow C[i_1][i], sim \leftarrow \max_i C[i_2][i]. sim, C[i_2][i]. sim)

15 if I[i] = j_2

16 then I[i] \leftarrow arg \max_{X \in C[i_1][i] = i \land i \neq j_1} X. sim
```

ntraduction to Information Retrieva

Time complexity of HAC

- •The single-link algorithm we just saw is $O(N^2)$.
- •Much more efficient than the $O(N^3)$ algorithm we looked at earlier!
- ${\color{red}^{\bullet}}$ There is no known $O(N^2)$ algorithm for complete-link, centroid and GAAC.
- Best time complexity for these three is $O(N^2 \log N)$: See book.
- In practice: little difference between $O(N^2 \log N)$ and $O(N^2)$.

25 25

Introduction to Information Retriev

Combination similarities of the four algorithms

$sim(\ell, k_1, k_2)$
$\max(\operatorname{sim}(\ell, k_1), \operatorname{sim}(\ell, k_2))$
$\min(\operatorname{sim}(\ell, k_1), \operatorname{sim}(\ell, k_2))$
$\begin{array}{l} \max(\operatorname{sim}(\ell,k_1),\operatorname{sim}(\ell,k_2)) \\ \min(\operatorname{sim}(\ell,k_1),\operatorname{sim}(\ell,k_2)) \\ (\frac{1}{M_m}\vec{v}_m) \cdot (\frac{1}{N_\ell}\vec{v}_\ell) \end{array}$
$\frac{1}{(N_m + N_{\ell})(N_m + N_{\ell} - 1)} [(\vec{v}_m + \vec{v}_{\ell})^2 - (N_m + N_{\ell})]$

ntroduction to Information Retrieval

Comparison of HAC algorithms

method	combination similarity	time compl.	optimal?	comment
single-link	max intersimilarity of any 2 docs	Θ(N ²)	yes	chaining effect
complete-link	min intersimilarity of any 2 docs	Θ(N² log N)	no	sensitive to outliers
group-average	average of all sims	⊖(N² log N)	no	best choice for most applications
centroid	average intersimilarity	Θ(N² log N)	no	inversions can occur

27

troduction to Information Retrievo

What to do with the hierarchy?

- •Use as is (e.g., for browsing as in Yahoo hierarchy)
- Cut at a predetermined threshold
- Cut to get a predetermined number of clusters K
 Ignores hierarchy below and above cutting line.

25

troduction to Information Retrieval

Divisive Clustering:

Bisecting K-means: A top-down algorithm

- Start with all documents in one cluster
- ■Split the cluster into 2 using K-means
- •Of the clusters produced so far, select one to split (e.g. select the largest one)
- Repeat until we have produced the desired number of clusters

Introduction to Information Retriev

Bisecting K-means

 ${\tt BISECTINGKMEANS}(d_1,\ldots,d_N)$

- 1 $\omega_0 \leftarrow \{\vec{d}_1, \ldots, \vec{d}_N\}$
- 2 *leaves* $\leftarrow \{\omega_0\}$
- 3 for $k \leftarrow 1$ to K-1
- 4 **do** $\omega_k \leftarrow \text{PickClusterFrom}(\textit{leaves})$
- 5 $\{\omega_i, \omega_j\} \leftarrow \text{KMeans}(\omega_k, 2)$
- leaves \leftarrow leaves $\setminus \{\omega_k\} \cup \{\omega_i, \omega_j\}$
- 7 **return** leaves

30

ntroduction to Information Retrieva

Bisecting K-means

- If we don't generate a complete hierarchy, then a top-down algorithm like bisecting K-means is much more efficient than HAC algorithms.
- ■But bisecting K-means is not deterministic.
- •There are deterministic versions of bisecting K-means (see resources at the end), but they are much less efficient.

31

31

ntroduction to Information Retriev

Outline

- 1 Recap
- 2 Introduction
- Single-link/ Complete-link
- 4 Centroid/ GAAC
- S Variants
- 6 Labeling clusters

22

ntroduction to Information Retrieval

Major issue in clustering - labeling

- After a clustering algorithm finds a set of clusters: how can they be useful to the end user?
- •We need a pithy label for each cluster.
- •For example, in search result clustering for "jaguar", The labels of the three clusters could be "animal", "car", and "operating system".
- •Topic of this section: How can we automatically find good labels for clusters?

33

33

troduction to Information Retrieva

Exercise

- Come up with an algorithm for labeling clusters
- •Input: a set of documents, partitioned into K clusters (flat clustering)
- Output: A label for each cluster
- ■Part of the exercise: What types of labels should we consider? Words?

34

34

ntroduction to Information Retrieval

Discriminative labeling

- •To label cluster ω , compare ω with all other clusters
- ullet Find terms or phrases that distinguish ω from the other clusters
- **"**We can use any of the feature selection criteria we introduced in text classification to identify discriminating terms: mutual information, χ^2 and frequency.
- (but the latter is actually not discriminative)

35

35

ntroduction to Information Retrieval

Non-discriminative labeling

- Select terms or phrases based solely on information from the cluster itself
- ■Terms with high weights in the centroid (if we are using a vector space model)
- •Non-discriminative methods sometimes select frequent terms that do not distinguish clusters.
- ${}^{\blacksquare} \text{For example, MONDAY, TUESDAY, } \ldots$ in newspaper text

36

-

Introduction to Information Retrieva

Using titles for labeling clusters

- ■Terms and phrases are hard to scan and condense into a holistic idea of what the cluster is about.
- Alternative: titles
- •For example, the titles of two or three documents that are closest to the centroid.
- •Titles are easier to scan than a list of phrases.

37

37

Cluster labeling: Example								
		labeling method						
	# docs	centroid	mutual information	title				
4	622	oil plant mexico production crude power 000 refinery gas bpd	plant oil production barrels crude bpd mexico dolly capacity petroleum	MEXICO: Hurricane Dolly heads for Mexico coast				
9	1017	police security russian people military peace killed told grozny court	police killed military security peace told troops forces rebels people	RUSSIA: Russia's Lebed meets rebel chief in Chechnya				
10	1259	00 000 tonnes traders futures wheat prices cents september tonne	delivery traders futures tonne tonnes desk wheat prices 000 00	USA: Export Business - Grain/oilseeds complex				
	 Three methods: most prominent terms in centroid, differential labeling using MI, title of doc closest to centroid All three methods do a pretty good job. 							

roduction to injormation hetrieva

Resources

- ■Chapter 17 of IIR
- Resources at http://ifnlp.org/ir
 - *Columbia Newsblaster (a precursor of Google News): McKeown et al. (2002)
 - Bisecting K-means clustering: Steinbach et al. (2000)
 - ${\tt =PDDP}$ (similar to bisecting ${\it K-means};$ deterministic, but also less efficient): Saravesi and Boley (2004)

39

39