CNN2値分類モデルの利用

Kentaro Fujita

欠陥検出手法

• CNN2値分類モデルの利用

傷画像

----- 学習していない画像の場合 ----

○ に近い値を予測

1に近い値を予測

正常領域

傷領域

CNN2値分類モデルの実装

• 損失関数 Binary Cross Entropy

$$L = -t \log y - (1-t) \log(1-y)$$

・ネットワーク構造

項目	値
ブロックサイズ	32 × 32
学習エポック数	10
バッチサイズ	32
フィルター数	32
フィルターサイズ	2 × 2
フィルターストライド	2

学習・検査手法

• 学習

学習画像からランダム位置のブロックを切り出し学習

⇒ 学習データの分散を変えず、サンプル数を増やすため

• 検査

検査画像を<mark>格子状</mark>に切り出し、<u>半ブロックずらしつつ</u>検査

⇒ 欠陥領域の見逃しを防ぐため

全体的に値が小さい

⇒ 傷を正しく

学習できていない

まとめ

- 1. Class 4以外
 - ・現状,十分傷が検出可能である.
 - ⇒ 前処理が必要ない
- 2. Class 4
 - ・いずれかの前処理を施す必要がある.
- ・コメント

傷画像が十分に用意できる場合、この手法は有用であるといえる。

一方で、 傷サンプルが豊富な例は多くない.