Index

advective–diffusive balance, 39, 248–250	dissipation
amplitude ratio, 119	kinetic energy, of, 234
anisotropy of salt fingers, 241–243	ratio, 238
Antarctica, 185, 270–273	thermal variance, 236
applied flux, 189, 192–193	double-diffusion. See double-diffusive convection
Arctic Ocean, 165, 269–270	double-diffusive convection
	biogeochemical applications, 263-266
baroclinicity, effects of, 127–130	general concept, 1
Beaufort Gyre, 185, 221	in astrophysics, 276–286
biological productivity, 16, 264, 265	in chemistry, 295–299
Black Sea, 188, 273	in geology and geophysics, 286–295
<i>B</i> -merger, 153, 202, 209–210	in material science and engineering, 299-306
buoyancy Reynolds number, 238	in porous media, 294–295
	interaction with shear, 217–221
Caribbean	interaction with turbulence, 221-228
Sheets and Layers Transects (C-SALT), 173, 178,	large-scale consequences, 248–273
180, 191, 193, 217–218, 221, 233, 243, 244–247,	microstrucure signatures, 228–241
261–262	
staircase, 176, 246, 261	efficiency factor, 235
Chen scale, 147, 151, 152	elevator modes, 18
collective instability, 11, 34, 36, 93–107	empirical models, 47
definition, 93	energy production, 234
parametric model, 96–97	
physical mechanism, 98–99	fingering convection
core-mantle boundary (CMB), 293-294	instability conditions, 18
Cox number, 237	microstrucuture signatures, 228-241
crystallization, 289-292	parameterizations, 47
	physical mechanism, 4
D" layer, 293	flux ratio, 22–27
density ratio, 12	flux Richardson number, 235
differentiation, 289–290	flux-gradient laws, 33–34, 195
diffusive convection	four-thirds flux law, 60-62
instability conditions, 18	fractionation, 290
oscillatory, 7–8	freckle formation, 300–301
physical mechanisms, 7–9	
diffusive density ratio, 13	γ -instability, 115–117, 195–201
diffusive layering, 9, 19, 180–189	growth rate
diffusivity ratio, 12	balance, 43–45
direct numerical simulations (DNS), 38, 44, 47-50,	collective instability, 97, 101–102
103, 138–142, 199–202, 242, 278, 280, 285	diffusive, 18

340

Index 341

fingering, 17	mixing of nutrients, 16, 264–268
intrusion, 111	mode waters, 263
layer-merging, 205	morphological instabilities, 299–300
secondary instabilities, 43	multiscale analysis, 94, 121–125
Hele-Shaw cell, 307	non-convective zone (NCZ), 304, 305
high Prandtl number system, 287–289	North Atlantic Tracer Release Experiment (NATRE),
H-merger, 153, 209–210	240–241
Holyer modes, 35	Nusselt number, 33, 61
homogeneous convection, 49	
hydro-chemical systems, 296–298	optical observations, 173, 217
Ice-Tethered Profiler (ITP) program, 182	parametric models, 96–97, 102, 110, 115, 117, 120,
igneous rocks, 287, 293	132, 135–137, 200
interfaces	Philippines Sea, 268
diffusive, 69-75, 138, 153, 185, 190	planetary pollution, 284–285
fingering, 62–69, 173, 176, 190	planform selection, 21, 65, 84–86
interfacial flux laws. See four-thirds flux law	Prandtl number, 12
interleaving. See intrusions, thermohaline	production–dissipation balance, 160, 236
intermittency coefficient, 222	profiler approximation, 242–243
intrusions, thermohaline, 108–170	Desiries Démand accessées 11
molecularly-driven, 28–30 observations, 155–170	Rayleigh–Bénard convection, 11
physical mechanism, 112–115	Rayleigh number, 11, 62, 79 Red Sea, 188
scales, 117–120	Richardson number, 34
inverse model, 243–247	rotation, effects of, 126–127
isotropy assumption, 235, 237	100000, 0110000 01, 120 127
1, , , , , , , , , , , , , , , , , , ,	Salt Finger Tracer Release Experiment (SFTRE),
Jevons, Stanley, 5	173–176, 261
Jovian planets, 282	salt fountain, 2, 266–268
Joyce interleaving model, 159–161	Sargasso Sea, 230, 233
	Schwarzschild criterion, 277
Kelvin–Helmholtz instability, 101, 138, 140,	sedimentation, 306
225	seismic imaging, 161–164, 167, 180
kurtosis, 230	semiconvection
	planetary, 281–283
laboratory experiments	stellar, 277–281
crystallization, 290, 291	shadowgraph, 57, 63, 91, 173, 217, 220, 228
diffusive, 8, 70–72 fingering, 5, 27, 51–57, 62–67	sidewall heating experiments, 151–155 similarity interleaving solution, 120–121
in reactive systems, 296–299	solar ponds, 299, 302–306
interleaving, 114, 143, 146, 149–151, 153	solidification of metal alloys, 299–302
Lake Kivu, 186–188	spectral slope, 230, 233–234
Lake Nyos, 186–188	spiciness, 166, 258
Laputa Project, 266–268	staircases, thermohaline
laterally bounded fronts, 143-151	evolution, 204–210
layer-merging events, 142, 153, 170, 179, 185, 202,	observations, 172–189
204–210	origins, 189–204
Ledoux criterion, 277	standard non-dimensionalization, 12
1 1 206 202	Stern number, 34, 93
magma chambers, 286–293 meddy Sharon, 132, 157, 161, 163, 221, 239	Stern, Melvin, 4, 5, 6
Mediterranean outflow, 173, 180, 229	sub-interfaces, 221
Meridional Overturning Circulation (MOC), 249, 251,	temperature variance equation, 160, 236–237
253. 254	thermal barrier, 271, 272
metastable equilibria, 189, 191–192	thermal wind balance, 129
microstructure measurements, 229–234, 239–241	thermocline theory, 248–251
mini-staircases, 222	thermohaline Rayleigh number, 90

342 Index

T–S relation, 255–261
turbulence, effects of. See double-diffusive
convection, interaction with turbulence
turbulent kinetic energy (TKE) equation,
234–236
Turner angle, 13–16
two-layer system, 58–75
Tyrhenian Sea, 172, 178, 208, 262,

unbounded model, 32–57 upper bound theory, 83

variational principles, 83 vertically bounded model, 76–92

weakly nonlinear models, 37–39, 85, 86 Weddell Polynya, 271, 272 Weddell Sea, 185, 186, 270, 271, 272