Problem statement:To predict How Best the DataFits,To Predict the accuracy of the Rainfall based on the given features

1)Data collection

```
In [34]: #Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [35]: #Reading data
 df=pd.read_csv(r"C:\Users\Jayadeep\Downloads\Rainfall.csv")
 df

Out[35]:

· 	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oc D€
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555

4116 rows × 19 columns

2)Data Cleaning and Preprocessing

In [36]: df.head()

Out[36]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980.3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716.7
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690.6
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571.0
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630.8

In [37]: df.tail()

Out[37]:

_		SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May		Oct- Dec
	4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316.6
	4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167.1
	4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177.6
	4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290.5
	4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555.4

```
In [38]: df.shape
Out[38]: (4116, 19)
```

In [39]: df.describe

Out[39]:	<box< th=""><th>d method</th><th>d NDFra</th><th>me.des</th><th>cribe o</th><th>f</th><th></th><th></th><th>SU</th><th>BDIVISIO</th><th>N YEAR</th><th>JAN</th><th>FEB</th><th>MAR</th><th>APR</th><th>MAY</th><th>JUN</th><th>\</th></box<>	d method	d NDFra	me.des	cribe o	f			SU	BDIVISIO	N YEAR	JAN	FEB	MAR	APR	MAY	JUN	\
	0	ANDAMAN				1901	49.2	87.1			528.8	517.5						
	1	ANDAMAN				1902	0.0	159.8	12.2		446.1							
	2	ANDAMAN				1903	12.7	144.0	0.0			479.9						
	3	ANDAMAN				1904	9.4	14.7	0.0			495.1						
	4	ANDAMAN				1905	1.3	0.0	3.3		279.5	628.7						
	4111			LAKSH	IADWEEP	2011	5.1	2.8	3.1		107.2	153.6						
	4112				IADWEEP	2012	19.2	0.1	1.6			327.0						
	4113			LAKSH	IADWEEP	2013	26.2	34.4	37.5			426.2						
	4114			LAKSH	IADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1						
	4115			LAKSH	IADWEEP	2015	2.2	0.5	3.7		133.1	296.6						
		JUL	AUG	SEP		NO		EC ANN		Jan-Feb	Mar-Ma							
	0	365.1	481.1	332.6		558.			3.2	136.3	560.							
	1	228.9	753.7	666.2					0.7	159.8	458.							
	2		326.7	339.0					7.4	156.7	236.							
	3		160.1							24.1	506.							
	4	368.7	330.5	297.0		25.	4 344	.7 256	6.7	1.3	309.							
											106							
	4111	350.2	254.0	255.2		184.			3.7	7.9	196.							
	4112	231.5	381.2	179.8		12.		.8 140		19.3	99.							
	4113		154.4	180.0		78.				60.6	131.							
	4114	116.1				59.				69.3	76.							
	4115	257.5	146.4	160.4	165.4	231.	0 159	.0 164	2.9	2.7	223.	9						
		Jun-Sep	Oct-	Dec														
	0	1696.3	98	0.3														
	1	2185.9	71	6.7														
	2	1874.6	69	0.6														
	3	1977.6	5 57	1.0														
	4	1624.9	63	0.8														
	• • •			• • •														
	4111	1013.0		6.6														
	4112	1119.5		7.1														
	4113	1057.6		7.6														
	4114	958.5		0.5														
	4115	860.9	55	5.4														
	[4116	rows x	19 col	umns1>														
] •														

```
In [40]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

	•	Non Null Count	Dtymo						
#	COTUIIII	Non-Null Count	Dtype						
0			object						
1	YEAR	4116 non-null							
2	JAN	4112 non-null	float64						
3	FEB	4113 non-null	float64						
4	MAR	4110 non-null	float64						
5	APR	4112 non-null	float64						
6	MAY	4113 non-null	float64						
7	JUN	4111 non-null	float64						
8	JUL	4109 non-null	float64						
9	AUG	4112 non-null	float64						
10	SEP	4110 non-null	float64						
11	OCT	4109 non-null	float64						
12	NOV	4105 non-null	float64						
13	DEC	4106 non-null	float64						
14	ANNUAL	4090 non-null	float64						
15	Jan-Feb	4110 non-null	float64						
16	Mar-May	4107 non-null	float64						
17	Jun-Sep	4106 non-null	float64						
18	Oct-Dec	4103 non-null	float64						
dtype	es: float64(1	7), int64(1), ob	ject(1)						
memory usage: 611.1+ KB									

```
In [41]: df.isnull().sum()
Out[41]: SUBDIVISION
                         0
         YEAR
                         0
         JAN
                         4
         FEB
                          3
         MAR
                          6
         APR
                          4
                          3
         MAY
         JUN
                          5
         JUL
         AUG
                          4
         SEP
                          6
         OCT
                         7
         NOV
                        11
         DEC
                        10
         ANNUAL
                        26
         Jan-Feb
                         6
         Mar-May
                         9
         Jun-Sep
                        10
         Oct-Dec
                        13
         dtype: int64
In [42]: df.fillna(method="ffill",inplace=True)
```

```
In [43]: df.isnull().sum()
Out[43]: SUBDIVISION
                         0
         YEAR
                        0
         JAN
                         0
         FEB
                         0
         MAR
                         0
         APR
                         0
         MAY
                         0
         JUN
                         0
         JUL
                         0
         AUG
                         0
         SEP
                         0
         OCT
                         0
         NOV
                         0
         DEC
                         0
         ANNUAL
         Jan-Feb
                         0
         Mar-May
                         0
         Jun-Sep
         Oct-Dec
                         0
         dtype: int64
In [44]: df['YEAR'].value_counts()
Out[44]: 1963
                 36
         2002
                 36
         1976
                 36
         1975
                 36
         1974
                 36
                  . .
         1915
                 35
         1918
                 35
         1954
                 35
         1955
                 35
         1909
                 34
         Name: YEAR, Length: 115, dtype: int64
```

3) Exploratory Data Analysis

```
In [45]: sns.lmplot(x='NOV',y='DEC',order=2,data=df,ci=None)
plt.show()
```


In [47]: sns.pairplot(df)
plt.show()

4)Training our Model

```
In [48]: x=np.array(df['FEB']).reshape(-1,1)
y=x=np.array(df['JAN']).reshape(-1,1)

In [49]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)

In [50]: lin=LinearRegression()
lin.fit(x_train,y_train)
print(lin.score(x_train,y_train))
1.0
```

5)Exploring our Results

```
In [51]: y_pred=lin.predict(x_test)
    plt.scatter(x_test,y_test,color='blue')
    plt.plot(x_test,y_pred,color='black')
    plt.show()
```


7)Working with subset of data

```
In [52]: df700=df[:][:700]
    sns.lmplot(x='FEB',y='JAN',order=2,ci=None,data=df700)
    plt.show()
```



```
In [53]: df700.fillna(method='ffill',inplace=True)
In [54]: x=np.array(df700['FEB']).reshape(-1,1)
y=x=np.array(df700['JAN']).reshape(-1,1)
In [55]: df700.dropna(inplace=True)
In [56]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.03)
lr=LinearRegression()
lr.fit(x_train,y_train)
print(lr.score(x_test,y_test))
1.0
```

```
In [57]: y_pred=lr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```


In [58]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

```
In [59]: lr=LinearRegression()
    lr.fit(x_train,y_train)
    y_pred=lr.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

The accuracy of the Linear Regression is 1.0

Ridge Regression

R2 score: 1.0

```
In [60]: #Importing Libraries
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

```
In [61]: plt.figure(figsize=(10,10))
    sns.heatmap(df700.corr(),annot=True)
    plt.show()
```

21/30


```
In [124]: features=df.columns[0:5]
          target=df.columns[-5]
In [125]: x=df[features].values
          y=df[target].values
          x train,x test,y train,y test=train test split(x,y,test size=0.30,random state=1)
          print("The dimension of X train is {}".format(x train.shape))
          print("The dimension of X test is {}".format(x test.shape))
          The dimension of X_train is (2881, 5)
          The dimension of X test is (1235, 5)
In [126]: lr = LinearRegression()
          #Fit model
          lr.fit(x train, y train)
          #predict
          actual = y test
          train score lr = lr.score(x train, y train)
          test score lr = lr.score(x test, y test)
          print("\nLinear Regression Model:\n")
          print("The train score for lr model is {}".format(train score lr))
          print("The test score for lr model is {}".format(test score lr))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

```
In [127]: ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
    #train and test scorefor ridge regression
    train_score_ridge = ridgeReg.score(x_train, y_train)
    test_score_ridge = ridgeReg.score(x_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.999999999856335 The test score for ridge model is 0.999999999840021

The accuracy of the Ridge Model is 0.99

Lasso Regression

```
In [111]: #Importing libraries
          lasso= Lasso(alpha=10)
          lasso.fit(x train,y train)
          #train and test scorefor ridge regression
          train score ls = lasso.score(x train, y train)
          test score ls= lasso.score(x test, y test)
          print("\nLasso Model:\n")
          print("The train score for lasso model is {}".format(train score ls))
          print("The test score for lasso model is {}".format(test score ls))
          Lasso Model:
          The train score for lasso model is 0.20926441972427723
          The test score for lasso model is 0.11641165762443184
In [115]: plt.figure(figsize=(10,10))
Out[115]: <Figure size 1000x1000 with 0 Axes>
In [112]: from sklearn.linear model import LassoCV
```

```
In [113]: #using the linear cv model
          from sklearn.linear model import RidgeCV
          #cross validation
          ridge cv=RidgeCV(alphas = [0.0001, 0.001, 0.01, 0.1, 1, 1, 10]).fit(x train, y train)
          #score
          print(ridge cv.score(x train,y train))
          print(ridge cv.score(x test,y test))
          0.20933102500332657
          0.11302580584341482
In [114]: #using the linear cv model
          from sklearn.linear model import LassoCV
          #cross validation
          lasso cv=LassoCV(alphas = [0.0001, 0.001, 0.01, 0.1, 1, 1, 10]).fit(x train, y train)
          #score
          print(lasso cv.score(x train,y train))
          print(lasso cv.score(x test,y test))
          0.20933102500412937
          0.11302545537871334
          C:\Users\Jayadeep\anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_descent.py:1571: DataConversionWarnin
          g: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples, ), for exa
          mple using ravel().
            y = column or 1d(y, warn=True)
```

The accuracy of the Lasso Model is 0.20

Elastic Regression

```
In [68]: from sklearn.linear_model import ElasticNet
```

The accuracy of the ElasticNet Regression is 0.99999914

CONCLUSION:

The given data is "Rain fall pridection".here we need to find the best fit model. As per the given data set I had applyed different types of models...in which different type of models got different type of accyuracies

The accuracy of the Linear Regression is 1.0

The accuracy of the Ridge Model is 0.999999999856

The accuracy of the Lasso Model is 0.20

The accuracy of the ElasticNet Regression is 0.99999914, comparing to all the models, Ridge Regression got the Highest Accuracy

Therefore Ridge Regression is the best fit for this Dataset