Vertex of the Quadratic

 $s_1 = -\frac{b}{2a}$ namely $V(s_1) = C - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{s}_{1^+}\mathsf{h}$, namely

Given a quadratic $v(s) = a s^2 + b s + c$ compute its value at

 $v(s_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = v(s_1 + h) - v(s_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $v(s) = 4 s^2 - 32 s + 63$

