Lecture 9

Least Squares Solutions

Inner Product Spaces

A linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has either:

A unique solution

Infinite number of solutions

- No solutions
 - Matrix A is constructed as a result of measurement
 - Data in A is based on Survey

- One of the main tasks in statistical analysis is to understand relations between several quantities that vary.
- Observational data are used to build and verify a formula that predicts the value of one variable as a function of other variables.
- The simplest case is the linear equation $y = \beta_0 + \beta_1 x$.
- This linear model may be useful when observed data points

$$(x_1,y_1),\ldots,(x_n,y_n)$$

lie close to a line when graphed.

The problem is to find the parameters β_0 , β_1 that makes the line $y = \beta_0 + \beta_1 x$ as 'close' to the points as possible.

Consider a line $y = \beta_0 + \beta_1 x$ for particular fixed values of β_0, β_1 .

- For each data point (x_j, y_j) there is a point $(x_j, \beta_0 + \beta_1 x_j)$ on the line with the same *x*-coordinates.
- We call y_j the observed value of y and $\hat{y}_j = \beta_0 + \beta_1 x_j$ the predicted y-value.
- The difference between an observed *y*-value and a predicted *y*-value is called a *residual*.
- There are many ways to measure how 'close' the line is to the data. One is to add the squares of the residuals. The **least-squares line** is the line $y = \beta_0 + \beta_1 x$ that minimizes the sum of the squares of the residuals.
- This is called a line of regression of y on x because any errors in the data are assumed to be in y-coordinates.
- The coefficients β_0, β_1 of the line are called **regression** coefficients.

If the data points lie exactly on the line $y = \beta_0 + \beta_1 x$ then

$$\beta_0 + \beta_1 x_1 = y_1,$$

$$\beta_0 + \beta_1 x_2 = y_2,$$

$$\vdots$$

$$\beta_0 + \beta_1 x_n = y_n.$$

We can write this system as $\mathbf{X}\boldsymbol{\beta} = \mathbf{y}$, where

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, \ \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

- The matrix X is called the design matrix,
- β is the parameter vector and
- y is the observation vector.

If the data points don't lie on a line then there are no parameters β_0, β_1 for which the predicted *y*-values in **X** β equal the observed *y*-values in **y** and $X\beta = \mathbf{y}$ does not have a solution.

Least-Squares Problems

- When a solution does not exist the best that we can do is to find an x that makes Ax as close as possible to b. This value of Ax is an approximation to b.
- The smaller the distance between **b** and $\mathbf{A}\mathbf{x}$ (given by $\|\mathbf{b} \mathbf{A}\mathbf{x}\|$) the better the approximation.
- The general least-squares problem is to find an x that makes ||b - Ax|| as small as possible.
- The term least squares originated from the definition of the distance ||b - Ax||, which is given by the square root of a sum of squares.

Least-Squares Problems

Definition: If **A** is a matrix with sizes $m \times n$ and **b** is in \mathbb{R}^m , a **least-squares solution** of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all \mathbf{x} in \mathbb{R}^n .

- The vector Ax is in the column space of A.
- Therefore we seek an x that makes Ax the closest point in Col A to b ... use orthogonal projection.

We apply the Best Approximation Theorem to the subspace *Col* **A**. Let

$$\hat{\mathbf{b}} = \operatorname{proj}_{Col \mathbf{A}} \mathbf{b}.$$

Then $\hat{\mathbf{b}} \in \mathit{Col}\,\mathbf{A}$ so the equation $A\mathbf{x} = \hat{\mathbf{b}}$ is consistent, i.e. $\exists \hat{\mathbf{x}} \in \mathbb{R}^n$ s.t.

$$\mathbf{A}\hat{\mathbf{x}} = \hat{\mathbf{b}}.$$

Given the vector $\hat{\mathbf{b}}$ is the closest point in *Col* \mathbf{A} to \mathbf{b} a vector $\hat{\mathbf{x}}$ is a least square solution of $\mathbf{A}\mathbf{x}$ if and only if $\hat{\mathbf{x}}$ satisfies

$$\mathbf{A}\hat{\mathbf{x}} = \hat{\mathbf{b}}.$$

By Orthogonal Decomposition Theorem, $\mathbf{b} - \hat{\mathbf{b}}$ is orthogonal to *Col* \mathbf{A} , so $\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$ is orthogonal to each column \mathbf{a}_j of \mathbf{A} :

$$\mathbf{a}_j \cdot (\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = \mathbf{0}$$
, or $\mathbf{a}_j^T (\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = \mathbf{0}$, $\mathbf{j} = \mathbf{1}, \dots, \mathbf{n}$
or $\mathbf{A}^T (\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = \mathbf{0}$.

Hence $\mathbf{A}^\mathsf{T}\mathbf{b} - \mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{\hat{x}} = \mathbf{0}$ and

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\hat{\mathbf{x}} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$
.

This matrix equation is called the **normal equation** for $\mathbf{A}\mathbf{x} = \mathbf{b}$. The solution of this equation is denoted by $\hat{\mathbf{x}}$.

• Theorem: The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equation

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

• Note: If $\hat{\mathbf{x}}$ satisfies the normal equation then the vector $\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$ is orthogonal to all of *Col* **A**. Therefore

$$\mathbf{b} = \mathbf{A}\mathbf{\hat{x}} + (\mathbf{b} - \mathbf{A}\mathbf{\hat{x}})$$

is a decomposition of **b** into the sum of a vector $\mathbf{A}\hat{\mathbf{x}}$ in $Col\ \mathbf{A}$ and a vector $\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$ orthogonal to $Col\ \mathbf{A}$.

- Therefore $Col \mathbf{A} = Row \mathbf{A}^{\mathsf{T}} \bot Nul \mathbf{A}^{\mathsf{T}}$. So $\mathbf{b} \mathbf{A} \mathbf{\hat{x}} \in Nul \mathbf{A}^{\mathsf{T}}$
- Null space of \mathbf{A}^T is a set of all \mathbf{y} vectors in \mathbb{R}^m such that $\mathbf{A}^\mathsf{T}\mathbf{y} = \mathbf{0}$

When a least squares solution x is used to produce Ax as an approximation to b the distance from b to Ax is the least squares error of this approximation.

• The normal equation can be derived from the condition that the error $\varepsilon^2 = (\mathbf{b} - \mathbf{A}\mathbf{x}) \cdot (\mathbf{b} - \mathbf{A}\mathbf{x}) = (\mathbf{b} - \mathbf{A}\mathbf{x})^\mathsf{T}(\mathbf{b} - \mathbf{A}\mathbf{x})$ be minimal.

• So by requiring that the partial derivatives of this length in terms of x_j be minimal we arrive to $\mathbf{2A}^\mathsf{T}\mathbf{A}\mathbf{x} - \mathbf{2A}^\mathsf{T}\mathbf{b} = \mathbf{0}$.

Example 1: Find a least-squares solution of the inconsistent system $\mathbf{A}\mathbf{x} = \mathbf{b}$ for

$$\mathbf{A} = \left(\begin{array}{cc} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array}\right), \ \mathbf{b} = \left(\begin{array}{c} 2 \\ 0 \\ 11 \end{array}\right).$$

Solution: Construct the normal equation $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$. We compute $\mathbf{A}^T \mathbf{A}$

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix},$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}.$$

The equation becomes

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}.$$

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b}.$$

$$(\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix}$$

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} A^{\mathsf{T}} \mathbf{b} = \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Given **A** and **b** as in **Example 1**, determine the least squares error of the least square solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ for

$$\mathbf{A} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 11 \end{pmatrix}, \ \hat{\mathbf{x}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Solution: We calculate Ax

$$\mathbf{A}\hat{\mathbf{x}} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$$

Therefore

$$\mathbf{b} - A\hat{\mathbf{x}} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ 8 \end{bmatrix}$$

and $\|\mathbf{b} - A\hat{\mathbf{x}}\| = \sqrt{(-2)^2 + (-4)^2 + 8^2} = \sqrt{84}$. For any \mathbf{x} in \mathbb{R}^2 the distance between \mathbf{b} and the vector $A\mathbf{x}$ is at least $\sqrt{84}$.

$$A\hat{\mathbf{x}} = \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 11 \end{pmatrix}.$$

The solution $\hat{\mathbf{x}}$ is not on the figure.

A^TA is often invertible but sometimes it is not.

Example 2: Find the least square solution of $A\mathbf{x} = \mathbf{b}$ for

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{pmatrix}.$$

Solution: We compute

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix}.$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{b} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ 2 \\ 6 \end{pmatrix}.$$

The augmented matrix for $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$ is

$$\left(\begin{array}{ccc|ccc|c}6&2&2&2&4\\2&2&0&0&-4\\2&0&2&0&2\\2&0&0&2&6\end{array}\right)\sim\left(\begin{array}{cccc|ccc|c}1&0&0&1&3\\0&1&0&-1&-5\\0&0&1&-1&-2\\0&0&0&0&0\end{array}\right).$$

Hence

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ -2 \\ 0 \end{pmatrix} \text{ or } \begin{cases} x_1 + x_4 & = 3, \\ x_2 - x_4 & = -5, \\ x_3 - x_4 & = -2 \end{cases}$$

The general solution is

$$\hat{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3 - x_4 \\ -5 + x_4 \\ -2 + x_4 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ -2 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

This is the general least squares solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

- Theorem: Matrix $\mathbf{A}^T\mathbf{A}$ has the same null space as \mathbf{A} . Proof: If $\mathbf{A}\mathbf{x} = \mathbf{0}$ then of course $\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{0}$. Let assume now that $\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{0}$. Lets dot product of this equation from the right by \mathbf{x} . We obtain $\mathbf{x} \cdot \mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{0}$ or $\mathbf{x} \cdot \mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \|\mathbf{A}\mathbf{x}\|^2 = \mathbf{0}$. So $\mathbf{A}\mathbf{x} = \mathbf{0}$.
- As a consequence if columns of **A** are linearly independent than the only solution for $\mathbf{A}\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$. Therefore the only solution of $\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$ and $\mathbf{A}^\mathsf{T}\mathbf{A}$ is invertible.
- In this case the equation $\mathbf{A}\mathbf{x}=\mathbf{b}$ has only one least-square solution $\hat{\mathbf{x}}$ and it is given by

$$\mathbf{\hat{x}} = (\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{b}.$$

• If the least square solution for $\mathbf{A}\mathbf{x} = \mathbf{b}$ is

$$\hat{\mathbf{x}} = (\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{b}$$

Then the projection of \mathbf{b} onto the column space of \mathbf{A} is

$$\hat{\mathbf{b}} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{b} = \mathsf{P}\mathbf{b}$$

Matrix P is the projection matrix

$$\mathsf{P} = \mathsf{A}(\mathsf{A}^\mathsf{T}\mathsf{A})^{-1}\mathsf{A}^\mathsf{T}$$

- If matrix **A** has sizes $[m \times n]$ then **P** matrix has sizes $[m \times m]$.
- The projection matrix P has the property

$$P^2 = P$$

Projection matrix is symmetric

$$P^{T} = P$$

.

• Lets prove that $P^2 = P$. Indeed

$$\mathbf{P}^2 = \mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T} = \mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T} = \mathbf{P}$$

Case 1: Lets assume b is in the column space of A, so
 b = Ax then

$$\hat{\mathbf{b}} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x} = \mathbf{b}$$

So $\hat{\mathbf{b}} = \mathbf{b}$ as this should be.

Case 2: Lets assume b is orthogonal to the column space of A, b \(\times Col(A) \) then b is perpendicular to every column of A, therefore A^Tb = 0. So

$$\hat{b} = A\hat{x} = A(A^\mathsf{T}A)^{-1}A^\mathsf{T}b = A\hat{x} = A(A^\mathsf{T}A)^{-1}0 = 0$$

So $\hat{\mathbf{b}} = \mathbf{0}$ as this should be.

• Case 3: Lets assume that A is square and invertible then

$$\hat{\mathbf{b}} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}\mathbf{b} = \mathbf{A}\mathbf{A}^{-1}{(\mathbf{A}^\mathsf{T})}^{-1}\mathbf{A}^\mathsf{T}\mathbf{b} = \mathbf{b}$$

So in this case the projection matrix P is an Identity matrix I.

Example 3: Find the projection matrix **P** onto space spanned by the columns of matrix **A**

$$\mathbf{A} = \left| \begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right|.$$

Solution: We need to calculate: $\mathbf{P} = \mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}$ So

$$\mathbf{A}^{\mathsf{T}} = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right], \ \mathbf{A}^{\mathsf{T}} \mathbf{A} = \left[\begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array} \right], \ (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} = \frac{1}{3} \left[\begin{array}{ccc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

Then

$$\mathbf{P} = \frac{1}{3} \left| \begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{array} \right|.$$

Example 4: Find the projection matrix **P** onto space spanned by the vector **a**. Find the projection of vector **b** onto vector **a**.

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Solution: We need to calculate:

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}} = \mathbf{a}(\mathbf{a}^{\mathsf{T}}\mathbf{a})^{-1}\mathbf{a}^{\mathsf{T}}$$

So

$$\mathbf{a}^{\mathsf{T}} = [\ 1 \ \ 1 \ \ 0 \], \ \mathbf{a}^{\mathsf{T}} \mathbf{a} = 2, \ (\mathbf{a}^{\mathsf{T}} \mathbf{a})^{-1} = \frac{1}{2}.$$

Then

$$\mathbf{P} = \mathbf{a}(\mathbf{a}^\mathsf{T}\mathbf{a})^{-1}\mathbf{a}^\mathsf{T} = rac{\mathbf{a}\mathbf{a}^\mathsf{T}}{\mathbf{a}^\mathsf{T}\mathbf{a}}$$

And

$$\mathbf{P} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \hat{\mathbf{b}} = \mathbf{P}\mathbf{b} = \frac{\mathbf{a}\mathbf{a}^\mathsf{T}\mathbf{b}}{\mathbf{a}^\mathsf{T}\mathbf{a}} = \frac{\mathbf{a}(\mathbf{a} \cdot \mathbf{b})}{\mathbf{a} \cdot \mathbf{a}} = \frac{1}{2}\mathbf{a}$$

Example 5: Find the projection matrix **P** for matrix **A** with orthonormal columns.

Solution: We need to calculate:

$$\mathsf{P} = \mathsf{A}(\mathsf{A}^\mathsf{T}\mathsf{A})^{-1}\mathsf{A}^\mathsf{T}$$

Given that columns of \mathbf{A} are orthonormal we have $\mathbf{A}^T\mathbf{A} = \mathbf{I}$. So $\mathbf{P} = \mathbf{A}\mathbf{A}^T$ and

$$\hat{\mathbf{b}} = \mathbf{P}\mathbf{b} = \mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$

. If the columns of **A** are a_1, a_2, \ldots, a_n then the orthogonal

projection of **b** onto *Col* **A** is

$$\hat{\mathbf{b}} = \mathbf{A}\mathbf{A}^\mathsf{T}\mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{a}_1}{\mathbf{a}_1 \cdot \mathbf{a}_1} \mathbf{a}_1 + \frac{\mathbf{b} \cdot \mathbf{a}_2}{\mathbf{a}_2 \cdot \mathbf{a}_2} \mathbf{a}_2 + \dots + \frac{\mathbf{b} \cdot \mathbf{a}_n}{\mathbf{a}_n \cdot \mathbf{a}_n} \mathbf{a}_n$$

$$\hat{\mathbf{b}} = (\mathbf{b} \cdot \mathbf{a}_1)\mathbf{a}_1 + (\mathbf{b} \cdot \mathbf{a}_2)\mathbf{a}_2 + \ldots + (\mathbf{b} \cdot \mathbf{a}_n)\mathbf{a}_n$$

Given $\mathbf{a}_i \cdot \mathbf{a}_i = 1$.

Example 6: Find the least squares solution of Ax = b for

$$\mathbf{A} = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}.$$

Solution: The columns a_1 , a_2 of ${\bf A}$ are orthogonal so the orthogonal projection of ${\bf b}$ onto ${\it Col}~{\bf A}$ is given by

$$\hat{\mathbf{b}} = \frac{\mathbf{b} \cdot \mathbf{a}_1}{\mathbf{a}_1 \cdot \mathbf{a}_1} \mathbf{a}_1 + \frac{\mathbf{b} \cdot \mathbf{a}_2}{\mathbf{a}_2 \cdot \mathbf{a}_2} \mathbf{a}_2 = \frac{8}{4} \mathbf{a}_1 + \frac{45}{90} \mathbf{a}_2.$$

$$\hat{\mathbf{b}} = \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} + \begin{bmatrix} -3\\-1\\1/2\\7/2 \end{bmatrix} = \begin{bmatrix} -1\\1\\5/2\\11/2 \end{bmatrix}.$$

Solutions (cont'd): So $\hat{\mathbf{b}}$ is known and we can solve $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. But we know the solution of this equation given the relation

$$\frac{8}{4}\mathbf{a}_1 + \frac{45}{90}\mathbf{a}_2 = \hat{\mathbf{b}}.$$

Therefore

$$\hat{\mathbf{x}} = \left[\begin{array}{c} 8/4 \\ 45/90 \end{array} \right] = \left[\begin{array}{c} 2 \\ 1/2 \end{array} \right].$$

This is the least squares solution.

In some cases the equation

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

is ill conditioned. Small errors in $\mathbf{A}^T\mathbf{A}$ can lead to large errors in $\hat{\mathbf{x}}$. If the columns of \mathbf{A} are linearly independent the solution can be found by a $\mathbf{Q}\mathbf{R}$ factorization of \mathbf{A} .

Theorem: Given an $m \times n$ matrix \mathbf{A} with linearly independent columns, and $\mathbf{A} = \mathbf{Q}\mathbf{R}$ is a QR factorization of \mathbf{A} . Then for each \mathbf{b} in \mathbb{R}^m , the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique least-squares solution given by

$$\mathbf{\hat{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{b}.$$

Proof: Let $\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$. Then

$$\mathbf{A}\hat{\mathbf{x}} = \mathbf{Q}\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}\mathbf{R}\mathbf{R}^{-1}\mathbf{Q}^{\mathsf{T}}\mathbf{b} = \mathbf{Q}\mathbf{Q}^{\mathsf{T}}\mathbf{b}.$$

The columns of \mathbf{Q} form an orthonormal basis for $Col\ \mathbf{A}$. Therefore $\mathbf{Q}\mathbf{Q}^\mathsf{T}\mathbf{b}$ is the orthogonal projection $\hat{\mathbf{b}}$ of \mathbf{b} onto $Col\ \mathbf{A}$. Then $\mathbf{A}\hat{\mathbf{x}}=\hat{\mathbf{b}}$ and $\hat{\mathbf{x}}$ is the least squares solution for $\mathbf{A}\mathbf{x}=\mathbf{b}$.

Note: The least-squares solution can be found from

$$\boldsymbol{\hat{x}} = \boldsymbol{R}^{-1} \boldsymbol{Q}^{\mathsf{T}} \boldsymbol{b}.$$

We can write this as

$$\mathbf{R}\hat{\mathbf{x}} = \mathbf{Q}^{\mathsf{T}}\mathbf{b}.$$

However, R is upper triangular so the solution can be found by back-substitution or row operations rather than calculating R^{-1} .

Applications to Linear Models

Example: Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the data points (2,1),(5,2),(7,3),(8,3).

Solution: The linear system $X\beta = \mathbf{y}$ is

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

The normal equation for this system is

$$X^TX\beta = X^Ty$$
.

We need to calculate:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}.$$

Applications to Linear Models

$$\mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}.$$

The normal equation is

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 59 \\ 57 \end{bmatrix}.$$

Applications to Linear Models

Solution (cont'd):

The solution is

$$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} =$$

$$= \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 24 \\ 30 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$$

The least squares solution is

$$y = \frac{2}{7} + \frac{5}{14}x$$

The General Linear Model

- In statistics usually a **residual vector** ε is introduced, defined by $\varepsilon = \mathbf{y} \mathbf{X}\boldsymbol{\beta}$.
- The equation for \mathbf{y} is $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$. Any equation of this form is referred to as a **linear model**. The goal is to minimize the length of $\boldsymbol{\varepsilon}$. This is equivalent to finding a least squares solution of $\mathbf{X}\boldsymbol{\beta} = \mathbf{y}$.
- Sometimes we need to fit the data with more complex curves.
- The matrix equation is still the same $\mathbf{X}\boldsymbol{\beta} = \mathbf{y}$, but the form of \mathbf{X} depends on the problem.
- In each case the least-squares solution $\hat{\beta}$ is a solution of the normal equation $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$.

Least-Square Fittings of Curves

When the data points $(x_1, y_1), \ldots, (x_n, y_n)$ do not lie close to any line it may be appropriate to postulate other functional relationships between x and y.

The general linear form is

$$y = \beta_0 f_0(x) + \beta_1 f_1(x) + \ldots + \beta_k f_k(x),$$

where

$$f_0, \ldots, f_k$$
 are known functions and

 β_0, \dots, β_k are parameters that must be determined. This is a linear equation in terms of the β_i .

For a particular value of x the relation gives a predicted value of y. The difference between the predicted and observed value is the residual. The parameters β_0, \ldots, β_k must be determined to minimize the sum of the squares of the residuals.

Least-Squares Fittings of Curves

Example: Suppose data points $(x_1, y_1), \ldots, (x_n, y_n)$ appear to lie along some kind of parabola. We approximate the data using the model function

$$y=\beta_0+\beta_1x+\beta_2x^2.$$

House of the produced of the produced of the produced of the produced of foliage of the production of autrients.

Least-Squares Fittings of Curves

Each data point determines an equation.

$$\beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \varepsilon_1 = y_1,$$

$$\beta_0 + \beta_1 x_2 + \beta_2 x_2^2 + \varepsilon_2 = y_2,$$

$$\vdots$$

$$\beta_0 + \beta_1 x_n + \beta_2 x_n^2 + \varepsilon_n = y_n,$$

where the ε_i is the residual error. This is a linear system in terms of the β_i in the form

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

or

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \\ 1 & x_n & x_n^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

To find the least-squares solution solve $\mathbf{X}^\mathsf{T}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^\mathsf{T}\mathbf{y}$.

- Notions of length, distance, and orthogonality are important in applications in general vector spaces V.
- So far we considered \mathbb{R}^n spaces.
- The concept of the inner product can be introduced in general vector spaces *V*.
- Definition: An inner product on a vector space V is a function that, to each pair of vectors u and v in V associates a real number (u, v) and satisfies the following axioms for all u, v, w in V and all scalars c
 - 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
 - 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
 - 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$
 - 4. $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$

- The vector space \mathbb{R}^n with the standard inner product $\mathbf{u} \cdot \mathbf{v}$ is an Inner Product Space.
- The general vector space V with the supplied inner product is called an Inner Product Space.
- Such spaces are foundations for applications in engineering, physics mathematics and statistics.
- Example: Let consider two vectors $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$ in \mathbb{R}^2 and lets set

$$\langle \mathbf{u}, \mathbf{v} \rangle = 4u_1v_1 + 5u_2v_2$$

- This is an inner product.
- This inner product can be defined for Rⁿ.
 They arise in the weighted-least-square problems when more importance is given to more reliable measurement.

- Let consider the vector space of polynomials \mathbb{P}_n .
- Let t_0, \ldots, t_n be distinct real numbers. For two polynomials p and q in \mathbb{P}_n we define

$$\langle p,q\rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + \ldots + p(t_n)q(t_n).$$

Inner product Axioms 1-3 are satisfied. This is easy to check. For Axiom 4

$$\langle p, p \rangle = [p(t_0)]^2 + [p(t_1)]^2 + \ldots + [p(t_n)]^2 \ge 0$$

If $\langle p,p\rangle=0$ then p must vanish at n+1 points t_0,\ldots,t_n . This is possible only for zero polynomial p=0 because the degree of the polynomial is less then n+1.

Therefore

$$\langle p,q\rangle=p(t_0)q(t_0)+p(t_1)q(t_1)+\ldots+p(t_n)q(t_n).$$

is an inner product.

Example 2: Let V be \mathbb{P}^2 with the inner product defined as in the previous slide, where $t_0=0,\,t_1=1/2,\,t_2=1.$ Let $p(t)=12t^2$ and q(t)=2t-1.

Compute $\langle p, q \rangle$ and $\langle q, q \rangle$.

Solution:

$$\langle p, q \rangle = p(t_0)q(t_0) + p(1/2)q(1/2) + p(1)q(1) =$$

$$= 0(-1) + 3 \times 0 + 12 \times 1 = 12$$

$$\langle q, q \rangle = q(0)q(0) + q(1/2)q(1/2) + 1(1)q(1) =$$

$$= (-1)^2 + 0^2 + 1^2 = 2$$

Length, Distance, Orthogonality

• Let V be an inner product space, with the inner product denoted by $\langle \mathbf{u}, \mathbf{v} \rangle$. Just as in \mathbb{R}^n we define the length or norm of a vector \mathbf{v} to be the scalar

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

- Equivalently $||\mathbf{v}||^2 = \langle \mathbf{v}, \mathbf{v} \rangle$. This definition makes sense because $\langle \mathbf{v}, \mathbf{v} \rangle \geq \mathbf{0}$.
- A unit vector is one whose length is 1.
- The distance between two vectors \mathbf{u} and \mathbf{v} is $||\mathbf{u} \mathbf{v}||$ Vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Length, Distance, Orthogonality

Example 4: Let \mathbb{P}_2 have the inner product as

$$\langle p,q\rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + \ldots + p(t_n)q(t_n).$$

Compute the length of the vectors $p(t) = 12t^2$ and q(t) = 2t - 1 and $t_0 = 0$, $t_1 = 1/2$, $t_2 = 1$.

Solution:
$$p(t) = 12t^2$$
 and $q(t) = 2t - 1$

$$||p||^2 = \langle p, p \rangle = [p(0)]^2 + [p(1/2)]^2 + [p(1)]^2 =$$

= 0 + 3² + 12² = 153

$$||q||^2 = [q(0)]^2 + [q(1/2)]^2 + [q(1)]^2 = 2.$$

So
$$||q|| = \sqrt{2}$$
.

- The Gram-Schmidt process can be applied to construct an orthogonal basis for a subspace of a vector space V in the similar way as in \mathbb{R}^n .
- An orthogonal projection of a vector onto a subspace W with the orthogonal basis can be constructed as in \mathbb{R}^n .
- The projection has the properties described in the Orthogonal Decomposition Theorem and the Best Approximation Theorem.
- **Example 5**: Let V be \mathbb{P}_4 with the inner product defined as

$$\langle p,q \rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + p(t_2)q(t_2) +$$

 $+ p(t_3)q(t_3) + p(t_4)q(t_4).$

involving evaluation of polynomials at -2, -1, 0, 1, 2. Produce an orthogonal basis for \mathbb{P}_2 by applying the Gram-Schmidt process to the polynomials : $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2$.

• **Solution**: The inner product depends on the values of the polynomials calculated at points -2, -1, 0, 1, 2. The values of the polynomials $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2$ at points -2, -1, 0, 1, 2 are

$$\mathbf{v_0} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \, \mathbf{v_1} = \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \, \mathbf{v_2} = \begin{bmatrix} 4 \\ 1 \\ 0 \\ 1 \\ 4 \end{bmatrix}.$$

These are vectors in \mathbb{R}^5 .

- The inner product of two polynomials in V equals to the inner product of their corresponding vectors in \mathbb{R}^5 .
- We can see that $\langle p_0(t)p_1(t)\rangle = \mathbf{v_0} \cdot \mathbf{v_1} = 0$. These polynomials are orthogonal and we can choose them in the new basis vectors.

• To find the new p_2 we project p_2 into subspace spanned by p_0, p_1 . The inner product we use is:

$$\langle p,q \rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + p(t_2)q(t_2) +$$

 $+p(t_3)q(t_3) + p(t_4)q(t_4).$

 We need to use the Gram-Schmidt process to construct the third basis vector.

$$\begin{aligned} proj_W \ p_2 &= \frac{\langle p_0 p_2 \rangle}{\langle p_0 p_0 \rangle} p_0 + \frac{\langle p_1 p_2 \rangle}{\langle p_1 p_1 \rangle} p_1 \\ \langle p_0 p_2 \rangle &= \langle p_0 \ t^2 \rangle = 4 + 1 + 0 + 1 + 4 = 10 \\ \langle p_0 p_0 \rangle &= 1 + 1 + 1 + 1 + 1 = 5 \\ \langle p_1 p_2 \rangle &= \langle t \ t^2 \rangle = -8 + (-1) + 0 + 1 + 8 = 0 \end{aligned}$$

• Then the orthogonal projection of t^2 onto 1, t is

$$proj_W p_2 = 10/5p_0 + 0p_1 = 2$$

The new basis vector is

$$p_2'(t) = p_2(t) - proj_W p_2 = t^2 - 2$$

The orthogonal basis for the subspace \mathbb{P}_2 of V is

$$\mathbf{v_0} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v_1} = \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} 2 \\ -1 \\ -2 \\ -1 \\ 2 \end{bmatrix}.$$

The polynomials are

$$p_0(t) = 1, \ p_1(t) = t, \ p'_2(t) = t^2 - 2.$$

Best Approximation

- A common vector space in Applied Mathematics is a vector space V whose elements are functions.
- The problem is to approximate a function f in V by a function g from a specified subspace W of V.
- The 'closeness' of the approximation of f depends on the way ||f g|| is defined.
- When the distance between f and g is given by an inner product the best approximation to f by functions in W is the orthogonal projection of f onto the subspace of W.

Best Approximation

Example: Let V be \mathbb{P}^4 with the inner product

$$\langle p, q \rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + p(t_2)q(t_2) +$$

 $+ p(t_3)q(t_3) + p(t_4)q(t_4)$

calculated at the points -2, -1, 0, 1, 2.

- Let $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2 2$ be the orthogonal basis for the subspace \mathbb{P}^2 . Find the best approximation to $p(t) = 5 \frac{1}{2}t^4$.
- The best approximation is

$$proj_W p = rac{\langle p_0 p
angle}{\langle p_0 p_0
angle} p_0 + rac{\langle p_1 p
angle}{\langle p_1 p_1
angle} p_1 + rac{\langle p_2 p
angle}{\langle p_2 p_2
angle} p_2.$$

We calculate

$$\langle p \, p_0 \rangle = 8, \ \langle p \, p_1 \rangle = 0, \ \langle p \, p_2 \rangle = -31$$

 $\langle p_0 \, p_0 \rangle = 5, \ \langle p_2 \, p_2 \rangle = 14$
 $\hat{p} = proj_{\mathbb{P}_2} \, p = \frac{8}{5} p_0 + \frac{-31}{14} p_2 = \frac{8}{5} - \frac{31}{14} (t^2 - 2).$

Best Approximation

The polynomial $\hat{p}(t)$ is the closest to p(t) (which is part of \mathbb{P}^4) of all polynomials in \mathbb{P}^2 , when the distance measured at points -2,-1,0,1,2.

$$\hat{
ho}(t)= extit{proj}_{\mathbb{P}_2}\,
ho(t)=rac{8}{5}-rac{31}{14}(t^2-2).$$
 $ho(t)=5-rac{1}{2}t^4.$

An inner product for C[a, b]

When the sum (in used above inner product) is weighted by the widths $\frac{b-a}{n}$ (with a minor adjustment at the endpoints) and $n \to \infty$, we get an integral definition of $\langle f,g \rangle$ in the interval [a,b] as

$$\langle f,g\rangle = \int^b f(t)g(t) dt.$$

To show this defines an inner product on C[a, b]:

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

$$\langle f, g \rangle = \int_{-b}^{b} f(t)g(t) dt = \int_{-b}^{b} g(t)f(t) dt = \langle g, f \rangle.$$

2.
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

$$\langle f + h, g \rangle = \int_a^b (f(t) + h(t))g(t) dt$$

$$= \int_a^b f(t)g(t) dt + \int_a^b h(t)g(t) dt$$

$$= \langle f, g \rangle + \langle h, g \rangle.$$

An inner product for C[a, b]

3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$

$$\langle cf,g\rangle = \int_a^b (cf(t))g(t) dt = c\langle f,g\rangle.$$

4. $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$

$$\langle f, f \rangle = \int_a^b f(t)f(t) dt = \int_a^b f^2(t) dt \geq 0.$$

The function $f^2(t)$ is continuous and nonnegative on [a,b]. If the definite integral of $f^2(t)$ is zero it means $f(t) \equiv 0$ on [a,b]. Therefore $\langle f,f \rangle = 0$ implies that $f \equiv 0$.

Hence

$$\langle f,g\rangle = \int_a^b f(t)g(t) dt$$

is an inner product on C[a, b].

An inner product for C[a, b]

Example: Let V be the space C[a, b] with the inner product

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt$$

and let W be the subspace spanned by the polynomials

$$p_1(t) = 1$$
, $p_2(t) = 2t - 1$, $p_3(t) = 12t^2$.

Use the Gram-Schmidt process to find an orthogonal basis for W. **Solution:** We need to use Gram-Schmidt to build a new set

$$\{q_1(t), q_2(t), q_3(t)\}$$

which will be an orthogonal basis for W.

As usual, let $q_1 = p_1$. We compute

$$\langle p_2, q_1 \rangle = \int_0^1 (2t-1)(1)dt = (t^2-t)|_0^1 = 0.$$

So p_2 is already orthogonal to q_1 and we choose $q_2 = p_2$

An inner product for $\mathbb{C}[a,b]$

As usual

$$p_1(t) = 1$$
, $p_2(t) = 2t - 1$, $p_3(t) = 12t^2$.

The q_3 is given as usual by

$$q_3(t) = p_3 - proj_{W_2} p_3$$

We need to find the projection of p_3 into subspace $W_2 = Span\{q_1, q_2\}$. This is given by

$$egin{align} extit{proj}_W \, p_3 &= rac{\langle q_1 p_3
angle}{\langle q_1 q_1
angle} q_1 + rac{\langle q_2 p_3
angle}{\langle q_2 q_2
angle} q_2. \ & \langle p_3, q_1
angle &= \int_0^1 12 t^2 (1) dt = 4 t^3 |_0^1 = 4. \ & \langle q_1, q_1
angle &= \int_0^1 (1) (1) dt = t |_0^1 = 1. \ & \langle p_3, q_2
angle &= \int_0^1 12 t^2 (2t-1) dt = 2. \ \end{aligned}$$

An inner product for $\mathbb{C}[a,b]$

 $\langle q_2, q_2 \rangle = \int_0^1 (2t-1)^2 (1) dt = t|_0^1 = \frac{1}{3}.$

Then the projection is

$$extit{proj}_W \, p_3 = rac{\langle q_1 p_3
angle}{\langle q_1 q_1
angle} q_1 + rac{\langle q_2 p_3
angle}{\langle q_2 q_2
angle} q_2 = rac{4}{1} q_1 + rac{2}{1/3} q_2.$$

Therefore

$$extit{proj}_W \, p_3 = rac{\langle q_1 p_3
angle}{\langle q_1 q_1
angle} q_1 + rac{\langle q_2 p_3
angle}{\langle q_2 q_2
angle} q_2 = rac{4}{1} q_1 + rac{2}{1/3} q_2.$$

and

$$q_3(t) = p_3 - proj_{W_2} p_3 =$$

$$= p_3 - 4q_1 - 6q_2 = 12t^2 - 4 - 6(2t - 1) = 12t^2 - 12t + 2.$$
given

given

$$q_1(t) = p_1(t) = 1, \ q_2(t) = p_2(t) = 2t - 1, p_3(t) = 12t^2$$

The orthogonal basis for W is $\{q_1, q_2, q_3\}$

- Let f be unknown function whose values are approximately known at t_0, \ldots, t_n .
- If there is a linear trend of the data $f(t_0), \ldots, f(t_n)$ we may approximate the data by $y = \beta_0 + \beta_1 x$.
- If there is a quadratic trend then we may try $y = \beta_0 + \beta_1 x + \beta_1 x^2$.
- However the coefficient β_2 may not give the desired information about the quadratic trend in the data because it may not be independent from β_0, β_1 .
- To make what is known as a **trend analysis** of the data we introduce an inner product on the space \mathbb{P}^n in the form

$$\langle p,q\rangle = p(t_0)q(t_0) + \ldots + p(t_n)q(t_n)$$

- Let p_0, p_1, p_2, p_3 be an orthogonal basis of the subspace \mathbb{P}_3 of \mathbb{P}_n obtained from basis $1, t, t^2, t^3$ using the Gram-Schmidt process.
- There is a polynomial g in \mathbb{P}_n whose values at t_0, \ldots, t_n coincide with the unknown function f.
- Let \hat{g} be the orthogonal projection of g onto \mathbb{P}_3 .

$$\hat{g} = c_0 p_0 + c_1 p_1 + c_2 p_2 + c_3 p_3.$$

- Then \hat{g} is called the trend function and the coefficients c_0, \ldots, c_n the trend coefficients of the data.
- If the data have certain properties the c_j are independent. Since p_0, \ldots, p_3 are orthogonal the trend coefficients can be calculated one at a time

$$c_i = \frac{\langle p_j, \hat{g} \rangle}{\langle p_j, p_j \rangle}$$

Example: Fit a quadratic trend function to the data (-2,3), (-1,5), (0,5), (1,4), (2,3). g(-2) = 3, g(-1) = 5, g(0) = 5, g(1) = 4.

g(-2) = 3, g(-1) = 5, g(0) = 5, g(0)g(2) = 3

• The orthogonal polynomials are $p_0(t) = 1, p_1(t) = t, p_2(t) = t^2 - 2$

$$\mathbf{p_0} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{p_1} = \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \ \mathbf{p_2} = \begin{bmatrix} 2 \\ -1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{g} = \begin{bmatrix} 3 \\ 5 \\ 5 \\ 4 \\ 3 \end{bmatrix}.$$

Then the best approximation to the data by \mathbb{P}^2 is given by the orthogonal projection

$$\begin{split} \hat{\rho} &= \frac{\langle p_0 g \rangle}{\langle p_0 p_0 \rangle} p_0 + \frac{\langle p_1 g \rangle}{\langle p_1 p_1 \rangle} p_1 + \frac{\langle p_2 g \rangle}{\langle p_2 p_2 \rangle} p_2 = \\ &= 20/4 p_0 - 1/10 p_1 - 7/10 p_2. \end{split}$$

$$\hat{p}(t) = 4 - 0.1t - 0.5(t^2 - 2)$$

FIGURE 2

Approximation by a quadratic trend function.