is a subcomplex since

$$\overline{D}(z_i) = m_i - e\overline{z}_i \in B_{d+1} \otimes \Lambda(V_1, \overline{V}_1), \overline{D}),$$

$$\overline{D}(\overline{z}_i) = -\Theta(m_i) = 0,$$

by Corollary 2.15, where z_i is a basis element of V_1 with $D(z_i) = m_i$ and the second equality holds as Θ is B_{d+1} -linear. Denote this subcomplex by C_1 and the cokernel by C_2 and consider the short exact sequences

$$(2.21) 0 \to C_1 \to (B_{d+1} \otimes \mathcal{C}_{CE}(H^*(\mathbb{S}^d) \otimes L_d), \overline{D}) \to C_2 \to 0.$$

The subcomplex C_1 is a sub-cdga which is a pure Sullivan algebra [FHT01, Ch. 32], i.e. the differential is only non-trivial for odd degree generators and lies in the algebra of even degree generators. Hence, it has an additional homological grading $F_kC_1 := B_{d+1} \otimes \Lambda \overline{V}_1 \otimes \Lambda^k V_1$ and

$$H_0(C_1) = \mathbb{Q}[e, p_1, \dots, p_n, \{\bar{z}_i\}]/(\{m_i - e\bar{z}_i\}).$$

The map $B_{d+1} \to (B_{d+1} \otimes \mathcal{C}_{CE}(H^*(\mathbb{S}^d) \otimes L_d), \overline{D})$ factors through F_0C_1 and hence we need to understand the image of the connecting homomorphism of the above short exact sequence.

For d = 3 the vector space V_1 is 1-dimensional with generator z_1 and $D(z_1) = p_1^2$ by Corollary 2.19. Then the sequence (2.21) actually splits as a sequence of cochain complexes so that

$$H(C_1) \hookrightarrow H^*((B_{d+1} \otimes C_{CE}(H^*(\mathbb{S}^d) \otimes L_d), \overline{D})).$$

This is because

$$\tilde{C}_2 := B_{d+1} \otimes \Lambda(V_1 \oplus \overline{V}_1) \otimes \Lambda^+(V_2 \oplus \overline{V}_2)$$

is a subcomplex isomorphic to C_2 as the only way $\overline{D}|_{\tilde{C}_2}$ can have image in C_1 is if there is $w \in V_2$ so that $D(w) = fz_1 + \chi$ for $f \in B_{d+1}$ and $\chi \in B_{d+1} \otimes \Lambda V_1 \otimes \Lambda^+ V_2$. Suppose w has the minimal degree where this happens, then

$$0 = D^2(w) = f p_1^2 + D(\chi)$$

and since $D(\chi)$ cannot be contained in $B_{d+1} \otimes 1$ by construction it follows that f = 0. Hence, $D^1|_{V_2}$ has image in $B_{d+1} \otimes V_2$ and consequently (2.21) splits as as cochain complexes. This proves the second part the theorem as

$$H(C_1) \cong \mathbb{Q}[e,p_1,\bar{z}_1]/(p_1^2 - e\bar{z}_1)$$

injects into $H^*((B_{d+1}\otimes \mathcal{C}_{CE}(H^*(\mathbb{S}^d)\otimes L_d),\overline{D}))\cong H^*(\Gamma_{\mathbb{S}^3}/\!\!/ SO(4);\mathbb{Q})$. The first part then follows as the map $B_4\to H(C_1)$ is injective.

Remark 2.22. The formulation of Corollary 2.19 for all dimensions d is due to the author's attempt to prove a general version of Theorem 2.20, namely that $H^*(\mathrm{BSO}(d+1)) \to H^*(\Gamma_{\mathbb{S}^d}/\!\!/\mathrm{SO}(d+1))$ is injective for all odd d. However, for $d \geq 5$ the free resolution of the kernel of $H^*(\mathrm{BSO}(d)) \to H^*(F_d/\!\!/\mathrm{SO}(d))$, i.e. the ideal generated by monomials in the Pontrjagin classes of degree > 2d, has higher syzygies and the proof for d=3 does not generalize to show that $D^1(V_2) \subset B_{d+1} \otimes V_2$. In fact, one would need to show a stronger version of Corollary 2.19 to get a splitting of (2.21) for odd d>3. Nonetheless, it follows from Nariman's results that the monomials in the Euler and Pontrjagin classes do not vanish and I expect that one can improve the statement of Corollary 2.19 or control the image of the connecting homomorphism of (2.21) in order to find a purely algebraic proof of Nariman's result. For this reason, I have kept a general version of Corollary 2.19 in this article in the hope that it can serve as a starting point to prove a more general version of Theorem 2.20 – it is hard to imagine that the statement doesn't generalize to all odd d.