Assignment-8: Apply Decision Tree On Amazon Fine Food Reviews DataSet ¶

Introduction

(i).A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf represent classification rules.

Objective

To Predict the Polarity of Amazon Fine Food Review Using Decision Tree Algorithm.

Importing All Required Library

```
In [38]: | %matplotlib inline
         import sqlite3
         import pandas as pd
         import numpy as np
         import nltk
         import string
         import matplotlib.pyplot as plt
         import seaborn as sns
         import math
         from sklearn.model selection import GridSearchCV
         from sklearn.feature extraction.text import CountVectorizer
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import classification report
         from sklearn.feature_extraction.text import TfidfTransformer
         from sklearn.feature extraction.text import TfidfVectorizer
         from sklearn.model_selection import TimeSeriesSplit
         from sklearn.metrics import confusion matrix
         from sklearn import metrics
         from sklearn.metrics import roc curve, auc
         from sklearn.model selection import cross val score
         from sklearn import preprocessing
         from sklearn.metrics import accuracy score
         from sklearn.metrics import f1 score
         from gensim.models import Word2Vec
         from gensim.models import KeyedVectors
         import pickle
         from tqdm import tqdm
         import os
         import warnings
         warnings.filterwarnings("ignore")
```

Importing Amazon Fine Food Review Dataset

Information About DataSet

```
In [41]: print("\nNumber of Reviews: ",Data["Text"].count())
         print("\nNumber of Users: ",len(Data["UserId"].unique())) # Unique returns 1-D
         array of unique values of DataFrame.
         print("\nNumber of Products: ",len(Data["ProductId"].unique()))
         print("\nShape of Data: ", Data.shape)
         print("\nColumn Name of DataSet : ",Data.columns)
         print("\n\nNumber of Attributes/Columns in data: 12")
         print("\nNumber of Positive Reviews : ", Data['Score'].value counts()[1])
         print("\nNumber of Negative Reviews : ", Data['Score'].value_counts()[0])
         Number of Reviews: 364171
         Number of Users: 243414
         Number of Products: 65442
         Shape of Data: (364171, 12)
         Column Name of DataSet : Index(['index', 'Id', 'ProductId', 'UserId', 'Profi
         leName',
                'HelpfulnessNumerator', 'HelpfulnessDenominator', 'Score', 'Time',
                'Summary', 'Text', 'CleanedText'],
               dtype='object')
         Number of Attributes/Columns in data: 12
         Number of Positive Reviews: 307061
         Number of Negative Reviews : 57110
In [42]:
         print("\nNumber of Reviews: ",Data["Text"].count())
         Number of Reviews: 364171
```

Attribute Information About DataSet

- 1.ld A unique value starts from 1
- 2. ProductId A unique identifier for the product
- 3.UserId A unqiue identifier for the user
- 4. Profile Name Name of user profile
- 5.HelpfulnessNumerator Number of users who found the review helpful
- 6.HelpfulnessDenominator Number of users who indicated whether they found the review helpful or not
- 7.Score Rating 0 or 1
- 8. Time Timestamp for the review
- 9.Summary Brief summary of the review
- 10.Text Text of the review
- 11. Cleaned Text Text that only alphabets

```
In [43]: # Sorting on the basis of Time Parameter
    Data.sort_values('Time',inplace=True)

In [44]: Data=Data.head(100000)

In [45]: Y = Data['Score']
    X = Data['CleanedText']
```

Splitting DataSet into Train and Test Data

```
In [46]: from sklearn.model_selection import train_test_split
# X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, sh
uffle=Flase): this is for time series split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, shuff
le=False) # this is random splitting

print("Shape of Train and Test Dataset for 100k points")
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)

Shape of Train and Test Dataset for 100k points
(67000,) (67000,)
(33000,) (33000,)
```

Defining Some Function

Train Data Confusion Matrix Plot

```
In [47]: def trainconfusionmatrix(model,X_train,y_train):
    print("Confusion Matrix for Train set")
    cm=confusion_matrix(y_train, model.predict(X_train))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
    plt.title("Train Confusiion Matrix")
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.show()
```

Test Data Confusion Matrix Plot

```
In [48]: def testconfusionmatrix(model,X_test,y_test):
    print("Confusion Matrix for Test set")
    cm=confusion_matrix(y_test, model.predict(X_test))
    class_label = ["negative", "positive"]
    df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
    sns.heatmap(df_cm, annot = True, fmt = "d")
    plt.title("Test Confusiion Matrix")
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.show()
```

ROC-AUC Curve

Plot

GridSearchCV

30 Informative Feature

```
In [52]:
          def show 30 informative feature(vectorizer, model, n=30):
             Weights Index = model.feature importances .argsort()
             length = len(Weights Index)
             # For Negative Class
             neg class=Weights Index[:n]
             neg_feat=[vectorizer.get_feature_names()[x] for x in neg_class]
             neg_prob=[Weights_Index[x] for x in neg_class]
             neg_zip=list(zip(neg_feat,neg_prob))
             neg_zip.sort()
             # For Positive Class
             pos_class = Weights_Index[-30:]
             pos_feat=[vectorizer.get_feature_names()[x] for x in pos_class]
             pos_prob=[Weights_Index[x] for x in pos_class]
             pos zip=list(zip(pos feat,pos prob))
             pos zip.sort()
             top=zip(pos zip,neg zip)
             print("{0:20}{1:55}{2:20}".format("S.N","Positive","Negative"))
             print("_"*90)
             i=1
             for (fn_1,coef_1), (fn_2,coef_2) in top:
                  print("%d.\t\t%.3f\t%-30s\t\t%.3f\t%s" % (i,coef 1, fn 1, coef 2, fn 2
         ))
                 i+=1
```

Bags of Words Vectorizer

```
In [17]:     vectorizer = CountVectorizer()
     vectorizer.fit(X_train) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
     X_train_bow = vectorizer.transform(X_train)
     X_train_bow=preprocessing.normalize(X_train_bow)

X_test_bow = vectorizer.transform(X_test)
     X_test_bow=preprocessing.normalize(X_test_bow)

print("Shape of Train and Test Data After vectorizations")
     print(X_train_bow.shape, Y_train.shape)
     print(X_test_bow.shape, Y_test.shape)

Shape of Train and Test Data After vectorizations
     (67000, 30737) (67000,)
     (33000, 30737) (33000,)
```

Finding the best value Of hyperparameter (Alpha)

Plot

Training the model

```
In [44]: from sklearn.externals import joblib
    joblib.dump(Model_Bow, "BOW_Model.pkl")

Out[44]: ['BOW_Model.pkl']

In [18]: from sklearn.externals import joblib
    Model_Bow=joblib.load("BOW_Model.pkl")
```

Evaluating the performance of model

```
In [19]: trainconfusionmatrix(Model_Bow,X_train_bow,Y_train)
```

Confusion Matrix for Train set

Confusion Matrix for Test set


```
In [21]: plot_auc_roc_L(Model_Bow,X_train_bow,X_test_bow,Y_train,Y_test)
```



```
In [24]: print("Classification Report: \n")
y_pred=Model_Bow.predict(X_test_bow)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.31	0.72	0.43	4478
	1	0.94	0.75	0.83	28522
micro	avg	0.74	0.74	0.74	33000
macro	avg	0.63	0.73	0.63	33000
weighted	avg	0.86	0.74	0.78	33000

Displaying 30 most informative features

In [31]: show_30_informative_feature(vectorizer,Model_Bow)

S.N gative		Positive		Ne
1.		19621.000	aw	0.000
aaa 2.		19612.000	away	190.0
00 3. 00	pkgs pkirk	19738.000	bad	189.0
4. 00	pks	22766.000	best	188.0
5. 00	pkt	17382.000	delici	187.0
6. 00	pkts	17892.000	disappoint	186.0
7. 00	pku	28778.000	easi	185.0
8. 00	, pkwi	27298.000	enjoy	184.0
9. 00	pla	27608.000	excel	183.0
10. 00	placat	30096.000	favorit	182.0
11. 00	place	30171.000	find	181.0
12. 00	placebo	29401.000	good	180.0
13. 00	placeme		great	205.0
14. 00	placer	23137.000	howev	206.0
15. 00	plack	25386.000	keep	207.0
16. 00	plactic		love	208.0
17. 00	plaesan		mayb	234.0
18. 00	plagu	7149.000	money	233.0
19. 00 20.	plain	6104.000 1629.000	nice perfect	232.0
00 21.	plainer		product	230.0
00 22.	plak	13943.000	tast	229.0
00 23.	plan	13929.000	tasti	228.0
00 24.	plancha		terribl	227.0
00 25.	planck	8873.000	thought	226.0
00 26.	plane	8297.000	unfortun	225.0
00 27.	planet	10892.000	use	224.0

```
00
        planetari
                                   wonder
28.
                 10306.000
                                                                                223.0
00
        planett
29.
                 10371.000
                                                                                179.0
                                   worst
00
        planetwond
30.
                                                                                222.0
                 10169.000
                                   would
00
        plank
```

```
In [25]: from sklearn.tree import export_graphviz
import graphviz

export_graphviz(Model_Bow,out_file="BOW.dot",feature_names=vectorizer.get_feat
    ure_names(),filled=True,max_depth=5)
    with open("BOW.dot") as f:
        dot_graph=f.read()
    graphviz.Source(dot_graph)
```



```
In [66]: import os
    os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
```

TF-IDF Vectorizer

```
In [53]: vectorizer_tfidf=TfidfVectorizer()
    vectorizer_tfidf.fit(X_train)
```

```
In [54]: X_Train_Tfidf=vectorizer_tfidf.transform(X_train)
    X_Train_Tfidf=preprocessing.normalize(X_Train_Tfidf)

    X_Test_Tfidf=vectorizer_tfidf.transform(X_test)
    X_Test_Tfidf=preprocessing.normalize(X_Test_Tfidf)
```

```
In [55]: print("Shape of Train and Test Data After vectorizations")
    print(X_Train_Tfidf.shape, Y_train.shape)
    print(X_Test_Tfidf.shape, Y_test.shape)

Shape of Train and Test Data After vectorizations
    (67000, 30737) (67000,)
    (33000, 30737) (33000,)
```

Finding the best value Of hyperparameter (Alpha)

Plot

Training the model

Evaluating the performance of model

```
In [59]: trainconfusionmatrix(Model_Tfidf,X_Train_Tfidf,Y_train)
```

Confusion Matrix for Train set

In [60]: testconfusionmatrix(Model_Tfidf,X_Test_Tfidf,Y_test)

Confusion Matrix for Test set

In [62]: plot_auc_roc(Model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)


```
In [63]: print("Classification Report: \n")
y_pred=Model_Tfidf.predict(X_Test_Tfidf)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.31	0.73	0.44	4478
	1	0.95	0.75	0.83	28522
micro	avg	0.74	0.74	0.74	33000
macro	avg	0.63	0.74	0.64	33000
weighted	avg	0.86	0.74	0.78	33000

Displaying 30 most informative features

In [64]: show_30_informative_feature(vectorizer_tfidf, Model_Tfidf)

Positive

S.N

gative				
1.		20573.000	alway	0.000
aaa 2. 00	pix	20606.000	amaz	185.0
3. 00	pixar	19609.000	aw	184.0
4. 00	pixi	19600.000	away	183.0
5. 00	pizaaz	19726.000	bad	182.0
6. 00	pizazz	22758.000	best	207.0
7. 00	pizel	17364.000	delici	208.0
8. 00	pizell	17870.000	disappoint	209.0
9. 00	pizza	28703.000	easi	210.0
10. 00	pizzaz	27349.000	enjoy	237.0
11. 00	pizzazz		excel	236.0
12. 00	pizzeri		favorit	235.0
13. 00	pizzl	29855.000	find	234.0
14. 00 15.	pjs	29478.000 24406.000	good great	232.0 231.0
00 16.	pjtip	23775.000	howev	231.0
00 17.	pkg	25293.000	keep	229.0
00 18.	pkgd	5625.000	love	228.0
00 19.	pkgs	6076.000	nice	227.0
00 20.	pkirk	1576.000	perfect	226.0
00 21.	pks	3307.000	product	225.0
00 22.	pkt	13963.000	tast	181.0
00 23.	pkts	13949.000	tasti	224.0
00 24.	pku	9115.000	terribl	222.0
00 25.	pkwi	9529.000	thought	221.0
00 26.	pla	8339.000	unfortun	220.0
00 27.	placat	10792.000	use	219.0

Ne

```
00
        place
28.
                 10400.000
                                   wonder
                                                                                218.0
00
        placebo
                                                                                217.0
29.
                 10161.000
                                   worst
00
        placement
30.
                 10187.000
                                   would
                                                                                216.0
00
        placer
```

```
In [67]: from sklearn.tree import export_graphviz
import graphviz

export_graphviz(Model_Tfidf,out_file="Tfidf.dot",feature_names=vectorizer_tfid
    f.get_feature_names(),filled=True,max_depth=5)
    with open("Tfidf.dot") as f:
        dot_graph=f.read()
    graphviz.Source(dot_graph)
```


Word To Vector

```
In [17]: list_of_Train_sent=[]
list_of_Test_sent=[]

for sent in X_train:
    list_of_Train_sent.append(sent.split())

for sent in X_test:
    list_of_Test_sent.append(sent.split())
In [18]: model=Word2Vec(list_of_Train_sent,min_count=5,size=50, workers=4)
```

Average Word To Vector

```
In [49]: import numpy as np
         Train vectors = []
         for sent in list of Train sent:
             sent vec = np.zeros(50)
             cnt_words = 0
             for word in sent:
                 try:
                      vec = model.wv[word]
                      sent_vec += vec
                      cnt words += 1
                 except:
                      pass
             if cnt words!=0:
                  sent vec /= cnt words
             Train_vectors.append(sent_vec)
         Train vectors = np.nan to num(Train vectors)
In [50]: import numpy as np
         Test vectors=[]
         for sent in list of Test sent:
             sent_vec=np.zeros(50)
             cnt_words=0
             for word in sent:
                 try:
                      vec=model.wv[word]
                      sent vec+=vec
                      cnt words+=1
                 except:
                      pass
             if cnt words!=0:
                  sent vec/=cnt words
             Test vectors.append(sent vec)
         Test_vectors=np.nan_to_num(Test_vectors)
In [51]: print("Shape of Test Vectors : ",Test vectors.shape)
         Shape of Test Vectors: (33000, 50)
In [52]: X Train Awv=Train vectors
         X Test Awv=Test vectors
In [53]:
         print(X Train Awv.shape, Y train.shape)
         print(X Test Awv.shape, Y test.shape)
         (67000, 50) (67000,)
         (33000, 50) (33000,)
```

Finding the best value Of hyperparameter (Alpha)

Plot

Training Model

Evaluating the performance of model

In [62]: trainconfusionmatrix(Model_Awv,X_Train_Awv,Y_train)

Confusion Matrix for Train set

In [63]: trainconfusionmatrix(Model_Awv,X_Test_Awv,Y_test)

Confusion Matrix for Train set


```
In [64]: plot_auc_roc_L(Model_Awv,X_Train_Awv,X_Test_Awv,Y_train,Y_test)
```



```
In [65]: print("Classification Report: \n")
y_pred=Model_Awv.predict(X_Test_Awv)
print(classification_report(Y_test, y_pred))
```

Classification Report:

	precision recall		recall	f1-score	support
	0	0.29	0.76	0.42	4478
	1	0.95	0.71	0.81	28522
micro	avg	0.71	0.71	0.71	33000
macro	avg	0.62	0.73	0.61	33000
weighted	avg	0.86	0.71	0.76	33000

```
In [66]: from sklearn.tree import export_graphviz
import graphviz

export_graphviz(Model_Awv,out_file="W2V.dot",feature_names=model.get_feature_n
ames(),filled=True,max_depth=5)
with open("W2V.dot") as f:
    dot_graph=f.read()
graphviz.Source(dot_graph)
```


TF-IDF Word To Vector

```
In [19]: TFIDF_Feature=vectorizer_tfidf.get_feature_names()
    print(len(TFIDF_Feature))
    print(TFIDF_Feature[0:20])
```

30737

```
In [20]: w2v_words = list(model.wv.vocab)
    print("Number of words that occured minimum 5 times ",len(w2v_words))
    print("Sample words ", w2v_words[0:50])
```

Number of words that occured minimum 5 times 10488

Sample words ['witti', 'littl', 'book', 'make', 'son', 'laugh', 'loud', 'ca r', 'drive', 'along', 'alway', 'sing', 'refrain', 'hes', 'learn', 'whale', 'i ndia', 'droop', 'love', 'new', 'word', 'introduc', 'silli', 'classic', 'wil l', 'bet', 'still', 'abl', 'memori', 'colleg', 'rememb', 'see', 'show', 'ai r', 'televis', 'year', 'ago', 'child', 'sister', 'later', 'bought', 'day', 't hirti', 'someth', 'use', 'seri', 'song', 'student', 'teach', 'preschool']

```
In [21]:
         from tqdm import tqdm
         Train_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list of Train sent):
             sent vec=np.zeros(50)
             weight=0
             for word in sent:
                 try:
                      if word in TFIDF Feature and word in w2v words:
                          w2v vec=model.wv[word]
                          tfidf_vec=X_Train_Tfidf[row,TFIDF_Feature.index(word)]
                          sent_vec+=(w2v_vec*tfidf_vec)
                          weight+=tfidf vec
                  except:
                      pass
             if weight!=0:
                  sent_vec/=weight
             Train TFIDF W2V Vectors.append(sent vec)
             row+=1
                                                     67000/67000 [25:17<00:00, 44.15it/
         100%
         s]
In [22]:
         Test_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list_of_Test_sent):
             sent vec=np.zeros(50)
             weight=0
             for word in sent:
                  try:
                       if word in TFIDF Feature and word in w2v words:
                          w2v vec=model.wv[word]
                          tfidf_vec=X_Test_Tfidf(row,TFIDF_Feature.index(word))
                          sent_vec+=(w2v_vec*tfidf_vec)
                          weight+=tfidf
                  except:
                      pass
             if weight!=0:
                  sent vec/=weight
             Test TFIDF W2V Vectors.append(sent vec)
             row+=1
         100%
                                                     33000/33000 [12:57<00:00, 42.42it/
         s]
In [23]:
         Train_TFIDF_W2V_Vectors = np.nan_to_num(Train_TFIDF_W2V_Vectors)
         Test TFIDF W2V Vectors = np.nan to num(Test TFIDF W2V Vectors)
```

Finding the best value Of hyperparameter (Alpha)

Plot

Training Model

Evaluating the performance of model

```
In [30]: trainconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)
```

Confusion Matrix for Train set

In [31]: testconfusionmatrix(Model_TfidfW2v,X_Test_TfidfW2v,Y_test)

Confusion Matrix for Test set

In [34]: plot_auc_roc(Model_TfidfW2v,X_Train_TfidfW2v,X_Test_TfidfW2v,Y_train,Y_test)


```
In [35]: print("Classification Report: \n")
y_pred=Model_TfidfW2v.predict(X_Test_TfidfW2v)
print(classification_report(Y_test, y_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.14	1.00	0.24	4478
	1	0.00	0.00	0.00	28522
micro	avg	0.14	0.14	0.14	33000
macro	avg	0.07	0.50	0.12	33000
weighted	avg	0.02	0.14	0.03	33000

Conclusion:

1. Report On different Vectorizer method.

0.91

0.91

0.85

TF-IDF W2V

Avg W2V

TF-IDF

0.78

50

10

0.78

0.76

0.03

0.76

0.78

0.8

500

500

- 1. I have taken 100k points .
- 1. Model is performing very good in case of Average Word to Vector than others.
- 1. In case of TF-IDF W2V model is behaving like a dumb model.