

μPD78C10/C11/C14 8-BIT, SINGLE-CHIP **CMOS MICROCOMPUTERS** WITH A/D CONVERTER

13388

E C ELECTRONICS

Description

The μ PD78C10, μ PD78C11, and μ PD78C14 single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external

components. The devices' internal 16-bit ALU and data

paths, combined with a powerful instruction set and addressing, make them appropriate in data processing

as well as control applications. The devices integrate a

16-bit ALU, 4K-byte ROM, 256-byte RAM with an 8channel A/D converter, a multifunction 16-bit timer/ event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high end processing applications. This involves analog signal interface and processing.

The µPD78C11 is a 4K-byte mask ROM high-volume production device embedded with custom customer program. The µPD78C14 is a 16K-byte mask ROM device. The µPD78C10 is a ROM-less version for prototyping and small volume production.

Features

- □ CMOS technology - 2.5 to 6.0 V operating range
- 30 mA operating current
- □ Complete single-chip microcomputer — 16-bit ALU
 - 4K x 8 ROM (78C11) -- 16K x 8 ROM (78C14) — 256-byte RAM
- ☐ 44 I/O lines ☐ Two zero-cross detect inputs
- ☐ Two 8-bit timers ☐ Expansion capabilities
- 8085A bus-compatible 60K-byte external memory address range
- □ 8-channel, 8-bit A/D converter
- Autoscan mode .
- Channel select mode
- ☐ Full duplex USART
- Synchronous and asynchronous ☐ 154 instructions
 - 16-bit arithmetic, multiply and divide - HALT and STOP instructions
- \square 1 μ s instruction cycle time (12 MHz operation) ☐ Prioritized interrupt structure
- -- 8 internal ☐ Standby function

- 3 external

☐ On-chip clock generator ☐ 64-pin plastic QUIP, shrink DIP, or flatpack

Ordering Information

INC

ordering intermation						
Part Number	Package Type	Max Frequency of Operation				
μPD78C10G-36 μPD78C11G-36 μPD78C14G-36	64-pin plastic QUIP	12 MHz				
μPD78C10CW μPD78C11CW μPD78C14CW	64-pin plastic shrink DIP	12 MHz				
μPD78C10G-1B μPD78C11G-1B μPD78C14G-1B	64-pin plastic miniflat	12 MHz				
μPD78C10L μPD78C11L μPD78C14I	68-pin PLCC (available 3Q86)	12 MHz				

Pin Configurations

64-Pin QUIP or Shrink DIP

PA ₀ C	ī	~~	64 □VDD	
PA ₁ C			. 63 □STOP	
PA ₂	3		62 7PD7	
PA ₃ C	4		61 PD6	
PA ₄	5		60 PD5	
PA ₅	6		59 PD4	
PA ₆ C	7		58] PD3	*: * * *
PA ₇	8		57 PD2	
P8 ₀	9		56 PD1	
PB ₁ C	10		55 DPD0	
PB₂ □	111		54 🗆 PF7	
PB3 C	12	••	53 🗆 PF6	· ·
P84 □	13		52 🗆 PF5	•
PB ₅	14	<u> </u>	51 🗖 PF4	
PB ₆	15	PD78C10/C11/C14	. 50 PF3	
PB ₇	16	. ፩.	49 🗖 PF2	•
PC ₀ /TxD	17	5	48 🗆 PF1	
PC1/RxD [18	82	47 🗆 PF0	•
PC2/SCK	19	ď	46 🗆 ALE	
PC3/TI/INT2	20		45 □ WR	
PC4/TO	21		44 🗀 RD	
PC5/CI	22		43 AVDD	
PC6/CO0	23		42 VAREF	
PC7/CO1 [24		41 🗖 AN7	
NMI C	25		40 🗖 AN6	
INT1 [26		39 🗖 ANs	
MODE1	27		38 🗖 AN4	
RESET	28		37 🗖 AN3	
MODE0 [29		36 🗖 AN2	
X2 [30		35 AN1 .	
X1 C	31		34 🗖 AN0	
Vss	32		33 🗖 AVSS	
I	-			

www.DataSheet4U.com83-003817A

μPD78C10/C11/C14

T-49-19-08

Pin Configurations (cont)

64-Pin Miniflat

Pin Identification

Symbol	Function
PA ₀ -PA ₇	Port A I/O
PB ₀ -PB ₇	Port B I/O
PC ₀ /TxD	Port C I/O line O/Transmit data output
PC ₁ /RxD	Port C 1/O line 1/Receive data input
PC ₂ /SCK	Port C I/O line 2/Serial clock I/O
PC ₃ /TI/INT2	Port C I/O line 3/Timer input/Interrupt request 2 input
PC ₄ /TO	Port C I/O line 4/Timer output
PC ₅ /Cl	Port C I/O line 5/Counter input
PC ₆ , PC ₇ /CO ₀ , CO ₁	Port C I/O lines 6, 7/Counter outputs 0, 1
NMI	Nonmaskable interrupt input
INT1	Interrupt request 1 input
MODE1	Mode 1 input/Memory cycle 1 output
RESET	Reset input
MODEO	Mode 0 input/I/O/Memory output
X1, X2	Crystal connections 1, 2

Pin Identification (cont)

Symbol	Function					
V _{SS}	Ground					
AVSS	A/D converter power supply ground					
AN ₀ -AN ₇	A/D converter analog inputs 0-7					
VAREF	A/D converter reference voltage					
AVDD	A/D converter power supply voltage					
RD	Read strobe output					
WR	Write strobe output					
ALE	Address latch enable output					
PF ₀ -PF ₇	Port F I/O/Expansion memory address bus (bits 8-15)					
PD ₀ -PD ₇	Port D I/O/Expansion memory address/ data bus					
STOP	Stop mode control input					
V _{DD}	5 V power supply					

Pin Functions

PA₀-PA₇ [Port A]

Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs.

PB₀-PB₇ [Port B]

Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs.

PCn-PC7 [Port C]

Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input.

TxD [Transmit Data]. Serial data output terminal.

RxD [Receive Data]. Serial data input terminal.

SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used.

Ti [Timer Input]. Timer input terminal. www.DataSheet4U.com

μPD78C10/C11/C14

7-49-19-0

INT2 [Interrupt Request 2]. Falling-edge-triggered, maskable interrupt input terminal and AC-input, zerocross detection terminal.

TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer/counter.

CI [Counter Input]. External pulse input to timer/event counter.

CO₀, CO₁ [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter.

PD₀-PD₇ [Port D]

Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus.

PF₀-PF₇ [Port F]

Port F is an 8-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits.

AN₀-AN₇

These are the eight analog inputs to the A/D converter. AN_4 - AN_7 can also be used as a digital input for falling edge detection.

AV_{SS} [A/D Converter Power Ground]

 $\ensuremath{\mathsf{AV}_{SS}}$ is the ground potential for the A/D converter power supply.

NMI [Nonmaskable Interrupt]

Falling-edge-triggered nonmaskable interrupt input.

INT1 [Interrupt Request 1]

INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal.

RESET [Reset]

When the $\overline{\text{RESET}}$ input is brought low, it initializes the device.

MODE1, MODE0 [Mode 1, 0]

The MODE1 and MODE0 inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODE0 outputs the IO/M signal.

VAREF [A/D Converter Reference]

 $\ensuremath{\text{V}_{\text{AREF}}}$ sets the upper limit for the A/D conversion range.

AV_{DD} [A/D Converter Power]

This is the power supply voltage for the A/D converter.

RD [Read Strobe]

The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset. Three-state.

WR [Write Strobe]

The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset. Three-state.

ALE [Address Latch Enable]

The ALE output latches the address signal to the output of PD₀-PD₇.

X1, X2 [Crystal Connections 1, 2]

X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock.

Vss [Ground]

Ground potential.

STOP [Stop Mode Control Input]

A low-level input on $\overline{\mbox{STOP}}$ stops the system clock oscillator.

VDD [Power Supply]

+5 V power supply.

www.DataSheet4U.com

 \mathcal{P}

98D 13392____

Functional Description

Memory Map

The μ PD78C11 can directly address up to 64K bytes of memory. Except for the on-chip ROM (0-4095) and RAM (65,280-65,335), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K byte memory space for the μ PD78C11. On-chip ROM is located from 0-16,383 in the μ PD78C14.

Input/Output

The μ PD78C10/C11/C14 has 8 analog input lines (AN₀-AN₇), 44 digital I/O lines, five 8-bit ports (port A, port B, port C, port D, port F), and 4 input lines (AN₄-AN₇).

Analog Input Lines. AN_0 - AN_7 are configured as analog input lines for on-chip A/D converter.

Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs.

Port D. Port D can be programmed as a byte input or a byte output.

 AN_4 - AN_7 . The high-order analog input lines, AN_4 - AN_7 , can be used as digital input lines for falling-edge detection.

Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter.

Memory Expansion. In addition to the single-chip operation mode, the µPD78C11 has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion		Port Configuration
None	Port D Port F	I/O port I/O port
256 Bytes	Port D Port F	Multiplexed address/data bus I/O port
4K Bytes	Port D Port F ₀ -F ₃ Port F ₄ -F ₇	Multiplexed address/data bus Address bus I/O port
1011 07 100	Port D Port F ₀ -F ₅ Port F ₆ -F ₇	Multiplexed address/data bus Address bus I/O port
60K Bytes	Port D Port F	Multiplexed address/data bus Address bus

Timers

There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as a 16-bit timer. The timer can be software set to increment at intervals of four machine cycles (1 μ s at 12 MHz operation) or 128 machine cycles (32 μ s at 12 MHz), or to increment on receipt of a pulse at Ti. Figure 2 is the block diagram for the timer.

Timer/Event Counter

The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations:

- Interval timer
- External event counter
- Frequency measurement
- Pulse width measurement
- Programmable square-wave output

6427525 NE C ELECTRONICS INC

98D 13393

6427525 N E C ELECTRONICS INC

98D 13394

Figure 2. Timer Block Diagram

Block Diagram for Timer/Event Counter

8-Bit A/D Converter

- 8 input channels
- 4 conversion result registers
- 2 powerful operation modes
 - Autoscan mode
 - Channel select mode
- Successive approximation technique
- Absolute accuracy: 0.6% ±1/2 LSB
- Conversion range: 0 to 5 V
- Conversion time: 42 μs Interrupt generation

Analog/Digital Converter

The uPD78C10/C11/C14 features an 8-bit, high-speed, high-accuracy A/D converter. The A/D converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CR₀-CR₃). The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CR0-CR3. In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the A/D converter. To prevent wperationashibet A(Doggnverter

and thus reduce power consumption, set VAREF = 0 V.

T-49-19-0

Interrupt Structure

There are 11 interrupt sources. Three are external interrupts and eight are internal. Table 2 shows 11 interrupt sources divided into six priority levels. See figure 5.

3.

Standby Function

by RESET.

The \$\mu PD78C10/C11/C14\$ has two standby modes: HALT and STOP. The HALT mode reduces power consumption to less than 50% of normal operating requirements, while maintaining the contents of on-chip registers, RAM, and control status. The system clock and on-board peripherals continue to operate, but the CPU stops executing instructions. The HALT mode is initiated by executing the HLT instruction. The HALT mode can be released by any nonmasked interrupt or

The STOP mode reduces power consumption to less than 0.1% of normal operating requirements. There are two STOP modes: type A and type B.

Type A is initiated by executing a STOP instruction. If V_{CC} is maintained within the operating range (2.5 to 6.0 V), on-board RAM and CPU register contents are saved. If V_{CC} is held above 2.0 V (but less than 2.5 V), only on-board RAM is saved. The oscillator is stopped. The STOP mode can be released by an input on \overline{NMI} or \overline{RESET} . The user can program oscillator stabilization time via timer 1. By checking the standby flag (SB), the user can determine whether the processor has been in the standby mode.

Table 2. Interrupt Sources

lable 2.	Interrup	Sources		
interrupt Interr Request Addr		Type of Interrupt	Internal. Externa	
IRQ0	IRQ0 4 NMI (Nonmaskable in		Ext	
IRQ1	8	INTTO (Coincidence signal from timer 0)	Int	
		INTT1 (Coincidence signal from timer 1)	•	
IRQ2	16	INT1 (Maskable interrupt)	Ext	
		INT2 (Maskable interrupt)		
IRQ3	24	INTEO (Coincidence signal from timer/event counter)	int	
		INTE1 (Coincidence signal from timer/event counter)		
RQ4	32	INTEIN (Falling signal of CI and TO counter)	Int/Ext	
		INTAD (A/D converter interrupt)		
RQ5	40	INTSR (Serial receive interrupt)	Int	
		INST (Serial send interrupt)		

Type B is initiated by inputting a low level on the STOP input. Only RAM contents are saved, not the CPU register contents. The oscillator is stopped. The STOP mode is released by raising STOP to a high level. The oscillator stabilization time is fixed at 65 ms; 65 ms after STOP is raised, instruction execution will begin at location 0. You can increase the stabilization time by holding RESET low for the required time period.

Figure 4. A/D Converter Block Diagram

Figure 5. Interrupt Structure Block Diagram

T-49-19-08

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram.

Figure 6. Universal Serial Interface Block Diagram

Zero-Crossing Detector

The INT1 and $\overline{\text{INT2}}$ terminals (used common to TI and PC₃) can detect the zero-crossing point of low-frequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry.

The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase-sensitive devices.

To use the zero-cross detection mode, an AC signal of approximately 1-3 VAC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins.

For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated.

For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated.

Figure 7. Zero-Crossing Detection Circuit

6427525 N E C ELECTRONICS INC

98D 13398

Absolute Maximum Ratings

Power supply voltages, V _{DD}	0514 .701
	-0.5 V to +7.0 V
AV _{DD}	. AVSS to $V_{DD} + 0.5 V_{DD}$
AV _{SS}	0.5 V to +0.5 V
Input voltage, V _I	-0.5 V to +7.0 V
Output voltage, V ₀	-0.5 V to V _{DD} + 0.5 V
Output current low, I _{OL}	4.0 mA
Output current low, total for all pins	100 mA
Output current high, loH	-2.0 mA
Output current high, total for all pins	−50 mA
Reference input voltage, V _{AREF}	-0.5 V to AV _{DD} + 0.3 V
Operating temperature, T _{OPR} XTAL ≤ 12 MHz	-40°C to +85°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Conditions

Oscillating Frequency	T _A	Vag. AVag
f _{XTAL} ≤ 12 MHz	-40°C to +85°C	+5.0 V ±10%

Capacitance

 $T_A = 25 \,^{\circ}\text{C}; V_{DD} = V_{SS} = 0 \,^{\circ}\text{V}$

Parameter			Limits			Test Conditions
	Symbol	Min	Тур	Max	Unit	
input capacitance	CI			10	pF	$Af_c = 1 MHz.$
Output capacitance	Co			20	pF	Unmeasured pins returned
I/O capacitance	C _{IO}			20	pF	to 0 V.

Recommended XTAL Oscillation Circuit

μPD78C10/C11/C14

T-49-19-08

www.DataSheet4U.com

DC Characteristics

 $T_A = -10$ °C to +70 °C; $V_{DD} = +5.0 \text{ V} \pm 5\%$; $V_{SS} = 0 \text{ V} -$

	Limits		nits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
nput low voltage	V _{IL1}	0		0.8	, V	All except Note 1 inputs.
	V _{IL2}	0		0.2 V _{DD}	٧	Note 1 inputs.
nput high voltage	V _{IH1}	2.2	-	V _{DD} .	٧	All except X1, X2, and Note 1 inputs.
•	V _{IH2}	0.8 V _{DD}	-	V _{DD}	٧	X1, X2, and Note 1 inputs.
Output low voltage	V _{OL} -		• •	0.45	٧	$I_{OL} = 2.0 \text{ mA}$
Output high	VoH	$V_{DD} - 1.0$	•	-	٧	$I_{OH} = -1.0 \text{ mA}$
voltage	•	$V_{DD} - 0.5$			٧	$I_{OH} = -100 \mu\text{A}$
Data retention voltage	V _{DDDR}	2.5			٧	STOP mode
Input current	ij	***	-	±200	μA	INT1, TI(PC ₃); $0 \text{ V} \leq \text{V}_1 \leq \text{V}_{DD}$
Input leakage current	ILI			±10	μΑ	All except INT, TI(PC ₃) $0 \text{ V} \leq \text{V}_1 \leq \text{V}_{DD}$
Output leakage	LO			±10	μΑ	0 V ≤ V ₀ ≤ V _{DD}
AV _{DD} supply current	Aldo		0.3	1.0	mA	·
V _{DD} supply current	I _{DD1}		15	30	mA	Operation mod f = 12 MHz
	I _{DD2}		10	20	m/	HALT mode f = 12 MHz
Data retention	IDDDR		1	15	μF	$V_{DDDR} = 2.5 V$
current			10	50	μĒ	V _{DDDR} = 5 V ± 10%

Note:

Serial Operation

		Limits		•	Test
Parameter	Symbol	Min	Max	Unit	Conditions
SCK cycle time	tcyk	1		μS	SCK input (1)
		500		ns	(2)
	-	2		μS	SCK output
SCK width low	tKKL	420		ns	SCK input (1)
1: 3:		200		пs	SCK input (2)
•		900		ns	SCK output
SCK width high	tKKH	420		ns	SCK input (1)
•		200		ns	SCK input (2)
		900		ns	SCK output
RxD set-up time to SCK 1	t _{RXK}	80		กร	(1)
RxD hold time after	t _{KRX}	80	-	ns	(1)
SCK ↓ TxD delay time	t _{KTX}		210	กร	(1)

Note:

- (1) 1x baud rate in asynchronous, synchronous, or I/O interface mode.
- (2) 16x baud rate or 64x baud rate in asynchronous mode.

Zero-Cross Characteristics

		Limits			Test Conditions
Parameter	Symbol	mbol Min		Unit	
Zero-cross detection input	V _{ZX}	1	1.8	VAC _{p-p}	Ac coupled 60-Hz sine
Zero-cross accuracy	AZX		±135	mV	wave
Zero-cross detection input frequency	f _{ZX}	0.05	1	kHz	

⁽¹⁾ Inputs RESET, STOP, NMI, SCK, INT1, TI, and AN₄-AN₇.

Limits XTAL = 12 MHz Max 250 20 360 215 180	Unit	Test Conditions (1) Event counter mode Pulse width measurement mode
250 250 20 360 215 180	Unit	Event counter mode Pulse width measurement mode
250 20 360 215 180	μs μs μs ns μs ns	Event counter mode Pulse width measurement mode
250 20 360 215 180	μs μs ns	Event counter mode Pulse width measurement mode
250 20 360 215 180	μs μs ns	Pulse width measurement mode
250 20 360 215 180	μs ns	Pulse width measurement mode
20 360 215 180	ΠS μS ΠS ΠS ΠS ΠS ΠS ΠS ΠS ΠS	Pulse width measurement mode
20 360 215 180	ns	Pulse width measurement mode
20 360 215 180	ns	
20 360 215 180	ns	
360 215 180	ns	
360 215 180	ns ns ns ns ns ns ns	
360 215 180	ns ns ns ns ns	
360 215 180	ns ns ns ns	
360 215 180	ns ns ns	
215 180	ns ns ns	
180	ns ns	
	ns	
	119	
	ns	
		0-1-
	ns	Data read
	ns	Opcode fetch
105		
100		
	195	

A/D Converter Characteristics $T_A = -40$ °C to +85 °C; $V_{SS} = AV_{SS} = 0$ V; $AV_{DD} - 0.5$ V $\leq V_{AREF} \leq$

			Limits	_		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Resolution		8			Bits	
Absolute accuracy				0.4% ± 1/2	LSB	T _A = -10°C to +50°C
				0.6% ± 1/2	LSB	
Conversion time	tconv	567			tcyc	83 ns ≤ t _{CYC} ≤ 110 ns
· · · · · · · · · · · · · · · · · · ·		432			tcyc	110 ns ≤ t _{CYC} ≤ 170 ns
Sampling time	tsamp	96			tcyc	83 ns ≤ t _{CYC} ≤ 110 ns
·		72			tcyc	110 ns ≤ t _{CYC} ≤ 170 ns
Analog input voltage	VIA	0		VAREF	٧	
Analog Input impedance	R _{AN}	-	1000		MΩ	
V _{AREF} current	IAREF		1.5	3.0	mΑ	

Bus Timing Depending on toyo

lymbol	Calculating Expression	Min/Max
RP	60T	Min
TI	6T	Min
(2)	6T.	Min
t _{Ci} (3)	48T	Min
tip	36T	Min
t _{AL}	2T — 100	Min _
t _{LA}	T — 30	Min
t _{AR}	3T — 100	Min
t _{AD}	7T — 220	Max
t _{LDR}	5T — 200	Max
tad	4T — 150	Max
tLR	T — 50	Min
t _{RL}	2T - 50	Min
t _{RR}	4T – 50 (Data Read)	Min
-1411	71 – 50 (Opcode Fetch)	
t _{LL}	2T — 40	Min
t _{ML}	2T 100	Min
t _{LM}	T - 30	Min
til	2T — 100	Min
t _{Li}	T 30	Min
t _{AW}	3T -100	Min
tLDW	T + 110	Max
tLW :	T 50	Min
t _{DW}	4T — 100	Min
twoH ·	2T — 70	Min
twL	2T - 50	Min
tww .	4T — 50	Min
tCYK	12T (SCK input) (1)	Min
-VIII II -	24T (SCK output)	·········
t _{KKL}	5T + 5 (SCK input) (1)	Min
-KNL	12T — 100 (SCK output)	·
t _{KKH}	5T + 5 (SCK input) (1)	Min
ANI	12T — 100 (SCK output)	

mode. $T = t_{CYC} = 1/f_{XTAL}$

The items not included in this list are independent of oscillator www.DataSheet4U.com frequency (fXTAL).

(2) Event counter mode. (3) Pulse width measurement mode.

Timing Waveforms

Write Operation

Timing Waveforms (cont)

Serial Operation Transmit/Receive Timing

Opera	and Format/Descri	otion	Remarks	300 13404
Format		Description	1. sr-sr4 (special register)	7=49-19
r \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, F A, B, C	, L	PA = Port A PB = Port B PC = Port C	ECNT = Timer/Event Counter Upcounter ECPT = Timer/Event
sr	PA, PB, PC, PD, PF, MK ETMM, TMM, MM, MC MF, TxB, TM ₀ , TM ₁ , ZC	H, MKL, ANM, SMH, SML, EOM, C, MA, MB, MC,	PD = Port D PF = Port F MA = Mode A	Counter Capture ETMM = Timer/Event
sr1 sr2	PA, PB, PC, PD, PF, MK CRO, CR1, CR2, CR3 PA, PB, PC, PD, PF, MK	H, MKL, ANM, SMH, EOM, TMM, RxB, H, ANM, MKL, SMH, EOM, TMM	MB = Mode B MC = Mode C MCC = Mode Control C	Counter Mode EOM = Timer/Event Counter Output Mode
sr3 sr4	EIMO, EIM1 ECNT, ECPT	<u> </u>	MF = Mode F MM = Memory Mapping	TxB = Tx Buffer RxB = Rx Buffer
rp rp1 rp2 rp3	SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H		TM ₀ = Timer Register 0 TM ₁ = Timer Register 1 TMM = Timer Mode ETM ₀ = Timer/Event	SMH = Serial Mode High SML = Serial Mode Low MKH = Mask High MKL = Mask Low
rpa rpa1 rpa2 rpa3	H + EA, H + byte	H – H –, D + byte, H + A, H + B, - byte, H + A, H + B, H + EA,	Counter Register 0 ETM ₁ = Timer/Event Counter Register 1 ZCM = Zero-Cross Mode Control Register	ANM = A/D Channel Mode CR ₀ = A/D Conversion Result 0-3 to CR ₃ TXB = TX Buffer RXB = RX Buffer
wa	H + byte 8-Bit immediate data			SMH == Serial Mode High SML == Serial Mode Low MKH == Mask High High
word byte bit	16-Bit immediate data 8-Bit immediate data 3-Bit immediate data		2. rp-rp3 (register pair)	MKL = Mask Low
f irf	CY, HC, Z	FEO, FE1, FEIN, FAD, FSR, FST, ER,	SP = Stack Pointer B = BC D = DE	H = HL V = VA EA = Extended Accumulator
····	OV, AN ₄ , AN ₅ , AN ₆ , AN ₇	, SB	3. rpa-rpa3 (rp addressing)	EA - Extended Accumulator
Instruc	tion Set Symbol D	efinitions	B = (BC) D = (DE)	D++= (DE)++ H++= (HL)++
Symbol		Description	H = (HL) D + = (DE) +	D + byte = (DE) + byte H + A = (HL) + (A)
—		Transfer direction, result	H - = (HL) +	H + B = (HL) + (B)
٨		Logical product (logical AND)	D — = (DE) — H — = (HL) —	H + EA = (HL) + (EA) H + byte = (HL) + byte
٧		Logical sum (logical OR)	4. f (flag)	II + byte - (IIL) + byte
+		Exclusive OR		alf Carry Z = Zero
		Complement	5. irf (interrupt flag)	
•		Concatenation	NMI = NMI* Input	FEIN = INTFEIN FAD = INTFAD
	:		FT0 = INTFT0 FT1 = INTFT1 F1 = INTF1 F2 = INTF2 FE0 = INTFE0 FE1 = INTFE1	FSR = INTFSR FST = INTFST ER = Error OV = Overflow AN4 to AN7 = Analog Input 4-7

	ı
T	I
G	I
Ç	Ì
.9	
*	Ì
š	Į
5	ľ
70	
Ξ	

Instruc	Instruction set	16	2000	Oncertion Code			V
		-	1900				V\\
			18	絽			/W
			8	84		9	Skip
Mnemonic	Mnemonic Operand	Operation	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	o) les	
O Dit Bata Tranefor	anefor		-			ŀ	Sh
MOV	7 7	(r4) +- (b)	0 0 0 1 1 T ₂ T ₁ T ₀		4	-	ee
2	= =		0 0 1 T ₂ T ₁	-	4	-	t4L
	, Y	(11)			٤	2	J. C
	A,1S*	(sr) ← (A)	0 1 0 0 1 0	1 1 25 24 23 22 31	2 9	,	am
	*A cr1	(A) ← (sr1)	0 1 0 0 1 1 0 0	1 1 S ₅ S ₄ S ₃ ·S ₂ S ₁	2	7	1:
	r word	3	0 1 1 1 0 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	4	4	
		3	Low addr	High addr			
	word r	· (r) (prow)	0 1 1 1 0 0 0 0	0 0 1 1 1 1 R ₂ R ₁ R ₀	4	4	٠.
	5		Low addr	High addr			
	4.4	- 1	0 1 1 0 1 Rs Rs Rn	Data	7	7	1 000 F
IAM.	r,uyte	set L1					L0 = 1 and r = L
		set L0 if r = L					
	sr2.byte	sr2.byte (sr2) ← byte	0 1 1 0 0 1 0 0	0 S ₃ 0 0 0 0 S ₂ S ₁ S ₀	1	·	
			Data				
100000	Auth Cuth	the hote (A)_(us) +- hote	0 1 1 1 0 0 0	1 Offset	ស	က်	
AN IA IAI	wa, uyi	((v)=(wa)) 5) c	Data				
			A 0 1 0 0 1 0	A. Data	2	7	
MVIX	"rpa1,byte (rpa1				ş	~	
STAW	*wa	((V)•(wa)) A	0 0 0		ç		
LDAW	*wa	(A) ← ((V)•(wa))	0 0 0 0 0 0	1 Offset	0,07,2	۰ اد	
STAN	*rna?	1	A3 0 1 1 1 A2 A1 A	A ₀ Data (2)	(/13(3)	7	
1014	Crus.		0 1 0 1 A2 A1	A ₀ Data (2)	7/13(3)	2	
¥.[1 pag	ı	0 0 0 0		4	-	
)at ≚		(a) + (a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d					
asy		(N) ← (V') (A) ← (A') (EA) ← (EA')	0 0 0 1 0 0 0	0	4	-	
she			0 1 0 1 0 0 0	0	4	-	
C. C	Tunnelar						
10-615	Lausier	(1) 100 - (100 × 100)	0 0 1 1 0 0	_	13 x		
E C	_	$((0e)) \leftarrow ((ue)) \cdot (0e) \cdot (0e+1)$	· · ·		(C + 1)		
om		End if borrow			,	-	フーー
DMO	ro3. EA		1 0 1 1 0 1 P ₁	P ₀	4	- ,	
	EA rn3	(FAI)	1 0 1 0 0 1 P ₁	P_0	4	-	9
	5]					19

	:	r	C	Drawnellon Sada			
							V
٠			=	28			
Mnemonic	Mnemonic Operand	Operation	83 7 6 5 4 3 2 1 0	7 F F 4 2 2 - 0			\ S tip
16-Bit Data Transfer (cont)	Transfer (con	~		7 0	State 11	Bytes	Condition
DMOV	sr3, EA	(sr3) ← (EA)	0 1 0 0 1 0 0	,			S
٠.	EA,sr4	(EA) ← (sr4)			14	2	iee
SBCD	Word	(word) ← (C) (word ± 1) ← (B)		-	14	7	t4
			0 0 0 0 1 1 0	0 0 0 1 1 1 1 0	20	4	J.c
SPEN.	Word	(a) (c) (many (d) (brown)	Low addr	High addr			
	5	$(wold)$ (E) , $(word + 1) \leftarrow (D)$	0 1 1 1 0 0 0 0	0 0 1 0 1 1 1 0	20	4	
CHS	Prom		Low	High addr	:	•	1
9		$(word)$ $(\pm j)$ $(word + 1)$ (H)	0 1 1 1 0 0 0 0	0 0 1 1 1 1 1 0	20	4	
0000			Low addr	High addr			-
ase	Word	$(word) \leftarrow (SP_L)(word + 1) \leftarrow (SP_H)$	0 1 1 1 0 0 0 0	0 0 0 0 1 1 1 0	\$3	4	
CTLAN			Low addr	High addr		•	
SIEAX	rba3	((rpa3)) — (EAL),((rpa3) + 1 — (EAH)	0 1 0 0 1 0 0 0	10015055	14/20(3)	65	
			Data(4)			•	
recn	word	(C) \leftarrow (word),(B) \leftarrow (word + 1)	0 1 1 1 0 0 0 0	0 0 0 1 1 1 1 1	20	4	
	- 1		Low addr	Hioh addr	ì		
	word	(E) ← (word),(D) ← (word + 1)	0 1 1 1 0 0 0 0	0 0 1 0 1 1 1 1	20	-	
			Low addr	Hinh addr	}		
CHIO	word	(L) ← (word),(H) ← (word + 1)	0 1 1 1 0 0 0 0	0 0 1 1 1 1 1 1	06		
			Low addr		07 .	.	
LSPD	word	$(SP_L) \leftarrow (word), (SP_H) \leftarrow ((word) + 1)$	0 1 1 1 0 0 0 0	0 0 0 0 1 1 1 1	5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			Low addr	High addr	}	,	
LUEAX	rpa3	(EAL) ← ((rpa3)),(EAH) ← ((rpa3) + 1)	0 1 0 0 1 0 0 0	1000000	14/20(3)	65	
Notice.			Data(4)	1.			
WW	둳	$((SP) - 1) \leftarrow (rp1_H) ((SP) - 2) \leftarrow (rp1_L)$ $(SP) \leftarrow (SP) - 2$	1 0 1 1 0 02 01 00		5	-	
0.00	rp1	$(rp1_L) \leftarrow ((SP)), (rp1_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	1 0 1 0 0 0 ₂ 0 ₁ 0 ₀		9	-	
ata:	*rp2,word (rp2) **	(rp2) ← (word)	0 P ₂ P ₁ P ₀ 0 1 0 0	Low byte	Ę	6	1
Sh		Set LU II IDZ = II	High byte		2		10 = 1 alia 102 = H
TABLES		(C) \leftarrow ((PC)+3+(A)),B \leftarrow ((PC)+3+(A)+1)	0 1 0 0 1 0 0 0	1 0 1 0 1 0 0 0	12	,	
- Bar Agener	c [Register]					1	
J.c 号.	A,r	A) + (A)	0 1 1 0 0 0 0 0	1 1 0 0 0 B, B, B,	α	,	
0	r.A	(r) + (r) + (A)		2 0		7	

œ œ œ œ

0 0 0 0 0 0

0 0 0

0

0 0 0

> $(A) \leftarrow (A) + (r) + (CY)$ $(r) \leftarrow (r) + (A) + (CY)$

(r) ← (r) + (A)

ľ, A A

ADC

R₂ R₁ R₀ R₂ R₁ R₀ R₂ R₁ R₀

			do	Operation Code	Code				i			
٠.			=			-	낊					·\\\\
Mnemonic	Operand	Operation	83 7 6 5 4 3 2 1	•	9 2	5 4 8	9	2 1	0	State(1)	Bytes	Condition
8-Bit Artthmetic [Renister] (conf)	ie iReniste											aS
ADDNC	Ar	(A) ← (A) + (r)	0 1 1 0 0 0 0 0		0	10	0	R ₂ R ₁	80	8	2	No carry
	2	(r) ← (r) + (A)	0 1 1 0 0 0 0 0	0	0 0	1 0	0	R ₂ R ₁	æ	€	2	No carry
SIB	Ar	(A) ← (A) – (r)	0 1 1 0 0 0 0	0	1 1	1 0	0	R2 R1	B	8	2	U.¢
	4	(r) ← (r) − (A)	0 1 1 0 0 0 0 0	0	0	1 0	0	R ₂ R ₁	æ	œ	2	con
888	Ā	$(A) \leftarrow (A) - (r) - (CY)$	0 1 1 0 0 0 0 0	0	-	1	0	R2 R1	æ	æ	2)
	Y.	$(r) \leftarrow (r) - (A) - (CY)$	0 1 1 0 0 0 0 0	0	0 1	1 1	0	R ₂ R ₁	R ₀	8	2	
SUBNB	A,r	(A) ← (A) − (r)	0 1 1 0 0 0 0	0	0	1	0		æ	80	2	No borrow
	F,A	$(r) \leftarrow (r) - (A)$	0 1 1 0 0 0 0	0	0 0	-	-		æ	80	2	No borrow
ANA	A.r	(A) (A) \(\rangle (r)	0 1 1 0 0 0 0 0	0	1 0	0	-	- 1	9		2	
•	L'A	(r) ← (r) ∧ (A)	0 1 1 0 0 0 0	0	0 0	0 0	÷		æ	80	2	
ORA	A.r	(A) ← (A) V (r)	0 1 1 0 0 0 0	0	1 0	0	-	R2 R4	2	8	2	
•	r.A	(r) ← (r) V (A)	0 1 1 0 0 0 0	0	0 0	0	-	- 1	8	æ	2	
XRA	A.r	(A) ← (A) V (r)	0 1 1 0 0 0 0	0	1	0	0		æ	8	2	
	Y.A	(r) ← (r) V (A)	0 1 1 0 0 0 0	0	0 0	-	0	R2 R1	2	80	2	
GTA	Ą.	(A) (r) 1	0 1 1 0 0 0 0	0	1 0	-	-		P ₀	8	2	No borrow
•	Y.Y	(r) (A) 1	0 1 1 0 0 0 0	0	0 0	1 0	-		P.	8	2	No borrow
LTA	Ā	(A) — (r)	0 1 1 0 0 0 0	0	1 0	1	-		P ₀	80	2	Borrow
	4.		0 1 1 0 0 0 0 0	0	0	-	-		æ	8	7	Borrow
NEA	Ą	(A) — (r)	0 1 1 0 0 0 0	0	1	-	-	ı	P)	8	2	No zero
	Y.	(r) – (A)	0 1 1 0 0 0 0	0	0 1	1 0	-	R ₂ R ₁	æ	8	2	No zero
EOA	A,r	(A) — (r)	0 1 1 0 0 0 0	0	1	-	-	1	æ	80	2	Zero
٧	L'A	(r) (A)	0 1 1 0 0 0 0	0	-		-		& 2	8	2	Zero
ONA	Ą		0 1 1 0 0 0 0	0	-	0	-		8	80	2	No zero
OFFA OFFA	A,r	(A) A (r)	0 1 1 0 0 0 0	٥	-		-	₽. F	æ	æ	2	Zero
8-Bil Authmetic (Memory)	tic (Memo	(A)				- !	- 1					
ADDX	гра	(A) ← (A) + ((rpa))	0 1 1 1 0 0 0	0	-	0	- 1		A ₀	-	2 0	
ADCOM	rpa	(A) \leftarrow (A) + ((rpa)) + (CY)	0 1 1 1 0 0 0	0	-	-	- 1		P ₀	F	2	
ADDIVEX	roa	1	0 1 1 1 0 0 0	0	, O	-	0	A ₂ A ₁	P ₀	=	2	No carry
4Lighs	гра	(A) ← (A) – ((rpa))	0 1 1 1 0 0 0	0	-	-			γ	F	2	
SBBXC	EZ.	(A) ← (A) – ((rpa)) – (CY)	0 1 1 1 0 0 0	0	-	-	0	A2 A1	A ₀	÷	2	
SUBMEX	г	(A) ← (A) – ((rpa))	0 1 1 1 0 0 0	0	-	-	9		A ₀	=	~	No borrow
ANAX	rpa	(A) ← (A) ∧ ((rpa))	0 1 1 1 0 0 0	0	-	- 1		A ₂ A ₁	δ	F	2	
ORAX	БĒ	(A) — (A) V ((rpa))	0 1 1 1 0 0 0	-	-	اہ	_	A ₂ A ₁	P ₀	=	2	

		;	Operation Code	Code			V
			180	B2			/W\
			2	1 2			V.[
Mnemonic	Operand	Operation	2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Condition
8-Bit Arithmetic (Memory) (cont)	etic (Memor	y) (cont)					SI
XRAX	rpa	(A) — (A) V ((rpa))	0 1 1 1 0 0 0 0	1 0 0 1 0 A2 A1 An	F	2	nee
GTAX	гра	(A) — ((rpa)) — 1	0 1 1 1 0 0 0 0	Æ	#	2	No borrow
LTAX	rba	(A) — ((rpa))	0 1 1 1 0 0 0 0		F	2	Borrow
NEAX	rba	(A) — ((rpa))	0 1 1 1 0 0 0 0	Æ	F	2	No zero
EOAX	гра	(A) — ((rpa))	0 1 1 1 0 0 0 0		=	2	Zero
ONAX	rpa	(A) ∧ ((rpa))	0 1 1 1 0 0 0 0	1 1 0 0 1 A2 A1 A0	#	2	No zero
0FFAX	гра	(A) ∧ ((rpa))	0 1 1 1 0 0 0 0	Æ	F	,	Zero
Immediate Data	ata			3.		,	0121
ADI	*A,byte	(A) ← (A) + byte	0 1 0 0 0 1 1 0	Data	7	2	
	r,byte	$(r) \leftarrow (r) + byte$	0 1 1 1 0 1 0 0	0 1 0 0 0 R2 R1 R0	F	6	
•			Data		•		
	sr2, byte (sr2)	(sr2) ← (sr2) + byte	1 0 0	S ₃ 1 0 0 0 S ₂ S ₁ S ₀	83	3	
			Data				
ACI.	"A,byte (A)		0 1 0 1 0 1 1 0	Data	7	2	
	r,byte	$(r) \leftarrow (r) + byte + (CY)$	0 1 1 1 0 1 0 0	0 1 0 1 0 R2 R1 R0	F	က	
•			Data				
	sr2,byte	sr2,byte (sr2) ← (sr2) + byte + (CY)	0 1 1 0 0 1 0 0 S	S ₃ 1 0 1 0 S ₂ S ₁ S ₀	82	က	
			Data				
ADINC	- 1	(A) ← (A) + byte	0 0 1 0 0 1 1 0	Data	7	2	No carry
	r,byte	(r) ← (r) + byte	0 1 1 1 0 1 0 0 0	0 0 1 0 0 R ₂ R ₁ R ₀	F	65	No carry
'			Data				•
ww	sr2,byte	sr2.byte (sr2) ← (sr2) + byte	0 1 1 0 0 1 0 0 S	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	20	က	No carry
₩.[]].	*A,byte	(A) ← (A) – byte	0 1 1 0 0 1 1 0	Data	7	6	
)at:	r,byte	(r) ← (r) – byte	0 1 1 1 0 1 0 0	0 1 1 0 0 R ₂ R ₁ R ₀	F	6	
aS			Data				
hee	sr2,byte	(sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0 8	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	20	က	
t 4 L	*A,byte	(A) ← (A) – byte – (CY)	0 1 1 1 0 1 1 0	Data		·	
J.c	r hyte	1		Daid	,	١,	
om	'nyte	(i) (i) nyte – (ci)	Data Data	0 1 1 1 0 R ₂ R ₁ R ₀	=	က	
	sr2,byte	sr2,byte (sr2) \leftarrow (sr2) $-$ byte $-$ (CY)	1 0 0	S ₃ 1 1 1 0 S ₂ S ₁ S ₀	20	က	
			Data				

		Operation Code	m Gode			\ \
		181	82			/WW
;		83 7 6 5 4 3 2 1 0	84 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
Minemonic uperand						taS
immediate data (cont)	**	0 0 1 1 0 1 1 0	Data		2	No borrow
SUINB	3		0 0 1 1 0 B, B, B	F	က	No borrow
	r,byte (r) *** (r) *** byte	Data	7		-	ŀU.¢
	22 hate (cr2) -+ (cr2) - hate	0 1 1 0 0 1 0 0	S ₃ 0 1 1 0 S ₂ S ₁ S ₀	8	3	No borrow
	SIC, USIC (SIC) SIC.	Data				1
NA.	*A hyte (A) (A) A hyte	0 0 0 0 0 1 1 1	Data	7	2	
N N		1-1-	0 0 0 0 1 R ₂ R ₁ R ₀	#	က	
	3	Data				
	sr2 byte (sr2) ← (sr2) ∧ byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	20	က	
		Data				.
ē	*A hyte (A) 4- (A) V byte	0 0 0 1 0 1 1 1	l l	7	2	-
	.1	0 1 1 1 0 1 0 0	0 0 0 1 1 R ₂ R ₁ R ₀	=	ო	
	:	Data				
	sr2.byte (sr2) - (sr2) V byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 1 S ₂ S ₁ S ₀	29	က	
		Data			,	
XBI	*A.bvte (A) ← (A) V byte	0 0 0 1 0 1 1 0		7	2	
	r,byte (r) — (r) V byte	0 1 1 1 0 1 0 0	0 0 0 1 0 R2 R1 R0	=	က	
	27	Data				
	sr2,byte (sr2) ← (sr2) V byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 0 S ₂ S ₁ S ₀	8	ო	
		Data	-	7	0	No horrow
GTI	*A,byte (A) - byte - 1	0 1 0 0 1 1	Data	- =	4 6	No horrow
WW	r,byte (r) - byte - 1	0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1	Lu Zu - o	:	•	
w.D	sr2,byte (sr2) - byte - 1	0 1 1 0 0 1 0 0	S ₃ 0 1 0 1 S ₂ S ₁ S ₀	14	က	No borrow
ata				-	ŀ	Dorrous
됩	*A,byte (A) - byte	1 1 0 1 1	Data	- ;	7 6	1
1ee	r,byte (r) – byte	0 1 1 1 0 1 0 0	0 0 1 1 1 12 K1 K0	=	9	<i>7-</i>
t41		Data Data Data		4	3	Borrow
U.c	sr2,byte (sr2) byte	Data	20	:		19
omį		0 1 1 0 0 1 1 1	Data	7.	2	No zero
Ž.	rhyte (r) – byte	-	0 1 1 0 1 R ₂ R ₁ R ₀	Ŧ	ဗ	No zero
	=					
					İ	•

								_	perat	Operation Code	늄					ļ		1
		:			-		81			:			씵					
1	•					. –	8						2				-	/\/ .
Mnemonic Operand	Operand		Operation	7	9	5 4		2	0	7	9	S	4 3	2	0	State(1)	Butes	Condition
Immediate Data (cont)	nta (cont)										ļ			l				la:
ÿ.	sr2,byte	sr2,byte (sr2) – byte		0	1	0 1 1 0 0 1 0 0	0	0	0	S	-	S ₃ 1 1 0 1	-	જ	S ₂ S ₁	4	6	No zero
						ä	Data	1	-					1				et4
	"A,byte	"A,byte (A) byte		0	1	1 1	0	-	-				Data			7	2	Zero
	r,byte	r,byte (r) byte		0	-	0 1 1 1 0 1	0	0	0	0	0 1 1	1	-	8	R, R,	F	6	Zero
	-		-			ă	Data							1		•		n
	sr2,byte	sr2,byte (sr2) byte		0		1 0 0	0	0	0 0	S,	-	S ₃ 1 1 1 1	-	S	S ₂ S ₁ S ₀	14	60	Zero
						ä	Data											
INO .	"A,byte	"A,byte (A) A byte		0	-	0 0 0 1 1 1	0	-	-				Data			7	6	No zero
	r,byte	r,byte (r) ∧ byte		0.	-	-	1 0	0	0	0	-	0 0		25	R ₂ R ₁ R ₀	=	က	No zero
						ä	Data							ľ				
	sr2,byte	sr2,byte (sr2) A byte		0	-	0 1 1 0 0 1 0 0		0	0	S ₃	-	0	-	S	0 1 52 51 50	4	8	No zero
						۵	Data		İ			l		1				
OFFI.	*A,byte	*A,byte (A) ∧ byte		0	-	0 1 0 1 0 1	6	-	-			Γ	Data	Ì		7	2	Zero
	r,byte (r,byte (r)∧byte		0 1	-	1 1 0 1 0 0	0	0	0	0	-	0 1	-	æ	R ₂ R ₁ R ₀	F	6	Zero
•						2	Data			ĺ								i
	sr2,byte (sr2,byte (sr2) ∧ byte		0 1		1	0 0 1	0	0	S.	_	0	-	S	S ₂ S ₁ S ₀	4	က	Zero
						ප	Data					İ						
Working Register	ster																	

No borrow

က

4

0

0

0

0

-0

0

10

0 0

 $(A) \leftarrow (A) - ((V) \bullet (wa))$

Š

Subsw

(A) ← (A) ∧ ((V)•(wa))

Μa

ANAW

Offset

ო

4

0

0

1 0 Offset

No carry

က

#

0

0

0

0

0

0

0

0

-

 $(A) \leftarrow (A) + ((V) \bullet (wa))$

ĸ٩

ADGW √WM∳Da' $(A) \leftarrow (A) - ((V) \bullet (wa))$

嚼h S

Offset

က

⇉

0

0

0

0

0

0

0

1 0 1

0

Offset

Offset

က

4

0

0

0

0

0

0

101

0

 $(A) \leftarrow (A) - ((V) \cdot (Wa)) - (CY)$

٨a

RESES

Offset

က

4

0

0

0

0

0

0

0

0

 $(A) \leftarrow (A) + ((V) \bullet (wa))$

wa

ADDW

က

7

0

0

0

0

0

0

0

(۵)

 $(A) \leftarrow (A) + ((V) \bullet (wa)) + (CY)$

Ma

ADCM

Offset

			Operation Code				
							WW
			23				Skip
Mnemonic	Mnemonic Operand	Operation	76543210 765432	1 0 Sta	State(1)	Bytes	Condition
Working Register (cont)	gister (cont)						ta\$
ORAW	wa	(A) ← (A) V ((V)•(wa))	0 1 1 1 0 1 0 0 1 0 0 1 0 0	0 0	*	က	She
			Offset				et4
XRAW	wa	(A) ← (A) V ((V)•(wa))	0 1 1 1 0 1 0 0 1 0 0 1 0 0	0 0	14	3	·U.
			Offset				con
GTAW	wa	$(A) - ((V) \bullet (wa)) - 1$	0 1 1 1 0 1 0 0 1 0 1 0 1 0	0 0	14	က	No borrow
			Offset				
LTAW	wa	(A) − ((V)•(wa))	0 1 1 1 0 1 0 0 1 0 1 1 1 0	0 0	14	က	Borrow
			Offset				
NEAW	wa	(A) − ((V)•(wa))	0 1 1 1 0 1 0 0 1 1 1 0 1 0	0 0	4	က	No zero
			Offset				
EQAW	wa	(A) - ((V)•(wa))	0 1 1 1 0 1 0 0 1 1 1 0 1 0	0 0	14	က	Zero
-	ji		Offset				
ONAW	wa	(A) A ((V)•(wa))	0 1 1 1 0 1 0 0 1 1 0 0 1 0	0 0	14	က	No zero
			Offset				
0FFAW	wa	(A) A ((V)•(wa))	0 1 1 1 0 1 0 0 1 1 0 1 0 0	0 0	4	ო	Zero
			Offset				
ANIW	*wa,byte	*wa,byte ((V)•(wa)) ← ((V)•(wa)) ∧ byte	0 0 0 0 0 1 0 1 Offset		9	က	
			Data				
ORIW	*wa,byte ((V)•(: ((V)•(wa)) ((V)•(wa)) V byte	0 0 0 1 0 1 0 1 Offset		1 9	ო	=
			Data				
GTI₩_	*wa,byte	*wa,byte ((V)•(wa)) - byte - 1	0 0 1 0 0 1 0 1		ट	က	No borrow
ľWľ			Data				
N _E C	*wa,byte	"wa,byte ((V)•(wa)) byte	0 0 1 1 0 1 0 1 Offset		55	က	Borrow
at	-		Data				
as E	*wa,byte	*wa,byte ((V)•(wa)) - byte	0 1 1 0 0 1 0 1 0 1		<u>₽</u>	ო	No zero
he	-		Data				
EQ.	*wa,byte	*wa,byte ((V)•(wa)) byte	0 1 1 1 0 1 0 1 Offset		13	က	Zero
4U			Data				
S/NO	*wa,byte	"wa,byte ((V)•(wa)) A byte	0 1 0 0 0 1 0 1 Offset		₽.	က	No zero
m		-	Data				
0FFIW	*wa,byte	*wa,byte ((V)•(wa)) A byte	0 1 0 1 0 1 0 1 0ffset		ರ	က	Zero
			Data				

						ľ			1		ĺ					
							operation Code	200 E0	ا							\
				•	=						엁					
Mnemonic	Mnemonic Operand	i Operation	2 6	5		2	•	7	9	2 4	4 6	~	6	Ctate(1)	e e e e	Skip O.w
16-Bit Arithmetic	metic								1					(c)	olice	ara ata
EADD	EA,r2	(EA) ← (EA) + (r2)	0	_	-	0	-	-	-	0	-	-	8	‡	,	aSh
DADD	EA,rp3	(EA) ← (EA) + (rp3)	0	-	0	0	-	-			- -		1	= =	4 6	ee
DADC	EA,rp3	-	0 1	-	0	0	0	-	-				1	= =	7 6	t4U
DADDNC	EA,rp3	(EA) ← (EA) + (rp3)	0	-	-	0	-	-		=	6	-	1	: =	,	. 05
ESUB	EA,r2	(EA) ← (EA) – (r2)	0	-	1	0	-	-			-	- -	_	= =	۷ د	NO Carry
DSUB	EA,rp3	_	-	-			,	-		9	9	- 1		= ;	7	
DSBB	EA,rp3	1~	0	- -	,	-	ء د	- -		7	- -	- -	2 6	= ∓	7	
DSUBNB	EA,rp3	`	0	-	0	-	۰ -	-			-	- -	0 4	= ∓	7 6	Ma L
DAN	EA,rp3	_	0	-	-	-	-	-			, -	. -		= =	u c	NO DOLLOW
DOR	EA,rp3	(EA) ← (EA) V (rp3)	-	-	0	-	-	-	1		-		- 1	= ∓	7 6	
DXR	EA,rp3	(EA) ← (EA) V (rp3)	0	-	-			- -	1	- -	- -	- -	1	= =	۱,	
DGT	EA,rp3	(EA) - (rp3) - 1	-	-	-		٥	-	1	۰ ۰	۰ ,	֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	- 1	= ;	۷ ا	
DLT	EA.rp3	(EA) — (rp3)		- -	ءاد		-	- -	٠ ٦	> -	- -	Σ c	- 1	=	2	No borrow
PNF	EA ros	(EA) — (rp3)	- -	- -	ا -	- ·	ا	- -	- -	-	-	-		=	2	Borrow
PEO C	2 'Y	(cd) (cd) (cd)	- -	- -	-	0	-	-	_	0	-	 	Po Po	4	2	No zero
200	3	(EA) – (1p3)	-	-	0	-	.	-	_	-	-	<u>-</u>		Ħ	2	Zero
NOO L	E 15	(EA) A (rp3)	0	-	-	0	•	-	-	9	-	1 P1	1 P ₀	Ŧ	2	No zero
Multiplia (nitr	31.5	(EA) A (fp3)	-			-	٥	-	의	-	-	7	- P0	11	2	Zero
mulupiy/ Divide	- 1															
MUL	2	(EA) ← (A) × (r2)	0 1 0	0	-	0		-	-	0	-	- A	æ	8	6	
ρίς	22	(EA) ← (EA) + (r2), (r2) ← Remainder	0	0	-	0	0	-	0	-	-	4		5	,	
Increment/Decrement	ecrement												1	3	4	
SN.	2	$(r2) \leftarrow (r2) + 1$	0 1 0	0	0	Æ	2							P	-	Carry
NR/MS	*wa	$((V)\bullet(wa)) \leftarrow ((V)\bullet(wa)) + 1$	0 0 1	0	0	1	0			Offset	ig			9	. ~	Carry
IW.	٩	$(rp) \leftarrow (rp) + 1$	0 0 P ₁	1 0	0 0	-	0							7	-	
Da	æ	(EA) ← (EA) + 1	1 0 1	0	-	0	0							7	-	
ıta 50	22	$(r2) \leftarrow (r2) - 1$	0 1 0	-	0	œ	2							4	-	Borrow
Sh	*wa	$((V) \bullet (wa)) \leftarrow ((V) \bullet (wa)) - 1$	0 0 1	-	0	0	0			Offset	ig ge			9.	,	Rorrow
ee X	2	$(rp) \leftarrow (rp) - 1$	0 0 P ₁	8	0	-	-					l		7	. -	
141	æ	(EA) ← (EA) – 1	1 0 1	0	1 0	0	_							7	-	
Ghers 3												l				
DAA		Decimal Adjust Accumulator	0 1 1	0	0 0	0	-							4	-	
SIC		(CY) ← 1	0 1 0	0	1 0	0	0	0	-	0	-	1	-	8	2	
CLC		(CY) ← 0	0 1 0	-	0	0	0	0	-	0	-	0	0	80	2	

<u> </u>
Set
uction
nstru

Instruc	Instruction Set (cont)		1	İ							١			١	-				
		-						Ope	Operation Code	Code	•					!			W
		•				E .						_	B2						WW
			•			8 "	•	-			r.		3 6	~	-	=	State(1)	Bytes	Skip Condition
Maemonic	operano	ation	\cdot			·	4	İ		1	1	1	1	1	1				aS
umers (com)			6],	9	-		6				-	-	-	٦	-	۵	,	he
NEGA	(A) (A)		-	-		-	5	1					1	<u>'</u>	1	,	,		et4
Rotate and Shiff			ŀ		- 1	ŀ		-		1	1	-	ľ	ľ	ľ		t	,	·U.
RLD	Rotate left digit		0	_	0	-	0	- 1		- 1	5		7	7	- 1	ا -	,,	7	Co
RRD	Rotate right digit		0	-	0 0	-	0	0	_				-	이	- 1	- 1	17	2	m
RLL	$(2 (12_m + 1) \leftarrow (12_m), (12_0) \leftarrow (CY), (CY) \leftarrow (12_7)$	_(b) ← (CY),	0	-	0	-	0	0 0		0	0	_	0	-	Æ	P.	ю	م	
RLR	12 $(r2_{m-1}) \leftarrow (r2_{m}), (r2_{7}) \leftarrow (CY), (CY) \leftarrow (CY)$	ı) ← (CY),	0	- :	0	-	0	0		0	0	_	0	0	Æ	R ₀	8	2	
SLL) ← 0, (CY) ← (r2 ₇)	0	-	0 0	-	0	0 0		0	0	1 0	0	-	•		&	2	
SLB	(r2m - 1)	$(120) \leftarrow 0$	0	-	0	-	-	0 0		0	0	0	0	0		Ro	8	2	
SLLC	r2 · (r2m + 1) ← (r2m),(r2g	\leftarrow (r2 _m),(r2 ₀) \leftarrow 0, (CY) \leftarrow (r2 ₇)	0	_	0 0	-	-	0		_	0	0 0	0	-	æ	R ₀	∞	2	Carry
SLRC	r2 (r2m-1)	7) 0, (CY) (r2 ₀)	0	-	0 0	τ.	0	0 0	0	0		0	٥		_!		80	2	Carry
DRLL	EA $(EA_{II} + 1) \leftarrow (EA_{II}), (EA_{0}) \leftarrow (CY)$ $(CY) \leftarrow (EA_{15})$	4 ₀) (CY),	0		0 0	-	0	0		-		_	0		- 1		œ	.2	
DRLR	EA $(EA_n - 1) \leftarrow (EA_n), (EA_{15}) \leftarrow (CY),$ $(CY) \leftarrow (EA_0)$	4 ₁₅) (CY),	0	-	0 0	-	0	0	0	-		_	۰	۰	۰	0	∞ .	2	~
DSLL	EA $(EA_n + 1) \leftarrow (EA_n), (EA_0) \leftarrow 0,$ $(CY) \leftarrow (EA_{15})$	4 ₀) ← 0,	0	-	0 0	-	0	0	0	-		-	0		- 1		∞	7	
DSLR	EA $(EA_n - 1) \leftarrow (EA_n), (EA_{15})$ $(CY) \leftarrow (EA_0)$	4 ₁₅) ← 0,	0	-	0 0		0	0		-		_	0	- ا	۰	ه	∞	5	
Jump						Ì						١	١						
JMP	*word (PC) ← word		0	-	- E	1 0 High addr	- =	-	ا ه			د	Low addr	늉			2	m	
9	→ (B) (B) → (C)	(0)	-	0	() C	-	0	6									4	-	
9 2	(C) (D) (A) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	(c)	-	. -		1	disp1	1	1								9	-	
141	(PC) + (PC) + (PC)	usi	-	-	0	1	-	-				:=	dsibi			t	2	2	
₩. ₩	(PC) ← (EA)			-	0		-	0	0	0	0			0		0	8	2	
Da B													-						
t <u>a</u> She	*word $((SP) - 1) \leftarrow ((PC) + 3)H$, $((SP) - 2) \leftarrow ((PC) + 3)H$, $(PC) \leftarrow 2) \leftarrow ((PC) + 3)H$, $(PC) \leftarrow 4(PC) \leftarrow (SP) \leftarrow (SP)$	3)н, 3)г - (\$р) — 2	0		0 E	0 0 High addr	0 5	0	اه			의	Low addr	뉼			9	ო	_
et 4L	2.5	2)H,	0	-	0	-	0	0	٥	0	0	-	0	0	0 .	-	4	8	
J.co	ر کر	← (C),		,					.										
CAL	*word ((SP) - 1) \leftarrow ((PC) + 2)H. ((SP) - 2) \leftarrow ((PC) + 2)L (PC ₁₅₋₁₁) \leftarrow 00001, (PC ₁₀₋₁₀) \leftarrow 13. (SP) \leftarrow (SF	+ 2)H. + 2)L ← (SP) – 2	0	-	-	_	1		·				īg.			t	ट्ट	~	
	١				ĺ						l								

							Operat	Operation Code							
					5				B2						W\
				•	22				%						WW.
Mnemonic Operand	Operand Operation	7		4	m	~	•	6543210 76543210	4	ю С	-	0	State(1)	Bytes	Condition
Call (cont)											l				ata
CALT	word $((SP) - 1) \leftarrow ((PC) + 1)H$, $((SP) - 2) \leftarrow ((PC) + 1)$.	-	0 0	1		ţ	t						9.	-	\$he
	(PC _L) ← (128 + 2ta), (PC _H) ←														et4
	$(129 + 2ta),(SP) \leftarrow (SP) - 2$														U.
SOFTI	$((SP) - 1) \leftarrow (PSW), ((SP) - 2) \leftarrow$	0	_	-	0	0 1 1 1 0 0 1 0	0						16	-	001
	$((PC) + 1)_{H}, ((SP) - 3) \leftarrow ((PC) + 1)_{L},$!	•	m
	$(PC) \leftarrow 0060H, (SP) \leftarrow (SP) - 3$														
Return															
RET	(PC _L) \leftarrow ((SP)), (PC _H) \leftarrow ((SP) + 1) (SP) \leftarrow (SP) + 2	-	_	-	-	1 0 1 1 1 0 0 0	0						9	-	
RETS	$(PC_{L}) \leftarrow ((SP)), (PC_{H}) \leftarrow ((SP) + 1)$	-	-	-	-	10111001	-						9	-	Unconditional
	$(SP) \leftarrow (SP) + 2, (PC) \leftarrow (PC) + n$														Skip
Æ	$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$	0	-	0	0	0 1 1 0 0 0 1 0	0						53	-	
	$(PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3$														
Skin					ĺ					İ		١			

N

Bit Test

irf = 0 irf=1 0=1

> N 2

9

œ œ œ

bit, wa 0 1 0 1 1 B ₂ B ₁ B ₀	Skip if f = 1 0 1 0 0 1 0 0 0 0 0 Skip if f = 0 1 0 0 1 0 0 0 0 0 Skip if f = 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	then reset irf	Skip if irf = 0 0 1 0 0 1 0 0 1 0 0 Reset irf if irf = 1	No operation 0 0 0 0 0 0 0 0	Enable interrupt 1 0 1 0 1 0	Disable interrupt 1 0 1	Halt CPU operation 0 1 0 0	Stop system clock 0 1 0 0	Note: (1) Inthe case of skip condition, the idle states are as follows:	1-byte instruction: 4 states 2-byte instruction (with *): 7 states
		E	Έ						e of skip	instruct

of slash (/) in states indicates case rpa2, rpa3 = D + byte, H + A, rpa2 = D + byte, H + byte. H + B, H + EA, H + byte.

(4) B3 (Data): rpa3 = D + byte, H + byte

12 일