IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

Thesis introduction https://arxiv.org/abs/1705.10513
SIGIR 2017

Takahiro Ishikawa takahish.nil@gmail.com 2017

Agenda

- 1. Introduction
- 2. What is GAN?
- 3. IRGAN: GAN for IR
- 4. Additional experiment
- 5. Appendix

Agenda

- 1. Introduction
- 2. What is GAN?
- 3. IRGAN: GAN for IR
- 4. Additional experiment
- 5. Appendix

Introduction

- Information retrieval (IR) is to provide a rank list of documents given a query.
 - · Web search
 - · Recommender systems
 - · Question answering etc.
- How a document is generated from a given information.
 - q → d, where q is the query
 (e.g., keywords, user profiles, questions, depending on the application)

Introduction

- The method of IR shifts to a discriminative (classification) learned from labelled relevant judgements.
 - q + d → s, where s denotes relevance score
 (and + denotes the combining of features)
 - They lack a principled way of obtaining useful features from massive unlabelled data available
- While the generative model of IR are very successful in modeling features
 - · They suffer from the difficulty in relevancy signals from links, clicks etc.
 - · This signals in Internet based applications.

Introduction

- **IRGAN** is considering the generative and discriminative retrieval models as two sides of the same coin.
 - · Inspired by Generative Adversarial Nets (GANs).
 - · Objective functions including aspects of IR are defined for both model.
 - · "IRGAN" means "GAN for IR".

Agenda

1. Introduction

2. What is GAN?

3. IRGAN: GAN for IR

4. Additional experiment

5. Appendix

What is GAN?

- GAN is "Generative Adversarial Network".
- The original paper is presented by lan Goodfellow et al, https://arxiv.org/abs/1406.2661.
- He has published a famous textbook of deep learning, http://
 www.deeplearningbook.org/.

Source: Deep Learning Nanodegree Foundation, Udacity

GAN for Image generation

Source: Deep Learning Nanodegree Foundation, Udacity

This diagram shows GAN for MINIST datasets.

Generator is a generative model, Discriminator is a binary classifier.

Minimax game

Source: Deep Learning Nanodegree Foundation, Udacity

Minimax game is zero-sum game.

The minimax solution is the same as the Nash equilibrium.

What is GAN?

Source: Deep Learning Nanodegree Foundation, Udacity

GAN explode in popularity

- DCGAN https://arxiv.org/pdf/1511.06434.pdf
- Pix2Pix https://affinelayer.com/pixsrv/
- CycleGAN https://github.com/junyanz/CycleGAN

Source: <u>DCGAN face generation</u>

Source: CycleGAN

Agenda

- 1. Introduction
- 2. What is GAN?
- 3. IRGAN: GAN for IR
- 4. Additional experiment
- 5. Appendix

A minimax retrieval framework

Generative retrieval model

- $p_{\theta}(d|q, r)$, which tries to select relevant documents, from candidate pool for the given query q.
- "r" is relevancy between a query and a document.

Discriminative retrieval model

- $f_{\phi}(q, d)$, which tries to discriminate well-matched query-document tuples (q, d) from ill-matched ones.
- · It is in fact simply a binary classifier (positive or negative).

Overall objective function

A expected value to classify a true data to positive.

$$J^{G^*,D^*} = \min_{\theta} \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n,r)} \left[\log D(d|q_n) \right] + \right)$$

$$\mathbb{E}_{d\sim p_{\theta}(d|q_n,r)}\left[\log(1-D(d|q_n))\right]$$

A expected value to classify a fake data of generator to negative.

D(d|q) is the probability which is given by the sigmoid function.

Optimizing Discriminative Retrieval

$$\phi^* = \arg \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n,r)} \left[\log(\sigma(f_{\phi}(d,q_n))) \right] + \mathbb{E}_{d \sim p_{\theta^*}(d|q_n,r)} \left[\log(1 - \sigma(f_{\phi}(d,q_n))) \right] \right)$$

 θ^* : currently generator params $\sigma(f_{\phi}(d, q_n))$: D(d|q_n) in the previous slide

The objective for the discriminator is to maximize the log-likelihood of currently distinguishing the true and generated documents.

Optimizing Generative Retrieval

$$\theta^* = \arg\min_{\theta} \sum_{n=1}^{N} \left(\mathbb{E}_{d \sim p_{\text{true}}(d|q_n, r)} \left[\log \sigma(f_{\phi}(d, q_n)) \right] + \mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 - \sigma(f_{\phi}(d, q_n))) \right] \right)$$

$$= \arg\max_{\theta} \sum_{n=1}^{N} \mathbb{E}_{d \sim p_{\theta}(d|q_n, r)} \left[\log(1 + \exp(f_{\phi}(d, q_n))) \right]$$
denoted as $J^G(q_n)$

 $f_{\phi}(q, d)$ is fixed after its maximisation

The generative retrieval model intends to minimize the objective, which fits the underlying relevance distribution over document.

Extension to Pairwise Case

$$D(\langle d_{u}, d_{v} \rangle | q) = \sigma(f_{\phi}(d_{u}, q) - f_{\phi}(d_{v}, q))$$

$$= \frac{\exp(f_{\phi}(d_{u}, q) - f_{\phi}(d_{v}, q))}{1 + \exp(f_{\phi}(d_{u}, q) - f_{\phi}(d_{v}, q))} = \frac{1}{1 + \exp(-z)}$$

where $z = f_{\phi}(d_u, q) - f_{\phi}(d_v, q)$

$$J^{G^*,D^*} = \min_{\theta} \max_{\phi} \sum_{n=1}^{N} \left(\mathbb{E}_{\mathbf{o} \sim p_{\text{true}}(\mathbf{o}|q_n)} \left[\log D(\mathbf{o}|q_n) \right] + \mathbb{E}_{\mathbf{o}' \sim p_{\theta}(\mathbf{o}'|q_n)} \left[\log(1 - D(\mathbf{o}'|q_n)) \right] \right)$$

where

 $o = \langle d_u, d_v \rangle$ is true documents pair $o' = \langle d'_u, d'_v \rangle$ is generated documents pair

Application

- The implementation two scoring functions
 - · g_{θ} is used in generator (e.g., $p_{\theta}(d|q, r) = \sigma(g_{\theta}(d, q))$.
 - f_{θ} is used in discriminator.
 - $g_{\theta}(d, q)$ and $f_{\theta}(q, d)$ are task-specific scoring functions.
 - g_{θ} and f_{θ} is implemented as a three-layer neural net etc.
 - $g_{\theta}(q, d) = s_{\theta}(q, d)$ and $f_{\phi}(q, d) = s_{\phi}(q, d)$

Scoring functions

Web Search

$$s(q, d) = \boldsymbol{w}_2^{\top} \tanh(\boldsymbol{W}_1 \boldsymbol{x}_{q, d} + \boldsymbol{b}_1) + \boldsymbol{w}_0$$

Item Recommendation

$$s(u,i) = b_i + \boldsymbol{v}_u^{\top} \boldsymbol{v}_i$$

Question Answering

$$s(q, a) = \cos(\mathbf{v}_q, \mathbf{v}_a) = \frac{\mathbf{v}_q^{\top} \mathbf{v}_a}{|\mathbf{v}_q| \cdot |\mathbf{v}_a|}$$

Experiment: Web Search

	P@3	P@5	P@10	MAP
MLE	0.1556	0.1295	0.1029	0.1604
RankNet [3]	0.1619	0.1219	0.1010	0.1517
LambdaRank [5]	0.1651	0.1352	0.1076	0.1658
LambdaMART [4]	0.1368	0.1026	0.0846	0.1288
IRGAN-pointwise	0.1714	0.1657	0.1257	0.1915
IRGAN-pairwise	0.2000	0.1676	0.1248	0.1816
Impv-pointwise	3.82%	22.56%*	16.82%*	15.50%*
Impv-pairwise	21.14%*	23.96%*	15.98%	9.53%
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	0.1893	0.1854	0.2054	0.3194
MLE RankNet [3]	0.1893 0.1801	0.1854 0.1709	0.2054 0.1943	0.3194 0.3062
RankNet [3]	0.1801	0.1709	0.1943	0.3062
RankNet [3] LambdaRank [5]	0.1801 0.1926	0.1709 0.1920	0.1943 0.2093	0.3062 0.3242
RankNet [3] LambdaRank [5] LambdaMART [4]	0.1801 0.1926 0.1573	0.1709 0.1920 0.1456	0.1943 0.2093 0.1627	0.3062 0.3242 0.2696
RankNet [3] LambdaRank [5] LambdaMART [4] IRGAN-pointwise	0.1801 0.1926 0.1573 0.2065	0.1709 0.1920 0.1456 0.2225	0.1943 0.2093 0.1627 0.2483	0.3062 0.3242 0.2696 0.3508

Ranking performance comparison on the MQ2008-semi dataset, where * means a significant improvement (Wilcoxon signed-rank test)

Experiment: Item Recommendation

			•	•
	P@3	P@5	P@10	MAP
MLE	0.3369	0.3013	0.2559	0.2005
BPR [34]	0.3289	0.3044	0.2656	0.2009
LambdaFM [46]	0.3845	0.3474	0.2967	0.2222
IRGAN-pointwise	0.4072	0.3750	0.3140	0.2418
Impv-pointwise	5.90%*	7.94%*	5.83%*	8.82%*
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	0.3461	0.3236	0.3017	0.5264
BPR [34]	0.3410	0.3245	0.3076	0.5290
LambdaFM [46]	0.3986	0.3749	0.3518	0.5797
IRGAN-pointwise	0.4222	0.4009	0.3723	0.6082
Impv-pointwise	5.92%*	6.94%*	5.83%*	4.92%*

Performance comparison on the Movielens dataset, 4-star and 5-star ratings is regarded as positive feedback.

Experiment: Item Recommendation

	P@3	P@5	P@10	MAP
MLE	0.2941	0.2945	0.2777	0.0957
BPR [34]	0.3040	0.2933	0.2774	0.0935
LambdaFM [46]	0.3901	0.3790	0.3489	0.1672
IRGAN-pointwise	0.4456	0.4335	0.3923	0.1720
Impv-pointwise	14.23%*	14.38%*	12.44%*	2.87%*
	NDCG@3	NDCG@5	NDCG@10	MRR
MLE	0.3032	0.3011	0.2878	0.5085
DDD ford				
BPR [34]	0.3077	0.2993	0.2866	0.5040
BPR [34] LambdaFM [46]	0.3077 0.3942	0.2993 0.3854	0.2866 0.3624	0.5040 0.5857

Performance comparison on the Netflix dataset, 5-star ratings is regarded as positive feedback.

Experiment: Question Answering

	test-1	test-2
QA-CNN [9]	0.6133	0.5689
LambdaCNN [9, 51]	0.6294	0.6006
IRGAN-pairwise	0.6444	0.6111
Impv-pairwise	2.38%*	1.75%

Performance comparison on the InsuranceQA dataset, It is expected to find one and only real answer from 500 candidate answers under the Precision@1.

Agenda

- 1. Introduction
- 2. What is GAN?
- 3. IRGAN: GAN for IR
- 4. Additional experiment
- 5. Appendix

Additional experiment

- Implementation using TensorFlow
 - · IRGAN Learning to Rank Pairwise

Agenda

- 1. Introduction
- 2. What is GAN?
- 3. IRGAN: GAN for IR
- 4. Additional experiment
- 5. Appendix

What is a generative model?

Source: https://blog.openai.com/generative-models/

"A generative model is a model for generating all values for a phenomenon that can be observed in the world."

Source: https://en.wikipedia.org/wiki/Machine_learning

What is a generative model?

Source: 『深層学習 Deep Learning (監修:人工知能学会)』

GAN's objective function

A expected value to classify a true data to positive.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

A expected value to classify a fake data of generator to negative.

D and G play the two-player minimax game.

A approximation of generator gradient

$$\begin{split} &\nabla_{\theta}J^{G}(q_{n}) \\ &= \nabla_{\theta}\mathbb{E}_{d\sim p_{\theta}(d|q_{n},r)} \left[\log(1 + \exp(f_{\phi}(d,q_{n}))) \right] \\ &= \sum_{i=1}^{M} \nabla_{\theta}p_{\theta}(d_{i}|q_{n},r) \log(1 + \exp(f_{\phi}(d_{i},q_{n}))) \\ &= \sum_{i=1}^{M} p_{\theta}(d_{i}|q_{n},r) \nabla_{\theta} \log p_{\theta}(d_{i}|q_{n},r) \log(1 + \exp(f_{\phi}(d_{i},q_{n}))) \\ &= \mathbb{E}_{d\sim p_{\theta}(d|q_{n},r)} \left[\nabla_{\theta} \log p_{\theta}(d|q_{n},r) \log(1 + \exp(f_{\phi}(d,q_{n}))) \right] \\ &\simeq \frac{1}{K} \sum_{k=1}^{K} \nabla_{\theta} \log p_{\theta}(d_{k}|q_{n},r) \log(1 + \exp(f_{\phi}(d_{k},q_{n}))) , \end{split}$$

 d_k is the k-th document sampled from the current version of generator $p(d|q_n, r)$.