Operating Systems Test 2 Model Answers

Question 1

a) Define the following evaluation criteria in the context of CPU scheduling

(5 marks)

- CPU utilization keep the CPU as busy as possible
- Throughput number of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)
- b) Assume you are presented with the following processes, which arrive at time t=0:

Process	Burst time (ms)
P1	9
P2	33
Р3	2
P4	5
P5	14

Which of the following algorithms will perform best on this work load? (FCFS, SJF, RR (time quantum = 8ms) (10 marks)

```
FCFS = 28.8= (0+9+42+44+49)/5 - 3marks

SJF=11 = (0+2+7+16+30)/5 - 3 marks

RR=42.8 = (31+86+16+18+63)/5 - 3 marks
```

SJF will perform best coz it has the shortest waiting time -1 mark

Question 2

- a) Explain the 4 conditions that must hold for a deadlock to occur. (8 marks)
 A set of blocked processes each holding a resource and waiting to acquire a resource held by another process
 in the set
 - Mutual exclusion: only one process at a time can use a resource.
 - **Hold and wait:** a process holding at least one resource is waiting to acquire additional resources held by other processes.

- **No preemption:** a resource can be released only voluntarily by the process holding it, after that process has completed its task.
- **Circular wait:** there exists a set {P0, P1, ..., P0} of waiting processes such that P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is held by P2, ..., Pn-1 is waiting for a resource that is held by P0.
- b) Consider the following directed resource graph:

(4 marks)

Both PI and P2 have requested R2:

- What is the status of the system if P2's request is granted before P1's? deadlock ?deadlock
- What is the status of the system if P1's request is granted before P2's? no deadlock ? no deadlock
- c) What is a deadlock?

A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set

d) In recovery from deadlocks, two methods are used. Explain each method highlighting the issues to consider, advantages and disadvantages (8 marks)

Process Termination

- Abort all deadlocked processes.
- Abort one process at a time until the deadlock cycle is eliminated.
- In which order should we choose to abort?
 - o Priority of the process.
 - o How long process has computed, and how much longer to completion.
 - Resources the process has used.
 - o Resources process needs to complete.
 - o How many processes will need to be terminated?
 - o Is process interactive or batch?

Disadvantages

Increased overhead

Resource Preemption

- Selecting a victim minimize cost.
- Rollback return to some safe state, restart process for that state.
- Starvation same process may always be picked as victim, include number of rollback in cost factor.