混沌系统的 Koopman 分析与应用

混沌系统中的 Koopman 算符

复杂系统的边界点划分

张聪

学号: 2017110978

导师: 兰岳恒 北京邮电大学理学院

理学硕士学位论文答辩 2020年9月29日上午

混沌系统中的 Koopman 算符

- 1 研究背景与意义
- ② 动力学系统与 Koopman 算符
 - Koopman 算符的定义
 - Koopman 算符的本征函数
 - Koopman 算符的函数空间
- 3 混沌系统中的 Koopman 算符
 - 一维映射: Tent Map & Logistic Map
 - 二维映射: Henon Map
 - 其他混沌系统
- 4 总结与展望

混沌系统中的 Koopman 算符

研究背景与意义

本节目录

- 1 研究背景与意义
- - Koopman 算符的定义
 - Koopman 算符的本征函数
 - Koopman 算符的函数空间
- - 一维映射: Tent Map & Logistic Map
 - 二维映射: Henon Map
 - 其他混沌系统
- 4 总结与展望

研究背景

研究背景与意义

- ① 信息时代 \rightarrow 信息 \rightarrow 数据 \rightarrow 数据分析 (神经网络)
- ② 动力学系统 → 线性、非线性 → 混沌
- ③ 非线性动力学 → 动力学特征 → 难以分析复杂系统
- Moopman 算符 → 描述相空间的演化 → 提取系统的关键特 征

混沌系统中的 Koopman 算符

意义: 通过 Koopman 算符分析系统关键特征

我们希望能够找到一种方法, 仅通过系统数据的演化过程得到系 统的一些演化特征、并在这些演化特征中提取出关键特征。

Koopman 算符给我们提供了一个有效的数学工具。Koopman 算 法由 B.O.Koopman 与 1931 年引入,它描述了相空间中函数的 演化。Koopman 算符的本征值和本征函数描述了动力学系统的 全局特征。

本节目录

- 1 研究背景与意义
- ② 动力学系统与 Koopman 算符
 - Koopman 算符的定义
 - Koopman 算符的本征函数
 - Koopman 算符的函数空间
- - 一维映射: Tent Map & Logistic Map
 - 二维映射: Henon Map
 - 其他混沌系统
- 4 总结与展望

Koopman 算符

Koopman 算符定义

$$Uf(x) = f(T(x)) = \tilde{f}(x)$$

混沌系统中的 Koopman 算符

对于固定的时间 t, 上式可写为

$$U_{t}f(x) = f(T_{t}(x)) = \tilde{f}_{t}(x)$$

例

对于相空间 x 上的一个可观测函数: $f(x) = x^2$

动力学方程: $\dot{x} = -2x \rightarrow x(t) = x(0)e^{-2t} \rightarrow T_t(x) = xe^{-2t}$

Koopman 算符: $U_t f(x) = f(T_t(x)) = f(xe^{-2t}) = x^2 e^{-4t} = f(x)$

$$x^2 \xrightarrow{U} x^2 e^{-4t}$$

Koopman 算符描述了函数的演化

Koopman 算符的本征值和本征函数

本征函数的定义

$$U\phi_k(x) = \phi_k(T(x)) = \lambda_k \phi_k(x)$$

结合 Koopman 算符的定义,

$$\phi(x_{\tau}) = U\phi(x_{\tau-1}) = \lambda\phi(x_{\tau-1})$$
$$= \lambda U\phi(x_{\tau-2}) = \lambda^2\phi(x_{\tau-2})$$
$$\cdots$$
$$= \lambda^{n-1}U\phi(x_0) = \lambda^n\phi(x_0)$$

其中 τ 表示离散时间因子

本征函数的性质

研究背景与意义

$$\phi_k(x_\tau) = \lambda \phi_k(x_{\tau-1}) = \lambda^2 \phi_k(x_{\tau-2}) = \dots = \lambda^\tau \phi_k(x_0)$$

当 $\lambda = 1$ 时.

$$\phi_k(x_\tau) = \phi_k(x_{\tau-1}) = \cdots = \phi_k(x_0)$$

当 $|\lambda| = 1$ 时 (即 $\lambda = e^{i\theta}$),

$$|\phi_k(x_{\tau})| = |\phi_k(x_{\tau-1})| = \dots = |\phi_k(x_0)|$$

- 本征值 λ=1 下的本征函数中,函数值相等的点属于一个不 变集。
- 在动力学系统中,不变集与不动点和周期轨道密切相关。
- 若我们将动力学系统的相空间划分为动力学模式的不同区 域、则系统的演化可以通过每个区域的演化来表示、即动力 学模式分解 (DMD)。Koopman 算符的本征值和本征函数为 我们提供了一种划分方法。

我们可以一组有限维函数空间 $g_1(x), g_2(x), \dots, g_m(x)$ 中描述本 征函数,对于该函数空间中的任意函数 f(x)

$$f(x) = \sum_{i=1}^{m} \alpha_i g_i(x)$$

$$Uf(x) = \sum_{i=1}^{m} \alpha_i Ug_i(x) = \sum_{i=1}^{m} \alpha_i \tilde{g}_i(x)$$

$$U\phi(x) = \lambda\phi(x) = \sum_{i=1}^{m} \lambda\alpha_i g_i(x)$$

这种计算的准确度取决于 f(x) 和基函数的数量 m, 若我们能描述 该函数空间上的所有基函数的演化,则我们可以计算得 Koopman 算符的近似值。

本征函数的数值计算

我们可以分别取 τ 和 $\tau+1$ 两个时刻的状态变量、演化前数据 $\{x_{\tau_1}, x_{\tau_2}, \cdots, x_{\tau_n}\}$ 和演化后数据 $\{x_{\tau_1+1}, x_{\tau_2+1}, \cdots, x_{\tau_n+1}\}$, 计算 每个基函数在该状态变量的值作为列向量 $g_i(x), i = 1, 2, \dots, m$, 则我们可以构造出两个数据矩阵:

$$K = \begin{pmatrix} g_{1}(x_{\tau_{1}}) & g_{2}(x_{\tau_{1}}) & \cdots & g_{m}(x_{\tau_{1}}) \\ g_{1}(x_{\tau_{2}}) & g_{2}(x_{\tau_{2}}) & \cdots & g_{m}(x_{\tau_{2}}) \\ \vdots & \vdots & \ddots & \vdots \\ g_{1}(x_{\tau_{n}}) & g_{2}(x_{\tau_{n}}) & \cdots & g_{m}(x_{\tau_{n}}) \end{pmatrix}$$

$$L = \begin{pmatrix} g_{1}(x_{\tau_{1}+1}) & g_{2}(x_{\tau_{1}+1}) & \cdots & g_{m}(x_{\tau_{1}+1}) \\ g_{1}(x_{\tau_{2}+1}) & g_{2}(x_{\tau_{2}+1}) & \cdots & g_{m}(x_{\tau_{2}+1}) \\ \vdots & \vdots & \ddots & \vdots \\ g_{1}(x_{\tau_{n}+1}) & g_{2}(x_{\tau_{n}+1}) & \cdots & g_{m}(x_{\tau_{n}+1}) \end{pmatrix}$$

$$(1)$$

混沌系统中的 Koopman 算符

$$L = \begin{pmatrix} g_{1}(x_{\tau_{1}+1}) & g_{2}(x_{\tau_{1}+1}) & \cdots & g_{m}(x_{\tau_{1}+1}) \\ g_{1}(x_{\tau_{2}+1}) & g_{2}(x_{\tau_{2}+1}) & \cdots & g_{m}(x_{\tau_{2}+1}) \\ \vdots & \vdots & \ddots & \vdots \\ g_{1}(x_{\tau_{n}+1}) & g_{2}(x_{\tau_{n}+1}) & \cdots & g_{m}(x_{\tau_{n}+1}) \end{pmatrix}$$
(2

本征函数的数值计算

K和L的每一列都是相空间函数的离散近似值,其关系可用 Koopman 算符表示

$$K \xrightarrow{U} L$$

混沌系统中的 Koopman 算符

若将 L 的每列视为 x_{τ} 的函数,则可以 K 的每一列为基来表示 L. 通常我们将上式写为

$$K\tilde{U} = L$$

其中 U 为 Koopman 算符的矩阵表示, 我们可以进一步来计算其 本征值与本征函数。

本征函数的数值计算-以 tent map 为例

Tent map

$$x_{n+1} = f(x_n) = 1 - 2 \left| x - \frac{1}{2} \right|$$

本征函数的数值计算-以 tent map 为例

$$\tilde{U} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$$

基函数的选取-正交基函数

我们需要选取一组基函数 $g_1(x), g_2(x), \dots, g_m(x)$, 为了计算方便 通常选择正交函数集,例如:

例

研究背景与意义

$$g_{R}(x) = \begin{cases} 1, & (\frac{i-1}{m} \leqslant x < \frac{i}{m}) \\ 0, & (\text{otherwise}) \end{cases}, i = 1, 2, \dots, m$$

$$g_{G}(x) = Cexp\left(-\frac{(x-x_{i})^{2}}{2d_{j}^{2}}\right), x_{i} = \frac{i}{m} - \frac{1}{2m}$$

$$g_{F}(x) = e^{ik(2\pi)x}, k = -m, -(m-1), \dots, m-1, m$$

$$g_{L}(x) = \sqrt{\frac{2k+1}{2}}P_{i}(x), k = 0, 1, \dots, m$$

基函数的选取-正交基函数

Fourier basis

Gauss basis

基函数的选取-自然基函数

研究背景与意义

正交基函数可能会随着相空间的拉伸折叠,所需的基函数数量成 倍增加,为此可以考虑利用从演化数据本身构建的自然基函数:

$$g_i(x) = (x_i, x_{i+1}, \cdots, x_{n+i-1})^T$$

在 Koopman 算符的作用下

$$Ug_i(\mathbf{x}) = U(x_i, x_{i+1}, \dots, x_{n+i-1})^T$$

= $(x_{i+1}, x_{i+2}, \dots, x_{n+i})^T$
= $g_{i+1}(x)$

Brunton 等人于 2017 年提出了这样并排放置的基函数形成了 Hankel 矩阵, 并通过 Koopman 算符描述了一步演化, 即我们可 以将数据矩阵K和L的关系写为

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_m \\ x_2 & x_3 & \cdots & x_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_n & x_{n+1} & \cdots & x_{m+n-1} \end{pmatrix} \tilde{U} = \begin{pmatrix} x_2 & x_3 & \cdots & x_{m+1} \\ x_3 & x_4 & \cdots & x_{m+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n+1} & x_{n+2} & \cdots & x_{m+n} \end{pmatrix}$$

混沌系统中的 Koopman 算符

本节目录

- 1 研究背景与意义
- ② 动力学系统与 Koopman 算符
 - Koopman 算符的定义
 - Koopman 算符的本征函数
 - Koopman 算符的函数空间
- 3 混沌系统中的 Koopman 算符
 - 一维映射: Tent Map & Logistic Map
 - 二维映射: Henon Map
 - 其他混沌系统
- 4 总结与展望

动力学方程

$$x_{n+1} = f(x_n) = 1 - 2|x - \frac{1}{2}|$$

 $x_n \in [0, 1], n = 1, 2, 3, \dots$

两个不动点: 0 和 $\frac{2}{3}$

←□ → ←□ → ← □ → ← □ →

图 1: Tent map 相图

Logistic Map

动力学方程

$$x_{n+1} = f(x_n) = \gamma x_n (1 - x_n)$$

 $x_n \in [0, 1], n = 1, 2, 3, \cdots$

这里我们取 $\gamma = 4$,使该系统处于混沌状态。 两个不动点: 0 和 $\frac{3}{4}$ 。

Logistic-动力学过程

研究背景与意义

Logistic-符号动力学划分

研究背景与意义

tent map

logistic map

Gauss 基函数下的本征函数

		0000		000000000000000000000000000000000000000		
	m	1	tent map		logistic map	
			extremum	boundary	extremum	boundary
	2	0	0.5000	0.5000	0.5585	0.5000
	3	0	0.5000	0.5000	0.4868	0.5000
		1	0.2502	0.2500	0.1847	0.1464
			0.7500	0.7500	0.8299	0.8536
		0	0.5000	0.5000	0.4972	0.5000
		1	0.2503	0.2500	0.1378	0.1464
			0.7500	0.7500	0.8602	0.8536
	4	2	0.1305	0.1250	0.0518	0.0381
			0.3750	0.3750	0.2938	0.3087
			0.6191	0.6250	0.7107	0.6913
			0.8749	0.8750	0.9485	0.9619
	5	0	0.5000	0.5000	0.4995	0.5000
		1	0.2500	0.2500	0.1472	0.1464
			0.7443	0.7500	0.8522	0.8536
		2	0.1195	0.1250	0.0402	0.0381
			0.3787	0.3750	0.3024	0.3087
			0.6278	0.6250	0.6943	0.6913
			0.8750	0.8750	0.9594	0.9619
		3	0.0597	0.0625	0.0087	0.0096
			0.1894	0.1875	0.0818	0.0842
			0.3033	0.3125	0.2226	0.2222
			0.4268	0.4375	0.4055	0.4024
			0.5625	0.5625	0.5942	0.5975
			0.6861	0.6875	0.7764	0.7778
			0.8172	0.8125	0.9182	0.9157

维映射-边界点划分的鲁棒性

高斯白噪声下的一维映射

$$x_{n+1} = f(x_n) + \xi$$

研究背景与意义

一维映射-不同基函数数量之间的关系

随着基函数数量 m 的增加, 本征函数对边界点的描述也越来越 精细。为了验证此结论, 我们将比较基函数数量加倍时本征函数 极值点之间的关系。

混沌系统中的 Koopman 算符

为了比较动力学特征的相似性,我们定义本征函数的相关系数

$$\rho(\phi_1, \phi_2) = \frac{\sum_i (\phi_{1i} - \overline{\phi}_1)(\phi_{2i} - \overline{\phi}_2)}{\sqrt{(\sum_i (\phi_{1i} - \overline{\phi}_1)^2)(\sum_i (\phi_{2i} - \overline{\phi}_2)^2)}}$$

为了确定不同基函数数量 m 下本征函数的一致性, 我们使用下 述参数极小值的计算:

$$\underset{\phi_{m_2}}{\operatorname{arg\,min}} \quad ||U\phi_{m_2} - \lambda\phi_{m_2}|| + \mu|\rho(\phi_{m_1}, \phi_{m_2})|$$

第一项表示本征函数的定义,第二项表示相关系数, μ 表示权重, 一般来讲, 我们应保证本征函数的正确性, 即通常有 $\mu \ll 1$ 。

<u>一维映射-</u>不同基函数数量之间的关系

-0.018 -m=8 m=16 -0.02 -0.022 -0.024 -0.026 (S) -0.028 -0.03 -0.032 -0.034 -0.036 -0.038 L 0.2 0.4 0.8 0.6 logistic map

双峰映射

大小峰映射

多峰映射的本征函数 (最大)

多峰映射的本征函数 (次大)

Henon Map

动力学方程

$$\begin{cases} x_{n+1} = y_n + 1 - ax_n^2 \\ y_{n+1} = bx_n \end{cases} \quad x, y \in [-1.5, 1.5]$$

我们选取 a=1.4,b=0.3 使其处于混沌状态。 两个不动点: (0.6314,0.1894) 和 (-1.1314,-0.3394)

图 4: Henon map 相图

4 D > 4 A > 4 B > 4 B >

Henon Map-二维高级基函数下的本征函数

Henon Map-周期轨道与线性化

Eigenfunctions and Periodic Orbits of Henon Map (n=100²,m=50²,d_i=0.0667) (T=12)

Henon Map-周期轨道与不稳定流型

Eigenfunctions and Manifold of Henon Map (n=100²,m=50²,d_i=0.0667) (T=4)

Henon Map-二维自然基函数下的本征函数

00000000				0000000000000
	m	- 1	极值点	边界点
	1	0	(0.7079, 0.0120)	(0.7021,-0.0044)
			(0.8019, 0.0191)	(0.7986, 0.0019)
			(1.2326,-0.0153)	(1.2307,-0.0249)
			(1.2729,-0.0091)	(1.2717,-0.0205)
	2	0	(0.7052,-0.0009)	(0.7021,-0.0044)
			(0.7995, 0.0041)	(0.7986, 0.0019)
			(1.2720,-0.0192)	(1.2307,-0.0249)
			(1.2720,-0.0192)	(1.2717,-0.0205)
		1	(-0.1418,-0.3100)	(-0.0148,-0.2976)
			(-0.1258,-0.2206)	(0.0065,-0.2013)
			(-0.2164, 0.2936)	(-0.0832, 0.2403)
			(-0.2164, 0.2936)	(-0.0682, 0.2782)
	3	0	(0.7045,-0.0026)	(0.7021,-0.0044)
			(0.7995, 0.0041)	(0.7986, 0.0019)
			(1.2713,-0.0217)	(1.2307,-0.0249)
			(1.2713,-0.0217)	(1.2717,-0.0205)
		1	(-0.0330,-0.2981)	(-0.0148,-0.2976)
			(-0.0121,-0.2041)	(0.0065,-0.2013)
			(-0.0982, 0.2431)	(-0.0832, 0.2403)
			(-0.0862, 0.2802)	(-0.0682, 0.2782)
		2	(-1.0459, 0.3549)	(-0.9918, 0.3625)
			(-0.7503,-0.3700)	(-0.6711,-0.3630)
			(0.9130,-0.1574)	(0.8011,-0.1846)
			(1.0081, 0.1176)	(0.9275, 0.1361)
			(0.7045,-0.0026)	(0.7021,-0.0044)
	4 -	0	(0.8002, 0.0059)	(0.7986, 0.0019)
			(1.2713,-0.0217)	(1.2307,-0.0249)
			(1.2713,-0.0217)	(1.2717,-0.0205)
		1	(-0.0086,-0.2954)	(-0.0148,-0.2976)
			(0.0138,-0.2002)	(0.0065,-0.2013)
			(-0.0856, 0.2413)	(-0.0832, 0.2403)
			(-0.0724, 0.2787)	(-0.0682, 0.2782)
		2	(-0.9937, 0.3495)	(-0.9918, 0.3625)
			(-0.6805,-0.3638)	(-0.6711,-0.3630)
			(0.8132,-0.1780)	(0.8011,-0.1846)
			(0 0220 0 1247)	(0.0275 0.1261)

Lorenz System

动力学方程

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(\gamma - z) - y \\ \dot{z} = xy - \beta z \end{cases}$$

取 $\beta = \frac{8}{3}, \rho = 28, \sigma = 10$ 使系统处于混沌状态, 初始点 (-1,3,4) 三个不动点: (0,0,0)、(-8.4853,8.4853,27)、(8.4853,-8,4853,27)

动力学方程

$$\begin{cases} x_{n+1} = y_n \\ y_{n+1} = z_n \\ z_{n+1} = 0.72x_n + Cy_n + Az_n - 1.45z_n^2 + 0.515y_nz_n - y_n^2 \end{cases}$$

参数
$$A = -1.86$$
, $C = 0.03$, $D = 0$

本节目录

- 1 研究背景与意义
- ② 动力学系统与 Koopman 算符
 - Koopman 算符的定义
 - Koopman 算符的本征函数
 - Koopman 算符的函数空间
- - 一维映射: Tent Map & Logistic Map
 - 二维映射: Henon Map
 - 其他混沌系统
- 4 总结与展望

总结

研究背景与意义

- ❶ Koopman 算符描述了相空间中可观测函数的演化、可用于挖掘重 要的动力学模式。
- 本征函数值相等的点属于一个不变集。在动力学系统中、不变集 与不动点和周期轨道密切相关。
- ◎ 本征函数的极值与混沌系统中的符号动力学边界点非常吻合,可 以通过构造一组基函数来计算 Koopman 算符谱、且自然基函数 相比高斯基函数更有效。
- 符号动力学的划分可以预测系统的长期行为。Koopman 算符本征 函数的极值点为寻找符号动力学的边界点提供了一个有效的数学 工具,通过计算谱特征而避免对相空间中复杂的几何特征和拓扑 结构进行描述、并可以拓展到复杂的非线性系统。
- 基函数和基函数的数量影响本征函数的计算精度,随着基函数数 量的增加, 本征函数出现了新的层次的边界点, 可以通过控制基 函数数量对寻找边界点进行粗粒度或细粒度的处理。
- 具有普适性与鲁棒性。

改讲空间及展望

- 通过调整基函数数量的大小来粗化或细化对相空间的划分
- ❷ 相空间的划分是否随噪声强度变化以及如何随噪声强度变化

混沌系统中的 Koopman 算符

- ③ 次大的本征函数及其他的本征函数的意义与最大的本征函数 有何区别
- 高维系统中,并不容易确定最关键的维度特征,若能通过自 动化的计算来确定最关键的维度特征、则系统程序的开发则 更具有普适性

感谢各位老师莅临指导

混沌系统中的 Koopman 算符

北京邮电大学理学院 张聪

