Tema 1 - Securitatea Informatiei grupe semian A

Instalare OpenSSL

Pentru a instala biblioteca OpenSSL pe maşina virtuală Ubuntu (Lubuntu) trebuie efectuați următorii pași:

```
$ wget https://www.openssl.org/source/openssl-1.1.0j.tar.gz
$ tar -xzvf openssl-1.1.0j.tar.gz
(alternativ: se descarcă din browser arhiva openssl-1.1.0j.tar.gz şi se
dezarhivează utilizând utilitarele instalate în maşina virtuală)

se schimbă directorul curent in directorul in care s-a efectuat dezarhivarea
$ cd openssl-1.1.0j
se citeşte conţinutul fişierului INSTALL din directorul openssl-1.1.0j
$ xdg-open INSTALL

se execută următoarele comenzi:
$ ./config
$ make
$ make test
$ sudo make install
```

Exemplu fișier Makefile pentru compilarea unui program C ce utilizează funcții din API EVP:

```
INC=/usr/local/ssl/include/
LIB=/usr/local/ssl/lib/
all:
    gcc -I$(INC) -L$(LIB) -o out source.c -lcrypto -ldl
```

Observații:

- la adresa: http://profs.info.uaic.ro/~nica.anca/is/words.txt se găsește un fișier text conținând cuvinte de dicționar englez, util pentru Exercițiul 1;
- detalii privind programarea C utilizând funcțiile din API EVP: https://www.openssl.org/docs/man1.1.0/crypto/crypto.html sau https://wiki.openssl.org/index.php/EVP.

Exercițiul 1

Biblioteca OpenSSL -Criptare/Decriptare

Punctaj maxim: 5 puncte

Scrieți un program C/C++ ce utilizează API EVP pentru operații de criptare și decriptare.

Programul va primi ca date de intrare numele a două fișiere, plaintext, respectiv criptotext și un mod de operare (ECB sau CBC). Fișierul criptotext este rezultatul operației de criptare cu o cheie k (și un vector de inițializare dat iv = "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" pentru modul CBC) a fișierului plaintext.

Scopul programului este de a găsi cheia k utilizată pentru criptarea fișierului plaintext, știind că:

- cheia k are o lungime fixată de 128 biți (16 octeți);
- cheia k este reprezentarea in hexa a unui cuvânt din dicţionarul englez cu lungime (mai mică) de 16 caractere, (completat cu caracterul spaţiu, cod hexa \x20, până la lungimea de 16 caractere); de exemplu, pentru cuvântul *cripto*, cheia

La final, programul va afișa cheia k, cuvântul care stă la baza ei, precum și numărul de incercări efectuate până la găsirea cheii k.

Exercițiul 2

Biblioteca OpenSSL - Funcţii hash

Punctaj maxim: 5 puncte

Scrieți un program C/C++ ce utilizează API EVP pentru implementarea funcțiilor hash.

Programul va primi ca intrare două fișiere text, $file_1$ și $file_2$, ce au același conținut, cu excepția unui singur caracter.

Programul va calcula funcțiile hash asociate celor două fișiere, utilizând algoritmii MD5 și SHA256, rezultând fișierele hash1_md5, hash2_md5, respectiv hash1_sha256, hash2_sha256. De asemenea, programul va compara fișierele rezultate pentru fiecare algoritm in parte (hash1_md5 va fi comparat cu hash2_md5, iar hash1_sha256 va fi comparat cu hash2_sha256) la nivel de octet și va afișa numărul de octeți identici in cele două fișiere.

Exercițiul 3

Moduri operare Criptosisteme Bloc

Punctaj maxim: 10 puncte

Implementați o infrastructură de comunicație ce folosește criptosistemul AES pentru criptarea traficului intre două noduri A și B cu următoarele caracteristici:

- se consideră un nod KM (key manager) care deține trei chei pe 128 biți: K_1 , K_2 și K_3 :
 - cheia K_1 este asociată cu modul de operare ECB;
 - cheia K_2 este asociată cu modul de operare CBC (se consideră că vectorul de inițializare are o valoare fixată, cunoscută in prealabil de cele două noduri A şi B);
 - cheia K_3 este utilizată pentru criptarea cheilor K_1 sau K_2 . Cheia K_3 este deținută din start de nodurile A, B și KM.
- Pentru a iniția o sesiune de comunicare securizată, nodul A trimite un mesaj către nodul B în care comunică modul de operare (ECB sau CBC); de asemenea, nodul A transmite un mesaj nodului KM prin care cere cheia corespunzatoare (K_1 pentru modul de operare ECB, respectiv K_2 pentru modul de operare CBC).
- Nodul B, la primirea mesajului de la nodul A, cere nodului KM cheia corespunzatoare (K_1 pentru modul de operare ECB, respectiv K_2 pentru modul de operare CBC).
- nodul KM va cripta cheia cerută (K_1 sau K_2 in funcție de modul de operare ales) ca un singur bloc, utilizând criptosistemul AES cu cheia

 K_3 şi va trimite mesajul astfel obţinut ca răspuns pentru nodurile A şi B:

- ullet cele două noduri A și B vor decripta mesajul primit de la KM și vor obține astfel cheia cerută;
- nodul B trimite, după primirea cheii, un mesaj nodului A prin care il anunță că poate să inceapă comunicarea;
- nodul A criptează conținutul unui fișier text utilizând AES, cheia primită de la KM și modul de operare ales. A va transmite nodului B blocurile de criptotext obținute pe rând, iar nodul B va decripta blocurile primite și va afișa rezultatul obținut.

Observații:

- se accepta utilizarea oricărui limbaj de programare și folosirea oricărei librarii criptografice pentru implementare;
- AES poate fi folosit ca algoritm de criptare pus la dispoziție de orice librarie criptografică.
- se cere ca modul de operare (ECB sau CBC) să fie implementat in cadrul temei.
- Nu se cere rezolvarea de eventuale probleme de sincronizare intre noduri, interfață pentru noduri, sau un anumit protocol de comunicare.

Precizări importante

Tema este individuală. Orice tentativă de fraudă este penalizată prin acordarea punctajului 0 tuturor studenților implicați.

Fiecare student(ă) va trimite prin email la adresa nica.anca@student.uaic.ro o arhivă c u numele grupa_nume_prenume student, c onținând c âte un director pentru fiecare e xercițiu r ezolvat, fiecare director având următoarele fișiere:

- fisierele sursa ce contin implementarea cerințelor exercitiului respectiv, inclusiv un fisier *makefile* pentru compilare, daca este cazul;
- fisiere de intrare, respectiv de iesire, daca este cazul, pentru exercitiul respectiv;
- un document pentru fiecare exercitiu rezolvat in parte, ce va contine:
 - descrierea mediului de lucru utilizat (alte setări decât cele prezentate in acest document);
 - descrierea modului de rezolvare a cerinței exercițiului;
 - $-\,$ testele efectuate pe diverse fișiere de intrare și observațiile efectuate.

Termenul de predare a arhivei cu tema este: 20 octombrie 2019, ora 18.00; nu se admit intarzieri decat in cazuri bine justificate, anuntate in prealabil.