

Approximation Guarantees for Minimum Rényi Entropy Functional Representations

Anuj K. Yadav EPFL Yanina Y. Shkel EPFL

Functional Representation Lemma

Given $(X, Y) \sim P_{XY}$, there exists Z ($Z \perp Y$) and a function $g(\cdot, \cdot)$ such that X = g(Y, Z) i.e.,

$$H(X|Y,Z) = 0$$
$$I(Y;Z) = 0$$

Minimum Rényi Entropy Functional Representation

Given: $(X, Y) \sim P_{XY}$

Find: Z (or $P_{Z|XY}$)....

...with minimum $H_{\alpha}(Z)$ ($\forall \alpha \geq 0$)

Such that : $Y \perp Z$

$$X = g(Y, Z)$$

Equivalence to Minimum (Rényi) Entropy Coupling

Given: $(X, Y) \sim P_{XY}$

Find: Z (or $P_{Z|XY}$).....

...with minimum $H_{\alpha}(Z)$ ($\forall \alpha \geq 0$)

Such that : $Y \perp Z$

$$X = g(Y, Z)$$
.

Given: $|\mathcal{Y}|$ marginal PMFs $\{P_{X|Y=y}\}_{y\in\mathcal{Y}}$

Find: coupling $C(\{W_y\}_{y\in\mathcal{Y}})$

...with minimum $H_{\alpha}(C)$ ($\forall \alpha \geq 0$)

Such that: $W_y \sim P_{X|Y=y}$; $\forall y \in \mathcal{Y}$.

However ...

- o Computing $H_{\alpha}(Z^{\star})$ or $H_{\alpha}(C^{\star})$ is a NP-hard problem.
- o Lower bounds on $H_{\alpha}(Z^{\star})$ Converse type results [*Shkel-*Yadav '23]
- o Upper bounds on $H_{\alpha}(Z^{\star})$ Achievability type results

*Y. Y. Shkel, and *A. K. Yadav, "Information-spectrum converse for minimum entropy couplings and functional representations," in *IEEE International Symposium on Information Theory (ISIT)*, 2023.

Prelude

Let *X* be a random variable such that $X \sim P_X$:

Information of X:

$$\iota_X(x) := \log\left(\frac{1}{P_X(x)}\right)$$
; w. p. $P_X(x)$.

Information spectrum of X:

$$\mathbb{F}_{\iota_X(t)} = \mathbb{P}[\iota_X(X) \le t] \ ; \, \forall t \in [0, \infty)$$

Prelude

Let *X* be a random variable such that $X \sim P_X$:

Information of X:

$$\iota_X(x) := \log\left(\frac{1}{P_X(x)}\right)$$
; w. p. $P_X(x)$.

Shannon entropy of X:

$$H(X) = \mathbb{E}[\iota_X(X)]$$

$$= \int_0^\infty \left(1 - \mathbb{F}_{\iota_X}(t)\right) dt$$

Information spectrum of X:

$$\mathbb{F}_{\iota_X(t)} = \mathbb{P}[\iota_X(X) \le t] \ ; \, \forall t \in [0, \infty)$$

Rényi entropy of X:

$$H_{\alpha}(X) = \frac{1}{1 - \alpha} \log \left(\mathbb{E}[2^{(1 - \alpha)\iota_{X}(X)}] \right);$$

$$\forall \alpha \in [0, \infty)$$

Information-spectrum based Lower Bound

Theorem : Let $(X, Y) \sim P_{XY}$ be supported on countable \mathcal{X} and countable \mathcal{Y} . Then, for any $\alpha \in [0, \infty)$ we have

$$H_{\alpha}(Z^{\star}) \geq K_{\alpha}(P_{XY})$$

where,
$$K_{\alpha}(P_{XY}) = \begin{cases} \frac{1}{1-\alpha} \log \left[1 + \int_0^{\infty} J_{\alpha}(x) dx\right] & \text{; if } \alpha \in [0,1) \cup (1,\infty) \\ \int_0^{\infty} G(x) dx & \text{; } \alpha = 1 \end{cases}$$

such that:
$$G(x) := \sup_{y \in \mathcal{Y}} \left(1 - \mathbb{F}_{l_{X|Y=y}}(x) \right)$$
$$J_{\alpha}(x) := (\ln 2)(1 - \alpha)G(x)2^{(1-\alpha)x}$$

*Y. Y. Shkel, and *A. K. Yadav, "Information-spectrum converse for minimum entropy couplings and functional representations," in *IEEE International Symposium on Information Theory (ISIT)*, 2023.

This Work ...

- Concerned with **Upper Bounds on** $H_{\alpha}(Z^{\star})$ i.e., Achievability type results.
- o Approximation analysis based on the Greedy Coupling Algorithm [Kocaoglu et al. '17]
 - Let C_Z denote the output of the algorithm
 - $K_{\alpha}(P_{XY}) \le H_{\alpha}(Z^{*})$ - [from the Lower bound]
 - $K_{\alpha}(P_{XY}) \le H_{\alpha}(Z^{\star}) \le H_{\alpha}(C_Z)$ - [problem's nature]
 - Our work: $H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + Q$; (finding the smallest Q for every $\alpha \in [0,\infty)$).

Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath, and Babak Hassibi, "Entropic causal inference", In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI'17), AAAI Press, 1156–1162.

This Work ...

- Concerned with **Upper Bounds on** $H_{\alpha}(Z^{\star})$ i.e., Achievability type results.
- o Approximation analysis based on the Greedy Coupling Algorithm [Kocaoglu et al. '17]
 - Let C_Z denote the output of the algorithm
 - $K_{\alpha}(P_{XY}) \le H_{\alpha}(Z^{*})$ - [from the Lower bound]
 - $K_{\alpha}(P_{XY}) \le H_{\alpha}(Z^{\star}) \le H_{\alpha}(C_Z)$ - [problem's nature]
 - Our work: $H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + Q$; (finding the smallest Q for every $\alpha \in [0,\infty)$).
 - For the rest of the presentation : $m := |\mathcal{Y}|$ and $n := |\mathcal{X}|$

Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath, and Babak Hassibi, "Entropic causal inference", In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI'17), AAAI Press, 1156–1162.

Greedy Coupling Algorithm

- o Input: m PMFs $\{P_{X|Y=y_i}\}_{i=1}^m$, each with $\leq n$ states
- Output: Coupling $C_Z := (c_1, c_2, ..., c_T)$

Greedy Coupling Algorithm

- o Input: m PMFs $\{P_{X|Y=y_i}\}_{i=1}^m$, each with $\leq n$ states
- o **Output**: Coupling $C_Z := (c_1, c_2, ..., c_T)$
 - Sort each PMF in the non-increasing order
 - Find the minimum of maximum of each PMF i.e., $q = \min_{i}(P_{X|Y=y_i}(1))$
 - ullet Append q as the next state of C_Z
 - Update the maximum state of each PMF i.e., $P_{X|Y=y_i}(1) = \left(P_{X|Y=y_i}(1) q\right)$, $\forall i \leq m$
 - Sort each PMF in non-increasing order
 - Find $q = \min_{i} (P_{X|Y=y_i}(1))$

Greedy Coupling Algorithm: Example

o Input:
$$\{P_{X|Y=y_1} = (0.5,0.4,0.1); P_{X|Y=y_2} = (0.6,0.2,0.2)\}$$
; $(m=2,n=3)$

Iteration (t)	Current PMFs	q	Updated PMFs	C_Z
1	(0.5, 0.4, 0.1) (0.6, 0.2, 0.2)	0.5	(0, 0.4, 0.1) (0.1, 0.2, 0.2)	(0.5)
2	(0.4, 0.1, 0) (0.2, 0.2, 0.1)	0.2	(0.2, 0.1, 0) (0, 0.2, 0.1)	(0.5, 0.2)
3	(0.2, 0.1, 0) (0.2, 0.1, 0)	0.2	(0, 0.1, 0) (0, 0.1, 0)	(0.5, 0.2, 0.2)
T=4	(0.1, 0, 0) (0.1, 0, 0)	0.1	(0, 0, 0) (0, 0, 0)	(0.5, 0.2, 0.2, 0.1)
5	(0, 0, 0) (0, 0, 0)	0	(0, 0, 0) (0, 0, 0)	

o Output: Coupling $C_Z = (0.5, 0.2, 0.2, 0.1)$

- Recall, our goal : $H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + Q$
- Also, recall that $K_{\alpha}(P_{XY})$ is a function of G(x).

$$G(x) := \sup_{y \in \mathcal{Y}} \left(1 - \mathbb{F}_{l_{X|Y=y}}(x) \right)$$

$$J_{\alpha}(x) := (\ln 2)(1 - \alpha)G(x)2^{(1-\alpha)x}$$

$$K_{\alpha}(P_{XY}) = \begin{cases} \frac{1}{1-\alpha} \log\left[1 + \int_{0}^{\infty} J_{\alpha}(x)dx\right] & \text{; if } \alpha \in [0,1) \cup (1,\infty) \\ \int_{0}^{\infty} G(x)dx & \text{; } \alpha = 1 \end{cases}$$

- Recall, our goal : $H_{\alpha}(C_Z) \le K_{\alpha}(P_{XY}) + Q$
- Also, recall that $K_{\alpha}(P_{XY})$ is a function of G(x).
- Track the behavior of G(x) at every iteration of the greedy algorithm.

$$G(x) := \sup_{y \in \mathcal{Y}} \left(1 - \mathbb{F}_{l_{X|Y=y}}(x) \right)$$

- Recall, our goal : $H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + Q$
- Also, recall that $K_{\alpha}(P_{XY})$ is a function of G(x).
- Track the behavior of G(x) at every iteration of the greedy algorithm.

$$G^{t+1}(x) \begin{cases} = G^{t}(x) - p_{1}^{t}(1) & ; x < a_{1} \\ \leq G^{t}(x) + (p_{m}^{t}(1) - p_{1}^{t}(1)); x \in [a_{1}, a_{2}) \\ \vdots \\ \leq G^{t}(x) + (p_{2}^{t}(1) - p_{1}^{t}(1)); x \in [a_{m-1}, a_{m}) \\ = G^{t}(x) & ; x \geq a_{m} \end{cases}$$

Where,

$$P_{i} := P_{X|Y=y_{i}} \quad \forall i \leq m$$

$$a_{1} = \log \frac{1}{p_{1}^{t}(1)}$$

$$a_{2} = \log \frac{1}{p_{m}^{t}(1) - p_{1}^{t}(1)}$$

$$\vdots$$

$$a_{m} = \log \frac{1}{p_{2}^{t}(1) - p_{1}^{t}(1)}$$

- Recall, our goal : $H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + Q$
- Also, recall that $K_{\alpha}(P_{XY})$ is a function of G(x).
- Track the behavior of G(x) at every iteration of the greedy algorithm.
- o $J_{\alpha}(x)$ is a function of G(x) i.e., $J_{\alpha}(x) = h(\alpha, x)G(x)$ where $h(\alpha, x) = \ln 2(1 \alpha)2^{(1-\alpha)x}$

$$J_{\alpha}^{t+1}(x) \begin{cases} = J_{\alpha}^{t}(x) - h(\alpha, x) p_{1}^{t}(1) & ; x < a_{1} \\ \leq J_{\alpha}^{t}(x) + h(\alpha, x) (p_{m}^{t}(1) - p_{1}^{t}(1)); x \in [a_{1}, a_{2}) \\ \vdots \\ \leq J_{\alpha}^{t}(x) + h(\alpha, x) (p_{2}^{t}(1) - p_{1}^{t}(1)); x \in [a_{m-1}, a_{m}) \\ = J_{\alpha}^{t}(x) & ; x \geq a_{m} \end{cases}$$

- Track the behavior of G(x) at every iteration of the greedy algorithm.
- o $J_{\alpha}(x)$ is a function of G(x) i.e., $J_{\alpha}(x) = h(\alpha, x)G(x)$ where $h(\alpha, x) = \ln 2(1 \alpha)2^{(1-\alpha)x}$
- o Consequently,

$$\int_{0}^{\infty} J_{\alpha}^{t+1}(x)dx - \int_{0}^{\infty} J_{\alpha}^{t}(x)dx \le p_{1}^{t}(1) - (p_{1}^{t}(1))^{\alpha} \left[1 - \tilde{r}(\alpha, m)\right]$$

$$\text{where, } \tilde{r}(\alpha, m) := \begin{cases} \max_{w_1 = 0;} & \sum_{k=2}^m w_k(w_k^{\alpha - 1} - w_{k+1}^{\alpha - 1}); \text{ for } \alpha \in [0, 1), \\ w_{m+1} = 1; & \\ w_1 < w_2 \le w_3 \le \dots \le w_m < w_{m+1}. \\ \min_{w_1 = 0;} & \sum_{k=2}^m w_k(w_k^{\alpha - 1} - w_{k+1}^{\alpha - 1}); \text{ for } \alpha \in (1, \infty). \end{cases}; \text{ and } w_k := \frac{p_k^t(1) - p_1^t(1)}{p_1^t(1)}.$$

$$w_{m+1} = 1; & \\ w_{m+1} = 1; & \\ w_1 < w_2 \le w_3 \le \dots \le w_m < w_{m+1}. \end{cases}$$

o Sum over all iterations of the greedy algorithm, $1 \le t \le T$.

o Consequently,

$$\int_{0}^{\infty} J_{\alpha}^{t+1}(x)dx - \int_{0}^{\infty} J_{\alpha}^{t}(x)dx \le p_{1}^{t}(1) - (p_{1}^{t}(1))^{\alpha} \left[1 - \tilde{r}(\alpha, m)\right]$$

o Sum over all iterations of the greedy algorithm, $1 \le t \le T$.

$$\left[1 + \int_0^\infty J_\alpha^1(x)dx \ge \left[r(\alpha, m)\right] \sum_{t=1}^T (p_1^t(1))^\alpha\right]$$

Where $r(\alpha, m) := \max(0, 1 - \tilde{r}(\alpha, m))$.

o Sum over all iterations of the greedy algorithm, $1 \le t \le T$.

$$1 + \int_0^\infty J_{\alpha}^1(x) dx \ge \left[r(\alpha, m) \right] \sum_{t=1}^T (p_1^t(1))^{\alpha}$$

Where $r(\alpha, m) := \max(0, 1 - \tilde{r}(\alpha, m))$.

o On taking logarithm on both sides,

$$\left[\frac{1}{1-\alpha} \log \left(1 + \int_0^\infty J_\alpha^1(x) dx \right) \ge \frac{1}{1-\alpha} \log \left[r(\alpha, m) \right] + \frac{1}{1-\alpha} \log \left(\sum_{t=1}^T \left(p_1^t(1) \right)^\alpha \right) \right]$$

o Sum over all iterations of the greedy algorithm, $1 \le t \le T$.

$$1 + \int_0^\infty J_{\alpha}^1(x) dx \ge \left[r(\alpha, m) \right] \sum_{t=1}^T (p_1^t(1))^{\alpha}$$

Where $r(\alpha, m) := \max(0, 1 - \tilde{r}(\alpha, m))$.

o On taking logarithm on both sides,

$$\frac{1}{1-\alpha} \log \left(1 + \int_0^\infty J_\alpha^1(x) dx\right) \ge \frac{1}{1-\alpha} \log \left[r(\alpha, m)\right] + \frac{1}{1-\alpha} \log \left(\sum_{t=1}^T (p_1^t(1))^\alpha\right)$$

$$K_\alpha(P_{XY})$$

$$H_\alpha(C_Z)$$

Theorem: Let $(X, Y) \sim P_{XY}$ be supported on countable \mathcal{X} and countable \mathcal{Y} . Then, for any $\alpha \in [0, \infty)$ we have

$$H_{\alpha}(C_Z) \le K_{\alpha}(P_{XY}) + F(\alpha, m)$$

where,
$$F(\alpha, m) = \frac{1}{\alpha - 1} \log [r(\alpha, m)]$$

 $r(\alpha, m) = \max(0, 1 - \tilde{r}(\alpha, m)).$

Theorem: Let $(X, Y) \sim P_{XY}$ be supported on countable \mathcal{X} and countable \mathcal{Y} . Then, for any $\alpha \in [0, \infty)$ we have

$$H_{\alpha}(C_Z) \le K_{\alpha}(P_{XY}) + F(\alpha, m)$$

where,
$$F(\alpha, m) = \frac{1}{\alpha - 1} \log [r(\alpha, m)]$$

 $r(\alpha, m) = \max(0, 1 - \tilde{r}(\alpha, m)).$

Consequently,

$$K_{\alpha}(P_{XY}) \le H_{\alpha}^{\star}(Z) \le H_{\alpha}(C_Z) \le K_{\alpha}(P_{XY}) + F(\alpha, m)$$

 $\le H_{\alpha}^{\star}(Z) + F(\alpha, m)$

Corollary 1 : Let $(X, Y) \sim P_{XY}$ be supported on countable \mathcal{X} and binary \mathcal{Y} (i.e., m = 2). Then, for any $\alpha \in [0, \infty)$, we have

$$H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + F(\alpha,2)$$

where,
$$F(\alpha,2) = \frac{1}{\alpha - 1} \log \left[1 + \left(\frac{1}{\alpha} \right)^{\frac{1}{\alpha - 1}} - \left(\frac{1}{\alpha} \right)^{\frac{\alpha}{\alpha - 1}} \right].$$

Corollary 1 : Let $(X, Y) \sim P_{XY}$ be supported on countable \mathcal{X} and binary \mathcal{Y} (i.e., m = 2). Then, for any $\alpha \in [0, \infty)$, we have

$$H_{\alpha}(C_Z) \leq K_{\alpha}(P_{XY}) + F(\alpha, 2)$$

where,
$$F(\alpha,2) = \frac{1}{\alpha - 1} \log \left[1 + \left(\frac{1}{\alpha}\right)^{\frac{1}{\alpha - 1}} - \left(\frac{1}{\alpha}\right)^{\frac{\alpha}{\alpha - 1}} \right].$$

 $F(\alpha, m)$ does not have a closed-form solution, in general!

Recall that
$$F(\alpha, m) = \frac{1}{\alpha - 1} \log \left[r(\alpha, m) \right]$$
; where $r(\alpha, m) = \max(0, 1 - \tilde{r}(\alpha, m))$ such that

$$\tilde{r}(\alpha, m) := \begin{cases} \max_{w_1 = 0;} & \sum_{k=2}^m w_k (w_k^{\alpha - 1} - w_{k+1}^{\alpha - 1}); \text{ for } \alpha \in [0, 1), \\ w_{m+1} = 1; & \\ w_1 < w_2 \le w_3 \le \dots \le w_m < w_{m+1}. \\ \min_{w_1 = 0;} & \sum_{k=2}^m w_k (w_k^{\alpha - 1} - w_{k+1}^{\alpha - 1}); \text{ for } \alpha \in (1, \infty). \\ w_{m+1} = 1; & \\ w_1 < w_2 \le w_3 \le \dots \le w_m < w_{m+1}. \end{cases}$$

Lemma : For every $\alpha \in [0,\infty)$, $F(\alpha,m)$ is an non-decreasing function of m.

As
$$m \to \infty$$
, $F(\alpha, m)$ approaches $\frac{1}{\alpha - 1} \log \left[\max \left(0, \frac{2\alpha - 1}{\alpha} \right) \right]$.

Corollary 2 : Let $(X, Y) \sim P_{XY}$ be supported on countable \mathcal{X} and countable \mathcal{Y} . Then, for any $\alpha \in [0, \infty)$, we have

$$H_{\alpha}(C_{Z}) \leq K_{\alpha}(P_{XY}) + \lim_{m \to \infty} F(\alpha, m)$$

$$= K_{\alpha}(P_{XY}) + \frac{1}{\alpha - 1} \log \left[\max \left(0, \frac{2\alpha - 1}{\alpha} \right) \right].$$

Comparison of Upper Bounds: (m = 2)

[Li, Trans. IT '21] (1):
$$H_{\alpha}(\tilde{Z}) \leq H_{\alpha}(Z^{\star}) + \begin{cases} \infty & \text{; if } \alpha = 0 \\ 2 & \text{; if } \alpha = 1 \\ 1 & \text{; if } \alpha = \infty \\ \frac{-\alpha - \log(1 - 2^{-\alpha})}{1 - \alpha} \text{; otherwise} \end{cases}$$

[Li, Trans. IT '21] (2): $H_{\alpha}(\tilde{Z}) \leq H_{\alpha}(Z^{*}) + 1$.

[Compton et al., AISTATS '23]:
$$H_1(C_Z) \le H_1(Z^*) + \frac{\log_2 e}{e} \approx 0.53$$
. (Only for Shannon Entropy)

[Our Work]: $H_{\alpha}(C_Z) \leq H_{\alpha}(Z^{\star}) + F(\alpha, 2)$.

Comparison of Upper Bounds: (m = 2)

Comparison of Upper Bounds: (arbitrary m)

[Li, Trans. IT '21] (2):
$$H_{\alpha}(\tilde{Z}) \le H_{\alpha}(Z^{\star}) + \frac{1}{1-\alpha} \log \left(\frac{(2^{\alpha}-2)2^{-\alpha m}+2^{-\alpha}}{1-2^{-\alpha}} \right).$$

[Compton, ISIT '22]: $H_1(C_Z) \le H_1(Z^*) + \log_2 e \approx 1.44$. (Only for Shannon Entropy)

[Compton et al., AISTATS '23]:
$$H_1(C_Z) \le H_1(Z^*) + \frac{1 + \log_2 e}{e} \approx 1.22$$
. (Only for Shannon Entropy)

[Our Work]:
$$H_{\alpha}(C_Z) \le H_{\alpha}(Z^*) + F(\alpha, m) \le H_{\alpha}(Z^*) + \frac{1}{\alpha - 1} \log \left[\max \left(0, \frac{2\alpha - 1}{\alpha} \right) \right].$$

Comparison of Upper Bounds: (arbitrary m)

Summary

- o Achievability type results (**Upper Bounds**) for Minimum Rényi Entropy Couplings and Functional Representations.
 - * Approximation Analysis between the Rényi entropy of the 'output of the Greedy Coupling Algorithm' and the 'optimal coupling' i.e.,

$$H_{\alpha}(C_Z) \le H_{\alpha}^{\star}(Z) + F(\alpha, m)$$

- * Our analysis is better for high values of α i.e., $\alpha \ge a^*(m)$, where $\alpha^*(m) \in [0.36, 0.78]$ for every $m \ge 2$.
- * Greedy Coupling Algorithm is optimal for min-entropy i.e., $\alpha \to \infty$.