Three types of (strong) Al approaches

Probabilistic Logics

AIMA 14.6 Additional materials

Additional reference materials

- L. Getoor and B. Taskar (eds.), Introduction to Statistical Relational Learning, 2007. Cambridge, MA: MIT Press.
 - Ch 5: Probabilistic Relational Models
 - ▶ Ch 12: Markov Logic

Logics vs. Probabilistic Models

- Symbolic logics
 - FOL is very expressive
 - relations between objects, quantifiers
 - But it cannot model uncertainty

- Probabilistic Models
 - BN/MN model uncertainty in a concise manner
 - But limited in expressiveness
 - BN/MN is essentially propositional

Probabilistic Logics

- Goal
 - Combine (subsets of) logic and probability into a single language
- A.k.a. Statistical Relational Learning
- Lots of approaches. We will cover two of them:
 - Probabilistic Relational Models PRM
 - Markov Logic

Probabilistic Relational Models

Probabilistic Relational Models

- Logical language
 - Frame (typed relational knowledge)
 - A subclass of FOL
- Probabilistic language
 - Bayes nets

· + 01

Typed relational knowledge

Typed relational knowledge

The types of objects and their valid relations and

Goal. To build relation between attributes?

Probabilistic Relational Model

Probabilistic Relational Model

CC[no(no) | el ol

Sherre (OVO).

Probabilistic Relational Model

=> Mary variables

Smare 1, smare 2, ...

Relational Skeleton

Fixed relational skeleton σ:

- set of objects in each class
- ✓ relations between them
- attribute values unknown

PRM with Attribute Uncertainty

PRM unrolled wrt. the relational skeleton produces a BN that models the distribution over instantiations of attributes.

NO BN

PRM with Attribute Uncertainty

PRM unrolled wrt. the relational skeleton produces a BN that models the distribution over instantiations of attributes.

PRM: Aggregate Dependencies

only 1 cpt, only assume PRM: Aggregate Dependencies 2 parent

PRM with Attribute Uncertainty of win

probability distribution over instantiations of attributes I:

$$P(I | \sigma, S, \Theta) = \prod_{x \in \sigma} \prod_{x.A} P(x.A | parents_{S,\sigma}(x.A))$$
Objects Attributes

Structural Uncertainty

- PRM with AU only well-defined when the relational skeleton is known
- What if we are uncertain about the relational structure?
 - How many objects does an object relate to?
 - Which object is an object related to?
 - Does an object actually exist?
 - Are two objects identical?

Structural Uncertainty

- Need probabilistic models that capture structural uncertainty
- Types of SU:
 - Existence uncertainty
 - Reference uncertainty
 - Number uncertainty
 - Type uncertainty
 - Identity uncertainty

Citation Schema

Existence Uncertainty

PRM with Existence Uncertainty

PRM with Existence Uncertainty

Since Imprelation

Object skeleton

Fixed object skeleton σ :

- set of objects in each class
- unknown relations between them
- unknown attribute values

PRM with Existence Uncertainty

PRM w/ EU unrolled wrt. the object skeleton produces a BN

A more complicated example

PRM with Attribute Uncertainty

PRM with Existence Uncertainty

PRM with Existence Uncertainty

existence NV (evenin

Markov Logic

Markov Logic

- Logical language
 - First-order logic
- Probabilistic language
 - Markov networks

Review: Markov networks

A Markov network (or Markov random field) encodes a joint distribution with an undirected graph

$$p(\mathbf{x}) = \boxed{\frac{1}{Z}} \prod_{C} \psi_C(\mathbf{x}_C) \qquad \text{potential over clique C and}$$
 where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and
$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

(.//

is the normalization coefficient.

knowledge house.

Markov Logic: Intuition

- A logical KB is a set of hard constraints on the set of possible worlds
 - If a world violates a formula, it becomes impossible
- Let's make them **soft constraints**: When a world violates a formula, it becomes less probable, not impossible
- Give each formula a weight (Higher weight ⇒ Stronger constraint)

$$P(\text{world}) \propto \exp(\sum \text{weights of formulas it satisfies})$$

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number = b lect(
- Together with a set of constants, it defines a Markov network with
- network with

 To Foly to vor the my ground term

 One node for each grounding of each predicate in the
 - This is propositionalization (remember?)
 - One clique for each grounding of each formula F in the MLN, with the potential being:
 - exp(w) for node assignments that satisfy F
 - 1 otherwise potential dique

通用实例化

Universal instantiation (UI)

result of substituity a objec to (Term without variables)

• For any sentence α , variable v and ground term g:

- Every instantiation of a universally quantified sentence is entailed by it
- UI can be applied multiple times to add new sentences
- E.g., $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$ yields:
 - King(John) ∧ Greedy(John) ⇒ Evil(John)
 - − King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
 - King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Ground expression

From Wikipedia, the free encyclopedia

In mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables.

In first-order logic with identity, the sentence $Q(a) \lor P(b)$ is a ground formula, with a and b being constant symbols. A **ground expression** is a ground term or ground formula

Contents [hide]

- 1 Examples
- 2 Formal definition
 - 2.1 Ground terms
 - 2.2 Ground atom
 - 2.3 Ground formula
- 3 See also
- 4 References

Examples [edit]

Consider the following expressions in first order logic over a signature containing a constant symbol 0 for the number 0, a unary function symbol s for the successor function and a binary function symbol s for addition.

- $s(0), s(s(0)), s(s(s(0))), \ldots$ are ground terms,
- $ullet 0+1,\ 0+1+1,\ldots$ are ground terms,
- ullet x + s(1) and s(x) are terms, but not ground terms,
- ullet s(0)=1 and 0+0=0 are ground formulae,

Formal definition [edit]

What follows is a formal definition for first-order languages. Let a first-order language be given, with C the set of constant symbols, V the set of (individual) variables, F the set of functional operators, and P the set of predicate symbols.

Ground terms [edit]

A ground term is a terms that contain no variables. They may be defined by logical recursion (formula-recursion):

- 1. Elements of C are ground terms;
- 2. If $f\in F$ is an n-ary function symbol and $lpha_1,lpha_2,\ldots,lpha_n$ are ground terms, then $f\left(lpha_1,lpha_2,\ldots,lpha_n
 ight)$ is a ground term.
- 3. Every ground term can be given by a finite application of the above two rules (there are no other ground terms; in particular, predicates cannot be ground terms).

Roughly speaking, the Herbrand universe is the set of all ground terms.

Ground atom [edit]

A ground predicate, ground atom or ground literal is an atomic formula all of whose argument terms are ground terms.

If $p \in P$ is an n-ary predicate symbol and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are ground terms, then $p(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is a ground predicate or ground atom.

Roughly speaking, the Herbrand base is the set of all ground atoms, while a Herbrand interpretation assigns a truth value to each ground atom in the base.

Ground formula [edit]

A ground formula or ground clause is a formula without variables.

Formulas with free variables may be defined by syntactic recursion as follows:

- 1. The free variables of an unground atom are all variables occurring in it.
- 2. The free variables of $\neg p$ are the same as those of p. The free variables of $p \lor q, p \land q, p \to q$ are those free variables of p or free variables of q.
- 3. The free variables of $\forall x \ p$ and $\exists x \ p$ are the free variables of p except x.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
 - i.e., a ground sentence is entailed by new KB iff entailed by original KB
- A naïve idea for FOL inference:
 - propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms,
 - e.g., Father(Father(John)))

SM

Example: Friends & Smokers

Smoking causes cancer.

Friends have similar smoking habits.

 $\forall x \; Smokes(x) \Rightarrow Cancer(x)$ $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$ Two constants: **Anna** (A) and **Bob** (B) Friends(A,B) Smokes(A) Smokes(B) Friends(A,A) Friends(B,B) Cancer(A) Cancer(B) Friends(B,A)

reolicti.

 	-and -
	$\forall x \ Smokes(x) \Rightarrow Cancer(x)$
1.1	$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

potential tunci constraints. $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ Φ(S,C) S $\forall x, y \; Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow$ False False exp(1.5)Two constants: **Anna** (A) and **Bob** (B) False exp(1.5)True True False " Template Friends(A,B) True True exp(1.5)Smokes(B) Friends(B,B) Friends(A,A) Smokes/ Cancer(A) Cancer(B) Friends(B,A)

NOT satisfy

so,/

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world x:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *x*

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

>) (x) & exp(1.1+1.1+(.5)

Remember: 21 15 7 7 15 15 16 9 9 90 my

ASIE Clique.

Relation to First-Order Logic

- ▶ Infinite weights ⇒ First-order logic
 - ▶ P(x)>0 iff. x satisfies KB
- Markov logic allows contradictions between formulas

Relation to PRM

- MLN is More general and flexible than PRM
- In principle, a PRM can be converted into a MLN by writing a formula for each entry of each CPT and setting the weight to be the logarithm of the conditional probability

Software of MLN

- Alchemy
 - https://alchemy.cs.washington.edu/

Inference

Inference

- A naive approach
 - Unroll the model to a BN or MN and run inference algorithms (such as VE)
 - ▶ Problem: the BN/MN may be very large and highly interconnected
 repeat
 □
- Lifted inference Samilar structure
 - Lots of repeated structures in the unrolled model ⇒
 repeated computation in inference
 - Group similar random variables at the FOL level and handle them at the same time

rift compute

instance luge

Summary

- Probabilistic Relational Models
 - Logical language: Frame
 - Probabilistic language: Bayes nets
 - Bayes net template for object classes
 - Object's attrs. can depend on attrs. of related objs.
- Markov Logic
 - Logical language: First-order logic
 - Probabilistic language: Markov networks
 - Syntax: First-order formulas with weights
 - Semantics: Templates for Markov net cliques