应用密码学第四次作业解答

- 1. 设二元域GF(2)上线性移位寄存器的特征多项式为 $f(x) = 1 + x + x^3 + x^4$,试画出其所对应的线性移位寄存器图。进一步,假设初始状态为1101,试求其输出序列及其周期,以及生成该序列的最短线性移位寄存器。
 - 解: 输出序列为110 110 110 110 ..., 周期为3. (反馈结构图略)

为了求生成该序列的最短移位寄存器,设其极小多项式为g(x),我们知道必有 $g(x) \mid f(x)$ 。容易给出f(x)的分解

$$f(x) = (x+1)^2(x^2+x+1) = (x^2+1)(x^2+x+1)$$

(这个分解可以这样得到: x = 1显然是f(x)的根,所以可以从f(x)中去除掉x - 1这个因子。注意: $x^2 + x + 1$ 是 \mathbb{F}_2 上唯一的二次不可约多项式) 验证发现 $x^2 + x + 1$ 能生成上述序列,而x + 1和 $(x + 1)^2$ 都不可以。

- 2. 假设密码分析者得到密文串1010110110 和相应的明文串0100010001。 假定攻击者也知道密钥流是使用3 级线性移位寄存器产生的,试破译该密码系统。
- 解: 容易得到密钥流序列为1110100111。 设产生该序列的三级线性移位寄存器的特征多项式为 $f(x)=x^3+c_1x^2+c_2x+c_3$,利用密钥流序列的前6比特可以得到关系式

$$c_1 + c_2 + c_3 = 0$$
; $c_2 + c_3 = 1$; $c_1 + c_3 = 0$.

通过解此线性方程组(在有限域F2上)可以得到

$$c_1 = 1$$
, $c_2 = 0$, $c_3 = 1$.

从而该移位寄存器的特征多项式为 $f(x) = x^3 + x^2 + 1$.

3. 试用Berlekamp-Massey 算法求产生序列: 10011011000111010100 的 最短线性移位寄存器,并画出结构图。

n	d_{n-1}	f_n	l_n
0		1	0
1	1	1+x	1
2	1	1	1
3	0	1	1
4	1	$1 + x^3$	3
5	1	$1 + x + x^3$	3
6	1	$1 + x + x^2 + x^3$	3
7	1	$1 + x + x^2$	4
8	0	$1 + x + x^2$	4
9	0	$1 + x + x^2$	4
10	1	$1 + x + x^2 + x^3 + x^4 + x^5 + x^6$	6
11	1	$1 + x^4 + x^5 + x^6$	6
12	1	$1 + x^2 + x^3 + x^5 + x^6$	6
13	1	$1 + x^2 + x^4 + x^6$	6
14	1	$1 + x + x^2 + x^3 + x^7$	7
15	0	$1 + x + x^2 + x^3 + x^7$	7
16	1	$1 + x + x^2 + x^5 + x^6 + x^7 + x^8 + x^9$	9
17	1	$1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9$	9
18	0	$1 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9$	9
19	1	$1 + x^3 + x^9 + x^{11}$	11

解: 生成该序列的最短移位寄存器的连接多项式为 $1+x^3+x^9+x^{11}$. 计算过程中每步的结果如上表。

反馈关系图略。

对这条序列, $n_0=0$,我们自然地让 $f_0(x)=1$, $l_0=0$ 即可。在计算开始时可以算出 $f_1=1+x$, $f_2=f_3=1$, $l_1=l_2=l_3=1$; $f_4=1+x^2+x^3$, $l_4=1$

3,这实际上说明序列的前3比特可以由退化的2级寄存器生成,到第4比特才由3级移位寄存器生成。(退化的意思是指连接多项式本来应该写成 $f_2(x)=f_3(x)=1+0\cdot x$)。

在利用BM算法计算时为避免出错,可以每算出一个 $f_i(x)$,都去检验一下它能否正确地产生第i比特前面所有的比特。否则一步错后面的计算就全都错了。