International Rectifier

AUTOMOTIVE MOSFET

IRF2804PbF IRF2804SPbF IRF2804LPbF

HEXFET® Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	270	Α	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (See Fig. 9)	190	U	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	75	·	
I _{DM}	Pulsed Drain Current ①	1080		
P _D @T _C = 25°C	Maximum Power Dissipation	300	W	
	Linear Derating Factor	2.0	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ②	540	mJ	
E _{AS} (tested)	Single Pulse Avalanche Energy Tested Value ①	1160		
I _{AR}	Avalanche Current ①	See Fig.12a,12b,15,16	Α	
E _{AR}	Repetitive Avalanche Energy ®		mJ	
TJ	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.50®	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		
$R_{\theta JA}$	Junction-to-Ambient		62]
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount, steady state)®		40	

HEXFET® is a registered trademark of International Rectifier. www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.031		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)} SMD	Static Drain-to-Source On-Resistance		1.5	2.0	mΩ	V _{GS} = 10V, I _D = 75A ④
R _{DS(on)} TO-220	Static Drain-to-Source On-Resistance		1.8	2.3	Ī	V _{GS} = 10V, I _D = 75A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Transconductance	130			S	$V_{DS} = 10V, I_{D} = 75A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 40V, V_{GS} = 0V$
				250	Ī	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	Ī	V _{GS} = -20V
Q_g	Total Gate Charge		160	240	nC	$I_D = 75A$
Q_{gs}	Gate-to-Source Charge		41	62	Ī	$V_{DS} = 32V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		66	99	Ī	V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		13		ns	$V_{DD} = 20V$
t _r	Rise Time		120		Ī	$I_D = 75A$
t _{d(off)}	Turn-Off Delay Time		130		Ī	$R_G = 2.5\Omega$
t _f	Fall Time		130		Ī	V _{GS} = 10V ④
L _D	Internal Drain Inductance		4.5		nΗ	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5		Ī	from package
						and center of die contact
C _{iss}	Input Capacitance		6450		рF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		1690		Ī	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		840		1	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		5350		İ	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		1520		İ	$V_{GS} = 0V, V_{DS} = 32V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		2210		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			270		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			1080		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25$ °C, $I_S = 75A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		56	84		$T_J = 25^{\circ}C, I_F = 75A, V_{DD} = 20V$	
Q_{rr}	Reverse Recovery Charge		67	100	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L=0.24mH, $R_G = 25\Omega$, $I_{AS} = 75A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- $\label{eq:loss_def} \begin{tabular}{ll} \begin{tabular}{ll} $I_{SD} \leq 75A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 175^{\circ}C. \end{tabular}$
- 4 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- $\ ^{\odot}$ C $_{oss}$ eff. is a fixed capacitance that gives the same $\ ^{\odot}$ charging time as C $_{oss}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}.$
- 6 Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- - 10 TO-220 device will have an Rth value of 0.45°C/W.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Timax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

 $P_{D\;(ave)}$ = 1/2 ($1.3 \cdot BV \cdot I_{av})$ = $\Delta T/\; Z_{thJC}$
$$\begin{split} I_{av} &= 2\triangle T/\left[1.3 \cdot BV \cdot Z_{th}\right] \\ E_{AS\;(AR)} &= P_{D\;(ave)} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

IRF2804/S/LPbF

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M-1994.
 DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS],
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERNOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61 & c1 APPLY TO BASE METAL ONLY, CONTROLLING DIMENSION : INCHES, THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED,

SYMBOL	MILLIM	ETERS	INCI		
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3,56	4,82	.140	.190	
A1	0.51	1,40	.020	.055	
A2	2,04	2.92	.080	.115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.96	.015	.038	5
b2	1.15	1.77	.045	.070	
b3	1,15	1,73	.045	.068	
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14,22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	12,19	12.88	.480	.507	7
Ε	9,66	10,66	.380	.420	4,7
E1	8.38	8.89	.330	.350	7
e	2.54 BSC		.100		
e1	5.08		.100 BSC .200 BSC		
H1	5.85	6,55	.230	.270	7,8
L	12,70	14.73	.500	.580	
L1	-	6,35	-	.250	3
øΡ	3.54	4.08	.139	.161	
0	2.54	3,42	.100	.135	
Ø	90.	-93 *	90*-		

LEAD ASSIGNMENTS

- HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE
- IGBTs, CoPACK 1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

IRF2804/S/LPbF

International Rectifier

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5. CONTROLLING DIMENSION: INCH.

S Y		DIMEN	ISIONS		Ņ
M B O	MILLIM	ETERS	IN	NOTES	
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
b	0,51	0.99	.020	.039	
ь1	0,51	0.89	.020	.035	4
b2	1,14	1,78	.045	.070	
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	4
c2	1,14	1.65	.045	.065	
D	8,51	9.65	.335	.380	3
D1	6.86		.270		
E	9.65	10,67	.380	.420	3
E1	6.22		.245		
e	2.54	BSC	.100 BSC		
н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1		1.65		.065	
L2	1,27	1,78	.050	.070	
L3	0.25	BSC	.010	BSC	
L4	4.78	5.28	,188	.208	
m	17.78		.700		
m1	8.89		.350		
n	11,43		.450		
0	2.08		.082		
р	3,81		.150		
R	0.51	0.71	.020	.028	
θ	90"	93"	90,	93*	

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2, 4.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE
2, 4.- COLLECTOR
3.- EMITTER

DIODES

1.- ANODE • 2, 4.- CATHODE 3.- ANODE

* PART DEPENDENT.

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead — Free"

OR PARTNUMBER INTERNATIONAL RECTIFIER F530S LOGO DATE CODE **IØR** P002 P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) 80 24 **ASSEMBLY** YEAR 0 = 2000 LOT CODE WEEK 02 A = ASSEMBLY SITE CODE

IRF2804/S/LPbF

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

COMFORMS TO EIA-418.

- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 08/05

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/