Algorithmique et langage C: monoïde, corps finis et Euclide étendu.

Michaël Quisquater (Maître de Conférences, UVSQ)

1/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply" : bits faibles → bits forts
"Square-and-multiply" : bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses : L'astuce de Montgomery

Calcul de puissance rapide : tentative

Considérons un G un ensemble muni d'une oppération binaire \cdot associative, et soit un naturel $d \in \mathbb{N}$ et $x \in G$.

Calcul de
$$x^d = x \cdot x \cdot x \cdots x$$

Méthode élémentaire : d-1 multiplications

Remarque : en cryptographie, *d* est très grand et donc ce n'est pas praticable.

Tentatives d'amélioration

Calcul de 26.

Par la méthode élémentaire : 5 multiplications.

Idée: $6 = 2 \cdot 3$. Par conséquent, $2^6 = (2^3)^2$.

→ 2 multiplications + 1 multiplication (carré) : 3 opérations au total.

Remarque : Notons que cette méthode fonctionne car 6 est factorisable en le produit de 2 et de 3.

3/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply": bits faibles → bits forts
"Square-and-multiply": bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses: L'astuce de Montgomery

Amélioration: Première méthode (intuition)

Calcul de 2⁵.

Méthode de base : 4 multiplications et la méthode précédente ne fonctionne plus.

Idée : décomposition binaire de l'exposant : $5 = 2^2 + 0 \cdot 2^1 + 2^0$.

$$2^5 = 2^{2^2} \cdot 2^{2^0}$$

Il suffit de calculer $2^{2^0} = 2$, $2^{2^1} = 2^2$ et $2^{2^2} = (2^2)^2$.

→ 2 multiplications

Ensuite multiplier 220 et 222

→ 3 multiplications au total au lieu de 4.

Amélioration: Première méthode (formalisation)

bits faibles → forts

Décomposer l'exposant en binaire :

Calcul de pgcd et des coefficients de Bezout

$$d = d_k 2^k + d_{k-1} 2^{k-1} + \cdots + d_1 2 + d_0$$

A chaque étape, multiplication éventuelle par une puissance $x^{2'}$

"square-and-multiply"

$$x^d = (x^{2^k})^{d_k} \cdot (x^{2^{k-1}})^{d_{k-1}} \cdot \cdot \cdot (x^{2^1})^{d_1} \cdot (x^{2^0})^{d_0}$$

Remarque : la séquence des puissances x^{2^i} peut être calculée efficacement car $x^{2^i} = (x^{2^{i-1}})^2$.

◆□▶◆圖▶◆圖▶◆圖▶

5/58

Calcul dans un monoïde

Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply" : bits faibles ightarrow bits forts

"Square-and-multiply" : bits forts \rightarrow bits faibles Génération de générateur d'un groupe fini Calcul de plusieurs inverses : L'astuce de Montgomery

"Square-and-multiply": bits faibles \rightarrow bits forts

Algorithme 1: "Square-and-multiply"

 $\overline{\text{Données}}: x \in G, d \in \mathbb{N}.$

Résultat : x^d

$$d = \sum_{i=0}^{k} d_i \cdot 2^i$$
 (avec $d_k = 1$), $temp := 1$. $puiss = x$

pour $i = 0, \dots, k-1$ faire

$$si d_i = 1 alors$$

$$temp := temp \cdot puiss$$

fin

$$puiss := puiss^2$$

fin

retourner temp · puiss

Premirère méthode (exemple)

Calculons $[7 + 11\mathbb{Z}]^5$ ou de façon équivalente 7^5 mod 11.

Initialisation: $5 = 2^2 + 2^0$ ($d_2 = 1$, $d_1 = 0$ $d_0 = 1$). k = 2 x = 7, temp = 1 et puiss = 7.

itération 0 : $d_0 = 1$ $temp = temp \cdot puiss = 1 \cdot 7 \mod 11 = 7$, $puiss = puiss^2 \mod 11 = 7^2 \mod 11 = 5$

itération 1 : $d_1 = 0$ -, $puiss = puiss^2 \mod 11 = 5^2 \mod 11 = 3$

return: $temp \cdot puiss = 7 \cdot 3 \mod 11 = 10$,

Conclusion : $[7 + 11\mathbb{Z}]^5 = [10 + 11\mathbb{Z}]$

7/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply": bits faibles → bits forts
"Square-and-multiply": bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses: L'astuce de Montgomery

Amélioration: Seconde méthode (intuition)

Calcul de 11¹³.

Méthode élementaire : 12 multiplications.

Idée: Séquence de divisions Euclidiennes (division par 2)

$$13 = 2 \cdot 6 + 1, 6 = 2 \cdot 3 + 0, 3 = 2 \cdot 1 + 1$$

On calcule $11^3 = (11)^2 \cdot 11^1$, $11^6 = (11^3)^2$ et $11^{13} = (11^6)^2 \cdot 11$. \rightarrow 5 multiplications.

Seconde méthode (formalisation)

Calcul de pgcd et des coefficients de Bezout

bits forts → faibles

Décomposer l'exposant en binaire :

$$d = d_k 2^k + d_{k-1} 2^{k-1} + \cdots + d_1 2 + d_0$$

$$x^d = ((((x^{d_k})^2 \cdot x^{d_{k-1}})^2 \cdot x^{d_{k-2}} \dots)^2 \cdot x^{d_1})^2 \cdot x^{d_0}$$

A chaque étape, élévation au carré et éventuellement multiplication par x.

"square-and-multiply"

9/58

Calcul dans un monoïde

Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

"Square-and-multiply" : bits faibles → bits forts "Square-and-multiply" : bits forts \rightarrow bits faibles Génération de générateur d'un groupe fini Calcul de plusieurs inverses : L'astuce de Montgomery

"Square-and-multiply" : bits forts \rightarrow bits faibles

Algorithme 2: "Square-and-multiply"

Données : $x \in G$, $d \in \mathbb{N}$.

Résultat : x^d

$$d = \sum_{i=0}^{k} d_i \cdot 2^i$$
 (avec $d_k = 1$), $temp := x$.

pour $i = k - 1, \dots, 0$ faire

$$temp := temp^2$$

si $d_i = 1$ **alors**

 $\mid temp := temp \cdot x$

fin

fin

retourner temp

Seconde méthode (exemple)

Calculons $[7 + 11\mathbb{Z}]^5$ ou de façon équivalente 7^5 mod 11.

Initialisation:
$$5 = 2^2 + 2^0$$
 ($d_2 = 1$, $d_1 = 0$ $d_0 = 1$). $k = 2$. $x = 7$ et $temp = 7$.

itération 1 :
$$temp = temp^2 \mod 11 = 7^2 \mod 11 = 5$$

 $d_1 = 0$ -,

itération 0 :
$$temp = temp^2 \mod 11 = 5^2 \mod 11 = 3$$

 $d_0 = 1 \ temp = temp \cdot x = 3 \cdot 7 \mod 11 = 10$,

Conclusion :
$$[7 + 11\mathbb{Z}]^5 = [10 + 11\mathbb{Z}]$$

11/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply" : bits faibles → bits forts
"Square-and-multiply" : bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses : L'astuce de Montgomery

Complexité des méthodes d'exponentiation rapide

Les deux méthodes nécessitent de réaliser au plus $2 \cdot log_2 d$ ($log_2 d$ est la taille de d) opérations dans G.

Conclusion : Si l'opération de *G* est polynomiale (en la taille des éléments de *G*), cela signifie que l'exponentiation est une opération polynomiale.

Génération de générateur d'un groupe fini

Soit G un groupe fini tel que $|G| = \prod_{i \in I} p_i^{\alpha_i}$ avec p_i premiers distincts et $\alpha_i \in \mathbb{N} \setminus \{0\}$.

Observation:

Soit $x \in G$ et e l'élément neutre de G. On sait que l'ordre de x divise l'ordre de G, donc l'ordre de x est de la forme $\prod_{j \in J} p_j^{\beta_j}$ avec $J \subseteq I$ et $\beta_j \le \alpha_j$ pour tout $j \in J$.

Par conséquent, si $x^{\frac{|G|}{p_i}} \neq e$ pour un certain $i \in I$, cela implique que l'ordre de x ne divise pas $\frac{|G|}{p_i}$ et donc est de la forme $p_i^{\alpha_i} \cdot \prod_{j \in J \setminus \{i\}} p_j^{\beta_j}$ avec $J \subseteq I$ et $\beta_j \leq \alpha_j$ pour tout $j \in J$. Par conséquent, l'ordre de x est un multiple de $p_i^{\alpha_i}$.

13/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply": bits faibles → bits forts
"Square-and-multiply": bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses: L'astuce de Montgomery

Génération de générateur d'un groupe fini (suite)

Si $x^{\frac{|G|}{p_i}} \neq e$ pour tout $i \in I$, cela signifie que que l'ordre de x est un multiple du $ppcm\{p_i^{\alpha_i} \mid i \in I\}$.

Or $ppcm\{p_i^{\alpha_i} \mid i \in I\} = \prod_{i \in I} p_i^{\alpha_i}$ car les p_i 's sont distincts et donc relativement premiers.

Finalement, l'ordre de x divise l'ordre du groupe c-à-d $\prod_{i \in I} p_i^{\alpha_i}$.

On peut conclure que l'ordre de x est $\prod_{i \in I} p_i^{\alpha_i}$.

"Square-and-multiply" : bits faibles → bits forts
"Square-and-multiply" : bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses : L'astuce de Montgomery

Génération de générateur d'un groupe fini

Algorithme 3 : Génération de générateur d'un groupe fini

Données : *G* cyclique d'ordre $\prod_{i \in I} p_i^{\alpha_i}$ premiers distincts et $\alpha_i \in \mathbb{N} \setminus \{0\}$.

Résultat : un générateur x de G

 $\begin{array}{c|c} \textbf{pour } x \in G \textbf{ faire} \\ \hline & \textbf{pour } i \in I \textbf{ faire} \\ \hline & temp = x^{\frac{|G|}{p_i}} \\ & \textbf{si } temp = e \textbf{ alors} \\ & | \textbf{break} \\ \hline & \textbf{fin} \\ \hline & \textbf{retourner } x \\ \hline & \textbf{fin} \\ \end{array}$

15/58

Calcul dans un monoïde

Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply": bits faibles → bits forts
"Square-and-multiply": bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses: L'astuce de Montgomery

Astuce de Montgomery

Données : x_1, x_2, \dots, x_n des éléments inversibles d'un monoïde commutatif G.

Résultat : $x_1^{-1}, x_2^{-1}, \dots, x_n^{-1}$.

Idée : Soit $a, b \in G$. Alors,

$$a^{-1}=(a\cdot b)^{-1}\cdot b\,,$$

$$b^{-1} = (a \cdot b)^{-1} \cdot a,$$

Observation : 3 multiplications et 1 inversion permettent de calculer l'inverse de deux éléments.

Calcul de pgcd et des coefficients de Bezout

Astuce de Montgomery

Generalisation de cette observation à n éléments \Rightarrow l'inversion de n éléments nécessite 3(n-1) multiplications et 1 inversion.

Idée : Soit x_1, \dots, x_n des éléments inversibles de G.

$$x_n^{-1} = (x_1 \cdots x_n)^{-1} \cdot (x_1 \cdots x_{n-1}).$$

⇒ Appliquer ce principe de façon récursive.

17/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout "Square-and-multiply" : bits faibles → bits forts
"Square-and-multiply" : bits forts → bits faibles
Génération de générateur d'un groupe fini
Calcul de plusieurs inverses : L'astuce de Montgomery

Algorithme 4 : Astuce de Montgomery

Données : x_1, x_2, \dots, x_n des éléments inversibles d'un monoïde commutatif G.

Résultat :
$$x_1^{-1}$$
, x_2^{-1} , \cdots , x_n^{-1} .
 $Prod[1] = x_1$
pour $i = 2 \cdots n$ faire
 $| Prod[i] = Prod[i - 1] \cdot x_i$
fin
 $temp = (Prod[n])^{-1}$
pour $i = n \cdots 2$ faire
 $| Inv_x[i] = temp \cdot Prod[i - 1]$
 $temp = temp \cdot x_i$
fin
 $Inv_x[1] = temp$
retourner Inv_x

Introduction

- Réaliser les opérations dans les anneaux finis demandent beaucoup de calculs.
- Lorsque l'anneau fini est de petite taille, il est évidemment possible de précalculer les tables de Cayley pour l'addition et la multiplication.
 - Gain de temps substantiel pour les calculs futurs.
 - Demande beaucoup de mémoire : $2 * q^2$ "cases" pour un corps fini \mathbb{F}_q .
- Dans le cas des corps finis, il est possible de faire beaucoup mieux!

19/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Introduction

Tabulation: Logarithme de Zech (ou de Jacobi) dans les corps finis

Rappels sur les corps finis

• Un corps fini à q^n élément est une extension de degré n d'un corps fini \mathbb{F}_q et peut être construit via un quotient

$$\mathbb{F}_q[X]/(P(X))$$

- où (P(X)) est l'idéal engendré par un polynôme irréductible (de $\mathbb{F}_q[X]$) de degré n.
- Le groupe multiplicatif d'un corps fini \mathbb{F}_q est cyclique et possède $\phi(q-1)$ générateurs (ϕ l'indicatrice d'Euler).

Rappels sur les corps finis (suite)

- Un polynôme primitif P(X) d'un corps fini \mathbb{F}_{q^n} , extension de \mathbb{F}_q , est un polynôme minimal (appartenant à $\mathbb{F}_q[X]$) d'un générateur de $\mathbb{F}_{q^n}^*$.
- Un polynôme primitif est irréductible et est souvent utilisé pour la construction de corps finis car [X + (P(X))] est générateur du groupe cyclique du corps fini.
- Le nombre de polynômes primitifs d'un corps \mathbb{F}_{q^n} , extension de \mathbb{F}_q , est $\phi(q^n-1)/n$.

◆□ → ◆□ → ◆ ■ → ◆ ■ → ◆ ○21/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Introduction

Tabulation: Logarithme de Zech (ou de Jacobi) dans les corps finis

Tabulation "polynomiale/exponentielle" des corps finis

Considérons le corps fini \mathbb{F}_{q^n} .

- Les classes peuvent être représentées par un polynôme de $\mathbb{F}_a[X]$ de degré strictement inférieur à n.
- On parlera de représentation "polynomiale.
- \Rightarrow représentation pour l'addition (simplement additionner les polynômes de $\mathbb{F}_q[X]$) et pour le calcul de l'opposé.

Tabulation "polynomiale/exponentielle" des corps finis

- Si $\underline{\alpha}$ est un générateur de $\mathbb{F}_{q^n}^*$, tout élément de $\mathbb{F}_{q^n}^*$ est de la forme $\underline{\alpha}^i$ avec $i \in \mathbb{Z}_{q^n-1}$.
- Chaque élément de $\mathbb{F}_{q^n}^*$ peut être représenté par une classe de \mathbb{Z}_{q^n-1} .
- On parlera de représentation "exponentielle".
- \Rightarrow représentation pour la multiplication (simplement additionner les exposants appartenant à \mathbb{Z}_{q^n-1}), l'inverse et l'extraction de racines.

23/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Introduction

Tabulation : Logarithme de Zech (ou de Jacobi) dans les corps finis

Tabulation "polynomiale/exoponentielle" des corps finis : addition et multiplication

- L'idée de la tabulation "polynomiale/exponentielle" consiste à effectuer les additions en représentation "polynomiale" et les multiplications en représentation "polaire".
- Dénotons par $\underline{\alpha}$ un générateur de $\mathbb{F}_{q^n}^*$.
- Définissons $Exp_{\underline{\alpha}}: \mathbb{Z}_{q^n-1} \to \mathbb{F}_{q^n}^*: i \mapsto \underline{\alpha}^i$.
- Log_{α} est l'application réciproque de Exp_{α} .

Remarque : Dans la suite, les représentants minimaux seront utilisés pour identifier classes. Une classe de représentant Q(X) sera notée Q(X).

Tabulation "polynomiale/exponentielle" des corps finis : addition et multiplication

Soit les classes S(X) et T(X) de \mathbb{F}_{q^n} .

- L'addition de ces deux classes consiste à simplement additionner S(X) et T(X) pour obtenir S(X) + T(X).
- La multiplication s'obtient via :

$$\underline{S(X)} \cdot \underline{T(X)} = \left\{ \begin{array}{ll} \operatorname{\textit{Exp}}_{\underline{\alpha}}(\operatorname{\textit{Log}}_{\underline{\alpha}}(\underline{S(X)}) + \operatorname{\textit{Log}}_{\underline{\alpha}}(\underline{T(X)})) & \operatorname{si} \underline{S(X)}, \underline{T(X)} \in \mathbb{F}_{q^n}^* \\ 0 & \operatorname{sinon} \end{array} \right.$$

Remarques:

- L'addition de classes se réduit à l'addition de vecteur de taille n à coefficients dans \mathbb{F}_q . Il s'agit d'un XOR si q=2.
- La multiplication de classes se réduit à une addition dans \mathbb{Z}_{q^n-1} et à des évaluations des applications exponentielle et logarithme.

25/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Introduction

Tabulation : Logarithme de Zech (ou de Jacobi) dans les corps finis

Tabulation "polynomiale/exponentielle" des corps finis : opposé, inverse et racine *n*^{ième}

• L'opposé d'une classe $\underline{S(X)}$ de \mathbb{F}_{q^n} est donnée par :

$$-\underline{S(X)} = \underline{-S(X)}.$$

• L'inverse d'une classe S(X) de $\mathbb{F}_{q^n}^*$ est donnée par :

$$S(X) = Exp_{\underline{\alpha}}(-Log_{\underline{\alpha}}(S(X)))$$

• La racine $n^{i\grave{e}me}$ d'une classe $\underline{S(X)}$ de $\mathbb{F}_{q^n}^*$ (quand elle existe) est donnée par :

$$\underline{S(X)} = Exp_{\underline{\alpha}}(n^{-1} \cdot Log_{\underline{\alpha}}(S(X)))$$

où n^{-1} est calculé dans \mathbb{Z}_{q^n-1} .

Avantages et inconvients de la tabulation "polynomiale/exponentielle"

Avantages:

- Les éléments sont représentés sous forme polynomiale (intéressant si on doit utiliser la structure d'espace vectoriel d'un corps fini)
- L'addition d'éléments est très rapide (surtout en caractéristique 2).

Inconvénients:

 La multiplication est assez lente (de multiples appels aux applications exponentielles et logarithmes)

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 2 り へ ()

27/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Introduction

Tabulation: Logarithme de Zech (ou de Jacobi) dans les corps

Introduction

- Une idée alternative pourrait être de considérer la représentation exponentielle comme celle de référence.
- Dans ce cas, c'est la multiplication qui devient très rapide ; il suffit d'additionner les exposants dans \mathbb{Z}_{q^n-1} .
- L'addition devient l'opération "complexe". En effet, l'exposant de la somme de deux éléments dont les exposants sont m et n est :

$$Log_{\alpha}(Exp_{\alpha}(m) + Exp_{\alpha}(n))$$
.

⇒ il possible de simplifier cette formule, c'est l'objet du logarithme de Zech (ou de Jacobi)!

Tabulation: Logarithme de Zech dans les corps finis

Soit $m, n \in \mathbb{Z}_{q^n-1}$ (ou quelque chose comme cela...)

Observons que

$$Exp_{\alpha}(m) + Exp_{\alpha}(n) = Exp_{\alpha}(m)(1 + Exp_{\alpha}(n-m))$$
.

Par conséquent,

$$Log_{\alpha}(Exp_{\alpha}(m) + Exp_{\alpha}(n)) = m + Log_{\alpha}(1 + Exp_{\alpha}(n-m))$$
.

Définissons le logarithme de Zech par :

$$Z_{\underline{\alpha}}(k) = Log_{\underline{\alpha}}(1 + Exp_{\underline{\alpha}}(k))$$

Dans ce cas, on a:

$$Log_{\underline{\alpha}}(Exp_{\underline{\alpha}}(m) + Exp_{\underline{\alpha}}(n)) = m + Z_{\underline{\alpha}}(n-m)$$
.

29/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Introduction

Tabulation: Logarithme de Zech (ou de Jacobi) dans les corps

Tabulation: Logarithme de Zech dans les corps finis

Notons que le logarithme de Zech est défini sur $\mathbb{Z}_{q^n-1}\setminus\{e\}$ où e est tel que $Exp_{\alpha}(e)=-1$.

Aussi, cette méthode ne permet pas de considérer la somme dont un ou plusieurs éléments sont nuls. Finalement l'image de ce logarithme est $\mathbb{Z}_{q^n-1} \setminus \{0\}$.

L'astuce consiste à compléter \mathbb{Z}_{q^n-1} du symbole $-\infty$ avec les conventions suivantes :

- $Exp_{\alpha}(-\infty) = 0$
- $k + (-\infty) = -\infty$
- $Z_{\alpha}(-\infty)=0$
- $Z_{\alpha}(e) = -\infty$ avec e tel que $Exp_{\alpha}(e) = -1$

Tabulation: Logarithme de Zech dans les corps finis

Avec ces conventions:

$$2 - Exp_{\underline{\alpha}}(n) = Exp_{\underline{\alpha}}(e) \cdot Exp_{\underline{\alpha}}(n) = Exp_{\underline{\alpha}}(n+e)$$

Remarque : Les formules (1) et (3) ne sont pas définies quand $m = -\infty \Rightarrow$ cas à traiter indépendamment.

31/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Calcul de pgcd : Première méthode

Première méthode : conséquence du théorème fondamental de l'arithmétique :

Corollaire

Considérons les naturels non-nuls a et b et leurs factorisations $a=\prod_{i\in I}p_i^{\alpha_i}$ et $b=\prod_{j\in J}p_j^{\beta_j}$ avec $I,J\subset\mathbb{N}_0$ et avec $\alpha_i,\beta_j\in\mathbb{N}_0$ pour $i\in I$ et $j\in J$. Alors, un plus grand commun diviseur de ces nombres est donné par la formule :

$$pgcd(a,b) = \prod_{i \in I \cap J} p_i^{\min(\alpha_i,\beta_i)}$$
.

De plus, si a est un naturel non-nul et b est nul, alors pgcd(a,0) = a. Notons que par convention $\prod_{i \in \emptyset} a_i = 1$.

Calcul de pgcd : Première méthode (exemple)

Exemple : Considérons les nombres $15 = 3 \cdot 5$ et $18 = 2 \cdot 3^2$. Nous avons

15 =
$$\prod_{i \in I} p_i^{\alpha_i}$$
 avec $I = \{2,3\}, p_2 = 3, p_3 = 5$ et $\alpha_2 = 1, \alpha_3 = 1$,

et

18 =
$$\prod_{i \in J} p_i^{\beta_i}$$
 avec $J = \{1, 2\}, p_1 = 2, p_2 = 3$ et $\beta_1 = 1, \beta_2 = 2$.

Par conséquent, $I \cap J = \{2\}$. Il s'ensuit

$$pgcd(15, 18) = \prod_{i \in I \cap I} p_i^{\min(\alpha_i, \beta_i)} = p_2^{\min(1, 2)} = 3^{\min(1, 2)} = 3.$$

33/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide

Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Calcul de pgcd : Deuxième méthode

La première méthode nécessite la factorisation des nombres → difficile !

Une autre méthode existe et est appelée "algorithme d'Euclide". Elle est basée sur le résultat suivant :

Théorème

Considérons les entiers $a, b, c \in \mathbb{Z}$ avec a et b non-nuls simultanément. Alors,

$$pgcd(a,b) = pgcd(a+b\cdot c,b)$$
.

Calcul de pgcd : Deuxième méthode (suite)

Preuve. Soit $d_1 = pgcd(a, b)$ et $d_2 = pgcd(a + b \cdot c, b)$, $c \in \mathbb{Z}$ Montrons que $d_1 \mid d_2$. Par définition du pgcd, d_1 divise a et b. Par conséquent, d_1 divise $a + b \cdot c$ et b. Par la définition du pgcd, nous déduisons que $d_1 \mid d_2$ ou encore

$$d_2 = s \cdot d_1 \text{ pour } s \in \mathbb{Z}.$$
 (1)

Montrons que $d_2 \mid d_1$. Appliquons le point précédent aux nombres $a = a + b \cdot c$ et b = b et c = -c. Nous avons que $pgcd(a + b \cdot c, b) \mid pgcd((a + b \cdot c) + b \cdot (-c), b) = pgcd(a, b)$ ou encore

$$d_1 = s' \cdot d_2 \text{ pour } s' \in \mathbb{Z}.$$
 (2)

(2) et (1) $\rightarrow s \cdot s' = 1$. Par conséquent, s = s' = 1 ou s = s' = -1. Le résultat suit.

35/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout

Calcul du pgcd : Algorithme d'Euclide
Coefficients de Bezout et Algorithme d'Euclide étendu
Algorithme d'Euclide étendu : Variante et généralisation

Calcul de pgcd : Deuxième méthode (algorithme d'Euclide)

pgcd(126, 35)?

Observons que $126 = 35 \cdot 3 + 21$ (on divise 126 par 35). Donc,

$$pgcd(126,35) = pgcd(35 \cdot 3 + 21,35) = pgcd(35,21)$$

De même, $35 = 21 \cdot 1 + 14$. Donc,

$$pgcd(35,21) = pgcd(21 \cdot 1 + 14,21) = pgcd(21,14)$$

Aussi, $21 = 14 \cdot 1 + 7$. Donc,

$$pgcd(21, 14) = pgcd(14 \cdot 1 + 7, 14) = pgcd(14, 7)$$

Finalement, $14 = 7 \cdot 2 + 0$. Donc,

$$pgcd(14,7) = pgcd(7 \cdot 2 + 0,7) = pgcd(7,0) = 7$$

ㅁㅏㅓ롼ㅏㅓㅌㅏ ㅌ

Calcul de pgcd : Deuxième méthode (suite)

Conclusions : Pour calculer le plus grand commun diviseur de deux entiers r_0 et r_1 (non-nuls simultanément), il suffit d'effectuer la séquence des divisions Euclidiennes :

$$r_0 = r_1 \cdot q_1 + r_2$$

 $r_1 = r_2 \cdot q_2 + r_3$
 $r_2 = r_3 \cdot q_3 + r_4$
 \cdots
 $r_{n-2} = r_{n-1} \cdot q_{n-1} + r_n$
 $r_{n-1} = r_n \cdot q_n + 0$

Le dernier reste non-nul est le $pgcd(r_0, r_1)$

Remarque : la séquence s'arrêtera toujours car les restes r_i 's sont strictement décroissants.

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Calcul de pgcd : Deuxième méthode (algorithme d'Euclide)

Algorithme 5 : Algorithme d'Euclide : Calcul de pgcd

Données : $a, b \in \mathbb{Z}$ non-nuls simultanément.

Résultat : pgcd(a, b)

$$r_0 = |a|, r_1 = |b|, k = 1.$$

tant que $r_k \neq 0$ faire

 $r_{k+1} :=$ le reste de la division de r_{k-1} par r_k k = k + 1

fin

retourner $pgcd(a, b) = r_{k-1}$.

Calcul de pgcd : Algorithme d'Euclide (exemple) : bis

Exemple : *pgcd*(126, 35)

$$r_0 = 126, r_1 = 35, r_2 = 21, r_3 = 14, r_4 = 7 \text{ et } r_5 = 0.$$

Le pgcd est donc 7.

Remarque: si on prend le plus petit reste positif lors de la division Euclidienne, le pgcd obtenu sera toujours le pgcd positif.

◆□▶ ◆□▶ ◆ ■ ◆ 9 へ ○

39/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Théorème de Bezout

Théorème

(Théorème de Bezout) Soit deux entiers a et b non simultanément nuls. Alors, il existe $x, y \in \mathbb{Z}$ tel que

$$a \cdot x + b \cdot y = pgcd(a, b)$$
.

Les nombres x et y sont appelés les coefficients de Bezout.

Reprenons notre exemple : soit a = 126 et b = 35.

On cherche $x, y \in \mathbb{Z}$ tels que 126x + 35y = pgcd(126, 25) = 7

Considérons la séquence de divisions Euclidiennes :

$$126 = 35 \cdot 3 + 21$$
 $21 = 126 - 35 \cdot 3$
 $35 = 21 \cdot 1 + 14$ $14 = 35 - 21 \cdot 1$
 $21 = 14 \cdot 1 + 7$ $7 = 21 - 14 \cdot 1$
 $14 = 7 \cdot 2 + 0$ $0 = 14 - 7 \cdot 2$

But: Exprimer 7 en fonction de 126 et 35.

Méthode: exprimer successivement 126, 35, 21,14 et 7 en fonction de 126 et 35

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$
 $r_0 = x_0 \cdot 126 + y_0 \cdot 35$
 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = (x_0 \cdot 126 + y_0 \cdot 35) - q_1 \cdot (x_1 \cdot 126 + y_1 \cdot 35)$
 $r_3 = r_4 = r_4$

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$

$$r_0 = x_0 \cdot 126 + y_0 \cdot 35$$

 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = (x_0 - q_1 x_1) \cdot 126 + (y_0 - q_1 y_1) \cdot 35$
 $r_3 =$
 $r_4 =$

de (

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$
 $r_0 = x_0 \cdot 126 + y_0 \cdot 35$
 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = x_1 \cdot 126 + y_2 \cdot 35$

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$

$$r_0 = x_0 \cdot 126 + y_0 \cdot 35$$

 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = (x_1 \cdot 126 + y_1 \cdot 35) - q_2 \cdot (x_2 \cdot 126 + y_2 \cdot 35)$
 $r_4 =$

45/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$

$$r_0 = x_0 \cdot 126 + y_0 \cdot 35$$

 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = (x_1 - q_2 x_2) \cdot 126 + (y_1 - q_2 y_2) \cdot 35$
 $r_4 =$

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$
 $r_0 = x_0 \cdot 126 + y_0 \cdot 35$
 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = x_3 \cdot 126 + y_3 \cdot 35$

◆□ ▶ ◆昼 ▶ ◆昼 ▶ 夏 かへで

47/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$
 $r_0 = x_0 \cdot 126 + y_0 \cdot 35$
 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = x_3 \cdot 126 + y_3 \cdot 35$
 $r_4 = (x_2 \cdot 126 + y_2 \cdot 35) - q_3 \cdot (x_3 \cdot 126 + y_3 \cdot 35)$

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$

$$r_0 = x_0 \cdot 126 + y_0 \cdot 35$$

 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = x_3 \cdot 126 + y_3 \cdot 35$
 $r_4 = (x_2 - q_3 x_3) \cdot 126 + (y_2 - q_3 y_3) \cdot 35$

49/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

$$r_0 = 126 = 1 \cdot 126 + 0 \cdot 35$$

 $r_1 = 35 = 0 \cdot 126 + 1 \cdot 35$
 $r_2 = 21 = 126 - 35 \cdot 3$
 $r_3 = 14 = 35 - 21 \cdot 1$
 $r_4 = 7 = 21 - 14 \cdot 1$
 $r_5 = 0 = 14 - 7 \cdot 2$
 $r_0 = x_0 \cdot 126 + y_0 \cdot 35$
 $r_1 = x_1 \cdot 126 + y_1 \cdot 35$
 $r_2 = x_2 \cdot 126 + y_2 \cdot 35$
 $r_3 = x_3 \cdot 126 + y_3 \cdot 35$

Conclusion:

- $x_0 = 1$, $y_0 = 0$, $x_1 = 0$ et $y_1 = 1$
- $y_{k+1} = y_{k-1} q_k \cdot y_k$
- Les x_i et y_i correspondants au dernier reste non-nuls sont les coefficients cherchés.

Remarque : Le principe de la preuve consiste à montrer que $a \cdot x_i + b \cdot y_i = r_i$ pour tout i.

51/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Algorithme d'Euclide étendu : Calcul des coefficients de Bezout.

Algorithme 6 : Algorithme d'Euclide Etendu

Données : $a, b \in \mathbb{Z}$ non-nuls simultanément.

Résultat : pgcd(a, b) et $x, y \in \mathbb{Z}$ tels que ax + by = pgcd(a, b)

 $r_0 = |a|, r_1 = |b|, x_0 = 1, x_1 = 0, y_0 = 0, y_1 = 1, k = 1.$

tant que $r_k \neq 0$ faire

 r_{k+1} := reste de la division de r_{k-1} par r_k ; q_k := quotient de la division de r_{k-1} par r_k ;

$$x_{k+1} = -q_k \cdot x_k + x_{k-1};$$

$$y_{k+1}=-q_k\cdot y_k+y_{k-1};$$

$$k = k + 1$$

fin

retourner
$$pgcd(x, y) = r_{k-1}, x = x_{k-1}, y = y_{k-1}.$$

Algorithme d'Euclide étendu (exemple)

• Exemple : a = 126 et b = 35.

k	0	1	2	3	4	5
r_k	126	35	21	14	7	0
q_k	-	3	1	1	2	-
X_k	1	0	1	-1	2	-
y_k	0	1	-3	4	-7	-

On a donc que le pgcd(126, 35) = 7 et x = 2, y = -7.

Par conséquent, $126 \cdot 2 - 7 \cdot 35 = 7$.

Remarque : Poser $r_0 = max(|a|, |b|)$ et $r_0 = min(|a|, |b|)$ permet de ne pas perdre une étape.

53/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Algorithme d'Euclide étendu (simplification)

Notons finalement que la suite définie par

$$x_i' = x_{i-2}' + q_{i-1} \cdot x_{i-1}'$$
 (avec $x_0' = 1$ et $x_1' = 0$) resp. $y_i' = y_{i-2}' + q_{i-1} \cdot y_{i-1}'$ (avec $y_0' = 0$ et $y_1' = 1$)

est liée à la suite

$$X_i = X_{i-2} - q_{i-1} \cdot X_{i-1} (\text{resp. } y_i = y_{i-2} - q_{i-1} \cdot y_{i-1})$$

par la relation

$$x_i = (-1)^i \cdot x_i'$$
 (resp. $y_i = (-1)^{i+1} \cdot y_i'$).

Algorithme d'Euclide étendu (simplification)

Manier les suites x'_i et y'_i est plus confortable \rightarrow pas d'erreur de signe (ou utilisation d'*unsigned int*).

En pratique, on peut donc utiliser les suites x'_i et y'_i et on fera le changement de signe adéquat à la fin.

En particulier,

$$pgcd(r_0, r_1) = r_n = r_0 \cdot (-1)^n \cdot x'_n + r_1 \cdot (-1)^{n+1} \cdot y'_n$$

Remarque : Le principe de la preuve consiste à montrer que $a \cdot (-1)^i \cdot x_i' + b \cdot (-1)^{i+1} \cdot y_i' = r_i$ pour tout i.

55/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Algorithme d'Euclide étendu bis : Calcul des coefficients de Bezout.

Algorithme 7: Algorithme d'Euclide Etendu bis

Données : $a, b \in \mathbb{Z}$ non-nuls simultanément.

Résultat : pgcd(a, b) et $x, y \in \mathbb{Z}$ tels que ax + by = pgcd(a, b)

 $r_0 = |a|, r_1 = |b|, x_0 = 1, x_1 = 0, y_0 = 0, y_1 = 1, k = 1.$

tant que $r_k \neq 0$ faire

 r_{k+1} := reste de la division de r_{k-1} par r_k ;

 $q_k :=$ quotient de la division de r_{k-1} par r_k ;

$$x_{k+1}=q_k\cdot x_k+x_{k-1};$$

$$y_{k+1}=q_k\cdot y_k+y_{k-1};$$

$$k = k + 1$$

fin

retourner
$$pgcd(x, y) = r_{k-1}, x = (-1)^{k-1} x_{k-1}, y = (-1)^k y_{k-1}.$$

Algorithme d'Euclide étendu bis (exemple)

• Exemple : a = 126 et b = 35.

	k	0	1	2	3	4	5
Ī	r_k	126	35	21	14	7	0
	q_k	-	3	1	1	2	-
	X_k	1	0	1	1	2	-
	Уk	0	1	3	4	7	-

On a donc que le pgcd(126, 35) = 7,

$$x = (-1)^{5-1} \cdot 2 = 2$$
 et $y = (-1)^5 \cdot 7 = -7$.

Par conséquent, $126 \cdot 2 - 7 \cdot 35 = 7$

 4□ → 4□ → 4 □ → 4 □ → 4 □ → 4 □ → 4 □ → 4 □ → 4 □ → 57/58

Calcul dans un monoïde Calcul par tabulation dans les corps finis Calcul de pgcd et des coefficients de Bezout Calcul du pgcd : Algorithme d'Euclide Coefficients de Bezout et Algorithme d'Euclide étendu Algorithme d'Euclide étendu : Variante et généralisation

Algorithme Euclide étendu

- La complexité de l'algorithme d'Euclide étendu est
 O(m · n) opérations sur les mots (exemple 32 bits), où m et n sont les tailles (en bits) de a et b respectivement.
- Il existe de nombreuses variantes de l'algorithme d'Euclide étendu (binaire, Lehmer, demi-pgcd etc). Certains de ces algorithmes sont plus efficaces que l'algorithme d'Euclide étendu.
- Beaucoup de ces algorithmes se généralisent aux domaines Euclidien généraux. En particulier, il existe pour chacun de ces algorithmes un version pour les anneaux des polynômes à coefficients dans un corps.