Independence:

Let (X, Y) be a two dimensional continuous random variable with joint density $f_{XY}(x, y)$ and marginal density f_X and f_Y , respectively. X and Y are independent if and only if

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$
, for all x and y

Practice Example: The joint density for (X, Y) is $f_{XY}(x, y) = c$, $8.5 \le x \le 10.5, 120 \le y \le 240$. Are X and Y independent?

We already learned that the joint density function is $f_{XY}(x,y) = \frac{1}{240}$ The marginal density functions can be calculated as:

$$f_X(x) = \int_{120}^{240} \frac{1}{240} dy = \frac{1}{2}, 8.5 \le x \le 10.5$$

$$f_Y(y) = \int_{8.5}^{120} \frac{1}{240} dx = \frac{1}{120}, 120 \le y \le 240$$

It is true that, $f_{XY}(x, y) = f_X(x)f_Y(y)$, for all x and y Therefore, X and Y are independent.

Independence:

Let (X, Y) be a two dimensional continuous random variable with joint density $f_{XY}(x, y)$ and marginal density f_X and f_Y , respectively. X and Y are independent if and only if

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$
, for all x and y

Practice Example: Are (X, Y) with the following joint density independent?

- (1) Answer the question by inspecting the joint probability table
- (2) Answer the question by checking against the independence condition

X\Y	0	1	2	3
0	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

From the table, it is easy to find out that:

$$f_X(0) = 0.90; f_Y(0) = 0.91; f_{XY}(0,0) = 0.84$$

 $f_{XY}(0,0) \neq f_X(0) \times f_Y(0)$

Hence, they are not independent!

Expected Value:

Let (X,Y) be a two dimensional continuous random variable with joint density $f_{XY}(x,y)$. Let H(X,Y) be a random variable. The expected value of H(X,Y) is given by:

Discrete case:
$$E[H(X,Y)] = \sum_{all\ x} \sum_{all\ y} H(x,y) f_{XY}(x,y)$$
; $E[XY] = \sum_{all\ x} \sum_{all\ y} xy f_{XY}(x,y)$
Continuous case: $E[H(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(x,y) f_{XY}(x,y) dy dx$; $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x,y) dy dx$

Practice: Evaluate Univariate expectation via the joint density. I.e., Find E[H(X,Y)], when H(X,Y) = X; H(X,Y) = Y

Actually,

$$E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{XY}(x, y) dy dx = \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{XY}(x, y) dy dx = \int_{-\infty}^{\infty} x f_{X}(x) dx$$

$$E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{XY}(x, y) dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{XY}(x, y) dx dy = \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = \int_{-\infty}^{\infty} y f_{Y}(y) dy$$

Switched the order of integration

Expected Value:

Let (X,Y) be a two dimensional continuous random variable with joint density $f_{XY}(x,y)$. Let H(X,Y) be a random variable. The expected value of H(X,Y) is given by:

Discrete case:
$$E[H(X,Y)] = \sum_{all\ x} \sum_{all\ y} H(x,y) f_{XY}(x,y)$$
; $E[XY] = \sum_{all\ x} \sum_{all\ y} xy f_{XY}(x,y)$
Continuous case: $E[H(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(x,y) f_{XY}(x,y) dy dx$; $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x,y) dy dx$

Practice Example: The joint density for (X, Y) is $f_{XY}(x, y) = \frac{1}{240}$, $8.5 \le x \le 10.5$, $120 \le y \le 240$. Find E[XY], E[X], and E[Y]

$$E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{XY}(x, y) dy dx = \int_{-\infty}^{10.5} \int_{-\infty}^{240} \frac{x}{240} dy dx = \int_{-\infty}^{10.5} \frac{x}{2} dx = 9.5$$

$$E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{-\infty} y f_{XY}(x, y) dx dy = \int_{-\infty}^{120} \int_{-\infty}^{8.5} \frac{y}{240} dx dy = \int_{-\infty}^{120} \frac{y}{120} dy = 180$$

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{XY}(x, y) dy dx = \int_{-\infty}^{120} \int_{-\infty}^{8.5} \frac{x y}{240} dx dy = \int_{-\infty}^{120} \frac{19y}{240} dy = 1710$$

Expected Value:

Let (X, Y) be a two dimensional continuous random variable with joint density $f_{XY}(x, y)$. Let H(X, Y) be a random variable. The expected value of H(X, Y) is given by:

Discrete case: $E[H(X,Y)] = \sum_{all\ x} \sum_{all\ y} H(x,y) f_{XY}(x,y)$; $E[XY] = \sum_{all\ x} \sum_{all\ y} xy f_{XY}(x,y)$ Continuous case: $E[H(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(x,y) f_{XY}(x,y) dy dx$; $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x,y) dy dx$

Practice Example: Evaluate E[X + Y] show that E[X + Y] = E[X] + E[Y]

$$E[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) f_{XY}(x,y) dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{XY}(x,y) dy dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{XY}(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} x f_{X}(x) dx + \int_{-\infty}^{\infty} y f_{Y}(y) dy = E[X] + E[Y]$$
Switched the order of integration

Covariance:

Let X and Y be random variables with means μ_X and μ_Y respectively. The covariance between X and Y, denoted by Cov(X,Y) or σ_{XY} is given by:

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

Can this quantity represent some kind of correlation between *X* and *Y*?

Prove that Cov(X,Y) = E[XY] - E[X]E[Y]

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= E[XY - \mu_Y X - \mu_X Y + \mu_X \mu_Y]$$

$$= E[XY] - \mu_Y E[X] - \mu_X E[Y] + \mu_X \mu_Y$$

$$= E[XY] - E[Y]E[X] - E[X]E[Y] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y]$$

Evaluate Cov(X, Y) when X = Y.

Can Cov(X,Y) < 0?

Prove that Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). We already learned that When X and Y are independent, Var(X + Y) = Var(X) + Var(Y)

Proof:

$$Var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] + 2E[XY] + E[Y^{2}] - (E[X])^{2} - 2E[X]E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2} + 2E[XY] - 2E[X]E[Y]$$

$$= Var(X) + Var(Y) + 2Cov(X, Y)$$

Theorem: Let (X,Y) be a two dimensional continuous random variable with joint density $f_{XY}(x,y)$. If X and Y are independent then E[XY] = E[X]E[Y]

Proof:

It is know that if X and Y are independent, we have $f_{XY}(x,y) = f_X(x)f_Y(y)$ Then,

$$E[XY] = \iint_{-\infty}^{\infty} xy f_{XY}(x, y) dy dx = \iint_{-\infty}^{\infty} xy f_X(x) f_Y(y) dy dx$$

=
$$\int_{-\infty}^{\infty} x f_X(x) \int_{-\infty}^{\infty} y f_Y(y) dy dx = \int_{-\infty}^{\infty} x f_X(x) E[Y] dx = E[Y] \int_{-\infty}^{\infty} x f_X(x) dx = E[Y] E[X]$$

Theorem: Let (X,Y) be a two dimensional continuous random variable with joint density $f_{XY}(x,y)$. If X and Y are independent then E[XY] = E[X]E[Y]

From this theorem, we have

 $X \text{ and } Y \text{ are independent } \Rightarrow Cov(X,Y) = 0$

But, $Cov(X,Y) = 0 \Rightarrow X \text{ and } Y \text{ are independent } !!!$

Here is an example:

Let $X{\sim}N(0,1).$ We have, $m_X(t)=e^{\frac{t^2}{2}}$ Then,

$$E[X] = \frac{d}{dt} m_X(t)_{t=0} = t e^{\frac{t^2}{2}} \Big|_{t=0} = 0; E[X^2] = \frac{d^2}{dt^2} m_X(t)_{t=0} = \left[t^2 e^{\frac{t^2}{2}} + e^{\frac{t^2}{2}} \right]_{t=0} = 1;$$

$$E[X^3] = \frac{d^3}{dt^3} m_X(t)_{t=0} = \left[t^3 e^{\frac{t^2}{2}} + 3t e^{\frac{t^2}{2}} \right]_{t=0} = 0$$

Let $Y = X^2$. X and Y are related. But,

$$Cov(X,Y) = E[XY] - E[X]E[Y] = E[X^3] - E[X]E[X^2] = 0$$

Covariance:

Let X and Y be random variables with means μ_X and μ_Y respectively. The covariance between X and Y, denoted by Cov(X,Y) or σ_{XY} is given by $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - E[X]E[Y]$

Practice Example: Find $Cov(X_1, Y_1)$ and $Cov(X_2, Y_2)$. Can you tell the correlation of X and Y before the calculation?

X1\Y1	0	1	2
0	0.40	0.006	0.004
1	0.006	0.30	0.004
2	0.004	0.006	0.27

X2\Y2	0	1	2
0	0.1	0.1	0.1
1	0.13	0.13	0.14
2	0.1	0.1	0.1

$$E[X_1Y_1] = 1.4$$

 $E[X_1] = 0.87$
 $E[Y_1] = 0.868$
 $Cov(X_1, Y_1) = 0.645$

$$E[X_2Y_2] = 1.01$$

 $E[X_2] = 1.0$
 $E[Y_2] = 1.01$
 $Cov(X_2, Y_2) = 0$