

Boundary and Excitation Training February 2003

Boundary Conditions

- Why are They Critical?
 - For most practical problems, the solution to Maxwell's equations requires a rigorous matrix approach such as the Finite Element Method (FEM) which is used by Ansoft HFSS.
 - The wave equation solved by Ansoft HFSS is derived from the differential form of Maxwell's equations.

- single-valued,
- bounded, and have a
- continuous distribution (along with their derivatives)
- Along boundaries of media or at sources,
 - Field vectors are discontinuous
 - Derivatives of the field vectors have no meaning

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times H = J + \frac{\partial D}{\partial t}$$

$$\nabla \cdot D = \mathbf{r}$$

$$\nabla \cdot B = 0$$

Boundary Conditions define the field behavior across discontinuous boundaries

- Why do I Care?
 - They Force the fields to align with the definition of the boundary condition
 - As a user I should be asking
 - What assumptions, about the fields, do the boundary conditions make?
 - Are these assumptions appropriate for the structure being simulated?
 - Model Scope/Complexity
 - The infinite space of the real world needs to be made finite
 - Ansoft HFSS Background or Outer boundary
 - When applied properly, they can be used to reduce the complexity
 - Solution Time
 - Computer Resources

Failure to understand boundary conditions may lead to inconsistent results

Boundary Conditions

- Application of Boundary Conditions Case 1
 - Emulate laboratory measurements
 - Verification/Validation before production

Picture courtesy of Delphi

Picture courtesy of Tektronix

- Application of Boundary Conditions Case 2
 - Isolate part of a structure (i.e. Exciting arbitrary transmission lines)
 - Not physically possible to measure in the laboratory
 - Full-Wave analysis not required for total system
 - Or total system too complex
 - Design work/Component level optimization
 - Post production problem solving

Total System

What are Common Ansoft HFSS Boundary Conditions?

- Sources
 - Wave Ports (External)
 - Lumped Ports (Internal)
- Surface Approximations
 - Symmetry Planes
 - Perfect Electric or Magnetic Surfaces
 - Radiation Surfaces
 - Background or Outer Surface
- Material Properties
 - Boundary between two dielectrics
 - Finite Conductivity of a conductor

Largely the users responsibility

Transparent to the user

LAYER 2 (SIGNAL)

LAYER 3 (BOTTOM SIDE)

Material Properties

- All 3D (Solid) objects have material definitions
 - ▲ To complete the model shown previously we must include the air that surrounds the structure.

- Remember! Material Boundary conditions are transparent to the user
 - They are not visible in the Project Tree
 - ▲ Example Material Boundary: Conductors ⇒ Surface Approximations
 - ♠ Perfect Conductors ⇒ Perfect E Boundary (Boundary Name: smetal)
 - Forces E-Field perpendicular to surface
 - **▲** Lossy Conductors ⇒ Finite Conductivity Boundary
 - Forces tangential E-Field to $((1+j)/(\delta\sigma))(n \times H_{tan})$.
 - Assumes one skin depth User must manually force Ansoft HFSS to solve inside lossy conductors that are = a skin depth

Surface Approximations

- Background or Outer Boundary
 - Not visible in the Project Tree
 - Any object surface that touches it ⇒ Perfect E Boundary
 - Default boundary applied to the region surrounding the geometric model

Model is encased in a thin metal layer that no fields propagate through

Excitations

- Ports are a unique type of boundary condition
 - Allow energy to flow into and out of a structure.
 - Defined on 2D surface
 - Arbitrary port solver calculates the natural field patterns or modes
 - Assumes semi-infinitely long waveguide
 - Same cross-section and material properties as port surface
 - ▲ 2D field patterns serve as boundary conditions for the full 3D problem

Excitation Types

- Maye Port External
 - Recommended only for surfaces exposed to the background
 - Supports multiple modes (Example: Coupled Lines) and deembedding
 - Compute Generalized S-Parameters
 - Frequency dependent Characteristic Impedance (Zo)
 - Perfectly matched at every frequency
- Lumped Port Internal
 - Recommended only for surfaces internal to geometric model
 - Single mode (TEM) and no deembedding
 - Normalized to a constant user defined 7o

Excitation Types - Boundary Conditions

- Wave Port
 - Perfect E or Finite Conductivity
 - ▲ Default: All outer edges are Perfect E boundary.
 - Port is defined within a waveguide.
 - Easy for enclosed transmission lines: Coax or Waveguide
 - Challenging for unbalanced or non-enclosed lines: Microstrip, CPW, Slotline, etc.
 - Symmetry or Impedance
 - Recognized at the port edges
 - Radiation
 - ▲ Default interface is a Perfect E boundary
- Lumped Port
 - Perfect E or Finite Conductivity
 - Any port edge that interfaces with a conductor or another port edge
 - Perfect H
 - All remaining port edges

Excitation Types - Calibration

- Ports must be calibrated to ensure consistent results. Determines:
 - Direction and polarity of fields
 - Voltage calculations.

Solution Type: Driven Modal

- Expressed in terms of the incident and reflected powers of the waveguide modes.
 - Definition not desirable for problems having several propagating quasi-TEM modes
 - Coupled/Multi-Coupled Transmission Lines
- Always used by the solver
- Calibration: Integration Line
 - Phase between Ports
 - Modal voltage integration path: Zpi, Zpv, Zvi

Solution Type: Driven Terminal

- Linear combination of nodal voltages and currents for the Wave Port.
 - Equivalent transformation performed from Modal Solution
- Calibration: Terminal Line
 - Polarity
 - Nodal voltage integration path

Example Solution Types:

What Port Type Should I Use?

- Example is easy decision
 - Port touches background (External)
 - Cross Section is Coax (Enclosed Transmission Line)
- Wave Port
 - Solution Type: Driven Terminal
 - ▲ SPICE Output

Is it Really that Simple?

- Yes, but the geometric model was setup with several considerations
 - 1. Only the face of the coax dielectric was selected for the port face
 - Port Boundary conditions define outer conductor
 - Material Definitions define inner conductor

2. Uniform port cross-section

- Only supports a single mode
- Higher-order modes caused by reflections would attenuate before port
 - Modes attenuate as a function of $e^{-\alpha z}$, assuming propagation in the z-direction.
 - Required distance (uniform port length) depends on modes propagation constant.

- How often is the Setup that Simple?
 - ▲ If you are emulating laboratory measurements? [Case 1]
 - Most of the time!
 - Laboratory equipment does not direct connect to arbitrary transmission lines
 - Exceptions
 - ▲ Emulating Complex Probes with a Port ⇒ Understanding of Probe
 - If you are isolating part of a structure? [Case 2]
 - For "real" designs usually only by dumb luck!
 - User Must Understand and/or Implement Correctly:
 - 1. Port Boundary conditions and impact of boundary condition
 - 2. Fields within the structure
 - Assumptions made by port solver
 - 4. Return path

- Side Note: Problems Associated with Correlating Results [Case 2]
 - Can be broken into two categories of problems
 - Complex Structure
 - BGA, Backplane, Antenna Feed, Waveguide "Plumbing", etc.
 - Most common problems result from
 - Measurement setup Test fixtures, deembedding, etc.
 - ▲ Failing to understand the fields in the structure ⇒ Boundary Problem
 - Return path problems Model truncation

2. Simple Structures

- Uniform transmission lines
 - Equations or Circuit Elements
- Most common problems result from
 - Improper use of default or excitation boundary conditions
 - Failure to understand the assumptions used by "correct" results (Equations or Circuit Elements)

Why are they critical?

- Any current injected into a system must return to the source
 - M DC
 - Chooses path of least resistance
 - ▲ AC
 - Chooses path of least inductance
 - A signal propagates between the signal trace and its reference plane
 - Reference plane is just as important as signal trace!

Why do I care?

- Many real designs have nonideal return paths
 - Effects only captured by full-wave simulators
- Isolating parts of a structure
 - Failure to maintain the correct return path will
 - Limit correlation to measurements
 - Mask or create design problems
 - Port and Boundary setup most common source of error in model setup

Return Path Example

Return Path Example

Return Path Example

Isolate part of structure - Case 2

Isolate Transition Deembed Recombine using Ansoft Designer - Circuit **Wave Port**

Ansoft Designer - Circuit

- What went wrong?
 - Isolate Port from Discontinuity?
 - Yes
 - Uniform Cross-Section?
 - NO The cross section of the port (including its boundaries) is not maintained
 - Maintain Return Path?
 - NO Boundary on port shorts the planes together at edges
 - Identical to placing vias at port edge!
 - All Modes Accounted for?
 - NO Did not consider Parallel Plate mode
 - ▲ Even if we did, the via (port edge) cuts off mode ⇒ Reason vias are used!

Understand Boundary Conditions!

