EVALUIERUNG VON METHODEN ZUR BESTIMMUNG DER VENTILATORISCHEN SCHWELLEN IN DER SPIROERGOMETRIE

Bachelorthesis

Julian-Marvin Lütten Fachschule Lübeck, B.Sc. Biomedizintechnik

Angefertigt bei der cardioscan GmbH

Inhalt

Einleitung

Methoden

Wissenschaftlicher Kontext

- Die cardioscan GmbH bietet Kunden Leistungsdiagnostik-Systeme zum Definieren von Trainingsbereichen
- Verfahren: nicht-invasive Spiroergometrie (aus lat. spirare: atmen, griech. ergo: Arbeit)
- 14,4 % Anstieg von Gesamtanzahl an Fitnessstudio-Mitgliedern zwischen 2014 und 2017 (44 % aller Betreiber im Sektor Gesundheits und Prävention)
- zukünftiges Setup: cardioscan Checkpoint Software (CCPS) + metabolicscan
 Spiroergometer + Fahrradergometer
- aktueller Auswertungsalgorithmus: RQ = 1 → anfällig für Fehler
- verbesserter Algorithmus f
 ür die CCPS notwendig

Physiologische Grundlagen: Atmung

- Trainingszonendefinition anhand zweier von Prof. Karlman Wasserman geprägter Schwellen
- "Schwellen" basieren auf physiologischer Reaktion des Körpers auf erhöhte Belastung
- Ausgangspunkt: Atmung bzw. Gastransfer
- $RQ = rac{\dot{V}CO_2}{\dot{V}O_2}$ als zentraler Parameter der Atemfunktion
- RQ ist abhängig von Energiegewinnung und Stoffwechsellage Fettstoffwechsel in Ruhe: RQ = 0,7 Kohlenhydratstoffwechsel bei Aktivität: RQ ≥ 1
- RQ ist jedoch auch akut abhängig von Ernährung → problematisch

Physiologische Grundlagen: Energiebereitstellung

- Bewegung des K\u00f6rpers wird durch mechanische Kontraktionen der Skelettmuskulatur bedingt
- aufgeteilt in primäre und sekundäre Energiegewinnung
- Primär: hydrolytische ATP-Spaltung als Energiequelle
- ATP-Muskelanteil reicht für ca. 1-2 s körperliche Arbeit
- ATP-Resynthese durch CrP: CrP-Muskelanteil reicht für ca. 5-6 s
- CrP-Konzentration für andauernde Belastung zu niedrig

- Sekundär: aerobe und anaerob-laktazide Glykolyse
- Glukose wird enzymatisch zu Pyruvat verarbeitet
- genug O₂: direkte ATP-Resynthese durch Citratzyklus
- zunehmende Belastung → O₂ wird verbraucht: Reduktion des Pyruvats zu Milchsäure (HLa)

5/22

Physiologische Grundlagen: Laktatproduktion

- $Glukose \rightarrow 2HLa \rightarrow 2H^{+} + 2La^{-}$
- steigende Belastung → andauernde La⁻- und H⁺-Produktion → metabolische Azidose
- Kompensation der Azidose: Bicarbonat-Puffersystem
- Bicarbonat (HCO₃⁻) bindet H⁺ zu instabiler Kohlensäure, die direkt zu CO₂ und H₂O zerfällt
- anfallendes CO₂ muss über die Lunge eliminiert werden → messbarer Anstieg von exspiriertem CO₂
- Grundlage f
 ür ventilatorisches Schwellenkonzept

Spiroergometrie: Ventilatorische Schwellen

- "Schwellen" = physiologisch bedingte Übergangsbereiche
- Ur-Begriff: Aerobe und anaerobe Schwelle (nach K. Wasserman, 1973)
- Heute: einheitliche Nomenklatur: 1. und 2. Ventilatorische Schwelle
- angegeben entweder in Form der Leistung (W) in W oder Herzfrequenz (HF) in s
- Pathophysiologische Indikatoren:

VT1

- Steigerung der Ventilation (VE)
- Zunahme der VCO₂ gegenüber der VO₂

VT2

- Laktatexzess
- Metabolische Azidose
- überproportionale
 Ventilationszunahme

Spiroergometrie: 9-Felder-Grafik

Beispiel einer 9-Felder-Grafik nach einer Spiroergometrie mit einer jungen sportlichen Frau

Spiroergometrie: 9-Felder-Grafik

- grafisches Instrument der Spiroergometrie zum Vergleich vieler unterschiedlicher Messwerte
- Nummerierung von oben links nach unten rechts von eins bis neun
- kann je nach diagnostischem Schwerpunkt sehr komplex werden
- in der Sportmedizin sind nur bestimmte Felder relevant: Fokus auf Feld 4, 5, 6 und 9 (Scharhag-Rosenberger, 2013)
- Grafik muss auf Darstellung der ventilatorischen Schwellen reduziert werden
- mehrere existente Methoden zur Schwellenbestimmung

Spiroergometrie: Methoden zur Schwellenbestimmung

- wissenschaftlich renommierteste Methoden wurden von AG Spiroergometrie zusammengefasst (Westhoff et al., 2012)
- zwei Methoden für jede Schwelle werden in dieser Arbeit untersucht

VT1

- V-Slope: erster überproportionaler Anstieg der VCO₂ gegenüber der VO₂
- alleiniger Anstieg des Sauerstoff-Äquivalents EQO₂

VT2

- überproportionaler Anstieg der VE gegenüber der VCO₂
- Anstieg des Kohlenstoffdioxid-Äquivalents EQCO₂

10/22

Spiroergometrie: Bestimmung der VT1

Schematische Darstellung der V-Slope-Methode

Schematische Darstellung des EQO₂

Spiroergometrie: Bestimmung der VT1

V-Slope

- grafischer Vergleich der VCO₂ und VO₂
- Identifizierung charakteristischer Knickpunkte in der Steigung (engl: slope)

EQO₂

- grafischer Vergleich des Verhältnisses aus VE und VO₂ zur Zeit in min oder Leistung in W
- Tiefpunkt der EQO₂-Kurve = POW (Hollmann, 1958) = VT1

Spiroergometrie: Bestimmung der VT2

Schematische Darstellung des ${\sf EQCO}_2$

Schematische Darstellung von $\dot{V}E/\dot{V}CO_2$

Spiroergometrie: Bestimmung der VT2

EQCO₂

- grafischer Vergleich des Verhältnisses aus VE und VCO₂ zur Zeit in min oder Leistung in W
- charakteristische "Badewannenform"
- Anstieg der Kurve = VT2

VE/VCO₂

- grafischer Vergleich der VE und VCO₂, Analogie zum V-Slope
- überproportionale Steigungszunahme = VT2

Fazit zur Problemstellung

- RQ = 1 ist als Methode in Studien umstritten
- RQ = 1 ist beeinflussbar (z.B. durch Ernährung)
- RQ = 1 wird unzureichend bei muskulärer Erschöpfung
- CCPS muss mit einem neuen und besseren Algorithmus optimiert werden
- vier alternative Methoden zur Bestimmung der VT1 und VT2 sind zu untersuchen

1. Einleitung Ziele der Arbeit

Forschungsfragen

- 1. Eignet sich der metabolicscan zur Durchführung der Spiroergometrie?
- 2. Mit welcher Methode können die Schwellen optimal bestimmt werden?
- 3. Ist eine genauere Bestimmung der VT2 mit den neuen Methoden möglich?

Testprojekt

- spiroergometrische Testmessungen mit 28 internen und externen Probanden
- Personen zwischen 18 und 60 Jahren
- Sportler und Nicht-Sportler
- Raucher sowie Nichtraucher
- Messwerterfassung zur grafischen Auswertung mittels ausgewählter Methoden zur Schwellenbestimmung

Material & Testaufbau

- Laptop mit CCPS + angebundenes Ergometer der Firma Emotion Fitness
- zur vorangehenden Abklärung der kardialen Gesundheit: cardioscan cs-3 effect für Ruhe-EKG
- kalibriertes Modell des metabolicscan
- für jeden Probanden ein unbenutzter antibakterieller Polypropylen-Filter + flexibles Elastomer-Mundstück

18/22

Funktionsweise des metabolicscan

- Modularer Aufbau: Atemmodul + Analysemodul
- Atemmodul enthält einen Flowsensor
- Messung der Strömungsgeschwindigkeit der Inspirations- und Exspirationsluft
- Berechnung des Strömungsvolumens durch mathematische Integration über die Zeit
- Analysemodul enthält CO₂/O₂-Sensormodul
- Pumpe saugt Luftanteil durch Probenschlauch zur Analyseeinheit
- CO₂-Messung durch Infratotlichtabsorption
- Weiterleitung zum galvanischen O₂-Sensor

Aufbau des metabolicscan

metabolicscan: Analyseeinheit (rechts), Atemmodul (oben links), Filter (unten links) und Mundstück (blau)

Messbedingungen

- alle Messungen im selben Raum
- Raumtemperatur zwischen 18 °C und 22 °C
- vor jeder Messung Belüftung des Raumes zur Minimierung des CO₂-Anteils der Luft
- Ausschlusskriterien: akute fiebrige Infekte, Herz-Kreislauf-Erkrankungen, chronische Atemwegserkrankungen und Schwangerschaft
- keine anstrengenden Sporteinheiten am Vortag
- zwei Stunden vor der Messung keine Mahlzeiten/kein Koffein mehr
- gleichbleibende Trittfrequenz während der Messung

Vorbereitung einer Messung

- Risikoabklärung + Anamnesebericht
- Ermittelung von K\u00f6rpergewicht und K\u00f6rpergr\u00f6\u00dfe
- Abklärung des Trainings- und Gesundheitszustandes
- zweiminütiger Herz-Stress-Test mit cardioscan
- Anlegen des Pulsgurtes zur HF-Überwachung während der Messung
- Justierung des Ergometer-Sattels
- Berechnung der maximalen Soll-Leistung in W mittels zweier Formeln (Jones und SHIP)
- Bestimmung des individuellen Belastungsprotokolls nach WHO- oder BAL-Schema (abhängig vom Trainingszustand)

Abbruchkriterien

- fallende HF trotz zunehmender Belastung
- allgemeine Herzbeschwerden, Engegefühl in der Brust
- Atemnot
- auffällige Blässe
- akute Kopfschmerzen
- Schwindel oder Sehstörungen
- starke subjektive Erschöpfung
- Beinschwäche oder Muskelkrämpfe
- andauernder Abfall der Trittfrequenz

