Metody probabilistyczne Rozwiązania zadań

3. Prawdopodobieństwo warunkowe

10.10.2017

Zadanie 1. Pokaż, że P(A|B) jako funkcja A przy ustalonym B spełnia aksjomaty Kołmogorowa.

Odpowiedź: Korzystamy z definicji: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ dla P(B) > 0.

- 1. Nieujemność $P(A|B) \ge 0$: wynika wprost z definicji.
- 2. Normalizacja $P(\Omega|B) = 1$:

$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

3. Addytywność: mając ciąg A_1,A_2,\ldots zdarzeń rozłącznych, tj. takich, że $A_i\cap A_j=\emptyset$, musimy pokazać, że $P\left(\bigcup_{j=1}^\infty A_j \mid B\right) = \sum_{j=1}^\infty P(A_j \mid B)$. Mamy:

$$P\Big(\bigcup_{j=1}^{\infty} A_j \mid B\Big) = \frac{P\Big(\big(\bigcup_{j=1}^{\infty} A_j\big) \cap B\Big)}{P(B)} = \frac{P\Big(\bigcup_{j=1}^{\infty} (A_j \cap B)\Big)}{P(B)} \stackrel{(*)}{=} \sum_{j=1}^{\infty} \frac{P(A_j \cap B)}{P(B)} = \sum_{j=1}^{\infty} P(A_j) \mid B\Big),$$

gdzie w (*) wykorzystaliśmy fakt, że skoro zbiory A_j $(j=1,2,\ldots)$ są rozłączne, to tym bardziej są rozłączne zbiory $A_j\cap B$ $(j=1,2,\ldots)$.

Zadanie 2. Rzucamy kostką, jeśli wypadnie jedno oczko to rzucamy ponownie i dodajemy wyniki. Jaka jest szansa, że (sumarycznie) wyrzucimy wartość powyżej 4?

Odpowiedź: Niech zdarzenie A_1 oznacza "wypadło jedno oczko", A_2 – "wypadło więcej niż jedno oczko", a B – "wypadło sumarycznie powyżej 4".

Mamy $P(B|A_1) = \frac{1}{2}$, bo skoro na pierwszej kostce wypadło 1, na drugiej kostce musi wypaść 4,5 lub 6 oczek, żeby suma była większa niż 4. Jeśli zajdzie zdarzenie A_2 , nie rzucamy już drugą kostką, więc aby zaszło zdarzenie B, sumaryczny wynik (czyli po prostu liczba oczek na pierwszej, i jedynej, kostce) musi być równy 5 lub 6. Tym samym:

$$P(B|A_2) = \frac{P(B \cap A_2)}{P(A_2)} = \frac{1/3}{5/6} = \frac{2}{5}.$$

Z twierdzenia na prawdopodobieństwo całkowite:

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) = \frac{1}{6} \cdot \frac{1}{2} + \frac{5}{6} \cdot \frac{2}{5} = \frac{5}{12}.$$