Lecture Notes for

Neural Networks and Machine Learning

Semi-supervised Loss Incorporation

Logistics and Agenda

- Logistics
 - Lab one due soon!!
- Agenda
 - Consistency Loss
 - Temporal Output Discrepancy
 - Student Paper Presentation
- Next Time
 - Multi-modal and Multi-Task
 - Multi-task demo and Town Hall
 - Finish Demos

Last Time

$$\begin{split} \min_{\mathbf{w}} \frac{\text{cross entropy}}{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(\mathbf{y} \mid \mathbf{x})] + \lambda} & \text{consistency in augmentation} \\ \mathcal{D}_{\mathit{KL}}\left(p_{\mathbf{w}}(\mathbf{y} \mid \hat{\mathbf{x}}) \mid \mid p_{\mathbf{w}}(\mathbf{y} \mid \hat{\mathbf{x}})\right) \\ \mathcal{D}_{\mathit{KL}}(f \mid \mid g) &= -\sum f(\mathbf{x}) \cdot \log \frac{g(\mathbf{x})}{f(\mathbf{x})} \text{ definition of Kullback-Leibler KLI Divergence} \\ \mathcal{D}_{\mathit{KL}}(p(\mathbf{y} \mid \mathbf{x}) \mid \mid p(\mathbf{y} \mid \hat{\mathbf{x}})) &= -\sum p(\mathbf{y} \mid \mathbf{x}) \cdot \log \frac{p(\mathbf{y} \mid \hat{\mathbf{x}})}{p(\mathbf{y} \mid \mathbf{x})} = -\sum p(\mathbf{y} \mid \mathbf{x}) \cdot (\log p(\mathbf{y} \mid \hat{\mathbf{x}}) - \log p(\mathbf{y} \mid \mathbf{x})) \\ &= -\sum p(\mathbf{y} \mid \mathbf{x}) \cdot \log p(\mathbf{y} \mid \hat{\mathbf{x}}) + \sum p(\mathbf{y} \mid \mathbf{x}) \cdot \log p(\mathbf{y} \mid \mathbf{x}) \\ &= \mathbf{E}_{\mathbf{x} \in U, \hat{\mathbf{x}} \leftarrow q(\hat{\mathbf{x}} \mid \mathbf{x})} \left[-\log p(\mathbf{y} \mid \hat{\mathbf{x}}) \right] + \mathbf{E}_{\mathbf{x} \in U} \left[\log p(\mathbf{y} \mid \mathbf{x}) \right]_{\text{ignoresolator}} \\ &= \operatorname{cross entropy of unsupervised labels} & \operatorname{entropy of unsupervised labels} \\ &= \operatorname{after augmentation} \end{aligned}$$

59-80 50-20561 - 50-55
±7 (AD96)
(u5 (4056) (u6)4056)
pool5 (3x3,256,2) pool5 (3x3,256,2)
com5 (3x3,236,1) (com5 (3x3,256,1)
com4 (8x2,384,1) com4 (8x2,384,2)
coerd (3x3,364,1) coerd (3x3,364,1)
LTM2 LTM2
gooi2 (3x3,364,2) gooi2 (3x3,364,2)
convi (5-d.,184,2) conv2 (ix5,384,2)
UNE
pool1 (3x1,96,2) pool1 (3x1,94,3)
com/4 (1.1x11,06,4) (senv1 (11x11,06,4)
Fanth 1 Prich 2

Unsupervised Visual Supresentation Learning by Contact Production

Unsupervised Consistency Loss (review)

$$\min_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{w}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\mathbf{no} \text{ back prop}} + \lambda \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y$$

Neural Network approximates $p(y|\mathbf{x})$ by \mathbf{w} Use labeled data to minimize network

Sample new \mathbf{x} from unlabeled pool with function q function q is augmentation procedure Minimize cross entropy of two models

Get accustomed to this notation

Update Model with Back-propagation along these paths

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

$$\min \underbrace{\overline{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}}_{\mathbf{w}} + \lambda \underbrace{\qquad \qquad \qquad \qquad }_{\mathit{KL}} \left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}}) \right)}$$

$$E[g] = \sum p(g) \cdot g$$
 definition of expected value

$$E[-\log p_{\mathbf{w}}(y\,|\,\mathbf{x})] = -\sum p(y) \cdot \log p_{\mathbf{w}}(y\,|\,\mathbf{x}) \quad \text{insert -log probability, log likelihood}$$

$$NLL(y, p_{\mathbf{w}}(y \mid \mathbf{x})) = -\sum_{c} p(y = c) \cdot \log p_{\mathbf{w}}(y = c \mid \mathbf{x})$$
 negative log likelihood

$$CE(f,g) = -\sum f(x) \cdot \log g(x)$$
 cross entropy of two functions

$$CE(y, p_{\mathbf{w}}(y \mid \mathbf{x})) = -\sum_{c} (y = c) \cdot \log p_{\mathbf{w}}(y = c \mid \mathbf{x})$$
 if $y = c$ is a probability, these are same equation

cce = tf.keras.losses.CategoricalCrossentropy()
cce(y_true, y_pred)

$$\min_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x},y \in L}[-\log p_{\mathbf{w}}(y \,|\, \mathbf{x})]}_{\text{Cross entropy}} + \lambda \underbrace{\qquad \qquad \qquad }_{KL} \left(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}}) \right)}_{\text{Cross entropy}}$$

$$\begin{split} \mathcal{D}_{\mathit{KL}}(f \,|\, |\, g) &= -\sum f(\mathbf{x}) \cdot \log \frac{g(\mathbf{x})}{f(\mathbf{x})} \text{ definition of Kullback-Leibler (KL) Divergence} \\ \mathcal{D}_{\mathit{KL}}(p_{\mathbf{w}}(y \,|\, \mathbf{x}) \,|\, |\, p_{\mathbf{w}}(y \,|\, \hat{\mathbf{x}})) \\ \mathcal{D}_{\mathit{KL}}(p(y \,|\, \mathbf{x}) \,|\, |\, p(y \,|\, \hat{\mathbf{x}})) &= -\sum p(y \,|\, \mathbf{x}) \cdot \log \frac{p(y \,|\, \hat{\mathbf{x}})}{p(y \,|\, \mathbf{x})} = -\sum p(y \,|\, \mathbf{x}) \cdot \left(\log p(y \,|\, \hat{\mathbf{x}}) - \log p(y \,|\, \mathbf{x})\right) \\ &= -\sum p(y \,|\, \mathbf{x}) \cdot \log p(y \,|\, \hat{\mathbf{x}}) + \sum p(y \,|\, \mathbf{x}) \cdot \log p(y \,|\, \mathbf{x}) \end{split}$$

 $p(y \mid \mathbf{x}) \approx p(y)$ if **x** is a very large subset of the entire domain and $p_{\mathbf{w}}$ is a good *variational* approximation

So this is
$$= \mathbf{E}_{\mathbf{x} \in U, \hat{\mathbf{x}} \leftarrow q(\hat{\mathbf{x}} | \mathbf{x})} \left[-\log p(y | \hat{\mathbf{x}}) \right] + \mathbf{E}_{\mathbf{x} \in U} \left[\log p(y | \mathbf{x}) \right]_{\text{ignore}}$$

cross entropy of unsupervised labels after augmentation

entropy of unsupervised labels cannot calculate, always > 0

cce = tf.keras.losses.CategoricalCrossentropy()
cce(y_pred, y_pred_augmented)

Aside:

We have just seen two motivations:

intuition of final product

keep labels consistent, any measure would be okay

mathematics with heavy approximation

cross entropy is lower bound for KL divergence, which is a nice measure

Unsupervised Consistency Loss

Augmentation (# Sup examples)	Sup (50k)	Semi-Sup (4k)
Crop & flip	5.36	16.17
Cutout	4.42	6.42
RandAugment	4.23	5.29

Table 1: Error rates on CIFAR-10.

Augmentation (# Sup examples)	Sup (650k)	Semi-sup (2.5k)	
X	38.36	50.80	
Switchout	37.24	43.38	
Back-translation	36.71	41.35	

Table 2: Error rate on Yelp-5.

(a) CIFAR-10

Unsupervised Data Augmentation (UDA) for Consistency Training, Xie et al., Neurlps 2019

(b) SVHN

Unsupervised Consistency Loss

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06

Methods	SSL	10%	100%
ResNet-50 w. RandAugment	×	55.09 / 77.26 58.84 / 80.56	77.28 / 93.73 78.43 / 94.37
UDA (RandAugment)	/	68.78 / 88.80	79.05 / 94.49

Table 5: Top-1 / top-5 accuracy on ImageNet with 10% and 100% of the labeled set. We use image size 224 and 331 for the 10% and 100% experiments respectively.

Other Measures of Consistency: TOD

- Main idea: use unsupervised labels to prevent overfitting
- Temporal Output Discrepancy (TOD) (Huang et al., ICCV21)

Discrepancy

$$\|p_{\mathbf{W}_{t+T}}(y\,|\,\mathbf{\hat{x}}) - p_{\mathbf{W}_t}(y\,|\,\mathbf{\hat{x}})\|$$
 under certain conditions, this is a valid Wasserstein distance

$$\min_{\mathbf{w}} \underbrace{\mathbf{E}_{\mathbf{x}, y \in L}[-\log p_{\mathbf{w}_{t+T}}(y \mid \mathbf{x})]}_{\text{cross entropy}} + \underbrace{\lambda \cdot \mathbf{E}_{\hat{\mathbf{x}} \in U} \left[\left\| p_{\mathbf{W}_{t+T}}(y \mid \hat{\mathbf{x}}) - p_{\mathbf{W}_{t}}(y \mid \hat{\mathbf{x}}) \right\| \right]}_{\text{discrepancy}}$$

Using Temporal Discrepancy

Active Learning with TOD

Paper Presentation: GPT-3

Language Models are Few-Shot Learners

Tom B. Bro	wn* Benjamin	Mann* Nick	Ryder* Me	lanie Subbiah*	
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	Girish Sastry	
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Krueger	Tom Henighan	
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter	
Christopher He	esse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray	
Benjar	min Chess	Chess Jack Clark		Christopher Berner	
Sam McCan	ndlish Alec Ra	idford Bya S	Sutskever 1	Dario Amodei	

OpenAI

80