Rational points on curves and chip firing.

David Zureick-Brown (Emory University) Eric Katz (Waterloo)

Slides available at http://www.mathcs.emory.edu/~dzb/slides/

2014 AMS special session Arithmetic of Algebraic Curves Knoxville, TN

March 22, 2014

Faltings' theorem

Theorem (Faltings)

Let X be a smooth curve over $\mathbb Q$ with genus at least 2. Then $X(\mathbb Q)$ is finite.

Example

For $g \geq 2$, $y^2 = x^{2g+1} + 1$ has only finitely many solutions with $x, y \in \mathbb{Q}$.

Uniformity

Problem

- Given X, compute $X(\mathbb{Q})$ exactly.
- **2** Compute bounds on $\#X(\mathbb{Q})$.

Conjecture (Uniformity)

There exists a constant N(g) such that every smooth curve of genus g over \mathbb{Q} has at most N(g) rational points.

This would follow from standard conjectures (e.g. Lang's conjecture, the higher dimensional analogue of Faltings' theorem).

Coleman's bound

Theorem (Coleman)

Let X be a curve of genus g and let $r=\operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q}).$ Suppose p>2g is a prime of good reduction. Suppose r< g. Then

$$\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + 2g - 2.$$

Remark

- **1** A modified statement holds for $p \leq 2g$ or for $K \neq \mathbb{Q}$.
- 2 Note: this does not prove uniformity (since the first good *p* might be large).

Stoll's bound

Theorem (Stoll)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime of good reduction. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#X(\mathbb{F}_p) + \frac{2r}{r}$$
.

Bad reduction bound

Theorem (Lorenzini-Tucker, McCallum-Poonen)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}}\operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime. Suppose r < g.

Let \mathscr{X} be a regular proper model of X. Then

$$\#X(\mathbb{Q}) \leq \#\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_p) + 2g - 2.$$

Remark

A recent improvement due to Stoll gives a uniform bound if $r \leq g-3$ and X is hyperelliptic.

Main Theorem

Theorem (Katz-ZB)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime. Let \mathscr{X} be a regular proper model of X. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_p) + \frac{2r}{r}$$
.

Example (hyperelliptic curve with cuspidal reduction)

$$-2 \cdot 11 \cdot 19 \cdot 173 \cdot y^2 = (x - 50)(x - 9)(x - 3)(x + 13)(x^3 + 2x^2 + 3x + 4)$$
$$= x(x + 1)(x + 2)(x + 3)(x + 4)^3 \mod 5.$$

Analysis

 \bigcirc $X(\mathbb{Q})$ contains

$$\{\infty, (50,0), (9,0), (3,0), (-13,0), (25,20247920), (25,-20247920)\}$$

- **3** $7 \leq \#X(\mathbb{Q}) \leq \#\mathscr{X}_5^{sm}(\mathbb{F}_5) + 2 \cdot 1 = 7$

This determines $X(\mathbb{Q})$.

Non-example

$$y^2 = x^6 + 5$$
$$= x^6 \mod 5.$$

Analysis

- $\text{ } \mathscr{X}^{\text{sm}}(\mathbb{F}_5) = \{\infty^+, \infty^-, \pm (1, \pm 1), \pm (2, \pm 2^3), \pm (3, \pm 3^3), \pm (4, \pm 4^3)\}$
- **3** $2 \leq \#X(\mathbb{Q}) \leq \#\mathscr{X}_5^{\mathsf{sm}}(\mathbb{F}_5) + 2 \cdot \mathbf{1} = 20$

$$y^2 = x^6 + 5$$
$$= x^6 \mod 5.$$

Note: no point can reduce to (0,0).

$$y^2 = x^6 + 5^2$$
$$= x^6 \mod 5$$

Now: (0,5) reduces to (0,0). Local equation looks like $xy=5^2$

$$y^2 = x^6 + 5^2$$
$$= x^6 \mod 5$$

Blow up. Local equation looks like xy = 5

$$y^2 = x^6 + 5^4$$
$$= x^6 \mod 5$$

Blow up. Local equation looks like $xy = 5^3$

$$y^2 = x^6 + 5^4$$
$$= x^6 \mod 5$$

Blow up. Local equation looks like xy = 5

Main Theorem

Theorem (Katz-ZB)

Let X be a curve of genus g and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_X(\mathbb{Q})$. Suppose p > 2g is a prime. Let \mathscr{X} be a regular proper model of X. Suppose r < g. Then

$$\#X(\mathbb{Q}) \leq \#\mathscr{X}^{\mathsf{sm}}(\mathbb{F}_p) + 2r.$$

Chabauty's method

(*p*-adic integration) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \geq \underline{g} - \underline{r}$ such that,

$$\int_{P}^{Q} \omega = 0$$
 $\forall P, Q \in X(\mathbb{Q}), \omega \in V$

(**Coleman, via Newton Polygons**) Number of zeroes in a residue disc D_P is $\leq 1 + n_P$, where $n_P = \#(\text{div }\omega \cap D_P)$

(Riemann-Roch)
$$\sum n_P = 2g - 2$$
.

(Coleman's bound)
$$\sum_{P \in X(\mathbb{F}_p)} (1 + n_P) = \#X(\mathbb{F}_p) + 2g - 2$$
.

Example (from McCallum-Poonen's survey paper)

Example

$$X: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1$$

1 Points reducing to $\widetilde{Q} = (0,1)$ are given by

$$x = p \cdot t$$
, where $t \in \mathbb{Z}_p$
$$y = \sqrt{x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1} = 1 + x^2 + \cdots$$

Stoll's idea: use multiple ω

(**Coleman, via Newton Polygons**) Number of zeroes of $\int \omega$ in a residue class D_P is $\leq 1 + n_P$, where $n_P = \# (\text{div } \omega \cap D_P)$

Let
$$\widetilde{n_P} = \min_{\omega \in V} \# (\operatorname{div} \omega \cap D_P)$$

(Example) $r \leq g - 2, \ \omega_1, \ \omega_2 \in V$

(Stoll's bound) $\sum \widetilde{n_P} \leq 2r$. (Recall $\dim_{\mathbb{Q}_p} V \geq g - r$)

Stoll's bound; proof.

Let
$$D = \sum \widetilde{n_P} P$$
. Wanted: deg $D \leq 2r$

(Clifford) If
$$H^0(X_{\mathbb{F}_p},K-D')
eq 0$$
 then
$$\dim H^0(X_{\mathbb{F}_p},D') \leq \frac{1}{2}\deg D'+1$$

$$(D'=K-D)$$

$$\frac{1}{2}\deg(K-D)+1 \geq \dim H^0(X_{\mathbb{F}_p},K-D)$$

(Assumption)

$$\dim H^0(X_{\mathbb{F}_n}, K-D) \geq g-r$$

(Recall $\dim_{\mathbb{Q}_p} V \geq g - r$)

Complications when $X_{\mathbb{F}_p}$ is singular

- **1** $\omega \in H^0(X,\Omega)$ may vanish along components of $X_{\mathbb{F}_p}$.
- ② I.e. $H^0(X_{\mathbb{F}_p}, K-D) \neq 0 \not\Rightarrow D$ is special.

Summary

The relationship between dim $H^0(X_{\mathbb{F}_p}, K-D)$ and deg D is less transparent and does not follow from geometric techniques.

Rank of a divisor

Definition (Rank of a divisor is)

- 2 $r(D) \ge 0$ if |D| is nonempty
- (0) $r(D) \ge k$ if |D E| is nonempty for any effective E with deg E = k.

Remark

- If X is smooth, then $r(D) = \dim H^0(X, D) 1$.
- ② If X is has multiple components, then $r(D)
 eq \dim H^0(X,D) 1$.

Remark

Ingredients of Stoll's proof only use formal properties of r(D).

Formal ingredients of Stoll's proof

Need:

(Clifford)
$$r(K-D) \leq \frac{1}{2} \deg(K-D)$$

(Large rank) $r(K-D) \geq g-r-1$

(Recall,
$$V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$$
, $\dim_{\mathbb{Q}_p} V \geq g - r$)

Semistable case

Idea: any section $s \in H^0(X, D)$ can be scaled to not vanish on a component (but may now have zeroes or poles at other components.)

Divisors on graphs:

Semistable case

Idea: any section $s \in H^0(X, D)$ can be scaled to not vanish on a component (but may now have zeroes or poles at other components.)

Divisors on graphs:

Semistable case

Idea: any section $s \in H^0(X, D)$ can be scaled to not vanish on a component (but may now have zeroes or poles at other components.)

Divisors on graphs:

Divisors on graphs

Definition (Rank of a divisor is)

- (0) $r(D) \ge 0$ if |D| is nonempty
- **3** $r(D) \ge k$ if |D E| is nonempty for any effective E with deg E = k.

Remark

 $r(D) \geq 0$

Divisors on graphs

Definition (Rank of a divisor is)

- (0) $r(D) \ge 0$ if |D| is nonempty
- **3** $r(D) \ge k$ if |D E| is nonempty for any effective E with deg E = k.

Remark

 $r(D) \geq 1$

Divisors on graphs

Definition

For $\overline{D} \in \text{Div }\Gamma$, $r_{\text{num}}(\overline{D}) \geq k$ if $|\overline{D} - \overline{E}|$ is non-empty for every effective \overline{E} of degree k.

Theorem (Baker, Norine)

Riemann-Roch for r_{num}.

Clifford's theorem for r_{num} .

Specialization: $r_{num}(\overline{D}) \ge r(D)$.

Formal corollary: $X(\mathbb{Q}) \leq \#X^{\mathrm{sm}}(\mathbb{F}_p) + 2r$ (for X totally degenerate).

General case (not totally degenerate) - abelian rank

Problems when $g(\Gamma) < g(X)$. (E.g. rank can increase after reduction.)

Definition (Abelian rank r_{ab})

After winning winning the chip firing game, we additionally require that the resulting divisor is equivalent to an effective divisor on that component.

Theorem (Katz-ZB)

Clifford's theorem: for r_{ab}

Specialization: $r_{ab}(K - D) \ge g - r$.

Formal corollary: $X(\mathbb{Q}) \leq \#X^{\mathrm{sm}}(\mathbb{F}_p) + 2r$ (for semistable curves.)