Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Fax: +41 43 299 57 25 E-Mail: dsp@stettbacher.ch

Digitaltechnik

Lösungen zu den Übungsaufgaben

Version 2.11 2015-09-01

Zusammenfassung: Dieses Dokument enthält die vollständigen Lösungen zu den Übungsaufgaben im Skript Digitaltechnik - Gatter und kombinatorische Schaltungen.

1 Lösungen zu den Übungsaufgaben

Die Übungsaufgaben aus dem Skript *Digitaltechnik - Gatter und kombinatorische Schaltungen* werden hier beantwortet. Einige Lösungen gehen über die geforderten Antworten hinaus.

1.1 Boolsche Algebra

(a) Wir klammern zuerst R aus dem AND-Term aus, dann erhalten wir die Lösung mit R + R = R. Die Lösung können wir dann anhand der Wahrheitstabelle verifizieren.

$$Q_1 = R + (R+S) \cdot (R+T)$$

$$= R + R + ST$$

$$= R + ST$$

R	S	T	R+S	R+T	(R+S)(R+T)	R+(R+S)(R+T)	ST	R+ST
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	1
1	0	1	1	1	1	1	0	1
1	1	0	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1

(b) Wir wenden zuerst de Morgan an. Dann erhalten wir mit dem Distributivgesetz den Term $(R+\overline{R})$ = 1. Zum Schluss verifizieren wir das Resultat wieder mit Hilfe der Wahrheitstabelle.

$$Q_{2} = R + \overline{R + S}$$

$$= R + \overline{R} \cdot \overline{S}$$

$$= (R + \overline{R}) \cdot (R + \overline{S})$$

$$= 1 \cdot (R + \overline{S})$$

$$= R + \overline{S}$$

R	S	R+S	$\overline{R+T}$	$R + \overline{R + T}$	\overline{S}	$R+\overline{S}$
0	0	0	1	1	1	1
0	1	1	0	0	0	0
1	0	1	0	1	1	1
1	1	1	0	1	0	1

1.2 Wahrheitstabelle

Wir formen zuerst die Aussagen über F_1 und F_2 aus der Aufgabenstellung etwas um. Dann erhalten wir mit Hilfe der neuen, etwas formaleren Aussagen die Wahrheitstabelle:

- F_1 ist wahr, wenn P wahr ist (mind. eine Person ist in der Kabine) und wenn T_{int} wahr ist (mind. eine interne Taste gedrückt).
- F_2 ist wahr, wenn P falsch ist (keine Person in der Kabine) und wenn T_{ext} wahr ist (mind. eine externe Taste gedrückt).

P	Tint	T_{ext}	F_1	F_2
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

1.3 Disjunktive Normalform

Aus der Wahrheitstabelle lesen wir alle Zeilen, in denen Z=1 ist, und verknüpfen sie mit OR. Dies ergibt den folgenden Ausdruck:

$$Z = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

Nun können wir versuchen, den Ausdruck zu vereinfachen:

$$Z = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$
$$= AB\overline{C} + A\overline{B}\overline{C} + ABC + \overline{A}BC$$
$$= A\overline{C}(B + \overline{B}) + BC(A + \overline{A})$$
$$= A\overline{C} + BC$$

Am Ende haben wir die Beziehung $A + \overline{A} = B + \overline{B} = 1$ benützt.

1.4 Karnaugh Tafel

Die Karnaugh Tafel lässt sich direkt aus der Wahrheitstabelle ableiten.

Z	A	A	$ \overline{A} $	\overline{A}
В	1	1		1
\overline{B}		1		
	C	\overline{C}	\overline{C}	C

Zuerst bilden wir eine 2er-Gruppe in der zweiten Spalte. Sie ist gegeben durch $Z_a = A\overline{C}$ und ist unabhängig von B. Nun stellen wir uns die Tafel vertikal aufgerollt vor und bilden eine zweite 2er-Gruppe. Sie umfasst die Einsen oben links und oben rechts, also $Z_b = BC$. Mit den beiden 2er-Gruppen folgt schliesslich:

$$Z = Z_a + Z_b = A\overline{C} + BC$$

1.5 Gatter-Schaltung

Die Schaltung zeichnen wir typischerweise von links nach rechts. Aus den Eingängen A, B und C erzeugen wir zuerst die allenfalls benötigten negierten Signale, hier ist das nur \overline{C} . Mit allen Signalen A, B, C und \overline{C} zeichnet man dann einen vertikalen Bus und erzeugt aus den Bus-Signalen die AND-Terme. Die Ausgänge der AND-Gatter werden mit einem OR zusammen gefasst.

1.6 Subtrahierer

Analog zum Addierer starten wir mit dem Halbsubtrahierer. Die Wahrheitstabelle sieht mit den Eingängen a_0 und b_0 , sowie mit der Differenz d_0 und dem Übertrag c_0 (Borrow, resp. Carry) so aus:

a_0	b_0	d_0	c_0
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Die Bildungsregeln für d_0 und c_0 können wir direkt angeben:

$$d_0 = a_0 \oplus b_0 = \overline{a_0} \cdot b_0 + a_0 \cdot \overline{b_0}$$

$$c_0 = \overline{a_0} \cdot b_0$$

Wir erkennen, dass $d_0 = c_0 + a_0 \cdot \overline{b_0}$ ist. Daher wählen wir für die Gatterschaltung nicht das XOR-Gatter, sondern die Realisierung mit AND und OR.

Nun betrachten wir den Vollsubtrahierer. Die Wahrheitstabelle für das Bit Nummer k sieht folgendermassen aus. Für den Index gilt dabei $k = 1 \dots N - 1$.

a_k	b_k	c_{k-1}	d_k	c_k
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Für d_k und c_k stellen wir je die Karnaugh Tafel auf:

d_k	a_k	a_k	$\overline{a_k}$	$\overline{a_k}$
b_k	1		1	
$\overline{b_k}$		1		1
	c_{k-1}	$\overline{c_{k-1}}$	$\overline{c_{k-1}}$	c_{k-1}

c_k	a_k	a_k	$\overline{a_k}$	$\overline{a_k}$
b_k	1		1	1
$\overline{b_k}$				1
	c_{k-1}	$\overline{c_{k-1}}$	$\overline{c_{k-1}}$	c_{k-1}

Bei d_k ist keine Vereinfachung möglich. Bei c_k können wir drei 2er-Gruppen bilden:

$$d_k = a_k b_k c_{k-1} + a_k \overline{b_k} \overline{c_{k-1}} + \overline{a_k} b_k \overline{c_{k-1}} + \overline{a_k} \overline{b_k} c_{k-1}$$

$$c_k = b_k c_{k-1} + \overline{a_k} b_k + \overline{a_k} c_{k-1}$$

Dem geneigten Betrachter fällt vielleicht noch auf, dass sich der Ausdruck für d_k mit Hilfe des XORs weiter vereinfachen lässt:

$$d_{k} = a_{k}b_{k}c_{k-1} + a_{k}\overline{b_{k}}\overline{c_{k-1}} + \overline{a_{k}}b_{k}\overline{c_{k-1}} + \overline{a_{k}}\overline{b_{k}}c_{k-1}$$

$$= a_{k}\left(b_{k}c_{k-1} + \overline{b_{k}}\overline{c_{k-1}}\right) + \overline{a_{k}}\left(b_{k}\overline{c_{k-1}} + \overline{b_{k}}c_{k-1}\right)$$

$$= a_{k}\left(\overline{b_{k}} \oplus c_{k-1}\right) + \overline{a_{k}}\left(b_{k} \oplus c_{k-1}\right)$$

$$= a_{k} \oplus (b_{k} \oplus c_{k-1})$$

$$= a_{k} \oplus b_{k} \oplus c_{k-1}$$

Damit erhalten wir die folgenden Gatterschaltungen (ohne die Lösung mit XOR).

1.7 Komparator

Die Wahrheitstabelle sieht so aus:

A	В	A = B	A < B	A > B
0	0	1	0	0
0	1	0	1	0
1	0	0	0	1
1	1	1	0	0

Die Booleschen Ausdrücke lauten:

$$\begin{array}{ll} \mathrm{f}\ddot{\mathrm{u}}\mathrm{r}\,A = B & \quad X_1 = \overline{A}\overline{B} + AB = \overline{A \oplus B} \\ \\ \mathrm{f}\ddot{\mathrm{u}}\mathrm{r}\,A < B & \quad X_2 = \overline{A}B \\ \\ \mathrm{f}\ddot{\mathrm{u}}\mathrm{r}\,A > B & \quad X_3 = A\overline{B} \end{array}$$

Die Gatter-Schaltungen ist in diesem Falle einfach. Beachte, dass alle drei Signale unabhängig von einander und gleichzeitig erzeugt werden.

1.8 BCD zu 7-Segment Decoder

Auf Grund der Aufgabenstellung sehen wir, dass das Segment a bei den Ziffern 0, 2, 3, 5, 6, 7, 8 und 9 eingeschaltet sein muss.

BCD				7-Segment						
D	С	В	A	а	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X

Der Vollständigkeit halber haben wir gleich die Wahrheitstabelle für alle Segmente notiert. Beachte, dass es im BCD-Code ungültige Codeworte gibt, nämlich jene oberhalb von neun. Für die ungültigen

Codeworte spielt es keine Rolle, ob ein Segment leuchten würde oder nicht, da diese Fälle ohnehin nie auftreten dürfen. Daher haben wir sie mit *x* markiert (englisch *don't care*).

Somit folgt die Kaurnaugh Tafel für das Segement *a.* Beachte, dass wir nun auch die belanglosen Zustände *x* eintragen. Diese können uns beim Bilden von Blöcken helfen, da man sie beliebig als Nullen oder Einsen interpretieren kann.

a	A	A	\overline{A}	$ \overline{A} $	
В	x	x	x	x	D
В	1	1	1	1	\overline{D}
\overline{B}	1		1		\overline{D}
\overline{B}	×	1	1	×	D
	C	\overline{C}	\overline{C}	C	

Unter geeigneter Benutzung der *x*-Zustände erhalten wir den Booleschen Ausdruck für das Segment *a*:

$$a = B + D + AC + \overline{AC}$$

Für die weiteren Segmente geben wir ohne Herleitung die folgenden Ausdrücke an:

$$b = \overline{C} + AB + \overline{AB}$$

$$c = A + \overline{B} + C$$

$$d = D + \overline{AB} + \overline{AC} + B\overline{C} + A\overline{BC}$$

$$e = \overline{AB} + \overline{AC}$$

$$f = D + \overline{AB} + \overline{AC} + \overline{BC}$$

$$g = D + \overline{AB} + B\overline{C} + \overline{BC}$$

Schliesslich skizzieren wir noch die Gatter-Schaltung für das Segment a:

