集合論速習会

yui_poya0527

March 28, 2022

濃度

集合 A,B に対して, A と B の濃度が等しい. $\stackrel{\mathsf{def}}{\Longleftrightarrow}$ 全単射 $A \to B$ が存在する. このことを |A| = |B| と表す.

濃度の性質

$$1)|A| = |A|$$

$$|A| = |B| \Longrightarrow |B| = |A|$$

3)
$$|A| = |B|$$
 かつ $|B| = |C| \Longrightarrow |A| = |C|$

※全単射の逆写像、全単射同士の合成は全単射.

ベルンシュタインの定理

濃度と単射

単射 $A \rightarrow B$ が存在するとき, $|A| \leq |B|$ と表す.

濃度の性質

$$1)|A| \le |B|, |B| \le |C| \Longrightarrow |A| \le |C|$$

$$|A| \leq |B|, |B| \leq |A| \Longrightarrow |A| = |B|$$
(ベルンシュタインの定理)

可算集合

可算集合

集合 A が可算集合 \iff $|A| = |\mathbb{N}|$ すなわち可算集合とは \mathbb{N} との間に全単射を持つような集合のこと.

可算集合の例

 \mathbb{Z}

 $\mathbb{N} \to \mathbb{Z}$ &, $2k \mapsto k, 2k+1 \mapsto -k$ とする.

n の倍数全体 $n\mathbb{Z}$

 $\mathbb{N} \to n\mathbb{Z}$ を, 上の $\mathbb{N} \to \mathbb{Z}$ と $\mathbb{Z} \to n\mathbb{Z}, a \mapsto na$ を合成する.

 $\mathbb{N} \times \mathbb{N}$

 $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ を, $(m.n) \mapsto m + \frac{(m+n-1)(m+n-2)}{2}$ とする.

 \mathbb{Q}

 $\mathbb{Q} \to \mathbb{Z} \times \mathbb{N}, \frac{m}{n} \mapsto (m, n)$ は単射なので $|\mathbb{Q}| \le |\mathbb{Z} \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ $\mathbb{N} \subset \mathbb{Q}$ より包含写像が単射なので, $|\mathbb{N}| \le |\mathbb{Q}|$. よって $|\mathbb{Q}| = |\mathbb{N}|$

ℝ の濃度

対角線論法

 \mathbb{N} と \mathbb{R} の濃度が等しいか考えるために、全単射 $a:\mathbb{N} \to (0,1]$ が存在するとする. $i\in\mathbb{N}$ に対して、 $a(i)=0.a_{i1}a_{i2}\cdots a_{ii}\cdots$ とする. $\text{このとき, } b_i = \begin{cases} 1 & (a_{ii}=0,2,4,6,8) \\ 2 & (a_{ii}=1,3,5,7,9) \end{cases}$ とすると, $b=0.b_1b_2b_3\cdots$ が定まる. a は全単射なので、 $n\in\mathbb{N}$ が存在して b=a(n). b の取り方より $b\neq a(n)$ なので、全単射 a は存在しない. $(0,1]\subset\mathbb{R}$ より, $|\mathbb{N}|<|\mathbb{R}|$.

非可算集合

集合 A が非可算集合 $\stackrel{\mathsf{def}}{\Longleftrightarrow} |\mathbb{R}| = |A|$

カントール

集合 A が与えられたとき, A より濃度の大きい集合を作ることは可能か.

カントールの定理

すべての集合 A に対して、単射 $\mathfrak{P}(A) \to A$ は存在しない. すなわち、 $|A| < |\mathfrak{P}(A)|$

可算集合と非可算集合

 $|\mathfrak{P}(\mathbb{N})| = |\mathbb{R}|$

二項関係

二項関係

集合 A 上の二項関係 ρ とは, A の元が 2 つ与えられたときに真偽がわかる法則. $a,b\in A$ が二項関係 ρ を満たすとき, $a\rho b$ と表す. また集合 A 上の二項関係 ρ はそのグラフ $G(\rho):=\{(a,b)\in A\times A\mid a\rho b\}$ を定める.

二項関係の性質

集合 A とその上の二項関係 ρ に関して, ρ が

- 1) 反射律 $\stackrel{\text{def}}{\Longleftrightarrow}$ すべての $a \in A$ に対して, $a\rho a$
- 2) 対称律 $\stackrel{\text{def}}{\Longleftrightarrow} a\rho b$ ならば $b\rho a$
- 3) 推移律 $\stackrel{\text{def}}{\Longleftrightarrow} a\rho b, b\rho c$ ならば $a\rho c$
- 4) 反対称律 $\stackrel{\mathsf{def}}{\Longleftrightarrow} a\rho b, b\rho a$ ならば a=b

二項関係の例

二項関係の例

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ における等号 =, 不等号 \leq , < はすべて二項関係になる.

- 1) 等号 = は反射律, 対称律, 推移律, 反対称律を満たす.
- 2) 不等号 < は反射律, 推移律, 反対称律を満たす.
- 3) 不等号 < は推移律, 反対称律を満たす.
- 4) \mathbb{N} において, $a \mid b(a$ は b を割り切る) は二項関係 (整除関係) を定める. これは反射律, 推移律, 反対称律を満たす.
- 5) 集合 A のべき集合 $\mathfrak{P}(A)$ において, $B \subset C(B, C \in \mathfrak{P}(A))$ とするとこれは二項関係 (包含関係) を定める. これは反射律, 推移律, 反対称律を満たす.

同值関係

同值関係

集合 A 上の同値関係とは, A 上の二項関係で反射律, 対称律, 推移律をみたすもの.

同値関係の例

- 1)ℝ において等号 = は同値関係
- $2)a,b \in \mathbb{Z}$ に対して $n \in \mathbb{N}(n > 0)$ で割った余りが等しいとき $a \sim b$ とする.
- $3)\frac{a}{n}, \frac{b}{m} \in \mathbb{Z} \times (\mathbb{N} \{0\})$ に対して, am = bn のとき $\frac{a}{n} \sim \frac{b}{m}$ とする.
- 4) 三角形全体の集合において合同や相似は同値関係になる.

同值類

同值類

集合 A とその上の同値関係 \sim があるとき, $a \in A$ に対してその同値類を

$$[a] := \{a' \in A \mid a \sim a'\}$$

Prop

 $a, a' \in A$ に対して, $C(a) \cap C(a') \neq \emptyset \Longrightarrow a \sim a'$

すなわち A は互いに交わらない同値類の和集合の形に書き直せる.

商集合

集合 A の同値関係 \sim による商集合を $A/\sim:=\{[a]\mid a\in A\}$ とする. このとき, 自然な射影として全射 $A\to A/\sim, a\mapsto [a]$ が定まる.

商集合の例

先ほど見た同値関係の例での商集合を考えてみよう.

$\mod n$

 $a,b \in \mathbb{Z}$ に対して $n \in \mathbb{N}(n > 0)$ で割った余りが等しいとき $a \sim b$ とする. $[a] = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}.$ a' を a を n で割った余りとすると, $a' \in [a]$ で $0 \le a' \le n - 1$. [a'] を \bar{a}' と表すことで, 商集合 $\mathbb{Z}/\sim=\{\bar{0},\bar{1},\cdots,\bar{n-1}\}.$

有理数の約分

 $\frac{a}{n}$, $\frac{b}{m} \in \mathbb{Z} \times (\mathbb{N} - \{0\})$ に対して, am = bn のとき $\frac{a}{n} \sim \frac{b}{m}$ とする. すなわち 2 つの有理数が共通の既約分数を持つときに等しいとみなす. $\frac{a}{n}$ に対して, $[\frac{a}{n}] = \{\frac{b}{m} \in \mathbb{Z} \times (\mathbb{N} - \{0\}) \mid am = bn\}$. よってその代表元として, 既約分数 $\frac{a'}{n'}$ が取れる. このとき商集合 $\mathbb{Z} \times (\mathbb{N} - \{0\}) / \sim = \{[\frac{a'}{n'}] \mid \frac{a'}{n'}$ は既約分数 $\}$

順序関係

順序関係

集合 A 上の順序関係とは, A 上の二項関係で反射律, 推移律, 反対称律をみたすもの. 集合とその上の順序関係の対 (A, \leq) を半順序集合という.

順序関係の例

- 1) \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} における等号 =, 不等号 \leq は順序関係.
- 2)№ における整除関係は順序関係
- 3) 集合 A のべき集合 $\mathfrak{P}(A)$ における包含関係は順序関係.

全順序集合

半順序集合 (A, \leq) が全順序集合

 $\stackrel{\mathsf{def}}{\Longleftrightarrow}$ すべての $a,b \in A$ に対して, $a \leq b$ か $b \leq a$ の少なくともいずれか一方が成立する.

上限と下限

半順序集合 (A, \leq) , $A' \subset A(A' \neq \emptyset)$ とする.

最小元と最大元

 $x \in A'$ が A' の最小元 $\min A' \stackrel{\mathsf{def}}{\Longleftrightarrow}$ すべての $a \in A'$ に対して, $x \leq a$ $x \in A'$ が A' の最大元 $\max A' \stackrel{\mathsf{def}}{\Longleftrightarrow}$ すべての $a \in A'$ に対して, $x \geq a$

上界と下界

A' の上界を $\{u \in A \mid$ すべての $a \in A$ に対して, $a \le u\}$ とする. A' の下界を $\{v \in A \mid$ すべての $a \in A$ に対して, $a \ge v\}$ とする.

上限と下限

A' の上界が最小元をもつとき、その元を A' の上限 $\sup A'$ と定義する. A' の下界が最大元をもつとき、その元を A' の下限 $\inf A'$ と定義する.

ツォルンの補題

準備

半順序集合 (A, \leq) が帰納的 $\stackrel{\mathsf{def}}{\Longleftrightarrow} A$ のすべての全順序部分集合が上界を持つ. 半順序集合 (A, \leq) において, $x \in A$ が極大元 $\stackrel{\mathsf{def}}{\Longleftrightarrow} x < a, a \neq x$ となるような $a \in A$ が存在しない.

ツォルンの補題

空でない帰納的半順序集合は少なくとも1つの極大元を持つ.

整列可能定理

ツォルンの補題と同値な命題として選択公理,整列可能定理がある.

整列集合

半順序集合 (A,\leq) が整列集合 $\stackrel{\mathsf{def}}{\Longleftrightarrow} A$ の空でない部分集合はすべて最小元を持つ. 定義より, 整列集合の部分集合は整列集合.

また, 整列集合であれば全順序集合.

整列集合

(N,≤) は整列集合.

最小元を持たないため、 (\mathbb{Q},\leq) 、 (\mathbb{R},\leq) は全順序集合ではあるが整列集合ではない.

整列可能定理

任意の集合は、その上にある順序を定義することで整列集合にすることができる.

選択公理

直積集合

集合系 $(A_{\lambda} | \lambda \in \Lambda)$ に対して, その直積を

$$\prod_{\lambda \in \Lambda} A_{\lambda} := \{ f : \Lambda \to \bigcup_{\lambda \in \Lambda} A_{\lambda} \mid f(\lambda) \in A_{\lambda} \}$$

Λ が有限集合の場合

 $\lambda = \{1, 2, \cdots, n\} \ \texttt{L}\texttt{J}\texttt{J}.$

このとき, $f \in \prod_{\lambda=1}^n A_\lambda$ は $f(1) \in A_1, \dots, f(n) \in A_n$ で定めることができる. すなわち, f を $(f(1), \dots, f(n)) \in A_1 \times \dots \times A_n$ と見なすことができる.

 $A_{\lambda}=\emptyset$ であるような $\lambda\in\Lambda$ が 1 つでも存在すれば $\prod_{\lambda\in\Lambda}A_{\lambda}=\emptyset$.

選択公理

集合系 $(A_{\lambda} \mid \lambda \in \Lambda)$ において、どの A_{λ} も空でないとき $\prod A_{\lambda}$ は空でない.

参考文献

参考文献

内田伏一, 集合と位相, 裳華房, 2017

№ のべき集合が非可算集合であることの証明

https://agajo.hatenablog.com/entry/2016/10/26/145528