- Problem (1) (a) Let $P = \{I \subsetneq R \mid I \text{ is an ideal of } R\}$ be the partially ordered set of proper ideals of R. Then $\mathfrak{m} \in P$ is called a maximal ideal if it is a maximal element of this partially ordered set. Equivalently, this means that R/\mathfrak{m} is a field.
 - (b) Let $a \not\in \mathfrak{m}$. Then $\langle a \rangle + \mathfrak{m} \supsetneq \mathfrak{m}$, so $\langle a \rangle + \mathfrak{m} = R$. Hence there is $b \in R$ and $c \in \mathfrak{m}$ with ab + c = 1, so that ab = 1 c. But now $1 c \in 1 + \mathfrak{m}$, which by assumption only consists of units. Hence ab is a unit. But then both factors must be units, so that a must be a unit. We have shown that $R \setminus \mathfrak{m} \subseteq R^{\times}$, i.e. $\mathfrak{m} \supseteq R \setminus R^{\times}$. But any proper ideal only consists of non-units, so that $\mathfrak{m} \subseteq R \setminus R^{\times}$. Hence $\mathfrak{m} = R \setminus R^{\times}$, which means exactly that R is local with unique maximal
 - (c)
 - (d)
- Problem (2) (a)
 - (b)
 - (c)
 - (d)
 - (e)
- Problem (3) (a)
 - (b)
 - (c)
 - (d)
 - (e)