Create a $2^2 \times 1$ Mux that implements the function $f(x,y,\pm) = x^2y + y^2$ Using $y \neq as$ control lines. Provide the Mux's output expression

1) Draw the binary table for xyz

Table 1

2) Decompose the variables of x'y + x'z' into their literal numeric values:

3) Draw a table with headers for all the MUX inputs. Since the MUX is a 4×1, then it will have 4 inputs: Io ... I3

Table 2

According to the problem statement, y and z will be used for the select lines, so the remaining variables, x in this case, will be used for the inputs to the MUX.

So if we take a look at table 1, we identify all the values where x is 0 and x is 1

When \times is 0, we can represent it as \times when \times is 1, we can represent it as just \times

4)	Int	fable	2,	circle	911	the	row	values	, that	colle	spond	40	the	numeric	values
	ı														
	I	o I,	I_2	I_3	5)	Ое	, 5 i q N G	ite a	value	for	In	depe	ndin	9 on W	hat

			I_2	
X,	0	1	2	3
X	4	5	6	7
		0	X,	X,

- gnate a value for In depending on what is being circled:
 - If all numbers in the column for In are circled, then: $I_n = 1$

$$I_n = 0$$

- If only one or a few are circled, then In is assigned an expression that corresponds to the variable of the row in which the circled number is in:

eg. In table 2, the number 2 is circled in row
$$x'$$
, so $I_2 = x'$ and likewise, $I_3 = x'$

7) Finally, we write the output expression of the MUX, which will be a sum of minterms, where each minterm will contain an In variable.

$$\begin{bmatrix} I_{0}y_{2} + I_{1}y_{2} + I_{2}y_{2} + I_{3}y_{2} \\ 00 & 01 & 10 & 11 \end{bmatrix}$$

This is just the skeleton of the expression. The numbers in green are designating numeric values to 42, counting upwards.

For the actual expression, we will negate y and z in accordance to these numbers:

$$I_0 y_2' + I_1 y_2' + I_2 y_2' + I_3 y_2$$

Substitute the In terms with their corresponding value:
$$(1)y'z' + (0)y'z + x'yz' + x'yz = y'z' + x'yz' + x'yz$$