

The Aim of Project Management

To complete a project:

- On time
- On budget
- With required functionality
- To the satisfaction of the client
- Without exhausting the team

To provide visibility about the progress of a project

To give early warning of problems so that corrections can be made

4

The challenge of Project Management (1)

What do clients want to know?

- Will the system do what was promised? (Function)
- When will it be delivered? If late, how late? (Time)
- How does the cost compare with the budget? (Cost)

5

5

The challenge of Project Management (2)

Often, the software is a part of larger activity:

- If the system is a product, marketing and development must be combined (e.g., Microsoft Office)
- If the system has to work with other systems, developments must be coordinated (e.g., embedded systems in an automobile)

6

The challenge of Project Management (3)

BUT:

- Every software system is different.
- Most systems are not well specified, or the requirements change during development.
- Estimate time and effort is full of errors, even when the system is well understood.

7

7

Aspects of Project Management (1)

- Planning
 - Outline schedule during feasibility study
 - Full schedule for each part of a project (e.g., each process step, iteration, or sprint)
- Contingency planning
 - Anticipate possible problems (risk management)

8

Aspects of Project Management (2)

Progress tracking

- Regular comparison of progress against plan
- Regular modification of the plan
- Changes of scope, etc. made jointly by client and developers

• Final analysis

Analysis of project for improvements during next project

9

Terminology (1)

Deliverable

- Work product that is provided to the client (mock-up, demonstration, prototype, report, presentation, documentation, code, etc.)
- Release of a system or subsystem to customers and users

Milestone

• Completion of a specified set of activities (e.g., delivery of a deliverable, completion of a process step, end of a sprint)

10

Terminology (2)

- Activity
 - Part of a project that takes place over time (also known as a task)
 - Release of a system or subsystem to customers and users
- Event
 - The end of a group of activities, e.g., agreement by all parties on the budget and plan
- Dependency
 - An activity that cannot begin until some event is reached
- Resource

Staff time, equipment, or other limited resource required by an activity

11

11

Standard approach to Project Management

- The **scope** of the project is defined early in the process.
- The development is divided into tasks and milestones.
- Estimates are made of the time and resources needed for each task.
- The estimates are combined to create a **schedule** and a **plan**.
- Progress is continually reviewed against the plan, perhaps weekly.
- The plan is modified by changes to scope, time, resources, etc.

Typically the plan is managed by a **separate project management team**, not by the software developers.

Used with the Modified Waterfall Model and Iterative Refinement.

12

Agile Approach to Project Management

- Planning is divided into high level release forecasting and low level detailed planning.
- Release planning is a best guess, high level view of what can be achieved in a sequence of time-boxes.
- Release plans are continually modified, perhaps daily.
- Clients and developers take joint control of the release plans and choice of sprints.
- For each time-box, the team plans what it can achieve.

The team may use **Gantt charts** or other conventional planning tools.

12

13

Project Planning Tools

Critical Path Method, Gantt Charts

- Build a work-plan from activity data
- Display work-plan in graphical or tabular form.

Project planning software (e.g., Microsoft Project)

- Maintain a database of activities and related data
- Calculate and display schedules
- Manage progress reports

14

Gantt Chart (1)

Used for small projects, single 1me-boxes, and sprints

- Dates run along the top (days, weeks, or months).
- Each row represents an activity.
- Activities may be sequential, in parallel or overlapping.
- The schedule for an activity is a horizontal bar.
- The left end marks the planned beginning of the task.
- The right end marks the expected end date.
- The chart is updated by filling in each activity to a length proportional to the work accomplished. This is often difficult.
- Progress to date can be compared with the plan by drawing a vertical line through the chart at the current date.

16

Example: Activity Graph Suggest projects Plan projects Approve Draft 1 Slides 1 projects Audio 1 Plan 1 dependency, START Mount Release Audio 2 Plan 2 Slides 2 Draft 2 Write test instructions Print test Plan test dependency Draft test

Scheduling using Activity Graphs: History

PERT

 Program Evaluation and Review Technique introduced by the U.S. Navy in 1957 to support the development of its Polaris submarine missile program.

PERT/Time

- Activity graph with three time estimates (shortest, most probable, longest) on each activity to compute schedules.
- Because of the difficulty of obtaining good time estimates, usually only one esDmate is made. This is called the **Critical Path Method**.

PERT/Cost

• Added scheduling of resources (e.g., facilities, skilled people, etc.)

10

19

Example: Building a house

Project activities:

- install landscaping
- pour foundations
- frame walls
- install plumbing systems
- get permits
- install electrical systems
- move in

21

21

Example: Building a house

Activities in order, Durations, Labels, Dependencies

Project tasks	Durations	Labels	Preds.	Post
Get permits				
Pour foundations				
Frame walls				
Install plumbing systems				
Install electrical systems				
Install landscaping				
Move in				

A STATE NAME OF THE PARTY OF TH

22

Example: Building a house

Activities in order, **Durations**, Labels, Dependencies

Project tasks	Durations	Labels	Preds.	Post
Get permits	2			
Pour foundations	6			
Frame walls	5			
Install plumbing systems	4			
Install electrical systems	6			
Install landscaping	9			
Move in	3			

23

Example: Building a house

Activities in order, Durations, Labels, Dependencies

Project tasks	Durations	Labels	Preds.	Post
Get permits	2	Α		
Pour foundations	6	В		
Frame walls	5	С		
Install plumbing systems	4	D		
Install electrical systems	6	E		
Install landscaping	9	F		
Move in	3	G		

8

24

Example: Building a house

Activities in order, Durations, Labels, Dependencies

Project tasks	Durations	Labels	Preds.	Post
Get permits	2	Α	-	В
Pour foundations	6	В		C, F
Frame walls	5	С	В	D
Install plumbing systems	4	D	A, C	E
Install electrical systems	6	E	D	G
Install landscaping	9	F	В	G
Move in	3	G	E, F	

25

Critical Path Method

- Uses an Activity Graph with single time estimate for each activity
- A standard method for managing large construction projects
- On big projects, activity graphs with more than 10,000 activities are common
- Based on the estimated duration, calculate the theoretical Early Start , Early Finish, Late Start and Late Finish for each activity

28

ES, EF, LF, LS

- Earliest start date (ES): the earliest date that it is possible to start an activity, given that its precedent activities must be completed first
- Earliest finish date (EF): the date that all the activities ending at that node will be completed, assuming that every activity begins at its earliest start date
 - Equal to the earliest start time for the activity plus the time required to complete the activity
- Latest finish time (LF): the latest time at which the activity can be completed without delaying the project
- Latest start time (LS): equal to the latest finish time minus the time required to complete the activity

20

29

Identify Critical Path

- The critical path is the longest-duration path through the network
- Determining the following four parameters for each activity
- Slack time (float time): how much extra time you have available for a particular activity?

30

Calculate Slack time

For each activity, calculate ES, EF, LS, LF and slack time

ES	Duration	EF	
Activity			
LS	Slack	LF	

33

33

Calculate Slack time (2)

- The float is how long an activity's duration can extend before it lengthens the project duration
- The float for any activity on the critical path is zero
- The float for non-critical activities is the critical path duration minus the duration of the activity's path
- If an activity is on multiple paths, its float is the one that is least

34

Calculate ES and EF (1)

- ES and EF are calculated by doing a forward pass through the diagram
- The **ES** of activities after the start node is 1
- The EF of an activity is its ES plus its duration minus 1
- The **ES** is the **EF** of the predecessor activity plus 1
- If there are multiple predecessor activities, use the greatest EF

Calculating LS and LF (1)

- Late start is the latest time that an activity can start
 - If an activity is on a path that's much **shorter** than the critical path, then it can start very **late without delaying** the project
- Late finish is the latest time that an activity can finish
 - If an activity is on a shorter path than the critical path and all of the other activities on that path start and finish early, then it can finish very late without delaying the project

40

Calculating LS and LF (2)

- LS and LF are calculated by doing a backward pass through the diagram
- Start with the longest path and work your way from the end node to the start node
 - Do the same thing for the next longest path, and so on
 - Don't recalculate the LS or LF for an activity that's already been calculated on a prior backward pass.

//1

41

Calculating LS and LF (3)

- The LS and LF of the last activity in the critical path will be the same as its ES and EF
- The LF of non-critical activities with the end node as their successor will be the LF of the last critical path activity
- The LF of an activity is the LS of its successor minus 1
 - If there are multiple successor activities, use the *least LS*
- The LS is the LF of the activity minus its duration plus 1

42

Discussion

- What are the critical activities?
- How long will it take to complete this project?
- Can activity D be delayed without delaying the entire project? If so, how many weeks?
- Can activity F be delayed without delaying the entire project? If so, how many weeks
- What is the schedule for activity C?

44

