mmCEsim Example Configuration

I. Configuration File

```
# Example Configuration.sim
# mmCEsim Simulation Example
# Author: Wuqiong Zhao
# Date: 2022-09-20
version: 0.1.0 # the targeted mmCEsim version
meta: # document meta data
 title: mmCEsim Simulation Example
 description:
    This is a basic millimeter wave channel estimation simulation example with mmCEsim.
   The involved algorithms are `OMP' and `Oracle LS'.
   There are 4 jobs in total, with SNR and pilot overhead as variables and NMSE as metric.
   The PFD report is auto generated via `simreport.cls'
    and a corresponding plain text report is also available.
 author: Wuqiong Zhao
 email: contact@mmcesim.org
 website: https://mmcesim.org
  license: MIT
 date: "2022-09-18"
  comments: This is an uplink channel.
physics:
 frequency: narrow # assume narrow band
 off_grid: false # do not consider off-grid problem
 - id: BS # this should be unique
    role: receiver
    num: 1 # this is the default value
    size: [16, 1] # UPA with size 8x4
    beam: [4, 1]
    grid: same # the same as physics size
    beamforming:
      variable: "W"
      scheme: random
 - id: UE # user
    role: transmitter
    num: 1 # a single-user model
    size: 8 # ULA with size 8
    beam: 2
    grid: 8
    beamforming:
      variable: "F"
      scheme: random
channels:
 - id: H
    from: BS
    to: UE # 'from -> to' specifies the channel direction
    sparsity: 6
    gains:
      mode: normal
      mean: 0
      variance: 1
sounding:
```

```
variables:
    received: "y" # received signal vector
    noise: "noise" # received noise vector
    channel: "H cascaded" # the cascaded channel (actually the same as 'H' for simple MIMO)
preamble: |
 COMMENT Here starts the preamble.
estimation: |
 VNt::m = NEW `DICTIONARY.T`
 VNr::m = NEW `DICTIONARY.R`
 lambda hat = INIT `GRID.*`
 Q = INIT `MEASUREMENT` `GRID.*`
 i::u0 = LOOP 0 `PILOT`/`BEAM.T`
   F_{t::m} = NEW F_{\{:,:,i\}}
   W_t::m = NEW W_{i,:,i}
    Q_{i*`BEAM.*`:(i+1)*`BEAM.*`-1,:} = \kron(F_t^T, W_t^H) @ \kron(VNt^*, VNr) # the sensing
matrix
 END
 none_zero::u1 = NEW \find(\abs(VNr^H@H_cascaded@VNt)>0.1)
 # PRINT \size(none_zero,0) '\n' # make sure the number of non-zero elements
 BRANCH
  lambda hat = ESTIMATE Q y none zero
 RECOVER VNr @ \reshape(lambda_hat, `GRID.R`, `GRID.T`) @ VNt^H
 MERGE
conclusion:
 PRINT "">>\t"" \JOB CNT\ '\n'
simulation:
 backend: cpp # cpp (default) | matlab | octave | py
 metric: [NMSE] # used for compare
 jobs:
    - name: "NMSE v.s. SNR (Pilot: 32)"
      test_num: 100
      SNR: [-10:2:20]
      SNR_mode: dB # dB (default) | linear
      pilot: 32
      # pilot_mode: percent # num (default) | percent
      algorithms: # compare different languages
        - alg: OMP
          max_iter: 6
          label: OMP # used in report
          estimated_channel: H_hat_OMP # variable name for the estimated channel
        - alg: Oracle_LS
          label: Oracle LS
    - name: NMSE v.s. Pilot (-10 dB)
      test_num: 200
      SNR: −10
      pilot: [8:8:128]
      algorithms: # compare different languages
        - alg: OMP
          max_iter: 6
          label: "OMP (Iter: 6)"
        - alg: OMP
          max_iter: 9
          label: "OMP (Iter: 9)"
        - alg: OMP
          max_iter: 12
          label: "OMP (Iter: 12)"
        - alg: Oracle_LS
```

```
label: Oracle LS # used in report
 - name: NMSE v.s. Pilot (0 dB)
   test_num: 200
   SNR: 0
   pilot: [8:8:128]
   algorithms: # compare different languages
     - alg: OMP
       max_iter: 6
       label: "OMP (Iter: 6)"
     - alg: OMP
       max_iter: 9
       label: "OMP (Iter: 9)"
     - alg: OMP
       max_iter: 12
       label: "OMP (Iter: 12)"
     - alg: Oracle_LS
       label: Oracle LS # used in report
 - name: NMSE v.s. Pilot (10 dB)
   test_num: 200
   SNR: 10
   pilot: [8:8:128]
   algorithms: # compare different languages
     - alg: OMP
       max_iter: 6
       label: "OMP (Iter: 6)"
     - alg: OMP
       max_iter: 9
       label: "OMP (Iter: 9)"
     - alg: OMP
       max_iter: 12
       label: "OMP (Iter: 12)"
     - alg: Oracle_LS
        label: Oracle LS # used in report
report:
 name: mmCEsim_Example_Report
 format: [pdf, latex] # both compiled PDF and tex files
 plot: true # plot data
 table: false # do not print table
 latex:
   command: xelatex # command to compile the report
   UTF8: false # no need for UTF8 support with this setting
```

II. Algorithms

1) OMP

```
h::v = FUNCTION OMP Q::m y::v L::u0
  COMMENT Start of OMP algorithm!
  h = \zeros(\size(0, 1)) # initialize as zeros
  Q_H::m = NEW Q^H # the conjugate transpose of Q
  r = NEW y \# residual
  r_{last::v} = NEW r * 2 # the residual in last iteration
  support = INIT \length(y) dtype=u # over-length support array
  term = INIT $\size(Q_H, 0)$ dtype=f # float number array
  j::u0 = NEW 0
  a::v = INIT
  FOR "" j != \left(y\right) = j + 1
    term = \abs(Q_H @ r)
    index::u0 = NEW \index_max(term)
    IF \ismember(index, support)
      BREAK # end of the LOOP
    END
    support_{j} = index
    columns::m = NEW Q_{\{:, support_{0:j}\}}
    a = \pinv(columns) @ y
    r = y - columns @ a
    IF \sum (abs(r - r_last)) / \sum (abs(r_last)) < 0.0001 || j >= L
      BREAK # accurate enough to end iteration
    ELSE
      r_{last} = r
    END
  END
  # prepare for the final return
  h_{support_{0:j-1}} = a
END
2) Oracle LS
h::v = FUNCTION Oracle_LS Q::m y::v indices::u1
 h = \langle zeros(\langle size(Q,1) \rangle)
  h_{indices} = \pinv(Q_{:, indices}) @ y
END
```

III. Plain Text Report

```
# Title : mmCEsim Simulation Example
# Description: This is a basic millimeter wave channel estimation simulation example with
mmCEsim. The involved algorithms are `OMP' and `Oracle LS'. There are 4 jobs in total, with SNR
and pilot overhead as variables and NMSE as metric. The PFD report is auto generated via
`simreport.cls' and a corresponding plain text report is also available.
# Author : Wuqiong Zhao
# Time : 2022-09-20 17:26:59 (UTC +0800)
#
# Report generated by mmCEsim 0.1.0.
# GitHub organization at https://github.com/mmcesim.
# Web app is available at https://app.mmcesim.org.
# Visit https://mmcesim.org for more information.
```

System Settings

Transmitter: 8x1, Grid: 8x1, Beam: 2x1 Receiver: 16x1, Grid: 16x1, Beam: 4x1

Channel Sparsity: 6 Off Grid: false

Bandwidth: Narrowband

Job 1: NMSE v.s. SNR (Pilot: 32)

SNR [dB]	OMP	Oracle LS
-10	4.37272	-2.09213
-8	2.02612	-4.57477
-6	-0.141382	-5.82391
-4	-2.20674	-8.56238
-2	-4.45431	-10.3981
0	-7.81253	-12.262
2	-9.77837	-14.3932
4	-13.0801	-16.6153
6	-14.6947	-17.9794
8	-17.7463	-20.9488
10	-19.3891	-21.8804
12	-21.627	-24.4251
14	-23.8749	-26.3628
16	-25.6213	-28.1834
18	-27.7443	-30.267
20	-30.3653	-32.6013

(Simulated with 100 Monte Carlo tests.)

Job 2: NMSE v.s. Pilot (-10 dB)

Pilot	•		OMP (Iter: 12) +	
8	9.43562	10.9644	12.1366	4.54507
16	6.83408	8.12045	9.1951	1.40745
24	5.31838	6.57979	7.52597	-1.07162
32	3.79419	5.06062	6.06315	-2.83111

40	2.9794	-	4.23719	-	5.18707	-3.44415
48	2.11401		3.35817		4.31526	-4.45314
56	1.29435		2.55505		3.4288	-4.73415
64	0.898796		2.0144		2.81049	-5.28493
72	-0.0644258		1.12447		2.06325	-5.87547
80	-0.282325		0.876599		1.79616	-6.29767
88	-0.821232		0.336695		1.19017	-6.76116
96	-1.27881		-0.0578278		0.801581	-7.50009
104	-1.63714		-0.267611		0.693091	-7.45052
112	-2.24395		-0.948726		0.0564768	-8.03804
120	-2.9736		-1.73462		-0.847883	-8.5239
128	-3.00642		-1.63139		-0.642469	-8.54792

(Simulated with 200 Monte Carlo tests.)

Job 3: NMSE v.s. Pilot (0 dB)

Pilot	OMP (Iter: 6)	OMP (Iter:	9) OMP (Iter: 12)	Oracle LS
8	1.11523	2.15941	3.02545	-5.4531
16	-3.00515	-1.8322	4 -0.712897	-9.34415
24	-6.03076	-4.5361	2 -3.36582	-11.4422
32	-7.55521	-5.8225	4 -4.60541	-12.3771
40	-8.81007	-7.0429	1 -5.84614	-13.0268
48	-10.4826	-8.5046	6 -7.19055	-14.3701
56	-10.9924	-8.8293	6 -7.56498	-14.4853
64	-11.4763	-9.2903	6 -8.02801	-15.2996
72	-12.5736	-10.287	3 -8.82094	-16.235
80	-12.8527	-10.487	1 -9.07245	-16.2999
88	-13.4492	-11.187	6 -9.87788	-17.0232
96	-13.8076	-11.499	3 -10.1895	-17.2846
104	-14.33	-11.962	4 -10.5537	-17.898
112	-14.6855	-12.381	4 -11.141	-18.2309
120	-14.9338	-12.500	6 -11.1606	-18.4375
128	-15.6921	-13.138	1 -11.7075	-18.9248

(Simulated with 200 Monte Carlo tests.)

Job 4: NMSE v.s. Pilot (10 dB)

Pilot	OMP (Iter: 6)	OMP (Iter: 9)	OMP (Iter: 12)	Oracle LS
8	-5.60356	-5.16937	-4.48161	-15.709
16	-16.0018	-13.8204	-12.4833	-19.2826
24	-17.85	-15.3629	-13.7404	-21.045
32	-19.0555	-16.7039	-15.3025	-21.7845
40	-19.9551	-17.0695	-15.5148	-22.9763
48	-21.2469	-18.433	-16.9781	-24.0644
56	-22.194	-19.5846	-18.0337	-24.7222
64	-23.0673	-19.9871	-18.3673	-25.9508
72	-23.6024	-20.7672	-19.3183	-26.281
80	-23.6333	-20.7876	-19.3059	-26.6468
88	-24.1485	-21.3595	-19.9062	-26.8524
96	-24.7868	-22.3319	-21.0762	-27.3651
104	-25.0294	-22.0495	-20.5769	-28.0073
112	-24.868	-21.9972	-20.5392	-27.7029
120	-25.3675	-22.5448	-21.0681	-28.1576

128 | -25.4865 | -22.6952 | -21.2605 | -28.2129

(Simulated with 200 Monte Carlo tests.)