understanding valued fields via model-theory

Simone Ramello (Uni. Münster) simoneramello.it

I. WHY VALUATIONS

Work in Ling := {t, ., -, 0,1}.

Q (in Ling) is hard.

- * Defines Z C Q (J. Robinson)
- * Has an undecidable theory
- * Figuring out if polynomials have roots is complicated!

On the other hand,

not so bad

Completion of Q along an absolute value

→ R (in ling) is lary!

The order is definable: x > y <> ∃2(x-y=2²)

⇒ not a stable theory, but still NIP

- * Définable sets are well-understood

how else can we "complete" D? boal information on a

Def. fix a prime p. If a $\in \mathbb{Z}'(0)$, $V_p(a) := \max \{ n \in \mathbb{N} \mid p^n \mid a \},$ $V_{p}(o) = \infty$ We extend up to Q: if a, b = Z'{o} coprime, $V_{P}\left(\begin{array}{c} a \\ b \end{array}\right) := a - b.$ => if a ∈ Q, |a|p := p-vp(a) e R.

Theorem. (Ostrouski)

up to equivalence, the only absolute values on Q are 1.1 and 1.1p, for all p.

padic absolute value

Def. The completion of Q along 1-1p is denoted by Op.

Inside Qp we define $\mathbb{Z}_p := \{ \alpha \in \mathbb{Q}_p : |\alpha|_p \leq 1 \}.$

Iring= {+, ,-, 0,1}

Op is not so bad!

- * Defines Zp (J. Robinson)
- * It is not stable, but NIP
- * Definable sets can be understood

⚠ An absolute value is a map $1:1: K \longrightarrow \mathbb{R}$ and so, when I take elementary extensions (in some reasonable language) I get $1:1^*: K^* \to \mathbb{R}^*$ i.e. $1:1^*$ will take infinite χ infinitesimal values.

Def. Let K be a field and $(\Gamma,+,\leq)$ be an ordered abelian group. A valuation (on K with value group Γ) is a surjective map

$$V: K^{\times} \rightarrow \Gamma$$

$$= K \cdot \{0\}$$

$$= V(a) + V(b),$$

$$= V(a+b) \approx \min \{V(a), V(b)\}.$$

Define $v(0) := \infty > 1$.

 $\frac{2x}{v_p}$ defined before on Q (or Qp) is a valuation with values in $\frac{2x}{v_p}$ (a) = max (neN: $\frac{2x}{v_p}$) $\frac{2x}{v_p}$

Given v_1 we let $Q_k = Q_v = \{x \in k \mid v(x) \neq 0\}$ subring of k and call the quotient $k_k := \begin{cases} x \in k \mid v(x) \neq 0 \end{cases}$ max ideal of Q_k and call the quotient $k_k := \begin{cases} w \in k \mid v(x) \neq 0 \end{cases}$ the residue field of V.

Ex. Un Ω_{P_1} , $V_P(a) := -log_P[a]_P$ $O_{V_P} = \mathbb{Z}_P, \quad m_{V_P} = p\mathbb{Z}_P,$ the residue field is \mathbb{T}_P .

is a valuation,

II. ENTER MODEL THEORY

Def. Consider the 3-sorted language Lval given by $(K,+,\cdot,0,1,-)$, $(F,0,+,\leq,\infty)$, $(k,+,\cdot,0,1,-)$ held sort value gp sort residue field sort res: 0 = k where ac is interpreted as a group hom. ac: Kx -> fx s.t. if u has valuation zero, then ac(u) = res(u).

Now, we can study a valued field (K,v) as an Lval-structure and ask:

How do we understand Th (K, v)?

We saw before that Q is hard, but (Q_p, V_p) is not: the reason is that Q_p is complete, but this is not a first-order property. Def. (K_1V) is herselian if $\forall f \in \mathcal{O}_K[x]$, $a \in \mathcal{O}_K$, if v(f(a)) > 0 + v(f'(a)) = 0 then $\exists b \in Q_K$ s.t. f(b) = 0 + v(b-a) > 0.

Theorem. Let Heno,0 be the Lval-theory of valued fields (K,V) which are hunselian and such that char(k)=char(k)=0. Then, every Lval-formula is equivalent (modulo Heno,0) to a formula where quantifiers only range over kk (k).

⇒ Upshot: all the (first-order) info about (KIV) is encoded in Tk and k.

Ax-Kichen/Ershov zhilosophy

This philosophy goes a long way, in weaker or stronger forms...

Corollary. Let $(k,v), (l,v) \models Heno,o$. Then, $(k,v) \equiv (l,v) \Leftrightarrow k_k \equiv k_l \quad k \quad T_k \equiv T_l.$

complete! -> Henoro v Th (kK) v Th (TK)

III. FOR SOMETHING COMPLETELY DIFFERENCE

Def. A valued difference field is the data of a valued field (K_1V) together with a distinguished $\sigma \in End(K_1V)$. Given $\sigma \in End(K_1V)$, one gets $\overline{\sigma} \in End(k)$ and $\overline{\sigma}_r \in End(T_k)$.

$$\frac{Ex.}{Better example:} Aut(\mathbb{F}_{p}) = 1, \text{ so boring.}$$

$$\frac{Ex.}{Better example:} C((t)) := \begin{cases} \sum_{n \ge N} c_n t^n : (c_n)_{n \ge N} \subseteq C, \\ N \in \mathbb{Z} \end{cases}$$

$$\frac{1}{t} + 1 + t^2 + \dots$$

$$\sigma\left(\sum_{n \ge N} c_n t^n\right) = \sum_{n \ge N} c_n t^n \quad V_t\left(\sum_{n \ge N} c_n t^n\right) = \min \left\{n \in \mathbb{Z} : c_n \neq 0\right\}$$

Let L_{val}^{σ} be the expansion of Lval given by $(k_1+,-,0,1,\sigma), (k_1+,-,0,1,\sigma), (k_1+,-,$

where now ac is meant to respect T.

(Durham Chay)

difference

Theorem. Let Then, be the Lvar-theory of valued fields (K,V,J) which are then selian and such that, char(K) = char(K) = 0.

Then, every Ivan-formula is equivalent to one where the quantifiers only range over T_k and k.

their respective automorphisms

σ(k) ⊆ K: the (λi)s parametrize
linear indep. / σ(k)

Let $L_{val}^{\sigma,\lambda}$ be the expansion of Lval given by $(k_1+\ldots-j_0,1,\lambda)_{\sigma,\sigma},(k_1+\ldots-j_0,1,\overline{\sigma}),(l_k,+,\leq,0,\infty,\overline{\sigma}_r)$ ac

where now ac is meant to respect T.

difference Theorem. Let WTHeno,0 be the Livar-theory of valued fields (K, V, T) which are weakly T-hells and such that char(k) = char(k) = 0.

T(k) = k is relade dosed

Then, every Lvar-formula is equivalent to one where the quantifiers only range over the and k. 1 with respective or $(K'^{1}Q)$ and (K'^{2}) $(L^{K}^{1}Q^{L})$

Manh