SCALARS AND VECTORS

- or quantity and has no direction.

 In a dataset, count, mean, median laverage etc are scalers since they are single numerical values and no direction.
- vector is a numerical value which has both magnitude and direction. In computer science field, a vector can be defined as an ordered list of numbers, which can represent a point in space or quantity with both magnitude and direction

Application of vectors in data science:
Let us take a student dataset for fea understanding which contains ID, no of study hours and result as features.

A vector representing to end

no: of study hours = [90,3hrs]] 2 dimensions

Unit vectors have a magnitude of 1

classmate

PAGE 0 0 5

APDITION OF VECTORS

At posthon (-4,3), when we add (5,3),
In a direction of we more 5 positions to right of 5-4=1
In a direction of we more 3 positions top of 3+3=6

similarly, when we add (4,3) to (5,3)

In x direction => we more 4 positions to left => 5-4=1

In y direction => we move 3 positions to top => 3+3=6

	DATE 2 6 1 2 2 0 2 4
	(
	Son image processing, svery image is represented as a 3-dimensional vector [R.G.B] If red channel (B) = [255,128,0] green channel (B) = [128,255,10] blue channel (B) = [64,64,255]
	CATES SCALE (RUB) = (VR + VG + VB)/3 [255+128+64, 128+255,64,0+0+255]
	A A LOLD - ALIVAGO MONTO MANTENANTE MANTENAN
54/1	Grey scale (ROB) = (VR+VO+VB)/3
	= [255+128+69, 128+255+64, 0+0+255] = [149,149,85]
	The state of the s
	To botain black and white image (grey scale), we
	perform vector addition of rediblue and green scale
	vertors and find average of them.
	dret bootsobac founci tebon en
	the and trougher some continues of
	210/10/ 20/
us	reported the rest to year out to the travers of the travers to
	The second of th

Throw to 100 th

329564 ML 6

VECTOR MULTIPLICATION

- 3 types of vector multiplication
 - 1 Dot Product
 - (a) stement wise multiplication
 - (iii) Scalor multiplication

At product :-

The dot product of 2 vectors results in a scalar and is calculated as sum of products of their corresponding components.

Dot product (A-B) = (2x4) + (3x5) = 23

product

product

product

product of 7 components compunents

$$A \cdot B^{T} = \begin{bmatrix} 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \end{bmatrix} = (2 \times 7) + (3 \times 5) = 23$$

Actual metrix multiplication. So, if we want to find dot product, we should transpose one of the vectors if we want to find it out using matrix multiplication

A= [2,4] A-B = (2x3)+(4x2)=14

Another important application of vectors: - (vector databases)

when we build a RAG application (Retailera) Augmented Generation), we convert huge file into vectors and store them into vector database.

when a user sends a query, the query will be embedded en converted into a vector. Then similarly search will be performed on query vector and vectors in vector database to find most relevant vector and the most relevant vector will be sent back to user after converting to text.

Dot product of vectors is used to find cosine similarity, which will be used in RAG applications to find most relevant/ similar data, from vector database

					-		I have been	
DATE	3	0	1	2	2	0	2	4

slement wise multiplications:

1 2 2 5 1 1 0 2

In element wise multiplication, corresponding elements of two vectors are multiplied to form a new vector of some dimension.

the result of element wise multiplication between two vectors will also be a yector with same dimensions

 $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad B = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$

A(8) B = Element wise multiplication of A and B

 $= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \otimes \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \times 4 \\ 2 \times 5 \end{bmatrix} = \begin{bmatrix} 10 \\ 18 \end{bmatrix}$

Application of element wise appulliplication:

in some cases

Ex: froduct-id tost discount

A 1000 0.1 (10-12.)

B 500 0.20 (20-1.)

C 200 0.15 (15-1.)

ro obtain a feature discounted-price, we must perform element-wise multiplication of cost and discoun

discounted-price = cost @ discount

= \[\left[\frac{1000}{500} \right] \] \[\frac{0.1}{0.2} \right] = \[\frac{100}{100} \] \[\frac{30}{30} \right] \]

similarly, to obtain final poice, we can perform element wise subtraction

Product-id	cost	discount	discounted-Price
A	1000	0:1	loo
B	500	0.2	100
C	200	0.15	30

afral price = cost @ discounted. price = [1000] [100] [900] = [100] =

In peoplearning, we have architectures of RNN like LSTM RNN and GRU RNN, where we can find applications of element wise addition etc.

@ scalar multiplication: -

when we multiply a vector with a scalar, each component of the vector will be scaled by scalar.

$$A = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, B = 3$$

$$A = \begin{bmatrix} 2 \\ 3 \end{bmatrix} B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

 $AB = \begin{bmatrix} 2x^{3} \\ 3x^{3} \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 4x^{3} \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 12 \end{bmatrix}$ $AB = \begin{bmatrix} 2x^{2} \\ 3x^{2} \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \end{bmatrix}$

Resultant of scalar multiplication
i.e product of a vector and
scalar will be a vector with
same dimensions.

		LIM'-
	r	scalar multiplication: -
Applications	0+	siglar month
FIVITUATION		

in normalization technique, we use scalar multiplication to reduce complex computations. It has application

in	moge	bearing.

The state of the s	a2	91	ao	
5	95	94	as	
vormalization	98	92	96	
MATERIAL I	911	a10	99	

91/255	94255
* :-	
1	7-
919/255	41/255
	910/255

All pixel values will be in range 0-255

All pixel values will be in range 0-1

similarly, we perform scalar multiplication for scaling purposes. For example, to convert cms to ms

	_	-
^	170	m
11=	150	cm
	180	cm

siale-faltor= 0.01

B = A. siale-factor = [170x0.0] [1.7m]
150x0.0] = [1.5m]
180x0.0] = [1.8m]