```
. gorynomial grows faster than polylog. ex: n=w(log 999n)
          no-1 = w(log 99n), nlog2n = o(n1.01)
   · Limits: 1) lim f(n)/g(n) ≠ 0,00 f= O(g)
     \lim_{n\to\infty} \frac{f(n)/g(n) \neq \infty}{f(n)/g(n) \neq 0} = \frac{f(n)/g(n) = \infty}{f(n)/g(n) \neq 0}
\lim_{n\to\infty} \frac{f(n)/g(n) \neq 0}{f(n)/g(n) \neq 0} = \frac{f(n)/g(n) = \infty}{f(n)/g(n) \neq 0}
                                                     f=wcg)
     lim fon/1g(n)=1 frig
     lim f(n)/g(n)=0 f=0(g)
     n=∞000 , Dull = Ei i+i)T
     Summation: 11 [] A - [:] A
    \leq n \Rightarrow (n(n+1)/2) \Rightarrow n^2
 2) 2+4+8---+n = 2(n+1)-2
 3) Sum of n2 terms => [n(n+1)(2n+1)/6]
4) sum of first n3 terms > [n(n+1)]
5) sum of power of 2 terms => 2 11 -1
      [1+2+4+8--- n] In 9] T ARUSO 9
I transle belles i [1, 27 ."
     Master Theorem: T(n) = a T(n/b) + O(nd)
                 T(n) = ( O(nd) i) d> 10g a
                           O(nd logn) if d = 109 ba
                             O(n1096a) if d < log a
     Binary search: T(n) = & T(n12) + O(1)
     Merge sort: T(n) = 2T(n/2) + O(n) (Recursive
    strappen: T(n) = \mp T(n/2) + n^2.
   Menge sort: O(a+b) [non Recursive]
     00
     £ 8'= 1 for 181 <1
    120 1-8
     2 sum ⇒ a[r^-1] for 17/>1
```

Imp Points Selection sort , choose smallest element compare it with every element starting from 1st element than swap it with 1st ele. Similarly keep sorting in that way. Comp: 0(n2). ex: (1)23 15 Change of base rule: $log_n = \Theta(log_n)$ $(log_b)(log_n)$; log_n . Asymptotic notation f(n) = 0 (g(n)) f(n) doesnot grow former than g(n) f(n) = 0 (g(n)) f(n) grows smithy slower than g(n) f(n) = 0 (g(n)) f(n) = 2 (g(n)) " atleast as fast as g(n) f(n)= W (g(n)) f(n) gyows strictly faster thangen) f(n) = O(g(n)) " at same rate. f(n) grows strictly taster mangin)

	52	0	0	
	Best	Avg	Mord	
Schoon:	n²	n ²	n ²	
Bubble:	n	n2	n ²	
Insulian:	n	n ²	n ²	
Heap:	nlogn	nlotn	nlogn	
Quik	nlogn	nlogn	n ²	
Merge:	nlogn	nlogn	nlogn	
Brutet:	ntk	ntk	n2	
Radix:	NK.	nK	nk	
(out)	Ntk	n+K	ntk	
Shell?	nlogn	vi log n	, n ²	
			No.	
linear :-	1 0	n	n	
Binay :-	1	lig n	log n	
=) always use lim				
4 if Brig O then don't get as				
41 2 then 1im >0.				
416 0 then of (n) = ogin)				
* g(n)=0 j.(n)				

* \= 0(9) => lim \(\lambda \) = 0. $n \rightarrow \infty$ fg(n)12 logn < In < n < n logn < n² < n²

Dividing Functions)=aT(n/b)+f(n)f(n) = O(n / log n) ase 1: if logg > K then O(n'96) ase 2: if log9 = K O(n log n) if P>-1 ir P=-1 O(nkloglogn) if P<-1 0(n) Case 3: if logg < K if P≥0 O(nklogn) if P<0 O(nk)