Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 5.60e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE B) stjernas luminositet er 10 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

STJERNE C) det finnes hovedsaklig helium men også noe karbon i stjer-

nas kjerne

STJERNE D) massen til stjerna er 0.2 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) radiusen er en hundredel av solens radius og gassen i stjerna er elektrondegenerert

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 3.200e+06 kg/m $\hat{3}$ og temperatur 25 millioner K.

Kjernen i stjerne B har massetet
thet 8.979e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne C har massetetthet $5.896e+06 \text{ kg/m} \hat{3}$ og temperatur 37

millioner K.

Kjernen i stjerne D har massetet
thet 3.031e+06 kg/m3̂ og temperatur 25 millioner K.

Kjernen i stjerne E har massetet
thet 2.938e+06 kg/m3̂ og temperatur 18 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

Påstand 2: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: denne stjerna er nærmest oss

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.748\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 29.58 millioner K.

Kjernen i stjerne B har massetet
thet 3.772e+05 kg/m3̂ og temperatur 21.60 millioner K.

Kjernen i stjerne C har massetet
thet 2.928e+05 kg/m3̂ og temperatur 19.19

millioner K.

Kjernen i stjerne D har massetet
thet 1.552e+05 kg/m3̂ og temperatur 33.31 millioner K.

Kjernen i stjerne E har massetet
thet $3.488\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 23.63 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen~1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

Observasjon er gjort 112.56 dager etter første observasjon.

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 225.12 dager etter første observasjon.

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.86 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Vinkelforflytning 1.93 buesekunder i løpet av et millisekund. 47.15 41.92 y-posisjon (10⁻⁶ buesekunder) 36.68 31.44 26.20 20.96 15.72 10.48 5.24 0.00 15.72 20.96 26.20 31.44 36.68 41.92 47.15 5.24 10.48 0.00 x-posisjon (10⁻⁶ buesekunder)

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.91590 km/t.

Filen 3E.txt

Tog1 veier 57900.00000 kg og tog2 veier 56200.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 504 km/s.

Filen 4E.txt

Massen til gassklumpene er 2100000.00 kg.

Hastigheten til G1 i x-retning er 45600.00 km/s.

Hastigheten til G2 i x-retning er 49860.00 km/s.

Filen 4G.txt

Massen til stjerna er 16.80 solmasser og radien er 1.55 solradier.