Задание 10-3 Давление на глубине.

Часть 1.

1.1 Давление описывается известной формулой

$$P = \rho g h \tag{1}$$

Часть 2.

2.1 Сила взаимодействия определяется законом всемирного тяготения И. Ньютона

$$f_0 = G \frac{m^2}{D^2} \,. \tag{2}$$

2.2 Сила взаимодействия между нулевым и k-тым шариками равна

$$f_k = G \frac{m^2}{(kD)^2} = \frac{1}{k^2} f_0.$$
 (3)

При $k o \infty$ сила взаимодействия стремится к нулю $f_{\scriptscriptstyle \infty} = 0$.

2.3 Так как для гравитационных сил справедлив принцип суперпозиции. То сила, действующая на крайний шарик, равна сумме сил, действующих со стороны всех шариков

$$F_k = \sum_{i=1}^k f_i = f_0 \sum_{i=1}^k \frac{1}{i^2}$$
 (4)

Для численного расчета удобно провести последовательное суммирование по рекуррентной формуле

$$\frac{F_k}{f_0} = \frac{F_{k-1}}{f_0} + \frac{f_k}{f_0} \,. \tag{5}$$

При $k \to \infty$ сила взаимодействия стремится к предельному значению

$$F_{\infty} = f_0 \sum_{i=1}^{\infty} \frac{1}{i^2} = f_0 \frac{\pi^2}{6} \,. \tag{6}$$

2.4 Рассмотрим первых k шариков. Так как они находятся в равновесии, то сила упругого взаимодействия между k-тым и предыдущим шариком равна силе гравитационного взаимодействия первых k шариков с полубесконечной цепочкой

$$P_k = T_1 + T_2 + ...T_k {,}$$

Здесь T_i (i=1,2...k) сила притяжения шарика номер i с полубесконечной цепочкой. Нумерацию по i удобно вести в обратном направлении.

$$i = \underbrace{\begin{array}{c} \vec{T_i} \\ 3 & 2 & 1 \end{array}}_{k}$$

Очевидно, что

$$T_{1} = F_{\infty}$$

$$T_{2} = F_{\infty} - F_{1}$$

$$T_{3} = F_{\infty} - F_{2}$$

$$...$$

$$T_{i} = F_{\infty} - F_{i-1}$$
(8)

Результаты расчетов приведены в Таблице 1, в которой добавлена строка для расчета сил T_k .

2.4 Запишем в явном виде выражение для силы P_k при больших k , используя непосредственно закон всемирного тяготения

$$\frac{P_k}{f_0} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots
+ \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots
+ \frac{1}{3^2} + \frac{1}{4^2} + \dots$$
(9)

Из этой записи следует, при очень больших k данное отношение ведет себя так же, как гармонический ряд, т.е.

$$\frac{P_k}{f_0} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{i=1}^{k} \frac{1}{i}.$$
 (10)

Известно, что сумма такого ряда стремится к бесконечности, причем так же, как $\ln k$, иными словами

$$P_k \approx f_0 \ln k \,. \tag{11}$$

Таблица 1. Результаты расчетов.

п												
	k =	1	2	3	4	5	6	7	8	9	10	∞

f_{k}	1,000	0,250	0,111	0,063	0,040	0,028	0,020	0,016	0,012	0,010	0
$\overline{f_0}$											
F_{k}	1,000	1,250	1,361	1,424	1,464	1,491	1,512	1,527	1,540	1,550	1,645
f_0											
T_k	1,645	0,645	0,395	0,284	0,221	0,181	0,154	0,133	0,118	0,105	0
f_0											
$\underline{P_k}$											
f_0	1,645	2,290	2,685	2,969	3,190	3,371	3,525	3,658	3,775	3,881	ln k