Second Law of Thermodynamics

Wing-Ho Ko wko1@swarthmore.edu

Outline

- 1. Second law of thermodynamics
- 2. Carnot cycle and maximum efficiency
- 3. Course review

December 9, 2019 2

1. Second law of thermodynamics

December 9, 2019

Maximum efficiency and inequivalence of heat and work

• We have asserted that a heat engine needs a **cold reservoir** to operate, which implies $Q_C > 0$ and thus $\eta < 1$. But why?

Interlude: refrigerator and heat pump

 Refrigerators and heat pumps transfer energy from a cold object to a warm object

Second law of thermodynamics

- One classic* formulation of the second law of thermodynamics is that heat cannot spontaneously flow from a cold object to a warm object
- This implies external work is needed for refrigerator and heat pumps to operate

^{*} Read Knight §18.6 for more details and other formulations of the second law

Second law and maximum efficiency

- If heat engine with $\eta=1$ exists, connecting it to a refrigerator will lead to spontaneous heat flow from cold to hot!
- Thus, the second law of thermodynamics implies $\eta_{\rm max} < 1$ (!)

2. Carnot cycle and maximum efficiency

December 9, 2019

Optimal heat engine: the ideas

Want: (1) minimal temperature difference while transferring heat
 (2) no "spilling" of heat in-between

^{*} Figure and argument from Spielberg and Anderson, Seven Ideas That Shook The Universe

Optimal heat engine: the Carnot cycle

- Want: (1) minimal temperature difference while transferring heat
 (2) no "spilling" of heat in-between
- (1) ⇒ transfer heat via isothermal processes
- (2) ⇒ connect between the two temperatures via adiabatic processes

 $Q_{
m H}$ Isotherms $T_{
m H}$ Adiabats $Q_{
m C}$ 1 $T_{
m C}$

^{*} See Knight §19.5 for a slightly different argument

Analyzing the Carnot cycle (1/2)

• From our knowledge of isothermal processes:

$$Q_{\rm H} = nRT_{\rm H} \ln(V_4/V_3)$$

$$Q_{\rm C} = nRT_{\rm C} \ln(V_1/V_2)$$

Hence,

$$\eta_{\text{Carnot}} = 1 - \frac{T_{\text{C}} \ln(V_1/V_2)}{T_{\text{H}} \ln(V_4/V_3)}$$

© 2013 Pearson Education, Inc.

Analyzing the Carnot cycle (2/2)

 Meanwhile, from what we know about adiabats:

$$T_{\rm H} V_4^{\gamma - 1} = T_{\rm C} V_1^{\gamma - 1}$$

$$T_{\rm H} V_3^{\gamma-1} = T_{\rm C} V_2^{\gamma-1}$$

Taking ratio,

$$\left(\frac{V_4}{V_3}\right)^{\gamma-1} = \left(\frac{V_1}{V_2}\right)^{\gamma-1}$$

Optimal (Carnot) thermal efficiency

Putting all together....

$$\eta_{\text{Carnot}} = 1 - \frac{T_C}{T_H}$$

• Put differently, for an optimal engine,

$$\frac{Q_C}{Q_H} = \frac{T_C}{T_H}$$

Your turn: Carnot efficiency

Rank the following 4 situations by the corresponding Carnot efficiency:

A.
$$(I) > (II) = (IV) > (III)$$

B.
$$(I) = (III) > (II) = (IV)$$

C.
$$(II) > (III) = (IV) > (I)$$

D.
$$(II) > (I) = (III) = (IV)$$

3. Course review

December 9, 2019 15

Reminder: bird eye's view of the course

• Mechanics (\sim 3/4)

• Thermodynamics ($\sim 1/4$)

