Лабораторная работа №4.2.1 Кольца Ньютона

Гёлецян А.Г.

7 мая 2023 г.

Цель работы: познакомиться с явлением интерференции в тонких пленках на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

1 Теоретическая часть

Рис. 1: Экспериментальная установка

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2=R^2-\left(R-d\right)^2=2Rd-d^2$, где R— радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)\lambda R}{2}}$$
 (2)

2 Ход работы

2.1 Калибровка шкалы микроскопа

На рис. 2 видно, что 6 делениям микроскопа соотвествуют 5.9 делений откалиброванной шкалы. Следовательно, 1 деление микроскопа ≈ 98.3 мкм.

Рис. 2: Калибровка шкалы микроскопа

2.2 Измерение радиуса кривизны линзы

m	r_m , MKM	m	r'_m , mkm
1	87.5	1	62.4
2	120.9	2	107.6
3	148.9	3	135.7
4	171.5	4	160.2
5	190.7	5	180.9
6	209.4	6	199.5
7	225.6	7	216.8
8	240.8	8	233.5
9	255.6	9	247.7
10	269.8	10	262.0
11	281.1	11	275.7

Таблица 1: Радиусы темных (r_m) и светлых (r'_m) колец

Рис. 3: Линеаризованные графики радиусов колец

Как видим, наклоны прямых практически равны, поэтому для простоты возмьем среднее значение (7185 ± 40) мкм². Согласно формулам (1) и (2) наклоны прямых равны $\lambda\cdot R$. Длины волн компонент желтого дуплета ртутной лампы 577 ± 10 нм. Отсюда можем найти радиус кризны линзы

$$R = (1.25 \pm 0.02) \text{ cm}$$
 (3)

Рис. 4: Кольца Ньютона

2.3 Биения

При пропускнии света с двумя компонентами монохроматичности возникают биения вследствии наложения двух систем колец. Когда максимумы одной системы ложатся на минимумы другой системы, четкость картинки теряется. Период границ четкости (в кольцах) приблизительно равен $\Delta m = \lambda/\Delta\lambda$. Визуальными измерениями получили период границ четкости в 18 полос. $\lambda \approx 577$ нм $\implies \Delta\lambda \approx 32$ нм. Из данных про спектр ртутной лампы имеем $\lambda_1 = 577$ нм, $\lambda_2 = 546$ нм, $\Delta\lambda_{\rm табл} = 33$ нм.

3 Выводы

Успешно пронаблюдали кольца Ньютона, которые появляются вследствие многолучевой интерференции в зазоре между линзой и черным стеклом. Радиусы светлых и темных колец с хорошей точностью описываются теоретической формулой.

Пронаблюдали биения интерференционной картины вследствии немонохроматичности света. Оценка разности длин волн спектральных компонент в световой смеси достаточно близко к табличным значениям, однако это ни о чем не говорит, потому что оценка строится на не совсем точных принципах, а погрешность измерения границ четкости сильно большая из за незоркого зрения наблюателя.