Importing the Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import plotly.express as px
   import warnings

warnings.filterwarnings("ignore")

%matplotlib inline
```

Data Reading And Cleaning

```
In [2]:
        df = pd.read csv('Algerian forest fires dataset.csv',header=1)
         df.head()
Out[2]:
            day month year Temperature RH Ws
                                                 Rain FFMC DMC
                                                                    DC
                                                                        ISI BUI FWI Classes
                                                    0
                                                        65.7
         0
             01
                       2012
                                      29
                                          57
                                              18
                                                               3.4
                                                                    7.6 1.3
                                                                             3.4
                                                                                  0.5
                                                                                       not fire
                    06
             02
                    06 2012
                                      29
                                         61
                                                   1.3
                                                        64.4
                                                                    7.6
                                                                             3.9
                                                                                  0.4
                                                                                       not fire
          1
                                              13
                                                               4.1
                                                                        1
         2
             03
                    06 2012
                                         82
                                              22
                                                  13.1
                                                        47.1
                                                               2.5
                                                                    7.1 0.3
                                                                             2.7
                                                                                  0.1
                                                                                       not fire
                                     26
          3
             04
                    06 2012
                                     25
                                         89
                                              13
                                                   2.5
                                                        28.6
                                                               1.3
                                                                    6.9
                                                                         0
                                                                             1.7
                                                                                   0
                                                                                       not fire
                    06 2012
                                                        64.8
             05
                                     27 77
                                              16
                                                    0
                                                                3 14.2 1.2 3.9
                                                                                 0.5
                                                                                       not fire
In [3]: # Drop an row
         df.drop([122,123],inplace=True)
         df.reset index(inplace=True)
         df.drop('index',axis=1,inplace=True)
In [4]: |df.loc[:122, 'region'] = 'bejaia'
         df.loc[122:, 'region'] = 'Sidi-Bel Abbes'
In [5]: # Stripping the names of the columns
         df.columns = [i.strip() for i in df.columns]
         df.columns
Out[5]: Index(['day', 'month', 'year', 'Temperature', 'RH', 'Ws', 'Rain', 'FFMC',
                 'DMC', 'DC', 'ISI', 'BUI', 'FWI', 'Classes', 'region'],
```

dtype='object')

```
In [6]: # Stripping the Classes Features data

df.Classes = df.Classes.str.strip()
df['Classes'].unique()

Out[6]: array(['not fire', 'fire', nan], dtype=object)
```

Changing The DataTypes of the Columns

```
In [7]:

df['day']=df['day'].astype(int)
df['month']=df['month'].astype(int)
df['year']=df['year'].astype(int)
df['Temperature']=df['Temperature'].astype(int)
df['RH']=df['RH'].astype(int)
df['Rain']=df['Rain'].astype(float)
df['FFMC']=df['FFMC'].astype(float)
df['DMC']=df['DMC'].astype(float)
df['BUI']=df['BUI'].astype(float)
df['ISI']=df['ISI'].astype(float)
df['Ws']=df['Ws'].astype(float)
```

```
RangeIndex: 244 entries, 0 to 243
Data columns (total 15 columns):
    Column
                 Non-Null Count Dtype
 0
                 244 non-null
                                  int32
    day
 1
    month
                 244 non-null
                                  int32
 2
                 244 non-null
    year
                                  int32
 3
    Temperature 244 non-null
                                  int32
                 244 non-null
 4
    RH
                                  int32
 5
    Ws
                 244 non-null
                                  float64
 6
                 244 non-null
                                  float64
    Rain
 7
    FFMC
                  244 non-null
                                  float64
 8
    DMC
                                  float64
                 244 non-null
 9
    DC
                 244 non-null
                                  obiect
 10 ISI
                                  float64
                 244 non-null
 11 BUI
                 244 non-null
                                  float64
 12 FWI
                                  object
                 244 non-null
 13 Classes
                 243 non-null
                                  object
 14 region
                  244 non-null
                                  object
dtypes: float64(6), int32(5), object(4)
memory usage: 24.0+ KB
```

Checking the null value

```
In [8]:
         df.isnull().sum()
Out[8]: day
                          0
         month
                          0
                          0
         year
         Temperature
                          0
                          0
         RH
         Ws
                          0
         Rain
                          0
         FFMC
                          0
         DMC
                          0
         DC
                          0
         ISI
                          0
         BUT
         FWI
         Classes
                          1
         region
         dtype: int64
```

We got One Null Value

```
In [9]: ## Unique Value of Classes feature
          df['Classes'].unique()
 Out[9]: array(['not fire', 'fire', nan], dtype=object)
In [10]: ## Handling Categorical Feature Classes
          df['Classes']=df['Classes'].map({'not fire':0,'fire':1})
          df.head()
Out[10]:
                   month
                          year Temperature RH
                                                  Ws
                                                      Rain FFMC DMC
                                                                          DC
                                                                              ISI
                                                                                  BUI
                                                                                       FWI
                                                                                           Classes
           0
                          2012
                                         29
                                             57
                                                 18.0
                                                        0.0
                                                              65.7
                                                                          7.6
                                                                              1.3
                                                                                   3.4
                                                                                        0.5
                                                                                                 0.0
           1
                2
                       6 2012
                                         29
                                             61
                                                 13.0
                                                                                        0.4
                                                        1.3
                                                              64.4
                                                                    4.1
                                                                          7.6
                                                                             1.0
                                                                                   3.9
                                                                                                 0.0
           2
                3
                       6 2012
                                         26
                                             82
                                                 22.0
                                                       13.1
                                                              47.1
                                                                    2.5
                                                                          7.1 0.3
                                                                                   2.7
                                                                                        0.1
                                                                                                 0.0
           3
                       6 2012
                                         25
                                                 13.0
                                                        2.5
                                                              28.6
                                                                    1.3
                                                                          6.9
                                                                              0.0
                                                                                   1.7
                                                                                                 0.0
                5
                       6 2012
                                         27
                                             77
                                                 16.0
                                                              64.8
                                                                    3.0 14.2 1.2
                                                                                   3.9
                                                                                        0.5
                                                        0.0
                                                                                                 0.0
```

Focus on Replacing Null Value

The best Way of Replacing Null Value by using mode

```
In [11]: |df['Classes'].mode() [0]
Out[11]: 1.0
In [12]: df['Classes']=df['Classes'].fillna(df['Classes'].mode()[0])
In [13]: df.isnull().sum()
Out[13]: day
          month
                          0
          year
                          0
          Temperature
                          0
          RH
                          0
          Ws
                          0
                          0
          Rain
          FFMC
                          0
          DMC
         DC
                          0
          ISI
                          0
          BUI
                          0
          FWI
          Classes
          region
          dtype: int64
           · Now We have Zero Null Value
```

```
In [14]: df['Classes'].unique()
Out[14]: array([0., 1.])
```

Replacing the 'day', 'month', 'year' features with 'date' feature

```
In [15]: df['date']=pd.to_datetime(df[['day','month','year']])
    df.drop(['day','month','year'],axis=1,inplace=True)
```

In [16]: df

Out[16]:		Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	region	date
	0	29	57	18.0	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0.0	bejaia	2012- 06-01
	1	29	61	13.0	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0.0	bejaia	2012- 06-02
	2	26	82	22.0	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0.0	bejaia	2012- 06-03
	3	25	89	13.0	2.5	28.6	1.3	6.9	0.0	1.7	0	0.0	bejaia	2012 - 06-04
	4	27	77	16.0	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0.0	bejaia	2012- 06-05
2	239	30	65	14.0	0.0	85.4	16.0	44.5	4.5	16.9	6.5	1.0	Sidi-Bel Abbes	2012- 09-26
2	240	28	87	15.0	4.4	41.1	6.5	8	0.1	6.2	0	0.0	Sidi-Bel Abbes	2012- 09-27
2	241	27	87	29.0	0.5	45.9	3.5	7.9	0.4	3.4	0.2	0.0	Sidi-Bel Abbes	2012 - 09-28
2	242	24	54	18.0	0.1	79.7	4.3	15.2	1.7	5.1	0.7	0.0	Sidi-Bel Abbes	2012 - 09-29
2	243	24	64	15.0	0.2	67.3	3.8	16.5	1.2	4.8	0.5	0.0	Sidi-Bel Abbes	2012- 09-30

244 rows × 13 columns

Observation after cleaning the data

```
In [19]: ## Information of the dataset
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 244 entries, 0 to 243
         Data columns (total 13 columns):
              Column
                            Non-Null Count Dtype
                                            ----
          0
              Temperature
                            244 non-null
                                            int32
          1
                            244 non-null
                                            int32
          2
              Ws
                            244 non-null
                                            float64
          3
                            244 non-null
                                            float64
              Rain
          4
              FFMC
                            244 non-null
                                            float64
          5
              DMC
                            244 non-null
                                            float64
          6
              DC
                            244 non-null
                                            object
          7
                            244 non-null
                                            float64
              ISI
          8
              BUI
                            244 non-null
                                            float64
          9
                            244 non-null
                                            object
              FWI
          10 Classes
                            244 non-null
                                            float64
                            244 non-null
                                            object
          11 region
                            244 non-null
          12 date
                                            datetime64[ns]
         dtypes: datetime64[ns](1), float64(7), int32(2), object(3)
         memory usage: 23.0+ KB
In [20]: ## Checking for null values
         df.isnull().sum()
Out[20]: Temperature
                         0
                         0
         RH
                         0
         Ws
         Rain
                         0
         FFMC
                         0
         DMC
                         0
         DC
                         0
         ISI
                         0
         BUI
         FWI
                         0
         Classes
                         0
         region
                         0
         date
                         0
         dtype: int64
         ** We got Zero null value
```

```
In [21]: ## Checking the usage of the memory by the dataset
          df.memory_usage()
Out[21]: Index
                           128
                          976
          Temperature
          RH
                          976
          Ws
                          1952
          Rain
                         1952
          FFMC
                         1952
          DMC
                         1952
          DC
                         1952
          ISI
                         1952
          BUI
                         1952
          FWI
                         1952
                         1952
          Classes
          region
                         1952
          date
                         1952
          dtype: int64
```

Numerical and Categorical Columns

Feature Information

- 1. Date : (DD/MM/YYYY) Day, month ('june' to 'september'), year (2012) Weather data observations
- 2. Temp: temperature noon (temperature max) in Celsius degrees: 22 to 42
- 3. RH: Relative Humidity in %: 21 to 90
- 4. Ws :Wind speed in km/h: 6 to 29
- 5. Rain: total day in mm: 0 to 16.8 FWI Components
- 6. Fine Fuel Moisture Code (FFMC) index from the FWI system: 28.6 to 92.5
- 7. Duff Moisture Code (DMC) index from the FWI system: 1.1 to 65.9
- 8. Drought Code (DC) index from the FWI system: 7 to 220.4
- 9. Initial Spread Index (ISI) index from the FWI system: 0 to 18.5
- 10. Buildup Index (BUI) index from the FWI system: 1.1 to 68
- 11. Fire Weather Index (FWI) Index: 0 to 31.1
- 12. Classes: two classes, namely "Fire†and "not Fireâ€

Univeriate Analysis

The term univariate analysis refers to the analysis of one variable prefix "uni" means "one." The purpose of univariate analysis is to understand the distribution of values for a single variable.

Numerical Features

Categorical Feature

```
In [28]: # categorical columns
plt.figure(figsize=(20, 15))
plt.suptitle('Univariate Analysis of Categorical Features', fontsize=20, fontweig
cat1 = ['DC', 'FWI','region']
for i in range(0, len(cat1)):
    plt.subplot(2,2, i+1)
    sns.countplot(x=df[cat1[i]],data=df)
    plt.xlabel(cat1[i])
    plt.tight_layout()
```


Which area has most of the time fire happen

```
In [29]: import matplotlib
matplotlib.rcParams['figure.figsize']=(20,10)
sns.barplot(x="region",y="Classes",data=df)
```

Out[29]: <AxesSubplot:xlabel='region', ylabel='Classes'>

1]:[df.	head()													
		Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	region	date	
•	0	29	57	18.0	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0.0	bejaia	2012-06-01	
	1	29	61	13.0	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0.0	bejaia	2012-06-02	
	2	26	82	22.0	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0.0	bejaia	2012-06-03	
	3	25	89	13.0	2.5	28.6	1.3	6.9	0.0	1.7	0	0.0	bejaia	2012-06-04	
	4	27	77	16.0	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0.0	bejaia	2012-06-05	

Observation

Sidi=Bel Abbes region has most of the fire happen

temperature Range which is in most of the places

```
In [46]: plt.subplots(figsize=(20,10))
    sns.histplot("Distribution of Temperature",x=df.Temperature,color='b',kde=True)
    plt.title("Distribution of Temperature",weight='bold',fontsize=20,pad=20)
    plt.xlabel("Temperature",weight='bold',fontsize=15)
    plt.ylabel("Count",weight='bold',fontsize=15)
    plt.show()
```

Distribution of Temperature

#Observation

Temperature occur most of the time in range 32.5 to 35.0

Highest Temperature attained

```
In [50]: import matplotlib
matplotlib.rcParams['figure.figsize']=(20,10)
sns.barplot(x="Temperature",y="Classes",data=df)
```

Out[50]: <AxesSubplot:xlabel='Temperature', ylabel='Classes'>

Observation

Highest temperature is 42,40,37

Which region has most time rain happens

```
In [51]: import matplotlib
matplotlib.rcParams['figure.figsize']=(20,10)
sns.barplot(x="region",y="Rain",data=df)
```

Out[51]: <AxesSubplot:xlabel='region', ylabel='Rain'>

Observation

Bejaia is the region in which most of the time rain happens

Multivariate Analysis

Multivariate analysis is the analysis of more than one variable.

Numerical features

In [64]: df.corr()

Out[64]:

	Temperature	RH	Ws	Rain	FFMC	DMC	ISI	В
Temperature	1.000000	-0.654443	-0.278132	-0.326786	0.677491	0.483105	0.607551	0.4555(
RH	-0.654443	1.000000	0.236084	0.222968	-0.645658	-0.405133	-0.690637	-0.34858
Ws	-0.278132	0.236084	1.000000	0.170169	-0.163255	-0.001246	0.015248	0.0297
Rain	-0.326786	0.222968	0.170169	1.000000	- 0.544045	-0.288548	-0.347105	-0.2991
FFMC	0.677491	-0.645658	-0.163255	-0.544045	1.000000	0.602391	0.739730	0.5896
DMC	0.483105	-0.405133	-0.001246	-0.288548	0.602391	1.000000	0.674499	0.9820
ISI	0.607551	-0.690637	0.015248	-0.347105	0.739730	0.674499	1.000000	0.63589
BUI	0.455504	-0.348587	0.029756	-0.299171	0.589652	0.982073	0.635891	1.00000
Classes	0.518119	-0.435023	-0.066529	-0.379449	0.770114	0.584188	0.735511	0.5838

Boxplot to find Outliers in the features

In [73]: seaborn.boxplot(data = df,orient="v")

Out[73]: <AxesSubplot:>

• RH, Rain, FFMC, DMC BUI has many outliers

Boxplot of Class Vs Temperature

```
In [75]: # Python program to illustrate
    # boxplot using inbuilt data-set
    # given in seaborn

# importing the required module
    import seaborn

# use to set style of background of plot
    seaborn.set(style="whitegrid")

# loading data-set

seaborn.boxplot(x ='Classes', y ='Temperature', data = df)
```

Out[75]: <AxesSubplot:xlabel='Classes', ylabel='Temperature'>

• One day at lower temperature fires occur

Boxplot Vs Rain

Out[76]: <AxesSubplot:xlabel='Classes', ylabel='Rain'>

• In many days after having rain also fire occur

STATISTICAL ANALYSIS

In [77]: df.describe()

Out[77]:

	Temperature	RH	Ws	Rain	FFMC	DMC	ISI	
count	244.000000	244.000000	244.000000	244.000000	244.000000	244.000000	244.000000	244.0
mean	32.172131	61.938525	15.504098	0.760656	77.887705	14.673361	4.774180	16.6
std	3.633843	14.884200	2.810178	1.999406	14.337571	12.368039	4.175318	14.2
min	22.000000	21.000000	6.000000	0.000000	28.600000	0.700000	0.000000	1.1
25%	30.000000	52.000000	14.000000	0.000000	72.075000	5.800000	1.400000	6.0
50%	32.000000	63.000000	15.000000	0.000000	83.500000	11.300000	3.500000	12.2
75%	35.000000	73.250000	17.000000	0.500000	88.300000	20.750000	7.300000	22.5
max	42.000000	90.000000	29.000000	16.800000	96.000000	65.900000	19.000000	68.0
4								•