DS 证据理论在医院医疗质量管理综合评价中的应用

卫生部医院管理研究所(100191) 詹磊磊 徐 笑 曾 琦

【提 要】目的 引入 DS 证据理论进行医疗质量评价,为医院管理者决策提供依据。方法 以某医院工作质量为研究对象,建立二层评价指标体系,采用 DS 证据理论方法对该院 2003 – 2007 年医疗质量进行综合评价。结果 评价结果与医院实际情况相符,即 2006 年最佳、2003 年最差。结论 DS 证据理论能够正确处理医疗质量评价问题,相比传统TOPSIS 方法扩充了评价结果的信息量,提供了多角度的分析信息,使评价结果更具有客观性、科学性和有效性。

【关键词】 证据理论 医疗质量 综合评价

在评价医院医疗质量时,TOPSIS 方法是一种较为常用的分析方法^[1],但经典 TOPSIS 方法在方案综合评选中存在一些不足之处^[2],如距离理想解近的方案、也可能距离负理想解近,过程分析信息量较少等。对此 本文提出了基于 DS 证据理论的医院医疗质量管理综合评价方法,通过算例分析验证了方法的有效性,并与传统 TOPSIS 方法分析结果进行了比较。

DS 证据理论又称 Dempster-Shafer 理论,该理论提供了一个能融合多个证据源证据的合成法则,为不确定性信息的表达和合成提供了有效的处理方法,目前在模式识别、武器效能评估等领域应用广泛。首先给出几个基本定义[3]:

设 Θ 为辨识框架 Ω 包含的所有可能子集构成幂集 2^{Θ} 。

定义 1: 基本概率分配函数 m

设函数 m 是满足条件(i) 、(ii) 的映射:

$$m: 2^{\Theta} \rightarrow [0, 1]$$

- (i) 不可能事件的基本概率是 0 即 $m(\Phi) = 0$;
- (ii) 2^{Θ} 中全部元素的基本概率和为 1 即

$$\sum_{A\subseteq\Theta} m(A) = 1 \tag{1}$$

则称 $m \neq 2^{\circ}$ 上的基本概率分配函数(简称 BPA 函数) p(A) 表示对命题 A 成立的信任程度。

定义 2: 信任函数 Bel

对任意假设命题 A ,其信任函数 Bel(A) 定义为 A 中全部子集对应的基本概率之和 ,即

$$Bel: 2^{\Theta} \to [0, 1]$$

$$Bel(A) = \sum_{B \in A} m(B) A \subseteq \Theta$$
 (2)

Bel(A) 是对命题 A 成立的下限估计 A 表示对命题 A 成立的全部信任度。

定义 3: 似然函数 Pl

$$Pl: 2^{\Theta} \to [0, 1]$$

$$Pl(A) = 1 - Bel(-A) \quad A \subseteq \Theta$$
(3)

-A 是命题 A 的否命题 Pl(A) 是命题 A 成立的上限估计 即命题 A 成立的最大乐观估计程度。

定义 4: BPA 函数组合规则

设 m_1 和 m_2 是同一识别框架 Θ 下的两个 BPA 函数 ,合成公式 $m = m_1 \oplus m_2$ 定义:

$$m(\Phi) = 0$$

$$m(A) = \frac{1}{k} \sum_{A_i \cap A_j = A} m_1(A_i) m_2(A_j) \quad A \neq \Phi$$
 (4)

其中

$$k = 1 - \sum_{A_i \cap A_j = \Phi} m_1(A_i) m_2(A_j) = \sum_{A_i \cap A_j \neq \Phi} m_1(A_i) m_2(A_j)$$
(5)

若 k=0 ,说明 m_1 和 m_2 冲突 ,无法合成。

多个 BPA 函数的合成公式 $m=m_1\oplus m_2\oplus\ldots\oplus m_n$ 定义:

$$m(\Phi) = 0$$

$$m(A) = \frac{1}{k} \sum_{\substack{0 \mid A_i = A \mid S_i \leq n}} \prod_{i \in S_i} m_i(A_i) \quad A \neq \Phi$$
 (6)

其中:

$$k = 1 - \sum_{\bigcap A_i = \Phi 1 \leq i \leq n} m_i(A_i) = \sum_{\bigcap A_i \neq \Phi 1 \leq i \leq n} m_i(A_i)$$

$$(7)$$

资料来源

采用文献[4]所提供原始数据 如表1所示。

表 1 某医院医疗质量管理综合评价采集数据

	2003年	2004年	2005年	2006年	2007年
门急诊人次数	35000	37154	40369	46849	55882
出院人数	5273	6131	7214	7153	7761
治疗有效率	97. 59	97. 63	98. 25	98. 77	99. 26
病死率	0. 15	0.08	0.06	0.07	0.05
抢救成功率	33. 33	71.43	60	77. 27	66. 67
入出院诊断符合率	98. 92	98. 9	99. 17	99. 38	99. 48
三日确诊率	98.75	98. 73	99. 1	99. 66	99. 81
病床使用率	111. 27	119. 94	134. 47	134. 02	113. 43
平均住院日	40. 7	38. 4	36. 4	37	35. 9
病床周转次数	10. 55	11. 67	13. 48	13. 37	11. 09

方 法

1. 医疗质量管理综合评价指标体系构建

由表 1 可见,采集数据涉及 10 项评价指标。由医院管理专家进行指标分类,确定其中反映工作量的指标有: 门急诊人次数(X_1)、出院人数(X_2);反映医疗质量的指标有: 治疗有效率(X_3)、病死率(X_4)、抢救成功率(X_5)、入出院诊断符合率(X_6)、三日确诊率(X_7);反映工作效率的指标有: 病床使用率(X_8)、平均住院日(X_9)、病床周转次数(X_{10})。构建医院医疗质量管理综合评价两级指标体系。

2. 确定各证据 BPA 函数

首先按年份建立识别框架{ $Y_1 = 2003$, $Y_2 = 2004$, $Y_3 = 2005$, $Y_4 = 2006$, $Y_5 = 2007$ }。为达到同趋势要求,对低优指标转换指标值^[5] 将病死率(X_4) 以差值法转换为高优指标 将平均住院日(X_9) 以倒数转换为高优指标。

以各指标为分组 将转换后数据横向归一化 如表 2 所示。将 X_1 和 X_2 作为参与合成的证据 BPA 函数 , 采用 DS 证据理论进行合成 ,得到识别框架下 "工作量"指标所对应证据的 BPA 函数 ,它可理解为: 从 "工作量"的角度看 ,各年份医疗质量高低分布情况。同理 ,可得"医疗质量"、"工作效率"指标所对应的 BPA 函数 ,见表 3 所示。

表 2 归一化矩阵值

		Y_1	Y_2	Y_3	Y_4	Y_5
工作量	X_1	0. 1626	0. 1726	0. 1875	0. 2176	0. 2596
	X_2	0. 1573	0. 1828	0. 2151	0. 2133	0. 2315
医疗质量	X_3	0. 1986	0. 1986	0. 1999	0. 2010	0. 2020
	X_4	0. 1852	0. 2004	0. 2048	0. 2026	0. 2070
	X_5	0.1080	0. 2314	0. 1944	0. 2503	0. 2160
	X_6	0. 1995	0. 1995	0. 2000	0. 2004	0. 2006
	X_7	0. 1991	0. 1990	0. 1998	0. 2009	0. 2012
工作效率	X_8	0. 1815	0. 1956	0. 2193	0. 2186	0. 1850
	X_9	0. 1850	0. 1955	0. 2068	0. 2030	0. 2098
	X_{10}	0. 1754	0. 1940	0. 2241	0. 2222	0. 1843

表3 合成结果

	Y_1	Y_2	Y_3	Y_4	Y_5
工作量	0. 1253	0. 1547	0. 1978	0. 2276	0. 2946
医疗质量	0.0976	0. 2263	0. 1967	0. 2539	0. 2255
工作效率	0. 1454	0. 1832	0. 2510	0. 2436	0. 1767
综合评价结论	0.0406	0. 1465	0. 2231	0. 3216	0. 2682

结 果

由表 3 见 医疗质量综合评价最高的年份是 2006 年(Y_4) 综合评价值为 0.3216 其次为 2007 年(Y_5),

综合评价值 0. 2682 ,往后排序依次为 2005 年(Y_3)、2004 年(Y_2)、2003 年(Y_1),分析结果与文献 [4]采用 TOPSIS 方法得到的最终排序结果一致 ,与文献 [4]在论述部分中描述的该医院业务发展轨迹实际情况相吻合 ,说明采用本文方法能够正确处理医院医疗质量管理综合评价问题 ,能够得到正确的最终评价结果。

在开展医院医疗质量管理情况综合评估时,不仅 要了解综合排序情况,还需要从不同的角度深入了解 医疗质量管理各项指标在不同年份的变化情况。从表 3 可见,工作量方面,该医院2007年工作量最大 2006 年次之 2003、2004 年工作量较小,其中 2003 年工作 量最低 这与文献[4]在讨论部分描述的 2003、2004 年因"对全院病房进行内装修基础建设,直接影响了 年度医疗工作完成,工作量明显减少"的实际情况是 吻合的; 医疗质量方面,该医院2006年达到最优 2003 年为最低 与文献 [4]讨论部分所描述 "2006 年该院开 展'医院管理年'活动进行医疗作风整顿 医疗质量明 显提高"的实际情况也是吻合的,采用本文方法可以 从数据分析中获得该结论: 在工作效率方面,该医院 2005 年工作效率最高 2006 年次之 2003 年最低。由 此可见 尽管最终综合评价结果是 2006 年最优 2007 年次之,但不能由此认为2006年在"工作量"、"医疗 质量"和"工作效率"三个方面均达到最优 2007 年在 三个方面的评价结果都低于 2006 年。文献 [4] 所用 TOPSIS 方法不能提供"工作量"、"医疗质量"和"工作 效率"这些具体指标在不同年份的评估变化情况,采 用本文方法则可以很好地获取到这些具体信息。

与文献[4]相比 本文方法同时可以避免出现"距离理想解近的方案、也可能距离负理想解近"等经典TOPSIS 方法所存在的问题。

综上所述 ,DS 证据理论能够作为一种评价医院阶段医疗工作质量的有效手段 ,在医疗质量管理评价领域具有良好的应用前景。

参 考 文 献

- 1. 姚 炯 ,丁丽萍. TOPSIS 法综合评价我院 2000 2009 年医疗业务质量. 中国卫生统计 2011 28(5): 597-598.
- 2. 曾强林 李丹丹 ,白志勋 等. 一种适用于临床决策分析中优指标的改进 TOPSIS 法. 中国卫生统计 2012 29(5):701-703.
- Shafer GA. Mathematical Theory of Evidence. Princeton: Princeton University Press ,1976: 153-257.
- 4. 吴爱雯. TOPSIS 法对医院医疗质量管理的综合评价. 中国卫生统计, 2010 27(6):619-620.
- 5. 巩斌. TOPSIS 方法在医疗质量综合评价中的应用. 中国卫生统计, 2010 27(2):191-193.

(责任编辑: 刘 壮)