

Sustavi ka funkcije

Linearni vremenski stalni susta

Signali i sustavi

Profesor Branko Jeren

15. travnja 2013.

Signali i sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi kao funkcije Povezivanje

Linearni vremenski stalni sustav

Mikrofon kao sustav

 u uvodnom predavanju je pokazano kako mikrofon – pa i svaki drugi sustav – možemo prikazati blokom

 pobuda mikrofona su zvučni signali i mogući pobudni signal neka je definiran kao:

 $NekiZvuk: Vrijeme \rightarrow Tlak$

 $Vrijeme \subset \mathbb{R}$ i $Tlak \subset \mathbb{R}$

 odziv mikrofona su električni signali i neka je odziv na pobudu NekiZvuk označen i definiran kao:

NekiMikIzlaz : Vrijeme → Napon

 $Vrijeme \subset \mathbb{R}$ i $Napon \subset \mathbb{R}$

izlaz

(odziv

Sustavi kao funkcije Povezivanje

sustava

Linearni vremenski stalni sustav

Prostor signala, prostor funkcija

 skup svih zvučnih signala koji predstavljaju ulazne signale u mikrofon nazivamo prostor zvučnih signala i pišemo

$$Zvu$$
čni $Signali = [Vrijeme \rightarrow Tlak]$

slično se definira prostor signala

$$\textit{Mikrofonskilzlazi} = [\textit{Vrijeme} \rightarrow \textit{Napon}]$$

- u općem slučaju vrijedi:
 - neka je signal $u: A \rightarrow B$
 - neka je definiran skup svih funkcija čija je domena A i kodomena B.

$$U = [A \rightarrow B] = \{ u | \mathcal{D} = A \text{ i } \mathcal{K} = B \}$$

 $= \{ \text{skup svih funkcija čija je domena} = A, i kodomena} = B \}.$

ovaj skup, s odabranim skupom skalara (iz $\mathbb R$ ili $\mathbb C$), nazivamo signalnim, ili funkcijskim, prostorom

Sustavi kao funkcije Povezivanje sustava

Linearni vremenski stalni sustavi

Sustavi kao funkcije

 sustav S je funkcija i transformira ulazni signal u, u izlazni signal y, pa je

$$y = S(u)$$

 sustav S je dakle funkcija koja preslikava prostor signala u prostor signala

$$S:[D_u\to K_u]\to [D_y\to K_y]$$

• sustav S je sveukupnost ul./izl. parova (u, y)

$$S = \{(u, y) | u \in U, y \in Y\}$$

- u je element prostora ulaznih signala a y je element prostora izlaznih signala, pa u zovemo i ulaznom a y izlaznom varijablom sustava
- ovako definirani model sustava naziva se model ulaz-izlaz

Sustavi kao funkcije

Povezivanj

Linearni vremenski stalni sustav

Sustavi kao funkcije

sustave opisujemo blokovskim dijagramima

- sustavi su funkcije čije su domene i kodomene prostori signala
- sustav S transformira cjelokupni signal u, u cjelokupni signal y
- nadalje, ako je $w \in D_Y$ tada je

$$y(w) = S(u)(w) \in K_Y$$

Sustavi kao funkcije Povezivanje

Linearni vremenski stalni sustavi

Vremenski kontinuirani i vremenski diskretni sustavi

- vezano uz prije definirane klase signala KontSignali i DisktSignali definiraju se
 - klasa vremenski kontinuiranih sustava 1

 $KontSustavi : KontSignali \rightarrow KontSignali$

i klasa vremenski diskretnih sustava

 $DisktSustavi : DisktSignali \rightarrow DisktSignali$

¹Nezavisna varijabla nije nužno vrijeme. Korektniji bi bio naziv - po nezavisnoj varijabli kontinuirani sustavi. U ovom predmetu ostajemo kod tradicionalnog imena.

Sustavi kao funkcije

Povezivani

Linearni vremenski stalni sustavi

Primjer vremenski kontinuiranog sustava

• pokazan je odziv linearnog, bezmemorijskog², kontinuiranog sustava, y(t)=0.5u(t), na pobudu sinusnim signalom

²Objašnjava se kasnije

Sustavi kao funkcije

Primjer vremenski kontinuiranog sustava

 pokazan je odziv nelinearnog, bezmemorijskog³, kontinuiranog sustava, $y(t) = 0.5e^{u(t)} - 0.5$, na pobudu sinusnim signalom

³Objašnjava se kasnije

Sustavi kao funkcije Povezivanje

Linearni vremenski stalni sustav

Primjer vremenski diskretnog sustava

 pokazuje se odziv sustava za usrednjavanje, definiranog linearnim vremenski diskretnim sustavom,

$$y(n) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-m) = \frac{1}{4} \sum_{m=0}^{3} u(n-m),$$
 za $L = 3$,

na pobudu vremenski diskretnim signalom kao na slici⁴

⁴radi bolje interpretacije postupka usrednjavanja, u crvenoj boji je, linearnom aproksimacijom, ulazni vremenski diskretan signal prikazan i kao vremenski kontinuiran

Sustavi kao funkcije

Povezivanje

Linearni vremenski stalni sustav

Ponašanje sustava određuje funkcija sustava – primjer

 dan je primjer tri različita sustava pobuđena istom pobudom i na slici su prikazana tri moguća različita odziva ovisna o tri različite funkcije sustava

Sustavi kao funkcije Povezivanje

Lınearnı vremenski stalni sustavi

Povezivanje sustava

- spajanjem sustava grade se složeniji sustavi
- na primjeru audio sustava pokazano je, u uvodnom predavanju, da je on složen od tri sustava spojenih u kaskadu

 kaskadni, paralelni, te spoj sustava u povratnu vezu, omogućuju bilo koju kombinaciju povezivanja sustava

funkcije Povezivanje sustava

Linearni vremenski stalni sustav

Kaskadni spoj sustava

• razmotrimo opis dvaju sustava u kaskadnom spoju

- funkcija S opisuje sustav koji je nastao spajanjem, u kaskadu, sustava S_1 i S_2
- uz oznake signala i oznake prostora signala na slici vrijedi

$$w = S_1(u)$$
 i $y = S_2(w)$ $\Rightarrow y = S_2(S_1(u)) = S(u)$

 zaključujemo kako je funkcija nastalog sustava S kompozicija funkcija S₁ i S₂

$$\forall u \in U, y = S(u) = S_2(S_1(u)) \Leftrightarrow S = S_2 \circ S_1$$

Povezivanje sustava

Kaskadni spoj inverznih sustava

 kompozicija funkcija nije komutativna (osim u specijalnim slučajevima)

$$S_1 \circ S_2 \neq S_2 \circ S_1$$

- ako za funkciju sustava S postoji inverzna funkcija S^{-1} tada je sustav opisan funkcijom S^{-1} inverzni sustav sustava S
- kaskadni spoj sustava i njemu inverznog sustava

$$\begin{array}{c|c} & u & \\ \hline & S & \\ \hline \end{array} \begin{array}{c} w & \\ \hline & S^{-1} \\ \end{array} \begin{array}{c} y = u \\ \hline \end{array}$$

rezultira u

$$\forall u \in U, \quad y = S^{-1}(S(u)) = (S^{-1} \circ S)(u) = i_U(u) = u$$

gdje je i_{II} identiteta, odnosno funkcija definirana kao $i_{U}:U\rightarrow U.$

Sustavi kao funkcije Povezivanje sustava

Linearni vremenski stalni sustav

Kaskadni spoj inverznih sustava – primjer

- za sustav S zadan kao w=S(u)=2u+1, za $u\in U$, gdje je U prostor ulaznih signala u S, određuje se inverzni sustav, te kaskadni spoj ovih sustava
- iz

$$w = S(u) = 2u + 1 \quad \Rightarrow \quad y = S^{-1}(w) = \frac{w - 1}{2},$$

pa je

$$y = (S^{-1} \circ S)(u) = S^{-1}(S(u)) = S^{-1}(w) = S^{-1}(2u+1)$$
$$= \frac{(2u+1)-1}{2} = u,$$

ali i

$$y = (S \circ S^{-1})(u) = S(S^{-1}(u)) = S\left(\frac{u-1}{2}\right) = 2\frac{u-1}{2} + 1 = u$$

Sustavi kao funkcije Povezivanje

sustava Linearni

vremenski stalni sustavi

Paralelna veza podsustava

paralelna veza podsustava prikazana je blokovskim dijagramom

• slijede jednadžbe

$$y_1 = S_1(u), \quad y_2 = S_2(u) \Rightarrow y = S_1(u) + S_2(u)$$

Sustavi kao funkcije Povezivanje

sustava

Linearni vremenski stalni sustavi

Povratna veza podsustava

povratna veza podsustava prikazana je blokovskim dijagramom

za ovaj spoj vrijede jednadžbe

$$w = u \pm S_2(y)$$

 $y = S_1(w) = S_1(u \pm S_2(y)) \Rightarrow y = S_1(u \pm S_2(y))$

sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi kao funkcije

Povezivanje sustava

Linearni vremenski stalni sustav

Osnovni blokovi

- u prikazu sustava blokovskim dijagramima koristi se skup osnovnih blokova:
 - zbrajalo s dva ili više ulaza,
 - množilo,
 - množilo s konstantom,
 - element za jedinično kašnjenje,
 - element za kašnjenje, i
 - integrator

Sustavi kao funkcije Povezivanje

sustava Linearni

vremenski stalni sustav

Blokovski dijagram s osnovnim blokovima – primjer

• u prvoj cjelini dan je primjer RLC električnog kruga

diferencijalna jednadžba ovog kruga je

$$y''(t) + \frac{R}{L}y'(t) + \frac{1}{LC}y(t) = \frac{1}{LC}u(t)$$

a blokovski dijagram

sustavi školska godina 2012/2013 Cielina 8.

Profesor Branko Jeren

Povezivanje

sustava

Blokovski dijagram s osnovnim blokovima – primjer

• sustav za usrednjavanje definiran na prikaznici 9,

$$y(n) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-m) = \frac{1}{4} \sum_{m=0}^{3} u(n-m), \quad \text{za } L = 3,$$
$$y(n) = \frac{1}{4} u(n) + \frac{1}{4} u(n-1) + \frac{1}{4} u(n-2) + \frac{1}{4} u(n-3)$$

a blokovski dijagram

Sustavi kao funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijski sustavi

nekauzalni sustavi Vremenski stalni i vremenski promjenljivi sustavi

nelinearni sustavi Stabilni i nestabilni sustavi

Bezmemorijski sustavi

 bezmemorijski sustav ima svojstvo da odziv sustava ovisi samo o trenutnoj vrijednosti ulaznog signala, a ne o njihovim prethodnim ili budućim vrijednostima, i možemo pisati:

$$\forall t \in \mathbb{R}$$
 $y(t) = S(u)(t)$

ili

$$\forall n \in \mathbb{Z}$$
 $y(n) = S(u)(n)$

 primjer bezmemorijskog sustava bio je primjer sa slike na prikaznici 7, definiran kao

$$y(t) = \frac{1}{2}u(t), \quad \forall t \in [-1, 1] \subset \mathbb{R}$$

Sustavi ka funkcije

Linearni vremenski stalni sustavi

Memorijski i bezmemorijski sustavi

sustavi Vremenski stalni i vremenski promjenljivi sustavi

Linearni i nelinearni sustav Stabilni i nestabilni sustav

Memorijski sustavi

 kauzalni⁵ sustavi s beskonačnom⁶ memorijom definirani su kao

$$\forall t \in \mathbb{R}$$
 $y(t) = S(u_{(-\infty,t]})(t)$

ili

$$\forall n \in \mathbb{Z}$$
 $y(n) = S(u_{(-\infty,n]})(n)$

- oznaka $u_{(-\infty,t]}$ kazuje kako je u određivanju odziva y, u trenutku t, potrebno poznavati ulazni signal, ne samo u trenutku t, već i na cijelom intervalu $(-\infty,t]$
- ovako definirani sustavi nazivaju se memorijskim sustavima jer trenutnu vrijednost y(t) odziva određuju sve vrijednosti ulaznog signala iz intervala $(-\infty,t]$, dakle, cijela njegova "prošlost"

⁵objašnjava se nešto kasnije

⁶sustavi s konačnom memorijom (memorije T sekundi, odnosno N koraka, uz T>0 i N>0) definirani su kao $y(t)=S(u_{[t-T,t]})(t)$ odnosno $y(n)=S(u_{[n-N,n]})(n)$, uz T>0 i N>0

Sustavi ka funkcije

Linearni vremenski stalni sustavi

Memorijski i bezmemorijski sustavi

sustavi Vremenski stalni i vremenski promjenljivi

Linearni i nelinearni sustavi Stabilni i nestabilni sustavi

Memorijski sustavi

- vladanje sustava uglavnom pratimo na konačnom vremenskom intervalu $[t_0,t]$, ili $[n_0,n]$, koji nazivamo interval promatranja
- dakle, zanima nas odsječak odziva $y_{[t_0,t]}$ ili $y_{[n_0,n]}$ kao posljedica odsječka pobude $u_{[t_0,t]}$ ili $u_{[n_0,n]}$
- za sustave opisane jednadžbama diferencija, ili sustave opisane s diferencijalnim jednadžbama, rezultat pobude iz intervala $(-\infty, n_0)$ ili $(-\infty, t_0)$ može se uzeti u obzir jednim ili više brojeva α_i pa su $y(n) = S(\alpha_i, u_{[n_0, n]})(n)$ odnosno $y(t) = S(\alpha_i, u_{[t_0, t]})(t)$
- α_i sadrže informaciju o prošlosti sustava i nazivamo ih početnim uvjetima sustava
- odziv sustava za koji su svi⁷ $\alpha_i = 0$, ovisan je samo o pobudi za $n_0 \ge 0$, odnosno $t_0 \ge 0$, i naziva se odziv **mirnog** sustava (engl. zero state response)

⁷ne postoji početna energija u sustavu, pa su svi početni uvjeti jednaki nuli

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijski sustavi

nekauzalni sustavi Vremenski sta i vremenski

Linearni i nelinearni sustav Stabilni i

Primjeri memorijskih sustava

- u trećoj su cjelini razmotrene operacije integracije vremenski kontinuiranog signala i numeričke integracije ovih signala postupkom akumulacije
- ove operacije možemo realizirati sustavima koje nazivamo integrator, odnosno akumulator, a koji ovdje predstavljaju primjere memorijskih sustava
- integrator je definiran kao

$$\forall t \in \mathbb{R}, \quad y(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

a akumulator kao

$$\forall n \in \mathbb{Z}, \quad y(n) = \sum_{m=-\infty}^{n} u(m)$$

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijski sustavi

sustavi Vremenski stalni i vremenski promjenljivi sustavi Linearni i

Linearni i nelinearni sustav Stabilni i nestabilni sustav

Primjeri memorijskih sustava

- redovito poznajemo signale pobude u od nekog trenutka t_0 , i odziv sustava možemo pratiti u intervalu $\left[t_0,t\right]$
- sukladno tome integrator je potrebno definirati kao

$$y(t) = \int_{-\infty}^{t_0} u(\tau)d\tau + \int_{t_0}^{t} u(\tau)d\tau = y(t_0) + \int_{t_0}^{t} u(\tau)d\tau$$

- u $y(t_0)$ je sadržana sva "povijest" integratora i predstavlja stanje sustava prije dovođenja poznate pobude u trenutku t_0
- zaključujemo da je, za određivanje odziva sustava u intervalu $[t_0, t]$, dovoljno poznavanje stanja sustava (početno stanje) $y(t_0)$, te sve vrijednosti pobude $u_{[t_0,t]}$
- treba napomenuti da je nevažno znati kakva je pobuda djelovala prije t_0 , i što je izazvalo izlaz $y(t_0)$, jer, u $y(t_0)$ je sadržana sva "povijest" integratora (sustava) i to je dovoljan podatak u određivanju odziva od t_0 na dalje

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijski sustavi

sustavi Vremenski stalni i vremenski promjenljivi sustavi

Linearni i nelinearni sustav Stabilni i nestabilni sustav

Primjeri memorijskih sustava

sustav za usrednjavanje definiran na prikaznici 9,

$$y(n) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-m),$$

je memorijski sustav

- određujemo li odziv sustava za $n \ge n_0 = 0$, dakle za $n \in \mathbb{Z}_0^+$ potrebno je, osim pobude iz intervala [0, n], poznavati i u(-1), u(-2), ..., u(-L)
- u u(-1), u(-2), ..., u(-L) je sadržana sva "povijest" sustava za usrednjavanje i oni predstavljaju početne uvjete odnosno, zajedničkim imenom, početno stanje sustava
- u ilustraciji ovog sustava na prikaznici 9, pretpostavljeno je da je u(-1) = u(-2) = u(-3) = 0, i prikazan je odziv mirnog sustava

2012/2013

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi

Kauzalni i nekauzalni sustavi

Vremenski i vremenski promjenljivi sustavi

Linearni i nelinearni sustav Stabilni i nestabilni sustavi

Nekauzalni sustavi

do sada su razmatrani memorijski kauzalni sustavi,

$$\forall t \in \mathbb{R}$$
 $y(t) = S(u_{(-\infty,t]})(t)$
 $\forall n \in \mathbb{Z}$ $y(n) = S(u_{(-\infty,n]})(n)$

- drugim riječima, trenutni odziv sustava je bio posljedica trenutne i prošlih vrijednosti ulaznog signala
- ovdje se razmatraju nekauzalni sustavi memorijsko-prediktivni – koji, u određivanju trenutne vrijednosti izlaza, uz prethodne vrijednosti, anticipiraju i buduće vrijednosti ulaznog signala

$$\forall t \in \mathbb{R} \text{ i } t < t_1 < \infty,$$
 $y(t) = S(u_{(-\infty,t_1)})(t)$
 $\forall n \in \mathbb{Z} \text{ i } n < n_1 < \infty,$ $y(n) = S(u_{(-\infty,n_1)})(n)$

sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk

Kauzalni i nekauzalni sustavi

Vremenski stal i vremenski promjenljivi

Linearni i nelinearni sustav Stabilni i nestabilni sustavi

Nekauzalni sustavi

- odziv nekauzalnog sustava započinje prije nego je djelovala pobuda ⇒ nekauzalni vremenski sustavi ne mogu biti realizirani u stvarnom vremenu
 - tako npr., za nekauzalni sustav zadan s jednadžbom y(n) = u(n+2), odziv bi se trebao pojaviti dva koraka prije pojave pobude, što je za realne sustave, koji nemaju prediktivna svojstva, nemoguće
 - dan je prikazan odziva ovog nekauzalnog sustava na zadanu pobudu (odziv je moguće odrediti jer znamo cijelu pobudu unaprijed)

sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi kao funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi

Kauzalni i nekauzalni sustavi

Vremenski stalni i vremenski promjenljivi sustavi Linearni i

Linearni i nelinearni sustav Stabilni i nestabilni sustav

Nekauzalni sustavi

- nekauzalni vremenski sustavi su često rezultat postupaka sinteze na temelju idealiziranih zahtjeva
- nekauzalne sustave možemo koristiti u slučajevima kada je dozvoljeno kašnjenje ili kada su konačni signali prethodno pohranjeni (poznati u cijelom području definicije) i kasnije obrađivani izvan stvarnog vremena (pohranjeni signali glazbe, geofizički podaci, itd.)
- ponovimo još jednom, kako odziv nekauzalnog sustava započinje prije nego je djelovala pobuda, dakle, sustav anticipira buduću pobudu (radi predikciju)
- ilustrirajmo tu činjenicu jednim mogućim primjerom:
 - vozač prati cestu i sukladno tomu regulira brzinu automobila
 - ako zna cestu unaprijed (ili ima čitača karte) on prije nego i vidi zavoj, ili poznatu zapreku, počne unaprijed smanjivati brzinu

2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi Kauzalni i nekauzalni sustavi

Vremenski stalni i vremenski promjenljivi sustavi

Linearni i nelinearni sustavi Stabilni i nestabilni sustavi

Vremenski stalni sustavi

- u definiciji vremenski stalnog sustava koristi se sustav za kašnjenje⁸
- neka je E^{-n_k} vremenski diskretan sustav za kašnjenje ulaznog signala za n_k koraka
- odziv toga sustava $y(n) = E^{-n_k}(u)(n)$ definiran je kao

$$\forall n, n_k \in \mathbb{Z}, \qquad y(n) = u(n - n_k)$$

- vremenski stalni (invarijantni) sustavi su sustavi koji ne mijenjaju parametre tijekom vremena
- dakle, sustav S je vremenski stalan, ako za bilo koju pobudu u(n) daje odziv y(n), a za zakašnjeli ulaz $E^{-n_k}(u)(n)$ daje zakašnjeli odziv $E^{-n_k}(y)(n)$
- ovo se svojstvo ilustrira grafički

⁸Ovdje se razmatraju vremenski diskretni sustavi. Ista rasprava vrijedi i za vremenski kontinuirane sustave

2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni sustar

Memorijski i bezmemorijs sustavi Kauzalni i

Vremenski stalni i vremenski promjenljivi sustavi

Linearni i nelinearni sustavi Stabilni i

Vremenski stalni sustavi

diskretni sustav S vremenski je stalan (vremenski invarijantan) ako vrijedi⁹

$$\forall n, n_k \in \mathbb{Z} \ i \ \forall u \qquad S(E^{-n_k}(u))(n) = E^{-n_k}(S(u))(n)$$

$$\forall t, t_k \in \mathbb{R} \ \mathsf{i} \ \forall u \qquad S(E_{t_k}^{-1}(u))(t) = E_{t_k}^{-1}(S(u))(t) \iff \mathsf{i}$$

⁹analogno, za vremenski kontinuirani sustav, vrijedi

Sustavi kao funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijski sustavi Kauzalni i

vremenski stalni

i vremenski promjenljivi sustavi Linearni i

Linearni i nelinearni sustavi Stabilni i nestabilni sustavi

Vremenski stalni sustavi – primjer

 pokazuje se kako sustav za ekspanziju vremenski diskretnog signala nije vremenski stalan

$$y(n) = \begin{cases} u(\frac{n}{L}) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$
 (1)

• odziv ovog sustava $y_1(n)$ za ulaz $u_1(n) = u(n - n_k)$ je

$$y_1(n) = \begin{cases} u_1(\frac{n}{L}) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$
$$y_1(n) = \begin{cases} u(\frac{n}{L} - n_k) & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$

• s druge strane je, zamjenom n s $n - n_k$ u (1),

$$y(n-n_k) = \begin{cases} u(\frac{n-n_k}{L}) & n = n_k, n_k \pm L, n_k \pm 2L, \dots \\ 0 & \text{za ostale } n \end{cases}$$

• sustav nije vremenski stalan jer je $y_1(n) \neq y(n-n_k)$

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsl sustavi Kauzalni i nekauzalni

Vremenski stalni i vremenski promjenljivi sustavi

Linearni i nelinearni sustavi Stabilni i nestabilni sustavi

Vremenski stalni sustavi – primjer

• sustav za usrednjavanje je vremenski stalan sustav

$$y(n) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-m)$$

• odziv ovog sustava $y_1(n)$ za ulaz $u_1(n) = u(n - n_k)$ je

$$y_1(n) = \frac{1}{L+1} \sum_{m=0}^{L} u_1(n-m) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-n_k-m)$$

• s druge strane je

$$y(n-n_k) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-n_k-m)$$

• sustav je vremenski stalan jer je $y_1(n) = y(n - n_k)$

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi Kauzalni i

sustavi Vremenski stalni i vremenski promienliivi

Linearni i nelinearni sustavi Stabilni i

Linearni sustavi

na slici je grafička interpretacija linearnosti sustava

 uz oznake na slici sustav će biti linearan ako, za ∀α i ∀β, vrijedi

$$y_1 = S(u_1), \quad y_2 = S(u_2)$$

 $S(\alpha u_1) = \alpha S(u_1) = \alpha y_1, \quad S(\beta u_2) = \beta S(u_2) = \beta y_2, \quad \text{homogenost}$
 $S(\alpha u_1) + S(\beta u_2) = \alpha y_1 + \beta y_2, \quad \text{aditivnost}$

i finalno gornje jednadžbe mogu biti sažete u jedan izraz

$$S(\alpha u_1 + \beta u_2) = \alpha S(u_1) + \beta S(u_2)$$
, što je svojstvo superpozicije

Signali i sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni susta

stalni susta Memorijski i

bezmemorijski i sustavi

nekauzalni sustavi Vremenski stalni

i vremensk promjenljiv sustavi

Linearni i nelinearni sustavi

Stabilni i nestabilni sustav

Linearni sustavi – ilustracija svojstva superpozicije

• ilustriramo $S(2u_1 + 0.5u_2) = 2S(u_1) + 0.5S(u_2)$

školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni sustav Memorijski i

bezmemorijski sustavi Kauzalni i nekauzalni sustavi Vremenski i vremenski promjenljivi sustavi

Linearni i nelinearni sustavi Stabilni i

Linearni sustavi

- linearne sustave obilježava i važno svojstvo po kojem je za ulaz jednak nula i izlaz jednak nula, pa se to svojstvo obično naziva ulaz-nula, izlaz-nula
- ovo svojstvo proizlazi izravno iz svojstva homogenosti odnosno superpozicije, za $\alpha=\beta=$ 0, dakle iz

$$y = S(\alpha u_1 + \beta u_2) = \alpha S(u_1) + \beta S(u_2), \quad \text{za } \alpha = \beta = 0$$

 $y = S(0 \cdot u_1 + 0 \cdot u_2) = S(0) = 0 \cdot S(u_1) + 0 \cdot S(u_2) = 0$

- ovo svojstvo je očigledno nuždan uvjet, ali ne i dovoljan, za dokaz linearnosti sustava
- treba uvijek imati u vidu kako, za realne (fizikalne) sustave, svojstvo superpozicije vrijedi samo za ograničeno područje vrijednosti konstanti α i β

Memoriiski i

Linearni i

nelinearni sustavi

Linearni sustavi – primjer

 pokazuje se linearnost sustava za usrednjavanje, opisanog s jednadžbom diferencija

$$y(n) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-m),$$

uz
$$u(-1) = u(-2) = \ldots = u(-L+1) = u(-L) = 0.$$
 Za

$$y_1(n) = \frac{1}{L+1} \sum_{m=0}^{L} u_1(n-m),$$

 $y_2(n) = \frac{1}{L+1} \sum_{m=0}^{L} u_2(n-m) i$

$$y_2(n) = \frac{1}{L+1} \sum_{m=0}^{L} u_2(n-m)$$
 i

$$u(n) = \alpha u_1(n) + \beta u_2(n)$$
, slijedi

$$y(n) = \frac{1}{L+1} \sum_{m=0}^{L} [\alpha u_1(n-m) + \beta u_2(n-m)] =$$

$$= \alpha \frac{1}{L+1} \sum_{m=0}^{L} u_1(n-m) + \beta \frac{1}{L+1} \sum_{m=0}^{L} u_2(n-m) =$$

$$= \alpha y_1(n) + \beta y_2(n)$$

sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi Kauzalni i

sustavi Vremenski i vremenski

Linearni i nelinearni sustavi

Stabilni i nestabilni sustavi

Linearni sustavi – primjer

pokazuje se linearnost integratora dakle sustava opisanog s

$$\forall t \in \mathbb{R}, \quad y(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

pokazuje se da, za

$$u(t) = \alpha u_1(t) + \beta u_2(t),$$

$$y_1(t) = \int_{-\infty}^t u_1(\tau) d\tau,$$

$$y_2(t) = \int_{-\infty}^t u_2(\tau) d\tau$$

vrijedi

$$y(t) = \int_{-\infty}^{t} u(\tau) d\tau = \int_{-\infty}^{t} [\alpha u_1(\tau) + \beta u_2(\tau)] d\tau =$$

$$= \alpha \int_{-\infty}^{t} u_1(\tau) d\tau + \beta \int_{-\infty}^{t} u_2(\tau) d\tau = \alpha y_1(t) + \beta y_2(t)$$

dakle, sustav je linearan

Memoriiski i

Vremenski stalni

Linearni i nelinearni sustavi

Linearni sustavi – primjer

ispituje se linearnost integratora dakle sustava opisanog s

$$orall t \in [t_0,t] \subset \mathbb{R}, \quad y(t) = y(t_0) + \int_{t_0}^t u(\tau) d au$$

za

$$u(t) = lpha u_1(t) + eta u_2(t), \ y_1(t) = y(t_0) + \int_{t_0}^t u_1(au) \, d au, \ y_2(t) = y(t_0) + \int_{t_0}^t u_2(au) \, d au$$
vrijedi

 $y(t) = y(t_0) + \int_{t_0}^{t} u(\tau) d\tau = y(t_0) + \int_{t_0}^{t} [\alpha u_1(\tau) + \beta u_2(\tau)] d\tau = 0$ $=y(t_0)+\alpha\int_{t_0}^t u_1(\tau)\,d\tau+\beta\int_{t_0}^t u_2(\tau)\,d\tau\neq\alpha y_1(t)+\beta y_2(t)$

• slično – neočekivano – bi se pokazalo da sustav opisan s
jednadžbom
$$y(n) = au(n) + b$$
, također nije linearan

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijski sustavi Kauzalni i nekauzalni sustavi Vremenski sta i vremenski

Linearni i nelinearni sustavi

nelinearni sustavi Stabilni i nestabilni sustavi

Linearni sustavi – primjer

razmotrimo još jednom integrator zadan kao

$$orall t \in [t_0,t] \subset \mathbb{R}, \quad y(t) = y(t_0) + \int_{t_0}^t u(\tau) d\tau$$

- odziv ovog, i svakog drugog sustava, možemo razložiti na dvije komponente:
 - komponentu odziva koja je posljedica početnog stanja sustava i ne ovisi o pobudi – odziv nepobuđenog sustava i,
 - komponentu odziva koji je posljedica isključivo pobude i ne ovisi o početnim uvjetima – odziv mirnog sustava
- odziv možemo razložiti kao

$$y(t) = \underbrace{y(t_0)}_{\text{odziv nepobuđenog sustava}} + \underbrace{\int_{t_0}^{t} u(\tau) d\tau}_{\text{odziv mirnog sustava}}$$

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi

Kauzalni i nekauzalni sustavi

Vremenski stali vremenski promjenljivi

Linearni i nelinearni sustavi Stabilni i

Linearni sustavi – primjer

uvidom u

$$y(t) = \underbrace{y(t_0)}_{\text{odziv nepobuđenog sustava}} + \underbrace{\int_{t_0}^{t} u(\tau) d\tau}_{\text{odziv mirnog sustava}}$$

očigledno je da dio koji predstavlja odziv mirnog sustava predstavlja odziv linearnog sustava pa strukturu ovog sustava možemo prikazati kao

 sustavi kod kojih je cjelokupni odziv superpozicija odziva linearnog sustava i odziva nepobuđenog sustava nazivaju se inkrementalno linearni sustavi

Sustavi ka funkcije

Linearni vremenski

Memorijski i bezmemorijsk sustavi

Kauzalni i nekauzalni sustavi Vremenski stalni

promjenljivi sustavi

Linearni i nelinearni sustavi Stabilni i nestabilni sustavi

Stabilni i nestabilni sustavi

- u drugoj cjelini je pokazano kako je signal f omeđen ako postoji konačan broj $M_f < \infty$ takav da je $|f(w)| \leq M_f$ za $\forall w \in PodručjeDefinicije(f)$
- sustav je BIBO stabilan (engl. Bounded Input Bounded Output) ako je za svaki omeđeni ulaz njegov odziv također omeđen
- dakle za stabilan vremenski kontinuiran sustav vrijedi

$$|u(t)| \le M_u < \infty \quad \Rightarrow \quad |y(t)| \le M_y < \infty, \quad \forall t \in \mathbb{R}$$

a za stabilan vremenski diskretan sustav vrijedi

$$|u(n)| \le M_u < \infty \quad \Rightarrow \quad |y(n)| \le M_v < \infty, \quad \forall n \in \mathbb{Z}$$

- ovo je definicija tzv. vanjske stabilnosti sustava (definirane pomoću ulaza i izlaza)
- o unutarnjoj stabilnosti sustava biti će govora kasnije

Memoriiski i

Stabilni i

nestabilni sustavi

Stabilni i nestabilni sustavi – primjeri

inkrementalno linearan sustav.

$$\forall t \in \mathbb{R}, \quad y(t) = 7u(t) + 6,$$

je za, $|u(t)| \leq M_{\mu} < \infty$, BIBO stabilan jer vrijedi

$$y(t) \leq 7M_u + 6 = M_y, \quad \forall t \in \mathbb{R}$$

 ispituje se BIBO stabilnost diskretnog sustava, $y(n) = \frac{1}{L+1} \sum_{m=0}^{L} u(n-m).$

$$extstyle {\sf Za} \; |u(n)| \leq M_u, \quad orall n \in {\mathbb Z} \quad \Rightarrow \ |y(n)| \leq rac{1}{L+1} (L+1) M_u, \quad orall n \in {\mathbb Z},$$

pa je ovaj sustav BIBO stabilan

sustavi školska godina 2012/2013 Cjelina 8.

Profesor Branko Jeren

Sustavi ka funkcije

Linearni vremenski stalni sustav

Memorijski i bezmemorijsk sustavi

Kauzalni i nekauzalni sustavi

Vremenski i vremenski promjenljivi sustavi

nelinearni sustavi Stabilni i nestabilni sustavi

Stabilni i nestabilni sustavi – primjeri

integrator je definiran kao sustav s:

$$\forall t \in \mathbb{R}, \quad y(t) = \int_{-\infty}^{t} u(\tau) \ d\tau,$$

• pobudimo li integrator s jediničnim skokom $u(t) = \mu(t)$, $\forall t \in \mathbb{R}$, odziv će biti

$$y(t) = t\mu(t) = egin{cases} 0, & t < 0 \ t, & t \geq 0. \end{cases}$$

• očigledno je kako odziv y(t) nije omeđen i integrator nije BIBO stabilan sustav