Практикум 7. Нормальная модель.

- 1.1. С.в. $X_n \sim \chi_n^2$. Построить графики плотности с.в. $X_n, X_n/n, (X_n-n)/\sqrt{2n}$ для n=1,2,3,4,5,10,20,50,100. 1.2. Пусть $X_1, X_2 \ldots$ н.о.р. $S_n = X_1 + \cdots + X_n$. Согласно ЦПТ распределение с.в. $Y_n = (S_n \mathbf{E}S_n)/\sqrt{\mathbf{D}S n}$ стремится к $\mathcal{N}(0,1)$. Сгенерировать выборку с.в. $Y_{n,1}, \ldots, Y_{n,m}$. Сравнить распределение с.в. $\sum_{i=1}^m Y_{n,i}^2$ с распределением χ_m^2 , если n=1,2,5,10,50 и а) $X_i \sim R[0,1]$, а) $X_i \sim Bern(0.1)$, в) X_i смесь $\mathcal{N}(0,1)$ и $\mathcal{N}(0,10)$ с весами 9/10, 1/10 (описание смеси см. в практикуме 4).
- 1.3. $X_1,\ldots,X_n\sim\mathcal{N}(a,\sigma^2),\,a$ неизвестно. Доверительный интервал для σ^2 можно построить, используя тот факт, что $nS^2/\sigma^2\sim\chi^2_{n-1},$ где $nS^2=\sum_{i=1}^n(X_i-\overline{X})^2.$ Если не слишком внимательно слушать лекции, то можно предположить, что nS^2/σ^2 имеет распределение $\chi^2_n.$ Сравнить вероятности попадания σ^2 в правильный и неправильный доверительный интервалы. Каждый интервал имеет вид

$$\sigma^2 \in \left(\frac{nS^2}{x_{1-\alpha/2}}, \frac{nS^2}{x_{\alpha/2}}\right),\,$$

где x_{α} – квантиль распределения χ^2_{n-1} для правильного и χ^2_n для правильного интервалов.

2.1. Построить графики плотности распределения Стьюдента с n степенями свободы для n=1,2,5,10,50. Сравнить со стандартной нормальной плотностью. Для n=1 сравнить с плотностью распредления Коши. 2.2. Пусть $X_1, X_2 \ldots$ н.о.р. $S_n = X_1 + \cdots + X_n$. Согласно ЦПТ распределение с.в. $Y_n = (S_n - \mathbf{E}S_n)/\sqrt{\mathbf{D}S - n}$ стремится к $\mathcal{N}(0,1)$. Сгенерировать выборку с.в. $Y_{n,1}, \ldots, Y_{n,m+1}$. Сравнить распределение с.в. $Y_{n,1}/\sqrt{\sum_{i=2}^{m+1} Y_{n,i}^2/m}$ с распределением Стьюдента с m степенями свободы, если n=1,2,5,10,50 и а) $X_i \sim R[0,1]$, а) $X_i \sim Bern(0.1)$, в) X_i – смесь $\mathcal{N}(0,1)$ и $\mathcal{N}(0,10)$ с весами 9/10,1/10 (описание смеси см. в практикуме 4). 2.3. $X_1, \ldots, X_n \sim \mathcal{N}(a,\sigma^2)$, σ неизвестно. Доверительный интервал для a можно построить методом подстановки оценки неизвестной дисперсии, а можно использовать распределение Стьюдента. Сравнить вероятности попадания в эти интервалы при разных n. Границы каждого интервала имеют вид

$$\overline{X} \pm x_{1-\alpha/2} \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 / (n-1)},$$

где x_{α} – квантиль распределения $\mathcal{N}(0,1)$ для первого интервала, и распределения Стьюдента с n-1 степенями свободы для второго интервала.

3.1. Построить графики плотности распределения Фишера для разных значений параметров m, n. Как себя ведут эти плотности при а) фиксированном $m, n \to \infty$, б) $m \to \infty$, n фиксировано, в) $m, n \to \infty$? 3.2. Пусть $X_1, X_2 \ldots$ н.о.р. $S_n = X_1 + \cdots + X_n$. Согласно ЦПТ распределение с.в. $Y_n = (S_n - \mathbf{E}S_n)/\sqrt{\mathbf{D}S - n}$ стремится к $\mathcal{N}(0,1)$. Сгенерировать выборку с.в. $Y_{n,1}, \ldots, Y_{n,m+k}$. Сравнить распределение с.в.

$$\frac{\sum_{i=1}^{m} Y_{n,i}^2 / m}{\sum_{i=m+1}^{m+k} Y_{n,i}^2 / k}$$

с распределением Фишера с параметрами m, k, если n=1,2,5,10,50 и а) $X_i \sim R[0,1]$, а) $X_i \sim Bern(0.1)$, в) X_i – смесь $\mathcal{N}(0,1)$ и $\mathcal{N}(0,10)$ с весами 9/10, 1/10 (описание смеси см. в практикуме 4). 3.3. $X_1,\ldots,X_n \sim \mathcal{N}(a_1,\sigma_1^2), Y_1,\ldots,Y_m \sim \mathcal{N}(a_2,\sigma_2^2)\,a_1,a_2$ неизвестны. Доверительный интервал для σ_2^2/σ_1^2 можно построить, используя тот факт, что

$$\frac{nS_X^2/(\sigma_1^2(n-1))}{mS_Y^2/(\sigma_2^2(m-1))} \sim F_{n-1,m-1},$$

где $nS_X^2 = \sum_{i=1}^n (X_i - \overline{X})^2, \ nS_Y^2 = \sum_{i=1}^m (Y_i - \overline{Y})^2.$ Доверительный интервал имеет вид

$$\frac{\sigma_2^2}{\sigma_1^2} \in \left(f_{1-\alpha/2} \frac{mS_Y^2/(m-1)}{nS_X^2/(n-1)}, f_{\alpha/2} \frac{mS_Y^2/(m-1)}{nS_X^2/(n-1)} \right),$$

 $f_{\alpha/2}$ – квантили распределения Фишера $F_{n-1,m-1}$.

Если не слишком внимательно слушать лекции, то можно предположить, что nS^2/σ^2 имеет распределение χ^2_n . Сравнить вероятности попадания σ^2_2/σ^2_1 в правильный и неправильный доверительный интервалы. Неправильный интервал имеет вид

$$\frac{\sigma_2^2}{\sigma_1^2} \in \left(f_{1-\alpha/2} \frac{S_Y^2}{S_X^2}, f_{\alpha/2} \frac{S_Y^2}{S_X^2} \right),\,$$

 $f_{lpha/2}$ – квантили распределения Фишера $F_{n,m}$.