Concours Communs Polytechniques

Mathématiques 2

I. Étude d'un exemple

1. Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ son polynôme caractéristique χ_A vaut :

$$\chi_A(X) = \begin{vmatrix} a - X & b \\ c & d - X \end{vmatrix} = X^2 - (a+d)X + (ad - bc) = X^2 - \text{tr}(A)X + \text{det}(A)$$

or d'après le théorème de Cayley-Hamilton, $\chi_A(A) = 0$ donc $A^2 - \operatorname{tr}(A)A + \det(A)I_2 = 0$. On peut bien sûr obtenir également ce résultat par un calcul direct.

2. Par définition, \mathbb{A} est le sous-espace vectoriel engendré par I_2 et A donc c'est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et \mathbb{A} contient I_2 . De plus, A n'est pas une matrice scalaire donc (I_2, A) est une famille libre et par conséquent une base du \mathbb{R} -espace vectoriel \mathbb{A} . Enfin, \mathbb{A} est stable pour le produit car si $(a, b, a', b') \in \mathbb{R}^4$,

$$(aI_2 + bA)(a'I_2 + b'A) = (aa' - bb' \det(A))I_2 + (ab' + a'b + bb' \operatorname{tr}(A))A \in \mathbb{A}$$

3. \diamond Supposons qu'il existe une matrice $B = aI_2 + bA \in \mathbb{A}$ telle que $B^2 = -I_2$. Alors toute valeur propre λ de B vérifie $\lambda^2 = -1$ donc B ne possède pas de valeur propre réelle. On en déduit que A ne possède pas non plus de valeur propre réelle (car μ valeur propre de A implique $a + b\mu$ valeur propre de B). Le polynôme caractéristique de A n'a donc pas de racine réelle donc son discriminant $\Delta = (\operatorname{tr} A)^2 - 4 \operatorname{det} A$ est strictement négatif.

 \Rightarrow Réciproquement, supposons $(\operatorname{tr} A)^2 - 4 \det A < 0$.

Si $(a,b) \in \mathbb{R}^2$, $(aI_2 + bA)^2 = (a^2 - b^2 \det A)I_2 + (2ab + b^2 \operatorname{tr} A)A$. Or le système

$$\begin{cases} a^2 - b^2 \det A = -1\\ 2ab + b^2 \operatorname{tr} A = 0 \end{cases}$$

équivaut à

$$\begin{cases} b^2 \det A = a^2 + 1 \\ a = -\frac{b}{2} \operatorname{tr} A \end{cases}$$

ou encore à

$$\begin{cases} b^2 = \frac{4}{4 \det A - (\operatorname{tr} A)^2} \\ a = -\frac{b}{2} \operatorname{tr} A \end{cases}$$

Il existe donc des matrices de $\mathbb A$ dont le carré vaut $-I_2$ par exemple

$$B = \frac{2}{\sqrt{4 \det A - (\operatorname{tr} A)^2}} \left(\left(-\frac{\operatorname{tr} A}{2} \right) I_2 + A \right)$$

4. On suppose que $B \in \mathbb{A}$ est telle que $B^2 = -I_2$. Alors B n'est pas une matrice scalaire (car si $\lambda \in \mathbb{R}$, $(\lambda I_2)^2 = \lambda^2 I_2 \neq -I_2$) donc (I_2, B) est une famille libre de \mathbb{A} . Comme $\mathbb{A} = \text{vect}\{I_2, A\}$ on en déduit que \mathbb{A} est un \mathbb{R} -espace vectoriel de dimension deux et que (I_2, B) en est une base.

Définissons alors f comme l'unique application linéaire entre les \mathbb{R} -espaces vectoriels \mathbb{A} et \mathbb{C} telle que $f(I_2)=1$ et f(B)=i. Alors f est un isomorphisme d'espaces vectoriels car elle envoie une base de \mathbb{A} sur une base de \mathbb{C} . De plus $f(I_2)=1$. Enfin, si $M=xI_2+yB$ et $M'=x'I_2+y'B$ sont deux éléments de \mathbb{A} , $MM'=xx'I_2+(xy'+x'y)B+yy'B^2=(xx'-yy')I_2+(xy'+x'y)B$ donc

$$f(MM') = (xx' - yy')f(I_2) + (xy' + x'y)f(B) = (xx' - yy') + i(xy' + x'y)$$

et

$$f(M)f(M') = (x+iy)(x'+iy') = (xx'-yy') + i(xy'+x'y)$$

On a donc f(MM') = f(M)f(M') ce qui achève de montrer que f est un isomorphisme d'algèbres entre \mathbb{A} et \mathbb{C} .

5. D'après le calcul fait en question 3. et A étant non scalaire, si $M=aI_2+bA$, la condition $M^2=0$ équivaut à $\left\{ \begin{array}{ll} a^2-b^2\det A=0\\ 2ab+b^2\mathrm{tr}\,A=0 \end{array} \right.$ c'est-à-dire à

$$b = a = 0$$
 ou
$$\begin{cases} a = -\frac{b}{2} \operatorname{tr} A \\ b^2 \left(\frac{1}{4} (\operatorname{tr} A)^2 - \det A\right) = 0 \end{cases}$$

soit encore, compte-tenu de l'hypothèse $(\operatorname{tr} A)^2 = 4 \operatorname{det} A$ à $a = -\frac{b}{2} \operatorname{tr} A$.

Conclusion: Si A n'est pas une matrice scalaire et vérifie $(\operatorname{tr} A)^2 = 4 \operatorname{det} A$, les solutions de $M^2 = 0$ dans A sont les matrices de la forme $b\left(\left(-\frac{\operatorname{tr} A}{2}\right)I_2 + A\right)$ avec $b \in \mathbb{R}$. Il existe donc dans A des matrices non nulles de carré nul, donc non inversibles, par conséquent A n'est pas un corps.

6. Par hypothèse, B est une matrice non scalaire de $\mathcal{M}_2(\mathbb{R})$ et il existe $P \in \mathcal{GL}_2(\mathbb{R})$ telle que $B = P^{-1}AP$. On en déduit que A n'est pas non plus scalaire et (I_2, A) est une base de \mathbb{A} . Définissons alors g comme l'unique application linéaire de \mathbb{A} dans \mathbb{B} telle que $g(I_2) = I_2$ et g(A) = B. L'application g est alors bijective car est linéaire et envoie une base de \mathbb{A} sur une base de \mathbb{B} . De plus, on a $\forall M = aI_2 + bA \in \mathbb{A}$, $g(M) = aI_2 + bB = aI_2 + bP^{-1}AP = P^{-1}(aI_2 + bA)P = P^{-1}MP$. On en déduit que si $(M, M') \in \mathbb{A}^2$,

$$g(M)g(M') = P^{-1}MPP^{-1}M'P = P^{-1}MM'P = g(MM')$$

ce qui achève de montrer que g est un isomorphisme d'algèbres. Par suite, $\mathbb A$ et $\mathbb B$ sont deux algèbres isomorphes.

7. Si $(\operatorname{tr} A)^2 > 4 \operatorname{det} A$ le discriminant du polynôme caractéristique de A est strictement positif donc χ_A possède deux racines réelles distinctes i.e. A possède deux valeurs propres réelles distinctes ce qui implique sa diagonalisabilité vu que $A \in \mathcal{M}_2(\mathbb{R})$.

Soit B matrice diagonale semblable à A. D'après la question précédente, \mathbb{A} est isomorphe à $\mathbb{B} = \text{vect}\{I_2, B\}$. Or \mathbb{B} est égal à l'espace $\mathcal{D}_2(\mathbb{R})$ des matrices carrées diagonales d'ordre 2: en effet $\mathbb{B} \subset \mathcal{D}_2(\mathbb{R})$ et $\dim_{\mathbb{R}}(\mathbb{B}) = 2 = \dim_{\mathbb{R}}(\mathcal{D}_2(\mathbb{R}))$ (car $\left(E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$ est une base de $\mathcal{D}_2(\mathbb{R})$).

Dans ce cas, \mathbb{A} n'est pas un corps car si h désigne un isomorphisme de \mathbb{A} sur $\mathbb{B} = \mathcal{D}_2(\mathbb{R})$, $h^{-1}(E_{11})$ et $h^{-1}(E_{22})$ sont deux éléments non nuls de \mathbb{A} dont le produit est nul donc qui sont non inversibles.

II. Quelques résultats généraux

1. Comme D est une algèbre, l'application

$$\pi \quad : \quad \mathbb{D}^2 \quad \to \quad \mathbb{D}$$
$$(x,y) \quad \mapsto \quad xy$$

est bilinéaire : on en déduit que pour tout $a \in \mathbb{D}$, l'application partielle $\phi_a = \pi(a, \cdot)$ est linéaire.

2. \diamond Toujours par bilinéarité de la multiplication dans \mathbb{D} , on a $\forall (a,b) \in \mathbb{D}^2$, $\forall (\lambda,\mu) \in \mathbb{R}^2$,

$$\phi_{\lambda a + \mu b} = \lambda \phi_a + \mu \phi_b$$

Par ailleurs, par associativité de la multiplication dans \mathbb{D} , on a $\forall (a,b) \in \mathbb{D}^2$, $\phi_{ab} = \phi_a \circ \phi_b$. Enfin, par définition de l'élément neutre pour le produit, $\phi_{1_{\mathbb{D}}}$ est l'application identité de \mathbb{D} . On en déduit que l'application

$$\phi : \mathbb{D} \to \mathcal{L}(\mathbb{D}) \\
a \mapsto \phi_a$$

est un morphisme d'algèbres.

Or on sait que, \mathcal{B} étant une base fixée de \mathbb{D} , l'application

$$\mathcal{L}(\mathbb{D}) \to \mathcal{M}_n(\mathbb{R}) \\
 u \mapsto \operatorname{Mat}_{\mathcal{B}} u$$

est un isomorphisme d'algèbres. On en déduit que Ψ est un morphisme d'algèbres comme composée des deux morphismes d'algèbres précédents. De plus, si $\Psi(a)=0$, on a $\phi_a=0_{\mathcal{L}(\mathbb{D})}$ et, en particulier $a=\phi_a(1_{\mathbb{D}})=0$ donc Ψ est injectif.

- \diamond Comme Ψ est un morphisme d'algèbres, $\Psi(\mathbb{D})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ ce qu'on peut redémontrer très facilement comme le réclame l'énoncé. Dans ces conditions, Ψ induit un isomorphisme de \mathbb{D} sur $\Psi(\mathbb{D})$ donc \mathbb{D} est isomorphe à la sous-algèbre $\Psi(\mathbb{D})$ de $\mathcal{M}_n(\mathbb{R})$.
- 3. Si $\mathbb{D} = \mathbb{C}$ et z = a + ib, $\phi_z(1) = z = a + ib$ et $\phi_z(i) = (a + ib)i = -b + ia$ donc si $\mathcal{B} = (1, i)$,

$$\operatorname{Mat}_{\mathcal{B}}(\phi_z) = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)$$

- 4. (a) Soit $A \in \mathbb{A} \subset \mathcal{M}_n(\mathbb{R})$ qui possède une valeur propre réelle λ et n'est pas une matrice scalaire. Alors $A \lambda I_n$ appartient à \mathbb{A} (car \mathbb{A} est stable par combinaisons linéaires et contient A et I_n), $A \lambda I_n$ est non inversible (car λ est valeur propre de A) et n'est pas la matrice nulle (car A n'est pas scalaire) ce qui prouve que \mathbb{A} n'est pas un corps.
 - (b) Toute matrice trigonalisable (a fortiori diagonalisable) de $\mathcal{M}_n(\mathbb{R})$ a un polynôme caractéristique scindé sur \mathbb{R} donc possède au moins une valeur propre réelle. Par suite, d'après (a), si \mathbb{A} contient une matrice non scalaire trigonalisable, \mathbb{A} n'est pas un corps.
 - (c) On suppose \mathbb{A} intègre et $A \in \mathbb{A} \setminus \{0\}$. D'après 1., on sait que $\Phi_A : X \mapsto AX$ est un endomorphisme de \mathbb{A} . De plus, \mathbb{A} étant intègre et A étant non nulle, $\operatorname{Ker} \phi_A = \{0\}$ donc ϕ_A est injectif. Comme ϕ_A est un endomorphisme d'un espace vectoriel de dimension finie, on en déduit que ϕ_A est un isomorphisme. En particulier, ϕ_A est surjective donc il existe $B \in \mathbb{A}$ telle que $\phi_A(B) = I_n$. La matrice A possède donc un inverse à droite, donc est inversible d'inverse B appartenant à \mathbb{A} . Tout élément non nul de \mathbb{A} possède donc un inverse dans \mathbb{A} donc \mathbb{A} est un corps.

III. L'algèbre des quaternions

- 1. Comme $A^2 = -I_n$, on a $(\det A)^2 = (-1)^n \in \mathbb{R}^+$ donc n est pair.
- 2. Remarquons que $(AB)^2 = A(BA)B = A(-AB)B = -A^2B^2 = -I_n$, $BAB = -AB^2 = A$ et $ABA = -A^2B = B$. On en déduit que si $M = tI_n + xA + yB + zAB$ et $M' = t'I_n + x'A + y'B + z'AB$ sont deux éléments de \mathbb{H} ,

$$MM' = (tt' - xx' - yy' - zz')I_n + (tx + xt' + yz' - zy')A + (ty' - xz' + yt' + zx')B + (tz' + xy' - yx' + zt')AB$$

ce qui montre que \mathbb{H} est stable pour le produit ce qui ajouté au fait qu'il est un sous-espace vectoriel contenant I_n prouve que \mathbb{H} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

3. D'après 2.,

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = (t^2 + x^2 + y^2 + z^2)I_n$$

4. (a) Si $(t, x, y, z) \in \mathbb{R}^4$ sont tels que $tI_n + xA + yB + zAB = 0$ alors

$$(t^2 + x^2 + y^2 + z^2)I_n = (tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = 0$$

donc $t^2 + x^2 + y^2 + z^2 = 0$ ce qui, vu que t, x, y, z sont réels impose t = x = y = z = 0. La famille (I_n, A, B, AB) est donc libre.

- (b) Si M est un élément non nul de \mathbb{H} on a donc $M = tI_n + xA + yB + zAB$ avec $(t, x, y, z) \in \mathbb{R}^4 \setminus \{0\}$ donc M est inversible d'inverse $\frac{1}{t^2 + x^2 + y^2 + z^2}(tI_n xA yB zAB)$ appartenant à \mathbb{H} donc \mathbb{H} est un corps.
- 5. (a) On a $J^2 = -I_2$ et d'après les régles de calcul des produits de matrices par blocs,

$$A^{2} = \begin{pmatrix} J^{2} & 0 \\ 0 & J^{2} \end{pmatrix} = -I_{4}, B^{2} = \begin{pmatrix} -I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix} = -I_{4}$$
$$AB + BA = \begin{pmatrix} 0 & -J \\ -J & 0 \end{pmatrix} + \begin{pmatrix} 0 & J \\ J & 0 \end{pmatrix} = 0$$

6. Comme A, B et C = AB sont antisymétriques, si $M = tI_n + xA + yB + zC \in \mathbb{H}$, ${}^tM = tI_n - xA - yB - zC \in \mathbb{H}$ et d'après 3., $M.{}^tM = (t^2 + x^2 + y^2 + z^2)I_4$. On en déduit donc que $(\det M)^2 = (t^2 + x^2 + y^2 + z^2)^4$. Si $M \neq 0$, on a donc d'après 4.(b),

$$M^{-1} = \frac{1}{\sqrt{|\det M|}} {}^t M$$

IV. Les automorphismes de l'algèbre des quaternions

- 1. Si $(t, x, y, z) \in \mathbb{R}^4$ et $M = tI_n + xA + yB + zC$, $M + {}^tM = 2tI_n$ donc $M = -{}^tM$ si et seulement si t = 0 ou encore $M \in \text{vect}\{A, B, C\}$. Or (A, B, C) est une famille libre car sous-famille de la famille libre (I_4, A, B, C) . Donc l'ensemble des quaternions purs est le sous-espace vectoriel engendré par (A, B, C) et a pour base (A, B, C). \mathbb{L} n'est pas une sous-algèbre de \mathbb{H} car, par exemple $A.A = -I_2 \notin \mathbb{L}$ alors que $A \in \mathbb{L}$.
- 2. Soit M = xA + yB + zC et N = x'A + y'B + z'C deux éléments de \mathbb{L} . Comme (A, B, C) est une base orthonormée pour le produit scalaire $(\cdot | \cdot)$, on a (M|N) = xx' + yy' + zz'. Par ailleurs, d'après III.3.,

$$MN + NM = (-xx' - yy' - zz')I_4 + (yz' - zy')A + (-xz' + zx')B + (xy' - yx')C + (-x'x - y'y - z'z)I_4 + (y'z - z'y)A + (-x'z + z'x)B + (x'y - y'x)C$$
$$= -2(xx' + yy' + zz')I_4$$

On a donc $\frac{1}{2}(MN + NM) = -(M|N)I_4$.

3. \diamond D'après 2., si $M \in \mathbb{L}$, $M^2 = \lambda I_4$ avec $\lambda = -\|M\|^2 \in \mathbb{R}^-$. \diamond Réciproquement, soit $M = tI_4 + xA + yB + zC \in \mathbb{H}$ telle que $M^2 = \lambda I_4$ avec $\lambda \in \mathbb{R}^-$. Alors, d'après III.2.,

$$M^{2} = (t^{2} - x^{2} - y^{2} - z^{2})I_{4} + 2txA + 2tyB + 2tzC$$

donc $\begin{cases} tx = ty = tz = 0 \\ t^2 - x^2 - y^2 - z^2 \in \mathbb{R}^- \end{cases}$. Ces conditions imposent t = 0 car sinon x = y = z = 0 et alors $t^2 - x^2 - y^2 - z^2 = t^2 > 0$. Donc si $M \in \mathbb{H}$ est telle que $M^2 = \lambda I_4$ avec $\lambda \in \mathbb{R}^-$, alors $M \in \mathbb{L}$.

- 4. Soit ϕ un isomorphisme de l'algèbre $\mathbb H$ dans elle-même. Si $M \in \mathbb L$, on a $M^2 = -\|M\|^2 I_4$ donc $\phi(M)^2 = \phi(M^2) = -\|M\|^2 \phi(I_4) = -\|M\|^2 I_4$. On en déduit d'après 3. que $\phi(M) \in \mathbb L$. Dans ces conditions $\phi(M)^2 = -\|\phi(M)\|^2 I_4$ donc $-\|\phi(M)\|^2 = -\|M\|^2$ soit $\|\phi(M)\| = \|M\|$. Donc ϕ transforme tout quaternion pur en un quaternion pur de même norme. L'endomorphisme induit par ϕ sur $\mathbb L$ conserve la norme donc conserve également le produit scalaire donc est un endomorphisme orthogonal de $\mathbb L$.
- 5. (a) Si M et N sont deux quaternions purs de même norme colinéaires, on a ou bien M = N ou bien M = -N.
 Si M = N la matrice P = I₄ vérifie P ∈ ℍ, P ≠ 0 et M = P⁻¹NP.
 Si N = -M la condition M = P⁻¹NP équivaut à PM + MP = 0. Dans ces conditions il suffit de prendre pour P une matrice non nulle appartenant à l'orthogonal de vect {M} dans L : une telle matrice existe bien puisque (vect {M})[⊥] est un plan vectoriel de L et si P ∈ (vect {M})[⊥] \ {0}, PM + MP = -(P|M)I₄ = 0.
 - (b) On suppose que M et N sont deux quaternions purs de même norme, non colinéaires. Alors

$$M(MN) - (MN)N = M^2N - MN^2 = (-\|M\|^2 I_4)N - M(-\|N\|^2 I_4) = \|M\|^2 (M - N)$$

On a donc $M(MN - ||M||^2 I_4) = (MN - ||M||^2 I_4)N$. Dans ces conditions, si on pose $P = MN - ||M||^2 I_4$, on a MP = PN, $P \in \mathbb{H}$ et $P \neq 0$ car sinon on aurait $MN = ||M||^2 I_4 = -M^2$ ou encore M(N+M) = 0 donc M+N=0 (M est inversible car élément non nul de \mathbb{H}) ce qui est contradictoire avec le fait que la famille (M, N) soit libre. Comme P est un élément non nul de \mathbb{H} , P est inversible et $M = PNP^{-1}$.

- 6. Telle qu'elle est formulée cette question est incorrecte ; en effet, sous la seule condition d'être non nulle et de vérifier MP = PN une matrice $P = \alpha I_4 + Q$ avec $Q \in \mathbb{L}$ n'est pas nécessairement telle que Q soit orthogonale à M et N (contre-exemple $P = 0I_4 + Q$ avec Q = M + N vérifie MP = PN (si M et N sont deux éléments de même norme de \mathbb{L}), est élément de \mathbb{L} , est non nulle et, en général, M + N n'est pas orthogonale à M). Par contre, pour la matrice P mise en évidence dans chacun des 3 cas envisagés, on a bien la propriété souhaitée. En effet, dans le cas où M = N, on a choisi $P = I_4$ soit Q = 0 qui est bien orthogonale à M = N, si M = -N, on a choisi $P = 0I_4 + Q$ avec Q orthogonale à M et N. Enfin, lorsque M et N sont linéairement indépendantes, la matrice $P = MN \|M\|^2 I_4$ se décompose en $\alpha I_4 + Q$ avec $Q = \frac{1}{2}(MN NM) \in \mathbb{L}$ (en effet, Q est nécessairement la partie antisymétrique de la matrice P à savoir $\frac{1}{2}(P {}^tP)$ or ${}^t(MN) = {}^tN^tM = (-N)(-M) = NM$). De plus, $Q = \frac{1}{2}(MN NM)$ est bien orthogonale à M et N car, par exemple $-4(Q|M)I_4 = (MN NM)M + M(MN NM) = -NM^2 + M^2N$ qui est bien la matrice nulle car $M^2 = -\|M\|^2 I_4$.
- 7. Remarquons tout d'abord que $\forall P \in \mathbb{H} \setminus \{0\}$, l'application ϕ_P de \mathbb{H} dans lui-même qui à M associe $P^{-1}MP$ est un isomorphisme de l'algèbre \mathbb{H} . En effet, ϕ_P est bien une application de \mathbb{H} dans \mathbb{H} puisque \mathbb{H} est un corps, ϕ_P est linéaire par bilinéarité du produit dans \mathbb{H} , $\phi_P(I_4) = P^{-1}I_4P = I_4$ et $\phi_P(M)\phi_P(N) = (P^{-1}MP)(P^{-1}NP) = P^{-1}MNP = \phi_P(MN)$ pour tout

couple $(M, N) \in \mathbb{H}^2$. Enfin, ϕ_P est bien bijective, de bijection réciproque égale à $\phi_{P^{-1}}$.

Remarquons également qu'un morphisme de l'algèbre H est entièrement déterminé par les images de A et de B: en effet, si ϕ est un morphisme de l'algèbre \mathbb{H} , on a pour tout $(t, x, y, z) \in$ \mathbb{R}^4 , $\phi(tI_4 + xA + yB + zC) = tI_4 + x\phi(A) + y\phi(B) + z\phi(A)\phi(B)$.

Soit ϕ un isomorphisme de l'algèbre \mathbb{H} .

Premier cas. Etudions tout d'abord le cas où $\phi(A) = A$. On recherche donc $P \in \mathbb{H} \setminus \{0\}$ telle que $P^{-1}AP = A$ et $P^{-1}BP = \phi(B)$. D'après 4., on sait que $\phi(B)$ est un quaternion pur de norme 1 et orthogonal à $\phi(A) = A$ donc il existe $\theta \in \mathbb{R}$ tel que $\phi(B) = \cos \theta B + \sin \theta C$. La question 6. nous incite à chercher P sous la forme $P = \alpha I_4 + \beta A$. Dans ces conditions, P commute avec A donc $P^{-1}AP = A$ et

$$BP - P\phi(B) = (\alpha(1 - \cos\theta) + \beta\sin\theta)B - (\beta(1 + \cos\theta) + \alpha\sin\theta)C$$

donc on cherche (α, β) solution de

$$\begin{cases} \alpha(1 - \cos \theta) + \beta \sin \theta = 0 \\ \alpha \sin \theta + \beta(1 + \cos \theta) = 0 \end{cases}$$

c'est-à-dire solution de $\alpha \sin \frac{\theta}{2} + \beta \cos \frac{\theta}{2} = 0$. Posons donc par exemple, $P = \cos \frac{\theta}{2} I_4 - \sin \frac{\theta}{2} A$. On a alors $P \in \mathbb{H} \setminus \{0\}$, $P^{-1}AP = A = \phi(A)$ et $P^{-1}BP = \phi(B)$ et donc d'après les deux remarques, $\forall M \in \mathbb{H}, \phi(M) = P^{-1}MP$.

Cas général. Soit ϕ un isomorphisme de l'algèbre \mathbb{H} . Alors, d'après 4., on sait que $\phi(A)$ est un quaternion pur de même norme que A donc d'après 5., il existe $Q \in \mathbb{H} \setminus \{0\}$ telle que $A = Q^{-1}\phi(A)Q$. Si ϕ_Q désigne l'application de \mathbb{H} dans \mathbb{H} telle que $\phi_Q(M) = Q^{-1}MQ$, alors $\phi_Q \circ \phi$ est un isomorphisme de l'algèbre \mathbb{H} tel que $\phi_Q \circ \phi(A) = A$ donc d'après le premier cas étudié, il existe $R \in \mathbb{H} \setminus \{0\}$ tel que pour tout M de \mathbb{H} , $\phi_Q \circ \phi(M) = R^{-1}MR$. En posant $P = RQ^{-1}$, on a $P \in \mathbb{H} \setminus \{0\}$ et pour tout M de \mathbb{H} , $\phi(M) = P^{-1}MP$.