|     | @ <del>*</del>                                                                                               | ⊙ <i>*</i>                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|     | Differentiation Roles                                                                                        | Denuatives:                                                                                 |
|     | Let F, g be two differentiable functions and                                                                 | Def: The derivative of the function fine with respect to the varidle x is the function      |
|     | c any real numbers                                                                                           | P' whose value at x is                                                                      |
| 0   | dr (c)=0 and dex)=1                                                                                          |                                                                                             |
|     |                                                                                                              | P'(x) = lim P(x+h)-P(x), if the limit exists.                                               |
| T   | $\frac{d}{dx}(x) = nx^{n-1}$                                                                                 |                                                                                             |
| (3) | $\frac{d}{dx}(c, f(x)) = c. \frac{df}{dx}$                                                                   | * The derivative of F may denote by the                                                     |
| (9) | dx (C. tax)) = dx                                                                                            | P'(x), y' dP dy d(P(x)) () x(y)                                                             |
| 4   | dx (fix) = g(x)) = df(x) = d(g(x))                                                                           | Following of the notation  Fix), y de dy d(frow) () (y)  eg y = sinx find do by definition? |
| 6   | d (fix) gixi) = fix) d (gixi)+gixi dfix)                                                                     | $f'(x) = \lim_{h \to c} \frac{f(x+h) - f(x)}{h}$                                            |
|     | 2 f. g' + g. f'                                                                                              | s lim Sin(x+h) sin - Sinx                                                                   |
| 6   | $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{d}{dx}\left(f(x)\right) - \frac{d}{dx}\left(g(x)\right)$ |                                                                                             |
|     | (303)                                                                                                        | s lim Sinx Cosh + Cosx Sinh - Sinx                                                          |
|     | 3. p' - f. 8,                                                                                                | s lim Sinx (cosh-1) + lim Cosk Sinh                                                         |
|     | 92                                                                                                           |                                                                                             |
| · · |                                                                                                              | s lim sinx lim Cosh - 1 slim Cosh slim Sinh                                                 |
|     | · ·                                                                                                          | · S Cosn                                                                                    |
|     |                                                                                                              | P is Called differentiable if f'(x) exists, Vx ED,                                          |
|     |                                                                                                              |                                                                                             |
|     |                                                                                                              |                                                                                             |

| 4                                                                                                                             | 4         | <b>③</b> ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inverse Trig. Functions                                                                                                       | <u> </u>  | Derivatives of Exponential and Logarithm Innetions of fix) = fix) + fix) 1 = fix) = \$\frac{2}{3}\cdot = 5\frac{2}{3}\cdot \frac{2}{3}\cdot = 5\frac{2}{3}\cdot = 5\fra |
| $0 d (Sin x) = \frac{1}{\sqrt{1-x^2}} 0 d (\cos^2 x) = \frac{1}{\sqrt{1-x^2}}$                                                |           | d. f(x) f(x) lna pf(x) /e.g. f(x)= & }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                               |           | P(x) = 9x2  n e , 2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| G d $(cs'x) = -1$ G d $(cot'x) = -1$ $dx$                                                                                     |           | $\frac{d}{dx}\left(\ln f(x)\right) = \frac{1}{f(x)} * f(x) / \frac{e.s}{2} f(x) = \ln 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Find dy for the following functions.                                                                                          | <u>(4</u> | dx (log f(x)) = (ln(f(x))) = 1 x 1 x (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $0  f(x) = \sqrt{x} \implies f'(x) = \frac{dy}{dx} = \frac{1}{2} x^{\frac{1}{2} - \frac{1}{2}} = \frac{1}{2} x^{\frac{1}{2}}$ | √z        | $f(x) = \log x^2 \qquad f(x) = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $(2) f(x) = \ln (e^{2} + \sin^{2} x)$                                                                                         |           | Derivative of Trig. Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $p_{(x)}^{1} = e^{x} + \cos x^{2}(zx) = e^{x} + zx \cos x^{2}$ $(e^{x} + \sin x^{2}) \qquad e^{x} + \sin x^{2}$               |           | $\frac{d}{dx}(\sin x) = \cos x \qquad \textcircled{2} \qquad d(\cos x) = \sin x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * (Sin'z = (Sinx) )                                                                                                           | 3         | dx (Secx) = Sec xtanx (2) d (tanx) = Sec x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               | <b>9</b>  | d (cscx) = -cscxcotx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3) y= Ces (3x2)                                                                                                               | (6)       | $\frac{d}{dx}(\cot x) = -cx^2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| y' = -6x -6x -6x -6x -6x -6x                                                                                                  |           | dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\bigoplus$ $\mathbf{v} = \mathbf{v} \cdot (\frac{1}{2})$                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Rightarrow y' = \frac{-1}{2} \left( \text{discuss} \right)  \Rightarrow \hat{y}'(x) = \frac{1}{2} \cdot -2^{-2}$            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| = 1/2.                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

 $\hat{b}$   $f(x) = \frac{x}{3} \Rightarrow f(x) = \frac{x}{3} | n(3) (1)$ ( y = 2 + Sinx y = 2 + Sinz / (2) (2 + Cosz = (e+(osx)) n(2). 2  $\Rightarrow y^{2} = \frac{2x}{(x^{2}+1)} + \frac{3(x+1)^{2}}{(x+1)^{2}} \Rightarrow y^{2} = \frac{2x}{(x^{2}+1)} + \frac{3}{(x+1)^{2}}$  $\Rightarrow 0 = \frac{1}{\sin x^2} \left( (\cos x^2) (2x) - \frac{2x (\cos x^2)}{\sin x^2} + 2x (\cot x^2) \right)$ @ H-10 y= 23+1 y=2 Insinx J= Cose + Sinlnz2 @ It fix - 1x-2 , x >2 find (y' by def.)  $P(x) = \int_{Dx \to c} \sqrt{x + Dx} - 2 - \sqrt{x - 2} \int_{Ax + Dx - 2} + \sqrt{x - 2}$ 



ey J= case use chain rule to findy We have y = Cosx = (Cosx) let u = Cosx , y=u2 du = sinx 3 dy = 24 = 24 (-Sinx) = - 94 Sinx - - 2 COSX Sinx Hw by chain rule find & for y= Cosx Implicit Differentiation This method is a special case of the chain rule. Using this, we need to differentiate both of the equation with respect to x and then solving the resulting eg, for y' e.  $y = x^2 + y^2 = 16 \Rightarrow \frac{d}{dx} (x^2 + y^2) = \frac{d}{dx} (16)$ 22+249=0 => 4=-2 4.0 23 + y3 = 4xy , Cos (x+y) = y sinx





**Thank You**