Zusammenfassung der Definitionen im Skript

Matrizen und lineare Abbildungen

- Matrix: Eine $m \times n$ Matrix A ist eine Anordnung reeller Zahlen in m Zeilen und n Spalten.
- Lineare Abbildung: Eine Abbildung $a: \mathbb{R}^m \to \mathbb{R}^n$ definiert durch $a(x) = A \cdot x$ für eine Matrix $A \in \mathbb{R}^{n \times m}$ heißt lineare Abbildung.

Orthogonale Matrizen und Gruppen

- Orthogonale Matrix: Eine Matrix $A \in M(n, n, R)$ heißt orthogonal, wenn gilt $A^{-1} = A^{T}$.
- Orthogonale Gruppe: Die Menge aller orthogonalen $n \times n$ Matrizen wird als die orthogonale Gruppe bezeichnet und ist algebraisch abgeschlossen unter Matrixmultiplikation.

Eigenwerte und Eigenvektoren

- **Eigenvektor:** Ein Vektor $v \neq 0$ heißt Eigenvektor einer Matrix A, wenn es ein $\lambda \in \mathbb{R}$ gibt, sodass $Av = \lambda v$.
- **Eigenwert:** Der Skalar λ in der obigen Gleichung heißt Eigenwert von A.

Vektorräume

• Vektorraum: Ein Vektorraum über einem Körper K ist eine Menge V zusammen mit zwei Operationen (Vektoraddition und Skalarmultiplikation), die bestimmten Axiomen genügen (z.B. Kommutativität und Assoziativität der Addition, Distributivität, usw.).

Mehr zu linearen Abbildungen in Vektorräumen

• Lineare Abbildungen zwischen Vektorräumen respektieren die Vektorraumstruktur, das heißt, sie sind mit Addition von Vektoren und Skalarmultiplikation verträglich.