$140x \equiv 56 \mod 252$

There is solution exist because GCD(140, 252) = 28 that divides 56. There are 28 number of solutions each separated by 252/28 or 9.

Solution:

 $140x \equiv 56 \mod 252$

 $28.5x \equiv 28.2 \mod 28.9$

 $5x \equiv 2 \mod 9$

 $5.2x \equiv 2.2 \mod 9$ (multiplied by 2 because 5 is relatively prime to 9 and has an inverse to 1 mod 9, $5.2 \equiv 10 \equiv 1 \mod 9$)

 $x \equiv 4 \mod 9$

So the solutions are: 4, 13, 22, 31....

 $14x \equiv 12 \mod 18$

There is solution exist because GCD(14, 18) = 2 that divides 12.

There are 2 number of solutions each separated by 18/2 or 9.

Solution:

 $14x \equiv 12 \mod 18$

 $2.7x \equiv 2.6 \mod 2.9$

 $7x \equiv 6 \mod 9$

 $7.4x \equiv 6.4 \mod 9$ (multiplied by 4 because 7 is relatively prime to 9 and has an inverse to 1 mod 9, $7.4 \equiv 28 \equiv 1 \mod 9$)

 $x \equiv 6 \mod 9$

So the solutions are: 6, 15

Find all integers x such that 0 < x < 21 and $4x + 9 \equiv 13 \mod 21$.

Solution:

- $4x + 9 \equiv 13 \mod 21$
- $16.4x + 16.9 \equiv 16.13 \mod 21$ (Multiplied by 16)
- $x + 16.9 \equiv 16.13 \mod 21$ (Because $16.4 \equiv 1 \mod 21$)
- $x \equiv (13-9)16 \mod 21$
- $x \equiv 16.4 \mod 21$
- $x \equiv 64 \mod 21$
- $x \equiv 1 \mod 21$

Find all integers x and y such that 0 < x < 21, 0 < y < 21, $x + 2y \equiv 4 \mod 21$ and $3x - y \equiv 10 \mod 21$.

Solution:

We eliminate y in order to solve for x first.

 $3x - y \equiv 10 \mod 21$

 $6x - 2y \equiv 20 \mod 21 \text{ (Multiplied by 2).....(I)}$

 $x + 2y \equiv 4 \mod 21 \dots (II)$ (I) + (II)

 $7x \equiv 24 \mod 21$

 $7x \equiv 3 \mod 21$

 $7.3x \equiv 3.3 \mod 21$ (Multiplied by 3) $0 \times 29 \mod 21$ (Because $7.3 \equiv 0 \mod 21$)

But this is false. Therefore there is no solution exist for *x* and consequently no solutions for *y*.

Let a, b, c, m be four positive integers with m > 1. Assume that a has an inverse modulo m. Prove that if each of b and c is an inverse of a modulo m then we have: $b \equiv c \mod m$.

Solution 1 Let us assume that each of b and c is an inverse of a modulo m.

Thus, we have

 $ab \equiv 1 \mod m$ and $ac \equiv 1 \mod m$.

This implies

 $ab \equiv ac \mod m$.

That is:

 $a(b-c) \equiv 0 \mod m$.

In other words, m divides a (b-c). Since a has an inverse modulo m, we have: GCD(a, m) = 1.

Therefore, m divides b - c, that is:

 $b \equiv c \mod m$.

Find s, t, and gcd(a, b) such that s a + t b = gcd(a, b) holds in the following cases: 1. a = 2 and b = 3,

2. a = 11 and b = 12,

3. a = 12 and b = 15, 4. a = 3 and b = 7,

Solution

1. -1.2 + 1.3 = 1 = gcd(a, b), 2. -1. 11 + 1. 12 = 1 = gcd(a, b),

3. -1.12 + 1.15 = 3 = gcd(a, b),

4. -2.3 + 1.7 = 1 = gcd(a, b),

DNA and genomes

A gene (DNA) can be abstractly represented as a string with elements from the alphabet $\Sigma = \{A, T, C, G\}$ e.g.

AGTCTCCATGAAGCACGTTTAC...

- A Adenine
- Thymine
- C Cytosine
- G Guanine

Consider all *genes* (strings with $\Sigma = \{A, T, C, G\}$) of length 10.

- 1. How many genes begin with AGT?
- 2. How many genes begin with AG and end with TT?
- 3. How many genes begin with AG or end with TT?
- 4. How many genes have exactly four A's?

Solution 2

- 1. Each of the 7 remaining characters need to be chosen from 4, leading to 4^7 genes.
- 2. Each of the 6 remaining characters need to be chosen from 4, leading to 4⁶ genes.
- 3. We apply the subtraction rule: $4^8 + 4^8 4^6$.
- 4. We apply the product rule:
- choose where to place the A's:
- choose the 6 remaining charact $\binom{10}{4}$ rom {*T, C, G*}: 3^6 So the answer is: $\binom{10}{4}$ * 3^6

RSA Algorithm Step by Step

- 1. Select two prime numbers p and q where $p \neq q$
- 3. Calculate f(n) = (p-1)(q-1)

2. Calculate n = p * n

- 4. Select e such that e is relatively prime to f(n), i.e. gcd(e, f(n))=1
- 5. Calculate $d = e^{-1} \mod f(n)$ or $ed = 1 \mod f(n)$
- p = 13, q = 11
- n = 13 * 11 = 143
- f(n) = (13-1)(11-1) = 120Let e=13 because gcd(13, 120) = 1
- $ed = 1 \mod 120$
- $13d = 1 \mod 120 (\gcd(13, 120) = 1, \text{ there is only one solution})$ 13.37d = 37 mod 120 (13*37 = 480 = 1 mod 120)
- $d = 37 \mod 120 = 37$ Let plain text X = 13
- Encryption: $E = X^e \mod n = 13^{13} \mod 143 = 52$ Decryption: $P = E^d \mod n = 52^{37} \mod 143 = 13$