Práctica 3: Corriente alterna y factor de potencia

Instrucciones

- Esta práctica consta de una parte teórica y una parte práctica a realizar en el laboratorio. Es **OBLIGATORIO** resolver la parte teórica antes de venir a la práctica.

Objetivos

- Introducir al alumno en la corriente alterna, de modo que pueda conocer y comprender todos los conceptos básicos de este tipo de excitación.
- Aprender conceptos como bobina, condensador, reactancia, impedancia, factor de potencia y ángulo de desfase (conocido simplemente como desfase).
- Familiarizar al alumno con los conceptos de potencia activa, reactiva y aparente, así como aprender a calcularlas.
- Conocer el vatímetro y cómo usarlo para obtener el factor de potencia.

Ejercicios teóricos

Ejercicio 3-1

Sabiendo que f=50 [Hz], W=100 [W], V=230 [V] y A=0.5 [A] completa la tabla e indica si el factor de potencia de la carga es inductivo o capacitivo

Factor de potencia de la carga	
Resistencia $R [\Omega]$	
Inductancia L [mH]	

Ejercicio 3-2

Calcula la capacidad del condensador C que conectada en paralelo con la carga da lugar a un factor de potencia unidad. Calcula los nuevos valores de W y A.

Capacidad del condensador C [μ F]	
Nuevo valor W [W]	
Nuevo valor A [A]	

Ejercicio 3-3

¿Cuál es la capacidad equivalente de dos condensadores de 5 $\mu {\rm F}$ conectados en paralelo?

Capacidad equivalente C_{eq} [μ F]	
---	--

Aparatos

Fuente de tensión en alterna

En esta práctica usaremos una fuente de tensión sinusoidal de valor eficaz de 230 V y 50 Hz. Esto es básicamente lo mismo que tienes en cualquier enchufe de tu casa. Para ello tienes que conectar los terminales a dos fases distintas. Hay que tener máxima precaución al trabajar con corriente alterna, así que nunca toques ningún elemento del circuito con la fuente de tensión activada.

Vatímetro

El vatímetro que vamos a usar en esta práctica sirve para medir tensión, intensidad y potencia en corriente alterna.

Reostato

Un reostato es una resistencia de valor variable.

Bobina y condensador

En esta práctica usaremos la bobina real y el condensador ideal de la figura de abajo.

Ejercicios prácticos

Ejercicio 3-4

Usa un polímetro para ajustar el valor del reostato a 100Ω .

Ejercicio 3-5

Para la realización de este ejercicio sigue atentamente las intrucciones:

- 1. Con el vatímetro sin conectar, selecciona la posición para medir potencia. Usa el calibre para ajustar el indicador a 0.00
- 2. Asegúrate de que la fuente de tensión está desconectada
- 3. Haz el siguiente montaje con el reostato ajustado a 100Ω

- 4. Conecta la fuente de tensión
- 5. Usa el vatímetro para medir la tensión, la intensidad y la potencia y rellena la siguiente tabla

Tensión fuente V_G [V]	
Intensidad [A]	
Potencia [W]	

6. Usa el polímetro para medir la tensión en la bobina y en el reostato

Tensión bobina V_L [V]	
Tensión reostato V_R [V]	

- 7. Desconecta la fuente de tensión
- 8. Usando las medidas anteriores, calcula el factor de potencia de la carga formada por el reostato y la bobina.

Factor de potencia

9. El montaje realizado se puede representar con el siguiente circuito, donde W, V_G y A se corresponden con las medidas realizadas en el paso 5, V_L , V_R se corresponden con las medidas del apartado 6 y la conexión en serie de R y L representan la bobina real utilizada en la práctica. ¿Se cumple que $V_G = V_R + V_L$? Justifica tu respuesta.

Ejercicio 3-6

Usando las medidas anteriores, calcula el valor del condensador C (conectado en paralelo con la fuente según la figura) para elevar el factor de potencia de toda la carga a la unidad.

Ejercicio 3-7

Para la realización de este ejercicio sigue atentamente las intrucciones:

- 1. Con el vatímetro sin conectar, selecciona la posición para medir potencia. Usa el calibre para ajustar el indicador a 0.00
- 2. Asegúrate de que la fuente de tensión está desconectada
- 3. Haz el siguiente montaje con el reostato ajustado a 100Ω y con un condensador de 4μ F. Después haz el mismo montaje con un condensador de 12μ F.

4. Completa la siguiente tabla indicando en cada caso si el factor de potencia es inductivo o capacitivo. Compara la intensidad sumistrada por la fuente en cada caso. ¿Cuál es más grande y por qué?

	Sin condensador	$C = 4\mu F$	$C = 12\mu F$
Tensión [V]			
Intensidad [A]			
Potencia [W]			
Factor de potencia			