



# **Modellbildung und Simulation**

Klausurvorbereitung: Modelle mit konzentrierten Parametern

M.Sc. Shirui Ouyang

INSTITUT FÜR FAHRZEUGSYSTEMTECHNIK | TEILINSTITUT MOBILE ARBEITSMASCHINEN Institutsleiter: Prof. Dr.-Ing. Marcus Geimer





■ **Stromgrößen** f: Größen, die an einer der Klemmen hineinfließen, z.B.: Geschwindigkeit, Drehgeschwindigkeit, Volumenstrom, elektrischer Strom. Zur Bildung der Energie bzw. Arbeit sind integrierte Größen erforderlich.

|                                                      | $\underline{\mathbf{Mechanik}}$                       |                                                                                                                                   | Hydraulik                                                        | Elektrotechnik                                        |
|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| S-                                                   | Translation                                           | Rotation                                                                                                                          |                                                                  |                                                       |
| Zustands- und Kraftgrößen                            |                                                       |                                                                                                                                   |                                                                  |                                                       |
| Potential<br>differenz $\boldsymbol{e}$              | Kraft $F = \frac{\mathrm{d}p}{\mathrm{d}t}$           | Moment $M = \frac{\mathrm{d}L}{\mathrm{d}t}$                                                                                      | Druckdifferenz $\Delta p = \frac{\mathrm{d}\Gamma}{\mathrm{d}t}$ | el. Spannung $U = \frac{\mathrm{d}\Phi}{\mathrm{d}t}$ |
| $oxed{	ext{Stromgröße}} f$                           | Geschwindigkeit $v = \frac{\mathrm{d}u}{\mathrm{d}t}$ | Drehgeschwindigkeit $\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t}$                                                              | Durchfluss $\psi = \frac{\mathrm{d}V}{\mathrm{d}t}$              | el. Stromstärke $I = \frac{\mathrm{d}Q}{\mathrm{d}t}$ |
| int. Potential<br>differenz<br>$\boldsymbol{p}$      | Impuls $p = mv$                                       | Drall $L=J\omega$                                                                                                                 | Druckimpuls $\Gamma = L_H \psi$                                  | magn. Fluss $\Phi = LI$                               |
| int. Stromgröße $oldsymbol{q}$                       | Verschiebung $\boldsymbol{u}$                         | Winkel $\varphi$                                                                                                                  | Volumen $V$                                                      | Ladung $Q$                                            |
| Kennlinien                                           |                                                       |                                                                                                                                   |                                                                  |                                                       |
| Widerstand $e = F(f)$                                | Dämpfer $k: F = kv$                                   | Drehdämpfer $k_D: M = k_D \omega$                                                                                                 | Ström.wid. $R_H:\Delta p=R_H\psi$                                | Widerstand $R: U = RI$                                |
| Speicher $e = F(q)$                                  | Nachg.keit $h: F = \frac{1}{h}u$                      | Nachg.keit $h_D: M = \frac{1}{h_D} \varphi$                                                                                       | hydr. Kap. $C_H:\Delta p=\frac{1}{C_H}V$                         | Kapazität $C: U = \frac{1}{C}Q$                       |
| Arbeit und Energie                                   |                                                       |                                                                                                                                   |                                                                  |                                                       |
| kin. Energie $T = \int \mathbf{f} \cdot d\mathbf{p}$ | $T = \int v \cdot dp = \frac{1}{2m} p \cdot p$        | $T = \int \boldsymbol{\omega} \cdot \mathrm{d}  \boldsymbol{L} = \frac{1}{2} \boldsymbol{L}^T \boldsymbol{J}^{-1} \boldsymbol{L}$ | $T = \int \psi  \mathrm{d}  \Gamma = \frac{1}{2L_H} \Gamma^2$    | $T = \int I  \mathrm{d}  \Phi = \frac{1}{2L} \Phi^2$  |
| Arbeit $W = \int e \cdot dq$                         | $W = \int F \cdot \mathrm{d} u = \frac{1}{2h} u^2$    | $W = \int M \cdot \mathrm{d}\varphi = \frac{1}{2h_D}\varphi^2$                                                                    | $W = \int \Delta p  \mathrm{d}  V = \frac{1}{2C_H} V^2$          | $W = \int U  \mathrm{d}  Q = \frac{1}{2C} Q^2$        |





- Kopplungsbeziehung: durch die zwei Teilsystemen verknüpft und die unnötige Stromgrößen eliminiert werden können.
  - $\lor$  V = x\*A (hydro. mech.)
  - Q = Vth\*n (hydro. mech)
  - Piezokraft und Spannung (mech. elektrische)





Hydraulische Komponente.



3ild 4-1: Schaltsymbole für Pumpen und Motoren gemäß DIN ISO 1219





Weitere Frage?



5

## Zusammenfassung



- Systemaufteilung in Teilsystemen
- Darstellung des äquivalenten elektrischen System eines hydraulischen / mechanischen Teilsystems
- Aufstellung der Zustandsgleichung und der Druckaufbaugleichung
- Bewegungsgleichung des Kolbens
- Darstellung des Differentialgleichungssystems in Matrix



# **Modellbildung und Simulation**



### **Kontakt:**

M.Sc. Shirui Ouyang shirui.ouyang@kit.edu 0721 608-45381







