Video Tracking Using Learned Hierarchical Features

mingzailao

2016-9-11

Outline

algorithm

ASLSA(adaptive structural local sparse appearance model) [?]

Tracking System Overview

Briefly Introduction of the Tracking System

Suppose we have an observation set of target

 $x_{1:t} = \{x_1, \dots, x_t\}$, a corresponding feature representation set $z_{1:t} = \{z_1, \dots, z_t\}$, the target state y_t can be calculated by:

$$y_t = \arg\max_{y_t^i} p(y_t^i | z_{1:t}) \tag{1}$$

where y_t^i denotes the i^{th} sample in the t^{th} frame.

Tracking System Overview

Briefly Introduction of the Tracking System

The posterior probability $p(y_t|z_{1:t})$ can be inferred by the Bayes theorem as follows:

$$p(y_t|z_{1:t}) \propto p(z_t|y_t) \int p(y_t|y_{t-1})p(y_{t-1}|z_{1:t-1})$$
 (2)

where $z_{1:t}$ denotes the feature representation, $p(y_t|y_{t-1})$ denotes the motion model and $p(z_t|y_t)$ denotes the appearance model.

Tracking System Overview

Briefly Introduction of the Tracking System

The representations $z_{1:t}$ can simply use raw pixel values. [?] In there , we use the learned hierarchical features from raw pixels for tracking.

Learning Features for Video Tracking

Offline Learning

- Adopt the approach proposed in [?] to learn features
 From a auxiliary dataset.
- We further use a domain adaptation method to adapt pre-learned features according to specific target objects.