Supervised Monocular Depth Estimation via Stacked Generalization

Chinchuthakun Worameth

December 28, 2021

Yamashita Laboratory Department of Transdisciplinary Science and Engineering School of Environment and Society Tokyo Institute of Technology

Depth Estimation

- Active o Depth sensors based on wave reflection
- Passive o Use images from different perspectives to predict depth map
 - Stereo (2), Multiview (>2) \rightarrow Near-perfect approximation via epipolar geometry
 - Monocular (1) ightarrow Ill-posed problem
- Monocular approach offers a cost, space, and energy efficient alternative

Monocular Depth Estimation

- Human perceive depth subconsciously
 - Difficult to mathematically describe the process
- Deep learning approaches
 - Supervised \rightarrow Use ground truth depth maps
 - Unsupervised / Semi-supervised \rightarrow Use geometric constraints in video

Original RGB image [3]

Corresponding depth map [4]

Related Works

Monocular Depth Estimation

- Novel architectures based on Convolutional Neural Network (CNN) or Visual Transformer
- Multi-tasking (usually with image segmentation)
- Domain adaptation
- Lightweight Network for fast inference
- · and so on...

Ensemble Deep Learning

- Approaches that combine predictions from base learners and generate a better final output (hopefully)
- Stacked Generalization linearly combines predictions by using meta-learner
- While it has been adopted in many tasks, there is no application in monocular depth estimation according to a recent survey [5]

Research Objective

- · Study SG in monocular depth estimation
- Compare performance of different SG setups with simple average (baseline)

Overview of ensemble architecture

Methodology: Base learners

- Adopt 3 SOTAs as base learners
 - Adabins [6], BTS [7], LDRN [8]
- Every architecture employs Encoder-Decoder framework
- Adabins also adds a visual transformer module to learn depth distribution
- Input is an **RGB image** $X \in \mathbb{R}^{H \times W}$. Output is a depth map of the same size.

Methodology: Base learners (2)

- Some modifications to reduce models' size and latency
 - Employing GhostNet [9] as the encoder for all architectures.
 - Replacing convolution with depthwise separable convolution in [6] and [7] except for atrous convolution layers.
 - Interpolating **after** convolution instead of before in [6], as described in [10].

(b) The Ghost module.

Building block of GhostNet [9]

Normal convolution and depthwise separable convolution [11]

Methodology: Meta-learner

- For a N-ensemble, output is a **pixel-wise coefficient tensor W** $\in \mathbb{R}^{N \times H \times W}$
- Final prediction $\mathbf{D}^* \in \mathbb{R}^{H \times W}$ is calculated by

$$\mathbf{D}^* = \sum_{i=1}^N \left(\mathbf{W} \odot \left[\mathbf{D}^{(1)}; ...; \mathbf{D}^{(N)} \right]^T \right) (i, :, :)$$

where $\mathbf{D}^{(i)}$ is the prediction from *i*-th base learner

- Consider 4 design aspects for ablation studies
 - Train base learners and controller simultaneously or sequentially?
 - Freeze base learners' parameters or fine-tune them?
 - Train with **RGB images** or **predictions from base learners**? Or **both of them**?
 - Are performance consistent among different encoders?

Methodology: Loss Functions

- Pixel-wise depth loss [12]
 - · For mitigating pixel-wise difference in every module

$$L_{\text{pixel}} = \alpha \sqrt{\frac{1}{N} \sum_{i=1}^{N} y_i^2 - \frac{\lambda}{N^2} (\sum_{i=1}^{N} y_i)^2}$$

where
$$y_i^2 = \log(d_i) - \log(d_i^*)$$

- Bichamfer Loss [6]
 - For encouraging distribution of bin centers to follow that of ground truth in Adabins [6]

$$BC(c(b), D) = \sum_{x \in c(b)} \min_{y \in D} ||x - y||_2^2 + \sum_{y \in D} \min_{x \in c(b)} ||x - y||_2^2$$

Experiment

- Implemented in PyTorch [13] and trained on laboratory server (10 GTX 1080 Ti GPUs) via distributed learning
- Employ data augmentation in [6] to avoid overfitting
- Evaluated on the official split of NYU Depth V2 dataset [3] with standard metrics from [12]

A sample of raw image, preprocessed depth, and labeled from NYU Depth V2 dataset [3]

Result and Discussion

- · Different base learners
- Same base learner, same dataset
- Same base learner, CV-like dataset

_	Maniana	#D	higher is better			lower is better				
	Variant	#Params	$\delta <$ 1.25	$\delta < 1.25^{2}$	$\delta < 1.25^{3}$	REL	Sq REL	RSME	RSME log	log10
MOD	Adabins	17.2M	0.813	0.965	0.992	0.146	0.106	0.498	0.178	0.060
	BTS	8.9M	0.855	0.973	0.994	0.120	0.075	0.435	0.156	0.052
	LDRN	14.9M	0.831	0.967	0.993	0.130	0.085	0.455	0.167	0.056
SAME	BTS #1	8.9M	0.862	0.973	0.999	0.120	0.074	0.427	0.155	0.052
	BTS #2		0.855	0.972	0.993	0.121	0.077	0.434	0.157	0.053
	BTS #3		0.852	0.973	0.993	0.121	0.076	0.438	0.157	0.053
	BTS #4		0.856	0.973	0.994	0.119	0.073	0.431	0.155	0.052
	BTS #5		0.856	0.972	0.994	0.121	0.075	0.431	0.155	0.052
CV-BTS	BTS #1	8.9M	0.854	0.973	0.994	0.121	0.076	0.437	0.157	0.053
	BTS #2		0.852	0.971	0.994	0.122	0.076	0.439	0.158	0.053
	BTS #3		0.853	0.972	0.993	0.121	0.077	0.442	0.158	0.053
	BTS #4		0.856	0.973	0.993	0.122	0.078	0.433	0.156	0.052
	BTS #5		0.855	0.972	0.993	0.122	0.077	0.438	0.157	0.053
CV-LDRN	LDRN #1	14.9M	0.840	0.970	0.993	0.128	0.082	0.450	0.164	0.055
	LDRN #2		0.842	0.968	0.992	0.130	0.084	0.451	0.165	0.055
	LDRN #3		0.841	0.969	0.993	0.128	0.081	0.445	0.163	0.055
	LDRN #4		0.851	0.971	0.993	0.125	0.081	0.437	0.159	0.054
	LDRN #5		0.836	0.968	0.992	0.131	0.086	0.456	0.166	0.056

Result and Discussion (2)

- · Should train sequentially
- Freezing is more stable
- Both inputs are better (?)
- Performances are consistent (?)

	Variant	#Params	higher is better			lower is better					
			$\delta <$ 1.25	$\delta < 1.25^{2}$	$\delta < 1.25^{3}$	REL	Sq REL	RSME	RSME log	log10	
MOD	Baseline	-	0.8573	0.9758	0.9949	0.1215	0.0735	0.4245	0.1533	0.0517	
	I-F-G	4.3M	0.8591	0.9753	0.9946	0.1191	0.0720	0.4261	0.1529	0.0513	
	O-F-G	4.3M	0.8602	0.9749	0.9943	0.1186	0.0722	0.4240	0.1527	0.0511	
	IO-F-G	4.3M	0.8607	0.9751	0.9945	0.1190	0.0718	0.4240	0.1525	0.0512	
	IO-F-M2	3.7M	0.8589	0.9747	0.9942	0.1191	0.0727	0.4270	0.1532	0.0514	
	IO-F-D161	30.3M	0.8607	0.9749	0.9944	0.1184	0.0717	0.4223	0.1523	0.0510	
ш	Baseline	-	0.8658	0.9759	0.9948	0.1161	0.069	0.4153	0.1491	0.0503	
SAME	IO-F-G	4.3M	0.8663	0.9761	0.9948	0.116	0.0689	0.414	0.1489	0.0503	
S	IO-F-D161	30.3M	0.8661	0.976	0.9948	0.1162	0.0693	0.4144	0.149	0.0503	
	Baseline	-	0.8644	0.9761	0.9948	0.1171	0.0707	0.4204	0.1504	0.0508	
CV-BTS	IO-F-G	4.3M	0.8649	0.976	0.9948	0.1171	0.0707	0.4194	0.1503	0.0508	
	IO-F-D161	30.3M	0.8654	0.9762	0.9947	0.1169	0.0706	0.418	0.1501	0.0507	
2	Baseline	-	0.8596	0.9749	0.9944	0.1206	0.0724	0.4202	0.1529	0.0516	
CV-LDRN	IO-F-G	4.3M	0.8594	0.9743	0.9941	0.1208	0.0744	0.4226	0.1538	0.0517	
	IO-F-D161	30.3M	0.8570	0.9741	0.9940	0.1206	0.0741	0.4252	0.1546	0.0521	

Result and Discussion (3)

- Train base learners & meta-learner together is fast, but yields worse models
 - Need hyperparameter tuning specific to base learners to ensure convergence
 - Even then, reproducibility is not guaranteed \rightarrow inappropriate for practical use

Result and Discussion (4)

- Fine-tuning base learners when training meta-learner yields training loss fluctuation
- · Unfortunately, no improvements in evaluation metrics

Fluctuations in training loss and an evaluation metric

References i

- [1] D. Chotrov, Z. Uzunova, Y. Yordanov, and S. Maleshkov, "Mixed-reality spatial configuration with a zed mini stereoscopic camera," in FDIBA Conference Proceedings, vol. 2, 2018, vol. 2, 11 2018, pp. 21–24.
- [2] P. Sinha and E. Adelson, "Recovering reflectance and illumination in a world of painted polyhedra," in 1993 (4th) International Conference on Computer Vision, 1993, pp. 156–163.
- [3] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor segmentation and support inference from rgbd images," in *Computer Vision ECCV 2012*, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 746–760.
- [4] C. Chaijirawiwat, "Monocular Depth Estimation via Transfer Learning and Multi-Task Learning with Semantic Segmentation," Bachelor's thesis, Tokyo Institute of Technology, Tokyo, Jul. 2019.
- [5] M. A. Ganaie, M. Hu, M. Tanveer, and P. N. Suganthan, "Ensemble deep learning: A review," CoRR, vol. abs/2104.02395, 2021. [Online]. Available: https://arxiv.org/abs/2104.02395
- [6] S. F. Bhat, I. Alhashim, and P. Wonka, "Adabins: Depth estimation using adaptive bins," CoRR, vol. abs/2011.14141, 2020. [Online]. Available: https://arxiv.org/abs/2011.14141

References ii

- [7] J. H. Lee, M. Han, D. W. Ko, and I. H. Suh, "From big to small: Multi-scale local planar guidance for monocular depth estimation," *CoRR*, vol. abs/1907.10326, 2019. [Online]. Available: http://arxiv.org/abs/1907.10326
- [8] M. Song, S. Lim, and W. Kim, "Monocular depth estimation using laplacian pyramid-based depth residuals," *IEEE Transactions on Circuits and Systems for Video Technology*, pp. 1–1, 2021.
- [9] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, "Ghostnet: More features from cheap operations," CORR, vol. abs/1911.11907, 2019. [Online]. Available: http://arxiv.org/abs/1911.11907
- [10] D. Wofk, F. Ma, T. Yang, S. Karaman, and V. Sze, "Fastdepth: Fast monocular depth estimation on embedded systems," *CoRR*, vol. abs/1903.03273, 2019. [Online]. Available: http://arxiv.org/abs/1903.03273
- [11] "Convolutional neural networks." [Online]. Available: https://www.coursera.org/learn/convolutional-neural-networks/home/welcome.
- [12] D. Eigen, C. Puhrsch, and R. Fergus, "Depth map prediction from a single image using a multi-scale deep network," CoRR, vol. abs/1406.2283, 2014. [Online]. Available: http://arxiv.org/abs/1406.2283

References iii

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, "Pytorch: An imperative style, high-performance deep learning library," 2019.

Data Augmentation

- Data augmentation refers to techniques to prevent overfitting by generating more (possible) training examples from original data
- Follow data augmentation techniques described in [6]:
 - Random horizontal flipping with probability of 0.5
 - Random contrast, brightness, and color adjustment in a range of [0.9, 1.1] with probability of 0.5
 - Random crop of size 416 × 544
 - Random rotation of degree in a range of [-2.5, 2.5]

Evaluation Metrics

• Follow evaluation metrics described in [12]:

ThreAcc
$$\left(\mathbf{\hat{d}}, \mathbf{d}; \delta\right) = \frac{|S_{\delta}|}{N} \times 100\%$$

RMSE $\left(\mathbf{\hat{d}}, \mathbf{d}\right) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{d}_{i} - d_{i}\right)^{2}}$

REL $\left(\mathbf{\hat{d}}, \mathbf{d}\right) = \frac{1}{N} \sum_{i=1}^{N} \frac{\left|\hat{d}_{i} - d_{i}\right|}{d_{i}}$

RMSElog $\left(\mathbf{\hat{d}}, \mathbf{d}\right) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left\|\hat{d}_{i} - d_{i}\right\|^{2}}$

Sqrel $\left(\mathbf{\hat{d}}, \mathbf{d}\right) = \frac{1}{N} \sum_{i=1}^{N} \frac{\left\|\hat{d}_{i} - d_{i}\right\|}{d_{i}}$

log10 $\left(\mathbf{\hat{d}}, \mathbf{d}\right) = \frac{1}{N} \sum_{i=1}^{N} \left|\log_{10}(\hat{d}_{i}) - \log_{10}(d_{i})\right|$

where
$$S_{\delta} = \left\{d_i | \max\left(\frac{\hat{d}_i}{d_i}, \frac{d_i}{\hat{d}_i}\right) < \delta \text{ and } i \leq N\right\}$$
 and $\delta = 1.25, 1.25^2, 1.25^3$

GhostNet [9]

- Based on observation that the output feature maps of convolutional layers often contain much redundancy
- Generate some feature maps through usual convolution. Then, apply linear operations to generate more feature maps
- GhostNet is ghost modules arranged in a structure similar to MobileNetV2

Traditional convolutional layer and The proposed Ghost module [9]