Компютърно упражнение №4

Числено решаване на гранична задача за ОДУ от II ред

За уравнението

$$u''(x) - q(x)u(x) = -f(x), x \in (a,b), q(x) \ge 0$$

и гранични условия

$$\alpha_1 u(a) + \beta_1 \frac{\partial u}{\partial x}(a) = \mu_1$$

$$\alpha_2 u(b) + \beta_2 \frac{\partial u}{\partial x}(b) = \mu_2,$$

- а) да се напише диференчна схема с локална грешка на апроксимацията $O(h^2)$, включително и на граничните условия.
- б) да се състави програма, реализираща числения метод. Програмата да се състои от главна програма и подпрограма за решаване на система линейни алгебрични уравнения с тридиагонални матрици по метода на прогонката.
- в) да се проверят условията за реализируемост и устойчивост на алгоритъма на прогонката за конкретната диференчна схема.

Формули на прогонката (могат да се използват и други):

$$\begin{split} \alpha_1 &= \frac{b_0}{c_0}\,, \qquad \beta_1 = -\frac{f_0}{c_0}\,, \\ \alpha_{i+1} &= \frac{b_i}{c_i - a_i \alpha_i}\,, \quad i = 1, 2, \dots, N-1\,, \qquad \qquad \beta_{i+1} = \frac{-f_i + a_i \beta_i}{c_i - a_i \alpha_i}\,, \quad i = 1, 2, \dots, N \end{split}$$

$$y_N = \beta_{N+1}$$
, $y_i = \alpha_{i+1} y_{i+1} + \beta_{i+1}$, $i = N-1, N-2,...,1,0$.

в) За стъпка $h=\frac{b-a}{N}$ да се пресметне приближеното решение върху три вложени мрежи със стъпки $h,\ h/2,\ h/4$. По правилото на Рунге да се определи редът на точност α . Резултатите да се изведат в таблица от вида:

x_i	Приближено решение y_h	Приближено решение $y_{h/2}$	Приближено решение $y_{h/4}$	$lpha_{_i}$

- г) При предаване на заданието да се представи протокол, съдържащ:
 - Постановка на задачата (условие на конкретна задача).

- Извеждане на диференчната схема и представянето й във вид, удобен за прилагане на метода на прогонката.
- Доказателство че алгоритъмът на прогонката е реализируем и устойчив за конкретната задача.

Варианти

N	а	b	q(x)	f(x)	α_1	$oldsymbol{eta}_1$	α_2	eta_2	$\mu_{\scriptscriptstyle 1}$	μ_2
1	0	1	6 <i>x</i>	$2(6x-1)e^x + 6x^6 - 20x^3$	1	0	0	1	2	5+2e
2	0	1	6 <i>x</i>	$-2(6x-1)e^x + 6x^6 - 20x^3$	0	1	1	0	- 2	1-2e
3	0	π	1	$2(\sin x - 1) + x^2$	1	0	0	1	0	$2\pi - 1$
4	0	π	x	$-(x+1)\sin x + x^3 - 2$	0	1	1	0	-1	π^2
5	1	2	x^2	$x^2 \ln x + x^{-2}$	1	0	0	1	0	0.5
6	0	1	2 <i>x</i>	$2x^5 + 4x^4 - 12x^2 - 12x$	1	0	0	1	0	10
7	0	1	1	$x^4 - 2x^3 - 12x^2 + 12x$	0	1	1	0	0	-1
8	0	1	3 <i>x</i>	$3x^7 - 3x^6 - 30x^4 + 20x^3 + 3x$	1	0	0	1	1	1
9	0	π	<i>x</i> + 1	$(2+x)\cos x + x(x+1)$	1	0	0	1	1	1
10	0	2	x^2	$e^{x}(x^2-1)$	1	0	0	1	1	e^2
11	0	π	2 <i>x</i>	$(1-2x)\cos x + (1+2x)\sin x$	1	0	0	1	-1	-1
12	0	π	2	$3\cos x - 3\sin x$	1	0	0	1	1	1
13	$\pi/2$	π	1	$2x\sin x - 2\cos x$	0	1	1	0	1	0
14	0	$\pi/2$	3 <i>x</i>	$2\sin x + (3x^2 + x)\cos x$	0	1	1	0	1	0

		l					1			
15	0	1	2x	$e^x(-2x^2+x+2)$	0	1	1	0	-1	- <i>e</i>
16	0	2π	$2x^2$	$(2x^2+1)\cos x-2x^3$	1	0	0	1	1	-1
17	0	2π	<i>x</i> + 1	$(2+x)\cos x + x(x+1)$	0	1	1	0	1	$2\pi + 1$
18	0	2π	<i>x</i> + 1	$(x+1)x - (x+2)\cos x$	1	0	0	1	-1	1
19	0	2π	х	$(1+x)\sin x + (1-x)\cos x$	0	1	1	0	1	-1
20	0	2π	х	$(x+1)(\cos x - \sin x)$	1	0	0	1	1	-1
21	$\pi/2$	2π	1	$2(x\sin x - \cos x)$	0	1	1	0	1	0
22	0	2π	3 <i>x</i>	$2(\sin x + (3x^2 + x)\cos x$	1	0	0	1	0	1
23	0	π	2	$2\sin x + 3x\cos x$	1	0	0	1	0	-1
24	0	2	x^2	$e^x(-x^3+x+2)$	1	0	0	1	0	$-3e^2$
25	0	π	1	$x + 2\sin x$	0	1	1	0	2	π
26	0	2π	x	$x^2 + (1+x)\sin x$	1	0	0	1	0	2
27	$\pi/2$	2π	<i>x</i> + 1	$x(x+1) + (x+2)\sin x$	0	1	1	0	1	2π
28	0	2π	1	$2x\sin x - 2\cos x$	1	0	0	1	0	2π