0.1 Grassmann 多様体と Schubert 多様体

0.1.1 Grassmann 多様体

前節の準備をもとに数え上げ問題を定式化しよう。以下では係数体はすべて ℂ で考えているとする。

定義 0.1.1.1. \mathbb{C}^n の d 次元部分空間全体のなす集合を $\mathcal{G}(d,n)$ と書き、これを Grassmann 多様体という。

Grassmann 多様体が代数多様体の構造をもつことを示しておく。 \mathbb{C}^n の d 階交代テンソル空間 $\bigwedge^d \mathbb{C}^n$ を考える。 $\bigwedge^d \mathbb{C}^n$ は ${}_nC_d$ 次元ベクトル空間であるから、その射影化 $\mathbb{P}(\bigwedge^d \mathbb{C}^n)$ は \mathbb{P}^nC_d-1 と同一視することができる。また、 e_1, \cdots, e_n を \mathbb{C}^n の標準基底とすれば $\omega \in \bigwedge^d \mathbb{C}^n$ は

$$\omega = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1, \dots, i_d} e_{i_1} \wedge \dots \wedge e_{i_d}$$

と表せるので、 $p(\omega)$ の斉次座標は

$$p(\omega) = [x_{i_1,\dots,i_d}]_{1 \le i_1 < \dots < i_d \le n}$$

のように書くことができる。

 $V \in \mathcal{G}(d,n)$ に対して、V の基底を $v_1, \dots, v_d \in \mathbb{C}^n$ とし写像 $\pi : \mathcal{G}(d,n) \to \mathbb{P}^{nC_d-1}$ を

$$\pi(V) = p(v_1 \wedge \dots \wedge v_d)$$

とする。ただし p は射影化 $p:\bigwedge^d\mathbb{C}^n\to\mathbb{P}^{nC_d-1}$ である。 π は well-defined である。実際、V の別の基底 u_1,\cdots,u_d をとったとき、ある正則行列 $P\in\mathrm{GL}_d(\mathbb{C})$ が存在して

$$(v_1,\cdots,v_d)=(u_1,\cdots,u_d)P$$

が成り立つから、 $P = (a_{ij})$ とおけば

$$p(v_1 \wedge \dots \wedge v_d) = p((a_{11}u_1 + \dots + a_{d1}u_d) \wedge \dots \wedge (a_{d1}u_1 + \dots + a_{dd}u_d))$$
$$= p(\det P(u_1 \wedge \dots \wedge u_d))$$
$$= p(u_1 \wedge \dots \wedge u_d)$$

命題 0.1.1.2 (Plucker 埋め込み). $\pi: \mathcal{G}(d,n) \to \mathbb{P}^{nC_d-1}$ は単射である。

Proof. 次の補題を用いる。

補題 0.1.1.3. $V \in \mathcal{G}(d,n)$ に対してその基底 v_1, \cdots, v_d を固定して、 $\omega = v_1 \wedge \cdots \wedge v_d \in \bigwedge^d \mathbb{C}^n$ とする。 $\Gamma_\omega : \mathbb{C}^n \to \bigwedge^{d+1} \mathbb{C}^n$ を

$$\Gamma_{\omega}(u) = \omega \wedge u$$

によって定めると、

$$\ker \Gamma_{\omega} = V$$

が成り立つ。

 $Proof.\ V$ の元が $\ker \Gamma_{\omega}$ に含まれることは明らか。 $u \in \ker \Gamma_{\omega}$ であるとする。 v_1, \cdots, v_d を延長して \mathbb{C}^n の基底 $v_1, \cdots, v_d, v_{d+1}, \cdots, v_n$ をとる。

$$u = a_1v_1 + \dots + a_dv_d + a_{d+1}v_{d+1} + \dots + a_nv_n$$

とおく。

$$0 = \omega \wedge u = v_1 \wedge \dots \wedge v_d \wedge (a_1 v_1 + \dots + a_d v_d + a_{d+1} v_{d+1} + \dots + a_n v_n)$$

= $a_{d+1} v_1 \wedge \dots \wedge v_d \wedge v_{d+1} + \dots + a_n v_1 \wedge \dots \wedge v_d \wedge v_n$

となるが、 $v_{i_1} \wedge \cdots \wedge v_{i_{d+1}}$, $(i_1 < \cdots < i_{d+1})$ は 1 次独立であるので、 $a_{d+1} = \cdots = a_n = 0$.よって $u \in V$ \square 命題の証明に戻る。 $\pi(V) = \pi(U)$ であるとする。U の基底を u_1, \cdots, u_d とすると仮定より

$$cu_1 \wedge \cdots \wedge u_d = v_1 \wedge \cdots \wedge v_d = \omega$$

となる定数 c が存在する。 したがって $\Gamma_{\omega}(u_i)=\omega\wedge u_i=0$ であるから補題により、 $U=\ker\Gamma_{\omega}=V$ $\pi(\mathcal{G}(d,n))\subset\mathbb{P}^{nC_d-1}$ が射影多様体の構造をもつことを示す。

定義 0.1.1.4. $\omega \in \bigwedge^d \mathbb{C}^n$ が totally decomposable であるとは、1 次独立な $v_1, \dots, v_d \in V$ が存在して $\omega = v_1 \wedge \dots \wedge v_d$ となることをいう。

補題 0.1.1.5. $\omega \in \bigwedge^d \mathbb{C}^n$ が totally decomposable であることと $\Gamma_\omega : \mathbb{C}^n \to \bigwedge^{d+1} \mathbb{C}^n$ のランクが n-d となることは同値である。

Proof. $\omega=v_1\wedge\cdots\wedge v_d$ とおく。このとき補題 0.1.1.3 の証明より $\dim\ker\Gamma_\omega=\dim\langle\,v_1,\cdots,v_d\,
angle=d$ だから $\ker\Gamma_\omega=n-d$ である。逆に $\ker\Gamma_\omega=n-d$ であるとする。 $\dim\ker\Gamma_\omega=d$ だから $\ker\Gamma_\omega$ の基底を v_1,\cdots,v_d をとり、これを延長して \mathbb{C}^n の基底 $v_1,\cdots,v_d,v_{d+1},\cdots,v_n$ をとって

$$\omega = \sum_{1 \le i_1 < \dots < i_d \le n} c_{i_1, \dots, i_d} v_{i_1} \wedge \dots \wedge v_{i_d}$$

とおく。すると $\Gamma_{\omega}(v_i) = 0, j = 1, \dots, d$ より

$$v_1 \wedge \omega = 0$$
 すなわち $c_{i_1,\cdots,i_d} = 0$ for $i_1 > 1$ $v_2 \wedge \omega = 0$ すなわち $c_{i_1,\cdots,i_d} = 0$ for $i_2 > 2$:

 $v_d \wedge \omega = 0$ すなわち $c_{i_1, \cdots, i_d} = 0$ for $i_d > d$

よって $\omega = c_{1,2,\dots,d}v_1 \wedge \dots \wedge v_d$

 $\pi(\mathcal{G}(n,d)) = \left\{ p(\omega) \in \mathbb{P}(\bigwedge^d \mathbb{C}^n) \mid \omega \text{ is totally decomposable} \right\}$ である。 $e_1, \dots, e_n \in \mathbb{C}^n$ を標準基底とし、 $\omega \in \bigwedge^d \mathbb{C}^n$ を

$$\omega = \sum_{1 \le i_1 < \dots < i_d \le n} x_{i_1, \dots, i_d} e_{i_1} \wedge \dots \wedge e_{i_d}$$

とおく。補題より、 $p(\omega) \in \pi(\mathcal{G}(n,d))$ であるための必要十分条件は rank $\Gamma_{\omega} = n-d$ となることである。 この条件は $\Gamma_{\omega}: \mathbb{C}^n \to \bigwedge^d \mathbb{C}^n$ を行列表示したとき、その $(n-d+1) \times (n-d+1)$ 小行列式がすべて 0 になる

ことと同値である *1 。そして Γ_{ω} の小行列式は x_{i_1,\dots,i_d} の多項式で表されるから、 $\pi(\mathcal{G}(n,d))$ は $\mathbb{P}(\bigwedge^d \mathbb{C}^n)$ の代数的集合である。

最後に Grassmann 多様体が既約、すなわち射影多様体の構造を持つことを示そう。

補題 ${\bf 0.1.1.6.}~X,Y$ を位相空間, $f:X\to Y$ を連続写像とする。 $A\subset X$ が既約であるならば f(A) も既約である。

Proof. f(A) が可約であったとして $f(A) = Z_1 \cup Z_2$, $\emptyset \subsetneq Z_1, Z_2 \subsetneq f(A)$ となる閉集合 Z_1, Z_2 をとる。

$$A \subset f^{-1}(f(A)) = f^{-1}(Z_1 \cup Z_2) = f^{-1}(Z_1) \cup f^{-1}(Z_2)$$

f は連続であるから $f^{-1}(Z_1), f^{-1}(Z_2)$ は閉集合である。

$$A = (A \cap f^{-1}(Z_1)) \cup (A \cap f^{-1}(Z_2))$$

より A は可約である。

命題 0.1.1.7. $\mathcal{G}(n,d)$ は既約である。

Proof. $V \in \mathcal{G}(n,d)$ を固定して、 $\alpha: \mathrm{GL}_n(\mathbb{C}) \to \mathcal{G}(n,d)$ を

$$\alpha(P) = PV$$

によって定める。ただし PV は V の基底を v_1,\cdots,v_d とするとき Pv_1,\cdots,Pv_d によって生成される d 次元 部分空間を表す。 α は全射である。実際任意の d 次元部分空間 $W=\langle w_1,\cdots,w_d\rangle$ に対して、各 v_i を w_i に 写すような n 次正則行列 P をとればよい。また α は多項式写像だから命題??より連続である。 $\mathrm{GL}_n(\mathbb{C})$ は既 約であるから、補題 0.1.1.6 より $\mathcal{G}(n,d)$ も既約である。

0.1.2 Shubert 胞体

第3章冒頭で述べた数え上げ問題においては \mathbb{P}^3 中の直線全体を考えたいから、 $\mathcal{G}(2,4)$ を考察していくことになる。重要な考え方として、ある条件をみたす直線の集合を $\mathcal{G}(2,4)$ の部分多様体としてとらえることで、「複数の条件を満たす直線の数え上げ \Leftrightarrow いくつかの $\mathcal{G}(2,4)$ の部分多様体の交点を数える」という問題の変換を行う。

^{*1} Γ_ω のランクは必ず n-d 以上であることに注意。実際、もし $\dim\ker\Gamma_\omega\geq d+1$ であるなら、補題 0.1.1.5 の証明と同様の議論をすると、 $\omega=0$ となってしまう。