

3D Reconstruction/ Depth Sensing

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

Outline

- Structure from Motion
 - Use slides from SFMedu
 - http://3dvision.princeton.edu/courses/SFMedu/
- Large Scale Reconstruction
- Depth Sensing

Large Scale Reconstruction

- Building Rome in a Day [ICCV 2009]
 - https://grail.cs.washington.edu/rome/

Large Scale Reconstruction

- Building Rome on a Cloudless Day [ECCV 2010]
 - https://www.youtube.com/watch?v=4cEQZreQ2zQ

Large Scale Reconstruction

- Reconstructing the World* in Six Days [CVPR 2015]
 - As captured by the Yahoo 100 million image dataset
 - http://www.cs.unc.edu/~jheinly/reconstructing_the_world.html
 - https://youtu.be/bRYqyoqUJuM

Depth Sensing with 3D Cameras

Range Acquisition Taxonomy -- Optical Methods

Acquisition (Off-the-shelf Products)

- Shape from stereo (Stereo Vision)
 - Leap Motion
- Structured light (Light coding)
 - Kinect
 - PrimeSense CARMINE 1.08 / 1.09 and Capri 1.25
 - Occipital Structure Sensor
 - Google Project Tango
 - Intel RealSense
 - Apple FaceID
- Time of flight
 - Kinect 2
 - SoftKinetic (acquired by Sony)

Shape from Stereo

- Two (or more) cameras concurrently capture the same scene
 - Find correspondence between stereo images

Shape from Stereo

Shape from Stereo

Problems

- The identification of common points within the image pairs, the solution of the well-known correspondence problem
- The quality depends on the sharpness of the surface texture (affected by variation in surface reflectance)

• Tri-angulation principle

$$R = B \frac{\sin \theta}{\sin(\alpha + \theta)}$$

- Two types
 - Single-point triangulators
 - Laser stripes
- All based on the active triangulation principle

- Active triangulations
 - Active version of shape from stereo
- Project a spatially- and/or temporally-encoded image sequence using projector

Douglas Lanman and Gabriel Taubin, "Build your own 3D scanner: Optical triangulation for beginners," Siggraph 2009 and Siggraph Asia 2009 courses. http://mesh.brown.edu/byo3d/index.html

Examples of projected patterns

Single-shot patterns (N-arrays, grids, random, etc.)

Binary Codes

- Kinect projected pattern
 - https://www.youtube.com/watch?v=uq9SEJxZiUg

Kinect

• Distance: 0.8-4m

 Near mode: 0.4-3m (Kinect for Windows)

• FOV: 57°H \ 43°V

 RGB: 1280x960@12FPS / 640x480@30FPS / 640x480@15FPS

Depth: 640x480 / 320x240 / 80x60 (30FPS)

Kinect: RGB + Depth + Point Cloud

Point cloud from Kinect

Primesense Capri 1.25

- The smallest 3D sensor right now
- For embedded system

Google Project Tango

- https://www.google.com/atap/projecttango/
 - https://www.youtube.com/watch?v=Qe10ExwzCqk
- PrimeSense PSX1200 Capri PS1200 3D sensor SoC
- With InvenSense MPU-9150 motion tracking device
- Depth: 320×180@5FPS (?)
- RGB: a 4MP rear-facing RGB/IR camera, a 180° field of view rear-facing fisheye camera

Intel RealSense

Intel RealSense: D435i

- Intel RealSense Module D430 + RGB CameraVision
- DepthDepth Technology: Active IR Stereo
- Minimum Depth Distance (Min-Z): 0.105 m
- Depth Output Resolution & Frame Rate: Up to 1280 x 720 active stereo depth resolution. Up to 90 fps.
- RGB Sensor Resolution: 1920 x 1080
- Processor: Intel RealSense Vision Processor D4

Apple FaceID

[Apple]

Apple FaceID

Time of Flight

Active light source pulses and illuminates object

$$t = \frac{2d}{c} = \frac{5.0m}{3 \times 10^8 m/s} = 16.7ns$$

② Light reflects off of any object in its Field of View

Time of Flight measures the time it takes to return to the receiver

Time of Flight

- The emitter unit generates a laser pulse
 - A receiver detects the reflected pulse, and suitable electronics measures the roundtrip travel time of the returning signal and its intensity
- The measurement resolutions vary with the range
 - Large measuring range, it gives excellent results
 - Not suitable for small objects
 - Requires very high speed timing circuitry

Kinect 2

- https://www.youtube.com/watch?v=Hi5kMNfgDS4
 - 3 times the fidelity over Kinect
 - 3DV Systems & Canesta (bought by MS in 2009)
 - Closer IR sensor and illuminator: Less shadow in depth image
- Distance: 0.5-4.5m
- FOV: 70°H \ 60°V
- RGB: 1920x1080@30FPS
- Depth: 512x424@30FPS

