A Few Collisions between Particle Physics & Machine Learning

Jesse Thaler

Director, NSF AI Institute for Artificial Intelligence and Fundamental Interactions

STAMPS Group Meeting, CMU — June 25, 2021

The NSF Al Institute for Artificial Intelligence and Fundamental Interactions (IAIFI /aɪ-faɪ/ iaifi.org)

Advance physics knowledge — from the smallest building blocks of nature to the largest structures in the universe — and galvanize AI research innovation

Al²: Ab Initio Artificial Intelligence

Machine learning that incorporates first principles, best practices, and domain knowledge from fundamental physics

Symmetries, conservation laws, scaling relations, limiting behaviors, locality, causality, unitarity, gauge invariance, entropy, least action, factorization, unit tests, exactness, systematic uncertainties, reproducibility, verifiability, ...

Artificial Intelligence \(\Leftrigoral \) Fundamental Physics

Gravitational Waves

Nuclear Physics

Dark Matter

Particle Colliders

Mathematical Physics

Neutrino Detection

• • •

[iaifi.org]

"Collision Course"

Energy Flow Networks

Collider events consist of "point clouds" of particles...

...but only "energy flow" is robust in perturbative QFT...

...inspiring network architectures for weighted point clouds

[Komiske, Metodiev, JDT, JHEP 2019; see also Komiske, Metodiev, JDT, JHEP 2018, PRD 2020; special case of Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, Smola, NIPS 2017]

Energy Mover's Distance

Optimal transport plan between energy flows...

...defines a metric space for collider events...

... yielding precise criteria for calculability in QFT

[Komiske, Metodiev, JDT, PRL 2019; Komiske, Mastandrea, Metodiev, Naik, JDT, PRD 2020; Komiske, Metodiev, JDT, JHEP 2020; see also Cesarotti, JDT, JHEP 2020; based on Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele Taskar, GSI 2013]

More Collisions...

Quark/Gluon Jets via Blind Source Separation

[Komiske, Metodiev, JDT, JHEP 2018; Brewer, JDT, Turner; PRC 2021]

Detector Unfolding via Point Cloud Learning

[Andreassen, Komiske, Metodiev, Nachman, JDT, <u>PRL 2020;</u> see also Nachman, JDT, <u>PRD 2020</u>]

Kinematic Decomposition via Graph Theory

	T () N/	14: 1
	Leafless M	_
	Connected	
Edges d	A307317	A307316
1	0	0
2	1	1
3	2	2
4	4	5
5	9	11
6	26	34
7	68	87
8	217	279
9	718	897
10	$\mathbf{2553}$	3129
11	9574	11458
12	$\boldsymbol{38005}$	44576
13	157306	181071
14	679682	770237
15	3047699	3407332
16	14150278	15 641 159

[Komiske, Metodiev, JDT, JHEP 2018, PRD 2020]

Lots of Code!

energyflow.network

