Class09: Candy Analysis Mini Project

Cynthia Perez (A16393492)

In today's class we will examine some data about Halloween candy from the 538 website

Import Candy Data

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	icewafer
100 Grand		1	0	1	•	0	0	•	1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	${\tt hard}$	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511 4	46.11650	
Air Heads	0	0	()	0.906	0	.511 !	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

There are 85 in this dataset

```
nrow(candy)
```

```
[1] 85
     Q2. How many fruity candy types are in the dataset?
There are 38 fruity candy in the dataset.
  sum(candy$fruity)
[1] 38
What is your favorite candy?
```

```
Q3. What is your favorite candy in the dataset and what is it's winpercent value?
candy["Snickers",]$winpercent
```

```
[1] 76.67378
```

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

Now we use the skim() function to give an overview of the candy dataset.

```
skimr::skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The "winpercent" variable seems to be on a different scale compared to the other variables. It is not on a 0 to 1 scale as the other variables.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

A zero represents a candy that does not contain chocolate. A one represents a candy that does contain chocolate.

candy\$chocolate

[39] 1 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 [77] 1 1 0 1 0 0 0 0 1

Plotting a Histogram of the candy dataset

Q8. Plot a histogram of winpercent values

```
library(ggplot2)

ggplot(candy, aes(winpercent))+
  geom_histogram(bins=10)
```


Q9. Is the distribution of winpercent values symmetrical?

No the distribution is not symmetrical.

Q10. Is the center of the distribution above or below 50%?

The center of the distribution is below 50%

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

Chocolate candy is higher ranked on average than fruit candy

```
chocolate.inds <- as.logical(candy$chocolate)
  chocolate.win <- candy$winpercent[chocolate.inds]
  mean(chocolate.win)

[1] 60.92153

fruit.inds <- as.logical(candy$fruity)
  fruit.win <- candy$winpercent[fruit.inds]
  mean(fruit.win)</pre>
```

[1] 44.11974

Q12. Is this difference statistically significant?

Difference is statically significant from p value in t.test.

```
t.test(chocolate.win, fruit.win)
```

```
Welch Two Sample t-test
```

```
data: chocolate.win and fruit.win t = 6.2582, df = 68.882, p-value = 2.871e-08 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 11.44563 22.15795 sample estimates: mean of x mean of y 60.92153 44.11974
```

Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

The order function returns the indices that make the inout sorted.

```
head(candy[order(candy$winpercent),], n=5)
```

	chocolate	fruity	carar	nel j	peanutyalm	nondy n	ougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugarp	ercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans	3	0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	5						
Nik L Nip	22.44534	l						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.12744	l						

library(dplyr)

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

candy %>% arrange(winpercent) %>% head(5)

		chocolate	fruity	caran	nel j	peanutyalm	nondy	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534							
Boston Baked	Beans	23.41782	?						
Chiclets		24.52499)						
Super Bubble		27.30386	5						
Jawbusters		28.12744	:						

Q14. What are the top 5 all time favorite candy types out of this set?

tail(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	caram	el j	peanutyaln	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugai	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent winp	percen	t			
Snickers	0.6	351 76	6.6737	8			
Kit Kat	0.5	511 76	3.7686	0			
Twix	0.9	906 81	1.6429	1			

```
Reese's Miniatures 0.279 81.86626
Reese's Peanut Butter cup 0.651 84.18029
```

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```


use hash `|` symbol to render a larger plot image straight from the R code

We can improve the barplot to make it easier to read.

```
#Save the last plot we made
ggsave("mybarplot.png", height = 10)
```

Saving 5.5×10 in image

Add custom colors to the

bar plot

```
#create vectors for each candy type you want displayed
my_cols= rep("gray", nrow(candy))
my_cols[candy$fruity ==1] <- "pink"
my_cols[candy$chocolate==1] <- "chocolate"
my_cols[candy$bar==1] <- "brown"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=my_cols)</pre>
```


Q17. What is the worst ranked chocolate candy?

The worst ranked chocolate candy is sixlets

Q18. What is the best ranked fruity candy?

The best ranked fruity candy is Starburst

Pricepercent

Plot of winpercent vs. pricepercent

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_label(col=my_cols)
```


The lables are overlapping with each other making it hard to read the plot. We can instal the ggrepel package to improve the legibility of the plot

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's miniatures > Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip is the most expensive and least popular candy type.

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Exploring Correlation Structure

```
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
cij</pre>
```

```
chocolate
                                 fruity
                                            caramel peanutyalmondy
                                                                        nougat
chocolate
                  1.0000000 -0.74172106
                                         0.24987535
                                                        0.37782357
                                                                    0.25489183
fruity
                 -0.7417211 1.00000000 -0.33548538
                                                       -0.39928014 -0.26936712
caramel
                  0.2498753 -0.33548538
                                         1.00000000
                                                        0.05935614
                                                                    0.32849280
peanutyalmondy
                  0.3778236 -0.39928014 0.05935614
                                                        1.00000000 0.21311310
nougat
                  0.2548918 -0.26936712 0.32849280
                                                        0.21311310 1.00000000
crispedricewafer
                  0.3412098 -0.26936712 0.21311310
                                                       -0.01764631 -0.08974359
hard
                 -0.3441769 0.39067750 -0.12235513
                                                       -0.20555661 -0.13867505
bar
                  0.5974211 -0.51506558
                                         0.33396002
                                                        0.26041960 0.52297636
pluribus
                 -0.3396752 0.29972522 -0.26958501
                                                       -0.20610932 -0.31033884
sugarpercent
                  0.1041691 -0.03439296
                                         0.22193335
                                                        0.08788927
                                                                    0.12308135
                  0.5046754 -0.43096853
                                         0.25432709
                                                        0.30915323
pricepercent
                                                                    0.15319643
winpercent
                  0.6365167 -0.38093814
                                         0.21341630
                                                        0.40619220 0.19937530
                 crispedricewafer
                                         hard
                                                             pluribus
                                                      bar
chocolate
                       0.34120978 -0.34417691
                                               0.59742114 -0.33967519
fruity
                      -0.26936712  0.39067750  -0.51506558  0.29972522
caramel
                       0.21311310 -0.12235513 0.33396002 -0.26958501
                      -0.01764631 -0.20555661 0.26041960 -0.20610932
peanutyalmondy
nougat
                      -0.08974359 -0.13867505 0.52297636 -0.31033884
crispedricewafer
                                               0.42375093 -0.22469338
                       1.00000000 -0.13867505
hard
                      -0.13867505 1.00000000 -0.26516504 0.01453172
bar
                       0.42375093 -0.26516504 1.00000000 -0.59340892
```

pluribus	-0.2246933	88 0.01453172	-0.59340892	1.00000000
sugarpercent	0.0699496	39 0.09180975	0.09998516	0.04552282
pricepercent	0.3282653	39 -0.24436534	0.51840654	-0.22079363
winpercent	0.3246796	35 -0.31038158	0.42992933	-0.24744787
	sugarpercent pr	ricepercent wi	npercent	
chocolate	0.10416906	0.5046754 0	.6365167	
fruity	-0.03439296	-0.4309685 -0	.3809381	
caramel	0.22193335	0.2543271 0	.2134163	
${\tt peanutyalmondy}$	0.08788927	0.3091532 0	.4061922	
nougat	0.12308135	0.1531964 0	.1993753	
crispedricewafer	0.06994969	0.3282654 0	.3246797	
hard	0.09180975	-0.2443653 -0	.3103816	
bar	0.09998516	0.5184065 0	.4299293	
pluribus	0.04552282	-0.2207936 -0	.2474479	
sugarpercent	1.00000000	0.3297064 0	.2291507	
pricepercent	0.32970639	1.0000000 0	.3453254	
winpercent	0.22915066	0.3453254 1	.0000000	

corrplot(cij)

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity are anti-correlated

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar are the most positively correlated variables

Principal Component Analysis

We will perform a PCA of the candy. We must scale the data before performing the analysis.

```
pca <- prcomp(candy, scale=TRUE)
summary (pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                 PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

Plot PC1 vs, PC2 using base R function plot()

```
plot(pca$x[,1], pca$x[,2], col=my_cols, pch=15)
```


Now try a PCA plot with gpglot()

```
# We create a new data-frame with PCA results (PC1, PC2, PC3) and candy data
my_data <- cbind(candy, pca$x[,1:3])

p <- ggplot(my_data) +
   aes(PC1, PC2, label=rownames(my_data), size=winpercent/100, label=rownames(my_data)) +
   geom_point(col=my_cols)+
   geom_text_repel(col=my_cols)</pre>
```

Warning: Duplicated aesthetics after name standardisation: label

p

Warning: ggrepel: 58 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Add further details to plot to make it more legible

```
p + geom_text_repel(size=2, col=my_cols, max.overlaps = 9) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown
        caption="Data from 538")
```

Warning: ggrepel: 62 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Warning: ggrepel: 39 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

We can look at the PCA loadings

head(pca\$rotation)

	PC1	PC2	PC3	PC4	PC5
chocolate	-0.4019466	0.21404160	0.01601358	-0.016673032	0.06603585
fruity	0.3683883	-0.18304666	-0.13765612	-0.004479829	0.14353533
caramel	-0.2299709	-0.40349894	-0.13294166	-0.024889542	-0.50730150
peanutyalmondy	-0.2407155	0.22446919	0.18272802	0.466784287	0.39993025
nougat	-0.2268102	-0.47016599	0.33970244	0.299581403	-0.18885242
crispedricewafer	-0.2215182	0.09719527	-0.36485542	-0.605594730	0.03465232
	PC6	PC7	PC8	PC9	PC10
chocolate	-0.09018950	-0.08360642	2 -0.4908486	-0.151651568	0.10766136
fruity	-0.04266105	0.46147889	0.3980580	-0.001248306	0.36206250
caramel	-0.40346502	-0.44274741	0.2696345	0.019186442	0.22979901
peanutyalmondy	-0.09416259	-0.25710489	0.4577145	0.381068550	-0.14591236
nougat	0.09012643	0.36663902	2 -0.1879396	0.385278987	0.01132345
crispedricewafer	-0.09007640	0.13077042	0.1356774	0.511634999	-0.26481014
	PC11	PC12			
chocolate	0.1004528	0.69784924			
fruity	0.1749490	0.50624242			
caramel	0.1351582	0.07548984			

```
peanutyalmondy 0.1124428 0.12972756
nougat -0.3895447 0.09223698
crispedricewafer -0.2261562 0.11727369
```

Make a barplot with ggplot and order the bars by their value.

```
res <- as.data.frame(pca$rotation)

ggplot(res) +
  aes(PC1, reorder(rownames(res),PC1)) +
  geom_col()</pre>
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

From the loadings we can see that fruity, hard, and pluribus are variables all strongly picked up by PC1 in the positive direction.