Method and circuit arrangement for determining the remaining distance which can be covered by a battery-driven electric vehicle

Patent number:

DE3334128

Publication date:

1985-04-04

Inventor:

BOETTGER KLAUS DR ING (DE)

Applicant:

LICENTIA GMBH (DE)

Classification:

- international:

B60L11/18; H02J7/00; G01R31/36; H01M10/48

- european:

G01R31/36B, B60L11/18M

Application number:

DE19833334128 19830917

Priority number(s):

DE19833334128 19830917

Abstract of DE3334128

In order to determine, at a particular instance, the remaining distance which can still be covered by an electric vehicle driven by an accumulator battery (6) assuming drive power and speed remain the same, on the one hand a variable which is proportional to the respective remaining discharge time of the battery still available and on the other hand a variable which is proportional to the instantaneous speed of the electric vehicle are formed, in a manner known per se, on the basis of the respective battery current (IB) and the preceding charge and/or discharge of the battery (6). The two variables are multiplied together in a multiplier (11). A display device (12) which indicates the remaining distance which can be covered is connected to the output of the multiplier (11). The additional influencing variables of the battery which are important during travel mode, namely the temperature, age and self-discharging of the battery, are taken into account additively during the determination of the remaining discharge time.

Data supplied from the esp@cenet database - Worldwide

B BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift

₀₀ DE 3334128 A1

(5) Int. Cl. 3: B 60 L 11/18

H 02 J 7/00 G 01 R 31/36 H 01 M 10/48

DEUTSCHES PATENTAMT

(2) Aktenzeichen: P 33 34 128.1 (2) Anmeldetag: 17. 9. 83

Offenlegungstag: 4. 4. 85

71) Anmelder:

Licentia Patent-Verwaltungs-GmbH, 6000 Frankfurt, DE

@ Erfinder:

Boettger, Klaus, Dr.-Ing., 6072 Dreieich, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

Werfahren und Schaltungsanordnung zur Ermittlung der Restfahrstrecke eines batteriebetriebenen Elektrofahrzeugs

Zur Ermittlung der momentan unter Annahme gleichbleibender Antriebsleistung und Geschwindigkeit noch möglichen restlichen Fahrstrecke eines mit einer Akkumulatorenbatterie (6) betriebenen Elektrofahrzeugs wird einerseits in an sich bekannter Weise, ausgehend vom jeweiligen Batteriestrom (I_B) und der vorangegangenen Ladung und/oder Entladung der Batterie (6) eine der jeweils noch zur Verfügung stehenden Restentladezeit der Batterie proportionale Größe und andererseits eine der momentanen Geschwindigkeit des Elektrofahrzeugs proportionale Größe gebildet. Beide Größen werden in einem Multiplizierer (11) miteinander multipliziert. An den Ausgang des Multiplizierers (11) ist ein Anzeigegerät (12) angeschlossen, das die Restfahrstrekke anzeigt. Die im Fahrbetrieb wichtigen zusätzlichen Einflußgrößen der Batterie, nämlich ihre Temperatur, Alterung und Selbstentladung, werden additiv bei der Ermittlung der Restentladezeit berücksichtigt.

Licentia Patent-Verwaltungs-GmbH Theodor-Stern-Kai 1 D-6000 Frankfurt 70

5 Ham/schb

F 83/9

10 Verfahren und Schaltungsanordnung zur Ermittlung der Restfahrstrecke eines batteriebetriebenen Elektrofahrzeugs

15 Patentansprüche

1. Verfahren zur Ermittlung der momentan unter der Annahme gleichbleibender Antriebsleistung und Geschwindigkeit noch möglichen restlichen Fahrstrecke eines mit einer Akkumulatorenbatterie betriebenen Elektrofahrzeugs, wobei ausgehend vom jeweiligen Batteriestrom und der vorangegangenen Ladung und/oder Entladung der Batterie eine der jeweils noch zur Verfügung stehenden Restentladezeit der Batterie proportionale Größe gebildet wird,

dadurch gekennzeichnet, daß eine der momentanen Geschwindigkeit des Elektrofahrzeugs proportionale Größe gebildet und mit der der Restentladezeit proportionalen Größe multipliziert wird.

30

 Verfahren nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß der Batteriestrom als die Restentladezeit beeinflussende Größe über einen vorgegebenen Zeitraum gemittelt wird.

- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Batterietemperatur und/oder die Alterung der Batterie und/oder die Selbstentladung der Batterie bei der Bildung der der Restentladezeit proportionalen Größe zusätzlich berücksichtigt werden.
- 4. Verfahren nach einem der Ansprüche 1 bis 3,

 dadurch gekennzeichnet, daß bei der Bildung der der

 Restentladezeit proportionalen Größe zusätzlich unter
 Berücksichtigung des Ladefaktors der Batterie deren
 Ladezustand als Amperestunden-Bilanz ermittelt wird.
- 5. Schaltungsanordnung zur Ermittlung der momentan unter
 der Annahme gleichbleibender Antriebsleistung und Geschwindigkeit noch möglichen restlichen Fahrstrecke
 eines mit einer Akkumulatorenbatterie betriebenen
 Elektrofahrzeugs mittels einer Rechenschaltung, an
 deren Ausgang ausgehend vom jeweiligen Batteriestrom
 und der vorausgegangenen Ladung und/oder Entladung der
 Batterie eine der jeweils noch zur Verfügung stehenden
 Restentladezeit der Batterie proportionale Größe
 ansteht,
- gekennzeichnet durch ein Multiplizierglied (11), dessen
 einer Eingang mit dem Ausgang eines eine der momentanen
 Geschwindigkeit des Elektrofahrzeugs proportionale
 Größe abgebenden Tachogenerators (9) und dessen anderer Eingang mit dem Ausgang der Rechenschaltung (14)
 verbunden ist und an dessen Ausgang ein Anzeigeglied (12) für die restliche Fahrstrecke angeschlossen ist.
 - 6. Schaltungsanordnung nach Anspruch 5, bei dem die Rechenschaltung für die Restentladezeit aus
- einem Integrator (2), der unter Berücksichtigung des Batterieladefaktors (B) aus einer dem jeweiligen Batteriestrom (I_B) proportionalen Größe (I) während

eines Zeitintervalls (t_o bis t) das Stromintegral

B_t
$$\int_{0}^{t}$$
 I(t) dt bildet,

- einem ersten Größengeber (9), der eine von der Batterienennkapazität (K_N) und einem von Batterie und Ladeschlußspannung abhängigen Parameter (b) bestimmte erste konstante Größe $(A = \frac{N}{b})$ vorgibt,
 - einem ersten Addierglied (4), das die Differenz der ersten konstanten Größe (A) mit dem Stromintegral bildet,
 - einem Dividierglied (3), das den Quotienten dieser Differenz zu der dem Batteriestrom ($I_{\rm B}$) proportionalen Größe (I) bildet und
- einem zweiten Addierglied (4'), das die Differenz des Quotienten und einer von einem zweiten Größengeber (9') fest vorgegebenen Größe ($C = \frac{a}{b}$), die durch von Batterie und Ladeschlußspannung abhängige Parameter (a,b) bestimmt ist, bildet,
- 20 besteht und die Restentladezeit ($t_{
 m R}$) nach der Beziehung

$$t_{R}(t,I) = (A - B_{t})^{t}I(t) dt) \frac{1}{I} - C$$

bestimmt,

- dadurch gekennzeichnet, daß dem Eingang des Dividierglieds (3), an den die dem Batteriestrom (IB) proportionale Größe gelegt ist, ein Mittelwertbildner (10)
 vorgeschaltet ist.
- 30 7. Schaltungsanordnung nach Anspruch 6,

 dadurch gekennzeichnet, daß an den Eingang des ersten
 Addierglieds (4) ein dritter Größengeber (16) angeschlossen ist, über den additiv der Einfluß der Batterietemperatur in die Rechenschaltung (14) eingege-
- 35 ben ist.

- 8. Schaltungsanordnung nach Anspruch 6,

 dadurch gekennzeichnet, daß an den Eingang des ersten
 Addierglieds (4) ein vierter Größengeber (17) angeschlossen ist, über den additiv der Einfluß der Alterung der Batterie (6) in die Rechenschaltung (14)
 eingegeben ist.
- 9. Schaltungsanordnung nach Anspruch 6,

 dadurch gekennzeichnet, daß der Einfluß der Alterung
 der Batterie (6) als zusätzliche Größe über den
 ersten Größengeber (9) in die Rechenschaltung (14)
 eingegeben ist.
- 10. Schaltungsanordnung nach Anspruch 6,

 dadurch gekennzeichnet, daß an den Eingang des Integrators (2) ein fünfter Größengeber (15) angeschlossen
 ist, über den additiv der Einfluß der Selbstentladung
 der Batterie (6) in die Rechenschaltung (14) eingegeben ist.
 - 11. Schaltungsanordnung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß an den Ausgang des Integrators (2) ein den Ladezustand der Batterie als Amperestunden-Bilanz anzeigendes Anzeigegerät (13) angeschlossen ist.

30

20

25

Licentia Patent-Verwaltungs-GmbH Theodor-Stern-Kai 1 D-6000 Frankfurt 70

5 Ham/schb

F 83/9

10 <u>Verfahren und Schaltungsanordnung zur Ermittlung</u>
der Restfahrstrecke eines batteriebetriebenen
Elektrofahrzeugs

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 und auf eine Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 5.

Eine Einrichtung zur Überwachung von Akkumulatorenbatterien, bei der ausgehend vom jeweiligen Batteriestrom
der vorangegangenen Ladung und/oder Entladung der Batterie eine der jeweils noch zur Verfügung stehenden Restentladezeit der Batterie proportionale Größe gebildet
wird, ist durch die DE-OS 30 12 356 bekannt. Beim Einsatz einer solchen Einrichtung auf einem Elektrofahrzeug, bei dem der Fahrzeugmotor die Belastung der Batterie bildet, braucht nur der Batteriestrom erfaßt und ausgewertet zu werden. Das Laden der Batterie und der Fahrbetrieb
kommen hierbei nämlich nicht gleichzeitig vor, so daß
der Laststrom und der Batteriestrom einander gleich sind.
Ein Ladegleichrichter wird nur bei stehendem Fahrzeug mit
abgeschaltetem Motor an die Batterie angeschlossen.

Da mit einer Akkumulatorenbatterie gespeiste Elektro-35 fahrzeuge aufgrund der begrenzten Speicherkapazität der Batterie nur für eine verhältnismäßig kurze Fahrstrecke betrieben werden können, bevor eine Aufladung der Batterie notwendig wird, ist es erwünscht, stets die noch mögliche restliche Fahrstrecke unter der Annahme gleichbleibender Antriebsleistung und Geschwindigkeit sowie den Ladezustand der Batterie präzise zu erfassen.

. 5

Dazu ist es durch die DE-OS 31 42 038 bereits bekannt, einen Mikrocomputer einzusetzen. Hierbei bedarf es aber einer aufwendigen Programmierung und einer komplizierten Anpassung des Rechners.

10

15

Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren bzw. die eingangs angegebene Schaltungsanordnung derart auszubilden, daß die momentan noch mögliche restliche Fahrbereichweite des Elektrofahrzeugs mit nur geringem Aufwand zuverlässig und sicher ermittelt wird. Diese Aufgabe wird gemäß der Erfindung für das Verfahren durch die im Anspruch 1 gekennzeichneten Merkmale und für die Schaltungsanordnung durch die im Anspruch 5 gekennzeichneten Merkmale gelöst.

20

Die Ermittlung der Restfahrstrecke ist damit einfach und genau, und das Meßsystem läßt sich leicht an vorhandene Batterien sowie an einen altersbedingten Kapazitätsabfall anpassen.

25

30

35

Vorteilhafte Ausgestaltungen des Verfahrens und der Schaltungsanordnung nach der Erfindung sind in den weiteren Ansprüchen gekennzeichnet. Da im Fahrbetrieb rasch wechselnde Ströme auftreten, wird zur Ermittlung der Restfahrstrecke ein Mittelwert des Stromes gebildet. Da außerdem die Batterietemperatur in weiten Grenzen veränderlich ist, wird die der Ermittlung der Restentladezeit zugrunde gelegte Batteriekapazität temperaturabhängig korrigiert. Zusätzlich ist der Batterieentladezustand am Integratorausgang als Amperestunden-Bilanz abgreifbar.

Die Erfindung soll im folgenden anhand eines in der Zeichnungsfigur dargestellten Ausführungsbeispiels einer Schaltungsanordnung erläutert werden.

In der Zeichnungsfigur ist der prinzipielle Aufbau des Laststromkreises eines batteriebetriebenen Elektrofahrzeugs gezeigt. Ein Fahrmotor 8 wird bei geschlossenem Fahrschalter 18 aus einer Akkumulatorenbatterie 6 gespeist. Zur Aufladung der Batterie 6 ist ein Ladegleichrichter 7 vorgesehen, der nur bei stehendem Fahrzeug und geöffnetem Schalter 18 in Funktion ist. Der Laststrom für den Fahrmotor 8 entspricht damit dem Batteriestrom I_B.

Zur Bildung einer der Restentladezeit der Batterie 6 proportionalen Größe ist eine aus der DE-OS 30 12 356 bekannte Rechenschaltung 14 vorgesehen, deren Eingang über
einen Meßwertumformer 1 eine dem Batteriestrom I_B proportionale Größe I zugeführt ist.

20 Die Rechenschaltung 14 besteht aus einem Integrator 2, der unter Berücksichtigung des Batterieladefaktors B aus der dem jeweiligen Batteriestrom \mathbf{I}_{B} proportionalen Größe I während eines Zeitintervalls \mathbf{t}_{O} bis \mathbf{t} das Stromintegral

 $B_{t} \int_{0}^{t} I(t) dt$

25

beispielsweise/
bildet. Der Batterieladefaktor B wird dadurch berücksichtigt, daß dem Integrator ohmsche Widerstände R_1 und R_2 vorgeschaltet sind, wobei der eine Widerstand R_2 durch eine Diode D überbrückt ist. Diese Diode D ist so gepolt, daß die stromproportionale Größe des Entladestromes der Batterie dem Integrator 2 lediglich über den Widerstand R_1 zugeführt wird, während die stromproportionale Größe des Ladestroms über die Widerstandskombination R_1 + R_2 auf den Integratoreingang gegeben wird. Das Widerstandverhältnis R_1 + R_2 ist gleich dem Batterieladefaktor behältnis R_1 + R_2 ist gleich dem Batterieladefaktor beh

messen. Um den Integrator 2 jeweils in einen definierten Anfangszustand zu bringen, ist ein Tastschaltglied T vorgesehen, mit dem der Kondensator C₂ des Integrators 2 jeweils nach vollständiger Aufladung bis zum Beginn einer Entladung überbrückbar ist.

Die Rechenschaltung 14 weist weiterhin einen ersten Größengeber 9 auf, der eine von der Batterienennkapazität K_N und einem von Batterie- und Ladeschlußspannung abhängigen Parameter b bestimmte erste konstante Größe $A = \frac{K_N}{b}$ vorgibt.

Ein erstes Addierglied 4 bildet die Differenz der ersten konstanten Größe A mit dem vom Integrator 2 gelieferten Stromintegral. Der Ausgang des ersten Addiergliedes 4 ist an ein Dividierglied 3 angeschlossen, das den Quotienten der vom Addierglied 4 gelieferten Größe zu der dem Batteriestrom I_p proportionalen Größe I bildet.

Da im Fahrbetrieb schnell wechselnde Ströme auftreten, de-20 ren Änderungen die Quotientenbildung im Dividierglied 3 störend beeinflussen, wird die dem Dividierglied 3 zugeführte Größe I zuvor geglättet. Das erfolgt hier über einen Mittelwertbildner 10 (Verstärker 1:1 mit Integrierkondensator).

25

Der Ausgang des Dividiergliedes 3 ist mit einem zweiten Addierglied 4' verbunden, das die Differenz des vom Dividierglied 3 gelieferten Quotienten und einer von einem zweiten Größengeber 9' fest vorgegebenen Größe $C = \frac{a}{b}$, die durch von Batterie und Ladeschlußspannung abhängige Parameter a,b bestimmt ist, bildet.

Der ordnungsgemäßen Wirkungsweise der Rechenschaltung 14 dienen neben in der Zeichnungsfigur nicht näher bezeichneten ohmschen Widerständen, die dem Integrator 2, dem zweiten Größengeber 9' sowie dem Dividierglied 3 nachge-

ordnet sind, symbolisch dargestellte Invertierglieder, welche einzeln dem invertierenden Integrator 2, dem ersten und dem zweiten Größengeber 9 bzw. 9' nachgeschaltet sind. Dabei haben das erste und das zweite Addierglied 4 bzw. 4' jeweils Differenzbildungsfunktion, so daß diese Glieder im Rahmen der gezeigten Schaltung durch je einen Inverter mit vorgeordneten Summierknoten dargestellt sind. Auch der Mittelwertbildner 10 weist zu seinem Betrieb notwendige, nicht näher bezeichnete ohmsche Widerstände vor bzw. parallel zum Rückführungskondensator auf.

Die Rechenschaltung 14 bestimmt entsprechend der zuvor beschriebenen Wirkungsweise ihrer Einzelbausteine die Restentladezeit (t_R) der Batterie 6 nach der Beziehung

$$t_{R}(t,I) = (A-B_{t})^{t}I(t) dt) \frac{1}{I} - C$$
.

Zur Ermittlung der momentan unter der Annahme gleichblei-20 bender Antriebsleistung und Geschwindigkeit noch möglichen restlichen Fahrstrecke entsprechend dem Ladezustand der Batterie ist erfindungsgemäß ein Multiplizierglied 11 vorgesehen, das eine der momentanen Geschwindigkeit des Elektrofahrzeugs bzw. der Drehzahl des Fahrmotors 8 pro-25 portionale Größe mit der der Restentladezeit t_{R} proportionalen Größe multipliziert. Zu diesem Zweck ist das Multiplizierglied 11 eingangsseitig zum einen mit dem Ausgang der Rechenschaltung 14 und zum anderen mit einem mit der Antriebswelle des Fahrmotors 8 in Verbindung 30 stehenden Tachogenerator 9 verbunden. An den Ausgang des Multipliziergliedes 11 ist ein Anzeigeglied 12 angeschlossen, von dem die restliche zur Verfügung stehende Fahrstrecke s ablesbar ist.

35

10-

stehende restliche Fahrstrecke sind die Temperatur, die Alterung und die Selbstentladung der Batterie 6.

Die Batterietemperatur beeinflußt zum Beispiel die Kapazität einer Bleibatterie mit etwa 1 % pro Grad. Dieser
Einfluß wird durch einen dritten Größengeber 16 berücksichtigt, der über einen Widerstand R₅ an den Eingang
des ersten Addierglieds 4 angeschlossen ist und als Temperaturgeber additiv eine entsprechende Korrekturgröße
in die Rechenschaltung 14 eingibt.

Die Alterung vermindert die ausnutzbare Batteriekapazität. Hierüber gibt es Erfahrungswerte, jedoch ist eine Kontrolle durch einen Entladeversuch der Batterie 6 zuverlässiger.

Dieser Einfluß wird durch einen vierten Größengeber 17 berücksichtigt, der über einen Widerstand R₄ an den Eingang des ersten Addierglieds 4 angeschlossen ist und der additiv eine der Alterung der Batterie 6 entsprechende Korrekturgröße 6 in die Rechenschaltung 14 eingibt. Der

O Einfluß der Alterung kann statt in der gezeigten Form auch dadurch berücksichtigt werden, daß der erste Grö-ßengeber 9 entsprechend zusätzlich verstellt wird.

Der Einfluß der Selbstentladung der Batterie hängt gleich25 falls von der Alterung ab (zum Beispiel 10 bis 20 % pro
Monat). Dieser Einfluß wird durch einen fünften Größengeber 15 berücksichtigt, der über einen ohmschen Widerstand R₃ an den Eingang des Integrators 2 angeschlossen
ist. Auch diese Korrekturgröße für die Selbstentladung
der Batterie 6 wird additiv in die Rechenschaltung 14
eingegeben.

Der Batterieladezustand als Amperestunden-Bilanz unter Berücksichtigung des Ladefaktors fällt als Spannung am Integratorausgang 2 an und wird auf einem entsprechend (linear) geeichten weiteren Anzeigegerät 13 (zum Beispiel in %)angezeigt.

Nummer:

Int. Cl.³:

Anmeldetag:

Offenlegungstag:

33 34 128

B 60 L 11/18

17. September 1983

4. April 1985

- 11.