MAT347 Abstract Algebra

Jonah Chen

1 Groups

Groups are generally associated with symmetries. Consider the equilateral triangle:

We know that there are six symmetries of the triangle:

- ullet Identity transformation (do nothing) denoted as id or e
- Two rotations $(A \to B \to C \to A \text{ and } A \to C \to B \to A)$
- Three reflections $A \leftrightarrow B$, $A \leftrightarrow C$, $B \leftrightarrow C$

Note that these symmetries preserve the structure of the triangle, hence the composition of two symmetries must also be a symmetry. Let

- $\bullet \ \rho$ be the rotation $A \to B \to C \to A$
- ullet σ be the reflections $B \leftrightarrow C$

Note that $\rho\sigma$ is the $A\leftrightarrow C$ reflection and $\sigma\rho$ is the $A\leftrightarrow B$ reflection. Hence they may not be commutative.

We also know that all symmetries can be reversed. α has an inverse α^{-1} such that $\alpha\alpha^{-1}=\alpha^{-1}\alpha=e$. These inspires the following definition:

Definition: A group is a set G with a composition

$$G \times G \to G$$
 (1)

$$(g,h) \mapsto g \cdot h \tag{2}$$

Satisfying:

• Associativity: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$

- Identity: $\exists e \in G$ such that $g \cdot e = e \cdot g = g$ for all $g \in G$
- Inverse: $\forall g \in G, \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e$

Examples:

- \mathbb{Z} with + is a group. It is associative, e = 0 and $g^{-1} = -g$.
- $\mathbb{Z}/n\mathbb{Z}$ with addition modulo n.
- \bullet If F is a field, it implicitly has two group structures:
 - Additive group: (F,+) is a group. It is associative, e=0 and $g^{-1}=-g$.
 - Multiplicative group: $(F \setminus \{0\}, \times)$ is a group. It is associative, e = 1 and $g^{-1} = 1/g$.
- ullet GL(n,F) "general linear group" contains all invertiable $n \times n$ matrices.
- SL(n,F) "special linear group" contains all invertiable $n \times n$ matrices with determinant 1.
- SO(n, F) "special orthogonal group" = $\{A \in SL(n, F) | A^t = A^{-1}\}.$

1.1 Cyclic Groups

One of the simplest groups is $\mathbb{Z}/n\mathbb{Z}$ for $n \in \mathbb{N}$ with the operation addition modulo n. This is known as the "cyclic group of order n" or C_n . i.e. for n=8, $5+7=4 \pmod 8$, which we denote $\bar 5+\bar 7=\bar 4$.

We know the inverse $\bar{k}^{-1} = \overline{n-k}$ for nonzero k or $\bar{0}^{-1} = \bar{0}$.

Another way to express the cyclic group is $\bar{k} \leftrightarrow e^{2\pi i k/n}$ with multiplication operation. Then,

$$\overline{k+n} = e^{2\pi i(k+n)/n} = e^{2\pi ik/n}e^{2\pi in/n} = e^{2\pi ik/n} = \bar{k}.$$
 (3)

Definition: [Order] The **order** of a group G is its cardinality denoted ord(G) or |G|. It could be a finite or infinite ordinal. In particular, $|C_n| = n$.

1.2 Quaternion Group

The quaternion group $\mathbb{H} = \{\pm 1, \pm i, \pm j, \pm k\}$ is a group of order 8 with the multiplication operation. It has

Definition: [Subgroup] A **subgroup** of a group G is a subset $H \subseteq G$ such that H is a group.

Definition: [Coset] If G is a group and $H \leq G$, consider sets of the form

$$Hg = \{hg|h \in H\} \tag{4}$$

This is a **right coset** of H.

Theorem: [Partitioning with Cosets] Consider Hg and Hg' for $g.g' \in G$. There are two cases:

- They might be disjoint: $Hg \cap Hg' = \emptyset$.
- ullet They might intersect. Suppose hg=h'g' for some $h,h'\in H$

$$h^{-1}hg = h^{-1}h'g' (5)$$

$$g = h^{-1}h'g' \in Hg' \tag{6}$$

Similarly, $g' \in Hg$. Consider an arbitrary element of $kg \in Hg$ with $k \in H$. Then, $kg = kh^{-1}h'g' \in Hg'$ i.e. $Hg \leq Hg'$. Similarly, $Hg' \leq Hg$. Thus, Hg = Hg'.

The right cosets of H partition G. In particular,

$$G = \bigsqcup Hg_i \tag{7}$$

For fixed g, if hg = h'g for $h, h' \in H$ then $hgg^{-1} = h'gg^{-1}$ so h = h'. So in Hg, every element can be matched with an element of H. So, |Hg| = |H|.

Theorem: [Lagrange] If $|G| < \infty$ and $H \le G$, then $|H| \Big| |G|$

Definition: [Index] For $H \leq G$, the **index** of H in G is [G:H] = |G|/|H|.

If |G| = 13, the only subgroups or G are $\{e\}, G$.

If $G = \mathbb{Z}$ and $H = 2\mathbb{Z}$ (even numbers). Then H + 0 = H is one coset, and H + 1 = the odd integers is another coset. So, $\mathbb{Z} = (2\mathbb{Z}) \sqcup (2\mathbb{Z} + 1)$.

Same for Left Cosets Interaction of left and right cosets?

Consider the triangle group with rotations e, ρ, ρ^2 and reflections $\sigma_A, \sigma_B, \sigma_C$ Consider the subgroup H =

 $\{e,\sigma_A\}.$

$$He = \{e, \sigma_A\} \tag{8}$$

$$H\rho = \{\rho, \sigma_B\} \tag{9}$$

$$H\rho^2 = \{\rho^2, \sigma_C\} \tag{10}$$

$$eH = \{e, \sigma_A\}$$

$$\rho H = \{\rho, \sigma_C\}$$

$$\rho^2 H = \{\rho^2, \sigma_B\}$$

$$(11)$$

$$(12)$$

$$(13)$$

$$\rho H = \{\rho, \sigma_C\} \tag{12}$$

$$\rho^2 H = \{\rho^2, \sigma_B\} \tag{13}$$

Note that the left and right cosets are different. They are the same if the group is commutative.

 $\textbf{Definition} \colon [\mathsf{Action}] \ \mathsf{An} \ \mathbf{action} \ \mathsf{of} \ \mathsf{a} \ \mathsf{group} \ G \ \mathsf{on} \ \mathsf{a} \ \mathsf{set} \ X \ \mathsf{is} \ \mathsf{a} \ \mathsf{map}$

$$G \times X \to X$$
 (14)

$$(g,x) \mapsto gx \tag{15}$$

such that

$$(gh)x = g(hx) (16)$$

$$ex = x \tag{17}$$