Emotion Detection

By Eric Swanson

Introduction

- The Problem: How do we come across in online interactions
- Solution:
 - Build a CNN to classify facial expression
 - Successfully apply this model to predict live facial expressions
- Success will be measured on accuracy of the model and by a working web application
- Who will use this If you are looking for a score if you come across as more positive or negative facial expressions, great for practicing presentations and job interview

Steps

- 1. Collect data
- 2. Build a classifier model
- 3. Detect a face
- 4. Live video feed through and app
- 5. Output the predictions

Data Collection Used the fer2013 dataset

Нарру	8989
Neutral	6198
Sad	6077
Fear	5121
Angry	4953
Surprise	4002
Disgust	547

Positive	19,189
Negative	16,628

Dataset from Kaggle Train set: 28,709 images Test set: 7,187 images 7 categories:

- Happy
- Neutral
- Sad
- Fear
- Angry
- Surprise
- Disgust

Images 48X48 grayscale of faces 140 MB

Link to Dataset

Example Images

Some difficult images in EDA

Angry

Cartoon

Angry

Side image

Types of Models

CNN

- Utilized ImageDataGenerator to read in data
- Built a Sequential Model with 4 layers and filter size 64 to 512
- Activation relu
- Loss was categorical cross entropy
- Metrics was Accuracy
- Total params 4,347,655
- Ran 15 epochs

Categorical Crossentropy

Accuracy

Building the App

- Built in Streamlit
- Used OpenCV library for face detection.
- The detected face is cropped out, converted to gray scale, and resized to fit in the model
- Once the prediction is ready the prediction and a box around the detected face is added to the output image
- The prediction is also recorded to a file and ready for viewing when you finished your session.

Conclusion

- Add better/more emotion recognition data
 - Better dataset to train on
 - Color images
 - Continue to develop transfer learning
- Depending on direction of project can add:
 - Speech recognition
 - Detecting other objects like hands