CO 444/644 Algebraic Graph Theory

Keven Qiu Instructor: Jane Gao

Contents

1	Introduction		
	1.1	Automorphisms	2
	1.2	Homomorphisms	3
2	Groups		6
3	Transitive Graphs		12
	3.1	Vertex-Transitive Graphs	12
	3.2	Edge-Transitive Graphs	13

Chapter 1

Introduction

We will focus on simple, undirected graphs without loops unless explicitly stated. We use X = (V, E) to denote graphs and G for groups. V(X) and E(X) are the sets of vertices and edges of graph X respectively and $\deg(v)$ to denote the degree of a vertex $v \in V(X)$.

Definition: Isomorphism

An isomorphism between graphs X, Y is a function $f: V(X) \to V(Y)$ such that $uv \in E(X)$ if and only if $f(u)f(v) \in E(Y)$.

1.1 Automorphisms

Definition: Automorphism

An automorphism of the graph X is an isomorphism $f: X \to X$.

Aut(X) is the set of all automorphisms of X.

 $\operatorname{Sym}(V)$ is used to denote the symmetric group of permutations on V. In group theory, we may have used V = [n]. We may use this notation alongside $\operatorname{Sym}(n)$ when explicitly enumerating the vertices of a graph from 1 to n.

Proposition

 $\operatorname{Aut}(X) \leq \operatorname{Sym}(V(X))$ with the group operation for $\sigma, \tau \in \operatorname{Aut}(X)$ defined $\sigma \tau := \tau \circ \sigma$.

For $g \in \text{Sym}(V(X))$ and $v \in V(X)$, let v^g denote g(v). Let S^g denote $\{g(v) : v \in S\}$ for set S.

Suppose $Y \subseteq X$ is a subgraph and $g \in \operatorname{Aut}(X)$. Y^g is the graph defined $V(Y^g) = V(Y)^g$ and $E(Y^g) = \{u^g v^g : uv \in E(Y)\}.$

E.g. The following is an example of graphs X and Y along with functions that are and are

not automorphisms.

Let $X = (\{1, 2, 3, 4\}, \{12, 13, 14, 23, 34\}), Y = (\{1, 2, 3\}, \{12, 13, 23\}), Y^g = (\{1, 3, 4\}, \{13, 14, 34\})$ where g(1) = 3, g(2) = 4, g(3) = 1, g(4) = 2. f(1) = 1, f(2) = 4, f(3) = 3, f(4) = 2 is an automorphism while Y^g where f(1) = 3, f(2) = 3, f(3) = 4, f(4) = 1 is not an automorphism.

Lemma

For $v \in V(X)$ and $g \in Aut(X)$, $deg(v) = deg(v^g)$.

Proof. Let Y(v) be the subgraph of X induced by v and the neighbors $N_X(v)$. Then

$$Y(v) \cong Y(v)^g = Y(v^g)$$

so $\deg(v) = \deg(v^g)$.

Lemma

Let $u, v \in V(X)$ and $g \in Aut(X)$, then the length of the shortest paths are preserved, i.e. $d(u, v) = d(u^g, v^g)$.

Proof. Show that a shortest uv-path in X is mapped to a shortest $u^g v^g$ -path by g.

1.2 Homomorphisms

Definition: Homomorphism

Let X and Y be graphs. We say $f: V(X) \to V(Y)$ is a homomorphism if $x \sim y$ implies $f(x) \sim f(y)$ in Y.

 \sim is for adjacency and $f: X \to Y$ instead of $f: V(X) \to V(Y)$ for simplicity.

Let $\chi(X)$ denote the chromatic number of X, the minimum number of colors needed to color the vertices of a graph such that no two adjacent vertices have the same color.

Let K_r denote the complete graph on r vertices where every pair of distinct vertices is connected by an edge. We say that K_r is a clique, where it generally is a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent.

Lemma

$$\chi(X) = \min\{r \in \mathbb{N} : \exists \text{ homomorphism } X \to K_r\}$$

Proof. Let $k = \chi(X)$. We first show $k \ge \min\{r \in \mathbb{N} : \exists \text{ homomorphism } X \to K_r\}$. Let f be a k-coloring of X. Then f is a homomorphism from X to K_k .

Next, we show that $k \leq \min\{r \in \mathbb{N} : \exists \text{ homomorphism } X \to K_r\}$. Let $\overline{r} = \min\{r \in \mathbb{N} : \exists \text{ homomorphism } X \to K_r\}$. Let $h: X \to K_{\overline{r}}$ be a homomorphism. Then $h^{-1}(v)$ is an independent set. So, giving $h^{-1}(v)$ distinct colors yields an \overline{r} -coloring.

Definition: Retraction

A homomorphism $f: X \to Y$ such that

- 1. $Y \subseteq X$.
- 2. $f|_Y = id$, the identity map.

If a retraction from X to Y exists, we call Y a retract of X.

We use the notation $f|_Y$ to mean the function f when restricted to the domain of Y.

E.g. Suppose $K_r \cong Y \subseteq X$ and $\chi(X) = r$. We will prove that Y is a retract of X. The proof is as follows: let $f: V(X) \to [r]$ where $r = \chi(X)$ be an r-coloring of X. Then, Y receives distinct colors since $Y \cong K_r$. Without loss of generality, assume V(Y) = [r]. Then f is a homomorphism from X to K_r and $f|_Y = id$. Therefore, f is a retraction.

E.g. Recall that a cycle graph C_n is defined $V(C_n) = \{0, \ldots, n-1\}$ where $n \geq 3$ and $E(C_n) = \{ij : i-j \equiv \pm 1 \pmod{n}\}$. Let $g = (1, 2, \ldots, n-1, 0) \in \operatorname{Aut}(C_n)$. This can be viewed as a rotation. We can define the subgroup

$$R = \{g^m : 0 \le m \le n - 1\} \le \operatorname{Aut}(C_n)$$

to capture all possible rotations.

We can define reflections. Let h be defined $h(i) = -i \pmod{n} \in \operatorname{Aut}(C_n)$. We can see that R and Rh are disjoint cosets of $\operatorname{Aut}(C_n)$ and $Rh \leq \operatorname{Aut}(C_n)$. It follows that $|\operatorname{Aut}(C_n)| \geq 2n$.

Definition: Circulant Graph

Let $\mathbb{Z}_n = \{0, \dots, n-1\}$ and $C \subseteq \mathbb{Z}_n \setminus \{0\}$ be closed under inverse, that is, $x \in C \Longrightarrow -x \in C$. We define the circulant graph $X = X(\mathbb{Z}_n, C)$ where $V(X) = \mathbb{Z}_n, E(X) = \{ij : i-j \in C\}$.

One can show that the arguments from the previous example for C_n also hold for $X = X(\mathbb{Z}_n, C)$. That is, $|\operatorname{Aut}(X(\mathbb{Z}_n, C))| \geq 2n$. We can generalize this result for arbitrary groups using Cayley graphs.

Definition: Johnson Graph

Given $v \ge k \ge i$ as integers where $[v] = \{1, \dots, v\}$, the Johnson graph J = J(v, k, i) is defined $V(J) = \{S \subseteq [v] : |S| = k\}, E(J) = \{ST : |S \cap T| = i\}.$

J(5,2,0) is the Peterson graph. J(v,k,0) is the Kneser graph.

Proposition

There exists a subgroup of Aut(J(v, k, i)) that is isomorphic to Sym(v).

Proof. For $g \in \text{Sym}(v)$, define $\tau_g : {v \choose k} \to {v \choose k}$ as $\tau(S) = S^g$. Note that $|S \cap T| = |S^g \cap T^g|$ for vertices $S, T \in J(v, k, i)$ since we are essentially just relabeling elements of S and T, so

 $\tau_g \in \operatorname{Aut}(J(v,k,i))$. We can conclude that

$$\{\tau_g:g\in\mathrm{Sym}(v)\}\cong\mathrm{Sym}(v)$$

Chapter 2

Groups

Definition: Homomorphism

Given groups G and H, $f: G \to H$ is a homomorphism if for all $g, h \in G$,

$$f(gh) = f(g)f(h)$$

Definition: Kernel

The kernel of a homomorphism f is defined

$$\ker(f) = f^{-1}(1)$$

Definition: Group Action

Suppose G is a group and V is a set. A homomorphism $f: G \to \operatorname{Sym}(V)$ is a permutation representation of G and we call it an action of G on V.

E.g. Let X be a graph and take V = V(X). Let $G = \operatorname{Aut}(X)$. Then $f : G \to \operatorname{Sym}(V)$ defined f(g) = g for $g \in G$ is an action.

E.g. Let G be a group. Let $f: G \to \operatorname{Sym}(V)$ where V is arbitrary be defined f(g) = id where id is the identity permutation. f is an action.

Definition: Faithful Action

The action f is faithful if $ker(f) = \{1\}$.

We can see that the first action example above is faithful, but not the second.

Let group G act on V, via $f: G \to \text{Sym}(V)$. Let $g \in G$, we use the notation

$$x^g := q^{f(g)} \text{ and } S^G := S^{f(g)}$$

where S is an arbitrary set.

Definition: G-Invariant

Let group G act on V and $g \in G$. S is G-invariant if $S = S^g$ for all $g \in G$.

Definition: Orbit

Let group G act on V. The orbit of $x \in V$ is

$$x^G := \{x^g : g \in G\}$$

One may show that V is partitioned into disjoint orbits and each orbit is G-invariant and transitive (for every x, y in the same orbit, there exists $g \in G$ where $x^g = y$).

Definition: Stabilizer

Let $G \leq \operatorname{Sym}(V)$ and $x \in V$. The stabilizer of x is

$$G_x := \{ g \in G : x^g = x \}$$

Lemma

Let $G \leq \operatorname{Sym}(V)$ and $x \in V$, then $G_x \leq G$.

Lemma

Let $G \leq \operatorname{Sym}(V)$ and let S be an orbit of G. Let $x, y \in S$, then

$$H := \{ h \in G : x^h = y \}$$

is a right coset of G_x . Conversely, if H is a right coset of G_x , then for all $h, h' \in H$, $x^h = x^{h'}$.

Proof. (\Longrightarrow) G is transitive on S, so there exists $g \in G$ where $x^g = y$. For any $h \in H$, $x^h = y$ by the definition of H. So, $x^h = x^g$. Then,

$$x^{hg^{-1}} = x \implies hg^{-1} \in G_x \implies h \in G_x g$$

(\iff) Assume $H = G_x g$ for some $g \in G$. Let $h, h' \in H$ where $h = \sigma g$ and $h' = \sigma' g$ for some $\sigma, \sigma' \in G_x$. We have

$$x^h = x^{\sigma g} = x^g = x^{\sigma' g} = x^{h'}$$

Lemma (Orbit-Stabilizer)

Let G be a permutation group acting on V with $x \in V$. Then

$$|G_x| \left| x^G \right| = |G|$$

Proof. Let \mathcal{H} be the set of right cosets of G_x and define $f: x^G \to \mathcal{H}$ as

$$f(y) = \{g \in G : x^g = y\}$$

7

The previous lemma shows that f is a bijection. Therefore, $|\mathcal{H}| = |x^G|$. Since the right cosets of G_x partition G, we have

$$|G| = |G_x| |\mathcal{H}| = |G_x| |x^G|$$

Definition: Conjugate

Let G be a permutation group and let $g,h\in G$. g is conjugate to h if there is some $\sigma\in G$ such that

$$g = \sigma h \sigma^{-1}$$

Proposition

If H is a subgroup of G and $g \in G$, then $gHg^{-1} \leq G$ and $gHg^{-1} \cong H$.

Lemma

If $y \in x^G$, then G_x and G_y are conjugate.

Proof. Suppose $y = x^g$ where $g \in G$. We will prove that $g^{-1}G_xg = G_y$.

- (\subseteq) Note that $y^{g^{-1}} = x$. For every $h \in G_x$, $y^{g^{-1}hg} = x^{hg} = g^g = y$.
- (\supseteq) For $h \in G_y$, $x^{ghg^{-1}} = y^{hg^{-1}} = y^{g^{-1}} = x$. Then $ghg^{-1} \in G_x$, rearranging gives $h \in g^{-1}G_xg$.

Definition: Fix

Let $G \leq \operatorname{Sym}(V)$ and $g \in G$. Then

$$fix(g) = \{ v \in V : v^g = v \}$$

Lemma (Burnside)

Let $G \leq \operatorname{Sym}(V)$. Then

of orbits of
$$G = \frac{1}{|G|} \sum_{g \in G} |fix(g)|$$

Proof. Let $\Lambda = \{(g, x) : g \in G, x \in V, x \in fix(g)\}$. We will apply a double-counting argument. Observe that

$$|\Lambda| = \sum_{g \in G} |\operatorname{fix}(g)| = \sum_{x \in V} |G_x|$$

Equating these gives

$$\sum_{g \in G} |\text{fix}(g)| = \sum_{x \in V} |G_x|$$

$$= \sum_{x \in V} \frac{|G|}{|x^G|}$$

$$= |G| \sum_{x \in V} \frac{1}{|x^G|}$$

$$= |G| (\# \text{ of orbits of } G)$$
(Orbit-Stabilizer)

Definition: Asymmetric Graph

A graph X is asymmetric if $Aut(X) = \{id\}.$

Theorem

Let $\mathcal{G}_n = \{X \text{ on } [n]\}$ and $X \in \mathcal{G}_n$ be chosen uniformly random, then

$$\lim_{n\to\infty} \Pr(X \text{ is asymmetric}) = 1$$

Proof. Let $X \in \mathcal{G}_n$, $\text{Iso}(X) = \{Y \in \mathcal{G}_n : X \cong Y\}$.

Lemma: $|\operatorname{Iso}(X)| = \frac{n!}{|\operatorname{Aut}(X)|}$

Proof. (Lemma) Let G = Sym([n]). For $g \in G$, let $\tau_g : \mathcal{G}_n \to \mathcal{G}_n$ where $X \mapsto X^g$. Let $H := \{\tau_g : g \in G\}$ acts on \mathcal{G}_n and $H \cong G$.

$$n! = |G| = |H| = |H_X| \cdot |X^H| = |\text{Aut}(X)| |\text{Iso}(X)|$$

Let \mathcal{H} be the set of isomorphism classes of graph on [n]. Let $\mathcal{H} \in \mathcal{H}$. If $X \in \mathcal{C}$ is asymmetric, then $|\mathcal{C}| = n!$. If X is symmetric, then $|\mathcal{C}| \leq \frac{n!}{2}$.

Let ρ be the proportion of $\mathcal{C} \in \mathcal{H}$ such that $|\mathcal{C}| = n!$. Now,

$$2^{\binom{n}{2}} = |\mathcal{G}_n| = \sum_{C \in \mathcal{H}} |\mathcal{C}| \le \rho |\mathcal{H}| \, n! + (1 - \rho) |\mathcal{H}| \, \frac{n!}{2}$$

Claim: $|\mathcal{H}| = (1 + o(1)) \frac{2^{\binom{n}{2}}}{n!}$, where o(1) denotes some $x_n \in \mathbb{R}$ such that $\lim_{n \to \infty} x_n = 0$.

By claim,
$$2^{\binom{n}{2}} \le (1 + o(1)) \frac{2^{\binom{n}{2}}}{n!} \cdot n! \left(\rho + \frac{1-\rho}{2}\right) = (1 + o(1)) 2^{\binom{n}{2}} \cdot \frac{1+\rho}{2}.$$

Thus, $\rho = 1 + o(1)$. Then the proportion of asymmetric graphs in \mathcal{G}_n is $\rho |\mathcal{H}| n!/2^{\binom{n}{2}} = 1 + o(1)$.

Proof. (Claim) Consider $\mathcal{P} = \{\tau_g : g \in \text{Sym}([n])\}$ acting on \mathcal{G}_n where $\tau_g(x) = x^g$. The set of orbits is \mathcal{H} . Burnside's Lemma tells us $|\mathcal{H}| = \frac{1}{|G|} \sum_{g \in G} |\text{fix}(\tau_g)|$.

Observation: Every g induces a permutation G_g on $E(K_{[n]})$. Let C be an orbit under σ_g . Then, if X is fixed by τ_g , then X either contains all edges in C or no edges in C.

Let $\operatorname{orb}_2(\sigma_g)$ be the number of orbits under σ_g . Thus, $|\operatorname{fix}(\tau_g)| = 2^{\operatorname{orb}_2(\sigma_g)}$. If g = id, then $\operatorname{orb}_2(\sigma_g) = \binom{n}{2}$. If g = (i,j) for some $i,j \in [n]$, $\operatorname{orb}_2(g) = (n-2) + \binom{n}{2} - 2(n-2)$.

The contribution to Burnside's Lemma from a simple transposition is $\binom{n}{2}2^{\binom{n}{2}-(n-2)}=2^{\binom{n}{2}}$. With some technical work we skip, we can show that $\sum_{\substack{g\in G\\g\neq id}}|\operatorname{fix}(\tau_g)|=o(1)\cdot|\operatorname{fix}(\tau_{id})|$

$$\frac{1}{n!} |\text{fix}(\tau_{id})| \le |\mathcal{H}| = \frac{1}{n!} (1 + o(1)) |\text{fix}(\tau_{id})| \implies |\mathcal{H}| = (1 + o(1)) \frac{2^{\binom{n}{2}}}{n!}$$

Definition: Block of Imprimitivity

Let G be a transitive permutation group on V and $S \subseteq V$. S is a block of imprimitivity for G if $S \neq \emptyset$ and $\forall g \in G$, $S^g = S$ or $S^g \cap S = \emptyset$.

 $S = \{u\}$ for all $u \in V$ and S = V are trivial blocks of imprimitivity.

Definition: Primitive

G is primitive if there does not exist non-trivial blocks of imprimitivity. Otherwise, G is imprimitive.

Remark: We assume transitivity since if G has an orbit $S = x^G$ such that $|S| \ge 2, S \ne V$, then S is a block of imprimitivity.

E.g. If $G = Aut(K_n)$, G is primitive.

E.g. Let $G = Aut(C_4)$, G is not primitive.

E.g. Let $G = \operatorname{Aut}(C_{2n})$

Lemma

Let G be a transitive permutation group on V. Let $x \in V$. Then, G is primitive if and only if G_x is a maximal subgroup of G (no K such that $G_x < K < G$).

Proof. We prove G is imprimitive if and only if there exists K such that $G_x < K < G$.

(\Longrightarrow) Let S be a block of imprimitivity with $2 \le |S| < |V|$. With loss of generality, we may assume that $x \in S$ since G is transitive. Let $G_S = \{g \in G : S^g = S\}$ which is a subgroup of G. We prove that $G_x < G_S$.

Let $g \in G_x$. Then $x \in S \cap S^g$, so $S^g = S$ (by definition of block of imprimitivity. Since $|S| \geq 2$, $\exists y \in S, y \neq x$. Let $h \in G$ such that $x^h = y$, this implies $h \notin G_x$. Then, $y \in S \cap S^h \implies S = S^h \implies h \in G_S$. These two points give us $G_x < G_S$. $G_S < G$ since $S = S^g$ for all $g \in G_S$ but G is transitive.

(\iff) Suppose there exists K with $G_x < K < G$. Let $S = x^K$. $2 \le |S| < |V|$ (assignment).

Claim: For all $g \in G$, if $S \cap S^g \neq \emptyset$, then $g \in K$ and $S = S^g$.

Proof. (Claim) Assume $y \in S \cap S^g$. $y \in S \implies \exists h \in K : y = x^h$. $y \in S^g \implies \exists h' \in K : y = x^{h'g}$. Combining, we get $x = x^{h'gh^{-1}} \implies h'gh^{-1} \in G_x < K \implies g \in (h')^{-1}Kh \in K$.

E.g. Consider K_3 and the vertex 1. $G_1 = \{id, (1)(23)\}, G = Aut(K_3)$. There is no bigger subgroup, so G_1 is maximal.

E.g. Consider C_4 and 1. $G_1 = \{id, (1)(3)(24)\}, K = \{id, (1)(3)(24), (13)(24), (13)(2)(4)\}.$ Here $G_1 < K < \operatorname{Aut}(C_4)$. We constructed $K = \{g \in \operatorname{Aut}(C_4) : \{1, 3\}^g = \{1, 3\}\}.$

Chapter 3

Transitive Graphs

3.1 Vertex-Transitive Graphs

Definition: Vertex-Transitive Graphs

X is vertex-transitive if Aut(X) acts transitively on V(X).

Definition: k-Cube Q_k

 $V(Q_k) = 2^{[k]}, E(Q_k) = \{ij : H(i,j) = 1\}$ where H is the Hamming distance (positions where the binary string is different).

Lemma

 Q_k is vertex-transitive.

Proof. For all $v \in 2^{[k]}$, define $\rho_v : 2^{[k]} \to 2^{[k]}$ such that $x \mapsto x + v$. Since H(x,y) = H(x+v,y+v), $\rho_v \in \operatorname{Aut}(Q_k)$. So $\{\rho_v : v \in 2^{[k]}\} \leq \operatorname{Aut}(Q_k)$, which acts transitively on $V(Q_k)$.

Proof. For all $v \in \text{Sym}([k])$, define $\tau_v : 2^{[k]} \to 2^{[k]}$, $S \mapsto S^v$. Since $H(x, y) = H(\tau_v(x), \tau_v(y))$, $\{\tau_v : v \in \text{Sym}([k])\} \leq \text{Aut}(Q_k)$.

Note
$$\{\rho_v : v \in 2^{[k]}\} \cap \{\tau_v : v \in \text{Sym}([k])\} = \{id\}. \{\rho_v : v \in 2^{[k]}\} \{\tau_v : v \in \text{Sym}([k])\} \subseteq \text{Aut}(Q_k) \text{ and } \left| \{\rho_v : v \in 2^{[k]}\} \{\tau_v : v \in \text{Sym}([k])\} \right| = \frac{\left| \{\rho_v : v \in 2^{[k]}\} \left| |\{\tau_v : v \in \text{Sym}([k])\} \right|}{\left| \{\rho_v : v \in 2^{[k]}\} \cap \{\tau_v : v \in \text{Sym}([k])\} \right|} = 2^k k!.$$

Remark: Cycles and Circulant graphs are vertex-transitive.

Definition: Cayley Graph

Given group G and $C \subseteq G$ satisfying

- $1 \notin C$
- $x \in C \implies x^{-1} \in C$

Then X=X(G,C) such that V(X)=G and $E(X)=\{gh:hg^{-1}\in C\}=\{gh:gh^{-1}\in C\}.$

Lemma

Cayley graphs are vertex-transitive.

Proof. For any $v \in G$, define $\rho_v : G \to G, x \mapsto xv$. $xy \in E(X(G,C)) \Leftrightarrow xy^{-1} \in C \Leftrightarrow (xv)(yv)^{-1} \in C \Leftrightarrow \{\rho_v(x), \rho_v(y)\} \in E(X(G,C))$.

Lemma

Johnson graphs are vertex-transitive.

3.2 Edge-Transitive Graphs

A group acting on V naturally induces an action on

$$\binom{V}{2} & (V)_2 = \{ ij \in V^2 : i \neq j \}$$

by $\{u, v\}^g := \{u^g, v^g\}$ and $(u, v)^g = (u^g, v^g)$.

Definition: Edge-Transitive Graph

X is edge-transitive if $\operatorname{Aut}(X)$ acts transitively on E(X).

Definition: Arc-Transitive Graph

X is arc-transitive if $\operatorname{Aut}(X)$ acts transitively on $\{ij:ij\in E(X)\}$

Proposition

Arc-transitive \implies vertex-transitive and edge-transitive.

Proposition

There exist graphs that are edge-transitive, but not vertex-transitive.

Proposition

There exist graphs vertex-transitive, but not edge-transitive.

Theorem

Edge-transitive graphs that are not vertex-transitive are bipartite.

Proof. Without loss of generality, we may assume that X has no isolated vertices.

2-orbits: Let $xy \in E(X)$. For $w \in V(X)$, $wz \in E(X)$ for some $z \in V(X)$. There exists $\sigma \in \operatorname{Aut}(X)$, $\{x^{\sigma}, y^{\sigma}\} = \{w, z\}$. This implies every vertex in X is either in x^G or y^G . However, X is not vertex-transitive, $x^G \neq y^G$, this gives the bipartition.

If $wz \in E(X)$ and $wz \in x^G$ (or $wz \in y^G$), this implies no $\sigma \in \operatorname{Aut}(X)$ would map xy to wz since $x^G \cap y^G = \emptyset$.