System Verification & Validation Report for MobiCharged

Team Super Charged (No.33)
Nashit Mohammad - mohamn31
Eric Nguyen - nguyee13
Samuel De Haan - dehaas1
Eamon Earl - earle2
Mustafa Choueib - choueibm

November 2nd, 2022

Contents

1	Revision History	1					
2	Definitions	2					
3	Objective						
4	Functional Requirements Evaluation	3					
5	Non-Functional Requirements Evaluation	4					
6	Background 6.1 Software System	5 5					
7	Test Cases 7.1 Hardware Test Cases 7.2 Software Test Cases 7.2.1 Server-Side Initializer Application 7.2.2 Server-Side Application 7.2.3 Client Side Application 7.2.4 Database Module Test Cases 7.2.5 Machine Learning Blackboard Test Cases	7 8 9 9 15 19 23					
${f k}$	Changes Due to Testing 8.1 Server-Client Module	28 28 28 28					
${f L}$	ist of Tables						
	1 Revision History	7					

5	Server-Side Initializer Test Cases	9
6	Server-Side Test Cases (1-2)	10
7	Server-Side Test Cases (3-5)	11
8	Server-Side Test Cases (6-9)	12
9	Server-Side Test Cases (10-12)	13
10	Server-Side Test Cases (13)	14
11	Client-Side Test Cases (1-3)	15
12	Client-Side Test Cases (4-6)	16
13	Client-Side Test Cases (7-9)	17
14	Client-Side Test Cases (10-11)	18
15	Database Components	19
16	Database Test Cases (1-3)	20
17	Database Test Cases (4-5)	21
18	Database Test Cases (6-8)	22
19	Machine Learner Components	23
20	Machine Learning Blackboard Test Cases (1-3)	24
21	Machine Learning Blackboard Test Cases (4-6)	25
22	Machine Learning Blackboard Test Cases (7-8)	26
23	Machine Learning Blackboard Test Cases (9-10)	27

1 Revision History

Table 1: Revision History

Author	Date	Version	Description
All	March 8th, 2023	Rev 0	Created first draft of document
Mustafa	March 9th, 2023	Rev 1	Fixed formatting issues, revised
Choueib	Choueib		tex document, and made gram-
			matical corrections
Mustafa	March 15th,	Rev 1	Updated Non-Functional Re-
Choueib	2023		quirements naming convention
			(as changed in SRS)

2 Definitions

Table 2: Naming Conventions and Terminology

Word	Definition/Context
Functional Requirement	Requirements that describe what the prod-
	uct is supposed to do
Non-functional Requirement	Requirements that describe qualities that
	product will have
Data Smoothing	The process of using old data as well as
	"future" data in order to predict designs.
ML	"Machine Learning" algorithm.
SRS	Software Requirements Specification
Cryptography	The practice and study of techniques for
	secure communication
Asymmetric Key Cryptography	An encryption and decryption system that
	includes a public and private key pair
Functional Testing	Type of software testing that validates the
	software system against the functional re-
	quirements/specifications
Structural Testing	Type of software testing that uses the inter-
	nal design of the software
Dynamic Testing	Test cases that are executed at run-time
Static Testing	Testing that does not require program exe-
	cution
Manual Testing	Tests written and executed manually by
	team members
Automated Testing	Testing that makes use of software tools
	that execute tests automatically
System Testing	Testing that tests the system as a com-
	pleted program and is based on the require-
	ments
PROCESS-BENCHMARK	The average time required for completion of
	the current process (6 hours)
MAX-CHARGE-TIME	The maximum allowed time required to re-
	motely charge a target device (4 hours)

3 Objective

The objective in this document is to establish a validate & verify of certain aspects of the system that correlate with the successful completion of satisfying requirements as well as ensuring the system is built as per intentions. The key objective with this document is to build confidence in the outputs produced by the Mobicharged system as well as establish confirmation of ease of navigation for our users when using the system. A selected key objective that should not be ignored is the aim to not only output application variables that will work successfully for the application, but to specifically output the most optimized solution.

4 Functional Requirements Evaluation

To ensure the system satisfies what it was intended to do, it was verified in relation to the SRS document; in particular section 9, Functional Architecture. In conjunction, the plan outlined in the V&V Plan document section 4, System Test Description, was used to guide testing. Evaluation of the functional requirements can be found in Section 5. Tests were run to determine successful completion of requirements.

- SR1: ML Model must optimize inputs faster than the existing process
- SR2: ML Model must be able to develop "new" simulations based on previous optimal models
- SR3: ML Model must be able to encrypt optimized data before exporting
- SR4: The software system must determine and output optimized and correct solution
- SR5: ML Model must be able to process incoming simulation data from multiple source devices
- SR6: ML Model must be able to interpret data exported directly from MATLAB simulations

- HR1: The system must be able to use Phased-Wave interference to produce a visual output
- HR2: The system must be able to provide data to an external system

5 Non-Functional Requirements Evaluation

In the same vein as the functional requirement evaluation, it was verified in relation to the SRS document; in particular to section 9, Functional Architecture. In conjunction, the plan outlined in the V&V Plan document section 4, System Test Description, was used to guide testing.

In certain cases where the non-functional requirements pertains to a non-quantifiable attribute, testing was not applicable (i.e, APR1). In these cases, group, supervisor, and peer feedback were taken in a casual constructive form.

- NFR1: The hardware system will be packaged neatly such that all wiring is hidden and not exposed to others
- NFR2: The software system will be produced with front end design colors such that strains to the eye are minimized
- NFR3: The system will consist of a simple user interface by minimizing unnecessary and complex functionalities
- NFR4: Authorized users will have access to the system while unauthorized users will not
- NFR5: The system must be able to store its current state locally in the event of a failure
- NFR6: The individual components of the physical system must be inspected and tested
- NFR7: The system shall be simple to install within 10 steps and within one hour
- NFR8: The system shall be understandable within an hour of use

- NFR9: The system must compute optimal configuration within 6 hours
- NFR10: The hardware system must have a fail safe option such that the system shuts off at the event of a failure to reduce potential harm
- NFR11: The system must have a relative accuracy of 5% compared to current MATLAB simulation
- NFR12: The system must be available at all times
- NFR13: The system must be able to discard any corrupted data without adding it to the database
- NFR14: The hardware system must be able to withstand an input of an upper limit of 15 volts
- NFR15: The system must be functional on Windows and macOS
- NFR16: The system must encrypt all exported data

6 Background

6.1 Software System

The purpose of the software system, MobiCharged, is a machine learning algorithm that will be used by Mobilite-Power, engineering consultant groups, general contractors, and building maintenance teams to optimize the design process required to effectively and efficiently produce the most viable remote charging system. In doing so, this will negate the current process of manually conducting simulations (that requires lengthy computerized numerical calculations), ultimately minimizing cost, manual labour, and the time necessary to produce the required results.

This system will provide users with the optimal configuration of a remote charging device based on the desired output, encrypt data protecting users when producing design results, and use data smoothing to ensure the accuracy of the system in a time efficient manner.

6.2 Hardware System

The purpose of the hardware system is to root our algorithms optimization in the real world environment. The production of a physical model will assist in determination of the absolute boundaries that can be fed into the machine learning algorithm. Variable parameter ranges will be derived from the physical model to determine the magnitude to which the boundaries can be pushed within the simulation. The physical system provides a secondary purpose in the form of data collection and verification. In order to increase the breadth of data that we can feed into the algorithm, we must determine the degree of computational error within the simulation results. A physical model will aid in determining this range and lead to further optimization through the machine learning algorithm.

7 Test Cases

7.1 Hardware Test Cases

Table 3: Hardware Test Cases

Test	Description	Requirement	Modules	Inputs	Expected	Actual	Results
Num-		Reference	Refer-		Out-	Out-	
ber			enced		puts	puts	
1.	Hardware	HR1	HW Power	Styrofoam		Levitation	Pass
	visual ef-		Supply,	ball	of object	of object	
	fectiveness		HW Mi-				
	test		crocon-				
			troller,				
			HW				
			Trans-				
			ducer Cir-				
			cuitry		_		
2.	Hardware	HR1	HW Power	Plastic	Levitation	No levi-	Fail
	visual ef-		Supply,	ball	of object	tation of	
	fectiveness		HW Mi-			object	
	test		crocon-				
			troller,				
			HW				
			Trans-				
			ducer Cir-				
			cuitry				

7.2 Software Test Cases

Component	Test Plan Test Factors
Server-Side Application	The main reason for testing the server-side appli-
	cation is to ensure that the server is launching cor-
	rectly, allowing/accepting access given the connection
	is authorized, receiving input/output pairs from the
	client, communicating and transferring data to the
	database, generating new random input to send back
	to the client autonomously, and storing data to a lo-
	cal database that is kept until a data transfer is initi-
	ated. Aspects of the application that exhibit the same
	or similar functionality were grouped and tested. For
	example, initialization of the server was tested as a
	group. In addition to this, groups were tested sequen-
	tially in the order they would typically execute.
Client-Side Application	The main reason for testing the client-side application
	is to ensure that a client is able to calculate simula-
	tion results, connect to the server, and transmit and
	receive data to and from the server. Thus, the major-
	ity of testing is done to ensure correctness and relia-
	bility of the client-side application to ensure that it is
	operating as intended. The way the client-side appli-
	cation was tested is similar to the testing plan of the
	server-sided application. Different functions within this
	application were grouped and tested sequentially based
	on the order they would normally execute. The test-
	ing consisted mainly of testing the communication be-
	tween the client and server, and ensuring the expected
	data being transferred and received was correct.
Server Initializer Applica-	The main reason for testing the server initializer is to
tion	ensure that the server will never start up with bro-
	ken or incorrect configurations. This application is ba-
	sically testing input types and ensuring that all the
	values passed in are parsed correctly and are the ex-
	pected types.

Table 4: Software Server-Client Components

7.2.1 Server-Side Initializer Application

Test	Description	Requirement	Inputs	Expected	Actual Out-	Results
Num-		Reference		Outputs	puts	
ber						
1.	Testing initial server configuration (# of unique inputs, # of unique outputs, range for input 1,2,3, and 4)	N/A	4,3, [1,2],[3,4], [5,6],[7,8]	inputSize == 4 && outputSize == 3 && inputList == [[1,2],[3,4],[5,6], [7,8]]	_	Pass
2.	Testing that ini- tial server configura- tion only accepts in- teger values	N/A	a,b,c,d,e,f, g,h,i,j	"Please enter an integer value" prompt	"Please enter an integer value" prompt	Pass

Table 5: Server-Side Initializer Test Cases

7.2.2 Server-Side Application

Test Num-	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
ber						
1.	Testing that the server checks local database and ac- knowledges it is empty	NFR5	Local database is empty	"Clean Local Database, Current Queue is empty!" prompt	"Clean Local database, Current Queue is empty!" prompt	Pass
2.	Testing that the server re- trieves the data inside the local database when it is not empty	NFR5	Local Database = {{'ID': '884a5913- 47a1- 4610-bda4- 5db03aa8f425', 'Input': [1.69987008 94027414,3.6 88886129396 8028,1.09399 82029550088 ,3.325165892 7677354], 'Output': 13},{'ID':'7c f59c41-acb3- 4e03-9ade- 6f7235c7ca97 ','Input':[1.47 963341984527 2,3.10597539 27838574,1.07 95084653703 89,3.4097349 62180615], 'Output':13}}	output_q == [{{'ID': '884a5913- 47a1- 4610-bda4- 5db03aa8f425', 'Input': [1.69987008 94027414,3.6 88886129396 8028,1.09399 82029550088 ,3.325165892 7677354], 'Output': 13},{'ID':'7c f59c41-acb3- 4e03-9ade- 6f7235c7ca97 ','Input':[1.47 963341984527 2,3.10597539 27838574,1.07 95084653703 89,3.4097349 62180615], 'Output':13}}]	output_q == [{{'ID': '884a5913- 47a1- 4610-bda4- 5db03aa8f425', 'Input': [1.69987008 94027414,3.6 88886129396 8028,1.09399 82029550088 ,3.325165892 7677354], 'Output': 13},{'ID':'7c f59c41-acb3- 4e03-9ade- 6f7235c7ca97 ','Input':[1.47 963341984527 2,3.10597539 27838574,1.07 95084653703 89,3.4097349 62180615], 'Output':13}}]	Pass

Table 6: Server-Side Test Cases (1-2)

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-	_	Reference	_	Outputs	Outputs	
ber				_	_	
3.	Testing	NFR5	pair	Local	Local	Pass
	that the		={'ID':'7vq92b	Database =	Database =	
	server is		61-bdc8-	{{'ID':'7vq92b	{{'ID': '7vq92b	
	append-		1y15-9jqh-	61-bdc8-	61-bdc8-	
	ing each		4f4367b3ba97',	1y15-9jqh-	1y15-9jqh-	
	new in-		'Input':[1.46318	4f4367b3ba97'	4f4367b3ba97'	
	put/output		79642130127,3.5	,'Input':[1.463	,'Input':[1.463	
	pair to		67941357964125	187964213012	187964213012	
	the local		4,1.5786135784	7,3.567941357	7,3.567941357	
	database		296312,3.96347	9641254,1.578	9641254,1.578	
			81254631236],	613578429631	613578429631	
			'Output': 10}	2,3.963478125	2,3.963478125	
			-	4631236],	4631236],	
				'Output ['] :	'Output':	
				10}}	10}}	
4.	Testing	NFR4	Client requests	connected_clie	connected_clie	Pass
	that the		connection	nts[0][0] =	nts[0][0] =	
	server can			('99.235.234	('99.235.234	
	handle a			.43')	.43')	
	client con-					
	nection					
5.	Testing	NFR4	Multiple	$connected_clie$	connected_clie	Pass
	that the		clients request	nts[0][0] =	nts[0][0] =	
	server can		connection	[('99.235.234	[('99.235.234	
	handle mul-			.43'),	.43'),	
	tiple client			('99.235.234	('99.235.234	
	connections			.43')]	.43')]	

Table 7: Server-Side Test Cases (3-5)

Test Num- ber	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
6.	Testing that the server can handle mul- tiple client connections	NFR4	4 clients request connection	len(connected _clients) == 4	len(connected _clients) == 4	Pass
7.	Testing that the server re- jects in- correct au- thorization from the client	NFR4	Client sends incorrect au- thorization message	authSucecss == False && "Incorrect Authorization key, disconnecting!" prompt	authSuccess == False && "Incorrect Authorization key, disconnecting!"	Pass
8.	Testing that the server ac- cepts cor- rect au- thorization from the client	NFR4	Client sends correct autho- rization mes- sage	authSuccess == True && connected _clients[0][0] == ('99.235.234. 43') && "Correct Authorization key, Accepting Connection!" prompt	authSuccess == True && connected _clients[0][0] == ('99.235.234. 43') && "Correct Authorization key, Accepting Connection!" prompt	Pass
9.	Testing that the server can receive in- put from the client	N/A	Client sends optimal out- put to server == 10.0	received_data. pickleloads(re ceived_data) == 10		Pass

Table 8: Server-Side Test Cases (6-9)

Test Num- ber	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
10.	Testing that the server generates new in- put within the range specified on launch	SR2	Server receives optimal out- put && out- put_q.isFull() == False	$(1 \le newResponse \\ [0] \le 2\&\&3 \le newResponse \\ [1] \le 4\&\&5 \le newResponse \\ [2] \le 6\&\&7 \le newResponse \\ [3] \le 8) == True$	$(1 \le newResponse \\ [0] \le 2\&\&3 \le newResponse \\ [1] \le 4\&\&5 \le newResponse \\ [2] \le 6\&\&7 \le newResponse \\ [3] \le 8) == True$	Pass
11.	Testing that the server calls for a data transfer once the output_q is full	SR3	output_q.isFull() == True && received_data	Local Database. isEmpty() == True	Local Database. isEmpty() == True	Pass
12.	Testing that the server does not lose data if in- terrupted during data transfer	NFR13	output_q = $\{1,2,3,4,5,6,7,8,9,10\}$ && finished transferring $\{1,2,3,4\}$ then interrupted during the 5th value	continue transfer from output_q == $\{5,6,7,8,9,10\}$	continue transfer from output_q == $\{1,2,3,4,5,6,7,$ $8,9,10\}$	Fail

Table 9: Server-Side Test Cases (10-12)

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-		Reference		Outputs	Outputs	
ber						
13.	Testing if	NFR15	Running the	"Mobicharged	"Mobicharged	Pass
	the server is		server-side ap-	is now run-	is now run-	
	functional		plication on	ning"	ning"	
	on all oper-		multiple oper-	prompt on	prompt on	
	ating sys-		ating systems	all devices	all devices	
	tems					

Table 10: Server-Side Test Cases (13)

7.2.3 Client Side Application

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-		Reference		Outputs	Outputs	
ber						
1.	Testing	N/A	Python client	"Please enter	"Please enter	Pass
	that the		_controller.py	the autho-	the autho-	
	client-side			rization key:	rization key:	
	application			" prompt	" prompt	
	attempts to					
	connect to					
	the server					
2.	Testing	NFR4	authorizationKe	ľ		n Pass
	that the		= "incorrect-	Failed. Dis-	Failed. Dis-	
	client-side		password"	connecting."	connecting"	
	application			prompt	prompt	
	is refused					
	connection					
	if failed au-					
	thorization					
3.	Testing	NFR4	AuthorizationKe	y Authorization	"Authorization	n Pass
	that the		= "mo-	Successful,	Successful,	
	client-side		bicharged"	Connecting	Connecting	
	application			to server"	to server"	
	is accepted			prompt	prompt	
	connection					
	on success-					
	ful autho-					
	rization					

Table 11: Client-Side Test Cases (1-3)

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-		Reference		Outputs	Outputs	
ber						
4.	Testing	SR2	Connection is	"Input pa-	"Input pa-	Pass
	that the		successfully	rameter for	rameter for	
	client-side		established	the opti-	the opti-	
	application			mization	mization	
	prompts			problem:"	problem:"	
	user to in-			prompt	prompt	
	put an ini-					
	tial value					
	to start au-					
	tonomous					
	chain					
5.	Testing	SR2	$initial_input$	"Input must	"Input must	Pass
	that the		= "StringIn-	be numeric	be numeric	
	client-side		steadOfFloat"	0-9" prompt	0-9" prompt	
	application					
	must take a					
	float value					
	for the ini-					
	tial input	/ .				
6.	Testing	N/A	$initial_input =$	MATLAB	MATLAB	Pass
	that the		[30.0,40.0,	simulation is	simulation is	
	client-side		$50.0,\!60.0]$	ran given the	ran given the	
	applica-			initial_input	initial_input	
	tion takes			as parame-	as parame-	
	the input			ters	ters	
	in "input-					
	Params"					
	and starts a					
	MATLAB					
	simulation					

Table 12: Client-Side Test Cases (4-6)

Test Num- ber	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
7.	Testing that the client-side application receives and opti- mal value from the MATLAB simulation	N/A	initial_input = [30.0,40.0, 50.0,60.0]	MATLAB simulation is ran with initial_input as parameters && optimal_output = 10.0 (hard coded response from MATLAB for testing)	MATLAB simulation is ran with initial_input as parameters && optimal_output = 10.0 (hard coded response from MATLAB for testing)	Pass
8.	Testing that the client-side application provides a uniqueID to eery opti- mal output produced by MAT- LAB	N/A	Received optimal_output = 10.0 from MATLAB	Data["ID"] != Null	Data["ID"] != Null	Pass
9.	Testing that the client-side applica- tion sends the in- put/output pair to the server	N/A	data_string = pickle. dumps(data) && soc. send(data_ string)	Manual Check: re- ceived_data 1= Null (on server side)	Manual Check: re- ceived_data != Null (on server side)	Pass

Table 13: Client-Side Test Cases (7-9)

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-		Reference		Outputs	${f Outputs}$	
ber						
10.	Testing	SR2	soc.	data_received	data_received	Pass
	that the		send(data_string)!=Null	!= Null	
	client-side					
	application					
	receives					
	new input					
	from the					
	server					
11.	Testing	NFR9	y =	(Elapsed_time	(Elapsed_time	Pass
	that the		${ m eng.unknown}_{-}$	≤ 21600	≤ 21600	
	client-side		$poly_type$	(seconds)) ==	(seconds)) ==	
	application		(inputParams,	True	True	
	computes		nargout			
	optimal		= 1) &&			
	configura-		$start_s top watch$			
	tion within					
	6 hours					

Table 14: Client-Side Test Cases (10-11)

7.2.4 Database Module Test Cases

Component	Test Plan Test Factors					
Database Module	The database module requires testing to ensure					
	that the functionality of the database module and					
	that both the Server-Client and Machine Learning					
	Blackboard module are able to communicate with					
	it. Examples of the aspects being tested are the					
	backup/recovery abilities of the database in the sce-					
	nario of a major failure, and correct data format-					
	ting/indexing of all read/write functions.					

Table 15: Database Components

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-		Reference		Outputs	Outputs	
ber						
1.	Test server	NFR12	[ID:"006dd8fc-	A new doc-	A new doc-	Pass
	connection.		44f3-	ument is	ument is	
	Determine		4e9a-9b15-	added to	added to	
	if the server		e12557df1a48",	the "MAT-	the "MAT-	
	module		Input:0:1,1:2,2:3	, LAB_Simula	LAB_Simula	
	is able to		3:4,	tions" collec-	tions" collec-	
	write to the		Output:1.21922	tion	tion	
	database		2]			
2.	Test client	NFR12	Call	Returns	Returns	Pass
	connection.		batched_read()	a dictio-	a dictio-	
	Determine			nary con-	nary con-	
	if the client			taining all	taining all	
	module is			stored data	stored data	
	able to read			in database	in database	
	from the				(tested with	
	database				1 entry and	
					with 1000	
					entries)	
3.	Test secu-	NFR4	Call	"Unauthorized	"Unauthorized	Pass
	rity pro-		$batched_read()$	request"	request"	
	tocol of		without Fire-	prompt	prompt	
	Firestore.		store authenti-			
	Ensure		cation			
	that non-					
	authorized					
	users are					
	unable to					
	read/write					
	to database					

Table 16: Database Test Cases (1-3)

Test Num-	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
ber		rector office		Carpars	Outputs	
4.	Test data structure consistency during read/write functions. Ensure that the data being writ- ten to the database has the same data structure as data being read	N/A	N/A	[ID:"006dd8fc-44f3-4e9a-9b15-e12557df1a48" In-put:0:1,1:2,2:3,3:4, Output:1.219 222] is written and read	[ID:"006dd8fc-44f3-4e9a-9b15-, e12557df1a48" Input:0:1,1:2,2:3,3:4, Output:1.219 222] is written and read	Pass ,
5.	Test backup and recovery capabilities. In the case of a corrupted database, make sure that a local copy or previous version can be reestablished	NFR12	Call re- cover_last_ db_version()	Wipes corrupted dataset and re-writes most recently stored database	Wipes corrupted dataset and re-writes most recently stored database	Pass

Table 17: Database Test Cases (4-5)

Test Num-	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
ber		reference		Outputs	Outputs	
6.	Test database size fun- tionality. Ensure that the database is still func- tioning af- ter stor- ing a large amount of data	NFR12	 Call write_lar ge_ dataset() Call batched_ read() 	Even with 1000 entries, the database read and write func- tions should still work	Both read and write functionalities continue to work. Output is not written because it is too large	Pass
7.	Test incorrect data structure handling. The database should reject incorrectly formatted data	NFR13	Call write_data() with [ID:"12"]	"Incorrect data structure inputted. Server should input [ID:"", Input:, Output:]"	"Incorrect data structure inputted. Server should input [ID:"", Input:, Output:]"	Pass
8.	Reading data from an empty database	N/A	Call batched_read()	"Database is empty" prompt, and returns an empty dictionary	"Database is empty" prompt, and returns an empty dictionary	Pass

Table 18: Database Test Cases (6-8)

7.2.5 Machine Learning Blackboard Test Cases

Component	Test Plan Test Factors
Machine Learning Black-	The critical behaviour that we wish to test for is the
board	synchronicity of the threads and the interwoven pro-
	cesses, and that their CPU sharing is fair and al-
	lows for a reasonable user experience when combined
	with the UI. We also want to ensure that the main
	loop of the machine learner works as intended; be-
	ginning once a pre-determined threshold of data has
	been met in the associated database, at which point
	that data is funneled into the model. We then want
	to make sure that the user-side predictive stream is
	opened upon model completion, and that accuracy /
	progress graphs are saved in the correct locations. We
	also want to ensure that these graphs match the pro-
	cesses and final outputs of the machine learner, and
	that the accuracy found is representative of the ac-
	curacy displayed on these graphs. We also ultimately
	want to ensure that the machine learning model con-
	verges and finds a relatively accurate solution. Upon
	full implementation of the multi-model pruning system
	discussed in our demo, we will also be testing that the
	final model was truly the best option out of all that
	were attempted. *Note: much of this behaviour re-
	quires experiential testing, as the relative accuracies
	and inputs to the simulations we are attempting to
	mimic with our machine learning model are randomly
	generated, and as such can't be quantitatively verified.
	As such, the other behaviour, like creation of threads
	at the correct times, the execution of the learning pro-
	cess once the threshold has been met, and saving the
	graphs in the correct locations have also been experi-
	entially validated up to date, but these tests will be
	added to suite further into the development process.

Table 19: Machine Learner Components

Test Num- ber	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
1.	Upon pinging the DB and seeing a COUNT ¿ cur- rent_threshold machine learning model is executed on current DB data points	,	Network response from DB	"Simulation started" prompt	"Simulation started" prompt	Pass
2.	Testing that the model terminates	N/A	DB in- put/output pairs	Matrix with weights of 'relative optimality'	Matrix with weights of 'relative optimality'	Pass on some func- tions, fails on others
3.	Testing whether the model generates an accuracy / epoch graph and saves it lo- cally	N/A	DB in- put/output pairs	New local .jpg file showing the accuracy over epochs	New local .jpg file showing the accuracy over epochs	Pass

Table 20: Machine Learning Blackboard Test Cases (1-3)

Test Num-	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
ber		160101 01100		Caepaes	Guepues	
4.	Testing that the predictive stream is opened on comple- tion of the learning process	N/A	None	"Please input your desired values on which you'd like to predict:"	"Please input your desired values on which you'd like to predict:"	Pass
5.	Testing that upon comple- tion of the learning process, the module starts pol- ing the DB again	N/A	None	Current DB count	Current DB count	Pass
6.	Testing that the predictive stream call/response from the user is not stalled by parallel computations, or consistently responds in a reasonable amount of time $(\leq 5s)$	N/A	None	None	None	Fail - Stalls on startup with- out indica- tion to user

Table 21: Machine Learning Blackboard Test Cases (4-6)

Test Num-	Description	Requirement Reference	Inputs	Expected Outputs	Actual Outputs	Results
7.	Testing that currently optimal model weights and cur- rent_threshold are saved in the database after each successful pass through the	N/A	[Weight Matrix, current_threshold]	Entries entered into DB	Entries entered into DB	Pass
8.	learning process Testing that upon new best perform- ing model found, this model is then used in the pre- dictive stream	N/A	None	None	None	Fail - Yet to achieve correct sig- nalling logic

Table 22: Machine Learning Blackboard Test Cases (7-8)

Test	Description	Requirement	Inputs	Expected	Actual	Results
Num-		Reference		Outputs	Outputs	
ber	m ,	NT / A	[]: / C]]	NT.	NT.	D :1
9.	that in- put/output numbers and bound- aries set by the user through the initializer module are properly set in the predictive stream	N/A	[list of bound- aries for each input]	None	None	Fail - values cur- rently hard coded in file
10.	Testing that the currently sole model consistently produces accurate re- sults that are correct within a 0.01 rela- tive error rate	NFR11	None	None	None	Pass

Table 23: Machine Learning Blackboard Test Cases (9-10)

8 Changes Due to Testing

8.1 Server-Client Module

During testing, it was discovered that there is a major security flaw within the server-client connection regarding the IP addresses. A future change to improve security is to only allow clients that are connecting from an approved IP address list to connect.

8.2 Database Module

Previously, the Firestore database was configured to allow any user with the API key to read/write to the database. However, this was recognized to be a major security flaw and Firestore Authentication SDK was implemented to fix this. This SDK provides methods to allow users to sign in using email addresses and passwords. This user management is then used to determine which users are granted read/write permissions.

8.3 Machine Learning Blackboard

From the latency issues found in the predictive stream, and the cluttered messaging seen in the terminal, we found that proceeding with the development of a simple front-end system, to improve the user's ability to oversee the process of the learner, would be necessary to achieve a wholly useful project. This requirement was listed in our initial SRS (APR1), but its importance was eclipsed at the time by other services that required development. This could also help in thread management and notify updates to the predictive model, and allow the user to see progress without manually opening the saved graphical models.

References

We will be referring to documentations provided by Mobilite-Power, however, as of now there are no references to mention.