0.1 可积函数与连续函数的关系

引理 0.1

设 f(x) 在 E 上可积,则对 $\forall \varepsilon > 0$,都存在 E 上的简单函数 $\varphi(x)$ 使得

$$\int_{E} |f(x) - \varphi(x)| \mathrm{d}x < \varepsilon$$

此时称 f(x) 可由 $\varphi(x)$ 平均逼近.

证明 记 $f(x) = f^+(x) - f^-(x)$. 由非负可测函数积分的定义 (上确界的定义) 知, 对 $\forall \varepsilon > 0$, 存在非负简单函数 $\varphi^+ \leq f^+, \varphi^- \leq f^-$ 使得

$$\int_{E} f^{+}(x) dx - \int_{E} \varphi^{+}(x) dx < \frac{\varepsilon}{2}$$

$$\int_{E} f^{-}(x) dx - \int_{E} \varphi^{-}(x) dx < \frac{\varepsilon}{2}$$

 $\phi \varphi = \varphi^+ - \varphi^-$,则 $\varphi(x)$ 是 E 上的简单函数,且

$$\begin{split} \int_{E} |f(x) - \varphi(x)| \mathrm{d}x &= \int_{E} \left| \left[f^{+}(x) - f^{-}(x) \right] - \left[\varphi^{+}(x) - \varphi^{-}(x) \right] \right| \\ &\leqslant \int_{E} |f^{+}(x) - \varphi^{+}(x)| \mathrm{d}x + \int_{E} |f^{-}(x) - \varphi^{-}(x)| \mathrm{d}x \\ &= \int_{E} \left[f^{+}(x) - \varphi^{+}(x) \right] \mathrm{d}x + \int_{E} \left[f^{-}(x) - \varphi^{-}(x) \right] \mathrm{d}x \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

故引理得证.

定理 0.1

若 $f \in L(E)$, 则对任给 $\varepsilon > 0$, 存在 \mathbb{R}^n 上具有紧支集的连续函数 g(x), 使得

$$\int_{E} |f(x) - g(x)| \mathrm{d}x < \varepsilon.$$

注 上述事实表明, 若 $f \in L(E)$, 则对任给的 $\varepsilon > 0$, 存在 f 的分解:

$$f(x) = g(x) + [f(x) - g(x)] = f_1(x) + f_2(x), \quad x \in E,$$

其中 $f_1(x)$ 是 \mathbb{R}^n 上具有紧支集的连续函数, $|f_2(x)|$ 在 E 上的积分小于 ε . 即**可积函数可以被** \mathbb{R}^n **上具有紧支集的可测简单函数逼近.**

证明 由于 $f \in L(E)$, 故由引理 0.1可知, 对任给的 $\varepsilon > 0$, 存在 \mathbb{R}^n 上具有紧支集的可测简单函数 $\varphi(x)$, 使得

$$\int_{E} |f(x) - \varphi(x)| \mathrm{d}x < \frac{\varepsilon}{2}.$$

不妨设 $|\varphi(x)| \leq M$, 又由定理**??**(6)(ii), 故不妨设 E 是有界集. 根据推论**??**可知, 存在 \mathbb{R}^n 上具有紧支集的连续函数 g(x), 使得 $|g(x)| \leq M(x \in \mathbb{R}^n)$, 且有

$$m(\lbrace x \in E : |\varphi(x) - g(x)| > 0 \rbrace) < \frac{\varepsilon}{4M},$$

从而可得

$$\begin{split} \int_{E} |\varphi(x) - g(x)| \mathrm{d}x &= \int_{\{x \in E: |\varphi(x) - g(x)| > 0\}} |\varphi(x) - g(x)| \mathrm{d}x + \int_{\{x \in E: |\varphi(x) - g(x)| = 0\}} |\varphi(x) - g(x)| \mathrm{d}x \\ &= \int_{\{x \in E: |\varphi(x) - g(x)| > 0\}} |\varphi(x) - g(x)| \mathrm{d}x \\ &\leqslant 2Mm(\{x: |\varphi(x) - g(x)| > 0\}) < \frac{\varepsilon}{2}. \end{split}$$

最后, 我们有

$$\int_E |f(x)-g(x)|\mathrm{d}x \leq \int_E |f(x)-\varphi(x)|\mathrm{d}x + \int_E |\varphi(x)-g(x)|\mathrm{d}x < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

推论 0.1

设 $f \in L(E)$, 则存在 \mathbb{R}^n 上具有紧支集的连续函数列 $\{g_k(x)\}$, 使得

(i)

$$\lim_{k \to \infty} \int_E |f(x) - g_k(x)| \mathrm{d}x = 0;$$

(ii)

$$\lim_{k \to \infty} g_k(x) = f(x), \quad \text{a.e. } x \in E.$$

证明

(i) 由定理 0.1可知, 对 $\forall k \in \mathbb{N}$, 存在具有紧支集的连续函数 g_k , 使得

$$\int_E |f(x) - g_k(x)| \, \mathrm{d} x < \frac{1}{k}.$$

(ii)

推论 0.2

设 $f \in L([a,b])$, 则存在其支集在 (a,b) 内的连续函数列 $\{g_k(x)\}$, 使得

(i)

$$\lim_{k \to \infty} \int_{[a,b]} |f(x) - g_k(x)| \mathrm{d}x = 0;$$

(ii)

$$\lim_{k\to\infty}g_k(x)=f(x),\quad \text{a.e. } x\in[a,b].$$

证明

(i)

(ii)

例题 0.1 设 $f \in L(\mathbb{R}^n)$. 若对一切 \mathbb{R}^n 上具有紧支集的连续函数 $\varphi(x)$, 有

$$\int_{\mathbb{D}^n} f(x)\varphi(x)\mathrm{d}x = 0,$$

则 f(x) = 0,a. e. $x \in \mathbb{R}^n$.

证明 采用反证法. 不妨假设 f(x) 在有界正测集 E 上有 0 < f(x),则可作具有紧支集的连续函数列 $\{\varphi_k(x)\}$,使得

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} |\chi_E(x) - \varphi_k(x)| dx = 0,$$
$$|\varphi_k(x)| \le 1 \quad (k = 1, 2, \dots),$$

$$\lim_{k \to \infty} \varphi_k(x) = \chi_E(x), \quad \text{a. e. } x \in E.$$

由于 $|f(x)\varphi_k(x)| \leq |f(x)|, x \in E$, 故知

$$0 < \int_{E} f(x) dx = \int_{\mathbb{R}^{n}} f(x) \chi_{E}(x) dx$$
$$= \lim_{k \to \infty} \int_{\mathbb{R}^{n}} f(x) \varphi_{k}(x) dx = 0,$$

矛盾.

例题 **0.2** 设 $f \in L([a,b])$. 若对其支集在 (a,b) 内且可微的任一函数 $\varphi(x)$, 都有

$$\int_{[a,b]} f(x)\varphi'(x)\mathrm{d}x = 0,$$

则 $f(x) = c(常数), a. e. x \in [a, b].$

证明 对任意的支集在 (a,b) 内的连续函数 g(x), 作 h(x): 支集在 (a,b) 内的连续函数, 且满足 $\int_{[a,b]} h(x) dx = 1$. 令

$$\varphi(x) = \int_{[a,x]} g(t)dt - \int_{[a,x]} h(t)dt \cdot \int_{[a,b]} g(t)dt, \quad x \in [a,b],$$

易知 $\varphi(x)$ 的支集在 (a,b) 内, 且有

$$\varphi'(x) = g(x) - h(x) \int_{[a,b]} g(t) dt, \quad x \in [a,b],$$

从而由题设可得

$$\begin{split} 0 &= \int_{[a,b]} f(x) \varphi'(x) \mathrm{d}x = \int_{[a,b]} f(x) \left(g(x) - h(x) \int_{[a,b]} g(t) \mathrm{d}t \right) \mathrm{d}x \\ &= \int_{[a,b]} f(x) g(x) \mathrm{d}x - \int_{[a,b]} f(x) h(x) \mathrm{d}x \cdot \int_{[a,b]} g(x) \mathrm{d}x \\ &= \int_{[a,b]} \left(f(x) - \int_{[a,b]} f(t) h(t) \mathrm{d}t \right) g(x) \mathrm{d}x. \end{split}$$

因此,我们有

$$f(x) - \int_{[a,b]} f(t)h(t)dt = 0$$
, a. e. $x \in [a,b]$,

即得所证.

定理 0.2 (平均连续性)

若 $f \in L(\mathbb{R}^n)$, 则有

$$\lim_{h\to 0} \int_{\mathbb{R}^n} |f(x+h) - f(x)| \, \mathrm{d}x = 0.$$

证明 由定理 0.1可知, 任给 $\varepsilon > 0$, 作分解 $f(x) = f_1(x) + f_2(x)$, 其中 $f_1(x)$ 是 \mathbb{R}^n 上具有紧支集的连续函数, $f_2(x)$ 满足

$$\int_{\mathbb{R}^n} |f_2(x)| \, \mathrm{d}x < \frac{\varepsilon}{4}.$$

由于紧集上的连续函数是一致连续的, 故 $f_1(x)$ 具有紧支集且在紧支集上是一致连续函数. 不妨设 $|f_1(x)| < M$, 由于 f_1 在 $\sup f_1$ 上一致连续, 故存在 $\delta > 0$, 使得当 $|h| < \delta$ 时, 有

$$|f_1(x+h) - f_1(x)| < \frac{\varepsilon}{2m(\operatorname{supp} f_1 - \{h\})}, \quad \forall x \in \operatorname{supp} f_1 - \{h\}.$$

由外测度的平移不变性可知

$$m(\operatorname{supp} f_1) = m(\operatorname{supp} f_1 - \{h\}).$$

于是

$$m(\operatorname{supp} f_1 \setminus (\operatorname{supp} f_1 - \{h\})) = 0.$$

注意到

$$\mathbb{R}^n = (\mathbb{R}^n \setminus (\operatorname{supp} f_1 \cup (\operatorname{supp} f_1 - \{h\}))) \cup (\operatorname{supp} f_1 - \{h\}) \cup \operatorname{supp} f_1 \setminus (\operatorname{supp} f_1 - \{h\}))$$

进而由积分对定义域的可数可加性可得

$$\int_{\mathbb{R}^{n}} |f_{1}(x+h) - f_{1}(x)| dx = \int_{\mathbb{R}^{n} \setminus (\text{supp} f_{1} - \{h\})} |f_{1}(x+h) - f_{1}(x)| dx + \int_{\text{supp} f_{1} - \{h\}} |f_{1}(x+h) - f_{1}(x)| dx + \int_{\text{supp} f_{1} \setminus (\text{supp} f_{1} - \{h\})} |f_{1}(x+h) - f_{1}(x)| dx$$

$$<0\cdot m\left(\mathbb{R}^n\setminus\left(\operatorname{supp} f_1\cup\left(\operatorname{supp} f_1-\{h\}\right)\right)\right)+\frac{\varepsilon}{2m\left(\operatorname{supp} f_1-\{h\}\right)}\cdot m\left(\operatorname{supp} f_1-\{h\}\right)+M\cdot 0$$

$$=\frac{\varepsilon}{2}.$$

从而我们有

$$\begin{split} \int_{\mathbb{R}^n} |f(x+h) - f(x)| \, \mathrm{d}x &\leq \int_{\mathbb{R}^n} |f_1(x+h) - f_1(x)| \, \mathrm{d}x + \int_{\mathbb{R}^n} |f_2(x+h) - f_2(x)| \, \mathrm{d}x \\ &< \frac{\varepsilon}{2} + \int_{\mathbb{R}^n} |f_2(x+h)| \, \mathrm{d}x + \int_{\mathbb{R}^n} |f_2(x)| \, \mathrm{d}x \\ &\qquad \underline{ \frac{\Re \beta \, \nabla \, \text{量的平移交换定理}}{2} } \, \frac{\varepsilon}{2} + 2 \int_{\mathbb{R}^n} |f_2(x)| \, \mathrm{d}x < \varepsilon. \end{split}$$

命题 0.1

若 $E \subset \mathbb{R}^n$ 是有界可测集,则

$$\lim_{|h|\to 0} m(E\cap (E+\{h\})) = m(E), \quad h\in \mathbb{R}^n.$$

证明 考查特征函数 $\chi_E(x)$. 对于 $h \in \mathbb{R}^n$, 我们有

$$\chi_{E+\{h\}}(x) = \chi_E(x-h), \quad \chi_{E\cap(E+\{h\})}(x) = \chi_E(x-h) \cdot \chi_E(x),$$

从而可得

$$m(E\cap (E+\{h\}))=\int_{\mathbb{R}^n}\chi_E(x)\cdot\chi_E(x-h)\,dx.$$

因为

$$m(E) = \int_{\mathbb{R}^n} \chi_E(x) \, dx = \int_{\mathbb{R}^n} \chi_E^2(x) \, dx,$$

所以

$$\left| m(E \cap (E + \{h\})) - m(E) \right| \le \int_{\mathbb{R}^n} \left| \chi_E(x) \right| \left| \chi_E(x - h) - \chi_E(x) \right| dx$$
$$\le \int_{\mathbb{R}^n} \left| \chi_E(x - h) - \chi_E(x) \right| dx.$$

根据可积函数的平均连续性可知,上式右端当 $|h| \rightarrow 0$ 时趋于零,即得所证.

推论 0.3

若 $f \in L(E)$, 则存在具有紧支集的阶梯函数列 $\{\varphi_k(x)\}$, 使得

(i) $\lim_{k\to\infty} \varphi_k(x) = f(x)$,a. e. $x \in E$;

(ii)
$$\lim_{k \to \infty} \int_E |f(x) - \varphi_k(x)| \, dx = 0.$$

证明 根据定理 0.1可知, 对任给的 $\varepsilon > 0$, 存在 \mathbb{R}^n 上具有紧支集的连续函数 g(x), 使得

$$\int_{E} |f(x) - g(x)| \, dx < \frac{\varepsilon}{2}.$$

不妨设 g(x) 的支集含于某个闭方体

$$I = \{x = (\zeta_1, \dots, \zeta_n) : -k_0 \leqslant \zeta_i \leqslant k_0 (i = 1, \dots, n), k_0 \notin \{1, \dots, n\} \}$$

内, 由 g(x) 的一致连续性不难证明, 存在支集含于 I 内的阶梯函数 $\varphi(x)$, 使得

$$\varphi(x) = \sum_{i=1}^{N} c_i \chi_{I_i}(x), \quad \int_{I} |g(x) - \varphi(x)| \, dx < \frac{\varepsilon}{2},$$

其中每个 I_i 可以是含于I内的二进方体.从而我们有

$$\begin{split} \int_{E} |f(x) - \varphi(x)| \, dx & \leq \int_{E} |f(x) - g(x)| \, dx + \int_{E} |g(x) - \varphi(x)| \, dx \\ & \leq \frac{\varepsilon}{2} + \int_{I} |g(x) - \varphi(x)| \, dx = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

于是对 $\varepsilon_k = 1/k(k=1,2,\cdots)$, 就可取到具有紧支集的阶梯函数列 $\{\varphi_k(x)\}$, 使得

$$\lim_{k \to \infty} \int_E |f(x) - \varphi_k(x)| \, dx = 0.$$

对任给 $\sigma > 0$, 令 $E_k(\sigma) = \{x \in E : |f(x) - \varphi_k(x)| \ge \sigma\}$, 则由于

$$\sigma m(E_k(\sigma)) \leqslant \int_E |f(x) - \varphi_k(x)| dx,$$

可知 $m(E_k(\sigma)) \to 0$ ($k \to \infty$), 即 { $\varphi_k(x)$ } 在 E 上依测度收敛于 f(x). 根据 Riesz 定理, 存在 { $\varphi_k(x)$ } 中的子列几乎 处处收敛于 f(x), 此子列满足 (i) 与 (ii).

定理 0.3 (Riemann-Lebesgue 引理的推广)

若 $\{g_n(x)\}$ 是 [a,b] 上的可测函数列, 且满足

- (i) $|g_n(x)| \le M(x \in [a, b])(n = 1, 2, \cdots);$
- (ii) 对任意的 $c \in [a, b]$, 有

$$\lim_{n\to\infty}\int_{[a,c]}g_n(x)\,dx=0,$$

则对任意的 $f \in L([a,b])$, 有

$$\lim_{n\to\infty}\int_{[a,b]}f(x)g_n(x)\,dx=0.$$

证明 由推论 0.3可知, 对任给的 $\varepsilon > 0$, 可作阶梯函数 $\varphi(x)$, 使得

$$\int_{[a,b]} |f(x) - \varphi(x)| \, dx < \frac{\varepsilon}{2M}.$$

不妨设 $\varphi(x)$ 在 [a,b) 上有表示式

$$\varphi(x) = \sum_{i=1}^{p} y_i \chi_{[x_{i-1}, x_i)}(x), \quad x \in [a, b),$$

其中 $a = x_0 < x_1 < \cdots < x_p = b$. 因为

$$\left| \int_{[a,b]} \varphi(x) g_n(x) \, dx \right| \leqslant \sum_{i=1}^p \left| y_i \int_{[x_{i-1},x_i]} g_n(x) \, dx \right|,$$

且从假设可知存在 n_0 , 当 $n \ge n_0$ 时, 上式右端小于 $\varepsilon/2$, 所以

$$\left| \int_{[a,b]} \varphi(x) g_n(x) \, dx \right| \leqslant \frac{\varepsilon}{2}, \quad n \geqslant n_0.$$

最后, 当 $n \ge n_0$ 时, 得到

$$\left| \int_{[a,b]} f(x)g_n(x) \, dx \right| \le \left| \int_{[a,b]} (f(x) - \varphi(x))g_n(x) \, dx \right| + \left| \int_{[a,b]} \varphi(x)g_n(x) \, dx \right|$$
$$\le M \int_{[a,b]} |f(x) - \varphi(x)| \, dx + \frac{\varepsilon}{2} < \varepsilon.$$

例题 0.3 设 $\{\lambda_n\}$ 是实数列, 且 $\lambda_n \to +\infty (n \to \infty)$, 则点集

$$A \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} : \lim_{n \to \infty} \sin \lambda_n x \ \bar{r} \right\}$$

是零测集.

注 上例说明, 存在集合 E 上的一致有界可积函数列 $\{f_n(x)\}$, 虽然有 $\lim_{n\to\infty}\int_E f_n(x)\,dx=0$, 但其任一子列 $\{f_{n_k}(x)\}$,

均不满足

$$\lim_{k \to \infty} f_{n_k}(x) = 0, \quad \text{a. e. } x \in E.$$

证明 令 $f(x) = \lim_{n \to \infty} \chi_A(x) \sin \lambda_n x, x \in \mathbb{R}$,则由上例可知,对任意的 $m(B) < +\infty$ 的可测集 B,有 (有界收敛定理)

$$\int_{B} f(x) dx = \lim_{n \to \infty} \int_{B} \chi_{A}(x) \sin \lambda_{n} x dx = 0.$$

这说明 f(x) = 0,a. e. $x \in \mathbb{R}$.

另一方面,我们有

$$\int_{B} f^{2}(x) dx = \lim_{n \to \infty} \int_{B \cap A} \sin^{2} \lambda_{n} x dx = \lim_{n \to \infty} \frac{1}{2} \int_{B \cap A} (1 - \cos 2\lambda_{n} x) dx$$
$$= \frac{1}{2} m(B \cap A) - \lim_{n \to \infty} \frac{1}{2} \int_{B \cap A} \cos 2\lambda_{n} x dx = \frac{1}{2} m(B \cap A).$$

由此可知 $m(B \cap A) = 0$. 注意到 B 的任意性, 必有 m(A) = 0.

例题 0.4 设 f(x) 是 [0,1] 上的有界可测函数. 若有

$$I_n = \int_{[0,1]} x^n f(x) dx = 0 \quad (n = 1, 2, \dots),$$

则 f(x) = 0,a. e. $x \in [0, 1]$.

证明 <math> <math>

$$\int_{[0,1]} x^n F(x) \, dx = 0 \quad (n = 0, 1, 2, \cdots).$$

由此知, 对任一多项式 P(x), 也有

$$\int_{[0,1]} P(x)F(x) \, dx = 0.$$

现在,对任意的 $g\in C([0,1])$ 以及 $\varepsilon>0$,可作多项式 P(x),使得 $|g(x)-P(x)|<\varepsilon(x\in[0,1])$.因此,我们有

$$\left| \int_{[0,1]} g(x) F(x) \, dx \right| = \left| \int_{[0,1]} (g(x) - P(x)) F(x) \, dx \right| \leqslant \int_{[0,1]} |g(x) - P(x)| |F(x)| \, dx \leqslant \varepsilon \int_{[0,1]} |F(x)| \, dx.$$

根据 ε 的任意性, 可得 $\int_{[0,1]} g(x)F(x) dx = 0$. 又根据 g(x) 的任意性, 我们有

$$F(x) = 0$$
, a. e. $x \in [0, 1]$, $f(x) = 0$, a. e. $x \in [0, 1]$.

例题 0.5 设 f(x) 是 \mathbb{R} 上的非负可积函数,则

- (i) 存在递增闭集列 $\{F_n\}: m\left(\mathbb{R}\setminus\bigcup_{n=1}^\infty F_n\right)=0$, 使得 $f\in C(F_n)(n\in\mathbb{N})$; (ii) 存在定义在 \mathbb{R} 上的上半连续函数列 $\{f_n(x)\}$:

$$0 \leqslant f_1(x) \leqslant f_2(x) \leqslant \cdots \leqslant f(x) \quad (x \in \mathbb{R}),$$

使得 $\lim_{x\to\infty} f_n(x) = f(x)$,a. e. $x \in \mathbb{R}$.

证明 (i) 作 $\varphi_n \in C(\mathbb{R})(n \in \mathbb{N})$, 使得

$$\int_{\mathbb{R}} |f(x) - \varphi_n(x)| \, dx \leqslant 4^{-n}, \quad \lim_{n \to \infty} \varphi_n(x) = f(x), \text{ a. e. } x \in \mathbb{R}.$$

即存在 $Z \subset \mathbb{R}$:m(Z) = 0, $\lim_{n \to \infty} \varphi_n(x) = f(x)(x \in \mathbb{R} \setminus Z)$.

取开集列 $\{G_n\}:G_n\supset G_{n+1},G_n\supset Z(n\in\mathbb{N}),m(G_n)<2^{-n}$,以及作闭集列:

$$F_n = \bigcap_{k=1}^{\infty} \left\{ x \in \mathbb{R} : |\varphi_{k+1}(x) - \varphi_k(x)| \leq 2^{-k} \right\} \setminus G_n \quad (n \in \mathbb{N}),$$

显然有 $F_n \subset F_{n+1} (n \in \mathbb{N})$, 且 $\varphi_k(x)$ 在 F_n 上一致收敛到 f(x). 因此 $f \in C(F_n)$.

下面指出
$$m\left(\left(\bigcup_{n=1}^{\infty}F_{n}\right)^{c}\right)=0$$
. 实际上, 对 $k\in\mathbb{N}$, 记 $W_{k}=\left\{x\in\mathbb{R}:\left|\varphi_{k+1}(x)-\varphi_{k}(x)\right|>2^{-k}\right\}$, 则 W_{k} 是开集,

且
$$\chi_{W_k}(x) \leqslant 2^k |\varphi_{k+1}(x) - \varphi_k(x)|(x \in \mathbb{R}),$$
 以及
$$\int_{\mathbb{R}} \chi_{W_k}(x) dx \leqslant 2^k \int_{\mathbb{R}} |\varphi_{k+1}(x) - \varphi_k(x)| dx \leqslant 2^k \left\{ \int_{\mathbb{R}} |f(x) - \varphi_{k+1}(x)| dx + \int_{\mathbb{R}} |f(x) - \varphi_k(x)| dx \right\} \leqslant 2^{-k+1}.$$
 因为 $\mathbb{R} \setminus F_n \subset G_n \cup \left(\bigcup_{k\geqslant n}^{\infty} W_k\right),$ 所以
$$m\left(\mathbb{R} \setminus \bigcup_{n=1}^{\infty} F_n\right) = m\left(\bigcap_{n=1}^{\infty} (\mathbb{R} \setminus F_n)\right) = 0.$$
 (ii) $\Leftrightarrow F_n \ \exists \ (i), f_n(x) = f(x) \cdot \chi_{F_n}(x) (n \in \mathbb{N}).$