

Dr. Francisco Arduh 2023

DBSCAN

Define los clusters como regiones continuas de alta densidad

- 1. Para cada instancia el algoritmo cuenta cuantas instancias están ubicadas en la vecindad ε .
- 2. Si una instancia tiene al menos un número min_sample en su vecindad ϵ , se lo considera una instancia *core*.
- **3.** Todas las instancias en la vecindad de una *core* pertenecen al mismo cluster.
- 4. Toda instancia no core y que no esté en la vecindad de una core es considerada una anomalía.

Ver: https://miro.medium.com/v2/resize:fit:1280/1*kUBIldisxX6hGFEJpCisMQ.qif

Clustering Jerárquico

Se construye de abajo a arriba de la siguiente forma:

- 1. Se toma cada instancia como un clúster.
- 2. Se toman las dos instancias más cercanas y se genera un nuevo cluster.
- 3. Se toman los clústers <u>más cercanos</u> y se los agrupa en un clúster
- 4. Se repite el paso anterior hasta que quede un clúster.

Ejemplo: https://miro.medium.com/v2/resize:fit:257/0*iozEcRXXWXbDMrdG.gif

Clustering Jerárquico: Distancia entre clústers

- 1. Entre puntos más cercanos.
- 2. Entre puntos más lejanos.
- 3. Distancia promedio.
- 4. Distancia entre los centroides.

Clustering Jerárquico: Dendrograma

¿Cómo se construye?

https://miro.medium.com/v2/resize:fit:700/1*ET8kCcPpr893vNZFs8j4xq.qif

Más algoritmos de clustering

- BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
- Mean-Shift
- Affinity propagation
- Spectral clustering

Guía scikit-learn

https://scikit-learn.org/stable/modules/clustering.html

Gaussian Mixtures

Puede ser utilizado como estimador de densidad, clustering o detección de anomalías.

Este modelo asume que las instancias son generadas por una mezcla de *k* (hiperparámetro) distribuciones gaussianas con pesos y parámetros desconocidos.

Los pesos, la media μ y matriz de covarianza Σ son parámetros del modelo a determinar.

Bayesian Gaussian Mixture Model

Una variante de GMM que encuentra el número de cluster óptimo de forma automática llevando a cero los pesos de los clúster innecesarios.

```
>>> from sklearn.mixture import BayesianGaussianMixture
>>> bgm = BayesianGaussianMixture(n_components=10, n_init=10)
>>> bgm.fit(X)
>>> np.round(bgm.weights_, 2)
array([0.4, 0.21, 0.4, 0., 0., 0., 0., 0., 0., 0., 0.])
```


Algoritmos para detección de anomalía o novedades

- PCA (y otras técnicas de reducción de dimensionalidad con el método inverse_transform)
- Fast-MCD: Implementado como la clase EllipticEnvelope.
- Isolation Forest.
- Local Outlier Factor (LOF)
- One-class SVM

Reglas de asociación

User ID		Movies liked
46578		Movie1, Movie2, Movie3, Movie4
98989		Movie1, Movie2
71527		Movie1, Movie2, Movie4
78981		Movie1, Movie2
89192		Movie2, Movie4
61557		Movie1, Movie3
	Movie1	Movie2
Potential Rules:	Movie2	Movie4
	Movie1	Movie3

Reglas de asociación

Transaction ID	Products purchased
46578	Burgers, French Fries, Vegetables
98989	Burgers, French Fries, Ketchup
71527	Vegetables, Fruits
78981	Pasta, Fruits, Butter, Vegetables
89192	Burgers, Pasta, French Fries
61557	Fruits, Orange Juice, Vegetables
87923	Burgers, French Fries, Ketchup, Mayo

Burgers French Fries

Potential Rules: Vegetables Fruits

Burgers, French Fries ______ Ketchup

A priori: support

Movie Recommendation:

$$support(\mathbf{M}) = \frac{\# \text{ user watchlists containing } \mathbf{M}}{\# \text{ user watchlists}}$$

A priori: support

Movie Recommendation:

$$support(\mathbf{M}) = \frac{\# \text{ user watchlists containing } \mathbf{M}}{\# \text{ user watchlists}}$$

Support = 10%

A priori: confidence

Movie Recommendation: confidence
$$(M_1 \rightarrow M_2) = \frac{\text{\# user watchlists containing } M_1 \text{ and } M_2}{\text{\# user watchlists containing } M_1}$$

A priori: confidence

Movie Recommendation: confidence
$$(M_1 \rightarrow M_2) = \frac{\text{\# user watchlists containing } M_1 \text{ and } M_2}{\text{\# user watchlists containing } M_1}$$

confidence = 7/40 = 17,5%

A priori: lift

Movie Recommendation:

$$\operatorname{lift}(\textit{M}_1 \rightarrow \textit{M}_2) = \frac{\operatorname{confidence}(\textit{M}_1 \rightarrow \textit{M}_2)}{\operatorname{support}(\textit{M}_2)}$$

A priori: lift

Movie Recommendation:

$$\operatorname{lift}(\textit{M}_1 \rightarrow \textit{M}_2) = \frac{\operatorname{confidence}(\textit{M}_1 \rightarrow \textit{M}_2)}{\operatorname{support}(\textit{M}_2)}$$

lift = 17.5%/10% = 1.75

A priori: pasos

- 1. Elegir un número mínimo de support y confidence.
- 2. Tomar con un subset de datos con un support superior al elegido
- 3. De subset anterior quedarse con un subset de datos con un confidence superior al elegido.
- 4. Ordenar por lift

¿Dudas?

