Adv Abstract Algebra: AAA $\ \#HW02$

Due on 2022 at 11:59PM

Prof. Peter Hermann Spr 2022

Xianzhi

2023

Homework set 2

Problem 1

Let Γ be an ordinary graph and denote the set of its vertices by $V(\Gamma)$ and the set of its edges by $E(\Gamma)$. A bijection $\beta: V(\Gamma) \mapsto V(\Gamma)$ is called an *automorphism* of Γ if for all $x, y \in V(\Gamma)$

$$(x,y) \in E(\Gamma) \iff (\beta(x),\beta(y)) \in E(\Gamma)$$
 (1)

holds. Then $Aut\Gamma := \{\beta | \beta \text{ is an automorphism of } \Gamma \}$ is a group w.r.t. composition. (It is called the automorphism group of Γ . It obviously acts on $V(\Gamma)$.)

1. Consider the following graph

Problem 2

Problem 3

Let G be a finite group and k an integer. Prove that $\{g^k|g\in G\}=G$ if and only if $\gcd(|G|,k)=1$.

Solution:

$$\left\{g^k|g\in G\right\}=G\iff \gcd(|G|,k)=1.$$

We show " \Longrightarrow "

Assume for contradiction $gcd(|G|, k) \neq 1$, so there exist a smallest prime divisor p such that $p \mid |G|$, and $p \mid k$.

By sylow's theorems, there exist $h \in G$ such that |h| = p. Thus,

$$|h^k| = \frac{p}{\gcd(k,p)} = \frac{p}{p} = 1$$
 (2)
 $\implies h^k = e.$ (3)

$$\implies h^k = e. \tag{3}$$

Now, since $e^k = e$,

$$\left\{g^k \mid g \in G\right\} \tag{4}$$

has cardinality strictly less than G,