

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Functional Analysis

Author: Adam J. Gray Student Number: 3329798

Declaration

I declare that this assessment item and has not been submitted for a	*		nere ackı	nowledged,
I certify that I have read and un	derstood the U	University F	Rules in	respect of
Student Academic Misconduct.		v		•
Adam J. Gray				Date
3329798				

Question 1

See that

$$\langle Tx, x \rangle = \overline{\langle x, Tx \rangle}$$

 ≥ 0

which means

$$\overline{\langle x, Tx \rangle} = \langle x, Tx \rangle$$
$$= \langle T^*x, x \rangle$$

so

$$\langle (T - T^*)x, x \rangle = 0$$

for all $x \in \mathcal{H}$.

We just want to show that $(T-T^*)=0$. Say $\langle Jx,x\rangle=0$ for all $x\in\mathcal{H}$ then for $x,y\in\mathcal{H}$ see that

$$\langle J(x+y), x+y \rangle = \langle Jx, y \rangle + \langle Jy, x \rangle + \underbrace{\langle Jx, x \rangle}_{=0} + \underbrace{\langle Jy, y \rangle}_{=0}$$
$$= \langle Jx, y \rangle + \langle Jy, x \rangle \tag{1}$$

and see that

$$\langle J(x+iy), x+iy \rangle = \langle Jx, iy \rangle + \langle Jiy, x \rangle + \underbrace{\langle Jx, x \rangle}_{=0} + \underbrace{\langle Jiy, iy \rangle}_{=0}$$
$$= -i\langle Jx, y \rangle + i\langle Jy, x \rangle \tag{2}$$

Now multiplying (1) by i and subtracting it from (2) yields

$$\langle Jx, y \rangle = 0$$

for all $x, y \in \mathcal{H}$ which implies $J \equiv 0$. Letting $J = (T - T^*)$, yields $(T - T^*) = 0$ as required.

So
$$T \equiv T^*$$
.

Question 3

Part 1

 $x \in (\operatorname{Im} T)^{\perp}$ iff

$$\langle Ty, x \rangle = 0 \qquad \forall y \in \mathcal{H}$$

$$\Leftrightarrow \langle y, T^*x \rangle = 0 \qquad \forall y \in \mathcal{H}$$

$$\Leftrightarrow T^*x = 0$$

$$\Leftrightarrow x \in \ker T^*$$

So
$$(\operatorname{Im} T)^{\perp} = \ker T^*$$
.

Part 2

Setting $T=T^*$ in the result of $part\ a$ yeilds

$$(\operatorname{Im} T^*)^{\perp} = \ker T^{**}$$
 $\Leftrightarrow (\operatorname{Im} T^*)^{\perp} = \ker T$

and taking orthogonal complements of both sides gets

$$(\operatorname{Im} T^*)^{\perp \perp} = (\ker T)^{\perp}$$

$$\Leftrightarrow \overline{\operatorname{Im} T^*} = (\ker T)^{\perp}.$$

So
$$\overline{\operatorname{Im} T^*} = (\ker T)^{\perp}$$
.