

프로젝트 진행 보고서

[작성자]

이름 : 김상겸

휴대폰: 010-9212-0252

이메일: vhf1030@naver.com

[기본 정보]

과정명	프로그래밍 기반 얼라인 프로젝트
트랙	데이터/AI
파트	part4

[프로젝트 개요]

제목	KOMI(Kinematic Optimization for Medical Innovation)
한 줄 설명	YOLO 기반 관절 분석과 의료 특화 LLM을 활용하여 원격 진단과 맞춤형 재활 운동을 실시간으로 제공하는 Al 재활 코칭 서비스
배경 또는 기획 의도	고령화와 운동 부족으로 인해 관절 질환 및 근골격계 문제를 겪는 인구 증가 병원 방문 없이도 집에서 간편하게 운동을 수행할 수 있는 원격 재활 서비스에 대한 수요 증가 사용자의 운동 자세를 실시간으로 인식하고, 그에 따른 피드백과 맞춤 운동 가이드를 제공하여 보다 정확하고 안전한 재활 환경을 구축하고자 기획
참여 인원	김상겸, 김형섭, 이장헌
본인 역할	서버 및 통신 구축, 모듈 통합, 서비스 개발
진행 기간	약 3주 (25.03.10 ~ 25.04.02)

팀프로젝	https://github.com/vhf1030/KOMI
트 링크	https://www.notion.so/Project-3-LLM-1b31d7badadc803da28eecca9b52bd
	<u>3b</u>

[기술 스택]

활용한 기술 스택	python, FastAPI, Streamlit, OpenCV, YOLO
선택 이유	FastAPI를 통한 유연한 API 및 WebSocket 처리 실시간 추론을 위한 경량화 모델(YOLO)과 간편한 배포 및 UI 구현(Streamlit)

[데이터 셋]

출처	유튜브 운동 영상 운동 관련 위키 도큐먼트
크기	정면 및 측면 프레임 이미지 각 86장 도큐먼트 약 8만자 분량
특징	MVP 개발을 위한 운동 선정(스쿼트로 한정) 및 최소 데이터 활용

[프로젝트 진행 단계]

- 1. 문제 정의 및 요구사항 분석
- 2. 데이터 수집 및 전처리
- 3. 포즈 인식 모델 통합 및 실시간 추론
- 4. LLM 기반 피드백 시스템 구축
- 5. 프론트엔드 및 사용자 인터페이스 구현

6. 서버 연동 및 테스트

[프로젝트 세부 과정]

- 1. 문제 정의
- 재활 운동의 정확한 수행 여부를 실시간으로 판단하고, 의료 기반 피드백을 제공할 수 있는 시스템의 필요성 인식
- 일반 사용자도 직관적으로 사용할 수 있는 스트리밍 기반 재활 코칭 서비스 구조 설계
- 2. 서버 및 통신 인프라 구축
- FastAPI 기반 서버 구현
- 상태 확인, 운동 종류 및 카메라 리스트 제공 등 다양한 API 엔드포인트 구성
- 포즈 분석을 위한 YOLO 모델과 LLM 연동을 위한 API 및 WebSocket 인터페이스 개발
- 실시간 스트리밍 처리를 위한 WebSocket 이미지 수신 및 응답 구조 설계
- 서버 내 LLM 및 포즈 비교 로직 통합: 각도 계산, 유사도 측정, 포즈 정밀 분석 결과 제공
- 3. 클라이언트 모듈 개발 및 통합
- WebCam 장치 제어 및 프레임 처리 기능 구현
- 전송 이미지에 분석 결과(마스크, 점수 등)를 실시간 오버레이 처리
- WebSocket을 통한 프레임 전송 및 메시지 응답 처리 로직 구축
- 녹화 모드, 분석 모드, 가이드 모드 등 다양한 카메라 출력 모드 구현 및 UI 연동
- 4. 서비스 UI 및 시각화 개발
- Streamlit 기반 페이지 구조 설계 및 구현
- 운동 선택, 운동 가이드, 실시간 자세 분석, 분석 결과 및 피드백 등 단계별 인터페이스 구현
- 실시간 카메라 연결 및 이미지 스트리밍 구현
- 사용자 피드백 제공을 위한 분석 결과 시각화: 스코어, 문제 부위 표시, LLM 기반 조언 표시 등
- 이벤트 루프 및 세션 상태 관리를 통한 안정적인 사용자 경험 제공

[프로젝트 결과]

https://github.com/vhf1030/KOMI

[프로젝트 회고]

잘 한 점	YOLO 기반 실시간 자세 인식 기능을 성공적으로 구현
	LLM을 활용한 맞춤 피드백 시스템 구축
	Streamlit + WebSocket 구조를 통한 간편한 서비스 시연 환경 구축
개선할 사항	정형화된 의료 데이터의 부족 → 외부 전문가 검토 필요
	LLM 피드백 문장 다양성 확보를 위한 prompt 개선 필요
	사용자 식별 및 분리 처리가 미흡하여 서비스 확장성을 고려한 구조 개선 필요
	비동기 처리 로직 간소화 및 코드 모듈화: 유지보수성을 높이기 위한 리팩터링 필요