Going beyond stuck trackers: how well do your trackers work?

Will Hobbs, Southern Company, whobbs@southernco.com
Kevin Anderson, Sandia National Laboratories, ksande@sandia.gov

Stuck & broken trackers get attention in the industry, but there are additional issues beyond binary "working/not working" that can impact performance.

We are working on a cheap temporary datalogger to measure actual position, and models to estimate impacts of "non-idealities."

"Where are my trackers actually pointed?"

Non-idealities that can't be measured with existing plant data: torque-tube twist, torque-tube sag, actuator position calibration error.

Solution: cheap, mailable, magnet-mount 3-axis tilt data loggers. Measurements every 1-sec, compare to expected/modeled/ideal positions. Eventually opensource.

Mail to plant \rightarrow stick on trackers for a few days \rightarrow mail back.

Goal: assess plant-specific and industry-wide non-idealities. Contact us if you might want to participate!

"How much am I losing?"

Modeling non-idealities isn't always easy, so how much are you losing?

- We presented some self-shade and tracker fault examples/methods in [2].
- Functions in [2] have been expanded: now allow cross-axis slope, independent AM/PM backtracking, clock-drift, fixed-tilt shade, others. https://github.com/williamhobbs/pv-system-model, with examples in https://github.com/williamhobbs/2025-pvrw-trackers.

References:

[1] Anderson, Kevin S., and Clifford W. Hansen. "Simulated Performance Effect of Torque Tube Twisting in Single-Axis Tracking PV Arrays." 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC). http://dx.doi.org/10.1109/PVSC57443.2024.10749340
[2] Hobbs, W., Anderson, K., Mikofski, M., and Ghiz, M. "An approach to modeling linear and non-linear self-shading losses with pvlib." 2024 PV Performance Modeling Collaborative (PVPMC). https://github.com/williamhobbs/2024 pvpmc self shade

Acknowledgements:

Thanks to Will's demo assistant, Liam!

