Some useful Typst for you to use:

• For sets use the function we defined in the source:

$$\{1,2,3\}, \{\emptyset, \{4,5,6\}\}, \left\{\frac{1}{2}, \frac{\alpha}{1+\beta}\right\}$$

it will format the braces nicely.

- Sometimes it is nice to write ℓ instead of l because it looks nice in formulas.
- For logic, Typst defines the symbols we need:

$$\sim P \quad P \vee Q \quad P \wedge Q \quad P \to Q \quad P \leftrightarrow Q$$

We use \sim for negation instead of the default negation symbol \neg .

• For a proof we can create a simple proof block:

Proof: This is my proof. It is just missing a few details, but I'll put in an equation

$$a + b = c$$

just because I can.

Sometimes we want to give the proof a title. Here is a classic false-proof that 2 = 1.

Not-quite-a-proof that two equals one: Let x, y be non-zero real numbers so that x = y. Then, multiplying by x gives us

$$x^2 = xy \qquad \text{now subtract} \quad y^2$$

$$x^2 - y^2 = xy - y^2 \quad \text{now factor}$$

$$(x - y)(x + y) = y(x - y) \quad \text{divide by common factor of} \quad (x - y)$$

$$x + y = y \qquad \text{since} \quad x = y$$

$$2y = y \qquad \text{now divide by y}$$

$$2 = 1$$

• For truth tables you can use the following:

A_1	A_2	A_3	A_4	A_5	A_6
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}

• Remember to check the spelling of your submission.

- Also remember that you should not include your scratchwork unless a question specifically asks for it.
- Finally, please try to make your work look nice and neat and use 12pt font think about the reader!

Please do not include the above text in your homework solution — we have just included it here to help you write your homework.

Solutions to homework 1:

- 1. Your answer to question 1.
 - (a) The sentence, "2 is even and 11 is prime" is a true statement and can be translated to " $P \wedge Q$ ", where P: "2 is even", and Q: "11 is prime".
 - (b) The sentence, "if n is a multiple of 7 and 4, then it is a multiple of 14" is a false statement and can be translated to " $(P(n) \land Q(n)) \Rightarrow R(n)$ ", where P(n): "n is a multiple of 7", Q(n): "n is a multiple of 4", and R(n): "n is a multiple of 14".
 - (c) The sentence if " $5 \le x \le 17$ " is an open statement, thus it has no truth value. It can be translated to P(x), where P(x): " $5 \le x \le 17$ ".
 - (d) The sentence, "a real number x is less than -3 or greater than 3 if its square is greater than or equal to 9" is a true statement and can be translated to " $P(n) \Rightarrow (Q(n) \vee R(n))$ ", where P(n): "the square of x is greater than 9", Q(n): "x is less than -3", and R(n): "x is greater than 3".
- 2. Let $a \in \mathbb{Z}$, if 5a + 11 is odd then 9a + 3 is odd.

Proof: Assume that 5a+11 is odd, which implies that 5a+11=2k+1, for some integer $k \in \mathbb{Z}$.

$$5a + 11 = 2k + 1$$

 $a + 2(2a + 5) = 2k$
 $a + 2i = 2k, \quad i \in \mathbb{Z}$
 $a = 2(k - i)$
 $a = 2j, \quad j \in \mathbb{Z}$

Thus, it follows that a is an even integer. Now, consider the expression 9a+3. It follows that, 9a+3=9(2k)+3=2(9k+1)+1. Knowing that 9k+1 is an integer, we can conclude that $9a+3=2\ell+1, \ell\in\mathbb{Z}$. Hence, 9a+3 is an odd integer.

3. Let $n \in \mathbb{R}$. If $3 \mid n-2$ then $3 \mid n^2 + 2n + 8$.

Proof: Assume that $3 \mid n-2$ such that $n-2=3\ell$ and $\ell \in \mathbb{Z}$. Now consider the expression n^2+2n+8 .

$$n^2+2n+8=n^2+2n-8+16 \quad \text{ add 16 and subtract -8}$$

$$n^2+2n-8+16=(n-2)(n+4)+16$$

$$(n-2)(n+4)+16=(3\ell)(n+4)+15+1$$

$$(3\ell)(n+4)+16=3(\ell(n+4)+5)+1$$

$$3(\ell(n+4)+5)+1=3t \qquad t\in\mathbb{Z}$$

Thus, we can see that the expression $n^2 + 2n + 8$ is of the form 3t under the assumption that $3 \mid n-2$. Hence, $3 \mid n^2 + 2n + 8$.

4. Let $x, y \in \mathbb{R}$. Show that $xy \leq \frac{1}{2}(x^2 + y^2)$.

Proof: Consider the fact that $q^2 \geq 0, q \in \mathbb{R}$. Now consider the expression $(x-y)^2$ such that $x,y \in \mathbb{R}$. Meaning $(x-y)^2$ is of the form q^2 , thus $(x-y)^2 \geq 0$. Expanding the expression, we find $x^2 - 2xy + y^2 \geq 0$ and after adding 2xy and divding both sides by 2 we find the expression $\frac{1}{2}(x^2 + y^2) \geq xy$. Hence, $xy \leq \frac{1}{2}(x^2 + y^2)$.

- 5. Your solution to question 5.
- 6. Your solution to question 6.
- 7. Your solution to question 7.