Giorno 32: Ideali e algebre quozienti

Oramai lo sapete quando passo vicino ad uno strapiombo mi piace fermarmi e guardare il panorama. Quello che facciamo oggi non lo usiamo dopo è solo per farvi capire cosa vi perdete se non vi fermate a guardarvi intorno.

Abbiamo un'algebra $\mathbb{P}[x]$. Un sottoinsieme $I \subset \mathbb{P}[x]$ si chiama un *ideale* se e solo se (sse)

- a) per ogni $p_1, p_2 \in I$ (e per ogni $\alpha, \beta \in \mathbb{R}$) allora $\alpha p_1 + \beta p_2 \in I$
- b) per ogni $p_1 \in I$ e $p_2 \in P[x]$, allora $p_1p_2 \in I$

Nota: Fissiamo un polinomio di primo grado p=ax+b (con $a\neq 0$). Definiamo $I_p=\{q\in P[x]:p|q\}$ che contiene tutti i polinomi q che fattorizzano p, cioè i polinomi che hanno una radice in $x_o=-\frac{b}{a}$.

Allora I_p è un ideale perché se q_1 e q_2 hanno una soluzione in x_o allora pure $\alpha q_1 + \beta q_2$ ha una soluzione in x_o (a). Inoltre, se $q \in I$ e $s \in P[x]$ allora sq ha una soluzione in x_o e quindi $sq \in I_p$. Questo si chiama l'ideale generato da p ed è indicato con $I_p = (ax + b)$.

Possiamo pure definire l'ideale generato da un polinomio qualunque, ad esempio (x^2+1) che contiene tutti i polinomi q che contengono un fattore x^2+1 , cioè i polinomi $x^2+1|q$.

Dato un ideale $I \subset P[x]$, possiamo sempre definire una relazione di equivalenza $q_1 \sim q_2$ sse $q_1 - q_2 \in I$. Questa è una relazione di equivalenza proprio perché I è un ideale.

Quindi possiamo considerare le classi di equivalenza $[a]=\{a+p:p\in I\}$. Sull'insieme di queste classi di equivalenza possiamo definire le operazioni

$$[a] + [b] = [a+b] \qquad \qquad \alpha[a] = [\alpha a] \qquad \qquad [a][b] = [ab] \qquad (1)$$

Nota: Queste operazioni devono non dipendere da come scegliamo $a' \in [a]$ è questo è vero, di nuovo per come abbiamo definito gli ideali.

Con queste operazioni le classi di equivalenza formano un'algebra che denotiamo con A/I. Gli assiomi di algebra per A/I sono automaticamente verificati perché A è un'algebra e I è un ideale.

Dopo di ciò possiamo estendere le definizioni agli ideali. Un ideale si chiama primo se $ab \in I$ allora $a \in I$ o $b \in I$.

Nota: Anche i multipli di 6 formano un ideale in \mathbb{Z} che denotiamo con (6). Se moltiplichiamo un numero intero z qualunque per $u \in (6)$ otteniamo un multiplo z' = zu di 6, quindi $uz \in (6)$.

L'ideale (6) non è primo perché $3\cdot 4\in (6)$ ma né $3\in (6)$ né $4\in (6)$. Ma se definiamo l'ideale (17), questo è primo proprio perché 17 è un numero primo. Se consideriamo $ab\in (17)$, in prodotto ab che fattorizza 17, essendo 17 primo abbiamo che 17|a o 17|b. E questo ci dice che $a\in (17)$ o $b\in (17)$.

Poi potete vedere abbastanza facilmente che $\mathbb{Z}_{17} = \mathbb{Z}/(17)$ e $\mathbb{Z}_{12} = \mathbb{Z}/(12)$. Quindi gli ideali fanno la stessa cosa che facciamo con le classi di resto, solo che lo fanno in un modo un po' più generale, che si può poi estendere a qualunque algebra. Oltretutto questo è il punto di partenza della geometria algebrica che (una volta generalizzato a polinomi di più variabili, ad esempio $\mathbb{P}[x,y]$) studia le proprietà geometriche dell'insieme delle soluzioni p(x,y) = 0 studiando le proprietà algebriche delle algebre definite a partire da $\mathbb{P}[x,y]/(p)$.

Oramai avete capito che mi piacciono gli allucinogeni. Se consideriamo $p = (x^2 - y^2)$ lo spazio $S : (x^2 = y^2)$ delle soluzioni è l'unione delle rette y = x e y = -x che si intersecano nell'origine del piano xy.

Le funzioni $\mathbb{P}[x,y]/(x^2-y^2)$ sono le funzioni sullo spazio S. L'ideale (x^2-y^2) non è né primo né irriducibile visto che $x^2-y^2=(x+y)(x-y)$. L'ideale (x-y) è più grande di (x^2-y^2) , inoltre (x-y) è massimale (cioè non esiste un ideale che contiene (x-y) tranne tutto $\mathbb{P}[x,y]$). Esso rappresenta le funzioni sulla retta x=y e quindi la decomposizione $x^2-y^2=(x+y)(x-y)$ corrisponde a una catena di inclusioni di ideali $(x^2-y^2)\subset (x-y)$. In pratica gli ideali massimali (x-y) e (x+y) corrispondono al fatto che lo spazio S stesso si decompone come unione di 2 pezzi, $S=S_1\cup S_2$ dove S_1 è la retta x=y e S_2 è la retta y=-x.

Ok c'è qualche dettaglio legato che stiamo parlando di polinomi reali e non complessi, ma ho reso l'idea? Voi potete dire, embé? perché mi dovrebbe interessare questa corrispondenza tra geometria e algebra? Tante ragioni ma qui ne dico una sola:

In meccanica quantistica quello che si misura sono le osservabili che corrispondono più o meno all'algebra A. Se io riesco a definire una geometria a partire da cose che misuro, non è meglio che assumere lo spazio come qualcosa di dato?

Nota: Tra l'altro in meccanica quantistica l'algebra delle osservabili non è un'algebra commutativa. La mancanza di commutatività è legato al principio di indeterminazione di Heisemberg e quindi se definisce una geometria non è di sicuro una geometria come quelle abbozzate qui sopra!

Forse posso imparare qualcosa su come mai la MQ fa a botte con l'intuizione fisico geometrico.