API MÉTÉO

CHOIX DES TECHNOLOGIES POUR API

- Langage de développement pour API web:
 - JavaScript (librery express)
 - Graphisme: HTML / CSS

```
modifier_ob.
mirror object to mirror
mirror_object
peration == "MIRROR_X":
eirror_mod.use_x = True
lrror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
Irror_mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 _operation == "MIRROR_Z";
  rror_mod.use_x = False
  _rror_mod.use_y = False
 __mod.use_z = True
 selection at the end -add
  ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modification
   irror ob.select = 0
  bpy.context.selected_obj
   lata.objects[one.name].se
  int("please select exactle
  OPERATOR CLASSES ----
   vpes.Operator):
    X mirror to the selected
   ject.mirror_mirror_x"
  ext.active_object is not
```

Pourquoi & Comment avons-nous choisi ces technologies?

WinterPenguin

Fri Dec 20 2019

Paris, FR

53

82% 10.3m/h 10 km

APPLICATION MOBILE MÉTÉO

DEMO!

BASE DE DONNÉES

EXEMPLE FLOU DE LA BASE DE DONNÉES

```
🧬 pi@raspberrypi:
Query OK, 1 row affected (0.003 sec)
MariaDB [(none)]> USE winterpenguin;
Database changed
MariaDB [winterpenguin] > create TABLE T CAPTEURS (ID INT UNSIGNED NOT NULL AUTO IN
CREMENT, LOC CAP VARCHAR(25), ENA CAP VARCHAR(25), DIS CAP VARCHAR(25), PRIMARY K
Query OK, 0 rows affected (0.463 sec)
MariaDB [winterpenguin] > show TABLES;
| Tables in winterpenguin |
1 row in set (0.003 sec)
MariaDB [winterpenguin] > CREATE TABLE T DONNEES(ID INT UNSIGNED NOT NULL AUTO INCREMENT, CAP ID INT UNSIGNED N
OT NULL, DAT DON DATE NOT NULL, TEM DON DOUBLE, HUM DON DOUBLE, PRIMARY KEY ( ID ), CONSTRAINT `FK capteur don
nees`foreign key (CAP ID) references T CAPTEURS(ID) ON DELETE CASCADE ON UPDATE RESTRICT);
Query OK, 0 rows affected (0.270 sec)
MariaDB [winterpenguin] > DESCRIBE T DONNEES
| ID | int(10) unsigned | NO | PRI | NULL
| CAP ID | int(10) unsigned | NO | MUL | NULL
| DAT DON | date
5 rows in set (0.018 sec)
MariaDB [winterpenguin]> DESCRIBE T CAPTEURS;
| LOC CAP | varchar(25) | YES | NULL
                            | YES |
                                         NULL
| ENA CAP | varchar(25)
```

4 rows in set (0.013 sec)
MariaDB [winterpenguin]>

Demo en live par Cody

DEMO!

ARDUINO

PHOTO MONTAGE

DEMO!

CONCLUSION TECHNIQUE

CONCLUSION:

- <u>Sommaire</u>:
- Les réalisations réussies et non réussies.
- Les problèmes rencontrés
- Projection du projet
- Conclusion globale

LES RÉALISATIONS RÉUSSIES ET NON RÉUSSIES.

LES RÉALISATIONS RÉUSSIES.

- Arduino:
- Fini (affichage et montage des données réussies)
- <u>Base de données :</u>
- Finie (power AMC + MariaDB + bdd sur raspberry)
- <u>API</u>:
- "Finie" (application autonome avec récupération de données web)

NON RÉUSSIES

 Association entre l'api, les capteurs Arduino et la base de données sur raspberry n'est pas réalisée

LES PROBLÈMES RENCONTRÉS

LES PROBLÈMES RENCONTRÉS

• 1: matériels

• 2: S'adapter à un langage non acquis

• 3: BDD, les requêtes

PROJECTION DU PROJET

PROJECTION DU PROJET

- 1: plus de temps pour finir l'association entre chaque parties et chaque composants.
- 2: Ajout de capteurs pour d'autres types de données.
- 3: Modélisation de Klim en 3D pour la station météo
- 4: Lancement du projet en ligne.

CONCLUSION GLOBALE

CONCLUSION GLOBALE

- 1: un projet compliqué en termes de compétences.
- 2: beaucoup de recherche internet.
- 3: projet intéressant.
- 4: soutien des intervenants et du pilote positif
- 5: Le projet aurait été plus intéressant en fin de première année ou deuxième.