GRAFOS

ESTRUCTURA DE DATOS

INTRODUCCION

- Los grafos son estructuras de datos
- Representan relaciones entre objetos
 - Relaciones arbitrarias, es decir
 - No jerárquicas
- Son aplicables en
 - Química
 - Geografía
 - Ing. Eléctrica e Industrial, etc.
 - Modelado de Redes
 - De alcantarillado
 - Eléctricas
 - Etc.

Dado un escenario donde ciertos objetos se relacionan, se puede "modelar el grafo" y luego aplicar algoritmos para resolver diversos problemas

INTRODUCCIÓN

- No hay restricciones para formar un grafo
- Puede haber varias aristas entre dos vértices

El vértice de partida y el de llegada puede ser el mismo.-Las aristas pueden o no llevar flechas.

12 2 dos
65 tres
65 cinco

DEFINICION

- \blacktriangleright Un grafo G = (V,A)
- V, el conjunto de vértices o nodos
 - Representan los objetos
- A, el conjunto de arcos
 - Representan las relaciones

$$V = \{1, 4, 5, 7, 9\}$$

 $A = \{(1,4), (5,1), (7,9), (7,5), (4,9), (4,1), (1,5), (9,7), (5,7), (9,4)\}$

TIPOS DE GRAFOS

V = {C, D, E, F, H} A= {(C,D), (D,F), (E,H), (H,E), (E,C)}

Grafos no dirigidos

Si los pares de nodos no tienen un sentido

Grafos dirigidos

- Si los pares de nodos tienen un sentido.
- Existe un camino preestablecido

Grafo del ejemplo anterior

OTROS CONCEPTOS

- Arista
 - Es un arco de un grafo no dirigido
- Vértices adyacente
 - Vértices unidos por un arco
- Factor de Peso
 - Valor que se puede asociar con un arco
 - Depende de lo que el grafo represente
 - Si los arcos de un grafo tienen F.P.
 - Grafo valorado
- Ciclos

CONECTIVIDAD

- Grafo No Dirigido
 - Conexo (enlazado)
 - Existe un camino entre cualquier par de nodos

Grafo Dirigido

- Fuertemente Conexo
 - Existe un camino entre cualquier par de nodos
- Conexo (débilmente enlazado)
 - Existe una cadena entre cualquier par de nodos

GRADOS DE UN NODO

- En Grafo No Dirigido
 - Grado(V)
 - Numero de aristas que contiene a V

Grado(Guayaquil) = 3

Gradoent(D) = 1 y Gradsal(D) = 1

- En Grafo Dirigido
 - Grado de entrada, Graden(V)
 - Numero de arcos que llegan a V
 - Grado de Salida, Gradsal(V)
 - Numero de arcos que salen de V

CAMINOS

Definición

- Un camino P en un grafo G, desde Vo a Vn
- Es la secuencia de n+1 vértices
- Tal que $(V_i, V_{i+1}) \in A$ para $0 \le i \le n$
- Trayectoria de un punto a otro

Longitud de camino

El número de arcos que lo forman

Camino A y A

 $P = \{A, E, B, F, A\}$

Camino entre 4 y 7

 $P = \{4, 6, 9, 7\}$

Longitud: 3

CAMINOS

- Un <u>trayectoria</u> o <u>recorrido</u> es una secuencia de nodos w₁, w₂,..., w_n tal que (w_i, w_{i+1}) ∈ E.
- Un recorrido es una lista ordenada de nodos.
 - Longitud: número de ramas en el recorrido.
 - <u>Costo o peso</u>: suma de los pesos de las ramas del recorrido
 - <u>Ciclo</u>: es un recorrido que vuelve al nodo de partida.

CAMINOS DE MÍNIMO PESO

Caminos desde 1 a 2:

OPERACIONES CON GRAFO

- Datos
 - Vértices y
 - Arcos(relación entre vértices)
- Operaciones
 - void AñadirVertice(Grafo G, Vértice V)
 - Añadir un nuevo vértice
 - void BorrarVertice(Grafo G, Genérico clave)
 - Eliminar un vértice existente
 - void Union(Grafo G, Vertice V1, Vertice V2)
 - Unir dos vértices
 - Void BorrarArco(Grafo G, Vertice V1, Vertice V2)
 - Eliminar un Arco
 - bool EsAdyacente(Grafo G, Vertice V1, Vertice V2)
 - Conocer si dos vértices son o no adyacentes

REPRESENTACIÓN

- Dos posibles representaciones
 - Estática: Matriz de Adyacencia
 - Los vértices se representan por indices(0...n)
 - Las relaciones de los vértices se almacenan en una Matriz
 - Dinámica: Lista de Adyacencia
 - · Los vértices forman una lista
 - Cada vértice tiene una lista para representar sus relaciones(arcos)

Si el grafo fuese valorado, en vez de 1, se coloca el factor de peso

MATRIZ DE ADYACENCIA

- Dado un Grafo G = (V, A)
- Sean los Vértices V = {V0, V1, ... Vn}
 - Se pueden representar por ordinales 0,1,..n
- Como representar los Arcos?
 - Estos son enlaces entre vértices
- Puede usarse una matriz

1, si hay arco
$$(Vi, Vj)$$
0, si hay arco (Vi, Vj)

EJERCICIO

- Crear la matriz de adyacencia del siguiente grafo
- Ejemplificar los nodos y aristas

LISTA DE ADYACENCIA

- Si una matriz
 - Tiene muchos vértices y
 - Pocos arcos
 - La Matriz de Adyacencia
 - Tendrá demasiados ceros
 - Ocupara mucho espacio
- Los vértices
 - Pueden formar una lista, no un vector
- Los arcos
 - Son relaciones entre vértices
 - Se pueden representar con una lista x cada vértice

LISTA DE ADYACENCIA

EJERCICIO

 Crear la lista de adyacencia del siguiente grafo

Representación de un grafo no-ponderado no-dirigido

 Matriz de adyacencia
 0 0 1 0 1 0

 1 1 0 1 1 0

 2 0 1 0 1 1

 3 1 1 1 0 0

 4 0 0 1 0 0

Lista de adyacencia

0 1 2 3 4

Representación de un grafo ponderado no-dirigido

	0	1	2	3	4	
0	0	210	0	450	0	
1	210	0	60	190	0	Matriz de
2	0	60	0	130	200	adyacencia
3	450	190	130	0	0	
4	0	0	200	0	0	

Representación de un grafo no-ponderado dirigido

 Matriz de adyacencia
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Lista de adyacencia

0 1 2 3 4

RECORRIDOS DEL GRAFO

- Recorrer un grafo significa <u>visitar todos sus</u> <u>nodos</u> partiendo de un nodo de salida.
- Es muy importante asegurarnos de no ir en círculos (i.e., caer en un ciclo).
- Dos tipos básicos de recorridos:
 - En anchura: recorrer el grafo en niveles (de los nodos más cercanos a los más lejanos).
 - En profundidad: buscar caminos que parten desde el nodo de salida hasta que ya no es posible avanzar más, después volver atrás en busca de caminos alternativos inexplorados.

RECORRIDOS DE GRAFO

EN PROFUNDIDAD

A-B-E-I-F-C-G-J-K-H-D

EN ANCHURA

A-B-C-D-E-G-H-I-J-K-F

RECORRIDOS DE GRAFO

En anchura

En profundidad

