21-238, Math Studies Algebra 2. Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc TARTAR, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

26- Friday March 23, 2012.

Remark 26.1: For defining BCH codes, one considers F_q the field of size $q = p^k$ (unique up to an isomorphism), and then one considers F_{q^m} as a field extension of F_q of degree m, and one observes that if $\alpha \in F_{q^m}$, then $\alpha, \alpha^q, \alpha^{q^2}, \ldots$ have the same minimal polynomial. BCH codes are then defined as follows.

For $q = p^k$, let c, d, n be positive integers such that $2 \le d \le n$, with n relatively prime with q (i.e. not a multiple of p). Let m be the least positive integer such that $q^m = 1 \pmod{n}$ (i.e. m is the order of q in the multiplicative group \mathbb{Z}_n^* of units in \mathbb{Z}_n , so that m divides $\varphi(n)$ by Euler's theorem), so that n divides

Let $\xi \in F_{q^m}$ be a primitive nth root of unity in F_{q^m} , which exists because n divides $q^m - 1$, and let $P_i \in F_q[x]$ be the minimal polynomial of ξ^i , so that P_i divides $x^n - 1$ for each i. Let g be the product of distinct polynomials among P_i for $i=c,c+1,\ldots,c+d-2$, i.e. $g=lcm\{P_i\mid i=c,c+1,\ldots,c+d-2\}$, and since P_i divides $x^n - 1$ for each i, one deduces that g divides $x^n - 1$. Let C be the cyclic code with generator polynomial g in the ring $F_q[x]_n$: C is called a BCH code of length n over F_q with designed distance d.

If $n = q^m - 1$, then the BCH code C is called *primitive*. If c = 1, then C is called a narrow sense BCH code.

Remark 26.2: It means that $C = \{Q \in F_q[x]_n \mid Q(\xi^i) = 0 \text{ for } i = c, c+1, \ldots, c+d-2\}$, i.e. C is the null

$$H = \begin{bmatrix} 1 & \xi^c & \xi^{2c} & \dots & \xi^{(n-1)c} \\ 1 & \xi^{c+1} & \xi^{2(c+1)} & \dots & \xi^{(n-1)(c+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{c+d-2} & \xi^{2(c+d-2)} & \dots & \xi^{(n-1)(c+d-2)} \end{bmatrix},$$

whose rows are not necessarily linearly independent, so that H is not exactly a parity check matrix, but one may use it as a quasi parity check matrix. Since H is a $(d-1) \times n$ matrix over F_{q^m} , it can be considered as a $m(d-1) \times n$ matrix over F_q , whose rank is then $\leq m(d-1)$, so that the length of the code is $\geq n-m(d-1)$.

Since the minimum distance d(C) of the code C is the minimal number of linearly dependent columns in a parity check matrix, one can show that it is > d by checking that the above matrix H has rank > d-1, i.e. any $(d-1) \times (d-1)$ matrix extracted from H has a non-zero determinant, and it is the case since it is a Vandermonde determinant.³

Remark 26.3: The binary Hamming code Ham(r, 2) is a BCH code: one takes q = 2 and $n = 2^r - 1$, which gives m=r, so that $F_{q^m}=F_{2^r}$. Let ξ be a primitive nth root of unity in F_{2^r} , so that ξ generates $F_{2^r}^*$, and let g be the minimal polynomial of ξ , which has then degree r. Since ξ and ξ^2 have the same minimal polynomial, one has $g = lcm\{P_i \mid i = 1, 2\}$, so that C is a narrow sense primitive BCH code of designed distance 3, but since it is equivalent to the binary Hamming code Ham(r,2), one has d(C)=3.

Remark 26.4: The binary Golay code is a BCH code: one takes q=2 and n=23, so that m=11 and $F_{q^m} = F_{2^{11}}$ (i.e. F_{2048}).⁴ Let ξ be a primitive 23rd root of unity in $F_{2^{11}}$, and g be the minimal polynomial of ξ , which is also the minimal polynomial of $\xi^2, \xi^4, \xi^8, \ldots$ and one checks that one power of 2 is $= 3 \pmod{23}$, namely $2^8 = 256 = 3 \pmod{23}$, so that $g = lcm\{P_i \mid i = 1, 2, 3, 4\}$, and the cyclic code C is then a narrow sense BCH code of designed distance 5 over F_2 . g divides $x^{23}-1$ and its degree is 11 (since $1,\xi,\ldots,\xi^{10}$ is a

From $\left(\sum_{i} a_i x^i\right)^p = \sum_{i} a_i^p x^p^i$ one deduces that $\left(\sum_{i} a_i x^i\right)^q = \sum_{i} a_i^q x^{qi}$ and $\left(\sum_{i} a_i x^i\right)^{q^m} = \sum_{i} a_i^q x^{q^mi}$,

and then one uses the fact that every $\beta \in F_{q^\ell}$ satisfies $\beta^{q^\ell} = \beta$.

The multiplicative group $F_{q^m}^*$ is cyclic, so that it has a generator α , and then if $q^m = n \, n'$ one deduces that $\xi = \alpha^{n'}$ is a primitive *n*th root of unity in F_{q^m} .

³ Ålexandre-Théophile Vandermonde, French mathematician, 1735–1796. ⁴ Since $5^2 = 2 \pmod{23}$, 2 is a quadratic residue modulo 23, so that $2^{11} = 1 \pmod{23}$, hence the order of 2 divides 11, i.e. it is 11.

power basis of $F_{2^{11}}$ over F_2), hence C is the binary [23, 12, 7] Golay code, which has d(C) = 7, a case where d(C) > d.

Remark 26.5: The ternary Golay code is a BCH code: one takes q=3 and n=11, so that m=5 and $F_{q^m}=F_{3^5}$ (i.e. F_{243}). Let ξ be a primitive 11rd root of unity in F_{3^5} , and g be the minimal polynomial of ξ , which is also the minimal polynomial of $\xi^3, \xi^9, \xi^{27}, \xi^{81}, \ldots$ and since $81=4\pmod{11}$ and $27=5\pmod{11}$, one has $g=lcm\{P_i\mid i=3,4,5\}$, and the cyclic code C is then a BCH code of designed distance 4 over F_3 . g divides $x^{11}-1$ and its degree is 5 (since $1,\xi,\ldots,\xi^4$ is a power basis of F_{3^5} over F_3), hence C is the ternary [11,6,5] Golay code, which has d(C)=5, another case where d(C)>d.

Remark 26.6: Another example of a BCH code is a Reed-Solomon code. It corresponds to n=q-1, so that m=1. If ξ is a primitive element in F_q^* , its minimal polynomial of ξ over F_q is $x-\xi$. One takes c=1 and $2 \le d \le n$, and the Reed-Solomon code is the cyclic code with generator polynomial $g=(x-\xi)(x-\xi^2)\cdots(x-\xi^{d-1})$, which is then a primitive narrow sense BCH code of designed distance d. Since g has degree d-1, this code C has dimension k=n-d+1, and since $d(C) \le n-k+1=d$, it has d(C)=d, hence it is a [q-1,q-d,d] code.

Remark 26.7: For constructing BCH codes of a given length n and designed distance d, one needs to know a primitive element $\xi \in F_{q^m}$, i.e. whose powers $\{1, \xi, \dots, \xi^{m-1}\}$ form a (power) basis of $F_{q^m}^*$ over F_q , and know its associated monic irreducible polynomial ($\in F_q[x]$), which is then called a *primitive polynomial* over F_q , and has degree m.

For example, taking q=2 (i.e. the basic field is $F_2\simeq \mathbb{Z}_2$), the case m=2 corresponds to $(x-\xi)$ $(x-\xi^2)=x^2+x+1$ (i.e. the quotient of x^3-1 by x-1). The case m=3 corresponds $\xi^7=1$, and if $P=(x-\xi)\,(x-\xi^2)\,(x-\xi^4)$, and $Q=(x-\xi^3)\,(x-\xi^6)\,(x-\xi^{12})$, whose roots are ξ^3,ξ^5,ξ^7 , i.e. the inverses of ξ^4,ξ^2,ξ , so that $Q(x)=x^3P\left(\frac{1}{x}\right)$, one deduces that $P=x^3+a\,x^2+b\,x+1$ and $Q=x^3+b\,x^2+a\,x+1$, and one has $P\,Q=x^6+x^5+x^4+x^3+x^2+x+1$ (i.e. the quotient of x^7-1 by x-1). Since the coefficient of x^5 in $P\,Q$ gives a+b=1, there are two primitive polynomials of degree 3, namely x^3+x+1 and x^3+x^2+1 .

The case m=4 corresponds $\xi^{15}=1$, and if $P=(x-\xi)$ $(x-\xi^2)$ $(x-\xi^4)$ $(x-\xi^8)$, and $Q=(x-\xi^7)$ $(x-\xi^{14})$ $(x-\xi^{28})$ $(x-\xi^{56})$, whose roots are $\xi^7, \xi^{11}, \xi^{13}, \xi^{14}$, i.e. the inverses of ξ^8, ξ^4, ξ^2, ξ , so that $Q(x)=x^4P\left(\frac{1}{x}\right)$, one deduces that $P=x^4+a\,x^3+b\,x^2+c\,x+1$ and $Q=x^4+c\,x^3+b\,x^2+a\,x+1$, but one must find what $P\,Q$ is. One has $R=(x-\xi^3)$ $(x-\xi^6)$ $(x-\xi^{12})$ $(x-\xi^{24})=x^4+x^3+x^2+x+1$ (i.e. the quotient of x^5-1 by x-1), because its roots are $\xi^3, \xi^6, \xi^9, \xi^{12}$, which are the fifth roots of unity different from 1. One has $S=(x-\xi^5)$ $(x-\xi^{10})=x^2+x+1$ (i.e. the quotient of x^3-1 by x-1), because its roots are ξ^5, ξ^{10} , which are the cube roots of unity different from 1. From $(x-1)\,P\,Q\,R\,S=x^{15}-1$ and $(x-1)\,R=x^5-1$, one deduces that $P\,Q\,S=x^{10}+x^5+1$ (i.e. the quotient of $x^{15}-1$ by x^5-1), so that $P\,Q$ is the quotient of $x^{10}+x^5+1$ by x^2+x+1 , and the Euclidean division algorithm gives $P\,Q=x^8+x^7+x^5+x^4+x^3+x+1$. Since the coefficient of x^7 in $P\,Q$ gives a+c=1, and the coefficient of x^4 then gives $b^2=0$, there are two primitive polynomials of degree 4, namely x^4+x+1 and x^4+x^3+1 .

Remark 26.8: Still with q=2, the case m=5 for a primitive root ξ satisfying $\xi^{31}=1$ leads to define the polynomials $P_j=(x-\xi^j)(x-\xi^{2j})(x-\xi^{4j})(x-\xi^{8j})(x-\xi^{8j})(x-\xi^{16j})$, because if a has monic irreducible polynomial P then it is the same for a^2, a^4, \ldots Because 31 is prime, one has $\varphi(31)=30$, and there are 6 such polynomials: P_1 (powers of ξ being 1, 2, 4, 8, 16), P_3 (powers of ξ being 3, 6, 12, 17, 24), P_5 (powers of ξ being 5, 9, 10, 18, 20), P_7 (powers of ξ being 7, 14, 19, 25, 28), P_{11} (powers of ξ being 11, 13, 21, 22, 26), P_{15} (powers of ξ being 15, 23, 27, 29, 30). One has $P_{15}(x)=x^5P_1\left(\frac{1}{x}\right)$, $P_7(x)=x^5P_3\left(\frac{1}{x}\right)$, and $P_{11}(x)=x^5P_5\left(\frac{1}{x}\right)$. I do not know how one identifies these primitive polynomials, $P_7(x)=x^5P_3\left(\frac{1}{x}\right)$ as one

I do not know how one identifies these primitive polynomials, but a book lists $x^3 + x^2 + 1$ as one such primitive polynomial for degree 5, $x^6 + x + 1$ as one for degree 6, $x^7 + x + 1$ as one for degree 7, and $x^8 + x^4 + x^3 + x^2 + 1$ as one for degree 8.

⁵ Since $6^2 = 3 \pmod{11}$, 3 is a quadratic residue modulo 11, so that $3^5 = 1 \pmod{11}$, hence the order of 3 divides 5, i.e. it is 5.

⁶ One may proceed as in Remark 26.9, and check that the following polynomials are indeed primitive by writing the decompositions of all powers of ξ on the power basis: for example, in order to check that $x^5 + x^2 + 1$ is a primitive polynomial for the case m = 5, one uses $\xi^5 = 1 + \xi^2$ and one then writes all the powers of ξ up to ξ^{31} as linear combinations of $1, \xi, \xi^2, \xi^3, \xi^4$ with coefficients 0 or 1, and one observes that the 32 powers of ξ have different components on the basis.

Remark 26.9: In order to construct binary codes of length 15 with various designed distances, one chooses the primitive polynomial $P = x^4 + x + 1$ obtained at Remark 26.7, one lets ξ be any of its four roots, and one uses the (power) basis $1, \xi, \xi^2, \xi^3$ for F_{16} over F_2 , and since $\xi^4 = 1 + \xi$ one constructs easily by induction the formula expressing ξ^j :

$$\begin{array}{lll} \xi^4 = 1 + \xi & \xi^8 = 1 + \xi^2 & \xi^{12} = 1 + \xi + \xi^2 + \xi^3 \\ \xi^5 = \xi + \xi^2 & \xi^9 = \xi + \xi^3 & \xi^{13} = 1 + \xi^2 + \xi^3 \\ \xi^6 = \xi^2 + \xi^3 & \xi^{10} = 1 + \xi + \xi^2 & \xi^{14} = 1 + \xi^3 \\ \xi^7 = 1 + \xi + \xi^3 & \xi^{11} = \xi + \xi^2 + \xi^3 & \xi^{15} = 1 \end{array}.$$