Hierarchical Transformers Are More Efficient Language Models

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser, Yuhuai Wu, Christian Szegedy, Henryk Michalewski

Language Modeling with Transformers - introduction

Language Modeling task

Predict what word comes next, given some prefix of words

Everyone uses language models!

Language Modeling task

• More formally: given a sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$, compute the probability distribution of the next word $x^{(t+1)}$:

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$$

where $m{x}^{(t+1)}$ can be any word in the vocabulary $V = \{m{w}_1,...,m{w}_{|V|}\}$

Language Modeling = Text Generation

Language Modeling using Transformers - high-level overview

Transformer Decoder Architecture

Input: sequence of tokens

Attention layer in transformers - high-level overview

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Attention masking - autoregressive transformers

Scaled Dot-Product Attention

Why Transformers are better than RNNs? Training parallelization

- Compute all next word probabilities in parallel?
 - Feed entire target sequence into decoder.
 - Only possible during training.
 - Predictions may not use future input.

Definition of the Autoregressive Property (a.k.a. "no feedback" property??)

• Formally, given a target sequence, $x = x_1, ..., x_n$, an autoregressive model (e.g. transformer decoder) models the sequence as

$$P(x) = \prod_{i=1}^n P(x_i|x_1,\ldots,x_{i-1})$$

$$orall_i P(x_i|x_1,\ldots,x_n) = P(x_i|x_1,\ldots,x_{i-1})$$

Hierarchical Transformers

Hourglass is a Transformer-based language model

- Hourglass is a Transformer-based language model
- Builds on Funnel Transformer (Dai et al. 2020) and U-Nets (Ronneberger, Fischer, and Brox 2015).
 - o In contrast to these architectures, the model we present is autoregressive

- Hourglass is a Transformer-based language model
- Builds on Funnel Transformer (Dai et al. 2020) and U-Nets (Ronneberger, Fischer, and Brox 2015).
 - In contrast to these architectures, the model we present is autoregressive
- Main point:

- Hourglass is a Transformer-based language model
- Builds on Funnel Transformer (Dai et al. 2020) and U-Nets (Ronneberger, Fischer, and Brox 2015).
 - o In contrast to these architectures, the model we present is autoregressive
- Main point: Hierarchical transformers are more efficient language models

Models learn hierarchy?

Models use hierarchy! At least Transformers.

Models use hierarchy! At least Transformers.

Quote from Image GPT (Mark Chen et al.): "This behavior suggests that a transformer generative model operates in two phases: in the first phase, each position gathers information from its surrounding context in order to build a contextualized image feature. In the second phase, this contextualized feature is used to solve the conditional next pixel prediction task"

Humans use hierarchy!

Contracting path to capture context Expanding path for precise generation Pre Vanilla Layers Post Vanilla Layers Shortened¹ Layers Shortened¹ Layers Shortened² Layers Input tokens Upsampling, 000 sf=k2 Shortening, 000 000 000 000 L/k₁k₂ tokens L/k₁ tokens L/k₁ tokens L tokens L tokens

Contracting path to capture context Expanding path for precise generation Pre Vanilla Layers Post Vanilla Layers Input tokens 000 000 L tokens

Contracting path to capture context Expanding path for precise generation Pre Vanilla Layers Post Vanilla Layers Repeat each embedding k times Input tokens Upsampling, sf 000 Shortening, 000 Deconvolution L/k₁ tokens L/k₁ tokens L tokens L tokens

Contracting path to capture context Expanding path for precise generation Pre Vanilla Layers Post Vanilla Layers Shortened¹ Layers Shortened¹ Layers Shortened² Layers = k1 Input tokens 000 Upsampling, Shortening, 000 000 000 000 L/k₁k₂ tokens L/k₁ tokens L/k₁ tokens L tokens L tokens

Be careful with shortening/upsampling

Be careful with shortening/upsampling

Hourglass - recap with code

The idea of hourglass is easy to code

The Transformer blocks and the chosen self-attention stays the same.

What changes is that blocks operate on shortened representations.

```
Algorithm 1: HourglassLM
  procedure HOURGLASS(x, [k, ...shorten\_factors])
    x \leftarrow PreVanillaLayers(x)
     x' \leftarrow Shortening(ShiftRight(x, k-1), k)
     if EMPTY(shorten_factors) then
       x' \leftarrow ShortenedLayers(x')
    else
       x' \leftarrow \text{HOURGLASS}(x', shorten\_factors)
    end if
     x \leftarrow x + Upsampling(x, x', k)
     x \leftarrow PostVanillaLayers(x)
```

Complexity

Model Architecture	Complexity per Layer	Hourglass
Recurrent Transformer, (Vaswani et al., 2017)	$O(n) \ O(n^2)$	_ n^2 / k^2
Sparse Tansformer, (Child et al., 2019) Reformer, (Kitaev et al., 2020)	$O(n\sqrt{n}) \ O(n\log(n))$	
Performer	O(n) ———	→ n/k

n - sequence length

k - accumulated shorten factor

Results on generating enwiki8

Results on generating imagenet

Figure 7: Examples of our model completions, where bottom half of each image was generated by our model, prompted by the upper half.

ImageNet32	Cost	BPD
PixelCNN (van den Oord et al. 2016)	=	3.83
Image Transformer (Parmar et al. 2018)	12	3.77
Axial Transformer (Ho et al. 2019)	24	3.76
Hourglass	16	3.74
VDM (Kingma et al. 2021)	=	3.72
ImageNet64	Cost	BPD
Performer (Choromanski et al. 2021)	12	3.64
Combiner-Mixture (Ren et al. 2021)	12	3.50
Hourglass	10	3.44
Sparse Transformer (Child et al. 2019)	48	3.44
Routing Transformer (Roy et al. 2020)	24	3.43
Combiner (Ren et al. 2021)	30	3.42
VDM (Kingma et al. 2021)	=	3.40

Hourglass works with different attention types

Comparison with fixed number of parameters - is the hierarchical model better?

Shorten factor = more layers!

Model Architecture	Complexity per Layer	Hourglass
Recurrent	O(n)	-40 / 1-40
Transformer, (Vaswani et al., 2017)	$O(n^2)$	→ n^2 / k^2

- 2 vanilla layers = $2 * n^2$
- 8 layers, sequence shortened by $2 = 8 * n ^2 / 4 = 2 * n^2$
- 18 layers, sequence shortened by $3 = 18 * n ^2 / 9 = 2 * n^2$

Ablation study - Shortening strategies

Consistently it is good to:

- Shorten at least once
- Shorten by a factor of at least 3
- Keep more than 2-3 vanilla layers

Intuition behind Hourglass - why it works, or when it doesn't?

Hierarchical prior

- Fundamentally, we aim for the models to create high-level representations of words, entities, or even whole events – which occur at a very different granularity than single letters that the model receives on input
- We see that in some cases, given fixed amount of parameters, our hierarchical model is still slightly better than baseline

More parameters

- The model has more layers which implies it can memorize more information in its parameters which might simply lead to better results on some datasets
- The computation burden is shifted from attention to feedforward layers which can be a better prior for some tasks
- More layers can perform more multi-step reasoning, it can help even if the data the layers operate on is compressed

Shortcomings - fixed-size pooling - greediness

																								Hea	id 0																							
9,	0.97	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
99 -	0.00	0.33	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
901 01	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1 108 1	0.00	0.00	0.00	0.00	0.00	0.00	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
. 68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7 011	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
28,12		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					0.00					0.00	0.00		0.00		0.00		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.00	0.00	0.00
21,														2							0.00									0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00. 90	0.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00		0.00		1 3					0.00				0.00	0.00		0.00	0.00	0.00		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1,1	0.00		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00				0.00									0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1611.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
123 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
113 124	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
98 -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
118 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16113	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79 73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
, 115	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6172,16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3 147 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
99 186	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00					0.00		0.00	0.00	
34,13	0.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2000	0.00						0.00	
. 113	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00				
115_71	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	COMMS.	0.00	0.00	0.00 71
	ď.	"	00	104	100	67	100	110	00	111	110	12	120	12.5	30	120	120	100	117	113	10	119	114	04	124	123	30	113	110	13	113	110	13	110	113	/2	112	100	241	200	133	100	134	134	AU.	413	443	*4

Shortcomings - fixed-size pooling

Shortcomings - fixed-size pooling - greediness (attention upsampling layer)

Towards dynamic pooling in transformers (ongoing research)

- We hypothesize that fixed-size pooling is one of the reasons preventing us from building multi-level hierarchies that work better than just 2-level ones.
- Intuition: on character/byte-level data, shortening by 3 or 4 even if it is fixed-size, is a very useful prior (grouping rgb channels in images, grouping chars/bytes to subwords). On token-level data, this no longer holds and the model needs to figure out the right hierarchy for the data preferably in a dynamic, content-based way.
- Our high-level aim is to replace tokenizers in NLP and use dynamic pooling to train hierarchical transformer models, surpassing baselines based on fixed tokenizers

Shorten factor dropout - a remedy for fixed-size pooling?

Sample the shorten factor from {2, 3, 4} in each training step

Shorten factor dropout - results

Hierarchy	Train k	Val k = 2	Val k = 3
2@18@k2@1	$\{2,3\}$	1.104	1.116
	2	1.116	
	3		1.124
4@1 12@k 4@1	$\{2,3\}$	1.086	1.094
	2	1.098	
	3		1.101
5@1 10@k 5@1	$\{2, 3\}$	1.082	1.087
	2	1.096	
	3		1.095

Table 4: Comparison between models trained with shorten factor dropout (Train $k = \{2, 3\}$, Section 4.1) and fixed shorten factor baselines on enwik8.

Shortened layers = faster inference

Takeaway message

We don't need to operate on original granularity of the sequence throughout the whole layer stack.

Takeaway message

We don't need to operate on original granularity of the sequence throughout the whole layer stack.

Let's impose hierarchical structure to process the input and use the savings to have more parameters!

Takeaway message

We don't need to operate on original granularity of the sequence throughout the whole layer stack.

Let's impose hierarchical structure to process the input and use the savings to have more parameters!

Hierarchical Transformers are better Language Models

Bibliography

- https://arxiv.org/abs/2110.13711 our paper
- https://arxiv.org/abs/1706.03762
- https://arxiv.org/abs/1901.02860
- https://arxiv.org/abs/2006.03236
- https://arxiv.org/abs/2001.04451
- Visuals for the language modeling/transformers intro taken from:
 - https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture06-rnnlm.pdf
 - https://jalammar.github.io/illustrated-gpt2/
 - http://peterbloem.nl/blog/transformers
 - https://www.youtube.com/watch?v=piT1_k8b9uM