EE23BTECH11054 - Sai Krishna Shanigarapu*

Exercise 9.2

13 If the sum of n terms of an A.P. is $3n^2 + 5n$ and its m^{th} term is 164, find the value of m.

Solution: :

$$Y(z) = \frac{2(4-z^{-1})}{(1-z^{-1})^3} \qquad \{z \in \mathbb{C} : |z| > 1\}$$

$$U(z) = \frac{1}{1 - z^{-1}}$$

$$\{z \in \mathbb{C} : |z| > 1\}$$
(2)

$$X\left(z\right) = \frac{Y\left(z\right)}{U\left(z\right)}\tag{3}$$

$$x(n) = Z_z^{-1} \left[2\left(\frac{1}{1-z^{-1}}\right) + 6\left(\frac{1}{1-z^{-1}}\right)^2 \right]$$
(4)
= $(6n+8)(u(n))$ (5)

Symbol	Remarks
$y(n) = (3n^2 + 11n + 8)(u(n))$	Sum of n terms
x(m-1)	164
$y\left(n ight)$	x(n) * u(n)
$Z_z^{-1}\left(\frac{1}{1-z^{-1}}\right)$	$u\left(n\right)$
$Z_z^{-1} \left(\frac{1}{1-z^{-1}}\right)^2$	(n+1)(u(n))

TABLE I PARAMETERS

Fig. 1. Plot of x(n) vs n

$$\therefore m = 26$$