# Atiyah-MacDonald 可換代数入門 第 2 章演習問題解答

flag3 (@flag3833753)

2021年8月6日

#### 概要

Atiyah-MacDonald 可換代数入門 [1] 第 2 章の演習問題の解答をまとめたものである.

## 2 加群

演習問題 **2.2.** i)  $a \in A$  に対して

$$a \in \text{Ann}(M+N) \iff 0 = a(M+N) = aM + aN$$
  
 $\iff aM = aN = 0 \iff a \in \text{Ann}(M) \cap \text{Ann}(N)$ 

が成り立つことから従う.

ii)  $a \in A$  に対して

$$aP \subseteq N \iff a(N+P) = aN + aP \subseteq N \iff a((N+P)/N) = 0$$

が成り立つことから従う.

演習問題 **2.15.**  $M \otimes_A N$  の B-加群の構造と  $N \otimes_B P$  の A-加群の構造を

$$(x \otimes y)b = x \otimes yb, \quad x \in M, \ y \in N, \ b \in B,$$
  
 $a(y \otimes z) = ay \otimes z, \quad a \in A, \ y \in N, \ z \in P$ 

によって定めると  $M \otimes_A N$ ,  $N \otimes_B P$  は (A,B)-両側加群\*<sup>1</sup>となる.同様に  $(M \otimes_A N) \otimes_B P$ ,  $M \otimes_A (N \otimes_B P)$  も (A,B)-両側加群となり,命題 2.14 ii)の写像で 2 つの加群は A-加群としても B-加群としても同型となる.

演習問題 2.20. 任意の B-加群 N に対して、命題 2.14 i) iv) と演習問題 2.15 より標準的な同型

$$N \otimes_B M_B = N \otimes_B (B \otimes_A M) \cong (N \otimes_B B) \otimes_A M \cong (B \otimes_B N) \otimes_A M \cong N \otimes_A M$$

をもつ. ゆえに  $0 \to N' \to N \to N'' \to 0$  を任意の B-加群の完全列とすると、次の図式は可換である.

M は平坦 A-加群より上の行は完全列なので下の行も完全列である. よって  $M_B$  は平坦 B-加群である.

<sup>\*1</sup> 邦訳 [1] では bimodule を複加群と訳しているが、両側加群 (または双加群) と訳すことの方が多いと思われる.

#### 演習問題

- 1. m と n が互いに素であるので am+bn=1 となる  $a,b\in\mathbb{Z}$  が存在し、すべての  $x\in\mathbb{Z}/m\mathbb{Z}$ 、 $y\in\mathbb{Z}/n\mathbb{Z}$  に対して  $x\otimes y=(am+bn)(x\otimes y)=a(mx\otimes y)+b(x\otimes ny)=0$  が成り立つことから従う.
- 2. 完全列  $0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$  に対して、命題 2.18 より  $\mathfrak{a} \otimes_A M \stackrel{f}{\to} A \otimes_A M \to (A/\mathfrak{a}) \otimes_A M \to 0$  は完全列であるので、 $\operatorname{Coker}(f) = (A \otimes_A M)/\operatorname{Im}(f) \cong (A/\mathfrak{a}) \otimes_A M$  である、一方で命題 2.14 iv)の標準的な同型  $A \otimes_A M \cong M$  によって  $\operatorname{Im}(f)$  は  $\mathfrak{a} M$  に対応するので、 $M/\mathfrak{a} M \cong (A/\mathfrak{a}) \otimes_A M$  である.
- 3. m を A の極大イデアル, $k=A/\mathfrak{m}$  をその剰余体とする. $M_k=k\otimes_A M$  とすると,演習問題 2 より  $M_k\cong M/\mathfrak{m}M$  となる. $M_k=0$  ならば  $\mathfrak{m}M=M$  ゆえ,中山の補題(命題 2.6)より M=0 となる.よって  $M\otimes_A N=0$  ならば, $M_k=0$  または  $N_k=0$  であることを示せばよい. $M\otimes_A N=0$  ならば  $(M\otimes_A N)_k=k\otimes_A (M\otimes_A N)=0$  であり,命題 2.14 ii) iv) と演習問題 2.15 より

$$M_k \otimes_k N_k = (k \otimes_A M) \otimes_k (k \otimes_A N) \cong ((k \otimes_A M) \otimes_k k) \otimes_A N$$
  
$$\cong (k \otimes_A M) \otimes_A N \cong k \otimes_A (M \otimes_A N) = (M \otimes_A N)_k = 0$$

である.  $M_k$  と  $N_k$  は体 k 上の有限次元ベクトル空間であるから  $M_k \cong k^m$ ,  $N_k \cong k^n$  とすると,命題 2.14 ii) iv) から  $0=M_k\otimes_k N_k\cong k^m\otimes_k k^n\cong k^{mn}$  となるので  $M_k=0$  または  $N_k=0$  となる.

4. 任意の A-加群 N に対して,命題 2.14 iii) と同様に標準的な同型  $N\otimes_A M\cong \bigoplus_{i\in I}(N\otimes_A M_i)$  をもつので, $0\to N'\to N\to N''\to 0$  を任意の A-加群の完全列とすると,次の図式は可換である.

$$0 \longrightarrow N' \otimes_A M \longrightarrow N \otimes_A M \longrightarrow N'' \otimes_A M \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow \bigoplus_{i \in I} (N' \otimes_A M_i) \longrightarrow \bigoplus_{i \in I} (N \otimes_A M_i) \longrightarrow \bigoplus_{i \in I} (N'' \otimes_A M_i) \longrightarrow 0$$

下の行が完全列であることと,各  $0 \to N' \otimes_A M_i \to N \otimes_A M_i \to N'' \otimes_A M_i \to 0$  が完全列であることは同値である.よって M が平坦であることと,各  $M_i$  が平坦であることは同値である.

- 5. 命題 2.14 iv) より A は平坦 A-加群である. したがって,演習問題 4 から自由 A-加群は平坦である. よって  $A[x] = \bigoplus_{i=0}^{\infty} Ax^i \cong \bigoplus_{i=0}^{\infty} A$  は自由 A-加群であるので,A[x] は平坦 A-代数である.
- $6.\ f=a_0+a_1x+\cdots+a_nx^n\in A[x],\ u=m_0+m_1x+\cdots+m_rx^r\in M[x]$  に対して,積 fu は  $fu=\sum_{k=0}^{n+r}\left(\sum_{i=0}^k a_im_{k-i}\right)x^k$  であり,各  $k=0,1,\ldots,n+r$  に対して, $\sum_{i=0}^k a_im_{k-i}\in M$  であるので, $fu\in M[x]$  である.よって M[x] は A[x]-加群である. $\phi\colon M[x]\to A[x]\otimes_A M$  を  $\phi(u)=\sum_{i=0}^r(x^j\otimes m_j)$  とすると, $\phi$  は A[x]-加群の準同型写像である.実際,

$$\phi(fu) = \sum_{k=0}^{n+r} \sum_{i=0}^{k} \phi(a_i m_{k-i} x^k) = \sum_{k=0}^{n+r} \sum_{i=0}^{k} (x^k \otimes a_i m_{k-i}) = \sum_{j=0}^{r} \sum_{i=0}^{n} (x^{i+j} \otimes a_i m_j)$$
$$= \sum_{j=0}^{r} \left( \left( \sum_{i=0}^{n} a_i x^i \right) x^j \otimes m_j \right) = \left( \sum_{i=0}^{n} a_i x^i \right) \left( \sum_{j=0}^{r} (x^j \otimes m_j) \right) = f\phi(u)$$

が成り立つ.  $(f,m)\mapsto \sum_{i=0}^n (a_im)x^i$  によって定義される写像  $A[x]\times M\to M[x]$  は A-双線形であるから, $\psi(f\otimes m)=\sum_{i=0}^n (a_im)x^i$  によって定義される A-加群の準同型写像  $\psi\colon A[x]\otimes_A M\to M[x]$  を誘導する.  $\phi\circ\psi$  と  $\psi\circ\phi$  は恒等写像となるので, $\phi$  と  $\psi$  は A[x]-加群の同型写像である.

- 7.  $A/\mathfrak{p}$  は整域であるので、 $A[x]/\mathfrak{p}[x] \cong (A/\mathfrak{p})[x]$  は整域である. よって  $\mathfrak{p}[x]$  は A[x] の素イデアルである. また、0 は  $\mathbb Q$  の極大イデアルであるが、0[x] は  $\mathbb Q[x]$  の極大イデアルではない.
- 8. i)  $0 \to P' \to P \to P'' \to 0$  を任意の A-加群の完全列とすると,M が平坦 A-加群であるので,  $0 \to P' \otimes_A M \to P \otimes_A M \to P'' \otimes_A M \to 0$  は完全列である.命題 2.14 ii) の標準的な同型に よって次の図式は可換である.

$$0 \longrightarrow (P' \otimes_A M) \otimes_A N \longrightarrow (P \otimes_A M) \otimes_A N \longrightarrow (P'' \otimes_A M) \otimes_A N \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow P' \otimes_A (M \otimes_A N) \longrightarrow P \otimes_A (M \otimes_A N) \longrightarrow P'' \otimes_A (M \otimes_A N) \longrightarrow 0$$

N は平坦 A-加群より上の行は完全列ゆえ下の行も完全列なので、 $M \otimes_A N$  は平坦 A-加群である.

ii)  $0 \to M' \to M \to M'' \to 0$  を任意の A-加群の完全列とすると,B が平坦 A-代数であるので, $0 \to M' \otimes_A B \to M \otimes_A B \to M'' \otimes_A B \to 0$  は完全列である.命題 2.14 iv) と演習問題 2.15 より標準的な同型

$$(M \otimes_A B) \otimes_B N \cong M \otimes_A (B \otimes_B N) \cong M \otimes_A N$$

をもつので、次の図式は可換である.

$$0 \longrightarrow (M' \otimes_A B) \otimes_B N \longrightarrow (M \otimes_A B) \otimes_B N \longrightarrow (M'' \otimes_A B) \otimes_B N \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow M' \otimes_A N \longrightarrow M \otimes_A N \longrightarrow M'' \otimes_A N \longrightarrow 0$$

N は平坦 B-加群より上の行は完全列ゆえ下の行も完全列なので,N は平坦 A-加群である.

- 9.  $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$  とおくと,g は全射でかつ  $\operatorname{Coker}(f) = M/f(M')$  から M'' への同型写像を誘導する. $x_1', \ldots, x_n'$  を M' の生成系, $x_1'', \ldots, x_m''$  を M'' の生成系とする. $g(x_i) = x_i''$   $(1 \leqslant i \leqslant m)$  を満たす  $x_i \in M$  をとる.このとき, $x_1, \ldots, x_m, f(x_1'), \ldots, f(x_n')$  は M の生成系である.実際,N を  $x_1, \ldots, x_m, f(x_1'), \ldots, f(x_n')$  によって生成される M の部分加群とすると,N は f(M') を含み, $x_1'', \ldots, x_m'' \in g(N)$  であるから g(N) = M'' が成り立つ.ゆえに,g によって f(M') を含んでいる M の部分加群と M'' の部分加群との間には 1 対 1 の順序を保存する対応があるので,M = N を得る.
- 10.  $M/\mathfrak{a}M \to N/\mathfrak{a}N$  が全射であるので、 $N=\mathfrak{a}N+u(M)$  となり、系 2.7 より N=u(M) を得る.
- 11.  $\mathfrak{m}$  を A の極大イデアルとし、 $\phi\colon A^m\to A^n$  を A-加群の同型写像とする.このとき、 $k=A/\mathfrak{m}$  とおくと、命題 2.18 より  $1\otimes\phi\colon k\otimes_A A^m\to k\otimes_A A^n$  は A-加群の同型写像である.一方で命題 2.14 iii) iv) より任意の  $r\geqslant 0$  に対して  $k\otimes_A A^r\cong (k\otimes_A A)^r\cong k^r$  となるので、 $1\otimes\phi$  は体 k 上の次元が m と n のベクトル空間の間の同型写像である.ゆえに m=n となる.
  - $\phi:A^m\to A^n$  が A-加群の全射ならば、同型の場合と同様に  $1\otimes\phi:k\otimes_AA^m\to k\otimes_AA^n$  は体  $k\perp m$  次元ベクトル空間から n 次元ベクトル空間への全射であることがわかるので、 $m\geqslant n$  である.
  - $\phi:A^m\to A^n$  が単射であるとき,m>n と仮定する. $A^n$  を  $A^m$  の部分加群

$$\{(a_1,\ldots,a_n,0,\ldots,0)\in A^m \mid a_i\in A\}$$

とみなすことができるので、 $\phi$  は  $A^m$  の A-加群の自己準同型写像とみなすことができる.

$$I = \{ f(x) \in A[x] \mid f(\phi) = 0 \}$$

- とおくと、命題 2.4 より  $I \neq 0$  である.よって  $f = a_0 + a_1 x + \dots + a_l x^l$   $(a_l \neq 0)$  を  $f \in I$  となる最小次数の多項式とし、 $p \colon A^m \to A$  を第 m 射影とすると、 $0 = p \circ f(\phi) = p \circ (a_0 + a_1 \phi + \dots + a_l \phi^l) = a_0 p$  であるので  $a_0 = 0$  となる.ゆえに  $0 = f(\phi) = a_1 \phi + \dots + a_l \phi^l = \phi \circ (a_1 + \dots + a_l \phi^{l-1})$  より  $\phi$  が 単射であるので  $a_1 + \dots + a_l \phi^{l-1} = 0$  となる.よって  $g = a_1 + \dots + a_l x^{l-1}$  は  $g \in I$  を満たすので、f が  $f \in I$  となる最小次数の多項式であることに反する.したがって  $m \leqslant n$  が成り立つ.
- 12.  $e_1, \ldots, e_n$  を  $A^n$  の基底とし、 $\phi(u_i) = e_i$  ( $1 \le i \le n$ ) を満たす  $u_i \in M$  をとる.このとき、N を  $u_1, \ldots, u_n$  によって生成される部分加群とすると、 $M \cong \operatorname{Ker}(\phi) \oplus N$  が成り立つ.実際、 $\psi(e_i) = u_i$  ( $1 \le i \le n$ ) によって  $\psi \colon A^n \to M$  を定義すると  $\phi \circ \psi = 1_{A^n}$  であり、 $x \in M$  に対し  $\phi(x (\psi \circ \phi)(x)) = \phi(x) (\phi \circ \psi \circ \phi)(x) = 0$  より  $x (\psi \circ \phi)(x) \in \operatorname{Ker}(\phi)$  ゆえ  $f(x) = (x (\psi \circ \phi)(x), (\psi \circ \phi)(x))$  によって  $f \colon M \to \operatorname{Ker}(\phi) \oplus N$  を定めると f は同型写像である.それは  $x \in \operatorname{Ker}(f)$  に対し  $(\psi \circ \phi)(x) = 0$  ゆえ  $x = x (\psi \circ \phi)(x) = 0$  より f は単射であり、 $(y, z) \in \operatorname{Ker}(\phi) \oplus N$  に対し  $\phi(y) = 0$ 、 $(\psi \circ \phi)(z) = z$  より  $f(y+z) = (y+z (\psi \circ \phi)(y+z), (\psi \circ \phi)(y+z)) = (y,z)$  となるので f は全射だからである.したがって  $\operatorname{Ker}(\phi) \cong M/N$  より M が有限生成 A-加群であることから、 $\operatorname{Ker}(\phi)$  は有限生成である.
- 13.  $p(b\otimes y)=by$  によって  $p\colon N_B\to N$  を定義すると,  $(p\circ g)(y)=p(1\otimes y)=y$  より  $p\circ g=1_N$  ゆえ g は 単射である.  $x\in N_B$  に対し  $p(x-(g\circ p)(x))=p(x)-(p\circ g\circ p)(x)=0$  より  $x-(g\circ p)(x)\in \mathrm{Ker}(p)$  ゆえ  $\phi(x)=((g\circ p)(x),x-(g\circ p)(x))$  によって  $\phi\colon N_B\to \mathrm{Im}(g)\oplus \mathrm{Ker}(p)$  を定めると  $\phi$  は 同型写像である. 実際,  $x\in \mathrm{Ker}(\phi)$  に対し  $(g\circ p)(x)=0$  ゆえ  $x=x-(g\circ p)(x)=0$  より  $\phi$  は単射であり,  $(y,z)\in \mathrm{Im}(g)\oplus \mathrm{Ker}(p)$  に対し  $(g\circ p)(y)=y,\ p(z)=0$  より  $\phi(y+z)=((g\circ p)(y+z),y+z-(g\circ p)(y+z))=(y,z)$  となるので  $\phi$  は全射である. したがって  $g(B)=\mathrm{Im}(g)$  は  $N_B$  の直和因子である.

#### 順極限

- 14.  $i \leq j$  のとき  $\mu_i = \mu_j \circ \mu_{ij}$  が成り立つことを示す.  $x_i \in M_i$  に対し  $x_i \mu_{ij}(x_i) \in D = \mathrm{Ker}(\mu)$  より  $\mu_i(x_i) (\mu_j \circ \mu_{ij})(x_i) = \mu(x_i) \mu(\mu_{ij}(x_i)) = \mu(x_i \mu_{ij}(x_i)) = 0$  より  $\mu_i = \mu_j \circ \mu_{ij}$  が成り立つ.
- 15.  $x \in M$  に対し  $\mu$  が全射より,有限集合  $I_0 \subseteq I$  と  $x_{i_0} \in M_{i_0}$   $(i_0 \in I_0)$  が存在して  $\mu(\sum_{i_0 \in I_0} x_{i_0}) = x$  となる.I は有向集合より任意の  $i_0 \in I_0$  に対し  $i_0 \leqslant i$  を満たす  $i \in I$  が存在する.このとき  $x_i = \sum_{i_0 \in I_0} \mu_{i_0 i}(x_{i_0}) \in M_i$  とすると  $\mu_i(x_i) = \mu_i(\sum_{i_0 \in I_0} \mu_{i_0 i}(x_{i_0})) = \sum_{i_0 \in I_0} \mu_i(\mu_{i_0 i}(x_{i_0})) = \sum_{i_0 \in I_0} \mu_i(\mu_{i_0 i}(x_{i_0})) = \sum_{i_0 \in I_0} \mu_i(x_{i_0}) = \sum_{i_0 \in I_0} \mu(x_{i_0}) = \mu(\sum_{i_0 \in I_0} x_{i_0}) = x$  となる.  $\mu_i(x_i) = \mu(x_i) = 0$  ならば  $x_i \in \text{Ker}(\mu) = D$  より  $x_i = \sum_{k=1}^n (x_k \mu_{i_k j_k}(x_k))$   $(i_k \leqslant j_k, x_k \in M_{i_k})$  と表される. $I_0 = \{i, i_1, \dots, i_n, j_1, \dots, j_n\}$  とおくと,I は有向集合より任意の  $i_0 \in I_0$  に対し  $i_0 \leqslant j$  を満たす  $j \in I$  が存在する.また  $\sum_{k=1}^n (x_k \mu_{i_k j_k}(x_k)) = \sum_{i_0 \in I_0} y_{i_0} (y_{i_0} \in M_{i_0})$  と表すと, $i_0 \neq i$
- 16.  $(M,\mu_i)$  と  $(M',\mu_i')$  を問題文の性質を満たす二つの組とすると, $(N,\alpha_i)$  を  $(M',\mu_i')$  によっておきかえることで,唯一の  $\mu'$ :  $M \to M'$  が存在して  $\mu_i' = \mu' \circ \mu_i$  を満たす.M と M' の役割を入れかえると,唯一の  $\mu$ :  $M' \to M$  が存在して  $\mu_i = \mu \circ \mu_i'$  を満たす.このときすべての  $i \in I$  に対して  $\mu_i' = \mu' \circ \mu_i = (\mu' \circ \mu) \circ \mu_i'$  を満たし  $1_{M'}$  も同じ性質を満たすので一意性によって  $\mu' \circ \mu = 1_{M'}$  である。。同様にして  $\mu \circ \mu' = 1_M$  であるので,M と M' は同型である.

のとき  $y_{i_0}=0$  より  $\mu_{ij}(x_i)=\sum_{i_0\in I_0}\mu_{i_0j}(y_{i_0})=\sum_{k=1}^n(\mu_{i_kj}(x_k)-\mu_{j_kj}(\mu_{i_kj_k}(x_k)))=0$  となる.

 $\alpha_i \colon M_i \to N$  は A-加群の準同型写像  $\overline{\alpha} \colon C \to N$  を誘導し、D の生成元  $x_i - \mu_{ij}(x_i)$  は  $\overline{\alpha}(x_i - \mu_{ij}(x_i)) = \alpha_i(x_i) - (\alpha_i \circ \mu_{ij})(x_i) = 0$  となるので、A-加群の準同型写像  $\alpha \colon M \to N$  が誘導され、すべての  $i \in I$ 

に対して  $\alpha_i = \alpha \circ \mu_i$  を満たす. M のすべての元はある  $i \in I$  とある  $x_i \in M_i$  により  $\mu_i(x_i)$  という形で表されるので、準同型写像  $\alpha$  は  $\alpha_i = \alpha \circ \mu_i$  という条件によって一意的である.

- 18. 任意の  $i \in I$  に対して  $\alpha$ :  $M_i \to N$  を  $\alpha_i = \nu_i \circ \phi_i$  と定めると,  $i \leqslant j$  のとき  $\alpha_j \circ \mu_{ij} = \nu_j \circ \phi_j \circ \mu_{ij} = \nu_j \circ \phi_i \circ \mu_{ij} = \nu_i \circ \phi_i = \mu_i \circ \phi_i = \mu_$
- 19.  $\mathbf{M} = (M_i, \mu_{ij})$ ,  $\mathbf{N} = (N_i, \nu_{ij})$ ,  $\mathbf{P} = (P_i, \pi_{ij})$  とし, $\mu_i \colon M_i \to M$ , $\nu_i \colon N_i \to N$ , $\pi_i \colon P_i \to P$  を それぞれ対応している準同型写像とする.また  $\mathbf{\Phi} \colon \mathbf{M} \to \mathbf{N}$ ,  $\mathbf{\Psi} \colon \mathbf{N} \to \mathbf{P}$  とおき, $\phi_i \colon M_i \to N_i$ , $\psi_i \colon N_i \to P_i$  の族によって定義されるものとする. $\phi = \varinjlim \phi_i$ , $\psi = \varinjlim \psi_i$  とする. $x \in M$  に対し,演習問題 15 よりある  $i \in I$  とある  $x_i \in M_i$  により  $x = \mu_i(x_i)$  となる. $M_i \to N_i \to P_i$  は完全列より  $\psi_i(\phi_i(x_i)) = 0$  であるので  $\psi(\phi(x)) = 0$  となる.ゆえに  $\mathrm{Im}(\phi) \subseteq \mathrm{Ker}(\psi)$  が成り立つ.

 $y \in N$  が  $\psi(y) = 0$  を満たすとする。演習問題 15 よりある  $i \in I$  とある  $y_i \in N_i$  により  $y = \nu_i(y_i)$  となる。  $\pi_i(\psi_i(y_i)) = \psi(\nu_i(y_i)) = \psi(y) = 0$  ゆえ,演習問題 15 より  $j \geqslant i$  なる j が存在し,  $\pi_{ij}(\psi_i(y_i)) = 0$  となる。  $\psi_j(\nu_{ij}(y_i)) = \pi_{ij}(\psi_i(y_i)) = 0$  ゆえ  $M_j \to N_j \to P_j$  は完全列より  $x_j \in M_j$  が存在し  $\phi_j(x_j) = \nu_{ij}(y_i)$  となるので,  $\phi(\mu_j(x_j)) = \nu_j(\phi_j(x_j)) = \nu_j(\nu_{ij}(y_i)) = \nu_i(y_i) = y$  となる。



ゆえに  $\operatorname{Im}(\phi) \supseteq \operatorname{Ker}(\psi)$  が成り立つので、  $\operatorname{Im}(\phi) = \operatorname{Ker}(\psi)$  より  $M \to N \to P$  は完全である.

### テンソル積は順極限と可換である

20. 任意の  $i \in I$  に対して、 $g_i \colon M_i \times N \to M_i \otimes_A N$  を標準的な双線形写像とする。また任意の  $i \in I$  に対して  $\phi_i \colon M_i \otimes_A N \to P$  を順系  $(M_i \otimes_A N, \mu_{ij} \otimes 1)$  に対応する標準的な準同型写像とし、 $\phi_i' \colon M_i \to \operatorname{Hom}(N,P)$  を双線形写像  $\phi_i \circ g_i \colon M_i \times N \to P$  に対応する準同型写像とすると、 $i \leqslant j$  のとき  $\phi_i = \phi_j \circ (\mu_{ij} \otimes 1)$  から  $\phi_i' = \phi_j' \circ \mu_{ij}$  が成り立つので、演習問題 16 よりすべての  $i \in I$ 

に対して  $\phi_i' = \phi' \circ \mu_i$  を満たす唯一つの準同型写像  $\phi' \colon M \to \operatorname{Hom}(N,P)$  が存在する. ゆえに A-双線形  $g \colon M \times N \to P$  が得られ,準同型写像  $\phi \colon M \otimes_A N \to P$  が定義される.  $\phi_i' = \phi' \circ \mu_i$  より  $\phi_i = \phi \circ (\mu_i \otimes 1)$  が成り立ち,さらに  $z \in P$  に対して,演習問題 15 よりある  $i \in I$  とある  $z_i \in M_i \otimes_A N$  により  $z = \phi_i(z_i)$  と表されるので,

$$(\phi \circ \psi)(z) = \phi(\psi(\phi_i(z_i))) = \phi((\mu_i \otimes 1)(z_i)) = \phi_i(z_i) = z$$

となる.  $x \in M$  に対して、演習問題 15 よりある  $i \in I$  とある  $x_i \in M_i$  により  $x = \mu_i(x_i)$  で表され、

$$(\psi \circ \phi)(x \otimes y) = \psi(\phi((\mu_i \otimes 1)(x_i \otimes y))) = \psi(\phi_i(x_i \otimes y)) = (\mu_i \otimes 1)(x_i \otimes y) = x \otimes y$$

となる. よって  $x \otimes y$  の形全体は  $M \otimes_A N$  を生成するので,  $\psi \circ \phi$  と  $\psi \circ \phi$  は恒等写像である.

21.  $\alpha_i\colon A_i\to A$  を自然な写像とする.  $x,y\in A$  に対し、演習問題 15 よりある  $i,j\in I$  とある  $x_i\in A_i$ 、  $y_j\in A_j$  により  $x=\alpha_i(x_i)$ 、 $y=\alpha_j(y_j)$  と表される. さらに I は有向集合であるので、 $i\leqslant k$  かつ  $j\leqslant k$  を満たす  $k\in I$  が存在する. よって  $x_k=\alpha_{ik}(x_i)$ 、 $y_k=\alpha_{jk}(y_j)$  とするとき、積 xy を

$$xy = \alpha_k(x_k y_k)$$

と定義する. I が有向集合であることと演習問題 15 よりこの定義は k と x,y の代表元の選び方には依存しないことがわかる. この積により A は環であり  $\alpha_i$  が環準同型写像であることは明らかである. A=0 であるとき  $i\in I$  を固定する\*2.  $\alpha_i(1_{A_i})=1_A=0_A$  より  $j\geqslant i$  なる j が存在し,  $\alpha_{ij}(1_{A_i})=0_{A_j}$  であり  $\alpha_{ij}$  は環準同型より  $1_{A_i}=0_{A_i}$  となるので  $A_j=0$  となる.

22. 任意の  $i \in I$  に対して  $0 \to \mathfrak{N}_i \to A_i$  は完全ゆえ,演習問題 19 より  $0 \to \varinjlim \mathfrak{N}_i \to \varinjlim A_i$  は完全である.よって  $\varinjlim \mathfrak{N}_i$  は  $\varinjlim A_i$  の部分加群とみなせ  $\mathfrak{N}_i \to \varinjlim \mathfrak{N}_i$  は  $\alpha_i$ :  $A_i \to \varinjlim A_i$  の制限写像となる. $x \in \varinjlim \mathfrak{N}_i$  に対し,演習問題 15 よりある  $i \in I$  とある  $x_i \in \mathfrak{N}_i$  により  $x = \alpha_i(x_i)$  と表される.よってある n > 0 が存在して  $x_i^n = 0$  より  $x^n = \alpha_i(x_i^n) = 0$  ゆえ x は  $\varinjlim A_i$  のべキ零元となる.逆に x が  $\varinjlim A_i$  のべキ零元のとき,ある n > 0 が存在して  $x^n = 0$  であり,演習問題 15 よりある  $i \in I$  とある  $x_i \in A_i$  により  $x = \alpha_i(x_i)$  と表される.よって  $\alpha_i(x_i^n) = \alpha_i(x_i)^n = x^n = 0$  ゆえ,演習問題 15 より  $j \geqslant i$  なる j が存在し, $\alpha_{ij}(x_i^n) = 0$  となる.ゆえに  $\alpha_{ij}(x_i)^n = \alpha_{ij}(x_i^n) = 0$  より  $\alpha_{ij}(x_i) \in \mathfrak{N}_j$  となるので  $x = \alpha_i(x_i) = \alpha_j(\alpha_{ij}(x_i)) \in \varinjlim \mathfrak{N}_i$  となる.したがって  $\varinjlim \mathfrak{N}_i$  は  $\varinjlim A_i$  の べキ零元根基である.

任意の  $A_i$  が整域であるとする.  $x,y\in \varinjlim A_i$  が xy=0 を満たすとする. 演習問題 15 よりある  $i\in I$  とある  $x_i,y_i\in A_i$  により  $x=\alpha_i(x_i),\ y=\alpha_i(y_i)$  と表される. このとき  $\alpha_i(x_iy_i)=\alpha_i(x_i)\alpha_i(y_i)=xy=0$  ゆえ,演習問題 15 よりある  $j\geqslant i$  なる j が存在し, $\alpha_{ij}(x_iy_i)=0$  となる. よって  $\alpha_{ij}(x_i)\alpha_{ij}(y_i)=\alpha_{ij}(x_iy_i)=0$  であり  $A_j$  が整域であることから  $\alpha_{ij}(x_i)=0$  または  $\alpha_{ij}(y_i)=0$  となる. よって  $x=\alpha_i(x_i)=\alpha_j(\alpha_{ij}(x_i)),\ y=\alpha_i(y_i)=\alpha_j(\alpha_{ij}(y_i))$  より x=0 または y=0 となる. したがって  $\lim_i A_i$  は整域である.

23.  $J=\{j_1,\ldots,j_n\},\ J'=\{j_1,\ldots,j_n,j_{n+1},\ldots,j_{n'}\}$  とする。A-代数の準同型写像  $\beta_{JJ'}\colon B_J\to B_{J'}$  は  $\beta_{JJ'}(b_1\otimes\cdots\otimes b_n)=b_1\otimes\cdots\otimes b_n\otimes 1\otimes\cdots\otimes 1$  によって定まる。 $\beta_J\colon B_J\to B$  を自然な環準同型 写像とするとき, $\beta_{JJ'}\colon B_J\to B_{J'}$  が A-代数の準同型写像であることから,環 B には環準同型写像  $A\to B_J\to B$  によって A-代数の構造が入り, $\beta_J\colon B_J\to B$  は A-代数の準同型写像である。

 $<sup>^{*2}</sup>$  普遍性により  $I=\emptyset$  ならば  $\varinjlim_{i\in I}A_i$  は環の圏の始対象  $\mathbb Z$  であるので, $A=\varinjlim_{i\in I}A_i=0 \neq \mathbb Z$  ならば  $I\neq\emptyset$  である.

#### 平坦性とトーション関手

Tor の定義およびその性質については例えば [4, 5] などを参照されたい.

24. i)  $\Longrightarrow$  ii)

$$\cdots \longrightarrow F_n \longrightarrow F_{n-1} \longrightarrow \cdots \longrightarrow F_0 \longrightarrow N \longrightarrow 0$$

を N の自由分解とする. M は平坦より

$$\cdots \longrightarrow M \otimes_A F_n \longrightarrow M \otimes_A F_{n-1} \longrightarrow \cdots \longrightarrow M \otimes_A F_0 \longrightarrow M \otimes_A N \longrightarrow 0$$

は完全列となる. よって n>0 のとき  $\operatorname{Tor}_n^A(M,N)=0$  である.

- ii) ⇒ iii) 明らか.
- iii)  $\Longrightarrow$  i)  $0 \to N' \to N \to N'' \to 0$  を完全列とする. このとき,

$$\operatorname{Tor}_1(M, N'') \longrightarrow M \otimes_A N' \longrightarrow M \otimes_A N \longrightarrow M \otimes_A N'' \longrightarrow 0$$

は完全列となる.  $\operatorname{Tor}_1(M,N'')=0$  であるから, M は平坦となる.

25. すべての A-加群 M に対して、

$$\operatorname{Tor}_{2}^{A}(M, N'') \longrightarrow \operatorname{Tor}_{1}^{A}(M, N') \longrightarrow \operatorname{Tor}_{1}^{A}(M, N) \longrightarrow \operatorname{Tor}_{1}^{A}(M, N'')$$

は完全列となる. 演習問題 24 より  $\operatorname{Tor}_2^A(M,N'') = \operatorname{Tor}_1^n(M,N'') = 0$  であるから、演習問題 24 より

$$N'$$
 は平坦である  $\iff$  すべての  $A$ -加群  $M$  に対して, $\operatorname{Tor}_1^A(M,N')=0$   $\iff$  すべての  $A$ -加群  $M$  に対して, $\operatorname{Tor}_1^A(M,N)=0$   $\iff$   $N$  は平坦である

が成り立つ.

- 26. (⇒) 演習問題 24 より明らか.
  - (全) すべての有限生成 A-加群 M に対して  $\mathrm{Tor}_1(M,N)=0$  ならば N は平坦であることを示す。  $f\colon M'\to M$  が単射で,M と M' が有限生成のとき, $0\to M'\to M\to \mathrm{Coker}(f)\to 0$  は完全列より

$$\operatorname{Tor}_1(\operatorname{Coker}(f), N) \longrightarrow M' \otimes_A N \xrightarrow{f \otimes 1} M \otimes_A N$$

は完全列であり、Coker(f) は有限生成なので  $\mathrm{Tor}_1(\mathrm{Coker}(f),N)=0$  となり  $f\otimes 1$  は単射である. よって命題 2.19 より N は平坦である。次にすべての巡回 A-加群 M に対して  $\mathrm{Tor}_1(M,N)=0$  ならば N が平坦であることを示す。M を有限生成とするとき, $x_1,\ldots,x_n$  を M の生成系とし, $M_i$  を  $x_1,\ldots,x_i$  によって生成される部分加群とする。 $0\to M_{i-1}\to M_i\to M_i/M_{i-1}\to 0$  は完全列より

$$\operatorname{Tor}_1(M_{i-1}, N) \longrightarrow \operatorname{Tor}_1(M_i, N) \longrightarrow \operatorname{Tor}_1(M_i/M_{i-1}, N)$$

は完全列であり、 $M_i/M_{i-1}$  は巡回 A-加群より  $\mathrm{Tor}_1(M_i/M_{i-1},N)=0$  である。 $M_1$  が巡回 A-加群より帰納的に  $\mathrm{Tor}_1(M_i,N)=0$  となるので  $\mathrm{Tor}_1(M,N)=0$  となり N は平坦である。よって巡回 A-加群 M はあるイデアル  $\mathfrak a$  によって  $M\cong A/\mathfrak a$  であり, $0\to\mathfrak a\to A\to A/\mathfrak a\to 0$  は完全列より

$$\operatorname{Tor}_1(A, N) \longrightarrow \operatorname{Tor}_1(A/\mathfrak{a}, N) \longrightarrow \mathfrak{a} \otimes_A N \longrightarrow A \otimes_A N$$

は完全列であり、A は平坦より  $\operatorname{Tor}_1(A,N)=0$  となる.このことから A のすべてのイデアル  $\mathfrak a$  に対し  $\mathfrak a\otimes_A N\to A\otimes_A N$  が単射ならば  $\operatorname{Tor}_1(A/\mathfrak a,N)=0$  より N は平坦であることが従う.ゆえに  $\mathfrak a$  が有限生成イデアルの場合に帰着すれば良いが、命題 2.19 の  $\operatorname{iv})\Longrightarrow \operatorname{iii}$  の証明と同様である.

27. i)  $\Longrightarrow$  ii)  $x \in A$  とする. このとき A/(x) は平坦 A-加群であるので、 $\alpha: (x) \otimes_A (A/(x)) \to A/(x)$  は

ので  $\phi$  は全射であるので,  $\phi$  は同型写像となる\*3. よって  $A \cong \mathfrak{a} \oplus (A/\mathfrak{a})$  で A が平坦より, 演習問題

4 から  $A/\mathfrak{a}$  は平坦ゆえ  $\mathrm{Tor}_1(A/\mathfrak{a},N)=0$  となる. よって演習問題 26 より N は平坦である.

28. ブール環はすべての元がベキ等元であるので,すべての単項イデアルはベキ等である.よって演習問題 27 よりブール環は絶対平坦である.第 1 章,演習問題 7 の環 A は  $x \in A$  に対しある整数 n > 1 が存在して  $x^n = x$  を満たす.よって  $x = x^n = x^{n-2}x^2$  より  $(x) = (x^2)$  が成り立つので A は絶対平坦である.絶対平坦である環 A の準同型写像による像が絶対平坦であることは,すべての A のイデアル  $\alpha$  に対し  $A/\alpha$  が絶対平坦であることを示せばよい. $A/\alpha$  の単項イデアル  $\alpha$  に対し,演習問題 27 より A の単項イデアル  $\alpha$  はべキ等であるので, $\alpha$  もベキ等となる.ゆえに演習問題 27 から  $\alpha$  は絶対平坦である.局所環  $\alpha$  が絶対平坦であるとき, $\alpha$  の極大イデアルを  $\alpha$  とする. $\alpha$  に対し,演習問題 27 i)  $\alpha$  ii) よりベキ等元  $\alpha$  を  $\alpha$  が存在して  $\alpha$  となるので,第 1 章,演習問題 12 より  $\alpha$  に対しするる。  $\alpha$  が絶対平坦であるとき  $\alpha$  を  $\alpha$  が存在して  $\alpha$  となる.よって  $\alpha$  のとなり  $\alpha$  は体である. $\alpha$  が絶対平坦であるとき  $\alpha$  を  $\alpha$  を  $\alpha$  を  $\alpha$  が  $\alpha$  が  $\alpha$  が  $\alpha$  が  $\alpha$  ので  $\alpha$  のとなる. $\alpha$  が  $\alpha$  に対し,演習問題 27 より  $\alpha$  に  $\alpha$  に  $\alpha$  のを  $\alpha$  に  $\alpha$  が  $\alpha$  に  $\alpha$  に

# 参考文献

- [1] M. F. Atiyah and I. G. MacDonald. Atiyah-MacDonald 可換代数入門. 共立出版, 2006. 新妻弘 訳.
- [2] N. Bourbaki. 可換代数 1. ブルバキ数学原論 / ブルバキ [著]. 東京図書, 1971. 木下素夫 訳.
- [3] Jeffrey D. Carlson. jdk carlson: Exercises to Atiyah and Macdonald's Introduction to Commutative Algebra, 2019 palingenesis. https://math.sci.uwo.ca/~jcarlso6/intro\_comm\_alg(2019).pdf.
- [4] 河田敬義. ホモロジー代数. 岩波基礎数学選書 / 小平邦彦監修 ; 岩堀長慶 [ほか] 編集. 岩波書店, 1990.
- [5] 志甫淳. 層とホモロジー代数. 共立講座 数学の魅力, No. 5. 共立出版, 2016.

<sup>\*3</sup> 完全列の分裂に関する性質を用いると直ちに言えることである.演習問題 12,演習問題 13 についても同様である.