

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am29827A

High-Performance Buffer

DISTINCTIVE CHARACTERISTICS

- High speed buffers and inverters
 - tpD = 5.0 ns typ
 - Inverting tpp = 4.5 ns typ
- 200 mV minimum input hysteresis on input data ports
- Three-state outputs glitch-free during power-up and power-down
- IoL: 48 mA Commercial
 - Higher speed, lower power version of the Am29827

GENERAL DESCRIPTION

The Am29827A Bus Buffer provides high performance bus interface buffering for wide address/data paths or buses carrying parity. The device features a 10-bit wide data path and NORed output er ables for maximum control flexibility. The Am29827A has non-inverting outputs, and features data inputs with 200 mV minimum input hysteresis to provide improved noise immunity. The

Am29827A is produced with AMD's proprietary IMOX™ bipolar process, and features typical propagation delays of 5 ns.

Each member of the Am29800A Bus Interface Family is designed to drive high-capacitive loads while providing low-capacitive bus loading at both inputs and outputs.

BLOCK DIAGRAM

07139-001A

Publication# 07139 Rev. C Amendme 650 Issue Date: December 1990

CONNECTION DIAGRAM (Top View)

OIP

07139-002A

LOGIC SYMBOL

FUNCTION TABLE

Inputs			Outputs	
ŌĒ1	ŌĒ₂	Di	Yi	Function
L	L	Н	Н	Transparent
L	L	L	L.	Transparent
Х	Н	Х	Z	Hi-Z
Н	×	X	Z	Hı-Z

H = HIGH

L = LOW

X = Don't Care Z = High Impedance

ORDERING INFORMATION **Standard Products**

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

- a. Device Number
 b. Speed Option (if applicable)
 c. Package Type
 d. Temperature Range
 e. Optional Processing

Valid Combinations					
AM29827A	PC				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

PIN DESCRIPTION

ŌĒi

Output Enables (Input, Active LOW)

When both Output Enables are LOW, the outputs are enabled. When either one or both are HIGH, the outputs are Hi-Z.

D_I Data inputs (input)

Di are the 10-bit data inputs.

Y_i Data Outputs (Output)

Yi are the 10-bit data outputs.

ABSOLUTE MAXIMUM FATINGS

Storage Temperature -65 to +150°C

Ambient Temperature with

Power Applied -55 to +125°C

Supply Voltage to Ground

DC Input Current

Potential Continuous -0.5 V to +7.0 V

DC Voltage Applied to Outputs

for High Output State -0.5 V to +5.5 V DC Input Voltage -1.5 V to +6.0 V

Output Current, into Outputs 100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Temperature (T_A) 0 to +70°C

Supply Voltage (Vcc) +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

-30 mA to +5.0 mA

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
VoH	Output HIGH Voltage	Vcc = 4.5 V	Iон = -15 mA	2.4	,	.,
		VIN = VIHOR VIL	Iон = -24 mA	2.0		V
Vol	Output LOW Voltage	Vcc = 4.5 V	lo _L = 48 mA		0.5	٧
		VIN = VIHOR VIL				
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 1)		2.0	,	٧
VIL	Input LOW Voltaç∈	Guaranteed Input Logical LOW Voltage for All Inputs (Note 1)			0.8	٧
Vı	Input Clamp Voltage	Vcc = 4.5 V, I _{IN} = -18 mA			-1.2	٧
V _{HYST}	Input Hysteresis			200	_	m۷
l _{IL}	Input LOW Curre 11	Vcc = 5.5 V, Vi	N = 0.4 V		-0.5	mA
1114	Input HIGH Current	Vcc = 5.5 V, Vi	N = 2.7 V		50	μΑ
11	Input HIGH Current	Vcc = 5.5 V, Vi	N = 5.5 V		100	μΑ
lozн	Output Off-State	Vcc = 5.5 V, Vo = 2.7 V			50	μА
lozl	(High Impedance	Vcc = 5.5 V, Vo = 0.4 V			-50	μА
Isc	Output Short-Circuit Current	Vcc = 5.5 V, Vo = 0 V (Note 2)		-75	-250	mA
loff	Bus Leakage Current	Vcc = 0 V, Vou	T = 2.9 V		100	μА
Icc	Supply Current	Vcc = 5.5 V	Outputs LOW		80	
		Outputs	Outputs HIGH		55	mA
		Unic aded	Outputs Hi-Z		70	

Notes:

- 1. Input thresholds are tested du was DC parameter testing, and may be tested in combination with other DC parameters.
- 2. Not more than one output sho that at me. Duration of the short-circuit test should not exceed one second.

SWITCHING CHARACTER/STICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions*	Min.	Max.	Unit
tры	Data (Di) to Output (Y)	C_L = 50 pF R_1 = 500 Ω R_2 = 500 Ω		8	ns
t PHL	Data (Bi) to Sutput (1)			8	ns
tzн	Output Enable Time ŌĒ to Y∈			11	ns
t zl				12	ns
tHZ	Output Disable Time OE to Y			10	ns
t ız	Output Disable Time Octo 11			10	ns

^{*}See test circuit and waveforms (Chapter 2).