Final Answers Only

Ryerson University

Department of Electrical and Computer Engineering

ELE404 (Electronic Circuits I)

Midterm Examination (W2015)

February 2015

Duration: 100 minutes Examiner: Prof. A. Yazdani

Name:	
[Print Last Name]	[Print First Name]
Student No:	Section:

NOTES

- 1. This is a closed-book examination. No aids other than basic calculators are permitted.
- 2. Including this page, the examination paper has 20 pages. It is your responsibility to check the integrity of your examination paper and immediately notify the invigilators of any missing pages.
- 3. **DO NOT DETACH ANY PAGES** from the examination paper.
- 4. The examination consists of <u>FIVE QUESTIONS</u>, each question is worth as indicated in the following Table. The entire examination is worth 100 marks.

Question #	Maximum Mark	Mark Earned
1	30	
2	10	
3	25	
4	15	
5	20	f _a
Total	100	

- 5. Answer all questions within the blank spaces provided under each question in this examination paper or on a page marked as "Blank Page" in the examination paper.

 Do Not Use the Reverse as it will not be marked.
- 6. If in doubt about any question, clearly state your assumptions in answering the question.
- 7. Part marks for an answer will only be given if the *correct methodology* is clearly shown.

Q1: In the circuit of **Fig. 1**, D_1 and D_2 are Light-Emitting Diodes (LED) that exhibit a constant voltage drop of 2.5 V when they are on, while they require a minimum forward voltage of 2.2 V (i.e., the cut-in voltage) to start to glow. $R_1 = 1.5 k\Omega$, $R_2 = 1.0 k\Omega$, $V_{CC} = 10V$, and $I = 4.0 \, mA$. Assume that the reverse breakdown voltages of the diodes are large.

Fig. 1: Circuit of Q1.

1a) Determine the states of the two LEDs, i.e., on or off, if the input voltage v_{IN} is zero. Determine v_3 in this condition. Complete **Table 1a**. Show all the work.

Table 1a: Results of the diode circuit of Q1.

State of D ₁	State of D ₂	$v_3[V]$
ON	OFF	3.5

1b) Repeat Part (1a) for $v_{IN} = 16.5 V$. Complete **Table 1b**. Show all the work.

Table 1b: Results of the diode circuit of Q1.

State of D ₁	State of D ₂	$v_3[V]$
6FF	ON	8

Q2: In the circuit of **Fig. 2**, $V_s = -15 V$. If $V_O = -12 V$ at a temperature of 20 °C, what will it be the 40 Celsius? At 0 Celsius? Explain why and/or show the calculations. Summarize your results in **Table 2**.

Fig. 2: Circuit of Q2.

Table 2: Results of the diode circuit of O2.

<i>T</i> [°C]	20	40	0
$V_o[V]$	-12	-3	-14.25

Q3: In the rectifier of Fig. 3, the step-down center-tapped transformer has a voltage conversion ratio (i.e. the ratio v_S/v_I) of 120V/15V. The source voltage v_S is a 60-Hz, 110-Vrms sinusoid. Each diode exhibits a relatively constant forward voltage drop of 1.0 V, and the smoothing capacitor is 1000 μF in capacitance.

Fig. 3: Rectifier of Q3.

(3a) Determine the *reading of a DC voltmeter* of the output voltage v_0 and the peak-to-peak ripple of v_0 , if the load draws a constant current of 120 mA. Complete **Table 3a**. Show all the work.

Table 3a: results of the circuit of Q3.

DC meter reading of v_0 [V]	Peak-to-peak ripple of v_0 [V]
17.94	1.0

(3b) Repeat Part (3a) if the load is a $82~\Omega$ resistor. Complete Table 3b. Show all the work.

Table 3b: results of the circuit of Q3.

DC meter reading of v_0 [V]	Peak-to-peak ripple of v_0 [V]
17.50	1.88

(3c) Ignoring the output voltage ripple, determine the Peak Inverse Voltage (PIV) of each diode. Complete **Table 3c**. Show all the work.

Table 3c: results of the circuit of Q3.

water better of the effect of Q3.
PIV of each diode [V]
37.88

Q4: In the shunt voltage regulator of Fig. 4, $R=820~\Omega$. According to the manufacturer, the Zener diode gives a voltage of $v_Z=V_{ZT}=5.1~V$ at a test current of $i_Z=I_{ZT}=20~mA$. Further, $r_Z=10~\Omega$ and $I_{ZK}=1.5~mA$.

Fig. 4: Shunt regulator of Q4.

(4a) Assuming that the switch is open, determine the peak-to-peak ripple of the output voltage v_0 if the (unregulated) voltage v_{rec} has a peak-to-peak ripple of 2.0 V. Complete **Table** 4a. Show all the work.

Table 4a: results of the circuit of Q4.

Peak-to-peak ripple of v_0 [V]

0.024

(4b) Assuming that the switch is closed and $R_L = 1.0 \ k\Omega$, calculate the minimum permissible value of v_{rec} . Complete **Table 4b**. Show all the work.

Table 4b: results of the circuit of Q4.

Minimum of $v_{rec}[V]$
10.18
.0.1.0

(4c) Assuming that the switch is closed and $V_{CC} = 15 V$, calculate the minimum permissible value of R_L . Complete **Table 4c**. Show all the work.

Table 4c: results of the circuit of Q4

200	results of the circuit of Q4
N	Iinimum of R_L [Ω]
	455

Q5: In the transistor circuit of **Fig. 5**, determine the mode of operation of the transistor and the node voltages. $V_{CC}=10~V$, $R_1=R_2=1.0~k\Omega$, $R_C=100~\Omega$, and $R_E=220~\Omega$. Assume that $V_{BEon}=0.7~V$, $V_{CEsat}=0.3~V$, and $\beta=50$.

Complete Table 5. Show all the work.

Fig. 5: Transistor circuit of Q5.

Table 5: transistor's mode of operation and the node voltages in the circuit of Q5.

Mode of Q1	$v_B[V]$	$v_{c}[V]$	$v_E[V]$
active	4.82	8.17	4.12