AutoRec & ConvMF

SoC 19, SeungAn Jung

AutoRec - Intro

- Autoencoder paradigm into CF model
- AutoRec has representational and computational advantages over existing neural approaches to CF
- Outperforms SOTA CF
 - RBM-CF
 - Generative Model Discriminative Model
 - MLE RMSE
 - Only applicable for discrete ratings Agnostic to rating
 - LLORMA
 - Embed both users and items into shared latent space only users/itmes
 - Linear latent representation nonlinear latent representation

AutoRec - AutoEncoder

AutoRec - Model

Figure 1: Item-based AutoRec model. We use plate notation to indicate that there are n copies of the neural network (one for each item), where \mathbf{W} and \mathbf{V} are tied across all copies.

$$\begin{split} \min_{\theta} \sum_{\mathbf{r} \in \mathbf{S}} ||\mathbf{r} - h(\mathbf{r}; \theta)||_2^2, \\ h(\mathbf{r}; \theta) &= f\left(\mathbf{W} \cdot g(\mathbf{V}\mathbf{r} + \boldsymbol{\mu}) + \mathbf{b}\right) \end{split}$$

$$\min_{\theta} \sum_{i=1}^{n} ||\mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta))||_{\mathcal{O}}^{2} + \frac{\lambda}{2} \cdot (||\mathbf{W}||_{F}^{2} + ||\mathbf{V}||_{F}^{2}), \quad (2)$$

$$\hat{R}_{ui} = (h(\mathbf{r}^{(i)}; \hat{\theta}))_u.$$

AutoRec - Evaluation

- Model
 - AutoRec
 - RBM-CF
 - LLORMA
- Dataset
 - Movielens 1M, 10M, Netflix datasets
- Metric: RMSE

AutoRec - Evaluation

	ML-1M	ML-10M
U-RBM	0.881	0.823
I-RBM	0.854	0.825
U-AutoRec	0.874	0.867
I-AutoRec	0.831	0.782
	(a)	

$f(\cdot)$	$g(\cdot)$	RMSE
Identity	Identity	0.872
Sigmoid	Identity	0.852
Identity	Sigmoid	0.831
Sigmoid	Sigmoid	0.836
	(b)	

	ML-1M	ML-10M	Netflix		
BiasedMF	0.845	0.803	0.844		
I-RBM	0.854	0.825	-		
U- RBM	0.881	0.823	0.845		
LLORMA	0.833	0.782	0.834		
I-AutoRec	0.831	0.782	0.823		
(c)					

Table 1: (a) Comparison of the RMSE of I/U-AutoRec and RBM models. (b) RMSE for I-AutoRec with choices of linear and nonlinear activation functions, Movielens 1M dataset. (c) Comparison of I-AutoRec with baselines on MovieLens and Netflix datasets. We remark that I-RBM did not converge after one week of training. LLORMA's performance is taken from [2].

Figure 2: RMSE of I-AutoRec on Movielens 1M as the number of hidden units k varies.

ConvMF - Intro

Convolutional Matrix Factorization for Document Context-Aware Recommendation

Donghyun Kim, Chanyoung Park¹, Jinoh Oh¹, Sungyoung Lee², Hwanjo Yu^{*1}

Pohang University of Science and Technology (POSTECH), Pohang, South Korea

²Kyung Hee University, Seoul, South Korea

{1kdh5377, 1pcy1302, 1kurin, 1hwanjoyu}@postech.ac.kr, 2sylee@oslab.khu.ac.kr

ConvMF - Intro

- Rating matrix becomes sparse -> MF becomes inaccurate
 - -> Improving accuracy by additionally utilizing textual information e.g., reviews, abstracts, synopses
 - LDA, SDAE -> Bag of words models
 - Ignore "contextual information" of document such as surrounding words and word orders.

"people trust the man" vs "people betray his trust finally"

-> PMF + CNN

ConvMF - Background

1. Matrix Factorization

$$\mathcal{L} = \sum_{i}^{N} \sum_{j}^{M} I_{ij} (r_{ij} - u_{i}^{T} v_{j})^{2} + \lambda_{u} \sum_{i}^{N} \|u_{i}\|^{2} + \lambda_{v} \sum_{j}^{M} \|v_{j}\|^{2}$$

2. CNN

- convolution layer for generating local feature
- pooling layer for representing data as more concise way

ConvMF - Model

Figure 1: Graphical model of ConvMF model: PMF part in left (dotted-blue); CNN part in right (dashed-red)

ConvMF - Probabilistic Model

$$\begin{split} p(R|U,V,\sigma^2) &= \prod_{i}^{N} \prod_{j}^{M} N(r_{ij}|u_{i}^{T}v_{j},\sigma^2)^{I_{ij}} \\ p(U|\sigma_{U}^{2}) &= \prod_{i}^{N} N(u_{i}|0,\sigma_{U}^{2}I) \\ p(V|W,X,\sigma_{V}^{2}) &= \prod_{j}^{M} N(v_{j}|cnn(W,X_{j}),\sigma_{V}^{2}I) \\ p(W|\sigma_{W}^{2}) &= \prod_{j}^{M} N(w_{k}|0,\sigma_{W}^{2}I) \\ p(W|\sigma_{W}^{2}) &= \prod_{j}^{M} N(w_{k}|0,\sigma_{W}^{2}I) \end{split}$$

ConvMF - CNN

Figure 2: Our CNN architecture for ConvMF

ConvMF - Optimization

MAP

$$\begin{aligned} \max_{U,V,W} p(U,V,W|R,X,\sigma^2,\sigma_U^2,\sigma_V^2,\sigma_W^2) & \mathcal{L}(U,V,W) = \sum_{i}^{N} \sum_{j}^{M} \frac{I_{ij}}{2} (r_{ij} - u_i^T v_j)_2 + \frac{\lambda_U}{2} \sum_{i}^{N} \|u_i\|_2 \\ &= \max_{U,V,W} [p(R|U,V,\sigma^2)p(U|\sigma_U^2)p(V|W,X,\sigma_V^2)p(W|\sigma_W^2)] \\ &+ \frac{\lambda_V}{2} \sum_{i}^{M} \|v_j - cnn(W,X_j)\|_2 + \frac{\lambda_W}{2} \sum_{k}^{|w_k|} \|w_k\|_2, \end{aligned}$$

• Coordinate descent per iteration

$$u_i \leftarrow (VI_iV^T + \lambda_U I_K)^{-1}VR_i$$

$$v_j \leftarrow (UI_jU^T + \lambda_V I_K)^{-1}(UR_j + \lambda_V cnn(W, X_j))$$

ConvMF - Optimization

$$\mathcal{E}(W) = \frac{\lambda_V}{2} \sum_{j=1}^{M} \|(v_j - cnn(W, X_j))\|^2 + \frac{\lambda_W}{2} \sum_{k=1}^{M} \|w_k\|^2 + \text{constant}$$

Optimize W : Backpropagation with given target value v_i

$$r_{ij} \approx \mathbb{E}[r_{ij}|u_i^T v_j, \sigma^2]$$

= $u_i^T v_j = u_i^T (cnn(W, X_j) + \epsilon_j)$

- Model
 - PMF
 - CTR
 - CDL
 - ConvMF
 - ConvMF+

Dataset	# users	# items	# ratings	density
ML-1m ML-10m	6,040 69,878	3,544 10,073	993,482 9,945,875	4.641% 1.413%
AIV	29,757	15,149	135,188	0.030%

Table 1: Data statistic on three real-world datasets

- Dataset
 - MovieLens 1m, 10m, Amazon Instant Video(AIV)
- Metric: RMSE

	Dataset				
Model	ML-1m	ML-10m	AIV		
PMF	0.8971	0.8311	1.4118		
CTR	0.8969	0.8275	1.5496		
CDL	0.8879	0.8186	1.3594		
ConvMF	0.8531	0.7958	1.1337		
ConvMF+	0.8549	0.7930	1.1279		
Improve	3.92%	2.79%	16.60%		

Table 3: Overall test RMSE

Figure 3: Skewness of the number of ratings for items on each dataset

Figure 4: Ratio of items that have less than num. ratings (N) to each entire dataset

	ML-1m		ML-10m		AIV	
Model	λ_U	λ_V	λ_U	λ_V	λ_U	λ_V
PMF	0.01	10000	10	100	0.1	0.1
CTR	100	1	10	100	10	0.1
CDL	10	100	100	10	0.1	100
ConvMF	100	10	10	100	1	100
ConvMF+	100	10	10	100	1	100

Table 2: Parameter Setting of λ_U and λ_V

Figure 5: The effects of the dimension size of word embedding on Amazon dataset

	Phrase captured by W_c^{11}	$\max(c^{11})$	Phrase captured by W_c^{86}	$\max(c^{86})$		
Verb	people trust the man	0.0704	betray his trust finally	0.1009	◆	noun
	Test phrases for W_c^{11}	c_{test}^{11}	Test phrases for W_c^{86}	c _{test} ⁸⁶		
	people believe the man	0.0391	betray his believe finally	0.0682		
	people faith the man	0.0374	betray his faith finally	0.0693		
	people tomas the man	0.0054	betray his tomas finally	0.0480		

Table 5: Case study on two shared weights of ConvMF

Conclusion

- AutoRec
 - CF + NN(AutoEncoder)
- ConvMF
 - PMF + CNN