Autour de la compacité

En utilisant la compacité, on montre diverses propriétés des espaces métriques et des espaces vectoriels normés, notamment de dimension finie.

Proposition 1. Soient (E, d_E) , (F, d_f) deux espaces métriques et $f : E \to F$ continue. Si E est compact, alors f(E) est compact dans F.

Démonstration. Soit (y_n) une suite d'éléments de f(E). On pose $\forall n \in \mathbb{N}, x_n = f(y_n)$. E est compact, donc il existe une extractrice $\varphi : \mathbb{N} \to \mathbb{N}$ telle que $x_{\varphi(n)} \longrightarrow_{n \to +\infty} x$ où $x \in E$. Par continuité,

$$y_{\omega(n)} = f(x_{\omega(n)}) \longrightarrow_{n \to +\infty} f(x) \in f(E)$$

f(E) est ainsi séquentiellement compact, donc est compact.

Proposition 2. Soit (E, d) un espace métrique. Si $A \subseteq E$ est compacte, alors A est fermée et bornée.

Démonstration. — Fermée : Soit (a_n) une suite d'éléments de A qui converge vers a ∈ E. Par compacité, il existe une extractrice $φ : \mathbb{N} \to \mathbb{N}$ telle que $a_{φ(n)} \longrightarrow_{n \to +\infty} a'$ où a' ∈ A. Par unicité de la limite dans un espace métrique, a' = a ∈ A. Par la caractérisation séquentielle des fermés, A est bien fermée.

— <u>Bornée</u>: Soit $a \in A$. On pose $B = \{d(a, x) \mid x \in A\}$ et on suppose par l'absurde que B est non borné. Il existe une suite (a_n) telle que

$$\forall n \in \mathbb{N}, d(a, a_n) \ge n$$

Par compacité, il existe une extractrice $\varphi : \mathbb{N} \to \mathbb{N}$ telle que $a_{\varphi(n)} \longrightarrow_{n \to +\infty} \ell$ où $\ell \in A$. Par continuité,

$$d(a, a_{\varphi(n)}) \longrightarrow_{n \to +\infty} d(a, \ell)$$

Mais, pour tout $n \in \mathbb{N}$, $d(a, a_{\varphi(n)}) \ge \varphi(n) \ge n$: absurde. Donc B est borné : il existe $r \ge 0$ tel que $d(a, x) \le r$ pour tout $x \in A$.

Proposition 3. Soir E un espace vectoriel de dimension finie $n \ge 1$ muni d'une norme infinie $\|.\|_{\infty}$. Les compacts de cet espace vectoriel normé sont les parties fermées et bornées.

Démonstration. La Proposition 2 montre que les parties compactes sont fermées et bornées. Pour montrer la réciproque, prenons r > 0. Notons que l'intervalle [-r, r] est compact : si (a_k) est une suite d'éléments de [-r, r], on peut extraire une sous-suite monotone et bornée qui est alors convergente dans [-r, r] car [-r, r] est fermé. Le théorème de Tykhonov nous dit que le produit $[-r, r]^n$ est alors compact.

Posons

$$\varphi: \begin{array}{ccc} ([-r,r]^n,\|.\|_{\infty}) & \to & (E,\|.\|_{\infty}) \\ (\alpha_1,\ldots,\alpha_n) & \mapsto & \sum_{k=1}^n \alpha_k e_k \end{array}$$

où $(e_1, ..., e_n)$ désigne une base de E associée à la norme infinie $\|.\|_{\infty}$. Alors, par la Proposition 1, $\varphi([-r, r]^n) = \overline{B}(0, r)$ est compact.

Soit maintenant A une partie fermée bornée de E. Alors il existe r > 0 tel que $A \subseteq \overline{B}(0, r)$. Donc, si (a_n) est une suite d'éléments de A, par compacité de $\overline{B}(0, r)$, on a l'existence d'une sous-suite convergente vers $a \in \overline{B}(0, r)$. Comme A est fermée, $a \in A$. A est ainsi séquentiellement compacte, donc est compacte.

Théorème 4. Un espace vectoriel normé E est de dimension finie $n \ge 1$ si et seulement si toutes ses normes sont équivalentes.

Démonstration. — $\underline{\Leftarrow}$: Soit $\|.\|$ une norme sur E et soit φ une forme linéaire quelconque sur E. On définit la norme suivante sur E :

$$\|.\|_{\varphi}: x \mapsto |\varphi(x)| + \|x\|$$

Alors, pour tout $x \in E$, $|\varphi(x)| = ||x||_{\varphi} - ||x|| \le ||x||_{\varphi} : \varphi$ est continue pour $||.||_{\varphi}$ donc pour ||.|| aussi par équivalence des normes.

Supposons par l'absurde E de dimension infinie. Soit $(e_n)_{n\in\mathbb{N}}$ une suite infinie de vecteurs linéairement indépendantes. On pose $V=\mathrm{Vect}(e_n)_{n\in\mathbb{N}}$. Soient W un supplémentaire de V dans E et $p:E\to V$ la projection sur V parallèlement à W. On définit ψ une forme linéaire sur V par $\forall\,n\in\mathbb{N},\,\psi(e_n)=n\,\|e_n\|$. Alors, $\phi=\psi\circ p$ est une forme linéaire sur E qui n'est pas continue. En effet :

$$\sup_{x \neq 0} \frac{|\phi(x)|}{\|x\|} = +\infty$$

C'est absurde.

— \implies : Soient (e_1, \dots, e_n) une base de E et $x = \sum_{i=1}^n x_i e_i \in E$. Si $\|.\|$ est une norme sur E, on a :

$$||x|| \le \underbrace{\left(\sum_{i=1}^{n} ||e_i||\right)}_{-\alpha} ||x||_{\infty}$$

Donc $\|.\|_{\infty}$ est plus fine que $\|.\|$.

L'application $\|.\|: (E,\|.\|_{\infty}) \to (\mathbb{R}^+,|.|)$ est continue car lipschitzienne $(\forall x,y \in E,|\|x\|-\|y\|| \le \|x-y\|)$, donc est bornée et atteint ses bornes sur la sphère $S(0,1) = \{x \in E \mid \|x\|_{\infty} = 1\}$ (qui est fermée bornée, donc compacte par la Proposition 3). On note $x_0 \in E$ ce minimum :

$$\forall x \in E \text{ tel que } ||x||_{\infty} = 1, \text{ on a } ||x|| \ge \underbrace{||x_0||}_{=\beta}$$

Ainsi,

$$\forall x \in E, \left\| \frac{x}{\|x\|_{\infty}} \right\| \ge \beta \text{ ie. } \|x\| \ge \beta \|x\|_{\infty}$$

Donc $\|.\|$ est plus fine que $\|.\|_{\infty}$: les normes $\|.\|$ et $\|.\|_{\infty}$ sont équivalentes. Comme la relation d'équivalence sur les normes d'un espace vectoriel est transitive, on en déduit que toutes les normes sur E sont équivalentes.

Corollaire 5. (i) Les parties compacts d'un espace vectoriel normé de dimension finie sont les parties fermées bornées.

- (ii) Tout espace vectoriel normé de dimension finie est complet.
- (iii) Tout sous-espace vectoriel de dimension finie d'un espace vectoriel normé est fermé.
- (iv) Soient $(E, \|.\|_E)$ et $(E, \|.\|_F)$ deux espaces vectoriels avec E de dimension finie. Alors,

$$\mathcal{L}(E,F) = L(E,F)$$

ie. toute application linéaire de *E* dans *F* est continue.

Démonstration. (i) C'est une conséquence directe de la Proposition 3 et du Théorème 4.

- (ii) Soit (x_n) une suite de Cauchy d'un espace vectoriel normé $(E, \|.\|)$. Notons que :
 - (x_n) **est bornée.** En effet, il existe $N \in \mathbb{N}$ tel que $\forall p > q \ge N$, $\|x_p x_q\| < 1$. Donc, $\forall p \ge N$, $\|x_p\| < 1 + \|x_N\|$. Ainsi,

$$M = \max(\|x_0\|, \dots, \|x_{N-1}\|, \|x_N\|)$$

majore la suite (x_n) .

— (x_n) admet au plus une valeur d'adhérence, et si c'est le cas, elle converge vers cette valeur d'adhérence. En effet, si (x_n) converge, alors sa limite est son unique valeur d'adhérence. Soit maintenant x une valeur d'adhérence de (x_n) . Soit $\epsilon > 0$,

$$\exists N \in \mathbb{N} \text{ tel que } \forall p > q \ge N, \|x_p - x_q\| < \frac{\epsilon}{2}$$

Soit $q \ge N$. Par définition de la valeur d'adhérence,

$$\exists p \ge q \text{ tel que } \|x_p - x\| < \frac{\epsilon}{2}$$

Donc:

$$\|x_q-x\|\leq \|x_p-x_q\|+\|x_p-x\|<\epsilon$$

ce que l'on voulait.

Supposons E de dimension finie. Par le premier point, (x_n) est bornée, donc incluse dans une boule fermée B, qui est compacte par le Point (i), donc elle admet une valeur d'adhérence $\ell \in B$. Par le second point, (x_n) converge vers ℓ .

(iii) Soient $(E, \|.\|)$ un espace vectoriel normé et F un sous-espace vectoriel de E de dimension finie. Soit (x_n) une suite de F qui converge vers $x \in E$. Notons que (x_n) **est de Cauchy.** En effet, soit $\epsilon > 0$,

$$\exists N \in \mathbb{N} \text{ tel que } \forall p > q \ge N, \|x_p - x_q\| < \frac{\epsilon}{2}$$

Soient $p > q \ge N$.

$$||x_p - x_q|| \le ||x_p - x|| + ||x - x_q||$$

$$< \epsilon$$

Donc (x_n) est une suite de Cauchy de F, qui est de dimension finie, donc complet par le Point (ii). (x_n) converge donc dans F, et par unicité de la limite, on a $x \in F$. Par la caractérisation séquentielle des fermés, F est bien fermé dans E.

(iv) Soit $f \in L(E, F)$. On définit une norme sur E par

$$||.||: x \mapsto ||x||_E + ||f(x)||_E$$

Or, $\forall x \in E$,

$$||f(x)||_F = ||x||_E - ||x||$$

 $\leq ||x||_E - M ||x||_E$

où M > 0, par le Théorème 4. Ainsi,

$$||f(x)||_F = (1-M)||x||_E$$

f est une application linéaire bornée, donc continue.

Application 6. $\forall M \in \mathcal{M}_n(\mathbb{C}), \exists P \in \mathbb{C}[X] \text{ tel que } \exp(M) = P(M).$

Démonstration. Soit $M \in \mathcal{M}_n(\mathbb{C})$. L'ensemble $\mathbb{C}[M] = \{P(M) \mid P \in \mathbb{C}[X]\}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ qui est de dimension finie, donc $\mathbb{C}[M]$ l'est aussi et est en particulier fermé par le Corollaire 5 Point (ii).

Pour tout $n \in \mathbb{N}$, on pose $P_n = \sum_{k=0}^n \frac{M^k}{k!} \in \mathbb{C}[M]$ de sorte que $P_n \longrightarrow_{n \to +\infty} \exp(M)$. Comme $\mathbb{C}[M]$ est fermé, on en déduit que $\exp(M) \in \mathbb{C}[M]$. Donc $\exists P \in \mathbb{C}[X]$ tel que $\exp(M) = P(M)$.

Bibliographie

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-l-agregation-analyse-et-probabilites.||$

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.