Comparing two methods of approximating the value of π in a computational context
To what extent can a method of approximation of the value π be computationally more
efficient than another?
Word count:

Contents

1 Introduction			1	
2	Theoretical approach			
	2.1	Focus on two methods	2	
		2.1.1 Madhava-Gregory-Leibniz method	2	
		2.1.2 Viète's method	2	
3	Con	nputational approach	6	
	3.1	Implementing	6	
	3.2	The variables	6	
	3.3	How timing was measured	6	
4	Ana	alysis of the results	7	
	4.1	Presentation of the data	7	
	4.2	Analysis of the data	7	
W	Works Cited			

1 Introduction

The value of π has been researched for many years, although under different names, and the amount of different approaches to reach the value is large. The value has been found through many processes, be it geometrically, algebraically or through other means.

This paper seeks to examine the extent at which two historical methods of approximation of the value π , namely the approaches suggested by the aforementioned mathematicians Madhava and Viète, differ in terms of computational efficiency and speed, and explain these differences. This paper does not however, suggest a method to use for computation but rather seeks to compare the efficiency of a geometrically derived formula and a algebraically derived one.

2 Theoretical approach

2.1 Focus on two methods

For the sake of this paper, two different methods with similar convergence rates but different approaches have been chosen for comparison, the process for the original discovery of these methods will be explained. The two methods in question are one based on the infinite series definition of an inverse trigonometric function and one where the value is derived using geometry, by mathematician Viète. These two mathematical methods were chosen as they are both represent a first occurrence in mathematics: Madhava was the first to find the series notation of the arctangent function and Viète was one of the first mathematicians to use infinite series in his calculation.

2.1.1 Madhava-Gregory-Leibniz method

Madhava, having indentified the integral and series for the arctan function, in the Kerala school during medieval India [1]

TODO... finish

2.1.2 Viète's method

The French mathematician, François Viète, approached the value of π from a geometric standpoint, finding the following formula:

$$\pi = 2\frac{2}{\sqrt{2}} \frac{2}{\sqrt{2+\sqrt{2}}} \frac{2}{\sqrt{2+\sqrt{2+\sqrt{2}}}} \dots$$

He was able to calculate π to a place of 9 decimal points, in the year 1593 [3], using his method. His method is reminiscent of Archimedes' method, but differs in that it consists of finding the area of a polygon of n sides in a circle of constant radius, rather than the circumference. As the value of n is increased, the area of the n-gon tends toward the area

of a circle. The geometric origin of this formula can be found using simple right-angle trigonometry, by first finding the lengths OH and subsequently BD in 2.1.2.

With the radius of the circle with center R = OB,

$$OH = R\cos\alpha$$

and

$$BD = 2BH = 2R\sin\alpha$$

Since the equation for the area of a polygon is defined as $A = \frac{p \cdot a}{2}$, where p is the perimeter of the polygon and a is the apothem, in this case $BD \cdot n$ and OH respectively, let A_n equal the area of the polygon with n sides such that:

$$A_n = \frac{OH \cdot BD \cdot n}{2}$$

$$A_n = \frac{R\cos\alpha \cdot 2R\sin\alpha \cdot n}{2} = nR^2\sin\alpha\cos\alpha$$

And if n is multiplied by 2, the angle $\angle \alpha$ is divided by 2, and the new area becomes:

$$A_{2n} = 2nR^2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$$

So it can be written that, by definition, the ratio of the area of an n-gon to one of a 2n-gon is

$$\frac{A_n}{A_{2n}} = \frac{nR^2 \sin \alpha \cos \alpha}{2nR^2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}} = \frac{\sin 2\alpha}{2 \sin \alpha}$$

Which through the trigonometric identity $\sin 2\theta = 2 \sin \theta \cos \theta$ can be simplified to:

$$\frac{A_n}{A_{2n}} = \frac{2\sin\alpha\cos\alpha}{2\sin\alpha} = \cos\alpha$$

It can be then written that, through a new variable P,

$$P = \frac{A_n}{A_{2n}} \frac{A_{2n}}{A_{4n}} \frac{A_{4n}}{A_{8n}} \dots \frac{A_{(k-2)n}}{A_{kn}} \frac{A_{kn}}{A}$$

where A is the area of the circle of radius R in 2.1.2.

So $P = \frac{A_n}{A}$, since the values A_{kn} cancel, and followingly, it is true that $P = \frac{A_n}{A} \Leftrightarrow A = \frac{A_n}{P}$.

The value of R being constant in this case, and since the area of a circle is defined by

$$A = \pi R^2$$
, therefore:

$$\pi = \frac{A_n}{P}$$

By definition, we can say that as the value k approaches infinity, the area of the kn-gon

aproaches that of a circle, and therefore, the value of π .

$$\frac{A_n}{\cos\alpha\cos\frac{\alpha}{2}\cos\frac{\alpha}{4}\dots} \to_{k\to\infty} \pi$$

Where the value of A_n is the area of the first polygon, with n=4 sides, and as such $A_n=4\sin 45\cos 45=2$. We can define:

$$U_0 = \cos a = \cos 45 = \frac{1}{\sqrt{2}}$$

$$U_1 = \cos\frac{\alpha}{2}$$

Which we can, through the trigonometric identity $\cos^2\theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta$, simplify as $U_1 = \sqrt{\frac{1}{2} + \frac{1}{2}U_0}$

So it can be said that $U_n = \sqrt{\frac{1}{2} + \frac{1}{2}U_{n-1}}$, which leads to a fully defined expression for the value of pi:

$$\pi = \frac{2}{\prod_{k=0}^{\infty} U_k}, U_0 = \frac{1}{\sqrt{2}}, U_n = \sqrt{\frac{1}{2} + \frac{1}{2}U_{n-1}}$$

These expressions, when under a single expression result in the aforementioned formula with nested roots.

 $^{^{1}\}text{where}\ \prod$ signifies a product. Similar expression to \sum

Figure 1: Circle with 1 segment from a n-gon with point H and 2 segments from an 2n-gon, one of which on point H', inscribed in a circle of radius OB, adapted from [2]

- 3 Computational approach
- 3.1 Implementing
- 3.2 The variables
- 3.3 How timing was measured

- 4 Analysis of the results
- 4.1 Presentation of the data
- 4.2 Analysis of the data

Works Cited

- [1] Jonathan M. Borwein, Scott T. Chapman, and Scott T. Chapman. "I Prefer Pi: A Brief History and Anthology of Articles in the American Mathematical Monthly". In: *The American Mathematical Monthly* 122.3 (2015), pp. 198–199. ISSN: 00029890, 19300972. URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.122.03.195.
- [2] Boris Gourévitch. François Viete. Apr. 2013. URL: http://www.pi314.net/fr/viete.php.
- [3] Rick Kreminski. "π to Thousands of Digits from Vieta's Formula". In: Mathematics Magazine 81.3 (2008), p. 201. ISSN: 0025570X, 19300980. URL: http://www.jstor. org/stable/27643107.