1 Funzioni

1.1 Introduzione

Definizione 1:

Una funzione f é una relazione tra gli elementi di due insieme A e B che ad ogni elemento di A associa **uno ed un solo** elemento di B.

Una funzione è definita assegnando:

- un insieme A detto DOMINIO
- \bullet un insieme B detto CODOMINIO
- $\bullet\,$ una relazione $f:A\to B$ che associa ogni elemento di A
 uno ed un solo elemento di B

1.2 Tipi di funzioni

Una funzione f(x) può essere di 3 tipi:

- 1. suriettiva
- 2. iniettiva
- 3. biiettiva se è sia iniettiva e suriettiva

Definizione 2:

Una funzione si dice **iniettiva** quando ad elementi **distinti** del DOMINIO corrispondono elementi **distinti** del CODOMINIO

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2 \tag{1}$$

Figure 1: grafico iniettiva

Definizione 3:

Una funzione si dice **suriettiva** qunado **ogni** elemento del codominio è immagine di **almeno** un elemento del dominio.

$$b \in B \to \exists a \in A : f(a) = b \tag{2}$$

Figure 2: graifco suriettiva

Esercizio 1.

Dimostra di che tipo è questa funzione:

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^2$ (3)

DIMOSTRAZIONE 1.

Non può essere iniettiva perchè per ogni numero reale positivo ne esiste uno uguale negativo, il cui qudrato sarà il **medesimo**.

$$se \quad x_1 = -x_2 \quad \Rightarrow \quad f(x_1) = f(x_2) \tag{4}$$

si può provare inoltre che non è una funzione suriettva in quanto **nessun** numero negativo fa parte del codominio ed esso è formato da \mathbb{R} dunque

$$-4 \neq f(x) \qquad \forall x \in \mathbb{R} \tag{5}$$

Esercizio 2.

Dimostra di che tipo è questa funzione:

$$f: \mathbb{N} \to \mathbb{N}$$
 $f(x) = x^2$ (6)

DIMOSTRAZIONE 2.

se cambiamo il dominio e il codominio nell'insieme dei numeri naturali e consideriamo la stessa legge possiamo deddure che:

$$\forall n, m : n \neq m \quad \Rightarrow \quad n^2 \neq m^2 \tag{7}$$

Per **qualsiasi** coppia di numeri naturali diversi fra loro non è possibile pensare che il loro quadrato sia uguale, per tanto la funzione è iniettiva. Inoltre **qualsiasi** numero dispari non avrà una propria immagine, in quanto

l'insieme racchiude **solo** numeri interi positivi. Ovvero:

$$\exists \frac{x}{2} \in \mathbb{N} : \{ y = x + 1 \} \quad \Rightarrow \quad y \neq n^2 \qquad \forall n \in \mathbb{N}$$
 (8)

1.3 Funzioni invertibili

Definizione 4:

Una funzione $f: A \to B$ si dice invertibile se esiste una funzione $g: B \to A$ chiamata funzione inversa tale che:

- $\forall a \in A, \quad g(f(a)) = a$
- $\forall b \in B$, f(g(b)) = b

Essa si può considerare invertibile se è biiettiva.

Esercizio 3.

Dimostra se la funzione $f: \mathbb{R} \to \mathbb{R}$ f(x) = 2x + 1 è inversibile.

DIMOSTRAZIONE 3.

Ponendo l'equazione y = 2x + 1 deduciamo che

$$f^{(-1)}(x) = \frac{x - 1}{2} \tag{9}$$

quindi:

$$f^{(-1)}(f(x)) = f^{(-1)}(2x + 1) = \frac{(2x + 1) - 1}{2} = x;$$
 (10)

e allo stesso tempo

$$f(f^{(-1)}(y)) = f(\frac{y-1}{2}) + 1 = y$$
 (11)

1.4 Piano Cartesiano

Fissando un'origine e un'unità di misura ad **ogni** punto di una retta orientata corrisponde uno ed un solo numero reale. Si stabilisce così una **corrispondenza biunivoca** tra i punti della retta orientata e i numeri reali. Data la funzione

Figure 3: la retta orientata

Definizione 5:

Definiamo una coppia di rette orientate disposte perpendicolarmente fra loro assi coordinati.

- La retta da destra verso sinistra viene chiamata **asse delle ascisse**
- la retta dal basso verso l'alto viene chiamata asse delle ordinate

Il punto del piano in cui si incontrano viene chiamato **origine degli assi** e viene indicato con O

Un qualsiasi punto del piano P viene identificato con una ascissa x_p ed una ordinata y_p , quindi $P(x_p, y_p)$.

Il piano viene diviso in IV quadranti numerati in senso antiorario.

Figure 4: il piano cartesiano

1.5 Grafici di funzioni

Ora possiamo rappresentare graficamente coppie ordinate di numeri reali sul piano, quindi possiamo rappresentare il **grafico** di una funzione

$$f: A \subseteq \mathbb{R} \to B \subseteq \mathbb{R} \tag{13}$$

e tutte le coppie (x, f(x)) tali che $x \in A$:

$$G(f) = \{(x, f(x))\} : x \in A$$
 (14)

Figure 5: il grafico di una funzione crescente

1.6 Funzioni Pari e Dispari

Definizione 6:

Una funzione $f:[-a,a] \to \mathbb{R}$ si dice **pari** se f(x) = f(-x)Si deduce quindi che il grafico di una funzione così definita è simettrico rispetto all'**asse delle ordinate**

Definizione 7:

Una funzione $f:[-a,a] \to \mathbb{R}$ si dice **dispari** se f(-x) = -f(x)Si deduce quindi che il grafico di una funzione così definita viene **specchiata** in due quadranti uno **oppsoto** all'altro

Figure 6: Una funzione pari

Figure 7: Una funzione dispari

1.7 Funzioni crescenti e decrescenti

Definizione 8:

 $\textit{Una funzione } f: [-a,a] \ \to \ \mathbb{R} \ \textit{si dice } \textbf{\textit{crescente}} \ \textit{se}$

$$f(x_2) \ge f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (15)

Si dice strettamente crescente se

$$f(x_2)$$
 $f(x_1)$ $\forall x_2 > x_1 \in [a, b]$ (16)

Definizione 9:

Una funzione $f:[-a,a] \rightarrow \mathbb{R}$ si dice **decrescente** se

$$f(x_2) \le f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (17)

Si dice strettamente decrescente se

$$f(x_2) < f(x_1) \quad \forall x_2 > x_1 \in [a, b]$$
 (18)

Figure 8: il grafico di una funzione crescente

Figure 9: il grafico di una funzione decrescente

1.8 Funzioni inverse

Se i punti di una funzione $f:A\to B\quad A,B\subseteq\mathbb{R}$ si ottengono dalle coppie $(a,b)\in A\ \times\ B$

Definizione 10:

Il grafico di una funzione inversa si ottiene invertendo le coordinate dei punti del grafico. Ovvero i punti del grafico della **funzione inversa** si ottengono dalle coppie $(b,a) \in B \times A$ // Per via grafica esso può essere ottenuto **riflettendo** il grafico rispetto alla **bisettrice** del **primo** e **terzo** quadrante

Figure 10: Il grafico di una funzione inversa

1.9 Modelizzazione matematica

Definizione 11:

Per modelizzazione matematica si intende un porcesso che ha per scopo quello di interpretare fenomeni legati al mondo reale partendo da dati sperimentali e traducendoli in problemi matematici

Per passare da un fenomeno reale alla sua descrizione mediante modello matematico è necessario un processo di **astrazione** e **traduzione** del fenomeno in termini matematici e rigorosi.

Quando si vuole modelizzare un certo fenomeno, si vuole capire **come** le variabili coinvolte siano in relazione tra loro, ovvero stabilire delle **leggi matematiche** che descrivono queste relazioni.

La procedura di modelizzazione è:

- 1. si identifica l'incognita del problema
- 2. si analizza il fenomeno fisico e si raccolgono informazioni
- 3. si individuano le relazioni tra le informazioni raccolte, che poi vengono tradotte in equazioni
- 4. si risolvono le equazioni ottenute e se ne verifica la validità del modello

In un modello matematico che coinvolge due grandezze x ed y ci interessa capire come la **variabile dipendente** (y) varia al variare di quella **indipendente**

Esempio 1.

Supponiamo di aver formulato la legge y = f(x)

Se il modello è giusto potremmo ricavare il valore di y a partire da qualsiasi valore di x senza effettuare ulteriori esperimenti e misurazioni.

Rappresentandolo graficamente:

Figure 11: Il grafico dell'andamento dei bitcoin

Questo è il grafico di y = f(x) dove y="valore del bitcoin in dollari" e x="tempo".

1.10 Proporzioni

Definizione 12:

Due grandezze A e B si dicono direttamente proprozionali se esiste un numero c detto costante di proporzionalità tale che:

$$A = cB (19)$$

Questo significa che le due grandezze sono legate da una certa legge, per la quale quando una raddoppia, triplica, dimezza, di conseguenza la seconda raddoppia, triplica, dimezza etc.

Esempio 2.

A = "quantità di chilometri che l'auto può percorrere"

B = "litri di carburante nel serbatoio"

Definizione 13:

Due grandezze A e B si dicono inversamente proprozionali se esiste un numero c detto costante di proporzionalità tale che:

$$AB = c \tag{20}$$

Questo significa che le due grandezze sono tali che all'aumentare di una, l'altra diminuisce proporzionalmente.

Esempio 3.

A = "numero di partecipanti all'acquisto di un immobile"

B = "quota per partecipante"

 $c = \cos to dell'immobile$