Colle L1PR-5 A1

1 Question de cours

- a) Donner la définition mathématique d'une équation différentielle d'ordre n.
- b) Définir une "équation différentielle homogène".
- c) Donner la forme des solutions d'équations du premier ordre à coefficients constants avec second membre.

2 Exercice

Soient:

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 \ 2x + y - z = 0 \text{ et } x + 2y + z = 0 \right\}$$
$$F = \left\{ (x, y, z) \in \mathbb{R}^3 \ 2x - 3y + z = 0 \right\}$$

On admet que F est un sous-espace vectoriel de \mathbb{R}^3 . Soient a=(1,-1,1), b=(-2,-1,1) et c=(-1,0,2).

- a) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- b) Déterminer une famille génératrice de E. Prouver que c'est une base.
- c) Montrer que $\{b, c\}$ est une base de F. Est-ce la seule?
- d) Montrer que $\{a,b,c\}$ est une famille libre de \mathbb{R}^3 . Montrer que c'est une base.
- e) Exrimer u = (x, y, z) dans $\{a, b, c\}$.

Colle L1PR-5 A2

1 Question de cours

- a) Définir les termes suivants : famille liée, famille libre, famille génératrice.
- b) Faire une phrase vraie reliant ces termes.

2 Exercice

On se propose d'intégrer sur l'intervalle le plus grand possible contenu dans $[0, +\infty]$ l'équation différentielle :

(E)
$$y'(x) - \frac{y(x)}{x} - y(x)^2 = -9x^2$$

- 1. On note $y_0(x) = \alpha x$, déterminer $\alpha > 0$ pour que y_0 soit une solution particulière de (E).
- 2. Déterminer une équation différentielle vérifiée par z telle que $y(x) = y_0(x) \frac{1}{z(x)}$.
- 3. Résoudre (E') sur $]0, +\infty]$.
- 4. Résoudre (E) sur $]0, +\infty]$.

Colle L1PR-5 B1

1 Question de cours

Dire si les assertions suivantes sont vraies ou fausses. Si elles sont fausses, corrigez-les et prouvez-les.

- a) Toute famille extraite d'une famille libre est libre.
- b) Toute famille contenant le vecteur nul est libre.
- c) Toute famille réduite à un unique vecteur non nul est liée.
- d) Toute famille constituée de deux vecteurs non colinéaires est liée.

2 Exercices

a) Déterminer l'ensemble des solutions à valeurs réelles de l'équation différentielle :

$$(1+x^2)y' - 2xy = 1 + x^2$$

- b) Soit a>0 et l'équation $y'=a\,|y|.$ On suppose f solution.
 - i) Qualifier l'équation (linéaire? homogène? ordre?...).
 - ii) Etudier les variations de f.
 - iii) On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) > 0$. Montrer que f > 0.
 - iv) On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) < 0$. Montrer que f < 0.
 - v) Résoudre l'équation.

Colle L1PR-5 B2

1 Question de cours

Expliquer la méthode de la variation de la constante pour une équation :

$$ay'(t) + by(t) = c$$

où une solution du système homogène est donnée par

$$z_h(t) = Kz(t)$$

Veillez à être clair.

2 Exercice

Soit E = Vect(a, b, c, d) un sous-espace vectoriel de \mathbb{R}^3 avec :

$$a = (2, -1, -1); b = (-1, 2, 3); c = (1, 4, 7); d = (1, 1, 2)$$

- a) Est-ce que (a, b, c, d) forme une base de \mathbb{R}^3 ?
- b) Montrer que (a, b) est une base de E.
- c) Déterminer une ou plusieurs équations caractérisant E.
- d) Compléter une base de E en base de \mathbb{R}^3 .

Colle L1PR-5 C1

1 Question de cours

Dire si les assertions suivantes sont vraies ou fausses. Si elles sont fausses, corrigez-les. a, b et K sont des constantes.

- a) La méthode de la variation de la constante permet de trouver les solutions d'une équation sans second membre.
- b) L'équation (1-x)z'(x)+z''(x)z(x)=0 est une équation différentielle d'ordre 2.
- c) Le principe de superposition dit que la solution y de l'équation $y'(x) = f_1(x) + f_2(x)$ est donnée par $y = y_1 + y_2$ où y_1 est solution de $y'_1(x) = f_1(x)$ et y_2 est solution de $y'_2(x) = f_2(x)$
- d) Le principe de superposition dit que la solution y de l'équation $y'(x) + y(x) = f_1(x) + f_2(x)$ est donnée par $y = y_1 + y_2$ où y_1 est solution de $y'_1(x) = f_1(x)$ et $y_2(x)$ est solution de $y_2(x) = f_2(x)$
- e) La solution des équations différentielles de la forme ax'(t) + bx(t) = 0 est toujours de la forme $x_e(t) = Ke^{-at}$ si elle existe.

2 Exercice

On pose $u_1 = (1, 1, 2)$, $u_2 = (1, 0, -1)$ et $u_3 = (0, 1, 2)$.

- a) Montrer que (u_1, u_2, u_3) forme une base de \mathbb{R}^3 et déterminer les coordonnées d'un vecteur dans cette base.
- b) Montrer que $F = Vect(u_1, u_2)$ et $G = Vect(u_3)$ sont deux sous-espaces vectoriels de \mathbb{R}^3 .
- c) Déterminer des équations caractérisant F et G.

Colle L1PR-5 C2

1 Question de cours

- a) Définir les termes suivants : vecteurs colinéaires, sous-espace engendré par une famille de vecteurs, base canonique.
- b) Quel est le lien entre une base de E, espace vectoriel, et un vecteur de E? Ce lien est-il vrai pour toute famille libre de E?

2 Exercice

Résoudre les équations différentielles suivantes :

a)
$$f'(x) + f(x) = f(0) \operatorname{sur} [0, 1].$$

b)
$$y' - (2x - \frac{1}{x})y = 1$$
 sur $]0, +\infty[$.

c)
$$y' - y = x^k e^x \text{ sur } \mathbb{R} \text{ avec } k \in \mathbb{N}.$$

AUTRES EXERCICES

Exercice 1

Résoudre les équations différentielles suivantes :

- a) $y' (2x \frac{1}{x})y = 1$ sur $]0, +\infty[$.
- b) $y' y = x^k e^x \text{ sur } \mathbb{R} \text{ avec } k \in \mathbb{N}.$

Exercice 2

Trouver toutes les solutions sur [0,1] de l'équation (E):

$$f'(x) + f(x) = f(0) + f(1)$$

Exercice 3

On considère l'équation :

a) Résoudre l'équation différentielle homogène associée à (E):

$$y'' + 2y' + 4y = xe^x$$

- b) Trouver une solution particulière de (E), puis donner l'ensemble de toutes les solutions de (E).
- c) Déterminer l'unique solution h de (E) vérifiant vérifiant h(0) = 1 et h(1) = 0.
- d) Soit f, deux fois dérivable sur $]0, +\infty[$ vérifiant (E'):

$$t^{2}f''(t) + 3tf'(t) + 4f(t) = t\log(t)$$

- i) On pose $g(x) = f(e^x)$, vérifier que g est solution de (E).
- ii) En déduire une expression de f.

Exercice 4

Montrer que tout sous-espace vectoriel d'un espace vectoriel de dimension finie est de dimension finie.