Machine Learning

Us (for the last time)

Today's Focus

ML Theory

Scikit-Learn

Challenges

What is Machine Learning?

Difference between AI / Machine Learning / Deep Learning

What is Machine Learning?

- In short, algorithms that can be trained with labelled data. Always with the aim that the algorithms are able to generalize in a later stage
 - Make accurate predictions for new objects that were not seen during training
- Machine Learning covers fields of statistics, computer science, psychology and more

Supervised vs. Unsupervised Learning

Machine Learning

Data is labeled: Classification, Regression, etc.

Data is unlabeled: Clustering, dimensionality reduction, etc.

Supervised Machine Learning I

→ WE DO NOT KNOW HOW OUR FUNCTION LOOKS LIKE...

Supervised Machine Learning II

Supervised Machine Learning

Classification

 Target values are discrete

Regression

 Target values are continuous

Supervised Machine Learning III

Classification

Supervised Machine Learning

Regression

Training vs. Testing

GOAL: Our ML is able to **generalize** on completely new data points!

Our first ML model...

K-Nearest Neighbour I

- KNN can be used for classification, but also for regression
- K: number of the nearest neighbours the classifier will take into account in order to make its prediction (hyper-parameter)
- Clear distance metric: Euclidean norm

Our second ML model!

Decision Tree I

- DT can be used for classification, but also for regression
- The aim of DT is to find a sequence of questions in order to have the best accuracy of classifying the data with fewest steps
- Easy to interpret!

Ok, enough theory!

 \rightarrow Time for ...

CODING!

... one last thing

Overfitting vs. Underfitting I

Classification

Overfitting vs. Underfitting II

Regression

Great job!

You did it!

Thanks!

Python team

Wiki:

https://wiki.tum.de/display/ldv/Info

Mail:

pythonworkshop.tum@gmail.con

Web:

https://www.ei.tum.de/startseite/

Git:

https://gitlab.ldv.ei.tum.de/daedalus/python

