Virtualização e Nuvem

Sistemas Operacionais

Prof. Pedro Ramos pramos.costar@gmail.com

Pontifícia Universidade Católica de Minas Gerais ICEI - Departamento de Ciência da Computação

Virtualização e Nuvem

Data Centers e Computação em Nuvem

- Introdução aos Data Centers
- Noções Básicas de Virtualização
- Introdução à Computação em Nuvem

Data Centers

Grandes "fazendas" de servidores e armazenamento

- Milhares de servidores
- Muitos terabytes (TB) ou petabytes (PB) de dados
- Utilizadas por:
 - Empresas para aplicações de servidor
 - Empresas da internet
- As maiores data centers são de propriedade do Google, Facebook, Amazon, Apple.
- Usados para:
 - Processamento de dados, serviços
 - Sites web
 - Aplicações de negócios

Data Centers

- Armazém gigante com:
 - Racks de servidores
 - Arrays de armazenamento (storage arrays)
 - Infraestrutura de resfriamento
 - Conversores de energia
 - Geradores de backup

Data Centers

Data Center Modular

- · … ou: uso de contêineres de transporte
- Cada contêiner contém milhares de servidores
- É fácil adicionar novos contêineres
 - "Plug and play"
 - Basta adicionar eletricidade
- Permite expandir o data center com facilidade
- Pré-montado e mais barato

Virtualização

PROGRAMA

Interface A

SO1

PROGRAMA

Interface A

SO1 implementado em B (mímica)

Interface B

SO2

- Virtualização: estender ou substituir uma interface existente para imitar o comportamento de outro sistema.
- Introduzida na década de 1970: executar softwares legados em hardware mais novo de mainframe
- Lida com a diversidade de plataformas executando aplicativos em máquinas virtuais (VMs)
 - Portabilidade e flexibilidade

Tipos de Interface

- Diferentes tipos de interfaces
 - Instruções em assembly
 - Chamadas de sistema (system calls)
 - APIs
- Dependendo do que é substituído ou imitado, obtemos diferentes formas de virtualização (SO, Java, C#, Snes9x, Containers Docker)

Virtualização de SO

- Tipo 1: o hypervisor roda diretamente na interface de hardware
- Tipo 2: o hypervisor roda sobre um sistema operacional hospedeiro
 O sistema operacional convidado (guest OS) roda dentro do hypervisor
- Ambos os tipos de VM se comportam como se fossem hardware real

Virtualização em Data Centers

- Servidores Virtuais
- Consolidação de servidores
- Implantação mais rápida
- Manutenção mais fácil
- Desktops Virtuais
- Hospedar os desktops dos funcionários em máquinas virtuais
- Acesso remoto com clientes
 leves
- O desktop fica disponível de qualquer lugar
- Mais fácil de gerenciar e manter

Desafios dos Data Centers

- Gerenciamento de recursos
- Como usar de forma eficiente os recursos de servidores e armazenamento?
- Muitas aplicações têm <u>cargas de trabalho variáveis</u> e imprevisíveis
 - Busca por <u>alta performance e baixo custo</u>
 - Gerenciamento automatizado de recursos
 - **Perfilamento** e previsão de desempenho
- Eficiência energética
 - Servidores consomem grandes quantidades de energia
 - Solução deve ser verde (sustentável)
 - Economizar dinheiro

Data Centers: Preços de construção

```
Custos de Construção de Data Centers Internos
Data Centers de médio porte para empresas (465 metros quadrados):
Tier II: US$ 11,5 milhões (160 racks com 5,0 kW por rack).
Tier III: US$ 38,3 milhões (160 racks com 10,0 kW por rack).
Data Center pequeno (93 metros quadrados):
Tier II: US$ 2,3 milhões (32 racks com 5,0 kW por rack).
Tier III: US$ 7,7 milhões (32 racks com 10,0 kW por rack).
Sala grande (on-premise server) (46 metros quadrados):
Tier II: US$ 1,2 milhão (16 racks com 5,0 kW por rack).
Tier III: US$ 3,8 milhões (16 racks com 10,0 kW por rack).
```

Custos com Nuvem

Table 1. Worldwide Public Cloud Services End-User Spending Forecast, 2024-2025 (Millions of U.S. Dollars)						
	2024	2024	2025	2025		
	Spending	Growth (%)	Spending	Growth (%)		
Cloud Application						
Infrastructure Services	171,565	19.1	208,644	21.6		
(PaaS)						
Cloud Application	250,804	18.1	299,071	19.2		
Services (SaaS)						
Cloud Desktop-as-a-	3,466	7.7	3,849	11.1		
Service (DaaS)						
Cloud System	169,818	21.3	211,856	24.8		
Infrastructure Services						
(laaS)						
Total Market	595,652	19.2	723,421	21.5		

Custos com inteligência artificial:

https://www.vertiv.com/en-emea/about/news-and-insights/articles
/educational-articles/the-cost-impact-of-ai-data-center-designbuild-and-operations/

A pilha da Nuvem

```
SaaS (Software as a Service)
Aplicações hospedadas
Gerenciadas pelo provedor
```

```
PaaS (Platform as a Service)
Plataforma para você executar suas próprias aplicações
O provedor gerencia a escalabilidade
```

```
IaaS (Infrastructure as a Service)
    Infraestrutura bruta
    Você pode fazer o que quiser com ela
```

A pilha da Nuvem

Nuvem

laaS: Amazon EC2

- Aluga servidores e armazenamento para clientes
- Usa virtualização para compartilhar cada servidor entre vários clientes
- Economia de escala reduz os preços
- Pode criar uma máquina virtual com o clique de um botão

<u>Tamanho</u>	<u>Menor</u>	<u>Médio</u>	<u>Maior</u>
<u>vCPUs</u>	2	6	48
<u>RAM</u>	613 MB	1,7 GB	68,4 GB
<u>Preço</u>	US\$ 0,02/h	US\$ 0,17/h	US\$ 2,10/h

Armazenamento US\$ 0,10/GB por mês Banda de rede US\$ 0,10 por GB

Público ou Privado

Nem todas as empresas se sentem confortáveis em usar serviços de nuvem pública

- Não querem compartilhar ciclos de CPU ou discos com concorrentes
- Preocupações com privacidade e regulamentação

Nuvem Privada

- Usa conceitos de computação em nuvem em um <u>data center privado</u>
- Automatiza o gerenciamento e a implantação de máquinas virtuais
- Oferece a mesma conveniência da nuvem pública
- Pode ter custo mais elevado

Modelo Híbrido

- Move recursos entre nuvem privada e pública dependendo da carga

Modelos de Programação

Cliente/Servidor

- Servidores web, bancos de dados, CDNs, etc.

<u>Processamento em Lote (Batch processing)</u>

 Aplicações de processamento empresarial, folha de pagamento, etc.

Map Reduce

- Computação intensiva em dados
- Conceitos de escalabilidade incorporados ao modelo de programação

Desafios de sistemas em Nuvem

Privacidade / Segurança

- Como garantir o isolamento entre os recursos dos clientes?

Escalabilidade Extrema

- Como gerenciar de forma eficiente 1.000.000 de servidores?

Modelos de Programação

- Como usar efetivamente 1.000.000 de servidores?

PERGUNTAS?

REFERÊNCIAS

- TANENBAUM, Andrew. Sistemas operacionais modernos.
- SILBERSCHATZ, Abraham et al. Fundamentos de sistemas operacionais: princípios básicos.
- MACHADO, Francis; MAIA, Luiz Paulo. Arquitetura de Sistemas Operacionais.
- CARISSIMI, Alexandre et al. Sistemas operacionais.