- 1. Classification of PDEs
 - (a) 2nd-order linear equation in 2-dimensions

$$a(x,y)\partial_{xx}u+2b(x,y)\partial_{xy}u+c(x,y)\partial_{yy}y+\cdots=\cdots$$

i. $b^2 - ac < 0$: elliptic region

ii. $b^2 - ac > 0$: hyperbolic region

iii. $b^2 - ac = 0$: parabolic region

(b) 2nd-order linear equation in higher dimension

$$\sum a_{ij}\partial_{ij}u + \dots = \dots$$

- i. $\det(\underline{A}) = 0$: parabolic region
- ii. \underline{A} positive definite : elliptic region
- iii. otherwise: hyperbolic
- (c) Nonlinear equations
 - i. Linearization
 - ii. Quasi-linear : principal order term is linear
 - iii. Semi-linear
 - A. is quasi-linear
 - B. principal order coefficient has no dependence on lower orders
- 2. Elliptic Equation
 - (a) Laplace fundamental $\Delta \Phi = \delta$

$$\Phi = \begin{cases} -\frac{1}{2\pi} \ln r & n = 2\\ \frac{1}{n(n-1)\alpha(n)} r^{2-n} & n \ge 3 \end{cases}$$

(b) Poisson equation $\Delta u = f$

$$u = \Phi * f$$

3. Mean Value Theorem : $\Delta u = 0$ (u is a harmonic function)

$$\frac{1}{A} \int_{\partial B(x,r)} u(y) dy = \frac{1}{V} \int_{B(x,r)} u(y) dy$$

is a constant of r.

4. Maximum Principle : $\Delta u = 0$ (follows from Mean Value Theorem)

$$\max_{\Omega} u = \max_{\partial \Omega} u$$

$$\min_{\Omega} u = \min_{\partial \Omega} u$$

- 5. Finite Differences
 - (a) $\Delta_{+}u = u_{i+1} u_{i}$
 - (b) $\Delta_{-}u = u_i u_{i-1}$

- (c) $\Delta_0 u = u_{i+1} u_{i-1}$
- (d) $\mathcal{E}u = u_{i+1} : \partial_x = \frac{\ln \mathcal{E}}{h}$ can be used to get approximations
- 6. Fourier Method
 - (a) Suppose $\phi_m = \sin(m\pi x)$, $m = 0, 1, \dots$, $x \in [0, 1]$
 - (b) Plug into numerical scheme to find eigenvalues, λ_m of numerical operator
 - (c) $|\lambda_m| > \eta$ then $||U||_2^2 \le \frac{1}{n^2} ||f||_2^2$
- 7. Fundamental Theorem : consistency + stability ⇒ convergence
- 8. Finite Element Method
 - (a) Variational Formultation
 - i. (D): $\mathcal{L}u = f$, $\mathcal{B}u = g$
 - ii. (M) : $u = \arg\min_{v \in V} F[v], F[v] = \frac{1}{2}b(v,v) l(v)$
 - iii. (V): $b(u,v) = l(v), \forall v \in V$
 - iv. (D) \iff (M) \iff (V)
 - (b) Assumptions
 - i. V is a Hilber Space with $\|\dot\|_V$ norm
 - ii. b is a bilinear operator
 - A. continuous/bounded : $b(u, v) \le M||u||_V||v||_V$
 - B. coercive: $b(u,u) \ge \alpha ||u||_V^2$
 - iii. l is a linear operator
 - A. continuous/bounded : $l(u) \le \Lambda ||u||_V$
 - (c) Lax-Milgram (existence) : $\langle Au, v \rangle = \langle v, w \rangle$
 - i. injective (b coercive) : $\alpha ||u|| \le ||Au||$
 - ii. surjective (b coercive) : $\alpha ||z||^2 \le \langle Az, z \rangle = 0$
 - (d) Conclusions
 - i. (V) has a unique solution : uses b coercivity, l continuity, Lax-Milgram for existence
 - ii. (M) \iff (V)

A.
$$g(\epsilon) = F[u + \epsilon v]$$
, then $\frac{dg}{d\epsilon}\Big|_{\epsilon=0} = 0$

- B. (V) \implies (M) : F[u] < F[u+v]
- iii. $(M_h) \iff (V_h)$
- iv. \underline{A} is positive definite
- v. quasi-optimality : $\|u u_h\|_V \le \frac{M}{\alpha} \|u v\|_V$