

First graph:

0	0		2		4	5
0	0		0	0	D	1
-	1	0	0	0	0	-
2	0	0			0	1
3	D	0	0	b	0	
4	0	I	1	ı	l	D
	_		•	•		

Adj. Matrix

Adj. List

Second graph:

Adj. Matrix

Adj. List

Note the space complexity differences:

Matrix => O(V2)

List => O(V+E)

Q2.

Cy cle: Path that Starfs tends at the same node. Clique: Complete subgraphs (with $|V| \ge 3$)

# Edges	# Cycles	# liques		
1/	6	\prec		

٧	O	1	2	3	4	5	6	7	8
deglv)	2	3	3	3	2	1	(5	2

longest path from 5 *8: 57473-277717078

Q4. Differences between adj. matrices of directed / unclirected graphs: Undirected graphs have symmetric adj. matrices (Mrs symmetric => M[i][j] = M[j][i] for all i,i) Why?

M[i][j] = 1 (=) can go directly from i to j

can go directly from j to i too

M[j][i] = 1. Similarly for M[i][j]=0 (=> M[j][i]=0

Qb.

breadth First (g, o);

Iteration	Visited	ancue (head,, tail)
D	01234567	0
1	11234567	1, 2,5,6,7
2	11234567	2,5,6,7,7
3	11234567	5,6,7,7
4	147234867	6,7,7,3,4
5	912348K7	7,7,3,4,4,7
6	91234947	7,3,4,4,74
7	YIRXUYYX	4,4,7,4,4
8	112X48 61	47,44
912	812X48 KA	(eventually becomes empty)

Out put: 0,1,2,5,6,7,3,4

BFS => visit reighbours, then reighbours of reighbours, etc.

depth First (g, 3);

Iteration	<u>Visited</u>	Stack (top,, bottom)
D	01234567	3
T.	012 \$4567	4,5
2	012/4567	5,6,7,5
3	012 14867	0,6,7,5
4	81274867	1, 2, 6, 7, 6, 7, 5
5	942 845 67	7,2,6,7,6,7,5
6	91234567	6,2,6,7,6,7,5
7	px2 x45 X7	2,6,7,6,7,5
8	カメンメメラドフ	6,7,6,7,5
912	pxxx49 b7	leventually becomes empty)
		J. 1.J.

Out put: 3, 4, 5, 0, 1, 7, 6, 2

DFS => Follow a path as far as you can, then backwack to find the next path to explore

Bridges: e,f,g,h,i

Edge d removed:

connected components unchanged

Edge b removed:

$$CC[] = \{0,0,1,2,2,2,1,0,1,2\}$$

(I more connected component)

Graph 1

Graph 2

Graph 3

Graph 4

Euler path: Visit each edge exactly once Hamiltonian path: Visit each vetex exactly once

E for Edge and Euler

Sane thing Br Ewer Hamilton circuits except you must end up where you started.

Lemmas:

- (1) & has an Euler path

 (=> There are exactly 2 vertices with odd degree
- (2) G has an Euler circuit Every vertex has even degree

No similar lemmas Gr Hamiltonian paths/circuits. no

	Ewer path	Euler circuit	Hamiltonian path	Hamiltonian Circuit
Graph 1	V	Χ	/	X
Graph 2	/		✓	/
Graph 3	X	χ	X	X
Graph 4	χ	X	/	/