Context-based Music Recommendation System

Team 6 - The United Nations

Introduction

Motivation

- Streaming services rely heavily on recommendation systems

 Traditional systems do not take in user context

Objectives

- Gather contextual data such as the current weather
- Classify mood
- Give more personalized recommendations that are more suitable to their situation

Related Works

Related Works

Mood-based

- Blog posts/ Social media
- chatbot

Environmental-based

- Time
- Location
- weather

Shortcomings:

- Too little categories
 - Weather types
 - mood
- Risk of using outdated information or irrelevant information

How is our approach different?

Input: specific songs are chosen by the user

Other:

- No irrelevant data
- More mood classifications → Euphoric, Sad, Romantic, Happy, Focused, and Energetic
- More weather → clear rain, clouds, drizzle, atmosphere, thunderstorm

Data

Data

Problems

- genre,artist_name,track_name,track_id,popularity,acousticness,danceability,
 Movie,Henri Salvador,C'est beau de faire un Show,0BRj06ga9RKCKjfDqeFgWV,0,0
 Movie,Martin & les fées,Perdu d'avance (par Gad Elmaleh),0BjC1NfoE00usryehm
 Movie,Joseph Williams,Don't Let Me Be Lonely Tonight,0CoSDzoNIKCRs124s9uTVy
 Movie,Henri Salvador,Dis-moi Monsieur Gordon Cooper,0GcTVm52BwZD07Ki6tIvf,
 Movie,Fabien Nataf,Ouverture,0IuslXpMR0HdEPvSl1fTQK,4,0.95,0.331,82625,0.22
 Movie,Henri Salvador,Le petit souper aux chandelles,0MfjjKa8eNAfla4PwTbizj,
 Movie,Martin & les fées,"Premières recherches (par Paul Ventimila, Lorie Pe
 Movie,Laura Mayne,Let Me Let Go,0PbIF9YVD505GutwotpB5C,15,0.939,0.416,24006
 Movie,Chorus,Helka,0ST6uPfvaPpJLtQwhE6KfC,0,0.00104,0.734,226200,0.481,0.00
 Movie,Le Club des Juniors,Les bisous des bisounours,0VSqZ3KStsjcfERGdcWpF0,
 Movie,Leopold Stokowski,Symphony No.4 In E Minor Op.98: IV. Allegro Energi
 Movie,Randy Newman,The Hanging (Maverick Original Motion Picture Score) Movie,Idoles De La Musique,J'ai demandé à la lune,0jF6HUm18fg6QQCLHhfhC0,4,
 Movie,Chorus,Mangala Aarti,0jIY0oRAp1T4mezDyEhOad,3,0.958,0.758,308627,0.26
 - Lots of sources
 - Inaccurate or incomplete data
 - Non-relevant songs in dataset
 - REST API is slow
 - Web scraping unreliable
 - Too much data needed
 - Min 100k songs

Solution

- Spotify songs
- Own database \rightarrow fast
- Psycopg2 and spotipy
- Use premade CSV for db and REST if needed
- Easy data manipulation
- Most songs are relevant
 - 167k songs

id									popularity genre
0FazGsmQ8ePh8nU91BdVG2			-4.172						
1lUdXbhl6u6QMQZRTAhlWW	0.367	0.208	-16.734	0.0363	0.629	0.0584	0.106	0.663	68 Folk
3BT8hz7kFpxw8NbuBUobrS	0.256	0.211	-11.264	0.0365	0.949	0.785	0.104	0.0808	28 Anime

Solution

4.1 Models

Nearest Neighbors

- Unsupervised
- Clustering
- Sklearn function for implementing neighbor searches
- Uses KD_tree or BallTee algorithm
- Result of clustering: for each user song song there are lists with five neighbors → find best based on the smallest sum distance
- Final result: list of songs and for each song the 5 most suitable songs

4.1 Models

KMeans

- Unsupervised
- Clustering

K-means is a centroid-based clustering algorithm, where we calculate the distance between each data point and a centroid to assign it to a cluster. The goal is to identify the K number of groups in the dataset.

4.1 Models

Random Forest

- Supervised Algorithm
- Consists of large number of decision trees.
- Classification

In random forest each decision tree produces a class prediction and the class prediction with the most votes becomes the models prediction.

In our recommendation system we use Random forest to predict the mood of a song. Mood categories are based on the features in the song metadata.

4.2 System Overview

Input:

- CSV file with Spotify URI (Can be obtained from Spotify Scraper in the project)
- Type in song names

Preprocess

- 20 Random songs from the input
- Extract the Metadata from Database.

Metadata

- 1. Danceability
- . Energy
- 3. Loudness
- 4. Speechiness
- Acousticness
- Instrumentalness
- Livenes
- 8. Valence
- 9. Popularity.

Mood Classification

- Classify the users mood into the following classification Using Random Forest and K-Means
 - Euphoric
 - Happy
 - Romantic
 - Sad
 - Focused
 - Energetic

Song Recommendation:

- <u>Preprocessing</u>: standardize the features + apply weights
- Recommendation: using NearestNeighbors unsupervised neighbor searcher
 - o BallTree or KDTree algorithms
- Result: 5 closest songs to each of users input playlist song
 - o using the smallest distance function

Filter the obtained recommended list of songs

	Artist	Song	Popularity	Genre	Mood
URI					
6MWtB6iiXylwun0YzU6DFP	Post Malone	Wow.	99	Rap	Нарру
6JQvHMSaR8flFsN53ypOfP	Lil Mosey	Noticed	87	Rap	Sad
4hQ6UGyWQIGJmHSo0J88JW	Selena Gomez	Back To You - From 13 Reasons Why - Season 2 S	84	Dance	Energetic
1XRglKC5TPwo7nWGyKqgG0	Gucci Mane	I Get the Bag (feat. Migos)	79	Нір-Нор	Нарру

Experiment & Results

Finding the Best K for the K-means Model

Evaluation metrics:

- -Elbow method (not used)
- -Silhouette Coefficient (used)

Preprocessing:

- -Normalization (not used)
- -StantardScaler (used)

```
Features = ["danceability",

"Energy",

"loudness",

"speechiness",

"acousticness",

"instrumentalness",

"liveness",

"valence",
```

Results of Best K for K-means model

K=6, Preprocessing = Standardscaler, Features = ["speechiness", "acousticness", "instrumentalness"]

Silhouette score = 0.576

(a) Standardscaler with 8 features

(c) Standardscaler with 6 features

(d) Standardscaler with 4 features

(b) Normalization with 8 features

(e) Standardscaler with 3 features

Visualization of the clustering

Predict the clustering

- -RandomForestClassifier
- -KNeighborsClassifier
- -Multi-layer Perceptron classifier
- -Support Vector Classifier

Accuracy	Precision Recall		F1 Score	
0.9988	0.9988	0.9988	0.9988	
0.9974	0.9974	0.9974	0.9974	
0.9987	0.9987	0.9987	0.9987	
0.9982	0.9982	0.9982	0.9982	
	0.9988 0.9974 0.9987	0.9988 0.9988 0.9974 0.9974 0.9987 0.9987	0.9988 0.9988 0.9988 0.9974 0.9974 0.9974 0.9987 0.9987 0.9987	

Determining the mood of each cluster

-Mood playlists from Spotify

	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Euphoric	0.51	0.17	0.00	0.00	0.00	0.32
Нарру	0.01	0.65	0.00	0.00	0.00	0.34
Romantic	0.00	0.00	0.86	0.13	0.00	0.01
Sad	0.014	0.014	0.014	0.74	0.00	0.21
Focused	0.0	0.0	0.25	0.03	0.65	0.07
Energetic	0.00	0.12	0.0	0.05	0.00	0.83

Discussion

Discussion

Problems Faced

- Insufficient data

Solution

 API calls + premade datasets

Limitations

- Size of database
- Number of weather and emotion types

	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Count	2542	17542	21651	38344	12398	74623

Limitations:

- Mood prediction

	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Euphoric	0.51	0.17	0.00	0.00	0.00	0.32
Нарру	0.01	0.65	0.00	0.00	0.00	0.34
Romantic	0.00	0.00	0.86	0.13	0.00	0.01
Sad	0.014	0.014	0.014	0.74	0.00	0.21
Focused	0.0	0.0	0.25	0.03	0.65	0.07
Energetic	0.00	0.12	0.0	0.05	0.00	0.83

Future Work

- Expand on the number of emotion and weather types
- Be able to recommend songs from a bigger dataset

Thank you!