
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Tue Nov 06 12:46:48 EST 2007

Validated By CRFValidator v 1.0.3

Application No: 10518966 Version No: 2.0

Input Set:

Output Set:

Started: 2007-10-18 11:40:07.726

Finished: 2007-10-18 11:40:09.014

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 288 ms

Total Warnings: 6

Total Errors: 7

No. of SeqIDs Defined: 17

Actual SeqID Count: 17

Error code		Error Description
E	257	Invalid sequence data feature in <221> in SEQ ID (1)
E	257	Invalid sequence data feature in <221> in SEQ ID (1)
E	257	Invalid sequence data feature in <221> in SEQ ID (2)
E	257	Invalid sequence data feature in <221> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
E	257	Invalid sequence data feature in <221> in SEQ ID (15)
E	257	Invalid sequence data feature in <221> in SEQ ID (16)
E	257	Invalid sequence data feature in <221> in SEQ ID (17)

SEQUENCE LISTING

```
<110> Gutkowska et al.
<120> Oxytocin as Cardiomyogenesis Inducer and Uses Thereof
<130> 29105/40749
<140> 10518966
<141> 2005-11-04
<150> PCT/CA2003/000897
<151> 2003-06-13
<150> CA 2391118
<151> 2002-06-21
<160> 17
<170> PatentIn version 3.4
<210> 1
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<221> Disulfide bridge
<222> (1)..(6)
<223> Residues 1 and 6 are linked via a disulfide bridge
<220>
<221> Modification
<222> (9)..(9)
<223> C-terminal Gly is amidated
<400> 1
Cys Tyr Ile Gln Asn Cys Pro Leu Gly
<210> 2
<211> 11
<212> PRT
<213> Homo sapiens
<220>
<221> Disulfide bridge
<222> (1)..(6)
<223> Residues 1 and 6 are linked via a disulfide bridge
<400> 2
```

Cys Tyr Ile Gln Asn Cys Pro Leu Gly Gly Lys

1 5 10

<210>	3	
<211>	512	
<212>	DNA	
<213>	Homo	sapiens
<400>	3	

accagtcacg gaccctggac ccagcgcacc cgcaccatgg ccggccccag cctcgcttgc tgtctgctcg gcctcctggc gctgacctcc gcctgctaca tccagaactg ccccctggga 120 ggcaagaggg ccgcgcgga cctcgacgtg cgcaagtgcc tcccctgcgg ccccgggggc 180 aaaggccgct gcttcgggcc caatatctgc tgcgcggaag agctgggctg cttcgtgggc 240 300 accgccgaag cgctgcgctg ccaggaggag aactacctgc cgtcgccctg ccagtccggc cagaaggegt gegggagegg gggeegetge geggtettgg geetetgetg cageeeggae 360 ggctgccacg ccgaccctgc ctgcgacgcg gaagccacct tctcccagcg ctgaaacttg 420 atggctccga acacctcga agcgcgccac tcgcttcccc catagccacc ccagaaatgg 480 tgaaaataaa ataaagcagg tttttctcct ct 512

<210> 4 <211> 125 <212> PRT <213> Homo sapiens

<400> 4

Met Ala Gly Pro Ser Leu Ala Cys Cys Leu Leu Gly Leu Leu Ala Leu 1 5 10 15

Thr Ser Ala Cys Tyr Ile Gln Asn Cys Pro Leu Gly Gly Lys Arg Ala 20 25 30

Ala Pro Asp Leu Asp Val Arg Lys Cys Leu Pro Cys Gly Pro Gly Gly 35 40 45

Lys Gly Arg Cys Phe Gly Pro Asn Ile Cys Cys Ala Glu Glu Leu Gly 50 55 60

Cys Phe Val Gly Thr Ala Glu Ala Leu Arg Cys Gln Glu Glu Asn Tyr 65 70 75 80

Leu Pro Ser Pro Cys Gln Ser Gly Gln Lys Ala Cys Gly Ser Gly Gly
85 90 95

Arg Cys Ala Val Leu Gly Leu Cys Cys Ser Pro Asp Gly Cys His Ala 100 105 Asp Pro Ala Cys Asp Ala Glu Ala Thr Phe Ser Gln Arg 115 120 125 <210> 5 <211> 27 <212> DNA <213> Homo sapiens <400> 5 27 tgctacatcc agaactgccc cctggga <210> 6 <211> 9 <212> PRT <213> Homo sapiens <220> <221> Disulfide bridge <222> (1)..(6) <223> Residues 1 and 6 are linked via a disulfide bridge <400> 6 Cys Tyr Ile Gln Asn Cys Pro Leu Gly <210> 7 <211> 4357 <212> DNA <213> Homo sapiens <400> 7 tgttaagget etgggaccaa egetgggega accageteeg eteeggaggg gtetgegegg 60 ctggcctcgc ccgccccta gcggacccgt gcgatagtgc agcctcagcc ccaggcacag 120 cgccgcatcc agacgccgtc cgcgcgcgca gcctgggagg cgctcctcgc tcgcctcctg 180 240 tacccatcca gcgaccagcc aggctgcggc gaggggattc caaccgaggc tccagtgaga gacctcagct tagcatcaca ttaggtgcag ccggcaggcc atcccaactc gggccgggag 300 cgcacgcgtc actggggccg tcagtcgccg tgcaacttcc ccggggggag tcaactttag 360

gttcgcctgc ggactcggtg cagtggaagc cgctgaacat cccgaggaac tggcacgctg

ggggctctgg gcttgtggcc ggtagaggat tcccgctcat ttgcagtggc tcagaggagg

420

480

gtggacccag	cagateegte	cgtggagtct	ccaggagtgg	agccccgggc	gcccctacac	540
cctccgacac	gccggatccg	gcccagccgc	gccaagccgt	aaagggctcg	aaggccgggg	600
cgcaccgctg	ccgccagggt	catggagggc	gcgctcgcag	ccaactggag	cgccgaggca	660
gccaacgcca	gcgccgcgcc	gccgggggcc	gagggcaacc	gcaccgccgg	acccccgcgg	720
cgcaacgagg	ccctggcgcg	cgtggaggtg	gcggtgctgt	gtctcatcct	gctcctggcg	780
ctgagcggga	acgcgtgtgt	gctgctggcg	ctgcgcacca	cacgccagaa	gcactcgcgc	840
ctcttcttct	tcatgaagca	cctaagcatc	gccgacctgg	tggtggcagt	gtttcaggtg	900
ctgccgcagt	tgctgtggga	catcaccttc	cgcttctacg	ggcccgacct	gctgtgccgc	960
ctggtcaagt	acttgcaggt	ggtgggcatg	ttcgcctcca	cctacctgct	gctgctcatg	1020
teeetggaee	gctgcctggc	catctgccag	ccgctgcgct	cgctgcgccg	ccgcaccgac	1080
cgcctggcag	tgctcgccac	gtggctcggc	tgcctggtgg	ccagcgcgcc	gcaggtgcac	1140
atcttctctc	tgcgcgaggt	ggctgacggc	gtcttcgact	gctgggccgt	cttcatccag	1200
ccctggggac	ccaaggccta	catcacatgg	atcacgctag	ctgtctacat	cgtgccggtc	1260
atcgtgctcg	ctacctgcta	cggccttatc	agcttcaaga	tctggcagaa	cttgcggctc	1320
aagaccgctg	cageggegge	ggccgaggcg	ccagagggcg	cggcggctgg	cgatgggggg	1380
cgcgtggccc	tggcgcgtgt	cagcagcgtc	aagctcatct	ccaaggccaa	gateegeaeg	1440
gtcaagatga	ctttcatcat	cgtgctggcc	ttcatcgtgt	gctggacgcc	tttcttcttc	1500
gtgcagatgt	ggagegtetg	ggatgccaac	gcgcccaagg	aagcctcggc	cttcatcatc	1560
gtcatgctcc	tggccagcct	caacagctgc	tgcaacccct	ggatctacat	gctgttcacg	1620
ggccacctct	tccacgaact	cgtgcagcgc	ttcctgtgct	gctccgccag	ctacctgaag	1680
ggcagacgcc	tgggagagac	gagtgccagc	aaaaagagca	actcgtcctc	ctttgtcctg	1740
agccatcgca	gctccagcca	gaggagctgc	tcccagccat	ccacggcgtg	acccaccagc	1800
cagggccagg	gctgcagcct	gaggctcagg	ctgtgctggc	ataagtgctc	tgctcctagg	1860
tgatggcgta	tgtttgtgta	taaggtacct	atcagtttgt	atccctcccc	teettggggt	1920
ggcttcagtg	gggtggagag	tggcctccat	gatggaagat	gataggggac	tcagccatca	1980
gacaacaccc	tggcctccta	cacgtacttc	taccaccctg	aacccactgc	tgccctgggc	2040
agtgagtggc	ttgtttttc	tcctggactt	gtaatttcac	tccagtatat	ttttacttct	2100
tcattctggg	atattgtgaa	aagcggtaaa	tataggattg	gtgaccaatt	gggtcaggaa	2160

gtccagtgtt ctggacttgg	ggtaagcagt	ggggttggga	cctcagatgg	gaagggtggt	2220
gctaagatcc tcctgacctc	aaagtgtatt	tgcctttaag	cgaacaaatg	ctggggtcct	2280
tggggaccag cttgtcagag	ggtagcccta	agagaagggg	attaccttgt	aagaccatct	2340
ggcgcagtgg acctattaga	acttgggtta	aaaatgttta	agaagctaat	gtttaagaag	2400
catttgggaa agaaaaagaa	ataaatgtat	ccagatagga	aaagaagaag	taaaactatt	2460
tgcagatgac acagttttgt	atatagaaaa	tcctaaggaa	ctcacacaca	cacacacaca	2520
cacacacgca cacagctatt	agaactaata	agcaagttcc	gcaaggtttc	aagatacaag	2580
atcaatatac aaaaatgaat	tgtatttctt	tatactagca	acaaacaata	tgaaaacgaa	2640
gttaaataat tccatttata	ataccatcag	aaagaataaa	ataggaatca	acttaacaaa	2700
acaagtgcaa gactgaaaac	tacaaaattg	gaaagaaatt	aaagaaggct	taaataaatg	2760
gaaagacatc ctgtgttcat	ggatcagact	tagtattgtt	aagatggcaa	tactatccta	2820
actgacatgc agattcagtg	caatccttat	gaaaatcata	gctggctttt	ttacagaaat	2880
tgataagcta gtcccaaaat	tcataaagaa	atgcaaggga	cccagatatc	caaataagcc	2940
ttgaaaaaga acaaagttgg	tggattcaca	cttcctgatt	tcataattta	cgataaaggt	3000
aatcagctca gtgtgttact	ggtttaagga	tagacatacg	gagcagaata	aagagtacag	3060
atatgaacac ttatacttac	ggtcaattga	tttttgacaa	ggttcccaag	acaattcaat	3120
agagaaagga gagtcttttc	aacaaatggc	accgagacaa	tgatatgcaa	gtgcaaaaga	3180
atgaggttgg acctttactc	acactatgtg	caaaaatcaa	ctcaaaacgc	atccaagatc	3240
taaatataag agctgaaact	ataaaatctt	agaaagaaac	ataggcatag	atctttgtaa	3300
ccttgaatta ggcagtggtt	tcttagatat	gataccaaag	acacaagcaa	ccaatggaaa	3360
aataggtaaa ttggacttaa	tcaagatttg	aagcttttgt	gattgaaaag	accctatcaa	3420
gaaggtgaaa agataacctg	cagaatggga	gaaaatattt	gcgagtcata	tatatgataa	3480
ggggcttgta tctggaatat	ataaataact	cttataacac	aacaataagg	agaaaaataa	3540
atcaatttaa aaaatgggct	aacggtttga	atagacattt	ctccaaagaa	gatatgcaaa	3600
tggctactaa gcacatgaaa	aatactcaac	attattattc	attagggaaa	tgcaagtcaa	3660
aatcacaatg agattccagt	ttacaatcac	taggatggct	acaataaaaa	gatggacaag	3720
aacgagtgtc ggtgaggatg	tagagaaact	ggtagaaatt	taaattgttg	gtgggaatgt	3780
aaatggtgca cctgctttga	aaaacagttt	ggcagtacct	caaaaagtta	aacgtagagt	3840
gaccatatga cccaggaatg	ccactcctag	gtatttaccc	aagagaaatg	aaaacgtaca	3900

tacacacaaa	aacttgtaca	ccaatgttca	tagcaacatt	atttgtaata	gccaaaaagt	3960
ggaaacaacc	caaatgtcta	ccaactgatg	aatgggaaat	aaaatgtggt	ctgtccacgc	4020
aatggaacat	tattagactc	taaaaagaaa	tgaagtactc	acacatgcca	caacatggat	4080
gagccttgaa	aacttgctaa	gtgaaagaag	ccaggtgcaa	aagcccacat	attgtctgac	4140
tgcattgaaa	tgcaatgtct	aaaatggacg	aatctatata	gagtgaatat	agattagcgt	4200
ttgccagggc	ctggaggctg	tgagagatga	ggcatgacta	ctaagggttt	ggggtttctt	4260
tttcgggtga	tgaaaatgtt	cgaaattagt	ggtgattgtg	cacgattttg	agaatgtact	4320
aaaaaccaat	gaactttaaa	aaataaaaat	aaacaaa			4357

<210> 8

<211> 389

<212> PRT

<213> Homo sapiens

<400> 8

Met Glu Gly Ala Leu Ala Ala Asn Trp Ser Ala Glu Ala Ala Asn Ala 1 5 10 15

Ser Ala Ala Pro Pro Gly Ala Glu Gly Asn Arg Thr Ala Gly Pro Pro 20 25 30

Arg Arg Asn Glu Ala Leu Ala Arg Val Glu Val Ala Val Leu Cys Leu 35 40 45

Ile Leu Leu Leu Ala Leu Ser Gly Asn Ala Cys Val Leu Leu Ala Leu 50 55 60

Arg Thr Thr Arg Gln Lys His Ser Arg Leu Phe Phe Phe Met Lys His 65 70 75 80

Leu Ser Ile Ala Asp Leu Val Val Ala Val Phe Gln Val Leu Pro Gln 85 90 95

Leu Leu Trp Asp Ile Thr Phe Arg Phe Tyr Gly Pro Asp Leu Leu Cys 100 105 110

Arg Leu Val Lys Tyr Leu Gln Val Val Gly Met Phe Ala Ser Thr Tyr 115 120 125

Leu	Leu 130	Leu	Leu	Met	Ser	Leu 135	Asp	Arg	Суз	Leu	Ala 140	Ile	Суз	Gln	Pro
Leu 145	Arg	Ser	Leu	Arg	Arg 150	Arg	Thr	Asp	Arg	Leu 155	Ala	Val	Leu	Ala	Thr 160
Trp	Leu	Gly	Суз	Leu 165	Val	Ala	Ser	Ala	Pro 170	Gln	Val	His	Ile	Phe 175	Ser
Leu	Arg	Glu	Val 180	Ala	Asp	Gly	Val	Phe 185	Asp	Cys	Trp	Ala	Val 190	Phe	Ile
Gln	Pro	Trp 195	Gly	Pro	Lys	Ala	Tyr 200	Ile	Thr	Trp	Ile	Thr 205	Leu	Ala	Val
Tyr	Ile 210	Val	Pro	Val	Ile	Val 215	Leu	Ala	Thr	Суз	Tyr 220	Gly	Leu	Ile	Ser
Phe 225	Lys	Ile	Trp	Gln	Asn 230	Leu	Arg	Leu	Lys	Thr 235	Ala	Ala	Ala	Ala	Ala 240
Ala	Glu	Ala	Pro	Glu 245	Gly	Ala	Ala	Ala	Gly 250	Asp	Gly	Gly	Arg	Val 255	Ala
Leu	Ala	Arg	Val 260	Ser	Ser	Val	Lys	Leu 265	Ile	Ser	Lys	Ala	Lys 270	Ile	Arg
Thr	Val	Lys 275	Met	Thr	Phe	Ile	Ile 280	Val	Leu	Ala	Phe	Ile 285	Val	Суз	Trp
Thr	Pro 290	Phe	Phe	Phe	Val	Gln 295	Met	Trp	Ser	Val	Trp 300	Asp	Ala	Asn	Ala
Pro 305	Lys	Glu	Ala	Ser	Ala 310	Phe	Ile	Ile	Val	Met 315	Leu	Leu	Ala	Ser	Leu 320
Asn	Ser	Суз	Cys	Asn 325	Pro	Trp	Ile	Tyr	Met 330	Leu	Phe	Thr	Gly	His 335	Leu
Phe	His	Glu	Leu 340	Val	Gln	Arg	Phe	Leu 345	Суз	Суз	Ser	Ala	Ser 350	Tyr	Leu

Lys Gly Arg Arg Leu Gly Glu Thr Ser Ala Ser Lys Lys Ser Asn Ser

355 360 365

Ser Ser Phe Val Leu Ser His Arg Ser Ser Ser Gln Arg Ser Cys Ser

370 375 380 Gln Pro Ser Thr Ala 385 <210> 9 <211> 22 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 9 22 aagatgacct tcatcattgt tc <210> 10 <211> 23 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 10 23 cgactcagga cgaaggtgga gga <210> 11 <211> 24 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 11 24 gtcaatccta ccccgaagc agct <210> 12 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 12

20

cagcatgggc tccttctcca

```
<210> 13
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 13
cagtgatggc atccactgtg gtc
                                                                     23
<210> 14
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic oligonucleotide
<400> 14
                                                                     27
aaggtcggtg tcaacccatt tggccgt
<210> 15
<211> 10
<212> PRT
<213> Homo sapiens
<220>
<221> Disulfide bridge
<222> (1)..(6)
<223> Residues 1 and 6 are linked via a disulfide bridge
<400> 15
Cys Tyr Ile Gln Asn Cys Pro Leu Gly Gly
               5
                                   10
<210> 16
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> Disulfide bridge
<222> (1)..(6)
<223> Residues 1 and 6 are linked via a disulfide bridge
<400> 16
```

Cys Tyr Ile Gln Asn Cys Pro Leu Gly Gly Lys Arg

1 5 10

```
<210> 17
<211> 12
<212> PRT
<213> Homo sapiens
<220>
<221> Disulfide bridge
<222> (1)..(6)
<223> Residues 1 and 6 are linked via a disulfide bridge
<220>
<221> Misc_feature
<222> (9)..(9)
<223> If residue 10 not Gly, the Gly in position 9 may be optionally
      amidated
<220>
<221> Misc_feature
<222> (10)..(10)
<223> Xaa=Gly or nothing
<220>
<221> Misc_feature
<222> (11)..(11)
<223> If residue 10 is Gly, Xaa=Lys or nothing; if residue 10 is not Gly,
      Xaa=nothing
<220>
<221> Misc_feature
<222> (12)..(12)
<223> If residue 11 is Lys, Xaa=Arg or nothing; if residue 10 is not Lys,
      Xaa=nothing
<400> 17
Cys Tyr Ile Gln Asn Cys Pro Leu Gly Xaa Xaa Xaa
               5
                                   10
```