PC910X

■ Features

1. Ultra-high speed response

(t_{PHL} , t_{PLH} : TYP. 50ns at $R_L = 350 \Omega$)

2. Isolation voltage between input and output

(Viso: 2500V_{rms})

3. Low input current drive(I_{FHL}: MAX. 5mA)

4. Instantaneous common mode rejection voltage (CM $_{\rm H}$: TYP. 500V/ μ s)

5. TTL and LSTTL compatible output

6. Recognized by UL, file No. E64380

Applications

- 1. High speed interfaces for computer peripherals and microcomputer systems
- 2. High speed line receivers
- 3. Noise-cut
- 4. Interfaces with various data transmission equipment

Ultra-high Speed Response OPIC Photocoupler

■ Outline Dimensions

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Parameter		Symbol	Symbol Rating	
Input	*1 Forward current	I_F	20	mA
	Reverse voltage	V _R	5	V
	Power dissipation	P	40	mW
	*2 Supply voltage	V _{CC}	7	V
	*3 Enable voltage	V _E	5.5	V
Output	High level output voltage	V _{OH}	7	V
	Low level output current	IoL	50	mA
	Collector power dissipation	Pc	85	mW
*4 Isolation voltage		V iso	2 500	V rms
Operating temperature		T opr	0 to + 70	°C
Storage temperature		T stg	- 55 to + 125	°C
*5 Soldering temperature		T sol	260	°C

^{*1} Ta = 0 to 70° C

^{*2} For 1 minute max.

^{*3} Shall not exceed 500mV from supply voltage(V_{CC}).

^{*4} AC for 1 minute, 40 to 60% RH. Apply the specified voltage between the whole of the electrode pins on the input side and the whole of the electrode pins on the output side.

^{*5} For 10 seconds at the position of 2mm or more from lead pins.

■ Electro-optical Characteristics

(Unless otherwise specified, Ta = 0 to $70^{\circ}C$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		VF	$Ta = 25^{\circ}C, I_{F} = 10mA$	-	1.6	1.9	V
	Reverse current		I_R	$Ta = 25^{\circ}C, V_R = 5V$	-	-	10	μΑ
	Terminal capacitance		Ct	$Ta = 25^{\circ}C, V = 0, f = 1MH_{Z}$	-	60	150	PF
Output	High level output current		Іон	$V_{CC} = V_0 = 5.5V$, $V_E = 2.0V$, $I_F = 250 \mu A$	-	2	250	μΑ
	Low level output voltage		V _{OL}	$V_{CC} = 5.5V$, $V_{E} = 2.0V$, $I_{F} = 5mA$, $I_{OL} = 13mA$	-	0.4	0.6	V
	High level enable current		I _{EH}	$V_{CC} = 5.5V, V_E = 2.0V$	-	- 0.8	- 1.8	mA
	Low level enable current		I _{EL}	$V_{CC} = 5.5V, V_E = 0.5V$	-	- 1.2	- 2.0	mA
	High level supply current		I_{CCH}	$V_{CC} = 5.5V, I_F = 0, V_E = 0.5V$	-	7	15	mA
	Low level supply current		I_{CCL}	$V_{CC} = 5.5V, I_F = 10mA, V_E = 0.5V$	-	13	18	mA
	"High→Low" threshold input current		I FHL	$V_{CC} = 5V, V_E = 2.0V$ $V_O = 0.8V, R_L = 350 \Omega$	-	2.5	5	mA
	Isolation resistance		R iso	Ta = 25°C, DC500V, 40 to 60% RH	5 x 10 ¹⁰	1010	-	Ω
	Floating capacitance		Cf	$Ta = 25^{\circ}C, V = 0, f = 1MH_{Z}$	-	0.6	5	pF
Transfer charac- teristics	Response time	" High→Low" propagation delay time	t PHL	Fig. 1 $Ta = 25$ °C, $V_{CC} = 5V$	-	50	120	ns
		" Low→High" propagation delay time	t PLH	$R_L = 350 \Omega$, $C_L = 15_P F$ $I_F = 7.5 \text{mA}$	-	50	120	ns
		Rise time, Fall time	$t_{\rm r}$, $t_{\rm f}$	- , , , , , , , , , , , , , , , , , , ,	-	30	60	ns
		" High→Low" enable propagation delay time	t ehl	$ \begin{array}{ll} Ta = 25^{\circ}C, \ V_{CC} = 5V & \ \ Fig. \ 2 \\ R_{L} = 350 \ \Omega, \ C_{L} = 15 pF \end{array} $	-	15	50	ns
		" Low→High" enable propagation delay time	t elh	$I_F = 7.5 \text{mA}, V_{EH} = 3 \hat{V}$ $V_{EL} = 0.5 V$	-	65	100	ns
	CMR	Instantaneous common mode rejection voltage "Output: High level"	СМн	$\begin{aligned} & Ta = 25^{\circ}C, \ V_{CC} = 5V, \ V_{CM} = 10V_{(peak)} & \text{Fig. 3} \\ & R_L = 350 \ \Omega, \ I_{\ F} = 0, \ V_{\ O(MIN)} = 2V & \end{aligned}$	100	500	-	V/ μ s
		Instantaneous common mode rejection voltage "Output: Low level"	CM _L	$\begin{aligned} & Ta = 25^{\circ}C, \ V_{CC} = 5V, \ V_{CM} = 10V_{(peak)} & \text{Fig. 3} \\ & R_L = 350 \ \Omega, \ I_F = 5 \text{mA} \ V_{O(MAX)} = 0.8V \end{aligned}$	- 100	- 500	-	V/ μ s

All typical values : at $Ta = 25^{\circ}C$, $V_{CC} = 5V$

■ Recommended Operating Conditions

Parameter	Symbol	MIN.	MAX.	Unit
Low level input current	I_{FL}	0	250	μΑ
High level input current	I_{FH}	7	15	mA
High level enable voltage	V _{EH}	2.0	V _{CC}	V
Low level enable voltage	V _{EL}	0	0.8	V
Supply voltage	V _{cc}	4.5	5.5	V
Fanout (TTL load)	N	-	8	-
Operating temperature	T opr	0	70	°C

^{1.} When the enable input is in high level state, external pull-up resistor is unnecessary.

^{2.} Connect a by-pass ceramic capacitor (0.01 to $0.1 \mu F)$ between V_{CC} and GND at the position within 1cm from pin.

Circuit Block Diagram

Truth Table

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н

L: Logic (0) H: Logic (1)

Fig. 1 Test Circuit for $t_{\text{PHL}},\,t_{\text{PLH}},\,t_{\text{r}}$ and t_{f}

Fig. 2 Test Circuit for t_{EHL} and t_{ELH}

10V

 V_{OL}

Fig. 3 Test Circuit for CM $_{\rm H}$ and CM $_{\rm L}$

When the switch for

infrared light emitting diode sets to B

When the switch for

infrared light emitting

Fig. 4 Collector Power Dissipation vs.
Ambient Temperature

Fig. 6 High Level Output Current vs.

Ambient Temperature

Fig. 8-a Output Voltage vs. Forward Current

Fig. 5 Forward Current vs. Forward Voltage

Fig. 7 Low Level Output Voltage vs. Ambient Temperature

Fig. 8-b Output Voltage vs. Forward Current (Ambient Temp. Characteristics)

Fig. 9 Propagation Delay Time vs. Forward Current

Fig.11 Rise Time, Fall Time vs.
Ambient Temperature

Fig.10 Propagation Delay Time vs.
Ambient Temperature

Fig.12 Enable Propagation Time vs.
Ambient Temperature

■ Precautions for Use

- (1) Handle this product the same as with other integrated circuits against static electricity.
- (2) As for other general cautions, refer to the chapter "Precautions for Use"