1. 회전기기 6장 예제 1, 4, 5, 6번 문제 숫자를 변경해서 문제를 만들고, 풀이를 작성해서 제출하시오.

예제 6.1) 어떤 공장에서 5kV, 500kVA 의 3상 동기기가 유도 전동기와 같이 설치되어있다. 다음은 각 기기들의 부하이다.

- 유도 전동기: 400 kVA, 역률 0.9 지상
- 동기 전동기: 300 kVA, 역률 1.0
- (a) 공장의 전체 역률을 구하여라.
- (b) 공장의 역률을 개선하기 위해 부하가 변동하지 않는 상태에서 동기기가 진상 전류를 발생하도록 과여자 상태로 만들었다. 전동기에 과부하가 걸리지 않는 범위에서 어느 정도까지 공장의 역률을 개선시킬 수있는가? 이 조건에서 동기기의 전류와 역률을 구하여라.

初想 - 短 3 = 300 kW 中 2 2 = 0-0

उत्तर ने से स्व = 700kW

원 전격 = 300 KVAR

上 强 = 700 = 0-92 24

的对特的处理的人多色的

전 원 전략 V4002-3005 = 264. 58 kVAB

3 KVAR = 1300-1264.48 = 135-42 (285)

1422 37 KVA = 17002+35-422 = 700. 9 KVA

개선된 B장 덕로 = 700 - 7 = 0 - 976

5/25/ 3/ Im = 400 KVA = 57-7 4A

동기 전동기 더울 PFSM = 300 kW = 0-75 (Z)S)

예제 6.4) 예제 6.3은 "5kVA, 208V, 4극, 60Hz, 성형결선의 3상 동기기에서 고정자 권선 저항은 무시하고 정격 단자 전압에서 동기 리액턴스는 8옴이다"이다. 예제 6.3에서 3상 동기기가 3상 225V, 60Hz 전원으로 동작한다. 동기기가 전원으로부터 3kW를 공급받고 역률이 1이 되도록 계자 여자를 조정하였다.

- (a) 여자 전압과 전력각을 구하여라. 이 조건에서 페이서도를 그려라.
- (b) 계자 여자가 일정하게 유지되고 축 부하가 점차 증가할 때 전동기가 구동할 수 있는 최대 토크(탈출토크)를 구하여라.

)	(P)
COS Ø = 1 월 때 3Vt Ia cos Ø = 3 Vt Ia = 3kW	최대 로크 = S = 90°일 때 발생
225∨=√3 × 130	
	$P_{\text{max}} = \frac{31 \text{Vel} \text{Eel}}{ x_s }$
$I_a = \frac{3000}{3 \times \text{Ve}} = \frac{3000}{3 \times 130} = 7.69 \text{ A}$	= 3×130×143.82 8
	= 7011.225 W
Ef= Vt - Ia·j·Xs	
= 30∠0° - ¶.69∠0° · &j	Tmax = Pmax Wsyn
= 43. 82 <u>/</u> -25.32°	= \frac{901.225}{(1200/60) \times 2\textsquare
	= 37.2 N·m
여자천압 Ep=143.82 V/상	
전격각 S = -25.32°	
E== JIVel2+IIAXsl2	
= \(\overline{130^2 + (7.69 \times 8)^2}\)	
= 143.82 V/phase	
tan-1 (
V€>130V	
F=-25 32° - Io.j Xs	

예제 6.5) 450V, 60Hz, 1800rpm, 120hp의 3상 동기 전동기의 등가 회로 상수가 다음과 같다. Ra = 0.0078옴. Xal = 0.05옴, Xar = 1.85옴, Nre/Nse = 28.2

정격에서 계자 전류는 전동기 역률이 1이 되도록 조정한다. 단, 계자 권선에서의 모든 회전 손실과 전력 손실은 무시한다.

- (a) 정격 운전 조건하에서 전동기 전류 Ia, 여자전류 If 및 전력각 δ 를 구하여라.
- (b) 페이서도를 그려라.

a)	(b) Ta Fa V6
Pin = 13 × 450 × Ia	12500
= 3 × 0.098 In 2 + 125 × 946	/qz° -IaPa
: Ja= 121.4A	It' -JZoxs
$V4=\frac{450}{\sqrt{3}}=259.81$	Ea &
Ea= Vt - IaRq	
= 260 - 121.4 ×0.098	
> 250.5	
X5= Xai + Xav	
= 0.05 tl.85	
= 1.9 _0	
TM = Ea = 250.560 = 131.842-900	
I, = Im-Ia	
= 131.84 Z-90°-121.4 Z0	
= 179.22	
ከ- 13.29 ቀ/፲	
Ip= 179.22 ×1.9 × 1.85 × 1229	
= 13.85 A	
8=13190.	
= - 42°	

예제 6.6) 5MVA, 10kV, 60Hz의 3상 동기기의 동기 리액턴스가 한 상당 10옴이고 고정자 저항은 무시한다. 이 동기기는 11kV, 60Hz의 모선에 연결되어 있고 동기 조상기로 운전되고 있다.

1. 회전 손실을 무시하면

- (a) 정격여자일 때 고정자 전류를 구하여라. 페이서도를 그려라.
- (b) 여자가 정격여자의 150%로 증가되면 이때의 고정자 전류와 역률을 구하고, 페이서도를 그려라.
- (c) 여자가 정격여자의 50%로 감소할 때 고정자 전류와 역률을 구하고, 페이서도를 그려라.
- 2. 회전손실이 80 kW일 때에, 정격여자 시의 고정자 전류와 여자 전압을 구하고, 페이서도를 그려라.

$P = 3 \text{Ve } I_{a} \cos \theta$ $= 80000$ $I_{a} = \frac{80000}{3 \times 5993 \times 1}$ $= 4.62 \text{A}$ $E_{f} = \text{Ve} - I_{a} \text{j} \times \text{s}$ $= 5993 - 4.62 \times 10 \angle 90^{\circ}$ $= 5993 \cdot 18 \angle -0.4$
$ \int_{a} = \frac{80000}{3x5993x1} $ = 4.62A $ E_{F} = V_{4} - J_{a}jX_{5} $ = 5993 - 4.62 × 10 \(\text{90}^{\circ} \)
= 4.62A Eq = V4 - Jaj Xs = 5993 - 4.62 × 10290°
= 4.62A Eq = V4 - Jaj Xs = 5993 - 4.62 × 10290°
Ef= Vf-JajXs = 5993-4.62 × 10290°
= 5773 - 4.62 × 10∠90°
= 5993. 18∠-0.4
El
Ion Vt

2. 공장 시스템에 동기기가 있을 때, 역률 개선 방법에 대해 설명하시오.

 $S = Vt \times I_{\alpha}$ $Vt^{2} = Z_{s}^{2} I_{\alpha}^{2} + E_{f}^{2}$ $V_{t}^{2} = Z_{s}^{2} I_{\alpha}^{2} + E_{f}^{2}$ $= |V_{t}|^{2} |V_{t}^{2}|^{2}$ $= |V_{t}|^{2} |V_{t}|^{2}$ $= |V_{t}|^{2} |V_{t}|^{2} |V_{t}|^{2}$ $= |V_{t}|^{2} |V_{t}|^{2} |V_{t}|^{2}$ $= |V_{t}|^{2} |V_{t}|^{2} |V_{t}|^{2}$ $= |V_{t}|^{2} |V_{t}|^{2} |V_{$

 $\frac{1}{1} \cdot Q_{34} = 3 \frac{V_t G_T}{X_S} \cos(S) - \frac{3V_t^2}{X_S} \left[VAR \right]$ $\frac{1}{1} = \frac{R_{34}}{W_{SM}} = \frac{3V_t G_T}{W_{SM}} \sin S = T_{MAX} \sin S$

3. 돌극형 동기발전기 출력식을 유도하시오.

S= V&It

$$I_d = \frac{E_F - V_{t} \cdot \cos \delta}{X_d}$$

$$I_q = \frac{V_{t} \cdot \sin \delta}{X_q}$$

$$S = V_{t} \left(\cos S - j \sin S \right) \left[j \frac{E_{t} - V_{t} \cos S}{X_{d}} + \frac{V_{t} \sin S}{X_{q}} \right]$$

$$= P + jQ$$

$$P = \frac{V_{t}^{2} \cdot \cos S \cdot \sin S}{X_{q}} + \frac{V_{t} \cdot E_{t} \cdot \sin S - V_{t}^{2} \cdot \sin S \cdot \cos S}{X_{d}}$$

$$= \frac{V_{t} \cdot E_{t}}{X_{d}} \sin S + \frac{V_{t}^{2} (X_{d} - X_{q})}{2 \cdot X_{d} \cdot X_{q}} \sin 2S$$

4. 결론 및 소감

페이서도 그리는 것이 처음에는 헷갈렸는데, 값을 바꾸어보면서 공부해보니 이해가 될 수 있었다.