(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-511505 (P2002-511505A)

(43)公表日 平成14年4月16日(2002.4.16)

(51) Int.Cl.7		識別記号	ΡI		テーマコート* (参考)
C08F	12/24		C 0 8 F 12/24		2H025
C 0 8 G	.,		C 0 8 G 8/14		4 J 0 3 3
G 0 3 F	7/039	601	G 0 3 F 7/039	601	4 J 1 0 0

審查請求 有 予備審查請求 有 (全 46 頁)

(21)出願番号	特職2000-543513(P2000-543513)	(71)出顧人	アーチ・スペシャルティ・ケミカルズ・イ
(86) (22)出願日	平成11年4月14日(1999.4.14)		ンコーポレイテッド
(85)翻訳文提出日	平成12年10月 6 日 (2000, 10, 6)		アメリカ合衆国 コネティカット州
(86)国際出願番号	PCT/US99/08094		06856 ノーウォーク メリットセヴン
(87) 国際公開番号	WO99/52957		501
(87)国際公開日	平成11年10月21日(1999.10.21)	(72)発明者	サンジェイ マリック
(31)優先権主張番号	09/059, 864		アメリカ合衆国 マサチューセッツ州
(32) 優先日	平成10年4月14日(1998, 4, 14)		02703 アトゥルボロ ゲイウッドアベニ
(33)優先権主張国	米国 (US)		= 40
(81)指定国	EP(AT, BE, CH, CY,	(74)代理人	弁理士 中林 幹罐
DE, DK, ES,	FI, FR, GB, GR, IE, I		
T, LU, MC, N	L, PT, SE), JP, KR		
			最終質に続く
			ACALLY IN THE A

(54) 【発明の名称】 アセタール誘導とドロキシル芳香族ポリマーの製造および放射線感受性配合物における族ポリマーの用途

(57) 【要約】 本発明は、酸性触媒の存在下でヒドロキシル含有ポリマ ーまたはモノマーをビニルエーテルおよびアルコールと 反応させることによる混合アセタールポリマーを製造す る方法を提供する。本発明の方法は、現場で (in sit ロ) 一つの反応により製造される混合アセタールに基づ く新しいクラスのポリマーを提供する。混合アセタール ポリマーは、合成が安価であると共に容易に再現可能で ある。得られた混合アセタールポリマーは、化学的に増 幅されたレジスト組成物を製造するためにホト酸発生剤 とプレンドされ溶媒に溶解される。パターンを形成する 方法は、化学的に増幅されたレジスト組成物を形成する 工程と、前記レジスト組成物を基板に被覆する工程と、 化学線にレジスト被覆済み基板を画像状に露光させる工 程と、前記レジスト被覆済み基板を現像することにより レジスト画像を形成する工程とを含む。

【特許請求の範囲】

【請求項1】 モノマー単位の少なくとも一個が一個以上のペンダントヒド ロキシル基を含む一個以上のモノマー単位をもつポリマーを生成させる工程と、

を含むアセタール樹脂を製造する方法。

上記の二式中、R1は、直鎖、分岐または環式アルキル基、直鎖、分岐または 環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェ ニルメチレンであり、

式中、各R。およびR $_{10}$ は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である; R_{2} は、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する資橡フェニルメチレンであり。

式中、R。およびR1。 は上で定義されている;R1 およびR2 は互いに異なり、R6 およびR7 は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あいはR6 とR7 を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

【請求項2】 前記ポリマーがフェノール系ポリマーである、請求項1に記載の製造方法。

【請求項3】 前記ポリマーがノボラック系ポリマーまたはヒドロキシスチレン系ポリマーである、請求項2に記載の製造方法。

【請求項4】 前記ポリマーがヒドロキシスチレン系ポリマーである、請求 項3に記載の製造方法。

【請求項5】 前記ヒドロキシスチレン系ポリマーが以下のモノマー単位を 有する、請求項4に記載の製造方法。

式中、Rは、水素、アルキル、アルコキシまたはアセトキシである;R $_{11}$ は、水素またはメチルであり、x=0.6 \sim 1.0、y=0 \sim 0.4、x+y=1.0であり、ここですべての数値はモル分率を表している。

【請求項6】 R,がエチル、第三プチルまたはシクロヘキシルであり、R およびR,が水素である、請求項5に記載の製造方法。

【請求項7】 前記ヒドロキシスチレン系ポリマーが以下のモノマー単位を 有する、請求項4に記載の製造方法。

式中、Rは、水素、Pルキル、PルコキシまたはPセトキシである; R_{11} は、水素またはメチルであり、 R_{9} は、水素原子、メチルまたはエチル基、あるいは 式-C H_{2} -C O O R_{9} を有する基であり、 R_{9} および R_{9} は、同じであるか、あるいは独立して直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロ

(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-511505 (P2002-511505A)

(43)公表日 平成14年4月16日(2002 4 16)

				,	1 /// 1 - 1	11011 (2002.4.10)
(51) Int.Cl. ⁷		裁別記号	FI			テーマコート* (参考)
C08F	12/24		C08F	12/24		2 H O 2 5
C 0 8 G	8/14		C 0 8 G	8/14		4 J O 3 3
G 0 3 F	7/039	6 0 1	G03F	7/039	601	4 J 1 0 0

審查請求 有 予備審查請求 有 (全 46 頁)

(21)出願番号	特職2000-543513(P2000-543513)
(86) (22)出顧日	平成11年4月14日(1999.4.14)
(85)翻訳文提出日	平成12年10月 6 日 (2000. 10. 6)
(86)国際出願番号	PCT/US99/08094
(87)国際公開番号	WO99/52957
(87)国際公開日	平成11年10月21日(1999.10.21)
(31)優先権主張番号	09/059, 864
(32)優先日	平成10年4月14日(1998.4.14)
(33)優先権主張国	米国 (US)
(81) 指定国	EP(AT, BE, CH, CY,
DE, DK, ES,	FI, FR, GB, GR, IE, I
T, LU, MC, NI	L, PT, SE), JP, KR

(71)出概人 アーデ・スペシャルティ・ケミカルズ・イ ンコーポレイテッド アメリカ合衆国 コネティカット州 06856 ノーウォーク メリットセヴン 501 サンジェイ マリック アメリカ合衆国 マサチューセッツ州 02703 アトゥルボロ ゲイウッドアベニ 40

(74)代理人 弁理士 中林 幹罐

最終質に続く

(54) 【発明の名称】 アセタール誘導ヒドロキシル芳香族ポリマーの製造および放射線感受性配合物における該ポリマーの用途

(57) 【要約】

年界明は、酸性触媒の存在下でヒドロキシル合有計りマーまたはモノマーをピニルエーテルねよびアルコールと
反応させることによる配合アセタールがリマーを製造する方法を提供する。本界明の方法は、現場で(In sit i) 一つの反応により製造される混合アセタールに基づく新しいラスのポリマーを提供する。 混合アセタールにある。 得られた混合アセタールポリマーは、合成が安価であると共に等場に再填一部をある。 得られた混合アセタールポリマーは、化学的に増増されたレジスト組成物を影成するためにホト機弾生活をブレンドされ線域に溶解されたレジスト組成物を影成する方法は、化学的に増増されたレジスト組成物を基板に表現する上程と、前形レジスト組成が多基板と規模することともしまり、前記レジスト機模がみ基板を開像することによりレジスト機像を形成することととたり

【特許請求の範囲】

【請求項1】 モノマー単位の少なくとも一個が一個以上のペンダントヒド ロキシル基を含む一個以上のモノマー単位をもつポリマーを生成させる工程と

酸性触媒の存在下で前記ポリマーと式R。R,C=CH-OR1。Dビニルエーテルおよび式R2、OHDアルコールとを反応させると工程と、

を含むアセタール樹脂を製造する方法。

上記の二式中、R1 は、直鎖、分岐または環式アルキル基、直鎖、分岐または 環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェ ニルメチレンであり、

式中、各R。およびR₁₀ は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である; R_2 は、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり。

式中、R。およびR:。 は上で定義されている;R: およびR: は互いに異なり、R。およびR: は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あいはR。とR: を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

【請求項2】 前記ポリマーがフェノール系ポリマーである、請求項1に記載の製造方法。

【請求項3】 前記ポリマーがノボラック系ポリマーまたはヒドロキシスチレン系ポリマーである、請求項2に記載の製造方法。

【請求項4】 前記ポリマーがヒドロキシスチレン系ポリマーである、請求 項3 に記載の製造方法。

【請求項5】 前記とドロキシスチレン系ポリマーが以下のモノマー単位を 有する、請求項4に記載の製造方法。

式中、Rは、水素、Pルキル、PルコキシまたはPセトキシである; R_{11} は 水素またはメチルであり、x=0. $6\sim1$. 0、 $y=0\sim0$. 4、x+y=1. 0であり、ここですべての数値はモル分率を表している。

【請求項6】 R: がエチル、第三ブチルまたはシクロヘキシルであり、R およびR: が水素である、請求項5に記載の製造方法。

【請求項7】 前記ヒドロキシスチレン系ポリマーが以下のモノマー単位を 有する、請求項4に記載の製造方法。

式中、Rは、水素、アルキル、アルコキシまたはアセトキシである; R: は 水素またはメチルであり、R: は、水素原子、メチルまたはエチル基、あるいは 式-CH2-COOR。を有する基であり、R: およびR: は、同じであるか、あるいは独立して直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロ

ゲン化アルキル基、芳香族基、あるいは直鎖または環式 α - γ -

【請求項8】 R: がエチル、第三プチルまたはシクロヘキシルであり、R

◦、R: およびR: が水素である、請求項7に記載の製造方法。

【請求項9】 R: が第三ブチルである、請求項8に記載の製造方法。

【請求項10】 R_4 がメチル、エチル、2-ヒドロキシエチル、プロピル、イソプロピル、n-ブチル、t-ブチル、2-エチルヘキシルまたはテトラヒドロピラニルである、請求項7 に記載の製造方法。

[請求項11] 前記酸性触媒が塩酸、硫酸、パラートルエンスルホン酸およびピリジニウムーパラートルエンスルホネートから成る群から選択される、請求項1に記載の製造方法。

【請求項12】 得られた前記アセタール樹脂が R_2 アセタール基のみを含む、請求項1に記載の製造方法。

【請求項13】 一個以上のヒドロキシル基を含むモノマーを生成させる工程と、

酸性触媒の存在下で一個以上のヒドロキシル基を含む前記モノマーと式R。R $_7$ C = C H $_7$

を含むアセタールモノマーの混合物を製造する方法。

上記の二式中、R1は、直鎖、分岐または環式アルキル基、直鎖、分岐または 環式ハロアルキル基、またはアラルキル基、あるいは以下の一般構造を有する置 換フェニルメチレンであり、

式中、各R。およびR。。 は、同じであるか、あるいは独立して水素または炭素原子数1~6のアルキル基である; R。は、直鎖、分岐または環式アルキル基

、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般 構造を有する置換フェニルメチレンであり、

$$R_{10}$$
 R_{9}
 $C-R_{9}$

式中、R。およびR。 は上で定義されている:R。およびR, は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいはR。とR, を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

【請求項14】 一個以上のヒドロキシル基を含む前記モノマーがフェノールモノマーである、請求項13に記載の製造方法。

【請求項15】 前記モノマーがヒドロキシスチレンである、請求項14に記載の製造方法。

【請求項16】 請求項13に記載の製造方法によって製造されるアセタールモノマーの混合物を形成する工程と、

アセタールモノマーの前記混合物を重合して混合アセタールポリマーを生成させる工程と、

を含む混合アセタールポリマーを製造する方法。

【請求項17】 アセタールモノマーの前記混合物がヒドロキシスチレン系 混合アセタールモノマーの混合物を含む、請求項16に記載の製造方法。

【請求項18】 請求項1に記載の製造方法によって製造されるアセタール 概能。

【請求項19】 請求項2に記載の製造方法によって製造されるアセタール 樹脂。

【請求項20】 R₁ がエチル、第三プチルまたはシクロヘキシルであり、 R₆ および R₇ が水素である、請求項19に記載の樹脂。

【請求項21】 以下のモノマー単位を有するポリマーを含む混合アセタール誘導ポリマー。

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

式中、Rは、水素、アルキル、アルコキシまたはアセトキシであり、R」は、 直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アラ ルキル基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、各R。およびR $_{10}$ は、同じであるか、あるいは独立して水素または炭素原子数 $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{6}$ $_{7}$ $_{7}$ $_{10}$

式中、 R_0 および R_{10} は上で定義されている; R_1 および R_2 は互いに異なり、 R_3 は、水素原子、メチルまたはエチル基、あるいは式 $-CH_2-COOR$ 。を有する基であり、 R_0 および R_0 は、同じであるか、あるいは独立して直鎖

【請求項22】 R_6 、 R_7 および R_{11} が水素であり、 R_1 がエチル、第 三ブチルまたはシクロヘキシルである、請求項21に記載の混合アセタールポリマー。

【請求項23】 R4がメチル、エチル、2-ヒドロキシエチル、プロピル、イソプロピル、n-ブチル、t-ブチル、2-エチルへキシルまたはテトラヒドロピラニルである、請求項22に記載の混合アセタールポリマー。

【請求項24】 R: が2, 2, 3, 3ーテトラフルオロプロピル、シクロ ヘキシルエチル、(1R)- (-) ーノピル、ベンジル、フェネチル、1ーナフ チル、2ーナフチルまたはナフチルエチルである、請求項22に記載の混合アセ タールポリマー。

【請求項25】 R: が第三プチルであり、R: がフェネチルであり、dが 0であり、eが0であり、fが0であり、0. $1 \le ((a+b) / (a+b+c)) \le 0$. 35、0. $8 \le (b / (a+b)) < 1$ である、請求項22に記載の 混合アセタールポリマー。

【請求項26】 R₁ が第三ブチルであり、R₂ がフェネチルであり、e が 0であり、f が0であり、d が 0. 05~0. 25であり、R が水素であり、0 . 1 \leq ((a+b) / (a+b+c)) \leq 0. 35、0. 8 \leq (b / (a+b)) < 1である、請求項22に記載の混合アセタールボリマー。

【請求項27】 R、が第三プチルであり、R $_2$ がフェネチルであり、eが0であり、fが0であり、dが0. 05~0. 25であり、Rが第三プチルであり、0. 1 \leq ((a+b)/(a+b+c)) \leq 0. 35、0. 8 \leq (b/(a+b))<1である、請求項22に記載の混合アセタールポリマー。

【請求項28】 R₁ が第三ブチルであり、R₂ がシクロヘキシルエチルであり、eが0であり、fが0であり、dが0.05~0.25であり、Rが第三ブチルであり、0.1 \leq ((a+b) \neq (a+b+c)) \leq 0.35、0.8 \leq (b \neq (a+b)) \leq 1である、請求項22に記載の混合アセタールポリマー。

【請求項29】 R、が第三ブチルであり、R。がフェネチルであり、dが 0であり、fが0であり、 $0 < e \le 0$. 4、R。が水素であり、R4が第三ブチルであり、0. $1 \le ((a+b) / (a+b+c)) \le 0$. $3 \le 0$. $8 \le (b / (a+b)) < 1$ である、請求項22に記載の混合アセタールポリマー。

【請求項30】 R₁ が第三プチルであり、R₂ がフェネチルであり、dが 0であり、 $0 < f \le 0$. 0 8、eが0であり、R₃ が原子価結合であり、0. 1 $\le ((a+b)/(a+b+c)) \le 0$. 3 5、0. $8 \le (b/(a+b)) < 1$ である、請求項22に記載の混合アセタールポリマー。

【請求項31】 (a)以下のモノマー単位を有するアセタール誘導ポリマーと、

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R_{11} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} R_{11} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} R_{11} \\ \end{array} \end{array} \\ \begin{array}{c} C \\ \end{array} \\ \\ \begin{array}{c} C \\ \end{array} \\ \begin{array}{c} C \\ \end{array}$$

(式中、Rは、水素、アルキル、アルコキシまたはアセトキシであり、R は、 直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アラ ルキル基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、各R。およびR。。は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R。は、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、R。およびR。 は上で定義されている;R」およびR。は互いに異なり、R。は、水素原子、メチルまたはエチル基、あるいは式ー CH_2-COOR 。を有する基であり、R。およびR。は、同じであるか、あるいは独立して直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、香族基あるいは直鎖または環式 α -アルコキシアルキル基であり、R。は原子価結合またはメチレンであり、R。およびR,は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基または置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいはR。とR,を組み合わせると、アルキレン鎖、アルキル圏換アルキレン鎖、またはオキシアルキレン鎖を形成することが可能であり、R:は、水素またはメチルであり、0 < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a

- (b) ホト酸発生剤化合物と.
- (c)成分(a) および(b) を溶解できる溶媒と、 を含むフォトレジスト組成物。

【請求項32】 R。、R₇ およびR₁₁ が水素であり、R₁ がエチル、第 三ブチルまたはシクロヘキシルである、請求項31に記載のフォトレジスト組成 物。

【請求項33】 R₁がメチル、エチル、2ーヒドロキシエチル、プロピル 、イソプロピル、nーブチル、tーブチル、2ーエチルへキシルまたはテトラヒ ドロピラニルである、請求項32に記載のフォトレジスト組成物。

【請求項34】 R。が2、2、3、3ーテトラフルオロプロピル、シクロ ヘキシルエチル、(1R) - (-) -) ーノピル、ベンジル、フェネチル、1 - ナフチル、2 - ナフチルまたはナフチルエチルである、請求項32に記載のフォトレジスト組成物。

【請求項35】 R₁ が第三プチルであり、R₂ がフェネチルであり、dが 0であり、eが0であり、fが0であり、0. $1 \le ((a+b) / (a+b+c)) \le 0.35$ 、0. $8 \le (b / (a+b)) < 1$ である、請求項32に記載のフォトレジスト組成物。

【請求項36】 R₁ が第三プチルであり、R₂ がフェネチルであり、e が 0であり、f が0であり、d が0. 05~0. 25であり、R が水素であり、0 . 1 \leq ((a+b)/(a+b+c)) \leq 0. 35、0. 8 \leq (b/(a+b)) <1である、請求項32に配載のフォトレジスト組成物。

【請求項37】 R: が第三プチルであり、R: がフェネチルであり、eが 0であり、fが0であり、dが0. 05~0. 25であり、Rが第三プチルであり、0. 1 \leq ((a+b) \neq (a+b+c)) \leq 0. 35、0. 8 \leq (b \neq (a+b)) \leq 1である、請求項32に記載のフォトレジスト組成物。

【請求項38】 R₁ が第三プチルであり、R₂ がシクロヘキシルエチルであり、eが0であり、fが0であり、dが0.05~0.25であり、Rが第三プチルであり、0.1 \leq ((a+b) / (a+b+c)) \leq 0.35、0.8 \leq (b/(a+b)) <1である、請求項32に記載のフォトレジスト組成物。

【請求項39】 R₊ が第三プチルであり、R₊ がフェネチルであり、dが 0であり、fが0であり、0 < e ≤ 0 . 4 、R 。 が水素であり、R + が第三プチルであり、0 . 1 ≤ ((a+b)/(a+b+c)) ≤ 0 . 3 5 、0 . 8 ≤ (b

/ (a+b)) <1である、請求項32に記載のフォトレジスト組成物。

【請求項40】 R: が第三プチルであり、R: がフェネチルであり、dが 0であり、0 < f \leq 0.08、eが0であり、R: が原子価結合であり、0.1 \leq ((a+b) / (a+b+c)) \leq 0.35、0.8 \leq (b/(a+b)) < 1である、請求項32に記載のフォトレジスト組成物。

【請求項41】 前記ホト酸発生剤がオニウム塩である、請求項32に記載のフォトレジスト組成物。

【請求項42】 前記ホト酸発生剤化合物が以下の式から成る群から選択される、請求項31に記載のフォトレジスト組成物。

【請求項43】 前記ホト酸発生剤の量が混合アセタールポリマーの重量の約1%~約10%である、請求項31に記載のフォトレジスト組成物。

【請求項44】 塩基添加剤をさらに含む、請求項31に記載のフォトレジスト組成物。

【請求項45】 界面活性剤をさらに含む、請求項31に記載のフォトレジスト組成物。

【請求項46】 染料をさらに含む、請求項31に記載のフォトレジスト組成物。

【請求項47】 (a) 請求項31に記載のフォトレジスト組成物を基板に被費すると.

- (b) 化学線に前記フォトレジスト組成物を画像状に露光させると、
- (c) 現像剤で前記フォトレジスト組成物を現像してレジスト画像を製作すると

を含む基板上にレジスト画像を製作する方法。

【請求項48】 前記化学線が遠紫外線である、請求項47に記載の方法。

【請求項49】 前記現像剤が水酸化テトラメチルアンモニウムを含む、請求項47に記載の方法。

【請求項50】 工程(b) と(c) との間で前記フォトレジストおよび基 板を約50 \mathbb{C} ~約150 \mathbb{C} の温度に約5~約300秒にわたり加熱する工程をさらに含む、請求項47に記載の方法。

【発明の詳細な説明】

[0001]

発明の分野

本発明は、リトグラフィー用のフォトレジスト樹脂として画像形成産業において用途を有するアセタール誘導ポリマーに関すると共に、前記アセタール誘導ポリマーを製造する方法に関する。

[0002]

発明の背景

リトグラフィー用の光の波長は、現在および将来のエレクトロニクス素子(de vice)のために必要な機能的サイズをもたらすために遠紫外線(DUV)領域へと短くなってきた。エレクトロニクス産業は、DUV領域に適応する新規レジストを開発しつつある。こうしたレジストの一つのクラスは、化学的に増幅されたレジストである。

[0003]

化学的に増幅されたレジスト配合物の主成分は、ホト酸 (photoacid) 発生剤 化合物とポリマー樹脂と光発生剤および樹脂を溶解できる溶媒である。化学的に 増幅された多くのポジレジストの場合、ポリマー樹脂は、ポリマー樹脂を水性現 像剤に不溶にする酸不安定基を含む。照射するとホト酸発生剤化合物は、酸不安 定基を開裂する酸を生成し、よって水溶性であるポリマー樹脂が生じる。化学的 に増幅されたレジストは、多大な関心を集めてきており、例えば、米国特許第5,069,997号、第5,035,979号、第5,670,299号、第5,588,978号、第5,468,589号および第5,389,494号など、これらの組成物を論じている多くの特許が入手できる。

[0004]

化学的に増幅されたレジスト中で樹脂として用いることができるポリマーの一 つの群はアセタール誘導ポリマーである。フェノール樹脂のアルカリ溶解性は、 ヒドロキシル基をアセタール基に転化することにより大幅に抑制される。一般に 、アセタールフェノール樹脂は、酸性触媒の存在下でフェノール樹脂をビニルエ ーテルと反応させることにより製造される。 [0005]

アセタール樹脂は、その後、化学的に増幅されたレジスト生成物を生成させる ためにホト酸発生剤化合物および溶媒と合わせて配合される。照射すると発生し た酸はアセタール基を開裂し、水性現像剤に可溶であるフェノール樹脂が生成す る。

[0006]

アセタール誘導ポリマーの製造に関わる一つの問題は、アセタールを製造する ために用いることができる汎用ビニルエーテルが現在極めて不十分な数量しかな いことである。中間体の合成によって他のアセタール官能基を生成させることは 可能であるが、これは、アセタールポリマーの製造のための総合的なプロセスを 比較的複雑にし、高価にすると共に再現可能の見込みをなくす一連の反応を必要 とするであろう。従って、不十分な数量の汎用ビニルエーテルは、アセタールポ リマーの用途に大幅な削約を加えている。少数のアセタール基しか容易且つ安価 に生成させることができないからである。

[0007]

ポリマー上に極めて多様なアセタール基を再現可能且つ経済的に生成させることが可能であることは有利であろう。アルカリ可溶性、耐エッチング性、膜収縮性、温度安定性、粘着力、感光性など種々のレジスト特性は、適切なアセタール官能基の選択によって変えることができる。さらに、1個より多いアセタール基をポリマー上に容易に生成させることができるならば、これは、ポリマー樹脂を特定の用途に適応させることを可能にするであろう。例えば、一つのアセタール基は、感光性を高めるために用いることができる一方で、もう一つのアセタール基は耐エッチング性を高めるために用いることができる。ポリマー上に極めて多様なアセタール基を容易に生成させることができれば、アセタールポリマーに対する多くの用途を大幅に拡大することができる。

[0008]

本発明者らは、多様なアセタール誘導ポリマーを容易に製造するための再現性 のある方法を開発した。

[0009]

本発明のもう一つの目的は、フォトレジスト用の樹脂として用途を有する極めて多様なアセタール誘導ポリマーを製造するための新規、安価、且つ再現性のある方法を提供することである。

[0010]

本発明のさらになる目的は、混合アセタールに基づく極めて多様なアセタール 誘導ポリマーを製造する方法を提供することである。本発明のなおさらなる目的 は、フォトレジスト用の樹脂として用途を有する多様な混合アセタール誘導ポリ マーを提供することである。本発明のなおもう一つの目的は、混合アセタール誘 導ポリマーを含有する新規フォトレジスト組成物、および超小型電子素子を製造 するための写真印刷画像形成方法におけるこうした新規フォトレジスト組成物の 用途を提供することである。本発明は、先行技術に対して多くの重要な利点をも つ。第一に、本発明は、混合アセタールに基づく新しいクラスのポリマーを提供 する。ポリマー樹脂の必要な特性は、適切なアセタール官能基の中から選択する ことにより適応させることができる。また、ポリマー中の異なるアセタールの相 対的割合は、原料中の試薬の相対的割合を変えることにより容易に変更すること ができる。混合アセタールの割合を変えると、ポリマー樹脂の特性をさらに適応 させることができる。加えて、混合アセタールポリマー組成物の再現性は優れて いる。再現性のあるポリマー組成物は、レジストの特性がバッチ間で変動しては ならないので商業的に有望なレジスト配合物を製造するために極めて重要である 。さらに、混合アセタールプロセスは、反応のために必要な中間体が市販されて おり、最終アセタールポリマーを製造するために唯一の合成反応しか必要とされ ないので比較的安価である。アセタール基が容易に入手可能なビニルエーテルの 一つからのものでないならば、以前は最終単一アセタールポリマーを製造するた めに一般には多くの合成反応を要したであろう。

[0011]

本発明は、後述するにつれて明らかになるであろう多くの別の利点も提供する

[0012]

発明の概要

本発明は、比較的簡単、安価且つ再現性のある方式で極めて多様なアセタール 誘導ポリマーを容易に製造する。本発明は、混合アセタールに基づく新しいクラ スのポリマーも製造する。アセタールポリマーは、次に、エレクトロニクス素子 の製造において用いられる化学的に増幅されたレジスト組成物を配合するために 、溶媒中でホト酸発生剤とブレンドすることができる。このプロセスによって製造することができるアセタール誘導ポリマーの多様性のおかげで、特定の用途の ために適応された適切なアセタール官能基を選択することにより種々のリトグラ フィーレジストの特性を変えることがより容易になる。

[0013]

本発明によるアセタール樹脂を製造するための一般的方法は、モノマー単位の 少なくとも一個が一個以上のペンダントヒドロキシル基を含む一個以上のモノマ 一単位をもつポリマーを生成させる工程と、酸性触媒の存在下で前記ポリマーと 式R, R。C=CH-OR、のビニルエーテルおよび式R。OHのアルコールと を反応させると工程と、を含む。

上記の二式中、 R_1 は、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環 式アルキル基、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式ハロアル キル基、アラルキル基、あるいは以下の一般構造を有する置換フェニルメチレン であり、

式中、各R。およびR₁。 は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R₂ は、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、または芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

$$R_{10}$$
 R_{9}
 $C-R_{9}$

式中、 R_0 および R_1 。 は上で定義されている; R_1 および R_2 は互いに異なり、 R_0 および R_7 は、同じであるか、あるいは独立して水素、好ましくは炭素原子数 $1 \sim 1$ のの直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1 \sim 1$ のの直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいは R_0 と R_1 を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

[0014]

アセタール誘導ポリマーを製造するためのより特定の方法はフェノール系ポリマーを利用する。フェノール系ポリマーは、ピニルエーテルおよびアルコールの両方からの混合アセタールをもつポリマーを製造するために、酸性触媒の存在下でピニルエーテルおよびアルコールと反応させる。フェノール系ポリマー(ポリヒドロキシスチレン)のこうした一つのアセタール反応は以下に示す式1のモノマー単位によって表される。

$$\bigcap_{OH} \bigcap_{R} \bigcap_{R_{0} \cap C = CH - OR_{1} \atop H^{1}} \bigcap_{R_{0} \cap R_{2} \atop R_{0} \cap R_{1}} \bigcap_{R_{0} \cap R_{2} \atop R_{0} \cap R_{2}} \bigcap_{R_{1} \cap R_{1} \atop OH} \bigcap_{C} \bigcap_{R_{1} \cap R_{1} \atop R_{0} \cap R_{2} \atop R_{1} \cap R_{2} \atop OH} \bigcap_{C} \bigcap_{R_{1} \cap R_{2} \atop R_{1} \cap R_{2} \atop C} \bigcap_{R_{2} \cap R_{2} \atop C} \bigcap_{R_{1} \cap R_{2} \atop C} \bigcap_{R_{2} \cap R_{2} \atop C} \bigcap_{R_{1} \cap R_{2} \atop C} \bigcap_{R_{2} \cap R_{2}$$

式中、Rは、水素、好ましくは炭素原子数 $1\sim6$ のアルキル基、好ましくは炭素原子数 $1\sim6$ のアルコキシ基、またはアセトキシ基であり、R₁ は、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェニルメチレンである。

式中、各R。およびR1。 は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R2 は、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する 置換フェニルメチレンであり、

式中、R。およびR。 は上で定義されている;R におよびR。は同じではなく、R。およびR には、同じであるか、あるいは独立して好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式アルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいはR。とR にを組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能であり、R には、水素またはメチルであり、x = $0.6\sim1.0$ 、 $y=0\sim0.4$ 、x+y=1.0、 $0<a\leq0.6$ 、 $0<b\leq0.6$ 、 $0<a+b\leq0.6$ 、 $0.4\leq c+d<1.0$ 、a+b+c+d=1.0であり、ここですべての数値はモル分率を表している。

[0015]

本発明の方法は、一つの反応により現場で(in situ)で製造される混合アセタールに基づく新しいクラスのポリマーを提供する。混合アセタールポリマーは 合成が安価であり、容易に再現可能である。

[0016]

本発明はまた、得られた混合アセタールポリマーをホト酸発生剤とブレンドし

、溶媒に溶解して化学的に増幅されたレジスト組成物の製造を提供する。染料、 界面活性剤および安定剤などの他の成分をレジスト組成物に添加することができ る。

[0017]

本発明は、混合アセタールポリマーをもつ化学的に増幅されたレジスト組成物を形成する工程と、前記レジスト組成物を基板に被覆する工程と、化学線にレジスト被覆済み基板を画像状に霧光させる工程と、前記レジスト被覆済み基板を現像することによりレジスト画像を形成する工程とを含むパターンを形成する方法をさらに提供する。

[0018]

本発明の他の目的および更なる目的、利点ならびに特徴は、以下の明細書を参 照することにより理解されるであろう。

[0019]

詳細な説明および実施形態

本発明によるアセタール誘導ポリマーを製造する方法、アセタールポリマーを 含有するフォトレジスト組成物およびレジスト画像を製作するプロセス工程は以 下の通りである。

[0020]

アセタール誘導ポリマーを製造する方法は、ビニルエーテルおよびアルコール の両方からのアセタールをもつポリマーを製造するために、酸性触媒の存在下で ヒドロキシル系ポリマーをピニルエーテルおよびアルコールと反応させることを 含む。好ましいヒドロキシル系ポリマーはフェノール系ポリマーであり、更に好 ましいフェノール系ポリマーはノボラックおよびポリヒドロキシスチレン(PH S)である。フェノール系ポリマー PHSのこうした一つの反応は前述した、以 下の式1によって表される。

式中、Rは、水素、好ましくは炭素原子数1~6のアルキル基、好ましくは炭素原子数1~6のアルコキシ基、またはアセトキシ基であり、R,は、好ましくは炭素原子数1~10の直鎖、分岐または環式アルキル基、好ましくは炭素原子数1~10の直鎖、分岐または環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェニルメチレンである。

式中、各 R_0 および R_{10} は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である; R_2 は、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、 R_9 および R_{10} は上で定義されている; R_1 および R_2 は同じではなく、 R_6 および R_7 は、同じであるか、あるいは独立して水素、好ましくは炭素原子数 $1\sim 10$ の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim 10$ の直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基、置換

ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいは R。と R,を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能であり、R: は、水素またはメチルであり、x=0. $6\sim1$. 0、 $y=0\sim0$. 4、x+y=1. 0、0 < $a\leq0$. 6、0 < $b\leq0$. 6、0 < a+b+c+d=1. 0 であり、ここですべての数値はモル分率を表している。

[0021]

適するあらゆるビニルエーテルをアセタール化プロセスのために用いることができる。R:によって表されるアルキル基には、メチル、エチル、プロピル、プチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどが挙げられるが、それらに限定されない。R:によって表されるハロアルキルのハロゲンには、塩素、臭素、弗素および沃素が挙げられる。R:によって表されるアラルキル基には、ベンジル、フェネチル、フェニルプロピル、メチルベンジル、メチルフェネチルおよびエチルベンジルが挙げられるが、それらに限定されない。好ましいR:基は、好ましくは炭素原子1~6の第二および第三アルキルである。更に好ましいR:基は第三アルキルである。最も好ましいR:は第三アナルである。

[0022]

R。およびR,によって表されるアルキル基には、メチル、エチル、プロピル、プチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどが挙げられるが、それらに限定されない。R。およびR,によって表されるハロアルキルのハロゲンには、塩素、臭素、弗素および沃素が挙げられる。R。およびR,によって表されるアラルキル基には、ベンジル、フェネチル、フェニルプロピル、メチルベンジル、メチルフェネチルおよびエチルベンジルが挙げられるが、それらに限定されない。鎖を形成するR。およびR,の組合せ基の適する例は、シクロヘキサン、メチルシクロヘキサンおよびピランである。好ましいR。およびR,は水素である。

[0023]

より好ましいビニルエーテルは、容易に入手できる汎用ビニルエーテル、すな

わちエチルビニルエーテル、第三ブチルビニルエーテルおよびシクロヘキシルビ ニルエーテルである。

[0024]

[0025]

Rによって表されるアルキル基には、メチル、エチル、プロピル、ブチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどなどが挙げられるが、それらに限定されない。Rによって表されるアルコキシ基には、メトキシ、エトキシ、プロポキシ、ブトキシ、アモキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノノキシ、デコキシ、ウンデコキシおよびドデコキシなどが挙げられるが、それらに限定されない。好ましいR基は水素または第三ブチルである。

[0026]

好ましい%アセタール化((a+b)/(a+b+c))×100は約10%~約35%である。ポリマー中に含まれる好ましい% R_2 は、全アセタール化の約80%~100%未満である。

[0027]

実施形態はDUVリトグラフィー用の樹脂として一般に用いられるポリヒドロ キシスチレン (PHS) に基づいているが、アセタール化がヒドロキシル座で起 きるので、この方法を用いて混合アセタールを製造するために、あらゆるヒドロ キシル含有ポリマーを使用できることに留意するべきである。例えば、フェノー ル樹脂をもつ代わりに、シクロヘキサノールまたは混合シクロヘキサノールーフ ェノール系ポリマーを用いることができる。アセタール基はヒドロキシル座で生 成され、シクロヘキサンに基づく混合アセタールポリマーが生成する。

[0028]

このプロセスのために適するその他のポリマーは、フォトレジスト用の樹脂と して一般に用いられるノボラックである。ノボラックのヒドロキシル座も本方法 でアセタール化することが可能である。

[0029]

ポリマーの各反復単位が1個以上のヒドロキシル基を含むことが可能であることも留意されるべきである。例えば、ポリマーは、ジヒドロキシフェニル反復単位を含むことが可能である。アセタール化反応は、総合的なアセタール化度に応じて、ヒドロキシル座上で全く起きないか、いずれか一方上で起きるか、あるいは両方上で起きることが可能である。

[0030]

ヒドロキシル座の総合的なアセタール化度は、原料中に用いられるビニルエーテルの量により調節される。アセタール誘導ポリマー中のR: およびR: の相対的な比は、原料中にそれぞれ用いられるビニルエーテルとアルコールの相対的な量によって調節することができる。ポリマー中のR: アセタールの割合は、原料中で用いられるアルコールR: OHの量が増加するにつれてR: を基準にして増加する。

[0031]

代表的な合成手順において、ヒドロキシル系ポリマーまたはコポリマーは、適するあらゆる溶媒または溶媒混合物に溶解される。存在する溶媒は、反応条件下で不活性であるのがよい。適する溶媒には、芳香族炭化水素、塩素化炭化水素、エステルおよびテトラヒドロフラン (THF) などのエーテル、1, 4ージオキサン、塩化メチレン、プロビレングリコールモノメチルエーテルアセテート (PGMEA) およびジメトキシエタンを挙げることができる。反応のために好まし

い溶媒はTHFおよびPGMEAである。

[0032]

こうした溶媒にビニルエーテルおよびアルコールを室温で添加する。溶媒に溶解されるポリマーまたはコポリマーの必要な濃度は、約10重量%~約60重量%である。ビニルエーテルの量は、フェノール系ヒドロキシル基の全モルの約0.01モル%か5約60モル%まで異なることが可能である。ビニルエーテルの好ましい範囲は、約15モル%か5約40モル%である。用いられるアルコールの量は、用いられるビニルエーテルの量の約0.01モル%か5約110モル%まで異なることが可能である。

[0033]

酸性触媒は添加され、反応混合物は放置して約4~約24時間にわたり攪拌される。好ましい反応時間は約20時間である。塩酸、硫酸、パラートルエンスル ホン酸およびピリジニウムーパラートルエンスルホネートなどの適するあらゆる酸性触媒を反応のために用いることができる。好ましい酸性触媒はピリジニウムーパラートルエンスルホネートである。酸性触媒は、ポリマーの重量に対して約0.001重量%~約3.0重量%の範囲の量で添加することができる。添加される酸性触媒の好ましい量は約0.005重量%である。酸性触媒は、通常は有機塩基または無機塩基で冷却(quench)される。アセタール誘導ヒドロキシスチレン系ポリマーは、非溶媒中での沈殿によるなどの適するあらゆるポリマー単維手順によって単離される。

[0034]

酸性触媒の存在下でビニルエーテルおよびアルコールとヒドロキシル系ポリマーとを反応させることにより本発明を説明しているが、先ずビニルエーテルおよびアルコールをモノマーと反応させ、次に、その後のモノマー混合物を重合することによりアセタールポリマーを製造することもできることは理解されるであろう。例えば、好ましい方法は、混合アセタールモノマーを生成させるために、ヒドロキシスチレンモノマーを生成させ、酸性触媒の存在下で前記モノマーをビニルエーテルおよびアルコールと反応させることであろう。モノマーの混合物は、その後、混合アセタールポリマーを生成させるために、ラジカル開始を用いるな

(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-511505 (P2002-511505A)

(43)公表日 平成14年4月16日(2002.4.16)

			The same of the sa		
(51) Int.Cl. ⁷		裁別記号	FΙ		テーマコート* (参考)
C08F			C 0 8 F 12/24		2H025
CO8G GO3F	8/14 7/039		C08G 8/14		4 J 0 3 3
GUSF	7/039	6 0 1	G03F 7/039	601	4 J 1 0 0

審查請求 有 予備審查請求 有 (全 46 頁)

(21)出願番号 特局2000-543513(P2000-543513) (86) (22) 出願日 平成11年4月14日(1999.4.14) (85)翻訳文提出日 平成12年10月6日(2000, 10.6) (86)国際出願番号 PCT/US99/08094 (87) 国際公開番号 WO99/52957 (87) 国際公開日 平成11年10月21日(1999.10.21) (31)優先権主張番号 09/059,864 (32) 優先日 平成10年4月14日(1998, 4, 14) (33)優先権主張団 米国 (US) EP(AT. BE, CH, CY, (81)指定国 DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE), JP, KR

(71)出職人 アーデ・スペシャルティ・ケミカルズ・イ ンコーポレイテッド アメリカ合衆国 コネティカット州 08858 /ーウォーク メリットセヴン 501 (72)発明者 サンジェイ マリック

アメリカ合衆国 マサチューセッツ州 02703 アトゥルボロ ゲイウッドアベニ

ユ 40 (74)代理人 弁理士 中林 幹雄

最終質に続く

(54)【発明の名称】 アセタール誘導とドロキシル芳香族ポリマーの製造および放射線感受性配合物における族ポリマーの用途

(57) 【要約1 本発明は、酸性触媒の存在下でヒドロキシル含有ポリマ ーまたはモノマーをビニルエーテルおよびアルコールと 反応させることによる混合アヤタールポリマーを動造す る方法を提供する。本発明の方法は、現場で (in sit u) 一つの反応により製造される混合アセタールに基づ く新しいクラスのポリマーを提供する。混合アセタール ポリマーは、合成が安価であると共に容易に再現可能で ある。得られた混合アセタールポリマーは、化学的に増 幅されたレジスト組成物を製造するためにホト酸発生剤 とプレンドされ溶媒に溶解される。パターンを形成する 方法は、化学的に増幅されたレジスト組成物を形成する 工程と、前記レジスト組成物を基板に被覆する工程と、 化学線にレジスト被覇済み基板を頭像状に截光させる工 程と、前記レジスト被覆済み基板を現像することにより レジスト画像を形成する工程とを含む。

【特許請求の範囲】

【請求項1】 モノマー単位の少なくとも一個が一個以上のペンダントヒド ロキシル基を含む一個以上のモノマー単位をもつポリマーを生成させる工程と

酸性触媒の存在下で前記ポリマーと式R。R,C=CH-OR,のビニルエー テルおよび式R。OHのアルコールとを反応させると工程と、

を含むアセタール樹脂を製造する方法。

上記の二式中、R1 は、直鎖、分岐または環式アルキル基、直鎖、分岐または 環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェ ニルメチレンであり、

式中、各R。およびR₁。 は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R₂ は、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、R。およびR1。 は上で定義されている;R1 およびR2 は互いに異なり、R6 およびR7 は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あいはR6 とR7 を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

【請求項2】 前記ポリマーがフェノール系ポリマーである、請求項1に記載の製造方法。

【請求項3】 前記ポリマーがノボラック系ポリマーまたはヒドロキシスチレン系ポリマーである、請求項2に記載の製造方法。

【請求項4】 前記ポリマーがヒドロキシスチレン系ポリマーである、請求 項3に記載の製造方法。

【請求項5】 前記ヒドロキシスチレン系ポリマーが以下のモノマー単位を 有する、請求項4に記載の製造方法。

式中、Rは、水素、アルキル、アルコキシまたはアセトキシである:R₁₁ は 水素またはメチルであり、x=0. $6\sim1$. 0、 $y=0\sim0$. 4、x+y=1. 0であり、ここですべての数値はモル分率を表している。

【請求項6】 R: がエチル、第三ブチルまたはシクロヘキシルであり、R およびR: が水素である、請求項5に記載の製造方法。

【請求項7】 前記ヒドロキシスチレン系ポリマーが以下のモノマー単位を 有する、請求項4に記載の製造方法。

式中、Rは、水素、アルキル、アルコキシまたはアセトキシである; R: は 水素またはメチルであり、R: は、水素原子、メチルまたはエチル基、あるいは 式一CH2 - COOR。を有する基であり、R: およびR: は、同じであるか、 あるいは独立して直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロ ゲン化アルキル基、芳香族基、あるいは直鎖または環式 α -アルコキシアルキルであり、x=0. $6\sim1$. 0、 $y=0\sim0$. 4、 $z=0\sim0$. 4、x+y+z=1. 0であり、ここですべての数値はモル分率を表している。

【請求項8】 R: がエチル、第三プチルまたはシクロヘキシルであり、R

○、R: およびR: が水素である、請求項7に記載の製造方法。

【請求項9】 R: が第三ブチルである、請求項8に記載の製造方法。

【請求項10】 R₁ がメチル、エチル、2ーヒドロキシエチル、プロピル 、イソプロピル、nーブチル、tーブチル、2ーエチルヘキシルまたはテトラヒ ドロピラニルである、請求項7に記載の製造方法。

【請求項11】 前記酸性触媒が塩酸、硫酸、パラートルエンスルホン酸およびピリジニウムーパラートルエンスルホネートから成る群から選択される、請求項1に記載の製造方法。

【請求項12】 得られた前記アセタール樹脂が R_2 アセタール基のみを含む、請求項1に記載の製造方法。

【請求項13】 一個以上のヒドロキシル基を含むモノマーを生成させる工程と、

酸性触媒の存在下で一個以上のヒドロキシル基を含む前記モノマーと式R。R $_{7}$ C = C H $_{9}$ R $_{1}$ O H $_{9}$ アルコールとを反応させると工程と、

を含むアセタールモノマーの混合物を製造する方法。

上記の二式中、R1 は、直鎖、分岐または環式アルキル基、直鎖、分岐または 環式ハロアルキル基、またはアラルキル基、あるいは以下の一般構造を有する置 換フェニルメチレンであり、

式中、各R。および R_{10} は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である; R_{2} は、直鎖、分岐または環式アルキル基

、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般 構造を有する置換フェニルメチレンであり、

式中、R。およびR; は上で定義されている:R。およびR; は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいはR。とR; を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

【請求項14】 一個以上のヒドロキシル基を含む前記モノマーがフェノールモノマーである、請求項13に記載の製造方法。

【請求項15】 前記モノマーがヒドロキシスチレンである、請求項14に記載の製造方法。

【請求項16】 請求項13に記載の製造方法によって製造されるアセタールモノマーの混合物を形成する工程と、

アセタールモノマーの前記混合物を重合して混合アセタールポリマーを生成させる工程と、

を含む混合アセタールポリマーを製造する方法。

【請求項17】 アセタールモノマーの前記混合物がヒドロキシスチレン系 混合アセタールモノマーの混合物を含む、請求項16に記載の製造方法。

【請求項18】 請求項1に記載の製造方法によって製造されるアセタール 樹脂。

【請求項19】 請求項2に記載の製造方法によって製造されるアセタール 樹脂。

【請求項20】 R_1 がエチル、第三プチルまたはシクロヘキシルであり、 R_6 および R_7 が水素である、請求項19に記載の樹脂。

【請求項21】 以下のモノマー単位を有するポリマーを含む混合アセタール誘導ポリマー。

式中、Rは、水素、アルキル、アルコキシまたはアセトキシであり、R:は、 直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アラ ルキル基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、各R。およびR₁₀ は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R₂ は、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、R。およびR1。 は上で定義されている;R1 およびR2 は互いに異なり、R3 は、水素原子、メチルまたはエチル基、あるいは式-CH2 -COOR6 を有する基であり、R4 およびR6 は、同じであるか、あるいは独立して直鎖

、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基あるいは直鎖または環式 α 一アルコキシアルキル基であり、R。は原子価結合またはメチレンであり、R。およびR τ は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、直鎖、分岐または環式アルキル基、直鎖、分岐または環式アルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいはR。とR τ を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能であり、R τ は、水素またはメチルであり、 τ 0 τ

【請求項22】 R。、R,およびR, が水素であり、R,がエチル、第 三ブチルまたはシクロヘキシルである、請求項21に記載の混合アセタールポリ マー。

【請求項23】 R₄ がメチル、エチル、2-ヒドロキシエチル、プロピル 、イソプロピル、n-ブチル、t-ブチル、2-エチルへキシルまたはテトラヒ ドロピラニルである、請求項22に記載の混合アセタールポリマー。

【請求項24】 R: が2, 2, 3, 3ーテトラフルオロプロピル、シクロ ヘキシルエチル、(1R) - (-) -ノピル、ベンジル、フェネチル、1ーナフ チル、2ーナフチルまたはナフチルエチルである、請求項22に記載の混合アセ タールポリマー。

【請求項25】 R: が第三プチルであり、R: がフェネチルであり、dが 0であり、eが0であり、fが0であり、0. $1 \le ((a+b) / (a+b+c)) \le 0$. 35、0. $8 \le (b / (a+b)) < 1$ である、請求項22に記載の 混合アセタールポリマー。

【請求項26】 R₊ が第三プチルであり、R₊ がフェネチルであり、e が 0 であり、f が0 であり、d が 0.05 ~ 0.25 であり、R が水素であり、0 .1 \leq ((a+b) / (a+b+c)) \leq 0.35、0.8 \leq (b / (a+b)) < 1 である、請求項22に記載の混合アセタールボリマー。

【請求項27】 R: が第三プチルであり、R $_2$ がフェネチルであり、eが 0であり、fが0であり、dが0.05~0.25であり、Rが第三プチルであり、0.1 \leq ((a+b)/(a+b+c)) \leq 0.35、0.8 \leq (b/(a+b))<1である、請求項22に記載の混合アセタールポリマー。

【請求項28】 R: が第三プチルであり、R: がシクロヘキシルエチルであり、eが0であり、fが0であり、dが0.05~0.25であり、Rが第三プチルであり、0.1 \leq ((a+b)/(a+b+c)) \leq 0.35、0.8 \leq (b/(a+b))<1である、請求項22に記載の混合アセタールポリマー。

【請求項29】 R: が第三プチルであり、R: がフェネチルであり、dが 0であり、fが0であり、 $0 < e \le 0$. 4、R: が水素であり、R: が第三プチルであり、0. $1 \le ((a+b) / (a+b+c)) \le 0$. 35、0. $8 \le (b / (a+b)) < 1$ である、請求項22に記載の混合アセタールポリマー。

【請求項30】 R: が第三プチルであり、R: がフェネチルであり、dが 0であり、0 < f \leq 0.08、eが0であり、R: が原子価結合であり、0.1 \leq ((a+b) / (a+b+c)) \leq 0.35、0.8 \leq (b/(a+b)) < 1である、請求項22に記載の混合アセタールボリマー。

【請求項31】 (a) 以下のモノマー単位を有するアセタール誘導ポリマーと、

(式中、Rは、水素、アルキル、アルコキシまたはアセトキシであり、R,は、 直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロアルキル基、アラ ルキル基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、各R。およびR₁。 は、同じであるか、あるいは独立して水素または炭素原子数 $1 \sim 6$ のアルキル基である; R_2 は、直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する超換フェニルメチレンであり、

$$R_{10}$$
 R_{9}
 $C-R_{9}$

式中、 R_{\circ} および $R_{1\circ}$ は上で定義されている; R_{1} および R_{2} は互いに異なり、 R_{3} は、水素原子、メチルまたはエチル基、あるいは式ー CH_{2} -COOR。を有する基であり、 R_{4} および R_{8} は、同じであるか、あるいは独立して直鎖、分岐または環式アルキル基、直鎖、分岐または環式ハロゲン化アルキル基、芳香族基あるいは直鎖または環式 α - アルコキシアルキル基であり、 R_{6} は原子価給合またはメチレンであり、 R_{6} および R_{7} は、同じであるか、あるいは独立して水素、直鎖、分岐または環式アルキル基、直鎖、分岐または環式アルキル基、アリール基、アリール基、アラルキル基または置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいは R_{6} と R_{7} を組み合わせると、アルキレン鎖、アルキル関換アルキレン鎖、またはオキシアルキレン釘を形成することが可能であり、 R_{11} は、水素またはメチルであり、0 < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a < a

- (b) ホト酸発生剤化合物と、
- (c)成分(a)および(b)を溶解できる溶媒と、を含むフォトレジスト組成物。

【請求項32】 R。、R,およびRıı が水素であり、Rıがエチル、第 三ブチルまたはシクロヘキシルである、請求項31に記載のフォトレジスト組成 物。

【請求項33】 R・がメチル、エチル、2ーヒドロキシエチル、プロビル、イソプロピル、nーブチル、tーブチル、2ーエチルへキシルまたはテトラヒドロピラニルである、請求項32に記載のフォトレジスト組成物。

【請求項3 4】 Rz が2, 2, 3, 3-テトラフルオロプロピル、シクロ ヘキシルエチル、(1 R) - (-) - ノピル、ベンジル、フェネチル、1-ナフチル、2-ナフチルまたはナフチルエチルである、請求項32に記載のフォトレジスト組成物。

【請求項35】 R₁ が第三ブチルであり、R₂ がフェネチルであり、dが 0 であり、eが0 であり、f が0 であり、0. $1 \le ((a+b) / (a+b+c)) \le 0.35$ 、0. $8 \le (b / (a+b)) < 1$ である、請求項32 に記載の フォトレジスト組成物。

【請求項36】 R: が第三ブチルであり、R: がフェネチルであり、eが 0であり、fが0であり、dが0. $05\sim0$. 25であり、Rが水素であり、0 . $1\leq((a+b)/(a+b+c))\leq0$. 35、0. $8\leq(b/(a+b))<1$ である、請求項32に記載のフォトレジスト組成物。

【請求項37】 R₁ が第三プチルであり、R₂ がフェネチルであり、e が 0 であり、f が0 であり、d が 0. 0 5 \sim 0. 2 5 であり、R が第三プチルであり、0. 1 \leq ((a+b) / (a+b+c)) \leq 0. 3 5、0. 8 \leq (b / (a+b)) <1 である、請求項3 2 に記載のフォトレジスト組成物。

【請求項38】 R₁ が第三プチルであり、R₂ がシクロヘキシルエチルであり、e が0であり、f が0であり、dが0.05~0.25であり、Rが第三プチルであり、0.1 \leq ((a+b)/(a+b+c)) \leq 0.35、0.8 \leq (b/(a+b))<1である、請求項32に記載のフォトレジスト組成物。

【請求項39】 R₁ が第三ブチルであり、R₂ がフェネチルであり、dが 0であり、fが0であり、 $0 < e \le 0$. 4、R₃ が水素であり、R₄ が第三ブチ ルであり、0. $1 \le ((a+b) / (a+b+c)) \le 0$. 35、0. $8 \le (b+c)$ /(a+b)) <1である、請求項32に記載のフォトレジスト組成物。

【請求項40】 R₁ が第三プチルであり、R₂ がフェネチルであり、dが 0であり、 $0 < f \le 0$. 0 8、e が0であり、R₃ が原子価結合であり、0. $1 \le ((a+b) / (a+b+c)) \le 0$. 3 5、0. $8 \le (b / (a+b)) < 1$ である、請求項3 2 に記載のフォトレジスト組成物。

【請求項41】 前記ホト酸発生剤がオニウム塩である、請求項32に記載のフォトレジスト組成物。

【請求項42】 前記ホト酸発生剤化合物が以下の式から成る群から選択される、請求項31に記載のフォトレジスト組成物。

_

【請求項43】 前記ホト酸発生剤の量が混合アセタールポリマーの重量の約1%~約10%である、請求項31に記載のフォトレジスト組成物。

【請求項44】 塩基添加剤をさらに含む、請求項31に記載のフォトレジスト組成物。

【請求項45】 界面活性剤をさらに含む、請求項31に記載のフォトレジスト組成物。

【請求項46】 染料をさらに含む、請求項31に記載のフォトレジスト組成物。

【請求項47】 (a)請求項31に記載のフォトレジスト組成物を基板に被覆すると、

- (b) 化学線に前記フォトレジスト組成物を画像状に露光させると、
- (c) 現像剤で前記フォトレジスト組成物を現像してレジスト画像を製作すると

を含む基板上にレジスト画像を製作する方法。

【請求項48】 前記化学線が遠紫外線である、請求項47に記載の方法。 【請求項49】 前記現像剤が水酸化テトラメチルアンモニウムを含む、請 求項47に記載の方法。

【請求項50】 工程(b) と(c) との間で前記フォトレジストおよび基 板を約50 \mathbb{C} ~約150 \mathbb{C} の温度に約5~約300秒にわたり加熱する工程をさらに含む、請求項47に記載の方法。

【発明の詳細な説明】

[0001]

発明の分野

本発明は、リトグラフィー用のフォトレジスト樹脂として画像形成産業において用途を有するアセタール誘導ポリマーに関すると共に、前記アセタール誘導ポリマーを製造する方法に関する。

[0002]

発明の背景

リトグラフィー用の光の波長は、現在および将来のエレクトロニクス素子(de vice)のために必要な機能的サイズをもたらすために遠紫外線(DUV)領域へと短くなってきた。エレクトロニクス産業は、DUV領域に適応する新規レジストを開発しつつある。こうしたレジストの一つのクラスは、化学的に増幅されたレジストである。

[0003]

化学的に増幅されたレジスト配合物の主成分は、ホト酸(photoacid)発生剤化合物とポリマー樹脂と光発生剤および樹脂を溶解できる溶媒である。化学的に増幅された多くのポジレジストの場合、ポリマー樹脂は、ポリマー樹脂を水性現像剤に不溶にする酸不安定基を含む。照射するとホト酸発生剤化合物は、酸不安定基を開裂する酸を生成し、よって水溶性であるポリマー樹脂が生じる。化学的に増幅されたレジストは、多大な関心を集めてきており、例えば、米国特許第5,069,997号、第5,035,979号、第5,670,299号、第5,558,978号、第5,468,589号および第5,389,494号など、これらの組成物を論じている多くの特許が入手できる。

[0004]

化学的に増幅されたレジスト中で樹脂として用いることができるポリマーの一 つの群はアセタール誘導ポリマーである。フェノール樹脂のアルカリ溶解性は、 ヒドロキシル基をアセタール基に転化することにより大幅に抑制される。一般に 、アセタールフェノール樹脂は、酸性触媒の存在下でフェノール樹脂をビニルエ ーテルと反応させることにより製造される。 [0005]

アセタール樹脂は、その後、化学的に増幅されたレジスト生成物を生成させる ためにホト酸発生剤化合物および溶媒と合わせて配合される。照射すると発生し た酸はアセタール基を開裂し、水性現像剤に可溶であるフェノール樹脂が生成す る。

[0006]

アセタール誘導ポリマーの製造に関わる一つの問題は、アセタールを製造する ために用いることができる汎用ビニルエーテルが現在極めて不十分な数量しかな いことである。中間体の合成によって他のアセタール官能基を生成させることは 可能であるが、これは、アセタールポリマーの製造のための総合的なプロセスを 比較的複雑にし、高価にすると共に再現可能の見込みをなくす一連の反応を必要 とするであろう。従って、不十分な数量の汎用ビニルエーテルは、アセタールポ リマーの用途に大幅な削約を加えている。少数のアセタール基しか容易且つ安価 に生成させることができないからである。

[0007]

ボリマー上に極めて多様なアセタール基を再現可能且つ経済的に生成させることが可能であることは有利であろう。アルカリ可溶性、耐エッチング性、膜収縮性、温度安定性、粘着力、感光性など種々のレジスト特性は、適切なアセタール自能基の選択によって変えることができる。さらに、1 個より多いアセタール基をポリマー上に容易に生成させることができるならば、これは、ポリマー樹脂を特定の用途に適応させることを可能にするであろう。例えば、一つのアセタール基は、感光性を高めるために用いることができる一方で、もう一つのアセタール基は耐エッチング性を高めるために用いることができる。ポリマー上に極めて多様なアセタール基を容易に生成させることができれば、アセタールポリマーに対する多くの用途を大幅に拡大することができる。

[0008]

本発明者らは、多様なアセタール誘導ポリマーを容易に製造するための再現性 のある方法を開発した。

[0009]

本発明のもう一つの目的は、フォトレジスト用の樹脂として用途を有する極めて多様なアセタール誘導ポリマーを製造するための新規、安価、且つ再現性のある方法を提供することである。

[0010]

本発明のさらになる目的は、混合アセタールに基づく極めて多様なアセタール 誘導ポリマーを製造する方法を提供することである。本発明のなおさらなる目的 は、フォトレジスト用の樹脂として用途を有する多様な混合アセタール誘導ポリ マーを提供することである。本発明のなおもう一つの目的は、混合アセタール誘 導ポリマーを含有する新規フォトレジスト組成物、および超小型電子素子を製造 するための写真印刷画像形成方法におけるこうした新規フォトレジスト組成物の 用途を提供することである。本発明は、先行技術に対して多くの重要な利点をも つ。第一に、本発明は、混合アセタールに基づく新しいクラスのポリマーを提供 する。ポリマー樹脂の必要な特性は、適切なアセタール官能基の中から選択する ことにより適応させることができる。また、ポリマー中の異なるアセタールの相 対的割合は、原料中の試薬の相対的割合を変えることにより容易に変更すること ができる。混合アセタールの割合を変えると、ポリマー樹脂の特性をさらに適応 させることができる。加えて、混合アセタールポリマー組成物の再現性は優れて いる。再現性のあるポリマー組成物は、レジストの特性がバッチ間で変動しては ならないので商業的に有望なレジスト配合物を製造するために極めて重要である 。さらに、混合アセタールプロセスは、反応のために必要な中間体が市販されて おり、最終アセタールポリマーを製造するために唯一の合成反応しか必要とされ ないので比較的安価である。アセタール基が容易に入手可能なビニルエーテルの 一つからのものでないならば、以前は最終単一アセタールポリマーを製造するた めに一般には多くの合成反応を要したであろう。

[0011]

本発明は、後述するにつれて明らかになるであろう多くの別の利点も提供する

[0012]

発明の概要

本発明は、比較的簡単、安価且つ再現性のある方式で極めて多様なアセタール 誘導ポリマーを容易に製造する。本発明は、混合アセタールに基づく新しいクラ スのポリマーも製造する。アセタールポリマーは、次に、エレクトロニクス素子 の製造において用いられる化学的に増幅されたレジスト組成物を配合するために 、溶媒中でホト酸発生剤とブレンドすることができる。このプロセスによって製 造することができるアセタール誘導ポリマーの多様性のおかげで、特定の用途の ために適応された適切なアセタール官能基を選択することにより種々のリトグラ フィーレジストの特性を変えることがより容易になる。

[0013]

本発明によるアセタール樹脂を製造するための一般的方法は、モノマー単位の 少なくとも一個が一個以上のペンダントヒドロキシル基を含む一個以上のモノマ 一単位をもつポリマーを生成させる工程と、酸性触媒の存在下で前記ポリマーと 式R, R。C=CH-OR,のピニルエーテルおよび式R。OHのアルコールと を反応させると工程と、を含む。

上記の二式中、 R_1 は、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環 式アルキル基、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式ハロアル キル基、アラルキル基、あるいは以下の一般構造を有する置換フェニルメチレン であり、

$$R_{10}$$
 R_{9}
 $C-R_{9}$

式中、各R。およびR₁₀ は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R₂ は、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、または芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、 R_0 および R_1 。 は上で定義されている; R_1 および R_2 は互いに異なり、 R_0 および R_7 は、同じであるか、あるいは独立して水素、好ましくは炭素原子数 $1\sim 1$ の直鎖、分岐または環式アルキル基、ゲましくは炭素原子数 $1\sim 1$ の直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基、置換ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいは R_0 と R_7 を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能である。

[0014]

アセタール誘導ポリマーを製造するためのより特定の方法はフェノール系ポリマーを利用する。フェノール系ポリマーは、ピニルエーテルおよびアルコールの両方からの混合アセタールをもつポリマーを製造するために、酸性触媒の存在下でピニルエーテルおよびアルコールと反応させる。フェノール系ポリマー(ポリヒドロキシスチレン)のこうした一つのアセタール反応は以下に示す式1のモノマー単位によって表される。

$$\bigcap_{OH} \bigcap_{R} \bigcap_{R_0 \cap C = CH - OR_1 \atop H^*} \bigcap_{R_0 \cap R_1 \atop R_0 \cap$$

式中、Rは、水素、好ましくは炭素原子数 $1\sim6$ のアルキル基、好ましくは炭素原子数 $1\sim6$ のアルコキシ基、またはアセトキシ基であり、R₁ は、好ましくは炭素原子数 $1\sim1$ のの直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ の直鎖、分岐または環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェニルメチレンである。

式中、各R。およびR。。は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R。は、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式ハロゲン化アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

[0015]

本発明の方法は、一つの反応により現場で(in situ)で製造される混合アセタールに基づく新しいクラスのポリマーを提供する。混合アセタールポリマーは 合成が安価であり、容易に再現可能である。

[0016]

本発明はまた、得られた混合アセタールポリマーをホト酸発生剤とブレンドし

、溶媒に溶解して化学的に増幅されたレジスト組成物の製造を提供する。 染料、 界面活性剤および安定剤などの他の成分をレジスト組成物に添加することができ る。

[0017]

本発明は、混合アセタールポリマーをもつ化学的に増幅されたレジスト組成物を形成する工程と、前記レジスト組成物を基板に被覆する工程と、化学線にレジスト被覆済み基板を画像状に露光させる工程と、前記レジスト被覆済み基板を現像することによりレジスト画像を形成する工程とを含むパターンを形成する方法をさらに提供する。

[0018]

本発明の他の目的および更なる目的、利点ならびに特徴は、以下の明細書を参 照することにより理解されるであろう。

[0019]

詳細な説明および実施形態

本発明によるアセタール誘導ポリマーを製造する方法、アセタールポリマーを 含有するフォトレジスト組成物およびレジスト画像を製作するプロセス工程は以 下の通りである。

[0020]

アセタール誘導ポリマーを製造する方法は、ビニルエーテルおよびアルコール の両方からのアセタールをもつポリマーを製造するために、酸性触媒の存在下で ヒドロキシル系ポリマーをビニルエーテルおよびアルコールと反応させることを 含む。好ましいヒドロキシル系ポリマーはフェノール系ポリマーであり、更に好 ましいフェノール系ポリマーはノボラックおよびポリヒドロキシスチレン(PH S)である。フェノール系ポリマー PHSのこうした一つの反応は前述した、以 下の式1によって表される。

式中、Rは、水素、好ましくは炭素原子数 $1\sim6$ のアルキル基、好ましくは炭素原子数 $1\sim6$ のアルコキシ基、またはアセトキシ基であり、R₁ は、好ましくは炭素原子数 $1\sim1$ 0 の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0 の直鎖、分岐または環式ハロアルキル基、アラルキル基、あるいは以下の一般構造を有する置換フェニルメチレンである。

式中、各R。およびR。 は、同じであるか、あるいは独立して水素または炭素原子数 $1\sim6$ のアルキル基である;R。は、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim1$ 0の直鎖、分岐または環式アルキル基、芳香族基、あるいは以下の一般構造を有する置換フェニルメチレンであり、

式中、 R_0 および R_{10} は上で定義されている; R_1 および R_2 は同じではなく、 R_0 および R_7 は、同じであるか、あるいは独立して水素、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式アルキル基、好ましくは炭素原子数 $1\sim10$ の直鎖、分岐または環式ハロアルキル基、アリール基、アラルキル基、置換

ハロアリール、アルコキシアリールまたはアルキルアリール基、あるいは R。と R $_{7}$ を組み合わせると、アルキレン鎖、アルキル置換アルキレン鎖またはオキシアルキレン鎖を形成することが可能であり、 R $_{11}$ は、水素またはメチルであり、 x $_{1}$ 0、0 $_{1}$ 0、 $_{1}$ 0 $_{2}$ 0 $_{3}$ 0 $_{4}$ 0 $_{5}$ 0 $_{1}$ 0 $_{1}$ 0 $_{1}$ 0 $_{2}$ 0 $_{3}$ 0 $_{4}$ 0 $_{5}$ 0 $_{7$

[0021]

適するあらゆるビニルエーテルをアセタール化プロセスのために用いることができる。R, によって表されるアルキル基には、メチル、エチル、プロピル、プチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどが挙げられるが、それらに限定されない。R, によって表されるハロアルキルのハロゲンには、塩素、臭素、弗素および沃素が挙げられる。R, によって表されるアラルキル基には、ベンジル、フェネチル、フェニルプロピル、メチルベンジル、メチルフェネチルおよびエチルベンジルが挙げられるが、それらに限定されない。好ましいR, 基は第三アルキルである。最も好ましいR, は第三アルキルである。最も好ましいR, は第三アルキルである。

[0022]

R。およびR,によって表されるアルキル基には、メチル、エチル、プロピル、ブチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどが挙げられるが、それらに限定されない。R。およびR,によって表されるハロアルキルのハロゲンには、塩素、臭素、弗素および沃素が挙げられる。R。およびR,によって表されるアラルキル基には、ベンジル、フェネチル、フェニルプロピル、メチルベンジル、メチルフェネチルおよびエチルベンジルが挙げられるが、それらに限定されない。鎖を形成するR。およびR,の組合せ基の適する例は、シクロヘキサン、メチルシクロヘキサンおよびピランである。好ましいR。およびR,は水素である。

[0023]

より好ましいビニルエーテルは、容易に入手できる汎用ビニルエーテル。すな

わちエチルビニルエーテル、第三プチルビニルエーテルおよびシクロヘキシルビ ニルエーテルである。

[0024]

[0025]

Rによって表されるアルキル基には、メチル、エチル、プロピル、プチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどなどが挙げられるが、それらに限定されない。Rによって表されるアルコキシ基には、メトキシ、エトキシ、プロポキシ、ブトキシ、アモキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノノキシ、デコキシ、ウンデコキシおよびドデコキシなどが挙げられるが、それらに限定されない。好ましいR基は水素または第三プチルである。

[0026]

好ましい%アセタール化((a+b) / (a+b+c))×100は約10% ~約35%である。ポリマー中に含まれる好ましい% R_2 は、全アセタール化の約80%~100%未満である。

[0027]

実施形態はDUVリトグラフィー用の樹脂として一般に用いられるポリヒドロ キシスチレン (PHS) に基づいているが、アセタール化がヒドロキシル座で起 きるので、この方法を用いて混合アセタールを製造するために、あらゆるヒドロ キシル含有ポリマーを使用できることに留意するべきである。例えば、フェノー ル樹脂をもつ代わりに、シクロヘキサノールまたは混合シクロヘキサノールーフ ェノール系ポリマーを用いることができる。アセタール基はヒドロキシル座で生 成され、シクロヘキサンに基づく混合アセタールポリマーが生成する。

[0028]

このプロセスのために適するその他のポリマーは、フォトレジスト用の樹脂と して一般に用いられるノボラックである。ノボラックのヒドロキシル座も本方法 でアセタール化することが可能である。

[0029]

ポリマーの各反復単位が1個以上のヒドロキシル基を含むことが可能であることも留意されるべきである。例えば、ポリマーは、ジヒドロキシフェニル反復単位を含むことが可能である。アセタール化反応は、総合的なアセタール化度に応じて、ヒドロキシル座上で全く起きないか、いずれか一方上で起きるか、あるいは両方上で起きることが可能である。

[0030]

ヒドロキシル座の総合的なアセタール化度は、原料中に用いられるビニルエーテルの量により調節される。アセタール誘導ポリマー中のR:およびR:の相対的な比は、原料中にそれぞれ用いられるビニルエーテルとアルコールの相対的な量によって調節することができる。ポリマー中のR:アセタールの割合は、原料中で用いられるアルコールR:OHの量が増加するにつれてR:を基準にして増加する。

[0031]

代表的な合成手順において、ヒドロキシル系ポリマーまたはコポリマーは、適するあらゆる溶媒または溶媒混合物に溶解される。存在する溶媒は、反応条件下で不活性であるのがよい。適する溶媒には、芳香族炭化水素、塩素化炭化水素、エステルおよびテトラヒドロフラン(THF)などのエーテル、1,4ージオキサン、塩化メチレン、プロビレングリコールモノメチルエーテルアセテート(PGMEA)およびジメトキシエタンを挙げることができる。反応のために好まし

い溶媒はTHFおよびPGMEAである。

[0032]

こうした溶媒にピニルエーテルおよびアルコールを室温で添加する。溶媒に溶解されるポリマーまたはコポリマーの必要な濃度は、約10重量% \sim 約60重量%である。ピニルエーテルの量は、フェノール系ヒドロキシル基の全モルの約0. 01モル%から約60モル%まで異なることが可能である。ピニルエーテルの好ましい範囲は、約15モル%から約40モル%である。用いられるアルコールの量は、用いられるピニルエーテルの量の約0. 01モル%から約110モル% まで異なることが可能である。

[0033]

酸性触媒は添加され、反応混合物は放置して約4~約24時間にわたり攪拌される。好ましい反応時間は約20時間である。塩酸、硫酸、パラートルエンスルホン酸およびピリジニウムーパラートルエンスルホネートなどの適するあらゆる酸性触媒を反応のために用いることができる。好ましい酸性触媒はピリジニウムーパラートルエンスルホネートである。酸性触媒は、ポリマーの重量に対して約0.001重量%~約3.0重量%の範囲の量で添加することができる。添加される酸性触媒の好ましい量は約0.005重量%である。酸性触媒は、通常は有機塩基または無機塩基で冷却(quench)される。アセタール誘導ヒドロキシスチレン系ポリマーは、非溶媒中での沈殿によるなどの適するあらゆるポリマー単離手順によって単離される。

[0034]

酸性触媒の存在下でビニルエーテルおよびアルコールとヒドロキシル系ポリマーとを反応させることにより本発明を説明しているが、先ずビニルエーテルおよびアルコールをモノマーと反応させ、次に、その後のモノマー混合物を重合することによりアセタールポリマーを製造することもできることは理解されるであろう。例えば、好ましい方法は、混合アセタールモノマーを生成させるために、ヒドロキシスチレンモノマーを生成させ、酸性触媒の存在下で前記モノマーをビニルエーテルおよびアルコールと反応させることであろう。モノマーの混合物は、その後、混合アセタールポリマーを生成させるために、ラジカル開始を用いるな

どの適するあらゆる重合方法によって重合することができる。重合の技術分野に おいて技量を有する者であれば、適切な重合方法を選択することができよう。

[0035]

本発明のもう一つの実施形態において、ポリマー反応物中の主鎖の構造は、以下に示す式2のモノマー単位などのアクリレート、メタクリレートおよびイタコネートなどのその他のモノマーを含めるために変成することができる。

式中、R、R₁、R₂、R₆、R₇ およびR₁: は上で定義されており、R₁ およびR₂ は同じではなく、R₈ は、水素原子、メチルまたはエチル基、あるいは式ーC H₂ -C O O R₈ を有する基であり、R₄ およびR₈ は、同じであるか、あるいは独立して好ましくは炭素原子数 $1\sim 1$ 2 の直鎖、分岐または環式ハロゲン化アルキル基、好ましくは炭素原子数 $1\sim 1$ 2 の直鎖、分岐または環式ハロゲン化アルキル基、芳香族基あるいは直鎖または環式 α - アルコキシアルキル基であり、x = 0. $6\sim 1$. 0、 $y=0\sim 0$. 4、 $z=0\sim 0$. 4、 $0< a\leq 0$. 6、 $0< b\leq 0$. 6、 $0< a+b\leq 0$. 6、0. 4 $\leq c+d+e<1$. 0、a+b+c+d+e=1. 0であり、ここですべての数値はモル分率を表している。

[0036]

R。およびR。によって表されるアルキル基には、メチル、エチル、プロピル、ブチル、アミル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシルおよびドデシルなどが挙げられるが、それらに限定されない。R。によって表されるハロアルキルのハロゲンには、塩素、臭素、弗素および沃素が挙げられる。R。によって表される芳香族基には、ベンジル、フェネチル、フェニルプロピル、メチルベンジル、メチルフェネチルおよびエチルベンジルが挙げられるが、それらに限定されない。好ましいR。基は、メチル、エチル、2ーヒドロキシエ

チル、プロビル、イソプロビル、nーブチル、tーブチル、2ーエチルへキシル およびテトラヒドロビラニルである。

[0037]

本発明のさらなる実施形態において、式1と式2のヒドロキシスチレン系ポリマーおよびコポリマーなどのアセタール誘導ヒドロキシル含有ポリマーは、第三プトキシカルボニルオキシ(t-BOC)または第三プチロキシカルボニルーメトキシ(BOCMe)官能基を組み込むためにさらに変成することが可能である。 t-BOC官能基は、ジメチルアミノビリジンなどの適するいずれかの有機塩基または無機塩基の存在下で式1および式2のポリマーまたはコポリマーをジェレープチルカーボネートと反応させることにより導入することができる。同様に、BOCMe官能基は、式1および式2のポリマーまたはコポリマーを第三プチルプロモアセテートと反応させることにより導入することができる。これらの変成によって、ヒドロキシスチレンの誘導ポリマーのモノマー単位は以下に示す式Vの通りである。

式中、R、R₁ 、R₂ 、R₃ 、R₄ 、R₆ 、R₇ 、R₈ およびR₁₁ は上で定義された通りであり、R₁ およびR₂ は同じではなく、R₃ は、原子価結合またはメチレンであり、 $0 < a \le 0$. 6、 $0 < b \le 0$. 6、 $f = 0 \sim 0$. 10、 $0 < a + b + f \le 0$. 6、0. $4 \le c + d + e < 1$. 0、a + b + c + d + e + f = 1. 0であり、ここですべての数値はモル分率を表している。

[0038]

本発明の好ましい実施形態は、R、が第三プチルであり、Rzがフェネチルで

あり、 R_6 および R_7 が水素であり、 R_{11} が水素であり、dが0であり、eが0であり、fが0であり、0. $1 \le ((a+b)/(a+b+c)) \le 0$. 35、0. $8 \le (b/(a+b)) < 1$ である式Vのアセタールポリマーである。

[0039]

本発明のもう一つの好ましい実施形態は、 R_1 が第三プチルであり、 R_2 がフェネチルであり、 R_3 および R_7 が水素であり、 R_{11} が水素であり、 R_3 のであり、 R_4 がのであり、 R_5 ののであり、 R_5 ののであり

[0040]

本発明のなおもう一つの好ましい実施形態は、 R_1 が第三プチルであり、 R_2 がフェネチルであり、 R_6 および R_7 が水素であり、 R_{11} が水素であり、R が水素であり、 R_7 が水素であり、 R_7 が水素であり、 R_7 のであり、 R_7 が小素であり、 R_7 のであり、 R_7 が小素であり、 R_7 のであり、 R_7 (R_7) R_7 (R_7

[0041]

本発明の別の好ましい実施形態は、R₁ が第三プチルであり、R₂ がシクロへキシルエチルであり、R₆ およびR₇ が水素であり、R₁₁ が水素であり、e が 0 であり、f が0 であり、d が 0.05 \sim 0.25 であり、R が第三プチルであり、0.1 \leq ((a+b) / (a+b+c)) \leq 0.35、0.8 \leq (b/ (a+b)) <1 である式Vのアセタールポリマーである。

[0042]

本発明のなお別の好ましい実施形態は、R₁ が第三プチルであり、R₂ がフェネチルであり、R₆ およびR₁ が水素であり、R₁₁ が水素であり、dが0であり、fが0であり、0<e \leq 0.4、R₃ が水素であり、R₄ が第三プチルであり、0.1 \leq ((a+b)/(a+b+c)) \leq 0.35、0.8 \leq (b/(a+b))<1である式Vのアセタールポリマーである。

[0043]

本発明のもう一つの好ましい実施形態は、R い第三ブチルであり、R 2 がフ

ェネチルであり、 R_{\circ} および R_{τ} が水素であり、 R_{11} が水素であり、dが0であり、0 < f \leq 0 . 0 8 、e が 0 であり、 R_{\circ} が原子価結合であり、0 . 1 \leq (a+b) / (a+b+c)) \leq 0 . 3 5 、0 . 8 \leq (b / (a+b)) < 1 である式Vのアセタールポリマーである。

[0044]

本発明は、さらに、上で製造された混合アセタール誘導ポリマーとホト酸発生 剤と前記アセタール誘導ポリマーおよびホト酸発生剤の両方を溶解することが可能な溶媒とを含むフォトレジスト組成物の配合物に関する。フォトレジスト組成物用の好ましいアセタールポリマー実施形態において前述したものである。

[0045]

適するあらゆるホト酸発生剤化合物をフォトレジスト組成物中で用いることができる。ホト酸発生剤化合物はよく知られており、それらの化合物には、例えば、ジアゾニウム、スルホニウム、スルホキソニウムおよびヨードニウム塩などのオニウム塩、およびジスルホンが挙げられる。適するホト酸発生剤化合物は、例えば、米国特許第5,558,978号および米国特許第5,468,589号において開示されており、それらは本明細書において参考として包含する。

[0046]

ホト酸発生剤の適する例は、フェナシル p - x + y y + y y + y y + y

[0047]

その他の適する化合物は、化学線で再配列して、1 ーニトロベンズアルデヒド および 2, 6 ーニトロベンズアルデヒドなどの α ーニトロソ安息香酸、 α , α , α ートリクロロアセトフェノンおよび α ートブチルー α , α , α ートリクロロアセトフェノンなどの α ーハロアシルフェノン、 α - ヒドロキシベンゾフェノン

メタンスルホネートおよび2.4-ヒドロキシベンソフェノンビス(メタンスル ホネート)などのo-ヒドロキシアシルフェノンのスルホン酸エステルを生じさ せるo-ニトロベンズアルデヒドである。

[0048]

ホト酸発生剤のなお他の適する例は、トリフェニルスルホニウムプロミド、トリフェニルスルホニウムクロリド、トリフェニルスルホニウムヨージド、トリフェニルスルホニウムへキサフルオロホスフェート、トリフェニルスルホニウムへキサフルオロアルセネート、トリフェニルスルホニウムへキサフルオロアルセネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニルエチルスルホニウムクロリド、フェナシルジメチルスルホニウムクロリド、フェナシルテトラヒドロチオフェニウムクロリド、4 ーニトロフェナシルテトラヒドロチオフェニウムクロリドである。

[0049]

本発明において用いるための適するホト酸発生剤の別の例は、ピス(p-hルエンスルホニル)ジアゾメタン、メチルスルホニルp-hルエンスルホニルジアゾメタン、1-シクローへキシルスルホニルー1-(1、1-ジメチルエチルスルホニル)ジアゾメタン、ピス(1、1-ジメチルエチルスルホニル)ジアゾメタン、ピス(シクロヘキシルスルホニル)ジアゾメタン、ピス(シクロヘキシルスルホニル)ジアゾメタン、1-p-hルエンスルホニルー1-シクロヘキシルカルボニルジアゾメタン、2-y+h-2-(p-h)ルエンスルホニル)プロピオフェノン、2-y+h-2-(p-h)ルエンスルホニル)プロピオフェノン、2-y+h-2-(p-h)ルエンスルホニル)ペントー3-y+h-2-(p-h)ルエンスルホニル)ベントー3-y+h-2-(p-h)ルエンスルホニル)ペントー3-y+h-2-(p-h)ルエンスルホニル)プロパン、1-シクロヘキシルカルボニル)-2-y+h-2-(p-h)ルエンスルホニル)プロパン、1-ジアゾー1-y+h-2-(p-h)ルエンスルホニル)プロパン、1-ジアゾー1-y+h-2-(p-h)ルスルホニル)-3、3-ジメチル-2-ブタノン、1-アピチルー1-y+h-1-(p-h)ルエナルスルホニル)ジアゾメタン、

[0050]

[0051]

より好ましくは、ホト酸発生剤は、以下の化合物から選択することができる。

[0052]

ホト酸発生剤化合物は、一般にポリマー固形物の約0.0001~約20重量 %、更に好ましくはポリマー固形物の約1~約10重量%の量で用いられる。

[0053]

フォトレジスト組成物用の溶媒の選択およびフォトレジスト組成物の濃度は、 主として、アセタールポリマー中に組み込まれた官能基のタイプ、ホト酸発生剤 およびコーティング方法に応じて決まる。溶媒は、不活性であるのがよく、フォ トレジスト中のすべての成分を溶解するのがよく、前記諸成分との化学反応を全 く受けないのがよく、またコーティング後乾燥すると再び除去できるのがよい。 フォトレジスト組成物用の適する溶媒には、メチルエチルケトン、メチルイソブ チルケトン、2-ヘプタノン、シクロペンタノン、シクロヘキサノン、2-メト キシー1-プロピレンアセテート、2-メトキシエタノール、2-エトキシオク タノール (ethoxyothanol) 、 2ーエトキシエチルアセテート、1ーメトキシー 2-プロピルアセテート、1.2-ジメトキシエタンエチルアセテート、セルソ ルブアセテート、プロピレングリコールモノエチルエーテルアセテート、メチル ラクテート、エチルラクテート、メチルピルベート、エチルピルベート. メチル -3-メトキシプロピオネート、エチル-3-メトキシプロピオネート、N-メ チルー2-ピロリドン、1.4-ジオキサン、エチレングリコールモノイソプロ ピルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコー ルモノメチルエーテルおよびジエチレングリコールジメチルエーテルなどのケト ン、エーテルおよびエステルを挙げることができる。

[0054]

別の実施形態において、塩基添加剤をフォトレジスト組成物に添加することが できる。塩基添加剤の目的は、化学線によって照射される前にフォトレジスト中 に存在するプロトンを補捉することである。塩基は、好ましくない酸による酸不 安定基の侵食および開裂を防ぎ、よってレジストの性能および安定性を高める。 組成物中の塩基の割合はホト酸発生剤より大幅に少ないのがよい。フォトレジス ト組成物が照射された後に塩基が酸不安定基の開裂を妨げないことが望ましいか らである。塩基化合物が存在する時、その好ましい範囲は、ホト酸発生剤化合物

[0055]

化学線の波長への組成物の吸収を増加させるために、染料をフォトレジストに 添加することができる。染料は組成物に害を与えてはならず、一切の熱処理を含む工程条件に耐えることが可能でなければならない。適する染料の例は、フルオレノン誘導体、アントラセン誘導体またはピレン誘導体である。フォトレジスト組成物のために適するその他の特定の染料は米国特許第5,593,812号に記載されている。

[0056]

フォトレジスト組成物は、接着促進剤および界面活性剤などの従来の添加剤を さらに含むことが可能である。当業者は、適切な好ましい添加剤およびその濃度 を選択することができるであろう。

[0057]

本発明は、さらに、上述した組成物の一つを含むフォトレジスト被膜を基板に 塗布する工程と、化学線に前記被膜を画像状に露光させる工程と、前記化学線に 露光された前記被膜の領域が基板から分離され画像形成済みフォトレジスト構造 被膜が基板上に残るまでアルカリ水性現像剤で前記被膜を処理する工程を含む基 板上にパターンを形成する方法に関する。

[0058]

フォトレジスト組成物は、知られているコーティング法によって基板に均一に 塗布される。例えば、被膜は、スピンコーティング、ディッピング、ナイフコー ティング、ラミネーション、ブラッシング、噴霧およびリバースロールコーティ ングによって塗布することができる。被膜厚さの範囲は、一般に約0.1から1 0μmより大きい値を含む。コーティング作業後、溶媒は、一般に乾燥によって 除去される。乾燥工程は、厚さ、ヒーティングエレメントおよびレジストの最終 用途に応じて、一般に約数秒~約数分にわたり、好ましくは約5秒~約30分に わたり約50℃〜約150℃の温度にレジストおよび基板**を加熱する**ソフト焼き 付けと呼ばれる加熱工程である。

[0059]

フォトレジスト組成物は、エレクトロニクス産業における多くの異なる用途の ために適する。例えば、それは、電気メッキレジスト、プラズマエッチングレジ スト、はんだレジスト、印刷版の製造用のレジスト、ケミカルミリング用のレジ ストまたは集積回路の製造におけるレジストとして用いることができる。被覆基 板の可能な被覆条件および処理条件はそれに応じて異なる。

[0060]

レリーフ構造を製作するために、フォトレジスト組成物を被覆された基板は画像状に露光される。「画像状」に露光という用語は、所定のパターンを含むフォトマスクを通した露光、被覆基板の表面上で移動するコンピュータ制御レーザービームによる露光、コンピュータ制御電子線による露光および対応するマスクを通したX線または紫外線による露光を包含する。

[0061]

用いることができる放射線源は、ホト酸発生剤が感光する放射線を放出するすべての線源である。例は、アルゴンイオン源、クリプトンイオン源、電子線源および x 線源である。

[0062]

リリーフ構造の製作のための上述した方法は、好ましくは、露光と現像剤による処理との間での被膜の加熱を更なる工程基準として含む。「ポスト露光焼付け」として知られているこの加熱処理の補助によって、ポリマー樹脂中の酸不安定基と露光によって発生する酸との実質的に完全な反応が達成される。このポスト 露光焼付けの持続期間および温度は、広い限度内で異なることが可能であり、ポリマー樹脂の官能基、酸発生剤のタイプおよびこれらの二成分の濃度に応じて決まる。露光されたレジストは、一般に、数秒~数分にわたり約50℃~約150 での温度にさらされる。好ましいポスト露光焼付けは、約5秒~約300秒にわたる約80℃~130℃である。

[0063]

画像状露光および材料の一切の加熱処理後に、フォトレジストの露光された領域は、現像剤に溶解することによって除去される。特定の現像剤の選択は、フォトレジストのタイプ、特にポリマー樹脂の性質または発生する光分解生成物に応じて決まる。現像剤は、有機溶媒または有機溶媒の混合物を添加し得た塩基水溶液を含むことが可能である。特に好ましい現像剤はアルカリ水溶液である。これらには、アルカリ金属珪酸塩、燐酸塩、水酸化物および炭酸塩、特に水酸化テトラアルキルアンモニウム、更に好ましくは水酸化テトラメチルアンモニウム(TMAH)の水溶液が例えば挙げられる。必要ならば、比較的少量の湿潤剤および/または有機溶媒もこれらの溶液に添加することができる。

[0064]

現像工程後に、レジスト被膜をもつ基板は、一般に、フォトレジスト被膜によって覆われていない領域中の基板を変化させる少なくとも一つの後続処理工程に供される。一般に、これは、ドーパントの注入、基板上へのもう一つの材料の塗布あるいは基板のエッチングであることが可能である。この後に、通常は、一般に酸素プラズマエッチングまたはウェット溶媒ストリップによる基板からのレジスト被膜の除去が行われる。

[0065]

説明のためであり限定のためではない実施例を用いて、以下において本発明を さらに詳しく説明する。

[0066]

以下の実施例1および実施例2は、アセタールポリマーの製造に関わる合成手順を説明している。

[0067]

実施例1

ポリヒドロキシスチレンの混合フェネチルおよび第三プチルアセタールの合成 温度プローブ、上部メカニカルスターラーおよび窒素入口を装着された250ml 三口フラスコにテトラヒドロフラン(THF)100mlと粉末ポリヒドロキシスチレン(PHS)30gとの混合物を添加した。混合物を30分にわたり機作して均質な溶液が生成し、その後、第三プチルビニルエーテル5.0g、フ ェネチルアルコール 4.8 g および固体ピリジニウムーパラートルエンスルホネート 140 m g を添加した。短い発熱が観察され、その後、温度が 23 \mathbb{C}^{-2} 7 \mathbb{C} に上昇した。溶液を放置して 23 \mathbb{C}^{-2} 20 時間にわたり攪拌し、その後、トリエチルアミン溶液(THF 200 g にトリエチルアミン 2.3 1 g を溶解することにより調製したもの)4 g を反応混合物に添加して酸を冷却した。反応混合物をさらに 30分にわたり攪拌した。ポリマー溶液を脱イオン水 100 m 1 に激しく攪拌しながら滴下した。沈降固形ポリマーを濾過により単離した。ポリマーを脱イオン水 250 m 1 \mathbb{C}^{-1} 8 時間にわたり乾燥した。

[0068]

実施例2

ポリヒドロキシスチレンの混合フェネチルおよび第三プチルアセタールの合成 (別方式の現場合成法)

温度プローブ、上部メカニカルスターラーおよび窒素入口を装着された250 m l 三口フラスコにプロピレングリコールモノメチルエーテルアセテート (PG MEA) 140.6gと粉末PHS30gとの混合物を添加した。混合物を30 分にわたり攪拌して均質な溶液が生成した。混合物をその後66℃に加熱し、溶 液に真空をかけて溶媒12gを蒸留した。溶液を放置して窒素雰囲気下で室温に 冷却し、第三ブチルビニルエーテル5.0g、フェネチルアルコール4.8gお よび固体ピリジニウムーパラートルエンスルホネート140mgを溶液に添加し た。短い発熱が観察され、その後、温度が23℃~27℃に上昇した。溶液を放 置して23℃で20時間にわたり攪拌し、その後、トリエチルアミン溶液(TH F200gにトリエチルアミン2.81gを溶解することにより調製したもの) 4 gを反応混合物に添加して酸を冷却した。反応混合物をさらに30分にわたり 攪拌した。ポリマー溶液を250ml分液漏斗に移し、アセトン115g、ヘキ サン115gおよび脱イオン水47gで洗浄した。混合物を5分にわたり短く攪 拌し、放置して二層に分離した。下方の水層を捨てた。上方の有機層をさらに二 回洗浄した。上方有機層を500ml丸底三口フラスコに移した。フラスコに温 度プローブ、上部メカニカルスターラーおよび真空蒸留アセンブリーを取り付け た。フラスコを加熱マントル上に置き、ポリマー溶液からの有機揮発分を約70 でにおける常圧蒸留によって除去した。真空をかけることにより低揮発分溶媒の 最終的な微量を除去した。残りのポリマー溶液を約30重量%の固形物含有率に 希釈した。

[0069]

実施例3~19

実施例1および実施例2に記載した合成手順後に、多様なアセタールブロックポリヒドロキシスチレン(PHS)系ポリマーおよびコポリマーを合成した。ピニルエーテルの量を変更することによりアセタール化度(DA)を調節した。ピニルエーテル/アルコール比を調節することによりポリマー中のR2の割合を調節した。%R2を式(b/(a+b+c))×100によって計算する。

[0070]

表に示した多分散性(PD)と共にアセタールポリマーを表1に示している。 全アセタール化度(DA%)を13 C-NMRによって測定し、組み込まれたR2 の量を<math>14 H-NMRによって測定した。ビニルエーテルの各々に関するR6 およびR7 は水素である。

【表1】

実施例	ポリマーの説明	R ₁	R ₂ (アルコール)	R ₁ /R ₂ (Ell)	% R 2	%DA
3	#° 97-A PHS; MW=12,000	t-7* fil	-	予定したもの	-	31
	PD=1.04					
4	ま°リマーA	t-フ*チル	フェネチル	1/0.75	22	29
5	す°リ7−A	t-フ*チル	フェネチル	1/0.5	10.4	22
6	未°リマ−A	シクロヘキシル	フェネチル	1/0.5	22	26
7	本°リマーB 本°リ(スチレン-co- とト゛ロキシスチレン) ; %スチレン=17% Mw=9,000; PD=1.5	t-フ*チル	フェネチル	1/0.5	10	20
8	\$°リマ−B	t-フ*チル	フェネチル	1/0.75	17.8	24
	本°リ(第三フ*チル スチレン-co-ヒト* D キシスチレン) %t-フ*チルスチレン =7% Mw=12,000; PD=1.9	t-7* <i>f</i> µ	フェネチル	1/0.8	19.8	20
10	\$° 17−C	t-ブ*チル	フェネチル	1/0.8	14.6	18
11	\$°U7-A	t-ブ*チル	2,2,3,3- ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	1/0.25	8	29
12	す°リマ−A	t-フ*チル	ナフチルエチル	1/0.25	9.5	31
13	す。 リムータ	t-フ*チル	ナフチルエチル	1/0.5	9.7	23
14	す° リマ−A	t-フ゛チル	1-シクロヘキシル エチル	1/0.5	14.2	33
15	\$° リマ−A	t-フ°チル	1-シクロヘキシル エチル	1/0.25	7.9	31
16	\$° 97−C	t-フ*チル	1-シクロヘキシル エチル	1/0.8	14	18
17	本°リ 7−A	t-フ*チル	(1R)-(-)- ノピル	1/0.5	9.9	30

18	あ°リマ−A	t-フ*チル	(1R)-(-)- /ピル	1/0.25	5.5	28
19	** リマーD ** リ(t-フ*チルアク リレート-co-ヒト*ロ キシスチレン) % t-フ*チルアクリレ ート=30%		フェネチル	1/0.8	23	30
*20	\$°リ₹−A	t-ブ*チル	フェネチル	1/1	17	17

* 'H-NMRによる分析によると、ポリマー中のすべてのアセタール部分が フェネチル基で置換されたことが示された。

[0071]

実施例21~24

合成手順の再現性

上述した合成手順の再現性を試験するために、 R_1 が第三プチルであり、 R_2 がフェネチルであり、 R_3 および R_7 が水素である実施例 1 および実施例 2 による同じ条件下で四回の実験を行った。ビニルエーテルおよびアルコールのモル% は、ポリマー中のフェノールヒドロキシル基の全モル数に基づいている。表 2 は実験の結果を要約している。

【表2】

実施例	表 1 からの ポリマー	最	原料中の 我別 R1	原料中の もり% R 2		組込まれた%R ₁ 'H-NMR
21	す°リマ−A	30 g	30	22.5	23	16
22	す°リマ−A	30 g	30	22.5	23.8	15
23	す°リマ−A	30 g	30	22.5	24.9	15.8
24	\$°J₹-B	30 g	30	22.5	24	17.8

[0072]

表2の結果は、DA%およびPHS系ポリマー中に存在するR2アセタールの %が±1%未満のみ異なって、高度に再現性のあることを示している。

[0073]

実施例25

混合フェネチルおよび第三ブチルアセタールならびに第三プトキシカルボニルー オキシ (t-BOC) 基をもつポリヒドロキシスチレン系ポリマーの合成 実施例 2 1 により製造された、1 ーメトキシー 2 ープロピルアセテート中の混合フェネチルおよび t ープチルアセタールのポリヒドロキシスチレン系ポリマーの 3 0 重量%溶液 1 0 0 g を含む丸底フラスコに、ジメチルアミノピリジン 5 . 0 m g を添加した。上方スターラーによって混合物を約 3 0 分間機拌し、その後、ジー t ープチルジカーボネート 2 . 7 2 g を添加した。溶液を放置して約 1 5 分にわたり均質化した。その後、FT IRによって測定して反応が完了するまで混合物を窒素条件下で約 3 2 時間にわたり 複拌した。

[0074]

実施例26~29

以下の表3の実施例は、異なるアセタール官能基の利用によってレジスト特性をいかに改良できるかを示している。具体的には、様々なアルコールをt-ブチルビニルエーテルおよびポリヒドロキシスチレン(PHS)と合わせて用いることにより、ガラス転移温度(Tg)およびアルカリ溶解特性(Tc)を変えた。Tcは、ポリマーの1.0 μ m膜を0.5NのTMAH中で基板から除去するための秒での時間の長さである。除去時間を正確に測定できるように、対照PHSは、より低い濃度のTMAH溶液(0.26N)を用いた。

【表3】

実施例	R,	R ₂ (アルコール)	原料中の R ₁ /R ₂ (モル)	**リマ-中の % モル R 2	% DA	Tg (°C)	Te (秒)
対照 (PHS)	-	-	0	0	0	165	4(0.26N ØTMAH)
26 (PHS)	t-フ*チル	-	-	0	34	115	80
27 (PHS)	t-7° fN	2,2,3,3- テトラフルオロ フ°ロと°ルアル コール	1/0.25	8	29	83	89
28 (PHS)	t-ブ・チル	フェネチル	1/0.5	10.4	22	116	98
29 (PHS)	t-フ゛チル	ナフチルエチル	1/0.25	9.5	31	90	444

[0075]

実施例30~35

フォトレジストの配合、被覆、焼き付け、露光、ポスト露光焼き付けおよび現像 ポジフォトレジストの配合および現像のために以下の一般手順に従った。

[0076]

黄褐色ガラス瓶中で以下の成分をブレンドすることによりフォトレジスト配合 物を製造した。

1-メトキシー2-プロピレンアセテート中のアセタール誘導ヒドロキシスチレン系ポリマー溶液(30%溶液)(8.7g)

ホト酸発生剤 (PAG) (式VIII) (0.27g)

2, 4, 5-トリフェニルイミダゾール (0.0675g) (塩基添加剤)

1, 5 -ジアゾピシクロ[4. 3. 0]ノン-5 -エン (0. 0 4 5 g) (塩基添加剤)

FLUORAD FC-430(フルオロ脂肪族高分子エステル)(界面活性剤)

溶媒:2-メトキシー1-プロピレンアセテート(15.9g)

[0077]

すべての成分が溶解した時、レジストサンプルを清浄な瓶に直接精密濾過した

[0078]

フォトレジスト配合物3m1を4インチ静止シリコンウェハに塗布することによりシリコンウェハをスピン被覆した。その後、ウェハを回転させて約7600 オングストロームの均一な膜厚さを与えた。次に、これらのフォトレジスト被覆ウェハをソフト焼き付け(SB)して残留溶媒を除去した。その後、248nmの波長を用いてソフト焼き付けフォトレジスト被覆ウェハにISI XLSO.53NAステッパー上で露光した。露光の完了後、ウェハをポスト露光焼き付け(PEB)に供した。PEB後に、0.26Nの水酸化テトラメチルアンモニウム水性現像剤を用いて、ウェハをパドル現像または噴霧現像した。回転させながら20秒にわたり脱イオン水ですすぎ、その後、乾燥窒素ガスを用いてウェハを乾燥した。

[0079]

画像形成された各フォトレジスト被覆基板の幾つかの重要な特性、例えば、最適フォトスピード($E_{\rm opt}$)、定在波および等ライン/スペースペア解像度(res.)を評価した。1が不可であり5が優である5段階尺度で定在波の度合を定量的に評価した。露光前の膜厚さT1 および露光後の膜厚さT2を測定することにより%膜収縮を計算した。%膜収縮は、露光前後の厚さの差であり、式((T1-T2)/T1)×100によって計算する。フォトレジスト中のすべての成分は、アセタールポリマーを除き実施例30と同じである。結果を表4に要約している。

【表4】

実施例	表 I において説 明したポリマー	E _{OPT} (mJ/cm ²)	解像度	定在波	%膜収縮
30	実施例3	12	0.2	1	11
31	実施例4	24	0.175	4-5	2.6
32	実施例7	21	0.2	5	0.6
33	実施例15	24	0.175	4	0.79
34	実施例10	25	0.175	5	<1.0
35	実施例25	32	0.175	1-	<1.0

[0080]

結果は、すべてのフォトレジスト組成物が 0.2μ m以下の優れた解像度をもつと共に、感光性が良好であることを示している。殆どの組成物は、良好な膜収縮特性および定存波特性も有する。

[0081]

前述した実施例は本発明の説明であり、本発明を限定するとして解釈されるものではない。以下のクレームとクレーム中に含められるべきクレームの同等物によって本発明を定義する。

【国際調査報告】

	INTERNATIONAL SEARCH REPORT	RT	International applica PCT/US99/08094	tion No.
IPC(6) US CL	SSIFICATION OF SUBJECT MATTER :COSF 257:02; 261:02; GO3F 7/004, 7/30, 7/40 :430/270.1, 325 to International Patent Classification (IPC) or to both	antional classification		
	DS SEARCHED		one are	
	ocumentation scarched (classification system follow 430/526, 330, 905, 910	ed by classification sys	bols)	
Documents	tion searched other than minimum documentation to th	ic extent that such decre	nonts are included in (ko fields searched
Blectronic o	Sala base consulted during the international search (s	same of data base and,	where practicable, see	rch terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	ppropriate, of the releva	nt passages 3	televant to claim No
Y,P	US 5,750,309 A (HATAKAYAMA et 9-47 and col.7 and 8 lines 30 et seq.	al) 12 May 1998,	col. 6, lines 1-	30
Y,P	US 5,770,343 A (SATO et al) 23 June 1998, col. 6, line 51 - col. 7, line 16.			
Y,P	US 5,759,750 A (BINDER et al) 02 Ju 7, line 24 and col. 9, line 25-41.	ine 1998, col. 6, 1	ine 64 - col. 1-	30
X,P	US 5,780,206 A (URANO et al) 14 J col. 24, line 38.	UNE 1998, col. 2	12, line 16 - 1-	30
X Fart	er documents are listed in the continuation of Box C	2	family sonex.	
	enal estagaries of sited documents:	T bur depart		mai filing date or pricety a flut coled to understand
	stanted deliving the general state of the art which is not considered he of periorists references ther decument published on or other the asternational fling data		thoory underlying the invest checker pulserance, the clair I or meased by equicibered to cost is taken above	
	consect which may throw doubts on priority stain(s) or which is not to establish the publication data of norder existen or other mini present (as specified) comment referring to an oral disciousts, san, exhibiten or other	"Y" descript of p recorded to combined with	ricolar relevance; the clair procise on pressure Key	
7 5	nee vanue published print to the interpolated filing date but later then priority date educated	breedy returned to	e a person skilled in the art ser of the sees potent face	
	setted completion of the international search	Date of mailing of the	international search	report
14 JULY	1999	02 AUG 1	999	
Name and a Commission	meiling address of the ISA/US are of Patrata and Trademarks	Augustized officer	Respect l	nel
	n, D.C. 20231 lo. (703) 305-3230		13) 301-0661	

	INTERNATIONAL SEARCH REPORT	International app PCT/US99/0805					
C (Continue	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the relev	Relevant to claim No.					
X,P	US 5,891,603 A (KODAMA et al) 06 April 1999 col.	61 and 62.	1-30				
x	US 5,712,078 A (HUANG et al) 27 January 1998, col col. 22, line 42.	11, lina 60	1-30				

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

フロントページの続き

- (72)発明者 アンドリュー ジェイ ブレイクニー アメリカ合衆国 マサチューセッツ州 02771 シーコンク ブルックサイドコー ト 30
- (72)発明者 ローレンス フェレイラ アメリカ合衆国 マサチューセッツ州 02771 フォールリバー ウォールナット ストリート 598
- (72)発明者 ジョゼフ ジェイ サイゼンスキー アメリカ合衆国 マサチューセッツ州 02771 シーコンク パインストリート
- (72)発明者 ブライアン イー マックスウェル アメリカ合衆国 ロードアイランド州 02916 ラムフォード パイロンアベニュ 19
- F ターム(参考) 2HO25 AAOO AB16 AB17 ACO1 ACO4 ADO3 BEO0 BEO7 BGO0 CCO4
 - CC13 CC20 FA03 FA12 FA17
 - 4J033 CA02 CA11 CD04 HA12 HB10 4J100 AB020 AB040 AB07P AL03R
 - ALO4R ALO5R AL44R BAO3P
 - CAO4 CAO5 CA31 HA43 HCO9 HC13 JA38