

Alerta Temprana para la Calidad del Agua

Wong Camacho Jesus Guadalupe, Barraza Castro Jesus Alberto

Maestro: Mora Felix Zuriel Dathan

Fecha: 03 de Septiembre de 2025

Introducción:

El agua dulce es esencial, pero su calidad está en constante amenaza por la contaminación industrial, agrícola y urbana. Los métodos de monitoreo tradicionales son lentos y reactivos, detectando la contaminación días o semanas después.

La Inteligencia Artificial (IA) ofrece una solución transformadora, permitiendo el análisis de grandes volúmenes de datos en tiempo real y predicciones precisas. Este proyecto propone un sistema de alerta temprana con IA para proteger nuestras fuentes de agua dulce de manera proactiva.

Objetivo General del Proyecto

Desarrollar una propuesta conceptual para SIATA-IA, un sistema basado en Inteligencia Artificial, diseñado para la detección y alerta temprana de eventos de contaminación en cuerpos de agua dulce como ríos y lagos.

Objetivos Específicos

- Investigar Tecnologías Actuales
 Identificar limitaciones en el monitoreo de calidad del agua.
- Diseñar Modelo Integrado

 Combinar imágenes satelitales y sensores IoT para un monitoreo robusto.

- Analizar Aplicaciones de IA

 Estudiar el uso de IA y machine learning en detección de contaminantes.
- 4 Evaluar Impacto Potencial

 Medir la mejora en gestión ambiental y capacidad de respuesta a emergencias.

Justificación:

Los sistemas de vigilancia actuales son insuficientes; un vertido no detectado a tiempo causa daños irreversibles. SIATA-IA transformará la gestión del agua al:

Aumentar Velocidad

Detección de días a horas o minutos.

Mejorar Cobertura

Monitoreo satelital de grandes extensiones y puntos críticos.

Reducir Costos

Automatización de la vigilancia y optimización de recursos.

Democratizar Información

Alertas tempranas para autoridades y comunidades.

Alcance del Proyecto

Este proyecto se centra en el diseño conceptual y el marco teórico de SIATA-IA, incluyendo:

- Definición de la arquitectura del sistema.
- Tipos de datos a utilizar.
- Modelos de IA propuestos.
- Flujo de operación.

Queda fuera del alcance el desarrollo físico de hardware, programación de software, entrenamiento de modelos de IA e implementación en casos reales.

Desarrollo de la Propuesta

SIATA-IA propone un sistema multicapa que fusiona datos para un monitoreo integral y en tiempo real.

Monitoreo Satelital
(Macro-Nivel)
Imágenes multiespectrales
(Sentinel-2) y CNN para detectar
anomalías en la superficie del agua.

Red de Sensores IoT (Micro-Nivel)
Sensores de bajo costo en puntos estratégicos para medir pH, temperatura, conductividad y turbidez en tiempo real.

Núcleo de IA y Alertas

Plataforma en la nube con modelos
de machine learning para
correlacionar datos, aprender
patrones y generar alertas
automáticas.

Alcance del Proyecto

1. Investigación	Revisión de literatura y estado del arte				
2. Análisis	Identificación de brechas y desafíos	V	V		
3. Diseño	Desarrollo del concepto y arquitectura SIATA-IA		V	V	
4. Documentación	Redacción del informe de investigación			V	V
5. Presentación	Creación y ensayo de la presentación final				V

Conclusiones

La IA es una necesidad presente en el monitoreo ambiental. SIATA-IA demuestra que la integración de IA, visión por computadora, machine learning, datos satelitales y sensores IoT puede crear una solución robusta y proactiva para la protección de nuestros recursos hídricos.

Este enfoque permitirá una respuesta más rápida ante desastres ecológicos y facilitará una gestión más inteligente y sostenible del agua, contribuyendo al bienestar de los ecosistemas y la sociedad.

Referencias

Rasheed, J., Jamil, F., & Hameed, A. A. (2021). A review of machine learning applications for water quality monitoring. Journal of

Water and Environment Technology, 19(4), 285-300. https://doi.org/10.2965/jwet.20-131

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

European Space Agency. (s.f.). Sentinel-2 Mission. Recuperado el 3 de septiembre de 2025, de

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2