Geometric Algebra for Special and General Relativity

Joseph Wilson

January 10, 2022

Abstract

This thesis is an inquiry into *geometric algebra* for the study of relativistic physics. It is divided into two parts: the first is on geometric algebra abstractly and its application special relativity; the second concerns the extension to general relativity and curved spacetime.

```
{TO DO: ...}
```

Contents

I.	Sp	ecial Relativity and Geometric Algebra	5
1.	Intro	oduction	6
2.	Preli	iminary Theory	9
	2.1.	Associative Algebras	9
		2.1.1. Quotient algebras	10
		2.1.2. Graded algebras	13
	2.2.	The Wedge Product: Multivectors	16
		2.2.1. As antisymmetric tensors	17
		2.2.2. Exterior forms	19
	2.3.	The Metric: Length and Angle	21
		2.3.1. Metrical exterior algebra	23
3.	The	Geometric Algebra	24
	3.1.	Construction and Overview	24
	3.2.	Relations to Other Algebras	28
		3.2.1. Fundamental algebra automorphisms	28
		3.2.2. Even subalgebra isomorphisms	29
		3.2.3. Relation to Exterior Forms	30
		3.2.4. Common algebra isomorphisms	32
	3.3.	Rotors and the Associated Lie Groups	33
		3.3.1. The rotor groups	35
		3.3.2. The bivector subalgebra	36
	3.4.	Higher Notions of Orthogonality	37
	3.5.	More Graded Products	40
4.	The	Algebra of Spacetime	44
	4.1.	The space/time split	45
	4.2.	The invariant bivector decomposition	46
	4.3.	Lorentz Conjugacy Classes	47

Contents

5 .	Con	nposition of Rotors in terms of their Generators	50
	5.1.	A Geometric BCHD Formula	51
		5.1.1. Zassenhaus-type formulae	52
		5.1.2. In low dimensions: Rodrigues' rotation formula	54
		5.1.3. In higher dimensions	56
	5.2.	BCHD Composition in Spacetime	57
		5.2.1. Relativistic 3-velocities & the Wigner Angle	59
6.	Cald	culus in Flat Geometries	62
	6.1.	Differentiation	63
		6.1.1. The Exterior Derivative	64
		6.1.2. The Vector Derivative	64
		6.1.3. Case Study: Maxwell's Equations	65
	6.2.	Integration	65
		6.2.1. Stokes' Theorem for Exterior Calculus	65
		6.2.2. Fundamental Theorem of Geometric Calculus	68
П.	Ge	eneral Relativity and Manifold Geometry	69
7.	Spa	cetime as a Manifold	70
	7.1.	Derivatives of Smooth Maps	71
	7.2.	Fibre Bundles	74
8.	Con	nections on Fibre Bundles	78
	8.1.	Connections on General Fibre Bundles	79
		8.1.1. Parallel transport	80
		8.1.2. Covariant differentiation	82
	8.2.	Structure Preserving Connections	86
9.	Cur	vature	88

Part I.

Special Relativity and Geometric Algebra

Chapter 1.

Introduction

The Special Theory of Relativity is a model of *spacetime* — the geometry in which physical events take place. Spacetime comprises the Euclidean dimensions of space and time, but only in a way relative to each observer moving through it: there exists no single 'universal' ruler or clock. Instead, two observers in relative motion find their respective clocks and rulers are found to disagree, according to the Lorentz transformation laws. The insight of special relativity is that one should focus not on the observer-dependent notions of space and time, but on the Lorentzian geometry of spacetime itself.

Seven years after Albert Einstein introduced this theory,¹ he succeeded in formulating a relativistic picture which included gravity. In this General Theory of Relativity, gravitation is identified with the curvature of spacetime over astronomical distances. Both theories coincide locally when confined to sufficiently small extents of spacetime, over which the effects of curvature are negligible. In part I, we will focus on special relativity, leaving gravity and curvature to part II.

The study of local spacetime geometry amounts to the study of its intrinsic symmetries.² These symmetries form the Poincaré group, and consist of spacetime translations and Lorentz transformations, the latter being the extension of the rotation group for Euclidean space to relativistic rotations of spacetime. The standard matrix representation of the Lorentz group, $SO^+(1,3)$, is the connected component of the orthogonal group

$$O(1,3) = \left\{ \boldsymbol{\Lambda} \in GL(\mathbb{R}^4) \, \middle| \, \boldsymbol{\Lambda}^\mathsf{T} \boldsymbol{\eta} \boldsymbol{\Lambda} = \boldsymbol{\eta} \right\}$$

¹ Einstein's paper [1] was published in 1905, the so-called *Annus Mirabilis* or "miracle year" during which he also published on the photoelectric effect, Brownian motion and the mass-energy equivalence. Each of the four papers was a monumental contribution to modern physics.

² This insight is part of Felix Klein's Erlangen programme of 1872 [2], wherein geometries (Euclidean, hyperbolic, projective, etc.) are studied in terms of their symmetry groups and their invariants.

with respect to the bilinear form $\eta = \pm \operatorname{diag}(-1, +1, +1, +1)$. The rudimentary tools of matrix algebra are sufficient for an analysis the Lorentz group, and are familiar to any physicist. However, they are not always the most suitable tool available for problems of relativity.

The last century has seen many other mathematical objects be applied to the study of generalised rotation groups such as $SO^+(1,3)$ or the \mathbb{R}^3 rotation group SO(3). Among these tools is the *geometric algebra*, invented³ by William Clifford in 1878 [4], which constinute the main theme of this thesis.

Geometric algebra remains largely unknown in the physics community, despite arguably being far superior for algebraic descriptions of rotations than traditional matrix techniques. To appreciate this, it is interesting to glean some of the history that led to this (perhaps unfortunate) circumstance.

³ Clifford algebra (an alias) was independently discovered by Rudolf Lipschitz two years later [3]. Lipschitz was the first to use them to the study the orthogonal groups.

The quest for an optimal formalism for rotations

Mathematics has seen the invention of a variety of vector formalisms since the 1800s, and the question of which is best suited to physics has a long and contentious history. Complex numbers had been known for a long time⁴ to be useful descriptions of planar rotations. William Hamilton's efforts to extend the same ideas into three dimensions by inventing a "multiplication of triples" bore fruition in 1843, when the quaternion algebra

$$\hat{\boldsymbol{i}}^2 = \hat{\boldsymbol{j}}^2 = \hat{\boldsymbol{k}}^2 = \hat{\boldsymbol{i}}\hat{\boldsymbol{j}}\hat{\boldsymbol{k}} = -1$$

came to him in revelation. In following decades, William Gibbs developed the vector calculus of \mathbb{R}^3 with the usual vector cross and dot products. The ensuing vector algebra "war" of 1890–1945 saw Hamilton's prized⁵ quaternion algebra \mathbb{H} , hailed as the optimal tool for describing 3d rotations, struggle for popularity against Gibbs' easier-to-visualise vector calculus. Gibbs' eventually won, and today quaternions are generally regarded as an old-fashioned mathematical curiosity.

Quaternion Society existed from 1895 to 1913.

were in fasion: the

the time that quaternions

⁵ Hamilton had dedicated following in

Despite this, various authors, in appreciating the elegant handling of

Chapter 1. Introduction

 \mathbb{R}^3 rotations, have tried coercing quaternions into Minkowski space $\mathbb{R}^{1,3}$ for application to special relativity [6–8]. This has been done in various ways, but usually by complexifying \mathbb{H} into an eight-dimensional algebra $\mathbb{C}\otimes\mathbb{H}$ and then restricting the number of degrees of freedom as seen fit [9, 10]. However, it is fair to say that quaternionic formulations of special relativity never gained notable traction. Today, relativists are most familiar with tensor calculus, differential forms and the Dirac γ -matrix formalism, and have relatively little to do with quaternions or derived algebras.⁶

⁶ See [5, 11] for more historical discussion of quaternions and their adoption in physics.

Arguably, this outcome of history is unfortunate: matrix descriptions of rotations cannot match the efficiency of quaternions, yet quaternions remain *peculiar* and intrinsically tied to three dimensions. An answer to this discontented call is the geometric algebra.

{TO DO: Round intro off, outline material }

Chapter 2.

Preliminary Theory

Many of the tools we will develop for the study of spacetime take place in various associative algebras. As well as the geometric algebra of spacetime, we will encounter tensors, exterior forms, quaternions, and other structures in this category. Instead of defining each algebra axiomatically as needed, it is easier to develop the general theory and then define each algebra succinctly as a particular quotient of the free algebra. This enables the use of the same tools and the same terminology thoughout.

Therefore, this section is an overview of the abstract theory of associative algebras, which more generally belongs to *ring theory*. Algebras, quotients, gradings, homogeneous and inhomogeneous tensor and multivectors are defined, as well as standard operations on exterior forms. Most definitions in this chapter can be readily generalised by replacing the field $\mathbb F$ with a ring. The excitable reader may skip this chapter and refer back as needed.

2.1. Associative Algebras

Throughout, \mathbb{F} denotes the underlying field of some vector space. (Eventually, \mathbb{F} will always be taken to be \mathbb{R} , but we may begin in generality.)

Definition 1. An ASSOCIATIVE ALGEBRA A is a vector space equipped with a product $\otimes : A \times A \rightarrow A$ which is associative and bilinear.

⁷ A RING is a field without the requirement that multiplicative inverses exist nor that multiplication commutes.

Chapter 2. Preliminary Theory

Associativity means $(u \otimes v) \otimes w = u \otimes (v \otimes w)$, while bilinearity means the product is:

- compatible with scalars: $(\lambda u) \otimes v = u \otimes (\lambda v) = \lambda(u \otimes v)$ for $\lambda \in \mathbb{F}$; and
- distributive over addition: $(u+v) \otimes w = u \otimes w + v \otimes w$, and similarly for $u \otimes (v+w)$.

This definition can be generalised by relaxing associativity or by letting \mathbb{F} be a ring. However, we will use "algebra" exclusively to mean an associative algebra over a field (usually \mathbb{R}).

Any ring forms an associative algebra when considered as a one-dimensional vector space. The complex numbers can be viewed as a real 2-dimensional algebra by defining \otimes to be complex multiplication; $(x_1, y_1) \otimes (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$.

The free tensor algebra

The most general (associative) algebra containing a given vector space V is the Tensor algebra V^{\otimes} . The tensor product \otimes satisfies exactly the relations of definition 1 with no others. Thus, the tensor algebra associative, bilinear and *free* in the sense that no further information is required in its definition.

As a vector space, the tensor algebra is equal to the infinite direct sum

$$V^{\otimes} \cong \bigoplus_{k=0}^{\infty} V^{\otimes k} \equiv \mathbb{F} \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots$$
 (2.1)

where each $V^{\otimes k}$ is the subspace of Tensors of Grade k.

2.1.1. Quotient algebras

Owing to the maximal generality of the free tensor algebra, any other associative algebras may be constructed as a *quotient* of V^{\otimes} . In order for

a quotient V^{\otimes}/\sim by an equivalence relation \sim to itself form an algebra, the relation must preserve the associative algebra structure:

Definition 2. A CONGRUENCE on an algebra A is an equivalence relation \sim which is compatible with the algebraic relations, so that if $a \sim a'$ and $b \sim b'$ then $a + b \sim a' + b'$ and $a \otimes b \sim a' \otimes b'$.

The quotient of an algebra by a congruence naturally has the structure of an algebra, and so is called a QUOTIENT ALGEBRA.

Lemma 1. The QUOTIENT A/\sim of an algebra A by a congruence \sim , consisting of equivalence classes $[a] \in A/\sim$ as elements, forms an algebra with the naturally inherited operations [a] + [b] := [a + b] and $[a] \otimes [b] := [a \otimes b]$.

Proof. The fact that the operations + and \otimes of the quotient are well-defined follows from the structure-preserving properties of the congruence. Addition is well-defined if [a] + [b] does not depend on the choice of representatives: if $a' \in [a]$ then [a'] + [b] should be [a] + [b]. By congruence, we have from $a \sim a'$ so that [a + b] = [a' + b] and indeed [a] + [b] = [a'] + [b]. Likewise for \otimes .

Instead of presenting an equivalence relation, it is often easier to define a congruence by specifying the set of elements which are equivalent to zero, from which all other equivalences follow from the algebra axioms. Such a set of all 'zeroed' elements is called an ideal.

Definition 3. A (TWO-SIDED) IDEAL of an algebra A is a subset $I \subseteq A$ which is closed under addition and invariant under multiplication, so that

- if $a, b \in I$ then $a + b \in I$; and
- if $r \in A$ and $a \in I$ then $r \otimes a \in I \ni a \otimes r$.

We will use the notation $\{\!\{A\}\!\}$ to mean the ideal generated by setting $a \sim 0$ for all a in A. For example, $\{\!\{a\}\!\} = \operatorname{span}\{r \otimes a \otimes r' \mid r, r' \in A\}$ is the ideal consisting of sums and products involving the specified element

Chapter 2. Preliminary Theory

a, and $\{\{u \otimes u \mid u \in V\}\}$, or simply $\{\{u \otimes u\}\}$, is the ideal in V^{\otimes} consisting of sums of terms of the form $a \otimes u \otimes u \otimes b$ for vectors u and arbitrary $a, b \in V^{\otimes}$.

Lemma 2. An ideal uniquely defines a congruence, and vice versa, by the identification of I as the set of zero elements, $a \in I \iff a \sim 0$.

Proof. The set $I := \{a \mid a \sim 0\}$ is indeed an ideal because it is closed under addition (for $a, b \in I$ we have $\implies a + b \sim 0 + 0 = 0$ so $a + b \in I$) and invariant under multiplication (for any $a \in I$ and $r \in A$, we have $r \otimes a \sim r \otimes 0 = 0 = 0 \otimes r \sim a \otimes r$). Conversely, let $a \sim a'$ and $b \sim b'$. Since \sim respects addition:

$$\begin{vmatrix} a-a' \in I \\ b-b' \in I \end{vmatrix} \implies (a+b)-(a'+b') \in I \iff a+b \sim a'+b',$$

and multiplication:

$$\left. \begin{array}{l} (a-a') \otimes b \in I \\ a' \otimes (b-b') \in I \end{array} \right\} \implies a \otimes b - a' \otimes b' \in I \iff a \otimes b \sim a' \otimes b',$$

the equivalence defined by $a \sim b \iff a - b \in I$ is a congruence.

The equivalence of ideals and congruences is a general feature of abstract algebra. Furthermore, both can be given in terms of a homomorphism between algebras, and this is often the most convenient way to define a quotient.

Theorem 1 (first isomorphism theorem). If $\Psi: A \to B$ is a homomorphism, between algebras, then

- 1. the relation $a \sim b$ defined by $\Psi(a) = \Psi(b)$ is a congruence;
- 2. the kernel $I := \ker \Psi$ is an ideal; and
- 3. the quotients $A/\sim \equiv A/I \cong \Psi(A)$ are all isomorphic.

Proof. We assume A and B associative algebras. (For a proof in universal algebra, see [12, § 15].)

- ⁸ E.g., in group theory, ideals are *normal* subgroups and define congruences, which are equivalence relations satisfying $gag^{-1} \sim id$ whenever $a \sim id$.
- 9 A homomorphism is a structure-preserving map; in the case of algebras, a linear map $\Psi: A \to A'$ which satisfies $\Psi(a \otimes b) = \Psi(a) \otimes' \Psi(b)$.

To verify item 1, suppose that $\Psi(a) = \Psi(a')$ and $\Psi(b) = \Psi(b')$ and note that $\Psi(a+a') = \Psi(b+b')$ by linearity and $\Psi(a \otimes b) = \Psi(a' \otimes b')$ from $\Psi(a \otimes b) = \Psi(a) \otimes \Psi(b)$, so the congruence properties of definition 2 are satisfied.

For item 2, note that $\ker \Psi$ is a vector subspace, and that $a \in \ker \Psi$ implies $a \otimes r \in \ker \Psi$ for any $r \in A$ since $\Psi(a \otimes r) = \Psi(a) \otimes \Psi(r) = 0$. Thus, $\ker \Psi$ is an ideal by definition 3.

The first equivalence in item 3 follows from lemma 2. For an isomorphism $\Phi: A/\ker \Psi \to \Omega(A)$, pick $\Phi([a]) = \Psi(a)$. This is well-defined because the choice of representative of the equivalence class [a] does not matter; $a \sim a'$ if and only if $\Psi(a) = \Psi(a')$ by definition of \sim , which simultaneously shows that Φ is injective. Surjectivity follows since any element of $\Psi(A)$ is of the form $\Psi(a)$ which is the image of [a].

With the free tensor algebra and theorem 1 in hand, we are able to describe any associative algebra as a quotient of the form V^{\otimes}/I .

Definition 4. The dimension dim A of a quotient algebra $A = V^{\otimes}/I$ is its dimension as a vector space. The BASE DIMENSION of A is the dimension of the underlying vector space V.

Algebras may be infinite-dimensional, as is the case for the tensor algebra itself (which is a quotient by the trivial ideal).

2.1.2. Graded algebras

Associative algebras may possess another layer of useful structure: a grading. The grading of the tensor algebra has already been exhibited in eq. (2.1). A grading is a generalisation of the degree or rank of tensors or forms, and of the notion of parity for objects functions or polynomials.

Definition 5. An algebra A is R-GRADED for (R, +) a monoid ¹⁰ if there exists

¹⁰ A monoid is a group without the requirement of inverses; i.e., a set with an associative binary operation for which there is an identity element.

Chapter 2. Preliminary Theory

a decomposition

$$A = \bigoplus_{k \in R} A_k$$

such that $A_i \otimes A_j \subseteq A_{i+j}$, i.e., $a \in A_i, b \in A_j \Longrightarrow a \otimes b \in A_{i+j}$.

The monoid is usually taken to be $\mathbb N$ or $\mathbb Z$ with addition, possibly modulo some integer. The tensor algebra V^\otimes is $\mathbb N$ -graded, since if $a\in V^{\otimes p}$ and $b\in V^{\otimes q}$ then $a\otimes b\in V^{\otimes p+q}$. Indeed, V^\otimes is also $\mathbb Z$ -graded if for k<0 we understand $V^{\otimes k}:=\{\mathbf 0\}$ to be the trivial vector space. The tensor algebra is also $\mathbb Z_p$ -graded, where $\mathbb Z_p\equiv \mathbb Z/p\mathbb Z$ is addition modulo any p>0, since the decomposition

$$V^{\otimes} = \bigoplus_{k=0}^{p-1} Z_k \quad \text{where} \quad Z_k = \bigoplus_{n=0}^{\infty} V^{\otimes k + np} = V^{\otimes k} \oplus V^{\otimes (k+p)} \oplus \cdots$$

satisfies $Z_i \otimes Z_j \subseteq Z_k$ when $k \equiv i+j \mod p$. In particular, V^{\otimes} is \mathbb{Z}_2 -graded, 11 its elements admit a notion of *parity*: elements of $Z_0 = \mathbb{F} \otimes V^{\otimes 2} \otimes \cdots$ are even, while elements of $Z_1 = V \otimes V^{\otimes 3} \otimes \cdots$ are odd, and parity is respected by \otimes as it is for integers.

Importantly, just as not all functions $f: \mathbb{R} \to \mathbb{R}$ are even or odd, not all elements of a \mathbb{Z}_2 -graded algebra are even or odd; and more generally not all elements of a graded algebra belong to a single graded subspace.

Definition 6. If $A = \bigoplus_{k \in R} A_k$ is an R-graded algerba, then an element $a \in A$ is homogeneous if it belongs to some A_k , in which case it is said to be a k-vector. If $a \in A_{k_1} \oplus \cdots \oplus A_{k_n}$ is inhomogeneous, we may call it a $\{k_1, ..., k_n\}$ -multivector.

All elements of a graded algebra are either inhomogeneous or a *k*-vector for some *k*; and each *k*-vector is either a *k*-blade or a sum of *k*-blades.

Definition 7. A k-BLADE is a k-vector $a \in A_k$ of the form $a = \mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_k$ where each $\mathbf{u}_i \in A_1$ is a 1-vector.

Algebras which are \mathbb{Z}_2 -graded are sometimes called *superalgebras*, with the prefix 'super-' originating from supersymmetry theory.

Note that not all k-vectors are blades. For example, in the \mathbb{Z} -graded tensor algebra, the bivector $\mathbf{e}_1 \otimes \mathbf{e}_2 + \mathbf{e}_3 \otimes \mathbf{e}_4 \in \mathbb{R}^4 \otimes \mathbb{R}^4$ where $\{\mathbf{e}_i\}$ is the standard basis of \mathbb{R}^4 , cannot be factored into a blade of the form $\mathbf{u} \otimes \mathbf{v}$ for any $\mathbf{u}, \mathbf{v} \in V$.

{TO DO: Does this even make sense for a general graded algebra??}

Graded quotient algebras

A grading structure may or may not be inherited by a quotient — in particular, not all quotients of V^{\otimes} inherit its \mathbb{Z} -grading. When reasoning about quotients of graded algebras, the following fact is useful.

Lemma 3. Quotients commute with direct sums, so if

$$A = \bigoplus_{k \in R} A_k$$
 and $I = \bigoplus_{k \in R} I_k$ then $A/I = \bigoplus_{k \in R} (A_k/I_k)$

where R is some index set.

Proof. It is sufficient to prove the case for direct sums of length two. We then seek an isomorphism $\Phi: (A \oplus B)/(I \oplus J) \to (A/I) \oplus (B/J)$. Elements of the domain are equivalence classes of pairs [(a,b)] with respect to the ideal $I \oplus J$. The direct sum ideal $I \oplus J$ corresponds to the congruence defined by $(a,b) \sim (a',b') \iff a \sim a'$ and $b \sim b'$. Therefore, the assignment $\Phi = [(a,b)] \mapsto ([a],[b])$ is well-defined. Injectivity and surjectivity follow immediately.

This motivates the following strengthening to the notion of an ideal:

Definition 8. An ideal I of an R-graded algebra $A = \bigoplus_{k \in R} A_k$ is homogeneous if $I = \bigoplus_{k \in R} I_k$ where $I_k = I \cap A_k$.

Not all ideals are homogeneous.¹² The additional requirement that an ideal be homogeneous ensures that the associated equivalence relation, as well as respecting the basic algebraic relations of definition 2, also

12 For example, the ideal $I = \{\{e_1 + e_2 \otimes e_3\}\}$ is distinct from $\bigoplus_{k=0}^{\infty} (I \cap V^{\otimes k}) = \{\{e_1, e_2 \otimes e_3\}\}$ because the former does not contain span $\{e_1\}$, while the latter does.

preserves the grading structure. And so, we have a graded analogue to lemma 1:

Theorem 2. If A is an R-graded algebra and I a homogeneous ideal, then the quotient A/I is also R-graded.

Proof. By lemma 3 and the homogeneity of I, we have $A/I = \bigoplus_{k \in R} (A_k/I_k)$. Elements of A_k/I_k are equivalence classes $[a_k]$ where the representative is of grade k. Thus, $(A_p/I_p) \otimes (A_q/I_q) \subseteq A_{p+q}/I_{p+q}$ since $[a_p] \otimes [a_q] = [a_p \otimes a_q] = [b]$ for some $b \in A_{p+q}$. Hence, A/I is R-graded.

2.2. The Wedge Product: Multivectors

One of the simplest algebras to construct as a quotient of the tensor algebra, yet still one of the most useful, is the *exterior algebra*, first introduced by Hermann Grassmann in 1844.

Definition 9. The exterior algebra over a vector space V is

$$\wedge V := V^{\otimes} / \{\{ \boldsymbol{u} \otimes \boldsymbol{u} \}\}.$$

The product in $\wedge V$ is denoted \wedge and called the WEDGE PRODUCT.

The ideal $\{u \otimes u\} \equiv \{u \otimes u \mid u \in V\}$ corresponds to the congruence defined by $u \otimes u \sim 0$ for any vectors $u \in V$. The wedge product is also called the *exterior*, *alternating* or *antisymmetric* product. The property suggested by its various names is easily seen by expanding the square of a sum:

$$(u + v) \wedge (u + v) = u \wedge u + u \wedge v + v \wedge u + v \wedge v.$$

Since all terms of the form $\mathbf{w} \wedge \mathbf{w} = 0$ are definitionally zero, we have

$$u \wedge v = -v \wedge u$$

for all vectors $\mathbf{u}, \mathbf{v} \in V$. By associativity, it follows that $\mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \cdots \wedge \mathbf{v}_k$ vanishes exactly when the \mathbf{v}_i are linearly dependent.¹³

Proof. Blades of the form $a = \mathbf{u}_1 \wedge \cdots \wedge \mathbf{u}_k$ vanish when two or more vectors are repeated. If $\{\mathbf{u}_i\}$ is linearly dependent, then any one \mathbf{u}_i can be written in terms of the others, and

13

The ideal $\{u \otimes u\}$ is homogeneous with respect to the \mathbb{Z} -grading of the parent tensor algebra; hence $\wedge V$ is itself \mathbb{Z} -graded. In particular, the direct sum of fixed-grade subspaces

$$\wedge V = \bigoplus_{k=0}^{\dim V} \wedge^k V \quad \text{where} \quad \wedge^k V = \text{span}\{\mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \dots \wedge \mathbf{v}_k \mid \mathbf{v}_i \in V\},$$

is respected by the wedge product, i.e., $(\wedge^p V) \wedge (\wedge^q V) \subseteq \wedge^{p+q} V$. Definitions 6 and 7 carry over directly into $\wedge V$, so elements of $\wedge^k V$ are k-vectors, and elements of the form $\mathbf{u}_1 \wedge \cdots \wedge \mathbf{u}_k$ are k-blades.

By counting the number of possible linearly independent sets of k vectors in dim V dimensions, it follows that in base dimension dim V = n,

$$\dim \wedge^k V = \binom{n}{k}$$
, and hence $\dim \wedge V = 2^n$.

In particular, note that $\dim \wedge^k V = \dim \wedge^{n-k} V$. Elements of the one-dimensional subspace $\wedge^n V$ are called PSEUDOSCALARS.¹⁴

Blades have direct geometric interpretations. The bivector $u \wedge v$ is interpreted as the directed planar area spanned by the parallelogram with sides u and v. (Note that blades have no 'shape'; only directed magnitude.) Similarly, higher-grade elements represent directed volume elements spanned by parallelepipeds (see fig. 2.1). In fact, any k-blade may be viewed as a subspace of V with an oriented scalar magnitude:

Definition 10. The SPAN of a non-zero k-blade $b = \mathbf{u}_i \wedge \cdots \wedge \mathbf{u}_i$ is the k-dimensional subspace span $\{b\} = \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$. Define the span of zero to be the trivial subspace.

The definition does not depend on the particular decomposition of the blade as a wedge product of vector. (If $\mathbf{u}_1 \wedge \cdots \wedge \mathbf{u}_k = \mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_k$ are two such decompositions, then $\text{span}\{\mathbf{u}_i\} = \text{span}\{\mathbf{v}_i\}$.)

2.2.1. As antisymmetric tensors

The exterior algebra may equivalently be viewed as the space of antisymmetric tensors equipped with an antisymmetrising product. Consider the

14 The prefix 'pseudo' means $k \mapsto n - k$. Hence, a pseudovector is an (n-1)-vector, etc.

Figure 2.1.: Bivectors and trivectors have orientations induced by the order of the wedge product.

map

$$\operatorname{Sym}^{\pm}(\boldsymbol{u}_{1} \otimes \cdots \otimes \boldsymbol{u}_{k}) = \frac{1}{k!} \sum_{\sigma \in S_{k}} (\pm 1)^{\sigma} \boldsymbol{u}_{\sigma(1)} \otimes \cdots \otimes \boldsymbol{u}_{\sigma(k)}$$
 (2.2)

where $(-1)^{\sigma}$ denotes the sign of the permutation σ in the symmetric group of k elements, S_k . By enforcing linearly, $\operatorname{Sym}^{\pm}: V^{\otimes} \to V^{\otimes}$ is defined on all tensors. A tensor A is called SYMMETRIC if $\operatorname{Sym}^+(A) = A$ and Antisymmetric if $\operatorname{Sym}^-(A) = A$.

Denote the image $\operatorname{Sym}^-(V^{\otimes})$ by S. The linear map $\operatorname{Sym}^-: V^{\otimes} \to S$ is not an algebra homomorphism with respect to the tensor product on S, since, e.g., $\operatorname{Sym}^-(u \otimes v) \neq \operatorname{Sym}^-(u) \otimes \operatorname{Sym}^-(v) = u \otimes v$. However, it *is* if we instead equip S with the antisymmetrising product $\wedge: S \times S \to S$ defined by

$$A \wedge B := \operatorname{Sym}^{-}(A \otimes B). \tag{2.3}$$

This makes Sym $^-:V^\otimes\to S$ an algebra homomorphism, and by theorem 1, we have

$$S \cong V^{\otimes} / \text{ker Sym}^{-}$$
. (2.4)

Furthermore, note that the kernel of Sym⁻ consists of tensor products of linearly dependent vectors, and sums thereof,¹⁵

$$\ker \operatorname{Sym}^- = \operatorname{span}\{u_1 \otimes \cdots \otimes u_k \mid k \in \mathbb{N}, \{u_i\} \text{ linearly dependent}\},$$

which is exactly the ideal $\{u \otimes u\}$. Therefore, the right-hand side of eq. (2.4) is identically the exterior algebra of definition 9. Hence, we have an algebra isomorphism $\operatorname{Sym}^-(V^\otimes) \cong \wedge V$, where the left-hand side is equipped with the product (2.3). This gives an alternative construction of the exterior algebra.

Note on conventions

The factor of $\frac{1}{k!}$ present in eq. (2.2) is not necessary for the isomorphism $\operatorname{Sym}^-(V^{\otimes}) \cong \wedge V$ to follow. Indeed, some authors omit the normalisation factor, which has the effect of changing eq. (2.3) to

$$A \wedge B = \frac{(p+q)!}{p!q!} \text{Sym}^-(A \otimes B)$$

15

 $u_1 \otimes$

 $\cdots \otimes u_k$ where two vectors $u_i = u_j$ are equal, then Sym⁻(A) = 0 since each term in the sum in eq. (2.2) is paired with an equal and opposite term with $i \leftrightarrow j$ swapped. If { u_i } is linearly dependent, any one vector is a sum of the others, so A is a sum of blades with at least two vectors repeated. □

Proof. If A =

for A and B of respective grades p and q, written with (2.2) including the factor $\frac{1}{k!}$. The different normalisations of \wedge as an antisymmetrising product lead to distinct identifications of multivectors in $\wedge V$ with tensors in $S \subset V^{\otimes}$, as clarified in table 2.1.

Kobayashi–Nomizu [13] Spivak [14]
$$A \wedge B := \operatorname{Sym}^{-}(A \otimes B) \qquad A \wedge B := \frac{(p+q)!}{p!q!} \operatorname{Sym}^{-}(A \otimes B)$$
$$\mathbf{u} \wedge \mathbf{v} \equiv \frac{1}{2} (\mathbf{u} \otimes \mathbf{v} - \mathbf{v} \otimes \mathbf{u}) \qquad \mathbf{u} \wedge \mathbf{v} \equiv \mathbf{u} \otimes \mathbf{v} - \mathbf{v} \otimes \mathbf{u}$$

Table 2.1.: Different embeddings of ΛV into V^{\otimes} . We employ the Kobayashi–Nomizu convention as this is coincides with the wedge product of geometric algebra. The Spivak convention is dominant for exterior differential forms in physics.

2.2.2. Exterior forms

The exterior algebra is most frequently encountered by physicists as an operation on *exterior* (*differential*) *forms*, which are alternating ¹⁶ multilinear maps.

We *could* use the exterior algebra $\wedge V^*$ over the dual space of linear maps $V \to \mathbb{R}$ as a model for exterior forms. Using a basis $\{e^i\} \subset V^*$, any element $f \in \wedge^k V^*$ has the form $f = f_{i_1 \cdots i_k} e^{i_1} \wedge \cdots \wedge e^{i_k}$, and each component acts on $\mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_k \in V^{\otimes k}$ as

$$(\mathbf{e}^{i_1} \wedge \cdots \wedge \mathbf{e}^{i_k})(\mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_k) = \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^{\sigma} \mathbf{e}^{i_{\sigma(1)}}(\mathbf{u}_1) \cdots \mathbf{e}^{i_{\sigma(k)}}(\mathbf{u}_k)$$
$$= \frac{1}{k!} \det[\mathbf{e}^{i_m}(\mathbf{u}_n)]_{mn}. \tag{2.5}$$

However, this differs from the standard definition of exterior forms in two important ways:

1. In eq. (2.5), the dual vectors $\mathbf{e}^i \in V^*$ are permuted while the order of the arguments \mathbf{u}_i are preserved; but for standard exterior forms, the opposite is true. This prevents the proper extension of $\wedge V^*$ to non-Abelian vector-valued forms, where the values $\mathbf{e}^i(\mathbf{u}_j)$ may not commute.

An ALTERNATING linear map is one which changes sign upon transposition of any pair of arguments.

2. Trivially, we insist on the Kobayashi—Nomizu convention of normalisation factor for ΛV^* ; but the Spivak convention for exterior forms is much more standard in physics.

Thus, we define exterior forms separately from the exterior algebra.

Definition 11. For a vector space V over \mathbb{F} , a k-form $\varphi \in \Omega^k(V)$ is an alternating multilinear map $\varphi : V^{\otimes k} \to \mathbb{F}$. For another vector space A, an A-valued k-form $\varphi \in \Omega^k(V,A)$ is such a map $\varphi : V^{\otimes k} \to A$ with codomain A.

The evaluation of a form is denoted $\varphi(\mathbf{u}_1 \otimes \cdots \otimes \mathbf{u}_k)$ or $\varphi(\mathbf{u}_1, \dots, \mathbf{u}_k)$, and the wedge product of a p-form φ and q-form φ is defined (in the Spivak convention)

$$\varphi \wedge \phi = \frac{(p+q)!}{p!q!} (\varphi \otimes \phi) \circ \operatorname{Sym}^{-}. \tag{2.6}$$

Explicitly, eq. (2.6) acts to antisymmetrise arguments. To see this, choose a basis $\{dx^{\mu}\}$ of $\Omega(V)$, and compare to eq. (2.5),

$$(\mathrm{d}x^{\mu_1} \wedge \cdots \wedge \mathrm{d}x^{\mu_k})(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k) = \sum_{\sigma \in S_k} (-1)^{\sigma} \mathrm{d}x^{\mu_1}(\boldsymbol{u}_{\sigma(1)}) \cdots \mathrm{d}x^{\mu_k}(\boldsymbol{u}_{\sigma(k)})$$
$$= \det[\mathrm{d}x^{\mu_m}(\boldsymbol{u}_n)]_{mn}.$$

If $\varphi, \phi \in \Omega(V, A)$ are A-valued forms, where A is equipped with a bilinear product $\otimes : A \times A \to A$, then scalar multiplication may be replaced by \otimes so that

$$(\varphi \wedge \phi)(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_k) = \sum_{\sigma \in S_k} (-1)^{\sigma} \varphi(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_p) \otimes \phi(\boldsymbol{u}_1 \otimes \cdots \otimes \boldsymbol{u}_q).$$

The product \otimes need not be commutative nor associative. In particular, we may have Lie algebra-valued forms. For example, if $\varphi, \phi \in \Omega^1(V, \mathfrak{g})$ are Lie algebra-valued, then

$$(\varphi \wedge \phi)(\mathbf{u}, \mathbf{v}) = [\varphi(\mathbf{u}), \phi(\mathbf{v})] - [\varphi(\mathbf{v}), \phi(\mathbf{u})],$$

where $[\ ,\]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ is the Lie bracket. Note that this implies that $\varphi \wedge \varphi$ does not necessarily vanish for non-Abelian forms.¹⁷

17 E.g., in the case above, $(\varphi \land \varphi)(u, v) = 2[\varphi(u), \varphi(v)].$

2.3. The Metric: Length and Angle

The tensor and exterior algebras considered so far are built from a vector space V alone. Notions of length and angle are central to geometry, but are not intrinsic to a vector space — this additional structure must be provided by a *metric*.

Definition 12. A METRIC ¹⁸ is a function $\eta: V \times V \to \mathbb{F}$, often written $\eta(u, v) \equiv \langle u, v \rangle$ which satisfies

¹⁸ a.k.a. an inner product, or symmetric bilinear form

- symmetry, $\langle u, v \rangle = \langle v, u \rangle$; and
- linearity, $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ for $\alpha, \beta \in \mathbb{F}$.

Linearity in either argument implies linearity in the other by symmetry, so η is bilinear. A metric is non-degenerate if $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$ for all \boldsymbol{u} implies that \boldsymbol{v} is zero. With respect to a basis $\{\boldsymbol{e}_i\}$ of V, the metric components $\eta_{ij} = \langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle$ are defined. Non-degeneracy means that $\det \eta \neq 0$ when viewing $\eta = [\eta_{ij}]$ as a matrix, and in this case the matrix inverse η^{ij} is also defined and satisfies $\eta^{ik}\eta_{kj} = \delta^i_i$.

A vector space V together with a metric η is called an INNER PRODUCT SPACE (V, η) . Alternatively, instead of a metric, an inner product space may be constructed with a quadratic form:

Definition 13. A QUADRATIC FORM is a function $q:V \to \mathbb{F}$ satisfying

- $q(\lambda \mathbf{v}) = \lambda^2 q(\mathbf{v})$ for all $\lambda \in \mathbb{F}$; and
- the requirement that the POLARIZATION OF q,

$$(\boldsymbol{u}, \boldsymbol{v}) \mapsto q(\boldsymbol{u} + \boldsymbol{v}) - q(\boldsymbol{u}) - q(\boldsymbol{v}),$$

is bilinear.

To any quadratic form q there is a unique associated bilinear form, which is *compatible* in the sense that $q(\mathbf{u}) = \langle \mathbf{u}, \mathbf{u} \rangle$. It is recovered¹⁹ by

 $^{^{19}}$ Except, of course, if the characteristic of \mathbb{F} is two. We only consider fields of characteristic zero.

Chapter 2. Preliminary Theory

the polarization identity

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \frac{1}{2} (q(\boldsymbol{u} + \boldsymbol{v}) - q(\boldsymbol{u}) - q(\boldsymbol{v})).$$

The prescription of either η or q is therefore equivalent — but the notion of a metric is more common in physics, whereas the mathematical viewpoint often starts with a quadratic form.

Covectors and dual bases

The dual space $V^* := \{f : V \to \mathbb{F} \mid f \text{ linear}\}$ of a vector space consists of dual vectors or covectors, which are linear maps from V into its underlying field. Convention dictates that components of vectors be written superscript, $\mathbf{u} = u^i \mathbf{e}_i \in V$, and covectors subscript, $\varphi = \varphi_i \mathbf{e}^i \in V^*$, for bases $\{\mathbf{e}_i\} \subset V$ and $\{\mathbf{e}^i\} \subset V^*$.

A metric η on V defines an isomorphism between V and its dual space. Collectively known as the Musical Isomorphisms, the map $\flat: V \to V^*$ and its inverse $\sharp: V^* \to V$ are defined by

$$u^{\flat}(v) = \langle u, v \rangle$$
 and $\langle \varphi^{\sharp}, u \rangle = \varphi(u)$

for $u, v \in V$ and $\varphi \in V^*$. The names become justified when working with a basis: the relations

$$(\boldsymbol{u}^{\scriptscriptstyle b})_i = \eta_{ij} \boldsymbol{u}^j$$
 and $(\varphi^{\sharp})^i = \eta^{ij} \varphi_j$

show that b lowers indices, while # raises them.

Given a metric, a choice of basis $\{e_i\} \subset V$ also defines a DUAL BASIS $\{e^i\} \subset V^*$ of V via $e^i := \eta^{ij} e_j^{\, b}$. Note that basis vectors and covectors defined in this way do not exist in the same vector space, but are related by their evaluation on one another by $e^i(e_j) = \delta^i_j$. In some contexts, we will define a dual basis $\{e^i\}$ in V (not in V^*), and by this we mean the dual basis to be defined instead as $e^i := \eta^{ij} e_j$. Then, dual and non-dual basis vectors are related via $\langle e^i, e_j \rangle = \delta^i_j$. We use both senses of the term "dual basis". Often, the distinction can be safely ignored (since, after all, $V \cong V^*$).

2.3.1. Metrical exterior algebra

In an exterior algebra $\wedge V$ with a metric defined on V, there is an induced metric on k-vectors defined by

$$\langle \boldsymbol{u}_1 \wedge \cdots \wedge \boldsymbol{u}_k, \boldsymbol{v}_1 \wedge \cdots \wedge \boldsymbol{v}_k \rangle = \sum_{\sigma \in S_k} (-1)^{\sigma} \langle \boldsymbol{u}_1, \boldsymbol{v}_{\sigma(1)} \rangle \cdots \langle \boldsymbol{u}_k, \boldsymbol{v}_{\sigma(k)} \rangle$$
$$= \det[\langle \boldsymbol{u}_m, \boldsymbol{u}_n \rangle]_{mn}.$$

In particular, a metric on $\wedge V$ defines a magnitude for pseudoscalars.

Definition 14. Let V be an n-dimensional vector space with a metric. The VOLUME ELEMENT \mathbb{I} of the metrical exterior algebra $\wedge V$ is the unique (up to sign) n-vector satisfying $\langle \mathbb{I}, \mathbb{I} \rangle = 1$.

A choice of sign for the volume element defines an ORIENTATION. Given an ordered orthonormal basis $\{e_i\}$ with $\langle e_i, e_i \rangle = \pm 1$, the basis is called right-handed if $e_1 \wedge \cdots \wedge e_n = \mathbb{I}$ is the chosen volume element, and left-handed otherwise.

Hodge duality

A useful duality operation can be defined in an exterior algebra $\wedge V$ with a metric, which relates the k- and (n-k)-grade subspaces.

Definition 15. Let $\wedge V$ be a metrical exterior algebra with base dimension n and volume element \mathbb{I} . The Hodge dual \star is the unique linear operator satisfying

$$A \wedge \star B = \langle A, B \rangle \mathbb{I}$$

for any k-vectors $A, B \in \wedge^k V$.

The Hodge dual $\star: \wedge^k V \to \wedge^{n-k} V$ associates each pair of fixed-grade subspaces of the same dimension. In particular, the scalars and pseudoscalars, $\star 1 = \mathbb{I}$.

{TO DO: Seems incomplete...}

Chapter 3.

The Geometric Algebra

In chapter 2, we defined the metric-independent exterior algebra of multivectors over a vector space V. While metrical operations can be achieved by introducing the Hodge dual (of section 2.3.1), tacking it onto ΛV , the geometric algebra is a generalisation of ΛV which has the metric (and concomitant notions of orientation and duality) built-in.

Geometric algebras are also known as real *Clifford algebras Cl*(V, q) after their first inventor [4]. Especially in mathematics, Clifford algebras are defined in terms of a quadratic form q, and the vector space V is usually complex. However, in physics, where V is taken to be real and a metric η is usually supplied instead of q, the name "geometric algebra" is preferred.²⁰

The newer name was coined by David Hestenes in the 1970s, who popularised Clifford algebra for physics [15, 16].

3.1. Construction and Overview

Informally put, the geometric algebra is obtained by enforcing the single rule

$$\mathbf{u}^2 = \langle \mathbf{u}, \mathbf{u} \rangle \tag{3.1}$$

for any vector \boldsymbol{u} , along with the associative algebra axioms of definition 1. The rich algebraic structure which follows from this is remarkable. Formally, we may give the geometric algebra as a quotient, just like our presentation of ΔV .

Definition 16. Let V be a finite-dimensional real vector space with metric. The Geometric algebra over V is

$$\mathscr{G}(V,\eta) := V^{\otimes} / \{\{ \boldsymbol{u} \otimes \boldsymbol{u} - \langle \boldsymbol{u}, \boldsymbol{u} \rangle \}\}.$$

The ideal defines the congruence generated by $u \otimes u \sim \langle u, u \rangle$, encoding eq. (3.1). This uniquely defines the associative (but not generally commutative) *geometric product* which we denote by juxtaposition.

As 2^n -dimensional vector spaces, $\mathcal{G}(V, \eta)$ and $\wedge V$ are isomorphic, each with a $\binom{n}{k}$ -dimensional subspace for each grade k. Denoting the k-grade subspace $\mathcal{G}_k(V, \eta)$, we have the vector space decomposition

$$\mathscr{G}(V,\eta) = \bigoplus_{k=0}^{\infty} \mathscr{G}_k(V,\eta).$$

Note that this is not a \mathbb{Z} grading of the geometric algebra: the quotient is by *inhomogeneous* elements $u \otimes u - \langle u, u \rangle \in V^{\otimes 2} \oplus V^{\otimes 0}$, and therefore the geometric product of a p-vector and a q-vector is not generally a (p+q)-vector. However, the congruence is homogeneous with respect to the \mathbb{Z}_2 -grading, so $\mathcal{G}(V,\eta)$ is \mathbb{Z}_2 -graded. This shows that the algebra separates into 'even' and 'odd' subspaces

$$\mathcal{G}(V,\eta) = \mathcal{G}_+(V,\eta) \oplus \mathcal{G}_-(V,\eta) \quad \text{where} \quad \begin{cases} \mathcal{G}_+(V,\eta) = \bigoplus_{k=0}^\infty \mathcal{G}_{2k}(V,\eta) \\ \mathcal{G}_+(V,\eta) = \bigoplus_{k=0}^\infty \mathcal{G}_{2k+1}(V,\eta) \end{cases}$$

where $\mathcal{G}_+(V,\eta)$ is closed under the geometric product, forming the even subalgebra.

The geometric product of vectors

By expanding $(u + v)^2 = \langle u + v, u + v \rangle$, it directly follows that

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \frac{1}{2} (\boldsymbol{u}\boldsymbol{v} + \boldsymbol{v}\boldsymbol{u}).$$

Chapter 3. The Geometric Algebra

We recognise this as the symmetrised product of two vectors. The remaining antisymmetric part coincides with the *alternating* or *wedge* product familiar from exterior algebra

$$\boldsymbol{u}\wedge\boldsymbol{v}=\frac{1}{2}(\boldsymbol{u}\boldsymbol{v}-\boldsymbol{v}\boldsymbol{u}).$$

This is a 2-vector, or bivector, in $\mathcal{G}_2(V, \eta)$. Thus, the geometric product on vectors is

$$uv = \langle u, v \rangle + u \wedge v$$

and some important features are immediate:

- Parallel vectors commute, and vice versa: If $\mathbf{u} = \lambda \mathbf{v}$, then $\mathbf{u} \wedge \mathbf{v} = 0$ and $\mathbf{u}\mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle = \mathbf{v}\mathbf{u}$.
- Orthogonal vectors anti-commute, and vice versa: If $\langle u, v \rangle = 0$, then $uv = u \wedge v = -v \wedge u = -vu$.

In particular, if $\{e_i\} \subset V$ is an orthonormal basis, then we have $e_i^2 = \langle e_i, e_i \rangle$ and $e_i e_j = -e_j e_i$, which can be summarised by the anticommutation relation $e_i e_j + e_j e_i = 2\eta_{ij}$.

- Vectors are invertible under the geometric product: If \mathbf{u} is a vector for which the scalar \mathbf{u}^2 is non-zero, then $\mathbf{u}^{-1} = \mathbf{u}/\mathbf{u}^2$.
- Geometric multiplication produces objects of mixed grade: The product uv has a scalar part $\langle u, v \rangle$ and a bivector part $u \wedge v$.

Higher-grade elements

As with two vectors, the geometric product of two homogeneous multivectors is generally inhomogeneous. We can gain insight by separating geometric products into grades and studying each part.

Definition 17. The GRADE k PROJECTION of a multivector $A \in \mathcal{G}(V, \eta)$ is

$$\langle A \rangle_k = \begin{cases} A & if A \in \mathcal{G}_k(V, \eta) \\ 0 & otherwise. \end{cases}$$

We can generalise the definition of the wedge product of vectors $\mathbf{u} \wedge \mathbf{v} = \langle \mathbf{u} \mathbf{v} \rangle_2$ to arbitrary homogeneous multivectors by taking the highest-grade part of their product,

$$A \wedge B = \langle AB \rangle_{p+q}$$

where $A \in \mathcal{G}_p(V, \eta)$ and $B \in \mathcal{G}_q(V, \eta)$. Dually, we can define an inner product on homogeneous multivectors by taking the lowest-grade part, |p-q|. These can be extended by linearity to inhomogeneous elements.

Definition 18. Let $A, B \in \mathcal{G}(V, \eta)$ be possibly inhomogeneous multivectors. The WEDGE PRODUCT IS

$$A \wedge B := \sum_{p,q} \left\langle \langle A \rangle_p \langle B \rangle_q \right\rangle_{p+q},$$

and the GENERALISED INNER PRODUCT, or "fat dot" product, is

$$A \cdot B := \sum_{p,q} \langle \langle A \rangle_p \langle B \rangle_q \rangle_{|p-q|}.$$

With the wedge product defined on all of $\mathcal{G}(V, \eta)$, we use language of multivectors as we did with the exterior algebra, so that $\mathbf{u}_1 \wedge \cdots \wedge \mathbf{u}_k \in \mathcal{G}_k(V, \eta)$ is a k-blade, and a sum of k-blades is a k-multivector, etcetea. The products in definition 18 work together nicely, and extend the notion of a dual vector basis to a dual basis of blades.

Lemma 4. If $\{e_i\} \subset V$ is a basis with dual $e^i \cdot e_j = \delta^i_j$, then

$$(\boldsymbol{e}^{i_1} \wedge \cdots \wedge \boldsymbol{e}^{i_k}) \cdot (\boldsymbol{e}_{j_k} \wedge \cdots \wedge \boldsymbol{e}_{j_1}) = \varepsilon_j^i$$

where $\varepsilon_j^i = (-1)^{\sigma}$ is the sign of the permutation sending $\sigma(i_p) = j_p$ for $1 \le p \le k$, or zero if there is no such permutation or if i or j contain repeated indices.

Note the reverse order of the *j* indices.

Proof. If *i* or *j* contain repeated indices, then the left-hand side vanishes by antisymmetry of the wedge product, and the right-hand side by definition. If *i* contains no repeated indices, and the *j* indices are some permutation $j_p = \sigma(i_p)$, then $e^{i_1} \wedge \cdots \wedge e^{i_k} = e^{i_1} \cdots e^{i_k}$ by orthogonality. Rewriting

the left-hand side,

$$\langle \boldsymbol{e}^{i_1} \cdots \boldsymbol{e}^{i_k} \boldsymbol{e}_{j_k} \cdots \boldsymbol{e}_{j_1} \rangle = (-1)^{\sigma} \langle \boldsymbol{e}^{i_1} \cdots \underbrace{\boldsymbol{e}^{i_k} \boldsymbol{e}_{i_k}}_{1} \cdots \boldsymbol{e}_{i_1} \rangle = (-1)^{\sigma}.$$

Finally, if i contains no repeated indices, but j is not a permutation of i, then there is at least one pair of indices in the symmetric difference of $\{i_p\}$ and $\{j_p\}$, say i_r and j_s . Commuting this pair \mathbf{e}^{i_r} and \mathbf{e}_{j_s} together shows that the left-hand side vanishes, since $\mathbf{e}^{i_r}\mathbf{e}_{j_s} = 0$.

3.2. Relations to Other Algebras

An efficient way to become familiar with the geometric algebra is to exemplify its relationships and isomorphisms with other algebras and with itself.

3.2.1. Fundamental algebra automorphisms

Operations such complex conjugation $\overline{AB} = \overline{A}\,\overline{B}$ or matrix transposition $(AB)^\mathsf{T} = B^\mathsf{T}A^\mathsf{T}$ are useful because they preserve or reverse multiplication. Linear functions with this property are called algebra automorphisms or antiautomorphisms, respectively. The geometric algebra possesses this (anti)automorphism operations.

Isometries of (V, η) are linear functions $f: V \to V$ which preserve the metric, so that $\langle f(u), f(v) \rangle = \langle u, v \rangle$ for any $u, v \in V$. Vector spaces always possess the involution isometry $u \mapsto -u$, as well as the trivial isometry. An isometry extends uniquely to an algebra (anti)automorphism by defining f(AB) = f(A)f(B) or f(AB) = f(B)f(A). Thus, by extending the two fundamental isometries of (V, η) in the two possible ways, we obtain four fundamental (anti)automorphisms of $\mathcal{G}(V, \eta)$.

Definition 19.

• REVERSION \dagger is the identity map on vectors $\mathbf{u}^{\dagger} = \mathbf{u}$ extended to general multivectors by the rule $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

• GRADE INVOLUTION \star is the extension of the involution $\mathbf{u}^{\star} = -\mathbf{u}$ to general multivectors by the rule $(AB)^{\star} = A^{\star}B^{\star}$.

If $A \in \mathcal{G}_k(V, \eta)$ is a k-vector, then $\iota(A) = (-1)^k A$ and $A^{\dagger} = s_k A$ where

$$s_k = (-1)^{\frac{(k-1)k}{2}} \tag{3.2}$$

is the sign of the reverse permutation on k symbols.

Reversion and grade involution together generate the four fundamental automorphisms

 $\star \circ \dagger$ is sometimes referred to as the CLIFFORD CONJUGATE

which form a group isomorphic to \mathbb{Z}_2^2 under composition.

These operations are very useful in practice. In particular, the following result follows easily from reasoning about grades.

Lemma 5. If $A \in \mathcal{G}_k(V, \eta)$ is a k-vector, then A^2 is a $4\mathbb{N}$ -multivector, i.e., a sum of blades of grade $\{0, 4, 8, ...\}$ only.

Proof. The multivector A^2 is its own reverse, since $(A^2)^{\dagger} = (A^{\dagger})^2 = (\pm A)^2 = A^2$, and hence has parts of grade $\{4n, 4n + 1 \mid n \in \mathbb{N}\}$. Similarly, A^2 is self-involutive, since $(A^2)^* = (A^*)^2 = (\pm A)^2 = A^2$. It is thus of even grade, leaving the possible grades $\{0, 4, 8, ...\}$.

3.2.2. Even subalgebra isomorphisms

As noted above, multivectors of even grade are closed under the geometric product, and form the even subalgebra $\mathcal{G}_+(p,q)$. There is an isomorphism $\mathcal{G}_+(p,q) \cong \mathcal{G}_+(q,p)$ given by $\bar{\mathbf{e}}_i := \mathbf{e}_i$ with opposite signature $\bar{\mathbf{e}}_i^2 := -\mathbf{e}_i^2$, since the factor of -1 occurs only an even number of times for even elements.

Chapter 3. The Geometric Algebra

The even subalgebras are also isomorphic to full geometric algebras of one dimension less:

Lemma 6. There are isomorphisms

$$\mathcal{G}_{+}(p,q) \cong \mathcal{G}(p,q-1)$$
 and $\mathcal{G}_{+}(p,q) \cong \mathcal{G}(q,p-1)$

when $q \ge 1$ and $p \ge 1$, respectively.

Proof. Select a unit vector $\mathbf{u} \in \mathcal{G}(p,q)$ with $\mathbf{u}^2 = -1$, and define a linear map $\Psi_{\mathbf{u}} : \mathcal{G}(p,q-1) \to \mathcal{G}_+(p,q)$ by

$$\Psi_{\boldsymbol{u}}(A) = \begin{cases} A & \text{if } A \text{ is even} \\ A \wedge \boldsymbol{u} & \text{if } A \text{ is odd} \end{cases}.$$

Note we are taking $\mathcal{G}(p,q-1)\subset \mathcal{G}(p,q)$ to be the subalgebra obtained by removing \boldsymbol{u} (i.e., restricting V to \boldsymbol{u}^{\perp}) so there is a canonical inclusion from the domain of $\Psi_{\boldsymbol{u}}$ to the codomain. Let $A\in \mathcal{G}(p,q-1)$ be a k-vector. Note that $A\wedge \boldsymbol{u}=A\boldsymbol{u}$ since $\boldsymbol{u}\perp \mathcal{G}(p,q-1)$, and that A commutes with \boldsymbol{u} if k is even and anticommutes if k is odd.

To so $\Psi_{\boldsymbol{u}}$ is a homomorphism, suppose $A, B \in \mathcal{G}(p, q-1)$ are both even; then $\Psi_{\boldsymbol{u}}(AB) = AB = \Psi_{\boldsymbol{u}}(A)\Psi_{\boldsymbol{u}}(B)$. If both are odd, then AB is even and $\Psi_{\boldsymbol{u}}(AB) = AB = -AB\boldsymbol{u}^2 = A\boldsymbol{u}B\boldsymbol{u} = \Psi_{\boldsymbol{u}}(A)\Psi_{\boldsymbol{u}}(B)$. If A is odd and B even, then $\Psi_{\boldsymbol{u}}(AB) = AB\boldsymbol{u} = A\boldsymbol{u}B = \Psi_{\boldsymbol{u}}(A)\Psi_{\boldsymbol{u}}(B)$ and similarly for A even and B odd. Injectivity and surjectivity are clear, so $\Psi_{\boldsymbol{u}}$ is an algebra isomorphism.

The special case $\mathcal{G}_+(1,3) \cong \mathcal{G}(3)$ is of great relevance to special relativity, and is discussed in detail in section 4.1. Here the isomorphism Ψ_u is called a *space/time split* with respect to an observer of velocity u. This provides an impressively efficient algebraic method for transforming relativistic quantities between inertial frames.

3.2.3. Relation to Exterior Forms

The geometric algebra is a generalisation of the exterior algeba. If the inner product is completely degenerate (i.e., $\langle u, v \rangle_0 = 0$ for all vectors),

then there is an algebra isomorphism $\mathcal{G}(V,0) \cong \Lambda V$.

A qualitative difference between $\mathcal{G}(V, \eta)$ and ΛV is that while inhomogeneous multivectors find little use in exterior algebra, ²¹ these have a significant role in describing reflections and rotations in $\mathcal{G}(V, \eta)$.

In fact, some authors [17] leave sums of terms of $\wedge V$ of differing grade undefined.

Exterior forms as multivectors

Exterior forms can be mimicked in the geometric algebra by making use of a dual basis V, as in the following lemma. Note that the dual space V^* does not make an appearance — all elements belong to $\mathcal{G}(V, \eta)$.

Lemma 7. If $A \in \mathcal{G}_k(V, \eta)$ is a k-vector and $\varphi \in \Omega^k(V)$ is a k-form whose components coincide (i.e., $A_{i_1 \cdots i_k} = \varphi_{i_1 \cdots i_k}$ given a common basis of V) then

$$A \cdot (\mathbf{u}_k \wedge \cdots \wedge \mathbf{u}_1) = k! \, \varphi(\mathbf{u}_1, \dots, \mathbf{u}_k).$$

Note the reversed order of the wedge products on the left-hand side. The factor of k! is due to the Spivak convention for exterior forms (replace $k! \mapsto 1$ for the Kobayashi–Nomizu convention).

Proof. Fix an orthonormal basis $\{e_i\} \subset V$ and a dual basis $e^i \cdot e_j = \delta^i_j$. Expanding the right-hand side with respect to his basis,

$$A \cdot (\boldsymbol{u}_k \wedge \cdots \wedge \boldsymbol{u}_1) = A_{i_1 \cdots i_k} (\boldsymbol{e}^{i_1} \wedge \cdots \wedge \boldsymbol{e}^{i_k}) \cdot (\boldsymbol{e}_{j_k} \wedge \cdots \wedge \boldsymbol{e}_{j_1}) u_k^{j_k} \cdots u_1^{j_1}.$$

By lemma 4, the dot product of k-blades is $(-1)^{\sigma}$ is the sign of the permutation $\sigma(i_p) = j_p$, and zero for all non-permutation terms in the sum. Thus, for each (non-zero) term in the sum we have

$$u_1^{j_1}\cdots u_k^{j_k}=u_1^{\sigma^{-1}(j_1)}\cdots u_k^{\sigma^{-1}(j_k)}=u_{\sigma(1)}^{i_1}\cdots u_{\sigma(k)}^{i_k},$$

where the last equality is obtained by permuting the scalar components $u_{\sigma(p)}^{i_p}$ by σ . Putting this together,

$$A \cdot (\boldsymbol{u}_k \wedge \cdots \wedge \boldsymbol{u}_1) = \sum_{\sigma \in S_k} (-1)^{\sigma} A_{i_1 \cdots i_k} u_{\sigma(1)}^{i_1} \cdots u_{\sigma(k)}^{i_k},$$

Chapter 3. The Geometric Algebra

which by $A_{i_1\cdots i_k} = \varphi_{i_1\cdots i_k}$ is equal to

$$\cdots = \sum_{\sigma \in S_k} (-1)^{\sigma} \varphi(\mathbf{u}_{\sigma(1)}, \dots, \mathbf{u}_{\sigma(k)}) = k! \, \varphi(\mathbf{u}_{\sigma(1)}, \dots, \mathbf{u}_{\sigma(k)})$$

where all k! terms are equal due to the alternating property of φ .

Pseudoscalars and Hodge duality

{TO DO: Show equivalence of right-multiplication by \mathbb{I} with \star .}

3.2.4. Common algebra isomorphisms

Many familiar algebraic structures in relativistic or quantum physics are special cases of geometric algebra.

• Complex numbers: $\mathcal{G}_+(2) \cong \mathbb{C}$

The complex plane is contained within $\mathcal{G}(2)$ as the even subalgebra, with the isomorphism

$$\mathbb{C}\ni x+iy \leftrightarrow x+y\pmb{e}_1\pmb{e}_2\in\mathcal{G}_+(2)$$

Complex conjugation in $\mathbb C$ coincides with reversion in $\mathcal G(2)$.

• Quaternions: $\mathcal{G}_{+}(3) \cong \mathbb{H}$

Similarly, the quaternions are the even subalgebra $\mathcal{G}_{+}(3)$, with the isomorphism²²

$$q_0 + q_1\hat{i} + q_2\hat{j} + q_3\hat{k} \longleftrightarrow q_0 + q_1e_2e_3 - q_2e_3e_1 + q_3e_1e_2.$$

Again, quaternion conjugation corresponds to reversion in $\mathcal{G}(3)$.

• Complexified quaternions: $\mathcal{G}_+(1,3) \cong \mathbb{C} \otimes \mathbb{H}$

The complexified quaternion algebra, which has been applied to special relativity [7, 9, 10], is isomorphic to the subalgebra $\mathcal{G}_{+}(1,3)$.

Note the minus sign. Viewed as rotations through their respective normal planes, $(\hat{\imath}, \hat{\jmath}, \hat{k})$ form a *left*-handed basis. This is because Hamilton chose $\hat{\imath}\hat{\jmath}\hat{k} = -1$, not +1.

The isomorphism

$$\mathbb{C} \otimes \mathbb{H} \ni (x+yi) \otimes (q_0 + q_1\hat{\mathbf{i}} + q_2\hat{\mathbf{j}} + q_3\hat{\mathbf{k}}) \longleftrightarrow (x+y\mathbf{e}_{0123})(q_0 + q_1\mathbf{e}_{23} - q_2\mathbf{e}_{31} + q_3\mathbf{e}_{12}) \in \mathcal{G}_+(1,3)$$

associates quaternion units with bivectors, and the complex plane with the scalar–pseudoscalar plane. Reversion in $\mathcal{G}(1,3)$ corresponds to quaternion conjugation (preserving the complex i).

• The Pauli algebra: $\mathcal{G}(3) \cong \{\sigma_i\}_{i=1}^3$

The *algebra of physical space*, $\mathcal{G}(3)$, admits a complex representation $\mathbf{e}_i \longleftrightarrow \sigma_i$ via the Pauli spin matrices

$$\sigma_1 = \begin{pmatrix} 0 & +1 \\ +1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ +i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Reversion in $\mathcal{G}(3)$ corresponds to the adjoint (Hermitian conjugate), and the volume element $\mathbb{I} := \mathbf{e}_{123} \longleftrightarrow \sigma_1 \sigma_2 \sigma_3 = i$ corresponds to the unit imaginary.

• The Dirac algebra: $\mathcal{G}(1,3) \cong \left\{ \gamma_{\mu} \right\}_{\mu=0}^{3}$

The relativistic analogue to the Pauli algebra is the Dirac algebra, generated by the 4×4 complex Dirac matrices

$$\gamma_0 = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma_1 = \begin{pmatrix} 0 & +\sigma_1 \\ -\sigma_1 & 0 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} 0 & -i\sigma_2 \\ +i\sigma_2 & 0 \end{pmatrix}, \quad \gamma_3 = \begin{pmatrix} 0 & +\sigma_3 \\ -\sigma_3 & 0 \end{pmatrix}.$$

These form a complex representation of the *algebra of spacetime*, $\mathcal{G}(1,3)$, via $\mathbf{e}_{\mu} \longleftrightarrow \gamma_{\mu}$. Again, reversion corresponds to the adjoint, and $\mathbb{I} := \mathbf{e}_0 \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \longleftrightarrow \gamma_0 \gamma_1 \gamma_2 \gamma_3 = -i \gamma_5$.

3.3. Rotors and the Associated Lie Groups

There is a consistent pattern in the algebra isomorphisms listed in section 3.2.4. Note how the complex numbers \mathbb{C} are fit for describing SO(2)

rotations in the plane, and the quaternions \mathbb{H} describe SO(3) rotations in \mathbb{R}^3 . Common to both their respective isomorphisms with $\mathcal{G}_+(2)$ and $\mathcal{G}_+(3)$ is the identification of each "imaginary unit" in \mathbb{C} or \mathbb{H} with a *unit bivector* in $\mathcal{G}(n)$.

- In 2d, there is one linearly independent bivector, e_1e_2 , and one imaginary unit, i.
- In 3d, there are dim $\mathcal{G}_2(3) = \binom{3}{2} = 3$ such bivectors, and so three imaginary units $\{\hat{i}, \hat{j}, \hat{k}\}$ are needed.
- In (1+3)d, we have dim $\mathcal{G}_2(1,3) = \binom{4}{2} = 6$, corresponding to three 'spacelike' $\{\hat{\pmb{\imath}}, \hat{\pmb{\jmath}}, \hat{\pmb{k}}\}$ and three 'timelike' $\{\hat{\pmb{\imath}}, i\hat{\pmb{\jmath}}, i\hat{\pmb{k}}\}$ units of $\mathbb{C} \otimes \mathbb{H}$.

The interpretation of a bivector is clear: it takes the role of an 'imaginary unit', generating a rotation through the oriented plane which it spans.

To see how bivectors act as rotations, observe that rotations in the \mathbb{C} -plane may be described as mappings $z \mapsto e^{\theta i}z$, while \mathbb{R}^3 rotations are described in \mathbb{H} using a double-sided transformation law, $u \mapsto e^{\theta \hat{n}/2}ue^{-\theta \hat{n}/2}$, where $\hat{n} \in \text{span}\{\hat{i}, \hat{j}, \hat{k}\}$ is a unit quaternion defining the plane of rotation. Due to the commutativity of \mathbb{C} , the double-sided transformation law is actually general to both \mathbb{C} and \mathbb{H} .

Similarly, rotations in a geometric algebra are described as

$$u \mapsto e^{-\theta \hat{b}/2} u e^{\theta \hat{b}/2},$$

where $\hat{b} \in \mathcal{G}_2(V, \eta)$ is a unit bivector. Multivectors of the form $R = e^{\sigma}$ for $\sigma \in \mathcal{G}_2(V, \eta)$ are called *rotors*. Immediate advantages to the rotor formalism are clear:

• It is general to n dimensions, and to any metric signature.

Rotors describe generalised rotations,²³ depending on the metric and algebraic properties of the exponentiated unit bivector σ . If $\sigma^2 < 0$, then e^{σ} describes a Euclidean rotation; if $\sigma^2 > 0$, then e^{σ} is a hyperbolic rotation or *Lorentz boost*.

• Vectors are distinguished from bivectors.

a.k.a., proper orthogonal transformations

One of the subtler points about quaternions is their transformation properties under reflection. A quaternion 'vector' $v = x\hat{i} + y\hat{j} + z\hat{k}$ reflects through the origin as $v \mapsto -v$, but a quaternion 'rotor' of the same value is invariant — vectors and pseudovectors are confused with the same kind of object. Not so in the geometric algebra: vectors are 1-vectors, and \mathbb{R}^3 pseudovectors are bivectors.

It turns out that this price of introducing more algebraic objects is hardly a cost but a benefit: the generalisation to arbitrary dimensions is immediate and elegant, and the geometric role of objects becomes clear.²⁴

²⁴ See [5, 15, 18] for similarly impassioned testaments to the elegance of geometric algebra.

3.3.1. The rotor groups

We will now see more rigorously how the rotor formalism arises. An orthogonal transformation in n dimensions may be achieved by the composition of at most n reflections. A reflection may be described in the geometric algebra by conjugation with an invertible vector. For instance, the linear map

$$A \mapsto -\mathbf{v}A\mathbf{v}^{-1} \tag{3.3}$$

reflects the multivector A along the vector \mathbf{v} — that is, across the hyperplane with normal \mathbf{v} . By composing reflections of this form, any orthogonal transformation may be built, acting on multivectors as

$$A \mapsto \pm RAR^{-1} \tag{3.4}$$

for some $R = v_1 v_2 \cdots v_3$, where the sign is positive for an even number of reflections, and negative for odd.

Scaling the axis of reflection v by a non-zero scalar λ does not affect the reflection map (3.3), since $v \mapsto \lambda v$ is cancelled out by $v^{-1} \mapsto \lambda^{-1} v^{-1}$. Therefore, a more direct correspondence exists between reflections and normalised vectors $\hat{v}^2 = \pm 1$ (although there still remains an overall ambiguity in sign). For an orthogonal transformation built using normalised vectors,

$$R^{-1} = \hat{\mathbf{v}}_3^{-1} \cdots \hat{\mathbf{v}}_2^{-1} \hat{\mathbf{v}}_1^{-1} = \pm R^{\dagger}$$

Chapter 3. The Geometric Algebra

since $\hat{\mathbf{v}}^{-1} = \pm \hat{\mathbf{v}}$, and hence eq. (3.4) may be written in terms of reversion instead of inversion:

$$A \mapsto \pm RAR^{\dagger} \tag{3.5}$$

All such elements $R^{-1} = \pm R^{\dagger}$ taken together form a group under the geometric product. This is called the *pin* group:

$$\operatorname{Pin}(p,q) := \left\{ R \in \mathcal{G}(p,q) \mid RR^{\dagger} = \pm 1 \right\}$$

There are two "pinors" for each orthogonal transformation, since +R and -R give the same map (3.5). Thus, the pin group forms a double cover of the orthogonal group O(p,q).

Furthermore, the even-grade elements of Pin(p, q) form a subgroup, called the *spin* group:

$$\mathrm{Spin}(p,q) := \left\{ R \in \mathcal{G}_+(p,q) \mid RR^{\dagger} = \pm 1 \right\}$$

This forms a double cover of SO(p, q).

Finally, the additional requirement that $RR^{\dagger} = 1$ defines the restricted spinor group, or the *rotor* group:

$$\mathrm{Spin}^+(p,q) := \left\{ R \in \mathcal{G}_+(p,q) \mid RR^{\dagger} = 1 \right\}$$

The rotor group is a double cover of the restricted special orthogonal group $SO^+(p,q)$. Except for the degenerate case of $Spin^+(1,1)$, the rotor group is simply connected to the identity.

 $Spin^{+} \subseteq Spin \subset Pin$ $\Downarrow \qquad \qquad \Downarrow$ $SO^{+} \subseteq SO \subset O$

Figure 3.1.: Relationships between Lie groups associated with a geometric algebra. An arrow $a \rightarrow b$ signifies that a is a double-cover of b.

3.3.2. The bivector subalgebra

The multivector commutator product

$$A \times B := \frac{1}{2}(AB - BA) \tag{3.6}$$

forms a Lie bracket on the space of bivectors \mathcal{G}_2 .

Proof. The commutator product $A \mapsto A \times \sigma$ with a bivector σ is a grade-preserving operation. If $A = \langle A \rangle_k$ then $A\sigma$ and σA are $\{k-2, k, k+2\}$ -multivectors. The $k \pm 2$ parts are

$$\langle A \times \sigma \rangle_{k\pm 2} = \frac{1}{2} (\langle A \sigma \rangle_{k\pm 2} - \langle \sigma A \rangle_{k\pm 2}).$$

However, $\langle \sigma A \rangle_{k\pm 2} = s_{k\pm 2} \langle A^{\dagger} \sigma^{\dagger} \rangle_{k\pm 2} = -s_{k\pm 2} s_k \langle A \sigma \rangle_{k\pm 2}$ and the reversion signs²⁶ satisfy $s_{k\pm 2} s_k = -1$ for any k. Hence, $\langle A \times \sigma \rangle_{k\pm 2} = 0$, leaving only the grade k part, $A \times \sigma = \langle A \times \sigma \rangle_k$. Clearly eq. (3.6) is bilinear and satisfies the Jacobi identity, so (\mathcal{G}_2, \times) is closed and forms a Lie algebra.

Recall from eq. (3.2) that $A^{\dagger} = s_k A$ for a k-vector where $s_k = (-1)^{\frac{(k-1)k}{2}}$.

Because the even subalgebra $\mathcal{G}_+\supset\mathcal{G}_2$ is closed under the geometric product, the exponential $e^\sigma=1+\sigma+\frac{1}{2}\sigma^2+\cdots$ of a bivector is an even multivector. Furthermore, note that the reverse $(e^\sigma)^\dagger=e^{\sigma^\dagger}=e^{-\sigma}$ is the inverse, and also that e^σ is continuously connected to the identity by the path $e^{\lambda\sigma}$ for $\lambda\in[0,1]$. Therefore, $e^\sigma\in\mathrm{Spin}^+$ is a rotor, and we have a Lie algebra–Lie group correspondence shown in fig. 3.2. Thus, both the rotor groups and their Lie algebras are directly represented within the mother algebra $\mathcal{G}(p,q)$.

$$Spin^{+}(p,q) \implies SO^{+}(p,q)$$

$$\stackrel{\longleftarrow}{exp} \qquad \stackrel{\longleftarrow}{exp}$$

$$\mathcal{G}_{2}(p,q) \cong \mathfrak{So}(p,q)$$

Figure 3.2.: The Lie algebras $\mathfrak{So}(p,q)$ and $\mathscr{C}_2(p,q)$ under × are isomorphic, and are associated respectively to $SO^+(p,q)$ and its universal double cover $Spin^+(p,q)$.

3.4. Higher Notions of Orthogonality

As discussed at the start of this chapter, the lack of a \mathbb{Z} -grading means that a geometric product of blades is generally an inhomogeneous multivector. Geometrically, the grade k part of product of blades reveals the degree to which the two blades are 'orthogonal' or 'parallel', in a certain k-dimensional sense.

Chapter 3. The Geometric Algebra

To see this, first consider the special case where the product of blades a and b is a homogeneous k-blade. This occurs when there exists a common orthonormal basis $\{e_i\}$ such that

$$a = \alpha \mathbf{e}_{i_1} \cdots \mathbf{e}_{i_p}$$
 and $b = \beta \mathbf{e}_{j_1} \cdots \mathbf{e}_{j_q}$

simultaneously, for scalars α , β . Then, the product is

$$ab = \pm \alpha \beta \mathbf{e}_{h_1} \cdots \mathbf{e}_{h_k}.$$

Each pair of parallel basis vectors in a and b contributes an overall factor of $\mathbf{e}_i^2 = \pm 1$, and each transposition required to bring each pair together flips the overall sign.

The resulting grade k is the number of basis vectors e_{h_i} which are not common to both a and b; i.e., $\{h_i\}$ is the symmetric difference of i and j. Thus, the possible values of k are separated by steps of two, with the maximum k = p + q attained when no basis vectors are common to a and b. In terms of the spans of the blades, we have

$$k = \underbrace{\dim \text{span}\{a\}}_{p} + \underbrace{\dim \text{span}\{b\}}_{q} - \underbrace{2\dim(\text{span}\{a\} \cap \text{span}\{b\})}_{2m}$$

$$\in \{|p-q|, |p-q| + 2, ..., p+q-2, p+q\}. \tag{3.7}$$

Solving for the dimension of the intersection, we have

$$m = \frac{1}{2}(p+q-k).$$

Thus, the higher the grade k of the product ab, the lower the dimension m of the intersection of their spans.

We are used to the geometric meaning of two vectors being parallel or orthogonal. In terms of vector spans, they imply that the intersection is one or zero dimensional, respectively. Similarly, blades of higher grade can be 'parallel' or 'orthogonal' to varying degrees, depending on the dimension of their intersection, m.

For example, the intersection of two 2-blades may be of dimension two, one or (in four or more dimensions) zero. The notion of parallel (i.e., being a scalar multiple) remains clear (m = 2), but there are now two different

types of orthogonality for 2-blades (m = 1 and m = 0). An example of the first type can be pictured as two planes meeting at right-angles along a line; the second type requires at least four dimensions.

Definition 20. A p-blade a and q-blade b satisfying $ab = \langle ab \rangle_k$ are called Δ -orthogonal where $\Delta = k - |p - q| = n - m$.

Informally, Δ -orthogonality of a and b means that ab is of the Δ th grade above the minimum possible grade |p-q|. The higher Δ , the fewer linearly independent directions are shared by (the spans of) a and b. Different cases are exemplified in table 3.1.

p	q	k	$\langle ab \rangle_k$	Δ	m	commutativity	geometric interpretation of $ab = \langle ab \rangle_k$
1	1	0	$a \cdot b$	0	1	commuting	vectors are parallel; $a \parallel b \iff a = \lambda b$
1	1	2	$a \wedge b$	1	0	anticommuting	vectors are orthogonal $a\perp b$
2	2	0	$a \cdot b$	0	2	commuting	bivectors are parallel $a = \lambda b$
2	2	2	$a \times b$	1	1	anticommuting	bivectors are at right-angles to each other
2	2	4	$a \wedge b$	2	0	commuting	bivectors are 2-orthogonal
1	2	1	$a \cdot b$	0	1	anticommuting	vector a lies in plane of bivector b
1	2	3	$a \wedge b$	1	0	commuting	vector a is normal to plane of bivector b
2	3	1	$a \cdot b$	0	2	commuting	bivector a lies in span of trivector b
2	3	3	$\langle ab \rangle_3$	1	1	anticommuting	$\it a$ and $\it b$ are 1-orthogonal
2	3	5	$a \wedge b$	2	0	commuting	$\it a$ and $\it b$ are 2-orthogonal

Table 3.1.: Geometric interpretation of the k-blade $ab = \langle ab \rangle_k$ where a and b are of grades p and q respectively, and where $m = \dim(\text{span}\{a\} \cap \text{span}\{b\})$.

Familiarity with some special cases may aid intuition when considering general products of blades. For instance, if the product of two bivectors is $\sigma_1\sigma_2=\sigma_1\cdot\sigma_2+\sigma_1\times\sigma_2$, then it is understood that σ_1 has a component parallel to σ_2 , and a component which meets σ_2 at right-angles along a line of intersection. In other words, σ_1 and σ_2 are planes that intersect along a line with some angle between them. On the other hand, if $\sigma_1\sigma_2=\sigma_1\wedge\sigma_2$, then the bivectors share no common direction, existing in orthogonal planes (a scenario requiring at least four dimensions).

3.5. More Graded Products

All operations in the geometric algebra can be expressed in terms of the fundamental geometric product along with grade projection operators $\langle \ \rangle_k$. For example, we have seen that the wedge and inner products (\land and \cdot of definition 18) are merely combinations of multiplication and projection.

There are other similar constructions which are useful enough warrant their own definitions, inclusing left and right *contractions*.

Definition 21.

LEFT CONTRACTION
$$A \mid B = \sum_{p,q} \left\langle \langle A \rangle_p \langle B \rangle_q \right\rangle_{q-p}$$
 RIGHT CONTRACTION
$$A \mid B = \sum_{p,q} \left\langle \langle A \rangle_p \langle B \rangle_q \right\rangle_{p-q}$$

I.e., every statement involving | produces, under reversion, an equivalent statement involving |.

Observe that $(A \mid B)^{\dagger} = A^{\dagger} \mid B^{\dagger}$, so these are in essentially the same operation — only one is viewed in a mirror.²⁷

The fat dot product reduces to a contraction on homogeneous multivectors, depending on which multivector has the higher grade. If A is a p-vector and B a q-vector, then

$$A \cdot B = \begin{cases} A \mid B & p \le q \\ A \mid B & q \ge p \end{cases},$$

with $A \cdot B = A \mid B = A \mid B = \langle AB \rangle$ when p = q. While in some expressions the grades of multivectors are obvious so that it is clear how the fat dot product acts, the contractions are arguably better behaved algebraically: the conditional comparison of grades is reincorporated into the products themselves, allowing for more useful identities to be written with fewer grade-based exceptions [20].²⁸

 $uA = u \cdot A + u \wedge A$ holds if A has zero scalar part, but $uA = u \mid A + u \wedge A$ holds for any A.

Lemma 8. For any vector **u** and multivector A,

$$u \mid A = \frac{1}{2}(uA - A^*u),$$
 $u \wedge A = \frac{1}{2}(uA + A^*u).$

Proof. Begin by assuming A is of grade k. The geometric product contains two grades,

$$uA = \langle uA \rangle_{k-1} + \langle uA \rangle_{k+1} \equiv u \mid A + u \wedge A.$$

Now consider the reversed product, and rearrange terms using the fact that $a^{\dagger} = s_p a$ if a is a p-vector.

$$A\mathbf{u} = A \mid \mathbf{u} + A \wedge \mathbf{u}$$

$$= s_{k-1} \mathbf{u}^{\dagger} \mid A^{\dagger} + s_{k+1} \mathbf{u}^{\dagger} \wedge A^{\dagger}$$

$$= s_{k-1} s_k \mathbf{u} \mid A + s_{k+1} s_k \mathbf{u} \wedge A$$

With reference to eq. (3.2), notice that $s_{k+1}s_k = \pm (-1)^k$. Thus,

$$A^{\star} \boldsymbol{u} = (-1)^k A \boldsymbol{u} = -\boldsymbol{u} \mid A + \boldsymbol{u} \wedge A.$$

Taking the sum and difference of uA and A^*u as above yields the two results, respectively — at least for homogeneous A. Since the expressions are linear in A, and are written without reference to k, they extend by linearity to general multivectors.

Lemma 9. For a bivector σ and multivector A,

$$\sigma A = \sigma \mid A + \sigma \times A + \sigma \wedge A,$$

where $a \times b = \frac{1}{2}(ab - ba)$ is the commutator product.

Proof. Suppose A is a k-vector. The geometric product with a bivector then contains three grades,

$$\sigma A = \langle \sigma A \rangle_{k-2} + \langle \sigma A \rangle_k + \langle \sigma A \rangle_{k+2} \quad \equiv \sigma \mid A + \langle \sigma A \rangle_k + \sigma \wedge A.$$

Consider the reverse product,

$$A\sigma = A \mid \sigma + \langle A\sigma \rangle_k + A \wedge \sigma$$

reverse each term, noting that $\sigma^{\dagger} = -\sigma$ and $A^{\dagger} = s_k A$,

$$= -s_k (s_{k-2} \sigma \mid A + s_k \langle \sigma A \rangle_k + s_{k+2} \sigma \wedge A)$$

and simplify with $s_k s_{k+2} = -1$.

$$= \sigma \mid A - \langle \sigma A \rangle_k + \sigma \wedge A$$

Thus, $\langle \sigma A \rangle_k = \frac{1}{2}(\sigma A - A\sigma) \equiv \sigma \times A$, and so the result holds for homogeneous multivectors, and by linearity for general multivectors.

Chapter 3. The Geometric Algebra

Lemma 10. For $i, j, k \ge 0$, the following conditions are equivalent.

$$|i-j| \le k \le i+j$$
, $|k-i| \le j \le k+i$, $|j-k| \le i \le j+k$.

Proof. It is easy to see that there exists a triangle in the Euclidean plane with side lengths i, j, k if and only if $|i - j| \le k \le i + j$. By relabelling the sides, it follows that the other relations are equivalent.

Lemma 11. The three terms

$$\left\langle \langle A \rangle_p \langle B \rangle_q \right\rangle_k$$
, $\left\langle \langle A \rangle_k \langle B \rangle_p \right\rangle_q$, $\left\langle \langle A \rangle_q \langle B \rangle_k \right\rangle_p$

all vanish unless $|p-q| \le k \le p+q$.

Proof. From eq. (3.7) it follows that $\langle \langle A \rangle_p \langle B \rangle_q \rangle_k \neq 0$ implies $|p-q| \leq k \leq p+q$. By lemma 10, it also holds under permutations of the grade projections.

Lemma 12. For any multivectors A, B, C,

$$(A \mid B) \mid C = A \mid (B \land C), \qquad A \mid (B \mid C) = (A \land B) \mid C.$$

Proof. It suffices to derive the identities for homogeneous multivectors; they extend by linearity to general multivectors. Thus, let (A, B, C) be multivectors of grade (a, b, c), respectively.

Consider $\langle \langle AB \rangle_k C \rangle_{a-b-c}$ and assume it to be non-zero. By lemma 11, this is zero unless $k \leq c + (a-b-c) = a-b$. However, $\langle AB \rangle_k$ is zero unless $|a-b| \leq k$, hence k=a-b. Therefore,

$$\langle (AB)C\rangle_{a-b-c} = \langle \langle AB\rangle_{a-b}C\rangle_{a-b-c},$$

since the only non-zero contribution from the product AB is the part of grade a - b.

Similarly, assume that $\langle A\langle BC\rangle_k\rangle_{a-b-c}$ is non-zero. Again by lemma 11 we have $|a-(a-b-c)| \leq k$ implying $b+c \leq k$. Since $\langle BC\rangle_k$ is zero unless $k \leq b+c$, we have k=b+c exactly and

$$\langle A(BC)\rangle_{a-b-c} = \langle A\langle BC\rangle_{b+c}\rangle_{a-b-c}.$$

By associativity of the geometric product, we have shown

$$\langle \langle AB \rangle_{a-b} C \rangle_{(a-b)-c} = \langle A \langle BC \rangle_{b+c} \rangle_{a-(b+c)},$$

which is definitionally equivalent to

$$(A \mid B) \mid C = A \mid (B \land C).$$

Reversion yields the corresponding identity for left contraction. \Box

To summarise these results, for any multivectors (A, B, C), we have

$$(A \mid B) \mid C = A \mid (B \land C),$$
 $A \mid (B \mid C) = (A \land B) \mid C,$
 $(A \mid B) \mid C = A \mid (B \mid C),$ $u \cdot (B \cdot v) = (u \cdot B) \cdot v.$

The last equation is a specialisation of the upper right, which in particular means that parentheses are unnecessary in defining the components of a bivector $F = F^{ij} e_i \wedge e_j$ with the expression $F_{ij} = e_i \cdot F \cdot e_j$.

Chapter 4.

The Algebra of Spacetime

Special relativity is geometry with a Lorentzian signature. The spacetime Algebra (STA) is the name given to the geometric algebra of a Minkowski vector space, $\mathcal{G}(1,3) \equiv \mathcal{G}(\mathbb{R}^4,\eta)$, where $\eta = \text{diag}(+--)$. Other introductory material on the STA can be found in [21–23].

We denote the standard vector basis by $\{\gamma_{\mu}\}$, where Greek indices run over $\{0,1,2,3\}$. This is a deliberate allusion to the Dirac γ -matrices, whose algebra is isomorphic to the STA — however, the $\gamma_{\mu} \in \mathbb{R}^{1+3}$ of STA are real, genuine spacetime vectors. A basis for the entire 2^4 -dimensional STA is then

1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
$$\{1\} \cup \{\boldsymbol{\gamma}_0, \ \boldsymbol{\gamma}_i\} \cup \{\boldsymbol{\gamma}_0\boldsymbol{\gamma}_i, \ \boldsymbol{\gamma}_j\boldsymbol{\gamma}_k\} \cup \{\boldsymbol{\gamma}_0\boldsymbol{\gamma}_j\boldsymbol{\gamma}_k, \ \boldsymbol{\gamma}_1\boldsymbol{\gamma}_2\boldsymbol{\gamma}_3\} \cup \{\mathbb{I} := \boldsymbol{\gamma}_0\boldsymbol{\gamma}_1\boldsymbol{\gamma}_2\boldsymbol{\gamma}_3\}$$

where lowercase Latin indices range over spacelike components, $\{1, 2, 3\}$. Blades shown on the left-hand side of $\{\ ,\ \}$ are called timelike, and those in on right-hand side spacelike. The sign below each basis blade shows its signature (the sign of its scalar square). Multivectors of any kind which square to zero are called NULL.

The pseudoscalar and duality

The right-handed unit pseudoscalar I represents an oriented unit 4-volume. It anticommutes with odd elements of the STA (vectors and trivectors) and commutes with even elements (bivectors and (pseudo)scalars).

Since $\mathbb{I}^2=-1$, the scalar–pseudoscalar plane $\mathcal{G}_{0,4}(1,3)=\operatorname{span}_{\mathbb{R}}\{1,\mathbb{I}\}$ is isomorphic to the complex plane \mathbb{C} . Thus, for the sake of computation, operations on $\{0,4\}$ -multivectors may be regarded as operations on complex numbers. In particular, we define the principal root \sqrt{a} of a $\{0,4\}$ -multivector $a\in\mathcal{G}_{0,4}(1,3)$ in the same way as it is defined in \mathbb{C} with a branch cut at $\theta=\pi$. It is worth emphasising that there are many square roots of -1 in the spacetime algebra, each with distinct geometrical meanings. We single to single out $\sqrt{-1}=\mathbb{I}$ as 'the' principal root as this proves to be useful notationally. 30

The volume element ... {TO DO: is the Hodge dual}

4.1. The space/time split

While we actually live in $\mathbb{R}^{1,3}$ spacetime, to any particular observer it appears that space is \mathbb{R}^3 with a separate scalar time parameter. This is reflected in the fact that $\mathcal{G}_+(1,3)$ and $\mathcal{G}(3)$ are isomorphic, from lemma 6. In fact, there is a separate isomorphism associated to each timelike direction, corresponding to each inertial observer's personal spacetime split. Such a space/Time split identifies *even* multivectors in the spacetime algebra $\mathcal{G}_+(1,3)$ with $\mathcal{G}(3)$ multivectors, providing an efficient, purely algebraic method for switching between inertial frames [21].

Let K be an inertial observer and for simplicity choose the standard basis $\{\gamma_{\mu}\}$ so that γ_0 is the instantaneous velocity of the K frame. The three RELATIVE VECTORS $\vec{\sigma}_i := \gamma_i \gamma_0$ form a vector basis for $\mathcal{G}(3)$, since the $\gamma_i \gamma_0$ indeed satisfy $\vec{\sigma}_i^2 = -\gamma_i^2 \gamma_0^2 = 1$ and $\vec{\sigma}_i \vec{\sigma}_j = -\vec{\sigma}_j \vec{\sigma}_i$ for $i \neq j$. Because of the dependence on the frame's velocity vector γ_0 , the relative vectors $\vec{\sigma}_i$ are particular to the K frame. With respect to the K frame, we may view $\mathcal{G}(3) \subset \mathcal{G}(1,3)$ as embedded in the STA, allowing us to consider

- ²⁹ E.g., the spacelike bivector $(\gamma_i \gamma_j)^2 = -1$ represents a directed spacelike plane; the timelike vector $\gamma_0^2 = -1$ a particle's velocity.
- ³⁰ In electromagnetism, the imaginary unit i often represents the volume element \mathbb{I} . E.g., in the Riemann–Silberstein vector [24], both i and \mathbb{I} play roles similar to the Hodge dual [23].

multivectors as belonging to both spaces. Note that the same volume element $\mathbb{I} = \vec{\sigma}_1 \vec{\sigma}_2 \vec{\sigma}_3 = \gamma_0 \gamma_1 \gamma_2 \gamma_3$ is shared by the algebras.

For example a spacetime bivector $F = F^{\mu\nu} \gamma_{\mu} \gamma_{\nu}$ may be separated into timelike F^{i0} and spacelike F^{ij} components with respect to the K frame and viewed as a $\{1, 2\}$ -multivector in $\mathcal{G}(3)$,

$$F = F^{i0} \gamma_i \gamma_0 + F^{ij} \gamma_i \gamma_j = E^i \vec{\sigma}_i + B^i \mathbb{I} \vec{\sigma}_i = E + \mathbb{I} B, \tag{4.1}$$

where we use $\gamma_i \gamma_j = (\gamma_i \gamma_0)(\gamma_j \gamma_0) = -\vec{\sigma}_i \vec{\sigma}_j = -\varepsilon_{ijk} \mathbb{I} \vec{\sigma}_k$. Note that the relativistic representation F is *equal* to the frame-dependent representation — they are the same spacetime object. Equation (4.1) performs the frame-dependent decomposition of a spacetime bivector (or "2-form") into two \mathbb{R}^3 vectors familiar from electromagnetic theory.

Of particular interest are space/time splits on bivector generators associated to rotors. A proper orthochronous Lorentz transformation $\Lambda \in SO^+(1,3)$ acts as a 'sandwich' product $\Lambda(A) = e^{\sigma}Ae^{-\sigma}$, where the rotor $e^{\sigma} \in Spin^+(1,3)$ is generated by a spacetime bivector $\sigma \in \mathcal{G}_2(1,3)$. This bivector σ can be represented in the K frame as

$$\sigma = \frac{1}{2} (\xi^{i} \mathbf{\gamma}_{i} + \theta^{i} \mathbb{I} \mathbf{\gamma}_{i}) \mathbf{\gamma}_{0} = \frac{1}{2} (\xi + \mathbb{I} \theta)$$
(4.2)

where $\xi = \xi^i \vec{\sigma}_i \in \mathcal{G}_1(3)$ is a rapidity vector and $\mathbb{I}\theta \in \mathcal{G}_2(3)$ is a rotation bivector.

4.2. The invariant bivector decomposition

There is a clear analogy between the space/time split of a bivector (4.1), with its spacelike and timelike components, and the Cartesian form of a complex number, x+iy, with its real and imaginary parts. This similarity can be made more precise: just as we may express complex numbers in polar form $re^{i\phi} = x+iy$, we may use the invariant bivector decomposition to write $\rho e^{\mathbb{I}\sigma} = E + \mathbb{I}B$.

Non-null spacetime bivectors $\sigma \in \mathcal{G}_2(1,3)$ may be *normalised*, in the sense that there always exists some $N_{\sigma} \in \mathcal{G}_{0,4}(1,3)$ such that

$$\sigma = N_{\sigma} \hat{\sigma} = \hat{\sigma} N_{\sigma}$$
 where $\hat{\sigma}^2 = 1$.

In the null case $\sigma^2 = 0$, we let $\hat{\sigma}^2 = 0$ instead. This is possible because the square of a bivector is a $\{0,4\}$ -multivector (lemma 5), which always has a principle square root (since $\mathcal{G}_{0,4}(1,3) \cong \mathbb{C}$). Explicitly, let $\sigma^2 = \alpha + \mathbb{I}\beta = \rho^2 e^{2\mathbb{I}\phi}$ for scalars $\alpha, \beta, \rho, \phi$, so that

$$N_{\sigma} := \sqrt{\sigma^2} = \rho e^{\mathbb{I}\phi},$$

assuming without loss of generality that $\rho>0$ and $\phi\in(-\pi/2,\pi/2]$. Thus, the invariant bivector decomposition

$$\sigma = \rho e^{\mathbb{I}\phi} \hat{\sigma} = \underbrace{(\rho\cos\phi)\hat{\sigma}}_{\sigma_{+}} + \underbrace{(\rho\sin\phi)\mathbb{I}\hat{\sigma}}_{\sigma_{-}}$$

separates σ into commuting parts, $[\sigma_+, \sigma_-] = 0$, each of which satisfy $\pm \sigma_\pm^2 > 0$. This makes it a useful device for algebraic manipulations. Furthermore, the decomposition is unique, and does not depend on any particular space/time split.

The decomposition can be used to show the non-injectivity of the exponential map in the STA. Take some bivector written in decomposed form, $\sigma = \lambda_+ \hat{\sigma} + \lambda_- \mathbb{I} \hat{\sigma}$. Each bivector in the family

$$\sigma_n = \lambda_+ \hat{\sigma} + (\lambda_- + n\pi) \mathbb{I} \hat{\sigma}$$

for $n \in \mathbb{Z}$ exponentiates to the same rotor, up to an overall sign:

$$e^{\sigma_n} = e^{\sigma_0} e^{n\pi \mathbb{I}\hat{\sigma}} = (-1)^n e^{\sigma_0} \tag{4.3}$$

Note that $e^{\hat{\sigma}+\mathbb{I}\hat{\sigma}}=e^{\hat{\sigma}}e^{\mathbb{I}\hat{\sigma}}$ since $[\hat{\sigma},\mathbb{I}\hat{\sigma}]=0$. All the rotors in eq. (4.3) correspond to the same $SO^+(1,3)$ Lorentz transformation. Equation (4.3) shows that every Lorentz rotor $\pm e^{\sigma_0}$ is equal to a pure bivector exponential e^{σ_n} with a shifted rotational part $\lambda_- \mapsto \lambda_- + n\pi$.

4.3. Lorentz Conjugacy Classes

As shown above, every proper Lorentz transformation $\Lambda \in SO^+(1,3)$ is generated by a bivector exponential $\Lambda(\boldsymbol{u}) = e^{\sigma}\boldsymbol{u}e^{-\sigma}$. This rotor formulation of the Lorentz group makes some of its more subtle properties clear, including its decomposition into five categories of *conjugacy class*.

Chapter 4. The Algebra of Spacetime

Definition 22. The CONJUGACY CLASS of a group element $g \in G$ is the set

$$[g] := \{hgh^{-1} \mid h \in G\} = \{g' \in G \mid g' \sim g\}$$

Group elements $g \sim g'$ are conjugate iff there extists $h \in G$ such that $g = hg'h^{-1}$.

of elements conjugate³¹ to g.

Since conjugacy \sim is an equivalence relation, the conjugacy classes partition the group G.

In the case of the proper Lorentz group, the set of conjugacy classes further partitions into five categories, or 'kinds', according to basis-invariant properties of the constituent Lorentz transformations. Using the STA, the 'kind' of a Lorentz transformation (or its associated rotors) is given by simple properties of its generating bivector.³²

32 One rotor has many generating bivectors, but any one will do.

Definition 23. Let $\sigma \in \mathcal{G}_2(1,3)$ be a bivector. If σ^2 is a scalar, then σ is called

- TRIVIAL if $\sigma = 0$; and if $\sigma \neq 0$,
- ELLIPTIC if $\sigma^2 < 0$;
- PARABOLIC if $\sigma^2 = 0$;
- HYPERBOLIC if $\sigma^2 > 0$; and
- LOXODROMIC if $\sigma^2 = \alpha + \mathbb{I}\beta$ is not a scalar but a $\{0,4\}$ -multivector.

Lemma 13. The square of a bivector is constant within each conjugacy class.

Proof. Let $\Lambda: \mathbf{u} \mapsto e^{\sigma} \mathbf{u} e^{-\sigma}$ be a proper Lorentz transformation, and consider its conjugation with some other transformation Γ ,

$$\Gamma \Lambda \Gamma^{-1} : \mathbf{u} \mapsto e^{\rho} e^{\sigma} e^{-\rho} \mathbf{u} e^{-\rho} e^{-\sigma} e^{\rho}.$$

Note that $e^{\rho}e^{\sigma}e^{-\rho}=e^{e^{\rho}\sigma e^{-\rho}}$ by the automorphism property of rotor application. Therefore, conjugacy of $\Lambda\sim\Gamma\Lambda\Gamma^{-1}$ translates to bivectors as

$$\sigma \sim \sigma' := e^{\rho} \sigma e^{-\rho}$$

for some ρ . Hence, the conjugate bivectors have common square,

$$\sigma'^2 = (e^{\rho} \sigma e^{-\rho})^2 = e^{\rho} \sigma^2 e^{-\rho} = \sigma^2$$

since $e^{\pm \rho}$ commutes with the $\{0,4\}$ -multivector σ^2 .

Corollary 1. Conjugacy classes of $SO^+(1,3)$ fall into the five categories in definition 23 by considering the generating bivector of any representative Lorenz rotor.

Elliptical Lorentz transformations are *rotations*, whose rotors are generated by spacelike 2-blades; hyperbolic transformations are *boosts*, with timelike 2-blades generators. Parabolic transformations are sometimes called *null rotations*, and fall in between the previous two, with null 2-blades as generators. The final class of loxodromic transformations are a combination of a rotation and a boost where the axis of rotation is parallel with the direction of boost (in a particular frame). A loxodromic generator is not s 2-blade, but a bivector comprising mutually 2-orthogonal³³ 2-blades, one timelike and one spacelike.

in the sense of definition 20, section 3.4

{to do: Give examples of each kind, along with their matrix representations.}

{TO DO: Explain how classes are 1- or 2-parameter families}

Chapter 5.

Composition of Rotors in terms of their Generators

In studying proper orthogonal transformations, it is often easier to represent them in terms of their generators $\sigma_i \in \mathcal{C}(p,q)$ which belong to the Lie algebra $\mathfrak{So}(p,q)$. A fundamental question is how such transformations compose in terms of these generators: "given σ_1 and σ_2 , what is σ_3 such that $e^{\sigma_1}e^{\sigma_2}=e^{\sigma_3}$?" This is of theoretical interest and is useful practically when representing transformations in terms of their generators is cheaper. One may use the Baker–Campbell–Hausdorff–Dynkin³⁴ (BCHD) formula $\sigma_1 \odot \sigma_2 := \log(e^{\sigma_1}e^{\sigma_2})$ which is well studied in general Lie theory [25]. However, the general BCHD formula

³⁴ Often simply Baker– Campbell–Hausdorff and permutations thereof.

$$a \odot b = a + b + \frac{1}{2}[a, b] + \frac{1}{12}[a, [a, b]] + \frac{1}{12}[[a, b], b] + \cdots$$
 (5.1)

involves an infinite series of nested commutators and may not obviously admit a useful closed form.

In the case of Lorentz transformations $SO^+(1,3)$, some closed-form expressions for eq. (5.1) have been found using a 2-form representation of $\mathfrak{so}(1,3)$ [26, 27], but the expressions are complicated and do not clearly reduce to well-known formulae in, for example, the special cases of pure rotations or pure boosts. The rotor formalism of geometric algebra leads to an elegant closed form of eq. (5.1) which, in the case of Lorentzian spacetime, is inexpensive to compute.

5.1. A Geometric BCHD Formula

Suppose $\sigma \in \mathcal{G}_2(p,q)$ is a bivector in a geometric algebra of dimension $p+q \leq 4$. By their definitions as formal power series, we have $e^{\sigma} = \cosh \sigma + \sinh \sigma$, where 'cosh' involves even powers of σ and 'sinh' odd powers. For convenience, define the linear projections onto Self-Reverse and Anti-Self-Reverse parts respectively as

$${A} := \frac{1}{2}(A + A^{\dagger})$$
 and $[A] := \frac{1}{2}(A - A^{\dagger}).$ (5.2)

Since any bivector obeys $\sigma^{\dagger} = -\sigma$, it follows that $(e^{\sigma})^{\dagger} = e^{-\sigma} = \cosh \sigma - \sinh \sigma$. Using the notation (5.2), the self-reverse and anti-self-reverse projections of e^{σ} are $\{e^{\sigma}\} = \cosh \sigma$ and $[\![e^{\sigma}]\!] = \sinh \sigma$, respectively. Furthermore, these two projections commute, and so

$$\llbracket e^{\sigma} \rrbracket \{ e^{\sigma} \}^{-1} = \{ e^{\sigma} \}^{-1} \llbracket e^{\sigma} \rrbracket = \frac{\llbracket e^{\sigma} \rrbracket}{\{ e^{\sigma} \}} = \tanh \sigma$$

which leads to an expression for the logarithm of any rotor $\mathcal{R} = \pm e^{\sigma}$.

$$\sigma = \log(\mathcal{R}) = \operatorname{arctanh}\left(\frac{\llbracket \mathcal{R} \rrbracket}{\{\mathcal{R}\}}\right)$$
 (5.3)

Note that the overall sign of the rotor is not recovered, and $\log(+\mathcal{R}) = \log(-\mathcal{R})$ according to eq. (5.3). However, this does not affect the Lorentz transformation $R \in SO^+(p,q)$, since it is defined by $R(\mathbf{u}) = \mathcal{R}\mathbf{u}\mathcal{R}^{\dagger}$. The exact sign can be recovered by considering the relative signs of $[\![\mathcal{R}]\!]$ and $\{\mathcal{R}\}$, as in $[28, \S 5.3]$.

From eq. (5.3) we may derive a BCHD formula by substituting $\mathcal{R} = e^{\sigma_1}e^{\sigma_2}$ for any two bivectors $\sigma_i \in \mathcal{G}_2(p,q)$. Using the shorthand $C_i := \cosh \sigma_i$ and $S_i := \sinh \sigma_i$, the composite rotor is

$$\mathcal{R} = e^{\sigma_1} e^{\sigma_2} = (C_1 + S_1)(C_2 + S_2) = C_1 C_2 + S_1 C_2 + C_1 S_1 + S_1 S_2.$$

For p+q<4, any even function of a bivector (such as C_i) is a scalar, and for p+q=4, is a $\{0,4\}$ -multivector $\alpha+\beta\mathbb{I}$. In either case, the C_i commute with even multivectors, so $[C_i,C_j]=[C_i,S_j]=0$. Therefore, the self-reverse and anti-self-reverse parts are

$$\{\mathcal{R}\} = C_1C_2 + \frac{1}{2}\{S_1, S_2\}$$
 and $[[\mathcal{R}]] = S_1C_2 + C_1S_2 + \frac{1}{2}[S_1, S_2].$ (5.4)

Hence, from eq. (5.3) we obtain an explicit BCHD formula.

Chapter 5. Composition of Rotors in terms of their Generators

Theorem 3 (rotor BCHD formula). If $\sigma_1, \sigma_2 \in \mathcal{G}_2(p,q)$ are bivectors in $p+q \leq 4$ dimensions, then $e^{\sigma_1}e^{\sigma_2} = \pm e^{\sigma_1 \odot \sigma_2}$ where

$$\sigma_1 \odot \sigma_2 = \operatorname{arctanh}\left(\frac{T_1 + T_2 + \frac{1}{2}[T_1, T_2]}{1 + \frac{1}{2}\{T_1, T_2\}}\right)$$
 (5.5)

where we abbreviate $T_i := \tanh \sigma_i$. Note that this satisfies the rotor equation with an overall ambiguity in sign.

We may wish to express eq. (5.5) in terms of geometrically significant products instead of (anti)commutators. A bivector product is generally a {0, 2, 4}-multivector

$$ab = \langle ab \rangle_0 + \langle ab \rangle_2 + \langle ab \rangle_4$$

= $a \cdot b + a \times b + a \wedge b$. (5.6)

where $a \times b = \langle ab \rangle_2 = \frac{1}{2}[a,b]$ is the commutator product. We may then write eq. (5.5) so that the grade of each term is explicit:

$$\sigma_1 \odot \sigma_2 = \operatorname{arctanh}\left(\frac{T_1 + T_2 + T_1 \times T_2}{1 + T_1 \cdot T_2 + T_1 \wedge T_2}\right)$$
 (5.7)

The numerator is a bivector, while the denominator contains scalar $(T_1 \cdot T_2)$ and 4-vector $(T_1 \wedge T_2)$ terms.

5.1.1. Zassenhaus-type formulae

It is interesting to generalise the BCHD formula (5.1) to three rotors $e^{\sigma_1}e^{\sigma_2}e^{\sigma_3}=e^{\sigma}$ in an algebra $\mathcal{G}(p,q)$ with $p+q\leq 4$. A solution to this rotor equation is

$$\sigma = \log(\pm e^{\sigma}) = \operatorname{arctanh}\left(\frac{\llbracket e^{\sigma_1} e^{\sigma_2} e^{\sigma_3} \rrbracket}{\{e^{\sigma_1} e^{\sigma_2} e^{\sigma_3}\}}\right),$$

by eq. (5.3).

We will find it convenient to define the anticommutator product $A \wedge B := \frac{1}{2}\{A,B\}$ to complement the commutator product $A \times B$. The

symbol "a" is motivated by the fact that, for bivectors, we have σ and $\rho = \sigma \cdot \rho + \sigma \wedge \rho$ and thus

$$\sigma \wedge \rho := \frac{1}{2}(\sigma \rho + \rho \sigma) = \{\sigma \rho\}, \qquad \sigma \times \rho := \frac{1}{2}(\sigma \rho - \rho \sigma) = \llbracket \sigma \rho \rrbracket. \tag{5.8}$$

Because $e^{\sigma_1}e^{\sigma_2}e^{\sigma_3} \in \mathcal{G}_+(p,q)$ is an even multivector, the anti-self-reverse projection is exactly the bivector part, $[[e^{\sigma_1}e^{\sigma_2}e^{\sigma_3}]] = \langle e^{\sigma_1}e^{\sigma_2}e^{\sigma_3}\rangle_2$, and the self-reverse projection is the $\{0,4\}$ -multivector part. Decomposing $e^{\sigma_i} = C_i + S_i$, we find 2^3 terms which separate into

³⁵ Recall
$$A^{\dagger} = s_k A$$
 for a k -vector A where $(s_1 \cdots s_4) = (+ + - -)$.

The $\{0, 4\}$ -multivectors C_i commute with the bivectors S_i , and products of C_i and S_j are themselves bivectors. Therefore, terms containing one S_i factor are bivectors, and terms containing two S_i factors, such as $S_1S_2C_3$, are products of bivectors, or $\{0, 2, 4\}$ -multivectors. These terms are split into bivectors $(S_1 \times S_2)C_3$ and $\{0, 4\}$ -multivectors $(S_1 \wedge S_2)C_3$.

Cancelling factors of $C_1C_2C_3$, we then have

$$\frac{\llbracket e^{\sigma_1} e^{\sigma_2} e^{\sigma_3} \rrbracket}{\{ e^{\sigma_1} e^{\sigma_2} e^{\sigma_3} \}} = \frac{T_1 + T_2 + T_3 + (T_1 + T_2) \times T_3 + T_1 \times T_2 + \llbracket T_1 T_2 T_3 \rrbracket}{1 + (T_1 + T_2) \wedge T_3 + T_1 \wedge T_2 + \{T_1 T_2 T_3\}}$$
(5.9)

where $T_i := \tanh \sigma_i$. The next lemma is used to rewrite the rightmost terms with (anti)commutator products (5.8).

Lemma 14. For any bivectors σ , ρ , $\omega \in \mathcal{G}_2(p,q)$ where $p+q \leq 4$,

$$\llbracket \sigma \rho \omega \rrbracket = (\sigma \wedge \rho) \wedge \omega + (\sigma \times \rho) \times \omega, \qquad \{\sigma \rho \omega\} = (\sigma \times \rho) \wedge \omega.$$

Proof. Observe that $[\![\sigma\rho\omega]\!] = \langle\sigma\rho\omega\rangle_2$ since $\sigma\rho\omega$ is a $\{0, 2, 4\}$ -multivector, of which only the bivector part is anti-self-reverse. Using associativity and linearity,

$$\langle \sigma \rho \omega \rangle_2 = \langle (\sigma \wedge \rho) \omega \rangle_2 + \langle (\sigma \times \rho) \omega \rangle_2 = (\sigma \wedge \rho) \omega + (\sigma \times \rho) \times \omega.$$

Chapter 5. Composition of Rotors in terms of their Generators

The product $(\sigma \wedge \rho)\omega = (\sigma \wedge \rho) \wedge \omega$ is between a $\{0, 4\}$ -multivector and a bivector, which may only contain bivector components. The product $(\sigma \times \rho)\omega$ is between two bivectors, having bivector part $(\sigma \times \rho) \times \omega$.

Similarly, note that

$$\{\sigma\rho\omega\} = \langle (\sigma \wedge \rho)\omega\rangle_{0.4} + \{(\sigma \times \rho)\omega\} = (\sigma \times \rho) \wedge \omega,$$

where the first term vanishes since $(\sigma \land \rho)\omega$ is a bivector.

This allows us to collect the terms in eq. (5.9) as

$$\frac{ \left[\left[e^{\sigma_1} e^{\sigma_2} e^{\sigma_3} \right] \right] }{ \left\{ e^{\sigma_1} e^{\sigma_2} e^{\sigma_3} \right\} } = \frac{ T_{12} + T_3 + T_{12} \times T_3 + (T_1 \wedge T_2) \wedge T_3 }{ 1 + T_{12} \wedge T_3 + T_1 \wedge T_2 }$$

where $T_{12} := T_1 + T_2 + T_1 \times T_2$. This leads us to the

Theorem 4. For bivectors $\sigma_i \in \mathcal{G}_2(p,q)$ with $p+q \leq 4$,

$$e^{\sigma_1 + \sigma_2} = e^{\sigma_1} e^{\sigma_2} e^{\rho}$$

where

$$\rho = \operatorname{arctanh}\left(\frac{F - R - R \times F + S \wedge F}{1 - R \wedge F + S}\right),$$

$$F = \tanh(\sigma_1 + \sigma_2),$$

$$R = \tanh(\sigma_1) \times \tanh(\sigma_2) + \tanh(\sigma_1) + \tanh(\sigma_2),$$

$$S = \tanh(\sigma_1) \wedge \tanh(\sigma_2).$$

{TO DO: First order corrections? Don't know where to go with this.}

5.1.2. In low dimensions: Rodrigues' rotation formula

It is illustrative to see how the BCHD formula (5.5) reduces in low-dimensional special cases. Indeed, in two dimensions, all bivectors are scalar multiples of $\mathbb{I} = \mathbf{e}_1 \mathbf{e}_2$, and we recover the trivial case $e^a e^b = e^{a+b}$. Specifically, in the

Euclidean $\mathcal{G}(2)$ plane (or anti-Euclidean $\mathcal{G}(0,2)$ plane) we have $\mathbb{I}^2 = -1$, and eq. (5.5) simplifies by way of the tangent angle addition identity

$$\arctan\left(\frac{\tan\theta_1 + \tan\theta_1}{1 - \tan\theta_1 \tan\theta_2}\right) = \theta_1 + \theta_2.$$

This identity encodes how angles add when given as the gradients of lines; $m = \tan \theta$.

Similarly, in the hyperbolic plane $\mathcal{G}(1,1)$ with basis $\{e_+,e_-\}$, $e_\pm^2=\pm 1$, the pseudoscalar $\mathbb{I}=e_+e_-$ generates *hyperbolic* rotations $e^{\mathbb{I}\xi}=\cosh\xi+\mathbb{I}\sinh\xi$ owing to the fact that $\mathbb{I}^2=-e_+^2e_-^2=+1$. Then, eq. (5.5) simplifies by the hyperbolic angle addition identity

$$\operatorname{arctanh}\left(\frac{\tanh \xi_1 + \tanh \xi_1}{1 + \tanh \xi_1 \tanh \xi_2}\right) = \xi_1 + \xi_2$$

which encodes how collinear rapidities add when given as relativistic velocities; $\beta = \tanh \xi$.

Less trivially, a rotation in \mathbb{R}^3 by θ may be represented by its Rodrigues vector $\mathbf{r} = \hat{\mathbf{r}} \tan \frac{\theta}{2}$ pointing along the axis of rotation. The composition of two rotations is then succinctly encoded in Rodrigues' composition formula

Olinde Rodrigues first originated the formula in 1840 [29, pp. 406].

$$r_{12} = \frac{r_1 + r_2 - r_1 \times r_2}{1 - r_1 \cdot r_2} \tag{5.10}$$

involving the standard vector dot and cross products.

We can easily derive eq. (5.10) as a special case of eq. (5.7) as follows: Let $\sigma_1, \sigma_2 \in \mathcal{G}_2(3)$ be two bivectors defining the rotors e^{σ_1} and e^{σ_2} in three dimensions. In $\mathcal{G}(3)$, the only 4-vector is trivial, so $\sigma_1 \wedge \sigma_2 = 0$ and for the composite rotor $e^{\sigma_3} := e^{\sigma_1} e^{\sigma_2}$ we have

$$\sigma_3 = \sigma_1 \odot \sigma_2 = \operatorname{arctanh} \left(\frac{\tanh \sigma_1 + \tanh \sigma_2 + \tanh \sigma_1 \times \tanh \sigma_2}{1 + \tanh \sigma_1 \cdot \tanh \sigma_2} \right)$$

where $a \times b$ is the commutator product of bivectors as in eq. (5.6), not the vector cross product. Observe that Euclidean bivectors $\sigma_i \in \mathcal{G}_2(3)$ have negative square (e.g., $(\mathbf{e}_1\mathbf{e}_2)^2 = -\mathbf{e}_1^2\mathbf{e}_2^2 = -1$) and relate to their dual normal vectors by \mathbf{u}_i by $\sigma_i = \mathbf{u}_i \mathbb{I}$. Therefore, by rewriting $\tanh \sigma_i =$

 $tanh(\mathbf{u}_i\mathbb{I}) = (tan \mathbf{u}_i)\mathbb{I}$, we obtain the formula in terms of plain vectors and the vector cross product.

$$\mathbf{u}_{12} = (\mathbf{u}_1 \mathbb{I} \odot \mathbf{u}_2 \mathbb{I}) \mathbb{I}^{-1} = \arctan\left(\frac{\tan \mathbf{u}_1 + \tan \mathbf{u}_2 - \tan \mathbf{u}_1 \times \tan \mathbf{u}_2}{1 - \tan \mathbf{u}_1 \cdot \tan \mathbf{u}_2}\right)$$

Indeed, a bivector $\sigma_i = \mathbf{u}_i \mathbb{I}$ generates an \mathbb{R}^3 rotation through an angle $\theta = 2\|\mathbf{u}_i\|$ via the double-sided transformation law $a \mapsto e^{\mathbf{u}\mathbb{I}}ae^{-\mathbf{u}\mathbb{I}}$. Hence, $\tan \mathbf{u}_i = \hat{\mathbf{v}}_i \tan \frac{\theta}{2} \equiv \mathbf{r}_i$ are exactly the half-angle Rodrigues vectors, and we recover eq. (5.10).

The necessity of the half-angle in the Rodrigues vectors reflects the fact that they actually generate *rotors*, not direct rotations, and hence belong to the underlying spin representation of $SO^+(3)$ — a fact made clearer in the context of geometric algebra.

5.1.3. In higher dimensions

In fewer than four dimensions, the 4-vector $T_1 \wedge T_2 = 0$ appearing in the geometric BCHD formula is trivial, and so eq. (5.5) involves only bivector addition and scalar multiplication. In four dimensions, there is one linearly independent 4-vector — the pseudoscalar — which necessarily commutes with all even multivectors. However, in more than four dimensions, 4-vectors do *not* necessarily commute with bivectors, and the assumptions underlying eq. (5.4) and hence the main result (5.5) fail.

On the face of it, the BCHD formula (5.5) in the four-dimensional case appears deceptively simple — it hides complexity in the calculation of the trigonometric functions of arbitrary bivectors,

$$\tanh \sigma_i = \sigma - \frac{1}{3}\sigma^3 + \frac{2}{15}\sigma^5 + \cdots \qquad \text{and} \qquad \operatorname{arctanh} \sigma_i = \sigma + \frac{1}{3}\sigma^3 + \frac{1}{5}\sigma^5 + \cdots. \tag{5.11}$$

37 If $\sigma^2 = N_{\sigma}^2 \in \mathbb{R}$, then we have simply $\tanh \sigma = (\tanh N_{\sigma}) N_{\sigma}^{-1} \sigma$.

In fewer dimensions, σ^2 is a scalar, and so these power series are as easy to compute as their real equivalents.³⁷ But in four dimensions, σ^2 is in general a {0, 4}-multivector (by lemma 5) and the power series (5.11) are more complicated. However, if $\sigma^2 \neq 0$ has a square root $N_{\sigma} = \alpha + \beta \mathbb{I}$ in the scalar–pseudoscalar plane, then one has $\sigma = N_{\sigma}\hat{\sigma} = \hat{\sigma}N_{\sigma}$ where

 $\hat{\sigma} := \sigma/N_{\sigma}$ so that $\hat{\sigma}^2 = 1$. With a bivector $\sigma = N_{\sigma}\hat{\sigma}$ expressed in this form, the valuation of a formal power series $f(z) = \sum_{n=1}^{\infty} f_n z^n$ simplifies to

$$(f \text{ even}) \quad f(\sigma) = \sum_{n=1}^{\infty} f_{2n} \sigma^{2n} = \sum_{n=1}^{\infty} f_{2n} N_{\sigma}^{2n} = f(N_{\sigma}),$$

$$(f \text{ odd}) \quad f(\sigma) = \sum_{n=1}^{\infty} f_{2n+1} \sigma^{2n+1} = \sum_{n=1}^{\infty} f_{2n} N_{\sigma}^{2n+1} \hat{\sigma} = f(N_{\sigma}) \hat{\sigma}.$$

This is especially useful in the case of Minkowski spacetime $\mathcal{G}(1,3)$ because the scalar–pseudoscalar plane is isomorphic to \mathbb{C} and square roots always exist (see section 4.2). From now on, we focus on the special case of Minkowski spacetime, and consider practical and theoretical applications.

5.2. BCHD Composition in Spacetime

Because the geometric BCHD formula is constructed from sums and products of bivectors, it involves only even spacetime multivectors. Therefore, in numerical applications, it is not necessary to represent the full STA, but only the even subalgebra $\mathcal{G}_{+}(1,3) \cong \mathcal{G}(3)$.

The algebra of physical space $\mathcal{G}(3)$ admits a faithful complex linear representation by the Pauli spin matrices [18, 21, 30]. The real dimension of both $\mathbb{C}^{2\times 2}$ and $\mathcal{G}(3)$ is eight, so there is no redundancy in the Pauli representation, so it is convenient for computer implementation.

An even $\mathcal{G}_+(1,3)$ multivector — or equivalently, a general $\mathcal{G}(3)$ multivector — may be parametrised by four complex scalars $q^{\mu} = \Re(q^{\mu}) + i\Im(q^{\mu}) \in \mathbb{C}$ as

$$A = \Re(q^0) + \Re(q^i)\vec{\sigma}_i + \Im(q^i)\mathbb{I}\vec{\sigma}_i + \Im(q^0)\mathbb{I},$$

where the $\vec{\sigma}_i$ may be read both as spacetime bivectors $\vec{\sigma}_i \equiv \gamma_0 \gamma_i \in \mathcal{G}_+(1,3)$ or as basis vectors of $\mathcal{G}(3)$ under a space/time split. The Pauli matrices $\sigma_i \in \mathbb{C}^{2\times 2}$ form a linear representation of $\mathcal{G}(3)$ by the association $\vec{\sigma}_i \equiv \sigma_i$.

Chapter 5. Composition of Rotors in terms of their Generators

Explicitly, identifying

$$\vec{\sigma}_1 \equiv \begin{bmatrix} 0 & +1 \\ +1 & 0 \end{bmatrix} \qquad \vec{\sigma}_2 \equiv \begin{bmatrix} 0 & -i \\ +i & 0 \end{bmatrix} \qquad \vec{\sigma}_3 \equiv \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix}$$

along with $1 \equiv I$ and $\mathbb{I} \equiv iI$ where I is the identity matrix, we obtain a representation of the multivector A by a 2×2 complex matrix:

$$A = \begin{bmatrix} q^0 + q^3 & q^1 - iq^2 \\ q^1 + iq^2 & q^0 - q^3 \end{bmatrix}.$$
 (5.12)

A proper Lorentz transformation $\Lambda \in SO^+(1,3)$ is determined in the K frame by a vector rapidity $\xi \in \mathbb{R}^3$ and axis-angle vector $\theta \in \mathbb{R}^3$. The standard 4×4 matrix representation of Λ is obtained as the exponential of the generator

$$\begin{bmatrix} 0 & \boldsymbol{\xi}^T \\ \boldsymbol{\xi} & \varepsilon_{ijk} \theta^k \end{bmatrix} = \begin{bmatrix} 0 & \xi^1 & \xi^2 & \xi^3 \\ \xi^1 & 0 & +\theta^3 & -\theta^2 \\ \xi^2 & -\theta^3 & 0 & +\theta^1 \\ \xi^3 & +\theta^2 & -\theta^1 & 0 \end{bmatrix} \in \mathfrak{so}(1,3).$$
 (5.13)

In the spin representation, the transformation Λ corresponds to a rotor $\mathcal{L} = e^{\sigma}$, and the generating bivector (4.2) may be expressed via eq. (5.12) as the traceless complex matrix

$$\Sigma = q^k \sigma_k = \begin{bmatrix} +q^3 & q^1 - iq^2 \\ q^1 + iq^2 & -q^3 \end{bmatrix},$$
 (5.14)

where $q^k := \frac{1}{2}(\xi^k + i\theta^k) \in \mathbb{C}$. Note that, since the square of a spacetime bivector is a $\{0,4\}$ -multivector, its representative matrix Σ squares to a complex scalar multiple of the identity.

Given two generators σ_i with matrix representations Σ_i , the geometric BCHD formula (5.5) reads

$$\Sigma_3 := \Sigma_1 \odot \Sigma_2 = \tanh^{-1} \left(\frac{T_1 + T_2 + A}{I + S} \right),$$
 (5.15)

where $T_i := \tanh \Sigma_i$. To efficiently compute T_i , make use of the fact that $\Sigma_i^2 = \lambda_i^2 I$ is a complex multiple of the identity matrix and evaluate $T_i = \sum_i t_i T_i$

 $(\tanh \lambda_i)\lambda_i^{-1}\Sigma_i$. In the null case $\Sigma_i^2 = \lambda = 0$, we have trivially $\tanh \Sigma_i = \Sigma_i = \tanh^{-1}\Sigma_i$.

The commutator $A:=\frac{1}{2}[T_1,T_2]$ and anti-commutator $S:=\frac{1}{2}\{T_1,T_2\}$ terms may be efficiently computed by separating the single matrix product $\Pi:=T_1T_2=A+S$ into off-diagonal and diagonal components, respectively; i.e.,

$$A_{ij} = (1 - \delta_{ij})\Pi_{ij}$$
 and $S_{ij} = \delta_{ij}\Pi_{ij}$.

The numerator of eq. (5.15) is therefore a matrix with zeros on the diagonal, and the denominator is a complex scalar multiple of the identity, so the argument of \tanh^{-1} , call it M, is in the form (5.14). Computing $\tanh^{-1} M$ again simply amounts to $\Sigma_3 = \tanh^{-1} M = (\tanh^{-1} \lambda)\lambda^{-1} M$ where $M^2 = \lambda^2 I$.

The Lorentz generator in the standard vector representation (5.13) can then be recovered from Σ_3 with the relations $\xi^k = 2\Re(q^k)$ and $\theta^k = 2\Im(q^k)$, and the final SO⁺(1,3) vector transformation is its 4×4 matrix exponential.

5.2.1. Relativistic 3-velocities & the Wigner Angle

As an example of its theoretical utility, we shall use the geometric BCHD formula (5.5) to derive the composition law for arbitrary relativistic 3-velocities.

The innocuous problem of composing relativistic velocities has been called "paradoxical" [31–33], owing in part to the fact that *irrotational* boosts are not closed under composition, and that explicit matrix analysis becomes cumbersome. Of course, in reality there is no paradox, and the full description of the composition of boosts is pedagogically valuable as it highlights aspects of special relativity which differ from spatial intuition.

We may speak of a rotation or boost as being Pure relative to the K frame. Technically, σ generates a pure rotation (or pure boost) if, under the space/time split relative to the K frame, $\sigma = \langle \sigma \rangle_2$ is a pure bivector

Chapter 5. Composition of Rotors in terms of their Generators

(or a pure vector) in $\mathcal{G}(3)$. A pure rotation or pure boost relative to K is *not* pure in all other frames.

The restriction of the BCHD formula to pure boosts is not as simple as the restriction to rotations (5.10), because pure boosts do not form a closed subgroup of $SO^+(1,3)$ as pure rotations do. Instead, the composition of two pure boosts \mathcal{B}_i is a pure boost composed with a pure rotation (or vice versa),

$$\mathcal{B}_1 \mathcal{B}_2 = \mathcal{B} \mathcal{R}. \tag{5.16}$$

The direction of the boost \mathcal{B} lies within the plane defined by the boost directions of \mathcal{B}_1 and \mathcal{B}_2 , and \mathcal{B} is a rotation through this plane by the Wigner angle [33]. Applying eq. (5.5) to this case immediately yields formulae for the resulting boost and rotation.³⁸

These results are equivalent to those in [9] which are formulated using complexified quaternions.

For ease of algebra, we conduct the following analysis under a space/time split with respect to the K frame. Under this split, a pure boost \mathcal{B} is generated by an \mathbb{R}^3 vector $\frac{\xi}{2}$, and a pure rotation \mathcal{R} is generated by an \mathbb{R}^3 bivector $\frac{\theta}{2}\hat{r}$. Here, $\xi \in \mathcal{G}_1(3)$ is the *vector rapidity*, related to the velocity by $\mathbf{v}/c = \boldsymbol{\beta} = \tanh \boldsymbol{\xi}$, and the rotation is through an angle θ in the plane spanned by the bivector $\hat{r} \in \mathcal{G}_2(3)$. Equation (5.5) with two pure boosts ξ_1 and ξ_2 is

$$\tanh\left(\frac{\xi_1}{2} \odot \frac{\xi_2}{2}\right) = \frac{w_1 + w_2 + w_1 \wedge w_2}{1 + w_1 \cdot w_2} \tag{5.17}$$

where $\mathbf{w}_i := \tanh \frac{\xi_i}{2}$ are the *relativistic half-velocities*, also defined in [9, 10]. The generator (5.17) has vector and bivector (namely $\mathbf{w}_1 \wedge \mathbf{w}_2$) parts, indicating that the Lorentz transformation it describes is indeed some combination of a boost and a rotation.

Similarly, for an arbitrary pure boost and pure rotation,

$$\tanh\left(\frac{\xi}{2}\odot\frac{\theta}{2}\hat{r}\right) = \frac{\mathbf{w} + \rho + \frac{1}{2}[\mathbf{w}, \rho]}{1 + \mathbf{w}\wedge\rho}$$
(5.18)

where $\rho := \tanh \frac{\theta \hat{r}}{2} = \hat{r} \tan \frac{\theta}{2}$ is a bivector. In general, eq. (5.18) has vector, bivector *and* pseudoscalar parts (the commutator $\frac{1}{2}[w, \rho] = \langle w\rho \rangle_1 + w \wedge \rho$ and the denominator both have grade-three part $w \wedge \rho$). However,

eqs. (5.17) and (5.18) are equal by supposition of eq. (5.16). By comparing parts of equal grade, we deduce the pseudoscalar part of eq. (5.18) is zero. This requires $\mathbf{w} \wedge \rho = 0$ or, equivalently, that \mathbf{w} lies in the plane defined by ρ — meaning the resulting boost is coplanar with the Wigner rotation as expected. Hence, for a coplanar boost and rotation, eq. (5.18) is simply

$$\tanh\left(\frac{\xi}{2}\odot\frac{\theta}{2}\hat{r}\right) = \mathbf{w} + \rho + \mathbf{w}\rho. \tag{5.19}$$

The term $\mathbf{w}\rho = \langle \mathbf{w}\rho \rangle_1 = -\rho \mathbf{w}$ is a vector orthogonal to \mathbf{w} in the plane defined by ρ .

Equating the bivector parts of eqs. (5.17) and (5.19) determines the rotation

$$\rho = \frac{\mathbf{w}_1 \wedge \mathbf{w}_2}{1 + \mathbf{w}_1 \cdot \mathbf{w}_2}, \quad \text{implying} \quad \theta = 2 \tan^{-1} \left(\frac{\mathbf{w}_1 \mathbf{w}_2 \sin \phi}{1 + \mathbf{w}_1 \mathbf{w}_2 \cos \phi} \right)$$

where ϕ is the angle between the two initial boosts (in the K frame). The angle θ is precisely the Wigner angle. Equating the vector parts determines the boost

$$w = \frac{w_1 + w_2}{1 + w_1 \cdot w_2} (1 + \rho)^{-1},$$

noting that \mathbf{w}_i and ρ do not commute. Substituting ρ leads to the remarkably succinct composition law $\mathbf{w} = (\mathbf{w}_1 + \mathbf{w}_2)(1 + \mathbf{w}_1\mathbf{w}_2)^{-1}$ exhibited in [9], with the final relativistic velocity being $\boldsymbol{\beta} = \tanh \boldsymbol{\xi} = \tanh (2 \tanh^{-1} \mathbf{w})$.

Chapter 6.

Calculus in Flat Geometries

So far, we have been concerned with special relativity at a single point in spacetime. We move now toward the description of *fields* — quantities extending across regions of spacetime. The first step in this direction is the calculus of *flat spacetime*. In a flat geometry, we may assume that

- points in spacetime are elements of a vector space, with differences of points being physically meaningful; and that
- fields are parametric functions of a single vector argument representing a location in spacetime.

We reserve the word FIELD to mean a map with a fixed vector space codomain. For instance, the electromagnetic bivector field in flat space $F: \mathbb{R}^4 \to \wedge^2 \mathbb{R}^4$ is a function between fixed vector spaces. In particular, the value of a vector field $F: V \to A$ at different points in spacetime can be added; $F(x) + F(y) \in A$.

These assumptions are acceptable in special relativity, but in arbitrary regions of spacetime and in the presence of gravity, curvature prevents spacetime from admitting a meaningful vector space structure, and it becomes unphysical to compare field values at different points. (Consideration of curvature leads to differential geometry and comprises part II.)

6.1. Differentiation

The directional derivative of a vector field $F:V\to A$ in the direction $\boldsymbol{u}\in V$ is

$$\partial_{\boldsymbol{u}}F(x) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \left. F(x + \varepsilon \boldsymbol{u}) \right|_{\varepsilon = 0} = \lim_{\varepsilon \to 0} \frac{F(x + \varepsilon \boldsymbol{u}) - F(x)}{\varepsilon}$$

where the point $x \in V$ is also a vector. The directional derivative is linear in \mathbf{u} , since by a change of variables, $\partial_{u^a \mathbf{e}_a} = \sum_a \frac{\mathrm{d}}{\mathrm{d}\varepsilon} F(x + \varepsilon u^a \mathbf{e}_a)|_{\varepsilon=0} = \sum_a u^a \frac{\mathrm{d}}{\mathrm{d}\varepsilon} F(x + \varepsilon' \mathbf{e}_a)|_{\varepsilon'=0} = u^a \partial_{\mathbf{e}_a}$.

Suppose $F: V \to A$ is some algebra–valued field. It is useful to define a kind of "total" derivative D F which does not depend on a direction of differentiation u, but instead encompasses, in a sense, all derivatives in a single object D $F: V \to A$. The motivation for this construction is that it encompasses the soon-to-be-defined exterior derivative (of exterior algebra) and vector derivative (of geometric algebra) as special cases. This derivative will be defined when there is a canonical inclusion $\iota: V^* \to A$ of dual vectors into the algebra A, which is automatic if A is a quotient of $(V^*)^{\otimes}$.

Definition 24. Let $F: V \to A$ be a field with values in an algebra A with product \otimes , equipped with an inclusion $\iota: V^* \to A$. The ALGEBRAIC DERIVATIVE of F is

$$D F := \iota(\boldsymbol{e}^a) \otimes \partial_{\boldsymbol{e}_a} F \tag{6.1}$$

(summation on a) where $\{e_a\} \subset V$ and $\{e^a\} \subset V^*$ are dual bases.

To understand this definition, consider the simple case of the free tensor algebra $F: V \to (V^*)^{\otimes}$. We leave the inclusion $\iota: V^* \to (V^*)^{\otimes}$ implicit. Given a basis $\{e^a\} \subset V^*$, the algebraic derivative is $DF = e^a \otimes \partial_a F$ simply encodes the partial derivatives of a k-vector F in a (k+1)-grade object. In component language, $(DF)_{aa_1\cdots a_k} = \partial_a F_{a_1\cdots a_k}$.

6.1.1. The Exterior Derivative

Consider a vector field $F:V\to \wedge V^*$ with values in the (dual) exterior algebra. In this case the algebraic derivative (6.1) reduces to the EXTERIOR DERIVATIVE

$$\mathrm{d}F = \mathrm{d}x^a \wedge \frac{\partial F}{\partial x^a}$$

where $\{dx^a\} \subset V^*$ also form a dual basis of $\wedge V^*$. If $F: V \to \wedge^k V^*$ is a k-vector field, then $dF = \partial_a F_{a_1 \cdots a_k} dx^a \wedge dx^{a_1} \wedge \cdots \wedge dx^{a_k}$ is a (k+1)-vector.

Using the equivalence of $\wedge V^*$ with the subspace of antisymmetric tensors (see section 2.2.1), the exterior derivative is seen to be the totally antisymmetrised partial derivative. In components, $(dF)_{a_1\cdots a_k} = \partial_{[a_1}F_{a_2\cdots a_k]}$.

The treatment of exterior forms is identical. An exterior form field $\varphi:V\to\Omega^k(V,U)$ is called a U-valued exterior differential k-form, with exterior derivative defined via its action on vectors

$$(d\varphi)(\boldsymbol{u},\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k) = (dx^a \wedge \partial_a \varphi)(\boldsymbol{u},\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k)$$
$$= \sum_{i=0}^k (-1)^i \partial_{\boldsymbol{u}_i} \varphi(\boldsymbol{u}_0,\ldots,\widehat{\boldsymbol{u}}_i,\ldots,\boldsymbol{u}_k)$$

in the Spivak convention (see section 2.2.2). Note that the partial derivative acts on the position dependence of φ only — the vectors $\mathbf{u}_i \in V$ are fixed input vectors. This changes when generalising from vector fields of alternating maps $V \to \Omega(V, U)$ to objects defined on a manifold $\Omega(\mathcal{M}, U)$, where correction terms are needed to account for partial derivatives of input vector sections (discussed in part II).

6.1.2. The Vector Derivative

The algebraic derivative in the tensor and exterior algebras are somewhat uninteresting, because they are easily expressible in component form (e.g., $\partial_a F_{a_1 \cdots a_k}$ or $\partial_{[a} F_{a_1 \cdots a_k]}$). This is not possible in the geometric algebra, however, because $\mathcal{G}(V, \eta)$ is not \mathbb{Z} -graded, and we would face the problem of notating inhomogeneous objects with a variable number

of indices. The algebraic derivative is, however, still geometrically significant and useful in this case.

In $\mathcal{G}(V,\eta)$, the algebraic derivative is called the VECTOR DERIVATIVE, which we denote ∂ . Explicitly, if $F:V\to \mathcal{G}(V,\eta)$ is a multivector field, then in eq. (6.1) we take \otimes to be with the geometric product and take the inclusion to be³⁹ $V^*\ni \boldsymbol{u}\mapsto \iota(\boldsymbol{u}^\sharp)\in \mathcal{G}(V,\eta)$. Here, we use the metric to relate $V^*\to V$ and the canonical inclusion $\iota:V\equiv \mathcal{G}_1(V,\eta)\to \mathcal{G}(V,\eta)$. The vector derivative is then

$$\partial F = e^a \partial_{e_a} F$$

(summation on a) where $\{e_a\} \subset V$ and $\{e^a\} \subset V$ are dual bases, and juxtaposition denotes the geometric product. If F is a homogeneous k-vector, then we may write its components as $F = F_{a_1 \cdots a_k} e^{a_1} \wedge \cdots \wedge e^{a_k}$ and hence

$$\partial F = \partial_{\boldsymbol{e}_a} F_{a_1 \cdots a_k} \, \boldsymbol{e}^a (\boldsymbol{e}^{a_1} \wedge \cdots \wedge \boldsymbol{e}^{a_k}).$$

Note that these terms are not (k + 1)-blades, but geometric products of vectors e^a with k-blades — in general, $(k \pm 1)$ -multivectors.

We may regard the vector derivative itself as an operator-valued vector,

$$\partial = e^a \partial_a$$

reflecting the fact that ∂ behaves algebraically like a vector. For instance, the derivative of a vector \boldsymbol{u} has scalar and bivector parts, $\partial \boldsymbol{u} = \partial \cdot \boldsymbol{u} + \partial \wedge \boldsymbol{u}$, just like the geometric product of two vectors, $\boldsymbol{u}\boldsymbol{v} = \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{u} \wedge \boldsymbol{v}$. For a general multivector F, then, we have

$$\partial F = \partial \int F + \partial \wedge F.$$

6.1.3. Case Study: Maxwell's Equations

6.2. Integration

6.2.1. Stokes' Theorem for Exterior Calculus

Theorem 5 (Stokes' theorem in \mathbb{R}^n). If $R \subseteq \mathbb{R}^n$ is a compact k-dimensional hypersurface with boundary ∂R , then a smooth differential form $\omega \in \Omega^{k-1}(R)$

We could just as well consider fields $V \to \mathcal{G}(V^*, \eta)$, avoiding the need for the isomorphism $\sharp : V^* \to V$. But the metric is already defined, so we prefer multivectors $\mathcal{G}(V, \eta)$ to 'dual-multivectors'.

Chapter 6. Calculus in Flat Geometries

Figure 6.1.: Neighbourhoods in R are diffeomorphic either to interior balls or boundary half-balls.

satisfies

$$\int_{R} d\omega = \int_{\partial R} \omega. \tag{6.2}$$

Proof. Since R is a k-dimensional region with boundary, every point $x \in R$ has a neighbourhood diffeomorphic to a neighbourhood of the origin in either \mathbb{R}^k or $H^k := [0, \infty) \oplus \mathbb{R}^{k-1}$, depending on whether x is an interior point or a boundary point, respectively.

Let $\{U_i\}$ be a cover of R consisting of such neighbourhoods. Since R is compact, we may assume $\bigcup_{i=1}^N \{U_i\} = R$ to be a finite covering. Thus, we have finitely maps $h_i: U_i \to X$ where X is either \mathbb{R}^k or the half-space H^k , where $U_i \cong h_i(U_i)$ are diffeomorphic (see fig. 6.1).

Finally, let $\{\phi_i: R \to [0,1]\}$ be a partition of unity subordinate to $\{U_i\}$, so that $\{x \in R \mid \phi_i(x) > 0\} \subseteq U_i$ and $\omega = \sum_{i=1}^N \phi_i \omega$. We need only prove the equality (6.2) for each $\omega_i := \phi_i \omega$, and the full result follows be linearity.

The form $h_i^*\omega_i \in \Omega^{k-1}(X)$ can be written with respect to canonical coordinates of X as

$$h_i^* \omega_i = \sum_{j=1}^k f_j (-1)^{j-1} dx^{1 \cdots \hat{j} \cdots k}$$

using the multi-index notation $\mathrm{d} x^{i_1\cdots i_k} \equiv \mathrm{d} x^{i_1} \wedge \cdots \wedge \mathrm{d} x^{i_k}$, where the hat denotes an omitted term. The factor of $(-1)^{j-1}$ gives the (k-1)-form the boundary orientation induced by the volume form $\mathrm{d} x^{1\cdots k}$ for convenience. Since pullbacks commute with d,

$$h^* d\omega_i = d(h_i^* \omega_i) = \sum_{j=1}^k \frac{\partial f_j}{\partial x^j} dx^{1 \cdots n}.$$

There are then two cases to consider.

• *Interior case.* If $h_i: U_i \to \mathbb{R}^k$, then the right-hand side of eq. (6.2) vanishes because ω_i is zero outside the neighbourhood $U_i \subset R$ which nowhere meets the boundary ∂R .

$$\int_{\partial R} \omega_i = \int_{\partial U_i} \omega_i = \int_{\emptyset} \omega_i = 0$$

The left-hand side evaluates to

$$\int_{R} d\omega_{i} = \int_{X} d(h_{i}^{*}\omega_{i}) = \int_{\mathbb{R}^{k}} \sum_{j=1}^{k} \frac{\partial f_{j}}{\partial x^{j}} dx^{1\cdots n}$$

$$= \underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sum_{j=1}^{k} \frac{\partial f_{j}}{\partial x^{j}} dx^{1} \cdots dx^{k}}_{k}$$

$$= \underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sum_{j=1}^{k} f_{j} \Big|_{x^{j} = -\infty}^{+\infty} (-1)^{j-1} dx^{1} \cdots \widehat{dx^{j}} \cdots dx^{k} = 0,$$

which vanishes because $h_i^*\omega_i$, and hence the f_j , vanish outside the neighbourhood $h_i(U_i) \subset \mathbb{R}^k$.

• Boundary case. If $h_i: U_i \to H^k$, then the boundary $\partial U_i \subset \partial R$ is mapped onto the hyperplane $\partial H^k = \{(0, x^2, \dots, x^k) \mid x^j \in \mathbb{R}\}$. Thus, $dx^1 = 0$ on this boundary, and the right-hand side of eq. (6.2) becomes

$$\int_{\partial R} \omega_i = \int_{\partial U_i} h_i^* \omega_i = -\int_{\mathbb{R}^{k-1}} f_1 dx^2 \cdots dx^k$$
$$= -\underbrace{\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}}_{k-1} f_1(0, x^2, \dots, x^k) dx^2 \cdots dx^k.$$

The factor of -1 comes from the induced orientation of the boundary ∂H^k , which is outward-facing, so in the *negative* x^1 direction. For the left-hand side of eq. (6.2),

$$\int_{R} \mathrm{d}\omega_{i} = \int_{H^{k}} h_{i}^{*} \mathrm{d}\omega_{i} = \int_{0}^{\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sum_{j=1}^{k} \frac{\partial f_{j}}{\partial x^{j}} dx^{1} \cdots dx^{k}$$

All terms $\frac{\partial f_j}{\partial x^j} dx^j$ in the sum for j > 1 integrate to boundary terms $x_j \to \pm \infty$ where f_j vanishes. This leaves the single term from the integration of dx^1 ,

$$= -\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f_1 \Big|_{x^1=0}^{\infty} dx^2 k \cdots k dx^{-1}$$

Chapter 6. Calculus in Flat Geometries

Thus, we have equality for all ω_i , so

$$\int_{R} d\omega = \sum_{i=1}^{N} \int_{R} d\omega_{i} = \sum_{i=1}^{N} \int_{\partial R} \omega_{i} = \int_{\partial R} \omega$$

by linearity. \Box

6.2.2. Fundamental Theorem of Geometric Calculus

Part II.

General Relativity and Manifold Geometry

Chapter 7.

Spacetime as a Manifold

The investigations of part I were restricted to *flat geometries*. In particular, special relativity models spacetime as a homogeneous, isotropic Minkowski vector space. However, the general theory of relativity incorporates gravity as the curvature of space itself. Thus, spacetime no longer has an assumed vector space structure. This calls for *manifold geometry*.

Here we only give a pragmatic definition of a manifold as a space which locally looks like \mathbb{R}^n upon which one can do calculus. (A rigorous definition in terms of charts and atlases can be found in the first chapter of [34].)

40 Here, a 'nice' topological space is:

- 1. Hausdorff, meaning each distinct pair of points have mutually disjoint neighbourhoods (so it is "not too small"); and
- second-countable, meaning there exists a countable base (so it is "not too large").

Definition 25. A Manifold \mathcal{M} of dimension n is a nice⁴⁰ topological space which is locally Euclidean, meaning for every $x \in \mathcal{M}$ there exist neighbourhoods $x \in \mathcal{U} \subseteq \mathcal{M}$ and subsets $U \subseteq \mathbb{R}^n$ with a homeomorphism (continuous bijection) $\mathcal{U} \hookrightarrow U$ between them.

A SMOOTH MANIFOLD is a manifold with the stricter requirement that $\mathcal{U} \hookrightarrow U$ be a diffeomorphism (differentiable bijection).

Essentially, definition 25 is designed to guarantee that well-behaved local coordinates always exist.

Definition 26. Let \mathcal{M} be an n-dimensional manifold. A (GLOBAL) COORDINATE CHART $\{x^i\} \equiv \{x^1, ..., x^n\}$ of \mathcal{M} is a set of scalar fields $x^i : \mathcal{M} \to \mathbb{R}$ such that each point in \mathcal{M} is specified uniquely by the coordinate values

 $(x^1,...,x^n) \in \mathbb{R}^n$. A local coordinate chart about a point $x \in \mathcal{M}$ is a coordinate chart of a neighbourhood of x.

We will often call a point $x \in \mathcal{M}$ by the same symbol as the local coordinates $x^i : \mathcal{M} \to \mathbb{R}$ without the index — but these objects are not interchangeable.

A structure-preserving map between manifolds is a continuous function; and between smooth manifolds, a differentiable function. For brevity, we assume the definitions that follow take place in the category of manifolds, and *take all maps between manifolds to be continuous*. Furthermore, if the qualifier "smooth" is present, we operate in the category of smooth manifolds and such maps are assumed differentiable. Thus, the coordinate scalars x^i of definition 26 are continuous functions, and are differentiable if the manifold is smooth.

7.1. Derivatives of Smooth Maps

Manifolds themselves do not have inherent vector space structure. However, being locally Euclidean means there is a real vector space naturally associated to each point:

Definition 27. The TANGENT SPACE $T_x \mathcal{M}$ of a manifold at a point $x \in \mathcal{M}$ is the vector space of derivations on smooth functions at that point.⁴¹ In any local coordinate chart $\{x^i\}_{i=1}^n$ of \mathcal{M} containing x, this is

$$T_x \mathcal{M} \cong \operatorname{span} \left\{ \frac{\partial}{\partial x^i} \Big|_{x} \right\}_{i=1}^n.$$

The TANGENT BUNDLE T $\mathcal M$ is the disjoint union of all tangent spaces

$$T \mathcal{M} = \{(x, \mathbf{u}) \mid x \in \mathcal{M}, \mathbf{u} \in T_x \mathcal{M}\}$$

equipped with an appropriate manifold topology.⁴²

Given a smooth manifold, its tangent bundle comes for free: its construction is canonical and requires no additional data. Similarly, given a

⁴¹ More precisely, each vector $\mathbf{u} \in T_x \mathcal{M}$ is an equivalence class of derivatives evaluated at the point x, where different derivations which agree at the point x are identified.

⁴² More formally, it is a fibre bundle (see section 7.2).

Chapter 7. Spacetime as a Manifold

smooth function f between manifolds, its derivative df (i.e., its 'tangent') also comes for free.

In the same way that the tangent bundle consists of 'directional derivatives of points' in the manifold (i.e., tangent vectors), the differential df encodes the derivative of f at each point in all directions.⁴³ Intuitively, if $\mathbf{u} \in T_x \mathcal{M}$ is a vector at a point $x \in \mathcal{M}$, then the vector $df(\mathbf{u}) \in T_{f(x)} \mathcal{N}$ is interpreted as the directional derivative of $f(x) \in \mathcal{N}$ in the direction \mathbf{u} .

43 There is a precise parallel: d and T form a functor in category of smooth manifolds, sending $f: \mathcal{M} \to \mathcal{N}$ to $\mathrm{d} f: \mathrm{T} \mathcal{M} \to \mathrm{T} \mathcal{N}$. Some authors use the symbol T for both.

Definition 28. The DIFFERENTIAL or PUSH FORWARD of a map $f: \mathcal{M} \to \mathcal{N}$ between smooth manifolds is the map $df: T\mathcal{M} \to T\mathcal{N}$ defined by

$$\left(\mathrm{d}f(\boldsymbol{u}) \right) (\varphi) \big|_{f(x)} \coloneqq \boldsymbol{u} (\varphi \circ f) \big|_{x} \tag{7.1}$$

for each point $x \in \mathcal{M}$, vector $\mathbf{u} \in T_x \mathcal{M}$ and smooth function $\varphi : \mathcal{N} \to \mathbb{R}$.

In the definition above, vectors act on scalar functions as derivations; hence df(u) is defined by its action on an arbitrary scalar field.

Note that $\mathrm{d} f(\boldsymbol{u})$ is not always defined everywhere. If $\boldsymbol{u}|_x \in \mathrm{T}_x$ \mathcal{M} is now a family of vectors defined everywhere over $x \in \mathcal{M}$, then $\mathrm{d} f(\boldsymbol{u})|_{f(x)} = \mathrm{d} f(\boldsymbol{u}|_x)$ is defined only at each $f(x) \in \mathcal{N}$. This means that if f fails to be surjective, then $\mathrm{d} f(\boldsymbol{u})$ is not defined at those points lying outside the image $f(\mathcal{M}) \subset \mathcal{N}$. Likewise, if f fails to be injective at a point $y \in \mathcal{N}$, then $\mathrm{d} f(\boldsymbol{u})$ is multivalued at g. Only if g is bijective does $\mathrm{d} f(\boldsymbol{u})|_g$ have a single value everywhere.

The meaning of definition 28 may become clearer when expressed in coordinates. Suppose $\{x^i\}$ is a local chart of \mathcal{M} containing a point $x \in \mathcal{M}$, and $\{y^j\}$ a chart of \mathcal{N} containing f(x). With the associated coordinate bases $T_x \mathcal{M} = \operatorname{span}\left\{\frac{\partial}{\partial x^i}\right\}$ and $T_{f(x)} \mathcal{N} = \operatorname{span}\left\{\frac{\partial}{\partial y^j}\right\}$, eq. (7.1) takes the full form:

$$\left[\mathrm{d} f \left(u^i \frac{\partial}{\partial x^i} \right) \right]^j \left. \frac{\partial \varphi}{\partial y^j} \right|_{f(x)} = u^i \left. \frac{\partial \varphi \circ f}{\partial x^i} \right|_x = u^i \left. \frac{\partial y^j \circ f}{\partial x^i} \right|_x \left. \frac{\partial \varphi}{\partial y^j} \right|_{f(x)}$$

The first equality is the definition itself, and the second is an application of the chain rule. Since φ is an arbitrary smooth function, this holds as an

equation of differential operators, and we may remove reference to any particular φ on which the operators act.

$$\left[\mathrm{d}f(u^{i}\partial_{i}) \right]^{j} \left. \partial_{j} \right|_{f(x)} = u^{i} \left. \frac{\partial f^{j}}{\partial x^{i}} \right|_{x} \left. \partial_{j} \right|_{f(x)} \tag{7.2}$$

We have reduced typographical complexity with $\partial_i := \frac{\partial}{\partial x^i}$ and $\partial_j := \frac{\partial}{\partial y^j}$, being aware that these are basis vectors of *different* tangent spaces. We also abbreviate $f^j := y^j \circ f$ so that $f^j(x)$ is the jth coordinate of the point f(x) in the y^j chart. Thus, the coordinate form of df is precisely the Jacobian matrix,

$$[\mathrm{d}f(\partial_i)]^j = \frac{\partial f^j}{\partial x^i}.$$

The point x being arbitrary, we have also suppressed the evaluation signs, with the understanding that the Jacobian maps vectors at x to vectors at f(x).

Turning back to eq. (7.2), the partial derivatives $\partial/\partial x^i$ act on smooth functions $f^j: \mathcal{M} \to \mathbb{R}$ to produce smooth functions $\partial f^j/\partial x^i: \mathcal{M} \to \mathbb{R}$. However, since we have an intuitive picture of the directional derivative of the point f(x) as x is displaced, it is useful to formally extend the notation $\partial/\partial x^i$ so that we may write the partial derivative of a mapping of points $f: \mathcal{M} \to \mathcal{N}$. Semantically, we understand $\frac{\partial f}{\partial x^i}|_x \in T_{f(x)} \mathcal{N}$ to be the infinitesimal displacement vector of the destination point $f(x) \in \mathcal{N}$ caused by an infinitesimal variation in the ith coordinate of the source point x. This is precisely the meaning of the last term in eq. (7.2), so the desired shorthand is

$$\frac{\partial f}{\partial x^{i}} := \frac{\partial f^{j}}{\partial x^{i}} \partial_{j} \quad \text{or, in full,} \quad \frac{\partial f}{\partial x^{i}} \Big|_{x} := \left. \frac{\partial y^{i} \circ f}{\partial x^{i}} \right|_{x} \frac{\partial}{\partial y^{j}} \Big|_{f(x)}. \tag{7.3}$$

With this, eq. (7.2) may be written as

$$\mathrm{d}f(\boldsymbol{u}) = u^i \frac{\partial f}{\partial x^i}.\tag{7.4}$$

This condensed form is perhaps too implicit for some purposes, with the notation $\partial f/\partial x^i$ doing the work of eq. (7.3). However, it is nonetheless useful: take for instance the coordinate functions $x^i: \mathcal{M} \to \mathbb{R}$ regarded

Figure 7.1.: The derivative of the point $x \in \mathcal{M}$ along the direction of increasing x^{μ} is a tangent vector $\partial_{\mu}x \in T_{x}\mathcal{M}$. The vector is tangent to the dotted line, along which all coordinates but x^{μ} are constant.

as maps between manifolds. Then eq. (7.4) yields the defining property of the coordinate dual basis,

$$\mathrm{d}x^i(\partial_j) = \frac{\partial x^i}{\partial x^j} = \delta^i_j,$$

where we have identified the one-dimensional vector space $T_{x^i} \mathbb{R}$ with \mathbb{R} itself.

Lemma 15 (Chain rule). If $f \circ g$ is a composition of maps between smooth manifolds, then

$$d(f \circ g) = df \circ dg.$$

Proof. Acting on a vector \boldsymbol{u} and applying the forward-pushed vector to a scalar field φ , we obtain

$$(d(f \circ g)(\mathbf{u}))(\varphi) = \mathbf{u}(\varphi \circ f \circ g)$$

= $\mathbf{u}((\varphi \circ f) \circ g) = (dg(\mathbf{u}))(\varphi \circ f) = df(dg(\mathbf{u}))(\varphi)$

by three applications of definition 28.

7.2. Fibre Bundles

In flat geometries, fields were modelled as functions into a fixed vector space. For example, in flat spacetime $\mathcal{M} = \mathbb{R}^{1+3}$, the electromagnetic bivector $F: \mathcal{M} \to \Lambda^2 \mathbb{R}^4$ makes no distinction between the vector space $\Lambda^2 \mathbb{R}^4$ evaluated at one point in spacetime over another. This would suggest that all values of a field are directly comparable, making expressions like $F(x) + F(y) \in \Lambda^2 \mathbb{R}^4$ geometrically meaningful for different points $x, y \in \mathcal{M}$. However, these kinds of expressions become ill-defined for general smooth manifolds \mathcal{M} . Instead, it is beneficial to distinguish between codomains at each point in the domain, and treat F(x) and F(y) as belonging to different spaces.

This can be motivated with the simple example of a fluid flowing on a sphere. The instantaneous fluid velocity at a point is a vector lying in the

Figure 7.2.: Vectors in different tangent spaces, and their basis-dependent representation as an \mathbb{R}^2 -valued field.

sphere's tangent plane at that point. If the fluid flow is given as a field $f: \mathcal{S}^2 \to \mathbb{R}^2$, then any two velocity vectors exist in the "same" space, even when *geometrically* they do not (fig. 7.2). This is more than a purely philosophical point: the fluid flow's representation as a field $f: \mathcal{S}^2 \to \mathbb{R}^2$ is *dependent on the choice of basis*. That is, f depends on the way in which the single codomain \mathbb{R}^2 is identified with each tangent plane on the sphere, and there is no such canonical choice for the sphere. We would do better with a more geometrical representation of the vector field which is independent of any choice of basis. This requires viewing the fluid velocities at different points as existing in different spaces.

From this we construct the tangent bundle T \mathcal{S}^2 , where all the tangent planes of \mathcal{S}^2 are collected in a disjoint union forming a bulk. The vector field on the sphere now becomes a section of T \mathcal{S}^2 , which is a map $f: \mathcal{S}^2 \to T \mathcal{S}^2$ such that f(x) belongs to the tangent space rooted at x. The tangent bundle is a special case of a fibre bundle, which is a manifold consisting of disjoint copies of a space (called the fibre) taken at every point in a base manifold.

Definition 29. A FIBRE BUNDLE $F \hookrightarrow \mathcal{F} \stackrel{\pi}{\twoheadrightarrow} \mathcal{M}$ consists of

- a BULK MANIFOLD \mathcal{F} ;
- a BASE MANIFOLD \mathcal{M} ; and
- a surjection $\pi: \mathcal{F} \to \mathcal{M}$, the PROJECTION, such that
- the inverse image $F_x := \pi^{-1}(x)$ of a base point $x \in \mathcal{M}$ is homeomorphic to the FIBRE F.

Figure 7.3.: (a) A field $f: \mathcal{M} \to F$, where values at any point can be compared. (b) A fibre bundle $F \hookrightarrow \mathcal{F} \twoheadrightarrow \mathcal{M}$ with a section $f \in \Gamma(\mathcal{F})$ whose individual fibres F are labelled by base point in \mathcal{M} .

Definition 29 takes place in the category of manifolds, so the projection $\pi: \mathcal{F} \to \mathcal{M}$ is continuous. In a smooth fibre bundle, the projection π is differentiable and F, \mathcal{F} and \mathcal{M} are all smooth manifolds.

Trivialisations and coordinates

The bulk \mathscr{F} of a fibre bundle $F \hookrightarrow \mathscr{F} \twoheadrightarrow \mathscr{M}$ is itself a manifold (of dimension $\dim \mathscr{F} = \dim \mathscr{M} + \dim F$) so we may always prescribe local coordinates on \mathscr{F} . If we already have coordinates $\{x^{\mu}\}$ on the base \mathscr{M} and $\{x^a\}$ on a fibre F, then we often want to use the same coordinates $\{x^{\mu}, x^a\}$ to describe the bulk \mathscr{F} . This first requires a way of continuously splitting the bulk $\mathscr{F} \to \mathscr{M} \times F$ into its base and fibre "components", in a way which respects the fibred structure of the bundle. This splitting is known as a *trivialisation* of the bundle.

Definition 30. A TRIVIALISATION of a fibre bundle $F \hookrightarrow \mathcal{F} \stackrel{\pi}{\twoheadrightarrow} \mathcal{M}$ is a homeomorphism $\varphi : \mathcal{F} \to \mathcal{M} \times F$ such that $\operatorname{pr}_1 \circ \varphi = \pi$.

It is not always possible to find a trivialisation of a fibre bundle, and if it is, the bundle is called a TRIVIAL FIBRE BUNDLE and there may be different possible trivialisations. 44

However, it is always possible trivialise *locally*. That is, for any base point $x \in \mathcal{M}$, there exists a neighbourhood $x \in U \subseteq \mathcal{M}$ for which the subbundle $F \hookrightarrow \pi^{-1}(U) \stackrel{\pi}{\twoheadrightarrow} U$ admits a trivialisation. Hence, it is always possible to assign *local* coordinates $\{x^{\mu}, x^{a}\}$ to the bulk of a fibre bundle, where x^{μ} are coordinates on the base and x^{a} are coordinates on the fibres, such that x^{μ} do not vary along the fibres.

Sections of fibre bundles

In the language of fibre bundles, a field $f: \mathcal{M} \to F$ becomes a *section*, which is a "vertical" map $f: \mathcal{M} \to \mathcal{F}$ into the bulk \mathcal{F} such that $f(x) \in F_x$.

Definition 31. A SECTION f of a fibre bundle $F \hookrightarrow \mathcal{F} \stackrel{\pi}{\twoheadrightarrow} \mathcal{M}$ is a right-inverse of π . The space of sections is denoted

$$\Gamma(\mathcal{F}) = \{ f \, : \, \mathcal{M} \to \mathcal{F} \mid \pi \circ f = \mathrm{id} \}.$$

44 A simple non-trivial fibre bundle is the Möbius strip, viewed as a bundle over the circle \mathcal{S}^1 with fibre [0, 1]. The trivial bundle $\mathcal{S}^1 \times [0, 1]$ describes a strip without a twist.

(Again, sections $f \in \Gamma(\mathcal{F})$ are assumed continuous, and smooth sections are sections of smooth fibre bundles for which f is smooth.)

For example, the instantaneous fluid velocity \boldsymbol{u} on a sphere \mathcal{S}^2 is a section $\boldsymbol{u} \in \Gamma(T \mathcal{S}^2)$ of the tangent bundle, with a single vector at $x \in \mathcal{S}^2$ is denoted $\boldsymbol{u}|_x \in T_x \mathcal{S}^2$.

Chapter 8.

Connections on Fibre Bundles

We have seen that it is more natural to describe physical fields in the language of fibre bundles rather than simply as maps into a fixed codomain. However, with a field $f \in \Gamma(\mathcal{F})$ now formulated as a section of a fibre bundle, it no longer makes sense to directly compare values $f|_x$ at different points $x \in \mathcal{M}$, since each value exists in its own fibre. But the ability to compare across fibres is desirable, particularly because a notion of derivative requires comparing values across 'neighbouring' fibres. To accomplish this, the additional structure of a *connection* on the fibre bundle is required; this then defines the *covariant derivative* of a section.

A trivial example of a connection is the one associated with (the tangent bundle of) Euclidean space. In this case, tangent vectors at a base point may be *parallel transported* (i.e., translated irrotationally) to any other base point in a well-defined, path-independent way.⁴⁵ This defines an isomorphism between every tangent space and tangent space at the origin, which is a connection on $T \mathbb{R}^n$.

other base point in a well-defined, path-independent way. This defines an isomorphism between every tangent space and tangent space at the origin, which is a connection on $T \mathbb{R}^n$.

We may try to define connections on general fibre bundles in this way, by choosing an isomorphism from every fibre to a single 'reference' fibre.

This is the same as choosing a trivialisation $\mathcal{F} \to \mathcal{M} \times F$, which identifies every fibre with the reference fibre F (this is equivalent to prescribing global coordinates on the bundle). However, defining a connection by a trivialisation like this is a needlessly strict requirement, and is of course impossible to do globally on non-trivial bundles.

For example, the tangent bundle of the sphere T \mathcal{S}^2 is non-trivial, so it

45 Any tangent vectors $\mathbf{v}_p \in \mathbb{T} \mathbb{R}^n \cong \mathbb{R}^n \oplus \mathbb{R}^n$ are compared by translating them to the origin (or discarding the base point) $\mathbf{v}_p \equiv (p, \mathbf{u}) \mapsto \mathbf{u} \in \mathbb{R}^n$.

is impossible to give a globally smooth identification of tangent spaces.⁴⁶ However, it is always possible to define a connection *locally* on the sphere, since local trivialisations always exist. In other words, tangent vectors on the sphere can be parallel transported over sufficiently short paths, since locally the sphere looks like the Euclidean plane. This generalises to all smooth manifolds: To define a connection, it is only necessary to specify how values are parallel-transported to 'neighbouring' fibres.

⁴⁶ To see this, consider a point on the globe. Given a trivialisation of T \mathcal{S}^2 , the northward vector is extended to a vector field on the sphere. The hairy ball theorem implies the field vanishes at some point, at which the trivialisation fails.

8.1. Connections on General Fibre Bundles

The most general kind of smooth bundle is one where the fibres are diffeomorphic to a manifold F and have no further structure assumed. The tangent bundle is a special case where the fibre is a vector space, but we will start in generality.

A point $p \in \mathcal{F}$ in a fibre bundle represents a value in the fibre $F_{\pi(p)}$, whose root has base point $\pi(p) \in \mathcal{M}$. If the point p is moved within its fibre, the base point remains fixed and the motion is said to be "vertical". The tangent space $T_p F_{\pi(p)}$ of the fibre (in isolation from the bulk) consists of those displacement vectors which define vertical motion.

Definition 32. The VERTICAL BUNDLE of a smooth fibre bundle $F \hookrightarrow \mathcal{F} \twoheadrightarrow \mathcal{M}$ is a smooth (dim F)-dimensional tangent subbundle $V \mathcal{F} \subseteq T \mathcal{F}$ defined by

$$V_p \mathcal{F} = T_p F_p$$

for each point $p \in \mathcal{F}$.

In other words, the tangent bundles of all the fibres taken together form the vertical bundle.

On the other hand, a *connection* specifies how the value $p \in \mathcal{F}$ changes when the base point $\pi(p) \in \mathcal{M}$ moves if p is undergoing parallel transport — i.e., it defines "horizontal" motion between fibres.

Chapter 8. Connections on Fibre Bundles

Figure 8.1.: Illustration of an Ehresmann connection.

Using the fact that $\ker d\pi = V \mathcal{F}$, implying $\ker d\pi|_{H_p} = \mathbf{0}$.

Definition 33. A HORIZONTAL BUNDLE or (EHRESMANN) CONNECTION H on a smooth fibre bundle $F \hookrightarrow \mathcal{F} \twoheadrightarrow \mathcal{M}$ is a smooth (dim \mathcal{M})-dimensional tangent subbundle $H \subseteq T\mathcal{F}$ which is complementary to the vertical bundle $V \subseteq T\mathcal{F}$, in the sense that

$$\mathrm{T}_p\mathcal{F}=\mathrm{V}_p\mathcal{F}\oplus H_p$$

for each point $p \in \mathcal{F}$.

Note that, while the tangent bundle T \mathscr{F} and vertical bundle V \mathscr{F} are canonical constructions, the choice of a horizontal bundle H is not: there may be many distinct meanings of parallel transport on a given bundle.

The requirement that H_p be complimentary to $V_p \mathcal{F}$ means that $H_p \cap V_p \mathcal{F} = \{\mathbf{0}\}$, and hence the restriction of $d\pi : T_p \mathcal{F} \hookrightarrow T_{\pi(p)} \mathcal{M}$ to $H_p \subseteq T_p \mathcal{F}$ is an isomorphism.⁴⁷ It therefore has an inverse,

$$d\pi|_{H_p}^{-1}: T_{\pi(p)} \mathcal{M} \hookrightarrow H_p, \tag{8.1}$$

which acts to "lift" tangent vectors from the base into the horizontal subbundle at p. This proves to be a useful construction:

Definition 34. Let there be a fibre bundle $F \hookrightarrow \mathscr{F} \stackrel{\pi}{\twoheadrightarrow} \mathscr{M}$ with a connection $H \subseteq T\mathscr{F}$. The CONNECTION MAP $\Gamma: T\mathscr{M} \to H$ is the linear map defined by

$$\Gamma|_p := -\mathrm{d}\pi|_{H_p}^{-1} : \mathrm{T}_{\pi(p)}\,\mathcal{M} \to H_p$$

at every $p \in \mathcal{F}$. If $f \in \Gamma(\mathcal{F})$ is a section, also define Γ_f by

$$\Gamma_f|_{x} := \Gamma|_{f(x)} = -\mathrm{d}\pi|_{H_{f(x)}}^{-1}$$

for any $x \in \mathcal{M}$ as a convenient shorthand.

8.1.1. Parallel transport

With a connection defined on a bundle, a value $p_0 \in \mathcal{F}$ can be parallel transported between fibres so that the motion is everywhere horizontal with respect to the connection.

Thus, a path $\gamma:[0,1]\to\mathcal{M}$ representing the motion of a value $p_0\in\mathcal{F}$ from $\gamma(0)=\pi(p_0)$ can be LIFTED to a horizontal path $p_0:[0,1]\to\mathcal{F}$ in the bulk. This path is 'above' γ in the sense that $\pi(p_{\gamma}(\lambda))=\gamma(\lambda)$, and 'horizontal' in the sense that $\mathrm{d}p_{\gamma}(\lambda)\in H_{p_{\gamma}(\lambda)}$, for all $\lambda\in[0,1]$ (see fig. 8.2) In other words, p_{γ} is a one-dimensional integral manifold of the connection H, restricted to the 'wall' $\pi^{-1}(\gamma)\subset\mathcal{F}$.

It is useful to describe as an operator the mapping between fibres defined by parallel transport along a path:

Definition 35. If $\gamma:[0,1]\to\mathcal{M}$ is a path, then the TRANSPORT OPERATOR $\operatorname{trans}_{\gamma}:F_{\gamma(0)}\to F_{\gamma(1)}$ is defined by $\operatorname{trans}_{\gamma}p=p_{\gamma}(1)$ for any point $p\in F_{\gamma(0)}$ where $p_{\gamma}:[0,1]\to\mathcal{F}$ is the lifted path satisfying

$$\pi(p_{\gamma}(\lambda)) = \gamma(\lambda) \quad and \quad dp_{\gamma}(\lambda) \in H_{p_{\gamma}(\lambda)}$$
 (8.2)

for all $\lambda \in [0, 1]$.

The transport operator is invariant under path reparametrisation, since any path $\gamma'(\lambda) = \gamma(f(\lambda))$ where $f : [0,1] \to [0,1]$ is smooth also satisfies equations 8.2 if γ does. Furthermore, the transport operator respects path concatenation $\gamma_2 * \gamma_1$ and inversion,

trans = trans⁻¹, trans = trans
$$\circ$$
 trans.

This makes the transport operator a homomorphism from the groupoid of directed paths modulo reparametrisation⁴⁸ into the groupoid of fibre isomorphisms.

Lemma 16. The connection map $\Gamma: T\mathcal{M} \to H$ is the derivative of the transport operator, in the sense that

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \operatorname{trans}_{\gamma(\lambda \leftarrow 0)} p \Big|_{\lambda=0} = -\Gamma|_p(\dot{\gamma}(0))$$

for $p \in F_{\gamma(0)}$.

Proof. If $p \in F_{\gamma(0)}$ then we have $\operatorname{trans}_{\gamma(\lambda \leftarrow 0)} p = p_{\gamma}(\lambda)$ where p_{γ} is the lift of γ through p, satisfying the conditions in definition 35. Differentiating

Figure 8.2.: The point p_0 and its parallel transport p_{λ} along a path γ .

where the partially-defined group operation is path concatenation

Chapter 8. Connections on Fibre Bundles

with respect to λ ,

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \operatorname*{trans}_{\gamma(\lambda \leftarrow 0)} p = \mathrm{d}p_{\gamma}(\lambda) \in H_{p_{\gamma}(\lambda)},$$

which is the horizontal by eq. (8.2). Additionally, from $\pi \circ p_{\gamma} = \gamma$ we have $d\pi \circ dp_{\gamma} = d\gamma$. Thus, we see that $dp_{\gamma}(\lambda)$ is horizontal lift of $d\gamma(\lambda)$ to the point $p_{\gamma}(\lambda)$, which may be expressed in terms of the connection map,

$$\mathrm{d} p_\gamma(\lambda) = \mathrm{d} \pi|_{H_{p_\gamma(\lambda)}}^{-1}(\mathrm{d} \gamma(\lambda)) = -\Gamma|_{p_\gamma(\lambda)}(\dot{\gamma}(\lambda)).$$

Evaluating at $\lambda = 0$ gives the result.

If, instead of evaluating at $\lambda = 0$ in the final step, we rewrite $p_{\gamma}(\lambda) = \operatorname{trans}_{\gamma(\lambda \leftarrow 0)} p$, we obtain a differential equation for the transport operator.

Corollary 2. The derivative at any λ is

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \operatorname{trans}_{\gamma(\lambda \leftarrow 0)} = -\Gamma(\dot{\gamma}(\lambda)) \circ \operatorname{trans}_{\gamma(\lambda \leftarrow 0)} \tag{8.3}$$

where the composition stands for the map $p \mapsto \Gamma|_{\operatorname{trans}_{\gamma(\lambda \leftarrow 0)} p}(\dot{\gamma}(\lambda))$ for any $p \in F_{\gamma(0)}$.

As we will see in ??, for a vector bundle, the composition in eq. (8.3) is just matrix multiplication, and the resulting linear differential equation can be solved explicitly.

8.1.2. Covariant differentiation

We have seen that a connection determines which tangent vectors in the bulk of a bundle are taken as "horizontal". This also defines the coordinate free COVARAINT DERIVATIVE as the rate of change of a section with respect to the connection's horizontal.

We expect a submanifold f of \mathcal{F} (e.g., a curve or section) to have vanishing covariant derivative if the tangent space is horizontal (i.e., df everywhere lies in H). In other words, f is covariantly constant if it is an

integral manifold of the connection $H \subseteq T \mathcal{F}$. The covariant derivative then measures the failure of f to be covariantly constant; i.e., the rate of change in f relative to the connection's horizontal.

To decompose vectors into horizontal and vertical components according to H, we define the linear PROJECTION and REJECTION maps

$$\operatorname{proj}_{H_p}: \operatorname{T}_p \mathscr{F} \to H_p \quad \text{and} \quad \operatorname{rej}_{H_p}: \operatorname{T}_p \mathscr{F} \to \operatorname{V}_p \mathscr{F} \tag{8.4}$$

satisfying $\operatorname{proj}_{H_p} \boldsymbol{u} + \operatorname{rej}_{H_p} \boldsymbol{u} = \boldsymbol{u} \in \operatorname{T}_p \mathcal{F}.$

Definition 36. The COVARIANT DERIVATIVE $\nabla f: T_x \mathcal{M} \to V_{f(x)} \mathcal{F}$ of a section $f \in \Gamma(\mathcal{F})$ is defined by

$$\nabla f = \operatorname{rej}_H \circ \mathrm{d}f.$$

Acting on a vector $\mathbf{u} \in T_x \mathcal{M}$, this reads

$$\nabla f(\mathbf{u}) = \operatorname{rej}_{H_{f(\mathbf{x})}} \operatorname{d} f(\mathbf{u}) \in V_{f(\mathbf{x})} \mathcal{F}.$$

This can be interpreted intuitively as follows. The true gradient vector $df(\mathbf{u}) \in T_{f(x)} \mathcal{F}$ of the section f lies outside the fibre's tangent space $V_{f(x)} \mathcal{F} \subseteq T_{f(x)} \mathcal{F}$. However, we do not want to measure horizontal motion — just the *effective* vertical change of f(x) within the fibre induced by moving x in the direction of \mathbf{u} . Thus, the covariant derivative $\nabla f(\mathbf{u}) \in V_{f(x)} \mathcal{F}$ is the vertical projection of $df(\mathbf{u})$ obtained by discarding its horizontal component, where 'horizontal' is of course specified by the connection (see fig. 8.3).

Lemma 17. The covariant derivative as in definition 36 is equivalent to

$$\nabla f = \mathrm{d}f + \Gamma_f,$$

where Γ_f is the connection map as in definition 34.

Acting on a vector $\mathbf{u} \in T_x \mathcal{M}$, this reads $\nabla f(\mathbf{u}) = \mathrm{d}f(\mathbf{u}) + \Gamma_f(\mathbf{u}) = \mathrm{d}f(\mathbf{u}) - \mathrm{d}\pi|_{H_{f(x)}}^{-1}(\mathbf{u})$.

Figure 8.3.: Covariant derivative of f at $x \in \mathcal{M}$ along $\mathbf{u} \in T_x \mathcal{M}$. The vector $-\Gamma_f(\mathbf{u}) = \mathrm{d}\pi|_{H_p}^{-1}(\mathbf{u})$ indicates horizontal motion under the connection H, and $\nabla f(\mathbf{u})$ is the derivative relative to this horizontal.

Proof. By the defining property of the projection and rejection (8.4),

$$\mathrm{d}f = \mathrm{rej}_H \circ \mathrm{d}f + \mathrm{proj}_H \circ \mathrm{d}f$$

since $df : T \mathcal{M} \to T \mathcal{F}$ is linear. Therefore, rewriting definition 36,

$$\nabla f = \operatorname{rej}_H \circ \mathrm{d}f = \mathrm{d}f - \operatorname{proj}_H \circ \mathrm{d}f.$$

Using eq. (8.1), the projection operator at $p \in \mathcal{F}$ can be written as

$$\operatorname{proj}_{H_p} = \mathrm{d}\pi|_{H_p}^{-1} \circ \mathrm{d}\pi.$$

Finally, because $f: \mathcal{M} \to \mathcal{F}$ is a section, $\pi \circ f = \operatorname{id}$ and so $d\pi \circ df = \operatorname{id}$ by the chain rule (lemma 15). Thus, acting on a base vector $\mathbf{u} \in T_x \mathcal{M}$,

$$\nabla f(\boldsymbol{u}) = \mathrm{d}f(\boldsymbol{u}) - \mathrm{d}\pi|_{H_{f(x)}}^{-1} \circ \mathrm{d}\pi \circ \mathrm{d}f(\boldsymbol{u})$$
$$= \mathrm{d}f(\boldsymbol{u}) - \mathrm{d}\pi|_{H_{f(x)}}^{-1}(\boldsymbol{u}),$$

which by definition 34 is $\nabla f(\mathbf{u}) = \mathrm{d}f(\mathbf{u}) + \Gamma_f(\mathbf{u})$.

Coordinate representation

At this point, we can find a coordinate representation of the covariant derivative. Suppose there is a local trivialisation where $\{x^{\mu}\}$ are local coordinates on \mathcal{M} and $\{x^a\}$ local coordinates of the fibres. Let capital Latin indices $\{x^A\} = \{x^{\mu}, x^a\}$ run over all coordinates. A point $p \in \mathcal{F}$ in the bulk then has coordinates $(p^A) = (x^{\mu}, x^a)$. Vertical motion fixes $\pi(p)$ and hence leaves the base coordinates x^{μ} unchanged. (However, the fibre coordinates x^a are *not* required to be constant under horizontal motion.) The associated coordinate basis of T \mathcal{F} is $(\partial_A) = (\partial_{\mu}, \partial_a)$.

The covariant derivative in lemma 17 acting on a section $f: \mathcal{M} \to \mathcal{F}$ in the direction $\mathbf{u} \in T_x \mathcal{M}$ has the full form

$$\nabla_{\boldsymbol{u}} f := \nabla f(\boldsymbol{u}) = \mathrm{d} f(\boldsymbol{u}) + \Gamma_f(\boldsymbol{u}).$$

The connection map $\Gamma_f: T\mathcal{M} \to H \subseteq T\mathcal{F}$ is linear in \mathbf{u} , so it is a a $T\mathcal{F}$ -valued 1-form which we may write as a bitensor (matrix–valued) section $\Gamma_f: \mathcal{M} \to T^*\mathcal{M} \otimes T\mathcal{F}$. Without reference to f, we have $\Gamma: \mathcal{F} \to \mathcal{F}$

 $T^* \mathcal{M} \otimes T \mathcal{F}$ with $\Gamma_f(x) \equiv \Gamma(f(x))$. Define the components $\Gamma^A_{\ \mu} : \mathcal{F} \to \mathbb{R}$ of Γ by

$$\Gamma_p = \Gamma^A{}_{\mu}(p) \, \partial_A \otimes \mathrm{d} x^{\mu},$$

noting that these are functions on the bulk (not just on the base). Thus, in the coordinate basis, the covariant derivative of f in the direction $u \in T_x \mathcal{M}$ is

$$\nabla f(\boldsymbol{u}) \equiv \nabla_{\mu} f^{A}(x) u^{\mu} \partial_{A} = \left(\partial_{\mu} f^{A}(x) + \Gamma^{A}{}_{\mu}(f(x))\right) u^{\mu} \partial_{A}. \tag{8.5}$$

Note that this is a sum over coordinate vectors both in the fibre, ∂_a , and in the base ∂_{μ} . However, since $\nabla f(\boldsymbol{u}) \in V \mathcal{F}$ is vertical, we expect its horizontal components $\nabla_{\mu} f^{\nu}$ to vanish, leaving only vertical components. To verify that $\nabla_{\mu} f^{A} \partial_{A} = \nabla_{\mu} f^{a} \partial_{a}$, note that

$$d\pi(df(\boldsymbol{u})) = \boldsymbol{u}$$
 and $d\pi(-\Gamma_{f(x)}(\boldsymbol{u})) \equiv d\pi(d\pi|_{H_{f(x)}}^{-1}(\boldsymbol{u})) = \boldsymbol{u}$ (8.6)

are equal. In effect, $d\pi$ projects onto components of the base,

$$d\pi(\partial_{\mu}f^{A}\boldsymbol{\partial}_{A}) = \partial_{\mu}f^{\nu}\boldsymbol{\partial}_{\nu},$$

and so eq. (8.6) implies $\partial_{\mu} f^{\nu} = -\Gamma^{\nu}{}_{\mu}$. Hence, the base components of the two terms in eq. (8.5) cancel, leaving only the fibre components,

$$\nabla f \equiv \nabla_{\mu} f^{a} \, \partial_{a} \otimes \mathrm{d} x^{\mu} = \left(\partial_{\mu} f^{a} + \Gamma^{a}{}_{\mu} \circ f \right) \partial_{a} \otimes \mathrm{d} x^{\mu}.$$

This calculation is performed from the point of view that $f: \mathcal{M} \to \mathcal{F}$ is a section, in which case $\mathrm{d} f = \mathrm{d} f^\mu \partial_\mu + \mathrm{d} f^a \partial_a$ is a 1-form with values in the bulk tangent space $\mathrm{T}\,\mathcal{F} = \mathrm{T}\,\mathcal{M} \oplus \mathrm{V}\,\mathcal{F}$. In practice, it is usual to have a (local) trivialisation where $f: \mathcal{M} \to F$ is presented as a field, in which case $\mathrm{d} f = \mathrm{d} f^a \partial_a \in \mathrm{V}\,\mathcal{F}$ instead. In this case, the equivalent expression of lemma 17 is

$$\nabla f = \mathrm{d}f + (\Gamma_f)^a \partial_a, \tag{8.7}$$

where only the fibre components of Γ_f (as specific to the trivialisation) are kept, ensuring the resulting derivative $\nabla f(\mathbf{u}) \in V \mathcal{F}$ is vertical. This is usually how computations are performed — but to reiterate, the expression (8.7) with $f: \mathcal{M} \to F$ depends on a (local) trivialisation, whereas the previous sense of covariant derivative of a section $f: \mathcal{M} \to \mathcal{F}$ is purely geometrical.

8.2. Structure Preserving Connections

So far, we have treated connections in the setting of a general fibre bundle, in which fibres have the minimal structure of a smooth manifold. We now consider connections and their associated covariant derivatives on vector bundles with less or more structure.

The transport operator over a path in a general fibre bundle is some invertible map between the two fibres terminating the path. For a vector bundle, we require the transport operator to be a linear map. Linearity allows the covariant derivative to be expressed as the limit of a difference, similar to the usual analytical definition of the derivative of a real function.

Lemma 18. If $\gamma : [0,1] \to \mathcal{M}$ is a path and $\mathbf{u} \in \Gamma_{\gamma}(\mathcal{V})$ is a smooth section of vectors defined on γ , then

$$\nabla_{\dot{\gamma}(0)} \boldsymbol{u}|_{\gamma(0)} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\boldsymbol{u}|_{\gamma(\lambda)} - \underset{\gamma(\lambda \leftarrow 0)}{\operatorname{trans}} \, \boldsymbol{u}|_{\gamma(0)} \right) \bigg|_{\lambda=0}.$$

Proof. Using lemma 16, the right-hand side is equal to

$$\mathrm{d}\boldsymbol{u}(\dot{\gamma}(0)) + \Gamma(\dot{\gamma}(0)) \operatorname*{trans}_{\gamma(0\leftarrow 0)} \boldsymbol{u} = (\mathrm{d}\boldsymbol{u} + \Gamma\boldsymbol{u})(\dot{\gamma}(0)) = \nabla_{\dot{\gamma}(0)} \boldsymbol{u},$$

since transport over a trivial path is the identity.

As well as linearity, vector bundles may be equipped with further structure, placing further constraints on the connection. For example, equipped with a metric, and we may require the connection to be *metric-compatible*. Given an associative product, we may require parallel transport to respect multiplication, etcetera. These requirements are all instances of *functorality* of the transport operator. In general, if ϕ is a k-ary multilinear operator (e.g., an inner product, an associative product, etc) then the transport operator *respects* ϕ if

trans
$$\phi(a_1, ..., a_k) = \phi(\operatorname{trans}_{\gamma} a_1, ..., \operatorname{trans}_{\gamma} a_k)$$

for values a_i from the fibre at the start of γ . How does this requirement for structure-preservation translate to the associated covariant derivative?

Lemma 19. Let ϕ be a multilinear k-ary operator on a vector bundle. If the transport operator respects ϕ , then

$$\nabla \phi(a_1, ..., a_k) = d\phi(a_1, ..., a_k) + \sum_{i=1}^k \phi(a_1, ..., \Gamma_{a_i}, ..., a_k).$$

Proof. The covariant derivative along some curve γ , by lemma 18, is

$$\begin{split} & \nabla_{\dot{\gamma}(0)}\phi(a_1,\ldots,a_k) \\ & = \mathrm{d}(\phi(a_1,\ldots,a_k)) \, (\dot{\gamma}(0)) - \frac{\mathrm{d}}{\mathrm{d}\lambda} \phi(\underset{\gamma(\lambda \leftarrow 0)}{\mathrm{trans}} \, a_1, \ldots, \underset{\gamma(\lambda \leftarrow 0)}{\mathrm{trans}} \, a_k) \Big|_{\lambda=0} \\ & = \mathrm{d}(\phi(a_1,\ldots,a_k)) \, (\dot{\gamma}(0)) - \sum_{i=1}^k \phi\bigg(a_1,\ldots,\frac{\mathrm{d}}{\mathrm{d}\lambda} \underset{\gamma(\lambda \leftarrow 0)}{\mathrm{trans}} \, a_i \Big|_{\lambda=0}, \ldots, a_k\bigg) \\ & = \mathrm{d}(\phi(a_1,\ldots,a_k)) \, (\dot{\gamma}(0)) + \sum_{i=1}^k \phi(a_1,\ldots,\Gamma_{a_i}(\dot{\gamma}(0)),\ldots,a_k). \end{split}$$

Removing reference to the arbitrary direction of derivation $\dot{\gamma}(0)$ yields the result.

Taking $\phi: A \times A \to A$ to be the associative product of the algebra bundle $A \hookrightarrow \mathcal{A} \twoheadrightarrow \mathcal{M}$, we recover the covariant product rule.

Corollary 3. On an algebra bundle,

$$\nabla_{\mathbf{u}}(a \otimes b) = d(a \otimes b)(\mathbf{u}) + \Gamma_a(\mathbf{u}) \otimes b + a \otimes \Gamma_b(\mathbf{u}).$$

This corollary implies that a connection respecting an associative product is determined completely determined by the connection on the subbundle of grade-1 vectors $\mathcal{V} \subseteq \mathcal{A}$.

Chapter 9.

Curvature

```
{TO DO: Already written:

3 pages · Integrability and Frobenius' Theorem

1 page · Curvature as an Obstruction to Integrability

4 pages · Stokes' Theorem for Non-Abelian Connections
}
```

Bibliography

- [1] Einstein, A. *On the electrodynamics of moving bodies.* Ann. Phys., 17(10):891–921 (Jun. 1905).
- [2] Klein, F. *A comparative review of recent researches in geometry.* Bull. Amer. Math. Soc., 2(10):215–249 (1893). ISSN 0273-0979, 1088-9485. doi:10.1090/s0002-9904-1893-00147-x.
- [3] Lipschitz, R. Principes d'un calcul algébrique qui contient, comme espèces particulières, le calcul des quantités imaginaires et des quaternions : (extrait d'une lettre adressée à M. Hermite). Gauthier-Villars (1880).
- [4] Clifford, P. Applications of grassmann's extensive algebra. Am. J. Math., 1(4):350 (1878). ISSN 0002-9327. doi:10.2307/2369379.
- [5] Chappell, J. M., Iqbal, A., Hartnett, J. G. and Abbott, D. *The vector algebra war: A historical perspective.* IEEE Access, 4:1997–2004 (2016). ISSN 2169-3536. doi:10.1109/access.2016.2538262.
- [6] Silberstein, L. LXXVI. quaternionic form of relativity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23(137):790–809 (May 1912). ISSN 1941-5982, 1941-5990. doi:10.1080/14786440508637276.
- [7] De Leo, S. *Quaternions and special relativity*. J. Math. Phys., 37(6):2955–2968 (Jun. 1996). ISSN 0022-2488, 1089-7658. doi:10.1063/1.531548.
- [8] Dirac, P. *Application of quaternions to Lorentz transformations*. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 50:261–270 (1944). ISSN 00358975.
- [9] Berry, T. and Visser, M. *Relativistic combination of non-collinear 3-velocities using quaternions.* Universe, 6(12):237 (Dec. 2020). ISSN 2218-1997. doi:10.3390/universe6120237.

- [10] Berry, T. and Visser, M. *Lorentz boosts and Wigner rotations: Self-adjoint complexified quaternions.* Physics, 3(2):352–366 (May 2021). ISSN 2624-8174. doi:10.3390/physics3020024.
- [11] Altmann, S. L. Hamilton, rodrigues, and the quaternion scandal. Math. Mag., 62(5):291–308 (Dec. 1989). ISSN 0025-570X, 1930-0980. doi:10.1080/0025570x.1989.11977459.
- [12] Gallian, J. A. Student Solutions Manual. Textbooks in mathematics. Chapman and Hall/CRC (Jun. 2021). ISBN 9781003182306. doi:10.1201/9781003182306.
- [13] Kobayashi, S. and Nomizu, K. Foundations of differential geometry, vol. 1. New York, London (1963).
- [14] Spivak, M. A comprehensive introduction to differential geometry, vol. 5. Publish or Perish, Incorporated (1975).
- [15] Hestenes, D. A unified language for mathematics and physics. In Clifford Algebras and Their Applications in Mathematical Physics, pp. 1–23. Springer Netherlands (1986). doi:10.1007/978-94-009-4728-3_1.
- [16] Hestenes, D. *Multivector calculus*. J. Math. Anal. Appl., 24(2):313–325 (Nov. 1968). ISSN 0022-247X. doi:10.1016/0022-247x(68)90033-4.
- [17] Flanders, H. *Differential Forms with Applications to the Physical Sciences*, vol. 11. Elsevier (1963). ISBN 9780122596506. doi:10.1016/s0076-5392(08)x6021-7.
- [18] Lasenby, A. N. Geometric algebra as a unifying language for physics and engineering and its use in the study of gravity. Adv. Appl. Clifford Algebras, 27(1):733–759 (Jul. 2016). ISSN 0188-7009, 1661-4909. doi:10.1007/s00006-016-0700-z.
- [19] Gallier, J. *The Cartan–Dieudonné Theorem*, chap. The Cartan–Dieudonné Theorem, pp. 231–280. Springer New York, New York, NY (2011). ISBN 978-1-4419-9961-0. doi:10.1007/978-1-4419-9961-0_8.
- [20] Dorst, L. *The Inner Products of Geometric Algebra*, pp. 35–46. Birkhäuser Boston, Boston, MA (2002). doi:10.1007/978-1-4612-0089-5_2.
- [21] Hestenes, D. Spacetime physics with geometric algebra. Am.
 J. Phys., 71(7):691–714 (Jul. 2003). ISSN 0002-9505, 1943-2909. doi:10.1119/1.1571836.

- [22] Gull, S., Lasenby, A. and Doran, C. *Imaginary numbers are not real—The geometric algebra of spacetime*. Found Phys, 23(9):1175–1201 (Sep. 1993). ISSN 0015-9018, 1572-9516. doi:10.1007/bf01883676.
- [23] Dressel, J., Bliokh, K. Y. and Nori, F. *Spacetime algebra as a powerful tool for electromagnetism*. Phys. Rep., 589:1–71 (Aug. 2015). ISSN 0370-1573. doi:10.1016/j.physrep.2015.06.001.
- [24] Bialynicki-Birula, I. and Bialynicka-Birula, Z. The role of the Riemann–Silberstein vector in classical and quantum theories of electromagnetism.
 J. Phys. A: Math. Theor., 46(5):053001 (Jan. 2013). ISSN 1751-8113, 1751-8121. doi:10.1088/1751-8113/46/5/053001.
- [25] Achilles, R. and Bonfiglioli, A. The early proofs of the theorem of campbell, baker, hausdorff, and dynkin. Arch. Hist. Exact Sci., 66(3):295–358 (Apr. 2012). ISSN 0003-9519, 1432-0657. doi:10.1007/s00407-012-0095-8.
- [26] Coll, B. and Martínez, F. S. J. *Composition of Lorentz transformations in terms of their generators.* Gen. Relat. Gravit., 34(9):1345–1356 (Sep. 2002). ISSN 0001-7701, 1572-9532. doi:10.1023/a:1020018616308.
- [27] Coll, B. and San José, F. *On the exponential of the 2-forms in relativity.* Gen Relat Gravit, 22(7):811–826 (**Jul. 1990**). ISSN 0001-7701, 1572-9532. doi:10.1007/bf00764159.
- [28] Lasenby, J. *Guide to Geometric Algebra in Practice*. Springer London (2011). ISBN 9780857298102, 9780857298119. doi:10.1007/978-0-85729-811-9.
- [29] Rodrigues, O. Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de mathématiques pures et appliquées, 5(1):380–440 (1840).
- [30] Baylis, W. E. and Jones, G. *The Pauli algebra approach to special relativity*. J. Phys. A: Math. Gen., 22(1):1–15 (Jan. 1989). ISSN 0305-4470, 1361-6447. doi:10.1088/0305-4470/22/1/008.
- [31] Ungar, A. A. The relativistic velocity composition paradox and the Thomas rotation. Found Phys, 19(11):1385–1396 (Nov. 1989). ISSN 0015-9018, 1572-9516. doi:10.1007/bf00732759.

Bibliography

- [32] Mocanu, C. I. *On the relativistic velocity composition paradox and the Thomas rotation.* Found Phys Lett, 5(5):443–456 (Oct. 1992). ISSN 0894-9875, 1572-9524. doi:10.1007/bf00690425.
- [33] O'Donnell, K. and Visser, M. Elementary analysis of the special relativistic combination of velocities, Wigner rotation and Thomas precession. Eur. J. Phys., 32(4):1033–1047 (Jun. 2011). ISSN 0143-0807, 1361-6404. doi:10.1088/0143-0807/32/4/016.
- [34] Lee, J. M. *Introduction to smooth manifolds*. Grad. Texts Math. (2012). ISSN 0072-5285. doi:10.1007/978-1-4419-9982-5.