ANALISIS NUMERICO (TERCER RECUPERATORIO)

SEÑAL PERIODICA

Una función se dice que es periódica si existe un número real T>0 tal que:

$$f(x+T)=f(x)$$

Donde T lo llamaremos **periodo** de f(x). Tal que al minimo valos del periodo lo denominaremos **periodo fundamental** de f(x)

PARAMETROS CARACTERISTICOS DE UNA SEÑAL PERIODICA

Frecuencia → f=1/T [Hz]

Frecuencia angular → w=2*pi*f >0

SUMA FUNCIONES PERIODICAS

La suma de 2 funciones periódicas de periodo T1 y T2 da ocmo resultado una función periódica si el cociente entre los periodos es un numero racional (me tiene que dar un número y no con coma):

 $T1/T2=p/q \rightarrow p y q son enteros$

SEÑALES PERIODICAS SINUSOIDALES

$$s(t)=A*sen(w+0)$$

En donde A es la **amplitud** (valor maximo),0 es la **fase** (posición relativa de la señal dentro de un periodo).

ANALISIS DE FURIER

Jean-Baptiste Joseph Fourier demostró que: Cualquier señal compuesta es una combinación de ondas sinusoidales simples con diferentes frecuencias y amplitudes.

Además de este ser una herramienta que cambia una señal en el dominio del tiempo a una señal en el dominio de la frecuencia, y viceversa.

La función periódica puede ser representa como una **suma infinita de senos y cosenos:**

$$s(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{2n\pi}{T}t) + b_n sen(\frac{2n\pi}{T}t)]$$

Donde a0, an y bn son denominados **coeficientes de Fourier** de s(t) y se obtienen con lo siguiente:

$$\frac{a_0}{2} = \frac{1}{T} \int_{-T/2}^{T/2} f(x) dx$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos(n\omega x) dx \qquad n = 1, 2, ...$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin(n\omega x) dx \qquad n = 1, 2, ...$$

$$\cot \omega = \frac{2\pi}{T}$$

a0 es un término constante.

SIMETRIAS EN LA SERIE DE FOURIER

Función par: (simetría respeto del eje Y); f(x)=f(-x) → bn=0

Función impar: (simetría respecto del eje de coordenadas); -f(-x)=f(x)

Entonces los an=0 y el a0=0

• Simetria de media onda: $-f(x+T/2)=f(x) \rightarrow$ Tiene armónicos impares.

Además de media onda puede ser par o impar.

DESARROLLO DE MEDIO RANGO

Existen varias maneras de ampliar la función para que resulte periódica. Una posibilidad es extender la función original con el mismo período, pero su Serie de Fourier contendrá senos y cosenos. Normalmente es preferible usar alguna de las simetrías vistas anteriormente para la extensión periódica, en lugar de una extensión periódica cualquiera, para obtener algunos de los coeficientes de Fourier igual a cero:

• Si la función no periódica se extiende mediante una función par, entonces:

$$b_n = 0$$
 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(n\omega x)),$ $\cos \omega = \frac{2\pi}{T}$

 Si la función no periódica se extiende mediante una función impar, entonces:

$$a_0 = 0$$
, $a_n = 0$ y $f(x) = \sum_{n=1}^{\infty} (b_n \operatorname{sen}(n\omega x))$, con $\omega = \frac{2\pi}{T}$

FORMA EXPONENCIAL

La forma compleja de la serie de Fourier es:

$$f(x) = \sum_{n=-\infty}^{\infty} (c_n e^{in\omega x}), \quad \text{con } \omega = \frac{2\pi}{T}$$

Donde cn se lo denomina **coeficiente complejo de Fourier** f(x)

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega x} dx, \quad n = 0, \pm 1, \pm 2, \dots$$

RELACION ENTRE COEFICIENTES

$$c_n = \frac{a_n - ib_n}{2}, \quad n = 0, 1, 2, ...$$
 $c_{-n} = \frac{a_n + ib_n}{2}, \quad n = 0, 1, 2, ...$

$$c_0 = \frac{a_0}{2}$$

:

$$a_n = c_n + c_{-n}, \quad n = 0,1,2,...$$

 $b_n = i(c_n - c_{-n}), \quad n = 0,1,2,...$

ANALISIS ESPECTRAL

El espectro es la representación gráfica de una señal en el dominio de la frecuencia:

$$|c_n| = |c_{-n}| = \sqrt{c_n c_{-n}} = \frac{1}{2} \sqrt{a_n^2 + b_n^2}, \quad n = 0, 1, 2$$

Dominios del tiempo y de la frecuencia

$$c(t) = \left(\frac{4}{\eta}\right) sen(2\eta f t) + \left(\frac{1}{3}\right) sen(2\eta(3f)t)$$

El dominio de la frecuencia es más fácil de graficar y transmite exactamente la misma información que se puede encontrar en el dominio del tiempo y de una manera inmediata.

SERIE INTEGRAL DE FOURIER

existen muchos problemas que involucran funciones que son no periódicas y que son de interés en el eje x entero, es decir, entre $-\infty$ y $+\infty$. Para resolver este tipo de situaciones es que surgen las Integrales de Fourier:

$$f(x) = \int_{0}^{+\infty} \left[A(\omega) \cos(\omega x) + B(\omega) \sin(\omega x) \right] d\omega$$

Donde los coeficientes quedarían:

$$A(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(u) \cos(\omega u) du \quad y \quad B(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(u) \sin(\omega u) du$$

INTEGRAL DE FOURIER DE COSENOS Y SENOS

Simetría par:

$$f(x) = \int_{0}^{+\infty} \left[A(\omega) \cos(\omega x) \right] d\omega$$

• Simetría impar:

$$f(x) = \int_{0}^{+\infty} \left[B(\omega) \operatorname{sen}(\omega x) \right] d\omega$$

ANALISIS DE VARIABLE COMPLEJA

TRANSFORMACIONES DEL PLANO COMPLEJO:

Una transformación consiste en pasar de un dominio a otro como es del plano Z al plano W.

Composición de Transformaciones

Es una operación útil que permite construir transformaciones a partir de otras que actúan secuencialmente.

Dada dos transformaciones T1 y T2 \rightarrow su composición T2 o T1 es otra transformación T:w=f(z) \rightarrow f(z)=f2(f1(z)).

TRANSFORMACIONES LINEALES

Una transformación es lineal si es de la forma **f(z)= Az +B** donde A y B pertenecen a los complejos. Entonces:

$$T: w = Az + B \text{ con } A \neq 0 \text{ entonces } T^{-1}: z = \frac{1}{A}w - \frac{B}{A}$$

TRANSFORMACIONES LINEALES ELEMENTALES:

• Traslación (se traslada)

T:w=z+B tal que B pertenece a los complejos

En forma binómica z = x + iy, w = u + iv, $B = b_1 + ib_2$ se tiene

$$T: \left\{ \begin{array}{l} u = x + b_1 \\ v = y + b_2 \end{array} \right.$$

• Escalamiento (se agranda o achica)

T:w=a*z tal que a pertenece a los reales y es >0

En este caso $w = T(z) = az = are^{i\theta}$. Esto significa que si $w = \rho e^{i\phi}$ es la forma exponencial del punto imagen, entonces

$$\left\{ \begin{array}{ll} \rho = ar \\ \phi = \theta + 2k\pi \, (k \in \mathbb{Z}) \end{array} \right. \quad \text{o-equivalentemente} \quad \left\{ \begin{array}{ll} |w| = a|z| \\ \arg(w) = \arg(z) \end{array} \right.$$

Rotación alrededor del origen (cambia Angulo)

T:w=AZ tal que |A|=1

Expresemos A, z y w en forma exponencial:

$$A = e^{i\alpha}$$
; $\alpha \in \arg(A)$
 $z = re^{i\theta}$; $r = |z|$, $\theta \in \arg(z)$
 $w = \rho e^{i\phi}$; $\rho = |w|$, $\phi \in \arg(w)$

Luego:
$$\rho e^{i\phi} = w = T(z) = Az = e^{i\alpha}re^{i\theta} = re^{i(\theta+\alpha)}$$

Entonces, comparando módulos y argumentos:

$$\left\{ \begin{array}{l} \rho = r \\ \phi = \theta + \alpha + 2k\pi \, (k \in \mathbb{Z}) \end{array} \right. \quad \text{o equivalentemente} \, \left\{ \begin{array}{l} |w| = |z| \\ \arg(w) = \arg(z) + \alpha \end{array} \right.$$

COMPOSICION DE TRANSFORMACIONES LINEALES

Toda transformación lineal con **A distinto de 0** es composición de transformaciones lineales elementales y admite inversa la cual es tambien una transformación lineal.

INVERSION

Definición Se llama inversión a la transformación T : w = 1/: En términos de sus componentes

$$T : \begin{cases} u = x/(x^2 + y^2) \\ v = -y/(x^2 + y^2) \end{cases}$$

- 1. Si recta o circunferencia pasa por el origen entonces su imagen en el plano w es una **recta**.
- **2.** Si recta o circunferencia no pasan por origen entonces su imagen en el plano w es una **circunferencia**

TRANSFORMACION CONFORME

T es conforme en z0 si preserva tanto en magnitud como orientación el angulo entre pares de curvas suaves por dicho punto.

Teorema Sea f(z) analítica en el punto z_0 . Son equivalentes:

- i) La transformación T : w = f(z) es conforme en z_0
- ii) $f'(z_0) \neq 0$