www.mecatronicadegaragem.blogspot.com

Aula 15 Timers

Microcontroladores PIC18 – Programação em C

Prof. Ítalo Jáder Loiola Batista

Universidade de Fortaleza - UNIFOR Centro de Ciências Tecnológicas - CCT

E-mail: <u>italoloiola@unifor.br</u>

Jan/2011

Roteiro

- □ Funções de delay
- □ Timers e Contadores
- Contagem do Tempo no PIC
- Código-fonte

Funções de Delay

- □ Funções de *delay* nativas do MPLAP C18, utilizadas na medição de tempo por software;
- □ A medição é feita pela contagem de ciclos de instrução (TCI) que depende da freqüência do oscilador do clock;
- □ TCI = 1 / (TOSC/4)
- □ Ex.: Suponha FOSC = 8Mhz.
 - □ **Delay10TCY(20)**; // Gera delay de 100us
 - \square 10 x 20 x 500ns = 100us

Função	Descrição
Delay1TCY	Delay de um ciclo de instrução
Delay10TCYx	Delay de 10 ciclo de instrução
Delay100TCYx	Delay de 100 ciclo de instrução
Delay1kTCYx	Delay de 1.000 ciclo de instrução
Delay10kTCYx	Delay de 10.000 ciclo de instrução

Temporizador

- Temporizador é um contador que é incrementado a partir de um pulso de relógio externo ou de um oscilador interno do uC;
- Quando o conteúdo do temporizador atinge um valor máximo:
 - Ocorre o evento denominado overflow;
 - O conteúdo do temporizador é resetado;

TIMERS do PIC18F4520

- Timers contam tempo;
- Contadores contam eventos;
- O PIC18F4520 possui 3 timers/contadores e um 1 timer com características diferentes de funcionamento:
 - TIMER 0;
 - TIMER 1;
 - TIMER 2.
 - TIMER 3

TIMERS do PIC18F4520

- O que varia de um para o outro?
 - Limite de contagem;
 - Modo de operação (como contador/timer);
 - Tipo de incremento;
 - Prescales e Postscales;
 - A geração de interrupções;
 - Os periféricos a eles associados.

Registradores SFR do TIMER

FFFh	TOSU
FFEh	TOSH
FFDh	TOSL
FFCh	STKPTR
FFBh	PCLATU
FFAh	PCLATH
FF9h	PCL
FF8h	TBLPTRU
FF7h	TBLPTRH
FF6h	TBLPTRL
FF5h	TABLAT
FF4h	PRODH
FF3h	PRODL
FF2h	INTCON
FF1h	INTCON2
FF0h	INTCON3
FEFh	INDF0 ⁽¹⁾
FEEh	POSTINCO ⁽¹⁾
FEDh	POSTDECO ⁽¹⁾
FECh	PREINC0 ⁽¹⁾
FEBh	PLUSW0 ⁽¹⁾
FEAh	FSR0H
FE9h	FSR0L
FE8h	WREG
FE7h	INDF1 ⁽¹⁾
FE6h	POSTINC1 ⁽¹⁾
FE5h	POSTDEC1 ⁽¹⁾
FE4h	PREINC1 ⁽¹⁾
FE3h	PLUSW1 ⁽¹⁾
FE2h	FSR1H
FE1h	FSR1L
FE0h	BSR

FDFh	INDF2 ⁽¹⁾	
FDEh	POSTINC2 ⁽¹⁾	
FDDh	POSTDEC2 ⁽¹⁾	
FDCh	PREINC2 ⁽¹⁾	
FDBh	PLUSW2 ⁽¹⁾	
FDAh	FSR2H	
FD9h	FSR2L	
FD8h	STATUS	_
FD7h	TMR0H	i
FD6h	TMR0L	i
FD5h	T0CON	i
FD4h	(2)	۲
FD3h	OSCCON	
FD2h	HLVDCON	
FD1h	WDTCON	İ
FD0h	RCON	
FD0h FCFh		
	RCON	
FCFh	RCON TMR1H	
FCFh FCEh	RCON TMR1H TMR1L T1CON	
FCFh FCEh FCDh	RCON TMR1H TMR1L T1CON TMR2	
FCFh FCEh FCDh FCCh	RCON TMR1H TMR1L T1CON TMR2	
FCFh FCEh FCDh FCCh	RCON TMR1H TMR1L T1CON TMR2 PP2]
FCFh FCEh FCDh ECCh ECRh FCAh	RCON TMR1H TMR1L T1CON TMR2 PR2 T2CON	
FCFh FCDh FCCh ECRh FCAh FC9h	RCON TMR1H TMR1L T1CON TMR2 PR2 T2CON SSPBUF	
FCFh FCEh FCCh ECCh FCAh FC9h FC9h	RCON TMR1H TMR1L T1CON TMR2 PP2 T2CON SSPBUF SSPADD	
FCFh FCCh FCCh ECRh FCAh FC9h FC8h FC8h	RCON TMR1H TMR1L T1CON TMR2 PP2 T2CON SSPBUF SSPADD SSPSTAT	
FCFh FCDh FCCh ECRb FCAh FC9h FC8h FC7h FC6h	RCON TMR1H TMR1L T1CON TMR2 PP2 T2CON SSPBUF SSPADD SSPSTAT SSPCON1	
FCFh FCCh FCCh FCAh FCAh FC9h FC8h FC7h FC6h FC5h	RCON TMR1H TMR1L T1CON TMR2 PP2 T2CON SSPBUF SSPADD SSPSTAT SSPCON1 SSPCON2	
FCFh FCCh FCCh FCAh FCAh FC8h FC7h FC6h FC5h FC5h	RCON TMR1H TMR1L T1CON TMR2 PP2 T2CON SSPBUF SSPADD SSPSTAT SSPCON1 SSPCON2 ADRESH	
FCFh FCEh FCDh FCCh FCAh FC9h FC7h FC6h FC5h FC5h FC4h	RCON TMR1H TMR1L T1CON TMR2 PP2 T2CON SSPBUF SSPADD SSPSTAT SSPCON1 SSPCON2 ADRESH ADRESL	

FBFh	CCPR1H	ı
FBEh	CCPR1L	
FBDh	CCP1CON	
FBCh	CCPR2H	
FBBh	CCPR2L	
FBAh	CCP2CON	
FB9h	(2)	
FB8h	BAUDCON	
FB7h	PWM1CON ⁽³⁾	
FB6h	ECCP1AS ⁽³⁾	
FB5h	CVRCON	
ER/lb	CMCON	Ļ
FB3h	TMR3H	
FB2h	TMR3L	
FB1h	T3CON	
FB0h	SPBRGH	
FAFh	SPBRG	
FAEh	RCREG	
FAEh FADh	RCREG TXREG	
FADh	TXREG	
FADh FACh	TXREG TXSTA	
FADh FACh FABh	TXREG TXSTA RCSTA	
FADh FACh FABh FAAh	TXREG TXSTA RCSTA(2) EEADR EEDATA	
FADh FACh FABh FAAh FA9h	TXREG TXSTA RCSTA(2) EEADR	
FADh FACh FABh FAAh FA9h FA8h	TXREG TXSTA RCSTA(2) EEADR EEDATA	
FADh FACh FABh FAAh FA9h FA8h FA7h	TXREG TXSTA RCSTA _(2) EEADR EEDATA EECON2 ⁽¹⁾	
FADh FACh FABh FAAh FA9h FA8h FA7h FA6h	TXREG TXSTA RCSTA _(2) EEADR EEDATA EECON2 ⁽¹⁾ EECON1	
FADh FACh FABh FAAh FA9h FA8h FA7h FA6h FA5h	TXREG TXSTA RCSTA (2) EEADR EEDATA EECON2(1) EECON1 (2)	
FADh FACh FABh FAAh FA9h FA8h FA7h FA6h FA5h FA4h	TXREG TXSTA RCSTA (2) EEADR EEDATA EECON2 ⁽¹⁾ EECON1 (2) (2)	
FADh FACh FABh FAAh FA9h FA8h FA7h FA6h FA5h FA4h FA3h	TXREG TXSTA RCSTA (2) EEADR EEDATA EECON2 ⁽¹⁾ EECON1 (2) (2) (2)	
FADh FACh FABh FAAh FA8h FA7h FA6h FA5h FA4h FA3h FA2h	TXREG TXSTA RCSTA (2) EEADR EEDATA EECON2(1) EECON1 (2) (2) (2) IPR2	

F9Fh	IPR1
F9Eh	PIR1
F9Dh	PIE1
F9Ch	(2)
F9Bh	OSCTUNE
F9Ah	(2)
F99h	(2)
F98h	(2)
F97h	(2)
F96h	TRISE ⁽³⁾
F95h	TRISD ⁽³⁾
F94h	TRISC
F93h	TRISB
F92h	TRISA
F91h	(2)
F90h	(2)
F8Fh	(2)
F8Eh	(2)
F8Dh	LATE ⁽³⁾
F8Ch	LATD ⁽³⁾
F8Bh	LATC
F8Ah	LATB
F89h	LATA
F88h	(2)
F87h	(2)
F86h	(2)
F85h	(2)
F84h	PORTE ⁽³⁾
F83h	PORTD ⁽³⁾
F82h	PORTC
F81h	PORTB
F80h	PORTA

TIMER O

- TIMER 0 (registrador TMR0)
- Temporizador / Contador de 8 ou 16 bits.
- Pode ser lido e escrito, ou seja, permite ser inicializado.
- Funcionamento: Incremental (somente).
- Incremento de 2 formas distintas:
 - Contador: A cada transição (TOCKI: pulso de clock externo).
 - Timer: A cada ciclo de máquina.
- TMR0 muda de estado, segundo o valor do Prescaler (PS).
 - Prescaler permite um recurso de contagem além do limite do registrador do timer TMR0.
 - Ex.: PS configurado como 1:4. São necessários 4 ciclos de máquinas ou 4 pulsos externos, para que o TMR seja incrementado de 1 unidade.
 - O PS é de 8 bits, mas não está disponível para leitura nem escrita!

- Toda vez que se escreve em TMR0, PS é zerado!
- Para a utilização do PS em TMR0:
 - 1. Configurar PSA (T0CON<3>)
 - PSA = 1: Prescale desativado.
 - PSA = 0; Prescale ativado.
 - 5. Configurar o fator do PS em:
 - T0PS2:T0PS0 (T0CON<2:0>)
- Bit de estouro
 - TMR0IF (INTCON<2>), será setado;

TIMER 0: Configuração do código-fonte exemplo para um timer de 4ms

- Timer configurado em 8 bits / TMR0L = 256;
- Prescaler em 32 bits;
- Freqüência de clock: 8MHz;
- Ciclo de instrução = 0,5us;
- O TMR0L será incrementado a cada 16us;
- N_incrementos = 256 valor_inicial
- Inicializado com o valor 5;
- 256 6 = 250 vezes até o estouro;
- Tempo_estouro = 250 x 16us = 4ms

TIMER 0: Configurado como temporizador/contador de 16bits

- Exemplo: Configurar o TMR0 (8 bits) para que gere interrupções a cada 1 segundo.
 - Vamos considerar que o CLK da CPU = 4 MHz.
 - O clock interno será de 1 MHz. Logo, Tcpu = 1 us, ou seja, a cada 1 us TMR0 avança uma unidade.
 - Como queremos gerar interrupções a cada 1 segundo, a freqüência de geração dessas interrupções deverá ser de 1 Hz.
 - Entretanto o clock interno funciona em uma frequência 1.000.000 maior que 1Hz.
 - Usar o TMR0 sem o recurso do PRESCALER, necessitaria contar 1.000.000 / 256 = 3906,25 interrupções.

TIMER 0: Configurado como temporizador/contador de 16bits

- Exemplo: Configurar o TMR0 (8 bits) para que gere interrupções a cada 1 segundo:
 - Vamos considerar que o CLK da CPU = 4 MHz.
 Logo o CLK interno é de 1 MHz.
 - Se o PRESCALER estiver programado em 1:64, a frequência de entrada no TMR0 será de 1 MHz : 64 = 15625 Hz.
 - Se programarmos o TMR0 para dividir esse sinal 15625 por 125, teremos um sinal de saída de 125 Hz, para isso, basta carregá-lo a cada estouro de contagem com o valor: 256 (28) – 125 = 131.

TIMER 0: Configurado como temporizador

- 1. Ligar o TMR0
 - Setar o bit: TMR0ON (T0CON<7>);
- 2. Para interromper a contagem a qualquer momento
 - Basta apagar o bit: TMR0ON (T0CON<7>);

Registrador do Timer 0 - TOCON

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	T0CS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

bit 7 TMR00N: Timer() On/Off Control bit 1 = Enables Timer0 0 = Stops Timer0 T08BIT: Timer0 8-Bit/16-Bit Control bit bit 6 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as a 16-bit timer/counter TOCS: Timer0 Clock Source Select bit. bit 5 1 = Transition on TOCKI pin 0 = Internal instruction cycle clock (CLKO) T0SE: Timer0 Source Edge Select bit bit 4 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin PSA: Timer0 Prescaler Assignment bit bit 3 1 = Tlmer0 prescaler is not assigned. Timer0 clock input bypasses prescaler. 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. bit 2-0 T0PS<2:0>: Timer0 Prescaler Select bits 111 = 1:256 Prescale value 110 = 1:128 Prescale value 101 = 1:64 Prescale value 100 = 1:32 Prescale value 011 = 1:16 Prescale value 010 = 1:8 Prescale value 001 = 1:4 Prescale value 000 = 1:2 Prescale value

Registradores Associados - Timer O

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TMR0L	Timer0 Reg	ister Low By	te						50
TMR0H	Timer0 Reg	ister High By	/te						50
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
T0CON	TMR00N	T08BIT	T0CS	T0SE	PSA	T0PS2	T0PS1	T0PS0	50
TRISA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	52

TIMER 0 - Diagrama de Blocos

Modo: 8 bits

TIMER 0 - Diagrama de Blocos

Modo: 16 bits

- Temporizador / Contador de 8 ou 16 bits.
 - Definido pelo bit TMR1CS (T1CON<1>).
- Podem ser lidos e escritos pelo programador.
- Origem do sinal: interno ou externo.
- Para operar com sinais externos, bit T1OCEN (T1CON<6>);
 - Cristal nos pinos RC0 (T1OSO) e RC1 (T1OSI).
 - Sinal pulsado no pino RCO (T1CKI).
- Para operar com sinais internos, bit T1RUN (T1CON<3>);
 - Incremento interno através dos ciclos de máquina.
- Possuí um Prescaler para configurar o incremento.

- Possuí um sincronismo do CLK externo com o CLK interno
 - T1SYNC = 1 (sincronismo desligado);
 - T1SYNC = 0 (sincronismo ligado).
- Quando o sincronismo esta desligado, permite que a contagem continue mesmo que o PIC esteja em modo SLEEP.
- Para ler os registradores do TIMER1 (TMR1H e TMR1L):
 - Modo convencional: pare a contagem e leia.
 - Modo alternativo: leia TMR1H, guarde em uma variável temporária, depois leia TMR1L. Depois da leitura de TMR1L compare TMR1H com o valor da variável temporária. Caso afirmativo: OK. Caso negativo: faça isso novamente.
- A escrita reseta o Prescaler.

Registrador do Timer 1 – T1CON

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7	RD16: 16-Bit Read/Write Mode Enable bit
	 1 = Enables register read/write of TImer1 in one 16-bit operation 0 = Enables register read/write of Timer1 in two 8-bit operations
bit 6	T1RUN: Timer1 System Clock Status bit
	1 = Device clock is derived from Timer1 oscillator
	0 = Device clock is derived from another source
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
	11 = 1:8 Prescale value
	10 = 1:4 Prescale value 01 = 1:2 Prescale value
	00 = 1:1 Prescale value
bit 3	T10SCEN: Timer1 Oscillator Enable bit
	1 = Timer1 oscillator is enabled
	0 = Timer1 oscillator is shut off
	The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Select bit
	When TMR1CS = 1:
	1 = Do not synchronize external clock input 0 = Synchronize external clock input
	When TMR1CS = 0:
	This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1	TMR1CS: Timer1 Clock Source Select bit
	1 = External clock from pin RC0/T10SO/T13CKI (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR1ON: Timer1 On bit
	1 = Enables Timer1
	0 = Stops Timer1

Registradores Associados - Timer 1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP(1)	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TMR1L	Timer1 Register Low Byte								
TMR1H	Timer1 Register High Byte								
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	50

TIMER 1 - Diagrama de Blocos

Modo: 16 bits

- Timer de 8 bits:
 - Pré-escalonador
 - Pós-escalonador
- Pode ser usado como a base de tempo no modo PWM dos módulos CCP;

- Temporizador de 8 bits.
- Incremento somente relacionado com o CLK interno.
- Possuí um Prescale;
- Possuí um Postscale;
- Diferente dos 2 Timers anteriores:
 - Não conta de 0 até 255.
 - Conta do conteúdo do registrador PR2 até 255.
- O Postscale define o número de vezes que o TMR2 irá contar.
- O Postscale é incrementado sempre que TMR2 = PR2.
- Quando o Postscale terminar a INT referente ao Timer 2 será gerada.
- O ajuste do Prescale é feito com T2CON.
- O ajuste do Postscale é feito com o T2CON.

- O Prescaler e o Postscaler serão zerados:
 - Quando escrever em TMR2;
 - Quando escrever em T2CON;
 - Quando houver um RESET (diferente dos outros Timers 1 e 0).
- Possuí chave específica para habilitar ou desabilitar o incremento, bit TMR2ON.

Registrador do Timer 2 – T2CON

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscale Select bits

0000 = 1:1 Postscale 0001 = 1:2 Postscale

•

•

1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 On bit

1 = Timer2 is on

0 = Timer2 is off

bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits

00 = Prescaler is 1

01 = Prescaler is 4

1x = Prescaler is 16

Registradores Associados - Timer 2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	52
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	52
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	52
TMR2	Timer2 Register								
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	50
PR2	Timer2 Peri	iod Register							50

TIMER 2 - Diagrama de Blocos

Modo: 16 bits

- O módulo Timer3 é muito semelhante ao módulo Timer1;
- Ele pode operar como Temporizador/Contador de 8 ou 16 bits;
- O Timer3 pode ser usado como origem de clock para o periférico CCPx;
- O registrardor T3CON é o responsável pela configuração do Timer3;

Registrador do Timer 3 – T3CON

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON		
bit 7									

bit 7	RD16: 16-Bit Read/Write Mode Enable bit				
	1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations				
bit 6,3	T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits				
	1x = Timer3 is the capture/compare clock source for the CCP modules 01 = Timer3 is the capture/compare clock source for CCP2; Timer1 is the capture/compare clock source for CCP1 00 = Timer1 is the capture/compare clock source for the CCP modules				
bit 5-4	T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits				
	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value				
bit 2	T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the device clock comes from Timer1/Timer3.) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input				
	When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.				
bit 1	TMR3CS: Timer3 Clock Source Select bit				
	1 = External clock input from Timer1 oscillator or T13CKI (on the rising edg 0 = Internal clock (Fosc/4)				
bit 0	TMR3ON: Timer3 On bit				
	1 = Enables Timer3 0 = Stops Timer3				
	bit 6,3 bit 5-4 bit 2				

Registradores Associados - Timer 3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	49
PIR2	OSCFIF	CMIF	_	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	52
PIE2	OSCFIE	CMIE	_	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	52
IPR2	OSCFIP	CMIP	_	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	52
TMR3L	Timer3 Register Low Byte								51
TMR3H	Timer3 Register High Byte								51
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	50
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	51

TIMER 3 - Diagrama de Blocos

Modo: 16 bits

Esquema Elétrico

Timer 0 / Código-fonte

DSP_7Seg_x4.h

Arquivo cabeçalho com as definições dos pinos nos quais serão conectados os pinos do display.

DSP_7Seg_x4.c

Arquivo que compõe a biblioteca que contém a função que fará a atualização do display;

• Main_34.c

Arquivo principal responsável por realizar a aplicação de um contador de 0 a 9.999 utilizando uma interface de vídeo com quatro displays multiplexados, onde a temporização é implementada pelo módulo temporizador do TIMER 0;

DSP_7Seg_x4.h

Display Multiplexado / Código-fonte

Esse identificador impede que a definição a seguir seja duplicada se o arquivo cabeçalho foi incluído em outro arquivo-fonte associado ao projeto.

```
#ifndef DSP 7SEGx4 H
     #define DSP 7SEGx4 H
10
11
     #include <p18cxxx.h> //diretiva de compilação
12
13
     //definições
14
     #define DSP_1 PORTAbits.RA5
15
     #define DSP 2 PORTAbits.RA2
16
     #define DSP 3 PORTEbits.RE0
17
     #define DSP 4
                     PORTEbits.RE2
     #define L DADOS TRISD
19
     #define DIR A1
                     TRISAbits.TRISA5
20
     #define DIR A2 TRISAbits.TRISA2
     #define DIR A3 TRISEbits.TRISE0
21
     #define DIR_A4 TRISEbits.TRISE2
22
23
24
     void Aciona DPS 7 seg (unsigned char Dsp4, unsigned char Dsp3, unsigned char Dsp2, unsigned char Dsp1);
25
     #endif
```

DSP_7Seg_x4.c

Display Multiplexado / Código-fonte

```
#include <p18cxxx.h>
                               //diretiva de compilação
     #include "DSP_7Seg_x4.h" //diretiva de compilação
10
11
    🗏 void Aciona DPS 7 seg (unsigned char Dsp4, unsigned char Dsp3, unsigned char Dsp2, unsigned c
12
13
     static unsigned char Atual Dsp = 1; //declaração de variável local static inicializa
14
     const char tabela[] = {
15
                      0x3F,
                             // número 0
16
                      0x06, // número 1
17
                             // número 2
                      0x5B,
18
                      0x4F, // número 3
19
                      0x66, // número 4
20
                      0x6D,
                             // número 5
21
                      0x7C, // número 6
22
                             // número 7
                      0x07,
23
                      0x7F, // número 8
24
                      0x67. // número 9
25
                      0x00
                            //apaga display
26
27
     //*******
28
     //configuração dos pinos
29
        L DADOS = 0x00;
                        //configura pinos das linhas de dados como saída
        ADCON1 = 0x0F; //configura Port A e Port E como pinos digitais
30
31
                           //configura linha de endereço A1 como saída
        DIR A1 = 0;
        DIR_A2 = 0; //configura linha de endereço A2 como saída
32
                            //configura linha de endereço A3 como saída
33
        DIR A3 = 0;
        DIR A4 = 0;
34
                             //configura linha de endereço A4 como saída
```

Embora a função Aciona_DSP_7_seg() receba os valores de cada display, apenas um display é atualizado em cada chamada.

DSP_7Seg_x4.c

Display Multiplexado / Código-fonte

```
//atualiza display
37
     if (Atual Dsp==1)
                               //atualizar display 1
38
39
             PORTD = tabela[Dsp1]; //atualiza display 1
40
             DSP 1 = 1
                              //ativa linha A1
             DSP 2 = 0;
                              //desativa linha A2
41
42
             DSP 3 = 0;
                             //desativa linha A3
43
             DSP 4 = 0;
                                //desativa linha A4
44
           Atual Dsp = 2; //aponta endereço para o próximo display
45
46
               if (Atual Dsp==2)
                                 //atualizar display 2
        else
47
48
             PORTD = tabela[Dsp2]; //atualiza display 2
49
             DSP 1 = 0;
                        //desativa linha A1
50
           \bigcircDSP 2 = \bigcirc
                             //ativa linha A2
51
            DSP 3 = 0;
                            //desativa linha A3
52
            DSP 4 = 0;
                                //desativa linha A4
53
           Atual Dsp = 3;
                                //aponta endereço para o próximo display
54
```

Main_31.c

Display Multiplexado / Código-fonte

```
if Atual Dsp==3)
                                    //atualizar display 3
          else
56
57
            PORTD = tabela[Dsp3]; //atualiza display 3
58
            DSP 1 = 0;
                                  //desativa linha A1
59
            DSP 2 = 0;
                                  //desativa linha A2
60
           OSP 3 = 1
                                  //ativa linha A3
61
                                  //desativa linha A4
62
            Atual Dsp = 4;
                                   //aponta endereço para o próximo display
63
64
                 if Atual Dsp==4)
                                    //atualizar display 4
65
66
            PORTD = tabela[Dsp4]; //atualiza display 4
                                 //desativa linha A1
67
            DSP 1 = 0;
68
            DSP 2 = 0:
                                 //desativa linha A2
69
                                  //desativa linha A3
70
                                  //ativa linha A4
71
            Atual Dsp = 1;
                                  //aponta endereço para o próximo display
72
73
74
```

Timer 0 / Código-fonte

```
#include <p18f4520.h> //diretiva de compilação
     10
11
12
     //protótipos de funções
13
     void Inic Regs (void);
14
     void high isr (void);
15
16
     //variáveis globais
17
                                   //declaração de variável global inicializada
     volatile unsigned char Dsp1=0;
     volatile unsigned char Dsp2=0; //declaração de variável global inicializada
18
     volatile unsigned char Dsp3=0; //declaração de variável global inicializada
19
     volatile unsigned char Dsp4=0; //declaração de variável global inicializada
20
21
                               //declaração de variável global inicializada
     int x = 0;
22
     //vetor de interrupção de alta prioridade
23
24
     #pragma code high vector=0x08
   void interrupt at high vector (void)
25
26
27
        asm GOTO high isr endasm
                                      //desvia programa para rotina de tratamento da
28
29
     #pragma code
30
```

Observe que as variáveis Dsp1, Dsp2, Dsp3, Dsp4 foram declaradas como volatile.

Istoé feito por recomendação do fabricante do MPLAB C18 porque elas são manipuladas dentro e fora da rotina de tratamento de interrupção;

Timer 0 / Código-fonte

```
#pragma code high vector=0x08
   □ void interrupt at high vector(void)
25
26
27
         asm GOTO high_isr endasm
                                       //desvia programa para rotina de tratamento d
28
29
      #pragma code
30
      //Rotina de tratamento de interrupção (ISR)
32
      #pragma interrupt high isr
33
    □ void high isr (void)
34
35
        if(!INTCONbits.TMR0IF);
36
         else
37
38
            INTCONbits.TMR0IF=0:
                                                  //interrupção de estouro de TMR0?
39
            TMROL = 5;
                                                 //inicializa TMR0
40
            Aciona DPS 7 seg (Dsp4, Dsp3, Dsp2, Dsp1); //chamada à função: atualizar
41
                                                 //se x diferente de 250, incrementa
            if (! (x==250))x++;
```

Timer 0 / Código-fonte

```
42
              else
43
44
                 x=0;
45
                 Dsp1+=1;
46
                 if (Dsp1==10)
47
48
                 Dsp1=0;
49
                 Dsp2+=1;
50
51
              if (Dsp2==10)
52
53
                 Dsp2=0;
54
                 Dsp3+=1;
55
56
              if (Dsp3==10)
57
58
                 Dsp3=0;
59
                 Dsp4+=1;
60
61
                 if (Dsp4==10)
62
63
                    Dsp4=Dsp3=Dsp2=Dsp1=0
64
65
67
```

```
//senão, incrementa contador
//x=0
//incrementa unidade
  //unidade estourou?
  //sim, zera unidade
//incrementa dezena
 //dezena estourou?
   //sim, zera dezena
//incrementa centena
 //centena estourou?
   //sim, zera centena
//incrementa unidade de milhar
 //unidade de milhar estourou?
      //sim,zera contador
```

Timer 0 / Código-fonte

```
□ void main (void)
                                                  //função main
70
71
        Inic Regs ();
                                                //configurar SFRs
72
        while(1);
                                               //loop infinito
73
74
75
     Esta funcao inicializa os registradores SFRs.*/
76
   □ void Inic Regs (void)
77
78
                                   //PORTA saida
        TRISA = 0x00;
79
        TRISB = 0x00:
                                   //PORTB saída
80
                                  //PORTC saida
        TRISC = 0x00;
81
                                   //PORTD saida
        TRISD = 0x00;
82
        TRISE = 0x00;
                                  //PORTE saída
83
                                   //configura pinos dos PORTA e PORTE como digitai
        ADCON1 = 0x0F;
84
                                   //limpa PORTA
        PORTA = 0;
85
        PORTB = 0;
                                  //limpa PORTB
86
        PORTC = 0;
                                    //limpa PORTC
87
        PORTD = 0x00;
                                    //apaga displays
88
        PORTE = 0;
                                    //limpa PORTE
       habilita interrupção de estouro de TMRO
89
90
        INTCONbits.GIE = 1;
                                    //liga chave geral de interrupção
        INTCONbits.TMR0IE = 1; //liga chave individual de interrupção externa
91
                                    //interrupção externa 0 ocorrerá na borda de
92
        INTCON2bits.TMR0IP = 1;
93
     //configura TMR0 para operar como temporizador e estourar a cada 4ms
94
                                       //TimerO configurado como temporizador<5>
        TOCON = 0b11000100;
95
                                //prescaler ativado<3>
96
                                //fator de prescaler de 1:32<2:0>
97
                                //liga TMR0
98
        TMROL = 5:
                                    //inicializa TMR0
```

Timer 0 / Código-fonte (Ex. 8.2)

```
#include <p18f4520.h>
 2
     #include <stdio.h>
 3
     #include "pic simb.h"
 4
 5
     #pragma config OSC = XT, WDT = OFF, MCLRE = OFF
 6
     *pragma config DEBUG = OFF, LVP = OFF, PWRT = ON, BOREN = OFF
 7
     #pragma code isr = 0x0000008
     #pragma interrupt ISR
    □ void ISR(void)
10
11
12
        INTCONbits.TMR0IF = 0; // apaga o flag de interrupção
13
        TMROH = 0x85;
14
        TMROL = 0xEE;
15
        LATBbits.LATB0 = !LATBbits.LATB0; // inverte o estado do led
16
17
     #pragma code
18
19
    void main(void)
20
21
        ADCON1 = 0x0F;
                          // desliga entradas analógicas
        TRISBbits.TRISB0 = 0; // RB0 como saída
22
23
        TMROH = 0x85;
24
        TMROL = 0xEE;
25
        TOCON = bTMROON | bTOCLK PRE32;
26
        INTCON = bGIE | bTMR0IE; // habilita GIE e TMR0IE
27
        while(1); // aguarda uma interrupção
28
```

Próxima Aula

Aula 16 Periféricos Analógicos