Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по практической работе

«РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ ПРОЦЕССОМ ПАРКОВКИ РОБОТА-МАШИНКИ»

по дисциплине

«Бесконтактные средства локальной ориентации роботов»

Выполнили: студенты гр. Р4235

Антонов Е.С.,

Артемов К. А.

Преподаватель: Власов С. М.,

ассистент каф. СУиИ

Содержание

B	ведение	3			
1	1 Особенности строения робота				
2	Управление движением робота	6			
	2.1 Кинематическая модель	6			
	2.2 Локализация робота	6			
	2.3 Структура системы управления	7			
3	Поиск парковочного места	9			
4	Планирование траекторий движения	10			
За	Заключение				
\mathbf{C}_{1}	писок использованных источников	12			
П	риложение А Описание экспериментов по проверке состоятельности исполь-				
	зованных методов локализации робота с помощью сторонней системы тех-				
нического зрения					

Введение

Данный документ призван познакомить читателей с результатами работы авторов над задачей создания системы управления для робота-машинки, которая бы давала ему способность автоматически (самостоятельно) выполнять параллельную парковку.

Более конкретно ее можно описать примерно так.

Имеется робот-машинка, ходовая часть которого устроена примерно так же, как у настоящего заднеприводного автомобиля: один из пары его двигателей приводит во вращение задние колеса, второй отвечает за поворот передних, рулевых колес. Данный робот должен проехать вдоль возможного места парковки, обозначенного с помощью посторонних объектов, имитирующих собой другие стоящие неподвижно транспортные средства (см. рисунок 1), оценить его геометрические параметры, необходимые для совершения маневра, характерного для параллельной парковки, и, собственно, проделать последний.

Рисунок 1 – Общий вид зоны проведения экспериментов.

Для ее решения авторам пришлось проработать следующие технические вопросы:

- создание упомянутого робота из конструктора LEGO Mindstorms EV3;
- подбор для него датчиков и программная реализация алгоритмов обработки поступающей с них информации;
- проектирование системы управления движением робота;
- создание алгоритма картирования парковочного места и его окрестностей.

Описанию их ключевых моментов и посвящена основная часть этого документа.

1 Особенности строения робота

Особенности строения использованного в работе робота-машинки (см. рисунок 3) даются следующим перечислением:

- робот собран из конструктора LEGO Mindstorms EV3;
- робот имеет два двигателя со встроенными энкодерами, один из которых (тяговый)
 приводит в движение задние колеса, а второй (рулевой) поворачивает передние;
- усилие с тягового двигателя на задние колеса передается через дифференциал с передаточным отношением, обеспечивающим равенство угловой скорости вращения вала двигателя с полусуммой угловых скоростей задних колес;
- рулевые колеса связаны друг с другом и с рулевым двигателем через рулевую трапецию, кинематическая схема которой изображена на рисунке 2;

Рисунок 2 — Кинематическая схема рулевой трапеции: 1 — коромысло, приводимое в движение рулевым двигателем, 2 — шасси робота, 3 — шатун, 4,5 — коромысла, жестко соединенные с осями вращения передних колес.

- для измерения расстояний до объектов окружающей среды робот имеет два ультразвуковых дальномера;
- для определения собственного угла поворота и угловой скорости робот снабжен возвращающим их датчиком-гироскопом.

first.jpg	second.jpg
a)	б)
third.jpg	fourth.jpg

в) г) Рисунок 3 — Внешний вид использованного в работе робота-машинки.

2 Управление движением робота

2.1 Кинематическая модель

Кинематическая модель робота имеет вид [1]:

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = \omega \end{cases} \tag{1}$$

где x, y — декартовы координаты точки C, являющейся серединой задней оси (см. рисунок 4); θ — угол поворота робота (угол между осями абсцисс неподвижной системы координат Ox_0y_0 и системы координат Ox_1y_1 , жёстко связанной с роботом); v — проекция скорости \vec{v} точки C на ось абсцисс системы координат $Ox_1y_1^*$; ω — угловая скорость вращения робота.

Рисунок 4 – Чертеж-пояснение к кинематической модели робота.

2.2 Локализация робота

В качестве угла θ и угловой скорости ω в работе использовались угол и угловая скорость, возвращаемые установленным на робота датчиком-гироскопом. Координаты x и y, в свою очередь, непосредственно не измерялись, а рассчитывались с использованием первых двух уравнений модели (1). При этом линейная скорость точки C с учетом третьего пункта перечня, представленного в разделе 1, определялась в соответствии со следующим выражением

$$v = \underline{\omega}R,\tag{2}$$

где $\underline{\omega}$ — угловая скорость вращения вала тягового двигателя, R — радиус задних колес робота.

^{*} В данной работе проскальзывание задних колес робота считается отсутствующим, а, следовательно, вектор \vec{v} — всегда коллинеарным оси абсцисс системы координат Ox_1y_1 .

Состоятельность описанного принципа локализации робота была проверена с помощью сторонней системы технического зрения. Подробности соответствующих экспериментов и полученные результаты доступны в Приложении А.

2.3 Структура системы управления

Общая структура системы управления движением робота, позволяющая ему двигаться по желаемой траектории, показана на рисунке 5. Указанные на ней физические величины, ранее не упоминавшиеся в тексте данного отчета, значат следующее:

 U_1 (U_2) — напряжение, подаваемое на тяговый (рулевой) двигатель, выраженное в процентах от максимального напряжения (знак определяет направление вращения);

 $\bar{\varphi}$ — угол поворота вала рулевого двигателя;

 $\bar{\varphi}_{min}, \bar{\varphi}_{max}$ — его минимальное и максимальное значения ($\bar{\varphi}_{min} = -\bar{\varphi}_{max}$);

 x_r и y_r — координаты, которые должен иметь робот в данный момент времени, чтобы следовать по желаемой траектории;

 X_{des} — желаемое значение величины X.

Рисунок 5 – Структура системы управления движением робота.

Формирование желаемых значений для линейной и угловой скоростей робота блоком Converter, а также расчет «предварительных» управляющих воздействий в блоке Simple Controller производятся в соответствии со следующими выражениями [2]:

$$\begin{cases} \dot{\xi} = u_1 \cos \theta + u_2 \sin \theta, \\ v_{des} = \xi, \\ \omega_{des} = \frac{-u_1 \sin \theta + u_2 \cos \theta}{\xi}, \end{cases}$$
 (3)

$$\begin{cases}
 u_1 = \ddot{x}_r + k_{p1}(x_r - x) + k_{d1}(\dot{x}_r - \dot{x}), \\
 u_2 = \ddot{y}_r + k_{p2}(y_r - y) + k_{d2}(\dot{y}_r - \dot{y}).
\end{cases}$$
(4)

3	Поиск	парковочного	места
J	TIONCK	Hapkoboandio	mecia

4	Плани	рование	траекто	рий	движения
	TTOIGNIE		1 Pacitio	DATAT	ДРИИСИИ

Заключение

Список использованных источников

- $1.\ https://arxiv.org/pdf/1604.07446.pdf$
- $2.\ https://www.sciencedirect.com/science/article/pii/S1474667017380114$

Приложение A (обязательное)

Описание экспериментов по проверке состоятельности использованных методов локализации робота с помощью сторонней системы технического зрения