Лабораторная работа №5

Модель хищник-жертва

Сунгурова Мариян Мухсиновна

Содержание

Сп	Список литературы	
5	Выводы	12
4	Выполнение лабораторной работы 4.1 Поиск стационарного состояния системы 4.2 Программная реализация модели хищник-жертва 4.3 Графики	7 7 7 10
3	Теоретическое введение	6
2	Задание	5
1	Цель работы	4

Список иллюстраций

4.1	Решение модели при $x_0 = 4, \ y_0 = 14.$ Julia	9
	Решение модели при $x_0 = 4, y_0 = 14$. OpenModelica	
	Julia	
4.4	OpenModelica	11

1 Цель работы

Реализовать и проанализировать математическую модель хищник-жертва.

2 Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.38x(t) + 0.037x(t)y(t) \\ \frac{dy}{dt} = 0.36y(t) - 0.035x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=4$, $y_0=14$. Найдите стационарное состояние системы.

3 Теоретическое введение

Система «хищник — жертва» — сложная экосистема, для которой реализованы долговременные отношения между видами хищника и жертвы, типичный пример коэволюции. Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия Приспособления, вырабатываемые жертвами для противодействия хищникам, способствуют выработке у хищников механизмов преодоления этих приспособлений. Длительное совместное существование хищников и жертв приводит к формированию системы взаимодействия, при которой обе группы устойчиво сохраняются на изучаемой территории. Нарушение такой системы часто приводит к отрицательным экологическим последствиям.

Негативное влияние нарушения коэволюционных связей наблюдается при интродукции видов. В частности, козы и кролики, интродуцированные в Австралии, не имеют на этом материке эффективных механизмов регуляции численности, что приводит к разрушению природных экосистем.

4 Выполнение лабораторной работы

4.1 Поиск стационарного состояния системы

Найдём стационарное состояние системы. Для этого приравняем её правые части к нулю.

$$\begin{cases} -0.38x(t) + 0.037x(t)y(t) = 0\\ 0.36y(t) - 0.0435x(t)y(t) = 0 \end{cases}$$

Из полученной системы получаем, что стационарное состояние системы будет в точке $x_0=0.38/0.037=10.2702703$, $y_0=0.36/0.035=10.2857143$. Если начальные значения задать в стационарном состоянии $x(0)=x_0$, $y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки.

4.2 Программная реализация модели хищник-жертва

Зададим функцию для решения модели хищник-жертва. Возьмем интервал $t\in[0;50]$ (шаг 0.01) с начальными условиями $x_0=4,\ y_0=14.$

```
x, y = u

dx = -a*x + b*x*y

dy = c*y - d*x*y

return [dx, dy]

end

u0 = [4, 14]

p = [0.38, 0.037, 0.36, 0.035]

tspan = (0.0, 50.0)

prob5 = ODEProblem(lv, u0, tspan, p)

sol5 = solve(prob5, Tsit5())

Для задания проблемы используется функция ODEProblem, а для решения —
```

Для задания проблемы используется функция ODEProblem, а для решения – численный метод Tsit5() Для отрисовки стационарного состояния задаём:

```
u0 = [0.38/0.037, 0.36/0.035]

prob5_ = ODEProblem(lv, u0, tspan, p)

sol5_ = solve(prob5_, Tsit5())

plot(sol5_, title="модель Лотки-Вольтерры", box=:on, label = ["Жертвы" "Хищники"]
```


Рис. 4.1: Решение модели при $x_0=4,\ y_0=14.$ Julia

Также зададим эту модель в OpenModelica. Модель для колебания без затухания и без действия внешних сил:

model lab5

```
parameter Real a=0.38;
parameter Real b=0.037;
parameter Real c=0.36;
parameter Real d=0.035;

parameter Real x0=4;
parameter Real y0=14;

Real x(start=x0);
Real y(start=y0);
equation
```

```
der(x) = -a*x + b*x*y;
der(y) = c*y-d*x*y;
end lab5;
```


Рис. 4.2: Решение модели при $x_0=4,\ y_0=14.$ OpenModelica

Для отрисовки стационарного состояния меняем значения параметров:

```
parameter Real \times 0=0.38/0.037;
parameter Real y0=0.36/0.035;
```

4.3 Графики

Графики решений, полученные с помощью OpenModelica и Julia(рис. fig. 4.3, fig. 4.4):

Рис. 4.3: Julia

Рис. 4.4: OpenModelica

Действительно, если начальное условие соответствует стационарной точке, то система находится в стационарном состоянии, то есть число хищников и жертв не изменяется.

5 Выводы

Построили математическую модель хищник жертва и провели анализ.

Список литературы