Luca Di Marco 0333083 - Luca Di Totto 0333084

Analisi delle Code agli Sportelli Comunali: Ottimizzazione dei Servizi al Cittadino

Progetto valido per il corso di Performance Modeling of Computer Systems and Networks A.A. 22/23

Introduzione

L'obiettivo di questo studio è la realizzazione e l'analisi di un **modello a reti di code** inspirato ad un caso di studio reale.

Sistema

Il sistema reale analizzato è il **comune di Lanciano**, in provincia di Chieti.

Scenario

Un cittadino si rivolge ad uno degli sportelli dell'ufficio comunale di appartenenza, per **richiedere uno o più servizi** da questo offerto.

Problematicità

Come noto, in tutti gli uffici comunali è presente il problema delle **lunghe attese** che scoraggiano i cittadini e creano malumori ogni qualvolta questi abbiano la necessità di rivolgersi ad uno sportello.

Sportelli comunali

Gli sportelli comunali presi in considerazione nello studio sono i seguenti:

Centralino

Accoglienza ed indirizzamento del cittadino presso lo sportello richiesto.

Anagrafe

Rilascio certificati d'identità, servizi alla persona e gestione residenze e domicili.

URP

Ascolto dei cittadini e comunicazione verso quest'ultimi.

Sportelli comunali

Gli sportelli comunali presi in considerazione nello studio sono i seguenti:

Servizi scolastici

Programmazione e attuazione servizi scolastici comunali per assistenza ed accoglienza.

Servizi sociali

Elaborazioni misure per la prevenzione, riduzione ed eliminazione delle condizioni di disagio del cittadino.

Stato civile

Documentazione di fatti influenti sullo stato delle persone: nascita, matrimonio etc.

Sportelli comunali considerati

Gli sportelli comunali presi in considerazione nello studio sono i seguenti:

Protocollo

Funzione giuridica di attestazione di esistenza di documenti e di gestione del flusso in ingresso e uscita degli stessi.

Cultura

Promuove, organizza e sostiene iniziative culturali, sportive e ricreative.

Tempi di servizio e di attesa

• I tempi di servizio e di attesa medi sono stati recuperati in loco presso l'ufficio comunale, basandosi su dati reali.

Obiettivi

- Studiare il modello in modo da identificare le cause che rallentano l'esecuzione delle procedure.
- Creare un modello migliorativo che cerchi di abbassare i tempi di risposta, e di conseguenza, anche quelli di attesa media.

QoS da raggiungere

- I QoS da raggiungere riguardano i tempi di risposta dei centri (E(Ts)) e sono:
- Centralino: 2 minuti;
- Anagrafe: 30 minuti;
- URP: 35 minuti;
- Servizi scolastici: 60 minuti;
- Servizi sociali: 45 minuti;
- Stato civile: 35 minuti;
- Protocollo: 10 minuti;
- Cultura: 300 minuti.

Modello concettuale

Il diagramma del sistema è il seguente:

Modello concettuale

Le **caratteristiche** peculiari del sistema sono le seguenti:

Code

Il sistema prevede singole **code infinte** per ogni centro. Le code seguono una politica di scheduling **FIFO non preemptive.** Il sistema è **work-conserving**.

Arrivi

Gli arrivi possono avvenire sia dall'esterno sia da precedenti centri. Un job può abbandonare il sistema prima del suo servizio oppure uscire dopo essere stato servito.

Sistema

I centri del sistema possono essere a **singolo servente o multi-servente**: ogni servente rappresenta un dipendente comunale. I **job** in ingresso **rappresentano le richieste** dei cittadini allo sportello.

Modello delle specifiche

Le **specifiche** del sistema sono le seguenti:

Tempi di servizio e di interarrivo

Le statistiche dei **tempi di servizio** dei vari sportelli, così come i **tassi di ingresso** al sistema sono stati recuperati in loco, presso l'ufficio comunale - si veda la documentazione.

Tempi di servizio

Distribuzione normale troncata: permette l'eliminazione dei valori fuori norma ed improbabili al fine di riflettere al meglio il funzionamento del sistema reale.

Tempi di arrivo

Distribuzione esponenziale: permette di modellare correttamente gli arrivi casuali ed indipendenti con frequenza costante dei cittadini presso uno sportello.

Modello delle specifiche

Le **specifiche** del sistema sono le seguenti:

Probabilità di routing

Le probabilità di routing tra un centro ed un altro e le probabilità di uscita dal sistema dopo essere stati serviti, sono determinate dalla **matrice di routing**.

Costi e profitti

Nel caso di studio **non vengono presi in considerazione possibili costi** di mantenimento; per il profitto si intende il **soddisfacimento** del cittadino.

Modello computazionale

Il modello **computazionale** ha le seguenti caratteristiche:

Linguaggio ad oggetti

Linguaggio **Java**: la scelta deriva dal fatto che un ambiente come un sistema a code può essere meglio rappresentato da una **programmazione ad oggetti.**

Clock di sistema

Classe **Time** per ogni istanza di Node: mantiene informazioni riguardanti il **tempo corrente** ed il **tempo dell'evento successivo.**

Statistiche del servente

Classe **Sum** per ogni servente del nodo: mantiene informazioni su **quanti job sono stati serviti** dal servente e **per quanto tempo** ha effettuato servizio.

Modello computazionale

Il modello **computazionale** ha le seguenti caratteristiche:

Gestione degli eventi

Classe **EventList**: mantiene le informazioni degli eventi del centro. Si diversifica per i nodi che prevedono ingressi dall'esterno e per quelli che non lo prevedono.

Estrazione del prossimo evento

All'interno di EventList: **metodo NextEvent()** che permette il **recupero dell'evento più imminente**, mediante la ricerca all'interno dell'array EventList dello specifico centro chiamante

Gestore del sistema

Classe **EventHandler** mantiene lo stato interno del sistema: viene istanziata come classe **Singleton**.

Modello computazionale

Il modello **computazionale** ha le seguenti caratteristiche:

Nodi del sistema

Tutti i **nodi** del sistema sono **un'istanza** di **quattro possibili tipologie di classi** Java chiamate **Node**, dove ognuna descrive una determinata tipologia di sportello comunale.

Gestione della generazione dei numeri randomici

La classe **RandomFunction** viene utilizzata per configurare i tempi di interarrivo e di servizio dei vari centri. Anche questa classe viene istanziata come **Singleton**. Al suo interno è presente il generatore **Rngs**.

Verifica

- L'obiettivo è controllare che i risultati delle simulazioni siano coerenti e confrontarli con i valori teorici.
- Ricavati **simulando** il comportamento del sistema con tempi di servizio **esponenziali.**
- Ottenuti dalla simulazione ad orizzonte infinito mediante il metodo di batch mean:
 - Centralino: b = 2048 k = 50;
 - Altri centri: b = 200 k = 50.

Risultati del nodo Centralino (M/G/1) attraverso il modello analitico		
Utilizzazione $(oldsymbol{ ho})$	0.499	
Numero medio di job in coda $E(N_q)$	0.497	
Numero medio di job nel centro ${\it E(N_s)}$	0.997	
Tempo di attesa medio in coda $E(T_q)$	0.996	
Tempo di attesa medio nel sistema ${\it E}(T_s)$	1.996	

Risultati del nodo Centralino (M/G/1) prodotto dalla simulazione		
Utilizzazione $(oldsymbol{ ho})$	0.50 ± 0.00	
Numero medio di job in coda $E(N_q)$	0.50 ± 0.02	
Numero medio di job nel centro ${\it E(N_s)}$	1.01 ± 0.02	
Tempo di attesa medio in coda $E(T_q)$	1.00 ± 0.04	
Tempo di attesa medio nel sistema $E(T_s)$	2.00 ± 0.05	

Validazione

- Condotta mediante l'analisi del comportamento del sistema al variare di alcuni parametri, tale da verificare la corretta reazione dello stesso
- Aumentare e diminuire il tempo di servizio
 E(S);
- Aumentare o diminuire il tasso di arrivo al Centralino.
- Ottenuti dalla simulazione ad orizzonte finito mediante Replicazione per il calcolo delle medie.

Centralino	E(S)=1	E(S)=0.5	E(S)=2
ρ	0.51 ± 0.00	0.26 ± 0.00	0.95 ± 0.01
$E(T_s)$	1.56 ± 0.02	0.60 ± 0.00	16.80 ± 1.17
$E(N_s)$	0.79 ± 0.02	0.31 ± 0.00	7.89 ± 0.57

Esecuzione degli desperimenti

La fase di esecuzione delle simulazioni si compone di **tre** passaggi:

Analisi del collo di bottiglia

- Calcolare, mediante metodi analitici, le visite medie e la domanda media per ogni centro al fine di determinare i possibili colli di bottiglia del sistema.
- Dai risultati ottenuti è possibile notare come il collo di bottiglia del sistema è rappresentato dal centro Cultura, seguito in ordine da Servizi Sociali e Servizi Scolastici.
- Questi centri saranno oggetti di studio nella parte **migliorativa**.

Simulazione ad orizzonte infinito

- L'obiettivo è ottenere statistiche del sistema a **stato stazionario**.
- La simulazione viene eseguita mediante la tecnica dei **Batch Means**:
 - Centralino: b = 8192 k = 50;
 - Altri centri: b = 200 k = 50.
- Simulando il sistema è possibile notare il non raggiungimento della stazionarietà dei centri "collo di bottiglia".

Simulazione ad orizzonte finito

- La simulazione è stata effettuata per una durata di **390 minuti** (6 ore e 30 minuti) per rappresentare la durata di una **giornata** lavorativa comunale.
- Simulazione ad orizzonte finito mediante la tecnica delle **Replicazioni**.
- Stima delle statistiche transienti.
- I centri "Collo di bottiglia" hanno valori medi che **non rispettano** i QoS.

Versione migliorativa

La **versione migliorativa** è stata ottenuta studiando le risposte del sistema al variare:

Tempi di esecuzione

Il miglioramento dei tempi di servizio prevede un **costo inferiore**, a discapito del **tempo** necessario per studiare tecniche migliorative al processo di lavoro.

Numero di serventi

L'aumento del numero di serventi è sicuramente realizzabile nel **breve periodo**, con conseguente aumento **notevole** dei **costi** totali.

Centri considerati

Vengono considerati i soli centri "Collo di bottiglia".

Versione definitiva

La versione definitiva che rispetta i QoS è stata ottenuta mediante le seguenti modifiche:

Servizi Scolastici

- Aumento di due serventi;
- Diminuzione del tempo di servizio del 13%.

N. Serventi	ρ	$E(T_s)$
4	0.98 ± 0.00	121.31 ± 3.16
5	0.96 ± 0.00	65.15 ± 2.33
6	0.93 ± 0.00	32.18 ± 1.33
8	0.76 ± 0.01	17.50 ± 0.15

Versione definitiva

La versione definitiva che rispetta i QoS è stata ottenuta mediante le seguenti modifiche:

Servizi Sociali

Scelta tra:

- Diminuzione del tempo di servizio dell'8% costi ridotti e QoS parzialmente soddisfatti;
- Aumento di un servente costi maggiori e QoS soddisfatti.

N. Serventi	ρ	$E(T_s)$
3	0.88 ± 0.01	52.68 ± 2.51
4	0.73 ± 0.01	31.25 ± 0.78

Versione definitiva

La versione definitiva che rispetta i QoS è stata ottenuta mediante le seguenti modifiche:

Cultura

• Aumento di un servente.

N. Serventi	ρ	$E(T_s)$
2	0.91 ± 0.01	389.90 ± 14.59
3	0.83 ± 0.01	230.09 ± 8.61
4	0.75 ± 0.01	168.25 ± 4.93

Grazie per l'attenzione.