SDS385 HW 1

Evan Ott UT EID: eao466 August 25, 2016

Linear Regression

(A)

WLS objective function:

$$\sum_{i=1}^{N} \frac{w_i}{2} (y_i - x_i^{\top} \beta)^2 = \frac{1}{2} \sum_{i=1}^{N} y_i w_i y_i - \sum_{i=1}^{N} y_i w_i x_i^{\top} \beta + \frac{1}{2} \sum_{i=1}^{N} x_i^{\top} \beta w_i x_i^{\top} \beta$$
$$= \frac{1}{2} y^{\top} W y - y^{\top} W X \beta + \frac{1}{2} (X \beta)^{\top} W X \beta$$
$$= \frac{1}{2} (y - X \beta)^{\top} W (y - X \beta).$$

Minimizing this function means setting the gradient (with respect to β) to zero:

$$\nabla_{\beta} \left[\frac{1}{2} (y - X\beta)^{\top} W (y - X\beta) \right] = 0$$

That is

$$\nabla_{\beta} \left[\frac{1}{2} (y - X\beta)^{\top} W (y - X\beta) \right] = 0 - (y^{\top} W X)^{\top} + \frac{2}{2} X^{\top} W X \hat{\beta} = 0$$
$$\Rightarrow (X^{\top} W X) \hat{\beta} = X^{\top} W y \quad \blacksquare$$

(B)

Maybe something with LDL^{\top} factorization because it's close to that form already, but X is not lower-triangular.

Main idea here is actually not taking the inverse. It's that there are algorithms for solving $(X^\top WX)\hat{\beta} = X^\top Wy$ for $\hat{\beta}$ by treating this as Ax = b and solving for x (to use the traditional variables for the problem). Good reference for using a Cholesky decomposition is at http://www.seas.ucla.edu/~vandenbe/103/lectures/chol.pdf