Trabalho de Lógica e Matemática discreta

20 de Abril de 2020

- 1. Em um colégio há equipes de vôlei, futebol e basquete. Neste semestre um fato pitoresco acontecerá: quando tiver treino de basquete não terá treino de vôlei. Uma forma equivalente de se dizer esse fato pitoresco é
 - (a) () Quando não tiver treino de basquete, terá treino de vôlei.
 - (b) (X) Quando tiver treino de vôlei, não terá treino de basquete.
 - (c) () Quando não tiver treino de vôlei, terá treino de basquete.
 - (d) () Quando tiver treino de vôlei, poderá ter treino de basquete.
 - (e) () Nenhuma das alternativas anteriores está correta.

Quando temos uma proposição unidirecional, do tipo $A \Rightarrow B$ (se A, então B), uma proposição equivalente, chamada de contrapositiva, é ($\sim B$) \Rightarrow ($\sim A$) (se não B, então não A). Sabendo disso, vamos relacionar à proposição da questão:

- A: há treino de basquete
- B: não há treino vôlei.
- \star A \Rightarrow B: se há treino de basquete, então não há treino de vôlei.
 - * ($\sim A$): não há treino de basquete
- * (~ B): há treino de vôlei.
- ★ $(\sim B) \Rightarrow (\sim A)$: se há treino de vôlei, então não há treino de basquete.

As duas proposições em ★ são equivalentes.

2. Qual o termo independente do binômio

$$\left(x^3 + \frac{1}{x}\right)^{12}$$

- (a) () 120
- (b) () 180
- (c) (X) 220
- (d) () 792
- (e) () 924

Os binômios to tipo (a+b) quando elevados a uma certa potência n podem ser escritos como

$$(a+b)^n = \binom{n}{0}a^0b^n + \binom{n}{1}a^1b^{n-1} + \binom{n}{2}a^2b^{n-2} + \dots + \binom{n}{n-1}a^{n-1}b^1 + \binom{n}{n}a^nb^0$$

ou escrito mais concisamente como (note que a soma dos expoentes de a e b é sempre n)

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}.$$
 (1)

Em que $\binom{n}{p}$ representa o número de combinações de n itens tomados p a p, dados pela fórmula

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}.$$
 (2)

Uma forma simples de calcular os binômios $\binom{n}{p}$ é usando o Triângulo de Pascal:

O Triângulo de Pascal tem a primeira coluna e a diagonal de 1's, em que cada elemento abaixo da diagonal é a soma entre dois elementos da linha de cima, o elemento imediatamente acima e o à esquerda deste, conforme indicado pelas cores no exemplo acima.

Por exemplo, consultando o Triângulo de Pascal acima, podemos escrever facilmente os seguintes binômios

$$(a+b)^3 = 1a^3b^0 + 3a^2b^1 + 3a^1b^2 + 1a^0b^3 = a^3 + 3a^2b + 3ab^2 + b^3,$$

$$(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4.$$

Para o problema dado, precisamos verificar qual é o expoente p de modo que (veja a Equação (1))

$$(x^3)^p \left(\frac{1}{x}\right)^{12-p} = x^{3p} \left(\frac{1}{x^{12-p}}\right) = \frac{x^{3p}}{x^{12-p}} = \text{constante.} \quad (a^p b^{n-p})$$

Precisamos que p seja um inteiro que faça com que numerador e denominador sejam iguais, pois assim a fração resultaria em 1. Isso é fácil, basta resolver a equação

$$x^{3p} = x^{12-p} \iff 3p = 12 - p \iff 4p = 12 \iff p = 3.$$

Agora, usando as Equações (1) e (2), podemos descobrir qual é o coeficiente desejado:

$$\binom{12}{3} (x^3)^3 \left(\frac{1}{x}\right)^{12-3} = \binom{12}{3} x^9 \frac{1}{x^9} = \binom{12}{3} \stackrel{\text{Eq.}(2)}{=} \frac{12!}{3!(12-3)!} = \frac{12.11.10.9!}{9!6} = 2.11.10 = 220$$

3. Um professor pretende realizar uma atividade com 6 alunos. Estes alunos ficarão em círculo. Sabendo-se que André e Maria não poderão ficar juntos na atividade, porque conversam muito, de quantas formas o professor poderá organizar os 6 alunos?

- (b) (X) 72
- (c) () 48
- (d) () 24
- (e) () 12

Vamos fixar Maria (M) em uma posição, escolher uma posição para André (A) e contar as possibilidades para as demais posições:

$$\frac{M}{X} \frac{4}{X} \frac{A}{A} \frac{3}{2} \frac{2}{X}$$

$$\frac{M}{X}$$
 $\frac{4}{X}$ $\frac{3}{A}$ $\frac{A}{A}$ $\frac{2}{X}$

$$\frac{M}{X} \frac{4}{X} \frac{3}{2} \frac{2}{A} \frac{A}{X}$$

Qualquer rotação dessas disposições formará o mesmo círculo, algo como: MPARST = PARSTM = ARSTMP = RSTMPA, etc. Assim, todas as possibilidades já estão contabilizadas, bastando multiplicar e somar, um total de $3 \times 24 = 72$.

- 4. Um palácio tem 5 portas. De quantas maneiras se pode abrir este palácio?
 - (a) () 5
 - (b) () 15
 - (c) () 18
 - (d) (X) 31
 - (e) () 32

A questão se resume a combinar quais portas serão abertas. Do total de 5 portas, podemos escolher uma porta para abrir, duas portas, 3, 4 ou as 5 portas. As combinações são, respectivamente, $\binom{5}{k}$, com k = 1, 2, 3, 4, 5. Note que não usamos o caso k = 0, pois seria o caso em que nenhuma porta seria aberta.

Para responder à pergunta, complete o Triângulo de Pascal até a linha n=5 e então faça a soma das possibilidades. O total será 31.

- 5. Em uma prova de tiro ao alvo, Marcelo tem probabilidade de acertar o alvo de $\frac{2}{7}$ e a probabilidade de Antônio acertar o mesmo alvo é de $\frac{2}{5}$. Qual é a probabilidade de pelo menos um dos dois acertar o alvo, considerando que ambos atiram ao mesmo tempo?
 - (a) () $\frac{4}{35}$
 - (b) () $\frac{8}{35}$
 - (c) () $\frac{16}{35}$
 - (d) (X) $\frac{20}{35}$
 - (e) () $\frac{32}{35}$

Marcelo acerta e Antônio erra com probabilidade $\frac{2}{7} \cdot \frac{3}{5} = \frac{6}{35}$, Marcelo erra e Antônio acerta com probabilidade $\frac{5}{7} \cdot \frac{2}{5} = \frac{10}{35}$. Ambos acertam com probabilidade $\frac{2}{7} \cdot \frac{2}{5} = \frac{4}{35}$. Somando tudo, temos $\frac{20}{35}$ de probabilidade de pelo menos um deles acertar.

- 6. Uma empresa faz salgadinhos para festas. Os salgadinhos disponíveis para encomendas são: coxinha, bolinha de queijo, quibe, empadinha e pastelzinho. Em cada encomenda, o cliente poderá escolher até 3 tipos de salgadinhos. Observe que não há a necessidade de pedir salgadinhos distintos. Por exemplo, pedir duas porções de coxinha e uma porção de pastelzinho. De quantas formas se pode fazer pedidos para essa empresa?
 - (a) () 5
 - (b) () 10
 - (c) () 20
 - (d) () 30
 - (e) (X) 35

Suponha que o cliente peça 1 porção apenas. Então temos 5 possibilidades:

5.

Suponha que peça 2 porções, em que os itens são diferentes do tipo (a, b):

5 4.

Temos um total de 20 possibilidades. No entanto, quando fazemos um arranjo simples dessa forma, estamos dizendo que $(a,b) \neq (b,a)$, mas são o mesmo pedido! Precisamos então descontar esses casos que contamos demasiadamente, dividindo o resultado pelo número de permutações que é 2! = 2. Portanto, temos 20/2 = 10 possibilidades, nas quais os itens (a,b) = (b,a) são considerados iguais. Agora, como os pedidos podem ser repetidos, precisamos contá-los (os casos do tipo (a,a), que são um total de 5). O total de possibilidades para pedir 2 porções é 15.

Suponha que o cliente peça três porções diferentes, e analogamente ao caso anterior,

5 4 3.

Daí temos um total de 60 possibilidades. Mas estamos contando como sendo diferentes os pedidos da forma $(a, b, c) \neq (a, c, b) \neq (b, c, a)$, etc. Para descontar os itens contados indevidamente, precisamos dividir pelo total de suas permutações, que é 3! = 6. Assim, o resultado é 60/6 = 10. Mas ainda não contamos os casos do tipo (a, a, a), que são 5. Por fim, temos 15 possibilidades.

A resposta final é a soma dos 3 casos, 35.

- 7. Considere uma urna com bolas numeradas de 1 a 50. Qual a probabilidade de se tirar um número que seja múltiplo de 2, 3 ou 5 em um único sorteio?
 - (a) () 32%
 - (b) () 48%
 - (c) () 56%

- (d) () 64%
- (e) (X) 72%

Vamos contar quantos números são múltiplos de 2, 3 e 5. Uma forma rápida de fazer isso, já que a lista começa em 1 e vai até 50, é pegar a função "chão" $f(k) = \lfloor \frac{50}{k} \rfloor$, k = 2, 3, 5, definida como sendo o arredondamento para baixo para o inteiro mais próximo (ou dito de outra forma, o maior inteiro menor ou igual a 50/k). Estamos dividindo 50 por 2, 3, 5, e pegando apenas a parte inteira. Isso nos dá

$$f(2) = \lfloor \frac{50}{2} \rfloor = \lfloor 25 \rfloor = 25,$$

$$f(3) = \lfloor \frac{50}{3} \rfloor = \lfloor 16.\overline{6} \rfloor = 16$$

$$f(5) = \lfloor \frac{50}{5} \rfloor = \lfloor 10 \rfloor = 10.$$

Dentre os 25 múltiplos de 2, há os que são múltiplos de 3, e também os múltiplos de 5 (no final das contas, são múltiplos de 6 e 10). Vamos contá-los:

$$f(6) = \lfloor \frac{50}{6} \rfloor = \lfloor 8.\overline{3} \rfloor = 8,$$

$$f(10) = \lfloor \frac{50}{10} \rfloor = 5.$$

Também temos os que são múltiplos de 3 e 5, ou seja, múltiplos de 15:

$$f(15) = \lfloor \frac{50}{15} \rfloor = \lfloor 3.\overline{3} \rfloor = 3.$$

Por fim, os que são múltiplos de 2, 3 e 5, ou seja, múltiplos de 30:

$$f(30) = \lfloor \frac{50}{30} \rfloor = \lfloor 1.\overline{6} \rfloor = 1.$$

Podemos colocar essas informações num diagrama de Venn, conforme a Figura 1. Agora, basta contar, o que dá um total de 36 dentre 50 valores, ou seja, 36/50 = 0.72 = 72%.

Figura 1: A quantidade de múltiplos dentre 1 e 50.

8.	Na empresa X os funcionários têm uma senha para acessar os sistemas da empresa. Cada senle formada por um número par de 4 algarismos. Quantas senhas são possíveis formar com algarismos de 0 a 9 inclusive?	
	(a) (F) 2296	
	(b) (F) 2846	
	(c) (F) 3024	
	(d) (F) 4048	
	(e) (F) 5264	
	Precisamos preencher as lacunas com algarismos: colocamos as possibilidades: 9 10 10 5 com um total (basta multiplicar). 9 porque não podemos incluir o zero no produce podemos incluir qualquer dígito, sem restrições. 5 ser um número par, e portanto precisa terminar em 0, 2, 4, 6	de 4500 possibilidades primeiro dígito. Os dois porque a senha precisa
9.	9. Considere um conjunto A com n elementos. Define-se uma partiçã conjuntos $A_1, A_2,, A_k$ todos não vazios de modo que $A_1 \cup A_2 \cup \cup$ todos disjuntos, ou seja, $A_i \cap A_j = \emptyset$ para todo $i \neq j$. Dizemos tar em $A_1,, A_k$. Diante disso, assinale a alternativa correta	$\partial A_k = A$ e os conjuntos A_i são
	(a) () O número de conjuntos da partição $A_1,, A_k \notin 2^n$.	
	(b) () O número de conjuntos da partição $A_1,, A_k$ é $2^n - 2$ pois não são considerado o conjunto vazio, nem o próprio A .	
	(c) (X) Há um número finito de conjuntos que particionam o conde uma família de conjuntos $A_1,, A_k$ que particiona o conju	
	(d) () Há infinitas formas de se particionar o conjunto A .	
	(e) () As alternativas (b) e (d) estão corretas.	
	 (a) Contraexemplo: seja A = {a, b, c, d, e, f}. Temos n = 6 e {c} ∪ {d, f} ∪ {a, b, e}, um total de 3 conjuntos, o que obto (b) O mesmo contraexemplo acima serve para esta. 	
	(c) A partição unitária é aquela em que cada subconjunto mento cada um. No exemplo de (a), a partição unitária o {f}∪{e} com um total de 6 conjuntos, o mesmo valor de maior número de conjuntos possível para uma partição. número finito de conjuntos que particionam A.	$\{a\} \cup \{c\} \cup \{b\} \cup \{d\} \cup n$. Percebe-se que $n \notin o$
	(d) falsa pela explicação em (c).	
10.	 Com relação à demonstração por absurdo e a demonstração por inque 	dução finita é correto afirmar
	(a) () A demonstração por absurdo e a demonstração por indu mesma forma de demonstrar teoremas e outros resultados en	-

sucesso.

(b) () Na demonstração por absurdo, considera-se como verdadeiro uma hipótese falsa e se chegar em um resultado verdadeiro significa que a demonstração foi realizada com

- (c) () Não há necessidade da hipótese de indução em algumas situações no método de demonstração por indução finita.
- (d) () As alternativas (b) e (c) estão corretas.
- (e) (X) Nenhuma das alternativas anteriores está correta.
 - (a) são demonstrações diferentes.
 - (b) uma hipótese falsa é considerada como verdadeira, e precisamos chegar a um resultado falso para refutar a hipótese falsa assumida.
 - (c) a hipótese de indução é o cerne da demonstração, pois é o fato que permite ligar um caso n ao caso n + 1.