Syllabus

- 1. Introduction
 - Survival data
 - Censoring mechanism
 - Application in medical field
- 2. Concepts and definitions
 - Survival function
 - Hazard function
- 3. Non-parametric approach
 - Life table
 - Kaplan-Meier survival estimate
 - Hazard function
 - Median and percentile survival time
- 4. Hypothesis testing
 - Overview hypothesis, test statistics, p-values
 - Log-rank
 - Wilcoxon
 - Gehan test
- 5. Study design and sample size estimation
 - Overview
 - Survival sample size estimation
 - Accrual time and Study duration

- 6. Semiparametric model proportional hazard model
 - Partial likelihood
 - Inference
 - Time varying covariates
 - Prediction
 - Stratification
- 7. PH model checking
 - Model checking
 - Residuals
- 8. Parametric model
 - Parametric proportional hazard model
 - Accelerate failure model
- 9. Other topics
 - · Competing risk
 - Recurrent events
 - · Non-proportional hazard ratio
 - Interval censoring

Survival Data With Covariates

- Why do we want to include covariates
 - To understand the impact of covariates on survival function
 - For both categorical and continuous variables
 - To estimate the magnitude of the impact
 - To quantify the confidence of the impact
 - To control confounding factors
 - To predict survival
- Covariates can be
 - Continuous
 - Discrete
 - Time varying

Example – Covariates in the Ovarian Data Set

Dataset available in R survival package

futime: survival or censoring time (day)

fustat: censoring status (censor=0)

age: in years

resid.ds: residual disease present (1=no,2=yes)

rx: treatment group

ecog.ps: ECOG performance status (1 is better, see

reference)

```
futime fustat
                      age resid.ds rx ecog.ps
                1 72.3315
                1 74.4932
      115
      156
                1 66.4658
      421
                0 53.3644
      431
                1 50.3397
      448
                0 56.4301
      464
                1 56.9370
      475
                1 59.8548
      477
                0 64.1753
10
      563
                1 55.1781
11
      638
                1 56.7562
12
      744
                0 50.1096
13
      769
                0 59.6301
14
      770
                0 57.0521
15
      803
                0 39.2712
16
      855
                0 43.1233
17
                0 38.8932
     1040
18
     1106
                0 44.6000
19
     1129
                0 53.9068
20
     1206
                0 44.2055
21
     1227
                0 59.5890
22
      268
                1 74.5041
23
      329
                1 43.1370
      353
                1 63.2192
25
      365
                1 64.4247
                0 58.3096
```

The Proportional Hazards (PH) Regression Model

- PH model AKA as Cox proportional hazards model (Cox, JRSSB 1972)
- Survival data (T, Δ, Z) , the hazard function can be written as the following based on the Cox model

$$h(t|Z=z) = h_0(t)e^{\beta'z}$$

• where $h_0(t)$ is a baseline hazard function, Z can a vector of p covariates, β is a vector of p coefficients

$$Z = \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_p \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}$$

Baseline Hazard Function $h_0(t)$

A couple of notes on baseline hazard function $h_0(t)$

1.
$$h(t|Z=z) = h_0(t)e^{\beta_1 z_1 + \beta_2 z_2 + \dots + \beta_p z_p}$$

 $h_0(t)$ is equivalent to the intercept of the regression model

2. Hazard ratio

$$h(t|Z = \phi_1) = h_0(t)e^{\beta'\phi_1}$$

 $h(t|Z = \phi_2) = h_0(t)e^{\beta'\phi_2}$

$$\frac{h(t|Z = \phi_1)}{h(t|Z = \phi_2)} = e^{\beta'(\phi_1 - \phi_2)}$$

The hazard ratio does not depend upon the baseline hazard function

Understanding the Coefficient

Let Z be a univariate covariate and take values of 0,1

$$h(t|Z=1) = h_0(t)e^{\beta}$$

$$h(t|Z=0) = h_0(t)$$

$$\frac{h(t|Z=1)}{h(t|Z=0)} = e^{\beta}$$

$$\beta = \log \frac{h(t|Z=1)}{h(t|Z=0)}$$

Interpretation

- β is the log hazard ratio
- e^{β} is the hazard ratio
- $1 e^{\beta}$ represents risk reduction if Z = 0 represents the control arm.

Understanding the Coefficient

Let Z be a continuous univariate covariate

$$\frac{h(t|Z=z+1)}{h(t|Z=z)} = e^{\beta}$$

$$\beta = \log \frac{h(t|Z=z+1)}{h(t|Z=z)}$$

eta is the log of the hazard ratio with unit change in Z

Example: Ovarian Data

- Let us consider rx and ecog in the Cox model
 - Rx treatment indicator
 - Ecog ECOG performance status (1 is better than 2)
- Models

$$\log h(t|rx,ecog) = \log h_0(t) + \beta_1 rx + \beta_2 ecog$$

- rx = 1, ecog = 1, $\log h(t|rx, ecog) = \log h_0(t) + \beta_1 + \beta_2$
- rx = 1, ecog = 2, $\log h(t|rx, ecog) = \log h_0(t) + \beta_1 + 2\beta_2$
- rx = 2, ecog = 1, $\log h(t|rx, ecog) = \log h_0(t) + 2\beta_1 + \beta_2$
- rx = 2, ecog = 2, $\log h(t|rx, ecog) = \log h_0(t) + 2\beta_1 + 2\beta_2$
- The log hazard ratio between
 - Stratum rx = 1, ecog = 1 and
 - Stratum rx = 2, ecog = 2
 - is $-(\beta_1 + \beta_2)$

Example: Ovarian Cancer

Why Cox PH Model

Since Cox proposed the model in 1972

$$h(t|Z=z) = h_0(t)e^{\beta'z}$$

Type I error always inflate a little bit. 0.015 70-028

- It has been the most popular and commonly used regression model for survival analyses
 - Easy to use
 - Flexible for covariate
 - Well-understood operating characteristics
 - Can be interpreted even assumption does not hold
- Nonetheless, it has limitations
 - Not easy to handle tied events
 - Small bias when randomization is not 1:1
 - Low power when PH assumption is violated
- Let us move on to the inference

Notations

- Survival data in n subjects
 - (T_i, Δ_i, Z_i) i = 1, 2, ..., n
 - Z_i a vector of covariates
 - $T_i = \min(X_i, C_i)$
 - $\Delta_i = I(X_i \leqslant C_i)$
- Number of events in both groups: r in J distinct event time
 - Ordered distinct event time: $t_{(1)} < t_{(2)} < \cdots < t_{(J)}$
 - $j = 1, 2, 3, ..., J \le r$
 - $z_{(j)}$ covariates of the subject who experienced the j^{th} event
- Define risk set as $R(t) = \{\text{set of subjects } I(T_i \ge t)\}$

Partial Likelihood

- · Assuming no tie at the distinct event time
- The likelihood at the j^{th} event for the subject who experienced the event at $t_{(j)}$ given $R(t_{(j)})$ can be written as

$$\begin{split} L_j(\beta) &= P_r(j^{th} \text{ event at } t_{(j)}|R(t_{(j)})) \\ &= \frac{h(t_{(j)}|z_{(j)})}{\sum_{l \in R(t_{(j)})} h(t_{(j)}|z_l)} \\ &= \frac{h_0(t_{(j)})e^{\beta'z_{(j)}}}{\sum_{l \in R(t_{(j)})} h_0(t_{(j)})e^{\beta'z_l}} \\ &= \frac{e^{\beta'z_{(j)}}}{\sum_{l \in R(t_{(j)})} e^{\beta'z_l}} \end{split}$$
 and subs in the risk set

Partial Likelihood

• The partial likelihood can be written as

$$L_P(\beta) = \prod_{j=1}^J \frac{e^{\beta' z_{(j)}}}{\sum_{l \in R(t_{(j)})} e^{\beta' z_l}} \qquad \text{when it subject} \\ = \prod_{i=1}^n \left\{ \frac{e^{\beta' z_i}}{\sum_{l \in R(t_i)} e^{\beta' z_l}} \right\}^{\Delta_i} \stackrel{\text{event index}}{= \sum_{l \in R(t_i)}^J e^{\beta' z_l}} \\ \text{Recover the above formula}$$

Example – Construct Partial Likelihood

Survival data

- Group 0: 6+,7,9+,10,11+,13,16+,17+,20+ $n_0=9$ Group 1: 4,5+,8+,11+,12,15,17+,22+,23+ $n_1=9$

Risk sets

• 7 Distinct event time: 4, 7, 10, 12, 13, 15,

$L_P(\beta) =$	$= \frac{e^{\beta}}{9e^{\beta} + 9}$	$\frac{1}{7e^{\beta}+8}$.	$\frac{1}{6e^{\beta}+6}.$	$\frac{e^{\beta}}{5e^{\beta}+4}.$	$\frac{1}{4e^{\beta}+4}.$	$\frac{e^{\beta}}{4e^{\beta}+3}$
Group 0	6+,7,9+, 10,11+,13, 16+,17+, 20+	7,9+,10, 11+,13, 16+,17+, 20+	10, 11+, 13,16+, 17+, 20+	13,16+, 17+, 20+	13,16+, 17+, 20+	16+, 17+, 20+
Group 1	8+,11+, 12,15,17+, 22+,23+	8+,11+, 12,15,17+, 22+,23+	11+,12, 15,17+, 22+,23+	12,15, 17+,22+, 23+	15,17+, 22+,23+	15,17+,22+, 23+
Event Time	4	7	10	12	13	15
	cBZ = SeB	Goup 1				

Why Partial Likelihood

- For censored data, likelihood consists observed data (with events) and partially observed data (censored)
- For observed events (complete)

$$L_{O}(\beta) = \prod_{i=1}^{n} f(T_{i})^{\Delta_{i}}$$
 conson indicator
$$= \prod_{i=1}^{n} (h(T_{i})S(T_{i}))^{\Delta_{i}} \qquad \text{Subject Who Oizo Coensoned, not contribute}$$
 to this part)

• For incompletely observed data cincomplete)

$$L_C(\beta) = \prod_{i=1}^n S(T_i)^{1-\Delta_i}$$

Subject who has a Di=1 (complete) does the contribute to this part.

• The complete likelihood

Why Partial Likelihood

· Rewrite the full likelihood

$$L(\beta) = \prod_{i=1}^{n} h(t_{i}|z_{i})^{\Delta_{i}} S(T_{i})$$

$$\sum_{i=1}^{n} h(t_{i}|z_{i}) \prod_{i=1}^{n} \left\{ \frac{h(t_{i}|z_{i})}{\sum_{l \in R(t_{i})} h(t_{i}|z_{l})} \right\}^{\Delta_{i}} \left\{ \sum_{l \in R(t_{i})} h(t_{i}|z_{l}) \right\}^{\Delta_{i}} S(T_{i})$$

$$= L_{P}(\beta) \left[\prod_{i=1}^{n} \left\{ \sum_{l \in R(t_{i})} h(t_{i}|z_{l}) \right\}^{\Delta_{i}} S(T_{i}) \right]$$

• Cox argued that there is very little information on β beyond $L_P(\beta)$ in the full likelihood

Log-Partial Likelihood

$$l_{P}(\beta) = \log \prod_{i=1}^{n} \left\{ \frac{e^{\beta' z_{i}}}{\sum_{l \in R(t_{i})} e^{\beta' z_{l}}} \right\}^{\Delta_{i}}$$

$$= \sum_{i=1}^{n} \Delta_{i} \left\{ \beta' z_{i} - \log \left\{ \sum_{l \in R(t_{i})} e^{\beta' z_{l}} \right\} \right\}$$

$$= \sum_{i=1}^{n} l_{i}(\beta)$$

Note, $l_i(\beta)$ are not independent!

Score Function

• The score function

$$\begin{split} U(\beta) &= \frac{\partial}{\partial \beta} \, l_P(\beta) \\ &= \sum_{i=1}^n \Delta_i \bigg\{ z_i - \frac{\sum_{l \in R(t_i)} z_l e^{\beta' z_l}}{\sum_{l \in R(t_i)} e^{\beta' z_l}} \bigg\} \\ &= \sum_{i=1}^n \Delta_i \{ z_i - \bar{Z}_i \} \\ &= \sum_{i=1}^n \Delta_i \{ z_i - \bar{Z}_i \} \\ &= \sum_{i=1}^n \Delta_i \{ z_i - \bar{Z}_i \} \end{split}$$

Where $\bar{Z}_i = \frac{\sum_{l \in R(t_i)} z_l e^{\beta' z_l}}{\sum_{l \in R(t_i)} e^{\beta' z_l}}$, weighted average of the Z in the risk set $R(t_i)$

Information Definition

$$\begin{split} I(\beta) &= -\left\{\frac{\partial^2}{\partial \beta^2} l_P(\beta)\right\} \\ &= \sum\nolimits_{i=1}^n \Delta_i \left\{\frac{\sum_{l \in R(t_i)} z_{l \otimes} z_l e^{\beta' z_l}}{\sum_{l \in R(t_i)} e^{\beta' z_l}} - \left(\frac{\sum_{l \in R(t_i)} z_l e^{\beta' z_l}}{\sum_{l \in R(t_i)} e^{\beta' z_l}}\right)^2\right\} \\ &= \sum\nolimits_{i=1}^n \Delta_i \left\{\frac{S_2}{S_0} - \frac{S_1 S_1'}{{S_0}^2}\right\} \end{split}$$

where

$$S_0 = \sum_{l \in R(t_i)} e^{\beta' z_l}$$
, $S_1 = \bar{Z}_i = \sum_{l \in R(t_i)} z_l e^{\beta' z_l}$, and $S_2 = \sum_{l \in R(t_i)} z_l z_l' e^{\beta' z_l}$

Note, S_0 is a scaler, S_1 is a Kx1 vector, and S_2 is a KxK matrix

MLE

• MLE \hat{eta} can be obtained from the score function

$$U(\hat{\beta}) = 0$$

$$U(\hat{\beta}) = 0$$
$$Var(\hat{\beta}) = I(\hat{\beta})^{-1}$$

Inference

- Estimation and confidence intervals
- Hypothesis testing,
 - Hazard ratio <1 represents risk reduction
 - $\beta < 0$ mean risk reduction

$$H_0$$
: $\beta \geq 0$ vs H_A : $\beta < 0$

- Association
- Prediction

Confidence Intervals

95% CI confidence interval for the coefficient estimates

$$\hat{\beta} \pm z_{0.975} se(\hat{\beta}) = \hat{\beta} \pm 1.96 se(\hat{\beta})$$

 $\hat{\beta}$ is a unit log hazard ratio, to covert to unit hazard ratio, lower and upper bound of the 95% CI for the unit hazard ratio is

$$\left[e^{\widehat{\beta}-1.96se(\widehat{\beta})},e^{\widehat{\beta}+1.96se(\widehat{\beta})}\right]$$

Wald Test

• For components of
$$\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}$$
,

Ho: $\beta_1 = \beta_2 = --- = \beta_p = 0$

• A Wald test for one covariate is

$$Z_{i} = \frac{\left(\widehat{\beta}_{i} - \beta_{i}\right)}{\sqrt{I(\widehat{\beta}_{i})^{-1}}} \sim N(0,1)$$

$$for \ i = 1, ..., p$$

A composite test can be written as

$$\chi_{p}^{2} = \hat{\beta}' I(\hat{\beta})^{-1} \hat{\beta}$$

Score Test

Under null H_0 : $\beta=0$, score test

$$U(0)/\sqrt{I(0)}\sim N(0,1)$$

$$U(0) = \sum_{i=1}^{n} \Delta_i \left\{ z_i - \frac{\sum_{l \in R(t_i)} z_l e^{\beta' z_l}}{\sum_{l \in R(t_i)} e^{\beta' z_l}} \right\}$$

$$= \sum_{i=1}^{n} \Delta_i \left\{ z_i - \frac{\sum_{l \in R(t_i)} z_l}{\sum_{l \in R(t_i)} 1} \right\}$$

$$= \sum_{i=1}^{n} \Delta_i \left\{ z_i - \frac{\sum_{l \in R(t_i)} z_l}{n_i} \right\}$$

Likelihood Ratio Test

Let full covariates be

$$Z^{K'} = (Z_1, Z_2, ..., Z_k, Z_{k+1}, ..., Z_K)$$

• Subset of covariates for k < K

$$Z^{\underline{k}\prime} = (Z_1, Z_2, \dots, Z_{\underline{k}})$$

• The full model is

$$L_{P}(\beta^{K}|Z^{K}) = \prod_{i=1}^{n} \left\{ \frac{exp(\beta_{1}Z_{i1} + \beta_{2}Z_{i2} + \dots + \beta_{K}Z_{iK})}{\sum_{l \in R(t_{i})} exp(\beta_{1}Z_{l1} + \beta_{2}Z_{l2} + \dots + \beta_{K}Z_{lK})} \right\}^{\Delta_{i}}$$

The sub-model is

$$L_{P}(\beta^{k}|Z^{k}) = \prod_{i=1}^{n} \left\{ \frac{exp(\beta_{1}Z_{i1} + \beta_{2}Z_{i2} + \dots + \beta_{k}Z_{ik})}{\sum_{l \in R(t_{i})} exp(\beta_{1}Z_{l1} + \beta_{2}Z_{l2} + \dots + \beta_{k}Z_{lk})} \right\}^{\Delta_{i}}$$

Likelihood Ratio Test

• To test

$$H_0: \beta_{k+1} = \beta_{k+2} = \dots = \beta_K = 0$$

The likelihood Ratio test is

$$\Lambda = \frac{L_P(\hat{\beta}^K | Z^K)}{L_P(\hat{\beta}^k | Z^K)}$$

$$-2\log \Lambda = -2\{\log L_P(\hat{\beta}^K | Z^K) - \log L_P(\hat{\beta}^k | Z^K)\} \sim \chi^2_{(K-K)}$$

Example – Melanoma Data

Variable names

- Time survival time in days
- Status 1=died from melanoma, 2=alive, 3=dead from other causes

```
• Sex – 1=male, 0=female
```

- Age age in years
- Year operation
- Thickness tumor thickness in mm
- Ulcer 1=presence; 0=absence

> head(Melanoma) time status sex age year thickness ulcer 1 10 3 1 76 1972 6.76 1 2 30 3 1 56 1968 0.65 0 3 35 2 1 41 1977 1.34 0 4 99 3 0 71 1968 2.90 0 5 185 1 1 52 1965 12.08 1 6 204 1 1 28 1971 4.84 1 > |

Source

- P. K. Andersen, O. Borgan, R. D. Gill and N. Keiding (1993) Statistical Models based on Counting Processes. Springer.
- Library(MASS)

SAS Code

```
ods graphics on;
proc lifetest data=example method=KM plots=survival (cl atrisk=0 to 6000 by 500) outsurv=survival;
  time time*status(2);
  run;
ods graphics off;
proc phreg data=example;
  model time*status(2)=age sex thickness;
  output out=Outp xbeta=Xb resmart=Mart resdev=Dev;
run;
```

Example - Melanoma

Summa		Number of Ce sored Values	
Total	Failed	Censored	Percent Censored
205	71	134	65.37

Example - Melanoma

Interpretation:

Overall tests – reject the null that there is no difference in age, sex, and tumor thickness

Likelihood Ratio

Score

Wald

Ward tests shows

- The risk of death increased 2% with 1 year old
- The risk increased 15% with 1 unit increase in tumor thickness

Model Fit Statistics						
Criterion	Without Covariates	With				
-2 LOG L	700.985	666.615				
AIC	700.985	672.615				
SBC	700.985	679.403				

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	34.3703	3	<.0001				
Score	41.8566	3	<.0001				
Wald	38.2646	3	<.0001				

		Analysis	of Maximu	ım Likelihoo	d Estimates		
Parameter	DF	Parameter Estimate	Standard Error	_	Pr > ChiSq	Hazard Ratio	Label
age	1	0.02221	0.00795	7.8071	0.0052	1.022	age
sex	1	0.51242	0.23877	4.6056	0.0319	1.669	sex
thickness	1	0.13499	0.03048	19.6188	<.0001	1.145	thicknes

Example - Melanoma

Model fit statistics

 A general form of information criteria (IC) is IC(c) = - 2logL(M) + c*p where p is the number of covariates and c is a penalty parameter.

Akaike Information Criterion
$$AIC = -2 \log L + c * p$$

Schwarz Bayesian (Information) Criterion

$$SBC = -2 \log L + p \log \left(\sum_{j} f_{j} \Delta_{j} \right)$$

 Δ_{j} - event indicator
 f_{j} - frequency

Model Fit Statistics							
Criterion	Without Covariates	With Covariates					
-2 LOG L	700.985	666.615					
AIC	700.985	672.615					
SBC	700.985	679.403					

Testing Globa	Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	34.3703	3	<.0001
Score	41.8566	3	<.0001
Wald	38.2646	3	<.0001

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label	
age	1	0.02221	0.00795	7.8071	0.0052	1.022	age	
sex	1	0.51242	0.23877	4.6056	0.0319	1.669	sex	
thickness	1	0.13499	0.03048	19.6188	<.0001	1.145	thickness	

Compare to the Log-rank Test

2x2 table at the j^{th} event time

Group	Events occurred at $t_{(j)}$	Number of subjects Survival at $t_{(j)}^+$	Number of subject at risk at $t_{(j)}^-$
0	d_{0j}	$n_{0j} - d_{0j}$	n_{0j}
1	d_{1j}	$n_{1j} - d_{1j}$	n_{1j}
Total	d_{j}	$n_j - d_j$	n_{j}

The Log-rank Test

• The total deviation from null

$$L = \sum_{i=1}^{k} (d_{0i} - e_{0i})$$

$$C_{0i} = A_{i} \cdot \frac{n_{ij}}{n_{ij}}$$

Variance

$$var(L) = var\left(\sum_{i=1}^{k} (d_{0i} - e_{0i})\right) \approx \sum_{i=1}^{k} var(d_{0i})$$

From hypergeometric distribution

$$var(d_{0i}) = \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{n_i^2(n_i - 1)}$$

$$var(L) = \sum_{i=1}^{k} \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{n_i^2(n_i - 1)}$$

$$\frac{L}{\sqrt{\mathrm{var}(L)}} \sim N(0,1)$$

Compared To the Log-rank Test

Consider a special case of two sample problem and no ties Under null $H_0\colon \beta=0$, score test

$$U(0)/\sqrt{I(0)} \sim N(0,1)$$

$$U(0) = \sum_{i=1}^{n} \Delta_{i} \left\{ z_{i} - \frac{\sum_{l \in R(t_{i})} z_{l}}{\sum_{l \in R(t_{i})} 1} \right\}$$

$$= \sum_{j=1}^{J} \left(z_{j} d_{j} - d_{j} \frac{n_{1j}}{n_{j}} \right)$$

$$= \sum_{j=1}^{J} \left(d_{1j} - d_{j} \frac{n_{1j}}{n_{j}} \right)$$

$$= \sum_{j=1}^{J} \left(d_{1j} - e_{1j} \right)$$

Compare to the Log-rank Test

When $d_i = 1$, no tie

$$I(\beta) = \sum_{i=1}^{n} \Delta_{i} \left\{ \frac{\sum_{l \in R(t_{i})} z_{l}^{2} e^{\beta' z_{l}}}{\sum_{l \in R(t_{i})} e^{\beta' z_{l}}} - \left(\frac{\sum_{l \in R(t_{i})} z_{l} e^{\beta' z_{l}}}{\sum_{l \in R(t_{i})} e^{\beta' z_{l}}} \right)^{2} \right\}$$

$$I(0) = \sum_{i=1}^{n} \Delta_{i} \left\{ \frac{\sum_{l \in R(t_{i})} z_{l}^{2}}{\sum_{l \in R(t_{i})} 1} - \left(\frac{\sum_{l \in R(t_{i})} z_{l}}{\sum_{l \in R(t_{i})} 1} \right)^{2} \right\}$$

$$= \sum_{j=1}^{J} d_j \left\{ \frac{n_{1j}}{n_j} - \left(\frac{n_{1j}}{n_j} \right)^2 \right\} = \operatorname{var}(L)$$

There score test

$$\frac{U(0)}{\sqrt{I(0)}} = \frac{L}{\sqrt{\operatorname{var}(L)}} \sim N(0,1)$$

Compared To Log-rank

- Score test is exact the same test as the log-rank
- Both have the optimal power when hazard ratio is constant
- Advantages of PH model
 - Provide the estimate of hazard ratio and CI in addition to p-values
 - Adjust confounding factors in
 - Hypothesis test
 - Understanding association
 - Fit multiple covariates
 - Can be used for prediction

Example Melanoma

- Test difference between male and female
- Sex 1=male, 0=female
- K-M survival curves suggest that females survival longer than males

Example Melanoma

- Test difference between male and female
- Sex 1=male, 0=female
- Males' risk doubles female's

Tes	t of Equality of	over	Strata
Test	Chi-Square	DF	Pr > Chi-Square
Log-Rank	7.8965	1	0.0050
Wilcoxon	7.9688	1	0.0048
-2Log(LR)	7.4974	1	0.0062

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Me	odel Fit Stati	stics
Criterion	Without Covariates	With Covariates
-2 LOG L	700.985	693.475
AIC	700.985	695.475
SBC	700.985	697.738

Testing Globa	I Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	7.5102	1	0.0061
Score	7.8953	1	0.0050
Wald	7.6190	1	0.0058

		Analysis o	of Maximun	n Likelihood	Estimates			
Parameter	11177.002		Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio		
sex	1	0.65586	0.23761	7.6190	0.0058	1.927	sex	

Example - Melanoma

• See the difference of the sex effect in different model?

			Model Fit Statistics									Mode	I Fit Statis	tics				
		Cri	erion (hout ates C	cova	With					Cri	iterion C	Without ovariates	Cova	With		
		-21	OG L	700	.985	69	3.475						LOG L	700.985		66.615		
		AIC		700	.985	69	5.475					Alc	a 	700.985		72.615		
		SB	C	700	.985	69	7.738					SB	C	700.985	6	79.403		
				1200010		1,1207						Testin	g Global	Null Hypoth	nesis	: BETA=0		
		Testin	g Globa	Null H	Hypoth	esis:	BETA=0					Test		Chi-Square	DF	Pr > ChiSq	1	
		Test		Chi-S	quare	DF	Pr > ChiSq					Likelihoo	d Ratio	34.3703				
		Likelihoo	d Ratio	7	7.5102	1	0.0061					Score		41.8566				
		Score		7	7.8953	1	0.0050					Wald		38.2646	3	<.0001		
		Wald		7	7.6190	1	0.0058					Analysi	s of Maxii	num Likeli	hood	Estimates		
		Analysis	of May	imum	l ikolih	hood	Estimates			Parameter	DF	Parameter Estimate			are	Pr > ChiSq	Hazard Ratio	
		200	100		LIKCIII	ioou	Laminates	Unward		age	1	0.02221	0.0079	5 7.8	071	0.0052	1.022	ag
Parameter	DF	Paramete Estimat	Committee of the contract of	(A) (1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	Chi-Sq	uare	Pr > ChiSq	Hazard Ratio	Label	sex	1	0.51242	0.2387	7 4.6	056	0.0319	1.669	Se
sex	1	0.6558	0.2	3761	7	6190	0.0058	1.927	sex	thickness	1	0.13499	0.0304	8 19.6	188	<.0001	1.145	th

Example - Melanoma

Variable		n	Mean (SD)	Min	Max
age	Male	79	53.90 (17.61)	12.00	95.00
	Female	126	51.56 (16.06)	4.00	89.00
thickness	Male	79	2.49 (2.75)	0.16	14.67
	Female	126	3.61 (3.12)	0.10	17.42

When There Are Ties

- The set-up of the partial likelihood are based on one event only at distinct survival time
- When there are ties, the following approaches are available to adjust ties
 - Discrete method Cox's modification (1972)
 - Breslow method 1972
 - Efron method
 - Exact method Kalbfleisch and Prentice (1973)

Reference

Breslow, NE (1972). Contribution to the discussion of Cox (1972). Journal of the Royal Statistical Society B, 34: 216-217. Cox DR (1972). Regression models and life tables (with Discussion). Journal of the Royal Statistical Society B, 34:187-220.

Kalbfleisch JD and Prentice RL (1973). Marginal likelihoods based on Cox's regression and life model. Biometrika, 60: 267-278.

Notations

- Survival data in n subjects
 - (T_i, Δ_i, Z_i) i = 1, 2, ..., n
 - Z_i a vector of covariates
 - $T_i = \min(X_i, C_i)$
 - $\Delta_i = I(X_i \leq C_i)$
- Number of events in both groups: r in J distinct event time
 - Ordered distinct event time: $t_{(1)} < t_{(2)} < \cdots < t_{(J)}$
 - $j = 1, 2, 3, ..., J \le r$
 - d_j the number of events at $t_{(j)}$
 - i_{j1} , ..., i_{jd_j} subject index at $t_{(j)}$ who has an event

Notation

- Define combination risk set at $t_{(k)}$ as
 - $CR(t_{(j)}) = \{\text{sets } d_j \text{ of subjects } I(T_i \ge t_{(j)})\}$
- Ex.: Risk set at $t_{(2)}$
 - $R(t_{(2)}) = \{1,2,3,4,5\}$
 - Event set at $t_{(2)}=\{4,5\}$, $d_2=2=$ number of event at $t_{(2)}$
 - $CR(t_{(2)}) = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$

Discrete Method

· The partial likelihood

$$\begin{split} L_P(\beta) &= \prod\nolimits_{j=1}^J P_r \big(d_j \ events \big| the \ number \ of \ sets \ in \ \{CR \big(t_{(j)} \big) \} \big) \\ &= \prod\nolimits_{j=1}^J \frac{P_r \left(\left(d_j \ events \big| R \big(t_{(j)} \big) \right)}{\sum_{l \in \{CR \big(t_{(j)} \big) \}} P_r \left(\left(d_j \ events \ in \ set \ l \big| R \big(t_{(j)} \big) \right)} \\ &= \prod\nolimits_{j=1}^J \frac{e^{\beta z_{j1}} e^{\beta z_{j2}} \dots e^{\beta z_{jd_j}}}{\sum_{l \in \{CR \big(t_{(j)} \big) \}} e^{\beta z_{l1}} e^{\beta z_{l2}} \dots e^{\beta z_{ld_j}}} \\ &= \prod\nolimits_{j=1}^J \frac{\exp(\beta \sum_{c=1}^{d_j} z_{jc})}{\sum_{l \in \{CR \big(t_{(c)} \big) \}} \exp(\beta \sum_{c=1}^{d_j} z_{lc})} \end{split}$$

Exercise – Partial Likelihood With Ties

Survival data

- Group 0: 6+, 7, 9+,10, 11+, 13, $\frac{15}{17}$, $\frac{17}{17}$, $\frac{20}{17}$
- Group 1: 4, 5+, 8+, 11+, 12, $\frac{15}{15}$, $\frac{17+}{17}$, $\frac{22+}{17}$, $\frac{23+}{17}$
- Z = 0.1
- 7 Distinct event time: 4, 7, 10, 12, 13, 15

$$L_{P}(\beta) = \frac{e^{\beta}}{9e^{\beta} + 9} \cdot \frac{1}{7e^{\beta} + 8} \cdot \frac{1}{6e^{\beta} + 6} \cdot \frac{e^{\beta}}{5e^{\beta} + 4} \cdot \frac{1}{4e^{\beta} + 4} \cdot \frac{e^{\beta}}{6e^{2\beta} + 12e^{\beta} + 3}$$

Risk	sets
111211	3663

Combination

sets

	Group 0	6+,7,9+, 10,11+,15,17+, 20+	7,9+,10, 11+,13,15,17+, 20+	10, 11+, 13,15,17+, 20+	13,15, 17+, 20+	13, 15, 17+, 20+	15,17+, 20+ (15,17), (15,20),(17,20)
on	Group 1	4, 5+, 8+,11+, 12,15,17+,22+,23+	8+,11+, 12,15,17+, 22+,23+	11+,12, 15,17+, 22+,23+	12,15, 17+,22+,23+	15,17+, 22+,23+	15,17+,22+, 23+ (15,17),(15,22),(15,23),(17,22), (17,23),(22,23)
							(15,15),(15,17), (15,22),(15,23), (17,15),(17,17), (17,22),(17,23), (20,15),(20,17), (20,22), (20,23)
	Event Time	5	7	10	12	13	15

Exact Method

- The ties are caused by the fact that the observation time interval is not fine enough
- If reduce the interval, the ties follow certain oder
- The exact method
 - Permutt all possible orders of the tied events d_i

Exercise –Exact Method

Survival data

- Group 0: 6+, 7, 9+,10, 11+, 13, $\frac{15}{15}$, $\frac{17+}{15}$, $\frac{20+}{15}$
- Group 1: 4, 5+, 8+, 11+, 12, $\frac{15}{15}$, $\frac{17+}{17}$, $\frac{22+}{17}$, $\frac{23+}{17}$
- Z = 0.1
- 7 Distinct event time: 4, 7, 10, 12, 13, 15

$$L_{P}(\beta) = \frac{e^{\beta}}{9e^{\beta} + 9} \cdot \frac{1}{7e^{\beta} + 8} \cdot \frac{1}{6e^{\beta} + 6} \cdot \frac{e^{\beta}}{5e^{\beta} + 4} \cdot \frac{1}{4e^{\beta} + 4} \cdot (\frac{1}{4e^{\beta} + 3} \cdot \frac{e^{\beta}}{4e^{\beta} + 2} + \frac{e^{\beta}}{4e^{\beta} + 3} \cdot \frac{1}{4e^{\beta} + 2})$$

Breslow Method

- Proposed an approximation
- In partial likelihood, replace

$$\sum_{l \in \{CR(t_{(j)})\}} \exp(\beta \sum_{c=1}^{d_j} z_{lc})$$

in the discrete method with

$$\sum_{l \in \{R(t_{(j)})\}} \exp(\beta z_l)^{d_j}$$

Efron's Method

- Another approximation
- Preferred method when there are large number of ties

$$L_{P}(\beta) = \prod_{j=1}^{J} \frac{\exp(\beta \sum_{c=1}^{d_{j}} z_{jc})}{\prod_{c=1}^{d_{j}} \left(\sum_{l \in \{R(t_{(j)})\}} \exp(\beta z_{l}) - \frac{c-1}{d_{j}} \sum_{l \in \{D(t_{(j)})\}} \exp(\beta z_{l})\right)}$$

Which Methods to Use?

- When the number of ties is small, all methods yield similar results
- When ties are large
 - Discrete if the number of ties or sample size are large, the combination sets can be computation intensive
 - Efron's method is preferred
 - Breslow method may produce larger bias towards null

SAS Code For Tied Events

```
proc phreg data=example;
proc phreg data=example;
                                                class trt;
  class trt;
                                                model time*event(0) = trt/ties=efron;
  model time*event(0) = trt/ties = discrete;
                                                run;
  run;
                                             proc phreg data=example;
proc phreg data=example;
                                                class trt;
  class trt;
                                                model time*event(0) = trt/ties=breslow;
  model time*event(0) = trt/ties = exact;
                                                run;
  run;
```

Example - Leukemia

Analysis of N	/laximum Lik	elihood Estim	ates - discrete					
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label
trt	6-MP	1	-1.62822	0.43313	14.1316	0.0002	0.196	trt 6-MP
Analysis of N	/laximum Lik	celihood Estim	ates - Exact					
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label
trt	6-MP	1	-1.59787	0.42162	14.3630	0.0002	0.202	trt 6-MP
Analysis of N	/laximum Lik	celihood Estim	ates - Efron					
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label
trt	6-MP	1	-1.57213	0.41240	14.5326	0.0001	0.208	trt 6-MP
Analysis of N	/laximum Lik	celihood Estim	ates - Breslow					
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label
trt	6-MP	1	-1.50919	0.40956	13.5783	0.0002	0.221	trt 6-MP

Homework 6

- 1. A trial is designed to evaluate a biomarker reduction post-treatment from baseline. The biomarker is a continuous variable. The reduction in the geometric mean is 33% with 95% CI (15%,47%) reported in literature. The team would like to know the sample size with 30% and 50% risk reduction. The statistician in the team suggests to calculate sample size for 80% and 90% power at the 2-sided significance levels of 0.05 and 0.1. Please show steps for the sample size calculation.
- 2. A randomized, controlled, and three-arm phase II study for Alzheimer's disease is designed using 2 active doses and a placebo control. The randomization ratio is 1:1:1. The primary endpoint will be clinical dementia rating scale sum of boxes (CDR-SB). Two recent phase III studies for Aducanumab showed a mean change from baseline to be 1.74 with standard error of 0.11 in the placebo arm and 548 subjects in Study Emerge 302; and a mean change from baseline of 1.56 with standard error also 0.11 calculated from 545 subjects. Please choose the significance level and power and calculate the sample for each arm and the total sample size. Please explain your rationale of the sample size calculation, including the assumptions used and if multiplicity adjustment should be considered.
- Construct 95% CI for the hazard ratio from a PH model shown in the follow table for the risk reduction between two treatment groups

						bu.c.c	one				
Analysis of Maximum Likelihood Estimates - discrete											
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label			
trt	6-MP	1	-1.62822	0.43313	14.1316	0.0002	0.196	trt 6-MP			

does i

Homework 6

4. Obtain the PBC dataset from R survival package. Fit the following PH model

 $h(t,Z) = h_0(t)\exp(\beta_1 sex + \beta_2 edema + \beta_3 bili + \beta_4 albumin + \beta_5 copper + \beta_6 stage)$ (1)

- a) Identify the information matrix
- b) Construct likelihood ratio test for hypothesis H_0 : $\beta_4 = \beta_5 = \beta_6 = 0$ (show steps)
- c) Compare the p-values for sex between Model (1) and the log-rank test
- d) Suppose that the team plans to publish a paper about the study result. You need to describe the statistical methods in the method section of the paper. Please write all needed analyses in the method section.
- e) You are also responsible for the result section of the potential publication. Please describe the results, including interpretation of the hazard ratios, p-values, 2-sided 95% CIs of each covariate.
- Derive PH model score test is the same as the log-rank test for an indicator covariate when no ties.
- 6. The observed survival data (T_i, Δ_i, Z_i) i = 1, 2, 3, 4, 5, 6 are (16,1,1), (20,0,1), (12,1,0), (14,0,0), (11,1,0), (9,1,1). Please construct the partial likelihood.