1. If y a $4 \times 3 \times 2$ branches, soit 24 mots.

2.
$$P = \frac{1}{24}$$
.

3. a)
$$P(A) = \frac{12}{24} = \frac{1}{2}$$
.

b)
$$P(B) = \frac{12}{24} = \frac{1}{2}$$
.

c)
$$P(A \cap B) = \frac{8}{24} = \frac{1}{3}$$
.

4.
$$P(A \cup B) = \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = \frac{2}{3}$$
.

Notons
$$p_1$$
 la probabilité de la sortie du 1, p_2 la probabilité de la sortie du 2, etc.
On a $p_2 = 2p_1$; $p_1 = p_3 = p_5$ et $p_2 = p_4 = p_6$.

De plus $\sum_{i} p_i = 1$ ou $p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 1$;

soit
$$p_1 + 2p_1 + p_1 + 2p_1 + p_1 + 2p_1 = 1$$
; $9p_1 = 1$
donc $p_1 = \frac{1}{9}$ et $p_2 = \frac{2}{9}$.

$$p_1 = p_3 = p_5 = \frac{1}{9}$$
 et $p_2 = p_4 = p_6 = \frac{2}{9}$.

a) Si
$$A$$
 et B sont incompatibles : $P(A \cup B) = p(A) + p(B)$

donc
$$P(A \cup B) = 0.61 + 0.27 = 0.88$$
.
b) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $P(A \cup B) = 0.61 + 0.27 - 0.13 = 0.75$.

6 1.			
	Défaut a	Pas le défaut a	Total
Défaut b	500	1 000	1 500
Pas le défaut b	300	8 200	8 500
Total	800	9 200	10 000