অধ্যায়-৯: পরমাণু মডেল ও নিউক্লিয়ার পদার্থবিজ্ঞান

প্রশ্ন > ১ তেজস্ক্রিয়তার কারণে একটি তেজক্রিয় মৌলের প্রারম্ভিক সংখ্যা অর্ধেকে পরিণত হল। এর জন্য সময় লাগলো 3.82 দিন।

্রিজেউক উত্তরা মডেল কলেজ. ঢাকা

- ক. ঘটনা দিগম্ড় কী?
- খ. p-n জাংশন ডায়োডের I-V বৈশিষ্ট্য লেখ কী রূপ ব্যাখ্যা কর।২
- গ. তেজস্ক্রিয় মৌলটির 25% ক্ষয় হতে কত সময় লাগবে?
- ঘ. 25% ক্ষয় হতে যে সময় লাগে; 50% ক্ষয় হতে তার দিগুণ সময় লাগে কিনা গাণিতিকভাবে যাচাই কর। 8

১ নং প্রশ্নের উত্তর

ক কৃষ্ণগহ্বরের চারপাশে যে অঞ্চলের মধ্যে কোন ঘটনা বাইরের কোন পর্যবেক্ষণ দেখতে পায়না, সে অঞ্চলকে কৃষ্ণ গহ্বরের ঘটনা দিগস্ড় বলে।

খ p-n জাংশন ডায়োডের I-V বৈশিষ্ট্য লেখ নিুরূপ:

সম্মুখী বায়াসে ভোল্টেজ বাড়াতে থাকলে প্রথমদিকে প্রবাহমাত্রা সামান্য বৃদ্ধি পায়। তবে এক পর্যায়ে প্রবাহমাত্রা দ্র^{ক্ত}তবৃদ্ধি পেতে থাকে। এ ভোল্টেজকে knee voltage বলে।

বিমুখী বায়াসে ভোল্টেজ ক্রমাগত বাড়াতে থাকলেও প্রবাহমাত্রা বৃদ্ধি পায় না বললেই চলে। তবে ভোল্টেজের একটি নির্দিষ্ট মানের জন্য জাংশনের রোধ সম্পূর্ণরূপে দূরীভূত হয় এবং বিশাল মানের প্রবাহ অতিক্রম করা শুর^{ক্র} করে। একে বেক ডাউন ভোল্টেজ বলে।

গ দেওয়া আছে,

তেজস্ক্রিয় মৌলের অর্ধায়ু, $T_{\frac{1}{2}} = 3.82 \; \mathrm{day}$

আদি পরমাণু সংখ্যা $N_{
m o}$ হলে অবশিষ্ট পরমাণু সংখ্যা,

 $N=N_o-N_o\times 25\%=0.75~N_o$

বের করতে হবে, সংশি-স্ট সময়, t=?

আমরা জানি, ক্ষয়ধ্র^তবক, $\lambda = \frac{0.693}{T_{\frac{1}{2}}} = \frac{0.693}{3.82d}$

আবার,
$$N = N_o e^{-\lambda t}$$
 বা, $-\lambda t = ln\left(\frac{N}{N_o}\right)$
$$\therefore t = -\frac{1}{\lambda} ln\left(\frac{N}{N_o}\right) = -\frac{1}{0.1814} \frac{1}{d^{-1}} ln\left(\frac{0.75N_o}{N_o}\right)$$

= 1.586 day (**Ans.**) ঘ এক্ষেত্ৰে, অবক্ষয় ধ্ৰ[—]বক, $\lambda = 0.1814d^{-1}$

প্রারম্ভিক পরমাণু সংখ্যা N_o হলে 50% ক্ষয়ের পর অবশিষ্ট পরমাণুর সংখ্যা, $N=N_o\times(100\%-50\%)=0.5N_o$

এক্ষেত্রে
$$t'$$
 পরিমাণ সময় লাগলে, $t'=-\frac{1}{\lambda}\,\ln\!\left(\frac{N}{N_o}\right)$
$$=-\frac{1}{0.1814~d^{-1}}\ln\left(\frac{0.5N_o}{N_o}\right)$$

= 3.82 দিন

কিন্তু 3.82 দিন $\neq 2 \times 1.586$ দিন = 3.17 দিন সুতরাং, 25% ক্ষয় হতে যে সময় লাগে, 50% ক্ষয় হতে তার দিগুণ সময় লাগে না।

প্রশা ১২ হাইড্রোজেন পরমাণুর ইলেকট্রন ৫ম হতে ১ম কক্ষ পথে লাফ দিলে শক্তি বিকিরণ করে (দৃশ্যমান আলোর তরঙ্গ দৈর্ঘ্য 380 nm হতে 780 nm), $[h = 6.63 \times 10^{-34} \text{ J.s}]$ ভিকার নিদান নুন স্কুল এভ কলেজ, ঢাকা

- ক. ভরত্র^ভটি কাকে বলে?
- খ. একটা তেজস্ক্রিয় পদার্থ নি:শেষ হতে কত সময় লাগে-ব্যাখ্যা কর।
- গ. অনুচ্ছেদে উলে-খিত কক্ষপথদ্বয়ে ইলেকট্রন-দ্বয়ের গতিশক্তির অনুপাত বের কর।
- ঘ. অনুচেছদে উলে-খিত তথ্যের ভিত্তিতে বিকিরিত তরঙ্গদৈর্ঘ্য দৃশ্যমান হবে কী না- ব্যাখ্যা কর।

২ নং প্রশ্নের উত্তর

ক নিউক্লিয়াসের ভর, নিউক্লিয়াসের অভ্যম্পুরে অবস্থিত নিউক্লিয়নগুলোর মুক্তবস্থায় ভরের সমষ্টির চেয়ে কিছুটা কম থাকে। ভরের এ পার্থক্যকে ভর ত্র[©]টি বলে।

মনেকরি, একটি তেজস্ক্রিয় পদার্থের নমুনায় আদি বা প্রারম্ভিক পরমাণুসংখ্যা N_o এবং অবক্ষয় λ হলে, t সময়াস্কেড় অবশিষ্ট পরমাণু সংখ্যা, $N=N_o e^{-\lambda t}$

N=0 হতে হলে, $N_o e^{-\lambda t}=0$ বা, $e^{-\lambda t}=0$

বা,
$$\frac{1}{e^{\lambda t}} = 0$$
 বা, $e^{\lambda t} = \frac{1}{0} = \infty$ বা, $\lambda t = \infty$

$$\therefore t = \frac{\infty}{\lambda} = 0$$

সুতরাং, একটি তেজস্ক্রিয় পদার্থ পুরোপুরি নি:শেষ হতে অসীম পরিমাণ সময় লাগে।

গ দেওয়া আছে,

কক্ষপথদ্বয় হলো ৫ম ও ১ম কক্ষপথ এদের জন্য প্রধান কোয়ান্টাম সংখ্যার মান যথাক্রমে n=5 এবং n=1

বের করতে হবে, উক্ত কক্ষপথদ্বয়ে ইলেকট্রনের গতি শক্তির অনুপাত, $E_{k5} \colon E_{k1} = ?$

আমরা জানি যেকোনো বোর কক্ষপথে ইলেকট্রনের গতিশক্তি এবং মোট শক্তির সাংখ্যিক মান সমান।

যেহেতু ১ম বোর কক্ষপথে ইলেকট্রনের মোটশক্তি, $E_1 = -13.6eV$

∴ ১ম বোর কক্ষপথে ইলেকট্রনের গতিশক্তি, $E_{k1} = 13.6 eV$

আবার, n তম কক্ষপথে ইলেক্ট্রনের মোট শক্তি, $\mathrm{E}_{\mathrm{n}} = \dfrac{\mathrm{E}_{\mathrm{1}}}{\mathrm{n}^2}$

∴ পঞ্চম বোর কক্ষপথে ইলেকট্রনের মোট শক্তি,

$$E_5 = \frac{E_1}{5^2} = \frac{-13.6 \text{eV}}{25} = -0.544 \text{eV}$$

- \therefore পঞ্চম বোর কক্ষপথে ইলেক্ট্রনের গতিশক্তি $E_{k5}=0.544eV$
- \therefore উদ্দীপকের অনুচেছদে উলে-খিত কক্ষপথদ্বয়ে ইলেক্ট্রনদ্বয়ের গতিশক্তির অনুপাত = $\frac{E_{k5}}{E_{k1}} = \frac{0.544 eV}{13.6 eV}$

$$=\frac{1}{25}=1:25$$
 (Ans.)

ঘ গ হতে পাওয়া যায়, পঞ্চম কক্ষপথে ইলেকট্রনের মোট শক্তি , E_5 = -0.544eV

এবং ১ম কক্ষপথে ইলেকট্রনের মোট শক্তি, $E_1 = -13.6eV$

∴ ৫ম হতে ১ম কক্ষপথে একটি ইলেকট্রন লাফিয়ে এলে নির্গত শক্তি.

 $\Delta E = E_5 - E_1 = -0.544 \text{eV} + 13.6 \text{eV} = 13.056 \text{eV}$

= $13.056 \times 1.6 \times 10^{-19} \text{ J} = 2.08896 \times 10^{-18} \text{J}$

এখানে, প-াংকের ধ্র^ভবক, $h = 6.63 \times 10^{-34} J.s$

নি:সৃত বিকিরনের তরঙ্গদৈর্ঘ্য λ হলে, $\Delta E = h \frac{c}{\lambda} \bigg[\, \text{K} \acute{\textbf{A}} \cdot \textbf{v} \hat{\textbf{a}} \, \gamma = \frac{c}{\lambda} \bigg]$

$$\therefore \lambda = \frac{hc}{\Delta E} = \frac{6.63 \times 10^{-34} J.s \times 3 \times 10^8 ms^{-1}}{2.08896 \times 10^{-18} J}$$
$$= 9.5215 \times 10^{-8} m$$

 $= 9.5215 \times 10^{-8}$ m

 $= 95.215 \times 10^{-9} \text{ m} = 95.215 \text{ nm}$

এখানে, 95.215 nm <380nm <780 nm

নি:সৃত বিকিরনের তরঙ্গদৈর্ঘ্য দৃশ্যমান পাল-ার মধ্যে নয়, তাই নি:সৃত তড়িচ্চুম্বকীয় বিকিরণ দৃশ্যমান হবে না।

প্রশ্ন ১০ শহীদ একটি অজানা পরমাণু X নিয়ে পর্যবেক্ষণ করছিলো যার একটি ইলেকট্রন তৃতীয় কক্ষপথ হতে শক্তি বিকিরণ করে ভূমি অবস্থায় ফিরে আসল। ইলেকট্রনটি 0.98c বেগে গতিশীল। ইলেকট্রনের ভর $9.1 imes 10^{-31} \; ext{kg}$ ইলেকট্রনের চার্জ $1.6 imes 10^{-19}$ । পরমাণুটির পারমাণবিক সংখ্যা 1। [আইডিয়াল স্কুল এন্ড কলেজ, মতিঝিল, ঢাকা]

- ক. ক্ষয় ধ্র^ভবকের সংজ্ঞা দাও।
- খ. আবর্তনশীল ইলেকট্রনের শক্তি হ্রাস পায় কেন? ব্যাখ্যা কর। ২
- গ. ইলেকট্রনটি ভূমি অবস্থায় ফিরে আসায় বিকিরিত শক্তির তরঙ্গদৈর্ঘ্য নির্ণয় কর।
- ঘ. ইলেকট্রনটির আইনস্টাইনীয় গতিশক্তি নিউটনীয় গতিশক্তি অপেক্ষা বড় হওয়ার কারণ গাণিতিকভাবে বিশে-ষণ কর। 8

৩ নং প্রশ্নের উত্তর

ক কোনো তেজস্ক্রিয় পদার্থের একটি পরমাণুর একক সময়ে ভাঙনের সম্ভাব্যতাকে ঐ পদার্থের ক্ষয় ধ্র^{ভূ}বক বলে।

খ রাদারফোর্ড পরমাণু মডেলের প্রধান ত্র[—]টি এইরূপ:

ম্যাক্সওয়েলের তড়িৎ চুম্বকীয় তত্ত্ব অনুসারে তুরণশীল কোনো আধানযুক্ত কণিকা তড়িৎ চুম্বকীয় তরঙ্গ বিকিরণ করে এবং কণাটির শক্তি হ্রাস পেতে থাকে। এক্ষেত্রে ইলেকট্রনসমূহ নিউক্লিয়াসের আকর্ষনজনিত কেন্দ্রমুখী বলের প্রভাবে নিউক্লিয়াসকে প্রদক্ষিণ করছে। সুতরাং ইলেক্ট্রনের ওপর সর্বদাই অভিলম্ব তুরণ থাকবে। ফলে এরা বিদ্যুৎ চুম্বকীয় তরঙ্গ হিসাবে শক্তি বিকিরণ করবে।

গ দেওয়া আছে,

আদি কক্ষপথের ক্রমসংখ্যা, n=1

চূড়াম্ড কক্ষপথের ক্রমসংখ্যা, n = 3

জানা আছে, প-াংকের দ্র^ভবক, $h = 6.63 \times 10^{-34} J.s$

এবং প্রথম বোর কক্ষপথে ইলেকট্রনের শক্তি, E₁ =

-13.6eV

বের করতে হবে বিকিরিত শক্তির তরঙ্গদৈর্ঘ্য, $\lambda=?$

আমরা জানি, n তম বোর কক্ষপথের শক্তি, $E_n = \frac{E_1}{n^2}$

তৃতীয় বোর কক্ষপথের শক্তি, $E_3=\frac{E_1}{3^2}$

$$= \frac{-13.6 \text{eV}}{9} = 1.51 \text{eV}$$

∴ বিকিরিত শক্তি, $\Delta E = E_3 - E_1 = -1.51 \text{ eV} + 13.6\text{eV} =$ 12.09eV

$$= 12.09 \times 1.6 \times 10^{-19}$$
J

আবার, $\Delta E = hv = h\frac{c}{\lambda}\left[c =$ শূন্য স্থানে আলোর বেগ $\right]$

$$\therefore \ \lambda = \frac{hc}{\Delta E} = \frac{6.63 \times 10^{-34} J.s \times 3 \times 10^8 ms^{-1}}{12.09 \times 1.6 \times 10^{-19} J}$$

 $= 1.028 \times 10^{-7} \text{m} \text{ (Ans.)}$

ঘ উদ্দীপকমতে

ইলেকট্রনটির নিশ্চল ভর, $m_o=9.1 imes 10^{-31}~{
m kg}$ এবং গতিবেগ, v=

$$=0.98\times3\times10^8 ms^{-1}$$

 \therefore ইলেকট্রনটির নিউটনীয় গতিশক্তি, $E_k = \frac{1}{2} \, m_o \, v^2$

 $=\frac{1}{2} \times 9.1 \times 10^{-31} \text{kg} \times (2.94 \times 10^8 \text{ms}^{-1})^2 = 3.933 \times 10^{-14} \text{J}$

কিন্তু আইনস্টাইনীয় গতিশক্তি, $E_{k}{}'=(m-m_{o})\;c^{2}$

$$\begin{split} &\left(\frac{m_o}{\sqrt{1-\frac{v^2}{c^2}}-m_o}-m_o\right)^{\!c^2}=m_oc^2\left(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\right)\\ &=9.1\times10^{-31}kg\times(3\times10^8ms^{-1})^2\times\left\{\frac{1}{\sqrt{1-\left(\frac{0.98c}{c}\right)^2}}-1\right\} \end{split}$$

= 3.297 × 10⁻¹³ J > 3.933 × 10⁻¹⁴J (নিউটনীয় গতিশক্তি) ইলেক্ট্রনটির আইনস্টাইনীয় গতিশক্তি নিউটনীয় গতিশক্তি অপেক্ষা বড় হওয়ার কারণ হলো, গতিবেগ বৃদ্ধির সাথে সাথে ইলেকট্রন ভর

বড় হওয়ার কারণ হলো, গাতবেগ বৃদ্ধি বৃদ্ধি পায়। সূত্রানুসারে,
$$m = \frac{m_o}{\sqrt{1-\frac{v^2}{c^2}}}$$

প্রশু▶8 তেজস্ক্রিয় পদার্থ স্বতঃস্কৃতভাবে ক্ষয় প্রাপ্ত হয়। তাই গবেষণাগারে তাদের বিশেষ ধরনের পাত্রে সংরক্ষণ করা হয়। এই রকম দুটি বিশেষ পাত্র A ও B তে দুইটি ভিন্ন তেজস্ক্রিয় পদার্থ রাখা আছে যাদের অর্ধায়ু যথাক্রমে 16hr এবং 4 দিন। [তেজগাঁও কলেজ, ঢকা]

ক. কৃষ্ণ গহবর কী?

খ. XOR গেইটের ট্রথ টেবিল লিখ।

গ. তেজস্ক্রিয় মৌল দ্বয়ের গড় আয়ুর অনুপাত নির্ণয় কর।

ঘ. A পাত্রের মৌল যেই সময়ে 78% ক্ষয়প্রাপ্ত হবে সেই সময়ে B পাত্রে মৌলের কী পরিমাণ অক্ষত থাকবে?

৪ নং প্রশ্নের উত্তর

ক একটি তারকায় যদি যথেষ্ট ভর ও ঘনত থাকে তাহলে তার মহাকর্ষীয় ক্ষেত্র এত শক্তিশালী হবে যে, আলো সেখান থেকে নির্গত হতে পারবে না। সেই তারকার পৃষ্ঠ হতে আলো আসেনা বলে তা আমাদের দৃষ্টিগোচর হয়না। এদেরকে কৃষ্ণবিবর বা কৃষ্ণগহ্বর বলে।

Exclesive-Or (XOR) গেট এমন এক ধরনের গেট যা ইনপুটে পৃথক সংখ্যা আছে কিনা চিহ্নিত করে।

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

XOR গেইটের ট্রথ টেবিল।

A মৌলের অর্ধায়ু =
$$16 \text{ hr} = \frac{2}{3} \text{ day}$$

B মৌলের অর্ধায়ু = 4 day

কোন মৌলের অবক্ষয় ধ্র[—]বক λ এবং অর্ধায়ু $T_{\frac{1}{2}}$ হলে, $T_{\frac{1}{2}}=\frac{0.693}{\lambda}$

আবার, মৌলের গড় আয়ু, $\tau = \frac{1}{\lambda}$

∴
$$T_{\frac{1}{2}} = 0.693\tau$$
বা, $\frac{T_{1_2}}{0.693} = \tau$

∴ A মৌলের অর্থায়ু গড় আয়ু, $\tau_A = \frac{T_{\frac{1}{2}}(A)}{0.693}$

$$= \frac{\frac{2}{3} \, day}{0.693}$$

$$= 0.962 \, day$$

$$T_{\frac{1}{1}}(B)$$
B মৌলের গড় আয়ু, $\tau_B = \frac{\frac{2}{3} \, day}{0.693}$

$$= \frac{4 \, day}{0.693}$$

∴ মৌলদ্বয়ের গড় আয়ুর অনুপাত = 0.962 : 5.77

= 0.167 : 1 (Ans.)

য মনে করি, A পাত্রের মৌল যে সময়ে 78% ক্ষয়প্রাপ্ত হবে সেই সময়

B মৌলের অবক্ষয় ধ্র^{ভ্র}বক, $\lambda_B = 0.693/4 day = 0.173 d^{-1}$

= 5.77 day

$$A$$
 মৌলের অবক্ষয় ধ্র[ে]বক, $\lambda_A = \frac{0.693}{\frac{2}{3}\,day} = 1.04~d^{-1}$

$$\therefore$$
 A মৌলের ক্ষেত্রে $N=N_o e^{-\lambda t}$ হতে পাই, $e^{-\lambda_A t_A}=\frac{N}{N_o}$
$$=\frac{100-78}{100}$$

$$=0.22$$

বা,
$$-\lambda_A t_A = \ln (0.22)$$

বা, $t_A = \frac{\ln(0.22)}{-\lambda_A}$
 $= \frac{-1.51}{-1.04d^{-1}}$
 $= 1.46 \text{ day}$

1.46 day তে B মৌল অক্ষত থাকবে N

∴
$$e^{-\lambda_B t_A} = \frac{N}{N_o}$$

¬¬, $N = N_o e^{-\lambda_B t_A}$

= $100 \times e^{-(0.173d^{-1}) \times (1.46day)}$

= 77.68 % (Ans.)

প্রাightharpoons $^{22}_{10}$ Ne নিউক্লিয়াস, একটি নিউক্লিয়ার বিক্রিয়ায়, $^{14}_{6}$ C নিউক্লিয়াসের একটি আইসোবার তৈরী করে। এই তথ্যের আলোকে তুমি ধারণা করলে এখানে lpha কণা এবং eta^{-1} কণার নি:সরণ ঘটতে পারে। [দেয়া আছে α কণার প্রোটনের ভর = 1.00728 a.m.u, নিউট্রনের ভর = 1.00867 a.m.u, নিউক্লিয়াসের ভর = 4.0015 a.m.u]

[নটরডেম কলেজ, ঢাকা]

ক. সুপার নোভা কী?

খ. ঝোঁক ব্যতীত p-n জাংশনে দুই প্রাম্পের বিভব মাপা সম্ভব

গ্র উদ্দীপকে তথ্যের আলোকে একটি lpha কণার বন্ধন শক্তি নির্ণয়

ঘ. উদ্দীপকের তথ্য হতে অজানা নিউক্রিয়াসটি কি হতে পারে যথার্থ ব্যাখ্যাসহ বিশে-ষণ কর। 8

৫ নং প্রশ্নের উত্তর

ক নক্ষত্রের ভর যখন দুই থেকে পাঁচ সৌর ভরের মধ্যে থাকে তখন সংকোচনের যে ধাপে নক্ষত্র এর বহিস্ত আস্ডরণ ছঁডে দিয়ে অত্যন্ড উজ্জল হয়ে যায় তাকে সুপারনোভা বলে।

খি স্থির তড়িৎ বিভব এবং ভোল্টেজের মধ্যে পার্থক্য রয়েছে। কোনো ভিভাইস বা কৌশলের দুটি ভিন্ন বিন্দুর মধ্যকার ফার্মি লেবেলের পার্থক্য দারা ভোল্টেজ নির্দেশিত হয়। যেখানে স্থিরতডিৎ বিভব হলো ডিভাইসের ঐ দুটি বিন্দুর মধ্যকার তড়িৎক্ষেত্র প্রাবল্যের যোজিত ফল। p-n জাংশনে কোনো বায়াস দেয়া না থাকলে ডিভাইসের সকল বিন্দুর ফার্মি লেভেল সমান হয়। তাই এমতাবস্থায় মাল্টিমিটার বা সুবেদী ভোল্টমিটার দ্বারা p-n জাংশনের দুই প্রান্স্কের বিভব পরিমাপে 0 ভোল্ট পাওয়া যাবে। একারণে, ঝোঁক ব্যতীত p-n জাংশনের দুই প্রাম্ডের বিভব মাপা সম্ভব নয়।

গ দেওয়া আছে.

একটি প্রোটনের ভর, m_p = 1.00728 amu এবং একটি নিউট্রনের ভর, m_n = 1.00867 amu α কণার নিউক্লিয়াসের ভর, M = 4.0015 amu

জানা আছে. শুন্য স্থানে আলোর দ্র⁴তি. $c = 3 \times 10^8 \, \mathrm{ms}^{-1}$ দুটি প্রোটন এবং দুটি নিউট্রনের সম্মিলিত ভর = 2 m_p + 2m_n

 $= 2 \times 1.00728$ amu $+ 2 \times 1.00867$ amu = 4.0319 amu

∴ ভরত্রভি, ∆m = 4.0319 amu – 4. 00 15 amu $= 0.0304 \text{ amu} = 0.0304 \times 1.66057 \times 10^{-27} \text{ kg}$ $= 5.048 \times 10^{-29} \text{ kg}$

∴নির্ণেয় বন্ধনশক্তি, B.E = $\Delta m.c^2$

=
$$5.048 \times 10^{-29} \text{ kg} \times (3 \times 10^8 \text{ ms}^{-1})^2$$

= $4.5432 \times 10^{-12} \text{ J (Ans.)}$

য $\frac{14}{6}$ C নিউক্লিয়াসের আইসোবার মানে হলো- ভরসংখ্যা =14বা প্রোটনসংখ্যা + নিউট্রনসংখ্যা = 14

β কণা নি:সৃত না হলে বিক্রিয়াটি নিংরূপ হতে পারতোঃ

$$\begin{array}{c} 22 \\ 10 \text{ Ne} \longrightarrow \begin{array}{c} 14 \\ 6 \end{array} \text{C} + 2 \begin{array}{c} 4 \\ 2 \end{array} \text{He} \end{array}$$

কিন্তু β কণা নি:সৃত হওয়ায় $\frac{14}{6}$ C এর একটি নিউট্রন, প্রোটনে পরিনত হবে। তখন বিক্রিয়াটি হবে নিংরূপ:

$${22 \atop 10}$$
 Ne \longrightarrow ${14 \atop 7}$ N + 2 ${4 \atop 2}$ He + e⁻
 ${22 \atop 10}$ Ne \longrightarrow ${14 \atop 7}$ N + 2(α -কণা) + একটি β কণা

$$^{22}_{10}$$
 Ne $\longrightarrow ^{14}_{7}$ N + 2(α -কণা) + একটি β কণা

সুতরাং, অজানা নিউক্লিয়াসটি হবে নাইট্রোজেন পরমানুর নিউক্লিয়াস।

ক. বন্ধন শক্তি কাকে বলে?

খ. N – t লেখ কখনই সময় অক্ষকে ছেদ করে না– কেন?

গ. 'A' এর অবক্ষয় ধ্র^ভবক কত? •

২

ঘ. 'B' এবং 30% ক্ষয় হতে যে সময় লাগে 60% ক্ষয় হতে কি তার দ্বিগুণ সময় লাগবে? গাণিতিকভাবে উত্তর দাও। 8

৬ নং প্রশ্নের উত্তর

ক কোনো প্রয়োজনীয় সংখ্যক নিউক্লিয়ন একত্রিত হয়ে একটি স্থায়ী নিউক্লিয়াস গঠন করতে যে পরিমান শক্তি নির্গত বা শোষিত হয় তাকে নিউক্লীয় বন্ধন শক্তি বলে।

য N-t লেখ বলতে তেজস্ক্রিয় পদার্থের নমুনায় যে কোনো মুহূর্তে অক্ষত পরমাণু সংখ্যা (N) বনাম সময় (t) লেখ বুঝানো হয়েছে।

N-t লেখ সময় অক্ষকে ছেদ করতে হলে,

N=0 হতে হবে,

তেজস্ক্রিয় রূপাস্ড্র সূত্র হতে পাই,

 $N = N_o \; e^{-\lambda t}$

বা, $0 = N_o e^{-\lambda t}$

বা, $e^{-\lambda t} = 0$

বা, $-\lambda t = \infty$ (অসীম)

∴ $t = \infty$ (অসীম)

তাই বলা যায়, N – t লেখ কখনোই সময় অক্ষকে ছেদ করে না।

গ উদ্দীপকের লেখ হতে পাই,

এর আদি পরমাণু সংখ্যা = No হলে t = 4000 hr পর

অবশিষ্ট পরমাণু সংখ্যা = $0.5N_o = \frac{N_o}{2}$

∴ A তেজস্ক্রিয় পদার্থটির অর্ধায়ু, $T_{\frac{1}{2}} = 4000~\mathrm{hr}$

এর অবক্ষয় ধ্র[—]বক λ হলে,

$$\begin{split} &T_{\frac{1}{2}} = \frac{0.693}{\lambda} \\ &\therefore \ \lambda = \frac{0.693}{T_{\frac{1}{2}}} = \frac{0.693}{4000 \ hr} = 1.7325 \times 10^{-4} \ hr^{-1} \ \textbf{(Ans.)} \end{split}$$

ঘ উদ্দীপকের চিত্র হতে পাই.

B- এর অর্ধায়ু, T = 5000 hr

এর অবক্ষয় প্র⁻বক,
$$\lambda = \frac{0.693}{T} = \frac{0.693}{5000 \text{ hr}} = 1.386 \times 10^{-4} \text{ hr}^{-1}$$

মনেকরি, B এর 30% ও 60% ক্ষয় হতে যথাক্রমে t_1 ও t_2 পরিমাণ সময় লাগে।

তাহলে.

$$N = N_o \times (100\% - 30\%) = 0.7 N_o = N_o e^{-\lambda t_1}(i)$$

এবং
$$N = N_o \times (100\% - 60\%) = 0.4N_o = N_o e^{-\lambda t_2}$$
.....(ii)

(i) হতে পাই, $e^{-\lambda t_1} = 0.7$ বা, $-\lambda t_1 = ln~(0.7)$

$$\therefore \ t_1 = \frac{ln(0.7)}{-\lambda} = \frac{ln(0.7)}{-1.386 \times 10^{-4} \ hr^{-1}} = 2573 \ .4 \ hr$$

(ii) হতে পাই, $e^{-\lambda t_2} = 0.4$ বা, $-\lambda t_2 = \ln (0.4)$

$$\therefore t_2 = \frac{\ln(0.4)}{-\lambda} = \frac{\ln(0.4)}{-1.386 \times 10^{-4} \text{ hr}^{-1}} = 6611 \text{ hr}$$

এখানে, 6611 hr ≠ 2 × 2573.4 hr

বা, $t_2 \neq 2t_1$

সুতরাং, 'B' এর 30% ক্ষয় হতে যে সময় লাগে 60% ক্ষয় হতে তার দ্বিগুণ সময় লাগবে না, বরং তার চেয়ে বেশি সময় লাগবে।

প্রশু ▶ ৭

মৌল	প্রোটন	ভর	নিউক্লিয়াসের	1 021 M W	
ઉચાળ	সংখ্যা	সংখ্যা	ভর amu	lamu = 931 MeV	
U	92	235	235.0439	প্রোটনের ভর, m _p = 1.00728	

2\2nd paper\2nd Paper Final\Ch\Phy Madesy 2nd Paper Chapter 09.doc 4th Proof

C	6	12	12	amu
Fe	26	56	56	নিউট্রনের ভর, mn = 1.00876 amu
He	2	4	4.00276	আলোর বেগ $c=3\times 10^8~ms^{-1}$

[শহীদ বীর উত্তম লে: আনোয়ার গার্লস কলেজ, ঢাকা]

- ক. অর্ধায় কাকে বলে?
- খ. NAND Gate কে সার্বজনীন গেট বলা হয় কেন?
- গ. ইউরেনিয়ামের ভরত্র[—]টি বের কর।
- ঘ. উদ্দীপকে প্রদত্ত তথ্য ব্যবহার করে নিউক্লিয়ন প্রতি বন্ধন শক্তি বনাম ভর সংখ্যার লেখচিত্র অংকন কর।

৭ নং প্রশ্নের উত্তর

- ক কোনো তেজস্ক্রিয় পদার্থের নমুনায় যে সময়ে পরমাণু সংখ্যা আদি মুহুর্তের তুলনায় অর্ধেকে পরিণত হয় সে সময়কে ঐ তেজস্ক্রিয় মৌলের অর্ধায় বলে।
- খ শুধুমাত্র NAND গেট ব্যবহার করে NOT, OR এবং AND গেট তৈরি করা যায় বলে NAND গেটকে সার্বজনীন গেট বলা হয়। নিচে NAND গেট ব্যবহার করে NOT, OR ও AND গেট এর লজিক গেট দেখানো হলো।
- (i) NAND গেট থেকে NOT গেট:

$$A$$
 \overline{A}

(i) NAND গেট থেকে OR গেট:

(i) NAND গেট থেকে AND গেট:

$$\stackrel{A}{=} \bigcirc \stackrel{\overline{A}.\overline{B}}{=} \bigcirc \stackrel{A.B}{=} \bigcirc$$

গ দেওয়া আছে,

ইউরেনিয়ামের ভরসংখ্যা , A=235প্রোটন সংখ্যা , Z=92

∴ নিউট্রন সংখ্যা, N = A − Z = 235 − 92 = 143 ইউরেনিয়াম নিউক্লিয়াসের ভর, M = 235.0439 amu

∴ ভরত্রভি ∆m = Zm_p + Nm_n − M

 $= 92 \times 1.00728$ amu $+ 143 \times 1.00876$ amu - 235.0439 amu = 1.87854 amu (**Ans.**)

য ইউরেনিয়ামের বন্ধন শক্তি, B.E. = 1.87854 × 931 MeV = 1748 . 92 MeV

∴ ইউরেনিয়ামের নিউক্লিয়ন প্রতি বন্ধন শক্তি

$$=\frac{1748.92 \text{ MeV}}{235} = 7.44 \text{ MeV/nucleon}$$

কার্বনের (C) ভরত্র ভি = 6m_n + 6m_p - M

= 6(1.00728 + 1.00876) - 12 = 0.09624 amu

 \therefore কার্বনের নিউক্লিয়ন প্রতি বন্ধন শক্তি = $\frac{0.09624 \times 931~\mathrm{MeV}}{12}$

= 7.46662 MeV/ nucleon

আয়রনের (Fe) ভরত্রতি = $26 \text{ m}_p + (56 - 26) \text{ m}_n - \text{M}$

 $= 26 \times 1.00728 + 30 \times 1.00876 - 56 = 0.45208$ amu

∴ আয়রনের নিউক্লিয়ন প্রতি বন্ধন শক্তি = $\frac{0.45208 \times 931 \text{ MeV}}{56}$

= 7.516 Mev/ nucleon

হিলিয়ামের (He) ভর ত্র[©]টি = 2m_p + 2m_n - M = 2 × 1.00 728 + 2 × 1.00876 - 4.00276 = 0.02932 amu

Pc-10 C:\Users\NESHAD\Desktop\কোচিং মাটেরিয়াল\Class 1-12 (Downloaded)\HSC Science\Phy 1st paper and 2nd paper\Physic - Copy\Made easy-

 \therefore হিলিয়ামের নিউক্লিয়ন প্রতি বন্ধন শক্তি $= \frac{0.02932 \times 931~MeV}{4}$

= 6.82423 MeV

সুতরাং, নির্ণেয় নিউক্লিয়ন প্রতি বন্ধন শক্তি বনাম ভরসংখ্যার লেখচিত্র ন্দিরূপ:

প্রশ্ন > ৮ বাংলাদেশের পরমাণু গবেষণা কেন্দ্রে পরীক্ষণীয় একটি তেজস্ক্রিয় মৌলের অর্ধায়ু 10 দিন। সম্ভাব্য দূর্ঘটনা এড়াতে পরীক্ষাগারের চারপাশে তেজস্ক্রিয় সুরক্ষা দেয়াল তৈরি করা হল।

| হিম্পিরিয়াল কলেজ, ঢাকা

- ক. ভর-ত্র^{ক্র}টি কাকে বলে?
- খ. গোলাকার পরিবাহীর ব্যাসার্ধ বাড়ালে ধারকত্ব বৃদ্ধি পায় কেন?২
- গ. উলে-খিত তেজস্ক্রিয় মৌলের 75% ক্ষয় হতে কত সময় লাগবে?
- ঘ. পরীক্ষাগারের চারপাশে তেজস্ক্রিয় সুরক্ষা দেয়াল কত সময় পর্যস্ড্ রাখতে হবে— গাণিতিক বিশে-ষণের সাহায্যে মতামত দাও।

৮ নং প্রশ্নের উত্তর

- ক কোন একটি নিউক্লিয়াসের ভর এবং এর উপাদানিক কণাগুলোর মুক্ত অবস্থায় মিলীত ভরের পার্থক্যকে ভর-ত্র[—]টি বলে।
- োলাকার পরিবাহীর ক্ষেত্রে আমরা জানি, $C=4\pi\varepsilon_0 r$. সুতরাং ব্যাসার্ধ r বৃদ্ধি পেলে পরিবাহীর ক্ষেত্রফল ও বৃদ্ধি পায় এবং সাথে সাথে ধারকত্ব C বৃদ্ধি পাবে।

$$T_{1} = 10$$
 দিন

75% ক্ষয় হলে অবশিষ্ট থাকে 25%

$$\therefore \frac{N}{N_0} = \frac{25}{100}$$

যেখানে, No = প্রাথমিক পরমাণু সংখ্যা,

N = অবশিষ্ট পরমাণু সংখ্যা।

আমরা জানি,

অর্ধায়ু,
$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

বা,
$$\lambda = \frac{0.693}{10} = 0.0693 \ d^{-1}$$

আবার, আমরা জানি,

$$N = N_o e^{-\lambda t}$$

বা,
$$\frac{N}{N_o} = e^{-\lambda t}$$

$$\boxed{100} = e^{-0.0693t}$$

বা,
$$\ln\left(\frac{1}{4}\right) = -0.0693 \text{ t}$$

$$\boxed{1, \ t = \frac{\ln\left(\frac{1}{4}\right)}{-0.0693}}$$

ঘ দেওয়া আছে, $T_{\frac{1}{2}} = 10$ দিন

প্রশ্নতে,
$$\frac{N}{N_0} = \frac{100}{100}$$

100% ক্ষয় হলে অবশিষ্ট থাকে 0%

$$\therefore \frac{N}{N_o} = \frac{0}{100} = 0$$

যেখানে, No = প্রাথমিক পরমাণু সংখ্যা।

N = অবশিষ্ট পরমাণু সংখ্যা

আমরা জানি.

$$T_{rac{1}{2}}=rac{0.693}{\lambda}$$
 বা, $\lambda=rac{0.693}{T_{rac{1}{2}}}=rac{0.693}{10}=0.0693$ দিন ।

আবার আমরা জানি,

$$\frac{N}{N_o} = e^{-\lambda t}$$

$$\overline{\mathsf{Al}}, -\lambda t = \ln\left(\frac{N}{N_o}\right)$$

বা,
$$\lambda t = \ln \left(\frac{N_o}{N}\right)$$

বা,
$$\lambda t = \ln\left(\frac{1}{0}\right)$$

$$\boxed{1}, \quad t = \frac{\ln (\infty)}{0.0693}$$

$$\therefore t = \infty$$

∴ পরীক্ষাগারের চারপাশে তেজস্ক্রিয় সুরক্ষা দেয়াল অসীম সময় পর্যস্ভরাখতে হবে।

প্রশ্ন⊳১

[কৃষি বিশ্ববিদ্যালয় কলেজ, ময়মনসিংহ]

ক. অর্ধপরিবাহী কাকে বলে?

খ. P টাইপ অর্ধপরিবাহী গঠনের কৌশল বর্ণনা কর।

গ. হাইড্রোজেন পরমাণুর প্রথম কক্ষপথের ব্যাসার্ধ নির্ণয় কর। ৩

ঘ. উত্তেজিত অবস্থায় হাইড্রোজেন পরমাণুর একটি ইলেকট্রন দ্বিতীয় শক্তিস্ডুর থেকে ভূমি স্ডুরে গমন করলে নির্গত বিকিরণ আমাদের দৃষ্টিগ্রাহ্য হবে কি-না গাণিতিক বিশে-ষণের মাধ্যমে মতামত দাও।

৯ নং প্রশ্নের উত্তর

- ক যে সমস্ড পদার্থের তড়িৎ পরিবাহিতা পরিবাহী ও অম্ভুরকের মাঝামাঝি, সেগুলোকে অর্ধপরিবাহী পদার্থ বলে। তাপমাত্রা বাড়ালে এদের তড়িৎ পরিবাহীতা বহুগুণ বৃদ্ধি পায়।
- ₽ টাইপ অর্ধপরিবাহী তৈরি করার জন্য চতুর্যোজী পদার্থের (যেমন, জার্মেনিয়াম) কেলাসে ত্রিযোজী পদার্থের (যেমন, অ্যালুমিনিয়াম) পরমাণু নিয়ন্ত্রিভভাবে মেশানো হয়। অ্যালুমিনিয়াম পরমাণুর তিনটি যোজন ইলেকট্রন আশেপাশের জার্মোনিয়াম পরমাণুর সাথে যুক্ত হয়ে সমযোজী বন্ধন তৈরি করে। অ্যালুমিনিয়ামের একটি যোজন ইলেকট্রন কম থাকার কারণে, একটি স্থানে একটি ইলেকট্রনের ঘাটতি পড়ে। ফলে ঐ স্থানে 'বন্ধন' তৈরি হয় না। 'ইলেকট্রন ঘাটতি মানেই 'হোল'। প্রতিটি মা পরমাণু একটি করে হোল সৃষ্টি করে। এ হোলগুলো ইলেকট্রন গ্রহণে প্রস্তুত থাকে। এজন্য অপদ্রব্যকে গ্রহীতা বলে। এভাবে সৃষ্ট হোল বিশিষ্ট অর্ধপরিবাহীকে P টাইপ অর্ধপরিবাহী বলে।

গ এখানে,

ইলেকট্রনের ভর, $m=9.1\times 10^{-31} kg$ ইলেকট্রনের চার্জ, $e=1.6\times 10^{-19} C$ প-্যাঙ্ক ধ্র^{ক্র}বক, $h=6.63\times 10^{-34}\, Js$ $\epsilon_o=8.85\times 10^{-12}\, C^2 N^{-1} m^{-2}$ হাইড্রোজেন প্রমাণুর জন্য n=1

আমরা জানি,

কোন পরমাণুর n তম কক্ষপথের ব্যাসার্ধ,

$$r_n = \frac{n^2 h^2 \in o}{\pi m e^2}$$

বা,
$$r_1 = \frac{(1)^2 \times (6.63 \times 10^{-34} Js)^2 \times (8.85 \times 10^{-12} C^2 N^{-1} m^{-2})}{3.14 \times (9.1 \times 10^{-31} kg) \times (1.6 \times 10^{-19} C)^2}$$

$$= 0.53 \times 10^{-10} m$$

$$= 0.53 \text{ Å (Ans.)}$$

ঘ আমরা জানি,

হাইড্রোজেন পরমাণু ভূমি অবস্থার শক্তি, $E_1 = -13.6 eV$

এবং দ্বিতীয় স্প্রের শক্তি, $E_2 = \frac{1}{4} E_1$

$$=\frac{-13.6\text{eV}}{4}$$

আবার, আমরা জানি,
$$hf=E_u-E_l$$
 এখানে,
$$=\frac{E_u-E_l}{h}$$

$$=\frac{-3.4 \text{eV}-(-13.6 \text{eV})}{6.63\times 10^{-34}\text{Js}}$$

$$=\frac{10.2\times 1.6\times 10^{-19}\text{J}}{6.63\times 10^{-34}\text{Js}}$$

$$=2.46\times 10^{15}\,\text{Hz}$$

$$=-3.4\,\text{eV}$$
 এখানে,
$$=-13.6\,\text{eV}$$
 উচ্চশাক্তি স্পুর, $E_2=E_u$
$$=-3.34\,\text{eV}$$
 প-্যান্ধ ধ্রুল্বক, $h=6.63\times 10^{-34}\text{Js}$ কম্পান্ধ, $f=?$

দৃশ্যমান আলোর কম্পাঙ্ক $3.8 \times 10^{14} \mathrm{Hz}$ থেকে $7.7 \times 10^{14} \mathrm{Hz}$ হওয়ায় এই বিকিরণ (কম্পাঙ্ক $2.46 \times 10^{15} \mathrm{Hz}$) আমাদের দৃষ্টিগ্রাহ্য হবে না।

প্রশ্ন ▶১০ রেডিয়াম একটি তেজস্ক্রিয় পদার্থ যার অবক্ষয় ধ্র[€]বক $4.36 \times 10^{-4} \mathrm{y}^{-1}$ । [কার্টনমেন্ট পাবলিক কুল ও কলেজ,রংপুর]

ক. ট্রানজিস্টর কী?

খ. ভর ত্র^ভটি কী– ব্যাখ্যা কর।

- গ. উদ্দীপকের রেডিয়ামের 60% ক্ষয় হতে কত সময় লাগে নির্ণয় কর।
- ঘ. তেজস্ক্রিয় পদার্থের অর্ধায়ু থেকে গড় আয়ু অনেক বেশি– উদ্দীপকের ক্ষেত্রে এর সত্যতা যাচাই কর।

১০ নং প্রশ্নের উত্তর

- ক দুইটি P টাইপ পদার্থের মাঝে একটি n টাইপ পদার্থ অথবা দুটি n টাইপ পদার্থের মাঝে একটি P টাইপ বস্তু স্যান্ডউইচ করে তৈরি করা বিশেষ কৌশল যা ইলেকট্রনিক্স বর্তনীগুলোতে বিবর্ধক ও দু[—]ত গতির সুইচরূপে কাজ করতে সক্ষম, তাকে ট্রানজিস্টর বলে।
- কোনো পদার্থের একটি পরমাণুর নিউক্লিয়াসের ভর নিউক্লিয়াস গঠনকারী মৌলিক কণাসমূহের (প্রোটন ও নিউট্রন), মুক্তাবস্থায় ভরের সমষ্টি অপেক্ষা সামান্য কম হয়। ভরের এ পার্থক্যকে ঐ পদার্থের ভরত্র[©]টি বলে। E = mc² বা, E = (∆m)c² সূত্রানুসারে এ ভরত্র[©]টি পরমাণুর নিউক্লিয়াসের বন্ধন শক্তি (যা এক প্রকার বিভবশক্তি)-তে পরিণত হয়।
- গ দেওয়া আছে.

তেজস্ক্রিয় পদার্থটির অবক্ষয় ধ্র^eব, $\lambda=4.36\times 10^{-4} y^{-1}$ আদি পরমাণুসংখ্যা N_o হলে অবশিষ্ট পরমাণুসংখ্যা,

 $N = N_o - N_o \times 60\% = 0.4N_o$

এক্ষেত্রে, প্রয়োজনীয় সময় t হলে, $N=N_{o}e^{-\lambda t}$

বা,
$$e^{-\lambda t} = \frac{N}{N_o}$$

বা, $-\lambda t = \ln\left(rac{N}{N_o}
ight)$ [উভয়পক্ষে e ভিত্তিক লগারিদম নিয়ে]

$$\therefore t = -\frac{1}{\lambda} \ln \left(\frac{N}{N_o} \right) = -\frac{1}{4.36 \times 10^{-4} y^{-1}} \ln \left(\frac{0.4 N_o}{N_o} \right)$$
= 2101.6 y (Aps.)

ঘ উদ্দীপকমতে,

তেজস্ক্রিয় পদার্থ রেডিয়ামের অবক্ষয় ধ্রভ্বক, $\lambda = 4.36 \times 10^{-4} y^{-1}$

এর গড় আয়ু,
$$\tau = \frac{1}{\lambda} = \frac{1}{4.36 \times 10^{-4} \text{y}^{-1}} = 2293.6 \text{y}$$

$$0.693 \qquad 0.693$$

এবং অর্থায়ু,
$$T = \frac{0.693}{\lambda} = \frac{0.693}{4.36 \times 10^{-4} \text{y}^{-1}} = 1589.45 \text{ y}$$

লক্ষ্যকরি, 2293.6y >> 1589.45 y

বা. τ >>T

সুতরাং তেজস্ক্রিয় পদার্থের অর্ধায়ু থেকে গড় আয়ু অনেক বেশি-গাণিতিক ভাবে উক্তিটি সত্যতা পাওয়া গেল।

প্রশ্ন ►১১ তেজস্ক্রিয় পদার্থ-রেডন $\binom{222}{86}$ Rn এর অর্ধ জীবন 3.82

দিন অর্থাৎ 3.82 দিনে অর্ধেক পরমাণু ভেঙ্গে যায়।

[হামিদপুর আলহেরা কলেজ, যশোর]

- ক. অর্ধায়ু কী?
- খ. তেজস্ক্রিয় ক্ষয়ের সূত্রটি বিবৃত ও ব্যাখ্যা কর।
- গ. রেডন মৌলটির 60% ক্ষয় হতে কত সময় লাগবে?
- ঘ. সবগুলো পরমাণু ভাঙ্গার জন্য কোনো তেজস্ক্রিয় পদার্থের অসীম সময় লাগে- উদ্দীপকের আলোকে বিশে-ষণ কর। 8

১১ নং প্রশ্নের উত্তর

- ক যে সময়ে কোন তেজস্ক্রিয় পদার্থের ঠিক অর্ধেক পরিমাণ ক্ষয়প্রাপ্ত হয় তাকে ঐ তেজস্ক্রিয় মৌলের অর্ধায়ু বলে।
- য যে কোন মুহূর্তে কোন তেজস্ক্রিয় পরমাণুর ভাঙ্গনের হার ঐ সময়ে উপস্থিত অক্ষত পরমাণুর সংখ্যার সমানুপাতিক।

মনেকরি, সময়ের শুর[ে]তে কোন তেজস্ক্রিয় পদার্থের অক্ষত পরমাণুর সংখ্যা N_o। dt সময় পর dN সংখ্যক পরমাণুর ভাঙ্গনের ফলে অক্ষত পরমাণুর সংখ্যা হয় N। তাহলে এই সূত্রানুসারে,

$$-\frac{\mathrm{dN}}{\mathrm{dt}} \propto \mathrm{N}$$

গ এখানে,

রেডনের অর্ধজীবন,
$$T_{\frac{1}{2}}$$
 = 3.82 day

মনেকরি, রেডনের প্রাথমিক পরমাণু সংখ্যা

 N_o এবং t সময় পর 60% ক্ষয় হলে পরমাণুর সংখ্যা হয় N

$$\therefore~N=N_o-N_o\times 60\%=0.4N_o$$
 আমরা জানি,

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

বা,
$$\lambda = \frac{0.693}{3.82}$$

$$\lambda = 0.1814136 d^{-1}$$

আবার.

$$N = N_o \; e^{-\lambda t}$$

বা,
$$0.4N_o = N_o e^{-0.1814136 \times t}$$

$$\therefore$$
 t = 5.05 days (Ans.)

মনেকরি, তেজস্ক্রিয় পদার্থের প্রাথমিক পরমাণুসংখ্যা $= N_o$ t সময়ে সবগুলো পরমাণু ভেঙ্গে গেলে, t সময় পর অক্ষত পরমাণুসংখ্যা, N=0 হয়

আমরা জানি,

$$N = N_o e^{-\lambda t}$$

বা,
$$0 = N_o e^{-\lambda t}$$

বা,
$$e^{-\lambda t} = 0$$

বা,
$$-\lambda t = \infty$$

বা,
$$t = \frac{\infty}{-\lambda}$$

 $\therefore t = \infty$

সুতরাং, সবগুলো পরমাণু ভাঙ্গার জন্য কোন তেজস্ক্রিয় পদার্থের অসীম সময় লাগে।

প্রশ্ন ▶১২ একটি তেজস্ক্রিয় পদার্থের অর্ধায়ু 12 দিন। একটি নির্দিষ্ট সময়ে উক্ত পদার্থের ৪5% ক্ষয় হয়।

[ক্যান্টনমেন্ট পাবলিক স্কুল ও কলেজ, পার্বতীপুর, দিনাজপুর]

ক. নিউক্লিয়ার ফিশন (Fission) বিক্রিয়া কী?

খ. নিউক্লিয়ার ফিশন ও ফিউশন বিক্রিয়ার মূল পার্থক্য কি কি (গুর[—]তুপূর্ণ দুটি পার্থক্য লিখতে হবে)?

গ. কত দিন সময়ে পদার্থটির ৪5% ক্ষয় হবে?

ঘ. যদি উক্ত পদার্থের ক্ষয় ধ্র[—]বক এর মান 0.05775d⁻¹ এর পরিবর্তে 0.06775d⁻¹ হয় তাহলে পদার্থটির 85% ক্ষয় হতে সময়ের পার্থক্য কত হবে?

১২ নং প্রশ্নের উত্তর

ক যে বিশেষ ধরনের নিউক্লিয়ার বিক্রিয়ায় একটি ভারী নিউক্লিয়াস প্রায় সমান ভর বিশিষ্ট দুটি নিউক্লিয়াসে বিভক্ত হয় তাকে বলা হয় নিউক্লিয়ার ফিশন বিক্রিয়া।

খ

নিউক্লিয়ার ফিশন	নিউক্লিয়ার ফিউশন
i. নিউক্লিয়ার ফিশন বিক্রিয়ায়	i. ফিউশন বিক্রিয়ায় দুটি হাল্কা
একটি ভারী নিউক্লিয়াস	নিউক্লিয়াস একত্রিত হয়ে
ভেঙ্গে প্রায় সমান ভরের দুটি	অপেক্ষাকৃত একটি ভারী
নিউক্লিয়াসে পরিণত হয়।	নিউক্লিয়াস গঠন করে।
ii. ফিশনে অংশগ্রহনকারী মৌল	ii. ফিউশনে অংশগ্রহণকারী
সাধারণত তেজস্ক্রিয় হয়।	মৌল গুলো আয়নিত অবস্থায়

থাকে।

গ এখানে,

তেজস্ক্রিয় পদার্থের অর্ধায়ু, $T_{\underline{l}} = 12 \; \mathrm{days}$

প্রারম্ভিক পরমাণু সংখ্যা, $N_{\rm o}=n$ (ধরি)

85% ক্ষয়ের পর অক্ষত পরমাণু সংখ্যা, $N=(100-85)\% \times n=0.15~n$ প্রয়োজনীয় সময়, t=?

আমরা জানি

$$T_{\underline{1}} = \frac{0.693}{\lambda}$$

বা,
$$\lambda = \frac{0.693}{T_{\frac{1}{2}}}$$

বা,
$$\lambda = \frac{0.693}{12} \, d^{-1}$$

বা,
$$\lambda = 0.05775d^{-1}$$

আবার, $N = N_0 e^{-\lambda t}$

বা,
$$0.15n = ne^{-0.05775 \times t}$$

:.
$$t = 32.85 \text{ days (Ans.)}$$

ঘ এখানে.

ক্ষয়ধ্র^{শ্}বক, $\lambda=0.05775~d^{-1}$ হলে 85% ক্ষয়ে

প্রয়োজনীয় সময়, t = 32.88 days [গ নং হতে]

ধরি, ক্ষয়ধ্র[ে]বক, $\lambda'=0.06775$ হলে প্রয়োজনীয় সময় t' হয়। এখন,

প্রারম্ভিক পরমাণু সংখ্যা, No = n (ধরি)

85% ক্ষয়ের পর অক্ষত পরমাণু সংখ্যা, N = (100 – 85)% × n = 0.15 n

আমরা জানি.

$$N=N_o e^{-\lambda' t'}$$

বা,
$$0.15 \times n = n \times e^{-0.06775 \times t'}$$

∴ সময় পূৰ্বাপেক্ষা কম লাগে = t − t'= (32.85 – 28) days = 4.85 days (Ans.)

図 本 > 50 একটি পারমাণবিক বিদ্যুৎ কেন্দ্রের উৎপাদন ক্ষমতা 4000MW এতে জ্বালানি হিসেবে U-235 ব্যবহার করা হয়। 1টি ফিশান হতে 200 MeV শক্তি পাওয়া যায়। 1 বছর পর দেখা গেল 1 মোল জ্বালানি হতে 9.2755 × 10¹³ টি পরমাণু ক্ষয় হয়ে গেছে।

[চউগ্রাম বিজ্ঞান কলেজ, চউগ্রাম]

•

ক. সূর্যের গড় ঘনত্ব কত?

খ. আপেক্ষিক তত্ত্বের সাহায্যে দেখাও যে কোনো বস্তুর বেগ আলোর বেগের সমান হতে পারে না?

গ. জ্বালানির অর্ধায়ু বের কর।

ঘ. 1 বছরের বিদ্যুৎ কেন্দ্রে কতটুকু জ্বালানি খরচ হবে তা গাণিতিকভাবে বিশে-ষণ কর।

১৩ নং প্রশ্নের উত্তর

ক সূর্যের গড় ঘনত্ব হল- 1410 kgm⁻³

থ কোন বস্তুর নিশ্চল ভর, m_0 , গতিশীল ভর m এবং বস্তুটি যদি V বেগে গতিশীল হয় তাহলে আপেক্ষিক তত্তানুসারে জানি.

বেগে গতিশীল হয় তাহলে আপেক্ষিক তত্ত্বানুসারে জানি,
$$m=rac{m_0}{\sqrt{1-rac{v^2}{c^2}}}$$
 বস্তুটি যদি আলোর বেগে গতিশীল হয়। তাহলে, $v=c$

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
$$= \frac{m_0}{\sqrt{1 - 1}}$$
$$= \infty$$

কিন্তু বস্তুর ভর কখনও অসীম হতে পারে না। অতএব কোন বস্তুর বেগ আলোর বেগের সমান হতে পারে না।

গ আমরা জানি,

1 মোল অর্থাৎ 235gm এর পরমাণুর সংখ্যা,

 $N_0 = 6.02 \times 10^{13}$ \overline{b}

 \therefore ক্ষয় হয়ে গেছে = 9.2755×10^{23} টি

 \therefore অবশিষ্ট পরমাণুর সংখ্যা, N = $(6.02 \times 10^{23} - 9.2755 \times 10^{13})$ টি = 6.019×10^{23}

আবার,

 $N = N_0 \; e^{-\lambda t}$

ম = N₀ e
$$\frac{N}{N_0}$$
 = $-\lambda t$ [\therefore এখানে, সময় (t) = 1 years] $\therefore \lambda = 1.66 \times 10^{-4} \, \text{year}^{-1}$ আবার, অর্ধায়ু, $T_{\frac{1}{2}} = \frac{0.693}{\lambda}$ = $\frac{0.693}{1.66 \times 10^{-4} \, \text{y}^{-1}}$ = 4171.5 year. (Ans.)

অ এখানে, পারমাণবিক বিদ্যুৎ কেন্দ্রের ক্ষমতা, P = 4000 MW

 $=4 \times 10^9$ watt

অর্থাৎ পারমাণবিক বিদ্যুৎ কেন্দ্র হতে, 1 year এ উৎপাদিত বিদ্যুৎ শক্তি.

 $E = (4 \times 10^9 \times 365 \times 24 \times 3600) J = 12.6144 \times 10^{16} J$ ধরি, $m \ kg$ জ্বালানি খরচ হবে,

অর্থাৎ, E = mc²

বা,
$$\frac{12.6144 \times 10^{16}}{(3 \times 10^8)^2} = m$$

∴ $m = \frac{12.6144}{9} \text{ kg}$
= 1.4016 kg

অর্থাৎ, 1.402kg জ্বালানি খরচ হবে। (Ans.)

প্রশ্ন ▶১৪ একটি হাইড্রোজেন পরমাণুর উত্তেজিত ও ভূমি অবস্থায় শক্তি যথাক্রমে −3.4eV এবং − 13.6eV। উক্ত হাইড্রোজেন পরমাণুটি উত্তেজিত অবস্থা থেকে ভূমি অবস্থায় আসে এবং ফোটন নি:সরণ করে।

ক্যান্টনমেন্ট কলেজ, যশোর

- খ. কোন নিউক্লিয়াসের প্রতিটি নিউক্লিয়নের পৃথক পৃথক ভরের সমষ্টি অপেক্ষা নিউক্লিয়াসের মোট ভর কম কেন?
- গ. ফোটনের কম্পাংক কত হবে?
- ঘ. উক্ত ফোটন যদি পরমাণুকে আঘাত করে তবে কী ঘটবে বলে তুমি মনে কর?

১৪ নং প্রশ্নের উত্তর

ক LED হলো Light Emitting Diode বা আলোক নি:সারক ডায়োড। এটি এক বিশেষ ধরনের ডায়োড যার মধ্যদিয়ে তড়িৎ প্রবাহ গেলে একটি নির্দিষ্ট বর্ণের আলোকরশ্মি উদগীরণ করে।

নিউক্লিয়াসে সম প্রকৃতির (ধন্দ্রক) আধানের এক বা একাধিক
প্রোটন থাকে। এ প্রোটনগুলোকে পরস্পরের সাথে এবং নিউট্রনগুলোর

সাথে আবদ্ধ রাখতে শক্তির দরকার হয়। এটি হলো বন্ধন শক্তি যা এক প্রকার বিভবশক্তি। নিউক্লিয়নগুলো যখন একত্রিত হয় তখন এদের সামষ্টিক ভরের সামান্য ভঙ্গাংশ $E = \Delta m.c^2$. সূত্রানুসারে উক্ত বিভবশক্তিতে পরিণত হয়। তাই কোনো নিউক্লিয়াসের প্রতিটি নিউক্লিয়নের পৃথক পৃথক ভরের সমষ্টি অপেক্ষা নিউক্লিয়াসের মোট ভর সামান্য কম হয়। ভরের এ পার্থক্যকে ভর ত্র[©]টি বলে।

গ দেওয়াআছে,

উত্তেজিত অবস্থার শক্তি, $E_2 = -3.4 eV$ এবং ভূমি অবস্থার শক্তি, $E_1 = -13.6 eV$

জানা আছে, প-াংকের ধ্র[ে]বক, h = 6.63 × 10⁻³⁴ J.s

বের করতে হবে ফোটনের কম্পাংক, v = ?

ফোটনের শক্তি E = নির্গত শক্তি = E₂ – E₁ = –3.4eV – (–13.6 eV) = 10.2 eV = 10.2 × 1.6 × 10^{–19} J

$$\therefore \ \nu = \frac{E}{h} = \frac{10.2 \times 1.6 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{ J.s}} = 2.46 \times 10^{15} \text{ Hz (Ans.)}$$

ঘ উক্ত ফোটন যদি পরমাণুকে আঘাত করে তবে ফটো তড়িৎক্রিয়া ঘটতে পারে। কারণ ফোটনটির শক্তি = 10.2eV, যা সকল ধাতুর কার্যাপেক্ষক হতে বৃহত্তর।

যেমন, আমরাজানি, সোডিয়ামের কার্যাপেক্ষক, $W_o = 2.28eV$ তাহলে উক্ত ফোটন সোডিয়াম ধাতুপৃষ্ঠে আপতিত হলে, নি:সৃত ফটোইলেকট্রনের সর্বোচ্চ গতিশক্তি,

 $T_{max} = h\nu - W_o \quad [\therefore h\nu = W_o + T_{max}]$ = $10.2eV - 2.28 \ eV = 7.92 \ eV$, যা ফটোইলেকট্রনের জন্য বৃহৎ মানের গতিশক্তি।

প্রশ্ন ▶১৫

[মির্জাপুর ক্যাডেট কলেজ, টাঙ্গাইল]

ক. তেজস্ক্রিয়তা কী?

খ. তেজস্ক্রিয়তার কারণ ব্যাখ্যা কর।

গ. B পরমাণুর ভর ত্র^ভটি নির্ণয় কর।

ঘ. নিউক্লিয়াসের বন্ধন ছিন্ন করতে কোন পরমাণুর বেশি পরিমাণ শক্তি লাগবে? গাণিতীকভাবে বিশে-ষণ কর।

১৫ নং প্রশ্নের উত্তর

তজস্ক্রিয় মৌল থেকে তেজস্ক্রিয় রশ্মি নির্গমনের ঘটনাকে বলা হয় তেজস্ক্রিয়তা।

বি নিউক্লিয়াসের অস্থিতিশীলতার কারণে তেজস্ক্রিয়াতা সংঘটিত হয়। অনেক কারণে নিউক্লিয়াত্র অস্থিতিশীল হতে পারে এবং এটি তার অস্থিতিশীল অবস্থা থেকে মুক্তি পাওয়ার জন্য নিতম শক্তি স্ভুরে গিয়ে স্থিতিশীল হয়। এ কারণে নিউক্লিয়াত্র হতে স্বত:স্কূর্তভাবে আলফা, বিটা ও গামা রশ্মি নির্গত হয়।

গ দেওয়াআছে,

B পরমাণুর প্রকৃত ভর, $M=6.64 imes 10^{-27} \ kg$

B পরমাণুর প্রোটন সংখ্যা = 1

•

B পরমাণুর নিউট্রন সংখ্যা = 1 প্রোটনের ভর, $m_p=1.672 \times 10^{-27}~kg$ নিউট্রনের ভর, $m_n=1.675 \times 10^{-27}~kg$

∴ B পরমাণুর মোটভর = (m_p + m_n)

$$= (1.672 \times 10^{-27} + 1.675 \times 10^{-27}) \text{ kg}$$

$$= 3.347 \times 10^{-27} \text{ kg}.$$

∴B পরমাণুর ভর ত্র^cটি = $(6.64 \times 10^{-27} - 3.347 \times 10^{-27}) \text{ kg}$ = $3.293 \times 10^{-27} \text{ kg (Ans.)}$

ঘ 'গ' অংশ হতে পাই, B পরমাণুর ভরত্র^ভটি,

 $\Delta m_B = 3.293 \times 10^{-27} \; kg$ দেওয়াআছে,

A পরমাণুর প্রকৃত ভর, $m_A=2M$

=
$$2 \times 6.64 \times 10^{-27}$$
 kg
= 1.328×10^{-26} kg

A পরমাণুর মোট ভর = $(2 \times 1.672 \times 10^{-27} + 2 \times 1.675 \times 10^{-27})$ kg

$$=6.694 \times 10^{-27} \text{ kg}$$

∴ A পরমাণুর ভর ত্র[©]টি, $\Delta m_A = (1.328 \times 10^{-26} - 6.694 \times 10^{-27})$ kg

$$= 6.586 \times 10^{-27} \text{ kg}$$

∴ A পরমাণুর বন্ধন শক্তি $E_A = \Delta \ M_A imes c^2$

$$= 6.586 \times 10^{-27} \times (3 \times 10^8)^2 \\ = 5.9274 \times 10^{-10} \, J$$

 ${f B}$ পরমাণুর বন্ধন শক্তি ${f E}_{B}=\Delta\; {f M}_{B} imes c^{2}$

$$= 3.293 \times 10^{-27} \times (3 \times 10^8)^2 \\ = 2.9637 \times 10^{-10} \, J$$

$$\therefore \frac{E_A}{E_B} = \frac{5.9274 \times 10^{-10}}{2.9637 \times 10^{-10}}$$

বা,
$$\frac{E_A}{E_B} = 2$$

 $\therefore E_A = 2 \times E_B$

ত্রতির নিউক্লিয়াসের বন্ধন ছিন্ন করতে A পরমাণুর বেশি পরিমাণ শক্তি লাগবে।

প্রা ▶১৬ Au¹⁹⁸ একটি তেজস্ক্রিয় পদার্থ। বিশুদ্ধ Au¹⁹⁸ এর একটি টুকরা আলাদা করে রেখে দেওয়া হলো যাতে 10⁸ সংখ্যক পরমাণু রয়েছে। *[গাজীপুর সিটি কলেজ]*

ক. তেজস্ক্রিয়তা কি?

খ. ফিশন ও ফিউশন ব্যাখ্যা কর।

গ. পদার্থটির অর্ধায়ু 2.7d হলে অবক্ষয় ধ্র^লবক ও গড় আয়ু বের

ঘ. পদার্থটি আলাদা করে রাখার 72 ঘন্টা পরে কত সংখ্যক
 পরমানু ক্ষয় হয়ে য়াবে?

১৬ নং প্রশ্নের উত্তর

ত তেজস্ক্রিয় মৌল থেকে তেজস্ক্রিয় রশ্মি নির্গমনের ঘটনাকে তেজস্ক্রিয়তা বলে।

নিউট্রন দ্বারা আঘাত করে যদি কোন ভারী পরমাণুর নিউক্লিয়াসকে প্রায় সমভর বিশিষ্ট দুটি অংশে বিভক্ত করা যায় এবং প্রচন্ড পারমাণবিক শক্তির উদ্ভব হয়, তাহলে নিউক্লিয়াসের এ বিভাজনকে নিউক্লিয় ফিশন বলা হয়। যেমন,

$$^{235}_{92}$$
 U + $^{1}_{0}$ n \longrightarrow $^{141}_{56}$ Be + $^{92}_{36}$ kr + $^{3}_{0}$ n

পক্ষাম্পুরে, একাধিক হালকা পরমাণুর নিউক্লিয়াসের সংযুক্তির ফলে একটি অপেক্ষাকৃত ভারী নিউক্লিয়াস গঠিত হয় এবং প্রচুর পরিমাণে নিউক্লিয় শক্তি উৎপন্ন হয়। নিউক্লিয়াসের এই সংযোগকে নিউক্লিয়

$${}^{2}_{1}H + {}^{2}_{1}H \longrightarrow {}^{3}_{2}He + {}^{1}_{0}n + kw\acute{U}$$

গ দেয়া আছে,

আদি পরমাণু সংখ্যা,
$$N_o=10^8$$
 অর্ধায়ু, $T_{\frac{1}{2}}=2.7d$ অবক্ষয় ধ্রুত্রক, $\lambda=?$

গড় আয়ু, τ = ? আমরাজানি,

অর্থায়ু,
$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

বা, $\lambda = \frac{0.693}{T_{\frac{1}{2}}}$
 $= \frac{0.693}{2.7d}$
 $\therefore \lambda = 0.257 \text{ d}^{-1}$

আবার, গড় আয়ু, $\tau = \frac{1}{\lambda}$

$$= \frac{1}{0.257}$$

$$\tau = 3.896 \text{ d.}$$

$$\label{eq:lambdans.} \begin{split} \textbf{Ans.} \; \lambda = 0.257 \; d^{-1} \\ \tau = 3.896 \; d. \end{split}$$

ঘ দেয়া আছে.

আদি পরমাণু সংখ্যা, $N_o = 10^8$

$$=3d$$

(গ) হতে প্রাপ্ত

অবক্ষয় ধ্র[—]বক, $\lambda = 0.257 \text{ d}^{-1}$ আমরা জানি.

অপরিবর্তিত পরামণুর সংখ্যা,

$$\begin{split} N &= N_o e^{-\lambda t} \\ &= 10^8 e^{-0.257 \times 3} \\ \therefore \ N &= 4.63 \times 10^7 \end{split}$$

সুতরাং, ক্ষয়প্রাপ্ত পরমাণুর সংখ্যা,

$$\Delta$$
N = N₀ − N
= 10⁸ − (4.63 × 10⁷)
∴ Δ N = 5.37 × 10⁷ (**Ans.**)

প্রশ্ন >১৭ পলাশ পারমাণবিক বিদ্যুৎ কেন্দ্রে গবেষণা করার সময় দেখল একটি তেজস্ক্রিয় বস্তুর 10% ক্ষয় হতে 12 ঘণ্টা সময় লাগল। সে বস্তুটির গড় আয়ু এবং অর্ধায়ু বের কর। দিনাজপুর সরকারি কলেজ

ক. নিউক্লিয়ন কী?

খ. ইলেকট্রন এবং β কণার মধ্যে কি কোন পার্থক্য আছে– ব্যাখ্যা কর।

গ. তেজস্ক্রিয় বস্তুটির অবক্ষয় ধ্র^{ক্র}বক কত?

ঘ. গড় আয়ুর চেয়ে অর্ধায়ুর মান বেশি না কম হয়েছিলগাণিতিকভাবে বিশে-ষণ কর।

১৭ নং প্রশ্নের উত্তর

ক পরমাণুর নিউক্লিয়াসের মধ্যে অবস্থিত নিউট্রন এবং প্রোটন সমূহের প্রতিটিকে এক একটি নিউক্লিয়ন বলে।

۷

খ ইলেকট্রন এবং ৪ কণার মধ্যে পার্থক্য হলো–

- (i) ইলেক্ট্রন স্থির বা চলমান থাকতে পারে। গতিশীল সাধারণ ইলেক্ট্রনের গতিবেগ পরিবর্তনশীল হিসেবে বিবেচনা করা হয়। অপরদিকে, β কণা সর্বদাই গতিশীল, অর্থাৎ গতিবিহীন β কণা বিবেচনা করা অসম্ভব। β কণার বেগ ধ্র⁻ব বলে ধরে নেয়া হয়। β কণার গতিবেগ উচ্চ মানের এই বেগ আলোর বেগের শতকরা 50 ভাগ হতে শর⁻ করে 98 ভাগ পর্যশড় হতে পারে।
- (ii) সাধারণ ইলেকট্রন পরমাণুর সর্ববহি:স্থ শক্তি স্ড্র হতে অবমুক্ত হয়। কিন্তু β কণা হলো তেজস্ক্রিয়তার ফল। তেজস্ক্রিয়তার দর—ন পরমাণুর নিউক্লিয়াস হতে নির্গত নিউট্রন কণা বিভাজিত হয়ে বিটা কণা এবং প্রোটনে রূপাস্ড্রিত হতে পারে।

গ দেওয়া আছে,

সময়কাল, t = 12 hr

আদি পরমাণু সংখ্যা N_o হলে উক্ত সময়কাল শেষে অবশিষ্ট পরমানু সংখ্যা $N=N_o-N_o\times 10\%=0.9\ N_o$

বের করতে হবে, অবক্ষয় ধ্র^eবক, $\lambda = ?$

আমরা জানি,

$$N=N_{o}e^{-\lambda t}$$

বা,
$$e^{-\lambda t} = \frac{N}{N_o}$$

বা, $-\lambda t = ln\left(\frac{N}{N_o}\right)$ [উভয় পক্ষে e ভিত্তিক লগারিদমনিয়ে]

$$\therefore \ \lambda = -\frac{1}{t} \ln \left(\frac{N}{N_o} \right) = -\frac{1}{12 \text{ hr}} \ln \left(\frac{0.9 \text{N}}{N_O} \right)$$
$$= 8.78 \times 10^{-3} \text{ hr}^{-1} \text{ (Ans.)}$$

ঘ 'গ' অংশ হতে পাই,

তেজস্ক্রিয় পদার্থটির অবক্ষয় ধ্র^{ক্র}বক, $\lambda=8.78\times10^{-3}\ hr^{-1}$

∴ পদার্থটির গড় আয়ু,
$$\tau = \frac{1}{8.78 \times 10^{-3} \, hr^{-1}}$$
 = 113.9 hr

আবার, অর্ধায়ু,
$$T = \frac{0.693}{\lambda} = \frac{0.693}{8.78 \times 10^{-3} \, hr^{-1}}$$

যেহৈতু, 78.93 hr < 113.9 hr

সুতরাং গড় আয়ুর চেয়ে অর্ধায়ুর মান কম হয়ে ছিল।

প্রশ্ন ►১৮ একটি পারমাণবিক বিদ্যুৎ কেন্দ্রের উৎপাদন ক্ষমতা 4000MW এতে জ্বালানি হিসেবে U – 235 ব্যবহৃত হয়। 1টি ফিশন হতে 200MeV শক্তি পাওয়া যায়। 1 বছর পর দেখা গেল 1 মোল জ্বালানি হতে 9.27 × 10¹³ টি পরমাণু ক্ষয় হয়ে গেছে।

[জালালবাদ ক্যান্টনমেন্ট পাবলিক স্কুল ও কলেজ, সিলেট]

- ক. শোয়ার্জশিল্ড ব্যাসার্ধ কাকে বলে?
- খ. চিত্রসহ NOR Gate- এর সত্যক সারণি লেখ।
- গ. ব্যবহৃত জ্বালানির অর্ধায়ু নির্ণয় করো।
- ঘ. উদ্দীপক হতে 1 বছরের জ্বালানি খরচের পরিমাণ নির্ণয় করা যাবে কিনা গাণিতিকভাবে বিশে-ষণ কর।

১৮ নং প্রশ্নের উত্তর

ক একটি নির্দিষ্ট ভরের গোলাকৃতি বস্তু যে ব্যাসার্ধ প্রাপ্ত হলে কৃষ্ণ বিবর হিসেবে কাজ করে তাকে শোয়ার্জ শিল্ড ব্যাসার্ধ বলে।

NOR Gate এর চিত্র পাশে দেখানো হলো

এর সত্যক সারণি ন্দিরূপ:

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

গ দেওয়া আছে,

আদি প্রমাণু সংখ্যা, $N_o=1$ মোল = 6.023×10^{23}

সময়কাল, t = 1y

অবশিষ্ট পরমানুসংখ্যা, N = $6.023 \times 10^{23} - 9.27 \times 10^{13}$ = $6.022999999 \times 10^{23}$

বের করতে হবে, ব্যবহৃত জ্বালানির অর্ধায়ু, T=? অবক্ষয় ধ্র^eবক λ হলে আমরা জানি, $N=N_oe^{-\lambda t}$

বা,
$$-\lambda t = \ln \frac{N}{N_o}$$

$$\therefore \lambda = -\frac{1}{t} \ln \frac{N}{N_0} = -\frac{1}{1y} \ln \left(\frac{6.022999999 \times 10^{23}}{6.023 \times 10^{23}} \right)$$

=
$$1.66 \times 10^{-10} \text{ y}^{-1}$$

 \therefore অধায়ু, $T = \frac{0.693}{\lambda} = \frac{0.693}{1.66 \times 10^{-10} \text{y}^{-1}}$

= 4.1747 × 10⁹ y (**Ans.**) ঘ এক বছরের মোট সময় কাল, t = 365.25 day

 $= 365.25 \times 86400 \text{ sec}$ $= 3.15576 \times 10^7 \text{ sec}$

উক্ত পারমাণবিক বিদ্যুৎ কেন্দ্রের উৎপাদন ক্ষমতা,

 $P = 4000 \ MW = 4000 \times 10^6 \ Js^{-1}$

় এক বছর সময়কালে উৎপন্ন বিদ্যুৎ শক্তির পরিমাণ, E=pt = $4000 \times 10^6~Js^{-1} \times 3.15576 \times 10^7~sec = 1.262304 \times 10^{17}~J$ মনেকরি বিদ্যুৎ কেন্দ্রটি 100%~দক্ষ। অর্থাৎ পারমাণবিক জ্বালানিকে $E=mc^2~$ সূত্রানুসারে শক্তিতে পরিণত করার পর এ শক্তির সবটুকুই বিদ্যুৎশক্তিতে পরিণত হয়। তাহলে এক বছর সময়কালে ব্যবহৃত

জ্বালানির ভর m হলে,
$$m=\frac{E}{c^2}=\frac{1.262304\times 10^{17}\,J}{(3\times 10^8~ms^{-1})^2}$$
 = $1.40256~kg$

বিদ্যুৎ কেন্দ্রটি 100% দক্ষ (efficient) হলে এক বছর সময়কালে $1.40256~{
m kg}$ পরিমান পারমাণবিক জ্বালানি লাগবে, আর 100% দক্ষ না হলে $\frac{1.40256}{\eta}~{
m kg}$ পরিমাণ জ্বালানি লাগবে $(\eta={
m theorem mod})$ ।

প্রা>১৯ বাংলাদেশের বিজ্ঞানী ড. জাহিদ পদার্থের কণা নিয়ে গবেষণা করেন। তিনি আমেরিকার একটি ল্যাবে এক পরীক্ষার মাধ্যমে দেখলেন হাইড্রোজেন পরমাণুর তৃতীয় কক্ষ পথ হতে ইলেকট্রন উর্ত্তেজিত অবস্থা হতে শক্তি বিকিরণ করে দ্বিতীয় কক্ষ পথে আসে। এই বিকিরণ তিনি খালি চোখে দেখতে পান। [ইলেকট্রনের ভর = 9.1 × 10⁻³¹ kg চার্জ = 1.6 × 10⁻¹⁹ C, ∈₀ = 8.85 × 10⁻¹² C² N⁻¹ m⁻² দৃশ্যমান আলোর তরঙ্গ দৈর্ঘ্যের সীমা 4 × 10⁻⁷m হতে 7.5 × 10⁻⁷ m] সিরকারি কে সি কলেজ, ঝিনাইদহা

- ক. ভরত্রভি কী?
- খ. কোন ধাতুর কার্যাপেক্ষক 2.81 eV বলতে কি বুঝায়?
- গ. পরমাণুটি তৃতীয় কক্ষ পথের ব্যাসার্ধ নির্ণয় কর।
- ঘ. ড. জাহিদ যে বিকিরণ খালি চোখে দেখতে পেয়েছিলেন তা আসলেই দৃশ্যমান কি না তা গাণিতিক বিশে-ষণের মাধ্যমে যাচাই কর।

১৯ নং প্রশ্নের উত্তর

ক কোন স্থায়ী নিউক্লিয়াসের ভর এর গঠনকারী উপাদান সমূহের মুক্তাবস্থায় ভরের যোগফলের চেয়ে কিছুটা কম হতে দেখা যায়। ভরের এই পার্থক্যকে ভরত্র[©]টি বলে।

বা কোন ধাতুর কার্যাপেক্ষক 2.81 eV বলতে বোঝায় যে, ঐ ধাতুর উপর কমপক্ষে 2.81eV শক্তি বিশিষ্ট কোন আলোক তরঙ্গ আপতিত হলে তা হতে ইলেকট্রন মুক্ত হয় এবং এর চেয়ে কম শক্তি সম্পন্ন তরঙ্গ আপতিত হলে ইলেকট্রন মুক্ত হবে না।

গ এখানে,

ইলেকট্রনের ভর, $m = 9.1 \times 10^{-31} \text{ kg}$

ইলেফ্রনের চার্জ $e = 1.6 \times 10^{-19} C$

তৃতীয় কক্ষপথে n = 3

$$\in = 8.85 \times 10^{-12}~C^2~N^{-1}~m^{-2}$$

প-াঙ্কের ধ্রু ব্রুক $h = 6.63 \times 10^{-34} \, Js$

আমরা জানি,

$$r_n = \frac{n^2 h^2 \in O}{\pi m e^2}$$

ৰা,
$$r_3 = \frac{3^2 \times (6.63 \times 10^{-34})^2 \times 8.85 \times 10^{-12}}{3.1416 \times 9.1 \times 10^{-31} \times (1.6 \times 10^{-19})^2}$$

 \therefore r₃ = 4.79 × 10⁻¹⁰m (**Ans.**)

ঘ এখানে,

ইলেকট্রনের ভর, $m=9.1\times 10^{-31}\,\mathrm{kg}$ ইলেকট্রনের চার্জ, $e=1.6\times 10^{-19}\,\mathrm{C}$

প-াঙ্কের ধ্র[ে]বক $h=6.63\times 10^{-34}~Js$

$$\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{ m}^{-2}$$

আমরা জানি,

$$\therefore \ \Delta E = E_3 - E_2$$

$$\begin{aligned}
&= -\frac{me^4}{8 \times 3^2 \times h^2 \in_0^2} - \left(\frac{-me^4}{8 \times 2^2 \times h^2 \in_0^2}\right) \\
&= \frac{me^4}{8h^2 \in_0^2} \left(-\frac{1}{9} + \frac{1}{4}\right) \\
&= \frac{9.1 \times 10^{-31} \times (1.6 \times 10^{-19})^4}{8 \times (6.63 \times 10^{-34})^2 \times (8.85 \times 10^{-12})^2} \left(-\frac{1}{9} + \frac{1}{4}\right) \\
&= 3.007 \times 10^{-19} \text{ J}
\end{aligned}$$

ধরি, নির্গত বিকিরণের তরঙ্গদৈর্ঘ্য = λm

..
$$\Delta E = \frac{hc}{\lambda}$$

বা, $\lambda = \frac{hc}{\Delta E}$
= $\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{3.007 \times 10^{-19}}$
= 6.615×10^{-7} m

যা দৃশ্যমান আলোর তরঙ্গদৈর্ঘের সীমার মধ্যে পড়ে।

সুতরাং, ডা. জাহিদ আসলেই খালি চোখে বিকিরণ দেখতে পেয়েছিলেন।

প্রশ্ন ▶ ২০

মৌল	প্রোট	ভর	নিউক্লিয়াসের	$1a.m.u = 1.66057 \times 10^{27} \text{ kg}$
	ন	সংখ্যা	ভর (a.m.u)	$h = 6.63 \times 10^{-34} \text{ Js}$
	সংখ্যা		, ,	$m_n = 1.00876 \text{ a.m.u}$
U	92	235	235.04390	$m_p = 1.00728 \text{ a.m.u}$ $m_e = 0.00055 \text{ a.m.u}$
He	2	4	4.00389	আলোর বেগ, c = 3 × 10 ⁸ ms
Fe	26	56	56.00000	- 416-114 GV1, C = 3 × 10 IIIs

Li	3	6	6.01512	ইলেক্ট্রনের চার্জ, e = 1.6 × 10 ⁻¹⁹ C
				$\epsilon_0 = 8.854 \times 10^{-12} \mathrm{C^2 N^{-1} \ m^{-2}}$

[চাঁদপুর সরকারি মহিলা কলেজ, চাঁদপুর] ক. ব্যান্ড তত্ত্র কী?

খ. ট্রানজিস্টারের পীঠের পুর^{ক্}ত্ব কম এবং সংগ্রাহকের পুর^{ক্}ত্ব

বেশি হয় কেন? - ব্যাখ্যা কর।

গ. উদ্দীপকের পরমাণুগুলোর দ্বিতীয় কক্ষপথের ব্যাসার্ধ নির্ণয়

ঘ. উদ্দীপকের মৌল সমূহের বন্ধনশক্তি নির্ণয়পূর্বক সর্বাধিক বন্ধনশক্তি সম্পন্ন মৌলটিকে চিহ্নিত কর।

২০ নং প্রশ্নের উত্তর

ক কোন পদার্থের পরমাণুর কক্ষপথের বিভিন্ন স্পুরের শক্তি তথা বিভিন্ন ব্যান্ডের শক্তির উপর ভিত্তি করে তার তড়িৎ পরিবাহীতা রোধ ইত্যাদি সম্পর্কে ধারণা যে তত্ত্ব হতে পাওয়া যায় তাকে ব্যান্ড তত্ত্ব বলে।

ট্রানজিস্টর তৈরি করা হয় বৈদ্যুতিক সংকেত বিবর্ধন করার উদ্দেশ্যে। ট্রানজিস্টরের সক্রিয় অঞ্চল হলো ভূমি/পীঠ। পীঠ যত পাতলা হবে, নিঃসরারক সংগ্রাহক তড়িংক্ষেত্র তত বেশি শক্তিশালী হবে। এর ফলে পীঠ অঞ্চলে অল্প প্রবাহ প্রবেশ করালেই তার বিশাল প্রভাব পড়বে। অর্থাৎ প্রবাহ লাভের (β) মান অত্যধিক হবে। এ কারণেই ট্রানজিস্টরের পীঠ অংশ পাতলা করা হয়।

গ দ্বিতীয় কক্ষপথের জন্য n = 2

প-াঙ্কের ধ্রভ্রক $h=6.63 \times 10^{-34}~Js$

ইলেক্ট্রনের ভর m = 9.11 × 10⁻³¹ kg

আমরা জানি,

 $_{n}$ তম কক্ষপথের ব্যসার্ধ, $r_{n}=\frac{n^{2}h^{2}\varepsilon_{o}}{\pi me^{2}}$

পরমাণুগুলোর ২য় কক্ষপথের ব্যাসার্ধ,

$$\begin{split} r_2 &= \frac{2^2 \times (6.63 \times 10^{-34})^2 \times 8.854 \times 10^{-12}}{3.14 \times 9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^2} \\ &= 2.13 \times 10^{-10} m \\ &= 2.13 \mathring{A} \end{split}$$

ঘ এখানে,

 $m_p = 1.00728 \text{ a.m.u}$

 $m_n = 1.00876 \text{ a.m.u}$

 $\in_o = 8.854 \times 10^{-12} \ C^2 N^{-1} m^{-2}$

 $c=3\times10^8\ ms^{-1}$

U এর জন্য

বন্ধন শক্তি =
$$(Zm_p + nm_n - m)c^2$$
 | $A = 235$ | $Z = 92$ | $A = 235$ | A

He এর জন্য

বন্ধন শক্তি =
$$(Zm_p + nm_n - m)c^2$$
 = $(2 \times 1.00728 + 2 \times 1.00876 - 4.00389) \times 1.66057 \times 10^{-27} \times (3 \times 10^8)^2$ = 4.2×10^{-12} J $A = 4$ $Z = 2$ $n = A - Z = 4 - 2 = 2$ $m = 4.00389$ amu

Fe এর জন্য

বন্ধন শক্তি =
$$(Zm_p + nm_n - m)c^2$$
 | $A = 56$ | $Z = 26$ | Z

Li এর জন্য

বন্ধন শক্তি =
$$(Zm_p + nm_n - m)c^2$$
 = $(3 \times 1.00728 + 3 \times 1.00876 - 6.01512) \times 1.66057 \times 10^{-27} \times (3 \times 10^8)^2$ = 4.93×10^{-12} J
$$A = 6$$
 Z = 3 n = A - Z = 6 - 3 = 3 m = 6.01512 amu

উপরোক্ত মৌলসমূহের বন্ধন শক্তির মান যাচাই করে দেখা যায় ইউরেনিয়াম ধাতু সর্বাধিক বন্ধন শক্তি সম্পন্ন মৌল।

প্রশু ▶২১ ₈₆Rn²²²এর অর্ধায়ু 3.82 দিন।

[বরগুনা সরকারি কলেজ. বরগুনা]

- ক. ভর ত্র^ভটি কি?
- খ. ভারী নিউক্লিয়াসের প্রতি নিউক্লিয়ানে বন্ধন শক্তির মান তুলনামূলক কম হয় কেন? ২
- গ. উদ্দীপকের নমুনার 40% অবশিষ্ট থাকতে কত সময় লাগবে?৩
- ঘ. উদ্দীপকের নমুনায় সম্পূর্ণ ক্ষয় হতে অসীম সময় লাগবে কি? গাণিতিকভাবে বিশে-ষণ কর।

২১ নং প্রশ্নের উত্তর

- ক কোন স্থায়ী নিউক্লিয়াসের ভর মুক্ত অবস্থায় এর গঠনকারী উপাদানসমূহের ভরের সমষ্টি অপেক্ষা কিছুটা কম হয়। ভরের এই পার্থক্যকে ভর ত্র[©]টি বলে।
- খ ভারী নিউক্রিয়াস সমূহের স্থায়িত্ব কম হওয়ায় এর নিউক্রিয়ন তথা প্রোটন ও নিউট্রন সমূহকে অপেক্ষাকৃত সহজে আলাদা করা যায়। এজন্য ভারী নিউক্লিয়াসে অবস্থিত নিউক্লিয়ন সমূহের বন্ধনশক্তি অপেক্ষাকৃত কম হয়।

গ এখানে,

মনেকরি.

প্রারম্ভিক পরমাণু সংখ্যা $= N_o$

∴ অবশিষ্ট পরমাণু সংখ্যা $N = N_o \times 40\%$ = $0.4 N_o$

প্রয়োজনীয় সময় t = ?

আমরাজানি,

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

বা,
$$\lambda = \frac{0.693}{3.82}\,d^{-1}$$

 $\therefore \lambda = 0.1814136 d^{-1}$

আবার,

 $N = N_o e^{-\lambda t}$

বা, $0.4 \text{ N}_{o} = \text{N}_{o}\text{e}^{-0.1814136 \times t}$

 \therefore t = 5.05 days

সুতরাং, 40% অবশিষ্ট থাকতে 5.05 দিন সময় লাগবে।

মনে করি, কোনো তেজস্ক্রিয় পদার্থের খন্ডে আদিতে (t=0) পরমাণু সংখ্যা N_0 এবং t সময় পরে অবশিষ্ট পরমাণু সংখ্যা N এবং ক্ষয়ধ্র বক λ হলে তেজস্ক্রিয় ক্ষয়সূত্রটি হলো :

 $N = N_o e^{-\lambda t}$

ঐ খন্ডের সবগুলো পরমাণু ভেঙ্গে যেতে কত সময় লাগে তা নির্ণয় করি। সবগুলো পরমাণু ভেঙ্গে গেলে, N=0

$$\therefore N = N_o e^{-\lambda t}$$
 হতে পাই,
$$0 = N_o e^{-\lambda t}$$

বা,
$$e^{-\lambda t} = 0$$
 [:: $N_o \neq 0$]

বা, $\ln{(e^{-\lambda t})} = \ln{(0)}$ [উভয় পক্ষ e ভিত্তিক লগ নিয়ে]

বা, $-\lambda t = \infty$

$$\therefore t = \frac{\infty}{-\lambda} = \infty$$

সুতরাং সবগুলো পরমাণু ভাঙার জন্য কোনো তেজস্ক্রিয় পদার্থের অসীম সময় লাগে।

প্রশ্ন ▶ ২২

۵

$$U_{92}^{235}+\ n_0^1
ightarrow \left[U_{92}^{236}\right]^*
ightarrow {}^{141}_{56} Ba + {}^{92}_{36} Kr + 3\ n_0^1 +$$
 শক্তি

এই ভাঙনকে বিশে-ষণ করে দেখা গেল 10g হতে প্রতি সেকেন্ডে 5.02×10^6 টি পরমাণু নির্গত হয়। প্র্যাখালী সরকারি কলেজ,পট্য়াখালী

গ.
$$U \frac{235}{92}$$
 এর $\frac{1}{4}$ অংশ ক্ষয় হতে কত সময় লাগবে?

ঘ. U $\frac{235}{92}$ এর Fission এর ফলে নির্গত শক্তির পরিমান নির্ণয় কর।

২২ নং প্রশ্নের উত্তর

- ক কোনো স্থায়ী নিউক্লিয়াসের ভর এর গঠনকারী উপাদান সমূহের মুক্তাবস্থায় ভরের যোগফলের চেয়ে কিছুটা কম হতে দেখা যায়। ভরের এই পার্থক্যকে ভর ত্র[©]টি বলে।
- তজস্ক্রিয় মৌল থেকে তেজস্ক্রিয় রিশ্মি নির্গমনের ফলে আদি মৌলের নিউক্রিয়াস একটি নতুন মৌলের নিউক্রিয়াসে রূপাস্পুরিত হয়। তেজস্ক্রিয় রিশ্মি সমূহ নিউক্রিয়াস থেকেই নির্গত হয়ে মৌলের রূপাস্পুর র ঘটায় বলে তেজস্ক্রিয়তা একটি নিউক্রীয় ঘটনা।
- গ দেওয়া আছে.

ভাঙ্গনের হার
$$\frac{\mathrm{dN}}{\mathrm{dt}} = 5.02 \times 10^6 \mathrm{s}^{-1}$$

$$1$$
 গ্রাম U $\frac{235}{92}$ এ পরমাণুর সংখ্যা = $\frac{6.02 \times 10^{23}}{235}$

$$\therefore 10$$
 থাম U $\frac{235}{92}$ এ পরমাণুর সংখ্যা = $\frac{6.02 \times 10^{23} \times 10}{235}$ = 2.56×10^{22} টি

$$\therefore N = 2.56 \times 10^{22} \, \overline{\text{lb}}$$

অবক্ষয় ধ্র^লবক λ হলে, তেজস্ক্রিয় ক্ষয় সূত্র হতে পাই;

$$rac{dN}{dt} = \lambda N \left[$$
ঋণ্ডক চিহ্ন পরিহার করে]

বা,
$$5.02 \times 10^6 = \lambda \times 2.56 \times 10^{22}$$

$$\therefore \lambda = 1.96 \times 10^{-16} \text{ s}^{-1}$$

প্রমতে,
$$N=N_o$$
 এর $\frac{1}{4}$

বা,
$$\frac{N}{N_0} = \frac{1}{4}$$

আমরা জানি,
$$\frac{N}{N_o}=e^{-\lambda t}$$
 বা, $\frac{1}{4}=e^{-\lambda t}$

বা,
$$\ell n\left(\frac{1}{4}\right) = \ln e^{-\lambda t}$$

$$\overline{41}, \ t = \frac{1.386}{1.96 \times 10^{-16}} = 7.07 \times 10^{15} \ s \ (\text{Ans.})$$

92U²³⁵ + on¹ ----> 56Ba¹⁴¹ + 36Kr⁹² + 3 on¹ ফিশন বিক্রিয়ার পূর্বে সর্বমোট ভর = M (92U $^{235})$ + M (0n $^1)$ = (235.0439 + 1.0087) amu [M দ্বারা mass of বুঝানো হয়েছে]

= 236.0526 amu

ফিশন বিক্রিয়ার পর সর্বমোট ভর

 $= M (56Ba^{141}) + M (36Kr^{92}) + 3M (0n^1)$

= (140.9139 + 91.8973 + 3 (1.0087)

= (140.9139 + 91.8973 + 3.0261) amu

= 235.8373 amu

ভর পার্থক্য = 236.0526 – 235.8373 = 0.2153 amu

আইনস্টাইনের ভর ও শক্তির সমমানতা সূত্র হতে আমরা জানি যে, 1 amu = 931 MeV

∴ 0.215 amu = 0.215 × 931 = 200 MeV (প্রায়) (Ans.)

প্রশ্ন ▶২৩ 1990 সালে সাভারের পরমাণু শক্তি কমিশনে 50 gm পরিমাণ প্রটোনিয়াম ক্রয় করা হয়েছিল। এদের গড় আয়ু 15.5 বছর। সালে দেখা গেল ঐ পদার্থের 10 gm অবশিষ্ট রয়েছে।

[কুমিল-া সরকারি মহিলা কলেজ, কুমিল-া]

- ক. বিগ ফ্রিজ কি?
- খ. রঙধনু আকাশে বৃষ্টি হবার পর দেখার কারণ কী? বুঝিয়ে দাও। ২
- গ. অর্ধায়ু বের কর।
- ঘ. 2040 সালে প[‡]টোনিয়ামের অবশিষ্টাংশ থাকবে কি না বিচার বিশে-ষণ কর।

২৩ নং প্রশ্নের উত্তর

- ক মহাবিশ্বের সম্প্রসারণ যদি অতিমাত্রায় বেশি হয় তাহলে শক্তি শোষণের ফলে মহাবিশ্বের সকল গ্রহ উপগ্রহ জমে বরফ হয়ে যাবে। একে বিগ ফ্রিজ বলে।
- রংধনু আলোর বিচ্ছুরণের ফলে দেখা যায়। বৃষ্টি হবার পর বায়ুমন্ডলে বৃষ্টির কণা উপস্থিত থাকে যা বিচ্ছুরণের জন্য প্রিজম মাধ্যম হিসেবে কাজ করে। আর এই বৃষ্টি কনার মধ্য দিয়ে আলো গমন করলে তা বিচ্ছুরিত হয় এবং মৌলিক সাতটি বর্ণে বিভক্ত হয়ে রংধনু সৃষ্টি করে।
- গ এখানে,

প_রটোনিয়ামের গড় আয়ু, $au=15.5~{
m yr}$ প_রটোনিয়ামের অর্ধায়ু, $T_{rac{1}{2}}=?$

আমরা জানি,

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

বা, $T_{\frac{1}{2}} = 0.693\tau \left[\therefore \tau = \frac{1}{\lambda} \right]$
= $(0.693 \times 15.5) \text{ yr}$
= 10.742 yr

ঘ এখানে,

গড়আয়ু τ = 15.5 yı

∴ অবক্ষয় প্র^৫বক
$$\lambda = \frac{1}{\tau} = \frac{1}{15.5} \, yr^{-1} = 0.064516 \, yr^{-1}$$

সময় t = (2040 - 1990) yr = 50 yr

প্রারম্ভিক প**ুটোনিয়ামের ভর N**o = 50 gm

 $\therefore~2040$ সালে অবশিষ্ট প_{রু}টোনিয়ামের ভর $N=N_o e^{-\lambda t}$

$$= 50 \times e^{-0.064516 \times 50}$$
$$= 1.99 \text{ gm} \neq 0$$

সুতরাং, 2040 সালে পদার্থটির কিছু পরিমাণ (1.99 gm) অবশিষ্ট থাকবে।

[সরকারি সোহরাওয়াদী কলেজ, পিরোজপুর]

- ক. বন্ধন শক্তি কাকে বলে?
- খ. নিউক্লিয়ার চেইন বিক্রিয়া ব্যাখ্যা কর।
- গ. A পরমাণুর ক্ষয় ধ্র^ভবকের মান নির্ণয় কর।
- ঘ. A ও B পরমাণুর অর্ধায়ু সমান নয় গাণিতিকভাবে বিশে-ষণ কর।

২৪ নং প্রশ্নের উত্তর

- ক কোনো প্রয়োজনীয় সংখ্যক নিউক্লিয়ন একত্রিত হয়ে একটি স্থায়ী নিউক্লিয়াস গঠন করতে যে পরিমাণ শক্তির প্রয়োজন হয় বা কোনো নিউক্লিয়াসকে ভেঙ্গে এর নিউক্লিয়নগুলোকে পরস্পরের প্রভাব হতে মুক্ত করতে নিউক্লিয়াসকে বাইরে থেকে যে পরিমাণ শক্তি সরবরাহ করতে হয় তাকে বন্ধন শক্তি বলে।
- খ নিউক্লিয়ার চেইন বিক্রিয়া বলতে এমন স্ব-বহ বিক্রিয়া বোঝায় যা একবার শুর[—] হলে তাকে চালিয়ে রাখার জন্য কোনো অতিরিক্ত শক্তির প্রয়োজন হয় না। ফিশনযোগ্য বিক্রিয়ায় যে নিউট্রন মুক্তি লাভ করে তা চেইন বিক্রিয়াকে সম্ভব করে তোলে। যেমন U $\frac{235}{92}$ এর ফিশানের ফলে তা থেকে দুটি নিউট্রন মুক্ত হয়। এই দুটি নিউট্রন আরো দুটি U $\frac{235}{92}$ নিউক্লিয়াসের ফিশন ঘটালে পাওয়া যাবে চারটি নিউট্রন। এরা আরও 4টি নিউক্লিয়াসের ফিশন ঘটিয়ে তৈরি করবে ৪টি নিউট্রন এবং এ প্রক্রিয়া ফিশনযোগ্য পদার্থ শেষ না হওয়া প্র্যুশ্ড চলতে থাকবে।

গ উদ্দীপক হতে পাই,

 \overline{A} পরমাণুর অর্ধায়ু, $T_{\frac{1}{2}} = 400$ একক.

A পরমাণুর ক্ষয়ধ্র[—]বক, $\lambda = ?$ আমরা জানি,

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

$$\vec{A}, \ \lambda = \frac{0.693}{T_{\frac{1}{2}}}$$

$$\vec{A}, \ \lambda = \frac{0.693}{100}$$

 $\therefore \lambda = 1.7325 \times 10^{-3}$ একক⁻¹ (Ans.)

ঘ উদ্দীপকের চিত্র হতে পাই,

 $\overline{\mathbf{A}}$ এর অর্ধায়ু, $T_{\frac{1}{2}} = 400$ একক

B এর অর্ধায়ু, $T_{\frac{1}{2}} = 500$ একক

A এর অবক্ষয় ধ্র^{ক্র}বক, $\lambda_{A} = \frac{0.693}{400} = 1.7325 \times 10^{-3}$

B এর অবক্ষয় ধ্রুত্রক, $\lambda_B = \frac{0.693}{500} = 1.386 \times 10^{-3}$

কোনো পদার্থের ঠিক অর্ধেক পরিমাণ ভাঙ্গতে যে সময় লাগে তাকে অর্ধায়ু বলে। মনেকরি, A পরমাণুর অর্ধেক ভাঙ্গতে সময় = t_A B পরমাণুর অর্ধেক ভাঙ্গতে সময় = t_B

 $_{\ \, : \ \, e}{}^{-\lambda}A^tA\equiv e^{-\lambda}B^tB$

বা, $lne^{-\lambda}A^{t}A = lne^{-\lambda}B^{t}B$

বা, $-\lambda_A t_A = -\lambda_B t_B$

剩. 1.7325×10^{-3} t_A = 1.386×10^{-3} t_B

বা, $t_A = 0.8t_B$

 $\therefore t_A \neq t_B$

অতএব, A ও B পরমাণুর অর্ধায়ু সমান নয়।

প্রশ্ন ▶২৫ নিচে একটি বিক্রিয়া দেখানো হল,

92
$$X^{235}$$
 + 0 Y^1 → $[A]$ → ${}_{54}C^{140}$ + ${}_{38}D^{94}$ + P_0n^1 + $E_n(MeV)$ [সফিউদ্দিন সরকার একাডেমী স্কুল এন্ড কলেজ, গাজীপুর]

- ক. ফোকাসিং কী?
- খ. হল ভোল্টেজ কিভাবে উৎপন্ন হয় ব্যাখ্যা কর।
- গ. বিক্রিয়াটি পূর্ণ কর এবং কী ধরণের বিক্রিয়া ব্যাখ্যা কর।
- ঘ. বিক্রিয়াটি অর্ধেক পরিমাণ ক্ষয় হতে 16.8Y লাগলে পদাথটির 10 গ্রাম হতে 0.5gm এ পরিণত করা সম্ভব কী না? সম্ভব হলে কত সময় লাগবে গাণিতিক ভাবে বিশে-ষণ কর। ৪

২৫ নং প্রশ্নের উত্তর

- ক লেঙ্গ হতে একটি নির্দিষ্ট দূরত্বে প্রতিবিদ্ব গঠনের জন্য ক্যামেরার লেঙ্গের ফোকাস দূরত্বের যে পরিবর্তন করা হয় তাকে ফোকাসিং বলে।
- বা কোনো তড়িৎবাহী পরিবাহককে চৌম্বকক্ষেত্রে স্থাপন করলে তড়িৎ প্রবাহ ও চৌম্বকক্ষেত্র উভয়ের সাথে লম্বভাবে যে বিভব পার্থক্যের সৃষ্টি হয় তথা ভোল্টেজ উৎপন্ন হয় তাকে হল ভোল্টেজ বলে। তড়িৎপ্রবাহ চলাকালে কোনো পরিবাহকে তড়িৎপ্রবাহের লম্বদিকে সুষম চৌম্বকক্ষেত্র প্রয়োগ করলে আধান বাহক ইলেকট্রনগুলো চৌম্বক বল লাভ করে। এর ফলে ইলেকট্রনগুলো এক প্রান্টেজ জমা হয়। অপর প্রান্টেজ জমা হয়। অপর প্রান্টে ধন্দ্রক আধান জমা হওয়ার কারণ হল বিভব পার্থক্য তথা হল ভোল্টেজ উৎপন্ন হয়।
- গ পূৰ্ণকৃত বিক্ৰিয়া হল,

 $_{92}U^{235}+_{0}n^{1}\rightarrow [_{92}U^{236}]^{*}\rightarrow _{54}Xe^{140}+_{38}Sr^{94}+_{20}n^{1}+200~MeV$ উপরোক্ত বিক্রিয়াটি নিউক্লিয়ার ফিশান বিক্রিয়া ।

এখানে দেখা যাচ্ছে $\frac{235}{92}$ U নিউক্লিয়াস একটি নিউট্রন শোষণ করে $\frac{236}{92}$ U যৌগিক নিউক্লিয়াসে পরিবর্তিত হয়। পরে যৌগিক নিউক্লিয়াসটি দুটি নিউক্লিয়াস জেনন (Xe) এবং স্ট্রনসিয়াম (Sr)-এ বিভক্ত হয়েছে। এই প্রক্রিয়ায় দুটি নিউট্রন সৃষ্টি হয়েছে এবং প্রায় 200 MeV শক্তি মুক্ত হয়।

ফিশান ভগ্নাংশ $^{140}_{54}$ Xe এবং $^{94}_{38}$ Sr উভয়েই বিটা তেজস্ক্রিয় । ভারী নিউক্লিয়াসকে প্রোটন, ডিউটেরন, আলফা কণা এবং গামা রশ্মিদ্বারা আঘাত করলেও নিউক্লিয় ফিশান সংঘটিত হয় ।

ঘ এখানে,

বিক্রিয়াটির অর্ধায়ু, $T_{rac{1}{2}}=16.8~
m y$ পদার্থের প্রাথমিক পরিমাণ, No=10~
m gmপদার্থের অবশিষ্ট পরিমাণ, N=0.5~
m gmপ্রয়োজনীয় সময় $=t~(4{
m fa})$

আমরাা জানি,

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

▼1, $\lambda = \frac{0.693}{16.8}$

∴ $\lambda = 0.04125y^{-1}$

আবার

$$\begin{split} N &= N_o e^{-\lambda t} \\ \hline \text{ ৗ, } 0.5 &= 10 e^{-0.04125 \times t} \\ \hline \text{ ৗ, } 0.05 &= e^{-0.04125t} \\ \hline \text{ ৗ, } \ln \left(0.05 \right) &= -0.04125t \\ \therefore \ t &= 72^\circ.62y \end{split}$$

সুতরাং, পদার্থটির $10 \mathrm{gm}$ হতে $0.5 \mathrm{gm}$ এ পরিণত করা সম্ভব এবং এতে $72.62 \mathrm{yr}$ সময় লাগবে।

প্রশ্ন ▶২৬ স্বপন দুটি তেজস্ক্তিয় মৌল A ও B নিয়ে কাজ করছিল। মৌলদ্বয়ের অর্ধায়ুর যোগফল 12 বছর। A এর অর্ধায়ু B এর দ্বিগুণ। [পুলিশ লাইস স্কুল এভ কলেজ, রংপুর]

- ক. কাৰ্য অপেক্ষক কী?
- খ. p n জাংশন ডায়োডের I V বৈশিষ্ট্য লেখ কিরূপ ব্যাখ্যা কব।
- গ. B মৌলের ক্ষয় ধ্র[—]বক নির্ণয় কর।
- ঘ. উভয় মৌলের 60% ক্ষয় হতে ভিন্ন সময় লাগে-গাণিতিক বিশে-ষণসহ মতামত দাও।

২৬ নং প্রশ্নের উত্তর

- ক কোনো ধাতুখন্ডের পৃষ্ঠের ওপর ন্যূনতম যে শক্তির ফোটন আপতিত হলে এটি হতে ইলেকট্রন নিঃসৃত হয় তাকে ঐ ধাতুর কার্যাপেক্ষক বলে।
- য p-n জাংশনের সম্মুখী বায়াসে ভোল্টেজ বাড়াতে থাকলে প্রথম দিকে এর মধ্যদিয়ে অতি সামান্য মাত্রার (mA ক্রমের) তড়িৎ প্রবাহিত হয়।

তবে ভোল্টেজের ন্যূনতম যে মানের জন্য এর মধ্যদিয়ে তড়িৎ প্রবাহ দ্র*ত বৃদ্ধি পায় তাকে knee voltage বলে। বিপরীত বায়াসে জাংশনের মধ্য দিয়ে অতিক্ষুদ্র (μ A ক্রমের) মানের তড়িৎ প্রবাহিত হয়। তবে বিপরীত বায়াসের একটি নির্দিষ্ট ভোল্টেজে হঠাৎ করে বিপুল পরিমাণ তড়িৎপ্রবাহ জাংশনের মধ্য দিয়ে অতিক্রম করা শুর* করে। এ ভোল্টেজকে জেনার ভোল্টেজ বলে।

ুরা মনে করি, A ও B মৌলের অর্ধায়ু যথাক্রমে T_A ও T_B তাংলে উদ্দীপক মতে, $T_A+T_B=12\ y$

এবং,
$$T_A = 2T_B$$

∴
$$2T_B + T_B = 12y \, \overline{\blacktriangleleft}, T_B = \frac{12y}{3} = 4y$$

 \therefore B মৌলের ক্ষয় ধ্র⁻বক, $\lambda_B = \frac{0.693}{T_B} = \frac{0.693}{4y}$ $0.1732y^{-1}$ (Ans.)

য মনে করি, মৌলদ্বয়ের 60% ক্ষয় হতে যথাক্রমে $t_{
m A}$ ও $t_{
m B}$ পরিমাণ সময় লাগে.

$$A$$
 মৌলের ক্ষয় ধ্র^{-্র}বক, $\lambda_A = \frac{0.693}{T_A} = \frac{0.693}{8y}$ $= 0.0866 \ y^{-1}$

আমরা জানি,

 $N=N_0\;e^{-\lambda}$

'গ' অংশ হতে পাই, $\lambda_B = 0.1732 y^{-1}$ আমরা জানি,

 $N = N_0 e^{-\lambda_A t_A}$(i)

এবং $N=N_0~e^{-\lambda B~tB}$(ii)

(i) ও (ii) হতে পাই

$$N_0 \; e^{-\lambda_A t A} = N_0 \; e^{-\lambda_B \, t_B}$$

বা,
$$-\lambda_A t_A = -\lambda_B t_B$$

বা,
$$t_A = \frac{\lambda_B}{\lambda} \times t_B$$

ৰা,
$$t_A=\frac{\lambda_B}{\lambda_A}\times t_B$$
 ৰা, $t_A=\frac{0.1732}{0.0866}\times t_B$

$$\therefore t_A = 2 \times t_B$$

অতএব, t_A ≠ t_B

সুতরাং, উভয় মৌলের 60% ক্ষয় হতে ভিন্ন সময় লাগে।

প্রশু ▶২৭ রেডনের অর্ধায়ু 3.82 দিন।

পোবনা ক্যাডেট কলেজা

- ক. তেজস্ক্রিয়তা কী?
- খ্র নিউক্রীয় ফিশন ও ফিউশন উদাহরণসহ ব্যাখ্যা কর।
- গ. রেডনের 60% ক্ষয় হতে কত সময় লাগবে?
- ঘ. "কোনো তেজস্ক্রিয় পদার্থের সম্পূর্ণ ক্ষয় হতে অসীম সময় লাগে।"- গাণিতীক বিশে-ষণের মাধ্যমে ব্যাখ্যা কর। 8

২৭ নং প্রশ্নের উত্তর

ক তেজস্ক্রিয় মৌল থেকে স্বতঃস্কুর্তভাবে তেজস্ক্রিয় রশ্মি নির্গমনের ঘটনাকে বলা হয় তেজস্ক্রিয়তা।

🔻 **নিউক্লিয়ার ফিশন :** যে বিশেষ ধরনের নিউক্লিয়ার বিক্রিয়ায় একটি ভারী নিউক্লিয়াস প্রায় সমান ভর সংখ্যা বিশিষ্ট দুটি নিউক্লিয়াসে বিভক্ত হয় তাকে নিউক্লীয় ফিশন বলে। ধীর গতির নিউট্রন দ্বারা ইউরেনিয়াম

 $^{235}_{92}\,\mathrm{U}$ এর ফিশন নিশেক্ত সমীকরণ দ্বারা প্রকাশ করাা হয।

$$^{235}_{92}$$
U + $_0$ n 1 \rightarrow [$^{236}_{92}$ U] * \rightarrow X + Y + নিউট্ৰন + শক্তি

নিউক্লিয়ার ফিউশন: যে বিক্রিয়ায় দুটি হাল্কা নিউক্লিয়াস একত্রিত হয়ে অপেক্ষাকত ভারী একটি নিউক্লিয়াস গঠন করে এবং অত্যধিক শক্তি বের হয় সে বিক্রিয়াকে বলা হয় নিউক্লিয়ার ফিউশন।

নিউক্লিয়ার ফিউশনকে নিগুক্তি সমীকরণ দ্বারা নির্দেশ করা যেতে পারে।

$${}_{1}^{1}H + {}_{0}^{1}n = {}_{1}^{2}H$$

এখানে একটি প্রোটন একটি নিউট্রনকে গ্রাস করে তৈরি করেছে একটি

ডিউটেরন $\binom{2}{1}$ H).

গ দেওয়া আছে,

ন্তেদের অর্ধায়ু, $T_{\frac{1}{2}} = 3.82$ দিন

$$\therefore$$
 রেডনের অবক্ষয় ধ্রু বক, $\lambda=\frac{0.693}{T_{rac{1}{2}}}$
$$=\frac{0.693}{3.82}$$

$$=0.1814~{
m d}^{-1}$$

অবশিষ্ট পরমাণুর সংখ্যা, $N = N_0$ -এর (100 - 60)%

বা,
$$N = N_o \times 40\%$$

বা,
$$N = N_o \times \frac{40}{100}$$

$$\therefore N = \frac{2N_0}{5}$$

আমরা জানি.

$$\begin{split} N &= N_o e^{-\lambda t}. \\ \hline \text{T}, & \frac{2N_o}{5} = N_o e^{-\lambda t} \end{split}$$

বা,
$$\ln\left(\frac{2}{5}\right) = -0.1814 \text{ t}$$

ঘ 'গ' অংশ হতে পাই.

রেডনের অবক্ষয় ধ্র^ভবক, $\lambda=0.1814d^{-1}$

তেজস্ক্রিয় পদার্থের 100% ক্ষয় হলে, অবিশষ্ট পরামণুর

সংখ্যা, N = 0

100% ক্ষয় হতে t সময় লাগলে,

আমরা জানি,

$$N = N_o e^{-\lambda t}$$

$$\implies 0 = N_0 e^{-\lambda t}$$
.

$$\Longrightarrow 0 = e^{-\lambda t}$$

বা,
$$ln0 = -\lambda t$$

অতএব, কোনো তেজস্ক্রিয় পদার্থের সম্পূর্ণ ক্ষয় হতে অসীম সময় লাগে।

প্রশ্ন ⊳২৮ সময়ের সাথে কোন তেজস্ক্রিয় অবক্ষয় দেখানো হল।

[নীলফামারী সরকারি মহিলা কলেজ; সরকারি সিটি কলেজ, চট্টগ্রাম]

২

- ক. বন্ধন শক্তি কাকে বলে?
- খ. গামা রশ্মি তড়িৎ ক্ষেত্র দ্বারা বিচ্যুত হয় না কেন?
- গ. তেজস্ক্রিয় ভাঙ্গনের অবক্ষয় ধ্রভ্বক কত?
- ঘ. পদার্থটির 17% অবশিষ্ট থাকার সময় লেখচিত্রে প্রদির্শত পরীক্ষালব্ধ মানের সাথে সাঞ্জস্য পূর্ণ কিনা যাচাই কর।

২৮ নং প্রশ্নের উত্তর

ক একটি নিউক্লিয়াসকে ভেঙ্গে পৃথক পৃথক প্রোটন নিউট্রনে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন তাকে নিউক্লিয়াসের বন্ধন শক্তি বলে।

খ আমরা জানি, তেজস্ক্রিয় পদার্থ হতে তিন ধরণের রশ্মি নির্গত হয়, যথা; আলফা, বিটা ও গামা রশ্মি। গামা রশ্মি চার্জ নিরপেক্ষ বলে এটি তড়িৎ ক্ষেত্র দ্বারা বিচ্যুত হয় না।

<u>গ</u> উদ্দীপকের চিত্র হতে পাই,

অবক্ষয় ধ্র[—]বক, $\lambda = ?$

আমরা জানি,
$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

$$\boxed{1, \ \lambda = \frac{0.693}{T_{\frac{1}{2}}} = \frac{0.693}{3}}$$

:. $\lambda = 0.231 \text{ day}^{-1}$. (Ans.)

ঘ ধরি, প্রারম্ভিক পরমাণুর সংখ্যা = No ∴অবশিষ্ট পরমাণুর সংখ্যা, N = No × 17%

$$=\frac{N_o \times 17}{100}$$

$$=\frac{17N_o}{100}$$

'গ' অংশ হতে পাই.

অবক্ষয় ধ্র^ভবক, $\lambda = 0.231 day^{-1}$

ধরি, 17% অবশিষ্ট থাকার সময়, t আমরা জানি

$$\begin{split} N &= N_o e^{-\lambda t} \\ \overline{\text{II}}, \ \frac{17 N_o}{100} &= N_o e^{-\lambda t} \\ \overline{\text{II}}, \ \ln\!\left(\frac{17}{100}\right) &= -\lambda t \end{split}$$

 $\therefore t = 7.67 \text{ day.}$

উদ্দীপকে প্রদত্ত লেখচিত্র হতে পাই,

প্রারম্ভিক পরমাণুর সংখ্যা, No = 30

$$\therefore$$
 অবশিষ্ট পরামাণুর সংখ্যা, $N=30\times17\%$

বা, - 1.7719 = - 0.231t

প্রদত্ত লেখচিত্র হতে পাওয়া যায়, পরমাণুর সংখ্যা হাস পেয়ে 5.1 হতে সময় লাগে 6.7 days

অতএব, পদার্থটির 17% অবশিষ্ট থাকার সময় লেখচিত্রে প্রদর্শিত পরীক্ষালব্ধ মানের সাথে সামঞ্জস্যপূর্ণ নয়।

- O_{92}^{235} U নিউক্লিয়াস
- বিক্রিয়াকালে উৎপন্ন নিউট্রন
- নিউক্লিয়ার ভগ্নাংশ।

[চট্টগ্রাম কলেজ]

ক. নিউক্লিয়ন কি?

- খ. বোর মডেল হাইড্রোজেন পরমাণুর পারমানবিক বর্ণালীর সম্প্রেষজনক ব্যাখ্যা প্রদান করে- বুঝিয়ে বল। ২
- গ. উদ্দীপকে উলে-খিত ${}^{235}_{92}$ U এর ভর $1{
 m kg}$ হলে কত জুল শক্তি উৎপন্ন হবে?

ঘ. উদ্দীপকে নিউক্লিয়ার বিক্রিয়ায় উৎপন্ন নিউট্রনের গতিবেগ যথোপযুক্ত নিয়ন্ত্রণ না করলে মানবসমাজে ধ্বংস্থাক কাজে ব্যবহৃত হবে– উক্তিটি যথার্থতা যাচাই কর।

২৯ নং প্রশ্নের উত্তর

ক পরমাণুর নিউক্লিয়াসের মাঝে অবস্থিত মৌলিক কণাসমূহকে (প্রোটন, নিউট্রন) নিউক্লিয়ন বলে।

খ বোরের পরমাণু মডেল অনুসারে–

নিউ ক্লিয়াসের চারদিকে ইলেকট্রনের বিভিন্ন কক্ষপথে ইলেকট্রনের মোট শক্তির পরিমাণ বিভিন্ন হয়। স্থায়ী কক্ষপথের ব্যাসার্ধ যত বেশি হয় সে কক্ষপথের ইলেকট্রনের শক্তিও তত বেশি হয়। বিশেষ অবস্থায় কোনো ইলেকট্রন যখন এক স্থায়ী কক্ষপথ থেকে নিতর শক্তি সম্পন্ন অন্য একটি স্থায়ী কক্ষপথে গমন করে তখন এটি নির্দিষ্ট কম্পাংক বিশিষ্ট শক্তি বিকিরণ নিঃসৃত করে। আবার বাইরে থেকে নির্দিষ্ট পরিমাণ শক্তি শোষণ করে ইলেকট্রন অপেক্ষাকৃত উচ্চ শক্তিসম্পন্ন অন্য একটি স্থায়ী কক্ষপথে যেতে পারে। কক্ষপথ পরিবর্তনের সময় ইলেকট্রন কর্তৃক শোষিত বা নিঃসৃত শক্তির পরিমাণ প-াংকের সৃত্র $(E=h\nu)$ দ্বারা নির্ধারিত হয়। এখানে, $\gamma=$ বিকিরণের কম্পান্ধ। ধরা যাক, n_2 কক্ষের ইলেকট্রনের শক্তি E_2 এবং এর পরবর্তী নিতর কক্ষ n_1 এ শক্তি E_1 তাহলে, $E_2-E_1=h\nu$ । যদি n_2 কক্ষপথ থেকে ইলেকট্রন n_1 কক্ষপথে যায়, তাহলে h_{ν} পরিমাণ শক্তি নিঃসৃত হবে। আবার n_1 কক্ষপথের ইলেকট্রনটি h_{ν} শক্তি শোষণ করে n_2 কক্ষপথে যেতে পারে।

উপরোক্ত আলোচনা হতে স্পষ্ট যে, ইলেকট্রন যেকোনো মানের শক্তি নিঃসরণ করতে পারে না। ইলেকট্রন শুধুমাত্র নির্দিষ্ট কিছু শক্তিমানের মাত্রার ফোটন নিঃসরণ করতে পারে। তাই হাইড্রোজেন পরামাণুর বর্ণালী বিচ্ছিন্ন আকারে হয়।

গ দেওয়া আছে,

 235 U (পারমাণবিক জ্বালানী) এর ভর, m=1kg জানা আছে, শূন্যস্থানে আলোর দ্র⁻তি, $c=3\times 10^8 ms^{-1}$ বের করতে হবে, উৎপন্ন শক্তি, E=?

আমরা জানি, $E = mc^2 = 1kg \times (3 \times 10^8 ms^{-1})^2$ = $9 \times 10^{16} J$ (Ans.)

ইউরেনিয়ামের প্রতিটি ফিশন বিক্রিয়ায় গড়ে প্রায় ৩টি নতুন নিউট্রন অবমুক্ত হয়। এরা অত্যল্ড দ্রুল্ত গতিসম্পন্ন এবং তীব্রশক্তি সম্পন্ন হয়। নতুন করে অবমুক্ত এই তিনটি নিউট্রন তিনটি ইউরেনিয়াম নিউক্রিয়াসকে আঘাতের মাধ্যমে নতুন তিনটি ফিশন বিক্রিয়ার সূত্রপাত ঘটাতে সক্ষম। এদেরকে নিয়ন্ত্রণ করা না হলে বা শোষণ করা না হলে ফিশন বিক্রিয়ার হার জ্যামিতিক হারে (3, 9, 27, 81, 243,) বাড়তে থাকবে, ফলে খুব অল্প সময়েই প্রচন্ড পরিমাণ তাপশক্তির উদগীরণ ঘটবে, পারমাণবিক বোমাতে যেমনটা হয়। সুতরাং উদ্দীপকের নিউক্রিয়ার বিক্রিয়ার উৎপন্ন নিউট্রনের গতিবেগ যথোপযুক্ত নিয়ন্ত্রণ না করলে মানবসমাজে ধ্বংম্মক কাজে ব্যবহৃত হবে।

প্রশা ১০০ কোনো মৌলের অর্ধায়ু যেমন (রেডনের অর্ধায়ু 3.82 দিন) জানলে সেটি কত সময়ে শতকরা কত ভাগ ভাঙ্গবে তা জানা যায়। পরীক্ষাগারে করিম দেখলো 18 দিন পর রেডনের প্রারম্ভিক মানের $\frac{1}{20}$ অংশ অবশিষ্ট থাকে। চিট্টথাম মহিলা কলেজা

ক. এক বেকেরেল কাকে বলে?

- খ. "তেজস্ক্রিয় ক্ষয় সূত্রটি একটি সূচক সূত্র"– ব্যাখ্যা কর।
- গ. মৌলটির 60% ভাঙতে কত সময় লাগবে?
- ঘ. পরীক্ষাগারে করিমের পর্যবেক্ষণটি সঠিক ছিল কিনা যাচাই করে মন্দ্র্য কর।

৩০ নং প্রশ্নের উত্তর

ক এক বেকেরেল : কোন তেজস্ক্রিয় বস্তুর প্রতি সেকেন্ড একটি পরমাণুর তেজিস্ক্রিয় ভাঙন বা ক্ষয়কে এক বেকেরেল বলে। তেজস্ক্রিয়তার এস.আই.একক হলো বেকেরেল (Bq)

েতজস্ক্রিয় ক্ষয় সূত্রটি হলো, $N=N_0e^{-\lambda t}$; যেখানে ' λ ' হচ্ছে অবক্ষয় প্রশ্বেক, N_0 হচেছে প্রারম্ভিক প্রমাণুর সংখ্যা এবং N হচেছে t সময় পরে অক্ষত প্রমাণুর সংখ্যা ।

এখন অক্ষত পরমাণুর সংখ্যা N বনাম সময় t এর লেখ নিংরূপ –

লেখ হতে দেখা যাচ্ছে, শুর⁻তে (t=0) সময়ে) কোনো তেজস্ক্রিয় পদার্থের নির্দিষ্ট পরিমাণ পরমাণু থাকলে, T সময় পরে ঐ তেজস্ক্রিয় পদার্থের পরিমাণ অর্ধেক হয়ে যায়, 2T সময় পরে ঐ অবশিষ্ট পরিমাণ আবার অর্ধেক হয়ে যায় অর্থাৎ 2T সময় পরে প্রারম্ভিক পরিমানের $\frac{1}{4}$ অংশ অবশিষ্ট থাকে। উপরম্ভ N-T লেখ হতে প্রমাণিত হয় যে কোন তেজস্ক্রিয় পরমাণু সম্পূর্ণ ভাঙার জন্য অসীম সময় লাগে, কারণ প্রথমে ভাঙন দ্র⁻ত হলেও পরে সময়ের সাথে ভাঙনের হার কমে যায় অর্থাৎ ধীরে হয়। অতএব বলা যায়, 'তেজস্ক্রিয় ক্ষয় সূত্রটি একটি সূচক সূত্র'।

গ

এখন মৌলটির 60% ভাঙলে অবশিষ্ট থাকে 40% সুতরাং প্রারম্ভিক পরমাণুর সংখ্যা, $N_o = 100\%$ এবং অবশিষ্ট পরামাণুর সংখ্যা N = 40%

$$\therefore \ \frac{N}{N_o} = \frac{40}{100} = 0.4$$

ধরা যাক, মৌলটির 60% ভাঙতে সময় লাগে 't' day তাহলে তেজস্ক্রিয় ক্ষয় সূত্রানুসারে,

$$\frac{N}{N_o} = e^{-\lambda t}$$

 तो, $\ln \frac{N}{N_o} = -\lambda t$

$$\therefore t = \frac{\ln \frac{N}{N_0}}{-\lambda} = \frac{\ln(0.4)}{-0.1814} = 5.05 \text{ day (Ans.)}$$

য পরীক্ষাগারে করিম দেখলো 18 দিন পর রেডনের প্রারম্ভিক মানের $\frac{1}{20}$ অংশ অবশিষ্ট থাকে।

এখন, ধরা যাক, রেডনের প্রারম্ভিক পরমাণু সংখ্যা, No

এবং t সময় পর রেডনের অক্ষত পরমাণুর সংখ্যা,

$$N = \frac{1}{20} N_0$$

$$\therefore \frac{N}{N_0} = \frac{1}{20}$$

রেডনের অবক্ষয় ধ্র[—]বক, λ = 0.1814 day⁻¹ তাহলে তেজস্কিয় ক্ষয় সূত্রানুসারে,

$$\begin{split} \frac{N}{N_o} &= e^{-\lambda t} \\ \hline \text{II}, & \ln\left(\frac{N}{N_o}\right) = -\lambda t \\ \therefore & t = \frac{\ln\left(\frac{N}{N_o}\right)}{-\lambda} \\ \hline \text{II}, & t = \frac{\ln\left(\frac{1}{20}\right)}{-0.1814} \\ &= 16.5 \text{ day} \end{split}$$

অতএব দেখা যাচ্চে যে, 16.5 দিন পর রেডনের প্রারম্ভিক মাানের $\frac{1}{20}$ অংশ অবশিষ্ট থাকে অথবা, $\left(1-\frac{1}{20}\right)$ বা , $\frac{19}{20}$ অংশ ক্ষয় হয়। অর্থাৎ 18 দিনে রেডনের আরও অনেক পরমাণু ক্ষয় হবে, কাজেই অবশ্যই 18 দিন পর রেডনের প্রারম্ভিক মানের $\frac{1}{20}$ অংশের থেকে কম পরমাণু অবশিষ্ট থাকবে।

সুতরাং পরীক্ষাগারে করিমের পর্যবেক্ষণটি ভুল ছিল।

প্রশ্ন ▶৩১ X ও Y দুটি তেজস্ক্রিয় মৌল। X এর একটি অংশ 4000 বছরে 20% এ পরিণত হয়। অপরদিকে Y এর অর্ধায়ু 4 day।

[রেসিডেনসিয়াল মডেল স্কুল এন্ড কলেজ, ঢাকা]

ক. অর্ধপরিবাহক কী?

খ. ট্রানজিস্টরকে অ্যাম্পি-ফায়ার হিসেবে কীভাবে ব্যবহার করা যায়?

গ. 10 দিন পর Y এর কতটুকু অবশিষ্ট থাকবে?

ঘ. X মৌলটির অবক্ষয় ধ্র^{ল্}বক বের কর। 8

৩১ নং প্রশ্নের উত্তর

ক যে সকল পদার্থের তড়িৎপরিবাহিতা পরিবাহক এবং অম্ভুরকের মাঝামাঝি, তাদেরকে অর্ধপরিবাহক বলে।

খ

ওপরোক্ত বর্তনীতে একটি npn ট্রানজিস্টরকে অ্যাম্পি-ফায়ার বা সংকেত বিবর্ধক রূপে ব্যবহার করা হয়েছে। এখানে পীঠ ও নিঃসারকের মাঝে অম্প্র্যামী সংকেত প্রদান করা হয় এবং সংগ্রাহক ও নিঃসারকের মাঝে বহির্গামী সংকেত পাওয়া যায়। পীঠ প্রবাহে সামান্য পরিবর্তন করলে সংগ্রাহক প্রবাহে বহুগুণ পরিবর্তন ঘটে। এই নীতির ওপর ভিত্তি করেই সংকেত বিবর্ধন করা হয়।

গ দেওয়া আছে.

তেজস্ক্রিয় মৌল Y এর অর্ধায়ু, T=4~day প্রদত্ত সময়কাল, t=10~day

আদি পরমাণুসংখ্যা $N_{\rm o}$ হলে বের করতে হবে, 10 দিন পর অবশিষ্ট পরমাণুসংখ্যা, N=?

এখানে অবক্ষয় ধ্র[—]বক,
$$\lambda=\frac{0.693}{T}=\frac{0.693}{4~day}=0.1733~day^{-1}$$
 আমরা জানি, $N=N_o~e^{-\lambda t}$
$$=N_o~e^{-0.1733~day^{-1}\times 10~day}$$

$$=N_o~e^{-1.733}$$

= 0.177 N_o = N_o × 17.7% সূতরাং 10 দিন পর Y এর 17.7% অবশিষ্ট থাকবে।

ঘ X মৌলের ক্ষেত্রে,

আদি পরমাণু সংখ্যা No হলে

t = 4000 year পর অবশিষ্ট পরমাণু সংখ্যা,

 $N = N_o \times 20\% = 0.2 N_o$

X মৌলটির অবক্ষয় ধ্র⁻⁻বক λ হলে, $N=N_o e^{-\lambda t}$

বা,
$$-\lambda t = \ln\left(\frac{N}{N_o}\right)$$

∴ $\lambda = -\frac{1}{t}\ln\left(\frac{N}{N_o}\right) = -\frac{1}{4000 \text{ y}}\ln\left(\frac{0.2N_o}{N_o}\right)$

সুতরাং, X মৌলটির অবক্ষয় ধ্র⁻বক, $\lambda = 4.023 \times 10^{-4} \ y^{-1}$

অধ্যায়টির গুর^{ক্র}ত্বপূর্ণ জ্ঞান ও অনুধাবনমূলক প্রশ্নোত্তর (নির্বাচনি পরীক্ষার প্রশ্ন বিশে-ষণে প্রাপ্ত)

▶ক নং প্রশ্ন (জ্ঞানমূলক)

প্রশ্ন-১. অর্ধায়ু কী?

উত্তর: যে সময়ে কোনো নির্দিষ্ট তেজস্ক্রিয় পদার্থের অক্ষত পরমাণুর সংখ্যা প্রাথমিক পরমাণুর সংখ্যার অর্ধেকে পরিণত হয় তাকে অর্ধায়ু বলে। প্রশ্ন-২, তেজস্ক্রিয় রূপাস্ড্র সমীখরণটি লিখ।

উত্তর: তেজস্ক্রিয় রূপাম্ড্র সমীকরণ হল $N=N_0e^{-\lambda t}$

প্রশ্ন-৩. প্রোটন আবিষ্কার করেন কে?

উত্তর: বিজ্ঞনী রাদারফোর্ড প্রোটন আবিষ্কার করেন।

প্রশ্ন-8. নিউক্লিয়ন কী?

উত্তর: নিউক্লিয়াসে যে সকল কণা থাকে সে সকল কণাগুলোকে একত্রে নিউক্লিয়ন বলা হয়।

প্রশ্ন-৫. পরমাণু কী?

উত্তর: জড় পদার্থ কতকগুলো অবিভাজ্য ক্ষুদ্র ক্ষুদ্র কণিকা দ্বারা গঠিত যার নাম অ্যাটম বা পরমাণু।

প্রশ্ন-৬. তেজস্ক্রিয় ক্ষয়ের সূত্রটি বিবৃত কর।

উত্তর: কোনো মুহূর্তে তেজস্ক্রিয় পরমাণুর ভাঙন বা অবক্ষয়ের হার ঐ সময়ে উপস্থিত অক্ষত পরমাণুর সমানুপাতিক।

প্রশ্ন-৭. গড় আয়ু কী?

উত্তর: প্রত্যেকটি তেজস্ক্রিয় পরমাণুর আয়ুর যোগফলকে পরমাণুর প্রারম্ভিক সংখ্যা দ্বারা ভাগ করলে যে আয়ু পাওয়া যায় তাকে ঐ তেজস্ক্রিয় পদার্থের গড় আয়ু বলে।

প্রশ্ন-৮. নিউক্লীয় বন্ধন শক্তি কাকে বলে?

উত্তর: কোনো প্রয়োজনীয় সংখ্যক নিউক্লিয়ন একত্রিত হয়ে একটি স্থায়ী নিউক্লিয়াস গঠন করতে যে পরিমণশক্তি নির্গত বা শোষিত হয় তাকে নিউক্লীয় বন্ধন শক্তি বলে।

প্রশ্ন-৯. বোরের পরমাণুর মডেলের প্রথম স্বীকার্য কী?

উত্তর: কোনো নির্দিষ্ট কক্ষে আবর্তনকালে ইলেকট্রন এর কৌণিক ভরবেগ (h/2π) এর পূর্ণ সংখ্যার গুণিতক হবে।

প্রশ্ন-১০. বোরের পরমাণু মডেলের দ্বিতীয় স্বীকার্য কী?

উত্তরঃ পরমাণুর ইলেকট্রনগুলো নির্দিষ্ট বৃত্তাকার কক্ষপথে আবর্তন করে। এই সকল কক্ষে থাকাকালীন ইলেকট্রনগুলো কখনও শক্তি বিকিরণ করে না।

প্রশ্ন-১১. বোরের পরমাণু মডেলের তৃতীয় স্বীকার্য কী?

উত্তর: যখন একটি ইলেকট্রন একটি নির্দিষ্ট কক্ষ হতে অন্য একটি কক্ষে স্থানাম্পুরিত হয় তখনই শক্তির বিকিরণ বা শোষণ ঘটে। বিকিরিত বা শোষিত শক্তির পরিমাণ এ দুটি কক্ষপথের শক্তির বিয়োগ ফলের সমান। প্রশ্ন-১২. পারমাণবিক ভর সংখ্যা কী?

উত্তর: কোনো পরমাণুর প্রোটন ও নিউট্রনের সংখ্যাকে পরমাণবিক ভর সংখ্যা বলে।

প্রশ্ন-১৩. পদার্থের অণু কী?

উত্তর: প্রত্যেক পদার্থ যে অতীব ক্ষুদ্র ক্ষুদ্র কণা দ্বারা গঠিত তাকে অণু বলে।

প্রশ্ন-১৪. পরমাণুর মডেল কী?

উত্তর: বিভিন্ন বিজ্ঞানী বিভিন্ন সময় পরমাণুর গঠন প্রকৃতি ও আচরণ প্রকাশের জন্য বিভিন্ন চিত্র কল্পনা করেন। এর নাম পরমাণু মডেল।

প্রশ্ন-১৫. নিউক্লিয়াস কী?

উত্তর: পরমাণুর সব ধন্ডাক আধান ও ভর তার কেন্দ্রে যে অতি অল্প পরিসর স্থানে কেন্দ্রীভূত তাকে নিউক্লিয়াস বলে।

▶খ নং প্রশ্ন (অনুধাবনমূলক)

প্রশ্ন-১. বাদারফোর্ডের পরমাণুর মডেলকে সৌর জগতের সাথে তুলনা করা যায় কীভাবে?

উত্তর: রাদারফোর্ডের পরমাণু মডেলের সাথে সৌর জগতের গঠনের সাদৃশ্য রয়েছে বলে এই মডেলকে সৌরমডেল বলা হয়। কারণ গ্রহগুলো যেমন সূর্যের চারদিকে ঘূর্ণায়মান তেমনি ইলেকট্রনগুলো পরমাণুর নিউক্লিয়াসের চারদিকে ঘূর্ণায়মান।

প্রশ্ন-২. বোরের পরমাণুর মডেলের দ্বিতীয় স্বীকার্য ব্যাখ্যা করো।

উত্তর: বোরের পরমাণু মডেলের দ্বিতীয় স্বীকার্য হল—

পরমানুস্থ ইলেকট্রনসমূহ ইচ্ছাকৃত যে কোনো ব্যাসার্ধের কক্ষপথে অর্থাৎ সব সন্ধানী কক্ষপথে নিউক্লিয়াসের চারদিকে পরিভ্রমণ করতে পারে না। বরং কয়েকটি পৃথক পৃথক নির্দিষ্ট ও সুবিধাযুক্ত বৃত্তাকার কক্ষপথে পরিভ্রমণ করে। এই কক্ষপথগুলোকে স্থায়ী ও অবিকিরণযোগ্য কক্ষপথ বলে। এই স্থায়ী কক্ষপথে আবর্তনকালে ইলেকট্রনসমূহ কখনও শক্তি বিকিরণ করে না এবং ইলেকট্রনের গতিপথ সর্পিল আকারে ক্রমশ নিউক্লিয়াসের দিকে এগিয়ে আসে না। ফলে বোরের পরমাণু মডেলের সীমাবদ্ধতাকে অতিক্রম করে।

প্রশ্ন-৩. বোরের পরমাণু মডেলের তৃতীয় স্বীকার্য ব্যাখ্যা করো।

উত্তর: বোরের পরমাণু মডেলের তৃতীয় স্বীকার্য হল—

যখনই কোনো ইলেক্ট্রন সুবিধাযুক্ত কক্ষপথ হতে অপর একটি সুবিধাযুক্ত কক্ষপথে লাফ দেয়, তখন শক্তির বিকিরণ বা শোষণ ঘটে। যদি ইলেক্ট্রন উচ্চতর সুবিধাযুক্ত কক্ষপথ হতে নিংতর সুবিধাযুক্ত কক্ষপথে লাফ দেয়, তবে শক্তির বিকিরণ ঘটে। আর যদি ইলেক্ট্রন নিংতর সুবিধাযুক্ত কক্ষপথ হতে উচ্চতর সুবিধাযুক্ত কক্ষপথে লাফ দেয় তবে শক্তির শোষণ ঘটে। এই বিকিরিত বা শোষিত শক্তির পরিমাণ ঐ দুটি কক্ষপথের শক্তির বিয়োগফলের সমান এবং এর মান এক কোয়ান্টাম অর্থাৎ ho।

 $\therefore E = E_2 \sim E_1 = hv$

প্রশ্ন-৪. বোর কক্ষপথগুলিকে স্থায়ী কক্ষপথ বলা হয় কেন?

উত্তর: বোর কক্ষপথগুলিকে 'স্থায়ী কক্ষপথ' বলা হয় কারণ এই কক্ষপথগুলিতে প্রদক্ষিণ করার সময় ইলেকট্রন কোনো শক্তি বিকিরণ করে না। যদিও প্রদক্ষিণ কালে এদের গতিতে ত্বরণ থাকে তথাপি বোরের স্বীকার্য অনুযায়ী ইলেকট্রনগুলি শক্তি ক্ষয় না করে কক্ষপথে আবর্তন করে।

প্রশ্ন-৫. আলফারশ্রির চারটি ধর্ম লেখ।

উত্তর: আলফা রশ্মির চারটি ধর্ম নিচে দেওয়া হল:

- i. এরা ধন চার্জ বহন করে। চার্জের পরিমাণ $3.2 \times 10^{-19} C$
- ii. এরা দ্বি-আয়নিত হিলিয়াম প্রমাণ।
- iii. এরা বৈদ্যুতিক ও চৌম্বক ক্ষেত্র দ্বারা বিক্ষিপ্ত হয়। এটি প্রমাণ করে যে আলফা রশ্মির কণাগুলো চার্জগ্রস্থ। বিক্ষেপের অভিমুখ হতে আলফা রশ্মির চার্জ ধন্দ্রক প্রমাণিত হয়।
- iv. এরা ফটোগ্রাফিক পে-টের উপর বিক্রিয়া করে।

প্রশ্ন-৬. নিউক্লিয়াসের চারিদিকে ইলেকট্রনের ঘূর্ণনের জন্য প্রয়োজনীয় কেন্দ্রমুখী বলের উৎস কী?

উত্তর: নিউক্লিয়াসের ভিন্ন পরমাণুর অভ্যন্দ্রে অবশিষ্ট অংশই ফাঁকা বা শূন্য। এই অংশে নির্দিষ্ট সংখ্যক ইলেকট্রন ধনচার্জযুক্ত নিউক্লিয়াসের চারদিকে কতকগুলো বৃত্তাকার কক্ষপথে ঘুরছে। ইলেকট্রনগুলোর ঘূর্ণনজনিত কেন্দ্রবিমুখী বল ও নিউক্লিয়াস এবং ইলেকট্রনগুলোর মধ্যে ক্রিয়াশীল কুলম্বীয় বল সমান ও বিপরীতমুখী হওয়ায় ইরেকট্রনগুলো সুস্থিরভাবে নির্দিষ্ট দূরত্বে নিউক্লিয়াসকে প্রদক্ষিণ করে। রাদারফোর্ড বলেন যে, পরমাণুর এই মডেলকে সৌর জগতের সাথে তুলনা করা যায়। গ্রহগুলো যেমন সূর্যের চারদিকে ঘুরছে।

প্রশ্ন-৭. 6C¹² বলতে কী বোঝ?

উত্তর: ${}_{6}C^{12}$ বলতে বোঝায়, এটি কার্বন মৌল যার পারমাণবিক সংখ্যা 6 এবং ভর সংখ্যা 12। এক্ষেত্রে নিউট্রন সংখ্যা হবে (12 – 6) বা 6.

প্রশ্ন-৮. i) একটি ইলেকট্রন কিভাবে প্রথম কক্ষ থেকে দ্বিতীয় কক্ষে যেতে পারে?

ii) দ্বিতীয় পক্ষ থেকে প্রথম কক্ষে ইলেকট্রন গমন করলে কী হবে?

উত্তর: i) বোর পরমাণু মডেল অনুযায়ী, একটি ইলেকট্রন $E_1 \sim E_2 = h_0$ পরিমাণ শক্তি শোষণ করে প্রথম কক্ষ থেকে দ্বিতীয় কক্ষে যেতে পারে [যেখানে, $E_1 = \lambda$ ম কক্ষপথের শক্তি, $E_2 = \lambda$ য় কক্ষপথের শক্তি, $h = \gamma$ -্যাস্কের প্র²বক এবং $h = \gamma$ -্যাস্ক্র কম্পাঙ্ক

ii) বোর পরমাণু মডেল অনুযায়ী, দ্বিতীয় কক্ষ থেকে প্রথম কক্ষে ইলেকট্রন গমন করলে $E_2 - E_1 = h_0$ পরিমাণ শক্তি বিকিরণ করবে।

প্রশ্ন-৯, বোরের কোয়ান্টাম শর্ত ব্যাখ্যা কর।

উত্তর: বোরের কোয়ান্টাম শর্ত: কোনো স্থায়ী কক্ষপথ আবর্তনকালে ইলেকট্রনের মোট কৌণিক ভরবেগ $\frac{h}{2\pi}$ ও পূর্ণসংখ্যার গুণিতক হবে। এখানে, h হলো প-্যাঙ্কের ধ্র^{ক্র}বক। ইলেকট্রনের কক্ষপথ সম্বন্ধে বোরের এই প্রকল্পকে কোয়ান্টাম শপথ বলে।

এর অর্থ এই যে, r ব্যাসার্ধের স্থায়ী কক্ষে m ভরবিশিষ্ট ইলেক্ট্রন v দ্র*—তিতে আবর্তিত হলে এর কৌণিক ভরবেগ $mvr=\frac{nh}{2\pi}$ ।

এখানে, n একটি পূর্ণসংখ্যা। বিভিন্ন কক্ষপথের জন্য n এর মান বিভিন্ন হয়। নিউক্লিয়াসের অবস্থানের সাপেক্ষে ১ম, ২য়, ৩য় ইত্যাদি স্থায়ী কক্ষপথের জন্য n=1,2,3 ইত্যাদি হয়, কিম্ডু শূন্য নয়। n কে প্রধান কোয়ান্টাম সংখ্যা বলা হয়।

প্রশ্ন-১০. কৃত্রিম তেজস্ক্রিয়তা বলতে কী বোঝ? ব্যাখ্যা কর।

উত্তর: 1934 খ্রিষ্টাব্দে আইরন কুরি ও তার স্বামী ফ্রেডরিক জোলিও কৃত্রিম তেজস্ক্রিয়তা আবিষ্কার করেন। জোলি দম্পত্তি পরীক্ষার মাধ্যমে দেখান যে, α -কণার আঘাতে লক্ষ্যবস্পুর নিউক্লিয়াস অন্য কোনো মৌলের তেজস্ক্রিয় আইসোটোপে রূপাস্পুরিত হয়। পরে রূপাস্পুরিত আইসোটোপ পজিট্রন নির্গত করে অন্য প্রকার স্থায়ী পরমাণুতে পরিণত হয়। এ ঘটনাকে কৃত্রিম বা আবিষ্ট তেজস্ক্রিয়তা বলা হয় এবং স্বাভাবিকভাবে অ-তেজস্ক্রিয় পরমাণুর এ তেজস্ক্রিয় রূপকে বলা হয় রেডিও আইসোটোপ।

প্রশ্ন-১১. রাদারফোর্ডের পরমাণু মডেলের পরীক্ষার ফলাফল ব্যাখ্যা করো।

উত্তর: পরীক্ষার মাধ্যমে জানা যায়, রাদারফোর্ডের পরমাণুর কেন্দ্রেরছে নিউক্লিয়াস যেখানে পরমাণুর সমস্ড্ ধন আধান এবং ভর কেন্দ্রীভূত। এই নিউক্লিয়াসের চারদিকেই বিক্ষিপ্ত অবস্থায় রয়েছে ইলেকট্রনসমূহ। ধন আধানযুক্ত আলফা কণা স্বর্ণপাতের মধ্য দিয়ে যাওয়ার সময় নিউক্লিয়াসের খুব নিকটে আসার সম্ভাবনা কম। তাই অধিকাংশ আলফা কণাই প্রায় শূন্য জায়গার মধ্য দিয়ে সোজা পথেই বের হয়ে আসবে। আবার যেসব আলফা কণা নিউক্লিয়াসের প্রায় কাছাকাছি আসবে তারা নিউক্লিয়াসের ধন আধান দ্বারা বিকর্ষিত হবে এবং এদের আদি গতিপথ হতে বিচ্যুত হবে।