

Instrumental Agrometeorológico

- Sensor de Temperatura
- Sensor de Humedad
- Sensor de Presión
- Piranómetro
- Pluviómetro
- Geotermómetro
- Humedad del suelo
- * Sensor Infrarrojo

Objetivo

Elaborar, calibrar y validar una estación agrometeorológica de bajo costo usando la plataforma Arduino

METODOLOGÍA

Área de desarrollo

Datos

nstrumental2: Bloc de notas

Archivo Edición Formato Ver Ayuda

fecha,BMPTEMP,PRESIONBMP,DHTTEMP,DHTHUMEDAD,PP,HS,valor_sensor,tension_Rs,vo1,res1,temp1,vo2,res2,temp2,vo3,res3,temp3,vo4,res4,temp4
15/6/2019 12:4:29,17.90,98937,17.70,99.90,2,188,21.00,102.64,463.00,604.75,14.64,452.00,631.64,19.53,460.00,611.96,17.91,461.00,609.54,18.90
15/6/2019 12:4:31,17.90,98941,17.70,99.90,2,186,20.00,97.75,463.00,604.75,14.64,453.00,629.14,19.64,460.00,611.96,17.91,460.00,611.96,18.78
15/6/2019 12:4:36,17.90,98937,17.70,99.90,2,180,19.00,92.86,464.00,602.37,14.75,453.00,629.14,19.64,461.00,609.54,18.03,460.00,611.96,18.78
15/6/2019 12:4:41,17.90,98940,17.70,99.90,2,176,20.00,97.75,462.00,607.14,14.52,453.00,629.14,19.64,464.00,602.37,18.41,472.00,583.69,20.31
15/6/2019 12:4:51,17.90,98938,17.70,99.90,2,170,20.00,97.75,462.00,607.14,14.52,453.00,629.14,19.64,461.00,609.54,18.03,466.00,597.64,19.54
15/6/2019 12:4:56,17.90,98937,17.80,99.90,2,168,21.00,102.64,461.00,609.54,14.41,453.00,629.14,19.64,460.00,611.96,17.91,458.00,616.81,18.52
15/6/2019 12:5:2,18.00,98947,17.80,99.90,2,168,20.00,97.75,461.00,609.54,14.41,451.00,634.15,19.42,461.00,609.54,18.03,458.00,616.81,18.52
15/6/2019 12:5:7,18.00,98940,17.90,99.90,2,167,20.00,97.75,461.00,609.54,14.41,452.00,631.64,19.53,460.00,611.96,17.91,457.00,619.26,18.40
15/6/2019 12:5:17,17.90,98932,17.80,99.90,2,167,20.00,97.75,461.00,609.54,14.41,452.00,631.64,19.53,460.00,611.96,17.91,457.00,619.26,18.40
15/6/2019 12:5:27,18.00,98940,17.90,99.90,2,167,20.00,97.75,461.00,609.54,14.41,452.00,631.64,19.53,460.00,611.96,17.91,457.00,619.26,18.40
15/6/2019 12:5:17,17.90,98932,17.80,99.90,2,167,20.00,97.75,461.00,609.54,14.41,452.00,631.64,19.53,460.00,611.96,17.91,457.00,619.26,18.40
15/6/2019 12:5:27,18.00,98940,17.90,99.90,2,167,20.00,97.75,461.00,609.54,14.41,452.00,631.64,19.53,460.00,611.96,17.91,457.00,619.26,18.40
15/6/2019 12:5:27,18.00,98940,17.90,99.90,2,167,20.00,97.75,461.00,609.54,14.41,453.00,620.14,19.64,459.00,614.38,17.79,458.00,616.81,18.52
15/6/2019 12:5:28,17.90,98932,17.90,99.90,2,165,20.00,97.75,461.00,609.54,14.41,454.00,626.6

DHT22 (Temperatura y humedad)

BMP180 (PRESIÓN)

ML8511 (RADIACIÓN*)

GEOTERMÓMETRO

SEN-HUS YL-69 (Higrómetro)

PROCEDIMIENTO

OBTENCIÓN DE INFORMACIÓN

BMP_180 SENSOR DE TEMPERATURA y = 1.0019x - 0.0423 $R^2 = 0.9869$ 19 MOD_BMPTEMP MOD_DHTTEMP 21 AirTC_Avg 15 14 20 14 15 16 18 20 BMP_T°C DHT22 Femperatura (°C) y = 0.981x + 0.426521 $R^2 = 0.9577$ 20 18 CAMPBELL_T°C 14 18 15 16 DHT22_T°C 15 data: temp\$BMPTEMP and temp\$AirTC_Avg t = 321.98, df = 1375, p-value < 2.2e-16 alternative hypothesis: true correlation s not equal to 0 95 percent confidence interval: jue. 20 dom. 16 mar. 18 0.9927038 0.9940906 sample estimates: cor Tiempo (5-minutos) 0.9934335 **CALIBRACIÓN** Pearson's product-moment correlation **VALIDACIÓN** data: temp\$DHTTEMP and temp\$AirTC_Avg BMP_180 **DHT22** t = 176.45, df = 1375, p-value < 2.2e-16 alternative hypothesis true correlation is not equal to 0 95 percent confidence interval: **BIAS** 0.03 0.48 0.9762668 0.9807476 **RMSE** 8.54 2.00 sample estimates: 0.99 0.99 0.978623

SENSOR DE HUMEDAD

CALIBRACIÓN

> cor.test(humedad\$Mod_DHT_HUMEDAD,humedad\$RH_Avg, method = "pearson")

Pearson's product-moment correlation

data: humedad\$Mod_DHT_HUMEDAD and humedad\$RH_Avg

t = 35.572, df = 232 p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8967478 0.9370479

sample estimates:

0.9192734

VALIDACIÓN

RMSE 1.02 **BIAS** 1.04 0.97

> cor.test(hum_val\$Mod_DHT_HUMEDAD,hum_val\$RH_Avg, method = "pearson")

Pearson's product-moment correlation

data: hum_val\$Mod_DHT_HUMEDAD and hum_val\$RH_Avg

t = 18.558, df = 18 p-value = 3.492e-13

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.9361921 0.9902043

sample estimates:

cor

0.9748483

PIRANÓMETRO

CALIBRACIÓN

> cor.test(rad\$RS_incidente,rad\$S1rRad_Wm2_Avg, method = "pearson")

Pearson's product-moment correlation

data: rad\$RS_incidente and rad\$S1rRad_Wm2_Avg t = 64.977, df = 1355, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8565230 0.8824366

sample estimates:

0.8700797

cor

VALIDACIÓN

RMSE	0.02
BIAS	-60.28
r	0.91

> cor.test(rad\$RS_incidente,rad\$S1rRad_Wm2_Avg)

Pearson's product-moment correlation

data: rad\$RS_incidente and rad\$S1rRad_Wm2_Avg t = 9.2915, df = 18, p-value = 2.733e-08alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.7818708 0.9640903

sample estimates:

0.909656

SENSOR DE PRESIÓN ATMOSFÉRICA

CALIBRACIÓN

> cor.test(data%PRESIONBMP_promedio,data%presion_sensor, method = 'pearson')

Pearson's product-moment correlation

data: data\$PRESIONBM<u>P_promedio and data\$</u>presion_sensor

t = 24.634, df = 117, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8807840 0.9405977

sample estimates:

cor 0.9156197

VALIDACIÓN

BIAS	-1.64
RMSE	1.74
r	0.74

> cor.test(pre\$BP_mbar_Avg,pre\$MOD_BMP180)

Pearson's product-moment correlation

data: pre\$BP_mbar_Avg and pre\$MOD_BMP180
t = 3.8402, df = 12, p-value = 0.002352
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:

0.3497405 0.9132976

sample estimates cor

0.7425319

GEOTERMÓMETRO

CALIBRACIÓN EN CAMPO

CALIBRACIÓN EN LABORATORIO

	r
Naranja	0.9931
Verde	0.9985
Marrón	0.9938
Azul	0.9908

Los siguientes niveles salió erróneo

Pluviómetro

Spearman's rank correlation rho

precipitacion and h_pluv_b1 S = 18.012, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho 0.9938419

SENSORES INFRARROJOS

Lo que elaboré en prácticas

Lo que desarrollo actualmente

RECOMENDACIONES

CONCLUSIONES

- Los sensores de bajo costo de temperatura, humedad, presión y radiación presentan una alta correlación en comparación con los sensores de la estación automática Campbell CR 300, aunque el geotermómetro en sus cuatro niveles (0cm,5cm,20cm y 40cm) obtuvo una mejor respuesta en el primer nivel.
- El pluviómetro presentó una alta correlación, sin embargo no presentó una óptima respuesta para los eventos de precipitación, por otro lado el sensor de humedad del suelo no presentó el comportamiento esperado.

