DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Gestion informatique des données de séquençage

William Amory M1 BI-IPFB Université Paris Cité

Laboratoire de Bioinformatique pour la Génomique et la Biodiversité (Genoscope - LBGB)

Sous la responsabilité de Frédérick Gavory

Gestion informatique des données de séquençage

- 1 Genoscope LBGB
- 2 Contexte et objectifs de la mission
- 4 Pipeline NGS-RG pour les séquenceurs MGI
- 5 Perspectives

Laboratoire de Bioinformatique pour la Génomique et la Biodiversité (LBGB)

Plusieurs groupes de travail

- Evaluation des techniques de séguençage
- **Production**
- Assemblage
- Annotation

Missions du groupe Production

- Répondre aux besoins des équipes de recherches et de productions
- Vielle technologique et évaluation de nouveaux outils
- Développer, tester et maintenir les librairies et scripts
- Mise en place et maintient de pipelines automatisant l'exécution de ces scripts pour le **Genoscope** (centre national de séquençage) et le **CNRGH** (centre national de recherche en génétique humaine)
 - Génération des fichiers de séquences
 - Contrôle qualité et nettoyage des fichiers de séquences
 - Analyses biologiques
- Mise à jour de la base de données de référence NGL (Next Generation LIMS)

Contexte et objectifs de la mission

NGS_RG (Reads Generation) NGS_QC (Quality Control) NGS_BA (Biological Analysis) NGS_WV (Workflow viewer)

Figure 1 – Workflow de génération, de contrôle qualité et d'analyse biologique des FASTQ

https://www.genoscope.cns.fr/rdbioseq/ consulté le 21/06/2022

Arrivée des Séquenceurs MGI

2 DNBSEQ-G400

- 2 flowcell 2/4 pistes
- 1.4 TB
- 5000 Millions de reads
- · Taille max des reads :
- 150pb PE
- 400pb SE
- Temps moyen d'un run :
- 24h ~ 30h

1 DNBSEQ-T7

- 4 flowcell 1 piste
- 6 TB
- 1800 Millions de reads
- Taille max des reads :
 - 200pb PE
- 400pb SE
- Temps moyen d'un run :
- 14h ~ 109h

https://en.mgi-tech.com/products/ consulté le 21/06/2022

1 script Perl

Qui fait appel à :

- 14 librairies de traitements de run MGI
- 3 librairies communes à tous les traitements de run MGI
- 11 librairies d'intéraction avec NGL pour les run MGI
- 1 librairie commune à tous les type de run

Calcul et Récupération des récupération des Création du run et des rapports de métriques séquençage des pistes d'évaluation du pistes run et des pistes Création des Calcul des readsets, calcul et Concaténation des top index récupération des **Fastq** des pistes métriques d'évaluation Insertion des Méta-Renommage des Distribution des données des **FASTQ** fichiers **FASTQ** Insertion dans NGL Mise à jour de l'état du run et des readsets **Traitements**

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes

Concaténatio des Fastq Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données de Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Création du run et des pistes

Traitements

 Création d'un répertoire temporaire de traitement du run

NGL

- Création du run
- Création des piste

Objectifs

 Rendre disponible les informations à propos du run et l'état de traitement de celui-ci aux utilisateurs

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes

Concaténatio des Fastq Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des néta-données des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Calcul et récupération des métriques d'évaluation du run et des pistes

Traitements

- Récupération des métriques du run et de pistes
 - Nombre de cycle des reads et des index
 - Nombre de reads, de bases
 - Pourcentage de Q30
 - Pourcentage de perte après le premier démultiplexage
 - Etc.

NGL

 Insertion des métriques du run et des pistes

Objectifs

Permettre l'évaluation du run et des pistes

Création du run et des pistes

Calcul et récupération des métriaues d'évaluation du run et des pistes

Récupération des rapports de séquençage des

Calcul des top index des pistes des Fastq

écupération des d'évaluation

Renommage des

Insertion des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Récupération des rapports de séquençage des pistes

Traitements

- Récupération des rapport de séquençage des piste
 - Contenu du rapport html
 - Extension
 - Nom du rapport

NGL

Insertion des rapport de séquençage des pistes

Objectifs

- Permettre l'évaluation des pistes
- Contient plusieurs tableaux de métriques et de graphique d'évaluation des pistes

Tab1. Summary Information

Category	Value
SoftwareVersion	1.0.8.208
TemplateVersion	0.8.0
Reference	NULL
CycleNumber	210
ChipProductivity(%)	80.69
ImageArea	432
TotalReads(M)	485.06
Q30(%)	89.57
SplitRate(%)	98.82
Runon1(%)	0.04
Runon2(%)	0.05
Lag1(%)	0.14
Lag2(%)	0.17
ESR(%)	81.07
MaxOffsetX	26.24
MaxOffsetY	20.61
InitialOffsetX	16.37
InitialOffsetY	16.48
RecoverValue(A)	2.24
RecoverValue(C)	2.93
RecoverValue(G)	2.97
RecoverValue(T)	2.37
RecoverValue(AVG)	2.63

Tab2. Biochemistry Information

Category	Value
ISW Version	1.0.0.34
Machine ID	R13040100200006
Sequence Type	PE100
Recipe Version	V1.4.0.176
Sequence Date	2020-07-21
Sequence Time	12:42:50
Reagent ID	W2006010541
Flowcell Pos	А
DNB ID	TEST_circu
Barcode Type	1~128
Barcode File	barcodeAL01.csv
Read1 Cycles	100
Read2 Cycles	100
Barcode	10
Dual Barcode	
Read1 Dark Cycles	
Read2 Dark Cycles	

			F	ig14. Ave	rage Qua	ality Distr	ibution				
										Qual	
39											
38											
37											
36	\\^\	~~~~									
35 Onality 34			···········		<i>س</i> ــــــــــــــــــــــــــــــــــــ	~\/~v		٠	··········		
ਰੋ 34								•			~~
33											
32											
31											
(0	20	40	60	80 Cy	100 ycle	120	140	160	180	200

Création du run et des pistes

Calcul et récupération des métriaues d'évaluation du run et des pistes

Récupération des rapports de séquençage des

Calcul des top index des pistes des Fastq

Création des récupération des d'évaluation

Renommage des

Insertion des

Distribution des fichiers

Mise à jour du run et des readsets

Calcul des top index des pistes

Traitements

- Récupération des index représenté à plus de 0.01% de la pistes et des index attendus
 - Trie des index par ordre décroissant

NGL

Insertion top index par piste

Objectifs

Permettre de vérifier que les index attendus par pistes sont bien majoritairement représentés

William Amory M1 BI-IPFB

NGS-RG Rapport séquença	ge MGI Démultiplexage MGI		Piste	es	
Lane 1			# 📥	Valide ?	Comptes Rendu
barcode	count	percent	1		
barcode98	98 898 442	20,147	-		
barcode99	90 340 138	18,404	2		
arcode102	83 544 661	17,019	3		
barcode97	63 193 710	12,874			
parcode104	38 393 930	7,821	4		
barcode101	37 241 062	7,587			
barcode103	37 183 005	7,575			
parcode100	35 681 639	7,269			
иииииииии	1 149 326	0,234			
arcode57	319 055	0,065			
GTTGCATCGT	244 878	0,050			
CGCCGTGAAT	212 841	0,043			
GTGCATTCGT	207 168	0,042			
ACGTCGATCT	204 918	0,042			
TTGCATTCGT	193 336	0,039			
GTTGATTCGT	135 657	0,028			
ACGCGGATCT	97 527	0,020			
barcode58	90 788	0,018			
TCCGCGAGT	86 393	0,018			

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes Concaténation des Fastq Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données de Fasta

Distribution des fichiers

Mise à jour du run et des readsets

Concaténation des FASTQ

Traitements

- Si un seul index :
 - Décompression et renommage du FASTQ
- Si plusieurs index :
 - Décompression, concaténation et renommage des FASTQ

La décompression et la concaténation est réalisé avec **unpigz** sur 2 threads

La technologie MGI requiert une homogénéité des bases pour chaque cycle des index Le démultiplexage génère un FASTQ par index connu Un échantillon peut être divisé en plusieurs fichiers

Répertoire de concaténation de traitement du run

Objectifs

Obtenir un seul FASTQ par readset

Création du run et des pistes

Calcul et récupération des métriaues d'évaluation du run et des pistes

Récupération des rapports de séquençage des

Calcul des top index des pistes Concaténation des Fastq

Création des readsets, calcul et récupération des métriques

Renommage des

Insertion des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Création des readsets, calcul et récupération des métriques d'évaluation

Traitements (3 traitements)

- NGSRG
 - Nombre de reads
 - Nombre de bases
 - Qualité moyenne
- Global (sera mis à jour par NGS-QC)
 - Nombre de reads
 - Nombre de bases

NGL

- Création des readsets
- Insertion des métriques d'évamluation des readsets

Objectifs

01/07/2022

Permettre l'évaluation des readsets

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes Concaténation des Fastq Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données de Fasta

Distribution des fichiers

Mise à jour du run et des readsets

Renommage des FASTQ

Traitements

 Renommage des Fastq selon le format utilisé au Genoscope et CNRGH

Le renommage est réalisé par des liens symboliques des FASTQ issue du traitement de concaténation

Objectifs

- Tous les fichiers de séquences doivent avoir un nom unique et « parlant »
- Doit permettre d'identifier à quel échantillon, projet, flowcell, ect le fichier appartient

Le format des FASTQ finaux sont :

Ex: ABC_DA_AAAA_1_2_F0123456789.BC3.fastq

Répertoire de concaténation du répertoire de traitement du run

concat_L01_CTB_AA_1.BC103.fastq

Répertoire de renommage des FASTQ du répertoire de traitement du run

CTB_DA_AA_1_1_V300064083.BC103.fastq

Lien symbolique

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes Concaténation des Fastq

Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Insertion des méta-données des FASTQ

Traitements

- Récupération de l'extension et du type d'encodage de la qualité
- Construction du chemin du répertoire des fichiers
- Construction du label

NGL

 Insertion des méta-données des FASTQ de chaque readsets

Objectifs

 Décrire les fichiers disponible pour un readset, ainsi que leurs emplacement dans le système de fichers

Création du run et des pistes

Calcul et récupération des métriaues d'évaluation du run et des pistes

Récupération des rapports de séquençage des

Calcul des top index des pistes Concaténation des Fastq

Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des **FASTO**

Insertion des néta-données des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Distribution des fichiers (FASTQ attendus)

Traitements

- Dispatch des FASTQ attendus dans le répertoire final de l'échantillon du projet du run
- Changement des droits d'accès au FASTQ (droits restrictifs)

Objectifs

Rendre disponible les fichiers de séquences, tous en restreignant les droits d'écriture, de lecture et d'exécution aux utilisateurs

Répertoire de renommage de traitement du run

CTB_DA_AA_1_2_V300064083.BC103.fastg

copie + chmod

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes

Concaténation des Fastq

Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Distribution des fichiers (fichiers de statistiques)

Traitements

- Dispatch des fichier de Statistique dans le répertoire dédié
 - 1 archive compressé pour les *.fqStat.txt par piste
 - 1 archive compressé pour les fichier html par piste
 - Renommage des autres fichiers de statistiques en ajoutant le numéros de la piste
- Changement des droits d'accès aux fichiers de statistiques (droits restrictifs)

Objectifs

 Conserver les fichiers de statistiques du run Répertoire de renommage et d'archivage des Organisation du système de fichier des fichiers de statistiques de traitement du run statistiques des runs fqStat_L01.tar.gz stat Report_html_L01.tar.gz BioInfo L01.csv summaryTable_L01.csv SequenceStat_L01.txt 2022 BarcodeStat L01.txt BasecallQC_L01.txt firstBaseInfo_L01.csv Version_L01.json RunsMGI Copie + chmod 220620 MUSHU V300064083

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes Concaténation des Fastq

Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Distribution des fichiers (Fastq non attendus)

Traitements

- Renommage des FASTQ non attendus selon le format utilisé au Genoscope
- Dispatch des FASTQ non attendus dans le répertoire dédié
 - 1 archive compressé des FASTQ non attendus par piste
- Changement des droits d'accès au FASTQ (droits restrictifs)

Objectifs

 Conserver les FASTQ non-attendus du run en cas de mauvaise déclaration de la composition en barcode des readsets Répertoire de renommage et d'archivage des FASTQ non attendus de traitement du run

Unexpected_Fastq_L01.tar.gz

Copie + chmod

Organisation du système de fichier des FASTQ non attendus des runs

Format de renommage :

 $BC < barcode_number >_ < lane_number >_ < flowcell_code >. fastq.gz$

Pour les FASTQ de barcode non connus BC<barcode_number> remplacé par UNKNOWN

Création du run et des pistes Calcul et récupération des métriques d'évaluation du run et des pistes

Récupération des rapports de séquençage des pistes

Calcul des top index des pistes

Concaténation des Fastq Création des readsets, calcul et récupération des métriques d'évaluation

Renommage des FASTQ Insertion des méta-données des Fastq

Distribution des fichiers

Mise à jour du run et des readsets

Mise à jour de l'état du run et des readsets

Mise à jour NGL

- Mise à jour du run et des readset en cascade à « Fin de génération de reads »
 - Mise à jour automatique du run à « Evaluation en attente »
 - Mise à jour automatique des readset à « Contrôle qualité en attente »

Objectifs

- Indiquer que l'évaluation du run peut être réalisé
- Indiquer au pipeline NGS-QC qu'il peut réaliser le contrôle qualité des readsets

Pipeline NGS-RG MGI

- Ajout du second démultiplexage (démidage) pour les run comportant des mids
- Benchmark du pipeline (identifier les étapes les plus longues en temps, les plus consommatrice de mémoire et les optimiser)

Workflow NGS MGI

- Ecriture du pipeline NGS-QC MGI
- Mise en production des 2 pipelines (NGS-RG et NGS-QC MGI)

Evaluation d'autres outils

- Outils d'assignation taxonomique
- Outils de trimming (pour NGS-QC)
- Intégration d'outils des autres groupes de travail dans les pipelines NGS-BA
 - Outils d'assemblage, scaffolding, mapping ...

- Impact of sequencing depth and technology on de novo RNA-Seq assembly. Patterson. 2022-01-23, BMC Genomics. https://doi.org/10.1186/s12864-019-5965-x
- Comparison between MGI and Illumina sequencing platforms for whole genome sequencing, Jeon, S.A., Park, J.L., Park, SJ. and al. Genes Genom 43, 713-724 (2021). https://doi.org/10.1007/s13258-021-01096-x
- Best practices for the interpretation and reporting of clinical whole genome sequencing. Austin-Tse, C.A., Jobanputra, V., Perry, D.L. and al. npj Genom. Med. 7, 27 (2022). https://doi.org/10.1038/s41525-022-00295-z
- Comparative analysis of 7 short-read sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing. Hak-Min Kim and al. GigaScience, Volume 10, Issue 3, March 2021, giab014, https://doi.org/10.1093/gigascience/giab014
- Highly comparable metabarcoding results from MGI-Tech and Illumina sequencing platforms. Anslan S, Mikryukov V, and al. 2021. Peer J 9:e12254 https://doi.org/10.7717/peerj.12254
- CoolMPS™: Advanced massively parallel sequencing using antibodies specific to each natural nucleobase. Snezana Drmanac, Matthew Callow and al. bioRxiv preprint. https://doi.org/10.1101/2020.02.19.953307
- perl The Perl 5 language interpreter Perldoc Browser. 2022-01-23, https://perldoc.perl.org/perl
- The Comprehensive Perl Archive Network. 2022-01-23, www.cpan.org

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Merci de votre attention

William Amory M1 BI-IPFB Université Paris Cité

Laboratoire de Bioinformatique pour la Génomique et la Biodiversité (Genoscope - LBGB)

Sous la responsabilité de Frédérick Gavory

Données Supplémentaires - La technologie MGI

Figure 2 - Différences entre Illumina et MGI de technologie NGL

J. Patterson & all. (2019). Impact of sequencing depth and technology on de novo RNA-Seq assembly. BMC Genomics. 20. 10.1186/s12864-019-5965-x.

DNB (DNA Nanoball)

Figure 3 - Schéma de la technologie des DNA nanoballs de MGI

https://en.mgi-tech.com/products/ consulté le 21/06/2022

Données Supplémentaires - La technologie MGI

Figure 4 - Schéma d'une flowcell et des DNB dans les puits de la flowcell

Figure 5 - Schéma de basecalling des séquenceurs MGI

https://en.mgi-tech.com/products/ consulté le 21/06/2022

https://en.mgi-tech.com/products/ consulté le 21/06/2022

Données Supplémentaires - La technologie MGI

Figure 6 - Schéma de la nouvelle chimie MGI : CoolMPS

CoolMPS[™]: Advanced massively parallel sequencing using antibodies specific to each natural nucleobase. Snezana Drmanac, Matthew Callow and al. bioRxiv preprint. https://doi.org/10.1101/2020.02.19.953307

Données suplémentaire - Autres onglets NGL

Infos workflow du run et des readsets

Infos échantillon

Données supplémentaire - CEA/Genoscope/LBGB

Figure 7 - Organigramme situant l'équipe du *Laboratoire de Bioinformatique pour la Génomique et la Biodiversité (LBGB)* au sein du Genoscope et du CEA (2022)

CEA (Commissariat à l'énergie atomique et aux énergies alternatives)

- créé le 18 octobre 1945 par Charles de Gaulle
- 20 000 Salariés
- 4 directions opérationnelles et 9 directions fonctionnelles

Genoscope (Centre National de Séquençage) Créé en 1996 - 250 salariés

- Participation au projet Génome humain (Séquençage du chromosome 14)
- Développerment de programmes de génomiques en France
- Plus grand centre de séquençage français
- France génomique unité mixe de service regroupe les 4 principaux organismes de recherche (CEA, CNRS, TNRA, INSERM) rassemblement de la majorité des plateforme de séquençage et de bioinformatique français
- Projets Tara (Pacific Océans Artic ...) étude des écosystèmes marins
- Projets ERGA (European Reference Genome Atlas) création d'une base de données de références de haute qualité des génomes d'espèces européeene

25