1-2. Let $\beta > 0$ and $\delta \in \mathbb{R}$. Let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta, \delta) = \beta e^{-\beta x + \beta \delta}, \quad x > \delta,$$
 zero otherwise.

- 1. Suppose δ is known.
- a) (i) Obtain a method of moments estimator of β , $\tilde{\beta}$.
 - (ii) Suppose n = 4, $\delta = 2$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain a method of moments estimate of β , $\tilde{\beta}$.
- b) (i) Obtain the maximum likelihood estimator of β , $\hat{\beta}$.
 - (ii) Suppose n = 4, $\delta = 2$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain the maximum likelihood estimate of β , $\hat{\beta}$.
- c) Is the maximum likelihood estimator $\hat{\beta}$ an unbiased estimator of β ?

 If $\hat{\beta}$ is not an unbiased estimator of β , construct an unbiased estimator of β based on $\hat{\beta}$.

"Hint":
$$W = X - \delta$$
.

- d) Find $MSE(\hat{\beta}) = (bias(\hat{\beta}))^2 + Var(\hat{\beta})$.
- e) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for β .
- f) Suggest a confidence interval for β with $(1 \alpha)100\%$ confidence level.

"Hint": Use
$$\sum_{i=1}^{n} (X_i - \delta) = \sum_{i=1}^{n} W_i$$
.

g) Suppose n=4, $\delta=2$, and $x_1=2.15$, $x_2=2.55$, $x_3=2.10$, $x_4=2.20$. Use part (f) to construct a 95% confidence interval for β .

- **2.** Suppose β is known.
- h) (i) Obtain a method of moments estimator of δ , $\tilde{\delta}$.
 - (ii) Suppose n = 4, $\beta = 5$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain a method of moments estimate of δ , $\tilde{\delta}$.
- i) Is the method of moments estimator $\,\tilde{\delta}\,$ an unbiased estimator of $\,\delta\,$? If $\,\tilde{\delta}\,$ is not an unbiased estimator of $\,\delta\,$, construct an unbiased estimator of $\,\delta\,$ based on $\,\tilde{\delta}\,$.

"Hint":
$$E(\overline{X}) = \mu$$
.

- j) Find MSE($\tilde{\delta}$). "Hint": $Var(\overline{X}) = \frac{\sigma^2}{n}$.
- k) (i) Obtain the maximum likelihood estimator of δ , $\hat{\delta}$.
 - (ii) Suppose n = 4, $\beta = 5$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain the maximum likelihood estimate of δ , $\hat{\delta}$.

"Hint":
$$x_1 > \delta$$
, $x_2 > \delta$, ... $x_n > \delta$.

- Is the maximum likelihood estimator $\hat{\delta}$ an unbiased estimator of δ ?

 If $\hat{\delta}$ is not an unbiased estimator of δ , construct an unbiased estimator of δ based on $\hat{\delta}$.
- m) Find MSE($\hat{\delta}$) = (bias($\hat{\delta}$))² + Var($\hat{\delta}$).
- n) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for δ .
- o) Find c such that $P(\delta < \min X_i < \delta + c) = 1 \alpha$. "Hint": c depends on α, β, n .
- p) Suppose n=4, $\beta=5$, and $x_1=2.15$, $x_2=2.55$, $x_3=2.10$, $x_4=2.20$. Use part (o) to construct a 95% confidence interval for δ .

Then (\clubsuit , \spadesuit) is a (1- α)100% confidence interval for $\delta.$

Answers:

1-2. Let $\beta > 0$ and $\delta \in \mathbb{R}$. Let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \beta, \delta) = \beta e^{-\beta x + \beta \delta}, \quad x > \delta,$$
 zero otherwise.

- 1. Suppose δ is known.
- a) (i) Obtain a method of moments estimator of β , $\tilde{\beta}$.
 - (ii) Suppose n = 4, $\delta = 2$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain a method of moments estimate of β , $\tilde{\beta}$.

$$f_{X}(x) = \beta e^{-\beta x + \beta \delta} = \beta e^{-\beta (x - \delta)}, \qquad x > \delta.$$

$$f_{Y}(y) = \lambda e^{-\lambda y}, \quad y > 0. \qquad \Rightarrow \quad E(Y) = \frac{1}{\lambda}.$$

$$f_{Y}(y) = \lambda e^{-\lambda (y - \delta)}, \quad y > \delta. \qquad \Rightarrow \quad E(Y) = \delta + \frac{1}{\lambda}.$$

$$\Rightarrow E(X) = \delta + \frac{1}{\beta}.$$

OR
$$E(X) = \int_{\delta}^{\infty} x \cdot \beta e^{-\beta (x-\delta)} dx = \dots \text{ by parts } \dots$$

$$\overline{X} \ = \ \delta + \frac{1}{\widetilde{\beta}} \, . \qquad \qquad \Rightarrow \qquad \widetilde{\beta} \ = \ \frac{1}{\overline{X} - \delta} \, .$$

(ii)
$$\sum_{i=1}^{n} x_i = 9.$$
 $\bar{x} = 2.25.$ $\hat{\beta} = \frac{1}{2.25 - 2} = 4.$

- b) (i) Obtain the maximum likelihood estimator of β , $\hat{\beta}$.
 - (ii) Suppose n = 4, $\delta = 2$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain the maximum likelihood estimate of β , $\hat{\beta}$.

(i)
$$L(\beta) = \prod_{i=1}^{n} f(x_i; \beta, \delta) = \begin{cases} \prod_{i=1}^{n} \beta e^{-\beta x_i + \beta \delta} & x_1 > \delta, x_2 > \delta, \dots, x_n > \delta \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \beta^n e^{-\beta \sum x_i + n \beta \delta} & \min x_i > \delta \\ 0 & \delta > \min x_i \end{cases}$$

$$\ln L(\beta) = n \ln \beta - \beta \sum_{i=1}^{n} x_i + n \beta \delta.$$

$$\frac{d}{d\beta} \ln L(\beta) = \frac{n}{\beta} - \sum_{i=1}^{n} x_i + n\delta = 0.$$

$$\Rightarrow \qquad \hat{\beta} = \frac{n}{\sum\limits_{i=1}^{n} X_i - n\delta} = \frac{n}{\sum\limits_{i=1}^{n} \left(X_i - \delta \right)} = \frac{1}{\overline{X} - \delta}.$$

(ii)
$$\sum_{i=1}^{n} x_i = 9.$$
 $\sum_{i=1}^{n} (x_i - 2) = 1.$ $\overline{x} = 2.25.$

$$\hat{\beta} = \frac{4}{9-4\cdot 2} = \frac{4}{1} = \frac{1}{2.25-2} = 4.$$

c) Is the maximum likelihood estimator $\hat{\beta}$ an unbiased estimator of β ?

If $\hat{\beta}$ is not an unbiased estimator of β , construct an unbiased estimator of β based on $\hat{\beta}$.

"Hint": $W = X - \delta$.

$$f_{X}(x) = \beta e^{-\beta x + \beta \delta} = \beta e^{-\beta (x - \delta)}, \qquad x > \delta.$$

$$W = X - \delta \qquad x = w + \delta \qquad \frac{dx}{dw} = 1$$

$$f_{W}(w) = \beta e^{-\beta w} \cdot |1| = \beta e^{-\beta w}, \qquad w > 0.$$

OR

$$F_X(x) = \int_{\delta}^{x} \beta e^{-\beta u + \beta \delta} du = 1 - e^{-\beta x + \beta \delta} = 1 - e^{-\beta (x - \delta)}, \quad x > \delta.$$

$$F_{W}(w) = P(X - \delta \le w) = F_{X}(w + \delta) = 1 - e^{-\beta w}, w > 0.$$

 $W = X - \delta$ has an Exponential $\left(\theta = \frac{1}{\beta}\right) = Gamma\left(\alpha = 1, \theta = \frac{1}{\beta}\right)$ distribution.

$$\Rightarrow$$
 Y = $\sum_{i=1}^{n}$ W_i has a Gamma ($\alpha = n, \theta = \frac{1}{\beta}$) distribution.

$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} (X_i - \delta)} = \frac{n}{\sum_{i=1}^{n} W_i} = \frac{n}{Y}.$$

$$E(Y^k) = \frac{\Gamma(n+k)}{\beta^k \Gamma(n)}.$$

$$E(\hat{\beta}) = E(\frac{n}{Y}) = n E(\frac{1}{Y}) = n E(Y^{-1}) = n \cdot \frac{\beta}{n-1} = \frac{n}{n-1} \cdot \beta \neq \beta.$$

 \Rightarrow $\hat{\beta}$ is NOT an unbiased estimator for β .

Consider
$$\hat{\beta} = \frac{n-1}{n} \cdot \hat{\beta} = \frac{n-1}{\sum_{i=1}^{n} X_i - n \delta} = \frac{n-1}{\sum_{i=1}^{n} (X_i - \delta)}$$
.

Then
$$E(\hat{\beta}) = \frac{n-1}{n} \cdot E(\hat{\beta}) = \beta$$
. $\hat{\beta}$ is an unbiased estimator for β .

d) Find MSE(
$$\hat{\beta}$$
) = (bias($\hat{\beta}$))² + Var($\hat{\beta}$).

bias(
$$\hat{\beta}$$
) = E($\hat{\beta}$) - β = $\frac{\beta}{n-1}$.

$$\operatorname{Var}\left(\frac{1}{Y}\right) = \operatorname{E}(Y^{-2}) - \left[\operatorname{E}(Y^{-1})\right]^{2} = \frac{\beta^{2}}{(n-1)(n-2)} - \left(\frac{\beta}{n-1}\right)^{2}$$
$$= \frac{\beta^{2}}{(n-1)^{2}(n-2)}.$$

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}\left(\frac{n}{Y}\right) = n^{2}\operatorname{Var}\left(\frac{1}{Y}\right) = \frac{n^{2}\beta^{2}}{\left(n-1\right)^{2}\left(n-2\right)}.$$

$$MSE(\hat{\beta}) = \left(\frac{\beta}{n-1}\right)^2 + \frac{n^2 \beta^2}{(n-1)^2 (n-2)} = \frac{(n^2 + n - 2) \beta^2}{(n-1)^2 (n-2)} = \frac{(n+2) \beta^2}{(n-1) (n-2)}.$$

e) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for β .

$$\prod_{i=1}^{n} f(x_i; \beta, \delta) = \prod_{i=1}^{n} \beta e^{-\beta x_i + \beta \delta} \cdot I_{\{x_i > \delta\}}$$

$$= \beta^n e^{-\beta \sum x_i + n \beta \delta} \cdot I_{\{\min x_i > \delta\}}.$$

By Factorization Theorem,

$$\sum_{i=1}^{n} X_{i}$$
 is a sufficient statistic for β .

$$\left[\ \Rightarrow \ \overline{X} \ \text{ is also a sufficient statistic for } \lambda. \ \right]$$

$$\left[\ \Rightarrow \ \sum_{i=1}^{n} \left(X_{i} - \delta \right) \text{ is also a sufficient statistic for } \lambda. \ \right]$$

f) Suggest a confidence interval for β with $(1 - \alpha)100\%$ confidence level.

"Hint": Use
$$\sum_{i=1}^{n} (X_i - \delta) = \sum_{i=1}^{n} W_i$$
.

$$\sum_{i=1}^{n} W_{i} = \sum_{i=1}^{n} (X_{i} - \delta) \text{ has a Gamma}(\alpha = n, \theta = \frac{1}{\beta}) \text{ distribution.}$$

$$\Rightarrow$$
 $2 \beta \sum_{i=1}^{n} (X_i - \delta)$ has a $\chi^2(2\alpha = 2n)$ distribution.

$$\Rightarrow P(\chi_{1-\alpha/2}^{2}(2n) < 2\beta \sum_{i=1}^{n} (X_{i} - \delta) < \chi_{\alpha/2}^{2}(2n)) = 1 - \alpha.$$

$$\Rightarrow P\left(\frac{\chi_{1-\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}(X_{i}-\delta)} < \beta < \frac{\chi_{\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}(X_{i}-\delta)}\right) = 1-\alpha.$$

A
$$(1-\alpha)$$
 100 % confidence interval for β

$$\left(\begin{array}{c} \chi_{1-\alpha/2}^{2}(2\,n\,) \\ 2\sum\limits_{i=1}^{n}\left(X_{i}-\delta\right) \end{array}, \frac{\chi_{\alpha/2}^{2}(2\,n\,)}{2\sum\limits_{i=1}^{n}\left(X_{i}-\delta\right)} \right)$$

g) Suppose n=4, $\delta=2$, and $x_1=2.15$, $x_2=2.55$, $x_3=2.10$, $x_4=2.20$. Use part (f) to construct a 95% confidence interval for β .

$$\sum_{i=1}^{n} (x_i - 2) = 1. \qquad \chi_{0.975}^2(8) = 2.180, \qquad \chi_{0.025}^2(8) = 17.54.$$

$$\left(\frac{2.180}{2 \cdot 1}, \frac{17.54}{2 \cdot 1}\right) \qquad (1.09, 8.77)$$

- 2. Suppose β is known.
- h) (i) Obtain a method of moments estimator of δ , $\tilde{\delta}$.
 - (ii) Suppose n = 4, $\beta = 5$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain a method of moments estimate of δ , $\tilde{\delta}$.

$$(i) \qquad \mu \,=\, E\left(\,X\,\right) \,=\, \delta + \frac{1}{\beta}\,.$$

$$\overline{X} \ = \ \widetilde{\delta} + \frac{1}{\beta} \, . \qquad \qquad \Rightarrow \qquad \widetilde{\delta} \ = \ \overline{X} - \frac{1}{\beta} \, .$$

(ii)
$$\sum_{i=1}^{n} x_i = 9.$$
 $\overline{x} = 2.25.$

$$\tilde{\delta} = \bar{x} - \frac{1}{\beta} = 2.25 - \frac{1}{5} = 2.05.$$

i) Is the method of moments estimator $\tilde{\delta}$ an unbiased estimator of δ ?

If $\tilde{\delta}$ is not an unbiased estimator of δ , construct an unbiased estimator of δ based on $\tilde{\delta}$.

"Hint":
$$E(\overline{X}) = \mu$$
.

$$\mathrm{E}(\,\widetilde{\delta}\,\,)\,=\,\mathrm{E}(\,\overline{\mathrm{X}}\,\,)-\frac{1}{\beta}\,\,=\,\mu-\frac{1}{\beta}\,\,=\,\delta.$$

 \Rightarrow $\tilde{\delta}$ is an unbiased estimator of δ .

j) Find MSE(
$$\tilde{\delta}$$
).

"Hint":
$$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$$
.

$$f_{X}(x) = \beta e^{-\beta x + \beta \delta} = \beta e^{-\beta (x - \delta)}, \qquad x > \delta.$$

$$f_{Y}(y) = \lambda e^{-\lambda y}, \quad y > 0. \qquad \Rightarrow \quad Var(Y) = \frac{1}{\lambda^{2}}.$$

$$f_{\mathbf{Y}}(y) = \lambda e^{-\lambda (y-\delta)}, \quad y > \delta.$$
 $\Rightarrow \quad \operatorname{Var}(\mathbf{Y}) = \frac{1}{\lambda^2}.$

$$\Rightarrow \quad \sigma^2 = \operatorname{Var}(X) = \frac{1}{\beta^2}.$$

OR
$$E(X^{2}) = \int_{\delta}^{\infty} x^{2} \cdot \beta e^{-\beta (x-\delta)} dx = \dots \text{ by parts } \dots \text{ twice } \dots$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \dots$$

$$\operatorname{Var}(\tilde{\delta}) = \operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n} = \frac{1}{n\beta^2}.$$

Since $\tilde{\delta}$ is an unbiased estimator of δ , and bias $(\tilde{\delta}) = 0$,

$$MSE(\tilde{\delta}) = Var(\tilde{\delta}) = \frac{1}{n\beta^2}.$$

- k) (i) Obtain the maximum likelihood estimator of δ , $\hat{\delta}$.
 - (ii) Suppose n = 4, $\beta = 5$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Obtain the maximum likelihood estimate of δ , $\hat{\delta}$.

"Hint": $x_1 > \delta$, $x_2 > \delta$, ... $x_n > \delta$.

(i)
$$L(\delta) = \prod_{i=1}^{n} f(x_i; \beta, \delta) = \begin{cases} \prod_{i=1}^{n} \beta e^{-\beta x_i + \beta \delta} & x_1 > \delta, x_2 > \delta, \dots, x_n > \delta \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \beta^n e^{-\beta \sum x_i + n \beta \delta} & \min x_i > \delta \\ 0 & \delta > \min x_i \end{cases}$$

$$\ln L(\delta) = n \ln \beta - \beta \sum_{i=1}^{n} x_i + n \beta \delta. \qquad \frac{d}{d\delta} \ln L(\delta) = n \beta = 0 ???$$

$$\Rightarrow$$
 $\hat{\delta} = \min X_i$.

(ii)
$$\hat{\delta} = \min x_i = 2.10$$
.

Is the maximum likelihood estimator $\hat{\delta}$ an unbiased estimator of δ ?

If $\hat{\delta}$ is not an unbiased estimator of δ , construct an unbiased estimator of δ based on $\hat{\delta}$.

"Hint":
$$F_{\min X_i}(x) = 1 - (1 - F(x))^n$$
.

$$F_{X}(x) = \int_{\delta}^{x} \beta e^{-\beta u + \beta \delta} du = 1 - e^{-\beta x + \beta \delta} = 1 - e^{-\beta (x - \delta)}, \quad x > \delta.$$

$$F_{\min X_i}(x) = 1 - (1 - F_X(x))^n = 1 - e^{-n\beta(x-\delta)}, \qquad x > \delta.$$

$$f_{\min X_i}(x) = n \beta e^{-n \beta (x-\delta)}, \qquad x > \delta$$

$$f_{\mathbf{Y}}(y) = \lambda e^{-\lambda y}, \quad y > 0.$$
 $\Rightarrow \quad \mathbf{E}(\mathbf{Y}) = \frac{1}{\lambda}.$

$$f_{\mathbf{Y}}(y) = \lambda e^{-\lambda (y-\delta)}, \quad y > \delta.$$
 $\Rightarrow \quad \mathbf{E}(\mathbf{Y}) = \delta + \frac{1}{\lambda}.$

$$\Rightarrow$$
 $E(\min X_i) = \delta + \frac{1}{n \beta}.$

OR
$$E(\min X_i) = \int_{\delta}^{\infty} x \cdot n \beta e^{-n \beta (x-\delta)} dx = \dots \text{ by parts } \dots$$

$$E(\min X_i) = \delta + \frac{1}{n\beta} \neq \delta.$$

$$\hat{\delta} \;$$
 is NOT an unbiased estimator of $\; \delta \; .$

Consider
$$\hat{\delta} = \min X_i - \frac{1}{n \beta}$$
.

$$E(\hat{\delta}) = \delta.$$

$$\hat{\delta}$$
 is an unbiased estimator of δ .

m) Find MSE(
$$\hat{\delta}$$
) = (bias($\hat{\delta}$))² + Var($\hat{\delta}$).

bias
$$(\hat{\delta}) = E(\hat{\delta}) - \delta = \frac{1}{n \beta}$$
.

$$f_{\min X_i}(x) = n \beta e^{-n \beta (x-\delta)}, \qquad x > \delta.$$

$$f_{\mathbf{Y}}(y) = \lambda e^{-\lambda y}, \quad y > 0.$$
 $\Rightarrow \quad \operatorname{Var}(\mathbf{Y}) = \frac{1}{\lambda^2}.$

$$f_{\mathbf{Y}}(y) = \lambda e^{-\lambda (y-\delta)}, \quad y > \delta.$$
 $\Rightarrow \quad \operatorname{Var}(\mathbf{Y}) = \frac{1}{\lambda^2}.$

$$\Rightarrow$$
 Var(min X_i) = $\frac{1}{(n\beta)^2}$.

OR
$$E((\min X_i)^2) = \int_{\delta}^{\infty} x^2 \cdot n \beta e^{-n \beta (x-\delta)} dx = \dots$$

$$Var(\min X_i) = E((\min X_i)^2) - [E(\min X_i)]^2 = ...$$

$$MSE(\hat{\delta}) = \left(\frac{1}{n\beta}\right)^2 + \frac{1}{(n\beta)^2} = \frac{2}{n^2\beta^2}.$$

Note that even though $\tilde{\delta}$ is an unbiased estimator of δ ,

 $\hat{\delta}$ is NOT an unbiased estimator of δ ,

$$MSE(\tilde{\delta}) = \frac{1}{n \beta^2} > \frac{2}{n^2 \beta^2} = MSE(\hat{\delta})$$
 for $n > 2$.

For large n, $MSE(\tilde{\delta}) >> MSE(\hat{\delta})$. $\hat{\delta}$ is a better estimator.

n) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for δ .

$$\prod_{i=1}^{n} f(x_i; \beta, \delta) = \prod_{i=1}^{n} \beta e^{-\beta x_i + \beta \delta} \cdot I_{\{x_i > \delta\}}$$

$$= \beta^n e^{-\beta \sum x_i + n \beta \delta} \cdot I_{\{\min x_i > \delta\}}.$$

By Factorization Theorem,

 $\min X_i$ is a sufficient statistic for δ .

o) Find c such that $P(\delta < \min X_i < \delta + c) = 1 - \alpha$.

"Hint": c depends on α , β , n.

Recall (part (l)): $F_{\min X_i}(x) = 1 - e^{-n\beta(x-\delta)}, \qquad x \ge \delta.$

$$1 - \alpha = P(\delta < \min X_i < \delta + c) = F_{\min X_i}(\delta + c) - F_{\min X_i}(\delta) = 1 - e^{-n\beta c}.$$

$$\alpha = e^{-n\beta c}$$
. \Rightarrow $c = -\frac{1}{n\beta} \ln \alpha = \frac{1}{n\beta} \ln \frac{1}{\alpha}$

p) Suppose n = 4, $\beta = 5$, and $x_1 = 2.15$, $x_2 = 2.55$, $x_3 = 2.10$, $x_4 = 2.20$. Use part (o) to construct a 95% confidence interval for δ .

"Hint":
$$1 - \alpha = P(\delta < \min X_i < \delta + c) = P(\clubsuit < \delta < \spadesuit).$$
 Then (\clubsuit, \spadesuit) is a $(1 - \alpha)100\%$ confidence interval for δ .

$$1 - \alpha = P(\delta < \min X_i < \delta + c) = P(\min X_i - c < \delta < \min X_i).$$

A
$$(1-\alpha)$$
 100 % confidence interval for δ

$$(\min X_i - c, \min X_i).$$

$$\alpha = 0.05.$$
 $c = -\frac{1}{n\beta} \ln \alpha = -\frac{1}{20} \ln 0.05 \approx 0.15.$

$$(2.10-0.15, 2.10)$$
 (1.95, 2.10)