Motivating open question: Which triangles have closed (a.k.a. periodic) billiard paths?

- Every acute triangle has a periodic billiard path, called the Fagnano curve. [Fagnano, 1775]
- Every right triangle has a periodic billiard path.
- Every rational polygon has a periodic billiard path. [Masur]
- Halbeisen and Hungerbuhler found some infinite families of periodic billiard paths in obtuse triangles.

The *orbit-type* of a periodic billiard path is the (bi-infinite) sequence of edges it hits.

Given some periodic sequence of edges and a triangle, how do we tell if there is a periodic billiard path in this triangle realizing the sequence as its orbit-type?

Searching for Billiard Paths

The orbit-types of all finite billiard paths in a fixed triangle Δ have the structure of a tree. (It is a subtree of the infinite trivalent tree.)

Theorem (Cassaigne-Hubert-Troubetzkoy).

In a rational polygon, the number of orbittypes of length n which are realized by finite billiard paths is bounded above and below by cubic polynomials.

A simple search algorithm would be to traverse this tree. Whenever you see an unfolding where the first and last edges are parallel, check to see if you can construct a billiard path.

The space of all marked triangles modulo congruence, \mathcal{T} , is given the structure of a 2-simplex by using angles as coordinates.

If we fix the orbit-type w, then Tile(w) is the set of triangles with periodic billiard paths with orbit-type w.

Assuming Tile(w) is not empty, the tiles come in one of two flavors depending on w:

- 1. Tile(w) is an open subset of \mathcal{T} . In this case w is called *stable*.
- 2. Tile(w) is an open subset of some rational line in \mathcal{T} . We call w is called *unstable*.

Plotting Tiles

If α and β are two angles of the triangle, then all the vertices of the unfolding can be arranged to lie in the ring $\mathbb{Z}[e^{\pm 2i\alpha},e^{\pm 2i\beta}]$.

Theorem (Schwartz). If the largest angle of a triangles is less than 100 degrees, then the triangle has a periodic billiard path.

Related open question: Which triangles have stable periodic billiard paths?

- If the largest angle of a triangle is between 90 and 100 degrees, then the triangle has a stable periodic billiard path. [Schwartz]
- Right triangles do not have stable periodic billiard paths. [H]
- Isosceles triangles with angles $(\frac{\pi}{2^n}, \frac{\pi}{2^n}, \bigstar)$ do not. [H]
- Isosceles triangles with angles not equal to $(\frac{\pi}{2n}, \frac{\pi}{2n}, \frac{(n-1)\pi}{n})$ do. [H]
- We suspect the remaining isosceles triangles do have stable periodic billiard paths.

In fact, some of the triangles which don't have stable billiard paths have an even worse property.

Theorem (Schwartz). There is a sequence of triangles Δ_i approaching the 30-60-90 triangle with the property that there are no periodic billiard paths of length less than i in Δ_i .

Corollary (Schwartz). No neighborhood of the 30-60-90 triangle is covered by finitely many tiles.

We expect that these statements are also true for the $(\frac{\pi}{2^n}, \frac{\pi}{2^n}, \bigstar)$ isosceles triangles.

Topology and Irrational Billiards

Another interesting question: Given an orbittype (a periodic sequence of edges) which triangles have a periodic billiard path with that orbit-type?

It turns out we can extract some partial answers to this question from topological information alone. For example:

Theorem (H). No acute triangle has a stable periodic billiard path with the same orbit type as a stable periodic billiard path in an obtuse triangle.

We can construct a Euclidean cone structure on the 3-punctured sphere by gluing a triangle Δ to an orientation reversed copy of Δ .

There is a folding map $S_{\Delta} \to \Delta$ which takes geodesics to billiard paths.

A periodic billiard path on Δ lifts unless is has odd period. If it has odd period then its double cover lifts.

Theorem. If γ is a lift of stable periodic billiard path to S_{Δ} , then it is null homologous.

$$\pi_1(S_{\Delta}) \xrightarrow{\text{hol}} \text{Isom}_+(\mathbb{R}^2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_1(S_{\Delta}, \mathbb{Z}) \xrightarrow{\text{hol}_{ab}} S^1$$

So, stable paths lift to the universal abelian cover of S_{Δ} .

$$\mathsf{UAC}(S_{\Delta}) = \widetilde{S}_{\Delta}/[\pi_1(S_{\Delta}), \pi_1(S_{\Delta})]$$

 S_{Δ} is homotopy equivalent to the Θ -graph, so $UAC(S_{\Delta})$ and $UAC(\Theta)$ are homotopy equivalent equivalent.

The universal abelian cover of S_{Δ} is a translation surface. That is, it can be constructed from pieces of \mathbb{R}^2 that are glued together by translations.

In general, given a Euclidean cone surface S we can construct it's universal translation surface covering, UTS(S). Let $K \subset \pi_1(S)$ be the subgroup of elements with translational holonomy.

$$\mathsf{UTS}(S) = \widetilde{S}/K$$

Every translation surface covering of S covers UTS(S). In particular UAC(S) covers UTS(S).

- For generic triangles $UTS(S_{\Delta}) = UAC(S_{\Delta})$.
- For rational triangles $UTS(S_{\Delta})$ has finitely many punctures, and the deck group of the covering $UAC(S_{\Delta}) \to UTS(S_{\Delta})$ is $\mathbb{Z} \oplus \mathbb{Z}$.
- ullet Otherwise Δ in generic in some rational line, and the deck group is \mathbb{Z} .

The triangulation of S_{Δ} by two copies of Δ pulls back to a triangulation of UTS (S_{Δ}) . Closed geodesics on UTS (S_{Δ}) are

- 1. simple and
- 2. intersect each edge of the triangulation in at most one direction.

Call a topological path on translation surface with such a triangulation that satisfies 1 and 2 billiard-like.

If there is a rotation by 180 degrees that preserves the translation surface, we require slightly more.

Proposition. If S is a translation surface triangulated by edges connecting singularities, then the restriction of the map $\pi : \pi_1(S) \to H_1(S, \mathbb{Z})$ to the set of billiard-like paths is injective.

Theorem (H). Suppose $\Delta \in \mathcal{T}$ is generic in some rational line ℓ and $\gamma \in \pi_1(UAC(S_{\Delta}))$ is billiard-like on $UAC(S_{\Delta})$. If γ 's projection to $UTS(S_{\Delta})$ fails to be billiard-like, then the $Tile(\gamma)$ lies in at most one component of $\mathcal{T} \setminus \ell$. The component can be determined from information about this failure.

Theorem (H). If Δ is a right triangle, no billiard-like path on $UTS(\Delta)$ lifts to $UAC(\Delta)$.

In general given an orbit-type w, the first theorem allows us to construct a convex rational bounding box B_w for the tile from topological information alone.

Question: Does every irrational triangle Δ lie in some B_w ?