### 데이터베이스 기초

Chapter 5
기본키와 외래키

오세종 MIT DANKOOK UNIVERSITY

# 핵심 내용

- 기본키 (primary key)
- 외래 키 (foreign key)
- 조인 연산 (join operation)

### 1. 소개

- 무결성 규칙(Integrity rules)
  - DBMS 에게 실세계의 제약조건(ex. 무게>0) 을 알리기 위함
  - 데이터 값의 결정 : "현실의 반영(reflect reality)"
  - 데이터베이스의 정의는 무결성 규칙의 포함을 필요로 한다.
- Example : 부서-사원 데이터베이스를 위한 규칙 목록
  - 부서번호의 형식 : nn (nn 은 2자리 10진수
  - 부서의 위치는 모두 미국내에 있어야 한다
  - 입사일자 : 1980-01-01 ~ 현재일자 이내여야 한다
  - 사장은 mgr 정보가 null 이어야 한다

무결성 규칙은 테이블을 생성할 때 지정해 준다 어떤 무결성 규칙은 구현할 수 없는 것도 있다

### 1. 소개

- 어떤 주어진 무결성 규칙은 :
  - 특 정 데 이터베이 스에 대해 서만 적용 된다 (database specific)
- 데이터베이스의 제한성 규칙에 부가하여, 두개의 일반적인 무결성 규칙을 갖는다.
  - 이 규칙 은 특정 데이 터베이스에 만 적용되 는 것이 아 니 라 모든 데 이 터베 이 스 에 일반 적으로 적용
  - o (1) 후보키 (candidate key)
  - o (2) 외래키 (foreign key)

- 가장 기본적인 무결성 규칙
  - "테이블에 튜플이 입력될 때 중복이 없어야 한다"

#### customer

| 고객번호 | 고객명 | 전화번호         | 주민등록번호         | 주소지 | 미 |
|------|-----|--------------|----------------|-----|---|
| C001 | 홍길동 | 010-123-2324 | 801212-1214316 | 서울  | Α |
| C002 | 김철수 | 010-424-5343 | 810824-1134566 | 인천  | Α |
| C003 | 한나영 | 010-454-7364 | 891213-2321455 | 서울  | В |
| C004 | 최민수 | 010-231-6143 | 940501-1565465 | 대구  | С |
| C005 | 홍춘길 | 010-422-3452 | 930701-1836255 | 광주  | В |
| C006 | 김나리 | 011-721-7771 | 950801-2156557 | 인천  | С |



# 새로운 튜플 입력시 중복성 검사를 해야 한다. **HOW** ?

| C009 | 박성식 | 010-341-2411 | 900801-1155601 | 서울 | С |
|------|-----|--------------|----------------|----|---|
|------|-----|--------------|----------------|----|---|

 모든 컬럼의 값을 비교해 볼수 는 없으니 기준이 되는 몇 개 또는 하나의 컬럼만 보고 중복성 여부를 판단하자 ➡ 후보키(candidate key)



- 후보키 (candidate key)
  - 중복성 여부를 판단할 수 있는 컬럼, 혹은 컬럼들의 집합
- 기본키(primary key)
  - 테이블에 대한 유일 식별자(unique identifier)
  - 후보키(candidiate key) 개념의 특별한 경우
- 대체키(Alternate key)
  - 후보키 중 기본키로 지정되지 않은 다른 키

- 테이블은 적어도 하나의 후보키를 갖는다
  - 테이블은 중복된 튜플을 갖지 않으므로.
  - 모든 속성의 조합이 후보키가 되는 경우도 있다.
- Note
  - 한 테이블은 하나 이상의 후보키를 가질 수 있다.
  - 단순(simple) 후보키 vs 복합(composite) 후보키

### 사원정보

Α

| 사원번호  | 이름  | 주민등록번호         |
|-------|-----|----------------|
| S0001 | 신성호 | 701212-1063423 |
| S0002 | 이민식 | 720818-1023531 |
| S0003 | 김철수 | 740921-1125342 |

#### 사원별 거래처

| В | 사원번호  | 거래처  | 거래금맥  |
|---|-------|------|-------|
|   | S0001 | 대성물산 | 5,000 |
|   | S0001 | 신수전자 | 6,000 |
|   | S0002 | 신수전자 | 4,000 |

- 정리
  - 기본키는 튜플의 중복성을 판별하는데 기준이 되는 컬럼 또는 컬럼들의 집합
- 후보키중 어느 것이 기본키로 선택되어 지는가?
  - 정해진 기준은 없다
  - 단순키와 복합키가 있다면 단순키를 기본키로 선택

#### customer

| 고객번호 | 고객명 | 전화번호         | 주민등록번호         | 주소지 | 마그 |
|------|-----|--------------|----------------|-----|----|
| C001 | 홍길동 | 010-123-2324 | 801212-1214316 | 서울  | Α  |
| C002 | 김철수 | 010-424-5343 | 810824-1134566 | 인천  | Α  |
| C003 | 한나영 | 010-454-7364 | 891213-2321455 | 서울  | В  |
| C004 | 최민수 | 010-231-6143 | 940501-1565465 | 대구  | С  |
| C005 | 홍춘길 | 010-422-3452 | 930701-1836255 | 광주  | В  |
| C006 | 김나리 | 011-721-7771 | 950801-2156557 | 인천  | С  |

- 외래키( foreign key)의 용어정의
  - R2라는 기본 테이블 에서 R2의 속성 집합의 부분집합중에서 다음을
  - 만족 시키는 FK 를 R2의 외래키(foreign key) 라고 한다.

- CK를 후보키로 갖는 기본 테이블 R1이 이미 존재하고 있어야 한다. (R1과 R2가 서로 다를 필요는 없다)
- 주어진 어느 시간이라도, R2의 현재 값의 각 FK의 값은 R1의 현재 값의 어떠한 튜플인 CK 의 값과 같아야 한다

# • 외래키의 예

|      | 기본키    |       |             |        | ,    |
|------|--------|-------|-------------|--------|------|
| DEPT | DEPTNO | DNAME |             | BUDGET |      |
|      | D1     | 마케팅부  |             | 10M    | 참조되는 |
|      | D2     | 개발부   |             | 12M    | 테이블  |
|      | D3     | 연구부   |             | 5M     | (부모) |
|      | 기본키    |       | <u>외래</u> ㅋ | 1      |      |
| EMP  | EMPNO  | ENAME | DEPTNO      | SALARY |      |
|      | E1     | 이몽룜   | D1          | 40K    | 참조하는 |
|      | E2     | 장길산   | D1          | 42K    | 테이블  |
|      | E3     | 허참봉   | D2          | 30K    | (자식) |
|      | E4     | 성춘향   | D2          | 35K    |      |



### • 요점

- 외래키는 후보키처럼 속성의 집합으로 정의 된다.
- 정의에 의해, 주어진 외래키의 모든 값은 참조하는 후보키와 부합되는 값을 가져야 한다. (그 역은 성립되지 않음)
- 주어진 외래키가 복합키이면 참조하는 후보키도 복합키임을 의미
- 기본키의 일부가 외래 키인 경우도 있다.
- 자식테이블의 외래키는 부모 테이블의 기본키를 참조하도록 되어 있다

| DEPT | DEPT#          | DNAME | BUDGET |
|------|----------------|-------|--------|
|      | primary<br>key |       |        |

EMP# ENAME DEPT# SALARY

primary foreign key key

부모 테이블

자식 테이블

- 자기 참조(*Self-Referencing)* 
  - 외래키 정의 관계에 있는 테이블 R1 과 R2 가 동일한 테이블 일 때

|     | 기본키   |       |       | 외래키 |        |
|-----|-------|-------|-------|-----|--------|
| EMP | EMPNO | ENAME | DEPT# | MGR | SALARY |
|     | E1    | 이몽룡   | D1    | E2  | 40K    |
|     | E2    | 장길산   | D1    |     | 42K    |
|     | E3    | 허참봉   | D2    | E1  | 30K    |
|     | E4    | 성춘향   | D2    | E3  | 35K    |
|     |       |       |       |     |        |

- 참조 무결성 규칙(referential integrity rule)
  - 데이터베이스는 부합되지 않는 어떠한 왜래키 값도 포함해서는 안된다.
  - 만일 B 가 A를 참조 한다면, A 는 반드시 존재해야 한다
    - 왜래키를 지원하는 것과 참조 무결성을 지원하는 것은 같은 의미

# 4. 외래키 규칙

- 참조 무결성 규칙 (referential integrity rule)
  - 데이터베이스가 유지해야 할 정상적 상태
- 참조 무결성의 수행
  - 옳지 못한 연산이 수행될 경우 시스템이 거부
  - 부가적인 보상 연산을 통하여 시스템의 무결성 유지.(ex.cascading delete)
- 데이터베이스 설계자(database designer) 는
  - 어떤 연산이 거부되어야 하는지를 정의
  - 어떤 보상연산이 수행되어야 하는지를 정의

# 4. 외래키 규칙

- 외래키 참조의 대상(target)이 되는 후보키를 갱신하려고 할 때 어떻게 할 것 인가?
  - 제한(RESTRICTED) : 부합(match)되는 후보키가 없을 경우에만 삭제가 능
  - 연쇄(CASCADES) : 부합 (match) 되는 모든 후보키도 함께 갱신
  - Nullify
  - Nothing

| DEPT | DEPT#        | DNAME    |        | BUDGET |
|------|--------------|----------|--------|--------|
|      | D1           | 마케팅부     |        | 10M    |
|      | D2           | 개발부      |        | 12M    |
|      | D3           | 연구부      |        | 5M     |
|      | <b>&amp;</b> |          |        |        |
|      |              |          |        |        |
| EMP  | EMP#         | ENAME    | DEPT#  | CALADY |
|      | LIVIE#       | LIVAIVIL | DEP I# | SALARY |
|      | E1           | 이몽룡      | DEP 1# | 40K    |
|      |              |          |        |        |
|      | E1           | 이몽룡      | D1     | 40K    |

### 5. Null

- 널(null)
  - 부재정보(missing information)를 다루는 기본적인 방법
  - "생일이 알려져 있지 않음","앞으로 알려질 것임"
  - 자료형이 없다
- 널은 공백(blank) 또는 제로(zero) 와는 다르다

# 6. 후보키와 Null

- 개체 무결성 규칙(entity integrity rule)
  - 기본 테이블의 기본키의 어떤 성분도 널(null)일 수 없다
- 근거(rationale)
  - 기본 테이블은 현실세계의 개체들에 해당 한다
  - 현실세계의 개체들은 식별가능 하다(distinguishable & identifiable)
  - 기본키는 관계형 모델에서 유일 식별성(unique identification)을 수행 한다
  - 식별되지 않는 개체는 존재하지 않는다

\*\* 동일한 이유로 복합 기본키의 *부분적인 널* 값도 방지 되어야 한다

- 조인(join) 연산이란
  - 두개 또는 두개 이상의 테이블을 연결하여 하나의 테이블처럼 보이게 하는 연산
- 예제 테이블

### emp

| empid | ename | deptno |
|-------|-------|--------|
| E1    | 홍길동   | D1     |
| E2    | 김철수   | D1     |
| E3    | 한나영   | D2     |

### dept

| deptno | dname |
|--------|-------|
| D1     | 영업부   |
| D2     | 관리부   |
| D3     | 생산부   |

# SELECT \* FROM emp, dept

emp dept

| empid | ename | deptno |                   | deptno | dname |
|-------|-------|--------|-------------------|--------|-------|
| E1    | 홍길동   | D1     |                   | D1     | 영업부   |
| E2    | 김철수   | D1     | $\Longrightarrow$ | D2     | 관리부   |
| E3    | 한나영   | D2     |                   | D3     | 생산부   |

| empid | ename | deptno | deptno | dname |
|-------|-------|--------|--------|-------|
| E1    | 홍길동   | D1     | D1     | 영업부   |
| E1    | 홍길동   | D1     | D2     | 관리부   |
| E1    | 홍길동   | D1     | D3     | 생산부   |
| E2    | 김철수   | D1     | D1     | 영업부   |
| E2    | 김철수   | D1     | D2     | 관리부   |
| E2    | 김철수   | D1     | D3     | 생산부   |
| E3    | 한나영   | D2     | D1     | 영업부   |
| E3    | 한나영   | D2     | D2     | 관리부   |
| E3    | 한나영   | D2     | D3     | 생산부   |

```
SELECT *
FROM emp, dept
WHERE emp.deptno = dept.deptno
```

emp dept

| empid | ename | deptno | deptno  | dname |
|-------|-------|--------|---------|-------|
| E1    | 홍길동   | D1     | <br>.D1 | 영업부   |
| E2    | 김철수   | D1     | D2      | 관리부   |
| E3    | 한나영   | D2     | D3      | 생산부   |

| empid | ename | deptno | deptno | dname |
|-------|-------|--------|--------|-------|
| E1    | 홍길동   | D1     | D1     | 영업부   |
| E2    | 김철수   | D1     | D1     | 영업부   |
| E3    | 한나영   | D2     | D2     | 관리부   |

```
SELECT emp.empid,emp.ename,emp.deptno,dept.dname
FROM emp, dept
WHERE emp.deptno = dept.deptno
```

```
SELECT empid, ename, emp.deptno, dname
FROM emp, dept
WHERE emp.deptno = dept.deptno
```

```
SELECT empid, ename, e. deptno, dname
FROM emp e, dept d
WHERE e. deptno = d. deptno
```

| empid | ename | deptno | dname |
|-------|-------|--------|-------|
| E1    | 홍길동   | D1     | 영업부   |
| E2    | 김철수   | D1     | 영업부   |
| E3    | 한나영   | D2     | 관리부   |

# [연습]



• 모든 사원의 사원번호, 사원이름, 부서명, 급여액을 보이시오