

Normalization using Schema Refinement

Chapter 19

2/17/20

Review

Today

Form/Spreadsheet

Supplier ID	Supplier Name	Supplier Address	Item	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
			Paint	blue	\$10
			Flowers	pink	\$3
2	Beanery	A2, A3	Dynamite	boom	\$8

(Note: ACME is a fictional corporation from the Road Runner and Wile E. Coyote series)

Problems with the above table?

Form/Spreadsheet

Supplier ID	Supplier Name	Supplier Address	Item	Desc	Price
1	Acme	A1	Dynamite	boom	\$8
			Paint	blue	\$10
			Flowers	pink	\$3
2	Beanery	A2, A3	Dynamite	boom	\$8

Bad Table!

- (Supplier ID, item) appears to be the key, but Supplier ID is NULL in many places – assumed to be copied from the prior non-null entry – ordering matters.
- Addresses appear to be multi-valued
- Redundancy in (Item, Desc)

Normalization

Supplier ID	Supplier Name	Supplier Address	ltem	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
			Paint	blue	\$10
			Flowers	pink	\$3
2	Beanery	A2, A3	Dynamite	boom	\$8

Going to a proper set of tables is called "normalization".

- avoid redundancy of data
- capture the dependencies inherent in the data
- We will always start with one giant table and then "normalize it" into multiple tables, ala, Project 1

Goal

- Design 'good' tables
 - What is good?
 - How to fix bad tables?
- In short:

We want tables where the attributes depend on the primary key, on the whole key, and nothing but the key.

Two Approaches to Normalization

- Approach 1 (you did this in Project 1):
 - Create an ER model and then map to tables. Should result in good (normalized) tables (very manual)
- Approach 2 [Today]:
 - State dependencies between attributes of tables
 - Map dependencies to tables. Can be done automatically!

Normal Forms

- Guarantees that certain problems won't occur & obeys certain rules:
 - 1 NF : Starting point
 - 2 NF: Historical
 - 3 NF:...
 - BCNF: Boyce-Codd Normal Form
 - 4NF: Use lossless decompositions for multi-valued dependencies

1st Normal Form – First Step

Supplier ID	Supplier Name	Supplier Address	ltem	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
			Paint	blue	\$10
			Flowers	pink	\$3
2	Beanery	A2, A3	Dynamite	boom	\$8

Supplier ID	Supplier Name	Supplier Address	Item	Desc	Price <
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	A3	Dynamite	boom	\$8

1st Normal Form – First Step

Supplier ID	Supplier Name	Supplier Address	Item	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	A3	Dynamite	boom	\$8

- Each value in table is single-valued
- Each row contains all the relevant data

We now have a relational table. Rows can be reordered, all rows independent.

1st Normal Form: Redundancy remains however

Supplier ID	Supplier Name	Supplier Address	ltem	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	A3	Dynamite	boom	\$8

Redundancy bad for changing DBs

- Space inefficient same thing stored multiple times
- Makes for messy update process
 - Update anomalies: Changing address of a suppler requires changing multiple rows
 - Insertion anomalies: Inserting a supplier requires inserting NULL or other values in unrelated columns
 - Deletion anomalies: Deleting an item requires care. It could end up deleting a Supplier as well.

DEPARTMENT

OF

REDUNDANCY

DEPARTMENT

Dealing with Redundancy

- Normalize tables further
- ER Diagramming and translation to Relational model did that
- But ER diagramming and translation seems a bit ad hoc. Can the method be formalized?
- We will learn another trick today: using functional dependencies more to normalize tables

Example Normalization using ER approach

• **ER Approach:** (1) Supplier Entity, (2) Item Entity, (3) Supplier-Item Relationship with Price as an attribute

Supplier ID	Supplier Name	Item	Desc	Price
1	Acme	Dynamite	boom	\$7
1	Acme	Paint	blue	\$10
1	Acme	Flowers	pink	\$3
2	Beanery	Dynamite	boom	\$8
2	Beanery	Dynamite	boom	\$8

Supplier ID	Supplier Name
1	Acme
2	Beanery

<u>Item</u>	Desc
Dynamite	boom
Paint	blue
Flowers	pink

Supp ID	<u>ltem</u>	Price
1	Dynamite	\$7
1	Paint	\$10
1	Flowers	\$3
2	Dynamite	\$8

Alternative Way: Use Functional Dependencies

Supplier ID	Supplier Name	Item	Desc	Price
1	Acme	Dynamite	boom	\$7
1	Acme	Paint	blue	\$10
1	Acme	Flowers	pink	\$3
2	Beanery	Dynamite	boom	\$8
2	Beanery	Dynamite	boom	\$8

Use key constraints among attributes
as the starting point

- Supplier ID → Supplier Name
- Item → Desc
- Supplier ID, Item → Price

Supplier ID	Supplier Name
1	Acme
2	Beanery

<u>Item</u>	Desc
Dynamite	boom
Paint	blue
Flowers	pink

Supp ID	<u>ltem</u>	Price
1	Dynamite	\$7
1	Paint	\$10
1	Flowers	\$3
2	Dynamite	\$8

Functional Dependencies (FD)

- FD captures dependency between attributes.
- Notation: X → Y
- Read as: X functionally determines Y
- i.e., Y depends on X or for a given X, there is one Y

Supplier ID	Supplier Name	Supplier Address	ltem	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	A3	Dynamite	boom	\$8

E.g.: Supplier ID → Supplier Name

FD: Definition

- Notation: X → Y
- Informally: Given a specific X, there is one Y value.
- Formally: A form of Integrity Constraint

D: $X \rightarrow Y$ X and Y subsets of a relation R's attributes.

Given tuples t1 and t2 in relation instance r of R:

$$\pi_{X}(t1) = \pi_{X}(t2) \Rightarrow \pi_{y}(t1) = \pi_{y}(t2)$$

(Supplier ID, Item)

 \rightarrow Price

Supplier ID	Supplier Name	Supplier Address	Item	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	A3	Dynamite	boom	\$8

Question?

Supplier ID	Supplier Name	Supplier Address	Item	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	АЗ	Dynamite	boom	\$8

Which of the following FDs are definitely wrong?

- Item → Desc
- Item → Price

A. Yes/Yes B. Yes/No C. No/Yes D No/No

FD: Example

FDs capture dependencies among attributes

Supplier ID	Supplier Name	Supplier Address	ltem	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	АЗ	Dynamite	boom	\$8

- Supplier ID → Supplier Name
- Item → Desc
- Supplier ID, Item → Price

FD: Example

FDs capture dependencies among attributes

Supplier ID	Supplier Name	Supplier Address	ltem	Desc	Price
1	Acme	A1	Dynamite	boom	\$7
1	Acme	A1	Paint	blue	\$10
1	Acme	A1	Flowers	pink	\$3
2	Beanery	A2	Dynamite	boom	\$8
2	Beanery	АЗ	Dynamite	boom	\$8

- Supplier ID → Supplier Name
- Item → Desc
- Supplier ID, Item → Price

Another Example

What are the FDs among attributes in the above diagram? Try it out.

```
cid \rightarrow name, bday

iid \rightarrow iname, idesc (iid \rightarrow iname; iid \rightarrow idesc)

cid, iid \rightarrow when. (even if there was no arrow)

cid \rightarrow iid
```

Another Example

What are the FDs for the attributes in the above diagram?

cid \rightarrow name, bday iid \rightarrow iname, idesc cid, iid \rightarrow when cid \rightarrow iid

A logically equivalent answer:

cid \rightarrow cid, name, bday, when, iid, iname, idesc (i.e., everything) iid \rightarrow iid, iname, idesc

More on FDs

- An FD is a statement about all allowable relations.
 - Based only on application semantics, not a table instance

Primary Key IC: special case of FD

Primary key attributes → All other attributes

Basic Normalization

Map FDs to tables

Supplier ID	Supplier Name	Item	Desc	Price
1	Acme	Dynamite	boom	\$7
1	Acme	Paint	blue	\$10
1	Acme	Flowers	pink	\$3
2	Beanery	Dynamite	boom	\$8
2	Beanery	Dynamite	boom	\$8

	Supplier	$ID \rightarrow Su$	pplier	Name
--	----------	---------------------	--------	------

- Item → Desc
- Supplier ID, Item → Price

Supplier ID	Supplier Name
1	Acme
2	Beanery

Item	Desc
Dynamite	boom
Paint	blue
Flowers	pink

Example: Constraints on Entity Set

- S(<u>name</u>, item, desc, addr, price)
- FD: {n,i} → {n,i,d,a,p}
- Additional dependencies:
 - FD: $\{n\} \to \{a\}$
 - FD: $\{i\} \rightarrow \{d\}$
- Decompose to: <u>NA</u>, <u>ID</u>, <u>IN</u>P

- Resulting Tables:
 - Supplier(name, addr)
 - FD: $\{n\} \to \{n, a\}$
 - Item (item, desc)
 - FD: $\{i\} \to \{i, d\}$
 - Supplies(<u>name</u>, item, price)
 - FD: $\{n,i\} \to \{n, i, p\}$

ER design is subjective and can have many E + Rs FDs: More systematic

High -Level Goal

- Given a relation and FDs:
 - R(sid, sname, ...)
 - FDs (sid → ..., iid → ...)
- Algorithm that generates
 - 'good' schemas

Concept of Closure

Given:

- A base set of "facts"
- A set of derivation rules

Closure is the set of all derivable facts

E.g.

Facts: a < a+1 for all natural numbers a

Derivation rule: transitivity

Closure = ??

Implied FDs

F+: Closure of F = Set of all valid FDs

Supplier ID → Supplier Name

F:

Item → Desc Supplier ID, Item → Price

- Many other dependencies in the closure F+, e.g.,
 - Supplier ID, Item → Desc
 - Supplier ID → Supplier ID
 - Supplier ID → Supplier ID, Supplier Name
- How to derive F+: Armstrong's Axioms!

First Armstrong Axioms

- Axiom#1: Reflexive Property
- Given attribute sets X and Y:
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$

- Example: (Supplier ID, Item#) → Item#
- In the example, X is [Supplier ID, Item#]. Y is [Item#]
- Given left side, there is a unique value for right side
- This is called a trivial dependency
 - E.g., $X \rightarrow X$

Armstrong's Inference Axioms

- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$ (trivial dependency)
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$ e.g. ename \to ejob, ejob \to esal; \Rightarrow ename \to esal
- Additional useful rules (derivable):
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

Deriving Union Rule from Axioms

• Prove: if $X \to Y$ and $X \to Z$ then $X \to YZ$

Proof:

- Reflexivity: If $Y \subseteq X$, then $X \to Y$ (trivial dependency)
- Augmentation: If X → Y, then XZ →YZ for any Z
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Deriving Union Rule from Axioms

- Prove: if $X \to Y$ and $X \to Z$ then $X \to YZ$
- Proof:
 - 1. $X \rightarrow Y$ (given)
 - 2. $X \rightarrow Z$ (given)
 - 3. $XX \rightarrow XZ$ or $X \rightarrow XZ$ (augmentation of 2)
 - 4. $XZ \rightarrow YZ$ (augmentation of 1)
 - 5. $X \rightarrow YZ$ (transitivity of 3 and 4)
- Possible to derive the decomposition rule from the basic Armstrong rules

Question?

Given the FD

X → A, where A includes all attributes of a table R, you can deduce that:

- A. X is primary key
- B. X is candidate key
- C. X is superkey
 - D. Cannot say for sure: could be any (or none) of the above

Closure

- F+: Closure of F = Set of all FDs that can be derived from F using Armstrong's axioms
- E.g., $F = \{X \rightarrow Y, Y \rightarrow Z\}$
- F+ = {X → Y, X → Z, (original)
 X → X, Y → Y, Z → Z, XY → X, XY → XY, ... (reflexive)
 X → Z (transitivity),
 X → YZ (union), ...}

Armstrong's Axioms: Sound and Complete

- F*: All FDs that are implied by F
- F+: All FDs that can be generated from F by applying Armstrong's Axioms
- Soundness: F+ is a subset of F*
- Completeness: F* is a subset of F+
- Armstrong's Axioms can be shown to be both sound and complete

Solution to Redundancy: Decomposition

 Split a large relation to smaller ones to eliminate redundancies

Suppli er ID	Supplier Name	Supplie r Addres s	Item	Desc	Price	
1	Acme	A1	Dynamite	boom	\$7	
1	Acme	A1	Paint	blue	\$10	_
1	Acme	A1	Flowers	pink	\$3	?
2	Beanery	A2	Dynamite	boom	\$8	
2	Beanery	A3	Dynamite	boom	\$8	

Solution to Redundancy: Decomposition

Two key goals of decomposition:

- Lossless Join: Can we reconstruct the original relation from Must instances of the decomposed relations?
- Dependency Preservation: Avoid having to join Good decomposed relations to check dependencies
 - Downside of decomposition:

have

have

Some queries become more expensive (more joins)

Lossless Join Decompositions

- Given Relation R, FDs F: Say, R decomposed to X, Y
- Decomposition of R into X,Y is Lossless-Join if joining back X and Y always gives R, i.e.,

```
\pi_{x}(r) \bowtie \pi_{y}(r) = r for every instance r of R
```

- Project 1: Part 4 checked if part 2 satisfied lossless-join!
- The following decomposition is **not** lossless-join:

			_					_	A	В	C
Α	В	С		A	В	В	С		1	2	3
1	2	3		1	2	2	3		4	5	6
4	5	6		4	5	5	6		7	2	8
7	2	8		7	2	2	8	\bowtie	1	2	8
	r		-	П	(r)	Π_{BC}	(r)	_	7	2	3

Lossless Join (cont.)

- Relation R, FDs F; Decomposed to X, Y
 - Test: lossless-join w.r.t. F if and only if F⁺ contains:

```
X \cap Y \rightarrow X, or X \cap Y \rightarrow Y
```

i.e. attributes common to X and Y contain a key for either X or Y

Lossless join decomposition is always required!

Dependency Preserving Decomposition

- Informally: We don't want the original FDs to span two tables.
- R has a dependency-preserving decomposition to X, Y if $F^+ = (F_x \cup F_y)^+$
- Note: F not necessarily = F_x ∪ F_y
- Example:
- R (sailor, boat, date)
 F: {D → S, D → B}

- Consider decomp. to X (sailor, boat) Y (boat, date) and dependencies F_√: {D → B}.
- To enforce D → S, must join X and Y (expensive)

The above is not dependency preserving

Decomposition: Example

X

ssn	cid	grade
123	413	Α
123	415	В
234	211	А

Y

ssn	name	addr
123	Smith	Main
234	Jones	Huron

Given the dependencies below:

Does $X \cap Y \rightarrow X$? Does $X \cap Y \rightarrow Y$?

ssn	cid	grade	name	addr
123	413	А	Smith	Main
123	415	В	Smith	Main
234	211	А	Jones	Huron

ssn → name, address
(assigned to Y after
decomposition)
ssn, cid → grade

Decomposition: Example

X

ssn	cid	grade
123	413	А
123	415	В
234	211	Α

ssn, cid \rightarrow grade

Y

ssn	name	addr
123	Smith	Main
234	Jones	Huron

ssn → name, address

ssn	cid	grade	name	addr
123	413	А	Smith	Main
123	415	В	Smith	Main
234	211	А	Jones	Huron

ssn → name, address ssn, cid → grade

Is X, Y decomposition dependency preserving?

Does it satisfy Lossless-join?

Example continued

- Is it dependency preserving?
 - Yes! Joins are not required to capture all the original dependencies
- Does decomposition have lossless-join property?
 - Check if one of the following is true.
 - $X \cap Y \rightarrow X$, i.e., ssn \rightarrow ssn, cid, grade
 - $X \cap Y \rightarrow Y$, i.e., ssn \rightarrow ssn, name, addr

Yes, it has the lossless-join property! Second one is true.

This decomposition is lossless and dependency preserving!

Question?

Suppose you have a choice between Lossless Join and Dependency Preservation. That is, you find you can get at most one of these properties.

Which would you prefer?

- A. Lossless Join
- B. Dependency Preservation
- C. Either: it doesn't matter
- D. Depends on the specific case

Normal Forms

- Guarantees that certain problems won't occur & obeys certain rules:
 - 1 NF: No set-valued attrs
 - 2 NF: Historical
 - 3 NF:...
 - BCNF: Boyce-Codd Normal Form
 - 4NF: Use lossless decompositions for multi-valued dependencies

Boyce-Codd Normal Form (BCNF)

- Rel. R with FDs F is in BCNF if, for all $X \rightarrow A$ in F⁺
 - $A \subseteq X$ (trivial FD), or
 - X is a super key

X:subset of attributes
A: single attribute

i.e., all non-trivial FDs over R are due to keys.

- No redundancy in R (at least none that FDs detect)
- Most often desired normal form

Question?

Consider a relation in BCNF and FD: X → A,
 Two tuples have the same X value

Can the y values be different?

X	Y	A
X	y1	а
X	?	а

- A. Yes
- B. No

3NF

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺
 - A ⊆ X (trivial dependency) or
 - X is a super key or
 - A is part of some (minimal) key for R (prime attribute)

Minimality of a key (i.e. a candidate key) is crucial!

BCNF implies 3NF, but 3NF does not imply BCNF

X:subset of attributes

3NF: Example

- e.g. Reserves(Sailor, Boat, Date, CreditCard)
 - SBD -> SBDC, S -> C (not 3NF) Why? SBD is the only key, S not a key, C not a key

- If additionally C -> S, then CBD -> SBDC (i.e., CBD is also a key). \rightarrow Now in 3NF!
- Note redundancy in (S, C); 3NF permits this
- Compromise used when BCNF not achievable, or performance considerations

Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations is always possible.

Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺

- A ⊆ X (trivial dependency) or
- X is a super key or
- A is part of some (minimal) key for R (prime attribute) Minimality of a key (i.e, not a super key) is crucial!

Time to practice 😂

Exercise 1: BCNF or 3NF?

- Relation R=(A,B,C,D,E)
- FDs:

$$A \rightarrow BC$$

 $CD \rightarrow E$

 $B \rightarrow D$

 $E \rightarrow A$

- Is R in BCNF?
- Is R in 3NF?

A is a (candidate) Key. E is also a key. CD is also a key BC is also a key

Hint:
Use Armstrong's
Axioms

- Reflexivity: If $Y \subseteq X$, then $X \to Y$ (trivial dependency)
- Augmentation: If X → Y, then XZ → YZ for any Z
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Exercise 1: BCNF or 3NF?

- Keys:
 - A, E, CD, BC
- Is R in BCNF?
 - No, because of B->D
- Is R in 3NF?
 - Yes

Keys found by repeatedly applying Armstrong's axioms

- Reflexivity: If $Y \subseteq X$, then $X \to Y$ (trivial dependency)
- Augmentation: If X → Y, then XZ →YZ for any Z
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Exercise 2: FDs & Normal Forms

Suppose you are given the following relation R: ABCDEF

$$BC \rightarrow D$$
 $CD \rightarrow B$
 $D \rightarrow E$
 $ACD \rightarrow F$

- 1. Find the keys of R
- 2. List all of the above FDs that violate BCNF
 - 3. List all of the above FDs that violate 3NF

Exercise 2: Solution

1. All possible keys: ACD, ABC

2. Violates BCNF:

$$BC \rightarrow D, CD \rightarrow B, D \rightarrow E$$

3. Violates 3NF

$$D \rightarrow E$$

Decomposition into BCNF

High-Level Algorithm

Input: a relation R with FDs F

- 1. Identify if any FDs violate BCNF (How?)
 - If X → Y violates BCNF, decompose R into R Y and XY
- 2. Repeat for every $X \rightarrow Y$ that violates BCNF.

Output: a collection of relations that are in BCNF

- Does this algorithm provide a lossless join decomposition?
 - Yes! Notice that X is a key for the relation XY
- Several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

Algorithm for BCNF (relation R, FDs F)

```
done = false;
result = \{R\};
compute F+;
while (not done) do
     if \exists R_i \in \text{result} and R_i is not in BCNF
        let \alpha \rightarrow \beta be a nontrivial FD that holds in R<sub>i</sub>
                        such that (\alpha \rightarrow R_i) \notin F^+ and \alpha \cap \beta = \emptyset;
        result=(result-R_i) \cup (R_i-\beta) \cup (\alpha,\beta);
     else done=true;
```

Exercise 3: Fix R to be in BCNF

- Relation R=(A,B,C,D,E)
- FDs: $A \rightarrow BC$, $CD \rightarrow E$, $B \rightarrow D$, $E \rightarrow A$
- Keys: A, BC, CD, E
- B → D violates BCNF
- Decompose R into:
 - R1=(A,B,C,E) R2=(B,D)
- Is this decomposition lossless join?
 - Yes! $R1 \cap R2 = B$ and $B \rightarrow R2$
- Is it dependency preserving?
 - F1: A \rightarrow BCE, E \rightarrow A, BC -> AE
 - F2: B → D
 - No! CD \rightarrow E is not in (F1 U F2)⁺

In this case, leave it in 3NF

Exercise 4

Suppose you are given the following relation R: ABCDEF

- BC → D
- CD → B
- D → E
- ACD → F

Now decompose R into R1 and R2, Do each of them satisfy lossless join property?

- R1: ACDF, R2: ABCDE
- R1: BCD, R2: ABEF

Exercise 4: Solution

R1: ACDF, R2: ABCDE
 It satisfies lossless-join
 Attributes common: ACD - it is a key

R1: BCD, R2: ABEF
 It does not satisfy lossless-join
 Attributes common: B - not a key

Schema Refinement

- Suppose you are given the following schema.
- IS (<u>item</u>, name, desc, loc, price)
 S (<u>name</u>, addr)
- You are asked to further normalize it assuming that supplier keeps all items of the same name in the same location. i.e., Add an FD:

Schema Refinement

IS (<u>item</u>, name, desc, loc, price) S (<u>name</u>, addr)

FDs = $\{i \rightarrow ndlp, n \rightarrow la\}$

- IS is not in BCNF, due to n → I
- Break it up: IS(<u>i</u>,n,d,p), Loc(<u>n</u>,l)
- S(n,a) remains unchanged
- Now notice same key for S and Loc, so merge
- Loc (<u>name</u>, addr, loc)

Schema Refinement

- IS (item, name, desc, loc, price)
 S (name, addr)
- A supplier keeps all items of the same name in the same location FD: name → loc

```
Solution:
IS (item, name, desc, price)
Loc (name, addr, loc)
Refined Schema
```

Normalization Summary

- Bad schemas lead to redundancy
 - Redundant storage, update, insert, and delete anomaly
- To "correct" bad schemas: decompose relations
 - Must be a lossless-join decomposition
 - Would like dependency preserving decompositions
- Desired Normal Forms
 - BCNF: allow only super-key functional dependencies
 - 3NF: allow dependencies with prime attributes on the RHS
 - Allows a limited form of redundancy
 - Trades off performance (avoid joins) for redundancy

2/17/20 64