Algebra 2R lista 2

Wiktor Kuchta

2/3D

Załóżmy, że $f: K \to K$ jest niezerowym endomorfizmem ciała K. Niech $Fix(f) = \{x \in K : f(x) = x\}$.

Jeśli $x, y \in Fix(f)$, tzn. f(x) = x i f(y) = y, to z homomorficzności:

- f(0) = 0,
- f(1) = 1,
- $\bullet \ f(-x) = -f(x) = -x,$
- $f(x^{-1}) = (f(x))^{-1} = x^{-1}$.
- f(x+y) = f(x) + f(y) = x + y,
- f(xy) = f(x)f(y) = xy,

więc Fix(f) zawiera 0 i 1 oraz jest zamknięte na negację, odwracanie, dodawanie i mnożenie. Zatem Fix(f) jest podciałem K.

2/4

Załóżmy, że K jest ciałem skończonym charakterystyki p.

(a)D

Niech $K = F(q), q = p^k, f \in K[X]$ to wielomian nierozkładalny stopnia m.

Wtedy stopień rozszerzenia K o pierwiastek a wynosi [K(a):K]=m, więc $a \in K(a) \cong F(q^m)$. Ciało rozkładu f nad K jest rozszerzeniem K[X]/(f) (takie ciało mamy po pierwszym kroku konstrukcji ciała rozkładu). Rozszerzenie z K do K[X]/(f) jest stopnia m. Wiemy, że potęgi a^k dla $0 \le k < m$ są liniowo niezależne, więc K(a) jest stopnia m nad K i z jedyności ciał skończonych o danej mocy $K(a) \cong K[X]/(f)$.

W $F(q^m)$ dla każdego $x \neq 0$ zachodzi $x^{q^m-1} = 1$, więc $X^{q^m-1} - 1 \in (f)$. Zatem f dzieli $X^{q^m-1} - 1$, gdzie $q^m - 1 \equiv p^{mk} - 1 \not\equiv 0 \pmod{p}$.

(b)

Mamy $n=p^0n_1$, $p\nmid n_1$. Uwaga (3.3) mówi, że każdy pierwiastek W_n ma krotność $p^0=1$. Skoro f dzieli W_n , to każdy jego pierwiastek jest też jednokrotny.

2/5aD

Niech $K\subseteq L$ to ciała skończone, $|K|=p^m,\,|L|=p^n.$ L jest przestrzenią wektorową nad K i $|L|=|K|^{[L:K]}=p^{m[L:K]},$ więc n=m[L:K].