REDES MEURAIS ARTIFICIAIS

AULA 2 - REDES PERCEPTRON

Prof. Rodrigo Palácios rodrigopalacios@utfpr.edu.br

REDES PERCEPTRON

- Características:
 - É a forma mais simples de configuração de uma rede neural artificial (idealizada por Rosenblatt, 1958).
 - Constituída de apenas uma camada, tendo-se ainda somente um neurônio nesta única camada.
 - Seu propósito inicial era implementar um modelo computacional inspirado na retina, objetivando-se então um elemento de percepção eletrônica de sinais.
 - Suas aplicações consistiam de identificar padrões geométricos.

REDES PERCEPTRON - CONCEPÇÃO INICIAL

- Modelo ilustrativo do *Perceptron* para reconhecimento de padrões:
 - 1) Sinais elétricos advindos de fotocélulas mapeando padrões geométricos eram ponderados por resistores sintonizáveis.
 - 2) Os resistores eram ajustados durante o processo de treinamento.
 - 3) Um somador efetuava a composição de todos os sinais.
 - 4) Em consequência, o **Perceptron** poderia reconhecer diversos padrões geométricos, tais como letras e números.

REDES PERCEPTRON - ASPECTOS TOPOLÓGICOS

- 1) Embora seja uma rede simples, o **Perceptron** teve potencial de atrair, quando de sua proposição, diversos pesquisadores que aspiravam investigar essa promissora área de pesquisa.
- 2) Recebeu ainda especial atenção da comunidade científica que também trabalhava com inteligência artificial.
- 3) O *Perceptron* é tipicamente utilizado em problemas de "Classificação de Padrões".

REDES PERCEPTRON - FUNCIONAMENTO

- 1) Apresentação de um conjunto de valores que representam as variáveis de entrada do neurônio.
- 2) Multiplicação de cada entrada do neurônio pelo seu respectivo peso sináptico.
- 3) Obtenção do potencial de ativação produzido pela soma ponderada dos sinais de entrada, subtraindo-se o limiar de ativação.
- 4) Aplicação de uma função de ativação apropriada, tendo-se como objetivo limitar a saída do neurônio.
- 5) Compilação da saída a partir da aplicação da função de ativação neural em relação ao seu potencial de ativação.

REDES PERCEPTRON - APLICABILIDADE

- 1) Tipicamente, devido às suas características estruturais, as funções de ativação usadas no **Perceptron** são a "degrau" ou "degrau bipolar".
- 2) Assim, tem-se apenas "duas possibilidades" de valores a serem produzidos pela sua saída, ou seja, valor 0 ou 1 (para a função de ativação

Degrau

Degrau Bipolar

REDES PERCEPTRON - APLICABILIDADE

Sinais de entrada $\Rightarrow \{x_1, x_2, ..., x_n\}$ Pesos sinápticos $\Rightarrow \{w_1, w_2, ..., w_n\}$ Combinador linear $\Rightarrow \{\Sigma\}$ Limiar de ativação $\Rightarrow \{\theta\}$ Potencial de ativação $\Rightarrow \{g\}$ Função de ativação $\Rightarrow \{g\}$ Sinal de saída $\Rightarrow \{y\}$

Parâmetro	Variável Representativa	Tipo Característico
Entradas	X _i	Reais ou Binária
	(<i>i</i> -ésima entrada)	(advindas externamente)
Pesos Sinápticos	W_i	Reais
1 C3O3 Offiaptico3	(associado a x _i)	(iniciados aleatoriamente)
Limiar	θ	Real
		(iniciado aleatoriamente)
Saída	У	Binária
Função de Ativação	g(.)	Degrau ou Degrau Bipolar
Processo de Treinamento		Supervisionado
Regra de Aprendizado		Regra de Hebb

REDES PERCEPTRON - TREINAMENTO SUPERVISIONADO

Parâmetro	Variável Representativa	Tipo Característico
Entradas	x _i (i-ésima entrada)	Reais ou Binária (advindas externamente)
Pesos Sinápticos	w_i (associado a x_i)	Reais (iniciados aleatoriamente)
Limiar	θ	Real (iniciado aleatoriamente)
Saída	у	Binária
Função de Ativação	g(.)	Degrau ou Degrau Bipolar
Processo de Treinamento		Supervisionado
Regra de Aprendizado		Regra de Hebb

- 1) Conforme tabela apresentada, o ajuste dos pesos e limiar do *Perceptron* é efetuado utilizando processo de treinamento "Supervisionado".
- 2) Então, para cada amostra dos sinais de entrada se tem a respectiva saída (resposta) desejada.
- 3) Como o **Perceptron** é tipicamente usado em problemas de classificação de padrões, a sua saída pode assumir somente dois valores possíveis.
- 4) Assim, cada um de tais valores será associado a uma das "duas classes" que o **Perceptron** estará identificando.

REDES *PERCEPTRON* - MAPEAMENTO DE PROBLEMAS PARA CLASSIFICAÇÃO PADRÕES

Aspectos de Aplicabilidade

- 1) Portanto, para problemas de classificação dos sinais de entrada, tem-se então duas classes possíveis, denominadas de *Classe A* e *Classe B*;
- 2) Paralelamente, como se tem também "duas possibilidades" de valores a serem produzidos na saída do *Perceptron*, tem-se as seguintes associações:

REDES PERCEPTRON - ANÁLISE MATEMÁTICA

 Para mostrar o quê ocorre internamente, assume-se aqui um *Perceptron* com apenas duas entradas:

Usando como ativação a função sinal, a saída do Perceptron será dada por:

$$y = g(u) = \begin{cases} 1, & \text{se } u \ge 0 \\ -1, & \text{se } u < 0 \end{cases}$$

$$y = g(u) = \begin{cases} 1, & \text{se } \sum w_i \cdot x_i - \theta \ge 0 \Leftrightarrow w_1 \cdot x_1 + w_2 \cdot x_2 - \theta \ge 0 \\ -1, & \text{se } \sum w_i \cdot x_i - \theta < 0 \Leftrightarrow w_1 \cdot x_1 + w_2 \cdot x_2 - \theta < 0 \end{cases}$$

Conclusão: O Perceptron é um classificador linear que pode ser usado para classificar duas classes linearmente separáveis.

REDES *PERCEPTRON* - CLASSIFICAÇÃO DE PADRÕES

- Da conclusão do slide anterior, observam-se que as desigualdades são representadas por uma expressão de primeiro grau (linear).
- A fronteira de decisão para esta instância (*Perceptron* de duas entradas) será então uma reta cuja equação é definida por:

$$w_1 \cdot x_1 + w_2 \cdot x_2 - \theta = 0 \qquad y = g(u) = \begin{cases} 1, & \text{se } \sum w_i \cdot x_i - \theta \ge 0 \Leftrightarrow w_1 \cdot x_1 + w_2 \cdot x_2 - \theta \ge 0 \\ -1, & \text{se } \sum w_i \cdot x_i - \theta < 0 \Leftrightarrow w_1 \cdot x_1 + w_2 \cdot x_2 - \theta < 0 \end{cases}$$

• Assim, tem-se a seguinte representação gráfica para a saída do *Perceptron*:

- Em suma, para a circunstância ao lado, o *Perceptron* consegue então dividir duas classes linearmente separáveis
- A saída do mesmo for 1 significa que os padrões (Classe A)
 estão localizados acima da fronteira (reta) de separação; caso
 contrário, quando a saída for -1 indica que os padrões (Classe
 B) estão abaixo desta fronteira.

REDES PERCEPTRON - CLASSIFICAÇÃO DE PADRÕES

- Se o *Perceptron* fosse constituído de três entradas (três dimensões), a fronteira de separação seria representada por um plano.
- Se o *Perceptron* fosse constituído de quatro ou mais entradas, suas fronteiras seriam hiperplanos.

Conclusão: A condição necessária para que o *Perceptron* de camada simples possa ser utilizado como um classificador de padrões é que as classes do problema a ser mapeado sejam linearmente separáveis.

Problema Linearmente Separável Problema Não-Linearmente Separável

- Aspectos do Processo de Treinamento (Regra de Aprendizado de Hebb)
- O ajuste dos pesos $\{w_i\}$ e limiar $\{\theta\}$ do **Perceptron**, visando-se propósitos de classificação de padrões que podem pertencer a uma das duas únicas classes possíveis, é feito por meio da **regra de aprendizado de Hebb**.
- Se a saída produzida pelo *Perceptron* está coincidente com a saída desejada, os seus pesos sinápticos e limiares são então incrementados (ajuste excitatório) proporcionalmente aos valores de suas entradas.
- Se a saída produzida pelo *Perceptron* é diferente do valor desejado, os pesos sinápticos e limiar serão então decrementados (ajuste inibitório).
- Este processo é repetido, sequencialmente, para todas as amostras de treinamento, até que a saída produzida pelo *Perceptron* seja similar à saída desejada de cada amostra.

Em termos matemáticos, tem-se:

$$\begin{cases} w_i^{atual} = w_i^{anterior} + \eta \cdot (d^{(k)} - y) \cdot \boldsymbol{x}^{(k)} \\ \theta_i^{atual} = \theta_i^{anterior} + \eta \cdot (d^{(k)} - y) \cdot \boldsymbol{x}^{(k)} \end{cases}$$

- w_i são os pesos sinápticos.
- θ é limiar do neurônio.
- x^(k) é o vetor contendo a k-ésima amostra de treinamento
- d^(k) é saída desejada para a k-ésima amostra de treinamento.
- y é a saída do Perceptron.
- η é a taxa de aprendizagem da rede.

A taxa de aprendizagem $\{\eta\}$ exprime o quão rápido o processo de treinamento da rede estará sendo conduzido rumo à sua convergência.

- Aspectos de implementação computacional (adequações algorítmicas)
 - Em termos de implementação, torna-se mais conveniente tratar as expressões anteriores em sua forma vetorial.
 - Como a mesma regra de ajuste é aplicada tanto para os pesos w_i como para o limiar θ , pode-se então inserir θ dentro do vetor de pesos:

 $\mathbf{w} = [\theta \quad w_1 \quad w_2 \dots w_n]^T$

• De fato, o valor do limiar é também uma variável a ser ajustada a fim de se realizar o treinamento do *Perceptron*. Portanto, tem-se:

Formato de cada amostra de treinamento:

$$\mathbf{x}^{(k)} = [-1 \ X_1^{(k)} \ X_2^{(k)} \cdots X_n^{(k)}]^T$$

- Aspectos de implementação computacional (montagem de conjuntos de treinamento)
 - Supõe-se que um problema a ser mapeado pelo **Perceptron** tenha três entradas $\{x_1, x_2, x_3\}$, conforme a figura ao lado (abaixo).
 - Assume-se que se tem quatro amostras, constituída dos seguintes valores de entrada:

Amostra 1 \rightarrow Entrada: [0,1 0,4 0,7] \rightarrow Saída desejada: [1]

Amostra 2 \rightarrow Entrada: [0,3 0,7 0,2] \rightarrow Saída desejada: [-1]

Amostra 3 \rightarrow Entrada: [0,6 0,9 0,8] \rightarrow Saída desejada: [-1]

Amostra 4 \rightarrow Entrada: [0,5 0,7 0,1] \rightarrow Saída desejada: [1]

- Aspectos de implementação computacional (montagem de conjuntos de treinamento)
 - Então, pode-se converter tais sinais para que os mesmos possam ser usados no treinamento do Perceptron:

• Geralmente, as amostras de treinamento são disponibilizadas em sua forma matricial (por meio de arquivo texto ou planilha).

Início (Algoritmo Perceptron – Fase de Treinamento)

- (<1> Obter o conjunto de amostras de treinamento $\{x^{(k)}\}$;
- <2> Associar a saída desejada $\{d^{(k)}\}$ para cada amostra obtida;
- <3> Iniciar o vetor w com valores aleatórios pequenos;
- <4> Especificar a taxa de aprendizagem {η};
- <5> Iniciar o contador de número de épocas {época ← 0};
- <6> Repetir as instruções:

Época de treinamento \rightarrow

É cada apresentação completa de todas as amostras pertencentes ao subconjunto de treinamento, visando, sobretudo, o ajuste dos pesos sinápticos e limiares de seus neurônios.

(fase de treinamento)

Algoritmo de

Aprendizagem

Até que: *erro* ← "inexiste"

<6.3> época ← época + 1;

Fim {Algoritmo *Perceptron* – Fase de Treinamento}

Pseudocódigo para fase de operação

Início (Algoritmo Perceptron – Fase de Operação)

- <1> Obter uma amostra a ser classificada { x };
- <2> Utilizar o vetor **w** ajustado durante o treinamento;
- <3> Executar as seguintes instruções:

<3.1>
$$u \leftarrow \mathbf{w}^T \cdot \mathbf{x}$$
;
<3.2> $y \leftarrow \text{sinal}(u)$;
<3.3> Se $y = -1$
<3.3.1> Então: amostra $\mathbf{x} \in \{Classe\ A\}$
<3.4> Se $y = 1$
<3.4.1> Então: amostra $\mathbf{x} \in \{Classe\ B\}$

Fim {Algoritmo Perceptron – Fase de Operação}

Obs. 1: A "Fase de Operação" é usada somente após a fase de treinamento, pois aqui a rede já está apta para ser usada no processo.

Obs. 2: A "Fase de Operação" é então utilizada para realizar a tarefa de classificação de padrões frente às novas amostras que serão apresentadas em suas entradas.

Ilustração do processo de convergência

- Processo de treinamento tende a mover continuamente o hiperplano de classificação até que seja alcançada uma fronteira de separação que permite dividir as duas classes.
- Como exemplo, seja uma rede composta de apenas duas entradas $\{x_1 e x_2\}$.

- Após a primeira época de treinamento (1), constata-se que o hiperplano está ainda bem longínquo da fronteira de separabilidade das classes.
- A distância tende ir cada vez mais decrescendo na medida em que se transcorre as épocas de treinamento.
- Quando o Perceptron já estiver convergido, isto estará então significando que tal fronteira foi finalmente alcançada.

- Região de separabilidade (aspectos de convergência)
 - A reta de separabilidade a ser produzida após o treinamento do *Perceptron* não é única.
 - O número de épocas pode também variar de treinamento para treinamento.

REFERÊNCIA

 SILVA, Ivan Nunes da e SPATTI, Danilo Hernane e FLAUZINO, Rogério Andrade. Redes neurais artificiais para engenharia e ciências aplicadas.
 São Paulo: Artliber Editora. . Acesso em: 23 dez. 2023. , 2010

