Assignment 4

Madiba Hudson-Quansah

Question 1

```
 \begin{array}{c} (p \wedge t) \rightarrow (r \vee s) \\ q \rightarrow (u \wedge t) \\ u \rightarrow p \\ \neg s \\ \frac{q}{r} \end{array} 
\therefore r
```

Solution:

	Steps	Reasons
1	$(p \land t) \rightarrow (r \lor s)$	Premise 1
2	$q \rightarrow (u \land t)$	Premise 2
3	$u \rightarrow p$	Premise 3
4	$\neg s$	Premise 4
5	q	Premise 5
6	$u \wedge t$	By Modus Ponens from 2 and 5
7	и	By Simplification from 6
8	р	By Modus Ponens from 3 and 7
9	t	By Simplification from 6
10	$p \wedge t$	By Conjunction from 8 and 9
11	$r \vee s$	By Modus Ponens from 1 and 10
12	r	By Disjunctive Syllogism from 11 and 4

Question 2

"Jane is a student in this class. Jane grew up in a family of entrepreneurs. Everyone who grew up in a family of entrepreneurs can build a thriving business."

Solution:

 \mathbb{U}_x : All people

S(x): x is a student in this class.

E(x): x grew up in a family of entrepreneurs.

B(x): x can build a thriving business

$$S$$
 (Jane)
 E (Jane)
 $\forall x (E(x) \rightarrow B(x))$
∴ $\exists x (S(x) \land B(x))$

	Steps	Reasons
1	S (Jane)	Premise 1
2	E(Jane)	Premise 2
3	$\forall x (E(x) \rightarrow B(x))$	Premise 3
4	$E(Jane) \rightarrow B(Jane)$	Universal Instantiation from 3.
5	B(Jane)	By Modus Ponens from 2 and 4.
6	S (Jane) \wedge B (Jane)	By Conjunction from 1 and 5.
7	$\exists x \left(S\left(x\right) \wedge B\left(x\right) \right)$	Existential Generalization from 6.

Question 3

The product of two odd numbers is odd

Proof: Using a direct proof I will show that if x and y are odd, then $x \times y$ is odd. Assume that x and y are odd.

Then $\exists k \in \mathbb{Z} \ x = 2k + 1$ and $\exists t \in \mathbb{Z} \ y = 2t + 1$ For $x \times y$ to be odd

$$x\times y=2z+1$$

Where z is an integer

$$\begin{aligned} x \times y &= (2k+1) \times (2t+1) \\ &= 4kt + 2k + 2t + 1 \\ &= 2(2kt+k+t) + 1 \\ \text{Let } z &= 2kt + k + t \\ &= 2z + 1 \end{aligned}$$

⊜

Since z is the sum of integers it is an integer. Hence If x and y are odd, then $x \times y$ is odd.