Computability and Complexity COSC 4200

Search versus Decision

We know that SAT is NP-complete, so $SAT \in P$ if and only if P = NP. The following theorem shows that finding satisfying assignments is also equivalent to P = NP.

Theorem

The following are equivalent.

- $\mathbf{O} P = NP$
- 2 There is a polynomial-time algorithm A that for any formula ϕ outputs a satisfying assignment if ϕ is satisfiable, or "unsatisfiable" if it is not.

Proof. Assume there is a polynomial-time algorithm A that for
any formula ϕ outputs a satisfying assignment if ϕ is satisfiable, or

"unsatisfiable" if it is not.

Proof. Assume there is a polynomial-time algorithm A that for any formula ϕ outputs a satisfying assignment if ϕ is satisfiable, or "unsatisfiable" if it is not.

Then A can be used to show that $SAT \in P$. Either A outputs a satisfying assignment, at which point we decide "yes," or it says "unsatisfiable," and we decide "no."

Algorithm A input ϕ let n be the number of variables in ϕ

if $\phi \notin SAT$, then output "unsatisfiable"

Algorithm A input ϕ let n be the number of variables in ϕ

if $\phi \notin SAT$, then output "unsatisfiable"

Algorithm
$$A$$
 input ϕ let n be the number of variables in ϕ if $\phi \notin \mathrm{SAT}$, then output "unsatisfiable"

let
$$\phi_0 = \phi$$

for $i = 1$ to n
if $\phi_{i-1} \land (x_i) \in SAT$
 $\phi_i = \phi_{i-1} \land (x_i)$
 $\tau(x_i) = T$

Algorithm
$$A$$

input ϕ

let n be the number of variables in ϕ

if $\phi \notin SAT$, then output "unsatisfiable"

let $\phi_0 = \phi$

for $i = 1$ to n

if $\phi_{i-1} \wedge (x_i) \in SAT$
 $\phi_i = \phi_{i-1} \wedge (x_i)$
 $\tau(x_i) = T$

else

 $\phi_i = \phi_{i-1} \wedge (\neg x_i)$
 $\tau(x_i) = F$

```
input \phi
let n be the number of variables in \phi
if \phi \notin SAT, then output "unsatisfiable"
let \phi_0 = \phi
for i = 1 to n
      if \phi_{i-1} \wedge (x_i) \in SAT
           \phi_i = \phi_{i-1} \wedge (x_i)
           \tau(x_i) = T
      else
            \phi_i = \phi_{i-1} \wedge (\neg x_i)
           \tau(x_i) = F
output \tau
```

Algorithm A

First we show by induction that for all i, $0 \le i \le n$, $\phi_i \in SAT$. The base case is trivial: $\phi_0 = \phi$, so $\phi_0 \in SAT$. Assume $\phi_i \in SAT$. Then $\phi_i \land (x_{i+1}) \in SAT$ or $\phi_i \land (\neg x_{i+1}) \in SAT$, for a satisfying assignment of ϕ_i sets x_{i+1} to true or false. In either case, $\phi_{i+1} \in SAT$.

First we show by induction that for all i, $0 \le i \le n$, $\phi_i \in SAT$. The base case is trivial: $\phi_0 = \phi$, so $\phi_0 \in SAT$. Assume $\phi_i \in SAT$. Then $\phi_i \land (x_{i+1}) \in SAT$ or $\phi_i \land (\neg x_{i+1}) \in SAT$, for a satisfying assignment of ϕ_i sets x_{i+1} to true or false. In either case, $\phi_{i+1} \in SAT$.

Now we know that $\phi_n \in SAT$. For each i, $1 \le i \le n$, let

$$I_i = \begin{cases} x_i & \text{if } \tau(x_i) = T \\ \neg x_i & \text{if } \tau(x_i) = F \end{cases}$$

First we show by induction that for all i, $0 \le i \le n$, $\phi_i \in SAT$. The base case is trivial: $\phi_0 = \phi$, so $\phi_0 \in SAT$. Assume $\phi_i \in SAT$. Then $\phi_i \land (x_{i+1}) \in SAT$ or $\phi_i \land (\neg x_{i+1}) \in SAT$, for a satisfying assignment of ϕ_i sets x_{i+1} to true or false. In either case, $\phi_{i+1} \in SAT$.

Now we know that $\phi_n \in SAT$. For each i, $1 \le i \le n$, let

$$I_i = \begin{cases} x_i & \text{if } \tau(x_i) = T \\ \neg x_i & \text{if } \tau(x_i) = F \end{cases}$$

Let $\psi = \bigwedge_{i=1}^n (I_i)$. Since $\phi_n = \phi \wedge \psi$ is satisfiable and the only satisfying assignment to ψ is τ , we have that τ satisfies ϕ_n . This means it must also satisfy ϕ .

To highlight how this works, consider the formula

$$\phi = (x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_2 \vee x_3)$$

Our decision algorithm for SAT will tell us that this is satisfiable.

To highlight how this works, consider the formula

$$\phi = (x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_2 \vee x_3)$$

Our decision algorithm for SAT will tell us that this is satisfiable.

So we set $\phi_0 = \phi$ and ask if

$$\phi_0 \wedge (x_1) = \phi \wedge (x_1) \in SAT.$$

The algorithm says it is (which tells us that a satisfying assignment beginning with $x_1 = T$ exists), so we let $\phi_1 = \phi_0 \wedge (x_1)$ and $\tau(x_1) = T$.

For the next step, we ask if

$$\phi_1 \wedge (x_2) = \phi \wedge (x_1) \wedge (x_2) \in SAT.$$

The algorithm says that this is not satisfiable, so we let $\phi_2 = \phi_1 \wedge (\neg x_2)$ and $\tau(x_2) = F$.

Finally, we ask if

$$\phi_2 \wedge (x_3) = \phi \wedge (x_1) \wedge (\neg x_2) \wedge (x_3) \in SAT.$$

The algorithm says that this is satisfiable, so we let $\phi_3 = \phi_2 \wedge (x_3)$, and $\tau(x_3) = T$. It can be verified that the assignment τ we have obtained satisfies ϕ .

Finally, we ask if

$$\phi_2 \wedge (x_3) = \phi \wedge (x_1) \wedge (\neg x_2) \wedge (x_3) \in SAT.$$

The algorithm says that this is satisfiable, so we let $\phi_3 = \phi_2 \wedge (x_3)$, and $\tau(x_3) = T$. It can be verified that the assignment τ we have obtained satisfies ϕ .

$$\phi = (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_2 \lor x_3)$$
$$\tau(x_1) = T, \tau(x_2) = F, \tau(x_3) = T$$