Patasheet HTPA32x32dR1L5.0/0.85F7.7eHiC Page 1 of:

HTPA32x32dR1L5.0/0.85F7.7eHiC

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

Content

Pı	rincipal Schematic for HTPA32x32d:	2
O	ptical Orientation:	3
O	rder Code Example	4
Se	erial Order of Frame	5
\mathbf{C}	haracteristics:	6
6.1	Common Specifications:	6
6.2	Optical characteristics:	6
I ² (C Timings HTPA32x32d:	8
I ² (C Communication:	9
8.1	Write Command	9
8.2	Read Command	9
8.3	Sensor Commands	9
8.4	EEPROM communication	13
8.5	I ² C Example Sequences – Init and Read Thermopile Array	13
Te	emperature calculation	14
9.1	Ambient Temperature	15
9.2	Thermal Offset	16
9.3	Electrical Offset	16
9.4	Vdd Compensation	16
9.5	Object Temperature	17
9.6	Example calculation	19
9.7	Pixel Masking	21
9.8	Look-up Table	23
)	Outer Dimensions (without external aperture):	24
	P: O O S C C 6.1 6.2 I ² I ² 8.1 8.2 8.3 8.4 8.5 T 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	6.2 Optical characteristics: I'C Timings HTPA32x32d: I'C Communication: 8.1 Write Command 8.2 Read Command 8.3 Sensor Commands 8.4 EEPROM communication 8.5 I'C Example Sequences – Init and Read Thermopile Array Temperature calculation 9.1 Ambient Temperature 9.2 Thermal Offset 9.3 Electrical Offset 9.4 Vdd Compensation 9.5 Object Temperature 9.6 Example calculation 9.7 Pixel Masking 9.8 Look-up Table

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

1 Principal Schematic for HTPA32x32d:

Figure 1: Schematic for HTPA32x32d

2 Pin Assignment-Bottom View:

Figure 2: pin-allocation

Pin	Symbol	Description
1	SCL	Digital I/O, Open Drain, 100k PU, Serial Clock
2	VDD	Positive supply voltage
3	VSS	Negative supply voltage / Ground (0V) (connected to housing)
4	SDA	Digital I/O, Open Drain, 100k PU, Serial Data

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

3 Optical Orientation:

Figure 3: Optical orientation

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

4 Order Code Example

Figure 4: Exemplary order code

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

5 Serial Order of Frame

The sensor is divided into two parts (top and bottom half) which are again separated into 4 blocks. The readout order is shown below for the different blocks.

now for the differe
Block 0 (top)
Block 1 (top)
Block 2 (top)
Block 3 (top)
Block 3 (bottom)
Block 2 (bottom)
Block 1 (bottom)
Block 0 (bottom)

Figure 5: Division of blocks

Whenever a conversion is started the Block x of the top and bottom half are measured at the same time. Each block consists of 128 Pixel that are sampled fully parallel. The readout order on the bottom half is mirrored compared to the top half so that the central lines are always read last.

Figure 6: 32x32d readout order for active pixel

The electrical offsets are sampled in parallel for the top and bottom half. The matching rows for the corresponding electrical offsets and active Pixel are marked with the same color. The conversion of the electrical offsets is started by sending the command for the BLIND bit during the start command, see 8.3.

	_							_																							
32x3	2d ele	ectrica	al Off	set																											
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	- 77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	/ 127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Figure 7: 32x32d readout order for electrical offsets

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

Characteristics:

6.1 Common Specifications:

Technology n-poly/p-poly Si Element Resistance approx. 300 kOhms

approx. 450 V/W without optics and filter Sensitivity

Thermal pixel time constant <4 ms I²C Digital Interface **Analog Output** No

selectable Clock 1 to 13 MHz **EEPROM** size 64 kBit

Pitch 90 µm Absorber size $44 \mu m$ Max. Framerate 60 Hz

(complete frame with maximum I2C and sensor clock speed and reduced ADC resolution)

1024 sensitive elements

6.2 Optical characteristics:

Focal length: 5.0 mm ("L" equals the focal length of the lens)

F-Number: 0.85

Field of view: 33 x 33 deg

LWP-Coating 7.7 Lens coating:

Cut On (Tr. 5%): $7.7 \mu m \pm 0.3 \mu m$

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

Electric Specifications:

Table 1: Absolute Maximum Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		-0.3		3.6	V
Voltage at All inputs and outputs	V_{IO}		-0.3		V _{DD} +0.3	V
Storage Temperature	T _{STG}		-40		85	Deg. C

Table 2: Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current (sensor running)	I_{DD}		5.0	5.5	6.4	mA
Supply Current (sensor in idle state)	I_{DD}		tbd	5.2	tbd	mA
Standby Current (sensor in sleep state)	I_{SBY}		2.0	2.1	2.5	μΑ
Operation Temperature	T_A		-20		65	Deg. C
ESD-Protection		Human body model 100pF + 1k5Ohm	2.0			kV

Table 3: Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input						
Internal Clock	F _{CLK}		1	5	13	MHz
frequency						
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm
Bias current	I _{BIAS}		1	3	13	μA
BPA current	I_{BPA}		0.2	1.5	4.0	μA
Input voltage high	V_{IH}		$0.7xV_{DD}$			V
Input voltage low	$V_{\rm IL}$				$0.3xV_{DD}$	V
PTAT						
Temperature range			TBD		TBD	Deg. C
PTAT gradient			170	174	178	K/V

HEIMANN Sensor GmbH Contact / Customer Support Phone 49 (0) 6123 60 50 30 Maria-Reiche-Str. 1 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

Table 4: Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	F _{CHP}			20		kHz
Preamplifier Noise	N_{PA}	at 20 kHz		72		nV/HZ ^{1/2}
Frame rate (Full Array)	FR1		2	9	60	Hz
Frame rate (Quarter Array)	FR4		8	36	240	HZ
ADC pos. Reference	V_{REFP}	REF_CAL 00		1.529		
		REF_CAL 01		1.442		V
		REF_CAL 10		1.355		ľ
		REF_CAL 11		1.268		
ADC neg. Reference	V_{REFN}	REF_CAL 00		0.850		
		REF_CAL 01		0.901		V
		REF_CAL 10		0.968		V
		REF_CAL 11	1	1.056		
ADC resolution	ADC _{LSB}	at 16 Bit	6.5		20.7	μV

I²C Timings HTPA32x32d:

Figure 8: I2C Timings of HTPA32x32d

Table 5: I2C Timings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
I ² C clock frequency	F _{CLK}			400	1000	kHz
low pulse duration	T _{CLK,lo}		0.50			μs
high pulse duration	T _{CLK,hi}		0.26			μs
data set up time	T _{SU,data}		0.05			μs
data hold time	T _{hd,data}		0.00			μs
start setup time	T _{SU,start}		0.26			μs
start hold time	T _{hd,start}		0.26			μs
stop setup time	T _{SU,stop}		0.26			μs
stop hold time	T _{hd,stop}		0.26			μs
time between	T _{buf}		0.50			μs
STOP / START						

HEIMANN Sensor GmbH Contact / Customer Support Phone 49 (0) 6123 60 50 30 Maria-Reiche-Str. 1 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp HEIMANN Sensor

8 I²C Communication:

The chip uses the **7-bit I**²**C** address **0x1A** for configuration and **sensor** data and the **7-bit I**²**C** address **0x50** to access the internal **EEPROM**. The address byte is followed by a W/R bit and an 8-bit command.

8.1 Write Command

In case of a write access to an internal register the command is followed by the data byte. The chip acknowledges each byte with a low active ACK bit.

Figure 9: Write command

8.2 Read Command

To read data from the chip first the address and read command must be sent. After the last ACK a new start-bit (repeated start) and the address with a set read-flag initiates the read sequence. There can be bytes read as many as required. The last byte must be denoted by a not-acknowledge. The shown example below can be used e.g. to get the status register.

Figure 10: Read command

8.3 Sensor Commands

The sensor has several registers that can be written and read, they are listed below.

Table 6: Configuration register (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0	1					
Config Reg	7	6	5	4	3	2	1	0
Name	RF	-TU	BLC	OCK	START	VDD_MEAS	BLIND	WAKEUP
Default	0	0	0	0	0	0	0	0

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished. The BLOCK selects one of the four multiplexed array blocks.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel and the setting of the BLOCK is ignored.

If VDD_MEAS bit is set the VDD voltage is measured instead of the PTAT value. RFU means reserved for future use and can be subject to change.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Table 7: Status Register (read only)

Addr / CMD	0x1A (7	Bit!) / 0x0)2					
Status Reg	7	6	5	4	3	2	1	0
Name	RI	F U	BLC	OCK	RFU	VDD_MEAS	BLIND	EOC

If the EOC flag is set a previous started conversion has been finished.

Table 8: Trim Register 1 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)3							
Trim Reg 1	7	6	5	4	3	2	1	0		
Name	RF	RFU REF_CAL MBIT TRIM								

REF_CAL: selectable amplification, see Fehler! Verweisquelle konnte nicht gefunden

werden. for more detail

MBIT_TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution

Table 9: Trim Register 2 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)4					
Trim Reg 2	7	6	5	4	3	2	1	0
Name		RFU			BIA	S TRIM	ГОР	

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1 μ A to 13 μ A

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 10: Trim Register 3 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)5					
Trim Reg 3	7	6	5	4	3	2	1	0
Name		RFU			BIA	S TRIM I	ЗОТ	

BIAS_TRIM_BOT: 0 to 31 \Rightarrow 1 μ A to 13 μ A

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 11: Trim Register 4 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)6					
Trim Reg 4	7	6	5	4	3	2	1	0
Name	RI	FU.			CLK '	TRIM		

CLK_TRIM: $0 \text{ to } 63 \implies 1 \text{MHz to } 13 \text{MHz}$

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes about:

$$t_{FR4} = \frac{32 \cdot (2^{MBIT} + 4)}{F_{CLK}} \approx 27 ms @ 5MHz$$

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

Table 12: Trim Register 5 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)7					
Trim Reg 5	7	6	5	4	3	2	1	0
Name		RFU			BP	A TRIM T	ГОР	

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

This setting is used to adjust the common mode voltage of the preamplifier.

Table 13: Trim Register 6 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0	08					
Trim Reg 6	7	6	5	4	3	2	1	0
Name		RFU			BPA	A TRIM E	BOT	

BPA_TRIM_BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

This setting is used to adjust the common mode voltage of the preamplifier.

Table 14: Trim Register 7 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0	19					
Trim Reg 7	7	6	5	4	3	2	1	0
Name		PU SDA	A TRIM			PU SCI	_ TRIM	

PU_SDA_TRIM: select internal pull up resistor on SDA PU_SCL_TRIM: select internal pull up resistor on SCL

"1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Table 15: Read Data 1 Command (Top Half of Array)

Addr / CMD	0x1A (7 F	Bit!) / 0x()A					
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		F	TAT 1 MS	SB / LSB o	r Vdd 1	MSB / LSI	3	
3. Byte / 4. Byte			Pixel (0-	+BLOCK*	128) MS	B / LSB		
5. Byte / 6. Byte			Pixel (1-	+BLOCK*	128) MS	B / LSB		
257. Byte / 258. Byte			Pixel (12	7+BLOCK	*128) M	SB / LSB	•	•

Internet

sampled and can be read similar to the active pixel:

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

Table 16: Read Data 2 Command (Bottom Half of Array)

Addr / CMD	0x1A (7 E	it!) / 0x	0B					
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte]	PTAT 2 MS	SB / LSB o	or Vdd 2	MSB / LSI	В	
3. Byte / 4. Byte			Pixel (99	2-BLOCK	*128) M	SB / LSB		
5. Byte / 6. Byte			Pixel (99	3-BLOCK	*128) M	SB / LSB		
65. Byte / 66. Byte			Pixel (102	23-BLOCK	(*128) M	ISB / LSB		
67. Byte / 68. Byte			Pixel (96	0-BLOCK	*128) M	SB / LSB		
69. Byte / 70. Byte			Pixel (96	1-BLOCK	*128) M	SB / LSB		
129. Byte / 130. Byte			Pixel (99	1-BLOCK	*128) M	SB / LSB		
131. Byte / 132. Byte			Pixel (92	8-BLOCK	*128) M	SB / LSB		
257. Byte / 258. Byte			Pixel (92	7-BLOCK	*128) M	SB / LSB	·	

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are

Table 17: Read Data electrical offsets (Top Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0A						
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte			PTAT 1 N	ISB / LSB	or Vdd 1 M	ISB / LSB		
3. Byte / 4. Byte			elect	rical offset	(0) MSB /	LSB		
5. Byte / 6. Byte			elect	rical offset	(1) MSB /	LSB		
257. Byte / 258. Byte		•	electr	ical offset (127) MSB	/ LSB		•

Table 18: Read Data electrical offsets (Bottom Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0B						
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte			PTAT 2 N	ISB / LSB	or Vdd 2 M	ISB / LSB		
3. Byte / 4. Byte			electr	ical offset (224) MSB	/ LSB		
5. Byte / 6. Byte			electr	ical offset (225) MSB	/ LSB		
65. Byte / 66. Byte			electr	ical offset (255) MSB	/ LSB		
67. Byte / 68. Byte			electr	ical offset (192) MSB	/ LSB		
257. Byte / 258. Byte			electr	ical offset (159) MSB	/ LSB		

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Datasheet HTPA32x32dR1L5.0/0.85F7.7eHiC Page 13 of

HTPA32x32dR1L5.0/0.85F7.7eHiC

Thermopile Array With Lens Optics Rev.20: 2018.01.10 Schnorr/M. Lupp

pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

Depending on the setting of VDD MEAS the PTAT or the VDD is transmitted.

8.4 EEPROM communication

The built-in EEPROM (24AA64 from Microchip) consists of 8 blocks of 1K x 8-bit. The chip select of the EEPROM is set to 000 (A2 to A0). For further information please see the corresponding datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/21189f.pdf

8.5 I²C Example Sequences – Init and Read Thermopile Array

(There should be a delay of at least 5 ms between the write of each Configuration Register) Please be reminded, that you readout the calibration settings for MBIT, BIAS, CLK, BPA and PU and use them for a correct temperature calculation.

		•	temperature can		_)I WID	II, DIA	S, CLK, DF	A allu
	ADDR	W/R	CONFIG REG		AKEUP				
S	0x1A	0	0x01		0x01	P			
<u> </u>	!	<u>!</u>			<u>!</u>				
	ADDR	W/R	TRIM_REG1	MB	IT_TRIM				
S	0x1A	0	0x03		0x0C	P			
	•		•		-				
	ADDR	W/R	TRIM_REG2	BIA	S_TRIML				
S	0x1A	0	0x04		0x0C	P			
	ADDR	W/R	TRIM_REG3	BIA	S_TRIMR				
S	0x1A	0	0x05		0x0C	P			
	ADDR	W/R	TRIM_REG4	CL	K_TRIM				
S	0x1A	0	0x06		0x14	P			
	ADDR	W/R	TRIM_REG5	BPA	A_TRIML	_			
S	0x1A	0	0x07		0x0C	P			
		****	mpn (proc	22.1	TENT (D				
- G	ADDR	W/R	TRIM_REG6	BPA	TRIMR				
S	0x1A	0	0x08		0x0C	P			
	A DDD	W/D	TDDA DECT	DI	I TDDA				
- C	ADDR	W/R	TRIM_REG7	PU	J_TRIM	D			
S	0x1A	0	0x09		0x88	P			
	4 DDD	TILID.	CONTINUE PEG	CE A D					
G	ADDR	W/R	CONFIG_REG	STAR	TWAKEUP				
S	0x1A	0	0x01		0x09	P			
	4.555	****	am i mila pro		4.555			am i mr ra	
- G	ADDR	W/R	STATUS_REG		ADDR	\ \ \	V/R	STATUS	
S	0x1A	0	0x02	Sr	0x1A		1	??	P
Wait 3			I						
	ADDR	W/R	STATUS_REG		ADDR	7	V/R	STATUS	
S	0x1A	0	0x02	Sr	0x1A		1	??	P

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

	ADDR	W/R	READ_DATA 1		ADDR	W/R	PTAT1 MSB	PTAT1 LSB	P0,0 MSB	P0,0 LSB	 Px,y MSB	Px,y LSB	
S	0x1A	0	0x0A	Sr	0x1A	1	??	??	??	??	 ??	??	P
	ADDR	W/R	READ_DATA 2		ADDR	W/R	PTAT2 MSB	PTAT2 LSB	P0,0 MSB	P0,0 LSB	 Px,y MSB	Px,y LSB	

	ADDR	W/R	CONFIG_REG	SLEEP	
S	0x1A	0	0x01	0x00	P

Figure 11: Init and Read Thermopile Array

9 Temperature calculation

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

Figure 12: EEPROM overview 32x32d

All values are stored as unsigned 8 bit values unless they are specified otherwise. The little endian format is used for larger values. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration (see chapter 8.3 on how to set them).

We recommend the usage of calibration settings of MBIT (stored in 0x1A), BIAS (0x1B), CLK (0x1c), BPA (0x1D) and PU (0x1E).

MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user.

The temperature calculation is only valid if the same settings are used that have been set during calibration!

TN is the tablenumber and has to match the given tablenumber in the sample code.

GlobalOff is stored as an 8 bit signed value, GlobalGain and VddCalib are both stored as 16 bit unsigned.

VDDTH1 and VDDTH2 is the used supply voltage during calibration measured by the sensor itself and stored in Digits.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

The corresponding order of $ThGrad_{ij}$, $ThOffset_{ij}$ and P_{ij} to the Pixelnumber is given by the following overview:

```
ThGrad₀,₁ → Pixel 1 ... ThGrad₀,₃₁ → Pixel 31
ThGrad₀,₀ → Pixel 0
ThGrad<sub>10</sub> \rightarrow Pixel 32 ThGrad<sub>1,1</sub> \rightarrow Pixel 33 ... ThGrad<sub>1,31</sub> \rightarrow Pixel 63
ThGrad<sub>15,0</sub> → Pixel 480 ThGrad<sub>15,1</sub> → Pixel 481
                                                                 ThGrad₁5,31→Pixel 511
ThGrad<sub>6,0</sub> → Pixel 992 ThGrad<sub>6,1</sub> → Pixel 993
                                                                 ThGrad₁6,31→Pixel 102
ThGrad<sub>17,0</sub> → Pixel 960 ThGrad<sub>17,1</sub> → Pixel 961
                                                                 ThGrad₁7,31→Pixel 991
ThGrad₃1,0 → Pixel 512 ThGrad₃1,1 → Pixel 513 ... ThGrad₃1,31→ Pixel 543
```

Figure 13: Readout order 32x32d

The order of $VddCompGrad_{ij}$ and $VddCompOff_{ij}$ is similar to the electrical Offsets and have to be used block by block.

VddCompGrad₀,₀ → Pixel 0	VddCompGrad₀,₁ → Pixel 1	 VddCompGrad₀,31 → Pixel 31	
VddCompGrad₁0 → Pixel 32	VddCompGrad₁₁ → Pixel 33	 VddCompGrad₁₃₁ → Pixel 63	
VddCompGrad _{2,0} → Pixel 64	VddCompGrad _{2,1} → Pixel 65	 VddCompGrad _{2,31} → Pixel 95	
VddCompGrad₃,o → Pixel 96	VddCompGrad₃,1 → Pixel 97	 VddCompGrad₃,₃1 → Pixel 127	a E
VddCompGrad₀,₀ → Pixel 128	VddCompGrad₀,₁ → Pixel 129	 VddCompGrad₀,31 → Pixel 159	Ϋ́
	•	·	top half
VddCompGrad₃,0 → Pixel 480	VddCompGrad₃,1 → Pixel 481	 VddCompGrad₃,₃₁ → Pixel 511	
VddCompGrad₄,0 → Pixel 992	VddCompGrad₄,1 → Pixel 993	 VddCompGrad₄,31 → Pixel 1023	
VddCompGrad₅,0 → Pixel 960	VddCompGrad₅,1 → Pixel 961	 VddCompGrad₅,31 → Pixel 991	
VddCompGrad _{6,0} → Pixel 928	VddCompGrad _{6,1} → Pixel 929	 VddCompGrad _{6,31} → Pixel 959	#
VddCompGrad _{7,0} → Pixel 896	VddCompGrad _{7,1} → Pixel 897	 VddCompGrad _{7,31} → Pixel 927	Ĕ
VddCompGrad₄,0 → Pixel 864	VddCompGrad₄,₁ → Pixel 865	 VddCompGrad₄,31 → Pixel 895	Ĕ
			bottom half
			þ
Valation and Divisit Edg.			
VddCompGrad _{7,0} → Pixel 512	VddCompGrad _{7,1} → Pixel 513	 VddCompGrad _{7,31} → Pixel 543	

Figure 14: Readout of VDDCompGrad 32x32d

The order for DeadPixAdr_Pij isdescribed more detailed in 9.7.

9.1 Ambient Temperature

The ambient temperature (Ta) is calculated from the average measured PTAT value, the PTAT_{gradient} and the PTAT_{offset}.

$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset}$		(Value is given back in dK)
where:		
$PTAT_{gradient}$	is the gradient of the P'	TAT stored in the EEPROM as a float value
$PTAT_{offset}$	is the offset of the PTA	T stored in the EEPROM as a float value

HEIMANN Sensor GmbH Contact / Customer Support Internet Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 www.heimannsensor.com D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8}$$
 is the average measured PTAT value

9.2 Thermal Offset

The thermal offset of the sensor needs to be subtracted for each pixel to compensate for any thermal drifts.

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{ij}$$

where:

ij represents the row (i) and column (j) of the pixel

 V_{ij_Comp} is the thermal offset compensated voltage

is the raw pixel data (digital), readout from the RAM

is the thermal gradient, stored in the EEPROM from 0x740 to 0xF3F $ThGrad_{ii}$ is the thermal offset, stored in the EEPROM from 0xF40 to 0x173F ThOffset;

gradScale is the scaling coefficient for the thermal gradient stored in the EEPROM

9.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a substraction so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for the top half is done by using the following formula:

$$V_{ii Comp} = V_{ii Comp} - elOffset [(j+i\cdot32)\%128]$$

and the bottom half analogue with this formula:

$$V_{ij_Comp}$$
* = V_{ij_Comp} - $elOffset[(j+i\cdot32)\%128+128]$

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 $V_{ij\ Comp}*$ is the thermal and electrical offset compensated voltage

is the thermal offset compensated voltage $V_{ii\ Comp}$ elOffset |ij | is the electrical offset belonging to Pixel ij

is the rest of the integer division of i by 128 (e.g. 130% 128=2) *i*%128

Please see chapter 5 for the serial order.

9.4 Vdd Compensation

A supply voltage compensation called VddComp is used to take care of supply voltage changes. In order to use this compensation the supply voltage of the sensor (Vdd) has to be measured by the sensor from time to time by setting the configuration register and the average of Vdd 1 and Vdd 2 is resulting in Vdd (similar like *PTAT*_{av}).

The compensation for the top half is done by using the following formula:

HEIMANN Sensor GmbH Contact / Customer Support Internet

Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 www.heimannsensor.com D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.20: 2018.01.10 Schnorr/M. Lupp

$$\begin{split} VDD_{av} &= \frac{\sum_{i=0}^{3} VDD_{i}}{8} \\ V_{ij_VDDComp} &= V_{ij_Comp} * \\ &= \frac{\left(\frac{VddCompGrad\left[\left(j+i\cdot32\right)\%128\right]\cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff\left[\left(j+i\cdot32\right)\%128\right]\right)}{2^{VddScOff}} \\ &\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right)\cdot \left(PTAT_{av} - PTAT_{TH1}\right)\right) \end{split}$$

and the bottom half analogue with this formula:

$$V_{ij_VDDComp} = V_{ij_Comp} * \\ - \frac{\left(\frac{VddCompGrad[(j+i \cdot 32)\% 128 + 128] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i \cdot 32)\% 128 + 128] \right)}{2^{VddScOff}} \\ \cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}} \right) \cdot (PTAT_{av} - PTAT_{TH1}) \right)$$

where:

ij represents the row (i) and column (j) of the pixel

 $V_{ii \ VDDComp}$ is the Vdd compensated voltage

 V_{ij_Comp} * is the thermal and electrical offset compensated voltage VddCompGrad[ij] is the VddComp gradient belonging to Pixel ij

VddCompOff[ij] is the VddComp offset belonging to Pixel ij

i%128 is the rest of the integer division of i by 128 (e.g. 130%128=2) VDD_{av} is the average measured supply voltage of the sensor in Digits

VddScGrad is a scaling coefficient and stored in the EEPROM 0x4E VddScOff is a scaling coefficient and stored in the EEPROM 0x4F

 VDD_{TH1} is the supply voltage during calibration 1 stored in the EEPROM 0x26, 0x27 VDD_{TH2} is the supply voltage during calibration 2 stored in the EEPROM 0x28, 0x29

 $PTAT_{TH1}$ is the PTAT value of calibration 1 stored in the EEPROM 0x3C, 0x3D $PTAT_{TH2}$ is the PTAT value of calibration 2 stored in the EEPROM 0x3E, 0x3F

9.5 Object Temperature

The calculation of the object temperature is done by using a look-up table and doing a bilinear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c". If you do not have the file, please ask Heimann Sensor for support.

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

HEIMANN Sensor GmbH Contact / Customer Support Internet

Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30

D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

mail: info@heimannsensor.com

Rev.20: 2018.01.10 Schnorr/M. Lupp

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \frac{epsilon}{100} \cdot \frac{GlobalGain}{10000}$$

where:

 $PixC_{ii}$ is the sensitivity coefficient for each pixel

 P_{ii} is the stored sensitivity coefficient scaled to 16 bit

 $PixC_{min}$ is the minimum sensitivity coefficient, used for scaling $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

GlobalGain is a factor for fine tuning of the sensitivity for all Pixel

Leading to a compensation of the pixel voltage

$$V_{ij_PixC} = \frac{V_{ij_VDDComp} \cdot \text{PCSCALEVAL}}{PixC_{ij}}$$

where:

 V_{ij_PixC} is the sensitivity compensated IR voltage

PCSCALEVAL is a defined scaling coefficient, typically set to $1 \cdot 10^8$

Thermopile Array With Lens Optics

Rev.13: 2017.04.01 Schnorr

9.6 Example calculation

Example values:

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8} = 38152 Digits$$

$$PTAT_{gradient} = 0.0211 \, dK / Digit$$

$$PTAT_{offset} = 2195.0 \ dK$$

$$V_{00} = 34435 \ Digits$$

$$elOffset[0] = 34240$$

$$gradScale = 24$$

$$ThGrad_{00} = 11137$$

$$\xrightarrow{signcheck}$$
 11137

$$ThOffset_{00} = 65506$$

$$\xrightarrow{signcheck}$$
 -3

$$VDD_{av} = 35000$$

$$VDD_{TH1} = 33942$$

$$VDD_{TH2} = 36942$$

$$PTAT_{TH1} = 30000$$

$$PTAT_{TH2} = 42000$$

$$VddCompGrad[0] = 10356 \xrightarrow{signcheck} 10356$$

$$VddCompOff[0] = 51390$$
 $\xrightarrow{signcheck}$ -14146

VddScGrad = 16

VddScOff = 23

$$PixC_{00} = 1.087 \cdot 10^8$$

$$PCSCALEVAL = 1 \cdot 10^8$$

Calculation of ambient temperature:

$$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset} = 38152 \cdot 0.0211 + 2195.0 \ dK = 3000 \ dK$$

Compensation of thermal offset:

$$V_{00_Comp} = V_{00} - \frac{ThGrad_{00} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{00} = 34435 - \frac{11137 \cdot 38152}{2^{24}} - \left(-30\right) = 34439$$

Compensation of electrical offset:

$$V_{00_Comp}^* = V_{00_Comp} - elOffset[0] = 34439 - 34240 = 199$$

Compensation of supply voltage:

Thermopile Array With Lens Optics

Rev.13: 2017.04.01 Schnorr

$$V_{ij_VDDComp} = V_{ij_Comp} * - \frac{\left(\frac{VddCompGrad[0] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[0]\right)}{2^{VddScOff}} \cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right) \cdot (PTAT_{av} - PTAT_{TH1})\right)$$

$$= 199 - \frac{\left(\frac{10356 \cdot 38152}{2^{16}} - 14146\right) \cdot \left(35000 - 33942 - 2038\right)}{2^{23}} = 199 - (1) = 198$$

Table 19: Example look-up table

TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_PixC} = \frac{198 \cdot 1 \cdot 10^8}{1.087 \cdot 10^8} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of $3941 \text{ dK} = 120.9 \,^{\circ}\text{C}$.

A global Offset (GlobalOff) is used for fine tuning of the measured object temperature and has to be added to the object temperature. This value is stored in the EEPROM.

Thermopile Array With Lens Optics Rev.13: 2017.04.01 Schnorr

9.7 Pixel Masking

A maximum of 5 defect Pixels are allowed on the complete array, this means that at least 99.5 % of the Pixels are working correctly. The amount of defect Pixels is given in the EEPROM at address 0x007F and is named *NrOfDefPix*. *DeadPixAdr* is the address of the defect Pixels and *DeadPixMask* determines the neighbours that should be used for masking the pixel. A simple averaging of all selected nearest neighbours is done to overwrite the temperature value of these Pixel. Only the amount of pixels "*NrOfDefPix*" is stored in *DeadPixAdr*. These values are stored as 16 bit unsigned values. For example: If only one pixel has to be masked, then the other values of *DeadPixAdr* are set to 0.

The order of the top and bottom half is the same as the readout order that is stated in 5. The value stored in *DeadPixAdr* is equal to the pixel number if *DeadPixAdr* is <0x0200. If the value is greater, that means between 0d512 and 0d1024, the actual read-out pixel has to be calculated first. For example: If you have a pixel number of 997 stored to the EEPROM, this is actually 517 (please refer to 5). The pixel number, that is stored in the EEPROM corresponds to the number of the read-out pixel. So the bottom half is mirrored. Example calculation:

$$adaptedAdr[i] = 1024 + 512 - DeadPixAdr[i] + k[i] \cdot 2 - 32$$

where:

adaptedAdr[i] is the adapted dead pixel address

k[i] is the column of the corresponsive pixel (for pixel number 997 this

would be 5)

adaptedAdr[i] = 1024 + 512 - 997 + 10 - 32 = 517

The neighbours to use is given in a binary format and the order is shown in the overview below in decimal and binary values for the top and bottom half.

top half

128	1	2
64	DeadPix	4
32	16	8

0b1000 0000	0b0000 0001	0b0000 0010
0b0100 0000	DeadPix	0b0000 0100
0b0010 0000	0b0001 0000	0b0000 1000

bottom half

32	16	8
64	DeadPix	4
128	1	2

0b0010 0000	0b0001 0000	0b0000 1000
0b0100 0000	DeadPix	0b0000 0100
0b1000 0000	0b0000 0001	0b0000 0010

Example values for the masking:

Thermopile Array With Lens Optics

Rev.13: 2017.04.01 Schnorr

NrOfDefPix = 0x03

 $DeadPixAdr[0] = 0x000F \rightarrow Pixel 15$

 $DeadPixAdr[1] = 0x012C \rightarrow Pixel 300$

 $DeadPixAdr[2] = 0x0295 \rightarrow Pixel 661 (read - out pixel)$ actual pixel number is 977

 $DeadPixMask[0] = 0x7C \rightarrow 0b01111100 (top)$

 $DeadPixMask[1] = 0x8F \rightarrow 0b10001111 (top)$

 $DeadPixMask[2] = 0xFE \rightarrow 0b111111110 (bot)$

The readout order is the same as shown in 5.

According to the sample values 3 Pixels are defect and need to be interpolated. 2 Pixels are on the top and 1 Pixel on the bottom half. Assuming that the neighbouring Pixels are having the temperature data stated below and the green marked cells are used for averaging (according to DeadPixMask) then the interpolated temperature will be the following:

Pixel
$$15 = \frac{3007 + 3008 + 3008 + 3011 + 3009}{5} dK = \frac{15043}{5} dK \approx 3009 dK$$

Pixel
$$300 = \frac{3010 + 3012 + 3005 + 3008 + 3009}{5} dK = \frac{15044}{5} dK \approx 3009 dK$$

Pixel
$$977 = \frac{3010 + 3012 + 3005 + 3007 + 3008 + 3009}{7} dK = \frac{21059}{7} dK \approx 3008 dK$$

All values are given in dK

3007	Pixel 15	3008
3008	3011	3009

Pixel 14	Pixel 15	Pixel 16
Pixel 46	Pixel 47	Pixel 48

3010	3012	3005
3007	Pixel 300	3008
3008	3011	3009

Pixel 267	Pixel 268	Pixel 269
Pixel 299	Pixel 300	Pixel 301
Pixel 331	Pixel 332	Pixel 333

3010	3012	3005		
3007	Pixel 977	3008		
3008	3011	3009		

Pixel 944	Pixel 945	Pixel 946
Pixel 976	Pixel 977	Pixel 978
Pixel 1008	Pixel 1009	Pixel 1010

Thermopile Array With Lens Optics Rev.13: 2017.04.01 Schnorr

9.8 Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an exemplary data for one optics.

a[dK]	2782	2882	for c	3082	3182	3282	3382
-512 -448		.,,		1295	1742	2005	2202
-448	\perp To	in c	łK	1848 2156	2094 2340	2284 2496	2442
-320				2381	2534	2671	2797
-256 -192	2042 2287	2244 2445	2414 2587	2562 2717	2697 2839	2822 2954	2938 3065
-128	2481	2612	2735	2852	2964	3073	3180
-64	2642 2782	2755 2882	2865 2982	2972 3082	3078 3182	3182 3282	3285
64	2906	2882	3089	3082	3182	3282	3473
128	3019	3101	3187	3276	3368	3462	3558
192 256	3121 3216	3197 3286	3278 3363	3363 3445	3452 3531	3544 3621	3638 3715
320	3305	3370	3443	3522	3606	3695	3787
384	3387	3449	3519	3595 3664	3677	3764	3856
448 512	3465 3539	3524 3595	3590 3659	3664	3745 3810	3831 3895	3922 3986
576	3609	3662	3724	3794	3872	3957	4047
640 704	3676 3740	3727 3788	3787 3847	3855 3914	3932 3990	4016 4073	4106
768	3802	3848	3904	3971	4046	4128	4218
832	3861	3905	3960	4025	4100	4182	4271
896 960	3918 3973	3960 4014	4014 4066	4078 4129	4152 4202	4233 4284	4322 4372
1024	4026	4065	4117	4179	4251	4332	4421
1088	4077 4127	4115 4164	4166 4213	4227 4274	4299 4345	4380 4426	4469 4515
1216	4175	4211	4260	4320	4391	4471	4560
1280	4222	4257	4305 4349	4364 4408	4435	4515 4558	4604
1344	4268 4312	4302 4345	4349	4408	4478 4520	4558	4647
1472	4355	4388	4433	4491	4561	4641	4730
1536 1600	4398 4439	4429 4470	4474 4514	4532 4571	4601 4640	4681 4720	4770
1664	4480	4509	4553	4610	4679	4758	4848
1728	4519	4548	4591	4648	4716	4796	4885
1792 1856	4558 4595	4586 4623	4629 4666	4685 4721	4753 4790	4833 4869	4922 4959
1920	4633	4660	4702	4757	4825	4905	4995
1984	4669 4705	4696 4731	4737 4772	4792 4826	4860 4894	4940 4974	5030 5064
2112	4740	4765	4806	4860	4928	5008	5098
2176	4774 4808	4799	4839	4894	4961 4994	5041	5131
2240	4808 4841	4832 4865	4872 4904	4926 4958	4994 5026	5074 5106	5164 5197
2368	4873	4897	4936	4990	5058	5137	5228
2432 2496	4906 4937	4929 4960	4968 4998	5021 5052	5089 5119	5169 5199	5260 5291
2560	4968	4991	5029	5082	5149	5230	5321
2624	4999	5021	5059	5112	5179	5259	5351
2688 2752	5029 5059	5050 5080	5088 5117	5141 5170	5208 5237	5289 5318	5381 5410
2816	5088	5109	5146	5199	5266	5346	5439
2880	5117 5145	5137 5165	5174 5202	5227 5255	5294 5322	5375 5402	5467 5495
3008	5173	5193	5230	5282	5349	5430	5523
3072	5201	5220	5257	5309	5376	5457	5550
3136	5228 5255	5247 5274	5284 5310	5336 5362	5403 5429	5484 5510	5577 5604
3264	5282	5300	5336	5388	5455	5537	5630
3328	5308 5334	5326 5352	5362 5388	5414 5439	5481 5507	5563 5588	5656 5682
3456	5360	5377	5413	5465	5532	5613	5708
3520	5385	5403	5438	5489	5557	5638	5733
3584 3648	5410 5435	5427 5452	5462 5487	5514 5538	5581 5606	5663 5688	5758 5783
3712	5459	5476	5511	5562	5630	5712	5807
3776	5483 5507	5500 5524	5535 5558	5586 5610	5654 5677	5736 5760	5831 5855
3904	5531	5547	5582	5633	5701	5783	5879
3968	5554	5571	5605	5656	5724	5806	590
4032	5578 5601	5594 5616	5628 5650	5679 5702	5747 5769	5829 5852	5925 5948
4160	5623	5639	5673	5724	5792	5875	597
4224 4288	5646 5668	5661 5683	5695 5717	5746 5768	5814 5836	5897 5919	599- 601
4352	5690	5705	5739	5768	5858	5941	603
4416	5712	5727	5760	5811	5879	5963	606
4480 4544	5734 5755	5748 5770	5782 5803	5833 5854	5901 5922	5984 6006	608
4608	5776	5791	5824	5875	5943	6027	612
4672 4736	5797 5818	5811 5832	5844 5865	5896 5916	5964 5984	6048	614i
4800	5818	5832	5886	5916	5984 6005	6089	618
4864	5859	5873	5906	5957	6025	6110	620
4928	5880 5900	5893 5913	5926 5946	5977 5997	6045 6065	6130 6150	622
5056	5920	5933	5965	6017	6085	6170	626
5120 5184	5940 5959	5953 5972	5985 6005	6036 6056	6105 6124	6190 6209	628
5248	5959	5972 5991	6005	6075	6124	6209	6309
5312	5998	6011	6043	6094	6163	6248	6348
5376	6017 6036	6030 6049	6062 6081	6113 6132	6182 6201	6267 6286	636
5504	6055	6049	6099	6150	6220	6305	640
5568	6074	6086	6118	6169	6238	6324	642
5632 5696	6092 6111	6104 6123	6136 6155	6187 6206	6257 6275	6343 6361	644- 6462
5760	6129	6141	6173	6224	6293	6379	648
5824	6147 6165	6159 6177	6191	6242 6260	6311	6398	649 651
5888 5952	6183	6177	6209 6226	6260	6329 6347	6416 6434	653
6016	6201	6212	6244	6295	6365	6451	655
6080	6219 6236	6230 6247	6261 6279	6313 6330	6382 6400	6469 6487	657 658
6208	6253	6264	6279 6296	6347	6417	6504	660
6272	6271	6282	6313	6364	6434	6522	662
6336	6288 6305	6299 6316	6330 6347	6381 6398	6451 6468	6539 6556	6642
6464	6322	6332	6364	6415	6485	6573	6676
6528 6592	6339 6355	6349 6366	6380 6397	6432 6448	6502 6519	6590 6607	6693 6710
6592 6656	6355 6372	6366 6382	6397 6413	6448 6465	6519 6535	6607 6623	6710
6720	6388	6399	6430	6481	6552	6640	6744
6784	6405	6415	6446	6497	6568	6656	6761

6848	6421	6431	6462	6514	6584	6673	6777
6912	6437	6447	6478	6530	6600	6689	6794
6976	6453	6463	6494	6546	6616	6705	6810
7040	6469	6479	6510	6562	6632	6721	6826
7104	6485	6495	6526	6577	6648	6737	6842
7168	6501	6511	6542	6593	6664	6753	6858
7232	6517	6526	6557	6609	6680	6769	6874
7296	6532	6542	6573	6624	6695	6785	6890
7360	6548	6557	6588	6640	6711	6800	6906
7424	6563	6572	6603	6655	6726	6816	6922
7488	6578	6588	6618	6670	6742	6831	6937
7552	6594	6603	6634	6685	6757	6847	6953
7616	6609	6618	6649	6700	6772	6862	6968
7680	6624	6633	6664	6715	6787	6877	6984
7744	6639	6648	6678	6730	6802	6892	6999
7808	6654	6663 6677	6693	6745 6760	6817	6907	7014 7029
7872 7936	6669 6683	6692	6708 6723	6774	6832 6846	6922 6937	7029
8000	6698	6707	6737	6789	6861	6952	7059
8064	6712	6721	6752	6803	6876	6966	7074
8128 8192	6727	6735	6766	6818 6832	6890	6981 6996	7089
8256	6741 6756	6750 6764	6780 6795	6847	6905 6919	7010	7104 7118
8320	6770	6778	6809	6861	6933	7024	7133
8384	6784	6792	6823	6875	6947	7039	7147
8448 8512	6798	6806	6837	6889	6961	7053	7162
8576	6812	6820	6851	6903	6976	7067	7176
	6826	6834	6865	6917	6990	7081	7190
8640	6840	6848	6878	6931	7003	7095	7205
8704	6854	6862	6892	6944	7017	7109	7219
8768	6868	6875	6906	6958	7031	7123	7233
8832	6881	6889	6919	6972	7045	7137	7247
8896	6895	6903	6933	6985	7058	7151	7261
8960	6908	6916	6946	6999	7072	7164	7275
9024	6922	6930	6960	7012	7086	7178	7288
9088	6935	6943	6973	7026	7099	7192	7302
9152	6949	6956	6987	7039	7112	7205	7316
9216	6962	6969	7000	7052	7126	7219	7329
9280	6975	6983	7013	7065	7139	7232	7343
9344	6988	6996	7026	7079	7152	7245	7356
9408	7001	7009	7039	7092	7165	7259	7370
9472	7015	7022	7052	7105	7178	7272	7383
9536	7028	7035	7065	7118	7191	7285	7396
9600	7040	7048	7078	7130	7204	7298	7410
9664	7053	7060	7091	7143	7217	7311	7423
9728	7066	7073	7103	7156	7230	7324	7436 7449
9792	7079	7086	7116	7169	7243	7337	7449
9856	7092	7098	7129	7181	7256	7350	
9920	7104	7111	7141	7194	7268	7363	7475
9984	7117	7123	7154	7207	7281	7375	7488
10048	7129	7136	7166	7219	7294	7388	7501
10112	7142	7148	7179	7231	7306	7401	7513
10176	7154	7161	7191	7244	7318	7413	7526
10240	7166	7173	7203	7256	7331	7426	7539
10304	7179	7185	7215	7268	7343	7438	7551
10368	7191	7197	7228	7281	7356	7451	7564
10432	7203	7210	7240	7293	7368	7463	7576
10496	7215	7222	7252	7305	7380	7475	7589
10560	7227	7234	7264	7317	7392	7488	7601
10624	7239	7246	7276	7329	7404	7500	7614
10688	7251	7258	7288	7341	7416	7512	7626
10752	7263	7270	7300	7353	7428	7524	7638
10816	7275	7281	7312	7365	7440	7536	7651
10880	7287	7293	7323	7377	7452	7548	7663
10944	7299	7305	7335	7389	7464	7560	7675
11008	7311	7317	7347	7400	7476	7572	7687
11072	7322	7328	7358	7412	7488	7584	7699
11136	7334	7340	7370	7424	7499	7596	7711
11200	7346	7352	7382	7435	7511	7608	7723
11264	7357	7363	7393	7447	7523	7619	7735
11328	7369	7375	7405	7458	7534	7631	7747
11392	7380	7386	7416	7470	7546	7643	7758
11456	7392	7386	7416	7481	7557	7654	7770
11520	7403	7409	7439	7493	7569	7666	7782
11584	7414	7420	7450	7504	7580	7677	7793
11648	7426	7431	7461	7515	7592 7603	7689	7805 7817
11712 11776	7437 7448	7443 7454	7473 7484	7526 7538	7614	7700 7712	7828
11840	7459	7465	7495	7549	7625	7723	7840
11904	7471	7476	7506	7560	7637	7734	7851
11968	7482	7487	7517	7571	7648	7746	7862
12032	7493	7498	7528	7582	7659	7757	7874
12096	7504	7509	7539	7593	7670	7768	7885
12160	7515	7520	7550	7604	7681	7779	7896
12224	7526	7531	7561	7615	7692	7790	7908
12288	7536	7542	7572	7626	7703	7801	7919
12352	7547	7552	7583	7637	7714	7812	7930
12416	7558	7563	7593	7648	7725	7823	7941
12480	7569	7574	7604	7658	7736	7834	7952
12544	7580	7585	7615	7669	7746	7845	7963
12608	7590	7595	7625	7680	7757	7856	7974
12672	7601	7606	7636	7690	7768	7867	7985
12736	7612	7617	7647	7701	7779	7878	7996
12800	7622	7627	7657	7712	7789	7888	8007
12864	7633	7638	7668	7722	7800	7899	8018
12928	7643	7648	7678	7733	7810	7910	8029
12992	7654	7659	7689	7743	7821	7920	8040
13056	7664	7669	7699	7754	7832	7931	8050
13120	7675	7679	7709	7764	7842	7942	8061
13184	7685	7690	7720	7774	7852	7952	8072
13248	7695	7700	7730	7785	7863	7963	8082
13312	7706	7710	7740	7795	7873	7973	8093
13376	7716	7720	7751	7805	7884	7984	8104
13440	7726	7731	7761	7816	7894	7994	8114
13504	7736	7741	7771	7826	7904	8004	8125
13568	7746	7751	7781	7836	7914	8015	8135
13632	7757	7761	7791	7846	7925	8025	8145
13696	7767	7771	7801	7856	7935	8035	8156
13760	7777	7781	7811	7866	7945	8046	8166
13824	7787	7791	7821	7876	7955	8056	8177
13888	7797	7801	7831	7886	7965	8066	8187
13952	7807	7811	7841	7896	7975	8076	8197
14016	7817	7821	7851	7906	7985	8086	8207
14080	7827	7831	7861	7916	7995	8096	8218
14144	7836	7841	7871	7926	8005	8106	8228
14208	7846	7851	7881	7936	8015	8116	8238

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

10 Outer Dimensions (without external aperture):

 HEIMANN Sensor GmbH
 Contact / Customer Support

 Maria-Reiche-Str. 1
 Phone 49 (0) 6123 60 50 30

 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Outer Dimensions (with external aperture, standard):

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet