Due Thursday, June 4 at 10am. Problems with asterisks (*) will be graded for correctness.

- 1. Use the simplex algorithm to solve the following LPs:
 - a. minimize $-x_1 x_2$

s.t.
$$x_1 - x_2 \le 1$$

 $x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$

$$x_1 = 0$$
, $x_2 = 2$, $z = -2$

*b. maximize $2x_1 + x_2 - x_3$

s.t.
$$5x_1 + x_3 \ge 1$$

 $-2x_1 + x_3 \le 22$
 $-4x_1 + x_2 - x_3 \le -6$
 $x_1 \le 0$: $x_2, x_3 \ge 0$

$$x_1 = x_2 = 0$$
, $x_3 = 6$, $z = -6$

c. minimize $-3x_1 + x_2$

s.t.
$$x_1 - 2x_2 \ge 2$$

 $-x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$

LP is infeasible

2. Characterize all optimal solutions to the following LP:

maximize
$$-8x_5$$

s.t.
$$x_1 + x_3 + 3x_4 + 2x_5 = 2$$

 $x_2 + 2x_3 + 4x_4 + 5x_5 = 5$
all $x \ge 0$

Any solution with $x_5 = 0$ and satisfying $x_1 + x_3 + 3x_4 = 2$, $x_2 + 2x_3 + 4x_4 = 5$, and all $x \ge 0$ is optimal.

*3. Solve the following LP:

maximize
$$-4x_1 + 5x_2$$

s.t. $5x_1 + 7x_2 \le 35$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

$$x_1 = 1, x_2 = 0, z = 5$$

*4. Consider the following dictionary for a maximization problem:

$$x_3 = b - 4x_1 + A_1x_2 + A_2x_5$$

$$x_4 = 2 + x_1 + 5x_2 + x_5$$

$$x_6 = 3 + A_3x_1 + 3x_2 + 4x_5$$

$$z = 10 + C_1x_1 + C_2x_2$$

Give all conditions on A₁, A₂, A₃, b, C₁, and C₂ necessary to make the following statements true:

- a. The current basic solution is feasible but the LP is unbounded. $b, C_2, A_1 \ge 0$
- b. The current basic solution is feasible but not optimal. $b \ge 0$, $C_1 \ge 0$ or $C_2 \ge 0$
- c. The current basic solution is degenerate. b = 0
- d. The current solution is optimal and alternative optimal solutions exist.

$$b \ge 0; \ C_1, C_2 \le 0 \quad \text{ or } \quad b \ge 0; \ C_1 = 0, C_2 \le 0 \quad \text{ or } \quad b \ge 0; \ C_1 \le 0, C_2 = 0$$

e. The current basic solution is not a basic feasible solution. b < 0