ALGEBRA 1 PB-Z I. 9 III 2012

Esercizio 1. Siano dati gli insiemi $A=\{a,b,c\}$ e $B=\{b,c,d\}$. Si considerino le relazioni R su A e S su B definite da

$$R = \{(a, a), (a, b), (a, c), (b, c)\} \quad S = \{(b, c), (b, d), (c, b), (c, c), (d, d)\}$$

Determinare $R \circ S$ e $S \circ R$.

Esercizio 2. Sull'insieme $A = \{a, b, c, d, e\}$ siano R_1 e R_2 le relazioni così definite:

$$R_1 = \{(a, a), (a, c), (a, e), (b, c), (d, e)\}$$
 $R_2 = \{(a, d), (b, c), (b, d), (d, d)\}$

Determinare $R_1 \cup R_2$, $R_1 \cap R_2$ e $R_2 \circ R_1$.

Esercizio 3. Sia $A \neq \emptyset$ un insieme e $R_1, ..., R_n$ relazioni su A. Dimostrare che

$$(R_1 \cap ... \cap R_n)^{-1} = R_1^{-1} \cap ... \cap R_n^{-1}.$$

Esercizio 4. Siano R_1 e R_2 relazioni sull'insieme A. Dimostrare che se ambedue R_1 e R_2 sono di equivalenza, allora $R_1 \cap R_2$ è pure di equivalenza.

Esercizio 5. In generale l'unione di due relazioni di equivalenza non è di equivalenza: si esibisca un esempio.

Esercizio 6. Sull'insieme $\mathbb N$ dei numeri naturali si consideri la relazione R così definita:

$$(a,b) \in R \Leftrightarrow a+b=2$$

Descrivere R e dire se è vuota, riflessiva, simmetrica, transitiva.

Esercizio 7. Siano $M = \{m, a, r, i\}$ e $O = \{o, n, d, e\}$ due insiemi.

- Costruire un'applicazione **non** suriettiva $A:M\to O$ e la si decomponga secondo il teorema fondamentale delle applicazioni.
- Descrivere la partizione di M indotta dall'applicazione $U:M\to O$ definita da $\forall x\in M,\ U(x)=o.$

Esercizio 8. Siano A, B insiemi. Dimostrare che $|A \times B| = |B \times A|$.

1