Defining the problem

$$Y = \overline{X} + \sigma_{u}\varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I_{d_{u}}), \quad \sigma \geq 0$$

One possible solution

Bayesian Inference and SMC Sampling

Part I

General scheme of generating

- 1. We have a dataset $D_N = \{X^1, X^2, ..., X^N\}$ which we suppose having the distribution Π_0
- 2. We will then try to approximate Π with a parametric probability distribution p_{θ}
- 3. Calculate the Posterior distribution $\phi(\mathrm{d}x)$ from p_{θ_*}
- 4. Use it to sample new data

Main idea of diffusion models

A diffusion model consists of three major components: the forward process, the backward process, and the sampling procedure. The goal of diffusion models is to learn a diffusion process that generates the probability distribution of a given dataset. They learn the latent structure of a dataset by modeling the way in which data points diffuse through their latent space.

Forward process

 The goal of this step will be to noise the image. The simplest way to do it is just the following linear transformation adding gaussian noise:

$$\begin{split} X_k &= \sqrt{1-\beta_k} X_{k-1} + \sqrt{\beta_k} Z_k \,, \quad \beta_k \in [0,1], \quad X_0 \sim \pi_0 \,, \end{split}$$
 where $Z_k \sim \mathcal{N}(\mathbf{0}_{d_x}, \mathbf{I}_{d_x}).$
$$X_k \sim \pi_k \text{ where } ^1 \\ \pi_k(\mathrm{d} x_k) &:= \int \pi_0(\mathrm{d} x_0) \mathcal{N}(\mathrm{d} x_k; \sqrt{\bar{\alpha}_k} x_0, (1-\bar{\alpha}_k) \mathbf{I}_{d_x}) \,. \end{split}$$

Backward process

$$\pi_{1:n|0}(x_{1:n}|x_0) = \pi_{n|0}(x_n|x_0) \prod_{k=2}^n \pi_{k-1|0,k}(x_{k-1}|x_0,x_k),$$

where $\pi_{n|0}(x_n|x_0) = \mathcal{N}(x_n; \bar{\alpha}_n^{1/2}x_0, (1-\bar{\alpha}_n)\mathbf{I})$ and $\pi_{k-1|0,k}$ is the bridge distribution $\pi_{k-1|0,k}(x_{k-1}|x_0,x_k) \propto \pi_{k-1|0}(x_{k-1}|x_0)\pi_{k|k-1}(x_k|x_{k-1})$, i.e.

$$\pi_{k-1|0,k}(x_{k-1}|x_0,x_k) = \mathcal{N}\left(x_{k-1}; \boldsymbol{\mu}_k(x_0,x_k), \sigma_k^2 \mathbf{I}_d\right),$$

with

$$\boldsymbol{\mu}_k(x_0, x_k) = \bar{\alpha}_{k-1}^{1/2} x_0 + (1 - \bar{\alpha}_{k-1} - \sigma_k^2)^{1/2} (x_k - \bar{\alpha}_k^{1/2} x_0) / (1 - \bar{\alpha}_k)^{1/2}.$$

Backward process

 \rightsquigarrow Use this decomposition to turn noise into samples from π_0 .

$$\mathsf{p}_{0:n}^{\theta}(\mathrm{d}x_{0:n}) = \mathsf{p}_n(\mathrm{d}x_n) \prod_{k=0}^{n-1} p_k^{\theta}(\mathrm{d}x_k|x_{k+1}),$$

where p_n is a std Gaussian and

$$p_k^{\theta}(dx_k|x_{k+1}) = \mathcal{N}(dx_k; \mu_{k+1}^{\theta}(x_{k+1}), \beta_{k+1}I_{d_x})$$

with $\mu_{k+1}^{\theta}(x_{k+1})$ obtained by replacing x_0 in $\mu_{k+1}(x_0,x_{k+1})$ with a prediction

$$\hat{x}_{0|k,\theta}(x_{k+1}) := \bar{\alpha}_{k+1}^{-1/2} \left(x_{k+1} - (1 - \bar{\alpha}_{k+1})^{1/2} \mathbf{e}^{\theta}(x_{k+1}, k+1) \right) ,$$

where $e^{\theta}(x, k+1)$ is typically a neural network parameterized by θ .

Backward process

The parameter θ is obtained by solving the following optimization problem:

$$\theta_* \in \operatorname{argmin}_{\theta} \textstyle \sum_{k=1}^n (2d_x \sigma_k^2 \alpha_k)^{-1} \mathbb{E} \left[\|\epsilon - \mathbf{e}^{\theta} (\sqrt{\alpha_k} x_0 + \sqrt{1 - \alpha_k} \epsilon, k)\|_2^2 \right] \,.$$

 $e^{\theta_*}(X_t,t)$ might be seen as the predictor of the noise added to X_0 to obtain X_t (in the forward pass) and justifies the prediction terminology.

Part II

Back to the problem

$$Y = \overline{X} + \sigma_y \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I_{\mathsf{d}_y}), \quad \sigma \ge 0$$

Let's suppose $\sigma_v = 0$

Main ideas

• $\phi_0^y(x_0) = p_0^\theta(x_0|y) \propto p_0^\theta(x_0)g_0^y(x_0)$,

Main ideas

• $\phi_0^y(x_0) = p_0^\theta(x_0|y) \propto p_0^\theta(x_0)g_0^y(x_0)$,

$$\propto \int p_n(x_n) \left\{ \prod_{t=1}^{n-1} p_t^{\theta}(x_t|x_{t+1}) \right\} p_0^{\theta}(x_0|x_1) g_0^y(x_0) dx_{1:n}$$

Main ideas

•
$$\phi_0^y(x_0) = p_0^{\theta}(x_0|y) \propto p_0^{\theta}(x_0)g_0^y(x_0),$$

$$\propto \int p_n(x_n) \left\{ \prod_{t=1}^{n-1} p_t^{\theta}(x_t|x_{t+1}) \right\} p_0^{\theta}(x_0|x_1)g_0^y(x_0) dx_{1:n}$$

Not a tractable integral

• Introduce a sequence of potential functions $(g_k^y)_{1 \le k \le n}$ such that :

$$\phi_{n}^{y}(x_{n}) \propto \mathsf{p}_{n}(x_{n})g_{n}^{y}(x_{n})$$

$$\phi_{t}^{y}(x_{t}) \propto \int g_{t+1}^{y}(x_{t+1})^{-1}g_{t}^{y}(x_{t})p_{t}(x_{t}|x_{t+1})\phi_{t+1}^{y}(\mathrm{d}x_{t+1})$$

$$\phi_{t}^{y}(x_{t}) \propto \mathsf{p}_{t}(x_{t})g_{t}^{y}(x_{t})$$

MCGdiff

$$\phi_{k}^{y}(\mathrm{d}x_{k}) \propto \int \frac{g_{k}^{y}(x_{k})}{g_{k+1}^{y}(x_{k+1})} p_{t}(\mathrm{d}x_{k}|x_{k+1}) \phi_{k+1}^{y}(\mathrm{d}x_{k+1}) \qquad \qquad \phi_{t+1}^{y} \text{ is } \phi_{t+1}^{N} = N^{-1} \sum_{i=1}^{N} \delta_{\xi_{t+1}^{i}}$$

$$\propto \int \underbrace{\frac{\int g_{k}^{y}(z_{k}) p_{k}(\mathrm{d}z_{k}|x_{k+1})}{g_{k+1}^{y}(x_{k+1})} p_{k}^{y}(\mathrm{d}x_{k}|x_{k+1}) \phi_{k+1}^{y}(\mathrm{d}x_{k+1})}_{:=\widetilde{\omega}_{k}(x_{k+1})} \frac{\widehat{\phi}_{t}^{N}(x_{t}) = \sum_{i=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{i}) p_{t}^{y}(x_{t}|\xi_{t+1}^{i}) / \sum_{j=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{j})}{\widehat{\phi}_{t}^{N}(x_{t})} \frac{\widehat{\phi}_{t}^{N}(x_{t}) = \sum_{i=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{i}) p_{t}^{y}(x_{t}|\xi_{t+1}^{i}) / \sum_{j=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{j})}{\widehat{\phi}_{t}^{N}(x_{t})} \frac{\widehat{\phi}_{t}^{N}(x_{t}) = \sum_{i=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{i}) / \sum_{j=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{j})}{\widehat{\omega}_{t}(\xi_{t+1}^{j})} \frac{\widehat{\phi}_{t}^{N}(x_{t}) - \sum_{i=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{i}) / \sum_{j=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{j})}{\widehat{\omega}_{t}(\xi_{t+1}^{j})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}(\xi_{t+1}^{j})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_{t})} \frac{\widehat{\omega}_{t}^{N}(x_{t})}{\widehat{\omega}_{t}^{N}(x_$$

MCGdiff

$$\phi_{k}^{y}(\mathrm{d}x_{k}) \propto \int \frac{g_{k}^{y}(x_{k})}{g_{k+1}^{y}(x_{k+1})} p_{t}(\mathrm{d}x_{k}|x_{k+1}) \phi_{k+1}^{y}(\mathrm{d}x_{k+1}) \qquad \qquad \phi_{t+1}^{y} \text{ is } \phi_{t+1}^{N} = N^{-1} \sum_{i=1}^{N} \delta_{\xi_{t+1}^{i}}$$

$$\propto \int \underbrace{\frac{\int g_{k}^{y}(z_{k}) p_{k}(\mathrm{d}z_{k}|x_{k+1})}{g_{k+1}^{y}(x_{k+1})} p_{k}^{y}(\mathrm{d}x_{k}|x_{k+1}) \phi_{k+1}^{y}(\mathrm{d}x_{k+1})}_{:=\widetilde{\omega}_{k}(x_{k+1})} p_{k}^{y}(\mathrm{d}x_{k}|x_{k+1}) \phi_{k+1}^{y}(\mathrm{d}x_{k+1})} \widehat{\phi_{t}^{N}(x_{t})} = \sum_{i=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{i}) p_{t}^{y}(x_{t}|\xi_{t+1}^{i}) / \sum_{j=1}^{N} \widetilde{\omega}_{t}(\xi_{t+1}^{j})$$

Algorithm 1: MCGdiff $(\sigma = 0)$ Input: Number of particles NOutput: $\xi_0^{1:N}$ // Operations involving index i are repeated for each $i \in [1:N]$ $\overline{z}_n^i \sim \mathcal{N}(\mathbf{0}_{\mathsf{d}_y}, \mathbf{I}_{\mathsf{d}_y}), \quad \underline{z}_n^i \sim \mathcal{N}(\mathbf{0}_{\mathsf{d}_x-\mathsf{d}_y}, \mathbf{I}_{\mathsf{d}_x-\mathsf{d}_y}), \quad \overline{\xi}_n^i = \mathsf{K}_n \overline{\alpha}_n^{1/2} y + (1-\overline{\alpha}_n) \mathsf{K}_n \overline{z}_n^i, \quad \xi_n^i = \overline{\xi}_n^i \widehat{z}_n^i;$ for $s \leftarrow n-1:0$ do if s = n-1 then $\begin{bmatrix} \widetilde{\omega}_{n-1}(\xi_n^i) = \mathcal{N}(\overline{\alpha}_n^{1/2} y; \overline{m}_n(\xi_n^i), 2-\overline{\alpha}_n); \\ \text{else} \\ \widetilde{\omega}_s(\xi_{s+1}^i) = \mathcal{N}(\overline{\alpha}_s^{1/2} y; \overline{m}_{s+1}(\xi_{s+1}^i), \sigma_{s+1}^2 + 1-\overline{\alpha}_s) / \mathcal{N}(\overline{\alpha}_{s+1}^{1/2} y; \overline{\xi}_{s+1}^i, 1-\overline{\alpha}_{s+1}); \\ I_{s+1}^i \sim \text{Cat}(\{\widetilde{\omega}_s(\xi_{s+1}^j) / \sum_{k=1}^N \widetilde{\omega}_s(\xi_{s+1}^k)\}_{j=1}^N), \quad \overline{z}_s^i \sim \mathcal{N}(\mathbf{0}_{\mathsf{d}_y}, \mathbf{I}_{\mathsf{d}_y}), \quad \underline{z}_s^i \sim \mathcal{N}(\mathbf{0}_{\mathsf{d}_x-\mathsf{d}_y}, \mathbf{I}_{\mathsf{d}_x-\mathsf{d}_y}); \\ \overline{\xi}_s^i = \mathsf{K}_s \overline{\alpha}_s^{1/2} y + (1-\mathsf{K}_s) \overline{m}_{s+1}(\xi_{s+1}^i) + (1-\alpha_s)^{1/2} \mathsf{K}_s^{1/2} \overline{z}_s^i, \quad \underline{\xi}_s^i = \underline{m}_{s+1}(\xi_{s+1}^i) + \sigma_{s+1} \underline{z}_s^i; \\ \text{Set } \xi_s^i = \overline{\xi}_s^i \widehat{\zeta}_s^i; \end{cases}$

Part III

Convergence

$$\mathsf{KL}(\phi_0^y \parallel \Phi_0^N) \le \mathsf{C}_{0:n}^y (N-1)^{-1} + \mathsf{D}_{0:n}^y N^{-2}$$

- N number of samples
- n number of steps

Quadratic Convergence

General Linear Inverse Problem

Model:

$$Y = AX + \sigma_y \varepsilon$$

$$\downarrow \text{SVD (} A = US\overline{V}^T)$$
 $\mathbf{Y} = \overline{\mathbf{X}} + \sigma_y S^{-1} \tilde{\varepsilon} \quad \text{ where } \mathfrak{p}_0(\mathbf{x}_0) := \mathfrak{p}_0(V\mathbf{x}_0)$
 $X := V^T X$

MCGdiff Algorithm can be extended in this case.

Article Results for Image Inpainting

Model and Results

Model:

- GMM of 25 components
- Total Dimension and Masked Dimension
- Create a linear inverse problems

Advantage of GMM: **Exact** Posterior is known

For **Numerics**, change the inputs and evaluate a metrics for each case:

NUMERICS

With Total dimension fixed

NUMERICS

With Masked dimension fixed

$\mathbf{d}_{-}\mathbf{x}$	$\mathbf{d}_{-}\mathbf{y}$	steps	\mathbf{SW}
8	2	20	1.59
8	4	20	2.1
80	2	20	3.9
80	4	20	2.3
400	2	20	1.7
80	4	100	1.8

Sliced Wasserstein Score for MCGDiff model with 100 sliced

Thanks