Binary Numbers

Digital Design and Computer Architecture Mohammad Sadrosadati Frank K. Gürkaynak

http://safari.ethz.ch/ddca

In This Lecture

- How to express numbers using only 1s and 0s
- Using hexadecimal numbers to express binary numbers
- Different systems to express negative numbers
- Adding and subtracting with binary numbers

Number Systems

Decimal Numbers

Binary Numbers

Number Systems

Decimal Numbers

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary Numbers

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
one
one
one
one
one
one
one
one

Powers of two

$2^0 = 2^8$	=
$2^1 = 2^9$	=
$2^2 = 2^1$	0 =
$2^3 = 2^1$.1 =
$2^4 = 2^1$	2 =
$2^5 = 2^1$	3 =
$2^6 = 2^1$.4 =
$2^7 = 2^1$.5 =

Powers of two

2 ⁰	=	1	28	=	256
21	=	2	2 ⁹	=	512
2 ²	=	4	2 ¹⁰	=	1024
2 ³	=	8	2 ¹¹	=	2048
24	=	16	2 ¹²	=	4096
2 ⁵	=	32	2 ¹³	=	8192
2 ⁶	=	64	2 ¹⁴	=	16384
2 ⁷	=	128	2 ¹⁵	=	32768

Handy to memorize up to 2¹⁵

Binary to Decimal Conversion

■ Convert **10011**₂ to decimal

Binary to Decimal Conversion

Convert 10011₂ to decimal

$$2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 =$$

Binary to Decimal Conversion

Convert 10011₂ to decimal

$$2^{4}$$
 ×1 + 2^{3} ×0 + 2^{2} ×0 + 2^{1} ×1 + 2^{0} ×1 =

 16 ×1 + 8 ×0 + 4 ×0 + 2 ×1 + 1 ×1 =

 16 + 0 + 0 + 2 + 1 = 19_{10}

Decimal to Binary Conversion

Convert 47₁₀ to binary

Decimal to Binary Conversion

- Convert 47₁₀ to binary
 - Start with $2^6 = 64$ is $64 \le 47$? no do nothing
 - Now $2^5 = 32$

Decimal to Binary Conversion

Convert 47₁₀ to binary

■ Start with $2^6 = 64$ is $64 \le 47$? no do nothing

■ Now $2^5 = 32$ is $32 \le 47$? yes subtract 47 - 32 = 15

■ Now $2^4 = 16$ is $16 \le 15$? no do nothing

■ Now $2^3 = 8$ is $8 \le 15$? yes subtract 15 - 8 = 7

■ Now $2^2 = 4$ is $4 \le 7$? yes subtract 7-4 = 3

■ Now $2^1 = 2$ is $2 \le 3$? yes subtract 3-2 =1

• Now $2^0 = 1$ is $1 \le 1$? yes we are done

Decimal to binary conversion

Convert 47₁₀ to binary

```
• Start with 2^6 = 64 is 64 \le 47?
                                                do nothing
                                   no
                                                subtract 47 - 32 = 15
            2^5 = 32
                     is 32 \le 47?
                                         1
Now
                                   yes
         2^4 = 16
                     is 16 \le 15?
Now
                                                do nothing
                                   no
                                         0
         2^3 = 8
                                                subtract 15 - 8 = 7
                     is 8 \le 15?
Now
                                         1
                                   yes
        2^2 = 4
                   is 4 \le 7?
                                         1
                                                subtract 7-4=3
Now
                                   yes
        2^1 = 2
                     is 2 \le 3?
                                         1
Now
                                                subtract 3-2 =1
                                   yes
            2^0 = 1
                     is 1 \le 1?
                                         1
Now
                                                we are done
                                   yes
```

Result is 0101111₂

Binary Values and Range

N-digit decimal number

How many values?

10^N

Range?

- $[0, 10^N 1]$
- Example: 3-digit decimal number
 - $10^3 = 1000$ possible values
 - Range: [0, 999]

N-bit binary number

How many values?

2N

Range:

- $[0, 2^N 1]$
- Example: 3-digit binary number
 - $2^3 = 8$ possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Hexadecimal (Base-16) Numbers

Decimal	Hexadecimal	Binary
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

Hexadecimal (Base-16) Numbers

Decimal	Hexadecimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	А	1010
11	В	1011
12	С	1100
13	D	1101
14	Е	1110
15	F	1111

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?

4 (since
$$2^4 = 16$$
)

Example 32 bit number:

0101 1101 0111 0001 1001 1111 1010 0110

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?

```
4 (since 2^4 = 16)
```

Example 32 bit number:

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?

```
4 (since 2^4 = 16)
```

Example 32 bit number:

The other way is just as simple

C E 2 8 3 5 4 B

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?

```
4 (since 2^4 = 16)
```

Example 32 bit number:

```
0101 1101 0111 0001 1001 1111 1010 0110
5 D 7 1 9 F A 6
```

The other way is just as simple

```
C E 2 8 3 5 4 B
1100 1110 0010 1000 0011 0101 0100 1011
```

Hexadecimal to Decimal Conversion

■ Convert 4AF₁₆ (or 0x4AF) to decimal

Hexadecimal to decimal conversion

■ Convert 4AF₁₆ (or 0x4AF) to decimal

$$16^{2}$$
 × 4 + 16^{1} × A + 16^{0} × F =

 256 × 4 + 16 × 10 + 1 × 15 =

 1024 + 160 + 15 = 1199_{10}

Bits, Bytes, Nibbles...

Powers of Two

$$2^{10} = 1 \text{ kilo} \approx 1000 \quad (1024)$$

 $2^{20} = 1 \text{ mega } \approx 1 \text{ million } (1,048,576)$

 $= 2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Powers of Two (SI Compatible)

$$2^{10} = 1 \text{ kibi} \approx 1000 \quad (1024)$$

 $2^{20} = 1 \text{ mebi } \approx 1 \text{ million } (1,048,576)$

 $= 2^{30} = 1$ gibi = 1 billion (1,073,741,824)

Estimating Powers of Two

■ What is the value of 2²⁴?

How many values can a 32-bit variable represent?

Estimating Powers of Two

■ What is the value of 2²⁴?

$$2^4 \times 2^{20} \approx 16$$
 million

How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

Addition

Decimal

Add the Following Numbers

Add the Following Numbers

Overflow

- Digital systems operate on a fixed number of bits
- Addition overflows when the result is too big to fit in the available number of bits
- See previous example of 11 + 6

Overflow (Is It a Problem?)

- Possible faults
- Security issues

(Photograph courtesy ESA/CNES/ ARIANESPACE-Service Optique CS6.)

The \$7 billion Ariane 5 rocket, launched on June 4, 1996, veered off course 40 seconds after launch, broke up, and exploded. The failure was caused when the computer controlling the rocket overflowed its 16-bit range and crashed.

The code had been extensively tested on the Ariane 4 rocket. However, the Ariane 5 had a faster engine that produced larger values for the control computer, leading to the overflow.

Binary Values and Range

N-digit decimal number

How many values?

10^N

Range?

- $[0, 10^N 1]$
- Example: 3-digit decimal number
 - $10^3 = 1000$ possible values
 - Range: [0, 999]

N-bit binary number

How many values?

2N

Range:

- $[0, 2^N 1]$
- Example: 3-digit binary number
 - $2^3 = 8$ possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Signed Binary Numbers

- Sign/Magnitude Numbers
- One's Complement Numbers
- **Two's Complement Numbers**

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

Example, 4-bit sign/mag representations of ± 6:

Range of an N-bit sign/magnitude number:

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

Example, 4-bit sign/mag representations of ± 6:

$$+6 = 0110$$

$$-6 = 1110$$

Range of an N-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Problems of Sign/Magnitude Numbers

Addition doesn't work, for example -6 + 6:

```
1110
+ 0110
10100 wrong!
```

Two representations of 0 (± 0):

1000 0000

 Introduces complexity in the processor design (Was still used by some early IBM computers)

One's Complement

■ A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer):

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 º		One's Complement	Unsigned
0	0	0	0	0	0	0	0	=	+0	0
0	0	0	0	0	0	0	1	=	1	1
0	0	0	0	0	0	1	0	=	2	2
0	1	1	1	1	1	1	1	=	127	127

One's Complement

■ A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer):

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 º		One's Complement	Unsigned
0	0	0	0	0	0	0	0	=	+0	0
0	0	0	0	0	0	0	1	=	1	1
0	0	0	0	0	0	1	0	=	2	2
0	1	1	1	1	1	1	1	=	127	127
1	0	0	0	0	0	0	0	=	-127	128
1	0	0	0	0	0	0	1	=	-126	129
1	1	1	1	1	1	0	1	=	-2	253
1	1	1	1	1	1	1	0	=	-1	254
1	1	1	1	1	1	1	1	=	-0	255

One's Complement

The range of n-bit one's complement numbers is:

 $[-2^{n-1}-1, 2^{n-1}-1]$ 8 bits: [-127,127]

Addition:

Addition of signed numbers in one's complement is performed using binary addition with end-around carry. If there is a carry out of the most significant bit of the sum, this bit must be added to the least significant bit of the sum:

Example: 17 + (-8) in 8-bit one's complement

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0
- Has advantages over one's complement:
 - Has a single zero representation
 - Eliminates the end-around carry operation required in one's complement addition

■ A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer) and adding 1:

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰		Two's Complement	Unsigned
0	0	0	0	0	0	0	0	=	0	0
0	0	0	0	0	0	0	1	=	1	1
0	0	0	0	0	0	1	0	=	2	2
0	1	1	1	1	1	1	1	=	127	127

■ A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer) and adding 1:

2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰		Two's Complement	Unsigned
0	0	0	0	0	0	0	0	=	0	0
0	0	0	0	0	0	0	1	=	1	1
0	0	0	0	0	0	1	0	=	2	2
0	1	1	1	1	1	1	1	=	127	127
1	0	0	0	0	0	0	0	=	-128	128
1	0	0	0	0	0	0	1	=	-127	129
1	1	1	1	1	1	0	1	=	-3	253
1	1	1	1	1	1	1	0	=	-2	254
1	1	1	1	1	1	1	1	=	-1	255

 Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$I = \sum_{i=0}^{i=n-2} b_i 2^i - b_{n-1} 2^{n-1}$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an N-bit two's comp number:

 Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$I = \sum_{i=0}^{i=n-2} b_i 2^i - b_{n-1} 2^{n-1}$$

Most positive 4-bit number: 0111

Most negative 4-bit number: 1000

■ The most significant bit still indicates the sign (1 = negative, 0 = positive)

Range of an N-bit two's comp number:

[-2^{N-1}, 2^{N-1}-1] 8 bits: [-128,127]

- How to flip the sign of a two's complement number:
 - Invert the bits
 - Add one
- **Example:** Flip the sign of 3_{10} = 0011_2

- How to flip the sign of a two's complement number:
 - Invert the bits
 - Add one

Example: Flip the sign of 3_{10} = 0011_2

• Invert the bits
1100₂

- How to flip the sign of a two's complement number:
 - Invert the bits
 - Add one
- **Example:** Flip the sign of 3_{10} = 0011₂
 - Invert the bits
 - Add one1101₂

- How to flip the sign of a two's complement number:
 - Invert the bits
 - Add one
- **Example:** Flip the sign of 3_{10} = 0011_2
 - Invert the bits
 - Add one1101₂
- **Example:** Flip the sign of -8_{10} = 11000₂

- How to flip the sign of a two's complement number:
 - Invert the bits
 - Add one
- **Example:** Flip the sign of 3_{10} = 0011_2
 - Invert the bits
 - Add one1101₂
- **Example:** Flip the sign of -8_{10} = 11000₂
 - Invert the bits
 - Add one01000₂

Two's Complement Addition

Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

Two's Complement Addition

Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

Correct results if overflow bit is ignored

Increasing Bit Width

- A value can be extended from N bits to M bits (where M > N) by using:
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit is copied into most significant bits
- Number value remains the same
- Give correct result for two's complement numbers
- Example 1:

4-bit representation of 3 = 0011

8-bit sign-extended value: 00000011

Example 2:

4-bit representation of -5 =

8-bit sign-extended value: 11111011

Zero-Extension

- Zeros are copied into most significant bits
- Value will change for negative numbers

Example 1:

• 4-bit value = $0011_2 = 3_{10}$

• 8-bit zero-extended value: $00000011_2 = 3_{10}$

Example 2:

• 4-bit value = $1011_2 = -5_{10}$

• 8-bit zero-extended value: $00001011_2 = 11_{10}$

Number System Comparison

Number System	Range
Unsigned	[0, 2 ^N -1]
Sign/Magnitude	[-(2 ^{N-1} -1), 2 ^{N-1} -1]
Two's Complement	[-2 ^{N-1} , 2 ^{N-1} -1]

For example, 4-bit representation:

Lessons Learned

- How to express decimal numbers using only 1s and 0s
- How to simplify writing binary numbers in hexadecimal
- Adding binary numbers
- Methods to express negative numbers
 - Sign Magnitude
 - One's complement
 - Two's complement (the one commonly used)