

(19)日本国特許庁(JP)

報_(B2) 許 公 四特

(11)特許出願公告番号

特公平6-54687

(24)(44)公告日 平成6年(1994)7月20日

(51) Int. Cl. 5

識別記号

FΙ

H01M 10/36

H01B 1/06

A 7244-5G

発明の数2 (全5頁)

(21)出願番号

特願昭61-127419

(22)出願日

昭和61年(1986)6月3日

(65)公開番号

特開昭62-82665

(43)公開日

昭和62年(1987) 4月16日

(31)優先権主張番号 (32)優先日

782467

1985年10月1日

(33)優先権主張国

米国(US)

(71)出願人 999999999

ユニオン、カーパイド、コーポレーション アメリカ合衆国コネチカツト州、ダンベリ 一、オールド、リツジベリー、ロード(番

地なし)

(72)発明者 ジェームズ、ロバート、アクリッジ

アメリカ合衆国オハイオ州、パーマ、グリ

ーンリーフ、アベニュ、7349

(74)代理人 弁理士 佐藤 一雄 (外2名)

審査官 三宅 正之

(56)参考文献 特開昭58-189967 (JP, A)

特開昭58-1974 (JP、A)

特開昭56-134536 (JP, A)

(54) 【発明の名称】ガラス質酸化-硫化リン固体リチウム電解質

【特許請求の範囲】

【請求項1】下記の組成を有し、

P₄ O_a S_b, cLi₂ S, dLi₂ O, eX ここに、XはLiBr, LiCl, LiF, LiI、L i 2 CO3 、 L i 2 SO4 、 L i 2 S i O3 およびL i 4 SiO4 から成るグループから選ばれ、

aは(10-b)に等しく、ここにbは0より大、10 より小であり、但しbが6の場合、aは3とする事がで

cとdは0乃至4であり、但しcとdが共に0より大で 10 あるとき、d=4-cとし、またcまたはdが0である とき、それぞれdまたはcは0より大とし、

eは0乃至7とする

酸化-硫化リン固状電解質。

【請求項2】前記のP4O。S。は、P4O5S5, P

4 O4 S6, P4 O3 S7, P4 O2 S8 およびP4 O 1 S。から成るグループから選ばれる特許請求の範囲第 1項の酸化-硫化リン固状電解質。

【請求項3】cとdは1乃至4であり、eは0乃至5で ある特許請求の範囲第1項による酸化-硫化リン固状電 解質。

【請求項4】前記酸化-硫化リン固状電解質は5LiⅠ ・4 L i 2 S・P 4 O S 。である特許請求の範囲第1項 による酸化-硫化リン固状電解質。

【請求項5】前記酸化-硫化リン固状電解質は2LiI ・2 L i 2 S・P 2 O 2 S 3 である特許請求の範囲第 1 項による酸化-硫化リン固状電解質。

【請求項6】前記酸化-硫化リン固状電解質は2.5L i I・2 L i 2 S・P 2 O 2 S 3 である特許請求の範囲 第1項による酸化-硫化リン固状電解質。

20

3

【請求項7】前記の酸化-硫化リン固状電解質は2Li Br・2Li₂S・P₂O₃S₂である特許請求の範囲 第1項による酸化-硫化リン固状電解質。

aは(10-b)に等しく、ここにbは0より大、10 より小であり、但しbが6の場合、aは3とする事がで 10 き、

cとdは0乃至4であり、 θ しcとdが共に0より大であるとき、d=4-cとし、またcまたはdが0であるとき、それぞれdまたはcは0より大とし、

eは0乃至7とする酸化-硫化リン固状電解質を含む固 状電池。

【請求項9】前記の酸化-硫化リン固状電解質のP4O。S。は、P4O。Ss, P4O4Ss, P4O3Ss, P4O3Ss, P4O3Ss, P4O3Ss, P4O5。から成るグループから選ばれる特許請求の範囲第8項の固状電池。

【請求項10】前記の酸化-硫化リン固状電解質は1乃至4のcとdの値を有し、0乃至5のe値を有する特許請求の範囲第8項の固状電池。

【請求項11】前記酸化-硫化リン固状電解質は5Li I・4Li₂S・P₄OS。である特許請求の範囲第8 項の固状電池。

【請求項12】前記酸化-硫化リン固状電解質は2Li I・2Li₂S・P₂O₂S₃である特許請求の範囲第 8項の固状電池。

【請求項13】前記酸化-硫化リン固状電解質は2.5 Li₂S・P₂O₂S₃である特許請求の範囲第8項の 固状電池。

【請求項14】前記酸化一硫化リン固状電解質は2Li Br・2Li₂S・P₂O₃S₂である特許請求の範囲 第8項の固状電池。

【請求項15】負極はリチウム、リチウム合金、ナトリウム、カリウム、ルビジウム、および銀から成るグループから選ばれる特許請求の範囲第8項の固状電池。

【請求項16】正極は、 TiS_2 , MoS_3 , ポリ (N-ビニルピロリドン) $+I_2$, ポリ (N-ビニルピロリドン) $+I_2+TiS_2$, TiS_2+MoS_3 , FeS $_2$, Sb $_2$ S $_3$ および MnO_2 から成るグループから選ばれる特許請求の範囲第8項の固状電池。

【請求項17】負極はリチウム、正極はTiS2である 特許請求の範囲第15項または第16項の固状電池。

【請求項18】負極はリチウム、正極はTiS₂+MoS₃である特許請求の範囲第15項または第16項の固 状電池。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は、下記の組成を有し、

P. O. S., cLi, S, dLi, O, eX

ここに、XはLiBr, LiCl, LiF, LiI, Li, CO, . Li, SO, . Li, SiO, およびLi, SiO, から成るグループから選ばれ、

aは (10-b) に等しく、ここに bは 0より大、10より 小であり、但し bが 6 の場合、 aは 3 とする事ができ、 cと dは 0 乃至約 4 であり、但し cと dが共に 0より大であるとき、d=4-cとし、また c または dが 0 であるとき、それぞれ d または c は 0 より大とし、

eは0乃至約7とし、

またここに、前記組成は25℃において少なくとも0.75×10⁻¹ ohm⁻¹ cm⁻¹ の導電率を有するガラス質リチウムカチオン導体を主成分とする酸化-硫化リン固状電解質に関するものである。

〔従来技術と問題点〕

イオン伝導性は通常、液状塩溶液を通してのイオンの流れと関連している。イオン伝導体として、すなわち乾電池電解質として使用する多くの場合に、液状溶液は、その操作および封入に伴う困難を減少させるため、ペーストまたはゲル化基質の形で固定され、あるいはセパレータの中に吸収される。しかし固定化の後でさえも、この系は尚も漏れの可能性があり、塩の乾燥または再結晶の故に限られた貯蔵寿命を有し、また電解質の液状範囲に対応する限られた温度範囲内においてのみ使用する事ができる。更に、多量の固定化物質を使用すれば、小型化の目的に沿わない。

また、マイクロ電子回路設計の改良に伴って、一般に電子装置の電流要求量が低下してきた。またこの事は、マイクロアンペア レンジの電流のみを発生する事のできる固体電解質電源の用途を拡大した。このような固体電解質系は、液相および腐食現象の不存在により電解質漏れと内部ガス発生の問題を有しないという基本的利点がある。更に、この種の電解質系は通常の液状電解質電源よりも遥かに長い貯蔵寿命を有する。

液状系の欠点を克服するため、研究者は、常温で固体であると共に一般に使用される液状系に近い導電率を有する化合物を発見しようとして、多数の固体化合物を調査した。固体電解質は、電池の内部短絡を生じないように本質的に電子絶縁体でなければならないと同時に、この固体電解質を通してのイオン泳動を可能としなければならない。常温で固体のある種の金属塩が、これを実際に電池に応用する事ができる程度に高い導電率を有する事が発見された。例えば、米国特許第3,723,185号は、一般式AgI-MCN-AgCNに対応する化合物またはその変形の固状電解質を開示している。ここにMはカリウム、ルビジウム、セシウムまたはその混合物である。

米国特許第4,331,750号は、固体電解質として使用する に適し、下記の一般式を有するカチオン伝導性ガラス質 組成物を開示している。

50 aP, S, bLi, S, cLiX

ここに、Xは塩素、臭素、またはヨウ素であり、cは0 より大または0に等しく、

比率 b/(a+b)は0.61と0.70との間にあり、比率 c / (a+b+c) は、組成aP,S,、bLi,S 中のLiXのガラ ス相溶解度に対応した限度より大、またはこれと同等で

米国特許第4,465,746号に開示された固体電解質は、下 記の一般式を有する。

SiS, xLi, S, yLiI

 $22c, x0.8 \sim 1.5,$

yは0~約2、また

ここに、前記組成物は25℃において少なくとも0.75×10 - 'ohm 'cm' の導電率を有する。

米国特許第4,513,070号は、下記の一般式を有するガラ ス質物質を使用する電気化学的電池を開示している。 $xA_a R_b - yN_a R_c - 2N_a Y_b$

ここに、AはSi, Ge, P, S, B, Nb, As, V, Crまた はMo; RはO, SまたはSe; NはLi, Na, KまたはAg、 またはYはI, Br, Cl, F, ClO, CF, SO, SCN または SO,であり、但しこの化合物は少なくとも2つの塩N。Y。 を含有するものとする。 a, b; m, c; n, p は対応 のグループの中の成分の化学量論的量に対応する指数を 表し、またx,y,zはそ合計が1に等しく、ガラス質 物質のそれぞれ形成系、変性系およびドーピング系を成 す化合物の全体モル分率に対応する指数を表す。これら の指数の値は、与えられた物質のガラス質レンジと両立 するものである。

1985年6月28日出願の米国特願第479,780号は、下記の 組成のガラス質リチウムカチオン導体を有する四元固体 電解質を開示している。

aX, bLi, S, Y, Z

ここに、

XはP,S₅とSiS,とから成るグループから選ばれ、 aは約0.5~約2、

bは0.25~2、

YはLi, CO,, Li, SiO, およびLi, SiO, から成るグループか ら選ばれた酸素含有リチウム化合物、また

ZはLiI, LiBr, LiClおよびLiF から成るグループから選 ばれたドーパントである。

1985年6月29日出願の米国特許749,774は、下記の組成 の固体ガラス質リチウムカチオン導体を開示している。 aX, bLi, S, Y

ここに、xはP,S,およびSiS,から成るグループから選 ばれる。

aは約0.5~約2、

bは0.25~2、また

YはLi, CO,, Li, O, LiOH, Li, SiO,, Li, SO, およびLi, SiO, などの酸素含有リチウム化合物とする。

〔発明の目的〕

使用する事のできる新規なクラスの酸化-硫化リン組成 物を提供するにある。

本発明の他の目的は、25℃において少なくとも0.75×10 - 'ohm-'cm-'の導電率を有する硫化酸化リンを含む固体 電解質を提供するにある。

前記の目的およびその他の目的は下記の説明から更に明 らかとなろう。

〔発明の概要〕

本発明は、下記の組成を有し、

10 P. O. S., cLi, S, dLi, O, eX

ここに、XはLiBr, LiCl, LiF, Lil, Li, CO3, Li, SO4, Li, SiO ;およびLi,SiO, から成るグループから選ばれ、

aは(10-b)に等しく、ここにbは0より大、10より 小であり、但しbが6の場合、aは3とする事ができ、 cとdは0乃至約4であり、但しcとdが共に0より大 であるとき、d=4-cとし、またcまたはdが0であ るとき、それぞれdまたはcは0より大とし、

eは0乃至約7とする。

ガラス質リチウムカチオン導体を有する酸化-硫化リン 固状電解質に関するものである。

本発明において使用するために好ましい酸化-硫化ネッ トワーク形成剤は、P,O,S,P,O,S,,P,O,S,,P,O,S,,P,O,S, 好ましくは、cとdは約1乃至約4であり、eは約0乃 至約5である。

前記の酸化-硫化リン構造形成剤以外の本発明において 使用される好ましいリチウム化合物は、LiBr, LiCl, LiF およびLilなどのネットワーク・ドーパント、Li, CO3, Li ,SiO,およびLi,SiO, などのネットワーク形成剤、およ 30 び/またはLi, SおよびLi, Oなどのネットワーク変性剤と する事ができる。ネットワーク・ドーパントはネットワ ーク形成剤またはネットワーク形成剤プラスネットワー ク変性剤に対して添加される化合物であって、追加の可 動カチオンを与えるが、そのアニオンはマクロ分子構造 の中に合体される事なく、むしろ、特にハロゲン化塩の 場合には、可塑化剤の役割を果たす。

ネットワーク形成剤は、不規則構造のマクロ分子ネット ワークを生じ、この際にネットワーク形成剤のアニオ ン、すなわち〇゜, S゜ などがネットワーク形成剤のカ 40 チオンの間にブリッジを成して、拡張ネットワークを形 成する化合物である。ネットワーク変性剤は、ネットワ ーク形成剤に添加されて、ネットワーク形成剤のカチオ ンとアニオンとの間の一部のブリッジを裂開してそれ自 体のアニオンをマクロ分子ネットワークの中に合体さ せ、この変性剤アニオンをネットワーク形成剤のカチオ ンに結合させる事によってマクロ分子ネットワークの中 に共有結合を導入するイオン化合物である。

本明細書において、ガラス質とは、ガラス状(非結晶) 状態にある組成を意味し、また、融解状態から過度に急 本発明の目的は、固状電池系において固体電解質として 50 速に冷却されたので、結晶形成が妨げられた物質を意味 7

するものとする。

本発明のガラス質組成物は、まず酸化-硫化リンを、化学量論的量のネットワークドーパントおよび/またはネットワーク形成剤と共に、またはこれを伴わずに、不活性ガスを満たしたドライボックスの中で少なくとも一種のネットワーク変性剤と混合する事によって1気圧で製造される。次にこの混合物をガラス質炭素ルツボの中に配置し、このルツボを不活性ガス反応室の中に配置する。酸化-硫化リンがネットワーク変性剤および/または他のネットワーク形成剤と反応するのに十分な時間、高温で加熱される。一般にネットワーク・ドーパントとしてのLilと共にネットワーク変性剤としてのLi,Sを使用する場合、この混合物を約950℃で、約1時間加熱する事ができる。次に融解混合物を一般に常温(約20℃)まで急冷して、ガラス質固体を形成する。

所望ならば、ネットワーク変性剤および、使用されるならネットワーク・ドーパントおよび/または他のネットワーク形成剤を融解した酸化-硫化リン化合物に対して添加し、この混合物をガラス質炭素ルツボの中に配置し、次に融解した酸化-硫化リン化合物中の液体を成すに十分な時間、この混合物を高温で加熱する。次にこの混合物を常温(約20℃)まで急冷する。一般に前記の成分の使用した混合物は約1時間、約950℃に加熱する事ができる。

融解した酸化-硫化リン化合物を形成するため、 P_2O_6 を P_2S_6 と混合し、これを加熱して融解生成物を作る。例えば、O. 8 モルの P_2O_6 を 1. 2 モルの P_2S_6 と混合し、約 500 の高温に加熱して、 P_2O_6 を 1. 2 モルの P_2S_6 と混合し、約 500 の高温に加熱して、 P_2O_6 を 1 を 1 を 1 を 1 を 1 で 1 の 1 を 1 で 1 で 1 を 1 で 1 で 1 で 1 を 1 で 1 で 1 で 1 で 1 で 1 を 1 で 1 で 1 で 1 の 1 で 1 で 1 で 1 を 1 で 1 に

最も好ましい固体電解質組成物は、5LiI・4Li,S・P,OS,である。

本発明の固体電解質について使用するに適した負極物質は、リチウム、銀、ナトリウム、カリウム、およびルビジウムである。好ましい負極物質はリチウム、およびリ 40 チウム合金である。

3 gのP, O, と7 gのP, S, とを1:1.5 モル比でヘリウム充填ドライボックスの中で混合する事によりガラス質P, O, S, を作った。この混合物をガラス質炭素ルツボの中に配置し、このルツボをガラス質シリカ反応管の中に配50

置した。この反応管を閉鎖し、通常の排気口と、ヘリウムを送入するための通常の小型の取り入れ送入管とを取り付けた。P,0。とP,S。との混合物を1気圧のヘリウムのもとに10分間、950℃で加熱し、つぎに反応管を冷水に浸漬する事により常温(20℃)にまで急冷した。得られたガラス質P,0,S。を粉砕した。

10gのガラス質P, 0, S, を17.6gのLi Iおよび4.83gのLi, Sと混合した。混合物を粉砕し、ガラス質炭素ルツボの中に配置し、つぎに反応管の中に入れた。1気圧のへリウム圧のもとに、P, 0, S, / Li I / Li, S混合物を10分間、950℃で加熱し、つぎに反応管を冷水中に浸漬する事により常温(20℃)に急冷した。得られたガラス質2.5Li, P, 0, S, 固体電解質を粉砕し、ペレット状に形成すると、25℃で3.0×10⁻¹ ohm⁻¹ cm⁻¹ の導電率を有する事が発見された。

さらに詳細に述べるならば、導電率を測定するため、鋼 製ラムを備えた通常の鋼金型の中で粉末材料を二硫化チ タン電極間において13,000psiの圧力のもとに(等軸圧 を加える事により) ペレット化した。固体電解質デイス クをTiS:と共に金型から排出し、ポリエチレンバッグの 中に加熱密封した。密封取り付けフタを備えたアルコー ル充填ポリテトラフルオロエチレン シリンダの中に、 前記のバッグの中に密封された試料を入れた。このシリ ンダを、鋼ラムを備えた大型鋼金型の中に配置した。試 料を収容したアルコール充填ポリテトラフルオロエチレ ン シリンダを54,000psiに圧縮し、その結果、ガラス 試料とその電極のアイソスタチック圧縮が実施された。 TiS,/固体電解質/TiS,試料を、金接点を備え弾発され たホルダの中に入れた。J.E.Bauerle, J.Phys.Chem.Sol ids, 30, 2657 (1969) によって最初に固体電解質に応用さ れたコンプレックス・ブレーン技術を使用して、試料の 導電率を測定した。コンプレックス・プレーン技術は、 固体電解質導電率の測定のため、現在ほとんど世界的に 適用されている。

実施例 2

30

4. 9gのP, 0, と5. 1gのP, S, を1. 5:1モル比で使用した事以外は実施例1と同様に繰り返した。15.4gのLi1と、4. 8gのLi, Sを用いて、実施例1と同様の手順を用いた。得られたガラス質2. 5LiI・Li, P, 0, S, 固体電解質を粉砕し、ペレット化し、25℃において0.23×10⁻¹ohm⁻¹cm⁻¹の導電率を有する事が発見された。実施例 3

3個の0.787インチ直径×0.063インチ高さのコイン型電池を作った。一部の固体電解質を含有するTiS,から成る正極を各電池に用いた。TiS,を、実施例1と同様にして作られた2.5Li,P,0,S,のセパレータ層およびリチウム負極と共に、米国特許第4,477,545号に記載のようにして、80,000psiでアイソスタチック圧縮し、次に各電池ハウジングの中に組み込んだ。各電池を常温で、種々の負荷を通して、1.4ボルト、カットオフまで連続

9

放電させた。時間に対する電圧読み値を下記の表に示す。各電池は20オームの初インピーダンスと、20~40オームの最終インピーダンスとを有していた。

麦

11/2	ह्य ।	- I i	D_0_0	/TiS ₂
LI/ Z.	OL I I	• L14	12 U2 D3	/ 1152

	L1/ 2. DL	11 * L14P2U2S5 / 1	152
電池		電圧(ポルト)	時間(時間)
A	10K ohm	2,43	0
	10K ohm	2.35	1
	10K chm	2.31	5
	10K ohm	2, 26	13
	10K ohm	2, 11	41
	10K ohm	1.97	69
	10K ohm	1.92	77
	10K ohm	1.87	85
	10K chm	1.37	137
В	15K ohm	2.47	0
	15K ohm	2.31	17
	15K ohm	2.16	65
	15K ohm	2.05	101
	15K ohm	1.81	161
	15K ohm	1.62	189
	15K ohm	1.39	205
С	30K ohm	2.40	0
	30K ohm	2,27	85
	30K ohma	2, 17	161

		10	
電池	負荷	電圧(ポルト)	時間(時間)
	30K ohm	1.94	305
	30K ohm	1.75	377
	30K ohm	1,34	413

本発明は前記の説明のみに限定されるものでなく、その 趣旨の範囲内において任意に変更実施できる。 File 352:Derwent WPI 1963-2004/UD, UM &UP=200462 (c) 2004 Thomson Derwent Set Items Description DIALOG(R) File 352: Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv. WPI Acc No: 1986-196578/198630 XRAM Acc No: C86-084771 XRPX Acc No: N86-146893 Lithium contg. phosphorus oxide sulphide solid electrolyte - for solid state cells, has high room temp. conductivity
Patent Assignee: EVEREADY BATTERY CO INC (EVEY); UNION CARBIDE CORP (UNIC Inventor: AKRIDGE J R Number of Countries: 011 Number of Patents: 008 Patent Family: Patent No Kind Date Applicat No Kind Date Week US 4599284 EP 219597 19860708 US 85782467 19851001 Α 198630 EP 86104657 Α 19870429 19860405 Α 198717 JP 62082665 19870416 Α JP 86127419 Α 19860603 198721 AU 8655660 19870402 Α 198725 BR 8601780 19870602 198728 EP 219597 В 19891227 199001 DE 3667881 G 19900201 199006 CA 1265579 Α 19900206 199010 Priority Applications (No Type Date): US 85782467 A 19851001 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes US 4599284 Α EP 219597 A E Designated States (Regional): BE CH DE FR GB LI EP 219597 Designated States (Regional): BE CH DE FR GB LI Abstract (Basic): US 4599284 A A phosphorous oxide-sulphide solid state electrolyte has the compsn. P40aSb.cLi2S.dLi2O. ex: where LiBr, LiCl, LiF, Lil, Li2CO3, Li2SO4, Li2SiO3, Li4SiO4; a=(10-b), and b is greater than 0 and less than 10, but when b=6, a may =3; c and d=0-4, but hwen both are greater than 0, d=4-c, and when c or d=0 the other is greater than 0 + a = 0 - 7 + a = 00; e = 0-7; e.g. 5Lil.4Li2S.P4OS9. A solid state cell comprises an u; e = U-7; e.g. 5LII.4LI25.P4U59. A SUITU STATE CELL COMPLISES AN anode, a cathode and the solid state electrolyte.

Pref. P40aSb= P40rS5, P404S6, P403S7, P402S8, P401S9; c,d = 1-4; e = 0-5. Specific electrolytes are 5LiI.4Li2S.P40S9; 2LiI.2Li2S.P202S 2LiI.2Li2S.Ps02S3; 2.5LiI.2Li2S.P202S3; 2LiBr.2Li2S.P203S2. The anode is Li, Li alloy, Na, K, Rb, Ag. The cathode is TiS2 + MoS3, MoS3, poly(N-vinylpyrrolidone) (PVP) + 12, PVP + 12 + TiS2, FeS2, Sb2S3 or Man2 USE/ADVANTAGE - The cell is useful for microelectronic circuits. The solid electrolyte has a conductivity at least 0.75 x 10 power -4

ohm-1 cm-1 at 25 deg.C. (5pp Dwg.No.0/0)

Abstract (Equivalent): EP 219597 B

A phosphorus oxide-sulphide solid state electrolyte of the composition: P4PaSb, cLi2S, dLi3O, eX where X is selected from the group consisting of LiBr, LiCl, LiF, Lil, Li2CO3, Li2SO4, Li2SiO3 and Li4SiO4; a is equal to (10-b) with b being greater than 0 and less than 10 with the proviso however that when b is 6, a can be 3; c and d are from 0 to about 4 with the proviso that when c and d are both greater

from 0 to about 4 with the proviso that when c and d are both greater than 0 then d=4-c, and when c or d is 0 then d or c, respectively is greater than 0; and e is from 0 to about 7. (7pp)

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

R	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
×	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
A	GRAY SCALE DOCUMENTS
Ø	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY. As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox