LC-3 instruction datapaths & control signals

Compiled by Daniel Stinson-Diess and Aaroh Mankad, Alex Chen

ADD+	0001	DF		SR1	0	00	SR2
ADD+	0001	DF		SR1	1	ir	mm5
AND+	0101	DF		SR1	0	00	SR2
AND+	0101	DF	1	SR1	1	ir	nm5
BR	0000	n z	р	7 6	PC	offset9	
JMP	1100	000	0	BaseR	10	000	000
JSR	0100	1	1 1	PC	offse	et11	
JSRR	0100	0 (00	BaseR	85	000	000
LD+	0010	DF		1	PC	offset9	
LDI+	1010	DF			PC	offset9	
LDR+	0110	DF		BaseR		offs	et6
LEA+	1110	DF		1 B	PC	offset9	
NOT+	1001	DF		SR	100	111	111
RET	1100	000	9	111	33	000	000
RTI	1000		i i	00000	0000	000	
вт 📙	0011	SF		3 1	PC	offset9	11
вті 📙	1011	SF	3	1 1	PC	offset9	1 1
STR	0111	SF	3	BaseR		offs	et6
TRAP	1111	0	000		tı	apvect	
reserved	1101		ij	1		-	1 1

Not explicitly shown on this simplified schematic:

- MDRMUX: selects either BUS or MEMORY as input to the MDR
- MDR Gate: allows the MDR to write to the bus
- DR MUX: selects either IR[11:9] (default) or [111] as input to the DR decoder
- SR1MUX: selects either IR[8:6] (default) or IR[11:9] as input to the SR1 decoder

List of all control signals:

GATE: Allows data from a register or other source to be written to the BUS

```
Gate.ALU BUS <- ALU
 Gate.MARMUX BUS <- MARMUX
 Gate.MDR BUS <- MDR
 Gate.PC BUS <- PC
LD: Write-enables a register
 LD.IR IR <- BUS
 LD.MAR MAR <- BUS
 LD.MDR MDR <- BUS
 LD.REG REG[DR] <- BUS
 LD.PC PC <- PCMUX
MEM.EN: Activates the Memory
 MEM.EN/R MDR <- MEM[MAR] (Read from memory)
 MEM.EN/W MEM[MAR]<- (MDR) (Write to memory)
  R (from Mem to FSM): Signals that Memory operation is complete
MUX: Selects data from one of multiple sources
       only matters if the destination register is write enabled or Gate is open
 ADDR1MUX ADDR ADD<- (PC) / SR1bus (choose "starting" value for address calc)
 ADDR2MUX ADDR ADD<- SEXT(IR[5:0]) (for STR, LDR)
                               / SEXT(IR[8:0]) (PCOffset9 for BR, LD, LDI, LEA, ST, STI)
                               / SEXT(IR[10:0]) (PCOffset11 for JSR)
                               / 0 (for JMP, JSRR)
 DRMUX
            DR <- IR[11:9] (for most instructions) / [111] ( R7 <- (PC) )
 MARMUX MAR via Gate.Marmux/bus <- ADDR ADD / ZEXT(IR[7:0]) (for TRAP)
             LD.MDR <- BUS (for writing) / MEM (for reading)
 MDRMUX
                 PC
                         <- ADDR ADD / BUS / PC + 1
 PCMUX
 SR1MUX SR1 decoder <- IR[8:6] (most instructions) / [11:9] (STORE instructions)
 SR2MUX ALU.B <- REG[SR2] / SEXT(IR[4:0]) (= imm5)
<u>Other</u>
 ALUK
          ALU < A + B / A & B / \simA / A
 LD.CC NZP cc's write enabled for instructions that write to GPR bank
```

Instruction Fetch sequence

Register Transfer Notation

IR <= Mem[(PC)]</pre>

- 1. Gate.PC
- 2. LD.MAR
- 3. MEM.EN/R
 - a. Wait for R
- 4. MDRMUX selects Memory (the MDRMUX is not shown in the simplified datapath)
- 5. LD.MDR
- 6. Gate.MDR (the MDR Gate is not shown in the simplified datapath)
- 7. ID.IF

ADD (register mode)

	Орс	ode			DR			SR1		Mode	Unu	sed		SR2	
0	0	0	1	х	х	х	х	х	х	0	0	0	х	х	х

Register Transfer Notation

Control Signals

- 1. SR1MUX selects IR[8:6] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 2. SR2MUX selects SR2OUT
- 3. ALUK selects ADD
- 4. GateALU
- 5. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 6. LD.REG

ADD (immediate mode)

	Орс	ode			DR			SR1		Mode			IMM5	,	
0	0	0	1	х	х	х	х	х	х	1	х	х	х	х	х

Register Transfer Notation

$$DR \in (SR1) + SEXT(IR[4:0])$$

- SR1MUX selects IR[8:6] (not shown in the simplified datapath)
 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 2. SR2MUX selects SEXT(IR[4:0])
- 3. ALUK selects ADD
- 4. GateALU
- DRMUX selects IR[11:9] (not shown in the simplified datapath)
 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 6. LD.REG

AND (register mode)

	Орс	ode			DR			SR1		Mode	Unu	sed		SR2	
0	1	0	1	х	х	х	х	х	х	0	0	0	х	х	х

Register Transfer Notation

DR (SR1) bitwise and (SR2)

Control Signals

- 1. SR1MUX selects IR[8:6] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 2. SR2MUX selects SR2OUT
- 3. ALUK selects AND
- 4. Gate.ALU
- 5. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 6. LD.REG

AND (immediate mode)

	Орс	ode			DR			SR1		Mode			IMM5	,	
0	1	0	1	х	х	х	х	х	х	1	х	х	х	х	х

Register Transfer Notation

DR (SR1) bitwise and SEXT(IR[4:0])

- SR1MUX selects IR[8:6] (not shown in the simplified datapath)
 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 2. SR2MUX selects IR[4:0]
- 3. ALUK selects AND
- 4. Gate.ALU
- 5. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 6. LD.REG

NOT

	Орс	ode			DR			SR				Unu	sed		
1	0	0	1	х	х	х	х	х	х	1	1	1	1	1	1

Register Transfer Notation

DR ← bitwise not (SR1)

Control Signals

- SR1MUX selects IR[8:6] (not shown in the simplified datapath)
 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 2. ALUK selects NOT
- 3. Gate.ALU
- 4. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 5. LD.REG

LEA

	Орс	ode			DR					P	COffset	t9			
1	1	1	0	х	х	х	х	х	х	х	х	х	х	х	х

Register Transfer Notation

 $DR \in (PC) + SEXT(IR[8:0])$

- 1. ADDR1MUX selects PC
- 2. ADDR2MUX selects IR[8:0]
- 3. MARMUX selects ADDR ADD
- 4. Gate.MARMUX
- 5. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 6. LD.REG

LD

	Орс	ode			DR					P	COffset	t9			
0	0	1	0	х	х	х	х	х	х	х	х	х	х	х	х

Register Transfer Notation

 $DR \leftarrow Mem[(PC) + SEXT(IR[8:0])]$

- 1. ADDR1MUX selects PC
- 2. ADDR2MUX selects SEXT(IR[8:0])
- 3. MARMUX selects ADDR ADD
- 4. Gate.MARMUX
- 5. LD.MAR
- 6. MEM.EN/R
 - a. Wait for R
- 7. MDRMUX selects Memory (the MDRMUX is not shown in the simplified datapath)
- 8. LD.MDR
- 9. Gate.MDR (the MDR Gate is not shown in the simplified datapath)
- 10. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 11. LD.REG

LDI

	Орс	ode			DR					P	COffset	t9			
1	0	1	0	х	х	х	х	х	х	х	х	х	х	х	х

Register Transfer Notation

DR = Mem[Mem[(PC) + SEXT(IR[8:0]]]

Control Signals

- 1. ADDR1MUX selects PC
- 2. ADDR2MUX selects SEXT(IR[8:0])
- 3. MARMUX selects ADDR ADD
- 4. Gate.MARMUX
- 5. LD.MAR
- 6. MEM.EN/R
 - a. Wait for R
- 7. MDRMUX selects Memory
- 8. LD.MDR
- 9. Gate.MDR
- 10. LD.MAR
- 11. MEM.EN/R
 - a. Wait for R
- 12. MDRMUX selects Memory (the MDRMUX is not shown in the simplified datapath)
- 13. LD.MDR
- 14. Gate.MDR (the MDR Gate is not shown in the simplified datapath)
- 15. DRMUX selects IR[11:9] (not shown in the simplified datapath)

This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0

16. LD.REG

LDR

	Орс	ode			DR			BaseR				offs	et6		
0	1	1	0	х	х	х	х	х	х	х	х	х	х	х	х

Register Transfer Notation

 $DR \in Mem[(IR[8:6]) + SEXT(IR[5:0]]]$

Control Signals

1. SR1MUX selects IR[8:6]

This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0

- 2. ADDR1MUX selects SR1OUT
- 3. ADDR2MUX selects SEXT(IR[5:0])
- 4. MARMUX selects ADDR ADD
- 5. Gate.MARMUX
- 6. LD.MAR
- 7. MEM.EN/R
 - a. Wait for R
- 2. MDRMUX selects Memory (the MDRMUX is not shown in the simplified datapath)
- 3. LD.MDR
- 4. Gate.MDR (the MDR Gate is not shown in the simplified datapath)
- 5. DRMUX selects IR[11:9] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 6. LD.REG

ST

	Орс	ode			SR					P	COffset	t9			
0	0	1	1	х	х	х	х	х	х	х	х	х	х	х	х

Register Transfer Notation

 $Mem[(PC) + SEXT(IR[8:0]] \in SR$

Control Signals

- 1. ADDR1MUX selects PC
- 2. ADDR2MUX select SEXT(IR[8:0])
- 3. MARMUX selects ADDR ADD
- 4. Gate.MARMUX
- 5. LD.MAR
- 6. SR1MUX selects IR[11:9] (not shown in the simplified datapath)
- 7. ALUK selects Pass Through
- 8. Gate.ALU
- 9. MDRMUX selects bus (the MDRMUX is not shown in the simplified datapath)
- 10. LD.MDR
- 11. MEM.EN W

(Note: no need to wait for R, as there is no subsequent step in this instruction)

STI

	Орс	ode			SR					P	COffset	t9			
1	0	1	1	х	х	х	х	х	х	х	х	х	х	х	х

Register Transfer Notation

 $Mem[Mem[(PC) + SEXT(IR[8:0]]] \in SR$

Control Signals

- 1. ADDR1MUX selects PC
- 2. ADDR2MUX selects SEXT(IR[8:0])
- 3. MARMUX selects ADDR ADD
- 4. Gate.MARMUX
- 5. LD.MAR
- 6. MEM.EN/R
 - a. Wait for R
- 7. MDRMUX selects Memory (the MDRMUX is not shown in the simplified datapath)
- 8. LD.MDR
- 9. Gate.MDR
- 10. LD.MAR
- 11. SR1MUX selects IR[11:9] (not shown in the simplified datapath)
- 12. ALUK selects Pass Through
- 13. Gate.ALUK
- 14. MDRMUX selects Bus (the MDRMUX is not shown in the simplified datapath)
- 15. LD.MDR
- 16. MEM.EN/W

(Note: no need to wait for R, as there is no subsequent step in this instruction)

STR

	Орс	ode		SR			BaseR			offset6						
0	1	1	1	х	х	х	х	х	х	х	х	х	х	х	х	

Register Transfer Notation

 $Mem[(IR[8:6]) + SEXT(IR[5:0]] \in SR$

Control Signals

- 1. SR1MUX selects IR[8:6]
- 2. ADDR1MUX selects SR1OUT
- 3. ADDR2MUX selects SEXT(IR[5:0])
- 4. MARMUX selects ADDR ADD
- 5. Gate.MARMUX
- 6. LD.MAR
- 7. SR1MUX selects IR[11:9] (not shown in the simplified datapath)
- 8. ALUK selects Pass Through
- 9. Gate.ALU
- 10. MDRMUX selects Bus (the MDRMUX is not shown in the simplified datapath)
- 11. LD.MDR
- 12. MEM.EN/W

(Note: no need to wait for R, as there is no subsequent step in this instruction)

JMP

	Орс	ode		ı	Jnused	BaseR			Unused						
1	1	0	0	0	0	0	х	х	х	0	0	0	0	0	0

Register Transfer Notation

PC ∈ (BaseR)

Control Signals

- 1. SR1MUX selects IR[8:6] (not shown in the simplified datapath)

 This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0
- 2. ADDR1MUX selects SR1OUT
- 3. ADDR2MUX selects 0
- 4. PCMUX selects ADDR ADD
- 5. LD.PC

BR

Opcode		n	z	р				P	COffset	t9				
0	0	0	0	х	х	х	х							х

Register Transfer Notation

$$PC \leftarrow (PC) + SEXT(IR[8:0]) iff (N.n + Z.z + P.p)$$

- 1. ADDR1MUX selects PC
- 2. ADDR2MUX selects SEXT(IR[8:0])
- 3. PCMUX selects ADDR ADD
- 4. LD.PC iff (N.n + Z.z + P.p)

JSR

Opcode Mode						PCOffset11									
0	1	0	0	1	х	х	х	х	х	Х	х	Х	х	Х	х

Register Transfer Notation

Control Signals

- 1. GatePC
- 2. DRMUX selects [111] (not shown in the simplified datapath)
- 3. LD.REG
- 4. ADDR1MUX selects PC
- 5. ADDR2MUX selects SEXT(IR[10:0])
- 6. PCMUX selects ADDR ADD
- 7. LD.PC

JSRR

Opcode I				Mode	Unu	sed	BaseR			Unused							
	0	1	0	0	0	0	0	х	х	Х	0	0	0	0	0	0	

Register Transfer Notation

Control Signals

- 1. GatePC
- 2. DRMUX selects [111] (not shown in the simplified datapath)
- 3. LD.REG
- 4. SR1MUX selects IR[8:6] (not shown in the simplified datapath)

This does not really need to be mentioned, as it is the default, i.e. the select bit stays 0

- 5. ADDR1MUX selects SR1OUT
- 6. ADDR2MUX selects 0
- 7. PCMUX selects ADDR ADD
- 8. LD.PC

TRAP

	Орс	ode			Unu	ised		trapvec8								
1	1	1	1	0	0	0	0	х	Х	х	х	х	х	Х	х	

Register Transfer Notation

 $R7 \in (PC)$ $PC \in Mem[ZEXT(IR[7:0])]$

- 1. GatePC
- 2. DRMUX selects [111] (not shown in the simplified datapath)
- 3. LD.REG
- 4. MARMUX selects ZEXT(IR[7:0)
- 5. Gate.MARMUX
- 6. LD.MAR
- 7. MEM.EN/R
 - a. Wait for R
- 8. MDRMUX selects MEM. (the MDRMUX is not shown in the simplified datapath)
- 9. LD.MDR
- 10. Gate.MDR (the MDR Gate is not shown in the simplified datapath)
- 11. PCMUX selects bus.
- 12. LD.PC