Online Appendix to "Dynamic Coordination with Informational Externalities"

Beixi Zhou*

March 21, 2021

OA.1 Omitted Proofs for Section 3

OA.1.1 Proof of Lemma 6

I show the first inequality, which is equivalent to $f^0(z)(F^1(\hat{z})-F^1(z)) > f^1(z)(F^0(\hat{z})-F^0(z))$ if and only if $\hat{z}>z$. The proof of the second inequality is analogous.

First note that if $\hat{z} = z$, then $f^0(z)(F^1(\hat{z}) - F^1(z)) = 0 = f^1(z)(F^0(\hat{z}) - F^0(z))$. For a fixed z, $f^0(z)(F^1(\hat{z}) - F^1(z))$ is increasing in \hat{z} with derivative $f^0(z)f^1(\hat{z})$; $f^1(z)(F^0(\hat{z}) - F^0(z))$ is increasing in \hat{z} with derivative $f^1(z)f^0(\hat{z})$. By MLRP, $\hat{z} > z$ if and only if $f^1(z)f^0(\hat{z}) < f^0(z)f^1(\hat{z})$, which implies $f^0(z)(F^1(\hat{z}) - F^1(z)) > f^1(z)(F^0(\hat{z}) - F^0(z))$ for $\hat{z} > z$.

OA.1.2 Proof of Lemma 7

Leader x's expected payoff from stopping at t^* is

$$\mathcal{L}(x, t^{*}) = \lim_{\varepsilon \to 0} \left(q_{L}(x) \int_{0}^{t^{*} - \varepsilon} e^{-r\tau} dG_{F}^{1}(\tau) H - (1 - q_{L}(x)) \int_{0}^{t^{*} - \varepsilon} e^{-r\tau} dG_{F}^{0}(\tau) L \right).$$

$$+ \lim_{\varepsilon \to 0} \left(q_{L}(x) (G_{F}^{1}(t^{*}) - G_{F}^{1}(t^{*} - \varepsilon)) + (1 - q_{L}(x)) (G_{F}^{0}(t^{*}) - G_{F}^{0}(t^{*} - \varepsilon)) \cdot 0 \right.$$

$$= \lim_{\varepsilon \to 0} q_{L}(x) \left(\int_{0}^{t^{*} - \varepsilon} e^{-r\tau} dG_{F}^{1}(\tau) H + \int_{0}^{t^{*} - \varepsilon} e^{-r\tau} dG_{F}^{0}(\tau) L \right) - \int_{0}^{t^{*} - \varepsilon} e^{-r\tau} dG_{F}^{0}(\tau) L.$$

^{*}Department of Economics, Boston University, bzhou@bu.edu.

Follower y's expected payoff from stopping at t^* is

$$\mathcal{F}(y,t^*) = e^{-rt^*} \left(\left(q_F(y) \left((1 - G_L^1(t^*))H + (1 - G_L^0(t^*))L \right) - (1 - G_L^0(t^*))L \right) + \lim_{\varepsilon \to 0} \left(q_F(y) (1 - G_L^1(t^* - \varepsilon)) + (1 - q_F(y))(1 - G_L^0(t^* - \varepsilon)) \right) (-c) \right).$$

I show the leader's expected payoff is supermodular and the follower's is submodular.

Denote $\Delta \mathcal{L}(x, t, t') = \mathcal{L}(x, t') - \mathcal{L}(x, t)$. For t' > t and x' > x,

$$\Delta \mathcal{L}(x',t,t') - \Delta \mathcal{L}(x,t,t')$$

$$= \lim_{\varepsilon \to 0} (q_L(x') - q_L(x)) \left(\int_{t-\varepsilon}^{t'-\varepsilon} e^{-r\tau} dG_F^1(\tau) H + \int_{t-\varepsilon}^{t'-\varepsilon} e^{-r\tau} dG_F^0(\tau) L \right).$$

By MLRP, $q_L(x') - q_L(x) > 0$. For t' > t, $G_F^{\theta}(t') \geq G_F^{\theta}(t)$. So $\Delta \mathcal{L}(x', t, t') - \Delta \mathcal{L}(x, t, t') > 0$. Therefore, $\mathcal{L}(x, t)$ is supermodular in (x, t). By Topkis's theorem, $\sigma_L(x) = \arg \max_{t \geq 0} \mathcal{L}(x, t)$ is non-decreasing in x.

Denote $\Delta \mathcal{F}(y, t, t') = \mathcal{F}(y, t') - \mathcal{F}(y, t)$. For t' > t and y' > y,

$$\begin{split} &\Delta \mathcal{F}(y',t,t') - \Delta \mathcal{F}(y,t,t') \\ = & (q_F(y') - q_F(y)) \left(e^{-rt'} (1 - G_L^1(t')) - e^{-rt} (1 - G_L^1(t)) \right) H \\ & - (q_F(y') - q_F(y)) \left(e^{-rt} (1 - G_L^0(t)) - e^{-rt'} (1 - G_L^0(t')) \right) L \\ & - \lim_{\varepsilon \to 0} c \left(e^{-r(t'-\varepsilon)} (q_F(y') - q_F(y)) \left((1 - G_L^1(t'-\varepsilon)) + (1 - G_L^0(t'-\varepsilon)) \right) \right) \\ & + e^{-r(t-\varepsilon)} (q_F(y') - q_F(y)) \left((1 - G_L^1(t-\varepsilon)) + (1 - G_L^0(t-\varepsilon)) \right) \right). \end{split}$$

By MLRP, $q_F(y') - q_F(y) > 0$. For t' > t, $e^{-rt'}(1 - G_L^{\theta}(t')) < e^{-rt}(1 - G_L^{\theta}(t')) \le e^{-rt}(1 - G_L^{\theta}(t))$. So $\Delta \mathcal{F}(y', t, t') - \Delta \mathcal{F}(y, t, t') < 0$. Therefore, $\mathcal{F}(y, t)$ is submodular in (y, t). By Topkis's theorem, $\sigma_F(y) = \arg\max_{t \geq 0} \mathcal{F}(y, t)$ is non-increasing in y.

Follower's equilibrium distribution of stopping time is non-atomic at T

Suppose there is an atom at t = T in the follower's equilibrium distribution of stopping time. By a similar argument to Claim 1, there exists a unique $\bar{x} \in (x(0), 1)$ such that $B(\bar{x}, T) = 0$. So for all $x \in (\bar{x}, 1)$, B(x, T) > 0. By a similar argument to Claim 2,

 $\sup_{t\in(T-\varepsilon,T+\varepsilon)}\mathcal{L}(x,t)=\mathcal{L}(x,T)+A(x,T)$ with A(x,T)>0. Because the probability of the follower investing at any $t\geq T$ is zero, the change in leader x's expected payoff at and after T is zero. This implies that the leader's expected payoff from disinvesting at any $t\geq T$ is constant at $\mathcal{L}(x,T)+A(x,T)$. Thus, the leader is indifferent between disinvesting at any $t\in(T,\infty]$. By the (indifference) tie-breaking rule, x disinvests at the infimum of the set $(T,\infty]$, which is T. However, if x disinvests at x, he gets x due to x

Leader's equilibrium distribution of stopping time is non-atomic at T

Suppose there is an atom at T. By the definition of T, it must be that all remaining leader types disinvest. That is, for $\theta = 0, 1$, $\Pr(\sigma_L(x) > T | \sigma_L(x) > 0, \theta) = 0$. So $\Pr(\sigma_L(x) \geq T | \sigma_L(x) > 0, \theta) = \Pr(\sigma_L(x) = T | \sigma_L(x) > 0, \theta)$, which means

$$\mathcal{F}_{-}(y,T) = e^{-rT} \left(A(y,T) - C(y,T) \right),$$

$$\mathcal{F}(y,T) = \mathcal{F}_{-}(y,T) - e^{-rT}A(y,T) = -e^{-rT}C(y,T) < 0,$$

 $\mathcal{F}_+(y,T) < 0$, and $\mathcal{F}(y,t) < 0$ for all t > T. A(y,T) - C(y,T) is strictly increasing in y and there exists a unique $\bar{y} \in (0,y(0))$ such that $A(\bar{y},T) - C(\bar{y},T) = 0$.

Case (i) Suppose $\mathcal{F}(\bar{y},t)$ attains a maximum at $t^* \in [0,T]$. Because $\sigma_F(y)$ is non-increasing, if \bar{y} invests at t^* , then all $y > \bar{y}$ will invest (at or) before t^* and all $y < \bar{y}$ will invest (at or) after t^* . So the only types who might invest in $(t^*,T]$ are $y < \bar{y}$. For $y < \bar{y}$, $\mathcal{F}_-(y,T) = A(y,T) - C(y,T) < 0$ and $\mathcal{F}(y,t) < 0$ for all $t \geq T$, so if investing at $t^{**} \in (t^*,T]$ is optimal, it must be that $\mathcal{F}(y,t^{**}) > 0$ and $t^{**} < T$. So there exist a $\delta > 0$ small such that $t^{**} \notin [T - \delta,T]$. This implies there does not exist a y such that $\sigma_F(y) \in [T - \delta,T]$. The leader is indifferent between stopping at $T - \delta$ and T. By the (indifference) tie-breaking rule, the leader stops at $T - \delta$, which contradicts the hypothesis that there is a mass of leader types stopping at T.

Case (ii) Suppose $\mathcal{F}(\bar{y},t)$ does not attain a maximum in [0,T]. Fix $y > \bar{y}$. Then A(y,T) - C(y,T) > 0 so $\mathcal{F}_{-}(y,T) > 0 > \mathcal{F}(y,T)$. There are two sub-cases.

First, all $\mathcal{F}(y,t)$ with $y > \bar{y}$ up to sets of measure zero attains a maximum in [0,T]. If \mathcal{F} attains a maximum at some $t^* \in [0,T]$, it must be that $\mathcal{F}(y,t^*) \geq \mathcal{F}_-(y,T) > 0$ and $t^* < T$. So there exist a $\delta > 0$ small such that $t^* \notin [T - \delta, T]$, a contradiction.

Second, there exist a positive measure of types $y > \bar{y}$ such that $\mathcal{F}(y,t)$ does not attain a maximum in [0,T]. $\mathcal{F}_{-}(y,T)$ is the supremum of $\mathcal{F}(y,t)$ for all t. However,

this supremum cannot be achieved because $\mathcal{F}(y,T) = -e^{-rT}C(y,T) < 0 < \mathcal{F}_{-}(y,T)$. So a positive measure of follower types does not have a best response, a contradiction.

Combining case (i) and case (ii), there cannot exist an atom in the leader's equilibrium distribution of stopping time at T.

OA.2 Omitted Proofs for Section 4

OA.2.1 Proof of Lemma 11

First, I establish a useful equality: it follows directly from (6) that for all $\mu \in (0,1)$,

$$\frac{f^{0}(\mu)}{\hat{f}^{0}(\mu)} = \frac{f^{1}(\mu)}{\hat{f}^{1}(\mu)}.$$
 (OA.1)

Define the survival rate conditional on θ , and the probability rate conditional on θ as

$$Q^{\theta}(\mu) := \frac{1 - F^{\theta}(\mu)}{1 - \hat{F}^{\theta}(\mu)}, \ P^{\theta}(\mu) := \frac{F^{\theta}(\mu)}{\hat{F}^{\theta}(\mu)}.$$

By (OA.1), showing $h_F(\mu) > h_{\hat{F}}(\mu)$ is equivalent to showing Corollary 3

$$\frac{1 - F^{1}(\mu)}{1 - \hat{F}^{1}(\mu)} < \frac{1 - F^{0}(\mu)}{1 - \hat{F}^{0}(\mu)},\tag{OA.2}$$

that is, $Q^1(\mu) < Q^0(\mu)$. Figure OA.1 provides an illustration of this inequality.

Figure OA.1: Illustration for (OA.2) with F and \hat{F} induced by signals distributed according to $Beta(1 + \theta, 1 + (1 - \theta))$ and $Beta(1 + 2\theta, 1 + 2(1 - \theta))$ respectively.

Consider the slope of $Q^{\theta}(\mu)$:

$$\frac{\mathrm{d}Q^1}{\mathrm{d}\mu} = \frac{f^1(\mu)}{1 - \hat{F}^1(\mu)} \left(\frac{1 - F^1(\mu)}{1 - \hat{F}^1(\mu)} - \frac{f^1(\mu)}{\hat{f}^1(\mu)} \right), \frac{\mathrm{d}Q^0}{\mathrm{d}\mu} = \frac{f^0(\mu)}{1 - \hat{F}^0(\mu)} \left(\frac{1 - F^0(\mu)}{1 - \hat{F}^0(\mu)} - \frac{f^0(\mu)}{\hat{f}^0(\mu)} \right).$$

By Proposition 2 in Hopkins and Kornienko (2007), if $f^{\theta}(\mu)/\hat{f}^{\theta}(\mu)$ is unimodal with maximum at 1/2, then $Q^{\theta}(\mu)$ is unimodal with maximum achieved at $\hat{\mu}_Q^{\theta} < 1/2$.

First, consider $\mu \ge \max\{\hat{\mu}_Q^1, \hat{\mu}_Q^0\}$. Both $Q^1(\mu)$ and $Q^0(\mu)$ are decreasing. Suppose the contrary $Q^0(\mu) \le Q^1(\mu)$. By (OA.1),

$$\frac{1 - F^{0}(\mu)}{1 - \hat{F}^{0}(\mu)} - \frac{f^{0}(\mu)}{\hat{f}^{0}(\mu)} \le \frac{1 - F^{1}(\mu)}{1 - \hat{F}^{1}(\mu)} - \frac{f^{1}(\mu)}{\hat{f}^{1}(\mu)} < 0,$$

By MLRP, $\hat{f}^0(\mu)/(1-\hat{F}^0(\mu)) > \hat{f}^1(\mu)/(1-\hat{F}^1(\mu))$, so $dQ^0/d\mu < dQ^1/d\mu < 0$. This means that if $Q^0(\mu) \leq Q^1(\mu)$, then $Q^0(\mu)$ must decrease faster than $Q^1(\mu)$. This is a contradiction because $\lim_{\mu \to 1} Q^1(\mu) = \lim_{\mu \to 1} Q^0(\mu)$ as

$$\lim_{\mu \to 1} \frac{1 - F^1(\mu)}{1 - \hat{F}^1(\mu)} = \lim_{\mu \to 1} \frac{f^1(\mu)}{\hat{f}^1(\mu)} = \lim_{\mu \to 1} \frac{f^0(\mu)}{\hat{f}^0(\mu)} = \lim_{\mu \to 1} \frac{1 - F^0(\mu)}{1 - \hat{F}^0(\mu)}.$$

Because $\hat{\mu}_Q^1$, $\hat{\mu}_Q^0 < 1/2$ and $f^1(\mu)/\hat{f}^1(\mu)$ is increasing for $\mu \leq 1/2$, $\hat{\mu}_Q^1 < \hat{\mu}_Q^0$.

Next, consider $\mu \in (\hat{\mu}_Q^1, \hat{\mu}_Q^0)$. Q^0 is increasing and Q^1 is decreasing, which means $Q^1(\mu) < f^1(\mu)/\hat{f}^1(\mu) = f^0(\mu)/\hat{f}^0(\mu) < Q^0(\mu)$.

Lastly, consider $\mu \leq \hat{\mu}_Q^1$. $\lim_{\mu \to 0} Q^1(\mu) = \lim_{\mu \to 0} Q^0(\mu) = 1$ and $\lim_{\mu \to 0} \mathrm{d}Q^1/\mathrm{d}\mu < \lim_{\mu \to 0} \mathrm{d}Q^0/\mathrm{d}\mu$. Suppose there exists $\tilde{\mu}$ such that $Q^1(\tilde{\mu}) = Q^0(\tilde{\mu})$. Then at $\tilde{\mu}$, $\mathrm{d}Q^1/\mathrm{d}\mu < \mathrm{d}Q^0/\mathrm{d}\mu$. This is a contradiction. Because $Q^1(\mu)$ and $Q^0(\mu)$ are increasing, they start at the same value, and $Q^0(\mu)$ increases faster than $Q^1(\mu)$ at the beginning. So if they were to cross, $Q^1(\mu)$ must cross $Q^0(\mu)$ from below which means it must be $\mathrm{d}Q^1/\mathrm{d}\mu > \mathrm{d}Q^0/\mathrm{d}\mu$. Therefore $Q^1(\mu) < Q^0(\mu)$ for all $\mu \leq \hat{\mu}_Q^1$.

OA.2.2 Proof of Lemma 12

 $F \succ_{\text{ULR}} \hat{F}$ implies f/\hat{f} is unimodal. The likelihood ratio of F and $(1 - \lambda)F + \lambda \hat{F}$ is $f/((1-\lambda)f + \lambda \hat{f})$ and the likelihood ratio of $(1-\lambda)F + \lambda \hat{F}$ and \hat{F} is $((1-\lambda)f + \lambda \hat{f})/\hat{f}$. Both are unimodal as implied by that f/\hat{f} is unimodal.

 $F \succ_{\text{ULR}} \hat{F}$ implies the mean of F is greater than or equal to the mean of \hat{F} . So the mean of F is greater than or equal to the mean of $(1-\lambda)F + \lambda \hat{F}$, which is greater

than or equal to the mean of \hat{F} . The result follows.

OA.2.3 Proof of Claim 8

The proof is mostly algebraic. The idea is to write \mathcal{V} as a function of h so the condition reduces to terms that are easier to compare. For conciseness, I omit the argument of the functions from now on. After some rearranging, \mathcal{V} can be written as

$$\mathcal{V} = \underbrace{q\left(1 - \frac{1 - \mu}{\mu}\right) - q\left(1 - \frac{1 - \mu}{\mu}\right)\left(\frac{1 - \mu}{\mu} \frac{1 - F^1}{F^1}\right)}_{=:a}h.$$

So $\mathcal{V} = ah + b$. Let the subscript of the function denote the partial derivative the function is taken with respect to. Then

$$\frac{\partial h/\partial \lambda}{\partial h/\partial \mu} - \frac{\partial \mathcal{V}/\partial \lambda}{\partial \mathcal{V}/\partial \mu} = \frac{h_{\lambda}}{h_{\mu}} \left(\frac{a_{\mu}h + b_{\mu}}{\partial \mathcal{V}/\partial \mu} \right) - \frac{a_{\lambda}h + b_{\lambda}}{\partial \mathcal{V}/\partial \mu}.$$

Because $\partial V/\partial \mu > 0$ (and also $a_{\mu}h + b_{\mu} > 0$), to show the above expression is negative, it is equivalent to showing

$$\frac{h_{\lambda}}{h_{\mu}} < \frac{a_{\lambda}h + b_{\lambda}}{a_{\mu}h + b_{\mu}}.$$

This follows from the following chain of inequality: for all $\mu \geq 1/2$,

$$\frac{h_{\lambda}}{h_{\mu}} < \frac{q_{\lambda}}{q_{\mu}} < \frac{a_{\lambda}h + b_{\lambda}}{a_{\mu}h + b_{\mu}}.$$

I now prove this chain of inequality holds.

For the first inequality $h_{\lambda}/h_{\mu} < q_{\lambda}/q_{\mu}$, write q as a function of h,

$$q = \frac{1}{1 + \underbrace{\frac{1 - \mu}{\mu} \frac{1}{F^{1}} - \left(\frac{1 - \mu}{\mu}\right)^{2} \frac{1 - F^{1}}{V^{1}} h}}_{=:c}.$$

That is, q = 1/(1 + c + dh). Then

$$\frac{h_{\lambda}}{h_{\mu}} - \frac{q_{\lambda}}{q_{\mu}} = \frac{h_{\lambda}}{h_{\mu}} \left(1 - \frac{h_{\mu}d}{q_{\mu}} \right) - \frac{c_{\lambda} + d_{\lambda}h}{q_{\mu}}.$$

Because $h_{\lambda} < 0$, $h_{\mu} > 0$, $q_{\mu} > 0$, d < 0, so $1 - h_{\mu}d/q_{\mu} > 0$. So the first term is negative. For the second term, by definition, $c = ((1 - \mu)/\mu)(1/F^1)$, and $d = -c(1 - \mu)/\mu + ((1 - \mu)/\mu)^2$. Because $(1 - F^0)/(1 - F^1) < 1$, and $c_{\lambda} > 0$, so $d_{\lambda}h = -c_{\lambda}(1 - F^0)/(1 - F^1) > -c_{\lambda}$, which implies $(c_{\lambda} + d_{\lambda}h)/q_{\mu} > 0$.

For the second inequality $q_{\lambda}/q_{\mu} < (a_{\lambda}h + b_{\lambda})/(a_{\mu}h + b_{\mu})$, the right-hand side is

$$\frac{q_{\lambda}\left(2-\frac{1}{\mu}\right)\left(1-\frac{1-F^{0}}{F^{1}}\right)-\left(\frac{1-F^{1}}{F^{1}}\right)_{\lambda}\frac{1-\mu}{\mu}bh}{q_{\mu}\underbrace{\left(2-\frac{1}{\mu}\right)\left(1-\frac{1-F^{0}}{F^{1}}\right)+\underbrace{\left(2-\frac{1}{\mu}\right)_{\mu}q\left(1-\frac{1-F^{0}}{F^{1}}\right)-\left(\frac{1-\mu}{\mu}\frac{1-F^{1}}{F^{1}}\right)_{\mu}bh}}_{=:\alpha},$$

SO

$$\frac{q_{\lambda}}{q_{\mu}} - \frac{a_{\lambda}h + b_{\lambda}}{a_{\mu}h + b_{\mu}} = \frac{q_{\lambda}}{q_{\mu}} \frac{\eta}{q_{\mu}\alpha + \eta} - \frac{\beta}{q_{\mu}\alpha + \eta}.$$

I want to show this is negative. Because $q_{\mu}\alpha + \eta > 0$, this is equivalent to showing

$$\frac{q_{\mu}}{q_{\lambda}} - \frac{\eta}{\beta} > 0.$$

Writing out all the terms, the left-hand side is equal to

$$\underbrace{\frac{\left(\frac{1-\mu}{\mu}\right)_{\mu}}{\frac{1-\mu}{\mu}\left(\frac{F^{0}}{F^{1}}\right)_{\lambda}\left(\frac{1-F^{1}}{F^{1}}\right)_{\lambda}\left(2-\frac{1}{\mu}\right)h}_{<0}}_{<0} \cdot \underbrace{\left(\frac{F^{0}}{F^{1}}\left(\frac{1-F^{1}}{F^{1}}\right)_{\lambda}\left(2-\frac{1}{\mu}\right)h - \left(\frac{F^{0}}{F^{1}}\right)_{\lambda}\left(1-\frac{1-F^{0}}{F^{1}}\right) - \left(\frac{F^{0}}{F^{1}}\right)_{\lambda}\frac{1-F^{1}}{F^{1}}\left(2-\frac{1}{\mu}\right)h\right)}_{<0} + \underbrace{\frac{\frac{1-\mu}{\mu}}{\frac{1-\mu}{\mu}\left(\frac{F^{0}}{F^{1}}\right)_{\lambda}\left(\frac{1-F^{1}}{F^{1}}\right)_{\lambda}\left(2-\frac{1}{\mu}\right)h}_{>0}}_{>0} \cdot \underbrace{\left(\left(\frac{F^{0}}{F^{1}}\right)_{\mu}\left(\frac{1-F^{1}}{F^{1}}\right)_{\lambda}\left(2-\frac{1}{\mu}\right)h - \left(\frac{F^{0}}{F^{1}}\right)_{\lambda}\left(\frac{1-F^{1}}{F^{1}}\right)_{\mu}\left(2-\frac{1}{\mu}\right)h\right)}_{>0}.$$

The inequalities of each of the four terms follow from $(F^0/F^1)_{\lambda} > 0$ and $((1 - F^1)/F^1)_{\lambda} > 0$ (both are implied by the ULR order), MLRP, IHRP and symmetry.

OA.3 Omitted Proofs for Section 5

OA.3.1 Proof of Claim 10

(i), (ii), and (iii) of the claim directly follow from taking the partial derivative and applying MLRP. I prove (iv). Rewrite $W_0(x, y)$,

$$W_0(x,y) = \Pr(s_{-i} \in [y,x) | s_i = x, s_{-i} \le x)$$

$$\cdot \left[\Pr(\theta = 1 | s_i = x, s_{-i} \in [y,x]) H - \Pr(\theta = 0 | s_i = x, s_{-i} \in [y,x]) L \right].$$

In what follows, I show both $\Pr(\theta = 1|s_i = x, s_{-i} \in [y, x])$ and $\Pr(s_{-i} \in [y, x)|s_i = x, s_{-i} \leq x)$ are increasing in x for x > y. Given these two probabilities are increasing in x, $W_0(x, y)$ is increasing in x if $W_0(x, y) > 0$.

First, it follows from MLRP and Lemma 6 that for x > y,

$$\Pr(\theta = 1 | s_i = x, s_{-i} \in [y, x]) = \frac{\rho_0 f^1(x) (F^1(x) - F^1(y))}{\rho_0 f^1(x) (F^1(x) - F^1(y)) + (1 - \rho_0) f^0(x) (F^0(x) - F^0(y))}$$

is increasing in x. I show $\Pr(s_{-i} \in [y, x) | s_i = x, s_{-i} \le x)$ is increasing in x for x > y. By the law of total probability,

$$Pr(s_{-i} \in [y, x) | s_i = x, s_{-i} \le x)$$

$$= Pr(s_{-i} \in [y, x) | s_i = x, s_{-i} \le x, \theta = 1) Pr(\theta = 1 | s_i = x, s_{-i} \le x)$$

$$+ Pr(s_{-i} \in [y, x) | s_i = x, s_{-i} \le x, \theta = 0) Pr(\theta = 0 | s_i = x, s_{-i} \le x), \quad (OA.3)$$

where for $\theta = 0, 1,$

$$\Pr(s_{-i} \in [y, x) | s_i = x, s_{-i} \le x, \theta) = \frac{\Pr(s_{-i} \in [y, x) | \theta)}{\Pr(s_{-i} \le x | \theta)} = 1 - \frac{F^{\theta}(y)}{F^{\theta}(x)}.$$

Denote $q(x) = \Pr(\theta = 1 | s_i = x, s_{-i} \le x)$, (OA.3) can be written as

$$\Pr(s_{-i} \in [y, x) | x, s_{-i} \le x) = \left(1 - \frac{F^{1}(y)}{F^{1}(x)}\right) q(x) + \left(1 - \frac{F^{0}(y)}{F^{0}(x)}\right) (1 - q(x)).$$

The partial derivative with respect to x is equal to

$$\left(\frac{F^1(y)f^1(x)}{F^1(x)^2}q(x) + \frac{F^0(y)f^0(x)}{F^0(x)^2}(1 - q(x))\right) + q'(x)\left(1 - \frac{F^1(y)}{F^1(x)} - 1 + \frac{F^0(y)}{F^0(x)}\right).$$

The first term is positive. MLRP implies q(x) is increasing in x and $F^{1}(x)/F^{0}(x) > F^{1}(y)/F^{0}(y)$ for x > y, so the second term is also positive.

OA.3.2 Proof of Theorem 2

Equilibrium conditions

Leader-follower continuation game. Introducing a flow cost for the leader does not affect the follower's incentive. Same as the no-flow-cost case, the follower's first-order condition implies $x'(t) = \phi(x(t), y(t))$, where

$$\phi(x,y) := -r \left(\frac{\rho_0 f^1(y)(1 - F^1(x))(H - c) - (1 - \rho_0) f^0(y)(1 - F^0(x))(L + c)}{\rho_0 f^1(y) f^1(x)(H - c) - (1 - \rho_0) f^0(y) f^0(x)(L + c)} \right).$$

For leader of type x, same as before, denote his belief at the beginning of the leaderfollower continuation game by $q_L(x) = \Pr(\theta = 1|x, s_F < y(0))$. His expected payoff from disinvesting at t is

$$\mathcal{L}(x,t) = q_{L}(x)
\cdot \left(\int_{0}^{t} -y'(\tau) \frac{f^{1}(y(\tau))}{F^{1}(y(0))} \left(e^{-r\tau} H - \int_{0}^{\tau} e^{-r\tilde{\tau}} \eta d\tilde{\tau} \right) d\tau - \frac{F^{1}(y(t))}{F^{1}(y(0))} \int_{0}^{t} e^{-r\tilde{\tau}} \eta d\tilde{\tau} \right)
- (1 - q_{L}(x))
\cdot \left(\int_{0}^{t} -y'(\tau) \frac{f^{0}(y(\tau))}{F^{0}(y(0))} \left(e^{-r\tau} L + \int_{0}^{\tau} e^{-r\tilde{\tau}} \eta d\tilde{\tau} \right) d\tau + \frac{F^{0}(y(t))}{F^{0}(y(0))} \int_{0}^{t} e^{-r\tilde{\tau}} \eta d\tilde{\tau} \right).$$

The first-order condition implies $y'(t) = \psi(x(t), y(t))$, where

$$\psi(x,y) := -\eta \left(\frac{\rho_0 f^1(x) F^1(y) + (1 - \rho_0) f^0(x) F^0(y)}{\rho_0 f^1(x) f^1(y) H - (1 - \rho_0) f^0(x) f^0(y) L} \right).$$

Initial conditions. With strictly monotonic strategies, the flow cost does not affect the initial conditions. So the same as the no-flow cost case, y(0) < z = x(0) and z's

indifference condition implies $W_0(x(0), y(0)) = c$, where

$$W_0(x,y) := \frac{\rho_0 f^1(x) (F^1(x) - F^1(y)) H}{\rho_0 f^1(x) F^1(x) + (1 - \rho_0) f^0(x) F^0(x)} - \frac{(1 - \rho_0) f^0(x) (F^0(x) - F^0(y)) L}{\rho_0 f^1(x) F^1(x) + (1 - \rho_0) f^0(x) F^0(x)}.$$

Optimality

To show optimality, one needs to show (i) $\mathcal{F}(y,t)$ is single-peaked in t, (ii) $\mathcal{L}(x,t)$ is single-peaked in t, and (iii) all types above z invest and all types below do not. (i) is the same as the no-flow-cost case. The following lemma establishes (ii) holds. Given (i) and (ii), the proof of (iii) is the same as the no-flow-cost case.

Lemma OA.1. For a fixed x, $\mathcal{L}(x,t)$ is single-peaked in t.

Proof. The proof is analogous to the proof of the follower's expected payoff being single-peaked in the no-flow-cost case (Lemma 8). To simplify notation, define

$$M(x,t) := \frac{q_L(x)}{F^1(y(0))}(-y'(t))f^1(y(t))H - \frac{1 - q_L(x)}{F^0(y(0))}(-y'(t))f^0(y(t))L$$

$$N(x,t) := \left(\frac{q_L(x)}{F^1(y(0))}F^1(y(t)) + \frac{1 - q_L(x)}{F^0(y(0))}F^0(y(t))\right)\eta.$$

In words, $e^{-rt}M(x,t)dt$ is type x's marginal benefit from waiting for dt before disinvesting and $e^{-rt}N(x,t)dt$ is the marginal cost. Let the subscript i denote the partial derivative with respect to the i-th argument. The first-order condition of \mathcal{L} implies M(x(t),t)=N(x(t),t). Because strategies are strictly monotone and everywhere differentiable, at each t, there exists one and only one type whose first-order condition is satisfied at t. Denote the type whose first-order condition is satisfied at t^* by t^* , that is, t^* because t^* by t^* . Suppose t^* mimics the behavior of type t^* by stopping at t^* . Because t^* be differentiable in t^* , by the fundamental theorem of calculus,

$$M(x^*, \hat{t}) = M(\hat{x}, \hat{t}) + \int_{\hat{x}}^{x^*} M_1(x, \hat{t}) dx = N(\hat{x}, \hat{t}) + \int_{\hat{x}}^{x^*} M_1(x, \hat{t}) dx,$$

where $M_1(x,\hat{t}) = \mathrm{d}M(x,\hat{t})/\mathrm{d}x$. The second equality follows from \hat{x} 's first-order condition $M(\hat{x},\hat{t}) = N(\hat{x},\hat{t})$. By MLRP, $q_L(x)$ is decreasing in x and because y'(t) < 0,

so $M_1(x,\hat{t}) > 0$. Thus, if $\hat{x} < x^*$, then

$$M(x^*, \hat{t}) = N(\hat{x}, \hat{t}) + \int_{\hat{x}}^{x^*} M_1(x, \hat{t}) dx > N(\hat{x}, \hat{t}) > N(x^*, \hat{t}),$$

where the first inequality follows from $\int_{\hat{x}}^{x^*} M_1(x,\hat{t}) dx > 0$, and the second inequality follows from that N is decreasing in x because of MLRP and y(t) < y(0). Similarly, if $\hat{x} > x^*$, then $\int_{\hat{x}}^{x^*} M_1(x,\hat{t}) dx < 0$, so

$$M(x^*, \hat{t}) = N(\hat{x}, \hat{t}) + \int_{\hat{x}}^{x^*} M_1(x, \hat{t}) dx < N(\hat{x}, \hat{t}) < N(x^*, \hat{t}).$$

x(t) is increasing, so $\hat{x} < (>)x^*$ is equivalent to $\hat{t} < (>)t^*$. The above argument shows $M(x^*,\hat{t}) - N(x^*,\hat{t}) > 0$ for all $\hat{t} < t^*$ and $M(x^*,\hat{t}) - N(x^*,\hat{t}) < 0$ for all $\hat{t} > t^*$.

Existence

In any dynamic equilibrium in strictly monotonic and differentiable strategies,

- (i) by optimality, players must get strictly positive payoff;
- (ii) strategies are strictly monotone: x'(t) > 0 and y'(t) < 0 for all $t \ge 0$;
- (iii) strategies are differentiable for all $t \geq 0$ and $x(t), y(t) \in (0, 1)$.
- (i) In the leader-follower game, for the leader, disinvesting at t=0 generates payoff 0 for any types of the leader, that is, $\mathcal{L}(x,0)=0$ for all $x\geq x(0)$. By Lemma OA.1, $\mathcal{L}(x,t)$ is single-peaked in t, so by optimality, if a type optimally disinvests at t>0, he must expect to get a strictly higher payoff than disinvesting at t=0. That is, $\mathcal{L}(x(t),t)>\mathcal{L}(x(t),0)=0$ for all x(t)>x(0). For the follower, $\mathcal{F}(y(t),t)>0$ if and only if

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(y(t))}{f^0(y(t))} \frac{1 - F^1(x(t))}{1 - F^0(x(t))} > \frac{L + c}{H - c}.$$
 (OA.4)

I now show players' expected payoff at the beginning of the game is positive. Because

$$\frac{\rho_0}{1-\rho_0} \frac{f^1(x(0))}{f^0(x(0))} \frac{1-F^1(x(0))}{1-F^0(x(0))} > \frac{\rho_0}{1-\rho_0} \frac{f^1(y(0))}{f^0(y(0))} \frac{1-F^1(x(0))}{1-F^0(x(0))} > \frac{L+c}{H-c},$$

where the first inequality follows from x(0) > y(0), and the second inequality follows from evaluating (OA.4) at t = 0. This implies z's ex ante expected payoff is strictly

positive. By MLRP, all types above z receive strictly positive payoffs. Types below z do not invest at the beginning of the game so their payoff is at least 0.

(ii) y'(t) < 0 if and only if

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(y(t))}{f^0(y(t))} \frac{f^1(x(t))}{f^0(x(t))} > \frac{L}{H}.$$
 (OA.5)

Given (OA.4), x'(t) > 0 if and only if

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(y(t))}{f^0(y(t))} \frac{f^1(x(t))}{f^0(x(t))} < \frac{L + c}{H - c}.$$
 (OA.6)

(iii) Because $\phi(\cdot, \cdot)$ and $\psi(\cdot, \cdot)$ are autonomous first-order differential equations and are continuous for all (x, y) such that $\phi(x, y) > 0$ and $\psi(x, y) < 0$, and x(t) and y(t) are bounded, so as $t \to \infty$,

$$x'(t) \to 0$$
 and $y'(t) \to 0$.

x'(t) = 0 and y'(t) = 0 if and only if x(t) = 1 and y(t) = 0. So $\phi(x(t), y(t)) \to 0$ and $\psi(x(t), y(t)) \to 0$ if and only if $x(t) \to 1$ and $y(t) \to 0$.

Define $\mathcal{D} \subset (0,1)^2$ as

$$\mathcal{D} := \{(x, y) : (OA.4), (OA.5) \text{ and } (OA.6) \text{ hold} \},\$$

and define $\mathcal{D}_0 \subset (0,1)^2$ as

$$\mathcal{D}_0 := \mathcal{D} \cap \{(x,y) : x > y \text{ and } V(x,y) = c\}.$$

In words, if a solution (x(t), y(t)) to the differential system (9) is an equilibrium, then it must be that $(x(t), y(t)) \in \mathcal{D}$ for all $t \geq 0$ with initial values $(x(0), y(0)) \in \mathcal{D}_0$.

For the purpose of this proof, it is helpful to consider the (x, y)-plane and the differential equation

$$y'(x) = \Upsilon(x, y) := \frac{\psi(x, y)}{\phi(x, y)}, \ \forall (x, y) \in \mathcal{D}.$$
 (OA.7)

By definition, $\Upsilon(x,y)$ is continuous in (x,y) for all $(x,y) \in \mathcal{D}$. An equilibrium is a solution y(x) to the differential equation (OA.7) in \mathcal{D} with y(x) < x that goes through

a point in \mathcal{D}_0 and converges to 0 as x goes to 1. Showing an equilibrium exists and is unique is equivalent to showing such solution exists and is unique. Lemma OA.2 shows there exists a trajectory in \mathcal{D} that converges to 0 as x goes to 1. Under certain parametric restrictions (OA.14), the solution is also unique, and Lemma OA.3 shows this (unique) trajectory goes through one and only one point in \mathcal{D}_0 for y(x) < x.

Figure OA.2 illustrates the unique equilibrium trajectory (red arrowed curve) which goes through exactly one point in \mathcal{D}_0 and converges to the point (1,0). All other solution trajectories (black arrowed curves) will diverge to the boundaries of \mathcal{D} . Figure OA.2 also displays annotations that facilitate the rest of the proof.

Figure OA.2: Equilibrium trajectory (red arrowed curve) and sample trajectories (non-equilibrium, black arrowed curves) to the differential system (9) for $\rho_0 = 1/2$, H = L = 1, r = 1/5, c = 0.38, $\eta = 1/20$ and posterior beliefs distributed according to $Beta(1 + \theta, 1 + (1 - \theta))$.

Lemma OA.2. For any feasible parameters, there exists a solution y(x) to the differential equation (OA.7) in \mathcal{D} with $y(x) \to 0$ as $x \to 1$.

Proof. Consider the boundaries of \mathcal{D} . For any fixed $x \in (0,1)$, let $\beta_F(x)$ be such that

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(\beta_F(x))}{f^0(\beta_F(x))} \frac{1 - F^1(x)}{1 - F^0(x)} = \frac{L + c}{H - c},$$
(OA.8)

 $\beta_f(x)$ be such that

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(\beta_f(x))}{f^0(\beta_f(x))} \frac{f^1(x)}{f^0(x)} = \frac{L}{H},\tag{OA.9}$$

and $\alpha(x)$ be such that

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(\alpha(x))}{f^0(\alpha(x))} \frac{f^1(x)}{f^0(x)} = \frac{L + c}{H - c}.$$
 (OA.10)

Finally, define

$$\beta(x) := \max_{x \in (0,1)} \{ \beta_F(x), \beta_f(x) \}.$$

By IHRP, $\beta_f(x)$ and $\beta_F(x)$ intersect at most once for $x \in (0,1)$.

Claim OA.1. (i) \mathcal{D} is non-empty. (ii) $(1,0) \in cl(\mathcal{D})$ and $(0,1) \in cl(\mathcal{D})$.

Proof of Claim OA.1. (i) Fix an $x \in (0,1)$. By MLRP, the left-hand side of (OA.8) evaluated at any $(x',y') > (x,\beta_F(x))$ is strictly higher than (L+c)/(H-c), the left-hand side of (OA.9) evaluated at any $(x',y') > (x,\beta_f(x))$ is strictly higher than L/H, and the left-hand side of (OA.10) evaluated at any $(x',y') < (x,\alpha(x))$ is strictly lower than (L+c)/(H-c). $\alpha(x) > \beta(x)$ for all $x \in (0,1)$. So \mathcal{D} is non-empty.

(ii) Fix $x \in (0,1)$. Consider (OA.8). Take the limit of both sides as $x \to 1$. The right-hand side is constant at (L+c)/(H-c). On the left-hand side, because

$$\lim_{x \to 1} \frac{1 - F^{1}(x)}{1 - F^{0}(x)} = \lim_{x \to 1} \frac{f^{1}(x)}{f^{0}(x)} = \infty,$$

it must be $f^1(\beta_F(x))/f^0(\beta_F(x)) \to 0$, which means $\beta_F(x) \to 0$. The same argument applies for equations (OA.9) and (OA.10). This implies $(1,0) \in cl(\mathcal{D})$. An analogous argument shows $(0,1) \in cl(\mathcal{D})$.

By definition, for all $(x,y) \in \mathcal{D}$, $\psi(x,y) < 0$ and $\phi(x,y) > 0$, so $\Upsilon(x,y) < 0$. Define $\mathcal{D}_u \in (0,1)^2$ (the subscript u stands for "upper") as

$$\mathcal{D}_u := \left\{ (x, y) : \frac{\rho_0}{1 - \rho_0} \frac{f^1(y)}{f^0(y)} \frac{f^1(x)}{f^0(x)} \ge \frac{L + c}{H - c} \right\}.$$

In words, \mathcal{D}_u is the set of points in the (x, y)-plane that are equal to or above $\alpha(x)$. By definition and the continuity of the distribution functions, $\mathcal{D} \cup \mathcal{D}_u$ is connected. For any fixed $x \in (0, 1)$, as $y \to \alpha(x)$, $\Upsilon(x, y) \to 0$. Let $\Upsilon(x, y) = 0$ for all $(x, y) \in \mathcal{D}_u$. Then $\Upsilon(x, y)$ is continuous in (x, y) for all $(x, y) \in \mathcal{D} \cup \mathcal{D}_u$. Apply the implicit function theorem to (OA.10), MLRP implies for all feasible parameters and $x \in (0,1)$,

$$\alpha'(x) < 0 = \Upsilon(x, \alpha(x)).$$

This means $\alpha(x)$ is a strong lower fence (or lower solution, see Hubbard and West, 1991, Section 1.3, or Teschl, 2012, Section 1.5) for the differential equation

$$y'(x) = \Upsilon(x,y) = \begin{cases} \psi(x,y)/\phi(x,y) & (x,y) \in \mathcal{D} \\ 0 & (x,y) \in \mathcal{D}_u \end{cases}$$
(OA.11)

Consider an ε -variation of $\beta_F(x)$ and $\beta_f(x)$. Let $\beta_{F,\varepsilon}(x)$ be such that

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(\beta_{F,\varepsilon}(x))}{f^0(\beta_{F,\varepsilon}(x))} \frac{1 - F^1(x)}{1 - F^0(x)} = \frac{L + c}{H - c} + \varepsilon, \tag{OA.12}$$

and $\beta_{f,\varepsilon}(x)$ be such that

$$\frac{\rho_0}{1 - \rho_0} \frac{f^1(\beta_{f,\varepsilon}(x))}{f^0(\beta_{f,\varepsilon}(x))} \frac{f^1(x)}{f^0(x)} = \frac{L}{H} + \varepsilon. \tag{OA.13}$$

Let

$$\beta_{\varepsilon}(x) := \max_{x \in (0,1)} \{ \beta_{F,\varepsilon}(x), \beta_{f,\varepsilon}(x) \}.$$

Define

$$\mathcal{D}_{\varepsilon} := \{(x,y) : x \in (0,1) \text{ and } \beta_{\varepsilon}(x) \leq y < \alpha(x)\}.$$

By MLRP, for all $x \in (0,1)$, $\beta_{F,\varepsilon}(x) < \alpha(x)$. For all $\varepsilon < (L+c)/(H-c) - L/H$, $\beta_{f,\varepsilon}(x) < \alpha(x)$. By the same argument as Claim OA.1, $\mathcal{D}_{\varepsilon}$ is non-empty, and the points (1,0) and (0,1) are in the closure of $\mathcal{D}_{\varepsilon}$. Moreover, $\mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$ is connected and $\Upsilon(x,y)$ is continuous in (x,y) for all $(x,y) \in \mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$.

Apply the implicit function theorem to (OA.12) and (OA.13), MLRP implies that for all feasible parameters and any $\varepsilon > 0$, $\beta'_{F,\varepsilon}(x)$ and $\beta'_{f,\varepsilon}(x)$ are both finite and negative. Therefore $\beta'_{\varepsilon}(x) > -\infty$ for all $x \in (0,1)$.

Claim OA.2. There exists $\hat{\varepsilon} > 0$ such that $\Upsilon(x, \beta_{\hat{\varepsilon}}(x)) < \beta'_{\hat{\varepsilon}}(x)$ for all x.

Proof of Claim OA.2. For all $x \in (0,1)$, by definition, as $\varepsilon \to 0$, $\beta_{\varepsilon}(x) \to \beta(x)$, which implies $\Upsilon(x, \beta_{\varepsilon}(x)) \to -\infty$. So for any x, there exists $\varepsilon(x) > 0$ (ε might depend on x) such that for all $\varepsilon < \varepsilon(x)$, $\Upsilon(x, \beta_{\varepsilon}(x)) < \beta'_{\varepsilon}(x)$. Let $\hat{\varepsilon} = \inf_{x \in (0,1)} \varepsilon(x)$.

It remains to show that $\hat{\varepsilon} > 0$. Suppose $\hat{\varepsilon} = 0$. Then there exists a sequence ε_n with $\varepsilon_n \to 0$ such that for each ε_n there exists x_n such that $\Upsilon(x_n, \beta_{\varepsilon_n}(x_n)) \geq \beta'(x_n)$. This is a contradiction because for all x_n , $\beta'(x_n) > -\infty$ but as $\varepsilon_n \to 0$, $\Upsilon(x_n, \beta_{\varepsilon_n}(x_n)) \to -\infty$.

This means $\beta_{\varepsilon}(x)$ is a strong upper fence (or upper solution) for the differential equation (OA.11). Therefore, in $\mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$, there exists a solution y(x) to the differential equation (OA.7) with $\beta_{\varepsilon}(x) \leq y(x) \leq \alpha(x)$ for all $x \in (0,1)$ (see Hubbard and West, 1991, Theorem 1.4.4, or Teschl, 2012, Lemma 1.2).

The above argument establishes there exists a solution in $\mathcal{D}_{\varepsilon} \cup \mathcal{D}_{u}$. It remains to show that the solution is within $\mathcal{D}_{\varepsilon}$ (and thus within \mathcal{D}), not in \mathcal{D}_{u} . This boils down to showing that solutions in \mathcal{D}_{u} do not converge to 0 as $x \to 1$. This follows from the definition that y'(x) = 0 for all $(x, y) \in \mathcal{D}_{u}$. So for any $(x, y(x)) \in \mathcal{D}_{u}$ that solves the differential equation (OA.11), y(x) > 0 for all x.

Uniqueness

Assumption. Assume the following condition holds:

$$\forall (x,y) \in \mathcal{D}, \ \partial \Upsilon(x,y)/\partial y \ge 0.$$
 (OA.14)

The uniqueness of a global condition can be established if the primitives satisfy the above condition. It can be numerically verified that (OA.14) is satisfied if f^{θ} is induced by signals distributed according to the Beta distributions or the Normal distributions. Moreover, by definition, as $x \to 1$, $\alpha(x) \to 0$ and $\beta_{\varepsilon}(x) \to 0$, so

$$\lim_{x \to 1} |\alpha(x) - \beta_{\varepsilon}(x)| = 0. \tag{OA.15}$$

Conditions (OA.14) and (OA.15) imply the solution is unique in $\mathcal{D}_{\varepsilon}$ (see Hubbard and West, 1991, Theorem 1.4.5, or Teschl, 2012, Section 1.5).

The above argument establishes the unique solution is in $\mathcal{D}_{\varepsilon}$. It remains to show this solution is unique in \mathcal{D} . Because $\mathcal{D} = \mathcal{D}_{\varepsilon} \cup \{(x,y) : x \in (0,1) \text{ and } \beta(x) < y < \beta_{\varepsilon}(x)\}$, it boils down to showing there does not exist a solution that converges to 0 as $x \to 1$ in the set $\{(x,y) : x \in (0,1) \text{ and } \beta(x) < y < \beta_{\varepsilon}(x)\}$. For all y(x) such that $\beta(x) < y(x) < \beta_{\varepsilon}(x)$, $y'(x) \to -\infty$, which implies for all $x \in (0,1)$, $y(x) \to \beta(x) > 0$.

Denote this unique solution by $\hat{y}(x)$. I prove there exists a unique set of initial values that satisfy this unique solution. This is summarized in the following lemma.

Lemma OA.3. There exists a unique $(x_0, y_0) \in \mathcal{D}_0$ such that $y_0 = \hat{y}(x_0)$.

Proof. To simplify notation, define

$$\ell(x,y) := \frac{\rho_0}{1 - \rho_0} \frac{f^1(y)}{f^0(y)} \frac{f^1(x)}{f^0(x)}.$$

Recall that \mathcal{D}_0 is the set of points $(x,y) \in \mathcal{D}$ that satisfies the equation $W_0(x,y) = c$. Solve $W_0(x,y) = c$ for y in terms of x and denote the solution by $y_{W_0}(x)$. By Claim 10 (iii) and (iv), $y_{W_0}(x)$ is increasing and continuous in x for all x such that $y_{W_0}(x) < x$. By a change of variable, Lemma OA.2 shows $\hat{y}(x)$ also converges to 1 as $x \to 0$. So $\hat{y}(x)$ is a strictly decreasing function that converges to 1 as $x \to 0$ and converges to 0 as $x \to 1$, and satisfies $\ell(x, \hat{y}(x)) \in (L/H, (L+c)/(H-c))$ for all $x \in (0, 1)$. So points in \mathcal{D}_0 constitute a strictly increasing and continuous function that starts at a point below $\hat{y}(x)$, and ends at a point above $\hat{y}(x)$. The result follows.

References

Hopkins, Ed and Tatiana Kornienko (2007) "Cross and Double Cross: Comparative Statics in First Price and All Pay Auctions," *The B.E. Journal of Theoretical Economics*, 7.

Hubbard, John H. and Beverly H. West (1991) Differential Equations: A Dynamical Systems Approach, 5 of Texts in Applied Mathematics, New York, NY: Springer New York.

Teschl, Gerald (2012) Ordinary Differential Equations and Dynamical Systems, Providence, R.I. American Mathematical Society.