1 四色猜想的证明

1.1 Kempe 在 1879 年给出的证明

对极大平面图 G 的顶点数 n 归纳证明。

 $n \leq 4$ 时, 四色猜想成立;

设 $n \ge 4$ 时,四色猜想成立,考察 n 的情况。

由欧拉公式可知,对于任意极大平面图 G,有 $3 \le \delta \le 5$ 成立。故按 $\delta = 3,4,5$ 分类证明。

• $\delta = 3$,设 $x \in V(G), d(x) = 3, N(x) = \{v_1, v_2, v_3\}$ 。由归纳假设, $\exists f \in C_4^0(G - x), f(N(x)) = 1, 2, 3$,由此得到G的一个 4 -着色 f': 对于 $\forall u \in V(G)$,

$$f'(u) = \begin{cases} 4, u = x \\ f(u), otherwise \end{cases}$$

• 当 $\delta = 4$ 时,设 $x \in V(G), d(x) = 4, N(x) = \{v_1, v_2, v_3, v_4\}$,由归纳 假设, $\exists f \in C_4^0(G-x)$,使得 |f(N(x))| = 2, 3, 4。当 |f(N(x))| = 2, 3 时,类似前者,可得到 G 的一个 4 -着色。故只考虑 |f(N(x))| = 4 的情况。不妨设 $f(v_i) = i, i = 1, 2, 3, 4$,在导出子图 G_{13} 中,若顶点 v_1 与 v_3 不在同一个连通分支,将顶点 v_1 所在的 13-分支颜色互换,其 他顶点颜色不变,得到 G 的一个 4-着色 f': 对于 $\forall u \in V(G)$,

$$f'(u) = \begin{cases} 1, u = x \text{ or } u \in V(G_{13}^{v_1}), f(u) = 3\\ 3, u \in V(G_{13}^{v_1}), f(u) = 1\\ f(u), \text{ otherwise} \end{cases}$$

其中 $G_{13}^{v_1}$ 表示着色 f 下顶点 v_1 所在的 13-分支。

故假设在 G_{13} 中,顶点 v_1 与 v_3 在同一个连通分支,则顶点 v_2 和顶点 v_4 不在同一个 24-分支,将顶点 v_2 所在的 24-分支颜色互换,其他

顶点颜色不变,得到 G 的一个 4-着色 f': 对于 $\forall u \in V(G)$,

$$f'(u) = \begin{cases} 2, u = x \text{ or } u \in V(G_{24}^{v_2}), f(u) = 4\\ 4, u \in V(G_{24}^{v_2}), f(u) = 2\\ f(u), \text{ otherwise} \end{cases}$$

故 $\delta = 4$ 时,结论成立。

• 当 $\delta = 5$ 时,设 $x \in V(G)$, d(x) = 5, $N(x) = \{v_1, v_2, v_3, v_4, v_5\}$,由归纳假设, $\exists f \in C_4^0(G - x)$,使得 |f(N(x))| = 3, 4。当 |f(N(x))| = 3 时,类似前者,可得到 G 的一个 4 -着色。故只考虑 |f(N(x))| = 4 的情况。不妨设 $f(v_i) = i$, i = 1, 2, 3, 4, $f(v_5) = 2$ 。在导出子图 G_{13} 中,若顶点 v_1 与 v_3 不在同一个连通分支(或在 G_{14} 中,顶点 v_1 与顶点 v_4 不在同一个连通分支),则将顶点 v_1 所在的 v_4 所在的 v_4 不有同一个连通分支,得到 G 的一个 4-着色 v_4 分支颜色互换,其他顶点颜色不变,得到 G 的一个 4-着色 v_4 分于 v_4 v_4 v

$$f'(u) = \begin{cases} 1, u = x \text{ or } u \text{ in} V(G_{13}^{v_1})(V(G_{14}^{v_1})), f(u) = 3(4) \\ 3(4), u \in V(G_{13}^{v_1})(V(G_{14}^{v_1})), f(u) = 1 \\ f(u), \text{ otherwise} \end{cases}$$

从而结论成立。故设在 G_{13} 中, v_1 与 v_3 在同一个连通分支,且在 G_{14} 中, v_1 与 v_4 在同一个连通分支,则 v_2 与 v_4 不在同一个 24-分支,且 v_3 与 v_5 不在同一个 23-分支。将顶点 v_2 所在的 24-分支颜色互换,同时将顶点 v_5 所在的 23-分支颜色互换,其他顶点颜色不变,可得到 G 的一个 4-着色 f': 对于 $\forall u \in V(G)$,

的一个 4-着色
$$f'$$
: 对于 $\forall u \in V(G)$,
$$f'(u) = \begin{cases} 2, u = x \text{ or } u \in V(G_{24}^{v_2}), f(u) = 4 \text{ or } u \in V(G_{23}^{v_5}), f(u) = 3 \\ 3, u \in V(G_{23}^{v_5}), f(u) = 2 \\ 4, u \in V(G_{24}^{v_2}), f(u) = 2 \\ f(u), \text{ otherwise} \end{cases}$$

故 $\delta = 5$ 时,结论成立。

1.2 Kempe 证明的缺陷

1890 年,Heawood 发现 Kempe 证明过程中的缺陷: 当 $\delta = 5$ 时,若 v_1 与 v_3 所在的 13-连通分支与 v_1 与 v_4 所在的 14-连通分支相交于颜色 1 的顶点数 ≥ 2 时,则 Kempe 的证明出现错误: 将 v_2 所在的 24-分支颜色 互换后,无法确定 v_3 与 v_5 在 G_{23} 中是否连通,因此也就无法进行第二次换色。Heawood 与 Kempe 都无法修正这个缺陷,但利用 Kempe "证明" 四色猜想的过程中,很容易得到"五色定理"。

1.3 Kempe 变换

基于 Kempe 的方法,很容易从图的一种着色到处另一种着色,后人称之为 Kempe 变换。利用 Kempe 变换可以大大降低求一个图所有着色的复杂度。

1.4 同阶极大平面图的构造

1936 年, Wagner 提出了边翻转算子的概念。设 G 是一个极大平面图, abcd 是 G 中以 ac 为腰的菱形。若在该菱形中删除边 ac 后添加边 bd, 使 所得的极大平面图仍是极大平面图,则称此运算为 G 中对 ac 的边翻转运算,并将 ac 成为可翻转的。显然,如果 G 本身含边 bd,则对 ac 不能实施 边翻转运算,即 ac 不是可翻转的。

定理: 任意 n(>4)-阶极大平面图 G 至少包含 n-2 条可翻转边,并且存在一类阶数为 n=3t-4 的极大平面图,恰好包含 n-2 条可翻转边,其中 $t\geq 3$.

1.5 异阶极大平面图的构造

纯弦圈的定义:设 G 是一个极大平面图, C 是 G 中的一个圈, 若圈 C 内不含顶点,且 C 的每个面都是三角形,则把圈 C 成为图 G 的一个纯 弦圈,并把 C 内每条边称为圈 C 的弦。极大平面图中的三角形也是为纯弦

圈。

1891 年,Eberhard 开展了对极大平面图构造问题的研究,给出了能够构造 所有极大平面图的运算系统,并把这个运算系统记为 $\langle K_4; \Phi = \{\phi_1, \phi_2, \phi_3\} \rangle$, 其中 K_4 表示初始对象, Φ 为运算集, ϕ_1, ϕ_2, ϕ_3 是三种算子。

定理: 任意 $n(\geq 4)$ -阶极大平面图 G 可通过对 (n-1)-阶极大平面图实施运算 ϕ_1, ϕ_2, ϕ_3 得到

1.6 极大平面图的生成运算系统

扩 2-轮运算步骤:

- 在某条边 uv 的两端点之间再连接一条边, 使其产生 2 重边, 即产生 2-圈;
- 在该 2-圈内部添加一个新的顶点 x, 并令 x 与 2-圈的两顶点 u 与 v 相 连边, 产生一个 2-轮。

缩 2-轮运算步骤的作用对象子图是一个 2-轮, 步骤为:

- 删除该 2-轮的轮心及相关联的两条边
- 删除2重边中的一条

扩 3-轮运算: 在极大平面图的某一个面上加入一个顶点 x, 并让 x 与构成该面的 3 个顶点相连边。因此, 扩 3-轮运算在极大平面图中的对象子图是一个三角形。

缩 3-轮运算:将某个 3 度顶点及与该顶点相关联的边删去。 扩 4-轮运算的步骤:

在极大平面图中某条 2-长路 P₃ = v₁v₂v₃ 上,从顶点 v₁ 出发,沿着 v₁ → v₂ → v₃ 方向,从边-点-边的内部划开,即将边 v₁v₂,顶点 v₂ 及 边 v₂v₃ 从中间划开,使得顶点 v₂ 变成两个顶点,分别记作 v₂ 与 v₂'; v₁v₂ 与 v₂v₃ 均变成了两条边,分别是 v₁v₂ 和 v₁v'₃, v₂v₃ 和 v'₂v₃,原

来在 P_3 左侧与 v_2 关联的边变成了与 v_2 关联,原来在 P_3 右侧与 v_2 关联的边变成与 v_2' 关联,从而保持平面性。

• 在顶点 v_1, v_2', v_3, v_4 这 4 个顶点形成的 4-圈内增加一个新顶点 x, 并将 x 分别与其余 4 个顶点连接。

缩 4-轮运算的步骤: 在极大平面图中,将某 4 度顶点以及与它关联的边均删去,并且对该顶点领域中的某一对不相邻的顶点实施收缩运算。 扩 5-轮运算的步骤:

- 对极大平面图中某漏斗子图 $L = v_1 \Delta v_2 v_3 v_4$, 从顶点 v_1 出发,沿着 $v_1 \to v_2$ 方向,从边-点内部划开,即将边 $v_1 v_2$,顶点 v_2 从中间划开,使得顶点 v_2 变成两个顶点,分别记作 v_2 与 $v_2'; v_1 v_2$ 变成了两条边,分别是 $v_1 v_2$ 与 $v_1 v_2'$; 原来在 L 左侧与 v_2 关联的边变成与 v_2 关联,原来在 L 右侧与 v_2 关联的边变成与 v_2' 关联,从而保持平面性。
- 在顶点 v_1, v_2', v_3, v_4, v_2 这 5 个顶点形成的 5-圈内增加一个新顶点 x,并将 x 分别与顶点 v_1, v_2', v_3, v_4, v_2 相连边。

缩 5-轮运算的步骤: 在极大平面图中,将某 5 度顶点以及与它关联的边均删去,并且对该顶点领域中的某一对不相邻的顶点实施收缩运算。

定理:设 G 是一个 n-阶极大平面图,则可通过不断地试试缩 2-轮,缩 3-轮,缩 4-轮或缩 5-轮运算,使得改图最终收缩成 K_3 。

1.7 纯树着色

猜想: 若 G 是一个唯一 3-边可着色立方图,则 G 是平面图且汗一个三角形

GK-猜想: 一个平面图 G 是唯一 4-可着色的充分必要条件是 G 为地柜极大平面图。

设 G 是一个 4-色极大平面图, 颜色集 $C(4) = \{1, 2, 3, 4\}, f \in C_4^0(G)$ 。 若 G 中

友谊长度为 2m 的偶圈 C_{2m} , $V(C_{2m}) = v_1, v_2, ..., v_{2m}$, 使得 $\{f(v_1), f(v_2), ..., f(v_{2m})\}$ 中只含有 2 种颜色,则称 C_{2m} 是 f 的一个 2-色圈,也成为 f 含有 2-色圈,并称 f 为圈着色,称 G 是可圈着色的。若 C_{2m} 上所含颜色为 i 和 t, 则 C_{2m} 亦可记作 it-圈。否则,若 f 不含 2-色圈,则称 f 为图 G 的树着色,称 G 时可树着色的。在圈着色与树着色分类的基础上,相应地可将 G 分为 G 对 G 种类型:纯树着色型,即 $G_4^0(G)$ 每个着色均为树着色;纯圈着色型,即 $G_4^0(G)$ 中每个着色均为圈着色;混合着色型,即 $G_4^0(G)$ 中即含树着色,又含圈着色。

1.8 Kempe 变换与 Kempe 等价类

Kempe-等价: 令 $f, f' \in C_4^0(G)$,若从 f 出发,通过若干次 Kempe 变换可获得 f',则称 f 与 f' 是 K-等价的

Kempe 图: 设 G 是一个 k-可着色图, 若 G 的所有 k-着色是 K-等价的,则称 G 为 k-Kempe 图

Kempe 等价类: 所有与 f 互为 K-等价的着色与 f 的并构成之集, 记作 $F^f(G)$

2-色圈: 设 G 是一个 4-色极大平面图,若 C 是 G 的一个偶圈,|f(C)| = 2,则称 C 是 f 的 2-色圈。C 上的两种颜色称为圈色。

树型 Kempe 等价类: 若 f 是 G 的一个树着色,则 $C^2(f) = \phi$,即 f 中全部 6 个 2-色导出子图是连通的,因此, $F^f(G) = \{f\}$ 。我们把这种非 4-Kempe 图 G 的 Kempe 等价类成为树型 Kempe 等价类,并把 G 成为树型极大平面图。

定理: 设 G 是一个非唯一 4-色的可树着色极大平面图,则 $K(G,4) \ge 2$; 若 G 时纯树着色的,则 $K(G,4) = |C_4^0(G)|$; 若 G 是混合型着色,且含树着色的数目为 t 个,则 $K(G,4) \ge t+1$ 。

2-色不变圈: 一个 Kempe 等价类中全部为 2-色圈