

Ingeniería de Software

Sistemas Numéricos – Algebra Booleana

Britney Tatiana Torres Ochoa 1021312652

Reyes Chaparro Joseph Imanol 1013261629

Prada Ariza Joseph Fabian 1018414514

Agosto de 2023

Preguntas Orientadoras

Convertir a binario, octal y hexadecimal cada uno de los siguientes decimales.

- A. 923210₁₀
- B. 3412₁₀
- C. 917₁₀

Octal-+
923210-+3413112
928210 B 2 116401 B 1 14425 B 3 225 B 1 28 B 4 3
913210-+ E119A
923210 16 10 57700 16 4 3606 16 1 225 16
Convertir a binario, cotal y hexadecimale cada uno de los signientes decimale
V 3A12
Binario - 1101010101000 3412 2 0 853 42612 0 21312 0 106 2 0 10 10 10 10 10 10 10 10 10 10 10 10 10
2612 013 2 013 2 013 2 013 2 0 3 26

Octal		
2015		
3di2 B 4 d26 L8 2 53 L8 5 6		
Hexadecima)		
3412 - + D.89 3412 16 9 213 16 8 13		
Convertir a binario, cada uno de los 1/91	17	morl les
1 458 2	1110010101	
1 114 2 0 57 0 67 917 4 1625 9171 8 5 114 1 8 5 114 1 8	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

1. Realiza un video no mayor a 5 minutos que explique el proceso de conversión de los sistemas de numeración binario, decimal, octal hexadecimal.

https://youtu.be/iKONrZhMheU

2. Busca y toma una imagen de la tabla de código ASCII.

AB	LA	DE	CAF	RACT	ERE	S D	EL C	ÓDIO	iO /	ASCII
1 0	25 ↓	49 1	73 I	97 a	121 y	145 æ	169 -	193 ↓	217 4	241 ±
2 😐	26	50 2	74 J	98 b	122 z	146 Æ	170 -	194 +	218 -	242 ≥
3 💗	27	51 3	75 K	99 c	123 (147 ô	171	195	219	243 ≤
4 •	28 _	52 4	76 L	100 d	124	148 ö	172	196 -	220	244 [
5 .	29 +	53 5	77 M	101 e	125	149 0	173	197 +	221	245
6 🐞	30 🛦	54 6	78 N	102 f	126 ~	150 û	174 «	198	222	246 ÷
7	31 🔻	55 7	79 0	103 q	127 #	151 ù	175 »	199	223	247 ≈
8	32	56 8	80 P	104 h	128 C	152 ÿ	176	200	224 a	248 °
9	33 !	57 9	81 Q	105 i	129 ü	153 0	177	201	225 B	249 -
10	34 "	58 :	82 R	106 1	130 é	154 Ü	178	202	226 Г	250
11	35 #	59 ;	83 S	107 k	131 â	155 ¢	179	203 ==	227 #	251 /
12	36 \$	60 <	84 T	108 1	132 ä	156 €	180 -	204	228 ₺	252 "
13	37 %	61 =	85 U	109 m	133 à	157 ¥	181	205 =	229 o	253 2
14	38 &	62 >	86 V	110 n	134 å	158 P	182	206 #	230 4	254 .
15	39 /	63 ?	87 W	111 0	135 c	159 f	183 -	207 4	231 7	255
16 .	40 (64 @	88 X	112 p	136 e	160 á	184	208 4	232 🎍	PRESIONA
17	41)	65 A	89 Y	113 a	137 ĕ	161 í	185	209 =	233 ⊖	LATECLA
18 :	42 *	66 B	90 Z	114 r	138 è	162 6	186	210 -	234 Ω	Alt
19 !!	43 +	67 C	91 [115 s	139 ï	163 ú	187	211	235 6	MAS EL
20 9	44 .	68 D	92	116 t	140 î	164 ñ	188	212	236 ∞	NÚMERO
21 6	45 -	69 E	93 1	117 u	141 i	165 N	189 4	213 =	KETTERN CEST	CORTESIA DE
22	46 .	70 F	94 ^	118 v	142 Å	166 *	190 4	214	238 €	
23 t	47 /	71 G	95	119 w	143 Å	167 0	191	215	239 0	THE SECOND
24 t	48 0	72 H	96 7	120 x	144 É	168 &	192	216	240 =	des de

3. Consulta y realiza la tabla de hexadecimal con cuatro entradas.

DECIMAL	BINARJO	OCTAL	HEXADI
100	0000	00	0
112	0007	01	1
1	0010	02	2
3	0011	03	3
4	0100	OA	4
5	0101	05	5
6	0110	66	C
7	0111	07	7
1 3	1000	10	2
1 9	1001	111	9

4. Consulta y explica con un ejemplo la Aritmética de punto fijo.

La aritmética de punto fijo es una técnica utilizada en ciertas aplicaciones de procesamiento digital de señales y sistemas embebidos donde los números se representan de manera fija con una cantidad predefinida de bits para la parte entera y la parte fraccionaria. A diferencia de la aritmética de punto flotante, en la que se utilizan exponentes y mantisas variables, la aritmética de punto fijo se basa en representar números con una escala fija.

Ejemplo:

Supongamos que queremos representar el número decimal 6.75 en una aritmética de punto fijo con 8 bits (4 bits para la parte entera y 4 bits para la parte fraccionaria).

Paso 1: Convertir la parte entera y fraccionaria a binario:

Parte entera: 6 en binario es 0110.

Parte fraccionaria: 0.75 en binario es 0.11.

Paso 2: Completar con ceros:

Parte entera: 0110 (ya tiene 4 bits).

Parte fraccionaria: 0.11, completamos con ceros para tener 4 bits en total: 1100.

Paso 3: Concatenar las partes:

La representación binaria del número 6.75 en aritmética de punto fijo de 8 bits sería: 0110.1100.

En este ejemplo, el número decimal 6.75 se ha representado en aritmética de punto fijo utilizando 8 bits, con 4 bits para la parte entera y 4 bits para la parte fraccionaria. Es importante tener en cuenta que la precisión de los cálculos y la representación dependerá de la cantidad de bits asignados a cada parte.

La aritmética de punto fijo es útil en aplicaciones donde el rango de valores y la precisión se conocen de antemano, ya que permite un control más preciso sobre el uso de recursos de hardware y simplifica los cálculos en comparación con la aritmética de punto flotante. Sin embargo, también tiene limitaciones en términos de rango y precisión en comparación con la aritmética de punto flotante.

5. Consulta y explica con un ejemplo la Aritmética de punto flotante.

La aritmética de punto flotante es una técnica utilizada para representar y realizar operaciones con números reales en sistemas computacionales. A diferencia de la aritmética de punto fijo, en la que se fija el número de bits para la parte entera y fraccionaria, en la aritmética de punto flotante se utiliza una representación que incluye una mantisa, un exponente y una base.

La representación general de un numero en punto flotante es: $(-1)^S \times M \times B\epsilon$, donde:

- S es el bit de signo (0 para positivo, 1 para negativo)
- M es la mantisa, que es una fracción normalizada entre 1 y la base B.
- E es el exponente, que ajusta el valor de la mantisa para mover el punto decimal.

En un sistema binario, como es común en las computadoras, la base B es 2

Ejemplo:

Supongamos que estamos usando una representación de punto flotante de 32 bits con 1 bit para el signo, 8 bits para el exponente y 23 bits para la mantisa (siguiendo el estándar IEEE 754 para números de precisión simple en punto flotante).

Deseamos representar el número decimal 12.75 en esta aritmética de punto flotante.

Paso 1: Convertir 12.75 a binario:

La parte entera de 12 en binario es 1100. La parte fraccionaria de 0.75 se puede convertir multiplicando sucesivamente por 2 y tomando las partes enteras: 0.75 * 2 = 1.5 (entero 1), 0.5 * 2 = 1.0 (entero 1). Por lo tanto, la representación binaria de 0.75 es 0.11.

Paso 2: Normalizar la mantisa: La mantisa normalizada será 1.100×231.100×2, ya que hemos movido el punto decimal 3 lugares a la izquierda para que la parte entera sea 1.

Paso 3: Representar el exponente:

El exponente es 33, que se representa en binario como 000001100000011.

Paso 4: Determinar el bit de signo: Como el número es positivo, el bit de signo es 00.

En conjunto, la representación en punto flotante del número 12.7512.75 sería:

donde el primer bit es el bit de signo, los siguientes 8 bits son el exponente, y los últimos 23 bits son la mantisa.

La aritmética de punto flotante es útil para manejar una amplia gama de valores y proporcionar una mayor precisión en comparación con la aritmética de punto fijo. Sin embargo, también introduce ciertos desafíos debido a la naturaleza de los cálculos con exponentes y mantisas variables.

6. Realiza el proceso de las siguientes conversiones:

Convertir a binario, octal y hexadecimal cada uno de los siguientes decimales.

 \sqrt{a} . 325₁₀ b. 954₁₀ c. 1562₁₀ d. 2463₁₀

Convertir a decimal los siguientes binarios.

 \checkmark a. 111001₂ b. 1010101₂ c. 11100101₂ d.101011110101₂

Convertir a decimal los siguientes octales.

√ a. 65₈

b. 327₈

c. 2586₈

d. 4050₈

Convertir a decimal los siguientes hexadecimales.

 \sqrt{a} . 15A₁₆ b. 25BD₁₆ c. CFF2₁₆ d. 15CF2₁₆

7. Realiza el procedimiento para las siguientes sumas binarias

$$\checkmark (1111100000_2) + (1111110_2)$$

$$\checkmark (01010101010_2) + (111_2)$$

$$\checkmark (10011100_2) + (00001_2)$$

8. Realiza el procedimiento para las siguientes restas binarias

$$\sqrt{(111111112) - (101012)}$$

$$\checkmark$$
 (111000111112) - (10101101001102)

- 111000 11111 - 1001001111001 100100111001

9. Realiza el procedimiento para las siguientes restas binarias

 \checkmark (1111011₂) * (111100₂)

 $\sqrt{(111111111112)*(1102)}$

Realiza el proce dimiento para las siguientes mo itiplicaciones binarias

(1111011). (111100)

(11111111111). (1102)

(1111111111). (1102)

(11111011). (111100110100)

(1111011)

(1111011)

(1111011)

(1111011)

- 10. Describe la función de las teclas que se involucran al usar el código ASCII.
 - Teclas alfanuméricas (letras y números): Estas teclas representan los caracteres alfabéticos y numéricos básicos. Cada letra y numero tiene un valor ASCII asociado. Por ejemplo, la tecla "A" tiene un valor ASCII de 65, la tecla "a" tiene un valor ASCII

- de 97 y la tecla "0" tiene un valor ASCII de 48. Para introducir estos caracteres, simplemente se presiona la tecla correspondiente.
- **Tecla de espacio en blanco:** La tecla de espacio en blanco introduce un espacio entre palabras o caracteres. En el código ASCII, el valor asociado al espacio en blanco es 32.
- Teclas de puntuación y símbolos especiales: Estas teclas incluyen signos de puntuación como comas, puntos y puntos y comas, así como símbolos especiales como el signo de exclamación (!), el símbolo de interrogación (?), entre otros. Cada uno de estos caracteres tiene un valor ASCII asignado, y puedes introducirlos presionando la tecla correspondiente.
- Tecla "Shift": La tecla "Shift" se utiliza para ingresar los caracteres alternativos en un teclado, como las letras mayúsculas y algunos símbolos. Al mantener presionada la tecla "Shift" mientras presionas una tecla alfanumérica, generalmente obtienes el carácter en mayúscula correspondiente. Por ejemplo, al presionar "Shift" + "A", obtendrás "A" en lugar de "a". Además, al mantener presionada la tecla "Shift" y presionar una tecla de puntuación, puedes ingresar los símbolos que están en la parte superior de las teclas alfanuméricas.
- Teclas de control (Ctrl): Las teclas "Ctrl" se utilizan junto con otras teclas para realizar acciones especiales en muchos programas y sistemas operativos. No tienen un valor ASCII directo, pero pueden combinarse con otras teclas para realizar comandos como "Ctrl + C" para copiar o "Ctrl + V" para pegar.
- Tecla "Enter" o "Return": Esta tecla se utiliza para confirmar una entrada, por ejemplo, al finalizar una línea de texto o al enviar un comando en un programa o terminal. En el código ASCII, la tecla "Enter" tiene un valor asociado, pero su uso no siempre implica la inserción del carácter correspondiente, ya que su función es principalmente de control.
- 11. Realice un algoritmo que permita pasar una numero de una base sea cual sea "M" a otra base "N", Nota M y N tienen como valor mínimo 1 y como valor máximo 16, además debe pasar el numero a binario y entregar El mensaje ASCII.

https://github.com/ARQUITECTURA-DE-HARDWARE-A1/Calculadora de bases/blob/main/code.python

