Discrete Structures and Theory of Logic Lecture-13

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj September 17, 2023

(1) $a\lor(b\land c) \preceq (a\lor b)\land (a\lor c)$ (2) $a \land (b \lor c) \succ (a \land b) \lor (a \land c)$ Proof: (1) Using definition of least upper bound, $a \prec (a \lor b) \dots (1)$ Using definition of greatest lower bound, $b \land c \leq b \dots (2)$ Using definition of least upper bound, b \leq (a \vee b)......(3) From (2) and (3), $b \land c \prec b \prec (a \lor b)$ Therefore, $b \land c \prec (a \lor b)$(4) From (1) and (4), ($a \lor b$) is the upper bound of a and $b \land c$, therefore $lub{a , b \land c} \prec (a \lor b) i.e.$

 $a\lor(b\land c) \prec (a\lor b)$ (5)

Let $\langle L, \prec \rangle$ be a lattice. For any a,b,c $\in L$,

1

```
Similarly, using definition of least upper bound, a \prec (a\lorc)......(6)
Using definition of greatest lower bound, b \land c \leq c \dots (7)
Using definition of least upper bound, c \leq (a \lor c)......(8)
From (7) and (8), b \land c \preceq c \preceq (a \lor c)
Therefore, b \land c \prec (a \lor c)....(9)
From (6) and (9), (a\lor c) is the upper bound of a and b\land c, therefore
               lub\{a, b \land c\} \prec (a \lor c) i.e.
               a\lor(b\land c) \prec (a\lor c) .....(10)
From (5) and (10), a \lor (b \land c) is lower bound of (a \lor b) and (a \lor c),
therefore
a\lor(b\land c) \leq glb\{(a\lor b), (a\lor c)\} i.e.
a\lor(b\land c) \prec (a\lor b)\land(a\lor c)
Now, it is proved.
```

(2) Using definition of greatest lower bound, $(a \land b) \leq a \dots (1)$
Using definition of least upper bound, b \leq (b \vee c)(2)
Using definition of greatest lower bound, $(a \land b) \leq b \dots (3)$
From (2) and (3), $(a \land b) \leq b \leq (b \lor c)$
Therefore, $(a \land b) \leq b \lor c \dots (4)$
From (1) and (4), ($a \land b$) is the lower bound of a and $b \lor c$, therefore
$(a \land b) \preceq glb\{a, b \lor c\}$ i.e.
$(a \land b) \leq a \land (b \lor c) \dots (5)$

```
Similarly, using definition of greatest lower bound, (a \land c) \prec a \dots (6)
Using definition of least upper bound, c \leq (b \lor c)......(7)
Using definition of greatest lower bound, (a \land c) \leq c \dots (8)
From (7) and (8), (a \land c) \prec c \prec (b \lor c)
Therefore, (a \land c) \prec (b \lor c)....(9)
From (6) and (9), (a \land c) is the lower bound of a and (b \lor c), therefore
                (a \land c) \prec glb\{a, b \lor c\} i.e.
                (a \land c) \prec a \land (b \lor c) \dots (10)
From (5) and (10), a \land (b \lor c) is upper bound of (a \land b) and (a \land c),
therefore
lub\{(a \land b), (a \land c)\} \leq a \land (b \lor c) i.e.
(a \land b) \lor (a \land c) \land \forall a \land (b \lor c)
Now, it is proved.
```

```
Theorem: Let \langle L, \prec \rangle be a lattice. For any a,b,c \in L,
       a \prec c \Leftrightarrow a \lor (b \land c) \prec (a \lor b) \land c
Proof:
First part: In this part, we will prove that if a \leq c then a \vee (b \wedge c)
\prec (a\lorb)\landc
Suppose a \prec c.
Using definition of least upper bound, a \leq (a\veeb).....(1)
Using definition of greatest lower bound, (b \land c) \leq b \dots (2)
Using definition of least upper bound, b \leq (a\veeb) .....(3)
Therefore, from (2) and (3), (b \land c) \prec b \prec (a \lor b)
Therefore, (b \land c) \prec (a \lor b) .....(4)
From (1) and (4), (a \lor b) is the upper bound of a and b \land c, therefore
               lub{a , b \land c} \prec (a \lor b) i.e.
               a \lor (b \land c) \prec (a \lor b) \dots (5)
```

Now, using definition of greatest lower bound, $(b \land c) \leq c \dots (6)$

Since a \leq c, therefore using (6), c is an upper bound of a and (b \wedge c).

Therefore

$$a\lor(b\land c) \leq c \dots (7)$$

from (5) and (7), $a\lor(b\land c)$ is lower bound of $(a\lor b)$ and c. Therefore, $a\lor(b\land c) \preceq (a\lor b)\land c$

Second part: In this part, we will prove that if $a \lor (b \land c) \preceq (a \lor b) \land c$ then $a \preceq c$.

Now, a \leq a \vee (b \wedge c) \leq (a \vee b) \wedge c \leq c

Therefore, a \leq c.

Since both parts are proved. Therefore, it is proved.

Exercise

- 1. Show that in a lattice if $a \leq b \leq c$, then $a \lor b = b \land c$ and $(a \land b) \lor (b \land c) = b = (a \lor b) \land (a \lor c)$
- 2. Show that in a lattice if a \leq b and c \leq d, then $(a \land c) \leq (b \land d)$
- 3. In a lattice, show that
 - (a) $(a \land b) \lor (c \land d) \preceq (a \lor c) \land (b \lor d)$
 - (b) $(a \land b) \lor (b \land c) \lor (c \land a) \preceq (a \lor b) \land (b \lor c) \land (c \lor a)$
- 4. Show that a lattice with three or fewer elements is a chain.

7