CS225 Switching Theory

S. Tripathy IIT Patna

Previous Class

Minimization/ Simplification of Switching Functions
K-map (SOP)

This Class

Minimization/ Simplification of Switching Functions

Combinational Circuit

Design procedure:

from the specification

- 1. Determine the required number of inputs and outputs
- 2. Derive the truth table
- 3. Find the Simplified Boolean expression for each output as a function of the input variable
- 4. Draw the logic diagram
- 5. Verify the correctness

Simplification and Minimization

Example:

Use of cell 6 in forming both cubes justified by idempotent law

z xy	00	01	11	10
0	0	2	6	4
1	1	3	7	5

(a) Location of minterms in a three-variable map.

z xy	00	01	11	10
0		1	1	
1			1	

(b) Map for function

$$f(x, y, z) = \sum (2, 6, 7) = yz' + xy$$

Corresponding algebraic manipulations:

Simplification and Minimization of Functions Contd..

Cube: collection of 2^m cells, each adjacent to m cells of the collection

- Cube is said to cover these cells
- Cube expressed by a product of n-m literals for a function containing n variables
- m literals not in the product said to be eliminated

Example:
$$wxy'z' + wxy'z + wxyz' + wxyz$$

$$= wx (y'z' + y'z + yz' + yz)$$

$$= wx$$

yz wx	00	01	11	10
00		1	1	1
01		1	1	
11			1	
10			1	

(d) Map for function
$$f(w, x, y, z) = \sum (4, 5, 8, 12, 13, 14, 15) = wx + xy' + wy'z'$$

Minimization (Contd.)

Minimal expression: covers all the 1 cells with the smallest number of cubes such that each cube is as large as possible

- A cube contained in a larger cube must never be selected
- If there is more than one way of covering the map with a minimal number of cubes, select the cover with larger cubes
- A cube contained in any combination of other cubes already selected in the cover is redundant by virtue of the consensus theorem

Rules for minimization:

- 1. First, cover those 1 cells by cubes that cannot be combined with other 1 cells; continue to 1 cells that have a single adjacent 1 cell (thus can form cubes of only two cells)
- 2. Next, combine 1 cells that yield cubes of four cells, but are not part of any cube of eight cells, and so on
- 3. Minimal expression: collection of cubes that are as large and as few in number as possible, such that each 1 cell is covered by at least one cube

Minimization (Contd.)

Example: $f(w, x, y, z) = \sum (1, 5, 6, 7, 11, 12, 13, 15)$

Only one irredundant form: f = wxy' + wyz + w'xy + w'y'z

• Dotted cube xz is redundant

yz wx	00	01	11	10
00			1	
01	1	(1)	1	
11		1	1/	1
10		1		

Map for function
$$f = wxy' + wxy + w'xy + w'y'z$$

Minimal Product-of-sums

Dual procedure: product of a minimum number of sum factors, provided there is no other such product with the same number of factors and fewer literals

- Variable corresponding to a 1 (0) is complemented (uncomplemented)
- Cubes are formed of 0 cells

Example: either one of minimal sum-of-products or minimal product-of- sums can be better than the other in literal count

yz wx	00	01	11	10
00				
01		1		1
11				
10		1		1

(a) Map of
$$f(x, y, z) = \sum (5,6,9,10)$$

= $w'xy'z + wx'y'z + w'xyz' + wx'yz'$

(b) Map of
$$f(x, y, z) = \prod (0,1,2,3,4,7,8,11,12,13,14,15)$$

= $(y+z)(y'+z')(w+x)(w'+x')$

Example: On White board

Simplification of Two bit adder

Simplification of Full Adder

Don't-care Combinations

Don't-care combination ϕ : combination for which the value of the function is not specified. Either

- · input combinations may be invalid
- precise output value is of no importance

Since each don't-care can be specified as either 0 or 1, a function with k don't-cares corresponds to a class of 2^k distinct functions. Our aim is to choose the function with the minimal representation

- Assign 1 to some don't-cares and 0 to others in order to increase the size of the selected cubes whenever possible
- No cube containing only don't-care cells may be formed, since it is not required that the function equal 1 for these combinations

Code Converter

Example: code converter from BCD to excess-3 code

• Combinations 10 through 15 are don't-cares

Decimal	BCD Inputs				Excess-3 Outputs			uts
Decimal	w	×	у	z	f ₄	f ₃	f ₂	f ₁
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

$$f_1 = \sum (0,2,4,6,8) + \sum_{\phi} (10,11,12,13,14,15)$$

$$f_2 = \sum (0,3,4,7,8) + \sum_{\phi} (10,11,12,13,14,15)$$

$$f_3 = \sum (1,2,3,4,9) + \sum_{\phi} (10,11,12,13,14,15)$$

$$f_4 = \sum (5,6,7,8,9) + \sum_{\phi} (10,11,12,13,14,15)$$

Code Converter (Contd.)

yz wx	00	01	11	10
00	1	1	φ	1
01			φ	
11			φ	φ
10	1	1	φ	φ

 f_3 Map

yz wx	00	01	11	10
00		1	φ	
01	1		φ	1
11	1		φ	ф
10	1		φ	φ

 f_2 Map

yz wx	00	01	11	10
00	1	1	φ	1
01			φ	
11	1	1	φ	φ
10			φ	φ

 f_4 Map

yz wx	00	01	11	10	
00			φ	1	
01		1	ϕ	1	
11		1	φ	φ	
10		1	φ	φ	

$$f_1 = z'$$
 $f_2 = y'z' + yz$
 $f_3 = x'y + x'z + xy'z'$ $f_4 = w + xy + xz$

$$f_2 = y'z' + yz$$

$$f_4 = w + xy + xz$$

Logic Network for Code Converter

Two-level AND-OR realization:

