+

0

Decision Tree

What is a Decision Tree?

Recommending Apps

Gender	Age	Арр
F	15	Pokemon Go
F	25	Whatsapp
M	32	Snapchat
F	40	Whatsapp
M	12	Pokemon Go
M	14	Pokemon Go

	InDependence	lent/Predic	Der 7	depedent
Body Temp	Gives Birth 7	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No 3
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Identifying how impure a leaf is

Gini Impurity = $1 - (probability of yes)^2 - (the probability of no)^2$

Gini(WB) =
$$1 - (4/5)^2 - (1/5)^2$$

= 0.32

Gini(CB) =
$$1 - (0/5)^2 - (5/5)^2$$

We have the impurity for both leaves.

We now have to identify how impure the feature called 'Body Temp' is.

So can combine the weighted average using:

Total Weighted Gini =
$$(5/10) \times 0.32 + (5/10) \times 0$$

= 0.16

Body Temp	Gives Birth	Four- legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes -
Warm blooded	No	No	No	No 🔨
Warm blooded	Yes	Yes	No	Yes _
Cold Blooded	Yes	No	No	No ×
Cold Blooded	No	Yes	No	No 🔸
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No X
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes -
Cold blooded	No	Yes	Yes	No 🗡

Total Weighted Gini =
$$(5/10) \times 0.32 + (5/10) \times 0$$

= 0.16

= 0

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes -	No	No	Yes -
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No _
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes 👅
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Gini(Yes) =
$$1 - (3/4)^2 - (1/4)^2$$

= 0.25

Gini(No) =
$$1 - (1/6)^2 - (5/6)^2$$

= 0.278

Total Weighted Gini = $(4/10) \times 0.25 + (6/10) \times 0.278$ = 0.2668

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Gini(Yes) =
$$1 - (2/4)^2 - (2/4)^2$$
 Gini(No) = $1 - (2/6)^2 - (4/6)^2$
= 0.5

Total Weighted Gini =
$$(4/10) \times 0.5 + (6/10) \times 0.44$$

= 0.464

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Gini(Yes) =
$$1 - (1/2)^2 - (1/2)^2$$
 Gini(No) = $1 - (3/8)^2 - (5/8)^2$
= 0.469

Total Weighted Gini = $(2/10) \times 0.5 + (8/10) \times 0.469$ = 0.475

	Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
\$ 5	Warm blooded	Yes	No	No	Yes
Gini Impurity for : • Body Temp = 1.6 • Gives Birth = 0.2668	Warm blooded	No	No	No	No
• Gives Birth = 0.2668	Warm blooded	Yes	Yes	No	Yes
 Four Legged = 0.464 Hibernates = 0.475 	Cold Blooded	Yes	No	No	No
	Cold Blooded	No	Yes	No	No
Body Temp is the least 'impure'	Cold Blooded	No	No	No	No
feature, so that'll be the root node	Cold Blooded	No	No	No	No
	Warm blooded	Yes	No	No	Yes
	Warm blooded	No	Yes	Yes	Yes
	Cold blooded	No	Yes	Yes	No

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Plooded	No /	Yes	72	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Gini(Yes) =
$$1 - (3/3)^2 - (0/3)^2$$
 Gini(Yes) = $1 - (0/2)^2 - (2/2)^2$
= 0 = 0
Total Weighted Gini = $(3/5) \times 0 + (2/5) \times 0$

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	N 0
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

Gini(Yes) =
$$1 - (1/1)^2 - (0/1)^2$$
 Gini(Yes) = $1 - (3/4)^2 - (1/4)^2$
= 0.375

Total Weighted Gini =
$$(1/5) \times 0 + (4/5) \times 0.375$$

= 0.3

Body Temp	Gives Birth	Four-legged	Hibernates	Mammal?
Warm blooded	Yes	No	No	Yes
Warm blooded	No	No	No	No
Warm blooded	Yes	Yes	No	Yes
Cold Blooded	Yes	No	No	No
Cold Blooded	No	Yes	No	No
Cold Blooded	No	No	No	No
Cold Blooded	No	No	No	No
Warm blooded	Yes	No	No	Yes
Warm blooded	No	Yes	Yes	Yes
Cold blooded	No	Yes	Yes	No

What if the dataset had a column with numerical data?

Body Temp	Gives Birth	Four- legged	Averag e height	Hibern ates	Mamm al?
Warm blooded	Yes	No	7	No	Yes
Warm blooded	No	No	3	No	No
Warm blooded	Yes	Yes	6	No	Yes
Cold Blooded	Yes	No	3	No	No
Cold Blooded	No	Yes	2	No	No
Cold Blooded	No	No	5	No	No
Cold Blooded	No	No	2	No	No
Warm blooded	Yes	No	9	No	Yes
Warm blooded	No	Yes	8	Yes	Yes
Cold blooded	No	Yes	4	Yes	No

Body Temp	Gives Birth	Four- legged	Averag e height	Hibern ates	Mamm al?
Warm blooded	Yes	No	7	No	Yes
Warm blooded	No	No	3	No	No
Warm blooded	Yes	Yes	6	No	Yes
Cold Blooded	Yes	No	3	No	No
Cold Blooded	No	Yes	2	No	No
Cold Blooded	No	No	5	No	No
Cold Blooded	No	No	2	No	No
Warm blooded	Yes	No	9	No	Yes
Warm blooded	No	Yes	8	Yes	Yes
Cold blooded	No	Yes	4	Yes	No

Body Temp	Gives Birth	Four- legged	Average height	Hibernat es	Mammal?
Cold Blooded	No	Yes	2	No	No
Cold Blooded	No	No	2	No	No
Warm blooded	No	No	3	No	No
Cold Blooded	Yes	No	3	No	No
Cold Blooded	No	No	5	No	No
Warm blooded	Yes	Yes	6	No	Yes
Warm blooded	Yes	No	7	No	Yes
Warm blooded	No	Yes	8	Yes	Yes
Warm blooded	Yes	No	9	No	Yes

Body Temp	Gives Birth	Four- legged	Average height	Hibernat es	Mammal?
Cold Blooded	No	Yes	2,	No	No
Cold Blooded	No	No	2	No	No
Warm blooded	No	No	2.5	No	No
Cold Blooded	Yes	No	3	No	No
Cold Blooded	No	No	5 5 5	No	No
Warm blooded	Yes	Yes	5.5 6 6.5	No	Yes
Warm blooded	Yes	No	7	No	Yes
Warm blooded	No	Yes	7.5	Yes	Yes
Warm blooded	Yes	No	9	No	Yes

We generate multiple trees from one column, select the one with least gini impurity and then compare it with columns for split.

Validation sets

- We need a way to calculate how the model that we build will perform on the real world.
- Each time we are given a dataset, we must split the dataset randomly, into the train set and the validation set.
- The validation set is assumed to be a representative of real-world data.
- The model looks into the train set and trains itself. Then, we pass the validation set's inputs into the model and make the model to do predictions. Since, we already know what the correct output is, we compare the predictions with the actual outputs, so validate how well the model will perform in real world.

An analogy

- We study for our math tests using sample problems given in a book. These sample problems are the train set.
- Now, if we ask the same sample problems from the book in an exam, the student can simply memorize all the problems in the book without having to understand the conceptual underpinnings.
- So, instead of testing the students with the same problems from the book, we ask slightly different questions, but based on the same concepts.
- This is what we do with validation sets. The model learns the patterns required to make predictions from the train set. In order to if the model has just memorized the data instead of learning the patterns, we check how well it performs on the validation set.

So, what now?

K-Fold wess validations

We first split the dataset like this.

Train Set (80%)

Dev Set (20%)

- Then, we first develop the model based on the train set.
- The Dev/Validation set also has the input and their correct ground truth values. So, we take the inputs of the Dev set, get the predictions from the model, compare them with the ground truth values for the corresponding input and predicted value and check how many times our model got the output right.
- Let's look at an example for how to calculate the accuracy of the model on the Dev set.

Validation set

Body Temp	Gives Birth	Four-legged	Hibernates	Predicted	Actual
Warm blooded	Yes	Yes	No	No	Yes
Warm blooded	No	No	Yes	No	No
Warm blooded	Yes	Yes	Yes	Yes	Yes
Cold Blooded	No	No	No	No 🦯	No
Cold Blooded	No	Yes	No	No /	No

Accuracy = (4/5) * 100 = 80%

The Confusion Matrix

Let's take a new dataset, with the following features

Train Set

Chest Pain	Good blood circ	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
		•••	•••	•••

We can train a model for this dataset using a Decision Tree, or any other model.

Validation Set

Wo Prediction Yes

No

Chest Pain	Good blood circ	Blocked Arteries	Weight	Heart Disease
Yes	No	Yes	167	Yes
•••	•••		•••	•••

After training the decision tree, we validate the model and let's assume we get an accuracy of 88%.

Is there any other way to evaluate the model?

Enter Confusion Matrix

Rows correspond to what the model has predicted

Columns correspond to what the ground truth is

True Positive is when the patient **HAS** a heart disease, and the model also predicts that the patient **HAS** a heart disease.

False Negative is when the patient **HAS** a heart disease, and the model also predicts that the patient **DOESN'T** have a heart disease.

False Positive is when the patient **DOESN'T** have a heart disease, but the model predicts that the patient **HAS** a heart disease.

True Negative is when the patient **DOESN'T** have a heart disease, and the model also **predicts** that the patient **HAS** a heart disease.

Sum of the numbers on the green boxes indicate how many times the model got the answer right in the validation set.

validation set.	——Actual——		
		Has Heart Disease	Does Not Have Heart Disease
,	Has Heart Disease	142	22
Predicted	Does Not Have Heart Disease	29	110

Comparing models

So, let's assume that we have two models, one decision tree and another classification algorithm named Support Vector Machine (SVM). We'll get into how SVM works later.

We train both models on the train set. So, we want to evaluate how well the model is performing on different classes to see which one to deploy.

Decision Tree

Has Heart Disease Has Heart Disease Has Heart Disease 142 22 Does Not Have Heart Disease 29 110

Predicted

SVM

Decision Tree has a good accuracy and is also producing lower false positives and false negatives. So, **in this case**, decision tree model is better for real time use.

So, what if the accuracy is same between, but they have different errors on false negatives and false positives like below

Here the accuracies are almost similar. But We can see that the Decision Tree model gives a lot false negatives and that can be fatal to a lot of people. SVM gives lesser number of false negatives. So, in this case, even if the accuracy of SVM is slightly lower, since it is good at identifying people with a heart disease than the decision tree, we can say that SVM is a better model.

Multi-class Confusion Matrix

Jurassic Park	Run for your Wife	Out Cold	Howar d the Duck	Favorite movie
Liked	Didn't Like	Liked	Liked	Troll 2
Didn't like	Liked	Didn't Like	Like	Gore Police
Like	Like	Didn't Like	Like	Cool as ice

Sensitivity =
$$\frac{TP}{TP + FN}$$

In this case, sensitivity tells us what percentage of patients WITH heart disease were correctly identified

		——Actual——		
		Has Heart Disease	Does Not Have Heart Disease	
 	Has Heart Disease	True Positive	False Positive	
Predicted	Does Not Have Heart Disease	False Negative	True Negative	

Actual_

Specificity =
$$\frac{TN}{TN + FP}$$

In this case, sensitivity tells us what percentage of patients WITHOUT heart disease were correctly identified

		——Actual——		
		Has Heart Disease	Does Not Have Heart Disease	
Dradiated.	Has Heart Disease	True Positive	False Positive	
Predicted	Does Not Have Heart Disease	False Negative	True Negative	

Actual_

Let's assume a model has the following confusion matrix.

Sensitivity =
$$(139)/(139+32) = 0.81$$

Specificity = $(112)/(112 + 20)$	——Actual——		
		Has Heart Disease	Does Not Have Heart Disease
Predicted	Has Heart Disease	139	20
	Does Not Have Heart Disease	32	112

Let's assume that another model has the following confusion matrix.

-----Actual-----

		Has Heart Disease	Does Not Have Heart Disease
Predicted	Has Heart Disease	142	20
	Does Not Have Heart Disease	32	112

Sensitivity =
$$(142)/(142 + 29) = 0.83$$

Specificity =
$$(110)/(110 + 22) = 0.83$$

Let's compare the two models

Model 1
Sensitivity =
$$(139)/(139+32) = 0.81$$

Specificity =
$$(112)/(112 + 20) = 0.85$$

Model 2
Sensitivity =
$$(142)/(142 + 29) = 0.83$$

Specificity =
$$(110)/(110 + 22) = 0.83$$

Based on sensitivity, we can infer that Model 2 is better at predicting whether a person has heart disease. Based on Specificity, we can infer that Model 1 is better at identifying people who don't have a heart disease.