

Detailed Course on Differential Equation for IIT JAM' 23 - II

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Accelerate

Save up to 43%*

on your CSIR UGC NET Subscription with free extension of up to 6 months

Valid only till August 12, 11:59 PM!

	Duration	Current Price	Total Value	What you pay	What you Save
5	24 months + 6 months	₹ 23,100	£36,498	₹ 20,790	₹15,708 (43%)
<u>-</u>	12 months + 3 months	₹ 16,748	£ 23,967	₹ 15,073	₹8,894 (37%)
	6 Months + 1 Month	₹ 13,398	£15,804	₹ 12,058	₹3,746 (24%)
U.	24 months + 6 months	₹ 52,975	2.74,515	₹ 47,678	₹26,838 (36%)
koni	12 months + 3 months	₹ 30,780	₹.41,950	₹ 27,702	₹13,848 (33%)
	6 Months + 1 Month	₹ 21,540	₹ 26,130	₹ 19,386	₹5,744 (23%)

Subscribe Now

Accelerate

Save up to 43%*

on your IIT JAM Subscription with free extension of up to 6 months

Valid only till August 12, 11:59 PM!

	Duration	Current Price	Total Value	What you pay	What you Save
5	24 months + 6 months	₹ 23,100	Z-36;498	₹ 20,790	₹15,708 (43%)
2	12 months + 3 months	₹ 16,748	£ 23,967	₹ 15,073	₹8,894 (37%)
	6 Months + 1 Month	₹ 13,398	Z 15,804	₹ 12,058	₹3,746 (24%)
٦	24 months + 6 months	₹ 52,975	2.74,515	₹ 47,678	₹26,838 (36%)
Iconi	12 months + 3 months	₹ 30,780	₹.41,950	₹ 27,702	₹13,848 (33%)
	6 Months + 1 Month	₹ 21,540	7.25,130	₹ 19,386	₹5,744 (23%)

Subscribe Now

Use code

*T&C apply, as available on the platform

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo		
Save 25%	Total ₹ 12,252		

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹ 2,723 / mo	
	Total ₹ 2,723	

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo	
Save 45%	₹ 13,475 ₹ 12,128	

6 months	₹ 1,838 / mo	
Save 25%	₹-12,252 ₹ 11,027	

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

HOMOGENEOUS DIFFERENTIAL EQUATION

Homogeneous Function: A function f(x, y) is called homogeneous function of degree 'n' if $f(\lambda x, \lambda y) = \lambda^n f(x, y)$; for all $x, y; \lambda \ge 0$

Example:
$$f(x, y) = 2x^3 - 3xy^2 + 4y^3$$

Solution:
$$f(\lambda x + \lambda y) = 2\lambda^3 x^3 - 3\lambda^3 xy^2 + 4\lambda^3 y^3$$

= $\lambda^3 f(x, y)$

This function is homogeneous of degree 3.

Note: A differential equation of first order and first degree is said to be homogeneous if it can be put in the form

$$\frac{dy}{dx} = \phi \left(\frac{y}{x}\right) = \phi \left(\frac{x}{y}\right).$$

Note:

- Every homogeneous first order DE is reducible into seperable variable.
- 2. A function f(x, y) is homogeneous of degree n then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf.$

Working Rule for solving homogeneous equation:

Let
$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$
 is a homogeneous equation, then

Step
$$-1$$
: Put $y/x = v \Rightarrow y = vx$

Step
$$-2: \frac{dy}{dx} = v + x \frac{dv}{dx}$$

Step
$$-3$$
: Put both value in DE

Step – 4: Using separation of variable we get required solution.

Q.1. The differential equation $(x^2 + y^2) \frac{dy}{dx} = xy$ s.t. y(0) = 1

has

- (a) Unique solution (b) Infinite solution
- (c) Two solution (d) None of these

Q.2. The general solution of the differential equation

$$(x^2 - y^2)dx + 2xydy = 0 is$$

(a)
$$x^2 - y^2 = c$$

(c)
$$x^2 - y^2 = cx$$

(b)
$$x^2 + y^2 = c$$

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.3. Consider the following difference equation

$$x(ydx + xdy)\cos\frac{y}{x} = y(xdy - ydx)\sin\frac{y}{x}$$

Which of the following is solution of the above equation?

$$(a)\frac{x}{y}\cos\frac{y}{x} = c$$

(b)
$$\frac{x}{y} \sin \frac{y}{x} = c$$

(c)
$$xy \cos \frac{y}{x} = c$$

(d)
$$xy \sin \frac{y}{x} = c$$

Equation reducible to homogeneous form

Equation of the form $\frac{dy}{dx} = \frac{ax + by + c}{a(x + b)(y + c)}$, where $\frac{a}{a} \neq \frac{b}{b}$ can be reduced to homogeneous form.

Working rule:

(1) Take
$$x = X + h \& y = Y + k$$
, then $\frac{dy}{dx} = \frac{dY}{dX}$.

Put all values in above DE (2)

$$\frac{dY}{dX} = \frac{aX + bY + ah + bk + c}{ax + by + ah + bk + c}$$

Find value of h & k for which ah +bk + c = 0 & a'h + (3) b'k + c' = 0,

Then
$$\frac{dY}{dX} = \frac{aX + bY}{a'X + b'Y}$$
 which homogeneous.
Solve this DE and put $X = x^2 + b \cdot Y = y - k$

(4)

Q.6. Solution of
$$\frac{dy}{dx} = \frac{(xy^2 - x^2y)}{x^3}$$
 s.t. $y(1) = 2$

(a) Unique solution

(b) No solution

(c) Infinite solution

(d) None of these

DETAILED COURSE 2.0 DIFFERENTIAL EQUATION

4th AUGUST

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Introducing UA Lite for CSIR-UGC NET

1 month subscription at ** 500

2 month subscription at 12 100

Get access to:

- · Curated Test Series
- Question Bank
- · Exams of Previous Year Question Papers

Subscribe Now

Use code - GPSIR

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR