Computer Networks

CMP2205

Lecture 4

Full Duplex, Half Duplex, Simplex

- Full duplex: traffic in both directions simultaneously.
- Half duplex: traffic in both directions but 1 direction at a time.
- Simplex: traffic allowed only one way.
- Examples?

What's next?

- Modems were getting faster, e.g., 56Kbps.
- But, demand for faster access was growing!
- CATV and satellite as competitors.
- Phone company's response: DSL.
 - "Broadband" access.
 - ADSL: asymmetric digital subscriber line.
 - When you subscribe to DSL service, you are connected to the local office without the filter to frequencies below 300Hz and above 3400Hz.
 - Physical limitation still exists and depends on thickness, length, etc.

Digital Subscriber Lines

Digital Subscriber Lines (2)

Operation of ADSL using discrete multitone modulation.

Available 1.1MHz local loop spectrum divided into 256 channels (4.3KHz each).

ADSL

- Typically, 32 channels for upstream and the rest for downstream traffic.
- Usually, 512 Kbps downstream and 64 Kbps upstream (standard) and 1 Mbps downstream and 256 Kbps upstream (premium).
- Within each channel, modulation scheme is used (sampling at 4000 baud).

Typical ADSL Setup

Wireless Local Loop

- Last mile is wireless.
- Why?
- Historically: local telcos had monopoly for local telephone service.
 - In the mid 1990's market open to competition,
 e.g., long distance carriers.
 - Cheaper alternative to stringing cables to customers is using a wireless local loop.
- Mobile telephony?
- "Fixed" wireless.

Wireless Local Loops

Tower with multiple highly directional antennae; but small range (2-5Km).

Trunking

- Deployment of high-bandwidth pipes.
 - Current and future demand.
 - Switching offices higher in the PSTN hierarchy.
- Multiplexing: ability to send a number of conversations simultaneously over the same pipe.
- Multiplexing schemes:
 - Frequency Division Multiplexing (FDM).
 - Time Division Multiplexing (TDM).

The Multiplexing Problem

Analogy: a highway shared by many users

Frequency-Division Multiplexing

Analogy: a highway has multiple lanes

Time-Division Multiplexing

time

Requirement: precise time coordination

Frequency-Time-Division

time

Frequency Division Multiplexing

- (a) The original bandwidths.
- (b) The bandwidths raised in frequency.
- (c) The multiplexed channel.

FDM versus TDM

- FDM requires analog circuitry.
- TDM can be done entirely using digital electronics.
- But TDM can only be used for digital data.
 - Analog signals from local loops need to be digitized (at the local office).
 - At end office, all individual local loops arrived, are digitzed, and multiplexed.

TDM Multiplexing

PCM

- Pulse Code Modulation:
 - Digitization of voice channels.
 - Sampling frequency...
 - If voice signal peaks at 4KHz, what's the sampling frequency?
 - Nyquist: 8000 samples/sec, or 125 microsec/sample.
 - Each sample is 8 bits (7 for data and 1 for control).
 - Data rate: 7*8000 = 56Kbps of data and 8Kbps of signaling (per channel).
- No world-wide standard for PCM.
- In the US and Japan: T1 (technically DS1).

T1

T1: 24 multiplexed voice channels: 1.544 Mbps.

T2 and Beyond...

Multiplexing T1 streams into higher carriers.

SONET/SDH

SONET		SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912

SONET: Synchronous Optical NETwork.

SDH: Sync Digital Hierarchy.

Optical TDM for fiber transmission

Circuit- and Packet Switching

- (a) Circuit switching.
- (b) Packet switching.

Switching

Packet Switching

ltem	Circuit-switched	Packet-switched	
Call setup	Required	Not needed	
Dedicated physical path	Yes	No	
Each packet follows the same route	Yes	No	
Packets arrive in order	Yes	No	
Is a switch crash fatal	Yes	No	
Bandwidth available	Fixed	Dynamic	
When can congestion occur	At setup time	On every packet	
Potentially wasted bandwidth	Yes	No	
Store-and-forward transmission	No	Yes	
Transparency	Yes	No	
Charging	Per minute	Per packet	

Wireless Transmission

• Electron movement: electromagnetic waves that propagate through space.

Propagation

- Maximum speed: speed of light, c, 3*10⁸ m/s.
- In vacuum, all EM waves travel at the same speed **c**.
- Otherwise, propagation speed is function of frequency (c = λ * f), where f is frequency (Hz) and λ is wavelength (m).

The Electromagnetic Spectrum

Radio Transmission

- $\sim 1 \text{Km}$
 - (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. E.g., AM radio uses MF.
 - (b) In the HF and VHF bands, they bounce off the ionosphere. E.g., Hams and military.

Microwave Transmission

- Above 100MHz.
- Waves travel in straight lines.
- Directionality.
 - Better quality.
 - Space Division Multiple Access.
 - But, antennas need to be aligned, do not go through buildings, multi-path fading, etc.
- Before fiber, microwave transmission dominated long-distance telephone transmission.

Infrared Transmission

- Short range (e.g., remote controls).
- Directional, cheap.
- · But, do not pass through obstacles.

Lightwave Transmission

- E.g., laser communication between two buildings for LAN interconnection.
- High bandwidth, low cost.
- Unidirectionality.
- Weather is a major problem (e.g., rain, convection currents).

