15-312 Assignment 1

Andrew Carnegie (andrew)

November 7, 2017

1 Introduction

In this paper, we propose a model for deriving asymptotically tight bounds for first order functional programs. We choose a fragment of OCaml as the target language. The abstract and concrete syntax of the language is show below. Note that we only allow first order functions of type $\tau_1 to \tau_2$, where τ_1 and τ_2 are base types: unit, bool, product, or lists.

```
Base types \tau ::=
                                                                                                           naturals
                       nat
                                                      nat
                                                                                                           unit
                       unit
                                                      unit
                       bool
                                                      bool
                                                                                                           boolean
                                                                                                           product
                       prod(\tau_1; \tau_2)
                                                      \tau_1 \times \tau_2
                       list(\tau)
                                                                                                           list
                                                      L(\tau)
First order types \rho ::=
                        arr(\tau_1; \tau_2)
                                                                                                           first order function
                                                      \tau_1 \rightarrow \tau_2
                \operatorname{\mathsf{Exp}}\ e ::=
                                                                                                           variable
                                                      \overline{n}
                                                                                                           number
                       \mathtt{nat}[n]
                       unit
                                                      ()
                                                                                                           unit
                       Т
                                                      Т
                                                                                                           true
                       F
                                                                                                           false
                        if(x;e_1;e_2)
                                                      if x then e_1 else e_2
                                                                                                           if
                       lam(x:\tau.e)
                                                      \lambda x : \tau . e
                                                                                                           abstraction
                        ap(f;x)
                                                      f(x)
                                                                                                           application
                                                      \langle x_1, x_2 \rangle
                        tpl(x_1; x_2)
                                                                                                           pair
                                                      case p\{(x_1; x_2) \hookrightarrow e_1\}
                        case(x_1, x_2.e_1)
                                                                                                           match pair
                       nil
                                                                                                           nil
                        cons(x_1; x_2)
                                                                                                           cons
                                                      x_1 :: x_2
                                                      \operatorname{case} l\left\{\operatorname{nil} \hookrightarrow e_1 \mid \operatorname{cons}(x; xs) \hookrightarrow e_2\right\}
                                                                                                           match list
                        \mathsf{case}\{l\}(e_1; x, xs.e_2)
                        let(e_1; x : \tau.e_2)
                                                      let x = e_1 in e_2
                                                                                                           let
                \mathsf{Val} \ \ v \ \ ::=
                                                                                                           numeric value
                       val(n)
                                                      n
                       val(T)
                                                      Т
                                                                                                           true value
                       val(F)
                                                      F
                                                                                                           false value
                       val(Null)
                                                      Null
                                                                                                           null value
                       val(cl(V; x.e))
                                                      (V, x.e)
                                                                                                           function value
                       val(l)
                                                      l
                                                                                                           loc value
                       val(pair(v_1; v_2))
                                                                                                           pair value
                                                      \langle v_1, v_2 \rangle
              State s ::=
                        alive
                                                      alive
                                                                                                           live value
                                                                                                           dead value
                       dead
                                                      dead
                \mathsf{Loc}\ l ::=
                       loc(l)
                                                      l
                                                                                                           location
                Var l ::=
                        var(x)
                                                                                                           variable
                                                      \boldsymbol{x}
```

2 Paths and aliasing

Model dynamics using judgement of the form:

$$V, H, R, F \vdash_{\Sigma} e \Downarrow v, H', F'$$

Where $V: \mathsf{Var} \to \mathsf{Val} \times \mathsf{State}$, $H: \mathsf{Loc} \to \mathsf{Val}$, $R \subseteq \mathsf{Loc}$, and $F \subseteq \mathsf{Loc}$. This can be read as: under stack V, heap H, roots R, freelist F, and signature Σ , the expression e evaluates to v, and engenders a new heap H' and freelist F'. Because the signature Σ for the set of the first order functions does not change during evaluation, we drop the subscript Σ from \vdash_{Σ} when the context of evaluation is clear. It is convenient to think of the evaluation judgement \vdash as being indexed by a family of signatures Σ 's, each of which is a set of "top-level" first-order declarations to be used during evaluation.

For a partial map $f: A \to B$, we write dom for the defined values of f. Sometimes we shorten $x \in dom(f)$ to $x \in f$. We write $f[x \mapsto y]$ for the extension of f where x is mapped to y, with the constraint that $x \notin dom(f)$.

Roots represents the set of locations required to compute the continuation *excluding* the current expression. We can think of roots as the heap allocations necessary to compute the context with a hole that will be filled by the current expression.

In order prove soundness of the type system, we need some auxiliary judgements to defining properties of a heap. Below we define $reach: Val \to \{\{Loc\}\}\}$ that maps stack values its the root multiset, the multiset of locations that's already on the stack.

Next we define reachability of values:

$$reach_H(\langle v_1, v_2 \rangle) = reach_H(v_1) \uplus reach_H(v_2)$$

 $reach_H(l) = \{l\} \uplus reach_H(H(l))$
 $reach_H(-) = \emptyset$

For a multiset S, we write $\mu_S: S \to \mathbb{N}$ for the multiplicity function of S, which maps each element to the count of its occurence. If $\mu_S(x) \geq 1$ for a multiset S, then we write $x \in S$ as in the usual set membership relation. If for all $s \in S$, $\mu(s) = 1$, then S is a property set, and we denote it by set(S). Additionally, $A \uplus B$ denotes counting union of sets where $\mu_{A \uplus B}(s) = \mu_A(s) + \mu_B(s)$, and $A \cup B$ denotes the usual union where $\mu_{A \cup B}(s) = \max(\mu_A(s), \mu_B(s))$. For the disjoint union of sets A and B, we write $A \sqcup B$.

Next, we define the predicates no_alias, stable, and disjoint:

no_alias(V, H): $\forall x, y \in V, x \neq y$. Let $r_x = reach_H(V(x)), r_y = reach_H(V(y))$. Then:

1.
$$set(r_x), set(r_y)$$

2.
$$r_x \cap r_y = \emptyset$$

 $\mathsf{stable}(R, H, H')$: $\forall l \in R. \ H(l) = H'(l).$

$$\mathsf{safe}(V, H, F)$$
: $\forall x \in V. \ reach_H(V(x)) \cap F = \emptyset$

$$\mathsf{disjoint}(\mathcal{C}) \colon \ \forall X, Y \in \mathcal{C}. \ X \cap Y = \emptyset$$

For a stack V and a heap H, whenever $\mathsf{no_alias}(V, H)$ holds, visually, one can think of the situation as the following: the induced graph of heap H with variables on the stack as additional leaf nodes is a forest: a disjoint union of arborescences (directed trees); consequently, there is at most one path from a live variable on the stack V to a location in H by following the pointers.

First, we define FV(e), the multiset of free variables of e. It is defined inductively over the structure of e; the only unusual thing is that multiple occurrences of a free variable x in e will be reflected in the multiplicity of FV(e).

Next, we define $locs_{V,H}$ using the previous notion of reachability.

$$locs_{V,H}(e) = \bigcup_{x \in FV(e)} reach_H(V(x))$$

size calculates the number of cells a value occupies.

$$size(\langle v_1, v_2 \rangle) = size(v_1) + size(v_2)$$

 $size(_) = 1$

copy(H, L, v) takes a heap H, a set of locations L, and a value v, and returns a new heap H' and a location l such that l maps to v in H'.

$$\begin{split} copy(H,L,\langle v_1,v_2\rangle) &= \\ \text{let } L_1 \sqcup L_2 \subseteq L \\ \text{where } |L_1| = size(v_1) \;, |L_2| = size(v_2) \\ \text{let } H_1 &= copy(H,L_1,v_1) \\ \text{let } H_2 &= copy(H_1,L_2,v_2) \text{ in } \\ H_2\{l \mapsto v\} \\ copy(H,L,v) &= \\ \text{let } l \in H \text{ in } \\ H\{l \mapsto v\} \end{split}$$

3 Garbage collection semantics

$$\frac{V(x) = v}{V, H, R, F + x \Downarrow v, H, F}(S_1) \qquad \frac{V, H, R, F + \overline{n} \Downarrow val(n), H, F}(S_2)}{V, H, R, F + T \Downarrow val(T), H, F}(S_3) \qquad \frac{V, H, R, F + \overline{n} \Downarrow val(n), H, F}(S_4)}{V, H, R, F + F \Downarrow val(F), H, F}(S_4) \qquad \frac{V, H, R, F + F \Downarrow val(F), H, F}{V, H, R, F + W \nmid val(F), H, F}(S_4)}{V, H, R, F + W \mid val(Wull), H, F}(S_5) \qquad \frac{V = V'[x \mapsto T] \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e_1)\} \qquad V', H, R, F \cup g \vdash e_1 \Downarrow v, H', F'}{V, H, R, F \vdash if(x; e_1; e_2) \Downarrow v, H', F'} \qquad \frac{V = V'[x \mapsto V] \qquad V'[y_F \mapsto v'], H, R, F \vdash e_f \Downarrow v, H', F'}{V, H, R, F \vdash f(x) \Downarrow v, H', F'} \qquad \frac{V = V'[x \mapsto v'] \qquad V'[y_F \mapsto v'], H, R, F \vdash e_f \Downarrow v, H', F'}{V, H, R, F \vdash f(x) \Downarrow v, H', F'} \qquad \frac{V(x_1) = v_1}{V, H, R, F \vdash f(x_1, x_2) \Downarrow V_1, v_2), H, F'} \qquad \frac{V(x_1) = v_1}{V, H, R, F \vdash (x_1, x_2) \Downarrow V_1, v_2), H, F'} \qquad \frac{V = V'[x \mapsto (v_1, v_2)] \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e)\}}{V'', H, R, F \vdash case x \{(x_1; x_2) \mapsto e\} \Downarrow v, H', F'} \qquad (S_{10})$$

$$\frac{V = V'[x \mapsto (v_1, v_2)] \qquad g = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e)\}}{V'', H, R, F \vdash (x_1, x_2) \mapsto e\} \Downarrow v, H', F'} \qquad (S_{10})$$

$$\frac{V = V'[x \mapsto (v_1, v_2)] \qquad y = \{l \in H \mid l \notin F \cup R \cup locs_{V,H}(e)\}}{V'', H, R, F \vdash drov(x; e) \Downarrow v, H', F'} \qquad (S_{11})$$

$$\frac{g = reach_H(v) \qquad V, H, R, F \vdash drov(x; e) \Downarrow v, H', F'}{V[x \mapsto v], H, R, F \vdash drov(x; e) \Downarrow v, H', F'} \qquad (S_{12})$$

$$\frac{v = (V(x_1), V(x_2))}{V(x_1, x_1, x_2) \mapsto v_1} \qquad \frac{v = (V(x_1), V(x_2))}{V(x_1, x_2) \mapsto v_1} \qquad \frac{v = (V(x_1), V$$

4 Operational semantics

In order to prove the soundess of the type system, we also define a simplified operational semantics that does not account for garbage collection.

$$V, H \vdash e \Downarrow v, H'$$

This can be read as: under stack V, heap H the expression e evaluates to v, and engenders a new heap H'. We write the representative rules.

$$\frac{v = \langle V(x_1), V(x_2) \rangle \qquad (L \sqcup \{l\}) \cap dom(H) = \emptyset \qquad H', l = copy(H, L, v)}{V, H \vdash \mathsf{cons}(x_1; x_2) \Downarrow l, H'} (\mathsf{S}_{17})$$

$$\frac{V(x) = l \qquad H(l) = \langle v_h, v_t \rangle \qquad V' \subseteq V}{V' \subseteq V}$$

$$\frac{dom(V') = FV(e_2) \setminus \{x_h, x_t\} \qquad V'' = V'[x_h \mapsto v_h, x_t \mapsto v_t] \qquad V'', H \vdash e_2 \Downarrow v, H'}{V, H \vdash \mathsf{case} \ x \{ \mathsf{nil} \hookrightarrow e_1 \mid \mathsf{cons}(x_h; x_t) \hookrightarrow e_2 \} \Downarrow v, H'} (\mathsf{S}_{18})$$

$$\frac{V = V_1 \sqcup V_2 \qquad dom(V_1) = FV(e_1) \qquad dom(V_2) = FV(\mathsf{lam}(x : \tau.e_2))}{V_1, H \vdash e_1 \Downarrow v_1, H_1 \qquad V_2' = V_2[x \mapsto v_1] \qquad V_2', H_1 \vdash e_2 \Downarrow v_2, H_2}{V, H \vdash \mathsf{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2} (\mathsf{S}_{19})$$

5 Type rules

The type system takes into account of garbaged collected cells by returning potential locally in a match construct. Since we are interested in the number of heap cells, all constants are assumed to be nonnegative.

Now if we take $\dagger: L^p(A) \mapsto L(A)$ as the map that erases resource annotations, we obtain a simpler typing judgement Σ^{\dagger} ; $\Gamma^{\dagger} \vdash e : B^{\dagger}$.

6 Soundness for garbage collection semantics

We simplify the soundness proof of the type system for the general metric to one with monotonic resource. (No function types for now)

Lemma 1.1. If Σ ; $\Gamma \mid \frac{q}{q'} e : B$, then Σ^{\dagger} ; $\Gamma^{\dagger} \vdash e : B^{\dagger}$.

Lemma 1.2. If Σ ; $\Gamma | \frac{q}{q'} e : B$, then set(FV(e)) and $dom(\Gamma) = FV(e)$.

Proof. Induction on the typing judgement.

Lemma 1.3. For all values v, heaps H, H', set of locations R, if $reach_H(v) \subseteq R$ and stable(R, H, H'), then $reach_H(v) = reach_{H'}(v)$.

Proof. Induction on the structure of v.

Lemma 1.4. For all stacks V and heaps H, let $V, H, R, F \vdash e \Downarrow v, H', F', \Sigma; \Gamma \vdash e : B$, and $H \vDash V : \Gamma$. Then given the following:

- 1. dom(V) = FV(e)
- 2. $no_alias(V, H)$, and
- 3. $disjoint(\{R, F, locs_{V,H}(e)\})$

We have the follwoing:

- 1. $set(reach_{H'}(v))$
- 2. disjoint($\{R, F', reach_{H'}(v)\}\)$), and
- 3. stable(R, H, H')

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 1: E:Var

```
\begin{aligned} & \text{Suppose } H \vDash V : \Gamma, dom(V) = FV(e), \text{no\_alias}(V, H), \text{disjoint}(\{R, F, locs_{V, H}(e)\}) \\ & \text{set}(reach_H(v)) & (\text{no\_alias}(V, H)) \\ & \text{disjoint}(\{R, F, reach_H(v)\}) & (\text{disjoint}(\{R, F, locs_{V, H}(e)\})) \\ & \text{no\_alias}(V, H) & (\text{Sp.}) \\ & \text{stable}(R, H, H') & (H = H') \end{aligned}
```

Case 2: E:Const* Due to similarity, we show only for E:ConstI

$$\begin{aligned} & \text{Suppose } H \vDash V : \Gamma, dom(V) = FV(e), \text{no_alias}(V, H), \text{disjoint}(\{R, F, locs_{V, H}(e)\}) \\ & \text{set}(reaach_H(v)) & (reach_H(v) = \emptyset) \\ & \text{disjoint}(\{R, F, \emptyset\}) & (\text{disjoint}(R, F)) \\ & \text{no_alias}(V, H) & (\text{Sp.}) \\ & \text{stable}(R, H, H') & (H = H') \end{aligned}$$

```
Case 4: E:App
```

Case 5: E:CondT Similar to E:MatNil

Case 6: E:CondF Similar to E:CondT

 $reach_H(V_2'(x_2)) \subseteq R'$

Case 7: E:Let

$$V, H, R, F \vdash \operatorname{let}(e_1; x : \tau.e_2) \Downarrow v_2, H_2, F_2 \qquad (\text{case})$$

$$V, H, R', F \vdash e_1 \Downarrow v_1, H_1, F_1 \qquad (\text{ad.})$$

$$\Sigma; \Gamma_1, \Gamma_2 \vdash \operatorname{let}(e_1; x : \tau.e_2) : B \qquad (\text{case})$$

$$\Sigma; \Gamma_1 \vdash e_1 : A \qquad (\text{ad.})$$
Suppose $H \vDash V : \Gamma, dom(V) = FV(e)$, no.alias (V, H) , disjoint $(\{R, F, locs_{V,H}(e)\})$

$$H \vDash V_1 : \Gamma_1 \qquad (\text{def of W.D.E and Lemma 1.2})$$
By IH, we have invariant on J_1
NTS $(1) - (3)$ to instantiate invariant on J_1

$$I(1) \quad dom(V_1) = FV(e_1) \qquad (\text{def of } V_1)$$

$$(2) \quad \text{no.alias}(V_1, H) \qquad (\text{no.alias}(V, H) \text{ and } V_1 \subseteq V)$$

$$(3) \quad \text{disjoint}(R', F, locs_{V,H}(e_1))$$

$$F \cap R' = \emptyset \qquad (F \cap locs_{V,H}(e) = \emptyset \text{ and } locs_{V_2,H}(\operatorname{lam}(x : \tau.e_2)) \subseteq locs_{V,H}(e))$$

$$FV(e_1) \cap FV(\operatorname{lam}(x : \tau.e_2)) = \emptyset \qquad (\operatorname{lo.alias}(V, H))$$

$$R' \cap locs_{V,H}(e_1) \cap locs_{V_2,H}(\operatorname{lam}(x : \tau.e_2)) = \emptyset \qquad (\operatorname{no.alias}(V, H))$$

$$R' \cap locs_{V,H}(e_1) = \emptyset \qquad (\operatorname{disjoint}(\{R, locs_{V,H}(e_1)\}))$$
By IH,
$$(I) \quad \operatorname{set}(reach_{H_1}(v_1))$$

$$(2) \quad \operatorname{disjoint}(\{R', F_1, reach_{H_1}(v_1)\})$$

$$(3) \quad \operatorname{stable}(R', H, H_1)$$

$$V'_2, H_1, R, F_1 \cup g \vdash e_2 \Downarrow v_2, H_2, F_2 \qquad (\operatorname{ad.})$$

$$\Sigma; \Gamma_2, x : A \vdash e_2 : B \qquad (\operatorname{ad.})$$

$$H_1 \vDash V'_2 : (\Gamma_2, x : A) \qquad (???)$$
By IH, we have invariant on J_2
NTS $(1) - (3)$ to instantiate invariant on J_2

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate invariant on } J_2$$

$$ITS (1) - (3) \text{ to instantiate i$$

 $(reach_H(V_2'(x_2)) \subseteq locs_{V_2',H}(lam(x:\tau.e_2)))$

```
reach_H(V_2'(x_1)) = reach_{H_1}(V_2'(x_1)), reach_H(V_2'(x_2)) = reach_{H_1}(V_2'(x_2))
                                                                        (\mathsf{stable}(R', H, H_1) \text{ and Lemma } 1.3)
   reach_{H_1}(V_2'(x_1)) = reach_H(V(x_1)), reach_{H_1}(V_2'(x_2)) = reach_H(V(x_2))
                                                                        (\mathsf{stable}(R', H, H_1) \text{ and Lemma } 1.3)
   no_alias(V_2', H_1)
                                                                                                    (no\_alias(V, H))
case: x_1 = x, x_2 \neq x
   reach_{H_1}(V_2'(x_1)) = reach_{H_1}(v_1)
                                                                                                           (\text{def of } V_2')
   reach_{H_1}(V_2'(x_2)) \subseteq R'
                                                                                                   (same as above)
   set(reach_{H_1}(v_1))
                                                                                                               (IH 1.1)
   reach_{H_1}(V_2'(x_2)) = reach_H(V(x_2))
                                                                                                   (same as above)
   \operatorname{set}(\operatorname{reach}_{H_1}(V_2'(x_2)))
                                                                                                    (no\_alias(V, H))
   reach_{H_1}(V_2'(x_1)) \cap reach_{H_1}(V_2'(x_2)) = \emptyset
                                                                                  (disjoint(\{R', reach_{H_1}(v_1)\}))
Thus we have no\_alias(V_2', H_1)
(3) \mathsf{disjoint}(\{R, F_1 \cup g, locs_{V_2', H_1}(e_2)\})
R \cap F_1 = \emptyset
                                                                 (disjoint(\{R', F_1\}) \text{ from } 1.2 \text{ and } R \subseteq R')
R \cap (F_1 \cup g) = \emptyset
                                                                                                             (\text{def of } q)
NTS (F_1 \cup g) \cap locs_{V_2',H_1}(e_2) = \emptyset
Let l \in locs_{V_2',H_1}(e_2) be arb.
l \in reach_{H_1}(V_2'(x')) for some x' \in V_2'
case: x' \neq x
   reach_H(V_2(x')) = reach_{H_1}(V_2'(x'))
                                                                                                   (same as above)
   reach_{H_1}(V_2'(x')) \subseteq R'
                                                                                                            (\text{def of } R')
   reach_{H_1}(V_2'(x')) \cap F_1 = \emptyset
                                                                                   (disjoint({R', F_1}) \text{ from } 1.2)
case: x' = x
   reach_{H_1}(V_2'(x')) = reach_{H_1}(v_1)
                                                                                                            (def of V_2')
   reach_{H_1}(V_2'(x')) \cap F_1 = \emptyset
                                                                     (disjoint({F_1, reach_{H_1}(v_1)}) \text{ from } 1.2)
reach_{H_1}(V_2'(x')) \subseteq locs_{V_2',H_1}(e_2)
                                                                                                     (\text{def of } locs_{V,H})
reach_{H_1}(V_2'(x')) \cap g = \emptyset
                                                                                                             (\text{def of } q)
Thus reach_{H_1}(V_2'(x')) \cap (F_1 \cup q) = \emptyset
NTS R \cap locs_{V_2',H_1}(e_2) = \emptyset
Let l \in locs_{V_2', H_1}(e_2) be arb.
l \in reach_{H_1}(V_2'(x')) for some x' \in V_2'
case: x' \neq x
   reach_H(V_2(x')) = reach_{H_1}(V_2'(x'))
                                                                                                   (same as above)
   l \in locs_{V,H}(e)
                                                                                                     (def of locs_{V,H})
   l \notin R
                                                                         (disjoint({R, locs_{V,H}(e)}) \text{ from } 0.3)
case: x' = x
```

```
reach_{H_1}(V_2'(x')) = reach_{H_1}(v_1)
                                                                                                        (\text{def of } V_2')
   reach_{H_1}(V_2'(x')) \cap R = \emptyset
                                                 (\mathsf{disjoint}(\{R', reach_{H_1}(v_1)\}) \text{ from } 1.2 \text{ and } R \subseteq R')
Thus reach_{H_1}(V_2'(x')) \cap R = \emptyset
Hence we have (3) \operatorname{disjoint}(R, F_1 \cup g, locs_{V_2', H_1}(e_2))
By instantiating the invariant on J_2, we have
(1) set(reach_{H_2}(v_2))
(2) \operatorname{disjoint}(\{R, F_2, reach_{H_2}(v_2)\})
(3) stable(R, H_1, H_2)
Lastly, showing (1) - (3) holds for the original case J_0:
(1) set(reach_{H_2}(v_2))
                                                                                                           (By 2.1)
(2) \operatorname{disjoint}(\{R, F_2, reach_{H_2}(v_2)\})
                                                                                                           (By 2.2)
(3) stable(R, H_1, H_2)
Let l \in R be arb.
H(l) = H_1(l)
                                                                                (\mathsf{stable}(R', H, H_1) \text{ from } 1.3)
H_1(l) = H_2(l)
                                                                                (\mathsf{stable}(R, H_1, H_2) \text{ from } 2.3)
H(l) = H_2(l)
Hence stable(R, H, H_2)
```

Case 8: E:Pair Similar to E:Var

Case 9: E:MatP Similar to E:MatCons

Case 10: E:Nil Similar to E:Const*

Case 11: E:Cons

```
V, H, R, F \vdash e \Downarrow l, H'', F'
                                                                                                                        (case)
Suppose H \vDash V : \Gamma, dom(V) = FV(e), no\_alias(V, H), disjoint(\{R, F, locs_{V, H}(e)\})
NTS (1) - (3) holds after evaluation
(1) set(reach_{H''}(l))
\mathsf{stable}(\{locs_{V,H}(e)\}, H, H'') \quad (\mathsf{disjoint}(\{F, locs_{V,H}(e)\}) \text{ and } copy \text{ only updates } l \in L \subseteq F)
reach_H(V(x_i)) = reach_{H''}(V(x_i))
                                                      (reach_H(V(x_i)) \subseteq locs_{V,H}(e) \text{ and } 1.3 \text{ for } i = 1,2)
reach_{H''}(l) = \{l\} \cup reach_{H''}(V(x_1)) \cup reach_{H''}(V(x_2))
                                                                                                          (def of reach_H)
                                                                               (l \notin locs_{V,H}(e) \text{ and no\_alias}(V,H))
set(reach_{H''}(l))
(2) \operatorname{disjoint}(\{R, F', reach_{H''}(l)\})
R \cap F' = \emptyset
                                                                                     (F' \subseteq F \text{ and disjoint}(\{R, F\}))
R \cap reach_{H''}(l) = \emptyset
                                                                            (l \in F \text{ and disjoint}(\{R, locs_{V,H}(e)\}))
F' \cap reach_{H''}(l) = \emptyset
                                                                          (F' \subseteq F \text{ and disjoint}(\{F, locs_{V,H}(e)\}))
Thus we have (2) \operatorname{disjoint}(\{R, F', reach_{H''}(l)\})
```

Case 12: E:MatNil

Suppose
$$H \vDash V : \Gamma, dom(V) = FV(e), no_alias(V, H), disjoint(\{R, F, locs_{V,H}(e)\})$$

$$\Sigma; \Gamma' \vdash e_1 : B$$
 (ad.)

$$V, H, R, F \cup g \vdash e_1 \Downarrow v, H', F'$$
 (ad.)

$$H \models V' : \Gamma'$$
 (def of W.D.E)

By IH, we have invariant on J_1

NTS (1) - (3) to instantiate invariant on J_1

$$(1) \quad dom(V') = FV(e_1) \tag{def of } V')$$

(2)
$$\operatorname{no_alias}(V', H)$$
 (no_alias(V, H) and $V' \subseteq V$)

(3)
$$\operatorname{disjoint}(\{R, F, locs_{V',H}(e_1)\})$$
 $(\operatorname{disjoint}(\{R, F, locs_{V,H}(e)\}) \text{ and } locs_{V',H}(e_1) \subseteq locs_{V,H}(e))$

Instantiating invariant on J_1 ,

- (1) $set(reach_{H'}(v))$
- (2) $\operatorname{disjoint}(\{R, F_1, reach_{H'}(v)\})$
- (3) stable(R, H, H')

Case 13: E:MatCons

$$V(x) = l (ad.)$$

$$H(l) = \langle v_h, v_t \rangle$$
 (ad.)

$$\Gamma = \Gamma', x : L(A) \tag{ad.}$$

$$\Sigma; \Gamma', x_h : A, x_t : L(A) \vdash e_2 : B \tag{ad.}$$

$$V'', H, R, F \cup g \vdash e_2 \downarrow v_2, H_2, F'$$
 (ad.)

Suppose $H \vDash V : \Gamma, dom(V) = FV(e), no_alias(V, H), disjoint(\{F, R, locs_{V,H}(e)\})$

$$H \models V(x) : L(A)$$
 (def of W.D.E)

$$H'' \vDash v_h : A, \ H'' \vDash v_t : L(A) \tag{ad.}$$

$$H \vDash v_h : A, \ H \vDash v_t : L(A) \tag{???}$$

$$H \models V'' : \Gamma', x_h : A, x_t : L(A)$$
 (def of W.D.E)

By IH, we have invariant on J_1

NTS (1) - (3) to instantiate invariant on J_1

$$(1) \quad dom(V'') = FV(e_2) \tag{def of } V'')$$

(2) $no_alias(V'', H)$

Let
$$x_1, x_2 \in V'', x_1 \neq x_2, r_{x_1} = reach_H(V''(x_1)), r_{x_2} = reach_H(V''(x_2))$$

case: $x_1 \notin \{x_h, x_t\}, x_2 \notin \{x_h, x_t\}$

(1),(2) from no_alias(V,H)

```
case: x_1 = x_h, x_2 \notin \{x_h, x_t\}
                                                     (since set(reach_H(V(x))) from no\_alias(V, H))
   set(r_{x_1})
   set(r_{x_2})
                                                                                     (since no_alias(V, H))
   x_2 \in FV(e)
                                                                                                 (\text{def of } FV)
   reach_H(V(x)) \cap r_{x_2} = \emptyset
                                                                      (def of reach and no_alias(V, H))
  hence r_{x_1} \cap r_{x_2} = \emptyset
case: x_1 = x_h, x_2 = x_t
   set(r_{x_1}) since set(reach_H(V(x))) from no_alias(V, H)
   set(r_{x_2}) since set(reach_H(V(x))) from no_alias(V, H)
   r_{x_1} \cap r_{x_2} = \emptyset
                                                                                       (set(reach_H(V(x))))
case: otherwise
   similar to the above
Thus we have no_alias(V'', H)
(3) \operatorname{disjoint}(\{R, F \cup g, locs_{V'', H}(e_2)\})
(F \cup g) \cap R = \emptyset
                                                                     (since F \cap R = \emptyset and by def of g)
NTS R \cap locs_{V'',H}(e_2) = \emptyset
Let l' \in locs_{V'',H}(e_2) be arb.
case: l' \in reach_H(V''(x')) for some x' \in FV(e_2) where x' \notin \{x_h, x_t\}
   x' \in V
                                                                                                  (def of V'')
  l' \in reach_H(V(x'))
   x' \in FV(e)
                                                                                                 (\text{def of } FV)
   l' \in locs_{V,H}(e)
                                                                                             (\text{def of } locs_{V,H})
   l' \notin R
                                                                            (disjoint({R, F, locs_{V,H}(e)}))
case: l' \in reach_H(V''(x_h))
   l' \in reach_H(v_h)
   l' \in reach_H(V(x))
                                                                                              (def of reach)
   l' \in locs_{V,H}(e)
                                                                                             (\text{def of } locs_{V,H})
   l' \notin R
                                                                    (since disjoint(\{F, R, locs_{V,H}(e)\}\))
case: l' \in reach_H(V''(x_t))
   similar to above
Hence R \cap locs_{V'',H}(e_2) = \emptyset
F \cap locs_{V'',H}(e_2) = \emptyset
                                                                                         (Similar to above)
g \cap locs_{V'',H}(e_2) = \emptyset
                                                                                                   (def. of g)
(F \cup g) \cap locs_{V'',H}(e_2) = \emptyset
Thus disjoint(\{R, F \cup g, locs_{V'', H}(e_2)\})
Instantiating invariant on J_1,
(1) set(reach_{H'}(v))
```

- (2) $\operatorname{disjoint}(\{R, F', reach_{H'}(v)\})$
- (3) stable(R, H, H')

Task 1.5 (Soundness). let $H \vDash V : \Gamma$, Σ ; $\Gamma \vdash_{q'} e : B$, and $V, H \vdash e \Downarrow v, H'$. Then $\forall C \in \mathbb{Q}^+$ and $\forall F, R \subseteq \mathsf{Loc}$, if we have the following (existence lemma):

- 1. dom(V) = FV(e)
- 2. $no_alias(V, H)$
- 3. $\operatorname{disjoint}(\{R, F, locs_{V,H}(e)\}), and$
- 4. $|F| \ge \Phi_{V,H}(\Gamma) + q + C$

then there exists $F' \subseteq \text{Loc } s.t.$

- 1. $V, H, R, F \vdash e \Downarrow v, H', F'$
- 2. $|F'| \ge \Phi_{H'}(v:B) + q' + C$

Proof. Nested induction on the evaluation judgement and the typing judgement.

Case 1: E:Var

$$V, H, R, F \vdash x \Downarrow V(x), H, F$$
 (admissibility)

$$\Sigma; x : B \mid_{q}^{q} x : B$$
 (admissibility)

$$|F| - |F'|$$
 (1)

$$= |F| - |F|$$
 (ad.)

$$= 0$$
 (2)

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 (3)

$$= \Phi_{V,H}(x : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (ad.)

$$= \Phi_{H}(V(x) : B) + q - (\Phi_{H}(V(x) : B) + q)$$
 (def. of $\Phi_{V,H}$)

$$= 0$$
 (4)

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
 ((3),(5))

Case 2: E:Const* Due to similarity, we show only for E:ConstI

$$|F| - |F'| = |F| - |F|$$

$$= 0$$

$$\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') = \Phi_{V,H}(\emptyset) + q - (\Phi_{H}(v:int) + q)$$

$$= 0$$

$$|F| - |F'| < \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$$
(ad.)

Case 4: E:App

Case 5: E:CondT

$$\Gamma = \Gamma', x : \text{bool}$$

$$H \vDash V : \Gamma'$$

$$\Sigma; \Gamma' \left| \frac{q}{q'} e_t : B \right.$$

$$V, H, R, F \cup g \vdash e_t \Downarrow v, H', F'$$

$$|F \cup g| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$

$$|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v : B) + q')$$
(IH)

Case 6: E:CondF Similar to E:CondT

Case 7: E:Let

$$V, H \vdash e \Downarrow v_2, H_2$$
 (case)

$$V, H \vdash e_1 \Downarrow v_1, H_1$$
 (ad.)

$$\Sigma; \Gamma_1 \stackrel{q}{p} e_1 : A$$
 (ad.)

$$H \vDash V_1 : \Gamma_1$$
 (def of W.D.E)

Let
$$C \in \mathbb{Q}^+, F, R \subseteq \mathsf{Loc}$$
 be arb.

Suppose dom(V) = FV(e), $no_alias(V, H)$, $disjoint(\{R, F, locs_{V,H}(e)\})$, and $|F| \ge \Phi_{V,H}(\Gamma) + q + C$ NTF F' s.t.

$$1.V, H, R, F \vdash e \Downarrow v_2, H_2, F'$$
 and

$$2.|F'| \ge \Phi_{H_2}(v_2:B) + q' + C$$

Let $R' = R \cup locs_{V,H}(lam(x : \tau.e_2))$

$$disjoint(\{R', F, locs_{V,H}(e_1)\})$$
 (Similar to case in Lemma 1.4)

Instantiate IH with $C = C + \Phi_{V_2,H}(\Gamma_2)$, F = F, R = R', we get existence lemma on J_1 :

NTS (1) - (4) to instantiate existence lemma on J_1

- $(1) \quad dom(V_1) = FV(e_1)$
- (2) $no_alias(V_1, H)$
- (3) $\operatorname{disjoint}(\{R, F, locs_{V,H}(e)\})$ ((1) (3) all verbatim as in Lemma 1.4)

(4)
$$|F| \ge \Phi_{V_1,H}(\Gamma_1) + q + C + \Phi_{V,H}(\Gamma_2)$$

 $(|F| \ge \Phi_{V,H}(\Gamma) + q + C \text{ and } \Phi_{V,H}(\Gamma) \ge \Phi_{V_1,H}(\Gamma_1) + \Phi_{V,H}(\Gamma_2))$

Instantiating existence lemma on J_1 , we get F'' s.t.

$$1.V, H, R', F \vdash e_1 \Downarrow v_1, H_1, F''$$
 and

$$2.|F''| \ge \Phi_{H_1}(v_1:A) + p + C + \Phi_{V_2,H_1}(\Gamma_2)$$

For the second premise:

$$\Sigma; \Gamma_2, x : A \left| \frac{p}{q'} e_2 : B \right|$$
 (ad.)

$$H_1 \vDash v_1 : A \text{ and}$$
 (Theorem 3.3.4)

$$H_1 \vDash V : \Gamma_2 \tag{???}$$

$$H_1 \vDash V' : \Gamma_2, x : A$$
 (def of \vDash)

$$V', H_1 \vdash e_2 \Downarrow v_2, H_2 \tag{ad.}$$

Let $g = \{l \in H_1 \mid l \notin F_1 \cup R \cup locs_{V', H_1}(e_2)\}$

Instantiate IH with $C = C, F = F'' \cup g, R = R$, we get existence lemma on J_2 :

NTS (1) - (4) to instantiate existence lemma on J_1

- $(1) \quad dom(V_2') = FV(e_2)$
- (2) no_alias (V_2', H_1)
- (3) $\operatorname{disjoint}(\{R, F'' \cup g, locs_{V'_2, H_1}(e_2)\})$ ((1) (3) all verbatim as in Lemma 1.4)
- (4) $|F'' \cup g| \ge \Phi_{V_2', H_1}(\Gamma_2, x : A) + p + C$

$$|F'' \cup g| \ge |F''|$$

$$\ge \Phi_{H_1}(v_1 : A) + p + C + \Phi_{V_2, H}(\Gamma_2)$$

$$= \Phi_{H_1}(v_1 : A) + p + C + \Phi_{V_2', H_1}(\Gamma_2)$$

$$= \Phi_{V_2', H_1}(\Gamma_2, x : A) + p + C$$
(def of Φ)

Instantiating existence lemma on J_2 , we get $F^{(3)}$ s.t.

$$\begin{aligned} 1.V_2', H_1, R, F'' \cup g \vdash e_2 \Downarrow v_2, H_2, F^{(3)} \\ 2.|F^{(3)}| &\geq \Phi_{H_2}(v_2:B) + q' + C \\ \text{Take } F' &= F^{(3)} \\ V, H, R, F \vdash e \Downarrow v_2, H_2, F' \text{ and} \end{aligned} \tag{E:Let}$$

$$|F'| \ge \Phi_{H_2}(v_2 : B) + q' + C$$
 (from IH)

Case 8: E:Pair Similar to E:Const*

Case 9: E:MatP Similar to E:MatCons

Case 10: E:Nil Similar to E:Const*

Case 11: E:Cons

$$|F| - |F'|$$

$$= |F| - |F \setminus \{l\}|$$

$$= 1$$
(ad.)

$$\begin{split} &\Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q') \\ &= \Phi_{V,H}(x_h:A,x_t:L^p(A)) + q + p + 1 - (\Phi_{H'}(v:L^p(A)) + q) \\ &= \Phi_{V,H}(x_h:A,x_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))) \\ &= \Phi_{H}(V(x_h):A) + \Phi_{H}(V(x_t):L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))) \qquad \text{(def of } \Phi_{V,H}) \\ &= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - \Phi_{H'}(v:L^p(A))) \qquad \text{(ad.)} \\ &= \Phi_{H}(v_h:A) + \Phi_{H}(v_t:L^p(A)) + p + 1 - (p + \Phi_{H'}(v_h:A) + \Phi_{H'}(v_t:L^p(A))) \qquad \text{(Lemma 4.1.1)} \end{split}$$

$$=\Phi_H(v_h:A) + \Phi_H(v_t:L^p(A)) + p + 1 - (p + \Phi_H(v_h:A) + \Phi_H(v_t:L^p(A)))$$
 (Lemma 4.3.3)
$$= 1$$
 Hence,

Case 12: E:MatNil Similar to E:Cond*

 $|F| - |F'| \le \Phi_{V,H}(\Gamma) + q - (\Phi_{H'}(v:B) + q')$

Case 13: E:MatCons

$$V(x) = (l, \texttt{alive}) \qquad (\texttt{ad.})$$

$$H(l) = \langle v_h, v_t \rangle \qquad (\texttt{ad.})$$

$$\Gamma = \Gamma', x : L^p(A) \qquad (\texttt{ad.})$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \big| \frac{q+p+1}{q'} e_2 : B \qquad (\texttt{ad.})$$

$$\Sigma; \Gamma', x_h : A, x_t : L^p(A) \big| \frac{q+p+1}{q'} e_2 : B \qquad (\texttt{ad.})$$

$$V'', H \vdash e_2 \Downarrow v, H' \qquad (\texttt{ad.})$$

$$\text{Let } C \in \mathbb{Q}^+, F, R \subseteq \text{Loc be arb.}$$

$$H \vDash V(x) : L^p(A) \qquad (\texttt{def of W.D.E})$$

$$H'' \vDash v_h : A, H'' \vDash v_t : L^p(A) \qquad (\texttt{ad.})$$

$$H \vDash v_h : A, H \vDash v_t : L^p(A) \qquad (\texttt{ad.})$$

$$H \vDash V'' : \Gamma', x_h : A, x_t : L^p(A) \qquad (\texttt{def of W.D.E})$$
 Suppose no.alias(V, H), disjoint({R, F, locs_{V,H}(e)}), and
$$|F| \ge \Phi_{V,H}(\Gamma) + q + C$$

$$\text{NTF } F' \text{ s.t.} \qquad (\texttt{def of W.D.E})$$
 Suppose no.alias(V, H), disjoint({R, F, locs_{V,H}(e)}), and
$$|F| \ge \Phi_{V,H}(\Gamma) + q + C$$

$$\text{NTF } F' \text{ s.t.} \qquad (\texttt{disjoint}(\{R, F, locs_{V,H}(e)\})$$
 We want to g nonempty, in particular, that $l \in g$
$$l \notin F \cup R \qquad (\texttt{disjoint}(\{R, F, locs_{V,H}(e)\}))$$

$$AFSOC \ l \in locs_{V'',H}(e_2)$$
 Then $l \in reach_H(\overline{V}''(x'))$ for some $x' \ne x$
$$x' \in \{x_h, x_t\} \qquad (\texttt{since } reach_H(\overline{V}(x')) \cap reach_H(\overline{V}(x)) = \emptyset \text{ from no.alias}(V, H))$$
 WLOG let $x' = x_h$ But then $\mu_{reach_H(\overline{V}(x))}(l) \ge 2$ and $\texttt{set}(reach(\overline{V}(x)))$ doesn't hold
$$l \notin locs_{V'',H}(e_2)$$
 Hence $l \in g$ Next, we have no.alias(V'', H) and disjoint({R, F \cup g, locs_{V'',H}(e_2)})

By IH with C' = C, $F'' = F \cup g$ and the above conditions, we have: $F^{(3)}$ s.t. 1.V'', H, R, $F \cup g \vdash e_2 \Downarrow v$, H', $F^{(3)}$

(similar to case in Lemma 1.2)

$$2.|F^{(3)}| \ge \Phi_{H'}(v:B) + q' + C$$
Where we also verify the precondition that $|F''| \ge \Phi_{V'',H}(\Gamma', x_h:A, x_t:L^p(A)) + q + p + 1 + C':$

$$|F''| = |F \cup g|$$

$$= |F| + |g|$$

$$\ge \Phi_{V,H}(\Gamma) + q + C + |g|$$

$$= \Phi_{V,H}(\Gamma', x_h:A, x_t:L^p(A)) + p + q + C + |g|$$

$$= \Phi_{V,H}(\Gamma', x_h:A, x_t:L^p(A)) + p + q + C + 1$$
(Sp.)
$$= \Phi_{V,H}(\Gamma', x_h:A, x_t:L^p(A)) + p + q + C + 1$$
(g nonempty)

Now take $F' = F^{(3)}$

$$V(H, B, F) \vdash e \Vdash P' \vdash F'$$
(E:MatCons)

$$V, H, R, F \vdash e \Downarrow v, H', F'$$
 (E:MatCons)
 $|F'| \ge \Phi_{H'}(v:B) + q' + C$ (From the IH)