Full NR and LASSO Run

Tucker Morgan - tlm2152

3/26/2022

```
source("./shared_code/setup.R")
source("./shared_code/data_prep.R")
```

Newton-Raphson

```
source("./shared_code/full_NR2.R")
source("./shared_code/roc_lasso.R")
roc_nr <- roc_func(nr_beta_est, bc_tst)</pre>
```

LASSO

```
source("./shared_code/logistic_lasso.R")
source("./shared_code/auc_calc_lasso.R")
```

Folding Data

```
source("./shared_code/cv_folding.R")

bc_trn_folds <-
    cv_sets(training = bc_trn) %>%
    select(-fold_p)
```

```
identity <- function(x){
  return(x)
}

lambda_init <- function(start, stop, step, func = identity){
  lambda_vec <- func(seq(start, stop, step))
  return(lambda_vec)
}</pre>
```

```
source("./shared_code/cv_implementation.R")
lambda_max <- max(t(scale(as.matrix(bc_trn[,-1]))) %*% bc_trn[,1]) / nrow(bc_trn[,-1])</pre>
lambda_list <- list(log(lambda_max), log(0.0001), -(log(lambda_max) - log(0.0001))/100, exp)
cv_res <- cv_jt(k = 5, training = bc_trn_folds, func = logistic_lasso, lam_start_stop_func = log, lambd
# pulling out key results
selected_lambda <- cv_res[[1]] %>% filter(mean_auc == max(mean_auc)) %>% pull(lambda) %>% mean()
lasso_final_model <- logistic_lasso(inputs = bc_trn[,-1], output = bc_trn[,1], lambda_vec = selected_lasso</pre>
lasso_betas <- lasso_final_model[[2]] %>% t()
# this is just for viz purposes
tst_lambda_vec \leftarrow exp(seq(from = log(lambda_max), to = log(0.0001), by = -(log(lambda_max) - log(0.0001))
lasso_final_range <- logistic_lasso(inputs = bc_trn[,-1], output = bc_trn[,1], lambda_vec = tst_lambda_</pre>
lfr_df <- data.frame(do.call(cbind, lasso_final_range)) %>%
  select(-selected) %>%
 pivot_longer(cols = starts_with("beta"),
               names_prefix = "beta.",
               names_to = "beta_coef",
               values_to = "coef_est")
# storing lasso ROC object
roc_lasso <- roc_func(lasso_betas, bc_tst)</pre>
# each of these plots could be saved as R objects and imported into other documents
lfr_df %>%
  group_by(lambda) %>%
  filter(beta_coef != "intercept") %>%
  ggplot(x = lambda, y = coef_est, group = beta_coef) +
  geom_path(aes(x = lambda, y = coef_est, group = beta_coef, col = beta_coef)) +
  coord_cartesian(xlim = c(0, 0.05)) + # this zooms in on the plot, comment out if flipping
                                         # this flips the x-axis if wanted
# scale_x_reverse() +
# coord_cartesian(xlim = c(0.06, 0)) + # this zooms in if flipped
  geom_vline(xintercept = selected_lambda) +
  labs(title = "Beta Coefficients in LASSO Model")
```



```
      compactness_mean
      — concave.points_se
      — fractal_dimension_se
      — smoothness_me

      compactness_se
      — concavity_se
      — fractal_dimension_worst
      — smoothness_se

      compactness_worst
      — concavity_worst
      — radius_se
      — smoothness_wo

      concave.points_mean
      — fractal_dimension_mean
      — radius_worst
      — symmetry_mean
```

```
# this looks alright, might prefer a larger lambda range to show AUC down to 0.5
# but probably not important
cv_res[1] %>%
  data.frame() %>%
  ggplot(x = lambda, y = mean_auc) +
  geom_line(aes(x = lambda, y = mean_auc), col = "dodgerblue") +
  geom_vline(xintercept = selected_lambda)
```


ROC Curves from Test Data Predictions

Models (AUC) — LASSO (0.965) — Newton-Raphson (0.9765)

```
## another option for plotting ROC curves
plot(roc_lasso, legacy.axes = TRUE, col = "goldenrod", main = "ROC Curves from Test Data Predictions")
plot(roc_nr, col = "dodgerblue", add = TRUE)
legend("bottomright", legend = paste0(model_names, ": ", auc_vec), col = c("goldenrod", "dodgerblue"),
```

ROC Curves from Test Data Predictions

```
Sensitivity

Sensitivity

-0.5

-0.5

0.0

-0.5

0.0

-0.5

1.0

1.5

1 - Specificity
```

```
beta_names <-
  (dimnames(lasso_betas)[1]) %>%
  data.frame() %>%
  rename(beta_coef = 1)

cbind(nr_beta_est, lasso_betas) %>%
  data.frame() %>%
  round(digits = 4) %>%
  rename(NewtonRaphson = 1, LASSO = 2) %>%
  knitr::kable(caption = "Final Beta Coefficient Estimates")
```

Table 1: Final Beta Coefficient Estimates

	NewtonRaphson	LASSO
intercept	-162.1162	-0.7872
texture_mean	1.9226	0.3641
$smoothness_mean$	-180.9337	0.0000
compactness_mean	-206.9520	0.0000
concave points_mean	539.5020	0.9912
symmetry_mean	-71.9190	0.0000
fractal_dimension_mean	555.5034	0.0000
radius_se	66.8227	0.0000
texture_se	-3.7168	0.0000
smoothness_se	424.7338	0.0000
compactness_se	264.4495	0.0000
concavity_se	-215.0474	0.0000
concave points_se	1443.8850	0.0000
symmetry_se	-1672.7126	0.0000
fractal_dimension_se	-4616.3556	0.0000
radius_worst	1.9170	1.4934

	NewtonRaphson	LASSO
smoothness_worst	29.3660	0.0702
$compactness_worst$	-91.4676	0.0000
concavity_worst	71.7133	0.2184
symmetry_worst	198.9776	0.1473
$fractal_dimension_worst$	429.9555	0.0000