Zusammenfassung

PER NATZSCHKA

Inhaltsverzeichnis

Inhal	haltsverzeichnis		
1	Suche	2	
1.1	Klassifizierung	2	
1.2			
1.3	Informierte Suche	2	
2	Entitätenerkennung	4	
2.1	Klassifikatoren	5	
2.2	Bewertung	6	
3	Relationsextraktion	7	
3.1	Kookkurrenz	7	
3.2	Reguläre Ausdrücke	7	
4	Entscheidungsbäume	9	
5	Argumentation	10	
5.1	Datenbasis	10	
5.2	Argumente	10	
5.3	Attacken	10	
5.4	Semantik	11	
6	Probabilistisches Schließen	12	
6.1	Definitionen	12	
6.2	Anwendung	13	
7	Neuronale Netze	14	
7.1	Aufbau	14	
7.2	Lineare Regression	14	
7.3	Klassifikation	15	
7.4	Grenzen	17	
8	Unsupervised Learning	17	
8.1	K-Means	18	
8.2	Hierarchical Clustering	18	
8.3	Principal Component Analysis		
8.4			

1 SUCHE

1.1 Klassifizierung

1.1.1 Parameter.

- *b*: max. Verzweigungsfaktor (branching factor)
- *d*: Tiefe der besten Lösung (depth)
- m: max. Tiefe des Baumes (kann ∞ sein)

1.1.2 Bewertung.

- Zeitkomplexität: Zahl expandierter Knoten?
- Speicherkomplexität: Zahl an Knoten im Speicher?
- Vollständigkeit: findet Lösung?
- Optimalität: findet beste Lösung?

1.2 Uninformierte Suche

1.2.1 Breiten- und Tiefensuche.

Strategie	Breitensuche BFS	Tiefensuche DFS	Tiefenbeschränkte Suche	Iteratives Vertiefen
Datenstruktur	FIFO	FILO	FILO	FILO
Zeitkomplexität	$O(b^d)$	$O(b^m)$	$O(b^t)$	$O(b^d)$
Speicherkomplexität	$O(b^d)$	$O(b \cdot m)$	$O(b \cdot t)$	$O(b \cdot d)$
Vollständigkeit	ja, wenn b endlich	ja, wenn d endlich und Schleifenüberprüfung	ja, wenn $d \le t$	ja, wenn $d < \infty$ und $b < \infty$
Optimalität	\checkmark (wenn b endlich)	×	×	✓

Tabelle 1. Vergleich Breiten- und Tiefensuche

1.2.2 Uniforme Kostensuche.

- Dijkstra
- expandiere immer Knoten mit geringsten Kosten von der Wurzel
- optimal
- vollständig

1.3 Informierte Suche

Strategie	Greedy-Suche	A*-Suche
Vollständigkeit	ja, bei Schl	eifenüberprüfung
Zeitkomplexität	$O(b^m)$	$O(b^m)$
Speicherkomplexität	$O(b^m)$	$O(b^m)$
Optimalität	×	\checkmark (wenn h zulässig)

Tabelle 2. Vergleich informierter Suchstrategien

- Heuristik
 - $-h:V\to\mathbb{R}$
 - schätzt Kosten von Knoten zum Ziel
 - -h(Ziel)=0
 - $\ \forall_{n \in V} : h(n) \geq 0$
- Zulässige Heuristik:
 - $\forall_{n \in V} : h(n) \le h^*(n)$
 - h^* sind wahre Kosten
- Konsistente Heuristik
 - $\forall_{n,n' \in V} : h(n) \le c(n,n') + h(n')$
 - -n' ist Nachfolger von n
 - c(n, n') sind Kosten für Übergang $n \to n'$
 - immer zulässig
- 1.3.1 Greedy Suche. Knoten mit geringster Distanz zum Ziel wird zuerst expandiert.

$$v_{next} = arg \min_{v \in V} h(v)$$

- 1.3.2 A*-Suche.
 - neben h auch bisherige Kosten $g:V \to \mathbb{R}$ einberechnet
 - Kostenfunktion $f: V \to \mathbb{R}, n \mapsto g(n) + h(n)$.
 - $\bullet\,$ gegen Speicherüberlauf: Schwellwert K
 - $-K \geq K*$
 - K^* sind wahre Kosten
 - Knoten mit f(n) > K werden nicht besucht
 - Bestimmung von K durch nichtoptimalen Algorithmus (z. B. Greedy)

2 ENTITÄTENERKENNUNG

Strategie	Vorteile	Nachteile
Lexikon	• einfach • schnell	Mehrdeutigkeiten nicht erkanntVollständigkeit nicht garantiertPflege (keine Abstraktionen/Muster)
Reguläre Ausdrücke	kompakte Repräsentation	Woher kommt Ausdruck?manuelle Definition/Debugging mühsamMehrdeutigkeiten nicht erkannt
Rand- klassifikator	Mehrdeutigkeiten teilweise aufgelöst (lokaler Kontext)	 Qualität von Trainingsdaten Auswahl von Merkmalen
Token-Fenster	Mehrdeutigkeit aufgelöst (lokaler Kontext)	 Qualität von Trainingsdaten Auswahl von Merkmalen
Hidden Markov Models (HMM)	Mehrdeutigkeit aufgelöst	Qualität von Trainingsdaten

Tabelle 3. Vergleich der Strategien zur Entitätenerkennung

- Wissensakquise
 - per Hand
 - Regeln lernen (Entscheidungsbäume)
 - Natürliche Sprachverarbeitung
- Informationsextraktion
 - (1) Entitäten lokalisieren
 - (2) Entitäten klassifizieren
 - (3) Fakten extrahieren
- Probleme
 - Sprachlich
 - * lexikalisch (tumor \leftrightarrow tumour)
 - * orthographisch (α -helix \leftrightarrow alpha-helix)
 - $* \;\; strukturell \; (lung \; cancer \; \leftrightarrow cancer \; of \; the \; lung)$
 - * morphologisch (kick ↔ kicked)
 - Mehrdeutigkeit (Siemens, Paris)
 - Anaphora
 - * Pronomen
 - * Proformen (Er fliegt nach Paris. Er will dort Urlaub machen.)
 - * Bridging (Der Motor ist kaputt. Der Keilriemen ist gerissen ↔ Der Motor ist kaputt. Der Schnürsenkel ist gerissen.)
 - Metonymie/Vertauschung (Schiller lesen)
 - Synekdoche (Ober-/Überbegriffe)
- · Text preprocessing
 - Format

- Satzgrenzen
- Tokenisierung
- Stemming
- direkte Suche linear in
 - Textgröße
 - Zahl der Lexikoneinträge
 - Länge der Lexikoneinträge
- Boyer-Moore (basically KMP)
- Zipf's Law
 - Worte nach Häufigkeit sortieren
 - Wahrscheinlichkeit eines Wortes invers proportional zu Rang
- Trie
 - Baum
 - n-te Verzweigung $\leftrightarrow n$ -ter Buchstabe
- Radix-Tree
 - wie Trie
 - Verzweigungen mit Teilwörtern
- Levenshtein-Distanz
 - Top-Down-Implementierung: $O(2^n)$
 - Bottom-Up-Implementierung: $O(n^2)$ (dynamisches Programmieren, u. a. Speicherung der Zwischenwerte in Matrix)
- Dice-Koeffizient
 - Betrachtung v. Trigrammen
 - $-t(Peter) = \{Pet, ete, ter\}$
 - $dice(a,b) = 2 \cdot \frac{|t(a) \cap t(b)|}{|t(a)| + |t(b)|} \in [0,1]$
 - Reihenfolge geht verloren

2.1 Klassifikatoren

2.1.1 Randklassifikator.

- Klassifiziere Leerstellen zwischen Token
 - Anfang und Ende von Entitäten
 - Satzgrenzen
- Leerstellen als Vektoren von Merkmalen, z. B.:
 - nächstes Token beginnt mit Großbuchstaben
 - vorheriges ist Zahl
 - vorheriges ist "in"

2.1.2 Token-Fenster.

- Klassifikation anhand von Kontextfenster
- Fenstergröße?
- Merkmale?

- Token, Stämme, POS-Tags
- n-grams
- Präfixe/Suffixe
- Vorher vergebene Klassen
- Lernen anhand von Merkmalsvektoren aus Beispielen

2.1.3 Hidden Markov Models.

- Markov-Modelle
 - probabilistische Modelle
 - modellieren Zustandsübergänge
 - nur von aktuellem Zustand abhängig
- Hidden Markov Models
 - Zustände selbst nicht betrachtet
 - Übergangswahrscheinlichkeiten abhängig von allen vorherigen Zuständen
- $\Theta = (S, \Sigma, A, B, \Pi)$
 - S: Zustände (semantische Klassen/Labels)
 - Σ: Alphabet (Beobachtungen/Tokens)
 - A: Übergangswahrscheinlichkeiten
 - B: Emissionswahrscheinlichkeiten
 - П: Anfangszustandswahrscheinlichkeiten
- Wahrscheinlichkeiten an Trainingsdaten gelernt
- Wahrscheinlichkeit von Beobachtungssequenz o und Zustandssequenz s: $P(s \cap o)$
 - $-P(s \cap o) = P(o|s)P(s)$ $- P(s \cap o) \propto P(o_0|s_0)P(s_0) \prod_{t=1}^{|o|} P(o_t|s_t)P(s_t|s_{t-1})$
- Bestimmung der besten Lösung durch $arg \max_{s} P(s, o) \rightarrow ineffizient$
- Viterbi-Algorithmus (effizient)
 - dynamische Programmierung
 - Tabelle: $S \times o$
 - $F(i,0) = \Pi(i) \cdot B(i,0)$
 - $F(i,j) = max_r(F(r,j-1) \cdot A(r,i)) \cdot B(i,j)$
 - Spaltenweise Berechnung von links nach rechts

2.2 Bewertung

- Precision: $p = \frac{TP}{TP + FP}$ Recall: $r = \frac{TP}{TP + FN}$
- F-Measure: $2 \cdot \frac{p \cdot r}{p+r}$ (Harmonisches Mittel)
- k-fache Kreuzvalidierung
 - Daten in k Gruppen aufgeteilt
 - Training auf k-1 Gruppen
 - Validierung mit k. Gruppe

3 RELATIONSEXTRAKTION

Strategie	Vorteile	Nachteile
Maschinelles Lernen	• einfach	 Qualität von Trainingsdaten Auswahl von Merkmalen
Kookkurrenz	einfachhoher Recall	• kein Relationstyp
Reguläre Ausdrücke	hohe Precision Transparenz	Generierung

Tabelle 4. Vergleich der Strategien zur Relationsextraktion

3.1 Kookkurrenz

- Wie oft treten Begriffe gemeinsam auf?
- Signifikanz
 - steigt mit gemeinsamen Auftreten
 - sinkt mit nicht gemeinsamen Auftreten
- log odds ratio
 - $c(a,b) = \log_2(\frac{n \cdot n_{ab}}{n_a \cdot n_b})$
 - n ist Anzahl aller Dokumente
 - n_{ab} ist Anzahl der Dokumente mit a und b
 - n_a ist Anzahl der Dokumente mit a
 - log optional/Basis frei wählbar (nur scaling)

3.2 Reguläre Ausdrücke

Syntax	Semantik
	beliebiges $a \in \Sigma$
a*	$\{a\}^*$
a+	${a}^{+}$
<i>a</i> ?	$\{\varepsilon,a\}$
$a \mid b$	$\{a,b\}$

Tabelle 5. Syntax und Semantik von Regulären Ausdrücken

3.2.1 Vorgehen.

- Lernen anhand positiver Beispiele von Entitäten in Relation
- Zeichenketten zwischen Entitäten
- Multiples Sequenzalignement der Zeichenketten
- Ableiten eines regulären Ausdrucks

3.2.2 Multiple Sequence Alignement (MSA).

- Dynamische Programmierung
 - bei m Wörtern, Levenshtein über m Dimensionen
 - m Wörter der Länge n
 - n^m Zellen mit jeweils 2^m 1 Nachbarn
 - $-O(2^m-1)$
- Optimierung: Greedy (Inkrementelles Positionieren)
 - zwei Strings alignen
 - nächste Strings mit bisherigem Alignement alignen
 - Kosten bei jedem Schritt inkrementieren
 - Pro: $O(m \cdot n^2)$
 - Con: nicht optimal, Reihenfolge der Abarbeitung bestimmt stark das Ergebnis
 - Heuristik: Reihenfolge der Strings
 - Clustering der Zeichenketten nach paarweiser Distanz
 - Reihenfolge basierend auf Clustern (lokales Optimum)
 - lokales Optimum
- Optimierung: A* (Optimales Positionieren)
 - Knoten: Zellen der Matrix
 - Kanten: Verbindung benachbarter Zellen
 - Startknoten: (0, 0, 0)
 - Zielknoten: (n, n, n)
 - Kosten h^* : Kosten für multiples Alignement der Reste der Zeichenkette
 - multiple Alignements schlechter als Summe paarweiser Alignements
 - Heuristik h ist Summe der Kosten aller paarweisen Alignements

–
$$h(i_1,\ldots,i_m)=\sum_{a,b\;\in\;\{l_1[i_1:],\ldots,l_m[i_m:]\}}dist(a,b)$$
 – für Heuristik Betrachtung von $\frac{m\cdot(m-1)}{2}$ Alignements

9

4 ENTSCHEIDUNGSBÄUME

Vorteile	Nachteile
 einfach, da tabellarisches Wissen oft verfügbar schnell durch Greedy-Ansatz (Entropie) robust durch Random Forests 	 stark von Datenerhebung abhängig Wahl der Atribute Wahl der Wertebereiche

Tabelle 6. Vor- und Nachteile von Entscheidungsbäumen

- Entscheidungsbaum
 - Innere Knoten: Attribute
 - Kanten: Wert der Attribute
 - Blätter: Einteilung der Daten
- Ziel: möglichst kleiner Entscheidungsbaum
 - globales Optimum
 - lokales Optimum (greedy)
- Zahl möglicher Bäume mit m Blättern: T(m)
 - -T(m) = (2m-3)!!
 - !! ist Doppelfakultät
 - * 1!! := 1
 - * $n!! := n \cdot (n-2)!!$
- Rekursives Teilen der Beispiele
 - (1) Teilgruppe ist homogen \rightarrow Knoten erhält Label der Teilgruppe
 - (2) Teilgruppe ist inhomogen → wähle nächstes Attribut
 - (3) Es gibt keine Attribute mehr \rightarrow Knoten erhält Label der Mehrheit der Teilgruppe
 - (4) Es gibt keine Beispiele mehr → Knoten erhält Label der Mehrheit der Teilgruppe des Elternknotens
- Entropie *H*
 - Bewertung der Homogenität einer Menge

$$- H(C) = \sum_{i \in C} -p_i \cdot \log_2(p_i)$$

- T: Menge der Beispiele, p_i : Anteil der Beispiele, die zu Klasse i gehören, C: Klassen
- Informationsgewinn durch Attribut A: IG(A) = H(T) R(T)

- Restentropie
$$R(T) = \sum_{i=1}^{v} H(T_i) \cdot \frac{|T_i|}{|T|}$$

- $H(T_i) = \sum_{j \in C} -p_j \cdot \log_2(p_j)$

$$- H(T_i) = \sum_{i \in C} -p_j \cdot \log_2(p_j)$$

- Werte des Attributs $A: [1, \ldots, v]$
- Bestimmung des besten Attributes durch $arg \max_{a \in A} IG(a)$
- Random Forests
 - Overfitting vermeiden
 - Bootstrapping: Vergleiche Baum mit Bäumen, die aus variierten Daten erzeugt wurden
 - viele Bäume generieren und aggregieren

5 ARGUMENTATION

5.1 Datenbasis

- Fakten
 - manuell
 - Datenbanken
 - Entitäten-/Relationsextraktion
- Regeln
 - manuell
 - Entscheidungsbäume
 - Formale Konzeptanalyse

5.2 Argumente

Eigenschaft		not
Form	explizit	implizit
Aussprache	neg	not
Beweis	gilt bewiesenermaßen nicht	konnte nicht bewiesen werden

Tabelle 7. Vergleich der Negationsformen

- - Atome: A
 - explizite Negation eines Atoms: $\neg A$
- \bullet Defaultliteral notL
- Regel $r = L \leftarrow L_1, \dots, L_m, notL_{m+1}, \dots, notL_{m+n}$;
 - Kopf von r: L
 - Rumpf von $r: L_1, \dots, L_m, notL_{m+1}, \dots, notL_{m+n}$
- - Sequenz von Regeln: $[r_1, \ldots, r_k]$
 - L_i ist Kopf von r_i
 - $\ \forall_{L_i \leftarrow \dots, L_j, \dots; \, \in \, [r_1, \dots, r_k] \, \land \, L_j \, Objektivliteral} \exists_{r_j \, \in \, [r_1, \dots, r_k]} : i < j$

5.3 Attacken

5.3.1 Grundattacken.

- A undercuts B
 - A invalidiert Prämisse von B
 - $A = [\ldots; L \leftarrow Body; \ldots]$
 - $-B = [\ldots; L' \leftarrow \ldots, not L, \ldots; \ldots]$
- A rebuts B
 - A widerspricht B
 - $-A = [\ldots; L \leftarrow Body; \ldots]$

- $-B = [\ldots; \neg L \leftarrow Body; \ldots]$
- symmetrisch

5.3.2 Abgeleitete Attacken.

- $A \text{ attacks } B = A u B \vee A r B$
- $A \operatorname{defeats} B = A u B \vee (A r B \wedge \operatorname{not} B u A)$
- $A \text{ strongly attacks } B = A a B \wedge not B u A$
- $A strongly undercuts B = A u B \wedge not B u A$

5.3.3 Betrachtung als Mengen.

- Undercuts: *u*
- Rebuts: r
- Attacks: $a = u \cup r$
- Defeats: $d = u \cup (r \setminus \overline{u})$
- Strongly attacks: $sa = (u \cup r) \setminus \overline{u}$
- Strongly undercuts: $su = u \setminus \overline{u}$

Fig. 1. Obermengenbeziehungen der Attacken

5.4 Semantik

- x/y-Fixpunktsemantik: jede x-Attacke muss durch y-Gegenattacke verteidigt werden
- $F_{x/y} = \{A \mid A \text{ ist } x/y\text{-akzeptierbar bzgl. } S\}$
- Einteilung von Argumenten
 - $\,x/y$ -gerechtfertigte Argumente $J_{x/y}$: kleinster Fixpunkt von $F_{x/y}$
 - -x/y-verworfene Argumente: x-Attackiert durch gerechtfertigtes Argument
 - -x/y-verteidigbare Argumente: weder gerechtfertigt, noch verworfen
- Vorgehen (Iterativ)
 - nimm alle Regeln auf, die nicht durch Programmklausel x-attackiert werden
 - wenn Regel x-attackiert wird, nimm sie auf, wenn sie durch bereits aufgenommene Regel y-verteidigt werden kann

Semantiken	Dung	Prakken & Sartor	Well-founded Semantics WFS	WFSX
x/y	a/u	d/su	u/u	u/a

Tabelle 8. Verschiedene Semantiken

Fig. 2. Obermengenbeziehungen der Semantiken

6 PROBABILISTISCHES SCHLIESSEN

6.1 Definitionen

6.1.1 Bedingte Wahrscheinlichkeit.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

= $P(B \mid A) \cdot P(A)$
= $P(A) \cdot P(B)$ (wenn A und B unabhängig)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $P(A) + P(B) - P(A) \cdot P(B)$ (wenn A und B unabhängig)

6.1.2 Satz von Bayes.

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

$$P(A \mid B_1 \cap \dots \cap B_k) = \frac{P(B_1 \cap \dots \cap B_k \mid A) \cdot P(A)}{P(B_1 \cap \dots \cap B_k)}$$
 (Verallgemeinerung)
$$= \frac{P(A) \cdot \prod_{i=1}^k P(B_i \mid A)}{P(B_1 \cap \dots \cap B_k)}$$
 (B₁,..., B_k unabhängig)

$$P(A_1 \mid B_1 \cap \dots \cap B_k) \leq P(A_2 \mid B_1 \cap \dots \cap B_k)$$

$$\Leftrightarrow P(A_1) \cdot \prod_{i=1}^k P(B_i \mid A_1) \leq P(A_2) \cdot \prod_{i=1}^k P(B_i \mid A_2)$$

6.2 Anwendung

- Beispiel Spamfilter
- $P(spam \mid Congratulations ur awarded) \leq P(ham \mid Congratulations ur awarded)$
- Problem, wenn "ur" nicht in Trainingsdaten

-
$$P(spam | ur) = \frac{\#(Mails mit "ur")}{\#(Spam-Mails)} = 0$$

- Gesamtwahrscheinlichkeit wird 0

– Laplace-Smoothing: $P(spam \mid ur) = \frac{\#(\text{Mails mit "ur"})+1}{\#(\text{Spam-Mails})+|\text{Vokabular}|}$

NEURONALE NETZE 7

7.1 Aufbau

- Neuronen
 - Inputs
 - Gewichte
 - Bias
 - Output: $y = f_w(x)$ mit Aktivierungsfunktion f_w
- Topologische Anordnung
 - Input-Layer
 - Hidden-Layers
 - Output-Layer

7.2 Lineare Regression

- $f_{w_0, w_1}(x) = w_1 x + w_0 = y$

• Verlustfunktion

-
$$Loss(f_w) = \sum_{j=1}^{N} (y_j - f_w(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

- N : Anzahl Trainingswerte

- $-x_j$: Argument des j-ten Trainingswertes
- y_i : *j*-ter Trainingswert
- Verlust minimieren: Geschlossene Lösung
 - Minimum von Loss berechnen

- Withinfield Voli Loss betterment
$$-0 = \frac{\partial}{\partial w_0} Loss(f_w) = 2 \cdot \sum_{j=1}^N y_j - (w_1 x_j + w_0)$$

$$- (\sum_{j=1}^N y_j) - w_1 \sum_{j=1}^N x_j$$

$$- w_0 = \frac{\partial}{\partial w_1} Loss(f_w) = 2 \cdot \sum_{j=1}^N (y_j - (w_1 x_j + w_0)) x_j$$

$$- w_1 = \frac{(N \sum_{j=1}^N x_j y_j) - (\sum_{j=1}^N x_j)(\sum_{j=1}^N y_j)}{N(\sum_{j=1}^N x_j^2) - (\sum_{j=1}^N x_j)^2}$$

- meist zu kompliziert → Gradient Descent
- Gradient Descent
 - Greedy-Ansatz
 - Gradient

*
$$\nabla f(x_1, \dots, x_k) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_k} \end{pmatrix}$$

- * zeigt in Richtung des stärksten Anstieges
- * Betrag gibt Stärke des Anstiegs an

$$- w_0 \leftarrow w_0 - \alpha(\frac{\partial}{\partial w_0} Loss(f_w))$$

$$\begin{array}{l} - \ w_0 \leftarrow w_0 - \alpha(\frac{\partial}{\partial w_0} Loss(f_w)) \\ - \ w_1 \leftarrow w_1 - \alpha(\frac{\partial}{\partial w_1} Loss(f_w)) \end{array}$$

- Schrittgröße α
 - * am Anfang groß wählen (~ 0.01), schrittweise verringern
 - * Schrittweise verringern
 - * zu groß: kein Optimum
 - * zu klein: viele Schritte

7.3 Klassifikation

7.3.1 Lineare Klassifikation.

• zwei Klassen nach linearer Regression: C_1, C_2

•
$$x_2 = w_1 x_1 + w_0 \Rightarrow w_0 x_0 + w_1 x_1 + w_2 x_2 = 0$$
, für $x_0 = 1$ und $w_2 = -1$

•
$$\begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \vec{w} \cdot \vec{x} = 0$$
 Schwellwert

- $\vec{w} \cdot \vec{x} < 0 \Rightarrow C_1$
- $\vec{w} \cdot \vec{x} > 0 \Rightarrow C_2$

$$- f_w(\vec{x}) = Step(\vec{w} \cdot \vec{x})$$
$$- Step(x) = \begin{cases} 1, \text{ wenn } x > 0 \\ 0, \text{ wenn } x < 0 \end{cases}$$

- $\,$ Problem: \grave{Loss} nicht differenzierbar
- Lösung: $f_w(x) = Logistic(x) = \frac{1}{1+e^{-x}}$
- $Logistic'(x) = Logistic(x) \cdot (1 Logistic(x))$
- Gradient Descent

•
$$f_w(x) = Logistic(x)$$

$$- w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} (y - f_w(x))^2$$

- $w_i \leftarrow w_i - \alpha (y - f_w(x)) \cdot f_w(x) (1 - f_w(x)) \cdot (-x_i)$

• Grenze: Nichtlineare Daten

7.3.2 Nichtlineare Klassifikation.

- L + 1 vernetzte Schichten, K Klassen
- Input-Layer: l = 0
- Output-Layer: l = L
- Neuronen definiert durch
 - Layer: l
 - Index: i, j

 - Input für Layer l: $h_i^{(l-1)}$ Gewicht für $h_i^{(l-1)}$: $w_{i,j}^{(l)}$

– Gesamtinput:
$$a_j^{(l)} = \sum w_{i,j}^{(l)} \cdot h_i^{(l-1)} = \vec{w_j}^{(l)} \cdot \vec{h}^{(l-1)}$$

- Aktivierungsfunktion: h(x)
- Ausgabe: $h_j^{(l)} = h(a_j^{(l)})$
- Aktivierungsfunktion Softmax
 - erhält Wahrscheinlichkeitsverteilung f aus Outputlayer
 - Logistic in K Dimensionen

- Logistic in K Dimensionen
$$- f_k = \frac{e^{a_k^{(L)}}}{\sum e^{a_j^{(L)}}} \text{ für } k = 1, \dots, K$$

-
$$f_k \in [0, 1] \land \sum_{k=1}^{K} f_k = 1$$

- $f = [f_1, \dots, f_K]$ (Wahrscheinlichkeitsverteilung)

- Darstellung als Funktion

$$-a_{j}^{(l)} = \vec{w}_{j}^{(l)} \cdot \vec{h}^{(l-1)}$$

- Gewichte der Neuronen von Ebene
$$l$$
 bilden Matrix $W^{(l)}$
- $a^{(l)} = W^{(l)} \cdot \vec{h}^{(l-1)} = \begin{pmatrix} w_{1,1} & \dots & w_{K,1} \\ \vdots & \ddots & \vdots \\ w_{K,1} & \dots & w_{K,K} \end{pmatrix} \begin{pmatrix} \vec{h}_1 \\ \vec{h}_1 \\ \vdots \\ \vec{h}_K \end{pmatrix}^{(l-1)}$
- $f(\vec{x}) = f[a^{(L)}(h^{(L-1)}(\dots(h^{(1)}(a^{(1)}(\vec{x})))))]$

- Kreuzentropie (siehe 4)
 - misst Unordnung zwischen p und q

-
$$H(T) = \sum_{i=1}^{K} -p_i \cdot \log_2(q_i)$$

- Bewertung der Ähnlichkeit von f und g

$$-L(y,f) = -\sum_{i=1}^{K} y_i \cdot \log_2(f_i)$$

– Durchschnittliche Kreuzentropie bei N Beispielen: $\frac{1}{N}\sum_{j=1}^{N}L(y_{j},f(\vec{x_{j}})$

- Training
 - Trainingsbeispiele (x, y)
 - lerne Gewichte $w_{i,i}^{(l)}$
 - Gradient von Lossfunvtion zu Hidden Layers → Back-propagation
 - Stochastic Gradient Descent
 - * Gradienten über alle N Beispiele berechnen \rightarrow zu viel
 - * Gradienten über jeweils ein Beispiel → zu wenig
 - * Gradienten über Mini-Batches (z. B. 256)
 - Lernrate α (siehe 7.2)
 - Overfitting
 - * zu starke Anpassung auf Trainingsdaten
 - * $accuracy_{training} \gg accuracy_{validation}$
 - * Auswahl der Trainingsdaten randomisieren (90/10 Trainingsdaten/Validation)
 - * Modellkomplexität (Zahl der Parameter) verringern

7.4 Grenzen

- Netzwerkarchitektur
- Lokale Optima, Heuristik
- Trainingsdaten
- Overfitting
- Intransparente Modelle

8 UNSUPERVISED LEARNING

Fig. 3. Übersicht der Unsupervised-Learning-Methoden

- Supervised
 - Beispiele
 - * Entscheidungsbäume
 - * HMM
 - * Bayes
 - * Neuronale Netze
 - braucht große Mengen an Trainingsdaten
 - Qualität und Menge reicht oft nicht
- Unsupervised
 - Beispiel siehe Übersicht der Unsupervised-Learning-Methoden
 - braucht keine Trainingsdaten

Methode	Vorteile	Nachteile
K-Means	• einfach • schnell $(O(n))$	 Greedy, kein globales Optimum → Bootstrapping Wie viele Cluster k? Welches Distanzmaß?
Hierarchical Clustering		 Komplexität O(n³) Greedy, kein globales Optimum Welche Linkage-Methode Welches Distanzmaß?
Principal Component Analysis	• einfach • Visualisierung • Komplexität $O(p^2 \cdot n + p^3)$	• Komplexität $O(p^2 \cdot n + p^3)$ • n Punkte, p Dimensionen
Multi- Dimensional Scaling		• nicht immer möglich z. B. $D(A, B) = 1 = D(B, C)$ D(A, C) = 5

Tabelle 9. Vergleich der Methoden des Unsupervised Learnings

8.1 K-Means

- wähle erste *k* Elemente als Clusterzentren (Repräsentanten)
- weise jedes Element Cluster zu, bei dem sich Varianz am wenigsten erhöht (geringste Distanz zum Clusterzentrum)
- Wahl eines neuen Repräsentanten anhand der Elemente im Cluster
- wiederholen

8.2 Hierarchical Clustering

- Input: Paarweise Distanzen (Heuristik)
- Output: Baum mit Objekten als Knoten
- Iteratives mergen der Objekte mit kleinster Distanz
- Distanz des neuen Clusters w = (u, v) zu anderen Objekten x
 - Single/Complete linkage
 - * **Single** linkage: $D(x, w) = \min(D(x, u), D(x, v))$
 - * **Complete** linkage: $D(x, w) = \max(D(x, u), D(x, v))$
 - Pair Group Method using Arithmetic mean (PGMA)
 - * Average linkage/Weighted PGMA (WPGMA): $D(x, w) = \frac{D(x,u) + D(x,v)}{2}$
 - * Unweighted PGMA (**UPGMA**): $D(x, w) = \frac{m_u \cdot D(x, u) + m_v \cdot D(x, v)}{m_u + m_v}$
 - * m_u ist Anzahl Knoten in u
 - Linkage hat Einfluss auf Ergebnis

8.3 Principal Component Analysis

- Mehrere Hauptachsen
- Basiswechsel

- rotiert Achsen
- x₁-Achse entspricht erster Hauptachse, x₂-Achse zweiter, usw.
- Reduktion der Dimensionen \rightarrow Suche der Cluster in kleineren Dimensionen
- Voraussetzung: Hoher erklärter Varianzanteil

8.4 Multi-Dimensional Scaling

- Verallgemeinerung der Principal Component Analysis mit messbaren Relationen zwischen Daten
- \bullet Relationen \rightarrow Koordinaten
- Platzierung der ersten Koordinate A
- Platzierung der zweiten Koordinate B auf Kreis um A mit r = D(A, B)
- Sukzessives platzieren der weiteren Knoten auf Schnittpunkten der Kreise um Koordinaten