B0B01LAGA - Důkazy

Týden 2 – lineární obal, lineární podprostor, lineární závislost a nezávislost

- 1. Dokažte, že je-li $M \subseteq N$, potom:
 - $\operatorname{span}(M) \subseteq \operatorname{span}(N)$.
 - pro všechny M platí: $M \subseteq \text{span}(N)$
 - pro všechny M platí: $\operatorname{span}(\operatorname{span}(M)) = \operatorname{span}(M)$

(uzávěrové vlastnosti lineárního obalu)

- 2. Dokažte, že span(M) je vždy lineární podprostor a že množina M je lineární podprostor právě tehdy, když span(M) = M.
- 3. Dokažte, že průnik libovolného systému $\{W_i \mid i \in I\}$ podprostorů prostoru L je lineárním prostorem prostoru L.
- 4. Dokažte, že sjednocení systému $\{W_i \mid i \in I\}$ lineárních podprostorů prostoru L obecně lineárním podprostorem prostoru L není.
- 5. At M je lineárně nezávislá množina vektorů v lineárním prostoru L. Dokažte, že jakmile $N\subseteq M$, je i N lineárně nezávislá množina vektorů.
- 6. At M je lineárně závislá množina vektorů v lineárním prostoru L. Dokažte, že jakmile N je množina vektorů z L a platí $M \subseteq N$, je i N lineárně závislá množina vektorů.

Týden 3 – Báze a dimenze, souřadnice vzhledem k uspořádané bázi

- 1. Dokažte, že každý konečně generovaný prostor L má konečnou bázi. (exchange lemma)
- 2. At M, N, jsou konečné množiny vektorů. Dokažte, že $\operatorname{span}(M) = \operatorname{span}(N)$ právě tehdy, když $\dim(\operatorname{span}(M)) = \dim(\operatorname{span}(M \cup N))$. (rovnost dvou lineárních obalů konečných množin)
- 3. At je L lineární prostor konečné dimense. Dokažte, že potom pro libovolné lineární podprostory W_1, W_2 , platí rovnost $\dim(W_1 \vee W_2) + \dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2)$. (věta o dimenzi spojení a průniku)
- 4. Ať seznam $B = (\vec{b_1}, ..., \vec{b_n})$ tvoří bázi lineárního prostoru L. Dokažte, že pro každý vektor \vec{x} v L existuje jediný seznam $(a_1, ..., a_n)$ prvků \mathbb{F} tak, že $\vec{x} = a_1 \cdot \vec{b_1} + ... + a_n \cdot \vec{b_n}$. (existence souřadnic vzhledem k uspořádané bázi)
- 5. At B je jakákoliv konečná uspořádaná báze lineárního prostoru L. Dokažte, že potom pro zobrazení $\vec{x}\mapsto \mathrm{coord}_B(\vec{x})$ platí:
 - $\operatorname{coord}_B(\vec{x} + \vec{y}) = \operatorname{coord}_B(\vec{x}) + \operatorname{coord}_B(\vec{y}).$
 - $\operatorname{coord}_B(a \cdot \vec{x}) = a \cdot \operatorname{coord}_B(\vec{x}).$

(linearita výpočtu souřadnic)

Týden 4 – Lineární zobrazení

- 1. Dokažte, že složení lineárních zobrazení je lineární. (základní algebraické vlastnosti lineárních zobrazení)
- 2. Ať B je báze lineárního prostoru L_1 , ať L_2 je libovolný lineární prostor. Dokažte, že potom zadat libovolné zobrazení $h: B \to L_2$ je totéž, jako zadat lineární zobrazení $f: L_1 \to L_2$. (lineární zobrazení je určeno hodnotami na bázi)

3. Dokažte, že pro matici
$$\mathbf{A}: \mathbb{F}^s \to \mathbb{F}^r$$
 se sloupci $\vec{a_1}, ..., \vec{a_s}$ a vektor $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_s \end{pmatrix}$ platí: $\mathbf{A}: \vec{x} \mapsto \sum_{j=0}^s x_j \cdot \vec{a_j}$ (lineární zobrazení je určeno hodnotami na bázi)

Týden 5 – Lineární zobrazení, transformace souřadnic

- 1. Dokažte, že složení monomorfismů / epimorfismů / isomorfismů je monomorfismus / epimorfismus / isomorfismus.
- 2. At $f: L_1 \to L_2$ je lineární zobrazení. Dokažte, že pak $\ker(f)$ je podprostor L_1 a $\operatorname{im}(f)$ je podprostor L_2 .
- 3. At $f: L_1 \to L_2$ je lineární zobrazení, ať prostor L_1 má konečnou dimenzi. Dokažte, že pak $def(f) + rank(f) = dim(L_1)$. věta o dimenzi jádra a obrazu
- 4. At $f: L_1 \to L_2$ je lineární zobrazení, at prostor L_1 má konečnou dimenzi. Dokažte, že je ekvivalentní:
 - \bullet f je monomorfismus
 - $\operatorname{def}(f) = 0$
 - f respektuje lineární nezávislost (tj. obraz lineárně nezávislé množiny je opět lineárně nezávislá množina).

(charakterizace monomorfismů)

- 5. At $f: L_1 \to L_2$ je lineární zobrazení, at prostor L_1 má konečnou dimenzi. Dokažte, že je ekvivalentní:
 - \bullet f je isomorfismus
 - $\bullet \ f$ je monomorfismus a epimorfismus současně.
 - $\operatorname{def}(f) = 0$ a $\operatorname{im}(f) = L_2$ současně.
 - def(f) = 0 a $dim(L_1) = dim(L_2)$.
 - f respektuje lineární nezávislost (tj. obraz lineárně nezávislé množiny je opět lineárně nezávislá množina), a každá rovnice $f(\vec{x}) = \vec{b}$ má alespoň jedno řešení.

(charakterizace isomorfismů)

- 6. At $B = (\vec{b_1}, ..., \vec{b_n})$ je uspořádaná báze prostoru L. Dokažte, že potom výpočet souřadnic v bázi B coord $_B : L \to \mathbb{F}^n, \vec{x} \mapsto \operatorname{coord}_B(\vec{x})$ je isomorfismus.
- 7. Dokažte, že regulární matice jsou přesně matice isomorfismů.

Týden 6 – GEM a soustavy lineárních rovnic

- 1. At $P: \mathbb{F}^r \to \mathbb{F}^r$ je jakýkoli isomorfismus. Dokažte, že potom platí:
 - $(\mathbf{A} \mid \mathbf{b}) \sim (\mathbf{P} \cdot \mathbf{A} \mid \mathbf{P} \cdot \mathbf{b})$
 - $rank((\mathbf{A} \mid \mathbf{b})) = rank((\mathbf{P} \cdot \mathbf{A} \mid \mathbf{P} \cdot \mathbf{b}))$

(základní vlastnosti ekvivalence soustav)

- 2. Dokažte, že soustava ($\mathbf{A} \mid \mathbf{b}$) má řešení právě tehdy, když platí rovnost rank(\mathbf{A}) = rank($\mathbf{A} \mid \mathbf{b}$). (Frobeniova věta)
- 3. Dokažte, že ke každému d-dimensionálnímu afinnímu podprostoru $\mathbf{p} + \operatorname{span}(\vec{x_1}, ..., \vec{x_d})$ v \mathbb{F}^s existuje alespoň jedna soustava tvaru $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, která má $\mathbf{p} + \operatorname{span}(\vec{x_1}, ..., \vec{x_d})$ jako množinu řešení.

Týden 7 – Determinant

- 1. Dokažte, že $\det(\mathbf{A}) = \det(\mathbf{A}^T)$.
- 2. At **A** je matice typu $n \times n$ nad \mathbb{F} , $n \geq 2$. Dokažte, že potom platí rovnosti $\mathbf{A} \cdot \operatorname{adj}(\mathbf{A}) = \det(\mathbf{A}) \cdot \mathbf{E}_n = \operatorname{adj}(\mathbf{A}) \cdot \mathbf{A}$ a pro regulární \mathbf{A} platí $\mathbf{A}^{-1} = \det(\mathbf{A})^{-1} \cdot \operatorname{adj}(\mathbf{A})$.

(inverze matice pomocí algebraických doplňků)

3. At $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ je soustava se čtvercovou maticí. Dokažte, že tato soustava má jediné řešení právě tehdy, když \mathbf{a} je regulární matice.

(řešení čtvercové soustavy s regulární maticí)

4. At $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ je soustava se čtvercovou regulární maticí nad \mathbb{F} . Dokažte, že potom j-tá položka jediného řešení $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$ je tvaru $x_j = \det(\mathbf{A}^{-1} \cdot \det(\mathbf{a_1}, ..., \mathbf{a_{j-1}}, \mathbf{b}, \mathbf{a_{j+1}}, ..., \mathbf{a_n})$.

(kramerova věta)

Týden 8 – Vlastní čísla, vlastní vektory a diagonalizace matic

1. Af $f: L \to L$ je lineární zobrazení, dim(L) = n. $\mathbf{A_f}$ je matice f vzhledem k jakékoliv bázi prostoru L. Potom λ v \mathbb{F} je vlastní hodnotou f právě tehdy, když $\det(\mathbf{A_f} - \lambda \mathbf{E}_n) = 0$.

Týden 9 – Jordanův tvar

- 1. At $\mathbf{M}: \mathbb{F}^n \to \mathbb{F}^n, \mathbf{N}: \mathbb{F}^n \to \mathbb{F}^n$ jsou podobné matice. Dokažte, že pak \mathbf{N} je nilpotentní právě tehdy, když \mathbf{M} je nilpotentní.
- 2. At $f: L \to L$ je lineární zobrazení, kde L má konečnou dimenzi, a at \mathbf{M} je matice zobrazení f vzhledem k bázi B. Pak f je nilpotentní právě tehdy, když \mathbf{M} je nilpotentní.
- 3. At $\mathbf{n}: L \to L$ je nilpotentní lineární zobrazení, dim(L) = n. Dokažte, že potom existuje báze $(\vec{b_1}, ..., \vec{b_n})$ prostoru L, která vznikla zřetězením \mathbf{n} -řetězců.

(existence Jordanova tvaru nilpotentního zobrazení)