Go, change the world

Academic year 2023-2024 (Even Sem) DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

	001,11	TER SCIENCE &	B1 (0 21 (E E 1 1 2				
	Date June 2024 Maximum Ma				50		
	Course Code CS241AT Duration				90 Min		
	SMS/SGR/MNV						
	DISCRETE MAT	NATOI	ORICS				
			Marks	BT	CO		
1a.	Determine if the expandance $x^{10} = x^{38-3r}$. So, recontaining x^{10} in the expandance x^{10}	5	4	2			
1b.	If a person places 6 let that exactly two of the Ans: Total arrangements = Exactly 2 are placed of Required probability	5	3	2			
2a.	Find the number of not • $x_1+x_2+x_3+x_4$ • $x_1+x_2+x_3+x_4$ • $x_1+x_2+x_3+x_4$ • $x_1+x_2+x_3+x_4$	6	3	2			
2b.	Simplify using the law $\neg [\neg \{(p \lor q) \land r\} \lor \neg q]$ Ans: $q \land r$	4	3	1			
3a.	Write the recurrence relation Ans: Recurrence relation Solution is $a_n = 2^{n-1}$	6	4	4			
3b.	[p v (p ^ q) v (p ^ q ^	am to represent the following states $[-r] \ [p \ r \ t) \ v \ t]$ $[p \ r \ t) \ v \ t]$	ment:	4	2	3	

 4a. If a person invests ₹ 25,000 at at 9% annual interest, find the amount he will at the end of 5 years if i. interest compounded half yearly p_n=(1.045)ⁿ p₀ ₹38824.2 ii. interest compounded monthly p_n=(1.0075)ⁿ p₀ ₹39142.4 Write the recurrence relation to solve. 	get 6	3	4
4b. Determine the truth values of p, q, r, s, t when $[p \land (q \land r)] \rightarrow (s \lor t)$ is false.	4	2	1
Ans: p=q=r=1, s=t=0 or p=q=r=1, s=t=1			
5a. Show the validity of the argument: Step. 3 74 Premise 2) 74 3): 77 Modus Tollens & (2) 4) 78 V 78 Disjunctive amplification & (3). 5) 7(5/8) Demorgans & (W). 6) (6 p V - 10) - (8/8) Premise Modus Tollens, (5) & (6) 7) 7 (7 p V 79) Bemorgans, (7). 1aw of double negation. 9) P 19 Conjunctive Simplification f (9) Conjunctive Simplification f (9)	6	3	3
5b. Find the number of ways in which 5 people A, B, C, D, and E can be seated a round table, such that i. C and D always sit together 3!*2=6*2=12	at 4	1	1
ii. C and D never sit together 4!-3! = 24-12=12			

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4	L5	L6
Distribution	Max Marks									-	-	-

Course Outcomes:

- 1. Apply the concepts of discrete mathematical structures for effective computation and relating problems in the computer science domain.
- 2. Analyze the concepts of discrete mathematics to various fields of computer science.
- 3. Design solutions for complex problems using different concepts of discrete mathematical structure as a logical predictable system.
- 4. Explore/Develop new innovative ideas to solve some open problems in theoretical computer science.
- 5. Effectively communicate, work in groups in order to accomplish a task and engage in continuing professional development.
