



École La Plateforme, Établissement d'enseignement supérieur à Marseille, Bachelor IT 1A, Programmation informatique.



#### Réalisé par Yoann FERMAUD Groupe FERMAUD

## **Sommaire**

| Sommaire           | 2 |
|--------------------|---|
| Basic              | 3 |
| Switch             | 4 |
| Idoine             | 4 |
| Multi-réseau       | 5 |
| Micro-réseau       | 6 |
| Réseau-Mobile      | 7 |
| Annexes            | 8 |
| Tables des figures | 8 |



#### **Basic**

L'ordinateur fixe PC0 et PC1 sont reliés via un câble croisé en Fast Ethernet, *figure 1*. Afin de pouvoir ping les deux ordinateurs fixes entre eux, il faut leur attribuer une adresse IP static, soit 192.168.1.1 et 192.168.1.2 respectivement et le masque de sous réseau 255.255.255.0, *figure 2*.



Figure 1 : Connexion FastEthernet entre deux ordinateurs



Figure 2 : IP static attribuée au PC1

Bravo, vous avez fini le basique. Montrez-nous que vous avez compris ! Pouvez-vous me dire quelle est la différence entre Fast Ethernet 0/1 et 1/1 ?

Les numéros des ports ont la syntaxe suivante :

- 0/1
- 0/0/1

#### C'est à dire :

- numéro du module / numéro du port
- numéro du switch dans le stack / numéro du module / numéro du port

La différence entre Fast Ethernet 0/1 et 1/1, est le numéro de module. Fast Ethernet 0/1 se trouve sur le module 0 en position 1 (port numéro 2) et Fast Ethernet 1/1 se trouve sur le module 0 en position 1 (port numéro 2). Par exemple, sur la *figure 3*, on a un routeur (1941) avec quatre ports (0, 1, 2, 3) sur le module un et deux (0, 1).



Figure 3 : Routeur 1941



#### **Switch**

Le Switch0, nous permet de connecter l'ordinateur fixe PC0 et PC1 de façon indirecte, c'est-à-dire qu'ils ne sont pas reliés directement via un câble comme sur le job **Basic**. Lorsque l'ordinateur se connecte au Switch0, on peut visualiser un triangle vert avec un rond orange. Lorsque l'ordinateur est connecté au Switch0, on peut visualiser deux triangles verts



Figure 4: Connexion en cours



Figure 5 : Connexion en établie

Afin de ping l'ordinateur portable, il faut attribuer une adresse IP static. L'ordinateur PC0 et l'ordinateur PC1 possèdent la même adresse IP que dans le job **Basic**, soit 192.168.1.1 et 192.168.1.2 respectivement et le masque de sous réseau 255.255.255.0. L'ordinateur portable possède comme adresse IP static 192.168.1.3 et comme masque de sous réseau 255.255.255.0.

#### Idoine

Un simple ("PDU simple"), d'un device à un autre *figure 6* et un envoi répétitif, soit un complexe ("PDU complexe"), ping d'un device à l'autre toutes les 5 secondes *figure 7*.



Figure 6: PDU simple

Figure 7 : PDU complexe

Pour la configuration du complexe, il suffit de renseigner dans "Create Complex PDU", l'adresse IP source et de destination, de mettre "sequence number" à 32 et "periodic interval" à 5 secondes.



### Multi-réseau

Dans la figure 8, on a trois sous réseaux qui sont présent, dans :

- la ville **NightCity**
- la ville **Sion**
- entre les deux routeurs (*Routeur0* et *Routeur1*)

Pour cet exercice, on a rajouté deux routeurs. Le premier routeur à *NightCity*, réseau déjà existant lors des précédents exercices, cependant le deuxième routeur va nous permettre de créer un deuxième sous réseau qui sera la ville de *Sion*, qui contiendra cinq PC fixes et quatre PC portables branché par wifi. Chaque Ordinateur se verra attribuer une IP static de classe C: 192.168.0.0 et de masque 255.255.255.0.



Figure 8 : Multi-réseau complet

De plus, pour que les ordinateurs de mon premier réseau, appelé **NightCity**, puissent communiquer avec les ordinateurs de mon deuxième réseau qu'on appelle **Sion**, il faut configurer les routeurs. Sur les ports GigabitEthernet 0/0 et 0/1, il faut attribuer la bonne adresse IP ainsi que le masque de sous réseau.

- Pour le port Gig0/0 du routeur0 l'IP : 192.168.1.1, et le masque : 255.255.255.0
- Pour le port Gig0/1 du routeur0 l'IP : 192.168.3.1, et le masque : 255.255.255.0
- Pour le port Gig0/0 du routeur1 l'IP: 192.168.2.1, et le masque: 255.255.255.0
- Pour le port Gig0/1 du routeur1 l'IP : 192.168.3.254, et le masque : 255.255.255.0

Ensuite, il faut configurer une route en static. Le **network** représente la cible, le masque de classe adapté du réseau et le **next hop** le port du routeur auquel il est raccordé afin de faire communiquer les ordinateurs de chaque réseau entre eux.



## Micro-réseau

Pour la réalisation de cet exercice, il a fallu modifier le réseau **NightCity** et **Sion** de telle sorte à ce que les deux villes possèdent un serveur central, qui permettra l'adressage automatique des machines présentes dans leur sous réseau grâce à un DHCP.



Figure 9 : Micro-réseau complet

Pour que les serveurs puissent marcher correctement, il faut leur attribuer une adresse IP :

- Pour le serveur0 l'IP : 192.168.1.200, et le masque : 255.255.255.0
- Pour le serveur1 l'IP : 192.168.2.200, et le masque : 255.255.255.0

Une fois les adresses IP attribuées en static, il faut configurer le DHCP de chaque serveur, en commençant par l'activer. Ensuite, il faut renseigner le **default gateway**, le **start IP** correspondant à l'adresse IP de départ (par exemple, si je mets 192.168.1.10, l'adressage se fera à partir de .10) ainsi que son masque.



Figure 10 : Micro-réseau avec Smart complet



### Réseau-Mobile

Après avoir réalisé l'exercice *Micro-Réseau*, il a fallu ajouter à *NightCity* un réseau mobile digne de ce nom. Pour cela, il faut ajouter un "central office server" relier au routeur de *NightCity* et y connecter une antenne cellulaire "Cell Tower" à laquelle sera connectés deux smartphones et une tablette.



Figure 11 : Réseau-Mobile complet

Comme pour les exercices précédents, afin que les appareils de ce **micro-réseau** puissent communiquer avec ceux de la ville de **NightCity** et de **Sion**, il faut configurer les routeurs, c'est-à-dire leur donner une nouvelle route. De plus, il faudra configurer le **backbone** et le **cell tower** dans le "**central office server**".



#### Réalisé par Yoann FERMAUD **Groupe FERMAUD**

## **Annexes**

# Tables des figures

| Figure 1 : Connexion FastEthernet entre deux ordinateurs | 3 |
|----------------------------------------------------------|---|
| Figure 2 : IP static attribuée au PC1                    | 3 |
| <b>Figure 3</b> : Routeur 1941                           | 3 |
| Figure 4 : Connexion en cours                            |   |
| Figure 5 : Connexion établie                             | 4 |
| Figure 6 : PDU simple                                    | 4 |
| Figure 7 : PDU complexe                                  | 4 |
| Figure 8 : Multi-réseau complet                          | 5 |
| Figure 9 : Micro-réseau complet                          | 6 |
| Figure 10 : Micro-réseau avec Smart complet              | 6 |
| Figure 11 : Réseau-Mobile complet                        | 7 |
|                                                          |   |

