Folha 7B - Derivação sob o sinal de integral, áreas de regiões planas

1. Determine uma função contínua $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que

$$\int_0^{x^2} f(t) dt = x^3 e^x - x^4, \quad \forall x \in \mathbb{R}.$$

2. Seja $f:\mathbb{R}\longrightarrow\mathbb{R}$ uma função contínua verificando a condição

$$\int_{0}^{x} f(t) dt = \frac{4}{3} + 3x^{2} + \sin 2x + \frac{1}{2} \cos 2x, \quad \forall x \in \mathbb{R}.$$

Calcule $f\left(\frac{\pi}{2}\right)$ e $f'\left(\frac{\pi}{2}\right)$.

3. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por $f(x) = \int_0^x \frac{1+\sin t}{2+t^2} \ dt, \ \forall x \in \mathbb{R}.$

Sem calcular o integral, determine um polinómio ${\mathcal P}$ de grau 2 tal que

$$\mathcal{P}(0) = f(0), \quad \mathcal{P}'(0) = f'(0), \quad \mathcal{P}''(0) = f''(0)$$

4. Determine a área da região \mathcal{A} limitada pelas curvas de equações:

(a)
$$x = 0$$
, $x = 2$, $x^2 + (y - 2)^2 = 4$, $x^2 + (y + 2)^2 = 4$;

(b)
$$x = -1$$
, $y = |x|$, $y = 2x$, $x = 1$;

(c)
$$y = -x^3$$
, $y = -(4x^2 - 4x)$;

(d)
$$y = -x^2 + \frac{7}{2}$$
, $y = x^2 - 1$.

5. Estabeleça um integral (ou uma soma de integrais) que dê a área de cada uma das seguintes regiões planas:

(a)
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 - 1 \le y \le x + 1\};$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 2 \land 0 \le y \le e^x \land 0 \le y \le e^{-x} \};$$

(c)
$$C = \{(x, y) \in \mathbb{R}^2 : y \ge 0 \land y \le x^2 - 2xy \le 4\}.$$

Notar que as equações $y=x^2-2xy$ e $x^2-2xy=4$ representam hipérboles com eixos de simetria oblíquos.

6. As coordenadas $(X_{\mathcal{G}}, Y_{\mathcal{G}})$ do centro de massa de um sólido com densidade $\rho = \rho(x)$, que ocupa uma região plana limitada pelo eixo OX, pelas rectas x = a e x = b e pela curva y = f(x), são dadas por

$$X_{\mathcal{G}} = \frac{1}{m} \int_{a}^{b} x \rho(x) f(x) dx,$$

$$Y_{\mathcal{G}} = \frac{1}{2m} \int_{a}^{b} \rho(x) f^{2}(x) dx,$$

onde $m = \int_a^b \rho(x) f(x) dx$ representa a massa total do sólido. Determine o centro de massa do sólido que ocupa a região D com densidade ρ dadas por:

(a)
$$D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le a \land 0 \le y \le b\}, \quad \rho = kx, \quad k > 0 \text{ constante},$$

(b)
$$D = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 4 - x^2\}, \quad \rho = k|x|, \quad k > 0 \text{ constante.}$$

7. Uma partícula de massa m move-se num fluido com velocidade v, estando sujeita a uma resistência à viscosidade dada por R(v), de tal forma que, em cada instante t, se tem

$$t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du,$$

onde $v(t_0)$ representa a sua velocidade inicial. Suponha que, para um dado fluido, se tem

$$R(v) = -v\sqrt{v}, \quad m = 10, \quad v(t_0) = 10,$$

e calcule o tempo necessário para que a partícula reduza a sua velocidade para metade.

8. No método de diluição do contraste usado para medir a capacidade cardíaca, dada pelo volume de sangue bombeado em cada unidade de tempo, injecta-se uma quantidade A de contraste no sangue. Através de uma sonda que é introduzida na aorta avalia-se a concentração c(t) de contraste que sai do coração em cada instante t, durante um certo período de tempo [0,T], até que o contraste se tenha diluído por completo, deixando de ser detectado. A capacidade cardíaca do coração é então dada por

$$\frac{A}{\int_0^T c(t)dt}$$
.

Calcule a capacidade cardíaca quando A=8 e $c(t)=\frac{1}{4}t(12-t)$, com $0\leq t\leq 12$.

13