Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/002933

International filing date: 18 March 2005 (18.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 014 280.7

Filing date: 22 March 2004 (22.03.2004)

Date of receipt at the International Bureau: 01 April 2005 (01.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 014 280.7

Anmeldetag:

22. März 2004

Anmelder/Inhaber:

Degussa AG, 40474 Düsseldorf/DE

Bezeichnung:

Verfahren zur Herstellung von optisch aktiven Aminosäuren mittels eines Ganzzellkatalysators

IPC:

C 12 P, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 25. Februar 2005

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

A 9161 06/00

Verfahren zur Herstellung von optisch aktiven Aminosäuren mittels eines Ganzzellkatalysators

Die Erfindung beschreibt ein Verfahren zur Herstellung optisch aktiver L- α -Aminosäuren. Insbesondere beschreibt die vorliegende Erfindung ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I)

(I),

worin R für Alkyl, insbesondere eine raumerfüllende, verzweigte, ein tertiäres C-Atom aufweisende Alkylgruppe mit 5-10 C-Atomen, beispielsweise tert-Butyl, und substituierte Alkyl steht, bzw. daraus abgeleiteter Salze.

Optisch aktive L- α -Aminosäuren werden zur Herstellung einer Reihe wertvoller Verbindungen eingesetzt. Beispielsweise fungieren diese Verbindungen als Intermediate bei der Herstellung von Pharmazeutika. Einen besonders wertvollen Vertreter dieser Produktklasse stellt L-tert-Leucin dar, das als Strukturelement in einer Reihe von Pharmawirkstoffen zu finden ist und demzufolge als Intermediat für die Synthese der entsprechenden Pharmawirkstoffe benötigt wird. Beispiele für Anwendungen von L-tert-Leucin als Baustein für Pharmawirkstoffe sind in A. S. Bommarius et al. (J. Mol. Cat. B: Enzymatic 1998, 5, 1-11) gegeben.

Die enzymatische Reduktion von 2-Ketocarbonsäuren mittels einer Leucindehydrogenase und einer Formiatdehydrogenase aus Candida boidinii unter in situ-Cofaktorregenerierung stellt eine technisch etablierte Methode zur Herstellung optisch aktiver L-α-Aminosäuren dar. Insbesondere eignet sich dieser Weg zur Herstellung der nichtproteinogenen Aminosäure L-tert-Leucin, die im Tonnenmaßstab mit dieser

biokatalytischen Methode produziert wird. Das Verfahren ist eingehend in der Literatur beschrieben (EP0692538; U. Kragl, D. Vasic-Racki, C. Wandrey, Bioprocess Engineering 1996, 14, 291-297; A. S. Bommarius, M. Schwarm, K. Drauz, J. Mol. Cat. B: Enzymatic 1998, 5, 1-11; G. Krix, A. S: Bommarius, K. Kottenhahn, M. Schwarm, M.-R. Kula, J. Biotechnol. 1997, 53, 29-39, A. Liese, C. Wandrey, A. Liese, K. Seelbach, C. Wandrey, Industrial Biotransformations, Wiley-VCH, Weinheim, 2000, S. 125f. und A. S. Bommarius, K. Drauz, W. Hummel, M.-R. Kula, C. Wandrey, Biocatalysis 1994, 10, 37-47. Eine allgemeine Übersicht ist zudem in A. S. Bommarius in: Enzyme Catalysis in Organic Synthesis (Hrsg.: K. Drauz, H. Waldmann), Band 2, 2. Auflage, Wiley-VCH, Weinheim, 2003, Kapitel 15.3, S. 1047f. gegeben).

15

20

10

5

Schema 1. Herstellung von L-tert-Leucin mit isolierten Enzymen und zugesetztem Cofaktor (am Beispiel einer NAD+-abhängigen Aminosäuredehydrogenase und einer Formiatdehydrogenase zur Cofaktorregenerierung)

Typische verwendete NAD+-Cofaktormengen, die zugesetzt werden müssen, sind beispielsweise in EP0692538 beschrieben und liegen im Bereich von 0.0008 Äquivalenten bis 0.02 Äquivalenten. Zudem beschreiben G. Krix et al. (J.

25 Biotechnol. 1997, 53, 29-39) die Herstellung von (S)-

20

30

Neopentylglycin in technischen Ansatzgrößen unter Einsatz einer NAD*-Cofaktormenge von 0.003 Äquivalenten. Typische Substratkonzentrationen in EP0692538 liegen bei 100 - 250 mM. In A. Liese et al. (Industrial Biotransformations, Wiley-VCH, Weinheim, 2000, S. 125f.) ist die Herstellung von L-tert-Leucin mit einer Substratkonzentration von 0.5 M und einer Ausbeute von 74% beschrieben. Die Durchführung von reduktiven Aminierungen mit isolierten Leucindehydrogenase und Formiatdehydrogenase-Enzymen bei Substratkonzentrationen von 0.5 bis 1 M ist ebenfalls in G. Krix et al. (J. Biotechnol. 1997, 53, 29-39) beschrieben.

Vorteilhaft bei diesem Verfahren sind die hohen Umsätze und hervorragenden Enantioselektivitäten, die bei >99% ee liegen und somit die strengen Qualitätsanforderungen an

15 Pharmaintermediate erfüllen helfen. Auch kann bei hohen Substratkonzentrationen gearbeitet werden, was gerade aus technischer Sicht ein bedeutender Aspekt ist.

Nachteilig beim bisherigen Verfahren ist allerdings zum einen der Bedarf an isolierten Enzymen. Diese werden insbesondere in gereinigter Form eingesetzt, einhergehend mit einer Erhöhung des Biokatalysatorkostenanteils. Aufgrund der daraus resultierenden hohen Enzymkosten ist ein vielfaches Recycling der Enzyme notwendig, um eine günstige Prozessökonomie, insbesondere niedrige Enzymkosten, zu erhalten. Neben den langen Laufzeiten solcher Recyclingverfahren, die vorteilhaft in kontinuierlicher Form durchgeführt werden, sind auch die daraus resultierenden relativ kleinen Reaktionsvolumina pro Ansatz nachteilig.

Ein weiterer Nachteil ist der Bedarf an Cofaktor, der bei der Reaktion zugesetzt wird. Solche Cofaktoren werden zwar nur katalytisch eingesetzt in Größenordungen von ca. 0.001 Äquivalenten, stellen trotzdem aber aufgrund ihres hohen Preises selbst bei katalytischen Mengen einen erheblichen Kostenfaktor dar.

Wünschenswert wäre deshalb ein Verfahren, bei dem die Notwendigkeit des Einsatzes von isolierten Enzymen sowie des Zusatzes an Cofaktor entfällt bzw. der Zusatz an Cofaktor minimiert ist und die Synthese nichtsdestotrotz mit hoher Umsatzrate, hoher Enantioselektivität und hoher volumetrischer Produktivität verläuft. Auf diesem Wege könnten die Enzymkosten in nennenswerter Weise gesenkt, Cofaktorkosten eingespart und somit die Prozessökonomie gesteigert werden.

- Soda et al. beschreiben die Verwendung eines Ganzzellkatalysators, enthaltend eine Leucindehydrogenase und eine bakterielle Formiatdehydrogenase, in der reduktiven Aminierung von unter anderem verzweigtkettige α -Ketocarbonsäuren wie L-tert-Leucin (Appl. Environm.
- Microbiology 1997, 63, 4651-4656.). Es wird explizit in dieser Veröffentlichung darauf hingewiesen, dass die bei der reduktiven Aminierung benötigten Enzyme in Form eines diese Enzyme aufweisenden Ganzzellkatalysators, insbesondere E. coli, als lebende oder "resting cells" eingesetzt werden
- können. Sofern man jedoch den intrazellularen Pool in E. coli an NAD⁺ zwecks Vermeidung dessen Zugabe sich zunutze machen möchte, ist man auf eine finale Konzentration an Produkt von etwa 0,3 M beschränkt. Dies ist für technische Anwendungen nicht ausreichend genug.
- Aufgabe der vorliegenden Erfindung war daher die Angabe eines weiteren enzymatisch arbeitenden Verfahrens zur Herstellung von L- α -Aminosäuren, welches vorteilhafterweise in technischem Maßstab durchgeführt werden kann. Es sollte insbesondere in den eben geschilderten Aspekten den
- Verfahren des Standes der Technik überlegen sein und es erlauben, die gewünschten Produkte unter prozessökonomischen Gesichtspunkten (insbesondere Raumzeitausbeute) vorteilhaft herzustellen.
- Diese und weitere nicht näher spezifizierte sich jedoch aus 35 dem Stand der Technik in naheliegender Weise ergebende

Aufgabe.

20

30

35

Aufgaben werden durch ein Verfahren mit den Merkmalen des vorliegenden Anspruchs 1 gelöst. Ansprüche 2 bis 9 sind auf bevorzugte Ausführungsformen des gegenständlichen Verfahrens gerichtet.

Dadurch, dass man in einem Verfahren zur Herstellung von 5 enantiomerenangereicherten L- α -Aminosäuren oder deren Salzen durch Umsetzen der entsprechenden 2-Ketocarbonsäure mit einem Ammoniumionen-Donor in Gegenwart eines Ganzzellkatalysators aufweisend ein kloniertes Gen kodierend für eine Cofaktor-abhängige Aminosäuredehydrogenase und ein 10 kloniertes Gen kodierend für ein den Cofaktor regenerierendes Enzym bei einer Gesamteinsatzmenge an Substrat pro Reaktionsvolumen von ≥ 500 mM die Zugabe des Substrats so dosiert, dass die stationäre Konzentration an 2-Ketocarbonsäure unter 500 mM liegt und die externe Zugabe 15 an Cofaktor bezogen auf die Gesamteinsatzmenge an Substrat < 0,0001 Äquivalenten entspricht, gelangt man in äußerst eleganter und überraschender dafür aber nicht minder vorteilhafter Art und Weise zur Lösung der gestellten

Überraschenderweise gelingt es beispielsweise durch den Einsatz des Ganzzellkatalysators bei gleichzeitiger Dosierung des Substrats auf einen Zusatz des teuren Cofaktors zu verzichten bzw. durch minimale externe Zugabe (<0.0001 Äquivalenten) dessen Konzentrationen in einem geringen Bereich zu halten, was Prozesseinsatzkosten sparen hilft. Im Gegensatz dazu gelingt ohne diese Dosiertechnologie bei Vorlage von Substratmengen pro Reaktionsvolumina von >500 mM die reduktive Aminierung mit dem Ganzzellkatalysator nur, wenn größere Mengen des Cofaktors NAD+ zugesetzt werden. In dessen Abwesenheit verläuft die Konzentration nur unbefriedigend (siehe Vergleichsbeispiel "Synthesebeispiel 1" Anfangssubstratmenge pro Reaktionsvolumina 900 mM - Endumsatz 25%). Erst durch das erfindungsgemäße Verfahren (siehe Synthesebeispiel 2 bis 4) gelingt es somit, auf den externen Zusatz des Cofaktors

35

auch bei der Durchführung der Synthese mit höheren Gesamtumsatzmengen pro Reaktionsvolumina und damit bei prozessökonomisch sinnvollen Bedingungen fast vollständig verzichten zu können.

In einer bevorzugten Ausführungsform wird demnach der teure

Cofaktor nur in solchen Mengen zugegeben, dass eine Konzentration von vorzugsweise <0,00005 Äquivalenten, äußerst bevorzugt <0,00001 Äquivalenten bezogen auf das Substrat eingehalten wird. Ganz besonders bevorzugt ist ein Ausführungsform bei der man keinen Cofaktor extern zur Reaktionsmischung hinzufügt. Hier kann also der Zusatz der Cofaktoren (z.B. NAD(H)) zur Gänze unterbleiben, was so aus dem Stand der Technik in naheliegender Weise nicht herleitbar war.

Der Fachmann ist im Rahmen der ins Auge gefassten Reaktion frei in der Wahl der Gene kodierend für eine Cofaktor-abhängige Aminosäuredehydrogenase und für ein den Cofaktor regenerierendes Enzyms, die durch den Ganzzellkatalysator als Wirtsorganismus exprimiert werden sollen. Er wird sich an Enzymen, die aus dem Stand der Technik bekannt sind,

an Enzymen, die aus dem Stand der Technik bekannt sind, orientieren.

In Bezug auf die Aminosäuredehydrogenase kommen insbesondere Enzyme ausgewählt aus der Gruppe bestehend aus Leucindehydrogenasen (US5854035) und

Phenylalanindehydrogenasen (US5416019) in Frage. Als Aminosäuredehydrogenasen haben sich insbesondere die Leucindehydrogenasen als geeignet erwiesen, wobei die Leucindehydrogenasen aus Bacillus-Stämmen und hier insbesondere aus Bacillus sphaericus, Bacillus cereus (Seq.

30 ID No. 5) und Bacillus stearothermophilus im besonderen Maße geeignet sind.

Als den Cofaktor regenerierendes Enzym können solche ausgewählt aus der Gruppe bestehend aus Formiatdehydrogenasen (EP1295937), Malatdehydrogenasen (PCT/EP/03/08631), Lactatdehydrogenasen,

geeignet.

5

10

15

20

Glucosedehydrogenasen (letztere in A. Bommarius in: Enzyme Catalysis in Organic Synthesis (Hrsg.: K. Drauz, H. Waldmann), Volume III, Wiley-VCH, Weinheim, 2002, Kapitel 15.3) ins Auge gefasst werden. Als ganz besonders bevorzugt hat sich die Verwendung einer Formiatdehydrogenase aus Candida boidinii bzw. daraus resultierender Mutanten (EP1295937; Seq. ID No. 7) unter Einsatz einer Formiathaltigen Komponente als Substrat erwiesen.

In besonderer Weise ist dabei ein Ganzzellkatalysator, der eine Leucindehydrogenase sowie eine Formiatdehydrogenase aus Candida boidinii oder daraus abgeleitete Mutanten enthält,

Je nach eingesetzter Aminosäuredehydrogenase ist das Substratsspektrum, welches durch den Ganzzellkatalysator umgesetzt wird, unterschiedlich. Während die Leucindehydrogenase mehr für lineare und verzweigte aliphatisch substituierte 2-Ketocarbonsäuren in Frage kommt, wird die Phenylalanindehydrogenase bevorzugt auf aromatische substituierte Substrate angewandt. Im Hinblick auf den Einsatz von Leucindehydrogenase im Ganzzellkatalysator können bevorzugt Substrate der allgemeinen Formel (II) mit aliphatischem Rest R

eingesetzt und umgesetzt werden. Insbesondere kommen solche 25 in Frage, die sperrige aliphatische Reste als R aufweisen. Es sind dies vorrangig solche Reste R ausgewählt aus der Gruppe bestehend aus 1-Adamantyl, Neopentyl und tert-Butyl. Daher ist ein Verfahren bevorzugt, bei dem man

15

2-Ketocarbonsäuren oder daraus resultierende Salze einsetzt, die Aminosäuren der allgemeinen Formel (I)

(I)

worin R für Alkyl, insbesondere eine raumerfüllende, verzweigte, ein tertiäres C-Atom aufweisende Alkylgruppe mit 5-10 C-Atomen, beispielsweise tert-Butyl, und substituierte Alkyl steht, liefern.

Prinzipiell ist der Fachmann frei in der Art und Weise, wie er den erfindungsgemäßen Prozess durchführt. Er wird sich dabei an Verfahren, die aus dem Stand der Technik bekannt sind, orientieren. Diese Verfahren können kontinuierlicher oder diskontinuierlicher Natur sein. Vorteilhaft ist die dosierte Zugabe des Substrats nach einem so genannten Fedbatch-Prozess [siehe beispielsweise Synthesebeispiel 2 und 4] oder durch kontinuierliche Zugabe [siehe beispielsweise Synthesebeispiel 3]. Bei beiden Verfahrensvarianten erfolgt die Substratzugabe so, dass die stationäre Konzentration an Substrat unter 500 mM liegt.

Als vorteilhaft hat sich herausgestellt, wenn man die als Substrat eingesetzte 2-Ketocarbonsäure in einer maximalen stationären Konzentration von unter 450 mM und ganz besonders bevorzugt von unter 400 mM während der Reaktion einsetzt.

Beim Fedbatch-Verfahren erfolgt die Zugabe von Substrat, vorzugsweise als Substratlösung, portionsweise nach bestimmten Zeiteinheiten. Die Anzahl der zugegebenen Substratportionen liegt vorzugsweise zwischen 3 und 15, ganz bevorzugt zwischen 5 und 9. Die Konzentration der zugegebenen Substratlösung ist vorzugsweise so hoch einzustellen, dass eine möglichst hohe Gesamteinsatzmenge an

35

Substrat pro Reaktionsvolumen erzielt wird. Beispiele für diese Verfahrensvariante des Fedbacth-Prozesses geben das Synthesebeispiel 2 und 4. Bei der kontinuierlichen Verfahrensvariante erfolgt die Substratzugabe kontinuierlich über einen bestimmten Zeitraum, vorzugsweise mit einer konstanten Dosiergeschwindigkeit, wobei das Substrat vorzugsweise in Form einer Substratlösung zugegeben wird. Ein Beispiel für diese kontinuierliche Verfahrensvariante gibt Synthesebeispiel 3.

Für den Ganzzellkatalysator, enthaltend eine 10 Aminosäuredehydrogenase und ein zur Cofaktorregenerierung befähigtes Enzym, eignen sich sämtliche bekannte Zellen. Als Mikroorganismen sind diesbezüglich Organismen wie z.B. Hefen wie Hansenula polymorpha, Pichia sp., Saccharomyces cerevisiae, Prokaryonten, wie E. coli, Bacillus subtilis 15 oder Eukaryonten, wie Säugerzellen, Insektenzellen oder Pflanzenzellen zu nennen. Die Verfahren zur Klonierung sind dem Fachmann wohlbekannt (Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York). 20 Vorzugsweise sind E. coli-Stämme für diesen Zweck zu benutzen. Ganz besonders bevorzugt sind: E. coli XL1 Blue, NM 522, JM101, JM109, JM105, RR1, DH5 α , TOP 10- , HB101, BL21 codon plus, BL21 (DE3) codon plus, BL21, BL21 (DE3), MM294. Plasmide, mit denen das die erfindungsgemäße Nukleinsäure aufweisende Genkonstrukt vorzugsweise in den Wirtsorganismus kloniert wird, sind dem Fachmann ebenfalls bekannt (s.a. PCT/EP03/07148; s.u.). Als Plasmide bzw. Vektoren kommen im Prinzip alle dem Fachmann für diesen Zweck zur Verfügung stehenden 30 Ausführungsformen in Frage. Derartige Plasmide und Vektoren können z. B. von Studier und Mitarbeiter (Studier, W. F.; Rosenberg A. H.; Dunn J. J.; Dubendroff J. W.; (1990), Use of the T7 RNA polymerase to direct expression of cloned genes, Methods Enzymol. 185, 61-89) oder den Broschüren der

Firmen Novagen, Promega, New England Biolabs, Clontech oder

15

20

30

35

Gibco BRL entnommen werden. Weiter bevorzugte Plasmide und Vektoren können gefunden werden in: Glover, D. M. (1985), DNA cloning: a practical approach, Vol. I-III, IRL Press Ltd., Oxford; Rodriguez, R.L. und Denhardt, D. T (eds) (1988), Vectors: a survey of molecular cloning vectors and their uses, 179-204, Butterworth, Stoneham; Goeddel, D. V. (1990), Systems for heterologous gene expression, Methods Enzymol. 185, 3-7; Sambrook, J.; Fritsch, E. F. und Maniatis, T. (1989), Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York. Plasmide, mit denen die die ins Auge gefassten Nukleinsäuresequenzen aufweisenden Genkonstrukte in ganz bevorzugter Weise in den Wirtsorganismus kloniert werden können, sind oder basieren auf: pUC18/19 (Roche Biochemicals), pKK-177-3H (Roche Biochemicals), pBTac2 (Roche Biochemicals), pKK223-3 (Amersham Pharmacia Biotech), pKK-233-3 (Stratagene) oder pET (Novagen).

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der Ganzzellkatalysator vorzugsweise vor dessen Einsatz so vorbehandelt, dass die Permeabilität der Zellmembran für die Substrate und Produkte gegenüber dem intakten System gesteigert ist. Besonders bevorzugt ist dabei ein Verfahren, bei dem der Ganzzellkatalysator beispielsweise durch Einfrieren und/oder Behandlung mit Toluol vorbehandelt wird. Die Grundzüge des erfindungsgemäßen Verfahrens sind in Schema 2 dargestellt.

Es lassen sich mit dem gegenständlichen Verfahren wie im Stand der Technik für den Einsatz der einzelnen Enzyme auch beschrieben die Substrate in außerordentlich hoher Konzentration einsetzen. Vorteilhaft ist hier der Einsatz der 2-Ketocarbonsäure in einer Konzentration von größer 500 mM. Weiter bevorzugt lässt sich das Substrat in Konzentrationen von größer 800 mM, bevorzugt größer 900 mM und ganz besonders bevorzugt von größer 1000 mM in die Reaktion einsetzen. Bei dieser Ausführungsform ist jedoch

der Zusatz von Cofaktor zur Redaktionsmischung essenziell, um entsprechende Umsatzraten zu erreichen. Will man allerdings trotz geforderter hoher Raumzeitausbeute den Ganzzellkatalysator dergestalt einsetzen, dass kein externer Zusatz oder ein äußerst geringer externer Zusatz von unter 0,0001 Äquivalenten des teuren Cofaktors notwendig wird, so kann der Fachmann dies überraschenderweise mit der erfindungsgemäßen Dosierung des Substrats erreichen.

Bei der gegenständlichen Reaktion geht man bevorzugt so vor, dass man den Ganzzellkatalysator und den Ammoniumionen-Donor in Wasser vorlegt. Als Ammoniumionen-Donor kann jede dem Fachmann für diesen Zweck in Frage kommende Verbindung eingesetzt werden. Insbesondere sind dies Verbindungen ausgewählt aus der Gruppe bestehend aus typischen Ammoniumsalzen. Ganz besonders bevorzugt kommt Ammoniumformiat zum Einsatz, wenn eine Formiatdehydrogenase als Cofaktor-Regenerierungssystem gewählt wird. Die Reaktion lässt sich an folgendem Schema 2 sehr anschaulich darstellen.

20

10

1.5

Schema 2. Reaktionsprinzip des erfindungsgemäßen Ganzzellkatalysatorverfahren (am Beispiel einer NAD+-abhängigen Aminosäuredehydrogenase und einer Formiatdehydrogenase zur Cofaktorregenerierung)

Dosierte Zugabe des Substrats

Werden statt der Leucindehydrogenase andere Dehydrogenasen eingesetzt, so können die Bedingungen unter denen das betreffende Enzym optimal funktioniert dem Stand der Technik

10

15

20

25

30

entnommen werden. Im Hinblick auf den Einsatz einer Phenylalanindehydrogenase wird auf die US5416019 und Galkin et al. (Appl. Environ. Microbiol. 1997, 63, 4651) verwiesen.

Auf der Seite der Cofaktor-regenerierenden Enzyme und die einzustellenden Bedingungen kann auf die EP1295937 (Formiatdehydrogenase), PCT/EP/03/08631 (Malatdehydrogenase) und auf Enzyme Catalysis in Organic Synthesis (Hrsg.: K. Drauz, H. Waldmann), Volume III, Wiley-VCH, Weinheim, 2002 (Glucosedehydrogenase) und dort zitierte Literatur verwiesen werden.

Die Aufarbeitung der Reaktionsmischung erfolgt nach dem Fachmann bekannten Verfahren. Im Batch-Prozess kann die Biomasse durch Filtration oder Zentrifugation leicht vom Produkt abgetrennt werden. Die erhaltene Aminosäure kann dann nach gängigen Verfahren isoliert werden (Ionenaustauschchromatografie, Kristallisation).

Das gegenständliche Verfahren kann jedoch auch kontinuierlich durchgeführt werden. Dazu wird die Reaktion in einem so genannten Enzym-Membran-Reaktor durchgeführt, in dem hochmolekulare Stoffe – die Biomasse – hinter einer Ultrafiltrationmembran zurückgehalten werden und niedermolekulare Stoffe – wie die produzierten Aminosäuren – die Membran passieren können. Eine derartige Verfahrensweise wurde im Stand der Technik schon mehrfach beschrieben (Wandrey et al. in Jahrbuch 1998, Verfahrenstechnik und Chemieingenieurwesen, VDI, S. 151ff; Kragl et al., Angew. Chem. 1996, 6, 684).

Das hier vorgestellte Verfahren zur Herstellung von insbesondere sperrigen Aminosäuren kann auf Grund seiner Vorteile sehr gut im kommerziellen Maßstab etabliert werden. Die überraschende Tatsache, dass der bei der ins Auge gefassten Reaktion notwendige Zusatz eines Cofaktors im erfindungsgemäßen Verfahren unterbleiben kann, sowie die Vorteile aus der leichten Handhabbarkeit der

Ganzzellkatalysatoren machen die nicht naheliegende Überlegenheit der vorliegenden Erfindung gegenüber den Verfahren des Standes der Technik aus.

Des weiteren kann als Überraschung gelten, dass der Einfluss unerwünschter stoffwechselphysiologischer Funktionen bei Einsatz des Ganzzellkatalysators keine Rolle spielt. Beides hilft in außerordentlich umfassender Art und Weise die Prozesskosten zur Herstellung der L- α -Aminosäuren zu senken.

15

20

25

30

5

Überraschend ist weiterhin, dass trotz Permeabilisierung der Zellwand und der damit verbundenen Möglichkeit eines Austretens des in den Zellen befindlichen Cofaktors eine zu erwartende negative Beeinträchtigung der Reaktion, beispielsweise durch Verminderung des Umsatzes, nicht beobachtet wird.

Unter optisch angereicherten (enantiomerenangereicherten, enantiomer angereicherten, enantiomerenreinen) Verbindungen wird im Rahmen der Erfindung das Vorliegen einer optischen Antipode im Gemisch mit der anderen in >50 mol-% verstanden.

Unter einem Ganzzellkatalysator wird ein Mikroorganismus verstanden, der klonierte Gene enthält, die für Enzyme kodieren, welche mindestens zwei konsekutive Transformationsschritte für eine organisch-chemische Verbindung katalysieren können. Diesbezüglich und im Hinblick auf die allgemeinen Herstellungsverfahren (Abstimmung der Enzymexpression im Hinblick auf die Umsetzungsraten) wird auf die EP1216304 verwiesen.

Unter Alkyl wird erfindungsgemäß ein (C_1-C_{18}) -Alkyl-Rest verstanden. Dieser umfasst lineare und beliebig verzweigte derartige Reste. Insbesondere sind mitumfasst Methyl-, Ethyl-, 1-Propyl-, 2-Propyl-, 1-n-Butyl-, 2-n-Butyl, 1- oder 2- Isobutyl, 1- oder 2- sec-Butyl-, tert-Butyl-, etc. Die Reste können einfach oder mehrfach mit (C_1-C_8) -

15

Heteroalkylresten oder Resten wie OH, SH, Hal, NH_2 substituiert sein. Unter Heteroalkylresten wird insbesondere verstanden ein wie oben dargestellter Alkyl-Rest mit ein bis acht C-Atomen, der Heteroatome wie O, S, N in seiner Kette enthält, oder über diese Heteroatome an das ins Auge gefasste Molekül gebunden ist.

Unter externer Zusatz an Cofaktor ist gemeint, dass diese Menge an Cofaktor künstlich zur Reaktionsmischung hinzugegeben wird. Sie ist additiv zu der Menge an Cofaktor zu sehen, die schon inhärent durch den Ganzzellkatalysator in Reaktionsmischung eingetragen wird.

Es versteht sich von selbst, dass die zur Reaktion eingesetzte 2-Ketocarbonsäure in der Reaktionsmischung in dissoziierter Form vorliegt. Diese Form kann erhalten werden entweder durch Einsatz der Ketocarbonsäure und einstellen eines entsprechenden pH-Wertes oder durch Zugabe der Salze der Ketocarbonsäuren. Beide Formen sind sinngemäß und erfindungsgemäß hier mitumfasst.

Der Terminus Gesamtsubstratkonzentration steht für die 20 Gesamteinsatzmenge an Substrat pro Reaktionsvolumen. Abbildungen:

5

15

20

Abb. 1 - pAM3.25 (Seq. ID No. 9):

Konstruktion von pJOE4580.2

Das Plasmid pJOE4580.2 entstand aus dem publizierten Plasmid pJOE3075 (T.Stumpp, B.Wilms und J. Altenbuchner (2000) Biospektrum 1/2000: 33-36) indem das malE Gen durch Schneiden mit den Restriktionsendonuclease Ndel/HindIII entfernt wurde und durch zwei Oligonucleotide ersetzt wurden, die die NdeI und HindIII Schnittstellen wieder komplementierten und dazu noch eine NheI, AatII und PstI Schnittstelle trugen. In die NheI Schnittstelle wurde nach Auffüllen mit Klenow Polymerase und dNTPs ein Smal Fragment eingefügt aus dem Plasmid pJOE773 (J. Altenbuchner, P. Viell, I. Pelletier (1992) Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216: 457-466.), das das lacZalpha Gen aus E. coli trägt. E. coli JM109 mit diesem Plasmid zeigt auf LB-platten mit X-Gal und IPTG blaue Kolonnien. Dieses Plasmid wurde pJOE4580.2 genannt. In dieses wurde die FDH-Sequenz (Seq. ID No. 7) kloniert. Es wurde pAM3.25 genannt.

Abb. 2 - pAM5.22

Konstruktion von pJOE4580.2

Das Plasmid pJOE4580.2 entstand aus dem publizierten Plasmid pJOE3075 (T.Stumpp, B.Wilms und J. Altenbuchner (2000)
Biospektrum 1/2000: 33-36) indem das malE Gen durch Schneiden mit den Restriktionsendonuclease NdeI/HindIII entfernt wurde und durch zwei Oligonucleotide ersetzt wurden, die die NdeI und HindIII Schnittstellen wieder komplementierten und dazu noch eine NheI, AatII und PstI Schnittstelle trugen. In die NheI Schnittstelle wurde nach Auffüllen mit Klenow Polymerase und dNTPs ein SmaI Fragment

eingefügt aus dem Plasmid pJOE773 (J. Altenbuchner, P. Viell, I. Pelletier (1992) Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216: 457-466.), das das lacZalpha Gen aus E. coli trägt. E. coli JM109 mit diesem Plasmid zeigt auf LB-platten mit X-Gal und IPTG blaue Kolonnien. Dieses Plasmid wurde pJOE4580.2 genannt. In dieses wurde die LeuDH-Sequenz (Seq. ID No 5) insertiert. Das neue Plasmid heißt pAM5.22.

10 Abb. 3 - pAM8.21

Konstruktion von pHWG640.12 (Seq. ID No. 11)

Das Plasmid pHWG640.12 ist bisher nicht publiziert, so dass die Konstruktion nachfolgend beschrieben wird. Die Konstruktion dieses Plasmids pHWG640.12 erfolgt ausgehend vom publizierten Plasmid pAW229 in leicht nachvollziehbarer 15 Weise. Das Plasmid pAW229 ist ein pACYC184 Derivat mit Rhamnosepromotor. Ausgehend von pAW229 (B. Wilms, A. Wiese, C. Syldatk, R. Mattes, J. Altenbuchner (2001) J. Biotechnol 86:19-30) wurde das hyuC-Gen mit NdeI/HindIII aus dem Plasmid ausgeschnitten und durch ein PCR Fragment ersetzt, 20 das mit den gleichen Restriktionsenzymen geschnitten war und das das sfcA Gen (malic enzyme) von E. coli K12 enthält. Das so entstandene Plasmid wurde als pHWG640.12 bezeichnet. In dieses wurde die LeuDH-Sequenz insertiert. Das neue Plasmid heißt pAM8.21. 25

Abb. 4 - pAM10.1 (Seq. ID No. 10)

Im Plasmid pAM8.21 wurde das scfA-Gen (Seq. ID No 11) deletiert. Das neue Plasmid heißt pAM10.1

Abb. 5

5

Biokatalysators mit Darstellung des Verlaufs der spezifischen Aktivität an Leucindehydrogenase (LeuDH) und Formiatdehydrogenase (FDH) sowie der optischen Dichte in Abhängigkeit von der Induktionszeit; Zur Beschriebung der Fermentationsbedingungen im Detail, siehe Experimenteller Teil.

Experimentelle Beispiele

Herstellung des Ganzzellkatalysators

Genamplifikation und Klonierung

Zur Klonierung der Formiatdehydrogenase (FDH, fdh3 aus Candida boidinii, Mutante mit geringerer Oxidationsempfindlichkeit) und Leucindehydrogenase (LeuDH aus Bacillus cereus) für die Ganzzellkatalyse der Umsetzung von Trimethylpyruvat zu tert-Leucin mit Cofaktorregenerierung wurden die Gene beider Enzyme zunächst mit PCR aus chromosomaler DNA der oben genannten Stämme amplifiziert. Die verwendeten Oligonukleotide sind in Tabelle 1 aufgelistet, die Zusammensetzung der PCR-Ansätze in Tabelle 2 und das PCR-Programm in Tabelle 3.

Tabelle 1: Oligonucleotide für die Genamplifikation von FDH und LeuDH

Oligo- nucleotid	Sequenz 5' - 3'		Seq.
s3713	AAA AAA <u>CTT AAG</u> AAG GAG ATA TAC ATA TGA CAT TAG AAA TCT TCG AA	LeuDH forward	1
s3714	AAA AAA <u>CTG CAG</u> TTA GCG ACG GCT AAT AAT AT	LeuDH reverse	2
s3723	AAA AAA <u>CAT ATG</u> AAG ATT GTC TTA GTT CTT	FDH forward	3
s3716	AAA AAA <u>GAC GTC</u> TTA TTT CTT ATC GTG TTT ACC	FDH reverse	4

Mit den Oligonucleotiden wurden den Genen Schnittstellen für Restriktionsendonukleasen angehängt. Diese sind für s3713 -

BfrI, für s3714 - PstI, für s3723 - NdeI und s3716 - AatII (siehe unterstrichene Bereiche).

Tabelle 2: PCR-Ansätze, Polymerase, Puffer und MgCl₂ stammen von der Firma Biomaster, die DNA-Ausgangskonzentration der Plasmid-DNA betrug 50µg/ml

Komponente	für FDH	Ansatz für FDH	für LeuDH	Ansatz für LeuDH
Plasmid-DNA aus Stamm FDH- C235/C262A		2µl	Plasmid- DNA pLeu2	2µl
10x Puffer		10µl		10µl
50mM MgCl2		3µl		3µl
100% DMSO		10µl		10µl
10mM dNTPs		2µ1		2µ1
33mM Oligo 1	s3723	1µ1	s3713	1µl
33mM Oligo2	s3716	1µl	s3714	1µl
Taq-Polymerase		1µl		1μl
VE H2O		70µl		70µl

20

Tabelle 3: PCR-Programm: die Schritte 2 bis 4 wurden 30mal wiederholt

Schritt	T, t für FDH- Amplifikation	T, t für LeuDH- Amplifikation
1. Denaturierung der DNA	94°C, 5min	94°C, 5min
2. Oligo-Annealing	50°C, 1min	51°C, 1min
3. DNA-Elongation	72°C, 1:30min	72°C, 1:30min
4. Denaturierung der dsDNA	92°C, 1min	92°C, 1min
5. DNA-Elongation	72°C, 7min	72°C, 7min

Nach der Genamplifikation wurden die PCR-Fragmente mit den "DNA PCR and Gelband Purification Kit" der Firma GFX aufgereinigt und in die L-Rhamnose-induzierbaren Vektoren pJOE4580.2 (pBR322-Derivat; Abb. 1) bzw. pHWG640.12 (pACYC184-Derivat; Abb. 3; Seq. ID No. 11) mit Hilfe der unten genannten Restriktionsendonucleasen ligiert.

Restriktionsansätze wurden im allgemeinen mit circa 50µg/ml DNA im 10µl Standardansatz gemacht. Zugegeben wurde weiterhin 1µl des ersten Enzyms sowie 1µl des 10x konzentrierten Enzympuffers. Die Ansätze wurden mit VE H2O auf das Endvolumen eingestellt. Die zu inserierende DNA wurde getrennt von der Plasmid-DNA mit den Restriktionsenzymen inkubiert. Nach der Restriktion mit dem ersten Enzym erfolgte ein Fällungsschritt, in dem die DNA mit Isopropanol gefällt und mit Ethanol gewaschen, getrocknet und in 8µl TE 10.01 aufgenommen wurde. Zu diesen Ansätzen wurde jeweils 1µl des zweiten Enzyms und 1µl des zweiten 10x Enzympuffers gegeben und diese Ansätze erneut 1,5h bei 37°C inkubiert. Bei der Herstellung des Vektors

pAM10.1 aus pAM8.21 folgte zudem eine Behandling mit Klenow-Polymerase. Dann wurde die DNA durch ein 1%iges Agarose-Gel (Seakem-Agarose mit 0,4µg/ml Ethidiumbromid) in ihre Fragmente aufgetrennt und die richtigen Banden mit einem Skalpell für die Weiterverwendung ausgeschnitten. Die DNA wurde aus den Gelblöckchen mit dem "EASY PURE Gel Purification Kit" der Firma Biozym nach Anleitung eluiert und in 15µl TE 10.01 aufgenommen.

Für die Ligation von Vektor und Insert wurden die Ansätze so gewählt, dass die Insert-DNA etwa die doppelte Konzentration des Zielvektors erreichte. Auch hier betrug die DNA-Konzentration circa 50 µg/ml. Endvolumen für die Ligationsansätze war 10µl, die neben dem Vektor-Insert-Gemisch auch 1µl Ligase und 1µl 10x konzentrierten Ligasepuffer (beides von ROCHE) enthielten. Die Inkubation erfolgte über Nacht bei 4°C. Die Ligationsansätze wurden in E. coli K12 JM109 transformiert, auf LB-Agar mit Antbiotika (100µg/ml Ampicillin (pAM3.25 [Seq. ID No. 9], pAM5.22) oder 25µg/ml Chloramphenicol (pAM8.21, pAM10.1 [Seq. ID No. 10]) selektiert und Klone nach Plasmidisolierung auf das zu erwartende Plasmid kontrolliert.

Da zu Anfang LeuDH (Seq. ID No. 6) mit Malic Enzyme (Seq. ID No. 12) gekoppelt werden sollte, wurde das LeuDH Gen zuerst in pJOE4625.1 inseriert, das bereits das Gen für Malic Enzyme (sfcA) enthielt (Abb. 2). Anschliessend wurde das LeuDH Gen in pHGW640.12 (Abb. 3) inseriert, einem pACYC184 Derivat, ebenfalls mit Rhamnosepromotor und sfcA Gen, das dann deletiert wurde. Die Umklonierung des LeuDH-Gens vom Plasmid pAM5.22 (Abb. 2) auf das Zielplasmid pAM10.1 (Abb. 4) war notwendig zur Erstellung eines Zweiplasmidsystems, dass zur Selektion zwei Resistenzmarker benötigt.

20

Tabelle 4: Klonierungsergebnisse

Gen/ Vektor	kloniert in Plasmid	Restriktion mit	neue Bezeichnung	Abb.
PCR-Fragment FDH	рЈОЕ4580.2	NdeI, AatII	рАМ3.25	1
PCR-Fragment LeuDH	рЈОЕ4625.1	BfrI, PstI	pAM5.22	2
LeuDH aus pAM5.22	рНWG640.12	BfrI, BamHI	pAM8.21	3
pAM8.21	Ohne scfA- Gen	MunI, PstI	pAM10.1	4

Fermentation des Ganzzellkatalysators

Nachdem die Kombination FDH/LeuDH (E. coli JM109/pAM3.25/pAM10.1) bei Versuchen im Miniaturmaßstab (1ml) im Thermoschüttler durch HPLC-Analyse die besseren Umsatzergebnisse von Trimethylpyruvat zu tert-Leucin als ein Vergleichsmodellsystem (Malic Enzyme/LeuDH auf pAM5.22) erreichte, wurden die Plasmide pAM3.25 und pAM10.1 in E. coli BW3110 transformiert, da dieser für Fermentationen geeigneter ist. Durch die Hochzelldichtefermentation sollte eine genügend große Biomasse für alle folgenden Untersuchungen mit dem Modellsystem hergestellt werden. Die Fermentation erfolgte ohne Antibiotikum, die Vorkulturen wurden mit Antibiotikum angezogen, in einem 301-Fermentor mit 81 Endvolumen bei 30°C. Die Zellen wurden dazu zunächst als Batchkultur bei 30°C angezogen bis zu einer OD600=50 und einem vollständigen Verbrauch der Glucose (ca. 22h). dann erfolgte die Genexpressionsinduktion durch Zugabe von sterilfiltrierter Rhamnose mit einer Endkonzentration von 0,2% sowie der Start als Fedbatchkultur durch automatische

Zugabe von Nährlösung und Mineralien (Feed I und Feed II). Ab der Induktion wurden alle zwei Stunden Proben genommen, von denen die OD und die Enzymaktivitäten mit den jeweiligen Aktivitätstests bestimmt wurden. In der Abbildung 5 sind der Verlauf der OD sowie der Aktivitäten bis zum Fermentationsabbruch gegen die Zeit aufgetragen.

Die Fermentation wurde 22h nach der Rhamnoseinduktion abgebrochen, da die Aktivität der FDH trotz zunehmender Zelldichte stagniert war und die Ursache dafür vermutlich ein Plasmidverlust oder zu saures Reaktionsmilieu war. Letzteres machte sich bemerkbar bei den Ganzzellumsetzungen, bei denen der pH-Wert im Vergleich zu einer vorher pH-regulierten Lösung bei Zugabe der Biofeuchtmasse deutlich absank (ApHmax=0,8). Die Aktivitäten der beiden Enzyme erreichten 0,565U/mg Gesamtprotein für die LeuDH und 0,123U/mg Gesamtprotein für die FDH. Die Volumenaktivitäten bezogen auf das Fermentationsmedium ergaben für die LeuDH 32,77U/ml und 7,14U/ml für die FDH. Die Zellausbeute nach dem Entfernen des Mediums in einem Separator ergab 1,4kg Biofeuchtmasse. Die Zellen wurden bei -20°C bis zum Einsatz als Ganzzellkatalysator zwischengelagert.

Fermentationsmedien

Vorkultur:

2x200ml

25 Vorkulturmedium:

cNa2SO4x10H2O=2g/1

c(NH4)2SO4=2,675g/1

CNH4C1=0,5g/1

CK2HPO4=14,625g/1

cNaH2PO4x2H2O=3,6g/1

Autoklavieren in 90vol% H20

15

2.0

cGlucose=10g/l Endkonzentration

(Stocklösung, in H2O)

Getrennt autoklavieren

1M MgSO4-Lösung 2ml/l

5 TES 3m1/1

15

20

25

Thiamin-Stammlösung (10g/l in H2O) 1ml/l

Batchkultur: Inokulum (380ml mit Cx=12g/l) mit Glucose, MgSO4, TES und Thiamin in einem Animpfkolben zum autoklavierten Batchmedium zugeben

Batchmedium (Einwaage für 81):

 Na2SO4x10H2O
 16g

 (NH4)2SO4
 21,4g

 NH4C1
 4g

 K2HPO4
 117g

 NaH2PO4x2H2O
 28,8g

 (NH4)2H-Citrat
 8g

in 7.51 H2O lösen und im 301-Fermenter

sterilisieren

Glucose-Monohydrat 220g

in 500ml H2O lösen und autoklavieren (25g/1)

1M MgSO4-Lösung16mlTES24mlThiamin-Lösung (10g/1)8ml

(Thiamin sterilfitrieren, Rest autoklavieren)

pH-Wert 7,2 mit H3PO4 und NH3

Fedbatch-Feed:

	I.	Glucose-Monohydrat	2750g in 3,51 H2O
		autoklavieren	
30		$MgSO_4x7H2O$	98,5g in 0,151 H2O
		autoklavieren	
		TES-Lösung	0,51

autoklavieren

Thiamin

2,5g in 0,051 H2O

sterilfiltrieren

anschließend vereinigen in einem Zulaufkolben

II. (NH4)2HPO4 5

396g in 11 H2O, pH7

autoklavieren

Feed I und II werden mittels zwei getrennten Pumpen zugegeben

pH-Wert: 7.2 (titriert mit H3PO4 und NH3)

15

20

 pO_2 : ca. 50kPa (reguliert durch Rührerdrehzahl)

Spurenelemente-Lösung	(TES):	CaCl2x2H2O	0,5g
		ZnSO4x7H2O	0,18g
		MnSO4xH2O	0,1g
		Di-Na-EDTA	20,1g
		FeC13x6H2O	16,7g
		CuSO4x5H2O	0,16g
		CoCl2x6H2O	0,18g
		н20 ad 11	

Herstellung von L-tert-Leucin mit einem Ganzzellkatalysator bei 900 mM ohne Dosierung (Vergleichsbeispiel = Synthesebeispiel 1)

Es werden zu 5.85 g des Biokatalysators (Biomasse E. coli JM105(pAM 3.25_10.1)) und 7.95 g Ammoniumformiat (2.8 mol-Äquivalente) 50 mL einer 0.9 M

Trimethylbrenztraubensäurelösung (pH 7.0, eingestellt mit 32%-igem Ammoniak), die zugleich 1 mM Magnesiumchlorid und 1%(v/v) Toluol enthält, gegeben. Der pH-Wert wird zu Beginn der Reaktion auf pH7.0 nachgestellt und danach nicht weiter reguliert, so dass der pH-Wert während der Reaktion ansteigt. Die Reaktionstemperatur beträgt 30 °C. Nach 8 h Reaktionszeit wird ein Umsatz von 24.6% gemessen, der auch nach weiteren 15 h Rühren nicht mehr gesteigert werden kann.

15

20

25

30

5

10

Herstellung von L-tert-Leucin mit einem Ganzzellkatalysator bei ca. 0,9 M mit Fedbatch-Dosierung (Synthesebeispiel 2)

Es werden zunächst in einem 250L-Dreihalskolben 23,84 g Ammoniumformiat (entsprechend 2.8 Äquivalenten bezogen auf die gesamte eingesetzte Substratmenge) und 17.55 g des Biokatalysators (Biomasse E. coli JM105(pAM 3.25_10.1) eingewogen und dazu 28.50 mL VE-Wasser sowie 150 µL einer 1M Magnesiumchloridlösung (entsprechend einer 1 mM Konzentration bezogen auf das Endvolumen) hinzugefügt. Bei Erreichen der Reaktionstemperatur von 30 °C wird durch Zugabe von 7,50 mL einer 1.8 M Trimethylbrenztraubensäurelösung (pH 7.0, eingestellt mit 32%-igem Ammoniak) die Reaktion gestartet. Der pH-Wert wird anschließend durch Zugabe von 32%-igem Ammoniak auf pH 7.0 gestellt. Anschließend werden nach in definierten Zeitabständen zunächst zweimal jeweils 7.50 mL einer 1.8 M Trimethylbrenztraubensäurelösung (pH 7.0, eingestellt mit 32%-igem Ammoniak), sowie anschließend fünfmal unterschiedliche Volumina einer 1.8 M

Trimethylbrenztraubensäurelösung (pH 7.0, eingestellt mit 32%-igem Ammoniak) zudosiert. Die Zeitabstände sowie die jeweils zudosierten Mengen sind in nachfolgender Dosiertabelle angegeben. Das Endvolumen beträgt 150 mL und die Gesamtkonzentration an eingesetztem Substrat beträgt 0.86 M, entsprechend einer volumetrischen Menge an Trimethylbrenztraubensäure von 112.5 g/L. Nach 24 h Reaktionszeit wird ein vollständiger Umsatz (>98% gemäß HPLC) beobachtet.

10

Dosiertabelle	Substratlsg.	Substratlsg.
Zeit (h)	ml (1,8M)	ml (0,9M)
0	7,5	0
0,5	7,5	0
1	7,5	0
2,5	0	15
4	0	17,5
5,5	0	20
6,5	0	22,5
7	0	24
Gesamtvolumen an zudosierter	22,5	99
Substratlösung	24,5	

10

15

20

25

30

Herstellung von L-tert-Leucin mit einem Ganzzellkatalysator bei 1 M mit kontinuierlicher Dosierung (Synthesebeispiel 3)

Es werden zunächst in einem 250L-Dreihalskolben 26.48 g Ammoniumformiat (entsprechend 2.8 Äquivalenten bezogen auf die gesamte eingesetzte Substratmenge), 150 μ L einer 1M Magnesiumchloridlösung (entsprechend einer 1 mM Konzentration bezogen auf das Endvolumen) und 19.49 g des Biokatalysators (Biomasse E. coli JM105(pAM 3.25_10.1) eingewogen und dazu 30 mL VE-Wasser hinzugefügt. Der pH-Wert wird anschließend durch Zugabe von 32%-igem Ammoniak auf pH 7.0 gestellt. Bei Erreichen der Reaktionstemperatur von 30 °C gibt man kontinuierlich mit einem Flow von 0.2 mL/min über einen Zeitraum von 10 Stunden insgesamt 120 mL einer 1.25 M Trimethylbrenztraubensäurelösung (pH 7.0, eingestellt mit 32%-igem Ammoniak) zu. Das Endvolumen beträgt 150 mL und die Gesamtkonzentration an eingesetztem Substrat beträgt 1.0 M, entsprechend einer volumetrischen Menge an Trimethylbrenztraubensäure von 130.1 g/L. Nach 27 h Reaktionszeit wird ein Umsatz von 96% (gemäß HPLC) beobachtet.

Herstellung von L-tert-Leucin mit einem Ganzzellkatalysator bei 700 mM mit Fedbatch-Dosierung

In ein konisch geformtes 100ml Reaktionsgefäß eines STAT
Titrino 718 werden zuerst 2,55g Natriumformiat (entspricht
2,5mol/1 bezüglich Endvolumen) gegeben, 15ul einer 1M MgCl2Lösung (entspricht 1mM Endkonzentration) zugesetzt und 4,5ml
einer 1M TMP-Lösung (pH7 mit 25%igem Ammoniak eingestellt)
sowie 1,5vol% Toluol (bezüglich Endvolumen) zugegeben. Das
Volumen wird mit VE H2O auf 15ml aufgefüllt. Die
Reaktionstemperatur von 30°C wird durch einen
Wasserkreislauf stabil gehalten und kontrolliert. Vom
Biokatalysator wurde 1g Biofeuchtmasse im Substratgemisch

10

resuspendiert und der pH-Wert mit 25%igem Ammoniak auf pH6,9 bis pH7 eingestellt.

Nach Erreichen von pH7,5 werden wiederholt 4,5ml der 1M TMP-Lösung (pH7) zugegeben. Der pH-Wert sinkt dabei um ca. $\Delta pH=0,3$. Sobald pH7,5 erreicht wird, erfolgt erneut die Zugabe von 4,5ml 1M TMP-Lösung. Die Zugabe von TMP im genannten Volumen wird 10x wiederholt bis der pH-Wert sich bei der Zugabe von TMP nicht mehr nach unten verändert. Bei der achten Zugabe von TMP erfolgt außerdem die Zugabe von 4ml 4M Natrium-Formiatlösung (entspricht ohne Berücksichtigung eines Umsatzes einer Konzentration von 973mM im Medium). Das Endvolumen beträgt 64ml mit einer volumetrischen Endkonzentration (ohne Berücksichtigung des Umsatzes) von Trimethylbrenztraubensäure von 774mM (100,6g/l). Natriumformiat liegt mit einer Endkonzentration 15 von 836mM in der Lösung vor. Nach bereits 6h konnte durch HPLC ein Umsatz von Trimethylbrenztraubensäure von 92% beobachtet werden.

In der folgenden Tabelle 5 sind die Konzentrationen beider Substrate zu den verschiedenen Zugabepunkten aufgelistet.

Zeitpunkt [t in min]	Konzentration Trimethylbrenz- traubensäure [mM]	Konzentration Natriumformiat [mM]	zweite Natriumformiat -zugabe
0	300	2500	,
45	461,54	1923,08	
60	562,5	1562,5	
75	631,58	1315,79	
90	681,82	1136,36	
105	720	1000	
120	750	892,86	
135	774,19	806,45	
150	736,36	972,73	x
180	756,30	899,16	
210	773,44	835,94	

Patentansprüche:

- Verfahren zur Herstellung von 1. enantiomerenangereicherten L-lpha-Aminosäuren oder deren Salzen durch Umsetzen der entsprechenden 2-Ketocarbonsäure mit einem Ammoniumionen-Donor in 5 Gegenwart eines Ganzzellkatalysators aufweisend ein kloniertes Gen kodierend für eine Cofaktor-abhängige Aminosäuredehydrogenase und ein kloniertes Gen kodierend für ein den Cofaktor regenerierendes Enzym bei einer Gesamteinsatzmenge an Substrat pro 10 Reaktionsvolumen von ≥ 500 mM, wobei die Zugabe des Substrats so dosiert wird, dass die stationäre Konzentration an 2-Ketocarbonsäure unter 500 mM liegt und die externe Zugabe an Cofaktor bezogen auf die Gesamteinsatzmenge an Substrat < 0,0001 Äquivalenten 15 entspricht.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man keinen Cofaktor zur Reaktionsmischung zusetzt.
- 20 3. Verfahren nach Anspruch 1 und/oder 2,
 dadurch gekennzeichnet, dass
 man solche 2-Ketocarbonsäuren einsetzt, die Aminosäuren
 der allgemeinen Formel (I)

(I)

25

worin R für Alkyl, insbesondere eine raumerfüllende, verzweigte, ein tertiäres C-Atom aufweisende Alkylgruppe mit 5-10 C-Atomen, beispielsweise tert-Butyl, und substituierte Alkyl steht, liefern.

30 4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass die Zudosierung des Substrats nach einem Fedbatch-Verfahren erfolgt.

- 5. Verfahren nach einem oder mehreren der vorhergehenden
 5 Ansprüche,
 dadurch gekennzeichnet, dass
 man die 2-Ketocarbonsäure in einer maximalen
 stationären Konzentration von unter 450 mM, ganz
 bevorzugt von unter 400 mM hält.
- One of the substrat und Produkte gegenüber dem intakten System gesteigert ist.

 Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass
 man den Ganzzellkatalysator vor dessen Einsatz so
 vorbehandelt, dass die Permeabilität der Zellmembran
 für die Substrat und Produkte gegenüber dem intakten

Zusammenfassung:

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von insbesondere enantiomerenangereicherten L- α -Aminosäuren, insbesondere solche der allgemeinen Formel (I).

$$R CO_2H$$
 NH_2

(I)

Abb. 1

Abb. 2

Abb. 3

Abb. 4

Abb. 5

SEQUENCE LISTING <110> Degussa AG <120> Verfahren zur Herstellung von optisch aktiven Aminosäuren mittels 5 eines Ganzzellkatalysators <130> 040055 AM <160> 12 10 <170> PatentIn version 3.1 <210> 1 <211> 47 15 <212> DNA <213> Artificial <220> <223> Primer <400> 1 47 aaaaaactta agaaggagat atacatatga cattagaaat cttcgaa 25 <210> 2 <211> 32 <212> DNA <213> Artificial 30 <220> <223> Primer <400> 2 32 aaaaaactgc agttagcgac ggctaataat at 35 <210> 3 <211> 30 <212> DNA <213> Artificial <220> <223> Primer 45 30 aaaaaacata tgaagattgt cttagttctt <210> 50 4 32 <211> <212> DNA <213> Artificial <220> 55 <223> Primer <400> 4 32 aaaaaagacg tcttatttct tatcgtgttt ac

5	<210 <211 <212 <213	> 1 > D	120 NA	lus ·	cere	ıs												
10	<220 <221 <222 <223	> C	DS 20).	.(11	20)													
15	<400 ttaa)> 5 Igaag	ga g	atat	acat	atg Met 1	aca Thr	tta Leu	gaa Glu	atc Ile 5	ttc Phe	gaa Glu	tac Tyr	tta Leu	gaa Glu 10	aaa Lys		52
0	tat Tyr	gat Asp	Tyr	gag Glu 15	caa Gln	gta Val	gta Val	ttt Phe	tgt Cys 20	caa Gln	gat Asp	aaa Lys	gaa Glu	tct Ser 25	ggt Gly	tta Leu	1	L00
	aaa Lys	gca Ala	att Ile 30	att Ile	gca Ala	att Ile	cat His	gat Asp 35	aca Thr	aca Thr	ctt Leu	gga Gly	ccg Pro 40	gct Ala	ctt Leu	ggt. Gly	1	L48 ,
25	gga Gly	aca Thr 45	aga Arg	atg Met	tgg Trp	aca Thr	tat Tyr 50	gat Asp	tct Ser	gaa Glu	gaa Glu	gcg Ala 55	gcg Ala	att Ile	gaa Glu	gat Asp	:	196
30	gca Ala 60	ttg Leu	cgt Arg	ctt Leu	gca Ala	aaa Lys 65	GJÀ ããã	atg Met	aca Thr	tac Tyr	aaa Lys 70	aac Asn	gca Ala	gca Ala	gct Ala	ggt Gly 75	:	244
35	tta Leu	aac Asn	tta Leu	ggt Gly	ggt Gly 80	gcg Ala	aaa Lys	aca Thr	gta Val	att Ile 85	atc Ile	ggt Gly	gat Asp	cct Pro	cgt Arg 90	aaa Lys	:	292 ,
o	gat Asp	aag Lys	agc Ser	gaa Glu 95	gca Ala	atg Met	ttc Phe	cgt Arg	gca Ala 100	cta Leu	gga Gly	cgt Arg	tat Tyr	atc Ile 105	caa Gln	gga Gly		340
	cta Leu	aac Asn	gga Gly 110	Arg	tac Tyr	att Ile	aca Thr	gct Ala 115	gaa Glu	gat Asp	gtt Val	ggt Gly	aca Thr 120	aca Thr	gta Val	gat [`] Asp		388
45	gat Asp	atg Met 125	Asp	att Ile	atc Ile	cat His	gaa Glu 130	GLu	act Thr	gac Asp	ttt Phe	gta Val 135	aca Thr	ggt Gly	atc Ile	tca Ser		436
50	cca Pro	Ser	ttc Phe	ggt Gly	tct Ser	tct Ser 145	ggt Gly	aac Asn	cca Pro	tct Ser	ccg Pro 150	vaı	act Thr	gca Ala	tac Tyr	ggt Gly 155		484
55	gtt Val	tac Tyr	cgt Arg	ggt Gly	atg Met 160	Lys	gca Ala	gct Ala	gca Ala	aaa Lys 165	GIU	gct Ala	ttc Phe	ggt Gly	act Thr 170	ASD		532
	aat Asr	tta Leu	ı gaa ı Glu	gga Gly	ı aaa ⁄ Lys	gta Val	att Ile	gct Ala	gtt Val	caa Gln	ggc Gly	gtt Val	ggt Gly	aac Asn	gta Val	gca Ala		580

				175					180					185				
5	tat Tyr	cac His	cta Leu 190	tgc Cys	aaa Lys	cat His	tta Leu	cac His 195	gct Ala	gaa Glu	gga Gly	gca Ala	aaa Lys 200	tta Leu	att Ile	gtt Val		628
	Thr	gat Asp 205	att Ile	aat Asn	aaa Lys	gaa Glu	gct Ala 210	gta Val	caa Gln	cgt Arg	gct Ala	gta Val 215	gaa Glu	gaa Glu	ttc Phe	ggt Gly		676
10	gca Ala 220	tca Ser	gca Ala	gtt Val	gaa Glu	cca Pro 225	aat Asn	gaa Glu	att Ile	tac Tyr	ggt Gly 230	gtt Val	gaa Glu	tgc Cys	gat Asp	att Ile 235		724
15	tac Tyr	gca Ala	cca Pro	tgt Cys	gca Ala 240	cta Leu	Gly ggc	gca Ala	aca Thr	gtt Val 245	aat Asn	gat Asp	gaa Glu	act Thr	att Ile 250	cca Pro	1	772
0	caa Gln	ctt Leu	aaa Lys	gca Ala 255	aaa Lys	gta Val	atc Ile	gca Ala	ggt Gly 260	tct Ser	gcg Ala	aat Asn	aac Asn	caa Gln 265	tta Leu	aaa Lys		820
25	gaa Glu	gat Asp	cgt Arg 270	cat His	ggt Gly	gac Asp	atc Ile	att Ile 275	cat His	gaa Glu	atg Met	ggt Gly	att Ile 280	gta Val	tac Tyr	gca Ala		868
	cca Pro	gat Asp 285	Tyr	gta Val	att Ile	aat Asn	gca Ala 290	ggt Gly	ggc	gta Val	att Ile	aac Asn 295	gta Val	gca Ala	gac Asp	gaa Glu		916
30	tta Leu 300	tat Tyr	gga Gly	tac Tyr	aat Asn	aga Arg 305	gaa Glu	cgt Arg	gca Ala	cta Leu	aaa Lys 310	Arg	gtt Val	gag Glu	tct Ser	att Ile 315		96 <u>4</u>
35	tat Tyr	gac Asp	acg Thr	att Ile	gca Ala 320	aaa Lys	gta Val	atc Ile	gaa Glu	att Ile 325	Ser	aaa Lys	cgc Arg	gat Asp	ggc 330	TTE		1012
	gca Ala	act Thr	tat Tyr	gta Val 335	Ala	gca Ala	gat Asp	cgt Arg	cta Leu 340	Ala	. gaa . Glu	gag Glu	cgc Arg	att Ile 345	Ала	. agc . Ser		1060
45	ttg Leu	aag Lys	aat Asn 350	Ser	. cgt Arg	agc Ser	act Thr	tac Tyr 355	Leu	. cgc . Arg	aac Asr	ggt Gly	cac His	Asp	att Ile	att Ile		1108
	_	_	g Arc	taa 1	L				٠									1120
50																		
55	<21 <21	.0> .1> .2> .3>	366 PRT	illus	s cei	reus												
	<40	00>	6															

	Met 1	Thr	Leu	Glu	Ile 5	Phe	Glu	Tyr	Leu	Glu 10	Lys	Tyr	Asp	Tyr	Glu 15	Gln
5	Val	Val	Phe	Сув 20	Gln	Ąsp	Lys	Glu	Ser 25	Gly	Leu	Lys	Ala	Ile 30	Ile	Ala
10	Ile	His	Asp 35	Thr	Thr	Leu	Gly	Pro 40	Ala	Leu	Gly	Gly	Thr 45	Arg	Met	Trp
15	Thr	Tyr 50	Asp	Ser	Glu	Glu	Ala 55	Ala	Ile	Glu	Asp	Ala 60	Leu	Arg	Leu	Ala
	Lys 65	Gly	Met	Thr	Tyr	Lys 70	Asn	Ala	Ala	Ala	Gly 75	Leu	Asn	Leu	Gly	Gly 80
0	Ala	Lys	Thr	Val	Ile 85	Ile	Gly	Asp	Pro	Arg 90	Lys	Asp	Lys	Ser	Glu 95	Ala
25	Met	Phe	Arg	Ala 100	Leu	Gly	Arg	Tyr	Ile 105	Gln	Gly	Leu	Asn	Gly 110	Arg	Tyr
30	Ile	Thr	Ala 115	Glu	Asp	Val	Gly	Thr 120	Thr	Val	Asp	Asp	Met 125	Asp	Ile	Ile
35	His	Glu 130		Thr	Asp	Phe	Val 135	Thr	Gly	Ile	Ser	Pro 140	Ser	Phe	Gly	Ser
	Ser 145		Asn	Pro	Ser	Pro 150		Thr	Ala	Tyr	Gly 155	Val	Tyr	Arg	Gly	Met 160
b	Lys	s Alā	ı Ala	ı Ala	. Lys 165	Glu	. Ala	. Phe	Gly	Thr 170	Asp	Asn	. Leu	Glu	Gly 175	Lys
45	Va.]	L Ile	e Ala	a Val 180		. Gly	val	. Gly	Asn 185	ı Val	. Ala	ı Tyr	His	Leu 190	Cys	Lys
50	His	s Le	195		ı Glu	Gly	y Ala	ъуs 200	Leu)	ı Ile	e Val	L Thr	Asp 205	ıle	. Asr	. Lys
55	Glı	u Ala 21		l Glr	ı Arç	, Ala	a Val 215	L Glu	ı Glı	ı Phe	e Gl	7 Ala 220	a Ser)	Ala	. Val	. Glu
55	Pro		n Gl	u Ile	э Туг	Gl ₂		l Glı	і Суя	a Asj	o Ile 23!	е Тул 5	r Ala	a Pro	Cys	8 Ala 240

	Leu	Gly	Ala	Thr	Val 245	Asn	Asp	Glu	Thr	Ile 250	Pro	Gln	Leu	Lys	Ala 255	Lys	
5	Val.	Ile	Ala	Gly 260	Ser	Ala	Asn	Asn	Gln 265	Leu	Lys	Glu	Asp	Arg 270	His	Gly	•
10	Asp	Ile	Ile 275	His	Glu	Met	Gly	Ile 280	Val	Tyr	Ala	Pro	Asp 285	Tyr	Val	Ile	
15	Asn	Ala 290	Gly	Gly	Val	Ile	Asn 295	Val	Ala	Asp	Glu	Leu 300	Tyr	Gly	Tyr	Asn	
0	Arg 305	Glu	ı Arg	Ala	Leu	Lys 310	Arg	Val	Glu	Ser	Ile 315	Tyr	Asp	Thr	Ile	Ala 320	
	Lys	Val	lle	Glu	Ile 325		Lys	Arg	Asp	Gly 330	Ile	Ala	Thr	Tyr	Val 335	Ala	
25	Ala	. Ası	o Arg	ј Leu 340		Glu	Glu	Arg	Ile 345	Ala	Ser	Leu	Lys	Asn 350	Ser	Arg	
30	Ser	Th	т Туг 355		Arg	Asn	Gly	His 360	Asp	Ile	Ile	Ser	Arg 365	Arg			
35	<21 <21 <21 <21	.1> .2>	7 1095 DNA Cand	5 dida	boid	linii											
0	<22 <22	20> 21> 22> 23>	CDS (1)	(10)95)												
45	- 4-	00> g aa t Ly		t gto e Va	c tta 1 Le: 5	a gtt ı Val	ctt L Lei	tat ı Tyr	gat As <u>r</u>	gct Ala 10	ggt Gly	aag / Lys	cac His	gct Ala	gct Ala 15	gat Asp	48
50	ga Gl	a ga u Gl	a aa u Ly	a tt s Le 20	и Ту	t ggt r Gly	t tal 7 Se:	act	t gaa r Glu 25	a aat ı Ası	aaa 1 Lys	a tta s Lev	ı ggt	att 7 Ile 30	gct Ala	aat Asn	96
55	tg Tr	g tt p Le	a aa eu Ly 35	s As	t ca p Gl:	a gg [†] n Gl	t car y Hi:	t gaa s Gl [.] 40	a cta u Le	a ati	t act	t act r Thi	tct Sei 45	gat As <u>r</u>	aaa Dire	a gaa s Glu	144
	gg Gl	t ga y Gl 50	lu Th	a ag ır Se	t ga r Gl	a tt u Le	g ga u As 55	t aa p Ly	a cat s Hi	t at s Il	c cca e Pr	a gat o As <u>r</u> 60	gct Ala	z gat a Asp	att p Ile	t atc e Ile	192

_	atc Ile 65	acc Thr	act Thr	cct Pro	ttc Phe	cat His 70	cct Pro	gct Ala	tat Tyr	atc Ile	act Thr 75	aag Lys	gaa Glu	aga Arg	ctt Leu	gac Asp 80	2	240
5	aag Lys	gct Ala	aag Lys	aac Asn	tta Leu 85	aaa Lys	tta Leu	gtc Val	gtt Val	gtc Val 90	gct Ala	ggt Gly	gtt Val	ggt Gly	tct Ser 95	gat Asp	2	288
10	cac His	att Ile	gat Asp	tta Leu 100	gat Asp	tat Tyr	att Ile	aat Asn	caa Gln 105	aca Thr	ggt Gly	aag Lys	aaa Lys	atc Ile 110	tca Ser	gtc Val	:	336
15	ctg Leu	gaa Glu	gtt Val 115	aca Thr	ggt Gly	tct Ser	aat Asn	gtt Val 120	gtc Val	tct Ser	gtt Val	gct Ala	gaa Glu 125	cac His	gtt Val	gtc Val	•	384
0	atg Met	acc Thr 130	atg Met	ctt Leu	gtc Val	ttg Leu	gtt Val 135	aga Arg	aat Asn	ttc Phe	gtt Val	cca Pro 140	gca Ala	cat His	gaa Glu	caa Gln		432
	att Ile 145	att Ile	aac Asn	cac His	gat Asp	tgg Trp 150	gag Glu	gtt Val	gct Ala	gct Ala	atc Ile 155	gct Ala	aag Lys	gat Asp	gct Ala	tac Tyr 160		480
25	gat Asp	atc Ile	gaa Glu	ggt Gly	aaa Lys 165	act Thr	atc Ile	gct Ala	acc Thr	att Ile 170	GТУ	gct Ala	ggt Gly	aga Arg	att Ile 175	ggt Gly		528 .
30	tac Tyr	aga Arg	gtc Val	ttg Leu 180	Glu	aga Arg	tta Leu	ctc Leu	cca Pro 185	Phe	aat Asn	cca Pro	aaa Lys	gaa Glu 190	ьeu	tta Leu		576
35	tac Tyr	tac Tyr	gat Asp 195	Tyr	caa Gln	gct Ala	tta Leu	cca Pro 200	Lys	gaa Glu	gct Ala	gaa Glu	gaa Glu 205	. TAS	gtt Val	ggt Gly		624
	gct Ala	aga Arg 210	Arg	gtt Val	gaa Glu	aat Asn	att Ile 215	: Glu	gaa Glu	tta Leu	gtt Val	gct Ala 220	. Gin	gct Ala	gat Asp	atc Ile		672
	gtt Val 225	Thr	gtt Val	aat Asn	gct Ala	cca Pro 230	Leu	cac His	gca Ala	. ggt . Gly	aca Thr 235	. r.As	ggt Gly	tta Leu	att Ile	aat Asn 240		720
45	aag Lys	gaa Glu	ı tta ı Lev	ı tta ı Leu	tct Ser 245	: Гув	ttt Phe	: aaa e Lys	aaa Lys	ggt Gl ₃ 250	7 Ala	tgg Trp	g tta Lev	ı gto ı Val	aat Asn 255	acc Thr		768
50	gca Ala	aga Arg	ı ggt g Gly	gct Ala 260	ı Ile	gct Ala	gtt Val	t gct L Ala	gaa Glu 265	ı Ası	z gti o Val	gca l Ala	a gca a Ala	a gct a Ala 270	тес	a gaa 1 Glu		816
55	tct Sei	ggt Gly	c caa / Glr 275	ı Lev	a aga ı Arç	a ggt g Glz	tao Tyi	ggt Gly 280	i GT2	gat As	t gti o Val	t tgg l Trp	y tto Phe 285	3 PTC	a caa o Glr	a cca n Pro		864

	gct Ala	cca Pro 290	aag Lys	gat Asp	cac His	cca Pro	tgg Trp 295	aga Arg	gat Asp	atg Met	aga Arg	aat Asn 300	aaa Lys	tat Tyr	ggt Gly	gct Ala		912 ,
5	ggt Gly 305	aat Asn	gcc Ala	atg Met	act Thr	cct Pro 310	cac His	tac Tyr	tct Ser	ggt Gly	act Thr 315	act Thr	tta Leu	gac Asp	gct Ala	caa Gln 320		960
10	aca Thr	aga Arg	tac Tyr	gct Ala	gaa Glu 325	ggt Gly	act Thr	aaa Lys	aat Asn	att Ile 330	ttg Leu	gaa Glu	tca Ser	ttc Phe	ttt Phe 335	acc Thr	-	1008
15	ggt Gly	aaa Lys	ttt Phe	gat Asp 340	tac Tyr	aga Arg	cca Pro	caa Gln	gat Asp 345	att Ile	atc Ile	tta Leu	tta Leu	aat Asn 350	ggt Gly	gaa Glu	:	1056
0	tac Tyr	gtt Val	act Thr 355	aaa Lys	gct Ala	tac Tyr	ggt Gly	aaa Lys 360	cac His	gat Asp	aag Lys	aaa Lys	taa				:	1095
25	<210 <210 <210 <210	1> : 2> :	8 364 PRT Cand:	ida l	ooid:	inii												1
	<40	0>	8															
30	Met 1	Lys	Ile	Val	Leu 5	Val	Leu	Tyr	Asp	Ala 10	Gly	Lys	His	Ala	Ala 15	Asp		
35	Glu	Glu	Lys	Leu 20	Tyr	Gly	Ser •	Thr	Glu 25	Asn	Lys	Leu	Gly	Ile 30	Ala	Asn		
	Trp	Leu	Lys 35	Asp	Gln	Gly	His	Glu 40	Leu	Ile	Thr	Thr	Ser 45	Asp	Lys	Glu		1
0	Gly	Glu 50	Thr	Ser	Glu	Leu	Asp 55	Lys	His	Ile	Pro	Asp 60	Ala	Asp	Ile	Ile		
45	Ile 65	Thr	Thr	Pro	Phe	His 70	Pro	Ala	Tyr	Ile	Thr 75	Lys	Glu	Arg	Leu	Asp 80		
50	Lys	Ala	. Lys	Asn	Leu 85	Lys	Leu	Val	Val	Val 90	Ala	. Gly	Val	Gly	Ser 95	Asp		,
55	His	: Ile	. Asp	Leu 100		Tyr	Ile	Asn	Gln 105		Gly	. Tàs	Lys	Ile 110	Ser	Val		
	Lev	ı Glu	val 115		Gly	ser	· Asn	Val 120		Ser	Val	. Ala	Glu 125	. His	Val	Val	٠	

	Met	130	мес	Беп	val	ьеu	135	ALG	ADII	riic	Val	140		1110	O.L.	0.111
5	Ile 145	Ile	Asn	His	Asp	Trp 150	Glu	Val	Ala	Ala	Ile 155	Ala	Lys	Asp	Ala	Tyr 160
10	Asp	Ile	Glu	Gly	Lys 165	Thr	Ile	Ala	Thr	Ile 170	Gly	Ala	Gly	Arg	Ile 175	Gly
15	Tyr	Arg	Val	Leu 180	Glu	Arg	Leu	Leu	Pro 185	Phe	Asn	Pro	Lys	Glu 190	Leu	Leu
ł o	Tyr	Tyr	Asp 195	Tyr	Gln	Ala	Leu	Pro 200	Lys	Glu	Ala	Glu	Glu 205	Lys	Val	Gly
	Ala	Arg 210	Arg	Val	Glu	Asn	Ile 215	Glu	Glu	Leu	Val	Ala 220	Gln	Ala	Asp	Ile
25	Val 225	Thr	Val	Asn	Ala	Pro 230	Leu	His	Ala	Gly	Thr 235	Lys	Gly	Leu	Ile	Asn 240
30	Lys	Glu	Leu	Leu	Ser 245	Lys	Phe	Lys	Lys	Gly 250	Ala	Trp	Leu	Val	Asn 255	Thr
35	Ala	Arg	Gly	Ala 260	Ile	Ala	Val	Ala	Glu 265	Asp	Val	Ala	Ala	Ala 270	Leu	Glu
0		Gly	275					280					285			
	Ala	Pro 290	Lys	Asp	His	Pro	Trp 295	Arg	Asp	Met	Arg	Asn 300	Lys	Tyr	Gly	Ala
45	Gly 305		Ala	Met	Thr	Pro 310		Tyr	Ser	Gly	Thr 315	Thr	Leu	Asp	Ala	Gln 320
50	Thr	Arg	Tyr	Ala	Glu 325	Gly	Thr	Lys	Asn	Ile 330	Leu	Glu	Ser	Phe	Phe 335	Thr
55	Gly	· Lys	Phe	340		Arg	Pro	Gln	Asp 345	Ile	Ile	Leu	Leu	Asn 350	Gly	Glu
	Туг	Val	Thr		Ala	Tyr	Gly	Lys 360	His	Asp	Lys	Lys				

5	<210><211><211><212><213>	9 5686 DNA Arti:	Eicial					
1.0	<220> <223>	Plası	mid pAM3.25					
10	<400> tatgaag	9 gatt 9	gtcttagttc	tttatgatgc	tggtaagcac	gctgctgatg	aagaaaaatt	60
	atatgg	ttct a	actgaaaata	aattaggtat	tgctaattgg	ttaaaagatc	aaggtcatga	120
15	actaat	tact a	acttctgata	aagaaggtga	aacaagtgaa	ttggataaac	atatcccaga	180
	tgctga	tatt	atcatcacca	ctcctttcca	tcctgcttat	atcactaagg	aaagacttga	240
b	caaggc	taag	aacttaaaat	tagtcgttgt	cgctggtgtt	ggttctgatc	acattgattt	300
	agatta	tatt	aatcaaacag	gtaagaaaat	ctcagtcctg	gaagttacag	gttctaatgt	360
	tgtctc	tgtt	gctgaacacg	ttgtcatgac	catgcttgtc	ttggttagaa	atttcgttcc	420
25	agcaca	tgaa	caaattatta	accacgattg	ggaggttgct	gctatcgcta	aggatgctta	480
	cgatat	.cgaa	ggtaaaacta	tegetaceat	tggtgctggt	agaattggtt	acagagtctt	540
30						tacgattatc		600
						aatattgaag		660
						ggtacaaaag		720
35						gtcaataccg		780
						ggtcaattaa		840
							atatgagaaa	900
, o							tagacgctca	960
							gtaaatttga	1020
45							cttacggtaa	1080
							agattttcag	1140
ΕO							tgcctggcgg	1200
50							gccgtagcgc	1260
							caaataaaac	1320
55							gtgaacgctc	1380
								144(
	tcctg	agtag	gacaaatccg	ccgggagcgg	accegaacgi	, tytydagtad	cggcccggag	

		ggtggcgggc	aggacgccg	ccataaactg	ccaggcatca	aattaagcag	aaggccatcc	1500
		tgacggatgg						1560
		aatatgtatc						1620
		aagagtatga						1680
		cttcctgttt						1740
	10	ggtgcacgag						1800
								1860
		cgccccgaag						1920
,	15	ttatcccgtg						
		gacttggttg						1980
	0	gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	2040
		acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	2100
		cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	2160
	25	acgatgcctg	tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	2220
		ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	2280
		ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	2340
	30	gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	2400
		atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	2460
	35						tatactttag	2520
							ttttgataat	2580
							ccccgtagaa	2640
	0						cttgcaaaca	2700
							aactctttt	2760
	1 E						. agtgtagccg	2820
	45						tctgctaatc	2880
								2940
	50						ggactcaaga	3000
							cacacageee	
							atgagaaagc	3060
	55						ggtcggaaca	3120
		ggagagcgca	cgagggagct	tccaggggg	a aacgcctggt	atctttatag	g teetgteggg	3180
		tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	g geggageeta	3240

		tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	3300
	-	cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	cgcctttgag	3360
	5	tgagctgata	ccgctcgccg	cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	3420
		gcggaagagc	gcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	3480
	10	atatatggtg	cactctcagt	acaatctgct	ctgatgccgc	atagttaagc	cagtatacac	3540
		tccgctatcg	ctacgtgact	gggtcatggc	tgcgccccga	cacccgccaa	cacccgctga	3600
	1 F	cgcgccctga	cgggcttgtc	tgctcccggc	atccgcttac	agacaagctg	tgaccgtctc	3660
	15	cgggagctgc	atgtgtcaga	ggttttcacc	gtcatcaccg	aaacgcgcga	ggcagctgcg.	3720
	. .	gtaaagctca	tcagcgtggt	cgtgaagcga	ttcacagatg	tetgeetgtt	catccgcgtc	3780
	0	cagctcgttg	agtttctcca	gaagcgttaa	tgtctggctt	ctgataaagc	gggccatgtt	3840
		aagggcggtt	ttttcctgtt	tggtcacttg	atgcctccgt	gtaaggggga	atttctgttc	3900
	0.5	atgggggtaa	tgataccgat	gaaacgagag	aggatgctca	cgatacgggt	tactgatgat	3960
	25	gaacatgccc	ggttactgga	acgttgtgag	ggtaaacaac	tggcggtatg	gatgcggcgg	4020
		gaccagagaa	aaatcactca	gggtcaatgc	cagcgcttcg	ttaatacaga	tgtaggtgtt	4080
	30	ccacagggta	gccagcagca	tcctgcgatg	cagatccgga	acataatggt	gcagggcgct	4140
		gacttccgcg	tttccagact	ttacgaaaca	cggaaaccga	agaccattca	tgttgttgct	4200
	2.5	caggtcgcag	acgttttgca	gcagcagtcg	cttcacgttc	gctcgcgtat	cggtgattca	4260
•	35	ttctgctaac	cagtaaggca	accccgccag	cctagccggg	tcctcaacga	caggagcacg	4320
		atcatgcgca	cccgtggcca	ggacccaacg	ctgcccgaga	tgcgccgcgt	geggetgetg	4380
	£ 0	gagatggcgg	acgcgatgga	tatgttctgc	caagggttgg	tttgcgcatt	cacagttctc	4440
		cgcaagaatt	gattggctcc	aattcttgga	gtggtgaatc	cgttagcgag	gtgccgccgg	4500
	45	cttccattca	ggtcgaggtg	geceggetee	atgcaccgcg	acgcaacgcg	gggaggcaga	4560
	45	caaggtatag	ggeggegeet	acaatccatg	ccaacccgtt	. ccatgtgctc	gccgaggcgg	4620
		cataaatcgc	cgtgacgato	agcggtccag	tgatcgaagt	. taggctggta	agagccgcga	4680
	50	gcgatccttg	aagctgtccc	: tgatggtcgt	catctacctg	cctggacago	atggcctgca	4740
		acgcgggcat	cccgatgccg	ccggaagcga	gaagaatcat	aatggggaag	gccatccage	4800
		ctcgcgtcgc	gaacgccagc	: aagacgtagc	ccagcgcgtc	ggccgccatg	ccggcgataa	4860
	55	tggcctgctt	. ctcgccgaaa	cgtttggtgg	g cgggaccagt	: gacgaaggct	. tgagcgaggg	4920
		cgtgcaagat	tccgaatacc	gcaagcgaca	ggccgatcat	: cgtcgcgctc	: cagcgaaagc	4980

	ggtcctcgcc gaaaatgacc cag	gagegetg ceggeacetg	tcctacgagt	tgcatgataa	5040
	agaagacagt cataagtgcg gcg	gacgatag tcatgccccg	cgcccaccgg	aaggagctga	5100
5	ctgggttgaa ggctctcaag ggc	categgte gaegetetee	cttatgcgac	tcctgcatta	5160
	ggaagcagcc cagtagtagg ttg	gaggccgt tgagcaccgc	cgccgcaagg	aatggtgcat	5220
1.0	gctcgatggc tacgagggca ga	cagtaagt ggatttacca	taatccctta	attgtacgca	5280
10	ccgctaaaac gcgttcagcg cga	atcacggc agcagacagg	taaaaatggc	aacaaaccac	5340
	cctaaaaact gcgcgatcgc gc	ctgataaa ttttaaccgt	atgaatacct	atgcaaccag	5400
15	agggtacagg ccacattacc cc	cacttaat ccactgaagc	tgccattttt	catggtttca	5460
	ccatcccagc gaagggccat gc	atgcatcg aaattaatac	gacgaaatta	atacgactca	5520
	ctatagggca attgcgatca cc	acaattca gcaaattgtg	aacatcatca	cgttcatctt	5580
	tccctggttg ccaatggccc at	tttcctgt cagtaacgag	aaggtcgcga	attcaggcgc	5640
	tttttagact ggtcgtaatg aa	caattctt aagaaggaga	tataca		5686
25	<210> 10 <211> 5106 <212> DNA <213> Artificial				
30	<220> <223> Plasmid pAM10.1				
35	<400> 10 gaaggagata tacatatgac at	tagaaatc ttcgaatact	tagaaaaata	tgattatgag	60
	caagtagtat tttgtcaaga ta	aagaatct ggtttaaaag	caattattgc	aattcatgat	120
	acaacacttg gaccggctct tg	gtggaaca agaatgtgga	catatgattc	tgaagaagcg	180
	gcgattgaag atgcattgcg to	ttgcaaaa gggatgacat	acaaaaacgc	agcagctggt	240
	ttaaacttag gtggtgcgaa aa	cagtaatt atcggtgatc	ctcgtaaaga	taagagcgaa	300
45	gcaatgttcc gtgcactagg ac	gttatatc caaggactaa	. acggacgtta	cattacagct	360
	gaagatgttg gtacaacagt ag	atgatatg gatattatcc	atgaagaaac	tgactttgta	420
F.0	acaggtatct caccatcatt cg	gttcttct ggtaacccat	ctccggtaac	tgcatacggt	480
50	gtttaccgtg gtatgaaagc ag	getgeaaaa gaagettteg	gtactgacaa	tttagaagga	540
	aaagtaattg ctgttcaagg cg	sttggtaac gtagcatato	acctatgcaa	acatttacac	600
55	gctgaaggag caaaattaat tg	sttacagat attaataaag	aagctgtaca	acgtgctgta	660
	gaagaattcg gtgcatcagc ag	rttgaacca aatgaaattt	acggtgttga	atgcgatatt	720
	tacgcaccat gtgcactagg cg	gcaacagtt aatgatgaaa	ctattccaca	acttaaagca	780

		aaagtaatcg	caggttctgc	gaataaccaa	ttaaaagaag	atcgtcatgg	tgacatcatt	840
	5	catgaaatgg	gtattgtata	cgcaccagat	tatgtaatta	atgcaggtgg	cgtaattaac	900
	J	gtagcagacg	aattatatgg	atacaataga	gaacgtgcac	taaaacgtgt	tgagtctatt	960
		tatgacacga	ttgcaaaagt	aatcgaaatt	tcaaaacgcg	atggcatagc	aacttatgta	1020
	10	gcggcagatc	gtctagctga	agagcgcatt	gcaagcttga	agaattctcg	tagcacttac	1080
		ttacgcaacg	gtcacgatat	tattagccgt	cgctaacgcg	tttgcggttg	gcaaaatggc	1140
	15	gcagcagcaa	ggcgtggcgg	tgaaaacctc	tgccgaagcc	ctgcaacagg	ccattgacga	1200
	7.0	taatttctgg	caagccgaat	accgcgacta	ccgccgtacc	tccatctaaa	agcttatcga	1260
_		tgataagctg	tcaaacatga	gaattacaac	ttatatcgta	tggggctgac	ttcaggtgct	1320
	b	acatttgaag	agataaattg	cactgaaatc	tagaaatatt	ttatctgatt	aataagatga	1380
		tcttcttgag	atcgttttgg	tctgcgcgta	atctcttgct	ctgaaaacga	aaaaaccgcc	1440
	25	ttgcagggcg	gtttttcgaa	ggttctctga	gctaccaact	ctttgaaccg	aggtaactgg	1500
	4.J	cttggaggag	cgcagtcacc	aaaacttgtc	ctttcagttt	agccttaacc	ggcgcatgac	1560
		ttcaagacta	actcctctaa	atcaattacc	agtggctgct	gccagtggtg	cttttgcatg	1620
	30	tctttccggg	ttggactcaa	gacgatagtt	accggataag	gcgcagcggt	cggactgaac	1680
		ggggggttcg	tgcatacagt	ccagcttgga	gcgaactgcc	tacccggaac	tgagtgtcag	1740
	35	gcgtggaatg	agacaaacgc	ggccataaca	gcggaatgac	accggtaaac	cgaaaggcag	1800
	55	gaacaggaga	gcgcacgagg	gageegeeag	gggaaacgcc	tggtatcttt	atagtcctgt	1860
		cgggtttcgc	caccactgat	ttgagcgtca	gatttcgtga	tgcttgtcag	gggggcggag	1920
	Ь	cctatggaaa	aacggctttg	ccgcggccct	ctcacttccc	tgttaagtat	cttcctggca	1980
		tcttccagga	aatctccgcc	ccgttcgtaa	gccatttccg	ctcgccgcag	tcgaacgacc	2040
	45	gagcgtagcg	agtcagtgag	cgaggaagcg	gaatatatcc	tgtatcacat	attctgctga	2100
	4 .0	cgcaccggtg	cagccttttt	tctcctgcca	catgaagcac	ttcactgaca	ccctcatcag	2160
		tgccaacata	gtaagccagt	atacactccg	ctagcgctga	tgtccggcgg	tgcttttgcc	2220
	50	gttacgcacc	accccgtcag	tagctgaaca	ggagggacag	ctgatagaaa	cagaagccac	2280
		tggagcacct	caaaaacacc	atcatacact	aaatcagtaa	gttggcagca	tcacccgacg	2340
	55	cactttgcgc	cgaataaata	cctgtgacgg	aagatcactt	cgcagaataa	ataaatcctg	2400
	J J	gtgtccctgt	tgataccggg	aagccctggg	ccaacttttg	gcgaaaatga	gacgttgatc	2460
		ggcacgtaag	aggttccaac	tttcaccata	atgaaataag	atcactaccg	ggcgtatttt	2520

5

10

15

25

30

35

ttgagttatc gagattttca ggagctaagg aagctaaaat ggagaaaaaa atcactggat 2580 ataccaccgt tgatatatcc caatggcatc gtaaagaaca ttttgaggca tttcagtcag 2640 ttgctcaatg tacctataac cagaccgttc agctggatat tacggccttt ttaaagaccg 2700 taaagaaaaa taagcacaag ttttatccgg cctttattca cattcttgcc cgcctgatga 2760 atgctcatcc ggaattccgt atggcaatga aagacggtga gctggtgata tgggatagtg 2820 ttcacccttg ttacaccgtt ttccatgagc aaactgaaac gttttcatcg ctctggagtg 2880 aataccacga cgatttccgg cagtttctac acatatattc gcaagatgtg gcgtgttacg 2940 gtgaaaacct ggcctatttc cctaaagggt ttattgagaa tatgtttttc gtctcagcca 3000 atccctgggt gagtttcacc agttttgatt taaacgtggc caatatggac aacttcttcg 3060 ccccgtttt caccatgggc aaatattata cgcaaggcga caaggtgctg atgccgctgg 3120 cgattcaggt tcatcatgcc gtctgtgatg gcttccatgt cggcagaatg cttaatgaat 3180 tacaacagta ctgcgatgag tggcagggcg gggcgtaatt tttttaaggc agttattggt 3240 gcccttaaac gcctggtgct acgcctgaat aagtgataat aagcggatga atggcagaaa 3300 ttcgaaagca aattcgaccc ggtcgtcggt tcagggcagg gtcgttaaat agccgcttat 3360 gtctattgct ggtttaccgg tttattgact accggaagca gtgtgaccgt gtgcttctca 3420 aatgeetgag geeagtttge teaggetete eeegtggagg taataattga egatatgate 3480 atttattctg cctcccagag cctgataaaa acggttagcg cttcgttaat acagatgtag 3540 gtgttccaca gggtagccag cagcatcctg cgatgcagat ccggaacata atggtgcagg 3600 gcgcttgttt cggcgtgggt atggtggcag gccccgtggc cgggggactg ttgggcgctg 3660 ccggcacctg tcctacgagt tgcatgataa agaagacagt cataagtgcg gcgacgatag 3720 tcatgccccg cgcccaccgg aaggagctac cggacagcgg tgcggactgt tgtaactcag 3780 aataagaaat gaggccgctc atggcgttga ctctcagtca tagtatcgtg gtatcaccgg 3840 ttggttccac tctctgttgc gggcaacttc agcagcacgt aggggacttc cgcgtttcca 3900 45 gactttacga aacacggaaa ccgaagacca ttcatgttgt tgctcaggtc gcagacgttt 3960 tgcagcagca gtcgcttcac gttcgctcgc gtatcggtga ttcattctgc taaccagtaa 4020 ggcaaccccg ccagcctagc cgggtcctca acgacaggag cacgatcatg cgcacccgtg 4080 50 gccaggaccc aacgctgccc gagatgcgcc gcgtgcggct gctggagatg gcggacgcga 4140 tggatatgtt ctgccaaggg ttggtttgcg cattcacagt tctccgcaag aattgattgg 4200 55 ctccaattct tggagtggtg aatccgttag cgaggtgccg ccggcttcca ttcaggtcga 4260 ggtggcccgg ctccatgcac cgcgacgcaa cgcggggagg cagacaaggt atagggcggc 4320

	gcctacaatc catgccaacc cgttccatgt gctcgccgag gcggcataaa tcgccgtgac	4380
5	gatcagcggt ccagtgatcg aagttaggct ggtaagagcc gcgagcgatc cttgaagctg	4440
J	tocctgatgg togtcatcta cotgootgga cageatggco tgcaacgegg gcatcccgat	4500
	gccgccggaa gcgagaagaa tcataatggg gaaggccatc cagcctcgcg tcgcgaacgc	4560
10	cagcaagacg tagcccageg cgtcggccgc catgccggcg ataatggcct gcttctcgcc	4620
	gaaacgtttg gtggcgggac cagtgacgaa ggcttgagcg agggcgtgca agattccgaa	4680
15	taccgcaagc gacaggccga tcatcgtcgc gctccagcga aagcggtcct cgccgaaaat	4740
13	gacccagage getgeeggea cetgteetae gagttgeatg ataaagaaga cagtcataag	4800
	tgcggcgacg atagtcatgc cccgcgccca ccggaaggag ctgactgggt tgaaggctct	4860
	caagggcatc ggtcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag	4920
	taggttgagg ccgttgagca ccgccgccgc aaggaatggt gcatgcatcg atcaccacaa	4980
25	ttcagcaaat tgtgaacatc atcacgttca tctttccctg gttgccaatg gcccattttc	5040
25	ctgtcagtaa cgagaaggtc gcgaattcag gcgcttttta gactggtcgt aatgaacaat	5100
	tcttaa	5106
30	<210> 11 <211> 5597 <212> DNA <213> Unknown	
35	<220> <223> Plasmid	
0	<220> <221> CDS <222> (25)(1749) <223> scfA - malic enzyme gene	
45	<pre><400> 11 aattcttaag aaggagatat acat atg gat att caa aaa aga gtg agt gac</pre>	51
50	atg gaa cca aaa aca aaa cag cgt tcg ctt tat atc cct tac gct Met Glu Pro Lys Thr Lys Lys Gln Arg Ser Leu Tyr Ile Pro Tyr Ala 10 20 25	99
55	ggc cct gta ctg ctg gaa ttt ccg ttg ttg aat aaa ggc agt gcc ttc Gly Pro Val Leu Glu Phe Pro Leu Leu Asn Lys Gly Ser Ala Phe 30 35 40	147

	agc Ser	ato Met	g ga : Gl	Lu (gaa 31u 45	cgc Arg	cgt Arg	aac Asn	tt Ph	ıe <i>E</i>	aac Asn 50	ctg Leu	ct L€	g g	31y 399	tta Leu	. Сі . Ц. 5.	· ·	ccg Pro	ga Gl	a u	1	.95
5	gtg Val	gto Va:	c ga 1 G:	lu '	acc Thr	atc Ile	gaa Glu	gaa Glu	. ca . G1 65	LII. A	gcg Ala	gaa Glu	. cg . Ai	ga (rg)	gca Ala	tgg Trp 70	, a , I	tc le	cag Gln	ta Ty	r	2	243
10	cag Gln	gg Gl: 75	y P	tc he	aaa Lys	acc Thr	gaa Glu	ato Ile 80	e ga	ac sp	aaa Lys	cac	at s I	1, C	tac Tyr 85	cto Lei	g C	gt	aac Asn	at II	cc Le	;	291
15	cag Gln 90	ga As	са рТ	ct hr	aac Asn	gaa Glu	acc Thr 95	cto	ı t	tc he	tac Tyr	cgt Arg	ىد ر	tg eu 00	gta Val	aa Asi	c a	at Asn	cat His	Сі 1	tt eu 05		339
	gat Asp	ga G1	ıg a .u M	.tg Iet	atg Met	cct Pro 110	Val	at Il	t t e T	at 'yr	acc Thr	eca Pro	J 1	cc hr	gtc Val	G1	c ç	gca Ala	gcc Ala 120		gt ys		387
	gag Glu	ı Ar	gt t cg E	tt he	tct Ser 125	gag Glu	ato . Ile	ta Ty	c c r A	gc Arg	cgt Arg 130	ಎಆ	a c r A	gc gc	ggc Gly	gt Va	-	ttt Phe 135	atc Ile	t S	ct er		435
25	tao Ty:	c G:	ln A	aac Asn 140	cgg Arg	cac His	aat Asi	at n Me	et A	gac Asp 145	gat Asp	at Il	t c e I	ctg Seu	caa Glr	a aa n As 15		gtg Val	cco Pro	ga DA	ac sn		483
30	His	s A 1	sn 55	Ile	Lys	gtg Va:	l II	e Va 16	20 TT,	var	7111	_ Ac	, Q,	3 L Y	16	5	- 3				_		531
35	Le 17	u G O	ly	Asp	Glı	g gg n Gl	y 11 17	e G. 5	гЪ ,	GTĀ	Me	L G.	L.Y	180)			_	_	:	185		579
	Se	r I	eu	Туг	Th:	c gc r Al 19	а С <u>у</u> 0	rs G	тХ	GΤΆ	<u> </u>	1	95	110	, 11	· ,	<i>.</i> 2 —		20	0			627
	۷a	11 T	7al	Lei	20		.L G.	.У .т.	11.1.	ASI	21	.0						21	5				675
45	L₁€	eu S	Гуr	ме [.] 22	t G1 0	c to y Ti	rp A:	rg A	sn	22!	5 5 A1	.y _	10	1.1.1.		2	30		-				723
50	G.	lu	Phe 235	Va	1 A.S	it ga sp G:	Lu P	ne 1	140	G1.	11 A.	La v	<i>u</i> _	2	2	45	- J		_				771
55	V 2	al 50	Leu	L∈	u G.	ag t Ln P	ne G 2	1u 2 55	4sp	P11	e A	ıa (26	0						265		819
	C	tt	aac Asn	. CC	jc ti	yr A	gc a rg A 70	at (.sn (gaa Glu	at Il	t t e C	י פע	cct Ser 275		t a ne A	ac (gat Asp	ga As	c a sp I 2	tt le 80	cag Gln		867

	ggc Gly	act Thr	gcg Ala	ı A.	cg <u>c</u> la 7 85	gta a /al '	aca Thr	gtc Val	ggc Gly	ac Th 29	II. I	ctg Seu	atc Ile	gca Ala	ıg		igc Ser 295	cgc Arg	gc Al	g .a	915
5	gca Ala	ggt Gly	ggt G1 <u>s</u> 30	7 G	ag t ln I	tta Leu	agc Ser	gag Glu	aaa Lys 305	ΤιΣ	ia a 7s I	atc Ile	gtc Val	tto Phe		tt g eu (10	ggc	gca Ala	gg G]	gt Ly	963
10	tca Ser	gcg Ala 315	Gl;	a t y C	λε (āc (ggc Gly	att Ile	gcc Ala 320	gaa Glu	.at i Me	ig a et :	atc Ile	atc Ile	Ser 32!		ag a Iln '	acc Thr	cag Gln	Cg A:	gc rg	1011
15	gaa Glu 330	$G1^{7}$	tt Le	a a u S	.gc Ser	gag Glu	gaa Glu 335	gcg Ala	gcg	g Cg	gg rg	cag Gln	ааа Lys 340	gt. Va	c t l E	tt Phe	atg Met	gtc Val	g A 3	at sp 45	1059 .
	cgc Arg	ttt Phe	= Gl	c t y I	-eu	ctg Leu 350	act Thr	gac Asp	aag Lys	ga sM	et	ccg Pro 355	aac Asn	ct Le	g d u I	ctg Leu	cct Pro	ttc Phe 360		ag In	1107
	acc Thr	aa: Ly	a ct s Le	eu 7	gtg Val 365	cag Gln	aag Lys	cgc Arg	gaa Gli	u A	ac sn	ctc Leu	agt Ser	ga As	.c [:]	tgg Trp	gat Asp 375	acc Thr	: g	sp ac	1155
25	ago Ser	ga As	sV q	eg (ctg Leu	tca Ser	ctg Leu	cto Lev	g ga 1 As 38	pν	rtg 7al	gtg Val	ago	aa g As	J T T	gta Val 390	aaa Lys	cca	a g	at Asp	1203 .
30	att Ile	t ct e Le 39	u I	tt le	ggc Gly	gtc Val	tca Ser	gga Gly	Λ GT	ga n 1	acc Thr	ggg Gly	cto Lei		et ne 05	acg Thr	gaa Glu	gag Glu	g a	atc Ile	1251
35	ate Il 41	c co e Ar		ag lu	atg Met	cat His	aaa Lys 41!	s Hl	c to s Cy	jt (/s]	ccg Pro	cgt Arg	cc; Pr	·	tc le	gtg Val	at <u>c</u> Met	Pr	g « o l	ctg Leu 425	1299
			ac c sn P	cg	acg Thr	tca Sei 430	a cg c Ar	c gt g Va	g ga 1 GJ	aa (lu .	gcc Ala	aca Thi		g c o G	ag ln	gác Asp	att Ile	at a Il 44	с е 0	gcc Ala	1347 '
	tg Tr	g a p T	cc g hr G	raa Hu	ggt Gly 445	/ Asi	c gc n Al	g ct a Le	g gt su Va	ar Tr	gcc Ala 450		g gg r Gl	c a y S	.gc ler	ccg	Pho 45	t aa e As 5	t n	cca Pro	1395
45	gt Vä	al V	al :	gg Trp 160	aaa Lys	a ga s As	t aa p Ly	a at s Il	.е т,	ac yr 65	cct Pro	at Il	c go e Al	c c .a G	ag 31n	tgt Cys 470	aa S As:	c aa n As	ic sn	gcc Ala	1443
50	ti Pl	he I	tt : 1e :	ttc Phe	cc; Pr	o Gl	c at y Il	.e G.	30 Jc c	tg eu	gg†	t gt y Va	t at	-	gct Ala 185		c gg c Gl	c go y Al	cg La	tca Ser	1491
55	A			acc Thr	ga As	t ga p Gl	.u Me	et L	tg a eu M	ıtg Iet	tc Se	g go r Al	.u. D	gt 9 er 0	gaa Glu	ac; Th:	g ct r Le	g go	cg la	cag Gln 505	1539

	tat tca cca ttg gtg ctg aac ggc gaa ggt atg gta ctg ccg gaa ctg Tyr Ser Pro Leu Val Leu Asn Gly Glu Gly Met Val Leu Pro Glu Leu 510 515 520	1587 .
5	aaa gat att cag aaa gtc tcc cgc gca att gcg ttt gcg gtt ggc aaa Lys Asp Ile Gln Lys Val Ser Arg Ala Ile Ala Phe Ala Val Gly Lys 525 530 535	1635
10	atg gcg cag cag caa ggc gtg gcg gtg aaa acc tct gcc gaa gcc ctg Met Ala Gln Gln Gly Val Ala Val Lys Thr Ser Ala Glu Ala Leu 540	1683
15	caa cag gcc att gac gat aat ttc tgg caa gcc gaa tac cgc gac tac Gln Gln Ala Ile Asp Asp Asn Phe Trp Gln Ala Glu Tyr Arg Asp Tyr 555 560 565	1731
	cgc cgt acc tcc atc taa aagcttatcg atgataagct gtcaaacatg Arg Arg Thr Ser Ile 570	1779
b	agaattacaa cttatatcgt atggggctga cttcaggtgc tacatttgaa gagataaatt	1839
	gcactgaaat ctagaaatat tttatctgat taataagatg atcttcttga gatcgttttg	1899
25	gtctgcgcgt aatctcttgc tctgaaaacg aaaaaaccgc cttgcagggc ggtttttcga	1959 '
23	aggitetetg agetaceaae teitigaace gaggitaacig geitiggagga gegeagicae	2019
	caaaacttgt cctttcagtt tagccttaac cggcgcatga cttcaagact aactcctcta	2079
30	aatcaattac cagtggctgc tgccagtggt gcttttgcat gtctttccgg gttggactca	2139
	agacgatagt taccggataa ggcgcagcgg tcggactgaa cggggggttc gtgcatacag	2199
35	tccagcttgg agcgaactgc ctacccggaa ctgagtgtca ggcgtggaat gagacaaacg	2259
33	cggccataac agcggaatga caccggtaaa ccgaaaggca ggaacaggag agcgcacgag	2319
	ggageegeca ggggaaaege etggtatett tatagteetg tegggttteg eeaceaetga	2379
0	tttgagcgtc agatttcgtg atgcttgtca ggggggcgga gcctatggaa aaacggcttt	2439
	geogeggee teteaettee etgttaagta tetteetgge atetteeagg aaateteege	2499
4 F	hiter matagagga atagaaggac cgagegtage gagteagtga	2559
45	gcgaggaagc ggaatatatc ctgtatcaca tattctgctg acgcaccggt gcagcctttt	2619
	ttctcctgcc acatgaagca cttcactgac accctcatca gtgccaacat agtaagccag	2679
50	tatacactcc gctagcgctg atgtccggcg gtgcttttgc cgttacgcac cacccgtca	2739
	gtagctgaac aggagggaca gctgatagaa acagaagcca ctggagcacc tcaaaaacac	2799
	atcacccac gcactttgcg ccgaataaat	2859
55	acctgtgacg gaagatcact tcgcagaata aataaatcct ggtgtccctg ttgataccgg	2919
	acctgtgacg gaagatcact tegeagaata accantos 3333	2979
	gaagccctgg gccaactttt ggcgaaaatg agacgttgat cggcacgtaa gaggttccaa	

ctttcaccat aatgaaataa gatcactacc gggcgtattt tttgagttat cgagattttc 3039 aggagctaag gaagctaaaa tggagaaaaa aatcactgga tataccaccg ttgatatatc 3099 5 ccaatggcat cgtaaagaac attttgaggc atttcagtca gttgctcaat gtacctataa 3159 ccagaccgtt cagctggata ttacggcctt tttaaagacc gtaaagaaaa ataagcacaa 3219 gttttatccg gcctttattc acattcttgc ccgcctgatg aatgctcatc cggaattccg 3279 10 tatggcaatg aaagacggtg agctggtgat atgggatagt gttcaccctt gttacaccgt 3339 ' tttccatgag caaactgaaa cgttttcatc gctctggagt gaataccacg acgatttccg 3399 15 gcagtttcta cacatatatt cgcaagatgt ggcgtgttac ggtgaaaacc tggcctattt 3459 ccctaaaggg tttattgaga atatgttttt cgtctcagcc aatccctggg tgagtttcac 3519 cagttttgat ttaaacgtgg ccaatatgga caacttcttc gcccccgttt tcaccatggg 3579 caaatattat acgcaaggcg acaaggtgct gatgccgctg gcgattcagg ttcatcatgc 3639 cgtctgtgat ggcttccatg tcggcagaat gcttaatgaa ttacaacagt actgcgatga 3699 25 gtggcagggc ggggcgtaat ttttttaagg cagttattgg tgcccttaaa cgcctggtgc 3759 tacgcctgaa taagtgataa taagcggatg aatggcagaa attcgaaagc aaattcgacc 3819 cggtcgtcgg ttcagggcag ggtcgttaaa tagccgctta tgtctattgc tggtttaccg 3879 30 gtttattgac taccggaagc agtgtgaccg tgtgcttctc aaatgcctga ggccagtttg 3939 ctcaggctct ccccgtggag gtaataattg acgatatgat catttattct gcctcccaga 3999 gcctgataaa aacggttagc gcttcgttaa tacagatgta ggtgttccac agggtagcca 4059 35 gcagcatcct gcgatgcaga tccggaacat aatggtgcag ggcgcttgtt tcggcgtggg 4119 tatggtggca ggccccgtgg ccgggggact gttgggcgct gccggcacct gtcctacgag 4179 ttgcatgata aagaagacag tcataagtgc ggcgacgata gtcatgcccc gcgcccaccg 4239 gaaggagcta ccggacagcg gtgcggactg ttgtaactca gaataagaaa tgaggccgct 4299 catggcgttg actctcagtc atagtatcgt ggtatcaccg gttggttcca ctctctgttg 45 4359 cgggcaactt cagcagcacg taggggactt ccgcgtttcc agactttacg aaacacggaa 4419 accgaagacc atteatgttg ttgctcaggt cgcagacgtt ttgcagcagc agtcgcttca 4479 50 cgttcgctcg cgtatcggtg attcattctg ctaaccagta aggcaacccc gccagcctag 4539 ccgggtcctc aacgacagga gcacgatcat gcgcacccgt ggccaggacc caacgctgcc 4599 cgagatgcgc cgcgtgcggc tgctggagat ggcggacgcg atggatatgt tctgccaagg 55 4659 gttggtttgc gcattcacag ttctccgcaa gaattgattg gctccaattc ttggagtggt 4719

		gaateegtta gegaggtgee geeggettee atteaggteg aggtggeeeg (gctccatgca	477
		ccgcgacgca acgcggggag gcagacaagg tatagggcgg cgcctacaat o	ccatgccaac	483
	5	cegttecatg tgctegeega ggeggcataa ategeegtga egateagegg t	tccagtgatc	489
		gaagttaggc tggtaagagc cgcgagcgat ccttgaagct gtccctgatg (gtcgtcatct	495
1	Λ	acctgcctgg acagcatggc ctgcaacgcg ggcatcccga tgccgccgga	agcgagaaga	501
-1.	U	atcataatgg ggaaggccat ccagcctcgc gtcgcgaacg ccagcaagac g	gtagcccagc	507
		gegteggeeg ecatgeegge gataatggee tgettetege egaaaegttt g	ggtggcggga	513
1	5	ccagtgacga aggcttgagc gagggcgtgc aagattccga ataccgcaag o	cgacaggccg	519
		atcatcgtcg cgctccagcg aaagcggtcc tcgccgaaaa tgacccagag o	egetgeegge	525
	<u>, </u>	acctgtccta cgagttgcat gataaagaag acagtcataa gtgcggcgac g	gatagtcatg	531
	D	ccccgcgccc accggaagga gctgactggg ttgaaggctc tcaagggcat c	eggtegaege	537
		tctcccttat gcgactcctg cattaggaag cagcccagta gtaggttgag	gccgttgagc	543
2	5	accgccgccg caaggaatgg tgcatgcatc gatcaccaca attcagcaaa t	tgtgaacat	549
		catcacgttc atctttccct ggttgccaat ggcccatttt cctgtcagta a	acgagaaggt	555
3	Ω	cgcgaattca ggcgcttttt agactggtcg taatgaac		559'
٠٠	U	<210> 12		
		<211> 574 <212> PRT		
3	5	<212> FRT <213> Unknown	.	
		<220> <223> Plasmid		
	h	<400> 12		
	U	Met Asp Ile Gln Lys Arg Val Ser Asp Met Glu Pro Lys Thr	Tare Tare	
		1 5 10	15	
4	5	Clar New Constant The Due Three Alex Clar Dree Well Low Low	Clu Pho	
		Gln Arg Ser Leu Tyr Ile Pro Tyr Ala Gly Pro Val Leu Leu 20 25 30	Gid Pile	
~	^	De la	7 mag 7 mg	
5	U	Pro Leu Leu Asn Lys Gly Ser Ala Phe Ser Met Glu Glu Arg 35 40 45	arg asn	
			a1 a1	
5.	5	Phe Asn Leu Leu Gly Leu Leu Pro Glu Val Val Glu Thr Ile 50 55 60	GIM GIM	
			Q1 Z 1 -	
		Gln Ala Glu Arg Ala Trp Ile Gln Tyr Gln Gly Phe Lys Thr 65 70 75	Glu Ile 80	

5	Asp	гуз	Hls	TTE	1771 85	Leu	Arg	ASN	TTE	90	Asp	rnr	Asn	GIU	95	тег
	Phe	Tyr	Arg	Leu 100	Val	Asn	Asn	His	Leu 105	Asp	Glu	Met	Met	Pro 110	Val	Ile
10	Tyr	Thr	Pro 115	Thr	Val	Gly	Ala	Ala 120	Cys	Glu	Arg	Phe	Ser 125	Glu	Ile	Туг
15	Arg	Arg 130	Ser	Arg	Gly	Val	Phe 135	Ile	Ser	Тух	Gln	Asn 140	Arg	His	Asn	Met
	Asp 145	Asp	Ile	Leu	Gln	Asn 150	Val	Pro	Asn	His	Asn 155	Ile	Lys	Val	Ile	Va] 160
25	Val	Thr	Asp	Gly	Glu 165	Arg	Ile	Leu	Gly	Leu 170	Gly	Asp	Gln	Gly	Ile 175	GlΣ
	Gly	Met	Gly	Ile 180	Pro	Ile	Gly	Lys	Leu 185	Ser	Leu	Tyr	Thr	Ala 190	Cys	Glz
30	Gly	Ile	Ser 195	Pro	Ala	Tyr	Thr	Leu 200	Pro	Val	Val	Leu	Asp 205	Val	Gly	Thi
35	Asn	Asn 210	Gln	Gln	Leu	Leu	Asn 215	Asp	Pro	Leu	Tyr	Met 220	Gly	Trp	Arg	Asr
0	Pro 225	Arg	Ile	Thr	Asp	Asp 230	Glu	Туг	Tyr	Glu	Phe 235	Val	Asp	Glu	Phe	Ile 240
45	Gln	Ala	Val	Lys	Gln 245	Arg	Trp	Pro	Asp	Val 250	Leu	Leu	Gln	Phe	Glu 255	Asr
	Phe	Ala	Gln	Lys 260	Asn	Ala	Met	Pro	Leu 265	Leu	Asn	Arg	Tyr	Arg 270	Asn	Glı
50	Ile	Cys	Ser 275	Phe	Asn	Asp	Asp	Ile 280	Gln	Gly	Thr	Ala	Ala 285	Val	Thr	Va]
55	Gly	Thr 290	Leu	Ile	Ala	Ala	Ser 295	Arg	Ala	Ala	Gly	Gly 300	Gln	Leu	Ser	Glu

	Lys 305	Lys	Ile	Va	al P	he :	Leu 310	Gl:	y A	.la	Gly	Se	er i	Ala 315	Gly	СŽ	/s (∃ly	Ile	A1 32	.a 20
5	Glu	Met	Ile	· IJ	Le S	Ser 325	Gln	Th	r G	ln	Arg	G: 3:	lu 30	Gly	Leu	Se	er (Glu	Glu 335	Al	La
10	Ala	Arg	Glr	1 Ly 34	ys \ 40	7al	Phe	Ме	t ī	/al	Asp 345	A:	rg	Phe	Gly	· Le	eu :	Leu 350	Thr	As	∋p
1 =	Lys	Met	Pro 355		sn 1	Leu	Leu	Pr	o 1	Phe 360	Gln	ı T	hr	Lys	Leu	ı V	al 65	Gln	Lys	A:	rg
15	Glu	Asn 370		ı S	er .	Asp	Trp	As 37	sp ' 75	Thr	Asr) S	ler	Asp	Va. 380	L L	eu	Ser	Leu	L	eu
	Asp 385		L Va	1 A	rg	Asn	Val 390	Ly	ys	Pro	Ası	į c	le	Leu 395	Il	e G	ly	Val	Ser	- G	1y .00
25	Gln	Th:	r Gl	УΙ	beu	Phe 405	Thr	G.	1u	Glu	Il	e :	Ile 410	Arg	Gl	u M	let	His	Ьу: 41:	5 I .	lis
30	Cys	s Pr	o Ar		Pro 420	Ile	Val	L M	et	Pro	ь Le 42	u ; 5	Ser	Asn	. Pr	0 7	Phr	Ser 430	Arg	3 <i>i</i>	/al
		Al د	a Th 43		Pro	Gln	. Asj	o I	:1e	Ile 440	e Al	.a.	Trp	Th:	: G1	.u (Gly 445	Asr	ı Al	a. I	Leu
35	Va.	1 A1 45		ar	Gly	Ser	. Pr	0 E	he 155	Ası	n Pr	ro	Val	. Vai	l Tı 46	g: 0	Lys	Ası	, Ly	ន	Ile
	Ту 46		co I	le	Ala	Glı	n Cy 47	s Z O	Asn	As	n A.	La	Phe	e Il 47	e Pl 5	ne	Pro	Gl:	y Il	.e	Gly 480
45	Le	eu G	ly V	al	Ile	A1 48	a S∈ 5	er (Gly	Al	a S	er	Arg	g Il O	e T	hr	Ası	Gl	u Me	et 95	Leu
50	Μe	et S	er A	la	Ser	- Gl	u Tl	ır :	Leu	ı Al	a G 5	ln 05	Ту	r Se	r P	ro	Le	ı Va 51	1 L:	eu	Asn
	G.	ly G	lu G	31y 515	Met	. Va	.l L:	eu	Pro	o G1 52	.ս L 20	eu	Lу	rs As	I qa	le	G1: 52	n Ly 5	rs V	al	Ser
55		rg A	la I	[le	Ala	a Pł	ne A	la	Va:	1 GI 5	Ly I	iys	M∈	et A.	La G	31.n 540	Gl	n Gl	ln G	1у	Val

Ala Val Lys Thr Ser Ala Glu Ala Leu Gln Gln Ala Ile Asp Asp Asn 545 550 560

5 Phe Trp Gln Ala Glu Tyr Arg Asp Tyr Arg Arg Thr Ser Ile 565 570