Conditional Propositions and Logical Equivalence

Section 1.2

Prof. Nathan Wodarz

Math 209 - Fall 2008

Contents

1	Con	ditional Propositions	2
	1.1	Conditional Propositions	2
	1.2	Truth Table of Conditional Propositions	2
	1.3	Conditional Propositions in Computing	3
	1.4	The Converse	4
	1.5	Biconditional Proposition	4
2	Log	ical Equivalence	5
	2.1	Logical Equivalence	5
	2.2	De Morgan's Laws	5
	2.3	The Contrapositive	6

1 Conditional Propositions

1.1 Conditional Propositions

Conditional Propositions

- "If it rains this afternoon, then I will carry an umbrella" is a proposition
- Is the proposition true or false?
 - True if it rains and I carry an umbrella.
 - False if it rains and I don't carry an umbrella.
 - What if it doesn't rain?
- If p and q are propositions, the proposition "if p then q" is a conditional proposition.
 - Denoted $p \rightarrow q$
 - *p* is the *hypothesis* or *antecedent*.
 - p is also called a *sufficient condition*.
 - q is the conclusion or consequent.
 - q is also called a necessary condition.
 - $p \rightarrow q$ is another binary operator.

1.2 Truth Table of Conditional Propositions

Truth Table of $p \rightarrow q$

- When is $p \rightarrow q$ true?
 - *True* if both *p* and *q* are true.
 - False if p is true, but q is false.
 - True if p is false.
 - Referred to as either:
 - * True by default,
 - * Vacuously true, or

* Trivially true

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & \\ T & F & \\ F & T & \\ F & F & \\ \end{array}$$

Truth Table of $p \rightarrow q$

Example. "If Brett Favre is the starting quarterback for the Packers, then 2+2=5" is a *true* proposition.

Problem. Complete the truth table.

\overline{p}	\overline{q}	$\neg(p \to q)$
T	T	
T	F	
F	T	
F	F	

1.3 Conditional Propositions in Computing

The "if-then" Statement

- There is no direct analog to $p \rightarrow q$ in Java.
- Java does have an "if-then" statement

```
if (condition){
    statement
}
```

- If condition is true, then statement executes
- If condition is false, then statement is irrelevant.

1.4 The Converse

The Converse

Problem. Complete the truth table.

\overline{p}	\overline{q}	$q \rightarrow p$
T	T	
T	F	
F	T	
F	F	

- Let $p \to q$ be a conditional proposition. The *converse* of $p \to q$ is $q \to p$
- The converse is not the same as the original proposition.

The Converse

Example. • "If Brett Favre is the starting quarterback for the Packers, then 2 + 2 = 4" is a *true* proposition.

- "If 2 + 2 = 4, then Brett Favre is the starting quarterback for the Packers" is a *false* proposition.
- These propositions are converses of each other.

1.5 Biconditional Proposition

Biconditional Proposition

- If p and q are propositions, then "p if and only if q or "p iff q" is a biconditional proposition.
- We denote it by $p \leftrightarrow q$
- $p \leftrightarrow q$ is true precisely when p and q have the same truth values

p	q	$p \leftrightarrow q$
T	T	
T	F	
F	T	
F	F	

2 **Logical Equivalence**

Logical Equivalence

Logically Equivalent Propositions

- If P and Q are compound propositions built from p_1, p_2, \dots, p_n , then P and Q are logically equivalent provided that P and Q have the same truth values, no matter what truth values p_1, p_2, \dots, p_n have.
 - We denote this $P \equiv Q$
 - This is the same as $P \leftrightarrow Q$ being a tautology.

Example. •
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

•
$$p \rightarrow q \not\equiv q \rightarrow p$$

Logically Equivalent Propositions

Example. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

\overline{p}	\overline{q}	$p \leftrightarrow q$	\overline{p}	\overline{q}	$(p \to q) \land (q \to p)$
T	T		T	T	
T	F		T	F	
F	T		F	T	
F	F		F	F	

De Morgan's Laws 2.2

De Morgan's Laws

Theorem 1. De Morgan's Laws

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

- Augustus De Morgan was a 19th century British mathematician, born in
- Gives a way of negating conjunctions and disjunctions.

\overline{p}	\overline{q}	$\neg (p \lor q)$	\overline{p}	\overline{q}	$\neg p \land \neg q$
T	T		T	T	
T	F		T	F	
F	T		F	T	
F	F		F	F	

2.3 The Contrapositive

The Contrapositive

• The *contrapositive* of a proposition $p \to q$ is the proposition $\neg q \to \neg p$

Theorem 2. The conditional proposition $p \rightarrow q$ is logically equivalent to its contrapositive $\neg q \rightarrow \neg p$.

p	q	$p \rightarrow q$	p	q	$\neg q \rightarrow \neg p$
T	T		T	T	
T	F		T	F	
F	T		F	T	
F	F		F	F	

Summary

Summary

You should be able to:

- Use *conditional* and *biconditional* propositions.
- Use the *converse* and *contrapositive* of a statement.
- Identify *logically equivalent* propositions.
- Use De Morgan's Laws.