编译原理

第三章 词法分析

- ■对于词法分析器的要求
- ■词法分析器的设计
- ■正规表达式与有限自动机
- ■词法分析器的自动产生 --LEX

- ■对于词法分析器的要求
- ■词法分析器的设计
- ■正规表达式与有限自动机
- ■词法分析器的自动产生 --LEX

关系图

DIM,IF, DO,STOP,END number, name, age 125, 2169

```
curState = 初态
GetChar();
while( stateTrans[curState][ch] 有定义){
    // 存在后继状态,读入、拼接
    Concat();
    // 转换入下一状态,读入下一字符
    curState= stateTrans[curState][ch];
    if cur_state 是终态 then 返回 strToken 中的单
    GetChar();
}
```


100

形式语言鸟瞰

- ■2型(上下文无关文法,非确定下推自动机)
 - □ 产生式形如: $A \rightarrow \beta$
 - □ 其中: $A \in V_N$; $\beta \in (V_T \cup V_N)^*$
- ■3型(正规文法,有限自动机)
 - □产生式形如: $A \rightarrow \alpha B$ 或 $A \rightarrow \alpha$ **右线性文法**
 - □其中: $\alpha \in V_T^*$; A, B∈ V_N
 - □产生式形如: $A \rightarrow B\alpha$ 或 $A \rightarrow \alpha$ **左线性文法**
 - □其中: $\alpha \in V_T^*$; A, B∈ V_N

7

3.3.4 正规文法与有限自动机的等价性

- 对于正规文法 G 和有限自动机 M , 如果 L(G) = L(M) , 则称 G 和 M 是等价的
- 关于正规文法和有限自动机的等价性,有以下 结论:
 - 1. 对每一个右线性正规文法 G 或左线性正规文法 G ,都存在一个有限自动机 (FA) M ,使得 L(M) = L(G) 。
- 2. 对每一个 FAM ,都存在一个右线性正规文法 G_R 和左线性正规文法 G_L ,使得 $L(M) = L(G_R)$ = $L(G_L)$ 。

例:

- G_R(A) : A→0 | 0B | 1D
 - B→0D | 1C
 - C→0 | 0B | 1D
 - D→0D | 1D
- 从 G_R 出发构造 NFA M = <{A, B, C, D, f}, {0, 1}, δ', A, {f}>, M 的状态转换图 如右图所示。
- 显然 L(M) = L(G_R)。

- 左线性正规文法 G_L = <{0, 1}, {B, C, D, F}, F, P'>, 其中 P' 由下列产生式组成:
 - $F \rightarrow 0 \mid C0$ $C \rightarrow B1$ $B \rightarrow 0 \mid C0$ $D \rightarrow 1 \mid C1 \mid D0 \mid D1 \mid B0$
- 从 G_L 出发构造 NFA M = <{q₀, B, C, D, F}, {0, 1}, δ,
 A, {F}> , M 的状态转换图 如右图所示。
- 显然 L(M) = L(G_L) 。

M.

■ 证明:

- 1. 对每一个右线性正规文法 G 或左线性正规文法 G ,都构造一个有限自动机 (FA) M ,使得 L(M) = L(G) 。
 - (1) 设右线性正规文法 $G=\langle V_T, V_N, S, P \rangle$ 。将 V_N 中的每一非终结符号视为状态符号, 并增加一个新的终结状态符号 f , $f \notin V_N$ 。

令 $M=<V_N \cup \{f\}, V_T, \delta, S, \{f\}>$,其中状态转换函数 δ 由以下规则定义:

- (a) 若对某个 $A \in V_N$ 及 $a \in V_T \cup \{\epsilon\}$, P 中 有产生式 $A \rightarrow a$,则令 δ (A,a)=f
- (b) 对任意的 A∈V_N 及 a∈V_T∪{ε}, 设 P 中左端为 A, 右端第一符号为 a 的所有产生式为:

$$A \rightarrow aA_1 | \cdots | aA_k$$
 (不包括 $A \rightarrow a$),

则令
$$\delta$$
 (A,a)= $\{A_1,\dots,A_k\}$ 。

显然,上述 M 是一个 NFA。

对于右线性正规文法 G,在 S^{+} w 的最左推导过程中:

- 利用 A→aB 一次就相当于在 M 中从状态 A 经过标记为 a 的箭弧到达状态 B (包括 a=ε 的情形);
- 在推导的最后,利用 $A \rightarrow a$ 一次则相当于在 M 中从状态 A 经过标记为 a 的箭弧到达终结 状态 f (包括 $a=\epsilon$ 的情形)。

综上,在正规文法 G 中, $S \rightarrow w$ 的充要条件是:在 M 中,从状态 S 到状态 f 有一条通路,其上所有箭弧的标记符号依次连接起来恰好等于 w,这就是说, $w \in L(G)$ 当且仅当 $w \in L(M)$,故 L(G) = L(M)。

例:

- $G_R(A)$: $A\rightarrow 0 \mid 0B \mid 1D$ $B\rightarrow 0D \mid 1C$ $C\rightarrow 0 \mid 0B \mid 1D$ $D\rightarrow 0D \mid 1D$
- 从 G_R 出发构造 NFA M =
 <{A, B, C, D, f}, {0, 1}, δ', A, {f}>, M 的状态转换图如右图所示。
- 显然 L(M) = L(G_R)。

v

- 3.3.4 正规文法与有限自动机的等价性
 - 定理:
 - 1. 对每一个右线性正规文法 G 或左线性正规文法 G ,都存在一个有限自动机 (FA) M ,使得 L(M) = L(G) 。
 - 2. 对每一个 FAM,都存在一个右线性正规文法 G_R 和左线性正规文法 G_L ,使得 $L(M) = L(G_R) = L(G_L)$ 。

(2) 设左线性正规文法 $G=\langle V_T, V_N, S, P \rangle$ 。将 V_N 中的每一非终结符号视为状态符号,并 增加一个初始状态符号 q_0 , $q_0 \notin V_N$ 。

令 M=< V_N ∪{ q_0 }, V_T , δ , q_0 , {S}> ,其中状态转换函数 δ 由以下规则定义:

- (a) 若对某个 $A \in V_N$ 及 $a \in V_T \cup \{\epsilon\}$,若 P 中有产生式 $A \rightarrow a$,则令 δ (q_0,a)=A
- (b) 对任意的 $A \in V_N$ 及 $a \in V_T \cup \{\epsilon\}$,若 P 中 所有右端第一符号为 A ,第二个符号为 a 的产生式为:

$$A_1 \rightarrow Aa, \dots, A_k \rightarrow Aa,$$
则令 $\delta(A,a) = \{A_1, \dots, A_k\}$ 。

例:

■ 左线性正规文法 G_L = <{0, 1}, {B, C, D, F}, F, P'>, 其中 P' 由下列产生式组成:

 $F \rightarrow 0 \mid C0$ $C \rightarrow B1$ $B \rightarrow 0 \mid C0$ $D \rightarrow 1 \mid C1 \mid D0 \mid D1 \mid B0$

从 G_L 出发构造 NFA M = <{q₀, B, C, D, F}, {0, 1}, δ,
 A, {F}> , M 的状态转换图如右图所示。

■ 显然 L(M) = L(G_I) 。

×

- 3.3.4 正规文法与有限自动机的等价性
 - 定理:
 - 对每一个右线性正规文法 G 或左线性正规文法 G, 都存在一个有限自动机 (FA)
 M, 使得 L(M) = L(G)。
 - 2. 对每一个 FAM,都存在一个右线性正规文法 G_R 和左线性正规文法 G_L ,使得 $L(M) = L(G_R) = L(G_L)$ 。

证明 2: 对每一个 DFA M, 都存在一个右线性正规文法 G_R 和左线性正规文法 G_L ,使得 $L(M) = L(G_R) = L(G_L)$ 。 设 DFA M=<S, Σ , δ , s_0 , F>

- (1) 若 $s_0 \notin F$,我们令 $G_R = \langle \Sigma, S, s_0, P \rangle$, 其中 P 是由以下规则定义的产生式集合: 对任何 $a \in \Sigma$ 及 $A,B \in S$,若有 δ (A,a)=B ,则:
 - (a) 当 B∉F 时, 令 A→aB ,
 - (b) 当 B∈F 时,令 A→a|aB。

M

对任何 $\mathbf{w} \in \Sigma^*$,不妨设 $\mathbf{w} = \mathbf{a}_1 \cdots \mathbf{a}_k$,其中 $\mathbf{a}_i \in \Sigma$ (i=1,···k) 。若 $\mathbf{s}_{\overrightarrow{v}}$ w ,则存在一个最左推导:

$$s_0 \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \cdots \Rightarrow a_1 \cdots a_i A_i$$
$$\Rightarrow a_1 \cdots a_{i+1} A_{i+1} \Rightarrow \cdots \Rightarrow a_1 \cdots a_k$$

因而,在 M 中有一条从 s_0 出发依次经过 A_1 , …, A_{k-1} 到达终态的通路,该通路上所有箭弧的标记依次为 a_1 ,…, a_k 。 反之亦然。所以, $w \in L(G_R)$ 当且仅当 $w \in L(M)$ 。

□ 现在考虑 $s_0 \in F$ 的情形:

因为 δ (s₀, ε)=s₀,所以ε∈ L(M)。但ε不属于上面构造的 G_R 所产生的语言 L(G_R)。不难发现,

$$L(G_R)=L(M)-\{\epsilon\}$$
 .

所以,我们在上述 G_R 中添加新的非终结符号 S_0' , $(S_0' \not\in S)$ 和产生式 $S_0' \rightarrow S_0 \mid \varepsilon$,并用 S_0' 代替 S_0 作

2. 对每一个 FAM,都存在一个右线性正规 文法 G_R 和左线性正规文法 G_L ,使得 L(M)= $L(G_R)$ = $L(G_L)$ 。

规文法

(a) 当 A= q₀ 时, 令 B→a

最后,

吉论 2 得 19

- M
- 3.3.4 正规文法与有限自动机的等价性
 - 定理:
 - 1. 对每一个右线性正规文法 G 或左线性正规文法 G ,都存在一个有限自动机 (FA) M ,使得 L(M) = L(G) 。
 - 2. 对每一个 FAM,都存在一个右线性正规文法 G_R 和左线性正规文法 G_L ,使得 $L(M) = L(G_R) = L(G_L)$ 。

M.

例:设DFAM=<{A,B,C,D}, {0,1}, δ , A, {B}>。M的状态转换图如下图所示。

- L(M) = $0(10)^*$
- G_R = <{0, 1}, {A, B, C, D}, A, P>, 其中 P 由下列产 生式组成:

$$L(G_R) = L(M) = 0(10)^*$$

例 设 DFA M = <{A, B, C, D, F}, {0, 1}, δ , A, {F}>。 M 的状态转换图如下图所示。

■ 从 NFA M 出发构造左线性 正规文法 G_L = <{0, 1}, {B, C, D, F}, F, P'> , 其中 P' 由下列产生式组成:

F→0 | C0

C→B1

B→0 | C0

D→1 | C1 | D0 | D1 | B0

易证 $L(G_L) = L(M)$ 。

小结

DIM,IF, DO,STOP,END number, name, age 125, 2169

curState = 初态
GetChar();
while(stateTrans[curState][ch] 有定义){
 // 存在后继状态, 读入、拼接
 Concat();
 // 转换入下一状态, 读入下一字符
 curState= stateTrans[curState][ch];
 if cur_state 是终态 then 返回 strToken 中的单
 GetChar();
}

第三章 词法分析

- ■对于词法分析器的要求
- ■词法分析器的设计
- ■正规表达式与有限自动机
- ■词法分析器的自动产生 --LEX

作业

■ P64-7(选作2个小题), 8(选作3个小题), 12, 14