Fourier series gibbs phenomina using python. f(x) = \sum_{k=0}^{100} a_k Cos(\frac{2\pi x}{L}) + b_k sin(\frac{\frac{2\pi x}{L}}{L}) aje = <f(x) cos(x211x)), bk = <f(x) min (x211x)) import numpy as np import mat plot lib. pxplot as plt plt. reparams [figure. fignize] * (0.8) plt. reparons. updata (font. size : 103) dx = 0.0; L = 2 *np.pi x = np. arange (o. L+dx, dx) n = len(x)nguart = int (np. floar (1/4)) f = np. Zeros - linke(x) + (ngport: 3 x nguart) x 3 Ao = np. sum (f * np. ones-like (k) 3 *dx * 3/h. JFS = 'Ao/2 + np.ones-like (f) for k in range (1,101); AK = np. sum (f* np. cos (2*np. pi*K* x / w) * dx 2/h. 接BK = np. sum (f* np. sin (2*np*pi*K* x / L] * dx 2/h JES = JES * AK* np. Con (24 K*np*pi*x/L) + BK # npsin(2* C*np. Plt. plot (x, f, color = 'k' linewidth = 27

plt. plot (x. ffs. '=', color = 'r', linewidth 1.53

pltishow()

F(w): \(\int \frac{1}{4}(+) e^{-iwt} dt \)

\[
e^{-ikot} = \cos(-w+) + \sin(w+)
\]

\(\text{Application of 2-transform.}
\)

- Vies to analysis of digital filters
- Vied to simulate the continuous systems.
\(+ \text{ telps in system design and analysis 4 also checks the systems stability.}
\]

Python:

\[
\text{HTML templates:} \\
\text{from flask import flak, render-template.}
\]

\(\text{rehurn render-template ("home. html")}
\(\text{ return render-template ("about. html").}
\]