작품소개서

참 가 번 호

Fund DIY (Fund Do It Your Self)

파일제출 형식 : PDF

팀 명: GTAA

팀구성원

No.	구분	성명	역할							
1	팀대표	김민찬	크롤링 및 데이터 분석							
2	팀원	박유영	데이터 활용 및 웹구현							
3	팀원	최영규	데이터 분석 및 개발							
4	팀원	홍성주	데이터 분석 및 개발							

2019. 10. 31

(1) 개요	(3 - 4p)
1.1 작품명	
1.2 작품 개요	
1.3 배경 및 목적	
(2) 작품설명	(5 - 13p)
2.1 시스템 구성	
2.2 작품제작 핵심기술	
2.3 시스템 구성도	
2.4 주요 알고리즘 설명	
2.5 프로그램 구조도	
2.6 소프트웨어 개발환경	
(3) 소프트웨어 설명	(14 - 15p)
3.1 소프트웨어 개발 규모	
3.2 소프트웨어 기술적 독창성	
(4) 응용분야	(16p)
4.1 기대효과	
4.2 활용방안	
4.3 사업화 가능성	
7. 작품 제작팀	(17p)
8. 작품 제작 주요일정 및 단계별 성과	(17p)

< Fund DIY 목차 >

1. 개요

1.1. 작품명

Fund DIY (Fund Do It Your Self)

1.2. 작품 개요

사용자가 스스로 전 세계 자산지수(ETF)를 활용하여 데이터를 분석 및 시뮬레이션을 통하여 전략을 만들고 그것을 이용하여 쉽게 투자할 수 있게끔 도와주는 글로벌 전술적 자산배분 플랫폼 서비스

1.3. 배경 및 목적

그래프1을 보면, 외국인 투자자에 비해 개인 투자자가 항상 손실을 입은 것을 볼 수 있습니다. 이처럼 투자는 아무나 할 수 없는 어려운 영역입니다.

그래서 대부분의 투자자들은 직접적인 투자 보다는 펀드를 가입하는 것과 같은 간접적인 투자를 선호합니다. 왜냐하면 고학력의 펀드매니저와 같은 전문가는 나보다 투자에 대해 잘 알기에 때문에 자신에게 높은 수익률을 가져다 줄 것이라고 생각하기때문입니다. 하지만 펀드에 투자하는 개인 투자자들 또한 직접 투자하는 개인투자자들 보다 나은 점은 없습니다. 한 예로 세계에서 가장 유명한 펀드매니저인 피터린치의 마젤란 펀드는 13년 동안 2700%의 수익률을 얻었지만 실제로 이 펀드에 투자한 개인 투자자들의 반은 손실을 봤다고 합니다. 펀드를 잘 이해하지 못하는 개인 투자자들은 경기가 좋을 때 펀드에 가입하고 경기가 좋지 않을 때 펀드를 환매하는 행위를 하였기 때문입니다. 따라서 투자에 있어서 중요한건 높은 수익률도 좋은 펀드도 아닙니다. 중요한건 '지속 가능한 장기 투자'입니다. 그러기 위해서는 펀드매니저의전략을 믿어야 되고 믿기 위해서는 전략의 알고리즘과 과거 성과를 잘 이해해야 됩니다. 따라서 Fund DIY는 개인 투자자들이 보다 쉽게 펀드매니저처럼 전문적으로 펀드전략을 세우고 전략에 대한 과거 성과 시뮬레이션을 제공하여 전략을 이해할 수 있게 만들어 '지속 가능한 장기 투자'를 할 수 있게끔 도와주는 자산 배분 플랫폼 서비스를 제공하는 것이 목적입니다.

<그래프1 개인 투자자와 외국인 투자자의 과거 10년 수익률 통계>

2. 작품 설명

2.1. 시스템 구성

2.2. 작품제작 핵심기술

- 1) 세계 20000가지 이상의 수시로 업데이트 되는 ETF(상장 지수 펀드)의 빅데이터 수집 기술
- 2) 활발히 연구 중인 주제에 대한 최신 전술적 알고리즘 개발 및 구현 기술
- 3) 방대한 데이터와 최신 전술적 알고리즘을 활용한 시뮬레이션 구현 기술

2.3. 시스템 구성도

2.4. 주요 알고리즘 설명

Fund DIY는 스스로 펀드를 만들 수 있게 하는 자산배분플랫폼 서비스로서 주요 알고리즘은 펀드를 일반인들도 쉽게 만들 수 있게 하는 투자 전략 알고리즘입니다. Fund DIY는 아래와 같이 큰 틀에서 전통적 자산배분 알고리즘과 위험 기반 자산배분 알고리즘 그리고 모멘텀 기반 자산배분 알고리즘 마지막으로 멀티-팩터 자산배분 알 고리즘을 제공 합니다.

- 1) 위험 기반 자산배분전략(Risk basic Asset Allocation)
 - MVP(Minimum Variance Portfolio) : 최소 분산 포트폴리오
 - MDP(Maximum Diversified Portfolio) : 최대 분산효과 포트폴리오
 - ERCP(Equal Risk Contribution Portfolio) : 위험균형 포트폴리오
- 2) 모멘텀 기반 자산배분전략(Momentum basic Asset Allocation)
 - Cross Section Momentum Portfolio : 상대 모멘텀 포트폴리오
 - Dual Momentum Portfolio : 듀얼 모멘텀 포트폴리오
- 3) 전통적 자산배분전략(Traditional Asset Allocation)
 - EWP(Equal Weight Portfolio) : 동일비중 포트폴리오
- 4) 멀티 팩터 자산배분전략(Multi-Factor Asset Allocation)
 - Mom X Risk Multi-Factor Portfolio : 모멘텀X위험 멀티-팩터 포트폴리오

그 중 중요한 1)위험 기반, 2)모멘텀 기반 알고리즘에 대해서 설명하고자합니다. 주식을 예측하는 경제학적 이론인 효율적 시장가설과 자산가격 결정론에 의하면 주가는 과거의 정보로 예측할 수 없음으로 높은 수익을 얻고 싶으면 높은 위험을 감수하라고 합니다. 하지만 최근 많은 연구 결과에서 위험이 낮을수록 높은 수익을 얻을수 있다는 저 위험 이례현상(Low Risk Anomaly)과 위험과 관계없이 과거 높았던 (낮았던) 자산이 미래에도 높은(낮은) 경향이 있는 모멘텀 이례현상 (Momentum Anomaly)이 발생하는 경향이 있다고 보고되고 있습니다. 따라서 저희 Fund DIY는 이러한 두 이상 현상에 주목합니다. Fund DIY 의 목적은 개인투자자들의 지속 가능한 장기투자를 할 수 있게 돕는 것입니다. 개인 투자자들은 높은 수익률

을 원하지만 높은 위험은 감당하기 힘들어 합니다. 하지만 두 이례현상으로 만들어진 전략 알고리즘은 위험이 낮을수록 수익이 높고, 또 위험과 관련이 없으므로 위험을 감당하기 힘들어하는 개인 투자자들이 보다 낮은 위험으로 높은 수익률을 얻을 수 있어 지속 가능한 장기투자에 적합한 전략이기 때문입니다. 더욱이 Fund DIY는 Multi-factor 등 다양한 개인투자자들에 적합한 전략 알고리즘을 개발하고 있습니다. 다음은 전략 알고리즘에 관한 논문과 논문에서 제시한 전략을 R로 구현한 코드입니다.

- 1) 위험 기반 자산배분전략(Risk basic Asset Allocation)
 - ㄱ) MVP (Minimum Variance Portfolio) : 최소분산 포트폴리오
 - Paper: Markowitz (1952) "Portfolio Selection"
 - Code

```
wt_MVP = function(covmat) {
    lb = rep(min, n)
    ub = rep(max, n)
    dvec = c(rep(0,n))
    Amat_mv = cbind(rep(1, n), diag(n), -diag(n))
    bvec_mv = c(1, lb, -ub)
    meq = 1
    w_mv = solve.QP(covmat,dvec,Amat_mv,bvec_mv,meq)$solution
    return(w_mv)
}
```

- ㄴ) MDP (Maximum Diversified Portfolio) : 최대분산 포트폴리오
 - Paper: Edward Qian (2011) "Risk Parity and Diversification"
 - Code

```
wt_MDP = function(covmat) {
    Alb = -rep(min, n) %*% matrix(1, 1, n) + diag(n) # Min
    Aub = rep(max, n) %*% matrix(1, 1, n) - diag(n) # Max
    dvec = c(rep(0,n))
    Amat_mv = cbind(sqrt(diag(covmat)), Alb, Aub)
    bvec_mv = c(1, rep(0, n), rep(0, n))
    meq =1
    w_mv = solve.QP(covmat,dvec,Amat_mv,bvec_mv,meq)$solution
    w_mv = (w_mv / sum(w_mv))
    return(w_mv)
}
```

- ㄷ) ERCP (Equal Risk Contribution Portfolio) : 위험균형 포트폴리오
 - Paper: Edward Qian (2011) "Risk Parity and Diversification"
 - Code

```
wt_RPP = function(covmat) {
    opt = rp(x0 = rep((1/n), n), P = covmat, mrc = rep((1/n), n))
    w = getx(opt) %>% drop()
    w_mv = (w / sum(w))
    return(w_mv)
}
```

- 2) 모멘텀 기반 자산배분전략(Momentum basic Asset Allocation)
 - ㄱ) CSMP(Cross Section Momentum Portfolio) : 상대 모멘텀 포트폴리오
 - Paper : Jegadeesh and Titman(1993) "Returns to Buying Winners and Selling Losers: Implication for Stock Market Efficiency"
 - Code

```
MOM = function(data, lookback,select){
    ep = endpoints(data, on = 'months')
    lookback = lookback
    wts = list()
    wt_zero = rep(0, ncol(data)) %>% setNames(colnames(data))
    for (i in (lookback+1) : length(ep)) {
        sub_ret = data[ep[i-lookback] : ep[i] , ]
        cum = Return.cumulative(sub_ret)
        K = rank(-cum) <= select
        wt = wt_zero
        wt[K] = c(1/select)
        wts[[i]] = xts(t(wt), order.by = index(data[ep[i]]))}
    wts = do.call(rbind, wts)
    mom = Return.portfolio(data,wts, verbose = TRUE)
    return(mom)
}</pre>
```

- ㄴ) DMP (Dual Momentum Portfolio) : 듀얼 모멘텀 포트폴리오
 - Paper : Gary Antonacci. (2012). "Risk Premia Harvesting Through Dual Momentum
 - Code

```
Dual MOM = function(data,BM, lookback,select){
  ep = endpoints(data, on = 'months')
  lookback = lookback
  wts = list()
  whs = list()
  wt_zero = rep(0, ncol(data)) %>% setNames(colnames(data))
  wh_zero = rep(0, ncol(BM)) %>% setNames(colnames(BM))
  for (i in (lookback+1) : length(ep)) {
    kospi_sub_ret = BM[ep[i-lookback] : ep[i] ,1 ]
    kospi cum = Return.cumulative(kospi sub ret)
    wh = rep(0, 2)
    wh[1] = ifelse(kospi_cum > 0, 1, 0)
    wh[2] = 1 - wh[1]
    whs[[i]] = xts(t(wh), order.by = index(BM[ep[i]]))
    stock sub ret = data[ep[i-lookback] : ep[i] , ]
    stock_cum = Return.cumulative(stock_sub_ret)
    K = rank(-stock_cum) <= select
    wt = wt_zero
    wt[K] = c(1/select)
    wts[[i]] = xts(t(wt), order.by = index(data[ep[i]]))
```

2.5. 프로그램 구조도

2.6. 소프트웨어 개발환경

데이터 수집	YAHOO!	Yahoo finance https://finance.yahoo.com/
데이터 분석 및 가공		R https://www.r-project.org/ R 3.5.3
데이터 분석 및 가공	RStudio	https://www.rstudio.com Server v1.2.5001
데이터 활용 (웹페이지 제작)	Shiny	Shiny(Rstudio) https://shiny.rstudio.com/
운영체제	Windows 10 / 64bit 운영처	 제

3. 소프트웨어 설명

3.1. 소프트웨어 개발 규모

단계	분류	주요내용						
	공정구현	.개발환경(언어,프레임워크) 선정 .개발계획 개발검토						
분석	시스템 요구분석	.시스템 요구명세 작성 .시스템 요구사항 평가						
	소프트웨어 요구분석	.소프트웨어 요구명세 작성 .소프트웨어 요구사항 검토 .데이터 가이드에서 데이터 수집 .R을 통한 데이터 분석						
	시스템 구조설계	.시스템 구조 설정 .시스템 구조 및 항목 요구사항 검토						
설계	소프트웨어 구조설계	.소프트웨어 구조 설정 .소프트웨어 통합테스트 및 일정 정의 .소프트웨어 항목의 구조 및 설계						
	소프트웨어 상세설계	.소프트웨어 구성품 상세설계 .알고리즘(전략) 설계 .OHLC 데이터 구조 설계 .소프트웨어 통합테스트 및 일정 갱신 .상세설계 및 테스트 요구사항 검토 .UI 구성 및 설계 .자산 상관관계						
구현	소프트웨어 코딩 및 구현	OHLC 데이터 조작 소프트웨어 통합테스트 및 일정 갱신 상세설계 및 테스트 요구사항 구현 소프트웨어 코딩 및 테스트결과 검토 알고리즘(전략) 구현 UI(사용자 인터페이스) 구현 웹페이지(Shiny) 서비스 구현						
	시스템 및 데이터 테스트	.OHLC 데이터 검토 및 테스트 .전략별 알고리즘 테스트 .차트(.csv) 내보내기 및 데이터 테스트						
테스트	UI 및 웹페이지 테스트	.사용자 인터페이스 검토 및 테스트 .웹페이지(Shiny) 구동 테스트						
	소프트웨어 통합	.통합계획 개발 .통합계획 설계, 코드, 테스트 합동검토						

3.2. 소프트웨어 기술적 독창성

뉴지스탁(http://intro.newsystock.com/IntroB2C.aspx)은 국내 한정된 10년의 개별 주식 데이터를 통한 시뮬레이션 결과 및 추천 포트폴리오를 제공한다. 그에 반해 Fund DIY 는 전 세계 20000만 가지 이상의 수시로 업데이트 되는 ETF(상장 지수 펀드)의 빅데이터를 대상으로 활발히 연구 중인 주제에 대한 최신 전략 개발 및 구현된 알고리즘을 통해 시뮬레이션 결과를 제공한다는 점에서 기술적 독창성을 가지고 있다.

4. 응용 분야

4.1. 기대효과

- 기대 수익률 증가 : 펀드를 들게 되면 운용 수수료 및 세금이 포함되어 장기적으로 운용할수록 기대 직접투자를 하였을 때보다 기대 수익률은 감소하게 된다.

반면 스스로펀드를 운용하게 되면 수수료 및 세금을 최소화 할 수 있어 장기적인 기대수익률이 증가하게 된다.

- 가계 자산의 위험 감소 : 미국 가계의 자산은 주식, 채권, 부동산으로 배분되어있다. 반면 국내 가계의 자산의 80% 는 부동산으로 되어 있다.

가계의 자산이 한 자산에 편중되는 것은 높은 위험을 가지고 있다는 뜻이다. 따라서 Fund DIY를 통해 전 세계를 대상으로 자산배분을 하게 되면 자산에 대한 위험이 감소하게 된다.

4.2. 활용방안

- 적극적 운용을 통한 노후 소득 증대 : 노후를 준비하는 중장년층에게 안정적인 자산증식을 통해 노후 대비를 할 수 있음
- 자신에게 맞는 최적 펀드 설계 : 자신이 원하는 자산과 전략알고리즘을 선택함으로써 자신의 입맛에 맞는 최적 펀드를 설계할 수 있음

4.3. 사업화 가능성

- 국내 증권사 및 자산운용사와 제휴 협력을 맺어 공동으로 플랫폼 서비스를 런칭

5. 작품제작팀

No.	구분	성명	소속(학교)	부서(학과)	입학년도	관심분야
1	조장	김민찬	조선대학교	컴퓨터공학과	2012년	프로그래밍
2	팀원	박유영	조선대학교	컴퓨터공학과	2016년	프로그래밍
3	팀원	최영규	조선대학교	컴퓨터공학과	2010년	프로그래밍
4	4 팀원	홍성주	조선대학교	컴퓨터공학과,	201213	경제학
4				경제학과	2012년	프로그래밍

6. 작품 제작 주요일정 및 단계별 성과

	수행기간													
추진 내용		9 월			10 월				11 월				12 월	
	2	3	4	1	2	3	4	1	2	3	4	1	2	
경제&투자 스터디(꾸준히)														
프로젝트 회의 및 계획														
data guide에서 데이터수집(1주)														
R을 통한 데이터 분석(3주)														
데이터 분석 및 개발														
데이터 시각화 및 활용														
유지보수 및 테스트														