Dividing Rock

limit: 1 sec, 512mb

เรามีก้อนหินอยู่ n ก้อน แต่ละก้อนกำกับด้วยหมายเลข 1 ถึง n เราต้องการแบ่งก้อนหินเหล่านั้น ออกเป็น k กอง โดยที่แต่ละกองต้องมีหินอย่างน้อย 1 ก้อน เราอยากทราบว่าสามารถแบ่งได้กี่วิธี

ตัวอย่างเช่น ถ้า n=3 และ k=2 หมายถึงเรามีหินหมายเลข 1,2 และ 3 โดยจะต้องแบ่งออก เป็น 2 กอง เราจะสามารถแบ่งได้ 3 วิธีคือ วิธีที่ 1: $\{1,2\}$ และ $\{3\}$, วิธีที่ 2: $\{1,3\}$ และ $\{2\}$ และ วิธี สุดท้าย $\{2,3\}$ และ $\{1\}$ (ให้สังเกตว่า แต่ละกองนั้นไม่มีลำดับกำกับ ดังนั้น การแบ่งเป็น กองแรก $\{1,2\}$ และ กองสองเป็น $\{3\}$ กับ การแบ่งเป็น กองแรก $\{3\}$ และกองสองเป็น $\{1,2\}$ นั้นถือว่าเป็นวิธี เดียวกัน)

จงเขียนโปรแกรมเพื่อคำนวณจำนวนรูปแบบการแบ่งที่เป็นไปได้ทั้งหมด

ข้อมูลนำเข้า

• บรรทัดแรกประกอบด้วยจำนวนเต็มสองตัวคือ n และ k โดยที่ 1 ≤ k ≤ n ≤ 500

ข้อมูลส่งออก

มีบรรทัดเดียวซึ่งระบุจำนวนวิธีที่เราสามารถแบ่งได้แตกต่างกันทั้งหมด อย่างไรก็ตาม ค่าดัง กล่าวอาจจะมีจำนวนที่ใหญ่มาก จึงให้พิมพ์เศษของการหารดังกล่าวด้วย 1,997 แทน

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2	3
4 1	1
4 2	7
4 3	6
7 3	301
499 23	1432

คำแนะนำ

- ให้ลองพิจารณาว่า เมื่อ n < k นั้น เราจะไม่สามารถแบ่งหินดังกล่าวให้ตรงกับเงื่อนไขได้เลย
- ให้ลองพิจารณาว่า เมื่อ k = 1 นั้น คำตอบจะไม่ขึ้นอยู่กับค่า n เลย
- ให้ลองคิดดูว่า ถ้าเราสามารถหาคำตอบสำหรับค่า n, k ได้แล้ว การหาคำตอบของค่า n+1, k จะสามารถทำได้อย่างไร
- รับประกันว่า 40% ของข้อมูลทดสอบนั้น จะมีค่า k = 2

การคำนวณค่าคำตอบแบบหารเอาเศษ

โจทย์ข้อนี้แทนที่จะให้ตอบตัวเลขคำตอบโดยตรง กลับให้ตอบผลเศษของการหารคำตอบด้วย ค่า 1997 แทน ซึ่งมีเหตุผลมาจากค่าคำตอบนั้นจะใหญ่เกินตัวแปรขนาด 32bit ได้ ในการคำนวณค่า คำตอบนั้น ต้องใช้คุณสมบัติของการหารเอาเศษดังนี้

กำหนดให้ a, b, m คือตัวเลขจำนวนจริงใด ๆ และ % คือการหารเอาเศษ (a * b) % m = ((a % m) * (b % m)) % m (a + b) % m = ((a % m) + (b % m)) % m