Name: Mofazzal Hossain

Student Number: R00225120

Class Group: COMP1D-X

Download and install Logisim, available on Canvas

<u>Lab 4 – Basic Logic Gates</u>

1. AND GATE

When ANDing 2 bits, the output is 1 (i.e. on / high / true) only when both inputs are 1.

Symbol for AND = A.B

i) Complete the truth table for an AND gate:

A	В	A.B		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

ii) Implement a simple AND gate using Logisim. Copy and paste the diagram below:

2. OR GATE

When using an OR gate, the output is 1 if either/both inputs are 1.

Symbol for OR = A+B

i) Complete the truth table for an OR gate

A	В	A+B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

ii) Implement a simple OR gate using Logisim. Copy and paste the diagram below:

3. NOT GATE

A NOT gate gives the opposite value of the input, i.e. a 0 becomes a 1, and a 1 becomes a 0.

Symbol for NOT = A = A'

i) Complete the truth table for an NOT gate:

A	\overline{A}
0	1
1	0

ii) Implement a simple NOT gate using Logisim. Copy and paste the diagram below:

4. NAND GATE

A NAND gate returns the opposite value to an AND gate. When NANDing 2 bits, the output is 0 only when both inputs are 1.

Symbol for NAND = $\overline{A.B}$

i) Complete the truth table for an NAND gate:

A	В	$\overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

ii) Implement a simple NAND gate using Logisim. Copy and paste the diagram below:

5. NOR GATE

A NOR gate returns the opposite value to an OR gate. When using a NOR gate, the output is 0 if either/both inputs are 1.

Symbol for NOR = $\overline{A + B}$

i) Complete the truth table for a NOR gate:

A	В	$\overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

ii) Implement a simple NOR gate using Logisim. Copy and paste the diagram below:

6. EXOR GATE

EXOR means exclusive OR. The output is 1 only if either input is 1, excluding the case when both are 1.

Symbol for EXOR = $A'B + AB' = A \oplus B$

i) Complete the truth table for an EXOR gate:

A	В	$\mathbf{A} \oplus \mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	0

ii) Implement a simple EXOR gate using Logisim. Copy and paste the diagram below:

7. Implement Boolean expressions as circuits

Draw circuits for the Boolean expressions outlined below.

Complete the truth tables for these expressions and verify the truth tables using your circuits.

- 1. \overline{A} . $B + \overline{C}$
- 2. $\overline{A.B} + C$
- 3. $\overline{A}.\overline{B} + C$
 - 01. Boolean expressions : \overline{A} . $B + \overline{C}$

1. Truth Table:

A	В	С	A'	C'	\overline{A} . $B + \overline{C}$
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	1	1	1
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	0	0	0

2. Boolean expressions : $\overline{A.B} + C$

2. Truth Table:

A	В	С	AB	(AB)'	$\overline{A.B} + C$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	0	1

3. Boolean expressions: $\overline{A}.\overline{B} + C$

3. Truth Table:

A	В	С	A'	В'	A'B'	$\overline{A}.\overline{B} + C$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	0
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	1	0	1	0	1
1	1	0	0	0	0	0
1	1	1	0	0	0	1