

APPLICATION 1: Median Finding

Given a set S of n numbers, define rank(x) = # of elements of S < X

lower median = element of rank [n+1] If n is odd, these are equal

Eg: Median $(\{2,-5,3,10,1,-1,8\}) = 2$

We will solve a more general problem:

Given a set 5 of n numbers and a number i ∈ {1,2,3,...,n} find the element $x \in S$ s.t. rank (x) = i (that is, the i-th smallest element)

Naïve algorithm: Sort and return ith element of sorted list

O(n lg n)
e.g, using mergesort Running Time

	- h.	- مال	ge	•	(ام ا	Б	ho	He.	r 7			(4)	2	(3)
																	•		
			Flo																
)(n)) '	WSI	J	d	iV.	de	or	nd		ione	zue	-۲						
	de	ea:											#(اازب	See	how)		
(Ò	Pi	ck	5=1	me		X (e 5	5	0	leve	بالكر							
(0	<u> </u>	Con	mpi	ıte				> '	{	, e :	5	1	u «	< %	ζ	(ND Y C	pea	. ts,
	<u>ب</u>																ω. (.	•.g.;)
						(57	= 1		y E	S	-	y	> X	5				
				-															
		S	=	<u></u>	L			×		(51								
			~																
3			. 4																
		if	۲	an k	< (>	c)	>	i,	fr	'n٨	ماح	ene	nt	of					
							1	ran	k	i	in	the	, δι	ıbse	t L	,			
		lf	h	ank	(n) (_		subsa	. t	G	
							V	٠٠, K			, 	~(~)		on l	·~	- W 34	. •	U (

THE ALGORITHM.

1. Divide the n elements into n groups of 5 elements each.

(Note: Each group descriptions of 5 dements sorting to the sortine

T(3) 3. Recursively find the median x of the 1/5 group medians.

(4. (As before) Find sets L and Gr s.+

L= {y & 5 | y < 2 } G = {y & 5 | y > x}

S = L -> x -- G -->

06)

time

rank (x) = | | | + |

ρ	roof	•	6	7	imo	luci	tion							C ₂ =	the	Con	orant		
		-		U											- Jua	/	Olm.		— 、
		Su	PP	٥٥٧	OX	w	cla	im	tn	re	Por	. <	m	•				(8)
														1					
			太	en,	•	T(n) <		1(2	5).	r T	-(<u>3</u>	<u>~</u>).	+ C	22				
							6		5	+ 3	4	+ C;	22						
							5	19	_ n	+	1.5	L							
							=	Cį	r +	• (CZ	_ (2					
								<i>'</i> (,	۸.		5 00	/6		set		- 2	0.0		
								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			DV		wc	361	ر,	7 2	٠ ک	•	
				r.l		1.						1					\	0	
				L'h	J	line	ean		me		an	<u>, </u>	not,	sar	1, <u>Y</u>	log	n)	•	
						- 1)			1,	. 3								
						ラ [se co	ms (1/5-	ナラ	4	Z :	<u></u>					
						->	Sýn:	fice	nt	(4	mst	ant	fac	ctw)	Y	edu	actie	n i	'n
							r ^	9918	m :	be	, pe	er	ste	P					
						フ	ger	me	tric	Se	rie	S							
							•						2 4	y k	Me	lio.	忲.	Ŀљ	+
								7					•	s bi) 12	F Y	ear	Jirs (Sia	ر ر
															,	,			
				Ex	: (uh at	- if	91	ماران م	s l	nad	7	ele	ment	3 ?	3	3 ?		
			•				J	J	U										

App	<u> L1</u>	CA	T)	N	2	: <u>/</u>	アス	EC	πE	R	Μι	LLT	Γ)P	LIC	ĄΤ	ION
INP									m be	દાર	(2, b			(9)
	gra				•											
				_	01					#	bīt	брз				
		C	0	0 0	0 0	0				as	z T	nee	(م² ا) • •	add	
	_				0		_			n	m	rege			it e	
-										0 Y	1					
					le Q							50	льр	robl	ems	?
7	ΙŊ			1.												
	Vi			a	9		~/ <u>s</u>	• >	<u> </u>	· Y	6			all	n/2	-bit
				P	=	-	2 2	. (7	+ Z	-			Au	mbei	~ 5

Then, a.b = 2°. XW + YZ+ 2^{1/2}. (xZ+YW) products of 2 1/2-bit numbers T(n) = 4T(n/2) + O(n)= $\Theta(n^{1924})$ by Master theorem $=\Theta\left(\Lambda^{2}\right)$ IDEA 2 : [Anatoli Karatsuba 1962] -> Same way as before to partition a, b > compute X.W and Y.Z > but DO NOT compute X.2 and Y.W separately. - Compute instead (X+Y). (Z+W) KEY "MAGIC" IDENTITY :) $(X+Y)\cdot(Z+U) = (XZ+YW) + XW+YZ$

-> We know

(x+y)(z+w), xw, yz

→ We can compute XZ+YW

= (x+y)(z+w) - xw - yz

-> Now T(n) = 3T(n/2) + B(n)

 $= \Theta(n^{\log_2 3}) = \Theta(n^{1.58})$

Is this the best possible?

(Schönage & Strassen 1971) O(n-lgn-lglgn)

[Fürer 2007] n.lgn. 2 (g*n)

lg*n = prin number of times you take iterated logs starting with n until you reach <1.

Note: (265536) = 5

of atoms in Observable universe:)

(1) Matrix Multiplication: Given two nxn matrices A and B Gompute A.B.	
. Given two nxn matrices A and B Compute A.B.	
Compute A.B.	
• Trivial: $O(n^3)$	_
• Best Possible: O(n²)	
I need to look at each one at least on	
meed to look at sast one at reast on	
· Subproblems? Blockvise multiplication	
$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$	
these is \[\begin{array}{c} A_{11} \ B_{11} + A_{12} \ B_{21} & A_{11} B_{12} + A_{13} \\ \end{array}	,B,,
	_B ₂
& same firi B	
8 subproblems?	
$T(n) = 8T(n/2) + O(n^2) = O(n^3)$	
Strassen 1969: 7 subproblems	
$\Rightarrow o(\eta^{g_{2}})$	

	We	did not	say	what	these	7 subproblems	5
	are	: See	CLRS.				
(a)	A G	imbinatori	al Ap	pli cution	n of M	latrix Mult	•
	G	unting	# tric	ingles	và a	graph	
		un	directed			sith n modes	
	•	Gives	Graph	(n = ((V, E) u	sith n mdes	
		outpu	f #	triangles	5		
			= { Ci,j	,k): \	there on	edges () E G	
				(i,j),	(j,k), (i,l	v E E S	
				. 2\			
	•	Trivial	: 0((n ³)			
		daim	: Time	t. 0	unt #	triangles	
			£ T1	me to	multipl	triangles two y nxn mat	ńce:
						0 ^ 1 1 1	
	Algorith	nm					
	-0	_					
	· L	et A be	the .	adjacen	ay me	utrix of Go	
= Matrix Mult	\ • C	mpute	A ²				
		claim: Gi)th entry	of A2	is the #	length-2 patts een i and j	
					betu	een , and y	
	• [r	italize	counter	= 0			
	• 1	for each	io	nd j:			

