P-ISSN: 2548-5962 ORIGINAL ARTICLE

E-ISSN: 2548-981X

https://ojs.unud.ac.id/index.php/jbn

Korelasi Ankle Brachial Index dengan Pulse Wave Handheld Doppler Penderita Kaki Diabetik

Johanes Rumaratu^{1*}, Richard Sumangkut², Djony Tjandra², Billy Karundeng², Fima L. F. G. Langi³

- ¹ Peserta Program Pendidikan Dokter Spesialis (PPDS-I) Ilmu Bedah Fakultas Kedokteran Universitas Sam Ratulangi, Manado.
- ² Staf Pengajar Ilmu Bedah Divisi Bedah Vaskular Fakultas Kedokteran Universitas Sam Ratulangi, Manado.
- ³ Staf Pengajar Ilmu Kesehatan Masyarakat Fakultas Kedokteran Universitas Sam Ratulangi, Manado.

ABSTRAK

Tujuan: Untuk mengetahui hubungan antara hasil pemeriksaan *Ankle Brachial Index* (ABI) dengan gambaran spektral *Doppler* vaskular pada arteri poplitea, arteri tibialis posterior, dan arteri dorsalis pedis pada penderita kaki diabetik. **Metode:** 33 pasien kaki diabetes yang memenuhi kriteria inklusi dari RSUP Prof. Dr. R. D. Kandou. Pengukuran ABI dilakukan dan spektral arteri poplitea, tibialis posterior, dan dorsalis pedis diuji menggunakan *Pulse Wave Handheld Doppler* (PWHD). Hasilnya akan diproses secara statistik menggunakan desain potong lintang untuk mengetahui hubungan keduanya. **Hasil:** Sebagian dari jumlah pasien memiliki gelombang bifasik di 3 arteri. Gelombang trifasik terlihat dominan di arteri poplitea (56%) dan juga umumnya pada dua arteri lainnya (30%). Gelombang arteri menunjukkan adanya hubungan dengan ABI. Dibanding dengan gelombang bifasik, pasien dengan gelombang trifasik rata-rata memiliki ABI yang meningkat (0,15; p<0,001 pada arteri poplitea, dan 0,06; p=0,006 pada arteri tibialis posterior). Secara nyata, gelombang monofasik cenderung menurunkan ABI pada sejumlah pasien dibandingkan gelombang bifasik (-0,18; p<0,001 pada arteri tibialis posterior dan -0,15; p<0,0041 pada arteri dorsalis pedis). **Simpulan:** Didapatkan hubungan yang signifikan antara ABI dengan hasil gelombang spektral *Doppler* pada semua segmen arteri bawah lutut.

Kata kunci: non-invasif, penyakit arteri perifer, kaki diabetik.

DOI: https://doi.org/10.24843/JBN.2021.v05.i01.p01

ABSTRACT

Aim: To determine the relationship between the results of the Ankle Brachial Index (ABI) examination and the vascular Doppler spectral image of the popliteal artery, posterior tibial artery and dorsalis pedis artery in diabetic foot patients. **Methods:** 33 diabetic foot patients met inclusion criteria from Prof. DR. R. D. Kandou General Hospital. ABI measurements were taken and spectral popliteal arteries, posterior tibial, and dorsalis pedis were examined using Pulse Wave Handheld Doppler (PWHD). The result will be processed statistically with cross sectional design to know correlations between them. **Results:** About half the patients had biphasic waveform in the three arteries. Triphasic flow was seen dominant in popliteal artery (56%), and also quite common (30%) in the order two arteries. The waveform of the arteries appeared to have a relationship with ABI. Compared to biphasic waveform, patient with Triphasic waveform on average had an increased ABI (0.15; p<0.001 in popliteal artery, and 0.06; p=0.006 in posterior tibial artery). In contrast, monophasic waveform tends to decrease ABI among patient as compared to biphasic waveform (-0.18; p<0.001 in posterior tibial artery and -0.15; p<0.0041 in dorsalis pedis artery). **Conclusion:** There is a significant correlation between the ABI with spectral wave Doppler in all segments of the artery bellow knee.

Keywords: non-invasive, peripheral artery disease, diabetic foot.

^{*}Penulis korespondensi: johanesrumaratu@yahoo.com.

PENDAHULUAN

Berdasarkan data WHO dari International Working Group in the Diabetic Foot, "diabetic foot" didefinisikan sebagai penderita kaki diabetik dengan ulserasi, infeksi, dan / destruksi jaringan di bagian dalam akibat abnormalitas persarafan disertai berbagai tingkat kelainan pembuluh darah perifer di tungkai bawah. 1 Penyakit kaki diabetik adalah salah satu komplikasi paling diabetes mellitus.² Mereka dari memiliki potensi morbiditas dan mortalitas yang besar, disertai dengan kerugian ekonomi yang besar dan kualitas hidup yang sangat menurun.³ Setiap penderita diabetes mellitus memiliki peluang 15% hingga 25% untuk mengalami ulkus kaki diabetik selama masa hidup mereka, dan tingkat kekambuhan 50% hingga 70% selama 5 tahun berikutnya.⁴ Lipsky dkk. melaporkan risiko mortalitas 50% lebih tinggi untuk pasien diabetes dengan riwayat ulkus kaki dibandingkan dengan pasien non diabetes.⁵

International Diabetes Federation (IDF) melaporkan perkiraan hampir 400 juta orang dewasa di 219 negara dan wilayah dengan diabetes untuk tahun 2013 dan memproyeksikan jumlahnya akan meningkat menjadi hampir 600 juta pada tahun 2035.6 Indonesia merupakan salah satu dari 10 negara teratas untuk prevalensi dan jumlah penderita diabetes tahun 2013 dan 2035.6

Munculnya penyakit arteri perifer (PAP) oklusi terjadi hampir 3 kali lebih sering pada penderita diabetes. 1 Studi epidemiologis telah mengkonfirmasi hubungan antara diabetes dan peningkatan prevalensi PAP.⁷ Pada keadaan diabetes dengan PAP didapatkan lesi arteri yang lebih difus, terjadi pada kedua tungkai (bilateral), dan kecenderungan lebih menyerang segmen arteri di bawah lutut.¹ diagnosis oleh karena itu, dini pengobatan PAP pada pasien dengan diabetes sangat penting untuk mengurangi risiko gelombang Doppler non-patologis dianggap

kejadian kardiovaskular, meminimalkan The risiko cacat panjang, jangka dan meningkatkan kualitas hidup.8

Pemeriksaan vaskular perifer melalui rasio darah sistolik pergelangan kaki dengan tekanan darah dibagi sistolik yaitu Ankle Brachial Index Brakialis, (ABI).^{7,9} Awalnya dijelaskan oleh Winsor, pada tahun 1950, indeks ini awalnya diusulkan untuk diagnosis non-invasif PAP ekstremitas bawah.9 ABI pengukuran yang praktis dan cukup akurat untuk mendeteksi PAP.⁷ ABI juga merupakan tes diagnostik sederhana dan murah untuk PAP.¹⁰ Namun, telah menunjukkan akurasi variabel untuk identifikasi stenosis yang signifikan. ¹⁰ Pernyataan konsensus *American* Association Diabetes (ADA) merekomendasikan agar skrining ABI dilakukan pada semua individu diabetes >50 tahun.⁷ Secara umum, sensitivitas ABI dalam mendeteksi PAP berkisar dari 80% hingga 95% dan spesifisitas dari 95% hingga 100%, dengan nilai prediksi positif dan negatif lebih dari 90%.11

Penentuan ABI mungkin memiliki nilai pada beberapa pasien terbatas dengan diabetes, karena kalsifikasi arteri tibialis dapat menjadikannya tidak dapat dikompres, sehingga menghasilkan nilai ABI yang sangat tinggi (>1,40). Pada keadaan ini tes vaskular non-invasif lainnya harus dipertimbangkan untuk membuat diagnosis PAP.⁷

Pulse Wave Handheld Doppler (PWHD) vaskular merupakan modalitas yang mudah tersedia dan non-invasif untuk evaluasi arteri ekstremitas inferior dan dapat mendeteksi tingkat keparahan gangguan aliran darah atau PAP yang sedang berlangsung, 12 dengan sensitivitas 42.8% dan spesifitas 97.5%.¹³ Dalam praktik klinis, PWHD telah terbukti dan memiliki tingkat reliabilitas yang tinggi. 12 Dalam melakukan analisis audio, bentuk multifasik, yang mencakup bunyi bifasik (dua) atau trifasik (tiga). Sebaliknya, bentuk gelombang monofasik adalah bunyi tunggal yang dianggap patologis. Hilangnya bentuk gelombang trifasik dalam pemeriksaan *Doppler* dapat mengarah ke penyakit oklusif. 1

Penelitian ini dilakukan untuk mengetahui apakah ada hubungan antara hasil pemeriksaan ABI dengan gambaran spektral *Doppler* vaskular pada arteri poplitea, arteri tibialis posterior, dan arteri dorsalis pedis pada penderita kaki diabetik, yang kemudian dapat menambah kegunaan dari pemeriksaan fisik status vaskular tersebut dalam praktik klinis sehari-hari.

METODE

Jenis penelitian ini adalah observasional dengan desain potong lintang. Penelitian dilakukan di Bagian Bedah dan Bagian Penyakit Dalam Rumah Sakit Umum Pusat Prof. Dr. R. D. Kandou Manado dan dilaksanakan pada bulan September 2019 sampai Oktober 2019. Subyek penelitian ialah pasien ulkus kaki diabetik yang dirawat di RSUP Prof. Dr. R. D. Kandou Manado serta memenuhi kriteria inklusi dan eksklusi.

Kriteria inklusi dalam penelitian ini ialah pasien ulkus kaki diabetik, keadaan pasien memungkinkan untuk pemeriksaan Doppler, bersedia untuk diikutkan dalam penelitian ini memenuhi aturan-aturan dan penelitian sedangkan kriteria eksklusi ialah pasien dengan ulkus akibat trauma, keganasan, koagulopati, peripheral vascular disease (PVD) yang lain, menggunakan obat-obatan vasodilator atau vasokonstriktor, menolak ikut serta dalam penelitian, belum/tidak jelas diagnosisnya, atau sudah menjalani amputasi mayor pada tungkai yang diperiksa.

Besar sampel dihitung berdasarkan formula yang diajukan Hsieh dkk. dan didapatkan jumlah sampel 33 pasien.

Variabel penelitian ialah temuan spektral *Doppler* dan nilai ABI. Regresi linear digunakan untuk mengkuantifikasi hubungan antara ABI dan PWHD. Hasil pemodelan regresi dilaporkan sebagai nilai estimat (β), batas bawah dan atas dari interval kepercayaan (*confidence interval*, CI) 95%, dan nilai p.

HASIL

Dalam periode September 2019 sampai Oktober 2019, terdapat 33 pasien ulkus kaki diabetik yang memenuhi kriteria inklusi dan menjadi sampel penelitian di ruang rawat inap serta rawat jalan Bagian Bedah dan Bagian Penyakit Dalam RSUP Prof. Dr. R. D. Kandou Manado.

Tabel 1 menunjukan mean usia pasien sekitar 58 tahun dengan 9 standar deviasi. Terdapat hampir 90% pasien dengan status diabetes tidak terkontrol. Kurang lebih sebagian dari pasien dalam penelitian memiliki spektral wave Doppler jenis bifasik pada ketiga arteri. Gelombang monofasik terdeteksi pada 21% spektral arteri tibialis posterior dan hampir separuh spektral arteri dorsalis pedis, gelombang ini tidak terdeteksi pada arteri poplitea. Distribusi ABI sedikit miring ke kanan dengan median 0,7 (IQR 0,7 -0,8). Hampir 80 % merupakan oklusi ringan (ABI 0,70 - 0,89).

Tabel 2 dan Gambar 1 menunjukan hubungan bermakna ditemukan pada ketiga arteri untuk model univariat. Pada arteri poplitea dan tibialis posterior, terlihat kecenderungan gelombang trifasik sedikit meningkatkan skor ABI (β =0,15; p<0,001 untuk arteri poplitea, dan β =0,06; p<0,006 untuk arteri tibialis posterior). Gelombang monofasik cenderung menurunkan skor ABI (β =-0,18; p<0,001 untuk arteri tibialis posterior, dan β =-0,15; p<0,001 untuk arteri dorsalis pedis).

Tabel. 1. Karakteristik Penderita Kaki Diabetik dalam Penelitian

	Tabel, I. Kajakieristik Felidetta Kaki Diabetik dajani Felicitati						
Variabel		(n=33)	, ,		(n=16) Wanita		p ^a
	n (%)	Med	n (%)	Med	n (%)	Med	
		(Q1:Q3)		(Q1:Q3)		(Q1:Q3)	
Usia, µ (SD)	57,8 (9,1)		57,7 (8,0)		57,8 (10,2)		NS
HT	25 (76)		12 (75)		13 (76)		NS
Merokok	17 (52)		12 (75)		5 (29)		0,023
Status DM							
Tidak terkontrol	29 (88)		14 (88)		15 (88)		NS
Terkontrol	4 (12)		2 (12)		2 (12)		
Rasio Ur Cr							
Abnormal	27(82)		15(94)		12(71)		NS
Normal	6 (18)		1 (6)		5(29)		
Leukosit, μ (SD)		14,6		17,3		14,6	
		(10,8;22)		(12,1;24)		(10,7;20,9)	
Albumin, μ (SD)	2,7 (0,6)		2,8 (0,6)		2,6 (0,6)		NS
Spektral A.poplitea							
Bifasik	15(45)		5(31)		10(59)		
Trifasik	18(55)		11(69)		7(41)		NS
Spektral A.tibialis	()		()		()		
posterior							
Monofasik	7(21)		3(19)		4(24)		
Bifasik	16(48)		8(50)		8(47)		NS
Trifasik	10(30)		5(31)		5(29)		110
Spektral A.dorsalis	10(30)		3(31)		3(29)		
pedis							
*	17(40)		((20)		10(50)		NC
Monofasik	16(48)		6(38)		10(59)		NS
Bifasik	17(52)	0.5(0.5.0.0)	10(62)	0.0(0.7.0.0)	7(41)	0.7(0.6.0.7)	0.044
ABI, μ (SD)		0,7(0,7;0,8)		0,8(0,7;0,8)		0,7(0,6;0,7)	0,244
0,40-0,69	8(24)		3(19)		5(29)		NS
0,70-0,89	25(76)		13(81)		12(71)		

ABI: ankle brachial index, SD: standar deviasi, NS: no significant, Ur: ureum, Cr: kreatinin, Q1: quartil 1, Q3: quartil 3.

DISKUSI

Penelitian ini mencakup 33 subyek yang memenuhi kriteria inklusi dan eksklusi dari RSUD Prof. DR. R. D. Kandou, Manado. Pada Tabel 1 terlihat bahwa jumlah pasien ulkus kaki diabetik perempuan (17 orang) sedangkan laki-laki (16 orang). Hal ini sesuai dikaitkan dengan penelitian oleh Kristiani¹⁴ dan Wagiu¹⁵ di Manado yang melaporkan bahwa jenis kelamin perempuan lebih banyak daripada laki-laki. 14 Tetapi data tersebut tidak sesuai dengan beberapa penelitian epidemiologi ulkus kaki diabetik lainnya di Rumania,3 Sydney,16 dan Mesir,17 yang menunjukkan bahwa kejadian ulkus kaki diabetik terbanyak adalah pada laki-laki.

Hasil penelitian menunjukan bahwa Mean usia pasien ulkus kaki diabetik adalah 58

tahun. penelitian oleh Zaine dkk.16 dan dkk.³ menunjukkan Nwabudike kejadian ulkus kaki diabetik tertinggi adalah pada dekade ke-6. Penelitian di Amerika juga melaporkan bahwa presentase kaki diabetik paling tinggi pada usia 45-64 tahun. Rentang usia kejadian ulkus kaki diabetik di Indonesia lebih muda dibandingkan penelitianpenelitian epidemiologi serupa di luar negeri. Hal ini diperkirakan disebabkan oleh tingkat kesadaran masyarakat terhadap penyakit DM yang masih rendah. Pasien-pasien DM sebagian besar tidak berobat teratur sehingga komplikasi dari DM itu sendiri, seperti ulkus kaki diabetik, terjadi lebih cepat daripada seharusnya apabila kadar gula darah selalu terkontrol dengan baik.

Tabel 2. Model Regresi Linear Ankle Brachial Index pada Penderita Kaki Diabetik dengan Pulse Wave Handheld Doppler sebagai Kovariat Utama

	Perubahan ABI					
Hasil	Univariab	el	Multivariabel			
	β (95% CI)	р	β (95% CI)	р		
Usia	0,00(0,00:0,00)	0,457	0,02(-0,04:0,08)	0,629		
Wanita vs pria	-0,02(-0,10:0,05)	0,495	-0,07(-0,12:-0,01)	0,037		
DM terkontrol vs Tidak	0,06(-0,05:0,16)	0,293	0,03(-0,01:0,08)	0,185		
terkontrol						
HT	-0,05(-0,13:0,03)	0.229				
Merokok	0,05(-0,02:0,12)	0,167				
Dislipidemia	-0,06(-0,13:0,02)	0,142				
Rasio Ur Cr	-0,02(-0,11:0,07)	0,659				
Leukosit	0,00(-0,01:0,00)	0,557	0,00(0,00:0,00)	0,207		
Albumin	0,06(0,00:0,12)	0,066	0,03(0,00:0,06)	0,045		
Spektral Arteri						
Poplitea: Trifasik vs Bifasik	0,15(0,10:0,20)	< 0,001				
Tibialis posterior: Monofasik vs	-0,18(-0,22:-0,13)	< 0,001	-0,13(-0,17:-0,08)	< 0,001		
Bifasik						
Tibialis posterior: Trifasik vs	0,06(0,02:0,10)	0,006	0,02(-0,02:0,06)	0,278		
Bifasik						
Dorsalis pedis: Monofasik vs	-0,15(-0,19:-0,10)	< 0,001				
Bifasik						

Gambar 1. Boxplot Hubungan Ankle Brachial Index dan Pulse Waved Handheld Doppler

pasien memiliki riwayat kadar gula darah untuk penyakit kaki diabetik di negara Hal ini sekali terkontrol. lagi menunjukkan kesadaran terhadap penyakit DM yang rendah dengan banyaknya kejadian penyakit DM yang rendah. kadar gula darah yang tidak terkontrol. Pasien-pasien DM baru datang berobat bila pada lebih dari sudah mengalami komplikasi DM yang berat hipertensi Didapatkan pasien dengan 87,8% sebanyak dan penelitian Limpeleh¹³ di Manado yang merupakan faktor

Dalam penelitian ini sebanyak 87,8% hipoalbuminemia. Hal ini merupakan momok berkembang seperti Indonesia dan merupakan salah satu prediktor kesadaran terhadap

Ditemukan komorbiditas seperti: merokok 50% pasien penelitian, pada hampir 80% pasien seperti ulkus kaki diabetik yang terinfeksi. penelitian, dan dislipidemia pada hampir 70% leukositosis pasien penelitian. Hal ini memiliki korelasi hipoalbuminemia yang besar dengan penurunan aliran darah ke sebanyak 90,9%. Hal ini sesuai dengan hasil perifer pada penderita DM, yang tidak lain risiko utama untuk menunjukkan tingginya jumlah pasien kaki terjadinya PAP sesuai dengan panduan PAP diabetik dengan keadaan leukositosis dan oleh European Federation of Internal Medicine (EFIM) vascular working group. 18 Penelitian oleh Rizk dkk.¹⁷ menunjukkan pedis). Hal ini sesuai dengan literatur yang angka kejadian komorbiditas pada pasien menyatakan bahwa pada pasien DM proses ulkus kaki diabetik secara berturut-turut sebagai berikut; merokok 51,25%, hipertensi 43,7%, dan hiperkolesterolemia 32,5%. Angka kejadian hipertensi dan dislipidemia tinggi diperkirakan berhubungan dengan kebiasaan hidup dan diet populasi penelitian penulis yang di Indonesia dengan populasi penelitian Rizk dkk. di Mesir.

Spektral arteri poplitea sedikit didominasi bentuk gelombang trifasik sebanyak 54,5% daripada bifasik 45,5%. Pada arteri tibialis posterior, gelombang bifasik lebih mendominasi sebanyak 48,5%, namun 21,2% pasien memiliki bentuk gelombang monofasik. Untuk arteri dorsalis pedis tidak terpaut jauh yaitu 48% dan 52%. Hampir 80 % penderita kaki diabetik dalam penelitian ini merupakan mild occlusion (ABI amputasi atau kematian.²² 0.89), sedangkan selebihnya besar penderita diabetes telah memiliki pada penderita diabetes.¹⁹

pada penderita Kaki Diabetik dengan Pulse terjadinya untuk arteri $\beta = 0.06$, p<0,006 posterior). Pada arteri Tibialis posterior dan multifaktorial Pedis terlihat gelombang monofasik menurunkan nilai ABI (-0,18; p<0,001 pada arteri tibialis posterior

dan -0,15: p<0,0041 pada arteri dorsalis PAP lebih dominan pada segmen ateri di lutut.1 bawah Sehingga menunjukan gambaran spektral arteri yang bifasik dan monofasik.

Sebagian besar penderita dengan diabetes memiliki faktor risiko kardiovaskular lainnya (merokok, hipertensi dan dislipidemia) yang berkontribusi pada pengembangan PAP.²⁰ Penderita diabetes menunjukkan insiden penyakit PAP yang lebih tinggi di segmen kruris.²¹ Melibatkan tibialis anterior, tibialis posterior, peroneal, dorsalis pedis, dan arteri plantar.²¹ Usia, lamanya diabetes, neuropati perifer berhubungan dengan peningkatan risiko PAP pada pasien dengan proporsi gelombang monofasik dan bifasik DM yang sudah ada sebelumnya.²² Kontrol glikemik yang buruk telah dikaitkan dengan Didapatkan distribusi ABI sedikit miring ke prevalensi PAP yang lebih tinggi dan risiko kanan dengan median 0,7 (IQR 0,7 - 0,8). hasil yang merugikan, termasuk kebutuhan untuk operasi bypass ekstremitas bawah,

Perubahan morfologi bentuk gelombang merupakan moderate occlusion (ABI 0.4 - Doppler berkaitan dengan stenosis dikenal 0,69). Hal ini membuktikan bahwa Sebagian sebagai tanda langsung.²³ Ketika tingkat dan keparahan PAP meningkat, ABI berkurang.¹¹ gangguan vaskularisasi berupa oklusi arteri Oleh karena itu deteksi dini penyakit infrapopliteal dengan kalsifikasi berat yang pembuluh darah perifer harus diusahakan merupakan gambaran klasik penyakit arteri untuk mengevaluasi pedoman pengobatan yang tepat untuk pasien dengan diabetes.²⁴ Tabel 2 adalah model regresi linear ABI perlu diingat bahwa etiologi dan patofisiologi ulkus kaki diabetik Wave Handheld Doppler sebagai kovariat multifaktorial (iskemi, neuropati, dan infeksi) utama. Pada arteri Poplitea dan Tibialis dengan infeksi sebagai penyebab utama Posterior, terlihat kecenderungan gelombang pasien ulkus kaki diabetik datang untuk Trifasik sedikit meningkatkan nilai ABI mendapat perawatan. 19 Sehingga penting (β=0,15, p<0,001 untuk arteri poplitea, dan untuk mengidentifikasi terapi yang dapat tibialis mempengaruhi patofisiologis mekanisme DMuntuk memberikan kecenderungan perawatan jangka panjang yang efektif.²²

SIMPULAN

Terdapat korelasi yang bermakna antara spektral *Doppler* arteri Poplitea, arteri tibialis posterior, dan arteri dorsalis pedis dengan ABI pada penderita kaki diabetik.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih yang tulus kepada Keluarga Kudus Nasareth yaitu Santo Yosep, Santa Perawan Maria, dan Tuhan Kita Yesus Kristus. Terima kasih yang tulus kepada keluarga dan para pembimbing penelitian.

PERNYATAAN

Tidak ada konflik kepentingan dalam laporan ini.

DAFTAR PUSTAKA

- 1. Gerassimidis T, Karkos CD, Karamanos D, dkk. Current endovascular management of the ischaemic diabetic foot. *Hippokratia*. 2008;12:67-73.
- 2. Schaper NC, van Netten JJ, Apelqvist J, dkk. *IWGDF Practical guidelines on the prevention and management of diabetic foot disease*. Netherlands: The International Working Group on the Diabetic Foot; 2019. h.4-5.
- 3. Nwabudike LC, Ionescu-Tirgoviste C. Risk factors and clinical characteristic for foot ulcers in patients with diabetes in Bucharest, Romania. *Proc Rom Acad.* 2008;1-2:49-52.
- 4. Alavi A, Sibbald RG, Mayer D, dkk. Diabetic foot ulcers: Part I. Pathophysiology and prevention. *J Am Acad Dermatol*. 2014;70:1.e1-18.
- 5. Lipsky BA, Weigelt JA, Sun X, dkk. Developing and validating a risk score for lower-extremity amputation in patients hospitalized for a diabetic foot infection. *Diabetes Care*. 2011;34:1695-700.
- 6. Guariguata L, Whiting DR, Hambleton I, dkk. Global estimates of diabetes prevalence for 2013 and projections for

- 2035. *Diabetes Res Clin Pract*. 2014;103:137-49.
- 7. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. *J Am Coll Cardiol*. 2006;47:921-9.
- 8. Ikem R, Ikem I, Adebayo O, dkk. An assessment of peripheral vascular disease in patients with diabetic foot ulcer. *Foot (Edinb)*. 2010;20:114-7.
- 9. Aboyans V, Criqui MH, Abraham P, dkk. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. *Circulation*. 2012;126:2890-909.
- 10. Xu D, Li J, Zou L, dkk. Sensitivity and specificity of the ankle--brachial index to diagnose peripheral artery disease: a structured review. *Vasc Med*. 2010;15:361-9.
- 11. Ischemia. Dalam: Sidawy NA, Perler BA, penyunting. *Rutherford's Vascular Surgery and Endovascular Therapy.* 9th *Edition*. Philadelphia: Elsevier; 2019. h.216-7.
- 12. Tehan PE, Chuter VH. Use of hand-held Doppler ultrasound examination by podiatrists: a reliability study. *J Foot Ankle Res.* 2015;8:36.
- 13. Limpeleh L, Sumangkut RM, Tjandra DE. Korelasi Antara Gambaran Spektral Doppler Arteri Tibialis Posterior dan Arteri Dorsalis Pedis dengan Skor Pedis pada Penderita Ulkus Kaki Diabetik di RSUP Prof. Dr. R. D. Kandou. *Jurnal Biomedik: JBM.* 2018;10:97-105.
- 14. Kristiani AL, Sumangkut RM, Limpeleh HP. Hubungan Ankle Brachial Index Dengan Keparahan Ulkus Pada Penderita Kaki Diabetik. *Jurnal Biomedik: JBM*. 2015;7:171-7.
- 15. Wagiu AMJ, Sumangkut RM, Sapan HB, dkk. Perbandingan efektifitas asam perasetik dan feracrylum pada pola kuman ulkus diabetik. *Jurnal Biomedik: JBM.* 2016;8:51-7.
- 16. Zaine NH, Burns J, Vicaretti M, dkk. Characteristic of diabetic foot ulcers in Western Sidney, Australia. *J Foot Ankle Res.* 2014;7:39.

- 17. Rizk MN, Ameen AI. Comorbidities associated with Egyptian diabetic foot disease subtypes. Egypt J Intern Med. 21. Sibley RC III, Reis SP, MacFarlane JJ, 2013:25:154-8.
- 18. EFIM Vascular Working Group. **Peripheral** Disease Arterial Management: A Practical Guide for European Federation Internists. Internal Medicine [serial online] Mei 2008 [diakses 18 Desember 2019]. Diunduh dari: https://efim.org/system/files/pad_guide.p
- 19. Diabetic Neuropathy. Dalam: Sidawy NA, Perler BA, penyunting. Rutherford's Vascular Surgery and Endovascular 9^{th} Therapy. Edition. Philadelphia: Elsevier; 2019. h.1515-34.
- 20. Norgen L, Hiatt W, Dormandy J, dkk. Inter-society consensus for the management of peripheral artery disease

- (TASC II). J Vasc Surg. 2007;45 Suppl S:S5-67.
- dkk. Noninvasive Physiologic Vascular Studies: A Guide Diagnosing to Disease. Peripheral Arterial Radiographics. 2017;37:346-57.
- of 22. Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6:961-9.
 - 23. Mahé G, Boulon C, Desormais I, dkk. Doppler waveforms Statement for analysis. Vasa. 2017;46:337-45.
 - 24. Gupta A, Tyagi VK, Bansal N, dkk. Comparation of Ankle Brachial Pressure Index to Arterial Doppler USG in the Diagnosis of Peripheral Vascular Disease Diabetes Mellitus. International Journal Advance Medicine. 2017;4:1562-