We claim:

1. A covalently polymerized, water-absorbing, hydrogel-forming material,

wherein the material has both hydrophilic and hydrophobic regions and is characterized as having the following properties:

- a) absorbing water to less than about 300% of its initial weight, on equilibration with water or bodily liquids;
- b) having a solids content of at least about 20% after equilibration in water or bodily liquids;
- c) having an elongation to failure of at least about 25% hydration to equilibrium; and
- d) being sufficiently biocompatible to permit the treatment or repair of biological tissue, or used as an implant in a patient.
- 2. The material of claim 1, having a molecular weight after polymerization of at least 10 kDa.
 - 3. The material of claim 1, which is covalently crosslinked.
- 4. The material of claim 1, which is non-covalently crosslinked.
- 5. The material of claim 1, having a tensile modulus of at least about 50 kPa after equilibrium hydration.
- 6. The material of claim 1, having an equilibrium water content of at least about 2%.
- 7. The material of claim 1, being capable of being formed in situ on body tissue or aimedical implant by one or both of polymerization and crosslinking.
- 8. The material of claim 1, adhering to tissue when polymerized thereon.
- 9. The material of claim 1, being substantially elastic during a 10% elongation and release therefrom.

424-514

1275402

- 10. The material of claim 1, further characterized in being lubricious.
- 11. The material of claim 1, further characterized in comprising, before polymerization or crosslinking,
- a) at least one component which is a macromer of molecular weight of about 1000 Da or more, at least 20% of the macromer being a hydrophilic block or region and comprising at least one chemically reactive group; and
- b) at least one component bearing more than one chemically reactive group.
- 12. The material of claim 1, further characterized in comprising, before polymerization or crosslinking, at least 20% by weight of at least one amphiphilic water-soluble monomer of molecular weight less than about 1000 Da.
- 13. The material of claim 1, in which the water absorption at equilibrium hydration is less than about 200%.
- 14. The material of claim-1, in which the solids content is at least about 25% after equilibrium swelling.
- 15. The material of claim 1, in which the elongation to failure is at least about 200%.
- 16. The material of claim 1, in which the tensile modulus is at least 200 kPa.
- 17. The material of claim 1, further compromising a therapeutic, prophylactic or diagnostic agent.
- 18. The material of claim 1 formed by polymerization of a mixture comprising:
- a) about 40% to about 100% by weight of one or more polymerizable monomers having a molecular weight of about 1000 Da or less;

. .

FTI 126 21007/95 wherein at least about 40% by weight of the monomers consists of amphiphilic monomers;

wherein no more than about 50% by weight of the monomers consists of functionally hydrophobic monomers;

- b) 0% to about 40% by weight of a reactive macromer having a molecular weight greater than about 500 Da, which comprises on average more than one polymerizable group per molecule, and which has hydrophilic groups comprising about 20% of the macromer; and
 - c) 0% to about 40% water.
- 19. The material of claim 1 in the form of a coating on an implant or device.
 - 20. The material of claim 1 forming an implant or device.
 - 21. A monomer having the formula AHK, wherein:

A is a residue of an ethylenically unsaturated acid that is linked to H/by a bond selected from ester and amide;

H is the residue of a hydroxy carboxylic acid, a carbonic acid, or an amino acid, which is linked to K by an ester bond; and

K is the residue of an alcohol containing at least one carbon atom.

22. The monomer of claim 21 wherein

A is selected from the group consisting of acrylic, methacrylic crotonic, isocrotonic, tiglic, angelic, and cinnamic acids; maleic, fumaric, citraconic, mesaconic, itaconic, citric and isocitric acids, and monoesters and monoamides thereof, and mixtures thereof;

H is selected from the group consisting of glycolic acid, lactic acid, 3-hydroxy-propanoic acid, a hydroxybutyric acid, a hydroxypentanoic acid, hydroxy trimethylene carbonic acid, hydroxy ethylene carbonic acid, hydroxy propylene carbonic acid, hydroxyed dioxanone (i.e., 2-hydroxyethoxyacetic acid), a hydroxyhexanoic acid,

FTI 126 21007/95 an alpha, beta or gamma amino acid of eight carbons or fewer, and mixtures thereof; and

K is an alcohol containing from 1 to about 10 carbon atoms and at least one hydroxyl group, or a mixture of such alcohols.

- 23. The monomer of claim 22 wherein A is selected from the group consisting of acrylic acid/and methacrylic acid.
- 24. The monomer of claim 22 wherein H has one to about eight carbon atoms and is selected from the group consisting of glycolic acid, lactic acid, 3-hydroxy-propanoic acid, a hydroxybutyric acid, a hydroxypentanoic acid, and a hydroxyhexanoic acid.
- 25. The monomer of claim 22 wherein H is selected from the group consisting of hydroxy trimethylene carbonic acid, hydroxy ethylene carbonic acid, hydroxy propylene carbonic acid, and hydrolyzed dioxanone (i.e., 2-hydroxyethoxyacetic acid).
- 26. The monomer of claim 22 wherein H has two to eight carbon atoms and is selected from the group consisting of an alpha amino acid, a beta amino acid, a gamma amino acid, and mixtures thereof.
- 27. The monomer of claim 22 wherein K is selected from the group consisting of methanol, ethanol, propanol, isopropanol, isomers of butanol, isomers of pentanol, and isomers of hexanol.
- An intermediate for the preparation of the monomer of claim 21, the intermediate having the form AHC wherein A is a residue of an ethylenically unsaturated acid that is linked to H by a bond selected from ester and amide;

H is the residue of a hydroxy carboxylic acid, a carbonic acid, or an amino acid, which is linked to C by an acyl bond; and

C is a leaving group, which is displaced by alcohols to form esters.

- 29. The intermediate of claim 28, wherein the leaving group C is selected from the group consisting of halogens, succinimidal group, imidazoles, thiols, nitrophenols, pyridines, and o-acyl ureas.
- 30. The intermediate of claim 28 wherein A is selected from the group consisting of acrylic, methacrylic crotonic, isocrotonic, tiglic, angelic, and cinnamic acids; maleic, fumaric, citraconic, mesaconic, itaconic, citric and isocitric acids, and monoesters and monoamides thereof; and mixtures thereof.
- 31. The intermediate of claim 28 wherein A is selected from the group consisting of acrylic acid and methacrylic acid.
- 32. The intermediate of claim 28 wherein H is selected from the group consisting of glycolic acid, lactic acid, 3-hydroxy-propanoic acid, a hydroxybutyric acid, a hydroxypentanoic acid, hydroxy trimethylene carbonic acid, hydroxy ethylene carbonic acid, hydroxy propylene carbonic acid, hydrolyzed dioxanone (2-hydroxyethoxy acetic acid), a hydroxyhexanoic acid, an alpha, beta or gamma amino acid of eight carbons or fewer, and mixtures thereof.
- 33. The material of claim 1, wherein the tissue is orthopedic
- from the group consisting of bone, cartilage, meniscus, bursa, synovial membranes, tendors, ligaments, muscle and vertebral disks.
- 35. The material of claim 1, wherein the material is effective to provide lubricity, abrasion-resistance, load distribution, or resurfacing to an orthoped dissue.
- 36. The material of claim 1, wherein the material adheres to tissue.
- 37. A method for the treatment of biological tissue or a medical implant comprising the application of a crosslinked polymeric

FTI 126 21007/95 hydrogel material to the tissue or implant, wherein the material has both hydrophilic and hydrophobic regions and is characterized as having the following properties:

- a) absorbing water to less than about 300% of its initial weight, on exposure to water or bodily liquids;
- b) having a solids content of at least about 20% after equilibration in water or bodily fluids;
- c) having an elongation to failure of at least about 25% both as formed and after swelling to equilibrium; and
 - d) being biocompatible;

wherein the material is formed by the crosslinking of reactive monomers and macromers in the presence of tissue, and undergoes hydration with bodily liquids to form a water-containing material.