Solution Section 1.8 – Applications

Exercise

The flow of traffic, in vehicles per hour, through a network of streets as is shown below

- a) Solve this system for x_i , i = 1, 2, 3, 4.
- b) Find the traffic flow when $x_4 = 0$.
- c) Find the traffic flow when $x_4 = 100$.
- d) Find the traffic flow when $x_1 = 2x_2$.

a)
$$\begin{cases} x_1 + 100 = x_3 \\ x_2 + 200 = x_1 \\ x_2 + 100 = x_4 \\ x_4 + 200 = x_3 \end{cases}$$

$$\begin{cases} -x_1 + x_3 = 100 \\ x_1 - x_2 = 200 \\ -x_2 + x_4 = 100 \\ x_3 - x_4 = 200 \end{cases}$$

$$\begin{pmatrix} -1 & 0 & 1 & 0 & | & 100 \\ 1 & -1 & 0 & 0 & | & 200 \\ 0 & -1 & 0 & 1 & | & 100 \\ 0 & 0 & 1 & -1 & | & 200 \end{pmatrix} \qquad R_2 + R_2$$

$$\begin{pmatrix} -1 & 0 & 1 & 0 & | & 100 \\ 1 & -1 & 0 & 0 & | & 200 \\ 0 & -1 & 0 & 1 & | & 100 \\ 0 & 0 & 1 & -1 & | & 200 \end{pmatrix} \qquad R_2 + R_1 \qquad \qquad \begin{vmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} = -1 \begin{vmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} -1 \begin{vmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix}$$

Let x_4 be the free variable

$$\begin{cases} x_3 = x_4 + 200 \\ \hline x_2 = x_4 - 100 \\ x_1 = 200 + x_2 = x_4 + 100 \end{bmatrix}$$

Solution:
$$\left(x_4 + 100, x_4 - 100, x_4 + 200, x_4\right)$$

OR

$$\begin{vmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} = -1 \begin{vmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix}$$
$$= -1(1) - 1(-1)$$
$$= -1 + 1$$
$$= 0$$

$$\begin{cases} -x_1 + x_3 = 100 & \to x_1 = x_3 - 100 = x_4 + 100 \\ x_1 - x_2 = 200 \\ -x_2 + x_4 = 100 & \to x_2 = x_4 - 100 \\ x_3 - x_4 = 200 & \to x_3 = x_4 + 200 \end{cases}$$

b) The traffic flow when $x_4 = 0$ is:

c) The traffic flow when $x_4 = 100$ is:

d) The traffic flow when $x_1 = 2x_2$:

$$x_4 + 100 = 2(x_4 - 100)$$

$$x_4 + 100 = 2x_4 - 200$$

$$x_4 = 300$$

$$(400, 200, 500, 300)$$

Exercise

Through a network, Express x_n 's in terms of the parameters s and t.

$$\begin{cases} x_1 = x_2 + 400 \\ x_1 + x_3 = x_4 + 600 \\ x_4 + x_5 = 100 \\ x_2 + x_3 + x_5 = 300 \end{cases}$$

$$\begin{cases} x_1 - x_2 = 400 \\ x_2 + x_3 - x_4 = 600 \\ x_4 + x_5 = 100 \\ x_2 + x_3 + x_5 = 300 \end{cases}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & | & 400 \\ 1 & 0 & 1 & -1 & 0 & | & 600 \\ 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 1 & 1 & 0 & 1 & | & 300 \end{pmatrix} \quad R_2 - R_1$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & | & 400 \\ 0 & 1 & 1 & -1 & 0 & | & 200 \\ 0 & 1 & 1 & 0 & 1 & | & 300 \\ 0 & 0 & 0 & 1 & 1 & | & 100 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & | & 400 \\ 0 & 1 & 1 & -1 & 0 & | & 200 \\ 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 0 & | & 100 \\ 0 & 0 & 0 & 0 & 0 & | & 100 \\ 0 & 0 & 0 & 0 & 0 & | & 100 \\ 0 & 0 & 0 & 0 & 0 & | & 100 \\ 0 & 0$$

Let
$$x_5 = t$$
 & $x_3 = s$
 $x_2 = 200 - s + 100 - t = 300 - s - t$
 $x_1 = 400 + 300 - s - t = 700 - s - t$

Water is flowing through a network of pipes. Express x_n 's in terms of the parameters s and t.

$$x_{1} + x_{3} = 900$$

$$x_{1} = x_{2} + x_{4} \rightarrow x_{1} - x_{2} - x_{4} = 0$$

$$x_{2} + x_{5} = 800$$

$$x_{5} + x_{7} = 800$$

$$x_{6} = x_{4} + x_{7} \rightarrow x_{4} - x_{6} + x_{7} = 0$$

$$x_{3} + x_{6} = 900$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 900 \end{bmatrix} \quad R_2 - R_1$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & -900 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 900 \end{bmatrix} \quad \begin{matrix} R_3 + R_2 \\ R_6 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & -900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & -100 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 900 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ \end{bmatrix} \quad \begin{matrix} -R_2 \\ R_4 + R_3 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & -100 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 800 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \end{bmatrix} \quad R_5 + R_4$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & -100 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \end{bmatrix} \quad R_6 - R_5$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & | & 900 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & | & 900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & | & -100 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & | & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & | & 800 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} x_2 = 900 - x_3 & & & & (5) \\ x_2 = 900 - x_3 - x_4 & & & (4) \\ x_3 = 100 - x_4 + x_5 & & & (3) \\ -x_4 = 800 - x_5 - x_6 & & & (2) \\ x_5 = 800 - x_7 & & & (1) \end{matrix}$$

Let
$$x_6 = s \& x_7 = t$$

$$(1) \rightarrow x_5 = 800 - t$$

$$(2) \rightarrow x_4 = s - t$$

$$(3) \rightarrow x_3 = 900 - s$$

$$(2) \rightarrow x_2 = t$$

$$(1) \rightarrow x_2 = s$$

Solution: (s, t, 900-s, s-t, 800-t, s, t)

Determine the currents I_1 , I_2 , and I_3 for the electrical network shown below

$$I_2 = I_1 + I_3$$
$$3I_1 + 2I_2 = 7$$

$$2I_2 + 4I_3 = 8$$

$$\begin{cases} I_1 - I_2 + I_3 = 0 \\ 3I_1 + 2I_2 = 7 \\ I_2 + 2I_3 = 4 \end{cases}$$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{vmatrix} = 13$$

$$D_1 = \begin{vmatrix} 0 & -1 & 1 \\ 7 & 2 & 0 \\ 4 & 1 & 2 \end{vmatrix} = 13$$

$$D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 7 & 0 \\ 0 & 4 & 2 \end{vmatrix} = 26$$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{vmatrix} = 13 \qquad D_1 = \begin{vmatrix} 0 & -1 & 1 \\ 7 & 2 & 0 \\ 4 & 1 & 2 \end{vmatrix} = 13 \qquad D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 7 & 0 \\ 0 & 4 & 2 \end{vmatrix} = 26 \qquad D_3 = \begin{vmatrix} 1 & -1 & 0 \\ 3 & 2 & 7 \\ 0 & 1 & 4 \end{vmatrix} = 13$$

$$I_1 = 1 A$$
 $I_2 = 2 A$ $I_3 = 1 A$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 3 & 2 & 0 & 7 \\ 0 & 1 & 2 & 4 \end{pmatrix} \quad R_2 - 3R_1$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 5 & -3 & 7 \\ 0 & 1 & 2 & 4 \end{pmatrix} -5R_3 + R_2$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 5 & -3 & 7 \\ 0 & 0 & -13 & -13 \end{pmatrix} \begin{array}{c} I_1 = I_2 - I_3 \\ 5I_2 = 3I_3 + 7 \\ I_3 = 1 \\ \end{array}$$

$$I_2 = 2 \mid I_1 = 1 \mid$$

Determine the currents I_1 , I_2 , and I_3 for the electrical network shown below

$$\begin{split} I_2 &= I_1 + I_3 \\ 4I_1 + 3I_2 &= 3 \\ 3I_2 + I_3 &= 4 \\ \begin{cases} I_1 - I_2 + I_3 &= 0 \\ 4I_1 + 3I_2 &= 3 \\ 3I_2 + I_3 &= 4 \\ \end{cases} \end{split}$$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 4 & 3 & 0 \\ 0 & 3 & 1 \end{vmatrix} = 19 \qquad D_1 = \begin{vmatrix} 0 & -1 & 1 \\ 3 & 3 & 0 \\ 4 & 3 & 1 \end{vmatrix} = 0 \qquad D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 4 & 3 & 0 \\ 0 & 4 & 1 \end{vmatrix} = 19 \qquad D_3 = \begin{vmatrix} 1 & -1 & 0 \\ 4 & 3 & 3 \\ 0 & 3 & 4 \end{vmatrix} = 19$$

$$D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 4 & 3 & 0 \\ 0 & 4 & 1 \end{vmatrix} = 19 \qquad D_3 = \begin{vmatrix} 1 \\ 4 \\ 0 \end{vmatrix}$$

$$\underline{I_1} = 0 \ A \ \underline{I_2} = 1 \ A \ \underline{I_3} = 1 \ A \ \underline{}$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 4 & 3 & 0 & 3 \\ 0 & 3 & 1 & 4 \end{pmatrix} R_2 - 4R_1$$

$$\begin{pmatrix}
1 & -1 & 1 & 0 \\
0 & 7 & -4 & 3 \\
0 & 3 & 1 & 4
\end{pmatrix}$$

$$7R_3 - 3R_2$$

$$\begin{pmatrix}
1 & -1 & 1 & 0 \\
0 & 7 & -4 & 3 \\
0 & 0 & 19 & 19
\end{pmatrix}
\rightarrow
\begin{matrix}
I_1 = I_2 - I_3 & (2) \\
7I_2 = 4I_3 + 3 & (1) \\
I_3 = 1
\end{matrix}$$

$$I_2 = 1$$
 $I_1 = 0$

Determine the currents I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 for the electrical network shown below

$$\begin{split} I_1 + I_3 &= I_2 & \rightarrow I_1 - I_2 + I_3 = 0 \\ I_1 + I_4 &= I_2 & \rightarrow I_1 - I_2 + I_4 = 0 \\ I_3 + I_6 &= I_5 & \rightarrow I_3 - I_5 + I_6 = 0 \end{split}$$

$$\begin{cases} 3I_1 + 2I_2 = 14 \\ 2I_2 + 4I_3 + I_5 + 2I_4 = 25 \\ I_5 + I_6 = 8 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 3 & 2 & 0 & 0 & 0 & 0 & 14 \\ 0 & 2 & 4 & 2 & 1 & 0 & 25 \\ 0 & 0 & 0 & 0 & 1 & 1 & 8 \end{bmatrix} \quad \begin{matrix} R_2 - R_1 \\ R_4 - 3R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 14 \\ 0 & 2 & 4 & 2 & 1 & 0 & 25 \\ 0 & 0 & 0 & 0 & 1 & 1 & 8 \end{bmatrix} \quad \begin{matrix} R_4 \\ R_2 \\ R_3 \\ \end{matrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 0 & 14 \\ 0 & 2 & 4 & 2 & 1 & 0 & 0 & 25 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 8 \end{bmatrix} \quad 26R_4 + R_3$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 8 \end{bmatrix} \quad 36R_5 - R_4$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & 0 & -77 & 231 \end{bmatrix} \quad 36I_4 = 97 - 5(5) \quad \rightarrow \underbrace{I_1 = 2}_{4 = 2} \\ -41I_5 = -97 - 36(3) \quad \rightarrow \underbrace{I_5 = 5}_{77I_6 = 231} \quad \rightarrow \underbrace{I_6 = 3}$$

0 0 -41

0

0

0

36 | -97

77 | 231

Determine the currents I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 for the electrical network shown below

$$1 \rightarrow I_1 + I_3 = I_2$$

$$2 \rightarrow I_1 + I_4 = I_2$$

$$3 \rightarrow I_3 + I_6 = I_5$$

$$4 \rightarrow I_4 + I_6 = I_5$$

$$\begin{cases} I_{1} - I_{2} + I_{3} = 0 \\ I_{1} - I_{2} + I_{4} = 0 \\ I_{3} - I_{5} + I_{6} = 0 \\ I_{4} - I_{5} + I_{6} = 0 \\ 2I_{1} + 4I_{2} = 10 \\ 4I_{2} + I_{3} + 2I_{4} + 2I_{5} = 17 \\ 2I_{5} + 4I_{6} = 14 \end{cases}$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 5 \\ 0 & 4 & 1 & 2 & 2 & 0 & 17 \\ 0 & 0 & 0 & 0 & 1 & 2 & 7 \end{pmatrix} \quad R_2 - R_1$$

$$I_5 = 3$$

$$(1) \rightarrow \quad \underline{I_4 = I_5 - I_6} = \underline{1}$$

$$(2) \rightarrow [I_3 = I_4 = 1]$$

$$(3) \rightarrow \left[I_2 = \frac{1}{3}\left(I_3 + 5\right) = 2\right]$$

$$(4) \rightarrow [I_1 = I_2 - I_3 = 1]$$

Consider the invertible matrix: $A = \begin{pmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{pmatrix}$

The message: ICEBERG DEAD AHEAD

- a) Write the uncoded row matrices 1×3 for the message.
- b) Use the matrix A to encode the message.
- c) Decode a message from part b) given the matrix A.

Solution

[9 3 5] [2 5 18] [7 0 4] [5 1 4] [0 1 8] [5 1 4]

b) Let encode the message ICEBERG DEAD AHEAD

$$\begin{bmatrix} 9 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 29 & 80 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 5 & 18 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -37 & 3 & 175 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -5 & 6 & 42 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -21 & -5 & 65 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

The sequence of coded row matrices is

$$\begin{bmatrix} 3 & 29 & 80 \end{bmatrix} \ \begin{bmatrix} -37 & 3 & 175 \end{bmatrix} \ \begin{bmatrix} -5 & 6 & 42 \end{bmatrix} \ \begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \ \begin{bmatrix} -21 & -9 & 65 \end{bmatrix} \ \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

The cryptogram:

$$3\ 29\ 80\ -37\ 3\ 175\ -5\ 6\ 42\ -4\ 9\ 47\ -21\ -9\ 65\ -4\ 9\ 47$$

c) To decode a message given the matrix A.

$$|A| = \begin{vmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{vmatrix} = 1$$

$$A^{-1} = \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 3 & 29 & 80 \end{bmatrix} \begin{bmatrix} -37 & 3 & 175 \end{bmatrix} \begin{bmatrix} -5 & 6 & 42 \end{bmatrix} \begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \begin{bmatrix} -21 & -9 & 65 \end{bmatrix} \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 29 & 80 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -37 & 3 & 175 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 18 \end{bmatrix}$$

$$\begin{bmatrix} -5 & 6 & 42 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} -21 & -9 & 65 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 8 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 4 \end{bmatrix}$$

The message is:

Exercise

You want to send the message: **LINEAR ALGEBRA** with a key word **MATH**

- *a)* Write the matrix *A*.
- b) Write the uncoded row matrices 1×2 for the message.
- c) Use the matrix A to encode the message.
- d) Decode a message from part b) given the matrix A.

Solution

$$M$$
 A T H

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

c) Encoding the message

$$\begin{bmatrix} 12 & 9 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 336 & 84 \end{bmatrix}$$

$$\begin{bmatrix} 14 & 5 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 282 & 54 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 18 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 373 & 145 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 20 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 12 & 7 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 296 & 68 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 105 & 21 \end{bmatrix}$$

$$\begin{bmatrix} 18 & 1 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 254 & 26 \end{bmatrix}$$

The cryptogram:

d) To decode a message given the matrix A.

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

$$A^{-1} = \frac{1}{84} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{pmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 336 & 84 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 12 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 282 & 54 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 14 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 373 & 145 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 1 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 8 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
296 & 68
\end{bmatrix} \begin{vmatrix}
\frac{2}{21} & -\frac{1}{84} \\
-\frac{5}{21} & \frac{13}{84}
\end{vmatrix} = \begin{bmatrix} 12 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 105 & 21 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 254 & 26 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 18 & 1 \end{bmatrix}$$

The message is: Linear Algebra

You want to send the message: CRYPTOGRAPHY IS A METHOD OF PROTECTING

INFORMATIONS with a key word **CODE**

- *a*) Write the matrix *A*.
- b) Write the uncoded row matrices 1×2 for the message.
- c) Use the matrix A to encode the message.
- d) Decode a message from part b) given the matrix A.

Solution

a)
$$0 =$$
 $4 = D$ $8 = H$ $12 = L$ $16 = P$ $20 = T$ $24 = X$ $1 = A$ $5 = E$ $9 = I$ $13 = M$ $17 = Q$ $21 = U$ $25 = Y$ $2 = B$ $6 = F$ $10 = J$ $14 = N$ $18 = R$ $22 = V$ $26 = Z$ $3 = C$ $7 = G$ $11 = K$ $15 = O$ $19 = S$ $23 = W$

$$C \quad O \quad D \quad E$$

$$3 \quad 15 \quad 4 \quad 5$$

$$A = \begin{pmatrix} 3 & 15 \\ 4 & 5 \end{pmatrix}$$

c) Encoding the message

$$\begin{bmatrix} 3 & 18 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 81 & 135 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 16 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 139 & 455 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 15 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 120 & 375 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 18 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 93 & 195 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 16 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 67 & 95 \end{bmatrix}$$

$$\begin{bmatrix} 8 & 25 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 124 & 245 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 9 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 36 & 45 \end{bmatrix}$$

$$\begin{bmatrix} 19 & 0 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 57 & 285 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 13 & 5 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 59 & 220 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 8 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 92 & 340 \end{bmatrix}$$

$$\begin{bmatrix} 15 & 4 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 61 & 245 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 15 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 60 & 75 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 0 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 18 & 90 \end{bmatrix}$$

$$\begin{bmatrix} 16 & 18 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 120 & 330 \end{bmatrix}$$

$$\begin{bmatrix} 15 & 20 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 125 & 325 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 3 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 27 & 90 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 9 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 96 & 345 \end{bmatrix}$$

$$\begin{bmatrix} 14 & 7 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 70 & 245 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 9 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 36 & 45 \end{bmatrix}$$

$$\begin{bmatrix} 14 & 6 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 66 & 240 \end{bmatrix}$$

$$\begin{bmatrix} 15 & 18 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 117 & 315 \end{bmatrix}$$

$$\begin{bmatrix} 13 & 1 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 43 & 200 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 9 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 96 & 345 \end{bmatrix}$$

$$\begin{bmatrix} 15 & 14 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 101 & 295 \end{bmatrix}$$

$$\begin{bmatrix} 19 & 0 \end{bmatrix} \begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 57 & 285 \end{bmatrix}$$

The cryptogram:

d) To decode a message given the matrix A.

$$A = \begin{pmatrix} 3 & 15 \\ 4 & 5 \end{pmatrix}$$

$$A^{-1} = -\frac{1}{45} \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix}$$

$$-\frac{1}{45} \begin{bmatrix} 81 & 135 \end{bmatrix} \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45} \begin{bmatrix} -135 & -810 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 18 \end{bmatrix}$$

$$-\frac{1}{45}[139 \ 455] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-1,125 \ -720]$$

$$= [25 \ 16]$$

$$-\frac{1}{45}[120 \ 375] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-900 \ -675]$$

$$= [20 \ 15]$$

$$-\frac{1}{45}[93 \ 195] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-315 \ -810]$$

$$= [7 \ 18]$$

$$-\frac{1}{45}[67 \ 95] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-45 \ -720]$$

$$= [1 \ 16]$$

$$-\frac{1}{45}[124 \ 245] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-360 \ -1,125]$$

$$= [8 \ 25]$$

$$-\frac{1}{45}[36 \ 45] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-855 \ 0]$$

$$= [0 \ 9]$$

$$-\frac{1}{45}[57 \ 285] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-45 \ 0]$$

$$= [19 \ 0]$$

$$-\frac{1}{45}[3 \ 15] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-45 \ 0]$$

$$= [1 \ 0]$$

$$-\frac{1}{45}[59 \ 220] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-585 \ -225]$$

$$= [13 \ 5]$$

$$-\frac{1}{45}[92 \ 340] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-900 \ -360]$$

$$= [20 \ 8]$$

$$-\frac{1}{45}[61 \ 245] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-675 \ -180]$$

$$= [15 \ 4]$$

$$-\frac{1}{45}[60 \quad 75] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[0 \quad -675]$$

$$= \begin{bmatrix} 0 \quad 15 \end{bmatrix}$$

$$-\frac{1}{45}[18 \quad 90] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-270 \quad 0]$$

$$= \begin{bmatrix} 6 \quad 0 \end{bmatrix}$$

$$-\frac{1}{45}[120 \quad 330] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-720 \quad -810]$$

$$= \begin{bmatrix} 16 \quad 18 \end{bmatrix}$$

$$-\frac{1}{45}[125 \quad 325] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-675 \quad -900]$$

$$= \begin{bmatrix} 15 \quad 20 \end{bmatrix}$$

$$-\frac{1}{45}[27 \quad 90] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-225 \quad -135]$$

$$= \begin{bmatrix} 5 \quad 3 \end{bmatrix}$$

$$-\frac{1}{45}[96 \quad 345] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-900 \quad -405]$$

$$= \begin{bmatrix} 20 \quad 9 \end{bmatrix}$$

$$-\frac{1}{45}[70 \quad 245] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-630 \quad -315]$$

$$= \begin{bmatrix} 14 \quad 7 \end{bmatrix}$$

$$-\frac{1}{45}[66 \quad 240] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-630 \quad -270]$$

$$= \begin{bmatrix} 14 \quad 6 \end{bmatrix}$$

$$-\frac{1}{45}[117 \quad 315] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-675 \quad -810]$$

$$= \begin{bmatrix} 15 \quad 18 \end{bmatrix}$$

$$-\frac{1}{45}[43 \quad 200] \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45}[-585 \quad -45]$$

$$= \begin{bmatrix} 13 & 1 \end{bmatrix}$$

$$-\frac{1}{45} \begin{bmatrix} 96 & 345 \end{bmatrix} \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45} \begin{bmatrix} -900 & -405 \end{bmatrix}$$

$$= \begin{bmatrix} 20 & 9 \end{bmatrix}$$

$$-\frac{1}{45} \begin{bmatrix} 101 & 295 \end{bmatrix} \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45} \begin{bmatrix} -675 & -630 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 14 \end{bmatrix}$$

$$-\frac{1}{45} \begin{bmatrix} 57 & 285 \end{bmatrix} \begin{pmatrix} 5 & -15 \\ -4 & 3 \end{pmatrix} = -\frac{1}{45} \begin{bmatrix} -855 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 0 \end{bmatrix}$$

$$3 & 18 & 25 & 16 & 20 & 15 & 7 & 18 & 1 & 16 & 8 & 25 & 0 & 9 & 19 & 0 & 1 & 0 & 13 & 5$$

$$C & R & Y & P & T & O & G & R & A & P & H & Y & _ I & S & _ A & _ M & E$$

$$20 & 8 & 15 & 4 & 0 & 15 & 6 & 0 & 16 & 18 & 15 & 20 & 5 & 3 & 20 & 9 & 14 & 7 & 0 & 9$$

$$T & H & O & D & _ O & F & _ P & R & O & T & E & C & T & I & N & G & _ I$$

$$14 & 6 & 15 & 18 & 16 & 1 & 20 & 9 & 15 & 14 & 19 & 0$$

The message is: Cryptography is a Method of Protecting Informations

Exercise

Write the matrix A with a key word **MATH**, then decode the cryptogram

 $N ext{ } F ext{ } O ext{ } R ext{ } M ext{ } A ext{ } T ext{ } I ext{ } O ext{ } N ext{ } S ext{ } _$

Solution

$$M \quad A \quad T \quad H$$

$$13 \quad 1 \quad 20 \quad 8$$

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

$$A^{-1} = \frac{1}{84} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix}$$

With the cryptogram:

$$\frac{1}{84} \begin{bmatrix} 117 & 9 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 756 & 0 \end{bmatrix} \\
= \begin{bmatrix} 9 & 0 \end{bmatrix} \\
\frac{1}{84} \begin{bmatrix} 456 & 132 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 1,008 & 1,260 \end{bmatrix} \\
= \begin{bmatrix} 12 & 15 \end{bmatrix} \\
\frac{1}{84} \begin{bmatrix} 386 & 62 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 1,848 & 420 \end{bmatrix} \\
= \begin{bmatrix} 22 & 5 \end{bmatrix} \\
\frac{1}{84} \begin{bmatrix} 260 & 104 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 0 & 1,092 \end{bmatrix} \\
= \begin{bmatrix} 0 & 13 \end{bmatrix} \\
\frac{1}{84} \begin{bmatrix} 413 & 161 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 84 & 1,680 \end{bmatrix} \\
= \begin{bmatrix} 1 & 20 \end{bmatrix} \\
\frac{1}{84} \begin{bmatrix} 104 & 8 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 672 & 0 \end{bmatrix} \\
= \begin{bmatrix} 8 & 0 \end{bmatrix} \\
9 & 0 & 12 & 15 & 22 & 5 & 0 & 13 & 1 & 20 & 8 & 0 \\
I & - I & O & V & E & - M & A & T & H & - I \end{bmatrix}$$

The message is: *I love math*

Exercise

Write the matrix A with a key word **MATH**, then decode the cryptogram

438 150 145 37 240 96 635 191 445 157 260 104 413 161 104 8 Solution

$$M \quad A \quad T \quad H$$

$$13 \quad 1 \quad 20 \quad 8$$

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

$$A^{-1} = \frac{1}{84} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 438 & 150 \end{bmatrix} \begin{bmatrix} 145 & 37 \end{bmatrix} \begin{bmatrix} 240 & 96 \end{bmatrix} \begin{bmatrix} 635 & 191 \end{bmatrix} \begin{bmatrix} 445 & 157 \end{bmatrix}$$

$$\begin{bmatrix} 260 & 104 \end{bmatrix} \begin{bmatrix} 413 & 161 \end{bmatrix} \begin{bmatrix} 104 & 8 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 438 & 150 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 504 & 1,512 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 18 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 145 & 37 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 420 & 336 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 240 & 96 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 0 & 1,008 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 12 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 635 & 191 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 1,260 & 1,848 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 22 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 445 & 157 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 420 & 1,596 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 19 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 260 & 104 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 0 & 1,092 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 13 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{84} \begin{bmatrix} 413 & 161 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 84 & 1,680 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 20 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 0 \end{bmatrix}$$

The message is: *Fred loves math*

Consider the invertible matrix:
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4 \end{pmatrix}$$

Decode the cryptogram

Solution

$$|A| = 1$$

$$A^{-1} = \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 1 & -5 & 11 \end{bmatrix} \begin{bmatrix} 19 & -25 & -45 \end{bmatrix} \begin{bmatrix} 11 & -16 & -28 \end{bmatrix} \begin{bmatrix} 20 & -29 & -27 \end{bmatrix}$$
$$\begin{bmatrix} 12 & -12 & -53 \end{bmatrix} \begin{bmatrix} 40 & -61 & -35 \end{bmatrix} \begin{bmatrix} 8 & -17 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -5 & 11 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 4 & 9 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 19 & -25 & -45 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 6 & 5 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 11 & -16 & -28 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 5 & 14 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 20 & -29 & -27 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 9 & 1 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 12 & -12 & -53 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 0 & 5 & 17 \end{bmatrix}$$

$$\begin{bmatrix} 40 & -61 & -35 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 21 & 1 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -17 & 7 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 9 & 15 & 14 \end{bmatrix}$$

4 9 6 6 5 18 5 14 20 9 1 12 0 5 17 21 1 20 9 15 14 D I F F E R E N T I A L _ E Q U A T I O N

The message is: *Differential Equation*.

Exercise

Determine the key word, then decode the given cryptogram

Hint: First row is the key

Solution

The key word from the first row is

Since it has 9 numbers, then the matrix is $9 = 3^2$ which is 3×3

$$A = \begin{pmatrix} 6 & 18 & 5 \\ 4 & 15 & 13 \\ 1 & 20 & 8 \end{pmatrix}$$

$$|A| = -857$$

$$A^{-1} = -\frac{1}{857} \begin{pmatrix} -140 & -44 & 159 \\ -19 & 43 & -58 \\ 65 & -102 & 18 \end{pmatrix}$$
$$= \frac{1}{857} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix}$$

With the cryptogram:

$$\frac{1}{857}[102 \quad 649 \quad 238] \begin{pmatrix} 140 \quad 44 \quad -159 \\ 19 \quad -43 \quad 58 \\ -65 \quad 102 \quad -18 \end{pmatrix} = \frac{1}{857}[11,141 \quad 857 \quad 17,140]$$

$$= \begin{bmatrix} 13 \quad 1 \quad 20 \end{bmatrix}$$

$$\frac{1}{857}[57 \quad 324 \quad 112] \begin{pmatrix} 140 \quad 44 \quad -159 \\ 19 \quad -43 \quad 58 \\ -65 \quad 102 \quad -18 \end{pmatrix} = \frac{1}{857}[6,856 \quad 0 \quad 7,713]$$

$$= \begin{bmatrix} 8 \quad 0 \quad 9 \end{bmatrix}$$

$$\frac{1}{857}[128 \quad 622 \quad 207] \begin{pmatrix} 140 \quad 44 \quad -159 \\ 19 \quad -43 \quad 58 \\ -65 \quad 102 \quad -18 \end{pmatrix} = \frac{1}{857}[16,283 \quad 0 \quad 11,998]$$

$$= \begin{bmatrix} 19 \quad 0 \quad 14 \end{bmatrix}$$

$$\frac{1}{857}[180 \quad 613 \quad 290] \begin{pmatrix} 140 \quad 44 \quad -159 \\ 19 \quad -43 \quad 58 \\ -65 \quad 102 \quad -18 \end{pmatrix} = \frac{1}{857}[17,997 \quad 11,141 \quad 1,714]$$

$$= \begin{bmatrix} 21 \quad 13 \quad 2 \end{bmatrix}$$

$$\frac{1}{857}[102 \quad 360 \quad 259] \begin{pmatrix} 140 \quad 44 \quad -159 \\ 19 \quad -43 \quad 58 \\ -65 \quad 102 \quad -18 \end{pmatrix} = \frac{1}{857}[4,285 \quad 15,426 \quad 0]$$

$$= \begin{bmatrix} 5 \quad 18 \quad 0 \end{bmatrix}$$

$$\frac{1}{857}[151 \quad 580 \quad 297] \begin{pmatrix} 140 \quad 44 \quad -159 \\ 19 \quad -43 \quad 58 \\ -65 \quad 102 \quad -18 \end{pmatrix} = \frac{1}{857}[12,855 \quad 11,998 \quad 4,285]$$

$$= \begin{bmatrix} 15 \quad 14 \quad 5 \end{bmatrix}$$

$$= \begin{bmatrix} 13 \quad 1 \quad 20 \quad 8 \quad 0 \quad 9 \quad 19 \quad 0 \quad 14 \quad 21 \quad 13 \quad 2 \quad 5 \quad 18 \quad 0 \quad 15 \quad 14 \quad 5 \\ M \quad A \quad T \quad H \quad - \quad I \quad S \quad - \quad N \quad U \quad M \quad B \quad E \quad R \quad - \quad O \quad N \quad E$$

The message is: Math is number one

Determine the key word, then decode the given cryptogram

5	17	21	1	20	9	15	14	19
259	863	783	77	378	357	301	448	565
106	266	318	325	365	485	301	522	653
326	653	738	10	566	495	115	640	555
290	791	762	115	474	507	119	332	279
305	454	513	339	645	611	226	341	426
260	338	368	406	657	830	270	649	590
110	337	418	74	318	330	261	561	469
114	426	390	160	543	372	89	535	441
323	842	783	97	344	245	84	601	444
424	851	944	175	262	339	379	698	755
226	341	426	37	454	217	156	694	536

Solution

The key word from the first row, because all the numbers are between 0 and 26, alphabetic letter. Since it has 9 numbers, then the matrix is $9 = 3^2$ which is 3×3 . Therefore,

$$A = \begin{pmatrix} 5 & 17 & 21 \\ 1 & 20 & 9 \\ 15 & 14 & 19 \end{pmatrix}$$

$$0 = \begin{bmatrix} 4 = D & 8 = H & 12 = L & 16 = P & 20 = T & 24 = X \\ 1 = A & 5 = E & 9 = I & 13 = M & 17 = Q & 21 = U & 25 = Y \\ 2 = B & 6 = F & 10 = J & 14 = N & 18 = R & 22 = V & 26 = Z \\ 3 = C & 7 = G & 11 = K & 15 = O & 19 = S & 23 = W \end{pmatrix}$$

The key word is:

$$A = \begin{pmatrix} 5 & 17 & 21 \\ 1 & 20 & 9 \\ 15 & 14 & 19 \end{pmatrix}$$

$$|A| = -2,764$$

$$A^{-1} = -\frac{1}{2,764} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix}$$

With the cryptogram:

To decode a message given the matrix A.

To decode a message given the manner.

$$-\frac{1}{2,764} \begin{bmatrix} 259 & 863 & 783 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -58,044 & -52,516 & -24,876 \end{bmatrix}$$

$$= \begin{bmatrix} 21 & 19 & 9 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 77 & 378 & 357 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -38,696 & -19,348 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 7 & 0 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 301 & 448 & 565 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -33,168 & -2,764 & -44,224 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 1 & 16 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 106 & 266 & 318 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -33,168 & -2,764 & -8,292 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 1 & 3 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 325 & 365 & 485 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -13,820 & 0 & -55,280 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 0 & 20 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 301 & 522 & 653 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -49,752 & -2,764 & -38,696 \end{bmatrix}$$

$$= \begin{bmatrix} 18 & 1 & 14 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 326 & 653 & 738 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -52,516 & -16,584 & -41,460 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 6 & 15 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 103 & 566 & 495 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -49,752 & -35,932 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 18 & 13 & 0 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 115 & 640 & 555 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -55,280 & -41,460 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 20 & 15 & 0 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 290 & 791 & 762 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -52,516 & -41,460 & -33,168 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 15 & 12 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 115 & 474 & 507 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 16 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -60,808 & -13,820 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 22 & 5 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 254 & -29 & -267 \\ -286 & 185 & 83 \end{bmatrix} = \begin{bmatrix} 4 & 9 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 9 & 6 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 305 & 454 & 513 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -11,056 & -24,876 & -16,584 \\ -16,584 & -13,820 & -49,752 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 5 & 18 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 339 & 645 & 611 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -13,820 & -38,696 & -55,280 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 14 & 20 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 226 & 341 & 426 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -24,876 & -2,764 & -33,168 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 1 & 12 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 260 & 338 & 368 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = \begin{bmatrix} 0 & 5 & 17 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{2,764} \begin{bmatrix} 406 & 657 & 830 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 16 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = \begin{bmatrix} -\frac{1}{2,764} \begin{bmatrix} -58,044 & -2,764 & -55,280 \end{bmatrix}$$

$$= \begin{bmatrix} 21 & 1 & 20 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 270 & 649 & 590 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 16 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = \begin{bmatrix} 9 & 15 & 14 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 19 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 116 & 16 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 114 & 426 & 390 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -33,168 & -24,876 & -8,292 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 9 & 3 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 160 & 543 & 372 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -2,764 & -55,280 & -24.876 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 20 & 9 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 89 & 535 & 441 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -41,460 & -38,696 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 14 & 0 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 323 & 842 & 783 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -44,224 & -49,752 & -41,460 \end{bmatrix}$$

$$= \begin{bmatrix} 16 & 18 & 15 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 97 & 344 & 245 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -5,528 & -33,168 & -13,820 \end{bmatrix}$$

$$= \begin{bmatrix} 212 & 5 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 84 & 601 & 444 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 16 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -35,932 & -52,516 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 13 & 19 & 0 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 424 & 851 & 944 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -63,572 & -24,876 & -55,280 \end{bmatrix}$$

$$= \begin{bmatrix} 23 & 9 & 20 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 175 & 262 & 339 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -22,112 & 0 & -24,876 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 0 & 9 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 379 & 698 & 755 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -38,696 & -24,876 & -55,280 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 9 & 20 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 226 & 341 & 426 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -24,876 & -2,764 & -33,168 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 1 & 12 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 37 & 454 & 217 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} 0 & -60,808 & -2,764 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 22 & 1 \end{bmatrix}$$

$$-\frac{1}{2,764} \begin{bmatrix} 156 & 694 & 536 \end{bmatrix} \begin{pmatrix} 254 & -29 & -267 \\ 116 & -220 & -24 \\ -286 & 185 & 83 \end{pmatrix} = -\frac{1}{2,764} \begin{bmatrix} -33,168 & -58,044 & -13,820 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 21 & 5 \end{bmatrix}$$

$$0 = \begin{bmatrix} 4 = D \\ 1 = A \\ 5 = E \\ 2 = B \\ 6 = F \\ 3 = C \end{bmatrix} \begin{pmatrix} 8 = H \\ 10 = J \\ 11 = K \end{pmatrix} \begin{pmatrix} 12 = L \\ 13 = M \\ 15 = O \end{pmatrix} \begin{pmatrix} 16 = P \\ 20 = T \\ 19 = S \end{pmatrix} \begin{pmatrix} 24 = X \\ 25 = Y \\ 26 = Z \end{pmatrix}$$

$$= \begin{bmatrix} 21 & 19 & 9 & 14 & 7 & 0 & 12 & 1 & 16 & 12 & 1 & 3 & 5 & 0 & 20 & 18 & 1 & 14 & 19 & 6 & 15 \\ U & S & I & N & G & -L & A & P & L & A & C & E & -T & R & A & N & S & F & O \\ 18 & 13 & 0 & 20 & 15 & 0 & 19 & 15 & 12 & 22 & 5 & 0 & 4 & 9 & 6 & 6 & 5 & 18 & 5 & 14 & 20 \\ R & M & -T & O & -S & O & L & V & E & -D & I & F & F & E & R & F & N & T \\ 9 & 1 & 12 & 0 & 5 & 17 & 21 & 1 & 20 & 9 & 15 & 14 & 19 & 0 & 1 & 14 & 4 & 0 & 1 & 16 & 16 \\ I & A & L & -E & Q & U & A & T & I & O & N & S & -A & N & D & -A & P & P \\ 12 & 9 & 3 & 1 & 20 & 9 & 15 & 14 & 0 & 16 & 18 & 15 & 2 & 12 & 5 & 13 & 19 & 0 & 23 & 9 & 20 \\ L & I & C & A & T & I & O & N & -P & R & O & B & L & E & M & S & -W & I & T \\ 8 & 0 & 9 & 14 & 9 & 20 & 9 & 1 & 12 & 0 & 22 & 1 & 12 & 25 & 5 \\ H & -I & N & I & T & I & A & L & -V & V & A & L & U & E \\ \end{pmatrix}$$

The message is:

Using Laplace Transform to Solve Differential Equations and Application Problems with Initial Value