

Problem E1- Solution

Heat Conduction in a Copper Rod (10 points)

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

Part A: The short copper rod (3.9 points)

A.1 (0.2 pt)

$$R_{en} = 110.11 \pm 0.01 \,\Omega$$

$$\theta_{en} = \frac{R - R_0}{R_0 \alpha}$$

$$\theta_{en} = 25.87 \pm 0.03 \, ^{\circ}\mathrm{C}$$

A.2 (0.5 pt)

n	$R(\Omega)$	t(s)
1	110.11	1
2	110.11	10
3	110.15	20
4	110.18	30
5	110.26	40
6	110.4	50
7	110.53	60
8	110.66	70
9	110.82	80
10	110.96	90
11	111.12	100
12	111.25	110
13	111.41	120
14	111.57	130
15	111.73	140

$\Delta R/\Delta t$	0.0147 Ω/s	$\frac{\Delta \theta}{\Delta R} = \frac{1}{2} \frac{\Delta R}{R}$
$\Delta \theta / \Delta t$	0.03761 °C/s	$\frac{1}{\Delta t} - \frac{1}{R_0 \alpha} \frac{1}{\Delta t}$
C_s	52 ± 2 J/°C	$C_S = rac{P_1}{\Delta heta}$, $\Delta C_S pprox C_S rac{\Delta P_1}{P_1}$

A.4 (0.5pt)

.566			
n	$R(\Omega)$	t(s)	$(R-R_{en})(\Omega)$
1	119.98	40	9.82
2	119.17	175	9.01
3	118.39	300	8.23
4	117.29	500	7.13
5	116.58	650	6.42
6	115.91	800	5.75
7	115.15	1000	4.99
8	114.51	1200	4.35
9	113.91	1400	3.75
10	113.40	1600	3.24

A.6 (0.5 pt)				
n	$R(\Omega)$	$R_{9}(\Omega)$	T(k)	$\frac{1}{T}\left(\frac{1}{k}\right)$	
1	8528	110.78	300.733	0.003325	
2	7020	112.81	305.9272	0.003269	
3	4005	117.83	318.772	0.003137	
4	3601	119.13	322.0984	0.003105	
5	3014	120.96	326.7808	0.00306	
6	2658	122.27	330.1328	0.003029	
7	1803	126.42	340.7515	0.002935	
8	1547	128.09	345.0245	0.002898	
9	1296	130.00	349.9117	0.002858	
10	1246	130.45	351.0631	0.002848	

Part B: The long copper rod (4.1 points)

B.1 and **B.5** $\theta_b = 24.41^{\circ}\text{C}$

		B.1 (0.4p	t)	B.5 (0.4pt)		
n	x(cm)	$\theta_{x}(^{\circ}C)$	$\theta_x - \theta_{\rm b}(^{\circ}{\rm C})$	$B^{(1)}e^{\lambda^{(0)}x}(^{\circ}C)$	$\theta'_x - \theta_b(^{\circ}C)$	
1	0	44.61	17.23	0.27	16.96	
2	7	39.37	11.99	0.37	11.62	
3	14	35.92	8.54	0.51	8.03	
4	21	33.58	6.20	0.72	5.48	
5	28	31.98	4.60	1.00	3.60	
6	35	31.02	3.64	1.39	2.25	
7	42	30.68	3.30	1.93	1.37	

B.3 (0.6 pt)

$$A^{(0)} = 16.87 \,^{\circ}\text{C}$$

$$\lambda^{(0)} = 0.047 \pm 0.005 \left(\frac{1}{cm}\right)$$

B.4 (0.4 pt)
$$B = Ae^{-2\lambda d}$$

$$B^{(1)} = 0.266$$
°C

B.6 (1.0 pt)

$$A^{(1)} = 17.91$$
°C

$$\lambda^{(1)} = 0.059 \pm 0.002 \left(\frac{1}{cm}\right)$$

B.7 (0.9 pt)

$$\begin{split} P_2 &= \int_{-0.5cm}^{42.5cm} 2\pi r h (\theta_x - \theta_{\rm b}) dx \quad \text{or} \quad \int_0^d 2\pi r h (\theta_x - \theta_{\rm b}) dx \\ &= \frac{2\pi r h A}{\lambda} (1 - e^{-2\lambda d}) \\ h &= \frac{P_2 \lambda}{2\pi r A (1 - e^{-2\lambda d})} \; , \; k = \frac{2h}{\lambda^2 r} \; , P_2 = 4.5 \; W \\ \lambda &= 0.053 \pm \; 0.008 \left(\frac{1}{cm}\right) \; , \; h = 0.0037 \pm \; 0.0003 \frac{W}{k \; cm^2} \; , k = 3.9 \; \pm \; 0.3 \; \frac{W}{k \; cm} \end{split}$$

C.1 (0.4 pt)

$$\theta_b = 27.38$$
°C

n	x(cm)	$\theta_{x}(^{\circ}C)$	$(\theta_x - \theta_b)(^{\circ}C)$	B-1	C-B	Reversed
						order
1	0	46.02	18.64	17.23	1.41	9.73
2	7	40.99	13.61	11.99	1.62	6.69
3	14	38.04	10.66	8.54	2.12	4.58
4	21	36.67	9.29	6.2	3.09	3.09
5	28	36.56	9.18	4.6	4.58	2.12
6	35	37.71	10.33	3.64	6.69	1.62
7	42	40.41	13.03	3.3	9.73	1.41

C.2 (0.6 pt)

(The blue plots are not necessary to draw)

C.3 (1.0 pt)

1)
$$\frac{P_3}{P_2} = \frac{\frac{d\theta}{dx}}{\frac{d\theta}{dx}} \sum_{x=42cm} \frac{\frac{\Delta\theta}{\Delta x}}{\frac{\Delta\theta}{\Delta x}} \sum_{x=42cm} \frac{\theta_7 - \theta_6}{\theta_0 - \theta_1}$$
2)
$$\frac{P_3}{P_2} = \frac{\frac{d\theta}{dx}}{\frac{d\theta}{dx}} \sum_{x=42cm} \frac{\sinh(\lambda(42 - x_0))}{\sinh(\lambda x_0)}$$
3) calculation by integral method of

2)
$$\frac{P_3}{P_2} = \frac{\frac{d\theta}{dx}}{\frac{d\theta}{dx}} \sum_{x=0,cm} = \frac{\sinh(\lambda(42-x_0))}{\sinh(\lambda x_0)}$$

- 3) calculation by integral method or sigma in several parts
- 4) Slope ((C-B) _ B)

$$P_3 = 0.60 P_2 \pm 0.01 P_2$$