OPTICAL RECORDING MEDIUM AND METHOD AND DEVICE FOR MANUFACTURING THE SAME

Publication number: JP2002025121 (A)

Publication date: 2002-01-25

Inventor(s): KATO MASAHIRO; MURAMATSU EIJI; YAMAGUCHI

ATSUSHI; TANIGUCHI TERUSHI PIONEER ELECTRONIC CORP

Applicant(s): Classification:

- international: G11B7/24; G11B7/007; G11B7/013; G11B7/26;

G11B27/19; G11B27/24; G11B27/30; G11B7/24; G11B7/007; G11B7/013; G11B7/26; G11B27/19;

G11B27/30; (IPC1-7): G11B7/24; G11B7/26 - European: G11B7/007G: G11B7/007: G11B7/013D: G11B7/26M:

G11B27/24

Application number: JP20000202246 20000704 Priority number(s): JP20000202246 20000704

Abstract of JP 2002025121 (A)

PROBLEM TO BE SOLVED: To provide such an optical recording medium that readout signals with little distortion of waveform in the readout signal during reproducing information are obtained. SOLUTION: The optical recording medium has a groove information track and a land information track formed parallel to each other as a pair and periodically wobbling, a plurality of land prepits previously formed in the land information track to carry the information relating to the groove information track, and a recording layer formed on at least the groove information track and land information track.; The land prepit is defined by a curved face which has the average radius of curvature smaller than the average radius of curvature of the side face of the groove information track in the segment where no land prepit is present and which is continued from the side face of the groove information track. The side face of the groove information track opposing to the continuous curved face of the land prepit is the curved face which narrows the groove information track.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-25121

(P2002-25121A) (43)公開日 平成14年1月25日(2002.1.25)

(51) Int.Cl.1		識別記号	F 1		テーマコード(参考)	
G11B	7/24	5 6 5	G11B 7	7/24	565J	5D029
		561			561Q	5 D 1 2 1
		563			563M	
	7/26	5 2 1	7	7/26	5 2 1	

		省 資耐水	木耐水 耐水坝の数15 〇L (全 10 貝)
(21)出願番号	特膜2000-202246(P2000-202246)	(71)出顧人	000005016 パイオニア株式会社
(22)出願日	平成12年7月4日(2000.7.4)		東京都目黒区目黒1丁目4番1号
, , , , , , , , , , , , , , , , , , , ,		(72)発明者	加藤 正浩 埼玉県所沢市花園4丁目2610番地 パイオ ニア株式会社所沢工場内
		(72)発明者	
			埼玉県所沢市花園4丁目2810番地 パイオ ニア株式会社所沢工場内
		(74)代理人	100079119 介理士 藤村 元彦
			2.00-
			最終頁に続く

(54) 【発明の名称】 光学式記録媒体並びにその製造方法及び製造装置

(57) 【要約】

【課題】 情報再生時の読取信号に波形歪みが少ない読 取信号が得られる光学式記録媒体を提供する。

【解決手段】 互いに対となって周期的に屈曲しつつ並 設されたグループ情報トラック及びランド情報トラック と、ランド情報トラックに予め形成されかつグループ情 報トラックに関連する情報を担持する複数のランドプリ ピットと、少なくともグループ情報トラック及びランド 情報トラック上に形成された記録層と、を備える光学式 記録媒体であって、ランドプリピットは、ランドプリピ ットの非存在区間でのグループ情報トラックの側面の平 均曲率半径より小なる平均曲率半径を有しかつグループ 情報トラックの側面から連続する曲面により画定され、 さらに、ランドプリピットの連続する曲面に対向するグ ループ情報トラックの側面は、グループ情報トラックを 狭窄する曲面である。

【特許請求の節用】

【請求項1】 互いに対となって周期的に屈曲しつつ並 設されたグループ情報トラック及びランド情報トラック と、前記ランド情報トラックに予め形成されかつ前記グ ループ情報トラックに関連する情報を担持する複数のラ ンドプリピットと、少なくとも前記グループ情報トラッ ク及びランド情報トラック上に形成された記録層と、を 備える光学式記録媒体であって、

前記ランドプリピットは、前記ランドプリピットの非存 在区間での前記グループ情報トラックの側面の平均曲率 10 程において前記スポットを第1振幅で揺動せしめ、前記 半径より小なる平均曲率半径を有しかつ前記グループ情 緒トラックの側面から連続する曲面により画定されてい ること、及び前記ランドプリピットの前記連続する曲面 に対向する前記グループ情報トラックの側面は、前記グ ループ情報トラックを狭窄する曲面であることを特徴と する光学式記録媒体。

【請求項2】 前記グループ情報トラックは第1振幅の 側面を有し、前記ランドプリピットは前記第1振幅より も大なる第2振幅の側面を有することを特徴とする請求 項1記載の光学式記録媒体。

【請求項3】 前記ランドプリピットは、隣接するグル ープ情報トラックとは離開していることを特徴とする請 求項1記載の光学式記録媒体。

【請求項4】 前記ランドプリピットのトラック接線方 向の長さと前記ラントプリピットのトラック接線方向に 垂直な方向の幅とは、前記ランドプリピットによる前記 グループ情報トラックから再生される情報信号のオフセ ットレベルが所定値未満でかつ前記ランドプリピットの 信号レベルが所定の範囲を満たす値に設定されているこ とを特徴とする請求項1記載の光学式記録媒体。

【請求項5】 前記所定値は0、05であり、前記所定 の範囲は0、18~0、27であることを特徴とする請 求項4記載の光学式記録媒体。

【請求項6】 互いに対となって周期的に昆曲1.つつ並 設されたグループ情報トラック及びランド情報トラック と、前記ランド情報トラックに予め形成されかつ前記グ ループ情報トラックに関連する情報を担持する複数のラ ンドプリピットと、少なくとも前記グループ情報トラッ ク及びランド情報トラック上に形成された記録層と、を 備える光学式記録媒体の製造方法であって、

記録原盤に形成されたフォトレジスト層上に、前記記録 原盤に対して相対移動するカッティング光ビームをスポ ット状に照射して、伸長する前配グループ情報トラック を形成する工程と

前記カッティング光ビームの前記スポットを、前記グル 一ブ情報トラックが伸長する方向に対し垂直な方向に偏 倚させ、偏倚した前記スポットを、前記グループ情報ト ラックが伸長すべき位置に復帰させて、前記グループ情 報トラックの側面から連続する曲面により画定される側

2 前記ランドプリピットの側面に対向する前記グループ情 報トラックの側面を、前記グループ情報トラックを狭窄 する曲面となす工程と、を含むことを特徴とする製造方 排

【請求項7】 前記ランドプリピットの側面は、前記ラ ンドプリピットの非存在区間での前記グループ情報トラ ックの側面の平均曲率半径より小なる平均曲率半径を有 することを特徴とする請求項6記載の製造方法。

【請求項8】 前記グループ情報トラックを形成する工 グループ情報トラックを狭窄する曲面側面及び前記ラン ドプリピットを画定する曲面側面を形成する工程におい て前記スポットを前記第1振幅よりも大なる第2振幅で 揺動せしめることを特徴とする結束項6記載の製造方

【請求項9】 前記ランドプリピットのトラック接線方 向の長さと前記ランドプリピットのトラック接線方向に 垂直な方向の幅とは、前記ランドプリピットによる前記 グループ情報トラックから再生される情報信号のオフセ 20 ットレベルが所定値未満でかつ前記ランドプリピットの 信号レベルが所定の範囲を満たす値に設定されているこ とを特徴とする請求項6記載の製造方法。

【請求項10】 前記所定値は0.05であり、前記所 定の範囲は0.18~0.27であることを特徴とする 請求項9記載の製造方法。

【請求項11】 互いに対となって周期的に屈曲しつつ 並設されたグループ情報トラック及びランド情報トラッ クと、前記ランド情報トラックに予め形成されかつ前記 グループ情報トラックに関連する情報を担持する複数の ランドプリピットと、少なくとも前記グループ情報トラ ック及びランド情報トラック上に形成された記録層と、 を備える光学式記録媒体の製造装置であって、

記録原盤に形成されたフォトレジスト層上に、前記記録 原盤に対して相対移動するカッティング光ビームをスポ ット状に照射して、伸長する前記グループ情報トラック を形成するトラック形成館と

前記カッティング光ビームの前記スポットを、前記グル ーブ情報トラックが伸長する方向に対し垂直な方向に偏 倚させ、偏倚した前記スポットを、前記グルーブ情報ト 40 ラックが伸長すべき位置に復帰させて、前記グループ情 報トラックの側面から連続する曲面により画定される側 面を有する前記ランドプリピットを形成するとともに、 前記ランドプリピットの側面に対向する前距グループ情 報トラックの側面を、前記グループ情報トラックを狭窄 する曲面となすランドプリピット形成部と、を含むこと を特徴とする製造装置。

【請求項12】 前記ランドプリピットの側面は、前記 ランドプリピットの非存在区間での前記グループ情報ト ラックの側面の平均曲率半径より小なる平均曲率半径を 面を有する前記ランドプリピットを形成するとともに、 50 有することを特徴とする請求項11記載の製造装置。

【請求項13】 前記トラック形成部において、前記ス ポットを第1振幅で揺動せしめ、前記ランドプリピット 形成部において、前記スポットを前記第1振幅よりも大 なる第2振幅で揺動せしめることを特徴とする請求項1 1 記載の製造装置。

【請求項14】 前記ランドプリピットのトラック接線 方向の長さと前記ランドプリピットのトラック接線方向 に垂直な方向の幅とは、前記ランドブリピットによる前 記グループ情報トラックから再生される情報信号のオフ セットレベルが所定値未満でかつ前記ランドプリピット 10 の信号レベルが所定の範囲を満たす値に設定されている ことを特徴とする請求項11記録の製造装置。

【請求項15】 前記所定値は0.05であり、前記所 定の範囲は0.18~0.27であることを特徴とする 請求項14記載の製造装置。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、光ディスク、光力 ドなどの光学式記録媒体並びにその製造方法及び製造 装置に関する。

[0002]

【従来の技術】記録可能な光学式記録媒体、特に追記型 ODVD-R (Digital Versatile Disc-Recordable) や、書換可能型のDVD-RW(Digital Versatile Dis c-Re-recordable)など(以下、これら媒体を単にDVD と総称する)が既に製品化されている。DVDにおい て、画像情報などのデータの記録時の位置検索などに必 要なアドレス情報やウォブリング信号などのディスクの 回転制御に用いられる回転制御情報など(以下、これら 【0003】回転制御情報は、製造時のプリフォーマッ トの段階で、データを記録する情報トラック(グループ トラック又はランドトラック)を、予め定められた周波 数(ウォブリング周波数)で一定の振幅の波型に予めウ オブリングさせることにより、記録されている。よっ て、DVDに対して実際にデータを記録する際には、当 該ウォブリングされているトラックのウォブリング周波 数を検出し、これに基づいてDVDを回転制御するため の基準クロックを抽出し、当該抽出した基準クロックに 基づいてDVDを回転させるスピンドルモータを回転制 40 御するための駆動信号を生成すると共に、DVDの回転 に同期したタイミング情報を含む記録用クロック信号を 生成している。

【0004】更に、データの記録時に必要なDVD上の アドレスを示すアドレス情報については、二つの情報ト ラックの間にあるトラック(例えば、ランドトラック) に当該プリ情報に対応するプリピットを形成することに よって記録されている。更に、必要に応じて当該プリビ ットからも基準クロックが再生できるようにするため

形成されている。

【0005】図1は、DVDの一例の記録層及び断面の 構造を示す。図示されるように、DVDの例えば相変化 材料からなる記録層上には、予め、凸状のグループトラ ックGV(グループ情報トラック)及び町状のランドト ラックLD (ランド情報トラック) が螺旋状もしくは同 心円状に交互に形成され、すなわち、予め両情報トラッ クが1対となって繰り返し並設されている。

【0006】ランドトラックLD上には、グループトラ ックGV上の位置を示すアドレス及び記録タイミングを 担う複数のランドプリピットLPPなどの関連する情報 が予め形成されている。ランドプリピットLPPの各々 は、隣接する両グループトラックGV間を連結する形態 で形成されており、ランドプリピットの表面は、グルー ブトラックGVの表面と同一平面上に位置している。 【0007】なお、図1においては、情報記録再生装置 によって記録されるべきデータ(音声データ、映像デー タ、及びコンピュータデータ)の記録が行われる前の形 態を示している。図1では各グループトラックGVは直 20 線的に示しているが、実際にはDVDの回転速度に対応 した周波数でウォブリングされている。すなわち、ラン ドトラックLD及びグループトラックGVは互いに対と なって周期的に屈曲しつつ並設されている。

【0008】ここで、かかるDVDに対してデータの記 鎌を行う情報記録再生装置は、このDVDからランドブ リピットLPPを検出することによりグループトラック GV上の位置を認識しつつ、図2に示すようにデータに 応じた記録光ビームをグループトラックGV上に集光照 射する。この際、かかる記録光ビームが照射された部分 を総称してプリ情報という。) が予め記録されている。 30 を加熱し、グループトラックGVの部分に、周囲の反射 率とは異なる反射率の記録マーク部Mを形成する。な お、1つのグループトラックについてのアドレスかどの 情報を備えたランドプリピットLPPは、そのグループ トラックの外周側に形成されたものであるので、図2に 示したように各トラックの外周側のランドプリピットL PPが検出されている。

> 【0009】情報記録再生装置は、ランドプリピット1、 PPを検出するプリピット検出装置を有しており、プリ ピット検出装置には図3に示すような4分割光検出器1 が含まれる。4分割光給出器1はDVDのグループトラ ックGVに沿った方向と、そのグループトラックに直交 する方向とによって4分割された受光面1a~1dを有 する光電変換楽子からなる。受光面1a、1dはディス ク外周側に位置し、受光面 1 b, 1 c はディスク内周側 に位置する。

【0010】スピンドルモータによって回転駆動される DVDに対して読取光ビーム発生装置から読取光ビーム が照射され、その記録層上に光スポットが形成される。 かかる光電変換素子は、その情報聴取スポットによるD に、当該プリピットはDVDの全面に渡ってほぼ均等に 50 VDからの反射光を4つの受光面1a~1d各々によっ て受光し、受光面1a~1d各々の受光量に応じた電気 信号である受光信号Ra~Rdを出力する。ディスク外 周側に位置する受光面1 a、 1 dに対応した受光信号R a, Rdは加算器2に供給され、ディスク内周側に位置 する受光面1b, 1cに対応した受光信号Rb, Rcは 加算器3に供給される。加算器2は受光信号Ra, Rd を加算し、加算器3は受光信号Rb、Rcを加算する。 更に、加質器2の出力信号から加算器3の出力信号が減 算器4にて差し引かれ、減算器4の出力信号がラジアル

プッシュプル信号として得られている。 【0011】図2に示すように照射された光スポット が、データが記録されていないグループトラックGVを 中心としたランドプリピットLPPを含む位置にある場 合には、光ビームの回折により光検出器1の受光面1 a. 1 dへの反射光量が減少し、受光面1b. 1 cへの 反射光量が増加するので、加算器2の出力信号のレベル が加算器3の出力信号のレベルより低下する。よって、 ランドプリピットLPPの位置に対応して減算器4から 出力されるラジアルプッシュプル信号は図4に示すよう ブル信号は2値化回路5に供給され、予め定められた関 値で2値化されることによりランドプリピットLPPが 検出されることになる。

[0012]

【発明が解決しようとする課題】ところで、データを担 う記録マーク部Mを形成するため記録光ビームがランド プリビットI.PPの位置に照射される場合、記録光ビー ムを照射した際の熱がグループトラックGVからランド プリピットLPPの一部にも伝導され、図2に示すよう クの記録マーク部Mより面積の大きい記録マーク部M1 が形成される。

【0013】従って、記録された状態のDVDから情報 データの再生を行うと、ランドプリピットLPP近傍の 記録マーク部M1を読み取った際の読取信号に波形歪み が生じる場合があり、読み取りエラー率が高くなるとい う問題があった。

[0014]

【発明が解決しようとする課題】本発明は、上述した点 に鑑みなされたものであり、情報再生時の読取信号に波 40 形歪みが少ない読取信号が得られる光学式記録媒体並び にその製造方法及び製造装置を提供することを目的とす る。

[0015]

【課題を解決するための手段】本発明の光学式記録媒体 は、互いに対となって周期的に屈曲しつつ並設されたグ ループ情報トラック及びランド情報トラックと、前記ラ ンド情報トラックに予め形成されかつ前記グループ情報 トラックに関連する情報を担持する複数のランドプリピ ド情報トラック上に形成された記録層と、を備える光学 式記録媒体であって、前記ランドプリピットは、前記ラ ンドプリピットの非存在区間での前記グループ情報トラ ックの側面の平均曲率半径より小なる平均曲率半径を有 しかつ前記グループ情報トラックの側面から連続する曲 面により画定されていること、及び前記ランドプリピッ トの前記連続する曲面に対向する前記グループ情報トラ ックの側面は、前記グループ情報トラックを狭窄する曲 而であることを特徴とする。

10 【0016】本発明の光学式記録媒体においては、前記 グループ情報トラックは第1提幅の側面を有し、前記ラ ンドプリピットは前記第1振幅よりも大なる第2振幅の 側面を有することを特徴とする。本発明の光学式記録媒 体においては、前記ランドプリピットは、隣接するグル ープ情報トラックとは離間していることを特徴とする。 【0017】本発明の光学式記録媒体においては、前記 ランドプリピットのトラック接線方向の長さと前記ラン ドプリピットのトラック接線方向に垂直な方向の幅と は、前記ランドプリピットによる前記グループ情報トラ に無峻な谷部を示す波形となる。このラジアルプッシュ 20 ックから再生される情報信号のオフセットレベルが所定 値未満でかつ前記ランドプリピットの信号レベルが所定 の範囲を満たす値に設定されていることを特徴とする。 【0018】本発明の光学式記録媒体においては、前記 所定値は0、05であり、前記所定の範囲は0、18~ 0.27であることを特徴とする。本発明の光学式記録 媒体の製造方法は、 互いに対となって周期的に屈曲1.つ つ並設されたグループ情報トラック及びランド情報トラ ックと、前記ランド情報トラックに予め形成されかつ前 配グループ情報トラックに関連する情報を担持する複数 に、ランドプリビットの非存在区間でのグループトラッ 30 のランドプリビットと、少なくとも前記グループ情報ト ラック及びランド情報トラック上に形成された記録層 と、を備える光学式記録媒体の製造方法であって、記録 原盤に形成されたフォトレジスト層上に、前記記録原盤 に対して相対移動するカッティング光ビームをスポット 状に照射して、伸長する前記グループ情報トラックを形 成する工程と、前記カッティング光ビームの前記スポッ トを、前記グループ情報トラックが伸長する方向に対し 垂直な方向に偏倚させ、偏倚した前記スポットを、前記 グループ情報トラックが伸長すべき位置に復帰させて、 前記グループ情報トラックの側面から連続する曲面によ り画定される側面を有する前記ランドプリピットを形成 するとともに、前記ランドプリピットの側面に対向する 前記グループ情報トラックの側面を、前記グループ情報 トラックを狭窄する曲面となす工程と、を含むことを特 徴とする。

【0019】本発明の光学式記録媒体の製造方法におい ては、前記ランドプリピットの側面は、前記ランドプリ ピットの非存在区間での前記グループ情報トラックの側 面の平均曲率半径より小なる平均曲率半径を有すること ットと、少なくとも前記グループ情報トラック及びラン 50 を特徴とする。本発明の光学式記録媒体の製造方法にお いては、前記グループ情報トラックを形成する工程にお いて前記スポットを第1振幅で揺動せしめ、前記グルー ブ情報トラックを狭窄する曲面側面及び前記ランドプリ

ピットを画定する曲面側面を形成する工程において前記 スポットを前記第1振幅上りも大なる第2振幅で揺動せ

しめることを特徴とする。

【0020】本発明の光学式記録媒体の製造方法におい ては、前記ランドプリピットのトラック接線方向の長さ と前記ランドプリピットのトラック接線方向に垂直な方 向の幅とは、前記ランドプリピットによる前記グループ 10 情報トラックから再生される情報信号のオフセットレベ ルが所定値未満でかつ前記ランドプリピットの信号レベ ルが所定の範囲を満たす値に設定されていることを特徴 上する。

【0021】本発明の光学式記録媒体の製造方法におい ては、前記所定値は0.05であり、前記所定の範囲は 0. 18~0. 27であることを特徴とする。本発明の 光学式記録媒体の製造装置においては、互いに対となっ て周期的に屈曲しつつ並設されたグループ情報トラック 及びランド情報トラックと、前記ランド情報トラックに 20 予め形成されかつ前記グループ情報トラックに関連する 情報を担持する複数のランドプリピットと、少なくとも 前記グループ情報トラック及びランド情報トラック上に 形成された記録層と、を備える光学式記録媒体の製造装 置であって、記録原盤に形成されたフォトレジスト層上 に、前記記録原盤に対して相対移動するカッティング光 ビームをスポット状に照射して、伸長する前記グループ 情報トラックを形成するトラック形成部と、前記カッテ ィング光ビームの前記スポットを、前記グループ情報ト ラックが伸長する方向に対し垂直な方向に偏倚させ、偏 30 倚した前記スポットを、前記グループ情報トラックが伸 長すべき位置に復帰させて、前紀グループ信報トラック の側面から連続する曲面により画定される側面を有する 前記ランドプリピットを形成するとともに、前記ランド プリピットの側面に対向する前記グループ情報トラック の側面を、前記グループ情報トラックを狭窄する曲面と なすランドプリピット形成部と、を含むことを特徴とす 3.

【0022】本発明の光学式記録媒体の製造装置におい ては、前記ランドプリピットの側面は、前記ランドプリ 40 ピットの非存在区間での前記グループ情報トラックの側 面の平均曲率半径より小なる平均曲率半径を有すること を特徴とする。本祭明の光学式記録媒体の製造装置にお いては、前記トラック形成部において、前記スポットを 第1振幅で揺動せしめ、前記ランドプリピット形成部に おいて、前記スポットを前記第1振幅よりも大なる第2 振幅で揺動せしめることを特徴とする。

【0023】本発明の光学式記録媒体の製造装置におい ては、前記ランドプリピットのトラック接線方向の長さ

向の幅とは、前記ランドプリピットによる前記グループ 情報トラックから再生される情報信号のオフセットレベ ルが所定値未満でかつ前記ランドプリビットの信号レベ ルが所定の範囲を満たす値に設定されていることを特徴 とする.

【0024】本発明の光学式記録媒体の製造装置におい ては、前記所定値は0.05であり、前記所定の範囲は 0.18~0.27であることを特徴とする。

[0025]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照しつつ詳細に説明する。図5は、書き換え可能な 相変化型光ディスクの一例を示す。この光ディスク(D VD-RW) 11は、例えば、Ag-In-Sb-Te などの相変化材料からなる媒体層及びこれを挟む例え ば、ZnS-SiO:などのガラス質保護層からなる積 層構造の記録層15を備えている。記録層15上にグル ープトラック12とランドトラック13が形成されてい る。この並設されたランド及びグループにより、再生光 又は記録光としてのレーザ光ビーム(B) を誘導する。 また、光ディスク11は光ピーム(B)を反射するため の反射層16、透明基板(ポリカーボネート)18及び 接着層19を備えている。更に、光ビーム(B) の入射 面側にはそれらを保護するための透明膜(ポリカーボネ ート) 17が設けられている。 【0026】光ディスク11のランドトラック13に

は、プリ情報に対応するランドプリピット14が予め形 成されている。図5に示すように、ランドプリピット1 4の側面14aは、その非存在区間でのグループトラッ ク12の側面12aの平均曲率半径より小なる平均曲率 半径の曲面であり、ランドプリピット非存在区間のグル ープトラック12の側面12aから連続するように形成 されている。グループトラック12は所定周波数でウォ ブリングしているので、図6に示すように、グループト ラックの側面はほぼ平面に近い、すなわちディスク平面 上では大きい曲率半径12Rの比較的緩やかな曲線で切 削され、プリ情報の一部がランドプリピット非存在区間 にウォブル周波数として記録されている。従って、グル ープトラック12の側面12aの平均曲率半径も比較的 大きいものとなる。この実施形態では、図6及び図7に 示すように、ランドプリピット14の側面14aは、グ ループトラック12の大きい曲率半径12Rより遙かに 小さい急峻な曲線 (ランドプリピット14の曲率半径1 4 R) で切削されている。このように、グループトラッ ク12は中心線 (二点差線) から第1振幅A1の側面を 有し、ランドプリピット14は第1振幅よりも大なる第 2 振幅 A 2 の側面を有している。

【0027】ランドプリピット14の側面14aに対向 するグループトラック12の側面12bは、グループト ラック12を狭窄する曲面である。このグループトラッ と前記ランドプリピットのトラック接線方向に垂直な方 50 ク12の側面12bは、対向するグループトラック12

の側面の延長線 (図7の破線で示す) に到港しない程度 で狭窄するように形成することが好ましい。後に記録さ れた記録マークMがランドプリピット隣接部に形成され た場合に、記録マークMからの反射光量が減少するから

【0028】相変化型光ディスクの動作を説明する。図 5に示すように、光ディスク11にユーザーデータ (プ リ情報以外のユーザーなどが後から記録する画像情報な どのデータをいう)を記録する際には、情報配録装置に おいてこのグループトラック12のウォブリング周波数 10 を抽出することにより、光ディスク11を所定の回転速 度で回転制御する。同時に、ランドプリピット14を検 出することにより、予めプリ情報を取得し、それに基づ いて記録用光ビーム (B) の最適出力などが設定され る。また、ランドプリピット14を検出することにより ユーザーデータを記録すべき光ディスク11上の位置を 示すアドレス情報などが取得され、このアドレス情報に 基づいてユーザーデータが対応する位置に記録される。 なお、光ディスク11に記録されるユーザーデータはグ ループトラック12の中心線上に反射率の異なる記録マ 20 ーク部として記録される。

【0029】ユーザーデータの記録時には、光ビーム (B) をその中心がグループトラック12の中心と一致 するように照射してグループトラック12上にユーザー データに対応する記録マーク部を形成することにより、 ユーザーデータを記録する。この時、光スポット(S P) の大きさは、その一部がグループトラック12だけ ではなくランドトラック13にも照射されるように設定 される。

ト (SP) の一部の反射光を用い、例えば、図3に示す トラック接線方向(グループ12の接線(トラック方 向)) に平行な分割線により分割された光検出器を用い たラジアルブッシュブル方式により、ランドプリピット 14からプリ情報を取得すると共にグループトラック1 2からウォブル信号を抽出してディスクの回転に同期し た記録用クロック信号を検出する。

【0031】次に、本発明の一つの実施例について詳細 に説明する。まず、図8に相変化型光ディスクのための 原盤形成用の光ディスクカッティング装置を示す。Kr 40 レーザ発振器201は露光用光ビームを発生する。レー ザ発振器201から発せられた光ビームは反射ミラー2 03.204にて各々反射されて対物レンズ205に入 射し、対物レンズ205を通過した光ビームは記録原盤 206上に照射される。反射ミラー202及び203間 にはAO変調器(Acoustic optical Modulator) 207a が設けられており、FM変調器207から供給される記 録すべき映像信号や音声信号などの信号をAO変調器2 07 aによって、光ビームが該信号に応じて変調を受け

【0032】AO変調器207aとして、非平行面を出 入射而とするウェッジプリズム、AOD (光響光学偏向 器) Vは回転ミラーが使用される、AODは例えば、約 300MHzの中心周波数の高周波電気信号を入力し、 その中心周波数を変化させることによって、1次回折光 の同折角度が変化することを利用するものである。一 方、ウェッジプリズム及び回転ミラーを使用するものと しては、これらを回動駆動するDCモータ、ステッピン グモータ、ピエゾ素子などの駆動系を制御して、その屈 折光及び反射光の偏向を用いる。変調された露光用光ビ ームにより、回転する記録原盤 6 Fのポジ型フォトレジ スト層が露光される。また、反射ミラー203及び20 4間には光ビームエキスパンダ208が設けられてお り、これによって対物レンズ205のレンズ一杯にビー ムを入射させるために光ビーム径が拡大される。

【0033】一方、対物レンズ5を駆動しフォーカスサ ーボをなすためにHeNeレーザ発振器210を含むフ オーカスサーボ用光学系が光ディスクカッティング装置 に用いられている、レーザ発振器210から発せられた 光ピームは反射ミラー211及びダイクロイックミラー 212によって各々反射され露光用光ビームに合流後、 反射ミラー204に入射する。対物レンズ208を通過 した光ビームは記録原盤206上に照射される。なお、 レーザ発振器210のフォーカス用光ビームは、記録原 盤206を露光することがないよう、その波長及び強度 が選定されている。反射ミラー211及びダイクロイッ クミラー212間には偏光ビームスプリッタ213が設 けられており、記録原盤206からの反射光は対物レン ズ205を通過して反射ミラー204及びダイクロイッ 【0030】ランドトラック13に照射された光スポッ 30 クミラー212によって反射され、偏光ビームスプリッ タ213によって反射されてシリンドリカルレンズ21 4を介して4分割光ディテクタ215に供給される。光 ディテクタ215の各出力信号はフォーカスサーボ制御 回路216に供給され、フォーカスサーボ制御回路21 6は光ディテクタ215の各出力信号に応じて対物レン ズ205のアクチュエータ217を駆動する。

> 【0034】さらにまた、記録原盤206を保持しこれ を回転せしめるターンテーブル219を回転せしめるス ピンドルモータ220の回転を制御するスピンドルサー ボ回路221と、対物レンズ205を含む光学系などを 担持する光ヘッドを記録原盤206の半径方向において 移動せしめる駆動モータ222の回転を制御するする光 ヘッド送りサーボ回路223とが、光ディスクカッティ ング装置に備えられている。

【0035】かかる光ディスクカッティング装置におい ては、コントローラ260による発振器201、変調器 207、サーボ系216, 221, 223の制御によっ て、LPP信号を重畳したウォブリング信号で変調され た1つの光ビームで、記録原盤のポジ型フォトレジスト 50 層に照射露光し、ポジ型フォトレジスト層の露光部分を

ピットとしてエッチング、現像してトラックを形成して

【0036】まず、光ディスクカッティング装置に、ガ ラス円線206aの主面上にフォトレジスト層206b を形成した記録原盤206を、レーザーカッティング装 置のターンテーブル219に載置する。その後、図9に 示すように、テーブルを回転させ、光ビームLaを、原 盤上を螺旋又は同心円状に相対移動させつつ、LPP信 号を重畳したウォブリング信号で変調されたカッティン グ光ビームLaをフォトレジスト層206b上に集光せ 10 しめ、カッティング光ビームのスポットを、グループト ラック12が伸長する方向に対し垂直な方向に偏倚さ せ、偏倍したスポットを、グループトラック12が伸長 すべき位置に復帰させ、トラックの潜像をフォトレジス ト屬206bに形成する。この時、LPP信号重畳ウォ ブリング信号を用いているので、図6に示すように、カ

【0037】次に、露光したフォトレジスト原盤を現像 装置に装着し、これを現像して潜像部分を除去し、現像 20 れている。 されたを得る。図10に示すように、原盤において、グ ループトラック12の側面から連続する曲面により画定 される側面を有するランドプリピットを形成するととも に、ランドプリピットの側面に対向するグループトラッ ク12の側面によって、グループトラック12を狭窄す る曲面として形成する。このようにして、ランドプリピ ット14の側面は、ランドプリピットの非存在区間にお けるグループトラック12の側面の平均曲率半径より小 なる平均曲率半径を有することになる.

ッティング光ビームスポットは一定間隔で第1振幅より

も大かる第2振幅で採動する。

トレジスト層206トトにニッケル又は銀などの導電膜 をスパッタリング又は蒸着などによって形成し、例えば ニッケル電鋳によりニッケルスタンパを形成して、該ス タンパをガラス整206gから分離して、ニッケルスタ ンパを得る。該スタンパによって、例えば射出成形法、 いわゆる2P法により、図10に示すものと同一の所定 プリ情報を有した樹脂光ディスク基板のレプリカが作成 される。

【0039】このようにして得られた光ディスク基板上 に、例えば保護膜、相変化材料媒体層、保護膜、反射膜 40 を順次積層し、接着層により他の基板に貼り合わせ、図 5に示す光ディスクが作成される。次に、本発明におけ るランドプリピット14のトラック接線方向の長さ(L PP length (µm))とトラック接線方向に 垂直な方向への偏倚量(シフト量) (LPP shif t (μm))の最適値について説明する。

【0040】上述したようにして本発明の光学式記録媒 体によれば、ランドプリピット14は、グループトラッ ク12をトラック伸張方向に対して垂直方向に急激に偏 リピット14の長さ及びシフト量(図7)は、ランドプ リピット自体の輸出信号レベルに影響を及ぼすだけでな く、グループトラック12に記録される情報ピットの再 牛信号 (RF信号) にも大きな影響を及ぼす。

【0041】 DVDの記録フォーマットによれば、グル ープトラック上に形成される情報ピットは3丁~11丁 と14Tの何れかの長さを取り得る。3T~11Tは主 に8-16変調された情報信号によるものであり、14 Tは情報信号の各シンクフレームの先頭に付加された同 期信号(シンクコード)によるものである。周知のよう に3Tの情報ピットに対するRF信号の変化幅は一番小 さく、発明者の実験確認によると、ランドプリピットに よるRF信号レベルのオフセットレベル(RFオフセッ ト)が0.05以上になると、この一番短い3Tの情報 ピットを読み誤り始めることを確認した。なお、未記録 のグループトラックを再生するときの全反射光量レベル をレベル1としている。また、DVDフォーマットによ れば、ランドプリピットの検出信号レベル(LPPレベ ル) は0、18~0、27でなければならないと規定さ

【0042】従って、本発明によるランドプリピットの 長さ及びシフト量は、RFオフセットがO、O5未満で あり、目つLPPレベルが0、18~0、27となる値 に設定される。図11はこの2条件を満たすランドプリ ピット14の長さ及びシフト量の取り得る節囲の一例を 示している。なお、同図におけるグループトラック12 の幅Gwは0, 25 μm、その深さGdは0, 030 μ mとされている。

【0043】図11において、実線AはLPPレベルが 【0038】 次に、ポストペークで定着させた後、フォ 30 0.18となる条件ライン、実練BはLPPレベルが 21となる条件ライン、そして実線CはLPPレベ ルが0、24となる条件ラインである。本例において、 LPPレベルが0.27以上となる条件ラインは存在し ない。よって、LPPレベルが0、18~0、27とな るランドプリピット14の長さ及びシフト量の取り得る 範囲は、実線Aより右上側のエリアとなる。

> 【0044】一方、破線DはRFオフセットが0、02 となる条件ライン、破線EはRFオフセットがO、O5 となる条件ライン、破線FはRFオフセットがO. O.8 となる条件ラインである。よって、RFオフセットが 0、05未満となるランドプリピット14の長さ及びシ フト量の取り得る節囲は、実線Eより左下側のエリアと かる.

【0045】以上のことから、上述した2条件(RFオ フセット<0.05、LPPレベル=0、18~0.2 7) を満たすランドプリピットの長さ及びシフト量は、 図11の実線Aと破線Eとの間によって示されるエリア となり、このエリア内で自由に設定される。例えば、点 P1に示されるように、ランドプリピットの長さを0. 倚することにより形成されている。このため、ランドプ 50 80μm、シフト量を0.36μm、点P2に示される ように、ランドプリピットの長さを 1. 2μ m、シフト量を 0. $2 4 \mu$ m、或いは点P 3 に示されるように、ランドプリピットの長さを 2. 0μ m、シフト量を 0. 2μ mに設定される。

【0046】 なお、図11に示される各条件ラインは、 グループトラウタ幅度の及びグループトラック度 Gd の値によって参助するため、注意必要である。入りの値によって参助するため、注意必要である。入りのできるできる。 100年で、100

[0047]

【発病の効果】以上の知く、本発明によれば、ランドプ 20 リピットがその非存在区間におけるグループ情報トラッ クの側面の平均率半径とかりたる平均曲率半径を有し かつグループ情報トラック側面から速度する曲面によ り面定されて、さらに、ランドツリピットの連載する曲 面に対向するグループ情報トラックの側面がパループ情報 根トラックを映停する曲面であるので、ブリピットを正 確に検出することができる。

* 【図面の簡単な説明】

【図1】DVDの一部切欠部分斜視図。

【図2】DVDの部分平面図。

【図3】プリピット検出装置の構成を示すブロック図。

【図4】ラジアルプッシュプル信号を示すグラフ。

【図5】本発明によるDVDの一部切欠部分糾視図。

【図6】本発明によるDVDの部分平面図。

【図7】本発明によるDVDの部分平面図。

【図8】本発明による光ディスク原盤形成用の光ディス 10 クカッティング装置を示すプロック図。

【図9】本発明による光ディスク原盤基板の一部切欠部 分斜視図。

【図10】本発明による光ディスク原盤基板の一部切欠 部分斜視図。

【図11】本発明による光ディスクで得られる或るランドプリピット信号レベル範囲を示すグラフ。

【主要部分の符号の説明】 1 1 DVD-RW

- 12 グループトラック
- 13 ランドトラック
- 14 ランドプリピット
- 15 記録層
- 16 反射層
- 17 透明膜
- 18 透明基板
- 19 接着層

[図2]

[図3]

図4]

フロントページの続き

(72) 発明者 山口 淳

埼玉県所沢市花園4丁目2610番地 パイオ

ニア株式会社所沢工場内

(72)発明者 谷口 昭史

埼玉県所沢市花園4丁目2610番地 パイオ ニア株式会社所沢工場内

Fターム(参考) 5D029 WA02 WA33

5D121 AA02 EE26 EE29