Lógica, teoría de números y conjuntos Quinto Parcial, 14 de noviembre de 2018

Estudiante: Isobella Mortinez Martinez Nota: 49

Punto \(\)\((1\text{pt})\) Demuestre que si $a \neq 0$, entonces $f: \mathbb{Q} \to \mathbb{Q}$ definida como f(x) = ax + b es sobreyectiva.

Punto $\mathbf{2}$ (1pt) Demuestre que si f es inyectiva, entonces f^{-1} es función.

Punto 3 (1pt) Sea (a_1, \ldots, a_5) una lista de cinco enteros distintos. Decimos que esta lista es creciente si $a_1 < a_2 < \ldots < a_5$ y decreciente si $a_1 > a_2 > \ldots > a_5$. Observe que una lista puede tener distintos patrones de >s y <s y que dos listas distintas pueden tener el mismo patrón; por ejemplo (1,5,2,3,4) y (0,6,1,3,7) tienen el mismo patrón de >s y <s. Utilice el principio del palomar para demostrar que en cualquier conjunto de 17 de estas listas hay por lo menos dos que tienen el mismo patrón de >s y <s.

Punto \P . (1pt) Sean $f: A \to B$, $g: B \to C$, $g: B \to C$, $g: B \to C$. Demuestre que $(h \circ g) \circ f = h \circ (g \circ f)$.

Punto 5. Sea A un conjunto y $f: A \to \wp(A)$. Defina

 $B = \{a \in A : a \not\in f(a)\}$

(1.2 ta) (0.2 pts) Demuestre que B no está en la imagen de f.

(0.2pts) Use (a) para demostrar que si $f: A \to \wp(A)$, entonces f no es sobreyectiva.

(0.2pts) Considere la siguiente proposición:

Si |A| = |B|, entonces existe $f: A \to B$ biyectiva

Use esta proposición y (b) para demostrar por reducción al absurdo que $|A| \neq |\wp(A)|$.

(0.2pts) Demuestre que la función $f: A \to \wp(A)$ definida como $f(a) = \{a\}$ es inyectiva.

(0.2pts) Concluya que $|A| < |\wp(A)|$.

