

Micropower Voltage Reference

ISL21010

The ISL21010 is a precision, low dropout micropower bandgap voltage reference in a space-saving SOT-23 package. It operates from a single 2.2V to 5.5V supply (minimum voltage is dependent on voltage option) and provides a $\pm 0.2\%$ accurate reference. The ISL21010 provides up to 25mA output current sourcing with low 150mV dropout voltage.

Output voltage options include 1.024V, 1.2V, 1.5V, 2.048V, 2.5V, 3.0V, 3.3V and 4.096V. The low supply current and low dropout voltage combined with high accuracy make the ISL21010 ideal for precision battery powered applications.

Applications

- Battery Management/Monitoring
- · Low Power Standby Voltages
- · Portable Instrumentation
- · Consumer/Medical Electronics
- · Lower Cost Industrial and Instrumentation
- · Power Regulation Circuits
- · Control Loops and Compensation Networks
- · LED/Diode Supply

Features

- · Precision 0.2% Initial Accuracy
- · Input Voltage Range:

- ISL21010-10, -12, -15 -20 2.2V to 5.5V
- ISL21010-25 2.6V to 5.5V
- ISL21010-30
- ISL21010-33
- ISL21010-41
Output Current Source Capability 25mA
Operating Temperature Range40°C to +125°C
Output Voltage Noise ($V_{OUT} = 2.048V$)
(0.1Hz to 10Hz)

- Package 3 Ld SOT-23
- Pb-Free (RoHS compliant)

December 8, 2011 FN7896.1

1

Pin Configuration

Pin Descriptions

PIN NUMBER	PIN NAME	DESCRIPTION
1	V _{IN}	Input Voltage Connection
2	V _{OUT}	Voltage Reference Output
3	GND	Ground Connection

Ordering Information

PART NUMBER (Notes 1, 2, 3, 4)	PART MARKING	V _{OUT} OPTION (V)	INITIAL ACCURACY (%)	TEMP. RANGE (°C)	PACKAGE TAPE & REEL (Pb-Free)	PKG. DWG.#
ISL21010DFH310Z-TK	BEBA	1.024	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010DFH312Z-TK	BECA	1.25	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010CFH315Z-TK	BDRA	1.5	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010CFH320Z-TK	BDSA	2.048	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010CFH325Z-TK	BDTA	2.5	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010CFH330Z-TK	BDVA	3.0	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010CFH333Z-TK	BDWA	3.3	±0.2	-40 to +125	3 Ld SOT-23	P3.064
ISL21010CFH341Z-TK	BDYA	4.096	±0.2	-40 to +125	3 Ld SOT-23	P3.064

NOTES:

- 1. Please refer to TB347 for details on reel specifications.
- 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL21010. For more information on MSL please see Tech Brief TB363.
- 4. The part marking is located on the bottom of the part.

Table of Contents

Pin Configuration	2
Ordering Information	2
Absolute Maximum Ratings	4
Thermal Information	4
Recommended Operating Conditions	4
Electrical Specifications (ISL21010-10, V _{OUT} = 1.024V)	. 4
Electrical Specifications (ISL21010-12, V _{OUT} = 1.25V)	. 5
Electrical Specifications (ISL21010-15, V _{OUT} = 1.5V)	. 5
Electrical Specifications (ISL21010-20, V _{OUT} = 2.048V)	. 6
Electrical Specifications (ISL21010-25, V _{OUT} = 2.5V)	. 6
Electrical Specifications (ISL21010-30, V _{OUT} = 3.0V)	7
Electrical Specifications (ISL21010-33, V _{OUT} = 3.3V)	7
Electrical Specifications (ISL21010-41, V _{OUT} = 4.096V)	8
Typical Performance Characteristics Curves (V _{OUT} = 2.048V)	9
Typical Performance Characteristics Curves (V _{OUT} = 3.0V)	12
Typical Performance Characteristics Curves (V _{OUT} = 3.3V)	15
Applications Information	18
Micropower Operation	
Board Mounting Considerations	
Noise Performance and Reduction	
Typical Application Circuit	L8
Revision History	L9
Products	L9
Package Outline Drawing	20

Absolute Maximum Ratings

Max Voltage	
V _{IN} to GND	0.5V to +6.5V
V _{OUT} (pin) to GND (10s)	0.5V to V _{IN} +0.5V
Input Voltage Slew Rate (Max)	1V/µs
Temperature Range (Industrial)	40°C to +125°C
ESD Rating	
Human Body Model	5500V
Machine Model	300V
Charged Device Model	2kV

Thermal Information

Thermal Resistance (Typical) θ _{JA} (°C/W)	θ _{JC} (°C/W)
3 Ld SOT-23 Package (Notes 5, 6)	110
Continuous Power Dissipation (T _A = +125°C)	99mW
Storage Temperature Range65°	°C to +150°C
Pb-Free Reflow Profile (Note 7)s	ee link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp	

Recommended Operating Conditions

Temperature	40°C to +125°C
Supply Voltage	
V _{OUT} = 1.024V, 1.25V, 1.5V, 2.048V	2.2V to 5.5V
V _{OUT} = 2.5V	2.6V to 5.5V
V _{OUT} = 3.0V	3.1V to 5.5V
V _{OUT} = 3.3V	3.4V to 5.5V
V _{OUT} = 4.096V	4.2V to 5.5V

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 5. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief <u>TB379</u> for details.
- 6. For $\theta_{\mbox{\scriptsize JC}},$ the "case temp" location is taken at the package top center.
- 7. Post-reflow drift for the ISL21010 devices may shift up to 4.0mV based on simulated reflow at 260 °C peak temperature, three passes. The system design engineer must take this into account when considering the reference voltage after assembly.

Electrical Specifications (ISL21010-10, V_{OUT} = 1.024V) $V_{IN} = 3.0V$, $T_A = +25$ °C, $I_{OUT} = 0A$, unless otherwise specified. **Boldface limits apply over the operating temperature range, -40**°C to +125°C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
v _{out}	Output Voltage			1.024		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		2.2		5.5	V
I _{IN}	Supply Current	T _A = +25°C		46	80	μΑ
		$T_A = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$		60	100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	2.2 V ≤ V _{IN} ≤ 5.5V		5	100	μV/V
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	Sourcing: 0mA ≤ I _{OUT} ≤ 25mA		15	110	μV/mA
		Sinking: $-1mA \le I_{OUT} \le 0mA$		17		μV/mA
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		118		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		70		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		24		μV _{P-P}
V_N	Broadband Voltage Noise	$\textbf{10Hz} \leq \textbf{f} \leq \textbf{1kHz}$		14		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	$\Delta T_A = +165$ °C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		110		ppm

Electrical Specifications (ISL21010-12, V_{OUT} = 1.25V) V_{IN} = 3.0V, T_A = +25°C, I_{OUT} = 0A, unless otherwise specified. **Boldface limits apply over the operating temperature range, -40°C to +125°C.**

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V _{OUT}	Output Voltage			1.25		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		2.2		5.5	V
I _{IN}	Supply Current	T _A = +25°C		46	80	μΑ
		T _A = -40°C to +125°C			100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	2.2 V ≤ V _{IN} ≤ 5.5V		1	100	μV/V
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	Sourcing: 0mA ≤ I _{OUT} ≤ 25mA		35	110	μV/mA
		Sinking: -1mA ≤ I _{OUT} ≤ 0mA		50		μV/mA
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		118		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		68		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		27		μV _{P-P}
v_N	Broadband Voltage Noise	$\textbf{10Hz} \leq \textbf{f} \leq \textbf{1kHz}$		17		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	$\Delta T_A = +165$ °C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		110		ppm

Electrical Specifications (ISL21010-15, V_{OUT} = 1.5V) $V_{IN} = 3.0V$, $T_A = +25 \,^{\circ}\text{C}$, $I_{OUT} = 0A$, unless otherwise specified. **Boldface limits apply over the operating temperature range, -40 ^{\circ}\text{C} to +125 ^{\circ}\text{C}.**

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V _{OUT}	Output Voltage			1.5		٧
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		2.2		5.5	٧
I _{IN}	Supply Current	T _A = +25°C		46	80	μΑ
		T _A = -40°C to +125°C			100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	2.2 V ≤ V _{IN} ≤ 5.5V		9	100	μV/V
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	Sourcing: 0mA ≤ I _{OUT} ≤ 25mA		37	110	μV/mA
		Sinking: $-1mA \le I_{OUT} \le 0mA$		50		μV/mA
I _{SC}	Short Circuit Current	$T_A = +25$ °C, V_{OUT} tied to GND		118		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		66		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		35		μV _{P-P}
v _N	Broadband Voltage Noise	$\mathbf{10Hz} \leq \mathbf{f} \leq \mathbf{1kHz}$		20		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	$\Delta T_A = +165$ °C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		110		ppm

Electrical Specifications (ISL21010-20, V_{OUT} = 2.048V) V_{IN} = 3.0V, T_A = +25°C, I_{OUT} = 0A, unless otherwise specified. **Boldface limits apply over the operating temperature range, -40°C to +125°C.**

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V _{OUT}	Output Voltage			2.048		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V_{IN}	Input Voltage Range		2.2		5.5	V
I _{IN}	Supply Current	T _A = +25°C		46	80	μΑ
		$T_A = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$			100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	2.2 V ≤ V _{IN} ≤ 5.5V		37	130	μV/V
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 25mA$		18	110	μV/mA
		Sinking: $-1mA \le I_{OUT} \le 0mA$		10		μV/mA
Isc	Short Circuit Current	$T_A = +25$ °C, V_{OUT} tied to GND		118		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		66		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		58		μV _{P-P}
V_N	Broadband Voltage Noise	$\textbf{10Hz} \leq \textbf{f} \leq \textbf{1kHz}$		26		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	$\Delta T_A = +165$ °C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		50		ppm

Electrical Specifications (ISL21010-25, V_{OUT} = 2.5V) V_{IN} = 3.0V, T_A = +25 °C, I_{OUT} = 0A, unless otherwise specified. **Boldface limits apply over the operating temperature range, -40 °C to +125 °C.**

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
v _{out}	Output Voltage			2.5		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		2.6		5.5	V
I _{IN}	Supply Current	T _A = +25°C		46	80	μΑ
		$T_A = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$			100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	2.6 V ≤ V _{IN} ≤ 5.5V		62	245	μV/V
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 25mA$		29	110	μV/mA
		Sinking: $-1mA \le I_{OUT} \le 0mA$		50		μV/mA
V _{INDO}	Dropout Voltage (Note 10)	I _{OUT} = 10mA		60	150	mV
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		118		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		62		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		67		μV _{P-P}
V_N	Broadband Voltage Noise	$\textbf{10Hz} \leq \textbf{f} \leq \textbf{1kHz}$		37		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	$\Delta T_A = +165$ °C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		110		ppm

Electrical Specifications (ISL21010-30, V_{OUT} = 3.0V) $V_{IN} = 5.0V$, $T_A = +25 \,^{\circ}$ C, $I_{OUT} = 0$ A, unless otherwise specified. Boldface limits apply over the operating temperature range, -40 $^{\circ}$ C to +125 $^{\circ}$ C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V _{OUT}	Output Voltage			3.0		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25°C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		3.1		5.5	V
I _{IN}	Supply Current	T _A = +25°C		48	80	μA
		T _A = -40°C to +125°C			100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	3.1 V ≤ V _{IN} ≤ 5.5V		73	230	μV/V
$\Delta V_{ m OUT}/\Delta I_{ m OUT}$	Load Regulation	Sourcing: 0mA ≤ I _{OUT} ≤ 25mA		48	110	μV/mA
		Sinking: -1mA ≤ I _{OUT} ≤ 0mA		10		μV/mA
V _{INDO}	Dropout Voltage (Note 10)	I _{OUT} = 10mA		60	150	mV
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		126		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		62		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		86		μV _{P-P}
V _N	Broadband Voltage Noise	10Hz ≤ f ≤ 1kHz		36		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	ΔT _A = +165°C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		50		ppm

Electrical Specifications (ISL21010-33, V_{OUT} = 3.3V) V_{IN} = 5.0V, T_A = +25°C, I_{OUT} = 0A, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V _{OUT}	Output Voltage			3.3		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25°C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		3.4		5.5	V
I _{IN}	Supply Current	T _A = +25°C		48	80	μΑ
		$T_A = -40$ °C to +125 °C			100	μΑ
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	3.4 V ≤ V _{IN} ≤ 5.5V		80	320	μV/V
$\Delta V_{ m OUT}/\Delta I_{ m OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 25mA$		45	110	μV/mA
		Sinking: -1mA ≤ I _{OUT} ≤ 0mA		10		μV/mA
V _{INDO}	Dropout Voltage (Note 10)	I _{OUT} = 10mA		60	150	mV
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		126		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		61		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		95		μV _{P-P}
V_N	Broadband Voltage Noise	$\mathbf{10Hz} \leq \mathbf{f} \leq \mathbf{1kHz}$		40		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	ΔT _A = +165°C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		50		ppm

Electrical Specifications (ISL21010-41, V_{OUT} = 4.096V) $V_{IN} = 5.0V$, $T_A = +25 \,^{\circ}\text{C}$, $I_{OUT} = 0\text{A}$, unless otherwise specified. **Boldface limits apply over the operating temperature range, -40 ^{\circ}\text{C} to +125 ^{\circ}\text{C}.**

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
V _{OUT}	Output Voltage			4.096		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25°C (Note 7)		-0.2		+0.2	%
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 9)			15	50	ppm/°C
V _{IN}	Input Voltage Range		4.2		5.5	V
I _{IN}	Supply Current	T _A = +25°C		48	80	μΑ
		$T_A = -40 ^{\circ}\text{C to} + 125 ^{\circ}\text{C}$			100	μA
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	4.2 V ≤ V _{IN} ≤ 5.5V		106	550	μV/V
$\Delta V_{OUT}/\Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 25mA$		50	140	μV/mA
		Sinking: $-1mA \le I_{OUT} \le 0mA$		50		μV/mA
V _{INDO}	Dropout Voltage (Note 10)	I _{OUT} = 10mA		60	150	mV
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		126		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$, $C_{OUT} = 1\mu F$		300		μs
	Ripple Rejection	f = 120Hz		58		dB
e _N	Output Voltage Noise	$0.1 Hz \leq f \leq 10 Hz$		112		μV _{P-P}
V _N	Broadband Voltage Noise	$\textbf{10Hz} \leq \textbf{f} \leq \textbf{1kHz}$		56		μV _{RMS}
$\Delta V_{OUT}/\Delta T_{A}$	Thermal Hysteresis (Note 11)	$\Delta T_A = +165$ ° C		100		ppm
$\Delta V_{OUT}/\Delta t$	Long Term Stability	1000 hours, T _A = +25°C		110		ppm

NOTES:

- 8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
- 9. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in V_{OUT} is divided by the temperature range; in this case, -40 °C to +125 °C = +165 °C.
- 10. Dropout Voltage is the minimum V_{IN} V_{OUT} differential voltage measured at the point where V_{OUT} drops 1mV from V_{IN} = nominal at T_A = +25°C.
- 11. Thermal Hysteresis is the change of V_{OUT} measured @ T_A = +25°C after temperature cycling over a specified range, Δ T_A. V_{OUT} is read initially at T_A = +25°C for the device under test. The device is temperature cycled and a second V_{OUT} measurement is taken at +25°C. The difference between the initial V_{OUT} reading and the second V_{OUT} reading is then expressed in ppm. For Δ T_A = +165°C, the device under test is cycled from +25°C to -40°C to +125°C.

Typical Performance Characteristics Curves (V_{OUT} = 2.048V)

 V_{IN} = 3.0V, I_{OUT} = 0mA, T_A = +25 °C unless otherwise specified.

FIGURE 2. I_{IN} vs V_{IN} , THREE UNITS

FIGURE 3. I_{IN} vs V_{IN}, OVER-TEMPERATURE

FIGURE 4. LINE REGULATION, THREE UNITS

FIGURE 5. LINE REGULATION OVER-TEMPERATURE

FIGURE 6. LINE TRANSIENT RESPONSE WITH $0.1\mu\text{F}$ LOAD

FIGURE 7. LINE TRANSIENT RESPONSE WITH $10\mu F$ LOAD

Typical Performance Characteristics Curves (V_{OUT} = 2.048V)

FIGURE 8. LOAD REGULATION OVER-TEMPERATURE

FIGURE 9. LOAD TRANSIENT RESPONSE AT 25mA LOAD

FIGURE 10. LOAD TRANSIENT RESPONSE AT 1mA LOAD

FIGURE 11. TURN-ON TIME

FIGURE 12. Z_{OUT} vs FREQUENCY

FIGURE 13. RIPPLE REJECTION AT DIFFERENT CAPACITIVE LOADS

Typical Performance Characteristics Curves (V_{OUT} = 2.048V)

FIGURE 14. DROPOUT (10mA SOURCED LOAD)

FIGURE 16. V_{OUT} vs TEMPERATURE

FIGURE 17. SHORT CIRCUIT TO GND

FIGURE 18. V_{OUT} vs NOISE, 0.1Hz TO 10Hz

Typical Performance Characteristics Curves ($V_{OUT} = 3.0V$)

 V_{IN} = 5.0V, I_{OUT} = 0mA, T_A = +25 °C unless otherwise specified.

FIGURE 19. I_{IN} vs V_{IN} , THREE UNITS

FIGURE 20. I_{IN} vs V_{IN}, OVER-TEMPERATURE

FIGURE 21. LINE REGULATION, THREE UNITS

FIGURE 22. LINE REGULATION OVER-TEMPERATURE

FIGURE 23. LINE TRANSIENT WITH $0.1\mu F$ LOAD

FIGURE 24. LINE TRANSIENT RESPONSE WITH $10\mu F$ LOAD

Typical Performance Characteristics Curves ($V_{OUT} = 3.0V$)

 V_{IN} = 5.0V, I_{OUT} = 0mA, T_A = +25 °C unless otherwise specified. (Continued)

FIGURE 25. LOAD REGULATION OVER-TEMPERATURE

FIGURE 26. LOAD TRANSIENT RESPONSE AT 25mA LOAD

FIGURE 27. LOAD TRANSIENT RESPONSE AT 1mA LOAD

FIGURE 28. TURN-ON TIME

FIGURE 29. Z_{OUT} vs FREQUENCY

FIGURE 30. RIPPLE REJECTION AT DIFFERENT CAPACITIVE LOADS

Typical Performance Characteristics Curves ($V_{OUT} = 3.0V$)

FIGURE 31. DROPOUT (10mA SOURCED LOAD)

FIGURE 32. DROPOUT ZOOMED (10mA SOURCED LOAD)

FIGURE 33. V_{OUT} vs TEMPERATURE

FIGURE 34. SHORT CIRCUIT TO GND

FIGURE 35. V_{OUT} vs NOISE, 0.1Hz TO 10Hz

Typical Performance Characteristics Curves ($V_{OUT} = 3.3V$)

 V_{IN} = 5.0V, I_{OUT} = 0mA, T_A = +25 °C unless otherwise specified.

FIGURE 36. I_{IN} vs V_{IN}, THREE UNITS

FIGURE 37. I_{IN} vs V_{IN} , OVER-TEMPERATURE

FIGURE 38. LINE REGULATION, THREE UNITS

FIGURE 39. LINE REGULATION OVER-TEMPERATURE

FIGURE 40. LINE TRANSIENT WITH $0.1\mu F$ LOAD

FIGURE 41. LINE TRANSIENT RESPONSE WITH $10\mu F$ LOAD

Typical Performance Characteristics Curves ($V_{OUT} = 3.3V$)

FIGURE 43. LOAD TRANSIENT RESPONSE AT 25mA LOAD

FIGURE 44. LOAD TRANSIENT RESPONSE AT 1mA LOAD

FIGURE 45. TURN-ON TIME

FIGURE 46. Z_{OUT} vs FREQUENCY

FIGURE 47. RIPPLE REJECTION AT DIFFERENT CAPACITIVE LOADS

Typical Performance Characteristics Curves ($V_{OUT} = 3.3V$)

FIGURE 48. DROPOUT (10mA SOURCED LOAD)

FIGURE 49. DROPOUT ZOOMED (10mA SOURCED LOAD)

FIGURE 50. V_{OUT} vs TEMPERATURE

FIGURE 51. SHORT CIRCUIT TO GND

FIGURE 52. V_{OUT} vs NOISE, 0.1Hz TO 10Hz

Applications Information

Micropower Operation

The ISL21010 consumes very low supply current due to the proprietary bandgap technology. Low noise performance is achieved using optimized biasing techniques. Supply current is typically 48 μA and noise in the 0.1Hz to 10Hz bandwidth is $58\mu V_{P-P}$ to $100\mu V_{P-P}$ (VOUT = 2.048V, 3.0V, and 3.3V) benefitting precision, low noise portable applications such as handheld meters and instruments.

Data Converters in particular can utilize the ISL21010 as an external voltage reference. Low power DAC and ADC circuits will realize maximum resolution with lowest noise. The device Maintains output voltage during conversion cycles with fast response, although it is helpful to add an output capacitor, typically $1\mu F$.

Board Mounting Considerations

For applications requiring the highest accuracy, board mounting location should be reviewed. The device uses a plastic SOIC package, which will subject the die to mild stresses when the Printed Circuit (PC) board is heated and cooled, slightly changing the shape. Placing the device in areas subject to slight twisting can cause degradation of the accuracy of the reference voltage

due to these die stresses. It is normally best to place the device near the edge of a board, or the shortest side, as the axis of bending is most limited at that location. Mounting the device in a cutout also minimizes flex. Obviously mounting the device on flexprint or extremely thin PC material will likewise cause loss of reference accuracy.

Board Assembly Considerations

Bandgap references provide high accuracy and low temperature drift but some PC board assembly precautions are necessary. Normal Output voltage shifts of $100\mu V$ to 4mV can be expected with Pb-free reflow profiles or wave solder on multi-layer FR4 PC boards. Precautions should be taken to avoid excessive heat or extended exposure to high reflow or wave solder temperatures, this may reduce device initial accuracy.

Noise Performance and Reduction

The recommended capacitive load range for the ISL21010 is from $0.1\mu F$ to $10.0\mu F$ (0.22 μF minimum required for 1.024V option) to ensure stability and best transient performance. Parallel $0.1\mu F$ (0.22 μF for 1.024V) and $10\mu F$ capacitors can be used to optimize performance as well. The noise specification stated in the Electrical Specification tables (starting on page 4) is for $0.1\mu F$ (0.22 μF for 1.024V option) capacitive load, and larger values will reduce the output noise level.

Typical Application Circuit

FIGURE 53. KELVIN SENSED LOAD

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
November 28, 2011 FN7896.1		On page 1, Features: removed "Coming Soon" from ISL21010-10, -12, -15; ISL21010-25; and ISL21010-40 voltage options; combined -20 option with -10, -12, -15; changed -40 to -41
		 On page 2, Ordering Information: added parts ISL21010DFH310Z-TK, ISL21010DFH312Z-TK, ISL21010CFH315Z-TK, ISL21010CFH325Z-TK, ISL21010CFH341Z-TK
		 On page 4, Recommended Operating Conditions: added VOUT = 1.024V, 1.25V, 1.5V, 2.048V2.2V to 5.5V; VOUT = 2.5V2.6V to 5.5V; VOUT = 4.096V4.2V to 5.5V
		 On page 4 through page 8, added Electrical Specifications tables for (ISL21010-10, VOUT = 1.024V), (ISL21010-12, VOUT = 1.25V), (ISL21010-15, VOUT = 1.5V), (ISL21010-41, VOUT = 4.096V)
		 On page 6, Electrical Specifications (ISL21010-20, VOUT = 2.048V): changed VOUT/ TA, Thermal Hysteresis, TYP from 50 to 100
		• On page 8, Note 10: changed " where V_{OUT} drops 1mV from V_{IN} = 5.0V at T_A = +25°C." to " where V_{OUT} drops 1mV from V_{IN} = nominal at T_A = +25°C."
		 On page 13, Figure 26, changed title from "LOAD REGULATION OVER-TEMPERATURE" to "LOAD TRANSIENT RESPONSE AT 25mA LOAD". Figure 27, changed title from "LOAD TRANSIENT RESPONSE" to "LOAD TRANSIENT RESPONSE AT 1mA LOAD".
		• On page 14, Figure 31, and page 17, Figure 48, changed figure titles to indicate 10mA instead of 1mA source load.
		 On page 16, Figure 43, changed title from LOAD REGULATION OVER-TEMPERATURE" to "LOAD TRANSIENT RESPONSE AT 25mA LOAD". Figure 44, changed title from "LOAD TRANSIENT RESPONSE" to "LOAD TRANSIENT RESPONSE AT 1mA LOAD"
		 On page 18, under "Noise Performance and Reduction", added reference to capacitative load range fo 1.024V option.
August 9, 2011	FN7896.0	Initial Release

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL21010

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff

FITs are available from our website at http://rel.intersil.com/reports/search.php

For additional products, see www.intersil.com/product-tree

Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

P3.064

3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3) Rev 2, 9/09

0.13±0.05

TOP VIEW

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- ${\bf 2.} \quad {\bf Dimensioning\ and\ tolerancing\ conform\ to\ AMSEY14.5m-1994}.$
- 3. Reference JEDEC TO-236.
- 4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.
- 5. Footlength is measured at reference to gauge plane.