

Comprehensive Course on Linear Algebra

Span B = V = it every vector v in v.s. V
com be written as L.c. of vectors
in B.

BA515 let V be a vector space over tru field F. non-empty subset. of V. let B be a Then B is called as basis of vit (a) Bis LI. L(B) Span B = V

DIMENSION: The mo- of elements present in the basile is called démension of V. its called d'emensions 10/10 cardinality of C(B) < 00 =i> 1/ is a fénére dimen. ((B) \$\lambde{\pi} \cop\ \single \single \cop\ \single \cop\ \single \cop\ \single \cop\ \single \single \cop\ \single \cop\ \single \cop\ \single \cop\ \single \single \cop\ \single \cop\ \single \cop\ \single \cop\ \single \single \cop\ \single \cop\ \single \single \single \single \cop\ \single \cop\ \single \

No of Basis of any v.s. cambe infanite but dimension of V.s. & unique.

$$|R^{2}(1R)|$$

B2 is also a basis of
$$IR^2$$

$$d(m(IR^2) = 2$$

(3)
$$B_3 = \{ (1121(12121)) \}$$
 Spanp = 1R° [

(a) $9(M2) + (2(-11-1) = 0)$ $(2(My) = 9(112) + 42(-11-1))$ $(2(-1224 - 24 - 24 - 24))$ $(2(-1224 - 24 - 24))$ $(2(-1224 - 24 - 24))$ $(2(-1224 -$

(eq)
$$B_{4} = \{ (1,2), (-1,3), (0,1) \}$$
 not a basis
(a) $(442) + (2(-1,3) + (3(0,1)) = (0,0)$
 $(4-c_{2}, 24 + 3c_{2} + (3)) = (0,0)$
 $(4-c_{2} = 0, 4-c_{2})$
 $(4-c_{2} = 0, 4-c_{2})$
 $(4-c_{2} = 0, 4-c_{2})$
 (5) 8pan By =1 $(2-c_{2})$

let 5 be a subset of V. Span 5 = V 5 = { us, us, ..., un} any wey trung (a) SUEWY = { 2u, 42, 43, ..., un, w} Spam (SU{w}) = 1 uf any uj is hich of ul, u2,..., ui-1 (P) then S\{ui} also spans v. Syzam (8) { ui }) = V

 $y = C_1 u_1 + C_2 u_2 + \cdots + C_{i-1} u_{i-1} + C_i u_i + \cdots + C_n u_n$ 9 = CIUI + C2U2 + --- + C4-1 Wit + CAT XIUI+XU12+ --- di-1 mi-1) + (i+1 mi+1 + ... + Comma $y = (4+d_1C_i)u_1 + ((2+d_2C_i))u_2 + ...$ + (Ci-1 + di-1 ci) Ui-1 + Ci+1 Ui+1 -L - - . - + (n Um

$$12 \times 1R^{2}$$
 $13 = \{ (110), (011) \}$ — Standard Baris

 $18 = \{ (11010), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0111) \}$ —

 $18 = \{ (11010), (0110), (0111) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (01011) \}$ —

 $18 = \{ (11010), (0110), (0110), (0110), (0110) \}$ —

 $18 = \{ (11010), (0110), (0110), (0110), (0110) \}$ —

 $18 = \{ (11010), (0110), (0110), (0110), (0110), (0110), (0110) \}$ —

 $18 = \{ (11010), (0110)$

$$B = \{ (1,0), \dots, (0,1,0), (0,1,0), (0,0), ($$

dim (IRn) = m

Standard Basis of
18n.

$$P[x] = \left\{ ao + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n + \dots \right\}$$

$$\alpha'' \in F + i$$

$$B = \left\{ \frac{1}{x}, \frac{\chi}{\chi}, \frac{\chi^2}{\chi^3}, \frac{\chi^3}{\chi}, \dots \right\}$$
Spans = P[x1]

SpamB = P[n] }=i> Bis basis of P[n]
Bis 12

P[x] is a infinite démensional V-s.

 $\frac{d^2y}{dx^2} + P(x) \frac{dy}{dx} + R(x)y = 0 - - - (1)$ let Mbe un set of all solutions of a second order homogeneous times D.B... Then W forms a. 8ub-space

 $M = \left\{ y(x) \mid \frac{d^2y(x)}{dx^2} + p(x) \frac{d}{dx} y(x) + Q(x) y(x) \right\}$ =i7 Zuasoln. yext) =0 8 utilities DE.

y(x)=DEW W # # = D Hy, and y2 EW and HZIBEF claury: Xy1+By2 EW

· · · Y and y2 & W

y1 and y2 are som of DE (swill)

$$\frac{y'' + p(x)y' + p(x)y_1 = 0}{dx^2} \quad \text{and} \quad \frac{y''}{2} + p(x)y'_2 = 0(x)y_2 = 0}$$

$$\frac{d^2}{dx^2} (dy_1 + \beta y_2) + p(x) \frac{d}{dx} (dy_1 + \beta y_1) + p(x) (dy_1 + \beta y_2) + p(x$$

= 0 = 12415. $= \sqrt{11+13}$ = 12415.

XY1 + 1342 EIN

=17 IN 18 a sub-10ace.

general $\frac{d^2y}{dx^2} + P(x) \frac{dy}{dx} + Q(x) y = 0$ y(x) = (4)(x) + (2) (x) - (*) m gene. 150/n. { Y1, y2} is 11

B= { y!, y2} is a brain of

Cau(B) = 2 = order of DE.

and linear DE. of nthorder. Homo Cyy1) + Cz(y2) + - - · + (n(yn) (L1) B= {y1, y2, -.., yn}.

1 • Asked by Anamika

Please help me with this doubt

$$(eq)$$
 $S = \{ (1|2|3), (-1,0|2) (0|0|1) \}$
 $\rightarrow 11$
 $\Rightarrow ans = 18^3$
 $\Rightarrow ans = 18^3$
 $\Rightarrow ans = 18^3$

