CẦU TRÚC DỮ LIỆU VÀ GIẢI THUẬT 2

LAB 7 – MỘT SỐ PHƯƠNG PHÁP THIẾT KẾ THUẬT TOÁN (4 TIẾT)

I. Mục tiêu

Sau khi thực hành, sinh viên cần:

- Nắm vững một số phương pháp thiết kế thuật toán: Chia để trị, quay lui, tham lam, quy hoạch động
- Minh họa được bài toán liên quan liên quan đến các phương pháp thiết kế.
- Vận dụng kiến thức đã học để giải một số bài toán thực tế.

II. Yêu cầu

• Sinh viên phải hoàn thành tối thiểu 2 bài (bài 1 và 1 bài tùy chọn thuộc mục IV). Mỗi bài tạo một project, xóa các thư mục debug của project này. Sau đó chép cả 2 project vào thư mục: Lab7_CTK40_HoTen_MSSV_Nhom#. Nén thư mục, đặt tên tập tin nén theo dạng sau: Lab7_CTK40_HoTen_MSSV_Nhom#.rar.

Ví dụ: Lab7 CTK40 NguyenVanA 161111 Nhom4.rar.

• Sinh viên sẽ nộp bài Lab qua mạng tại phòng lab theo hướng dẫn của giáo viên.

III. Ôn tập lý thuyết

```
1. Phương pháp chia để trị:
                                                      2. Phương pháp quay lui
Mô hình:
                                                      Mô hình:
      Nếu gọi D&C(\Re) - Với \Re là miền dữ liệu
                                                             Với n là số bước cần phải thực hiện, k là
                                                      s\acute{o} khả năng mà x_i có thể chọn lựa, Try(i) là
      - là hàm thể hiện cách giải bài toán theo
      phương pháp chia để trị thì ta có thể viết:
                                                      bước thử thứ i để xác đinh x<sub>i</sub>
void D&C(\Re)
                                                      Try(i) \equiv
                                                            for (i = 1 \rightarrow k)
      If (R đủ nhỏ)
                                                              If (x<sub>i</sub> chấp nhận được khả năng j)
        giải bài toán;
      Else
                                                                      Xác định xi theo khả năng j;
                                                                      Ghi nhân trang thái mới;
        Chia \Re thành \Re 1, ..., \Re m;
                                                                      if (i < n)
        for (i = 1; i \le m; i++)
                                                                              Try(i+1);
                D&C(\Ri);
                                                                      else
        Tổng hợp kết quả;
                                                                               Ghi nhận nghiệm;
                                                                      Trả lại trạng thái cũ cho bài
}
                                                            toán;
```

3. Phương pháp tham lam:

```
Mô hình:
Input A[1..n]
Output S //lời giải;
greedy (A,n) \equiv
S = \emptyset;
while (A \neq \emptyset)
{
x = Chọn(A);
A = A - \{x\}
if (S \cup \{x\} \text{ chấp nhận được})
```

- 4. Phương pháp quy hoạch động:
- Phương pháp quy hoạch động dựa vào một nguyên lý, gọi là nguyên lý tối ưu (The principle of optimality) của Bellman: " Nếu lời giải của bài toán là tối ưu thì lời giải của các bài toán con cũng tối ưu".
- Trong thuật toán quy hoạch động thường dùng các thao tác :
- + Xây dựng một hàm quy hoạch động (hoặc phương trình quy hoạch động).
 - + Lập bảng lưu lại các giá trị của hàm.

$S = S \cup \{x\};$	+ Truy xuất lời giải tối ưu của bài toán
}	từ bảng lưu.
return S;	

IV. Bài tập thực hành

Bài 1: (Chia để trị)

Bài toán Chia thưởng

Bài 2: (Quay lui) Ngựa đi tuần

Bài 3: (Phương pháp tham lam)

Bài toán tô màu

Bài 4: (Phương pháp quy hoạch động)

Thuật toán Floy xác định đường đi ngắn nhất giữa các cặp đỉnh

V. Bài tập

Bài 1. Mạng truyền thông

Bài 2. Ông Ngâu, Bà Ngâu.