VETTORI E SCALARI

DEFINIZIONI

Si definisce *scalare* una grandezza definita interamente da un solo numero, affiancato dalla sua **unità di misura**.

Un *vettore* è invece una grandezza caratterizzata da 3 entità: un valore numerico, chiamato *modulo* (o *intensità*), affiancato dalla sua **unità di misura**; una *direzione*; un *verso*. Graficamente un vettore si rappresenta come un segmento orientato:

la lunghezza del segmento OP costituisce il modulo del vettore; la retta r su cui il segmento giace indica la direzione del vettore; la punta della freccia ne definisce infine il verso; il punto O da cui il vettore parte è detto *punto di applicazione*; il punto P in cui il vettore termina si chiama *estremo libero*. Nei testi scritti i vettori sono indicati con i simboli: \mathbf{v} , \mathbf{v} , \mathbf{v} . Il modulo di un vettore si indica di conseguenza con $|\mathbf{v}|$ oppure v.

Due vettori si dicono tra loro uguali se hanno stesso modulo, direzione e verso. Due vettori che hanno lo stesso modulo, stessa direzione ma verso opposto si dicono invece opposti. Vettori di modulo unitario sono più comunemente chiamati versori e si indicano \hat{v} .

Quando un vettore è inserito all'interno di un *sistema di riferimento*, le sue proiezioni lungo gli assi vengono dette *componenti* del vettore. In **coordinate cartesiane** esse si indicano v_x , v_y e v_z . Indicando poi con ϕ l'angolo formato dal vettore \vec{v} e l'asse z, con θ l'angolo tra \vec{v}_{xy} (proiezione di \vec{v} sul piano xy) e l'asse x, si possono scrivere le componenti del vettore in **coordinate polari**:

$$\begin{cases} v_x = v \sin\varphi \cos\theta \\ v_y = v \sin\varphi \sin\theta \end{cases}$$

$$\begin{cases} v = \sqrt{v_x^2 + v_y^2 + v_z^2} \\ \theta = atg(v_y/v_x) \end{cases}$$

$$\varphi = a\cos(v_z/\sqrt{v_x^2 + v_y^2 + v_z^2})$$

Introducendo i versori degli assi come \vec{u}_x , \vec{u}_y e \vec{u}_z (spesso in letteratura rispettivamente î, ĵ e \hat{k}), il significato delle componenti è immediato:

$$\left\{ \begin{array}{l} \vec{v}=\ v_x\vec{u}_x+v_y\vec{u}_y+v_z\vec{u}_z \\ \\ v=\sqrt{v_x^2+v_y^2+v_z^2} \end{array} \right. \label{eq:vortex}$$
 Teorema di Pitagora

OPERAZIONI SUI VETTORI

• SOMMA

La somma tra due o più vettori si può risolvere con un metodo grafico:

 \odot i vettori da sommare si disegnano uno di seguito all'altro, in modo da tale che il punto di applicazione di ognuno coincida con l'estremo libero del precedente; il vettore somma \vec{R} risulta essere quel vettore che ha il punto di applicazione del primo e l'estremo libero dell'ultimo addendo.

② i due vettori da sommare si disegnano a partire dallo stesso punto di applicazione e si chiude il parallelogramma disegnando in cascata al primo addendo il secondo e viceversa; il vettore somma \overrightarrow{R} risulta essere quel vettore coincidente con una diagonale del parallelogramma e avente lo stesso punto di applicazione dei due addendi.

La somma tra due vettori si può risolvere con un *metodo algebrico*:

$$\begin{cases} \vec{A} = A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z \\ \vec{B} = B_x \vec{u}_x + B_y \vec{u}_y + B_z \vec{u}_z \end{cases}$$

$$\vec{R} = \vec{A} + \vec{B} = (A_x + B_x) \vec{u}_x + (A_y + B_y) \vec{u}_y + (A_z + B_z) \vec{u}_z$$

Si può dimostrare che la somma tra vettori gode delle *proprietà*:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

ASSOCIATIVA

$$\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$$

• DIFFERENZA

La differenza tra vettori si può risolvere con un metodo grafico:

① la differenza tra due vettori $\vec{A} - \vec{B}$ si può interpretare come la somma del primo con l'opposto del secondo $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$; in tal senso ricorrendo alla regola del parallelogramma la risultante \vec{R} è della differenza è data dall'altra diagonale (rispetto alla somma).

② alternativamente si può notare che $\vec{A} - \vec{B}$ è quel vettore che sommato al secondo (\vec{B}) restituisce il primo (\vec{A}) ; in altri termini è quel vettore applicato all'estremo libero di \vec{B} e che termina nella punta di \vec{A} .

La differenza tra due vettori di può risolvere con un metodo algebrico:

$$\begin{cases} \vec{A} = A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z \\ \vec{B} = B_x \vec{u}_x + B_y \vec{u}_y + B_z \vec{u}_z \end{cases}$$

$$\vec{R} = \vec{A} - \vec{B} = (A_x - B_x) \vec{u}_x + (A_y - B_y) \vec{u}_y + (A_z - B_z) \vec{u}_z$$

Si può notare che la differenza tra vettori gode delle seguenti proprietà:

$$\vec{A} - \vec{B} = -(\vec{B} - \vec{A})$$

• MOLTIPLICAZIONE PER UNO SCALARE

Il prodotto di un vettore \vec{A} per uno scalare k > 0 è un vettore che ha la stessa direzione e lo stesso verso di \vec{A} e modulo pari a $k |\vec{A}| = k A$. Se k < 0 il vettore risultante ha la stessa direzione ma verso opposto al primo.

La moltiplicazione di un vettore per uno scalare gode delle seguenti proprietà:

$$k(\vec{A} \pm \vec{B}) = k\vec{A} \pm k\vec{B}$$

• PRODOTTO TRA VETTORI: PRODOTTO SCALARE

Il prodotto scalare tra due vettori \vec{A} e \vec{B} si indica con $\vec{A} \cdot \vec{B} = A B \cos\theta$ (cioè è il prodotto del modulo di uno dei due vettori per la proiezione del secondo sul primo). Il risultato del prodotto scalare è una *grandezza scalare*.

Il prodotto scalare gode delle seguenti proprietà:

VETTORI ORTOGONALI	$\vec{A} \cdot \vec{B} = 0$
VETTORI PARALLELI	$\vec{A} \cdot \vec{B} = A B$
VETTORI UGUALI	$\vec{A} \cdot \vec{A} = A^2$
COMMUTATIVA	$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
DISTRIBUTIVA	$\vec{A} \cdot (\vec{B} \pm \vec{C}) = \vec{A} \cdot \vec{B} \pm \vec{A} \cdot \vec{B}$
VERSORI ASSI	$\begin{cases} \vec{u}_n \cdot \vec{u}_m = 1, n = m \\ \vec{u}_n \cdot \vec{u}_m = 0, n \neq m \end{cases}$
	$\vec{\mathbf{u}}_{\mathbf{n}} \cdot \vec{\mathbf{u}}_{\mathbf{m}} = 0$, $\mathbf{n} \neq \mathbf{m}$

Dalle proprietà appena elencate segue che, in funzione delle componenti dei singoli vettori:

$$\begin{cases} \vec{A} = A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z \\ \vec{B} = B_x \vec{u}_x + B_y \vec{u}_y + B_z \vec{u}_z \end{cases}$$
$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

il prodotto scalare è dato dalla somma dei prodotti delle componenti corrispondenti. In particolare:

$$\vec A\cdot\vec A=A^2=A_x^2+A_y^2+A_z^2$$
 , teorema di Pitagora
$$|\vec A|=\sqrt{\vec A\cdot\vec A}$$

• PRODOTTO TRA VETTORI: PRODOTTO VETTORIALE

Il risultato del prodotto vettoriale fra due vettori è ancora *un vettore* $\vec{C} = \vec{A} \times \vec{B}$, il cui modulo è dato da $C = A B \sin \theta$ (area del parallelogramma di lati \vec{A} , \vec{B}), la direzione è perpendicolare al piano individuato dai vettori \vec{A} e \vec{B} ed il verso si ottiene con la regola della mano destra.

Il prodotto vettoriale gode delle seguenti proprietà:

VETTORI ORTOGONALI
$$|\vec{A} \times \vec{B}| = A B$$
VETTORI PARALLELI
$$\vec{A} \times \vec{B} = 0$$
VETTORI UGUALI
$$\vec{A} \times \vec{A} = 0$$
NON è COMMUTATIVO
$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$
NON è ASSOCIATIVO
$$\vec{A} \times (\vec{B} \times \vec{C}) \neq (\vec{A} \times \vec{B}) \times \vec{C}$$
DISTRIBUTIVA
$$\vec{A} \times (\vec{B} \pm \vec{C}) = \vec{A} \times \vec{B} \pm \vec{A} \times \vec{B}$$
VERSORI ASSI
$$\begin{cases} \vec{u}_x = \vec{u}_y \times \vec{u}_z \\ \vec{u}_y = \vec{u}_z \times \vec{u}_x \\ \vec{u}_z = \vec{u}_x \times \vec{u}_y \end{cases}$$

Dalle proprietà appena elencate si deduce che, in funzione delle componenti dei singoli vettori:

$$\begin{cases} \vec{A} = A_x \vec{u}_x + A_y \vec{u}_y + A_z \vec{u}_z \\ \vec{B} = B_x \vec{u}_x + B_y \vec{u}_y + B_z \vec{u}_z \end{cases}$$

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \vec{u}_x - (A_x B_z - A_z B_x) \vec{u}_y + (A_x B_y - A_y B_x) \vec{u}_z$$

che coincide con il determinante della matrice:

$$\left(\begin{array}{cccc}
\vec{u}_x & \vec{u}_y & \vec{u}_z \\
A_x & A_y & A_z \\
B_x & B_y & B_z
\end{array}\right)$$

• DERIVATA DI UN VETTORE

Consideriamo un vettore \vec{v} funzione della variabile scalare t (cioè il cui modulo e la cui direzione cambiano al variare di t). Siano poi $\vec{v}(t)$ e $\vec{v}(t+\Delta t)$ i valori della funzione in due diversi istanti di tempo, tali che $\vec{v}(t+\Delta t) - \vec{v}(t) = \Delta \vec{v}$.

Costruiamo quindi il rapporto tra la variazione $\Delta \vec{v}$ della funzione vettoriale $\vec{v}(t)$ nell'intervallo Δt e appunto l'incremento Δt :

$$\frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}(t+\Delta t) - \vec{v}(t)}{\Delta t},$$
 rapporto incrementale.

Si definisce derivata del vettore \vec{v} rispetto alla variabile t il limite per $\Delta t \rightarrow 0$ del rapporto incrementale:

$$\frac{d\vec{v}}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t}$$

Si vede che la derivata di un vettore è ancora un vettore $(d\vec{v}^{1}/dt)$ con in generale direzione, modulo e verso differenti dal vettore derivato.

L'operazione di derivata di un vettore gode delle seguenti proprietà:

$$\frac{d}{dt} (\vec{A} + \vec{B}) = \frac{d\vec{A}}{dt} + \frac{d\vec{B}}{dt}$$

$$\frac{d}{dt} (m \vec{v}) = m \frac{d\vec{v}}{dt}, \qquad m = cost$$

$$\frac{d}{dt} (m \vec{v}) = \frac{dm}{dt} \vec{v} + m \frac{d\vec{v}}{dt}, \qquad m = m(t)$$

$$\frac{d}{dt} (\vec{A} \cdot \vec{B}) = \frac{d\vec{A}}{dt} \cdot \vec{B} + \vec{A} \cdot \frac{d\vec{B}}{dt}$$

$$\frac{d}{dt} (\vec{A} \times \vec{B}) = \frac{d\vec{A}}{dt} \times \vec{B} + \vec{A} \times \frac{d\vec{B}}{dt}$$

$$\frac{d}{dt} (\vec{A} \times \vec{B}) = \frac{d\vec{A}}{dt} \times \vec{B} + \vec{A} \times \frac{d\vec{B}}{dt}$$

$$\frac{d\vec{V}}{dt} = \frac{dV_x}{dt} \vec{V}_x + \frac{dV_y}{dt} \vec{V}_y + \frac{dV_z}{dt} \vec{V}_z$$

Sia ora un versore $\vec{u}(t)$. Poiché per definizione $|\vec{u}(t)| = 1$, soltanto la direzione del versore può variare con t. Supponiamo quindi che il versore ruoti di un angolo $\Delta\theta$ nell'intervallo Δt :

$$\vec{u}(t + \Delta t) - \vec{u}(t) = \Delta \vec{u}$$

con $\Delta \vec{u}$ corda che unisce gli estremi dell'arco di circonferenza descritto da \vec{u} durante la rotazione $\Delta \theta$. Al limite, per $\Delta t \rightarrow 0$, $\Delta \vec{u} \rightarrow d\vec{u}$ ortogonale a $\vec{u}(t)$, con modulo:

$$\vec{u}(t) \qquad \vec{u}(t + \Delta t)$$

$$|d\vec{u}| = |\vec{u}(t)| d\theta = d\theta$$

infatti per $\Delta t \rightarrow 0$ la corda si confonde con l'arco di circonferenza.

Complessivamente pertanto $d\vec{u} = d\theta \vec{u}_n$, con \vec{u}_n ortogonale a $\vec{u}(t)$. La derivata del versore si definisce dunque come:

$$\frac{d\vec{u}}{dt} = \frac{d\theta}{dt} \vec{u}_n$$

La derivata di un versore è dunque un vettore con modulo in generale <u>non</u> unitario e direzione ortogonale a quella del versore derivato.

Consideriamo infine nuovamente il vettore $\vec{v}(t)$ nella forma $\vec{v}(t) = v \vec{u}_v$, con \vec{u}_v versore parallelo a $\vec{v}(t)$ e con lo stesso verso. Poiché in generale v = v(t) e $\vec{u}_v = \vec{u}_v$ (t), risulta:

$$\frac{d\vec{v}\left(t\right)}{dt} = \frac{dv}{dt} \, \vec{u}_v + \, v \, \frac{d\vec{u}_v}{dt} = \frac{dv}{dt} \, \vec{u}_v + \, v \frac{d\theta}{dt} \, \vec{u}_n$$

con \vec{u}_n ortogonale a \vec{u}_v . Si vede che il primo termine della derivata dipende <u>solo</u> dalla variazione del modulo, mentre il secondo <u>solo</u> dalla variazione della direzione. Infine il modulo della derivata:

$$\left|\frac{d\vec{v}}{dt}\right| = \sqrt{\left(\frac{dv}{dt}\right)^2 + \left(v \; \frac{d\theta}{dt}\right)^2}$$