글로벌 핵심기술 경쟁 현황

[애자일] KIAT 산업기술정책단 정책기획실 진영준('23.04.17)

- ◆ 경제·사회·안보 분야 핵심기술을 기준으로 조사된 글로벌 기술 경쟁 현황 요약·정리
- ◆ 기술 선도국으로 급부상한 중국과 미국·우리나라를 비롯한 경쟁국의 상황 점검 ※ 원문: ASPI Policy Brief(No. 69/2023), 'The global race for the future power'('23.02)

〈참고〉

- ✓ ASPI(Australian Strategic Policy Institute, 호주전략정책연구소)는 캔버라에 위치한 국방 및 전략 싱크탱크로, 호주 정부가 설립하고 국방부 및 해외 정부, 방위 및 기술회사가 자금 지원
- √ '23년 2월 (Critical Technology Tracker) 프로젝트를 시작, 관련 보고서 이외에도 공개된 웹 사이트(https://techtracker.aspi.org.au)에서 원본 데이터 및 분석자료 제공
- ✓ 동 프로젝트는 다양한 미래전략 분야에 걸친 중국의 전반적인 연구 주도권과 지배력을 보여주며. 글로벌 영향력의 축이 개방적이지 않은 권위주의 국가로 이동할 수 있음을 경고

1. 조사 개요

- (추진배경) 대부분의 핵심기술 분야에서 중국이 세계 최고의 강대국으로 부상함에 따라, 중국의 발전 요인을 파악하고 파트너·동맹국 차원의 협력적·개별적 대응방안을 모색할 필요
 - 전염병·전쟁 등으로 확대된 불확실성 속에서, 어떤 국가 또는 기관이 중요한 기술분야의 발전과 과학 및 연구 혁신을 주도하고 있는지 면밀하게 살펴볼 필요
- (조사방법) 핵심기술 및 관련 논문 활용, 글로벌 기술 경쟁 현황 및 인재 흐름 분석
 - (핵심기술 선정) '22년 8월에 발표된 호주 정부의 중요기술 목록을 기반으로, 정부 내의 여러 부서 및 기관, 이해관계자들과의 협의를 거쳐 총 44개의 핵심기술 선정
 - (데이터 수집) Web of science(SCI급 논문 검색 사이트)의 DB를 활용, 과거 5년('18~'22년)간 핵심기술 분야에서 발표된 **연구논문 총 220만편 수집**
 - 공개적으로 사용 가능한 데이터만 수집했기 때문에, 각국의 국방부 및 기타 부서에서 수행한 기밀 연구, 공개적으로 게시되지 않은 민간 기업의 연구 등은 제외

산업기술정책단

- (데이터 분석) 인용 횟수 및 H-지수* 등의 지표를 활용한 연구 영향력, 핵심기술별 1위 국가의 독점위험도, 전문인력의 유입·유출 등 조사·분석
 - * Hirsch Index(허쉬 인덱스): 연구자의 연구 생산성과 영향력을 평가하기 위한 지표로, 발표한 논문과 논문별 피인용 횟수를 산출하여 학문적 역량을 측정
- (연구 영향력) 전체 논문 가운데 인용 빈도가 높은 상위 10%를 영향력이 큰 연구로 정의하고, H-지수를 활용하여 핵심기술별 상위 연구기관 도출
- (기술독점위험) 핵심기술별 1위 국가에 소속된 상위 10대 연구기관의 수와 2위 국가 대비 논문 발표 비율(연구 리드)을 고려하여 독점위험도를 상·중·하로 평가

기술독점위험도		핵심기술별 1위 국가에 소속된 상위 10대 연구기관의 수		2위 국가 대비 1위 국가 논문 발표 비율(연구 리드)
높음(High risk)	=	상위 연구기관 8개 이상	and	연구 리드 3배 이상
중간(Medium risk)	=	상위 연구기관 5개 이상	and	연구 리드 2배 이상

- * 높음과 중간의 기준을 충족하지 않는 경우에는 낮음(Low risk)으로 분류
 - (인재 흐름) 인용 빈도가 높은 상위 25% 논문 연구자들의 ORCID* 데이터를 확보하여, 그들의 학부, 대학원 및 현재 위치(직장)에 대한 정보를 수집•분석
 - * Open Research and Contributor ID: 연구자의 고유 식별번호로, 학력 직장, 연구비, 저작물 등 해당 연구자와 관련된 전문정보 등록

2. 기술 경쟁 현황

- (기술) 44개 핵심기술 중 **37개 분야에서 중국이 1위**를 차지, 나머지 **7개 기술은 미국이 선두**
 - (중국) 첨단 소재, 인공 지능, 에너지 등 대부분의 분야에서 기술을 선도하고 있으며, 그중에서도 8개 기술*에 대해서는 독점의 가능성이 높은 것으로 분석
 - * ① 나노물질 및 제조, ② 코팅, ③ 첨단 무선 주파수 통신(5G 및 6G 포함), ④ 수소 및 암모니아 발전, ⑤ 초고용량 축전기, ⑥ 전기 배터리, ⑦ 합성 생물학, ⑧ 광센서
 - 첨단 항공기를 활용한 방어·감시, 광센서·양자 통신에 기반한 미래 지능, Al·드론의 군사적 활용 등 국방·안보·정보기술 분야에서 획기적 연구 역량 확보
 - (미국) 반도체 장치의 설계·개발, 컴퓨팅 및 의료 분야 등 7개 기술*에서 1위 차지
 - * ① 고성능 컴퓨팅, ② 첨단 집적 회로 설계 및 제조, ③ 자연어 처리(음성 및 텍스트 인식과 분석 포함), ④ 양자 컴퓨팅, ⑤ 백신 및 의료 대책, ⑥ 소형 위성, ⑦ 우주 발사 시스템
 - (한국) 1위 기술은 없으나. 핵심기술 44개 중 20개에서 상위 5개국에 포함

beyond leading technology KIST 연극사업기술자호

- 초고용량 축전기 기술에서 2위, 새로운 메타물질, 고성능 컴퓨팅, 수소 및 암모니아 발전, 전기 배터리, 지향성 에너지 기술 5개에서 3위를 차지
- (기타) 중국과 미국 다음으로는 영국과 인도가 44개 기술 가운데 각각 29개에서 상위 5개국에 포함되었으며, 그 다음으로는 한국(20개), 독일(17개) 순
 - 호주는 9개 기술에서 상위 5개국 안에 들었고, 이탈리아(7개), 이란(6개), 일본(4개), 캐나다(4개), 프랑스(2개), 러시아·싱가포르·사우디·말레이시아·네덜란드(1개)가 그 뒤를 추격

[핵심기술별 경쟁 현황 및 기술독점위험]

[백음기출일 성정 현용 및 기출속음위임]						
기술분야	1위	2위	3위	4위	5위	기술독점위험
첨단 소재 및 제조						
1. 나노물질 및 제조	중국 58.35	미국	인도	대한민국	이란	높음
Nanoscale materials and manufacturing		6.73	4.90	4.06	3.84	10/10, 8.67
2. 코팅	중국	미국	인도	대한민국	이란	높음
Coatings	58.47	7.34	5.97	3.22	2.84	8/10, 7.96
3. 스마트 소재	중국	인도	미국	이란	영국	중간
Smart materials	42.57	8.13	6.96	6.69	3.27	7/10, 5.24
4. 첨단 복합소재	중국	인도	미국	대한민국	이란	중간
Advanced composite materials	40.82	14.03	7.30	4.04	3.93	8/10, 2.91
5. 새로운 메타물질	중국	미국	대한민국	싱가포르	호주	중간
Novel metamaterials	45.56	16.90	4.01	3.89	3.01	7/10, 2.70
6. 고사양 가공 공정	중국	인도	미국	영국	독일	중간
High-specification machining processes	36.21	13.84	11.75	3.59	2.85	8/10, 2.62
7. 첨단 폭발물 및 에너지 물질	중국	미국	인도	독일	러시아	중간
Advanced explosives and energetic materials	47.10	21.31	4.88	3.96	3.23	5/10, 2.21
8. 중요 광물 추출 및 처리	중국	미국	인도	호주	캐나다	낮음
Critical minerals extraction and processing	36.68	13.39	4.47	2.79	2.68	4/10, 2.74
9. 첨단 자석 및 초전도체	중국	미국	영국	독일	일본	낮음
Advanced magnets and superconductors	33.36	16.37	7.54	7.09	5.01	4/10, 2.04
 10. 첨단 보안	중국	미국	영국	대한민국	호주	 낮음
Advanced protection	35.05	18.72	5.26	4.74	3.04	6/10, 1.87
 11. 연속 유동 화학적 합성	중국	미국	영국	독일	일본	 낮음
Continuous flow chemical synthesis	24.64	13.90	5.73	5.10	3.85	4/10, 1.77
12. 적층 가공(3D 프린팅 포함)	중국	미국	영국	독일	호주	낮음
Additive manufacturing	20.41	20.25	6.38	5.27	4.34	5/10, 1.01
인공 지능, 컴퓨팅 및 통신						
13. 첨단 무선 주파수 통신(5G 및 6G 포함)	중국	미국	영국	대한민국	인도	높음
Advanced radiofrequency communications	29.65	9.50	5.18	4.89	4.83	8/10, 3.12
 14. 첨단 광통신	중국	미국	영국	인도	사우디	 중간
Advanced optical communications	37.69	12.76	5.64	3.88	3.48	8/10, 2.95
15. 인공지능(AI) 알고리즘 및 하드웨어 가속기	중국	미국	영국	대한민국	인도	 중간
Al algorithms and hardware accelerators	36.62	13.26	4.20	4.15	3.48	7/10, 2.76
	중국	미국	인도	영국	호주	 중간
Distributed ledgers	28.38	11.32	8.94	5.54	4.81	6/10, 2.51
 17. 첨단 데이터 분석	중국	미국	인도	영국	이탈리아	중간
Advanced data analytics	31.23	15.45	6.02	4.19	3.92	8/10, 2.02
	중국	미국	인도	영국	대한민국	낮음
Machine learning	33.20	17.93	4.87	3.87	3.32	7/10, 1.85

	기술분야	1위	2위	3위	4위	5위	기술독점위험
10	사이버 보안 기술	중국	미국	인도	호주	영국	낮음
10.	Protective cybersecurity technologies	23.33	16.80	7.67	5.71	5.20	5/10, 1.33
20). 고성능 컴퓨팅		중국	대한민국	<u> </u>	9:20 영국	<u>당</u>
20.	High performance computing		25.57	6.34	¬= 4.68	3.98	3/10, 1.15
21	참단 집적 회로 설계 및 제조	29.31	20.07				
۷۱.	점단 접적 외도 설계 및 제조 Advanced integrated circuit design and	미국	중국	인도	독일	이탈리아	낮음
	fabrication	24.18	21.19	7.16	4.46	3.57	4/10, 1.14
22	자연어 처리(음성 및 텍스트 인식과 분석 포함)	미국	중국	인도	영국	대한민국	 낮음
22.	Natural language processing	25.73	23.57	5.74	4.55	3.37	궁금 5/10, 1.09
에너지의		25.75	23.57	0.74	4.00	3.37	5/10, 1.09
	수소 및 암모니아 발전	ス ユ	미국	대한민국	인도	ᇹᄌ	높음
23.		중국 60.42	6.74	l		호주	
	Hydrogen and ammonia for power	60.43		4.71	2.83	2.80	9/10, 8.97
24.	조고용량 축전기	중국 04.40	대한민국	인도	미국	호주	높음
	Supercapacitors	64.19	7.28	4.89	4.78	2.03	10/10, 8.81
25.	전기 배터리	중국	미국	대한민국	독일	호주	높음
	Electric batteries	65.44	11.87	3.81	2.80	2.43	10/10, 5.51
26.	광전지	중국	미국	인도	대한민국	영국	중간
	Photovoltaics	39.33	9.18	5.40	4.90	3.30	7/10, 4.28
	핵폐기물 관리 및 재활용	중국	미국	프랑스	인도	영국	중간
	Nuclear waste management and recycling	35.95	16.55	6.51	4.51	4.39	8/10, 2.17
28.	지향성 에너지 기술	중국	미국	대한민국	영국	캐나다	중간
-	Directed energy technologies	39.09	19.08	5.88	5.34	2.85	7/10, 2.05
29.	바이오 연료	중국	인도	미국	이란	말레이시아	낮음
	Biofuels	23.15	15.48	5.48	4.42	3.65	5/10, 1.50
30.	원자력 에너지	중국	미국	일본	인도	프랑스	낮음
	Nuclear energy	26.83	20.45	6.11	4.39	4.26	4/10, 1.31
양자							
31.	양자 컴퓨팅	미국	중국	영국	독일	캐나다	중간
	Quantum computing	33.90	15.03	6.11	5.52	4.13	8/10, 2.26
32.	양자내성암호	중국	미국	영국	독일	인도	낮음
	Post-quantum cryptography	30.98	13.30	6.41	4.73	3.69	4/10, 2.30
33.	양자 통신(양자 키 배포 포함)	중국	미국	영국	독일	네덜란드	 낮음
	Quantum communications	31.47	16.68	7.58	6.45	3.81	5/10, 1.89
34.	양자 센서	중국	미국	독일	일본	영국	 낮음
	Quantum sensors	23.70	23.27	7.76	4.29	4.20	2/10, 1.02
생명공학	학, 유전자 기술 및 백신						• •
	합성 생물학	중국	미국	영국	독일	인도	높음
	Synthetic biology	52.42	16.75	3.32	3.07	2.91	9/10, 3.13
36	생물학적 제조	중국	미국	인도	이탈리아	대한민국	- 중간
00.	Biological manufacturing	26.01	10.35	9.08	3.85	3.17	6/10, 2.51
37	백신 및 의료 대책	미국	중국	이탈리아	 영국	인도	- 67 10, 2.51 중간
57.	Vaccines and medical countermeasures	28.31	12.57	6.18	6.06	5.14	8/10, 2.25
세실 F	Valcatives and Thedical Countermeasures 26.31 12.37 6.16 6.00 5.14 6/10, 2.23 선상, 타이밍 및 내비게이션						5, 15, 2.20
	광센서	중국	미국	인도	대한민국	독일	높음
50.	Photonic sensors	42.72	12.52	5.74	3.61	3.06	8/10, 3.41
구바 오	연구, 로봇 및 운송	74.74	12.02	J./4	0.01	0.00	0/10, 0.41
	전 항공기 엔진(극초음속 포함)	중국	미국	인도	영국	이란	중간
JJ.	점단 영경기 팬젠(국조금국 포함) Advanced aircraft engines	48.49	11.69	6.96	3.93	3.60	7/10, 4.15
	드론, 군집 및 협업 로봇	^{40.49} 중국	미국	이탈리아	3.93 인도	3.00 영국	7/10, 4.15 중간
40.	도본, 군접 및 접접 도봇 Drones, swarming and collaborative robots	36.07		l	인도 5.15	4.53	
Drones, swarming and collaborative robots 36.07 10.30 6.13				0.13	J. 13	4.00	5/10, 3.50

beyond leading technology KIST 한국산업기술진용원

기술분야	1위	2위	3위	4위	5위	기술독점위험
41. 소형 위성		중국	이탈리아	독일	영국	낮음
Small satellites	24.49	17.32	7.81	4.36	4.11	5/10, 1.41
42. 자율시스템 운영기술	중국	미국	영국	독일	대한민국	낮음
Autonomous systems operation technology	26.20	21.01	5.28	5.11	3.55	3/10, 1.25
43. 첨단 로봇공학	중국	미국	영국	이탈리아	대한민국	낮음
Advanced robotics	27.89	24.64	5.49	4.81	3.79	4/10, 1.13
44. 우주 발사 시스템	미국	중국	독일	캐나다	대한민국	낮음
Space launch systems	19.67	18.24	9.81	8.18	6.53	1/10, 1.08

- * 국가명 아래 숫자는 해당 기술분야의 영향력 있는 연구를 동 국가가 차지하는 비율
- * 기술독점위험도 아래에는 1위 국가에 소속된 상위 10대 연구기관의 수와 연구 리드 비율을 표기
- * 자세한 내용 및 원본 데이터는 웹사이트(https://techtracker.aspi.org.au) 참조
- (인력) 핵심기술 연구원들의 경력 단계(대학교, 대학원, 직장)별 국가 이동을 분석한 결과, 실제로 고용되어 일하는 국가는 미국과 중국이 단연 선두
 - 각 노드의 높이는 경력의 해당 단계에서 지정된 국가의 인재 비율을 표시하며, 마지막 단계(직장)의 높이 순서는 기술 경쟁의 상위국 순위와 유사

[연구 인재 유치를 위한 글로벌 경쟁]

3. 중국의 발전요인

- (과학기술 혁신) 공산당 이데올로기에 새겨진 '자립'과 기술 강국이 되려는 열망을 기반으로 중국 정부는 '기술 민족주의'를 꾸준히 강조하며 혁신을 위한 구체적 노력을 경주
 - 외국 기업에 대한 의존도를 낮추면서 내수를 부양하려는 명확한 목표를 갖고 '중국제조 2025', '쌍순환 전략' 등의 비전·계획을 지속적으로 제시
 - * 경제활동을 두 개의 원(국제·국내)으로 구분하고, 국내 경제에 더 큰 비중을 두겠다는 개념
 - '중국제조 2025'는 지난 몇 년간 국제적인 비판을 받았음에도 〈2022-2035 내수확장을 위한 전략 계획〉에서 관련 내용이 개편·유지되는 등 일관성있는 정책 추진
 - **공산당 중앙위원회에서 기술 전문지식을 갖춘 관리의 숫자는 지난 5년간 2배 가까이 증가**하며 과학과 기술이 중국 지도부의 높은 우선순위에 올라있음을 반영
 - * '17년 20명 미만→ '22년 40명, 정치국(총 24명)은 2명에서 8명으로 확대
 - '22년 당대회에서 시진핑 주석은 우주·양자·에너지·바이오 등 중국이 큰 진전을 이룬 분야를 열거하고, 과학기술 연구의 근본적인 중요성과 관련 인재의 힘 등을 언급
- (핵심인재 유치) 자국이 보유한 우수 연구기관 등 인프라를 활용하여 글로벌 인재를 적극 유치, 영향력 있는 연구의 저자 중 최종 근무지가 중국인 경우 다수
 - 첨단 항공기 엔진(국초음속 포함) 기술의 경우, 중국이 영향력 있는 연구를 미국(2위)의 4배 이상 발표하고 있으며 상위 10대 연구기관 중에서도 7개를 보유
 - 영향력 있,는 연구의 저자 절반 이상(68.6%)은 중국에서 교육을 받았으나, 21.6%는 파이브 아이즈* (미국 9.8%, 영국 7.8%, 캐나다 3.9%), 4%는 EU, 일본에서 교육받은 후 중국 근무
 - * 미국과 미국의 최우방국인 영국, 캐나다, 호주, 뉴질랜드 5개국으로 이루어진 기밀정보 공유 동맹
 - 세계 최고의 연구기관을 활용한 교육과 고용 기회를 해외에서 훈련받은 개인들에게도 제공하여 글로벌 인재를 유치하고, 이를 통해 기관 성과를 강화하는 선순환 구조 정립
 - 중국과학원은 핵심기술 44개 중 무려 27개 기술의 상위 연구기관 5위 안에 포함

4. 정책 권장사항

- ASPI는 핵심기술의 혁신과 전략적 경쟁에서의 생존을 시도하는 각국, 특히 중국에 대항하는 **민주주의** 국가 정부에 4가지 주제로 총 23개의 정책 권장사항을 제시
 - 중국의 기술 선도가 지속될 경우 미래 권력이 공산주의 국가로 이동할 우려가 있기에, 인도·태평양 지역에서 민주주의 국가들이 공동의 노력을 기울여야 함을 강조

[ASPI의 정책 권장사항]

구	분	주요 내용							
	① 벤처캐피털 투자에 유리한 세제혜택	• 과세 체계 조정, 민간 투자 흐름 장려, R&D 및 상용화 지원							
	② 공적자금의 비례 투자 매칭	• 벤처개피털 시장 활성화를 위해 민간 투자와 공공 자금을 비례적으로 매칭							
	③ 국가 전략 개발	병확하고 전략적인 의사결정과 정책 마련 ex)대만의 TSMC 설립 비하인드)							
	④ 상용화 허브 구축을 위한 민관 파트너십	• 상업화 허브 구축을 위한 정부와 비즈니스 커뮤니티간의 협력 • 상용화를 위한 산학협력을 지원하여 새로운 기술 생태계 조성 (ex) 실리콘밸리-캘리포니아대학, 아인트호벤-네덜란드공과대학) • 정부 부처(국방부)와 학계·민간과의 새로운 파트너십 모색 (ex) 미국 DARPA 모델)							
트리 사이를 즐기 때	⑤ 신기술 비자	• 연구원들의 편리한 이동과 작업 권리 보장을 위한 비자 협정							
투자·상업화 촉진 및 인재 파이프라인 구축	⑥ 기술 교육을 위한 추가 가중치	• 핵심기술(고비용 연구분야) 발전에 초점을 맞춘 규칙·법률 제·개정							
	⑦ 학생과 기술자를 위한 기술 장학금	• 전문박사 학위 장학금 확대, 기술회사가 대규모 연수생 프로그램을 운영할 수 있도록 강력한 재정적 인센티브 제공							
	⑧ 박사 수당 인상	• 대학의 프로그램과 분야를 광범위하게 활성화할 수 있도록 박사 수당을 인상하고, 관련 인프라 및 서비스 확장							
	⑨ 인력 교육 및숙련도 향상	• 특정 기술 분야로의 초기 경력 인재 유입을 장려하기 위한 보조금 지급, 전문 과정에 대한 리베이트 및 실무 멘토링 프로그램 지원							
	⑩ 정책 싱크탱크 강화	• 정책 관련 기술 프로그램 개발·도입을 위한 자금 지원							
	⑪ 비자 심사	• 불법 기술 이전을 제한하기 위해 비자 심사 프로그램에 지속적 경계 노력 투입(비협력국 국방연구기관에 소속된 방문자 등)							
	⑫ 인재 유출 통제	• 특정 핵심기술 주제에 전문 지식을 갖춘 연구원의 이동에 제한 (ex) 중국 반도체 회사에서 일하는 자국민에 대한 미국의 제한)							
글로벌 파트너십 구축	⑬ R&D 프렌드 쇼어링	상호이익이 되는 R&D 분야 프렌드 쇼어링 협정 탐색·개발을 통해 집단적 공급망 탄력성 구축 우호국이나 동맹국들과 공급망을 구축하는 것으로, 오프쇼어링이 중국 의존도를 높이고 글로벌 공급망을 교란함에 따라 미국이 제안							
	⑭ 책임의 분담	• 신뢰할 수 있는 파트너 간 집합체를 구성하고, 집합체 내의 특정 국가가 특정 핵심기술에 대해 주도적인 위치를 차지하도록 지정							
	⑮ 파트너십 보조금	• 프렌드 쇼어링 및 비자 협정에 서명한 국가 간의 핵심기술 공동 연구 지원을 위한 특별 등급의 연구 보조금 지원 (ex) EU의 Horizon Europe 자금지원 프로그램의 유럽 파트너십)							

구	분	주요 내용					
	16 전략에 기반한 기술적 노력	사회 전체의 전략에 기반한 기술적 노력 및 정부 지원 국가 안보, 국방, 경제 및 사회적 영향과 함께 중요 기술 전반에 걸쳐 중국의 주도가 얼마나 발전했는지 파악하는 능력 배양					
	⑪ 중국 기술 수집·분석	• 파이브 아이즈와 일본(인도 및 한국 등)이 주축이 된 센터를 구축하여 중국의 선도 기술을 수집·분석하고 국가간 협력 강화					
인텔리전스 노력 강화	® 동맹국·파트너 협력	 단순한 정보 공유가 아닌 실제 기술 및 데이터 전문성 공유 등이 포함된 '정보 외교'관련 투자 강화 전통적 파트너십(파이브 아이즈, EU)과 새로운 그룹(Quad(미국・ 일본・인도・호주) 등) 모두 활용 					
	® 정부 외부에서의 협력·파트너십	• 중요한 협력·파트너십 과정에 정부 외부의 영향력 있는 전문가를 참여시키는 노력 강화(오픈 소스 연구에 대한 자금 지원 등)					
	⑩ 정보의 공개·확산	• 더 나은 정책 및 의사결정, 대중의 알 권리 등을 위해 정보 책임자 및 국가 안보 고위직 등이 대중과 더 많이 소통할 필요					
	② 국부펀드 설립	• 핵심기술의 연구, 개발 및 혁신을 위한 국부펀드 설립 • 산업계의 공동 투자와 함께 국민총소득의 백분율(0.5~0.7%)로 설정하고, 수익은 벤처캐피털 및 스케일업 펀딩에 활용					
문샷 (moonshots, big ideas)	② 고위험·고수익 분야 투자	• 국부펀드의 일부는 이미 경쟁 우위를 가지고 있거나 경쟁 우위를 얻으려는 고위험·고수익 영역에 투자 • 경제 안보, 정보, 국방, 기후, 에너지 및 환경 등의 영역 고려					
	② 기술법 제정	• 파트너와 동맹국간 협력을 위한 정치적 노력 및 범정부적 접근 (ex) 미국 CHIPS Acts, 반도체 지원법)					

beyond leading technology **KIST** 한국산업기술진용원

[※] 한국산업기술진흥원 산업기술정책단 정책기획실 진영준 선임연구원 / jinyj87@kiat.or.kr

[※] 본 자료에 수록된 내용은 작성자의 개인 의견으로 기관의 공식 견해가 아님을 밝힙니다.