${\tt IntroML}$ - Lecture Notes Week 4

Ruben Schenk, ruben.schenk@inf.ethz.ch March 24, 2022

1 Classification

1.1 Classification Problem

We start by comparing regression and classification:

- Regression: Labeling $x \to y \in Y$ where Y is a real value in \mathbb{R}
- Classification: Labeling $x \to y \in Y$ where Y is a finite, discrete set, e.g. $\{1, 2, ..., K\}$ or $\{-1, +1\}$.

For classification, inputs x and outputs y may look as follows:

X	Y
Documents	Sentiment (among K)
Images	Object (among K)
Emails	Spam (yes or no)
Medical data	At risk (yes or no)

Table 1: Examples of classifications.

We distinguish the first two and the last two examples into multiclass classification and binary classification.

1.2 Losses for Classification

1.2.1 Evaluation

Again, we first introduce the ML (Binary) Classification Pipeline:

Binary classification is done using a function $\hat{f}: \mathbb{R}^d \to \mathbb{R}$:

- First, assign a number to the labels, for example "sick" = class 1, "healthy" = class 0
- \bullet One could choose these values at random w.l.o.g., but for binary classification it's often convenient to use +1 and -1
- Then, the predicted class is $\hat{y} = \operatorname{sign} \hat{f}(x)$
- A good model predicts $\hat{y} = y$, where y is the true label

We have already seen that the **good model** in regression is determined by, given some data that follows the model $y = f^*(x) + \epsilon = \langle w^*, x \rangle + \epsilon$ for some f^* , the average prediction (generalization) error $R(\hat{f}) := \mathbb{E}_{x,y} l(\hat{f}(x), y) = \mathbb{E}_{x,y} (\hat{f}(x), y)^2$.

How does the good model look like for classification? For data that follows the model, i.e. $y = \epsilon \operatorname{sign} f^*(x)$ with $\epsilon \in \{-1, +1\}$ for some f^* , we care about the **average classification (generalized) error:**

$$R(\hat{f}) := \mathbb{P}_{x,y}[y \neq \operatorname{sign}\hat{f}(x)] = \mathbb{E}_{x,y}\mathbb{I}_{\{y \neq \operatorname{sign}\hat{f}(x)\}} = \mathbb{E}_{x,y}l_{0-1}(\hat{f}(x),y),$$

where $l_{0-1}(\hat{f}(x), y) = \mathbb{I}_{\{y \neq \text{sign}\hat{f}(x)\}}$ is called the zero-one loss and:

$$\mathbb{I}_{\{A\}} = \begin{cases} 1, & A \text{ is true,} \\ 0, & A \text{ is false.} \end{cases}$$

1.2.2 Training and Surrogate Losses

It is important to note that *training loss is not equal to the evaluation loss*. We have a dichotomy betnween pointwise loss we care about when predicting during test time and the pointwise surrogate loss we might use to train our model!

We would like a convex surrogate loss that also only depends on yf(x). In general, we need to penaltize when $y\hat{f}(x)$ is small, or $-y\hat{f}(x)$ is big, that is, the loss function should be of type $l(\hat{f}(x), y) = g(y\hat{f}(x))$ for some g(z) that is large when z < 0 and vice versa.

Therefore, in the following figure, only B and D would work:

The following functions satisfy that $g(y\hat{f}(x))$ is increasing in $-y\hat{f}(x)$:

- Exponential: $g_{exp}(y\hat{f}(x)) = e^{-y\hat{f}(x)}$
- Logistic: $g_{log}(y\hat{f}(x)) = \log(1 + e^{-y\hat{f}(x)})$
- Hinge: $g_{hinge}(y\hat{f}(x)) = \max(0, 1 y\hat{f}(x))$
- Linear function: $g_{lin}(y\hat{f}(x)) = -y\hat{f}(x)$

1.2.3 Logistic Loss

We can rewrite $\hat{y} = \text{sign}[\hat{f}(x)] = \arg\max_{c \in \{-1, +1\}} c\hat{f}(x)$ since $\text{sign}\hat{f}(x) \cdot \hat{f}(x) \geq \hat{f}(x)$. If we assign 0 instead of -1 for one of the classes, we can define vector $\tilde{f}(x) := (-\hat{f}(x), \hat{f}(x))$ and then $\hat{y} = \arg\max_{i} (\tilde{f}(x))_{[i]}$.

For any vector $\tilde{f} \in R^K$ we define the **softmax** transformation softmax : $R^K \to R^K$ to vector $\hat{p} \in R^K$ as follows:

$$\hat{p}_{[i]} = (\text{softmax}(\tilde{f}))_{[i]} = \frac{\exp(\tilde{f}_{[i]}/2)}{\sum_{i=1}^{K} \exp(\tilde{f}_{[i]}/2)}$$

In particular, we can rewrite $\hat{y} = \arg \max_{i} (\hat{p}(x))_{[i]}$.

Furthermore, note that $\hat{p} = \operatorname{softmax}(\tilde{f})$ is a probability vector, that is, $\hat{p}_{[i]} \geq 0$ and $\sum_{i=0}^{K-1} \hat{p}_{[i]} = 1!$ In particular, we can interpret $\hat{p}_{[i]} = \operatorname{Prob}(y = i)$. For binary, we use $\hat{p}_0 = \operatorname{Prob}(y = -1)$.

Using $\hat{p}_0 = \frac{1}{1 + \exp(\hat{f}(x))}$ and $\hat{p}_1 = 1 - \hat{p}_0$, we can now derive logistic loss from the 0-1 loss using "probabilistic" perspective of the softmax:

$$l_{log}(\hat{f}(x), y) = \mathbb{I}_{y=-1} \log(1 + e^{\hat{f}(x)}) + \mathbb{I}_{y=+1} \log(1 + e^{-\hat{f}(x)}) = \log(1 + e^{-y\hat{f}(x)})$$

1.3 Linear Classifiers

Linear classifiers are of the form

$$F = \{f : f(x) = w^T x \text{ for some } w \in \mathbb{R}^d\}$$

Training and prediction is fairly simple! The decision boundary of a function f is $\{x: f(x)=0\}$. The prediction and 0-1 eroor only depends on $\frac{w}{||w||}$ and uses $\hat{y}=\mathrm{sign}\hat{f}(x)$, training is done using $\mathrm{softmax}(\hat{f})$.

1.3.1 Logistic Regression

Recall the **logstic loss** to be $l_{log}(f(x), y) = \log(1 + e^{-yf(x)})$.

For linear classifiers, the **training loss** is defined as $L(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i w^T x_i})$ for the training points $\{(x_i, y_i)\}_{i=1}^n$.

1.3.2 Margin and Support Vector Machines

1.3.3 Multi-Class Classification

1.4 Non-Linear Classifiers