## Unit 4- Floyd's Algorithm

All pairs shortest path

#### All pairs shortest path

- The problem: find the shortest path between every pair of vertices of a graph
- The graph: may contain negative edges but no negative cycles
- A representation: a weight matrix where
   W(i,j)=0 if i=j.
   W(i,j)=∞ if there is no edge between i and j.
   W(i,j)="weight of edge"
- Note: we have shown principle of optimality applies to shortest path problems

### The weight matrix and the graph

|                  | 1        | 2                | 3        | 4        | 5        |
|------------------|----------|------------------|----------|----------|----------|
| 1                | 0        | 1                | 00       | 1        | 5        |
| 2<br>3<br>4<br>5 | 9        | 0                | 3        | 2        | $\infty$ |
| 3                | $\infty$ | $\infty$         | 0        | 4        | $\infty$ |
| 4                | $\infty$ | $\infty$         | 2        | 0        | 3        |
| 5                | 3        | 1<br>0<br>∞<br>∞ | $\infty$ | $\infty$ | 0        |



#### The subproblems

- How can we define the shortest distance  $d_{i,j}$  in terms of "smaller" problems?
- One way is to restrict the paths to only include vertices from a restricted subset.
- Initially, the subset is empty.
- Then, it is incrementally increased until it includes all the vertices.

#### The subproblems

- Let  $D^{(k)}[i,j]$ =weight of a shortest path from  $v_i$  to  $v_j$  using only vertices from  $\{v_1, v_2, ..., v_k\}$  as intermediate vertices in the path
  - $D^{(0)} = W$
  - $-D^{(n)}=D$  which is the goal matrix
- How do we compute  $D^{(k)}$  from  $D^{(k-1)}$ ?

#### The recursive definition

Since

$$D^{(k)}[i,j] = D^{(k-1)}[i,j] \text{ or } D^{(k)}[i,j] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j].$$
 We conclude: 
$$D^{(k)}[i,j] = \min\{ D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j] \}.$$



## Example



|                                     |   | 1        | 2  | 3 |
|-------------------------------------|---|----------|----|---|
| $\mathbf{W} = \mathbf{D}^0 =$       | 1 | 0        | 4  | 5 |
| $\mathbf{W} = \mathbf{D}^{\circ} =$ | 2 | 2        | 0  | 8 |
|                                     | 3 | $\infty$ | -3 | 0 |



$$D^{1} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & 1 & 0 & 4 & 5 \\
 & 2 & & & \\
 & 3 & \infty & & & \\
\end{array}$$

$$D^{1}[2,3] = min(D^{0}[2,3], D^{0}[2,1]+D^{0}[1,3])$$
  
= min (\infty, 7)  
= 7

()

-3

 $\infty$ 

0

$$D^{1}[3,2] = min(D^{0}[3,2], D^{0}[3,1]+D^{0}[1,2])$$
  
= min (-3,\infty)  
= -3



$$D^{2} = \begin{array}{c|ccc}
 & 1 & 2 & 3 \\
 & 1 & 4 & \\
 & 2 & 0 & 7 \\
 & 3 & -3 & 
\end{array}$$

$$D^{2}[1,3] = min( D^{1}[1,3], D^{1}[1,2]+D^{1}[2,3] )$$
  
= min (5, 4+7)  
= 5

$$D^{2}[3,1] = min( D^{1}[3,1], D^{1}[3,2]+D^{1}[2,1] )$$
  
= min (\infty, -3+2)  
= -1



$$D^{3} = \begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 & & 5 \\
 & 2 & 7 \\
 & 3 & -1 & -3 & 0
\end{array}$$

$$D^{3}[1,2] = min(D^{2}[1,2], D^{2}[1,3]+D^{2}[3,2])$$
  
= min (4, 5+(-3))  
= 2

$$D^{3}[2,1] = min(D^{2}[2,1], D^{2}[2,3]+D^{2}[3,1])$$
  
= min (2, 7+ (-1))  
= 2

#### Floyd's Algorithm: Using 2 D matrices

```
Floyd
   1. D \leftarrow W // initialize D array to W[]
   2. P \leftarrow 0 // initialize P array to [0]
   3. for k \leftarrow 1 to n
        // Computing D' from D
          do for i \leftarrow 1 to n
   5.
              do for j \leftarrow 1 to n
                   if (D[i, j] > D[i, k] + D[k, j])
   6.
                        then D'[i,j] \leftarrow D[i,k] + D[k,j]
   7.
                                P[i,j] \leftarrow k;
   8.
                         else D'[i, j] \leftarrow D[i, j]
   9.
   10. Move D' to D.
```

# Solve the following example using Floyd Warshal algorithm.



$$D_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 8 & \infty & 1 \\ 0 & 0 & 1 & \infty \\ 0 & 0 & 1 & \infty \\ 0 & 0 & 0 & \infty \\ 0 & 0 & 0 & \infty \\ 0 & 0 & 0 & \infty \end{bmatrix}$$







