PS11: Signaling games in general

Players:

 2 players: Sender (S) and receiver (R). E.g. firm and consumer, or employer and employee (Spence).

Timing:

- 1. Nature chooses the sender's type from $T = \{t_1, ...\}$.
- 2. S: The sender realizes her type and sends a signal from $M = \{m_1, ...\}$, typically either L (left) or R (right).
- R: The receiver observes m (but not the type t!) and forms his beliefs:
 p = μ(t₁|L) and q = μ(t₁|R)
 Consequently, for S having two possible types:

$$1-p=\mu(t_2|L)$$
 and $1-q=\mu(t_2|R)$

4. R: The receiver chooses an action from A = {a₁,...}, e.g. up or down.
5. Pavoffs are realized.

Four possible equilibria for two types:

Pooling on L or pooling on R.
 Separating: t₁ plays L and t₂ plays R or the other way around.

Cookbook: For each possible equilibrium go over signaling requirements 3 and 2:

- SR3: R: Find the beliefs p, q given S's eq. strategy. (Only consider beliefs that are consistent with S's eq. strategy.)
- SR2R: R: Given beliefs, find $a(m_j|\mu(t_1|m_j))$. SR2S: S: Does t_1 or t_2 want to deviate?
 - PBE: No deviation \rightarrow PBE. Pooling on L:
 - Find off-eq. $a(R|q) \rightarrow \text{possibly two}$ different PBE for different q.

PS11, Ex. 3.b: Notation (separating PBE)

(b) Consider a possible separating PBE where t_1 sends message R, t_2 sends message L, and where the receiver chooses u if and only if he receives message L. Can you write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S's equilibrium strategy. (In equilibrium, we only consider beliefs of R that are consistent with S's eq. strategy.)

beliefs about S's strategy.

SR2S: S: Check whether S wants to deviate.

PBE: Write up the conditions such that SR2R and SR2S hold (no incentive to deviate) for the following PBE:

SR2R: R: Find R's optimal strategy given beliefs about S's strategy.

SR2S: S: Check whether S wants to deviate.

PBE: Write up the conditions such that SR2R and SR2S hold (no incentive to deviate) for the following PBE:
$$\{(\underbrace{R}_{m(t_1)}, \underbrace{L}_{m(t_2)}, \underbrace{u}_{a(L)}, \underbrace{d}_{a(R)}, \underbrace{p=0}_{\mu(t_1|L)}, \underbrace{q=1}_{\mu(t_1|R)}\}$$
SR3: In the separating PBE, R has beliefs:
$$\mu(t_1|L) = p^* = 0$$

$$m(t_1)$$
 $m(t_2)$ $a(L)$ $a(R)$ $\mu(t_1|L)$
Note: For the sender's strategy, we

always write the message of t_1 first and t₂ second. Whereas for the receiver's

strategy, we always write the action in response to L first and to R second.

$$\mu(t_1|R) = q^* = 1$$

SR2R: $\mathbb{E}[u_R(L, u|p=0)] \ge \mathbb{E}[u_R(L, d|p=0)]$
 $\mathbb{E}[u_R(R, d|q=1)] > \mathbb{E}[u_R(R, u|q=1)]$

[q]

R

SR2S:
$$u_S(R, d|t_1) \ge u_S(L, a(L)|t_1)$$

 $u_S(L, u|t_2) \ge u_S(R, a(R)|t_2)$