Aufgabe 1. (2 Punkte) Es sei p eine Primzahl und

$$A = \{a + b\sqrt{p} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}.$$

Man zeige, dass A ein Unterring von \mathbb{R} ist.

Aufgabe 2. (2 Punkte) Es sei p eine Primzahl. Man zeige, dass $\sqrt{p} \notin \mathbb{Q}$. (Hinweis: Nehmen Sie an, dass teilerfremde Zahlen $a, b \in \mathbb{N} - \{0\}$ mit $\sqrt{p} = \pm \frac{a}{b}$ existieren, und finden Sie einen Widerspruch.)

Aufgabe 3. (3 Punkte) Es sei p eine Primzahl und

$$A = \{a + b\sqrt{p} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}.$$

Man zeige, dass A ein Teilkörper von \mathbb{R} ist, und dass $A \neq \mathbb{Q}$. (Hinweis: Sie dürfen Aufgabe 1 und 2 verwenden).

Aufgabe 4. (3 Punkte) Man bestimme alle Unterringe von \mathbb{C} , die \mathbb{R} enthalten.

- * Aufgabe 5. (5 Punkte)
 - (i) Man zeige: für jedes $z \in \mathbb{C}$ existiert es $x \in \mathbb{C}$, sodass $x^2 = z$ gilt.
- (ii) Es sei $\alpha, \beta \in \mathbb{C}$. Man zeige: es existiert $x \in \mathbb{C}$, sodass $x^2 + \alpha x + \beta = 0$ gilt.