MAT2006 Tutorial #4

1. Show that the sequence

$$\sqrt{2}$$
, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2\sqrt{2}}}$, ...,

is convergent and find its limit.

2. (i) Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

and

$$\liminf_{n \to \infty} (a_n + b_n) \ge \liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n$$

- (ii) Give examples that "=" do not hold in the above inequalities.
- **3.** Assume the Bolzano–Weierstrass Theorem is true and use it to construct a proof of the Monotone Convergence Theorem without making any appeal to the Archimedean Property.
- 4 (Decimal representations of real numbers). Show that the following sequence is convergent

$$\{y_n\}_{n=1}^{\infty}$$
 with $y_n = P_0 + \frac{P_1}{10} + \frac{P_2}{10^2} + \dots + \frac{P_n}{10^n}$

where $P_0 \in \mathbb{Z}$ and $P_n \in \{0, 1, 2, \dots, 9\}$ for $n \in \mathbb{N}$.

5. Show that the sequence

2,
$$2 + \frac{1}{2}$$
, $2 + \frac{1}{2 + \frac{1}{2}}$, $2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}$, ...

is convergent and find its limit.

- End -