제6장 카이제곱검정

1. 기본개념

- 1) 범주형 자료
 - 범주로만 분류될 수 있는 관측 값(수치적으로 측정되지 않는 자료)
 - Ex. 종교 문제의 연구(불교, 기독교, 회교 등)
 - 직업의 만족도(만족하는가, 보통인가, 만족하지 않는가)
- 2) 분할표(Contingency table)
 - 두 가지 혹은 그 이상의 속성에 따라 분류된 표본 관측 값으로부터 얻어지는 도수로 구성되는 데이터.

1. 기본개념

- 3) 범주형 자료 분석 피어슨의 검정
 - 각 모집단이 두 가지 이상의 서로 다른 속성을 갖는 개체들로 나뉘는 경우에 여러 모집단을 비교하는 방법으로 다음과 같은 검정이 있다.
 - ① 여러 범주로 분류되는 단일표본 적합도 검정
 - ② 여러 범주로 분류되는 독립표본 동질성 검정
 - ③ 두 특성에 따라 동시에 분류되는 단일표본 독립성 검정

1. 기본개념

4) 모집단 비교방법

	적합성	독립성	동질성	
범주형	χ^2 – test	$\chi^2 - test$	χ^2 – test	명목척도
				서열척도
수치형	t-test	t-test	t-test	등간척도
				비율척도
	보통1집단	2집단	여러집단	

- 1. 적합도에 대한 피어슨의 X²검정
 - 대표본 (n: 각 칸의 기대도수가 5이상)에서만 유효한 근 사 검정

1) 적합도 검정에서의 통계적 모형

칸	1	2	 k	합계
관측도수(O)	л 1	П 2	 n_{k}	п
$H_{\mathtt{0}}$ 하의 확률	P 10	P_{20}	 P_{k0}	1
H_{0} 하의 기대도수(E)	лР ₁₀	nP_{20}	 nP_{k0}	n

2) 적합도에 대한 피어슨의 χ^2 검정 (대표본의 경우)

- ① 귀무가설 : H_0 : $P_1 = P_{10} = , \dots = P_k = P_{k-0}$
- ② 검정통계량 : $\chi^2 = \sum_{i=1}^k \frac{(n_i nP_{i=0})^2}{nP_{i=0}} = \sum_{i=1}^k \frac{(O-E)^2}{E}$

 $(\chi^2 : 적 합 도에 대한 피어슨의 \chi^2 통계량)$

③ 기각 역 : $\chi^2 \ge \chi^2$ $_{a}$, d.f. = k-1 (칸의 수 -1)

- 예제 p106 완두콩 교배 실험에서 나타나는 잡종은 A(둥글고 노란완두), B(둥글고 녹색), C(모나고 노랑), D(모나고 녹색)
- ▶ 멘델의 유전 이론적 모형에 의하면 A, B, C, D형 태의 잡종은 9:3:3:1의 비율
- 실험으로 이것을 확인하기 위하여 두 가지 형태의 식물의 교잡으로 나타난 잡종은 다음표와 같다.

▶ 잡종의 분류

인자형	А	В	С	D	합 계
관 측 도 수	315	108	101	32	100

이 데이터는 유전의 이론적 모형에 부합된다고 할 수 있는가?(유의수준:0.05)

- ▶ 분석방법
- ▶ 통계분석 -범주형자료분석-적합도검정

- ▶ 가설 H_0 : $p_A = \frac{9}{16}$, $p_B = \frac{3}{16}$, $p_C = \frac{3}{16}$, $p_D = \frac{1}{16}$,
- ▶ H₁: H₀ 가 아니다.
 - 검정통계량
 - $\chi^2 = 0.9651$
 - 유의확률 = 0.8097>0.05
 이므로 유의수준 0.05에서
 귀무가설 기각할 수 없다.
 - 그러므로 유전이론모형에 부합한다.

적합도 검정

도수표				
	Α	В	С	D
 관측도수	322	108	98	32
기대도수	315	105	105	35

카이제곱 통계량 : 0,9651 유의활률 : 0,8097

EX. 아래의 데이터는 주사위를 300번 던졌을 때 관측된 도수이다. 이 데이터가 주사위의 공정성에 의문을 제기한다고 볼 수 있는가? (유의수준:0.05)

면의 번호	1	2	3	4	5	6	합 계
도 수	33	61	49	65	55	37	300

EX. 아래의 데이터는 주사위를 300번 던졌을 때 관측된 도수이다. 이 데이터가 주사위의 공정성에 의문을 제기한다고 볼 수 있는가? (유의수준:0.05)

- ▶ 가설:
- 검정통계량:
- ▶ 유의확률:
- ▶ 결론:

예제 - 실습예제 6-1p112

- 두 변수들의 관련성을 알아보는 분석.
- ▶ 데이터에서 한 변수의 범주를 다른 변수의 범주에 따라 빈도(frequency)를 교차 분류하는 교차표(cross tabulation) 또는 분할표(contingency table)를 작성하고 변수간의 관련성 알아본다.
- ▶ 교차분석 프로시져를 사용
 - 피어슨(Pearson)의 카이제곱,
 - 우도비 카이제곱,
 - 선형별 결합 검정,
 - 피셔(Fisher)의 정확한 검정,
 - 피어슨(Pearson)의 상관계수,
 - 스피어만(Spearman)의 상관계수 등 많은 통계량과 결합측도가 출력

3. 교차분석 (독립성 검정)

- ▶ 카이 제곱 검정(Chi-Square Test)
- ▶가설
 - 귀무가설 : 두 가지 특성 A 와 B는 서로 독립이다.
 - ∘ 대립가설 : 두 가지 특성 A 와 B는 서로 독립이 아니다.
 - 검정통계량 (대표본인 경우)

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O-E)^2}{E} \sim \chi^2(r-1)(c-1),$$

 $^{\circ}$ where $E = \frac{n_i \times n_j}{n}$ E: 기대도수 n: 총합계

O:관측도수 r:행의수 c:열의수

n_i: 행합계 n_j: 열합계

• 기각역 R: $\chi^2 > \chi^2_{\alpha}((r-1)(c-1))$

▶ 기대빈도와 실제빈도의 차이를 이용하여 독립적인 가, 관련성이 있나를 판단한다

▶교차표

		성팀	Total	
		남성	여성	Iotai
학력	고졸이하	12	11	n1(행합계) 23
약덕	전문대재졸	13	6	n2(행합계) 19
Total		nl(열합계) 25	n2(열합계) 17	n(총합계) 42

- 두 변수의 형태가 명목, 순서
- ▶교차표

		성별		
		남성	여성	
흡연 여부	흡연	Α	В	
여부	비흡연	С	D	

• A: 흡연하는 남성의 빈도

◦ B: 흡연하는 여성의 빈도

◦ C: 흡연하지 않는 남성의 빈도

• D: 흡연하지 않는 여성의 빈도

▶ 성별, 학력의 교차표

		성	Total	
		남성	여성	Total
	고졸이하	12	11	23
학력	전문대재졸	13	6	19
44	대재졸	65	47	112
	대학원재졸	41	5	46
Total		131	69	200

• 성별과 학력이 서로 관계가 있다고 말할 수 있는가?

▶ 성별,학력의 교차표(기대빈도)

		성	별	Total
		남성	여성	Total
	고졸이하	23*131/200 =15.1	23*69/200 =7.9	23
	전문대재졸	19*131/200 =12.4	19*69/200 =6.6	19
학력	대재졸	112*131/20 0 =73.4	112*69/200 =38.6	112
	대학원재졸	46*131/200 =30.1	46*69/200 =15.9	46
	Total	131	69	200

기대빈도: (해당 행의 합) * (해당 열의 합) / (전체 빈도의 합)

▶ 성별,학력의 교차표(관찰빈도-기대빈도,제곱값)

		성	별
		남성	여성
	고졸이하	12-15.1=- 3.1 (9.61)	11-7.9=3.1 (9.61)
ᄼᆉ	전문대재졸	13- 12.4=0.6 (0.36)	6-6.6=-0.6 (0.36)
학력 - -	대재졸	65-73.4=- 8.4 (70.56)	47- 38.6=8.4 (70.56)
	대학원재졸	41- 30.1=10.9 (118.81)	5-15.9=- 10.9 (118.81)

▶ 성별,학력의 교차표(제곱값/기대빈도)

		성	성별		
		남성	여성	Total	
	고졸이하	9.61/15.1 =0.64	9.61/7.9 =1.22	1.86	
 학력	전문대재졸	0.36/12.4 =0.03	0.36/6.6 =0.05	0.08	
44 	대재졸	70.56/73.4 =0.96	70.56/38.6 =1.83	2.79	
	대학원재졸	118.81/30.1 =3.95	118.81/15.9 =7.47	11.42	
	Total	5.58	10.57	16.15	

• Chi-square값: 16.15

∙ 자유도 : (2-1)*(4-1) = 3

- ▶ 독립성검정: 카이제곱검정(chi-square test)
- 귀무가설
 - 두 변수는 독립적인 관계이다.
- 대립가설
 - 두 변수는 독립적인 관계가 아니다.
- 독립성분석의 주의사항
 - 기대빈도가 5 미만인 셀이 전체의 20%를 초과할 때에는 독립성분석을 하지 않는 것이 좋다.
 - 빈도가 적은 셀은 제외한 뒤 분석
 - 빈도가 적은 셀을 다른 셀과 합친 뒤 분석
 - 🌉더 많은 표본 확보

3. 교차분석(독립성 검정)

▶ 성별,학력의 교차표

		성	Total	
		남성	여성	Total
	고졸이하	12	11	23
학력	전문대재졸	13	6	19
9 4	대재졸	65	47	112
	대학원재졸	41	5	46
	Total	131	69	200

- 성별과 학력이 서로 관계가 있다고 말할 수 있는가?
- 유의수준: 0.05

3. 교차분석(독립성 검정)

- ▶ 분석방법
 - 통계분석 범주형자료분석 분할표

3.교차분석(독립성 검정)

- 성별과 학력이 서로 관계가 있다고 말할 수 있는가?
 - 가설
 - 귀무가설
 - 두 변수는 독립적인 관계이다.
 - 대립가설
 - 두 변수는 독립적인 관계가 아니다.
 - 유의수준 0.05
 - 카이제곱통계량 =16.0075
 - 유의확률 = 0.00113 < 0.05
 유의수준 0.05에서 귀무가설을
 기각 할 수 있다.

즉, 성별과 학력은 서로 관계가 있다고 할 수 있다.

분할표 검정

분할표

	남성	여성	Л
고 <u>졸</u> 관측도수 기대도수	12 15,065	11 7,935	23
전문대 <u>졸</u> 관측도수 기대도수	13 12,445	6 6,555	19
대재졸 관측도수 기대도수	65 73, 36	47 38,64	112
대학원 <u>졸</u> 관측도수 기대도수	41 30, 13	5 15,87	46
<u></u> Л	131	69	200

카이제곱 통계량: 16,0075

유의확률 : 0,00113

3.교차분석(독립성 검정)

예제 - 실습예제 6-4 p118

3. 교차분석(동질성 검정)

- 범주형 자료에서 여러 집단을 비교 할 때 사용하는 방법
 - 성별,학력의 교차표

		성별		Total
		남성	여성	iotai
학력 -	고졸이하	12	11	23
	전문대재졸	13	6	19
	대재졸	65	47	112
	대학원재졸	41	5	46
Total		131	69	200

- 학력에 따라 성별은 차이가 있다고 말할 수 있는가?
- ∘ 유의수준: 0.05

3. 교차분석(동질성 검정)

- ▶ 분석방법
 - 통계분석 범주형자료분석 분할표

3.교차분석(동질성 검정)

- 학력에 따라서 성별은 차이가 있다고 말할 수 있는가?
 - 가설
 - 귀무가설
 - 학력에 따른 성별비율의 차이는 없다.
 - 대립가설
 - 학력에 따른 성별비율의 차이가 있다.
 - 유의수준 0.05
 - 카이제곱통계량 =16.0075
 - 유의확률 = 0.00113 < 0.05
 - 결론 :
 - 유의수준 0.05에서 귀무가설을 기각 할 수 있다.
 - 즉, 학력에 따른 성별 비율의 차이가─ 있다고 할 수 있다.

분할표검정

분할표

	남성	여성	Л
고 <u>졸</u> 관측도수 기대도수	12 15,065	11 7,935	23
전문대졸 관측도수 기대도수	13 12,445	6 6,555	19
대재졸 관측도수 기대도수	65 73, 36	47 38,64	112
대학원 <u>졸</u> 관측도수 기대도수	41 30, 13	5 15,87	46
<u></u> Л	131	69	200

카이제곱 통계량 : 16,0075

유의확률 : 0,00113

과제9

- ▶ 실습예제 6-2
- ▶ 실습예제 6-3
- ▶ 연습문제 6 p120
 - 생활만족도에 따른 성별 비율의 차이가 있다고 할 수 있는지 유의수준 0.05에서 검정하여라.
- ▶ 결과 분석의 내용은 한글파일 제목 :과제9_학번_이름.hwp로 작성하여 제출합니다.