Álgebra Linear e Geometria Analítica

Exame de Recurso - 02/02/2011

Duração: 2h30

Nome: ______ N.º mecanográfico: _____

Declaro que desisto _______ N.º de folhas suplementares: ____

Questão	1	2	3	Total
Cotação	80	70	50	200
Classificação				

Justifique convenientemente todas as suas respostas e indique os cálculos que efectuar.

1. Considere a matriz

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & c & 1 & 0 \\ 0 & a & b & 0 \\ 3 & 0 & 0 & 4 \end{bmatrix}, \qquad a, b, c \in \mathbb{R}.$$

- (a) Calcule o determinante de A, sabendo que $\begin{vmatrix} a & b \\ c & 1 \end{vmatrix} = 1$.
- (b) Sejam a = 1 e b = c = 0.
 - i. Mostre que A é invertível e calcule a sua inversa.
 - ii. Determine uma base \mathcal{B} de \mathcal{P}_3 de modo que A seja a matriz de mudança da base $(1, x, x^2, x^3)$ para \mathcal{B} .

- (c) Sejac=1e $B=\left[\begin{array}{cccc}0&1&1&0\end{array}\right].$
 - i. Discuta o sistema representado matricialmente por $AX = B^T$ em função dos parâmetros a e b.
 - ii. Calcule a matriz B^TB e determine uma base de $\mathcal{N}(B^TB)$, isto é, do espaço nulo de B^TB .
 - iii. Para a=b=1, verifique que $\mathcal{N}(A)\subset\mathcal{N}(B^TB).$

- 2. Considere os vectores $X=(1,0,-1),\,Y=(1,2,1),\,Z=(0,2,2)$ e uma transformação linear $L:\mathbb{R}^3\to\mathbb{R}^3$ tal que $L(1,0,0)=X,\,L(0,1,0)=Y$ e L(0,0,1)=Z.
 - (a) Mostre que Z é combinação linear de X e Y.
 - (b) Calcule o produto externo $X \times Y$ e verifique se $X \times Y$ é colinear a (1, -1, 1).
 - (c) Averigue se (1, -1, 1) pertence a ker(L). Averigue se (1, -1, 1) pertence a im(L).
 - (d) Estude L quanto à injectividade e sobrejectividade.
 - (e) Determine uma base ortonormada de $\operatorname{im}(L)$ e calcule a projecção ortogonal de (1,0,5) sobre $\operatorname{im}(L)$.

3. Considere a matriz simétrica

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix} \qquad e \qquad X_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

- (a) Mostre que X_1 é um vector próprio de A e indique o valor próprio a este associado.
- (b) Mostre que os valores próprios de A são três números inteiros consecutivos.
- (c) Indique a matriz da transformação linear $L: \mathbb{R}^3 \to \mathbb{R}^3$ definida por L(X) = AX em relação a uma base de vectores próprios de A.
- (d) Apresente uma equação reduzida e classifique a quádrica definida por $3x^2 + 3y^2 + 3z^2 + 2xz 12 = 0$.