# Artificial Intelligence

# Xiaoqing Zheng zhengxq@fudan.edu.cn



### Introduction

- Classical *Bivalent* or *two-valued* logic.
- L. A. Zadeh's *fuzzy* set.
- Pawlak's *Rough* set.

# Membership function

Membership or compatibility function

$$\mu_{A}(x): x \to [0, 1] \quad \begin{array}{c} 1.0 \\ 0.9 \\ \end{array}$$

$$0 \le \mu_{A}(x) \le 1$$

$$0.5$$

$$Membership \\ function \\ \text{Fuzzy set TALL} \quad 0$$

$$5 \quad \begin{array}{c} 6 \quad 6.5 \\ Height in feet \end{array}$$

## Information table

| U   | а | b | С | d | е |
|-----|---|---|---|---|---|
| (1) | 1 | 2 | 2 | 1 | 2 |
| (2) | 3 | 2 | 2 | 2 | 1 |
| (3) | 3 | 2 | 3 | 3 | 3 |
| (4) | 2 | 1 | 3 | 1 | 2 |
| (5) | 2 | 3 | 2 | 1 | 3 |
| (6) | 1 | 2 | 2 | 2 | 3 |
| (7) | 2 | 1 | 2 | 1 | 2 |
| (8) | 3 | 3 | 1 | 1 | 1 |

# Rough set

- Let I = (U, A) be an *information system* (attribute-value system), where U is a non-empty set of finite objects (the universe) and A is a non-empty, finite set of attributes such that  $a: U \to V_a$  for every  $a \in A$ .  $V_a$  is the set of values that attribute a may take.
- The information table assigns a value in  $V_a$  to each attribute a of each object in universe U.

Universe 
$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$

#### Associated equivalence relation R:

$$E_{1} = \{x_{1}, x_{4}\}$$

$$E_{2} = \{x_{3}, x_{8}\}$$

$$E_{3} = \{x_{2}, x_{5}, x_{7}\}$$

$$E_{4} = \{x_{6}\}$$

**Partition U/R** =  $\{E_1, E_2, E_3, E_4\}$ , and  $X = \{x_1, x_4, x_2\}$ Lower approximation  $R_*(X) = \{x_1, x_4\}$ Upper approximation  $R^*(X) = \{x_1, x_4, x_2, x_5, x_7\}$ 

Universe 
$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$

#### Associated equivalence relation R:

$$E_{1} = \{x_{1}, x_{4}\}$$

$$E_{2} = \{x_{3}, x_{8}\}$$

$$E_{3} = \{x_{2}, x_{5}, x_{7}\}$$

$$E_{4} = \{x_{6}\}$$

**Partition U/R** =  $\{E_1, E_2, E_3, E_4\}$ , and  $X = \{x_1, x_4, x_2\}$ 

Lower approximation  $R_*(X) = \{x_1, x_4\}$ 

*Upper approximation*  $R^*(X) = \{x_1, x_4, x_2, x_5, x_7\}$ 



Universe 
$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$

#### Associated equivalence relation R:

$$E_1 = \{x_1, x_4\}$$

$$E_2 = \{x_3, x_8\}$$

$$E_3 = \{x_2, x_5, x_7\}$$

$$E_4 = \{x_6\}$$

**Partition U/R** =  $\{E_1, E_2, E_3, E_4\}$ , and  $X = \{x_1, x_4, x_2\}$ Lower approximation  $R_*(X) = \{x_1, x_4\}$ Upper approximation  $R^*(X) = \{x_1, x_4, x_2, x_5, x_7\}$ 

# Membership function

$$\mu_X^R(x) = card(X \cap R(x)) / card(R(x))$$

$$\mu_X^R(x_1) = 2 / 2 = 1.00$$
 $\mu_X^R(x_2) = 1 / 3 = 0.33$ 
 $\mu_X^R(x_3) = 0 / 2 = 0.00$ 

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_{R}(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}\}$$
Associated equivalence relation  $S(Decision Attribute)$ 

Associated equivalence relation of (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}\}$$
Associated equivalence relation  $S(Decision Attribute)$ 

Associated equivalence relation of (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

$$U/P = \{\{x_1, x_3, x_4, x_5, x_6, x_7\}, \{x_2, x_8\}\}$$

$$U/Q = \{\{x_1, x_3, x_4, x_5\}, \{x_2, x_6, x_7, x_8\}\}$$

$$U/W = \{\{x_1, x_5, x_6\}, \{x_2, x_7, x_8\}, \{x_3, x_4\}\}$$

Then 
$$U/IND(R) = \{\{x_1, x_5\}, \{x_3, x_4\}, \{x_2, x_8\}, \{x_6\}, \{x_7\}\}$$

Associated equivalence relation S (Decision Attribute)

$$U/S = \{\{x_1, x_5, x_6\}, \{x_3, x_4\}, \{x_2, x_7\}, \{x_8\}\}$$

$$POS_R(S) = \{x_1, x_3, x_4, x_5, x_6, x_7\}$$

### Information table

| U   | а | b | С | d | e |
|-----|---|---|---|---|---|
| (1) | 1 | 0 | 2 | 1 | 1 |
| (2) | 2 | 1 | 0 | 1 | 0 |
| (3) | 2 | 1 | 2 | 0 | 2 |
| (4) | 1 | 2 | 2 | 1 | 1 |
| (5) | 1 | 2 | 0 | 0 | 2 |

$$a_1b_0c_2 \rightarrow d_1e_1$$

$$a_2b_1c_0 \rightarrow d_1e_0$$

$$a_2b_1c_2 \rightarrow d_0e_2$$

$$a_1b_2c_2 \rightarrow d_1e_1$$

$$a_1b_2c_0 \rightarrow d_0e_2$$

### Problem

- An interesting question is whether there are attributes in the information system which are more *important* to the knowledge represented in the equivalence class structure than other attributes.
- We wonder whether there is a subset of attributes which can, by itself, fully characterize the knowledge in the database; such an attribute set is called a *reduct*.

| U   | b | С | d | e   | Legitimate             |
|-----|---|---|---|-----|------------------------|
| (1) | 0 | 2 | 1 | 1 ( | reduct                 |
| (2) | 1 | 0 | 1 |     |                        |
| (3) | 1 | 2 | 0 | 2   | $a_2v_1c_2$ $d_0e_2$   |
| (4) | 2 | 2 | 1 | 1   | $a_1b_2c_2 \to d_1e_1$ |
| (5) | 2 | 0 | 0 | 2   | $a_1b_2c_0 \to d_0e_2$ |

| $oldsymbol{U}$ | а | С | d | е   | Legitimate             |
|----------------|---|---|---|-----|------------------------|
| (1)            | 1 | 2 | 1 | 1 ( | reduct                 |
| (2)            | 2 | 0 | 1 |     |                        |
| (3)            | 2 | 2 | 0 | 2   | $a_2 o_1 c_2 d_0 e_2$  |
| (4)            | 1 | 2 | 1 | 1   | $a_1b_2c_2 \to d_1e_1$ |
| (5)            | 1 | 0 | 0 | 2   | $a_1b_2c_0 \to d_0e_2$ |

| U   | а | b | d | e |
|-----|---|---|---|---|
| (1) | 1 | 0 | 1 | 1 |
| (2) | 2 | 1 | 1 | 0 |
| (3) | 2 | 1 | 0 | 2 |
| (4) | 1 | 2 | 1 | 1 |
| (5) | 1 | 2 | 0 | 2 |

$$a_1b_0c_2 \rightarrow d_1e_1$$

$$a_2b_1c_0 \rightarrow d_1e_0$$

$$a_2b_1c_2 \rightarrow d_0e_2$$

$$a_1b_2c_2 \rightarrow d_1e_1$$

$$a_1b_2c_0 \rightarrow d_0e_2$$

| $oldsymbol{U}$ | а | b | d | e | Causing                |
|----------------|---|---|---|---|------------------------|
| (1)            | 1 | 0 | 1 | 1 | collapse               |
| (2)            | 2 | 1 | 1 |   |                        |
| (3)            | 2 | 1 |   | 2 | $a_2v_1c_2$ $d_0e_2$   |
| (4)            | 1 | 2 | 1 | 1 | $a_1b_2c_2 \to d_1e_1$ |
| (5)            | 1 | 2 | 0 | 2 | $a_1b_2c_0 \to d_0e_2$ |

| $oldsymbol{U}$ | а | b | d | e   | Causing                |
|----------------|---|---|---|-----|------------------------|
| (1)            | 1 | 0 | 1 | 1 ( | collapse               |
| (2)            | 2 | 1 | 1 |     |                        |
| (3)            | 2 | 1 | 8 | 2   | $a_2v_1c_2$ $d_0e_2$   |
| (4)            | 1 | 2 | 1 | 1   | $a_1b_2c_2 \to d_1e_1$ |
| (5)            | 1 | 2 | 0 | 2   | $a_1b_2c_0 \to d_0e_2$ |

# Information table after removing a

| U   | b | С | d | e |
|-----|---|---|---|---|
| (1) | 0 | 2 | 1 | 1 |
| (2) | 1 | 0 | 1 | 0 |
| (3) | 1 | 2 | 0 | 2 |
| (4) | 2 | 2 | 1 | 1 |
| (5) | 2 | 0 | 0 | 2 |

$$b_0c_2 \to d_1e_1$$

$$b_1c_0 \rightarrow d_1e_0$$

$$b_1c_2 \rightarrow d_0e_2$$

$$b_2 c_2 \to d_1 e_1$$
$$b_2 c_0 \to d_0 e_2$$

$$b_2c_0 \to d_0e_2$$

# Information table after removing b

| $oldsymbol{U}$ | а | С | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 1 |
| (2)            | 2 | 0 | 1 | 0 |
| (3)            | 2 | 2 | 0 | 2 |
| (4)            | 1 | 2 | 1 | 1 |
| (5)            | 1 | 0 | 0 | 2 |

$$a_1c_2 \to d_1e_1$$

$$a_2c_0 \to d_1e_0$$

$$a_2c_2 \to d_0e_2$$

$$a_1c_2 \to d_1e_1$$

$$a_1c_0 \to d_0e_2$$

# Information table after removing b

| $oldsymbol{U}$ | а | C | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 1 |
| (2)            | 2 | 0 | 1 | 0 |
| (3)            | 2 | 2 | 0 | 2 |
| (4)            | 1 | 2 | 1 | 1 |
| (5)            | 1 | 0 | 0 | 2 |

$$a_1c_2 \to d_1e_1$$

$$a_2c_0 \to d_1e_0$$

$$a_2c_2 \to d_0e_2$$

$$a_1c_2 \to d_1e_1$$

$$a_1c_0 \to d_0e_2$$

# Information table after removing b

| $oldsymbol{U}$ | а | С | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 1 |
| (2)            | 2 | 0 | 1 | 0 |
| (3)            | 2 | 2 | 0 | 2 |
| (5)            | 1 | 0 | 0 | 2 |

$$a_1c_2 \rightarrow d_1e_1$$

$$a_2c_0 \to d_1e_0$$

$$a_2c_2 \rightarrow d_0e_2$$

$$a_2c_2 \to d_0e_2$$

$$a_1c_0 \to d_0e_2$$

# Records

| 序号 | 住宅区名  | 地段    | 房型                    | 面积<br>(m²) | 结构 | 价格<br>(元/ m²) |
|----|-------|-------|-----------------------|------------|----|---------------|
| 1  | 站前路小区 | 站前路   | 2/2, 3/2              | 90~140     | 一般 | 10000         |
| 2  | 高新区   | 高新区   | 2/2, 3/2, 4/2         | 83~170     | 框架 | 7000          |
| 3  | 远东花园  | 洪城路   | 3/2, 4/2              | 120以上      | 复式 | 7800          |
| 4  | 曙光小区  | 洪都南大道 | 3/2                   | 103以上      | 一般 | 9000          |
| 5  | 怡鑫花园  | 洪都中大道 | 2/1, 2/2, 3/2,<br>4/2 | 87~230     | 一般 | 12000         |
| 6  | 文化大楼  | 沿江路   | 2/1, 3/1, 3/2,<br>2/2 | 99~180     | 框架 | 18000         |
| 7  | 玉达住宅  | 二七北路  | 2/2                   | 97~107     | 一般 | 9800          |
| 8  | 洪都新村  | 洛阳东路  | 2/1, 3/1, 3/2,<br>1/1 | 53~123     | 一般 | 7000          |

### Discretization

- □ 地段分类:站前路和沿江路被数字化为1;洪都大道和二七路被数字化为2;洪城路、高新区和洛阳东路被数字化为3。
- □ 房型分类:房型单一被数字化为1;房型中等被数字化为2; 房型多样化被数字化为3。
- □ 面积分类:80m²以下面积被数字化为1;80~120m²为中等面积,被数字化为2;120m²以上为大面积,被数字化为3。
- □ 结构分类:一般结构被数字化为1;框架结构被数字化为2; 复式结构被数字化为3。
- □ 价格分类:9000元/m²以下被数字化为1;9000~12000元/m²被数字化为2;12000元/m²被数字化为3。

### Information table

| U   | а | b | С | d | e |
|-----|---|---|---|---|---|
| (1) | 1 | 2 | 2 | 1 | 2 |
| (2) | 3 | 2 | 2 | 2 | 1 |
| (3) | 3 | 2 | 3 | 3 | 3 |
| (4) | 2 | 1 | 3 | 1 | 2 |
| (5) | 2 | 3 | 2 | 1 | 3 |
| (6) | 1 | 2 | 2 | 2 | 3 |
| (7) | 2 | 1 | 2 | 1 | 2 |
| (8) | 3 | 3 | 1 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

| $oldsymbol{U}$ | b | С | d | e |
|----------------|---|---|---|---|
| (1)            | 2 | 2 | 1 | 2 |
| (2)            | 2 | 2 | 2 | 1 |
| (3)            | 2 | 3 | 3 | 3 |
| (4)            | 1 | 3 | 1 | 2 |
| (5)            | 3 | 2 | 1 | 3 |
| (6)            | 2 | 2 | 2 | 3 |
| (7)            | 1 | 2 | 1 | 2 |
| (8)            | 3 | 1 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

| $oldsymbol{U}$ | b | С | d | e |
|----------------|---|---|---|---|
| (1)            | 2 | 2 | 1 | 2 |
| (2)            | 2 | 2 | 2 | 1 |
| (3)            | 2 | 3 | 3 | 3 |
| (4)            | 1 | 3 | 1 | 2 |
| (5)            | 3 | 2 | 1 | 3 |
| (6)            | 2 | 2 | 2 | 3 |
| (7)            | 1 | 2 | 1 | 2 |
| (8)            | 3 | 1 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

| $oldsymbol{U}$ | а | С | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 3 | 3 | 3 |
| (4)            | 2 | 3 | 1 | 2 |
| (5)            | 2 | 2 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (7)            | 2 | 2 | 1 | 2 |
| (8)            | 3 | 1 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

| $oldsymbol{U}$ | а | С | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 3 | 3 | 3 |
| (4)            | 2 | 3 | 1 | 2 |
| (5)            | 2 | 2 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (7)            | 2 | 2 | 1 | 2 |
| (8)            | 3 | 1 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

| $oldsymbol{U}$ | а | b  | d | e | Legitimate                        |
|----------------|---|----|---|---|-----------------------------------|
| (1)            | 1 | 2  | 1 |   | reduct                            |
| (2)            | 3 | 2  | 2 |   |                                   |
| (3)            | 3 | 20 | 3 | 3 | $a_3 b_2 c_3 d_3 \rightarrow e_3$ |
| (4)            | 2 | 1  | 1 | 2 | $a_2b_1c_3\ d_1 \to e_2$          |
| (5)            | 2 | 3  | 1 | 3 | $a_2b_3c_2\ d_1 \to e_3$          |
| (6)            | 1 | 2  | 2 | 3 | $a_1b_2c_2\ d_2 \to e_3$          |
| (7)            | 2 | 1  | 1 | 2 | $a_2b_1c_2\ d_1 \to e_2$          |
| (8)            | 3 | 3  | 1 | 1 | $a_3b_3c_1\ d_1 \to e_1$          |

### Remove attribute d

| $oldsymbol{U}$ | а | b | С | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 2 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 3 | 2 |
| (5)            | 2 | 3 | 2 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (7)            | 2 | 1 | 2 | 2 |
| (8)            | 3 | 3 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

### Remove attribute d

| $oldsymbol{U}$ | a | b | С | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 2 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 3 | 2 |
| (5)            | 2 | 3 | 2 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (7)            | 2 | 1 | 2 | 2 |
| (8)            | 3 | 3 | 1 | 1 |

$$a_1b_2c_2d_1 \rightarrow e_2$$

$$a_3b_2c_2d_2 \rightarrow e_1$$

$$a_3b_2c_3 d_3 \rightarrow e_3$$

$$a_2b_1c_3 d_1 \rightarrow e_2$$

$$a_2b_3c_2 d_1 \rightarrow e_3$$

$$a_1b_2c_2 d_2 \rightarrow e_3$$

$$a_2b_1c_2 d_1 \rightarrow e_2$$

$$a_3b_3c_1 d_1 \rightarrow e_1$$

## Information table after removing C

| U   | а | b | d | e |
|-----|---|---|---|---|
| (1) | 1 | 2 | 1 | 2 |
| (2) | 3 | 2 | 2 | 1 |
| (3) | 3 | 2 | 3 | 3 |
| (4) | 2 | 1 | 1 | 2 |
| (5) | 2 | 3 | 1 | 3 |
| (6) | 1 | 2 | 2 | 3 |
| (7) | 2 | 1 | 1 | 2 |
| (8) | 3 | 3 | 1 | 1 |

## Information table after removing C

| U   | а | b | d | e |
|-----|---|---|---|---|
| (1) | 1 | 2 | 1 | 2 |
| (2) | 3 | 2 | 2 | 1 |
| (3) | 3 | 2 | 3 | 3 |
| (4) | 2 | 1 | 1 | 2 |
| (5) | 2 | 3 | 1 | 3 |
| (6) | 1 | 2 | 2 | 3 |
| (7) | 2 | 1 | 1 | 2 |
| (8) | 3 | 3 | 1 | 1 |

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

Analyze full (1)
$$a_1b_2d_1 \to e_2 \quad [1]_a = \{1, 6\},$$

$$a_3b_2d_2 \to e_1 \quad [1]_b = \{1, 2, 3, 6\},$$

$$a_3b_2 d_3 \to e_3 \quad [1]_d = \{1, 4, 5, 8\},$$

$$a_2b_1d_1 \to e_2 \quad [1]_e = \{1, 4\}$$

$$a_2b_3d_1 \to e_3 \quad [1]_e = \{1, 4\}$$

$$a_2b_3d_1 \to e_3 \quad [1]_e = \{1, 4\}$$

$$a_3b_3d_1 \to e_3 \quad [1]_e = \{1, 4\}$$

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_1b_2d_1 \rightarrow e_2$$
 [1]<sub>a</sub> = {1, 6},  
 $a_3b_2d_2 \rightarrow e_1$  [1]<sub>b</sub> = {1, 2, 3}  
 $a_3b_2d_3 \rightarrow e_3$  [1]<sub>d</sub> = {1, 4, 5}  
[1]<sub>e</sub> = {1, 4}

$$a_2b_3d_1 \rightarrow e_3$$

$$a_1b_2d_2 \rightarrow e_3$$

$$a_3b_3d_1 \rightarrow e_1$$

$$a_1b_2d_1 \rightarrow e_2$$
 [1]<sub>a</sub> = {1, 6},  
 $a_3b_2d_2 \rightarrow e_1$  [1]<sub>b</sub> = {1, 2, 3, 6},  
 $a_3b_2d_3 \rightarrow e_3$  [1]<sub>d</sub> = {1, 4, 5, 8},  
 $a_2b_1d_1 \rightarrow e_2$  [1]<sub>e</sub> = {1, 4}  
 $a_2b_3d_1 \rightarrow e_3$  [1]<sub>e</sub> = [1]<sub>a</sub> \cap [1]<sub>b</sub> = {1, 6} \neq [1]<sub>e</sub>  
 $d_1$  can not be removed.

$$[1]_{\{a,b\}} = [1]_a \cap [1]_b = \{1,6\} \not\subset [1]_e$$

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_1b_2d_1 \rightarrow e_2$$
 [1]<sub>a</sub> = {1, 6},  
 $a_3b_2d_2 \rightarrow e_1$  [1]<sub>b</sub> = {1, 2, 3, 6},  
[1]<sub>b</sub> = {1, 4, 5, 8}

$$a_3b_2 d_3 \rightarrow e_3$$

$$a_2b_1d_1 \rightarrow e_2$$

$$a_2b_3d_1 \rightarrow e_3$$

$$a_1b_2d_2 \rightarrow e_3$$

$$a_3b_3d_1 \rightarrow e_1$$

$$[1]_a = \{1, 6\},\$$

$$[1]_b = \{1, 2, 3, 6\}$$

$$[1]_d = \{1, 4, 5, 8\},\$$

$$[1]_e = \{1, 4\}$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1}$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1}$$

$$[1]_{d} = \{1, 4, 5, 8\},$$

$$[1]_{e} = \{1, 4\}$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3}$$

$$[1]_{e} = \{1, 4\}$$

$$[1]_{e} = \{1\} \subseteq [1]_{e}$$

$$b_{2} \text{ can be removed.}$$

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [1]_{a} = \{1, 6\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [1]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [1]_{d} = \{1, 4, 5, 8\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [1]_{e} = \{1, 4\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [1]_{\{b, d\}} = [1]_{b} \cap [1]_{d} = \{1\} \subseteq [1]_{e}$$

$$a_{1} \text{ can be removed.}$$

 $a_1b_2d_2 \rightarrow e_3$ 

 $a_3b_3d_1 \rightarrow e_1$ 

$$a_{1}b_{2}a_{1} \rightarrow e_{2} \quad [1]_{b} = \{1, 2, 3, 6\},$$
 $a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [1]_{d} = \{1, 4, 5, 8\},$ 
 $a_{3}b_{1}d_{1} \rightarrow e_{2} \quad [1]_{e} = \{1, 4\}$ 

$$[1]_{\{b,d\}} = [1]_b \cap [1]_d = \{1\} \subseteq [1]_e$$

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

 $a_3b_3d_1 \rightarrow e_1$ 

$$a_1b_2d_1 \rightarrow e_2$$
 [1]<sub>a</sub> = {1, 6},  
 $a_3b_2d_2 \rightarrow e_1$  [1]<sub>b</sub> = {1, 2, 3, 6},  
 $a_3b_2 d_3 \rightarrow e_3$  [1]<sub>d</sub> = {1, 4, 5, 8},  
[1]<sub>e</sub> = {1, 4}  
 $a_2b_1d_1 \rightarrow e_2$   $d_1$  is core value, then we get  
 $a_2b_3d_1 \rightarrow e_3$   $a_1d_1 \rightarrow e_2$   
 $a_1b_2d_2 \rightarrow e_3$   $b_2d_1 \rightarrow e_2$ 

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$\begin{array}{l} \textbf{Analyze fulle} \\ a_1b_2d_1 \to e_2 \\ a_3b_2d_2 \to e_1 \\ a_3b_2d_3 \to e_3 \\ a_3b_2 d_3 \to e_3 \\ a_2b_1d_1 \to e_2 \\ a_2b_3d_1 \to e_3 \\ a_1b_2d_2 \to e_3 \\ a_3b_3d_1 \to e_1 \\ \end{array}$$

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [2]_{a} = \{2, 3, 8\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [2]_{a, b} = [2]_{a} \cap [2]_{b} = \{2, 3\} \not\subset [2]_{e}$$

$$d_{2} \text{ can not be removed.}$$

 $a_1b_2d_2 \rightarrow e_3$ 

 $a_3b_3d_1 \rightarrow e_1$ 

$$a_{1}b_{2}a_{1} \rightarrow e_{2} \quad [2]_{a} \quad \{2, 3, 6\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$[2]_{e} = \{2, 8\}$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

| $oldsymbol{U}$ | а | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_1b_2d_1 \rightarrow e_2$$
  $[2]_a = \{2, 3, 8\},$ 
 $a_3b_2d_2 \rightarrow e_1$   $[2]_b = \{1, 2, 3, 6\},$ 
 $a_3b_2d_3 \rightarrow e_3$   $[2]_d = \{2, 6\},$ 
 $a_2b_1d_1 \rightarrow e_2$   $[2]_{e} = \{2, 8\}$ 
 $[2]_{e} = \{2, 8\},$ 
 $[2]_{e} =$ 

 $a_1b_2d_2 \rightarrow e_3$ 

 $a_3b_3d_1 \rightarrow e_1$ 

$$a_1b_2d_1 \rightarrow e_2$$
 [2]<sub>a</sub> = {2, 3, 8},  
 $a_3b_2d_2 \rightarrow e_1$  [2]<sub>b</sub> = {1, 2, 3, 6},  
 $a_3b_2 d_3 \rightarrow e_3$  [2]<sub>d</sub> = {2, 6},  
[2]<sub>e</sub> = {2, 8}  
 $a_2b_1d_1 \rightarrow e_2$  [2]<sub>{a, d}</sub> = [2]<sub>a</sub> \cap [2]<sub>d</sub> = {2}\subseteq [1]<sub>e</sub>  
 $a_2b_3d_1 \rightarrow e_3$  [2]<sub>e</sub> = and be removed.

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_{1}b_{2}d_{1} \rightarrow e_{2} \quad [2]_{a} = \{2, 3, 8\},$$

$$a_{3}b_{2}d_{2} \rightarrow e_{1} \quad [2]_{b} = \{1, 2, 3, 6\},$$

$$a_{3}b_{2}d_{3} \rightarrow e_{3} \quad [2]_{d} = \{2, 6\},$$

$$a_{2}b_{1}d_{1} \rightarrow e_{2} \quad [2]_{e} = \{2, 8\}$$

$$a_{2}b_{3}d_{1} \rightarrow e_{3} \quad [2]_{e} = \{2, 6\} \not\subset [1]_{e}$$

$$a_{3} \text{ can not be removed.}$$

 $a_1b_2d_2 \rightarrow e_3$ 

 $a_3b_3d_1 \rightarrow e_1$ 

$$a_1b_2a_1 \rightarrow e_2$$
 [2]<sub>a</sub> = {2, 3, 6},  
 $a_3b_2d_2 \rightarrow e_1$  [2]<sub>b</sub> = {1, 2, 3, 6},  
 $a_3b_2d_3 \rightarrow e_3$  [2]<sub>d</sub> = {2, 6},  
[2]<sub>e</sub> = {2, 8}

$$[2]_{\{b, d\}} = [2]_a \cap [2]_b = \{2, 6\} \not\subset [1]_e$$

| $oldsymbol{U}$ | a | b | d | e |
|----------------|---|---|---|---|
| (1)            | 1 | 2 | 1 | 2 |
| (2)            | 3 | 2 | 2 | 1 |
| (3)            | 3 | 2 | 3 | 3 |
| (4)            | 2 | 1 | 1 | 2 |
| (5)            | 2 | 3 | 1 | 3 |
| (6)            | 1 | 2 | 2 | 3 |
| (8)            | 3 | 3 | 1 | 1 |

#### **Rules:**

$$a_1b_2d_1 \rightarrow e_2 \quad [2]_a = \{2, 3, 8\},$$

$$a_3b_2d_2 \rightarrow e_1$$

$$a_3b_2 d_3 \rightarrow e$$

$$a_2b_1d_1 \rightarrow e_2$$

$$a_2b_3d_1 \rightarrow e_3$$

$$a_1b_2d_2 \rightarrow e_3$$

$$a_3b_3d_1 \rightarrow e_1$$

#### Analyze rule (2):

$$[2]_a = \{2, 3, 8\},\$$

$$a_3b_2d_2 \rightarrow e_1$$
 [2]<sub>b</sub> = {1, 2, 3, 6},

$$[2]_d = \{2, 6\},$$

$$[2]_e = \{2, 8\}$$

 $a_3b_2d_2 \rightarrow e_1$   $a_3b_2d_3 \rightarrow e_3$   $[2]_d = \{2, 6\},$   $[2]_e = \{2, 8\}$   $a_2b_1d_1 \rightarrow e_2$   $a_3 \text{ and } d_2 \text{ is core, then we get}$   $a_2b_3d_1 \rightarrow e_3$   $a_3d_2 \rightarrow e_1$   $a_1b_2d_2 \rightarrow e_3$ 

$$a_3d_2 \longrightarrow e_1$$

| U    | а | b | d | e |
|------|---|---|---|---|
| (1)  | 1 |   | 1 | 2 |
| (1') |   | 2 | 1 | 2 |
| (2)  | 3 | l | 2 | 1 |
| (3)  |   |   | 3 | 3 |
| (4)  |   | 1 |   | 2 |
| (5)  | 2 | 3 | _ | 3 |
| (6)  | 1 |   | 2 | 3 |
| (8)  | 3 | _ | 1 | 1 |
| (8') | 3 | 3 | _ | 1 |

$$a_1d_1 \rightarrow e_2 \text{ or } b_2d_1 \rightarrow e_2$$

$$a_3d_2 \rightarrow e_1$$

$$d_3 \rightarrow e_3$$

$$b_1 \rightarrow e_2$$

$$a_2b_3 \rightarrow e_3$$

$$a_1d_2 \rightarrow e_3$$

$$a_3d_2 \rightarrow e_1$$
  
 $d_3 \rightarrow e_3$   
 $b_1 \rightarrow e_2$   
 $a_2b_3 \rightarrow e_3$   
 $a_1d_2 \rightarrow e_3$   
 $a_3d_1 \rightarrow e_1$  **or**  $a_3b_3 \rightarrow e_1$ 

$$a_1d_1 \rightarrow e_2$$
 **or**  $b_2d_1 \rightarrow e_2$   
 $a_3d_2 \rightarrow e_1$   
 $d_3 \rightarrow e_3$   
 $b_1 \rightarrow e_2$   
 $a_2b_3 \rightarrow e_3$   
 $a_1d_2 \rightarrow e_3$   
 $a_3d_1 \rightarrow e_1$  **or**  $a_3b_3 \rightarrow e_1$ 

#### **Rules:**

$$a_1d_1 \rightarrow e_2$$
 or  $b_2d_1 \rightarrow e_2$   
 $a_3d_2 \rightarrow e_1$   
 $d_3 \rightarrow e_3$   
 $b_1 \rightarrow e_2$   
 $a_2b_3 \rightarrow e_3$   
 $a_1d_2 \rightarrow e_3$   
 $a_3d_1 \rightarrow e_1$  or  $a_3b_3 \rightarrow e_1$ 

#### **Final Rules:**

$$a_3d_2 \lor a_3d_1 \lor a_3b_3 \rightarrow e_1$$
  
 $a_1d_1 \lor b_2d_1 \lor b_1 \rightarrow e_2$   
 $d_3 \lor a_2b_3 \lor a_1d_2 \rightarrow e_3$ 

#### **Rules:**

$$a_1d_1 \rightarrow e_2$$
 or  $b_2d_1 \rightarrow e_2$   
 $a_3d_2 \rightarrow e_1$   
 $d_3 \rightarrow e_3$   
 $b_1 \rightarrow e_2$   
 $a_2b_3 \rightarrow e_3$   
 $a_1d_2 \rightarrow e_3$   
 $a_3d_1 \rightarrow e_1$  or  $a_3b_3 \rightarrow e_1$ 

#### **Final Rules:**

$$a_3d_2 \lor a_3d_1 \lor a_3b_3 \rightarrow e_1$$
  
 $a_1d_1 \lor b_2d_1 \lor b_1 \rightarrow e_2$   
 $d_3 \lor a_2b_3 \lor a_1d_2 \rightarrow e_3$ 

#### 自然语言解释:

- (1)3类地段框架结构或3类地段一般结构或3类地段房型多样的地产价格便宜;
- (2)1类地段一般结构或房型中等一般结构或房型单一的地产价格适中;
- (3)复式结构或2类地段房型多样或1类地段框架结构的地产价格昂贵

## Comparison

| Attributes            | Rough sets  | <b>Decision tree</b> | BP              |
|-----------------------|-------------|----------------------|-----------------|
| Accuracy              | Medium      | Medium               | High            |
| Learning / Usage time | Slow / Slow | Slow / Medium        | Slowest / Quick |
| Robustness            | Medium      | Bad                  | Good            |
| Scalable              | Medium      | Bad                  | Good            |
| Understanding         | Good        | Medium               | Bad             |

# Any question?

Xiaoqing Zheng Fudan University