ECE375 Lab 7

TA: Youngbin Jin

School of Electrical Engineering and Computer Science Oregon State University

Timer/Counters

- Understand the 8-bit Timer/Counters to generate Pulse-Width Modulation (PWM)
- Control the motor speed of BumpBot using PWM signal
- Read Atmega I 28 Datasheet
 - 73p (Alternate Functions of Port B)
 - 92p I I Op (Timer/Counter)

Read/Write I6bit Register

- Write 16 bit-register
 - \circ out TCNT1H, r17 ; write to high byte first
 - out TCNTIL, r16; write to low byte second
- Read 16 bit-register
 - in r16,TCNT1L ; read from low byte first
 - in r17,TCNT1H ; read from high byte second
- IIIp-120p

PWM Output

Alternate Functions of Port B

Port Pin	Alternate Functions
PB7	OC2/OC1C ⁽¹⁾ (Output Compare and PWM Output for Timer/Counter2 or Output Compare and PWM Output C for Timer/Counter1)
PB6	OC1B (Output Compare and PWM Output B for Timer/Counter1)
PB5	OC1A (Output Compare and PWM Output A for Timer/Counter1)
PB4	OC0 (Output Compare and PWM Output for Timer/Counter0)
PB3	MISO (SPI Bus Master Input/Slave Output)
PB2	MOSI (SPI Bus Master Output/Slave Input)
PB1	SCK (SPI Bus Serial Clock)
PB0	SS (SPI Slave Select input)

Duty Cycle

- Change Duty Cycle to control speed
 - 100% duty cycle Halt
 - 50% duty cycle Half Speed
 - ∘ 0% duty cycle Full Speed
- Use Output Compare Register (OCR)

Wave Generation Mode (WGM)

Mode	WGM01 ⁽¹⁾ (CTC0)	WGM00 ⁽¹⁾ (PWM0)	Timer/Counter Mode of Operation	ТОР	Update of OCR0 at	TOV0 Flag Set on
0	0	0	Normal	0xFF	Immediate	MAX
1	0	1	PWM, Phase Correct	0xFF	ТОР	воттом
2	1	0	стс	OCR0	Immediate	MAX
3	1	1	Fast PWM	0xFF	воттом	MAX

Compare Output Mode (COM)

Table 54. Compare Output Mode, Fast PWM Mode⁽¹⁾

COM01	COM00	Description
0	0	Normal port operation, OC0 disconnected.
0	1	Reserved
1	0	Clear OC0 on compare match, set OC0 at BOTTOM, (non-inverting mode)
1	1	Set OC0 on compare match, clear OC0 at BOTTOM, (inverting mode)

Clock Selection (CS)

Table 56. Clock Select Bit Description

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk _{TOS} /(No prescaling)
0	1	0	clk _{TOS} /8 (From prescaler)
0	1	1	clk _{TOS} /32 (From prescaler)
1	0	0	clk _{TOS} /64 (From prescaler)
1	0	1	clk _{TOS} /128 (From prescaler)
1	1	0	clk _{TOS} /256 (From prescaler)
1	1	1	clk _{TOS} /1024 (From prescaler)

Wave Generation Mode (WGM)

Compare Output Mode (COM)

Clock Selection (CS)

Demo Check

- 16 speed levels
- PORTB 0-3 indicate current speed level
- PORTB 4,7 brightness change
- 4 Functions for Control Speed
 - SPEED_DOWN
 - SPEED UP
 - SPEED_MIN
 - SPEED_MAX
- Speed levels bound max and min
- Single button press results single action

Checklists for Lab 7

- Demo Checklist
 - All four speed changes work correctly
 - Smooth transitions (I press, I change)
 - No Speed Level overflow or underflow
 - MovFwd signals never overwritten
 - Motor enable signals correctly active low
 - · Actually using PWM, no manual toggling
- Challenge Checklist
 - Time updates every I sec, no leading 0s
 - Buttons still work and reset count on LCD

Questions?

