贵阳第一中学 2024 届高考适应性月考卷(一) 数学参考答案

一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)

题号	1	2	3	4	5	6	7	8
答案	A	С	D	В	D	С	A	В

【解析】

- 1. 函数 $y = \ln(1-x)$ 的定义域为 $(-\infty, 1)$,不等式 $\frac{x-1}{x} \le 0$,可化为 $x(x-1) \le 0$ 且 $x \ne 0$,所以 $0 < x \le 1$,所以 $A \cap B = \{x \mid 0 < x < 1\}$,故选 A.
- 2. 当 x > 0 时由基本不等式可得 $x + \frac{1}{x} \ge 2$,当且仅当 $x = \frac{1}{x}$ 时取得 "=",当 $\frac{x^2 + 1}{x} \ge 2$ 时,则 $\frac{x^2 + 1}{x} 2 \ge 0$,可得 $\frac{x^2 2x + 1}{x} \ge 0$,即 $\frac{(x 1)^2}{x} \ge 0$,解得 x > 0 ;所以" x > 0 "是" $\frac{x^2 + 1}{x} \ge 2$ " 的充要条件,故选 C .
- 3. 对于 A,由正态分布曲线对称性可知: $P(X \ge 10) = 0.5$, $P(8 \le X \le 12) = 2P(8 \le X \le 10)$, A 正确; C 正确,对于 B, $\therefore P(X \ge 8) = P(X \le 12)$, $\therefore P(X \le 8) + P(X \le 12) = P(X \le 8) + P(X \le 8) = 1$, B 正确; 对于 D, $\therefore D(X) = 2^2 = 4$, $\therefore D(2X + 1) = 4D(X) = 16$, D 错误, 故选 D.
- 4. 当 x = 0 时, f(x) = 0 ,排除 A 选项;因为 f(-x) = f(x), $x \in \mathbf{R}$,所以 f(x) 为偶函数,排除 C;当 x > 0 时, $f'(x) = \frac{2x \sin x + (x^2 + 1) \cos x}{e^2}$, $0 < x \le \frac{\pi}{2}$ 时, $2x \sin x + (x^2 + 1) \cos x > 0$, 所以 f(x) 在区间 $\left(0, \frac{\pi}{2}\right]$ 单调递增; $f'\left(\frac{\pi}{2}\right) > 0$, $f'(\pi) < 0$,所以存在 $m \in \left(\frac{\pi}{2}, \pi\right)$,使得 f'(m) = 0 ,故 f(x) 在 (0, m) 上单调递增,在 (m, π) 上单调递减,排除 D ,故选 B.
- 5. 当 a=0 时,满足题意;当为二次函数时,因为 $f(x)=ax^2+2(a-1)x+2$ 在 $(-\infty,4)$ 上为减函数,所以 $\begin{cases} a>0, \\ \frac{1-a}{a}\geqslant 4, \end{cases}$ 解得 $0<a\leqslant \frac{1}{5}$,综上所述 a 的取值范围为 $\left[0,\frac{1}{5}\right]$,故选 D.

- 6. 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的渐近线方程为 $y = \pm \frac{b}{a}x$,记点 A(0, 3c) ,由题意可知,点 F(c, 0) 为双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点,易知直线 AF 与直线 $y = \frac{b}{a}x$ 垂直,且 $k_{AF} = -3$,可得 $\frac{b}{a} = \frac{1}{3}$,因此,该双曲线的离心率为 $e = \frac{c}{a} = \sqrt{1 + \left(\frac{b}{a}\right)^2} = \sqrt{1 + \left(\frac{1}{3}\right)^2} = \frac{\sqrt{10}}{3}$, 故选 C.
- 7. 因为 $2^a + \log_2 a < 2^{2b} + \log_2 b + 1 = 2^{2b} + \log_2 (2b)$,令 $f(x) = 2^x + \log_2 x$,其中 x > 0,因为函数 $y = 2^x$ 、 $y = \log_2 x$ 在 $(0, +\infty)$ 上均为增函数,所以,函数 $f(x) = 2^x + \log_2 x$ 在 $(0, +\infty)$ 上为增函数,因为 $2^a + \log_2 a < 2^{2b} + \log_2 (2b)$,即 f(a) < f(2b),故 2b > a > 0,则 2b a > 0,所以,2b a + 1 > 1,则 $\ln(2b a + 1) > \ln 1 = 0$,B 错 A 对;无法确定 |a 2b| 与 1 的大小无法确定,CD 都错,故选 A.
- 8. 构造函数 $F(x) = \frac{f(x)+1}{e^x}$,则 $F'(x) = \frac{f'(x) \cdot e^x [f(x)+1] \cdot e^x}{e^{2x}} = \frac{f'(x) f(x) 1}{e^x}$,因为 f'(x) f(x) < 1,所以 F'(x) < 0 恒成立,故 $F(x) = \frac{f(x)+1}{e^x}$ 单调递减, $f(x) + 1 > 2023e^x$ 变形为 $\frac{f(x)+1}{e^x} > 2023$,又 f(0) = 2022,所以 $F(0) = \frac{f(0)+1}{e^0} = 2023$,所以 F(x) > F(0),解得: x < 0,故选 B.
- 二、**多项选择题**(本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选项中,有 多项符合题目要求,全部选对的得 5 分,选对但不全的得 2 分,有选错的得 0 分)

题号	9	10	11	12
答案	BD	CD	ABC	AD

【解析】

9. 由题意知 A_1 , A_2 , A_3 两两互斥,故 D 正确;又 $P(A_1) = \frac{5}{10} = \frac{1}{2}$, $P(A_2) = \frac{2}{10} = \frac{1}{5}$, $P(A_3) = \frac{3}{10}$, $P(B|A_1) = \frac{5}{11}$, $P(B|A_2) = \frac{4}{11}$, $P(B|A_3) = \frac{4}{11}$, 故 B 正确; $P(B) = P(A_1B) + P(A_2B) + P(A_3B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3) = \frac{1}{2} \times \frac{5}{11} + \frac{1}{5} \times \frac{4}{11} + \frac{3}{10} \times \frac{4}{11} = \frac{9}{22}$, 故 A 错误;因为 $P(BA_1) = P(B|A_1)P(A_1) = \frac{1}{2} \times \frac{5}{11} = \frac{5}{22} \neq P(B)P(A_1)$,所以 $B = A_1$ 不是相互独立事件,故 C 错误,故选 BD.

10. 数列 $\{a_n\}$ 各项乘以 10 后再減 4 得到数列 $\{b_n\}$: 0, 3, 6, 12, 24, 48, 96, 192, \cdots , 故该数列从第 2 项起构成公比为 2 的等比数列,所以 $b_n = \begin{cases} 0, n=1, \\ 3\times 2^{n-2}, n \geq 2, \end{cases}$ 数列 $\{b_n\}$ 的第 2023 项为 3×2^{2021} ,故 A 错误,从而 $a_n = \frac{b_n + 4}{10} = \begin{cases} 0.4, n=1, \\ 0.3\times 2^{n-2} + 0.4, n \geq 2, \end{cases}$ 故 B 错误,当 n=1 时, $S_1 = a_1 = 0.4$;当 $n \geq 2$ 时, $S_n = a_1 + a_2 + \cdots + a_n = 0.4 + 0.3(2^0 + 2^1 + \cdots + 2^{n-2}) + 0.4(n-1)$ $= 0.4n + 0.3 \times \frac{1-2^{n-1}}{1-2} = 0.4n + 0.3 \times 2^{n-1} - 0.3$,当 n=1 时, $S_1 = 0.4$ 也符合上式,所以 $S_n = 0.4n + 0.3 \times 2^{n-1} - 0.3$, $S_{10} = 4 + 0.3 \times 2^9 - 0.3 = 157.3$,故 C 正确;因为 $nb_n = \begin{cases} 0, n=1, \\ 3n\times 2^{n-2}, n\geq 2, \end{cases}$ 所以当 n=1 时, $T_1 = b_1 = 0$,当 $n\geq 2$ 时, $T_n = b_1 + 2b_2 + 3b_3 + \cdots + nb_n = 0 + 3(2\times 2^0 + 3\times 2^1 + 4\times 2^2 + \cdots + n\times 2^{n-2})$, $2T_n = 3(2\times 2^1 + 3\times 2^2 + 4\times 2^3 + \cdots + n\times 2^{n-1})$,所以 $-T_n = 0 + 3(2 + 2^1 + 2^2 + \cdots + 2^{n-2} - n\times 2^{n-1}) = 3\left(2 + \frac{2-2^{n-1}}{1-2} - n\times 2^{n-1}\right) = 3(1-n)\times 2^{n-1}$,所以 $T_n = 3(n-1)\times 2^{n-1}$,故 D 正确,故选 CD.

11. 对于 A,令 x = y = 0,得 f(0) - f(0) = f(0) = 0,故 A 正确;对于 B,令 y = -x 得; $f(x) - f(-x) = f\left(\frac{2x}{1+x^2}\right)$ (1),再以 -x 代 x,得; $f(-x) - f(x) = f\left(\frac{-2x}{1+x^2}\right)$ (2),(1) + (2) 得; $f\left(\frac{2x}{1+x^2}\right) + f\left(\frac{-2x}{1+x^2}\right) = 0$, $\therefore f\left(\frac{-2x}{1+x^2}\right) = -f\left(\frac{2x}{1+x^2}\right)$, \therefore 定义在 (-1, 1) 上的函数 数 f(x) 为奇函数,故 B 正确;对于 C, ∴函数 f(x) 为定义在 (-1, 1) 上的奇函数,且当 $x \in (-1, 0)$ 时, f(x) < 0 ,不妨设 $-1 < x_1 < x_2 < 1$,则 $f(x_1) - f(x_2) = f\left(\frac{x_1 - x_2}{1-x_1x_2}\right)$,因为 $-1 < x_1 < x_2 < 1$,所以 $\frac{x_1 - x_2}{1-x_1x_2} < 0$ 且 $\frac{x_1 - x_2}{1-x_1x_2} + 1 = \frac{(1+x_1)(1-x_2)}{1-x_1x_2} > 0$,因此 $-1 < \frac{x_1 - x_2}{1-x_1x_2} < 0$,所以 $f\left(\frac{x_1 - x_2}{1-x_1x_2}\right) < 0$,则 $f(x_1) - f(x_2) < 0$,即 $f(x_1) < f(x_2)$,故函数 f(x) 在 (-1, 1) 上为增函数,C 正确;对于 D,令 $x = \frac{7}{8}$, $y = \frac{2}{3}$,因为 $f(x) - f(y) = f\left(\frac{x-y}{1-xy}\right)$,则 $f\left(\frac{7}{8}\right) - f\left(\frac{2}{3}\right) = f\left(\frac{1}{2}\right)$,即 $f\left(\frac{2}{3}\right) + f\left(\frac{1}{2}\right) = f\left(\frac{7}{8}\right)$,因为 $\frac{7}{8} > \frac{7}{9}$,且函数 f(x) 在 (-1, 1) 上

数学参考答案 • 第 3 页 (共 9 页)

为增函数,所以 $f\left(\frac{7}{8}\right) > f\left(\frac{7}{9}\right)$,即 $f\left(\frac{2}{3}\right) + f\left(\frac{1}{2}\right) = f\left(\frac{7}{8}\right) > f\left(\frac{7}{9}\right)$,故 D 错误,故选 ABC.

12. 因为双曲线 C 的方程为 $\frac{x^2}{16} - \frac{y^2}{9} = 1$,所以 a = 4,b = 3,c = 5,渐近线方程为 $y = \pm \frac{3}{4}x$,选项 A,因为直线 PF_2 与双曲线有两个交点,所以 $k \in \left(-\frac{3}{4}, \frac{3}{4}\right)$,即 A 正确;选项 B,由双曲线的定义知, $|PF_1| - |PF_2| = 2a = 8$,若 $m \perp n$,则 $|PF_1|^2 + |PF_2|^2 = |F_1F_2|^2 = (2c)^2 = 100$,因为 $(|PF_1| - |PF_2|)^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2|$,所以 $64 = 100 - 2|PF_1| \cdot |PF_2|$,解得 $|PF_1| \cdot |PF_2| = 18$,即 B 错误;选项 C: $|PF_2| + |PQ| = |F_1Q| + 2|PQ| - 2a = 5 + 2|PQ| > 5$,即 C 错误;选项 D,因为 PT 平分 $\angle F_1PF_2$,由角分线定理 知, $\frac{|PF_1|}{|TF_2|} = \frac{|PF_2|}{|TF_2|}$,所以 $\frac{|PF_1|}{|PF_2|} = \frac{|TF_1|}{|TF_2|} = \frac{5+1}{5-1} = \frac{3}{2}$,又 $|PF_1| - |PF_2| = 8$,所以 $\frac{3}{2}|PF_2| - |PF_2| = 8$,解得 $|PF_2| = 16$,即 D 正确,故选 AD.

三、填空题(本大题共4小题,每小题5分,共20分)

题号	13	14	15	16
答案	-480	$\frac{1}{2}$	$\left(1, \frac{2}{e} + 1\right)$	$\frac{16}{3}$; $\frac{2\sqrt{3}}{5} - \frac{3\sqrt{3}}{20} \cdot \left(\frac{4}{9}\right)^{n-1}$

【解析】

13. $(x-2y+1)^6$ 的展开式中为 x^2y^3 项为 $C_6^2x^2C_4^3(-2y)^3 = -480x^2y^3$.

14. 令
$$4x-1=1$$
,即 $x=\frac{1}{2}$,得 $y=2$,故 $P\left(\frac{1}{2},2\right)$,由 $P\left(\frac{1}{2},2\right)$ 在直线 l : $ax+by-3=0(b>0)$ 上,得 $\frac{1}{2}a+2b-3=0$,即 $a+2+4b=8$,因为 $a>0$ 且 $a\ne1$, $b>0$,所以 $a+2>2$,所以
$$\frac{1}{a+2}+\frac{1}{4b}=\left(\frac{1}{a+2}+\frac{1}{4b}\right)(a+2+4b)\times\frac{1}{8}=\frac{1}{8}\left(2+\frac{4b}{a+2}+\frac{a+2}{4b}\right)\geqslant \frac{1}{8}\left(2+2\sqrt{\frac{4b}{a+2}\cdot\frac{a+2}{4b}}\right)=\frac{1}{2},$$
 当且仅当 $\frac{4b}{a+2}=\frac{a+2}{4b}$,即 $a+2=4b=4$,即 $a=2$, $b=1$ 时,等号成立.

15 . 由 $f(x) = x \ln x - \frac{1}{4}(m-1)x^2 - x + 1$, 得 $f'(x) = \ln x - \frac{1}{2}(m-1)x$, x > 0 . 要 使 $f(x) = x \ln x - \frac{1}{4}(m-1)x^2 - x + 1$ 有两个极值点,只需 $f'(x) = \ln x - \frac{1}{2}(m-1)x$ 有两个变号根,

即 $\frac{1}{2}(m-1) = \frac{\ln x}{x}$ 有两个变号根. 令 $g(x) = \frac{\ln x}{x}(x>0)$, 则 $g'(x) = \frac{1-\ln x}{x^2}$, 由g'(x) = 0得 x=e,易知当 $x\in(0,e)$ 时,g'(x)>0,此时g(x)单调递增;当 $x\in(e,+\infty)$ 时,g'(x)<0, 此时 g(x) 单调递减. 所以 $g(x)_{max} = g(e) = \frac{1}{e}$,

丽
$$g\left(\frac{1}{e}\right) = -e < 0$$
,当 $0 < x < 1$ 时, $g(x) < 0$,当

16. 记第 n 个图形为 P_n ,边长为 a_n ,边数为 b_n ,周长为 L_n ,面积为 S_n , P_1 有 b_1 条边,边长 a_1 ; P_2 有 $b_2 = 4b_1$ 条边,边长 $a_2 = \frac{1}{3}a_1$; P_3 有 $b_3 = 4^2b_1$ 条边,边长 $a_3 = \left(\frac{1}{3}\right)^2a_1$; ……分析可知 $a_n = \frac{1}{3}a_{n-1}$,即 $a_n = \left(\frac{1}{3}\right)^{n-1}a_1$; $b_n = 4b_{n-1}$,即 $b_n = b_1 \cdot 4^{n-1}$. 当第 1 个图中的三角形的边长为 1 时,即 $a_1 = 1$, $b_1 = 3$,所以 $L_n = a_n b_n = \left(\frac{1}{3}\right)^{n-1} \times 3 \times 4^{n-1} = 3 \times \left(\frac{4}{3}\right)^{n-1}$,当n = 3时, $L_3 = 3 \times \left(\frac{4}{3}\right)^{3-1} = \frac{16}{3}$. 由图形可知 P_n 是在 P_{n-1} 每条边上生成一个小三角形,即 $S_n = S_{n-1} + b_{n-1} \times \frac{\sqrt{3}}{4} a_n^2$, $(n \ge 2)$, $\mathbb{E}[S_n - S_{n-1}] = \frac{\sqrt{3}}{4} \times a_n^2 \cdot b_{n-1}$, $S_{n-1} - S_{n-2} = \frac{\sqrt{3}}{4} \times a_{n-1}^2 \cdot b_{n-2}$, …, $S_2 - S_1 = \frac{\sqrt{3}}{4} \times a_2^2 \cdot b_1$, 利用累加法可得 $S_n - S_1 = \frac{\sqrt{3}}{4} (a_n^2 \cdot b_{n-1} + a_{n-1}^2 \cdot b_{n-2} + \dots + a_2^2 \cdot b_1)$, 数列 $\{a_n\}$ 是以 $\frac{1}{3}$ 为公比的等比数列,数列 $\{b_n\}$ 是以 4 为公比的等比数列,故 $\{a_n^2 \cdot b_{n-1}\}$ 是以 $\frac{4}{9}$ 为公比的等比数列,当第 1 个图中的三角形的边长为 1 时, $S_1 = \frac{1}{2}a_1^2\sin 60^\circ = \frac{\sqrt{3}}{4}$,

$$a_1^2 = 1$$
, $a_2^2 = \frac{1}{9}$, $P_1 \neq b_1 = 3 + 2$, $y = 3 + 2$, y

$$=\frac{\frac{1}{9}\times 3\left(1-\left(\frac{4}{9}\right)^{n-1}\right)}{1-\frac{4}{9}}=\frac{3}{5}\times \left(1-\left(\frac{4}{9}\right)^{n-1}\right) \quad , \quad \text{ fit } \quad \text{ if } \quad \text{ if$$

四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)

 $S_n = \frac{2\sqrt{3}}{5} - \frac{3\sqrt{3}}{20} \cdot \left(\frac{4}{9}\right)^{n-1}, \quad S_1 = \frac{\sqrt{3}}{4}$ 也满足上式.

17. (本小题满分 10 分)

(1) 证明: 由题意知:
$$\frac{1}{a_{n+1}} = \frac{2-a_n}{a_n} = 2 \cdot \frac{1}{a_n} - 1$$
, $\frac{1}{a_{n+1}} - 1 = 2\left(\frac{1}{a_n} - 1\right)$,

所以数列
$$\left\{\frac{1}{a_n}-1\right\}$$
是以 2 为公比, $\frac{1}{a_1}-1=2$ 为首项的等比数列.

......(5分)

(2) 解: 由 (1) 知
$$\frac{1}{a_n} - 1 = 2^n \Rightarrow \frac{1}{a_n} = 2^n + 1$$
,

所以
$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = \frac{2(1-2^n)}{1-2} + n = 2^{n+1} + n - 2,$$

记
$$f(n) = 2^{n+1} + n - 2$$
, 显然 $f(n)$ 为递增数列, 又 $f(9) = 1031$, $f(10) = 2056$,

18. (本小题满分 12 分)

解: (1) 由题意可得,
$$\bar{x}=3$$
, $\bar{y}=2$, $\sum_{i=1}^{5}(x_i-\bar{x})(y_i-\bar{y})=4.8$, $\sum_{i=1}^{5}(x_i-\bar{x})^2=10$,

设 y 关于 x 的经验回归方程为
$$\hat{y} = \hat{b}x + \hat{a}$$
,则 $\hat{b} = \frac{\sum_{i=1}^{5} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{5} (x_i - \overline{x})^2} = 0.48$,

$$\hat{a} = y - \hat{b}x = 2 - 0.48 \times 3 = 0.56$$
, ∴ y 关于 x 的经验回归方程为 $\hat{y} = 0.48x + 0.56$.

......(6分

(2) 零假设为 H_0 : 两个店的顾客购买率无差异,则

由题意可知 2×2 列联表如表所示:

	购买	不购买	合计
分店一	180	120	300
分店二	150	50	200
合计	330	170	500

$$\therefore \chi^2 = \frac{500(180 \times 50 - 150 \times 120)^2}{300 \times 200 \times 330 \times 170} \approx 12.032 > 10.828,$$

:根据小概率值 $\alpha = 0.001$ 的独立性检验,没有充分证据推断 H_0 成立,

即两个店的顾客购买率有差异,且推断犯错的概率不超过0.001.

19. (本小题满分 12 分)

(1) 证明: 因为 E, F 为圆弧 AB 上的两个三等分点,所以 EF // AB \Rightarrow EF // 平面 ABCD,

同理 EH // 平面 ABCD,又 $EF \cap EH = E$,所以平面 ABCD // 平面 EFGH,

又平面 α 个平面 ABCD = CP,平面 α 个平面 EFGH = MQ,所以CP // MQ.

(2) 解:不妨取圆柱底面半径为 2,如图 2,以O为坐标原点,过点O作 x轴 \bot OB ,OB 为 Y 轴,OO' 为 z 轴建立空间直角坐标系,则:

$$F(\sqrt{3}, 1, 0), E(\sqrt{3}, -1, 0), A(0, -2, 0), C(0, 2, 4),$$

设
$$AP = GQ = h(0 < h < 4)$$
,

则 P(0, -2, h), $Q(\sqrt{3}, 1, 4-h)$, $\overrightarrow{PC} = (0, 4, 4-h)$, $\overrightarrow{QC} = (-\sqrt{3}, 1, h)$,

设平面 α 的一个法向量为 $\vec{n} = (x, y, z)$,

易得圆柱底面O的一个法向量为 $\overrightarrow{m} = (0, 0, 1)$,

$$\text{ for } \cos \langle \vec{n}, \vec{m} \rangle = \frac{\vec{n} \cdot \vec{m}}{|\vec{n}||\vec{m}|} = \frac{2\sqrt{3}}{\sqrt{7h^2 - 16h + 28}} = \frac{2\sqrt{3}}{\sqrt{7 \times \left(h - \frac{8}{7}\right)^2 + \frac{132}{7}}},$$

当 $h = \frac{8}{7}$ 时, $\cos(\vec{n}, \vec{m})$ 取得最大值为 $\frac{\sqrt{77}}{11}$,

所以平面 α 与圆柱底面O所成夹角的正弦值的最小值为 $\frac{2\sqrt{11}}{11}$(12 分)

20. (本小题满分 12 分)

解: (1) 因为
$$f'(x) = 6x^2 - 3$$
, $f'(0) = -3$, $f(0) = 0$,

(2) 设切点为 (x_0, y_0) , $f'(x_0) = 6x_0^2 - 3$, 则切线方程为 $y = 3(2x_0^2 - 1)x - 4x_0^3$,

又点 P(-1, t) 在切线上,则 $t = -4x_0^3 - 6x_0^2 + 3$.

数学参考答案 • 第7页(共9页)

$$\Rightarrow g(x_0) = -4x_0^3 - 6x_0^2 + 3, \ g'(x_0) = -12x_0^2 - 12x_0 = -12x_0(x_0 + 1),$$

则在 $(-\infty, -1)$, $(0, +\infty)$ 上, $g'(x_0) < 0$, $g(x_0)$ 递减;

在(-1, 0)上, $g'(x_0) > 0$, $g(x_0)$ 递增.

(3) 过点 A(0, 0), B(-1, -1) 分别存在 1 条直线与曲线 y = f(x) 相切;

过点 C(-1, 3), D(1, -1) 分别存在 2 条直线与曲线 y = f(x) 相切;

21. (本小题满分 12 分)

(2) 证明: 由题意知
$$P(X_n = 2) = a_n$$
, $P(X_n = 1) = b_n$, $P(X_n = 0) = 1 - a_n - b_n$

由全概率公式得:
$$a_{n+1} = \frac{1}{3}a_n + \frac{2}{3} \times \frac{1}{2}b_n + 0 \times (1 - a_n - b_n) = \frac{1}{3}a_n + \frac{1}{3}b_n$$
, ①

$$b_{n+1} = \frac{2}{3}a_n + \left(\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2}\right)b_n + 1 \times (1 - a_n - b_n) = -\frac{1}{3}a_n - \frac{1}{2}b_n + 1, \quad (2)$$

①×2+②得:

$$2a_{n+1} + b_{n+1} = \frac{1}{3}a_n + \frac{1}{6}b_n + 1 = \frac{1}{6}(2a_n + b_n) + 1 \Rightarrow 2a_{n+1} + b_{n+1} - \frac{6}{5} = \frac{1}{6}\left(2a_n + b_n - \frac{6}{5}\right),$$

$$\mathbb{E}\mathbb{D}: \frac{2a_{n+1} + b_{n+1} - \frac{6}{5}}{2a_n + b_n - \frac{6}{5}} = \frac{1}{6},$$

即
$$\left\{2a_n+b_n-\frac{6}{5}\right\}$$
是以 $\frac{1}{6}$ 为公比,以 $2a_1+b_1-\frac{6}{5}=\frac{2}{15}$ 为首项的等比数列.

(3) 解: 由 (2) 知:
$$2a_n + b_n - \frac{6}{5} = \frac{2}{15} \times \left(\frac{1}{6}\right)^{n-1}$$
,

22. (本小题满分 12 分)

(1) 解: 直线
$$l$$
: $y = \frac{\sqrt{3}}{3} \left(x - \frac{p}{2} \right)$, 联立抛物线方程得: $x^2 - 7px + \frac{p^2}{4} = 0$,

设 $A(x_1, y_1)$, $B(x_2, y_2)$, 所以 $x_1 + x_2 = 7p$, 则 $|AB| = x_1 + x_2 + p = 8p = 16 \Rightarrow p = 2$,

(2) 证明: 设直线
$$l: x = my + 1$$
, 则 $\begin{cases} y^2 = 4x, \\ x = my + 1 \end{cases} \Rightarrow y^2 - 4my - 4 = 0,$

所以 $y_1 + y_2 = 4m$, $y_1 y_2 = -4$,

又
$$k_{OA} = \frac{y_1}{x_1} = \frac{4}{y_1}$$
, l_{OA} : $y = \frac{4}{y_1}x$, 所以 $M\left(-2, \frac{-8}{y_1}\right)$, 同理 $N\left(-2, \frac{-8}{y_2}\right)$,

设圆上任意一点为P(x, y),则圆的方程为: $(x+2)^2 + \left(y + \frac{8}{y_1}\right)\left(y + \frac{8}{y_2}\right) = 0$,

化解得:
$$(x+2)^2 + y^2 + 8\left(\frac{1}{y_1} + \frac{1}{y_2}\right)y + \frac{64}{y_1y_2} = (x+2)^2 + y^2 - 8my - 16 = 0$$

令 $y = 0 \Rightarrow x = 2$ 或x = -6,所以以 MN 为直径的圆过定点 (2, 0) 和 (-6, 0).

.....(12 分)