

Description

The VSM17N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =100V,I_D =17A

 $R_{DS(ON)} < 70 \text{m}\Omega$ @ $V_{GS}=10V$ (Typ:56m Ω)

 $R_{DS(ON)} < 85m\Omega @ V_{GS}=4.5V$ (Typ:65m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM17N10-T2	VSM17N10	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	17	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	12	Α	
Pulsed Drain Current	I _{DM}	60	А	
Maximum Power Dissipation	P _D	55	W	
Single pulse avalanche energy (Note 5)	E _{AS}	28	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{eJC}	2.27	°C/W	1
---	------------------	------	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.8	2.5	V
Dunin Course On Chata Besistance	R _{DS(ON)}	V _{GS} =10V, I _D =5A	-	56	70	mΩ
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =3A		65	85	
Forward Transconductance	g FS	V _{DS} =5V,I _D =5A	12	-	-	S
Dynamic Characteristics (Note4)			•	•		
Input Capacitance	C _{lss}	- V _{DS} =25V,V _{GS} =0V,	-	1350	-	PF
Output Capacitance	C _{oss}		-	240	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	180	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V,R _L =15 Ω V_{GS} =10V,R _G =2.5 Ω	-	13.8	-	nS
Turn-on Rise Time	t _r		-	9.3	-	nS
Turn-Off Delay Time	t _{d(off)}		-	43.8	-	nS
Turn-Off Fall Time	t _f		-	11.4	-	nS
Total Gate Charge	Qg	- V _{DS} =30V,I _D =5A,	-	30		nC
Gate-Source Charge	Q _{gs}		-	6.4	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	8.6	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =17A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	17	Α
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance