Risolvere il seguente esercizio (Tot. 10 punti)

È assegnato il circuito dinamico di figura. La rete è a regime con l'interruttore inizialmente aperto. L'interruttore si chiude all'istante t=0.

I dati sono indicati nel testo della prima domanda. Lavorare sempre con almeno cinque cifre significative, i risultati richiesti **DEVONO** essere arrotondati alla terza cifra significativa. Tutti i risultati devono essere riferiti alle unità di misura previste dal sistema internazionale (inserire solo il risultato numerico senza l'unità di misura). Utilizzare come separatore decimale la virgola "," se il test viene svolto in lingua italiana (IT). Utilizzare invece il punto "." se il test viene svolto in lingua inglese (EN).

Dati: Risposta:

$$R_1$$
 = 5 Ω R_3 = R_4 = 2 Ω L_1 = 2 H L_2 = 1 F C_4 = 1 F E = 7,3 V A = 10 A

Calcolare l'energia immagazzinata nell'induttore L_1 all'istante $t=0^-$ (1 punto).

Calcolare l'energia immagazzinata nell'induttore L_2 all'istante $t=0^-$ (1 punto).

Risposta:

Calcolare l'energia immagazzinata nel condensatore C_4 all'istante $t=0^-$ (1 punto).

Risposta:

Calcolare la derivata della corrente che scorre nell'induttore L_1 all'istante $t=0^+$ (1 punto).
Risposta:
Calcolare la derivata della corrente che scorre nell'induttore L_2 all'istante $t=0^+$ (1 punto).
Risposta:
Determinare la potenza elettrica erogata dal generatore E all'istante $t=\infty$ (2 punti)
Risposta:
Determinare la potenza elettrica dissipata dal resistore R_3 all'istante $t=\infty$ (1 punto)
Risposta:
Determinare la potenza elettrica erogata dal generatore A all'istante $t=\infty$ (2 punti)
Risposta:

Risolvere il seguente esercizio (Tot. 10 punti)

È assegnato il circuito in regime sinusoidale di figura.

I dati sono indicati nel testo della prima domanda. Lavorare sempre con almeno cinque cifre significative, i risultati richiesti **DEVONO** essere arrotondati alla terza cifra significativa. Tutti i risultati devono essere riferiti alle unità di misura previste dal sistema internazionale (inserire solo il risultato numerico senza l'unità di misura). La fase dei fasori è espressa in gradi. Utilizzare come separatore decimale la virgola "," se il test viene svolto in lingua italiana (IT). Utilizzare invece il punto "." se il test viene svolto in lingua inglese (EN).

Si faccia riferimento alla convenzione del coseno a fase nulla nei calcoli (convertire il seno in coseno)

Dati:

 R_1 = 1 Ω R_2 = 2 Ω L_3 = 1 H C_4 = 2 F $a_1(t)$ = 2sin(2t-15°) A $a_2(t)$ = cos(2t+60°) A

Determinare il modulo del fasore della corrente $a_1(t)$ (0,25 punti).

Risposta:

Determinare la fase del fasore della corrente $a_1(t)$ (0,25 punti).

Risposta:

Determinare il modulo del fasore della corrente $a_2(t)$ (0,25 punti).	
isposta:	
Determinare la fase del fasore della corrente $a_2(t)$ (0,25 punti).	
eterminare la lase del lasere della corrente $a_2(b)$ (6,23 parta).	
	•
isposta:	
Peterminare la parte reale dell'impedenza del resistore $R_{ m 1}$ (0,25 punti).	
isposta:	
Determinare la parte immaginaria dell'impedenza del resistore R_1 (0.25 punti).	
Risposta:	
Determeirant la manta mala dell'imma deman del masistema D (0.25 monti)	
Determinare la parte reale dell'impedenza del resistore R_2 (0,25 punti).	
Risposta:	
Determinare la parte immaginaria dell'impedenza del resistore R_2 (0,25 punti).	
Risposta:	

Determinare la parte reale dell'impedenza dell'induttore L_3 (0,25 punti).
Risposta:
Determinare la parte immaginaria dell'impedenza dell'induttore L_3 (0,25 punti).
Risposta:
Determinare la parte reale dell'impedenza del condensatore C_4 (0,25 punti).
Risposta:
Determinare la parte immaginaria dell'impedenza del condensatore C_4 (0,25 punti).
Risposta:
Siano dati i seguenti valori delle impedenze del circuito: Z_{R_1} = 6,2 Ω Z_{R_2} = 7,8 Ω Z_{L_3} = 9,1j Ω Z_{C_4} = -0,6j Ω
Determinare il circuito equivalente di Thevenin della parte di rete elettrica opposta al condensatore C_4 rispetto ai morsetti A e B. a) Calcolare la parte reale dell'impedenza equivalente vista dai morsetti A e B (0,25 punti).
Risposta:

b) Determinare la parte immaginaria dell'impedenza equivalente vista dai morsetti A e B (0,25 punti).
Risposta:
Siano dati modulo e fase dei fasori di $a_1(t)$ e di $a_2(t)$: A_1 = 7,8 A ϕ_{a_1} = 5,3 $^\circ$ A_2 = 8,4 A ϕ_{a_2} = 6,3 $^\circ$
Siano dati i seguenti valori delle impedenze del circuito: Z_{R_1} = 3 Ω Z_{R_2} = 1 Ω Z_{L_3} = j5 Ω Z_{C_4} = -j/6 Ω
c) Utilizzando il principio di sovrapposizione degli effetti, determinare il modulo della tensione equivalente di Thevenin ai capi dei morsetti A e B quando a_2 =0 (0,25 punti)
Risposta:
d) Utilizzando il principio di sovrapposizione degli effetti, determinare la fase della tensione equivalente di Thevenin ai capi dei morsetti A e B quando a_2 =0 (0,25 punti)
e) Utilizzando il principio di sovrapposizione degli effetti, determinare il modulo della tensione equivalente di Thevenin ai capi dei morsetti A e B quando a_1 =0 (0,25 punti)
Risposta:
f) Utilizzando il principio di sovrapposizione degli effetti, determinare la fase della tensione equivalente di Thevenin
ai capi dei morsetti A e B quando a_1 =0 (0,25 punti)
Risposta:

g) Determinare la parte reale della tensione equivalente di Thevenin ai capi dei morsetti A e B (0,25 punti)
Risposta:
h) Determinare la parte immaginaria della tensione equivalente di Thevenin ai capi dei morsetti A e B (0,25 punti)
Risposta:
Siano dati modulo e fase del fasore della tensione equivalente di Thevenin $e_{eq,AB}$:
$E_{eq,AB}$ = 0,471 V $\phi_{e_{eq,AB}}$ = -15 $^{\circ}$
Siano date parte reale ed immaginaria dell'impedenza equivalente di Thevenin:
$Z_{eq,AB}$ = $rac{4}{3}$ + $rac{2}{3}j\Omega$
Sia ridata l'impedenza del condensatore C_4 :
Z_{C4} = $-rac{1}{8}j~\Omega$
a) Determinare il modulo della corrente i_{C4} attraverso il condensatore C_4 (0,5 punti)
Risposta:
b) Determinare la fase della corrente i_{C4} attraverso il condensatore C_4 (0,5 punti).
b) beterminate ta tase della corrette 1/4 attraverso il corractisatore 04 (0,5 parti).
Risposta:

Siano dati modulo e fase del fasore della corrente attraverso il condensatore C_4 : I_{C4} = 2,76 A $\phi_{i_{C4}}$ = -54 $^{\circ}$										
a) Determinare la parte reale della corrente i_{R2} attraverso il resistore R_2 (0,5 punti)										
Risposta:										
b) Determinare la parte immaginaria della corrente i_{R2} attraverso il resistore R_2 (0,5 punti).										
Risposta:										
Trascinare nelle parti mancanti una equazione (a), (b), (c), tra quelle elencate a fondo pagina (1 punto).										
Essendo la frequenza angolare ω = 4 rad/s, Re $\{I_{R2}^-\}$ = 2,8 A e Im $\{I_{R2}^-\}$ = 0,7 A , il segnale di corrente i_{R2} nel dominio del tempo può essere espresso come:										
(a) $i_{C2}(t) = 2,89\cos(4t-76^\circ)$ (b) $i_{C2}(t) = 4,08\cos(4t+76^\circ)$ (c) $i_{C2}(t) = 2,89\sin(4t+14^\circ)$ (d) $i_{C2}(t) = 4,08\cos(2t+14^\circ)$ (e) $i_{C2}(t) = 2,89\cos(4t+14^\circ)$ (f) $i_{C2}(t) = 4,08\cos(4t+14^\circ)$ (g) $i_{C2}(t) = 4,08\sin(4t+14^\circ)$ (i) $i_{C2}(t) = 2,89\cos(2t+14^\circ)$										
Siano dati $a_1(t)$ e $a_2(t)$: $a_1(t) = 2\sin(2t-15^\circ) \ A \qquad \qquad a_2(t) = \cos(2t+60^\circ) \ A$										
Siano dati i seguenti valori dei componenti del circuito: R_1 = 1 Ω R_2 = 2 Ω L_3 = 1 H C_4 = 2 F										
Siano dati modulo e fase del fasore di $i_{C4}(t)$: I_{C4} = 1,06 A $\phi_{i_{C4}}$ = -175 $^{\circ}$										
a) Determinare la potenza attiva erogata da $a_2(t)$ (1 punto)										
Risposta:										
b) Determinare la potenza reattiva erogata da $a_2(t)$ (1 punto)										

Selezionare la risposta esatta per ciascuna delle seguenti quattro domande (Tot. 5 punti).

Solamente un'opzione è corretta. Nel caso non si voglia rispondere selezionare l'opzione "nessuna risposta".

Punteggio singola domanda:

- o Risposta esatta 1 punto;
- o Risposta errata -0,25 punti;
- o Risposta non data 0 punti (nessuna risposta).

_		condone	-+! !	corio	callan	-41 1	marallala	a dua	induttori	:	corio
ч	uattro	conaens	atori in	serie	colleg	atı in	parallelo	a aue	induttori	ın	serie

Scegli un'alternativa:

- a. nessuna risposta.
- O b. possono essere ridotti ad un unico condensatore equivalente.
- c. possono essere ridotti ad un bipolo LC serie equivalente.
- Od. possono essere ridotti ad un unico induttore equivalente.
- e. possono essere ridotti ad un bipolo LC parallelo equivalente.
- of. possono essere ridotti a due bipoli LC parallelo equivalenti in serie.

Sia au la costante di tempo di un circuito dinamico del primo ordine. Il transitorio può ritenersi esaurito dopo un tempo pari a circa...

Scegli un'alternativa:

- \bigcirc a. tre volte τ .
- O b. nessuna risposta.
- \bigcirc c. $\frac{1}{\tau}$.
- \bigcirc d. cinque volte τ .
- e. *τ*.
- O f. infinito.

Si consideri un circuito magnetico in ferro avente sezione S = 120 cm², lunghezza L = 7 cm, traferro di lunghezza δ = 1 mm, permeabilità magnetica relativa μ_{τ} = 1620 e N = 2000 avvolgimenti di filo conduttore percorso da corrente I = 6 A. Sapendo che la permeabilità magnetica del vuoto è μ_0 = 1,256 μ H/m, selezionare la terna corretta dei valori assunti dalla riluttanza del ferro R_{fe} , dalla riluttanza del traferro R_t e dalla forza magnetomotrice f_{mm} :

Scegli un'alternativa:

○ a.	R_{fe} = 2867 H ⁻¹	R_t = 66338 H $^{ ext{-1}}$	f_{mm} = 12000 Asp			
O b.	R_{fe} = 2867 H ⁻¹	R_t = 66348 $\mathrm{H}^{ ext{-}1}$	f_{mm} = 12000 Asp			
○ c.	R_{fe} = 2867 H ⁻¹	R_t = 66348 $\mathrm{H}^{ ext{-}1}$	f_{mm} = 10000 Asp			
○ d.	R_{fe} = 2876 H ⁻¹	R_t = 66338 $\mathrm{H}^{ ext{-}1}$	f_{mm} = 12000 Asp			
○ е.	nessuna risposta.					
○ f.	R_{fe} = 66348 H ⁻¹	R_t = 2867 H ⁻¹	$f_{mm} = 12000 \text{ Asp}$			

Teorema del massimo trasferimento di potenza su un bipolo (reti algebriche)

E' data una sorgente di alimentazione DC (bipolo) e si vuole determinare qual è il valore della resistenza R_L di carico tale da estrarre la massima potenza dalla sorgente. La potenza assorbita dalla resistenza di carico R_L può essere espressa nella forma: Si rappresenta la sorgente con un bipolo Thevenin ($V_o,\,R_o$). Il quadrato della/dell' (che circola nella resistenza di carico vale: Si tratta di un problema di massimo, ovvero il valore della resistenza di carico desiderato si ottiene imponendo Il valore della resistenza R_L risulta quindi 🔛 . Infine, la massima potenza trasferita al carico risulta pari a

(a)
$$\frac{dP_L}{dR_L} = 0$$
 (b) $I^2 = \frac{V_o^2}{(R_L + R_o \pm X_L \pm X_o)^2}$ (c) $\frac{dR_L}{dP_L} = 0$ (d) $P_L = \frac{V_o^2}{R_o}$ (e) $P_L = \frac{R_L V_o^2}{(R_L^2 + R_o^2)}$ (f) $\overline{Z}_L = 2R_o + jX_o$ (g) $P_{L,max} = \frac{V_o^2}{4R_o}$ (i) $P_L = V_o I \sin(\varphi)$ (j) $\frac{dP_L}{dR_o} = 0$ (l) $I^2 = \frac{V_o^2}{(\pm R_L \pm R_o)^2 + (X_L + X_o)^2}$ (m) $P_{L,max} = \frac{V_o^2}{2R_o}$ (o) $I^2 = \frac{V_o^2}{(R_L + R_o)^2}$ (p) $\frac{dP_L}{dR_L} = 1$

(f)
$$ar{Z_L}=2R_o+jX_o$$
 (g) $P_{L,max}=rac{V_o^2}{4R_o}$ (i) $P_L=V_oI\sin(arphi)$ (j) $rac{dP_L}{dR_o}=0$

(I)
$$I^2=rac{V_o^2}{(\pm R_L\pm R_o)^2+(X_L+X_o)^2}$$
 (m) $P_{L,max}=rac{V_o^2}{2R_o}$ (o) $I^2=rac{V_o^2}{(R_L+R_o)^2}$ (p) $rac{dP_L}{dR_L}=1$

(q)
$$P_L=rac{R_LV_o^2}{(X_L+X_o)^2}$$
 (r) $P_{L,max}=rac{V_o^2}{2R_o^2}$ (s) $P_L=R_LI^2$ (t) $P_L=V_oI$ (v) $R_L=R_o$

(w)
$$R_L=4R_o$$
 (x) $R_L=2R_o$

reattanza corrente resistenza tensione potenza energia (g) | (t) | (o) | (d) | (s) | (f) | (v) | (p) | (r) | (m) | (a) | (e) | (i) | (w) | (j) | (b) | (c) | (q) | (x) |

Completare inserendo il simbolo mancante (Tot. 3 punti, 0,375 punti per ogni abbinamento corretto).										
Unità di misura delle grandezze dell'elettromagnetismo										
Capacità elettrica										
Induttanza										
Carica elettrica Potenza elettrica										
Energia										
Flusso magnetico										
Costante dielettrica										
Campo magnetico										
(a) F (b) C (c) $\frac{F}{m}$ (d) $\frac{H}{m}$ (e) $\frac{A}{m}$ (f) Wb (g) J (i) V (l) W (m) A (o) S (p) Ω (q) $\frac{C}{m}$ (r) Asp (s) $\frac{\Omega}{m^2}$ (t) $\frac{V}{m}$ (u) H (v) $\frac{A}{m^2}$ (w) $\frac{F}{m^2}$										

(v) (b) (a) (f) (q) (o) (m) (l) (r) (e) (p) (s) (g) (t) (c) (u) (d) (w) (i)