

Universidade Federal do Ceará - UFC Centro de Ciências -

Mestrado e Doutorado em Ciências da Computação -**MDCC**

Estruturas de Dados Avançadas

Exercício: Listas, Complexidade de Algoritmos, Tabelas de Dispersão, Hashing

Dinâmico, Heap, Conjuntos e Partições

Objetivos: Exercitar os conceitos de Listas, Complexidade de Algoritmos, Tabelas de

Dispersão, Hashing Dinâmico, Heap, Conjuntos e Partições

Data da Entrega: 30/04/2017

OBS 1: Exercício Individual.

OBS 2: A entrega desta lista deverá ser executada via repositório de código..

NOME: Renan Pereira de Figueiredo

MATRÍCULA: 396921

1) Escreva uma função de dispersão (hash) que tenha como chave um string com os nomes de países, de até 32 caracteres. A tabela hash deve ter 513 elementos.

hashFunction(k: String): Int

while(i < k.length)

sum += ASCII(k(i))

return sum % 513

2) No encadeamento interior, em que as chaves são armazenadas na própria tabela de hash, forneça um exemplo em que duas chaves distintas, x e y, com $h(x)\neq h(y)$ podem apresentar colisões. Exemplifique com uma tabela hash de 11 elementos. Defina uma função de hash para tornar sua explicação mais concreta.

Sendo a função hash h(x) = x%11 para $x = \{11, 5, 8, 16, 17\}$, teremos:

$$h(11) = 0$$
, $h(5) = 5$, $h(8) = 8$, $h(16) = 5$, $h(17) = 6$

Como pode ser observado, temos um exemplo de colisão secundária na tabela acima, pois 16 e 17 com h(16) != h(17), apresentaram colisão. Isso ocorre porque o h(16) = 5 mas como a posição 5 do vetor já estava ocupada com o elemento 5 que tem o mesmo hash de 16, então 16 passou a ocupar a próxima posição livre do vetor, nesse caso, a posição 6. Contudo, ao inserir o elemento 17, cujo hash é 6, temos uma colisão pois a posição 6 já está ocupada com o element 16 que não tem o mesmo hash que 17.

3) Explique com base no seu exemplo anterior porque ao remover uma chave de uma tabela hash

você não pode simplesmente apagar a entrada da tabela.

Para remover uma chave da tabela não se deve apagar a sua entrada da tabela porque isso tornaria impossível recuperar todos os elementos que ao inserir

tinham sofrido uma colisão com essa entrada, devido ela já estar ocupada.

- 4) Mostre, através de um desenho, como ficaria a tabela *hash* de 7 elementos que recebesse as seguintes chaves de busca 7,10,15,14,17,16 (nesta ordem).
 - a) Se ela fosse com encadeamento exterior com a função de dispersão: h(x) = (13 * x) % 7

h(7) = 91 % 7 = 0; h(10) = 130 % 7 = 4; h(15) = 195 % 7 = 6; h(14) = 182 % 7 = 0; h(17) = 221 % 7 = 4; h(16) = 208 % 7 = 5.

b) Se ela fosse com encadeamento aberto e com segunda função de dispersão:

$$h(x, j) = (13x + 5j) \%7, j = 0,1,2, ...$$

$$h(7,0) = (91 + 0) \% 7 = 0;$$

$$h(10,0) = (130 + 0) \% 7 = 130 \% 7 = 4$$

$$h(15,0) = (195 + 0) \% 7 = 195 \% 7 = 6$$

$$h(14, 0) = (182 + 0) \% 7 = 182 \% 7 = 0 \Rightarrow h(14,1) = (182 + 5) \% 7 = 187 \% 7 = 5$$

$$h(17, 0) = (221 + 0) \% 7 = 221 \% 7 = 4 \Rightarrow h(17,1) = (221 + 5) \% 7 = 226 \% 7 = 2$$

$$h(16, 0) = (208 + 0) \% 7 = 208 \% 7 = 5 \Rightarrow h(16,1) = (208 + 5) \% 7 = 213 \% 7 = 3$$

5) A seguinte função implementa a inserção de chaves inteiras positivas em uma tabela de dispersão com desempate interno de colisões:

Supondo a tabela inicialmente preenchida com o valor VAZIO em todas as posições, responda:

a) Insira as chaves 4, 12, 20, 28, 36, 44, 52 e 60 na tabela.

60	52	28	44	4	12	36	20
----	----	----	----	---	----	----	----

b) Qual a função de dispersão H(x, k) implicitamente utilizada no algoritmo?

H(x,k) = (x + k) % 8; k = 0,1,...,7

c) Trata-se de uma função linear ou quadrática em k?

Trata-se de um função linear em k, pois k aumenta sempre mais 1 unidade a cada interação.

- d) Em que situações a função retornará um valor menor que 0? Por quê?
 Se sair do loop do for sem retornar nada. Isso porque não existe mais espaço livre no vetor.
- e) Para quais valores de MAX é possível assegurar a varredura integral da tabela?
- 6) Quantas colisões existem ao se inserir dados dos n primeiros números naturais em uma tabela de dimensão m, usando as seguintes funções hash:
 - a) n mod 5

n-5 colisões

- b) n mod 7
 - n-7 colisões
- c) n mod 35
 - n-35 colisões
- d) $n \mod (m/5)$
 - n (m/5) colisões
- e) n mod m
 - n m colisões
- 7) Em uma tabela hash de tamanho m=12, assumindo uma função de hash $h'(x) = x \mod m$:
 - a) Insira as seguintes chaves: 4, 10, 24, 36, 25, 14, 23, 100, 2, 3, 12, 13, Caso haja colisão utilize a técnica de armazenamento interno, utilizando para isso uma função de incremento linear, com passo 2.

 24
 36
 25
 14
 4
 100
 2
 3
 12
 13
 10
 23

Função de Incremento Linear: $hi(x,j) = (x + j) \mod 12$, j = 1...11 (Usado após colisão no uso da primeira função)

- $h(4) = 4 \mod 12 = 4$
- $h(10) = 10 \mod 12 = 10$
- $h(24) = 24 \mod 12 = 0$
- $h(36) = 36 \mod 12 = 0 \Rightarrow hi(36,1) = 37 \mod 12 = 1$
- $h(25) = 25 \mod 12 = 1 => hi(25,1) = 26 \mod 12 = 2$
- $h(14) = 14 \mod 12 = 2 => hi(14,1) = 15 \mod 12 = 3$

```
\begin{array}{l} h(23) = 23 \bmod 12 = 11 \\ h(100) = 100 \bmod 12 = 4 \Rightarrow hi(100,1) = 101 \bmod 12 = 5 \\ h(2) = 2 \bmod 12 = 2 \Rightarrow hi(2,1) = 3 \bmod 12 = 3 \Rightarrow hi(2,2) = 4 \Rightarrow hi(2,3) = 5 \Rightarrow hi(2,4) = 6 \\ h(3) = 3 \bmod 12 = 3 \Rightarrow hi(3,1) = 4 \bmod 12 = 4 \Rightarrow hi(3,2) = 5 \Rightarrow hi(3,3) = 6 \Rightarrow hi(3,4) = 7 \\ h(12) = 12 \bmod 12 = 0 \Rightarrow hi(12,1) = 13 \bmod 12 = 1 \Rightarrow hi(12,2) = 2 \Rightarrow ... \Rightarrow hi(12,8) = 8 \\ h(13) = 13 \bmod 12 = 1 \Rightarrow hi(13,1) = 14 \bmod 12 = 2 \Rightarrow hi(13,2) = 3 \Rightarrow ... \Rightarrow hi(13,8) = 9 \\ \end{array}
```

- b) Escreva a expressão matemática correspondente.
- 8) Esta é uma boa função de Hash? Justifique detalhadamente a sua resposta.

 Não, pois a maioria das chaves são pares e como m também é par então a maioria dos índices produzidos pela função modular também será par, logo teremos uma grande possibilidade de colisão entre os números pares.
- 9) Considere um TAD de hash com a interface:

```
typedef struct hash Hash;

Hash* hsh_cria(int n, int hash_func(char*), void free_func(void*));
int hsh_insere(Hash* tabela, void* info, char* chave);
int hsh_remove(Hash* tabela, char* chave);
void* hsh_busca(Hash* tabela, void* chave);
Hash* hsh_libera(Hash* tabela);
void hsh_percorre(Hash* tabela, void callback_func(void*));
```

Considere ainda que, depois de ler uma lista de dados de países, ele tenha armazenado numa tabela hash, tabela_pais, os ponteiros que contem os endereços da estrutura Pais de cada um dos países lidos.

```
typedef struct pais Pais;

struct pais {
    char nome[81];
    char continente[81];
    int exercitos;
    char dono[81];
};
```

Escreva, como um módulo cliente do TAD que conhece a estrutura Pais, uma função que troque o nome do dono de um país e tenha o seguite protótipo:

```
int dono_do_pais(char* novo_dono, Hash* tabela_pais, char* nome_do_pais);
```

o valor de retorno é 1 se teve sucesso e 0, caso contrario. Pode utilizar as funções das bibliotecas padrão do C, tipo stdio.h string.h, etc...

```
int dono_do_pais(char* novo_dono, Hash* tabela_pais, char* nome_do_pais){
    Pais* pais = hsh_busca(tabela_pais, nome_do_pais);
    If(pais == null){
        Return 0;
    }
    else{
        strcpy( pais.dono, novo_dono);
        return 1;
    }
}
```

10) Escreva uma função de *hash* que possa ser utilizada para armazenar no TAD descrito na Questão 8 os nomes dos países. Considere o protótipo da interface do TAD acima e uma tabela *hash* com 307 elementos.

```
int hash_function(char* nome_do_pais){
   int i = 0;
   int k = 0;
   for(i = 0; nome_do_pais[i] != '\0'; i++){
      k += nome_do_pais;
   }
   Return k%307;
}
```

- 11) Mostrar o resultado da inserção das chaves 19, 38, 64, 100, 81, 47, 27, 31 em uma tabela de dispersão de tamanho m = 17, sendo que as colisões são tratadas por endereçamento aberto. A sequência de tentativas é dada por:
 - a) h'(x) = x % m
 - b) h(x, k) = (h'(x) + k) % m, 0 < k < m-1

$$h'(19) = 19 \% 17 = 2$$

$$h'(38) = 38 \% 17 = 4$$

$$h'(64) = 64 \% 17 = 13$$

$$h'(100) = 100 \% 17 = 15$$

$$h'(81) = 81 \% 17 = 13 \Rightarrow h(81,1) = (13+1) \% 17 = 14$$

$$h'(47) = 47 \% 17 = 13 \Rightarrow h(47,1) = (13+1) \% 17 = 14 \Rightarrow h(47,2) = 15 \Rightarrow h(47,3) = 16$$

$$h'(27) = 27 \% 17 = 10$$

$$h'(31) = 31 \% 17 = 14 \Rightarrow h(31,1) = (14+1) \% 17 = 15 \Rightarrow h(31,2) = 16 \Rightarrow h(31,3) = 0$$

12) Considere o índice hash extensível mostrado na figura abaixo.

a) Mostre o índice após a inserção de uma chave 68* **Sendo 68 = 1000100, teremos:**

b) Mostre o índice original após a inserção das entradas 17* e 69*.

c) Mostre o índice após a exclusão da entrada com valor 21* **Sendo 21 = 10101**

14) No vetor mostrado abaixo, mostre os passos do algoritmo O(n) para construção de um heap de mínimo (min Heap). Quantas trocas você precisou fazer?

95,60,78,39,28,66,70,33

14:) Temos 8 valores no retor sendo 4 nos que não tem tilhos como podemos observar no vetor:
[95]60 78]39 28]66 70]33] L 2 3 4 5 6 7 8
ros folhas Chateura morre a cotramela co amora accel contrar a cotramela co amora accel 32, 86, 60, 85.
OBS: p/ nó na posição i temos que os nós na posição ix2 elx2+1 são cura filhos.
mo Considerando agenes os nós folhas vamos inserindo os nos não folhas em sua posi- ção e fazendo a troca:
para -, -, -, 28,66,70,33, insire o 39 -, -, -, 28,66,70,33, troco com 33 que e seu filho e e manor que el
$\frac{78}{1000} = \frac{1 - 133,28,66,70,39}{1000}$ $\frac{78}{1000} = \frac{78,33,28,66,70,39}{1000}$ $\frac{78}{1000} = \frac{78,33,28,66,70,39}{1000}$
traco (28, 66, 33, 28, 78, 70, 35)
troco com (28, 95, 66, 33, 60, 78, 70, 39)
troco com (28, 33, 66, 35, 60, 78, 70, 39 4roco com (28, 33, 66, 39, 60, 78, 70, 95)
ao todo foram 6 trocas.

15) Transforme o vetor 30,15,28,60,45,90,10,23 num *heap* de máximo fazendo o mínimo de trocas possível (mostre cada uma das trocas).

15:1 Fernos 8 valores, tendo então 4 nã folhas.
30,15,28,60,45,90,10,23
nós lilhan
Elementos a serem ajustados: 60,28, 15,30
. para -, -, -, -, 45, 90, 10, 23 insiro o 60
60.49.30.10 13 compress of market
gue seu filho 23 então não faço a troca
insiro 28:,_,28,60,45,30,10,23
que seu filho 23 então não faço a troca insiro 28:, _, 28,60,45,30,10,23 Troco com 30:, _, 90,60,45,28,10,23
troro con 60: -, 60, 90, 15, 45, 28, 10, 23
insiro 30: 30,60,90,15,45,28,10,23 troco com 90: 90,60,30, 15,45,28,10,23
troco com 30: 90,60,30, 15, 45, 28,10, 23
90,60,30,15,45,28,10,23
ao todo foram realizados 3 trocos

16)Supondo que você crie um *heap* vazio mostre como ele vai sendo construído caso receba os elementos do vetor da questão anterior, um de cada vez. O *heap* final é o mesmo?

tenentos do vetor da questao amerior, um de cada vez. O neup imai e o mesmo:
16=1 30, 15, 28, 60, 45, 30, 10, 23
para -,-,-,-,-
· insere 30:30,-,-,-,-,-
· mare 15: 30,15,-1-,-,-,-
·insere 28: 30,15,28,-,-,-,-,-
Insure 60: 30, 15, 28,60, -, -, -, -, -, -, -, -, -, -, -, -, -,
insere 45: 60, 30, 28, 15, 45, -, -, -, - Truca com 30: 60, 45, 28, 15, 30, -, -, -
Insere 30: 60, 45,28, 15,30, 30, -, - Troca com 28: 60, 45, 90, 15,30, 28, -, - Troca com 60: 30, 45,60, 15, 30, 28, -, -
insere 10; 90, 45, 60, 15, 30, 28, 10, _
insere 23: 90,45,60,15,30,28,10,23 troco com 15: 90,45,60,23,30,28,10,15 90,45,60,23,30,28,10,15
Como pode perceber o heap final não i o mesmo
MACIONAL ÁCITAL DE LOUGÍGITAL

17)Implemente uma função que verifica se a ordem dos elementos de um vetor de ponteiro para estruturas com dados de alunos representa uma fila de prioridade (*heap*), onde a raiz armazena o aluno com a maior nota. A função recebe como parâmetros o número de elementos no vetor e o vetor de ponteiro para o tipo que representa o aluno. A função deve retornar 1 se a ordem dos elementos representa um *heap*; caso contrário, deve retornar zero.

```
struct aluno {
  char nome[64];
  float nota;
};
typedef struct aluno Aluno;
int heap max (int n, Aluno** v);
```

Para as questões a seguir, considere o heap com a seguinte estrutura:

```
typedef struct _heap Heap;
struct _heap {
   int max;   /* tamanho maximo do heap */
   int pos;   /* proxima posicao disponivel no vetor */
   int* info; /* vetor dos elementos do heap */
};
```

18)Escreva uma função em	C que retorne o número	de elementos maiores	que um ele	emento de valo	r x
de um heap max, sendo	heap e x enviados como	parâmetros da função	o. A função	deve examina	r o
menor número possível o	de elementos.				

18-) int n-majores (int x, fleap** h) { int pos = 1: return n-recursivo(x, pos, h)
int pos = 1.
return n-rueuenvo (x, pos, h)
3
int n_recursive (intx, int pos, sleep ** h) { if (h.infor pos-1] <= x) {
if (h.infor pos-1] <= x){
return 0;
}
else
return L + n recursivo (x, pos +2, h). +
: (/ / 1.1 st cog (x) oursma (x
DA DA CIL CÁCIA

19)Escreva uma função em C que receba como parâmetros um *heap max*, a posição de um elemento do *heap* (no vetor que o representa) e um valor inteiro, e altere a prioridade do elemento para o novo valor, reposicionando-o, caso necessário. Assuma que já foi definida a função

void troca (int pai, int pos, int *info).

192) void altere (Heap* h, int pos, int v) {
h.info[pos] = V;
1 1 1
? ([t-q] ofm. A > [t- 6/9] ofmird) elister
while (himpo [p/2-1] < h.impo [p-1]) { troca (h.impo [p/2-1], p-1, h.impo];
$\rho = \rho/2$:
7 . (1.2.)
11 [1-5*07 rdm. d> [4-9] rdm.d) olidus
11 (1-2*97 opin. 1 > [2-9] opin. 1) oli lu 2 ([2*97 opin. 1 > [2-9] opin. 1) f 2 ([2-2*97 opin. 1 > [2-9] opin. 1) fi Twa (h. info [2-9] opin. 1) fi (spi. 1, 1-2*9, 1-9) opin. 1)
2/ TE-5×97 chai, 42 [60] above, 4) li
Truca (h. intro (p-1), 0x2-1, hinder
0=0*2;
7. 7 1
. Parlo
2 p= p x2+1; p+2, h.info);
0=0*3+1
7 ()
7
1

20)Partição dinâmica. Considere o conjunto {1,2,3,4,5,6}. Como ficaria a representação por vetor deste conjunto após a operação de criar_particao_dinamica? Como ficaria este vetor após as operações: união(1,3), união(2,3), união(2,5), união(3,4), união(1,6) se: (a) a operação de união for feita sem critério de tamanho, e (b) com critérios de tamanho.

20-1 {1,2,3,4,5,63
· após criar partição:
elemento: 123456 ponteiro: -1-1-1-1
a) Depois das operações de União
1 2 3 4 5 6 2 -1 1 2 2 2
b) Depois das operações de União
1 2 3 4 5 6

21)Considerando a partição (a) do problema anterior, como ficaria a partição depois de uma busca(5) seguido de uma busca(3) com a estratégia de compressão de caminho?

21:	Uma vy que a busca com a estrategia de compressão de caminhos faz todos os nos por onde passa aportar para a raiz teremo que:
	com co cobot gat consismo de compresagnos de
-	onest juar a para ratroga acray termo
	que:
	Jousca (5) = [1 2 3 4 5 6]
	(z)- $I(I)$ z $[z]$ z
	busea (3) = 1 2 3 4 56
	3 -15 5 5 5
	para 2.
	para 2.

22)Uma das muitas aplicações de estruturas de dados de conjuntos disjuntos surge na determinação dos componentes conectados de um grafo não orientado. Neste contexto, considere os algoritmos a seguir:

Recebe um grafo ${\cal G}$ e contrói uma representação dos componentes conexos.

```
CONNECTED-COMPONENTS (G)

1 para cada vértice v de G faça

2 MAKESET (v)

3 para cada aresta (u,v) de G faça

4 se FINDSET (u) \neq FINDSET (v)

5 então UNION (u,v)
```

Decide se u e v estão no mesmo componente:

```
SAME-COMPONENT (u, v)

1 se FINDSET (u) = FINDSET (v)

2 então devolva SIM

3 senão devolva NÃO
```

Quando CONNECTED-COMPONENTS e aplicado a um grafo G=(V,E) com \red{k} componentes, quantas vezes $\red{FINDSET}$ e chamado? Quantas vezes \red{UNION} e chamado? De respostas em termos de \red{k} , |V| e |E|.

23) Faça uma figura da floresta produzida pela seguinte sequência de operações:

1

24) Dê uma sequência de m MAKESET, UNION e FINDSET, onde n das quais são operações MAKESET, que consome $\Omega(m \lg n)$.

, I
todasham = M cohorde 1-PE
U= Union
F= findalet
Deguência: MMM UFUUFUFFUF
<u> </u>
m
Dendo altura(x) \(\sum_{\text{op}} \), \(\rangle \) eada no, temos o custo de cada operação como sendo:
custo de cada operação como sendo:
$\mathcal{M} = \mathcal{O}(1)$
U=0(lgn) (0(mx2lgn)=0(mlgn)
F = O(lan)
<u> </u>

25) Digamos que h[x] é a altura do nó x (= comprimento do mais longo caminho que vai de x até uma folha) na estrutura disjoint-set forest. Mostre que rank $[x] \ge h[x]$. Mostre que UNION (x, y) nem sempre pendura a árvore mais baixa na mais alta.

25: Labemos que rank(X) = h(X) se X lor o repre-
- sentante do conjunto e que permanece inalte-
etratreseger o rea el raced x ex aban
me strugges ab the tracesque ab has a strangle
muda quando ocorse uniões de conjunto, bogo!
podemos concluir que rank(x) ≥ h(x).
dende a união feita polos representantes
dos dois conjuntos com critério de tamanho.
amet, cabarengel eranà rarge abouture micro
que a altura da armoro criada por nución sesa menor ou igual a lan ou sexa, a
unioù nem sempre aumenta a altura da
arvore.