Praktikum 1 : DGL

Oliver Steenbuck, Karolina Bernat

31.10.2012

Inhaltsverzeichnis

1	Van	der Pol DGL	1
	1.1	Gleichung	1
	1.2	Gleichung als DGL 1. Ordnung	2
	1.3	Euler Verfahren	2
	1.4	Runge Kutta 2. Ordnung	2

Abbildungsverzeichnis

Listings

1 Van der Pol DGL

1.1 Gleichung

$$y(0) = 0$$
 (1)
 $\dot{y}(0) = 1$ (2)
 $\ddot{y} = 6 \cdot (1 - y^2) \cdot \dot{y} - y$ (3)

1.2 Gleichung als DGL 1. Ordnung

$$\dot{z} = 6 \cdot (1 - y^2) \cdot z - y \tag{4}$$

$$\dot{y} = z \tag{5}$$

1.3 Euler Verfahren

$$z_{1_{n+1}} = z_{1_n} + h \cdot (6 \cdot (1 - z_{2_n}^2) \cdot z_{1_n} - z_{2_n})$$
(6)

$$z_{2_{n+1}} = z_{2_n} + h * z_{1_n} (7)$$

1.4 Runge Kutta 2. Ordnung

Es gelte

$$g(t,y) = z \tag{8}$$

$$f(y,z) = 6 \cdot (1 - y^2) \cdot z - y \tag{9}$$

Dann können wir durch einsetzen von (8) und (9) in Runge Kutta 2. Ordnung die Iterationsgleichungen erstellen:

$$y_{j+1} = y_j + \frac{h}{2} \cdot [g(t_j, y_j) + g(t_{j+1}, y_i h \cdot g(t_j, y_j))]$$
(10)

$$z_{j+1} = z_j + \frac{h}{2} \cdot [f(y_j, z_j) + f(y_{j+1}, z_j + h \cdot f(y_j, z_j))]$$
(11)