Appello di Novembre

Fisica Nucleare e Subnucleare I

18 Novembre 2022

Esercizio 1

In un acceleratore circolare di raggio R=50 m scorre un fascio di antiprotoni di impulso $|\vec{p}|=6\,\mathrm{GeV/c}$ che produce una corrente di intensità pari ad $I=0.16\,\mathrm{mA}$.

- 1. Calcolare il numero di antiprotoni che costituiscono il fascio
- 2. Ad ogni rivoluzione il fascio incontra un bersaglio di idrogeno gassoso di spessore $d=1\,\mathrm{mm}$ e avente una densità pari a $\rho=0.15\,\mathrm{mg/cm^3}$. Calcolare la luminosità integrata in un intervallo di tempo $\Delta t=10\,\mathrm{min}$.
- 3. Si valuti l'energia di fascio che sarebbe stata necessaria per ottenere la stessa energia nel sistema del centro di massa all'interno di un collisore protoni-antiprotoni.

Soluzione dell'esercizio 1

1. La velocità degli antiprotoni nel fascio è data da:

$$v=\beta c=\frac{pc}{E_{\bar{n}}}$$

L'energia degli antiprotoni è $E_{\bar{p}}=\sqrt{p^2+m_{\bar{p}}^2}$. L'antiprotone ha la stessa massa del protone, $m_{\bar{p}}=m_p=0.938\,\mathrm{GeV}$, dunque $E_{\bar{p}}=6.07\,\mathrm{GeV}$. Quindi la velocità degli antiprotoni ha un valore pari a $v=0.988c=2.96\times10^8\,\mathrm{m/s}$. La frequenza di rivoluzione nell'anello dell'acceleratore è quindi data dall'inverso del periodo T:

$$\nu = \frac{1}{T} = \frac{v}{L} = \frac{v}{2\pi R} = \frac{2.96 \times 10^8 \, \text{m/s}}{314.1 \, \text{m}} = 0.943 \, \text{MHz}$$

Da questo si può ottenere il numero di antiprotoni nel fascio. La corrente è infatti data da:

$$I = \frac{Q}{T} = \frac{e \cdot n_{\bar{p}}}{T} = e \cdot n_{\bar{p}} \cdot \nu$$

da cui si ricava il numero di antiprotoni:

$$n_{\bar{p}} = \frac{I}{e \cdot \nu} = \frac{0.16 \times 10^{-3} \, \text{A}}{1.6 \times 10^{-19} \, \text{C} \cdot 0.943 \times 10^6 \, \text{s}^{-1}} = 1.06 \times 10^9 \, \text{antiprotoni}$$

2. La luminosità istantanea delle collisioni del fascio con il gas di idrogeno è dato dal prodotto del flusso di antiprotoni e del numero di atomi di idrogeno nel volume di gas incontrato. Quindi:

$$\mathcal{L} = \phi \cdot N_H = \frac{n_{\bar{p}}}{S \cdot T} N_H = n_{\bar{p}} \cdot \nu \cdot \frac{N_H}{S}$$

dove S è la superficie del volume di idrogeno incontrato e n_H è il numero di atomi di idrogeno. Il numero di atomi di idrogeno per unità di superficie si ottiene dalla densità del gas:

$$N_H = \frac{m}{A} \cdot N_A = \frac{\rho \cdot V}{A} \cdot N_A = \frac{\rho \cdot S \cdot d}{A} \cdot N_A$$

da cui

$$\frac{N_H}{S} = \frac{\rho \cdot d}{A} \cdot N_A = \frac{0.15 \times 10^{-3} \,\mathrm{g/cm^3 \cdot 0.1 \,cm}}{2 \,\mathrm{gmol}^{-1}} \cdot 6.022 \times 10^{23} \,\mathrm{mol}^{-1} = 4.516 \times 10^{18} \,\mathrm{cm}^{-2}$$

Da questo si ricava la luminosità istantanea:

$$\mathcal{L} = 1.06 \times 10^9 \cdot 0.94 \times 10^6 \,\mathrm{s}^{-1} \cdot 4.516 \times 10^{18} \,\mathrm{cm}^{-2} = 4.516 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$$

La luminosità integrata in 10 min è quindi:

$$\mathcal{L}_{\rm int} = \mathcal{L} \cdot \Delta t = 4.516 \times 10^{33} \, \rm cm^{-2} s^{-1} \cdot 600 \, s = 2.7 \times 10^{36} \, \rm cm^{-2} = 2.7 \times 10^{12} \, b^{-1} = 2.7 \, \rm pb^{-1}$$

dove abbiamo usato l'equivalenza $1\,\mathrm{cm}^2 = 1\times 10^{24}\,\mathrm{b}.$

3. Per ottenere l'energia di fascio necessaria nel caso di un collider con fasci di protoni e antiprotoni, per disporre nel centro di massa della stessa energia ottenibile nel caso di bersaglio gassoso sopra citato, ricordiamo che la massa invariante s è un invariante relativistico, che nel caso del bersaglio fisso (nuclei di idrogeno, quindi protoni di massa m_p) è data da:

$$\sqrt{s} = |(\vec{p}_{\bar{p}}, E_{\bar{p}} + m_p)| = \sqrt{E_{\bar{p}} + m_p^2 + 2m_p E_{\bar{p}} - p^2}$$

$$= \sqrt{m_{\bar{p}}^2 + m_p^2 + 2E_{\bar{p}}m_p} = \sqrt{2m_p^2 + 2E_{\bar{p}}m_p}$$

$$= 3.63 \,\text{GeV}$$

Nel caso di un collider, invece, $\sqrt{s}=2E_{\rm coll}$, dove $E_{\rm coll}$ è l'energia sia delle particelle del fascio di protoni, sia di quello di antiprotoni. Quindi:

$$E_{\rm coll} = \frac{\sqrt{s}}{2} = 1.81 \, \mathrm{GeV}$$

Esercizio 2

Un fascio di elettroni di energia 23 MeV passa attraverso una lastra di ferro ($^{56}_{26}$ Fe, $\rho = 7.87 \,\mathrm{g/cm^3}$, $X_0 = 13.84 \,\mathrm{g/cm^2}$, $\langle I_{ion} \rangle = 286 \,\mathrm{eV}$).

- 1. Trovare lo spessore di ferro necessario affinché gli elettroni perdano in media il 10% della loro energia iniziale per irraggiamento.
- 2. Sapendo che l'energia critica del ferro è proprio $E_c=23\,\mathrm{MeV},$ stimare l'energia totale persa nella lastra di assorbitore
- 3. Se la lastra fosse investita da muoni di impulso $p_{\mu}=100\,\mathrm{MeV}$, quale sarebbe l'energia persa nello stesso spessore di ferro? Si usi la perdita di energia calcolabile con la formula del $\frac{\mathrm{d}E}{\mathrm{d}x}$ di ionizzazione, oppure una stima approssimata deducibile dal grafico riportato di seguito.

4. Se nella lastra di ferro impattano sia muoni che pioni con impulso $p=100\,\mathrm{MeV}$, e l'impulso delle particelle cariche viene misurato con un tracciatore con una risoluzione $\sigma_{p_T}/p_T=0.5\%$, si riesce a discriminare tra le due ipotesi di particella con una separazione $>5\sigma$?

Soluzione dell'esercizio 2

• L'energia persa per irraggiamento dagli elettroni in uno spessore x di materiale è dato da:

$$E(x) = E_0 e^{-\frac{x}{X_0}}$$

da cui:

$$\frac{E(x)}{E_0} = e^{-\frac{x}{X_0}} = 1 - 0.1 = 0.9$$

e quindi lo spessore attraversato è dato da:

$$x = -X_0 \ln(0.9) = 0.105 \cdot X_0$$

Per calcolare lo spessore x in cm serve convertire la lunghezza di radiazione X_0 in cm:

$$X_0(\text{cm}) = \frac{X_0(\text{g/cm}^2)}{\rho(\text{g/cm}^3)} = \frac{13.84 \,\text{g/cm}^2}{7.87 \,\text{g/cm}^3} = 1.76 \,\text{cm}$$

da cui si ottiene la lunghezza percorsa:

$$x = 1.76 \,\mathrm{cm} \cdot 0.105 = 1.85 \,\mathrm{mm}$$

• Sappiamo che gli elettroni perdono per irraggiamento in questo spessore il 10% della loro energia iniziale, quindi:

$$\Delta E_{\rm brem} = 0.1 \cdot 23 \, {\rm MeV} = 2.3 \, {\rm MeV}$$

poiché l'energia del fascio di elettroni corrisponde all'energia critica del ferro, l'energia persa dagli elettroni per ionizzazione ($\Delta E_{\rm ion}$) è, per definizione, uguale a quella persa per irraggiamento. Quindi l'energia totale media persa nell'attraversare la lastra di materiale è:

$$\Delta E = \Delta E_{\text{brem}} + \Delta E_{\text{ion}} = 2 \cdot \Delta E_{\text{brem}} = 4.6 \,\text{MeV}$$

• Nel caso di muoni di 100 MeV di impulso l'energia persa per irraggiamento è trascurabile. Possiamo calcolare l'energia media persa usando la formula di Bethe-Bloch approssimata:

$$-\frac{1}{\rho} \frac{\mathrm{d}E}{\mathrm{d}x} = C \frac{Z}{A} \left(\frac{z}{\beta}\right)^2 \left[\log \frac{2m_e c^2 (\beta \gamma)^2}{\langle I \rangle} - \beta^2 \right]$$

usando la costante $C \approx 0.307 \,\mathrm{MeV/gcm^2}$, i valori dati per il ferro: Z = 26 e A = 56, e la carica del muone z = 1, in unità di cariche elementari. Calcoliamo i fattori cinematici β e $\beta\gamma$:

$$\beta_{\mu} = \frac{p}{E} = \frac{p}{\sqrt{p^2 + m_{\mu}^2}} = \frac{100 \,\text{MeV}}{145.4 \,\text{MeV}} = 0.688$$

e

$$\beta_{\mu}\gamma_{\mu} = \frac{p}{m_{\mu}} = \frac{100 \,\text{MeV}}{105.6 \,\text{MeV}} = 0.947$$

dal quale si ricava:

$$-\frac{1}{\rho} \frac{\mathrm{d}E}{\mathrm{d}x} \approx 2.29 \,\mathrm{MeVg^{-1}cm^2}$$

e quindi calcoliamo la perdita di energia per ionizzazione moltiplicando per la densità e il percorso nel ferro:

$$\Delta E_{ion}^{\mu} = \left(\frac{1}{\rho} \frac{dE}{dx}\right) \cdot \rho \cdot x = 2.29 \,\text{MeVg}^{-1} \text{cm}^2 \cdot 7.87 \,\text{g/cm}^3 \cdot 0.185 \,\text{cm} = 3.34 \,\text{MeV}$$

• Nel caso dei pioni con lo stesso impulso si ricava allo stesso modo:

$$\beta_{\pi} = \frac{p}{E} = \frac{p}{\sqrt{p^2 + m_{\pi}^2}} = \frac{100 \,\text{MeV}}{171.7 \,\text{MeV}} = 0.582$$

е

$$\beta_{\pi} \gamma_{\pi} = \frac{p}{m_{\pi}} = \frac{100 \,\text{MeV}}{139.6 \,\text{MeV}} = 0.716$$

dal quale si ricava:

$$-\frac{1}{\rho}\frac{\mathrm{d}E}{\mathrm{d}x} \approx 3.02\,\mathrm{MeVg^{-1}cm^2}$$

e quindi calcoliamo la perdita di energia per ionizzazione moltiplicando per la densità e il percorso nel ferro:

$$\Delta E_{ion}^{\mu} = \left(\frac{1}{\rho} \frac{dE}{dx}\right) \cdot \rho \cdot x = 3.02 \,\text{MeVg}^{-1} \text{cm}^2 \cdot 7.87 \,\text{g/cm}^3 \cdot 0.185 \,\text{cm} = 4.39 \,\text{MeV}$$

Le energie dei due tipi di particelle all'uscita del percorso nel ferro sono:

$$\begin{split} E^{\mu}_{fin} &= E^{\mu}_{in} - \Delta E^{\mu}_{ion} = 145.4 \, \mathrm{MeV} - 3.34 \, \mathrm{MeV} = 142.1 \, \mathrm{MeV} \\ E^{\pi}_{fin} &= E^{\pi}_{in} - \Delta E^{\pi}_{ion} = 171.7 \, \mathrm{MeV} - 4.39 \, \mathrm{MeV} = 167.3 \, \mathrm{MeV} \end{split}$$

da cui si possono calcolare gli impulsi in uscita:

$$p_{fin}^{\mu} = \sqrt{E_{fin}^{\mu}^{2} - m_{\mu}^{2}} = 95.1 \,\text{MeV}$$
$$p_{fin}^{\pi} = \sqrt{E_{fin}^{\pi}^{2} - m_{\pi}^{2}} = 92.3 \,\text{MeV}$$

e quindi la differenza di impulso tra le due ipotesi di particella è data da:

$$\Delta p = p_{fin}^{\mu} - p_{fin}^{\pi} = 2.82 \,\mathrm{MeV}$$

Per essere distinguibili le particelle devono avere una differenza di impulsi maggiore di 5 volte la risoluzione in impulso del tracciatore, che, per $p=95.1\,\mathrm{MeV}$ è:

$$\sigma_p = 0.005 * 95.1 \,\mathrm{MeV} = 0.48 \,\mathrm{MeV}$$

poiché $\Delta p = 2.82\,\mathrm{MeV} > 5\times\sigma_p = 2.4\,\mathrm{MeV},$ le due particelle sono distinguibili.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Part.	$ m [MeV/c^2]$	I	I_3	$J^{P(C)}$	B	S	τ [s]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	π^+		1	1	0-	0	0	$2.6 \ 10^{-8}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	π^-	139.6	1	-1		0	0	$2.6 \ 10^{-8}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	π^0	135.0	1	0	0-+	0	0	8.4×10^{-17}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		493.7	1/2	1/2		0	1	$1.2 \ 10^{-8}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K^-	493.7	1/2	-1/2	0-	0	-1	$1.2 \ 10^{-8}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K^0	497.6	1/2	-1/2	0-	0	1	non definita
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		497.6	1/2		0-	0	-1	non definita
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p	938.272	1/2	1/2	$1/2^{+}$	1	0	
ρ^0 770 1 0 1— 0 0 4.5 × 10 ⁻²⁴	n	939.565	1/2	-1/2	$1/2^{+}$	1	0	8.79×10^{2}
ρ^0 770 1 0 1 0 0 4.5 × 10 ⁻²⁴	ϕ^0	1019.5	0	0	l	0	0	1.54×10^{-22}
a+ 770 1 1 1 1- 0 0 45 × 10-24	$ ho^0$	770	1	0		0	0	4.5×10^{-24}
ρ 110 1 1 0 0 4.3 × 10	ρ^+	770	1	1	1-	0	0	4.5×10^{-24}
ρ^- 770 1 -1 1 ⁻ 0 0 4.5 × 10 ⁻²⁴	ρ^-	770	1	-1		0	0	4.5×10^{-24}
f_2^0 1275.5 0 0 2^{++} 0 0 6.76×10^{-2}	f_{2}^{0}		0	0	l	0	0	6.76×10^{-21}
d(pn) 1875.6 0 0 1 ⁺ 2 0 stabile	d(pn)	1875.6	0	0	l	2	0	stabile
$\alpha({}_{2}^{4}He) \mid 3727.4 \mid 0 \mid 0 \mid 0^{+} \mid 4 \mid 0 \mid \text{stabile}$	$\alpha({}_{2}^{4}He)$	3727.4	0	0	l	4	0	
Λ^0 1115.7 0 0 1/2 ⁺ 1 -1 2.63 × 10 ⁻¹	Λ^0	1115.7	0	0	$1/2^{+}$	1	-1	2.63×10^{-10}
Σ^{+} 1189.4 1 1 1/2 ⁺ 1 -1 8.01 × 10 ⁻¹	Σ^+	1189.4	1	1	$1/2^{+}$	1	-1	8.01×10^{-11}
Σ^0 1192.6 1 0 1/2 ⁺ 1 -1 7.4 × 10 ⁻²⁰	Σ^0	1192.6	1	0		1	-1	7.4×10^{-20}
Σ^- 1197.3 1 -1 1/2+ 1 -1 1.48 × 10 ⁻¹	Σ^-	1197.3	1	-1	$1/2^{+}$	1	-1	1.48×10^{-10}
Ξ^0 1314.9 1/2 1/2 1/2 ⁺ 1 -2 2.90 × 10 ⁻¹	Ξ^0	1314.9	1/2	1/2	$1/2^{+}$		-2	2.90×10^{-10}
Ξ^- 1321.7 1/2 -1/2 1/2 ⁺ 1 -2 1.64 × 10 ⁻¹	Ξ-	1321.7		-1/2	$1/2^{+}$	1		1.64×10^{-10}
Ξ^{0*} 1531.8 1/2 1/2 3/2 ⁺ 1 -2 7.23 × 10 ⁻²	Ξ0*	1531.8	1/2	1/2	$3/2^{+}$	1	-2	7.23×10^{-23}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J/ψ	3096.9	0	0	1	0	0	7.2×10^{-21}

Tabella 1: Massa (M), isospin $(I, e \text{ sua terza componente } I_3)$, spin (J), parità (P), coniugazione di carica (C), stranezza (S), numero barionico (B) e vita media (τ) di diverse particelle adroniche.

Part.	$M [MeV/c^2]$	τ [s]
e^-	0.511	stabile
$\overline{\mu^-}$	105.6	2.2×10^{-6}
τ^{-}	1776	2.9×10^{-13}
$\overline{\nu_{e/\mu/ au}}$	0	stabile

Tabella 2: Massa (M) e vita media (τ) dei leptoni.

Costanti utili:

- $\hbar c = 197 \,\mathrm{MeV} \,\mathrm{fm}$
- \bullet costante di normalizzazione per $\frac{\mathrm{d}E}{\mathrm{d}x}$ di ionizzazione: $C=0.307~\mathrm{MeV~g^{-1}~cm^2}$

Formule utili:

 $\bullet\,$ Energia della particella B prodotta in un decadimento a due corpi $A\to B+C,$ con A fermo:

$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A}$$