

• General Description

The AGM30N10D combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
100V	26mΩ	28A

TO-252 Pin Configuration

Top View

Bottom View

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGM30N10D	AGM30N10D	TO-252	330mm	16mm	2500

Table 1. Absolute Maximum Ratings (TA=25℃)

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	100	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	28	А
	Drain Current-Continuous(T⊂=100 °C)	19	А
IDM (pluse)	Drain Current-Pulsed (Note 2)	112	А
PD	Maximum Power Dissipation(Tc=25℃)	50	W
	Maximum Power Dissipation(Tc=100℃)	20	w
EAS	Avalanche energy (Note 3)	22	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	$^{\circ}$

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		50	°C/W
RθJC	Thermal Resistance Junction-Case ¹		2.5	°C/W

Table 3. Electrical Characteristics (TJ=25 ℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off States						
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250µA	100			V
IDSS	Zero Gate Voltage Drain Current	VDS=100V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250μA	1.2	1.8	2.2	V
gFS	Forward Transconductance	VDS=5V,ID=8A		13		S
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=10A		26	31	mΩ
(/		VGS=4.5V, ID=8A		33	38	mΩ
Dynamic (Characteristics					
Ciss	Input Capacitance			445		pF
Coss	Output Capacitance	VDS=40V,VGS=0V,		171		pF
Crss	Reverse Transfer Capacitance	F=1MHZ		3.2		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		4.5		Ω
Switching	Times					
td(on)	Turn-on Delay Time			12		nS
tr	Turn-on Rise Time	VGS=10V,VDS=50V,		15		nS
td(off)	Turn-Off Delay Time	ID=10A,RGEN=5Ω		20		nS
tf	Turn-Off Fall Time			6.0		nS
Qg	Total Gate Charge			8.0		nC
Qgs	Gate-Source Charge	VGS=10V, VDS=50V, ID=10A		1.4		nC
Qgd	Gate-Drain Charge			1.8		nC
Source-Dr	ain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				28	А
VSD	Forward on Voltage	VGS=0V,IS=10A			1.2	V
trr	Reverse Recovery Time	IF=10A , dI/dt=100A/μs ,		37		ns
Qrr	Reverse Recovery Charge	TJ=25℃		80		nc

Notes 1. The maximum current rating is package limited.

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25 $^{\circ}$,VDD=50V,Vgs=10V,ID=21A, L=0.1mH,RG=25ohm

Characteristics Curve:

Typ. output characteristics $I_D\!\!=\!\!f(V_{DS})$

Typ. drain-source on resistance $R_{\mathrm{DS(on)}}\!\!=\!\!f(I_D)$

Typ. transfer characteristics $I_D = f(V_{GS})$

Drain-source on-state resistance

 $\begin{aligned} \textbf{Gate Threshold Voltage} \\ V_{TH} = & f(T_j); \ I_D = 250 uA \end{aligned}$

 $\begin{aligned} & \textbf{Typ. gate charge} \\ & V_{GS} \text{=} f(Q_g) \; ; \; I_D \text{=} 10 A \end{aligned}$

 $\begin{array}{c} \textbf{Drain-source breakdown voltage} \\ V_{BR(DSS)} = f(T_j); \ I_D = 250 uA \end{array}$

$$\label{eq:capacitances} \begin{split} & \textbf{Typ. capacitances} \\ & C = & f(V_{DS}); \, V_{GS} = & 0V; \, f = & 1MHz \end{split}$$

Max. transient thermal impedance

Test Circuit and Waveform:

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

•Dimensions (TO-252)

CYMPOL	MILLIMETER			
SYMBOL	MIN	Typ.	MAX	
A	2. 200	2. 300	2.400	
A1	0.000		0.127	
b	0.640	0.690	0.740	
c(电镀后)	0.460	0.520	0.580	
D	6.500	6.600	6. 700	
D1		5.334 REF		
D2		4.826 REF		
D3		3.166 REF		
Е	6.000	6. 100	6. 200	
е		2.286 TYP		
h	0.000	0.100	0.200	
L	9.900	10.100	10.300	
L1	2.888 REF			
L2	1.400	1.550	1.700	
L3	1.600 REF			
L4	0.600	0.800	1.000	
Φ	1.100	1. 200	1.300	
θ	0°		8°	
θ 1	9° TYP			
θ2	9° TYP			

CIRPOI	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A	7.050	7. 100	7. 150	
A1	0.960	1.010	1.060	
A2	2. 250	2. 300	2. 350	
А3	0.000	0.050	0.100	
b		0.760REF.		
b1		1.000REF.		
С		0.508REF.		
c1		0.508REF.		
D	6. 550	6.600	6.650	
D1	5. 220	5. 320	5. 420	
Е	0.950	1.000	1.050	
E1	9.700	9. 900	10.100	
E2	6.050	6. 100	6.150	
е		2.286BSC		
e1	4. 572REF.			
L	2.650	2.800	2.950	
L1	0.700	0.800	0.900	
θ 1	7° REF.			
R	1. 300REF.			
R1	0. 250REF.			

TO-252 Marking Instructions:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. however, Shenzhen Core Control Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the first version issued on July 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Electronics Technology Co., Ltd. all rights reserved.