BILAN THERMIQUE D'UNE MAISON

É T U D E

Problématique : Déterminer les besoins en chauffage nécessaires pour maintenir à 19 °C la température de la maison ci-dessous située à La Rochelle (17 Charente-Maritime).

Caractéristiques des ouvertures de la maison

Sud	2 baies vitrées 2,15 x 2,4 m
Est	1 fenêtre 2 vantaux 1 x 1,2 m
Ouest	1 fenêtre 2 vantaux 1 x 1,2m ; 1 baie vitrée 2,15 x 2,4 m ; 1 porte d'entrée 2,15 x 0,9 m ; 1 porte de garage 2 x 2,4 m
Nord	2 fenêtres 2 vantaux 1 x 1,2 m

🏭 Résistance thermique des murs

La maison a été réalisée avec une isolation extérieure constituée de deux couches croisées d'isolant minéral et d'un bardage bois (voir schéma ci-dessous – toutes les dimensions sont en mm).

• Après avoir déterminé la résistance thermique des différents éléments, calculer la résistance thermique d'un mur.

" Variation de la température à travers le mur

Le **flux thermique** Φ (W/m²) qui traverse un matériau dépend de l'écart de température entre ses deux faces. Il est donné par la loi de Fourier :

$$\Phi = \frac{\lambda}{e} \Delta T = \frac{1}{R} \Delta T = U \times \Delta T$$

 Φ = flux de chaleur en W/m²

λ = conductivité thermique en W/m.k

 ΔT = écart de température entre les côtés de la paroi en °C

e = épaisseur de la paroi en m

Si on connaît le flux à travers une paroi et la température intérieure, il est possible de déterminer la température en sortie de paroi : $T_{ext} = T_{int} - R \times \Phi$

- 1. Calculer le flux thermique qui va traverser toute la paroi (on prendra $T_{ext} = -4$ °C).
- 2. Le flux thermique reste constant sur toute la traversée de la paroi. Calculer les températures en différents points de l'isolation.

3. Tracer sur le graphe la variation de température.

Conclusion:

Calcul des déperditions thermiques

1. Connaissant la résistance thermique et les dimensions, calculer les déperditions en W/K dues à la totalité des murs de la maison.

2. Calculer les déperditions en W/K dues au sol et au plafond.

Constitution du sol

Constitution du plafond

3. Calculer les déperditions en W/K dues aux fenêtres, baies vitrées, porte et porte de garage.

Vitrage isolant	Format	Uw (W/m².K)	Facteur solaire Sw	Facteur de transmission lumineuse TLw		
4 / SW U 16 argon / TBE 1.0 THERM 4	1 vantail	1.2	0,42	59 %		
	1 vantail	1.4	0,53	66 %		
4 / alu 16 argon / TBE 4	2 vantaux	1.6	0,50	63 %		
, .50	2 vantaux	1.5	0,52	65 %		

Vitrage isolant	Uw	Facteur Solaire Sw		
4/20 argon / TBE 4	1,7 W/m².K	0,48		

U _p W/m².K									
L × H: 3 × 2,25 m	L × H: 2,40 × 2 m								
3,0	3,2								

Type d'ouverture	Surface unitaire	<i>U</i> (W.m ⁻² .K ⁻¹)	Déperdition unitaire	Nombre	Déperditions
Fenêtres	1,2 m²				
Baies	5,16 m²				
Porte	1,935 m²				
Porte garage	4,8 m ²				

Déperditions totales dues aux ouvertures :

4. Calculer les déperditions en W/K dues à la VMC simple flux. Les déperditions par renouvellement d'air Dvmc sont calculées en appliquant la formule

Alimentation électrique 230 V - 50 Hz; Puissance 35 W; Débit: 150 m³/h **Erratum :** Lire pour la question 5. le texte ci-dessous.

 Calculer la déperdition totale de la maison (en W/K), la température extérieure de référence puis la puissance perdue (en W).

Rang:

6. Calculer chacune des différentes déperditions en % de la déperdition totale.

Toiture : Rang : Air renouvelé : Rang : Fenêtres : Rang :

Plancher: Rang:

Conclusion: Effectuer un classement décroissant de 1 à 5 des déperditions.

... Apports thermiques

Murs:

1. En tenant compte de l'irradiation solaire, des dimensions et du facteur solaire des parois vitrées, calculer les **apports solaires** fournis à la maison pour le mois de janvier.

Zones	orientation	nes valeurs d'irradiation solaire (I _s) en W/m ²											
		janvier	février	mars	avril	mai	juin	juillet	août	septembre	octobre	novembre	décembre
	I, sud	44,3	76,2	99,5	94,1	99,4	107,4	123,5	127,9	117,6	81,6	40,2	37,9
	I, ouest	23,4	46,4	72,4	80,2	97,4	116,8	129	116,4	82,3	52,5	26,3	19,6
Zone H1	I, nord	18,4	30,9	46,7	60	75,7	86,5	86,1	71,2	55,7	35,5	18,6	14,8
	I, est	25	42,6	71	83,8	101,7	116,8	136,5	119,8	85,5	47,7	21,7	19,8
	I, horiz.	38,9	72,6	114,3	144,7	177,2	209,9	242,9	208,5	144,1	83,7	38,4	30,8
	I _s sud	84,5	109,2	104,1	117	108,7	115,3	124,	139,1	119	82,9	82,1	58,9
	I, ouest	37,8	59,3	74,5	102,9	114,8	135,2	148,5	133,7	88,6	52,6	42,1	30
Zone H2	I, nord	21,8	32,4	49,3	66	78,6	90	88	74,1	58,3	37,8	27,2	16,8
	I, est	37	55,9	80,4	102,4	106,5	129,6	135,9	134	83,9	51,6	41,7	24,7
	I, horiz.	57,7	90,4	123,7	179,5	203,4	243,8	257,9	227	154,1	88,4	64,7	40,3
	I, sud	82,2	71,3	130,1	133,4	138	122,8	136,6	135,4	139,2	132,8	141,8	109,8
	I, ouest	39,4	42,7	86,4	106,3	140,6	140,5	146,6	115,3	92,3	70,3	61,2	44,4
Zone H3	I, nord	23,3	31,2	49,2	69,5	83,1	90,6	86,7	72,3	60,4	41,1	29,9	22
	I, est	39,3	42,2	94,5	119,5	143	141,4	156	132,8	101,4	71,9	59,8	39,7
	I, horiz.	59,2	72,5	146,6	203,3	272,2	268,6	290,4	226,8	175,1	120,8	90,7	63,9

2. Calculer les apports internes. Comme il est difficile de définir la quantité d'énergie que peuvent produire les occupants et leurs modes de vie (appareils électroménagers,), la valeur de 4 W/m^2 de surface habitable sera prise comme base : $Q_i = 4 \times A_{Bat}$ avec Q_i apports thermiques en W et A_{Bat} surface habitable du logement en m^2 .

Conclusion: Comparer la **puissance perdue** et les apports thermiques.