Structure, Plasticity & Repair of the Nervous System

Spinal Cord Injury: Assessment of SCI and approaches to Neurorehabilitation

Motor Systems II

Der Balgrist

BIO 343, 06.11.2017

Marc Bolliger
Spinal Cord Injury Center Balgrist

Level of lesion: impact on function

Above level of injury:

neuronal connections from and to the brain intact FUNCTION INTACT

Below level of injury:

neuronal connections from and to the brain diminished or interrupted FUNCTION IMPAIRED

Level of lesion: impact on function

Breathing (C1-C4), Head and neck movements (C2)
Shoulder movements (C5)
Elbow and wrist movements (C6-C7)
Hand and finger movements(C7-T1)

Autonomic nervous system (Sympathikus (T1-T12) and trunk stability (T2-T12)

Parts of sexual function (T11-L2) and hip movements (L2) Knee extension (L3)

Knee flexion (L5) and ankle movement (L4-S1)

Parts of sexual function (S2-S4) and bladder/ bowel function (S2-S3)

exander and Turner

facts that i need to know

we have to know where the tracts are located to test the consquences of specific injuries

Patient examples

lesion level C2: cannot breathe, no voluntary control of arms and legs, can only control facial muscles voluntarily

lesion level C7: full paralysis of legs, can control arms, no good control of hands/finger movements, cannot really write - but is much more independent (can live alone and without help of other persons)

lesion level conus cauda: can walk with mechanical rod help, normally no control of help, bladder problems

lesion level C4 - in the cervical area: can walk naturally, has somewhat comprised fine motor skills = lesion probably in cervical area

For exam, it would be good to know these levels by heart, because there might be a description of a lesion and we need to know which level is affected

clinical facts-

Spinal Cord Injury

50% traumatic - 50% non traumatic (tendency increase of non traumatic) 50% sensorimotor complete – 50% incomplete

Clinical symptons

44% paraplegia 56% tetraplegia

Epidemiology

Relatively rare disease

Incident: 1.0-8.3 / 100'000 per year (Van Asbeck et al. 2000, Warren et al. 1995)

Prevelance: 4'500 (CH)

Average age 38 years (increasing)

Gender: m: f = 3.8:1

Consequences & Symptoms of SCI

Paresis paralysis

Hyper- /hypoactive reflexes

Decreased bladder bowel function

Restricted sexual function

Loss of sensory function (e.g. pain, allodynia,...)

Spasticity, clonus

Psychological problems or depression (30%)

Cardiovascularblood pressure dysfunction

Assessing Spinal Cord Injury

Standard clinical assessment

Advanced clinical assessment E-phys

Functional assessment

Clinical examination of corticospinal tract

Grade	Description	
0	Total paralysis	
1	Palpable or visible contraction	
2	Active movement, full range of motion (ROM) with gravity compensation	
3	Active movement, full ROM against gravity	
4	Active movement, full ROM against moderate resistance	
5	(normal) active movement, full ROM against full resistance	

Spinal Cord and Dermatomes

Sensory receptors of the skin travel to the brain through one spinal nerve

Dermatome is a segment of skin provided by one spinal nerve

Different nerve fibres conduct signals from the periphery to the brain

Clinical examination of dorsal column: Light touch

Principle:

Touch of different dermatomes with a cotton bud

Assessment:

Patient reports sensation:

- 0 = absent
- 1 = altered (impaired)
- 2 = normal

Limitation:

Subjective assessment

Clinical examination of spinothalamic tract: Pin Prick

Principle:

Touch of different dermatomes with both sides of safety pin

Assessment:

Patient reports sensation:

- 0 = Unable to distinguish between sharp and dull (no feeling)
- 1 = Sharp/dull sensation altered
- 2 = Sharp/dull sensation intact

Limitation:

Subjective assessment

Dorsal column

AIS B

AIS C

AIS D

AIS E

Spinathalamic tract

Complete. No motor or sensory function is AIS A preserved below level of lesion (sacral segments)

> Sensory incomplete. Sensory but not motor function is preserved below lesion level (incl. Sacral segments)

Motor incomplete. Less than half of key muscles can work against gravity.

Motor incomplete. More than half of key muscles below level of lesion can work against gravity.

Normal. Sensory and motor function normal.

Assessing Spinal Cord Injury

Standard clinical assessment

Advanced clinical assessment E-phys

Functional assessment

Summary: Neurophysiology in SCI

Spinal pathway	Method	Acceptance	Clinical correlate
cortico- spinal ¹	MEP	routine	central paresis
dorsal column ²	SEP dSEP	routine	proprio- ception
sympa- thetic ³	SSR	routine	cardio- vascular control
spino- thalamic ⁴	CHEP (Contact- Heat)	routine	pain/temp perception
vestibulo- spinal ⁵	GVS	investiga- tional	postural instability
peripheral system ⁶	NCS / Reflex EMG	routine	peripheral paresis

SCI Syndromes

Central Cord Syndrome: incomplete injury with greater weakness in upper limbs than in lower limbs

Brown-Séquard Syndrome: represents a spinal cord hemisection. Results in ipsilateral loss of proprioception and motor control below level of lesion and contralateral pain and temperature sensation.

Anterior Cord Syndrome: Mainly corticospinal and spinothalamic tracts affected. Loss of motor function, pain sensation and temperature sensation below level of lesion.

SCI Syndromes

Dorsal (Posterior) Column Syndrome: Disruption of dorsal columns. Bilateral loss of touch, vibration sense, proprioception. Intact motor function, pain and temp sensation.

Conus Medullaris Syndrome: Injury of Conus medullaris (L1-L2). Shows upper and lower motor neuron symptoms.

Case 1: which syndrome?

dorsal column syndrome - doesnt feel legs when eyes are closed

Assessing Spinal Cord Injury

Standard clinical assessment

Advanced clinical assessment E-phys

Functional assessment

Locomotion can be relearned

[Videos courtesy of UT Southwestern Medical Center, Dallas, USA]

Neuroplasticity

- Any functional or cellular change in the nervous system
- Can occur in response to specific stimuli during both development and throughout life
- Injury of the nervous system itself can trigger plastic adaptations

Nudo 1996, Blesch 2009, Dunlop 2008, Wolpaw 2007, Cooke 2006, Kerchner 2008, Dobkin 1993, Chen 2007, Hagg 2009, Adkin:

Recovery versus compensation

- We tend to think of recovery as:
 - Task accomplishment
 - Using limbs and end effectors typically used by nondisabled individuals
 - Performing a movement with pre-morbid movement patterns

Compensation CONTINUUM Recovery

Levin 2009

Continuum of walking function All patients' no walking function walking with assistance lndependent walking function lndependent walking

Assessment of gait in neurology

Requirements for outcome measures

- Outcome measures must be:
 - reliable (Reliability: similar results under consistent conditions)
 - valid (Validity: the degree to which the tool measures what it claims to measure)
 - responsive (Responsiveness: sensitivity in detecting changes in function over time)

Assessment of gait in SCI

- Established measures:
 - Clinical measures (ordinal score):
 - Walking Index of Spinal Cord Injury (WISCI)
 - Spinal Cord Independence Measures (SCIM)
 - Lower extremity motor score (LEMS)
 - Spinal cord injury functional ambulation inventory (SCI-FAI)
 - Timed measures (continuous score):
 - 10 metre walk test (10MWT)
 - 6 minute walk test (6MWT)
 - Timed up and go (TUG)
 - Three-dimensional gait analysis (continuous score)

Case studies

10MWT [seconds]

	Pre intervention	Post intervention
Subject 1	22s	14s
Subject 2	18s	18s
Subject 3	12s	5s

Which subject(s) did improve walking function?

time itself need not be an ultimate criteria - subject 2 showed regeneration, while subject 1 only showed compensation (simply walked faster so to say)

Summary: Assessment of locomotor function...

	Strengths	Limitations
Standardized clinical measures	take into account the use of assistive devices often used in clinical trials simple and quick	require a skilled examiner do not identify mechanisms underlying gait dysfunction limited precision and responsiveness often non linear low sensitivity
Timed measures	simple readily quantified require limited training published norms available often used in clinical trials	do not identify mechanisms underlying gait dysfunction low sensitivity for compensatory strategies
3-dimensional gait analysis	identify mechanisms underlying gait dysfunction provide precise electrophysiological, kinematic, kinetic, and spatiotemporal data	require expensive equipment and skilled examiner limited to a few specialized laboratories often low clinical impact
	[modified from Cameron et al., Curr Neurol Neurosci Rep, 2011]	

Key targets to restore function

in the clinic - basically physiotherapy Goal-directed rehabilitation (e.g. locomotion) Colombo et al. 2001, Donati et al. 2016

Rewiring (e.g. anti-Nogo-A, chondroitinase ABC, stem cells) Zörner and Schwab 2010, Bradburry et al. 2002, Curt 2012

Neuroprotection (e.g. minocycline, riluzole, surgery)

Conventional gait training

Manual treadmill training

Manual treadmill training

- Training duration is limited by endurance of therapists, not of the patient.
- Two or more therapists needed
- Does not satisfactorily fulfil other requirements:
 - optimal control of limbs and individual joints,
 - postural control,
 - motivation of patient
- + Therapist "feels" activity of patient!

Robotic supported gait training

Robotic supported gait training

- •+ Physiological gait pattern can be ensured
- + Prolonged training duration
- + Less body weight support
- + Repeatable
- Activity of patient not apparent!

Task specific training of spinal networks

•Bodyweight supported treadmill training

Fig. 2. The experimental set-up as used during treadmill training for humans (adapted from [66]).

rest of this was about the research

Key targets to restore function

Goal-directed rehabilitation (e.g. locomotion) *Colombo et al. 2001, Donati et al. 2016*

Reactivation (e.g.neurostimulation)

Courtine et al. 2011, Angeli et al. 2014

Rewiring (e.g. anti-Nogo-A, chondroitinase ABC, stem cells) Zörner and Schwab 2010, Bradburry et al. 2002, Curt 2012

Neuroprotection (e.g. minocycline, riluzole, surgery)
Casha et al. 2012, Fehlings et al. 2016

Epidural stimulation of the lumbosacral spinal cord

In witch patients could this technology be applied?

Key targets to restore function

Goal-directed rehabilitation (e.g. locomotion) Colombo et al. 2001, Donati et al. 2016

Reactivation (e.g.neurostimulation)

Courtine et al. 2011, Angeli et al. 2014

Rewiring (e.g. anti-Nogo-A, chondroitinase ABC, stem cells) Zörner and Schwab 2010, Bradburry et al. 2002, Curt 2012

Neuroprotection (e.g. minocycline, riluzole, surgery) Casha et al. 2012, Fehlings et al. 2016

Next steps....

- Phase II study in a european multicenter trail
- Started: January 2016
- First Patient in: January 2018
- Duration: 5 years
- Design: randomized double blinded
- Subjects: 158 patients with acute cervical SCI
- Involved centers: 7 hospitals

Key targets to restore function

Goal-directed rehabilitation (e.g. locomotion) Colombo et al. 2001, Donati et al. 2016

Reactivation (e.g.neurostimulation)

Courtine et al. 2011, Angeli et al. 2014

Rewiring (e.g. anti-Nogo-A, chondroitinase ABC, stem cells)

Zörner and Schwab 2010, Bradburry et al. 2002, Curt 2012

Neuroprotection (e.g. minocycline, riluzole, surgery) Casha et al. 2012, Fehlings et al. 2016

