Q. P. Code: 21236

Marks: 80

- 3) Use of scientific calculators allowed.
- 4) Figures to right indicate marks.

Q.1 a) Find the Laplace transform of
$$e^{-2t} t \cos t$$
 (05)

b) Find the inverse Laplace transform of
$$\frac{3s+7}{s^2-2s-3}$$
 (05)

c) Determine whether the function
$$f(z) = (x^3 + 3xy^2 - 3x) + i(3x^2y - y^3 + 3y)$$
 is analytic and if so find its derivative. (05)

d) Find the Fourier series for
$$f(x) = x^2$$
 in the interval $(-\pi, \pi)$.

Q.2 a) Evaluate
$$\int_0^\infty \left(\frac{\sin 2t + \sin 3t}{t e^t}\right) dt = \frac{3\pi}{4}$$
 (06)

b) Find the Z- Transform of
$$\left\{ \left(\frac{1}{4}\right)^{|k|} \right\}$$
 (06)

c) Show that the function
$$v = e^x(x \sin y + y \cos y)$$
 is a harmonic function.
Find its harmonic conjugate and corresponding analytic function. (08)

$$\sum x = 59$$
; $\sum y = 40$; $\sum x^2 = 524$; $\sum y^2 = 256$; $\sum xy = 364$.

Find the equation of the line of regression of x on y and the coefficient of correlation.

b) Find the bilinear transformation which maps the points
$$z = -1$$
, 0, 1 onto the points

$$w = -1, -i, 1.$$
 (06)

c) Obtain half-range sine series for
$$f(x) = (x - 1)^2$$
 in $0 < x < 1$.
Hence find $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (08)

Q.4 a) Find the inverse Laplace Transform by using convolution theorem
$$\frac{1}{(s^2+a^2)(s^2+b^2)}$$
 (06)

4	X	85	74	85	50	65	78	74	60	74	90
			91								

c) Find the inverse Z-transform for the following;

i) $\frac{1}{(z-5)^2}$, |z| < 5

ii)
$$\frac{z}{(z-2)(z-3)}$$
 , $|z| > 3$

- Q.5 a) Using Laplace Transform evaluate $\int_0^\infty e^{-t} (1 + 3t + t^2) H(t 2) dt$ (06)
 - **b)** Prove that $f_1(x) = 1$; $f_2(x) = x$; $f_3(x) = (\frac{3x^2 1}{2})$ are orthogonal over (-1, 1). (06)
 - c) Solve using Laplace transform $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 2e^{3x}$, y = 2, y' = 3 at x = 0. (08)
- Q.6 a) Find the complex form of Fourier series for $f(x) = e^x$, $(-\pi, \pi)$. (06)
 - b) If u, v are harmonic conjugate functions, show that uv is a harmonic function. (06)
 - c) Fit a straight line of the form y = a + bx to the following data and estimate the value of y for x = 3.5 (08)

X	0	1	2	3	4	
Y	1	1.8	3.3	4.5	6.3	

Page 2 of 2