10

15

20

What is claimed is:

1. A compound, and pharmaceutically acceptable salts, solvates and prodrugs thereof, having the formula:

$$R_1$$
 R_2
 X_1
 X_1
 X_2
 X_3
 X_4
 X_3
 X_4
 X_4

where X, X_1 , X_2 , X_3 and X_4 are from one to about three atoms, are the same or different and are independently selected from the group consisting of hydrogen, an alkyl group, a alkenyl group, an heteroalkyl group and an heteroalkenyl group,

and any carbons or nitrogens of said alkyl group, alkenyl group, heteroalkyl group or heteroalkenyl group can optionally be substituted with a straight, branched or cyclic lower alkyl group of from 1 to about 6 carbons;

Z is selected from the group consisting of C, CH, CH₂, N, NH, S, O, CH=CH, CH=N and N=CH;

L is selected from the group consisting of C, CH, CH₂, N, NH, S, O, CH=CH, CH=N and N=CH, but when Z is C, CH, CH=CH or CH₂ then L is N, NH, S or O;

M is selected from the group consisting of carbon and CH; the chemical bond between L and M is selected from the group consisting of a single bond and a double bond, and M is carbon when the bond is a double bond, and M is CH when the bond is a single bond;

the chemical bond between M and Z is selected from the group consisting of a single bond and a double bond, and M is carbon when the bond is a double bond, and M is CH when the bond is a single bond;

10

15

20

25

but when the bond between L and M is a double bond the bond between M and Z is a single bond;

at least one of R_1 , R_2 , R_3 , R_4 , or R_5 is present;

R₁, R₄ and R₅ are the same or different and are selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group and a substituted alkylheteroaryl group;

R₂ and R₃ are the same or different and are selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group, a substituted alkylheteroaryl group, and *p*-aroyl-glutamate;

and each substituent of any substituted group is the same or different and is selected from the group consisting of a straight, branched or cyclic lower alkyl, alkenyl or alkynl group of from one to about 6 carbons, an alkoxy group, an alkoxyaryloxy group, and a halogen.

- 2. The compound of Claim 1, wherein Z is N.
- 3. The compound of Claim 2, wherein X_4 is NH_2 .
- 4. The compound of Claim 3, wherein X is NH and R_1 is m-bromobenzene.
 - 5. The compound of Claim 4, wherein X_2 is CH_2 - CH_2 .
 - 6. The compound of Claim 5, wherein R_3 is 2-pyridine.
 - 7. The compound of Claim 5, wherein R_3 is benzene.
 - 8. The compound of Claim 5, wherein R_3 is p-methoxy benzene.
 - 9. The compound of Claim 5, wherein R_3 is o-chlorobenzene.
 - 10. The compound of Claim 5, wherein R₃ is 1-naphthalene.
 - 11. The compound of Claim 5, wherein R_3 is 2-naphthalene.
 - 12. The compound of Claim 1, wherein Z = O.
- The compound of Claim 12, wherein X and X_4 are NH_2 .

CH3 $\$ The compound of Claim 13, wherein X_1 is CH=C,

20

5

and R_2 is 2-napthyl.

15. A method of treating a patient with an illness by inhibiting at least one enzyme selected from the group consisting of receptor tyrosine kinase, dihydrofolate reductase and thymidylate synthase, by administering an effective amount of a compound having the formula:

$$R_{5}$$
 X_{4}
 X_{1}
 X_{2}
 X_{3}
 X_{4}
 X_{4}
 X_{4}
 X_{4}
 X_{5}
 X_{4}
 X_{4}
 X_{5}
 X_{4}
 X_{5}
 X_{4}
 X_{5}
 X_{6}
 X_{7}
 X_{8}

where X, X_1 , X_2 , X_3 and X_4 are from one to about three atoms, are the same or different and are independently selected from the group consisting of hydrogen, an alkyl group, a alkenyl group, an heteroalkyl group and an heteroalkenyl group,

and any carbons or nitrogens of said alkyl group, alkenyl group, heteroalkyl group or heteroalkenyl group can optionally be substituted with a straight, branched or cyclic lower alkyl group of from 1 to about 6 carbons;

Z is selected from the group consisting of C, CH, CH₂, N, NH, S, O, CH=CH, CH=N and N=CH;

L is selected from the group consisting of C, CH, CH₂, N, NH, S, O, CH=CH, CH=N and N=CH, but when Z is C, CH, CH=CH or CH₂ then L is N, NH, S or O;

M is selected from the group consisting of carbon and CH; the chemical bond between L and M is selected from the group consisting of a single bond and a double bond, and M is carbon when the bond is a double bond, and M is CH when the bond is a single bond;

15

20

25

the chemical bond between M and Z is selected from the group consisting of a single bond and a double bond, and M is carbon when the bond is a double bond, and M is CH when the bond is a single bond;

but when the bond between L and M is a double bond the bond between M and Z is a single bond;

at least one of R₁, R₂, R₃, R₄, or R₅ is present;

 R_1 , R_4 and R_5 are the same or different and are selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylheteroaryl group;

R₂ and R₃ are the same or different and are selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylheteroaryl group, and *p*-aroyl-glutamate;

and each substituent of any substituted group is the same or different and is selected from the group consisting of a straight, branched or cyclic lower alkyl, alkenyl or alkynl group of from one to about 6 carbons, an alkoxy group, an alkoxyaryloxy group, and a halogen.

- 16. The method of Claim 15, wherein said compound is incorporated in a suitable pharmaceutical carrier.
 - 17. The method of Claim 15, wherein said illness is cancer.
- 18. The method of Claim 15, wherein said illness is selected from the group consisting of infection caused by *Pneumocystis carinii*, *Toxoplasma gondii*, *Mycobacterium tuberculosis* and *Mycobacterium avium*.
 - 19. The method of Claim 16, wherein said carrier is selected from the group consisting of physiologic saline and 5% dextrose for injection.
- 20. The method of Claim 16, including administering said compound by a method selected from the group consisting of parenteral administration, oral administration and topical administration.

10

15

21. A compound, and pharmaceutically acceptable salts, solvates and prodrugs thereof, having the formula:

$$R_2$$
 NH_2
 R_2
 N
 N
 N

where X_1 is CH= \dot{C} , and R_6 is selected from the group consisting of hydrogen and a straight, branched or cyclic lower alkyl group of from 1 to about 6 carbons;

 R_2 is selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group, a substituted alkylheteroaryl group, and p-aroylglutamate;

and each substituent of any substituted group is the same or different and is selected from the group consisting of a straight, branched or cyclic lower alkyl, alkenyl or alkynl group of from one to about 6 carbons, an alkoxy group, an alkoxyaryloxy group, and a halogen.

22. A compound, and pharmaceutically acceptable salts, solvates and prodrugs thereof, having the formula:

10

15

20

25

where X and X_2 are from one to about three atoms, are the same or different and are independently selected from the group consisting of hydrogen, an alkyl group, a alkenyl group, an heteroalkyl group and an heteroalkenyl group,

and any carbons or nitrogens of said alkyl group, alkenyl group, heteroalkyl group or heteroalkenyl group can optionally be substituted with a straight, branched or cyclic lower alkyl group of from 1 to about 6 carbons;

at least one of R_1 or R_3 is present;

R₁ is selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, a cyclic aromatic group, a heterocyclic aromatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group and a substituted alkylheteroaryl group;

R₃ is selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group, a substituted alkylaryl group, and *p*-aroylglutamate;

and each substituent of any substituted group is the same or different and is selected from the group consisting of a straight, branched or cyclic lower alkyl, alkenyl or alkynl group of from one to about 6 carbons, an alkoxy group, an alkoxyaryloxy group, and a halogen.

23. A method of treating a patient with an illness by inhibiting at least one enzyme selected from the group consisting of receptor tyrosine kinase, dihydrofolate reductase and thymidylate synthase, by administering an effective amount of a compound having the formula:

10

15

20

where X_1 is CH=C, and R_6 is selected from the group consisting of hydrogen and a straight, branched or cyclic lower alkyl group of from 1 to about 6 carbons;

 R_2 is selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group, a substituted alkylaryl group, and p-aroylglutamate;

and each substituent of any substituted group is the same or different and is selected from the group consisting of a straight, branched or cyclic lower alkyl, alkenyl or alkynl group of from one to about 6 carbons, an alkoxy group, an alkoxyaryloxy group, and a halogen.

- 24. The method of Claim 23, wherein said compound is incorporated in a suitable pharmaceutical carrier.
 - 25. The method of Claim 23, wherein said illness is cancer.
- 26. The method of Claim 23, wherein said illness is selected from the group consisting of infection caused by *Pneumocystis carinii*, *Toxoplasma gondii*, *Mycobacterium tuberculosis* and *Mycobacterium avium*.
- The method of Claim 24, wherein said carrier is selected from the group consisting of physiologic saline and 5% dextrose for injection.

15

20

25

- 28. The method of Claim 24, including administering said compound by a method selected from the group consisting of parenteral administration, oral administration and topical administration.
- 29. A method of treating a patient with an illness by inhibiting at least one enzyme selected from the group consisting of receptor tyrosine kinase, dihydrofolate reductase and thymidylate synthase, by administering an effective amount of a compound having the formula:

where X and X_2 are from one to about three atoms, are the same or different and are independently selected from the group consisting of hydrogen, an alkyl group, a alkenyl group, an heteroalkyl group and an heteroalkenyl group,

and any carbons or nitrogens of said alkyl group, alkenyl group, heteroalkyl group or heteroalkenyl group can optionally be substituted with a straight, branched or cyclic lower alkyl group of from 1 to about 6 carbons;

at least one of R_1 or R_3 is present;

R₁ is selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, a cyclic aromatic group, a heterocyclic aromatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted alkylaryl group and a substituted alkylheteroaryl group;

 R_3 is selected from group consisting of hydrogen, a cyclic aliphatic group, a cyclic heteroaliphatic group, an aryl group, a heteroaryl group, an alkylaryl group, a alkylheteroaryl group, a substituted aryl group, a substituted heteroaryl group, a substituted alkylaryl group, a substituted alkylheteroaryl group, and p-aroylglutamate;

10

15

and each substituent of any substituted group is the same or different and is selected from the group consisting of a straight, branched or cyclic lower alkyl, alkenyl or alkynl group of from one to about 6 carbons, an alkoxy group, an alkoxyaryloxy group, and a halogen.

- 30. The method of Claim 29, wherein said compound is incorporated in a suitable pharmaceutical carrier.
 - 31. The method of Claim 29, wherein said illness is cancer.
- 32. The method of Claim 29, wherein said illness is selected from the group consisting of infection caused by *Pneumocystis carinii*, *Toxoplasma gondii*, *Mycobacterium tuberculosis* and *Mycobacterium avium*.
- 33. The method of Claim 30, wherein said carrier is selected from the group consisting of physiologic saline and 5% dextrose for injection.
- 34. The method of Claim 30, including administering said compound by a method selected from the group consisting of parenteral administration, oral administration and topical administration.