Esercitazione 4

Geometria e Algebra Lineare GE110 - AA 2022–2023 Esercitatore: Amos Turchet

20, 22 Marzo 2023

Esercizio 1. Sia V uno spazio vettoriale su un campo \mathbb{K} e sia $\{u, v, w\}$ una base di V.

- (a) Si discuta se l'insieme $\{u-v,u+v\}$ é una base del sottospazio $\langle u,v\rangle$.
- (b) Si discuta se l'insieme $\{u-v,v-w,w-u\}$ é una base di V.

Esercizio 2. Per ognuno dei seguenti sottospazi calcolare la dimensione:

- 1. $W_1 = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : 2x_1 x_2 x_3 = x_4 3x_5 = 0\};$
- 2. $W_2 = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_3 x_4 = 0\};$
- 3. $W_1 \cap W_2$;
- 4. $W_1 + W_2$.

Esercizio 3. Si considerino i seguenti vettori di \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ t \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 2 \\ t^2 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 2 \\ 2 \\ t^3 \end{pmatrix}.$$

Determinare per quali valori di $t \in \mathbb{R}$:

- i vettori v_1, v_2, v_3, v_4 sono linearmente indipendenti;
- i vettori v_1, v_2, v_3, v_4 generano \mathbb{R}^3 .

Esercizio 4. Siano dati i seguenti sottospazi vettoriali di \mathbb{R}^3 :

$$W_1 = \langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \rangle \qquad W_2 = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle.$$

Calcolare la dimensione e una base dei sottospazi $W_1 \cap W_2$ e $W_1 + W_2$.

Esercizio 5. Sia W il sottospazio di \mathbb{R}^3 dato da

$$W = \{(x_1, x_2, x_3) \in R^3 : 2x_1 - x_3 = 0\}.$$

1

- $\bullet\,$ Determinare la dimensione di W e esibire una sua base.
- Esiste una retta $L \subset \mathbb{R}^3$ passante per l'origine tale che l'intersezione $L \cap W = \{(0,0,0)\}$? In caso affermativo si scriva un'equazione di L.

Esercizio 6. Siano W_1, W_2 due sottospazi di uno spazio vettoriale V su un campo \mathbb{K} . Siano \mathcal{B}_1 e \mathcal{B}_2 due basi di W_1 e W_2 rispettivamente.

- 1. Si dimostri che, se $V=W_1\oplus W_2$, allora $\mathcal{B}_1\cap\mathcal{B}_2=\varnothing$ e $\mathcal{B}_1\cup\mathcal{B}_2$ é una base di V.
- 2. Si dimostri che, se $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$ e $\mathcal{B}_1 \cup \mathcal{B}_2$ é una base di V, allora $V = W_1 \oplus W_2$.