Fondamenti del linguaggio PTEX per la scrittura scientifica

Lezione 1: Introduzione e basi del linguaggio

Andrea Di Primio (andrea.diprimio@polimi.it)

29 Novembre 2021

Funzionamento di I⁴TEX

Dal codice sorgente al prodotto finale

L'editor TEXStudio: Struttura dell'interfaccia utente

Aprendo l'editor, ci troviamo davanti un'interfaccia tripartita:

- P Crea una nuova istanza di scrittura codice.
- Apre un file .tex (o altro formato IATEX) esistente.
- Salva il file corrente.
- Compila il codice corrente e visualizza in Preview il file output .pdf (shortcut F1 o F5).
- Ferma la compilazione (attivo solo durante la compilazione).

- P Crea una nuova istanza di scrittura codice.
- 🗎 Apre un file .tex (o altro formato IATEX) esistente.
- Salva il file corrente.
- Compila il codice corrente e visualizza in Preview il file output .pdf (shortcut F1 o F5).
- Ferma la compilazione (attivo solo durante la compilazione).

- P Crea una nuova istanza di scrittura codice.
- 🗎 Apre un file .tex (o altro formato IATEX) esistente.
- Is alva il file corrente.
- Compila il codice corrente e visualizza in Preview il file output .pdf (shortcut F1 o F5).
- Ferma la compilazione (attivo solo durante la compilazione).

- P Crea una nuova istanza di scrittura codice.
- 🗎 Apre un file .tex (o altro formato IATEX) esistente.
- Is alva il file corrente.
- Compila il codice corrente e visualizza in Preview il file output .pdf (shortcut F1 o F5).
- Ferma la compilazione (attivo solo durante la compilazione).

- P Crea una nuova istanza di scrittura codice.
- 🗎 Apre un file .tex (o altro formato IATEX) esistente.
- Is alva il file corrente.
- Compila il codice corrente e visualizza in Preview il file output .pdf (shortcut F1 o F5).
- Ferma la compilazione (attivo solo durante la compilazione).

Programmazione in \LaTeX

Struttura di un file .tex

Indipendentemente dal tipo di progetto, un file .tex è, in generale, composto da due parti:

- il preambolo, contenente direttive generalmente relative al codice LATEX, e.g. inclusione di pacchetti di comandi, definizione di comandi personalizzati.
- il corpo, contenente i contenuti del documento, e.g. i capitoli di un libro, le appendici e la bibliografia.

Struttura di un file .tex

Indipendentemente dal tipo di progetto, un file .tex è, in generale, composto da due parti:

- il preambolo, contenente direttive generalmente relative al codice LATEX, e.g. inclusione di pacchetti di comandi, definizione di comandi personalizzati.
- il corpo, contenente i contenuti del documento, e.g. i capitoli di un libro, le appendici e la bibliografia.

Tipologie di direttive LATEX: comandi

Le direttive in codice LATEX rientrano, grossomodo, in due classi. I **comandi** seguono il paradigma

```
\commandname[options]{arg1}{arg2}...{argn}
```

Ad esempio, il comando

```
\documentclass[10pt, a4paper]{article}
```

ha due argomenti opzionali (tra quadre) e uno obbligatorio (tra graffe). Alcuni comandi potrebbero avere zero argomenti (opzionali e/o obbligatori).

Tipologie di direttive LATEX: ambienti

Gli ambienti, invece, sono "container" di codice delimitati da un inizio e una fine:

Ad esempio, l'ambiente

struttura un elenco di oggetti.

Cominciamo a programmare!

Create un nuovo file su TEXStudio e salvatelo in una cartella dedicata come Lezione1.tex.

Durante la lezione, lavorate **solo** su questo file. Alla fine, avrete generato un piccolo *cheatsheet*!

Codice del preambolo, parte 1: documentclass

\documentclass[options]{classname}

Le classi principali sono:

- · article per articoli scientifici o brevi elaborati;
- · report per lunghi elaborati (come una tesi);
- book per libri;
- · beamer per presentazioni.

Le opzioni dipendono molto dalla classe scelta. Intanto ne citiamo due:

- · a4paper per impostare il formato del foglio
- · 10pt, 11pt o 12pt per impostare la dimensione del font.

Codice del preambolo, parte 1: documentclass

\documentclass[options]{classname}

Le classi principali sono:

- · article per articoli scientifici o brevi elaborati;
- · report per lunghi elaborati (come una tesi);
- book per libri;
- · beamer per presentazioni.

Le opzioni dipendono molto dalla classe scelta. Intanto ne citiamo due:

- · a4paper per impostare il formato del foglio;
- · 10pt, 11pt o 12pt per impostare la dimensione del font.

Codice del preambolo, parte 1: documentclass

Inserite questo comando nella prima riga del vostro nuovo file:

```
\documentclass[a4paper, 10pt]{article}
```

Codice del preambolo, parte 2: pacchetti

\usepackage[options]{packagename}

Some useful packages:

- · babel with italian option provides the Italian spelling;
- · inputenc with utf8 option for accents and special characters;
- · amsmath, amssymb, amsthm for math-related things;
- geometry to set margins;
- graphicx to handle figures and graphs;

Google is your friend

Esistono migliaia di pacchetti. Tra questi, c'è anche quello che vi servirà in futuro. Cercatelo!

Codice del preambolo, parte 2: pacchetti

```
\usepackage[options]{packagename}
```

Some useful packages:

- · babel with italian option provides the Italian spelling;
- · inputenc with utf8 option for accents and special characters;
- · amsmath, amssymb, amsthm for math-related things;
- geometry to set margins;
- graphicx to handle figures and graphs;

Google is your friend

Esistono migliaia di pacchetti. Tra questi, c'è anche quello che vi servirà in futuro. Cercatelo!

Codice del preambolo, parte 2: pacchetti

Aggiungiamo qualche pacchetto al nostro documento, direttamente sotto alla \documentclass.

```
\usepackage[italian]{babel}
\usepackage{amsmath, amsymb, amsthm}
\usepackage[top=2cm, bottom=2cm, left=2cm, right
=2cm]{geometry}
```

Codice del preambolo, parte 3: frontespizio

I seguenti comandi impostano i dati da mostrare sul frontespizio del lavoro:

```
\author{names} imposta l'autore;\date{\today} imposta la data;\title{nameTitle} imposta il titolo.
```

Aggiungiamo al nostro documento i comandi:

```
\author{Il mio nome}
\date{\today}
\title{Lezione 1: Comandi base di \LaTeX}
```

Codice del preambolo, parte 3: frontespizio

I seguenti comandi impostano i dati da mostrare sul frontespizio del lavoro:

```
\author{names} imposta l'autore;\date{\today} imposta la data;\title{nameTitle} imposta il titolo.
```

Aggiungiamo al nostro documento i comandi:

```
\author{Il mio nome}
\date{\today}
\title{Lezione 1: Comandi base di \LaTeX}
```

Codice del corpo: l'ambiente document

Il corpo del documento è, per definizione, tutto ciò che è inserito nell'ambiente document:

All'interno di questo ambiente potranno essere inseriti testo, comandi ed ambienti.

Warning!

Tutto ciò che segue \end{document} viene ignorato dal compilatore!

Codice del corpo: l'ambiente document

Il corpo del documento è, per definizione, tutto ciò che è inserito nell'ambiente document:

All'interno di questo ambiente potranno essere inseriti testo, comandi ed ambienti.

Warning!

Tutto ciò che segue \end{document} viene ignorato dal compilatore!

Esercizio 1: Hello, World!

Completiamo il nostro primo file e compiliamolo con F5.

```
\documentclass[a4paper, 10pt]{article}
\usepackage[italian]{babel}
\usepackage{amsmath, amsymb, amsthm}
\usepackage[top=2cm, bottom=2cm, left=2cm, right
   =2cm]{geometry}
\author{Il mio nome}
\date{\today}
\title{Lezione 1: Comandi base di \LaTeX}
\begin{document}
        \maketitle
        Hello, World!
\end{document}
```

Codice del corpo: strutturare un documento

Si usa suddividere un documento in parti più piccole.

```
\section{sectionTitle} Crea una nuova sezione.
\subsection{subsecTitle} Crea una nuova sottosezione.
\chapter{chapterTitle} Crea un nuovo capitolo.
```

I capitoli sono riservati alle classi report e book.

Le sezioni vengono automaticamente numerate. Per creare una parte senza numerarla, aggiungere un asterisco al nome del comando, e.g. \section*{sectionTitle} o \chapter*{sectionTitle}.

Esercizio 2 (parte 1): Strutturare un documento.

```
% questo e' un commento!
\begin{document}
        \maketitle
        \section{Esercizio 1: Hello, World!}
        Hello, World!
        \section{Esercizio 2: Strutturare un
           documento}
        % TO DO: creare una sottosezione
           numerata.
        % TO DO: creare una seconda sottosezione
            non numerata.
        \section{Esercizio 3: ?}
        % . . .
\end{document}
```

Si può inserire testo **nel corpo** semplicemente scrivendolo, senza bisogno di comandi. Citiamo qualche comando per la formattazione.

\textbf{textBold}

- \textit{textIta}
- \texttt{textTt}
- \verb!verbatim!

genera textBold (shortcut Ctrl + B)

- genera textIta (shortcut Ctrl + I)
- genera textTt

genera verbatim, ma il contenuto viene ignorato dal compilatore (usato per scrivere codice LATEX senza che il compilatore lo interpreti)

Si può inserire testo **nel corpo** semplicemente scrivendolo, senza bisogno di comandi. Citiamo qualche comando per la formattazione.

\textbf{textBold}
\textit{textIta}
\textttt{textIt}
\understand

genera **textBold** (shortcut Ctrl + B) genera *textIta* (shortcut Ctrl + I)

genera textTt
genera verbatim, ma il contenuto
viene ignorato dal compilatore (usato
per scrivere codice LATEX senza che il
compilatore lo interpreti)

Si può inserire testo **nel corpo** semplicemente scrivendolo, senza bisogno di comandi. Citiamo qualche comando per la formattazione.

\textbf{textBold}
\textit{textIta}
\texttt{textTt}

genera textBold (shortcut Ctrl + B) genera textIta (shortcut Ctrl + I) genera textIt

genera verbatim, ma il contenuto viene ignorato dal compilatore (usato per scrivere codice LATEX senza che il compilatore lo interpreti)

Si può inserire testo **nel corpo** semplicemente scrivendolo, senza bisogno di comandi. Citiamo qualche comando per la formattazione.

\textbf{textBold}
\textit{textIta}
\textttt{textTt}
\verb!verbatim!

genera textBold (shortcut Ctrl + B) genera textIta (shortcut Ctrl + I) genera textTt genera verbatim, ma il contenuto viene ignorato dal compilatore (usato per scrivere codice LATEX senza che il compilatore lo interpreti)

Testo, parte 2: il comando $\setminus \setminus$ e spacing del testo

Scrivendo testo, andare a capo nel codice **non** equivale ad iniziare una nuova riga.

Usare il comando \\[distance] per andare a capo lasciando distance di spazio bianco. Non specificare distance equivale ad andare a capo.

Si può specificare distance nei seguenti modi:

- espressa in un unità di misura (la scelta più comoda è cm o mm), ad esempio \\[3mm] o \\[0.5cm];
- · espressa come frazione di una lunghezza macro

Testo, parte 2: il comando $\setminus \setminus$ e spacing del testo

Scrivendo testo, andare a capo nel codice **non** equivale ad iniziare una nuova riga.

Usare il comando \\[distance] per andare a capo lasciando distance di spazio bianco. Non specificare distance equivale ad andare a capo.

Si può specificare distance nei seguenti modi:

- espressa in un unità di misura (la scelta più comoda è cm o mm), ad esempio \\[3mm] o \\[0.5cm];
- · espressa come frazione di una lunghezza macro

Testo, parte 2: il comando $\setminus \setminus$ e spacing del testo

Scrivendo testo, andare a capo nel codice **non** equivale ad iniziare una nuova riga.

Usare il comando \\[distance] per andare a capo lasciando distance di spazio bianco. Non specificare distance equivale ad andare a capo.

Si può specificare distance nei seguenti modi:

- espressa in un unità di misura (la scelta più comoda è cm o mm), ad esempio \\[3mm] o \\[0.5cm];
- · espressa come frazione di una lunghezza macro.

Digressione: lunghezze macro

Per aiutare nell'uniformare le spaziature, LATEX mette a disposizione dei comandi particolari (chiamate lunghezze *macro*), che rappresentano delle lunghezze "universali". Non richiedono alcun argomento: si chiamano semplicemente con \macroname.

Per le direttive che richiedono lunghezze, è buona norma cercare di riferirsi ad esse scrivendo q\macroname, dove q è un qualunque float (e.g. 0.5\macroname indica metà di \macroname). Spoiler: tuttavia, poter impostare lunghezze arbitrarie è uno strumento molto utile in alcune circostanze...

Digressione: lunghezze macro

Per aiutare nell'uniformare le spaziature, LATEX mette a disposizione dei comandi particolari (chiamate lunghezze *macro*), che rappresentano delle lunghezze "universali". Non richiedono alcun argomento: si chiamano semplicemente con \macroname.

Per le direttive che richiedono lunghezze, è buona norma cercare di riferirsi ad esse scrivendo q\macroname, dove q è un qualunque float (e.g. 0.5\macroname indica metà di \macroname). Spoiler: tuttavia, poter impostare lunghezze arbitrarie è uno strumento molto utile in alcune circostanze...

Testo, parte $\overline{2}$: il comando $\setminus \setminus$ e spacing del testo

Una macro particolarmente utile per andare a capo è \baselineskip, che rappresenta l'altezza di una riga di testo (tenendo conto della grandezza del font).

Per andare a capo lasciando una riga bianca, possiamo scrivere \\[\baselineskip].

Testo, parte 2: il comando $\setminus \setminus$ e spacing del testo

Una macro particolarmente utile per andare a capo è \baselineskip, che rappresenta l'altezza di una riga di testo (tenendo conto della grandezza del font).

Per andare a capo lasciando una riga bianca, possiamo scrivere \\[\baselineskip].

Esercizio 2 (parte 2): Formattare un testo.

Riempiamo le due sottosezioni del nostro documento. Nella prima sottosezione, inserire il testo seguente:

Questo è il testo della prima sottosezione. Il suo contenuto è di alta caratura *intellettuale*.

Nella seconda sottosezione, inserire il testo seguente:

La seconda **sotto** sezione è ancora più complicata della prima.

Ho lasciato una riga vuota e mezzo per sottolinearlo.

Sotto un'altra riga vuota, creata con \\[\baselineskip], una nota importante.

Testo, parte 3: dimensioni del font

Si possono cambiare le dimensioni del font in una porzione di testo racchiudendolo tra graffe assieme ad un'apposita macro.

```
{\macroname testo da ridimensionare}
```

Nella frase sopra:

```
{\c scriptsize ad un'apposita macro}.
```

Testo, parte 3: dimensioni del font

LATEX mette a disposizione dieci macro di dimensioni di font, definite in base alla dimensione scelta in \documentclass (che diventa la \normalsize):

\Huge	Text
\huge	Text
\LARGE	Text
\Large	Text
\large	Text
\normalsize	Text
\small	Text
\footnotesize	Text
\scriptsize	Text
\tiny	Text

Elenchi: gli ambienti itemize e enumerate

Elenchi non numerati:

```
\begin{itemize}
      \item item 1
      \item item 2
\end{itemize}
```

- item 1
- item 2

Elenchi numerati:

```
\begin{enumerate}
     \item item 1
     \item item 2
\end{enumerate}
```

- 1. item 1
- 2. item 2

Elenchi: gli ambienti itemize e enumerate

Si possono cambiare i *bullet point* come argomento opzionale di \item.

```
\begin{itemize}
  \item Item 0
  \item[-] Item 1
  \item[(a)] Item 2
  \item[(b)] Item 3
  \item[\textbf{Hi}] Item 4
  \end{itemize}
```

- Item 0
- Item 1
- (a) Item 2
- (b) Item 3
- Hi Item 4

Esercizio 3: Un elenco di grandezze di testo (o la quiete prima della tempesta)

Generare, in un'apposita sezione, il seguente elenco:

- 1. small,
- 2. normalsize,
- 3. large,
- 4. huge,
- 5. Huge.

Bonus points!

Includere (nel preambolo) il pacchetto enumitem con l'opzione shortlabels e dare l'opzione (i) alla chiamata dell'ambiente enumerate (nel corpo). Cosa accade?

Esistono due principali ambienti di scrittura matematica.

• L'ambiente inline ha una sintassi a sé:

```
$ ... $
```

• L'ambiente equation (a volte chiamato display)

L'ambiente *inline* serve a includere formule in un testo, come $(a+b)^2=a^2+2ab+b^2$, mentre l'ambiente *equation* fornisce al contenuto uno spazio dedicato nella pagina, numerandolo:

$$(a+b)^2 = a^2 + 2ab + b^2. (1)$$

Esistono due principali ambienti di scrittura matematica.

• L'ambiente inline ha una sintassi a sé:

```
$ ... $
```

• L'ambiente equation (a volte chiamato display)

L'ambiente *inline* serve a includere formule in un testo, come $(a+b)^2=a^2+2ab+b^2$, mentre l'ambiente *equation* fornisce al contenuto uno spazio dedicato nella pagina, numerandolo:

$$(a+b)^2 = a^2 + 2ab + b^2. (1)$$

Esistono due principali ambienti di scrittura matematica.

• L'ambiente inline ha una sintassi a sé:

```
$ ... $
```

• L'ambiente equation (a volte chiamato display)

L'ambiente *inline* serve a includere formule in un testo, come $(a+b)^2=a^2+2ab+b^2$, mentre l'ambiente *equation* fornisce al contenuto uno spazio dedicato nella pagina, numerandolo:

$$(a+b)^2 = a^2 + 2ab + b^2. (1)$$

```
L'ambiente \textit{inline} serve a includere formule in un testo, come $(a+b)^2 \neq a^2+b ^2$, mentre l'ambiente \textit{equation} fornisce al contenuto uno spazio dedicato nella pagina, numerandolo: \textit{equation} (a+b)^2 \neq a^2+b^2. \end{equation}
```

L'ambiente *inline* serve a includere formule in un testo, come $(a+b)^2 \neq a^2 + b^2$, mentre l'ambiente *equation* fornisce al contenuto uno spazio dedicato nella pagina, numerandolo:

$$(a+b)^2 \neq a^2 + b^2. {(1)}$$

Digressione: numerazione o no?

Regola (quasi) generale

Ogni comando o ambiente che produce una numerazione possiede una versione non numerata, ottenuta aggiungendo al nome del comando (o ambiente) un asterisco.

Ad esempio,

Warning!

Tutti i comandi presentati di seguito funzionano solo se inseriti in un ambiente di scrittura matematica (qualunque). La sintassi non dipende dall'ambiente scelto.

Matematica, parte 2: simboli e operazioni comuni

```
123, abc
123. abc
\infty
                                             \infty
                                             a^{above}, a_{under}
a^{above}, a_{under}
                                             \sqrt[a]{b}
\sqrt[a]{b}
                                             \frac{\sum_{a}^{b}}{\int_{a}^{b}}
\sum_{a}^{b}
\inf {a}^{b}
                                             \frac{a}{b}
\frac{a}{b}
\forall, \exists, x \in A
                                            \forall, \exists, x \in A
>, <, \geq, \leq, \gg, \ll
                                            >, <, >, <, », «
\sim, \approx, \neq, \pm
                                     \sim, \approx, \neq, \pm
\subset, \subseteq, \cup, \cap \subset, \subseteq, \cup, \cap
\sin, \cos, \tan, \log
                                             sin, cos, tan, log
```

Matematica, parte 3: alfabeto greco

In inline, ad esempio,

```
$ \english_name_of_the_greek_letter $
```

Tre principali varianti:

- lowercase: \t theta (θ)
- uppercase: $\Theta(\Theta)$
- variabili: $\forall vartheta (\vartheta)$

Matematica, parte 4: formattazioni classiche e specifiche

Grassetto e corsivo dovrebbero essere chiamati con questi comandi:

```
\mathbf{textBold} genera textBold
\mathit{textIta} genera textBold
```

Alcune più specifiche formattazioni usate:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Matematica, parte 4: formattazioni classiche e specifiche

Grassetto e corsivo dovrebbero essere chiamati con questi comandi:

```
\mbox{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\box{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\m
```

Alcune più specifiche formattazioni usate:

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Matematica, parte 5: spacing (nerfed version...)

Importante!

Negli ambienti matematici, tutti gli spazi nel codice vengono ignorati.

Vedremo più avanti come introdurre spaziature in ambienti matematici.

Esercizio 4: Il Teorema di Lagrange

Sia [a,b] un intervallo reale e sia $f:[a,b]\to\mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Esiste $\xi\in(a,b)$ tale che

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Esercizio 4: Il Teorema di Lagrange

Sia [a,b] un intervallo reale e sia $f:[a,b]\to\mathbb{R}$ una funzione continua in [a,b] e derivabile in (a,b). Esiste $\xi\in(a,b)$ tale che

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

```
Sia $[a,b]$ un intervallo reale e sia $f: [a,b]
     \to \mathbb{R}$ una funzione continua in $[a,
     b]$ e derivabile in $(a,b)$. Esiste $\xi \in
     (a,b)$ tale che

begin{equation*}
     f'(\xi) = \frac{f(b)-f(a)}{b-a}.
\end{equation*}
```

Matematica, parte 6: i sotto-ambienti split e cases

Dentro all'ambiente equation (o equation*) possiamo annidare

- l'ambiente split per dividere un'espressione su più righe;
- l'ambiente cases per sistemi di equazioni.

Matematica, parte 6: i sotto-ambienti split e cases

Nell'ambiente split, si va a capo con \\ e si allineano le righe con &:

$$(a+b)^{2} = (a+b)(a+b)$$

$$= a^{2} + ba + ab + b^{2}$$

$$= a^{2} + 2ab + b^{2}.$$
(2)

Notate che l'intero blocco (e non ciascuna riga) viene numerato.

Matematica, parte 6: i sotto-ambienti split e cases

Anche nell'ambiente cases si va a capo con \\ e si allineano le righe con &:

$$\begin{cases} x+y-8z = 0\\ x-y+z = 0\\ 3x+z = 0. \end{cases}$$
(3)

Notare che l'intero blocco (e non ciascuna riga) viene numerato.

Matematica, parte 7: altri ambienti di scrittura matematica

L'ambiente multline (e versione non numerata multline*) permette di dividere su più righe espressioni troppo lunghe per una sola riga, andando a capo con \\.

$$p(x) = 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{11} + x^{12}$$
(4)

La parte "in eccesso" viene automaticamente allineata a destra. Usare multline solo se ce n'è bisogno!

Matematica, parte 7: altri ambienti di scrittura matematica

L'ambiente alignat (e versione non numerata alignat*)
permette di scrivere espressioni su più righe, allineandole con \\ e
&. Richiede il numero di righe.

```
begin{alignat}{3}
  f & \textrm{ continua in ogni punto di } & [3,4]; \\
    g & \textrm{ continua in ogni punto di } & [3,4]; \\
    f+g & \textrm{ continua in ogni punto di } & [3,4].
\end{alignat}
```

$$f$$
 continua in ogni punto di $[3,4];$ (5)

$$g$$
 continua in ogni punto di $[3,4];$ (6)

$$f + g$$
 continua in ogni punto di $[3, 4]$. (7)

Rispetto a cases e split è possibile utilizzare più & per riga. Notate che ogni equazione viene numerata.

Matematica, parte 7: altri ambienti di scrittura matematica

L'ambiente align (e versione non numerata align*) fa la stessa cosa, assumendo di allineare equazioni.

```
\begin{align*}
    x_1 &= x_2 & x_3 &= x_4 \\
    x_5 &= x_6 & x_7 &= x_8.
\end{align*}
```

$$x_1 = x_2,$$
 $x_3 = x_4,$ $x_5 = x_6,$ $x_7 = x_8.$

Le spaziature non sono uniformi.

I delimitatori sono parentesi o oggetti che si comportano come parentesi, usati per racchiudere un'espressione (e.g. $(\cdot), [\cdot], \{\cdot\}, |\cdot|, ||\cdot|)$).

Se usati, devono essere aperti e chiusi, oltre che correttamente annidati.

Importante!

È buona norma che i delimitatori abbiano la grandezza di ciò che contengono. Usate però anche il vostro senso estetico!

I delimitatori sono parentesi o oggetti che si comportano come parentesi, usati per racchiudere un'espressione (e.g. $(\cdot), [\cdot], \{\cdot\}, |\cdot|, ||\cdot|)$).

Se usati, devono essere aperti e chiusi, oltre che correttamente annidati.

Importante!

È buona norma che i delimitatori abbiano la grandezza di ciò che contengono. Usate però anche il vostro senso estetico!

I delimitatori sono parentesi o oggetti che si comportano come parentesi, usati per racchiudere un'espressione (e.g. $(\cdot), [\cdot], \{\cdot\}, |\cdot|, ||\cdot|)$).

Se usati, devono essere aperti e chiusi, oltre che correttamente annidati.

Importante!

È buona norma che i delimitatori abbiano la grandezza di ciò che contengono. Usate però anche il vostro senso estetico!

I comandi \left e \right seguiti dal delimitatore scelto, adattano dinamicamente le grandezze dei delimitatori al contenuto.

$$(1+\frac{1}{n})^n$$
, $\left(1+\frac{1}{n}\right)^n$.

Ad ogni \left deve corrispondere un \right. Parentesi tonde, quadre e stanghette singole possono essere scritte da tastiera. Le graffe hanno bisogno di escaping: \left\{, \right\}, mentre le stanghette doppie si generano con \left\|, \right\|.

I comandi \left e \right seguiti dal delimitatore scelto, adattano dinamicamente le grandezze dei delimitatori al contenuto.

$$(1+\frac{1}{n})^n$$
, $\left(1+\frac{1}{n}\right)^n$.

Ad ogni \left deve corrispondere un \right. Parentesi tonde, quadre e stanghette singole possono essere scritte da tastiera. Le graffe hanno bisogno di escaping: \left\{, \right\}, mentre le stanghette doppie si generano con \left\|, \right\|.

Matematica, parte 9: matrici

Esistono ambienti dedicati per le matrici.

```
\begin{equation*}
  \begin{bmatrix}
    a & b \\
    c & d
  \end{bmatrix}

\end{equation*}
```

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Varianti sul tema:

- matrix senza delimitatore $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$
- · vmatrix stanghette singole

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Matematica, parte 9: matrici

Esistono ambienti dedicati per le matrici.

```
\begin{equation*}
  \begin{bmatrix}
    a & b \\
    c & d
  \end{bmatrix}
\end{equation*}
```

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Varianti sul tema:

- · matrix senza delimitatore $egin{array}{ccc} a & b \ c & c \end{array}$
 - pmatrix parentesi tonde $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$
- · vmatrix stanghette singole $\begin{bmatrix} a \\ c \end{bmatrix}$

Matematica, parte 10: spacing

Alcune lunghezze macro utili per spaziare in ambiente matematico (e non):

	circa 4 spazi	x_1	x_2
\qquad	circa 8 spazi	x_1	x_2
	circa 1 spazio	x_1	x_2
\:	circa 1 spazio	x_1	x_2
\	circa -1 spazio	x_1	x_2
\	esattamente 1 spazio	x_1	x_2

Esempio di utilizzo:

Esercizio 5: Equazioni!

Replicare le seguenti equazioni (è sufficiente elencarle, ignorare il formato 2x2):

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

$$\begin{cases} (x+y)^{\alpha\beta+\delta} = 1, \\ \cos(xy) = 0. \end{cases}$$

$$\frac{d^{2}f}{dx^{2}} + \frac{df}{dx} = 4f - 1$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$$

Bonus points!

Con i comandi \sup e \inf, che ammettono come pedice la loro specifica, replicare anche

$$\sup_{x\in[0,1]}\left(\inf_{y\in[0,1]}|\mathbf{g}(x,y)|-\sqrt{|\mathbf{g}(x,y)|}\right)=\frac{3}{4}.$$

Grazie dell'attenzione!

Prossima lezione: 2/12/2021 in 3.1.6