第五章 留数

—、	选择题	:
-----------	-----	---

1.	函数 $\frac{\cot \pi z}{2z-3}$ 在 $ z $	-i =2 内的奇	点个数为()		
	(A) 1	(B) 2	(C) 3	(D) 4	
2.	设函数 $f(z)$ 与 g	(z) 分别以 z =	a 为本性奇点与 m 级极	g点,则 $z = a$ 为函数 $f(z)g(z)$	
的()				
	(A) 可去奇点		(B) 本性奇点		
	(C) m 级极点		(D) 小于 m 级的	极点	
3.	3. 设 $z = 0$ 为函数 $\frac{1 - e^{x^2}}{z^4 \sin z}$ 的 m 级极点,那么 $m = ($)				
	(A) 5	(B) 4	(C) 3	(D) 2	
4.	z=1是函数(z-	$1)\sin\frac{1}{z-1}$ 的	()		
	(A)可去奇点		(B) 一级极点		
	(C) 一级零点		(D) 本性奇点		
5.	<i>z</i> = ∞ 是函数 3 +	$\frac{2z+z^3}{z^2}$ 的()		
	(A)可去奇点		(B) 一级极点		
	(C) 二级极点		(D) 本性奇点		
6.	设 $f(z) = \sum_{n=0}^{\infty} a_n z$	z < R内统	解析, k 为正整数,那	$\angle \operatorname{Re} s[\frac{f(z)}{z^k}, 0] = ($	
	(A) a_k	(B) $k!a_k$	(C) a_{k-1}	(D) $(k-1)!a_{k-1}$	
7.	设 $z = a$ 为解析函	· · · · · · · · · · · · · · · · · · ·	级零点,那么 $\operatorname{Re} s[rac{f'(}{f(}$	$\frac{(z)}{(z)},a]=($	
	(A) m	(B) $-m$	(C) $m-1$	(D) - (m-1)	
8.	在下列函数中,』	$\operatorname{Re} s[f(z),0] =$	0 的是 ()		

$$(A) f(z) = \frac{e^z - 1}{z^2}$$

(B)
$$f(z) = \frac{\sin z}{z} - \frac{1}{z}$$

(C)
$$f(z) = \frac{\sin z + \cos z}{z}$$

(D)
$$f(z) = \frac{1}{e^z - 1} - \frac{1}{z}$$

- 9. 下列命题中,正确的是(
 - 设 $f(z) = (z z_0)^{-m} \varphi(z)$, $\varphi(z)$ 在 z_0 点解析,m 为自然数,则 z_0 为 f(z) 的 m 级 极点.
 - 如果无穷远点 ∞ 是函数 f(z) 的可去奇点,那么 $\operatorname{Re} s[f(z), \infty] = 0$ (B)
 - 若 z = 0 为偶函数 f(z) 的一个孤立奇点,则 Re s[f(z),0] = 0(C)
 - (D) 若 $\oint f(z)dz = 0$,则f(z)在c内无奇点
- 10. Re $s[z^3 \cos \frac{2i}{z}, \infty] = ($
 - (A) $-\frac{2}{3}$ (B) $\frac{2}{3}$
- (C) $\frac{2}{3}i$
- (D) $-\frac{2}{3}i$

- 11. Re $s[z^2 e^{\frac{1}{z-i}}, i] = ($
 - (A) $-\frac{1}{6}+i$ (B) $-\frac{5}{6}+i$ (C) $\frac{1}{6}+i$ (D) $\frac{5}{6}+i$

- 12. 下列命题中,不正确的是(
 - (A) 若 $z_0 \neq \infty$) 是f(z) 的可去奇点或解析点,则 $\operatorname{Re} s[f(z), z_0] = 0$
 - (B) 若 P(z) 与 Q(z) 在 z_0 解析, z_0 为 Q(z) 的一级零点,则 Re $s[\frac{P(z)}{Q(z)}, z_0] = \frac{P(z_0)}{Q'(z_0)}$
 - (C) 若 z_0 为 f(z) 的 m 级 极 点 , $n \ge m$ 为 自 然 数 , 则

$$\operatorname{Re} s[f(z), z_0] = \frac{1}{n!} \lim_{x \to x_0} \frac{d^n}{dz^n} [(z - z_0)^{n+1} f(z)]$$

(D) 如果无穷远点 ∞ 为 f(z) 的一级极点,则 z=0 为 $f(\frac{1}{z})$ 的一级极点,并且

 $\operatorname{Re} s[f(z), \infty] = \lim_{z \to 0} z f(\frac{1}{z})$

- 13. 设n > 1为正整数,则 $\oint_{|z|=2} \frac{1}{z^n 1} dz = ($)
 - (A) **0**
- (B) **2π***i*
- (C) $\frac{2\pi i}{n}$
- (D) 2*nπi*

- 14. 积分 $\oint_{|z|=\frac{3}{2}} \frac{z^9}{z^{10}-1} dz = ($)
 - (A) 0
- (B) 2πi
- (C) 10
- (D) $\frac{\pi i}{5}$

- 15. 积分 $\oint_{|z|=1} z^2 \sin \frac{1}{z} dz = ($)
 - (A) **0**
- (B) $-\frac{1}{6}$
- (C) $-\frac{\pi i}{3}$
- (D) $-\pi i$

二、填空题

- 1. 设z = 0 为函数 $z^3 \sin z^3$ 的 m 级零点,那么 $m = _____$.
- 2. 函数 $f(z) = \frac{1}{\cos\frac{1}{z}}$ 在其孤立奇点 $z_k = \frac{1}{k\pi + \frac{\pi}{2}}(k = 0, \pm 1, \pm 2, \cdots)$ 处的留数

 $\operatorname{Re} s[f(z), z_k] = \underline{\hspace{1cm}}.$

3. 设函数 $f(z) = \exp\{z^2 + \frac{1}{z^2}\}$, 则 Re s[f(z),0] =_____

4. 设
$$z = a$$
 为函数 $f(z)$ 的 m 级极点,那么 $\operatorname{Re} s[\frac{f'(z)}{f(z)}, a] = \underline{\hspace{1cm}}$

5. 双曲正切函数 tanh z 在其孤立奇点处的留数为______

6. 设
$$f(z) = \frac{2z}{1+z^2}$$
, 则 Re $s[f(z), \infty] = \underline{\hspace{1cm}}$.

7. 设
$$f(z) = \frac{1-\cos z}{z^5}$$
, 则 Re $s[f(z),0] = \underline{\hspace{1cm}}$.

8. 积分
$$\oint_{|z|=1} z^3 e^{\frac{1}{z}} dz =$$
_______.

9. 积分
$$\oint_{|z|=1} \frac{1}{\sin z} dz = _____.$$

10. 积分
$$\int_{-\infty}^{+\infty} \frac{xe^{ix}}{1+x^2} dx =$$
_______.

三、计算积分
$$\oint_{|z|=rac{1}{4}}rac{z\sin z}{\left(e^z-1-z
ight)^2}dz$$
.

四、设a为 f(z)的孤立奇点,m 为正整数,试证a为 f(z)的 m 级极点的充要条件是 $\lim_{z\to a}(z-a)^m f(z)=b$,其中 $b\neq 0$ 为有限数.

五、设a为 f(z)的孤立奇点,试证:若 f(z) 是奇函数,则 Re s[f(z),a] = Re s[f(z),-a] ; 若 f(z) 是偶函数,则 Re s[f(z),a] = - Re s[f(z),-a] .

<u>答案</u>