TEMA 1: Introducción al espacio euclídeo de varias variables

Fernando Soria UAM

Curso 2022/23

Estructura del Tema 1:

- Vectores, producto escalar, norma y distancia.
- Geometría de rectas y planos
- Conceptos métricos en el espacio euclídeo
- Topología en el espacio euclídeo
- Conjuntos abiertos y cerrados; interior, frontera y clausura de un conjunto
- Conjuntos conexos

Vectores en \mathbb{R}^n .

La **recta real** \mathbb{R} es el conjunto de números $\{x : x \in \mathbb{R}\}.$

El **plano cartesiano** $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ es el conjunto de puntos de la forma (x_1, x_2) , con $x_1, x_2 \in \mathbb{R}$

$$\mathbb{R}^2 = \{(x_1, x_2) : x_1, x_2 \in \mathbb{R}\}$$

El **espacio euclídeo** \mathbb{R}^3 es el conjunto de puntos de la forma (x_1, x_2, x_3) , con $x_1, x_2, x_3 \in \mathbb{R}$

$$\mathbb{R}^3 = \{ (x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbb{R} \}$$

El **espacio** n-**dimensional** \mathbb{R}^n (producto cartesiano de n copias de \mathbb{R}) es el conjunto de puntos de la forma (x_1, x_2, \cdots, x_n) , con $x_i \in \mathbb{R}$ para todo $i = 1, 2 \cdots n$.

$$\mathbb{R}^n = \{ (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, \forall i = 1, 2 \cdots n \}$$

Si $p=(x_1\ldots,x_n)\in\mathbb{R}^n$, los valores $x_i,\ i=1,\ldots,n$, se llaman las **coordenadas** del punto p.

Vectores en el plano y en el espacio

Podemos representar geométricamente los puntos del plano y del espacio, usando ejes perpendiculares de coordenadas (coordenadas cartesianas):

Para describir "movimiento" usaremos la noción de vector.

Definición (Vectores en \mathbb{R}^n)

Un **vector** en \mathbb{R}^n es un segmento de recta orientado, determinado por un punto inicial en \mathbb{R}^n y un punto final en \mathbb{R}^n .

Notación: si el punto inicial es A y el final es B, podemos denotar por \overrightarrow{AB} el vector correspondiente, que va de A a B.

\mathbb{R}^n es un espacio vectorial.

Identificamos cada punto $P=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ con el *vector* que va desde el origen, $O=(0,\ldots,0)$, a dicho punto P:

$$\vec{x} = \overrightarrow{OP}$$

Operaciones con vectores:

Dados vectores $\vec{x} = (x_1, x_2, \dots, x_n), \ \vec{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, y un escalar $\lambda \in \mathbb{R}$, definimos las operaciones

• Suma: formamos un nuevo vector en \mathbb{R}^n

$$(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

• **Producto por un escalar:** formamos un nuevo vector en \mathbb{R}^n como

$$\lambda(x_1,x_2,\ldots,x_n)=(\lambda x_1,\lambda x_2,\ldots,\lambda x_n)$$

Con estas dos operaciones, \mathbb{R}^n tiene estructura de espacio vectorial sobre el cuerpo de los reales.

Base canónica/estándar de \mathbb{R}^n

$$\mathbb{R}^2$$
: $\{\vec{e_1}=(1,0), \ \vec{e_2}=(0,1)\}$

$$\mathbb{R}^3$$
: $\{\vec{e_1} = (1,0,0), \ \vec{e_2} = (0,1,0), \ \vec{e_3} = (0,0,1)\}$

$$\mathbb{R}^n: \quad \{\underbrace{(1,0,\ldots,0)}_{\vec{e_1}},\underbrace{(0,1,\ldots,0)}_{\vec{e_2}},\ldots,\underbrace{(0,0,\ldots,1)}_{\vec{e_n}}\} \text{ En general, el vector } \vec{e_i} \text{ es el }$$

vector con todas sus entradas cero, salvo por la *i*-ésima que es un uno.

Todo vector $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ puede expresarse en función de la base canónica.

$$\vec{x} = (x_1, x_2, \dots, x_n) = x_1 \vec{e}_1 + \dots + x_n \vec{e}_n$$

Nota: En \mathbb{R}^3 se suele usar también la notación

$$\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \mathbf{k} = (0,0,1)$$

\mathbb{R}^n como espacio afín

A veces nos interesa considerar vectores (flechas) cuyo origen no es necesariamente el punto O = (0, ..., 0).

Sea $P \in \mathbb{R}^n$ un punto. Un **vector** en \mathbb{R}^n con origen P es un segmento de recta orientado, determinado por el punto inicial P, y un punto final $Q \in \mathbb{R}^n$. Lo denotaremos \overrightarrow{PQ} .

Este conjunto es un espacio vectorial isomorfo a \mathbb{R}^n con la identificación

$$\overrightarrow{PQ} \Longleftrightarrow Q - P \in \mathbb{R}^n$$

Esto nos permite definir una nueva operación:

Suma de un punto y un vector: formamos un nuevo punto en \mathbb{R}^n

$$Q = P + \vec{x} = (a_1 + x_1, a_2 + x_2, \dots, a_n + x_n)$$

Representación geométrica

Aparte de la notación \vec{a} , se suele también denotar un vector con letra en negrita, \mathbf{a} .

Representación geométrica de vectores: se pueden representar como flechas cuyo origen es el punto $\mathbf{0} = (0,0)$.

El vector $\overrightarrow{OP} = (3, 1, 5)$ se denomina **vector de posición** del punto P = (3, 1, 5).

Representación geométrica de las operaciones entre puntos y vectores:

Suma:

Suma de punto y vector:

Producto por un escalar:

Ejemplos

1) Sean $\vec{u} = (3, 1, 5)$ y $\vec{v} = (2, 0)$. Dibujar \vec{u} , \vec{v} , $\vec{u} + \vec{v}$, y también $-2\vec{u}$.

2) Demostrar que las diagonales de un paralelogramo se bisecan.

Sean $M = 0 + \frac{1}{2}(\vec{a} + \vec{b})$, $N = P + \frac{1}{2}(\vec{b} - \vec{a})$. Necesitamos ver que M = N.

En efecto: $N = P + \frac{1}{2}(\vec{b} - \vec{a}) = 0 + \vec{a} + \frac{1}{2}(\vec{b} - \vec{a}) = 0 + \frac{1}{2}(\vec{a} + \vec{b}) = M.$

TEMA 1: Introducción al espacio de varias variables

8 / 37

Producto escalar en \mathbb{R}^n .

Dados los vectores $\vec{x} = (x_1, x_2, \dots, x_n)$ e $\vec{y} = (y_1, y_2, \dots, y_n)$ en \mathbb{R}^n , se define el **producto escalar** de \vec{x} e \vec{y} como:

$$\vec{x} \cdot \vec{y} = \langle \vec{x}, \vec{y} \rangle = \langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \rangle$$

= $x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$.

Propiedades del producto escalar:

- Linealidad: $(\lambda \vec{x} + \beta \vec{y}) \cdot \vec{z} = \lambda (\vec{x} \cdot \vec{z}) + \beta (\vec{y} \cdot \vec{z})$
- ② Conmutativa: $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- Positividad:

$$\vec{x} \cdot \vec{x} > 0 \quad \forall \vec{x} \neq \vec{0} \quad \text{y} \quad \vec{x} \cdot \vec{x} = 0 \text{ si y solo si } \vec{x} = \vec{0}$$

Norma (euclídea) en \mathbb{R}^n

Se define la **norma** de un vector $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ como:

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Observación: En \mathbb{R} : $||x|| = \sqrt{x^2} = |x|$.

- La norma $\|\vec{x}\|$ mide la **longitud** del vector \vec{x} .
- Diremos que un vector \vec{x} es **unitario** si $||\vec{x}|| = 1$.
- Dado \vec{x} , llamamos **vector normalizado** de \vec{x} al vector $\frac{\vec{x}}{\|\vec{x}\|}$.

Primeras propiedades de la norma:

- **3** ||x v|| = ||v x||

Demostración.

Las identidades (1),(2) y (3) se siguen directamente de la definición.

Tres desigualdades importantes y función distancia

• **Designaldad de Cauchy-Schwarz:** Sean $x, y \in \mathbb{R}^n$. Entonces

$$|\langle x,y\rangle| \leq ||x|| ||y||.$$

Dem.: Supondremos que $y \neq 0$, porque en caso contrario no habría nada que probar. Entonces, $\forall \lambda \in \mathbb{R}$ se tiene

$$0 \le \|x + \lambda y\|^2 = \langle x + \lambda y, x + \lambda y \rangle = \|x\|^2 + 2\lambda \langle x, y \rangle + \lambda^2 \|y\|^2.$$

Eligiendo ahora $\lambda = \frac{-\langle x,y \rangle}{\|v\|^2}$, se obtiene de lo anterior $0 \le \|x\|^2 - 2\frac{|\langle x,y \rangle|^2}{\|v\|^2} + \frac{|\langle x,y \rangle|^2}{\|v\|^2}$, y por tanto $|\langle x, y \rangle|^2 \le ||x||^2 ||y||^2$.

Desigualdad triangular y desigualdad triangular al revés:

$$||x + y|| \le ||x|| + ||y||;$$
 $||x - y|| \ge |||x|| - ||y|||.$

• Designaldad con las coordenadas: Si $\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ se tiene

$$\max_{j=1,2,\ldots,n} |x_j| \le ||x|| \le |x_1| + |x_2| + \cdots + |x_n|.$$

- Distancia (euclídea) entre dos puntos: Se define como d(x,y) = ||x-y||y sus propiedades son
 - d(x, y) > 0; $y d(x, y) = 0 \iff x = y$.
 - d(x, y) = d(y, x).
 - $d(x,y) \le d(x,z) + d(z,y)$, $\forall x,y,z \in \mathbb{R}^n$.

Ángulo entre dos vectores en \mathbb{R}^n

Dados dos vectores $\vec{x}, \vec{y} \in \mathbb{R}^n$ diferentes de cero, la desigualdad de Cauchy-Schwarz implica que

$$\frac{|\vec{x}\cdot\vec{y}|}{\|\vec{x}\|\ \|\vec{y}\|} \leq 1 \Longrightarrow -1 \leq \frac{\vec{x}\cdot\vec{y}}{\|\vec{x}\|\ \|\vec{y}\|} \leq 1$$

Por lo tanto existe un único $\theta \in [0,\pi)$ tal que $\cos \theta = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$, y se define como el **ángulo entre** \vec{x} e \vec{y} . Con esta definición, tenemos la fórmula

$$\vec{x} \cdot \vec{y} = \|\vec{x}\| \|\vec{y}\| \cdot \cos \theta$$

El motivo de esta definición hay que verlo en el contexto geométrico del espacio euclídeo: Puesto que los vectores $\vec{x}, \vec{y}, \vec{x} - \vec{y}$ forman los lados de un triángulo, la fórmula del coseno nos da

$$\|\vec{x} - \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 - 2\|\vec{x}\| \cdot \|\vec{y}\| \cos \theta,$$

donde θ representa el ángulo opuesto al lado $\vec{x}-\vec{y}$, es decir, el ángulo entre \vec{x} e \vec{y} . Por otro lado se tiene $\|\vec{x}-\vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 - 2\vec{x} \cdot \vec{y}$, de donde se sigue $\vec{x} \cdot \vec{y} = \|\vec{x}\| \|\vec{y}\| \cdot \cos \theta$.

Ortogonalidad (perpendicularidad)

- Dos vectores no nulos, \vec{x} e \vec{y} , son **ortogonales/perpendiculares**, denotado como $\vec{x} \perp \vec{y}$, si se tiene que el ángulo entre \vec{x} e \vec{y} es $\pi/2$, o lo que es equivalente, si $\vec{x} \cdot \vec{y} = 0$.
- Un conjunto de vectores no nulos $\{\vec{u_1}, \dots, \vec{u_m}\}$ es un **conjunto ortogonal** si se tiene que $\vec{u_i} \cdot \vec{u_j} = 0, \ \forall i \neq j.$
- Un conjunto de vectores no nulos $\{\vec{u_1}, \dots, \vec{u_m}\}$ es un **conjunto ortonormal** si es un conjunto ortogonal y además cada vector $\vec{u_i}$ es unitario.

Ejemplo 1.1: La base canónica $\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ es un conjunto ortonormal.

Teorema (Teorema de Pitágoras)

Si
$$\vec{x} \perp \vec{y}$$
, entonces

$$\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2.$$

Dem.: Usando que $\vec{x} \perp \vec{y}$, es decir, $\langle \vec{x}, \vec{y} \rangle = 0$, se tiene

$$\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2 + 2\langle \vec{x}, \vec{y} \rangle = \|\vec{x}\|^2 + \|\vec{y}\|^2.$$

Proyección de un vector sobre otro

Definición (Proyección ortogonal)

La **proyección** de \vec{v} sobre \vec{w} (o sobre la recta determinada por \vec{w}) es el vector $\begin{pmatrix} ||\vec{v}|| \\ ||\vec{w}|| \end{pmatrix} \cos(\theta) \vec{w}$, donde θ es el ángulo entre \vec{v} y \vec{w} .

Observación: Esta proyección es un producto de \vec{w} por un escalar; en particular, la proyección y \vec{w} están en la misma recta.

Geométricamente, en el plano la proyección de \vec{v} sobre \vec{w} es el vector cuyo punto final es la intersección entre la recta que contiene \vec{w} y la recta que es perpendicular a \vec{w} y contiene el punto final de \vec{v} .

Usando la relación entre ángulo y producto escalar, podemos expresar la proyección en términos del producto escalar:

$$\left(\frac{\|\vec{v}\|}{\|\vec{w}\|}\cos\theta\right)\vec{w} = \left(\frac{\|\vec{v}\|}{\|\vec{w}\|}\frac{\vec{v}\cdot\vec{w}}{\|\vec{v}\|\|\vec{w}\|}\right)\vec{w} = \left(\frac{\vec{v}\cdot\vec{w}}{\|\vec{w}\|^2}\right)\vec{w}.$$

Ejercicio: Dados los vectores $\vec{x} = (1,2)$ e $\vec{y} = (2,0)$.

- Calcular $\vec{x} \cdot \vec{y}$.
- ② Calcular $\|\vec{x}\|$ y $\|\vec{y}\|$.
- **3** Calcular el ángulo, θ , formado por ambos vectores.
- Secribe los vectores unitarios de igual dirección y sentido que los dados.
- **3** Calcular el vector proyección de \vec{x} sobre \vec{y} .

Repaso: rectas en el plano

Definición

Una **recta** en el plano es un conjunto de la forma $\{P + \lambda \vec{v} : \lambda \in \mathbb{R}\}$, donde $P = (p_1, p_2)$ es un punto del plano y \vec{v} es un vector, llamado **vector director** de la recta.

Para cada valor de λ , tenemos un punto (x, y) distinto de la recta, determinado por la ecuación siguiente: $(x, y) = (p_1, p_2) + \lambda(v_1, v_2)$.

Esta expresión es equivalente al sistema de ecuaciones siguiente, que expresa cada coordenada del punto: $\left\{ \begin{array}{l} x=p_1+\lambda v_1\\ y=p_2+\lambda v_2 \end{array} \right..$

Repaso: rectas en el plano (cont.)

Partiendo del sistema $\begin{cases} x = p_1 + \lambda v_1 \\ y = p_2 + \lambda v_2 \end{cases}$, queremos expresar la recta en **una sola** ecuación que relaciona y con x:

- Tomamos la primera ecuación multiplicada por v_2 ,
- la segunda ecuación multiplicada por v_1 ,
- las restamos.

Ecuación de una recta en \mathbb{R}^2

La ecuación de la recta que pasa por $P = (p_1, p_2)$ y tiene vector director (v_1, v_2) es

$$v_2x - v_1y = p_1v_2 - p_2v_1. (1)$$

Observaciones:

- i) Si la recta en \mathbb{R}^2 tiene la ecuación ax + by = c un vector director es (-b, a).
- ii) La recta expresada por una ecuación ax + by = c no cambia si se multiplica la ecuación por un escalar no-nulo. Es decir que la ecuación ax + by = c expresa la misma recta que $\lambda ax + \lambda by = \lambda c$, $\forall \lambda \in \mathbb{R} \setminus \{0\}$.

TEMA 1: Introducción al espacio de varias variables

Repaso: rectas en el plano (cont.)

- iii) Dos ecuaciones ax + by = c, ax + by = c' expresan rectas paralelas (en efecto, el vector (-b, a) es un vector director para ambas rectas).
- iv) Dado un vector $\vec{v} = (v_1, v_2)$, el vector $(-v_2, v_1)$ es ortogonal a \vec{v} : tenemos $(v_1, v_2) \cdot (-v_2, v_1) = -v_1 v_2 + v_1 v_2 = 0$. Por lo tanto, toda recta con ecuación ax + by = c es perpendicular a toda otra recta con ecuación -bx + ay = c'.
- v) Una ecuación de recta ax + by = c se puede escribir de una otra forma, muy común también, en términos de *pendiente* y *ordenada en el origen*.
 - Si $b \neq 0$, podemos aislar la variable y a un lado de la ecuación:

$$y = mx + h$$
, donde $m = -\frac{a}{b}$, $h = \frac{c}{b}$

m es la pendiente, h la altura de su corte con el eje OY.

- Si b = 0, $a \neq 0$, entonces la recta es vertical, de ecuación x = c/a.
- Si a = 0, $b \neq 0$, entonces tenemos una recta horizontal, de ecuación y = h.

Repaso: rectas en el plano (cont.)

<u>Ejemplo</u>: sean los puntos A = (1,5) y B = (2,3). Se pide hallar las ecuaciones de

- la recta que pasa por A y B,
- ullet y de la recta que pasa por (0,1) y es perpendicular a la primera recta.

Primera recta: $\vec{v}=B-A=(1,-2)\Rightarrow$ los puntos (x,y) de la recta son de la forma $A+\lambda\vec{v}=(1,5)+\lambda(1,-2)$ para algún $\lambda\in\mathbb{R}$. Obtenemos así el sistema $\left\{ \begin{array}{l} x=1+\lambda\\ y=5-2\lambda \end{array} \right.$ La combinación $2(\mathrm{ecuación}\ 1)+(\mathrm{ecuación}\ 2)$ elimina λ . Obtenemos así la ecuación 2x+y=7.

Segunda recta: como hemos observado antes, toda recta perpendicular a la primera tiene vector director ortogonal a (1,-2), luego un vector director de una tal recta es (2,1). Sabemos que toda recta con este vector director tiene ecuación -x+2y=c para algún $c\in\mathbb{R}$. ¿Qué valor de c nos da la segunda recta deseada? Este valor lo va a determinar la condición de que esta recta contenga el punto (0,1). Tenemos pues -0+2=c, luego la segunda recta tiene ecuación -x+2y=2.

Producto vectorial y sus propiedades

Dados los vectores $\vec{x} = (x_1, x_2, x_3)$ e $\vec{y} = (y_1, y_2, y_3)$ en \mathbb{R}^3 , se define el **producto** vectorial de \vec{x} e \vec{y} como:

$$\vec{x} \times \vec{y} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = (x_2y_3 - x_3y_2) \vec{e}_1 + (x_3y_1 - x_1y_3) \vec{e}_2 + (x_1y_2 - x_2y_1) \vec{e}_3.$$

- Interpretación geométrica: $\vec{x} \times \vec{y}$ es un vector *ortogonal* a \vec{x}, \vec{y} , con dirección dada por la *regla de la mano derecha*.
- ② Anticonmutatividad: $\vec{x} \times \vec{y} = -\vec{y} \times \vec{x}$
- **3** Área del paralelogramo de lados \vec{x} e \vec{y} :

$$\|\vec{x} \times \vec{y}\| = \|\vec{x}\| \|\vec{y}\| \sin \theta.$$

- $\vec{x} \times \vec{y} = 0 \text{ si y solo si } \vec{x}, \vec{y} \text{ son } colineales.$
- **1** Linealidad: $(\lambda \vec{x}) \times (\vec{y} + \vec{z}) = (\lambda \vec{x}) \times \vec{y} + (\lambda \vec{x}) \times \vec{z} = \lambda (\vec{x} \times \vec{y}) + \lambda (\vec{x} \times \vec{z})$
- O Dados los vectores \vec{x} , \vec{y} y \vec{z} , se tiene que $\vec{x} \cdot (\vec{y} \times \vec{z}) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$.

Planos en \mathbb{R}^3

Definición (Planos en \mathbb{R}^3)

Un **plano** en \mathbb{R}^3 es un conjunto de puntos de la forma $\{P+\alpha \vec{v}+\beta \vec{w}:\alpha,\beta\in\mathbb{R}\}$, donde $P=(p_1,p_2,p_3)$ es un punto en el espacio y donde \vec{v},\vec{w} se llaman **vectores** directores del plano.

Para cada par distinto de números (α, β) , tenemos un punto (x, y, z) distinto del plano, determinado por la ecuación:

$$\hat{z}'(x, y, z)^{\frac{1}{2}} = (p_1, p_2, p_3) + \alpha(v_1, v_2, v_3) + \beta(w_1, w_2, w_3).$$

De nuevo, esto equivale a un sistema de ecuaciones: Combinando estas ecuaciones se puede eliminar α, β y obtener una única ecuación que relaciona x, y, z.

$$\begin{cases} x = p_1 + \alpha v_1 + \beta w_1 \\ y = p_2 + \alpha v_2 + \beta w_2 \\ z = p_3 + \alpha v_3 + \beta w_3 \end{cases}$$

Planos en \mathbb{R}^3 (cont.)

Ecuación de un plano en \mathbb{R}^3

La ecuación general de un plano en \mathbb{R}^3 es de la forma

$$ax + by + cz + d = 0, (2$$

donde $a, b, c, d \in \mathbb{R}$ son coeficientes fijos.

Distintas formas de hallar la ecuación: Asumimos que $P_0 = (x_0, y_0, z_0)$, es un punto dado, y P = (x, y, z) es cualquier otro punto arbitrario en el plano.

• Si $\vec{n} = (a, b, c)$ es un **vector normal** al plano :

$$\langle P - P_0, \vec{v} \rangle = a(x - x_0) + b(y - y_0) + c(z - z_0) = 0;$$

• Si tenemos dos vectores directores $v=(v_1,v_2,v_3)$ y $w=(w_1,w_2,w_3)$, el vector $\overrightarrow{PP_0}=(x-x_0,y-y_0,z-z_0)$ debe ser combinación lineal de v y w, luego

$$\det \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0,$$

y desarrollando, obtenemos la ecuación.

《□》《圖》《意》《意》 意

Planos en \mathbb{R}^3 (cont.)

Si conocemos tres puntos no colineales del plano,
P_i = (x_i, y_i, z_i), i = 1, 2, 3, los tres vectores P₁P, P₂P y P₃P deben ser coplanarios (i.e., linealmente dependientes):

$$\det \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0.$$

Conviene recordar: Si la ecuación del plano es

$$ax + by + cz + d = 0,$$
 $a, b, c, d \in \mathbb{R},$

entonces un vector normal al plano es (a, b, c), el formado por los coeficientes de x, y, z.

Rectas en \mathbb{R}^{3}

Dado un punto P, y un vector \vec{v} , la recta que pasa por P_0 con vector director \vec{v} es

$$\{P + \lambda \vec{\mathbf{v}} : \lambda \in \mathbb{R}\}$$

ó

$$(x, y, z) = (x_0, y_0, z_0) + \lambda(v_1, v_2, v_3)$$
 \Rightarrow
$$\begin{cases} x = x_0 + \lambda v_1 \\ y = y_0 + \lambda v_2 \\ z = z_0 + \lambda v_3 \end{cases}$$

Combinando estas ecuaciones para eliminar λ , podemos poner la recta como intersección de dos planos. Por ejemplo,

$$v_2(x-x_0)=v_1(y-y_0), \qquad v_3(y-y_0)=v_2(z-z_0).$$

Distancia de un punto a un plano en \mathbb{R}^3

Sea un plano Π con ecuación ax + by + cz + d = 0. El vector (a, b, c) es perpendicular a Π . Lo normalizamos, esto es, lo dividimos por su norma para obtener un vector unitario \vec{n} , que es también ortogonal (o *normal*) a Π :

$$\vec{n} = (n_1, n_2, n_3) = (\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}}).$$

La **distancia** de P a Π es el valor absoluto del número real λ tal que el punto $P + \lambda \vec{n}$ está en el plano Π .

Queremos pues que $a(p_1 + \lambda n_1) + b(p_2 + \lambda n_2) + c(p_3 + \lambda n_3) + d$ sea 0, es decir $ap_1 + bp_2 + cp_3 + d + \lambda(an_1 + bn_2 + cn_3) = 0$. Esto nos da la fórmula

$$|\lambda| = \frac{|a p_1 + b p_2 + c p_3 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Coordenadas polares en el plano \mathbb{R}^2

Otras parametrizaciones:

Hasta ahora hemos expresado puntos en coordenadas cartesianas, que determinan los puntos usando ejes perpendiculares de coordenadas x, y.

Otro sistema de coordenadas: **coordenadas polares**. Un punto P se determina por números $r \in [0, \infty)$ y $\theta \in [0, 2\pi)$, donde

- r es el **radio** del único círculo en el plano con centro en el orígen $\vec{0}$ y que contiene P.
- θ es el ángulo entre el vector (1,0) y el vector $\overrightarrow{0P}$.

Cambio entre coordenadas cartesianas y polares de un mismo punto:

de
$$(x, y)$$
 a (r, θ) :
$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \arctan(y/x) \end{cases}$$
$$de (r, \theta) a (x, y) : \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

Otras coordenadas en el espacio \mathbb{R}^3

Coordenadas cartesianas en $\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}$

Coordenadas cilíndricas en \mathbb{R}^3 :

$$\mathbb{R}^3 = \{(r, \theta, z): \quad r \in [0, \infty), \quad \theta \in [0, 2\pi), \quad z \in \mathbb{R}\}$$

Cambio entre coordenadas cartesianas y cilíndricas de un mismo punto:

$$(r, \theta, z) \rightarrow (x, y, z)$$

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$
$$(x, y, z) \rightarrow (r, \theta, z)$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \arctan(y/x) \\ z = z \end{cases}$$

Coordenadas esféricas en \mathbb{R}^3

Coordenadas esféricas en \mathbb{R}^3 :

$$\mathbb{R}^3 = \{(\rho, \theta, \phi) : \quad \rho \in (0, \infty), \quad \theta \in [0, 2\pi), \quad \phi \in [0, \pi)\}$$

Cambio entre coordenadas cartesianas y esféricas de un mismo punto:

$$\begin{cases} x = \rho \cos \theta \sin \phi \\ y = \rho \sin \theta \sin \phi \\ z = \rho \cos \phi \end{cases} \Leftrightarrow \begin{cases} \rho = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arctan(y/x) \\ \phi = \arctan \cos \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right) \end{cases}$$

Topología de \mathbb{R}^n .

Nomenclatura:

La **bola abierta**, $B(\vec{x}_0, r)$, de centro $\vec{x}_0 \in \mathbb{R}^n$ y radio r > 0 es el conjunto de puntos que se encuentran a *distancia* menor que r del punto \vec{x}_0 :

$$B(\vec{x}_0, r) = \{ \vec{x} \in \mathbb{R}^n : ||\vec{x} - \vec{x}_0|| < r \}.$$

La **bola cerrada**, $\overline{B}(\vec{x_0}, r)$, de centro $\vec{x_0} \in \mathbb{R}^n$ y radio r > 0 es el conjunto de puntos que se encuentran a *distancia* menor o igual que r del punto $\vec{x_0}$:

$$\overline{B}(\vec{x}_0,r) = \left\{ \vec{x} \in \mathbb{R}^n : \ \|\vec{x} - \vec{x}_0\| \leq r \right\}.$$

Definición

- Un conjunto $U \subseteq \mathbb{R}^n$ es abierto si para todo $\vec{x} \in U$ existe un r > 0 (que puede depender de \vec{x}) tal que $B(\vec{x}, r) \subseteq U$.
- Un conjunto $F \subseteq \mathbb{R}^n$ es **cerrado** si su complementario $F^c = \mathbb{R}^n \setminus F$ es abierto.
- Un entorno de un punto de \mathbb{R}^n es cualquier (conjunto) abierto que contiene a dicho punto.

Topología de \mathbb{R}^n (cont.)

Definición

- Un conjunto $E \subseteq \mathbb{R}^n$ es acotado si existe un R > 0 tal que se verifica $E \subseteq B(\mathbf{0}, R)$, es decir, $||x|| < R, \forall x \in E$.
- Un conjunto $E \subseteq \mathbb{R}^n$ es compacto si es cerrado y acotado.

Ejercicios:

- Toda bola abierta es un conjunto abierto (y toda bola cerrada es cerrada).
- ② El conjunto $A = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ es un abierto.
- Un conjunto F es cerrado si y solo si toda sucesión de F que sea convergente tiene su límite en F ("nada escapa de F").
- Un conjunto F es compacto si y solo si toda sucesión de F posee una subsucesión convergente con límite en F.

Para (3) y (4) ver más adelante

Interior, frontera y clausura de un conjunto

Definición

• El interior de un conjunto $E \subseteq \mathbb{R}^n$ es el subconjunto de puntos:

$$\mathring{E}:=\{\vec{x}\in E:\ \exists\, r>0:\ B(\vec{x},r)\subseteq E\}\subseteq E.$$

• La frontera de un conjunto $E \subseteq \mathbb{R}^n$ es el conjunto de puntos:

$$\partial E:=\{\vec{x}\in\mathbb{R}^n:\ \forall\, r>0:\ B(\vec{x},r)\cap E,\ B(\vec{x},r)\cap E^c\neq\varnothing\}\subset\mathbb{R}^n.$$

• La clausura de un conjunto $E \subseteq \mathbb{R}^n$ es el conjunto: $\overline{E} := E \cup \partial E$.

Teorema

Se tiene que:

- Un conjunto $E \subseteq \mathbb{R}^n$ es abierto si y sólo si $\mathring{E} = E$.
- Un conjunto $E \subseteq \mathbb{R}^n$ es cerrado si y sólo si $\partial E \subseteq E$.
- Un conjunto $E \subseteq \mathbb{R}^n$ es cerrado si v sólo si E = E.

Observaciones:

- Hay conjuntos que no son ni abiertos ni cerrados.
- Por convención, \emptyset y \mathbb{R}^n son abiertos y cerrados simultáneamente (y son los únicos con esta propiedad).
- El interior de un conjunto es un conjunto abierto; la clausura de un conjunto es un conjunto cerrado.

Ejercicio: Dibuja el conjunto A y responde cualitativamente a las siguientes cuestiones: $A = \{(x, y) \in \mathbb{R}^2 : |x| < 1 \text{ e } |y| \le 1\}$

- ¿Es abierto el conjunto A? ¿es cerrado?
- ② Indica cuáles son los conjuntos \mathring{A} , \overline{A} y ∂A .

Lema

Sea $E \subset \mathbb{R}^n$. Entonces $p \in \overline{E}$ si y sólo si toda bola con centro p interseca a E.

Sucesiones en \mathbb{R}^n .

Una **sucesión** en \mathbb{R}^n es una colección de puntos de \mathbb{R}^n indexada por \mathbb{N} ; i.e,

$$p_1, p_2, \ldots, p_k, p_{k+1}, \cdots \subset \mathbb{R}^n$$

Cada punto $p_k \in \mathbb{R}^n$, así que

$$p_k = (x_k^1, x_k^2, \dots, x_k^n),$$

donde x_k^1 es la primera coordenada de p_k , x_k^2 es la segunda coordenada de $p_k i$, y así hasta la última.

Fijándonos en una coordenada determinada (por ejemplo, la tercera), tenemos una sucesión usual de números reales

$$x_1^3, x_2^3, \dots, x_k^3, x_{k+1}^3, \dots$$

Por ello también podemos definir una sucesión en \mathbb{R}^n como un conjunto de n-sucesiones en \mathbb{R} , una para cada coordenada.

Límite de una sucesión en \mathbb{R}^n

Definición

Decimos que una sucesión $\{p_k\}_{k\in\mathbb{N}}$ en \mathbb{R}^n converge a un punto $L\in\mathbb{R}^n$, escrito como lím $_{k\to\infty}$ $p_k=L$, si para todo $\varepsilon>0$, existe un $N\in\mathbb{N}$ tal que para todo k>N, se tiene que $\|p_k-L\|<\varepsilon$.

Teorema

El límite de una sucesión, si existe, es único.

Lemma

Dada una sucesión $\{p_k\}_k = \{(x_k^1, x_k^2, \dots, x_k^n)\}_k \in \mathbb{R}^n$ y un punto $L = (L_1, L_2, \dots, L_n) \in \mathbb{R}^n$, se tiene que

$$\lim_{k\to\infty} p_k = L \quad \Leftrightarrow \quad \lim_{k\to\infty} x_k^i = L_i, \quad \forall i = 1, 2, \dots, n$$

Conjuntos cerrados y sucesiones

Definición

Si $E \subset \mathbb{R}^n$, un punto p se llama un punto límite, o punto de acumulación, de E, si existe una sucesión p_k de puntos en E con lím $p_k = p$.

Teorema

Un conjunto E en \mathbb{R}^n es cerrado si y solamente si el límite L de toda sucesión $\{p_k\}$ convergente de puntos en E permanece en E.

• Consecuencia: Para ver que un conjunto no es cerrado, basta encontrar una sucesión $p_k \in E$ con $\lim_{k \to \infty} p_k \notin E$.

Teorema

La clausura de un conjunto $E \subset \mathbb{R}^n$ coincide con la unión del conjunto y de sus puntos límites.

Corolario

Si $E \subset \mathbb{R}^n$ es un conjunto, entonces $\partial E = \overline{E} \cap \overline{\mathbb{R}^n \setminus E}$.

A modo de resumen

DEFINICIONES (dado un conjunto $A \subset \mathbb{R}^n$)

- Puntos interiores: $\mathring{A} = \{x \in \mathbb{R}^n : \exists r > 0 \text{ tal que } B_r(x) \subset A\}.$
- Puntos exteriores: $\operatorname{Ext}(A) = \{x \in \mathbb{R}^n : \exists r > 0 \text{ tal que } B_r(x) \cap A = \emptyset\}.$
- Puntos frontera: $\partial A = \{x \in \mathbb{R}^n : \forall r > 0, B_r(x) \cap A \neq \emptyset, B_r(x) \cap A^c \neq \emptyset\}.$
- Puntos aislados: $Ais(A) = \{x \in \mathbb{R}^n : \exists r > 0 \text{ tal que } B_r(x) \cap A = \{x\}\}.$
- Puntos de adherencia, clausura: $\overline{A} = \{x \in \mathbb{R}^n : \forall r > 0, B_r(x) \cap A \neq \emptyset\}.$
- Puntos límite o de acumulación: $A' = \{x \in \mathbb{R}^n : \forall r > 0, B_r^*(x) \cap A \neq \emptyset\}$, donde $B_r^*(x) = B_r(x) \setminus \{x\}$, (bola perforada).

RELACIONES Y CARACTERIZACIONES (# denota unión disjunta):

- $\mathring{A} \subset A \subset \overline{A}$; $\operatorname{Ais}(A) \subset \partial A$; $\operatorname{Ext}(A) = (A^c)^{\circ}$.
- $\overline{A} = A \cup \partial A = \mathring{A} \uplus \partial A = A' \uplus \operatorname{Ais}(A)$.
- A es abierto \iff $A = \mathring{A}$; A es cerrado \iff A^c es abierto \iff $A = \overline{A}$.
- ullet A es cerrado \iff toda sucesión de puntos de A convergente tiene su límite en A
- $x \in A' \iff$ existe una sucesión de puntos de A, todos distintos a x, que converge a x.

Conjuntos conexos

Definición

Se dice que el conjunto $D \subset \mathbb{R}^n$ es **conexo** si no existen dos conjuntos abiertos disjuntos y no vacíos, E_1 , E_2 de forma que se tenga $D \subset E_1 \cup E_2$ con $D \cap E_1 \neq \emptyset$ y $D \cap E_2 \neq \emptyset$ (i.e., D no tiene componentes separadas por conjuntos abiertos, disjuntos y no vacíos).

En \mathbb{R} , un conjunto es conexo si y solo si es un intervalo (abierto, cerrado, finito o no). En dimensiones superiores, la topología de estos conjuntos puede llegar a ser muy complicada.

Definición

Se dice que el conjunto no vacío $D\subset \mathbb{R}^n$ es conexo por arcos si dados $x,y\in D$ cualesquiera existe una función continua $\varphi:[0,1]\to D$ de forma que $\varphi(0)=x,\quad \varphi(1)=y$.

Un conjunto conexo por arcos es siempre conexo pero el recíproco no es cierto: un ejemplo viene dado por la gráfica de la función sen $\frac{1}{x}$ unión el punto (0,0), es decir,

$$D = \left\{ \left(x, \text{sen } \frac{1}{x} \right) : x \in (0, 1] \right\} \bigcup \{ (0, 0) \}$$

