Vereinbarte Konstanten:

Normaleingriffs- winkelwinkel:	Schrägungswinkel:	Überschlägiger Belastungswert:	Anwendungsfaktor
α_n := 20 °	β:=20 °	$B_{zul} \coloneqq 4 \; rac{N}{mm^2}$	$K_A \coloneqq 2.0$
Druckkraft vom Boden:	Schaltdrehzahl:	Dauerfestigkeitssch	
$F_B = 1500 \ N$	n_s := 1400 rpm	$ au_{Tzul} = 50 \; rac{N}{mm^2}$	(42CrMo4)
Antriebsdrehzahl:			
$n_{Antrieb} \coloneqq 2000 \ \frac{1}{m}$	$\frac{1}{in}$		

Übersetzungsverhältnis:

Antriebsmoment:

$$T_{an} = 50 \ N \cdot m$$

Theoretisch benötigte Übersetzungen:

$$i_1 := 3.40$$

$$i_2 = 2.95$$

orientiert an TB 21-11

$$i_{Gesamt} \coloneqq i_1 \boldsymbol{\cdot} i_2$$

$$i_{Gesamt} = 10.03$$

Errechnete Übersetzungen (siehe Zahnraddaten):

$$i'_1 := 3.381$$

$$i'_2 = 2.964$$

$$i'_{Gesamt} \coloneqq {i'}_1 \boldsymbol{\cdot} {i'}_2$$

$$i'_{Gesamt} = 10.021$$

Moment der Vorgelegewelle:

$$T_{Vorgelege} \coloneqq T_{an} \boldsymbol{\cdot} i'_1$$

$$T_{Vorgelege} = 169.05 \ N \cdot m$$

Abtriebsmoment:

$$T_{ab} \coloneqq T_{an} \cdot i'_{Gesamt}$$

$$T_{ab} = 501.064 \ N \cdot m$$

04.08.2022 Seite 1 von 26

T 05 37			
$F_F = 25 N$	$n_s = 1400 \frac{1}{min}$	$\omega_s = 2 \ \pi \cdot n_s = 146.6$	08
$\mu_0 := 0.9$			
$\Delta l \coloneqq 2.5 \ mm$			
$C\!\coloneqq\!rac{F_F}{\Delta l}$		$C = 10 \frac{N}{mm}$	
F_{Flieh} :=	$m_{FK}\!\cdot\!r_{FK}\!\cdot\!\omega_s^{\;2}$	$F_{Flieh} = 0.537 \ kN$	
$F_N \coloneqq ig(F)$	$_{Flieh}$ $ 2 \cdot F_F angle$	$F_N = 0.487 \ kN$	
ers: $F_R \coloneqq \mu_0$	$\cdot F_N$	$F_R = 438.611 \ N$	
T_R := N_F	$_{K}oldsymbol{\cdot}F_{R}oldsymbol{\cdot}rac{d_{R}}{2}$	$T_R = 52.633 \ N \cdot m$	
	$\Delta l \coloneqq 2.5 \; mm$ $C \coloneqq rac{F_F}{\Delta l}$ $F_{Flieh} \coloneqq F_N = F_$	$\mu_0 \coloneqq 0.9$ $\Delta l \coloneqq 2.5 \; mm$ $C \coloneqq \frac{F_F}{\Delta l}$ $F_{Flieh} \coloneqq m_{FK} \cdot r_{FK} \cdot \omega_s^2$ $F_N \coloneqq (F_{Flieh} - 2 \cdot F_F)$	$\mu_0\coloneqq 0.9$ $\Delta l\coloneqq 2.5~mm$ $C=10~rac{N}{mm}$ $F_{Flieh}\coloneqq m_{FK}\cdot r_{FK}\cdot \omega_s^{\ 2}$ $F_{Flieh}=0.537~kN$ $F_N\coloneqq (F_{Flieh}-2\cdot F_F)$ $F_N=0.487~kN$ Ders: $F_R\coloneqq \mu_0\cdot F_N$

04.08.2022 Seite 2 von 26

Antriebswelle:	Vorgelegewelle:	Abtriebswelle:
$d_{min1} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{an} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$	$d_{min2} \coloneqq \sqrt[3]{rac{\left(16 m{\cdot} T_{Vorgelege}}{\pi m{\cdot} au_{Tzul}} ight)}}$	$egin{aligned} oldsymbol{\cdot} K_A \end{pmatrix} \ d_{min3} \coloneqq \sqrt[3]{ egin{pmatrix} (16 \cdot T_{ab} \cdot K_A) \\ \pi \cdot au_{Tzul} \end{aligned}}$
d _{min1} = 21.677 mm	$d_{min2} = 32.535 \ mm$	$d_{min3} = 46.735 \ mm$
Gewählt: $d_{W1} = 25 \ mm$	Gewählt: $d_{W2} = 35 mn$	n Gewählt: $d_{W3} = 50 \ mr$
nhnraddaten:		
Ritzelzähnezahlen:		
$z_1 \coloneqq 21$	z_3 := 28	
$z_2 = 71$	$z_4\!\coloneqq\!83$	
$i'_1 \coloneqq \frac{z_2}{z_1} = 3.381$	$i'_2 := \frac{z_4}{z_3} = 2$	2.964
Damit ist $i'_1 \sim i_1$ und $i'_2 \sim$		
orientiert an TB 21-12		
Modul 1,2:		
$m_{n12} \coloneqq \frac{\left(1.8 \cdot d_{W1} \cdot \cos\left(\beta\right)\right)}{z_1 - 2.5}$	$m_{n12} = 2.286 \ mm$	nach Gl. 21-63
Gerundet:	$m_{n12} \coloneqq 3.0 \; mm$	nach TB 21-1
Teilkreisdurchmesser 1,2:		
$egin{aligned} d_1 &\coloneqq rac{ig(z_1 \cdot m_{n12}ig)}{\cos{(eta)}} \ d_2 &\coloneqq rac{ig(z_2 \cdot m_{n12}ig)}{\cos{(eta)}} \end{aligned}$	$d_1 = 67.043 \ mm$	nach Gl. 21-38
$(z_2 \cdot m_{n12})$	$d_2 = 226.67 \ mm$	

Zahnradbreite 1	.,2:		
Zahnrad Z1:	$b_1 \coloneqq rac{\left(2 \cdot oldsymbol{T}_{an} ight)}{\left(d_1^{2} oldsymbol{B}_{zul} ight)}$	$b_1 = 5.562 \ mm$	nach Vereinbarung
Gewählt:	$b_1 = 25 mm$		gewählt nach TB-21-13 a/b.)
	$b_2 \coloneqq b_1$		
Null-Achsabstan	nd 1,2:		
$a_{d1} \coloneqq \frac{\left(d_1 + d_2\right)}{2}$	-	$a_{d1} = 146.857 \ mm$	nach Gl. 21-8
Modul 3,4:			
$m_{n34} \coloneqq rac{\left(2 m{\cdot} a_{d1} ight.}{\left(1 + ight.}$	$egin{array}{c} \cdot \cos{(oldsymbol{eta})} \\ oldsymbol{i_2} \cdot z_3 \end{array}$	$m_{n34} \!=\! 2.495 \; mm$	nach Gl. 21-64
Gerundet: 1 Teilkreisdurchm	$m_{n34} = 2.5 \ mm$ esser 3,4:		nach TB 21-1
$d_3 \coloneqq \frac{\left(z_3 \cdot m_{n34}\right)}{\cos\left(\beta\right)}$	<u>) </u>	$d_3 = 74.492 \ mm$	
$(z_i \cdot m_{-\alpha})$			nach Gl. 21-38
$d_4 \coloneqq \frac{(z_4 \cdot m_{n34})}{\cos(\beta)}$	_	$d_4 = 220.817 \ mm$	

Zahnradbreite 3,4:

	(o T		
Zahnrad Z3:	$b_3 = \frac{(2 \cdot T_{Vorgelege})}{d^2 P}$	$b_3 = 15.232 \ mm$	nach Vereinbarung

Gewählt:
$$b_3 = 40 \text{ mm}$$
 gewählt nach TB-21-13 a/b.)

$$b_4 \coloneqq b_3$$

Null-Achsabstand 3,4:

$$a_{d2} \coloneqq \frac{(d_3 + d_4)}{2}$$
 $a_{d2} = 147.655 \ mm$ $a_{d1} = 146.857 \ mm$ nach Gl. 21-8

$$a_{d1} - a_{d2} = -0.798 \ mm$$

Die Nullachsabstände sind verschieden, a_{d1} wird angeglichen. D.h. eine negative Profilverschiebung wird an den Zahnrädern z_1 und z_2 vorgenommen, damit keine Schwächung des Ritzels entsteht.

Profilverschiebung:

Stirneingriffswinkel:

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right)$$
 $\alpha_t = 21.173$ ° nach Gl. 21-35

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{d1}}{a_{d2}}\right) \cdot \frac{360}{2 \cdot \pi}$$
 $\alpha_{wt} = 21.959$ nach Gl. 21-21

Summe Profilverschiebungsfaktoren:

$$invlpha_{wt} \coloneqq an(lpha_{wt}) - lpha_{wt} \cdot rac{2 \cdot \pi}{360^{\circ}} \qquad invlpha_{t} \coloneqq an(lpha_{t}) - lpha_{t} \cdot rac{2 \cdot \pi}{360^{\circ}}$$

$$inv\alpha_{wt} = 0.02$$
 $inv\alpha_t = 0.018$

$$\Sigma x \coloneqq \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot (z_1 + z_2)$$
 nach Gl. 21-56

$$\Sigma x = 0.271$$

Ersatzzähnezahlen:

$\beta_b = a\cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right)$	$\beta_b = 18.747$ °	nach Gl. 21-36
$cos^{2}\left(\beta_{b}\right)\coloneqq\frac{1}{2}\left(1+\cos\left(2\boldsymbol{\cdot}\boldsymbol{\beta}_{b}\right)\right)$	$\cos^2\left(\beta_b\right) = 0.897$	Additionstheorem
$z_{n1} \coloneqq \frac{z_1}{\cos^2(\beta_b) \cdot \cos(\beta)}$	$z_{n2} \coloneqq rac{z_2}{\cos^2\left(oldsymbol{eta}_b ight) \cdot \cos\left(oldsymbol{eta} ight)}$	nach Gl. 21-47
$z_{n1} = 24.922$	$z_{n2} = 84.26$	
Sinnvolle Wahl von $oldsymbol{x}_1$ nach Gl. 21.33 i	m Roloff/Matek	
$\log \left(\frac{z_2}{z_1}\right)$		
$\boldsymbol{x}_1 \coloneqq \frac{\boldsymbol{\Sigma} \boldsymbol{x}}{2} + \left(0.5 - \frac{\boldsymbol{\Sigma} \boldsymbol{x}}{2}\right) \cdot \frac{\log\left(\frac{\boldsymbol{z}_2}{\boldsymbol{z}_1}\right)}{\log\left(\frac{\boldsymbol{z}_{n1} \cdot \boldsymbol{z}_{n2}}{100}\right)}$		nach Gl. 21-33
$x_1 = 0.281$		
$x_2 \coloneqq \Sigma x - x_1$		
$x_2 = -0.01$		
Verschiebungen:		
${V}_1\!\coloneqq\!x_1\!\cdot\!m_{n12}$	$V_1 = 0.844 \ mm$	nach Gl. 21-49
${V}_2\!\coloneqq\! x_2\!\cdot\! m_{n12}$	$V_2 = -0.031 \ mm$	
$V_3 = 0 mm$		
$V_4 \coloneqq 0 \ mm$		
aße der Zahnräder nach Profilverso	chiebung:	
Kopfhöhenänderung:		
$k \coloneqq a_{d2} - a_{d1} - m_{n12} \cdot (x_1 + x_2)$	$k = -0.014 \ mm$	nach Gl. 21-23

04.08.2022 Seite 6 von 26

Kopfspiel (Soll):		
$c_{12}\!\coloneqq\!0.25\boldsymbol{\cdot} m_{n12}$	$c_{12} \! = \! 0.75 \; mm$	nach C 700
$c_{34} \coloneqq 0.25 \cdot m_{n34}$	$c_{34} = 0.625 \; mm$	nach S.769
Kopfkreisdurchmesser nach Pi	rofilverschiebung:	
$d_{a1} \coloneqq d_1 + 2 \cdot m_{n12} + 2 \cdot V_1 + 2 \cdot$	$d_{a1} = 74.702 \ mm$	nach Gl. 21-24
$d_{a2} := d_2 + 2 \cdot m_{n12} + 2 \cdot V_2 + 2 \cdot$	$d_{a2} = 232.578 \ mm$	
$d_{a3} \coloneqq d_3 + 2 \boldsymbol{\cdot} m_{n34}$	$d_{a3} = 79.492 \ mm$	nach Gl. 21-40
$d_{a4} \coloneqq d_4 + 2 \cdot m_{n34}$	$d_{a4} = 225.817 \ mm$	
Fußkreisdurchmesser nach Pro	ofilverschiebung:	
$d_{f1} \coloneqq d_1 - 2 \cdot \left(\left(m_{n12} + c_{12} \right) - V \right)$	$d_{f1} = 61.231 \; mm$	nach Gl. 21-25
$d_{f2} := d_2 - 2 \cdot ((m_{n12} + c_{12}) - V_{f2})$	$d_{f2} = 219.107 \; mm$	
$d_{f3} \coloneqq d_3 - 2.5 \cdot m_{n34}$	$d_{f3}\!=\!68.242\;\pmb{mm}$	nach Gl. 21-41
$d_{f4} \coloneqq d_4 - 2.5 \cdot m_{n34}$	$d_{f4} = 214.567 \ mm$	
Kopfspiel nach Profilverschieb	ung:	
$c \coloneqq a_{d2} - 0.5 \cdot (d_{a1} + d_{f2})$	c=0.75 mm	nach Gl. 21-22c
rüfen der Zahndicke am Kop	ofkreis:	
tangentiales Modul:	$m_{t12} \coloneqq rac{m_{n12}}{\cos\left(eta ight)}$	
min. Kopfdicke des Zahnes:	$s_{a12min} \coloneqq 0.2 \cdot m_{n12}$	nach S.791
	$s_{a12min} = 0.6 mm$	
Stirnteilung:	$p_{t12}\!\coloneqq\!m_{t12}\!\cdot\!\pi$	nach Gl. 21-34

Stirnzahndicke: $s_{t1} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_1 \cdot \tan{(\alpha_t)}$ nach Gl. 21-51

" s_{t1} " ist in Bezug auf den tangentialen Stirnschnitt (S-S) durch das Zahnrad. (S.802 - Bild 21-14)

" s_{a1} " ist auf den Kopfkreis bezogen

Profilwinkel am Kopfkreis: $\alpha_{at1} \coloneqq \operatorname{acos}\left(\frac{d_1 \cdot \operatorname{cos}\left(\alpha_t\right)}{d_{a1}}\right)$ nach S.806 " α_{at1} " entspricht " α_{yt1} " aus Roloff Matek

 $invlpha_{at1} \coloneqq an(lpha_{at1}) - lpha_{at1} \cdot \frac{2 \cdot \pi}{360}$ aus Vorlesung

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a1} \coloneqq d_{a1} \cdot \left(\frac{s_{t1}}{d_1} + inv\alpha_t - inv\alpha_{at1}\right) \qquad \qquad s_{a1} = 2.055 \ \textit{mm} \qquad \qquad \text{nach Gl. 21-53}$$

Stirnzahndicke: $s_{t2} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_2 \cdot \tan{(\alpha_t)}$

Profilwinkel am Kopfkreis:
$$\alpha_{at2} \coloneqq a\cos\left(\frac{d_2 \cdot \cos\left(\alpha_t\right)}{d_{a2}}\right)$$

$$inv\alpha_{at2} := \tan(\alpha_{at2}) - \alpha_{at2} \cdot \frac{2 \cdot \pi}{360}$$

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a2} \coloneqq d_{a2} \cdot \left(\frac{s_{t2}}{d_2} + inv\alpha_t - inv\alpha_{at2}\right) \hspace{1cm} s_{a2} = 2.583 \hspace{0.1cm} mm$$

Sowohl s_{a1} als auch s_{a2} sind $> s_{a12min}$. Die Zahndicke am Kopfkreis ist damit ausreichend. Zusätzliche Prüfung über TB 21-8 R/M führt zum gleichen Ergebnis.

Grundkreisdurchmesser db:

(Der Durchmesser welcher von der Normalen N-N, die durch den Berührpunkt der Zahnflanken geht, tangiert wird - Bild 21.3)

 $d_{b1} \coloneqq d_1 \cdot \cos{(\alpha_t)}$ $d_{b1} = 62.517 \ mm$ $d_{b2} \coloneqq d_2 \cdot \cos{(\alpha_t)}$ $d_{b2} = 211.369 \ mm$ $d_{b3} \coloneqq d_3 \cdot \cos{(\alpha_t)}$ $d_{b3} = 69.464 \ mm$ $d_{b4} \coloneqq d_4 \cdot \cos{(\alpha_t)}$ $d_{b4} = 205.911 \ mm$

04.08.2022 Seite 8 von 26

Profilüberdeckung:

Profilüberdeckung des ersten Zahnradpaares:

$$\varepsilon_{\alpha12} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{z_2}{|z_2|} \cdot \sqrt{d_{a2}^2 - d_{b2}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)} \quad \text{nach Gl. 21-57}$$

$$\varepsilon_{\alpha 12} = 1.47$$

$$arepsilon_{eta12}\coloneqq rac{oldsymbol{b_1}\cdot an(eta)}{oldsymbol{p_{t12}}}$$
 nach Gl. 21-44

$$\varepsilon_{\gamma 12} \coloneqq \varepsilon_{\alpha 12} + \varepsilon_{\beta 12} \hspace{1cm} \text{nach Gl. 21-46}$$

-> Profilüberdeckung des ersten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Profilüberdeckung des zweiten Zahnradpaares:

$$\varepsilon_{\alpha34} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)}$$

$$\varepsilon_{\alpha 34} = 1.119$$

$$\varepsilon_{\beta34} \coloneqq \frac{b_3 \cdot \tan{(\beta)}}{p_{t12}} \qquad \qquad \varepsilon_{\beta34} = 1.452$$

$$arepsilon_{\gamma 34} \coloneqq arepsilon_{\alpha 34} + arepsilon_{\beta 34} \qquad \qquad arepsilon_{\gamma 34} \equiv 2.57$$

-> Profilüberdeckung des zweiten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Betriebswälzkreisdurchmesser:

$$d_{w1} \coloneqq \frac{d_1 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{wt}\right)} \qquad d_{w1} = 67.408 \ \textit{mm} \qquad \qquad \text{nach Gl. 21-22a}$$

$$d_{w2} \coloneqq \frac{d_2 \cdot \cos\left(\alpha_t\right)}{\cos\left(\alpha_{wt}\right)} \qquad d_{w2} = 227.902 \ \textit{mm} \qquad \qquad \text{nach Gl. 21-22b}$$

 $d_{\text{ang}} := d_2$ $d_{\text{ang}} = 74.492 \ mm$

$d_{w4}\!\coloneqq\! oldsymbol{d_4}$	d_{w4} = 220.817 $m{mm}$		
ontrolle Achsabstand	1:		
$a \coloneqq \frac{d_{w1} + d_{w2}}{2} = 147.65$	identisch mit		
$a \coloneqq \frac{d_{w3} + d_{w4}}{2} = 147.65$	$a_{d2} = 147.658$ $65 \ mm$		
isammenfassung: $d_1 = 67.043 \ mm$	$d_{b_1} = 62.517 \ mm$	$d_{c1} = 74.702 \ mm$	$d_{s_1} = 61.231 \ mm$
isammenfassung: $\begin{aligned} & d_1 = 67.043 \ \textit{mm} \\ & d_2 = 226.67 \ \textit{mm} \end{aligned}$	$d_{b1} = 62.517 \ mm$ $d_{b2} = 211.369 \ mm$	$d_{a1} = 74.702 \ mm$ $d_{a2} = 232.578 \ mm$	
$d_1 = 67.043 \ mm$			$d_{f2} = 219.107 \; m_0$
$d_1 = 67.043 \ mm$ $d_2 = 226.67 \ mm$	$d_{b2} = 211.369 \ mm$	$d_{a2} = 232.578 \ mm$	d_{f2} =219.107 m_{f3} =68.242 m_{f3}
$d_1 = 67.043 \ mm$ $d_2 = 226.67 \ mm$ $d_3 = 74.492 \ mm$	$d_{b2} = 211.369 \ mm$ $d_{b3} = 69.464 \ mm$	$d_{a2} = 232.578 \ mm$ $d_{a3} = 79.492 \ mm$	d_{f2} =219.107 m_{f3} =68.242 m_{f3}
$egin{aligned} d_1 &= 67.043 \ \emph{mm} \\ d_2 &= 226.67 \ \emph{mm} \\ d_3 &= 74.492 \ \emph{mm} \\ d_4 &= 220.817 \ \emph{mm} \end{aligned}$	$d_{b2} = 211.369 \ mm$ $d_{b3} = 69.464 \ mm$ $d_{b4} = 205.911 \ mm$	$d_{a2} = 232.578 \ mm$ $d_{a3} = 79.492 \ mm$ $d_{a4} = 225.817 \ mm$	d_{f2} =219.107 m_f d_{f3} =68.242 m_f d_{f4} =214.567 m_f

b ₄ =40 mm	d_{w4} =220.817 mm	$z_4 = 83$	
$V_1 = 0.844 \ mm$	$\varepsilon_{\alpha 12}\!=\!1.47$	$\varepsilon_{\alpha 34} = 1.119$	$x_1 = 0.281$
$V_2 = -0.031 \ mm$	$arepsilon_{eta12} = 0.907$	$arepsilon_{eta34} = 1.452$	$x_2 = -0.01$
$V_3 = 0$ mm	$\varepsilon_{\gamma 12}\!=\!2.377$	$arepsilon_{\gamma 34} \!=\! 2.57$	
$V_4 = 0$ mm			

04.08.2022 Seite 10 von 26

Passfederberechnung:

	Q 1.1	D 400 N	Re	. 201 010 N
	$S_F = 1.1$	$Re = 420 {mm^2}$	$p_{fzul} \coloneqq rac{}{S_F}$	$p_{fzul} = 381.818 \frac{N}{mm^2}$
	HIGHT ID 12 15			
	<i>φ</i> ≔ 1 für ı	$n=1$ $n_{Pass}\coloneqq 1$	$K_{\lambda} \coloneqq 1$	$K_A = 2$
Antr	riebswelle - Fliehk	raftkupplung		
	für Wellendurch	messer 25mm:	-Passfeder DIN 6885	- A8x7x25
	$h_{Pass} \coloneqq 7$ mm	l_{Pass} := 25 \emph{mm}	<i>h</i> := 3.0 <i>mm</i>	
	$b_{Pass} \coloneqq 8 \; mm$	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1}\coloneqq 25$ m	m
m	$2 \cdot K_A \cdot T_{ar}$	$_{n}\cdot K_{\lambda}$ – 156 969	N	
p_m :	$\overline{d_{Kritisch1} \cdot h \cdot l'_{Pa}}$	$\frac{{}_{n} \cdot K_{\lambda}}{ss \cdot n_{Pass} \cdot \varphi} = 156.863$	$\frac{1}{mm^2}$ $p_m < p_{fm}$, nach Gl. 12-1
			- 110 = J20	
Wer	kstoff Passfeder E	295 GC		
			Re	N
	$S_F \coloneqq 1.1$	$Re = 420 \frac{1}{mm^2}$	$p_{fzul} \coloneqq \frac{rec}{S_E}$	$p_{fzul} = 381.818 \frac{N}{mm^2}$
	nach TB 12-1b	110110	F	110110
	<i>φ</i> ≔ 1 für ı	$n=1$ $n_{Pass} \coloneqq 1$	$K_{\lambda} \coloneqq 1$	$K_A = 2$
Abtr	riebswelle - Rutsch	nkupplung		
		messer 50mm:	-Passfeder DIN 6885	- A14x9x36
	$h_{p_{max}} = 9 \ mm$	<i>l_{Pass}</i> :=36 <i>mm</i>	h := 4 mm	
	russ	russ		
	$b_{Pass} \coloneqq 14 \ \boldsymbol{mm}$	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch2} \coloneqq 50 m$	m
	2 · K	$T_A \cdot T_{an} \cdot K_{\lambda}$. A55 N	nach Gl. 12-1
	$p_mrac{}{d_{Kritisch2}\cdot}$	$\frac{I_A \cdot T_{an} \cdot K_{\lambda}}{h \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 45$	p_m	< p_{fzul}
\ \ /a	kstoff Passfeder E	E295 GC		
wer		$Re := 420 \frac{N}{mm^2}$	$p_{fzul} = rac{Re}{S_F}$	p_{fzul} = 381.818 $\frac{N}{mm^2}$
wer	$S_{-} = 1.1$	Re := 420	n_{s} \cdots	$n_{s} = -381.818$

04.08.2022 Seite 11 von 26

-Passfeder DIN 6885 - A10x8x25

Vorgelegewelle

für Wellendurchmesser 35mm:

	$h_{Pass} = 8$ mm	$l_{Pass}\!\coloneqq\!25$ mm	$h \coloneqq 3$	nm	
	$b_{Pass} \coloneqq 10 extbf{mm}$	$l'_{Pass} \coloneqq l_{Pass} - b$	$d_{Kritisc}$	_{h3} := 35 <i>mm</i>	
p_m :=-	$2 \cdot K_A \cdot T_{at} \ d_{Kritisch3} \cdot h \cdot l'_{Pa}$	$n \cdot K_{\lambda}$ $n_{Pass} \cdot n_{Pass} \cdot \varphi = 126$		$< p_{fzul}$	nach Gl. 12-1
Vorausv				gerbelastunge	en, Anpassung der
		te aus Freischnit	<u>t:</u>		
	ifte an der Antri				
Antrie	ebsmoment	$T_{an} = 50 \ N \cdot m$			
Wälzk	kreisdurchmesse	er $d_{w1} = 67.408 \; \boldsymbol{n}$	nm		
Wirka	bstände	$X_1 \coloneqq 26.5 \ \textit{mm}$		X_2 :=	23.5 <i>mm</i>
Zahnr	rad Z1 F_{tZ1} :=	$rac{2 \cdot T_{\mathit{an}}}{d_{w1}}$	Umfangskraft r	nach Gl. 21.70	$F_{tZ1} = 1.484 \; kN$
	F_{aZ1} :=	$F_{tZ1} \cdot an(oldsymbol{eta})$	Axialkraft r	nach Gl. 21.72	$F_{aZ1} = 0.54 \; kN$
	F_{rZ1} :=	$\frac{\left(F_{tZ1} \cdot \tan\left(\alpha_n\right)\right)}{\cos\left(\beta\right)}$	Radialkraft r	nach Gl. 21.7	1 $F_{rZ1} = 0.575 \text{ kN}$
Loslag	X	_			$F_{L1y} = 0.697 \; kN$
	F_{L1z} := —	$F_{aZ1} \cdot \frac{d_{w1}}{2} + F_{rZ1} \cdot X_1 + X_2$	X_1		$F_{L1z}{=}{-}0.059$ k/
Festla	ager $F_{F1x} \coloneqq F_a$	Z 1			F_{F1x} = $0.54~$ kN
	$F_{E1} := F_{A}$	$_{ m Z1}\!-\!F_{L1y}$			$F_{F1y} {=} 0.786 \; {\it kN}$
	- F1y - t2	-7 -70			

04.08.2022 Seite 12 von 26

erkräfte an der Vorge	egev	velle	2:						
Moment an der Vorgel	egev	velle		T_{Vorgel}	$_{ege} = 169$	9.05 N	· m		
Välzkreisdurchmesser	d_{w2}	=22	7.902	mm			d_{w3} =	= 74.492	mm
Virkabstände	X_3 :	=26	mm		$X_4 \coloneqq 1$	21 mm	ı	$X_5 \coloneqq 36$	5.5 <i>mm</i>
Zahnrad Z2	F_{aZ}	₂ := -	$-F_{aZ1}$		F_{tZ2} :=	$=-F_{tZ1}$		F_{rZ2}	$\coloneqq -F_{rZ1}$
Zahnrad Z3	F_{tZ}	3:=-	$2 \cdot T_{Vo}$	rgelege v3			F_{tZ3}	=4.539	kN
				$\operatorname{an}(\boldsymbol{\beta})$			F_{aZ3}	=1.652	kN
	F_{rZ}	3:=-	F_{tZ3} • t \cos	$ \tan\left(\alpha_{n}\right) $ $ \sin\left(\beta\right) $	-		F_{rZ3}	=1.758	kN
oslager	F_{L2}	y := -	F_{tZ2}	$X_3 + F$ $X_3 + Z_3$	$tZ3 \cdot (X_3 + X_5 + X_4 + X_5)$	$+X_4$	F_{L2y}	=-2.093	3 kN
	F_{L2}	- z:=-	$-F_{rZ2}$	$\cdot X_3 + F$		$G+F_{rZ3}$ $G+X_4+G$		$-X_4$) + F_a	$aZ3 \cdot \frac{was}{2}$
							F_{L2z}	=1.168	kN
estlager	F_{F2}	$_x \coloneqq I$	$F_{aZ3} +$	F_{aZ2}			F_{F2x}	=1.112	kN
	F_{F2}	y : = -	$-F_{tZ2}$	$-F_{tZ3}-$	F_{L2y}		F_{F2y}	=-0.963	2 kN
	F_{F2}	$_z \coloneqq I$	r_{rZ2} –	$F_{rZ3} + F$	L2z		F_{F2z}	=-1.164	1 <i>kN</i>
Die Lagerkräfte herum orientiert an weitere Berechnung daher folgt:	genc	mm	en, da	araus re	sultiert i	hr neg	ativer \		die
$F_{L2y}\!\coloneqq\!2.093~ extbf{kN} \ F_{F2y}\!\coloneqq\!0.962~ extbf{kN} \ F_{F2z}\!\coloneqq\!1.164~ extbf{kN}$									

04.08.2022 Seite 13 von 26

erkräfte an der Abtrie							
Bodenkraft	$F_B \coloneqq 1.$	5 kN					
Abtriebsmoment	$T_{ab} = 50$	01.064 N·m					
Wälzkreisdurchmesser	$d_{w4} = 22$	20.817 <i>mm</i>					
Wirkabstände	$X_6 \coloneqq 27$	7.5 mm		X_7	.:=41 r	nm	
Zahnrad Z4	F_{aZ4} := -	$-F_{aZ3}$	$egin{aligned} F_{tZ4} \coloneqq - \end{aligned}$	$-F_{tZ3}$	1	$F_{rZ4} \coloneqq -F_{rZ}$	3
	$F_{tZ4} \coloneqq \frac{c^2}{2}$	$egin{array}{c} 2 \cdot T_{ab} \ d_{w4} \end{array}$			$F_{tZ4} =$	4.538 kN	
	$F_{aZ4} \coloneqq I$	$F_{tZ3} \cdot an(oldsymbol{eta})$			$F_{aZ4} =$	1.652 kN	
	$F_{rZ4} \coloneqq \dot{-}$	$F_{tZ4} \cdot \tan\left(oldsymbol{lpha_n}\right) \ \cos\left(oldsymbol{eta} ight)$	_		$F_{rZ4} =$	1.758 kN	
Loslager	F_{L3y} :=-	$\frac{-F_{tZ4} \cdot X_7}{X_6 + X_7}$	d_{3114}		$F_{L3y} =$	−2.716 kN	r
	F_{L3z} :=-	$X_6 + X_7$ $-F_{rZ4} \cdot X_7 - F$ $X_6 + X$	$\frac{\sum_{a \neq 4} \cdot \frac{w_4}{2}}{2}$		$F_{L3z} =$	−3.715 kN	-
Festlager	F_{F3x} := -	$-F_{aZ4}+F_B$			$F_{F3x} =$	−0.152 kN	г
	F_{F3y} := -	$-F_{tZ4}-F_{L3y}$			$F_{F3y} =$	−1.822 kN	r
	F_{F3z} := -	$-F_{rZ4}-F_{L3z}$			$F_{F3z} =$	1.957 kN	
Die Lagerkräfte F herum orientiert ange weitere Berechnung waher folgt:	nommen		ltiert ihr ne	egativer V	/ert. Fü	r die	
$F_{L3y} \coloneqq 2.716 \ extbf{kN}$ $F_{L3z} \coloneqq 3.715 \ extbf{kN}$ $F_{F3y} \coloneqq 1.822 \ extbf{kN}$							

Välzlagerberechnung:			
	05)		
estlager Antriebswelle: (622	05)		
$C_0 \coloneqq 7.8 \; kN$		aus WLK	
$F_a \coloneqq \left F_{F1x} \right = 0.54 \ $ kN		aus Freischnitt	
$F_r = \sqrt[2]{F_{F1y}^2 + F_{F1z}^2} = 1.0$	1 <i>kN</i>		
F F		daraus ergibt sich nach 1	ГВ
$\frac{F_a}{C_0} = 0.069$ $\frac{F_a}{F_r} = 0.535$	nach Seite 538	14-3a X und Y zu:	X = 1
			$Y \coloneqq 0.55$
e:=1.14		aus TB14-3a	
$P \coloneqq X \cdot F_r + Y \cdot F_a = 1.307$	kN nach Gl. 14	4.6	
$p\!\coloneqq\!3$ für Kugellager	nach Seite	565	
$C \coloneqq 19.3 \text{ kN}$	nach WLK		
$L_{10h} \coloneqq \frac{10^6}{n_{Antrieb}} \cdot \left(\frac{C}{P}\right)^p = 26$	831 <i>hr</i> nach Gl weggela Einheite	. 14.5a (Faktor 60 assen wegen den	
oclagor Antrioheuvallos (600)			
oslager Antriebswelle: (6004			
$F_a \coloneqq 0$ kN aus Freischnitt			
$F_r = \sqrt[2]{\left(F_{L1y} + F_{L1z}\right)^2} = 0.6$	538 kN		
$P = F_r = 0.638 \ kN$	Seite 538		
$p \coloneqq \frac{10}{3}$	für Rollenlager		
C = 9.3 kN	aus WLK		

$i'_{Antrieb} - rac{i'_{Gesamt}}{i'_{Gesamt}}$	zu: $n_{Antrieb} - \frac{1}{i'_{Gesamt}} = (1.8 \cdot 10^{\circ}) \frac{1}{min}$
Gesund	o Gesamt
$mit i'_{Gesamt} = 10.021$	
Festlager Vorgelegewelle: (NUP204)	
$C_0\!\coloneqq\!24.7~$ kN aus WLK	
$F_a \coloneqq \left F_{F2x} \right = 1.112 \; {\it kN}$ aus Freischnitt	
$F_r = \sqrt[2]{F_{F2y}^2 + F_{F2z}^2} = 1.51 \text{ kN}$	
$\frac{F_a}{C_0} = 0.045$ $\frac{F_a}{F_r} = 0.736$	
weil 0.02< $\frac{F_a}{C_0}$ <=0.5 ergibt sich e	zu:
$e\!\coloneqq\!0.51\! \cdot\! \left(\! rac{F_a}{C_0}\! ight)^{0.233}\!\!=\!0.248$ aus T	B14-3a Fußnote
daraus ergibt sich nach TB 14-3a X ur (weil Fa/Fr > e ist, siehe Fußnote)	nd Y zu: $X\!\coloneqq\!0.56$ $Y\!\coloneqq\!0.866\left(\frac{F_a}{C_0}\right)^{-0.229}\!=\!1.762$
$P \coloneqq X \cdot F_r + Y \cdot F_a = 2.804 \text{ kN}$	(-6)
$p\!\coloneqq\!3$ für Kugellager	
$C\!\coloneqq\!32.5~\emph{kN}$ aus WLK	
$L_{10h} \coloneqq \frac{10^6}{n_{Antrieb}} \cdot \left(\frac{C}{P}\right)^p = 43849 \; m{hr}$	mit $i'_1\!=\!3.381$
i'_1	$m{n_{Antrieb}} = \left(2 \cdot 10^3 ight) rac{1}{min}$
Loslager Vorgelegewelle: (NUP203)	
$F_a \coloneqq 0 \; m{kN}$	aus Freischnitt
$F_r = \sqrt[2]{F_{L2y}^2 + F_{L2z}^2} = 2.397 \ kN$	
$P \coloneqq F_r = 2.397 \ kN$	
$p \coloneqq \frac{10}{3}$	für Zylinderrollenlager
$C \coloneqq 20.8 \ kN$	aus WLK

Festlager Abtriebswelle: (6012)

e := 1.14

$$C_0\coloneqq 23.2~\textbf{kN} \qquad \text{aus WLK}$$

$$F_a\coloneqq \left|F_{F3x}\right|=0.152~\textbf{kN} \qquad \text{aus Freischnitt}$$

$$F_r\coloneqq \sqrt{\left(F_{L1y}+F_{L3y}\right)^2+\left(F_{L1z}+F_{L3z}\right)^2}=5.001~\textbf{kN}$$

$$\frac{F_a}{C_0} = 0.007 \qquad \frac{F_a}{F_r} = 0.03 \qquad \text{Seite 538} \qquad \qquad \text{14-3a X und Y zu:} \qquad \qquad Y := 0.55$$

aus TB14-3a

Die Drehzahl am Loslager ergibt sich

$$P := X \cdot F_r + Y \cdot F_a = 5.085$$
 kN nach Gl. 14.6
 $p := 3$ für Kugellager nach Seite 565

$$C \coloneqq 29 \text{ kN}$$
 nach WLK

$$L_{10h} \coloneqq \frac{10^6}{n_{Abtrieb}} \cdot \left(\frac{C}{P}\right)^p = 15491 \; \textit{hr} \qquad \qquad \text{mit} \quad n_{Abtrieb} \coloneqq \frac{n_{Antrieb}}{\textit{i'}_{Gesamt}} = \frac{n_{Antrieb}}{\textit{i'}_{Gesamt}}$$

Loslager Abtriebswelle: (NU208)

$$F_a\coloneqq 0$$
 kN aus Freischnitt
$$F_r\coloneqq \sqrt[2]{F_{L3y}}^2 + F_{L3z}^2 = 4.602 \ kN$$
 $P\coloneqq F_r = 4.602 \ kN$ Seite 538
$$p\coloneqq 3$$
 für Kugellager

$$C \coloneqq 63 \ \textbf{\textit{kN}}$$
 aus WLK

04.08.2022 Seite 17 von 26

n. A WAntrie	eb (F)	711' 10	$n_{Antrieb}$ _	$-(1.9 \cdot 10^3)$	1
$L_{10h} \coloneqq rac{10^{\circ}}{n_{Antrieb}} - rac{n_{Antrie}}{i'_{Gesan}}$	nt	Zu. <i>M_{Antrie}</i>	$-rac{n_{Antrieb}}{i'_{Gesamt}}=$	(1.8•10)	min
$mit i'_{Gesamt} = 10$	0.021				
ısammenfassung Lebens	sdauern:				
Antriebswelle - Loslage	er $L_{10h}\!\coloneqq\!70108$	5 hr			
Antriebswelle - Festlag	er $L_{10h} \coloneqq 26831$	1 <i>hr</i>			
Vorgelegewelle - Loslag	ger $L_{10h} \coloneqq 37827$	7 hr			
Vorgelegewelle - Festla	$L_{10h} \coloneqq 43849$) hr			
Abtriebswelle - Loslage	er $L_{10h}\!\coloneqq\!23750$) hr			
Abtriebswelle - Festlage	er $L_{10h} = 15491$	1 <i>hr</i>			
estigkeitsnachweis der W	/ellen:				
ntriebswelle:					

Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:
Schnitt entlang s_1 ($Mt\left(s_1\right)\coloneqq 0$	(positives Schnittufer) $s_{1max} = 26.5 \cdot 10^{-1}$ $N_x = 0$	$egin{aligned} & m{nm} & s_{1min} \coloneqq 0 \cdot m{mm} \ & N_x \coloneqq 0 \end{aligned}$
	$Q_yig(s_1ig)\!:=\!-F_{L1y}\!=\!-0.697$ kN	$Q_z(s_1) \coloneqq -F_{L1z} = 0.059 \text{ kI}$
	$Mb_zig(s_1ig)\coloneqq -F_{L1y}ullet s_1$	$Mb_y\left(s_1 ight)\!\coloneqq\!-F_{L1z}\!ullet s_1$
	$Mb_z\left(s_{1max}\right) = -18.477 \ \boldsymbol{N\cdot m}$	$Mb_y\left(s_{1max}\right) = 1.575 \; extbf{ extit{N}} \cdot extbf{ extit{m}}$
	$Mb_z(s_{1min}) = 0 \ oldsymbol{N} ullet oldsymbol{m}$	$Mb_yig(s_{1min}ig)=0$ $m{N}m{\cdot}m{m}$

Schnitt entlang s_2 (neg	gatives serimetarer)	$s_{2max}\coloneqq 23.5 ullet mm \qquad s_{2min}\coloneqq 0 ullet mm$
$Mt(s_2) \coloneqq 50 \ \boldsymbol{N \cdot m}$	$N_x = -F_{F1x} = -0.$	$S4 \ kN \qquad N_x \coloneqq -F_{F1x} = -0.54 \ kN$
	$Q_y\left(s_2\right) \coloneqq F_{F1y} = 0$	$Q_z(s_2)\!\coloneqq\!F_{F1z}\!=\!0.634$ kJ
	$Mb_z(s_2) \coloneqq -F_{F1y}$	$Mb_{y}\left(s_{2} ight)\coloneqq-F_{F1z}ullet s_{2}$
	$Mb_z \left(s_{2max} \right) = -18$	$Mb_y\left(s_{2max}\right) = -14.9 \; N \cdot m$
	$Mb_z\left(s_{2min} ight) = 0$ N	$oldsymbol{\cdot m} Mb_y\left(s_{2min} ight) = 0 oldsymbol{N} oldsymbol{\cdot m}$
atischer & dynamische	r Festigkeitsnachweis	Antriebswelle:
$Rz = 6.3 \ \mu m$	$d_{Kritisch1}$:= 25 $m{mm}$	$Rm \coloneqq 1100 \frac{N}{mm^2}$
$Wb_1 \coloneqq \frac{\pi}{32} \cdot \left(d_{Kritisch1}\right)$	$^{3} = 1533.98 \ mm^{3}$	$W_{t1} := \frac{\pi}{16} \cdot \left(d_{Kritisch1}\right)^3 = 3067.96 \ m$
	Flächenträgheitsr	noment aus TB11-3
$Mb_{res1} \coloneqq \sqrt{Mb_z \left(s_{2max}\right)}$	$\left(-\frac{1}{2} + Mb_y \left(s_{2max} \right)^2 \right)$	$T_{max} \coloneqq \pmb{T_{an}}$ da das Anfahren mit Anlaufkupplung erfol
$R_{p0.2N} = 900 \; rac{N}{mm^2}$		$K_t \coloneqq 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch1}}{16 \ \textit{mm}} \right) = 0.93$
nach TB 1-1		nach TB 3-11
Biegung:		Torsion:
$\sigma_{bmax} \coloneqq \frac{Mb_{res1}}{Wb_1} = 15.4$	N N	
Wb_1	$m{mm}^2$	$ au_{tmax} \coloneqq \frac{oldsymbol{T_{an}}}{W_{t1}} = 16.297 \; rac{oldsymbol{N}}{oldsymbol{mm}^2}$
	nach Bild 3-	2
$\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res1}}{Wb_1} = 30$	$0.947 \frac{N}{mm^2}$	$ au_{ta} \coloneqq rac{K_{A} \cdot T_{an}}{W_{t1}} = 32.595 \; rac{N}{mm^2}$
$\sigma_{bF} \coloneqq 1.2 ullet R_{p0.2N} ullet K_t$	N	$ au_{tF} \coloneqq rac{1.2 \cdot R_{p0.2N} \cdot K_t}{\sqrt{3}} = 582.448 \; rac{N}{mn}$

04.08.2022 Seite 19 von 26

$$\sigma_{bbNN} \coloneqq 550 \, \frac{N}{mm^2} \qquad \text{aus TB 1-1}$$

$$\beta_{kb} \coloneqq 2.5 \qquad \text{aus TB 3-8 mit Rm} = 1100\text{N/mm}^2, \text{ wegen Passfeder}$$

$$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kritisch1}}{7.5 \, mm}\right)}{\log(20)} = 0.92 \qquad \text{aus TB 3-11c}$$

$$K_{0\sigma} \coloneqq 1 - 0.22 \, \log\left(\frac{Rz}{\mu m}\right) \cdot \left(\log\left(\frac{Rm}{20 \, \frac{N}{mm^2}}\right) - 1\right) = 0.87 \quad \text{aus TB 3-10}$$

$$\text{aus TB 3-10} \qquad K_{0\tau} \coloneqq 0.575 \cdot K_{0\tau} + 0.425 = 0.925$$

$$K_V \coloneqq 1 \qquad \text{aus TB 3-12}$$

$$K_{Db} \coloneqq \left(\frac{\beta_{bb}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.868 \qquad K_{Dt} \coloneqq \left(\frac{\beta_{bt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473$$

$$\text{aus Bild 3-27} \qquad \text{nach GI. 3-16}$$

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 179.121 \, \frac{N}{mm^2} \qquad \text{nach GI. 3-17}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmx}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tmx}}{\tau_{tW}}\right)^2}} = 31.3 \qquad \text{nach Bild 3-30}$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmx}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tm}}{\tau_{tW}}\right)^2}} = 3.2 \qquad \text{nach Bild 3-31}$$

	Ergebnis: Die Antriebswelle ist	t dauerfest.
orgelegewelle:		
Kraft- und Y-Z-Ebene:	Momentenverläufe (siehe auch Is X-Y-Ebene: X-Z-E	
Schnitt entlang $Mt\left(s_3\right)\coloneqq 0$	s_3 (positives Schnittufer) s_{3max} : N_x := 0	$s_{3min} = 26.5 \cdot mm$ $s_{3min} = 0 \cdot mm$
	$Q_y\left(s_3 ight)\!:=\!-F_{L2y}\!=\!-2.093~{\it kN}$	$Q_zig(s_3ig)\!:=\!F_{L2z}\!=\!1.168\; {\it kN}$
	$Mb_zig(s_3ig)\coloneqq -F_{L2y}\!ullet s_3$	$Mb_{y}\left(s_{3} ight) \coloneqq F_{L2z}\! \cdot \!s_{3}$
	$Mb_z\left(s_{3max}\right) = -55.465 \ \boldsymbol{N \cdot m}$	$Mb_y\left(s_{3max}\right) = 30.964 \ oldsymbol{N\cdot m}$
	$Mb_zig(s_{3min}ig) = 0$ $oldsymbol{N}oldsymbol{\cdot m}$	$Mb_y\left(s_{3min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
Schnitt entlang s_4 ($N_x\!\coloneqq\!-F_{aZ3}\!=\!-1.6$		$s_{4min} := 21 \cdot mm$ $s_{4min} := 0 \cdot mm$ $s_{4min} := 0 \cdot mm$
$Q_y\left(s_4 ight)\coloneqq -F_{L2y}+F$ $Mb_z\left(s_4 ight)\coloneqq -F_{L2y}ullet \left(s_4 ight)$		$F_{L2z}ullet \left(s_{3max}+s_4 ight)-F_{rZ3}ullet s_4-F_{aZ3}ullet rac{d_i}{s_4}$
$Mb_z \left(s_{4max} \right) = -4.10$		$= -42.945 \boldsymbol{N} \cdot \boldsymbol{m}$
$Mb_z\left(s_{4min}\right) = -55.4$		$=-30.565 N \cdot m$
	Y-Z-Ebene: $Mt\left(s_{4}\right)\coloneqq T_{Vorgelege}=169.0$	05 N·m
Schnitt entlang $Mt\left(s_{5}\right)\coloneqq0$	s_5 (negatives Schnittufer) s_{5max} : N_x := $-F_{F2x}$ = $-1.112~{\it kN}$	$s_{5min} = 26 \cdot mm$ $s_{5min} = 0 \cdot mm$ $N_x = -F_{F2x} = -1.112 \ kN$
	$Q_y\left(s_5\right) \coloneqq -F_{F2y} = -0.962 \ {\it kN}$	$Q_z(s_5) \coloneqq -F_{F2z} = -1.164 \ \mathbf{k}l$
	$Mb_zig(s_5ig)\!\coloneqq\!-F_{F2y}\!ullet\!s_5$	$Mb_y\left(s_5 ight)\!\coloneqq\!F_{F2z}\!ullet\!s_5$
	$Mb_z \left(s_{5max} \right) = -25.012 \; \boldsymbol{N \cdot m}$	$Mb_y\left(s_{5max} ight) = 30.264 \; extbf{ extit{N}} \cdot extbf{ extit{m}}$
	$Mb_z\left(s_{5min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$	$Mb_y\left(s_{5min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot m}$

04.08.2022 Seite 21 von 26

tatischer & dynamischer Festigkeitsnachweis \	/orgelegewelle:
$Rz \coloneqq 6.3 \; \mu m$ $d_{Kritisch2} \coloneqq 35 \; m m$	$Rm \coloneqq 1100 \frac{N}{mm^2}$
$Wb_2 \coloneqq \frac{\pi}{32} \cdot \left(d_{Kritisch2}\right)^3 = 4209.24 extbf{mm}^3$	$W_{t2} := \frac{\pi}{16} \cdot (d_{Kritisch2})^3 = 8418.49 \ \textit{mm}^3$
$Mb_{res2} \coloneqq \sqrt{Mb_z \left(s_{3max}\right)^2 + Mb_y \left(s_{3max}\right)^2}$	
$R_{p0.2N} = 900 \; rac{N}{mm^2}$ nach TB 1-1	$K_t \coloneqq 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch2}}{16 \ \textit{mm}} \right) = 0.884$
Biegung	Torsion
σ_{bmax} := $\frac{Mb_{res2}}{Wb_2}$ = 9.507 $\frac{N}{mm^2}$	$ au_{tmax} \coloneqq rac{T_{Vorgelege}}{W_{t2}} = 20.081 \; rac{ extbf{\textit{N}}}{ extbf{\textit{mm}}^2}$
$\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res2}}{Wb_2} = 19.014 \frac{N}{mm^2}$	$ au_{ta} \coloneqq rac{K_A \cdot T_{Vorgelege}}{W_{t2}} = 40.162 \; rac{N}{mm^2}$
$\sigma_{bF} \coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t = 955.171 \frac{N}{mm^2}$	$\tau_{tF} \coloneqq \frac{1.2 \cdot R_{p0.2N} \cdot K_t}{\sqrt{3}} = 551.468 \frac{N}{mm^2}$
$\sigma_{bWN} \coloneqq 550 \; \frac{N}{mm^2}$	$ au_{tWN} = 330 \; rac{N}{mm^2}$
$eta_{kb}\!\coloneqq\!2.8$	$\beta_{kt} \coloneqq 2.6 \qquad \text{aus TB 3-8 mit} \\ \beta_{kt} \coloneqq 2.6 \qquad \text{Rm =1100N/mm^2, wegen} \\ \text{Sicherungsring}$
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kritisch2}}{7.5 \ \textit{mm}}\right)}{\log\left(20\right)} = 0.897$	aus TB 3-11c
$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{Rz}{\mu m} \right) \cdot \left(\log \left(\frac{Rm}{20 \frac{N}{mm^2}} \right) - \frac{1}{20 \frac{N}{mm^2}} \right)$	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = 0.87$ aus TB 3-10
$K_V \coloneqq 1$ aus TB 3-12	$K_{0\tau} \coloneqq 0.575 \cdot K_{0\sigma} + 0.425 = 0.925$
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 3.271$	$K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.979$

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 148.726 \ \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 97.973 \ \frac{N}{mm^2}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 26.491$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.329$$
 Ergebnis: Die Vorgelegewelle ist dauerfest.

Abtriebswelle:

Kraft- un	d Momentenverläufe (siehe auch :	Isometrie der Abtriebswelle):
Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:
Schnitt entlang s_6	(positives Schnittufer)	
$Mt\left(s_{6}\right)\coloneqq-oldsymbol{T_{ab}}$	$N_x \coloneqq -F_B = -1.5 \text{ kN}$	$N_x \coloneqq -F_B = -1.5 \text{ kN}$
	$Q_y\left(s_6 ight)\coloneqq 0$	$Q_z\left(s_6 ight)\coloneqq 0$
	$Mb_z\left(s_6 ight)\coloneqq 0$	$Mb_y\left(s_6 ight)\coloneqq 0$
Schnitt entlang s_7	(positives Schnittufer) s_{7max} :=	$41 \cdot mm \qquad s_{7min} \coloneqq 0 \cdot mm$
$Mt(s_7) \coloneqq -T_{ab}$	$N_x = -F_B - F_{F3x} = -1.348 \ k$	$N_x = -F_B - F_{F3x} = -1.348 \ kN$
	$Q_y\left(s_7 ight)\!:=\!F_{F3y}\!=\!1.822\;{\it kN}$	$Q_z\left(s_7\right) \coloneqq -F_{F3z} = -1.957 \ kN$
	$Mb_zig(s_7ig)\!\coloneqq\!F_{F3y}\!ullet\!s_7$	$Mb_y\left(s_7 ight)\!\coloneqq\!F_{F3z}\!\cdot\!s_7$
	$Mb_z(s_{7max}) = 74.702 \ \boldsymbol{N \cdot m}$	$Mb_y\left(s_{7max}\right) = 80.235 \ \boldsymbol{N\cdot m}$
	$Mb_zig(s_{7min}ig)=0$ $m{N}m{\cdot}m{m}$	$Mb_y\left(s_{7min} ight)\!=\!0oldsymbol{N\!\cdot\!m}$

Schnitt entlang s_8 ($Mt\left(s_8\right) \coloneqq 0$	(negatives Schnittufer) $s_{8max} = 27$. $N_x = 0$	$egin{array}{lll} 5 & m{mm} & s_{8min} \coloneqq 0 m{\cdot} m{mm} \ & N_x \coloneqq 0 \end{array}$
	$Q_y(s_8) \coloneqq -F_{L3y} = -2.716 \text{ kN}$	$Q_z(s_8) \coloneqq -F_{L3z} = -3.715 \text{ kN}$
	$Mb_zig(s_8ig)\!\coloneqq\!F_{L3y}\!\cdot\!s_8$	$Mb_y\left(s_8 ight)\coloneqq -F_{L3z}ullet s_8$
	$Mb_z\left(s_{8max}\right) = 74.69 \ \boldsymbol{N} \cdot \boldsymbol{m}$	$Mb_y\left(s_{8max}\right) = -102.163 \; \boldsymbol{N} \cdot \boldsymbol{m}$
	$Mb_zig(s_{8min}ig)=0$ $oldsymbol{N}\cdotoldsymbol{m}$	$Mb_y\left(s_{8min}\right) = 0 \; oldsymbol{N} ullet oldsymbol{m}$

04.08.2022 Seite 24 von 26

$$\begin{array}{c} \beta_{kb} \coloneqq 2.3 & \beta_{kt} \coloneqq 1.55 & \text{wegen Pressverband} \\ K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kritisck3}}{7.5 \ mm}\right)}{\log(20)} = 0.867 & \text{aus TB 3-11c} \\ K_{0c} \coloneqq 1 - 0.22 \log\left(\frac{Rz}{\mu m}\right) \cdot \left(\log\left(\frac{Rm}{20 \ mm^2}\right) - 1\right) = 0.87 & \text{aus TB 3-10} \\ K_{v} \coloneqq 1 & \text{aus TB 3-12} & K_{0r} \coloneqq 0.575 \cdot K_{0r} + 0.425 \equiv 0.925 \\ K_{V} \coloneqq 1 & \text{aus TB 3-12} & K_{Db} \coloneqq \left(\frac{\beta_{bb}}{K_g} + \frac{1}{K_{0c}} - 1\right) \cdot \frac{1}{K_V} = 2.803 & K_{Db} \coloneqq \left(\frac{\beta_{bt}}{K_g} + \frac{1}{K_{0r}} - 1\right) \cdot \frac{1}{K_V} = 1.869 \\ \sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 128.375 \ \frac{N}{mm^2} & \tau_{kGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 144.394 \ \frac{N}{mm^2} \\ S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tGW}}\right)^2}} = 21.06 \\ S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tGW}}\right)^2}} = 2.701 \\ \text{Ergebnis: Die Abtriebswelle ist dauerfest.} \end{array}$$

04.08.2022 Seite 25 von 26

Schmierstoffberechnung

Für Auslegung eines Schmierstoffes für das Getriebe muss zuerst die benötigte kinematische Nennviskosität des Schmieröles bestimmt werden. Diese erhalten wir über TB 20-7 a) mit Hilfe des Kraft-Geschwindigkeits-Faktors $\frac{k_s}{v}$. Es wird die Umfangsgeschwindigkeit und Durchmesser von

Zahnrad 4 gewählt.

$$u \coloneqq rac{z_4}{z_3} \hspace{1cm} n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$$

$$\underline{k_s} := \left(3 \cdot \frac{F_{tZ4}}{b_4 \cdot d_4} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{\pi \cdot d_4 \cdot n_{Abtrieb}} = 0.893 \frac{s}{m} \cdot MPa$$

Durch das Ablesen von TB 20-7 a) ergibt sich ca. ein Wert von: $\nu_{40} = 2.3 \cdot 10^2 \cdot \frac{mm^2}{e}$

Gewähltes Schmieröl:

DIN 51517 - CLP 220: Umlaufschmieröl auf Basis eines Mineralöls (C) mit Zusatzstoffen für erhöhten Korrosionsschutz, Alterungsbeständigkeit (L), sowie Herabsetzung der Reibung und des Verschleißes (P).

Geeignet für kinematische Viskositäten von $\nu_{40} \coloneqq 198\dots 242 \ \frac{{\it mm}^2}{\it s}$ - ISO VG 220 (220).

04.08.2022 Seite 26 von 26