0.1 Diskreta LTI-system

De kan beskrivas med differensekvationer. $y[n] + \sum_{k=1}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$ vilket om man z-transformerar ger $Y(z) + \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z) = Y(z)(1 + \sum_{k=1}^{N} a_k z^{-k}) = X(z) \sum_{k=0}^{M} b_k z^{-k}$ vilket vi kallar $Y(z) \cdot A(z) = X(z) \cdot B(z)$. Det ger $Y(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} \cdot X(z)$ där vi kallar kvoten för $H(z) = \frac{A(z)}{B(z)}$.

 $H(z)=\frac{B(z)}{A(z)}$ är systemets överföringsfunktion vilket är en kvot mellan två polynom i $z^{-1}.$

En vanlig form hos z-transformen i våra tillämpningar är som en kvot mellan polynom i z^{-1} eller z, d.v.s. $H(z)=\frac{b_0+b_1z^{-1}+\cdots+b_Mz^{-M}}{a_0+a_1z^{-1}+\cdots+a_Nz^{-N}}$.

Om vi faktoriserar får vi $H(z) = b_0 \cdot \frac{\prod_{k=1}^M (1-c_k z^{-1})}{\prod_{k=1}^N (1-d_k z^{-1})}$. $z = c_k$ ger nollställen (\circ) och $z = d_k$ ger poler (\times). Beskrivs grafiskt genom att rita dem med sina tecken i z-planet.