人证明二维随机湖湖的常区性. 没 Sn 步转移中有 反步向前, 反步向后, n-k步向左, n-k步向右 - 14) k= (n!)2 k! (n-k)!) 由Stirling公式支on!~n!~n#=2e-1/22 二维对称随机游动是常逐的、 17.试计算程移概率矩阵的极限分布

-: 其 Markov 超 不可约、所有状态和是遍历的: 拟限存在.

| lim Pin = スj テンj=1 テスiPij=スj

-: スロニ スルPロロナス、PIロナス2P20= 豆プルナラス・ナ オス2

スリニラスロナラス・ナラス・
スロニラス・ナラス・
スロース・ナス・ナラス・
スロナス・ナス2=1

12.10

到题 3					
13. HM,				14	
对二维情况	的动脉的	机游动,显到	万	ke 1 >k	
$\int_{00}^{(2n+1)} = 0 ($	neN),老庭	P(2n) 股场 K	步向左,k步向左,	ntk	
mk\$60t, 1					R
my P (2m)	$= \sum_{k=0}^{n} \binom{2k}{2k} \binom{2k}{k}$	$(2n-k)(\frac{1}{4})^{2n}$			
**************************************	$= \left(\frac{1}{4}\right)^{2n} \sum_{k=0}^{n}$	(2k)!(2h-2k)! k k (n-k)	·秋!		
		! \$ n! n			
	$= \left(\frac{1}{4}\right)^{2h} \binom{2h}{n}$	$\frac{h}{\sum_{k=0}^{n}} \binom{n}{k} \binom{n}{n-k}$			
+x) ^{zn} =(i+x) ⁿ (++xn) x ⁿ 军 <u>券</u> 本格集	$= \left(\frac{1}{4}\right)^{2n} \binom{2h}{n}$		al a		*
	lag 1 (2°	7 2			
\$° 1 €	$'=\frac{1}{\pi n}$		1		
从而结果	$ \begin{array}{ccc} & & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	n=∞、进而	= 430+ 3075	(零)_ 	证的(由不好的代
三级和李姆、	50 = 0 , P	(2r) =	$\frac{(2n)!}{(6)^2}$	v	
1010101		≥ (1)2n	$\binom{2n}{n}$ $\frac{n!}{n!n!}$		
(354 «d (d > 3) 4)	व्यक्ति होत	- 1 has (26)	1 N! 1/>	N !	
机粉的排降面		$= \left(\frac{1}{6}\right)^{2h} \binom{2h}{n}$	3 max (n)	m)	
1 145	· · · · · · · · · · · · · · · · · · ·	$\sim \left(\frac{1}{6}\right)^{2n} \frac{2^{2n}}{\sqrt{n}}$	-3" (P)"	21n = 3	(Try) = .
		, , , , , , , , , , , , , , , , , , ,	$\left(\left(\frac{N}{3e}\right)^{\frac{1}{3}}\right)^{\frac{1}{3}}$		

	Da	łe: /	:stol
从而由之 100 = 至 100 ~ 至 35	$\frac{1}{N^{\frac{3}{2}}} \sim \frac{3\sqrt{3}}{2\pi\sqrt{\eta}} \int_{\mathbb{R}^{\frac{3}{2}}}$	$\int_{0}^{2\pi} x^{-\frac{3}{2}} dx = 0$	3) ³ < 00 40
39至7克机路站是底过的。			QE3.
17.7/g:	د. د	2 B	
每全 $(\lambda I-P)=0$ $\mathcal{H}(A)$ $\lambda_1=1$, $\lambda_2=\frac{1}{3}$, $\lambda_3=-\frac{1}{3}$	T, STEN TO	4旬至3	2 7-1
$ \frac{\overline{\chi}_{1}}{\overline{\chi}_{1}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \overline{\chi}_{1} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \overline{\chi}_{2} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \Rightarrow P = \begin{bmatrix} 1 \\ 1 \end{bmatrix} $	3 3 0	3 0 1 -1 - 0 -7 1 1 -3	3
$\Rightarrow p^{h} - \begin{bmatrix} 1 & 3 & 3 \\ 1 & -1 & -4 \\ 1 & -3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3^{h} & 0 \\ 0 & 0 & (-\frac{1}{6})^{h} \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \\ 1 & -1 & -4 \\ 1 & -3 & 3 \end{bmatrix}$]-1		
[1-3 3] [0 0 (-6)) [1 -3 3			
$\lim_{n \to \infty} p^n = \begin{bmatrix} 1 & 3 & 3 & 7 & 7 & 7 & 7 \\ 1 & -1 & -4 & 0 & 0 & 7 & 7 & 7 \\ 1 & -3 & 3 & 0 & 0 & 0 & 7 & 7 & 7 \end{bmatrix}$	Test (A)	100 1 1 B	1 一声 章
即孤限分布的用=[春季壽].	4 4 4 4 4 1 1	200000000	14 54-
	1-		
	/ D 		
	•		