Numerical Methods (CS 357)

Worksheet

Part 1. Zeros in Backward Substitution

Suppose you encounter a zero on the diagonal of an upper triangular matrix U on which you are using backward substitution to solve Ux = b.

What happens?

- (A) The algorithm completes as designed and finds a solution x of Ux = b.
- (B) The algorithm takes more steps to complete.
- (C) For most right-hand side vectors b, there is no solution to Ux = b.
- (D) The algorithm fails to find the correct solution (which exists).

Part 2. Elimination matrices

Consider two 10×10 elimination matrices M_4 and M_7 .

- M_4 only has off-diagonal entries (below the diagonal) in column 4.
- M_7 only has off-diagonal entries (below the diagonal) in column 7.

Which of the following is true?

- (A) $M_4 = M_7$
- (B) $M_4M_7 = M_4 + M_7 I$ (where I is the identity matrix)
- (C) $M_7M_4 = M_4 + M_7 I$ (where I is the identity matrix)
- (D) None of these

Part 3. Forward substitution

You're given a 2×2 real-valued, lower triangular matrix L and a right-hand side vector b. Use forward substitution to find a vector x so that L.dot(x) equals b (at least approximately).

(Since this is a small matrix with a known size, you shouldn't need for loops or other complicated things.)

import numpy as np