

Trabajo Práctico de Laboratorio N°1

Síntesis de Redes Activas Ingeniería Electrónica

Autores:

Cerquetti, Narella Hernandez, Facundo Taborda, Andrea Valdez Benavidez, Mauricio L.

Profesores:

Ing. Ferreyra, Pablo Ing. Reale, Cesar

Índice

1.	Introducción	2
2.	Objetivos	2
3.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 4 4 5 5 8 8
4.	4.3. Implementación	9 11 13 13
5.	5.1. Análisis teórico	15 15 15 16 17
6.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	22 22 23 23 24 24 25 26

1. Introducción

En este trabajo de laboratorio, se analizarán tres circuitos:

- 1. Amplificador diferencial.
- 2. Fuente de corriente controlada por tensión.
- 3. Rectificador de precisión.

Para cada circuito, se realizará un análisis teórico, simulaciones y mediciones experimentales. Finalmente, se van a comparar los datos obtenidos en cada etapa.

2. Objetivos

- Aplicar el conocimiento teórico práctico para analizar los circuitos.
- Fortalecer el uso del simulador LtSpice e interpretar los resultados del mismo.
- Familiarizarnos con los componentes físicos y el armado de los circuitos, comprobando el correcto funcionamiento a través de las mediciones correspondientes.
- Visualizar los errores relativos que hay entre el modelo teórico y las simulaciones y las implementaciones.

3. Amplificador Diferencial

Datos: Amplificador Operacional LM324 Vcc = 10V Vss = -10V R1 = R2 = R3 = R4 = R5 = R R1 R2 Vcc R3 Vcc Vcc

Figura 1: Circuito propuesto

3.1. Análisis teórico

Se debe analizar la tensón de salida en función de la tensión de entrada en modo diferencial $V_d=(V_2-V_1)$ y también en modo común $V_c=(V_1+V_2)/2$.

Para realizar el análisis en modo diferencial, se aplica el método de superposición, primero se calcula V_{01} y luego V_{02} .

3.1.1. Cálculo de V_{01}

Pasivando V_2

$$V_{O1}|_{V_2=0} = (1 + \frac{R}{R/2})V_1 = 3V_1$$

Pasivando V_1

$$V_{O1}|_{V_1=0} = (-\frac{R}{R})V_2 = -V_2$$

$$V_{O1} = 3V_1 - V_2$$

3.1.2. Cálculo de V_{02}

Pasivando V_1 y V_2

$$V_{O2}|_{V_2=0}^{V_1=0} = (-\frac{R}{R})V_1 = -V_{01}$$

Pasivando V_2 y V_{01}

$$V_{O2}|_{V_{01}=0}^{V_2=0} = (-\frac{R}{R})V_1 = -V_1$$

Pasivando V_1 y V_{01}

$$V_{O2}|_{V_{01}=0}^{V_1=0} = (1 + \frac{R}{R/2})V_2 = 3V_2$$

$$\boxed{V_{O2}=3V_2-V_1-3V_1+V_2=4V_2-4V_1=4(V_2-V_1)}$$
 reemplazando con $V_d=(V_2-V_1)$
$$\boxed{V_{O2}=4V_d}$$

Para el análisis en $V_c = (V_1 + V_2)/2$ y haciendo $V_1 = V_2$ tenemos que

$$V_{02} = 0$$

3.1.3. Cálculo de RRMC

$$RRMC = \left(\frac{A_d}{A_c}\right) = \frac{4}{0}$$

$$RRMC = \infty$$

3.1.4. Respuesta en frecuencia

En el Datasheet del LM324 se encuentra el dato de la $f_T=\mathbb{1}[MHz]$ por lo tanto

$$\omega_T = 2\pi f_T$$

$$\omega_H = \omega_T k = \omega_T \frac{1}{4} = \frac{\pi}{2} f_T$$

$$\omega_H = 1,57[Mrps]$$

$$f_H = 250[KHz]$$

La ganancia del amplificador es 4 lo que se traduce en 12.04[dB]. A 250[KHz] la ganancia disminuirá 3[dB], es decir que la amplitud quedará en 9.03[dB] ó 2.83 veces.

3.1.5. Impedancias

Las impedancias vistas por las fuentes de señales V_1 y V_2 son las impedancias de entrada de ambos amplificadores. Definimos Z_{i1} y Z_{i2} a las impedancias vistas por V_1 y V_2 respectivamente.

$$Z_{i1}=rac{V_1}{I_{i1}}$$
 al ser $I_{i1}=0$ entonces queda $Z_{i1}=\infty$ de manera análoga se determina $Z_{i2}=rac{V_2}{I_{i2}}=\infty$

3.2. Simulaciones

Se realizaron diferentes simulaciones con LTSpice para observar el comportamiento a la salida de cada amplificador. A continuación se listan las simulaciones realizadas:

- Vo_1 y Vo_2 con $V_1 = 10[mV]$ y $V_2 = 0[mV]$.
- Vo_1 y Vo_2 con $V_1 = 0[mV]$ y $V_2 = 10[mV]$.
- Vo_1 y Vo_2 con $V_1=V_2=10[mV]$ pero ambas entradas desfasadas 180° entre ellas.
- $\bullet \ Vo_1 \ {\rm y} \ Vo_2 \ {\rm con} \ V_1 = V_2 = 10 [mV] \ {\rm sin} \ {\rm desfasar}.$
- Respuesta en frecuencia del circuito, graficando el Bode con Magnitud y Fase.

Figura 2: Circuito simulado

Figura 3: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=10[mV]$ y $V_2=0[mV]$.

	$V_1 = 10[mV] \text{ y } V_2 = 0[mV]$
Vo_1	29.5 [mV]
Vo_2	39.73[mV]

Figura 4: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=0[mV]$ y $V_2=10[mV]$.

	$V_1 = 0[mV] \text{ y } V_2 = 10[mV]$
Vo_1	29.5 [mV]
Vo_2	39.73[mV]

6

Figura 5: Vo_1 (rojo) y Vo_2 (verde) con $V_1=V_2=10[mV]$ pero ambas entradas desfasadas 180° entre ellas.

	$V_1=10[mV]$ y $V_2=10[mV]$ y $\Delta arphi=180^\circ$
Vo_1	39.99 [mV]
Vo_2	79.46[mV]

Figura 6: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=V_2=10 [mV]$ sin desfasar.

	$V_1=10[mV]$ y $V_2=10[mV]$ y $\Delta arphi=0$
Vo_1	19.60 [mV]
Vo_2	79.14[μV]

Figura 7: Bode con Magnitud y Fase - Vo_2 con $V_1 = 1[V]$ y $V_2 = 0[V]$.

	$V_1 = 1[V] \text{ y } V_2 = 0[V]$
Frecuencia para -3[dB]	186.55 [KHz]
$\Delta arphi$	64.10°

3.3. Implementación

3.4. Comparación entre resultados

En la siguiente tabla comparativa se reflejan los resultados obtenidos en cada una de las etapas previas y se calcula el error relativo que existe entre los resultados.

Tanto para la simulación como para la parte experimental, se ingresó señal por V_1

	$Salida\ Vo_2[V]$			Errores relativos (%)		
Entrada $V_1[V]$	Teoría Simulación		Experimental	Exp/Teo	Exp/Sim	Sim/Teo
0.2	0.8 0.7989		-	-	-	0.14
0.4	1.6	1.5973	-	-	-	0.17
1	4	3.9974	_	_	_	0.06

3.5. Conclusión

Se puede concluir que la herramienta de simulación es bastante precisa, pues el error relativo respecto al valor teórico siempre se mantuvo menor al 1%.

Ahora bien, el error relativo entre el valor teórico y el experimental es mas grande, aproximadamente (... %), esto se debe a que los componentes no son ideales y el comportamiento puede variar en un rango acotado indicado por el fabricante.

4. Fuente de corriente controlada por tensión

Datos: Amplificador Operacional LM324

Vcc = 10V y Vss = -10V

R1 = 100Ω; R2 = 10KΩ; R3 = 1KΩ y R4 = 100KΩ

Figura 8: Circuito propuesto

4.1. Análisis teórico

Para analizar el circuito propuesto, se propone expresar V^+ (la entrada no inversora del AO) y V^- (la entrada inversora del AO) en función del Vo, planteando el divisor resistivo en el nodo "2" de la figura:

$$V^{+} = V^{-} = V_{o} \frac{R_{4}}{R_{4} + R_{2}}$$

luego se plantea la ley de los nodos de Kirchhoff en el nodo "3"

$$\frac{V_{in}-V^{+}}{R_{3}} + \frac{V_{o}-V^{+}}{R_{1}} = \frac{V^{+}}{R_{L}}$$

$$\frac{V_{in}}{R_3} + \frac{V_o}{R_1} = V^+ \left(\frac{1}{R_I} + \frac{1}{R_1} + \frac{1}{R_3}\right)$$

y reemplazando V^+

$$\frac{V_{in}}{R_3} + \frac{V_o}{R_1} = V_o \frac{R_4}{R_4 + R_2} (\frac{1}{R_L} + \frac{1}{R_1} + \frac{1}{R_3})$$

$$V_{in} = V_o \left[\frac{1}{R_L} \left(R_3 \frac{R_4}{R_4 + R_2} \right) + \left(R_3 \frac{R_4}{R_4 + R_2} \right) \left(\frac{1}{R_1} + \frac{1}{R_3} \right) - \frac{R_3}{R_1} \right]$$

Reemplazando para $R_1=100[\Omega]$, $R_2=10[K\Omega]$, $R_3=1[K\Omega]$ y $R_4=100[K\Omega]$:

$$V_{in} = V_o\left[\frac{1}{R_L}(909,09091)\right]$$

Luego la corriente que circula por la carga se define:

$$I_{RL} = \frac{V^{+}}{R_{L}}$$

$$I_{RL} = V_{o} \frac{R_{4}}{R_{4} + R_{2}} \frac{1}{R_{L}}$$

$$I_{RL} = \frac{V_{in}}{\left[\frac{1}{R_{L}} (R_{3} \frac{R_{4}}{R_{4} + R_{2}}) + (R_{3} \frac{R_{4}}{R_{4} + R_{2}})(\frac{1}{R_{1}} + \frac{1}{R_{3}}) - \frac{R_{3}}{R_{1}}\right]} \frac{R_{4}}{R_{4} + R_{2}} \frac{1}{R_{L}}$$

$$I_{RL} = \frac{V_{in}}{R_{3}}$$

$$I_{RL} = V_{in} 10^{-3}$$

de igual manera se define la tensión V_o en función de R_L y de V_{in}

$$V_o = \frac{V_{in}}{\left(\frac{1}{R_L}(909,09091)\right)}$$
$$V_o = V_{in}R_L(1,1*10^{-3})$$

Por último, se determina el valor de R_{Lmax} teniendo en cuenta que al ser ideal el A.O. la tensión de salida máxima será la misma que $V_{cc}=10[V]$. Por lo tanto operando se obtiene:

$$R_{Lmax} = \frac{9090,9091}{V_{in}}$$

A partir de las relaciones obtenidas, se procede a completar la siguiente tabla:

-		$V_{in}[V]$		
$I_{RL}[\muA]$		0.5	1	2
	0	0	0	0
	1	500	1000	2000
$R_L[K\Omega]$	2	500	1000	2000
	5	500	1000	2000
	10	500	1000	2000

Cuadro 1: Valores teóricos de I_{RL} en función de R_L y de V_{in}

_	$V_{in}[V]$			
$V_o[V]$	0.5	1	2	
	0	0	0	0
	1	0.55	1.1	2.2
$R_L[K\Omega]$	2	1.1	2.2	4.4
	5	2.75	5.5	11
	10	5.5	11	22

Cuadro 2: Valores teóricos de V_o en función de R_L y de V_{in}

Aquellos valores que superen el valor de la tensión de V_{cc} , la salida se enclava a ese mismo valor y la forma de la onda se recorta.

4.2. Simulaciones

Se realizaron diferentes simulaciones con LTSpice para observar el comportamiento de I_{RL} y V_o . Luego se completaron nuevamente las tablas anteriores con los valores simulados.

Figura 9: Circuito simulado

Figura 10: $I_{RL} = f(R_L, V_{in})$

Para esta simulación se hizo un barrido en continua de 0[V] a 10[V], ya que desde -10[V] la respuesta es aproximadamente simétrica. Lo que se observa es que la variación de la corriente

es lineal hasta el punto de tensión para cada valor de \mathcal{R}_L que satura al operacional.

R_L	V_{in-sat}
1 [KΩ]	7.5 [V]
2 [KΩ]	3.5 [V]
5 [KΩ]	1.4 [V]
10 [KΩ]	0.5 [V]

Figura 11: $V_o = f(V_{in}, R_L)$

Aqui se observa como varía la tensión de salida respecto a la tensión de entrada y a los valores de ${\cal R}_L$ propuestos.

-		$V_{in}[V]$			
$I_{RL}[\muA]$		0.5	1	2	
	0	0	0	0	
	1	495.93	994.15	1994.08	
$R_L[K\Omega]$	2	495.52	993.33	1991.35	
	5	493.86	990.39	1549.12	
	10	488.45	771.00	783.06	

Cuadro 3: Valores simulados de I_{RL} en función de R_L y de V_{in}

_		$V_{in}[V]$		
$V_o[V]$		0.5	1	2
	0	0	0	0
	1	0.545	1.093	2.193
$R_L[K\Omega]$	2	1.089	2.185	4.380
	5	2.715	5.446	8.475
	10	5.372	8.458	8.492

Cuadro 4: Valores simulados de V_o en función de R_L y de V_{in}

Figura 12: Simulación con $V_{in}=2[{\bf V}]$ y $R_L=10[{\bf K}\Omega]$ simulado

4.3. Implementación

4.4. Comparación entre resultados

En la siguiente tabla comparativa se reflejan los resultados obtenidos en cada una de las etapas previas y se calcula el error relativo que existe entre los resultados.

Para simplificar los cálculos, se compararon los resultados usando una $R_L=1[\mathsf{K}\Omega]$

	Salida $V_o[V]$		Errores relativos (%)			
Entrada $V_{in}[V]$	Teoría	Simulación	Experimental	Exp/Teo	Exp/Sim	Sim/Teo
0.5	0.55	0.545	-	-	-	0.90
1	1.1	1.093	-	-	-	0.63
2	2.2	2.193	_	_	_	0.31

4.5. Conclusión

Se puede concluir que la herramienta de simulación es bastante precisa, pues el error relativo respecto al valor teórico siempre se mantuvo menor al 1%.

Ahora bien, el error relativo entre el valor teórico y el experimental es mas grande, aproximadamente (...%), esto se debe a que los componentes no son ideales y el comportamiento puede variar en un rango acotado indicado por el fabricante.

5. Rectificador de precisión

Datos: Amplificador Operacional LM324

Vcc = 10V Vss = -10V

D1 = D2 = 1N4148

 $R1 = R3 = R4 = 10K\Omega \ 1\% \ y \ R2 = 5K\Omega \ 1\%$

Figura 13: Circuito propuesto

En este circuito se tienen 2 AO LM324 con diodos trabajando como un rectificador de precisión con una señal común para ambos. La fuente de alimentación es simétrica en \pm 10[V]. Los diodos utilizados son 1N4148.

5.1. Análisis teórico

Para determinar V_o en función de V_{in} el análisis se hace para cuando V_{in} es positiva y cuando V_{in} es negativa.

5.1.1.
$$V_o = f(V_{in}) \text{ con } V_{in} > 0$$

Para ésta condición entonces D2 = ON y D1 = OFF.

Además considerando pasivada la entrada del AO U1B se plantea la ley de los nodos de Kirchhoff en el nodo "6"

$$\frac{V_o}{R_4} = -\frac{V_{in}}{R_1 + R_2}$$

$$\frac{V_o}{10[K\Omega]} = -\frac{V_{in}}{15[K\Omega]}$$

$$V_o = -\frac{2}{3}V_{in}$$

Luego pasivando la entrada de U1A

$$V_{in} = V_o \frac{R_1 + R_2}{R_1 + R_2 + R_4}$$

$$V_{in} = V_o \frac{15[K\Omega]}{25[K\Omega]}$$

$$V_o = \frac{5}{3}V_{in}$$

Aplicando superposición para encontrar el resultado completo

$$V_o = V_{in} \frac{5}{3} - V_{in} \frac{2}{3}$$

$$V_o = V_{in}$$

5.1.2.
$$V_o = f(V_{in}) \text{ con } V_{in} < 0$$

Para ésta condición entonces D1 = ON y D2 = OFF.

Además considerando pasivada la salida del AO U1A se plantea la ley de los nodos de Kirchhoff en el nodo "6"

$$V_{in} = V_o \frac{R_2}{R_2 + R_4}$$

$$V_{in} = V_o \frac{5[K\Omega]}{15[K\Omega]}$$

$$V_o = 3V_{in}$$

Luego pasivando la entrada de U1B y tomando V_{oB} como tensión de salida del amplificador U1B, resulta:

$$\frac{V_{oB}}{R_2} = -\frac{V_o}{R_4}$$

$$\frac{V_{oB}}{5[K\Omega]} = -\frac{V_o}{10K\Omega}$$

$$V_o = -2V_{oB}$$

Por otro lado, la tensión de salida de V_{oB} se obtiene planteando el divisor de tension del AO U1B:

$$V_{in} = V_{oB} \frac{R_3}{R_1 + R_3}$$

$$V_{in} = V_{oB} \frac{10K\Omega}{20K\Omega}$$

$$V_{in} = \frac{1}{2}V_{oB}$$

Reemplazando queda:

$$V_o = -4V_{in}$$

Aplicando superposición para encontrar el resultado completo

$$V_o = 3V_{in} - 4V_{in}$$

$$V_o = -V_{in}$$

Entonces, cuando la tensión de entrada es positiva, la tensión de salida es igual a la entrada, mientras que cuando la tensión de entrada es negativa, la tensión de salida tendrá la misma amplitud pero será positiva.

5.2. Simulación

Se realizaron diferentes simulaciones con LTSpice para observar el comportamiento a la salida para diferentes valores de entrada. Primero se hizo un DC sweep con valores de V_{in} que van desde -10[V] a los 10[V]. Luego se realizó un Trasient con frecuencia de 1[KHz].

Figura 14: Circuito simulado

Figura 15: Dc sweep Vo_1 (verde) $-10[V] < V_{in} < 10[V]$ (azul).

Como se observa en los puntos marcados, la salida es duplicada para valores negativos de entrada mientras que para valores positivos de entrada, son copiados a la salida. También para baja excursión presenta alta ganancia y alinealidades.

Figura 16: Dc sweep Vo_2 (rojo) $-10[V] < V_{in} < 10[V]$ (verde).

Como se observa en el rango de -4[V] a 4[V] la salida es el valor absoluto del valor de la entrada, es decir una rectificación completa de una onda senoidal.

A continuación las simulaciones Transient con V_{in} variable y de frecuencia 1[KHz].

Figura 17: Vo_1 (azul) y Vo_2 (rojo) con $V_{in}=0.5[V].$

	$V_{in} = 0.5[V]$	
Vo_1	947.31 [mV]	
Vo_2	498.53 [mV]	

Figura 18: Vo_1 (azul) y Vo_2 (rojo) con $V_{in}=\mathbb{1}[V].$

	$V_{in} = 1[V]$
Vo_1	1.47 [V]
Vo_2	997.73 [mV]

Figura 19: Vo_1 (azul) y Vo_2 (rojo) con $V_{in}=2[V].$

	$V_{in} = 2[V]$
Vo_1	2.51 [V]
Vo_2	1.99 [V]

Figura 20: Vo_1 (azul) y Vo_2 (rojo) con $V_{in}=-4[V].$

	$V_{in} = -4[V]$
Vo_1	-8.57 [V]
Vo_2	3.99 [V]

Figura 21: Vo_1 (azul) y Vo_2 (rojo) con $V_{in}=5[V]$.

	$V_{in} = 5[V]$
Vo_1	5.54 [V]
Vo_2	4.98 [V]

Como se observa para los diferentes valores de probados en el rango de -4[V] y 4[V] la señal fue rectificada correctamente. Sin embargo para valores fuera de ese rango, la salida comienza a distorsionarse debido a que la salida del primer AO comienza a saturarse debido a las alinealidades nombradas anteriormente.

6. Comparador con Histéresis

Datos: Amplificador Operacional LM324

V+ = 10V V- = 0V

 $R1 = R2 = R4 = 10K\Omega \text{ y } R3 = 2K\Omega$

Vref=2V

Figura 22: Circuito propuesto

En este circuito está el AO LM324 operando con realimentación positiva en configuracion "Schmitt trigger inversor", implementado con fuente alimentación asimétrica 0 a 10 [V].

6.1. Análisis teórico

Para un análisis mas detallado se considera el caso general con alimentación simétrica y que el A.O. no sea del tipo Rail to Rail. Se analiza V_o a partir de la tensión diferencial V_d y por último se analiza el caso particular con $V_{ss}=0$.

Se definen v^+ y v^- de la siguiente manera:

$$v^- = k_1 * V_{in}$$

$$v^+ = k_2 * (V_o - V_{ref}) + V_{ref}$$

teniendo que:

$$k_1 = \frac{R_2}{R_1 + R_2}$$

$$k_2 = \frac{R_3}{R_3 + R_4}$$

6.1.1. Si $V_d < 0$

Para un A.O ideal si ${\it V_d} < 0$ la salida del amplificador debería ser ${\it V_{ss}}$

$$V_d = (v^+ - v^-) < 0 \rightarrow V_o = V_{ss}$$

entonces

$$v^{+} < v^{-}$$

$$k_{2} * (v_{o} - v_{ref}) + v_{ref} < k_{1} * v_{in}$$

$$\frac{k_{2}}{k_{1}} * (v_{o} - v_{ref}) + \frac{v_{ref}}{k_{1}} < v_{in}$$

$$\frac{k_{2}}{k_{1}} * v_{o} + \frac{1 - k_{2}}{k_{1}} * v_{ref} < v_{in}$$

$$\begin{cases} v_{o} = v_{cc} \\ v_{cc} = 10[V] \\ v_{ref} = 2[V] \\ R_{3} = 2[K\Omega] \\ R_{1} = R_{2} = R_{3} = 10[K\Omega] \end{cases}$$

$$v_{in} > 6,67[V] \rightarrow v_{o} = v_{ss}$$

6.1.2. Si $V_d > 0$

Para un A.O ideal si $V_d>0$ la salida del amplificador debería ser V_{cc}

$$V_d = (v^+ - v^-) > 0 \to V_o = V_{cc}$$

entonces

$$v^{+} > v^{-}$$

$$k_{2} * (v_{o} - v_{ref}) + v_{ref} > k_{1} * v_{in}$$

$$\frac{k_{2}}{k_{1}} * (v_{o} - v_{ref}) + \frac{v_{ref}}{k_{1}} > v_{in}$$

$$\frac{k_{2}}{k_{1}} * v_{o} + \frac{1 - k_{2}}{k_{1}} * v_{ref} > v_{in}$$

$$\begin{cases} v_{o} = v_{ss} \\ v_{ss} = -10[V] \\ v_{ref} = 2[V] \\ R_{3} = 2[K\Omega] \\ R_{1} = R_{2} = R_{3} = 10[K\Omega] \end{cases}$$

$$v_{in} < 0[V] \rightarrow v_{o} = v_{cc}$$

resumiendo entonces lo obtenido:

$$v_o(v_{in}) = \begin{cases} v_{cc} \text{ para } v_{in} < 0[V] \\ v_{ss} \text{ para } v_{in} > 6.67[V] \end{cases}$$

6.1.3. Si $V_{ss} = 0$

Para este caso particular la relación queda

$$\frac{1-k_2}{k_1} * v_{ref} > v_{in}$$

donde se ve que el punto de conmutación queda directamente dependiente de v_{ref} .

$$\label{eq:vref} \text{Reemplazando} \begin{cases} v_{ref} = 2[V] \\ R_3 = 2[K\Omega] \\ R_1 = R_2 = R_4 10[K\Omega] \end{cases}$$

Si:
$$v_{in} < 3.33[V] \rightarrow v_o = v_{ss}$$

Los análisis anteriores son válidos para un amplificador ideal o de tipo Rail to Rail, en este caso obtenido por simulación la salida máxima del LM324 es de 8.5[V], entonces queda:

Si:
$$v_{in} > 6.17[V] \rightarrow v_o = v_{cc}$$

Finalmente para el LM324 y $v_{ss}=0$

$$v_o(v_{in}) = \begin{cases} v_{cc} \text{ para } v_{in} < 3.33[V] \\ v_{ss} \text{ para } v_{in} > 6.77[V] \end{cases}$$

6.2. Simulación

Figura 23: Circuito simulado

6.2.1. Caso general v_{cc} y v_{ss} distintos de cero y simétricos

Figura 24: $Vo_1 = f(v_{in}) \ {\rm con} \ V_{in} =$ 10 [V] y 1[KHz].

Figura 25: $Vo_1=f(v_{in})$ con $V_{in}=$ 10 [V] y 1[KHz] en el tiempo.

6.2.2. Caso general $v_{cc}\mathbf{10[V]}$ y $v_{ss}\mathbf{0[V]}$ distintos de cero y simétricos

Figura 26: $Vo_1 = f(v_{in}) \ {\sf con} \ V_{in} = {\sf 10} \ [{\sf V}] \ {\sf y} \ {\sf 1[KHz]}.$

Figura 27: $Vo_1=f(v_{in})$ con $V_{in}=$ 10 [V] y 1[KHz] en el tiempo.