1 Unique, Stable Target and Steady State Points

This appendix proves Theorems ??-?? and:

Lemma 1. If \check{m} and \hat{m} both exist, then $\check{m} \leq \hat{m}$.

1.1 Proof of Theorem ??

The elements of the proof of Theorem ?? are:

- Existence and continuity of $\mathbb{E}_t[m_{t+1}/m_t]$
- Existence of a point where $\mathbb{E}_t[m_{t+1}/m_t] = 1$
- $\mathbb{E}_t[m_{t+1}] m_t$ is monotonically decreasing

1.2 Existence and Continuity of $\mathbb{E}_t[m_{t+1}/m_t]$

The consumption function exists because we have imposed sufficient conditions (the WRIC and FVAC; Theorem 1).

Section 2.8 shows that for all t, $a_{t-1} = m_{t-1} - c_{t-1} > 0$. Since $m_t = a_{t-1}\mathcal{R}_t + \boldsymbol{\xi}_t$, even if $\boldsymbol{\xi}_t$ takes on its minimum value of 0, $a_{t-1}\mathcal{R}_t > 0$, since both a_{t-1} and \mathcal{R}_t are strictly positive. With m_t and m_{t+1} both strictly positive, the ratio $\mathbb{E}_t[m_{t+1}/m_t]$ inherits continuity (and, for that matter, continuous differentiability) from the consumption function.

1.3 Existence of a point where $\mathbb{E}_t[m_{t+1}/m_t] = 1$.

This follows from:

- 1. Existence and continuity of $\mathbb{E}_t[m_{t+1}/m_t]$ (just proven)
- 2. Existence a point where $\mathbb{E}_t[m_{t+1}/m_t] < 1$
- 3. Existence a point where $\mathbb{E}_t[m_{t+1}/m_t] > 1$
- 4. The Intermediate Value Theorem

1.3.1 Existence of m where $\mathbb{E}_t[m_{t+1}/m_t] < 1$

If RIC holds. Logic exactly parallel to that of Section 3.1 leading to equation (38), but dropping the Φ_{t+1} from the RHS, establishes that

$$\lim_{m_t \uparrow \infty} \mathbb{E}_t[m_{t+1}/m_t] = \lim_{m_t \uparrow \infty} \mathbb{E}_t \left[\frac{\mathcal{R}_{t+1}(m_t - c(m_t)) + \boldsymbol{\xi}_{t+1}}{m_t} \right]$$

$$= \mathbb{E}_t[(R/\boldsymbol{\Phi}_{t+1})\boldsymbol{\mathbf{P}}_R]$$

$$= \mathbb{E}_t[\boldsymbol{\mathbf{P}}/\boldsymbol{\Phi}_{t+1}]$$

$$< 1$$
(1)

where the inequality reflects imposition of the GIC-Nrm (26).

If RIC fails. When the RIC fails, the fact that $\lim_{m^{\uparrow}_{\infty}} c'(m) = 0$ (see equation (30)) means that the limit of the RHS of (1) as $m \uparrow \infty$ is $\overline{\mathcal{R}} = \mathbb{E}_t[\mathcal{R}_{t+1}]$. In the next step of this proof, we will prove that the combination GIC-Nrm and RIC implies $\overline{\mathcal{R}} < 1$.

So we have $\lim_{m\uparrow\infty} \mathbb{E}_t[m_{t+1}/m_t] < 1$ whether the RIC holds or fails.

1.3.2 Existence of m > 1 where $\mathbb{E}_t[m_{t+1}/m_t] > 1$

Paralleling the logic for c in Section 3.2: the ratio of $\mathbb{E}_t[m_{t+1}]$ to m_t is unbounded above as $m_t \downarrow 0$ because $\lim_{m_t \downarrow 0} \mathbb{E}_t[m_{t+1}] > 0$.

Intermediate Value Theorem. If $\mathbb{E}_t[m_{t+1}/m_t]$ is continuous, and takes on values above and below 1, there must be at least one point at which it is equal to one.

1.3.3 $\mathbb{E}_t[m_{t+1}] - m_t$ is monotonically decreasing.

Now define $\zeta(m_t) \equiv \mathbb{E}_t[m_{t+1}] - m_t$ and note that

$$\zeta(m_t) < 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] < 1$$

$$\zeta(m_t) = 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] = 1$$

$$\zeta(m_t) > 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] > 1,$$
(2)

so that $\zeta(\hat{m}) = 0$. Our goal is to prove that $\zeta(\bullet)$ is strictly decreasing on $(0, \infty)$ using the fact that

$$\boldsymbol{\zeta}'(m_t) \equiv \left(\frac{d}{dm_t}\right) \boldsymbol{\zeta}(m_t) = \mathbb{E}_t \left[\left(\frac{d}{dm_t}\right) \left(\mathcal{R}_{t+1}(m_t - c(m_t)) + \boldsymbol{\xi}_{t+1} - m_t \right) \right]$$

$$= \bar{\mathcal{R}} \left(1 - c'(m_t) \right) - 1.$$
(3)

Now, we show that (given our other assumptions) $\zeta'(m)$ is decreasing (but for different reasons) whether the RIC holds or fails.

If RIC holds. Equation (16) indicates that if the RIC holds, then $\underline{\kappa} > 0$. We show at the bottom of Section 2.9.1 that if the RIC holds then $0 < \underline{\kappa} < c'(m_t) < 1$ so that

$$\bar{\mathcal{R}}\left(1 - c'(m_t)\right) - 1 < \bar{\mathcal{R}}\left(1 - \underbrace{\left(1 - \mathbf{p}_{\mathsf{R}}\right)}\right) - 1$$

$$= \bar{\mathcal{R}} \mathbf{p}_{\mathsf{R}} - 1$$

$$= \mathbb{E}_t \left[\frac{\mathsf{R}}{\mathbf{\Phi} \mathbf{\Psi}} \frac{\mathbf{p}}{\mathsf{R}} \right] - 1$$

$$= \mathbb{E}_t \left[\frac{\mathbf{p}}{\mathbf{\Phi} \mathbf{\Psi}} \right] - 1$$

which is negative because the GIC-Nrm says $\mathbf{p}_{\Phi} < 1$.

If RIC fails. Under RIC, recall that $\lim_{m\uparrow\infty} c'(m) = 0$. Concavity of the consumption function means that c' is a decreasing function, so everywhere

$$\bar{\mathcal{R}}\left(1 - c'(m_t)\right) < \bar{\mathcal{R}}$$

which means that $\zeta'(m_t)$ from (3) is guaranteed to be negative if

$$\bar{\mathcal{R}} \equiv \mathbb{E}_t \left[\frac{\mathsf{R}}{\mathbf{\Phi} \mathbf{\Psi}} \right] < 1. \tag{4}$$

But the combination of the GIC-Nrm holding and the RIC failing can be written:

$$\underbrace{\mathbb{E}_t \left[\frac{\mathbf{b}}{\mathbf{\Phi} \mathbf{\Psi}} \right]}_{\mathbf{b}_{\mathbf{k}}} < 1 < \underbrace{\frac{\mathbf{b}_{\mathbf{k}}}{\mathbf{R}}}_{\mathbf{k}},$$

and multiplying all three elements by R/\mathbf{P} gives

$$\mathbb{E}_t \left[\frac{\mathsf{R}}{\mathbf{\Phi} \boldsymbol{\Psi}} \right] < \mathsf{R}/\mathbf{P} < 1$$

which satisfies our requirement in (4).

1.4 Proof of Theorem ??

The elements of the proof are:

- Existence and continuity of $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]$
- Existence of a point where $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t] = 1$
- $\mathbb{E}_t[\Psi_{t+1}m_{t+1}-m_t]$ is monotonically decreasing

1.4.1 Existence and Continuity of the Ratio

Since by assumption $0 < \underline{\Psi} \le \Psi_{t+1} \le \overline{\Psi} < \infty$, our proof in 1.2 that demonstrated existence and continuity of $\mathbb{E}_t[m_{t+1}/m_t]$ implies existence and continuity of $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]$.

1.4.2 Existence of a stable point

Since by assumption $0 < \underline{\Psi} \le \Psi_{t+1} \le \overline{\Psi} < \infty$, our proof in Subsection 1.2 that the ratio of $\mathbb{E}_t[m_{t+1}]$ to m_t is unbounded as $m_t \downarrow 0$ implies that the ratio $\mathbb{E}_t[\Psi_{t+1}m_{t+1}]$ to m_t is unbounded as $m_t \downarrow 0$.

The limit of the expected ratio as m_t goes to infinity is most easily calculated by modifying the steps for the prior theorem explicitly:

$$\lim_{m_{t}\uparrow\infty} \mathbb{E}_{t}[\boldsymbol{\Psi}_{t+1}m_{t+1}/m_{t}] = \lim_{m_{t}\uparrow\infty} \mathbb{E}_{t} \left[\frac{\boldsymbol{\Phi}_{t+1} \left((\mathsf{R}/\boldsymbol{\Phi}_{t+1}) \mathsf{a}(m_{t}) + \boldsymbol{\xi}_{t+1} \right) / \boldsymbol{\Phi}}{m_{t}} \right]$$

$$= \lim_{m_{t}\uparrow\infty} \mathbb{E}_{t} \left[\frac{(\mathsf{R}/\boldsymbol{\Phi}) \mathsf{a}(m_{t}) + \boldsymbol{\Psi}_{t+1} \boldsymbol{\xi}_{t+1}}{m_{t}} \right]$$

$$= \lim_{m_{t}\uparrow\infty} \left[\frac{(\mathsf{R}/\boldsymbol{\Phi}) \mathsf{a}(m_{t}) + 1}{m_{t}} \right]$$

$$= (\mathsf{R}/\boldsymbol{\Phi}) \boldsymbol{\Phi}_{\mathsf{R}}$$

$$= \boldsymbol{\Phi}_{\boldsymbol{\Phi}}$$

$$< 1$$

$$(5)$$

where the last two lines are merely a restatement of the GIC (19).

The Intermediate Value Theorem says that if $\mathbb{E}_t[\Psi_{t+1}m_{t+1}/m_t]$ is continuous, and takes on values above and below 1, there must be at least one point at which it is equal to one.

1.4.3 $\mathbb{E}_t[\Psi_{t+1}m_{t+1}] - m_t$ is monotonically decreasing.

Define $\zeta(m_t) \equiv \mathbb{E}_t[\Psi_{t+1}m_{t+1}] - m_t$ and note that

$$\boldsymbol{\zeta}(m_t) < 0 \leftrightarrow \mathbb{E}_t[\boldsymbol{\Psi}_{t+1}m_{t+1}/m_t] < 1$$

$$\boldsymbol{\zeta}(m_t) = 0 \leftrightarrow \mathbb{E}_t[\boldsymbol{\Psi}_{t+1}m_{t+1}/m_t] = 1$$

$$\boldsymbol{\zeta}(m_t) > 0 \leftrightarrow \mathbb{E}_t[\boldsymbol{\Psi}_{t+1}m_{t+1}/m_t] > 1,$$
(6)

so that $\zeta(\hat{m}) = 0$. Our goal is to prove that $\zeta(\bullet)$ is strictly decreasing on $(0, \infty)$ using the fact that

$$\boldsymbol{\zeta}'(m_t) \equiv \left(\frac{d}{dm_t}\right) \boldsymbol{\zeta}(m_t) = \mathbb{E}_t \left[\left(\frac{d}{dm_t}\right) \left(\mathcal{R}(m_t - c(m_t)) + \boldsymbol{\Psi}_{t+1} \boldsymbol{\xi}_{t+1} - m_t \right) \right]$$

$$= (\mathsf{R}/\boldsymbol{\Phi}) \left(1 - c'(m_t) \right) - 1.$$
(7)

Now, we show that (given our other assumptions) $\zeta'(m)$ is decreasing (but for different reasons) whether the RIC holds or fails (RIC).

If RIC holds. Equation (16) indicates that if the RIC holds, then $\underline{\kappa} > 0$. We show at the bottom of Section 2.9.1 that if the RIC holds then $0 < \underline{\kappa} < c'(m_t) < 1$ so that

$$\mathcal{R}\left(1 - c'(m_t)\right) - 1 < \mathcal{R}\left(1 - \underbrace{\left(1 - \mathbf{p}_R\right)}_{\underline{\kappa}}\right) - 1$$
$$= (R/\mathbf{\Phi})\mathbf{p}_R - 1$$

which is negative because the GIC says $\mathbf{p}_{\Phi} < 1$.

If RIC fails. Under RIC, recall that $\lim_{m\uparrow\infty} c'(m) = 0$. Concavity of the consumption function means that c' is a decreasing function, so everywhere

$$\mathcal{R}\left(1 - c'(m_t)\right) < \mathcal{R}$$

which means that $\zeta'(m_t)$ from (7) is guaranteed to be negative if

$$\mathcal{R} \equiv (\mathsf{R}/\mathbf{\Phi}) < 1. \tag{8}$$

But we showed in Section 2.6 that the only circumstances under which the problem has a nondegenerate solution while the RIC fails were ones where the FHWC also fails (that is, (8) holds).

1.5 A Third Measure

A footnote in Section 3 mentions reasons why it may be useful to calculate $\mathbb{E}_t[\log(\mathbf{m}_{t+1}/\log\mathbf{m}_t)]$. Here we show that one way of doing that is to calculate a nonlinear adjustment factor for the expectation of the growth factor.

$$\log (\mathbf{m}_{t+1}/\mathbf{m}_t) = \log(\mathbf{\Phi}\mathbf{\Psi}_{t+1}m_{t+1}) - \log m_t$$

$$= \log \mathbf{\Phi}(a_t \mathcal{R} + \mathbf{\Psi}_{t+1}\boldsymbol{\xi}_{t+1}) - \log m_t$$

$$= \log \mathbf{\Phi}(a_t \mathcal{R} + 1 + (\mathbf{\Psi}_{t+1}\boldsymbol{\xi}_{t+1} - 1)) - \log m_t$$

Now define $\check{m}_{t+1} = a_t \mathcal{R} + 1$, and compute the expectation:

$$\mathbb{E}_{t}[\log \left(\mathbf{m}_{t+1}/\mathbf{m}_{t}\right)] = \mathbb{E}_{t}\left[\log \mathbf{\Phi}(\breve{m}_{t+1} + \left(\mathbf{\Psi}_{t+1}\mathbf{\xi}_{t+1} - 1\right))\right] - \log m_{t}$$

$$= \log \mathbf{\Phi} + \mathbb{E}_{t}\left[\log \breve{m}_{t+1}\left(1 + \left(\mathbf{\Psi}_{t+1}\mathbf{\xi}_{t+1} - 1\right)\breve{m}_{t+1}^{-1}\right)\right] - \log m_{t}$$

$$= \underbrace{\log \mathbf{\Phi} + \log \breve{m}_{t+1} - \log m_{t}}_{\equiv \log \mathbb{E}_{t}[\mathbf{m}_{t+1}/\mathbf{m}_{t}]} + \mathbb{E}_{t}\left[\log(1 + \left(\mathbf{\Psi}_{t+1}\mathbf{\xi}_{t+1} - 1\right)\breve{m}_{t+1}^{-1}\right)\right]$$

and exponentiating tells us that

$$\exp(\mathbb{E}_t[\log \mathbf{m}_{t+1}/\mathbf{m}_t]) = \mathbb{E}_t[\mathbf{m}_{t+1}/\mathbf{m}_t] \exp(\mathbb{E}_t\left[\log(1 + (\mathbf{\Psi}_{t+1}\boldsymbol{\xi}_{t+1} - 1)\breve{m}_{t+1}^{-1})\right])$$
(9)

and this latter factor is a number that approaches 1 from below as m_t rises. Thus the expected growth rate of the log is smaller than the log of the growth rate of the expected growth factor. This implies that the m at which 'balanced growth' can be expected in the log, \tilde{m} , exceeds the corresponding point for the ratio, \tilde{m} .

Furthermore, in the limit as \mathbf{m}_t gets arbitrarily large, if the RIC holds and thus $\underline{\kappa} > 0$, a_{t+1} rises without bound, as does $\check{m}_{t+1} = a_{t+1}\mathcal{R} + 1$, so the approximation $\log(1+\epsilon) \approx \epsilon$ becomes arbitrarily good. Consequently, the last term on the RHS of (9) can be approximated as

$$\mathbb{E}_{t} \left[\log(1 + (\boldsymbol{\Psi}_{t+1} \boldsymbol{\xi}_{t+1} - 1) \check{m}_{t+1}^{-1}) \right]) \approx \mathbb{E}_{t} \left[(\boldsymbol{\Psi}_{t+1} \boldsymbol{\xi}_{t+1} - 1) \check{m}_{t+1}^{-1}) \right])$$

$$= 0$$

This demonstrates that

$$\lim_{\mathbf{m}_t \uparrow \infty} \exp(\mathbb{E}_t[\log \mathbf{m}_{t+1}/\mathbf{m}_t]) = \mathbb{E}_t[\mathbf{m}_{t+1}/\mathbf{m}_t]$$
(10)

1.6 Proof of Lemma

1.6.1 Pseudo-Steady-State m Is Smaller than Target m

Designate

$$\dot{\mathbf{m}}_{t+1}(a) = 1 + a\mathcal{R}
 \dot{\mathbf{m}}_{t+1}(a) = 1 + a\mathcal{R}/\underline{\Psi}
 \bar{\mathcal{R}} > \mathcal{R}$$
(11)

so that we can implicitly define the target and pseudo-steady-state points as

$$\hat{m} = \hat{\mathbf{m}}_{t+1}(\hat{m} - \mathbf{c}(\hat{m}))$$

$$\check{m} = \check{\mathbf{m}}_{t+1}(\check{m} - \mathbf{c}(\check{m}))$$
(12)

Then subtract:

$$\hat{m} - \check{m} = (\hat{a}\underline{\Psi}^{-1} - \check{a}) \mathcal{R}
= (a(\hat{m})\underline{\Psi}^{-1} - a(\check{m})) \mathcal{R}
= (a(\hat{m})\underline{\Psi}^{-1} - (a(\hat{m} + \check{m} - \hat{m}))) \mathcal{R}
\approx (a(\hat{m})\underline{\Psi}^{-1} - (a(\hat{m}) + (\check{m} - \hat{m})a'(\hat{m}))) \mathcal{R}
(\hat{m} - \check{m})(1 - \underline{a'(\hat{m})\mathcal{R}}) = (\underline{\Psi}^{-1} - 1)\hat{a}\mathcal{R}$$
(13)

The RHS of this equation is strictly positive because $\underline{\Psi}^{-1} > 1$ and both \hat{a} and \mathcal{R} are positive; while on the LHS, $(1 - \mathcal{R}a') > 0$. So the equation can only hold if $\hat{m} - \check{m} > 0$. That is, the target ratio exceeds the pseudo-steady-state ratio.

1.6.2 The m Achieving Individual Expected-Log-Balanced-Growth Is Smaller than the Individual Pseudo-Steady-State m

Expected log balanced growth occurs when

$$\mathbb{E}_{t}[\log \mathbf{m}_{t+1}] = \log \mathbf{\Phi} \mathbf{m}_{t}$$

$$\mathbb{E}_{t}[\log \mathbf{p}_{t+1} m_{t+1}] = \log \mathbf{\Phi} \mathbf{p}_{t} m_{t}$$

$$\mathbb{E}_{t}[\log \mathbf{\Psi}_{t+1} m_{t+1}] = \log \mathbf{\Phi} m_{t}$$

$$\mathbb{E}_{t}[\log (a(m_{t}) \mathbf{R} + \mathbf{\Psi}_{t+1} \boldsymbol{\xi}_{t+1} \mathbf{\Phi})] = \log \mathbf{\Phi} m_{t}$$

$$\mathbb{E}_{t}[\log (a(m_{t}) \mathcal{R} + \mathbf{\Psi}_{t+1} \boldsymbol{\xi}_{t+1})] = \log m_{t}$$

$$(14)$$

and we call the m that satisfies this equation \tilde{m} .

Subtract the definition of \check{m} from that of \tilde{m} :

$$\exp(\mathbb{E}_t[\log(a(\tilde{m})\mathcal{R} + \Psi_{t+1}\xi_{t+1})]) - (a(\tilde{m})\mathcal{R} + 1) = \tilde{m} - \tilde{m}$$
(15)

Now we use the fact that the expectation of the log is less than the log of the

¹The use of the first order Taylor approximation could be substituted, cumbersomely, with the average of a' over the interval to remove the approximation in the derivations above.

expectation,

$$\exp(\mathbb{E}_t[\log(a(\tilde{m})\mathcal{R} + \Psi_{t+1}\boldsymbol{\xi}_{t+1})]) < (a(\tilde{m})\mathcal{R} + 1)$$
(16)

so

$$\exp(\mathbb{E}_{t}[\log(a(\tilde{m})\mathcal{R}+1)]) - (a(\check{m})\mathcal{R}+1) < \tilde{m} - \check{m}$$

$$(a(\tilde{m})\mathcal{R}+1) - (a(\check{m})\mathcal{R}+1) < \tilde{m} - \check{m}$$

$$(a(\tilde{m}) - a(\tilde{m} + \check{m} - \tilde{m}))\mathcal{R} < \tilde{m} - \check{m}$$

$$(a(\tilde{m}) - (a(\tilde{m}) + (\check{m} - \tilde{m})\bar{a}')\mathcal{R} < \tilde{m} - \check{m}$$

$$(\tilde{m} - \check{m})\bar{a}'\mathcal{R} < \tilde{m} - \check{m}$$

$$\frac{\bar{a}'\mathcal{R}}{\langle \mathbf{p}_{\Phi}} < 1$$

$$(17)$$

where we are interpreting \bar{a}' as the mean of the value of a' over the interval between \tilde{m} and \check{m} .