TAM 470 - Homework 2 Solutions

Consider Taylor expansions of f_{j-1} and f_{j-2} . $f_{j-1} = f_j - hf_j' + \frac{h^2}{2}f_j'' - \frac{h^3}{6}f_j'' + \frac{h''}{24}f_j'' + \dots$ $f_{j-2} = f_j - 2h f_j + \frac{(2h)^2}{2} f_j'' - \frac{(2h)^3}{2} f_j''' + \frac{(2h)^4}{24} f_j'' + \cdots$ Lets evaluate RHS of given equation using expressions. $\frac{4j-24j-1+4j-2}{h^2} = \frac{1}{h^2} \left[\frac{4j-24j-h^2}{2} + \frac{h^2}{2} + \frac{h^2}{3} + \frac{h^3}{3} + \frac{h^3}{3$ $= \frac{1}{h^2} \left[h^2 f_j^{"} + \left(\frac{h^3}{3} - \frac{4h^3}{3} \right) f_j^{""} + \cdots \right]$

$$= \frac{1}{h^2} \left[- h f_{j}^{(1)} + H.O.T \right]$$

Reoverging,

 $f_{j}^{"} = f_{j} - 2f_{j-1} + f_{j-2} + h f_{j}^{"} + H.o.T$ $\Rightarrow T = h f_{j}^{"}$ $\Rightarrow This scheme is <math>1^{s+}$ order accusofe.

NOTE: H.O.T means higher order terms.

Problem 2 Start with an expression similar to Moin 2.10. For our case, me look at χ_{i-1} , χ_{i} , χ_{i+1} , χ_{i+2} . $\therefore f'_{i} + \sum_{k=-1}^{2} \alpha_{k} f_{i+k} = O(?)$ a., a., a., az are to be determined. Construit the Taylor table as shown below.

	6ì	f:	61 61	fii Ti	6 i	/ V 6:
<i>f</i> :	D	1	0	\bigcirc	0	0
a-1 fi-1	Q-1	-a-,h	+ a1 h2	= \frac{a_{-1}h^3}{6}	+ a-1 h4	-a-1h5
a. f;	0	0	0	0	Ð	D
Oe, fitt	a,	a,h	a.h.	a,h3	a.h.	a. h ⁵
az fitz	a_{λ}	a, (2h)	az (2h)2	$a_2(2h)^3$	az (2h)4 24	Ca (ah) 5
			•			

Set as many louver description columns to 0. We have fover unknowns >> we look to solve using first 4 columns.

Solving.

$$a_{-1} = \frac{1}{3h}$$

$$a_{0} = \frac{1}{2h}$$

$$a_{1} = \frac{1}{h}$$

$$a_{2} = \frac{1}{h}$$

Leading term will have the 5th column i.e for term. The leading term is, $\frac{h^{\mu}}{24} \cdot \frac{1}{h} \left[\frac{1}{3} - 1 + \frac{16}{6} \right] f_{i}^{N} = \frac{h^{2}}{12} f_{i}^{N}$ Using a., a., a., a. in (*), we get,

 $\frac{1}{5} \cdot \frac{1}{5} = \frac{-26_{1-1} - 36_{1} + 66_{1} + -66_{1} - 66_{1}}{66} + \frac{h^{3}}{12} \cdot \frac{1}{12} + \frac{h^{3}}{12} \cdot \frac{h^{3}}{12} + \frac{h^$

(a)
$$f_0 + \lambda f_1 - \frac{1}{h} (af_0 + bf_1 + cf_2 + df_3) = 0(?)$$

Taylor table

	100	fo	<i>f</i> 11	<i>(11)</i>	1 N	f.	fo fo
40	0	1	0	\bigcirc	0	0	\bigcirc
df!	0	L	α h	$\frac{\chi h^2}{2}$	$\frac{2h^3}{6}$	$\frac{\chi h^4}{24}$	2 h ⁵ 120
= 2 10	-a/-k	0	0	0	O	0	0
-b/h	10/2	<u>-</u> b	- bh	$-\frac{bh^2}{6}$	$-\frac{6h^3}{24}$	-ph	$-\frac{bh^{5}}{720}$
-Cf2	- <u>C</u> h	- 2c	-C(2h)2	- <u>C</u> (2h)3	'	-C (2h) 120	-C (2h)6 h 720
-d 63	$-\frac{\partial}{h}$	-3a	= d (3h) ² h 2	$-\frac{d}{h}\left(\frac{3h}{6}\right)^3$	-d (3h)4 h 24	-d (3h)5 h 120	-d (3h) 720
				<u> </u>			

To solve for (a,b,c,d) in terms of d, we set the first 4 columns to be 0.

$$a+b+c+d=0$$
 - (5.1)

$$b + 2c + 3d = (1+d) - (5.2)$$

 $b + 4c + 9d = 2d - (5.3)$
 $b + 8c + 27d = 3d - (5.4)$

using Sympy, Solving

$$a = -\left(\frac{11+2\lambda}{6}\right), \quad b = \frac{6-\lambda}{2}$$

$$c = \frac{2\lambda-3}{2}, \quad d = \frac{2-\lambda}{6}$$

One good choice is d=2 because this sets d=0. Now we can get same third order accuracy using just \$0, 8, and \$2.

(b) For the scheme to be fourth order accurate, we take the 5th column as well (along with equations (5.1)-(5.4) b+ 16c + 81d = 4d - (5.5)

$$d=3$$
, $a=-\frac{17}{6}$, $b=3/2$
 $c=3/2$, $d=-1/6$

Leading term is
$$\frac{h^4}{120} \int_{0}^{120} \left[x - b - 32c - 243d \right]$$

$$= -\frac{h^4}{20} + \frac{1}{8}$$

. The scheme can be written as:

$$\frac{1}{6h} + 3\frac{1}{3} = \frac{-17\frac{1}{6}}{6h} + 9\frac{1}{6h} + 9\frac{1}{20} + \frac{1}{20} + \frac{1}{6} + \frac{1}{20} + \frac{1}{6} + \frac{1}{20} +$$