MicroLow 1.0 ReadMe

James Bradley, University of Southern California

13th July 2018

1. Hardware and Software Requirement

MicroLow 1.0 is written and can be executed in the free open source computing environment and programming language R, which is available for download on the web (http://www.r-project.org/). MicroLow 1.0 uses the adaptive time-step solver "Isoda" from the deSolve package (Soetaert et al., 2010) **which must also be installed**. On a standard desktop computer running R, the model usually takes less than 1 min to simulate 10 years of succession.

2. Download MicroLow 1.0

A package named "MICROLOW_1.0_source", containing the source code of MicroLow 1.0 and validation data is available at https://github.com/jbradley8365/MICROLOW 1.0 SOURCE.

The package contains:

The entire "MICROLOW_1.0_source" folder should be copied to a local computer such that the directory is:

"/Users/jamesbradley/Documents/RFolder/MICROLOW_1.0_source/" **or** the folder paths contained in 'execute_MICROLOW_1.0.R' script should be modified (*setwd, path, pathte*) according to where the folder is copied to.

3. Description of files

This section provides a brief description of all files present in the folder "MICROLOW_1.0_source". This should be read alongside the following publication for clarity on variables, parameters, balance equations etc.:

Bradley, J. A., Amend, J. P., LaRowe, D. E., (2018) Microbial dormancy and maintenance in marine sediments through deep time. *Geobiology*.

MICROLOW_1.0_source contents:

ReadMe.docx / ReadMe.pdf

ReadMe guide to model source code and execution.

execute_MICROLOW_1.0.R Model source code, .R script.

Biomass.dat

Validation date.

Column 1: Sediment age (thousands of years)

Column 2: Cellular biomass carbon concentration (µg C cm⁻³) at drill hole U1370, IODP Expedition 329, converted from cell abundance provided in D'Hondt et al. (2015) (see paper for details).

Corg.dat

Validation date.

Column 1: Sediment age (thousands of years)

Column 2: Particulate Organic Carbon (POC) concentration (µg C cm⁻³) at drill hole U1370, IODP Expedition 329, converted from weight % measurements provided in D'Hondt et al. (2015) (see paper for details).

4. Model Operation

In R, specify working directory to appropriate path e.g.: "Users/jamesbradley/Desktop/RFolder/MICROLOW_1.0_SOURCE/"

Open *execute_MICROLOW_1.0.R* script and execute in console (note: package "deSolve" (Soetaert et al., 2010) must be installed).

5. Output

Model output is created as variables within a dataframe 'out'. By default, output is not saved locally, however this can be done by using a command such as:

write.table(out_list[[1]],file=paste("out","nominal.csv",sep="_"),sep=",",row.na mes=FALSE)

The dataframe "out" contains the model results, with output provided for every thousand years simulated.

Variable	Description	
time	Model run time, thousands of years	
B1	B_1	
B2	B_2	

B3 B_3 B4 Corg POC c_Cons_Corg_Growth_B1 POC consumed by B_1 for growth, cumulative c_Death_total Death of B_{1-4} , cumulative c_M_total_Corg Exogenous maintenance of B_{1-4} , cumulative c M total bio Endogenous maintenance of B_{1-4} , cumulative c M total Total maintenance of B₁₋₄, cumulative c_M_B1_bio Endogenous maintenance of B_1 , cumulative c_M_B1_Corg Exogenous maintenance of B_1 , cumulative c Cons Corg total Total consumption of POC, cumulative c Growth B1 Growth of B₁, cumulative c Death B1 Death of B_1 , cumulative c B1 D Deactivation of B_1 , cumulative c_B2_A Activation of B_2 , cumulative c_Death_B2 Death of B2, cumulative c_Death_B3 Death of B₃, cumulative c_Death_B4 Death of B4, cumulative c_B2_D Deactivation of B2, cumulative c B3 D Deactivation of B3, cumulative c_B3_A Activation of B₃, cumulative c_B4_A Activation of B4, cumulative c_M_B2_bio Endogenous maintenance of B_2 , cumulative c_M_B3_bio Endogenous maintenance of B₃, cumulative c_M_B4_bio Endogenous maintenance of B_4 , cumulative years Years simulated rate_Cons_Corg_Growth_B1 Rate of *POC* consumed by B_1 for growth (year⁻¹) rate Death total Rate of death of B_{1-4} (year⁻¹) Rate of exogenous maintenance of B_{1-4} (year⁻¹) rate_M_total_Corg rate_M_total_bio Rate of endogenous maintenance of B_{1-4} (year⁻¹) Rate of maintenance of B_{1-4} (year⁻¹) rate_M_total rate_M_B1_bio Rate of endogenous maintenance of B_1 (year⁻¹) rate_M_B1_Corg Rate of exogenous maintenance of B_1 (year⁻¹) rate Cons_Corg_total Rate of consumption of POC (year-1) rate Growth B1 Rate of growth of B_1 (year⁻¹) Rate of death of B_1 (year⁻¹) rate_Death_B1 rate_B1 D Rate of deactivation of B_1 (year⁻¹) rate B2 A Rate of activation of B_2 (year⁻¹) rate_Death_B2 Rate of death of B_2 (year⁻¹) Rate of death of B_3 (year⁻¹) rate_Death_B3 Rate of death of B_4 (year⁻¹) rate_Death_B4 rate B2 D Rate of deactivation of B_2 (year⁻¹) Rate of deactivation of B_3 (year⁻¹) rate B3 D Rate of activation of B_3 (year⁻¹) rate B3 A Rate of activation of B_4 (year⁻¹) rate B4 A rate M B2 bio Rate of endogenous maintenance of B_2 (year⁻¹) rate_M_B3_bio Rate of endogenous maintenance of B_3 (year⁻¹) rate_M_B4_bio Rate of endogenous maintenance of B_4 (year⁻¹) Theta_S θ_{S} Theta M Total biomass (B₁₋₄) Btotal

References

Soetaert, K., Petzoldt, T., and Setzer, R. W. (2010). Solving Differential Equations in R: Package deSolve. *J. Stat. Softw.* 33, 1–25.