

Monitorización Visual de Tráfico Rodado usando Deep Learning

Jessica Fernández Martínez j.fernandezmartin@alumnos.urjc.es

- Introducción
- Objetivos
- Smart-Traffic-Sensor
- Experimentos
- Conclusiones

Introducción

Monitorización de Tráfico Rodado

- Aumento del tráfico
- Mejorar seguridad vial
- Mejorar rendimiento de las carreteras
- Automatizar con visión artificial
- Uso de cámaras

Objetivos

Objetivo principal:

- Monitorizar vehículos
- Mejorar trabajo previo (Traffic-Monitor)

Subobjetivos:

- Uso de Deep Learning (TensorFlow, Keras y Darknet)
- 7 clases: coche, motocicleta, bus, furgoneta, camión, camión pequeño y camión cisterna
- Condiciones meteorológicas adversas y de mala calidad
- Recopilar base de datos

Bases de Datos

- Dataset STS: 3476 imágenes de buena calidad y buenas condiciones meteorológicas
- Dataset STS Enriquecido: 9774 imágenes (Redouane Kachach, **GRAM Road-Traffic Monitoring** y cámaras en abierto)

Diseño

- Detección
- Clasificación
- Seguimiento

Detección y Clasificación

- Soporta 3 plataformas neuronales:
 - TensorFlow
 - Keras
 - Darknet
- Incorpora actualmente 3 modelos de red:
 - SSD. MobilenetV2
 - SSD. VGG-16
 - YoloV3

TensorFlow. SSD MobilenetV2

- Mobilenet V2 mapas de características
- Depthwise separable convolutions:
 - depthwise convolution
 - pointwise convolution (1x1xprofundidad)
- Gran velocidad
- SSD. Diferentes escalas
- Non-maximum suppression

Keras. SSD VGG-16

 Red Base VGG-16 (13 convolucionales, 2 fully connected y 1 softmax)

Darknet. Yolov3

- Rápidas
- Requiere ver la imagen una sola vez
- Divide la imagen en una cuadrícula SxS
- N bounding boxes en cada celda
- Non-maximum supression

Smart-Traffic-Sensor ü

Seguimiento de Vehículos

- Asociar vehículo actual con anteriores
- Blobs nuevos en zona 2 se descartan
- Blobs en zona 2 no pueden cambiar de clase
- Blobs que pasan de zona 1 a 2 son verdaderos positivos
- Si no son detectados durante 5 secuencias en zona 1 se descartan
- Vehículo situado en el final se descarta
- Proximidad espacial y KLT

Seguimiento de Vehículos. Proximidad Espacial

- Distancia euclídea
- Vehículo actual dentro del área circular o elíptica del vehículo anterior
- Inicialmente el área es un círculo
- Cuando tenemos información de la orientación el área es una elipse
- Se emplea regresión lineal para calcular orientación

Seguimiento de Vehículos. KLT

- Casos problemáticos
- Se calcula en todas las secuencias
- KLT piramidal (Jean-Yves Bouguet)

Evaluación de diversas redes neuronales

- Entrenamiento con Dataset STS
- Entrenamiento con imágenes de buena calidad del Dataset STS
 Enriquecido
- 303 imágenes de test
- Partimos de modelos pre-entrenados

	Dataset STS			Dataset STS Enriquecido		
Redes Neuronales	mAP	mAR	Mean Inference Time (ms)	mAP	mAR	Mean Inference Time (ms)
ssd300adam.h5	0.6709	0.7082	3194	0.7478	0.7831	3427
frozen_inference_graph.pb	0.3283	0.4231	76	0.5484	0.61361	83
yolov3.weights	0.8641	0.9385	16894	0.9180	0.9499	15357

Análisis Detallado de YOLO

- Dataset STS Enriquecido
- 1º Entrenamiento con 6717 imágenes de buena calidad
- 2º Entrenamiento con 6717 imágenes de buena calidad y 1892 imágenes con malas condiciones meteorológicas
- 3º Entrenamiento con 6717 imágenes de buena calidad, 1892 imágenes con malas condiciones meteorológicas y 637 de mala calidad

		1º Entrenamiento		2º Entrenamiento		3º Entrenamiento	
Conjuntos de Test	Nº Img	mAP	mAR	mAP	mAR	mAP	mAR
Buena Calidad	389	0.9200	0.9494	0.7759	0.8488	0.7287	0.7802
Malas Condiciones Meteo.	71	0.8986	0.9379	0.9697	0.9753	0.9730	0.9779
Mala Calidad	68	0.4727	0.5470	0.6835	0.6957	0.8844	0.9010
Combinado	204	0.8311	0.8599	0.8188	0.8442	0.8606	0.8899

Comparativa con Traffic-Monitor

 Vídeo de buena calidad (299 imágenes), malas condiciones climatológicas (138 imágenes) y mala calidad (75 imágenes)

Tipo de Sistema	mAP	mAR
Smart-Traffic-Sensor	0.8926	0.9009
Traffic-Monitor	0.4374	0.5940

Tipo de Sistema	mAP	mAR
Smart-Traffic-Sensor	0.9899	0.9926
Traffic-Monitor	0.2407	0.3162

Resultados buena calidad

Resultados malas condiciones climatológicas

Tipo de Sistema	mAP	mAR
Smart-Traffic-Sensor	0.9439	0.9444
Traffic-Monitor	0.4479	0.6303

Vídeo Smart-Traffic-Sensor

https://www.youtube.com/watch?v=tkpjkcpqdCE

Resultados por vehículo Smart-Traffic-Sensor

Tipo de Vehículo	mAP	mAR
Car	0.9457	0.9679
Motorcycle	0.7029	0.7059
Van	0.8809	0.8897
Truck	0.9703	0.9718
Small-Truck	0.9604	0.9694

Vídeo Buena Calidad

Tipo de Vehículo	mAP	mAR
Car	1	1
Motorcycle	0.8317	0.8333
Van	1	1

Vídeo Mala Calidad

Comparativa con Técnicas del Estado del Arte

Ricardo Guerrero-Gomez-Olmedo et al. (filtros de Kalman y HOG)
 obtuvieron una precisión de 0.4872

Albert Soto usó YOLO y obtuvo una precisión de 0.5893 y un recall de

0.4092

Método	mAP
Faster R-CNN (Dataset 1)	0.728
Faster R-CNN (Dataset 2)	0.757
R-CNN (Dataset 1)	0.647
R-CNN (Dataset 2)	0.657
Smart-Traffic-Sensor	0.8926

Y. Abdullah et al	I.	
-------------------	----	--

Método	mAP
Fast R-CNN	0.672
Faster R-CNN	0.692
YOLO	0.589
SSD300	0.688
SSD512	0.712
Diseño de L. Chen. et al.	0.757
Smart-Traffic-Sensor	0.8926

Conclusiones

- Se han cumplido los objetivos
 - Detección con Deep Learning
 - Mejorar Traffic-Monitor
 - 7 clases: Motocicletas, Coches, Furgonetas, Autobuses,
 Camiones Pequeños, Camiones y Camiones Cisterna.
 - Mayor robustez y diversidad
 - Recopilar base de datos
- Cuanta más información mayor versatilidad
- El tamaño de los vehículos afecta
- Clases con mayor información tienen mejores resultados

Conclusiones

Trabajos futuros

- Diversas perspectivas de los vehículos
- Detección en condiciones nocturnas
- Detectar automáticamente accidentes o situaciones de interés

Enlaces

- Github-pages: https://roboticsurjc-students.github.io/2018-tfm-Jessica-Fernandez/
- Repositorio: https://github.com/RoboticsURJC-students/2018-tfm-Jessica-Fernandez
- Vídeo: https://www.youtube.com/watch?v=GpEEvbRpfes