GRS CS 655 Graduate Intro to Computer Networks PA2

Name: <u>Haoxuan Sun</u>

BUID: <u>U58198360</u>

Data: 1<u>1/03/2022</u>

How to compile: cd into code folder and then compile all files using: javac *.java

Then run the code with java Project

Code and traceoutput file is submitted through gsubmit.

Part 1

Design:

In part 1, Selective Repeat with Cumulative ACKs protocol is implemented.

A static retransmission timer value is used when implementing the protocol.

In sender end: An array *senderWindow[]* contains packets is used to simulate the sender window and a LinkedList *senderBuffer* is used to simulate the sender's buffer. Another array *ifAck[]* is used to record whether a packet has been ACKed. The initial value is 1; when the packet is sent, set value to 0; when receive an ACK for a packet, set value to 1. A variable *tempSeqNum* is used to track the next packet's sequence number which will send out.

When A receives data from upper layer, it news a packet with sequence *tempSeqNum*. First send it to the sender's buffer. Move it to sender window if there are empty spaces in window. A sends packets in sender window and set its corresponding *ifAck[]* to 0.

In receiver end: An array *receiverWindow[]* contains packets is used to simulate the receiver window. A variable records the latest received sequence number, and a packet variable records the latest received packet.

If B receives corrupted packet (compare *checksum()* of the packet with the check sum number in its value), ignore the packet and send ACK of the latest received packet. If the packet is not corrupted, then check its sequence number:

If it is the expected packet: send the data to upper layer and send its ACK to A.

If it is not the expected packet but within the window size: buffer it and send ACK of the latest correct order packet to A.

At the meantime, check buffer to find whether the next expected packet is stored. If yes, send cumulative ACK to A.

A will receive an ACK from B whenever B receives a packet. Check whether it is the first packet in sender window. If yes, slides sender window; if not, resend the B's expected packet.

At any time, if A finds out that a packet is time out without receiving its later message, resend the packet to B

Testing:

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
1	20	0.0	0.0	1000	8	15.0	2	421

Result:

```
Number of original packets transmitted by A:20
Number of retransmissions by A:1
Number of data packets delivered to layer 5 at B:20
Number of ACK packets sent by B:21
Number of corrupted packets:1
Ratio of lost packets:0.0
Ratio of corrupted packets:0.023809523809523808
Average RTT:9.62464712973454
Average communication time:10.56214712973454

EXTRA:
All RTT: 153.99435407575265
Counter RTT: 16
Total time to communicate: 168.99435407575265
Counter for time to communicate: 16
```

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
2	20	0.1	0.0	1000	8	15.0	2	422

```
Number of original packets transmitted by A:20
Number of retransmissions by A:5
Number of data packets delivered to layer 5 at B:20
Number of ACK packets sent by B:24
Number of corrupted packets:3
Ratio of lost packets:0.04081632653061224
Ratio of corrupted packets:0.06382978723404255
Average RTT:9.611491744743262
Average communication time:14.298991744743262

EXTRA:
All RTT: 153.7838679158922
Counter RTT: 16
Total time to communicate: 228.7838679158922
Counter for time to communicate: 16
```

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
3	20	0.0	0.1	1000	8	15.0	0	111

Result:

```
Number of original packets transmitted by A:10
Number of retransmissions by A:6
Number of data packets delivered to layer 5 at B:10
Number of ACK packets sent by B:14
Number of corrupted packets:6
Ratio of lost packets:0.0
Ratio of corrupted packets:0.2
Average RTT:8.659996337778844
Average communication time:17.659996337778843

EXTRA:
All RTT: 86.59996337778844
Counter RTT: 10
Total time to communicate: 176.59996337778844
Counter for time to communicate: 10
```

CASE	# msg	Loss p	Corr p	Avg T		Retra T	Trace Level	Seed
4	20	0.1	0.1	1000	8	15.0	2	111

```
Number of original packets transmitted by A:20
Number of retransmissions by A:14
Number of data packets delivered to layer 5 at B:20
Number of ACK packets sent by B:25
Number of corrupted packets:10
Ratio of lost packets:0.06779661016949153
Ratio of corrupted packets:0.18181818181818182
Average RTT:9.1059621723075
Average communication time:18.4809621723075

EXTRA:
All RTT: 145.69539475692
Counter RTT: 16
Total time to communicate: 295.69539475692
Counter for time to communicate: 16
```

Average communication time/SSD/Confidence Intervals when setting corruption probability to 0/0.2/0.4/0.6/0.8:

Corruption	T1	T2	T3	T4	T5	AVG	SSD	CONFIDENCE 90%
0	9.656	9.786	10.001	10.989	11.149	10.3162	0.700453924	0.51525454
0.2	20.855	22.866	22.677	22.019	22.677	22.2188	0.827440753	0.608666167
0.4	51.896	56.256	36.188	34.223	52.578	46.2282	10.22168201	7.519078536
0.6	73.782	53.715	73.276	58.278	53.561	62.5224	10.22631924	7.522489687
0.8	1687.281	977.055	818.026	272.623	1799.167	1110.8304	634.8867003	467.023231

Line Graph of Comm Time vs. Corruption probability:

Average communication time/SSD/Confidence Intervals when setting lost probability to 0/0.2/0.4/0.6/0.8:

Loss	T1	T2	T3	T4	T5	AVG	SSD	CONFIDENCE 90%
0	9.656	9.786	10.001	10.989	11.149	10.3162	0.700453924	0.51525454
0.2	19.561	19.138	15.322	18.523	15.328	17.5744	2.086317641	1.534697144
0.4	33.14	28.828	31.012	27.732	26.055	29.3534	2.77820622	2.043651008
0.6	103.852	77.828	91.899	81.102	91.899	89.316	10.29663797	7.574216205
0.8	622.429	506.551	2336.906	951.556	377.079	958.9042	799.2656783	587.9405559

Line Graph of Comm Time vs. Loss probability:

From the above two tables and figures, we can guess that in both 2 situations: the bigger the loss/corruption probability, the more communication time is needed. From the limited collected data, we could guess the function grows exponentially. And the average commination time needed in both situations are almost the same.

Part 2

Design:

In part 2, Go-Back-N protocol is implemented. Similar with the design idea of part 1.

The difference are:

In the receiver end, if the received packet is not the required one and hasn't been received before, send an ACK of the latest received packet.

In the sender end, when receives an ACK of an already sent packet, then resend all packets after it no matter whether have been sent before.

Testing:

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
1	20	0.0	0.0	1000	8	15.0	2	421

```
Number of original packets transmitted by A:20
Number of retransmissions by A:1
Number of data packets delivered to layer 5 at B:20
Number of ACK packets sent by B:21
Number of corrupted packets:1
Ratio of lost packets:0.0
Ratio of corrupted packets:0.023809523809523808
Average RTT:9.508853419599314
Average communication time:10.258853419599314

EXTRA:
All RTT: 190.17706839198627
Counter RTT: 20
Total time to communicate: 205.17706839198627
Counter for time to communicate: 20
```

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
2	20	0.1	0.0	1000	8	15.0	2	422

Result:

```
Number of original packets transmitted by A:20
Number of retransmissions by A:5
Number of data packets delivered to layer 5 at B:20
Number of ACK packets sent by B:24
Number of corrupted packets:3
Ratio of lost packets:0.04081632653061224
Ratio of corrupted packets:0.06382978723404255
Average RTT:9.420310068056278
Average communication time:13.170310068056278

EXTRA:
All RTT: 188.40620136112557
Counter RTT: 20
Total time to communicate: 263.40620136112557
Counter for time to communicate: 20
```

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
3	20	0.0	0.1	1000	8	15.0	2	111

Result:

```
Number of original packets transmitted by A:20
Number of retransmissions by A:8
Number of data packets delivered to layer 5 at B:20
Number of ACK packets sent by B:26
Number of corrupted packets:8
Ratio of lost packets:0.0
Ratio of corrupted packets:0.14814814814814814
Average RTT:7.956245612964229
Average communication time:13.956245612964228

EXTRA:
All RTT: 159.12491225928457
Counter RTT: 20
Total time to communicate: 279.12491225928454
Counter for time to communicate: 20
```

CASE	# msg	Loss p	Corr p	Avg T	Win Size	Retra T	Trace Level	Seed
4	20	0.1	0.1	1000	8	15.0	2	123

Average communication time/SSD/Confidence Intervals when setting corruption probability to 0/0.2/0.4/0.6/0.8:

Corruption	T1	T2	T3	T4	T5	AVG	SSD	CONFIDENCE 90%
0	11.935	11.261	11.213	11.569	11.621	11.5198	0.294175458	0.216395733
0.2	20.693	18.813	20.609	15.523	18.142	18.756	2.122387335	1.561230044
0.4	41.553	31.233	28.101	32.934	45.052	35.7746	7.194430714	5.292229741
0.6	112.348	60.318	77.192	88.613	91.752	86.0446	19.17854543	14.10775537
0.8	4654.681	1404.923	2918.826	3085.192	2569.718	2926.668	1167.726577	858.9807261

Line Graph of Comm Time vs. Corruption probability:

Average communication time/SSD/Confidence Intervals when setting lost probability to 0/0.2/0.4/0.6/0.8:

Loss	T1	T2	T3	T4	T5	AVG	SSD	CONFIDENCE 90%
0	11.935	11.261	11.213	11.569	11.621	11.5198	0.294175458	0.216395733
0.2	18.839	20.396	25.922	25.929	17.629	21.743	3.942057141	2.899780799
0.4	42.181	37.834	31.012	37.781	39.796	37.7208	4.160056334	3.060141202
0.6	113.031	480.229	396.842	220.858	441.253	330.4426	156.8441735	115.3747159
0.8	1256.822	1988.685	1379.768	1228.732	1201.377	1411.0768	330.0112306	242.7565597

Line Graph of Comm Time vs. Loss probability:

From the above two tables and figures, we can guess that in both 2 situations: the bigger the loss/corruption probability, the more communication time is needed. From the limited collected data, we could guess the function grows exponentially. And the average commination time needed in both situations are almost the same.

Typically, GBN is not as efficient as SR, because sender has send all packets according to ACK it receives, although some of them could have arrived receiver end successfully. SR only resends the lost/corrupted packets.