

Silica having higher density useful for production of dispersions is prepared by hydrophobising pyrogenically produced silica and compacting it

Patent number: DE19961933
Publication date: 2001-07-26
Inventor: MICHAEL GUENTHER (DE); KASACK VOLKER (DE); NOWACK RUEDIGER (DE)
Applicant: DEGUSSA (DE)
Classification:
- **international:** C01B33/18; C09C1/30; C01B33/00; C09C1/28; (IPC1-7): C01B33/18
- **european:** C01B33/18; C09C1/30D12
Application number: DE19991061933 19991222
Priority number(s): DE19991061933 19991222

[Report a data error here](#)**Abstract of DE19961933**

Hydrophobic, pyrogenically produced silica having a tamped density of 55 - 200 g/l is produced by hydrophobising pyrogenically produced silica and then compacting it.

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑰ Offenlegungsschrift
⑩ DE 199 61 933 A 1

⑯ Int. Cl.⁷:
C 01 B 33/18

DE 199 61 933 A 1

⑪ Aktenzeichen: 199 61 933.6
⑫ Anmeldetag: 22. 12. 1999
⑬ Offenlegungstag: 26. 7. 2001

⑯ Anmelder:
Degussa AG, 40474 Düsseldorf, DE

⑯ Erfinder:
Michael, Günther, Dr., 63791 Karlstein, DE; Kasack,
Volker, Dr., 63584 Gründau, DE; Nowack, Rüdiger,
63796 Kahl, DE

⑯ Entgegenhaltungen:
EP 02 80 851 B1
EP 00 10 655 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Hydrophobe Kieselsäure

⑯ Hydrophobe, pyrogen hergestellte Kieselsäure mit einer Stampfdichte von 60 bis 200 g/l wird hergestellt, indem man pyrogen hergestellte Kieselsäure hydrophobiert und anschließend verdichtet. Sie kann zur Herstellung von Dispersionen verwendet werden.

DE 199 61 933 A 1

DE 199 61 933 A 1

Beschreibung

Die Erfindung betrifft eine hydrophobe, pyrogen hergestellte Kieselsäure, ein Verfahren zu ihrer Herstellung und ihrer Verwendung.

5 Es ist bekannt, hydrophile, pyrogen hergestellte Kieselsäure zu verdichten (EP 0 280 854 B1). Nachteiligerweise nimmt mit zunehmender Stampfdichte, beziehungsweise Schüttgewicht die Verdickungswirkung linear ab. Zusätzlich nimmt die Dispergierbarkeit mit zunehmender Dichte ab. Dies zeigt sich durch eine unerwünschte Stippenbildung. Eine hydrophile, pyrogen hergestellte Kieselsäure kann daher nach der Verdichtung nur für eine begrenzte Anzahl von Einsatzzwecken verwendet werden.

10 Gegenstand der Erfindung ist eine hydrophobe, pyrogen hergestellte Kieselsäure, welche dadurch gekennzeichnet ist, daß sie eine Stampfdichte von 55 bis 200 g/l aufweist.
Bevorzugt kann die Stampfdichte 60 bis 200 g/l betragen.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der hydrophoben, pyrogen hergestellten Kieselsäure mit einem Schüttgewicht von 55 bis 200 g/l, welches dadurch gekennzeichnet ist, daß man pyrogen hergestellte
15 Kieselsäure auf bekanntem Wege hydrophobiert und anschließend verdichtet.
Bevorzugt kann die Hydrophobierung mittels halogenfreier Silane erfolgen. Der Chlorid-Gehalt der Kieselsäure kann gleich oder unter 100 ppm, bevorzugt 10 bis 100 ppm betragen.
Die Verdichtung kann mittels eines Walzenverdichters erfolgen. Bevorzugt kann die Verdichtung mittels eines Preßbandfilters gemäß EP 0 280 851 B1 erfolgen.

20 Als hydrophobe, pyrogen hergestellte Kieselsäure können zum Beispiel die Kieselsäuren:
Aerosil R 812 oder Aerosil R 812S, mit der Gruppierung -O-Si(CH₃)₃
Aerosil R 202, Aerosil MS 202, Aerosil MS 202, Aerosil R 106 oder Aerosil R 104, mit der Gruppierung

30 Aerosil R 805 mit der Gruppierung

verwendet werden.

Die erfindungsgemäße hydrophobe, pyogene Kieselsäure mit einem Stampfgewicht von 55 bis 200 g/l weist die folgenden Vorteile auf:

40 Auf Grund der höheren Stampfdichte sind die Transportkosten deutlich niedriger.
Nach der Dispergierung liegt die erfindungsgemäße Kieselsäure in kleineren Aggregaten vor. Das heißt: Die Dispersionen sind feinteiliger, weil die erfindungsgemäße Kieselsäure besser dispergierbar ist.
Die mit der erfindungsgemäßen Kieselsäure hergestellten Dispersionen weisen einen kleineren Grindometerwert auf.
Sowohl die Transparenz, gemessen an UV-Transmission, als auch die visuelle Durchsichtigkeit der Dispersionen werden durch die Verwendung der erfindungsgemäßen Kieselsäure deutlich verbessert.
45 Die Dispersionen, die die erfindungsgemäße Kieselsäuren enthalten, zeigen eine deutlich erhöhte Stabilität, weil die Sedimentationsneigung deutlich geringer ist.
Ein weiterer Vorteil der erfindungsgemäßen Kieselsäure ist die reduzierte Staubbildung bei der Einarbeitung und die deutlich herabgesetzte Einarbeitungs- beziehungsweise Benetzungszeit in zum Beispiel flüssige Systemen.

50 Die Hydrophobie ist bei der erfindungsgemäßen Kieselsäure gegenüber der hydrophoben, pyrogenen Kieselsäure mit niedrigerem Schüttgewicht unverändert. Auch die Verdickungswirkung ist unverändert.

Beispiel 1

55 Es werden verschiedene hydrophobe, pyrogen hergestellte Kieselsäuren untersucht, wobei verschiedene Verdichtungszustände gegenübergestellt werden.

Es bedeuten:

lose = pulverförmige, unveränderte Kieselsäure

CF = mit Carterfilter verdichtete Kieselsäure

60 VV 60 = auf eine Stampfdichte von ca. 60 g/l verdichtete Kieselsäure

VV 90 = auf eine Stampfdichte von ca. 90 g/l verdichtete Kieselsäure

Untersucht werden die Aerosil-Typen R 202, US 202, US 204, R 812, R812S und R 805. Die Ergebnisse sind in der Tabelle 1 aufgeführt.

Die Methanolbenetzbareit zeigt Fig. 3.

65 Der Verdichtungsgrad hat praktisch keinen nennenswerten Einfluß auf die Hydrophobie, beurteilt nach der Methanolbenetzbareit nach Corning Glass. Auch die Viskosität zeigt keine deutliche systematische Abhängigkeit von der Stampfdichte. Insbesondere bei R 812 wird die Dispergierbarkeit mit steigender Dichte besser. R 812 S, das mehr SiOH-Gruppen enthält als R 812, zeigt obiges Phänomen weniger deutlich.

DE 199 61 933 A 1

US 202 und US 204 sind rheologisch gut miteinander vergleichbar und AEROSIL R 202 unterlegen.

Die verdichteten Varianten zeigen überraschender Weise insbesondere bei R 812, R 202 und US 202/4 eine um bis zur Hälfte verkürzte Einarbeitungszeit. Ferner zeigen die verdichteten Kiesel säuren eine geringere Staubentwicklung.

5

10

15

20

25

30

35

40

45

50

55

60

65

PA	Prüfmethode	444701 AE R202 CF	444702 AE R202 W50	444703 AE R 202 CF	444704 AE R202 W50	444705 AE R805 lose	444706 AE R805 CF	444707 AE R805 W50	444708 AE R805 lose	444709 AE R812 CF	444710 AE R812 W50	444711 AE R 812 W50
0330	Viskosität Epoxid v. Hä	459	456	382	430	190	184	185	178			
0335	Viskosität Epoxid n. Hä	54,4	54,7	49,4	52,8	42	41,7	39	43			
0340	Verdichtungswirkung									11,7	13,3	11,5
0410	Grindmetertest									127	102	92
0420	Mechanikbelastbarkeit											
0701	Stampfdichte	45	50	51	75	44	62	55	68	45	44	50
0920	Abglanzfestigkeit	11	20	18	15	15	15	15	20			
0930	Schleißabstand Härrt.	0	24	4	27	0	36	7	19	0	0	
0955	Effektivität	258	274	203	266	235	260	236	258	166	185	169
0965	Effektivität (UT)	280	290	226	295	271	284	270	288	197	213	209
0975	Sediment (Effektivität)	15	15	15	8	10	15	10	5	13	15	8
PA	Prüfmethode	444712 AE R 812 W50	444713 AE R 812S lose	444714 AE R 812S CF	444715 AE R 812S CF	444716 AE R 812S W50	444717 AE R 812S W50	444718 US 202 lose	444719 US 202 CF	444720 US 202 lose	444721 US 204 CF	444722 US 204 W50
0330	Viskosität Epoxid v. Hä											
0335	Viskosität Epoxid n. Hä											
0340	Verdichtungswirkung	11,1	17,3	17,3	18,2	17						
0410	Grindmetertest	77	93	110	110	100						
0420	Mechanikbelastbarkeit											
0701	Stampfdichte	73	49	50	58	75	39	50	67	44	45	57
0920	Abglanzfestigkeit	22										16
0930	Schleißabstand Härrt.	12	0	0	0	4	0	27	36	0	0	3
0955	Effektivität	159	168	169	187	209	320	304	320	186	193	192
0965	Effektivität (UT)	225	201	200	216	235	336	327	346	223	225	230
0975	Sediment (Effektivität)	5	8	8	3	0	15	10	3	10	10	10

DE 199 61 933 A 1

Beispiel 2

Untersuchung des Einflusses einer höheren Verdichtung auf anwendungstechnische Eigenschaften

		AE R 812, unver- dichtet	AE R 812, V-Ware	AE R 812, V-Ware	AE R 812	
		UB 3847-1	RHE (4)	UB 3847-3	RHE (5)	Spezifik.
		10-kg- Sack	15-kg- Sack	20-kg- Sack		
Stampfdichte (DIN ISO 787/11)	g/l	50	87	106	ca. 50	5
Effektivität, Ethanol (0955)		184	214	209	216 1)	10
Effektivität (UT), Ethanol (0965)		218	260	290	236 1)	15
Sediment (Effektivität, Dissolver)	Vol.-%	10	1	1	1)	20

1. Bestimmt an Standardmuster (UB 3391)

Die Ergebnisse sind in den Fig. 1, 8 und 4 dargestellt Rhologische Prüfung:

Polymer: Araldit M

Thixmittel: R 202 und R 812

Zusatz: -

Probe A R 812 10 kg 2-10123

Herstellungsdatum der Probe: 24.02.1994 Spindel:5

Lag. Zeit in Tagen	5 Upm [mPa*s]	50 Upm [mPa*s]	T.-I.
0	16600 80-85 μ	4460	3,72

Probe A R 812 15 kg 1,0/8 min

Herstellungsdatum der Probe: 24.02.1994 Spindel:5

Lag. Zeit in Tagen	5 Upm [mPa*s]	50 Upm [mPa*s]	T.-I.
0	15100 50-60 μ	4060	3,72

Probe A R 812 20 kg 0,6/14 min

Herstellungsdatum der Probe: 24.02.1994 Spindel:5

Lag. Zeit in Tagen	5 Upm [mPa*s]	50 Upm [mPa*s]	T.-I.
0	15100 50-60 μ	4020	3,73

Die Verdichtung kann eine Art Vordispersierung darstellen. Entsprechend erhöhen sich mit der Stampfdichte die Effektivitätswerte, das heißt die effektiv vorliegenden Teilchen in der Ethanoldispersion werden kleiner und die verdichteten Proben setzen sich deutlich weniger ab.

Entsprechend ist in Araldit der Grindometerwert der verdichteten Proben günstiger. Da die größeren Teilchen aber maßgeblich die Verdickungswirkung beeinflussen, geht diese mit der Verdichtung geringfügig zurück.

DE 199 61 933 A 1

Der Graphik mit den Effektivitätswerten kann man entnehmen, daß die hoch verdichtete AEROSIL R 812-Probe zwar noch mit dem Ultra-Turrax (0965), aber nicht mehr mit dem Dissolver (0955) aufgeschlossen werden kann. Aufgrund der geringeren Oberfläche von AEROSIL R 202 (und der damit prinzipiell besseren Dispergierbarkeit) tritt dieses Phänomen bei AERO-SIL R 202 kaum auf.

5 Mit steigender Verdichtung werden die effektiv vorliegenden Teilchen in einer Ethanoldispersion also kleiner und die Streuung im 90-Grad-Winkel aufgrund der Rayleigh-Streuung größer. Die Totalstreuung (über alle Winkel) wird aber kleiner, die Proben werden für das Auge deutlich transparenter, was auch die UV-Transmissionsspektren belegen.

Die Verdichtung hat keinen Einfluß auf die Hydrophbie, die mit der des Standardmusters jeweils weitgehend übereinstimmt.

10

15

20

25

30

35

40

45

50

55

60

65

DE 199 61 933 A 1

Beispiel 3

Untersuchung des Einflusses einer höheren Verdichtung auf anwendungstechnische Eigenschaften

5

10

15

20

25

30

35

40

45

50

55

60

65

		AE R 812, unver- dichtet	AE R 202, V-Ware RHE	AE R 202, V-Ware RHE	AE R 202
Effektivität, Ethanol (0955)	Effektivität (UT), Ethanol (0965)	UB 3848-1 2-02024 10-kg- Sack	UB 3848-2 2-01024- (2) 15-kg-Sack	UB 3848-3 2-01024- (3) 20-kg-Sack	RHE Spezifik.
Stampfdichte (DIN ISO 787/11)	g/1	51	93	119	ca. 60 3)
Sediment (Effektivität, Dissolver)	Vol.-%	10	5	336	334 1)
				373	339 1)
				1	

1) Bestimmt an Standardmuster (UB 3391)

3) Richtwert

DE 199 61 933 A 1

Die verdichteten AEROSIL R 202-Proben verhalten sich analog zu den verdichteten AEROSIL R 812-Proben.
Bezüglich der Diskussion wird daher auf Beispiel 2 verwiesen.
Die Methanolbenetzbartigkeit ist in der Fig. 5 graphisch dargestellt.

Patentansprüche

5

1. Hydrophobe, pyrogen hergestellte Kieselsäure, **dadurch gekennzeichnet**, daß sie eine Stampfdichte von 55 bis 200 g/l aufweist.
2. Verfahren zur Herstellung der hydrophoben, pyrogen hergestellten Kieselsäure gemäß Anspruch 1, dadurch gekennzeichnet, daß man pyrogen hergestellte Kieselsäure auf bekanntem Wege hydrophobiert und anschließend verdichtet.
3. Verwendung der hydrophobe, pyrogen hergestellte Kieselsäure gemäß Anspruch 1 zur Herstellung von Dispersionsen.

10

15

20

25

30

35

40

45

50

55

60

65

- Leerseite -