Package 'coda4microbiome'

July 17, 2024

Fitle Compositional Data Analysis for Microbiome Studies
Version 0.2.4
Description Functions for microbiome data analysis that take into account its compositional nature. Performs variable selection through penalized regression for both, cross-sectional and longitudinal studies, and for binary and continuous outcomes.
License MIT + file LICENSE
URL https://malucalle.github.io/coda4microbiome/
BugReports https://github.com/malucalle/coda4microbiome/issues
Encoding UTF-8
RoxygenNote 7.2.3
LazyData false
Imports corrplot, glmnet, plyr, pROC, ggpubr, ggplot2, ComplexHeatmap, circlize, survival, survminer
Suggests rmarkdown
NeedsCompilation no
Author Malu Calle [aut] (https://orcid.org/0000-0001-9334-415X), Toni Susin [aut, cre] (https://orcid.org/0000-0003-0374-2784), Meritxell Pujolassos [aut] (https://orcid.org/0000-0003-0313-3506)
Maintainer Toni Susin <toni.susin@upc.edu></toni.susin@upc.edu>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2024-07-17 15:50:02 UTC
Contents
coda4microbiome

2 coda4microbiome

coda	4microbiome	coda4microbiome: Comp Studies	ositional Data Analysis for Microb	iome
Index				36
	• —			
	_			
	_			
	_			
				1 1 1
	shannon_sim			30
	•			
	metadata			21
	•			
	- —			
	_			
	- 0			
	_			
	_			
	Event			
	ecam_filtered			12
	Crohn			11
	coda almnet longit	ıdinal0		8

Description

This package provides a set of functions to explore and study microbiome data within the CoDA framework, with a special focus on identification of microbial signatures (variable selection).

coda_coxnet 3

|--|--|--|

Description

Microbial signatures in survival studies The algorithm performs variable selection through an elasticnet penalized Cox regression conveniently adapted to CoDA. The result is expressed as the (weighted) balance between two groups of taxa. It allows the use of non-compositional covariates.

Usage

```
coda_coxnet(
    x,
    time,
    status,
    covar = NULL,
    lambda = "lambda.1se",
    nvar = NULL,
    alpha = 0.9,
    nfolds = 10,
    showPlots = TRUE,
    coef_threshold = 0
)
```

Arguments

Х	abundance matrix or data frame (rows are samples, columns are variables (taxa)	
time	time to event or follow up time for right censored data. Must be a numeric vector.	
status	event occurrence. Vector (type: numeric or logical) specifying 0, or FALSE, for no event occurrence, and 1, or TRUE, for event occurrence.	
covar	data frame with covariates (default = NULL)	
lambda	penalization parameter (default = "lambda.1se")	
nvar	number of variables to use in the glmnet.fit function (default = NULL)	
alpha	elastic net parameter (default = 0.9)	
nfolds	number of folds	
showPlots	if TRUE, shows the plots (default = TRUE)	
coef_threshold	coefficient threshold, minimum absolute value of the coefficient for a variable to be included in the model (default =0)	

Value

list with "taxa.num", "taxa.name", "log-contrast coefficients", "risk.score", "apparent Cindex", "mean cv-Cindex", "risk score plot", "signature plot".

4 coda_glmnet

Author(s)

M. Calle, M. Pujolassos, T. Susin

Examples

coda_glmnet

coda_glmnet

Description

Microbial signatures in cross-sectional studies. The algorithm performs variable selection through penalized regression on the set of all pairwise log-ratios. The result is expressed as the (weighted) balance between two groups of taxa. It allows the use of non-compositional covariates.

Usage

```
coda_glmnet(
    x,
    y,
    covar = NULL,
    lambda = "lambda.1se",
    nvar = NULL,
    alpha = 0.9,
    nfolds = 10,
    showPlots = TRUE,
    coef_threshold = 0
)
```

Arguments

x abundance matrix or data frame (rows are samples, columns are variables (taxa))
y outcome (binary or continuous); data type: numeric, character or factor vector
covar data frame with covariates (default = NULL)

coda_glmnet0 5

```
lambda penalization parameter (default = "lambda.1se")

nvar number of variables to use in the glmnet.fit function (default = NULL)

alpha elastic net parameter (default = 0.9)

nfolds number of folds

showPlots if TRUE, shows the plots (default = TRUE)

coef_threshold coefficient threshold, minimum absolute value of the coefficient for a variable to be included in the model (default = 0)
```

Value

if y is binary: list with "taxa.num", "taxa.name", "log-contrast coefficients", "predictions", "apparent AUC", "mean cv-AUC", "sd cv-AUC", "predictions plot", "signature plot" if not:list with "taxa.num", "taxa.name", "log-contrast coefficients", "predictions", "apparent Rsq", "mean cv-MSE", "sd cv-MSE", "predictions plot", "signature plot"

Author(s)

```
M. Calle - T. Susin
```

Examples

```
data(Crohn, package = "coda4microbiome")
set.seed(123)
coda_glmnet(x_Crohn[,(1:10)],y_Crohn,showPlots= FALSE)
```

coda_glmnet0

coda_glmnet0

Description

Internal function for the permutational test

Usage

```
coda_glmnet0(
    x,
    lrX,
    idlrX,
    nameslrX,
    y,
    covar = NULL,
    lambda = "lambda.1se",
    alpha = 0.9
)
```

Arguments

```
x .
lrX .
idlrX .
nameslrX .
y .
covar .
lambda .
alpha .
```

Value

.

Author(s)

M. Calle - T. Susin

coda_glmnet_longitudinal

coda_glmnet_longitudinal

Description

Microbial signatures in longitudinal studies. Identification of a set of microbial taxa whose joint dynamics is associated with the phenotype of interest. The algorithm performs variable selection through penalized regression over the summary of the log-ratio trajectories (AUC). The result is expressed as the (weighted) balance between two groups of taxa.

Usage

```
coda_glmnet_longitudinal(
    x,
    y,
    x_time,
    subject_id,
    ini_time,
    end_time,
    covar = NULL,
    lambda = "lambda.1se",
    nvar = NULL,
    alpha = 0.9,
    nfolds = 10,
    showPlots = TRUE,
    coef_threshold = 0
)
```

Arguments

Х	abundance matrix or data frame in long format (several rows per individual)
у	outcome (binary); data type: numeric, character or factor vector
x_time	observation times
subject_id	subject id
ini_time	initial time to be analyzed
end_time	end time to be analyzed
covar	data frame with covariates (default = NULL)
lambda	penalization parameter (default = "lambda.1se")
nvar	number of variables to use in the glmnet.fit function (default = NULL)
alpha	elastic net parameter (default = 0.9)
nfolds	number of folds (default = 10)
showPlots	if TRUE, shows the plots (default = FALSE)
coef_threshold	coefficient threshold, minimum absolute value of the coefficient for a variable to be included in the model (default =0)

Value

in case of binary outcome: list with "taxa.num", "taxa.name", "log-contrast coefficients", "predictions", "apparent AUC", "mean cv-AUC", "sd cv-AUC", "predictions plot", "signature plot", "trajectories plot"

Author(s)

```
M. Calle - T. Susin
```

```
data(ecam_filtered, package = "coda4microbiome") # load the data
ecam_results<-coda_glmnet_longitudinal (x=x_ecam[,(1:4)],y= metadata$diet,
x_time= metadata$day_of_life, subject_id = metadata$studyid, ini_time=0,
end_time=60,lambda="lambda.min",nfolds=4, showPlots=FALSE)
ecam_results$taxa.num</pre>
```

```
{\it coda\_glmnet\_longitudinal0}\\ {\it coda\_glmnet\_longitudinal0}
```

Description

internal function

Usage

```
coda_glmnet_longitudinal0(
    x,
    lrX,
    idlrX,
    nameslrX,
    y,
    x_time,
    subject_id,
    ini_time,
    end_time,
    covar = NULL,
    ktop = NULL,
    lambda = "lambda.1se",
    alpha = 0.9,
    nfolds = 10
)
```

Arguments

nfolds

```
abundance matrix or data frame in long format (several rows per individual)
Χ
1rX
                  log-ratio matrix
                  indices table in the log-ratio matrix
idlrX
                  colnames of the log-ratio matrix
nameslrX
                  outcome (binary); data type: numeric, character or factor vector
У
                  observation times
x_time
subject_id
                  subject id
                  initial time to be analyzed
ini_time
end_time
                  end time to be analyzed
covar
                  data frame with covariates (default = NULL)
                  given number of selected taxa or compute the best number in case it is NULL
ktop
                  (default = NULL)
lambda
                  penalization parameter (default = "lambda.1se")
                  elastic net parameter (default = 0.9)
alpha
```

number of folds

Value

.

Author(s)

M. Calle - T. Susin

```
{\it coda\_glmnet\_longitudinal\_null} \\ {\it coda\_glmnet\_longitudinal\_null}
```

Description

Performs a permutational test for the coda_glmnet_longitudinal() algorithm: It provides the distribution of results under the null hypothesis by implementing the coda_glmnet_longitudinal() on different rearrangements of the response variable.

Usage

```
coda_glmnet_longitudinal_null(
    x,
    y,
    x_time,
    subject_id,
    ini_time,
    end_time,
    niter = 100,
    covar = NULL,
    alpha = 0.9,
    lambda = "lambda.1se",
    nfolds = 10,
    sig = 0.05
)
```

Arguments

```
abundance matrix or data frame in long format (several rows per individual)
Х
                  outcome (binary); data type: numeric, character or factor vector
У
                  observation times
x_time
subject_id
                  subject id
ini_time
                  initial time to be analyzed
end_time
                  end time to be analyzed
niter
                  number of sample iterations
                  data frame with covariates (default = NULL)
covar
```

10 coda_glmnet_null

```
alpha elastic net parameter (default = 0.9)

lambda penalization parameter (default = "lambda.1se")

nfolds number of folds

sig significance value (default = 0.05)
```

Value

list with "accuracy" and "confidence interval"

Author(s)

```
M. Calle - T. Susin
```

Examples

coda_glmnet_null

coda_glmnet_null

Description

Performs a permutational test for the coda_glmnet() algorithm: It provides the distribution of results under the null hypothesis by implementing the coda_glmnet() on different rearrangements of the response variable.

Usage

```
coda_glmnet_null(
    x,
    y,
    niter = 100,
    covar = NULL,
    lambda = "lambda.1se",
```

Crohn 11

```
alpha = 0.9,
sig = 0.05
```

Arguments

x abundance matrix or data frame (rows are samples, columns are variables (taxa))
y outcome (binary or continuous); data type: numeric, character or factor vector
niter number of iterations (default = 100)
covar data frame with covariates (default = NULL)
lambda penalization parameter (default = "lambda.1se")
alpha elastic net parameter (default = 0.9)
sig significance level for the confidence interval (default = 0.05)

Value

a list with "accuracy" and "confidence interval"

Author(s)

```
M. Calle - T. Susin
```

Examples

Crohn Crohn

Description

Microbiome composition at genus level from a Crohn's disease study: 48 taxa and 975 individuals (662 patients with Crohn's disease and 313 controls)

Format

The dataset contains two objects:

- x_Crohn microbiome abundance matrix for 975 individuals (rows) and 48 genera (columns)
- **y_Crohn** a factor, indicating if the sample corresponds to a case (CD) or a control (no).

References

doi:10.1016/j.chom.2014.02.005

12 Event

ecam_filtered ecam_filtered

Description

Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016). Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks. Filtered data contains information on 42 children and 37 taxa.

Format

The dataset contains three objects:

x_ecam microbiome abundance matrix in long format (873 rows) and 37 genera (columns)

taxanames vector containing the taxonomy of the 37 taxa

metadata matrix with information on the individuals at the observation time

References

Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343

Event

data_survival

Description

Survival Data simulated from the Crohn's disease original study: 48 taxa and 150 individuals

Format

The dataset contains three objects:

x microbiome abundance matrix for 150 individuals (rows) and 48 genera (columns)

Event a numeric, event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for no event occurrence, and 1 or TRUE for event occurrence.

Event_time a numeric, time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.

References

doi:10.1016/j.chom.2014.02.005

Event_time 13

Event_time data_survival

Description

Survival Data simulated from the Crohn's disease original study: 48 taxa and 150 individuals

Format

The dataset contains three objects:

x microbiome abundance matrix for 150 individuals (rows) and 48 genera (columns)

Event a numeric, event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for no event occurrence, and 1 or TRUE for event occurrence.

Event_time a numeric, time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.

References

doi:10.1016/j.chom.2014.02.005

explore_logratios

explore_logratios

Description

Explores the association of each log-ratio with the outcome. Summarizes the importance of each variable (taxa) as the aggregation of the association measures of those log-ratios involving the variable. The output includes a plot of the association of the log-ratio with the outcome where the variables (taxa) are ranked by importance

Usage

```
explore_logratios(
    x,
    y,
    decreasing = TRUE,
    measure = "AUC",
    covar = NULL,
    shownames = FALSE,
    maxrow = 15,
    maxcol = 15,
    showtitle = TRUE,
    mar = c(0, 0, 1, 0)
)
```

Arguments

abundance matrix or data frame (rows are samples, columns are variables (taxa))
outcome (binary or continuous); data type: numeric, character or factor vector
order of importance (default = TRUE)
association measures "AUC", "Pearson", "Spearman", "glm" (default = "AUC")
data frame with covariates (default = NULL)
logical, if TRUE, shows the names of the variables in the rows of the plot (default = FALSE)
maximum number of rows to display in the plot (default = 15)
maximum number of columns to display in the plot (default = 15)
logical, if TRUE, shows the title of the plot (default = TRUE)
mar numerical vector of the form c(bottom, left, top, right) which gives the number of lines of margin to be specified on the four sides of the plot (default $mar=c(0,0,1,0)$)

Value

list with "max log-ratio", "names max log-ratio", "order of importance", "name of most important variables", "association log-ratio with y" and "top log-ratios plot"

Author(s)

```
M. Calle - T. Susin
```

Examples

```
data(HIV, package = "coda4microbiome")
explore_logratios(x_HIV,y_HIV)
```

```
explore_lr_longitudinal
```

explore_lr_longitudinal

Description

Explores the association of summary (integral) of each log-ratio trajectory with the outcome. Summarizes the importance of each variable (taxa) as the aggregation of the association measures of those log-ratios involving the variable. The output includes a plot of the association of the log-ratio with the outcome where the variables (taxa) are ranked by importance

Usage

```
explore_lr_longitudinal(
    x,
    y,
    x_time,
    subject_id,
    ini_time,
    end_time,
    showPlots = FALSE,
    decreasing = TRUE,
    covar = NULL,
    shownames = FALSE,
    maxrow = 15,
    maxcol = 15,
    showtitle = TRUE,
    mar = c(0, 0, 1, 0)
)
```

Arguments

x	abundance matrix or data frame in long format (several rows per individual)
У	outcome (binary); data type: numeric, character or factor vector
x_time	observation times
subject_id	subject id
ini_time	initial time to be analyzed
end_time	end time to be analyzed
showPlots	if TRUE, shows the plot (default = FALSE)
decreasing	order of importance (default = TRUE)
covar	data frame with covariates (default = NULL)
shownames	if TRUE, shows the names of the variables in the rows of the plot (default = FALSE)
maxrow	maximum number of rows to display in the plot (default = 15)
maxcol	maximum number of columns to display in the plot (default = 15)
showtitle	logical, if TRUE, shows the title of the plot (default = TRUE)
mar	mar numerical vector of the form c(bottom, left, top, right) which gives the number of lines of margin to be specified on the four sides of the plot (default $mar=c(0,0,1,0)$)

Value

list with "max log-ratio", "names max log-ratio", "order of importance", "name of most important variables", "association log-ratio with y", "top log-ratios plot"

Author(s)

```
M. Calle - T. Susin
```

16 explore_zeros

Examples

```
set.seed(123) # to reproduce the results

data(ecam_filtered, package = "coda4microbiome") # load the data

x=x_ecam # microbiome abundance
x_time = metadata$day_of_life # observation times
subject_id = metadata$studyid # subject id
y= metadata$diet # diet ("bd"= breast diet, "fd"=formula diet)
ini_time = 0
end_time = 90

ecam_logratios<-explore_lr_longitudinal(x,y,x_time,subject_id,ini_time,end_time)</pre>
```

explore_zeros

explore_zeros

Description

Provides the proportion of zeros for a pair of variables (taxa) in table x and the proportion of samples with zero in both variables. A bar plot with this information is also provided. Results can be stratified by a categorical variable.

Usage

```
explore_zeros(x, id1, id2, strata = NULL)
```

Arguments

X	abundance matrix or data frame (rows are samples, columns are variables (taxa))
id1	column number in x for the first taxa
id2	column number in x for the second taxa
strata	stratification variable (default = NULL)

Value

a list with the frequency table and the associated bar plot

Author(s)

```
M. Calle - T. Susin
```

filter_longitudinal 17

Examples

```
data(HIV, package = "coda4microbiome")
explore_zeros(x_HIV,5,6)
explore_zeros(x_HIV,5,6, strata=y_HIV)
```

filter_longitudinal filter_longitudinal

Description

Filters those individuals and taxa with enough longitudinal information

Usage

```
filter_longitudinal(
    x,
    taxanames = NULL,
    x_time,
    subject_id,
    metadata,
    ini_time = min(x_time),
    end_time = max(x_time),
    percent_indv = 0.7,
    min_obs = 3
)
```

Arguments

```
abundance matrix or data frame in long format (several rows per individual)
Х
taxanames
                  names of different taxa
                  observation times
x_time
subject_id
                  subject id
metadata
                  matrix sample data
ini_time
                  initial time to be analyzed
end_time
                  end time to be analyzed
                  percentage of individuals with more than min_obs observations
percent_indv
min_obs
                  required minimum number of observations per individual
```

Value

list with filtered abundance table, taxanames and metadata

18 HIV

Author(s)

```
M. Calle - T. Susin
```

Examples

HIV HIV

Description

Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).

Format

The dataset contains three objects:

- x_HIV microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)
- **y_HIV** a factor, specifying if the individual is HIV positive or (Pos) or negative (Neg).

MSM_HIV a factor, indicating sexual preferences: MSM (*Men who have Sex with Men*) or not (nonMSM).

References

doi:10.1016/j.ebiom.2016.01.032

impute_zeros 19

impute_zeros

impute_zeros

Description

Simple imputation: When the abundance table contains zeros, a positive value is added to all the values in the table. It adds 1 when the minimum of table is larger than 1 (i.e. tables of counts) or it adds half of the minimum value of the table, otherwise.

Usage

```
impute_zeros(x)
```

Arguments

Х

abundance matrix or data frame (rows are samples, columns are variables (taxa))

Value

x abundance matrix or data frame with zeros substituted by imputed positive values

Author(s)

```
M. Calle - T. Susin
```

Examples

```
data(HIV, package = "coda4microbiome")
x<-impute_zeros(x_HIV)</pre>
```

integralFun

integralFun

Description

Integral of the curve trajectory of subject_id in the interval a,b

Usage

```
integralFun(x, y, id, a, b)
```

20 logratios_matrix

Arguments

y outcome (binary); data type: numeric, character or factor vector

id subjects-ids

a interval initial time

b interval final time

Value

matrix with integrals for each individual (rows) and each taxa (columns)

Author(s)

M. Calle - T. Susin

logratios_matrix

logratios_matrix

Description

Computes a large matrix with all the log-ratios between pairs of taxa (columns) in the abundance table

Usage

```
logratios_matrix(x)
```

Arguments

. .

abundance matrix or data frame (rows are samples, columns are variables (taxa))

Value

list with matrix of log-ratios, matrix indicating the pairs of variables involved in each log-ratio, and a matrix indicating the names of the variables involved in each log-ratio.

Author(s)

M. Calle - T. Susin

metadata 21

Examples

```
data(HIV, package = "coda4microbiome")
lrHIV<-logratios_matrix(x_HIV[,(1:4)])
# matrix of log-ratios (first 6 rows and 6 columns):
lrHIV[[1]][1:6,1:6]
# variables involved in each log-ratio
head(lrHIV[[2]])
# names of the variables involved in each log-ratio
head(lrHIV[[3]])</pre>
```

metadata

ecam_filtered

Description

Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016). Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks. Filtered data contains information on 42 children and 37 taxa.

Format

The dataset contains three objects:

x_ecam microbiome abundance matrix in long format (873 rows) and 37 genera (columns)

taxanames vector containing the taxonomy of the 37 taxa

metadata matrix with information on the individuals at the observation time

References

Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343

22 plotMedianCurve

MSM_HIV HIV

Description

Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).

Format

The dataset contains three objects:

x_HIV microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)

y_HIV a factor, specifying if the individual is HIV positive or (Pos) or negative (Neg).

MSM_HIV a factor, indicating sexual preferences: MSM (*Men who have Sex with Men*) or not (nonMSM).

References

doi:10.1016/j.ebiom.2016.01.032

plotMedianCurve

plotMedianCurve

Description

Internal plot function

Usage

```
plotMedianCurve(iNum, iDen, X, Y, x_time, subject_id, ini_time, end_time)
```

Arguments

plot_prediction 23

Value

.

Author(s)

M. Calle - T. Susin

plot_prediction

plot_prediction

Description

Plot of the predictions of a fitted model: Multiple box-plot and density plots for binary outcomes and Regression plot for continuous outcome

Usage

```
plot_prediction(prediction, y, strata = NULL, showPlots = TRUE)
```

Arguments

prediction the fitted values of predictions for the model

y outcome (binary or continuous); data type: numeric, character or factor vector

strata stratification variable (default = NULL) showPlots if TRUE, shows the plots (default = TRUE)

Value

prediction plot

Author(s)

```
M. Calle - T. Susin
```

```
# prediction plot for the log-ratio between columns 3 and 32 on HIV status
data(HIV, package = "coda4microbiome")
x<-impute_zeros(x_HIV)
lr<-log(x[,3])-log(x[,32])
plot_prediction(lr, y_HIV)</pre>
```

24 plot_riskscore

plot_riskscore	plot_riskscore
----------------	----------------

Description

Plots samples ordered by microbial risk score values along time to event.

Usage

```
plot_riskscore(risk.score, x, time, status, showPlots = TRUE)
```

Arguments

risk.score	microbial risk score values resulting from the coda_coxnet model
X	original survival data
time	time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.
status	event occurrence. Vector (numeric or logical) specifying 0 (or FALSE) for no event occurrence, and 1 (or TRUE) for event occurrence.
showPlots	(default: TRUE)

Value

returns an object of class HeatmapList.

Author(s)

```
M. Calle, M. Pujolassos, T. Susin
```

plot_signature 25

#-----

plot_signature

plot_signature

Description

Graphical representation of the variables selected and their coefficients

Usage

```
plot_signature(vars, coeff, showPlots = TRUE, varnames = NULL)
```

Arguments

vars variables selected

coeff associated coefficients

showPlots if TRUE, shows the plots (default = TRUE) varnames if TRUE, shows the names of the variables

Value

bar plot

Author(s)

```
M. Calle - T. Susin
```

```
plot_signature(c(2,10, 3, 15, 4), c(0.8, -0.1, 0.2, -0.6, -0.3))
```

```
plot_signature_curves plot_signature_curves
```

Description

Graphical representation of the signature trajectories

Usage

```
plot_signature_curves(
  varNum,
  coeff,
 Х,
 у,
  x_time,
  subject_id,
  ini_time,
  end_time,
  color = c("chocolate1", "slateblue2"),
  showLabel = TRUE,
  location = "bottomright",
  inset = c(0.01, 0.02),
  cex = 0.8,
 y.intersp = 0.7,
 main_title = NULL
)
```

Arguments

```
varNum
                  column number of the variables (taxa)
                  coefficients (coefficients must sum-up zero)
coeff
                  microbiome abundance matrix in long format
Х
                  binary outcome; data type: numeric, character or factor vector
У
                   observation times
x_time
                  subject id
subject_id
                  initial time to be analyzed
ini_time
end_time
                  end time to be analyzed
color
                  color graphical parameter
                  graphical parameter (see help(label))
showLabel
                   graphical parameter (see help(label))
location
inset
                   graphical parameter (see help(label))
                  graphical parameter (see help(label))
cex
                  graphical parameter (see help(label))
y.intersp
main_title
                  title plot
```

plot_survcurves 27

Value

trajectories plot

Author(s)

M. Calle - T. Susin

Examples

```
x=matrix(c(2, 3, 4, 1, 2, 5, 10, 20, 15, 30, 40, 12), ncol=2)
x_time = c(0,10,20,1,15, 25)
subject_id = c(1,1,1,2,2,2)
y=c(0,0,0,1,1,1)
plot_signature_curves(varNum=c(1,2), coeff=c(1,-1), x, y,x_time, subject_id, ini_time=0, end_time=25)
```

plot_survcurves

plot survcurves

Description

Plots survival curves stratifying samples based on their signature value. Signature value for stratification can be set by the user.

Usage

```
plot_survcurves(risk.score, time, status, strata.quantile = 0.5)
```

Arguments

risk.score microbial risk score values resulting from the coda_coxnet model

time to event or follow up time for right censored data. Must be a vector

(type:numeric) specifying time to event for each sample for right censored data

(what about interval data?).

status event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for

no event occurrence, and 1 or TRUE for event occurrence.

strata.quantile

cut-off quantile (values 0, 1) for sample stratification based on signature value.

Default is set to 0.5 quantile of the signature.

Value

return an object of class ggsurvplot which is list containing the following: plot: the survival plot (ggplot object). table: the number of subjects at risk table per time (ggplot object). data.survplot: data used to plot the survival curves (data.frame). data.survtable: data used to plot the tables under the main survival curves (data.frame).

28 sCD14

Author(s)

M. Calle, M. Pujolassos, T. Susin

Examples

sCD14 sCD14

Description

Microbiome composition (60 taxa and 151 individuals) and inflammatory parameter sCD14 from an HIV study (Noguera-Julian et al. 2016). A dataset containing the number of counts of 60 different genera in a group of 151 samples (including HIV - infected and non - infected patients).

Format

The dataset contains two objects:

x_sCD14 microbiome abundance matrix for 151 individuals (rows) and 60 genera (columns)

y_sCD14 a numeric variable with the value of the inflammation parameter sCD14 for each sample

References

Rivera-Pinto et al. (2018) Balances: a new perspective for microbiome analysis. mSystems 3 (4)

shannon 29

shannon

shannon

Description

Shannon information

Usage

shannon(x)

Arguments

Χ

abundance composition (vector)

Value

shannon information

Author(s)

```
M. Calle - T. Susin
```

Examples

```
data(HIV, package = "coda4microbiome")
shannon(x_HIV[1,])
```

 $\verb|shannon_effnum||$

shannon_effnum

Description

Shannon effective number of variables in a composition

Usage

```
shannon_effnum(x)
```

Arguments

Х

abundance composition (vector)

30 shannon_sim

Value

shannon information

Author(s)

```
M. Calle - T. Susin
```

Examples

```
data(HIV, package = "coda4microbiome")
shannon_effnum(x_HIV[1,])
```

shannon_sim

shannon_sim

Description

Shannon similarity between two compositions

Usage

```
shannon_sim(x, y)
```

Arguments

x abundance composition (vector)

y abundance composition (vector)

Value

```
shannon similarity (value between 0 and 1)
```

Author(s)

```
M. Calle - T. Susin
```

```
data(HIV, package = "coda4microbiome")
shannon_sim(x_HIV[1,],x_HIV[2,])
```

taxanames 31

taxanames ecam_filtered

Description

Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016). Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks. Filtered data contains information on 42 children and 37 taxa.

Format

The dataset contains three objects:

x_ecam microbiome abundance matrix in long format (873 rows) and 37 genera (columns)

taxanames vector containing the taxonomy of the 37 taxa

metadata matrix with information on the individuals at the observation time

References

Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343

x data_survival

Description

Survival Data simulated from the Crohn's disease original study: 48 taxa and 150 individuals

Format

The dataset contains three objects:

x microbiome abundance matrix for 150 individuals (rows) and 48 genera (columns)

Event a numeric, event occurrence. Vector (type: numeric or logical) specifying 0 or FALSE for no event occurrence, and 1 or TRUE for event occurrence.

Event_time a numeric, time to event or follow up time for right censored data. Must be a vector (type:numeric) specifying time to event for each sample for right censored data.

References

doi:10.1016/j.chom.2014.02.005

32 x_ecam

x_Crohn Crohn

Description

Microbiome composition at genus level from a Crohn's disease study: 48 taxa and 975 individuals (662 patients with Crohn's disease and 313 controls)

Format

The dataset contains two objects:

- x_Crohn microbiome abundance matrix for 975 individuals (rows) and 48 genera (columns)
- **y_Crohn** a factor, indicating if the sample corresponds to a case (CD) or a control (no).

References

doi:10.1016/j.chom.2014.02.005

x_ecam ecam_filtered

Description

Microbiome composition at genus level from Early childhood and the microbiome (ECAM) study (Bokulich et al. 2016). Metadata and microbiome data were downloaded from https://github.com/caporaso-lab/longitudinal-notebooks. Filtered data contains information on 42 children and 37 taxa.

Format

The dataset contains three objects:

x_ecam microbiome abundance matrix in long format (873 rows) and 37 genera (columns)

taxanames vector containing the taxonomy of the 37 taxa

metadata matrix with information on the individuals at the observation time

References

Bokulich et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343

 x_HIV

x_HIV HIV

Description

Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).

Format

The dataset contains three objects:

x_HIV microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)

y_HIV a factor, specifying if the individual is HIV positive or (Pos) or negative (Neg).

MSM_HIV a factor, indicating sexual preferences: MSM (*Men who have Sex with Men*) or not (nonMSM).

References

doi:10.1016/j.ebiom.2016.01.032

x_sCD14 *sCD14*

Description

Microbiome composition (60 taxa and 151 individuals) and inflammatory parameter sCD14 from an HIV study (Noguera-Julian et al. 2016). A dataset containing the number of counts of 60 different genera in a group of 151 samples (including HIV - infected and non - infected patients).

Format

The dataset contains two objects:

x_sCD14 microbiome abundance matrix for 151 individuals (rows) and 60 genera (columns)

y_sCD14 a numeric variable with the value of the inflammation parameter sCD14 for each sample

References

Rivera-Pinto et al. (2018) Balances: a new perspective for microbiome analysis. mSystems 3 (4)

y_Crohn Crohn

Description

Microbiome composition at genus level from a Crohn's disease study: 48 taxa and 975 individuals (662 patients with Crohn's disease and 313 controls)

Format

The dataset contains two objects:

- x_Crohn microbiome abundance matrix for 975 individuals (rows) and 48 genera (columns)
- **y_Crohn** a factor, indicating if the sample corresponds to a case (CD) or a control (no).

References

doi:10.1016/j.chom.2014.02.005

y_HIV HIV

Description

Microbiome abundances (60 taxa and 155 individuals) from an HIV study (Noguera-Julian et al. 2016).

Format

The dataset contains three objects:

- x_HIV microbiome abundance matrix for 155 individuals (rows) and 60 genera (columns)
- **y_HIV** a factor, specifying if the individual is HIV positive or (Pos) or negative (Neg).

MSM_HIV a factor, indicating sexual preferences: MSM (*Men who have Sex with Men*) or not (nonMSM).

References

doi:10.1016/j.ebiom.2016.01.032

y_sCD14 35

Description

Microbiome composition (60 taxa and 151 individuals) and inflammatory parameter sCD14 from an HIV study (Noguera-Julian et al. 2016). A dataset containing the number of counts of 60 different genera in a group of 151 samples (including HIV - infected and non - infected patients).

Format

The dataset contains two objects:

x_sCD14 microbiome abundance matrix for 151 individuals (rows) and 60 genera (columns)

y_sCD14 a numeric variable with the value of the inflammation parameter sCD14 for each sample

References

Rivera-Pinto et al. (2018) Balances: a new perspective for microbiome analysis. mSystems 3 (4)

Index

* data	integralFun, 19
Crohn, 11	
ecam_filtered, 12	$logratios_matrix, 20$
Event, 12	
Event_time, 13	metadata, 21
HIV, 18	MSM_HIV, 22
metadata, 21 MSM_HIV, 22 sCD14, 28 taxanames, 31 x, 31 x_Crohn, 32 x_ecam, 32 x_HIV, 33 x_sCD14, 33	plot_prediction, 23 plot_riskscore, 24 plot_signature, 25 plot_signature_curves, 26 plot_survcurves, 27 plotMedianCurve, 22 sCD14, 28 shannon, 29 shannon_effnum, 29 shannon_sim, 30
y_Crohn, 34 y_HIV, 34 y_sCD14, 35	
coda4microbiome, 2	taxanames, 31
<pre>coda_coxnet, 3 coda_glmnet, 4 coda_glmnet0, 5 coda_glmnet_longitudinal, 6 coda_glmnet_longitudinal0, 8 coda_glmnet_longitudinal_null, 9 coda_glmnet_null, 10 Crohn, 11 ecam_filtered, 12 Event, 12 Event_time, 13 explore_logratios, 13 explore_lr_longitudinal, 14</pre>	x, 31 x_Crohn, 32 x_ecam, 32 x_HIV, 33 x_sCD14, 33 y_Crohn, 34 y_HIV, 34 y_sCD14, 35
explore_zeros, 16	
filter_longitudinal, 17	
HIV, 18	
impute zeros 19	