SGD Algorithm to predict movie ratings

- 1. Download the data from here (https://drive.google.com/open?id=1-1z7iDB52cB6_J po7Dqa-e0YSs-mivpq).
- 2. the data will be of this formate, each data point is represented as a triplet of user_id, movie_id and rating

rating	movie_id	user_id
3	236	77
5	208	471
4	401	641
4	298	31
5	504	58
5	727	235

task 1: Predict the rating for a given (user_id, movie_id) pair

μ : scalar mean rating

• b_i : scalar bias term for user i

• c_j : scalar bias term for movie j

• u_i : K-dimensional vector for user i

• v_i : K-dimensional vector for movie j

then the predicted rating \hat{y}_{ij} for user i, movied j pair is calcuated as $\hat{y}_{ij} = \mu + b_i + c_j + u_i^T v_j$ here we will be finding the best values of b_i and c_j using SGD algorithm with the optimization problem for N users and M movies is defined as

$$L = \min_{b,c,\{u_i\}_{i=1}^N,\{v_j\}_{j=1}^M} \quad \alpha \bigg(\sum_j \sum_k v_{jk}^2 + \sum_i \sum_k u_{ik}^2 + \sum_i b_i^2 + \sum_j c_i^2 \bigg) + \sum_{i,j \in \mathcal{I}^{\text{train}}} (y_{ij} - \mu - b_i - c_j - u_i^T v_j)^2$$

TASK: 1

SGD Algorithm to minimize the loss

- 1. for each unique user initilize a bias value B_i randomly, so if we have N users B will be a N dimensional vector, the i^{th} value of the B will corresponds to the bias term for i^{th} user
- 2. for each unique movie initilize a bias value C_j randomly, so if we have M movies C will be a M dimensional vector, the j^{th} value of the C will corresponds to the bias term for j^{th} movie
- 3. Construct adjacency matrix with the given data, assumeing its <u>weighted un-directed bi-partited graph</u> (https://en.wikipedia.org/wiki/Bipartite_graph) and the weight of each edge is the rating given by user to the movie

you can construct this matrix like $A[i][j] = r_{ij}$ here i is user_id, j is movie_id and r_{ij} is rating given by user i to the movie j

4. we will Apply SVD decomposition on the Adjaceny matrix $\underline{\text{link1}}$ (https://stackoverflow.com/a/31528944/4084039), $\underline{\text{link2}}$ (https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/) and get three matrices U, \sum, V such that $U \times \sum \times V^T = A$, if A is of dimensions $N \times M$ then

U is of $N \times k$,

 \sum is of $k \times k$ and

V is $M \times k$ dimensions.

- 5. So the matrix U can be represented as matrix representation of users, where each row u_i represents a k-dimensional vector for a user
- 6. So the matrix V can be represented as matrix representation of movies, where each row v_j represents a k-dimensional vector for a movie
- 7. μ represents the mean of all the rating given in the dataset

8.

for each epoch:

$$\hat{y}_{ij} = \mu + b_i + c_j + \text{dot_product}(u_i, v_j)$$

print the mean squared error with predicted ratings

- 9. you can choose any learning rate and regularization term in the range $10^{-3}\ {\rm to}\ 10^2$
- 10. **bonus**: instead of using SVD decomposition you can learn the vectors u_i , v_j with the help of SGD algo similar to b_i and c_i

TASK: 2

As we know U is the learned matrix of user vectors, with its i-th row as the vector ui for user i. Each row of U can be seen as a "feature vector" for a particular user.

The question we'd like to investigate is this: do our computed per-user features that are optimized for predicting movie ratings contain anything to do with gender?

The provided data file <u>user_info.csv</u> (<u>https://drive.google.com/open?</u> <u>id=1PHFdJh_4gIPiLH5Q4UErH8GK71hTrzIY</u>) contains an is_male column indicating which users in the dataset are male. Can you predict this signal given the features U?

Note 1: there is no train test split in the data, the goal of this assignment is to give an intution about how to do matrix factorization with the help of SGD and application of truncated SVD. for better understanding of the collabarative fillerting please check netflix case study.

Note 2: Check if scaling of U, V matrices improve the metric

```
In [1]:
 1 import pandas as pd
 2 from tqdm import tqdm
 3 import matplotlib.pyplot as plt
 4 from sklearn.metrics import mean_squared_error
In [2]:
   data = pd.read_csv('ratings_train.csv')
 1
    data.shape
Out[2]:
(89992, 3)
In [3]:
 1 from sklearn.utils.extmath import randomized svd
    import numpy as np
    matrix = np.random.random((20, 10))
 3
    U, Sigma, VT = randomized_svd(matrix, n_components=5,n_iter=5, random_state=None)
 5 print(U.shape)
    print(Sigma.shape)
    print(VT.T.shape)
(20, 5)
(5,)
(10, 5)
In [ ]:
 1
```

TASK:1

Constructing Adjacency Matrix

```
In [4]:
```

```
1 data.head()
```

Out[4]:

	user_id	item_id	rating
0	772	36	3
1	471	228	5
2	641	401	4
3	312	98	4
4	58	504	5

In [5]:

```
1  n=max(np.unique(data.user_id))+1
2  m=max(np.unique(data.item_id))+1
3  A=np.zeros((n,m), dtype=int)
4  print(n,m)
5
```

943 1681

In [6]:

```
1 for i in data.values:
2 A[i[0]][i[1]]=i[2]
```

In [7]:

```
1 # Adjacency Matrix
2 A
```

Out[7]:

```
array([[5, 0, 4, ..., 0, 0, 0],
        [4, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 5, 0, ..., 0, 0, 0, 0]])
```

Applying SVD on matrix A to obtain the U, sigma and VT matrices

In [8]:

```
from sklearn.utils.extmath import randomized_svd
import numpy as np

U, Sigma, VT = randomized_svd(A, n_components=200, n_iter=5, random_state=None)
print(U.shape)
print(Sigma.shape)
print(VT.T.shape)
V=VT.T
```

```
(943, 200)
(200,)
(1681, 200)
```

Initialising the bais vectors for users and movies randomly from normal distribution.

In [11]:

```
1 data.head()
```

Out[11]:

	user_id	item_id	rating
0	772	36	3
1	471	228	5
2	641	401	4
3	312	98	4
4	58	504	5

In [12]:

```
B_i=np.random.rand(943)
C_j=np.random.rand(1681)
```

Training to find best B_i and C_i

$$L = \min_{b,c,\{u_i\}_{i=1}^N,\{v_j\}_{j=1}^M} \quad \alpha \left(\sum_j \sum_k v_{jk}^2 + \sum_i \sum_k u_{ik}^2 + \sum_i b_i^2 + \sum_j c_j^2 \right) + \sum_{i,j \in \mathcal{I}^{\text{train}}} (y_{ij} - \mu - b_i - c_j - u_i^T v_j)^2$$

Initializing variables

In [13]:

```
1 mu=data['rating'].mean()
2 lr=1e-2
3 alpha=1
4 epochs=10
```

Functions to Find Derivative w.r.t B_i

$$dL/dBi = 2\alpha(b_i) - 2(y_{ij} - \mu - b_i - c_j - u_i^T v_j)$$

In [14]:

```
def dl_dBi(b_i,c_j,u_i,v_j,y_ij):
    temp=np.dot(u_i.T,v_j)
    return 2*alpha*b_i-2*(y_ij-mu-b_i-c_j-temp)
```

Functions to Find Derivative w.r.t C_j

$$dL/dCj = 2\alpha(c_j) - 2(y_{ij} - \mu - b_i - c_j - u_i^T v_j)$$

In [15]:

```
def dl_dCj(b_i,c_j,u_i,v_j,y_ij):
    temp=np.dot(u_i.T,v_j)
    return 2*alpha*C_j-2*(y_ij-mu-b_i-c_j-temp)
```

Training

In [16]:

```
MSE=[]
 1
 2
   mse_prev=1;
   for k in (range(epochs)):
        for i in data.values:
4
 5
            b_i=B_i[i[0]]
 6
            c_j=C_j[i[1]]
 7
            u_i=U[i[0]]
8
            v_j=V[i[1]]
9
            y_ij=i[2]
10
            # getting the derivatives with respect to b_i and c_j
11
            {\tt dl\_dbi=dl\_dBi(b\_i,c\_j,u\_i,v\_j,y\_ij)}
12
13
            dl_dcj=dl_dBi(b_i,c_j,u_i,v_j,y_ij)
14
            # Updating b_i,c_j
15
            B_i[i[0]]=B_i[i[0]]-lr*dl_dbi
16
17
            C_j[i[1]]=C_j[i[1]]-lr*dl_dcj
18
19
20
        y_ij_hat=[]
21
        for i in data.values:
22
            b_i=B_i[i[0]]
            c_j=C_j[i[1]]
23
24
            u_i=U[i[0]]
25
            v_j=V[i[1]]
26
27
            temp=mu+b_i+c_j+np.dot(u_i.T,v_j)
28
            y_ij_hat.append(temp)
29
30
        mse=mean_squared_error(data.rating, y_ij_hat)
31
        if((abs(mse_prev-mse)/mse_prev)<0.001) :</pre>
            break
32
33
        mse_prev=mse
        print("Epoch: ",k,":",mse)
34
35
        MSE.append(mse)
36
```

Epoch: 0 : 0.964933675091534 Epoch: 1 : 0.9181488268959203 Epoch: 2 : 0.9046211967294691 Epoch: 3 : 0.8995164852409829 Epoch: 4 : 0.8974396889983892

In [17]:

```
1 x_epoch=[i for i in range(k)]
2 plt.plot(x_epoch, MSE, label="MSE")
3 plt.legend()
4 plt.xlabel("Epochs")
5 plt.ylabel("MSE")
6 plt.title("Error Plot")
7 plt.grid()
8 plt.show()
```


Task 2:

```
In [18]:
```

```
data2= pd.read_csv('user_info.csv')
data2.shape
```

```
Out[18]:
```

(943, 4)

In [19]:

```
1 data2.head()
```

Out[19]:

	user_id	age	is_male	orig_user_id
0	0	24	1	1
1	1	53	0	2
2	2	23	1	3
3	3	24	1	4
4	4	33	0	5

In [20]:

```
1 X=U;
2 y=data2.is_male.values
```

In [21]:

```
# Train/test split data to apply classification algorithm
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=
```

Hyperparameter Tuning to find best C for Logistic Regression

```
In [22]:
```

```
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression

parameters = {'C':[0.00001,0.0001,0.01,0.1,1,10,100,1000]}

lr1 = LogisticRegression(random_state=0,max_iter=500)

clf = GridSearchCV(lr1, parameters,scoring='f1')

clf.fit(X_train,y_train)
results=pd.DataFrame(clf.cv_results_)
results
```

Out[22]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_C	params	split0_test_
0	0.006249	0.007653	0.000000	0.000000	1e-05	{'C': 1e- 05}	0.8
1	0.000000	0.000000	0.005426	0.006772	0.0001	{'C': 0.0001}	0.8
2	0.000000	0.000000	0.003126	0.006252	0.001	{'C': 0.001}	0.8
3	0.003129	0.006258	0.000000	0.000000	0.01	{'C': 0.01}	0.8
4	0.000000	0.000000	0.003129	0.006258	0.1	{'C': 0.1}	0.8
5	0.007550	0.006999	0.000000	0.000000	1	{'C': 1}	0.8
6	0.009311	0.008628	0.000601	0.000802	10	{'C': 10}	0.8
7	0.019264	0.004504	0.000000	0.000000	100	{'C': 100}	0.8
8	0.055422	0.009758	0.000409	0.000817	1000	{'C': 1000}	0.8
4							•

Best Hyperparameter for training

```
In [24]:
```

```
best_C=clf.best_params_['C']
best_C
```

Out[24]:

10

Training with best hyperparameter

```
In [25]:
```

```
1 lr_=LogisticRegression(C=best_C,max_iter=500).fit(X_train, y_train)
```

In [26]:

```
1 # Predicted Value
2 y_pred=lr_.predict(X_test)
```

In [28]:

```
# calculating Mean square error
mse_lr=mean_squared_error(y_test, y_pred)
print("Mean Squared Error: ",mse_lr)
```

Mean Squared Error: 0.2564102564102564

Printing Confusing matrix

In [29]:

```
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:")
confusion_matrix(y_test, y_pred)
```

Confusion Matrix:

Conclusion

We can see that the User matrix featurisation that we obtained from SVD is performing quite well in predicting the gender of the user with MSE = 0.256

Applying SGD for recommendation system after Normalising U(User Matrix) and V(Item Matrix)

Normalizing User matrix

```
In [31]:
```

```
from sklearn.preprocessing import Normalizer
normalizer_U=Normalizer()
U=normalizer_U.fit_transform(U)
U
```

Out[31]:

```
array([[ 0.08640271,  0.01029192, -0.01634916, ..., -0.04015678, -0.02687022,  0.01747944],
        [ 0.04026194, -0.14428045,  0.1668799 , ..., -0.09938937,  0.08556978, -0.15432167],
        [ 0.02027543, -0.09368377,  0.07466926, ...,  0.06048021, -0.00515134, -0.06537516],
        ...,
        [ 0.02867392, -0.100791 ,  0.02461513, ..., -0.00043567, -0.00970243, -0.02189203],
        [ 0.04592986,  0.00822705,  0.04787223, ...,  0.0975489 , -0.09033398,  0.05530162],
        [ 0.07458974, -0.00484077, -0.10452043, ...,  0.01343355,  0.12689668, -0.0761227 ]])
```

Normalizing Item Matrix

In [33]:

```
from sklearn.preprocessing import Normalizer
normalizer_V=Normalizer()
V=normalizer_V.fit_transform(V)
V
```

Out[33]:

```
array([[ 0.11176055, -0.11097293, -0.00605184, ..., 0.06328592, -0.03491599, 0.00677097],
        [ 0.07861628, -0.01522179, -0.13737885, ..., 0.00291477, 0.07314408, -0.03416641],
        [ 0.05535981, -0.07051791, -0.03214025, ..., -0.08229548, -0.13219517, 0.12801568],
        ...,
        [ 0.00281111, -0.04214132, 0.04742856, ..., -0.12968693, -0.09453178, 0.03178162],
        [ 0.00804536, 0.00273229, -0.0097731 , ..., 0.16962289, 0.02779956, -0.00923656],
        [ 0.00809868, 0.00660892, -0.00780998, ..., -0.22814241, 0.09825382, -0.11468601]])
```

In [40]:

```
# Random Initialisation of Bais vectors for users and items
B_i=np.random.rand(943)
C_j=np.random.rand(1681)
```

Applying SGD after normalising features U and V

In [41]:

```
MSE=[]
 1
 2
   mse_prev=1;
   for k in (range(epochs)):
        for i in data.values:
4
 5
            b_i=B_i[i[0]]
 6
            c_j=C_j[i[1]]
 7
            u_i=U[i[0]]
8
            v_j=V[i[1]]
9
            y_ij=i[2]
10
            # getting the derivatives with respect to b_i and c_j
11
            {\tt dl\_dbi=dl\_dBi(b\_i,c\_j,u\_i,v\_j,y\_ij)}
12
13
            dl_dcj=dl_dBi(b_i,c_j,u_i,v_j,y_ij)
14
            # Updating b_i,c_j
15
            B_i[i[0]]=B_i[i[0]]-lr*dl_dbi
16
17
            C_j[i[1]]=C_j[i[1]]-lr*dl_dcj
18
19
20
        y_ij_hat=[]
21
        for i in data.values:
22
            b_i=B_i[i[0]]
            c_j=C_j[i[1]]
23
24
            u_i=U[i[0]]
25
            v_j=V[i[1]]
26
27
            temp=mu+b_i+c_j+np.dot(u_i.T,v_j)
28
            y_ij_hat.append(temp)
29
        mse=mean_squared_error(data.rating, y_ij_hat)
30
31
        if((abs(mse_prev-mse)/mse_prev)<0.001) :</pre>
            break
32
33
        mse_prev=mse
        print("Epoch: ",k,":",mse)
34
35
        MSE.append(mse)
36
```

Epoch: 0 : 0.9472836901144063 Epoch: 1 : 0.8907128611299193 Epoch: 2 : 0.8745494807880269 Epoch: 3 : 0.8690011067412411 Epoch: 4 : 0.8673085153489173

In [43]:

```
1 x_epoch=[i for i in range(k)]
2 plt.plot(x_epoch, MSE, label="MSE")
3 plt.legend()
4 plt.xlabel("Epochs")
5 plt.ylabel("MSE")
6 plt.title("Error Plot")
7 plt.grid()
8 plt.show()
```


we see that after normalizing matrices U and V we get a slightly lower MSE

End