COMBINATORIAL OPTIMIZATION PROBLEMS

VERTEX COVER

DEFINITION

Vertex Cover of Graph G = (V, E): subset $S \subseteq V$ such that **for every e = (u, v) \in E**, $u \in S$ or $v \in S$

PROOF NP-COMPLETE

NP = can be solved in polynomial time by a non-deterministic machine and verified in polynomial time by a deterministic machine

NP-Hard = every problem in NP is reducible to L in polynomial time

NP-Complete = NP && NP-Hard

1. Vertex-Cover in NP: (verify in polynomial time)

Input: An undirected graph **G** = (**V**, **E**) and an integer **k** Certificate: A subset **V**' of size **k**

The **O(V+E)** verification algorithm checks:

- if |V'| = k and insert those vertices into a hash table (O(1) per that data structure insertion, so O(V) overall)
- Then, it scans all edge (u, v) ∈ E to check if at least one of u and v belongs to V' (O(1) per that data structure check, so O(E) overall)

2. Vertex-Cover in NP-Complete: (polynomial time reduction) CLIQUE < VERTEX-COVER

Clique of Graph G = (V, E): subset $C \subseteq V$ such that every pair of vertices in C has a connecting edge

→ reduce Clique-Problem (NP-Hard) into Vertex Cover

Given an undirected graph G = (V, E) and k (note: n = |V|), we construct a graph $\bar{G} = (V, \bar{E})$ where $(u, v) \in \bar{E}$ iff $(u, v) \notin E$

Claim: G has a size-k clique iff G has a size-(n-k) vertex cover

Conversely, suppose $U \subseteq V$ is the size- $(\mathbf{n-k})$ vertex cover of \overline{G} , e.g., $U = \{u_0, u_5\}$ is a size- $\mathbf{2}$ vertex cover of \overline{G}

- By definition of vertex cover, for all u, v ∈ V,
 if (u, v) ∈ Ē, then at least one of u and v belong to U
- The contrapositive of this statement is for all $u, v \in V$ and both u and v do not belong to $U \rightarrow (u, v) \notin \overline{E} \rightarrow (u, v) \in E$

Hence, V-U is a clique and V-U has size = \mathbf{n} - $(\mathbf{n}$ - $\mathbf{k})$ = \mathbf{k} , e.g., V-U = $\{u_1, u_2, u_3, u_4\}$ is a size- $\mathbf{4}$ clique of G

MVC is NP-hard: O(1) polynomial reduction VC <=p MVC (check if min <= k) MVC is not NP-complete: no polynomial verifier (have to try every possible cover)

→ MVC solves MIS (Max-Independent-Set: no connecting edges between vertices) → complement V \ MVC

MVC ON TREE (DP)

```
    in(v) = 1 + Σ<sub>c ⊂ children(v)</sub> min(in(c), out(c))
    out(v) = Σ<sub>c ⊂ children(v)</sub> in(c)
    Base case at a leaf v: in(v) = 1, out(v) = 0
    answer = min(in(r), out(r)), computable in O(n)
```

No Cycles, small graph size

Only 2xV States, at most two incoming edges -> O(V)

MVC solvable in polynomial (also if no odd cycles)

PARAMETERIZED MVC

Pure Brute Force: $O(2^n m) \rightarrow NO$ Cycles

Parameterized: $k \ll n \rightarrow Naive O(n^k m)$ algorithm or $O(2^k m)$

```
1 Algorithm: ParameterizedVertexCover(G=(V,E),k)
2 Procedure:

/* Base case of recursion: \bot= failure, \emptyset= empty set

if k=0 and E\neq\emptyset then return \bot
4 if E=\emptyset then return \emptyset

/* Recurse on arbitrary edge e:
5 Let e=(u,v) be any edge in G.
6 S_u= ParameterizedVertexCover(G_{-u},k-1)
7 S_v= ParameterizedVertexCover(G_{-v},k-1)
8 if S_u\neq\bot and |S_u|<|S_v| then
9 return S_u\cup\{u\}
10 else if S_v\neq\bot and |S_v|\leq|S_u| then
11 return S_v\cup\{v\}
12 else return \bot
```

 $T(k, m) \le 2 T(k-1, m) + O(m)$ $O(2^k m)$

APPROX MVC

adding arbitrary end point:

Randomized: P(right choice) = 0.5 → C at most 2 * OPT (expeced) vs. Star graph

Deterministic 2: adding both ends (only this one is 2-Approximation)
Deterministic 3: O(log n) approx.

This one has 2-approximation proof

- Let **E'** be the edges considered by this algorithm, this **E'** is a **matching M** (revisited by Week 06 of CS4234, details in the PDF), **E'** = **M**

 $|M| \le |OPT(G)|$ (details in the PDF) and C = 2*|E'|

- So $C = 2*|E'| = 2*|M| \le 2*|OPT(G)|$

All run in polynomial time (fast) → run all of them and report best

n! * (1/n+1/3+1/2+1/1) = n! * (1/1+1/2+1/3+1/n) = n! * ln n

This is In-n (or log-n, base of log is negligible) factor worse than optimal answer

(Harmonic series)

MIN SET COVER

Set Cover of $X = \{x_1, x_2, ... x_n\}$ with subsets $S_1, S_2, ... S_m$: set $I \subseteq \{1, 2, ... m\}$ such that $\bigcup_{j \in I} S_j = X$ $VC <=_p SC \rightarrow SC$ is NP-Hard

GREEDY SET COVER

```
/* This algorithm adds sets greedily, one at a time, until everything is covered. At each step, the algorithm chooses the next set that will cover the most uncovered elements.  
Algorithm: GreedySetCover(X, S_1, S_2, \ldots, S_m)  
Procedure: I \leftarrow \emptyset  
/* Repeat until every element in X is covered: while X \neq \emptyset do  
Let d(j) = |S_j \cap X| // This is the number of uncovered elements in S_j  
Let j = \underset{i \in \{1,2,\ldots,m\}}{\operatorname{argmax}} d(i) // Break ties by taking lower i  
I \leftarrow I \cup \{j\} // Include set S_j into the set cover X \leftarrow X \setminus S_j // Remove elements in S_j from X.  
return I
```

O(log n) Approximation:

When we run the algorithm, let us label the elements in the order that they are covered.

$$\underbrace{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}}_{\check{S}_2}$$
 \check{S}_3 \check{S}_4 \check{S}_1 These are the first sets that cover these elements

For each element x_j , let c_j be the number of elements covered at the same time. In the example, this would yield:

$$c_1 = 6, c_2 = 6, c_3 = 6, c_4 = 6, c_5 = 6, c_6 = 6, c_7 = 3, c_8 = 3, c_9 = 3, c_{10} = 2, c_{11} = 2, c_{12} = 1$$

We define $cost(x_j) = 1/c_j$. In this way, the cost of covering all the new elements for some set is exactly 1. In this example, the cost of covering $x_1, x_2, x_3, x_4, x_5, x_6$ is 1, the cost of covering x_7, x_8, x_9 is 1, etc. In general, if I is the set cover constructed by the Greedy Algorithm, then:

$$|I| = \sum_{j=1}^{n} cost(x_j) .$$

Therefore, OPT needs at least (n-j+1)/c(j) sets to cover the remaining (n-j+1) elements. We thus conclude that:

$$OPT \ge \frac{n-j+1}{c(j)} (n-j+1) ost(x_j)$$

Or to put it differently:

$$cost(x_j) \le \frac{OPT}{(n-j+1)}$$

	5	85	s_4		s_3			S	2					S	1				
s_7	•	•	•	•	•	Ĭ.	•	•	•	•	۶	•	•	•	•	•	•	•	Opt = $\{s_7, s_8\}$
	F					-												_	
s_8	•	•	•	•	•	۱	•	•	•	•	•	٠	•	•	•	•	•	•	Greedy: $\{s_1, s_2, s_3, s_4, s_5, s_6\}$
	s	6	_			JL													

3 times more subsets than optimal answer

 $(u,v) \in E$

STEINER TREE

EUCLIDEAN-STEINER-TREE

Definition: given set R of n 2D-points in **Euclidean plane**, find set of additional Steiner points S and spanning Tree T = (R \cup S, E) such that weight of tree is minimized (NP-Hard) $\boxed{\sum |u-v|}$

Each Steiner Point has degree 3

- Lines form **120 degree** angles
- At most n-2 Steiner points

METRIC-STEINER-TREE

Given required vertices R, set of Steiner vertices S, distance function d find subset $S' \subset S$ and spanning tree $T = (R \cup S', E)$ of min weight

Metric easier than Euclidean (criterion on how many Steiner points needed and where to place them) Generalized: given an arbitrary graph with edge weights

COMPLETE SEARCH SOLUTION

Try all possible subsets of Steiner vertices $(2^{|n-s|}) \rightarrow \text{run MST algo O(E log V)} \rightarrow O(2^{|n-s|} * n^2 * \log n)$

METRIC MST 2-APPROXIMATION (NO STEINER POINT)

Create a cycle bypassing all Steiner vertices and then removing duplicate vertices (generate short-cutting paths, triangle inequality) \rightarrow break one edge to obtain acyclic spanning tree $cost(M) \le cost(C) \le 2*cost(T)$ with cost(T) = cost of DFS

GENERAL MST 2-APPROXIMATION (GAP-PRESERVED)

Metric completion: non-metric edge weights into metric ones with All-Pairs Shortest Path algorithm (e.g. Floyd-Warshall $O(V^3)$) \rightarrow preserves metric properties (e.g., proof triangle inequality by contradiction)

Definition 7 Given a graph G = (V, E) and non-negative edge weights w, we define the metric completion of G to the be the distance function $d: V \times V \to \mathbb{R}$ constructed as follows: For every $u, v \in V$, define d(u, v) to be the distance of the shortest path from u to v in G with respect to the weight function w.

3000

3000

Convert back to General-ST: replace virtual edges in Metric-ST with the actual shortest paths, remove overlapping edges and cycles → cost equal or lower in General ST-version

Use **Theorem:** given an α -approx. algo. for finding a metric ST, we can find an α -approx. algo for a general ST **Gap-preserving:** reduction that preserves approximation ratios

TRAVELING SALESMAN (TSP)

Botanic Variant: solvable in O(N²)

 $\label{eq:Definition: given a set V of n points and a distance function d, find cycle C of minimum cost that contains all points; Complete Graph <math>O(V^2)$

4 Variants (3 equivalent), all NP-hard (G-NR-TSP even NP-hard to approx)

BRUTE FORCE & DP

(N-1)! Permutations if we fix one node \rightarrow O(N! * N) time, O(N) dist. sum calc. Improvement: memorize repeated sub-tours O(N² * 2^{N-1}), Held-Karp DP for TSP

→ small graph, TSP is bitonic, each vertex visited exactly once

2-APPROX FOR G-R-TSP

Run MST of input graph \rightarrow Run DFS on resulting MST \rightarrow Output vertices in cycle induced by DFS (no repeat)

Proof:

- $C^* = OPT(V, d)$; $E^* = edges$ in optimal cycle; T^* is MST of $G = (V, E^*) \rightarrow d(T^*) <= d(C^*) = OPT$
- T = MST of G = (V, E) \rightarrow E* \subseteq E \rightarrow d(T) <= d(T*) \rightarrow d(C) = 2 * d(T) //see Metric ST Analysis <= 2 * d(T*) <= 2 * d(C*) <= 2 * OPT

1.5-APPROX FOR M-NR-TSP

Eulerian Cycle: a cycle that crosses each edge exactly once (connected + every vertex even degree) **Perfect Matching:** subset M of edges in a graph so that no two edges share an endpoint; perfect: |M| = |V|/2

Christofides's Algorithm:

- 1. T = MST(G) and E = edges of T
- 2. O = set of vertices with odd degree (even number, Handshaking lemma)
- 3. M = Min-Weight-Perfect-Matching on subgraph G* induced by O
- 4. Combine T+M (all vertices have even degree)
- 5. Output vertices in Eulerian Cycle (no repeat)

Analysis:

$$\begin{aligned} \text{Cost(E)} &= \sum_{e \in E} d(e) + \sum_{e \in M} d(e) \\ &\quad \text{(all edges in MST)} + \text{(all edges in} \\ &\quad \text{Min-Weight-Perfect-Matching)} \end{aligned}$$

 $\sum_{e \in E} d(e) \leq \overline{OPT}$

using the now-classic technique: OPT is a TSP cycle of graph G=(V,E), if we remove any edge from this cycle, we will get a spanning tree and the MST of the graph G must have cost no greater than this cycle (usually smaller, as we delete at least one positive weighted edge)

- Cycle C' on odd vertices (even, with no repeats): cost (C') <= cost(C), as we only skipped vertices (triangle inequality)</p>
 construct two different perfect matchings M₁ and M₂. We define them as follows:
- M = min cost perfect matching
 - Cost(M) <= cost(M1)

onstruct two different perfect maternings M_1 and M_2 , we define them as follows: $M_2 = (v_1, v_2) \cdot (v_2, v_3) \cdot (v_2, v_3) \cdot (v_3, v_4, v_3)$

 $M_1 = (v_1, v_2), (v_3, v_4), (v_5, v_6), \dots, (v_{2k-1}, v_{2k})$ $M_2 = (v_2, v_3), (v_4, v_5), (v_6, v_7), \dots, (v_{2k}, v_1)$

- $Cost(M) \le cost(M2)$ (each has |O|/2 edges)

- 2 cost(M) <= cost(m1) + cost(M2) <= cost(C') <= cost(C) = OPT</p>
- Cost(M) <= OPT/2

LINEAR PROGRAMMING

LPS

SIMPLEX METHOD (LP: POLYNOMIAL TIME)

Vertex = intersection of some constraints

If equations are not linearly separable you will get many solutions

m constraints, n variables \rightarrow mCn = O(mⁿ)

MWVC AS ILP

```
\min \left( \sum_{j=1}^n w(v_j) \cdot x_j \right) \qquad \text{where:}  x_i + x_j \quad \geq \quad 1 \quad \text{for all } (i,j) \in E  x_j \quad \geq \quad 0 \quad \text{for all } j \in V  x_j \quad \leq \quad 1 \quad \text{for all } j \in V  x_j \quad \leq \quad 1 \quad \text{for all } j \in V  x_j \quad \leq \quad Z \quad \text{for all } j \in V
```

 \rightarrow MVC <=(p) ILP \rightarrow ILP is also np-hard

RELAXATIONS (ILP: NP-HARD)

No integer constraint → round up x if it is <= 0.5 2-Approximation algorithm:

```
\mathsf{OPT}(\mathsf{G}) = \mathsf{OPT}(\mathsf{ILP}) \geq \mathsf{OPT}(\mathsf{LP})
\mathsf{cost}(\mathsf{OPT}) \geq \sum_{j=1}^n w(v_j) \cdot x_j
\mathsf{Assume \ w \ is \ all \ 1}
\mathsf{Example \ ILP \ solution \ } x_0
\mathsf{Example \ LP \ solution \ } x_0
\mathsf{Rounded \ answer} \leq 2 \ \mathsf{x} \ \mathsf{OPT}(\mathsf{LP})
\sum_{j=1}^n w(v_j) \cdot y_j \leq \sum_{j=1}^n w(v_j) \cdot 2x_j
\leq 2 \left(\sum_{j=1}^n w(v_j) \cdot x_j\right)
\leq 2 \times \mathsf{OPT}(\mathsf{G})
```

FLOWS & MATCHING

MAX FLOW - NOT NP HARD!

st-cut: partitions vertices of a graph into 2 disjoint sets S and T (source $s \in S$, sink $t \in T$) **cap of st-cut:** sum of capacities of edges that cross cut **from S to T net-flow:** flow on edges from S->T minus flow from T->S

flow f = net-flow of any st-cut <= cap of st-cut (Weak duality)

Induction-Proof: start with $S = \{s\}$, $T = V \setminus S \rightarrow take node x, add/subtract outgoing/incomding edges, subtract/add edges from X to <math>S \rightarrow take node x$ and take node x and take node x subtract/add edges from X to take node x and take nod

MAXFLOW-MINCUT THEOREM

f is max flow ⇔ cut whose capacity equals value of f (min cap) ⇔ no augmenting paths in residual graph

- 2 -> 1: st-cut with min cap \rightarrow for all flows g: value(g) <= cap(S, T) = value(f) \rightarrow f is max flow
- 1 -> 3: assume 1 more augmenting path \rightarrow send one flow and improve flow \rightarrow f not max flow \rightarrow contradiction
- 3 -> 1: source cannot reach sink anymore

FORD-FULKERSON

Idea: find augmenting path (from s to t through edges with residual capacity left) along which flow++

If Ford-Fulkerson terminates there is no augmenting path left -> flow is max

FF always terminates (if cap integers):

- Every iteration finds new augmenting path → bottleneck cap of at least 1
- Each iteration increases flow of at least one edge by at least 1
- Finite number of edges, finite max cap per edge → termination

- For every edge (u,v) add edge (u,v) with w(u,v) = capacity.
- of poter • For every edge (u,v) add (a new) edge (v,u) with w(v,u) = 0. bug(s) h
- While there exists an augmenting path:

Ford-Fulkerson Algorithm

Start with 0 flow. Build residual graph:

- Find an augmenting path via DFS (the 'wrong one first') in residual graph.
- · Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity:
 - For every edge (u,v) on the path, subtract the flow from w(u,v).
 - For every edge (u/v) on the path, add the flow to w(v,u).

Compute final flow by inverting residual flows.

Complexity: O(m2U)

- O(m) for finding path p in R and updating caps (m >> n)
- U = max cap of outgoing edge connected to s \rightarrow MF <= m*U

EDMONDS KARP

Run O(E) BFS to find the shortest (in terms of edges used) augmenting path Complexity: $O(m^2n) \rightarrow strongly polynomial algorithm \rightarrow NOT NP-hard$

DINIC

Uses BFS information in a better way than Edmonds-Karp (90% identical) \rightarrow O(V²*E)

FINDING EDGES IN MIN-CUT

Run Maxflow algo until termination \rightarrow find vertices S that are still reachable from source (DFS) \rightarrow T = V\S \rightarrow for every edge in S: if endpoint in T add to min-cut

(WEIGHTED) MAX-CARDINANLITY (BIPARTITE) MATCHING

MCBM Keywords: Left/Right, Row/Col, alternate Row/Col, Prime/Coprime, Odd/even, male/female, job/employee, bi-coloring, out/in-degree only, no-odd-length cycle, Tree*

Matching: subset M of edges in a graph G = (V, E) so that no two edges share an endpoint **Bipartite:** vertices partitioned into 2 disjoint sets U and V, such that every edge can only connect from U to V

MCBM BY REDUCING INTO MAXFLOW

Directed, bipartite!, O(sqrt(V)*E) for Dinic

AUGMENTING PATH ALGORITHM

Berges theorem:

- Matching M is maximum if and only if there is no augmenting path with M
- Augmenting path: starts and ends on unmatched vertices and alternates between edges in and not in the matching

Proof:

- Max → no augmenting path:
 - Contradiction: 1 more augmenting path -> flip it -> get one more matching -> not max
- No Augmenting -> Max: suppose not max → M' > M → Symmetric difference (edges that is not covered by both) → consists of paths or cycles (degree <= 2)</p>
 - Even length path/cycle \rightarrow |M| = |M'| -> M' not > M
 - Odd length cycle not possible (triangle graph: cannot assign last edge)

Odd length path: starts with edges from larger M' and edges in M are inside → aug path → contradiction

```
vi match, vis;
                                                 // global variables
vector-cvi> AL;
int Aug(int L) (
  if (vis[L]) return 0;
                                                 // L visited, return 0
  vis[t] - 1;
  for (auto &R : AL[L])
    if ((match[R] -- -1) || Aug(match[R])) {
     match[R] - L;
                                                 // flip status
     return 1;
                                                 // found 1 matching
                                                 // no matching
  return 0;
}
```

For each vertex in the left:
- if there is an augmenting
path of 1+ edges -> flip
edge status along path

O(VE),

Weakness: for very connected graphs augmenting paths will be very long in the last stages → randomly O(V+E) select neighbour → O(V^2+kE)

Maxflow: for variation (use left or right multiple times), multiple layers

HOPCROFT KARP (HK)

Identical to Dinic Max Flow → prioritize shortest augmenting paths (number of edges) → O(sqrt(V)*E)

HALL'S MARRIAGE THEOREM

Bipartite Graph with sets U and V \rightarrow a matching covering U exists if and only if for each subset W of U: $|W| \le |N(W)| \rightarrow 2^W$ checks required

RANDOM

DAG = Directed acyclic graph $n \le 25$ is upper limit of what $O(2^n)$ algorithm can do in 1s

MST

Prim, Kruskal: O(V^2 log V)

DFS, BFS

ITERATIVE BRUTE FORCE COPS

 $O(2^{V})$ and use Bitmask (normally V > 10 is too large

METRIC

- Non-negativity: For all $u, v \in V$, $d(u, v) \ge 0$.
- Identity: For all $u \in V$, d(u, u) = 0.
- Symmetric: For all $u, v \in V$, d(u, v) = d(v, u).
- Triangle inequality: For all $u, v, w \in V$, $d(u, v) + d(v, w) \ge d(u, w)$.

PLANAR GRAPH CRITERIA

Kuratowski & Wagner: A graph is planar if and only if it does not contain K5 and K(3, 3) minor \rightarrow Biggest Clique a planar graph can have is of size 4

Number of edges <= 3n-6

4-Colour-Theorem: in any planar graph you need at most 4 color to color the graph

LIST OF NP-HARD COPS

- 1. Min-Vertex-Cover (+weighted version, Lec1+Lec2)
- 2. Max-Clique (mentioned briefly and in Tut01)
- 3. Graph-Coloring (mentioned briefly in Tut01)
- 4. Min-Set-Cover (+weighted version, Lec3)
- 5. Steiner-Tree (3 variants, Lec3)
- 6. Min-Feedback-Edge-Set (+weighted version, Tut02)
- 7. Partition (+weighted version, Tut02)
- 8. Travelling-Salesman-Problem (4 variants, Lec4)
- 9. Max-Independent-Set (Tut03)