平台架构设计方案

王海波

目录

- 01.设计目标
- 02.整体方案
- 03.架构设计
- 04.实施计划

现有架构的问题

• 架构目标不符

架构来源于耀空间,只针对于企业内部,用户体量小,业务相对单一,而 新空间用户体量、业务场景与耀空间有本质区别

• 基础功能不完善

• 缺少日志、监控、故障模拟、网关、熔断、重试、限流等功能

• 自动化能力不足

• 无法实现研发自动化(自动化测试、自动化运维等)

沿用现有架构,在公司业务场景与用户体量快速上升的情况下,研发成本将会急剧上升,开发效率与质量将会急剧下降

整体目标

技术先进

• 采用前沿技术; 训练团队; 沉淀具有新空间特色的技术体系

成本可控

• 充分考虑现阶段实际情况,实现成本与效益的完美匹配

灵活敏捷

•架构能够足够灵活,可支撑公司未来3到5年的发展目标

持续进化

• 架构具有持续进化的机制与能力,可以分阶段完善

智慧感知

• 能够自我感知运行状态,自动调节,自动告警,自动部署。

效率平台

• 研发体系提效赋能基础平台,逐步实现研发流程全自动化

整体方案

整体方案

全容器化微服务敏捷架构

为什么使用微服务?

开发效率低 维护成本高 不易于扩展 无法快速迭代 重用性差

快速响应变化 快速业务创新 按需扩展 利于小团队开发

缺点 技术要求高 服务交互复杂

一个好的业务想法,从头到尾建设 所需的资源投入入可能是20个人人、 4个月

可以让3个人基于中台提供的核心服务在2周的时间内建设一个系统并推向市场

为什么采用容器化?

物理机部署

虚拟机部署

兼容问题 资源利用率低 稳定性差 安全性低

容器化部署

(胶囊式公寓),每个胶囊式公寓),每个胶囊式公寓),与中胶囊性一位租户,共享地基,共享地区。还共享工作间。原房和密带

安全隔离 易于自动化 运维成本低 资源利用好

容器 VS 虚拟机

容器

容器是一个应用层抽象,用于将代码和依赖资源打包在一起。多个容器可以在同一台机器上运行,共享操作系统内核,但各自作为独立的进程在用户空间中运行。与虚拟机相比,容器占用的空间较少(容器镜像大小通常只有几十兆),瞬间就能完成启动。

虚拟机

虚拟机 (VM) 是一个物理硬件层抽象,用于将一台服务器变成多台服务器。管理程序允许多个 VM 在一台机器上运行。每个 VM 都包含一整套操作系统、一个或多个应用、必要的二进制文件和库资源,因此占用大量空间。而且 VM 启动也十分缓慢。

集群治理

- 易维护
- ●高可用
- ●可伸缩
- 易操作
- ●可监控

网络治理

- •请求路由
- 故障注入
- •熔断
- 重试
- ●镜像
- 分布式链 路跟踪

集中日志

- 日志采集
- •集中存储
- 便于检索
- 分布式日 志跟踪

性能监控

- 集群负载 情况
- 平台核心 服务性能
- 网络性能 (QPS)、延 迟、响应 时间等
- •服务调用 情况
- 监控大屏
- •报警通知

服务网关

- 路由配置
- •安全认证
- 应用服务管理
- 可视化配置

集中配置

- •集中化配置
- •可视化配置
- 配置版本
- •配置变更 通知

自动化

- 持续集成
- 持续部署
- DevOps

■ 集中日志架构

- 各应用将日志输出到标准IO(控制台)
- ② Docker将各应用标准IO输出,汇总到节点固定目录
- 3 Fluent-Bit实时监测节点日志目录,读取变更内容
- 4 Fluent-Bit将变更内容按固定频率发送到Elasticserach

- 5 Elasticsearch使用独立存储保存日志
- 6 通过Kibana界面查询/可视化日志
- **7** Logrotate定时压缩、删除节点日志
- 8 Elastic Curator定时清理ES内容(如保留2个月日志)

◀ 性能监控架构

- ① 通过kubelet拉取节点的性能指标
- ② 服务可实现**自定义的指标接口**,Prometheus可自动拉取
- ③ 从istio Envoy拉取网络性能指标
- 4 通过Grafana实现指标可视化大屏

- 5 通过定时聚合服务聚合每天性能指标
- 6 按天拉取集群性能指标(保存3年)
- 7 警告管理器监控即时指标,按规则触发告警
- 8 将告警信息发送给集群相关人员

■ 服务网关

◀ 存储治理架构

◀ 技术列表

技术名称	开发公司	起源年份	开源协议	功能
docker	docker	2013	Apache2.0	提供容器化运行时
kubernetes	CNCF、Google	2014	Apache2.0	容器编排技术
Rancher 2.0	Rancher	2018	Apache2.0	容器集群管理平台
Canal	-	2014	Apache2.0	容器网络接口插件(Flannel+Calico)
metrics-server	-	2014	Apache2.0	用于支持集群自动伸缩的负载指标收集服务
etcd	CNCF、CoreOS	2013	Apache2.0	k8s集群存储
istio	Google、IBM、Lyft	2018.08	Apache2.0	服务网格
helm	CNCF	2016	Apache2.0	k8s应用管理(应用商店)
Envoy	CNCF	2016.09	Apache2.0	高性能的边缘代理,istio作为请求路由代理
Kiali	-	2018.07	Apache2.0	istio服务调用关系图
Jaeger	CNCF/Uber	2017.07	Apache2.0	分布式跟踪/采样
FluentBit	Treasure Data	2015.09	Apache2.0	高性能轻量级的日志收集服务
Logrotate	-	-	-	日志定期清理
Elasticsearch	Elastic	2010	Apache2.0	全文检索数据库(用于存放日志)
Kibana	Elastic	2016	Apache2.0	ES的可视化查询界面
Elastic curator	Elastic	2013	Apache2.0	ES定期清理服务
Prometheus	CNCF	2016	Apache2.0	监控服务
alertmanager	CNCF	2016	Apache2.0	Prometheus
Grafana	-	2014	Apache2.0	监控指标可视化
Apollo	携程	2017	Apache2.0	配置中心
GitLab	GitLab	2013	MIT	Git服务
Jenkins-x	-	2019	MIT	DevOps构建工作流(CI/CD)
Rook	CNCF	2017	Apache2.0	存储管理

6月 完成整体 架构设计 8月 完成基础 平台部署 10月 初步完成 应用迁移 并行运行, 急定性及 性能测试

