Greta Oto 寄存器定义及软硬件接口

Jun Mo Globsky Technology Inc. 2021/6/22

说明

本文档描述了 Greta Oto 卫星导航接收机 IP 模块的寄存器定义以及软硬件接口,用以指导软件工程师对硬件进行操作和处理。

接收机 IP 的硬件接口包含总线接口和中断信号。中断来源有跟踪引擎中断、捕获引擎中断和 PPS 中断,各自有各自的中断屏蔽位和中断状态指示,统一到一个中断信号上送给 CPU。总线读写包括对全局和各模块控制寄存器的读写以及对模块内部 RAM 的读写,以同步 SRAM 的时序进行访问。

Clopsky Lechnology Inc. III

1. 地址映射

接收机 IP 在总线上总共占用 64kB 的地址空间,全部的访问都是按照 32 比特位宽进行访问,读写操作不支持字节选择。地址的前 32kB 为寄存器映射、后 32kB 为 RAM 映射。在寄存器映射中,每一个模块占用 4kB 的地址空间。模块和内存对应的地址映射如下表所示:

偏移地址范围	模块	说明
0x0000~0x0FFF	Global Registers	
0x1000~0x1FFF	Reserved	
0x2000~0x2FFF	Reserved	
0x3000~0x3FFF	Reserved	
0x4000~0x4FFF	Acquire Engine	/. %]
0x5000~0x5FFF	TE FIFO	
0x6000~0x6FFF	Tracking Engine	
0x7000~0x7FFF	Accessory	PPS etc.
0x8000~0x8FFF	TE State Buffer	4kB for 32 channels, expandable
0xC000~0xCFFF	AE Config. Buffer	
Others	Reserved	

寄存器访问模式有 RO(只读)、RW(可读写)、R/W1C(写 1 清除,通常用于中断状态控制)、WTRIG(写 1 触发,通常用于 reset)等。

2. 全局寄存器

全局寄存器的偏移地址以及寄存器中的字段定义如下表所示:

BB_ENABLE - 0x00

DD,	IDEL CAUC			
Bit	Mode	Name	Default	Description
31:9	-	-	23'h0	Reserved
8	R/W	TRACKING_ENGINE _ENABLE	1'b0	Enable flag of tracking engine system 0: Tracking engine is disabled, will also disable TE FIFO. 1: Tracking engine is enabled, will also enable TE FIFO.
7:0	-04	-	8'h0	Reserved

BB RESET - 0x04

Bit	Mode	Name	Default	Description	
31:9	-	-	23'h0	Reserved	
8	WTRIG	TE_FIFO_RESET	1'b0	Reset TE FIFO Write: 0: No effect 1: Reset TE FIFO	
7:2	-	-	6'h0	Reserved	

Bit	Mode	Name	Default	Description
1	WTRIG	TRACKING_ENGINE	1'b0	Write:
		_RESET		0: No effect.
				1: Reset tracking engine
0	WTRIG	ACQUIRE_ENGINE_	1'b0	Write:
		RESET		0: No effect.
				1: Reset acquire engine

FIFO_CLEAR - 0x08

Bit	Mode	Name	Default	Description
31:9	-	-	23'h0	Reserved
8	WTRIG	TE_FIFO_CLEAR	1'b0	Clear bit for TE FIFO
				Write:
				0: No effect
				1: Clear TE FIFO
7:1	-	-	7'h0	Reserved
0	WTRIG	TE_FIFO_LATCH	1'b0	Latch TE FIFO write address
				Write:
				0: No effect
				1: Latch TE FIFO write address

TRACKING_START - 0x0c

Bit	Mode	Name	Default	Description
31:1	-	-	31'h0	Reserved
0	R/W	TRACKING_START	1'b0	Start/resume tracking engine
			0	Read:
				0: tracking engine is waiting CPU
				1: tracking engine is working
			Ť	Write:
		4 (2)		0: No effect
		70		1: Start/resume tracking engine

MEASUREMENT_NUMBER - 0x10

Bit	Mode	Name	Default	Description
31:10	-		22'h0	Reserved
9:0	R/W	MEAS_NUMBER	10'h0	Number of blocks of data to process between measurement interrupts. For 1ms block data and 1Hz measurement, this register set to 1000.

MEASUREMENT_COUNT - 0x14

Bit	Mode	Name	Default	Description
31:10	-	-	22'h0	Reserved
9:0	R/W	MEAS_COUNT	10'h0	Counter for measurement number to
				generate interrupt.

INTERRUPT_FLAG - 0x18

Bit	Mode	Name	Default	Description
31:12	-	-	20'h0	Reserved
11	R/W1C	AE_INT_FLAG	1'b0	AE interrupt flag
10	R/W1C	REQ_INT_FLAG	1'b0	Request interrupt flag
9	R/W1C	MEAS_INT_FLAG	1'b0	Measurement interrupt flag
8	R/W1C	DATA_READY_INT_	1'b0	Interrupt flag indicate whether tracking
		FLAG		engine has coherent data ready
7:0	-	-	8'h0	Reserved

REQUEST_COUNT - 0x1c

Bit	Mode	Name	Default	Description
31:1	-	-	31'h0	Reserved
9:0	R/W	REQ_COUNT	10'h0	Request interrupt counter. Will be decreased 1 if this is not zero at the same cycle MEASUREMENT_COUNT change. If it decreased to zero, the interrupt flag will be set. If host write at the same cycle when hardware decrease this value, host write takes effect.

INT MASK - 0x20

Bit	Mode	Name	Default	Description
31:12	-	-	20'h0	Reserved
11	R/W1C	AE_INT_MASK	1'b0	AE interrupt mask
10	R/W1C	REQ_INT_MASK	1'b0	Request interrupt mask
9	R/W1C	MEAS_INT_MASK	1'b0	Measurement interrupt mask
8	R/W1C	DATA_READY_INT_	1'b0	Interrupt mask indicate whether tracking
		MASK		engine has coherent data ready
7:0	-	- / (7)	8'h0	Reserved

BB VERSION - 0x40

Bit	Mode	Name	Default	Description
31:24	RO 🔪	MAJOR_VERSION	8'h1	Major version
23:16	RO C	MINOR_VERSION	8'h0	Minor version
15:0	RO	RELEASE_VERSION	16'h?	Release version

3. 捕获引擎

捕获引擎寄存器的偏移地址以及寄存器中的字段定义如下表所示:

AE_CONTROL-0x04

Bit	Mode	Name	Default	Description
31:9	-	-	23'h0	Reserved
8	WTRIG	START_ACQ	1'b0	Start acquisition

Bit	Mode	Name	Default	Description
7:6	-	-	2'b0	Reserved
5:0	R/W	CHANNEL_NUMBER	6'h0	Number of channels to do
				acquisition, valid range 1~32

AE_BUFFER_CONTROL - 0x08

Bit	Mode	Name	Default	Description
31:10	-	-	22'h0	Reserved
9	WTRIG	RESET_RATE_ADAPT OR	1'b0	Reset registers in rate adaptor
8	WTRIG	START_FILL_BUFFER	1'b0	Start fill AE buffer.
7	-	-	1'b0	Reserved
6:0	R/W	BUFFER_THRESHOL D	7'h0	Length of AE buffer threshold indicator in unit of 1kB. When AE buffer filled to this threshold, REACH_THRESHOLD indicator will be set.

AE_STATUS - 0x0c

Bit	Mode	Name	Default	Description
31:20	-	-	12'h0	Reserved
19	R	AE_FINISH	1'b0	Clear when start acquisition and
			Q,	set when acquisition finished.
18	R	AE_BUFFER_FULL	1'b0	Clear when start to fill AE buffer
				and set when AE buffer is full.
17	R	AE_BUFFER_REACH_	1'b0	Clear when start to fill AE buffer
		TH		and set when AE buffer filled to
				threshold.
16	R	AE_BUFFER_FILLING	1'b0	Clear when start to fill AE buffer
		10		and set when AE buffer is filling.
15:9	-	-	7'h0	Reserved
8:4	R	AE_CURRENT_CHAN	5'h0	Current channel AE is doing.
		NEL		
3:0	R	AE_CURRENT_STATE	4'h0	Current value of AE FSM.

AE_CARRIER_FREQ - 0x10

Bit	Mode	Name	Default	Description
31:0	R/W	CARRIER_FREQ		Carrier frequency of code rate adaptor. Calculated by f _{IF} /fs*2 ³² .

AE_CODE_RATIO - 0x14

Bit	Mode	Name	Default	Description
31:24	-	-	8'h0	Reserved
23:0	R/W	CODE_RATE_RATIO	24'h0	Code rate decimation ratio. Calculated by fc/fs*2 ²⁴ . In which fs is source sample rate, fc is twice

Bit	Mode	Name	Default	Description
				of code rate for GPS/BDS and 16x
				code rate for GLONASS.

AE_THRESHOLD - 0x18

Bit	Mode	Name	Default	Description
31:8	-	-	24'h0	Reserved
7:0	R/W	QUANT_THRESHOLD	8'd37	Threshold for quantization

4. TE FIFO

TE FIFO 寄存器的偏移地址以及寄存器中的字段定义如下表所示:

TE_FIFO_CONFIG - 0x00

<u> </u>	12_111 0_0011110 0000					
Bit	Mode	Name	Default	Description		
31:9	-	-	23'h0	Reserved		
8	R/W	TRIG_SOURCE	1'b0	Source FIFO to trigger. If multiple		
				sources are selected, trigger will		
				be effect whichever source send		
				trigger signal. If this field set to 0		
				or only self is selected as source,		
				trigger will NEVER happen.		
7:2	-	-	6'h0	Reserved		
1	R/W	FIFO_TRIG	1'h0	Read:		
				0: FIFO is not waiting trigger from		
				source		
				1: FIFO is waiting trigger from		
				source		
		-C)		Write:		
		1 (1)		0: No effect		
				1: Force FIFO goes into disable		
		¥		state and start waiting trigger		
				from source		
0	R/W	DUMMY_WRITE	1'h0	0: disable FIFO dummy write		
	Ca			1: enable FIFO dummy write		

TE_FIFO_STATUS - 0x04

Bit	Mode	Name	Default	Description
31:3	-	-	29'h0	Reserved
2	RO	FIFO_ENABLED	1'h0	Read/ Write:
				0: FIFO is enabled and running
				1: FIFO is not running
1	RO	GUARD_ALARM_FL	1'h0	Read/ Write:
		AG		0: FIFO overflow guard alarm flag
				negative
				1: FIFO overflow guard alarm flag

Bit	Mode	Name	Default	Description
				positive
0	R/W1C	OVERFLOW_FLAG	1'h0	Read:
				0: FIFO overflow flag negative
				1: FIFO overflow flag positive
				Write:
				0: No effect
				1: Clear FIFO overflow flag

TE_FIFO_GUARD - 0x10

Bit	Mode	Name	Default	Description
31:16	-	-	16'h0	Reserved
15:0	R/W	FIFO_GUARD_TH	16'h0	The threshold of alarming FIFO is going to overflow. In the unit of sample. Write will align to multiple of 256 (force 8LSB to be 0).

TE_FIFO_READ_ADDR - 0x14

Bit	Mode	Name	Default	Description
31:16	-	-	16'h0	Reserved
15:0	RO	READ_ADDR	16'h0	Current FIFO read address.
			Ó,	Address in unit of sample.

TE_FIFO_WRITE_ADDR - 0x18

Bit	Mode	Name	Default	Description
31:20	RO	WRITE_ADDR_ROU	12'h0	Current round number of FIFO
		ND		write address.
19:4	RO	WRITE_ADDR	16'h0	Current FIFO write address.
		101		Address in unit of sample.
3:0	-	- 1	4'h0	Reserved

TE_FIFO_BLOCK_SIZE - 0x28

Bit	Mode	Name	Default	Description
31:16	- C		16'h0	Reserved
15:0	R/W	CLUSTER_NUM	16'h0	Number of clusters to read from FIFO.

TE FIFO BLOCK ADJUST - 0x2c

1		_			
	Bit	Mode	Name	Default	Description
	31:8	-	-	24'h0	Reserved
	7:0	R/W	FIFO_BLOCK_ADJU ST	8'h0	FIFO block size adjust control register, adjustment in unit of cluster, this value is signed integer.

TE_FIFO_LWADDR_CPU - 0x40

Bit	Mode	Name	Default	Description
31:20	RO	LATCHED_WRITE_A DDR ROUND	12'h0	CPU latched current round number of FIFO write address.
19:4	RO	LATCHED_WRITE_A DDR	16'h0	CPU latched FIFO write address.
3:0	RO	LATCHED_WRITE_A DDR_SUB	4'h0	CPU latched system clock count between two samples.

TE_FIFO_LWADDR_EM - 0x44

Bit	Mode	Name	Default	Description
31:20	RO	LATCHED_WRITE_A	12'h0	Event mark latched current round
		DDR_ROUND		number of FIFO write address.
19:4	RO	LATCHED_WRITE_A	16'h0	Event mark latched FIFO write
		DDR		address.
3:0	RO	LATCHED_WRITE_A	4'h0	Event mark latched system clock
		DDR_SUB		count between two samples.

TE_FIFO_LWADDR_PPS - 0x48

	_			
Bit	Mode	Name	Default	Description
31:20	RO	LATCHED_WRITE_A	12'h0	PPS latched current round
		DDR_ROUND		number of FIFO write address.
19:4	RO	LATCHED_WRITE_A	16'h0	PPS latched FIFO write address.
		DDR	, 0%	
3:0	RO	LATCHED_WRITE_A	4'h0	PPS latched system clock count
		DDR_SUB	0	between two samples.

TE_FIFO_LWADDR_AE - 0x4c

Bit	Mode	Name	Default	Description
31:20	RO	LATCHED_WRITE_A	12'h0	AE latched current round number
		DDR_ROUND		of FIFO write address.
19:4	RO	LATCHED_WRITE_A	16'h0	AE latched FIFO write address.
		DDR		
3:0	RO 🔪	LATCHED_WRITE_A	4'h0	AE latched system clock count
	C	DDR_SUB		between two samples.

5. Tracking Engine

跟踪引擎寄存器的偏移地址以及寄存器中的字段定义如下表所示:

TE_CHANNEL_ENABLE - 0x00

Bit	Mode	Name	Default	Description
31:0	R/W	TE_CHANNEL_ENA	32'h0	Read/ Write:
		BLE		Enable flag of each logic channel,
				bit0 corresponds to channel0, etc.
				0: Corresponding channel is

Bit	Mode	Name	Default	Description
				disabled
				1: Corresponding channel is
				enabled

TE_COH_DATA_READY - 0x04

Bit	Mode	Name	Default	Description
31:0	R/W	TE_COH_DATA_RE	32'h0	Read/ Write:
		ADY		Coherent data ready flag of each
				logic channel, bit0 corresponds to
				channel0, etc. Any correlator
				reach coherent number will set
				this flag.
				0: Corresponding channel has not
				reached coherent number yet
				1: Corresponding channel has
				coherent data ready to read

TE _OVERWRITE_PROTECT_CHANNEL - 0x08

Bit	Mode	Name	Default	Description
31:0	R/W	TE_CHANNEL_OVE	32'h0	Read/ Write:
		RWRITE_PROTECT		Coherent data overwrite protect
			Ó,	flag of each logic channel, bit0
			08	corresponds to channel0, etc. Any
				correlator has overwrite protect
			0,	will set this flag.
				0: Corresponding channel has not
			, i	overwrite protect
				1: Corresponding channel has
				overwrite protect

TE_OVERWRITE_PROTECT_ADDR - 0x10

Bit	Mode	Name	Default	Description
31:12	-	-	20'h0	Reserved
11:0	RO	OVERWRITE_PROT ECT_ADDR	12'h0	Coherent address that protected by overwrote

TE_OVERWRITE_PROTECT_VALUE - 0x14

Bit	Mode	Name	Default	Description
31:16	RO	OVERWRITE_PROT	16'h0	Overwrite protect value I
		ECT_VALUE_I		
15:0	RO	OVERWRITE_PROT	16'h0	Overwrite protect value Q
		ECT_VALUE_Q		

TE_POLYNOMIAL - 0x20

Bit	Mode	Name	Default	Description
-----	------	------	---------	-------------

Bit	Mode	Name	Default	Description
31	R/W	SERIAL_PARALLEL	1'b0	Serialize/parallel select
				0: 2 parallel Gold code generation
				1: 1 serialize feedback shift
				registers
30:28	-	-	3'h0	Reserved
27:14	RW	G2_POLYNOMIAL	14'h0	Polynomial of G2 in preset code
				generator setting0
13:0	R/W	G1_POLYNOMIAL	14'h0	Polynomial of G1 in preset code
				generator setting0

TE_CODE_LENGTH - 0x24

Bit	Mode	Name	Default	Description	
31:14	R/W	GLOBAL_LENGTH	18'h0	Global code length	
				For serialize, all 32bit is used as	
				global length.	
13:0	R/W	G1_LENGTH	14'h0	Code length of G1 generator	

TE_POLYNOMIAL2 - 0x28

Bit	Mode	Name	Default	Description
31	R/W	SERIAL_PARALLEL	1'b0	Serialize/parallel select 0: 2 parallel Gold code generation 1: 1 serialize feedback shift registers
30:28	-	-	3'h0	Reserved
27:14	RW	G2_POLYNOMIAL	14'h0	Polynomial of G2 in preset code generator setting0
13:0	R/W	G1_POLYNOMIAL	14'h0	Polynomial of G1 in preset code generator setting0.

				generator settingo.		
TE_CODE_LENGTH2 - 0x2c						
Bit	Mode	Name	Default	Description		
31:14	R/W	GLOBAL_LENGTH	18'h0	Global code length. For serialize, all 32bit is used as global length		
13:0	R/W	G1_LENGTH	14'h0	Code length of G1 generator		

PPS 寄存器的偏移地址以及寄存器中的字段定义如下表所示:

TBD

Globsky Lechnology Luc. HARALINE