RA:____NOME:___

Nota:

$$\mu_{o} = 4\pi 10^{-7} \text{ H/m}$$

$$\mu_{r} = 1 \text{ (Alumínio)}$$

$$1 \text{ pé (ft)} = 30,5 \text{ cm}$$

$$\varepsilon_{o} = 8,85. \ 10^{-12} \text{ F/m}$$

$$\varepsilon_{r} = 1 \text{ (Ar)}$$

$$V(x) = V(0) \cosh \gamma x - Z_{c} I(0) \text{ senh } \gamma x$$

$$I(x) = I(0) \cosh \gamma x - \frac{1}{Z_{c}} V(0) \text{ senh } \gamma x$$

$$\begin{bmatrix} \hat{V}(0) \\ \hat{I}(0) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \hat{V}(l) \\ \hat{I}(l) \end{bmatrix}$$

- 1) Resolva os seguintes itens utilizando a tabela abaixo:
 - (a) Considere uma linha trifásica com espaçamento equilátero composta por condutores ACSR Dove. A distância entre os condutores é de 10 pés (ft). Determine a reatância indutiva por fase a 60 Hz em ohms/km (1,5 ponto).
 - (b) Considere uma linha trifásica com geometria horizontal, como mostra a figura abaixo. O raio médio geométrico do condutor é 0.0133 metro e a distância (D) entre os condutores adjacentes é de 10 metros. (i) Determine a reatância indutiva por fase a 60 Hz em ohms/km (1 ponto), (ii) Qual o nome desse condutor (0,5 ponto)?

Electrical characteristics of bare aluminum conductors steel-reinforced (ACSR)*

					Resistance Ac, 60 Hz			
Code word	Aluminum area,	Stranding	Layers of	Outside diameter,	Dc, 20°C,	20°C, Ω/mi	50°C, Ω/mi	GMR D _c ft
Code Word	cmil	Al/St	aluminum	in	Ω/1,000ft	20 0, 32/1111	30 0, 32/1111	
Waxwing	266.800	18/1	2	0,609	0,0646	0,3488	0,3831	0,0198
Partridge	266.800	26/7	2	0,642	0,0640	0,3452	0,3792	0,0217
Ostrich	300.000	26/7	2	0,680	0,0569	0,3070	0,3372	0,0229
Merlin	336.400	18/1	2	0,684	0,0512	0,2767	0,3037	0,0222
Linnet	336.400	26/7	2	0,721	0,0507	0,2737	0,3006	0,0243
Oriole	336.400	30/7	2	0,741	0,0504	0,2719	0,2987	0,0255
Chickadee	397.500	18/1	2	0,743	0,0433	0,2342	0,2572	0,0241
Ibis	397.500	26/7	2	0,783	0,0430	0,2323	0,2551	0,0264
Pelican	477.000	18/1	2	0,814	0,0361	0,1957	0,2148	0,0264
Flicker	477.000	24/7	2	0,846	0,0359	0,1943	0,2134	0,0284
Hawk	477.000	26/7	2	0,858	0,0357	0,1931	0,2120	0,0289
Hen	477.000	30/7	2	0,883	0,0355	0,1919	0,2107	0,0304
Osprey	556.500	18/1	2	0,879	0,0309	0,1679	0,1843	0,0284
Parakeet	556.500	24/7	2	0,914	0,0308	0,1669	0,1832	0,0306
Dove	556.500	26/7	2	0,927	0,0307	0,1663	0,1826	0,0314
Rook	636.000	24/7	2	0,977	0,0269	0,1461	0,1603	0,0327
Grosbeak	636.000	26/7	2	0,990	0,0268	0,1454	0,1596	0,0335
Drake	795.000	26/7	2	1,108	0,0215	0,1172	0,1284	0,0373
Tern	795.000	45/7	3	1,063	0,0217	0,1188	0,1302	0,0352
Rail	954.000	45/7	3	1,165	0,0181	0,0997	0,1092	0,0386
Cardinal	954.000	54/7	3	1,196	0,0180	0,0988	0,1082	0,0402
Ortolan	1.033.500	45/7	3	1,213	0,0167	0,0924	0,1011	0,0402
Bluejay	1.113.000	45/7	3	1,259	0,0155	0,0861	0,0941	0,0415
Finch	1.113.000	54/19	3	1,293	0,0155	0,0856	0,0937	0,0436
Bittern	1.272.000	45/7	3	1,345	0,0136	0,0762	0,0832	0,0444

A three-phase line has three equilaterally spaced conductors of ACSR *Dove*. If the conductors are 10 ft apart, determine the 60 Hz per-phase reactance of the line in Ω/km .

Solution:

For ACSR Dove conductors, $D_s = 0.0314$ ft. Given that D = 10 ft,

$$X_L = 2\pi \times 60 \times 2 \times 10^{-7} \ln \frac{10}{0.0314} \times 10^3 \Omega/\text{km} = 0.4346 \Omega/\text{km}$$

b.i)

$$\begin{split} L &= 2*10^{-}(-7)*log(12.6/0.0133) = 1,37*10e\text{--}3 \text{ H/km} \\ X_L &= 377*L*1000 = 0.517 \text{ ohms/km} \end{split}$$

b.ii)

$$D_s = 0.0133/0.3048 = 0.0436 \text{ ft}$$

The conductor is Finch.

2) Considere uma linha trifásica mostrada a seguir. Os condutores da linha são do tipo ACSR Osprey (consultar tabela do exercício 1). Determine a capacitância fase-neutro da linha em F/m e reatância capacitiva da linha em ohm×m. (2 pontos)

Solution:

Osprey diam. = 0.879 in
$$D_{eq} = \sqrt[3]{25 \times 25 \times 42} = 29.72 \text{ ft}$$

$$C_n = \frac{2\pi \times 8.85 \times 10^{-12}}{\ln \frac{29.72 \times 12}{(0.879)/2}} \text{ F/m}$$

$$= 8.301 \times 10^{-12} \text{ F/m} = 8.301 \times 10^{-6} \times 1.609 \ \mu\text{F/m} = 0.01336 \ \mu\text{F/mi}$$

$$X_{C} = 1/[2*pi*60*8.3*10^{(-12)}] = 3.1959e+008 = 319.59 M\Omega \times m$$

3) Considerar uma linha de transmissão trifásica, 765 kV, 60 Hz, 250 km de comprimento com os seguintes parâmetros:

$$z = 0.2 + j0.8 \Omega/km$$

y = j5.3*10⁻⁶ S/km

- (a) Calcule os parâmetros do circuito π equivalente. (1,5 ponto)
- (b) Utilizando o circuito obtido no item (a), calcule a corrente no início da linha supondo que não há nenhuma carga conectada no fim da linha. Assuma que a tensão no início da linha é igual a 765∠0° kV. (1 ponto)

Solução:

```
a)
z = 0.2+li*0.8;
y = li*5.3*10^(-6);
Z<sub>c</sub> = sqrt(z/y)
gama= sqrt(z*y)
Z = Zc*sinh(gama*250)
Y1=1/Zc*tanh(gama*250/2)

b)
Iini = (765000/sqrt(3))/Zc*tanh(gama*250)= 1.6163e+001 +6.4257e+002i (A)

OU

Zeq1 = (Z+inv(Y1));
Zeq = inv(Y1)*Zeq1/(inv(Y1)+Zeq1)
Iini1 = (765000/sqrt(3))/Zeq = 1.6163e+001 +6.4257e+002i (A)
```

4) Para uma linha trifásica, 345 kV, as constantes A B C D são:

$$A = D = 0.98182 + j0.0012447$$

$$B = 4.035 + j58.947$$

$$C = j0.00061137$$

A linha entrega 400 MVA para fator de potência 0,8 atrasado em 345 kV. Assuma que a tensão de linha no fim da linha é V(l) = 345∠0° kV. Determine tensão, corrente e potência no início da linha, a regulação de tensão e o rendimento (eficiência) da linha na transmissão (2,5 pontos).

The receiving end voltage per phase is

$$V_R = \frac{345\angle 0^{\circ}}{\sqrt{3}} = 199.186\angle 0^{\circ} \text{ kV}$$

(a) The complex power at the receiving end is

$$S_{R(3\phi)} = 400 \angle \cos^{-1} 0.8 = 400 \angle 36.87^{\circ} = 320 + j240 \text{ MVA}$$

The current per phase is given by

$$I_R = \frac{S_{R(3\phi)}^*}{3V_R^*} = \frac{400000\angle - 36.87^\circ}{3 \times 199.186\angle 0^\circ} = 669.392\angle - 36.87^\circ \text{ A}$$

The sending end voltage is

$$V_S = AV_R + BI_R = 0.98182 + j0.0012447)(199.186\angle 0^{\circ}) + (4.035 + j58.947)$$

(668.392 × 10⁻³ \angle -36.87°) = 223.449 \angle 7.766° kV

The sending end line-to-line voltage magnitude is

$$|V_{S(L-L)}| = \sqrt{3} |V_S| = 387.025 \text{ kV}$$

The sending end current is

$$I_S = CV_R + DI_R = (j0.00061137)(199.186\angle 0^\circ) + (0.98182 + j0.0012447)$$

 $(669.392\angle -36.87^\circ) = 592.291\angle -27.3256^\circ \text{ A}$

The sending end power is

$$S_{S(3\phi)} = 3V_S I_S^* = 3 \times 223.449 \angle 7.766 \times 592.291 \angle 27.3256^\circ \times 10^{-3}$$

= 324.872 MW + j228.253 Mvar
= 397.041 \angle 35.0916^\circ MVA

Voltage regulation is

Percent
$$VR = \frac{\frac{387.025}{0.98182} - 345}{345} \times 100 = 14.2589\%$$

Transmission line efficiency is

$$\eta = \frac{P_{R(3\phi)}}{P_{S(3\phi)}} = \frac{320}{324.872} \times 100 = 98.500\%$$