Approaches to Improve Performance of LLMs on TRIP Data Set

Team 24: Ishita Deshmukh, Carlos Figueredo, Hanning Li, Fei Wu

Introduction

- Tiered Reasoning for Intuitive Physics (TRIP) Dataset:
 - NLP dataset from the SLED Lab at the University of Michigan
 - Focused on multi-layered physical commonsense reasoning
- Problem:
 - Current baseline systems only achieve 10% accuracy with proper justification
 - Goal is to achieve greater accuracy with correct justification

Story A

- 1. Ann sat in the chair.
- 2. Ann unplugged the telephone.
- 3. Ann picked up a pencil.
- 4. Ann opened the book.
- 5. Ann wrote in the book.

Story B

- 1. Ann sat in the chair.
- 2. Ann unplugged the telephone.
 - 3. Ann picked up a pencil.
 - 4. Ann opened the book.
- 5. Ann heard the telephone ring.

Relation to Previous Work

- Models
 - o BERT
 - RoBERTa
 - DeBERTa
- Evaluation metrics
 - Accuracy correct story identification
 - o Consistency correct conflict identification
 - Verifiability correct physical state changes
- Other datasets that have been explored
 - ROCSTories
 - PIQA
 - o SPARTQA
 - ProPara

Methods

- Methods 1-3: Use different models on the TRIP dataset
 - ALBERT
 - Mistral-7b
 - o GPT-2 XL
- Method 4: Answer Set Programming

Method #4: Using ASP

Answer Set Programming: declarative programming paradigm designed for solving complex search and optimization problems

Premises:

- 1) "Socrates is a human"
- 2) "All humans are mortal"

Conclusion:

"Socrates is"

```
% Facts
human(socrates).
% Rules
mortal(X) :- human(X).
% Query
#show mortal(socrates).
```

Note: Initial approach was to use a solver-augmented LLM idea to solve TRIP's tasks, but this approach failed.

Method #4 Updated: Prompting using ASP

Does ASP's rich logical semantics add value to the LLM's reasoning?

EXPERIMENT

Task: Select which of the following 2 stories is more plausible. 1 or 2? (1st Task of TRIP)

Size: 100 samples from Test split

Metric: Accuracy

Strategies: Zero-shot, Few-shot, ASP Few-shot

Mistral-7B-Instruct-v0.3

Preliminary Results: Methods #1-3

Implementation of these methods is still ongoing

	Accuracy	Consistency	Verifiability
GPT-2 XL	3.6%	3.1%	0.9%
ALBERT	72.6%	5.7%	2.0%

Results: Method #4

Does ASP's rich logical semantics add value to the LLM's reasoning?

- Short Answer: No.
- However,

Prompting Strategy	Accuracy	
Zero-shot	58%	
Few-shot	68%	
ASP Few-shot	62%	

ASP Few-shot can generate implicit rules:

Plan

- Methods #1-3:
 - Complete experiments with Mistral-7b and GPT-2 XL
 - Experiment with different loss configurations
- Method #4:
 - Evaluate TRIP's 2nd Task. Which sentences make the story implausible?
 - Use consistency metric.
 - How? Process ASP Few-shot's generated answer.

References

[1] Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai. 2021. Tiered reasoning for intuitive physics: Toward verifiable commonsense language understanding. arXiv:2109.04947.

Approaches to Improve Performance of LLMs on TRIP Data Set

Ishita Deshmukh, Carlos Figueredo, Hanning Li, Fei Wu