KUBERNETES TASKS DEVOPS MASTER ARCHITECT WORKSHOP

TASK 1:HOW TO CREATE KUBERNETES CLUSTER — MINIKUBE WAY

 Activity: Install Kubernetes cluster in minikube

- Definition of Done:
 - Minikube installed
 - Create a GitHub repository for Kubernetes task. Create a subfolder and upload the relevant screenshot.(Terminal screenshot of version of the Minikube Kubernetes installed)

#	Steps	Commands
1	Clone the Kubernetes repository	git clone https://github.com/AnjuMeleth/ DevOpsMasterKubernetesTasks.g it
2	Run the installation script in 1_installation sub folder	sh minikube_install.sh
3	Get the kubectl version	sudo kubectl versionclient=true
4	Get the minikube version	sudo minikube version

TASK 2:HOW TO START A MINIKUBE CLUSTER

- Activity: Start a minikube cluster on Ubuntu 18.04 system
- Definition of Done:
 - Create a subfolder and upload the relevant screenshot.(Minikube started)

#	Steps	Commands
1	Start a Minikube cluster	sudo minikube start
2	Throws an error "Unable to start VM as this computer doesn't have VT-X/AMD-v enabled"	
3	Start Minikube with no driver	sudo minikube startvm- driver=none
4	Throws an error ""docker": executable file not found in \$PATH". Install docker	sudo apt-get install docker.io
5	Start the minikube once again	sudo minikube startvm- driver=none

TASK 3:HOW TO DEPLOTAN APPLICATION ON MINIKUBE CLUSTER USING PODS

#	Steps	Commands
1	Run a pod on the minikube cluster	sudo kubectl run nginx image=nginxport=80
2	View the pods	sudo kubectl get pods

- Activity: Deploy a Nginx application on to Minikube cluster as a pod
- Definition of Done:
 - Pod created .
 - Create a subfolder and upload the relevant screenshot.(List of pods running)

TASK 4:HOW TO ACCESS AN APPLICATION

AN APPLICATION RUNNING IN A POD FROM OUTSIDE

• Activity: Create a NodePort service that helps to connect to pod created in the last task.

- Web server accessible at a port
- Create a subfolder and upload the relevant screenshot.(Nginx service accessible at the NodePort)

#	Steps	Commands	
1	Create a NodePort service	sudo kubectl expose pod nginxtype=NodePort	
2	List the services	sudo kubectl get services	
3	Access the server from the browser	http:// <lp address="" of="" system="" the="">:port</lp>	
4	Delete the service	sudo kubectl delete svc nginx	
5	Stop the Minikube cluster	sudo minikube stop	
6	Delete the Minikube cluster	sudo minikube delete	
7	Delete the config file	sudo rm -rf \sim /.kube/config	
8	Delete the kubernetes	rm -rf /etc/kubernetes	

TASK 5:HOW TO ESTABLISH PASSWORD LESS CONNECTIVITY ACROSS INSTANCES GOING TO BE USED AS MANAGER AND WORKER NODES FOR COMMUNICATION

 Activity: Establish passwordless connectivity by using ssh agent

- Able to connect to worker nodes from the manager without password
- No screenshot to be uploaded.

1			
	#	Steps	Commands
	1	Transfer the .pem file to Kubernetes manager node using Filezilla	
	2	Stop all firewall	sudo service ufw stop
	3	Start ssh	sudo service ssh start
	4	Add the ssh details	eval `ssh-agent -s` sudo chmod 400 JenkinsMumbai.pem ssh-add JenkinsMumbai.pem
	5	Access the node system from master	ssh ubuntu@ <ip address=""></ip>
1	6	Stop all firewall	sudo service ufw stop

TASK 6:HOW TO BRING UP A KUBERNETES MASTER IN A PRODUCTION CLUSTER USING KUBEADM

 Activity: Create a Kubernetes master using Kubeadm installation

- Definition of Done:
 - Kubernetes master up and running.
 - Create a subfolder and upload the relevant screenshot.(No screenshots needed)

#	Steps	Commands	
1	Modify the hostname in Kubernetes manager node	sudo vi /etc/hostname	
2	Enter the Kubernetes master and node details in /etc/hosts file of the master	sudo vi /etc/hosts	
3	Run the installation script	sh kubeadm_install.sh	
4	Edit the file /etc/systemd/system/kubelet.ser vice.d/10-kubeadm.conf with the content	sudo nano /etc/systemd/system/kubelet.se rvice.d/10-kubeadm.conf Environment="cgroup-	
		driver=systemd/cgroup- driver=cgroupfs"	
5	Initialise the Kubernetes cluster by advertising the master IP address. Make a note of the output details	sudo kubeadm initpod- network-cidr=10.244.0.0/16	

Task 6 :how to bring up a Kubernetes master in a production cluster using kubeadm Contd...

6	Run the noted commands	mkdir -p \$HOME/.kube sudo cp -i /etc/kubernetes/admin.conf \$HOME/.kube/config sudo chown \$(id -u):\$(id - \$HOME/.kube/config
7	List the pods	kubectl get pods -o wideall- namespaces
8	Deploy a pod network	kubectl apply -f https://raw.githubusercontent.co m/coreos/flannel/2140ac876ef 134e0ed5af15c65e414cf2682 7915/Documentation/kube- flannel.yml
9	List the pods	kubectl get pods -o wideall- namespaces

TASK 7:HOW TO ADD A WORKER NODE TO KUBERNETES CLUSTER

 Activity: Add a worker node Ubuntu 18.04 to Kubernetes cluster

- Definition of Done:
 - Node added to cluster
 - Create a subfolder and upload the relevant screenshot.(List of nodes added to the cluster)

#	Steps	Commands
1	Make sure you have the right hostname details in /etc/hosts file and /etc/hostname files	sudo vi /etc/hostname sudo vi /etc/hosts
2	Run the installation script	sh kubeadm_install.sh
3	Edit the file /etc/systemd/system/kubelet.ser vice.d/10-kubeadm.conf with the content	sudo nano /etc/systemd/system/kubelet.se rvice.d/10-kubeadm.conf Environment="cgroup- driver=systemd/cgroup- driver=cgroupfs"
4	Run the join token command received during the kubeadm init command	sudo kubeadm join <>token <token></token>
5	Get the list of nodes in the Kubernetes master	kubectl get nodes

TASK 8: HOW TO DEPLOY AN APPLICATION POD ON KUBERNETES CLUSTER AND ACCESS IT

- Activity: Apply a pod of nginx application to the Kubernetes cluster and access it by a NodePort service
- Definition of Done:
 - Nginx up , running and accessible at a NodePort
 - Create a subfolder and upload the relevant screenshot.(Nginx web page on the worker node)

	#	Steps	Commands
	1	Run a pod on the cluster	sudo kubectl run nginx image=nginxport=80
	2	View the pods	sudo kubectl get pods
	3	Create a NodePort service	sudo kubectl expose pod nginx type=NodePort
ı	4	List the services	sudo kubectl get svc
	5	Access the server from the browser	http://< Correct Ip address of the system>:port
	6	Get more details about the pods	kubectl describe pods nginx
	7	Delete the service	sudo kubectl delete svc nginx
	8	Delete pods	kubectl delete pods nginx

TASK 9: HOW TO DEPLOY A POD ON KUBERNETES CLUSTER AND ACCESS IT USING KUBECTL

 Activity: Deploy apache application on the Kubernetes cluster

- Apache up , running and accessible at NodePort.
- Create a subfolder and upload the relevant screenshot.(Apache web page on the worker node)

#	Steps	Commands
1	Run a pod on the cluster	sudo kubectl run apacheimage=httpdport=80
2	View the pods	sudo kubectl get pods
3	Create a NodePort service	sudo kubectl expose pod apachetype=NodePort
4	List the services	sudo kubectl get svc
5	Access the server from the browser	http://< Correct Ip address of the system>:port
6	Get more details about the pods	kubectl describe pods apache

TASK 10: HOW TO DEPLOY A POD ON KUBERNETES CLUSTER USING YML

 Activity: Deploy nginx on the Kubernetes cluster using yml

- Nginx up , running and accessible at NodePort.
- Create a subfolder and upload the relevant screenshot.(No screenshot to be uploaded)

#	Steps	Commands
1	Create ngin_pod.yml	vi nginx_pod.yml
2	Apply the yml	kubectl apply -f nginx_pod.yml
3	Get the list of pods running	kubectl get pods
4	Delete the pods	kubectl delete pods mypod

TASK 11:HOW TO CREATE A REPLICATION CONTROLLER

- Activity: Create a replication controller for Nginx application so that it maintains the number of instances of the same pod running
- Definition of Done:
 - Replication controller created.
 - Create a subfolder and upload the relevant screenshot.(Terminal screenshot of list of replication controllers created)

#	Steps	Commands
1	Edit the nginx_rc.yml file in 11_rc folder	vi nginx_rc.yml
2	Apply the yml file	kubectl apply -f nginx_rc.yml
3	List the replication controller	kubectl get rc
4	Get the list of pods	kubectl get pods
5	Get the details about the replication controller created	kubectl describe replicationcontrollers/nginx
6	To list only the pods under the replication controller	<pre>pods=\$(kubectl get pods selector=app=nginx output=jsonpath={.itemsmetada ta.name}) echo \$pods</pre>

TASK 12:HOW TO SCALE AN APPLICATION IN A KUBERNETES CLUSTER

 Activity: Scale the Nginx application from the previous example to run 5 instances to cater to a greater demand

#	Steps	Commands
1	Scale the application to run 5 instances	kubectl scale replicationcontrollers/nginxreplicas=5
2	List the rc	kubectl get rc
3	List the pods	kubectl get pods

Definition of Done:

 Create a subfolder and upload the relevant screenshot.(List of 5 pods running)

TASK 13: HOW TO ACCESS AN APPLICATION FROM OUTSIDE

OUTSIDE		13_service folder	
	2	Apply the yml	kubectl apply -f nginx_service.yml
Activity: Create a service for the Uginx application running in the	3	Get the list of services	kubectl get svc
eplication controller in previous asks	4	Access the Nginx application in port 8080	http:// <lp address="">:port</lp>
Definition of Done:			O

nginx_service.yml in

Commands

vi nginx_service.yml

Steps

Edit the

Create a subfolder and upload the relevant screenshot.()

TASK 14: HOW DOES SELF HEALING WORK IN REPLICATION CONTROLLER

 Activity: Delete all pods in the replication controller in previous example

C.	• . •	C	
etir	nition	O†	Done:

 New pods gets created. No screenshots to be uploaded.

#	Steps	Commands
1	Get the list of rc	kubectl get rc
2	Get the list of services	kubectl get svc
3	Get the list of the pods running	kubectl get pods
4	Delete all pods	kubectl delete poall
5	Get the list of the pods running	kubectl get pods

TASK 15: HOW DOES THE CLIENT PODS GET TO KNOW THE IP ADDRESS AND PORT OF SERVICES(SERVICE DISCOVERY)

• Activity: All the services in the Kubernetes cluster has an Ip assigned and this could be seen in the pods created. If the service is created before the pods recreate the pods once again.

#	Steps	Commands
1	Get the list of rc	kubectl get rc
2	Get the list of services	kubectl get svc
3	Get the list of the pods running	kubectl get pods
4	View the environment variables in any one pod	kubectl exec <pod name=""> env</pod>

- Environment variables could be seen in the pod.
- Create a subfolder and upload the relevant screenshot.(Terminal screenshot of environment variables in a pod)

TASK 16: HOW TO CREATE A DEPLOYMENT IN KUBERNETES CLUSTER AND ACCESS IT FROM OUTSIDE

- Activity: Create a deployment that has 5
 instances of nginx application running. Then
 access the nginx service from a NodePort
- Definition of Done:
 - Deployment and service created.
 - Create a subfolder and upload the relevant screenshot.(Terminal screenshot of the list of deployments in the Kubernetes cluster)

#	Steps	Commands
1	Edit the nginx_deploym ent.yml file in 16_deployment folder	vi nginx_deployment.yml
2	Apply the yml file	kubectl apply -f nginx_deployment.yml
3	List the replication controller	kubectl get deployment
4	Get the list of pods	kubectl get pods
5	Get more details about the deployment	kubectl describe deployment/nginx-deployment
6	To list only the pods under the replication controller	<pre>pods=\$(kubectl get podsselector=app=nginx1 output=jsonpath={.itemsmetadata.name}) echo \$pods</pre>
7	Create a service	vi nginx_service.yml

TASK 16:

8	Apply the service yml file	kubectl apply -f nginx_service.yml
9	List the services	kubectl get svc
10	Access the Nginx application	http:// <ipaddress>:port</ipaddress>

TASK 17: HOW TO DO ROLLING UPDATE IN KUBERNETES

- Activity: Create a deployment that has 3 instance of a Node js(version1) application running. We need to update it with a newer version version 2
- Definition of Done:
 - Pods run with newer version
 - Create a subfolder and upload the relevant screenshot. (Terminal screenshot showing the version of the image used in pods of replication controller)

#_	Steps	Commands
1	Edit the file kubia.yml in 17_rolling update folder	vi kubia.yml
2	Apply	kubectl apply -f kubia.yml
3	Get the pods	kubectl get pods -l app=kubia
4	Modify the image of the pods	kubectl set image deployment kubia nodejs=luksa/kubia:v2
5	Get the list of pods	kubectl get pods -l app=kubia
6	Get the details of the deployment	kubectl describe deployment kubia

TASK 18 :HOW TO DO A ROLL BACK IN KUBERNETES

• Activity: Update the deployment created in the previous task with an error image. Then perform a roll back

- All the pods uses the previous version of the image.
- Create a subfolder and upload the relevant screenshot.(Terminal screenshot showing the rollback status)

#	Steps	Commands
1	Update the image used in the deployment kubia to a new version	kubectl set image deployment kubia nodejs=luksa/kubia:v3
2	Access the server	http:// <lpaddress>:port</lpaddress>
3	Refresh the webserver for few times so that we get error message	
4	Roll back to previous version	kubectl rollout undo deployment kubia

TASK 19: HOW TO DO CANARY DEPLOYMENTS IN KUBERNETES

•	Activity:	Updat	e the	deploy	ment	
	created	with a	new	version.	Pause	the
	update .	. Resum	ne it			

- Definition of Done:
 - Canary deployment is performed
 - Create a subfolder and upload the relevant screenshot.(Terminal screenshot showing the new pod with new image)

#	Steps	Commands
1	Update the image of the deployment with Version 4	kubectl set image deployment kubia nodejs=luksa/kubia:v4
2	Pause the deployment	kubectl rollout pause deployment kubia
3	Resume the deployment	kubectl rollout resume deployment kubia

#	Steps	Commands
1	Goto the folder 19_canary and apply the yml configuration to the cluster	kubectl apply -f newkubia.yml
2	Get the services from the nodeport address	http:// <ip address="">:Nodeport</ip>

TASK 20 :HOW TO NSTALL KUBERNETES DASHBOARD

Activity: Install Kubernetes GUI

- Definition of Done:
 - Kubernetes dashboard is visible
 - Create a subfolder and upload the relevant screenshot.(screenshot of Kubernetes dashboard)

#	Steps	Commands
1	Apply dashboard yml available	kubectl apply -f https://raw.githubusercontent.com/ku bernetes/dashboard/v2.0.0- beta4/aio/deploy/recommended.ya ml
2	Edit the services and put the type as NodePort	kubectl edit services kubernetes- dashboard -n kubernetes-dashboard
3	Run kubectl proxy and open another terminal	kubectl proxy &
4	Get the services list and note down the NodePort	kubectl get svcall-namespaces
5	Open any browser other than chrome. Go to Advanced and accept risk and continue	https:// <ipaddress>:port</ipaddress>
6	Create a service account	kubectl create serviceaccount dashboard -n default
7	Create cluster role binding	kubectl create clusterrolebinding dashboard-admin -n default clusterrole=cluster-admin serviceaccount=default:dashboard

TASK 20:CONTD...

#	Steps	Commands
8	Get the secret token	kubectl get secret \$(kubectl get serviceaccount dashboard -o jsonpath="{.secrets[0].name}") -o jsonpath="{.data.token}" base64decode
9	Copy and paste the token in the dashboar d	

TASK 21 :HOW TO DEPLOY SPRING PET CLINIC APPLICATION

 Activity: Deploy the spring pet clinic application on to the Kubernetes cluster

- Spring pet clinic application is accessib at the NodePort
- Create a subfolder and upload the relevant screenshot.(screenshot of spring pet clinic application)

	#	Steps	Commands
	1	Apply the yml in 21_springpetclinic folder	kubectl apply -f petclinic.yml
၁	2	Get the Nodeport port from the service	kubectl get svc
าดุ	2	Access the application	http:// <ipaddress>:port</ipaddress>