Step-1

Let us consider the following linear programming problem

Maximize: ^y₂

Subject to following constraints

 $y_1 \ge 0$

 $y_2 \ge 0$

 $y_1 + y_2 \le 3$

Step-2

Let us find the dual of the LPP problem by introducing the dual unknown 3 and 3 2.

Minimization in the Primal becomes maximization in the dual.

Thus, the dual of the problem is as follows.

Minimize: ^{3x}₂

Subject to following constraints

x₁≥0

x₂≥0

x₁ ≤ 0

 $x_2 \le 1$

Step-3

Let us solve the primal problem by converting the inequality into equations.

 $y_1^{\bullet} + y_2^{\bullet} = 3$

It gives, $\mathbf{y_1^*} = \mathbf{3}_{and} \mathbf{y_2^*} = \mathbf{0}_{or} \mathbf{y_1^*} = \mathbf{0}_{and} \mathbf{y_2^*} = \mathbf{3}$

And the maximum cost is $c_1 = 3$

Step-4

Let us solve the dual problem by converting the inequality into equations.

$$x_1^{\bullet} = 0$$
$$x_2^{\bullet} = 1$$

$$x_{5}^{*} = 1$$

And the minimum cost is $c_2 = 3$

Step-5

Therefore, it is observed that the primal and the corresponding dual have the same solution.