

Exercice 3 (Ampli-op, bruit, ADC, 20 points)

Soit donné le circuit photorécepteur suivant :

a) Nous admettons d'abord que les deux ampli-ops sont idéaux. La diode D_1 est une photodiode, qui peut être modélisée comme une source de photo-courant I_{ph} (qui est un courant inverse) en parallèle avec une capacité de jonction $C_j = 20 pF$. Montrer que

$$V_{out}(s) = -\frac{R_3 I_{ph}(s)}{1 + sR_3 C_1}$$

(5 points)

b) Dans un deuxième temps, nous admettons que l'ampli-op U₁ est un ampli réel, et U₂ toujours idéal. Déterminer à nouveau V_{out} en fonction de V_{ref} et de I_{ph}. Déterminer par approximation la valeur de C₁ pour que le circuit soit amorti avec un facteur de qualité de 1. Quelle bande passante obtenez-vous ? Comment change-t-elle, si l'on modifie le rapport R₂/R₁ ? (5 points)

Nous avons les caractéristiques suivantes de l'ampli-op U₁:

Amplificateur opérationnel	OPA830
Largeur de bande à gain unité	110MHz
Gain DC en boucle ouverte	72dB
Plage d'entrée	$0V_{cc}$
Plage de sortie	$0V_{cc}$
Bruit en tension rapporté à l'entrée	9.2nV/rtHz
Bruit en courant rapporté à l'entrée	3.5pA/rtHz

Nom	Prénom	

c) Supposons que le montage possède un gain de transimpédance de 560V/mA dans une bande passante de 0 à 10MHz. Calculer la valeur efficace du bruit à la sortie V_{out} dans cette bande, si la photodiode génère un bruit blanc en courant de n_{ph} = 10pA/rtHz. Faut-il tenir compte d'autres sources de bruit dans le circuit ? Si oui, desquelles, si non, pourquoi peut-on les négliger ?

(5 points)

d) Supposons que le signal de sortie V_{out} possède un rapport SINAD de 100dB. Il faut maintenant choisir un convertisseur AD pour cette tension. Quelle configuration d'entrée (uni- ou bipolaire, single ended ou différentielle) et quelle plage de tension d'entrée choisissez-vous? Le convertisseur est échantillonné à 100Msps. Combien de bits doit-il avoir, afin que la valeur efficace du bruit de quantification entre 0 et 10MHz soit au plus égale à celle du bruit et de la distorsion analogique de V_{out}?

(5 points)