

- Key components
- laaS, PaaS, and SaaS
- Architecture examples on cloud

Why cloud? (1)

Criteria	Cloud	On-prem	
Economy	 On-going costs (OPEX) are predictable. It can be easily changed depending on the company's situation. 	 Up-front investments (CAPEX), are mostly redundant. A IT specialist to manage servers is scarce. 	
Security	Offer systems to discover where personally identifiable information (PII) is stored and who accessed when (Google Cloud DLP). Encryption systems are ready to use Identity and Access Management (IAM) ensure authenticated and authorized users can access the system and data	It is harder to set up security systems	
Resilience	Much simpler with a few clicks	A backup site is necessary in case of natural disasters Drills are needed to conduct frequently	

Why cloud? (2)

Criteria	Cloud	On-prem		
Scalability	Can deal with spikes in volume with autoscaling features	 More difficult, and may require a specialist to tune our infrastructure up and down 		
Focus	Focus on the business	Focus on the business, and the infrastructure		
Agility	Facilitate innovation via quick resource provision and deletion	Hard to fulfill this		

Which case to use the cloud?

Figure 1.1. Steady growth in resource consumption

Key components

Hardware

- Purpose: Provide computing power
- Structure: Servers, GPUs, power supply, memory and others

Storage

- Purpose: Storage and manage data
- Structure: Data is stored across many disks in <u>storage</u> <u>arrays</u>

Network

- Purpose: Connect cloud services over the Internet
- Structure: physical wires, switches, routers and others

Virtualization

- Purpose: Abstract machine's resources
- Structure:
 Hypervisors sit on top of physical hardware

laas, Paas, and Saas

Data Center (1) on the way

GCP has 15 different regions across the world, from the US, Brazil, Western Europe, India, and East Asia to Australia

satelline with the Marine and the Ma

- Region ~ a city (us-east1), while zone ~ one or more nearby buildings (us-east1a), refer here for more details.
- Zones can be down by power outages, while regions by disasters

Data Center (2)

Google Cloud us-central1 data center with 4 zones (the largest region)

Popular Services

Machine type families

Workload type							
General-purpose workloads				Compute- optimized	Memory- optimized	Accelerator- optimized	
E2	N2, N2D, N1	C3	Tau T2D, Tau T2A	H3, C2, C2D	M3, M2, M1	A2, G2	
Day-to-day computing at a lower cost	Balanced price/performance across a wide range of machine types	Consistently high performance for a variety of workloads	Best per-core performance/cost for scale-out workloads	Ultra high performance for compute- intensive workloads	Highest memory to compute ratios for memory- intensive workloads	Optimized for accelerated high performance computing workloads	

Machine types

Each family has multiple types:

tasks require more cpu

tasks require more ram

3 standard C3 highcpu	C3 hi	ghmem	C3 with Local SSD	
Machine types	vCPUs*	Memory (GB)	Default egress bandwidth (Gbps)‡	Tier_1 egress bandwidth (Gbps)#
c3-standard-4	4	16	up to 23	N/A
c3-standard-8	8	32	up to 23	N/A
c3-standard-22	22	88	up to 23	N/A
c3-standard-44	44	176	up to 32	up to 50
c3-standard-88	88	352	up to 62	up to 100
c3-standard-176	176	704	up to 100	up to 200

ML architectures on cloud (1)

Credit card fraud detection high level architecture

and the state of t

ML architectures on cloud (2)

Adverse drug reaction risks prediction high level architecture

Add more features to model serving such as preprocessing routing by model versions, logging, .etc.

LE LAND A M. MANNE AND A LAND MAN AND LAND A MANNE AND A LAND MAN

References

- Cloud Computing Basics: A Non-Technical Introduction 1st ed. Edition
- Google Cloud Platform in Action
- https://cloud.google.com/learn/what-is-iaas
- https://googlecloudcheatsheet.withgoogle.com/
- https://github.com/priyankavergadia/google-cloud-4-words
- The Ultimate Guide to Building a Google Cloud Foundation
- Google Cloud Helpful Links
- https://www.redhat.com/en/topics/cloud-computing/what-is-cloud-infrastructure
- https://medium.com/google-cloud/13-most-common-google-cloud-referencearchitectures-23630b46326d
- https://maelfabien.github.io/bigdata/gcps_4/#from-on-premise-to-gcp
- https://cloud.google.com/architecture

