Lineare Algebra und Geometrie 1 WS 12-13

Dozent: Dr. Cynthia Hog-Angeloni

Mitschrift von: Sven Bamberger, Bernadette Mohr

IATEXarbeit von: Sven Bamberger, Bernadette Mohr

Zuletzt Aktualisiert: 24. Februar 2013

${\bf Zusammen fassung:}$

http://www.mathematik.uni-mainz.de/Members/dhanke/linearealgebrai2012/linearealgebra-und-geometrie-i-im-ws-2012-13

Raum: Mo S1 & Fr S1

Uhrzeit: 08:00-10:00 & 12:00-14:00

Abgabe: Freitag 12:00

Dieses Skript wurde erstellt, um sich besser auf die Klausur vorzubereiten und eine ordentliche und für alle Personen lesbare Mitschrift zu haben.

Dieses Dokument garantiert weder Richtigkeit noch Vollständigkeit, da es aus Mitschriften gefertigt wurde und dabei immer Fehler entstehen können. Falls ein Fehler enthalten ist, bitte melden oder selbst korrigieren und neu hochladen.

Hier kleine Notizen zu einzelne Besonderheiten dieses Dokumentes.

1. /* */ alles zwischen diesen Zeichen sind Kommentare und sollen zum tieferen Verständnis dienen oder besondere Fragestellungen darstellen. Dabei ist zu beachten, das die Notation neiht immer komplett korrekt ist. Es können also kleinere mathematische Fehler auftauchen, welche aber für das Verständnis nicht relevant sind.

Inhaltsverzeichnis

0	Grundbegriffe	
	0.1 Aussagen	
	0.2 Mengen	
1	Der Raum \mathbb{R}^2	
	1.1 Cramersche Regel	
	1.2 Geraden	
	1.3 Lineare Abbildungen	
	1.4 Inverse Matrix, Basiswechsel	. 1
	1.5 Satz von Pythagoras, Länge und Skalarprodukt	. 1
	1.6 Bewegungen	. 1
	1.7 Isometrie	. 1
	1.8 Trigonometrische Funktionen	. 2
	1.9 Abstände	
	1.10 Euler-Gerade und Feuerbach-Kreis	. 2
2	Der Raum \mathbb{R}^3	2

0 Grundbegriffe

0.1 Aussagen

Aussage	w	f
Wasser ist nass	X	
A. Merkel ist Bundeskanzlerin	X	
Rößler wäre gern Bundeskanzler	?	?
Ein Kaninchen ist eine Pflanze		x
Ein Dreieck hat vier Ecken		x
Jede gerade Zahl größer 2 ist Summe zweier Primzahlen - Goldbach Vermutung	?	?
Wenn 2012 Frauenüberschuss bei Matheprofessorinnen herrscht, dann ist die Erde eine Scheibe	x	

Für " $A \Rightarrow B$ ist wahr." sagt man auch A ist hinreichend für B. B ist notwendig für A.

$$\neg A = \text{nicht } A$$
 $A \lor B = A \text{ oder } B$ $A \land B = A \text{ und } B$ $A \Leftrightarrow B = A \text{ ist "aquivalent zu } B$

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
w	w	f	w	w	w	w
w	f	f	f	w	f	\mathbf{f}
f	w	w	\mathbf{f}	W	W	f
\mathbf{f}	f	w	w f f f	\mathbf{f}	w	W

0.1.1 Satz:

A,B,C seien Aussagen. Folgende Aussagen sind wahr: "Tautologie" (Der Beweis wird durch die Wahrheitstafel erbracht)

- 1. $A \lor (\neg A)$
- 2. $\neg (A \land \neg A)$
- 3. $\neg(\neg A) \Leftrightarrow A$
- 4. $\neg(A \land B) \Leftrightarrow \neg A \lor \neg B$ z.B. $A = \text{Die Sonne scheint} \ B = \text{Es ist bewölkt}$
- 5. $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$ z.B. A = Wasser ist trocken B = Es ist Sommer
- 6. $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ A = Es blitzt B = es donnert

0 Grundbegriffe

7.
$$A \land (A \Rightarrow B) \Rightarrow B$$

8.
$$A \Rightarrow B \land \neg B \Rightarrow \neg A$$

9.
$$[(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)$$

10.
$$A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)$$

11.
$$A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C)$$

4 und 5 sind die De Morgan'sche Gesetze. 7 Ist der Modus ponens, 8 Modus tollens und die 9 Modus barbara (=Transitivität)

0.2 Mengen

0.2.1 Definition: (Cantor)

Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten unserer Anschauung oder unseren Denkens zu einem Ganzen

Abbildung 0.1: Eine einfache Menge

$$a \in A$$
 $a \notin A \Leftrightarrow \neg(a \in A)$

0.2.2 Definition:

A, B Mengen

1.
$$A \subset B \quad \forall x \in A \Rightarrow x \in B$$

2.
$$A \subseteq B$$
 $(A \subset B) \land (A \neq B)$

3.
$$A = B$$
 $A \subset B$, $B \subset A$

4.
$$\emptyset$$
 $\emptyset \subset A \ \forall \text{ Mengen } A$

5.
$$|A| = \#A$$
 Anzahl der Elemente $|A| < \infty$ $A = \{a_1, a_2, \dots, a_n\}$

Bemerkung:

$$\{1,\!2,\!1\}=\{1,\!2\}$$

Beispiel:

0.2.3 Definition: (von weiteren Operationen auf Mengen)

A, B seien Mengen

Durchschnitt: $A \cap B = \{x | x \in A \land x \in B\}$ wenn $A \cap B = \emptyset$,, disjunkt " $\bigcap_{i \in I} A_i = \{x | x \in A \text{ für alle } i\}$

Vereinigung: $A \cup B = \{x | x \in A \lor x \in B\} \bigcup_{i \in I} A_i = \{x | x \in A \text{ für mindestens ein } i\}$

Komplement von B in A: $A \setminus B = \{x | x \in A \land x \notin B\}$

symmetrische Differenz: $A \triangle B = \{A \setminus B \cup B \setminus A\} = \{x | x \in A \cup B \land x \notin A \cap B\}$

Potenzmenge $P(A) = \{B | B \subset A\}$: Beispiel: $A = \{1, 2, 3\}$ $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$

kartesisches Produkt: $A \times B = \{(a,b)|a \in A, b \in B\}$ Beispiel: $A = \{a_1, a_2\}, B = \{b_1, b_2\}$

Exisplicity $A = \{a_1, a_2\}, B = \{b_1, b_2\}$ $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2)\}$

Abbildung 0.2: Darstellung von Operationen auf Mengen

0.2.4 Definition: (Relation)

Eine Relation zwischen zwei Mengen A und B ist eine Teilmenge $R \subset A \times B$. Wenn A = B "Relation auf Menge A"

0 Grundbegriffe

Beispiel:

A: Personen B: Städte R: bereits bereist

- a) (Martin, London), (Susi, Madrid) $\in A \times B$
- b) $A = \{1, 2, 3, 4\}$
- 1. $R \subset A \times A$ $R = \{(1,3), (2,1)\}$
- 2. $S \subset A \times A$ $S = \{(1,1), (2,2), (3,3), (4,4)\}$ (Gleichheitsrelation)
- 3. $R \subset \mathbb{R} \times \mathbb{R}$ $R = \{(a,b)|a < b\}$ (Ordnungsrelation)
- 4. $B = \{3, 4, 5, 6\}$ $R = \{(3, 3), (4, 4)\} \subseteq A \times B$
- 5. Teilerrelation auf \mathbb{N} $R = \{(a,b)|a,b \in \mathbb{N} \text{ und } a|b\}$ wobei $(a|b \Leftrightarrow^{\text{definiert}} b = n \cdot a, n \in \mathbb{N})$

0.2.5 Definition: (Funktion, ~Abbildung)

 $f: A \to B$ heißt Funktion, wenn $R \subset A \times B$ Relation, bei der jedem Element aus A genau einem Element aus B entspricht, sodass $(a,b) \in R$. Schreibweise f(a) = b $f: a \mapsto b$

Abbildung 0.3: Graphenkreis

Jeder Graph ist eine Relation, aber nicht unbedingt eine Funktion.

 $f: A \to B$ Funktion:

A heißt Definitionsbereich von f

B heißt Wertebereich von f

 $a \in A$ heißt Argument von f

 $X \subset A$ $f(X) = \{b \in B | \exists a \in X \text{ mit } f(a) = b\}$ heißt Bildmenge von X unter f

 $Y \subset B$ $f^{-1}(Y) = \{a \in A | f(a) \in Y\}$ heißt Urbild von Y

Beispiel:

$$f: A \to A, f(a) = a$$
 identische Abbildung $f: \mathbb{R} \to \mathbb{R}$

0.2.6 Definition: (injektiv, surjektiv, bijektiv)

- injektiv $\forall x \neq y \in A$ gilt $f(x) \neq f(y)$
- surjektiv $\forall b \in B \ \exists a \in A \ f(a) = b$
- bijektiv: injektiv und surjektiv injektiv $\Leftrightarrow \forall b \in B$ gilt $|f^{-1}(b)| \leq 1$ (Jedes b hat höchstens ein Urbild) surjektiv $\Leftrightarrow \forall b \in B$ gilt $|f^{-1}(b)| \geq 1$ (Jedes b hat mindestens ein Urbild) bijektiv $\Leftrightarrow \forall b \in B$ gilt $|f^{-1}(b)| = 1$ (Jedes b hat genau ein Urbild)

Abbildung 0.4: Mögliche Abbildungen auf einen Blick

1.0.7 Definition:

Ein Vektor $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ ist ein Element von \mathbb{R}^2 .

Entspringt der Vektor in $\begin{pmatrix} 0 \\ 0 \end{pmatrix} =$ "Ortsvektor ".

Abbildung 1.1: Beispielhafte Vektoraddition

$$x = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} y = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

Addition:
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

$$\begin{split} & \text{Addition:} \, \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix} \\ & \text{Multiplikation mit Skalar:} \, \, \lambda \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix} \\ & \text{Eigenschaften:} \, \, a,b,c \, \, \text{Vektoren} \, \, \lambda,\mu \, \, \text{reelle Zahlen} \end{split}$$

1.
$$\lambda \cdot (a+b) = \lambda a + \lambda b$$

2.
$$(\lambda + \mu)a = \lambda a + \mu a$$

3.
$$(a+b)+c=a+(b+c)$$

4.
$$a + b = b + a$$

exemplarischer Beweis:
$$(\lambda + \mu)a = (\lambda + \mu) \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} (\lambda + \mu)a_1 \\ (\lambda + \mu)a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 + \mu a_1 \\ \lambda a_2 + \mu a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix} + \begin{pmatrix} \mu a_1 \\ \mu a_2 \end{pmatrix} = \lambda \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \mu \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \lambda a + \mu a$$

1.0.8 Definition: (Basis)

ein Paar von Vektoren $\mathcal{B} = (a, b)$ heißt Basis von \mathbb{R}^2 , wenn es für jeden Vektor c in \mathbb{R}^2 genau ein Paar (x, y)von Zahlen gibt, sodass $c = x \cdot a + y \cdot b$.

x und y heißen Koordinaten von c bzgl. \mathcal{B} .

Die Basis
$$\mathcal{E} = (e_1, e_2)$$
 $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Beispiel:

$$a = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 $b = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ $c = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Abbildung 1.2: Mehrere Vektoren

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \quad \checkmark^{\text{kanonische Basis}}$$

1.0.9 Definition: (Determinante)

$$det(a,b) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

1.1 Cramersche Regel

Das Gleichungssystem xa + yb = c hat die eindeutige Lösung $x = \frac{det(c,b)}{det(a,b)}$ udn $y = \frac{det(a,c)}{det(a,b)} \Leftrightarrow det(a,b) \neq 0$.

Beweis:

Korollar:

$$B = (a, b)$$
 ist Basis genau dann, wenn $det(a, b) \neq 0$ ist $det(a, b) = 0$ und (x, y) Lösung, so auch $(x + \lambda b_2, y - \lambda a_2)$ denn $a_1(x + \lambda b_2) + b_1(y - \lambda a_2) = \underbrace{a_1x + b_1y}_{c} + \lambda \underbrace{(a_1b_2 - b_1a_2)}_{0}$

Korollar:

 $det(a,b) = 0 \Rightarrow$ Es gibt entweder keine oder unendliche viele Lösungen.

1.2 Geraden

1.2.1 Definition: (Gerade)

Eine Gerade l in \mathbb{R}^2 ist eine Menge der Form $l=a+\mathbb{R}b=\{a+\lambda b|\lambda\in\mathbb{R}\}$ für $b\neq (0)$ a: "Stützvektor" b: "Richtungsvektor", $b^\perp=\begin{pmatrix} -b_2\\b_1\end{pmatrix}:$ "Normalenvektor"

Beispiel:

$$a = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, b = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

Abbildung 1.3: Gerade mit orthogonalen Vektor

1.2.2 Satz 1.2

Eine Teilmenge von \mathbb{R}^2 ist eine Gerade genau dann, wenn sie Lösungsmenge einer Gleichung $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \alpha x + \beta y = \gamma \right\}$ ist. α und β nicht beide Null.

Beweis:

 $l = a + \mathbb{R}b$

Dann erfüllt jeder Punkt $(a_1 + tb_1, a_2 + tb_2)$ die Gleichung $b_2a_1 - b_1a_2 = b_2x - b_1y$.

DENN: $b_2(a_1+tb_1)-b_1(a_2+tb_2)=b_2a_1-b_1a_2=det(a,b)$ Erfüllt umgekehrt $\begin{pmatrix} x \\ y \end{pmatrix}$ die Gleichung $\alpha x+\beta y=\gamma$ und ist $\alpha \neq 0$, dann folgt $x=\frac{-\beta}{\alpha}y+\frac{\gamma}{\alpha}$.

Also ist
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 ein Punkt der Geraden $a + \mathbb{R}b$ mit $a = \begin{pmatrix} \frac{\gamma}{\alpha} \\ 0 \end{pmatrix}, b = \begin{pmatrix} -\beta \\ \alpha \end{pmatrix}$

Beispiel:

$$x - y = 1$$
 $a = \begin{pmatrix} 1 \\ 0 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Abbildung 1.4: Beispiel zu Satz 1.2

1.3 Lineare Abbildungen

 $A: \mathbb{R}^2 \to \mathbb{R}^2$ heißt linear, wenn für jedes $a, b \in \mathbb{R}^2$ gilt: $A(x\vec{a} + y\vec{b}) = xA(\vec{a}) + yA(\vec{b})$

 $A \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $A \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ können beliebig vorgegeben werden. Anderseits ist A durch diese bestimmt.

$$A\begin{pmatrix} x \\ y \end{pmatrix} = x \cdot A \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \cdot A \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$A\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} a_1\\a_2 \end{pmatrix}$$
 $A\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} b_1\\b_2 \end{pmatrix}$

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \qquad A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} a_1x + b_1y \\ a_2x + b_2y \end{pmatrix} = xa + by$$

Eigenschaft: Die erste Spalte von A ist ist der Bildvektor von $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Beispiel:

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ repräsentiert die identische Abbildung.

Satz:

sind $A, B : \mathbb{R}^2 \to \mathbb{R}^2$ linear, so auch die Verknüpfung $A \circ B$.

Beweis:

$$A(B(xa+yb)) = A(xB(a)+yB(b)) = xAB(a)+yAB(b)$$

Komposition linearer Abbildungen:

$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}; \ B = \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix}$$

$$A \circ B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \cdot \begin{pmatrix} c_1 x_1 + d_1 x_2 \\ c_2 x_1 + d_2 x_2 \end{pmatrix} = \begin{pmatrix} a_1 c_1 x_1 + a_1 d_1 x_2 & b_1 c_1 x_1 + b_1 d_1 x_2 \\ a_2 c_1 x_1 + a_2 d_1 x_2 & b_2 c_2 x_1 + b_2 d_2 x_2 \end{pmatrix} = \begin{pmatrix} a_1 c_1 + c_2 b_1 & a_1 d_1 + b_1 d_2 \\ a_2 c_1 + b_2 c_2 & a_2 d_1 + b_2 d_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \cdot \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1 c_1 + b_1 c_2 & a_1 d_1 + b_1 d_2 \\ a_2 c_1 + b_2 c_2 & a_2 d_1 + b_2 d_2 \end{pmatrix}$$

Abbildung 1.5: Schema der Matrixmultiplikation

Matrixmultiplikation entspricht Komposition von Abbildungen Sie ist im Allgemeinen nicht Kommutativ.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 + 6 \cdot 3 & 5 \cdot 2 + 6 \cdot 4 \\ 7 \cdot 1 + 8 \cdot 2 & 7 \cdot 2 + 8 \cdot 4 \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ 23 & 46 \end{pmatrix}$$

Satz:

Matrixmultiplikation ist assoziativ.

Beweis:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Interpretiere A, B, C als Abbildungen
 $A \circ (B \circ C)(a) = A \circ B(C(a)) = A(B(C(a)))$
 $(A \circ B) \circ C(a) = (A \circ B)C(a) = A(B(C(a)))$

Satz:

 $A:\mathbb{R}^2\to\mathbb{R}$ lineare Abbildungen Aist injektiv $\Leftrightarrow A$ ist surjektiv

Beweis:

Ax = bExistenz von $x \Leftrightarrow$ Surjektivität Eindeutigkeit von $x \Leftrightarrow$ Injektivität $det A \neq 0 \Leftrightarrow A$ injektiv $\Leftrightarrow A$ surjektiv. /* Durch Benutzung der Cramerschen Regel */

1.4 Inverse Matrix, Basiswechsel

Ist
$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$
 und $\lambda \in \mathbb{R} : \lambda \cdot A = \begin{pmatrix} \lambda a_1 & \lambda b_1 \\ \lambda a_2 & \lambda b_2 \end{pmatrix}$

Satz:

Für
$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$
 mit $det(A) \neq 0$ gilt:

$$A^{-1} = \frac{1}{det(a)} \cdot \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}$$

Beweis:

$$A \cdot A^{-1} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \cdot \frac{1}{\det(a)} \cdot \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}$$

$$= \frac{1}{\det(a)} \cdot \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A^{-1} \cdot A \text{ analog} \Rightarrow A^{-1} \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathcal{B} = (\vec{b_1}, \vec{b_2}) \text{ Basis } \Rightarrow \begin{pmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{pmatrix} = B \qquad \vec{b_1} = \begin{pmatrix} b_{11} \\ b_{12} \end{pmatrix}, \qquad \vec{b_2} = \begin{pmatrix} b_{21} \\ b_{22} \end{pmatrix}$$

 $\vec{a} = x_1 \vec{b_1} + x_2 \vec{b_2} = B\vec{x}$: $\vec{x} = B^{-1} \vec{c}$

Die Koordinaten von a bzgl. \mathcal{B} sind durch $B^{-1}(\vec{a})$ gegeben, denn man muss das Gleichungssystem $x_1b_1+x_2b_2=a$ nach x_1 und x_2 lösen.

 $\mathcal{C} := (c_1, c_2). A$ ist bestimmt durch $A(c_1)$ und $A(c_2)$.

$$A(c_1) = d_{11}b_1 + d_{21}b_2$$
 $A(c_2) = d_{12}b_1 + d_{22}b_2$

$$_{\mathcal{B}}A_{\mathcal{C}} = \begin{pmatrix} d_{11} & d_{21} \\ d_{12} & d_{22} \end{pmatrix}$$
 Matrix von A bzgl. \mathcal{B} , \mathcal{C}

Satz:

Beweis:

In der ersten Spalte von C steht das Bild c_1 von e_1 In der ersten Spalte von AC steht das Bild von c_1 unter AIn der ersten Spalte von $B^{-1}AC$ stehen die Koordinaten von $A(c_1)$ bzgl. \mathcal{B} Analog gilt dies für c_2 .

Beispiel:

$$\mathcal{B} = (b_1, b_2) \quad b_1 = \begin{pmatrix} 2\\1 \end{pmatrix}, b_2 = \begin{pmatrix} 5\\3 \end{pmatrix}$$

$$A \text{ gegeben durch } \begin{pmatrix} -1 & 0\\0 & 2 \end{pmatrix}$$

$$\mathcal{B}A_{\mathcal{B}} = \begin{pmatrix} 3 & -5\\-1 & 2 \end{pmatrix} \underbrace{\begin{pmatrix} -1 & 0\\0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5\\1 & 3 \end{pmatrix}}_{\begin{pmatrix} -2 & -5\\3 & 6 \end{pmatrix}} = \begin{pmatrix} -16 & -45\\6 & 17 \end{pmatrix}$$

Satz:

A, B invertierbar $\Rightarrow A \cdot B$ invertierbar, Inverse $B^{-1}A^{-1}$

Beweis:

$$(AB)(AB)^{-1} = A(BB^{-1})A^{-1} = AEA^{-1}|E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $B^{-1}A^{-1}AB = E \checkmark$
Im Allgemeinen: $E \neq ABA^{-1}B^{-1}$!

Beispiel:

$$A = \begin{pmatrix} 1 & 12 \\ 2 & 3 \end{pmatrix} \text{ Frage: Gibt es eine Basis } b_1b_2 : _{\mathcal{B}}A_{\mathcal{B}} = \begin{pmatrix} 7 & 0 \\ 0 & -3 \end{pmatrix}?$$

$$\text{Insbesondere } A(b_1) = 7b_1 \begin{pmatrix} 1 & 12 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7x \\ 7y \end{pmatrix}$$

$$\Rightarrow \begin{array}{c} x + 12y &= 7x \quad \text{Cramersche} \\ 2x + 3y &= 7y \quad \text{Regel} \end{array} b_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$A(b_2) = -3b_2 \stackrel{\text{Cramersche}}{\underset{\text{Regel}}{\Rightarrow}} b_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

Probe:

$$\begin{pmatrix} -1 & -3 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 12 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 35 & 0 \\ 0 & -15 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & -3 \end{pmatrix}$$

Satz:

Sei $A: \mathbb{R}^2 \to \mathbb{R}^2$ linear. Dann gibt es Basen \mathcal{B}, \mathcal{C} von \mathbb{R}^2 , sodass ${}_{\mathcal{B}}A_{\mathcal{C}}$ eine der Formen annimmt $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Beweis:

Setze
$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \vec{a}$$
 $A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \vec{b}$

1.
$$\vec{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \vec{b}$$
 $\mathcal{B} = \mathcal{E} = \mathcal{C} \checkmark$

2. Wenn
$$\mathcal{A} = (\vec{a}, \vec{b})$$
 Basis, $\mathcal{C} = \mathcal{E}$ $\mathcal{B} = \mathcal{A}$

$$\mathcal{A}A_{\mathcal{B}} = A^{-1}A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3.
$$\vec{a}, \vec{b}$$
 keine Basis, aber $\vec{a} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \vec{b} = \lambda \vec{a} \text{ und } A \begin{pmatrix} \lambda \\ -1 \end{pmatrix} = \lambda \vec{a} - \vec{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\mathcal{B} = (\vec{a}, \vec{a}_{\perp})$$

$$\mathcal{B} = (\vec{a}, \vec{a}_{\perp})$$

$$\mathcal{B} = (\vec{a}, \vec{a}_{\perp})$$

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} a_1 & 0 \\ a_2 & 0 \end{pmatrix}$$

1.5 Satz von Pythagoras, Länge und Skalarprodukt

Fläche des Parallelogramms gleich $|det(\vec{a}, \vec{b})|$

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} \overset{b_2 \neq 0}{\Rightarrow} \lambda = \frac{-a_2}{b_2}, x = a_1 - \frac{a_2 b_1}{b_2}$$
 Rechteck hat Fläche $|a_1 b_2 - a_2 b_1| = |det(a, b)| = Fläche des Parallelogramms.$

1.5.1 Satz des Pythagoras (1. Version)

Beweis:

 $\det(\vec{a},\vec{a}_{\scriptscriptstyle \perp})$ = $a_1^{2+}a_2^2$ ist das Quadrat der Seitenlänge $\sqrt{a_1^2+a_2^2}$

Definition:

Der Abstand zweier Vektoren \vec{a} und \vec{b} ist $\|\vec{a} - \vec{b}\|$

Bemerkung:

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \bot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \Rightarrow \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \lambda \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix} \Leftrightarrow a_1b_1 + a_2b_2 = 0$$

$$a_1b_1 + a_2b_2 = -\lambda a_1a_2 + \lambda a_1a_2$$

"
$$\Leftarrow$$
" Falls $a = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \lambda = 0$
o.E. $a_1 \neq 0$
setze $\lambda : b_2 = \lambda a_1 \overset{\text{Vor.}}{\Rightarrow} 0 = a_1 b_1 + a_1 \cdot \lambda a_1 a_2 \Rightarrow b_1 = -\lambda a_2$

Definition:

Skalarprodukt

Das von \vec{a} und $\vec{b} :< \vec{a}, \vec{b} >= a_1b_1 + a_2b_2$.

Eigenschaften des Skalarprodukts

$$<\vec{a} + \vec{b}, \vec{c}> = (a_1 + b_1)c_1 + (a_2 + b_2)c_2 = < a, c> + < b, c> < \lambda \vec{a}, \vec{b}> = \lambda < \vec{a}, \vec{b}> < \vec{a}, \vec{b}> = \langle \vec{b}, \vec{a}>$$

1.5.2 Pythagoras (allgemein)

$$\vec{a}\perp\vec{b}\Rightarrow \|\vec{a}-\vec{b}\|^2=\|\vec{a}\|^2+\|\vec{b}\|^2$$

Beweis:

$$\langle \vec{a}, \vec{b} \rangle = 0$$

 $\|\vec{a} - \vec{b}\|^2 = (a_1 - b_1)^2 + (a_2 - b_2)^2 = a_1^2 + b_1^2 + a_2^2 + b_2^2 = \|\vec{a}\|^2 + \|\vec{b}\|^2$

1.5.3 Satz des Thales

$$\vec{a}, \vec{b} : \|\vec{a}\| = \|\vec{b}\| \Rightarrow \vec{a} - \vec{b} \perp \vec{a} + \vec{b}$$

Beweis:

$$<\vec{a}-\vec{b},\vec{a}+\vec{b}>=<\vec{a},\vec{b}>-<\vec{b},\vec{a}>+<\vec{a},\vec{a}>-<\vec{b},\vec{b}>=0$$

Satz:

Sei l Gerade, $c \notin l$.

Dann existiert genau ein "Fußpunkt" $D \in l : c - D \perp l$

Beweis:

 $\vec{n} \perp l$. Schneide $c + \mathbb{R}\vec{n}$ mit l. $det(\vec{n}, \vec{n}^{\perp}) = \|\vec{n}\|^2 \neq 0 \Rightarrow \text{ es existiert } D$

Höhensatz

ABC sei ein rechtwinkliges Dreieck $p = \|D - B\|$ $q = \|D - A\|$ $h = \|D - C\| \Rightarrow h^2 = pq$

Beweis:

$$a^{2} + b^{2} = c^{2} = p^{2} + 2pq + q^{2}$$

$$a^{2} = h^{2} + p^{2}$$

$$b^{2} = h^{2} + q^{2}$$

$$a^2 = h^2 + p^2$$

$$\Rightarrow p^2 + 2pq + q^2 = 2h^2 + p^2 + q^2$$

$$\Leftrightarrow 2pq = 2h^2$$

$$\Leftrightarrow pq = h^2 \quad \Box$$

$$\Leftrightarrow 2pq = 2h^2$$

$$\Leftrightarrow pq = h^2$$

Kathetensatz

ABCsei ein rechtwinkliges Dreieck $a^2 = p \cdot c, b^2 = q \cdot c$

Beweis:

$$a^2 = c^2 - b^2 = p^2 + 2pq + q^2 - (h^2 + q^2) = p^2 + 2pq - h^2 = p^2 + 2pq - a^2 + p^2$$

 $2a^2 = 2pq + 2p^2$
 $\Rightarrow a^2 = pq + p^2 \Rightarrow$ Behauptung; analog für $b^2 = qc$

1.6 Bewegungen

Definition:

Eine Abbildung heißt Bewegung oder Isometrie wenn $\forall a, b \in \mathbb{R}^2$ $||A(a) - A(b)|| = ||\vec{a} - \vec{b}||$.

Satz:

 $A: \mathbb{R}^2 \to \mathbb{R}^2$ Bewegung mit $A \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Dann ist A linear. Es gibt $c, s \in \mathbb{R}$ mit $c^2 + s^2 = 1$, sodass die Matrix von A durch $R_{c,s} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} det(R_{c,s}) = 1$ oder $S_{c,s} = \begin{pmatrix} c & s \\ s & -c \end{pmatrix} det(S_{c,s}) = -1$ gegeben ist.

Beweis:

A ist Isometrie.
$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} c \\ s \end{pmatrix} A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} t \\ u \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} z \\ w \end{pmatrix}$$

$$c^2 + s^2 = 1 = t^2 + u^2$$

$$(c - t)^2 + (s - u)^2 = 2 = 2 - 2\underbrace{(tc + su)}_{\Rightarrow 0} \text{ weil der Abstand von } \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ zu } \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ gleich } \sqrt{2} \text{ ist.}$$

$$\Rightarrow \begin{pmatrix} t \\ u \end{pmatrix} = \lambda \begin{pmatrix} -s \\ c \end{pmatrix}, \lambda = \pm 1 \text{ somit } t = -s, u = c \text{ oder } t = su = -c$$

$$A \text{ linear: z.z. } \begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} cx \mp sy \\ sx \pm cy \end{pmatrix}$$

$$\text{Fall } \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} -s \\ c \end{pmatrix}$$

$$x^2 + y^2 = z^2 + w^2$$

$$(x - 1)^2 + y^2 \stackrel{!}{=} (z - c)^2 + (w - s)^2$$

$$\Rightarrow x^2 - 2x + 1 + y^2 = z^2 - 2zc + c^2 + w^2 - 2sw + s^2$$

$$\Rightarrow x = cz + sw$$

$$(z + s)^2 + (w - c)^2 = x^2 + (y - 1)^2$$

$$\Rightarrow 2sz - 2cw = -2y$$

$$\Rightarrow y = -sz$$

$$\begin{pmatrix} c & -s \\ s & c \end{pmatrix} \quad \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \quad \begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$(R_{c,s} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}, S_{c,s} = \begin{pmatrix} c & s \\ s & -c \end{pmatrix})$$

Idee:

Spiegelung ges: $\vec{a}: A(\vec{a}) = \vec{a}$

Fall I:

$$\begin{cases} cx - sy = x & s \neq 0 \text{ sonst } \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} c \\ s \end{pmatrix}, x \neq q \text{ (trivial)} \\ sx + cy = y \end{cases} \Leftrightarrow \begin{cases} (c - 1)x - sy = 0 & \overset{s \neq 0}{\Rightarrow} y = \frac{c - 1}{s} x \\ sx + (c - 1)y = 0 & \overset{:x}{\Rightarrow} s + \frac{(c - 1)^2}{s} = 0 \end{cases}$$

$$1 - x^2 + (c - 1)^2 = 0 \Rightarrow 2 = 2c, c = 1 \Rightarrow s = 0$$

Fall II:

$$\begin{cases} cx + sy = x \\ sx - cy = y \end{cases} \Rightarrow 2. \text{ Gleichung ist Folge der ersten wenn } s = 0 \Rightarrow c = 1 \text{ wir erhalten } \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} : x\text{-Achsen-Spiegelung} \\ s \neq 0 : y = \frac{1-c}{s}x \rightarrow s^2 = (1+c)(1-c) \Rightarrow y = \frac{s}{1+c}x \text{ Diese wird gelöst von} \\ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c+1 \\ s \end{pmatrix} \text{ und skalare Vielfache. Noch zz., dass } R \text{ und } S \text{ Isometrien sind:} \\ \|A(\vec{a})\|^2 = (cx - sy)^2 + (sx + cy)^2 = c^2x^2 - 2cxsy + s^2y^2 + s^2x^2 + 2cxsy + c^2y^2 = x^2 + y^2 = \|\vec{a}\|^2 \text{ also längener-haltend } /^* \vec{a} = \begin{pmatrix} x \\ y \end{pmatrix} */ \\ \text{somit } \|A(\vec{a}) - A(\vec{b})\| = \|A(\vec{a} - \vec{b})\| = \|\vec{a} - \vec{b}\| \text{ abstandserhaltend } !$$

Satz:

- 1. Das Produkt zweier Spiegelungen ist eine Drehung.
- 2. Jede Drehung lässt sich als Produkt zweier Spiegelungen beschreiben.

1.
$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} c & d \\ d & -c \end{pmatrix} = \begin{pmatrix} ac + bd & ad - bc \\ bc - ad & bd + ac \end{pmatrix} \Rightarrow \text{von Typ} \begin{pmatrix} c & -s \\ s & c \end{pmatrix} = R_{c,s}$$

$$2. \begin{pmatrix} -s & c \\ c & s \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$$

Satz:

Die Verknüpfung zweier Drehungen ist einer Drehung. Die Inverse einer Drehung ist eine Drehung.

Beweis:

$$\begin{aligned} R_{c,s} \cdot R_{t,u} &= R_{ct-su,cu+st} = R_{t,u} \cdot R_{c,s} \Leftrightarrow R_{t,u} \text{ ist vertauschbar mit } R_{c,s} \\ R_{c,s} \cdot R_{c,-s} &= R_{1,0} = Id \end{aligned}$$

Satz:

 $\vec{a} \neq \vec{0} \neq \vec{b}$, gibt es eindeutig bestimmtes $\lambda \in \mathbb{R}$: Drehung $R(\vec{a}) = \lambda \cdot b$ $R(\vec{0}) = \vec{0}$

Existenz
$$\stackrel{!}{\Rightarrow}$$
 Eindeutigkeit
$$R \begin{pmatrix} t \\ u \end{pmatrix} = \begin{pmatrix} c \\ s \end{pmatrix}$$

$$T \coloneqq R_{c,-s} R R_{tu} \text{ ist Drehung mit}$$

$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\Rightarrow R = R_{cs} \circ R_{t-u} \Rightarrow \text{Eindeutigkeit}$$

$$R \coloneqq R_{cs} \circ R_{t-u}$$

$$R(\vec{a}) = R_{cs} \circ R_{t-u}(\vec{a}) = R_{c,s} \|a\| \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\|\vec{a}\|\vec{b}}{\|\vec{b}\|}$$

1.7 Isometrie

$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\|Av\| = \|v\|$$

Definition (Winkel):

Sind $a, b \in \mathbb{R}^2 \setminus \{0\}$ Vektoren dann heißt die eindeutige Drehung $\alpha = R_{c,s}$ mit $\alpha(a) = \lambda \cdot b$, $\lambda \in \mathbb{R}_{\geq 0}$ der Winkel zwischen a und b, und wir schreiben $\alpha := <(a,b)$

Die Summe $\alpha + \beta$ zweier Winkel α und β definieren wir als $\alpha + \beta := \alpha \circ \beta$ (beachte $\alpha + \beta = \beta + \alpha$) Das Negative eines Winkels α definieren wir als $-\alpha := \alpha^{-1}$ d.h. ist $\alpha = R_{cs} \Rightarrow \alpha^{-1} = R_{c,-s}$ Sind $A, B, C \in \mathbb{R}^2$ Punkte, dann definieren wir den Winkel an Punkt A des Tripels (ABC) als (B, A, C) := (B - A, C - A).

Definition (Winkelhalbierende):

Ist α ein Winkel, dann existiert ein Winkel β mit $\beta + \beta = \alpha$. Dieser heißt der halbe Winkel zu α oder auch die Winkelhalbierende zu α .

Satz:

Ist
$$\alpha = R_{c,s}$$
 so kann man $\beta = R_{t,u}$ wählen mit $t = \pm \sqrt{\frac{1}{2}(1+c)}$, $u = \sqrt{\frac{1}{2}(1-c)}$ wobei "+" $\Leftrightarrow s \ge 0$.

Beweis:

Nehmen wir an, dass
$$\alpha = 2\beta$$
 mit $\alpha = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$, $\beta = \begin{pmatrix} t & -u \\ u & t \end{pmatrix}$

$$\Rightarrow \begin{pmatrix} c & -s \\ s & c \end{pmatrix} = \begin{pmatrix} t & -u \\ u & t \end{pmatrix} \begin{pmatrix} t & -u \\ u & t \end{pmatrix} = \begin{pmatrix} t^2 - u^2 & -2tu \\ 2tu & t^2 - u^2 \end{pmatrix}$$
Es gilt also $c = t^2 - u^2$, $s = 2tu$

$$c \cdot 4t^2 = 4t^4 - 4u^2t^2$$

$$= 4t^4 - s^2$$

$$= 4t^4 - (1 - c^2)$$

$$\Rightarrow t^4 - c \cdot t^2 - \frac{1}{4}(1 - c^2) = 0$$

$$\Rightarrow t^2 = \frac{c}{2} \pm \sqrt{\frac{c^2}{4} + \frac{1}{4}(1 - c^2)} = \frac{c}{2} \pm \frac{1}{2} = \frac{1}{2}(c \pm 1) \ge 0$$
Wir wissen $1 = c^2 + s^2 \ge 0 \Rightarrow -1 \le c \le 1$
wegen $1 = t^2 + u^2 \Rightarrow 0 \le t^2 \le 1$
Würden oben ein "" stehen, wäre $t^2 < 0$ für $c < 0$?
$$\Rightarrow t^2 = \frac{1}{2}(c + 1) \Rightarrow t = \pm \sqrt{\frac{1}{2}(t + 1)}$$
Analog folgt $u = \sqrt{\frac{1}{2}(1 - c)}$

$$t^2 - u^2 = \frac{1}{2}(c + 1) - \frac{1}{2}(1 - c) = \frac{1}{2}c + \frac{1}{2}c = c$$

$$2tu = 2 \cdot (\pm \sqrt{\frac{1}{2}(1 + c)} \cdot \frac{1}{2}(1 - c) = \pm 2\sqrt{\frac{1}{4}(1 - c^2)} = \pm \sqrt{s^2} = \pm |s| \stackrel{!}{=} s$$

Wir messen Winkel, indem wir der Drehung $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ den Wert 180° oder π zuweisen. Durch das Halbieren und Addieren von Winkeln können wir jeden Winkel eine Zahl 0° $\leq x \leq 360$ ° zuordnen, die wir das Winkelmaß nennen.

z.B. $\frac{1}{3} = \sum_{n=1}^{\infty} \frac{1}{4^n}$

Tatsächlich lässt sich jede Zahl
$$0 \le x \le 360$$
 schreiben als $360^{\circ} \cdot \sum_{n=1}^{\infty} a_n \frac{1}{2^n}, \qquad a_n \in \mathbb{N}_0$

Was ist der halbe Winkel zu $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$?

$$R_{t,u} \text{ mit } t = \pm \sqrt{\frac{1}{2}(1+c)} = 0$$

$$u = \sqrt{\frac{1}{2}(1-c)} = 1 \text{ d.h. } R_{t,u} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cong 90^{\circ} = \overset{\Pi}{\alpha}$$

Satz (Winkelsumme im Dreiecke):

Es sei a,b,c ein Dreieck (d.h. a,b,c sind Punkte) und $\alpha := \measuredangle(b,a,c), \beta := \measuredangle(c,b,a), \gamma := \measuredangle(a,c,b)$ Dann gilt $\alpha + \beta + \gamma = 180^{\circ} (=\pi)$

Beweis:

$$\alpha(b-a) = \lambda(c-a), \ \lambda \in \mathbb{R}_{>0}$$

$$\beta(c-b) = \mu(a-b), \ \mu \in \mathbb{R}_{>0}$$

$$\gamma(a-c) = r(b-c), \ r \in \mathbb{R}_{>0}$$

$$(\alpha+\beta+\gamma)(a-c) \stackrel{\text{Definition}}{=} \alpha \circ \beta \circ \gamma(a-c)$$

$$= \alpha(\beta(\gamma(a-c)))$$

$$= \alpha(\beta(r(b-c)))$$

$$= \alpha(\beta(-r(c-b)))$$

$$= -r \cdot \alpha(\beta(c-b))$$

$$= -r \cdot \alpha(\mu(a-b))$$

$$= \mu \cdot r \cdot \alpha(b-a)$$

$$= -\alpha\mu r(a-c)$$

Da $\alpha + \beta + \gamma$ wieder eine Drehung ist, gilt $||a - c|| = ||(\alpha + \beta + \gamma)(a - c)|| = |\lambda \mu r| \cdot ||(a - c)|| \Rightarrow |\lambda \mu r| = 1$ Da $\alpha, \mu, r > 0 \Rightarrow \lambda \mu r = 1$

Somit gilt
$$(\alpha + \beta + \gamma)(a - c) = -\lambda \mu r(a - c) = -1(a - c) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} (a - c) \Rightarrow \alpha + \beta + \gamma = 180^{\circ} \rightarrow \text{Winkelsumme} \square$$

Korollar:

In einem Viereck ist die Summe der Innenwinkel 360°

Beweis:

Zerlege das Viereck durch Verbinden zweier nicht verbundenen Ecken in 2 Dreiecke:

Satz(Gleichschenklige Dreiecke):

Sei a, b, c ein gleichschenkliges Dreieck, d.h. ||a - c|| = ||b - c||, dann gilt $\angle (b, a, c) = \angle (c, b, a)$

Beweis:

o.E. gilt
$$c=0$$

Dann gilt also $a-c=a, b-c=b$.
Es sei $d:=a+b$.

Behauptung:
$$a + b \perp a - b$$

Beweis:

 $< a + b, a - b > = < a, a > + < b, a > - < a, b > - < b, b > = ||a||^2 - ||b||^2 = 0$ nach Voraussetzung ||a|| = ||b||

$$m \coloneqq \frac{1}{2}(a+b)$$

$$\alpha + \gamma_1 - \frac{\pi}{2} = \pi \Rightarrow \alpha + \gamma_1 = \frac{\pi}{2}$$

$$\beta + \gamma_2 + \frac{\pi}{2} = \pi \Rightarrow \beta + \gamma_2 = \frac{\pi}{2}$$
 Wir zeigen $\gamma_1 = \gamma_2$ indem wir zeigen, dass m auf der Winkelhalbierenden von γ liegt.

$$R(\vec{a}) = \lambda b$$

$$R_{\gamma} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$$

$$R_{\frac{\gamma}{2}} = \begin{pmatrix} \sqrt{\frac{1}{2}(1+c)} & -\sqrt{\frac{1}{2}(1-c)} \\ \sqrt{\frac{1}{2}(1-c)} & \sqrt{\frac{1}{2}(1+c)} \end{pmatrix} \qquad u = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$\lambda := \sqrt{\frac{1}{2}(1+c)}$$

$$\lambda \cdot R_{\frac{\gamma}{2}} \cdot \vec{u} = \begin{pmatrix} \frac{1}{2}(1+c)a_1 - \frac{1}{2}\sqrt{1-c^2}a_2 \\ \frac{1}{2}\sqrt{1-c^2}a_1 + \frac{1}{2}(1+c)a_2 \end{pmatrix}$$

$$= \frac{1}{2}(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + R_{\gamma}\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}) = \frac{1}{2}(\vec{a} + \vec{b} = \vec{m}$$

 \vec{m} liegt also auf der Winkelhalbierenden von $\gamma \Rightarrow \gamma_1 = \gamma_2 = \frac{\gamma}{2}$

1.8 Trigonometrische Funktionen

Definition:

 $\alpha = R_{c,s}$ definiere $c = \cos \alpha, \, s = \sin \alpha, \, \frac{s}{c} = \tan \alpha$ sofern $c \neq 0$

Winkel	0°	30°	45°	60°	90°	180°
sin	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	0
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	-1
tan	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	-	0

z.B.
$$45^{\circ} R_{c,s}$$
 mit $c = s$
$$R_{c,s}^{2} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix} = R_{0,1} = 90^{\circ} \Rightarrow R_{c,s} = 45^{\circ}$$

in all
gemeiner Form:
$$R_{c,s}^2 = R_{c^2-s^2,2cs} = R_{0,1} \label{eq:Rcs}$$

analog
$$c = \frac{1}{2}\sqrt{3}$$

$$s = \frac{1}{2}$$

$$(R_{c,s})^3 = R_{0,1} \text{ (nachrechnen !): } R_{c,s}^3 = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2}\sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\sqrt{3} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Satz:

$$\cos^2 \alpha + \sin^2 \alpha = 1$$
$$\cos -\alpha = \cos \alpha, \sin -\alpha = -\sin \alpha$$

Beweis:

$$\alpha = R_{c,s} \cos^2 \alpha + \sin^2 \alpha = c^2 + s^2 = 1$$

$$-\alpha = R \quad c \quad , \quad -s \quad c \quad cos -\alpha = cos \alpha \quad \sin -\alpha = -\sin \alpha$$

Additionstheoreme:

1. $\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \sin \beta$

2. $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Beweis:

$$\alpha = R_{c,s}$$

$$\beta = R_{t,u}$$

$$\alpha + \beta = R_{ct-su, \underbrace{cu+st}_{1.}}$$

Satz:

1. $\langle \vec{a}, \vec{b} \rangle = \cos(\angle(a, b)) \cdot ||\vec{a}|| \cdot ||\vec{b}||$

2. $det(\vec{a}, \vec{b}) = \sin(\angle(a, b)) \cdot ||\vec{a}|| \cdot ||\vec{b}||$

Für Vektoren der Länge 1 ist das Skalarprodukt der Cosinus und die Determinante der Sinus des eingeschlossenen Winkels.

Beweis:

$$\frac{\vec{a}}{\|\vec{a}\|} = \begin{pmatrix} c \\ s \end{pmatrix} \qquad \frac{\vec{b}}{\|\vec{b}\|} = \begin{pmatrix} t \\ u \end{pmatrix} \qquad \angle \left(\vec{a}, \vec{b}\right) = R_{t,u} \cdot R_{c,-s} = R_{ct+su,uc-st}$$

$$\cos \angle \left(a, b\right) = ct + su = \frac{\langle a, b \rangle}{\|a\| \cdot \|b\|}$$

$$\sin \angle \left(a, b\right) = uc - ts = \frac{\det(\vec{a}, \vec{b})}{\|\vec{a}\| \cdot \|\vec{b}\|}$$

Beispiel:

1.
$$\vec{a} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \vec{b} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$\langle \vec{a}, \vec{b} \rangle = -5 \Rightarrow \cos \angle (a, b) = \frac{-5}{\sqrt{13} \cdot \sqrt{17}} \stackrel{\text{TR}}{\Rightarrow} \angle (\vec{a}, \vec{b}) \approx 110^{\circ}$$

Satz:

$$\vec{a} \neq \vec{0} \neq \vec{b}$$
 $\angle (\vec{a}, \vec{b} - \vec{a}) = \frac{\pi}{2}$. Dann gilt:

1. $\cos \angle (\vec{a}, \vec{b}) = \frac{\|\vec{a}\|}{\|\vec{b}\|}$ Ankathete Hypotenuse

2. $\sin \angle (\vec{a}, \vec{b}) = \pm \frac{\|\vec{b} - \vec{a}\|}{\|\vec{b}\|}$ Gegenkathete Hypotenuse

Beweis:

1. $0 = \langle \vec{a}, \vec{b} - \vec{a} \rangle = \langle a, b \rangle - \langle a, a \rangle$ $\|\vec{a}\|^2 = \langle \vec{a}, \vec{a} \rangle = \langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \cdot \|\vec{b}\| \cdot (\cos \angle (\vec{a}, \vec{b}))$

2. $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = 1 \cdot \sqrt{\frac{\|\vec{b}\|^2 - \|a\|^2}{\|b\|^2}} = \pm \frac{\|b - a\|}{-\|b\|}$

1.9 Abstände

- Abstand von pzur Gerade $\vec{b} + \mathbb{R}\vec{a}$ ist $\frac{|\det(p-b,a)|}{\|\vec{a}\|}$
- Abstand von pzur Gerade < n,x>=cist $\frac{|< n,p>-c|}{\|\vec{n}\|},$ unabhängig von Wahl von \vec{n}

Beweis:

- will ausrechnen $\|\vec{x} \vec{p}\|$ minimal, $x \in l$ $\det(x p, a) = \det(b p, a)$ $\det(x p, a) = \|x p\| \underbrace{\sin \angle (b p, a)}_{=1 \text{ wenn } \vec{x} \vec{p} \perp \vec{a}} \|a\| \text{ also } x p \perp a$ $\vec{n} \perp \vec{a} \quad p + \mathbb{R}n \cap b + \mathbb{R}a$ $\Rightarrow \|x p, a\| = \frac{\det(x p, a)}{\|\vec{a}\|} \text{ also } x p \perp a$
- $$\begin{split} \bullet &<\vec{n}, \vec{x}> = c = <\vec{n}, b> \frac{< n, p> -< n, b>}{\|\vec{n}\|} \\ \text{Nimm } \vec{n} &= \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix} \\ \frac{|\det(\vec{p}-b, a)|}{\|\vec{a}\|} \stackrel{\det(\vec{a}, \vec{b}) = < a^{\perp}, >}{\|\vec{c}\|} \frac{|< p-b, \vec{n}>|}{\|\vec{n}\|} = \frac{|< p, n> -c|}{\|\vec{n}\|} \end{split}$$

Satz:

- 1. $\vec{a}, \vec{b} \in \mathbb{R}^2$: Punkte der Winkelhalbierenden $\mathbb{R}(\|b\|a + \|a\|b)$ haben den gleichen Abstand zu \vec{a} und \vec{b} . (beachte: $\mathbb{R}\frac{1}{2}(\frac{\vec{a}}{\|a\|} + \frac{\vec{b}}{\|b\|}) = \mathbb{R}(\|\vec{b}\|\vec{a} + \vec{b}\|\vec{a}\|)$)
- 2. Die drei Winkelhalbierenden eines Dreiecks gehen durch einen Punkt = Inkreismittelpunkt.

Beweis:

- 1. $\vec{v} = \|\vec{b}\|\vec{a} + \|\vec{a}\|\vec{b}, \lambda > 0$ Abstand von $\lambda \vec{v}$ zu $\mathbb{R}a$ und $\mathbb{R}b$: $\frac{\det(\lambda v, \vec{a})}{\|\vec{a}\|} = \lambda |\det(\vec{a}, \vec{b})| = \frac{|\det(\lambda \vec{v}, \vec{b})|}{\|\vec{b}\|}$
- 2. C = ||b-a||, B = ||c-a||, A = ||b-c||Winkelhalbierende durch $\vec{a} : \vec{a} + \mathbb{R}(C(c-a) + B(b-a))$ Parameter $\frac{1}{A+B+C} : \frac{1}{A+B+C}(Aa + Bb + Cc)$ Symmetrie \Rightarrow Schnittpunkt

Satz:

l und m zwei verschiedene Geraden

- 1. $l \parallel m : \{P | d(P, l) = d(P, m)\}$ ist Gerade parallel zu l und m
- 2. $l \cap m = \{*\}$ $m : \{P | d(P, l) = d(P, m)\}$ ist Vereinigung zweier zueinander senkrechter Geraden

Beweis:

1.
$$l: ax + by = c \text{ und } m: ax + by = d$$

Abstand $\binom{x}{y}$ zu $l: \frac{1}{\sqrt{a^2 + b^2}} | ax + by - c|$
bzw.: $\frac{1}{\sqrt{a^2 + b^2}} | ax + by - d|$
 $\Rightarrow ax + by - c = \pm (ax + by - d)$
 $\Rightarrow 2ax + 2by = c + d \Rightarrow ax + by = \frac{1}{2}c + d$
2. $ax + by = c$ o.E. $a^2 + b^2 = 1 = e^2 + f^2$
 $ex + fy = g$
 $|ax + by - c| = |ex + fy - g|$
 $\Rightarrow ax + by - c = \pm (ex + fy - g)$
 $\Rightarrow (a + e)x + (b + f)y = c + g \lor (a - e)x + (b - f)y = c - g \Rightarrow \text{ die beiden Geraden. Noch z.z.: orthogonal}$
 $\binom{a + e}{b + f} \binom{a - e}{b - f} = a^2 + b^2 - e^2 - f^2 = 1 - 1 = 0$

1.10 Euler-Gerade und Feuerbach-Kreis

Definition:

a, b, c sei ein Dreieck

- 1. Seitenhalbierende: Verbindung von \vec{a} mit $\frac{1}{2}(\vec{b} + \vec{c})$
- 2. Mittelsenkrechte: Senkrechte auf b-a durch $\frac{b-a}{2}$
- 3. Höhe: durch a ist das Lot von a auf c-b

Satz:

- 1. Die Seitenhalbierenden schneiden sich in einem Punkts: "Schwerpunkt".
- 2. Die Mittelsenkrechten schneiden sich in einem Punkt m: "Schwerpunkt".
- 3. Die Höhen schneiden sich in einem Punkth: "Höhenschnittpunkt".

Beweis:

1.
$$\vec{c} + \mathbb{R}(\frac{a+b}{2} - c) \stackrel{\text{Parameter } \frac{2}{3}}{=} \frac{a+b+c}{3}$$

Symmetrie \Rightarrow auf allen Seitenhalbierenden.

$$\begin{aligned} 2. & \ 2 < a-b, x> = < a-b, a+b> = \|a\|^2 - \|b\|^2 \\ & \ 2 < b-c, x> = < b-c, b+c> = \|b\|^2 - \|c\|^2 \\ & \ 2 < c-a, x> = < c-a, c+a> = \|c\|^2 - \|a\|^2 \end{aligned}$$
 Addition lie
fort $0=0$

 \Rightarrow Jede der Gleichungen ist Konsequenz der anderen beiden

Satz (von Euler):

 $\vec{h} = \vec{s} + 2(\vec{s} - \vec{m})$ insbesondere liegen s, h, m auf einer Geraden

Beweis:

z.z.
$$\vec{h}=3\vec{s}-2\vec{m}=\vec{a}+\vec{b}+\vec{c}-2\vec{m}$$
 genauer: $\vec{a}+\vec{b}+\vec{c}-2m$ liegt auf jeder Höhe Höhe durch $c:=$ $=\underbrace{-}_{=0}+$

Definition (von Feuerbach):

Der Feuerbachkreis des Dreiecks abc mit s, h, m ist der Kreis durch die Seitenmitten. Sei f sein Mittelpunkt.

Satz:

- 1. $\vec{f} = \frac{\vec{h} + \vec{m}}{2}$ d.h. f liegt auf der Euler-Geraden in der Mitte zwischen h und m.
- 2. Radius d.Feuerbachkreises ist die Hälfte des Umkreisradius.
- 3. $\frac{h+a}{2},\,\frac{b+h}{2},\,\frac{h+c}{2}$ liegen auf dem Feuerbachkreis
- 4. Fußpunkt der Höhen auch

Beweis:

Verschiebe so, dass
$$s = \vec{0}$$
 also $a + b + c = 0$

1. K ist Umkreis des DREIECKS durch die Seitenmitten $\Rightarrow f$ liegt auf dessen Mittelsenkrechte, erfüllt

$$< \frac{a+c}{2} - \frac{b+c}{2}, f > = < \frac{a+c}{2} - \frac{b+c}{2}, \frac{a+b+2c}{2} > = < a-b, f > -\frac{1}{4} < a-b, a+b > = < a-b, -\frac{m}{2}$$

daher $<\frac{a+c}{2} - \frac{b+c}{2}, f>$ $= <\frac{a+c}{2} - \frac{b+c}{2}, \frac{a+b+2c}{2}>$ $= <a-b, f> -\frac{1}{4} < a-b, a+b>$ $= <a-b, -\frac{m}{2}$ Genauso $<b-c, f> = <b-c, -\frac{m}{2}>$, ..., d.h. $2f+m=\vec{0}$ tut's. f liegt auf allen 3 Höhen durch $-\frac{m}{2} \Rightarrow f = -\frac{m}{2}$

2.
$$r_{\rm K} = \|f - \frac{a+b}{2}\|^{s=0} \|f + \frac{c}{2}\| = \|c - m\| = \frac{1}{2}$$
 $r_{\rm Umkreis}$

3.
$$\|\frac{h+a}{2} - f\| \stackrel{\text{Euler}}{\underset{h=-2m(1,))}{=}} \| - m + \frac{a}{2} + \frac{m}{2} \| = \frac{1}{2} \|m - a\| \stackrel{2.)}{=} r_{\text{K}}$$

- 4. Projeziere senkrecht auf die Seite ab. Dann geht
 - $\bullet \ h$ auf den Höhenfußpunkt hc
 - m auf $\frac{a+b}{2}$
 - und f auf die Mitte dazwischen (nach 2.)
 - \Rightarrow Das Dreieck DREIECK ist gleichschenklig $||hc f|| = ||\frac{a+n}{2} f||$ (Pythagoras)

Abbildung 1.6: Der Feuerbachkreis

Projeziere \mathcal{E} auf die Gerade ab. Dann liegt das Bild von f in der Mitte zum Seitenmittelpunkt und Fußpunkt der Höhe $\Rightarrow \|f - \frac{a+b}{2}\| = r_{\text{F-Kreis}} = \|f - h_c\|$ $\Rightarrow h_c \text{ liegt auf dem F-Kreis}$

Korollar:

$$3s = m + 2f$$
 DENN: $2f \stackrel{\text{F.}}{=} h + m \stackrel{\text{E.}}{=} 3s - m$ \checkmark

Elemente
$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 wie in \mathbb{R}^2 : Addition, skalare Multiplikation.

Definition:

 $a \in \mathbb{R}^3$:

- 1. Länge von a $\|\vec{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- 2. $\langle \vec{a}, \vec{b} \rangle = a_1b_1 + a_2b_2 + a_3b_3$
- 3. \vec{a} und \vec{b} linear abhängig $\vec{b} = t\vec{a}$ oder $\vec{a} = t\vec{b}$. linear unabhängig \Leftrightarrow nicht linear abhängig.

Rechenregeln:

1.
$$\langle \vec{a}, \vec{b} \rangle = \langle \vec{b}, \vec{a} \rangle$$

2.
$$\langle \vec{a} + \vec{b}, \vec{c} \rangle = \langle \vec{a}, \vec{c} \rangle + \langle \vec{b}, \vec{c} \rangle$$
 (Bilinearität)

3.
$$<\lambda\vec{a},\vec{b}>=\lambda<\vec{a},\vec{b}>$$

4.
$$\langle \vec{a}, \vec{a} \rangle = \|\vec{a}\|^2$$

Satz:

 $\vec{a}, \vec{b} \in \mathbb{R}^3 \ (\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}), \ \text{Dann ist} \ \vec{p} = \frac{<\vec{a}, \vec{b}>}{\|\vec{a}\|^2} \cdot \vec{a} \ \text{ist der eindeutig bestimmte Punkt auf } \mathbb{R}\vec{a} \ \text{mit minimalem}$ Abstand zu \vec{b} Es gilt: $\|\vec{b}\|^2 - \|\vec{p}\|^2 + \|\vec{b} - \vec{p}\|^2$

Beweis

$$\begin{split} \left\|t\vec{a}-\vec{b}\right\|^2 &= < t\vec{a}-\vec{b}, t\vec{a}-\vec{b}> \\ &= t^2 < \vec{a}, \vec{a}> -2t < \vec{a}, \vec{b}> + < \vec{b}, \vec{b}> \\ &= \left(\|a\|t-\frac{<\vec{a},\vec{b}>}{\|a\|}\right)^2 + < \vec{b}, \vec{b}> -\frac{<\vec{a},\vec{b}>^2}{\|\vec{a}\|^2} \\ &\qquad \qquad \text{Minimum: } t=\frac{<\vec{a},\vec{b}>}{\|\vec{a}\|^2} \text{ ergibt den Wert } \left\|\vec{b}\right\|^2 - \frac{<\vec{a},\vec{b}>^2}{\|\vec{a}\|^2} \\ &\cos\varphi = \frac{Ankathete}{Hypothenuse} = \frac{\|\vec{p}\|}{\|\vec{b}\|} = \frac{\frac{1}{\|\vec{a}\|}\cdot|<\vec{a},\vec{b}>|}{\|\vec{b}\|} = \frac{|<\vec{a},\vec{b}>|}{\|\vec{a}\|\cdot||\vec{b}|} \text{ Definiere } 0^\circ \le <(\vec{a},\vec{b})> \le 180^\circ : <\vec{a},\vec{b}> = \|\vec{a}\|\cdot\|\vec{b}\| \cdot \cos\varphi \end{split}$$

Satz (Parallelogrammgesetz)

$$\left\|\vec{a} + \vec{b}\right\| + \left\|\vec{a} - \vec{b}\right\|^2 = 2\left\|\vec{a}\right\|^2 + 2\left\|\vec{b}\right\|^2$$

Beweis

$$<\vec{a}+\vec{b}, \vec{a}+\vec{b}>+<\vec{a}-\vec{b}, \vec{a}-\vec{b}>=2<\vec{a}, \vec{a}>+2<\vec{b}, \vec{b}>$$

2.0.1 Geraden und Ebenen

Definition

 $\mbox{Gerade}:\vec{b}+\mathbb{R}\vec{a},\vec{a}\neq\vec{0}$ \vec{a} heißt Richtungsvektor, \vec{b} heißt Stützvektor

Abbildungsverzeichnis

0.1	Eine einfache Menge
0.2	Darstellung von Operationen auf Mengen
0.3	Graphenkreis
0.4	Mögliche Abbildungen auf einen Blick
1.1	Beispielhafte Vektoraddition
1.2	Mehrere Vektoren
1.3	Gerade mit orthogonalen Vektor
1.4	Beispiel zu Satz 1.2
1.5	Schema der Matrixmultiplikation
1.6	Der Feuerbachkreis