Laboratorium techniki cyfrowej

Sprawozdanie z ćwiczenia 4 – Układy sekwencyjne

Imię i nazwisko	Ocena	Data			
		Podpis prowadzącego zajęcia			

Zadanie 1

Wykonać polecenia z zadania 4.1 ze skryptu laboratoryjnego, czyli zaprojektować układ synchroniczny o jednym wejściu x i dwóch wyjściach y_I , y_2 sterującymi diodami LED. Gdy x = 0 oba wyjścia powinny być ustawione w stan 0. Gdy wejście zmieni się na x = 1 układ powinien zrealizować sekwencję: $(y_2 = 1, y_I = 0)$; $(y_2 = 0, y_I = 1)$ i powrócić do stanu początkowego $(y_2 = 0, y_I = 0)$. Poniżej narysować przebiegi czasowe. Pozostałe etapy projektu zapisać na odwrotnej stronie sprawozdania. Układ zmontować i sprawdzić jego działanie.

c			,			,			
х									
<i>y</i> ₂ , <i>y</i> ₁									
stan									

Zadanie 2

Sprawdzić, czy uniwibratory umieszczone w stanowisku laboratoryjnym są retrygerowalne. Narysować schemat układu wspomagającego badanie oraz uzasadnić wniosek.

Zadanie 3

Zmontować układ generatora przebiegu prostokątnego. Zmierzyć największy i najmniejszy możliwy do uzyskania okres i sprawdzić zależność określającą czas trwania impulsu. Narysować schemat połączonego układu. Wypełnić poniższą tabelę.

	Zmierzony	Wyliczony
okres minimalny		
okres maksymalny		