10. Implementacija logičkih sklopova

Implementacija logičkih sklopova

struktura digitalnog sustava:

- podsustavi
- sklopovi
- komponente

- komponente:
 - logička razina
 - (mikro)elektronička razina
 - diktira mogućnosti međusobnog povezivanja komponenti u sklopove

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
- implementacije drugih logičkih sklopova
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- prikaz logičkih vrijednosti naponskim razinama:
 - pozitivna logika:
 - viši napon ~ 1
 - niži napon ~ 0
 - negativna logika:
 - viši napon ~ 0
 - niži napon ~ 1
 - uz liniju signala oznaka 🗀

 interpretacija tablice kombinacija funkcije I naponskih razina

Α	В	f
N	Ζ	N
Ν	V	Ν
V	Ν	N
V	V	V

Α	В	f
0	0	0
0	1	0
1	0	0
1	1	1

A	В	f
1	1	1
1	0	1
0	1	1
0	0	0

pozitivna logika

negativna logika

 interpretacija tablice kombinacija funkcije ILI naponskih razina

Α	В	f
N	Ν	N
Ν	V	V
V	Ν	V
V	V	V

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	f
1	1	1
1	0	0
0	1	0
0	0	0

pozitivna logika

negativna logika

- dualnost pozitivne i negativne logike:
 - funkcija I u pozitivnoj logici
 - ~ funkcija ILI u negativnoj logici
 - funkcija ILI u pozitivnoj logici
 - ~ funkcija I u negativnoj logici
 - negativna logika
 - ~ *dual* logičke funkcije!

- mješovita logika:
 - primijenjene obje konvencije
 - prisustvo/odsustvo "trokutića"
 ~ oznaka aktivne razine (logičke 1)
 - primjena kod upravljačkih ulaza u logički sklop

$$f_1 = k \cdot (AB)$$

$$\uparrow$$

$$k = 1 \rightarrow f_1 = AB$$

$$f_2 = k + (A + B)$$

$$\uparrow$$

$$k = 1 \rightarrow f_2 = A + B$$

$$\overline{k} = 0$$

- strujna i naponska logika:
 - naponska logika
 nositelj "informacije" (0 ili 1) naponska razina
 - strujna logika
 nositelj "informacije" (0 ili 1) struja:
 - mogućnosti:
 - ima je/nema je
 - smjer
 - loša svojstva prilikom grananja
 raspodjela na ulaze
 narednog stupnja

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
 - izvedbe logičkih sklopova I i ILI
 - izvedbe invertora
- implementacije drugih logičkih sklopova
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- logički sklopovi
 - ~ *elektroničke* izvedbe logičkih funkcija: elektronički elementi *u režimu sklopke*
 - osnovna izvedba diodom
 ~ "diodni sklopovi" I i ILI
 - *izvedenice* boljih električkih svojstava:
 - (NPN) bipolarni tranzistor
 - n-kanalni MOSFET
 - p-kanalni MOSFET

- dioda kao sklopka:
 - idealna dioda, U_D ≈ 0 V
 ~ upravljani mehanički kontakt
 - upravljanje = logička varijabla A
 napon na elektrodama:
 - dioda *nepropusno* (reverzno) polarizirana
 struja *ne* teče: A = 0
 - dioda *propusno* polarizirana

 \sim struje teče: A = 1

diodni sklop I (pozitivna logika)

~ diodna mreža:

$$V \sim +U$$

 $N \sim 0 V$

Α	В	f
N	Z	N
Ν	V	N
V	Ν	N
V	V	V

A	В	f
0	0	0
0	1	0
1	0	0
1	1	1

diodni sklop ILI (pozitivna logika)
 ~ (također) diodna mreža:

$$V \sim +U$$

 $N \sim 0 V$

A	В	f
N	Ν	N
Ν	V	V
V	Ν	V
V	V	V

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	1

- izvedbe invertora
 tranzistorskom sklopkom:
 - sklopka "priteže" u_{izl} na masu (N ~ 0V)
 - inače u_{izl} = V (V ~ +U):
 potrebno postaviti R prema +U
 ~ pritezanje izlaza na napon napajanja
 (engl. Pull-Up, PU)

- izvedba invertora s bipolarnim (NPN) tranzistorom:
 - pojačanje signala
 pobuda većeg broja ulaza narednog stupnja
 - strujna pobuda
 ~ R_B >> da pobuda (A) bude naponska!
 - pritezanje izlaza na U_{CC}
 ~ "pasivno" opterećenje R_{PU} = R_C ≈ kΩ
 V ~ U_{CC} (bez opterećenja izlaza!)
 N ~ U_{CS} ≈ 0 V

Α	f
N	V
V	N

Α	f
0	1
1	0

- NMOS (n-kanalni MOSFET) kao sklopka
 - ~ vrlo pogodno rješenje:
 - zapiranje:

$$A = 0 \sim N \sim U_{GS} = 0 V$$

• zasićenje:

$$A = 1 \sim V \sim U_{GS} = U_{DD}$$

- PMOS (p-kanalni MOSFET) kao sklopka
 ~ komplementarna pobuda:
 - zapiranje:

$$A = 1 \sim V \sim U_{SG} = 0 V$$
$$(\rightarrow U_{GD} = U_{DD})$$

zasićenje:

$$A = 0 \sim N \sim U_{SG} = U_{DD}$$
$$(\rightarrow U_{GD} = 0 \text{ V})$$

- izvedba invertora s MOSFET
 ~ tipično NMOS:
 - funkcijski identično rješenju s bipolarnim tranzistorom
 - naponska pobuda
 troši manje snage ©
 - R_{PU} ~ T₂ spojen kao dioda:

$$R_{PU} = R_{ekv} = R_{D} \approx 100 \text{ k}\Omega$$

- spori odziv N → V (na izlazu)
- $t_r >> t_f$
- izolirana upravljačka elektroda
 ~ statički elektricitet
 može probiti izolaciju!

- poboljšanje izvedbe invertora u tehnologiji MOSFET
 model sklopke "u protuspoju":
 - kontakti se zatvaraju u protuspoju:
 nije potreban R_{PU} = R_D!
 qotovo nikakva potrošnja!
 - brže rješenje
 ~ t_r ≈ t_f
 - potrebno ostvariti
 električki simetrične sklopke
 ~ *komplementarne* su!!!

- izvedba invertora s *CMOS* (engl. Complementary MOS)
 ~ sklopke u protuspoju:
 - naponska pobuda
 - statički elektricitet !!! ⊗
 - T₁ i T₂ električki simetrični
 ~ komplementarni
 - T₁ je NMOS
 - T₂ je PMOS (komplementarno ponašanje)
 - $t_r \approx t_f$ ~ brže od NMOS! $\odot \odot \odot$
 - troši *najmanje* snage! 😊 😊

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
- implementacije drugih logičkih sklopova
 - izvedbe univerzalnih logičkih sklopova NI i NILI
 - direktno povezivanje izlaza
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- izvedba univerzalnog sklopa kompozicijom funkcija (kaskadiranjem sklopova):
 - karakteristično za bipolarnu tehnologiju (BJT)
 - tipično NI = NE°I~ NI(A, B) = NE(I(A, B))
 - diodni sklop I
 - invertor s BJT
 - koncept za čitav niz (bipolarnih) skupina integriranih logičkih sklopova

- izvedba univerzalnog sklopa direktnim povezivanjem tranzistora:
 - bipolarna i MOSFET tehnologija
 - kombiniranje tranzistora:
 - serijski: sklop NI
 - paralelno: sklop NILI
 - tranzistori~ upravljane sklopke

- konceptne izvedbe univerzalnih sklopova (pozitivna logika):
 - serijski spoj sklopki ~ sklop NI
 - paralelni spoj sklopki ~ sklop NILI

- izvedba sklopa NI (pozitivna logika)
 ~ serijski spoj tranzistora (kaskoda)
 - U_{izIN} = ΣU_S tranzistora > 0 V
 uglavnom se izbjegava
 - praktične izvedbe jedino u NMOS

Α	В	f
N	Z	V
Ν	V	V
V	Ν	V
V	V	Ν

A	В	f
0	0	1
0	1	1
1	0	1
1	1	0

- izvedba sklopa NILI (pozitivna logika)
 ~ paralelni spoj tranzistora:
 - bolja električka svojstva (nema U_{izIN} = ΣU_S)
 izvedba izbora

Α	В	f
N	Ν	V
Ν	V	Ν
V	Ν	Ν
V	V	Ν

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	0

- spojeni I (engl. wired AND):
 kombiniranje logičkih sklon
 - ~ kombiniranje logičkih sklopova *fizičkim* povezivanjem izlaza:
 - "ušteda" logičkih sklopova
 - mogućnost ostvarivanja univerzalne funkcije

 Z_2

Ζ

Ν

N

primjena na sabirničkim linijama
 ~ "raspodijeljena funkcija I"

diktirano električkim mogućnostima izlaznog stupnja

- izvedba spojenog I
 - ~ izlazni stupanj: npr. "pasivni" $R_{PU} = R_{C} \approx k\Omega$
 - R_{Cekv} = R_C/M
 M: broj izlaza vezanih u spojeni I
 - najlošiji slučaj: vodi samo jedan T od njih M

$$I_{CS} = M \cdot \frac{U_{CC} - U_{CES}}{R_C} + N \cdot I_{IL}$$

popularno rješenje
 ~ sklop s *upravljanim* izlazom:
 sklop s (izlazom s) tri stanja

- sklop s (izlazom s) tri stanja (engl. three-state logic)
 odvajanje izlaza sa sklopkama u protuspoju:
 - visoko (V)
 - nisko (N)
 - "stanje visoke impedancije" (Z)
 - ~ za D = 1 obje izlazne sklopke *isključene*: nema pritezanja ni prema V, a niti prema N

- spojeni ILI (engl. wired OR)
 ~ spojeni I, ali od sklopova NILI
 - proširivanje broja ulaza ekvivalentnog sklopa NILI!

- električke mogućnosti izlaznog stupnja:
 - moguće ako $R_{PU} >>$, npr. $R_C > \sim k\Omega$
 - inače zabranjeno, npr. $R_C < \sim 100 \ \Omega$

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
- implementacije drugih logičkih sklopova
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- univerzalni CMOS sklopovi
 izvođenje iz NMOS sklopova:
 - mreža za pritezanje na masu
 (engl. Pull-Down Network, PDN)
 ~ sklopka (izlazni tranzistor):
 ostvarivanje logičke funkcije
 - mreža za pritezanje na napajanje (engl. Pull-Up Network, PUN)
 "otpornik" ostvaren posebnim NMOS tranzistorom

- univerzalni CMOS sklopovi
 izvođenje iz NMOS sklopova:
 - zamijeniti NMOS za pritezanje na napajanje mrežom sastavljenom od PMOS
 - PMOS (pritezanje na napajanje) i
 NMOS (pritezanje na masu) električki komplementarni
 izlaz sa sklopkama u protuspoju!

univerzalni CMOS sklopovi NILI i NI (pozitivna logika)

$$\sim T_{izlazni} = NMOS; T_{opterećenje} = PMOS$$

sklop NILI:

PDN = paralelno spojeni NMOS

PUN = serijski spojeni PMOS

sklop NI:

PDN = serijski spojeni NMOS

PUN = paralelno spojeni PMOS

izvođenje CMOS sklopa NI (pozitivna logika):

- PUN: $f = \overline{A \cdot B} = \overline{A} + \overline{B}$ $f = 1 \Leftrightarrow (A = 0) + (B = 0)$ $\rightarrow paralela \text{ PMOS } !$
- PDN: $\overline{f} = A \cdot B$ $\overline{f} = 1 \Leftrightarrow (A = 1) \cdot (B = 1)$ $\rightarrow serija \text{ NMOS } !$

_	Α	В	T ₁	T_2	T ₃	T ₄	f
_	N	Z	NE	NE	DA	DA	V
	Ν	V	NE DA	DA	DA	NE	V
	V	Ν	DA	NE	NE	DA	V
	V	V	DA	DA	NE	NE	N

izvođenje CMOS sklopa NILI (pozitivna logika):

Α	В	T ₁	T ₂	T ₃	T ₄	f
N	Ζ	NE	NE DA NE DA	DA	DA	V
Ν	V	NE	DA	NE	DA	N
V	Ν	DA	NE	DA	NE	N
V	V	DA	DA	NE	NE	N

Izvedbe u tehnologiji CMOS

izvedba CMOS sklopa I
 kompozicija NE i NI: I(A, B) = (NE°NI)(A, B)
 NE(NI(A, B))

Izvedbe u tehnologiji CMOS

izvedba CMOS sklopa ILI
 kompozicija NE i NILI: ILI(A, B) = (NE°NILI)(A, B)
 NE(NILI(A, B))

- poopćenje PDN i PUN
 - ~ izvođenje *proizvoljnog* CMOS sklopa:
 - sve varijable komplementirane
 vrlo jednostavno rješenje
 - neke varijable nisu komplementirane
 - ~ prethodno ih komplementirati

Implementacija funkcija u CMOSu

Primjer:
$$f = \overline{A} + \overline{B} \cdot \overline{C}$$

- sve su varijable komplementirane
 direktno izvođenje PUN
- PUN:
 - serija PMOS za B i C
 - paralela PMOS za A i φ(B, C)

• PDN:
$$\overline{f} = \overline{\overline{A} + \overline{B} \cdot \overline{C}}$$

= $A \cdot (B + C)$

- paralela NMOS za B i C
- serija NMOS za A i φ(B, C)

Implementacija funkcija u CMOSu

Primjer:
$$f = A + \overline{B} \cdot \overline{C} = \overline{A} + \overline{B} \cdot \overline{C}$$

- invertor za dobivanje A
- PUN:
 - serija PMOS za B i C
 - paralela PMOS za \overline{A} i $\varphi(B, C)$

• PDN:
$$\overline{f} = \overline{A + \overline{B} \cdot \overline{C}}$$

= $\overline{A} \cdot (B + C)$

- paralela NMOS za B i C
- serija NMOS za \overline{A} i $\varphi(B, C)$

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
- implementacije drugih logičkih sklopova
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

Koncept integriranog sklopa

- električka svojstva:
 - prijenosna karakteristika
 - granica smetnji
 - faktor grananja
 - disipacija snage
- dinamička svojstva:
 - vrijeme kašnjenja
 - mjera dobrote integriranog sklopa
 - vrijeme porasta i vrijeme pada signala na izlazu sklopa

Koncept integriranog sklopa

- integrirani logički sklop
 rinkapsulacija složenije funkcijske cjeline u modul:
 - minijaturizacija i integriranje složenije cjeline
 crna kutija s određenim funkcijskim svojstvima,
 uz zadovoljene uvjete:
 - primjerena pobuda (naponska područja za 0 i 1, granice smetnji)
 - odgovarajući režim rada (napon napajanja, temperatura okoline, opterećenje izlaza)
 - apstrakcija funkcija (funkcijska apstrakcija)
 ne zagleda se u unutrašnjost crne kutije

- međusobno povezivanje logičkih sklopova
 ~ model koji ističe električka svojstva sučelja:
 - statički uvjeti (za V i za N)
 ~ opterećenje izlaza ulazima slijedećeg stupnja
 - dinamički uvjeti (prijelazna pojava)
 djelovanje C_{par}

Sadržaj predavanja

- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
 - naponska područja
 - prijenosna karakteristika
 - smetnje
 - opterećenje i faktor grananja
 - disipacija snage
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- naponska područja na ulazu i izlazu logičkog sklopa:
 - naponska područja:
 - varijacije parametara
 - utjecaj opterećenja
 - zabranjeno područje
 - ~ "diskriminacija" naponskih razina V i N
 - uže tolerancije na izlazu logičkih sklopova
 - moguće djelovanje (superponiranih) smetnji na ulazu sklopova slijedećeg stupnja

naponska područja na ulazu i izlazu logičkog sklopa

prijenosna karakteristika
(engl. transfer characteristic): u_i = f(u_u)

idealna karakteristika:
 oštri prijelaz
 ~ nema zabranjenog područja!

- temeljni sklopovi pojedinih skupina logičkih sklopova
 ~ univerzalne funkcije (NI, NILI)
 - ⇒ invertorska karakteristika

- smetnje (engl. noise)
 - superponirani napon na ulazu logičkog sklopa, može dovesti do neželjene promjene stanja na njegovu izlazu
- definira se posebno za V, a posebno za N
- vrste smetnji (po načinu generiranja):
 - vanjske: indukcija (iskrenja, munje?)
 - unutarnje:
 preslušavanje, refleksije,
 parazitni induktivitet strujnih krugova signala,
 strujni šiljci prebacivanja stanja izlaznog stupnja

- granica istosmjerne smetnje (engl. DC noise margin)
 iznos smetnji koji dovodi logički sklop
 na rub zabranjenog područja
- djeluje duže od T_p ~ "isto toliko dugo kao i signal"

$$\Delta''1'' \equiv U_{GSV} = U_{OH\,\mathrm{min}} - U_{IH\,\mathrm{min}}$$

$$\Delta''0'' \equiv U_{GSN} = U_{IL\,\mathrm{max}} - U_{OL\,\mathrm{max}} \quad \mathbf{U}_{\mathrm{CC}}$$

Primjer:

$$U_{OLmax} = 1 V;$$
 $U_{OHmin} = 4 V$

$$U_{ILmax} = 2.3 \text{ V}; \quad U_{IHmin} = 2.7 \text{ V}$$

$$\Delta''1'' \equiv U_{GSV} = U_{OH \min} - U_{IH \min}$$

$$\Delta"0" \equiv U_{\rm GSN} = U_{\rm IL\,max} - U_{\rm OL\,max}$$

$$U_{GSV} = 1.3 V$$

$$U_{GSN} = 1.3 V$$

$$U_{GS} = min\{U_{GSV}, U_{GSN}\} = 1.3 V$$

- granica izmjenične smetnje (engl. AC noise margin):
 - impuls smetnje kraći od T_p
 - mehanizam nabijanja/izbijanja C_T
 - vrlo kratke smetnje ne utječu!

$$U_{GS|AC} > U_{GS|DC}$$

- opterećenje izlaza ulazima narednog stupnja
 promjena električkih/dinamičkih osobina signala:
 - bipolarni sklopovi
 ~ promjena naponske razine zbog pada napona na R_i
 - MOSFET/CMOS sklopovi
 romjena dinamičkih svojstava zbog većeg C_T
- mjera opterećenja
 ~ faktor grananja:
 - na izlazu (engl. fan-out)
 - na ulazu (engl. fan-in)

- faktor grananja na izlazu bipolarnog sklopa, N_R:
 broj ulaza istovrsnih sklopova koje je moguće spojiti na izlaz logičkog sklopa, a da sklopovi sigurno rade u predviđenom režimu:
 - osigurano da u_i padne u odgovarajuća područja za V i N

Primjer:

	I _{OL} [mA]	I _{IL} [μA]	Ι _{ΟΗ} [μΑ]	I _{IH} [μA]
74N	16	1600	400	40
74LS	8	400	400	20

74N pobuđuje 74N: $N_R = 10$

74LS pobuđuje 74LS: $N_R = 20$

74N pobuđuje 74LS: $N_R = ?$

74LS pobuđuje 74N: $N_R = ?$

$$I_{OH} = \sum I_{IH}$$

 faktor grananja na izlazu MOSFET/CMOS sklopa, N_R: broj ulaza istovrsnih sklopova koje je moguće spojiti na izlaz logičkog sklopa, a da se "previše" ne pokvare dinamička svojstva:

$$C_T = N_R \cdot C_{ul} \rightarrow t_r, t_f$$

kompenzacija djelovanja C_T
 ~ snažniji pobudni MOSFET

- faktor grananja na ulazu bipolarnog sklopa, N: koliko je puta veće opterećenje ulazom sklopa od jediničnog, za temeljni sklop skupine
- "jedinična ulazna struja":
 za temeljni sklop skupine,
 u odnosu na koju se računa faktor grananja

faktor grananja na ulazu MOSFET/CMOS sklopa,

N: broj ulaza nekog logičkog sklopa

- serija tranzistora (npr. NI):
 - serija MOSFET $\rightarrow t'_p \approx N \cdot t_p$,
 - $U_{OL} = \sum U_{OLi}$
 - izbjegavati!
- CMOS: uvijek serija NMOS ili PMOS
 ~ zadržati N ▶

- faktor grananja na ulazu MOSFET/CMOS sklopa,
 N: broj ulaza nekog logičkog sklopa
- paralela tranzistora (npr. NILI):
 - paralela MOSFET ≈ jedan (jači) MOSFET:

$$t'_p \approx t_p/N$$
,
 $C'_{ul} = N \cdot C_{ul}$

N ne utječe na t_p
 ~ radije NILI

- statička disipacija snage:
 - pretpostavka: sklop je u svakom od stanja 50% vremena

$$P_{st} = U_{napajanja} \cdot \frac{I_{napajanja}^{V} + I_{napajanja}^{N}}{2}$$

- ograničenje temperature T u logičkom sklopu
 ograničena mogućnost odvođenja topline
- ograničenje P_{st}:
 - ograničenje stupnja integracije
 - ograničenje N_R
 - ograničenje smanjivanja t_d
 (postoji C_T = C_P + N·C_{ul}, a I_i je ograničena!)

- dinamička disipacija snage ~ pri prebacivanju stanja!
 - model: nabijanje/izbijanje $C_T = C_P + N \cdot C_{IJ}$
 - nabijanje C_T ~ i_{C1}:

$$dW = i_{C_1} \cdot U \cdot dt; \quad W = \int dW = U \cdot Q = C_T \cdot U^2$$

$$W_{C_T} = \frac{C_T \cdot U^2}{2}$$
 energija u C_T

$$W_{R_1} = W_{C_T} = \frac{C_T \cdot U^2}{2}$$
 disipirana energija

• izbijanje C_T ∼ i_{C2}:

$$W_{R_2} = W_{C_T} = \frac{C_T \cdot U^2}{2}$$

• *ukupna* disipirana snaga: f uklj./isklj. [sec⁻¹]

$$W_{disipirano} = W_{C_T} + W_{R_2} = C \cdot U^2; P_d = f \cdot C \cdot U^2$$

Primjer:

$$egin{aligned} & {\sf U}_{\sf nap1} = {\sf 5} \; {\sf V}; \quad {\sf f}_1 = {\sf 100} \; {\sf MHz} \\ & {\sf U}_{\sf nap2} = {\sf 3,3} \; {\sf V}; \; {\sf f}_2 = ? \; {\sf uz} \; {\sf P}_{\sf d} = {\sf const.} \\ & P_d = f \cdot C \cdot U^2 \\ & f_1 \cdot C \cdot U_1^2 = f_2 \cdot C \cdot U_2^2 \\ & f_2 = f_1 \cdot \frac{U_1^2}{U_2^2} \\ & f_2 = 230 \; MHz \\ & {\sf U}_{\sf nap3} = {\sf 1,1} \; {\sf V}; \; {\sf f}_3 = ? \; {\sf uz} \; {\sf P}_{\sf d} = {\sf const.} \end{aligned}$$

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
- implementacije drugih logičkih sklopova
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- kašnjenje (odziva) logičkog sklopa
 - ~ promjena (naponske razine) signala na izlazu u odnosu na promjenu (naponske razine) signala na ulazu:
 - vrijeme kašnjenja logičkog sklopa, t_d
 - ~ izvedeni parametar, iz vremene rasprostiranja
 - vrijeme rasprostiranja signala, t_p
 - ~ za pojedine prijelaze
 - mjeri se za 0,5⋅U, odnosno U_T

vrijeme rasprostiranja (proleta, propagacije), t_p (engl. propagation time)
 ~ različito za prijelaz V → N, odnosno N → V

$$t_{PHL}(t_{DVN}) \neq t_{PLH}(t_{DNV})$$

vrijeme kašnjenja, t_d:

$$t_d = \frac{t_{PHL} + t_{PLH}}{2}$$

- produkt vremena kašnjenja i disipirane snage
 mjera dobrote integriranog sklopa:
 - usporedba skupina integriranih logičkih sklopova
 - dimenzija: [ns] × [mW] = [pJ]
 - manji produkt ~ kvalitetniji integrirani sklopovi

- vremenski hazard kao posljedica konstrukcije sklopa
 ~ funkcijski hazard:
 - električki i dinamički parametri sklopa
 kašnjenja stvarnih sklopova
 - konkretni dizajn složenijeg sklopa
 struktura sklopa izražena
 kombinacijom jednostavnijih sklopova
 - sinkronizam ulaza (signala)

- vrijeme porasta i vrijeme pada signala na izlazu logičkog sklopa
 utjecaj izvedbe izlaznog stupnja:
 - "pasivno" opterećenje:
 R₁ >> R₂ → t₂ >> t₂

"aktivno" opterećenje:
 R₁' ~ R₂ → t_r ~ t_f
 ~ brža izvedba!

- izvedba izlaznog stupnja "pasivnim" opterećenjem:
 R₁ >> R₂ = R_{Tzasićenje} → t_r >> t_f
 - pritezanje izlaza ka masi
 "izlazni" tranzistor
 - pritezanje izlaza ka napajanju
 ~ (pasivni) otpornik

- izvedba izlaznog stupnja "aktivnim" opterećenjem:
 R₁' ~ R₂ = R_{Tzasićenje} → t_r ~ t_f
 - pritezanje izlaza ka masi
 "izlazni" tranzistor
 - pritezanje izlaza ka napajanju
 ~ također tranzistor (R_C za ograničavanje I_{AC})

Sadržaj predavanja

- interpretacija logičkih vrijednosti
- implementacije osnovnih logičkih sklopova
- implementacije drugih logičkih sklopova
- izvedbe logičkih sklopova u tehnologiji CMOS
- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- klasifikacija integriranih logičkih sklopova
 - ~ prema *stupnju integracije*
 - = u odnosu na složenost sklopova na čipu:
 - funkcijska
 - ~ broj "osnovnih funkcija"
 (→ osnovnih logičkih sklopova) na čipu
 - tehnološka
 - broj "komponenata",
 elektroničkih elemenata (*naprava*, engl. devices)
 ostvarenih na čipu;

naprave: Tr, D, R, C (sve preko Tr!)

 klasifikacija integriranih logičkih sklopova prema stupnju integracije

		tehnološka	funkcijska
niski stupanj integracije	SSI	< 100	< 10
srednji stupanj integracije	MSI	100-1.000	10-100
visoki stupanj integracije	LSI	1.000-10.000	100-1.000
vrlo visoki stupanj integracije	VLSI	> 10.000	> 1.000
sustav na waferu	WSI		

- pregled skupina integriranih logičkih sklopova:
 - danas u primjeni:
 - CMOS, već 1960tih
 - TTL, 1962
 - ECL, 1963
 - povijesno zanimljive:
 - RTL, 1961~ prva skupina!
 - DTL/HTL, 1962
 - NMOS/PMOS, 1970te
 - I²L, 1972

 usporedba osnovnih parametara poznatih skupina integriranih logičkih sklopova:

			P [mW]				
skupina	serija	t _d [ns]	statička	dinamička (100 kHz)	t _d ·P [pJ]	N _R	U _{GSmin} [V]
RTL		30	10		300	5	0,3
DTL		25	15		375	8	0,9
HTL		100	50		5000	10	7
TTL	74	9	10		90	8	0,4
	74S	3	20		60	10	0,3
	74LS	9,5	2		19	100	0,3
	74AS	1,7	8		13,6	10	0,3
	74ALS	4	1,2		4,8	100	0,4
ECL	10k	3	25		75	10	0,25
	100k	0,75	40		30	10	0,25
I ² L		40	1		40	8	
NMOS		50	0,1		5	50	
CMOS	4000	50	0,001	0,1	5	> 100	1,5
	74C	30	<0,001			> 100	0,6
	74HC	8	0,02	0,17	1,4	> 100	0,9

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike; Poglavlje 6: Elektroničke izvedbe logičkih sklopova.
- interpretacija logičkih vrijednosti: str. 120-122
- implementacije osnovnih logičkih sklopova: str. 84-89
- implementacije drugih logičkih sklopova: str. 204-207, 222-223, 235-236
- izvedbe logičkih sklopova u tehnologiji CMOS: str. 237-239
- koncept integriranog sklopa: str. 199-204
- električka svojstva integriranih izvedbi: str. 209-216
- dinamička svojstva integriranih izvedbi: str. 217
- integrirani logički sklopovi: str. 207-209, 245-246

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike; Poglavlje 6: Elektroničke izvedbe logičkih sklopova.
- interpretacija logičkih vrijednosti: 3.24
- implementacije osnovnih logičkih sklopova: 6.8
- implementacije drugih logičkih sklopova: 6.13, 6.14, 6.15, 6.17
- izvedbe logičkih sklopova u tehnologiji CMOS: 6.11, 6.18-6.23
- električka svojstva integriranih izvedbi: 6.4, 6.5
- dinamička svojstva integriranih izvedbi: 6.9

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 2: Osnovni logički sklopovi; Cjelina 14: Integrirani logički sklopovi.
- izvedbe logičkih sklopova u tehnologiji CMOS:
 - riješeni zadaci: 14.7-14.10,
 - zadaci za vježbu: 1, 3 (str.452-453)
- električka svojstva integriranih izvedbi:
 - riješeni zadaci: 2.11-2.14, 14.15
 - zadaci za vježbu: 5 (str.452-453)