Teoria da computação

Prof. Allan Rodrigo Leite

- Abordagem mais ampla que as linguagens regulares
 - Análise sintática
 - Balanceamento de parênteses
 - Blocos de programas
- Relação entre linguagens regulares e livres de contexto
 - Pela hierarquia de Chomsky, a classe das gramáticas livres de contextos contém a classe das linguagens regulares
 - Uma linguagem regular pode ser representada por uma gramática regular, mas o contrário não é válido

Exemplo

- Como construir uma gramática para expressar cadeias que são palíndromos, considerando o alfabeto $\Sigma = \{0,1\}$?
- Palíndromos
 - 0110
 - 11011
 - λ
- Não palíndromos
 - 011
 - 0101
 - 10

- Formalmente $G = \langle V, T, S, P \rangle$
 - V: conjunto finito de símbolos variáveis ou não-terminais
 - T: conjunto finito de símbolos terminais disjunto de V
 - P: relação finita de produções conforme (V ∪ T)⁺ → (V ∪ T)^{*}
 - S: elemento distinguido de V que representa o símbolo ou variável inicial
- Representação de uma regra de produção
 - A $\rightarrow \alpha$, onde A $\in Ve\alpha \in (V \cup T)^*$
 - Isto é, não apresenta as restrições de uma gramática linear (regular)

- Exemplo
 - L = $\{a^nb^n \mid n \geq 0\}$ é uma linguagem com G para expressar:
 - Cadeias que iniciem com um ou mais a e terminem com um ou mais b
 - Sequencias de a com o mesmo tamanho de sequencias de b
 - $G = \langle \{S\}, \{a,b\}, S, P \rangle$
 - G é uma gramática livre de contexto
 - $P = \{ S \rightarrow aSb, S \rightarrow \lambda \}$

- Exemplo
 - Como construir uma gramática para expressar cadeias que são palíndromos, considerando o alfabeto $\Sigma = \{0,1\}$?

```
• G = < V,T,P,S >

• V: {S}

• T: {0,1}

• P: {P → λ,P → 0|1,P → 0P0|1P1}
```

Exemplo

• Como construir uma gramática para expressar cadeias que são palíndromos,

considerando o alfabeto $\Sigma = \{0, 1\}$?

• Exemplo: 01010

- V: {S}
- T: $\{0,1\}$
- P: $\{P \rightarrow \lambda, P \rightarrow 0 | 1, P \rightarrow 0P0 | 1P1\}$

- Representação do produto da aplicação sucessiva de regras de produção
 - A raiz da árvore é o símbolo inicial da gramática (S)
 - Os vértices interiores são variáveis
 - Se A é um vértice interior e X_1, \ldots, X_N são filhos de A, então A $\to X_1 | \ldots | X_N$ é uma produção da gramática
 - Os vértices folha são símbolos terminais ou símbolo λ (vazio)
- Tipos de derivação
 - Derivação a esquerda: em cada passo,
 a variável A ∈ V mais a esquerda é substituída
 - Derivação a direita: em cada passo,
 a variável A ∈ V mais a direita é substituída

- Dada a linguagem L = $\{a^nb^m \mid n \neq m\}$ • G = $\{S,T,A,B\},\{a,b\},S,P>$ • P = $\{P \rightarrow AT|TB, T \rightarrow aTb|\lambda, A \rightarrow aA|a,B \rightarrow bB|b\}$
- Exemplo: aaab
 - Derivação a esquerda
 - S \rightarrow AT \rightarrow aAT \rightarrow aaT \rightarrow aaaTb \rightarrow aaab
 - Derivação a direita
 - S \rightarrow AT \rightarrow AaTb \rightarrow Aab \rightarrow aAab \rightarrow aaab

- Gramática ambígua
 - Resulta em diferentes derivações para uma mesma cadeia
- Exemplo: a + a
 - $G_1 = \langle \{S\}, \{a,+\}, S, P \rangle$
 - $P = \{S \rightarrow a | S + S\}$
 - G₁ é ambígua pois:
 - S \rightarrow S + S \rightarrow S + a \rightarrow a + a (derivação à esquerda)
 - S \rightarrow S + S \rightarrow a + S \rightarrow a + a (derivação à direita)

- Gramática ambígua
 - Resulta em diferentes derivações para uma mesma cadeia
- Exemplo: a + a
 - $G_2 = \langle \{S\}, \{a,+\}, S, P \rangle$
 - P = $\{S \rightarrow a | a + a | S + S\}$
 - G₂ é ambígua pois:
 - $S \rightarrow a + a$
 - $S \rightarrow S + S \rightarrow S + a \rightarrow a + a$ (derivação à esquerda)
 - S \rightarrow S + S \rightarrow a + S \rightarrow a + a (derivação à direita)

- Gramática ambígua
 - Resulta em diferentes derivações para uma mesma cadeia
- Exemplo: a + a
 - $G_3 = \langle \{S\}, \{a,+\}, S, P \rangle$
 - P = $\{S \rightarrow a | a + S\}$
 - G₃ não é ambígua pois:
 - $S \rightarrow S + S \rightarrow a + S \rightarrow a + a$ (derivação à direita)

- Gramática ambígua
 - Resulta em diferentes derivações para uma mesma cadeia
- Exemplo: a + a
 - No entanto, a linguagem $L = L(G_1) = L(G_2) = L(G_3)$ não é ambígua, já que existe uma gramática G_3 que não é ambígua

- Regras para simplificação de gramáticas livres de contexto
 - Retirada de produções vazias A → λ
 - Retirada de produções da forma A → B que simplesmente substitui uma variável por outra
 - Retirada de variáveis ou símbolos terminais não usados
- Formas normais
 - Introduzem restrições sobre as gramáticas
 - As mais comuns são Chomsky e Greibach

- Autômatos com pilha são reconhecedores ou aceitadores de linguagens livre de contexto
 - Os mais usuais são os autômatos com pilha não determinísticos
 - Possuem memória auxiliar para o processamento da entrada
 - Normalmente a memória tem uma capacidade teórica infinita
 - Por ser uma pilha, o último símbolo gravado na pilha será o primeiro a ser lido

- Formalmente M = $< Q, \Sigma, \Gamma, \delta, q_0, z, F >$
 - Q: conjunto de estados finitos
 - Σ: alfabeto de entrada (conjunto finito de símbolos)
 - Γ : alfabeto da pilha (conjunto finito de símbolos)
 - δ : função de transição definida por δ : Q x $\Sigma \rightarrow$ Q
 - q_0 : estado inicial ($q_0 \in Q$)
 - z: símbolo inicial da pilha ($z \in \Gamma$)
 - F: conjunto de estados finais (F ∈ Q)

- Funções de transição
 - Indicam qual transição será realizada quando um dado símbolo for lido
 - Porém, em autômatos com pilhas a transição também depende do símbolo que está no topo da pilha
- Exemplo 1
 - $\delta(q_1, a, b) = \{(q_2, cd), (q_3, \lambda)\}$
 - Se em algum momento o autômato estiver no estado q_1 e o símbolo lido for a e o símbolo desempilhado for b, então:
 - Altera para o estado q₂ e cd é empilhado, ou
 - Altera para o estado q₃ e nada será empilhado

Exemplo 2

- Dada a linguagem $L = \{ a^n b^n \mid n \geq 0 \},$
- M é um autômato com pilhas que aceita L

```
• M = \langle \{q_0, q_1, q_2, q_3\}, \{a,b\}, \{Z,X\}, \delta, q_0, Z, \{q_3\} \rangle

• \delta(q_0, a, Z) = \{(q_1, XZ)\}

• \delta(q_0, \lambda, Z) = \{(q_3, \lambda)\}

• \delta(q_1, a, X) = \{(q_1, XX)\}

• \delta(q_1, b, X) = \{(q_2, \lambda)\}

• \delta(q_2, b, X) = \{(q_2, \lambda)\}

• \delta(q_2, \lambda, Z) = \{(q_3, \lambda)\}
```

Exemplo 2

- Dada a linguagem $L = \{ a^n b^n \mid n \ge 0 \}$
- M é um autômato com pilhas que aceita L

•
$$M = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{Z, X\}, \delta, q_0, Z, \{q_3\} \rangle$$

- $\delta(q_0, a, Z) = \{(q_1, XZ)\}$
- $\delta(q_0, \lambda, Z) = \{(q_3, \lambda)\}$
- $\delta(q_1, a, X) = \{(q_1, XX)\}$
- $\delta(q_1, b, X) = \{(q_2, \lambda)\}$
- $\delta(q_2,b,X) = \{(q_2,\lambda)\}$
- $\delta(q_2,\lambda,Z) = \{(q_3,\lambda)\}$

- Exemplo 2 (cont.)
 - $M = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{Z, X\}, \delta, q_0, Z, \{q_3\} \rangle$
 - $\delta(q_0, a, Z) = \{(q_1, XZ)\}$
 - Estando no estado q_0 , lido o símbolo a e desempilhado o símbolo a, então pode ir para o estado a0 e empilhar a1 e empilhar a2
 - $\delta(q_0, \lambda, Z) = \{(q_3, \lambda)\}$
 - Estando no estado q_0 , lido o símbolo λ e desempilhado o símbolo Z, então pode ir para o estado q_3 e não se empilha nada
 - $\delta(q_1, a, X) = \{(q_1, XX)\}$
 - Estando no estado q_1 , lido o símbolo a e desempilhado o símbolo a, então pode ir para o estado a0 e empilha-se a0 estado a1 e empilha-se a2 e desempilhado o símbolo a3 e desempilhado o símbolo a4 e empilha-se a5 e desempilhado o símbolo a6 e desempilhado o símbolo a8 e desempilhado o símbolo a8 e desempilhado o símbolo a8 e desempilhado o símbolo a9 e desempil

- Exemplo 2 (cont.)
 - $M = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{Z, X\}, \delta, q_0, Z, \{q_3\} \rangle$
 - $\delta(q_1,b,X) = \{(q_2,\lambda)\}$
 - Estando no estado q_1 , lido o símbolo b e desempilhado o símbolo x, então pode ir para o estado q_2 e não se empilha nada
 - $\delta(q_2, b, X) = \{(q_2, \lambda)\}$
 - Estando no estado q_2 , lido o símbolo b e desempilhado o símbolo x, então pode ir para o estado q_2 e não se empilha nada
 - $\delta(q_2,\lambda,Z) = \{(q_3,\lambda)\}$
 - Estando no estado q_2 , lido o símbolo λ e desempilhado o símbolo Z, então pode ir para o estado q_3 e não se empilha nada

- Exemplo 3
 - Dada a linguagem $L = \{ a^n b^n \mid n \ge 0 \}$
 - M é um autômato com pilhas que aceita L
 - M = < {q₀,q₁,q₂},{a,b},{Z,X}, δ ,q₀,Z,{q₂} > δ : ???

Exemplo 3

•
$$M = < \{q_0, q_1, q_2\}, \{a,b\}, \{x,Z\}, \delta, q_0, Z, \{q_2\} >$$

•
$$\delta(q_0, a, \lambda) = (q_0, X)$$

•
$$\delta(q_0, \lambda, Z) = (q_3, \lambda)$$

•
$$\delta(q_0,b,X) = (q_1,\lambda)$$

•
$$\delta(q_1,b,X) = (q_1,\lambda)$$

•
$$\delta(q_1, \lambda, Z) = (q_2, \lambda)$$

• Σ: {a,b}

• **F**: ???

• δ: ???

```
• L = \{w \in \{a,b\}^* \mid w \text{ possui o mesmo número de } a \text{ e de } b\}

• L = \{a^nb^m \mid n = m\}

• Construa o autômato M = <Q,\Sigma,\Gamma,\delta,q_0,z,F> onde:

• Q: ???
```

- L = $\{w \in \{a,b\}^* \mid w \text{ possui o mesmo número de } a \text{ e de } b\}$
- Construa o autômato $M = \langle Q, \Sigma, \Gamma, \delta, q_0, z, F \rangle$ onde:
 - Q: $\{q_0, q_1\}$
 - Σ: {a,b}
 - Γ: {0,1,Z}
 - δ: funções de transição
 - $\delta(q_0, \lambda, Z) = (q_1, Z)$
 - $\delta(q_0, a, Z) = (q_0, 0Z)$
 - $\delta(q_0, b, z) = (q_0, 1z)$
 - $\delta(q_0, a, 0) = (q_0, 00)$
 - $\delta(q_0,b,0) = (q_0,\lambda)$
 - $\delta(q_0, a, 1) = (q_0, \lambda)$
 - $\delta(q_0, b, 1) = (q_0, 11)$
 - F: q₁

- Gramática livre de contexto
 - Se L é uma linguagem livre de contexto, então existe uma gramática G livre de contexto tal que L = L(G)

- Autômato com pilhas
 - Se L é uma linguagem livre de contexto, então existe um autômato com pilha não determinístico M tal que L = L(M)