Final Exam

PSTAT 5A, Summer B, 2018

Name:			
Perm #:			

Section Time & TA Name A. Bernstein A. Bernstein K. Wang (draw a circle): TW 2 pm TW 3 pm TW 5 pm

Instructions:

- You have 80 minutes to complete the exam.
- Read each question carefully and answer all questions.
- Round numbers to 3 decimal places.
- You must show your work clearly: NO WORK=NO CREDIT.
- Anyone found copying another students' work will be given an F for the course.
- You are **NOT ALLOWED** to consult any notes or textbook during this exam.
- You are **NOT ALLOWED** to consult any cellphones, smartphones, computers or electronic device of any form during this exam.
- All cellphones, smartphones and computers must be turned off.
- You may use a calculator. You cannot not use a phone as a calculator.

Questions	Points
1 (40 pts)	
2 (30 pts)	
3 (30 pts)	
TOTAL	

Question 1

You are hired to study the rental market for UCSB students. The Housing Office did a survey of 43 apartments for rent in the area. They found that the average rent was \$1,873 per month with a sample standard deviation of \$800. To see how the size of the apartment affects the rent, they also recorded the overall square footage for each apartment which found an average of 750 square feet with a sample standard deviation of 343.4 square feet. The sample correlation between these measurements was 0.685.

of	343.4 square feet. The sample correlation between these measurements was 0.685.
a)	(10 points) Identify the explanatory and response variables in this study and estimate a simple linear regression. Give an interpretation to the slope.
b)	(5 points) What would be the rent for an 800 square feet apartment?

d)	(10 points)	Find a	98%	confidence	interval	for	the	population	mean	of	the
	explanatory	variab!	le. Ass	sume it has a	a normal	dist	ribut	tion.			

e) (10 points) Suppose you dig more into the details of this same survey. You find out that 35% of the surveyed apartments are infested with cockroaches. But your boss believes that at most 25% of the apartments have this issue. Would you agree with him at a 10% significance level? Check any necessary conditions.

Question 2

A scientist believes that the distribution of adults height in North Dakota is well represented by a normal random variable with mean 70 inches and standard deviation 5 inches. And a study from the US Dept. of Health found a national average height of 69.15 inches.

a) (10 pts) What' the probability that a randomly chosen North Dakotan is taller than an average American given that is shorter than 70.3 inches?

b) (10 points) If I randomly chose five North Dakotans, what is the probability that at most 2 of them are shorter than 70.4 inches?

c) (10 points) You want to make inference on the proportion of North Dakotans taller than the national average. How many North Dakotans do you need to survey to get a 97% confidence interval with a margin of error of 0.15 for this task?

Question 3

a) (10 pts) Let $X \sim Unif(-6.7)$. What is the 60^{th} percentile of X?

b) (10 pts) Let Z be a standard normal random variable. You sample this variable and you record its value each time. Based on the value of ${m Z}$, you assign a value to ${m W}$ as follows:

Find the mean of
$$W$$
 and $P(W > 15 | W > 6)$

c) (10 pts) You have two trucks: one full of oranges and another full of blueberries. You take a random sample of 150 oranges and 200 blueberries. You find that 78 and 122 of them respectively were in contact with fruit flies. Test the claim that the proportion of blueberries minus the proportion of oranges in touch with fruit flies is greater than 5%. Use a 10% significance level. Check any necessary conditions.

Standard Normal Probabilities

Standard Normal Probabilities

Table entry for z is the area under the standard normal curv to the left of z.

. 2

. 05

.0

.0003 .0004 .0006 .0008 .0012 .0016 .0023

> .0003 .0004 .0006 .0008 .0011

.0021

0 0 0

	Ф	
		Table entry
2		

Table entry for z is the area under the standard normal curve to the left of z.

4721	4325	3936	3557	3192	2843	2514	2206	1922	1660	1423	1210	1020	0853	0708	0582	0475	0384	0307	0244	0192	0150	0116	0089	8900	0051	0038	0028	0021	0015	0011	8000	0005	0004	0003	.07
.4681	.4286	.3897	.3520	.3156	.2810	.2483	.2177	.1894	.1635	.1401	.1190	.1003	.0838	.0694	.0571	.0465	.0375	.0301	.0239	.0188	.0146	.0113	.0087	.0066	.0049	.0037	.0027	.0020	.0014	.0010	.0007	.0005	.0004	.0003	.08
.4641	.4247	.3859	.3483	.3121	.2776	.2451	.2148	.1867	.1611	.1379	.1170	.0985	.0823	.0681	.0559	.0455	.0367	.0294	.0233	.0183	.0143	.0110	.0084	.0064	.0048	.0036	.0026	.0019	.0014	.0010	.0007	.0005	.0003	.0002	.09
3.4	3.3	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	7
.9997	.9995	.9993	.9990	.9987	.9981	.9974	.9965	.9953	.9938	.9918	.9893	.9861	.9821	.9772	.9713	.9641	.9554	.9452	.9332	.9192	.9032	.8849	.8643	.8413	.8159	.7881	.7580	.7257	.6915	.6554	.6179	.5793	.5398	.5000	.00
.9997	.9995	.9993	.9991	.9987	.9982	.9975	.9966	.9955	.9940	.9920	.9896	.9864	.9826	.9778	.9719	.9649	.9564	.9463	.9345	.9207	.9049	.8869	.8665	.8438	.8186	.7910	.7611	.7291	.6950	.6591	.6217	.5832	.5438	.5040	.01
.9997	.9995	.9994	.9991	.9987	.9982	.9976	.9967	.9956	.9941	.9922	.9898	.9868	.9830	.9783	.9726	.9656	.9573	.9474	.9357	.9222	.9066	.8888	.8686	.8461	.8212	.7939	.7642	.7324	.6985	.6628	.6255	.5871	.5478	.5080	.02
.9997	.9996	.9994	.9991	.9988	.9983	.9977	.9968	.9957	.9943	.9925	.9901	.9871	.9834	.9788	.9732	.9664	.9582	.9484	.9370	.9236	.9082	.8907	.8708	.8485	.8238	.7967	.7673	.7357	.7019	.6664	.6293	.5910	.5517	.5120	.03
.9997	.9996	.9994	.9992	.9988	.9984	.9977	.9969	.9959	.9945	.9927	.9904	.9875	.9838	.9793	.9738	.9671	.9591	.9495	.9382	.9251	.9099	.8925	.8729	.8508	.8264	.7995	.7704	.7389	.7054	.6700	.6331	.5948	.5557	.5160	.04
.9997	.9996	.9994	.9992	.9989	.9984	.9978	.9970	.9960	.9946	.9929	.9906	.9878	.9842	.9798	.9744	.9678	.9599	.9505	.9394	.9265	.9115	.8944	.8749	.8531	.8289	.8023	.7734	.7422	.7088	.6736	.6368	.5987	.5596	.5199	.05
.9997	.9996	.9994	.9992	.9989	.9985	.9979	.9971	.9961	.9948	.9931	.9909	.9881	.9846	.9803	.9750	.9686	.9608	.9515	.9406	.9279	.9131	.8962	.8770	.8554	.8315	.8051	.7764	.7454	.7123	.6772	.6406	.6026	.5636	.5239	.06
.9997	.9996	.9995	.9992	.9989	.9985	.9979	.9972	.9962	.9949	.9932	.9911	.9884	.9850	.9808	.9756	.9693	.9616	.9525	.9418	.9292	.9147	.8980	.8790	.8577	.8340	.8078	.7794	.7486	.7157	.6808	.6443	.6064	.5675	.5279	.07
.9997	.9996	.9995	.9993	.9990	.9986	.9980	.9973	.9963	.9951	.9934	.9913	.9887	.9854	.9812	.9761	.9699	.9625	.9535	.9429	.9306	.9162	.8997	.8810	.8599	.8365	.8106	.7823	.7517	.7190	.6844	.6480	.6103	.5714	.5319	.08
.9998	.9997	.9995	.9993	.9990	.9986	.9981	.9974	.9964	.9952	.9936	.9916	.9890	.9857	.9817	.9767	.9706	.9633	.9545	.9441	.9319	.9177	.9015	.8830	.8621	.8389	.8133	.7852	.7549	.7224	.6879	.6517	.6141	.5753	.5359	.09

 $\begin{array}{c} -3.4 \\ -3.2 \\ -3.1 \\ -2.8 \\ -2.1 \\ -2$

.0003
.0007
.0007
.0010
.0013
.0026
.0026
.0035
.0047
.0062
.0082
.0109
.0109
.0128
.0228
.0228
.0359
.0446
.0548
.0868
.0868
.0868
.0868
.1151
.1357
.1387
.1387
.1387
.1387
.1387
.1387
.1387

.0003 .0003 .0007 .0009 .0013 .0025 .0034 .0045 .0060 .0060 .0108 .0174 .0136 .0174 .0174 .0176

.0005
.0003
.0005
.0007
.0006
.0009
.0018
.0024
.0033
.0044
.0059
.0102
.0102
.0117
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0217
.0224
.0133
.0778
.0234
.0427
.0526
.0313
.0778
.0526
.0313
.0778
.0526
.0313
.0778
.0526
.0313

.0003 .0003 .0006 .0009 .0017 .0023 .0057 .0057 .0059 .0126 .0212 .0268 .0212 .0268 .0212 .0212 .0268 .0212 .0212 .0213 .0212 .0213 .0212 .0213

.0003
.0003
.0004
.0006
.0008
.0011
.0016
.0022
.0030
.0040
.0054
.0129
.0256
.0202
.0202
.0302
.0401
.0401
.0495
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256
.0256

.0039 .0052 .0069 .0091 .01197 .0197 .0250 .0314 .0392 .0392 .0485 .0392 .0485 .0485 .0594 .0721 .0869 .1038 .1230 .11446 .1685 .1230 .1446 .1685 .1230 .1446 .1685 .1230 .1446 .1685 .1230 .1446 .1685 .168

.0041 .0055 .0073 .0096 .0125 .0162 .0162 .0207 .0207 .0262 .0329 .0409 .0505 .0505 .0505 .0505 .0505

0000000000000000

.1492 .1736 .2005 .2296 .2611 .2946 .3300 .3669 .4052 .4443

T-table Confidence Levels

Degrees of						
Freedom (df)	80%	90%	95%	98%	99%	
1	3.078	6.314	12.706	31.821	63.657	
2	1.886	2.920	4.303	6.965	9.925	
3	1.638	2.353	3.182	4.541	5.841	
4	1.533	2.132	2.776	3.747	4.604	
5	1.476	2.015	2.571	3.365	4.032	
6	1.440	1.943	2.447	3.143	3.707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.860	2.306	2.896	3.355	
9	1.383	1.833	2.262	2.821	3.250	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.179	2.681	3.055	
13	1.350	1.771	2.160	2.650	3.012	
14	1.345	1.761	2.145	2.624	2.977	
15	1.341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.120	2.583	2.921	
17	1.333	1.740	2.110	2.567	2.898	
18	1.330	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.721	2.080	2.518	2.831	
22	1.321	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.500	2.807	
24	1.318	1.711	2.064	2.492	2.797	
25	1.316	1.708	2.060	2.485	2.787	
26	1.315	1.706	2.056	2.479	2.779	
27	1.314	1.703	2.052	2.473	2.771	
28	1.313	1.701	2.048	2.467	2.763	
29	1.311	1.699	2.045	2.462	2.756	
30	1.310	1.697	2.042	2.457	2.750	
31	1.309	1.696	2.040	2.453	2.744	
32	1.309	1.694	2.037	2.449	2.738	
33	1.308	1.692	2.035	2.445	2.733	
34	1.307	1.691	2.032	2.441	2.728	
35	1.307	1.690	2.032	2.438	2.724	
36	1.306	1.688	2.030	2.434	2.719	
37	1.305	1.687	2.028	2.434	2.715	
38	1.303	1.686	2.026	2.431	2.712	
39	1.304	1.685	2.023	2.426	2.708	
40	1.303	1.684	2.021	2.423	2.704	

Degrees of					
Freedom (df)	80%	90%	95%	98%	99%
41	1.303	1.683	2.020	2.421	2.701
42	1.302	1.682	2.018	2.418	2.698
43	1.302	1.681	2.017	2.416	2.695
44	1.302	1.680	2.017	2.414	2.692
45	1.301	1.679	2.013	2.412	2.690
46	1.300	1.679	2.014	2.412	2.687
47	1.300	1.678	2.013	2.408	2.685
48	1.299	1.677	2.012	2.407	2.682
49	1.299	1.677	2.010	2.407	2.680
50	1.299	1.676	2.009	2.403	2.678
51	1.298	1.675	2.008	2.402	2.676
52	1.298	1.675	2.007	2.400	2.674
53	1.298	1.674	2.007	2.399	2.672
54	1.297	1.674	2.005	2.397	2.670
55	1.297	1.673	2.003	2.396	2.668
56	1.297	1.673	2.004	2.395	2.667
57	1.297	1.672	2.003	2.394	2.665
58	1.296	1.672	2.002	2.394	2.663
59	1.296	1.671	2.002	2.391	2.662
60	1.296	1.671	2.000	2.390	2.660
61	1.296	1.670	2.000	2.389	2.659
62	1.295	1.670	1.999	2.388	2.657
63	1.295	1.669	1.998	2.387	2.656
64	1.295	1.669	1.998	2.386	2.655
65	1.295	1.669	1.997	2.385	2.654
66	1.295	1.668	1.997	2.384	2.652
67	1.294	1.668	1.996	2.383	2.651
68	1.294	1.668	1.995	2.382	2.650
69	1.294	1.667	1.995	2.382	2.649
70	1.294	1.667	1.994	2.381	2.648
71	1.294	1.667	1.994	2.380	2.647
72	1.293	1.666	1.993	2.379	2.646
73	1.293	1.666	1.993	2.379	2.645
74	1.293	1.666	1.993	2.378	2.644
75	1.293	1.665	1.992	2.377	2.643
76	1.293	1.665	1.992	2.376	2.642
77	1.293	1.665	1.991	2.376	2.641
78	1.292	1.665	1.991	2.375	2.640
79	1.292	1.664	1.990	2.374	2.640
80	1.292	1.664	1.990	2.374	2.639
81	1.292	1.664	1.990	2.373	2.638
82	1.292	1.664	1.989	2.373	2.637
83	1.292	1.663	1.989	2.372	2.636

Degrees of					
Freedom (df)	80%	90%	95%	98%	99%
84	1.292	1.663	1.989	2.372	2.636
85	1.292	1.663	1.988	2.371	2.635
86	1.291	1.663	1.988	2.370	2.634
87	1.291	1.663	1.988	2.370	2.634
88	1.291	1.662	1.987	2.369	2.633
89	1.291	1.662	1.987	2.369	2.632
90	1.291	1.662	1.987	2.368	2.632
91	1.291	1.662	1.986	2.368	2.631
92	1.291	1.662	1.986	2.368	2.630
93	1.291	1.661	1.986	2.367	2.630
94	1.291	1.661	1.986	2.367	2.629
95	1.291	1.661	1.985	2.366	2.629
96	1.290	1.661	1.985	2.366	2.628
97	1.290	1.661	1.985	2.365	2.627
98	1.290	1.661	1.984	2.365	2.627
99	1.290	1.660	1.984	2.365	2.626
100	1.290	1.660	1.984	2.364	2.626
101	1.290	1.660	1.984	2.364	2.625
102	1.290	1.660	1.983	2.363	2.625
103	1.290	1.660	1.983	2.363	2.624
104	1.290	1.660	1.983	2.363	2.624
105	1.290	1.659	1.983	2.362	2.623

P(A or B) = P(A) + P(B) - P(A and B)Probability: $P(A^c) = 1 - P(A)$ $P(B|A) = \frac{P(A \text{ and } B)}{r}$

If A and B are mutually exclusive events: $P(A \ and \ B) = 0$ If A and B are independent events: P(A and B) = P(A)(B)

Discrete Random Variables:

$$\mu = \sum_{for \, all \, x} x \, P(X = x) \qquad \sigma = \sqrt{\left(\sum_{for \, all \, x} x^2 \, P(X = x)\right) - \mu^2}$$

$$\frac{\text{Binomial pdf: } \binom{n}{x} = \frac{n!}{(n-x)!x!} \qquad P(X = x) = \binom{n}{x} \, p^x (1-p)^{n-x}}{\sigma = \sqrt{np(1-p)}}$$

Uniform pdf: pdf: $p(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases} \mu = \frac{a+b}{2} \quad \sigma = \frac{(b-a)}{\sqrt{12}}$

Normal Distribution: If $X \sim N(\mu, \sigma)$ then $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$

Normal Approximation for Binomial Distribution:

 $X \sim Bin(n,p)$ $Y \sim N(\mu = np, \sigma = \sqrt{np(1-p)})$

$$P(X = x) \approx P\left(x - \frac{1}{2} \le Y \le x + \frac{1}{2}\right)$$

$$P(X \le x) \approx P\left(Y < x + \frac{1}{2}\right) \qquad P(X < x) \approx P\left(Y < x - \frac{1}{2}\right)$$

$$P(X \ge x) \approx P\left(Y > x - \frac{1}{2}\right) \qquad P(X > x) \approx P\left(Y > x + \frac{1}{2}\right)$$

 $\frac{\text{Sample Statistics: }s = \sqrt{\frac{(\Sigma x^2) - n\bar{x}^2}{n-1}} \quad \text{Range=Max-Min} \quad IQR = Q_3 - Q_1}{N(\mu, \sigma): \qquad \hat{\mu} = \bar{x} \quad \hat{\sigma} = s \quad Unif(a,b): \qquad \hat{a} = Min \quad \hat{b} = Max}$ $Bin(n,p): \qquad \hat{p} = \bar{x}$

Confidence Intervals for a Population Mean

$$\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$$
 $n_{MIN} = \left(\frac{z\sigma}{E}\right)^2$ $\overline{x} \pm t \frac{s}{\sqrt{n}}$ $n_{MIN} = \left(\frac{ts}{E}\right)^2$

Hypothesis Testing for a Population Mean

If $H_A: \mu > \mu_0 \Rightarrow \text{p-value} = P(Z > z_{\text{test}})$ If $H_A: \mu < \mu_0 \Rightarrow \text{p-value} = P(Z < z_{\text{test}})$ If $H_A: \mu \neq \mu_0 \Rightarrow \text{p-value} = P(Z < -|z_{\text{test}}|) + P(Z > |z_{\text{test}}|)$

Confidence Intervals for a Sample Proportion

$$\hat{p}\pm z\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$
 $n_{MIN}=\left(rac{z}{E}
ight)^{2}p(1-p)$ Hypothesis Testing for a Population Mean $z_{ ext{test}}=-\frac{1}{2}$

If $H_A: p > p_0 \Rightarrow \text{p-value} = P(Z > z_{\text{test}})$

$$\begin{split} &\text{If } H_A \colon p < p_0 \Rightarrow \text{p-value} = P(Z < z_{\text{test}}) \\ &\text{If } H_A \colon p \neq p_0 \Rightarrow \text{p-value} = P(Z < -|z_{\text{test}}|) + P(Z > |z_{\text{test}}|) \end{split}$$

Confidence Intervals for Two Sample Proportions

$$\hat{p}_1 - \hat{p}_2 \pm z \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Hypothesis Testing for Two Sample Proportions

$$\begin{split} \overline{z_{test}} &= \frac{(\hat{p}_1 - \hat{p}_2) - \Delta}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}\\ \bar{p} &= \frac{\# successes}{n_1 + n_2}\\ \text{If } H_A \colon p_1 - p_2 > \Delta \Rightarrow \text{p-value} = P(Z > z_{test})\\ \text{If } H_A \colon p_1 - p_2 < \Delta \Rightarrow \text{p-value} = P(Z < z_{test})\\ \text{If } H_A \colon p_1 - p_2 \neq \Delta \Rightarrow \text{p-value} = P(Z < |z_{test}|) + P(Z > |z_{test}|) \end{split}$$

Linear Regression: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ $\hat{\beta}_1 = r \frac{s_y}{s_x}$