# Clementi and Palazzo (2016) Replication

Rishabh Aggarwal\*

## 1 Model

### 1.1 Households:

- Demand for output and supply of capital is perfectly elastic
- Labor supply is given by

$$L_t^s = w_t^{\gamma} \tag{1}$$

where  $w_t$  is the real wage rate with  $\gamma$  being the Frisch elasticity

#### 1.2 Firms:

• There are two kinds of firms: incumbents and potential entrants

#### 1.2.1 Incumbents

• There are perfectly competitive heterogeneous firms - all producing the *same* good with the production technology

$$y_t = X_t s_t \left( k_{t-1}^{\alpha_k} l_t^{\alpha_l} \right)^{\theta} \tag{2}$$

where  $X_t$ : aggregate productivity,  $s_t$ : idiosyncratic productivity, and  $k_{t-1}$ : capital stock. The idiosyncratic productivity follows an AR(1) process:

$$\log s_{t+1} = \rho_s \log s_t + \sigma_s \epsilon_{s,t+1}$$

- Price of capital is normalized to 1
- **Timeline** of an incumbent is as follows: Let  $\Gamma_t$  denote the distribution of firms over  $(k_{t-1}, s_t)$ . Given the aggregate state  $\lambda_t = (\Gamma_t, X_t)$  and the idiosyncratic state  $(k_{t-1}, s_t)$ , incumbents
  - 1. choose labor  $l_t$  and produce  $y_t$
  - 2. decide whether to continue or exit

<sup>\*</sup>Indian School of Business. Email: rishabh\_aggarwal@isb.edu

- 3. Continuing firms pay a fixed operating cost  $c_f$  and choose capital for the next period  $k_t$  discounting the future at rate  $\beta_t = 1/R_t$  where  $R_t$  is the gross interest rate.<sup>1</sup>
- 4. If the firm exits, it cannot enter at a later stage and simply recoup the undepreciated capital net of adjustment costs (i.e.  $k_t = 0$ )
- Incumbent's (perfect-foresight w.r.t aggregates) problem can therefore be written as

$$V_{t}(k_{-},s) = \max \left\{ V_{t}^{exit}(k_{-},s), V_{t}^{cont}(k_{-},s) - c_{f} \right\}$$

$$V_{t}^{cont}(k_{-},s) = \max_{k} \left\{ \pi(k_{-},s) - k + (1-\delta)k_{-} - g(k - (1-\delta)k_{-},k_{-}) + \frac{1}{R_{t}} \mathbb{E}_{s'|s} \left[ V_{t+1}(k,s') \mid s \right] \right\}$$
(3a)
(3b)

$$V_t^{exit}(k_-,s) = \pi(k_-,s) + (1-\delta)k_- - g(-(1-\delta)k_-,k_-)$$
(3c)

where

$$\pi(k_{-}, s; X) = \max_{l} \left\{ X s \left( k_{-}^{\alpha_{k}} l^{\alpha_{l}} \right)^{\theta} - w l \right\}$$

are the maximized real profits and  $g(x,k_-)=c_1\left(\frac{x}{k_-}\right)^2k_-$  are the capital adjustment costs (in terms of final good). This gives

$$\pi(k_{-},s;X) = \frac{1-\alpha_{l}\theta}{\alpha_{l}\theta}w^{-\frac{\alpha_{l}\theta}{1-\alpha_{l}\theta}}\left(\alpha_{l}\theta X s k_{-}^{\alpha_{k}\theta}\right)^{\frac{1}{1-\alpha_{l}\theta}} \tag{4}$$

$$l(k_{-},s;X) = \left(\frac{\alpha_{l}\theta X s k_{-}^{\alpha_{k}\theta}}{w}\right)^{\frac{1}{1-\alpha_{l}\theta}}$$

$$y(k_{-},s;X) = X s \left(k_{-}^{\alpha_{k}}l^{\alpha_{l}}(k_{-},s;X)\right)^{\theta}$$
(5)

**Inputs.** (w, X, r) and parameters  $(\alpha_k, \alpha_l, \theta, \rho_s, \sigma_s, \delta, c_f, c_1)$  to solve for incumbent policies

Note. Relative to Clementi and Palazzo (2016), there are two simplifying assumptions:

- 1. I assume that the operating costs  $c_f$  are fixed rather than being random. This has implications for the relative size of the exiters. With random  $c_f$ , even large firms have a non-zero probability of exiting and very small firms have non-zero probability of continuing. This affects the average size of exiting firms (See Table 2 row 7).<sup>2</sup>
- 2. I assume no fixed component of the adjustment costs i.e. here I consider convex capital adjustment costs. Given the calibrated value in Table 2 of Clementi and Palazzo (2016), this has a smaller effect on overall results except for few firm-level statistics (See Table 2 row 4).<sup>3</sup>

#### 1.2.2 Entrants:

• There is a constant mass M of *potential* entrants each with a noisy signal  $s_e$  about the future idiosyncratic productivity

<sup>&</sup>lt;sup>1</sup>In Clementi and Palazzo (2016), operating costs are random. I assume these to be constant here.

<sup>&</sup>lt;sup>2</sup>This is easy to incorporate, simply requires an extra expectation operator over  $c_f$  for the incumbents' problem (3a).

<sup>&</sup>lt;sup>3</sup>To incorporate the fixed component of the adjustment costs, we need to add another discrete choice stage with taste shocks.

- The distribution of the signals is Pareto such that  $H\left(s_{e}\right)=1-\left(\frac{s_{e}}{s_{e}}\right)^{\xi}$  with  $\xi>1$
- Entry entails a fixed cost  $c_e$
- Entrant's problem is:

$$V_{t}^{entrant}(s_{e}) = \max_{k} -k + \frac{1}{R_{t}} \mathbb{E}_{s|s_{e}}[V_{t+1}(k, s) \mid s_{e}]$$
(6)

- They will enter iff  $V_t^{entrant}(s_e) \ge c_e$
- Further, assume that the realization of productivity conditional on the signal follows:

$$\log s = \rho_s \log s_e + \sigma_s \eta, \quad \eta \sim \mathcal{N}(0,1)$$

• *s* is the realization of productivity with which entrants produce

**Inputs.**  $(R_t, V_{t+1})$  and parameters  $(\xi, \underline{s_e}, c_e, \rho_s, \sigma_s)$  to solve for entrants' policies and M for s.s. distribution.

**Note.** The signal distribution of the entrants matters a lot for the dynamics of entry and for the relative size of the entrants. If the signal is drawn from the stationary distribution of productivity (which is log-normal), entrants and continuing firms tend to be very similar. As a result, the entry *rate* doesn't budge a lot upon a productivity shock. This is an important point in the paper.

## 1.3 Equilibrium

• Labor market clearing:

$$\underbrace{w_t^{\gamma}}_{\text{Supply}} = \underbrace{\int l(k_-, s) d\Gamma_t(k_-, s)}_{\text{Labor Demand}}$$

determines equilibrium wage  $w_t$ . Above  $l(k_-,s)$  is the labor demand of incumbents given by (5) and  $\Gamma_t$  is the cross-sectional distribution of incumbents. [See the exact equilibrium definition in the paper.]

## 2 Calibration and Results

#### 2.1 Calibration

- There are 14 parameters:  $(\gamma, \alpha_k, \alpha_l, \theta, \rho_s, \sigma_s, R, c_1, \delta, c_f, c_e, \xi, \underline{s_e}, M)$
- Table 1 reports the parameter values and the calibration targets are listed in Table 2.
- Relative to the paper, following are the differences in calibration methodology:
  - 1. I fix  $\gamma = 2$ . It is otherwise calibrated to hit the standard deviation of employment growth

- 2. I assume  $\rho_s = 0.55$ . It is otherwise calibrated to hit the weighted average of the mean and standard deviation of the investment rate in the data
- 3. I assume  $\sigma_{c_f} = 0$ . It is otherwise calibrated to hit the exiters' relative size.
- 4. I assume  $c_0 = 0$ . It is otherwise calibrated to hit the investment inaction rate
- 5. I assume  $c_1 = 0.03141$ . It is otherwise calibrated to hit the autocorrelation of investment

#### • Rest is the same:

- 1. *M* is calibrated to hit s.s. wage rate of w = 3
- 2.  $\mu_{c_f}$  is calibrated to hit the s.s. exit (=entry) rate
- 3.  $\xi$  is calibrated to hit the entrants' relative size
- 4.  $c_e$  is set to be equal to mean operating costs  $c_f$

Table 1: Parameter Values

| Description                 | Symbol                            | СР       |                                                    | Rishabh          |                                                  |  |
|-----------------------------|-----------------------------------|----------|----------------------------------------------------|------------------|--------------------------------------------------|--|
| 2 coch puon                 |                                   | Value    | Target                                             | Value            | Target                                           |  |
| Capital Share               | $\alpha_k$                        | 0.3      | Assigned                                           | 0.3              | Assigned                                         |  |
| Labor Share                 | $\alpha_l$                        | 0.7      | Assigned                                           | 0.7              | Assigned                                         |  |
| Span of control             | $\theta$                          | 0.8      | Assigned 0.8 Assign                                |                  | Assigned                                         |  |
| Depreciation rate           | δ                                 | 0.1      | Assigned                                           | ned 0.1 Assigned |                                                  |  |
| Interest rate               | R                                 | 1.04     | Assigned                                           | Assigned 1.04    |                                                  |  |
| Labor supply elasticity     | $\gamma$                          | 2        | sd(employment growth) 2                            |                  | Assigned                                         |  |
| Mass of potential entrants  | M                                 | 161.1    | w = 3                                              | 343.85           | w = 3                                            |  |
| Persistence idio. shock     | $ ho_s$                           | 0.55     | Mean and sd of investment rate                     | 0.55             | Assigned                                         |  |
| Variance idio. shock        | $\sigma_{\!\scriptscriptstyle S}$ | 0.22     | Assigned                                           | 0.22             | Assigned                                         |  |
| Operating cost - mean       | $\mu_{c_f}$                       | -5.63872 | 2 Exit rate=0.062 -5.27049 Exit ra                 |                  | Exit rate = 0.062                                |  |
| Operating cost - var        | $\sigma_{c_f}$                    | 0.90277  | Exiters' relative size                             | 0                | Assigned                                         |  |
| Mean operating cost         | $c_f$                             | 0.005347 | $\exp\left(\mu_{c_f} + 0.5\sigma_{c_f}^2\right)$   | 0.005141         | $\exp\left(\mu_{c_f} + 0.5\sigma_{c_f}^2\right)$ |  |
| Fixed cost of investment    | $c_0$                             | 0.00011  | Inaction rate                                      | 0                | Assigned                                         |  |
| Variable cost of investment | $c_1$                             | 0.03141  | Investment autocorrelation 0.03141 Assigned        |                  | Assigned                                         |  |
| Pareto exponent             | ξ                                 | 2.69     | Entrants' relative size = 0.6                      | 3.78             | Entrants' relative size = 0.6                    |  |
| Entry cost                  | $c_e$                             | 0.005347 | $=c_f$                                             | 0.005141         | $=c_f$                                           |  |
| Minimum support of signal   | $\underline{s_e}$                 |          | Lowest grid point that comes out of discretization |                  |                                                  |  |

#### *Notes:*

- (a) There is a typo in the Table 1 of the paper. M = 1,766.29 is actually the total mass of firms in s.s.
- (b) Orange shaded rows represent the differences in calibration methodology
- (c) Blue shaded rows represent the calibrated parameters
- Table 2 reports the model moments.
  - ▶ Because I assumed no fixed adjustment costs, the inaction rate is too low.
  - **b** because I assumed constant operating costs, the exiters' relative size is too low (with constant  $c_f$ , large firms exit with zero probability and exiters only include small firms).

## 2.2 Results

Below I reproduce some of the main results from the paper.

## 2.2.1 Steady State Firm Dynamics

Figures A.1, A.2 and A.3.

**Table 2:** Calibration Targets

| Statistic |                            | Data  | Model      |         | Note               |
|-----------|----------------------------|-------|------------|---------|--------------------|
|           |                            |       | CP Table 2 | Rishabh | 1,36               |
| 1.        | Mean investment rate       | 0.122 | 0.153      | 0.152   |                    |
| 2.        | SD investment rate         | 0.337 | 0.325      | 0.323   |                    |
| 3.        | Investment autocorrelation | 0.058 | 0.059      | -       |                    |
| 4.        | Inaction rate              | 0.081 | 0.067      | 0.028   | $c_0 = 0$          |
| 5.        | Entry (=exit) rate         | 0.062 | 0.062      | 0.062   |                    |
| 6.        | Entrants' relative size    | 0.60  | 0.58       | 0.61    |                    |
| 7.        | Exiters' relative size     | 0.49  | 0.47       | 0.212   | $\sigma_{c_f} = 0$ |

Note: Blue shaded rows represent the targeted moments for calibration. Other rows report the moments not targeted (but targeted by CP). See differences in methodology in Table 1

## 2.2.2 Transition Dynamics to a TFP shock

Figures A.4 and A.5

## 2.2.3 Correlation with Output

Table 3: Correlation With output

|         | Entry rate | Exit Rate | Entrants' size | Exiters' size |
|---------|------------|-----------|----------------|---------------|
| СР      | 0.402      | -0.779    | -0.725         | -0.892        |
| Rishabh | 0.275      | -0.575    | -0.607         | -0.736        |

## 3 Computation

Following section describes the computation method which uses the stage-block concept. [See NBER Workshop Lecture]

## 3.1 Policy and value functions

#### 3.1.1 Incumbents (Achievable with StageBlock)

Break the problem of the incumbent (3) into stages.

- Stage 0. Incumbent enters a new period with state variables inherited from last period  $(k_-, s_-)$
- Stage 1. Idiosyncratic productivity shock:  $(k_-, s_-) \to (k_-, s)$ . They hire labor  $l_t$  per (5) and produce  $y_t$  giving  $\pi_t(k_-, s)$  per (4)
- **Stage 2.** Realize taste shock  $\epsilon$ . Makes exit choice:  $e(k_-,s) \in [0,1]$  (e is the probability of exiting using logsum formula)

Figure 1: Backward Iteration



• **Stage 3.** If continue to operate, make investment choice  $(k_-,s) \to (k,s)$ . If exit,  $(k_-,s) \to (0,.)$ 

Write it backwards: Inputs for single backward iteration are  $V_{t+1}^{(2)}(k,s')$  and  $\frac{\partial}{\partial k}V_{t+1}^{(2)}(k,s')$ . Note that, we could use  $V_{t+1}^{(1)}(k,s)$  and  $\frac{\partial}{\partial k}V_{t+1}^{(1)}(k,s)$  as the input to backward iteration. But given the timing assumptions for the entrants, it is convenient to use  $V_{t+1}^{(2)}(k,s')$  and  $\frac{\partial}{\partial k}V_{t+1}^{(2)}(k,s')$ . It does not matter as long as we are consistent with the way stages are written and all the inputs are correctly specified.

• **Stage 1 of Period** t + 1**.** Productivity shock

$$\begin{array}{rcl} V_{t+1}^{(1)}\left(k,s\right) & = & \Pi V_{t+1}^{(2)}\left(k,s'\right) \\ \frac{\partial}{\partial k} V_{t+1}^{(1)}\left(k,s\right) & = & \Pi \frac{\partial}{\partial k} V_{t+1}^{(2)}\left(k,s'\right) \end{array}$$

where  $\Pi$  is the transition matrix for productivity process.

- Stage 3 of Period t. Discrete choice-specific investment choice and value function:
  - ▶ For exiting firms,  $e(k_-, s) = 0$

$$\begin{array}{rcl} k\left(e=0,k_{-},s\right) & = & 0 \\ V_{t}^{(3)}\left(e=0,k_{-},s\right) & = & \pi\left(k_{-},s\right) + \left(1-\delta\right)k_{-} - g\left(-\left(1-\delta\right)k_{-},k_{-}\right) \\ \frac{\partial}{\partial k}V^{(3)}\left(e=0,k_{-},s\right) & = & \pi_{1}\left(k_{-},s\right) + \left(1-\delta\right) - g_{k_{-}}\left(-\left(1-\delta\right)k_{-},k_{-}\right) \end{array}$$

which are all in closed form

▶ For continuing firms,  $e(k_-, s) = 1$ 

$$V_{t}^{(3)}\left(e=1,k_{-},s\right) = \max_{k} \pi\left(k_{-},s\right) - k + \left(1-\delta\right)k_{-} - g\left(k - \left(1-\delta\right)k_{-},k_{-}\right) - c_{f} + \frac{1}{R_{t}}V_{t+1}^{(1)}\left(k,s\right)$$
(7)

- \* Use EGM + upper envelope + envelope condition to obtain  $V_t^{(3)}(e,k_-,s)$ ,  $\frac{\partial}{\partial k}V_t^{(3)}(e,k_-,s)$ ,  $k_t(e,k_-,s)$  for  $e \in \{0,1\}$
- \* Note that there is no expectation operator for the continuation value. The productivity stage 1 takes care of it.

• Stage 2 of Period t. Realize taste shock  $\epsilon$ . Makes exit choice:  $e_t(k_-, s) \in [0, 1]$ 

$$V_{t}^{(2)}(k_{-},s) = \max_{e \in \{0,1\}} V_{t}^{(3)}(e,k_{-},s) + \underbrace{\epsilon(e)}_{\text{Tacta Sheed}}$$

giving

$$V_{t}^{(2)}(k_{-},s) = \sigma_{\epsilon} \ln \left( \sum_{e \in \{Cont,Exit\}} \exp \left( \frac{V_{t}^{(3)}(e,k_{-},s)}{\sigma_{\epsilon}} \right) \right)$$

$$\frac{\partial}{\partial k} V_{t}^{(2)}(k_{-},s) = \frac{\sum_{e \in \{Cont,Exit\}} \exp \left( \frac{V_{t}^{(3)}(e,k_{-},s)}{\sigma_{\epsilon}} \right) \cdot \frac{\partial}{\partial k} V_{t}^{(3)}(e,k_{-},s)}{\sum_{e \in \{Cont,Exit\}} \exp \left( \frac{V_{t}^{(3)}(e,k_{-},s)}{\sigma_{\epsilon}} \right)}$$

$$Pr_{t}(e \mid k_{-},s) = \frac{\exp \left( \frac{V_{t}^{(3)}(e,k_{-},s)}{\sigma_{\epsilon}} \right)}{\sum_{e \in \{Cont,Exit\}} \exp \left( \frac{V_{t}^{(3)}(e,k_{-},s)}{\sigma_{\epsilon}} \right)}$$

$$(8)$$

• Stage 1 of Period t. Productivity shock

$$\begin{array}{rcl} V_{t}^{(1)}\left(k_{-},s_{-}\right) & = & \Pi V_{t}^{(2)}\left(k_{-},s\right) \\ \frac{\partial}{\partial k} V_{t}^{(1)}\left(k_{-},s_{-}\right) & = & \Pi \frac{\partial}{\partial k} V_{t}^{(2)}\left(k_{-},s\right) \end{array}$$

where  $\Pi$  is the transition matrix for productivity process.

#### Summary of single backward iteration for incumbents:

$$\begin{pmatrix} V_{t+1}^{(2)}\left(k,s'\right), \frac{\partial}{\partial k}V_{t+1}^{(2)}\left(k,s'\right) \end{pmatrix} \xrightarrow{\text{Productivity (S1)}} \begin{pmatrix} V_{t+1}^{(1)}\left(k,s\right), \frac{\partial}{\partial k}V_{t+1}^{(1)}\left(k,s\right) \end{pmatrix}$$

$$\downarrow \text{Capital (S3) of period } t$$

$$\begin{pmatrix} V_{t}^{(2)}\left(k_{-},s\right), \frac{\partial}{\partial k}V_{t}^{(2)}\left(k_{-},s_{-}\right), & \stackrel{\text{Exit Choice (S2)}}{\text{of period } t} & \left(k_{t}\left(e,k_{-},s\right), V_{t}^{(3)}\left(e,k_{-},s\right), \frac{\partial}{\partial k}V_{t}^{(3)}\left(e,k_{-},s\right) \right)$$

$$e_{t}\left(k_{-},s\right), Pr_{t}\left(e_{t}\left(k_{-},s\right)\right)$$

#### How is it implemented:

- The three stages are written as separate functions
- Then another function simply calls the stages one-by-one. This takes  $V_{t+1}^{(2)}\left(k,s'\right)$  as input and spit out  $V_{t}^{(2)}\left(k_{-},s\right)$  as output (along with other stuff). The implementation is equivalent to "StageBlock"

#### 3.1.2 Entrants

Break the problem of the entrant (6) into stages. (Entrants start producing with lag of one-period)

• **Stage 0.** Potential entrant draws a productivity signal  $s_e \sim H\left(\cdot\right)$ 

- **Stage 1.** Realize taste shock  $\epsilon$ . Makes entry choice:  $m(s_e) \in [0,1]$  (m is the probability of entry using logsum formula)
- **Stage 2.** If enter, investment choice  $k_t = k_e(s_e)$ . If stay-out,  $k_t = 0$

Write it backwards: Inputs for single backward iteration is  $V_{t+1}^{(2)}(k,s')$  (Ref. Figure 1).

• **Stage 2 Period** *t***.** Discrete choice-specific investment choice and value function:

$$V_{t}^{entrant(2)}\left(Enter,s_{e}\right) = \max_{k} -k - c_{e} + \frac{1}{R}\mathbb{E}_{s'\mid s_{e}}\left[V_{t+1}^{(2)}\left(k,s'\right)\mid s_{e}\right]$$

$$k_{t}^{entrant}\left(Enter,s_{e}\right) = \arg\max_{k} -k - c_{e} + \frac{1}{R}\mathbb{E}_{s'\mid s_{e}}\left[V_{t+1}^{(2)}\left(k,s'\right)\mid s_{e}\right] \qquad (9)$$

$$V_{t}^{entrant(2)}\left(StayOut,s_{e}\right) = 0$$

$$k_{t}^{entrant(2)}\left(StayOut,s_{e}\right) = 0 \qquad (10)$$

where

$$\log s' = \rho_s \log s_e + \sigma_s \eta$$

• Stage 1 Period t. Realize taste shocks. Makes entry decision  $m_t(s_e) \in [0,1]$  where m is the probability of entry

$$V_{t}^{entrant(1)}\left(s_{e}\right) = \max_{m \in \{Enter, StayOut\}} V_{t}^{entrant(2)}\left(m, s_{e}\right) + \underbrace{\epsilon\left(m\right)}_{\text{Taste Shock}}$$

giving probability of entry as

$$Pr_{t}\left(Enter \mid s_{e}\right) = \frac{\exp\left(\frac{V_{t}^{entrant(2)}(Enter, s_{e})}{\sigma_{\epsilon}}\right)}{\sum_{m \in \{Enter, StayOut\}} \exp\left(\frac{V^{(2)}(m, s_{e})}{\sigma_{\epsilon}}\right)}$$
(11)

Summary of single backward iteration for entrants:

$$\begin{pmatrix} V_{t+1}^{(2)}\left(k,s'\right) \end{pmatrix} \xrightarrow{\text{Capital}} \begin{pmatrix} k_t^{entrant}\left(m,s_e\right), V_t^{(2)}\left(m,s_e\right) \end{pmatrix}$$

$$\downarrow_{\text{Entry Choice}}$$

$$\begin{pmatrix} m_t\left(k_-,s_e\right), Pr_t\left(Enter\mid s_e\right) \end{pmatrix}$$

This is achievable outside the Incumbent StageBlock.

## How is it implemented:

- The two stages are written as separate functions
- Then another function simply calls the stages one-by-one. This takes  $V_{t+1}^{(2)}\left(k,s'\right)$  as input and spit out policy functions as output.
  - ▶ The beginning of stage value functions for the entrants are not required.

 $<sup>^4</sup>$ We want to write it in a way that entrants consider the value function with which they start producing. This is  $V^{(2)}$ 

#### 3.2 Distributions

Figure 2: Forward Iteration



Start with the cross-sectional distribution  $D_t^{(2)}(k_-,s)$  which consists of firms that produce. We should end with  $D_{t+1}^{(2)}(k,s')$ 

#### 3.2.1 Incumbents:

Given the stages of incumbents, forward iteration along the stages is:

- **Stage 2.** Exit choice with  $P_t^{exit}(k_-, s)$  from (8).
  - ► Since exiters are no more in the economy, they do not proceed to the next stage. Therefore, we have:

$$D_{t}^{(3)}(e=0,k_{-},s) = \left(1 - P_{t}^{exit}(k_{-},s)\right) D_{t}^{(2)}(k_{-},s)$$

$$D_{t}^{(3)}(e=1,k_{-},s) = 0$$
(12)

Hence, we get

$$\sum_{(k_{-},s)} D_{t}^{(3)}(k_{-},s) < \sum_{(k_{-},s)} D_{t}^{(2)}(k_{-},s)$$

since a mass equal to  $\sum_{(k_-,s)} P_t^{exit}\left(k_-,s\right) D_t^{(2)}\left(k_-,s\right)$  exit

• **Stage 3.** If continue to operate, make investment choice  $(k_-,s) \to (k,s)$  - *forward\_policy* giving

$$D_{t}^{\left(4\right)}\left(\mathcal{K},s\right)=D_{t}^{\left(3\right)}\left(k_{-}^{-1}\left(\mathcal{K},s\right),s\right)$$

where  $k_{-}^{-1}(\mathcal{K}, s)$  is the inverse of  $k_t(\cdot, s) \in \mathcal{K}$ 

• Stage 1. Idiosyncratic productivity shock:

$$D_{t+1}^{(1)}(k,s') = \Pi_s^{\top} D_t^{(4)}(k,s)$$
(13)

where  $D_{t+1}^{(1)}(k,s')$  is the distribution of survivors.

#### 3.2.2 Entrants:

• Given  $P_t$  (enter  $|s_e|$ ) from (11) and  $k_t^{entrant}$  (Enter,  $s_e$ ) from (9), entrants distribution is

$$D_{t+1}^{e}\left(k,s'\right) = \sum_{s_{e}} M \cdot \underbrace{Pr\left(s_{e}\right)}_{\begin{array}{c} \text{Unconditional} \\ \text{mass of signal} \\ \end{array}} \underbrace{P_{t}\left(enter \mid s_{e}\right)}_{\begin{array}{c} \text{entry} \\ \text{probability} \\ \end{array}} \underbrace{Pr\left(s' \mid s_{e}\right)}_{\begin{array}{c} \text{transition from} \\ \text{signal to prod.} \\ \end{array}} \underbrace{1\left\{k = k_{t}^{entrant}\left(Enter, s_{e}\right)\right\}}_{\begin{array}{c} \text{capital} \\ \text{choice} \\ \end{array}}$$

• Hence, end-of-stage distribution is

$$D_{t+1}^{(2)}(k,s') = \underbrace{D_{t+1}^{(1)}(k,s')}_{\text{survivors from period }t} + \underbrace{D_{t+1}^{e}(k,s')}_{\text{new entrants}}$$
(14)

## 4 Incorporating into SSJ

Below I lay out the reasons why the code is not written directly using SSJ. The key problem is that of computing distributions.

## 4.1 Why can't we directly adopt above method into SSJ

There are two issues related to computing distributions: i) need to kick out exiters and ii) need to add entrants.

#### 4.1.1 w.r.t Incumbents:

Stage 2 of Section 3.1.1 is the discrete exit choice stage where incumbents choose whether to continue operating or exit. For firms that choose to exit, the mass of these firms should *not* be carried forward to the next stage. Currently, in the logic choice stage, SSJ does the following:

- 1. Computes  $P_t(e \mid k_-, s)$  with  $e \in \{\text{Exit}, \text{Cont}\}$  using log-sum formula such that  $\sum_e P_t(e \mid k_-, s) = 1$
- 2. Iterate forward from Stage 2 to Stage 3 using choice probabilities as

$$D_t^{(3)}(e,k_-,s) = P_t(e \mid k_-,s) D_t^{(2)}(k_-,s)$$
(15)

- 3. This then leads to incorrect distribution in the subsequent stages  $D_t^{(4)}(e,k,s)$  because  $D_t^{(4)}(\text{Exit},k,s)$  contains a positive mass (at the lowest grid point in this case since  $k_t$  (Exit,  $k_-$ , s) = 0.)
- 4. Then, in each iteration, this extra mass of exiting firms keeps getting added and the distribution won't converge.

## How is it implemented:

• I simply add another line where the mass of exiters is set to 0 i.e.

$$D_t^{(4)}\left(\text{Exit}, k, s\right) = 0$$

for all (k,s)

### 4.1.2 w.r.t Entrants:

• In forward iteration, adding the mass of entrants amounts to

$$D_{t+1}^{(2)} = D_{t+1}^{(1)} + D_{t+1}^{e}$$
(16)

where  $D_{t+1}^{e}$  is computed using the  $k_{t}^{e}\left(s_{e}\right)$ ,  $P_{t}^{entry}\left(s_{e}\right)$  and  $s'\mid s_{e}.$ 

• SSJ does not directly have a stage to achieve this addition.

## How is it implemented:

• I perform this addition manually

## References

Auclert, Adrien, Bence Bardóczy, Matthew Rognlie, and Ludwig Straub, "Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models," *Econometrica*, 2021, 89 (5), 2375–2408. Clementi, Gian Luca and Berardino Palazzo, "Entry, Exit, Firm Dynamics, and Aggregate Fluctuations," *American Economic Journal: Macroeconomics*, July 2016, 8 (3), 1–41.

## A Results

Note: The upper panel in each figure is a screenshot from the paper and bottom panels are replicated figures.

Figure A.1: Signal Distribution



Figure 2. Signal's Distribution (left) and Productivity Distribution of Actual Entrants



Back to beginning of Section 2.2.1

Figure A.2: Exit Hazard Rate



FIGURE 4. THE EXIT HAZARD RATE



Note: Panel B of the top figure erroneously plots the  $\underline{index}$  of the grid points of the productivity shocks rather than the actual productivity.

Back to beginning of Section 2.2.1

Figure A.3: Employment



FIGURE 6. EVOLUTION OF A COHORT'S SIZE DISTRIBUTION



Note: Panel B of top figure does not have a legend, but seems like blue=1, red=2, green=3, orange=10 (trend is similar in both figs - dist. shifts towards right with age)

Back to beginning of Section 2.2.1

Figure A.4: Impulse Responses I





*Note: SS entry and exit rate* = 0.062 Back to beginning of Section 2.2.2

Figure A.5: Impulse Responses II



FIGURE 10. RESPONSE TO A POSITIVE PRODUCTIVITY SHOCK



*Note: Panel C's and F's levels are different across the two figures because*  $\sigma_{c_f} = 0$ . Back to beginning of Section 2.2.2