Notes

Jackson Loper

January 2019

1 Objective

For any fixed matrix X with entries $X_{cg} \in \{-.5, .5\}$, consider the problem of optimizing

$$L(Z,\alpha) = \sum_{c,g} \left(X_{c,g} \left(\sum_{k} Z_{ck} \alpha_{gk} \right) - \log 2 \cosh \frac{1}{2} \sum_{k} Z_{ck} \alpha_{gk} \right)$$

2 Minorization

Observe that for any initial condition, $\tilde{Z}, \tilde{\alpha}$, we may obtain a simple minorizaton for this problem. Indeed, let

$$\begin{split} M_{cg} &= M_{cg}(\tilde{Z}, \tilde{\alpha}) = \frac{\tanh\left(\frac{1}{2}\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}\right)}{2\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}} \\ \kappa_{cg} &= \kappa_{cg}(\tilde{Z}, \tilde{\alpha}) = \frac{1}{2}M_{cg}\left(\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}\right)^{2} - \log 2 \cosh\frac{1}{2}\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk} \\ \tilde{L}_{M,k}(Z, \alpha) &= \sum_{c,g}\left(X_{c,g}\left(\sum_{k}Z_{ck}\alpha_{gk}\right) + \kappa_{cg} - \frac{1}{2}M_{cg}\left(\sum_{k}Z_{ck}\alpha_{gk}\right)^{2}\right) \end{split}$$

Then observe that

$$\tilde{L}_{M,k}(\tilde{Z},\tilde{\alpha}) = L(\tilde{Z},\tilde{\alpha})$$

Furthermore, it is well-known that

$$\tilde{L}_{M,k}(Z,\alpha) \le L(Z,\alpha) \qquad \forall Z,\alpha$$

Thus \tilde{L} is a so-called "minorizer" for L from the initial condition $\tilde{Z}, \tilde{\alpha}$. We can therefore be guaranteed that if we can find Z, α that improves \tilde{L} , it will also improve our value of L. That is, if we can find Z, α such that $\tilde{L}_{M,k}(Z,\alpha) > \tilde{L}_{M,k}(\tilde{Z},\tilde{\alpha})$, then we will also have $L(Z,\alpha) > L(\tilde{Z},\tilde{\alpha})$. This suggests the following iterative process:

- Start with some initial condition $\tilde{Z}, \tilde{\alpha}$.
- Calculate $M(\tilde{Z}, \tilde{\alpha}), k(\tilde{Z}, \tilde{\alpha})$
- Find Z, α such that $\tilde{L}_{M,k}(Z, \alpha) > \tilde{L}_{M,k}(\tilde{Z}, \tilde{\alpha})$
- Set $\tilde{Z} \leftarrow Z$, $\tilde{\alpha} \leftarrow \alpha$, go to step 2.

To enact this procedure, the key difficulty is step 3. That is, we need to be able to make progress on the surrogate problem \tilde{L} . It is to this problem we now turn our attention.

3 Progress on the surrogate problem \tilde{L}

Here we consider the problem of optimizing

$$\tilde{L}_{M,k}(Z,\alpha) = \sum_{c,g} \left(X_{c,g} \left(\sum_{k} Z_{ck} \alpha_{gk} \right) + \kappa_{cg} - \frac{1}{2} M_{cg} \left(\sum_{k} Z_{ck} \alpha_{gk} \right)^{2} \right)$$

This can be achieved with coordinate ascent, alternating between Z and α . For example, let us consider only the case that we fix α and try to optimize Z. Note that with α fixed the problem is now separable over the cs. In particular, dropping constants, we see that for each c separately we need to optimize a problem of the form

$$f_c(z_c) = \sum_{g} \left(X_{c,g} \left(\sum_{k} Z_{ck} \alpha_{gk} \right) - \frac{1}{2} M_{cg} \left(\sum_{k} Z_{ck} \alpha_{gk} \right)^2 \right)$$

Take derivatives:

$$\frac{\partial}{\partial z_{ck}} f_c(z_c) = \sum_g X_{c,g} \alpha_{gk} - M_{cg} \alpha_{gk} \left(\sum_{k'} Z_{ck'} \alpha_{gk'} \right)$$

Setting equal to zero, we see that the optimal α_q will be achieved by taking

$$\Gamma_{k,k'} = \sum_{g} M_{cg} \alpha_{gk} \alpha_{gk'}$$
$$z_c^* = \Gamma^{-1} \alpha^T X_c$$

We can do the same kind of update for α .

4 Regularization

If the matrix isn't roughly square, regularization can be helpful. The most trivial regularization is simply an \mathcal{L}^2 penalty. The inner objective becomes

something like

$$f_c(z_c) = -\frac{\lambda}{2} \left\| z_c \right\|^2 + \sum_g \left(x_{c,g} \left(\sum_k z_{ck} \alpha_{gk} \right) - \frac{1}{2} M_{cg} \left(\sum_k z_{ck} \alpha_{gk} \right)^2 \right)$$

Which yields updates like

$$\Gamma_{k,k'} = \sum_{g} M_{cg} \alpha_{gk} \alpha_{gk'}$$
$$z_c^* = (\Gamma + \lambda I)^{-1} \alpha^T X_c$$

You can also approximate an \mathcal{L}^1 penalty with log cosh. This suggests we compute $\zeta_{ck} = \tanh(z_{ck})/z_{ck}$ and consider the objective

$$f_c(z_c) = -\lambda \sum_k \zeta_{ck} z_{ck}^2 + \sum_g \left(x_{c,g} \left(\sum_k z_{ck} \alpha_{gk} \right) - \frac{1}{2} M_{cg} \left(\sum_k z_{ck} \alpha_{gk} \right)^2 \right)$$

Which yields the update

$$\Gamma_{k,k'} = \sum_{g} M_{cg} \alpha_{gk} \alpha_{gk'}$$
$$z_c^* = (\Gamma + \lambda \operatorname{diag}(\zeta_c))^{-1} \alpha^T X_c$$

When z_c is large, this will make the penalization less significant.