Big Data Lista zadań

Jacek Cichoń, WiT, PWr, 2022/23

1 Wstęp

Zadanie 1 — Pobierz plik z kilkoma dramatami Szekspira ze strony wykładu. Wybierz jeden z dramatów.

- 1. Oczyść wybrany plik. Podziel go na słowa.
- 2. Usuń z niego "Stop Words" i usuń z niego słowa o długości mniejszej lub równej 2.
- 3. Zbuduj chmurę wyrazów (word cloud) z otrzymanej listy. Możesz skorzystać np. z serwisu http://www.wordclouds.com/

Celem tego zadania jest wygenerowanie mniej więcej takiego obrazka (dla poematu "Pan Tadeusz"):

Zadanie 2 — To jest kontynuacja poprzedniego zadania.

- 1. Zastosuj część funkcji które napisałeś do realizacji poprzedniego zadania do wyznaczenia indeksów TF.IDF dla wszystkich wyrazów z dokumentów w dramatów Szekspira znajdujących się w pliku ze strony wykładu.
- 2. Zbuduj chmury wyrazów oparte o TF.IDF dla wszystkich rozważanych dramatów.

Zadanie 3 — Pokaż, że jeśli chcesz jednoznacznie wyreprezentować każdą z liczb ze zbioru $\{0, 1, \dots, n\}$ za pomocą b bitów to $b \ge \lceil \log_2(n+1) \rceil$.

Zadanie 4 — Pokaż, że jeśli $x=\sum_{k=0}^s a_k 2^k$, gdzie $a_i\in\{0,1\}$ oraz $a_s=1$ to $s=\lceil\log_2(x+1)\rceil$

Zadanie 5 — Rozważmy następującą modyfikację licznika Morrisa: ustalamy liczbę $\alpha > 0$ oraz rozważamy tak oprogramowany licznik:

```
init :: C =0 onInc :: if \left(random() < \left(\frac{1}{1+\alpha}\right)^C\right) then C = C+1 onGet :: return (?????)
```

Niech C_n oznacza wartość zmiennej C po n wywołaniach metody on
Inc.

1. Wyznacz E $[(1+\alpha)^{C_n}]$

2. Uzupełnij funkcję onGet tak aby otrzymać nieobciążony estymator liczby użyć metody onInc.

Zadanie 6 — Niech C_n będzie wartością klasycznego licznika Morris'a po n krotnym wywołaniu funkcji onInc().

- 1. Pokaż, że $E[4^{C_n}] = 1 + \frac{3}{2}n(n+1)$.
- 2. Pokaż, że var $[2^{C_n}] = \frac{1}{2}n(n-1)$.
- 3. Skorzystaj z nierówności Jensena dla wartości oczekiwanej zmiennej losowej do pokazania, że $\mathrm{E}\left[C_n\right]\leqslant \log_2(n+1).$

Zadanie 7 — Załóżmy, że X_1, \ldots, X_m są niezależnymi zmiennymi losowymi o wartości oczekiwanej μ oraz wariancji σ^2 . Niech

$$L = \frac{X_1 + \ldots + X_m}{m} .$$

- 1. Pokaż/sprawdź, że E $[L] = \mu$ oraz var $[L] = \frac{1}{m}\sigma^2$.
- 2. Pokaż, że $\Pr[|L \mu| \geqslant \epsilon \mu] \leqslant \frac{\sigma^2}{\epsilon^2}$.

Zadanie 8 — Rozważamy ciąg B_1, \ldots, B_n niezależnych zdarzeń, takich, że $\Pr[B_1] = \ldots = \Pr[B_n] = \frac{3}{4}$. Niech X oznacza liczbę sukcesów, czyli $X = \sum_{i=1}^n X_i$, gdzie $X_i = 1$ jeśli zaszło zdarzenie B_i oraz $X_i = 0$ w przeciwnym przypadku.

1. Korzystając z nierówności Czernoffa dla rozkładu dwumianowego pokaż, że

$$\Pr[X \leqslant \frac{1}{2}n] \leqslant \exp\left(-\frac{n}{24}\right)$$

- 2. Niech $\delta>0$. Pokaż, że jeśli $n\geqslant 24\ln\frac{1}{\delta},$ to $\Pr[X\leqslant\frac{n}{2}]\leqslant\delta.$
- 3. Skorzystaj z następującej wersji nierówności Czernoffa

$$\Pr[X \le \mu - \lambda], \Pr[X \ge \mu + \lambda] \le \exp\left(-\frac{2\lambda^2}{n}\right)$$

dla zmiennej losowej X o rozkładzie dwumianowym Binom (n,μ) do wzmocnienia wyników z poprzednich dwóch punktów.

Zadanie 9 — Niech x_1, \ldots, x_n będzie ciągiem liczb rzeczywistych. Rozważamy dwie funkcje $f(x) = \sum_{i=1}^{n} |x_i - x|$ oraz $g(x) = \sum_{i=1}^{n} (x_i - x)^2$

- 1. Pokaż, że funkcja g osiąga minimum w średniej arytmetycznej liczb x_1, \ldots, x_n
- 2. Pokaż, że funkcja h osiąga minimum w medianie ciągu x_1,\ldots,x_n . Wskazówka: Możesz założyć, że $x_1\leqslant x_x\leqslant\cdots\leqslant x_n$. Przyjrzy się najpierw pomocniczej funkcji $\phi(x)=|x_1-x|+|x_n-x|$.

Zadanie 10 — Niech x_1, \ldots, x_n będzie ciągiem liczb rzeczywistych oraz niech a < b będą dowolnymi liczbami rzeczywistymi. Załóżmy, że

$$|\{i \in \{1,\ldots,n\} : x_i \in (a,b)\}| > \frac{n}{2}.$$

Pokaż, że wtedy mediana ciągu x_1, \ldots, x_n należy do odcinka (a, b). Wskazówka: Rozważ oddzielnie przypadek parzystego i nienarzystego n.

2 Hashinig

Zadanie 11 — ("Rolling hash") – Rozważamy metodę haszowania opartą na wzorze

$$h_{r,p}([x_0,\ldots,x_k]) = \sum_{i=0}^k x_i \cdot r^i \mod p$$

- Zastosuj metodę Hornera do implementacji tej metody haszowania i oszacuj złożoność obliczeniową tej metody.
- 2. Załóżmy, że p jest liczbą pierwszą. Rozważamy ciąg $[x_0, \ldots, x_m]$. Niech $0 \le a < b < m$. Pokaż, że można wyznaczyć $h_{r,p}[x_{a+1}, \ldots, x_{b+1}]$) można wyznaczyć z $h_{r,p}[x_a, \ldots, x_{a+b}]$) w stałym czasie.
- 3. Załóżmy, że p jest liczbą pierwszą. Niech \vec{x} i \vec{y} będą ciągami długości r. Losujemy z jednakowym prawdopodobieństwem liczbę r ze zbioru $\{0, \ldots, p-1\}$. Pokaż, że

$$\Pr[h_{r,p}(\vec{x}) = h_{r,p}(\vec{y})] \leqslant \frac{r-1}{p} .$$

4. Zapoznaj się z algorytmem Rabina-Karpa wyszukiwania wzorca w w ciągu t. Pokaż, że jeśli to tego algorytmu zastosujemy funkcję haszującą $h_{r,p}$ z p będącym liczbą pierwszą taką, że $p > |t|^2$ zaś r jest losową liczbą ze zbioru $\{0, \ldots, p-1\}$, to algorytm ten działa w średnim czasie O(|s|+|t|) (|x| oznacza tu długość ciągu x).

Zadanie 12 — Do n urn wkładamy niezależnie k kul (rozważamy rozkład jednostajny). Niech $L_{n,k}$ oznacza wartość oczekiwaną liczby pustych urn. Oblicz

- 1. $\lim_{n\to\infty} \mathbf{E}\left[\frac{L_{n,n}}{n}\right]$
- 2. $\lim_{n\to\infty} \mathrm{E}\left[L_{n,n\ln n}\right]$
- 3. $\lim_{n\to\infty} \mathbb{E}\left[\frac{1}{\sqrt{n}}(n-L_{n,\sqrt{n}})\right]$

Zadanie 13 — Rozważamy dwie zmienne losowe X,Y o wartościach w zbiorze $\{1,\ldots,n\}$. Niech $\Pr[X=i]=\Pr[Y=i]=p_i$ dla $i\in\{1,\ldots,n\}$.

- 1. Pokaż, że $\Pr[X = Y] = \sum_{i=1}^{n} p_i^2$
- 2. Pokaż, że $\Pr[X=Y]$ przyjmuje wartość minimalną dla rozkładu jednostajnego na $\{1,\ldots,n\}$.

Zadanie 14 — Niech $f(x) = \ln(x) \ln(1-x)$ dla $x \in (0,1)$.

- 1. Pokaż, że $f(x) = f(\frac{1}{2} x)$.
- 2. Pokaż, że $\lim_{x\to 0} f(x) = 0$.
- 3. Pokaż, że f osiąga maksimum w punkcie $x=\frac{1}{2}$.
- 4. Naszkicuj wykres funkcji f.

Zadanie 15 — Oprogramuj w języku Python Filtr Blooma. Skorzystaj z funkcji MurMurHash z biblioteki mmh3 (instalacja: pip install mmh3). Do implementacji tablicy wykorzystaj tablicę bitów (skorzystaj z bibliteki bitarray). Filtr zrealizuj jako obiekt. Przetestuj działanie filtru Blooma na słowach z pliku Hamlet.txt (użyj 8 funkcji haszujących, ustaw rozmiar tablicy na liczę słów w Hamlet.txt).

3 Sampling

Zadanie 16 — Pokaż, że jeśli \mathcal{H} jest (k+1)-niezależną rodziną haszującą, to jest również k-niezależną rodziną haszującą.

Zadanie 17 — Pokaż, że 2-niezależna rodzina funkcji haszujących jest rodziną uniwersalną.

Zadanie 18 — Pokaż, że jeśli $\mathcal H$ jest 2- niezależną rodziną funkcji haszujących z U do V, to dla dowolnych $x\in U$ oraz $v\in V$ mamy

$$\Pr_{h \leftarrow \mathcal{H}}[h(x) = y] = \frac{1}{|V|} .$$

Zadanie 19 — Załóżmy, że 1 < n < p. Niech X będzie zmienną losową o rozkładzie jednostajnym na zbiorze $\{0, \ldots, p-1\}$. Niech $\phi(x) = x \mod n$. Wyznacza rozkład zmiennej losowej $\phi \circ X$.

Zadanie 20 — Załóżmy, że $h: U \to R$ jest funkcją różnowartościową. Pokaż, że jednoelementowa rodzina $\mathcal{H} = \{h\}$ jest rodziną uniwersalną ale nie jest 2-niezależna.

Zadanie 21 — Jak z liczb $S = \sum_{i=1}^{n} x_i$, $SS = \sum_{i=1}^{n} x_i^2$ oraz n możesz wyznaczyć wariancję $\frac{1}{n} \sum_{i=1}^{n} (x - \mu)^2$, gdzie μ oznacza średnią $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$?

Zadanie 22 — Zaimplementuj prostą (z użyciem generatora liczb pseudolosowych po wczytaniu każdego elementu) wersję algorytmu **R** Vittera. Pobierz z sieci notowania dzienne bitcoina z ostatnich 5 lat (możesz posłużyć się biblioteką Pandas języka Python), wydobądź z danych notowania otwarcia, wygeneruj losową próbkę 40 elementów i wygeneruj wykresy notowań i losowej próbki.

Zadanie 23 — Ustalmy liczby naturalne $1 \le k \le n$. Rozważamy przestrzeń probabilistyczną $[n]^k = \{X \subseteq \{1, \dots n\} : |X| = k\}$ z prawdopodobieństwem jednostajnym $(\Pr[X] = \binom{n}{k}^{-1})$. Ustalmy zbór $A \subseteq \{1, \dots, n\}$ taki, że |A| = k - 1. Rozważmy następujący proces: (1) losujemy $B' \in [n]^k$; (2) z wylosowanego B' usuwamy losowo wybrany element (każdy z prawdopodobieństwem $\frac{1}{k}$) i otrzymujemy zbiór B.

- 1. Sprecyzuj powyższe rozumowanie korzystając z przestrzeni probabilistycznej $[n]^k \times \{1, \dots, k\}$
- 2. Wyznacz prawdopodobieństwo otrzymania zbioru A.

Zadanie 24 — (Własności dystrybuanty) Celem tego zadania jest przypomnienie sobie podstawowych własności dystrubuant zmiennych losowych o wartościach w liczbach rzeczywistych.

- 1. Niech F_X będzie dystrybuantą zmiennej losowej X (czyli $F_X(x) = \Pr[X \leq x]$). Pokaż, że $\lim_{x \to -\infty} F(x) = 0$ oraz $\lim_{x \to \infty} F(x) = 1$
- 2. Niech F_X będzie dystrybuantą zmiennej losowej X. Pokaż, że F jest prawostronnie ciągła w każdym punkcie x, czyli, że dla każdego $a \in \mathbb{R}$ mamy $\lim_{x \to a+} F(x) = F(a)$.
- 3. Załóżmy, że F_X jest ostro rosnąca oraz, że $\operatorname{rgn}(F) = (0,1)$. Niech U będzie zmienną losową o rozkładzie jednostajnym w odcinku (0,1). Pokaż, że zmienna losowa $F^{-1} \circ U$ ma taki sam rozkład, co zmienna X.
- 4. Załóżmy, że F jest dystrybuantą zmiennej losowej X. Uogólnioną odwrotnością dystrybuanty F nazywamy funkcję zdefiniowaną wzorem

$$F^{\leftarrow}(p) = \inf\{x : F(x) \geqslant p\}$$
.

Zbadaj podstawowe własności tej funkcji (np. F^{\leftarrow} jest niemalejąca, $F^{\leftarrow}(F(x)) \leq x$, $F(F^{\leftarrow}(p)) \geq p$) oraz pokaż, że $F^{\leftarrow} \circ U$ ma taki sam rozkład co zmienna X, gdzie U, podobnie jak w poprzednim punkcie, ma rozkład jednostajny na odcinku (0,1).

Zadanie 25 — Zaimplementuj podstawową wersję algorytmu Bravermana, Ostrovsky'iego, Zaniolo z pracy *Optimal sampling from sliding windows*.

- Sprawdź poprawność działania implementacji generując odpowiedni histogram (możesz użyć polecenia plt.hist(sample, density=True, bins=N) języka Python) ze wskazywanych przez ten algorytm elementów.
- 2. Przetestuj swoją implementację dla okna długości 5 i po zaobserwowaniu 10000 elementów. Po wczytaniu każdego elementu zapamiętaj w jakiejś strukturze pozycję wskazywanego elementu. Zastosuj test χ^2 p-wartością p=0.01 dla hipotezy zerowej

$$H_0 = \text{próbka pochodzi z rozkładu jednostajnego}$$

(wartość krytyczna dla tej wartości p oraz 4 stopni swobody wynosi 11.345). Możesz też posłużyć się biblioteką scipy.stats do przeprowadzenia tego testu.

Zadanie 26 — (Paradoks urodzinowy) Niech $(X_k)_{k\geqslant 1}$ będzie rodziną niezależnych zmiennych losowych o wartościach w zbiorze $\{1,\ldots,n\}$. Niech $G_{n,k}$ oznacza zdarzenie " $(\forall i,j\leqslant k)(i\neq j\to X_i\neq X_j)$ ". Wiemy, że

$$\Pr[G_{n,k}] = \prod_{i=1}^{k} \left(1 - \frac{i}{n}\right) .$$

- 1. Naszkicuj wykres ciągu $\Pr[G_{365,k}]$ dla $k \in \{1,\ldots,365\}$. Wskazówka: Skorzystaj z dowolnego pakietu
- 2. Pokaż, że $1-x>\exp(-x-x^2)$ dla $x\in(0,0.5)$. Wskazówka: Wszystkie chwyty są dozwolone

- 3. Korzystając z nierówności z punktu (1) znajdź oszacowanie dolne na $\Pr[G_{n,k}]$ dla $k < \frac{n}{2}$.
- 4. Pokaż, że

$$\lim_{n\to\infty} \Pr[G_{n,\sqrt{n/\ln n}}] = 1 .$$

4 Locality sensitive hashing

Zadanie 27 — Załóżmy, że a, b > 0. Pokaż, że $\lim_{n \to \infty} (a^p + b^p)^{\frac{1}{p}} = \max(a, b)$.

Zadanie 28 — Pokaż, że funkcja $d(A,B) = |A \triangle B|$ jest metryką na przestrzeni niepustych skończonych podzbiorów ustalonego zbioru X.

Zadanie 29 — Niech $f:[0,\infty)\to[0,\infty)$ będzie funkcją rosnącą i wklęsłą.

- 1. Pokaż, że dla $a,b\geqslant 0$ mamy $f(a+b)\leqslant f(a)+f(b)$. Wskazówka: Zacznij od pokazania, że jeśli $\beta\in[0,1]$ i $x\geqslant 0$, to $f(\beta x)\geqslant \beta f(x)$. Zauważ, że możemy założyć, że a+b>0; następnie zauważ, że $a=(a+b)\frac{a}{a+b}$ oraz $b=(a+b)\frac{b}{a+b}$ i zastosuj nierówność Jensena dla funkcji wklęsłych
- 2. Załóżmy dodatkowo, że f(0) = 0. Niech d będzie metryką na zbiorze X. Pokaż, że funkcja $\rho(x,y) = f(d(x,y))$ jest również metryką na zbiorze X.
- 3. Pokaż, że jeśli $\epsilon \in (0,1)$ oraz d jest metryką na zbiorze X, to funkcja $\rho(x,y) = d(x,y)^{\epsilon}$ jest metryką na zbiorze X.
- 4. Pokaż, że jeśli d jest metryką na zbiorze X, to funkcja $\rho(x,y)=\frac{d(x,y)}{1+d(x,y)}$ jest metryką na zbiorze X.

Zadanie 30 — (Twierdzenie Steinhausa) Niech d będzie metryką na zbiorze X. Ustalmy element $a \in X$ i zdefiniujmy funkcję

$$\rho(x,y) = \frac{2d(x,y)}{d(x,a) + d(y,a) + d(x,y)}$$

Celem tego zadania jest pokazanie, że ρ jest metryką na zbiorze X.

- 1. Pokaż najpierw, że jeśli $0 oraz <math>r \geqslant 0$ to $\frac{p}{q} \leqslant \frac{p+r}{q+r}$.
- 2. Wprowadź oznaczenia p = d(x, y), q = d(x, y) + d(x, a) + d(y, a) oraz r = d(x, z) + d(y, z) d(x, y) i zastosuj obserwację z poprzedniego punktu do pokazania nierówności trójkąta dla funkcji ρ .

Zadanie 31 — Zastosuj twierdzenie Steinhausa do przestrzeni metrycznej \mathbb{R} ze standardową metryką d(x,y)=|x-y| oraz do punktu a=1.

- 1. Naszkicuj wykres funkcji $f(x) = \rho(x, 1)$
- 2. Wyjaśnij zachowanie tej funkcji dla $x \leq 0$.

Zadanie 32 — Mamy ustalony zbiór Ω . Przez V oznaczamy zbiór wszystkich skończonych podzbiorów zbioru Ω . Zbiór krawędzi definiujemy następująco:

$$E = \{ \{A, B\} \in [V]^2 : (\exists c \in A)(B = A \setminus \{c\}) \lor (\exists c \notin A)B = A \cup \{c\} \} .$$

Wyznacz odległość grafową w grafie (V, E).

Zadanie 33 — Jak można zdefiniować odległość edycyjna za pomocą odległości grafowej?

Zadanie 34 — Załóżmy, że S jest takim podobieństwem obiektów przestrzeni Ω , że istnieje rodzina funkcji haszujących $\mathcal H$ oraz prawdopodobieństwo na rodzinie $\mathcal H$ takie, że dla dowolnych dwóch obiektów $A,B\in\Omega$ mamy

$$P_{h\in\mathcal{H}}[h(A) = h(B)] = S(A, B)$$

Pokaż, że wtedy funkcja d(A,B)=1-S(A,B) jest metryką na zbiorze Ω .

Zadanie 35 — Oprogramuj funkcję min
Hash, która dla łańcucha L oraz ciągu funkcji haszujące
j $[h_1,\ldots,h_k]$ o wartościach w liczbach całkowitych zwraca wektor

$$[\min\{h_1(x): x \in L\}, \dots, \min\{h_k(x): x \in L\}]$$
.

Zadanie 36 — (Porównywanie stylu) Niech $k \ge 1$ i niech $X = [x_1, \ldots, x_n]$ będzie dowolnym ciągiem. k-gramem ciągu X nazywamy dowolny podciąg X postaci $[x_i, x_{i+1}, \ldots, x_{i+k-1}]$, gdzie $1 \le i \le n-k+1$.

- 1. Napisz funkcję, która dla danego ciągu X, liczby k oraz funkcji haszującej h wyznacza $\min\{h(y): y \in X^{(k)}\}$, gdzie $X^{(k)}$ oznacza zbiór wszystkich k gramów ciągu X.
- 2. Rozszerz kolekcję dramatów Szekspira o tekst książki *Ulysses* James Joyce'a (możesz go pobrać ze strony https://archive.org/stream/ulysses04300gut/ulyss12.txt. Zastosuj metodę minhash do wyznaczenia podobieństwa Jaccarda między 7-gramami powyższej kolekcji plików. Przetestuj ten algorytm dla liczby funkcji haszujących $h \in \{64, 128, 256\}$.
- 3. Porównaj otrzymaną aproksymację podobieństwa Jaccarda 7-gramów z jej dokładnymi wartościami.
- 4. Zastosuj metodę klasteryzacji k-means do przeanalizowanych dokumentów.

Pamiętaj o wygenerowaniu wspólnej rodziny funkcji haszujących dla wszystkich analizowanych tekstów. Pamiętaj również o wstępnym oczyszczeniu analizowanych dokumentów (minimum: usuń zbędne spacje i znaki specjalne).

Zadanie 37 — Napisz procedurę służącą do wyznaczania sygnatur kosinusowych plików tekstowych korzystających z 1024 losowych wektorów z \mathbb{R}^n (n tutaj oznacza moc wspólnego zbioru słów występujących w badanych dokumentach). Dokumenty reprezentowane mają być przez wektor częstotliwości słów. Zastosuj tę metodę do plików z Zadanie 2.

4.1 Klątwa wymiarowości

Zadanie 38 — Narysuj wykres objętości kul jednostkowych w przestrzeni \mathbb{R}^n dla $n=1\dots 20$ oraz objętości kul jednostkowych w \mathbb{R}^n podzielonych przez 2^n .

Zadanie 39 — Losujemy zgodnie z jednostajnym rozkładem punkt X z kuli jednostkowej $B_n = \{x \in \mathbb{R}^n : ||x||_2 <= 1\}$. Jaka jest wartość oczekiwania $||X||_2$?

Zadanie 40 — Rozważmy następującą procedurę generowania punktu z kuli B_2 : (1) generujemy niezależnie dwie liczby losowe x,y z odcinka [0,1] zgodnie z rozkładem jednostajnym (2) zwracamy punkt $(\sqrt{x}\cos(2\pi y), \sqrt{x}\sin(2\pi y))$.

- 1. Pokaż, że metoda ta generuje losowy punkt z B_2 z rozkładem jednostajnym.
- 2. Jaki rozkład otrzymamy gdy "zapomnimy" o pierwiastku?

Zadanie 41 — Przypomnij sobie dowód równości

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \ .$$

Zadanie 42 — Funkcja Gamma Eulera zdefiniowana jest wzorem

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

dla z > 0.

- 1. Oblicz $\Gamma(1)$.
- 2. Pokaż, że $\Gamma[z+1]=z\Gamma(z)$. Wskazówka: Zauważ, że $(e^{-t})'=-e^{-t}$; skorzystaj z całkowania przez części.
- 3. Pokaż, że $\Gamma(n+1) = n!$ dla wszystkich liczb naturalnych n.

Zadanie 43 — Wiedząc, że $V_n(r) = \frac{\pi^{n/2}}{\Gamma(n/2+1)} r^n$, i $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

- 1. sprawdź, że $V_{2n}(r) = \frac{\pi^n}{n!} r^n$
- 2. uprość wzór na $V_{2n+1}(r)$.

Zadanie 44 — Ustalmy parametr $n \ge 1$ oraz $k \ge 1$. Napisz procedurę, która generuje zbiór X złożony z k losowych punktów z przestrzeni $[0,1]^n$ zgodnie z rozkładem jednostajnym a następnie wyznacza zbiór wszystkich możliwych odległości podzielonych przez \sqrt{n} wszystkich par różnych punktów ze zbioru X i w końcu wyświetla histogram otrzymanego zbioru odległości. Przeanalizuj zbudowaną procedurę dla k = 100 oraz n = 1, 10, 100, 1000, 10000.

Zadanie 45 — Niech $S(s,k,m)=1-(1-s^k)^m$. Znajdź, stosując dowolny pakiet obliczeń numerycznych, $k\in[0,100], m\in[0,1000]$ takie, że $S(\frac{1}{3},k,m)\approx\frac{1}{10}$ oraz $S(\frac{1}{2},k,m)\approx\frac{9}{10}$.

5 Redukcja wymiarów

Zadanie 46 — Niech

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 0 \end{pmatrix}$$

Oblicz A^{100} .

Zadanie 47 — Niech $\{U, \Sigma, V$ będzie SVD rozkładem macierzy A. Niech $\{u_1, \ldots, u_m\}$ oraz $\{v_1, \ldots, v_n\}$ będą kolumnami macierzy U i V. Pokaż, że

$$A = \sum_{i=1}^{r} \sigma_i \cdot u_i \bullet (v_i)^T ,$$

gdzie $r = \min n, m,$ zaś $\sigma_1, \ldots, \sigma_i$ są wartościami własnymi z głównej przekątnej macierzy Σ .

Zadanie 48 — Niech $L \in M_{8\times 3}$ będzie macierzą wszystkich współrzędnych sześcianu jednostkowego w przestrzeni \mathbb{R}^3 .

- 1. Zastosuj metodę SVD do rozłożenia macierzy L. Otrzymasz macierze U, W, V takie, że $L = U \circ W \circ V^T$.
- 2. Weź pierwsze dwie wartości własne diagonalnej macierzy W. Zredukuj wymiary macierzy U, W,V. Otrzymasz macierze U', W',V' o wymiarach 8×2 , 2×2 i 3×2 .
- 3. Oblicz $U' \circ W'$. Potraktuj wiersze otrzymanej macierzy jako punkty przestrzeni \mathbb{R}^2 . Narysuj je i zinterpretuj otrzymane wyniki.

Zadanie 49 — Rozważamy macierz L z poprzedniego zadania.

- 1. Napisz funkcję, która generuje losową bazę ortonormalną $\{n_1, n_2, n_3\}$, rzutuje punkty z macierzy L na płaszczyznę generowaną przez $\{n_1, n_2\}$ i wyświetla otrzymane punkty na płaszczyźnie. Przeprowadź kilkadziesiąt i spróbuj wybrać taki rzut, który możliwie mało deformuje wyjściową konfigurację.
- 2. Wygeneruj macierz A wymiaru 2×3 której elementy są postaci $\frac{1}{\sqrt{2}}a_{i,j}$, gdzie $a_{i,j}$ generowane losowo, niezależnie z rozkładu $\mathcal{N}(0,1)$. Zrzutuj punkty zbioru L za pomocą funkcji $f(\vec{x}) = A.x$ i wyświetl je. Przeprowadź kilka prób.

Zadanie 50 — Rozważmy macierz

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. Wyznacz wartości i wektory własne macierzy A.
- 2. Wyznacz SVD dekompozycję macierzy A.
- 3. Niech $A = U \cdot \Sigma \cdot V^T$ będzie SVD-rozkładem A. Niech $\{u_1, u_2, u_3, u_4\}$ oznaczają kolumny U oraz niech $\{v_1, v_2, v_3, v_4\}$ oznaczają kolumny macierzy V. Sprawdź, że

$$A = 3 \cdot (u_1 \bullet v_1^T) + 2 \cdot (u_2 \bullet v_2^T) + 1 \cdot (u_3 \bullet v_3^T)$$

c.d.n. Powodzenia, Jacek Cichoń