The University of Newcastle School of Information and Physical Sciences

COMP2230/6230 Algorithms

Tutorial Week 9

13th – 17th September 2021

Tutorial

- **1.** Write a dynamic programming algorithm for computing the n^{th} Fibonacci number f(n). Trace your algorithm for n = 7. Compare the time complexity of your algorithm to the time complexity of a recursive algorithm for computing the n^{th} Fibonacci number f(n). Refine your algorithm so that it does not use extra space. Trace the refined algorithm for n = 7.
- **2.** Write a dynamic programming algorithm for computing binomial coefficient $C(n,k) = \binom{n}{k}$. What is the complexity of your algorithm? Trace the algorithm for C(5,3).
- 3. The following is a pseudocode of Warshall's algorithm for computing the transitive closure of a digraph, where the transitive closure of a directed graph with n vertices is an $n \times n$ Boolean matrix TC such that TC(i,j) is 1 if there is a directed path from vertex i to vertex j, and 0 otherwise. Trace the algorithm for the digraph below.

4. Trace Floyd's algorithm for the following digraph.

$$A = \begin{bmatrix} 0 & 5 & 1 & \infty \\ 1 & 0 & \infty & 10 \\ \infty & 3 & 0 & 1 \\ 7 & 1 & \infty & 0 \end{bmatrix}$$

Homework

5. Trace Warshall's algorithm on the diagraphs below.

6. Trace Floyd's algorithm for the following digraph.

7. Write a pseudocode of a dynamic programming algorithm for Knapsack problem and trace it on the following instance: a_1 ($w_1 = 2$, $v_1 = 5$), a_2 ($w_2 = 3$, $v_2 = 8$), a_3 ($w_3 = 1$, $v_3 = 7$), a_4 ($w_4 = 2$, $v_4 = 15$) and W = 5.

8. Prove that when $Fibonacci_recurs$ computes F_n , n>=3, F_n computations are required for the base cases.

More exercise

9. Trace Floyd's algorithm for the following graph.

10. There are six permutations of Floyds algorithm of the lines

$$\label{eq:fork} \begin{aligned} \text{for } k = 1 \text{ to } n \\ \text{for } i = 1 \text{ to } n \\ \text{for } j = 1 \text{ to } n \end{aligned}$$

Which ones give a correct algorithm?

- **11.** Suppose that G is directed, weighted graph in which some weights are negative. Write an algorithm that determines whether G contains a cycle of negative weight.
- 12. Explain why Warshall's algorithm can compute the matrices $A^{(k)}$ in place? What is the running time of Warshall's algorithm?