Sixteen Week Plan Faculty of Computing & Information Technology Department of Computer Science Hafiz Hayat Campus, University of Gujrat

Title	Data Structure and Algorithm (DSA)					
Code	CS-204					
Credit hours	4.0					
Course Coordin	ator					
Course Description	This course introduces students to new types of data structures such as trees (including binary and multiway trees), heaps, stacks and queues. Students will also learn how to design new algorithms for each new data structure studied, create and perform simple operations on graph data structures, describe and implement common algorithms for working with advanced data structures and recognize which data structure is the best to use to solve a particular problem.					
• Objectives	After you have completed the work in this course, you will be able to: •Develop sound techniques on designing, developing, and documenting well-structured programs using proper software engineering principles. •Continue to apply problem solving skills and provide a foundation for advanced programming courses using an OOP (object-oriented programming) methodology. •Describe and implement common data structureslists, stacks, queues, graphs, and treesfor solving complex programming problems. •Use mathematical techniques to analyse the efficiency of the various algorithms presented, as well as the common operations on the data structures discussed					
Grading Policy	a) course will be evaluated on the following basis's: Quizzes 05 % Assignments 10 % Mid Term Exam 30 % End Semester Exam 50 % Project 10% Class Participation (marks may be allocated if the need arises) b) To pass a course, student must obtain at least 'D' grade (50% marks) c) The final term examination will cover the entire course.					

		Marks in Percentage	Letter Grade	Numeric Value of Grade	Description	
		85 and above	A+	4.00	Exceptional	
		80-84	A	3.70	Outstanding	
Grading System		75-79	B+	3.40	Excellent	
		70-74	В	3.00	Very Good	
		65-69	B-	2.50	Good	
		60-64	C+	2.00	Average	
		55-59	С	1.50	Satisfactory	
		50-54	D	1.00	Pass	
		49 and below	F	0.0	Fail	
			W		Withdrawal	
			I		Incomplete	
Tord Pools			d ed. 2007 MIT P	ress) by Thomas H. Corr	men, Charles E. I	eiserson, Ronald
Text Book	1. Introduction to A Rivest and Clifford		d ed. 2007 MIT P	ress) by Thomas H. Corr	nen, Charles E. I	∟eiserson, Ronald
Text Book Reference Books	Rivest and Clifford	l Stein. ures and Algori	thm Analysis in C	ress) by Thomas H. Corr ++, Mark Allen Weiss.	men, Charles E. I	eiserson, Ronald
	Rivest and Clifford 1. Data Structu	I Stein. ures and Algoriures using C++,	thm Analysis in C Tenanbaum		nen, Charles E. I	eiserson, Ronald
Reference Books	1. Data Structu 2. Data Structu OOP, Introduction Collaboration and g	ures and Algoricures using C++, to programming group work is en	thm Analysis in C Tenanbaum g ncouraged but eachoughts. Cheating		ubmit his/her ow	n contribution(s).

Week#	Lecture #	TOPICS	Source (Book-Chapter No)	Recommendations for Learning Activities				
01	01, 02	Introduction to Data structures, need for data structures, Array data structure and their operations						
02	03, 04	Linked List, circular Link List: concepts, operations, and applications						
03	05,06	doubly Link List: concepts, operations, and applications						
04	07,08	Stack: concepts, operations, and array implementations, stack applications						
05	09,10	Queue , D-Queue and Circular Queue: concepts and operations						
06	11,12	Recursion: definitions, concepts and applications						
07	13,14	Trees and Binary Trees: concepts, storage representation, and manipulation						
08	15,16	Binary Search Tree and AVL Trees: concepts, storage representation, and manipulation						
Mid Term Exam								
09	17,18	Graphs: concepts, matrix and linked implementations, and traversals						
10	19,20	Heap: concepts, storage representation, and manipulation and heap sort						
11	21,22	Hashing, radix searching						
12	23,24	Introduction to Algorithm, Algorithms Complexity						
13	25,26	Sorting Algorithms (Selection, insertion, Bubble.)						
14	27,28	Sorting Algorithms (Selection, insertion, Bubble.)						
15	29,30	Divide & Conquer (Merge Sort, Quick Sort)						
16	31,32	Greedy algorithms						
	Final Term Exam							