Vorlesung 23 am 21.12.2022

Inhalte: Funktionen 5 - Differentialrechnung2

- Grundlegende Funktionen

4 Differentialrechnung

l	4 Differentialrechnung1				
	4.1 Differenzierbarkeit einer Funktion				
L	4.2 Differentiationsregeln				
	4.3 Eigenschaften differenzierbarer Funktionen				
	4.4 Anwendungen der Differentialrechnung				
	4.4.1 Kurvendiskussionen				
	4.4.2 Extremwertprobleme				
	4.4.3 Tangente und Normale				
	4.4.4 Tangentenverfahren von Newton				
	4.5 Pagala yan Parnaulli l'Haspital				

Begriffe im Zusammenhang mit Funktionen

Nachweismöglichkeit der Symmetrie:

$$f(-x) = ... = \begin{cases} f(x) \Rightarrow \text{ grade Symmetric} \\ -f(x) \Rightarrow \text{ ungade Symmetric} \\ \text{etcas} \Rightarrow \text{ Vaine Symmetric} \\ \text{and even} \end{cases}$$

Nachweis der Periodizität:

Ausab: $f(x+p) \stackrel{!}{=} f(x)$

p so bestimmen, dass die Glidning

Nachweis der Monotonie - Möglichkeiten

- Annahme einer Monotonie und Nachweis der Gültigkeit der entsprechenden Ungleichung Vx4,x2ex
- 2 Ansatz über die Differenz

f(x2)-f(x4) €0 ⇒ Sheng wowlow followd

>0 ⇒ Sheng wowlow ballind

>0 ⇒ Sheng wowlow wachsend

>0 ⇒ wowlow wachsend

Nachweismöglichkeiten der Beschränktheit:

- wie bei Folgen
- durch Abschätzen der Funktionsvorschrift
 - nach unten
 - nach oben
 - über den Betrag, damit erhält man gleichzeitig eine untere und obere Schranke
- Kenntnis über Funktionsverläufe von Grundfunktionen
- Nachweis durch Annahme einer Schranke und zeigen der Gültigkeit der Aussage

Potenzfunktionen

Steckbrief der Funktionen $x \rightarrow x^m$ für natürliches m (m = 1, 2, 3, ...)

- Definitionsbereich: R
- Wertebereich: für gerades m: R₀⁺;
 für ungerades m: R
- Injektivität: für gerades m: nicht injektiv; für ungerades m: injektiv
- Monotonie: für gerades m: nicht monoton; für ungerades m: streng monoton wachsend
- Periodizität: keine
- Positivität: für gerades m: überall ≥ 0
- Nullstellen: bei x = 0 Nullstelle m-ter Ordnung
- · Asymptoten: keine
- Unendlichkeitsstellen: keine

Steckbrief der Funktionen $x \longrightarrow x^m$ für negatives ganzzahliges m (m = -1, -2, -3, ...)

- Definitionsbereich: R \ {0}
- Wertebereich: für gerades m: R⁺; für ungerades m: R \ {0}
- Injektivität: für gerades m: nicht injektiv; für ungerades m: injektiv
- Monotonie: für gerades m: im Bereich x < 0 streng monoton wachsend, im Bereich x > 0 streng monoton fallend; für ungerades m: in den Bereichen x < 0 und x > 0 streng monoton fallend
- Periodizität: keine
- Positivität: für gerades m: überall > 0
- · Nullstellen: keine
- Asymptoten: beide Koordinatenachsen
- Unendlichkeitsstellen: Pol |m|-ter Ordnung bei x = 0

Steckbrief der Funktionen $x \rightarrow x^m$ für positives reelles nicht-ganzzahliges m

- Definitionsbereich: R_0^+
- Wertebereich: R_0^+
- Injektivität: injektiv
- Monotonie: streng monoton wachsend
- Periodizität: keine
- Positivität: überall ≥ 0
- Nullstellen: x = 0
- · Asymptoten: keine
- Unendlichkeitsstellen: keine

Steckbrief der Funktionen $x \rightarrow x^m$ für negatives reelles nicht-ganzzahliges m

- Definitionsbereich: R
- Wertebereich: R⁺
- Injektivität: injektiv
- Monotonie: streng monoton fallend
- Periodizität: keine
- Positivität: überall > 0
- Nullstellen: keine
- · Asymptoten: keine
- Unendlichkeitsstellen: bei x = 0

Potenzfunktionen mit rationalem Exponenten

definiert als
$$\chi \stackrel{\underline{\mathsf{M}}}{=} = {}^{\underline{\mathsf{M}}} \chi^{\underline{\mathsf{M}}}$$

Zusammenfassung: Potenzfunktion mit rationalem Exponenten $f(x) = x^{\frac{n}{m}} \ mit \ n \in \mathbb{Z} \ und \ m \in \mathbb{N}$

Eigenschaften	n > 0 m ungerade	n > 0 m gerade	n < 0 m ungerade	n<0 m gerade
Definitionsbereich	\mathbb{R}	[0,∞)	R\{0}	(0, ∞)
Bildbereich	ildbereich n gerade: \mathbb{R}_0^+ , n ungerade: \mathbb{R}_0^+		n gerade: \mathbb{R}^+ , n ungerade: $\mathbb{R} \setminus \{0\}$,	\mathbb{R}^{+}
Beschränktheit	n gerade: unte- re Schranke 0 n ungerade: unbeschränkt	untere Schranke 0	n gerade: unte- re Schranke 0 n ungerade: unbeschränkt	untere Schranke 0
$\begin{array}{c} \text{ n gerade: für} \\ x \geq 0 \text{ streng} \\ \text{monoton wachsend , für} \\ \textbf{Monotonie} \\ \\ \textbf{Monotonie} \\ \\ \textbf{x} \leq 0 \text{ streng} \\ \text{monoton fallend} \\ \text{n ungerade:} \\ \text{streng monoton} \\ \text{wachsend} \\ \end{array}$		streng mo- noton wachsend	n gerade: für x≥0 streng monoton fallend , für x≤0 streng monoton wachsend n ungerade: streng monoton fallend	streng mo- noton fal- lend

Beispiele für Potenzfunktionen mit rationalem Exponenten für m>n>0

http://www.realmath.de/Neues/Klasse10/potfkt2/ggbxhochnrat.html

5.5.4 Exponential- und Logarithmusfunktionen

Definition 5.27: Exponentialfunktion

Eine reelle Funktion $f(x) = a^x mit \, a > 0$ bezeichnet man als eine allgemeine **Exponentialfunktion zur Basis a** (Schreibweise auch $\exp_a(x)$).

Ist die Basis die Zahl e, so wird diese spezielle Exponentialfunktion $f(x) = e^x$ auch **e-Funktion** genannt.

Zusammenfassung: Exponentialfunktion

Eigenschaften	$f(x) = a^x \text{ mit } 0 < a < 1$	$f(x) = a^x mit a > 1$
Definitionsbereich	R	R
Bildbereich	(0,∞)	(0, ∞)
Beschränktheit	untere Schranke: 0	untere Schranke: 0
Monotonie	streng monoton fallend	streng monoton steigend
Umkehrfunktion	existiert	existiert
Symmetrie	-	-
Periodizität	-	-
Asymptoten	$y = 0 (fix x \rightarrow \infty)$	$y = 0 (fix x \rightarrow -\infty)$
Nullstellen	-	-
Minimum/Maximum	-	-
Besonderheiten:	fester Punkt: (0,1)	fester Punkt: (0,1)

Bemerkungen zur e-Funktion:

- (1) e-Funktion hat nur positive Werte
- (2) ... keine Nullstelle
- (3) ... keinen Extremwert
- (4)

Beispiele einiger Exponentialfunktionen

Zusammenfassung: Logarithmusfunktion

Eigenschaften	$f(x) = \log_a x$		
Definitionsbereich	\mathbb{R}^+		
Bildbereich	(-∞,∞)		
Beschränktheit	-		
Monotonie	streng monoton wachsend (a>1)		
Monotonie	streng monoton fallend (0 <a<1)< td=""></a<1)<>		
Umkehrfunktion	existiert		
Symmetrie	-		
Periodizität	-		
Asymptoten	-		
Nullstellen	x=1		
Minimum/Maximum	-		
Besonderheiten:	fester Punkt: (1,0)		

Beispiele einiger Logarithmusfunktionen

Exponentialfunktion ex mit Umkehrfunktion In(x)

Satz 5.13: Rechenregeln für Logarithmusfunktionen

Für alle reellen x>0, y>0 gilt:

$$\log_{a}(x \cdot y) = \log_{a} x + \log_{a} y$$

$$\log_{a}\left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$$

$$\log_{a}\left(\frac{1}{y}\right) = -\log_{a} y$$

$$\alpha \log_{a} x = \log_{a} x^{a}, \text{ fix alle } \alpha \in \mathbb{R}$$

Satz 5.14: Umrechnung von Logarithmen

Jede Logarithmusfunktion zur Basis a kann durch einen andere Logarithmusfunktion zur Basis b ausgedrückt werden, in dem mit einer

Konstanten $\frac{1}{\log_h a}$ multipliziert wird:

$$\log_a x = \frac{\log_b x}{\log_b a} \text{ für alle } x > 0$$

$$z.B. \log_a x = \frac{\ln x}{\ln a} \text{ für alle } x > 0.$$

Beispil:
$$2^6 \Rightarrow \log_2 64 = 6$$

$$8^2 \Rightarrow \log_3 64 = 2$$

$$= \frac{\log_2 64}{\log_2 8}$$

$$= \frac{6}{3} = 2$$

Zusammenfassung 1: Trigonometrische Funktionen

Eigenschaften	$f(x) = \sin x$	$f(x) = \cos x$
Definitionsbereich	$\mathbb R$	\mathbb{R}
Bildbereich	[-1,1]	[-1,1]
Beschränktheit	obere Schranke: 1 untere Schranke: -1	obere Schranke: 1 untere Schranke: -1
Monotonie	nur im Intervall	nur im Intervall
Umkehrfunktion	nur im Intervall	nur im Intervall
Symmetrie	ungerade	gerade
Periodizität	primitive Periode 2π	primitive Periode 2π
Asymptoten	-	-
Nullstellen	$x = k\pi, k \in \mathbb{Z}$	$x = \frac{\pi}{2}(2k+1), k \in \mathbb{Z}$
Minimum/Maximum	lokale Maxima: $x = \frac{\pi}{2}(4k+1), k \in \mathbb{Z}$ lokale Minima: $x = \frac{\pi}{2}(4k+3), k \in \mathbb{Z}$	lokale Maxima: $x = \pi 2k, k \in \mathbb{Z}$ lokale Minima: $x = \pi (2k + 1), k \in \mathbb{Z}$
Besonderheiten	-	-

Zusammenfassung 2: Trigonometrische Funktionen

Eigenschaften	$f(x) = \tan x$	$f(x) = \cot x$
Definitionsbereich	$\mathbb{R}\setminus\left(\tfrac{\pi}{2}(2k+1),k\in\mathbb{Z}\right)$	$\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$
Bildbereich	\mathbb{R}	R
Beschränktheit	-	-
Monotonie	nur im Intervall	nur im Intervall
Umkehrfunktion	nur im Intervall	nur im Intervall
Symmetrie	ungerade	ungerade
Periodizität	primitive Periode π	primitive Periode π
Asymptoten	-	-
Nullstellen	$x = k\pi, k \in \mathbb{Z}$	$x = \frac{\pi}{2}(2k+1), k \in \mathbb{Z}$
Pole	$x = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$	$x = k\pi, k \in \mathbb{Z}$
Minimum/Maximum	-	-
Besonderheiten	-	-

Bemerkungen zu den trigonometrischen Funktionen:

- (1) sin(x)/cos(x) haben nur Werte zwischen -1 und 1
- (2) ... sind 2π -periodisch
- (3) ... haben pro Periode ein Minimum und ein Maximum
- (4)

3.5.5 Trigonometrische Funktionen

Abbildung 1 Trigonometrische Funktionen Sinus und Cosinus

Abbildung 2 Trigonometrische Funktionen Tangens und Cotangens

Werte für spezielle Winkel:

α	$\text{sin }\alpha$	cos α	$tan \ \alpha$	cot α
0°	0	1	0	±σ
30°	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	√3
		$\frac{1}{2}\sqrt{2}$	1	1
60°	$\frac{1}{2}\sqrt{3}$	1 2	√3	$\frac{1}{3}\sqrt{3}$
90°	1	0	±σ	0
180°	0	-1	0	±σ
270°	-1	0	± ∽	0

Satz 5.15: Beziehungen zwischen den trigonometrischen Funktionen

Die nachfolgend dargestellten Beziehungen stellen nur eine Auswahl dar.

(1)
$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$

(2)Verschiebung sin gegenüber cos

$$\cos x = \sin(x + \frac{\pi}{2}), \quad \sin x = \cos(x - \frac{\pi}{2})$$

(3) Trigonometrischer Pythagoras

$$\sin^2 x + \cos^2 x = 1$$

(4) Umrechnung der Winkelfunktionen untereinander

$$\sin x = \sqrt{1 - \cos^2 x}, \quad \cos x = \sqrt{1 - \sin^2 x}$$

$$\tan x = \frac{\sin x}{\sqrt{1 - \sin^2 x}} = \frac{\sqrt{1 - \cos^2 x}}{\cos x}$$

(5)Additionstheoreme

$$\sin(x_1 \pm x_2) = \sin x_1 \cos x_2 \pm \cos x_1 \sin x_2$$
$$\cos(x_1 \pm x_2) = \cos x_1 \cos x_2 \mp \sin x_1 \sin x_2$$

$$\tan(x_1 \pm x_2) = \frac{\tan x_1 \pm \tan x_2}{1 \mp \tan x_1 \tan x_2}$$

$$\cot(x_1 \pm x_2) = \frac{\cot x_1 \cot x_2 \mp 1}{\cot x_2 \pm \cot x_1}$$

(6)
$$\sin x_1 + \sin x_2 = 2\sin \frac{x_1 + x_2}{2}\cos \frac{x_1 - x_2}{2}$$

$$\cos x_1 + \cos x_2 = 2\cos \frac{x_1 + x_2}{2}\cos \frac{x_1 - x_2}{2}$$

5.5.6 Zyklometrische Funktionen

Die Umkehrfunktionen der trigonometrischen Funktionen werden zyklometrische Funktionen genannt.

Zur Bildung der Umkehrfunktionen muss der Definitionsbereich der trigonometrischen Funktionen eingeschränkt werden:

$$\sin : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow \left[-1, 1 \right]$$

$$\arcsin y := \sin^{-1} y = \left(x \middle| \sin x = y \right) \cap \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\arcsin : \left[-1, 1 \right] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\cos : [0,\pi] \to [-1,1]$$

$$\arccos y := \cos^{-1} y = (x | \cos x = y) \cap [0,\pi]$$

$$\arccos : [-1,1] \to [0,\pi]$$

g(x) = low x

$$D = \left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$$

bull defend hior $f^{-1}(X) = ax low(X)$

5.5.7 Hyperbel-und Areafunktionen

Hyperbelfunktionen verhalten sich zur Hyperbel analog wie sich die trigonometrischen Funktionen im Einheitskreis verhalten.

Einheitshyperbel: $x^2 - y^2 = 1$ Einheitskreis: $x^2 + y^2 = 1$

Definition 5.29: Hyperbelfunktionen

Hyperbelfunktionen sind wie folgt definiert:

Sinus hyperbolicus $\sinh x = \frac{1}{2} (e^x - e^{-x})$ mit $D = \mathbb{R}$, $B = (-\infty, \infty)$

Cosinus hyperbolicus $\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right) \ mit \ D = \mathbb{R}, \ B = \left[1, \infty \right)$

Tangens hyperbolicus
$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 mit $D = \mathbb{R}$, $B = (-1,1)$

Cotangens hyperbolicus

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \quad mit \ D = \mathbb{R} \setminus \{0\}, \ B = (-\infty, -1) \cup (1, \infty)$$

cosh(x) = "Kettenlinie" z.B. "Leitung zwischen den Strommasten"

Abbildung 4 Hyperbelfunktionen

	Sinus Hyperbolicus	Kosinus Hyperbolicus
Definitionsbereich	$-\infty < x < +\infty$	$-\infty < x < +\infty$
Wertebereich	$-\infty < f(x) < +\infty$	$1 \le f(x) < +\infty$
Periodizität	keine	keine
Monotonie	streng monoton steigend	$-\infty < x \leq 0$ streng monoton fallend $0 \leq x < \infty$ streng monoton steigend
Symmetrien	Punktsymmetrie zum Ursprung	Achsensymmetrie zur Ordinate
Asymptotische	$a_1(x) = \frac{1}{2}e^{-x}, x \to \infty$	$a_1(x) = \frac{1}{2}e^{-x}, x \to \infty$
Funktionen	$a_2(x) = -\frac{1}{2}e^{-x}, x \to -\infty$	$a_2(x) = \frac{1}{2}e^{-x}, x \to -\infty$
Nullstellen	x = 0	keine
Sprungstellen	keine	keine
Poistellen	keine	keine
Extrema	keine	$\operatorname{Minimum}\operatorname{bei}x=0$
Wendestellen	x = 0	keine

aus Wikipedia

Satz 5.17: Beziehungen zwischen den Hyperbelfunktionen

$$\sinh x + \cosh x = e^x$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sinh(-x) = -\sinh x$$

$$\cosh(-x) = \cosh x$$

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$$

 $\sinh(x + y) = \cosh x \sinh y + \sinh x \cosh y$

Definition 5.30: Areafunktionen

Die Umkehrfunktionen der Hyperbelfunktionen werden Areafunktionen genannt und sind wie folgt definiert:

$$ar \sinh x := \ln(x + \sqrt{x^2 + 1}), \ x \in \mathbb{R}$$

$$ar \cosh x := \pm \ln(x + \sqrt{x^2 - 1}), \ x \ge 1$$

$$ar \tanh x := \frac{1}{2} \ln \frac{1+x}{1-x}, \ |x| < 1$$

$$ar \coth x := \frac{1}{2} \ln \frac{x+1}{x-1}, |x| > 1$$

<u>Koordinatensysteme - Funktionen</u>

- Darstellung in Polarkoordinaten
- Parameterdarstellung

17

Funktionen

• Darstellung in Polarkoordinaten

5.3.3 Übergang Kartesische Koordinaten - Polarkoordinaten

Definition 5.11: Polarkoordinaten

Die Polarkoordinaten (r,φ) eines Punktes P der Ebene bestehen aus einer **Abstandskoordinate** r und einer **Winkelkoordinate** φ .

r ist der Abstand des Punktes P vom Koordinatenursprung.

 φ ist der Winkel zwischen dem vom Koordinatenursprung zum Punkt P gerichteten Radiusvektor und der positiven x-Achse.

 Die Transformationsgleichungen zum Übergang von kartesischen Koordinaten auf Polarkoordinaten und umgekehrt sind nachfolgend dargestellt:

Kartesische Koordinaten → Polarkoordinaten

$$r = \sqrt{x^2 + y^2}$$
 und $\tan \varphi = \frac{y}{x} (+\pi \text{ im 2./3.Quadranten})$

Polarkoordinaten → kartesische Koordinaten

 $x = r \cdot \cos \varphi$ and $y = r \cdot \sin \varphi$

Funktionen

- Darstellung in Polarkoordinaten
- Beispiel:

$$r(\phi)$$
 = 2ϕ mit $0 \le \phi < 2\pi$

Funktionen: Parameterdarstellung

- Eine Kurve wird durch 2 Gleichungen beschrieben.
- Die x-Koordinate und die y-Koordinate werden getrennt voneinander in Abhängigkeit einer Hilfsvariablen (dem sogenannten Parameter) beschrieben.
- Häufig ist der verwendete Parameter die Variable t, als Symbol für die Zeit.
- y(t) und x(t) sind die abhängigen Variablen und werden im kartesischen x-y-Koordinatensystem skizziert.
- t ist die unabhängige Variable und wird in der Regel nicht skizziert, sondern zum Teil nur an einzelnen Punkten benannt.
- Jede Funktion f(x) kann auch in einer Parameterdarstellung angegeben werden mit x(t) = t und y(t) = f(t).
 Die Umkehrung gilt nicht!

Beispiel:

$$x(t)=6*sin(t)-sin(3*t)$$

$$y(t)=6*t*sin(t)$$

$$mit -\pi < t < \pi$$

http://fooplot.com/

Wie wird die Kurve mit dem Parameter $-\pi < t < \pi$ durchlaufen?

Zweidimensionale Kurven in anderen Darstellungen

http://fooplot.com/

Beispiele:

Funktion in Polarkoordinaten $r(\phi) = 2\phi$ mit $0 \le \phi < 2\pi$

Funktion in Polarkoordinaten $r(\phi) = 2$ mit $0 \le \phi < 2\pi$

Funktion in kartesischen Koordinaten $f(x) = \sqrt{1-x^2}$ mit $-1 \le x < \le 1$

Kurve in Parameterdarstellung
$$x(t) = 3\cos(t)$$
 $y(t) = 3\sin(t)$ mit $0 \le t < 2\pi$

Ergänzung: Koordinaten im Raum in verschiedenen Darstellungen

- räumliche kartesische Koordinaten (x,y,z)

http://www.mathepedia.de/Raum.aspx

Zylinderkoordinaten (r, φ, z)
 Polarkoordinaten in der Ebene,
 ergänzt um die Höhenangabe in kartesischen Koordinaten

Kugelkoordinaten (r, φ, θ)
 Polarkoordinaten in der Ebene,
 ergänzt um eine weitere Winkelangabe θ für die Höhe

Differentialrechnung

Rückblick: Differenzenquotient - Differentialquotient

Veranschaulichung:

Differenzenquotient und Differentialquotient im Punkt x_0 der Funktion f

Differenzenquotient:

$$\frac{\Delta f}{\Delta x}(x_0) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Steigung der Sekanten durch die Punkte $(x_0,f(x_0))$ und $(x_0+\Delta x, f(x_0+\Delta x))$

Differentialquotient:

Differentialquotient im Punkt xo

$$f'(x_0) = \frac{df}{dx}(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
Steigung der Tangenten im Punkt $(x_0, f(x_0))$

Differentialquotient für x

$$f'(x) = \frac{df}{dx}(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

1.Ableitung der Funktion f(x) = Funktion der Steigungen der Funktion f(x)

Differenzierbarkeit

Definition 6.1: differenzierbar, Ableitung, Differentialquotient

Die Funktion f(x) heißt an der Stelle x_0 differenzierbar, wenn der folgende Grenzwert existiert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Differeziebertzeit eine Franktion (KX) au de Stelle Xo

as Differential quotient of (x0) existing

Es Gruzwi lin f(x0+Ax) - f(x0) existion

(=> Grenzwell des Diffrentialqualient von rolls au x.o.

$$g_s = \lim_{\Delta x \to 0^+} \frac{g_s(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Ge = line
$$f(x_0+Ax)-f(x_0)$$

Se = $Ax > 0$

umesu guide sun

Skigungen von Rolls au xo (gr)

. und Shiguyu van linder am xo (ge) Sind identisch

Linksseitiger und rechtsseitiger Grenzwert für die Grenzwertberechnung des Differentialquotienten

Beispiel:

Differenzierbarkeit der

Betragsfunktion

Betragsfunktion f(x) = |x|

(1) ...im Punkt $x_0=1$

(2) ...im Punkt $x_0=0$

Aufgabe: Differenzierbarkeit

Gegeben ist die Funktion
$$f(x) = |x^2 - 1|$$

Ist die Funktion f(x) im Punkt x = 1 differenzierbar?

Grundlegende Ableitungsfunktionen Ableitungsregeln

Zusammenfassung: Ableitungen elementarer Funktionen

	Funktion $f(x)$	1. Ableitung $f'(x)$
Konstante Funktion	С	0
Potenzfunktion	$x^n, n \in \mathbb{N}, x > 0$	$n \cdot x^{n-1}, \ n \in \mathbb{N}$
	$x^a, a \in \mathbb{R}, x > 0$	$a \cdot x^{a-1}, \ a \in \mathbb{R}, \ \times \in \mathcal{D}$
Sonderfall Wurzelfunktion	$\sqrt{x} = x^{\frac{1}{2}}, \ x > 0$	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}, \ \times \in \mathcal{D}$
	$\sin x, \ x \in \mathbb{R}$	$\cos x, \ x \in \mathbb{R}$
Triggen amotric abo	$\cos x, \ x \in \mathbb{R}$	$-\sin x, \ x \in \mathbb{R}$
Trigonometrische Funktionen	$\tan x, \ x \neq (2k+1)\frac{\pi}{2}$	$\frac{1}{\cos^2 x}, \ x \neq (2k+1)\frac{\pi}{2}$
	$\cot x, \ x \neq k \frac{\pi}{2}$	$-\frac{1}{\sin^2 x}, \ x \neq k^{\frac{\pi}{2}}$
	$\arcsin x, \ x \in (-1,1)$	$\frac{1}{\sqrt{1-x^2}}, \ x \in (-1,1)$
Zyklometrische	$\arccos x, \ x \in (-1,1)$	$-\frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$
Funktionen	$\arctan x, x \in \mathbb{R}$	$\frac{1}{1+x^2}, \ x \in \mathbb{R}$
	$arc \cot x, \ x \in \mathbb{R}$	$-\frac{1}{1+x^2}, \ x \in \mathbb{R}$
Exponentialfunktionen	e^{x}	e^{x}
,	a^{x}	$\ln a \cdot a^{x}$
Logarithmusfunktionen	$\ln x$, $x > 0$	$\frac{1}{x}$, $x > 0$
	$\log_a x, \ x > 0$	$\frac{1}{\ln a \cdot x}, \ x > 0$

6.2 Differentiationsregeln Zusammenfassung

Satz 6.1: Faktorregel

Ein konstanter Faktor bleibt beim Differenzieren erhalten:

$$y = c \cdot f(x) \implies y' = c \cdot f'(x)$$

Satz 6.2: Summenregel

Eine Summe von Funktionen darf gliedweise differenziert werden:

$$y = f(x) + g(x) \implies y' = f'(x) + g'(x)$$

Satz 6.3: Produktregel

Die Ableitung einer Funktion, die aus einem Produkt von Teilfunktionen besteht, wird mit folgendem Ausdruck berechnet:

$$y = f(x) \cdot g(x) \Rightarrow y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Satz 6.4: Quotientenregel

Die Ableitung einer Funktion, die aus einem Quotienten von Teilfunktionen besteht, wird mit folgendem Ausdruck berechnet:

$$y = \frac{f(x)}{g(x)} \Rightarrow y' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

Sonderfall: Reziprokregel

$$y = \frac{1}{g(x)} \Rightarrow y' = \frac{-g'(x)}{g^2(x)}$$

Satz 6.5: Kettenregel

Die Ableitung einer zusammengesetzten (verketteten) Funktion erhält man als Produkt aus äußerer und innerer Ableitung:

$$y = f(g(x)) \Rightarrow y' = f'(g(x)) \cdot g'(x)$$

Substitution u = g(x): $y = f(u) \Rightarrow y' = \frac{dy}{du} \cdot \frac{du}{dx}$

Satz 6.6: Ableitung der Umkehrfunktion

Sei y = f(x) umkehrbar und $x = f^{-1}(y)$ die nach x aufgelöste Funktion, dann gilt für die Ableitungen:

$$\left[f^{-1}(y)\right]' = \frac{1}{f'(x)} \ mit \ f'(x) \neq 0$$

 $\Rightarrow f'(x) = \frac{1}{\left[f^{-1}(y)\right]'}$

Satz 6.7: Logarithmische Differentiation

Die Ableitung einer Funktion $y = f(x) = [u(x)]^{v(x)}$ kann berechnet werden mit:

$$\left[\ln f(x)\right]' = \frac{f'(x)}{f(x)} \ mit \ f(x) \neq 0$$

 $\Rightarrow f'(x) = \left[\ln(f(x))\right]' f(x)$

Satz 4.2: Summenregel

Eine Summe von Funktionen darf gliedweise differenziert werden:

$$y = f(x) + g(x) \implies y' = f'(x) + g'(x)$$

Beispiel: $y = x^2 + \sin x \implies y' = 2x + \cos x$

Herleitung der Summenregel mit Hilfe des Differentialquotienten:

$$f(x) = h(x) + g(x) \qquad \text{for the order}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(h(x + \Delta x) + g(x + \Delta x)) - (h(x) + g(x))}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(h(x + \Delta x) - h(x))}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{h(x + \Delta x) - h(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$\psi'(x) = \psi'(x) + \Im'(x)$$

Summenregel

Satz 4.3: Produktregel

Die Ableitung einer Funktion, die aus einem Produkt von Teilfunktionen besteht, wird mit folgendem Ausdruck berechnet:

$$y = f(x) \cdot g(x) \implies y' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Beispiel: $y = x^2 \cdot \sin x \implies y' = 2x \cdot \sin x + x^2 \cdot \cos x$

Herleitung mit Hilfe des Differentialquotienten:

$$f'(x) = h(x) g(x)$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$h(x + \Delta x) g(x + \Delta x) - h(x) g(x)$$

$$h(x + \Delta x) g(x + \Delta x) - h(x) g(x)$$

$$f'(X) = \lim_{\Delta x \to 0} \frac{L(X+\Delta x)g(X+\Delta x) - L(x)g(X)}{\Delta x}$$

= lim
$$\frac{L(X+\Delta X) g(X+\Delta X) - L(X) g(X+\Delta X)}{\Delta X} + \frac{L(X) g(X+\Delta X)}{\Delta X}$$

= lun
$$\frac{g(x+\Delta x)(h(x+\Delta x)-h(x))}{\Delta x}$$
 + $\lim_{\Delta x\to 0} \frac{h(x)(g(x+\Delta x)-g(x))}{\Delta x}$

$$f'(x) = g(x) \cdot h'(x) + h(x) \cdot g'(x)$$

Produktregel

Satz 4.4: Quotientenregel

Die Ableitung einer Funktion, die aus einem Quotienten von Teilfunktionen besteht, wird mit folgendem Ausdruck berechnet:

$$y = \frac{f(x)}{g(x)} \implies y' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^{2}(x)}$$

Sonderfall: Reziprokregel

$$y = \frac{1}{g(x)} \Rightarrow y' = \frac{-g'(x)}{g^2(x)}$$

Beispiel:
$$y = \frac{x^2}{\sin x}$$
 $\Rightarrow y' = \frac{2x \cdot \sin x - x^2 \cdot \cos x}{(\sin x)^2} \left(= \frac{x(2 - x \cdot \cot x)}{\sin x} \right)$

Herleitung mit Hilfe der Produktregel:

$$S = \frac{f(x)}{S(x)}$$

Satz 4.5: Kettenregel

Die Ableitung einer zusammengesetzten (verketteten) Funktion erhält man als Produkt aus äußerer und innerer Ableitung:

$$y = f(g(x)) \Rightarrow y' = f'(g(x)) \cdot g'(x)$$

Substitution u = g(x): $y = f(u) \Rightarrow y' = \frac{dy}{du} \cdot \frac{du}{dx}$

Beispiel: $y = \sin(x^2) \implies y' = \cos(x^2) \cdot 2x$

allgemeine Herleitung - Kettenregel

Beispiel:

$$f(x) = Siu\left(\frac{\Lambda}{x}\right)$$

Satz 4.6: Ableitung der Umkehrfunktion

Sei y = f(x) umkehrbar und $x = f^{-1}(y)$ die nach x aufgelöste Funktion, dann gilt für die Ableitungen:

$$[f^{-1}(y)]' = \frac{1}{f'(x)} mit \ f'(x) \neq 0$$

$$\Rightarrow f'(x) = \frac{1}{\left[f^{-1}(y)\right]'}$$

Herleitung der Methode "Ableitung über die Umkehrfunktion"

$$(x)' = (f^{-1}(f(x)))'$$
 mit $y = f(x)$ mit Umkehrfunktion $f^{-1}(x)$

$$1 = \left(f^{-1}(f(x)) \right)'$$

$$1 = (f^{-1}(y))' f'(x)$$

$$f'(x) = \frac{1}{\left[f^{-1}(y)\right]'}$$

Warum gilt die Formel für die Ableitung über die Umkehrfunktion?

Satz 4.6: Ableitung der Umkehrfunktion

Sei y = f(x) umkehrbar und $x = f^{-1}(y)$ die nach x aufgelöste Funktion, dann gilt für die Ableitungen:

$$[f^{-1}(y)]' = \frac{1}{f'(x)} mit \ f'(x) \neq 0$$

Veranschaulichung

Satz 4.7: Logarithmische Differentiation

Die Ableitung einer Funktion $y = f(x) = [u(x)]^{v(x)}$ kann berechnet werden mit:

$$\left[\ln f(x)\right]' = \frac{f'(x)}{f(x)} \ mit \ f(x) \neq 0$$

Warum sieht die Formel so aus?

Aufgabe:

- a) Gregdon ist die Funktion f(x)=(sinx)^{cosx}.

 Bestimmen sie die Funktion de 1. Moliteurg.

 Hinweis: Logarithmisches Differenzion
- b) Aufgabe: Ableiter überdic henkeliefunktion Gesucht f'(x) für f(x) = arccos(x) (=y)

Himmis: Besamt g(x) für g(x) = cos(x): g'(x) = - sinx = f⁻¹ du hunkdir funktion von f(x) Ableitungen und ihre Aussagen Extremwertbestimmung

39

Definition 6.3: Ableitungen höherer Ordnung

Für die differenzierbare Funktion f(x) bezeichne $f^{(0)}(x) := f(x)$ die Funktion selbst und $f^{(1)}(x) := f'(x)$ die erste Ableitung.

Für n > 1 ist $f^{(n)}(x)$ die Ableitung der Funktion $f^{(n-1)}(x)$. Die Funktion $f^{(n)}(x)$ ist die **n-te Ableitung** (oder Ableitung n-ter Ordnung) **der Funktion f**, d.h. $f^{(0)}(x) := f(x)$

$$f^{(1)}(x) := (f^{(0)}(x))^{'}$$

$$f^{(2)}(x) := (f^{(1)}(x))$$

$$f^{(3)}(x) := (f^{(2)}(x))^{'}$$

:

$$f^{(n)}(x) := (f^{(n-1)}(x))^n$$

Beispiel:

f'(x) ist die Funktion mit den Steigungswerten der Funktion f(x)

f''(x) ist die Funktion mit den Steigungswerten der Funktion f'(x)

....

....

•

Ableitungen und ihre Aussagen

• • •

Ableitungen und ihre Aussagen

Aussagen der 1. Ableitung:

- gibt Steigungen der Kurventangenten wieder
- $f'(x_0)$ positiv: Tangente hat positive Steigung im Punkt x_0
- $f'(x_0)$ negativ: Tangente hat negative Steigung im Punkt x_0
- $f'(x_0) = 0$: Tangente hat Steigung 0 im Punkt x_0 (notwendige Bedingung für lokalen Extremwert)

Ableitungen und ihre Aussagen

Aussagen der 2. Ableitung:

- gibt Steigungen der Kurventangenten der 1. Ableitung wieder
- macht qualitative Aussagen über das Krümmungsverhalten von f(x)
- f''(x) positiv: Linkskrümmung der Kurve
- f''(x) negativ: Rechtskrümmung der Kurve
- quantitatives Maß über die Stärke der Krümmung: $\kappa = \frac{f''(x)}{\left[1 + (f'(x))^2\right]^{\frac{3}{2}}}$

Beispiel: Berechnung der Krümmung

$$f(x) = x^2$$

Krümmung im Punkt x=1

Krümmung im Punkt x=2

Definition 6.4: Wendepunkt/ Sattelpunkt

Kurvenpunkte, in denen sich der Drehsinn der Tangenten ändert, heißen Wendepunkte.

Wendepunkte mit waagerechter Tangente werden als Sattelpunkte bezeichnet.

Satz 6.15:

Die Funktion f sei im Intervall [a, b] differenzierbar.

Gilt $f'(x_0) = 0$ und $f''(x_0) < 0$ dann hat f in x_0 ein lokales Maximum.

Gilt $f'(x_0) = 0$ und $f''(x_0) > 0$ dann hat f in x_0 ein lokales Minimum.

Satz 6.16:

Die Funktion f sei im Intervall [a, b] differenzierbar.

Gilt $f''(x_0) = 0$ und $f'''(x_0) \neq 0$ dann hat f in x_0 einen Wendepunkt.

Gilt zusätzlich $f'(x_0) = 0$ dann hat f in x_0 einen **Sattelpunkt**

f'''(x) >0: Krümmungswechsel rechts auf links

f'''(x) <0: Krümmungswechsel links auf rechts

Minimum in x₀:

- notwendige Bedingung $f'(x_0)=0$ (Nullstelle in der 1.Ableitung)
- hinreichende Bedingung

entweder

Vorzeichenwechsel der Funktionswerte f'(x) an der Nullstelle x₀ von - nach +

oder

f''(x₀) ist positiv

45

Maximum in x₀:

- notwendige Bedingung $f'(x_0)=0$ (Nullstelle in der 1.Ableitung)
- hinreichende Bedingung

entweder

Vorzeichenwechsel der Funktionswerte f'(x) an der Nullstelle x₀ von + nach -

oder

f''(x₀) ist negativ

Zusammenfassung:

Bedingungen für Nullstelle, Extremwert, Wendepunkt

Satz 6.17 und 6.18 sind in obiger Zusammenfassung enthalten

Satz 6.17: Allgemeines Kriterium für lokalen Extremwert

Die Funktion f besitzt in x_0 eine waagerechte Tangente, d.h. $f'(x_0) = 0$.

Die nächste an dieser Stelle nicht verschwindende Ableitung sei die n-tel Ableitung $f^{(n)}(x_0) \neq 0$.

Dann besitzt f in x₀ einen lokalen Extremwert, falls die Ordnung n dieser Ableitung gerade ist,

insbesondere ein lokales Minimum, wenn $f^{(n)}(x_0) > 0$ bzw. ein lokales Maximum, wenn $f^{(n)}(x_0) < 0$.

• Ist die Ordnung n ungerade so besitzt f in x_0 einen Sattelpunkt.

Satz 6.18: Aussagen zum Wendepunkt

Die Funktion f besitzt in x_0 einen Wendepunkt, falls

1.
$$f''(x_0) = 0$$
 und $f'''(x_0) \neq 0$ oder

2. $f''(x_0) = 0$ und $f''(x_0)$ hat bei x_0 einen Vorzeichenwechsel

3. $f''(x_0) = f'''(x_0) = 0 \text{ und für die } k - fache \text{ Ableitung ist erstmalig}$ $f^{(k)}(x_0) \neq 0: \exists n \in \mathbb{N} : k = 2n+1, d.h. \text{ k ist ungerade.}$

kein Extremwert in x=0 $f(x) = x^3$

Beispiel zur Extremwert- und Wendepunktbestimmung

$$f(x) = x^3 + 4x^2 + 1$$

 $f'(x) = 3x^2 + 8x$
 $f''(x) = 6x + 8$
 $f'''(x) = 6$

Extremwertbestimmung: notwendige Bedingung f'(x)=0

$$f'(x) = 0 \Rightarrow 3x^2 + 8x = 0$$

 $x(3x+8) = 0$
 $x=0 \lor x=-8/3$ zwei kritische Punkte

Untersuchung des Verhaltens für x=0:

$$f''(0) = 6(0) + 8 = 8 > 0 \Rightarrow Minimum in x=0$$

mit Funktionswert $f(0) = 1$

Untersuchung des Verhaltens für x=- 8/3:

$$f''(-8/3) = 6(-8/3) + 8 = -8 < 0 \Rightarrow Maximum in x = -8/3 mit Funktionswert f(-8/3) = ...$$

Wendepunktbestimmung: notwendige Bedingung f''(x)=0

$$f''(x) = 0 \Rightarrow 6x + 8 = 0$$

 $\Rightarrow x = -4/3$

Untersuchung des Verhaltens für x=-4/3: