Math 279 Data Communication and the Internet

Jie Chu

jchu1@gc.cuny.edu

Fall 2013

What is the course about?

Introductory (first) course for computer Internet

- learn applications of Internet
- □ learn components of Internet *
- learn practice of World Wide Web

Goals:

- learn a lot (applications, concepts, practice)
- have fun (well, it should be interesting, at least)

Course Information

- Course materials:
 - o text: New Perspectives on HTML and CSS, 6th Edition, Comprehensive Course Technology, 2011. (ISBN: 978-1111526443)
 - Class notes
- Class meeting time:
 - o T, R, 8:30 9:45pm
- Office hours:
 - o NB/6.63.32
 - Or By appointments

Course Information (more)

□ Class WWW site:

http://web.cs.gc.cuny.edu/~jchu/math279/

- o everything will be posted on this site
 - syllabus
 - class notes (pdf version)
 - assignments
- □ me

Course Information (more)

Workload and grading:

Course work	number	approx %
projects	3	45%
In-class exams	3	30%
Final project or final exam	1	25%

- Late policy
- Attendance

Part 1: Introduction of Internet

- □ What is the Internet?
 - Physical view
 - network edge, network core, network access
 - Functional view
 - services (web, email, file transfer, database, remote control)
 - Operational view
 - what is a network protocol?
 - A brief history of Internet

Part 2: HTML

- HTML basics
 - standards and specifications
 - HTML elements and markup tags
 - basic structure of an HTML file
 - work with block-level elements
 - o create lists, inline elements
 - use div and span
 - o add attributes
- Working with hyperlinks, images
 - Concept of URL, work with servers

Part 3: HTML web page design

- Cascading style sheets (CSS)
 - o work with CSS selectors
 - o create styles for lists
 - o create a rollover effect
 - manage page layout with CSS
 - work with overflow and clipping styles
- HTML tables
 - o create headings and cells in a table
 - cells span, create row and column groups

Part 4: forms and frames

- □ HTML forms
 - create form elements
 - o field sets and legends
 - create input boxes, form labels, option buttons, selection lists, check boxes, etc. ...
- □ HTML frames
 - create a frameset consisting of rows and columns of frames, create links targeted in/out frames
 - o format the color and size of frame borders
 - using inline frame

Part 5: Javascript and XHTML

- Javascript
 - understand basic JavaScript syntax
 - JavaScript data types
 - declare and work with variables, create and call a JavaScript function
 - o access an external JavaScript file
- XHTML
 - Introduction to XHTML fundamentals

Questions, Comments, ...??

Part I: Introduction

Our goal:

get context, overview, "feel" of Internet

Overview:

- what's the Internet
 - Physical, services, operational views
- a closer look
 - network edge
 - o network core
 - o access Internet
- protocol layers
- history

How is the Internet Organized

- □ A hierarchical structure.
- hosts combine to form a Local Area Network (LAN).
- LANs combine to form an Autonomous System (AS)
- □ Autonomous Systems combine to form the Internet.

Internetworked networks - Internet!

What's the Internet: "nuts and bolts" view

- millions of connected computing devices: hosts, end-systems
 - o pc's workstations, servers
 - o PDA's, smart phones
 - running network applications
- communication links
 - o fiber, copper, radio, satellite
- routers: forward packets (chunks) of data thru network

Lecture 1, Introduction

What's the Internet: a service view

- communication
 infrastructure enables
 distributed applications:
 - WWW, email, games, ecommerce, database, voting
- communication services provided:
 - o connectionless
 - o connection-oriented

What's the Internet: an operational view

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocol?

What's the Internet: an operational view

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocol?

What's the Internet: an operational view

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Take home messages

What are the three most important physical components of Internet?

■ Name four Internet applications?

What does an Internet protocol do?

A closer look at the Internet structure!

Network edge: hosts

- Each host has two addresses
 - IP address, number address,
 - □ e.g. 128.119.240.41
 - DNS (Domain Name Server) address, literal address
 - e.g. web.jjay.cuny.edu
 - host name + domain Name
 - o host name web
 - o domain name jjay.cuny.edu
- □ Top Level Domain (TLD) name:

```
ex - .com .edu .org .mil .gov, etc. indicating organization
```

or - .au , .fr , .uk, etc. indicating country

The Network Core

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data
 sent thru net in discrete
 "chunks"

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- □ 1 bit is a memory unit that can hold a binary 0 or 1

Residential access: point to point access

- Dialup via modem
 - up to 56Kbps direct access to router (conceptually)
- ISDN: integrated services digital network: 128Kbps alldigital connect to router
- ADSL: asymmetric digital subscriber line
 - up to 1 Mbps home-to-router
 - o up to 8 Mbps router-to-home

Residential access: cable modems

- □ HFC: hybrid fiber coax
 - asymmetric: up to 10Mbps upstream, 1 Mbps downstream
- network of cable and fiber attaches homes to ISP router
 - shared access to router among home
 - o issues: congestion
- deployment: available via cable companies, e.g.,
 Comcast, Cable Vision

Institutional access: local area networks

 company/univ local area network (LAN) connects end system to edge router

□ Ethernet:

- shared or dedicated cable connects end system and router
- 10 Mbps, 100Mbps,
 Gigabit Ethernet
- deployment: institutions, home LANs happening now

Wireless access networks

 shared wireless access network connects end system to router

□ wireless LANs:

- radio spectrum replaces wire
- e.g., 802.11n up to 600 Mbps
- wider-area wireless access
 - Wireless access to ISP router via cellular network

Home networks

Typical home network components:

- □ ADSL or cable modem
- router/firewall
- Ethernet

Internet Protocol Layers

Protocol "Layers"

Networks are complex!

- many "pieces":
 - o hosts
 - o routers
 - links of various media
 - applications
 - protocols
 - hardware,software

Question:

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

a series of steps

Organization of air travel: a different view

airplane routing airplane i	airplane routing
runway takeoff	, ,
runway takeoff	runway landing
gates (load)	gates (unload)
baggage (check)	baggage (claim)
ticket (purchase)	ticket (complain)

Layers: each layer implements a service

- via its own internal-layer actions
- o relying on services provided by layer below

Why layering?

Dealing with complex systems:

- explicit structure allows identification,
 relationship of complex system's pieces
 - o layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system

Internet protocol layers

- application: supporting network applications
 - o ftp, smtp, http
- transport: host-host data transfer
 - o tcp, udp
- network: routing of datagrams from source to destination
 - o ip, routing protocols
- link: data transfer between neighboring network elements
 - o ppp, ethernet
- physical: bits "on the wire"

application
transport
network
link
physical

History of the Internet

- 1968 The ARPANET Contract was awarded.
- □ 1969 The Arpanet was physically establised with 4 computers: SRI - UCLA - UCSB - Univ. of Utah. (was a 50 Kbps network).
- □ Today a dial-up modem is also of 56 Mbps.
- □ 1973 Development started on TCP/IP

History

- □ 1977 Email takes off.
- 1982 TCP/IP becomes standard.
- 1983 Name Server developed.
- 1991 Commercialization started. WWW released by CERN
- 1993 WWW revolution begins.
- □ 1997 19.5 million hosts.

WWW and URL

- WWW: World Wide Web, the most common internet application
 - Web page online document generally contains hypertext
 - hypertext a dynamic variation of traditional text that allows you to view web based documents
 - a Web browser a piece of software provides web browsing service
- URL every web page has a unique global address which is called the Uniform Resource Locator or URL
 - Example http://www.cnn.com/

The Client/Server Model

- Client/server model is a basic design for Internet applications
 - server is the information provider
 - client is the information consumer
- example
 - web server and a client running web browser
 - a CNN web server simultaneously serves thousands of clients.
- In this class, we will learn how to construct Web pages at the client end!

Take home messages

Name three kinds of access to the Internet (e.g., dial-up).

- □ What are the five Internet protocol layers?
- □ What is WWW, URL, Server/Client model?