Bicycle GAN

Presenter: Akilesh B

Motivation

Existing image to image translation works produce only single output.

 This paper models a distribution of possible outputs in a conditional generative modeling setting.

 A learnt low-dimensional latent code is used in addition to input image to generate possible outputs.

Bijective mapping between the latent encoding and output modes.

(b) Diverse day images sampled by our model

Baseline: $pix2pix + noise (z \rightarrow B^{\hat{}})$

$$\mathcal{L}_{GAN}(G, D) = \mathbb{E}_{\mathbf{A}, \mathbf{B} \sim p(\mathbf{A}, \mathbf{B})}[\log(D(\mathbf{A}, \mathbf{B}))] + \mathbb{E}_{\mathbf{A} \sim p(\mathbf{A}), \mathbf{z} \sim p(\mathbf{z})}[\log(1 - D(\mathbf{A}, G(\mathbf{A}, \mathbf{z})))]$$

$$\mathcal{L}_1^{\text{image}}(G) = \mathbb{E}_{\mathbf{A}, \mathbf{B} \sim p(\mathbf{A}, \mathbf{B}), \mathbf{z} \sim p(\mathbf{z})} ||\mathbf{B} - G(\mathbf{A}, \mathbf{z})||_1$$

$$G^* = \arg\min_{G} \max_{D} \quad \mathcal{L}_{GAN}(G, D) + \lambda \mathcal{L}_{1}^{image}(G)$$

(b) Training pix2pix+noise

cVAE-GAN (B \rightarrow z \rightarrow B[^])

(c) Training cVAE-GAN

cVAE-GAN equations

$$\mathcal{L}_{\text{GAN}}^{\text{VAE}} = \mathbb{E}_{\mathbf{A}, \mathbf{B} \sim p(\mathbf{A}, \mathbf{B})}[\log(D(\mathbf{A}, \mathbf{B}))] + \mathbb{E}_{\mathbf{A}, \mathbf{B} \sim p(\mathbf{A}, \mathbf{B}), \mathbf{z} \sim E(\mathbf{B})}[\log(1 - D(\mathbf{A}, G(\mathbf{A}, \mathbf{z})))]$$

$$\mathcal{L}_{\mathrm{KL}}(E) = \mathbb{E}_{\mathbf{B} \sim p(\mathbf{B})}[\mathcal{D}_{\mathrm{KL}}(E(\mathbf{B})||\mathcal{N}(0,I))]_{\mathbb{R}}$$

$$G^*, E^* = \arg\min_{G, E} \max_{D} \quad \mathcal{L}_{GAN}^{VAE}(G, D, E) + \lambda \mathcal{L}_{1}^{VAE}(G, E) + \lambda_{KL} \mathcal{L}_{KL}(E).$$

(d) Training cLR-GAN

cLR-GAN equations

$$\mathcal{L}_{1}^{\text{latent}}(G, E) = \mathbb{E}_{\mathbf{A} \sim p(\mathbf{A}), \mathbf{z} \sim p(\mathbf{z})} ||\mathbf{z} - E(G(\mathbf{A}, \mathbf{z}))||_{1}$$

$$G^*, E^* = \arg\min_{G, E} \max_{D} \quad \mathcal{L}_{GAN}(G, D) + \lambda_{latent} \mathcal{L}_1^{latent}(G, E)$$

Bicycle GAN

$$G^*, E^* = \arg\min_{G, E} \max_{D} \mathcal{L}_{GAN}^{VAE}(G, D, E) + \lambda \mathcal{L}_{1}^{VAE}(G, E) + \mathcal{L}_{GAN}(G, D) + \lambda_{latent} \mathcal{L}_{1}^{latent}(G, E) + \lambda_{KL} \mathcal{L}_{KL}(E)$$

$$\lambda_{latent} = 0.5, \lambda_{KL} = 0.01, \lambda = 10$$