

University of Michigan – Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)

Power input to a source

25.23 When two sources are connected in a simple loop circuit, the source with the larger emf delivers energy to the other source.

Example 1

What are the readings of the ideal voltmeters?

Example 2

25.86 ••• CALC A source with emf \mathcal{E} and internal resistance r is connected to an external circuit. (a) Show that the power output of the source is maximum when the current in the circuit is one-half the short-circuit current of the source. (b) If the external circuit consists of a resistance R, show that the power output is maximum when R = r and that the maximum power is $\mathcal{E}^2/4r$.

Magetism

Motion

Current loop

Solenoid

The torque tends to make the solenoid rotate clockwise in the plane of the page, aligning magnetic moment $\vec{\mu}$ with field \vec{B} .

Flux (Gauss's Law)

Example 1

In Fig. 27.30 the magnetic field \vec{B} is uniform and perpendicular to the plane of the figure, pointing out of the page. The conductor, carrying current I to the left, has three segments: (1) a straight segment with length L perpendicular to the plane of the figure, (2) a semicircle with radius R, and (3) another straight segment with length L parallel to the x-axis. Find the total magnetic force on this conductor.

