Introduction

Oh hey, it's another one of these independent studies. Me and a friend are going to be going through William Fulton's *Algebraic Curves*. It will be hard, it will be long, and it might not work out for me, but who cares.

Contents

Introduction	1
Affine Algebraic Sets	1
Algebraic Preliminaries	1
Affine Space and Algebraic Sets	4
The Ideal of a Set of Points	5
The Hilbert Basis Theorem	
Irreducible Components of an Algebraic Set	7
Algebraic Subsets of the Plane	7

Affine Algebraic Sets

Algebraic Preliminaries

We will assume all rings are commutative with unity, where $\mathbb Z$ is the integers, $\mathbb Q$ is the rationals, $\mathbb R$ is the reals, and $\mathbb C$ is the complex numbers.

Any integral domain R has a quotient field K, which contains R as a subring, and any element in K may be written as a not necessarily unique ratio of two elements of R. Any one-to-one ring homomorphism from R to a field L extends uniquely to a ring homomorphism from K to L.

If R is a ring, then R[x] is the ring of polynomials with coefficients in R. The degree of a nonzero polynomial $\sum a_i x^i$ is the largest integer d such that $a_d \neq 0$. The polynomial is monic if $a_d = 1$.

The ring of polynomials in n variables over R is $R[x_1,\ldots,x_n]$. We write R[x,y] and R[x,y,z] if n=2 and 3 respectively. Monomials in $R[x_1,\ldots,x_n]$ are of the form $x^{(i)}:=x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$, where i_j are nonnegative integers, and the degree of the monomial is $i_1+\cdots i_n$. Every $F\in R[x_1,\ldots,x_n]$ has a unique expression $F=\sum a_{(i)}x^{(i)}$, where $x^{(i)}$ are monomials, and $a_{(i)}\in R$. We say F is homogeneous of degree d if all $a_{(i)}$ are zero except for monomials of degree d. The polynomial F is written as $F=F_0+F_1+\cdots F_d$, where F_i is a form of degree i, and $d=\deg(F)$ for $F_d\neq 0$.

The ring R is a subring of $R[x_1, \ldots, x_n]$, and the ring $R[x_1, \ldots, x_n]$ is characterized by the following: if $\varphi \colon R \to S$ is a ring homomorphism, and s_1, \ldots, s_n are elements in S, then there is a unique extension of φ to a ring homomorphism $\overline{\varphi} \colon R[x_1, \ldots, x_n] \to S$ such that $\overline{\varphi}(x_i) = s_i$. The image of F under $\overline{\varphi}$ is written $F(s_1, \ldots, s_n)$. The ring $R[x_1, \ldots, x_n]$ is canonically isomorphic to $R[x_1, \ldots, x_{n-1}][x_n]$.

An element $a \in R$ is called irreducible if it is not a unit or zero, and any factorization a = bc with $b, c \in R$ is such that either b or c is a unit. A domain R is a unique factorization domain (UFD) if every nonzero element in R can be factored uniquely up to units and ordering.

If R is a UFD with quotient field K, then any irreducible element $F \in R[x]$ remains irreducible when considered in K[x].

Theorem (Gauss's Lemma for \mathbb{Z}): If $F \in \mathbb{Z}[x]$ is a monic polynomial that is irreducible, then F is irreducible in $\mathbb{Q}[x]$.

If F and G are polynomials in R[x] with no common factors in R[x], then they have no common factors in K[x].

If R is a UFD, then R[x] is also a UFD, and consequently $k[x_1,...,x_n]$ is a UFD for any field k. The quotient field of $k[x_1,...,x_n]$ is written $k(x_1,...,x_n)$ is called the field of rational functions in n variables over k.

If $\varphi \colon R \to S$ is a ring homomorphism, $\ker(\varphi) := \varphi^{-1}(0)$. The kernel is an ideal in R. An ideal in R is proper if $I \neq R$, and a proper ideal is known as maximal if it is not contained in any larger proper ideal. An ideal \mathfrak{p} is prime if, whenever $\mathfrak{ab} \in \mathfrak{p}$, then $\mathfrak{a} \in \mathfrak{p}$ or $\mathfrak{b} \in \mathfrak{p}$.

Let k be a field and I a proper ideal in $k[x_1,...,x_n]$. The canonical homomorphism π from $k[x_1,...,x_n]$ to $k[x_1,...,x_n]/I$ restricts to a ring homomorphism from k to $k[x_1,...,x_n]/I$. We regard k as a subring of $k[x_1,...,x_n]/I$, which is a vector space over k.

If R is an integral domain, then char(R), the characteristic of R, is the smallest integer p such that

$$\underbrace{1+1\cdots+1}_{p \text{ times}} = 0.$$

If p exists, we say char(R) = p, else 0.

Note that if $\varphi \colon \mathbb{Z} \to R$ is the unique ring homomorphism from \mathbb{Z} to R^{III} then $\ker(\varphi) = \langle p \rangle$, so $\operatorname{char}(R)$ is prime or 0.

If R is a ring, and $F \in R[x]$, and α is a root of F, then $F = (x - \alpha)G$ for some unique polynomial $G \in R[x]$. A field k is algebraically closed if any nonconstant $F \in k[x]$ has a root.

Exercise (Exercise 1.1): Let R be an integral domain.

- (a) If F and G are forms of degree r and s respectively in $R[x_1, ..., x_n]$, show that FG is a form of degree r + s.
- (b) Show that any factor of a form in $R[x_1, ..., x_n]$ is also a form.

Solution:

(a) Let H = FG, where F is a form of degree r and G is a form of degree s. Note that since F and G are forms, we know that $F = F_r$, where F_r is the form with degree r, and $G = G_s$, where G_s is the form with degree s.

Exercise (Exercise 1.2): Let R be a UFD and K the quotient field of R. Show that every element $z \in K$ may be written as z = a/b, where $a, b \in R$ have no common factors. This representative is unique up to units of R.

Solution: Since K = Frac(R), we know that every $z \in K$ is of the form $z = \frac{a}{b}$. Since R a unique factorization domain, gcd(a, b) is unique and well-defined. Set $c \cdot gcd(a, b) = a$ and $d \cdot gcd(a, b) = b$. Then,

$$z = \frac{a}{b}$$

$$= \frac{c \cdot \gcd(a, b)}{d \cdot \gcd(a, b)}$$

$$= \frac{c}{d}.$$

We show that this is unique up to units. Suppose

$$z = \frac{c}{d}$$
$$= \frac{c'}{d'}$$

^IAlternatively, an ideal I is maximal if the quotient ring R/M is a field.

^{II}Alternatively, an ideal \mathfrak{p} is prime if R/\mathfrak{p} is an integral domain.

 $^{{}^{\}text{III}}$ This is because ${\mathbb Z}$ is initial in the category of rings. See Aluffi.

Then, by the properties of the field of fractions, we know that

$$c'd = cd'$$

and since R is a UFD, we know that gcd(c, d) = gcd(c', d') = 1, so $c = u_1c'$ and $d = u_2d'$.

Exercise (Exercise 1.3): Let R be a principal ideal domain, and let P be a nonzero proper prime ideal in R.

- (a) Show that P is generated by an irreducible element.
- (b) Show that P is maximal.

Solution:

(a) Since P is principal, we know that $P = \langle \alpha \rangle$ for some $\alpha \in R$. We know that α cannot be a unit, as otherwise P = R, contradicting the assumption that P is proper, and that $\alpha \neq 0$ as P is not zero.

Suppose toward contradiction that $\langle \alpha \rangle \subsetneq \langle b \rangle$ for some $b \in R$. Then, $\alpha = bc$ for some $c \in R$. If $c \notin \langle \alpha \rangle$, then since $\langle \alpha \rangle$ is prime, we must have $b \in \langle \alpha \rangle$, contradicting strict inclusion. Thus, $c \in \langle \alpha \rangle$, so $c = \alpha t$ for some $t \in R$. Therefore, we have $\alpha = \alpha bt$, so $bt = 1_R$, and $\langle b \rangle = R$.

(b) Since R is a PID, and P is prime, we know that $P = \langle \alpha \rangle$ is generated by an irreducible element. Thus, if $\langle \alpha \rangle \subseteq \langle b \rangle$, then $\alpha = bc$ for some $c \in R$. Since we have unique factorization (as all PIDs are UFDs), and α is irreducible, this means either b or c is a unit. If b is a unit, then $\langle b \rangle = R$, and if c is a unit, then $\langle b \rangle = \langle \alpha \rangle$. Thus, $\langle \alpha \rangle$ is maximal.

Exercise (Exercise 1.4): Let k be an infinite field, $f \in k[x_1, ..., x_n]$. Suppose $F(a_1, ..., a_n) = 0$ for all $a_1, ..., a_n \in k$. Show that f = 0.

Exercise (Exercise 1.5): Let k be any field. Show that there are an infinite number of irreducible monic polynomials in k[x].

Solution: Suppose F_1, \ldots, F_n were all the irreducible monic polynomials in k[x]. Consider the polynomial $P = F_1 F_2 \cdots F_n + 1$. We note that P is monic. We will show that P is irreducible.

Suppose toward contradiction that P were reducible. We know that k[x] is a principal ideal domain, so $P \in \langle F_i \rangle$ for some irreducible monic F_i . However, we know that, for any F_i , $1 \le i \le n$, $P \nmid F_i$, as, applying the division algorithm to P, we get

$$P = (F_i) \prod_{j \neq i} F_j + 1,$$

where $r \neq 0$. Thus, P is not reducible and monic, so there are infinitely many irreducible monic polynomials in k[x].

Exercise (Exercise 1.6): Show that any algebraically closed field is infinite.

Solution: Note that if k is any field, then there are infinitely many irreducible monic polynomials in k[x]. If k is algebraically closed, then (x - a), for $a \in k$, is the only irreducible monic polynomial. Since there are infinitely many irreducible monic polynomials in k[x], there are infinitely many $a \in k$ such that (x - a) is irreducible in k[x]. Thus, k is infinite.

Exercise (Exercise 1.7): Let k be any field, and $F \in k[x_1, ..., x_n]$, with $a_1, ..., a_n \in k$.

(a) Show that

$$F = \sum \lambda_{(i)} (x_1 - \alpha_1)^{i_1} \cdots (x_n - \alpha_n)^{i_n},$$

where $\lambda_{(i)} \in k$.

(b) If $F(a_1, \ldots, a_n) = 0$, show that $F = \sum_{i=1}^n (x_i - a_i) G_i$ for some not necessarily unique $G_i \in k[x_1, \ldots, x_n]$.

Solution:

(a) We let

$$G = F(x_1 + a_1, x_2 + a_2, ..., x_n + a_n).$$

Then, since $G \in k[x_1, ..., x_n]$, we have

$$G = \sum \lambda_{(i)} x_1^{i_1} \cdots x_n^{i_n}.$$

Then, we have

$$F = \sum \lambda_{(i)} (x_1 - \alpha_1)^{i_1} \cdots (x_n - \alpha_n)^{i_n}.$$

(b) Note that if $F(a_1, \ldots, a_n) = 0$, then $(x_i - a_i) \mid F(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$. Thus, we have

$$F(\alpha_1,\ldots,\alpha_{i-1},x_i,\alpha_{i+1},\ldots,\alpha_n) = (x_i - \alpha_i) \underbrace{g(\alpha_1,\ldots,\alpha_{i-1},x_i,\alpha_{i+1},\ldots,\alpha_n)}_{G_i}.$$

This yields

$$F(x_1,\ldots,x_n) = \sum_{i=1}^n (x_i - a_i)G_i.$$

Affine Space and Algebraic Sets

Definition. If k is a field, then when we write $\mathbb{A}^n(k)$, or \mathbb{A}^n , to be the cartesian product of k with itself n times.

We call $\mathbb{A}^n(k)$ the affine n-space over k. Its elements are called points. We call $\mathbb{A}^1(k)$ the affine line and $\mathbb{A}^2(k)$ the affine plane.

Definition. If
$$F \in k[x_1, ..., x_n]$$
, then $P = (a_1, ..., a_n) \in \mathbb{A}^n(k)$ is called a zero of F if $F(P) = (a_1, ..., a_n) = 0$.

If F is not constant, then the zeros of F are called the hypersurface defined by F, defined by V(F). A hypersurface in $\mathbb{A}^2(k)$ is called an affine plane curve.

If F is a polynomial of degree 1, then V(F) is called a hyperplane in $\mathbb{A}^n(k)$; if n = 2, then an affine hyperplane is a line.

Definition. If S is any set of polynomials in $k[x_1,...,x_n]$, then $V(S) = \{P \in \mathbb{A}^n \mid F(P) = 0 \text{ for all } F \in S\}$. In other words, $V(S) = \bigcap_{F \in S} V(F)$. If $S = \{F_1,...,F_r\}$, we write $V(F_1,...,F_r)$.

A subset $X \subseteq \mathbb{A}^n(k)$ is an affine algebraic set (or algebraic set) if X = V(S) for some S.

Proposition:

- (1) If I is the ideal in $k[x_1, ..., x_n]$ generated by S, then V(S) = V(I); thus, every algebraic set is equal to V(I) for some ideal I.
- (2) If $\{I_{\alpha}\}$ is a collection of ideals, then $V(\bigcup_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$.
- (3) If $I \subseteq J$, then $V(I) \supseteq V(J)$.
- (4) For any polynomials F, G, $V(FG) = V(F) \cup V(G)$. Furthermore, $V(I) \cup V(J) = V(\{FG \mid F \in I, G \in J\})$.
- (5) We have that $V(0) = \mathbb{A}^n(k)$, $V(1) = \emptyset$, $V(x_1 a_1, \dots, x_n a_n) = \{(a_1, \dots, a_n)\}$ for $a_i \in k$. Thus, any finite subset of $\mathbb{A}^n(k)$ is an algebraic set.

Exercise (Exercise 1.8): Show that the algebraic subsets of $\mathbb{A}^1(k)$ are just the finite subsets together with $\mathbb{A}^1(k)$ itself.

Solution: Since k[x] is a principal ideal domain, we know that the zero set V(S) for any $S \subseteq k[x]$ is of the form $V(\langle f \rangle) = V(f)$, where $f \in k[x]$. Since f is a polynomial, f has finitely many roots, so there are finitely many elements in the algebraic subset.

Additionally, since $0 \in k[x]$, we know that k is also an algebraic subset.

Exercise (Exercise 1.14): Let F be a nonconstant polynomial in $k[x_1, ..., x_n]$, where k is algebraically closed. Show that $\mathbb{A}^n(k) \setminus V(F)$ is infinite if $n \ge 1$ and that V(F) is infinite if $n \ge 2$. Conclude that the complement of any proper algebraic set is infinite.

Solution: We know that k is infinite as k is algebraically closed.

Let
$$F \in k[x_1, ..., x_n] \cong k[x_1, ..., x_{n-1}][x_n]$$
.

In the base case with n=1, we know that there are finitely many roots in $\mathbb{A}^1(k)$, so we have the base case. If $n \geq 2$, then we write $F = \sum G_i x_n^i$. We know that since F is nonzero, then there is at least one nonzero G_i . We showed in Exercise 1.4 that there is some $a_1, \ldots, a_{n-1} \in k$ such that $G_i(a_1, \ldots, a_{n-1}) \neq 0$. Thus, $F(a_1, \ldots, a_{n-1}, x_n)$ is not the zero polynomial, meaning there are finitely many roots, and thus infinitely many non-roots.

Thus, there are infinitely many $a_1, \ldots, a_n \in k$ with $a_1, \ldots, a_n \neq 0$.

We write $F = \sum G_i x_n^i$. We know that if all the G_i are constant, then we have a single-variable polynomial in x_n , and any choice of $a_1, \ldots, a_{n-1} \in k$ provide other elements of V(F). We assume that there is some G_i that is a nonconstant polynomial in x_1, \ldots, x_{n-1} .

Since G_i is nonzero, we may use the previous paragraph to state that G_i has infinitely many non-roots, and for each choice of those a_1, \ldots, a_{n-1} , we have a polynomial in x_n . This polynomial has a root, meaning there are infinitely many roots.

Exercise (Exercise 1.15): Let $V \subseteq \mathbb{A}^n(k)$ and $W \subseteq \mathbb{A}^m(k)$ be algebraic sets. Show that

$$V \times W = \{(a_1, ..., a_n, b_1, ..., b_m) \mid (a_1, ..., a_n) \in V, (b_1, ..., b_m) \in W\}$$

is an algebraic set in $\mathbb{A}^{n+m}(k)$. It is called the product of V and W.

Solution: Consider the set of polynomials in $k[x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}]$ given by $P = F(x_1, \ldots, x_n) + G(x_{n+1}, \ldots, x_m)$, where F is a polynomial in the ideal whose algebraic set is V and G is an ideal in the algebraic set whose ideal is W. Then, the collection of zeros are those of the form $(a_1, \ldots, a_n, b_1, \ldots, b_m)$, where $(a_1, \ldots, a_n) \in V$ and $(b_1, \ldots, b_m) \in W$.

Solution (A Real Solution): We have that V and W are defined by $\{F_1, \ldots, F_r\}$ and $\{G_1, \ldots, G_s\}$ for some polynomials. We define $V \times W$ to be the algebraic set defined by the polynomials in $\{F_1, \ldots, F_r, G_1, \ldots, G_s\}$ that are constant with respect to the other variables.

The Ideal of a Set of Points

Definition. If $X \subseteq \mathbb{A}^n(k)$, then the polynomials that vanish on X form an ideal in $k[x_1, ..., x_n]$, called the ideal of X, or I(X).

$$I(X) := \{F \in k[x_1, ..., x_n] \mid F(a_1, ..., a_n) = 0 \text{ for all } (a_1, ..., a_n) \in X\}.$$

The following hold.

- If $X \subseteq Y$, then $I(X) \supseteq I(Y)$.
- We have $I(\emptyset) = k[x_1, ..., x_n]$, $I(\mathbb{A}^n(k)) = \langle 0 \rangle$ if k is infinite, and $I(\{(\alpha_1, ..., \alpha_n)\}) = \langle x_1 \alpha_1, ..., x_n \alpha_n \rangle$ for $\alpha_1, ..., \alpha_n \in k$.
- We have $I(V(S)) \supseteq S$ for any set S of polynomials, and $V(I(X)) \supseteq X$ for any set X of points.
- We have V(I(V(S))) = V(S) for any set of polynomials S, and I(V(I(X))) = I(X) for any set X of points. If V is an algebraic set, V = V(I(V)) and if I is the ideal of an algebraic set, then I = I(V(I)).

Definition. If I is any ideal in a ring R, we define the radical of I, written $rad(I) = \{a^n \mid a \in I \text{ for some } n > 0\}$. We have that rad(I) is an ideal containing I. An ideal I is called a radical ideal if I = rad(I).

• We have I(X) is a radical ideal for any $X \subseteq \mathbb{A}^n(k)$.

Exercise (Exercise 1.16): Let V and W be algebraic sets in $\mathbb{A}^n(k)$. Show that V = W if and only if I(V) = I(W).

Solution: Let V = W. Then, if $F \in I(V)$, then F = 0 on W, so $F \in I(W)$, and vice versa.

Suppose I(V) = I(W). We know that V(I(V)) = V and V(I(W)) = W. Thus, if $(\alpha_1, ..., \alpha_n) \in V$, we know that for all $F \in I(W)$, that $F(\alpha_1, ..., \alpha_n) = 0$ as $F \in I(V)$, meaning $(\alpha_1, ..., \alpha_n) \in V(I(W)) = W$. By symmetry, we have V = W.

Exercise (Exercise 1.17):

- (a) Let V be an algebraic set in $\mathbb{A}^n(k)$ and $P \in \mathbb{A}^n(k)$ not a point in V. Show that there is a polynomial $F \in k[x_1, ..., x_n]$ such that F(Q) = 0 for all $Q \in V$ but F(P) = 1.
- (b) Let $P_1, ..., P_r$ e distinct points in $\mathbb{A}^n(k)$ not in an algebraic set V. Show that there are polynomials $F_1, ..., F_r \in I(V)$ such that $F_i(P_j) = \delta_{ij}$.
- (c) With P_1, \ldots, P_r and V as in (b), and $a_{ij} \in k$ for $1 \le i, j \le r$, show that there are $G_i \in I(V)$ such that $G_i(P_j) = a_{ij}$ for all i and j.

Solution:

- (a) We know that there is some $F \in I(V)$ such that $F(P) \neq 0$. Letting a = F(P), we have that $\frac{1}{a}F(P) = 1$.
- (b) We find $F_i \in I(V \cup \{P_{-i}\})$, where $\{P_{-i}\} = \{P_1, \dots, P_r\} \setminus \{P_i\}$. Applying (a) to F_i , we get that $F_i(P_i) = 1$ and $F_i(P_j) = 0$ for $j \neq i$. By symmetry, this holds for F_1, \dots, F_r .
- (c) With P_1, \ldots, P_r and V as in (b), find F_1, \ldots, F_r as in (b). Then, $G_i = \sum_i a_{ij} F_j$ yields our desired outcome.

Exercise (Exercise 1.18): Let I be an ideal in a ring R. If $a^n \in I$ and $b^m \in I$, show that $(a + b)^{n+m} \in I$. Show that rad(I) is a (radical) ideal. Show that any prime ideal is radical.

Solution:

· Applying binomial theorem, we have

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k$$

where $a^0 = b^0 := 1$.

- We have $I \subseteq rad(I)$, since we can take n = 1. If $a, b \in rad(I)$, we know that there is some n such that $a^n, b^m \in I$, so by the same logic as above, $(a b)^{n+m} \in I$, meaning $a b \in rad(I)$. Now, if $a \in rad(I)$ and $x \in R$, then we have that $a^n \in I$ for some n, meaning $x^n a^n \in I$ as I is an ideal, so $(xa)^n \in I$, so $xa \in rad(I)$, so rad(I) is an ideal.
- Let I be prime, and let $a \in rad(I)$. Then, $a^n \in I$ for some n > 0, meaning $(a) \left(a^{n-1}\right) \in I$. Then, either $a \in I$, or $a^{n-1} \in I$, so by the implicit inductive hypothesis, we have $a \in I$, so $rad(I) \subseteq I$, so rad(I) = I.

Exercise (Exercise 1.20): Show that for any ideal I in $k[x_1, ..., x_n]$, V(I) = V(rad(I)), and $rad(I) \subseteq I(V(I))$.

Solution:

• Clearly, $V(rad(I)) \subseteq V(I)$ because $I \subseteq rad(I)$. We know that if $P \in V(I)$, then there is some polynomial $F \in I$ such that F(P) = 0.

Exercise (Exercise 1.21): Show that any $I = \langle x_1 - a_1, \dots, x_n - a_n \rangle \subseteq k[x_1, \dots, x_n]$ is a maximal ideal, and that the natural homomorphism from k to $k[x_1, \dots, x_n]/I$ is an isomorphism.

Solution: Note that $\langle x_1 - a_1, ..., x_n - a_n \rangle \subseteq k[x_1, ..., x_n]$ is isomorphic to $\langle x_1, ..., x_n \rangle \subseteq k[x_1 + a_1, ..., x_n + a_n]$, $k[x_1, ..., x_n]/I \cong k$.

The Hilbert Basis Theorem

Earlier, we allowed any algebraic set V(S) to be defined by an arbitrary set $\{F_i\}_{i\in I}\subseteq k[x_1,\ldots,x_n]$. However, the Hilbert Basis Theorem will show that a finite number will do.

Theorem: Every algebraic set is the intersection of a finite number of hypersurfaces.

Proof. We know that V(I) is the algebraic set for some $I \subseteq k[x_1, ..., x_n]$. It is enough to show that I is finitely generated, as if $I = \langle F_1, ..., F_n \rangle$, then $V(I) = V(F_1) \cap \cdots \cap V(F_n)$.

Now, to prove this, we need to show that any arbitrary ideal $I \subseteq k[x_1, ..., x_n]$ is finitely generated. This is where the Hilbert Basis Theorem comes into play.

Definition. If R is a commutative ring, with identity, we say R is Noetherian if every ideal of R is finitely generated.

Note that all PIDs are Noetherian.

Now, we may state and prove the Hilbert Basis Theorem.

Theorem (Hilbert Basis Theorem): If R is a Noetherian ring, then $R[x_1, ..., x_n]$ is a Noetherian ring.

Proof. Since $R[x_1,...,x_n]$ is canonically isomorphic to $R[x_1,...,x_{n-1}][x_n]$. The theorem will follow by induction if we can prove that R[x] is Noetherian whenever R is Noetherian.

Let $I \subseteq R[x]$ be an ideal. We wish to find a finite set of generators for I.

Let $F = a_d x^d + \cdots + a_1 x + a_0 \in R[x]$ with $a_d \neq 0$. We call a_d the leading coefficient of F. Let J be the set of leading coefficients of polynomials in I. Then, $J \subseteq R$ is an ideal, so there are polynomials $F_1, \ldots, F_r \in I$ whose leading coefficients generate J.

Select N larger than the degree of each F_i . For each $m \le N$, let J_m be the ideal in R consisting of all leading coefficients of polynomials $F \in I$ with $deg(F) \le m$. Let $\{F_{m_j}\}$ be the finite set of polynomials in I with degree $\le m$ such that their leading coefficients generate J_m . Let I' be the ideal generated by F_i and F_{m_j} for each i, m_j . It is enough to show that I = I'.

Suppose $I' \subsetneq I$. Let G be an element of I of minimal degree such that $G \notin I'$. If deg(G) > N, then we may find Q_i such that $\sum Q_i F_i$ and G have the same leading term. However, this means $deg(G - \sum Q_i F_i) < deg(G)$, so $G - \sum Q_i F_i \in I'$, meaning $G \in I'$. Similarly, if $deg(G) = m \leqslant N$, then we may lower the degree by subtracting $\sum Q_j F_{m_j}$ for some Q_j .

Exercise (Exercise 1.22): Let I be an ideal in a ring R, π : R \rightarrow R/I the canonical projection.

- (a) Show that for every ideal $J' \subseteq R/I$, that $\pi^{-1}(J') = J$ is an ideal of R containing I. Furthermore, show that for every ideal $J \subseteq R$, that $\pi(J) = J'$ is an ideal of R/I. This establishes a natural correspondence between ideals of R/I and ideals of R that contain I.
- (b) Show that J' is a radical ideal if and only if J is radical. Similarly, show this for J prime and maximal.
- (c) Show that J' is finitely generated if J is. Conclude that R/I is Noetherian if R is Noetherian. Thus, we get that $k[x_1, \ldots, x_n]/I$ is Noetherian for any ideal $I \subseteq k[x_1, \ldots, x_n]$ by the Hilbert Basis Theorem.

Irreducible Components of an Algebraic Set

Exercise (Exercise 1.25):

(a) Show that
$$V(y-x^2) \subseteq \mathbb{A}^2(\mathbb{C})$$
 is irreducible; in fact, $I(V(y-x^2)) = \langle y-x^2 \rangle$.

Algebraic Subsets of the Plane

Exercise (Exercise 1.30): Let $k = \mathbb{R}$.

- (a) Show that $I(V(x^2 + y^2 + 1)) = \langle 1 \rangle$.
- (b) Show that every algebraic subset of $\mathbb{A}^2(\mathbb{R})$ is equal to V(F) for some $F \in \mathbb{R}[x,y]$.