Protein Family Classification

MS. Umberto Di Fabrizio

Purpose

Classify proteins accordingly to their family.

PROTEIN NAME

BSPH1_HUMAN/40-84 BSPH1_HUMAN/85-132 BSPH1_MOUSE/40-84 BSPH1_MOUSE/85-133 ESPB1_CANFA/46-90 ESPB1_CANFA/91-139 ESPB1_CANFA/146-192

PROTEIN SEQUENCE

VTDGECVFPFHYKNGTYYDCIKSKA--RHKWCSLNKTYEG--YWKFCSA EDFANCVFPFWYRRLIYWECTDDGEAFGKKWCSLTKNFNKDRIWKYCE-TEDGACVFPFLYRSEIFYDCVNFNL--KHKWCSLNKTYQG--YWKYCAL SDYAPCAFPFWYRHMIYWDCTEDGEVFGKKWCSLTPNYNKDQVWKYCIE DQKDSCVFPFVYKGSSYFSCIKTNS--FSPWCATRAVYNG--QWKFCMA DDYPRCIFPFIFRGKSHNSCITEGSFLRRLWCSVTSSFDENQQWKYCET SFSKPCIFPSIFRNSTIFECMEDEN--NKLWCPTTENMDEDGKWSLCAD

Fibronectin type-II 1

Outline

- Why protein classification?
- How to compare sequences?
- ANN Pros & Cons
- Pipeline
 - Data preprocessing
 - Data collection
- Implementation
 - Backpropagation
 - Convolutional Neural Network
- Results

Why protein classification?

- PURPOSE: Preventing genetic disease, drug discovery, medical diagnosis.
- PROBLEM: Experiments are costly and slow thus they cannot keep pace with the amount of information available and which needs to be annotated.
- CLUE: Similar protein sequences exhibit almost the same biological function.

How to compare sequences?

```
BSPH1_HUMAN/40-84
BSPH1_HUMAN/85-132
BSPH1_MOUSE/40-84
BSPH1_MOUSE/85-133
ESPB1_CANFA/46-90
ESPB1_CANFA/91-139
ESPB1_CANFA/146-192
```

VTDGECVFPFHYKNGTYYDCIKSKA--RHKWCSLNKTYEG--YWKFCSA EDFANCVFPFWYRRLIYWECTDDGEAFGKKWCSLTKNFNKDRIWKYCE-TEDGACVFPFLYRSEIFYDCVNFNL--KHKWCSLNKTYQG--YWKYCAL SDYAPCAFPFWYRHMIYWDCTEDGEVFGKKWCSLTPNYNKDQVWKYCIE DQKDSCVFPFVYKGSSYFSCIKTNS--FSPWCATRAVYNG--QWKFCMA DDYPRCIFPFIFRGKSHNSCITEGSFLRRLWCSVTSSFDENQQWKYCET SFSKPCIFPSIFRNSTIFECMEDEN--NKLWCPTTENMDEDGKWSLCAD

```
BSPH1_HUMAN/40-84
BSPH1_HUMAN/85-132
BSPH1_MOUSE/40-84
BSPH1_MOUSE/85-133
ESPB1_CANFA/46-90
ESPB1_CANFA/91-139
ESPB1_CANFA/146-192
```

```
VTDGECVFPFHYKNGTYYDCIKSKA--RHKWCSLNKTYEG--YWKFCSA
EDFANCVFPFWYRRLIYWECTDDGEAFGKKWCSLTKNFNKDRIWKYCE-
TEDGACVFPFLYRSEIFYDCVNFNL--KHKWCSLNKTYQG--YWKYCAL
SDYAPCAFPFWYRHMIYWDCTEDGEVFGKKWCSLTPNYNKDQVWKYCIE
DQKDSCVFPFVYKGSSYFSCIKTNS--FSPWCATRAVYNG--QWKFCMA
DDYPRCIFPFIFRGKSHNSCITEGSFLRRLWCSVTSSFDENQQWKYCET
SFSKPCIFPSIFRNSTIFECMEDEN--NKLWCPTTENMDEDGKWSLCAD
```

ANN Pros&Cons

Can extract hidden patterns (motif)

BUT

- How to encode Letters?
- Different length of sequences?
- Missing data?

Data Preprocessing

- Exploit NLP techniques:
 - For each protein sequence, analyze the frequency of bigrams.
 - Normalize the count of bigrams on the length of the sequence

Seq= ACTGTGCAT

Number of inputs? length(Seq)^2 In our case (20+3)^2=529 inputs

	A	С	Т	G
A	0	1	1	0
С	1	0	1	0
Т	0	0	0	2
G	0	1	1	0

Data Collection

Backpropagation

4 FAMILIES:

LEARNING RATE:

[0.1-1.5]

TOTAL WEIGHTS: 529*6+6*5+5*4=3224

BackProp Results: 95%

Convolutional NN: 95%

EPOCHS: [1,5]

LEARNING RATE: [0.01,0.03,0.05]

FEATURE MAPS: [2,3]

TRAINING % = 70

TOTAL WEIGHTS: 2*7*7+2*2*2+64*2*4=618

EXECUTION TIME: 669(ms)

Future Work

 Evaluate the performances of the LAMSTAR

Questions?

