NON-CONTACT IC CARD

Patent Number:

JP2000172806

Publication date:

2000-06-23

Inventor(s):

ANDO MASAAKI; YOSHIKI HIROSHI; ONISHI TADASHI; OKAWA TAKEHIRO

Applicant(s):

HITACHI LTD

Requested Patent:

JP2000172806

Application Number: JP19980348938 19981208

Priority Number(s):

IPC Classification:

G06K19/07

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact IC card which can receive and process signals modulated by the system based on either the ISO14443-A standard or ISO14443-B standard, and a semiconductor integrated circuit for realizing the card.

SOLUTION: A non-contact IC card is provided with a first demodulation circuit 51 which reproduces data from 100% type-A (ISO14443-A) ASK signals with respect to the signals received through a coil, a second demodulation circuit 52 which reproduces data of 10% type-B (ISO14443-B) ASK signals from the signals received through the coil, and a selector circuit 54 which selects the reproduced signals. The card is also provided with a control circuit 53 which generates selection control signals.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-172806 (P2000-172806A)

(43)公開日 平成12年6月23日(2000.6.23)

(51) Int.Cl.7

酸別記号

FΙ

テーマコート*(参考)

G06K 19/07

C06K 19/00

H 5B035

審査請求 未請求 請求項の数5 〇L (全 7 頁)

(21)出顯番号	特顯平10-348938	(71) 出願人 000005108
(22) 出顧日	平成10年12月8日(1998.12.8)	株式会社日立製作所 東京都千代田区神田駿河台四丁目6番地
		(72)発明者 安藤 公明 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内
		(72)発明者 吉木 宏 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内
		(74)代理人 100085811 弁理士 大日方 富雄
		最終頁に影響を

(54) 【発明の名称】 非接触 I Cカード

(57)【要約】

【課題】 ISO14443-AとISO14443-Bのいずれの規格の方式で変調された信号でも受信処理できる非接触ICカードおよびそれを実現するための半導体集積回路を提供する。

【解決手段】 コイルで受信した信号についてタイプA (IS014443-A) 100%ASK信号からデータを再生する第1の復調回路 (51) と、コイルで受信した信号からタイプB (IS014443-B) 10%ASK信号のデータを再生する第2の復調回路 (52) と、それぞれの再生信号を選択するためのセレクタ回路 (54) と、選択制御信号を発生させるための制御回路 (53) とを設けるようにした。

【特許請求の範囲】

【請求項1】 交流信号を送受信するための電磁結合手段と、該電磁結合手段に接続され交流信号を整流して所望の直流電源電圧を発生する電源手段と、不揮発性メモリと、該メモリとの間でデータをリードライトするリードライト制御手段と、上記電磁結合手段に接続されて受信交流信号から受信データを抽出するための第1の復調手段および第2の復調手段の少なくとも2種類の復調手段と、データを送信するための変調手段と、上記少なタをとも2種類の復調手段の出力を選択するためのセレクタ手段と、該セレクタを制御するための制御手段とを備え、上記第1の復調手段および第2の復調手段の両方または片方の復調手段あるいは第2の復調手段のいずれか一方の復調手段の出力を選択するように動作することを特徴とする非接触ICカード。

【請求項2】 上記第1の復調手段は100%ASK変調(振幅変調)信号を復調するための回路であり、第2の復調手段は10%ASK変調信号を復調するための回路であることを特徴とする請求項1記載の非接触ICカード。

【請求項3】 上記第1の復調手段は、受信信号を二値化する二値化回路を含み、100%ASK変調信号または10%ASK変調信号のいずれの受信時においても上記二値化回路の出力に基づいてクロック信号を生成することを特徴とする請求項2記載の非接触ICカード。

【請求項4】 上記不揮発性メモリと、該メモリとの間でデータをリードライトするリードライト制御手段は、 半導体集積回路化されたワンチップマイクロコンピュータにより構成されていることを特徴とする請求項1記載の非接触ICカード。

【請求項5】 上記ワンチップマイクロコンピュータは、スタティック論理方式の回路により構成されていることを特徴とする請求項4記載の非接触ICカード。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ICカードさらにはICカードに内蔵される半導体集積回路チップで構成される回路に係わり、特に非接触方式で2種類以上の通信方式によるデータの送受信に対応可能な非接触ICカードに内蔵される回路に利用して好適な技術に関する。【0002】

【従来の技術】近年、磁気カードに代わる情報記憶媒体として、CPU(マイクロプロセッサ)等のICを内蔵したICカードが注目を集めている。ICカードには信号の伝送方式により、接点を用いてリーダライタ装置から電力およびクロック信号と情報信号を受信し、コマンドを処理する接触方式のICカードと、リーダライタ装置のコイルから発生される電波(電磁波)を、ICカード側のコイルで受信し、電力およびクロック、送受信信

号を生成して、リーダライタ装置より受信したコマンドを処理する非接触方式のICカード(以下非接触ICカードという)の2方式がある。

【0003】このうち非接触ICカードは、通信距離や通信周波数によってISO規格が制定されており、密着型(IS010536)、近接型(IS014443)の2種類がある。さらに近接型非接触ICカードには、データの変調方式によって、周波数13.56MHzのキャリア信号が存在する状態でデータ"1"を表わし、キャリア信号のない状態でデータ"0"を表わす100%ASK変調(ASK:振幅変調)方式を採用しているIS014443-Aと、データ

"1"を表わす振幅のキャリア信号に対し90%の振幅の信号でデータ"0"を表わす10%ASK変調方式を採用しているIS014443-Bの2種類がある。

【0004】IS014443-A変調方式は、一般にCPUを持たないハードウエアロジックで構成された制御回路を持つ非接触ICカードに利用される方式であり、一般に、IS014443-AはシンプルなプロトコルをもつICカード用として、例えばIDカード(個人識別カード)やプリペードカードなどに利用されることが多い。一方、IS014443-Bタイプは、CPUを内蔵した非接触ICカードで利用される方式であり、IS014443-Bは複雑なプロトコル(例えばIS07816-T1など)をもつ銀行用のキャッシュカードやクレジットカードなどに利用されることが多い。【0005】また、近年、非接触ICカードの普及に伴い、各種仕様のカードを統合したコンビネーションカードなるものが提案されている。

[0006]

【発明が解決しようとする課題】コンビネーションカードとしては、接触型ICカードと非接触型ICカードのコンビネーションが現在は主流であるが、今後はいろいろなタイプのICカードを統合したコンビネーションカードの出現が考えられる。

【0007】本発明者らは、IS014443-AタイプとIS0144 43-Bタイプを統合したコンビネーションカードを構成す る方法について検討した。

【0008】上述したように、リーダライタからカードへのデータの変調方式として、ISO14443-Aは100%ASK変調方式を使用し、ISO14443-Bは10%ASK変調方式を使用している。

【0009】上記2種類の変調方式を一枚のICカード上で実現するための課題としては、変調方式の異なる信号の両方を受信するために、それぞれの復調回路が必要なことはいうまでもないが、メモリを共有して使用するICカードシステムにおいては、どちらの変調信号を受信したかを識別しなければ、後続のメモリリードライト制御回路の動作やマイコンの動作ができないという問題がある。

【0010】従って、カードがリーダライタに挿入された時点でどちらの変調方式の信号を受信したかを識別し

て、後続の制御回路例えばEEPROMのリードライト 制御回路やマイコンの動作を制御する必要がある。

【 O O 1 1 】本発明の目的は、 ISO14443-Aと ISO14443-Bのいずれの規格の方式で変調された信号でも受信処理できる非接触 I Cカードおよびそれに内蔵される回路を提供することにある。

【0012】この発明の前記ならびにそのほかの目的と 新規な特徴については、本明細書の記述及び添付図面か ら明らかになるであろう。

[0013]

【課題を解決するための手段】本願において開示される 発明のうち代表的なものの概要を説明すれば、下記のと おりである。

【0014】前記課題を解決するために本発明は、電磁 結合手段としてのコイルで受信した信号についてタイプ A (ISO14443-A) 1 0 0 % A S K 信号からデータを再生す る第1の復調手段と、コイルで受信した信号からタイプ B(IS014443-B)10%ASK信号のデータを再生する 第2の復調手段と、それぞれの再生信号を選択するため のセレクタ手段とを設ける。また、このセレクタ手段を 制御するために、第1の復調手段の再生信号と送信信号 とを入力として、選択制御信号を発生させるための制御 手段を設ける。そして、上記セレクタ手段によって第1 の復調手段の再生信号(リーダライタからカードへの受 信信号)または第2の復調手段の再生信号のいずれかを 選択するように構成する。また、セレクタ手段は、制御 手段で制御され、通常は第2の復調手段(または第1の 復調手段)の再生信号を選択しており、第1の復調手段 が再生データを検出すると、それ以降は第1の復調手段 (または第2の復調手段)の再生信号を選択するように 構成した。

【0015】さらに、上記制御手段は、カードからリーダライタへの送信信号が発生すると、第2の復調手段 (または第1の復調手段)の再生信号を選択するようにセレクタ手段を制御する。そして、上記のようにして選択された受信信号に従って、リードライト制御手段は、EEPROMなどの不揮発性メモリに対してデータのリードやライトを行なうようにした。

【0016】上記した手段によれば、ISO14443-AとISO14443-Bのどちらでも受信処理できる非接触ICカードもしくはそれに内蔵される回路を実現することができる。【0017】また、上記第1の復調手段は、受信信号を二値化する二値化回路を含み、100%ASK変調信号または10%ASK変調信号のいずれの受信時においても上記二値化回路の出力に基づいてクロック信号を生成させるようにした。これにより、100%ASK変調信号または10%ASK変調信号からクロックを再生する回路を共用することができ、第2の復調手段にはクロック生成回路が不要になって回路の簡略化が可能になる。【0018】さらに、上記リードライト制御手段と不揮

発性メモリとをワンチップマイクロコンピュータ(LS I)などで構成しソフトウエアを用いて制御するようにしてもよい。しかもこの場合、ワンチップマイクロコンピュータは、予め回路内の所定のノードをプリチャージしておいて入力信号でノードの電位を確定して論理出力を決定するダイナミック論理方式でなく、入力信号に応じた電流パスに電流を流して論理出力を決定するスタティック論理方式の回路で構成したものを用いるのが望ましい。タイプA(IS014443-A)すなわち100%ASK変調方式の信号を受信した場合には受信信号から再生されるクロック信号が中断することがあるため、ダイナミック論理方式の回路を用いると動作が保証されない恐れがあるためである。

[0019]

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

<実施形態例1>図4は本発明に係る非接触ICカード内蔵回路の第1の実施例を示すブロック図、図1および図2は、本発明の非接触ICカード内蔵回路を用いたICカードの構成を示す図である。

【0020】この実施例のICカードは、プラスチックあるいはセラミックなどの絶縁性の基板からなるカードに、図1に示すような非接触ICカード内蔵回路1と電磁結合手段としてのコイル2とが搭載もしくは内蔵されてなる。コイル2は、特に制限されないが、図2に示すように、基板10上に渦巻き状に形成されたプリント配線等により構成される。カード内蔵回路1は特に制限されないが、単結晶シリコンチップのような1個の半導体基板上に半導体集積回路として構成される。

【0021】従来の一般的な非接触ICカード内蔵回路 1は、図3に示すように、コイル2に接続され受信交流 信号を整流して直流電圧に変換する整流回路3と、該整 流回路3により変換された直流電圧に基づいてIC内の 回路の駆動に必要な電源電圧VDDを発生する電源回路4 と、上記コイル2を介して外部から供給される交流信号 に含まれる受信情報を抽出(復調)する復調回路5と、 送信情報を含む交流信号を形成(変調)して上記コイル 2を駆動する変調回路6と、EEPROMのような電気 的に書込み消去可能な不揮発性メモリ8と、前記復調回 路5により復調された受信情報に基づいて前記不揮発性 メモリ8内へデータを書き込んだり不揮発性メモリ8か ら読み出された送信情報を前記変調回路6へ出力するな どの処理並びに外部のリーダライタとの間の送受信のプ ロトコル制御を行なうリードライト制御回路7などによ り構成されている。

【0022】上記コイル2で受信した交流信号は、復調回路5に入力され、ASK変調(振幅変調)された信号からこれを復調し、データ信号を再生する。再生されたデータは、メモリのリードライト制御並びに送受信プロトコル制御を行なうリードライト制御回路7によってE

EPROMメモリ回路8へ書き込まれる。一方、カードからリーダライタへの送信データは、リードライト制御回路7によってメモリ回路8から読み出され、変調回路6によってコイル信号に対してLSK(負荷変調)を行い、データを送信する。

【0023】本発明の第1の実施例においては、図4に示すように、復調回路が、コイル2によって受信された信号からISO14443-Aの100%ASK信号を再生するための第1の復調回路51とISO14443-Bの10%ASK信号を再生するための第2の復調回路52とからなり、第1の復調回路51または第2の復調回路52によって復調された信号はセレクタ回路54によって、どちらか一方が選択され、リードライト制御回路7へ入力される。前記セレクタ回路54は、制御回路53によって制御される。この実施例では、通常は第2の復調回路52の再生信号を選択しており、第1の復調回路51が再生データを検出すると、それ以降は第1の復調回路51の再生信号を選択してリードライト制御回路7へ供給するように構成されている。

【0024】そのため、制御回路53は、第1の復調回路51の再生信号64と送信信号66とを入力信号として、セレクタ回路54に対する選択制御信号65を発生し、セレクタ回路54を制御するように構成されている。ただし、上記とは逆、すなわち通常は第1の復調回路51の再生信号を選択しており、第2の復調回路52が再生データを検出すると、それ以降は第2の復調回路52の再生信号を選択してリードライト制御回路7へ供給するように構成することも可能である。

【0025】上記方法で選択された受信再生信号は、リードライト制御回路7に入力され、タイプA(ISO14443-A)またはタイプB(ISO14443-B)それぞれのタイプに応じたプロトコルに従ってデータ制御が行なわれ、メモリ回路8に対するデータのリードライト(送受信)が行なわれる。リードライト制御回路7は、第1の復調回路51からの信号に基づいて制御回路53により識別されたタイプA信号かタイプB信号かの選択信号が入力されることによって、プロトコル制御の切り替えを行なう。

【0026】上記変調回路6は、100%ASK変調または10%ASK変調のいずれか一方の固定された変調方式に従って送信信号を変調してコイル2を駆動する。

【0027】なお、上記実施例では、非接触 I Cカード内蔵回路が1つの半導体チップ上に半導体集積回路として形成されている場合について説明したが、本発明はこれに限定されるものでなく、回路の特性を考慮して、例えば整流回路3と電源回路4をバイポーラトランジスタ技術あるいはBi-CMOS技術を用いて1つの半導体チップ上に形成し、残りの回路をCMOS技術を用いて別の半導体チップ上に形成しても良い。さらに、整流回路3と電源回路4とを1つの半導体チップ上に形成し、残り回路8を単独で1つの半導体チップ上に形成し、残

りの回路を別の1つの半導体チップ上に形成しても良い。

<実施形態例2>図5は、本発明に係る非接触ICカード内蔵回路の第2の実施例を示す図である。

【0028】図5は、図4の実施例におけるリードライ ト制御回路7とメモリ回路8を、ワンチップマイクロコ ンピュータ(以下、ワンチップマイコンと称する)55 に置き換えた実施例である。一般にワンチップマイコン はクロックに同期して動作するように設計されており、 通常は一定周波数のクロックが外部より常時入力されて 動作する。ところが、本発明の特にISO14443-A(1005A SK) の場合には、データ"0"に対応する時間にはコ イル2から受信される信号がなくなる(キャリア信号の 振幅が「0」になる)ため、受信信号から再生されるク ロック信号が中断することになる。したがって、クロッ ク信号などを用いて、マイコン内部のプリチャージやリ フレッシュなどのダイナミック論理動作を行うと動作が 保証されなくなるおそれがある。そこで、図5の実施例 におけるワンチップマイコン55は、ダイナミック論理 方式の回路でなく、スタティック論理方式の回路で構成 されている。

【0029】この第2の実施例では、第1の復調回路51および第2の復調回路52で検出された再生信号は、セレクタ回路54で選択された後ワンチップマイコン55に入力され、ワンチップマイコン55によってプロトコル制御および内部メモリへのリード、ライト制御などが行なわれる。セレクタ回路54の制御は第1の実施例(図4)と同じである。この実施例においても、ワンチップマイコン55以外の回路に関しては、それらをまとめて1つの半導体集積回路として構成しても良いし、整流回路3と電源回路4とを1つの半導体チップ上に形成しても良い。

【0030】図6はタイプA(IS014443-A)の信号を処理 する場合の動作を説明する図であり、図7はタイプB(I S014443-B)の信号を処理する場合の動作を説明する図で ある。

【0031】図6のタイプA(ISO14443-A)の場合、データ61は図外のリーダライタ装置によって100%ASK(振幅変調)方式に従って変調された信号62のような変調信号としてコイルに入力される。この入力信号は第1の復調回路51内の二値化回路によって二値化されて信号63が生成され、フィルタ処理などを行うことによって再生信号64が得られる。この再生信号がセレクタ回路54で選択され、リードライト制御回路7またはワンチップマイコン55に入力される。

【0032】一方、セレクタ回路54の制御信号65 は、再生信号64が検出されたことによってハイレベル にセットされ、カードからリーダライタへの送信信号 (レスポンス)66を発行するとロウレベルにリセット される。上記セレクタの制御信号65がセットされている間、セレクタ回路54では第1の復調回路51からの再生信号を選択してリードライト制御回路7またはワンチップマイコン55に供給するように動作する。

【0033】図7はタイプB(IS014443-B)の信号を処理する場合の動作を示す図であり、データ61は10%ASK(振幅変調)方式に従って変調された信号72のような変調信号としてコイルに入力される。すると、第2の復調回路52において、検波回路によって検波した信号73とそれを増幅して波形整形したデータ再生信号74とが生成される。また、復調回路52内の二値化回路ではクロック信号75が生成される。さらに、10%ASK(振幅変調)方式の変調信号が入力された場合、第1の復調回路51では、二値化信号としてクロックの存在しない部分が検出されないため、図7(F)のように再生信号64には破線で示す再生信号は生成されない。したがって、図7(G)に示すように、セレクト信号64はハイレベルにセットされることがなく、第2の復調回路52の再生信号を選択した状態なる。

【0034】以上のように、復調された信号によって、100%ASK信号と10%ASK信号とを選択することで近接型非接触ICカードのタイプA(IS014443-A)とタイプB(IS014443-B)の両方の信号を受信処理できる。【0035】なお、上記実施例において、100%ASK変調方式の変調信号を復調する第1の復調回路51は、図6(B)の変調信号62から同図(C)のような二値化信号63を生成し、この二値化信号をフィルタ回路等を通すことで図6(D)のような再生信号64を得るため二値化回路を必要とする。

【0036】一方、10%ASK変調方式の信号を復調する第2の復調回路52は、変調信号72を検波する検波回路を用いてデータを再生するので、データの再生のためには二値化回路は不用である。ただし、受信信号から回路の同期のためのクロック信号75を抽出するため別個に二値化回路が必要となる。そこで、上記実施例では10%ASK変調方式の信号を復調する第2の復調回路52にも二値化回路を設けているが、この二値化回路を省略して、10%ASK変調方式の信号を受信している場合にも第1の復調回路51に設けられている二値化回路を用いてクロックを得るように構成しても良い。

【0037】以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記実施例では、100%ASK変調方式の信号と10%ASK変調方式の信号の2種類の信号を1つのICカードで識別して処理することができるコンビネーションカードについて説明したが、変調方式はASK変調(振幅変調)に限定されるものでなく、他の2以上の変調方式に対応可能なICカードを開発する場合にも適用するこ

とができる。

[0038]

【発明の効果】本願において開示される発明のうち代表 的なものによって得られる効果を簡単に説明すれば下記 のとおりである。

【0039】本発明によれば、1つのコイルで受信した2種類の信号を識別し選択することが可能になるため、近接型非接触ICカードのタイプA(IS014443-A)とタイプB(IS014443-B)の両方の信号を受信処理でき、簡単な構成でタイプA・タイプBの統合カード(コンビネーションカード)が実現できる。

【図面の簡単な説明】

【図1】本発明の非接触 I Cカードに内蔵される回路の 概略構成を示す概略構成図。

【図2】本発明の非接触ICカード全体の概略構成を示すICカード全体図。

【図3】一般的な非接触 I Cカードに内蔵される回路の 構成例を示すブロック構成図。

【図4】本発明に係る非接触 I Cカードに内蔵される回路の第1の実施例を示すブロック構成図。

【図5】本発明に係る非接触ICカードに内蔵される回路の第2の実施例を示すブロック構成図。

【図6】実施例の非接触ICカードにおいてタイプA(IS014443-A)の信号を処理する場合の動作を説明する波形図。

【図7】実施例の非接触ICカードにおいてタイプB(IS014443-B)の信号を処理する場合の動作を説明する波形図。

【符号の説明】

- 1 非接触 I Cカード内蔵回路(LSI)
- 2 コイル
- 3 整流回路
- 4 電源回路
- 5 復調回路
- 6 変調回路
- 7 リードライト制御回路
- 8 メモリ回路
- 51 第1の復調回路
- 52 第2の復調回路
- 53 制御回路
- 54 セレクタ回路
- 55 ワンチップマイコンLSI
- 61 データ
- 62 100%ASK変調信号
- 63 二值化信号
- 64 再生信号
- 65 セレクト信号
- 66 レスポンス信号
- 72 10%ASK変調信号
- 73 検波信号

74 データ再生信号

75 クロック信号 (二値化信号)

1 0 1 0 0 62 62 (B) 変調信号 (C) 二値化信号 (D) 再生信号 (E) セレクト信号 (F) レスポン

【図6】

【図5】

【図7】

フロントページの続き

(72)発明者 大西 忠志

東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内

(72) 発明者 大川 武宏

東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内

Fターム(参考) 5B035 AA06 CA23