Bayesian Networks Model

1. 建模结构

模型通过两个系统评价指标来衡量系统的风险: Apdex 和 Health。其中Health指标的计算还需进一步确定; Apdex指标主要是由CPU使用率、内存使用率、http请求数、thread数影响,是一个综合指标(比如用http平均响应时间来刻画)。

T_1	T_2		T_n
cpu	cpu	\rightarrow	cpu
memory	memory	\rightarrow	memory
http请求数	http请求数	\rightarrow	http请求数
Threads	Threads	\rightarrow	Threads
\Downarrow	\downarrow		\downarrow
p(A)	p(A)		p(A)

- 1. 通过历史数据构建贝叶斯网络,刻画上述系统指标对p(A)的因果关系;
- 2. 构建每一个系统指标的时间序列,推测每个系统指标在未来某一时刻的值;
- 3. 通过贝叶斯网络得到p(A)在未来时刻的值。

2. 设想

2.1. 关于预测没有出现过的样本

在离散情况下,贝叶斯方法是对历史数据的统计。对于没有出现过的样本,不能做出预测。如果将离散的历史数据拟合成连续的分布函数,就可以刻画没有出现的样本的概率,然后进行预测。

疑问:将拟合函数延伸到未出现情况的可靠性。

3. 明年任务: 贝叶斯

- 1. 风险定位: 通过因果推理定位已知风险的根源问题;
- 2. 因果推理预测: 通过因果推理预测未知潜在风险。

4. 数据分析

- 4.1. 产品功能
 - 1. 异常检测
 - 2. 贝叶斯预测

5. 套路有限

- 1. AD
- 2. BN⇒(关联影响)
- 3. TSP(应用最广)
 - (a) 是否能够预测,需要说明原因;
 - (b) 预测。

6. 行业经验

对于客户行业的了解,有利于我们抓到客户的痛点,为分析类似业务寻求方向。

行业数据:

- 1. 微信号: 狗熊会
- 2. 新浪财经