Supplemental Material for "The implications of bias-correction methods and climate model ensembles on soil erosion projections under climate change"

Joris P.C. Eekhout¹ and Joris de Vente¹

¹Soil Erosion and Conservation Research Group, CEBAS-CSIC, Spanish Research Council, Campus Universitario Espinardo, 30100, P.O. Box 164, Murcia, Spain

Correspondence: Joris Eekhout (joriseekhout@gmail.com)

Contents of this file

1. Figures S1 to S2

Additional Supplemental Material (Files uploaded separately)

1. Caption for Large Table S1

Introduction

This supplemental material provides the figures and table obtained from a literature review on the impact of climate change on soil erosion. The literature review focused on studies that used bias-correction, i.e. delta change, quantile mapping and other methods (i.e. spatial analogue, historical-future, LS-SVM, historical precipitation trend).

Large Table S1.

Publications of climate change impact assessments on soil erosion that use bias-correction. The table provides the reference, the bias-correction method and the size of the climate model ensemble. The temporal evolution of the use of bias-correction methods and the size of the climate model ensemble are shown in Figures S1 and S2, respectively.

Figure S1. Number of publications of climate change impact assessments on soil erosion in the period 1994-2018, specified per biascorrection method (delta change, quantile mapping and other methods) and per period.

Figure S2. Size of the climate model ensemble used in climate change impact assessments on soil erosion in the period 1994-2018. Each dot represent one study.

References

- Azari, M., H. R. Moradi, B. Saghafian, and M. Faramarzi, Climate change impacts on streamflow and sediment yield in the North of Iran, *Hydrological Sciences Journal*, 61(1), 123–133, https://doi.org/10.1080/02626667.2014.967695, 2016.
- Azari, M., B. Saghafian, H. R. Moradi, and M. Faramarzi, Effectiveness of Soil and Water Conservation Practices Under Climate Change in the Gorganroud Basin, Iran, *Clean Soil, Air, Water*, 45(8), https://doi.org/10.1002/clen.201700288, 2017.
- Bussi, G., F. Francés, E. Horel, J. A. López-Tarazón, and R. J. Batalla, Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment, *Journal of Soils and Sediments*, pp. 1921–1937, https://doi.org/10.1007/s11368-014-0956-7, 2014.
- Bussi, G., S. J. Dadson, C. Prudhomme, and P. G. Whitehead, Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK), *Journal of Hydrology*, 542, 357–372, https://doi.org/10.1016/j.jhydrol.2016.09.010, 2016.
- Carvalho-Santos, C., J. P. Nunes, A. T. Monteiro, L. Hein, and J. P. Honrado, Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal, *Hydrological Processes*, 30(5), 720–738, https://doi.org/10.1002/hyp.10621, 2016.
- Coulthard, T. J., J. Ramirez, H. J. Fowler, and V. Glenis, Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield, *Hydrology and Earth System Sciences*, *16*(11), 4401–4416, https://doi.org/10.5194/hess-16-4401-2012, 2012.
- De Munck, C. S., T. R. Hutchings, and A. J. Moffat, Impacts of Climate Change and Establishing a Vegetation Cover on Water Erosion of Contaminated Spoils for Two Contrasting United Kingdom Regional Climates: A Case Study Approach, *Integrated Environmental Assessment and Management*, 4(4), 443, https://doi.org/10.1897/IEAM_2008-016.1, 2008.
- Favis-Mortlock, D., and J. Boardman, Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs, *CATENA*, 25(1-4), 365–387, https://doi.org/10.1016/0341-8162(95)00018-N, 1995.
- Favis-Mortlock, D. T., and A. J. Guerra, The implications of general circulation model estimates of rainfall for future erosion: a case study from Brazil, *CATENA*, 37(3-4), 329–354, https://doi.org/10.1016/S0341-8162(99)00025-9, 1999.
- Garbrecht, J. D., and X. C. Zhang, Soil erosion from winter wheat cropland under climate change in Central Oklahoma, *Applied Engineering in Agriculture*, 31(3), 439–454, https://doi.org/10.13031/aea.31.10998, 2015.
- Garbrecht, J. D., M. A. Nearing, J. L. Steiner, X. J. Zhang, and M. H. Nichols, Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States, *Weather and Climate Extremes*, 10, 32–39, https://doi.org/10.1016/j.wace.2015.06.002, 2015.
- Garbrecht, J. D., M. A. Nearing, J. X. C. Zhang, and J. L. Steiner, Uncertainty of Climate Change Impacts on Soil Erosion from Cropland in Central Oklahoma, *Applied Engineering in Agriculture*, 32(6), 823–836, https://doi.org/10.13031/aea.32.11613, 2016.
- Giang, P., L. Giang, and K. Toshiki, Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia, *Climate*, *5*(1), 22, https://doi.org/10.3390/cli5010022, 2017.
- Giang, P. Q., K. Toshiki, M. Sakata, and S. Kunikane, Modelling the Seasonal Response of Sediment Yield to Climate Change in the Laos-Vietnam Transnational Upper Ca River Watershed, *Environment Asia*, 7(2), 152–162, https://doi.org/10.14456/ea.2014.34, 2014.
- Gould, G. K., M. Liu, M. E. Barber, K. A. Cherkauer, P. R. Robichaud, and J. C. Adam, The effects of climate change and extreme wildfire events on runoff erosion over a mountain watershed, *Journal of Hydrology*, *536*, 74–91, https://doi.org/10.1016/j.jhydrol.2016.02.025, 2016.

- Hancock, G. R., D. Verdon-Kidd, and J. B. Lowry, Soil erosion predictions from a landscape evolution model An assessment of a post-mining landform using spatial climate change analogues, *Science of the Total Environment*, 601-602, 109–121, https://doi.org/10.1016/j.scitotenv.2017.04.038, 2017.
- Hanratty, M. P., and H. G. Stefan, Simulating Climate Change Effects in a Minnesota Agricultural Watershed, *Journal of Environment Ouality*, 27(6), 1524, https://doi.org/10.2134/jeq1998.00472425002700060032x, 1998.
- Hoomehr, S., J. S. Schwartz, Y.-F. Lam, and J. S. Fu, Potential Changes in Rainfall Erosivity under Climate Change from Multi-Scenario Projections in Southern Appalachian Region, in *World Environmental and Water Resources Congress 2011*, vol. 136, pp. 1418–1428, American Society of Civil Engineers, Reston, VA, https://doi.org/10.1061/41173(414)148, 2011.
- Hoomehr, S., J. S. Schwartz, and D. C. Yoder, Potential changes in rainfall erosivity under GCM climate change scenarios for the southern Appalachian region, USA, *CATENA*, *136*, 141–151, https://doi.org/10.1016/j.catena.2015.01.012, 2016.
- Kazimierski, L. D., M. Irigoyen, M. Re, A. N. Menendez, P. Spalletti, and J. D. Brea, Impact of Climate Change on sediment yield from the Upper Plata Basin, *International Journal of River Basin Management*, 11(4), 411–421, https://doi.org/10.1080/15715124.2013.828066, 2013.
- Khoi, D. N., and T. Suetsugi, The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam, *Hydrological Processes*, 28(3), 640–652, https://doi.org/10.1002/hyp.9620, 2014.
- Kim, Y. D., J. M. Kim, and B. Kang, Projection of runoff and sediment yield under coordinated climate change and urbanization scenarios in Doam dam watershed, Korea, *Journal of Water and Climate Change*, 8(2), 235–253, https://doi.org/10.2166/wcc.2016.068, 2017.
- Lacoste, M., V. Viaud, D. Michot, and C. Walter, Landscape-scale modelling of erosion processes and soil carbon dynamics under land-use and climate change in agroecosystems, *European Journal of Soil Science*, 66(4), 780–791, https://doi.org/10.1111/ejss.12267, 2015.
- Li, Z., and H. Fang, Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China, *Geomorphology*, 293(December 2016), 255–271, https://doi.org/10.1016/j.geomorph.2017.06.005, 2017.
- Li, Z., W. Z. Liu, X. C. Zhang, and F. L. Zheng, Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China, *Climatic Change*, 105(1), 223–242, https://doi.org/10.1007/s10584-010-9875-9, 2011.
- Litschert, S., D. Theobald, and T. Brown, Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion, *CATENA*, 118, 206–219, https://doi.org/10.1016/j.catena.2014.01.007, 2014.
- Maeda, E. E., P. K. Pellikka, M. Siljander, and B. J. Clark, Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya, *Geomorphology*, 123(3-4), 279–289, https://doi.org/10.1016/j.geomorph.2010.07.019, 2010.
- Maina, J., H. de Moel, J. Zinke, J. Madin, T. McClanahan, and J. E. Vermaat, Human deforestation outweighs future climate change impacts of sedimentation on coral reefs, *Nature Communications*, 4(May), 1–7, https://doi.org/10.1038/ncomms2986, 2013.
- Mondal, A., D. Khare, S. Kundu, P. K. Meena, P. K. Mishra, and R. Shukla, Impact of Climate Change on Future Soil Erosion in Different Slope, Land Use, and Soil-Type Conditions in a Part of the Narmada River Basin, India, *Journal of Hydrologic Engineering*, 20(6), C5014,003, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001065, 2015.
- Mondal, A., D. Khare, and S. Kundu, Impact assessment of climate change on future soil erosion and SOC loss, *Natural Hazards*, 82(3), 1515–1539, https://doi.org/10.1007/s11069-016-2255-7, 2016.
- Mukundan, R., S. M. Pradhanang, E. M. Schneiderman, D. C. Pierson, A. Anandhi, M. S. Zion, A. H. Matonse, D. G. Lounsbury, and T. S. Steenhuis, Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA, *Geomorphology*, 183(June), 110–119, https://doi.org/10.1016/j.geomorph.2012.06.021, 2013.

- Nerantzaki, S., G. Giannakis, D. Efstathiou, N. Nikolaidis, I. Sibetheros, G. Karatzas, and I. Zacharias, Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed, *Science of The Total Environment*, *538*, 288–297, https://doi.org/10.1016/j.scitotenv.2015.07.092, 2015.
- Nerantzaki, S. D., G. V. Giannakis, N. P. Nikolaidis, I. Zacharias, G. P. Karatzas, and I. A. Sibetheros, Assessing the Impact of Climate Change on Sediment Loads in a Large Mediterranean Watershed, *Soil Science*, *181*(7), 306–314, https://doi.org/10.1097/SS.000000000000164, 2016.
- Nunes, J. P., J. Seixas, and J. J. Keizer, Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis, *Catena*, 102, 27–39, https://doi.org/10.1016/j.catena.2011.04.001, 2013.
- Op de Hipt, F., B. Diekkrüger, G. Steup, Y. Yira, T. Hoffmann, and M. Rode, Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa, *Catena*, *163*(August 2017), 63–77, https://doi.org/10.1016/j.catena.2017.11.023, 2018.
- Paroissien, J.-B., F. Darboux, A. Couturier, B. Devillers, F. Mouillot, D. Raclot, and Y. Le Bissonnais, A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France), *Journal of Environmental Management*, 150, 57–68, https://doi.org/10.1016/j.jenvman.2014.10.034, 2015.
- Perazzoli, M., A. Pinheiro, and V. Kaufmann, Assessing the impact of climate change scenarios on water resources in southern Brazil, *Hydrological Sciences Journal*, 58(1), 77–87, https://doi.org/10.1080/02626667.2012.742195, 2013.
- Pheerawat, P., and P. Udmale, Impacts of climate change on rainfall erosivity in the Huai Luang watershed, Thailand, *Atmosphere*, 8(8), https://doi.org/10.3390/atmos8080143, 2017.
- Plangoen, P., M. Babel, R. Clemente, S. Shrestha, and N. Tripathi, Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand, *Sustainability*, 5(8), 3244–3274, https://doi.org/10.3390/su5083244, 2013.
- Pohlert, T., Projected Climate Change Impact on Soil Erosion and Sediment Yield in the River Elbe Catchment, in *Sediment Matters*, edited by P. Heininger and J. Cullmann, pp. 97–108, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-14696-6_7, 2015.
- Principe, J. a., EXPLORING CLIMATE CHANGE EFFECTS ON WATERSHED SEDIMENT YIELD AND LAND COVER-BASED MITIGATION MEASURES USING SWAT MODEL, RS AND GIS: CASE OF CAGAYAN RIVER BASIN, PHILIPPINES, *ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B8*(September), 193–198, https://doi.org/10.5194/isprsarchives-XXXIX-B8-193-2012, 2012.
- Pruski, F. F., and M. A. Nearing, Climate-induced changes in erosion during the 21st century for eight U.S. locations, *Water Resources Research*, 38(12), 34–1–34–11, https://doi.org/10.1029/2001WR000493, 2002.
- Ramos Iensen, I. R., G. Bauer Schultz, and I. Dos Santos, Simulation of hydrosedimentological impacts caused by climate change in the Apucaraninha River watershed, southern Brazil, *Proceedings of the International Association of Hydrological Sciences*, *367*(2013), 366–373, https://doi.org/10.5194/piahs-367-366-2015, 2015.
- Rodríguez-Blanco, M., R. Arias, M. Taboada-Castro, J. Nunes, J. Keizer, and M. Taboada-Castro, Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment, *Water*, 8(12), 444, https://doi.org/10.3390/w8100444, 2016.

- Serpa, D., et al., Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments, *Science of The Total Environment*, *538*, 64–77, https://doi.org/10.1016/j.scitotenv.2015.08.033, 2015.
- Shrestha, B., M. S. Babel, S. Maskey, A. van Griensven, S. Uhlenbrook, A. Green, and I. Akkharath, Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR, *Hydrology and Earth System Sciences*, *17*(1), 1–20, https://doi.org/10.5194/hess-17-1-2013, 2013.
- Shrestha, B., S. Maskey, M. S. Babel, A. van Griensven, and S. Uhlenbrook, Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR, *Climatic Change*, pp. 1–15, https://doi.org/10.1007/s10584-016-1874-z. 2016.
- Simonneaux, V., A. Cheggour, C. Deschamps, F. Mouillot, O. Cerdan, and Y. Le Bissonnais, Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco), *Journal of Arid Environments*, 122, 64–75, https://doi.org/10.1016/j.jaridenv.2015.06.002, 2015.
- Thang, L. V., D. N. Khoi, and H. L. Phi, Impact of climate change on streamflow and water quality in the upper Dong Nai river basin, Vietnam, *La Houille Blanche*, (1), 70–79, https://doi.org/10.1051/lhb/2018010, 2018.
- Trisurat, Y., P. Eawpanich, and R. Kalliola, Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand, *Environmental Research*, 147, 611–620, https://doi.org/10.1016/j.envres.2016.02.019, 2016.
- Yu, X., X. Xie, and S. Meng, Modeling the responses of water and sediment discharge to climate change in the upper yellow river basin, China, *Journal of Hydrologic Engineering*, 22(12), https://doi.org/10.1061/(ASCE)HE.1943-5584.0001590, 2017.
- Zhang, G.-H., M. A. Nearing, and B.-Y. Liu, Potential effects of climate change on rainfall erosivity in the Yellow River basin of China, *Transactions of the ASAE*, 48(2), 511–517, https://doi.org/10.13031/2013.18325, 2005.
- Zhang, X.-C., Spatial sensitivity of predicted soil erosion and runoff to climate change at regional scales, *Journal of Soil and Water Conservation*, 61(2), 58–64, 2006.
- Zhang, X.-C., Cropping and Tillage Systems Effects on Soil Erosion under Climate Change in Oklahoma, *Soil Science Society of America Journal*, 76(5), 1789, https://doi.org/10.2136/sssaj2012.0085, 2012.
- Zhang, X.-C., and W.-Z. Liu, Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China, *Agricultural and Forest Meteorology*, *131*(3-4), 127–142, https://doi.org/10.1016/j.agrformet.2005.05.005, 2005.
- Zhang, X. C., and M. A. Nearing, Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma, *Catena*, 61(2-3 SPEC. ISS.), 185–195, https://doi.org/10.1016/j.catena.2005.03.009, 2005.
- Zhang, X.-C., W.-Z. Liu, Z. Li, and F.-L. Zheng, Simulating site-specific impacts of climate change on soil erosion and surface hydrology in southern Loess Plateau of China, *CATENA*, 79(3), 237–242, https://doi.org/10.1016/j.catena.2009.01.006, 2009.
- Zhang, X.-C., W.-Z. Liu, Z. Li, and J. Chen, Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios, *Agricultural and Forest Meteorology*, *151*(10), 1297–1304, https://doi.org/10.1016/j.agrformet.2011.05.010, 2011.
- Zhang, Y., M. Hernandez, E. Anson, M. A. Nearing, H. Wei, J. J. Stone, and P. Heilman, Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices, *Journal of Soil and Water Conservation*, 67(5), 390–405, https://doi.org/10.2489/jswc.67.5.390, 2012.
- Zhou, Y., Y. Xu, W. Xiao, J. Wang, Y. Huang, and H. Yang, Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China's Far Northeast, *Water*, *9*(12), 966, https://doi.org/10.3390/w9120966, 2017.