Gradiente

Sejam $D \subset \mathbb{R}^n$, $A \in \operatorname{int}(D)$ e $f : D \to \mathbb{R}$. Se as derivadas parciais de 1^a ordem de f existem no ponto A, chama-se gradiente de f em A ao vetor

$$\nabla f(A) \stackrel{\text{def}}{=} \left(\frac{\partial f}{\partial x_1}(A), \frac{\partial f}{\partial x_2}(A), \dots, \frac{\partial f}{\partial x_n}(A) \right).$$

Chama-se campo vetorial gradiente de f à função

$$(x_1,\ldots,x_n)\to \nabla f(x_1,\ldots,x_n).$$

Exemplos

Exemplo

Considere a função

$$f(x,y)=e^{2x-y}.$$

- (a) Calcule o campo vetorial gradiente.
- (b) Determine as derivadas parciais de 2ª ordem da função.

Resolução:

Exemplos

Exemplo

Considere a função

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

Calcule o gradiente de f em todos os pontos de \mathbb{R}^2 .

Exemplo - Resolução

Resolução:

Teorema de Schwarz

Teorema

Sejam $D \subset \mathbb{R}^2$, $(a, b) \in \operatorname{int}(D)$ e $f : D \to \mathbb{R}$. Se as derivadas

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y \, \partial x}$

estiverem definidas numa bola aberta $B(a, b) \subset D$ e

$$\frac{\partial^2 f}{\partial y \, \partial x}$$
 for continua em (a, b) , então

 $\frac{\partial^2 f}{\partial x \partial y}(a, b)$ existe e

$$\frac{\partial^2 f}{\partial x \, \partial y}(a, b) = \frac{\partial^2 f}{\partial y \, \partial x}(a, b).$$

Classes
$$C^k(D)$$

Sejam $D \subset \mathbb{R}^n$ um conjunto aberto e $k \in \mathbb{N}$. Diz-se que

$$f:D\to\mathbb{R}$$

é de classe C^k em D e escreve-se $f \in C^k(D)$, se todas as derivadas parciais de ordem menor ou igual k forem contínuas em D.

 $Observaç\~ao$

$$C^0(D)=C(D).$$

Então para cada $k \in \mathbb{N} \cup \{0\}$,

$$C^{k+1}(A) \subset C^k(A)$$
.

Diz-se que $f: D \to \mathbb{R}$ é de classe C^{∞} em D e escreve-se $f \in C^{\infty}(D)$ se

$$f \in C^k(D)$$
 para cada $k \in \mathbb{N}$.

Corolário do teorema de Schwarz

Teorema

Seja $D \subset \mathbb{R}^2$ um conjunto aberto e $f \in C^2(D)$, então

$$\frac{\partial^2 f}{\partial x \, \partial y}(x, y) = \frac{\partial^2 f}{\partial y \, \partial x}(x, y)$$

em D.

Teorema

Seja $D \subset \mathbb{R}^n$ um conjunto aberto e $f \in C^2(D)$, então para cada par $i, j \in \{1, ..., n\}$,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x_1, \dots, x_n) = \frac{\partial^2 f}{\partial x_j \partial x_j}(x_1, \dots, x_n)$$

em D.

Diferenciabilidade de uma função de uma variável

Sejam $D \subset \mathbb{R}$, $a \in \operatorname{int}(D)$ e $f : D \to \mathbb{R}$. Diz-se que f é diferenciável em a se existir e for finito o limite

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=c$$

A c chama-se a derivada de f em a e escreve-se f'(a) = c. Seja $\lambda : \mathbb{R} \to \mathbb{R}$ a aplicação linear definida por

$$\lambda(h) = f'(a)h \quad (h \in \mathbb{R}).$$

Então a definição anterior é equivalente a

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - f'(a)h}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a) - \lambda(h)}{h} = 0$$

ou a

$$\lim_{h\to 0}\frac{|f(a+h)-f(a)-\lambda(h)|}{|h|}=0.$$

Diferenciabilidade de uma função real de duas variáveis

Definição

Sejam
$$D \subset \mathbb{R}^2$$
, $(a, b) \in int(D)$ e

$$f:D\to\mathbb{R}$$
.

Diz-se que f é diferenciável em (a, b) se existir uma aplicação linear

$$\lambda: \mathbb{R}^2 \to \mathbb{R}$$

tal que

$$\lim_{(h,k)\to(0,0)}\frac{|f(a+h,b+k)-f(a,b)-\lambda(h,k)|}{\|(h,k)\|}=0.$$

Derivada

À aplicação linear λ chama-se derivada de f em (a, b) e representa-se por Df(a, b).

Existência das derivadas parciais

Teorema.

Sejam $D \subset \mathbb{R}^2$ e $f: D \to \mathbb{R}$. Se f for diferenciável em (a, b), então

$$\frac{\partial f}{\partial x}(a,b), \quad \frac{\partial f}{\partial y}(a,b)$$

existem e fixando a base canónica em \mathbb{R}^2 , Df(a,b) é representada pela matriz jacobiana de f no ponto (a,b)

$$Jf(a,b) = \begin{bmatrix} \frac{\partial f}{\partial x}(a,b) & \frac{\partial f}{\partial y}(a,b) \end{bmatrix}$$