Laboratorium 4

Janusz Pawlicki

1. Wstęp

Simulink jest pakietem programistycznym (zintegrowanym z Matlabem) do modelowania, symulacji i analizy systemów dynamicznych za pomocą schematów blokowych. Nadaje się zarówno do analizy układów liniowych jak i nieliniowych, modelowanych w czasie ciągłym i dyskretnym.

2. Przebieg laboratorium

2.1 Proste modele Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

2.2 Obiekt inercyjny II rzędu

W przypadku swobodnym, tj. bez zewnętrznego wymuszenia, układ taki można opisać następującym równaniem różniczkowym:

$$m\ddot{x} + kx = 0$$

Nie uwzględniamy w równaniu przyspieszenia ziemskiego, gdyż poziomem odniesienia jest dla nas stan równowagi. Aby narysować schemat blokowy takiego układu, zapiszmy równanie w takiej postaci:

$$\ddot{x} = -\frac{k}{m}x$$

Zamodelujemy ten obiekt na kilka sposobów. Przyjmij k=6 N/m, m=14 kg, $x_0=0.1$ m, F=1 N.

2.1.1 Sposób 1

2.1.2 Sposób 2

2.1.3 Sposób 3

2.1.4 Sposób 4

3 Bibliografia

https://upel.agh.edu.pl/mod/book/view.php?id=46341&chapterid=1039