

Projetando um DAC para RaspberryPi

Live 02 - Especificação

Valeu apoiadores!

- Alexandre
- Beatriz
- Cássio
- Digão
- Edson
- Henrique
- · Leonardo B.
- · Leonardo C.
- Rogério

Na live anterior

Resumindo

DAC de boa qualidade

• AKM, ESS, CS, PCM

Duas saídas

- 3.5mm Single Ended
- 4.4mm
 Balanceado

Com AMP

 Tocar qualquer IEM, HE400SE e HD600

I2S

 Sem USB Audio

Controles por software

 Botão ON/OFF para desligamento seguro

Especificação

Idéia no papel → Tabelas, Diagramas, Premissas, Restrições, etc

Como fazer uma boa especificação?

Linguagem objetiva

Evita opiniões e ambiguidades

Definições precisas

Facilita o entendimento para múltiplos públicos

Requisitos claros e testáveis

Permite a avaliação de sucesso do projeto Auditoria de normas e requisitos

Expectativas de custo e volume

Orienta a possibilidade comercial

Desafios

- Falta de informações
- Falta de conhecimento
- Dependência da escolha de componentes
- Sucesso (Volume) → desconhecido

Modelo

Item	Descrição	Requisito	Prioridade	Justificativa
1	Potência de Saída	100mW SE / 200mW DIFF	Obrigatório	Fones exigentes
2	Tamanho	100 x 100 mm	Opcional	Caber no gabinete
3	•••	•••		

Perguntas importantes

- Qual o tamanho físico?
- Quais são as entradas e seus requisitos?
- Quais são as saídas e seus requisitos?
- Quais são os requisitos de energia?
- Há normas a serem atendidas?
- Quais são os blocos do Sistema?
- Custo esperado?

Tamanho Físico

Unit:mm

Alguns formatos em existência

Padronização

RASPBERRY PI HAT BOARD MECHANICAL SPECIFICATION (c) Raspberry Pi 2014/2018 FOR FULL SPECIFICATION INCLUDING ELECTRICAL REQUIREMENTS

PLEASE SEE https://github.com/raspberrypi/hats

MINIMUM HAT REQUIREMENTS:

- BOARD MUST BE 65x56mm or 65x56.5mm AS PER THIS DRAWING
- BOARD MUST HAVE 3mm RADIUS CORNERS AS PER THIS DRAWING
- BOARD MUST HAVE 4 MOUNTING HOLES IN CORNERS AS PER THIS DRAWING
- BOARD MOUNTING HOLES MUST FOLLOW MOUNTING HOLES SPECIFICATION
- BOARD MUST HAVE FULL 40W GPIO CONNECTOR

MOUNTING HOLES SPECIFICATION:

MOUTING HOLES SHOULD IDEALLY BE NON-PLATED. IF PLATED, HOLE
AND LAND MUST BE ELECTRICALLY ISOLATED (DO NOT CONNECT THESE TO GND)

MOUNTING HOLE LAND SHOULD BE MIN. 6.2mm AND EITHER ISOLATED COPPER OR BARE BOARD (OPEN SOLDER MASK)

MOUNTING HOLES SHOULD BE DRILLED TO 2.75mm +/- 0.05mm

FURTHER NOTES:

IT IS RECOMMENDED TO PROVIDE SLOTS OR CUTOUTS FOR CAMERA AND DISPLAY FLEXIS SO CAMERA AND DISPLAY CAN STILL BE USED WITH HAT ATTACHED CAMERA FLEX SLOT AND DISPLAY FLEX CUTOUT ARE EXAMPLES OF HOW TO DO THIS

Decisão

Entradas

Entrada de áudio → I2S

Conector de expansão

Entradas

- Entrada de configuração → Colocar o DAC no modo correto
 - Depende do DAC → I2C, SPI ou similar
 - Podemos deixar essa decisão para mais tarde?

Saídas

- Já fizemos boa parte do trabalho no conceito inicial!
 - Single Ended 3.5mm
 - Diferencial -4.4mm (Pentaconn)
- Fones "guia"
 - Qualquer IEM de referência → Qual?
 - HD600
 - HE400SE
- Mas o que isto significa em termos de potência?

Potência – Eletricidade vs Som

$$P(W) = \frac{V_{rms}^{2}}{Z_{headphone}} = Z_{headphone} I_{rms}^{2}$$
 [1]

$$V_{rms} = \sqrt{\frac{Z_{headphone}}{1000}} \left(10^{\frac{(L_p - S_{headphone})}{10}} \right)$$
 [3]

$$P(mW) = 10^{\frac{(L_p - S_{headphone})}{10}}$$

[2]

$$I_{rms} = \sqrt{\frac{1}{1000 \, Z_{headphone}}} \left(10^{\frac{\left(L_p - S_{headphone}\right)}{10}}\right) \quad \text{[4]}$$

Processo para especificar

- Conhecer Sensibilidade (S) e Impedância (Z) para um fone alvo
- Escolher nível de pressão sonora (Lp) adequado
- Calcular potência (P_{RMS}) e/ou tensão (V_{RMS}) de saída

Discussão - Pressão Sonora

Sound source	dB SPL
Colt 45 pistol - 8 meters	140
Threshold of pain	130
Rock Concert	120
Night club music	110
Chainsaw / Jet ski	100
Lawnmower	90
Cabin of jet aircraft cruising	80
Car - 10 meters	70
Average conversation - 1 meter	60
Average suburban home (night)	50
Quiet auditorium	40
Quiet whisper - 1.5 meters	30
Extremely quiet recording studio	20
Anechoic Chamber	10
Threshold of hearing	0

Discussão - Nível de pressão sonora

Discussão - Nível de pressão sonora

Solução inicial

Nível operacional 90dBSPL

Headroom

20dBSPL

Pressão Sonora Max 110dBSPL

Para os fones que decidimos

	Sennheiser HD600	Hifiman HE400SE	
Z	322Ω	25.3Ω	
Lp	110dBSPL		
S	100.5dB/mW	88.7dB/mW	
Р	8.91mW	134.90mW	
V_{RMS}	1.69V	1.84V	
I _{RMS}	5.27mA	73.32mA	

Fonte:

https://reference-audio-analyzer.pro/en/report/hp/sennheiser-hd-600.php https://reference-audio-analyzer.pro/en/report/hp/hifiman-he400se-v2.php

Entrada de energia

Entrada de Energia

- Duas tensões de entrada
 - 5V Tudo que tem a ver com o DAC
 - 3.3V Tensão de níveis lógicos
- Potência necessária -> Vai depender dos componentes
 - Não ultrapassar um máximo pode ser um bom guia
 - 5V 500mA (2.5W)
 - 3.3V 500mA (1.65W)

Próxima Live

- Partimos da tabela de spec
- Vamos desenhar o diagrama de blocos!