מבוא לתורת הקבוצות – תרגיל 11

להגשה עד ליום רביעי ה־1 בפברואר 2012

- .1 תהי $A\subseteq \mathbb{Z}$ חסומה מלעיל ומלרע. הוכיחו כי $A\subseteq \mathbb{Z}$
- . סופית. כי $A\subseteq \mathbb{Z}$ חסומה מלעיל וסדורה היטב (לפי ב). חסומה מלעיל וסדורה מלעיל וסדורה היטב (לפי ב).
- בסדר בסדר (כאשר $\mathbb Z$ מצויידת בסדר (היים איזומורפיזם $f:x\to\mathbb Z$ מצויידת בסדר חלקית, ונניח כי קיים איזומורפיזם $a\subseteq x$ סופית. מלעיל וסדורה היטב (לפי ב). הוכיחו כי $a\subseteq x$
 - .4 תהי (x,\leq) קבוצה סדורה היטב, ונניח כי גם (x,\geq) סדורה היטב. הוכיחו כי x סופית.
- הוכיחו סדר. הופיתה היכה $f:a\to b$ כניח כי (b,\leq_b) סדורה קווית היכה (a,\leq_a) סדורה חלקית, וכי בי $f:a\to b$ סדר מלא על (a,\leq_a) סדר מלא על (a,\leq_a)
 - .6 הוכיחו כי (\mathbb{R},\leq) ו־ (\mathbb{R},\geq) איזומורפיים.
 - כי: הוכיחו הוכיחם איזומורפיזם. $f:a \to b$ יהיו חלקית, ויהי קבוצות סדורות סדורות סדורות (a, \leq_a) יהיו (a, \leq_a) יהיו
- (א) אם ב־a יש איבר מקסימלי (x=m , $x\geq_a m$ כך שלכל $m\in a$), גם ב־a יש איבר מקסימלי.
 - . עם ב־b יש איבר אחרון ($x \leq_a \ell$, $x \in a$ כך שלכל (ב) איבר אחרון (ב) אם ב־a יש איבר אחרון (ב)
 - . גם ב־bיש סדרה אינסופית יורדת (ממש), גם ב־bיש סדרה כזו.
- יש (שאינו ראשון) ב־aיש קודם מיידי², אז גם לכל איבר ב־b (שאינו ראשון) ש קודם מיידי.
 - . אז גם b אז גם $(x <_a z <_a y)$ עבורו $z \in a$ קיים $x <_a y$ אז גם a צפוף (כלומר, לכל
- . חנית, אז הנו קבוצה של כל $y \in b$ אם הרישא אל הנו קבוצה סופית, אז הנו קבוצה אל כל $x \in a$
 - 8. הראו כי כל אחד מזוגות הסדרים הבאים <u>אינם</u> איזומורפיים:

$$(\mathbb{Q},\leq)$$
 (\mathbb{R},\leq) (a) $((0,\infty),\leq)$ $((0,\infty),\leq)$

$$(\mathbb{N},\geq)$$
 , (\mathbb{N},\leq) (T) (\mathbb{Q},\leq) , (\mathbb{Z},\leq) (x)

$$\left(\mathbb{R},\leq\right) \cap \left(\mathcal{P}\left(\mathbb{N}\right),\subseteq\right) \text{ (i) } \\ \left(\mathbb{R},\leq\right) \cap \left(\mathcal{P}\left(\mathbb{N}\right),\subseteq\right) \text{ (ii) } \\$$

$$\left(\left\{1-\frac{1}{n}\mid n\in\mathbb{N}^+\right\}\cup\left\{2-\frac{1}{n}\mid n\in\mathbb{N}^+\right\},\leq\right)\text{``}\left(\left\{1-\frac{1}{n}\mid n\in\mathbb{N}^+\right\},\leq\right)\text{ (t)}$$

a פ. תהי |a|=|b|. הוכיחו כי ניתן להגדיר על היטב. נניח כי |a|=|b|. הוכיחו כי ניתן להגדיר על פדר טוב.

תוכלו להיעזר במה שהוכחנו בכיתה. 1

[.] הנו איבר ש־x הנו העוקב המיידי שלו. x