Estructuras Algebraicas: Taller 2

Universidad Nacional de Colombia

Edgar Santiago Ochoa Quiroga

Problema 1:

Sea $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ y $N = \begin{pmatrix} x & u \\ -y & -v \end{pmatrix}$ matrices sobre un anillo R en el cual b, x son unidades. Si $L = MN = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix}$. Muestre que L = 0. ¿Que puede decir en el caso de que uno de los elementos b o x no sean una unidad en R?

Solución:

Note que:

$$MN = \begin{pmatrix} ax - by & au - bv \\ cx - dy & cu - dv \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix}$$

Así nos queda el siguiente sistema de ecuaciones:

$$ax - by = 0$$

$$au - bv = 0$$

$$cx - dy = 0$$

$$cu - dv = *$$

Como x es unidad tenemos de la primera ecuación que $a=byx^{-1}$, luego como b es unidad, de la segunda ecuación tenemos que $v=b^{-1}au$ y si sustituimos a tenemos que $v=b^{-1}(byx^{-1})u=yx^{-1}u$. De la tercera ecuación obtenemos que $c=dyx^{-1}$. Sustituyendo c y v en la cuarta ecuación tenemos que $s=dyx^{-1}u-dyx^{-1}u=0$. Concluyendo así que $s=dyx^{-1}u-dyx^{-1}u=0$.

Ahora consideremos el caso donde b no es unidad pero x si lo es y veamos que podemos decir en este caso. De la primera ecuación seguimos teniendo que $a=byx^{-1}$, Ahora si sustituimos en la segunda ecuación tenemos que $b(yx^{-1}u-v)=0$, Si son un divisor de 0 no hay nada que podamos concluir de aquí en adelante. Si $yx^{-1}u-v=0$ podemos concluir nuevamente que L=0 sin la necesidad de que b sea unidad, pero si es b=0 solo podemos concluir a=0 y poco mas.

Ahora supongamos que b es el que es unidad. Primero de la primera ecuación ahora tenemos que $y=b^{-1}ax$ sustituyendo en la tercera ecuación tenemos que $(c-db^{-1}a)x=0$ y de aquí procedemos con el mismo razonamiento previo si $c-db^{-1}a=0$ podemos concluir que *=0 sin necesidad de que x sea unidad, pero si x=0 solo podemos concluir que y=0 y si son divisores de 0 no podemos concluir nada mas.

ם ֶׁם

Problema 2:

Sea R un anillo conmutativo. Demuestre que R[[x]] es un dominio entero.

Solución:

Note que la proposición de esta manera es falsa ya que si consideramos $R = \mathbb{Z}/6\mathbb{Z}$ este es un anillo conmutativo, pero no es dominio entero ya que $2 \cdot 3 = 0$, eso quiere decir que 2 y 3 son divisores de 0. Además recordemos que $\mathbb{Z}/6\mathbb{Z} \subseteq \mathbb{Z}/6\mathbb{Z}[x] \subseteq \mathbb{Z}/6\mathbb{Z}[x]$ esto quiere decir que no es un dominio entero.

Ahora consideremos la proposición pero suponiendo que R es un dominio entero ya que en este caso si es verdadera.

Sean $\sum a_n x^n$ y $\sum b_m x^m$ dos sucesiones formales distintas de 0 en R[[x]], es decir existen mínimos $i, j \in \mathbb{N}$ tales que $a_i \neq 0$ y $b_j \neq 0$. Luego considere $(\sum a_n x^n \sum b_m x^m)$. Como estos son los mínimos quiere decir que el coeficiente de x^{i+j} es $a_i b_j$, como R es un dominio entero tenemos que $a_i b_j \neq 0$ luego como al menos un coeficiente es distinto de 0 quiere decir que $(\sum a_n x^n \sum b_m x^m) \neq 0$ esto quiere decir que R[[x]] es un dominio entero.

 D_{α}

Problema 3:

Encuentre un anillo R y un polinomio $p(x) = p_0 + p_1 x + \cdots + p_n x^n$ de grado al menos 2 tal que p(x) = 0 admita infinitas soluciones en R.

Solución:

Considere $R = M_2(\mathbb{Z})$ es decir el anillo de matrices 2×2 con entradas en los enteros, y el polinomio $P(X) = X^2$ donde $P(X) \in R[x]$. Consideremos la matriz $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ donde $a \in \mathbb{Z}$ arbitrario. Observe que:

$$A^2 = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$

Eso quiere decir que P(A) = 0. Como el a es cualquier entero eso quiere decir que hay infinitas matrices en R que son solución de P(X) = 0.

 $\Omega^{\hat{}}\Omega$

Problema 4:

Sea $R = \mathcal{C}([0,1], \mathbb{R})$ (el anillo de funciones continuas $f : [0,1] \to \mathbb{R}$). Sea $L \neq \{0\}$ un ideal propio de R. Muestre que existe $x_0 \in [0,1]$ tal que $f(x_0) = 0$ para toda $f \in L$.

Solución:

Note que toda $f \in L$ debe tener al menos un punto en [0,1] donde se haga 0 ya que si $f \neq 0$ en [0,1] entonces $\frac{1}{f} \in R$ y como $f \in L$ entonces $1 = \frac{1}{f} f \in L$ eso quiere decir que L = R, pero estamos suponiendo que L es propio así que se debe de tener lo que dijimos inicialmente. Ahora falta demostrar que todas las funciones tienen una raíz en común. Supongamos que esto no ocurre, luego existen $f,g \in L$ tales que si f(x) = 0 entonces $g(x) \neq 0$ y viceversa. Como L es un ideal $f^2, g^2 \in L$ y además $f^2 + g^2 \in L$, note que esta ultima función siempre es distinta de 0 ya que $f^2, g^2 \geq 0$ y además ellas no se hacen 0 al tiempo. Por lo tanto podemos hacer lo mismo que hicimos al principio y eso nos llevara a la contradicción de que L = R. De esta manera concluimos que todas las funciones tienen al menos una raíz en común, es decir que existe $x_0 \in [0,1]$ tal que $f(x_0) = 0$ para toda $f \in L$

 O_{\cdot}

Problema 5:

Pruebe que $p(x) = x^3 + 2x + 1$ no esta en el ideal $\langle x^3 + 1 \rangle$ de $\mathbb{Z}/3\mathbb{Z}[x]$.

Solución:

Suponga que $x^3 + 2x + 1 \in \langle x^3 + 1 \rangle$, luego $x^3 + 2x + 1 = (x^3 + 1)q(x)$ donde $q(x) \in \mathbb{Z}/3\mathbb{Z}[x]$ Ahora si evaluamos en 2 en ambos lados de la igualdad debería de dar lo mismo en $\mathbb{Z}/3\mathbb{Z}$, pero:

$$\phi_2(x^3 + 2x + 1) = 2^3 + 2 \cdot 2 + 1 = 13 = 1 \neq 0 = 0 \cdot q(2) = 9 \cdot q(2) = \phi_2((x^3 + 1)q(x))$$

Donde ϕ es el homomorfismo de evaluación. Luego esto es una contradicción. Así concluimos que p(x) no esta en el ideal $\langle x^3 + 1 \rangle$ de $\mathbb{Z}/3\mathbb{Z}[x]$.

 $D^{"}C$