

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Herbert Simon

Trenchard More

A timeline of notable artificial intelligence systems

Theseus: A small robotic mouse that could navigate a simple maze and remember its course. Perceptron Mark I: Regarded as the first artificial neural network, it could visually distinguish cards First digitalmarked on the left side from those

TD-Gammon: This software learned to play backgammon at a high level, just below the top human players.

> AlexNet: This was a pivotal early "deep learning" system – a neural network with many layers – that could recognize images of objects such as dogs and cars at near-human level.

> > Artificial intelligence with language and image recognition capabilities that are comparable to those of humans

2050 2040

marked on the right.

2060

Sistemas expertos: programas que emulan las dinámicas de un experto.

Aprendizaje automático: programas equipados con capacidades de identificar patrones o grupos.

Aprendizaje profundo: sistemas enfrentados a datos crudos con capacidad de identificar/clasificar los datos.

https://slate.com/technology/2012/06/google-computers-learn-to-iden tify-cats-on-youtube-in-artificial-intelligence-study.html

Aprendizaje por reforzamiento: sistemas capaces de aprender bajo experimentación.

In Artificial Intelligence Breakthrough, Google Computers Teach Themselves To Spot Cats on YouTube

BY WILL OREMUS JUNE 27, 2012 • 9:34 AM

De modo que para la mayoría de los casos, necesitamos datos. Buenos datos.

Cliente	Dinero en cuenta	Ha tenido impagos	Trabajo	Estado civil	Deudas	Buen pagador
А	50.000 €	NO	Si	Soltero/a	No	SI
В	11.000 €	NO	Si	Casado/a	Hipoteca	NO
С	24.000 €	NO	Paro	Soltero/a	No	NO
D	150.000 €	NO	Si	Pareja	Hipoteca	SI
Е	1.000 €	SI	Pensionista	Pareja	Préstamo	SI
F	33.000 €	NO	Pensionista	Casado/a	Hipoteca	SI
G	725 €	SI	Si	Pareja	No	SI
Н	500 €	SI	Estudiante	Soltero/a	No	NO
I	6.000 €	NO	Si	Casado/a	Préstamo	SI
J	300.000 €	NO	Si	Soltero/a	No	¿?

Desconocemos o no queremos imponer nuestros sesgos a la hora de relacionar los datos con nuestros *insights* o decisiones.

Si
$$X_1$$
 y $X_2 >= 20.000$ entonces **SI**
Si $X_2 < 20.000$ pero $X_3 ==$ Soltero entonces **SI**
Else **NO**

Cada vez que viajas apuntas tus KMs y el combustible consumido, por lo que cuánto más distancia, más combustible consumo. Si en 300 km consumo 40L, ¿Cuántos L consumo en 700km?

Cada vez que viajas apuntas tus KMs y el combustible consumido, por lo que cuánto más distancia, más combustible consumo. Si en 300 km consumo 40L, ¿Cuántos L consumo en 700km?

$$y = w_1 x_1 + w_0$$
$$y(Gasolina) = w_1(Distancia) + w_0$$

Coche

Numero de personas

Equipaje

Distancia recorrida

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_0$$

Ingredientes básicos para un modelo de ML:

- Muestras de lo que queremos modelar (datos)
- Función objetivo, qué queremos conseguir, con parámetros adaptables (modelo)
- Una forma de evaluar cómo de bien lo estamos haciendo (función de coste)
- Un medio para modificar los parámetros del modelo (aprendizaje u optimización)

Aprendizaje supervisado

Conocemos el objetivo

Ej. ¿Qué hace a un cliente propenso al fraude? ¿Puedo prever el stock que necesito?

Aprendizaje no supervisado

Sabemos que hay distintas agrupaciones

Ej. Divide mis clientes en grupos basados en sus características, Sintetiza el texto de las siguientes leyes

bbk BOOTCAMPSPOWERED THE BRIDGE

Aprendizaje supervisado

Subtipos:

Regresión

X ₁	X ₂	Х3	Хp	Υ
				5.2
				1.3
				23.0
				7.4

Numeric Target

Clasificación

X ₁	X ₂	Х3	Xp	Y
				cat
				dog
				cat
				cat

Categorical "Labels"

Aprendizaje no supervisado

Subtipos:

Reducción de Dimensionalidad

Clustering

Machine Learning vs Deep Learning

