Kinetics Practice Problems

A bottle of hydrogen peroxide, H2O2, slowly decomposes to produce water and oxygen

$$H_2O_2(aq) \to H_2O(aq) + \frac{1}{2}O_2(g)$$

The following data were recorded in an experimental study of the kinetics of this decomposition reaction (a small amount of I⁻ was added as a catalyst to make the reaction go faster).

Time (s)	$[H_2O_2]$ (M)	Time (s)	$[H_2O_2]$ (M)	Time (s)	$[H_2O_2]$ (M)
0	0.882	240	0.372	480	0.152
60	0.697	300	0.298	540	0.120
120	0.566	360	0.236	600	0.094
180	0.458	42 0	0.188	660	555

A graph of [H₂O₂] vs. time is shown on the back of this page.

- 1. What is the average rate for the period in which the reaction is monitored?
- 2. Estimate the instantaneous rate at t = 60 s?
- 3. What is the rate law for this reaction, including the value of the rate constant?
- 4. The table shows ??? as the concentration of H_2O_2 at 660 s. What is the missing value?
- 5. Suppose you have a solution of 3.6 M H₂O₂. How long will it take for the concentration to decrease to 0.25 M?
- 6. The concentrated H₂O₂ we purchase is 3.6 M and comes with a warning that it needs to be kept refrigerated. Why do you think that warning is placed on the bottle?

