

Grundlagenpraktikum: Rechnerarchitektur

LEHRSTUHL FÜRRECHNERARCHITEKTUR UND PARALLELE SYSTEME

Gruppe 233 – Vortrag zu Aufgabe A316

Sommersemester 2023

Ludwig Gröber, Julian Pins, Daniel Safyan

München, 21. August 2023

Die gegebene Aufgabenstellung A316 verlangt die Implementierung der Funktion f(x) = arsinh(x) im C17 Standard von C.

Im folgenden erklären wir (1) den mathematischen Ansatz (2) den Ansatz und Abwägungen für die C Implementierungen (3) die gemessenen Ergebnisse vorgestellt (4) die gesamte Ausarbeitung eingeordnet

(1) Der mathematische Ansatz

Mögliche Definitionen

(1)
$$arsinh(x) = \ln(x + \sqrt{x^2 + 1}) mit \ x \in \mathbb{R}$$

(2)
$$arsinh(x) = \int_0^1 \frac{x}{\sqrt{x^2y^2 + 1}} dy \ mit \ x \in \mathbb{R}$$

und für große x: (3) $arsinh(x) \approx ln(2|x|)$

Diese Formeln werden im weiteren für unseren Ansatz und unsere Implementierung verwendet.

(2) Ansatz und Abwägungen für die C Implementierungen

Definition der Funktionswerte

$$arsinh(x) = \begin{cases} arsinh(x) + error(x) & falls \ x < \infty \land x > -\infty \\ + NaN & falls \ x = + NaN \\ - NaN & falls \ x = - NaN \\ + \infty & falls \ x = + inf \\ - \infty & falls \ x = - inf \\ + NaN & sonst \end{cases}$$

(3) Die gemessenen Ergebnisse

Genauigkeit

Die Genauigkeit der Lösung als die Abweichung der Implementierung (4) vom Funktionswert der mathematisch definierten Funktion (1) zu verstehen.

Performanz (Zeit)

Die Performanz der Implementierungen wird anhand der Laufzeit gemessen.

- Reine Reihen-Implementierung um ein Vielfaches (bis zu 12x) langsamer als die anderen
- Implementierung mit komplexen Instruktionen ist etwas schneller als unsere Lookup-Tabelle

(4) Einordnung der gesamten Ausarbeitung

Erkenntnisse der Messungen

1. Trade-off zwischen Performance, Genauigkeit und Speicherverbrauch für die Implementierungen sehr unterschiedlich.

Danke für die Aufmerksamkeit & Zeit für Fragen

Gruppe 233 – Vortrag zu Aufgabe A316 Sommersemester 2023 Ludwig Gröber, Julian Pins, Daniel Safyan München, 21. August 2023

Tabelle – Beispiel 1

Tabelle ohne Farbe und kein Rand innerer Seitenrand links 0 cm, oben z.B. 0,5 cm (für genug Zeilenabstand innerhalb)

Ø - Strecke 39 km/Tag (14.360 km/Jahr)

Ø - Geschwindigkeit 25 km/h

Ø - Verfügbare Ladezeit 22 h/Tag

Kosten Kleinwagen mit Verbrennungsmotor

Einsatzgebiet Stadt und Umland

Tabelle – Beispiel 2

Tabelle mit schwarzem Rand innerer Seitenrand links 0,15 cm, oben z.B. 0,5 cm (für genug Zeilenabstand innerhalb)

Ø - Strecke	39 km/Tag (14.360 km/Jahr)
Ø - Geschwindigkeit	25 km/h
Ø - Verfügbare Ladezeit	22 h/Tag
Kosten	Kleinwagen mit Verbrennungsmotor
Einsatzgebiet	Stadt und Umland

Diagramme – Beispiel 1

Nach Möglichkeit linksbündig bleiben Unnötige Striche und Balken vermeiden

■ Datenreihe 1

■ Datenreihe 2

■ Datenreihe 3

Diagramme

