Лабораторная работа №3

"Модели Ланчестера"

Выполнил: Кармацкий Никита Сергеевич

НФИбд-01-21

Цель работы:

Изучить модели боевых действий Ланчестера. Применить их на практике для решения задания лабораторной работы

Теоретическая справка:

Законы Ланчестера (законы Осипова — Ланчестера) — математическая формула для расчета относительных сил пары сражающихся сторон — подразделений вооруженных сил

Уравнения Ланчестера — это дифференциальные уравнения, описывающие зависимость между силами сражающихся сторон A и D как функцию от времени, причем функция зависит только от A и D.

Задание лабораторной работы:

Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t). В начальный момент времени страна X имеет армию численностью 61000 человек, а в распоряжении страны У армия численностью в 45000 человек. Для упрощения модели считаем, что коэффициенты a,b,c,h постоянны. Также считаем P(t) и Q(t) непрерывными функциями.

Задачи:

Построить графики изменения численности войск армии X и армии У для следующих случаев:

1. Модель боевых действий между регулярными войсками:

$$egin{split} rac{dx}{dt} &= -0.22x(t) - 0.82y(t) + 2sin(4t) \ rac{dy}{dt} &= -0.45x(t) - 0.67y(t) + 2cos(4t) \end{split}$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов:

$$egin{aligned} rac{dx}{dt} &= -0.28x(t) - 0.83y(t) + 1.5sin(t) \ rac{dy}{dt} &= -0.31x(t)y(t) - 0.75y(t) + 1.5cos(t) \end{aligned}$$

Основные этапы выполнения работы

1. Математическая модель

Численность регулярных войск определяется тремя факторами:

- 1. Скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство);
- 2. Скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.);
- 3. Скорость поступления подкрепления (задаётся некоторой функцией от времени).

2. Скачиваем OpenModelica себе на устройство

Для создания траектории движения будем использовать ЯП OpenModelica, но для начало установим все нужное для нормального функционирования.

```
nskarmatskiy@nskarmatskiy-M1050:~$ sudo apt install openmodelica
[sudo] пароль для nskarmatskiy:
Чтение списков пакетов… Готово
Построение дерева зависимостей… Готово
Чтение информации о состоянии… Готово
Уже установлен пакет openmodelica самой новой версии (1.22.2~3-g9f40725-1).
Обновлено 0 пакетов, установлено 0 новых пакетов, для удаления отмечено 0 пакетов, и 81 пакетов не обновлено.

nskarmatskiv@nskarmatskiv-M1050:~$
```

Рис.1 Установка OpenModelica

3. Пишем код для построения траектории на OpenModelica

Рис.2 Код для построения моделей(openModelica)

4. Просматриваем результаты работы программы

Рис.3 Первая модель(OpenModelica)

Рис.4 Вторая модель(OpenModelica)

5. Пишем код для построения траектории на Julia

```
using Plots;
using DifferentialEquations;
function one(du, u, p, t)
    du[1] = -0.22*u[1] - 0.82*u[2] + 2*sin(4*t)
    du[2] = -0.45*u[1] - 0.67*u[2] + 2*cos(4*t)
end
function two(du, u, p, t)
    du[1] = -0.28*u[1] - 0.83*u[2] + 1.5*sin(t)
    du[2] = (-0.31*u[1] - 0.75)*u[2] + 1.5*cos(t)
end
const people = Float64[61000, 45000]
const prom1 = [0.0, 3.0]
const prom2 = [0.0, 0.0007]
prob1 = ODEProblem(one, people, prom1)
prob2 = ODEProblem(two, people, prom2)
```

Рис. 6 Код на Julia

б. Просматриваем резу	льтат работы про	ограммы на Julia	

Анализ полученных результатов. Сравнение языков.

Как видно из графиков, для первой модели, то есть двух регулярных армий, противостоящих друг другу, графики на Julia и OpenModelica идентичны (с поправкой на использование разных графических ресурсов, разный масштаб и т.д.).

Аналогичная ситуация верна и для графиков противостояния регулярной армии и армии партизанов, которые рассматривались во второй модели.

Вывод:

По итогам лабораторной работы мы построили по две модели на языках Julia и OpenModelica. В ходе проделанной работы можно сделать вывод, что OpenModelica лучше приспособлен для моделирование процессов, протекающих во времени. Построение моделей боевых действий на языке OpenModelica занимает гораздо меньше строк и времени, чем аналогичное построение на языке Julia.

Спасибо за внимание