Предварительный анализ данных

Данные (1)

PSID – Panel Study of Income Dynamics (University of Michigan)

Список исходных переменных:

- *pid* идентификатор индивида
- *wave* идентификатор волны
- *logpay* логарифм заработной платы человека за месяц до опроса
- *pnjuwks* число недель, проведенных без работы в предыдущем году
- **sex** пол
- *age* возраст
- *agesq* возраст в квадрате
- xtset pid wave
- panel variable: pid (unbalanced)
- time variable: wave, 1 to 11, but with gaps
- delta: 1 unit

Описание структуры панели (1)

```
xtdes
    pid:
         10002251, 10004491, ..., 1.194e+08
                                                n = 27400
   wave: 1, 2, ..., 11
                                                        11
          Delta(wave) = 1 unit
          Span(wave) = 11 periods
          (pid*wave uniquely identifies each observation)
Distribution of T i:
                  min
                        5% 25%
                                   50%
                                         75%
                                              95%
                                                   max
                    1
                         1
                                   10
                                         11
                                               11
                                                    11
    Freq. Percent
                Cum. | Pattern
   12900
           47.08 47.08 | 1111111111
   7063
           25.78 72.86 | 111111111...
   4275
          15.60 88.46 | .......1
   1014 3.70 92.16 |
                         1012 3.69 95.85 | 1111111111.
    325 1.19 97.04 | 111111111.1
    294 1.07 98.11 | .....1.
    197 0.72 98.83 |
                         ......111
    140 0.51 99.34 I
                         .....11111
    180
        0.66
                100.00 | (other patterns)
   27400 100.00
                    Ратникова Т.А. АМДУ АДДС
```

Описательные статистики (1)

xtsum

•	Variable			Mean	Std. Dev.	Min	Max	Observations
•			+					+
•	pid	overall	1	4.66e+07	3.73e+07	1.00e+07	1.19e+08	N = 227107
•		between			4.24e+07	1.00e+07	1.19e+08	n = 27400
•		within			0	4.66e+07	4.66e+07	T-bar = 8.2885
•	wave	overall		5.855244	3.106436	1	11	N = 227107
•		between	1		2.168274	5	11	n = 27400
•		within	1		2.936897	.8552444	11.25524	T-bar = 8.28858
•	logpay	overall	1	6.585763	.8622559	3439421	10.97223	N = 65692
•		between			.8510987	1067718	9.214394	n = 16056
•		within			.3713454	2.267388	9.820659	T-bar = 4.09143
•	sex	overall	1	1.53566	.4987286	1	2	N = 130075
•		between	1		.4992113	1	2	n = 27400
•		within	1		.0022639	.8689935	1.868994	T-bar = 4.74726
•	age	overall	1	44.61089	18.5723	-9	101	N = 130075
•		between	1		19.27007	-9	97	n = 27400
•		within	1		2.553033	-4.055773	69.94423	T-bar = 4.74726
•	pnjuwks	overall	1	1.638432	8.644212	-9	52.28571	N = 102675
•		between	1		7.302418	-9	52.28571	n = 19657
•		within			6.137296	-50.70442	50.667	T-bar = 5.22333

Данные (2)

 Citydata - данные о ценах на продукты и некоторые другие товары и услуги, собираемые корреспондентами журнала "Economist" в столицах и крупнейших городах мира, дополненные сведениями о ВВП и ВВП по ППС

```
    xtset country t
    panel variable: country (strongly balanced)
```

```
• time variable: t, 1993 to 2008
```

delta: 1 unit

Описание структуры панели (2)

xtdes

Описательные статистики (2)

xtsum country t gdp gdp_ppc milk cheese

•	Variable		Mean	Std. Dev.	Min	Max	Observations	
•	country	overall between within	16	8.953302 9.092121 0	1 1 1 16	31 31 16	N = n = T =	496 31 16
•	t	overall between within	2000.5	4.614426 0 4.614426	1993 2000.5 1993	2008 2000.5 2008	N = N = T =	496 31 16
•	gdp	overall between within	18060.56		298.126 530.6633 -1058.355	68433.13 44412.66 45338.77	N = n = T =	496 31 16
•	gdp_ppc	overall between within	18084.51	11899.9 11268.33 4298.847	949.582 1623.989 3652.6	47439.93 35881.99 32244.25	N = n = T =	496 31 16
•	milk	overall between within	1.05488	.5091208 .3910025 .327886	.3333333 .4470736 .0688604	5.143306 2.134499 4.279507	N = n = T-bar =	462 30 15.4
•	cheese	overall between within	11.05028		1.25 2.964437 -3.763969	41.46653 22.39296 30.17193	N = n = T-bar =	30

Ратникова Т.А. АПД и АДДС

Визуальный анализ (2)

- xtline milk, overlay legend(off) title(milk prices)
- xtline gdp, overlay legend(off) title(GDP)

Визуальный анализ (2)

xtline milk, i(name) t(t)

Визуальный анализ (2)

• xtline milk, recast(scatter) i(name) t(gdp)

Тестирование гомогенности коэффициентов

(анализ возможности объединения данных в панель)

Постановка задачи: проверка возможности объединения данных в панель по объектам

Тестирование соответствия данных одной из трех гипотетических спецификаций:

- модель без ограничений (0) $y_{it} = X_{it} \beta_i + \alpha_i + u_{it}$ (регрессия с гетерогенными по объектам коэффициентами наклона и свободным членом),
- модель с ограничениями (1) $y_{it} = X_{it} \beta + \alpha_i + u_{it}$ (регрессия с детерминированным индивидуальным эффектом),
- модель с ограничениями (2) $y_{it} = X_{it} \beta + \alpha + u_{it}$ (сквозная регрессия).

Оценки параметров модели (0) без ограничений

• Пусть
$$y_{i\bullet} = \frac{1}{T} \sum_{t=1}^{T} y_{it}, \quad x_{i\bullet} = \frac{1}{T} \sum_{t=1}^{T} x_{it}$$

• Оценки МНК β_i и α_i

$$\begin{cases} \widehat{\beta}_{i} = W_{xx,i}^{-1} W_{xy,i} \\ \widehat{\alpha}_{i} = y_{i\bullet} - \widehat{\beta}_{i}^{'} x_{i\bullet} \end{cases} \qquad \text{2de} \qquad W_{xx,i} = \sum_{t=1}^{T} (x_{it} - x_{i\bullet})(x_{it} - x_{i\bullet})' = x_{i}' (I_{T} - \frac{J_{T}}{T}) x_{i} \\ W_{xy,i} = \sum_{t=1}^{T} (x_{it} - x_{i\bullet})(y_{it} - y_{i\bullet})' = x_{i}' (I_{T} - \frac{J_{T}}{T}) y_{i} \\ W_{yy,i} = \sum_{t=1}^{T} (y_{it} - y_{i\bullet})^{2} = y_{i}' (I_{T} - \frac{J_{T}}{T}) y_{i} \end{cases}$$

- Это оценки группы «within».
- Сумма квадратов остатков модели без ограничений:

$$S_0 = \sum_{i=1}^{N} RSS_i, \quad \varepsilon \partial e \quad RSS_i = W_{yy,i} - W_{xy,i} W_{xx,i}^{-1} W_{xy,i}$$

Оценки параметров модели с ограничением (1)

• Оценки МНК регрессии (1) – это оценки FE

$$\begin{cases} \widehat{\beta}_{W} = W_{xx}^{-1} W_{xy} \\ \widehat{\alpha}_{i} = y_{i \bullet} - \widehat{\beta}_{W}^{'} x_{i \bullet} \\ i = \overline{1, N} \end{cases} \qquad \mathcal{E} \partial e \qquad W_{xx} = \sum_{i=1}^{N} W_{xx,i} = x' W x \\ W_{xy,i} = \sum_{i=1}^{N} W_{xy,i} = x' W y \\ W_{yy,i} = \sum_{i=1}^{N} W_{yy,i} = y' W y \end{cases}$$

• Сумма квадратов остатков модели с ограничениями:

$$S_1 = W_{yy} - W_{xy} W_{xx}^{-1} W_{xy}$$

Оценки параметров модели с ограничением (2)

• Это МНК оценки обыкновенной (сквозной) регрессии в отклонениях от глобального среднего

$$\begin{cases}
\widehat{\beta} = T_{xx}^{-1} T_{xy} \\
\widehat{\alpha} = y_{\bullet \bullet} - \beta' x_{\bullet \bullet}
\end{cases} \quad \text{ode} \quad T_{xx} = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - x_{\bullet \bullet})(x_{it} - x_{\bullet \bullet})' = x' T^* x \\
T_{xy} = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - x_{\bullet \bullet})(y_{it} - y_{\bullet \bullet})' = x' T^* y ,$$

$$T_{yy} = \sum_{i=1}^{N} \sum_{t=1}^{T} (y_{it} - y_{\bullet \bullet})^2 = y' T^* y ,$$

$$y_{\bullet \bullet} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} y_{it} \qquad x_{\bullet \bullet} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}$$

• Сумма квадратов остатков модели с ограничением (2):

$$S_2 = T_{yy} - T_{xy} T_{xx}^{-1} T_{xy}$$

Тестовые статистики

• Для проверки ограничения (1) используется F-тест:

$$F_{1} = \frac{(S_{1} - S_{0})/[(N-1)K]}{S_{0}/[NT - N(K+1)]} \stackrel{(1)}{\sim} F((N-1)K, NT - N(K+1))$$

• Для проверки ограничения (2) используется F-тест:

$$F_2 = \frac{(S_2 - S_0)/[(N-1)(K+1)]}{S_0/[NT - N(K+1)]} \sim F((N-1)(K+1), NT - N(K+1))$$

Тестовые статистики

• Логика исследования:

если гипотеза (2) отвергается, то проверяется гипотеза (1), если (1) отвергается, нужно оценивать регрессию без ограничений,

если же гипотезу (1) нет оснований отвергнуть, то проверяется гипотеза о гомогенности свободного члена при условии, что гипотеза о гомогенности наклона выполнена

- H0: $\alpha_1 = \alpha_2 = ... = \alpha_N$ | $\beta_1 = \beta_2 = ... = \beta_N$
- Для проверки ограничения Н4 используется F-тест:

$$F_3 = \frac{(S_2 - S_1)/(N-1)}{S_1/[N(T-1) - K]} \stackrel{H0}{\sim} F(N-1, N(T-1) - K)$$

• Аналогично можно исследовать модель, где коэффициенты ведут себя одинаково для всех объектов, но изменяются со временем.

Постановка задачи: проверка возможности объединения данных в панель по времени

Тестирование соответствия данных одной из трех гипотетических спецификаций:

- модель без ограничений (0) $y_{it} = X_{it} \beta_t + \alpha_t + u_{it}$ (регрессия с гетерогенными по времени коэффициентами наклона и свободным членом),
- модель с ограничениями (1) $y_{it} = X_{it}\beta + \alpha_t + u_{it}$ (регрессия с детерминированным временным эффектом),
- модель с ограничениями (2) $y_{it} = X_{it}\beta + \alpha + u_{it}$ (сквозная регрессия).

Данные (1)

PSID – Panel Study of Income Dynamics (University of Michigan)

Список исходных переменных:

- *pid* идентификатор индивида
- wave идентификатор волны
- *logpay* логарифм заработной платы человека за месяц до опроса
- *pnjuwks* число недель, проведенных без работы в предыдущем году
- **sex** пол
- *age* возраст
- *agesq* возраст в квадрате
- xtset pid wave
- panel variable: pid (unbalanced)
- time variable: wave, 1 to 11, but with gaps
- delta: 1 unit

Код STATA

для тестирования возможности объединения данных в панель (1)

```
/* усреднение по индивидам в каждой волне */
egen mtX=mean(X), by(wave)
/* усреднение по времени для каждого индивида */
egen miX=mean(X), by(pid)
/* вычисление отклонений от средних */
qen diX=X-miX
gen dtX=X-mtX
/* оценивание модели (0) без ограничений */
reg dtlogpay dtpnjuwks dtage dtagesg if wave==2
scalar z2=e(rss)
reg dtlogpay dtpnjuwks dtage dtagesq if wave==3
scalar z3=e(rss)
reg dtlogpay dtpnjuwks dtage dtagesg if wave==4
scalar z4=e(rss)
reg dtlogpay dtpnjuwks dtage dtagesq if wave==5
scalar z5=e(rss)
scalar tot = z2 + z3 + z4 + z5
```

Код STATA

для тестирования возможности объединения данных в панель (2)

```
/* оценивание модели с ограничением (1) */
regr dtlogpay dtpnjuwks dtage dtagesq
scalar z6 = e(rss)
/* оценивание модели с ограничением (2) */
regr logpay pnjuwks age agesq
scalar z7 = e(rss)
/* вычисление тестовых статистик и их p-values */
scalar ddf = 1324*4-16
scalar fh1=((z6-tot)/(9))/(tot/ddf)
scalar pval1 = Ftail(9,ddf,fh1)
scalar fh2 = ((z7-tot)/(12))/(tot/ddf)
scalar pval2 = Ftail(12, ddf, fh2)
scalar fh3 = ((z7-z6)/(3))/(z6/(ddf+9))
scalar pval3 = Ftail(3, ddf+9, fh3)
/* просмотр результатов */
scalar list pval1 pval2 pval3 ddf fh1 fh2 fh3
```

Интерпретация результатов

- fh1 = 0.81121957
- pval1 = 0.60582507
- Статистика F1 сопоставляет модель без ограничений (0) и модель с детерминированным временным эффектом (1).
- Eë p-value показывает, что вероятность ошибиться, отвергнув гипотезу об эквивалентности моделей (0) и (1) равна примерно 60%.
- Вывод: нет оснований отвергать гипотезу (1), и следует отдать предпочтение модели с детерминированным временным эффектом (1).

Интерпретация результатов

- fh2 = 3.409128
- pval2 = .00005185
- Статистика F2 сопоставляет модель без ограничений (0) и модель с гомогенными коэффициентами (2).
- Eë p-value показывает, что вероятность ошибиться, отвергнув гипотезу об эквивалентности моделей (0) и (2) равна примерно 0%.
- Вывод: следовательно есть все основания отвергнуть гипотезу (2) и отдать предпочтение модели без ограничений (0).

Интерпретация результатов

- fh3 = 11.20455
- pval3 = 2.448e-07
- Статистика F3 сопоставляет FE-модель (1) и модель с гомогенными коэффициентами (2).
- Eë p-value показывает, что вероятность ошибиться, отвергнув гипотезу об эквивалентности моделей (1) и (2) равна 0%.
- Вывод: следовательно есть все основания отвергнуть гипотезу (2) и отдать предпочтение модели с детерминированным временным эффектом (1).

Окончательные выводы

• Вывод:

данные объединимы в панель, но необходимо принимать во внимание временной эффект, т.е. учитывать временные структурные сдвиги заработной платы.