Basis Netwerken

Luca Ruggiero

Ontstaan van het internet

1969 - ARPNET grondslag van het internet (Amerikaans ministerie van Defensie)

Packet switching als basis voor computernetwerken

1983 - Introductie van TCP/IP in ARPNET als netwerkprotocol

- Eerste protocollen
 - E-mail
 - ► FTP
 - Telnet

1991 - ontstaan van world wide web protocollen zoals http en html

1993 - internet voor overheid en universiteiten werd internet voor iedereen

Het internet van vandaag

- Wereldwijde verbinding van netwerken door glasvezel die op de bodem van de zee liggen WAN Wide Area Network.
- Een computernetwerk (of netwerk) is een verbinding tussen computers
- Fysieke verbindingen:
 - Koper kabels (UTP/COAX/HUB)
 - Glasvezel kabels
 - Draadloze verbindingen (WiFi Satelliet)
 - => Laag 1 van het OSI (Open System Interconnection Model) model

Het internet van vandaag (vervolg)

Wereldwijde verbinding van netwerken door glasvezel die op de bodem van de zee liggen.

- RFC Request for Comments
- Zoals RFC1918 voor private netwerken uit elke klasse is er een deel gereserveerd hiervoor:
 - **10.0.0.0/8**
 - **172.16.0.0/12**
 - **192.168.0.0/16**
- LAN netwerken
- Meest gebruikte protocollen:
 - ► IP
 - ► UDP
 - ► TCP

LAN netwerk

- ► RFC1918 voor private netwerken of LAN Netwerk
 - ► 10.0.0.0/8 (uit klasse A)
 - ► 172.16.0.0/12 (uit klasse B)
 - ► 192.168.0.0/16 (uit klasse C)
- Noodzakelijk omdat IPv4 adressen gelimiteerd is 4.294.967.296 ip addresses (2³²)
- Kunnen verder onderverdeeld worden in kleinere subnets:
 - VLSM: Variable Length Subnet Mask

Communicatie tussen twee computers

- Om een communicatie op te zetten tussen 2 computers zijn er verschillende handelingen nodig om menselijk begrijpbare taal of beelden over te brengen tussen twee of meerdere computers.
- ► De communicatie wordt bewerkt door 7 lagen dit noemen we het OSI model:
- Open System Interconnection Model:
 - ► Applicatie 7
 - ► Presentatie 6
 - ► Sessie 5
 - ► Transport 4
 - ► Netwerk 3
 - ► Data 2
 - ► Fysieke 1
- Enkel laag is een verzameling van protocollen

Applicatie laag 7

- Heeft niets te maken met computer programma's of applicaties maar wel de protocollen die de gekende applicatie werkbaar maken zoals Safari, Chrome, IE, Firefox, Outlook etc.
- Deze applicaties noemen we ook Netwerk Applicaties dus ze maken gebruik van het applicatie laag van het OSI model

Websurfen

E-mail

Voice and video protocol

E-mail

Protocollen: HTTP(s), FTP, NFS, SMTP, NTP, SNMP, SSH, RDP, ...
Beschrijving van de verschillende protocollen kunnen gevonden worden bij
IANA voor de registratie en IETF voor de beschrijving:

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=1

https://www.ietf.org

Presentatie – laag 6

- Data wordt van de Applicatie laag <u>vertaald</u> naar de Presentatie laag, waar de menselijke taal omgezet wordt naar computer taal of 1 en 0
- Om de data over te brengen wordt deze ook <u>gecomprimeerd</u> in kleinere delen zodat de overdracht sneller gaat
- ► Indien nodig kan deze ook <u>versleuteld</u> worden (encrypted) zodat de data niet gewijzigd en gelezen kan worden:
 - SSL/TLS wordt hiervoor gebruikt!
 - SSL: Secure Socket Layer -> wordt niet meer gebruikt om veiligheidsredenen!
 - TLS: Transport Layer Security is de nieuwe standaard versie 1.2

Sessie – laag 5

- Deze laag is er om de communicatie tussen computers te regelen, hiermee bedoelen we het volgende:
 - Opbouwen van een connectie
 - Onderhouden van een connectie
 - Afbreken of stoppen van een connectie op een propere manier
- Om dit te kunnen verwezelijken zijn er verschillende helper of protocollen zoals
 - API Application Programming Interface
 - NetBIOS oud protocol wordt niet meer of amper nog gebruikt
 - ► RPC Remote procedure Protocol
 - ► SMB Server Message Block
- Services op de Data Packeten op de juiste wijze en vorm over brengen van server naar bijvoorbeeld uw browser zijn de volgende:
 - Authenticatie
 - Authorizatie
 - Sessie management

Transport – laag 4

- Transport laag is betrokken in volgende events:
 - Segmentatie: opsplitsen van grote data packetten in kleinere segmenten

- Port nummer om te weten voor welke applicatie het bestemd is
- Sequence nummer om de volgorde terug te kunnen opbouwen
- ► Flow control: zorgen dat de juiste snelheden afgesproken worden tussen devices (10Mb/s 100Mb/s 1Gb/s)
- Error control: zorgen dat alle verzonden packetten toekomen op de destination
 - Elk data unit of segment heeft een checksum zodat nagegaan kan worden of de data niet corrupt is geraakt tijdens transport

Transport – laag 4 – UDP Protocol

 UDP: user datagram protocol (connectieloze overdracht) wilt zeggen dat het niet controleert of het packet effectief toekomt op de bestemming

Belangrijkste protocollen en poort nummers:

- ► DNS: 53 domain name system
- TFTP: 69 Trivial File Transfer Protocol
- ► NTP: 123 Network time protocol
- NetBIOS: 137 NetBIOS Name Service
- SNMP: 161 Simple Network Management Protocol
- OpenVPN: 1194 OpenVPN

Transport – laag 4 – TCP Protocol

- TCP: Transmission Control Protocol
- Connectie georiënteerde overdracht, om na te gaan of de verzonden pakketten effectief toekomen op de bestemming en eventueel een retransmit te starten
- Connectie wordt opgestart via het three way hand shake protocol welke bestaat uit SYN - SYN/ACK - ACK pakketten

Transport – laag 4 - TCP Protocol

- Belangrijkste protocollen en poort nummers:
 - FTP:21/20/high port file transfer protocol
 - Telnet: 23 beheer van machine op afstand (onveilig protocol)
 - SSH: 22 Secure shell beheer van machine op afstand (veilig protocol)
 - SMTP: 25 simple mail transfer protocol
 - HTTP: 80 HyperText Transfer Protocol
 - HTTPS: 443 HyperText Transfer Protocol over ssl/tls
 - ► RDP: 3389 remote desktop protocol

Transport – laag 4 – andere protocollen

- ESP Ecncapsulating Security Payload over IP of IPSEC
- ► AH uthenticatie Header over IP of IPSEC
- ► FCP Fibre Channel Protocol
- iSCSI Internet Small Computer System Interface

Netwerk – laag 3

- Communicatie tussen verschillende computers en netwerken wordt hier geregeld!
- Afhankelijk van de <u>logische adressering</u> spreekt van een netwerk
 - ► IPv4 en IPv6 + MASK (IPv6 bespreken we in de volgende module)
- Routering tussen verschillende netwerken via default gateway

Netwerk – laag 3

IPv4

Internet protocol versie 4

- > 32 bits
- 4 bytes
- 2 tot de 32 macht
- 4.294.967.296 ip adresses
- > 5 klasse van netwerken
 - A klasse: 0.0.0.0 127.255.255.255 (grote netwerken)
 - ► B klasse: 128.0.0.0 192.255.255.255 (middelgrote netwerken)
 - C klasse: 192.0.0.0 223.255.255.255 (kleinere netwerken)
 - D klasse: 224.0.0.0 239.255.255.255
 - E klasse: 240.0.0.0 255.255.255.255
- > De subnets die standaard toegekend zijn aan netwerken uit de verschillende klasse zijn:
 - Klasse A: 255.0.0.0
 - Klasse B: 255.255.0.0
 - Klasse C: 255.255.255.0

IPv4 (vervolg)

- ➤ Uit de eerste 3 klasse hebben we een stuk gereserveerd om RFC1918 op te bouwen (zie slide 2)
 - **10.0.0.0/8**
 - **172.16.0.0/12**
 - **192.168.0.0/16**
- Klasse D is gebruikt voor multicast
- Klasse E voor experimenteel gebruik
- > 127.0.0.0/8 is gebruikt voor loopback maar zit dus in klasse A

Opbouw van een IP adres

4 bytes bestaande uit volgende een combinatie van bits 192.168.22.99/17

																										_				_			
27		2 ⁶				2 ⁵			24				23				2 ²			2 ¹				20									
128		64					32			16			8				4			2				1									
IP	192									168								22								99							
				128	3+64	1			128+32+					8				16+4+2				2				64+32+2+1							
IP Binair notatie	I	Ι	0	0	0	0	0	0	I	0	I	0	Ι	0	0	0	0	0	0		0	I	I	0	0	I	I	0	0	0	I	I	
Subnetmask binair	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Netwerk adres binar	I	I	0	0	0	0	0	0	I	0	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Netwerk adres	192								168									0								0							
Broadcast binar	I	I	0	0	0	0	0	0	I	0	I	0	0	0	0	0	0	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	
Broadcast adres	192									192								127								255							
																												-					

UW OPLEIDING, ONZE ZAAK

Data Link Layer – laag 2

- Logische adressen op netwerk niveau (IP adressen)
- Fysieke adressen op data link layer
 - Unieke MAC adressen (media access control)
 - Op network interfaces
 - Switch

Data Link Layer – laag 2 (vervolg)

MAC1

82:84:8d:04:4c:05

82:84:8d:04:4c:00

82:84:8d:04:4c:04

MAC1

MAC2

Fysieke – laag 1

- Communicatie verloopt over een fysieke transport
 - ► Koper (UTP kabel) HUB
 - Licht (glasvezel)
 - Lucht (wireless WiFi)

Natting

- Door het beperkte aantal IP adressen zijn er afspraken gemaakt om niet elk toestel te voorzien van een publiek IP adres (=IP adres dat op het internet voorkomt). Private IP adressen (RFC1918) (=IP adressen die gebruikt worden in LAN) worden gemaskeerd achter een publiek IP adres als ze het internet op moeten.
- Er zijn 3 verschillende soorten NAT methodes
 - Hide Nat
 - Port Forwarding
 - Static NAT

Hide NAT

LAN netwerk

10.10.10.0/24

 Hide NAT zorgt ervoor dat een volledig LAN netwerk vertaald wordt achter 1 of meerdere IP adressen wanneer deze het internet willen bereiken.

UW OPLEIDING, ONZE ZAAK

Port Forwarding

 Bij een port forward gaan we services bereikbaar maken vanuit het internet die in ons LAN netwerk zitten, we gebruiken 1 Publiek IP adres voor verschillende interne servers.

Static NAT of BINAT

 Voor elke interne server die we bereikbaar willen maken voor het internet gebruiken 1 publiek IP adres per service. Automatisch wordt dit adres gebruikt als hiding adres voor de server.

Netwerk architectuur

Concepten:

- ► LAN
- WAN
- DMZ
- VPN
- Client
- site2site
- ► LL
- Cloud
 - Hybrid cloud
 - Private cloud
 - Public cloud

Netwerk on premise

DMZ 172.31.10.1

LAN 192.168.0.0/24

LAN 192.168.0.1

VLAN Virtual Local Area Network

- Open Standaard 802.1Q
- Segmentatie = verschillende logische netwerken definiëren in één fysiek netwerk
- Beveiliging door poorten op de switch toe te kennen aan één vlan kan men nog beter segmenteren
- Kosten verlaging door fysiek minder switchen nodig te hebben om meerdere logische netwerken te maken
- Broadcast wordt beperkt per VLAN
- VLANs kunnen over verschillende switchen heel geconfigureerd worden
- ► TAG

 DST MAC SRC MAC TAG Packet FCS
 - Extra veld in de ethernet frames
 - Bestaat ui 4 bytes en de belangrijkste byte is de VID of VLAN identifier of VLAN-ID
 - VID bestaat uit 12 bites dus 2¹² of 4096
 - ▶ 0 en 4095 mogen niet gebruikt worden!!!

IP aliases als alternatief voor VLAN

- Op één fysieke interface meerdere IP adressen configureren
 - Kan zowel voor Linux/Windows/Apple/...
 - ifconfig <interfacenaam>:1 IP adres
 - Ifconfig <interfacenaam> alias IP

Network commando's

- Windows via de command prompt (cmd)
 - ipconfig
 - Basis IP configuratie opvragen van de interfaces
 - Opties: die je kunt meegeven:
 - /all geeft alle informatie over de interfaces zoals DNS servers, MAC adressen
 - /release verwijderd het IP adres dat bekomen is van de DHCP server en vergeet ook alle informatie over die bepaalde DHCP server
 - /renew vernieuwd het IP adres dat hij gekregen heeft van de DHCP server
 - ► |more kan je gebruiken om een pagina per pagina print te krijgen van de output op het scherm van bovenstaande commando's
 - route print of netstat -rn
 - Print de huidige/active route table
 - route add
 - Met dit commando kan je manueel routes toevoegen
 - ▶ netstat –an
 - ► Hier zie je informatie over network connecties

Network commando's (vervolg)

- Linux via de terminal
 - ifconfig
 - Basis IP configuratie opvragen van de active interfaces
 - Opties: die je kunt meegeven:
 - -a geeft informatie over alle interfaces ook de niet active interfaces
 - dhclient vernieuwd het IP adres dat hij gekregen heeft van de DHCP server
 - route of netstat –rn Print de huidige/active route table
 - -n optie gaat geen resolving proberen te doen van het IP adres
 - |more kan je gebruiken om een pagina per pagina print te krijgen van de output op het scherm van bovenstaande commando's
 - route add
 - Met dit commando kan je manueel routes toevoegen
 - netstat –an
 - Hier zie je informatie over network connecties

