Weed Detection with Yolov8n Optimization

1) Performance Metrics Overview

This document provides a performance analysis of YOLOv8n using three different optimization techniques: PyTorch, FP16 (TensorRT), and INT8 (TensorRT). The experiments were conducted on an NVIDIA RTX 3070 Ti GPU

	yolov8n		
	pytorch	fp16(tensorrt)	int 8(tensorrt)
mAP50	0.965	0.96	0.948
mAP50-95	0.7	0.63	0.57
Inference time per image(ms)	12.6	6.1	5.3
FPS	75	131	148
size	11MiB	8MiB	6MiB

Note: After a bit of research it has been found out that rtx 3070ti has been optimized for fp16 operations, hence not much significant improvement from fp16 to int8

2) Observations

- Accuracy (mAP50): The PyTorch implementation of YOLOv8n achieves the highest accuracy with an mAP50 of 0.965. The accuracy slightly decreases with FP16 and INT8 TensorRT optimizations.
- Accuracy (mAP50-95): The PyTorch version also leads in mAP50-95, followed by FP16 and INT8, which show a gradual decline.
- **Inference Speed:** The INT8 TensorRT optimized model delivers the fastest inference speed at 148 FPS, making it highly efficient for real-time applications.
- **Model Size:** The INT8 TensorRT model is the most compact at 6 MiB, which is beneficial for deployment in environments with limited storage.

3) Inference FP16

INT8

