

قرادرس فرادرس (Machine Learning) موزش یادگیری ماشین (Machine Learning) موزش یادگیری ماشین (تئوری – عملی) – بخش دوم

درس دوم: دستهبندی K نزدیک ترین همسایه

مدرس: فرشید شیرافکن دانشجوی دکترای بیو انفورماتیک دانشگاه تهران

KNN

- k = 1: square class
- k = 3: triangle class
- k = 7: square class

X	y	class
7	7	False
7	4	False
3	4	True
1	4	True
3	7	? True

$$x=3$$
 , $y=7$

$$K=3$$

$$\sqrt{(3-7)^2 + (7-4)^2} = 5$$

$$\int (3-3)^2 + (7-4)^2 = 3$$
 True

$$\sqrt{(3-1)^2 + (7-4)^2} = 3.6$$
 True

$$\int (3-7)^2 + (7-7)^2 = 4$$
False

20
ویزی

مثال

	<u> </u>			
Customer	X	Y	Z	С
ali	35	35	3	No 🗸
sara	22	50	2	Yes √
farid	63	200	1	No
taha	59	170	נית 1	No
omid	25	40	4	Yes

	`~	_
	K=3)
_		

$$\sqrt{(35-37)^2+(35-50)^2+(3-2)^2+530}$$

$$\int (22-37)^2 + (5 - 5)^2 + (2-2)^2 = 15$$

152.23

122

(15.74

	reza	37	50	2	? -	\rightarrow	ye5
--	------	----	----	---	-----	---------------	-----

3	M	N
_	' '	

Fruit	Sweetness	Sourness	Fruit Type
Lemon	1	9	Sour
Grapefruit	2	8	Sour
Orange	3	7	Sour
Raspberry	2	8	Sour
Cherry	6	4	Sweet
Banana	9	1	Sweet
Grapes	8	2	Sweet
Watermelon	9	1	Sweet
Avocado	1	1	None
Strawberry	5	5	Sour

Fruit	Sweetness	Sourness
Fig	7	3

الگوريتم KNN

- 1. Compute the distance between d and every example in D
- 2. Choose the k examples in D that are nearest to d, denote the set by $P(\subseteq D)$;
- 3. Assign d the class that is the most frequent class in (P) (or the majority class).

تكنيكهاي instance-based

Model-based learning techniques

Use the input data
$$\begin{bmatrix} x_{1,0} & x_{1,1} & \dots & x_{1,n} \\ x_{2,0} & x_{2,1} & \dots & x_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix} \text{ and } \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{bmatrix}$$

To learn a set of parameters

$$\left[\begin{array}{cccc} \boldsymbol{\theta}_0 & \boldsymbol{\theta}_1 & \cdots & \boldsymbol{\theta}_n \end{array}\right]$$

Which yield a generalized function

$$f(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n$$

Capable of predicting values or classes on new input data

$$f(x_i) = 39$$
$$f(x_i) = 1$$

When asked to predict a new value (a query)

$$y_i = ?$$

Search for similar data points previously stored

$$\begin{bmatrix} x_{4,1} & x_{4,2} & \cdots & x_{4,n} \\ x_{9,1} & x_{9,1} & \cdots & x_{9,n} \\ x_{15,1} & x_{15,1} & \cdots & x_{15,n} \end{bmatrix} \text{ and } \begin{bmatrix} y_4 \\ y_9 \\ y_{15} \end{bmatrix}$$

And use them to generate your prediction

$$y_i = \frac{y_4 + y_9 + y_{15}}{3}$$

مرز تصمیم – نمودار وُرُنوی

decision boundaries - Voronoi diagram

مرزهای تصمیم برای <u>1-NN</u>

تاثیر اندازه k در مرز تصمیم

مقدار k کوچک باعث پیچیده شدن مرز تصمیم میشود. با افزایش مقدار k، مرزهای کلاسها روان تر میشود.

اندازه k

اگر k را خیلی کوچک در نظر بگیریم، به نقاط نویزی حساس میشود.

عموما مقدار k را برای دسته بندی های دودویی (binary classification)، فرد کور نظر می گیرند.

48 142000 ? 1es

استانداردسازي

10.7 0.61 7 NO

Min-max normalization:

$$X_{s} = \frac{X - Min}{Max - Min}$$

$$\frac{25-20}{60-76}=\frac{5}{40}$$

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	(Y)	8000

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	_ (N)	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Y	0.4437
1	0.41	Υ	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Υ	0.3771
	0.125 0.375 0.625 0 0.375 0.8 0.075 0.5 1	0.125 0.11 0.375 0.21 0.625 0.31 0 0.01 0.375 0.50 0.8 0.00 0.075 0.38 0.5 0.22 1 0.41 0.7 1.00	0.125 0.11 N 0.375 0.21 N 0.625 0.31 N 0 0.01 N 0.375 0.50 N 0.8 0.00 N 0.075 0.38 Y 0.5 0.22 Y 1 0.41 Y 0.7 1.00 Y

20-60

13000 - 220000

معیارهای شباهت

Minkowski:
$$d(p,q) = (\sum_{i=1}^{n} |p_i - q_i|^x)^{\frac{1}{x}}$$

x=2: Euclidian
$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

x=1: Manhatan
$$d(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

$$9 = (7, 3)$$
 $9 = (7, 3)$
 $9 = (7, 3)$
 $1 + 2 = 3$

معيار شباهت كسينوس

$$\underbrace{\text{similarity}} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

$$\frac{4 \cdot x50 + 60 \times 20}{\sqrt{4 \cdot ^2 + 60^2} \times \sqrt{5 \cdot ^2 + 2 \cdot ^2}} = 0$$

q: gold silver truck

- d1: Shipment of gold damaged in a fire
- d2: Delivery of silver arrived in a silver truck
- d3: Shipment of gold arrived in a truck

$$Sim(9,d1) = \frac{1\times1}{\sqrt{3}\times\sqrt{7}}$$

$$Sim(9, J_2) = \frac{1\times2+9\times1}{\sqrt{3}\times\sqrt{10}}$$

$$Sim(9, 03) = \frac{1 \times 1 + 1 \times 1}{\sqrt{3} \times \sqrt{7}}$$

تشخيص ارقام دستنويس

MNIST

0-9

تاثیر معیار شباهت در مرز تصمیم

استراتژی انتخاب k

 $k \sim k = ?$

انتخاب k با استفاده از cross validation

where K is small, the model is complex and hence we overfit. where K is large, the model is simple and we underfit.

Validation error is the least when the value of k is (10.)

خطای LOOCV؟

مزایای KNN

- پیادەسازی سادە
- صفر بودن هزینه مرحله آموزش
- عدم نیاز به پیشپردازش داده (معمولا)
 - تفسير ساده

معایب KNN

- هزینهبر بودن تست داده جدید
- کاهش دقت بهعلت دادههای پرت و نویز
 - ۰ داشتن بایاس برای ابعاد بزرگ

استفاده از KNN برای پیشگویی عددی

KNN Regression

استفاده از kd-tree

این اسلایدها بر مبنای نکات مطرح شده در فرادرس «آموزش یادگیری ماشین (Machine Learning) (تئوری - عملی) – بخش دوم» تهیه شده است.

برای کسب اطلاعات بیشتر در مورد این آموزش به لینک زیر مراجعه نمایید.

faradars.org/fvdm94062