Tutorial: functions for biocultural complexity

M. Humberto Reyes-Valdés 5/30/2018

This tutorial shows the use of the functions coded in the script *biocultural.R*, to analyzie biocultural complexity from a table of cultures and species usage. In this case, I use the file *toyset.csv*, which is an artificial simple data set. The platform and language is R.

- 1. Open an R console
- 2. Read the data set

```
dat.sim<-read.csv("toyset.csv",head=T)</pre>
```

3. Visualize data features

dat.sim

```
##
     culture rep sp1 sp2 sp3 sp4 sp5
## 1
          c1
               1
                  0
                      25
                          39
## 2
          c2
               1 110
                      10
                           0
                               0
## 3
          с3
                      26
                          24
                               28
## 4
          c4
               1
                     11 119
#rep is the representation frequency of cultural groups.
```

```
#rep is the representation frequency of cultural groups.
#In this case the assumption is that all groups are equally represented,
#and one can write 1 for each entry.
str(dat.sim)
```

```
## 'data.frame':
                   4 obs. of 7 variables:
  $ culture: Factor w/ 4 levels "c1","c2","c3",..: 1 2 3 4
            : int 1 1 1 1
## $ rep
## $ sp1
            : int
                   0 110 0 0
## $ sp2
            : int 25 10 26 11
## $ sp3
            : int
                   39 0 24 119
                   27 0 28 0
## $ sp4
            : int
   $ sp5
            : int 9 0 10 0
```

4. Source script

```
source("biocultural.R")
```

5. Create an object with biocultural parameters

```
ob.sim<-bc.info(dat.sim)
names(ob.sim)
```

```
## [1] "cu" "species" "specificities"
## [4] "r.specificities" "s.diversity" "specializations"
## [7] "r.specializations" "mutualInfo" "BC"
## [10] "r.BC"
```

6. Table of species and their specificities and relative specificities

```
##
     Species Specificity Relative.specificity
## 1
               2.0000000
                                     1.0000000
         sp1
## 2
         sp2
               0.2165054
                                     0.1082527
## 3
         sp3
               0.6081559
                                     0.3040780
         sp4
## 4
               1.0048459
                                     0.5024230
## 5
               1.0097404
                                     0.5048702
         sp5
library(knitr)
kable(sp.tab) #Just to get fancy
```

Species	Specificity	Relative.specificity
$\overline{\mathrm{sp1}}$	2.0000000	1.0000000
sp2	0.2165054	0.1082527
sp3	0.6081559	0.3040780
sp4	1.0048459	0.5024230
sp5	1.0097404	0.5048702

7. Cultures and their specializations, relative specializations and diversities

Cultures	Specialization	Relative.specialization	S.Diversity
c1	0.6534922	0.3267461	1.8524724
c2	1.8513755	0.9256877	0.4138169
c3	0.6642951	0.3321476	1.9131163
c4	0.5750163	0.2875081	0.4182366

8. Extract mutual information, biocultural complexity and relative biocultural complexity.

```
#Mutual information
ob.sim$mutualInfo
```

[1] 0.9360448

```
#Biocultural complexity
ob.sim$BC
```

[1] 1.913276

```
#Relative biocultural complexity
ob.sim$r.BC
```

[1] 0.4783189

9. Perform a chi square test for association between cultures and species. A montecarlo simulation is used to get the p value>

```
chisq.test(dat.sim[-c(1,2)],simulate.p.value=T)

##

## Pearson's Chi-squared test with simulated p-value (based on 2000

## replicates)

##

## data: dat.sim[-c(1, 2)]
```

X-squared = 547.36, df = NA, p-value = 0.0004998