SOMMAIRE

Introduction

Format Propriétaire - Standard

Code Alphanumérique

Entrée Alphanumérique

Format d'Images

Format Audio et Vidéo

Compression de données

Format de Données interne

Introduction

Les données ne peuvent être représentées que par des 0 ou 1

Les données d'entrées doivent être converties dans un format approprié pour pouvoir: stoker, transmettre, reconnaître, traiter

Les données d'entrées peuvent être continues ou discrètes

Besoin de décrire les *bits*: *□ metadata*

Format de donnée

Le *format de donnée* est la manière utilisée en informatique pour représenter des données sous forme de nombres binaires

Un format de donnée est une convention utilisée pour représenter un type de donnée

Format propriétaire - Standard

Format propriétaire: Unique à un produit ou une compagnie

Standard: Documenté, adoption encouragée partout

de facto: Un format propriétaire peut devenir un standard (e.g., Adobe,

Postscript, etc.)

par comité: Un comité d'expert est constitué pour résoudre un problème et proposer un standard pour un problème particulier

Organisations de standardisation

ISO International Standards Organization

CSA Canadian Standards Association

ANSI American National Standards Institute

IEEE Institute for Electrical and Electronics Engineers

IETF Internet Engineering Task Force

Exemples de standards

Alphanumerique Unicode, ASCII, EBCDIC

Image (bitmap) PNG, JPEG

Image (vectoriel) SVG, PDF

Fontes OpenType

Son WAV, Vorbis, Flac, Speex

Video Theora, VP8

E-mail RFC822

Rich text HTML, OpenDocument

Caractères Alphanumériques

- Lettres de l'alphabet (minuscule et majuscules)
- Les chiffres : 1, 2, 3, 4, ...
- Ponctuations : !, ?, ", (, . . .
- Caractères spéciaux : *, \$, ¿, ...

Quelques standards utilisés pour les coder en binaires

- 1. BCD (Binary Coded Decimal)
- 2. EBCDIC (Extended Binary Coded Decimal Interchange)
- 3. ASCII (American Standard Code for Information Interchange)
- 4. Unicode

ASCII

Développé initialement par le *American National Standards Institute* (ANSI)

Code de 7 bits (128 entrées possibles, 95 graphiques et 33 de contrôle), stocké sur un octet [byte]

Le 8^e bit est quelquefois inutilisé, utilisé comme bit de parité, ou pour coder 128 autres symboles

Table de Codage ASCII

CED VIEW	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	0	Р	*	Р
1	SOH	DC1	1	1	A	Q	а	q
2	STX	DC2		2	В	R	ь	r
3	ETX	DC3	#	3	С	S	С	5
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	٧	f	V
7	BEL	ETB	10	7	G	W	g	w
8	BS	CAN	(8	Н	X	h	х
9	HT	EM)	9	1	Υ	i	у
A	LF	SUB	*	1	J	Z	j	Z
В	VT	ESC	+	;	К	[k	{
С	FF	FS	,	<	L	1	1	1
D	CR	GS	-		М]	m	}
Е	S0	RS		>	N	Α.	n	~
F	SI	US	1	?	0		0	DEL

Codage ASCII

- G à le code 47_{16} ou 0100 0111_2
- 95 codes *graphiques* de 20_{16} à $7E_{16}$
 - codes alphabétiques
 - codes numériques
 - codes de ponctuation
- 33 codes de *contrôle* de 00_{16} à $1F_{16}$ et 7F
- Latin-1: variante qui ajoute des caractères accentués et spéciaux

Exemple: La chaîne de caractère Hello, world!, à pour code (en hexadécimal),

48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21

Caractères graphiques

a à le code hexadécimal 61_{16} . Pour convertir ce caractère en caractère majuscule (i.e., A), on doit soustraire au code 20_{16} (touche *shift*)

L'ordre des lettres est respecté (classement par ordre alphabétique par simple algorithme de trie)

Le caractère $\boxed{5}$ codé par le code 35_{16} est différent du nombre 5. Pour convertir le caractère en nombres on doit soustraire au code la valeur 30_{16} .

Caractères de contrôle

NUL	(Null) No character; used to fill space	DLE	(Data Link Escape) Similar to escape, but
SOH	(Start of Heading) Indicates start of a header used during transmission		used to change meaning of data control characters; used to permit sending of data
STX	(Start of Text) Indicates start of text		characters with any bit combination
	during transmission	DC1,DC2,	(Device Controls) Used for the control of
ETX	(End of Text) Similar to above	DC3, DC4	devices or special terminal features
EOT	(End of Transmission)	NAK	(Negative Acknowledgment) Opposite of ACK
ENQ	(Enquiry) A request for response from a remote station; the response is usually an identification	SYN	(Synchronous) Used to synchronize a synchronous transmission system
ACK	(Acknowledge) A character sent by a receiving device as an affirmative	STB	(End of Transmission Block) Indicates end of a block of transmitted data
	response to a query by a sender	CAN	(Cancel) Cancel previous data
BEL	(Bell) Rings a bell	EM	(End of Medium) Indicates the physical
BS	(Backspace)		end of a medium such as tape
HT	(Horizontal Tab)	SUB	(Substitute) Substitute a character for one sent in error
LF	(Line Feed)	ESC	
VT	(Vertical Tab)	ESU	(Escape) Provides extensions to the code by changing the meaning of a specified
FF	(Form Feed) Moves cursor to the starting		number of contiguous following characters
	position of the next page, form, or screen	FS, GS,	(File, group, record, and united separators)
CR	(Carriage return)	RS, US	Used in optional way by systems to provide
S0	(Shift Out) Shift to an alternative		separations within a data set
	character set until SI is encountered	DEL	(Delete) Delete current character
SI	(Shift In) see above		

IFT-1215 Stefan Mo

EBCDIC

	0	1	2	3	4	5	6	7
0	NUL	DLE	DS		space	&	-	
1	SOH	DC1	SOS		RSP		1	
2	STX	DC2	FS	SYN				
3	ETX	DC3	WU5	IR				
4	SEL	ENP	BYP/INP	PP				
5	HT	NL	LF	TRN				
6	RNL	BS	ETB	NBS				
7	DEL	POC	ESC	EOT				
8	GE	CAN	SA	SBS				
9	SPS	EM	SFE	IT				
A	RPT	UB5	SM/SW	RFF	¢	!	1	:
В	VT	CU1	CSP	CU3		\$,	#
С	FF	IFS	MFA	DC4	<	*	%	0
D	CR	IGS	ENQ	NAK	()	~	
Ε	S0	IRS	ACK		+	;	>	=
F	SI	IUS	BEL	SUB	- :	7	?	
	8	9	A	В	С	D	E	F
0					- (}	- 1	0
1	a	j	_		A	J	NSP	1
2	ь	k	s		В	K	S	2
3	С	- 1	t		С	L	T	3
4	d	m	u		D	M	U	4
5	е	п	V		Ε	N	V	5
6	f	0	w		F	0	W	6
7	g	р	х		G	P	Х	7
8	h	q	у		Н	Q	Y	8
9	i	r	Z		1	R	Z	9
Α					5HY			
В								
С								
D								
Ε								
F								EO

Pas de caractères pourtant très utiles aujourdh'hui! comme [] (langage C, C++, java, fortran, etc.), $\{$ } (langage C, C++), \sim (Unix, Internet, etc.), etc.

Code 8 bits, inventé par IBM, désuet mais beaucoup d'archives l'utilisent

Unicode

Code de 32 bits (4 milliards d'entrées possibles mais contient jusqu'à maintenant quelques millions de caractères distincts seulement)

Plusieurs encodages (représentation du code en séquence de bits))

Chaque caractère est stocké sur 1-5 octets

Le code *latin-1* est englobé dans ce code

Code multilangues: lettres et idéogrammes (Amérique, Europe, Afrique, Asie, etc.)

http://www.unicode.org

Table de codage Unicode

Du Clavier Au Binaire

Le clavier génère un code [scan code] lorsque la touche est pressée et un autre lorsque la touche est libérée

L'ordinateur le convertit en ASCII/Unicode par conversion logiciel:

- Adapté à différents langages ou claviers
- Multiples combinaisons possibles (shift, control, ...)

Les caractères sont stockés dans un buffer, (comme un flot de données)

Autres sources d'entrées alphanumériques

Un Scanner et un logiciel OCR

Un lecteur de code barre

http://www.digital.net/barcoder/barcode.html

Un lecteur de bande magnétique

Convertisseur de signal vocal

Appareil de pointage

Format d'images

Images bitmap [raster images]

PNG, JPEG, ...

Désigne un format de donnée qui va représenter et stoker chaque point de l'image individuellement (niveaux de gris ou niveaux de rouge, vert, bleu)

Images Vectorielle [vector images]

SVG, PDF, PostScript, ...

Désigne un format de donnée ou l'image entière est décrite par un ensemble de forme géométrique (lignes, courbes, cercles, ellipse, ...).

Préoccupactions: qualité de l'image, espace de stockage nécéssaire, facilité de manipulation

Image numérique bitmap

x	= 58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
y =															
41	210	209	204	202	197	247	143	71	64	80	84	54	54	57	58
42	206	196	203	197	195	210	207	56	63	58	53	53	61	62	51
43	201	207	192	201	198	213	156	69	65	57	55	52	53	60	50
44	216	206	211	193	202	207	208	57	69	60	55	77	49	62	61
45	221	206	211	194	196	197	220	56	63	60	55	46	97	58	106
46	209	214	224	199	194	193	204	173	64	60	59	51	62	56	48
47	204	212	213	208	191	190	191	214	60	62	66	76	51	49	55
48	214	215	215	207	208	180	172	188	69	72	55	49	56	52	56
49	209	205	214	205	204	196	187	196	86	62	66	87	57	60	48
50	208	209	205	203	202	186	174	185	149	71	63	55	55	45	56
51	207	210	211	199	217	194	183	177	209	90	62	64	52	93	52
52	208	205	209	209	197	194	183	187	187	239	58	68	61	51	56
53	204	206	203	209	195	203	188	185	183	221	75	61	58	60	60
54	200	203	199	236	188	197	183	190	183	196	122	63	58	64	66
55	205	210	202	203	199	197	196	181	173	186	105	62	57	64	63

Image numérique en niveaux de gris: matrice où chaque élément (pixel) représente l'intensité discrète à ce point.

Stokage pour une image de 128×128 pixels avec 256 couleurs:

$$128 \times 128 \times \ln 256 = 16KB$$

Pour reduire le stockage:

▷ compression

Format GIF

Développé par Compuserve (1987)

GIF₈₉ permet l'animation d'images

nb couleurs: 256

Compression sans perte, algorithme LZW (Lempel, Ziv & Welch)

Images numériques vectorielles

L'image est décomposée en formes géométriques (lignes, courbes, ...), i.e. en instructions spécifiant comment dessiner l'image

288 396 translate % move origin to center of page 0 0 144 0 360 arc % define 2' radius black circle. fill. 0.5 setgray % define 1' radius gray circle. 0 0 72 0 360 arc fill. % reset color to black 0 setgray -216 -180 moveto % start at lower left corner 0 360 rmoveto % and define rectangle 432 0 rmoveto % ...one line at a time 0 -360 rmoveto closepath % completes rectangle % draw outline instead of fill. stroke: % produce the image showpage

Exemple PostScript

```
% procedure to draw pie slice
                                              % add text to drawing
%arguments graylevel, start angle, finish angle
                                              O setgray
/wedge {
                                               144 144 moveto
    0.0 moveto
                                              (baseball cards) show
                                              -30 200 (cash) show
    setgray
    /angle1 exch def
                                              -216 108 (stocks) show
    /angle2 exch def
                                              32 scaletont
    0 0 144 angle1 angle2 arc
                                              (Personal Assets) show
    0.0 lineto
    closepath } def
                                              showpage
%set up text font for printing
/Helyetica-Bold findfont
    16 scalefont
     setfont
                                                             cash
                                                                        baseball
.4 72 108 wedge fill % 108-72 = 36 = .1 circle
                                                  stocks
                                                                         cards
.8 108 360 wedge fill % 70%
% print wedge in three parts
32 12 translate
0 0 72 wedge fill
gsave
-8.8 translate
                                                   Personal Assets
1 0 72 wedge fill
O setgray stroke
grestore
```

Images vectorielles

Stockage: dépend de la complexité de l'image

Basé sur des formules mathématiques: l'image peut être facilement tournée, agrandie, sans perte de qualité

Nécessite de convertir l'image vectorielle en bitmap avant affichage

Page Description Langage

- Stocké en ASCII ou Unicode
- Convertit par un programme en bitmap

IFT-1215 Stefan Monnier

Séquence Vidéo

Demande une grande capacité de stockage

Exemples : Caméra video produit des images 640×480 , 3 octets par pixel, 30 images par seconde (1 minute \triangleright 1.6 GB)

Streaming Video Séquence vidéo télechargée en temps réel (e.g., video-conférence)

Compression possible (exemples : *Theora*, *VP8*)

Données Audio

Signal analogique digitalisé par un convertisseur A/D

Format WAV

Inventé par Microsoft. Échantillon de son sur 8, 16 bits à une fréquence d'échantillonage de 11.025 Khz, 22.05 Khz, 44.1 Khz en mono ou stéréo (2×16 bits)

Format MIDI

MIDI: Musical Instrument Digital Interface

Utilisé par les compositeurs musiciens, les professionnels du son et de l'acoustique

Instructions permettant de recréer et synthétiser des nouveaux sons et d'interfacer avec des synthétiseurs (mais ne permet pas de recréer efficacement de la voix humaine)

3 minutes de son \approx 10 KB

Format MP3

Dérive du format MPEG-2 (Moving Picture Expert Group)

Compression avec perte

3 minutes de musique pprox 2 MB

Compression des Données

Recoder les données de telle façon qu'elles nécessitent moins d'octets pour le stockage

- Réduction du coût de stockage
- Transmission rapide des données

Compression avec (e.g., Ogg, JPEG, Theora, ...) ou sans perte (l'algorithme inverse restaure les données dans leur forme originale sans altération) (ex: PNG, GZip, ...)

Taux de compression

$$C = \frac{\text{Nb. de bits après compression}}{\text{Nb. de bits avant compression}}$$

Ex: Compression avec un facteur de 10:1

Méthodes simples de compression: RLE, dictionnaire.

Compression RLE

RLE: Run Length Encoding

Création d'une nouvelle séquence dans laquelle le deuxième élément correspond au niveau de gris et le premier élément correspond au nombre de pixels consécutifs possédant ce niveaux de gris

Codage séparé du niveaux de gris et de l'occurrence de chaque pixel

Fort taux de compression pour des images possédant de nb. zones de régions homogènes

Compression avec dictionnaire

"Peter Piper picked a peck of pickled peppers"

En utilisant le dictionnaire suivant

Et on transmet le dictionnaire et la phrase

Format de données interne

Les données sont stockées sous forme binaire de taille différentes

Ces données peuvent être interprétées pour représenter des données de différents type et format *via* un programme

Float, char, boolean, int, ...

Exemple: Programme en Langage Fortran

```
//VARIABLES USED
key CHARACTER:
number: INTEGER:
error, stop: BOOLEAN:
   stop = false;
   error - false.
   ReadAKey:
   WHILE NOT stop AND NOT error (
      number - TO * number + (ASCITVALUE(key) - 48):
      ReadAKey;
      PRINTOUT ('Illegal Character in Input')
   ELSE PRINTOUT ("Input number is " number);
PROCEDURE ReadAkey: (
   READ: (key);
   IF (ASCITVALUE(key)=13 or ASCITVALUE(key)=32 or
      ASCITIVALUE(key)=44)
   stop = TRUE:
   ELSE IF (key < '0') or (key > '9')
   error = TRUE:
```