Part 1. Classical Approaches To Recommendation

Olivier Koch

Criteo Research

June 28, 201

ve	rv	ıev

1. Neighborhood methods

2. Matrix Factorization

3. Latent factor models

4. Hybrid methods

Problem statement

- Item recommendation with implicit or explicit feedback data
 - Given interactions between users and items, find the k most relevant items for a given user.

More formally...

Given:

- $U = (u_1, ..., u_n)$, a group of n users
- $I = (i_1, ..., i_m)$, a group of m items
- \bullet $R_{u,i}$, a set of interactions between users and items

Find the k most relevant items for each user

Overview of methods

- Neighborhood-based methods
- Matrix Factorization
- Other latent factor models
- Hybrid methods

Lessons from the Nextflix Prize Challenge

- Open competition to beat the Netflix baseline (CineMatch)
- Training set: 100,480,507 ratings (480,189 users, 17,770 movies)
- Qualifying set: 2,817,131 ratings (50% test set, 50% quiz set)
- Improve by 10% to win \$1,000,000

Lessons from the Netflix Prize Challenge, R. Bell and Y. Koren, SigKDD 2007

Lessons from the Nextflix Prize Challenge

- A trivial solution is almost as good as the baseline (average all ratings for a movie)
- Use ensemble methods
- In particular, combine neighborhood-based methods and MF
- Incorporate side information (e.g. time of rating)

Lessons from the Netflix Prize Challenge, R. Bell and Y. Koren, SigKDD 2007

Neighborhood methods

• User-oriented: find similar users • Item-oriented: find similar items

Item-based recommendation

To predict the rating of u_i and i_i :

- Find the k most similar items to u_i
- Keep items that i_i has rated
- ullet Weight each rating by the similarity between these items and $\emph{i}_\emph{j}$

$$P_{u,i} = \frac{\sum_{all similar items} s_{i,j} \times R_{u,j}}{\sum_{all similar items} s_{i,j}}$$

Item-based top-n recommendation algorithms, M.Deshpande and G. Karypis. Trans. Inf. Syst. 2004.

Item-based recommendation

Item-based collaborative filtering recommendation algorithms, B.M. Sarwar, G. Karypis, J.A. Konstan, and J. Reidl. WWW'2001.

Similarity definition

Cosine-based similarity

$$s_{i,j} = \cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{\|\vec{i}\| \cdot \|\vec{j}\|}$$

Pearson similarity

$$s_{i,j} = \frac{\sum_{u \in U} (R_{u,i} - \overline{R_i})(R_{u,j} - \overline{R_j})}{\sqrt{\sum_{u \in U} (R_{u,i} - \overline{R_i})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \overline{R_j})^2}}$$

Adjusted cosine similarity

$$s_{i,j} = \frac{\sum_{u \in U} (R_{u,i} - \overline{R_u}) (R_{u,j} - \overline{R_u})}{\sqrt{\sum_{u \in U} (R_{u,i} - \overline{R_u})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \overline{R_u})^2}}$$

Exercise 1: item-based collaborative filtering in Python

Neighborhood vs Matrix Factorization

- Neighborhood models detect localized relationships
- MF captures the totality of weak signals contained in the matrix
- Both methods can be fused (e.g. SVD++)
- Both methods have trouble making predictions for users with few ratings

Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model, Y. Koren, KDD'08 $\,$

SVD vs Matrix Factorization

- SVD (Singular Value Decomposition) is closed form, requires a full-filled matrix (biased towards unseen observations)
- Matrix Factorization uses optimization and has been shown to work better (e.g. on known entries only)

Singular Value Decomposition

 $M=U\Sigma V^{\ast}$

where \mathbf{U} and \mathbf{V} contain the left- and right-singular vectors of \mathbf{M} .

Matrix factorization

- Find a low rank approximation to a sparse ratings matrix by minimizing a loss function on the known ratings
- Popular choice for applications in industry
- Simple
- Highly scalable to large datasets
- Captures global signals (but fails to capture strong local signals)

More formally...

 $R_{u,i} = U_{n \times k}^{\mathsf{T}} * V_{k \times m}$

where $U_{n\times k}$: user matrix and $V_{k\times m}$ item matrix

Steps for matrix factorization

- Build user-item matrix
- Define factorization model (cost function)
- Remove global mean
- Remove item bias and user bias
- Add regularization to prevent overfitting
- Minimize cost function (e.g. stochastic gradient descent, alternating least squares)

More formally...

Find U and V such that:

 $\min_{U,V} \sum_{(u,i)\in k} (R_{u,i} - \mu - b_i - b_u - U_i^T V_u)^2 + \lambda (\|U_i\|^2 + \|V_u\|^2 + b_i^2 + b_u^2)$

Matrix Factorizations parameters

- cost function
- vector size
- learning rate
- regularization
- optimization method

Matrix Factorization for Implicit Feedback

- Model the probability that a user will interact with a given item with a logistic function
- Weigh zero-entries
- Optimize log likelihood with Alternating gradient descent
- Outperforms regular MF on small vectors (Spotify dataset)

Probabilistic Matrix Factorization, R. Salakhutdinov and A. Mnih, NIPS 2007

Probabilistic Matrix Factorization

- Scales linearly with number of observations
- Can incorporates the fact that users who rate similar sets of movies have similar preferences
- Evaluation on the Netflix dataset

$$p(R \mid q, p, \sigma^2) = \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}(R_{ij} \mid U_i^T V_j, \sigma^2) \right]^{l_{ij}}$$

Latent factor models

Probabilistic Latent Semantic Indexing (PLSA)

Restricted Boltzmann Machines (RBM)

- Latent Dirichlet Allocation (LDA)

Contextual side information

- High-order SVD optimized on observed entries only
- ullet Batch sub-space descent o SGD for larger datasets

Multiverse Recommendation: N-dimensional Tensor Factorization for Context Aware Collaborative Filtering, Karatzoglou A. Amatriain X. Baltrunas L. Oliver N. RecSys 2010

Temporal dynamics

- Including temporal dynamics in user and item behaviors
- Applicable to neighborhood-based and factorization methods

Collaborative Filtering with Temporal Dynamics, Koren Y., SigKDD 2009

Unified Boltzmann machines

- Model the joint distribution of a set of binary variables through their pairwise interactions
- Encode collaborative and content information as features
- Learn weights that reflect how well each feature predicts user actions

A Unified Approach to Building Hybrid Recommender Systems, Gunawardana A. Meek C., RecSys 2009

Lessons from the Real World

- What problem are you trying to solve? Predicting DVD rentals is different from predicting instant streaming selection.
- Pick a single solution (one that fits your problem)
- There is often a deceptively simple baseline solution
- Improve on it incrementally
- Evaluate online early

Exercise	1:	item-based	recommendation	with	Movie	Lens

Fetch the code and data:

https://github.com/oakfr/intro-to-reco

```
from sklearn.metrics import pairwise_distances
from scipy.spatial.distance import cosine, correlation

def compute_movies_similarities (method='cosine'):
    [...]
    movie_sim = # PUT YOUR CODE HERE
    return pd.DataFrame( movie_sim )
```

```
def get_similar_movies( sim_df, movieid, topN = 5 ):
    """ qet top-N similar movies given an input movie ...
        sim_df is the output of compute_movies_similarities
    11 11 11
    movies_df = pd.read_csv( "data/ml-100k/u.item", ...)
    movies_df = movies_df.iloc[:,:2]
    movies_df.columns = ['movieid', 'title']
    movies_df['similarity'] = sim_df.iloc[movieid -1]
    movies_df.columns = ['movieid', 'title', 'similarity']
    top_n = # PUT YOUR CODE HERE
   return top_n
```

```
def predict_rating (rating_df_pivoted, movie_sim_df, user_i
    """ predict rating for a user and a movie
    similar_movies = get_similar_movies (...)
    sim_ratings = []
    sim_scores = []
    for row2 in similar_movies[1:].itertuples():
        _, item_id_2, _, similarity = row2
        sim_rating = get_rating (...)
        if not numpy.isnan (sim_rating):
            sim_ratings.append (...)
            sim_scores.append (...)
    if len(sim_ratings) > 0:
            return numpy.dot(...) / numpy.sum (...)
```

return numpy.nan

```
def evaluate (rating_df_pivoted, movie_sim_df, num_ratings)
    """ predict ratings for the testing set and compute RMS
    11 11 11
    predicted_ratings = []
    true_ratings = []
    for row in ...[:num_ratings].itertuples():
        _, user_id, item_id, rating, _ = row
        predicted_rating = predict_rating (...)
        if not numpy.isnan (predicted_rating):
            predicted_ratings.append (predicted_rating)
            true_ratings.append (rating)
    rmse_val = rmse (...)
    return (rmse_val, len(predicted_ratings))
```

Bonus points:

- play with the parameters to improve the RMSE
- compare to random
- ignore movies with less than k scores

Given:

- data loader and matrix initialization (steps 1 and 2)
- default params settings, training and evaluation (steps 5 to 8)

Answer the following questions:

- Implement L1 and L2 losses (step 3)
- Implement L1 and L2 regularizations and evaluate (step 4)
- Bench the parameters around the default values

Hints for step 3 (with L2 norm)

Hints for step 4 (with L2 norm)

```
# with U and P
regularizer = # multiply l2_norm_sums and lamda
```

12_norm_sums = # use tf.add and tf.reduce_sum

regularizer_cost = # add base_cost and regularizer

Bonus points:

- How about another optimizer (e.g. AdamOptimizer)?
- Tune hyper parameters
- How should you set the number of epochs?