Chapter 3, Section 10

April 17, 2025

- **1.** Let $f: X \to Y$ be a property, flat morphism of varieties over k. Suppose for some point $y \in Y$ that the fiber X_y is smooth over k(y). Then show that there is an open neighborhood U of y in Y such that $f: f^{-1}(U) \to U$ is smooth.
- **2.** A morphism $f: X \to Y$ of schemes of finite type over k is étale if it is smooth of relative dimension 0. It is unramified if for every $x \in X$, letting y = f(x), we have $\mathfrak{m}_y \cdot \mathscr{O}_x = \mathfrak{m}_x$, and k(x) is a separable algebraic extension of k(y). Show that the following conditions are equivalent:
 - (i) f is étale;
 - (ii) f is flat, and $\Omega_{X/Y} = 0$;
 - (iii) f is flat and unramified.
- **3.** Show that a morphism $f: X \to Y$ of schemes of finite type over k is étale if and only if the following condition is satisfied: for each $x \in X$, let y = f(x). Let $\hat{\mathcal{O}}_x$ and $\hat{\mathcal{O}}_y$ be the completions of the local rings at x and y. Choose fields of representatives (II, 8.25A) $k(x) \subseteq \hat{\mathcal{O}}_x$ and $k(y) \subseteq \hat{\mathcal{O}}_y$ so that $k(y) \subseteq k(x)$ via the natural map $\hat{\mathcal{O}}_y \to \hat{\mathcal{O}}_x$. Then our condition is that for every $x \in X$, k(x) is a separable algebraic extension of k(y), and the natural map

$$\hat{\mathscr{O}}_y \otimes_{k(y)} k(x) \to \hat{\mathscr{O}}_x$$

is an isomorphism.

- **4.** If x is a point of a scheme X, we define an étale neighborhood of x to be an étale morphism $f: U \to X$, together with a point $x' \in U$, such that f(x') = x. As an example of the use of étale neighborhoods, prove the following: if \mathscr{F} is a coherent sheaf on X, and if every point of X has an étale neighborhood $f: U \to X$ for which $f^*\mathscr{F}$ is a free \mathscr{O}_U -module, then \mathscr{F} is locally free on X.
- **5.** Let Y be the plane nodal cubic curve $y^2 = x^2(x+1)$. Show that Y has a finite étale covering X of degree 22, where X is a union of two irreducible components, each one isomorphic to the normalization of Y.
- **6.** (Serre). A linear system with moving singularities. Let k be an algebraically closed field of characteristic 2. Let $P_1, \ldots, P_7 \in \mathbb{P}^2_k$ be the seven points of the projective plane over the prime field $\mathbb{F}_2 \subseteq k$. Let \mathfrak{d} be the linear system of all cubic curves in X passing through P_1, \ldots, P_7 .
 - (a) \mathfrak{d} is a linear system of dimension 2 with base points P_1, \ldots, P_7 , which determines an inseparable morphism of degree 2 from $X \{P_i\}$ to \mathbb{P}^2 .
 - (b) Every curve $C \in \mathfrak{d}$ is singular. More precisely, either C consists of 3 lines all passing through one of the P_i , or C is an irreducible cuspidal cubic with cusp $P \neq \text{any } P_i$. Furthermore, the correspondence $C \mapsto$ the singular point of C is a one-to-one correspondence between \mathfrak{d} and \mathbb{P}^2 . Thus, the singular points of elements of \mathfrak{d} move all over.
- 7. A linear system with moving singularities contained in the base locus (any characteristic). In affine 3-space with coordinates x, y, z, let C be the conic $(x-1)^2 + y^2 = 1$ in the xy-plane, and let P be the point (0,0,t) on the z-axis. Let Y_t be the closure in \mathbb{P}^3 of the cone over C with vertex P. Show that as t varies, the surfaces $\{Y_t\}$ form a linear system of dimension 1, with a moving singularity at P. The base locus of this linear system is the conic C plus the z-axis.
- **8.** Let $f: X \to Y$ be a morphism of varieties over k. Assume that Y is regular, X is Cohen-Macaulay, and that every fiber of f has dimension equal to dim X dim Y. Then f is flat.