

Edge detection

Role of edges & general approach Image gradient Edges detectors: sobel, prewitt, Canny detector

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Plan

- Edges
 - Detection
 - linking
- Feature extraction
 - Global features
 - Local features
- Image Matching and Applications

What are edges/contours?

- Local changes in the images
- Typically occur on the boundary between different regions in an image

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

4

Edge is important?

• What do you see ?

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

A Experimental setup B Stimulus Stimulus orientation Light bar stimulus projected on screen Recording from visual cortex

Edge is important?

(A)Cave painting at Chauvet, France, about 30,000 B.C.;

(B)Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 - 200 B.C.;

(C)Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China; (D)Line drawing by 7-

year old I. Lleras (2010 A.D.).

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Can we recognize these objects?

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- · Why?
 - Extract information, recognize objects

- Recover geometry and viewpoint

Vanishing lipe

Source: J. Hayes

Vanishing point

Vanishing point

Vanishing point

Vanishing point

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

10

Image profile

SOICT

https://www.mathworks.com/help/images/intensity-profile-of-images.html

How to find edges?

 Intensity profile of an image is the set of intensity values taken from regularly spaced points along a line segment or multi-line path in an image

How to find edges?

 An edge is a place of rapid change in the image intensity function

Extrema of 1st derivate

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

_

Derivatives

• Derivative in 1D:

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

· Discrete derivative in 1D

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Image gradients

Types of Discrete derivative in 1D

Backward
$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Forward
$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Central
$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

1D discrete derivate filters

· Backward filter:

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$
 [0 1 -1]

• Forward:

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$
 [-1 1 0]

• Central. $\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$ [1 0 -1]

school of information and communication technology

Discrete derivate in 2D

f(x,y)Given function

Gradient vector
$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude
$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction
$$\theta = \tan^{-1} \frac{f}{f}$$

1D discrete derivate example

Backward filter:

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0

Discrete derivate filters wrt. x and y

Discrete derivate filters wrt. x and y

 Robert filter (the first approximation filter for image derivative -1965)

Prewitt filter

	1	0	-1	
1/3 x	1	0	-1	
	1	-0	-1	

Sobel filter

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

22

lmag	ge I (9 x 8)						
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
	0	0	0	100	100	100	100	100	100
	0	0	0	100	100	100	100	100	100
	0	0	0	100	100	100	100	100	100
	0	0	0	100	100	100	100	100	100
	0	0	0	100	100	100	100	100	100
	0	0	0	100	100	100	100	100	100

Iv =	I * My =	the 1	st deri	vative v	wrt v			
,	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	100	100	100	100	100	
	0	0	100	100	100	100	100	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
JN							24	

3x3 image gradient filters

$$\begin{array}{c|cccc}
\frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
\frac{1}{3} & 1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}$$

Image gradient

- Derivative of image wrt. x + Derivative wrt. y → Image gradient: magnitude and direction
- · Gradient magnitude: gradient intensity for each pixel (mostly used)

$$|G| = \sqrt{(G_x^2 + G_y^2)} \approx |G_x| + |G_y|$$

· Gradient Direction: main direction of each pixel $\theta = \tan^{-1} G_{\nu}/G_{x}$

school of information and communication technology —

Example

• Which one is the gradient in the x-direction? How about y-direction?

CS231: Lecture 3 Juan Carlos Niebles and Ranjay Krishna school of Information and communication technology

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

- The gradient vector points in the direction of most rapid increase in intensity
- · The gradient direction is given by

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- · how does this relate to the direction of the edge?
- · The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Edge detector

Type of edges

SOICT

Source: Gonzalez and Woods. Digital Image Processing 3ed. Prentice-Hall, 2008.

Effects of noise

- · Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

OPMATION AND COMMUNICATION TECHNOLOGY

irce: S. Seitz

Effects of noise

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY —

31

Effects of noise

• Solution: smoothing the image

Where is the edge?

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Source: S. Seitz

33

Solution: smooth first

• To find edges, look for peaks in

Source: S. Seitz

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Derivative theorem of convolution

• This theorem gives us a very useful property:

$$\frac{d}{dx}(f*g) = \frac{df}{dx}*g = f*\frac{dg}{dx}$$

• This saves us one operation:

600 800 1000 1200 1400 1600 1800 2000

OF INFORMATION AND COMMUNICATION TECHNOLOGY

Source: S. Seitz

Derivative theorem of convolution

• This theorem gives us a very useful property:

$$\frac{d}{dx}(f*g) = \frac{df}{dx}*g = f*\frac{dg}{dx}$$

• This saves us one operation:

Source: S. Seitz

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Sobel Operator

• Gaussian Smoothing + differentiation

Gaussian smoothing

$$G_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

differentiation

$$G_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

→ Less sensible to noise

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

_

Prewitt Operator

Mean smoothing + differentiation

$$Gx = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$Gy = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

→ Less sensible to noise

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Simple edge detector with 1st derivative

Original image

Gradient magnitude using Sobel operator

Threshold T = 60

Source: Caroline Rougier. Traitement d'images (IFT2730). Univ. de Montréa OF INFORMATION AND COMMUNICATION TECHNOLOGY

Simple edge detector with 1st derivative

Convolve the original image with 2 kernels to calculate approximations

of the derivatives

· Compute the gradient magnitude

 Thesholding: choose edges to be the pixel above a threshold T

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Problems

- · Poor localization (multiple adjacent pixels)
- Thresholding value favors certain directions over others
 - Can miss oblique edges more than horizontal or vertical edges → False negatives

Edge detector with 2nd derivative

Edge detector with 2nd derivative

Image

- Single response
- Sensible to noise

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Edge detector with 2nd derivative

- 2nd derivative with Laplacian filter:
 - convolution the image with one of 2 filters

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Edge detection
 - Compute the 2nd derivative of the images
 - Find the zero-crossing pixels → edges

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

43

"Optimal" edge detector

- · Criteria:
 - Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges
 - Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

. .

Canny detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. PAMI, 8:679-714, 1986.

Canny detector: Steps

- 1) Apply a gaussian filter on the image
 - Lowpass filter to remove noise
- 2) Compute the gradient intensity in the image
 - Sobel filter in X and Y
 - Compute the magnitude |G| = |Gx| + |Gy|
- 3) Compute image gradient direction
 - Gradient direction θ = arctan (Gy / Gx)
 - Round directions using multiples of 45°

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Canny detector

- Optimal:
 - Detection: weak edges detected
 - Good location: close to the real edges
 - Unique response: edge thickness = 1

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Canny detector: Steps

- 4) Non-maxima suppression
 - If the gradient magnitude of a pixel (x,y) is inferior to the one of its 2 neighbors along the gradient direction
 - → set this magnitude for (x,y) to zero

Canny detector: Steps

5) Edge thresholding (hysteresis)

- · Using two thresholds: a theshold high (Sh) and a threshold low (Sb)
- For each pixel in the gradient magnitude:
 - IF magnitude(x,y) < Sb, THEN set the pixel to zero (non-edge)
 - IF magnitude(x,y) > Sh, THEN the edge is an edge
 - IF Sb ≤ magnitude(x,y) ≤ Sh, THEN the pixel is an edge IF it is connected to another edge pixel

Direction normale au gradient

Hysteresis thresholding

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Source: S. Seitz

Canny detector

45 years of boundary detection

Hough transform

Edge linking

Hough Transform RANSAC

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Hough transform

- The Hough transform (HT)
 - can be used to detect lines
 - was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda 1972)
 - Goal: to find the location of lines in images.
- Caveat: Hough transform can detect lines, circles and other structures ONLY if their parametric equation is known
- It can give robust detection under noise and partial occlusion

HOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Hough transform

- Global approach to detect continuous edges
 - From the x-y plane to the parametric plane a-b
- x-y plane
 - y_i = a x_i + b
 - an infinity of lines going though one (x_i, y_i) pair
 - one sole line for the (a,b) pair
- a-b parametric plane
 - $b = -x_i a + y_i$
 - one sole line for the (x_i, y_i) pair
 - an infinity of lines going through one (a,b) pair

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4

x-y plane vs a-b plane

Main idea for the Hough transform

- Accumulation cells Matrix (a,b)
- Build an voting image
 - each point is voting for a particular line
- The lines receiving more votes are kept

Line vs Points

All the points (x,y) on a line in the x-y plane are going through one sole point (a', b') in the a-b parametric plane

Computing the Hough transform

- We compute the contour points of the input image
 - Sobel, Prewitt, Canny, ...
- For each contour point, we compute a line (a,b)
 - Result is one line in the a-b plane for each pixel (x,y)
- The maximum peaks in the a-b parametric plane show the lines with the maximum of points in the x-y plane
 - The points indicating line crossing in the a-b plane show the real lines existing in the x-y plane

62

4 -

Problem with the (a,b) space

- Problem: for a vertical line, a=∞!
- Solution: representing using polar coordinates (ρ, θ)

 $\rho = x \cos \theta + y \sin \theta$

Hough transform (random points)

The transform of random points does not give any precise results

Example with 5 points

Hough transform (straight line)

The transform for aligned points result in a line detection

Example

Ransac

Other example

Ransac

- A model fitting method:
 - A learning technique to estimate parameters of a model by random sampling of observed data
 - Used for :
 - Line detection
 - Correspondance problem (matching between 2 sets of features)

CS231: Ransac, Juan Carlos Niebles and Ranjay Krishna, Stanford Vision and Learning Lab

Example: Line Fitting

- · Why fit lines?
 - Many objects characterized by presence of straight lines

Slide credit: Kristen Grauman

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLO

Difficulty of Line Fitting

- Extra edge points (clutter) multiple models:
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

Fitting as search in parametric space

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point.
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Voting

- · It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.

Slide credit: Kristen Grauman

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Slide credit: Kristen Grauman

RANSAC Line Fitting Example

- Task: Estimate the best line
 - How many points do we need to estimate the line?

Slide credit: Kristen Grauman

RANSAC [Fischler & Bolles 1981]

RANSAC loop:

- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Slide credit: Kristen Grauman

RANSAC Line Fitting Example

Task: Estimate the best line

Slide credit: Kristen Gra

4.0

RANSAC Line Fitting Example

• Task: Estimate the best line

SOICT

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Slide credit: Kristen Grauman

RANSAC Line Fitting Example

• Task: Estimate the best line

30

RANSAC Line Fitting Example

• Task: Estimate the best line

Slide credit: Kristen Grauman

RANSAC Line Fitting Example

• Task: Estimate the best line

Slide credit: Kristen Grauman

RANSAC Line Fitting Example

· Task: Estimate the best line

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Slide credit: Kristen Grauman

RANSAC: How many samples?

- · How many samples are needed?
 - Suppose w is fraction of inliers (points from line)
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen
 - p: desired probability that we get a good sample
- Prob. that a single sample of *n* points is correct:
- Prob. that all k samples fail is: $(1-w^n)^k$
- ⇒ Choose k high enough to keep this below desired failure rate (1-p).

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

n — the smallest number of points required

k — the number of iterations required

t — the threshold used to identify a point that fits well

d — the number of nearby points required to assert a model fits well

Until k iterations have occurred

Draw a sample of n points from the data

uniformly and at random

Fit to that set of n points

For each data point outside the sample Test the distance from the point to the line

against t; if the distance from the point to the line

is less than t, the point is close

If there are d or more points close to the line then there is a good fit. Refit the line using all

these points.

Use the best fit from this collection, using the fitting error as a criterion

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers								
n	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

p: desired probability that we get a good sample

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with reclassification as inlier/outlier.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Slide credit: David Lowe

Plan

- Edges
 - Detection
 - linking
- Feature extraction (next lesson)
 - Global features
 - Local features
- Image Matching and Applications (next lesson)

25 SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

RANSAC: Pros and Cons

• Pros:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, the Hough transform can handle high percentage of outliers

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

References

- Lecture 3: CS231 Juan Carlos Niebles and Ranjay Krishna, Stanford Vision and Learning Lab
- · Vision par Ordinateur, Alain Boucher, IFI

