Applied Linear Algebra in Data Analysis

Vector spaces: A set of vectors that is closed under vector scaling and vector addition. E.g. \mathbb{R}^n , \mathbb{C}^n . A vector space will always contain the zero vector.

Subspace: A subset of a vector space $\mathcal V$ which is also a vector space.

Span of a set (of vectors): The set of all linear combinations of a set of vectors $S = \{\mathbf{s}_i\}_{i=1}^p$ from the vector space V

$$\operatorname{span} S = \left\{ \sum_{i=1}^{p} \alpha_{i} \mathbf{s}_{i} \mid \alpha_{i} \in \mathbb{R}^{n} \right\} \subseteq \mathcal{V}$$

Linear Independence: A set S is linearly independent if and only if, $\sum_{i=1}^{p} \alpha_i \mathbf{s}_i = \mathbf{0} \implies \alpha_i = 0, \forall i$. *If the set has* $\mathbf{0}$, *then the set is linearly dependent.*

Basis: A set of vectors \mathcal{B} is a basis for a vector space \mathcal{V} if and only if, \mathcal{B} is linearly independent and span $\mathcal{B} = \mathcal{V}$. The elements of \mathcal{B} are called basis vectors of \mathcal{V} . There are infinitely many bases for a vector space. Every vector in \mathcal{V} can be written as a unique linear combination of the basis vectors.

Dimension: The number of basis vectors in a basis of a vector space \mathcal{V} is called the dimension of \mathcal{V} .

Inner product: $\mathbf{x}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{n} x_i y_i, \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Norm: Measure of the length of a vector. $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$, $\mathbf{x} \in \mathbb{R}^n$. $\|\mathbf{x}\|_2^2 = \mathbf{x}^\top \mathbf{x}$.

Cauchy-Schwarz Inequality: $|\mathbf{x}^{\mathsf{T}}\mathbf{y}| \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$.

Orthogonality: Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if and only if, $\mathbf{x}^{\mathsf{T}}\mathbf{y} = 0$.

Orthonormal basis: A basis $\mathcal{B} = \{\mathbf{b}_i\}_{i=1}^n$ is orthonormal if and only if, $\mathbf{b}_i^{\mathsf{T}}\mathbf{b}_j = \delta_{ij}$, where δ_{ij} is the Kronecker delta function.

Linear Function: A function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies superposition. All linear functions f can be represented as $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}$, where $\mathbf{w} \in \mathbb{R}^n$.