

Đại học Mở TpHCM Khoa XÂY DỰNG& ĐIỆN

Môn học

PHƯƠNG PHÁP TÍNH

GV: Trần Trung Dũng

Đa thức nội suy

Chương IV

Đa thức nội suy và xấp xỉ hàm

Từ thực nghiệm n điểm ta có n giá trị x, y..

$$x_k = x_0 \ x_1 \ x_2 \dots \ x_n$$

 $y_k = y_0 \ y_1 \ y_2 \dots \ y_n$

Phép nội suy được định nghĩa là với một giá trị x nào khác thì giá trị y = bao nhiều ?

Thí du:

$$x_i = 2$$
 5
 $y_i = 1$ -2
 $x = 3.5$ thì y=?

Xét hàm y = f(x) cho dưới dạng bảng số

- Các giá trị x_k , k = 0, 1, ..., n được sắp theo thứ tự tăng dần gọi là các điểm nút nội suy
- Các giá trị $y_k = f(x_k)$ là các giá trị cho trước của hàm tại x_k

Bài toán: xây dựng 1 đa thức $p_n(x)$ bậc ≤n thoả điều kiện $p_n(x_k) = y_k$, k=0,1,... n. Đa thức này gọi là <u>đa thức nội suy của hàm f(x)</u>.

Về mặt hình học bài toán nội suy được diễn đạt như sau: Tìm hàm g(x) có đồ thị đi qua các điểm

Xét bảng số sau

$$x_k = x_0 \ x_1 \ x_2 \ \dots \ x_n$$

 $y_k = y_0 \ y_1 \ y_2 \ \dots \ y_n$

Chúng ta sẽ xây dựng đa thức Lagrange thoả các điều kiện sau:

- Bậc của đa thức nhỏ hơn hay bằng n.
- Giá trị của đa thức tại điểm nút x_k bằng giá trị y_k cho trước.

Đa thức nội suy Lagrange có dạng

$$L_n(x) = \sum_{k=0}^n y_k L_n^k(x)$$

Trong đó:

$$L_n^k(x) = \frac{\prod_{i=0, i \neq k}^n (x - x_i)}{\prod_{i=0, i \neq k}^n (x_k - x_i)}$$

Đa thức nội suy Lagrange được viết lại như sau:

$$L_{n}(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})....(x - x_{n})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})....(x_{0} - x_{n})} \times y_{0}$$

$$+ \frac{(x - x_{0})(x - x_{2})(x - x_{3})....(x - x_{n})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})....(x_{1} - x_{n})} \times y_{1}$$

$$+ \frac{(x - x_{0})(x - x_{1})(x - x_{2})....(x - x_{n-1})}{(x_{n} - x_{0})(x_{n} - x_{1})(x_{n} - x_{2})....(x_{n} - x_{n-1})} \times y_{n}$$

Trần Trung Dũng – HCMOU

Khi đoạn [a,b] được chia bởi phép phân hoạch đều.

Đặt $\mathbf{q} = (\mathbf{x} - \mathbf{x}_0)/\mathbf{h}$ với $\mathbf{h} = (\mathbf{b} - \mathbf{a})/\mathbf{n}$ ta thu được :

$$\begin{cases} x - x_k = (q - k)h \\ x_i - x_j = (i - j)h \end{cases}$$

Ta thu được công thức Lagrange dưới dạng:

$$L_{n}(x) = \sum_{k=0}^{n} \frac{(-1)^{n-k}q(q-1)...(q-n)}{k!(n-k)!(q-k)} y_{k}$$

Đặt
$$\omega_n(t) = (x-x_0) (x-x_1) ... (x-x_n)$$

Nếu đạo hàm cấp (n+1) của f bị chặn: $|f^{(n+1)}(x)| \leq M$ với

 $\forall x \in [a,b]$ thì ta có ước lượng sai số nội suy là

$$\left| f(x) - L_n(x) \right| \le \frac{M}{(n+1)!} \left| \omega_n(x) \right|$$

Ví dụ 1 : Cho bảng số

Tính gần đúng giá trị hàm tại x = 2 theo Lagrange

Ví dụ 2 : Cho bảng số

Tính gần đúng giá trị hàm tại x = 2 theo Lagrange

Giải

$$n = 2 L_n^{(0)}(x) = \frac{(x-1)(x-3)}{(0-1)(0-3)} = \frac{1}{3}(x^2 - 4x + 3)$$
$$L_n^{(1)}(x) = \frac{(x-0)(x-3)}{(1-0)(1-3)} = -\frac{1}{2}(x^2 - 3x)$$
$$L_n^{(2)}(x) = \frac{(x-0)(x-1)}{(3-0)(3-1)} = \frac{1}{6}(x^2 - x)$$

Đa thức nội suy Lagrange

$$L_n(x) = \frac{1}{3}(x^2 - 4x + 3) + \frac{1}{2}(x^2 - 3x) + \frac{1}{3}(x^2 - x) = \frac{7}{6}x^2 - \frac{19}{6}x + 1$$

$$f(2) \approx L_n(2) = -2/3$$

Giải

n = 3
$$L_n^{(0)}(x) = \frac{(x-1)(x-3)(x-4)}{(0-1)(0-3)(0-4)} = -\frac{1}{6}$$
$$L_n^{(1)}(x) = \frac{(x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)} = \frac{2}{3}$$
$$L_n^{(2)}(x) = \frac{(x-0)(x-1)(x-4)}{(3-0)(3-1)(3-4)} = \frac{2}{3}$$
$$L_n^{(3)}(x) = \frac{(x-0)(x-1)(x-3)}{(4-0)(4-1)(4-3)} = -\frac{1}{6}$$

Đa thức nội suy Lagrange

$$f(2) \approx L_n(2) = 2$$

Đa thức nội suy NEWTON

Trên đoạn $[x_k, x_{k+1}]$ ta định nghĩa đại lượng

$$f[x_k, x_{k+1}] = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$

Được gọi là tỉ sai phân cấp một của hàm trên đoạn $[x_k, x_{k+1}]$.

Tỉ sai phân cấp 2 của hàm trên đoạn $[x_k, x_{k+2}]$ như sau :

$$f[x_k, x_{k+1}, x_{k+2}] = \frac{f[x_{k+1}, x_{k+2}] - f[x_k, x_{k+1}]}{(x_{k+2} - x_k)}$$

Tỉ sai phân cấp p của hàm trên đoạn $[x_k, x_{k+p}]$ như sau :

$$f[x_k, x_{k+1}, ..., x_p] = \frac{f[x_{k+1}, x_{k+2}, ..., x_{k+p}] - f[x_k, x_{k+1}, ..., x_{k+p-1}]}{(x_{p+k} - x_k)}$$

Đa thức $N_n(x)$ bậc không cao hơn n thoả $N_n(x_k) = y_k$,

 \forall k = 1, n theo cách Newton như sau :

$$y = y_0 + (x - x_0).f[x_0, x_1] + (x - x_0)(x - x_1).f[x_0, x_1, x_2]$$

$$+ (x - x_0)(x - x_1)(x - x_2).f[x_0, x_1, x_2, x_3]$$

$$+ ...$$

$$+ (x - x_0)(x - x_1)(x - x_2)...(x - x_{n-1}).f[x_0, x_1, x_2, x_3, ...x_n]$$

Chứng minh: Theo định nghĩa tỉ sai phân cấp 1 của hàm f(x)

$$f\left[x,x_0\right] = \frac{f(x) - y_0}{x - x_0}$$

Do đó:
$$f(x) = y_0 + (x-x_0) f[x, x_0]$$

Lại dùng định nghĩa tỉ sai phân cấp 2 của hàm f(x)

$$f[x, x_0, x_1] = \frac{f[x, x_0] - f[x_0, x_1]}{x - x_1}$$

Ta được:

$$f(x) = y_0 + (x-x_0) f[x_0, x_1] + (x-x_0) (x-x_1) f[x,x_0,x_1]$$

Tiếp tục bằng qui nạp ta được

$$f(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$+ f[x, x_0, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_n)$$
F) at

Đặt

$$N(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + ...$$

$$+ f[x_0, x_1, ..., x_n](x - x_0)(x - x_1) ... (x - x_{n-1})$$

$$\Re_n(x) = f[x, x_0, ..., x_n](x - x_0)(x - x_1) ... (x - x_n)$$

Ta được

$$f(x) = \mathcal{N}_n^{(1)}(x) + \mathfrak{R}_n(x)$$

Công thức này gọi là công thức Newton tiến xuất phát từ điểm nút x_o

Tương tự ta có công thức Newton lùi

$$f(x) = N_n^{(2)}(x) + \Re_n(x)$$

$$N_n^{(2)}(x) = y_n + f[x_{n-1}, x_n](x - x_n) + f[x_{n-2}, x_{n-1}, x_n](x - x_n)(x - x_{n-1}) + \dots$$
$$+ f[x_0, x_1, \dots, x_n](x - x_n)(x - x_{n-1}) \dots (x - x_1)$$

 $N_n^{(1)}(x)$: đa thức nội suy Newton tiến

 $N_n^{(2)}(x)$: đa thức nội suy Newton lùi

 $\Re_n(x)$: xác định sai số

Nếu hàm f có đạo hàm liên tục đến cấp n+1, ta có công thức đánh giá sai số:

$$|\Re_{n}(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)| \text{ với } M_{n+1} = \max |f^{(n+1)}(x)|$$

Ví dụ 1 : Cho bảng số

Tính gần đúng giá trị hàm tại x = 0.12 theo Newton

Ví dụ 2 : Cho bảng số

Tính gần đúng giá trị hàm tại x = 1.2 theo Newton

Ví dụ: Cho hàm f xác định trên [0,1] và bảng số

X	0	0.3	0.7	1	
y	2	2.2599	2.5238	2.7183	

Tính gần đúng f(0.12) bằng Newton tiến và f(0.9) bằng Newton lùi

Giải: ta lập bảng các tỉ sai phân

$\mathbf{x}_{\mathbf{k}}$	f(x _k)	$f[x_k, x_{k+1}]$	$f[x_k, x_{k+1}, x_{k+2}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}]$
0	2			
		0.8663		Newton tiến
0.3	2.2599		-0.2950	*
		0.6598		0.2786
0.7	2.5238		-0.0164	
		0.6483		Newton lùi
1	2.7183			

Ta có

$$f(0.12) \approx N_n^{(1)}(0.12)$$

$$= 2 + 0.8663(0.12) - 0.2950(0.12)(-0.18) + 0.2786(0.12)(-0.18)(-0.58)$$

$$= 2.1138$$

$$f(0.9) \approx N_n^{(2)}(0.9)$$

$$= 2.7183 + 0.6483(-0.1) - 0.0164(-0.1)(0.2) + 0.2786(-0.1)(0.2)(0.6)$$

$$= 2.6505$$

Ví dụ: Cho hàm f xác định trên [1,2] và bảng số

X	1	1.3	1.6	1.9
У	0.76	0.62	0.45	0.28

Tính gần đúng f(0.12) bằng Newton tiến và f(0.9) bằng Newton lùi

Giải: ta lập bảng các tỉ sai phân

$\mathbf{x}_{\mathbf{k}}$	f(x _k)	$f[x_k, x_{k+1}]$	$f[x_k, x_{k+1}, x_{k+2}]$	$f[x_k, x_{k+1}, x_{k+2}, x_{k+3}]$
1	0.76			
		-0.4667		Newton tiến
1.3	0.62		-0.1667	*
		-0.5667		0.1852
1.6	0.45		0.0	
		-0.5667		Newton lùi
1.9	0.28			

Ta có

$$f(0.9) \approx N_n^{(2)}(0.9)$$

$$= 2.7183 + 0.6483(-0.1) - 0.0164(-0.1)(0.2) + 0.2786(-0.1)(0.2)(0.6)$$

$$= 2.6505$$

BÀI TOÁN XẤP XỈ THỰC NGHIỆM:

Xét bài toán thống kê lượng mưa trong 12 tháng Thực nghiệm (k=1..12)

Các giá trị y_k được xác định bằng thực nghiệm nên có thể không chính xác. Khi đó việc xây dựng một đường cong đi qua tất cả các điểm $M_k(x_k, y_k)$ cũng không còn chính xác

Bài toán xấp xỉ thực nghiệm: là tìm hàm f(x) xấp xỉ bảng $\{(x_k,y_k)\}$ theo phương pháp bình phương cực tiểu:

$$g(f) = \sum (f(x_k) - y_k)^2 dat min$$

Hàm f tổng quát rất đa dạng. Để đơn giản, trong thực tế thường ta tìm hàm f theo một trong các dạng sau:

$$- f(x) = A + Bx$$

$$- f(x) = Ae^{Bx}$$

$$- f(x) = A + Bx + Cx^{2}$$

$$- f(x) = Asinx + Bcosx$$

$$- f(x) = AlnBx ...$$

1. Trường hợp f(x) = A + Bx:

Phương trình bình phương cực tiểu có dạng

$$g(A, B) = \sum (A + Bx_k - y_k)^2$$

Bài toán qui về tìm cực tiểu của hàm 2 biến g(A,B)

Điểm dừng

$$\begin{cases} \frac{\partial g}{\partial A} = 2\sum (A + Bx_k - y_k) = 0\\ \frac{\partial g}{\partial B} = 2\sum (A + Bx_k - y_k)x_k = 0 \end{cases}$$

Suy ra

$$\begin{cases} nA + (\sum X_k)B = \sum Y_k \\ (\sum X_k)A + (\sum X_k^2)B = \sum X_k Y_k \end{cases}$$

Ví dụ: Tìm hàm f(x) = A + Bx xấp xỉ bảng số

Theo pp BPCT

Ta có n = 10

Giải hệ pt

$$\begin{cases} nA + (\sum X_k)B = \sum Y_k \\ (\sum X_k)A + (\sum X_k^2)B = \sum X_k Y_k \end{cases} \Rightarrow \begin{cases} 10A + 29B = 39 \\ 29A + 109B = 140 \end{cases}$$

Nghiệm A = 0.7671, B=1.0803

 $V_{ay} f(x) = 0.7671 + 1.0803x$

2. Trường hợp $f(x) = A\cos x + B\sin x$:

Phương trình bình phương cực tiểu có dạng

$$g(A, B) = \sum (A\cos x_k + B\sin x_k - y_k)^2$$

Bài toán qui về tìm cực tiểu của hàm 2 biến g(A,B)

Điểm dừng
$$\begin{cases} \frac{\partial g}{\partial A} = 2\sum (A\cos x_k + B\sin x_k - y_k)\cos x_k = 0\\ \frac{\partial g}{\partial B} = 2\sum (A\cos x_k + B\sin x_k - y_k)\sin x_k = 0 \end{cases}$$

Suy ra
$$\begin{cases} (\sum \cos^2 x_k) A + (\sum \sin x_k \cos x_k) B = \sum y_k \cos x_k \\ (\sum \sin x_k \cos x_k) A + (\sum \sin^2 x_k) B = \sum y_k \sin x_k \end{cases}$$

Ví dụ: Tìm hàm $f(x)=A\cos x+B\sin x$ xấp xỉ bảng số

X	10	20	30	40	50	rad
y	1.45	1.12	0.83	1.26	1.14	

Theo pp BPCT

$$\begin{cases} (\sum \cos^2 x_k) A + (\sum \sin x_k \cos x_k) B = \sum y_k \cos x_k \\ (\sum \sin x_k \cos x_k) A + (\sum \sin^2 x_k) B = \sum y_k \sin x_k \end{cases}$$

$$\Rightarrow \begin{cases} 2.2703 A - 0.0735 B = -0.3719 \\ -0.0735 A + 2.7297 B = 0.0533 \end{cases}$$

Nghiệm A = -0.1633, B=0.0151

$$V_{ay} f(x) = -0.1633 cos x + 0.0151 sin x$$

3. Trường hợp $f(x) = Ax^2 + Bsinx$:

Phương trình bình phương cực tiểu có dạng

$$g(A, B) = \sum (Ax_k^2 + B\sin x_k - y_k)^2$$

Bài toán qui về tìm cực tiểu của hàm 2 biến g(A,B)

Điểm dừng

$$\begin{cases} \frac{\partial g}{\partial A} = 2\sum (Ax_k^2 + B\sin x_k - y_k)x_k^2 = 0\\ \frac{\partial g}{\partial B} = 2\sum (Ax_k^2 + B\sin x_k - y_k)\sin x_k = 0 \end{cases}$$

Suy ra

$$\begin{cases} (\sum X_k^4) A + (\sum X_k^2 \sin X_k) B = \sum X_k^2 y_k \\ (\sum X_k^2 \sin X_k) A + (\sum \sin^2 X_k) B = \sum y_k \sin X_k \end{cases}$$

Ví dụ: Tìm hàm $f(x)=Ax^2+B\sin x$ xấp xỉ bảng số

							2.7
У	2.7	1.8	3.51	3.1	3.78	3.9	4.32

Theo pp BPCT

$$\begin{cases} (\sum X_k^4) A + (\sum X_k^2 \sin X_k) B = \sum X_k^2 y_k \\ (\sum X_k^2 \sin X_k) A + (\sum \sin^2 X_k) B = \sum y_k \sin X_k \end{cases}$$

$$\Rightarrow \begin{cases} 166.4355A + 21.1563B = 112.015 \\ 21.1563A + 4.6033B = 17.0441 \end{cases}$$

Nghiệm A = 0.4867, B=1.4657

$$V_{ay} f(x) = 0.4857x^2 + 1.4657sinx$$

4. Trường hợp $f(x) = A + Bx + Cx^2$:

Phương trình bình phương cực tiểu có dạng

$$g(A, B, C) = \sum (A + Bx_k + Cx_k^2 - y_k)^2$$

Bài toán qui về tìm cực tiểu của hàm 3 biến g(A,B,C)

$$\frac{g(A, B, C)}{\text{Diểm dừng}} \qquad \left\{ \frac{\partial g}{\partial A} = 2 \sum (A + Bx_k + Cx_k^2 - y_k) = 0 \right\}$$

$$\left\{ \frac{\partial g}{\partial B} = 2\sum (A + Bx_k + Cx_k^2 - y_k)x_k = 0 \right\}$$

$$\frac{\partial g}{\partial C} = 2\sum (A + Bx_k + Cx_k^2 - y_k)x_k^2 = 0$$

Suy ra

$$\begin{cases} nA + (\sum X_k)B + (\sum X_k^2)C = \sum Y_k \\ (\sum X_k)A + (\sum X_k^2)B + (\sum X_k^3)C = \sum X_k Y_k \\ (\sum X_k^2)A + (\sum X_k^3)B + (\sum X_k^4)C = \sum X_k^2 Y_k \end{cases}$$

Ví dụ: Tìm hàm $f(x) = A + Bx + Cx^2 xấp xỉ bảng số$

Theo pp BPCT

Ta có n = 7

Giải hệ pt

$$\begin{cases} nA + (\sum X_k)B + (\sum X_k^2)C = \sum Y_k \\ (\sum X_k)A + (\sum X_k^2)B + (\sum X_k^3)C = \sum X_k Y_k \\ (\sum X_k^2)A + (\sum X_k^3)B + (\sum X_k^4)C = \sum X_k^2 Y_k \end{cases} \Rightarrow \begin{cases} 7A + 19B + 65C = 61.70 \\ 19A + 65B + 253C = 211.04 \\ 65A + 253B + 1061C = 835.78 \end{cases}$$

Nghiệm A = 4.3, B=-0.71, C=0.69

Vây $f(x) = 4.3-0.71x+0.69x^2$

Thank you for following me