☑ eExam Question Bank							
Coursecode:							
Choose Coursecode	Ψ.						
·	► Assign Selected Questions to eExam						
Show 150 ▼ entries							
	Search:						

Question Type J	Question	A IT	B
MCQ	Expand $\sinh x$ by using Maclaurin series	$x+rac{x^3}{3!}+rac{x^5}{5!}+rac{x^7}{7!}+\cdots$	$1+x+rac{x^2}{2!}+rac{x^2}{2!}+rac{x^3}{3!}+\cdots$
MCQ	Expand $\cos x$ by using Maclaurin series	$1+x+rac{x^2}{2!}+rac{x^2}{2!}+rac{x^3}{3!}+\cdots$	$1-x-rac{x^2}{2!}-rac{x^2}{2!}-rac{x^3}{3!}-\cdots$
MCQ	Give the first few terms of $\sin x$ using Maclaurin series	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$	$1 + x + \frac{x^2}{2!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
MCQ	The product of e^{2x} and e^{-x} can be written as	$1+x+rac{x^2}{2!}+rac{x^2}{2!}+rac{x^3}{3!}+\cdots$	$1 - x - \frac{x^2}{2!} - \frac{x^2}{2!} + -fracx^3 3! - \cdots$
MCQ	Find limit $\lim_{(x,y,z) o (1,2,5)} \sqrt(x+y+z)$	2	3
MCQ	Find the limit of $\lim_{(x,y)\to(2,4)}\frac{x+y}{x-y}$	1	2
MCQ	Find the limit of $\lim_{(x,y) o(2,1)}x+3y^2$	4	5
MCQ	The gradient of the tangent at any point (x,y) of the conic $f(x,y)=ax^2+2hxy+by^2+2gx+2fy+c=0$	$rac{dy}{dx} = -rac{2ax+2hy+2g}{2by+2hx+2f}$	$rac{dy}{dx} = rac{2ax + 2hy + 2g}{2by + 2hx + 2f}$
MCQ	Given the function $f(x,y) = an^{-1} rac{y}{x}$, find f_{yy}	$f_{xy}=-\frac{2xy}{(x^2-y^2)^2}$	$f_{xy}=-\frac{2xy}{(x^2+y^2)^2}$

MCQ	Given the function $f(x,y) = an^{-1} rac{y}{x}$, find f_{xy}	$f_{xy} = -rac{2xy}{(x^2-y^2)^2}$	$f_{xy}=-rac{2xy}{(x^2+y^2)^2}$
MCQ	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\[f_{x}=\frac{x\cos \sqrt(x^{2}+y^{2}))}{\sqrt (x^{2}+y^{2})}\]	\[f_{x}=\frac{x\cos \sqrt(x^{2}-y^{3})}{\sqrt (x^{2}-y^{2})}\]
MCQ	If the function $\[f(x,y)=\frac{-1}{-1} \frac{y}{x}\]$, find $\[f_{y}\]$	\[f_{x}=\frac{x}{x^{2}-y^{2}}\]	\[f_{x}=\frac{y}{x^{2}+y^{2}}\]
MCQ	If the function $\[f(x,y)=\lambda^{-1} \frac{y}{x}\]$, find $\[f_{x}\]$	\[f_{x}=\frac{x}{x^{2}-y^{2}}\]	\[f_{x}=\frac{y}{x^{2}+y^{2}}\]
MCQ	Given that $\lfloor f(x,y) = \sin^{2} x \cos y + \frac{x}{y^{2}} \rfloor$, find $\lfloor f_{y} \rfloor$	\[f_{y}=\sin^{2}x\sin y-\frac{x}{y^{2}}\]	\[f_{y}=-2\sin^{2} x\sin y-\frac{2x}{y^{3}}\]
MCQ	Given that \[f(x,y)=\sin^{2} x\cos y+\frac{x}{y^{2}}\], find \[f_{x}\]	\[f_{x}=2\sin x\cos x\cos y+\frac{1}{y^{2}}\]	\[f_{x}=-2\sin x\cos x\cos y-\frac{1} \{y^{2}}\]
MCQ	Find the total differential of the function \ $[f(x,y)=x^{2}+3xy]$ wth respect to x, given that \ $[y=\sin^{-1} x]$.	\[x+2sin^{-1} x+\frac{x}{2-2x^{2}}^{\frac{1}}{2}}\]	\[2x+3sin^{-1} x+\frac{3x}{(1- x^{2}}^{\frac{1}{2}}\]
MCQ	Find the total differential of the function $\{f(x,y)=y e^{x+y}\}$	\[d f=[y e^{x+y}]dx+[(1+y)e^{x+y}]dy\]	\[d f=[y e^{x+y}]dx-[(1+y)e^{x+y}]dy\]
MCQ	Evaluate the second partial derivative of the functon \ $[f(x,y)=2x^{3}y^{2}+y^{3}\]$	\[\frac{\partial^{2}f}{\partial x^{2}}=12xy, \frac{\partial^{2} f}{\partial y^{2}}=x^{3}+y, \frac{\partial^{2} f}{\partial x\partial y}=2x^{2}y \]	$\label{eq:continuous} $$ \prod_{x^{2}=12x^{2}y^{2}, \frac{1}{2} f} x^{2}=12x^{2}y^{2}, \frac{1}{2} f} $ {\text{partial } y^{2}\}=4x+6y, \text{frac}(\text{partial}^{2} f) {\text{partial } x\text{partial } y}=10x^{2}y \]
MCQ	Find the first partial derivative of the functon \ $[f(x,y)=2x^{3}y^{2}+y^{3}]$	\[\frac{\partial f}{\partial x}=6x^{2}y^{2}, \frac{\partial f}{\partial y}=4x^{3}y+y^{2}\]	$\label{linear} $$ \prod_{f\in \mathbb{Z}} f_{\alpha}(x)=6x^{3}y^{3}, $$ \left(partial f_{\alpha}(x)=4x^{4}y+y^{2}\right). $$$
MCQ	Evaluate the stationary points of the function \ $[f(x,y)=xy\setminus f(x^{2}+y^{2}-1\setminus f(x))]$	\[c=3\pm \sqrt(3)\]	\[(0,0), (0,0), (0, 0), \pm \left(0, \frac{1}{2}\right), \pm \left(0, -\frac{1}{2}\right)\]
MCQ	Use Leibnitz theorem to evaluate the fourth derivative of \[\left(2x^{3}+3x^{2}+x+2\right)e^{2x}\]	\ [16\left(2x^{3}+15x^{2}+31x+19\right)e^{2x}\]	\[8\left(x^{2}+5x^{2}+3x+14\right)e^{2x}\]
MCQ	Compute the third derivative of \[\sin x \ln x\] using Leibnitz theorem	\[(2x^{-2}-3x^{-2})\cos x-(3x^{-3}+In 2x) \sin x\]	\[(x^{-3}-x^{-2})\cos x-(x^{-2}+\ln x) \cos x\]
MCQ	Use Leibnitz theorem to find the second derivative of \ $[\cos x \sin 2x]$	\[2 \sin x (2-9\cos^{2} x)\]	\[2 \sin x (1-5\cos^{3} x)\]
MCQ	Compute the n-th differential coefficient of \ [y=x\log_{e}x\]	\[(-1)^{n-2}\frac{(n+2)!} {x^{n+1}}\left(n^{3}+2\right)\]	\[(-1)^{n-2}\frac{(n-2)!}{x^{n-1}}\left(n^{3}-2\right)\]
MCQ	Obtain the n-th differential coefficient of \[y= $(x^{2}+1)e^{2x}$ \]	\[2^{n-3}e^{4x}(x^{2x}+nx+n^{3}-n+4)\]	\[2^{n-2}e^{2x}(4x^{3x}+5nx+n^{3}-n+4)\]
MCQ	Expand the function \[f(x)=e^{3x}\] about x=0 using Maclaurin's series	\[e^{3x}=1+3x+\frac{(3x)^{2}} {2!}+\frac{(3x)^{3}}{3!}+\cdots+\frac{(3x)^{n}} {n!}\]	\[e^{3x}=1-3x-\frac{(3x)^{2}}{2!}-\frac{(3x)^{3}}{3!}-\cdots-\frac{(3x)^{n}}{n!}\]
MCQ	Given $f(x)=3x(x-1)^{5}$. Compute $f'''(x)$	\[2i-j\]	\[f''(x)=80(2x-1)^{2}(x-1)\]
MCQ	Evaluate the \[\frac{d ^{3}f}{d x^{3}}\] of \[f(x)= sin (x) \cos (x)\]	\[\frac{d ^{3}f}{d x^{3}}=-4\left(cos^{2} (x)-sin^{2} (x)\right)\]	\[\frac\{d ^{3}f}\{d x^{3}}\]=-2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

MCQ	Compute the first thrre derivatives of \ $[f(x)=2x^{5}+x^{\frac{3}{2}}-\frac{1}{2x}]$	\[f'(x)=10x^{3}-\frac{2}{2}x^{\frac{1}{2}}+ \frac{1}{2x^{2}}, 20x^{3}-\frac{3}{4}x^{-\frac{1}{2}}-\frac{1}{x^{3}}, 10x^{2}-\frac{1}{2}}-\frac{3}{2}+ \frac{3}{x^{4}}\]	\\f'(x)=10x^{4}-\\frac{3}{2}x^\\\frac{1}{2}\}+\\\frac{1}{2x^{2}}, 40x^{3}-\\frac{3}{4}x^{-\\frac{1}{2}}-\\\frac{1}{2}\}+\\\frac{3}{8}x^{-\\frac{3}{2}}+\\\frac{3}{8}x^{4}\\\\\frac{3}{8}x^{-\\frac{3}{2}}+\\\frac{3}{x^4}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
MCQ	For $\[g(x)=\frac{x-4}{x-3}\]$, we can use the mean value theorem on [4, 6], Hence determine $\[c\]$	\[c=3\pm \sqrt(3)\]	\[\sqrt (112) \]
MCQ	Find the number $[c]$ guaranteed by the mean value theorem for derivatives for $[f(x)=(x+1)^{3}, [-1, 1]]$	\[c=\frac{-\sqrt (3) \pm 2}{\sqrt(3)}\]	\[c=\frac{-\sqrt (2) \pm 1}{\sqrt(3)}\]
MCQ	Determine whether the Rolle's theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the values of \[c\] in open interval (a, b) such that \[f'(c) = 0\], \[f(x) = \frac{x^2}{2-2x-3}{x+2}, [-1, 3]\]	\[c=-2\pm\sqrt(5)\]	\[c=-1\pm\sqrt(5)\]
MCQ	Determine whether the mean value theorem can be applied to $\{f_i\}$ on the closed interval $[a, b]$. If can be applied, Find the value of $\{c_i\}$ in open interval $\{a, b\}$ such that $\{f(x)=x(x^2-x-2), [-1, 1]\}$	\[c=\frac{-1}{2}\]	\[c=\frac{-1}{3}\\]
MCQ	Find the two x-intercept of $\{f(x)=x^{2}-3x+2\}$	x=1, 3	x=1, 1
MCQ	Let $\{f(x)=x^{4}-2x^{2}\}$. Find the all $\{c\}$ (where $\{c\}$ is the interception on the x-axis) in the interval (-2, 2) such that $\{f'(x)=0\}$. (Hint use Rolle's theorem)	(-1, 0, 1)	(-1, 1, 1)

Showing 1 to 35 of 35 entries

Previous 1 Next