```
In [29]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
```

In [7]:

```
#Reading the CSV file
data = pd.read_csv('/users/youcefdjeddar/downloads/meteorite-landings.csv')
```

In [8]:

```
data.head(15)
```

Out[8]:

	name	id	nametype	recclass	mass	fall	year	reclat	reclong	GeoLocation
0	Aachen	1	Valid	L5	21.0	Fell	1880.0	50.77500	6.08333	(50.775000, 6.083330)
1	Aarhus	2	Valid	H6	720.0	Fell	1951.0	56.18333	10.23333	(56.183330, 10.233330)
2	Abee	6	Valid	EH4	107000.0	Fell	1952.0	54.21667	- 113.00000	(54.216670, - 113.000000)
3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	1976.0	16.88333	-99.90000	(16.883330, -99.900000)
4	Achiras	370	Valid	L6	780.0	Fell	1902.0	- 33.16667	-64.95000	(-33.166670, -64.950000)
5	Adhi Kot	379	Valid	EH4	4239.0	Fell	1919.0	32.10000	71.80000	(32.100000, 71.800000)
6	Adzhi-Bogdo (stone)	390	Valid	LL3-6	910.0	Fell	1949.0	44.83333	95.16667	(44.833330, 95.166670)
7	Agen	392	Valid	H5	30000.0	Fell	1814.0	44.21667	0.61667	(44.216670, 0.616670)
8	Aguada	398	Valid	L6	1620.0	Fell	1930.0	- 31.60000	-65.23333	(-31.600000, -65.233330)
9	Aguila Blanca	417	Valid	L	1440.0	Fell	1920.0	- 30.86667	-64.55000	(-30.866670, -64.550000)
10	Aioun el Atrouss	423	Valid	Diogenite- pm	1000.0	Fell	1974.0	16.39806	-9.57028	(16.398060, -9.570280)
11	Aïr	424	Valid	L6	24000.0	Fell	1925.0	19.08333	8.38333	(19.083330, 8.383330)
12	Aire-sur-la-Lys	425	Valid	Unknown	NaN	Fell	1769.0	50.66667	2.33333	(50.666670, 2.333330)
13	Akaba	426	Valid	L6	779.0	Fell	1949.0	29.51667	35.05000	(29.516670, 35.050000)
14	Akbarpur	427	Valid	H4	1800.0	Fell	1838.0	29.71667	77.95000	(29.716670, 77.950000)

In [9]:

```
#See how many missing data points we have
missing_values_count = data.isnull().sum()
print(missing_values_count)
```

```
    name
    0

    id
    0

    nametype
    0

    recclass
    0

    mass
    131

    fall
    0

    year
    288

    reclat
    7315

    reclong
    7315

    GeoLocation
    7315
```

```
dtype: int64
In [10]:
#Checking that the rows are unique
data['name'].is unique
data['id'].is unique
Out[10]:
True
In [11]:
#Determining the percentage of missing values for each column
mass missing values = (missing values count['mass']/len(data.mass)) * 100
year missing values = (missing values count['year']/len(data.year)) * 100
location missing values = (missing values count['GeoLocation']/len(data.GeoLocation)) * 100
print('The percentage of missing values in the mass column is:', mass_missing_values,'%')
print ('The percentage of missing values in the year column is:', year_missing_values,'%')
print('The percentage of missing values in the location column is:', location missing values,'%')
The percentage of missing values in the mass column is: 0.28655175430921337 %
The percentage of missing values in the year column is: 0.6299763758859043 %
The percentage of missing values in the location column is: 16.0009624639076 %
In [12]:
#Afer inspecting the data I realized that it was impossible to guess the value of the missing rows
In [13]:
#Droping missing values
new data = data.dropna()
In [14]:
#Getting some information about our dataset
new data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 38116 entries, 0 to 45715
Data columns (total 10 columns):
              38116 non-null object
name
              38116 non-null int64
nametype
             38116 non-null object
              38116 non-null object
recclass
               38116 non-null float64
fall
              38116 non-null object
              38116 non-null float64
vear
reclat
              38116 non-null float64
             38116 non-null float64
reclong
GeoLocation
              38116 non-null object
dtypes: float64(4), int64(1), object(5)
memory usage: 3.2+ MB
In [15]:
```

#Getting some statistical information as well new_data.describe()

Out[15]:

		id	mass	year	reclat	reclong
	count	38116.000000	3.811600e+04	38116.000000	38116.000000	38116.000000
Γ						

mean	25343.110557 id	1.560031e+04 mass	1989.957472 vear	-39.594193 reclat	61.308320 reciona
std	17395.132894	6.286735e+05	26.444565	46.177476	80.776778
min	1.000000	0.000000e+00	601.000000	-87.366670	-165.433330
25%	10831.750000	6.630000e+00	1986.000000	-76.716670	0.000000
50%	21732.500000	2.909000e+01	1996.000000	-71.500000	35.666670
75%	39887.250000	1.874100e+02	2002.000000	0.000000	157.166670
max	57458.000000	6.000000e+07	2101.000000	81.166670	178.200000

L6

Н5

Н6

H4 L5

LL5

LL6

L4

H4/5

CM2

Н3

7519

6243

3898 3880

3264

2199

1660

939

395

330 313

200

```
In [16]:
new missing values count = new data.isnull().sum()
print(new_missing_values_count)
print(len(new_data))
               0
name
id
               0
nametype
               0
               0
recclass
mass
fall
              0
              0
year
reclat
              0
              0
reclong
GeoLocation
              0
dtype: int64
38116
In [17]:
print("Columns in original dataset: %d \n" % data.shape[1])
print("Columns with na's dropped: %d" % new data.shape[1])
#Here we can see that the columns have not been affected
Columns in original dataset: 10
Columns with na's dropped: 10
In [18]:
percentage_of_rows_removed = 100 - ((len(new_data)/len(data)) * 100)
In [19]:
print('Percentage of missing data removed:', percentage of rows removed,'%')
Percentage of missing data removed: 16.624376585878025 %
In [20]:
#Let's see how many meteorite classes the dataset has
meteorite class = new data['recclass'].value counts()
print(meteorite class)
```

```
ろしと
CU3
Iron, IIIAB
                    270
L3
                    268
T<sub>1</sub>T<sub>1</sub>
                   223
Ureilite
                   205
E3
LL4
                    198
CV3
                    184
                   179
Howardite
                   178
Diogenite
Eucrite-pmict
                   169
H5/6
                   166
CR2
                   115
Eucrite
Iron, IIAB
                   111
Mesosiderite
                   106
                   105
Iron, ungrouped
LL3
                     88
L/LL4-6
H/L3.6
L3.0-3.7
                      1
LL3.1-3.5
L3.10
                      1
H(L)3-an
                      1
EL6/7
T.T.6
                      1
НЗ
                      1
Mesosiderite-B
Stone-ung
                      1
H3.2-6
                      1
H/L3
H/L3.9
                      1
CH/CBb
                      1
E5-an
                      1
Pallasite?
                      1
L3.9/4
EΗ
                      1
EH3/4-an
                      1
LL7(?)
                      1
H3.4-5
                      1
Lodranite-an
                      1
L/LL3.10
                      1
L3.7-3.9
                      1
LL3.00
EL4/5
                      1
L(LL)5
                      1
L3.3-3.7
L3-melt breccia
                     1
Name: recclass, Length: 422, dtype: int64
```

In [21]:

 $\# It\ looks\ like\ we\ have\ 422\ classes\ for\ approximately\ 40000\ meteorites.$ An average of about 100 meteorites per class

In [22]:

```
#Let's see if we can do better
```

In [23]:

```
print('Top 10 meteorite classes:', meteorite_class[:10].sum())
```

Top 10 meteorite classes: 30327

In [24]:

#Interesting: only 10 meteorite classes encompass around 80% of all the 38116 meteorites