Real Variables I

September 17, 2024

Chapter 1

Number Systems

```
Natural numbers: \mathbb{N} = \{1, 2, 3, \ldots\}
Integers: \mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}
Rational numbers: \mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}
```

Remark. Note for real numbers, \mathbb{Q} has holes in it. **Example.** $\nexists p \in \mathbb{Q}$ *s.t* $p^2 = 2$

Proof (Proof). Assume $\exists p \in \mathbb{Q} \text{ s.t } p^2 = 2$. Then $p = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. So, $p^2 = \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2$. So, a^2 is even $\Rightarrow a$ is even. So, a = 2k for some $k \in \mathbb{Z}$. So, $4k^2 = 2b^2 \Rightarrow b^2 = 2k^2$. So, b^2 is even $\Rightarrow b$ is even. So, b = 2l for some $l \in \mathbb{Z}$. So, a and b are both even, which contradicts the fact that a and b are coprime. So, $\not \exists p \in \mathbb{Q} \text{ s.t } p^2 = 2$. Q.E.D.

Definition 1 (Order). An order on a set S is a relation < such that:

- 1. If $a, b \in S$, then exactly one of a < b, a = b, or b < a is true.
- 2. If $a, b, c \in S$ and a < b and b < c, then a < c.

Definition 2 (Ordered Set). An ordered set S is a set with an order <.

Definition 3. Let S be an ordered set. A set $E \subset S$ is bounded above if $\exists \beta \in S \text{ s.t } \forall x \in E : x \leq \beta$. Similarly, a set S is bounded below if $\exists \beta \in S \text{ s.t } \forall x \in E : x \geq \beta$.

Definition 4 (LUB, GLB). Let S be an ordered set and $E \subset S$, $E \neq \emptyset$, with E bounded above. If $\exists \alpha$ s.t. α is an upper bound for E and $\forall \gamma < \alpha$: γ is not an upper bound for E. Then such α is called least upper bound (LUB), or *Supremum*. Similarly, if $\exists \alpha$ s.t. α is a lower bound for E and $\forall \gamma > \alpha$: γ is not a lower bound for E. Then such α is called greatest lower bound (GLB), or *Infimum*.

Definition 5 (LUB property). An ordered set S has the least upper bound (LUB) property if $\forall E \subset S$ if $E \neq \emptyset$ and E bounded above implies $\exists (\sup E) \in S$

Example.

- \mathbb{Z} has the LUB property.
- \mathbb{Q} does not have the LUB property.

Theorem 1. Let S be an ordered set. Then S has the LUB property if and only if S has the GLB property.

Proof (Proof). (\Rightarrow)Suppose S has the LUB property. Let $B \subset S$ be non-empty and bounded below. Let L be the set of all lower bounds of B. Then L is non-empty and bounded above. Let $\alpha = \sup L$. We claim that $\alpha = \inf B$. (\Leftarrow)Suppose S has the GLB property. Let $E \subset S$ be non-empty and bounded above. Let U be the set of all upper bounds of E. Then U is non-empty and bounded below. Let $B = \inf U$. We claim that $B = \sup E$. Q.E.D.

Definition 6 (Fields). Let F be a set with two operations, addition and multiplication. Then F is a field if the following axioms are satisfied:

- 1. a+b=b+a and $a \cdot b=b \cdot a$ for all $a,b \in F$ (Commutative laws).
- 2. (a+b)+c=a+(b+c) and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ for all $a,b,c\in F$ (Associative laws).
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a,b,c \in F$ (Distributive law).
- 4. $\exists 0 \in F \text{ s.t. } a + 0 = a \text{ for all } a \in F.$
- 5. $\exists (-a) \in F \text{ s.t. } a + (-a) = 0 \text{ for all } a \in F.$
- 6. $\forall x, y \in F : xy \in E$.
- 7. $\forall x, y \in F : xy = yx0$.
- 8. $\exists 1 \in F \text{ s.t. } a \cdot 1 = a \text{ for all } a \in F.$
- 9. If $a \neq 0$, then $\exists a^{-1} \in F \text{ s.t. } a \cdot a^{-1} = 1$.

 $10. \ \forall x,y,z \in F: x(y+z) = xy + xz$ Example.

- 1. \mathbb{Q} is a field, while \mathbb{Z} is not a field.
- 2. $F_p = \{0, 1, \dots, p-1\}$ with mod p arithmetic is a field.

Read Text book: 114,115,116,118

Definition 7 (Ordered Field). An ordered field F is a field that is an ordered set such that the following properties are satisfied:

- 1. If $a, b, c \in F$ and a < b, then a + c < b + c.
- 2. If $a, b \in F$ and 0 < a and 0 < b, then 0 < ab.

Remark. We say x is positive if x > 0 and x is negative if x < 0.

Example. \mathbb{Q} is an ordered field.

Theorem 2. \exists an ordered field \mathbb{R} which has the LUB property and contains \mathbb{Q} as a subfield.

Theorem 3.

- (a) Arithmetic properties of \mathbb{R} : If $x, y \in \mathbb{R}$ and x > 0 then $\exists n \in \mathbb{N}$ such that nx > y.
- (b) $\mathbb Q$ is dense in $\mathbb R$: If $x,y\in\mathbb R$ and x< y, then $\exists p\in\mathbb Q$ such that x< p< y.
- (c) $x, y \in \mathbb{R}$ then $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $x < \alpha < y$.

Proof (Proof). (a) Let $A = \{nx \mid n \in \mathbb{N}\}$. Suppose $\forall nx \in A : nx \leq A = \{nx \mid n \in \mathbb{N}\}$. y. Then y is an upper bound for A. So, A has a least upper bound α . So, $\alpha - x < \alpha$. $\alpha - x$ is not an upper bound for A. Thus, $\exists m \in \mathbb{N} : mx > \alpha - x$, so $\alpha < (m+1)x \in A$, contradicting the fact that α is a supremum of A. Therefore, $\exists n \in \mathbb{N}$ such that nx > y.

- (b) Since y x > 0, by (a), $\exists n \in \mathbb{N}$ such that n(y x) > 1. So, ny - nx > 1. So, nx < y. Let $m \in \mathbb{Z}$ such that m > nx. So, nx < m, $x < \frac{m}{n}$. Let $p = \frac{m}{n}$. So, x .**TODO!!**
- (c) We know that $\exists p \in \mathbb{Q}$ such that $p^2 = 2$. Show that $\exists \sqrt{2} \in \mathbb{R}$ such that $(\sqrt{2})^2 = 2$. It obeys $0 < \sqrt{2} < 2$ because if $\sqrt{2} \ge 2$ then $2 = \sqrt{2} \cdot \sqrt{2} \ge 2 \cdot 2 = 4$, which is a contradiction. By (b), y. Let $\alpha = p + \frac{\sqrt{2}}{2}(q-p)$. Then $x and <math>x \notin \mathbb{Q}$ since otherwise $\sqrt{2} = 2 \cdot \frac{\alpha - p}{q - p}$ would be rational

Q.E.D.

Note. (a) can be improved to:

$$\forall x, y \in \mathbb{R}, x > 0, \exists n \in \mathbb{Z} \text{ such that } (n-1)x \le y < nx.$$
 (1.1)

Proof (Proof). Case 1: $y \ge 0$. Let $A = \{m \in \mathbb{N} : y < mx\} \subset \mathbb{N}$. By (a), $A \neq \emptyset$. Every non-empty subset of N has a smallest element. Let n = smallest element of A. Then the equation holds true. Case 2: Let y < 0, then there exists $n \in \mathbb{N}$ such that $(n-1)x \leq -y < nx$, which implies that (by changing sign for all terms) $-nx < y \le -(n-1)x$. Hence, the statement holds. Q.E.D.

Lemma 1. Let $a, b \in \mathbb{R}$ such that 0 < a < b, then $0 < b^n - a^n < nb^{n-1}(b-n)$ for some $n \in \mathbb{N}$.

$$b^{n} - a^{n} = (b - a)(\underbrace{b^{n-1} + ab^{n-2} + \dots + a^{n-2}b + a^{n-1}}_{n \text{ terms}})$$
(1.2)
$$< nb^{n-1}$$
(1.3)

$$< nb^{n-1} \tag{1.3}$$

Q.E.D.

Theorem 4. $\forall x \in \mathbb{R}, x > 0, n \in \mathbb{N} : \exists ! (\text{unique}) y > 0 : y^n = x \text{ (we write }$ $y = x^{1/n} = \sqrt{x}^n$, the n^{th} root of x).

Proof (Proof). Uniqueness: For any $y_1, y_2 \in \mathbb{R}$, if $0 < y_1 < y_2$, then $0 < y_1^n < y_2^n$, hence y_1^n and y_2^n cannot both be equal to x. Existence: Let $E_x = \{t \in \mathbb{R}_{>0} \mid t^n < x\}$. If $E \neq \emptyset$, E is bounded above, hence (by the least-upper-bound property) there exists a sup E. Choose $y = \sup E$. Consider two cases.

- 1. If $x \leq 1$, then $t_0 = \frac{x}{2}$ and thereby $t_0^n = \frac{x^n}{2^n} < x^n \leq x$ (by assumption that $x \leq 1$).
- 2. If x > 1, then let $t_0 = 1$, leading to $t_0^n = 1 < x$.

In either case, $t_0 \in E$, and hence E is not empty. 1(a) (E is bounded above) Let $\beta = x + 1$. Then, $\beta^n = (x + 1)^n > x + 1 > x$. Then, for any $t \in E$, we have that $t^n < x < \beta^n$, hence $t < \beta$, making t an upper bound of E.

- 1. Assuming that $y^n < x$, we find 0 < h < 1 such that $(y+h)^n < x$, which leads to $y+h \in E$, something that contradicts with the fact that $y = \sup E$. This is equivalent to finding an 0 < h < 1 such that $(y+h)^n y^n < x y^n$. By the lemma 1, we have $0 < (y+h)^n y^n < n(y+1)^{n-1}h$ for any 0 < h < 1. Choose h so that $\frac{(x-y)^n}{n(y+1)^{n-1}}$. Then 0 < h < 1 still holds and $hn(y+1)^{n-1} < x y^n$, leading to $(y+h)^n < x$, and therefore $y+h \in E$. However, this contradicts the fact that $y = \sup E$ as y+h > y.
- 2. Assuming that $y^n > x$, we find k > 0 such that $(y k)^n > x$, which leads to a contradiction since otherwise y k would be an upper bound for E that's smaller than y, which is $\sup E$. By the lemma 1, $y^n (y k)^n \le ny^{n-1}k < y^n x$ for any $h < \frac{y^n x}{ny^{n-1}}$. Therefore, $-(y k)^n < -x$, or $x < (y k)^n$. Thus, y k is also an upper bound of E and $y k < y = \sup E$, which is a contradiction.

Since $y^n < x$ and $y^n > x$ are both contradictions, $y^n = x$. Q.E.D.

Definition 8 (Cut/Dedekind Cut). The set \mathbb{R} elements are (Dedekind) cuts, which are sets $\alpha \subset \mathbb{Q}$ such that

- $\forall p \in \alpha, q \in \mathbb{Q} : q$
- No greatest element in α

Example. $\alpha = \{p \in \mathbb{Q} \mid p < 0\}, \ \alpha = \{p \in \mathbb{Q} \mid p \leq 0 \lor p^2 < 2\}$

Definition 9 (Order of cuts). For $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta := \alpha \subset \beta$

Proof (test). Let γ be set of cuts A, and show that γ is a cut and that $\gamma = \sup A$. Q.E.D.

```
Theorem 5. There exists an ordered field \mathbb{R} such that \mathbb{Q} \subset \mathbb{R} and \mathbb{R} has the LUB property.
```

Proof (Proof). Let \mathbb{R} be the set of all cuts with:

order $a < b := a \subset b$.

addition $\alpha + \beta = \{p + q \mid p \in \alpha, q \in \beta\}.$

multiplication $\alpha \cdot \beta = \{p \cdot q \mid p \in \alpha, q \in \beta\}.$

Q.E.D.

Complex Numbers

Definition 10 (Complex Field). The underlying set is $\mathbb{C} = \{(a,b)|a \in \mathbb{R}, b \in \mathbb{R}\}$ Addition is defined as (a,b)+(c,d)=(a+c,b+d)Multiplication is defined as $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$ Zero element is (0,0)One element is (1,0)

Theorem 6. $\mathbb C$ is a field. Proof (Proof). Verify the 11 field axioms. For just a few axioms: (M3): $x = (a,b), y = (c,d), z = (e,f). \quad x(yz) = (a,b)(ce-df,cf+de) = (a(ce-df)-b(cf+de),a(cf+de)+b(ce-df)) = (ac-bd,ad+bc)(e,f) = (xy)z$ (M4): $(a,b)(1,0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + b \cdot 1) = (a,b)$ (M5): $x \neq 0 \text{ means } x = (a,b) \text{ with } a \neq 0 \text{ or } b \neq 0. \text{ That is, } a^2 + b^2 > 0. \text{ Let } \frac{1}{x} = (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}). \text{ Then } x \cdot \frac{1}{x} = (a,b)(\frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}) = (\frac{a^2+b^2}{a^2+b^2}, \frac{-ab+ba}{a^2+b^2}) = (1,0).$ Q.E.D.

Identification of \mathbb{R} as a subfield of \mathbb{C} . Identify $(a,0) \in \mathbb{C}$ with $a \in \mathbb{R}$. Then (a,0)+(b,0)=(a+b,0), (a,0)(b,0)=(ab,0), so we can represent them by $a+b=a+b, a\cdot b=a\cdot b$. Write i=(0,1). $i^2=(0,1)(0,1)=(-1,0)$. So, $i^2=-1$. $(a,b) \leftrightarrow a+bi$. Usually write z=a+bi for $z \in \mathbb{C}$. Re(z)=a,Im(z)=b.

Definition 11. Complex conjugate of z=a+bi is defined as a-bi and denoted by \overline{z}

Note.

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$

$$2. \ \overline{zw} = \overline{z} \cdot \overline{w}$$

3.
$$z + \overline{z} = 2 \cdot \text{Re}(z)$$

4.
$$z - \overline{z} = 2i \cdot \operatorname{Im}(z)$$

3.
$$z + \overline{z} = 2 \cdot \text{Re}(z)$$

4. $z - \overline{z} = 2i \cdot \text{Im}(z)$
5. $z\overline{z} = (a + bi)(a - bi) = a^2 + b^2 \ge 0$, with $=$ if any only if $z = 0$

6.
$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{a-bi}{a^2+b^2}$$

Definition 12. $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$

Definition 12.
$$|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$$

In particular, if $z = a \in \mathbb{R}$ then $|z| = \sqrt{a^2} = |a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$

Theorem 7. For $z, w \in \mathbb{C}$,

1.
$$|z| \ge 0$$
 with $= iff z = 0$

$$2. |z| = |\overline{z}|$$

3.
$$|zw| = |z| \cdot |w|$$

4.
$$|\text{Re}(z) \le |z|, |\text{Im}(z)| \le |z|$$

Proof (Proof). Let
$$z = a + bi$$
. Then $|\operatorname{Re}(z)| = |a| \le \sqrt{a^2 + b^2} = |z|$ Q.E.D.

5.
$$|z+w| \le |z| + |w|$$
 (Triangle inequality)

Proof (Proof).

$$|z + w|^2 = (z + w)(\overline{z + w})$$

$$= z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$$

$$= |z|^2 + z\overline{w} + w\overline{z} + |w|^2$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$$

$$<= (|z| + |w|)^2$$

Q.E.D.

Theorem 8 (Cauchy-Schwarz inequality). If $a_1, a_n, b_1, b_n \in \mathbb{C}$, then

$$\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right| \leq \left(\sum_{j=1}^{n} |a_{j}|^{2}\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |b_{j}|^{2}\right)^{\frac{1}{2}}.$$

Interpretation: $(\vec{a}, \vec{b}) = \sum_{j=1}^{n} a_j \overline{b_j}$ defined on inner product on \mathbb{C}^n and $|(\vec{a}, \vec{b}) \leq \sqrt{(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})}$.

Proof (Proof). Let $A = \sum |a_j|^2$, $B = \sum |b_j|^2$, $C = \sum a_j \overline{b_j}$ We can assume 1. $B \neq 0$ because B = 0 is $0 \leq 0$, 2. $C \neq 0$ because C = 0, LHS is 0. For any $\lambda \in \mathbb{C}$, $0 \leq \sum_{j=1}^{n} |a_j + \lambda b_j|^2 = \sum_{j=1}^{n} (a_j + \lambda b_j)(\overline{a_j} + \overline{\lambda b_j}) = \sum_{j=1}^{n} |a_j|^2 + \lambda \sum_{j=1}^{n} b_j \overline{a_j} + \overline{\lambda} \sum_{j=1}^{n} a_j \cdot \overline{b_j} + |\lambda|^2 \sum_{j=1}^{n} |b_j|^2$. So $0 \leq A + \lambda \overline{C} + \overline{\lambda} C + |\lambda|^2 lhiB$ Q.E.D.