Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 7 / 2 / 2

Выполнил: студентка 101 группы Лисицина К. А.

> Преподаватель: Кузьменкова Е. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Выбор отрезков	4
Выбор ε_1 и ε_2 .	4
Результаты экспериментов	5
Результаты вычислений	5
Графическое представление	5
Структура программы и спецификация функций	6
Модуль asmintegral.asm:	6
Модуль integral.c:	6
Сборка программы (Маке-файл)	7
Makefile	7
Отладка программы, тестирование функций	8
Тесты функции root	8
Тесты функции integral	8
Программа на Си и на Ассемблере	9
Список цитируемой литературы	10

Постановка задачи

- Требуется реализовать численный метод, позволяющий вычислять площадь плоской фигуры, ограниченной тремя кривыми, путём нахождения точек пересечения кривых и вычисления площади под графиками кривых на соответствующих отрезках:
- Площадь под графиком необходимо искать квадратурной формулой трапеций.
- Вершины фигуры необходимо искать методом хорд.
- Отрезок для применения метода нахождения корней должен быть вычислен аналитически.
- Требуемая точность вычисления площади $\varepsilon = 0.001$.

Математическое обоснование

Пусть искомый корень уравнения f(x)=0 изолирован на некотором сегменте [a,b]. Предположим, что данная функция имеет на этом сегменте монотонную и непрерывную производную, сохраняющую опрееделенный знак. При этом возможны четыре случая:

- 1. f'(x) не убывает и положительна на [a, b],
- 2. f'(x) не возрастает и отрицательна на [a, b],
- 3. f'(x) не возрастает и положительна на [a, b],
- 4. f'(x) не убывает и отрицательна на [a, b].
 - В 1, 2 случаях справедлива индукционная формула $x_{n+1} = x_n \frac{(b-x_n)f(x_n)}{f(b)-f(x_n)}$
 - В 3, 4 случаях справедлива индукционная формула $x_{n+1} = x_n \frac{(a-x_n)f(x_n)}{f(a)-f(x_n)}$

Причем $\lim_{n\to\infty} x_n = c$, где f(c) = 0. Такая последовательность будет сходиться к корню, значит можно получить значение с какой угодно точностью. (метод хорд [1])

Заданые функции приведены ниже (рис. 1)

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Выбор отрезков

- $g_{12}=f_1-f_2$ корень ищется на отрезке [5, 8]: $g_{12}(5)=1.6-4<0,\ g_{12}(8)=2.07-2<0$ $g'_{12}(x)=\frac{1}{x}+2$ при $x\in[5,8]>0$ $g''_{12}(x)=-\frac{1}{x^2}$ при $x\in[5,8]<0$ Условия выбора отрезка выполнены.
- $g_{23}=f_2-f_3$ корень ищется на отрезке [4, 5]: $g_{23}(4)=5.5-6<0,\ g_{23}(5)=5.7-4>0$ $g_{23}'(x)=-2-\frac{1}{(2-x)^2}$ при $x\in[4,5]<0$ $g_{23}''(x)=\frac{4-2x}{(2-x)^4}$ при $x\in[4,5]<0$ Условия выбора отрезка выполнены.
- $g_{12}=f_1-f_3$ корень ищется на отрезке [2.1, 3]: $g_{13}(2.1)=0.741+4>0,\ g_{13}(3)=1.1-5<0$ $g_{13}'(x)=\frac{1}{x}-\frac{1}{(2-x)^2}$ при $x\in[2.1,3]<0$ $g_{13}''(x)=-\frac{1}{x^2}-\frac{4-2x}{(2-x)^4}$ при $x\in[2.1,3]<0$ Условия выбора отрезка выполнены.

Выбор ε_1 и ε_2 .

Все значения функций на заданных отрезках не превосходят 10, значит, можно сказать, что итоговая погрешность вычисления площади под графиком $\varepsilon_{finally} \leq \varepsilon_2 + 10 * \varepsilon_1$,

значит итоговая погрешность вычисляется следующим образом

$$\varepsilon = 3 * \varepsilon_{finally} = 3 * (\varepsilon_2 + 10 * \varepsilon_1) = 0.001$$

- ε общая погрешность вычисления площади.
- ε_1 заданная погрешность вычисления корня.
- $arepsilon_2$ заданная погрешность вычисления площади под графиком.

Отсюда, ε_1 можно взять 0.00001, а $\varepsilon_2 = 0.0001$.

Результаты экспериментов

Результаты вычислений

Все полученные значения представлеты в таблице (таблица 1)

Кривые	x	y
1 и 2	6.096	1.808
2 и 3	4.225	5.551
1 и 3	2.192	0.786

Таблица 1: Координаты точек пересечения

Графическое представление

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Модуль asmintegral.asm:

- \bullet float f1(float x); возвращает значение ln(x)
- float f2(float x); возвращает значение -2*x + 14
- float f3(float x); возвращает значение 1/(2-x)+6
- float f4(float x); возвращает значение 3/(x-4) + 4
- \bullet float f5(float x); возвращает значение 3/x

Модуль integral.c:

- float root(float(*f)(float), float(*g)(float), float a, float b, float eps1); вычисляет точку пересечения функций f и g на отрезке[a,b]с точностью eps1, используя метод хорд и производные функций f и g.
- float integral(float(*f)(float), float a, float b, float eps2); вычисляет площадь под графиком функции f на отрезке [a, b] с точностью eps2, используя метод трапеций.
- int main(int argc, char ** argv); функция main

Сборка программы (Маке-файл)

Makefile

- all: integral
- asmintegral.o: asmintegral.asm nasm -f elf32 -o asmintegral.o asmintegral.asm
- integral: integral.o asmintegral.o gcc -m32 -o integral integral.o asmintegral.o
- integral.o: integral.c gcc -m32 -std=c11 -c -o integral.o integral.c
- clean: rm *.o

Отладка программы, тестирование функций

Тестирование численных методов провидилось на тестовых функциях $f_4=\frac{3}{x-4}+4$ и $f_5=\frac{3}{x}$ с использованием их производных $f_4'(x)=-\frac{3}{(x-4)^2},\ f_5'(x)=-\frac{3}{x^2},$ $f_4''(x)=\frac{6}{(x-4)^3},\ f_5''(x)=\frac{6}{x^3}$

Тесты функции root

1. float $x_4=\mathrm{root}(f_4,f_5,0.5,1.02,0.0001)=1$; функции f_4 и f_5 пересекаются в точке с $\mathrm{x}=1$. $(f_4-f_5)(0.5)=3.14-6<0,\,(f_4-f_5)(1.02)=2.492-1.492>0\,\,(f_4-f_5)'(x)$

всегда <0 $(f_4-f_5)''(0.5)>0$ и $(f_4-f_5)''(1.02)>0$

Условия выполнены.

2. float $x_5 = \text{root}(f_4, f_5, 2.5, 3.5, 0.0001) = 3$; функции f_4 и f_5 пересекаются в точке с $\mathbf{x} = 3$.

 $(f_4-f_5)(2.5)=2-1.2>0,\,(f_4-f_5)(3.5)=-2-0.8<0\,\,(f_4-f_5)'(x)$ всегда <0

 $(f_4-f_5)''(2.5) < 0$ и $(f_4-f_5)''(3.5) < 0$

Условия выполнены.

Тесты функции integral

- 1. integral(f4, x4, x5, 0.0001) = 4.704; $\int_1^3 (\frac{3}{x-4} + 4) dx = 4x + 3 * log(x-4)|_1^3 = 8 3 * log(3) = 4.702$
- 2. integral(f5, x4, x5, 0.0001) = 3.296 $\int_1^3 \frac{3}{x} dx = 3 * log(x)|_1^3 = log(27) = 3.296$

Программа на Си и на Ассемблере

Исходные тексты программ на си и ассемблере имеются в сданном архиве.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.