Fertilizer Recommendation Guide (FRG) - 2018 (Version 2.0)

Submitted to

SPL2 Coordinators

Institute of Information Technology University of Dhaka

Submitted by

Md. Tahmidur Rahman Khan BSSE0801 Abdullah Al Jubaer BSSE812 5th Semester, BSSE 8th Batch Institute of Information Technology University of Dhaka

Letter of Transmittal

20th March, 2018

Coordinator
Software Project Lab 2
Institute of Information Technology
University of Dhaka

Subject: Submission of software requirement specification document on 'Fertilizer Recommendation Calculator'.

Sir

We, the team on which the project on 'Fertilizer Recommendation Calculator' was assigned, are submitting our software requirement specification document with due respect. We have tried our best for preparing the document. However, it might lack perfection.

So, may we therefore, hope that you would be kind enough to accept our document and oblige thereby.

Sincerely yours

Md. Tahmidur Rahman Khan (BSSE0801) Abdullah Al Jubaer (BSSE0812) BSSE 8th Batch Institute of Information Technology University of Dhaka

Date and Signature Dr. Mohammad Shoyaib Professor Institute of Information Technology University of Dhaka.

Acknowledgement

We are highly indebted for getting such a tremendous opportunity to prepare the report on Fertilizer Recommendation Calculator. We would like to thank whole-heartedly our supervisor, Dr. Mohammad Shoyaib, Professor, Institute of Information Technology, University of Dhaka, for giving us guidelines about how we can prepare this report. In completing this report, we have collected various important data and information from Bangladesh Agricultural University (BAU). We are thankful to every faculty member of BAU who provided us with necessary data and information, especially Abdullah Al Mahmud (Ph.D. fellow, Department of Soil Science, BAU).

Abstract

This study is made for 'Fertilizer Recommendation Calculator'. The scope of the study is to analyze how the farmers utilize the land by providing adequate amount of fertilizers and get the best yield of crops and how information regarding the soil is collected by the experts. The study also includes knowing the drawbacks and design the SRS (software requirements and specification) of the system. The object of the study is to develop an SRS of 'Fertilizer Recommendation Calculator'. This study also describes the how this SRS can be used to better the current system.

Table of Contents

Chapter 1	1
Introduction	1
1.1 Purpose	1
1.2 Intended Audience	1
Chapter 2	2
Inception	2
2.1 Introduction	2
2.2 Conclusion	6
Chapter 3	7
Elicitation	7
3.1 Introduction	7
3.2 Eliciting Requirements	7
Chapter 4	15
Scenario Based Modeling	15
4.1 Introduction	
4.2 Definition of Use Case	15
4.3 Use Case Diagrams	16
4.4 Activity Diagram	30
4.5 Swim-lane Diagram	
Chapter 5	44
Data Modeling	
5.1 Data modeling concept	
5.2 Data objects	
	· ·

	5.3 Entity Relationship Diagram	52
	5.4 Schema Diagram	53
Cha	apter 6	54
C	Class Based Modeling	54
	6.1 Class Based Modeling Concept	54
	6.2 General Classification	54
	6.3 Selection Criteria	57
	6.4 Associate Noun and Verb Identification	58
	6.5 Attribute Selection	60
	6.6 Methods Identification	62
	6.7 Finalizing Classes	64
	6.8 Class Relation Collaboration	65
	6.9 Class Diagram	73
Cha	apter 7	74
В	Sehavioral Modeling	74
	7.1 State Transition Diagram	74
	7.2 Sequence Diagram	81
Cha	apter 8	82
D	Pata Flow Diagram	82
Cha	apter 9	84
\mathcal{C}	Conclusion	84

Table of Figures

Figure 1: Use Case Level 0 - Fertilizer Recommendation Calculator	17
Figure 2: Use Case Level 1 - FRC Subsystems	18
Figure 3: Use Case Level 1.1: Authentication	20
Figure 4: Use Case Level 1.2: Required Fertilizer Calculation	23
Figure 5: Use Case Level 1.6 - Soil Sampling	28
Figure 6: Activity Diagram Level 1.1.1: Sign Up	30
Figure 7: Activity Diagram Level 1.1.2: Login and password recovery	31
Figure 8: Activity Diagram Level 1.1.3: Access Permission	32
Figure 9: Activity Diagram Level 1.2 - Required Fertilizer Calculation	33
Figure 10: Activity Diagram Level 1.3 – Nutrients Balance Sheet	34
Figure 11: Activity Diagram Level 1.4.1 – Upload Soil Form	35
Figure 12: Activity Diagram Level 1.4.2 – Query and Update	36
Figure 13: Swim-Lane Level 1.1.1: Sign Up	37
Figure 14: Swim-Lane Level 1.1.2 – Login and Password Recovery	38
Figure 15: Swim-Lane Level 1.1.3: Access Permission	39
Figure 16: Swim-Lane Level 1.2: Required Fertilizer Calculation	40
Figure 17: Swim-Lane Level 1.3: Nutrients Balance Sheet	41
Figure 18: Swim-Lane Level 1.4.1 – Upload Soil Form	42
Figure 19: Swim-Lane Level 1.4.2 – Query and Update	43
Figure 20: Relation between data objects	51
Figure 21: Entity Relationship Diagram	52
Figure 22: CRC Crop	65
Figure 23: CRC Nutrient	66
Figure 24: CRC AEZ	67
Figure 25: CRC Fertilizer	67
Figure 26: CRC Recommendator	68
Figure 27: CRC Input	69
Figure 28: CRC Output	70

Figure	29: CRC Sample	71
Figure	30: CRC User	72
Figure	31: State Transition User	76
Figure	32: State Transition Sample	77
Figure	33: State Transition Recommendation	77
Figure	34: State Transition Output	78
Figure	35: State Transition Nutrient	78
Figure	36: State Transition Input	79
Figure	37: State Transition Fertilizer	79
Figure	38: State Transition Crop	80
Figure	39: State Transition AEZ	80
Figure	40: Data Flow Diagram Level 0	82
Fiaure	41: Data Flow Diagram Level 1	83

List of Tables

Table 1:	Noun Identification for Data Modelling	48
Table 2:	Final Data Objects	49
Table 3:	General Classifications of nouns	56
Table 4:	Selection Criteria for potential classes	57
Table 5:	Associated nouns and verbs of the potential class	59
Table 6:	Attribute selection of classes	61
Table 7:	Method Selection of classes	63
Table 8:	Event Identification	75

Chapter 1

Introduction

This chapter is a part of the software requirement specification for the project 'Fertilizer Recommendation Calculator'. In this chapter intended audience for the project are focused on.

1.1 Purpose

This document briefly describes the Software Requirement Analysis of 'Fertilizer Recommendation Calculator'. It contains functional, non-functional, and supporting requirements and establishes a requirement baseline for the development of the system. The requirements specified in the SRS are independent, uniquely numbered and organized by topic. The SRS serves as an official mean of communicating user requirements to the developer and provides a common reference point for both the developer team and the stakeholder community. The SRS will evolve over time as users and developers work together to validate, clarify and expand its contents.

1.2 Intended Audience

This SRS in intended for several audiences including the customers as well as the project managers, designers, developers and testers.

- The customers will use this SRS to verify that the developer team has created a product that is acceptable to the customers.
- > This project managers of the developer team will use this SRS to plan milestones and a delivery date and ensure that the developing team is on track during development of the system.

Chapter 2

Inception

In this chapter, the inception part of the SRS will be discussed briefly.

2.1 Introduction

Inception is the beginning phase of requirements engineering. It defines how a software project gets started and what the scope and nature of the problem to be solved is. The goal of the inception phase is to identify the concurrent needs and conflicting requirements among the stakeholders of a software project. At project inception, a basic understanding of the effectiveness of preliminary communication and collaboration between the other stakeholders and the software team was established.

To establish the groundwork, the following factors have been worked on to the inception phase:

- List of stakeholders
- Recognizing multiple viewpoints
- Working towards collaboration
- Requirements questionnaire

2.1.1 List of Stakeholders

Stakeholders refer to any person or group who will be affected by the system directly or indirectly. Stakeholders include end-users who interact with the system and everyone else in an organization that might be affected by its installation. At inception, a list of people who will contribute input as requirements are elicited. The initial list will grow as stakeholders are

contacted because every stakeholder will be asked: "whom else do you think I should talk to?"

The following stakeholders were identified for the 'Fertilizer Recommendation Calculation".

Normal User: Normal user is the general software user.

Field Worker: Field workers are responsible for collecting soil samples. They also provide information and suggestion to the farmers about cultivation processes.

Soil expert: A soil expert is an individual who analyzes and researches soil. He/she researches the sample and updates the data.

Software Developer: A software developer is concerned with facets of the software development process, including the research, design, programming, maintenance and testing of computer software. He will be responsible for the outcomes of the software.

2.1.2 Recognizing Multiple Viewpoints

Different stakeholders demand different features from the software. To satisfy the stakeholders, most of these features should be included in the software.

Normal user's viewpoint

- Error free system
- Fast generation of fertilizer output
- Provide accurate cost for the required fertilizers
- Offline result
- User friendly

- Suggestion for best crop pattern for a specific region
- Application for feature phone (normal phone)
- Keep history

Field Worker's viewpoint

- User friendly
- Error free system
- Suggestion for best crop pattern for a specific region
- Fast generation of fertilizer output
- Provide as less input as possible
- Less internet data usage
- Keep history

Expert's viewpoint

- Error free system
- Fast generation of fertilizer output
- Nutrient requirements for a specific crop for a particular region
- User friendly nutrient balance sheet
- Soil sampling
- Keep history

Admin's viewpoint

- Error free system
- Strong authentication
- User friendly

Developer's viewpoint

- Easy to built
- Error free effective software

- No ambiguous requirement
- Getting a decent amount of money for project budget

2.1.3 Working towards collaboration

While working with different stakeholders, some conflicting and common viewpoints can be noticed. For this reason, final requirements can be gotten by collaborating the viewpoints.

Common viewpoints

- Error free effective system
- User friendly
- Easy to maintain the software

Conflicting viewpoints

- Developing the project in minimum budget
- Less internet usage
- Application for feature phone (normal phone)
- Keep history

Final Requirements

- Error free effective system
- User friendly
- Suggestion for best crop pattern for a specific region
- Fast generation of fertilizer output
- Nutrient requirements for a specific crop for a particular region
- User friendly nutrient balance sheet
- Offline result

2.1.4 Requirements Questionnaire

At first some context free questions were asked for identifying the stakeholders. Context free questions are helpful to identifying some stakeholders who cannot be identified by structural questions. Then questions regarding the software were regarding to know their demands.

2.2 Conclusion

In this inception phase, a basic understanding of the problem was developed and a preliminary nature of the solution was obtained. The requirements which are identified in this phase, will be used later for further steps of requirement engineering.

Chapter 3

Elicitation

This chapter specifies the Elicitation phase.

3.1 Introduction

Requirements Elicitation is a part of requirements engineering that is the practice of gathering requirements from the users, customers and other stakeholders. Many difficulties were faced, like understanding the problems, making questions for the stakeholders, limited communication with the stakeholders due to a short amount of time and volatility. Though it is not easy to gather requirements within a very short time, these problems have been surpassed in an organized and systematic manner.

3.2 Eliciting Requirements

The main task of this phase is to combine the elements of problem solving, elaboration, negotiation and specification. The collaborative working approach of the stakeholders is required to elicit the requirements. The following tasks were done for eliciting requirements-

- Collaborative Requirements Gathering
- Quality Function Deployment
- Usage Scenarios
- Elicitation work products

3.2.1 Collaborative Requirements Gathering

The meetings with the stakeholders created an indecisive state to elicit the requirements. To solve this problem, more than one meeting was held with the stakeholders. A slightly different scenario from these approaches has been found following activities have been completed to accomplish this task.

- The meetings were conducted with the owner, employees and suppliers.
 They were questioned about their requirements and expectations from the Grocery Management System.
- They were asked about the problems they were facing with the current manual system.
- Lastly final requirement list was selected from the meetings.

3.2.2 Quality Function Deployment

Quality Function Deployment (QFD) is a technique that translates the needs of the customer into technical requirements for software. Ultimately the goal of QFD is to translate subjective quality criteria into objective ones that can be quantified and measured and which can then be used to design and manufacture the product. It is a methodology that concentrates on maximizing customer satisfaction from the software engineering process. The requirements, which are given below, are identified successfully by the QFD.

3.2.2.1 Normal Requirements

The normal requirements are generally the objectives and goals that are stated for a product or system during meetings with the customer. The presence of these requirements fulfills customers' satisfaction. These are the normal requirements for the project.

- Suggestion for best crop pattern for a specific region
- Fast generation of fertilizer output

- Nutrient requirements for a specific crop for a particular region
- User friendly nutrient balance sheet
- Offline result
- Fertilizer requirement for a specific crop pattern

3.2.2.2 Expected Requirements

These requirements are intrinsic to the product or system and may be so elementary that the customer does not explicitly state them. Their absence will be a cause for significant dissatisfaction. Below the expected requirements for our project are briefly described.

- Error free software
- User friendly
- Effective system
- No ambiguous feature

3.2.2.3 Exciting Requirements

These requirements are for features that go beyond the customer's expectations and prove to be very satisfying when present. Following are some exciting requirements of this project.

- Providing Partial Crop Balance Sheet and Crop Balance Sheet
- Searching crops
- Cost Calculation for a specific crop

3.2.3 Usage Scenario

Required Fertilizer Calculation

To calculate the required fertilizer for a specific crop in a particular region, at first the required nutrients for the crop has to be calculated. After that the calculation of the required fertilizers can be conducted. This section will also estimate the cost for the required fertilizers. User will also be shown the best crop pattern for his/her region.

Nutrients Calculation

Required nutrients will be calculated for a particular crop for a specific region. It varies from crop to crop and land to land. So user will give input of the crop's name first. After that the varieties of that crop will be shown. User needs to select one of the varieties. Some varieties of a specific crop requires same nutrient amount while some varieties of the same crop do not. So crop class (if some varieties of the same crop requires similar nutrition, it is kept under the same class) is determined from crop name and its variety. User will then input soil texture. Texture class will be calculated from crop type and soil texture. Then user will give amount of six nutrients including nitrogen (N), phosphorous (P), potassium (K), zinc (Zn), sulfur (S) and boron (B) in the soil. 'Interpretation of the soil' (Very low, low, optimum, medium, high, very high) will be calculated from texture class and nutrient amount. This interpretation is different for each texture class. Each interpretation for a specific nutrient has lower limit, upper limit and range or interval (difference between upper limit and the lower limit). To calculate the required nutrients, the interval (C_s) and the lower limit (L_s) will be used of the soil interpretation. There is another interpretation called 'interpretation of nutrients for a specific crop class' which is as same as interpretation of soil but related to crop class rather than texture class. Using the interpretation of the soil (Very low, low, optimum, medium, high, very high) and crop class, the upper limit (U_f), range (C_i) has to be determined from called 'interpretation of nutrients for a specific crop class'. These values will have to be put in the following equation for a specific nutrient:

$$F_r = U_f - C_i/C_s * (S_t - L_s)$$

Where

 F_r = Required fertilizer nutrient for the soil test value

 U_f = The upper limit of the 'interpretation of nutrients for a specific crop class'

 C_i = range 'interpretation of nutrients for a specific crop class'

 C_s = range of 'interpretation of soil'

 S_t = soil test value given by the user

 L_s = lower limit of 'interpretation of soil'

From this equation, the amount for a specific nutrient for a specific crop will be determined.

Fertilizers Calculation and Cost Estimation

Amount of fertilizers will be calculated from nutrients calculation. Inorganic fertilizers including urea, TSP (Triple Super Phosphate), MoP (Muriate of Potash), gypsum, zinc sulphate and Boric Acid amount will be calculated. Each fertilizer is used to supply a certain amount of nutrients to the soil (For example: Urea has x amount of nitrogen per kg. So, if there is a lacking of y kg nitrogen in the soil, (y/x) kg urea has to be used then.). Urea, TSP, MoP, gypsum, zinc sulphate and boric acid are used for lack of nitrogen, phosphorous, potassium, zinc, sulfur and boron respectively. If organic fertilizers including cowdung, FYM (Farm Yard Manure), poultry manure (compost), GM (green manure), brown manure, crop residues are also used, user will need to put the amount that is available for usage and the amount of the inorganic fertilizer will be calculated accordingly.

After calculating the required amount of fertilizers, user will be shown an estimation of total cost for the fertilizers. Cost of the organic fertilizers are assumed to be cost-free and therefore those will not be calculated. If organic manure was used, the cost of the inorganic manure will be calculated accordingly.

Nutrients Balance Sheet

This section is mainly for the soil experts. They will have to provide information about the land type, agro-ecological zone (AEZ), name of three crops in the three seasons (Rabi, Kharif-1 and Kharif-2), the amount of nutrients (nitrogen, phosphorus and potassium) each of the crop got because of the inorganic fertilizer, organic manure name and amount of the organic manure (if organic manure was applied) and percentage of residues removed for each crop. Then the nutrient input, nutrient output and balance sheet will be calculated accordingly. Also for a specific AEZ, its fertility class and average rainfall will also be shown.

Nutrients Inputs

User will be shown total amount of nutrients that was provided to the crop for the specific AEZ in a particular season. The amount of the nutrients can be provided to the crop by organic and inorganic manure, BNF (fixation), deposition (rain), sedimentation (flood) and irrigation. These are also known as nutrients inputs. After showing all nutrients input information for each crop, the total amount of nutrients that was provided in the year for all three crops will be shown.

BNF varies from crop to crop. For some crops BNF is a fixed value where for others crops it either depends on the nitrogen-addition due to fertilizers or nitrogen-uptake by the crop. Deposition depends on the average annual rainfall of the location (AEZ). The amount of nitrogen, phosphorus and potassium increases due to rainfall (N = 0.14 * square root of rainfall, P = 0.023 * square root of rainfall, K = 0.092 * square root of rainfall). The amount gets divided into three seasons (Rabi, Kharif-1 and Kharif-2). Sedimentation is based on the land type of the AEZ and irrigation is based on the crop.

Nutrients Outputs

Crop produce, crop residues, leaching, denitrification, volatilization and soil erosion are considered as nutrients outputs. User will be shown the nutrient output for his/her desired crops in the particular season. Total nutrients outputs will also be shown for the year.

Harvested product or crop produce depends on the nutrient concentration and yield of the crop. Crop residues is based on the nutrient concentration, yield and produce-residue ratio of the crop. Leaching depends on the soil fertility of the land, average rainfall, amount of nutrient provided to the crop and nutrient-uptake by the crop. Denitrification is related to the soil fertility, nitrogen provided to the crops and nitrogen-uptake by the crop. Volatilization depends on the crop and soil erosion depends on the AEZ.

Balance Sheet

After calculating nutrients input and output, a balance sheet for nutrients will be calculated. There are two kinds of balance sheets: Total balance sheet and partial balance sheet. These are calculated for each nutrient for each crop in a particular season. Total balance sheet is calculated by substituting each nutrient output from each nutrient input for each crop. Partial balance sheet is calculated by adding each nutrient gained from fertilizer and manure and then substituting it by each nutrient that was outputted due to crop produce and crop residues. For both balance sheet, the similar nutrients for each crop is added to get the yearly balance sheet.

Fertilizer Recommendation based on AEZ and Cropping Pattern

Based on district, AEZ will be calculated and all the cropping pattern of that AEZ will be shown. After selecting any cropping pattern, user will be shown the required fertilizer for the crops.

3.2.4 Elicitation Work Product

At first, it has to be known whether the output of the Elicitation task may vary because of the dependency on the size of the system or the product to be built. Here, the Elicitation work product includes

- Making a statement of our requirements for the Fertilizer Recommendation Calculator
- Making a bounded statement of scope for our system.
- Making a list of customers, users and other stakeholders who participated in the requirements elicitation.
- Making a list of requirements that are organized by function and domain constraints that apply to each other.
- ➤ A set of usage scenarios that provide insight into the use of the system.
- Description of the system's technical environment.

Chapter 4

Scenario Based Modeling

This chapter describes the scenario based model for the Grocery Management System.

(**N.B**: All information related to Admin, Authentication and Soil Sampling will be excluded).

4.1 Introduction

Although the success of a computer-based system or product is measured in many ways, user satisfaction resides at the top of the list. If the software developer team understands how end users (and other actors) want to interact with a system, they will be better able to properly characterize requirements and build meaningful analysis and design models. Hence, requirements modeling begins with the creation of scenarios in the form of Use Cases, activity diagrams and swim lane diagrams.

4.2 Definition of Use Case

A Use Case captures a contract that describes the system's behavior under various conditions as the system responds to a request from one of its stakeholders. In essence, a Use Case tells a stylized story about how an end user interacts with the system under a specific set of circumstances. A Use Case diagram simply describes a story using corresponding actors who perform important roles in the story and makes the story understandable for the users.

The first step in writing a Use Case is to define that set of "actors" that will be involved in the story. Actors are the different people that use the system or product within the context of the function and behavior that is to be described. Actors represent the roles that people play as the system operators. Every user has one or more goals when using system.

Primary Actor

Primary actors interact directly to achieve required system function and derive the intended benefit from the system. They work directly and frequently with the software.

Secondary Actor

Secondary actors support the system so that primary actors can do their work. They either produce or consume information.

4.3 Use Case Diagrams

Use Case diagrams give the non-technical view of overall system.

4.3.1 Level 0 - Fertilizer Recommendation Calculator

Figure 1: Use Case Level 0 - Fertilizer Recommendation Calculator

Actors

- 1. Admin
- 2. Normal User
- 3. Field Worker
- 4. Expert

Description

There are four actors in this system who will use the system directly. Primary actors are those who will play action and get replies from the system. Secondary actors only produce or consume information.

4.3.2 Level 1: Fertilizer Recommendation Calculator Subsystems

Figure 2: Use Case Level 1 - FRC Subsystems

Actors

- 1. Admin
- 2. Normal User

- 3. Expert
- 4. Field Worker

Description

There are four subsystems in the Fertilizer Recommendation Calculator. They are:

- 1. Authentication
- 2. Calculation of Fertilizers
- 3. Nutrients Balance Sheet
- 4. Soil Sampling

4.3.3 Level 1.1: Authentication

Figure 3: Use Case Level 1.1: Authentication

Actor

- 1. Expert
- 2. Field Worker
- 3. Admin

Description

Users have to authenticate when they are going to upload any data to the server or while manipulating any existing data.

Sign Up

To have an account, user needs to sign up first. He/she needs to provide his/her email address, phone number and password. The password must contain at least eight characters including at least one digit. It is optional for him/her to provide his/her name, job title and account type ("field worker", "expert" or "admin"). Email address and phone number will be verified by checking for validity and duplicity checking. After it is verified, he/she will be sent a verification code. When he/she confirms the verification code, the account information will be stored to be verified by the admin. He/she will verify the phone number and choose whether the account type for the user will be "admin", "field worker" or "expert".

Login and Password Recovery

If a user currently has an account, he/she can log in to the system. To log in, he/she has to provide his email address or phone number and password. If both of those match, he/she can log in to the system. He/she can log out of the system whenever he/she wants.

If a user forgets his/her password, he/she can recover the password. To recover the password, he/she has to provide the email address or phone number that he/she used to sign up. If the email address or the phone number is valid, his/her password will be send to the email.

User can change his/her password while he/she is logged into his/her account. He/she can change his/her name, password and job title. If he/she changes his/her password it will checked to see if it matched the criteria provided for the passwords. After verifying everything, the information will be updated.

Access Permission

A predefined "admin" account will be provided to the admin user. He/she can grant access to other users as "admin", "field worker" or "expert". An "admin" account has access to any data and can perform every operation. He/she can also change type of another account or even block an account. A user without any account can calculate required amount of fertilizer and its cost and see nutrient balance sheet. A "field worker" and an "expert" account can do these too. However, a "field worker" account can also upload data regarding soil sampling. An "expert" account can do this too but this type of accounts also has the privileges to research on the soil sampling data and update any data when necessary.

Action Reply

Sign Up

Action 1: User provides credentials.

Reply 1: Input verified and stored for approval.

Log In

Action 1: User provides email and password.

Reply 1: Email and password is verified and if these match user can login.

Action 2: User wants to update account.

Reply 2: Provide information.

Action 3: User provides information.

Reply 3: Information is verified and if verified successfully, it is updated.

Action 4: User wants to recover password.

Reply 4: Provide email and password.

Action 5: User provides email and password.

Reply 6: If these match, password is sent to the email.

Access Permission

Action 1: User sees pending account and changes permission.

Reply 1: Account permission changed and updated.

Action 2: User wants to block account and provides email.

Reply 2: Account blocked.

4.3.4 Level 1.2: Required Fertilizer Calculation

Figure 4: Use Case Level 1.2: Required Fertilizer Calculation

To calculate the required fertilizer for a specific crop in a particular region, at first the required nutrients for the crop has to be calculated. After that the calculation of the required fertilizers can be conducted. This section will also estimate the cost for the required fertilizers.

Nutrients Calculation

Required nutrients will be calculated for a particular crop for a specific region. It varies from crop to crop and land to land. So user will give input of the crop's name first. After that the varieties of that crop will be shown. User needs to select one of the varieties. Some varieties of a specific crop requires same nutrient amount while some varieties of the same crop do not. So crop class (if some varieties of the same crop requires similar nutrition, it is kept under the same class) is determined from crop name and its variety. User will then input soil texture. Texture class will be calculated from crop type and soil texture. Then user will give amount of six nutrients including nitrogen (N), phosphorous (P), potassium (K), zinc (Zn), sulfur (S) and boron (B) in the soil. 'Interpretation of the soil' (Very low, low, optimum, medium, high, very high) will be calculated from texture class and nutrient amount. This interpretation is different for each texture class. Each interpretation for a specific nutrient has lower limit, upper limit and range or interval (difference between upper limit and the lower limit). To calculate the required nutrients, the interval (C_s) and the lower limit (L_s) will be used of the soil interpretation. There is another interpretation called 'interpretation of nutrients for a specific crop class' which is as same as interpretation of soil but related to crop class rather than texture class. Using the interpretation of the soil (Very low, low, optimum, medium, high, very high) and crop class, the upper limit (U_f), range (C_i) has to be determined from called 'interpretation of nutrients for a specific crop class'. These values will have to be put in the following equation for a specific nutrient:

$$F_r = U_f - C_i/C_s * (S_t - L_s)$$

Where

 F_r = Required fertilizer nutrient for the soil test value

 U_f = The upper limit of the 'interpretation of nutrients for a specific crop class'

 C_i = range 'interpretation of nutrients for a specific crop class'

 C_s = range of 'interpretation of soil'

 S_t = soil test value given by the user

L_s = lower limit of 'interpretation of soil'

From this equation, the amount for a specific nutrient for a specific crop will be determined.

Fertilizers Calculation and Cost Estimation

Amount of fertilizers will be calculated from nutrients calculation. Inorganic fertilizers including urea, TSP (Triple Super Phosphate), MoP (Muriate of Potash), gypsum, zinc sulphate and Boric Acid amount will be calculated. Each fertilizer is used to supply a certain amount of nutrients to the soil (For example: Urea has x amount of nitrogen per kg. So, if there is a lacking of y kg nitrogen in the soil, (y/x) kg urea has to be used then.). Urea, TSP, MoP, gypsum, zinc sulphate and boric acid are used for lack of nitrogen, phosphorous, potassium, zinc, sulfur and boron respectively. If organic fertilizers including cowdung, FYM (Farm Yard Manure), poultry manure (compost), GM (green manure), brown manure, crop residues are also used, user will need to put the amount that is available for usage and the amount of the inorganic fertilizer will be calculated accordingly.

After calculating the required amount of fertilizers, user will be shown an estimation of total cost for the fertilizers. Cost of the organic fertilizers are assumed to be cost-free and therefore those will not be calculated. If organic manure was used, the cost of the inorganic manure will be calculated accordingly.

Action Reply

Action 1: User provides information about nutrients and fertilizer.

Reply 1: Required nutrients, fertilizer and cost about crop is calculated and shown.

4.3.5 Level 1.3: Nutrients Balance Sheet

This section is mainly for the soil experts. They will have to provide information about the land type, agro-ecological zone (AEZ), name of three crops in the three seasons (Rabi, Kharif-1 and Kharif-2), the amount of nutrients (nitrogen, phosphorus and potassium) each of the crop got because of the inorganic fertilizer, organic manure name and amount of the organic manure (if organic manure was applied) and percentage of residues removed for each crop. Then the nutrient input, nutrient output and balance sheet will be calculated accordingly. Also for a specific AEZ, its fertility class and average rainfall will also be shown.

Nutrients Inputs

User will be shown total amount of nutrients that was provided to the crop for the specific AEZ in a particular season. The amount of the nutrients can be provided to the crop by organic and inorganic manure, BNF (fixation), deposition (rain), sedimentation (flood) and irrigation. These are also known as nutrients inputs. After showing all nutrients input information for each crop, the total amount of nutrients that was provided in the year for all three crops will be shown.

BNF varies from crop to crop. For some crops BNF is a fixed value where for others crops it either depends on the nitrogen-addition due to fertilizers or nitrogen-uptake by the crop. Deposition depends on the average annual rainfall of the location (AEZ). The amount of nitrogen, phosphorus and potassium increases due to rainfall (N = 0.14 * square root of rainfall, P = 0.023 * square root of rainfall, K = 0.092 * square root of rainfall). The amount gets divided into three seasons (Rabi, Kharif-1 and Kharif-2).

Sedimentation is based on the land type of the AEZ and irrigation is based on

the crop.

Nutrients Outputs

Crop produce, crop residues, leaching, denitrification, volatilization and soil

erosion are considered as nutrients outputs. User will be shown the nutrient

output for his/her desired crops in the particular season. Total nutrients

outputs will also be shown for the year.

Harvested product or crop produce depends on the nutrient concentration and

yield of the crop. Crop residues is based on the nutrient concentration, yield

and produce-residue ratio of the crop. Leaching depends on the soil fertility of

the land, average rainfall, amount of nutrient provided to the crop and

nutrient-uptake by the crop. Denitrification is related to the soil fertility,

nitrogen provided to the crops and nitrogen-uptake by the crop. Volatilization

depends on the crop and soil erosion depends on the AEZ.

Balance Sheet

After calculating nutrients input and output, a balance sheet for nutrients will

be calculated. There are two kinds of balance sheets: Total balance sheet and

partial balance sheet. These are calculated for each nutrient for each crop in

a particular season. Total balance sheet is calculated by substituting each

nutrient output from each nutrient input for each crop. Partial balance sheet

is calculated by adding each nutrient gained from fertilizer and manure and

then substituting it by each nutrient that was outputted due to crop produce

and crop residues. For both balance sheet, the similar nutrients for each crop

is added to get the yearly balance sheet.

Action Reply

Action 1: User provides input about nutrients and AEZ.

Reply 1: Balance sheet is generated.

4.3.6 Level 1.6 - Soil Sampling

Figure 5: Use Case Level 1.6 - Soil Sampling

Soil sampling is collecting soil samples and providing details about the sample. The details include sample id, location, latitude, longitude, time, user id, p^h of the soil and the nutrients amount of the soil.

Upload Sample Data

A "field worker" or an "expert" will collect soil samples for their purposes. He/she will add details about the sample. The location and the time of collecting the samples will be generated if Internet is available. Otherwise, user will have to give information about the location and time. When Internet becomes available, the sample data will be stored after it is given an id. The phone number of the user who will upload the data will also be stored.

Query and Update

An "expert" or an "admin" can query about the samples by providing a region and date range. He/she can also see the information about each sample and add further details. He/she can also edit the information.

Action - Reply

Upload Sample Data

Action 1: User provides input on sample form.

Reply 1: If internet is available, form is uploaded. Else the information is stored in the system.

Query and Update

Action 1: User gives location and date range.

Reply 1: Soil samples are shown.

Action 2: User provides information to update.

Reply 2: Information is updated.

4.4 Activity Diagram

Figure 6: Activity Diagram Level 1.1.1: Sign Up

Figure 7: Activity Diagram Level 1.1.2: Login and password recovery

Figure 8: Activity Diagram Level 1.1.3: Access Permission

Figure 9: Activity Diagram Level 1.2 - Required Fertilizer Calculation

Figure 10: Activity Diagram Level 1.3 - Nutrients Balance Sheet

Figure 11: Activity Diagram Level 1.4.1 – Upload Soil Form

Figure 12: Activity Diagram Level 1.4.2 - Query and Update

4.5 Swim-lane Diagram

Figure 13: Swim-Lane Level 1.1.1: Sign Up

Figure 14: Swim-Lane Level 1.1.2 - Login and Password Recovery

Figure 15: Swim-Lane Level 1.1.3: Access Permission

Figure 16: Swim-Lane Level 1.2: Required Fertilizer Calculation

Figure 17: Swim-Lane Level 1.3: Nutrients Balance Sheet

Figure 18: Swim-Lane Level 1.4.1 - Upload Soil Form

Figure 19: Swim-Lane Level 1.4.2 - Query and Update

Chapter 5

Data Modeling

5.1 Data modeling concept

If software requirements include the necessity to create, extend or interact with a database or complex data structures need to be constructed and manipulated, then the software team chooses to create data models as part of overall requirements modeling. The entity-relationship diagram (ERD) defines all data objects that are processed within the system, the relationships between the data objects and the information about how the data objects are entered, stored, transformed and produced within the system.

5.2 Data objects

A data object is a representation of composite information that must be understood by the software. Here, composite information means an information that has a number of different properties or attributes. A data object can be an external entity, a thing, an occurrence, a role, an organizational unit, a place or a structure.

5.2.1 Noun Identification

All the nouns in the scenario were identified.

No.	Noun	P/S	Attributes
1	User	S	5, 6, 7, 11, 12, 13
2	Data	Р	
3	Server	Р	

4	Account	P	
5	Email address	S	
6	Phone number	S	
7	Password	S	
8	Eight	P	
9	Characters	Р	
10	Digit	Р	
11	Name	S	
12	Job title	S	
13	Туре	S	
14	Field worker	S	5, 6, 7, 11, 12, 13
15	Expert	S	5, 6, 7, 11, 12, 13
16	Admin	S	5, 6, 7, 11, 12, 13
17	Verification code	Р	
18	Information	Р	
19	System	S	
20	Operation	Р	
21	Fertilizer	S	11, 13, 30, 64
22	Nutrient balance	S	
	sheet		
23	Soil sampling	S	5, 97, 98, 99, 100,
			101, 102
24	Crop	S	28, 78, 81, 84, 85,
			87, 90, 92
25	Region	Р	
26	Nutrient	S	11
27	Land	Р	
28	Crop name	S	
29	Variety	S	11, 91
30	Nutrient amount	S	
31	Crop class	S	
32	Soil texture	S	65, 108
33	Texture class	S	
34	Nitrogen	Р	
35	Phosphorous	Р	
36	Potassium	Р	
<u> </u>	·	•	<u> </u>

37	Zinc	Р	
38	Sulphur	Р	
39	Boron	Р	
40	Interpretation of	S	33, 41, 42, 43, 44
	the soil		
41	Interpretation	S	42, 43, 44
42	Lower limit	S	
43	Upper limit	S	
44	Interval	S	
45	Soil interpretation	Р	
46	Interpretation of	S	31, 41, 42, 43, 44
	nutrients for a		
	specific crop class		
47	Equation	Р	
48	Soil test value	S	
49	Inorganic fertilizer	S	11, 30
50	Urea	Р	
51	TSP	Р	
52	MoP	Р	
53	Gypsum	Р	
54	Zinc sulphate	Р	
55	Boric acid	Р	
56	Kg	Р	
57	Organic fertilizer	S	11, 30
58	Cowdung	Р	
59	FYM	Р	
60	Poultry manure	Р	
61	GM	Р	
62	Brown manure	Р	
63	Crop residues	Р	
64	Cost	S	
65	Land type	S	
66	AEZ	S	76, 77, 89, 109
67	Three	Р	
68	Season	Р	
69	Rabi	Р	
	<u> </u>		

70	Kharif-1	P
71	Kharif-2	P
72	Manure	P
73	Residues removed	P
74	Nutrient input	S
75	Nutrient output	S
76	Fertility class	S
77	Average rainfall	S
78	BNF	S
79	Deposition	S
80	Sedimentation	S
81	Irrigation	S
82	Value	P
83	Nitrogen-addition	S
84	Nitrogen-uptake	S
85	Crop produce	S
86	Leaching	S
87	Denitrification	S
88	Volatilization	S
89	Soil erosion	S
90	Nutrient	S
	concentration	
91	Yield	S
92	Produce-residue	S
	ratio	
93	Two	P
94	Total balance	P
	sheet	
95	Partial balance	P
	sheet	
96	Yearly balance	P
	sheet	
97	Sample id	S
98	Location	S
99	Time	S
100	Latitude	S

101	Longitude	S
102	Ph	S
103	Soil	P
104	Samples	P
105	Details	P
106	Internet	P
107	Date range	P
108	Crop type	S
109	Aez no	S
110	Database	S
111	Crop Pattern	S

Table 1: Noun Identification for Data Modelling

5.2.2 Potential Data Objects

> User: 5, 6, 7, 11, 12, 13

> Expert: 5, 6, 7, 11, 12, 13

> Field Worker: 5, 6, 7, 11, 12, 13

> Admin: 5, 6, 7, 11, 12, 13

> Fertilizer: 11, 13, 30, 64

Soil sampling: 5, 97, 98, 99, 100, 101, 102

> Crop: 28, 78, 81, 84, 85, 87, 90, 92

➤ Variety: 11, 91

> Soil Texture: 65, 108

> Interpretation of soil: 33, 41, 42, 43, 44

➤ Interpretation: 42, 43, 44

> Interpretation of nutrients for a specific crop class: 31, 41, 42, 43, 44

Inorganic fertilizer: 11, 30

Organic Fertilizer: 11, 30

> AEZ: 76, 77, 89, 109

5.2.3 Analysis for finalizing Data objects

- Expert, user, field worker, admin can be merged into user.
- ❖ Fertilizer, inorganic fertilizer, organic fertilizer can be merger into fertilizer. Fertilizer will have an additional attribute 'type'.
- ❖ Interpretation of nutrients for a specific crop, interpretation of soil is generalized to Analysis. Recommendation analysis and Texture analysis will have an 'is a' relationship with Analysis.
- Crop pattern and Nutrient will be added as a data object.

5.2.4 Finalizing Data Objects

No	Data Objects and attributes
1	User: email, phone number, job title, type, password, user name
2	Sample: <u>sample id</u> , longitude, latitude, time
3	Nutrient: <u>nutrient id</u> , name
4	Fertilizer: <u>name</u> , type, cost
5	Analysis: analysis id, status
6	Recommendation Analysis: crop class, upper limit, lower limit,
	interval
7	Texture Analysis: texture class, upper limit, lower limit, interval
8	Texture: <u>texture id</u> , soil type, land type
9	Variety: <u>name</u> , yield goal
10	Crop: <u>name</u> , type, bnf, produce-residue ratio
11	Crop pattern: <u>pattern id</u> , season
12	AEZ: <u>aez no</u> , average rainfall, fertility class

Table 2: Final Data Objects

5.2.5 Data Object Relations

Figure 20: Relation between data objects

5.3 Entity Relationship Diagram

Figure 21: Entity Relationship Diagram

5.4 Schema Diagram

*Database schema has been added to the end of the document.

Chapter 6

Class Based Modeling

This chapter is intended to describe class based modeling of the Grocery Management System.

6.1 Class Based Modeling Concept

Class-based modeling represents the objects that the system will manipulate, the operations that will applied to the objects, relationships between the objects and the collaborations that occur between the classes that are defined.

6.2 General Classification

To identify the potential classes, nouns were selected from the solution space of the story. These were then characterized in seven general classifications. The seven general characteristics are as follows:

- 1. External entities
- 2. Things
- 3. Events
- 4. Roles
- 5. Organizational units
- 6. Places
- 7. Structures

Following are the specifications of the nouns according to the general classifications.

No.	Noun	GC
1	User	4, 5, 7

Email address		
Password		
Name		
Job title		
·		
* *	4, 5, 7	
	4, 5, 7	
Admin	4, 5, 7	
System	2, 5	
Fertilizer	2, 5, 7	
Nutrient balance		
sheet		
Soil sampling	3, 7	
	2, 5, 7	
Nutrient	2, 5, 7 2, 5, 7	
Crop name		
Variety		
Nutrient amount		
 		
Soil texture		
Texture class		
Interpretation of	2, 6, 7	
the soil		
Interpretation	2, 6, 7	
Lower limit		
Upper limit		
Interval		
Interpretation of	2, 6, 7	
nutrients for a		
specific crop		
class		
Soil test value		
Inorganic 2, 5, 7		
fertilizer		
Organic fertilizer	2, 5, 7	
Cost		
Land type		
	Name Job title Type Field worker Expert Admin System Fertilizer Nutrient balance sheet Soil sampling Crop Nutrient Crop name Variety Nutrient amount Crop class Soil texture Texture class Interpretation of the soil Interpretation Lower limit Upper limit Upper limit Interval Interval Interpretation of nutrients for a specific crop class Soil test value Inorganic fertilizer Organic fertilizer	

34	AEZ	4, 5, 7
35	Residues	
	removed	
36	Nutrient input	
37	Nutrient output	
38	Fertility class	
39	Average rainfall	
40	BNF	
41	Deposition	
42	Sedimentation	
43	Irrigation	
44	Nitrogen-	
	addition	
45	Nitrogen-uptake	
46	Crop produce	
47	Leaching	
48	Denitrification	
49	Volatilization	
50	Soil erosion	
51	Nutrient	
	concentration	
52	Yield	
53	Produce-residue	
	ratio	
54	Sample id	
55	Location	
56	Time	
57	Latitude	
58	Longitude	
59	Ph	
60	Crop type	
61	Aez no	
62	Database	1, 6
63	Crop Pattern	

Table 3: General Classifications of nouns

6.3 Selection Criteria

The potential classes were then selected as classes by six Selection Criteria.

A potential class becomes a class when it fulfills all six characteristics.

- 1. Retained Information
- 2. Needed Services
- 3. Multiple Attributes
- 4. Common attributes
- 5. Common operations
- 6. Essential requirements

No.	Noun	GC
1	User	1, 2, 3, 4, 5
2	Field worker	1, 2, 3, 4, 5
3	Expert	1, 2, 3, 4, 5
4	Admin	1, 2, 3, 4, 5
5	System	6
6	Fertilizer	1, 3, 4, 5
7	Soil sampling	1, 3, 4, 5
8	Crop	1, 3, 4, 5
9	Nutrient	1, 3, 4, 5
10	Interpretation of	1, 3, 4, 5
	the soil	
11	Interpretation	1, 3, 4, 5
12	Interpretation of	1, 3, 4, 5
	nutrients for a	
	specific crop	
	class	
13	Inorganic	1, 3, 4, 5
	fertilizer	
14	Organic fertilizer	1, 3, 4, 5
15	AEZ	1, 3, 4, 5
16	Database	6

Table 4: Selection Criteria for potential classes

6.4 Associate Noun and Verb Identification

No	Potential Class	Noun	Verb
1	User	Name, job title, password, email, phone number	Validate, verify
2	Expert	Name, job title, password, email, phone number	Validate, verify, upload, create sample, view, update
3	Admin	Name, job title, password, email, phone number	Validate, verify, upload, approve, view, update
4	Field Worker	Name, job title, password, email, phone number	Validate, verify, upload, create sample
5	Crop	Name, variety, class	Get class, calculate seasonal balance, get interpretation, calculate bnf, calculate sedimentation, calculate irrigation, calculate total input, calculate harvested product, calculate leeching, calculate gaseous, calculate residues, calculate total output
6	Fertilizer	Name, quantity, unit cost	Calculate fertilizer, get nutrient ratio
7	Organic Fertilizer	Name, quantity, unit cost	Calculate fertilizer, get nutrient ratio
8	Inorganic Fertilizer	Name, quantity, unit cost	Calculate fertilizer, get nutrient ratio
9	AEZ	Aez no, average rainfall, fertility class, season, land type	Calculate deposition, calculate erosion, Calculate balance graph
10	Sample	Id, location, longitude, latitude, time, texture, ph	Get location, calculate Ph

11	Nutrient	Name, quantity	Calculate nutrient, get composition
12	Interpretati	Status, lower limit,	
	on	higher limit, range	
13	Interpretati on of nutrients for a specific crop		Get recommendation
14	Interpretati on of soil		Get recommendation
15	Database		
16	System		

Table 5: Associated nouns and verbs of the potential class

6.5 Attribute Selection

No	Class	Attributes
1	User	name
		email
		phone
		password
		title
2	Admin	name
		email
		phone
		password
		title
3	Expert	name
		email
		phone
		password
		title
4	Field Worker	name
		email
		phone
		password
		title
5	Crop	name
		variety
		nutrient
		recommendator
		harvestedProduct
		leeching
		gaseous
		residues
		bnf
		manure
		sedimentation
		irrigation
6	Fertilizer	name
		commercialName
		unitCost
		quantity

7	OrganicFertilizer	name
		unitCost
		quantity
8	InorganicFertilizer	name
		commercialName
		unitCost
		quantity
9	AEZ	aezNo
		season
		landType
		avgRainFall
		crop
		erosion
		deposition
10	Sample	id
		location
		time
		nutrient
		texture
		ph
11	Nutrient	name
		quantity
		requiredNutrient
		cropName
12	Interpretation	Status, lower limit, higher limit, range
13	Interpretation of	
	nutrients for a	
	specific crop	
14	Interpretation of	
	soil	
15	Database	
16	System	

Table 6: Attribute selection of classes

6.6 Methods Identification

No	Class	Methods
1	User	validate()
		verify()
2	Admin	approve()
		createSample()
		validate()
		verify()
3	Expert	createSample()
		validate()
		verify()
4	Field Worker	createSample()
		validate()
		verify()
5	Crop	getClass()
		getRecommendation()
		calculateHarvestedProduct()
		calculateLeeching()
		calculateGaseous()
		calculateResidues()
		calculateBnf()
		calculateManure()
		calculateSedimentation()
		calculateIrrigation()
6	Fertilizer	calculateFertilizer()
		getNutrientRatio()
		calculateTotalCost()
7	OrganicFertilizer	calculateFertilizer()
		getNutrientRatio()
8	InorganicFertilizer	calculateFertilizer()
		getNutrientRatio()
		calculateTotalCost()
9	AEZ	getAvgRainFall()
		calculateErosion()
		calculateDeposition()
		calculateBalance()
		showBalanceGraph()
10	Sample	generateLocation()

		calculatePH()
11	Nutrient	calculateNutrient()
		getComposition()
		calculateTotalBalance()
12	Interpretation	
13	Interpretation of	getFertilizerRecommendation()
	nutrients for a	getNutrientRecommendation()
	specific crop	
14	Interpretation of	getNutrientRecommendation()
	soil	
15	Database	
16	System	

Table 7: Method Selection of classes

6.7 Finalizing Classes

- > User, Admin, Expert and Field Worker classes are merged into User as these share same attributes and methods.
- ➤ Crop class has become big. So, it some of its attributes and methods has been transferred to two new classes: Input and Output. Input class refers to all the nutrients that get absorbed by the crop and Output class refers to all the nutrients released by the crop.
- Interpretation, Interpretation for soil and Interpretation of nutrients for specific crops has been merged and a new class Recommendator has been created. Also, Interpretation class will be used as a data class which will have lower limit, upper limit, interval and status as its attributes.
- > Rest of the classes have been created.

6.8 Class Relation Collaboration

Стор	
Super Classes:	
Sub Classes:	
Description: Hold info of crop season and have some operations to	calculate recommendation and balance sheet
Attributes:	
Name	Description
name	The name of the crop which uniqely identified the crop with season
variety A crop can have one or more variety	
variety	A crop can have one or more variety
	A crop can have one or more variety For growing properly a crop required some amount of nutrient
variety nutrient recommendator	1
nutrient	For growing properly a crop required some amount of nutrient A instants of Remmendator class which provide require amount of
nutrient recommendator	For growing properly a crop required some amount of nutrient A instants of Remmendator class which provide require amount of
nutrient recommendator Responsibilities:	For growing properly a crop required some amount of nutrient A instants of Remmendator class which provide require amount of nutrient as well as fertilizer.

Figure 22: CRC Crop

Nutrient		
Super Classes:		
Sub Classes:		
Description: This class contains some attributes of a partice quantity of nutrient and estimating nutrient bala	ular nutrient element and some resposibility to calculate required ance of SOIL PLANT SYSTEM.	
Attributes:		
Name	Description	
name	Name of the nutrient such as "Nitrogen"	
quantity	Soil test value	
input	Instance of a 'Input' structure which contain 'INPUT' of SOIL PLANT SYSTEM	
output Instance of a 'Output' structure which contain OUTPUT of SOIL PLANT SYSTEM		
Responsibilities:		
Name	Collaborator	
Calculating required nutrient for specific status	Recommendator, Database	
Calculating percent nutrient composition in a fertilizer	Fertilizer, Database	
Calculating partial and final balance for a specific crop and nutrient	Crop, Input, Output	
nutrient and management of a specific drop and	Powered By □V	

Figure 23: CRC Nutrient

AEZ			
Super Classes:			
Sub Classes:			
Description: Holds some information about an Al	FZ which requies to estimate nutrient balance		
Attributes:			
Name	Description		
aezno	'Agro Economic Zone' which describe the location		
season	Robi, Kharif1, Kharif2		
landType	Land type of particular locationg		
avgRainFall Average rainfall of 30 years of the particular AE.			
rop Instance of Crop class			
Responsibilities:			
	_		
Name	Collaborator		
Estimating the nutrint balance of SOIL PLANT SYSTEM for a specific location	Crop		
	Powered By□Visual Paradigm Community Edition &		

Figure 24: CRC AEZ

Figure 25: CRC Fertilizer

Recommendator			
Super Classes:			
Sub Classes:			
Description: Provides recommendation of	fertilizer for the particular nutrient status, crop variety and texture		
Attributes:			
Name	Description		
cropClass	Specifies crop		
	Specifies crop Specifies texture		
textureClass			
textureClass interpretation	Specifies texture		
textureClass interpretation nutrient	Specifies texture Structure which provide data to calculate		
cropClass textureClass interpretation nutrient fertilizer Responsibilities:	Specifies texture Structure which provide data to calculate		
textureClass interpretation nutrient fertilizer	Specifies texture Structure which provide data to calculate		
textureClass interpretation nutrient fertilizer Responsibilities:	Specifies texture Structure which provide data to calculate Instance of Nutrient		

Figure 26: CRC Recommendator

Input			
Super Classes:			
Sub Classes:			
Description: Store and calculate input parameter of Soil Plant System(Nutrient balance)			
Attributes:			
Name	Description		
bnf			
fertilizer			
manure			
sedimentation			
irrigation			
Responsibilities:			
Name	Collaborator		
Calculating bnf, fertilizer, nutrient, sedimentation,	Database		
Adding total iutput values	Nutrient		
	Powered By□Visual Paradigm Community Edition &		

Figure 27: CRC Input

Output		
Super Classes:		
Sub Classes:		
Description: Store and calculate output parameters of So	oil Plant System(Nutrient Balance)	
Attributes:		
Name	Description	
Name	Description	
narve stedPoduct	Remaining nutrint after production	

narve stedPoduct		
narve stedPoduct eaching		
narve stedPoduct e aching paseous		
narvestedPoduct eaching gaseous asidues		
narve stedPoduct e aching gaseous asidues erosion Responsibilities:	Remaining nutrint after production	
narvestedPoduct eaching gaseous asidues erosion		
narve stedPoduct e aching gaseous asidues erosion Responsibilities:	Remaining nutrint after production Collaborator	

Figure 28: CRC Output

Sample			
Super Classes:			
Sub Classes:			
Description: Holds the quantitive and qua parameter.	alitative status of nutrient and soil and calculate some of to		
Attributes:			
Autoutes.			
Name	Description		
id	Unique id of sample		
location	latitude and lagnitude		
time	Time		
nutrient	Quantity of nutrients found from test result		
exture Qualitative status of soil			
h PH			
Responsibilities:			
N	O-H-b-s-b-		
Name	Collaborator		
Specifing location Database			
Updating value	User		

Figure 29: CRC Sample

User	
Super Classes:	
Sub Classes:	
Description: Hold the information a	about different type of users and verify these information
Attributes:	
Attributes:	
Name	Description
name	Name of user
	Name of user Email of user
email	110.110 01 0001
name email password phoneno	Email of user
email password phoneno	Email of user Password of user
email password	Email of user Password of user User's phone
email password phone no designation	Email of user Password of user User's phone
email password phoneno designation Responsibilities:	Email of user Password of user User's phone User's designation
email password phone no designation Responsibilities:	Email of user Password of user User's phone User's designation Collaborator

Figure 30: CRC User

6.9 Class Diagram

*Class diagram has been added to the end of the document separately.

Chapter 7

Behavioral Modeling

7.1 State Transition Diagram

State diagram represents active states for each class the events (triggers). For this we identified all the events, their initiators and collaborators.

Identifying Events

No	Event	Initiator	Collaborator
1	Verify	User: verify()	Database: query()
2	Approve	User: approve()	Database: insert()
3	Upload Soil	User: upload()	Database: insert()
	Sample		
4	Validate	User: validate()	
5	Identify	Sample:	
	location	generateLocation()	
6	Calculate pH	Sample: calculatePH()	
7	Update value	Sample: updateValue	Database: update()
8	Show balance	AEZ: calulateBalance(),	Crop:
	graph	showBalanceGraph()	calculateSeasonalBalan
			ce()
9	Get crop class	Crop: getCropClass()	Database: query()
10	Calculate	Crop:	Recommendator:
	Recommendati	calculateRecommendation	Recommendator()
	on	0	
11	Set	Recommendation:	Database: query()
	interpretation	setInterpretation()	
12	Get Nutrient	Recommendation:	Nutrient:
	Recommendati	getNutrientRecommendati	calculateNutrient()
	on	on()	

13	Get fertilizer	Recommendation:	Fertilizer:
	recommendati	getFertilizerRecommendat	calculateFertilizer()
	on	ion()	
14	Calculate	Fertilizer:	Database: query()
	Fertilizer	calculateFertilizer()	
15	Calculate Cost	Fertilizer:	Database: query()
		calculateTotalCost()	
16	Get nutrient	Fertilizer:	Nutrient:
	ratio	getNutrientRatio()	getComposition()
17	Calculate	Nutrient:	Database: query()
	Nutrient	calculateNutrient()	
18	Calculate	Nutrient: getComposition()	Database: query()
	composition		
19	Calculate	Crop:	Nutrient:
	Seasonal	calculateSeasonalBalance()	calculateTotalBalance(
	Balance)
20	Calculate total	Nutrient:	Input: calculateTotal()
	balance	calculateTotalBalance()	Output:
			calculateTotal()
21	Calculate Total	Input: calculateTotal()	Database: query()
	Nutrient Input	calculateBnf()	
		calculateSedimentation()	
		calculateIrrigation()	
22	Calculate Total	Ouput: calculateTotal()	Database: query()
	Nutrient	calculateHP()	
	Output	calculateLeeching()	
		calculateGaseous()	
		calculateResidues()	
		calculateErosion()	

Table 8: Event Identification

Figure 31: State Transition User

Figure 32: State Transition Sample

Figure 33: State Transition Recommendation

Figure 34: State Transition Output

Figure 35: State Transition Nutrient

Figure 36: State Transition Input

Figure 37: State Transition Fertilizer

Figure 38: State Transition Crop

Figure 39: State Transition AEZ

7.2 Sequence Diagram

*Sequence has been added to the end of the document.

Chapter 8

Data Flow Diagram

Figure 40: Data Flow Diagram Level 0

Figure 41: Data Flow Diagram Level 1

Chapter 9

Conclusion

From this SRS report on Fertilizer Recommendation Calculation, the readers will get a clear and easy view of the overall system of management system of the regular grocery shops. This SRS document can be used effectively to maintain the software development cycle. It will be very easy to conduct the whole project using SRS. Hopefully, this document can also help the junior BSSE students. We tried best to remove all dependencies and make an effective and fully designed SRS.