# Алгоритми та складність

І семестр

Лекція 5

- Піраміда (binary heap, бінарна купа) частково упорядкована структура даних, яку можна розглядати як бінарне дерево з певними властивостями.
- Дерево заповнене на всіх рівнях крім, можливо, останнього.
- Останній рівень заповнюється зліва направо до вичерпання елементів.
- Ключі у вузлах певним чином упорядковані.
- Бінарна піраміда може бути ефективно реалізована у вигляді масиву шляхом запису її елементів згори донизу зліва направо.

- Зручно зберігати елементи в масиві на позиціях з 1 до *n* (нульовий індекс або не використовується, або заповнюється значенням-обмежувачем).
- Індекси батька й синів i-го вузла обчислюються наступними функціями:  $P_{ARENT}(i)$

return  $\lfloor i/2 \rfloor$ 

LEFT(i) return 2i

RIGHT(i) return 2i + 1

• Ці операції будуть швидко виконуватись при реалізації через бітові зміщення.

• *Незростаюча піраміда* (max-heap property): для кожного некореневого вузла виконується

$$A [PARENT (i)] \geqslant A [i]$$
.

Тобто в корені знаходиться найбільший елемент.

• *Неспадаюча піраміда* (min-heap property): для кожного некореневого вузла виконується

$$A [PARENT (i)] \leqslant A [i]$$
.

Тобто в корені знаходиться найменший елемент.

- Висота піраміди висота її кореня.
- Для n-елементної піраміди це  $\Theta(\lg n)$ .
- Час виконання основних операцій в піраміді пропорційний висоті дерева.

• Чи є вказані дерева пірамідами?



• Приклад представлення піраміди бінарним деревом (а) та масивом (б):



• Якою будуть найбільша та найменша кількості елементів в піраміді висотою *h*?

- Якою будуть найбільша та найменша кількості елементів в піраміді висотою *h*?
- Чи буде сам пірамідою довільний вузол піраміди разом з його потомками?

- Якою будуть найбільша та найменша кількості елементів в піраміді висотою *h*?
- Чи буде сам пірамідою довільний вузол піраміди разом з його потомками?
- Чи є масив з відсортованими елементами неспадаючою пірамідою?

- Якою будуть найбільша та найменша кількості елементів в піраміді висотою *h*?
- Чи буде сам пірамідою довільний вузол піраміди разом з його потомками?
- Чи є масив з відсортованими елементами неспадаючою пірамідою?
- Де в незростаючій піраміді, у якої всі елементи різні, може знаходитися найменший елемент?

- Якою будуть найбільша та найменша кількості елементів в піраміді висотою *h*?
- Чи буде сам пірамідою довільний вузол піраміди разом з його потомками?
- Чи є масив з відсортованими елементами неспадаючою пірамідою?
- Де в незростаючій піраміді, у якої всі елементи різні, може знаходитися найменший елемент?
- Які індекси масиву будуть мати листки *n*елементної піраміди?

#### Процедура Max Heapify

- Розглядається незростаюча піраміда
- Служить для підтримки властивості незростання піраміди

```
АЛГОРИТМ MAX\_HEAPIFY(A, i)
1 l \leq LEFT(i)
2 r \leq RIGHT(i)
3 if l \le heap\_size[A] to A[l] > A[i]
4 then largest \ll l
5 else largest \ll i
6 if r \le heap\_size[A] to A[r] > A[largest]
    then largest \ll r
  if largest \neq i
    then Обміняти A[i] \ll A[largest]
9
10
         MAX_HEAPIFY(A, largest)
```

- Вважається, що дерева з коренями Left(i) та Right(i) незростаючі піраміди, але елемент A[i] може порушувати цю властивість.
- Значення A[i] просувається вниз, поки відповідне дерево з цим коренем не стане незростаючою пірамідою.



Час роботи Max\_Heapify:

- час виправлення відношень між елементами A[i],
   A[Left(i)] або A[Right(i)] складає Θ(1);
- час роботи процедури з піддеревом з коренем в одному з дочірніх вузлів вузла *і*: розмір кожного з них не перевищить 2*n*/3 (в найгіршому випадку останній рівень буде заповнений наполовину):

$$T(n) \leqslant T(2n/3) + \Theta(1).$$

Розв'язок співвідношення (випадок 2 основної теореми):  $T(n) = O(\lg n)$ .

Час роботи процедури з вузлом на висоті h: O(h).

#### Процедура Build Max Heap:

- кожен лист дерева можна вважати одноелементною пірамідою;
- будує піраміду знизу вгору, викликаючи для кожного вузла-нелиста Max\_Heapify:

```
АЛГОРИТМ BUILD\_MAX\_HEAP (A)
```

- 1  $heap\_size[A] \le length[A]$
- 2 for  $i \leq \lfloor length[A]/2 \rfloor$  downto 1
- 3 **do** MAX\_HEAPIFY(A, i)

Покажемо коректність алгоритму через інваріант циклу:

#### який?

#### Процедура Build Max Heap:

- кожен лист дерева можна вважати одноелементною пірамідою;
- будує піраміду знизу вгору, викликаючи для кожного вузла-нелиста Max\_Heapify:

#### АЛГОРИТМ $BUILD\_MAX\_HEAP$ (A)

- 1  $heap\_size[A] \le length[A]$
- 2 for  $i \leq \lfloor length[A]/2 \rfloor$  downto 1
- 3 **do** MAX\_HEAPIFY(A, i)

#### Покажемо коректність алгоритму через інваріант циклу:

перед кожною ітерацією циклу всі вузли з індексами (i+1), (i+2), ..., n є коренями незростаючих пірамід.



Коректність Build\_Max\_Heap:

• Ініціалізація: перед першою ітерацією  $i = \lfloor n/2 \rfloor$ ; усі вузли з індексами  $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \ldots, n-1$  листи, тому кожен з них є коренем тривіальної піраміди.

Коректність Build\_Max\_Heap:

- Ініціалізація: перед першою ітерацією  $i = \lfloor n/2 \rfloor$ ; усі вузли з індексами  $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \ldots, n-$  листи, тому кожен з них є коренем тривіальної піраміди.
- Збереження: відносно вузла і його дочірні вершини мають більший номер та за інваріантом циклу є коренями незростаючих пірамід умова виклику Мах\_Неаріfy(A,i), щоб зробити вузол і коренем незростаючої піраміди; виклик зберігає факт, що вузли з (i+1)-го по n-й є коренями незростаючих пірамід, а зменшення індексу і в циклі забезпечує виконання інваріанту перед наступною ітерацією.

Коректність Build\_Max\_Heap:

- Ініціалізація: перед першою ітерацією  $i = \lfloor n/2 \rfloor$ ; усі вузли з індексами  $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \ldots, n-$  листи, тому кожен з них є коренем тривіальної піраміди.
- Збереження: відносно вузла і його дочірні вершини мають більший номер та за інваріантом циклу є коренями незростаючих пірамід умова виклику Мах\_Неаріfy(A,i), щоб зробити вузол і коренем незростаючої піраміди; виклик зберігає факт, що вузли з (i+1)-го по n-й є коренями незростаючих пірамід, а зменшення індексу і в циклі забезпечує виконання інваріанту перед наступною ітерацією.
- *Завершення*: після виконання циклу *i*=0. За інваріантом всі вузли з індексами 1,2,..., *n* корені незростаючих пірамід, зокрема і кореневий вузол 1.

Груба оцінка процедури Build\_Max\_Heap:

- кожен виклик  $Max_Heapify$  займає час  $O(\lg n)$ ;
- усього таких викликів O(n);
- значить верхня оцінка  $O(n \lg n)$ .

#### Груба оцінка процедури Build\_Max\_Heap:

- кожен виклик  $Max_Heapify$  займає час  $O(\lg n)$ ;
- усього таких викликів O(n);
- значить верхня оцінка  $O(n \lg n)$ .

#### Факти для точної оцінки:

- ullet висота n-елементної піраміди  $\lfloor \lg n \rfloor$ ;
- рівень на висоті h містить не більше  $\left[n/2^{h+1}\right]$  вузлів;
- час виклику Max\_Heapify для вузла висоти h: O(h).

Верхня оцінка процедури Build\_Max\_Heap:

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right).$$

3 співвідношення 
$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
 при  $x = 1/2$  отримуємо

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{\left(1 - 1/2\right)^2} = 2.$$

Звідки

$$O\left(n\sum_{h=0}^{\lfloor \lg n\rfloor} \frac{h}{2^h}\right) = O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right) = O\left(n\right).$$

#### **Алгоритм Heapsort**:

```
АЛГОРИТМ HEAPSORT (A)

1 BUILD_MAX_HEAP(A)

2 for i <= length[A] downto 2

3 do Обміняти A[1] <=> A[i]

4 heap_size[A] <= heap_size[A] - 1

5 MAX_HEAPIFY(A,1)
```

- Build\_Max\_Heap має час O(n);
- (n-1) виклик Max\_Heapify по O( $lg\ n$ ).

Отже, загальний час  $O(n \lg n)$ .

Сортування пірамідою не використовує додаткову пам'ять.

#### Ілюстрація роботи алгоритму Heapsort



На основі пірамід можна ефективно реалізувати чергу з пріоритетами.

<u>Черга з пріоритетами</u> — структура даних, призначена для обслуговування множини S, з кожним елементом якої пов'язане значення-ключ.

Операції незростаючої черги з пріоритетами:

- Insert(S,x) додає елемент x до множини S.
- Maximum(S) повертає елемент S з найбільшим ключем.
- Extract\_Max(S) повертає елемент S з найбільшим ключем, видаливши його.
- Increase\_Key(S,x,k) замінює значення ключа, що відповідає елементу x, на ключ з більшим значенням k.

- Незростаюча черга з пріоритетами: планування завдань на комп'ютері, що спільно використовується різними користувачами (наступним вибирається завдання з найбільшим пріоритетом).
- <u>Неспадаюча</u> черга з пріоритетами: моделювання систем, що керують подіями (ключем є час настання події; вибирається подія, що відбулася раніше за інші).

На практиці часто може виникати необхідність визначати за об'єктом відповідний елемент черги чи навпаки. Тому має бути передбачена належна організація і обробка взаємних ідентифікаторів.

АЛГОРИТМ *HEAP\_MAXIMUM* (A)

1 return A[1]

Константний час  $\Theta(1)$ .

АЛГОРИТМ  $HEAP\_EXTRACT\_MAX$  (A)

- 1 **if**  $heap\_size[A] < 1$
- 2 then error "Порожня черга"
- 3 max <= A[1]
- $4 A[1] \leq A[heap\_size[A]]$
- 5  $heap\_size[A] \le heap\_size[A] 1$
- 6 MAX\_HEAPIFY(A,1)
- 7 **return** max

Час  $O(\lg n)$ , бо такий час виклику  $Max\_Heapify$ , а перед ним константні кроки.

```
АЛГОРИТМ HEAP\_INCREASE\_KEY (A, i, key)

1 if key < A[i]

2 then error "Новий ключ менший за поточний"

3 A[i] <= key

4 while i > 1 та A[PARENT(i)] < A[i]

5 do Обміняти A[i] <=> A[PARENT(i)]

6 i <= PARENT(i)
```

*i* – позиція в піраміді, *key* – новий ключ.

Після заміни ключа йде перевірка, чи не порушилась властивість незростання. В такому випадку відбувається обмін з батьківським елементом, поки властивість не відновиться.

Час роботи  $O(\lg n)$  — пропорційно висоті піраміди.

Приклад роботи для Heap\_Increase\_Key(A, i, 15), A[i]= 4.



АЛГОРИТМ  $MAX\_HEAP\_INSERT$  (A, key)

- 1  $heap\_size[A] \le heap\_size[A] + 1$
- 2  $A[heap\_size[A]] <= -\infty$
- 3 HEAP\_INCREASE\_KEY(A, heap\_size[A], key)

Спочатку створюється новий лист зі значенням  $-\infty$ , а потім через процедуру Heap\_Increase\_Key йому надається потрібне значення.

Тому час роботи алгоритму  $O(\lg n)$ .

 Всі операції над чергою з пріоритетами виконуються за час O(lg n).

Належить до алгоритмів типу «розділяй та владарюй»

- Поділ. Масив A[p..r] розбивається шляхом перерозподілу елементів на (можливо порожні) підмасиви A[p..(q-1)] та A[(q+1).. r]. При цьому кожен елемент A[p..(q-1)] не перевищує A[q], а кожен елемент A[(q+1)..r] не менше A[q]. Індекс q обчислюється в ході розбиття.
- *Підкорення*. Рекурсивно сортуються масиви A[p..(q-1)] та A[(q+1)..r].
- *Комбінування*. Підмасиви сортуються на місці, об'єднання не потрібне: весь масив A[p..r] буде відсортований.

#### Схема алгоритму:

```
АЛГОРИТМ QUICKSORT (A, p, r)

1 if p < r

2 then q \leftarrow PARTITION(A, p, r)

3 QUICKSORT (A, p, q-1)

4 QUICKSORT (A, q+1, r)
```

Початковий виклик QUICKSORT(A, 1, length[A])

#### Розбиття масиву (спосіб Ломуто):

```
АЛГОРИТМ PARTITION(A, p, r)
1 x \leq A[r]
2 i \le p-1
3 for j \le p to r - 1
4 do if A[j] \le x
          then i <= i + 1
               Обміняти A[i] <=> A[j]
  Обміняти A[i+1] <=> A[r]
  return i+1
```

За опорний елемент завжди береться останній: x = A[r].



#### Приклад роботи алгоритму







|            | p,i |   |   | j |   |   |   | r |
|------------|-----|---|---|---|---|---|---|---|
| <i>e</i> ) | 2   | 8 | 7 | 1 | 3 | 5 | 6 | 4 |

|              | _ <i>p</i> | l |   |   | J |   |   | r |
|--------------|------------|---|---|---|---|---|---|---|
| $\partial$ ) | 2          | 1 | 7 | 8 | 3 | 5 | 6 | 4 |









#### <u>Інваріант циклу</u>:

Перед кожною ітерацією для довільного індексу k виконується:

- 1. Якщо  $p\leqslant k\leqslant i$ , то  $A\left[ k\right] \leqslant x;$
- 2. Якщо  $i+1 \leqslant k \leqslant j-1$ , то  $A\left[k\right] > x$ ;
- 3. Якщо k = r, то A[k] = x.

Час роботи процедури Partition для підмасиву A[p..r] складає  $\Theta(n)$ , де n=r-p+1

### Коректність роботи процедури Partition.

• *Ініціалізація*. Перед першою ітерацією циклу *i=p*—1 та *j=p*. Між елементами з індексами *p* та *i*, а також *i*+1 та *j*—1 немає елементів, отже перші дві умови інваріанту виконуються. Присвоювання в рядку 1 робить справедливою третю умову (рівність з опорним елементом).

### Коректність роботи процедури Partition.

• Збереження. Нехай А[j]>х. Тоді значення j збільшується на одиницю. При цьому для елемента A[j-1] виконується умова 2, а інші елементи залишаються незмінними.



### Коректність роботи процедури Partition.

• Збереження (далі). Нехай А[j]≤х. Тоді збільшується значення і, елементи А[i] та А[j] міняються місцями і на одиницю збільшується j. В результаті перестановки А[i]≤х, і умова 1 виконується. Аналогічно А[j−1]>х, бо елемент, що був переставлений з елементом А[j−1] за інваріантом циклу більший за х.



### Коректність роботи процедури Partition.

• Завершення. По завершенні роботи алгоритму *j=r*. Кожен елемент масиву належить до однієї з трьох множин, описаних в інваріанті: ті, що не перевищують *x*; ті, що перевищують *x*, і одноелементна множина, що містить *x*.

### Найгірше розбиття:

Задача постійно розбивається на дві підзадачі величиною (n-1) та 0 елементів.

Для виконання розбиття потрібен час  $\Theta(n)$ . Робота над порожньою підзадачею виконається за час  $T(0) = \Theta(1)$ .

В описаній ситуації рекурентне співвідношення матиме вигляд

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n).$$

Розв'язком його буде  $T(n) = \Theta(n^2)$ .

Найгірший час роботи буде, зокрема, тоді, коли сортується вже відсортований масив.

### <u>Найгірше розбиття</u>:

За допомогою метода підстановок покажемо, що час роботи алгоритму буде  $O(n^2)$ .

$$T\left(n
ight)=\max_{0\leqslant q\leqslant n-1}\left(T\left(q
ight)+T\left(n-q-1
ight)
ight)+\Theta\left(n
ight)$$
 Нехай  $T\left(n
ight)\leqslant cn^2$  , тоді

$$T(n) \le \max_{0 \le q \le n-1} \left( cq^2 + c (n-q-1)^2 \right) + \Theta(n) =$$

$$= c \cdot \max_{0 \le q \le n-1} \left( q^2 + (n-1-q)^2 \right) + \Theta(n).$$

Вираз  $q^2 + (n-q-1)^2$  досягає максимуму на кінцях інтервалу  $0\leqslant q\leqslant n-1$ 

Тоді 
$$\max_{0\leqslant q\leqslant n-1}\left(q^2+(n-q-1)^2\right)\leqslant (n-1)^2=n^2-2n+1$$
 та  $T\left(n\right)\leqslant cn^2-c\left(2n-1\right)+\Theta\left(n\right)\leqslant cn^2,$  тобто  $T\left(n\right)=O\left(n^2\right).$ 

### Найкраще розбиття:

Кожного разу розбиття на підзадачі розміром  $\lfloor n/2 \rfloor$  та  $\lfloor n/2 \rfloor - 1$ .

Час роботи:

$$T(n) \leqslant 2T(n/2) + \Theta(n).$$

За випадком 2 основної теореми,  $T\left( n \right) = O\left( n\lg n \right)$ .

### Збалансоване розбиття:

Нехай кожного разу розбиття відбувається у співвідношенні 1 до 9. Тоді

$$T(n) \leqslant T(9n/10) + T(n/10) + cn$$

Розглянемо дерево рекурсії, що відповідає цьому рекурентному співвідношенню.



Збалансоване розбиття:

Час роботи все одно буде  $T(n) = O(n \lg n)$ 

Будь-яке розбиття зі скінченною константою пропорціональності призводить до утворення рекурсивного дерева висоти  $\Theta(\lg n)$  й часом роботи кожного рівня O(n).

Тобто в будь-якому випадку повний час виконання становитиме  $O(n \lg n)$ .

### Середній випадок:

Рекурентне співвідношення виглядатиме

$$T(n) = (n-1) + \frac{1}{n} \left( \sum_{i=0}^{n-1} (T(i) + T(n-i-1)) \right), n \ge 2,$$
  

$$T(1) = T(0) = 0$$

Звідси можна вивести співвідношення

$$T(n) = \frac{(n+1)T(n-1)+2n-2}{n}, n \ge 2,$$

$$T(1) = T(0) = 0$$

Його розв'язок  $T(n) \approx 1.4(n+1)\log_2 n$ .

Отже, середня складність буде  $O(n \lg n)$ .

Час роботи в середньому лише на ≈40% гірший за ідеальний випадок!

### Проблема вибору опорного елемента

Вибір крайнього елемента спричиняє найгіршу поведінку на вже відсортованому масиві.

- Обирається довільний елемент.
- Вибирається значення з середини розбиття.
- Правило «медіани-з-трьох»: середній між крайніми та центральним елементом.

Вибране значення переміщується на стандартну позицію для опорного елемента.

### Проблема повторів елементів

Масив розбивається на три ділянки: в середині додається область для елементів, рівних опорному.

48

# Рандомізований варіант Quicksort

Нехай опорний елемент буде вибиратися в масиві A[p..r] випадковим чином, тобто кожен з елементів може стати опорним з однаковою ймовірністю.

```
АЛГОРИТМ RANDOMIZED\_PARTITION (A, p, r)
```

- $1 i \leq RANDOM(p, r)$
- 2 Обміняти A[r] <=> A[i]
- 3 **return** PARTITION(A, p, r)

АЛГОРИТМ  $RANDOMIZED\_QUICKSORT$  (A, p, r)

- 1 if p < r
- 2 **then**  $q \le RANDOMIZED_PARTITION(A, p, r)$
- 3 RANDOMIZED\_QUICKSORT (A, p, q-1)
- 4 RANDOMIZED\_QUICKSORT (A, q+1, r)

Середня складність його буде  $O(n \lg n)$ .

## Quicksort з двома опорними елементами

Dual-Pivot Quicksort (Yaroslavskiy, Bentley & Bloch).



- Обираються два опорних елементи P1 ≤ P2.
- Масив розбивається на три ділянки:
  - елементи < Р1,</li>
  - елементи між Р1 та Р2 (включно),
  - елементи > P2.
- Реалізація такого підходу буде ефективнішою за звичайне швидке сортування на великих масивах.

- Покажіть, що в будь-якій n-елементній піраміді на висоті h знаходиться не більше  $\left\lceil n/2^{h+1} \right\rceil$  вузлів.
- Доведіть коректність алгоритму Heapsort за допомогою наступного інваріанту цикла:

на початку кожної ітерації в рядках 2-5 підмасив A[1..i] є незростаючою пірамідою, що містить i найменших елементів масиву A[1..n], а в підмасиві A[(i+1)..n] містяться (n-i) відсортованих найбільших елементів масиву A[1..n].

- Який час роботи алгоритму пірамідального сортування масиву А довжини *п*, у якого всі елементи відсортовані в порядку зростання? В порядку спадання?
- Покажіть, що час роботи алгоритму пірамідального сортування в найгіршому випадку дорівнює  $\Omega(n \lg n)$ .

• Доведіть коректність алгоритму Heap\_Increase\_Key за допомогою інваріанта циклу:

перед кожною ітерацію циклу масив A[1..heap\_size[A]] задовольняє властивості незростаючої піраміди, за винятком одного можливого порушення — елемент A[i] може бути більше елемента A[Parent(i)].

• Створення піраміди через вставку

АЛГОРИТМ  $BUILD\_MAX\_HEAP*(A)$ 

- 1  $heap\_size[A] \ll 1$
- 2 **for**  $i \le 2$  **to** length[A]
- 3 **do** MAX\_HEAP\_INSERT(A, A[i])

1)Чи завжди процедури Build\_Max\_Heap та Build\_Max\_Heap\* для однакових вхідних масивів створять однакові піраміди? Доведіть це або наведіть контрприклад. 2)Покажіть, що в найгіршому випадку для створення n-елементної піраміди процедурі Build\_Max\_Heap\* треба час  $\Theta(n \mid g \mid n)$ .

- Чому дорівнює час роботи процедури Quicksort у випадку, коли всі елементи масиву А однакові за величиною?
- Покажіть, що якщо всі елементи масиву А різняться за величиною і розташовані в порядку спадання, то час роботи процедури Quicksort дорівнює  $\Theta(n^2)$ .
- Доведіть методом підстановок, що розв'язок рекурентного співвідношення на слайді 41

$$T(n) = T(n-1) + \Theta(n)$$

має вигляд  $T(n) = \Theta(n^2)$ .

• Доведіть для рекурентного співвідношення на слайді 42, що  $T(n) = \Omega(n^2)$ .

• Розбиття масиву за Хоаром. Проаналізуйте первинний алгоритм для розбиття масиву при швидкому сортуванні:

```
АЛГОРИТМ HOARE-PARTITION (A, p, r)
1 x \leq A[p]
2 i \le p-1
3 i \le r + 1
4 while TRUE
     repeat
         j <= j-1
7 until A[j] \le x
8
   repeat
9
     i \le i + 1
10 until A[j] \ge x
11 if i < j
          Обміняти A[i] \ll A[j]
12
13
     else return j
```

Такий підхід є ефективнішим за розглянуте розбиття за Ломуто, оскільки робить в середньому втричі менше обмінів, але при цьому є менш прозорим.

Порівняйте кількість здійснених обмінів в двох алгоритмах розбиття при сортуванні (1) відсортованого масиву; (2) масиву, що містить всі однакові елементи.

• Аналіз пірамід, відмінних від бінарних. d-арні піраміди (d-ary heap) схожі на бінарні, лише їх вузли, відмінні від листя, мають не по 2, а по d дочірніх елементів. 1)9 К би ви представили d-арну піраміду у вигляді масиву? 2) Як виражається висота d-арної n-елементної піраміди через n та d? 3)Розробіть ефективні реалізації процедур Extract Max, Insert та Increase\_Key, призначених для роботи з d-арною незростаючою пірамідою. Проаналізуйте час роботи цих процедур і виразіть їх в термінах n та d.