GATE 2024 XE 40-65

ee24btech11015 - Dhawal

40) The axial velocity profile of a laminar, incompressible and fully-developed flow in a circular pipe of radius (R) is given as

$$u_z = -\frac{1}{4\mu} \frac{\partial p}{\partial z} R^2 \left(1 - \frac{r^2}{R^2} \right),$$

where r, z, μ , and p are radial direction, axial direction, fluid viscosity, and pressure, respectively. If the average velocity of the flow is given by

$$u_{z,\text{avg}} = \frac{1}{K} \left(-\frac{R^2}{\mu} \frac{\partial p}{\partial z} \right),$$

then the value of K (answer in integer) is _____

- 41) The velocity potential function in a two-dimensional flow field is given by $\Phi(x, y) = -(axy + bx^2 by^2)$ m²/s where a = 2 per second and b = 0.5 per second. The magnitude of the velocity (in m/s, answer in integer) at x = 2 m, y = 1 m is
- 42) Consider the incompressible, steady and irrotational flow through a concentric reducer in a horizontal pipeline. The pipe diameter reduces from $d_1 = 12 \,\mathrm{cm}$ to $d_2 = 4 \,\mathrm{cm}$ as shown in figure. The pressure at position 1 and position 2 of the reducer is $p_1 = 55 \,\mathrm{kPa}$ and $p_2 = 27 \,\mathrm{kPa}$, respectively. The specific weight of fluid is $7 \,\mathrm{kN/m^3}$. Acceleration due to gravity is $10 \,\mathrm{m/s^2}$.

$$d_1 = 12 \text{ cm}$$
 Concentric reducer $d_2 = 4 \text{ cm}$
 $p_1 = 55 \text{ kPa}$ $p_2 = 27 \text{ kPa}$

position 1 position 2

Neglecting frictional effects, the mass flow rate (in kg/s, rounded off to two decimal places) of the fluid through the reducer is _____.

- 43) Consider the incompressible fluid flow over a flat plate with a free stream velocity, $U_{\infty} = 1 \text{ m/s}$. The fluid kinematic viscosity is $10^{-6} \text{ m}^2/\text{s}$ and density is 1 kg/m^3 . The velocity profile within the boundary layer at any location x is given by $u(y) = U_{\infty} \left(\frac{3}{2} \frac{y}{\delta} \frac{1}{2} \left(\frac{y}{\delta}\right)^3\right)$, where boundary layer thickness, $\delta = \frac{4.64x}{\sqrt{R_{ex}}}$, and $R_{ex} = \frac{U_{\infty}x}{\sqrt{x}}$. The local wall shear stress at x = 1 m from the leading edge is $x = 10^{-3} \text{ N/m}^2$ (rounded off to two)
- 44) The correct combination of phases in the one-component H_2O phase diagram, as given below, is

- a) α water; β vapour; γ ice
- c) α vapour; β ice; γ water
- b) α ice; β water; γ vapour
- d) α water; β ice; γ vapour
- 45) Mechanical behaviour of a crystalline ceramic material is best described as
 - a) ductile
- b) brittle
- c) viscoelastic
- d) viscoplastic
- 46) Differential scanning calorimetry involves measurement of
 - a) weight change
- b) entropy
- c) heat
- d) vapour pressure
- 47) In ball milling of ceramic powder, selection of grinding media depends on the ______ difference between grinding media and powder particles.
 - a) thermal conductivity

c) hardness

b) dielectric constant

- d) density
- 48) Which one of the following unit cell parameters represents a tetragonal crystal system?

a)
$$a = b = c$$
; $\alpha = \beta = \gamma \neq 90^{\circ}$

c)
$$a = b \neq c; \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$$

b)
$$a \neq b \neq c$$
; $\alpha = \beta = \gamma = 90^{\circ}$

d)
$$a = b \neq c$$
; $\alpha = \beta = \gamma = 90^{\circ}$

- 49) Which of the following types of materials exhibit(s) positive magnetic susceptibility?
 - a) Paramagnetic
- b) Diamagnetic
- c) Ferrimagnetic
- d) Ferromagnetic
- 50) Which of the following is/are responsible for pitting corrosion in a metal?
 - a) Rough surface

c) Polished surface

b) Grain boundaries

- d) Polymer coated metal surface
- 51) In thermogravimetric analysis (TGA), weight change of a material sample during decomposition with temperature is shown in the figure below.

 W_i and W_f represent the weight of the material, corresponding to temperatures T_i and T_f , respectively. Which of the following factor(s) can influence T_i and T_f ?

a) Heating rate

- c) Atmosphere in the sample chamber
- b) Particle size of the material
- d) Initial weight of the sample
- 52) The work done by a body expanding from an initial state A to the final state B, as shown in the P-V diagram below, is (in units of litre-atm) _____ (rounded off to nearest integer).

53) A binary phase diagram is given below.

Which one of the following figures qualitatively represents the G-X (Gibbs free energy - composition) plot at temperature T_0 shown in the phase diagram?

54) Which one of the following figures corresponds to the density of states g(E) of a typical intrinsic semiconductor? (E represents the energy level of a charge carrier)

55) The Miller indices for the shaded plane shown in the unit cell below is

- a) [632]
- b) [123]
- c) (632)
- d) (123)
- 56) Which one of the following curves best represents the E vs. f(E) behavior of the hot end of a metal rod demonstrating Seebeck Effect? (f(E) is the probability of electron occupancy at an energy state E; E_F is the Fermi energy)

- 57) In a typical light emitting diode (LED), which of the following type(s) of materials is/are used?
 - a) Indirect bandgap semiconductor with transition metal impurities
 - b) Direct bandgap semiconductor
 - c) Indirect bandgap semiconductor with isoelectronic impurities
 - d) Indirect bandgap semiconductor without any impurity
- 58) Which of the following options is/are true for glass transition temperature T_g ?
 - a) Above T_g , glass transforms from an amorphous solid to a viscous liquid.
 - b) At T_g , glass transforms from an amorphous solid to a crystalline solid.
 - c) T_g is dependent on the heating rate.
 - d) Below T_g , nucleation and growth takes place in glass.

59) Which of the following figures schematically represent(s) either the Frenkel defect or the Schottky defect in ionic solids?

60) Given that k is the first order reaction rate constant and T is the temperature in absolute scale, the temperature dependence of rate constant is/are represented by

- 61) For chemical vapour deposition (CVD) process, which of the following statements is/are correct?
 - a) Target material is stripped off by the bombardment of positive ions
 - b) Source material is vapourized and thermally decomposed
 - c) Partial hydrolysis of alkoxide in water solvent
 - d) Suitable for preparing films of high density and uniform thickness
- 62) At room temperature, the electrical conductivity and electron mobility for aluminum are $3.8x10^7(\Omega m) 1$ and $0.0012m^2Vs^{-1}$, respectively. Density of free electrons for aluminum at room temperature is (in units of m⁻³) ______ $x10^{27}$ (rounded off to nearest integer). Given: Electrical charge on an electron is $1.6x10^{-19}$ C.
- 63) A 2mm thick palladium sheet of 1000mm^2 cross-section is used as a diffusional membrane to purify hydrogen. The hydrogen concentration is maintained at a steady state with $c_h = 1.5 \text{kgm}^{-3}$ and $c_l = 0.3 \text{kgm}^{-3}$ on the two sides of the membrane as shown in the figure below.

The rate of hydrogen purification is (in units of kg hr^{-1} _____ $\times 10^{-6}$ (rounded off to one decimal place).

The diffusion coefficient of hydrogen in palladium is $1.0 \times 10^{-8} \text{m}^2 \text{s}^{-1}$.

- 64) In X-ray powder diffraction pattern obtained from a face centered cubic (FCC) metal, the first five reflections are at $\theta = 21.65^{\circ}, 25.21^{\circ}, 37.06^{\circ}, x$ and 47.58° . The Bragg angle, θ of the fourth reflection is missed out and is represented by x. The value of x is (in degree) _____ (rounded off to one decimal place).
- 65) Consider a unidirectionally aligned continuous glass fibre reinforced epoxy composite with 40 vol. % reinforcement. The elastic modulus of the composite along the fibre direction is (in units of GPa) _____ (rounded off to one decimal place).

Given: Elastic modulus of epoxy is 6.9 GPa and that of glass fibre is 69 GPa.