```
In [1]: #importing packages

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: #Read a comma-seperated values (csv) file into DataFrame

df = pd.read_csv("LivongoChallenge.csv")

In [3]: df.head()

Out[3]:

	member_id	diabetes_type	gender	date_utc	bg_checks	avg_bg_value	count_hyper_reading
0	1.021330e+13	Type 2	Female	8/1/17	4	157.00000	2
1	1.021330e+13	Type 2	Female	8/2/17	4	152.61111	1
2	1.021330e+13	Type 2	Female	8/3/17	1	157.88235	1
3	1.021330e+13	Type 2	Female	8/4/17	2	162.47058	2
4	1.021330e+13	Type 2	Female	8/5/17	4	166.22223	2

In [4]: df.describe()

Out[4]:

	member_id	bg_checks	avg_bg_value	count_hyper_reading	count_hypo_reading
count	7.297700e+04	72977.000000	71799.000000	72977.000000	72977.000000
mean	5.298323e+12	3.858380	158.036572	1.538498	0.273113
std	4.582929e+12	2.628071	40.560806	1.670834	0.674958
min	1.022970e+12	0.000000	56.750000	0.000000	0.000000
25%	1.027170e+12	2.000000	128.126600	0.000000	0.000000
50%	1.029210e+12	3.000000	153.000000	1.000000	0.000000
75%	1.021550e+13	5.000000	179.835585	2.000000	0.000000
max	1.021810e+13	45.000000	354.000000	45.000000	12.000000

```
In [5]: #To check if there are any null values in the features
        df.isnull().sum()
Out[5]: member_id
                                   0
        diabetes_type
                                   0
        gender
                                   0
        date utc
                                   0
        bg_checks
                                   0
        avg_bg_value
                                1178
        count_hyper_reading
                                   0
        count_hypo_reading
        dtype: int64
```

It can be seen that there are 1178 null values present in the feataure avg_bg_value

Data Munging

Convert categorical variables to numerical variables

	member_id	diabetes_type	bg_checks	avg_bg_value	count_hyper_reading	count_hypo
count	7.297700e+04	72977.000000	72977.000000	71799.000000	72977.000000	7297
mean	5.298323e+12	1.540129	3.858380	158.036572	1.538498	
std	4.582929e+12	0.498390	2.628071	40.560806	1.670834	
min	1.022970e+12	1.000000	0.000000	56.750000	0.000000	
25%	1.027170e+12	1.000000	2.000000	128.126600	0.000000	
50%	1.029210e+12	2.000000	3.000000	153.000000	1.000000	
75%	1.021550e+13	2.000000	5.000000	179.835585	2.000000	
max	1.021810e+13	2.000000	45.000000	354.000000	45.000000	-

Data Analysis

The data comprises of years 2017 and 2018

```
In [14]: sns.set(font_scale=1.4)
    df['gender'].value_counts().plot(kind='bar', figsize=(7, 6), rot=0)
    plt.xlabel("Gender", labelpad=14)
    plt.ylabel("Count of People", labelpad=14)
    plt.title("Diabetes by Gender", y=1.02);
```


It can be inferred that gender has some effect on diabetes. It could be because women have less glucose level than men. (Source: Google)

```
In [30]: sns.set(font_scale=1.4)
    df['diabetes_type'].value_counts().plot(kind='bar', figsize=(7, 6), rot=
        0, color="#ffbe42")
    plt.xlabel("Diabetes", labelpad=14)
    plt.ylabel("Count of People", labelpad=14)
    plt.title("Diabetes by type", y=1.02);
```


A large number of members have type 2 diabetes as compared to type 1 diabetes.

```
In [16]: Diab_month = df.groupby(['month'])['avg_bg_value'].mean()
Diab_month.columns = ['avg_bg_value', 'month']
```

```
ax = Diab_month.plot.bar(colors="#A6D6FB", figsize=(25,10), fontsize=13,
edgecolor='#008FFF')
for i in ax.patches:
    ax.annotate(np.round(i.get_height()), (i.get_x()+i.get_width()/2, i.
get height()),
         ha='center', va='center', color='#4F616B', fontsize =14,
         xytext=(2,8), textcoords='offset points')
ax.yaxis.grid()
ax.set title('Average bg value by month', fontsize=24, color='black', pa
d=20)
plt.ylabel('bg value', fontsize=20, color='black')
plt.xlabel('Month Number',fontsize=20, color='black')
ax.yaxis.labelpad = 20
ax.xaxis.labelpad = 20
plt.ylim((150,165))
plt.show()
```

/anaconda3/lib/python3.6/site-packages/pandas/plotting/_core.py:185: Us erWarning: 'colors' is being deprecated. Please use 'color'instead of 'colors'

warnings.warn(("'colors' is being deprecated. Please use 'color'"

The bar chart above indicates that members showed higher blood glucose levels on a monthly average. This can be used to monitor monthly average per member and reasons for the fluctuations.

The hike we see in January to December months could be because of Christmas/New Year celebrations.

```
In [24]: sns.set(font_scale=1.4)
    df['count_hypo_reading'].value_counts().plot(kind='bar', figsize=(7, 6),
        rot=0, color = '#800000')
    plt.xlabel("Hypoglycemia count", labelpad=14)
    plt.ylabel("Count of People", labelpad=14)
    plt.title("Hypoglycemia counts", y=1.02);
```


The above graph shows hypoglycemia counts for all the people. It can be obseved that most of the diabetic people do not have hypoglycemia. Only 10000 people have counted hypoglycemia once.

We can filter it to show only type-1 or type-2 diabetic people using groupby function.

```
In [25]: sns.set(font_scale=1.4)
    df['count_hyper_reading'].value_counts().plot(kind='bar', figsize=(12, 1
        2), rot=0, color="#800000")
    plt.xlabel("Hyperglycemia count", labelpad=14)
    plt.ylabel("Count of People", labelpad=14)
    plt.title("Hyperglycemia counts", y=1.02);
```

Hyperglycemia counts

From the above graph we can see that a majority portion of diabetic people have hyperglycemia counts.