Homework 8 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

April 12, 2024

- 1. $f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) f(0)}{x} = \lim_{x \to 0} \frac{x \cdot 0(x^2 0^2)/(x^2 + 0^2)}{x} = 0$ exists. Also, we can esaily get that $f_y(0,0) = 0$. Then, $f_{xy}(0,0) = \frac{\partial f_x}{\partial y}(0,0) = \lim_{y \to 0} \frac{y(0^4 + 4 \cdot 0^2 y^2 y^4)/(0^2 + y^2)^2}{y} = \lim_{y \to 0} \frac{-y^4}{y^4} = -1$. And, $f_{yx}(0,0) = 1$. Therefore, $f_{xy}(0,0) \neq f_y(0,0)$.
- 2. Since Df is continuous on S(close interval in R^p), Df is Riemann intergrable on S. For any $\varepsilon > 0$, we can find $\delta > 0$ s.t. $||Df(x) Df(y)|| < \frac{\varepsilon}{||b-a||}$ for $||x-y|| < \delta$. Then, we can find $\{x_i\}_{i=1}^n$ s.t. $\cup D(x_i, \delta) \subseteq S$.

$$||f(b) - f(a) - \sum_{i=1}^{n} || =$$