MODELOS DE ML (REGRESIÓN LINEAL) PARA PREDECIR LA POPULARIDAD DE UNA CANCIÓN

En base a atributos musicales.

Julio Gutiérrez

Brayan Barrera

Camilo Campos

Introducción

En esta presentación, exploramos la aplicación de modelos de aprendizaje automático (ML) para predecir la popularidad de una canción en función de sus

atributos musicales.

#	Column	Non Null Count	
		Non-Null Count	Dtype
0	Unnamed: 0	114000 non-null	int64
1	track_id	114000 non-null	object
2	artists	113999 non-null	
3	album_name	113999 non-null	object
4	track_name	113999 non-null	object
5	popularity	114000 non-null	int64
6	duration_ms	114000 non-null	int64
7	explicit	114000 non-null	bool
8	danceability	114000 non-null	float64
9	energy	114000 non-null	float64
10	key	114000 non-null	int64
11	loudness	114000 non-null	float64
12	mode	114000 non-null	int64
13	speechiness	114000 non-null	float64
14	acousticness	114000 non-null	float64
15	instrumentalness	114000 non-null	float64
16	liveness	114000 non-null	float64
17	valence	114000 non-null	float64
18	tempo	114000 non-null	float64
19	time_signature	114000 non-null	int64

Dataset Spotify (kaggle.com)

dataset.csv (20.12 MB)

₹ 15 <

Detail Compact Column

About this file

The data is in tabular format stored as a CSV file.

# = number	≜ track_id =	≜ artists =	▲ album_name =	≜ track_name =	# popularity = number	# duration_ms =	✓ explicit =	# danceability =	# ene numbe
0 114k	89741 unique values	31438 unique values	46590 unique values	73609 unique values	0 100	0 5.24m	true 9747 9% false 104k 91%	0 0.98	Imilia
0	5SuOikwiRyPMVoIQDJUg SV	Gen Hoshino	Comedy	Comedy	73	230666	False	0.676	0.461
1	4qPNDBW1i3p13qLCt0Ki 3A	Ben Woodward	Ghost (Acoustic)	Ghost - Acoustic	55	149610	False	0.42	0.166
2	1iJBSr7s7jYXzM8EGcbK 5b	Ingrid Michaelson;ZAYN	To Begin Again	To Begin Again	57	210826	False	0.438	0.359
3	61fxq3CG4xtTiEg7opyC yx	Kina Grannis	Crazy Rich Asians (Original Motion Picture Soundtrack)	Can't Help Falling In Love	71	201933	False	0.266	0.059
4	5vjLSffimiIP26QG5WcN 2K	Chord Overstreet	Hold On	Hold On	82	198853	False	0.618	0.443
5	01MV019KtVTNfFiBU9I7 dc	Tyrone Wells	Days I Will Remember	Days I Will Remember	58	214240	False	0.688	0.481
6	6Vc5wAMmXdKIAM7WUoEb 7N	A Great Big World;Christina	Is There Anybody Out There?	Say Something	74	229400	False	0.407	0.147

Objetivo: predecir la popularidad de una canción

El objetivo principal es utilizar modelos de ML para predecir la popularidad de una canción, utilizando varias características musicales como datos de entrada.

 Esto puede ayudar a los artistas y productores a tomar decisiones basadas en datos.

Incluso...¿Hacer música con IA?

Conjunto de datos: conjunto de datos de Spotify Tracks

Preprocesamiento de datos

popularity

1.00

Eliminación de columnas categóricas, datos nulos y registros duplicados.

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Modelos de Machine Learning

Support Vector Machine

Random Forest

Decision Tree

Learning Curve: Tunning Parameters

Cross validation

Decision Tree

Particionado

Decision Tree

Modelos de ML

Decision Tree

Parámetros por defecto

Decision Tree

 $max_depth = 8$

Decision Tree

 $max_depth = 60$

Modelos de ML

Random Forest

Parámetros por defecto

Random Forest

n_estimators = 25

Random Forest

n_estimators = 80

Modelos de ML

SVM

Parámetros por defecto

SVM

C = 60 y kernel polinomial de grado 4 **SVM**

 $max_depth = 60$

tyeits detiags, reservatuley add enrogerant vallyst

lime stat

(lardclo

Division Conjunto de Datos

```
1 #@title Particionado del DataFrame
2
3 y = data_cleaned["popularity"]
4 X = data_cleaned.drop("popularity", axis=1)
5
6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=21)
```

MLP 3 Capas Ocultas

```
1 #@title MLP con 3 Capas Ocultas
 3 print(X train.shape[1])
 4 model 3 = tf.keras.Sequential([
 5 tf.keras.layers.Flatten(input shape=(X train.shape[1],)),
 6 tf.keras.layers.Dense(256, activation='relu'),
 7 tf.keras.layers.Dense(128, activation='relu'),
 8 tf.keras.layers.Dense(64, activation='relu'),
 9 tf.keras.layers.Dense(1)
10 ])
11
12 model 3.compile(optimizer='adam',
              loss='mean squared error',
13
14
              metrics=['mse', 'mae'])
15 model 3.fit(X train, y train, epochs=15, verbose=1)
16 y pred = model 3.predict(X test)
```

```
loss: 363.6928 - mae: 15.4243 - mse: 363.6928
```

MLP 6 Capas Ocultas

```
1 #@title MLP con 6 Capas Ocultas
 3 y = data cleaned["popularity"]
 4 X = data cleaned.drop("popularity", axis=1)
 6 model = tf.keras.Sequential([
    tf.keras.lavers.Flatten(input shape=(X train.shape[1],)),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(64, activation='relu'),
10 tf.keras.layers.Dense(32, activation='relu'),
                                                              loss: 361.3887 - mae: 15.3919 - mse: 361.3887
11 tf.keras.layers.Dense(32, activation='relu'),
12 tf.keras.layers.Dense(16, activation='relu'),
13 tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(1)
14
15 1)
16
17 model.compile(optimizer='adam',
               loss='mean squared error',
18
               metrics=['mse', 'mae'])
19
20 model.fit(X train, y train, epochs=15, verbose=1)
21 v pred = model.predict(X test)
```

MLP 10 Capas Ocultas

```
1 #@title MLP con 10 Capas Ocultas
 3 y = data cleaned["popularity"]
 4 X = data cleaned.drop("popularity", axis=1)
 6 model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input shape=(X train.shape[1],)),
    tf.keras.layers.Dense(1024, activation='relu'),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(256, activation='relu'),
10
    tf.keras.layers.Dense(128, activation='relu'),
11
12
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(32, activation='relu'),
13
    tf.keras.layers.Dense(16, activation='relu'),
14
    tf.keras.layers.Dense(8, activation='relu'),
15
    tf.keras.layers.Dense(4, activation='relu'),
16
17
    tf.keras.layers.Dense(2, activation='relu'),
    tf.keras.layers.Dense(1)
18
19 ])
20
```

loss: 364.6494 - mae: 15.4996 - mse: 364.6494

GRACIAS

Universidad Industrial de Santander

lime stat

d testraver!

cturel) volt nnoera

cem an

(lardclo