

Professor: Michael Christ Vishal Raman

Contents

1	August 27th, 2020	3
	1.1 Introduction	3
	1.2 Fourier Analysis	3
	1.3 On Tori of Arbitrary Dimension	3
	1.4 Euclidean Spaces	4

§1 August 27th, 2020

§1.1 Introduction

We begin by considering the problem of conduction of heat in a circle. We use the map $x \mapsto e^{ix}, x \in [0, 2\pi)$. Where u is the temperature, t is the time, we believed that $u_t = \gamma u_{xx}$, where subscripts denote partial derivatives. We also have an initial condition, f(x) = u(x, 0).

There are some simple solutions $e^{inx}e^{-\gamma n^2t}|_{t=0}=e^{inx}$. The product of solutions, the sum of solutions, and scalar multiple of solutions are all solutions, so he wrote the solution as

$$f(x) = \sum_{n = -\infty}^{\infty} a_n e^{inx}, u(x, t) = \sum_n a_n e^{-\gamma n^2 t} e^{inx}.$$

§1.2 Fourier Analysis

We take a circle $\{z \in \mathbb{C} : |z=1|\}$, which can also be thought of as $\mathbb{R}/(2\pi\mathbb{Z})$, with the map $x \mapsto e^{ix}$. Suppose we have G a finite abelian group, and $\hat{G} = \{\text{hom } \phi : G \to \mathbb{R}/\mathbb{Z}\}$. \hat{G} is also a group(sums of homomorphisms are clearly homomorphisms).

Example 1.1

If we take $G = \mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$, with the map $x \mapsto e^{2\pi i x n/N}$, all the homomorphisms are clearly in the form of the quotient map.

Similarly, taking $G \cong Z_{N_1} \times \mathbb{Z}_{N_2} \times \dots$, we take $x \mapsto \prod e^{2\pi i x n/N_i}$.

Take $e_{\phi}(x) = e^{2\pi i \phi(x)}$, where $\phi: G \mapsto \mathbb{R}/\mathbb{Z}$. Working in $L^2(G)$, we note the following:

Fact 1.2. If $\phi \neq \varphi$, then $\langle e_{\phi}, e_{\varphi} \rangle = 0$.

Proof.
$$\sum_{x \in G} \phi(x) \overline{\varphi(x)} = \sum_{u} \phi(u+x) \overline{\varphi(u+x)}$$

If follows that $\{e_f : f \in \hat{G}\}$ is an orthonormal set in $L^2(G)$ Then, the dimension is $|\hat{G}| = |G| = \dim(L^2(G))$. Hence, the set forms an orthonormal basis for $L^2(G)$.

Then, for all $f \in L^2(G)$, we have

$$||f||_{L^2(G)}^2 = \sum_{\phi \in \hat{G}} |\langle f, e^{\phi} \rangle|^2,$$

$$f = \sum_{e_{\phi} \in \hat{G}} \langle f, e_{\phi} \rangle e_{\phi}.$$

§1.3 On Tori of Arbitrary Dimension

We define $\Pi = \mathbb{R}/2\pi\mathbb{Z}$, from $[0, 2\pi]$. We then work on Π^d , $d \geq 1$. For $f \in L^2(\Pi^d)$, we define

$$\hat{f}(n) = (2pi)^{-d} \int f(x)e^{-inx} dx.$$

We have an inner product $\langle f, g \rangle = \int_{\Pi^d} f(x) \overline{g(x)} d\mu(x)$ defined over a Lebesgue measure.

Theorem 1 (Parseval's Theorem)

For all $f \in L^2(\Pi^d)$,

$$||f||_{L^2}^2 = (2\pi)^d \sum_{n \in \mathbb{Z}^d} |\hat{f}(n)|^2,$$

$$f = \sum_{n \in \mathbb{Z}^d} \hat{f}(n)e^{inx}.$$

We mean

$$||f - \sum_{n \in \mathbb{Z}^d} \hat{f}(n)e^{inx}||_L^2 \to 0,$$

almost uniform convergence.

Note: you can usually figure out the constant with the simplest example, f = 1.

Proof. Take Π^d , $e_n(x) = e^{inx}$. The $\{(2\pi)^{-d/2}e^n : n \in \mathbb{Z}^d\}$ is orthonormal(left as an exercise). Then, for all f, $\sum_n \langle f, (2\pi)^{-d/2}e_n \rangle \leq ||f||_{L^2}^2$, with equality if the set is a basis(Bessel's inequality).

It suffices to show that span $\{e_n\}$ is dense in L^2 . Take $P = \text{span}\{e_n\}$, and note that P is an algebra of continuous functions on Π^d , closed under conjugation, contains 1, and separates points. Hence, the Stone-Weierstrass theorem implies that P is dense in $C^o(\Pi^d)$ with respect to $\|\cdot\|_{C^o}$. Then $C^o \subset L^2$ is dense(general theory about Compact Hausdorff spaces, Radon Measures).

The statement $||f - \sum_{n \in \mathbb{Z}^d} \hat{f}(n)e^{inx}||_L^2 \to 0$ follows from the general theory of orthonormal systems.

§1.4 Euclidean Spaces

We work in \mathbb{R}^d , $(d \ge 1)$. Take $\xi \in R^d$, and $x \mapsto x\xi \in \mathbb{R}$ is a homomorphism from $\mathbb{R}^d \to \mathbb{R}$, but if we take $x \mapsto e^{ix\xi}$, we have a homomorphism from $\mathbb{R}^d \mapsto \Gamma$. We try to define the following:

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-ix\xi} dx = \langle f, e_{\xi} \rangle_{L^2(\mathbb{R}^d)},$$

where $e_{xi}(x) = e^{ix\xi}$.

Some problems:

- 1. $e_{\mathcal{E}} \notin L^2(\mathbb{R}^d)$
- 2. $f(x)e^{-ix\xi}$ need not be in L^1 if $f \in L^2$.

We fix this by imposing extra conditions.

Definition 1.3. For $f \in L^1(\mathbb{R}^d)$, we define

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-ix\xi}dx.$$

Note that $f \in L^1$ implies that \hat{f} is bounded, continuous. We see this as follows: $\hat{f}(\xi+u) - \hat{f}(\xi) = \int f(x)e^{-ix\xi}(e^{-ixu}-1)dx$. If we let $u \to 0$, the right goes to 0 pointwise, and $(2|f|) \in L^1$ dominates the integral, it goes to 0.

Proposition 1.4

If $f \in L^1 \cap L^2(\mathbb{R}^d)$, $\hat{f} \in L^2(\mathbb{R}^d)$,

$$\|\hat{f}\|_{L^2}^2 = (2\pi)^d \|f\|_{L^2}^2.$$

Theorem 2 (Plancherel's Theorem)

 $\pi:L^1\cap L^2\to L^2$ extends uniquely to $\hat{\pi}:L^2(\mathbb{R}^d)\to L^2(\mathbb{R}^d)$, linear, bounded, $\|\hat{\pi}f\|_{L^2}^2=(2\pi)^d\|f\|_{L^2}^2$, and for all $f\in L^2$, we have an inverse Fourier Transform, $\check{f}(y)=\int f(\xi)e^{iy\xi}d\xi$ for $f\in L^1\cap L^2$, and $\check{\cdot}$ also extends.

Finally,

$$||f - (2pi)^{-d} \int_{|\xi| \le R} \hat{f}(\xi) e^{ix\xi} dxi||_{L^2} \to 0.$$

Note that $\check{f}(y) = \hat{f}(-y)$.

Proof. We first prove that $||f||_{L^2}^2 = (2\pi)^{-d} ||\hat{f}||_{L^2}^2$ for all $f \in L^1 \cap L^2$. We prove this for a dense subspace \mathscr{P} of L^2 . We will show later that there exists a subspace $V \subset L^2(\mathbb{R}^d)$ so that V is dense in L^2 , $V \subset L^1$, $\forall f \in V$, there exists $C_f < \infty$, so for all $\xi \in \mathbb{R}^d$, $|\hat{f}(\xi)| \leq C_f(f(\xi))^{-d}$ and f is continuous with compact support.

We are given $f: \mathbb{R}^d \to \mathbb{C}$ supported where $|x| \leq R = R_f < \infty$. For large $t \geq 0$, define $f_t(x) = f(tx)$ (this shrinks the support of f), supported where $|x| \leq R/t < \pi$. We can then think of $f_t: \mathbf{T}^d \to \mathbb{C}$.

Now, we calculate

$$\hat{f}_t(n) = (2\pi)^d \int_{\mathbf{T}^d} f_t(x) e^{-inx} dx$$

$$= t^{-d} (2\pi)^d \int_{R^d} f(x) e^{-in/ty} dy$$

$$= t^{-d} (2\pi)^{-d} \hat{f}(n/t),$$

where the first hat is on \mathbf{T}^d and the second is on \mathbb{R}^d , so the Fourier coefficients in the euclidean case are scalar multiples of the Fourier coefficients in the Tori case.

Thus,

$$||f_t||_{L^2(\mathbf{T}^d)}^2 = t^{-d}||f||_{L^2(\mathbb{R}^d)}^2 = c_d \sum_{n \in \mathbb{Z}^d} |\hat{f}_t(n)|^2 = c_d' t^{-2d} \sum_n |\hat{f}(n/t)|^2$$

Hence,

$$||f||_{L^2(\mathbb{R}^d)}^2 = c'_d t^{-d} \sum_n |\hat{f}(n/t)|^2.$$

This has a nice tiling Riemann sum interpretation:

We claim

$$\int_{\mathbb{R}^d} |g_t|^2 \to \int_{\mathbb{R}^d} |\hat{f}|^2,$$

which follows from the dominated convergence theorem: where we take a sequence over t going to infinity, with dominator $C_f^2(1+|\xi|)^{-2d}$.