TITLE HERE

A Thesis Proposal Presented to

The Faculty of the School of Statistics
univ

In Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Statistics
1st Semester A.Y. 2025-2026

by

Shaine Rosewel Matala

```
knitr::opts_chunk$set(
echo = FALSE,
message = FALSE,
warning = FALSE
)
```

Abstract

Contents

\mathbf{A}	bstra	act	2								
1	Introduction										
2	Background										
	2.1	Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Bonferroni correction	4								
	2.2 Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Independence										
	2.3	$T_1, T_2, T_3 \ldots \ldots \ldots \ldots \ldots$	4								
3	Methodology										
	3.1	Joint confidence intervals for θ_1,\ldots,θ_K by using Parametric Bootstrap .	4								
	3.2	Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Nonrank-based method	6								
	3.3	Results	7								
\mathbf{R}_{0}	efere	nces	12								
$\mathbf{A}_{]}$	ppen	dices	12								
	Cod	es for algorithm 1	12								
	Cod	es for algorithm 2	15								
	Cod	es for simulation	21								

1 Introduction

2 Background

- 2.1 Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Bonferroni correction
- 2.2 Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Independence
- **2.3** T_1, T_2, T_3

3 Methodology

The parametric bootstrap and nonrank-based method are introduced to calculate joint confidence regions to simultaneously quantify uncertainty in estimated ranking. These are compared to current approaches from Klein et al. (2020): independent and Bonferroni.

Let $\theta_1, \theta_2, \dots, \theta_K$ be the true parameter values and $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be the estimates obtained.

3.1 Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Parametric Bootstrap

Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be independent but not identically distributed estimates. For this study, it is assumed that $\hat{\theta}_k \sim N\left(\theta_k, \sigma_k^2\right), \ k = 1, 2, \dots, K$, where σ_k^2 is known. Denote the corresponding ordered values by $\hat{\theta}_{(1)}, \hat{\theta}_{(2)}, \dots, \hat{\theta}_{(K)}$.

Algorithm 1 Computation of Joint Confidence Region using Parametric Bootstrap

1: **for** $b = 1, 2, \dots, B$ **do**

2: Generate $\hat{\theta}_{bk}^* \sim N(\hat{\theta}_k, \sigma_k^2)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

	k = 1	k=2		k = K			
b=1	$\hat{\theta}_{1(1)}^*$	$\hat{ heta}_{1(2)}^*$		$\hat{ heta}_{1(K)}^*$			
$b=2 \qquad \hat{\theta}_{2(1)}^*$		$\hat{ heta}_{2(2)}^*$		$\hat{ heta}_{2(K)}^*$			
÷	:	:		:			
b = B	$\hat{\theta}_{B(1)}^*$	$\hat{ heta}_{B(2)}^*$		$\hat{\theta}_{B(K)}^*$			

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

5: end for

6: Compute the $(1 - \alpha)$ -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .

7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{\hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2\right\} - \hat{\theta}_{(k)}^2}$$

Algorithm 2 is used to calculate the coverage which is defined as the proportion of times that the true parameter values fall within the confidence interval for all K simultaneously. Ideally, this should be equal to 0.90 since $\alpha = 0.1$. It also calculates the average T_1, T_2 , and T_3 . Higher values of T_1 and T_2 indicate wider confidence intervals and are therefore less desirable, whereas higher values of T_3 are preferable.

Algorithm 2 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\theta}_k \sim N(\theta_k, \sigma_k^2)$, for $k = 1, 2, \dots, K$
- 3: Compute the rectangular confidence region \Re using Algorithm 1.
- 4: Check if $\left(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}\right) \in \mathfrak{R}$ and compute $T_1 = \frac{1}{K} \sum_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_2 = \prod_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_3 = 1 \frac{K + \sum_{k=1}^K \left| \Lambda_{Ok} \right|}{K^2}$
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

3.2 Joint confidence intervals for $\theta_1, \dots, \theta_K$ by using Nonrank-based method

The nonrank-based method assumes that $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K) \sim N(\boldsymbol{\theta}, \boldsymbol{\Sigma})$. It accounts for potential correlation among items being ranked. For this case, an exchangeable correlation, $\boldsymbol{\rho}$ (See Equation 3.1.), is assumed and used in the calculation of the variance covariance matrix (See Equation 3.2.).

$$\boldsymbol{\rho} = (1 - \rho) \mathbf{I}_K + \rho \mathbf{1}_K \mathbf{1}_K' \tag{3.1}$$

$$\Sigma = \Delta^{1/2} \rho \Delta^{1/2} \tag{3.2}$$

where $\Delta = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, with known σ_k 's and ρ is studied for 0.1, 0.5, 0.9.

Algorithm 3 Computation of Joint Confidence Region using Nonrank-based Method Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

1: **for** $b = 1, 2, \dots, B$ **do**

2: Generate
$$\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$$
 and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$

3: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{bk}^* - \hat{\theta}_k^*}{\sigma_k} \right|$$

- 4: end for
- 5: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \cdots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

Algorithm 4 is similar to Algorithm 2 but computes for the coverage and average T_1, T_2 , and T_3 for the nonrank-based method.

Algorithm 4 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and Σ

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$
- 3: Compute the rectangular confidence region \Re using Algorithm 3.
- 4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute T_1, T_2 , and T_3 .
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

3.3 Results

For the simulation studies, α is fixed at 0.1, while the true standard deviations are varied (sd = 2.0, 3.6, 6.0) along with the number of items to be ranked (K = 5, 10, 20, 30, 40, 51). Table 1 shows that when the correlation is zero, the nonrank-based, independent, and Bonferroni CI methodology exhibit similar coverage values regardless of K and S and S are contrast, the parametric approach generally yields higher coverage for smaller S while showing comparable variability across different S. It deviates the most from the nominal

coverage level.

Table 1: Simulation results for coverage probabilities when $\rho = 0$.

		Coverage					
K	sd	Parametric	Nonrank-based	Independent	Bonferroni		
	2.0	0.9198	0.8970	0.9000	0.9042		
5	3.6	0.8534	0.8970	0.9000	0.9042		
	6.0	0.8034	0.8970	0.9000	0.9042		
	2.0	0.8900	0.8962	0.8984	0.9034		
10	3.6	0.8830	0.8962	0.8984	0.9034		
	6.0	0.8212	0.8962	0.8984	0.9034		
	2.0	0.8842	0.9070	0.9096	0.9134		
20	3.6	0.8952	0.9070	0.9096	0.9134		
	6.0	0.8264	0.9070	0.9096	0.9134		
	2.0	0.8786	0.9026	0.9048	0.9088		
30	3.6	0.8594	0.9026	0.9048	0.9088		
	6.0	0.8458	0.9026	0.9048	0.9088		
	2.0	0.8820	0.8958	0.8972	0.9020		
40	3.6	0.8804	0.8958	0.8972	0.9020		
	6.0	0.8474	0.8958	0.8972	0.9020		
	2.0	0.9442	0.9010	0.9008	0.9054		
51	3.6	0.9128	0.9010	0.9008	0.9054		
	6.0	0.9124	0.9010	0.9008	0.9054		

The case is different in terms of T_1 (See Table 2.) as it increases with decreasing sd and increasing K. The CIs are wider for the parametric approach compared to the remaining approaches whose T_1 only vary by a small margin, with nonrank-based method having the smallest T_1 and Bonferroni, the largest one. The same behavior is observed for T_2 and T_3 .

As the correlation increases, the coverage of both independent and Bonferroni CIs exceeds the nominal value while that of nonrank-based method remains close to it. This holds regardless of K and sd. See Table 3 for sd = 2.0; results for other sd values are omitted, as they are identical to those shown. This suggests that when items being ranked are correlated, the proposed method is preferable, as it maintains coverage close to the nominal level.

sd remains to be the quantity that affects T_1 as it only differs by a small amount with changes in ρ . This is shown in Table 4.

Table 2: Simulation results for average T_1 when $\rho=0$.

		T_1					
K	sd	Parametric	Nonrank-based	Independent	Bonferroni		
	2.0	2.212960	2.127360	2.128560	2.130800		
5	3.6	1.983280	1.834720	1.835600	1.842240		
	6.0	1.622000	1.462560	1.462560	1.465520		
	2.0	4.002280	3.243800	3.246320	3.259040		
10	3.6	2.710680	2.307480	2.308680	2.317680		
	6.0	1.924080	1.731200	1.733320	1.736840		
	2.0	7.022060	5.333380	5.336680	5.361700		
20	3.6	4.207100	3.448120	3.451680	3.465240		
	6.0	2.787040	2.453000	2.454920	2.462440		
	2.0	11.830987	9.538733	9.547507	9.591387		
30	3.6	7.653613	5.802093	5.806080	5.833933		
	6.0	4.764387	3.778320	3.781573	3.797987		
	2.0	15.153140	12.100160	12.108990	12.160730		
40	3.6	10.392030	7.201310	7.205910	7.241320		
	6.0	6.508180	4.483520	4.485920	4.506070		
	2.0	20.446533	15.607796	15.614745	15.685914		
51	3.6	13.206918	9.098996	9.103490	9.143977		
	6.0	8.598722	5.786298	5.789153	5.814400		

Table 3: Simulation results for coverage probabilities when $\rho \neq 0$.

		Coverage				
corr	K	Nonrank-based	Independent	Bonferroni		
	5	0.8984	0.9008	0.9046		
	10	0.8996	0.9016	0.9060		
0.1	20	0.8988	0.9026	0.9082		
0.1	30	0.9000	0.9036	0.9088		
	40	0.8916	0.8968	0.9012		
	51	0.8944	0.8994	0.9048		
	5	0.9042	0.9218	0.9260		
	10	0.9038	0.9322	0.9346		
0.5	20	0.9032	0.9378	0.9408		
0.5	30	0.8910	0.9312	0.9338		
	40	0.8920	0.9328	0.9358		
	51	0.9086	0.9492	0.9516		
	5	0.9032	0.9574	0.9586		
	10	0.8962	0.9682	0.9690		
0.9	20	0.8980	0.9758	0.9766		
0.9	30	0.8960	0.9802	0.9806		
	40	0.8996	0.9862	0.9870		
	51	0.8928	0.9866	0.9868		

Table 4: Simulation results for T_1 probabilities when $\rho \neq 0$.

						T_1				
		Nonrank-based		Independent		Bonferroni				
K	sd	$\rho = 0.1$	$\rho = 0.5$	$\rho = 0.9$	$\rho = 0.1$	$\rho = 0.5$	$\rho = 0.9$	$\rho = 0.1$	$\rho = 0.5$	$\rho = 0.9$
5	2.0	2.129280	2.140720	2.114400	2.130640	2.153280	2.170800	2.132640	2.155760	2.172320
9	3.6	1.838480	1.830160	1.739120	1.839440	1.863040	1.889040	1.845760	1.869040	1.893840
	6.0	1.455040	1.420000	1.385040	1.456480	1.433200	1.400880	1.459920	1.436640	1.402000
10	2.0	3.254200	3.161880	2.883560	3.262520	3.249120	3.221600	3.274720	3.261680	3.233680
10	3.6	2.297600	2.233440	1.980640	2.301520	2.305600	2.314720	2.311040	2.315960	2.327920
	6.0	1.728520	1.704800	1.634280	1.730840	1.733000	1.711920	1.735480	1.737160	1.716400
20	2.0	5.319420	5.109500	4.371980	5.332860	5.335500	5.360780	5.357940	5.359040	5.385320
20	3.6	3.441220	3.321680	2.863180	3.448160	3.457860	3.488740	3.462300	3.473300	3.502700
	6.0	2.450240	2.384140	2.172600	2.455120	2.452100	2.441440	2.463000	2.460020	2.448520
30	2.0	9.525240	9.112560	7.639680	9.549013	9.576253	9.623440	9.592120	9.619173	9.664320
30	3.6	5.784933	5.512867	4.555827	5.799840	5.813653	5.842280	5.828347	5.842120	5.870320
	6.0	3.770373	3.612987	3.087267	3.779547	3.787573	3.789267	3.795240	3.804000	3.804840
40	2.0	12.087970	11.537040	9.602120	12.123520	12.153500	12.224780	12.175670	12.203740	12.273560
40	3.6	7.184540	6.756920	5.430030	7.206670	7.204860	7.226330	7.242580	7.242400	7.265960
	6.0	4.476240	4.256020	3.539500	4.488620	4.491630	4.503040	4.508860	4.511780	4.523070
5.1	2.0	15.563663	14.706651	11.878298	15.608400	15.641286	15.662024	15.679569	15.712047	15.736000
51	3.6	9.071851	8.561145	6.969490	9.096541	9.099663	9.117435	9.138267	9.140047	9.159812
	6.0	5.772494	5.465592	4.432910	5.788596	5.800847	5.826855	5.814674	5.826659	5.853412

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Appendices

Codes for algorithm 1

```
get_independent_ci <- function(theta_hat,
                       S,
                       alpha){
 K <- length(theta_hat)
 gamma = \frac{1}{(1-alpha)}(\frac{1}{K})
 z = qnorm(1-gamma/2)
 ci\_lower <- theta\_hat - z*S
 ci\_upper <- theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
 ))
}
get_bonferroni_ci <- function(theta_hat,
                      S,
                      alpha){
 K <- length(theta_hat)
 z = qnorm(1-(alpha/K)/2)
 ci\_lower <- theta\_hat - z*S
 ci\_upper < - theta\_hat + z*S
```

```
return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
))
get_parametric_ci <- function(B,
                theta_hat,
                S,
                alpha) {
 K <- length(theta_hat)
 thetahat_star <- sapply(seq_len(K), function(i) {
  rnorm(B, mean = theta\_hat[i], sd = S[i])
 })
 colnames(thetahat star) <- paste0("thetahat star",
                    sprintf("%02d", 1:K))
 sorted_thetahat_star <- t(apply(thetahat_star, 1, sort))
 colnames(sorted_thetahat_star) <- paste0("sorted_thetahat_star",
                        sprintf("%02d", 1:K))
 variance vector <- S^2
 minuend <- thetahat_star^2 + rep(
  variance\_vector, each = nrow(thetahat\_star))
 sigma_hat_star <- sqrt(
  t(apply(minuend, 1, sort)) - sorted_thetahat_star^2)
 sorted_theta_hat <- sort(theta_hat)
 t_star <- apply(
```

```
abs(
    sorted_thetahat_star - rep(
    sorted_theta_hat,
     each = nrow(sorted_thetahat_star)
     )
    )/sigma_hat_star
   ),
  1,
 max)
 t_hat <- quantile(t_star, probs = 1 - alpha)
 sigma_hat <- sqrt(
 sort(theta_hat^2 + variance_vector) - sorted_theta_hat^2)
 ci_lower <- sorted_theta_hat - t_hat*sigma_hat
 ci_upper <- sorted_theta_hat + t_hat*sigma_hat
 return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
))
get_nonrankbased_ci <- function(B,
                theta_hat,
                alpha,
                varcovar_matrix) {
 K <- length(theta_hat)
```

}

```
generate_data <- function(){MASS::mvrnorm(n = 1,
                 mu = theta_hat,
                 Sigma = varcovar\_matrix)
thetahat star <- t(replicate(B, generate data()))
t_star <- apply(thetahat_star,
        1,
        function(x) max(abs((x - theta_hat) / sqrt(
         diag(varcovar_matrix)))))
t_hat <- quantile(t_star, probs = 1 - alpha)
ci_lower <- theta_hat - t_hat*sqrt(diag(varcovar_matrix))
ci_upper <- theta_hat + t_hat*sqrt(diag(varcovar_matrix))
return(list(
 ci_lower = ci_lower,
 ci\_upper = ci\_upper
))
}
```

Codes for algorithm 2

```
source("../../R/compute_ci.R")
library("doRNG")

get_ranks <- function(k, tuple_list){
   Lambda_lk <- which(
   tuple_list[,2]<=tuple_list[k,1])</pre>
```

```
Lambda_lk <- Lambda_lk[Lambda_lk != k]
 Lambda_Ok <- which(
   tuple\_list[,2] > tuple\_list[k,1] \& tuple\_list[k,2] > tuple\_list[,1])
 Lambda_Ok <- Lambda_Ok[Lambda_Ok != k]
 ranks <- seq(
   length(unique(Lambda_lk)) + 1,
   length(unique(Lambda_lk)) + length(unique(Lambda_Ok)) + 1,
   1
 )
 return(list(
   ranks = ranks,
   Lambda_Ok = Lambda_Ok
 ))
}
get_t1 <- function(v) mean(v)
get_t2 <- function(v) prod(v)^(1/length(v))
get_t3 <- function(v)  {
 1 - ((\operatorname{length}(v) + \operatorname{sum}(v)) / (\operatorname{length}(v)^2))
}
get_coverage <- function(ci_lower,
                   ci_upper,
                   true_theta) {
 return(all(ci\_lower <= true\_theta) \ \& \ all(true\_theta <= ci\_upper))
}
```

```
algo2_nonrankbased <- function(
  true_theta,
  Κ,
  reps = 5, # step 4
  B = 100,
  alpha = 0.10,
  varcovar_matrix){
 foreach(iter = 1:reps,
       .combine = rbind,
       .packages = c("foreach", "arrow", "MASS"),
       .export = c("get_nonrankbased_ci", "get_independent_ci",
               "get_bonferroni_ci", "get_ranks", "get_coverage",
               "get_t1", "get_t2", "get_t3")
 ) %dorng% {
  # step 1 ======
  theta_hat <- mvrnorm(n = 1,
                 mu = true\_theta,
                 Sigma = varcovar\_matrix
  # step 2 ======
  S <- sqrt(diag(varcovar_matrix))
  ci_methods <- list(
    nonrankbased = function() get_nonrankbased_ci(B, theta_hat, alpha,
                                     varcovar_matrix),
    independent = function() get_independent_ci(theta_hat, S, alpha),
    bonferroni = function() get_bonferroni_ci(theta_hat, S, alpha)
```

```
ci_results <- lapply(ci_methods, function(f) f())
coverages <- lapply(ci_results, function(res) {
 get_coverage(
  ci_lower = res$ci_lower,
  ci_upper = res$ci_upper,
  true\_theta = true\_theta
})
process_ci_result <- function(result, K) {
 tuple\_list <- t(apply(
  data.frame(
    ci_lower = result$ci_lower,
    ci_upper = result$ci_upper
   ),
   1,
  function(row) as.numeric(row)
 ))
 rank_range_length <- sapply(1:K, function(x)
  length(get_ranks(x, tuple_list)$ranks)
 )
 list(
  t1 = get_t1(rank_range_length),
  t2 = get_t2(rank_range_length),
  t3 = get_t3(rank_range_length)
```

```
)
  }
  processed <- lapply(ci_results, process_ci_result, K = K)
  data.frame(
    t1_nonrankbased = processed$nonrankbased$t1,
    t2_nonrankbased = processed$nonrankbased$t2,
    t3_nonrankbased = processed$nonrankbased$t3,
    coverage_nonrankbased = coverages$nonrankbased,
    t1_independent = processed$independent$t1,
    t2_independent = processed$independent$t2,
    t3_independent = processed$independent$t3,
    coverage_independent = coverages$independent,
    t1\_bonferroni = processed\$bonferroni\$t1,
    t2_bonferroni = processed$bonferroni$t2,
    t3_bonferroni = processed$bonferroni$t3,
    coverage_bonferroni = coverages$bonferroni
    )
 }
algo2_parametric <- function(
  true_theta,
  Κ,
  reps = 5, # step 4
  B = 100,
  alpha = 0.10,
```

}

```
S){
foreach(iter = 1:reps,
     .combine = rbind,
     .packages = c("foreach", "arrow", "MASS"),
     .export = c("get_parametric_ci","get_ranks", "get_coverage",
              "get_t1", "get_t2", "get_t3")
) %dorng% {
 # step 1 ======
 theta_hat <- rnorm(
  n = K,
  mean = true\_theta,
  sd = S
 # step 2 ======
 result <- get_parametric_ci(B,
                     theta_hat,
                     S,
                     alpha)
 # step 3 ======
 sorted_true_theta <- sort(true_theta)
 coverage <- get_coverage(ci_lower = result$ci_lower,
                   ci_upper = result$ci_upper,
                   true_theta = sorted_true_theta)
 tuple\_list <- t(apply(
   data.frame(ci_lower = result$ci_lower,
```

```
ci_upper = result$ci_upper), 1, function(row) as.numeric(row)))
rank_range_length <- sapply(1:K, function(x) length(
    get_ranks(x, tuple_list)$ranks))

t1 <- get_t1(rank_range_length)

t2 <- get_t2(rank_range_length)

t3 <- get_t3(rank_range_length)

data.frame(
  t1_parametric = t1,
  t2_parametric = t2,
  t3_parametric = t3,
  coverage_parametric = coverage
)
}</pre>
```

Codes for simulation

```
#3:37PM
source("../../R/implement_algo2.R")

mean <- 23.8

df <- readRDS("../../data/mean_travel_time_ranking_2011.rds")
cl=parallel::makeCluster(15)
registerDoParallel(cl)

sds <- c(2, 3.6, 6)

Ks <- c(51, 40, 30, 20, 10, 5)
```

```
corrs <- c(0.1,0.5,0.9)
alphas <- c(0.1)#c(0.05, 0.1, 0.15, 0.2)
for (sd in sds) {
 for (K in Ks) {
   set.seed(123974)
   true_theta <- rnorm(K, mean, sd)
   true\_sds <- df S[1:K]
   for (alpha in alphas) {
     tic("Running parametric...")
     coverage_parametric_df <- algo2_parametric(true_theta,
                                         Κ,
                                         reps = 5000,
                                         B = 500,
                                         alpha= alpha,
                                         S=true_sds)
     toc()
     saveRDS(coverage_parametric_df, paste0("output/coverage_parametric_",
                                       K,"_", sd, "_", alpha, ".rds"))
     for (corr in corrs) {
      \operatorname{corr}_{\operatorname{matrix}} < -(1 - \operatorname{corr}) * \operatorname{diag}(K) + \operatorname{corr} * \operatorname{matrix}(1, K, K)
      variance_vector <- true_sds^2
      delta <- diag(variance_vector)
      varcovar_matrix \leftarrow delta^{(1/2)} \% \% corr_matrix \% \% delta^{(1/2)}
      tic("Running nonrankbased...")
      coverage_output_df <- algo2_nonrankbased(
```

```
true_theta,
       Κ,
       reps = 5000,
       B = 500,
       alpha=alpha,
       varcovar_matrix = varcovar_matrix)
      toc()
     save RDS (coverage\_output\_df, \ paste0 ("output/coverage\_probability\_", \\
                                 K,"_", sd, "_", corr, "_",
                                 alpha, ".rds"))
stopCluster(cl)
param_grid <- expand.grid(K = Ks, sd = sds, corr = corrs, alpha = alphas)
results <- do.call(rbind, lapply(seq_len(nrow(param_grid)), function(i) {
 K <- param_grid$K[i]
 sd <- param_grid$sd[i]
 corr <- param_grid$corr[i]
 alpha <- param_grid$alpha[i]
 a <- readRDS(paste0("output/coverage_probability_",
                K, "_", sd, "_", corr, "_", alpha, ".rds"))
```

```
data.frame(
  K = K,sd = sd,corr = corr,alpha = alpha,
  Cov\_nonrankbased = mean(a\$coverage\_nonrankbased),
  Cov\_independent = mean(a\$coverage\_independent),
  Cov bonferroni = mean(a\$coverage bonferroni),
  T1 nonrankbased = mean(a$t1 nonrankbased),
  T1 independent = mean(a$t1 independent),
  T1\_bonferroni = mean(a$t1\_bonferroni),
  T2_nonrank = mean(a$t2_nonrankbased),
  T2_independent = mean(a$t2_independent),
  T2_bonferroni = mean(a$t2_bonferroni),
  T3_independent = mean(a$t3_independent),
  T3 nonrankbased = mean(a$t3 nonrankbased),
  T3_bonferroni = mean(a$t3_bonferroni)
}))
param\_grid \leftarrow expand.grid(K = Ks, sd = sds, alpha = alphas)
results1 <- do.call(rbind, lapply(seq_len(nrow(param_grid)), function(i) {
 K <- param_grid$K[i]
 sd <- param_grid$sd[i]
 alpha <- param_grid$alpha[i]
 a <- readRDS(paste0("output/coverage_parametric_",
               K, "_", sd, "_", alpha, ".rds"))
 data.frame(
  K = K
```

```
sd = sd,
alpha = alpha,
Cov_parametric = mean(a$coverage_parametric),
T1_parametric = mean(a$t1_parametric),
T2_parametric = mean(a$t2_parametric),
T3_parametric = mean(a$t3_parametric)
)
}))
save(results, results1, file = "simulation_results.RData")
```