Patterns over time

EXPLORATORY DATA ANALYSIS IN PYTHON

Izzy WeberCurriculum Manager, DataCamp

Patterns over time

```
divorce = pd.read_csv("divorce.csv")
divorce.head()
```

```
marriage_date marriage_duration
0 2000-06-26 5.0
1 2000-02-02 2.0
2 1991-10-09 10.0
3 1993-01-02 10.0
4 1998-12-11 7.0
```

Importing DateTime data

DateTime data needs to be explicitly declared to Pandas

Importing DateTime data

```
divorce = pd.read_csv("divorce.csv", parse_dates=["marriage_date"])
divorce.dtypes
```

```
marriage_date datetime64[ns]
marriage_duration float64
dtype: object
```


Converting to DateTime data

• pd.to_datetime() converts arguments to DateTime data

```
divorce["marriage_date"] = pd.to_datetime(divorce["marriage_date"])
divorce.dtypes
```


Creating DateTime data

```
divorce.head(2)
```

```
      month
      day
      year
      marriage_duration

      0
      6
      26
      2000
      5.0

      1
      2
      2
      2000
      2.0
```

```
divorce["marriage_date"] = pd.to_datetime(divorce[["month", "day", "year"]])
divorce.head(2)
```

```
month day year marriage_duration marriage_date

0 6 26 2000 5.0 2000-06-26
1 2 2 2000 2.0 2000-02-02
```

Creating DateTime data

• Extract parts of a full date using dt.month, dt.day, and dt.year attributes

```
divorce["marriage_month"] = divorce["marriage_date"].dt.month
divorce.head()
```

```
marriage_date marriage_duration marriage_month

0 2000-06-26 5.0 6

1 2000-02-02 2.0 2

2 1991-10-09 10.0 10

3 1993-01-02 10.0 1

4 1998-12-11 7.0 12
```

Visualizing patterns over time

```
sns.lineplot(data=divorce, x="marriage_month", y="marriage_duration")
plt.show()
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

Correlation

EXPLORATORY DATA ANALYSIS IN PYTHON

Izzy WeberCurriculum Manager, DataCamp

Correlation

- Describes direction and strength of relationship between two variables
- Can help us use variables to predict future outcomes

```
divorce.corr()
```

	income_man	income_woman	marriage_duration	num_kids	marriage_year
income_man	1.000	0.318	0.085	0.041	0.019
income_woman	0.318	1.000	0.079	-0.018	0.026
marriage_duration	0.085	0.079	1.000	0.447	-0.812
num_kids	0.041	-0.018	0.447	1.000	-0.461
marriage_year	0.019	0.026	-0.812	-0.461	1.000

• .corr() calculates Pearson correlation coefficient, measuring *linear* relationship

Correlation heatmaps

```
sns.heatmap(divorce.corr(), annot=True)
plt.show()
```


Correlation in context

Timestamp('2015-11-03 00:00:00')

```
divorce["divorce_date"].min()
Timestamp('2000-01-08 00:00:00')

divorce["divorce_date"].max()
```

Visualizing relationships

- Strong relationship—but not linear
- Pearson correlation coefficient: -6.48e-18
- Quadratic relationship; not linear
- Pearson correlation coefficient: .971211

Scatter plots

```
sns.scatterplot(data=divorce, x="income_man", y="income_woman")
plt.show()
```


Pairplots

```
sns.pairplot(data=divorce)
plt.show()
```


Pairplots

```
sns.pairplot(data=divorce, vars=["income_man", "income_woman", "marriage_duration"])
plt.show()
```


Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

Factor relationships and distributions

EXPLORATORY DATA ANALYSIS IN PYTHON

F

Izzy WeberCurriculum Manager, DataCamp

Level of education: male partner

```
divorce["education_man"].value_counts()
```

```
Professional 1313
Preparatory 501
Secondary 288
Primary 100
None 4
Other 3
Name: education_man, dtype: int64
```


Exploring categorical relationships

```
sns.histplot(data=divorce, x="marriage_duration", binwidth=1) []
plt.show()
```


Exploring categorical relationships

```
sns.histplot(data=divorce, x="marriage_duration", hue="education_man", binwidth=1)
plt.show()
```


Kernel Density Estimate (KDE) plots

```
sns.kdeplot(data=divorce, x="marriage_duration", hue="education_man")
plt.show()
```


Kernel Density Estimate (KDE) plots

Kernel Density Estimate (KDE) plots

```
sns.kdeplot(data=divorce, x="marriage_duration", hue="education_man", cut=0)
plt.show()
```


Cumulative KDE plots

sns.kdeplot(data=divorce, x="marriage_duration", hue="education_man", cut=0, cumulative=True) []
plt.show()

Relationship between marriage age and education

Is there a relationship between age at marriage and education level?

```
divorce["man_age_marriage"] = divorce["marriage_year"] - divorce["dob_man"].dt.year
divorce["woman_age_marriage"] = divorce["marriage_year"] - divorce["dob_woman"].dt.year
```


Scatter plot with categorical variables

```
sns.scatterplot(data=divorce, x="woman_age_marriage", y="man_age_marriage")
plt.show()
```


Scatter plot with categorical variables

Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

