

Credit Hours System Faculty of Engineering

Cairo University

Numerical Analysis Project

Lamees Mahmoud MohyEldeen	1152023
Aya Hossam	1132125
Eman Mohamed	1170297
Eman Gamal	1170298
Kamel Mohsen Kamel	1162325
Abdelrhman Ashraf	1170060
Hossam Hazem	1170289
Marwan Ehab	1170057
Abdelrahman mamdoh	1170480
Rabea Said Hamdy	1155078

```
Q1) ODE
```

```
clc;
clear;
Y = zeros(0,150);
Y1= zeros(0,150); % Y1=Y'
Y2= zeros(0,150); % Y2=Y1'=Y''
Y3= zeros(0,150); % Y3=Y2'=Y'''
Y4= zeros(0,150); % Y4=Y3'=Y''''
X = zeros(0,150);
% Set intial values
Y(1)=1;
Y1(1)=1;
Y2(1)=-1;
Y3(1)=1;
Y4(1)=-1;
X(1)=0;
h= 0.01; % step given
k = 2;% to Acess the value of the next state
for i=0:0.01:1.5
%set the peridictive values
X(k) = i+0.01;
Y(k) = Y(k-1) + h * Y1(k-1);
Y1(k) = Y1(k-1)+h*Y2(k-1);
Y2(k) = Y2(k-1)+h*Y3(k-1);
Y3(k) = Y3(k-1)+h*Y4(k-1);
Y4(k) = cos(2*X(k))-4*Y2(k); % given
% begin to calculate the corrective value with 10 iterations
for j=0:1:10
Y3(k)=Y3(k-1)+h*((Y4(k-1)+Y4(k))/2);
Y2(k)=Y2(k-1)+h*((Y3(k-1)+Y3(k))/2);
Y1(k)=Y1(k-1)+h*((Y2(k-1)+Y2(k))/2);
Y(k)=Y(k-1)+h*((Y1(k-1)+Y1(k))/2);
end
k=k+1;
end
plot(X,Y)
xlabel('X')
                                  %Labeling Horizontal Axis
ylabel('Y')
                                  %Labeling Vertical Axis
grid on
set(gca, 'Fontsize', 15)
                                 %Changing the font size of the labels
```

Q2) PDE

```
%Numerical Project spring 2019
                                %Clears workspace after every run
clear; clc
                                %Number of terms in X direction AKA n
Nx=5;
                                %Number of terms in T direction AKA m
Nt=20;
                                %The max X value
Lx=1;
                                %The max T value
Lt=1:
Nx=Nx+1;
Nt=Nt+1;
U=zeros(Nt,Nx);
                               %Intializing an empty array for Saving
the solution
x=linspace(0,Lx,Nx);
                                %Creating linear space for the x to draw
t=linspace(0,Lt,Nt);
                                %Creating linear space for the t to draw
%Using the given Boundry Conditions to fill the matrix
    U(:,1) = 0;
                                                  %Left Boundary
Condition
    U(:,Nx) = 0;
                                                  %Right Boundary
Condition
    U(1,2:(Nx-1))=\sin(pi*0.2*((2:(Nx-1))-1));
                                                  %Bottom Boundary
Condition
    U(2,2:(Nx-1))=U(1,2:(Nx-1));
                                                  %From initial
condition ut=0(at t=0) 0 <= x <= 1
%Using finite difference formula we get this
4*U((i+1),j)+4*U((i-1),j))-8*U(i,j)=-2*U(i,j)+U(i,(j+1))+U(i,(j-1))
% h=0.2 , k=0.05
for i=2:(Nt-1)
    for j=2:(Nx-1)
     U((i+1),j)=(6*U(i,j)+U(i,(j+1))+U(i,(j-1))-4*U((i-1),j))/4;
%Reorderd the equation above derived from the Finite Differnece formula
    end
end
%Plotting Calculated solution
figure('Name','Calculated');
                                     %Naming Figure 1 to draw the
calculated solution
                                     %Drawing the graph using x,t,and U
surf(x,t,U);
matrix
xlabel('X')
                                     %Labeling Horizontal Axis
ylabel('T')
                                     %Labeling Vertical Axis
zlabel('U')
                                     %Labeling Perp. Axis
set(gca, 'Fontsize', 10)
                                     %Changing the font size of the
labels
%Exact solution
Exact=zeros(21,6);
for i=1:Nt
    for j=1:Nx
        Exact(i,j)=sin(pi*(Lx/(Nx-1))*(j-1))*cos(2*pi*(Lt/(Nt-1))*(i-1))*(i-1)
1)); %The Exact equation given to us
    end
end
%Plotting Exact solution
figure('Name','Exact');
                                 %Naming Figure 2 to draw the Exact
solution
surf(x,t,Exact);
                                 %Drawing the graph using x,t,and Exact
matrix
xlabel('X')
                                 %Labeling Horizontal Axis
ylabel('T')
                                 %Labeling Vertical Axis
zlabel('Exact')
                                 %Labeling Perp. Axis
```

```
set(gca,'Fontsize',10) % Changing the font size of the labels
%Calculating ERROR

Error=abs((Exact-U)./Exact)*100;
Error(:,1)=1:21; % Giving default value 0 to first
column since 0/0 = Nan
Error(6,2:5)=Error(6,2:5)/(1.0e+17);
Error(16,2:5)=Error(16,2:5)/(1.0e+17);
disp(Error);
disp('Rows 6 & 16 are divided by (1.0e+17)');
disp('The shown data starts from column 2 since column 1 is all
zeroes');
```