Will Repeated Reading Benefit Natural Language Understanding?

Lei Sha, Feng Qian, Zhifang Sui
Peking University EECS
{shalei, nickqian, szf} @ pku.edu.cn

Question

 Human beings can gain a better understanding by reading a sentence repeatedly.

 Will Repeated Reading (re-read) also benefit natural language understanding?

What structure has the ability to re-read?

Standard Bi-LSTM

Multi-level attention mechanism

Deep Bi-LSTM

Multi-pass Bi-LSTM

What tasks can we evaluate on?

- Part-of-speech Tagging
- Sentiment Analysis
- Semantic Relationship Classification
- Event Extraction

Part-of-speech tagging

• Data: Wall Street Journal (WSJ) data

- Sections 0-18 of the Wall Street Journal (WSJ) data for training
- sections 19-21 for validation
- sections 22-24 for testing.

Part-of-speech tagging result

	Accuracy	p value
Standard	91.30	_
MLA(1-level)	91.09	0.10960
MLA(2-level)	90.92	0.39532
DB	81.31	0.00096*
MPB	90.74	0.07346

Sentiment analysis

Data: Stanford Sentiment TreeBank

• We reconstruct 11,855 sentences into 215,154 phrases, so that the reconstructed dataset contains 215,154 examples.

• Fine grained and coarse grained: Fine-grained classification result (very negative, negative, neutral, positive, very positive). Coarse-grained classification result (negative, positive).

Sentiment analysis result (fine grained)

Fine-grained	Phrase-level	Root-level	Total
Standard	80.72	42.25	79.91
MLA(1-level)	81.25(+0.53)	\ /	80.06(+0.15)
p value	0.0002*	0.00578*	0.0008*
MLA(2-level)	81.61(+0.89)	39.58(-2.67)	80.15(+0.24)
p value	0.008*	0.006*	0.0007*
DB	79.61(-1.11)	41.63(-0.62)	` '
p value	0.0003*	0.03156*	0.03156*
MPB	` '	42.08(-0.17)	79.88(-0.08)
p value	0.0003*	0.10524	0.87288

Sentiment analysis result (coarse grained)

Coarse-grained	Phrase-level	Root-level	Total
Standard	80.79	72.57	79.89
MLA(1-level)	81.47(+0.68)	73.04(+0.47)	80.95(+1.06)
p value	0.0022*	0.0028*	0.0129*
MLA(2-level)	81.65(+0.86)	73.64(+1.07)	81.31(+1.42)
p value	0.0008*	0.0006*	0.0033*
DB	75.99(-4.80)	69.10(-3.47)	75.51(-4.38)
p value	0.0004*	0.0001*	0.0002*
MPB	80.71(-0.08)	72.60(+0.03)	79.78(-0.11)
p value	0.0600	0.158	0.0238

Semantic relationship classification

- Data: SemEval-2010 Task 8 dataset
- The dataset includes 8,000 training instances and 2,717 test instances.

Semantic relationship classification result

	Accuracy	p value
Standard	75.54	-
` ,	75.83 (+0.29)	
$\overline{\mathrm{MLA}(2\text{-level})}$	76.24 $(+0.70)$	0.01552*
DB	66.23 (-9.31)	0*
MPB	75.43 (-0.11)	0.81034

Event Extraction

- Data: Event Extraction on the ACE 2005 dataset
- The newswire texts in ACE2005 dataset are divided into training (529 documents) / develop (10 documents) / testing (40 documents).

Event extraction result

	Trigger	Argument	Argument
	Cl	Id	Cl
	$F_1(\%)$	$F_1(\%)$	$F_1(\%)$
Standard	51.68	57.44	42.09
MLA(1-level)	53.77(+2.09)	59.34(+1.90)	41.43(-0.66)
p value	0.0022*	0.0003*	0.8891
MLA(2-level)	54.68(+3.00)	60.64(+3.20)	42.87(+0.78)
p value	0.0043*	0.0001*	0.0124*
DB	57.22(+5.54)	60.75(+3.31)	43.65(+1.56)
p value	0.0003*	0.0001*	0.0002*
MPB	55.21(+3.53)	59.03(+1.59)	41.32(-0.77)
p value	0.0015*	0.0102*	0.0230*

Suggestions for NLPers

• When to use?

• Which to use?

When to use?

• If the task requires to understand the meaning of the whole sentence instead of single words, we suggest to use repeated reading mechanism.

•Thanks!

Will Repeated Reading Benefit Natural Language Understanding?

Lei Sha, Feng Qian, Zhifang Sui
Peking University EECS
{shalei, nickqian, szf} @ pku.edu.cn