

HilSP

FAQ

文档版本 00B02

发布日期 2018-06-15

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) HISILICON 、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

All History Amoreo 100 28 PCO 20 Kill Hillight In the Market of the Mark 您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

http://www.hisilicon.com 网址:

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

i

概述

本文为使用 HiISP 开发的程序员而写,目的是为您在开发过程中遇到的问题提供解决办法和帮助。

□ 说明

本文以 Hi3559AV100 描述为例,未有特殊说明,Hi3559CV100,Hi3519AV100,Hi3556AV100,Hi3516CV500,Hi3516DV300,Hi3556V200,Hi3559V200,Hi3516EV200,Hi3516EV300,Hi3518EV300 与 Hi3559AV100 完全一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3559A	V100
Hi3559C	V100
Hi3519A	V100
Hi3556A	V100
Hi3516C	V500
Hi3516D	V300
Hi3559	V200
Hi3556	V200
Hi3516E	V200
Hi3516E	V300
Hi3518E	V300

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

A Talling 356 Payrong on the September of the September o 修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新

文档版本 00B02 (2018-06-15)

文档版本 00B01 (2018-03-15)

目 录

		•••••
Q		••••
1.1	ISP	
	1.1.1 如何解决整体锐度不足	
	1.1.2 如何解决图像发蒙问题,提高通透性	
	1.1.3 如何解决低照度清晰度差	
	1.1.4 如何解决图像清晰度与物体边缘白边和黑边问题	5C)
	1.1.5 如何解决图像的锯齿严重的问题	<u>}</u>
	1.1.6 如何解决图像暗角格子问题	
	1.1.7 如何解决 AE	
	1.1.8 如何解伏红外场京壳度和对比度差的问题	•••••
	1.1.9 如何调整红外模式 AE, AWB 和 CCM 参数	
	1.1.10 如何解决低照度情况下图像出现竖条纹的问题	
	1.1.11 如何实现背光补偿	
	1.1.12 如何实现手动曝光时间,增益自动控制,或者手动增益,曝光时间自动控制	
	1.1.13 如何正确设置最大增益	
	1.1.14 如何解决 AWB 易受干扰问题	
	1.1.15 如何解决高温下黑电平漂移对颜色的影响	
	1.1.16 如何解决低照度亮度、对比度偏低	
	1.1.17 如何解决光源字体附近出现方向性的毛刺	
	1.1.18 如何解决 AE 无法控制 Piris 光圈	
	1.1.19 DCIris 光圈手动控制可以开关,但自动模式不会关闭原因	
	1.1.20 如何解决 AE 闪烁	
1.2	Sensor 相关	
	1.2.1 如何解决对接 sensor 时,环境亮度变化引起图像出现裂屏	
	1.2.2 如何解决对接 sensor 时,环境亮度变化引起闪烁	
	1.2.3 如何解决不同的 sensor 器件实现 50Hz/60Hz 抗闪	
	1.2.4 如何解决 sensor 输出图像中间有黄圈问题	
	1.2.5 如何规避 Sensor Built-in 模式亮暗区域出现黄绿色彩问题	

Ħ	录
\vdash	~,\

1.2.7 如何理解接入性能	14
1.2.8 IMX334 WDR 模式 RHS 两帧之间调节限制	15

$1_{\rm FAQ}$

1.1 ISP

1.1.1 如何解决整体锐度不足

【现象】

图像边缘细节不清,与失焦效果类似。或者对比标杆,大边和纹理的锐度不如标杆。

【分析】

影响图像锐度的维度有整体图像亮度和对比度(AE、WB、GAMMA 和 DCI)、锐化强度(sharpen)、Demosaic、去噪强度(2DNR 和 3DNR)和编码码率等。所以当图像的整体清晰度风格跟客户的需求偏差较大时,优先考虑调整 GAMMA 等影响图像全局亮度和局部对比度的模块,然后再调整 Demosaic 和 sharpen。

【解决】

需要逐步排除定位图像锐度不足的原因:

- 查看 sensor 表面,镜头表面是否整洁,是否贴膜没有去掉,是否单边模糊,确认 镜头光圈开到最大,对焦清晰。
- 检查图像亮度是否合理,通过 ae_compensation 参数调整亮度到满意。
- 校正 WB, 使得图像的白平衡正常。
- 调整 GAMMA,让图像整体的风格和对比度达到客户需求。
- 设置编码码率为高码率,观察是否有效果改善。
- 调整 Demosaic 的相关参数,避免 Demosaic 插值的图像过于模糊和边缘不清晰。
- 通过 PQtools 读取当前的 sharpen 强度信息,或手动设置 sharpen 强度到最大,观察是否有改善。
 - 首先将 TextureStr 和 EdgeStr 都调到最大;
 - 其次将 OverShoot 和 UnderShoot 调到最大;
 - 再次将 DetailCtrl 设置为 128,同时,将 LumaWgt 都设置为 127;
 - 最后根据图像的黑边白边的情况适当的调整 undershoot 和 overshoot 以及 shootSupStr。如果图像的锐度太高,再适当降低 TextureStr 和 EdgeStr,重复上 述三步即可调到客户想要的清晰度风格。

关闭或者减弱 2DNR/3DNR 去噪模块,观察是否有改善。

1.1.2 如何解决图像发蒙问题,提高通透性

【现象】

图像发蒙,通透性不好。

【分析】

通透性由两大因素决定:清晰度和对比度。

- 若清晰度不够,或对比度不高,会让人感觉通透性比较差。
- 若出现通透性不好,应检查是否有漏光现象。

【解决】

- 遮住漏光的地方,注意 sensor 板背面也有可能漏光。
- 提高对比度,通过设置更高对比度的 Gamma 实现。
- 调整 LDCI,进一步提升图像的对比度。
- 如果是有雾的场景,或者是类似于有雾的场景,可以尝试调试 Dehaze 来减弱图像 发蒙的问题。
- 提高清晰度,请参见 1.1.1 如何解决整体锐度不足和 1.1.3 如何解决低照度清晰度差。

1.1.3 如何解决低照度清晰度差

【现象】

低照度时清晰度比较差。

【分析】

- 原因 1: 清晰度与镜头关系最大。对焦距与物距均影响景深(焦距小,景深大;物 距远,景深大),导致整体清晰度差异。
- 原因 2: ISP 软件内部有默认的联动机制。噪声大时,自动降低锐化强度,并加强去噪强度。该策略会导致低照度时,画面清晰度下降。

【解决】

- 针对原因 1,选用同样的镜头(同一个厂家,同一个型号)进行对比。
- 针对原因 2,联动机制已开放参数,用户可以按照自己的喜好,在清晰度和去噪之间平衡。在低照度时,可以增加 2DNR/3DNR 去噪的强度,以减小噪声。可以适当提高 sharpen 的锐化,以增强大边的锐度。还可以调整一下 Demosaic 的参数,防止图像插值出来的边缘过于模糊。

1.1.4 如何解决图像清晰度与物体边缘白边和黑边问题

【现象】

图像清晰度不足或物体边缘(如字体或树叶或者楼宇大边缘)有白边黑边。

【分析】

在图像已经聚焦的情况下,图像清晰度是由两方面决定:

- 去噪强度越大,图像越模糊;
- sharpen 锐化强度,锐化强度越大,图像越清晰,反之越模糊。

物体边缘的黑边白边一般是由于锐化强度过大造成。然而,锐化后产生的黑边白边,是 Sharpen 锐化不可避免的副作用,尤其在 sharpen 锐化很强的情况下,黑边白边尤为明显,适当的黑边和白边能让人眼感觉锐度更高。

【解决】

图像清晰度和黑边白边的控制主要通过两种途径进行调节,包括去噪和图像锐化。

- 如果图像的清晰度不足,可以适当降低 2DNR 的强度,适当提高 sharpen 的锐化强度。
- 在图像的清晰度达到要求的情况下:
 - 首先,通过调大 ShootSupStr 来减弱图像的黑白边。调大 ShootSupStr,可以在不明显降低图像的清晰度的前提下,收窄黑边白边的宽度、压低黑边白边的幅度,但是,ShootSupStr 调的过大,也会导致图像的清晰度降低,并会导致图像出现微弱的油画副作用,以及加重锯齿的副作用。其次,如果调节 ShootSupStr 也不能将图像的黑边白边调到满意,则可以单独调小 overshoot 来减弱白边,或者单独调小 undershoot 来减弱黑边,但是,调小 overshoot 或者 undershoot 都会明显的降低图像的清晰度。

1.1.5 如何解决图像的锯齿严重的问题

【现象】

锐化后的图像在小角度倾斜的高对比度的大边缘会产生锯齿。

【分析】

图像中的小角度倾斜的高对比度的大边缘,在 sharpen 锐化前一般都会有锯齿,只是不太明显。 sharpen 锐化后,原本不太明显的锯齿也被增强,导致锯齿变得明显。锯齿的产生跟高对比度的大边缘的倾斜角度有很强的关联,不同的倾斜角度,锯齿的严重程度也差别很大。

【解决】

需要逐步排除定位图像产生锯齿的原因:

- 确认产生锯齿的边缘的视角和倾斜的角度跟标杆一致。跟标杆对比锯齿问题,需要两者在同样的视角和边缘倾斜度的情况下对比。
- 关闭 sharpen 后,看图像是否已经有了明显的锯齿。
 - 如果关闭 sharpen 后,图像的大边缘就有明显锯齿,那就需要调整 demosaic 和 2DNR。一般情况下,适当的调大 demosaic 的 DetailSmoothStr 参数,就可以明显的减弱边缘锯齿,但是,demosaic 的参数不能调的太极端,否则,边缘会变的过于模糊。
 - 如果关闭 sharpen 后,图像的锯齿不明显。开启 sharpen 后,图像的锯齿变得明显或者加重。那就需要调整 sharpen 参数,在保持清晰度不明显的降低的前提下减弱锯齿。

适当的调节 EdgeStr 可以明显的减弱锯齿,而不明显的降低图像清晰度。 EdgeStr 参数是一个长度为 32 的数组,通过减小坐标最大的一段的 EdgeStr 的值,可以明显的减弱锯齿。比如,减弱 EdgeStr[20]、EdgeStr[21]、EdgeStr[22] 到 EdgeStr[31]这 12 个下坐标最大的一段的 EdgeStr 的值,而同时保持剩下下坐标较小的一段(0~19)的 EdgeStr 的值不变,则可以在不明显降低图像清晰度的前提下减弱锯齿。同时,EdgeStr 强度曲线的调节要尽量平滑。此外,如果 ShootSupStr 过大,也回导致边缘锯齿加重,此时,可以在黑白边可以接受的前提下,调小 ShootSupStr,以减弱边缘锯齿。最后,适当的调大 EdgeFiltStr,也可以减弱边缘锯齿。

1.1.6 如何解决图像暗角格子问题

【现象】

图像四个暗角随机出现规则横线或者竖线。

【分析】

当采用镜头 CRA 角度跟 sensor 不匹配时,光线通过镜头入射会导致 Gr/Gb 不平衡从而产生 crosstalk 现象,由于 demosaic 模块处理会随机进行水平方向或垂直方向插值,因此产生格子现象。

【解决】

● 首先确认采用的 sensor 跟镜头 CRA 角度是否匹配,如果不匹配的话建议按照 sensor 厂家提供的文档更换 CRA 角度匹配的 sensor 或者镜头;

1.1.7 如何解决 AE 工作异常, 如严重过曝或曝光不足

【现象】

AE 严重过曝或曝光不足,调整目标亮度参数无改善。

【分析】

通过 HI_MPI_ISP_QueryInnerStateInfo 接口获取当前状态下的曝光时间和增益信息。

□ 说明

HI_MPI_ISP_QueryInnerStateInfo 接口请参考《HiISP 开发参考》文档。

【解决】

基于查询到的当前状态下的曝光时间和增益信息,可做如下处理

- 如果曝光信息与当前亮度不一致(曝光时间和增益已达到较大值,图像仍然曝光不足或者曝光时间和增益偏小,图像仍然过曝),需要确认硬件电路。
- 如果曝光信息与当前亮度一致,查询AE的直方图统计信息,如果出现灰阶分布过于密集,某些段统计数据为0,请确认图像宽高设置是否合理,VI掩码是否与硬件相符。
- 如果曝光信息与当前亮度不一致,确认 AE 计算的相关 sensor 寄存器是否正确配置生效,可以通过 I2C/SPI 直接读取 sensor 的 shutter、gain 相关的寄存器是否正确。

1.1.8 如何解决红外场景亮度和对比度差的问题

【现象】

低照度下,打开红外灯,画面四周亮度偏暗,画面中间亮度过高,出现过曝导致细节损失,并且,高亮区域的对比度差,画面发蒙。【分析】

红外灯一般照射在画面的中间位置,灯光照射的地方亮度很高,容易出现过曝情况和 对比度差的情况,四周缺乏灯光照射,亮度偏暗。【解决】

- 确保 IR-Cut 切换为夜模式。
- AE 收光, AE 的 Compensation 适当调小, AEStrategyMode 设置为
 AE_EXP_HIGHTLIGHT_PRIOR 模式, HistRatioSlope 和 MaxHistOffset 都设大, 就可以实现 AE 无过曝。
- 因为 AE 收光,画面亮度降低,需要提升亮度。使能 DRC,调节 DRC 的强度和 DRC 曲线,使得画面亮度提升,但是亮度提升会引入对比度差的问题,所以需要 联调去零和 DCI 模块。
- 使能去雾模块,调整去雾自定义曲线,根据亮度局部调整去雾的强度。可以不把暗区拉黑的同时把高亮区域的区域对比度提升,从而细节增加。同时调试 DCI、调整画面的对比度。
- 画面还是会有四周暗的问题,这个时候可以利用 shading 来实现把四周亮度提升。可以不改变或者轻微改变中间区域,把四周围区域的亮度提起来。

1.1.9 如何调整红外模式 AE, AWB 和 CCM 参数

【现象】

红外模式下,AE 统计信息不稳定,经常跳变。或者红外下 AE 收敛会收敛成不同亮度,比如用手捂一下,再拿开亮度就变了。

【分析】

这些现象和 AE, AWB 的配置有关系。开了 AWB 后, RB 分量异常,导致 AE 大面积单色判断错误,引起震荡。

【解决】

- 红外场景下,使用海思 AE 库需要把大面积单色功能(bHistStatAdjust)使能关闭。 如果在红外场景下使能 WBGain,会导致图像亮度偏亮,这时建议根据 sensor bayer pattern 类型配置跳点方式(stHistConfig),同时统计 R 与 G 分量,使得图像亮度更合理。
- 红外模式推荐关闭 AWB,并把饱和度调成 0,这种情况下, G 通道和 R 通道占比较大的值, CCM 矩阵的配置应该为 R,G 通道的权重大一些比较合理。
- 红外灯应用时如果需要使能 AWB,建议设置 u16ZoneSel=0,也就是使用全局的 AWB 统计信息。这种情况下,AWB 会把 R,B 通道乘比较大的系数,R,B 通道相 对噪声比较大,建议 CCM 矩阵设置为只用 G 通道权重大,R,B 通道权重小比较合理。

1.1.10 如何解决低照度情况下图像出现竖条纹的问题

【现象】

部分 sensor 低照度时,图像出现竖条纹。

【分析】

竖条纹是 sensor 的 FPN(Fixed Pattern Noise),它会随 sensor 数字增益变大,而变得更明显。目前,软件对 sensor 的数字增益没有做限制,低照度时数字增益比较大,因此竖条纹严重。

【解决】

使用 FPN 算法模块,进行 FPN 进行去除或减弱。

1.1.11 如何实现背光补偿

【现象】

在背光场景下,目标物体比较暗。

【分析】

背光场景下,可以通过提高图像整体的曝光亮度来进行背光补偿。

【解决】

加强指定区域的 AE 权重;

Hi3559AV100 自动曝光的静态统计信息分为 15x17 个区域,可通过设定权重表改变每个区域的权重,使最终的亮度相应改变。

可通过 MPI 接口增加指定区域的权重,使最终曝光按照指定区域的亮度曝光,达到背光补偿的效果。当把目标物体权重加的很大时,这种方式可能导致周围亮的区域过曝。

1.1.12 如何实现手动曝光时间,增益自动控制,或者手动增益,曝光时间自动控制

【实现】

如果有需求实现手动曝光时间,增益自动控制,或者手动增益,曝光时间自动控制的功能。

这种功能,最方便的是仍使用 AE 模式,把曝光时间上、下限设置为相同值,即可实现手动控制曝光的功能。此时如果设置 enAEMode 为 AE_MODE_SLOW_SHUTTER,曝光时间超出一帧上限后,会自动降帧。增益同理,设置 SysGain 上下限相同即可

1.1.13 如何正确设置最大增益

【现象】

低照度时,有时需要限制最大增益获得更好的图像效果。但限制 Dgain、ISPDgain 后,出现 AE 闪烁问题。

【分析】

大部分 sensor 的 Again 精度比较低,如果限制了高精度的 Dgain、ISPDgain,亮度无法 按 AE 要求精确控制,出现闪烁。

【解决】

不分别限制 Again、Dgain、ISPDgain 最大值,而是限制 SystemGainMax,系统增益最大值。即 Again*Dgain*ISPDgain 的最大值。不用关心 AE 如何分配增益。

1.1.14 如何解决 AWB 易受干扰问题

【现象】

手在镜头前挥过时或占视野面积大的车开过时, AWB 易受干扰而变色。

【分析】

肤色或部分车的颜色对 AWB 影响比较大,会使 AWB 出现误差。

【解决】

- 设置 AWB 属性 u16Speed,降低收敛速度会使这个现象明显改善。
- 设置 AWB 算法为高级算法,会对这种现象有改善。如果环境光源不会出现渐变,即不受到阳光影响。只有室内光源,提高 AWB 高级算法属性 u8Tolerance,也会对 AWB 易受干扰问题有好处。

1.1.15 如何解决高温下黑电平漂移对颜色的影响

【现象】

在过高或过低温度下, AWB 校正后图像仍然偏色。

【分析】

在过高或过低温度下,sensor 采集图像的稳定性会受影响。在高温下,sensor 的黑电平会产生漂移,真实的黑电平可能是正常温度下的几倍。这时,AWB 校正后图像偏色。理想情况下,sensor 对不同亮度的灰色点颜色表现是相同的,R=K*G。常温下 sensor 的 offset 是 F0,高温下 sensor 的 offset 是 F1,F0<F1。

- 常温下计算 R 通道增益为: Nomal_R/G = (K * G + F0 F0) /(G + F0 F0) = K
- 高温下计算 R 通道增益为: High_ R/G = (K * G + F1−F0) /(G + F1 − F0)
 F0 < F1 (高温下黑电平漂移);

从 sensor 的光谱图可以看到,多数 sensor 的绿色感光强于 RB 两个颜色,K<1;High_ R/G - Nomal_ R/G= (1 - K) * (F1 - F0) /(G + F1 - F0)>0, High_ R/G > Nomal_ R/G。红色通道增益 Rgain = G/R= 1/(R/G),因此 High_Rgain < Normal_Rgain,红色通道增益偏小。同样可推出高温下蓝色通道增益偏小,因此高温下图像偏绿是必然的。

【解决】

High_R/G - Nomal_R/G= (1 - K) * (F1 - F0) / (G + F1 - F0),G 体现了亮度信息,G 越大,High_R/G 与 Nomal_R/G 的偏差越小。物理含义是:亮度越高,对黑电平的偏移越不敏感。因此,推荐增大 AWB 参数的 BlackLevel(前默认值为 0x40),降低黑电平漂移对增益的干扰。

1.1.16 如何解决低照度亮度、对比度偏低

【现象】

低照度时,发现亮度、对比度不如对比标杆。

【分析】

- 原因 1: 镜头光圈不同。F 值越小,光圈越大,到达 sensor 的光通量更多。
- 原因 2: sensor 不同。sensor 的光电转换效率不同,决定了低照度表现。
- 原因 3:整体亮度不同。因为图像亮度值比较低,一些产品通过修改亮度、对比度的方式,提高人眼可见度。
- 原因 4: 一些产品在低照度时,会降帧率,曝光时间会加大,因此画面显得更亮些。
- 原因 5: 低照度下经过降噪算法处理之后,可能降低对比度。低照度环境下,椒盐噪声较多,当降噪算法过多处理了椒噪声之后留下盐噪声,这样会使整体图像发白现象。

【解决】

- 针对原因 1: 选用同样的镜头(同一个厂家,同一个型号)进行对比。
- 针对原因 2: 尽量采用同样的 sensor 进行对比。
- 针对原因 3: 通过调整 AE 相关参数,使其整体亮度使与标杆相当。
- 针对原因 4: 在 demo 中,可以手动降低帧率,但产品实际应用中并不推荐这样做。
- 针对原因 5: 可以调整降噪策略,或调整 Gamma、LDCI 算法模块参数,增加其整体对比度。

1.1.17 如何解决光源字体附近出现方向性的毛刺

【现象】

正常照度下,光源字体附近出现方向性的毛刺。如图 1-1 所示:

图1-1 光源字体附近出现方向性的毛刺效果图

【分析】

● 原因:光源字体出现方向性的毛刺,该问题主要是由于 Global CAC 模块中的参数标定不合理而导致。

【解决】

针对该问题,首先检查 Global CAC 标定的静态系数是否合理,如果不合理进行重新标定;如果不想标定 Global CAC 的静态系数,默认需要将 Global CAC 的使能关闭。图 1-2 所示为 Global CAC 静态系数不合理,开关 Global CAC 对比图。

图1-2 Global CAC 静态系数不合理情况下,开关 Global CAC 对比图

1.1.18 如何解决 AE 无法控制 Piris 光圈

【现象】

Piris 光圈接好后,驱动对接成功,可以通过手动的方式配置光圈开关,但用 AE 无法控制。

【分析】

AE 没有配置正确相关的光圈参数。

【解决】

- 需要配置 AE route, 否则默认曝光时间到最小值才会动光圈, 但实际使用中很难 达到最小值。所以需要通过配置 AE route, 使光圈在曝光时间未到最小值时就动 作。
- 在 xxx_cmos.c 文件中,没有配置 pstAeSnsDft->enMaxIrisFNO 和 enMinirisFNO。 请注意不是 enMinIrisFNOTarget。有 Target 的参数是指通过 MPI 接口配置的最大最小值。没有 Target 的是光圈实际支持的最大最小值。如果未设置,会导致 AE 认为 Piris 光圈最大最小值都为 0,就不调了。可以将这两个参数直接设置为最小和最大。

1.1.19 DCIris 光圈手动控制可以开关,但自动模式不会关闭原因

【分析】

- DCIris 光圈手动控制可以开关,说明硬件连接没有问题。
- DCIris 一般用于规避工频闪的问题。AE 抗闪需要曝光时间为电源能量周期的倍数。比如 50Hz 为 10ms 倍数。在高亮环境下,最大光圈时曝光时间小于 10ms,想要实现抗闪,要用到 DCIris,关小光圈来实现。
- 海思 AE DCIris 算法,当曝光时间到最小值以后才会关闭光圈。但默认最小值一般为 2 行,相当于几十微秒,实际场景几乎无法达到这么小的曝光时间,所以看不到光圈关闭。可以手动设置曝光时间最小值为 10ms 来实现抗闪。或者不设置曝光时间最小值,设置抗闪模式为 Normal 模式,曝光时间降到抗闪最小曝光时间后,会维持曝光时间不变。此时相当于已达到曝光时间最小值,也会关闭光圈。

1.1.20 如何解决 AE 闪烁

【现象】

同步问题:具体表现为某一帧或两帧突然比其他帧亮很多或暗很多,然后恢复正常。精度问题:具体表现为画面亮度持续变化,变化程度或小或大;或 AE 偶尔出现震荡。

【分析】

AE 闪烁问题最常见的为两类: 同步问题和精度问题。

【解决】

● 同步问题:是因为很多 sensor,配置增益,会在下一帧生效,配置曝光时间,会在下下帧生效。Isp_Dgain 同样是当前帧配置,下一帧生效。这样如果同步设置不

正确,在增益曝光时间相对变化大时,就会出现闪烁。常见于高亮场景和开启抗闪时。

xxx_cmos.c 中有同步配置 cmos_get_sns_regs_info , 其中有 sensor 寄存器的同步配置。u8Cfg2ValidDelayMax 控制 ISP Dgain 同步。可以尝试修改曝光时间、增益、Isp Dgain 同步配置来解决该问题。

● 精度问题: AE 算法计算的亮度值,具体配置到 sensor 的时候,因为可控制的增益 精度有限,不能够完全达到 AE 算出的亮度值。

如果精度低,亮度就有可能在相邻的两个可以达到的亮度间来回跳变,始终无法收敛到正确的亮度。表现为震荡、闪烁。因为 Isp Dgain 精度很高,保留至少 2 倍的 Isp Dgain 可以很好的解决精度问题。

限制增益不建议分别限制 Again、Dgain、Isp Dgain 的增益,这样容易带来精度问题,可以通过限制 system gain 来实现,AE 会自动分配 3 个增益。

1.2 Sensor 相关

1.2.1 如何解决对接 sensor 时,环境亮度变化引起图像出现裂屏

【现象】

Hi3559AV100 对接 Sony Imx477,环境亮度变化时,AE 刷新 sensor 的曝光时间和增益,图像上出现亮线或图像裂屏。

【分析】

Slave 模式 sensor imx477 的模拟增益寄存器生效机制是实时生效的,当环境亮度变化时,AE 刷新相关 sensor 寄存器,并对相关寄存器进行配置,当在图像数据的有效区(非消隐区)对其模拟增益进行配置时,模拟增益实时生效不在垂直消隐区,将会出现亮线或裂屏问题。

Sony 多数 slave 模式的 sensor(Imx477/Imx377/Imx277)都存在模拟增益实时生效的问题,这就要求配置模拟增益的时间需要满足一定在垂直消隐区内完成。如保证了寄存器在消隐区生效,不会出现坏帧。

【解决】

使用 ISP 的寄存器配置机制(或客户设计相关配置机制),通过中断对寄存器进行配置,使其满足模拟增益实际生效在垂直消隐区内。而当客户应用程序业务量比较大时,可能导致中断相应不及时,从而导致配置不满足消隐区内,可能还是会导致上述问题,此时需要优化中断处理业务,尽量确保中断处理的及时性。

1.2.2 如何解决对接 sensor 时,环境亮度变化引起闪烁

【现象】

对接 Panasonic Sensor 时,当环境亮度变化,明显闪烁,同一 SDK 版本对接其他 sensor 不存在闪烁。

【分析】

上述 sensor 在第 N 帧刷新 Shutter(曝光时间)寄存器,在 N+2 帧生效,在第 N 帧刷新 Gain 寄存器,在 N+1 帧生效。同时刷新 Shutter 和 Gain 寄存器会导致生效时间不一致。因此推荐先刷新 Shutter 寄存器,延迟一帧后再刷新 Gain 寄存器。

具体信息请参考 Panasonic 提供的图示说明,其他 sensor 类似,如图 1-3 所示。

图1-3 Panasonic 提供的图示说明

【解决】

海思 ISP 已经针对以上问题,设计了一套寄存器配置机制,确保相关的 sensor 寄存器 配置之后生效在同一帧时间内,从而解决闪烁问题。

具体处理方法:通过 xxx_cmos.c 文件中 cmos_get_sns_regs_info()函数进行配置修改,如修改参数 u8DelayFrmNum,它表示延迟多少帧对寄存器进行配置,而每一个需要配置的寄存器都有一个参数 u8DelayFrmNum,详见 xxx_cmos.c 文件。

1.2.3 如何解决不同的 sensor 器件实现 50Hz/60Hz 抗闪

【现象】

采用海思发布 SDK 的默认参数,打开抗闪,该功能不生效。

【分析】

交流电波形如图 1-4 所示。

图1-4 交流电波形

sensor 不同行的曝光起始时间不同,如果曝光时间较短,就会有的像素行处在比较亮的时候曝光,有的处在比较暗的时候曝光,可见 sensor 各行即使保持相同的曝光时间,累积的能量是有明显差异的,导致了图像前后帧的同一行,同一帧内的不同行亮暗差异,从而出现了闪烁。

如果控制曝光时间为频闪周期的整数倍,则每一帧图像的整体亮度基本一致。如下:

- 在 50Hz 环境下,要求曝光时间为 1/100s 的整数倍;
- 在 60Hz 环境,要求曝光时间为 1/120s 的整数倍。

【解决】

Hi3559AV100 ISP 内部实现了抗闪,sensor 的曝光时间以行为单位,不同 sensor 行与秒之间的转换比不同,用户需要根据自己的硬件环境,合理配置 u32LinesPer500ms 参数以实现抗闪。u32LinesPer500ms 是行频的 1/2,计算公式如下:

u32LinesPer500ms = 像素时钟频率/(图像宽度+水平消隐区宽度)/2。

1.2.4 如何解决 sensor 输出图像中间有黄圈问题

【现象】

图像中间出现同心圆状的偏色,一般表现为黄圈。

【分析】

sensor 的 CRA 与采用的镜头不匹配,导致偏色。

【解决】

通过 ISP 中镜头阴影校正模块解决。默认的参数不能完美匹配每一款镜头,还需要用自己的镜头重新校正。在镜头的参数中,后焦长度与光圈大小影响最大。

 当照度较低时,正常照度下正常的校正参数,会导致四周有较大的噪声,亮度也 更高一些。所以在低照度时,可以换用限制最高增益的校正表,或关闭镜头阴影 校正功能。

1.2.5 如何规避 Sensor Built-in 模式亮暗区域出现黄绿色彩问题

【现象】

Built-in sensor 图像亮暗区域出现黄绿色彩、以及运动区域紫边明显。

【分析】

长短帧数据在 sensor 内部合成后(sensor 内部做合成并分段压缩),其结果在拐点处会出现颜色不够线性,这是 raw 数据带来的问题。

【规避措施】

- 考虑采用帧合成 WDR 模式。
- 降低了图像亮度,将颜色异常区域不落在关注区域。

1.2.6 如何实现图像裁剪

【说明】

图1-5 可裁剪模块的图示说明

【实现】

- Sensor 内部一般可以做裁剪,但切换裁剪大小速度较慢。
- MIPI Rx 模块, MIPI 和 LVDS 均可以裁剪,并配置起始点。
- VI PIPE 上可以裁剪。
- ISP模块可以裁剪。图像到这个位置,裁剪后必须只剩有效图像,否则会有一些不 是正常图像的数据进入ISP,影响图像处理。
- VI CHN 模块也可以裁剪,一般不会在此处裁剪。

1.2.7 如何理解接入性能

【说明】

(1) 串行(MIPI/LVDS/SLVS-EC) 接入性能主要有两点限制:(1) 单 lane 速率;(2) VI/ISP 工作频率。

芯片 MIPI 单 lane 速率(bps)可以通过手册查询,sensor 单 lane 速率(bps)可以在 sensor 序列里直接获取到。

VI/ISP 频率可以等效为并口时的 Pclk,单位为 Pixel/s。因为 sensor 序列一般只提供单 lane 速率,可以通过单 lane 速率换算。假设一个 sensor 单 lane 为 1.14Gbps,共 4lane,数据为 12bit 数据。

总数据量为 1.14Gbps * 4 = 4.56Gbps

总像素频率为 4.56 * 1000 Mbps / 12 bit/Pixel = 380 M Pixel/s

(2) 并行接口 (DC) 请参考《Hi3559A/C V100 ultra-HD Mobile Camera SoC 用户指南》。

1.2.8 IMX334 WDR 模式 RHS 两帧之间调节限制

【说明】

当前 IMX334 4K@30fps WDR 模式 RHS1 寄存器存在如下限制:

RHS1(N+1) > = RHS1(N) + 2*BRL - 2*VMAX + 2

当前 BRL=2200,对于 30fps 帧率 VMAX=2250,即 RHS1(N+1)>=RHS1(N)-98

即当前两帧之间 RHS1 限制变化对于 30fps 有 98 行的限制,由于 SHR0>=RHS1+9 行,导致 SHR0 寄存器两帧之间也有限制。该限制会导致当前帧率切换,如升高帧率和长帧和 WDR 切换画面无法平稳过渡。