

برنامهریزی خطی از آنچه به نظر میرسد قوی تر است!

فروش بستنى!

for
$$i = 1, 2, ..., 12$$

$$50\sum_{i=1}^{12} |x_i - x_{i-1}| + 20\sum_{i=1}^{12} s_i$$

 $egin{aligned} |aligned | |ali$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Minimize
$$50 \sum_{i=1}^{12} y_i + 50 \sum_{i=1}^{12} z_i + 20 \sum_{i=1}^{12} s_i$$

subject to $x_i + s_{i-1} - s_i = d_i$ for $i = 1, 2, ..., 12$
 $x_i - x_{i-1} = y_i - z_i$ for $i = 1, 2, ..., 12$
 $x_0 = 0$
 $s_0 = 0$
 $s_1 = 0$
 $x_i, s_i, y_i, z_i \ge 0$ for $i = 1, 2, ..., 12$.

چرا درست است؟

Minimize $50 \sum_{i=1}^{12} y_i + 50 \sum_{i=1}^{12} z_i + 20 \sum_{i=1}^{12} s_i$ subject to $x_i + s_{i-1} - s_i = d_i$ for i = 1, 2, ..., 12 $x_i - x_{i-1} = y_i - z_i$ for i = 1, 2, ..., 12 $x_0 = 0$ $s_0 = 0$ $s_{12} = 0$

به ازای هر i: yi=0 یا zi=0

 $x_i, s_i, y_i, z_i \geq 0 \text{ for } i = 1, 2, \dots, 12.$

برازش خط

$$\sum_{i=1}^{n} (ax_i + b - y_i)^2$$

$$5i = \max\{0, axi+b-3i\}$$
 $ti = \max\{0, -(axi+b-3i)\}$

e

min \(\Si \si ti

 $\sum_{i=1}^{\infty} |ax_i + b - y_i|$

dx; +6 -3; =5; - ti

ei > - (axi+b-di) => ei> | 1/1 |

Si, +; 20

Minimize
$$e_1 + e_2 + \cdots + e_n$$

subject to $e_i \ge ax_i + b - y_i$ for $i = 1, 2, \dots, n$
 $e_i \ge -(ax_i + b - y_i)$ for $i = 1, 2, \dots, n$.

جداسازی نقاط

shadow area

maxe saxithe-dize axithedai

$$y(\mathbf{p}_i) > ax(\mathbf{p}_i) + b$$
 for $i = 1, 2, ..., m$
 $y(\mathbf{q}_j) < ax(\mathbf{q}_j) + b$ for $j = 1, 2, ..., n$.

(7

 $y(\mathbf{q}_j) \le ax(\mathbf{q}_j) + b - \delta$ for $j = 1, 2, \dots, n$.

Maximize
$$\delta$$

subject to $y(\mathbf{p}_i) \ge ax(\mathbf{p}_i)^2 + bx(\mathbf{p}_i) + c + \delta$ for $i = 1, 2, ..., m$
 $y(\mathbf{q}_j) \le ax(\mathbf{q}_j)^2 + bx(\mathbf{q}_j) + c - \delta$ for $j = 1, 2, ..., n$.

مثال: بزرگترین دیسک در چندضلعی محدب

بزرگترین و کوچکترین دایره!

$$\frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}}$$

$$\frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} \ge r, \qquad i = 1, 2, \dots, k$$

$$\frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} \le -r, \qquad i = k + 1, k + 2, \dots, n$$

Maximize r

subject to
$$\frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} \ge r$$
 for $i = 1, 2, ..., k$
$$\frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} \le -r$$
 for $i = k + 1, k + 2, ..., n$