Corrigé (succinct) du partiel du 24 octobre 2018

Exercice 1. Soit q la forme quadratique définie sur \mathbb{R}^3 par la formule

$$q(x) = x_1^2 + 4x_1x_2 + 6x_1x_3 + 4x_2^2 + 16x_2x_3 + 9x_3^2$$
.

1. Déterminer la forme polaire de q et la matrice de q dans la base canonique de \mathbb{R}^3 .

On obtient la forme polaire b de q en polarisant les monômes dans la formule ci-dessus. On trouve alors

$$\forall (x,y) \in \mathbb{R}^3 \times \mathbb{R}^3, \ b(x,y) = x_1y_1 + 2\left(x_1y_2 + x_2y_1\right) + 3\left(x_1y_3 + x_3y_1\right) + 4\left(x_2y_2 + 8\left(x_2y_3 + x_3 + y_2\right) + 9\left(x_3y_3 + x_3y_1\right) + 4\left(x_2y_3 + x_3y_1\right) + 4\left(x$$

La matrice de q dans la base canonique est celle de sa forme polaire dans la même base et est donc

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 8 \\ 3 & 8 & 9 \end{pmatrix}.$$

2. Décomposer q en une combinaison linéaire de carrés de formes linéaires linéairement indépendantes. En déduire le rang et la signature de q.

On applique l'algorithme de réduction de Gauss :

$$q(x) = x_1^2 + 4x_1x_2 + 6x_1x_3 + 4x_2^2 + 16x_2x_3 + 9x_3^2$$

$$= (x_1 + 2x_2 + 3x_3)^2 - (2x^2 + 3x_3)^2 + 4x_2^2 + 16x_2x_3 + 9x_3^2$$

$$= (x_1 + 2x_2 + 3x_3)^2 + 4x_2x_3$$

$$= (x_1 + 2x_2 + 3x_3)^2 + (x_2 + x_3)^2 - (x_2 - x_3)^2.$$

L'utilisation de cette méthode justifie que l'on a bien obtenu une combinaison linéaire de carrés de trois formes linéaires linéairement indépendantes. On en déduit que le rang de q est égal à 3 (la forme q est donc non dégénérée) et que sa signature est (2,1).

3. Déterminer une base de \mathbb{R}^3 orthogonale pour q et donner la matrice de q dans cette base.

La réduction de Gauss effectuée à la question précédente a fait apparaître trois formes linéaires sur \mathbb{R}^3 linéairement indépendantes :

$$\ell_1(x) = x_1 + 2x_2 + 3x_3, \ \ell_2(x) = x_2 + x_3 \text{ et } \ell_3(x) = x_2 - x_3,$$

qui forment donc une base de $(\mathbb{R}^3)^*$. Une base de \mathbb{R}^3 orthogonale pour q est alors obtenue en trouvant une base de \mathbb{R}^3 dont $\{\ell_1,\ell_2,\ell_3\}$ est la base duale. La matrice de passage de la base canonique de $(\mathbb{R}^3)^*$ à la base $\{\ell_1,\ell_2,\ell_3\}$ étant

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & -1 \end{pmatrix},$$

la matrice de passage de la base canonique de \mathbb{R}^3 à la base recherchée est donnée par l'inverse de la transposée de cette matrice. Après résolution d'un système linéaire, on trouve les vecteurs $u_1=(1,0,0),\ u_2=\frac{1}{2}(-5,1,1)$ et $u_3=\frac{1}{2}(1,1,-1)$ de la base orthogonale pour q voulue. Dans cette base, la matrice de q est diagonale, de coefficients diagonaux correspondant aux coefficients devant les carrés des formes linéaires apparaissant dans la forme réduite de q, c'est-à-dire

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

4. Pour tout réel λ , on pose $v_{\lambda}=(\lambda,-1,1)$ et on note F_{λ} l'orthogonal de v_{λ} par rapport à q. Déterminer la dimension de F_{λ} . À quelle condition sur λ a-t-on la décomposition en somme directe $\mathbb{R}^3=F_{\lambda}\oplus \mathrm{Vect}(\{v_{\lambda}\})$?

Pour tout réel λ , le vecteur v_{λ} est non nul et il engendre donc un sous-espace vectoriel de \mathbb{R}^3 de dimension 1. Son orthogonal F_{λ} pour la forme quadratique non dégénérée q est donc de dimension 3-1=2. On a donc $\mathbb{R}^3=F_{\lambda}\oplus \mathrm{Vect}(\{v_{\lambda}\})$ si et seulement si $F_{\lambda}\cap \mathrm{Vect}(\{v_{\lambda}\})=\{0\}$, c'est-à-dire si $v_{\lambda}\notin F_{\lambda}$, c'est-à-dire si le vecteur v_{λ} n'est pas orthogonal à lui-même, autrement dit si $q(v_{\lambda})\neq 0$. Un calcul donne $q(v_{\lambda})=\lambda^2+2\,\lambda-3=(\lambda+1)^2-4$ et on a par conséquent $\mathbb{R}^3=F_{\lambda}\oplus \mathrm{Vect}(\{v_{\lambda}\})$ si et seulement si $\lambda\neq 1$ et $\lambda\neq -3$.

Exercice 2. Soit $n \in \mathbb{N}^*$ et n fonctions f_1, \ldots, f_n , continues sur un intervalle borné [a,b] de \mathbb{R} , à valeurs dans \mathbb{R} . Pour tout couple (i,j) de $\{1,\ldots,n\}^2$, on pose $m_{ij}=\int_a^b f_i(t)f_j(t)\,\mathrm{d}t$ et, pour tout vecteur x de \mathbb{R}^n , $q(x)=\sum_{i=1}^n\sum_{j=1}^n m_{ij}\,x_ix_j$.

1. Montrer que q est une forme quadratique positive sur \mathbb{R}^n .

La forme q est quadratique en tant que polynôme homogène de degré deux en les coordonnées du vecteur x. De plus, pour tout vecteur x de \mathbb{R}^n , on a

$$q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\int_{a}^{b} f_{i}(t) f_{j}(t) dt \right) x_{i} x_{j} = \int_{a}^{b} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} f_{i}(t) f_{j}(t) \right) dt = \int_{a}^{b} \left(\sum_{i=1}^{n} x_{i} f_{i}(t) \right)^{2} dt \ge 0.$$

2. Montrer que la forme q est définie positive si et seulement si la famille $\{f_1,\ldots,f_n\}$ est libre.

Pour tout vecteur x de \mathbb{R}^n , on a

$$q(x) = 0 \Leftrightarrow \forall t \in [a, b], \sum_{i=1}^{n} x_i f_i(t) = 0.$$

Le fait que cette dernière condition implique que le vecteur x est nul équivaut à dire que la famille $\{f_1, \ldots, f_n\}$ est libre.

3. Donner la matrice de q dans la base canonique de \mathbb{R}^n dans le cas particulier où $a=0,\ b=1$ et, $\forall i\in\{1,\ldots,n\},$ $f_i(t)=t^{i-1}$.

On a dans ce cas

$$\forall (i,j) \in \{1,\ldots,n\}^2, \ m_{ij} = \int_0^1 t^{i+j-2} dt = \frac{1}{i+j-1}.$$

La matrice de q est la matrice de Hilbert d'ordre n.

Exercice 3. Soit E un espace vectoriel sur le corps \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et q une forme quadratique sur E, de forme polaire b.

- 1. On suppose qu'il existe un vecteur u de E, non nul et isotrope pour q, et un vecteur v de E, non orthogonal à u pour q. Montrer les propriétés suivantes :
 - (a) Si v est isotrope pour q, il existe un vecteur w de E, non isotrope pour q et combinaison linéaire de u et de v.

On suppose que le vecteur v est isotrope pour q et on cherche un vecteur w de E non isotrope pour q et de la forme $w = \alpha u + \beta v$, avec α et β des scalaires. Calculons $q(\alpha u + \beta v)$. Il vient :

$$q(\alpha u + \beta v) = \alpha^2 q(u) + 2\alpha\beta b(u, v) + \beta^2 q(v).$$

Comme u et v sont isotropes pour q, on en déduit que $q(\alpha u + \beta v) = 2\alpha\beta b(u, v)$. Les vecteurs u et v n'étant pas orthogonaux pour q, on a de plus $b(u, v) \neq 0$. Par conséquent, aucun vecteur w de la forme $w = \alpha u + \beta v$, avec α et β non nuls, n'est isotrope pour q. Par exemple, le vecteur w = u + v n'est pas isotrope pour q

(b) Si v n'est pas isotrope pour q, il existe un vecteur w' de E, isotrope pour q, non colinéaire à u et combinaison linéaire de u et de v.

On suppose à présent que le vecteur v n'est pas isotrope pour q et on cherche un vecteur w' de E isotrope pour q et de la forme $w' = \alpha' u + \beta' v$, avec α' et β' des scalaires, $\beta' \neq 0$. Calculons $q(\alpha u + \beta v)$. Puisque u et v sont respectivement isotrope et non isotrope pour q, il vient :

$$q(\alpha' u + \beta' v) = 2\alpha'\beta' b(u, v) + {\beta'}^2 q(v).$$

En choisissant alors (par exemple) $\beta' = 1$ et $\alpha' = -\frac{q(v)}{2b(u,v)}$ (ce qui est possible puisque $b(u,v) \neq 0$), on obtient que $q(\alpha' u + \beta' v) = 0$. Le vecteur $w' = -\frac{q(v)}{b(u,v)} u + v$ est donc isotrope pour q.

2. On note C_q l'ensemble des vecteurs de E qui sont isotropes pour q et $\operatorname{Ker}(q)$ le noyau de q. En utilisant la question précédente, montrer que C_q est un sous-espace vectoriel de E si et seulement si $C_q = \operatorname{Ker}(q)$ (on pourra raisonner par contraposée).

Si $C_q = \text{Ker}(q)$, alors C_q est un sous-espace vectoriel de E puisque Ker(q) en est un.

Supposons à présent que $C_q \neq \operatorname{Ker}(q)$. Par définition, tous les éléments de $\operatorname{Ker}(q)$ sont isotropes pour q, on a donc $\operatorname{Ker}(q) \subset C_q$. Par ailleurs, comme ces ensembles ne sont pas égaux, il existe un vecteur u tel que $u \in C_q$ et $u \notin \operatorname{Ker}(q)$. Ainsi, le vecteur u est non nul, isotrope et il existe un vecteur v de E qui n'est pas orthogonal à u pour q. Les hypothèses de la première question sont donc vérifiées et alors :

- Si v est isotrope pour q, alors w=u+v n'est pas isotrope pour q et l'on a : $u\in\mathcal{C}_q,\ v\in\mathcal{C}_q,\ u+v\notin\mathcal{C}_q$.
- Si v n'est pas isotrope pour q, alors $w' = -\frac{q(v)}{b(u,v)}u + v$ est isotrope pour q et l'on a $u \in \mathcal{C}_q$, $w' \in \mathcal{C}_q$, $\frac{q(v)}{b(u,v)}u + w' \notin \mathcal{C}_q$.

Dans les deux cas de figure, il est possible de trouver une combinaison linéaire de deux vecteurs de C_q qui n'appartient pas C_q , prouvant que C_q n'est pas un sous-espace vectoriel.

Exercice 4. Soit E un espace vectoriel réel de dimension finie et b une forme bilinéaire symétrique sur E. On considère deux applications φ et ψ de E dans E vérifiant la propriété

$$\forall (x,y) \in E^2, \ b(\varphi(x),y) = b(x,\psi(y)).$$

- 1. Montrer que
 - (a) $\forall (x, y, z) \in E^3$, $b(\varphi(x+y) \varphi(x) \varphi(y), z) = 0$.

Par bilinéarité de b, il vient :

$$\forall (x,y,z) \in E^3, \ b(\varphi(x+y)-\varphi(x)-\varphi(y),z) = b(\varphi(x+y),z) - b(\varphi(x),z) - b(\varphi(y),z).$$

En utilisant la propriété, on a alors :

$$b(\varphi(x+y), z) - b(\varphi(x), z - b(\varphi(y), z) = b(x+y, \psi(z)) - b(x, \psi(z)) - b(y, \psi(z)) = b(x+y-x-y, \psi(z)) = 0.$$

(b) $\forall (x, z) \in E^2, \forall \lambda \in \mathbb{R}, b(\varphi(\lambda x) - \lambda \varphi(x), z) = 0.$

De même, on a, en utilisant la bilinéarité de b et la propriété :

$$\forall (x,z) \in E^2, \ \forall \lambda \in \mathbb{R}, \ b(\varphi(\lambda x) - \lambda \varphi(x), z) = b(\varphi(\lambda x), z) - \lambda b(\varphi(x), z)$$

$$= b(\lambda x, \psi(z)) - \lambda b(x, \psi(z))$$

$$= b(\lambda x - \lambda x, \psi(z))$$

$$= 0.$$

- 2. On suppose dans cette question que la forme b est non dégénérée.
 - (a) Déduire de la question précédente que φ est une application linéaire. Montrer de la même façon que ψ est une application linéaire.

On a montré dans la question précedente que pour tous vecteurs x et y de E et tout réel λ , les vecteurs $\varphi(x+y)-\varphi(x)-\varphi(y)$ et $\varphi(\lambda\,x)-\lambda\,\varphi(x)$ appartiennent au noyau de b. Or, si b est non dégénérée, ce noyau est réduit au vecteur nul. On a donc obtenu que

$$\forall (x,y) \in E^2, \ \forall \lambda \in \mathbb{R}, \ \varphi(x+y) = \varphi(x) + \varphi(y) \text{ et } \varphi(\lambda x) = \lambda \varphi(x),$$

c'est-à-dire que l'application φ est linéaire. La forme b étant symétrique, les applications φ et ψ jouent le même rôle dans les formules précédentes et l'application ψ est donc elle aussi une application linéaire.

(b) Soit \mathcal{B} une base de E. On note respectivement M_{φ} et M_{ψ} les matrices de φ et de ψ dans la base \mathcal{B} . Montrer que les matrices M_{φ}^{\top} et M_{ψ} sont semblables.

Traduisons matriciellement la propriété en notant M la matrice de la forme bilinéaire b par rapport à la base \mathcal{B} . On a ainsi :

$$(M_{\omega}X)^{\top}MY = X^{\top}M(M_{\psi}Y),$$

soit encore $X^{\top}(M_{\varphi}^{\top}M)Y = X^{\top}(MM_{\psi})Y$. L'égalité étant vraie pour tous X et Y, on en déduit que $M_{\varphi}^{\top}M = MM_{\psi}$. La matrice M étant inversible en tant que matrice représentative d'une forme bilinéaire non dégénérée, on obtient finalement que $M_{\varphi}^{\top} = MM_{\psi}M^{-1}$.

3. En choisissant $E = \mathbb{R}^2$, donner un exemple de forme bilinéaire symétrique non nulle b et d'application θ de E dans E non linéaire vérifiant la propriété

$$\forall (x,y) \in E^2, \ b(\theta(x),y) = b(x,y).$$

On remarque que la propriété voulue dans cette question correspond à celle du début de l'exercice en posant $\varphi = \theta$ et $\psi = Id_E$, où Id_E est l'application identique de E dans E. D'après la question précédente, l'application θ est nécessairement linéaire si b est non dégénérée. La forme bilinéaire symétrique b doit donc être choisie dégénérée, un exemple simple d'une telle forme sur $E = \mathbb{R}^2$ étant celle ayant pour matrice $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Ainsi, en choisissant b définie pour tout $x = (x_1, x_2)$ et tout $y = (y_1, y_2)$ de \mathbb{R}^2 par $b(x, y) = x_1 y_1$, l'application θ définie pour tout $x = (x_1, x_2)$ de \mathbb{R}^2 par $\theta(x) = (x_1, 1)$ n'est pas linéaire et vérifie la propriété.