Data Communication

 $\widehat{1}$

SIGNAL ENCODING TECHNIQUES

Signal Encoding Techniques

Digital Communication

- o Digital Data, Digital Signal
- Analog Data, Digital Signal

Analog Communication

- o Digital Data, Analog Signal
- Analog Data, Analog Signal

Signal Encoding Techniques

(a) Encoding onto a digital signal

(b) Modulation onto an analog signal

Figure 5.1 Encoding and Modulation Techniques

Digital Data, Digital Signal

Digital signal

- o discrete, discontinuous voltage pulses
- o each pulse is a signal element
- o binary data (digital) encoded into signal elements

Bitrate and Baudrate

• **r**, represents the transmitted data bit counts by one signal

a. One data element per one signal element (r = 1)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

$$\circ$$
N=2 x B x r

○Baudrate (digital transmission)

$$\circ$$
S=1/2 x N x 1/r

c. Two data elements per one signal element (r=2)

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Some Terms

- Unipolar, All signal elements have the same sign
- Polar, One logic state represented by positive voltage the other by negative voltage
- data rate, (R) transmission in bits per second
- duration or length of a bit, (1/R)
- modulation rate, Rate at which the signal level changes, measured in baud = signal elements per second. Depends on type of digital encoding used
- mark and space

Interpreting Signals

- need to know
 - o timing of bits when they start and end
 - o signal levels
- factors affecting signal interpretation
 - o signal to noise ratio
 - o data rate
 - o bandwidth
 - o encoding scheme

Comparison of Encoding Schemes

- signal spectrum,
- Clocking, for synchronizing transmitter and receiver.
- error detection, useful if can be built
- signal interference and noise immunity
- cost and complexity

Digital Data Digital Signal Problems

- Long bit string of ones and zeros is a problem for sensing.
- If the duration of a signal is constant for a long time, it causes DC component. It is a problem for systems that don't transmit low frequencies (Ex. Telephone lines don't transmit frequencies below 200 Hz
- Coding Schemes must capable by these problems

Digital Data Digital Signal Problems - 2

- Both sides must have same bit interval time (bitrate)
- Synchronization
 - Start and end delimeter problem (1111111)
 - It causes additional bits
 - × 1111 → 11111
 - A new line or entegrated signal coding can solve this problem.

a. Sent

b. Received

Line Coding

Encoding Schemes

Unipolar Coding

- Single level.
- Bit 1 is positive voltage level
- Bit o is no voltage
- Very simpel

NRZ Coding Scheme

- is a level based coding scheme. Data are shown by levels
- has a DC component
- has a problem of synchronization
- NRZ-L and NRZ-I types are present.

Nonreturn to Zero-Level (NRZ-L)

- two different voltages for o and 1 bits
- voltage constant during bit interval
 - o no transition I.e. no return to zero voltage
 - such as absence of voltage for zero, constant positive voltage for one
 - more often, negative voltage for one value and positive for the other
 - o Used for short connections, e.g. PC-Ex.Modem

NRZ-I, Nonreturn to Zero Inverted

- nonreturn to zero inverted on ones
- constant voltage pulse for duration of bit
- data encoded as presence or absence of signal transition at beginning of bit time
 - o transition (low to high or high to low) denotes binary 1
 - o no transition denotes binary o
- example of differential encoding since have
 - o data represented by changes rather than levels
 - o more reliable detection of transition rather than level
 - o easy to lose sense of polarity

NRZ-L and NRZ-I

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

O No inversion: Next bit is 0

• Inversion: Next bit is 1

NRZ Pros & Cons

- Pros
 - o easy to engineer
 - o make good use of bandwidth
- Cons
 - o dc component
 - lack of synchronization capability
- used for magnetic recording
- not often used for signal transmission

RZ- Return to Zero

- Three level (+V, -V, 0)
- Two signal per bit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Manchester Encoding

- has transition in middle of each bit period
- transition serves as clock and data
- low to high represents one
- high to low represents zero
- used by IEEE 802.3

Manchester Encoding

Manchester Encoding

Manchester Encoding

• Extracting the original data from the received encoded bit (from Manchester as per 802.3)

original data	= clock	XOR	Manchester value
О		0	0
О		1	1
1		0	1
1		1	0

Differential Manchester Encoding

- midbit transition is clocking only
- transition at start of bit period representing o
- no transition at start of bit period representing 1
 - o this is a differential encoding scheme
- used by IEEE 802.5

Differential Manchester Encoding

Differential Manchester Encoding

Differential Manchester Encoding

Multilevel Binary Bipolar-AMI

- Alternate Mark Inversion
- Use more than two levels
- Bipolar-AMI
 - o zero represented by no line signal
 - o one represented by positive or negative pulse
 - o one pulses alternate in polarity
 - o no loss of sync if a long string of ones
 - o long runs of zeros still a problem
 - o no net dc component
 - o lower bandwidth
 - easy error detection

AMI- Alternate Mark Inversion

Multilevel Binary Pseudoternary

- one represented by absence of line signal
- zero represented by alternating positive and negative
- no advantage or disadvantage over bipolar-AMI
- each used in some applications

Multilevel Binary Issues

- synchronization with long runs of o's or 1's
 - o can insert additional bits, cf ISDN
 - o scramble data (later)
- not as efficient as NRZ
 - o each signal element only represents one bit
 - ▼ receiver distinguishes between three levels: +A, -A, o
 - o a 3 level system could represent $\log_2 3 = 1.58$ bits
 - o requires approx. 3dB more signal power for same probability of bit error

Biphase Pros and Cons

Con

- o at least one transition per bit time and possibly two
- o maximum modulation rate is twice NRZ
- o requires more bandwidth

Pros

- synchronization on mid bit transition (self clocking)
- o has no dc component
- o has error detection

Modulation Rate

Scrambling

- use scrambling to replace sequences that would produce constant voltage
- these filling sequences must
 - o produce enough transitions to sync
 - o be recognized by receiver & replaced with original
 - o be same length as original
- design goals
 - have no dc component
 - have no long sequences of zero level line signal
 - have no reduction in data rate
 - o give error detection capability

B8ZS-Bipolar With 8 Zeros Substitution

- Based on Bipolar AMI
- A coding scheme that is commonly used in North America
- If an octet of all zeros occurs and the last voltage pulse preceding this octet was positive, then the eight zeros of the octet are encoded as 000+-0-+
- If an octet of all zeros occurs and the last voltage pulse preceding this octet was negative, then the eight zeros of the octet are encoded as 000–+0+–

HDB3 – High Density Bipolar 3 Zeros

- A coding scheme that is commonly used in Europe and Japan
- After last violation (ihlal), we look to number of 1s (odd or even)
- If there is no 1 after last violation (e.g. After 0000 again 0000) the number of 1s is assumed as even
- Odd+ \rightarrow 000+
- Odd $\rightarrow 000$ -
- Even $+ \rightarrow -00$ -
- Even $\rightarrow +00+$

B8ZS and HDB3

B: Valid Bipolar Signal

V: Bipolar Violation

B = Valid bipolar signal

V = Bipolar violation

B8ZS-Example

Bipolar 8-zero substitution (B8ZS)—ones density enforcement on T1 lines

HDB3 - Example

High-density bipolar 3 (HDB3)—ones density enforcement on E1 lines

HDB3 -Example

Other Digital Data Digital Signal Codings

- 2B1Q (Two Binary, One Quaternary)
- MLT-3 (Multiline Tx, three Level)

2B1Q – Two Binary One Quaternary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Previous level:

Previous level:

positive

negative

Next bits	Next level	Next level
00	+1	-1
01	+3	-3
10	-1	+1
11	-3	+3

Transition table

MLT-3

- Like NRZ-I.
- Use 3 signal level (+1, 0, -1)
- Transition at 1 bit, no transition at 0 bit.

8B6T

- 8B6T (Eight-binary-six-ternary) kodlamada 8 bit veri (m=8) 3 seviyeli (L=3) sinyalle gösterilir
- 2⁸=256 farklı veri ve 3⁶=729 farklı sinyal kullanılır
- Sinyallerin bir kısmı senkronizasyon ve hata denetimi için kullanılır
- Her bit grubu için kullanılacak sinyal grubu sabittir
- 100Base-T4 Ethernet çeşidinde 8B6T kodlama yöntemi kullanılır

4D-PAM5

- 4D-PAM5 (Four-dimensional five-level pulse-amplitudemodulation) kodlamada 4D verinin 4 kablo ile iletildiğini gösterir
- 5 farklı sinyal seviyesi (-2, -1, 0, 1, 2) bulunur.
- Sinyal 4 parça ile gösterilir her parçası bir kablo üzerinden iletilir
- Gigabit-LAN ağlarında kullanılır

Multiline Kodlama - MLT-3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a. Typical case

b. Worse case

c. Transition states

- NRZ-I ve farksal manchester veriyi kodlarken iki geçiş yapar
- MLT-3 (Multiline Transmission, Three Level) kodlama 3 seviyeli geçiş yapar, yani 3 sinyal seviyesi kullanır (+V, o, -V).

Blok Kodlama

- Senkronizasyonu ve hata sezimini sağlamak için ek bitlere ihtiyaç duyulur
- Blok kodlamada m adet bit n adet bit haline getirilir (mB/nB, n>m). Diğer bir deyişle m bit grubu n bit grubu yerine yerleştirilir. Örnek olarak 4B/5B'de orijinal bitler 4-bit gruplara ayrılır ve her 4 bitin yerine 5 bitlik karşılıkları yazılır
- "/" işareti blok kodlamayı multilevel kodlamadan ayırır

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Division of a stream into *m*-bit groups m bits m bits m bits mB-to-nBsubstitution 000 ... 001 010 ... 101 *n* bits n bits n bits Combining *n*-bit groups into a stream

4B/5B Blok Kodlama

- 4B/5B (four binary/five binary) blok kodlama yöntemi NRZ-I ile birlikte kullanılır
- NRZ-I kodlama ardarda gelen uzun o'larda senkronizasyon problemi oluşturur. Bundan dolayı kodlamadan önce uzun o olmayacak şekilde değişiklik gerekir.

4B/5B Blok Kodlama

- Örnek: 1 Mbps hızında veri göndermek istiyoruz. 4B/5B + NRZ-I ve Manchester kodlama kullanıldığında gereken minimum bant genişliği nedir?
 - 4B/5B bit hızını 1.25 Mbps olarak aktarır
 - NRZ-I kodlama N/2 bantgenişliği gerektirdiğinden 625 KHz gerekir

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4-bit blocks

1111

11110

11101

5-bit blocks

4B/5B Blok Kodlama

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

 4B/5B blol kullanılır

• 4B/5B haricinde 6B/8B, 8B/10B ve 64B/66B blok kodlama yöntemleri bulunmaktadır

Hat Kodlama Yöntemleri – Özet Tablo

Kategori	Şema	Bant genişliği	Karakteristik	
Unipolar	NRZ	BW = N/2	 Uzun 1 ve 0 larda senkronizasyon yoktur DC bileşen vardır 	
Polar	NRZ-L	BW = N/2	 Uzun 1 ve 0 larda senkronizasyon yoktur DC bileşen vardır 	
	NRZ-I	BW = N/2	 Uzun 0 larda senkronizasyon yoktur DC bileşen vardır 	
	Biphase	BW = N	Yüksek bant genişliği gerektirirSenkronizasyon vardırDC bileşen yoktur	
Bipolar	AMI	BW = N/2	Uzun 0 lar için senkronizasyon yoktur DC bileşen yoktur	
Multilevel	2B1Q	BW = N/4	Uzun aynı bit çiftleri için senkronizasyon yoktur	
	8B6T	BW = 3N/4	Senkronizasyon vardır DC bileşen yoktur	
	4D-PAM5	BW = N/8	Senkronizasyon vardır DC bileşen yoktur	
Multiline	MLT-3	BW = N/3	Uzun 0 lar için senkronizasyon yoktur	

Bu tabio, Doç.Dr. w. An'Akçayorun veri ilenşinin ders nonarından anınmıştır