ASSIGNMENT - 05 COMP 544 - ALGORITHM ALGORITHM ASSIGNMENT GROUP - 03

1. Do problem 6.17 in the textbook. Consider Shank's algorithm—algorithm 6.4. Show that Shank's algorithm computes x, such that g x \equiv p h, in time O(n log n), that is, in time O(\sqrt{p} log (\sqrt{p})).

Ans. Assuming that intersection of L_1 and L_2 are implemented optimally with O(1) lookup time complexity (by using some kind of dictionary), we can say that Shank's baby step-giant step Algorithm runs in $O(N \ Log N)$, where $N \ is \ \sqrt{p}$ complexity. Because L_1 runs for N times and L_2 runs for N times with calculating of multiplicative inverse which costs log N. So, Finally, the total time complexity is $O(N \ Log N)$, where $N \ is \ \sqrt{p}$.

2. Do problem 6.18 in the textbook.

Ans.

https://drive.google.com/file/d/1IVsa-b1Pi2J87LXLwwGCDfOlitbmkJhG/view?usp=sh aring

3. Implement the Rabin-Miller algorithm where the input is assumed to be an integer given in binary (see Problem 6.11) - you may use the implementation given here.

Ans.

https://drive.google.com/file/d/1gg3E1Y9tVXJXpUwHMUqWtRIHCdWAfDIc/view?usp=sharing

4. Run the following experiment: if n is not prime, compute how many witnesses (of compositeness) there are. Plot the results for many n's, and hypothesize on a good asymptotic approximation to the function fw (n) = m where m is the number of witnesses for a given n (of course, m = 0 if n is prime).

Ans. Monier showed the proportion of Miller–Rabin witnesses for p(2p-1) tends to 75% if we can let $p \to \infty$, and it's expected that we can: it is conjectured that p and 2p-1 are both prime for infinitely many primes $p \equiv 3 \mod 4$. This 75% is probably sharp as an asymptotic lower bound.

A good approximation of the upper bound is n, and the lower bound is $\frac{3n}{4}$ or 75%

We are observing a behavior that $f_w(n) = m$ acts like m = n - 2 for any appropriate number passing Rabin-Miller. Our implementation may possess a source of error, but based on it, this is the function we would hypothesize.

The Rabin-Miller implementation described below contains code to run this experiment as its default behavior.

Witnesses of Compositeness

https://drive.google.com/file/d/1eoP9eAiKo7ZFMuky11B8oGyhVXWenY2P/view?usp=sharing