Part 1

Evaluate

$1.\cos(\sin^{-1}(\frac{4}{5}) + \tan^{-1}(\frac{6}{7}))$	$\frac{-3}{5\sqrt{85}}$
$2. \sin\left(\cos^{-1}\left(-\frac{3}{5}\right) - \sin^{-1}\left(\frac{40}{41}\right)\right)$	$\frac{156}{205}$
$3.\sec\left(\arccos\left(\frac{12}{13}\right) - \arctan\left(-\frac{8}{15}\right)\right)$	$\frac{221}{140}$
$4. \tan \left(\frac{2}{3}\pi + \arccos\left(-\frac{1}{5}\right)\right)$	$\frac{\sqrt{3} + 2\sqrt{6}}{6\sqrt{2} - 1}$
5. $\csc\left(\arccos\left(\frac{5}{13}\right) + \tan^{-1}\left(\frac{15}{8}\right)\right)$	$\frac{221}{171}$
$6.\cot\left(\frac{\pi}{4} + \sin^{-1}\left(\frac{3}{5}\right)\right)$	$\frac{1}{7}$
$7.\cos\left(\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$	$\frac{\sqrt{6}+\sqrt{2}}{4}$

Part 2

Rewrite the following trigonometric statements into algebraic statements (assume all angles are in the first quadrant)

$1.\sin(\arcsin x + \arctan x)$	$\frac{x}{\sqrt{x^2+1}} \left(1 + \sqrt{1-x^2}\right)$
$2.\cos\left(\arccos x - \arcsin\frac{x}{2}\right)$	$\frac{x}{2}\left(\sqrt{4-x^2}+\sqrt{1-x^2}\right)$
$3. \tan \left(\arccos \frac{1}{\sqrt{4x^2 + 1}} - \arccos x \right)$	$\frac{2x^2 - \sqrt{1 - x^2}}{x(1 + 2\sqrt{1 - x^2})}$
4. $\csc\left(\arcsin\frac{1}{x} - \arctan\frac{x}{4}\right)$	$\frac{\sqrt{x^2 + 16}}{x(4 - \sqrt{1 - x^2})}$
$5. \cot \left(\arcsin x + \arctan 2x\right)$	$\frac{\sqrt{1-x^2} + 2x^2}{x + 2x\sqrt{1-x^2}}$
$6.\sec(\arctan x + \arccos x)$	$\frac{\sqrt{1+x^2}}{x-\sqrt{1-x^2}}$

(1 1)	
7. $\sin \left(\arccos \frac{1}{1} - \arcsin \frac{1}{1} \right)$	$\sqrt{1-x^2}\sqrt{1-4x^2-2x^2}$
$\left(\frac{x}{x}\right)^{2x}$	

Part 3

Solve for x if $x \in [0, 2\pi)$

$1. \sin\left(x + \frac{\pi}{3}\right) + \sin\left(x - \frac{\pi}{3}\right) = 1$	$\frac{\pi}{2}$
$2. \cos\left(x + \frac{\pi}{6}\right) - \cos\left(x - \frac{\pi}{6}\right) = 1$	$\frac{3}{2}\pi$
3. $\tan(x+\pi) + 2\sin(x+\pi) = 0$	$0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$
$4. 2\sin\left(x + \frac{\pi}{2}\right) + 3\tan\left(\pi - x\right) = 0$	$\frac{\pi}{6}, \frac{5\pi}{6}$
$5. \cos\left(x + \frac{\pi}{4}\right) + \cos\left(x - \frac{\pi}{4}\right) = 1$	$\frac{\pi}{4}, \frac{7\pi}{4}$
$6. \sin\left(x + \frac{\pi}{2}\right) - \cos\left(x + \frac{3\pi}{2}\right) = 0$	$\frac{\pi}{4}, \frac{3\pi}{4}$
$7. \sin\left(x + \frac{\pi}{2}\right) = -\cos^2 x$	$0, \frac{\pi}{2}, \frac{3\pi}{2}$