Amendments to the Claims:

Claim 22 is amended as set forth hereinafter.

Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1. (Cancelled).
- (Previously Presented) The work apparatus of claim 20,
 wherein said end section is fixed form tight on said guide slot.
- 3. (Previously Presented) The work apparatus of claim 20, wherein said end section extends over a number of said turns in a range of 3/4-turn to greater than 2-turns.
- 4. (Previously Presented) The work apparatus of claim 3, wherein said number of said turns is greater than approximately 1 1/4-turns.
- 5. (Previously Presented) The work apparatus of claim 3, wherein said transition section extends over approximately one turn to four turns.
- 6. (Previously Presented) The work apparatus of claim 3, wherein said coil spring has first and second ends twisted relative to

each other.

5

5

- 7. (Previously Presented) The work apparatus of claim 6, wherein said first and second ends are twisted relative to each other by approximately a half turn.
- 8. (Previously Presented) The work apparatus of claim 3, wherein said end section is a first end section and said coil spring has a second end section; and, said guide member is a first guide member and said guide slot is a first helically-shaped guide slot and said antivibration element comprises a second guide member defining a second helically-shaped guide slot; and, said coil spring is guided at said first and second end sections on said first and second helically-shaped guide slots, respectively.
- 9. (Previously Presented) The work apparatus of claim 8, wherein said first and second guide members are configured as first and second plugs projecting into the interior of said coil spring from opposite ends thereof; and, first and second helically-shaped guide slots are formed on said first and second plugs, respectively.
- 10. (Previously Presented) The work apparatus of claim 9, each of said first and second plugs having receptacles formed therein for accommodating an attachment device.
- 11. (Cancelled).

- 12. (Previously Presented) The work apparatus of claim 9, wherein, in said transition section, the spacing (a, a') of the base of said helically-shaped guide slots to said longitudinal center axis becomes less with increasing distance from the end section.
- 13. (Previously Presented) The work apparatus of claim 12, wherein said guide slots each have a trapezoidally-shaped cross section.
- 14. (Previously Presented) The work apparatus of claim 13, wherein said trapezoidally-shaped guide slot has first and second flanks defining respective angles (α, β) with said longitudinal center axis of said coil spring which are each less than 90°.
- 15. (Previously Presented) The work apparatus of claim 14, wherein said angles (α, β) lie in a range of 30° to 60°.
- 16. (Previously Presented) The work apparatus of claim 9, wherein said guide slots each have a circular-arc-shaped cross section.

Claims 17 to 19 (Cancelled).

5

- 20. (Previously Presented) A portable handheld work apparatus comprising:
 - a first housing part;
 - a drive motor connected to said first housing part;

a second housing part and a handle connected to said second housing part;

an antivibration unit subject to deformation under load during operation of said work apparatus;

said antivibration unit having a spring constant which increases in response to said load and said deformation thereby facilitating a good guidance of said work apparatus when held and used by an operator;

said antivibration unit including:

5

10

15

20

25

30

a coil spring defining a longitudinal axis and having an end section, a mid section and a transition section extending from said end section to said mid section;

said coil spring having a first end fixed to said first housing part and having a second end fixed to said second housing part so as to cause said first housing part to be connected to said second housing part via said coil spring;

a guide member having a helically-shaped guide slot wherein turns of said coil spring are guided;

said end section and said transition section being guided in
said helically-shaped guide slot;

said end section being fixed in said helically-shaped guide slot so that said coil spring is fixed to said first housing part via said helically-shaped guide slot;

said guide slot having first and second flanks delimiting said slot in the direction of said longitudinal axis;

said transition section having a first play (c) to said first flank in the direction of said axis and a second play (d) to said second flank;

said helically-shaped guide slot having a base and said transition section being guided on said guide slot with a third play (b) to said base in radial direction so as to cause the turns of said transition section to be moveable in said radial direction relative to said helically-shaped slot in the unloaded state of said antivibration unit and contribute to the spring action of said antivibration unit; and,

40

35

wherein said third play (b), which is present in radial direction, is overcome during the deformation of said coil spring under load in a direction perpendicular to said longitudinal axis and the turns of said transition section come at least in part into contact engagement with said helically-shaped slot so that the spring stiffness of said antivibration unit increases because of said at least in part contact engagement of the turns of said transition section.

45

5

- 21. (Previously Presented) The work apparatus of claim 20, wherein said spring stiffness is reduced when said antivibration unit is not subjected to load and said spring stiffness is increased when said antivibration unit is under load.
- 22. (Currently Amended) The work apparatus of claim 21, wherein said third play (b) between said coil spring and said base becomes greater with increasing distance from said end section when said antivibration unit is not under load; in a first cross section of said coil spring in said transition section, said coil spring is at said third play (b) corresponds to a first play distance from said base; said first play distance third play (b)

increases to <u>correspond to</u> a second greater play distance (b') from said base greater than said first distance in the course of a half turn of said coil spring so that with increasing load and the deformation of said coil spring associated therewith more turns of said coil spring come at least in part into contact engagement with said helically-shaped guide slot thereby increasing said spring stiffness.

10

5

23. (Previously Presented) The work apparatus of claim 22, wherein said coil spring has a center between first and second ends; said base of said helically-shaped slot is at a spacing (a) to said longitudinal axis; and, said spacing (a) becomes less with increasing distance from said end section of said coil spring so that a line passing through said base at successive turns of said slot within said transition section runs toward said center on an imaginary conical surface.