

Aprendizado de Máquina Aula 4.2 - Comitês: Algoritmos

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 Random Forest
- 2 XGBoost
- 3 Outros comitês

×

Random Forest

Floresta Aleatória

- Uma implementação de Bagging
 - Combina Bootstrapping com seleção de atributos aleatórios
- Gera diferentes modelos de árvores de decisão cada modelo vota em uma classe
- O erro do modelo estabiliza a partir de um limite de árvores
 - ▶ Na implementação do Sklearn o valor padrão é 100
 - ▶ Na implementação em R o valor padrão é 500
- Os modelos também são usados para medir a importância das variáveis preditivas

Random Forest (exemplo)

Fonte: https://www.nvidia.com/en-us/glossary/xgboost/

Treinamento

- Cada árvore é construida a partir de uma amostra com reposição do conjunto de treinamento usando apenas alguns atributos preditivos
- O número de atributos e as configurações da árvore podem ser definidas por hyperparâmetros

Hiperparâmetros

- **n** estimators: Número de árvores da floresta
 - ▶ Opções: inteiro positivo, Padrão: 100
- max_features: Quantidade de atributos usados para cada árvore
 - ▶ Opções: 'sqrt', 'log2', float (entre 0 e 1), Padrão: 'sqrt'
 - Quanto menor, maior será a redução da variância, mas também maior será o aumento do viés.
- Hiperparâmetros da árvore de decisão :
 - max_depth, min_samples_split, ...

Predição

- Cada modelo faz uma predição que é considerado um voto
 - "In contrast to the original publication, the scikit-learn implementation combines classifiers by averaging their probabilistic prediction, instead of letting each classifier vote for a single class."

Fonte: https://scikit-learn.org/stable/modules/ensemble.html#random-forests-and-other-randomized-tree-ensembles

Importância dos atributos

- Há 2 maneiras de calcular a importância dos atributos em um modelo RF
- Impureza dos atributos (scikit-learn)
 - Utiliza a importância relativa dos atributos usado nas diferentes árvores
 - Pode não funcionar bem para problemas com alta dimensionalidade
 - ► Gerado utilizando apenas os dados de treinamento
- Permutação
 - ► Troca valores de atributos e mede o impacto no erro
 - Uma medida mais robusta, porém demanda uma etapa ădicional no processo de treinamento

>

XGBoost

eXtreme Gradient Boosting

- Sistema escalável para boosting de árvores de decisão
- No ano de 2015, das 29 competições disponível no Kaggle, 17 delas venceram usando XGBoost
- Implementação otimizada e altamente eficiente do algoritmo de *Gradient tree boosting*

Gradient Tree Boosting

- Conhecido como *Gradient Boosting Machine* (GBM)
- Aplica a técnica de Boosting para árvores de decisão:
 - ► Realiza subamostragem dos atributos
 - Utiliza gradientes descendentes para encontrar a direção em que a função de perda está diminuindo mais rapidamente
- Soma as previsões de cada árvore de decisão ponderadas por um fator de aprendizado (*learning rate*)

Função de custo e Regularização

- A função objetivo otimizada pelo XGBoost consiste em 2 partes: função de custo e termo de regularização
- Função de custo:
 - Erro quadrado médio
 - Função logística
- Termo de regularização
 - Penaliza modelos complexos
 - Baseado no número de folhas e na soma dos valores preditos por cada folhas

Compromisso viés e variância

Fonte: https://xgboost.readthedocs.io/en/stable/tutorials/model.html

Hyperparâmetros

https://xgboost.readthedocs.io/en/stable/parameter.html

■ Geral

- ▶ Relacionado com a escolha do booster a ser utilizado
- Configurações gerais

Booster

► Dependente das escolhas gerais

■ Learning task

- ► Relacionado a tarefa de aprendizado
- Questões específicas do aprendizado

Hiperparâmetros: Geral

- **booster**: Qual booster utilizar bgtree, bglinear ou dart
- device: Dispositivo que irá executar o treinamento cpu, cuda, gpu, ...
- verbosity: usado para debug
 0 (silent), 1 (warning), 2 (info), 3 (debug)
- nthread: Números de threads usadas valor inteiro, Padrão: total disponível

Hiperparâmetros: Tree Booster

- eta ou learning_rate: taxa de aprendizado valor real entre 0 e 1, Padrão: 0.3
- **gamma**: Valor mínimo de redução da função de custo valor real entre $0 \in \infty$, Padrão: 0
- $\frac{\text{max_depth}}{\text{valor inteiro entre } 0 \text{ e } \infty$, Padrão: 6
- $\frac{\text{min_child_weight}}{\text{child_weight}}$: Soma mínima dos pesos das instâncias em um nó valor inteiro entre 0 e ∞ , Padrão: 0
- **subsample**: Proporção das instâncias que serão amostradas em cada interação valor real entre 0 e 1, Padrão: **0.5**

Hiperparâmetros: Learning task

- objective: Especifica a tarefa de aprendizado e o tipo da resposta reg:squarederror, binary:logistic, multi:softmax, multi:softprob, ...
- eval_metric: Medida de avaliação utilizada no processo de validação interna rmse, logloss, auc, ..., Padrão: depende de cada tarefa
- **seed**: Especifica a semente da geração aleatória valor inteiro entre $0 e \infty$
- num_classes : Define o número de classes a serem preditas valor inteiro de 2 a ∞, Padrão: número de classes

,

Outros comitês

Outros algoritmos de comitês

- AdaBoosting
- CatBoosting
- ExtraTreesClassifier
- Gradient Boosting Machine