MEAM 520 Lecture 3: Rotations

Cynthia Sung, Ph.D.

Mechanical Engineering & Applied Mechanics
University of Pennsylvania

Last Time

Manipulators are **links** connected by **joint**, which can be **R** or **P** type.

Joint variables θ and dZero configuration Degrees of freedom (DOF)

Configuration Space vs Workspace vs Task Space vs State Space

Articulated (RRR)	Cartesian (PPP)	SCARA (RRP)	Cylindrical (RPP)	Spherical (RRP)
small workspaces	gantries	speed, planar tasks	material transfer	earliest designs
				MANUAL MA
Shoulder θ_2 z_1 θ_3 z_2 Forearm Elbow	$\begin{array}{c c} d_2 & & \\ \hline & z_1 & \\ \hline & z_2 & \\ \hline \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d_3 z_2 d_2 θ_1	θ_2 θ_3 θ_1 θ_2 θ_3 θ_1
θ_1 θ_2 θ_3				

Lab 0 is posted (due 9/9)

Lab 0: Run and Characterize the Lynx in Gazebo (MATLAB)

MEAM 520, University of Pennsylvania

September 2, 2020

This esercise is due on Wednesday, September 9, by midnight (11:59 p.m.) Solunit your answers to the questions at the end of the document as a pid on Gondescepe, Late submissions will be accepted until midnight on Saturday, September 12, but they will be pensized by 20% for each partial or full day late. After the late desdilles, no further assignments may be submitted; post a private message or Plazza to request an extension if you need one due to a special situation such as illness. This assignment is worth 5 points.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. When you get stuck, post a question on Piazza or go to office hours!

1 Set Up Simulation Environment

The purpose of this mini-lab is to get you ROS+Gazebo simulation environment. The cally, we are modelling a Lynxmotion ALSE Controller.

1.1 Setup an Ubuntu virtual ma

Because the simulator is built with ROS and have access to a machine running Ubuntu, we steps require you to have a computer powerful VM is 10 GB hard-disk space, 8 GB of RAM, machine, you can also set up the VM image VM VirtualBox installed. See https://ceta accessing VirtualPC Lab.

- Install VirtualBox: Install the Orac virtualbox.org/. Versions are available.
- Download Virtual Image: Downlos google.com/file/d/icFxhHY6GqsNIkw quite large (~4GB) so it may take some
- Open VirtualBox: Tools → Import A can leave the defaults. By default the V reduce these if you are on a less powerf

¹If you already have a Ubuntu virtual machine or instructions in the handout 'Setup ROS+Gazebo.' I re Lab 0: Run and Characterize the Lynx in Gazebo (Python)

MEAM 520, University of Pennsylvania

September 2, 2020

This exercise is due on Wednesday, September 9, by midnight (11:59 p.m.). Submit your answers to the questions at the end of the document as a pfd on Gradescope. List submissions will be accepted until midnight on Saturday, September 12, but they will be penalized by 20% for each partial or full day late. After the late desdille, no Intribute assignment may be submitted; post a private message on Plazza to request an extension if you need one due to a special situation such as illness. This assignment is worth 5 points.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. When you get stuck, post a question on Pinzza or go to office hours!

1 Set Up Simulation Environment

The purpose of this min-lab is to get you familiar with the Lyxxmotion robot manipulator (Lyxxx) in ROS+Gozebo simulation environment. The Lyxx is a small robot arm with a parallel-jue gripper, Septically, we are modelling a Lyxxmotion AL5D with the heavy-duty wrist rotate upgrade and SSC-32U Servo Controller.

1.1 Setup an Ubuntu virtual machine with ROS+Gazebo¹

Because the simulator is built with ROS and Gasebo, it must run on Ubuntu. Since most students do not have access to a membine running Ubuntu, we will run the simulation on a Virtual Machine. Note: Those steps require you to have a computer powerful enough to run the virtual machine (recommended allocation to the steps require you to have a computer powerful enough to run the virtual machine (recommended allocation to the run of the run

- Install VirtualBox: Install the Oracle VM VirtualBox 6.1.6 for your OS from https://www.virtualbox.org/. Versions are available for Windows, Mac and Linux.
- Download Virtual Image: Download the MEAMS20F20.ova virtual image from https://drive.google.com/file/d/1cFxhHf6QaNKwFIDFyf2Eo_GoUgjWFC/view?usp-sharing. Note: This file is cutto large (_GGE) as it must take your time to deveload.
- 3. Open VirtualBox: Tools → Import Appliance → select MEM#520F20.ova → Import. In general, you can leave the defaults. By default the VM will have access to 2 CPU cores and 8 GB of RAM, you can reduce these if you are on a less powerful machine (or incresse for a more powerful machine).

¹If you already have a Ubuntu virtual machine or partition and wish to set up ROS+Gazebo yourself, you can also use the instructions in the handout 'Setup ROS+Gazebo.' I recommend you only do this if you are already an experienced Linux user.

1

Symbolic representation for the Lynx

Get familiar with the simulation

Sketch the workspace (does not need to be to scale!)

Today: Kinematics

Kinematics is the study of motion without

reference to the causes of that motion.

Kinematics

Kinematics

Kinematics

Forward Kinematics

Given the joint coordinates, what are the task coordinates?

Need to find both orientation and position

Today: Rotations in 2D and 3D

Chapter 2: Rigid Motions

• Sec. 2.intro-2.5 and B.1-B.4

Representing positions

A point exists in space as a geometric entity

Coordinate frame

- an origin (point in space)
- 2 or 3 orthogonal coordinate axes Call this frame $o_0x_0y_0z_0$ or **frame 0**

Point p is written as a vector

$$\mathbf{v}_p^0 = p^0 = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x & y & z \end{bmatrix}^\mathsf{T}$$

Vectors

 y_0 O_0

A vector has a magnitude/length

$$\|\mathbf{v}_{p}^{0}\| = \sqrt{x^{2} + y^{2} + z^{2}}$$

$$\|\mathbf{v}_p^0\| = \left(\left(\mathbf{v}_p^0\right)^\mathsf{T} \mathbf{v}_p^0\right)^{\frac{1}{2}}$$

This is called the ℓ^2 norm.

A vector has a direction

$$\hat{e}_p^0 = \frac{\mathbf{v}_p^0}{\|\mathbf{v}_p^0\|}$$

This unit vector has length 1

Multiple coordinate frames

Multiple coordinate frames

Multiple coordinate frames \mathcal{Z}_2 \mathcal{X}_2 Add vectors in the same or parallel frames by placing vectors tip to tail $\mathbf{v}_p^0 - \mathbf{v}_p^2 = ?$

Multiple coordinate frames \mathcal{Z}_2 χ_2 Add vectors in the same or parallel frames by placing vectors tip to tail $\mathbf{v}_p^0 - \mathbf{v}_p^2 = ?$

Multiple coordinate frames \mathcal{Z}_2 χ_2 Add vectors in the same or parallel frames by placing vectors tip to tail $\mathbf{v}_p^0 - \mathbf{v}_p^2 = \mathbf{v}_{o_2}^0$ or $\mathbf{v}_{p}^{0} = \mathbf{v}_{o_{2}}^{0} + \mathbf{v}_{p}^{2}$ O_0

How do we deal with rotated frames?

Dot Products

$$\mathbf{v}_{p}^{0} \cdot \hat{x}_{0} = \|\mathbf{v}_{p}^{0}\| \|\hat{x}_{0}\| \cos \theta$$

$$= \|\mathbf{v}_{p}^{0}\| (1) \cos \theta$$

$$= x$$

$$\mathbf{v}_{p}^{0} \cdot \hat{y}_{0} = y$$

$$\mathbf{v}_{p}^{0} \cdot \hat{z}_{0} = z$$

Rotation Matrices

$$\mathbf{v}_p^0 \cdot \hat{x}_0 = x \qquad \mathbf{v}_p^0 \cdot \hat{y}_0 = y \qquad \mathbf{v}_p^0 \cdot \hat{z}_0 = z$$

$$\mathbf{v}_p^1 = x_1 \hat{x}_1 + y_1 \hat{y}_1 + z_1 \hat{z}_1$$

$$\mathbf{v}_p^0 = x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0) \cdot \hat{x}_0 \\ (x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0) \cdot \hat{y}_0 \\ (x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0) \cdot \hat{z}_0 \end{bmatrix}$$

Rotation Matrices

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} (x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0) \cdot \hat{x}_0 \\ (x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0) \cdot \hat{y}_0 \\ (x_1 \hat{x}_1^0 + y_1 \hat{y}_1^0 + z_1 \hat{z}_1^0) \cdot \hat{z}_0 \end{bmatrix}$$

$$\begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0 \end{bmatrix} \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{x}_0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \hat{x}_1^0 \cdot \hat{x}_0 & \hat{y}_1^0 \cdot \hat{x}_0 & \hat{z}_1^0 \cdot \hat{x}_0 \\ \hat{x}_1^0 \cdot \hat{y}_0 & \hat{y}_1^0 \cdot \hat{y}_0 & \hat{z}_1^0 \cdot \hat{y}_0 \\ \hat{x}_1^0 \cdot z_0 & \hat{y}_1^0 \cdot \hat{z}_0 & \hat{z}_1^0 \cdot \hat{z}_0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$

rotation from frame 1 to frame 0 subscript and superscript "cancel"

Properties of Rotation Matrices

$$\mathbf{R}_{1}^{0} = \begin{bmatrix} \hat{x}_{1}^{0} \cdot \hat{x}_{0} & \hat{y}_{1}^{0} \cdot \hat{x}_{0} & \hat{z}_{1}^{0} \cdot \hat{x}_{0} \\ \hat{x}_{1}^{0} \cdot \hat{y}_{0} & \hat{y}_{1}^{0} \cdot \hat{y}_{0} & \hat{z}_{1}^{0} \cdot \hat{y}_{0} \\ \hat{x}_{1}^{0} \cdot z_{0} & \hat{y}_{1}^{0} \cdot \hat{z}_{0} & \hat{z}_{1}^{0} \cdot \hat{z}_{0} \end{bmatrix}$$

The columns show you the three unit vectors of the rotated frame expressed in the base frame.

$$\mathbf{R}_{1}^{0} = [\hat{x}_{1}^{0} \quad \hat{y}_{1}^{0} \quad \hat{z}_{1}^{0}]$$

The rows show you the three unit vectors of the base frame expressed in the rotated frame.

$$\mathbf{R}_1^0 = egin{bmatrix} \widehat{x}_0^1 \ \widehat{y}_0^1 \ \widehat{z}_0^1 \end{bmatrix}$$

Properties of Rotation Matrices

$$\mathbf{R}_{1}^{0} = \begin{bmatrix} \hat{x}_{1}^{0} \cdot \hat{x}_{0} & \hat{y}_{1}^{0} \cdot \hat{x}_{0} & \hat{z}_{1}^{0} \cdot \hat{x}_{0} \\ \hat{x}_{1}^{0} \cdot \hat{y}_{0} & \hat{y}_{1}^{0} \cdot \hat{y}_{0} & \hat{z}_{1}^{0} \cdot \hat{y}_{0} \\ \hat{x}_{1}^{0} \cdot z_{0} & \hat{y}_{1}^{0} \cdot \hat{z}_{0} & \hat{z}_{1}^{0} \cdot \hat{z}_{0} \end{bmatrix}$$

- Every row and column is a unit vector.
- The columns (and rows) are orthogonal.
- $(\mathbf{R}_1^0)^{\mathsf{T}} \mathbf{R}_1^0 = \mathbf{I} \implies \mathbf{R}_0^1 = (\mathbf{R}_1^0)^{-1} = (\mathbf{R}_1^0)^{\mathsf{T}}$
- If you are transforming between 2 right-handed coordinate frames, then det ${\bf R}_1^0=\pm 1$

We call these matrices SO(3) ("special orthogonal group of order 3")

$$\mathbf{v}_p^0 = \mathbf{R}_1^0 \mathbf{v}_p^1$$

Rotation Matrices

Serve 3 purposes (p. 47 of SHV):

- 1. Coordinate transformations relating coordinates of a point p in two different frames
- 2. Orientation of a transformed coordinate frame with respect to a fixed frame
- 3. Operator taking a vector and rotating it to yield a new vector in the same coordinate frame

 $\mathbf{p}_b^0 = \mathbf{R} \mathbf{p}_a^0$

Composite Rotations

What if I want to apply multiple rotations to a vector?

The **order** in which a sequence of rotations is performed is crucial.

Thus, the **order** in which rotation matrices are multiplied together is crucial

For example: Rotate 45° around y_0 vs Rotate 45° around y_1

Composite Rotations

What if I want to apply multiple rotations to a vector?

For example:

Rotate 45° around y_0

VS

Rotate 45° around y_1

$$\mathbf{p}_b = \mathbf{R}\mathbf{p}_a$$
 $\mathbf{R}' = \mathbf{R}_{y,45^\circ}$ $\mathbf{p}_c = \mathbf{R}'\mathbf{p}_b$ $\mathbf{p}_c = \mathbf{R}'\mathbf{R}\mathbf{p}_a$

Compositions of Rotations with Respect to a Fixed Frame

the result of a successive rotation about a fixed frame can be found by **pre-multiplying** by the corresponding rotation matrix

$$R_2^0 = RR_1^0$$

Note that \mathbf{R} is a rotation about the original frame

Composite Rotations

What if I want to apply multiple rotations to a vector?

For example: Rotate 45° around y_0 vs

Rotate 45° around y_1

$$\mathbf{p}_b = \mathbf{R}\mathbf{p}_a$$
 $\mathbf{R}' = \mathbf{R}_{y,45^{\circ}}$ $\mathbf{p}_d = ?$ $\mathbf{p}_d^2 = \mathbf{p}_a^0$ $\mathbf{p}_d^0 = \mathbf{R}_1^0 \mathbf{R}_2^1 \mathbf{p}_d^2$ $\mathbf{p}_d = \mathbf{R}\mathbf{R}'\mathbf{p}_a$

Compositions of Rotations with Respect to an Intermediate Frame

the result of a successive rotation about the current (intermediate) frame can be found by **post-multiplying** by the corresponding rotation matrix

$$R_2^0 = R_1^0 R_2^1$$

Which of these is more commonly used in robotics?

Practice: Choose the ${\bf R}_1^0$ matrix corresponding to the following visual representation.

$$\mathbf{R}_1^0 = \begin{bmatrix} 0.028 & 0.538 & -0.843 \\ 0.899 & 0.355 & 0.256 \\ 0.437 & -0.765 & -0.474 \end{bmatrix}$$

$$\mathbf{R}_1^0 = \begin{bmatrix} -0.434 & -0.092 & 0.895 \\ 0.842 & 0.310 & 0.443 \\ -0.318 & 0.946 & -0.057 \end{bmatrix}$$

$$\mathbf{R}_{1}^{0} = \begin{bmatrix} -0.453 & -0.591 & -0.668 \\ 0.298 & -0.806 & 0.511 \\ -0.840 & 0.033 & 0.541 \end{bmatrix}$$

Further practice: MATLAB scripts visualizeR.m and testR.m posted on Canvas under Files > Resources

Parameterizing Rotations

Can also figure out 4th value using the remaining 3

$$\mathbf{R}_1^0 = \begin{bmatrix} \hat{x}_1 \cdot \hat{x}_0 & \hat{y}_1 \cdot \hat{x}_0 \\ \hat{x}_1 \cdot \hat{y}_0 & \hat{y}_1 \cdot \hat{y}_0 \\ \hat{x}_1 \cdot z_0 & \hat{y}_1 \cdot \hat{z}_0 \end{bmatrix} \begin{bmatrix} \hat{z}_1 \cdot \hat{x}_0 \\ \hat{z}_1 \cdot \hat{y}_0 \\ \hat{z}_1 \cdot \hat{z}_0 \end{bmatrix}$$
Figure out 1 column from the others using RHR

Figure out 1 row using normality

In 3 dimensions, no more than 3 independent values are needed to specify an arbitrary rotation.

The 9-element rotation matrix has 6 redundancies (3 DOF)

Numerous methods have been developed to represent rotation/orientation more compactly

Euler Angles Roll/Pitch/Yaw Axis/Angle

Conventions vary, so always check definitions!

Three Special Rotation Matrices

The **basic rotation matrices** define rotations about the three coordinate axes.

The Os and 1s are always in the row and column of the rotation axis

$$\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Euler Angles

Define a set of 3 angles ϕ , θ , ψ to go from 0 \rightarrow 3 by rotating around the axes of the **current frame**.

Using Z-Y-Z convention:

1. Rotate by ϕ about z_0

Euler Angles

Define a set of 3 angles ϕ , θ , ψ to go from 0 \rightarrow 3 by rotating around the axes of the **current frame**.

Using Z-Y-Z convention:

- 1. Rotate by ϕ about z_0
- 2. Rotate by θ about y_1

Euler Angles

Define a set of 3 angles ϕ , θ , ψ to go from 0 \rightarrow 3 by rotating around the axes of the **current frame**.

Using Z-Y-Z convention:

- 1. Rotate by ϕ about z_0
- 2. Rotate by θ about y_1
- 3. Rotate by ψ about z_2

Q: Should we **pre-** or **post-**multiply?

Euler Angles to Rotation Matrices

Post-multiply using the basic rotation matrices

$$\mathbf{R} = \mathbf{R}_{z,\phi} \mathbf{R}_{y,\theta} \mathbf{R}_{z,\psi}$$

$$s_{\theta} = \sin \theta$$
, $c_{\theta} = \cos \theta$

$$\mathbf{R} = \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

Rotation Matrices to Euler Angles

$$\mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta}s_{\psi} \end{bmatrix} \quad \text{Plug in to}$$
Plug in to solve for ψ Solve for θ

NOTE: Two solutions for θ because sign of s_{θ} is not known.

In general, you will end up with two sets of valid ϕ , θ , ψ values.

$$\mathbf{R} = \begin{bmatrix} 0.090 & -0.785 & 0.612 \\ 0.574 & 0.544 & 0.612 \\ -0.814 & 0.296 & 0.5 \end{bmatrix}$$

Check: Is the matrix orthonormal? ✓

Is the determinant +1? ✓

$$\mathbf{R} = \begin{bmatrix} 0.090 & -0.785 & 0.612 \\ 0.574 & 0.544 & 0.612 \\ -0.814 & 0.296 & 0.5 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

Side note: Book uses atan2(x, y)

Book uses atan2(x, y)MATLAB uses atan2(y, x)We'll use atan2(y/x)

$$\mathbf{R} = \begin{bmatrix} 0.090 & -0.785 & 0.612 \\ 0.574 & 0.544 & 0.612 \\ -0.814 & 0.296 & 0.5 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

$$\theta = \frac{\pi}{3}$$

$$\sin \theta = 0.866 \Longrightarrow \begin{cases} \cos \psi = 0.940 \\ \sin \psi = 0.342 \end{cases}$$

$$\psi = \tan \frac{\pi}{2} \left(\frac{\sin \psi}{\cos \psi} \right)$$

 $\psi = \text{atan2}\left(\frac{0.342}{0.940}\right) = \frac{\pi}{9}$

$$\theta = \frac{5\pi}{3}$$

$$\sin \theta = -0.866 \Longrightarrow \begin{cases} \cos \psi = -0.940 \\ \sin \psi = -0.342 \end{cases}$$

$$\psi = \tan 2 \left(\frac{\sin \psi}{\cos \psi} \right)$$

$$\psi = \tan 2 \left(\frac{-0.342}{-0.940} \right) = -\frac{8\pi}{9}$$

$$\mathbf{R} = \begin{bmatrix} 0.090 & -0.785 & 0.612 \\ 0.574 & 0.544 & 0.612 \\ -0.814 & 0.296 & 0.5 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

$$\theta = \frac{\pi}{3}$$

$$\sin \theta = 0.866 \Longrightarrow \begin{cases} \cos \phi = 0.707 \\ \sin \phi = 0.707 \end{cases}$$

$$\phi = \operatorname{atan2}\left(\frac{\sin \phi}{\cos \phi}\right)$$

$$\phi = \operatorname{atan2}\left(\frac{0.707}{0.707}\right) = \frac{\pi}{4}$$

$$\theta = \frac{5\pi}{3}$$

$$\sin \theta = -0.866 \Rightarrow \begin{cases} \cos \phi = -0.707 \\ \sin \phi = -0.707 \end{cases}$$

$$\phi = \operatorname{atan2}\left(\frac{\sin \phi}{\cos \phi}\right)$$

$$\phi = \operatorname{atan2}\left(\frac{-0.707}{-0.707}\right) = -\frac{3\pi}{4}$$

Yaw, Pitch, Roll Angles

Define a set of 3 angles ϕ , θ , ψ to go from 0 \rightarrow 3 by rotating around **fixed axes**.

Our book uses X-Y-Z convention.

Think about a plane flying in the z direction. Yaw is left/right, Pitch is up/down, and roll is rotating about z.

Q: Should we **pre-** or **post-**multiply?

Yaw, Pitch, Roll Angles to Rotation Matrices

Pre-multiply using the basic rotation matrices

$$\mathbf{R} = \mathbf{R}_{z,\phi} \mathbf{R}_{y,\theta} \mathbf{R}_{x,\psi}$$

$$\mathbf{R} = \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} c_{\phi}c_{\theta} & c_{\phi}s_{\theta}s_{\psi} - s_{\phi}c_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{\theta}c_{\psi} \\ s_{\phi}c_{\theta} & s_{\phi}s_{\theta}s_{\psi} + c_{\phi}c_{\psi} & -c_{\phi}s_{\psi} + s_{\phi}s_{\theta}c_{\psi} \\ -s_{\theta} & c_{\theta}s_{\psi} & c_{\theta}c_{\psi} \end{bmatrix}$$

Angle/Axis Representation

Rotation by an angle about an axis in space

$$\mathbf{k} = \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} \text{ with } ||\mathbf{k}|| = 1$$

Let
$$v_{\theta} = \text{vers } \theta = 1 - c_{\theta}$$

$$\mathbf{R}_{k,\theta} = \begin{bmatrix} k_x^2 v_\theta + c_\theta & k_x k_y v_\theta - k_z s_\theta & k_x k_z v_\theta + k_y s_\theta \\ k_x k_y v_\theta + k_z s_\theta & k_y^2 v_\theta + c_\theta & k_y k_z v_\theta - k_x s_\theta \\ k_x k_z v_\theta - k_y s_\theta & k_y k_z v_\theta + k_x s_\theta & k_z^2 v_\theta + c_\theta \end{bmatrix}$$

Angle/Axis Representation

Any rotation matrix can be represented this way!

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\mathbf{k} = \frac{1}{2s_{\theta}} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

$$\theta = \cos^{-1} \left(\frac{r_{11} + r_{22} + r_{33} - 1}{2} \right)$$

Next time: Homogeneous Transformations

Chapter 2: Rigid Motions

• Read Sec. 2.6 – 2.8

