Plan du cours

I.	Vit	esse moyenne
	1.	Calculer une vitesse moyenne (v)
	2.	Calculer une distance (d)
	3.	Calculer une durée (t)
П.	Pou	urcentages
	1.	Appliquer un pourcentage
	2.	Déterminer un pourcentage
	3.	Calculer une augmentation ou une réduction

I. Vitesse moyenne

Si un mobile effectue un trajet au cours duquel la distance parcourue est proportionnelle à la durée du parcours, alors ce mobile a un mouvement dit **uniforme**.

Dans ce cas, le coefficient de proportionnalité entre la distance et la durée est appelé vitesse moyenne du mobile.

Propriété

Soient d la distance parcourue, t la durée du parcours et v la vitesse moyenne, on obtient la relation suivante :

$$v = \frac{d}{t}$$

Remarques:

- Si la distance **d** est en **km** et le temps **t** est en **h**, alors la vitesse **v** est en **km/h**.
- Si la distance \mathbf{d} est en \mathbf{m} et le temps \mathbf{t} est en \mathbf{s} , alors la vitesse \mathbf{v} est en \mathbf{m}/\mathbf{s} .

1 lest donc impératif de convertir les grandeurs correctement avant d'utiliser les formules ci-dessus.

1. Calculer une vitesse moyenne (v)

 \rightarrow Pour calculer une vitesse moyenne, on utilise la formule : $v = \frac{d}{t}$

Exemple: Quelle est la vitesse moyenne en km/h d'un piéton qui met 2h30 pour parcourir 10.5 km?

- La vitesse doit être exprimée en km/h, donc le temps doit être exprimé en h :

	X	
min 60 2h30 min = 1	L50 min	

$$x = \frac{150 \times 1}{60}$$

x = 2,5h donc 2h30min = 2,5h

- On peut maintenant utiliser la formule de la vitesse : $v = \frac{G}{r}$

$$v = \frac{10, 5}{2, 5}$$

v = 4,2 km/h Le piéton marche à une vitesse de 4,2 km/h.

Un automobiliste effectue un trajet de 522 kilomètres en 6 heures et 40 min. Quelle est sa vitesse moyenne en km/h? en m/s?

- La vitesse doit être exprimée en km/h, donc le temps doit être exprimé en h :

6h40min = ? h

heure	1	X
min	60	6h40 min = 400 min

$$x = \frac{400 \times 1}{60}$$

 $x \approx 6,67h$ donc **6h40min** \approx **6,67h**

- On peut maintenant utiliser la formule de la vitesse : $v = \frac{d}{t}$

$$v \approx \frac{522}{6.67}$$

 $v \approx 78,3 \text{ km/h}$

L'automobiliste roule à une vitesse moyenne de 78,3 km/h.

- Convertissons maintenant en m/s :

Rappels: 1 km = 1 000 m et 1 h = 60 min 78.3 km = 78 300 m

Si je parcours 78 300 m en une heure donc en 3600 min, combien je vais parcourir de km en une minute?

km	78 300	X
sec	3600	1

$$x = \frac{78300 \times 1}{3600} = 21,75m$$

78,3 km/h = 21,75 m/s

2. Calculer une distance (d)

ightarrow Pour calculer une distance, on utilise la formule :

Exemple: Quelle est la distance parcourue par un véhicule qui roule pendant 3h à la vitesse moyenne de 85 km/h?

 $d = v \times t$

On utilise la formule de la distance : $d = v \times t$

 $d = 85 \times 3$

d = 255 km

Le véhicule a parcouru 255 km.

Valentine fait du vélo. Elle roule pendant 1 heure 20 min à la vitesse moyenne de 12 km/h. Quelle distance a-t-elle parcouru en km?

- Le temps doit être exprimé en heure :

1 h 20 min = ? h

heure	1	X	
min	60	$1h20 \min = 80 \min$	

$$x = \frac{80 \times 1}{60}$$

 $x \approx 1,3h$ donc **1 h 20 min** \approx **1,3 h**

- On utilise la formule de la distance : $d = v \times t$

 $d \approx 12 \times 1,3$

 $d \approx 15,6 \text{ km}$

Elle a parcouru 15,6 km.

3. Calculer une durée (t)

 \rightarrow Pour calculer une durée, un temps, on utilise la formule : $t = \frac{d}{v}$

Exemple: Quelle est la durée de parcours d'un cycliste qui roule à une vitesse moyenne de 17,5 km/h et qui parcourt 63 km?

On utilise la formule de la durée : $t = \frac{d}{v}$

 $t = \frac{63}{17,5}$

t = 3,6 h

- On convertit en heures et en minutes :

heure	1	0,6
min	60	Х

$$x = \frac{0,6 \times 60}{1} = 36min$$

Donc 3,6 h = 3 h 36 min.

II a parcouru 63 km en 3 heures et 36 minutes.

Alix nage. Lors d'une compétition, elle parvient à nager à la vitesse moyenne de 3,5 km/h et parcourt ainsi 2 km. Calculer le temps en minutes et secondes qui lui a été nécessaire.

On utilise la formule de la durée :
$$t = \frac{d}{v}$$

$$t = \frac{2}{3.5}$$

 $t \approx 0,57$ h

- On convertit en minutes :

heure	1	0,57
min	60	X

$$x = \frac{0.57 \times 60}{1} = 34.2 min$$

Donc 0.57 h = 34.2 min.

- On convertit en minutes et en secondes :

min	1	0,2
secondes	60	X

$$x = \frac{0,2 \times 60}{1} = 12sec$$

Donc 34,2 min = 34 min 12 sec.

Il a parcouru 63 km en 3 heures et 36 minutes.

II. Pourcentages

1. Appliquer un pourcentage

Définition

Pour calculer t % d'une quantité, on multiplie cette quantité par $\frac{t}{100}$

Exemple: Calculer les pourcentages suivants.

50% de 58 élèves : $\frac{50}{100} \times 58 = 29$ Cela correspond à 29 élèves (*la moitié*).

25 % de 200 L : $\frac{25}{100} \times 200 = 50$ Cela correspond à 50 L (*le quart*).

70 % de 90 kg $\frac{70}{100} \times 90 = 63 \text{ Cela correspond à 63 kg.}$

1. Les jeunes de 11 à 14 ans passent en moyenne 12,5 % d'une journée (24h) devant un écran. 70 % de ce temps est passé devant la télévision et le reste du temps devant un ordinateur.

Combien d'heures les jeunes de 11 à 14 ans passent-ils en moyenne chaque jour devant :

- a) un écran?
- b) la télévision? c) un ordinateur?

(a) Sur un écran:

12,5% de 24 heures :
$$\frac{12,5}{100} \times 24 = 3 \text{ h.}$$

Les jeunes passent en moyenne 3 h devant un écran par jour.

(b) Sur la télévision :

70% du temps passé devant un écran est passé devant la télévision : 70% de 3 heures :

On convertit en heures et minutes

heure	1	0,1
min	60	Χ

$$x = \frac{0.1 \times 60}{1} = 6 \text{min}$$

Les jeunes passent en moyenne 2 heures et 6 minutes devant la télévision par jour.

(c) Sur un ordinateur :

Le reste du temps sur l'ordinateur. Deux calculs sont possibles :

1)
$$3h - 2h06 = 54 \text{ minutes}.$$

2) 30% du temps passé sur écran : 30

$$\frac{30}{100} \times 3 = 0,9 \text{ h}.$$

On convertit en minutes

heure	1	0,9
min	60	X

$$x = \frac{0.1 \times 60}{1} = 54$$
min

Les jeunes passent en moyenne 54 minutes devant un ordinateur par jour.

2. Déterminer un pourcentage

Méthode :

Déterminer un pourcentage revient à calculer une quatrième proportionnelle à 100, c'est-à-dire à faire un produit en croix.

Exemple:

Dans une classe de 24 élèves, 9 sont demi-pensionnaires. Calculer le pourcentage d'élèves demi-pensionnaires.

Nombres d'élèves	24	9
Pourcentage	100%	Χ

$$\frac{9 \times 100}{24} = 37,5\%$$
 || y a 37,5% d'élèves demi-pensionnaires.

Pendant un vide grenier, Zoé a réussi à vendre 54 de ses 72 BD. Quel pourcentage de ses BD a-t-elle vendues?

Nombres de BD	72	54
Pourcentage	100%	X

$$\frac{54 \times 100}{72} = 75\%$$

Elle a vendu 75% de ses BD.

Calculer une augmentation ou une réduction

Exemples:

(a) Le prix d'un manteau de 160 euros est augmenté de 20%. Quel est le nouveau prix?

 $\frac{20}{100} \times 160 = 32.$ - On calcul d'abord, le montant de l'augmentation, qui est de 20% de 160 :

- On calcule ensuite le prix après augmentation : 160 + 32 = 192

Le nouveau prix est de 192 euros.

(b) Le prix d'un DVD est de 17 euros. Quel est le nouveau prix après 15% de réduction?

 $\frac{15}{100} \times 17 = 2,55.$ - On calcul d'abord, le montant de la réduction, qui est de 15% de 17 :

- On calcule ensuite le prix après réduction : 17 - 2,55 = 14,45

Le nouveau prix est de 14,45 euros.

(a) Julie obtient une réduction de 15 % sur un vélo valant 158 €. Quel est le montant de la réduction obtenue par Julie ?

On calcul le montant de la réduction, qui est de 15% de 158 : $\frac{15}{100} \times 158 = 23,7.$

Le montant de la réduction est de 23,7 euros.

(b) Patrick a obtenu une réduction de 27 €sur une console de jeu qui valait 225 €. Quel pourcentage de réduction a-t-il obtenu ?

Prix (en euros)	225	27
Pourcentage	100%	X

$$\frac{27 \times 100}{225} = 12\%$$
 Patrick obtient 12% de réduction.

(c) Paul a obtenu une baisse de 45 €sur un appareil photo, soit une baisse de 30 % du prix initial. Quel était le prix initial de l'appareil photo?

Prix (en euros)	X	45
Pourcentage	100%	30

$$\frac{45 \times 100}{30} = 150$$
 Le prix initial de l'appareil photo était de 150 euros.