

UNIVERSIDADE DO VALE DO ITAJAÍ LABORATÓRIO DE INTELIGÊNCIA APLICADA LABORATÓRIO DE SIST<u>EMAS EMBARCADOS E DISTRIBUÍDOS</u>

Aritmética Binária

Prof. Thiago Felski Pereira, MSc.

Adaptado: Paulo Roberto Valim

• A soma de números binários é similar a soma em decimal:

Decimal				Binário					
	1					1		1	
	1	6	3			0	1	0	1
+	8	9	2	+	-	1	1	0	1
1	0	5	5	1	L	0	0	1	0

• A soma de números binários é similar a soma em decimal:

- Meio somador
 - Realiza a soma de dois bits
 - Não considera o carry-in

Α	В	S	C_{n+1}
0	0		
0	1		
1	0		
1	1		

- Meio somador
 - Realiza a soma de dois bits
 - Não considera o carry-in

- Meio somador
 - Realiza a soma de dois bits
 - Não considera o carry-in

- Somador completo
 - Realiza a soma de dois bits,
 - Considera o carry-in.

Α	В	C_n	S	C_{n+1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

	1		1	
	0	1	0	1
+	1	1 1	0	1
1	0		1	

- Somador completo
 - Realiza a soma de dois bits,
 - Considera o carry-in.

A	В	C_n	S	C_{n+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	1		1	
	0	1	0	1
+	1	1	0	1
1	0	0	1	0

- Somador completo
 - Realiza a soma de dois bits,
 - Considera o carry-in.

Α	В	C_n	S	C_{n+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Somador Binário Paralelo
 - Soma de números de vários bits
 - Exemplo de 4 bits:

- Somador Binário Paralelo
 - Generalizando:

• Considerando um número fixo de bits para a saída igual ao número de bits de entrada. O **overflow** é indicado por r_{n+1}

- Somador Binário Paralelo
 - Outra possibilidade

Desvantagem em relação ao circuito anterior: custo ligeiramente mais alto

- Para a operação de subtração é preciso ter uma forma de representar números negativos em binário.
- Vamos lembrar que, se simplesmente adotar-mos um bit como sendo o de sinal, o problema que surge é a necessidade de circuitos diferentes para realizar as operações de adição sobre dados com sinal e sem sinal.
- A representação em em complemento-2 tem a vantagem de permitir que um mesmo circuito realize as operações sobre dados com sinal ou sem sinal.

- Números com sinal em complemento-2
 - Bit mais significativo é o bit de sinal
 - Números positivos: normais, como foi visto
 - Números negativos: o valor representado é dado por:

Valor em binário (excluindo o sinal)

Exemplo: com 5 bits é possível representar -16 a 15

$$\begin{aligned} 0_{10} &= 00000_2 & -1 &= 111111_2 \\ 5_{10} &= 00101_2 & -9 &= 101111_2 \\ 15_{10} &= 011111_2 & -16 &= 100000_2 \end{aligned}$$

Alguns exemplos de operações com dados de 5 bits:

ADIÇÃO

SUBTRAÇÃO

Alguns exemplos de operações com dados de 5 bits:

- Princípio da subtração em binário:
 - Usar a representação do valor correspondente ao minuendo em complemento-2 e fazer

- Forma de obter o correspondente negativo de um valor em complemento-2:
 - Obter o complemento-1 do valor (inverter todos os bits)
 - adicionar 1 ao resultado obtido no passo anterior.

- Forma de obter o correspondente negativo de um valor em complemento-2:
 - Obter o complemento-1 do valor (inverter todos os bits)
 - adicionar 1 ao resultado obtido no passo anterior.

Funciona também para transformar números negativos em positivos:

Como fazer para realizar a operação indicada abaixo usando o circuito anterior?

Somador/subtrator paralelo

Somador:

Subtrator:

Somador/Subtrator paralelo

 Para obter o somador/subtrator, precisamos de um inversor que possa ser controlado (ativado ou desativado)

Contro	E ^{ntra}	S alda
0	0	0
0	1	1
1	0	1
1	1	0

$$S = \overline{A}B + A\overline{B} = A \oplus B$$

XOR funciona como um inversor controlado.

Somador/Subtrator paralelo

Overflow

- Ocorre quando o resultado de uma operação é maior (ou menor) do que o valor máximo (ou mínimo) que pode ser representado com um determinado número (fixo) de bits.
 - Exemplo:

• Em geral, o overflov

Overflow

- O overflow só ocorre se os dois operandos forem positivos ou negativos
- Exemplo (5 bits):

Overflow

• Circuito somador/subtrator com detecção de overflow

Obrigado pela atenção

