Contact: BioSci 4325a 613-533-2353 bit.ly/colautti robert.colautti@queensu.ca

Advanced R

Dr. Robert I. Colautti

Biology Dept.

Feb 19, 2016

Introduction to R Overview

Further Reference:

http://haschmi.github.io/2016-02-17-queens/

http://wiki.hpcvl.org/index.php/Training:SWC:Feb2016

Morning

- Key features of R & RStudio
- Basic objects
- Working with data
- Basic statistics
- Basic graphs with aplot()

Afternoon

- Elegant graphics with ggplot()
- Flow control
- Regular expressions
- Custom functions
- Custom packages

Vector vs Raster format

Raster art

Pixel Dimension = Physical size x Resolution

Same pixel dimension

Large size, low resolution

Small size, high resolution

RGB vs CMYK

Haddock & Dunn (2011)

Graphics software

DON'T USE POWERPOINT FOR PUBLICATION!

Powerful, expensive, steep learning curve:

- Adobe Photoshop (pixel)
- Adobe Illustrator (vector)

FREE Software:

- O GIMP (pixel)
- O Inkscape (vector) NOTE: .svg format is commonly used

http://www.gimp.org/

https://inkscape.org/en/

Graphics in R – base functions

plot()

persp()

Graphics in R - GIS/Mapping

QGIS, dismo, raster, rgdal, maptools, leap, ggmap packages

ggplot2 graphics for publication

ggplot2 grammar

data

- any information you want to plot

geoms

- geometric objects (lines, points, polygons)

stats

- statistical transformations applied to the data (e.g. binning for histograms)

scale

- scales of conversion from data to visual space (e.g. legend, range and scale of axes)

ggplot2 grammar

coord

coordinate system of the graph (e.g. Cartesian, polar, lat/long)

facet

- break up data into separate graphs

aes

aesthetic mapping describes how data is mapped (e.g. x, y, colour)

theme

- fine-tune appearance (e.g. background colour, gridlines)

Basic plot: building layers

```
Begin with ggplot ()

define global variables (e.g. aes(),data)

leave blank to have different data in different layers

Add each 'layer' (usually a geom_) with +

Fine-tune appearance with themes
```


Meta-analysis of selection differentials (s)

Build graphics as layers in gaplot

```
ggplot() + theme_basic() +
geom_line() +
geom_line() +
geom_rectangle() +
geom_rectangle() +
geom_rect() +
geom_rect() +
xlim() + ylim() +
xlab() + ylab()
```


Multiple plots with (gridExtra)

Requires library (gridExtra)

grid.arrange(plot1, plot2, ..., plotn, nrow, ncol)

grid.arrange(p1,p2,p3,nrow=2)

grid.layout() for complicated layout

