Photonique et optique quantique

2022-08-31

Références

- D. Steck: quantum optics note
- G. Milbur : Quantum optics
- Aspect Fabres : Introduction to Quantum Optics

Contenu du cours

- Interaction lumière-matière
- Les degrées de liberté internes
 - LASER
 - <u>LDOS</u> local density of optical states
 - Source de photon unique (cryptographie quantique)
- Propriété des émetteurs à deux niveaux
 - matière classique
- effet d'optique non-linéaire.
 - SPDC (source de pair de photons)
- Effet mecaniques
 - Refroidissement doppler
 - Pince optique
 - optomécanique

Table des Matière

Chapitre 1 : Physique des LASER

Chapitre 2 : émetteurs à 2 niveaux

Chapitre 3 : Source de photon unique

Chapitre 4 : Cryptographique quantique et clef quantique

Chapitre 5 : Modèle de Jaynes-Cummings et mesure dispersive

Chapitre 6 : Mesure quantique et non démolition (QND)

Chapitre 7 : Optomécanique

1 Physique des LASER

1.1 Histoire

L'emission des atomes est introduit en 1926 en s'inspirant de la radioactivité.

$$\frac{dN_k}{dt} = -A_k N_k$$

$$N_k(t) = N_k(u)e^{-A_k t}$$

On s'imagine le sytéme a deux niveau (atome) comme pouvant soit se désexiter ou pas avec 50% de chance après une temps Δt . Ce modèle mène directement à la décroissance exponentielle.

Figure 1 – probabilites

L'état 1 est l'état desecité et comprende n_1 atomes, similaire pour E_2

Processus d'absorption

$$\frac{\partial}{\partial n_2 t} = +I_j B_{12} n_1$$

 B_{12} Coefficient de Einstein

$$I_v = \frac{1}{4\pi} \iint i_{V(k')} \mathrm{d}k' \underbrace{\psi(\nu)}_{\text{chevauchement frequence phot et at}} \mathrm{d}\nu$$

Taux d'absorption doit dépendre des photons incidents (densité, mode, fréquence)

$$\frac{{\rm d}n_2}{{\rm d}t} = -A_{21}n_2 + I_{\nu}B_{12}n_1$$

$$\frac{\mathrm{d}n_2}{\mathrm{d}t} = A_{21}n_2 - U\nu B_{12}n_1$$

A, B sont des constantes

Que ce passe-t-il à l'équilibre thermodynamique local.

État stationnaire

$$\frac{dn_2}{dt} = -\frac{dn_2}{dt} = 0$$

Éqilibre thermodynamique:

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-\frac{E_2 - E_1}{kT}}$$

Rayonnement du corps noir

$$I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\mu/kT} - 1}$$

$$A_{21}n_2 + I_{\nu}B_{12}n_1 = 0 \iff \frac{n_2}{n_1}\frac{A_{21}}{B_{12}} = I_{\nu}$$

$$\implies \frac{g_1}{g_2} e^{\Delta E/kT} \frac{A_{21}}{B_{12}} = \frac{2\hbar \nu^3}{c^2} \frac{1}{e^{\hbar \nu/kT} - 1}$$

Ce résultat n'a aucun sens. Le problème est qu'il manque l'émission stimulée.

Nouvelle équation

$$-A_{21}n_2 + I_{\nu}B_{12}n_1 - I_{\nu}B_{21}n_2$$

Équilibre thermodynamique local

$$A_{21}n_2 = I_{\nu}B_{12}n_1 - I + \nu B_{21}N_2 \iff I_{\nu} = \frac{A_{21}n_2}{B_12n_1 - B_{21}n_2} = \frac{A_{21}}{B_{12}} \frac{1}{\frac{n_1}{n_2} - \frac{B_{12}}{B_{21}}}$$

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-\Delta E/kT}$$

FIGURE 2 – emission stimulée

$$\frac{A_{21}}{B_{12}} \frac{1}{\frac{g_1}{g_2} e^{-\Delta/kt} - \frac{B_{21}}{b_1 2}} = \frac{2(\Delta E)^3}{h^2 c^2} \frac{1}{e^{\Delta E/kt} - 1}$$

Puisque c'est vrai pour toute température, on doit avoir que

$$g_2 B_{21} = g_1 B_{12}$$

On peut écrire

$$\frac{\partial}{\partial n_2 t} = -A_{21} n_2 + I_{\nu} B_{21} \Delta n$$

Si $\Delta n > 0$ on a pas que des perte et on peut avoir un laser. On appelle ça une inversion des population.

1.5 Équation de taux et inversion de population

On prende

$$g_1 = g_2 \implies B_{21} = B_{12} = B$$

$$pdvn_2t = A_{21}n_2 - I_{\mu}B\Delta n$$

Figure 3 - bop

 $\underline{ \mbox{Inversion de population :}} \; n_2 > n_1 \quad (\Delta n > 0)$

On s'intéresse au nombre de photons stimulés

Emission spontanée + Absorbtion + Émission spontannées

Figure 1 – rebop

$$\frac{\mathrm{d}}{\mathrm{d}n_2t} = -A_{21}n_2 - I_{\nu}B_{12}\Delta n$$

1.5 Inversion de population

Comment obtenir $\Delta n > 0$

Equilibre thermodynamique local : $n_2 = e^{-\Delta E/kT} n_1 \le n_1 \implies \Delta n \le 0$

État stationnaire : $n_2 = \frac{Bh\nu n_p A_{21} + Bh\nu n_p}{n}_1 < n_1 \implies \Delta n \leq 0$

On veut une cavité qui correspond au mode du photo γ_{21} pour que les photons resent et maximisent le processus d'émission spontané.

FIGURE 2 – Diagramme énérgétique typique d'un laser

$$\frac{d}{dn_3t} = \gamma_{\omega} (n_0 - n_3) - \gamma_{32}n_3$$

$$\frac{d}{dn_2t} = \gamma_{32}n_3 - \gamma_{31}n_2 + Bh\nu n_p(n_1 - n_2)$$

$$\frac{dn_1}{dt} = \gamma_{21}n_2 - \gamma_{10}n_1 - Bh\nu n_p(n_1 - n_2)$$

$$\frac{dn_0}{dt} = \gamma_{10}n_1 - \gamma_{\omega}(n_0 - n_3)$$

2 Émetteurs à deux niveaux

Objectifs

- Montrer comment certains modèles classiques peuvent donner des predictions exacte dans l'interaction atom/lumière (dans certaines limites)
 - Indice de réfraction (nuage d'atome)
 - radiation d'un atome
 - effets mécaniques de la lumière
 - refroidissement d'atome (ralentire le centre de masse)
 - (Emission collective)

2.1 Oscillateur harmonique

$$m\ddot{x} + m\omega_0^2 x = 0$$

$$m = \frac{m_e m_n}{n_e + m_n} \approx n_e$$

$$\mathbf{E}(r,t) = \mathbf{E}^{+}(\mathbf{r})e^{i\omega t} + \mathbf{E}(\mathbf{r})e^{-i\omega t}$$
 $\mathbf{E}^{+} = (\mathbf{E}^{-})^{*}$

$$m\ddot{x} + m\omega_0^2 x = q\mathbf{E}(\mathbf{r}, t)$$

. . .

$$x_0^+ = \frac{eE^+/m}{\omega^2 - \omega_0^2}$$

Moment dipolaire élécrique

$$d \sim 1 [e \text{ Å}]$$

$$\mathbf{d}^+ = -ex^+$$
$$= -\frac{e^2}{m} \frac{E^+}{\omega^2 - \omega_0^2}$$

La desnité de polarisation est donc

$$\mathbf{P} = Nd^{+} = \hat{\epsilon} \frac{Ne^{2}}{m} \frac{\mathbf{E}_{0}^{+}}{\omega_{0}^{2}} e^{-i\omega t}$$

$$\chi = \frac{\mathbf{P}}{\mathbf{E}} = \frac{Ne^2}{m} \frac{1}{\omega_0^2 - \omega^2} = \frac{N}{\epsilon_0} \alpha(\omega)$$

2.2 Modèle de Loretz

On ajoute de la dissipation

$$x_0^+ = \frac{e}{m} \frac{E_0^+}{\omega^2 - \omega_0^2 + i\gamma\omega}$$

$$\alpha(\omega) = \frac{e^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

indice de réfraction :

$$\tilde{n}() = \sqrt{1 + \chi(\omega)} \approx 1 + \frac{\chi(\omega)}{2}$$

$$\tilde{n}(\omega = 1 + \frac{Ne^2}{2m\epsilon_0} \frac{(\omega_0 - \omega)}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2} + i \frac{Ne^2}{2m\epsilon_0} \frac{\gamma\omega}{(\omega_0^2 - \omega^2) + \gamma^2 \omega^2}$$

coefficient d'absorption $a(\omega)$:

$$\frac{\mathrm{d}I}{\mathrm{d}z} = -a(\omega)I$$

$$a(\omega) \equiv 2k_0 \operatorname{Im} \left[\tilde{n}(\omega) \right]$$

$$n(\omega) \equiv \operatorname{Re}\left[\tilde{n}(\omega)\right]$$

retard de phase

$$\delta = tan^{-1} \left(\frac{\gamma \omega}{\omega_0^2 - \omega^2} \right)$$

Le modèle de Lorentz et valide à à basse puissance

FIGURE 3 – indice de réfraction complexe

Figure 4 – delta

2.3 Limite de l'approche classique

Reproduit beaucoup d'effets à faible intensité.

Le coefficient d'absorption correct?

$$a(\omega) = \sigma(\omega)N$$

$$\sigma_c = \left. \frac{e^2}{m\epsilon_0 c \gamma} \right|_{\omega = \omega_0}$$

Avec un traitement quantique, on obtiens

$$\sigma_q = \frac{2\pi c^2}{\omega_{12}^2}$$

Définissons un terme de correction

$$f_{12} = \frac{\sigma_q}{\sigma_c} = \cdots \frac{g_2}{g_1}$$

Pour des amplitude très faibles, on trouve le comportement de l'oscillateur harmonique

$$\chi(\omega) \to -\frac{Ne^2}{m\epsilon_0\omega^0} \implies \sum_i f_{1i} = 1$$

 $fudge\ factor$

2.4 Modèle quantique

Modèle simple de l'atome + approche pertubatice pour calculer la probabilité de transition $1 \to 2$ Entrevoir les oscillations de Rabi

Modèle de Lorentz, retour

On se place à $\omega \gg \omega_i j$

Le déplacement est très faible, on peut négliger ω_0, γ

2.4 Modèles quantiques

Objectifs

- Réintroduire la théorie des perturbation
- $--\mathcal{P}_{|g
 angle
 ightarrow|e
 angle}$
- Oscillations de Rabo

$$H_0 = \hbar\omega_e |e\rangle \langle e| (+\hbar \cdot 0 |g\rangle \langle g|)$$

$$|\psi(t)\rangle = \gamma_g |g\rangle + \gamma_e e^{-i\omega_e t} |e\rangle$$

Comment le système se couple à un champ E.M.?

$$H = H_0 + H_{\text{int}}$$

$$H_{\rm int} = -\hat{D}\hat{E}(\mathbf{r}, t)$$

 \hat{D} : Opérateur de moment dipolaire $=q\hat{r}$

Problème à deux niveaux

$$H = \hbar \omega_e |e\rangle \langle e| - \hat{D}\hat{E}(r, t)$$

Approche perturbative : H_{int} : faible

$$H_{\mathrm{int}} \to \lambda H_{\mathrm{int}} \quad \lambda \ll 1$$

$$\psi(t) = \sum_{n} \gamma_n(t) |n\rangle$$

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\psi |\psi(t)\rangle = (H_0 + \lambda H_{\mathrm{int}}) |\psi(t)\rangle$$

On projette sur un $|k\rangle$ quelconque

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle k|\psi(t)\rangle = \langle k|H_0|\psi(t)\rangle + \lambda \langle k|H_{\mathrm{int}}|\psi(t)\rangle$$

$$= E_k \langle k|\psi\rangle + \lambda \sum_n \langle k|H_{\mathrm{int}}|n\rangle \langle n|\psi(t)\rangle$$

$$i\left[-\frac{E_k}{\hbar} + \frac{\mathrm{d}}{\mathrm{d}t}\gamma_k(t)\right] e^{-iE_kt/\hbar} = e_k \gamma_{k(t)} e^{-iE_kt/\hbar} + \lambda \sum_m \langle k|H_{\mathrm{int}}|n\rangle \psi_n(t) e^{(E_n - E_k)t/\hbar}$$

donc,

$$\forall |k\rangle, \quad \frac{\mathrm{d}}{\mathrm{d}t} \gamma_k(t) = \lambda \sum_n \langle k| H_{\mathrm{int}} |n\rangle \gamma_n(t) e^{-i\frac{E_n - E_k}{\hbar}t}$$

Cela est la solution exacte et n'est, évidemment, pas facile à résoudre en général.

On fait donc une série en λ

$$\gamma_{k(t)} = \gamma_k^{(0)}(t) + \lambda \gamma_k^{(1)}(t) + \lambda^2 \gamma_k^{(2)}(t) + \cdots$$

$$\gamma_e^{(1)} = \frac{1}{i} \int_{t_0}^t dt' \langle e | H_{\text{int}} | e \rangle \gamma_e^{(0)} e^{-i\delta E_{eg}t/\hbar} + \cdots$$

$$\gamma_e^{(1)}(t) = \frac{1}{i\hbar} \int_{t_0}^t dt \langle \psi | e H_{\text{int}} | g \rangle e^{-i\Delta E_{ge}t/\hbar}$$

On va considérer un champ éléctrique de la forme

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \cos(\omega t + \varphi)$$

$$H_{\text{int}} = \hat{W} \cos(\omega t \pm \varphi)$$

$$\hat{W} = \hat{D}\mathbf{E}_0 = q\hat{r}\mathbf{E}_0$$

$$\gamma_e(t) = \frac{W_{eg}}{i\hbar} int_{t_0}^t dt' \cos(\omega t' + \varphi) e^{-i\frac{E_g - E_e \hbar'}{t}'}$$

$$\gamma_{e(t)} \approx \frac{W_{eg}}{2i\hbar} \int_{t_0}^t dt' \left[e^{i\psi} e^{i\omega t'} + e^{-i\varphi - i\omega t'} \right] e^{i\omega_{eg}t'}$$

. . .