# The Centre for Theoretical and Computational Chemistry



# The PARI Approximation Much Ado About Nothing?

Patrick Merlot patrick.merlot@kjemi.uio.no

University of Oslo







NKS Meeting 2012 Hamn i Senja, June 12-13, 2012

#### Limitations of pure KS-DFT for large molecules

#### Large/Protein-like molecules:

- self-interaction error increases with system size
   error on properties increases with system size
- vanishing HUMO-LUMO gapfail to converge (e.g. Insulin)
- Required starting-points: HF or Hybrid-DFT
   Bottleneck: exact exchange contribution!

How to construct the Fock/KS matrix efficiently?

#### The RI approximation

Four-center two-electron integrals in AO basis (Mulliken notation)

$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \psi_a(\mathbf{r}_1) \psi_b(\mathbf{r}_1) \frac{1}{r_{12}} \psi_c(\mathbf{r}_2) \psi_d(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 = (ab|cd)$$

- Approximate AO-product functions:  $|cd\rangle \approx |\widetilde{cd}\rangle = \sum_{\gamma} C_{\gamma}^{cd}|\gamma\rangle$
- Robust integral approximation (Dunlap)

$$(ab|cd) \approx (\widetilde{ab}|cd) = (\widetilde{ab}|cd) + (ab|\widetilde{cd}) - (\widetilde{ab}|\widetilde{cd})$$

• Error on integrals bounded with  $\Delta_{ab} = |cd| - |cd|$ 

$$|(ab|cd) - (\widetilde{ab}|cd)| \leq \sqrt{(\Delta_{ab}|\Delta_{ab})(\Delta_{cd}|\Delta_{cd})}$$

• Find fitting coefficients  $C_{\alpha}^{ab}$  for each AO-product  $|ab\rangle$ 

$$\min_{\mathbf{C}}(\Delta_{ab}|\Delta_{ab}) \Longleftrightarrow (\Delta_{ab}|\alpha) = 0 \quad \forall \alpha$$

#### The RI approximation

The Resolution-of-the-Identity (RI), or the density-fitting (DF) approximation:

- Speed up calculations (typically by factor 3-30) at little loss of chemical accuracy
- Highly successful for approximating the Coulomb contribution (in particular in DFT)
- Also used for small- to medium-sized systems for approximation of the exact exchange and in correlated treatment
  - > Scaling wall about 1000 AO basis-functions

#### RI for the exact exchange (RI-K)

The (regular) exchange contribution

$$K_{ab} = \sum_{ab} (ac|bd)D_{cd} = \sum_{i}^{occ} (ai|bi)$$

Weigend (2002), Polly et.al (2004)

- in RI-K, each pair is fitted over the whole molecule
   Too expensive, not even needed: "contaminants"!
   the Scaling wall limits the approach to about 1000 AO basis-functions
  - metric matrix (I|J) non-sparse  $\rightarrow \mathcal{O}(N^3)$  scaling
  - non-locality of fitting coefficients  $c_{l}^{\mu\nu}$  (for each pair  $\mu\nu$ )
- Exchange and Correlation are local phenomena Locality has to be exploited!

#### Methods for linear-scaling RI

#### Two main approaches forcing locality toward linear-scaling RI:

 the Local Metric approach
 Obtain the fitting coefficients using (w) a local metric (e.g. the overlap metric)
 Baerends et.al (1973), Vahtras et.al (1993), Jung et.al (2005), Reine et.al (2008)

- the Partitioning approach
   Partition the density and fit each density in a local region
   Gallant and St-Amant (1996), Sodt et.al (2006), Sodt and Head-Gordon (2008)
  - e.g. The Atomic RI (ARI)

#### Methods for linear-scaling RI

#### Atomic RI (ARI): an elegant and balanced partitioning approach:

• In the ARI approach of Sodt *et.al* each charge distribution  $|\mu\nu\rangle$  is first associated with a center C, and is fitted using auxiliary functions  $|I\rangle$  centered on the atoms in some buffer zone [C] around C

$$|\mu\nu\rangle = \sum_{l} c_{l}^{\mu\nu}|l\rangle, \quad |l\rangle \in [C]$$

- fixed buffer-zone size system dependent
- the set |/) includes the auxiliary functions centered on several atoms

#### The PARI approach

We propose the pair-atomic resolution-of-the-identity (PARI):

• fit each charge distribution  $|\mu\nu\rangle$  with auxiliary functions  $|I\rangle$  centered on the two parent atoms A and B of the basis functions  $|\mu\rangle$  and  $|\nu\rangle$ 

$$|\widetilde{\mu\nu}) = \sum_{I \in A \cup B} c_I^{\mu\nu}|I), \quad c_I^{\mu\nu} = \sum_{J \in A \cup B} (I|J)^{-1}(J|\mu\nu)$$

instead of the (regular) RI approx.

$$|\widetilde{\mu\nu}) = \sum_{I \in \mathcal{M}} c_I^{\mu\nu} |I\rangle, \quad c_I^{\mu\nu} = \sum_{J \in \mathcal{M}} (I|J)^{-1} (J|\mu\nu)$$

- Pros/Cons:
  - Highly local: removes scaling bottleneck
  - Straightforwardly linear scaling using screening and FMM
  - decreases accuracy → larger auxiliary basis sets
  - some unpredictable & spectacular diverging cases!!!

#### PARI Accuracy

# G2/G3 Benchmark set (480 molecules), B3LYP, 6-31G/df-def2, in $\mu E_H$

Development version of LSDalton, www.daltonprogram.org

|          | RI-J                          | PARI-J                         | RI-K                              | PARI-K                                               |
|----------|-------------------------------|--------------------------------|-----------------------------------|------------------------------------------------------|
| $\mu$    | -21                           | -74                            | 8                                 | 21                                                   |
| $\sigma$ | 9                             | 48                             | 3                                 | 10                                                   |
| $\mu$    | -18                           | -22                            | 9                                 | 14                                                   |
| $\sigma$ | 4                             | 11                             | 3                                 | 7                                                    |
|          | $\mu$ $\sigma$ $\mu$ $\sigma$ | $\mu$ -21 $\sigma$ 9 $\mu$ -18 | μ -21 -74 $ σ 9 48 $ $ μ -18 -22$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

PARI errors: factor 2-3 bigger than RI

• 4 molecules out of 480 with diverging negative energies!

# Problem Analysis: Attractive forces between the electrons....

- Two-electron contribution to the total energy becomes negative (attractive iteraction!)
- The robust integral representation,

$$(ab|cd) \approx (\widetilde{ab|cd}) = (\widetilde{ab}|cd) + (ab|\widetilde{cd}) - (\widetilde{ab}|\widetilde{cd})$$

though accurate to second order in the fitting error not inherently positive-definite ((ab|ab) <0) sometimes NEGATIVE SHIFT OF THE EIGENVALUES

• The SCF solver does what it is supposed to: minimize the energy.

# Problem Analysis: H<sub>2</sub> already infected by PARI

|                               |           | exact  | RI     | PARI                  | PARI+diag(exact) |
|-------------------------------|-----------|--------|--------|-----------------------|------------------|
| H <sub>2</sub>                | mad(eri)  | -      | 2.7    | 8.9                   | 0.36             |
|                               | min(eigV) | 4.4e-2 | 1.5e-2 | -1.1                  | 5.85e-2          |
|                               | eigV< 0   | 0/11   | 0/11   | 2/11                  | 0 / 11           |
| C <sub>2</sub> H <sub>4</sub> | mad(eri)  | -      | 5.6    | 10.9                  | 0.48             |
|                               | min(eigV) | 0      | 0      | -3.9                  | -1.45            |
|                               | eigV< 0   | 0/352  | 0/352  | <mark>63</mark> / 352 | 17 / 352         |
|                               |           |        |        |                       |                  |

#### PARI operator:

- non-positive definite!!
- "unbalanced":  $(ab|cd) \text{ with } a \in A, b \in B \text{ , } c \in C \text{ and } d \in D \\ (ab|cd) \text{ with } a \in A, b \in A \text{ , } c \in B \text{ and } d \in B \\ \text{not treated with the same basis set, not the same accuracy } \\ \text{UNBALANCED negative shift between the blocks } (AB|CD)$

# One failing case: but-3-yn-2-one



### BLYP cc-pVTZ SCF iterations





































#### Conclusions

- PARI is was promising
- When it fails, it fails spectacularly!
- Reason: small attractive forces between the electrons.
- Present in all local domain fitting schemes (using robust or similar integral representations).
- Only known solution: locally complete fitting basis.
- We use two-center functions selected by Cholesky decomposition of the fitting error matrix for each atom pair.
- Problems:
  - Slows down the calculation, even compared to conventional (up to a factor of 2 slow-down has been observed for smallish molecules).
  - ullet Fitting basis becomes geometry-dependent  $\Longrightarrow$  discontinuities.

- Organizers for the invitation
- Collaborators
  - Prof. Trygve Helgaker
  - Dr. Simen Reine
  - Dr. Thomas Bondo Pedersen
  - Dr. Thomas Kjærgaard
- Funding





