Examen Parcial 1
1 Sea la siguente tablade la fonción fox=ex
9) Cálcule 3/2 por interpolación cuadrática. Utilice los primeros puntos 0,0,2,0,4 y posteriormente
100 puntos 0.2,0.4,0.6 y compave los resultados.
$P_2 = 0.6125x^2 + 0.9845x + 1$ $P_2 = 0.74875x^2 + 0.96275x + 1.0109$
e 1/3 = 1.3956 P(3)=13962 E1=11.3956-1.3962 /11.3956 = 0.00043 P(3)=1.3950 E2=11.3956-1.3950 /11.3956=0.00043
Ambos polinamios treven el mismo error relativo.
b) Cálcole 3/2 por interpolación cólorca y compave éstos resultado con los del maso anterior
$\rho_3 = 0.2271x^3 + 0.47625x^2 + 1.0027x + 1$ $\rho_3(\frac{1}{3}) = 1.39556$
E8=11.3956-1.395561-0.00002786
El error de éste poliromio es un orden de magnitude menor al error de los incisos anteriores, por lo tanto, mejor aproximación.
WATCHE

Los polinomios anteriores se obtuvieron por medio de un programa en python

```
Python 3.8.5 Shell
                                                                         \times
File Edit Shell Debug Options Window Help
      0.
          0. ]
[[1.
[1.
     0.2 0.041
 [1.
     0.4 0.1611
b= [1.
          1.2214 1.4918]
a= [1.
         0.9845 0.6125]
p= 0.61249999999997*x**2 + 0.98450000000001*x + 1.0
>>>
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolaciónVander.py =
ingrese el valor de n:3
ingrese el valor de x i:0.2
ingrese el valor de x i:0.4
ingrese el valor de x i:0.6
ingrese el valor de f_i:1.2214
ingrese el valor de f i:1.4918
ingrese el valor de f i:1.8221
[[1. 0.2 0.04]
[1. 0.4 0.16]
[1. 0.6 0.36]]
b= [1.2214 1.4918 1.8221]
a= [1.0109 0.90275 0.74875]
p = 0.748750000000001 \times x \times 2 + 0.902749999999997 \times x + 1.0109
>>>
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolaciónVander.py =
ingrese el valor de n:4
ingrese el valor de x i:0
ingrese el valor de x i:0.2
ingrese el valor de x i:0.4
ingrese el valor de x i:0.6
ingrese el valor de f i:1
ingrese el valor de f i:1.2214
ingrese el valor de f i:1.4918
ingrese el valor de f_i:1.8221
      0. 0. 0. ]
[[1.
            0.04 0.0081
       0.2
 [1.
             0.16 0.064]
 [1.
       0.4
       0.6 0.36 0.216]]
 [1.
b= [1.
        1.2214 1.4918 1.8221]
a= [1.
               1.00266667 0.47625
                                     0.22708333]
p= 0.22708333333354*x**3 + 0.47624999999993*x**2 + 1.002666666666667*x + 1.0
>>>
```

2El polinomio pacco = 2-(x+1)+x(x+1)-2x(x+1)(x-1) Interpola los primeros 4 datos de la tabla
Añadasé on término más a para de manera que el polinomio veso Itante in- terpole a los datos de la tabla. Carálese el poli- nomio de lagrange que in- terpola los datos de la tabla fe-1]=2 feo]=1 fej]=2 fez]=-7 (e3]=10
f[xo,xi]=1-2 -1 f[x1,x2]=2-1=1 f[x2,x3]=7-2=-9
f[x3,xx]=10+7=17 f[x0,x1,xz]=1+1=1
$f[x_1, x_2, x_3] = -q - 1 = -5$ $f[x_2, x_3, x_4] = 7 + q = 26 = 13$
f[x0,x1,x2,x3] = -5-1 = -6 2 f[x1,x2,x3,x9] = 13+5 - 18 - 6
f (xo, x, x2, x4) = 6, 2 = 2
P4(x)= P3(x)+f[x0,x,,x2,x3,x4](x-x0)(x-x,)(x-x2)(x-x3)
P4(x)=2-(x+1) +x(x+1)-2x(x+1)(x-1)+2(x+1)x(x-1)(x-2)
D9(x)=2-x-1+x7+x-2x3+2x+(2x3-2x)(x-2)
194(x)=1+x2-2x3+7x+2x9-2x2-4x3+4x
ρ ₄ (x) = 1+6x + x ² -6x ³ + 2x ⁴ // ει potinomio de lagrange es ρ= 2x ² -6x ³ -x ² +6x+1
El polinomio de lagrange es p=2x=6x3-x=+6x+1

El polinomio de Lagrange se obtuvo por medio del programa

```
Python 3.8.5 Shell
                                                                              П
File Edit Shell Debug Options Window Help
Python 3.8.5 (tags/v3.8.5:580fbb0, Jul 20 2020, 15:57:54) [MSC v.1924 64 bit (AM ^
D64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolacionLagrange.py
ingrese el valor de n:5
ingrese el valor de x_i:-1
ingrese el valor de x i:0
ingrese el valor de x_i:1
ingrese el valor de x_i:2
ingrese el valor de x_i:3
ingrese el valor de f i:2
ingrese el valor de f i:1
ingrese el valor de f_i:2
ingrese el valor de f_i:-7
ingrese el valor de f i:10
1_i = 0.04166666666666667*x*(x - 3.0)*(x - 2.0)*(x - 1.0)

\mathbf{1}_{i=0.16666666666666667} (\mathbf{x} - 3.0) * (\mathbf{x} - 2.0) * (\mathbf{x} - 1.0) * (1.0*\mathbf{x} + 1.0) 

\mathbf{1}_{i=0.5*\mathbf{x}^*(0.5*\mathbf{x} + 0.5) * (\mathbf{x} - 3.0) * (\mathbf{x} - 2.0)}

>>>
```

También se obtuvo realizando los cálculos a mano, dando el mismo resultado

=>P+(x)=1x(x-1)(x-2)(x-3)-1(x+1)(x-1)(x-3)+ 1x(x+1)(x-2)(x-3) + 1 x(x+1)(x+)(x+3) ((x) (x) (x) (x) (x + 1) x2-1 + x2+x) (x2-5x+6) (x2+x)/](x2-9x+3)+10(x2-3x+2)) DP4(x)=(x2-x-2x2+2+6x2+6x)(x2+5x+6) + (x2+x)/28(x2-4x+3)+10x2-30x+20) +P4(x) = (5x2+5x+2)(x2-5x+6)/12 + (x2+x) (28x2-112x +84 +10x2-30x+20) > 194(x) = (5x9+5x3+2x2-75x3-75x2-10x+30x2+30x+12/12 +(x2+x)(38x2-192x+104)/74 => Pa(x)=(5x4-70x3+7x3+70x+17)/12+ (38x9-192x3+109x2+38x6-141x7+109x)/29 2P1(x) = 10x4-40x3+4x7+10x+24 + 38x4-109x3-38x3+109x DP4(A)= 48x9-194x3-24x2+199x729 =>P9(x) = 2x9-6x3-x2+6x+14

Que también se obtuvo por programa, el resultado se puede ver en la última ejecución

```
Python 3.8.5 Shell
                                                                          X
File Edit Shell Debug Options Window Help
[[1. 0.2 0.04]
     0.4 0.16]
 [1.
 [1.
      0.6 0.36]]
b= [1.2214 1.4918 1.8221]
a= [1.0109 0.90275 0.74875]
p= 0.748750000000001*x**2 + 0.90274999999997*x + 1.0109
>>>
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolaciónVander.py =
ingrese el valor de n:4
ingrese el valor de x i:0
ingrese el valor de x i:0.2
ingrese el valor de x_i:0.4
ingrese el valor de x_i:0.6
ingrese el valor de f i:1
ingrese el valor de f i:1.2214
ingrese el valor de f i:1.4918
ingrese el valor de f i:1.8221
      0. 0. 0. 1
[[1.
       0.2 0.04 0.008]
 [1.
 [1.
        0.4 0.16 0.064]
 [1.
       0.6 0.36 0.216]]
        1.2214 1.4918 1.8221]
b= [1.
a= [1.
              1.00266667 0.47625
                                     0.227083331
p= 0.227083333333354*x**3 + 0.47624999999993*x**2 + 1.00266666666667*x + 1.0
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolaciónVander.py =
ingrese el valor de n:3
ingrese el valor de x_i:1
ingrese el valor de x i:2
ingrese el valor de x i:3
ingrese el valor de f i:3
ingrese el valor de f i:ll
ingrese el valor de f i:25
[[1. 1. 1.]
 [1. 2. 4.]
 [1. 3. 9.]]
b= [ 3. 11. 25.]
a = [1. -1. 3.]
p = 3.0 \times x \times 2 - 1.0 \times x + 1.0
```


Que se obtuvo por medio del programa de Newton, de igual manera el resultado se visualiza en la siguiente imagen en la última ejecución

```
Python 3.8.5 Shell
                                                                         X
File Edit Shell Debug Options Window Help
1_i = 0.5*(x - 2.0)*(x - 1.0)*(1.0*x + 1.0)
1 i = -1.0 \times (0.5 \times x + 0.5) \times (x - 2.0)
\overline{\text{El}} polinomio es: 0.33333333333333333*x**3 - 1.3333333333333*x + 2.0
>>>
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolacionLagrange.py
ingrese el valor de n:5
ingrese el valor de x i:-1
ingrese el valor de x i:0
ingrese el valor de x i:1
ingrese el valor de x i:2
ingrese el valor de x_i:3
ingrese el valor de f i:2
ingrese el valor de f i:1
ingrese el valor de f i:2
ingrese el valor de f i:-7
ingrese el valor de f i:10
1 i= 0.04166666666666667*x*(x - 3.0)*(x - 2.0)*(x - 1.0)
\vec{1} = -0.1666666666666667*(x - 3.0)*(x - 2.0)*(x - 1.0)*(1.0*x + 1.0)
1 i = 0.5 \times x \times (0.5 \times x + 0.5) \times (x - 3.0) \times (x - 2.0)
1 = 0.166666666666667 \times (0.25 \times + 0.25) \times (x - 2.0) \times (x - 1.0)
El polinomio es: 2.0*x**4 - 6.0*x**3 - 1.0*x**2 + 6.0*x + 1.0
= RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolacionNewton.py =
ingrese el valor de n:3
ingrese el valor de x i:-3
ingrese el valor de x i:-1
ingrese el valor de x i:2
ingrese el valor de f i:-77
ingrese el valor de f_i:-1
ingrese el valor de f i:23
38.0
8.0
-6.0
[[-77. 38. -6.]
 [ -1. 8. 0.]
 [ 23.
        0.
            0.]]
-6.0 \times x \times 2 + 14.0 \times x + 19.0
```

5 Sea la función fixi=1/x y los nodos xo=1 xi=2 x2=3
9) Construya el polinomio de interpolaçión de Newton pi de f con los nodos dados
3 1/3
$p_{N} = 1 \times 2 - x + 11$ $q_{N} = 1 \times 2 - x + 11$ $q_{N} = 1 \times 2 - x + 11$ $q_{N} = 1 \times 2 - x + 11$ $q_{N} = 1 \times 2 - x + 11$
b) Determine las constantes ao, a, bo, b, y bz para que la función
$S(x) = \begin{cases} co + a_1(x-1) + \frac{13}{18}(x-1)^2 - \frac{2}{9}(x-1)^3 & 1 \le x \le 2 \\ 1 + b_1(x-2) + \frac{1}{18}(x-2)^2 + b_2(x-2)^3 & 2 \le x \le 3 \\ -2 9x + 1718 & 2 9(x-2) - 4 9 + 1718 \end{cases}$ Sea el spline cúbico con condiciones frontera S(1)=-1
4 5/13)=-14 que interpola a f en los nodos dados
C) Estíme el valor de f(1,5) mediante pzck) y S(x) ò luál de estas dos aproximaciones es mejor?
$f(1.5) = \frac{1}{1.5} = \frac{2}{3} = 0.66661$ $p(1.5) = \frac{13}{2} \frac{1}{6} - \frac{3}{2} + \frac{11}{6} = \frac{17}{24} = 0.70833$ $5(3 2) = 1 - 1(3 2 + 1) + \frac{13}{3}(3 2 - 1)^2/18 - \frac{2}{3}(3 2 - 1)^2/18$ $5(3 2) = 1 - \frac{1}{2} + \frac{13}{18}(1/4) - \frac{2}{18}(1/8) = \frac{2}{3} = 0 = 6667$
Ep=12/3-17/24) = 1 = 0.0625
ts=1213-2131-0 therror dehaptine as mucho menor que er del pormo mio de Newton: mejor aproximación

El polinomio de Newton y el spline se calcularon por medio de los programas correspondientes, en la primera ejecución el de Newton y en la segunda el spline, los valores numéricos de los coeficientes que dio el programa, se pasaron a fracción al anotarlos a mano.

```
Python 3.8.5 Shell
                                                             \times
File Edit Shell Debug Options Window Help
 = RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolacionNewton.py =
ingrese el valor de n:3
ingrese el valor de x i:l
 ingrese el valor de x i:2
ingrese el valor de x i:3
ingrese el valor de f i:l
 ingrese el valor de f_i:0.5
 -0.5
 -0.166666666666666
 0.1666666666666666
          -0.5
                    0.166666671
[[ 1.
          -0.16666667 0.
 [ 0.33333333 0. 0.
                            -11
 0.166666666666667*x**2 - 1.0*x + 1.833333333333333
 >>>
 = RESTART: C:\Users\PACO\Desktop\karen\MétodosNuméricos\InterpolacionSplines.py
 ingrese el valor de n:3
 ingrese el valor de x i:1
 ingrese el valor de x i:2
 ingrese el valor de x i:3
 ingrese el valor de f_i:1
 ingrese el valor de f i:0.5
 ingrese el valor de S(a):-1
 h= [1. 1.]
 b= [1.5
                    0.166666671
A= [[2. 1. 0.]
 [1. 4. 1.]
 [0. 1. 2.11
 x= [0.72222222 0.05555556 0.05555556]
 d= [-2.2222222e-01 1.85037171e-17]
            -0.22222222]
 bi= [-1.
 444
 si= -0.22222222222222*x + 1.48029736616688e-16*(0.5*x - 1)**3 + 0.222222222222222*(0.5*
 \mathtt{si=}\ 1.85037170770859e-17*x**3\ +\ 0.0555555555555554*x**2\ -\ 0.444444444444444*x\ +\ 1.166666
 66666667
                                                              Ln: 382 Col: 4
```


Que se graficó para comprobar que la curva pasara cercana a los nodos, el resultado es que no solo se acerca a los puntos, sino que pasa por ellos.

■ GeøGebra

b) fix) = coscnx) en [0,1] an= for 1dx = x10=1 an=So1.xdx = x2/2 10 = 1/2 ai3= fo1-x2dx = x3/3 10 = 113 az1 = 50x-1dx = x2/210 = 112 Q31 = 10 x7.1 dx = x3/3/0 = 1/3 Q33 = 10 x2x2dx = x5/5/0 = 1/5 032 = Sox 2 xdx = x4/9 10 = 14 b1 = 1, cos(\unkless dx = sen (\unkless x) 1/6 = scn(\unkless) = 0 ba= Soxoscrixidx = x sencers - Psencrixidx b3 = (1x2cos(nx)dx = x3sennx) + 1 1 1 1 1 (2x)dx b3 = -2 (x (0) (nx) | - (co) (nx) | 5-2 - 2 (10 12) + 3 (8 9) 0 1/2 1/3 = -1 + 2 + 1 1/3 (-1 + 2 / 3 + 2)

Este polinomio también se graficó, para comprobar la curva fuera cercana al coseno en el intervalo

	1 Encuentre la mejor aproximación de mínimos cuadua-
-	dos en los puntos (-112,1), (0,0), (112,112) y (11,1)
-	del tipo v(x) = a + vsin (x+a) con x, v ∈ R y x ∈ EO, ZTI
+	1 x f Los puntos son periodicos en un inter-
1	-17/2 1 valo de 311/2
	1001 DUCTEU(N)114
	11/2 1/2 Datysin (-11/2+a) = atysin (Ita)
	+ 1 = sin(-11112 + a) = sin(3 tr 12 + a)
	-bsin(-112)cos(a) + sinx cos(-112) = sin(11) cos(x).
	tsing cos(n) impor
	TO - COSA = SINX TO X=NT/4 HOND NUESTVO COSO X=SINY
	fo=1 fi=sin(x+sn/4)=sin(sn/4)cos(x+sin(x)cos(si7/4)
	f1=72'cos(x)/2-12'sin(x)/2
	M= (1 52/2) DHTM= (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 - 12/2 12/2 - 2/2 - 7/2 / 1 - 12/2
	1-512
	1 5/2/
	MTM = (4 0) Y MTb = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10 21 (212 - 1212 - 1212 110)
	ART -151- \
	MTb=(5/2)
	(37.17)

$$\Rightarrow (9 \ 0)(9) = (512)$$

$$\Rightarrow 0 = 5/8 \Rightarrow P = 5 + 3\sqrt{2} \operatorname{sen}(x + 5\pi)$$

$$y = 3\sqrt{2}/8 \Rightarrow P = 5 + 8 \Rightarrow (x + 5\pi)$$

Quizá el 5/2 en el apunte no se justificó de la mejor manera, pero a pesar de que al resolver el sistema se obtenía que alfa debía valer $n\pi/4$ (con n impar), al sustituir en la condición de periodicidad no se satisfizo más que para n=5, por lo cual al alfa se le dio el valor de $5\pi/4$.

De igual manera el resultado anterior se graficó, obteniendo una gráfica no tan alejada de los puntos x_1 y x_2 .

■ GeoGebra

A

1

C

C

B

-1

0

1

2

3