Lesson 02: Tautologies and Contradictions. Logical Equivalences. De Morgan's Laws

1. Tautologies and Contradictions

A propositional expression is a **tautology** if and only if for all possible assignments of truth values to its variables its truth value is **T**

Example: $P V \neg P$ is a tautology

A propositional expression is a **contradiction** if and only if for all possible assignments of truth values to its variables its truth value is **F**

Example: P $\Lambda \neg P$ is a contradiction

Usage of tautologies and contradictions - in proving the validity of arguments; for rewriting expressions using only the basic connectives.

Definition: Two propositional expressions P and Q are logically equivalent, if and only if $P \leftrightarrow Q$ is a tautology. We write $P \equiv Q$ or $P \Leftrightarrow Q$.

Note that the symbols \equiv and \Leftrightarrow are **not logical connectives**

Exercise:

a) Show that $P \to Q \leftrightarrow \neg P V Q$ is a tautology, i.e. $P \to Q \equiv \neg P V Q$

P	Q	$\neg P$	$\neg P V Q$	$P \rightarrow Q$	$P \to Q \leftrightarrow \neg P \vee Q$
T	Т	F	Т	T	T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

b) Show that $(P \leftrightarrow Q) \leftrightarrow ((P \land Q) \lor (\neg P \land \neg Q))$ is a tautology i.e. $P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$

c) Show that ($P \oplus Q$) \leftrightarrow (($P \land \neg Q$) $V (\neg P \land Q)$) is a tautology i.e. $P \oplus Q \equiv (P \land \neg Q) V (\neg P \land Q)$

2. Logical equivalences

Similarly to standard algebra, there are **laws** to manipulate logical expressions, given as logical equivalences.

1. Commutative laws $P V Q \equiv Q V P$

 $P \wedge Q \equiv Q \wedge P$

2. Associative laws $(P \ V \ Q) \ V \ R \equiv P \ V \ (Q \ V \ R)$

 $(P \Lambda Q) \Lambda R \equiv P \Lambda (Q \Lambda R)$

3. Distributive laws: $(P \ V \ Q) \ \Lambda \ (P \ V \ R) \equiv P \ V \ (Q \ \Lambda \ R)$

 $(P \land Q) \lor (P \land R) \equiv P \land (Q \lor R)$

4. Identity $P V F \equiv P$

 $P \Lambda T \equiv P$

5. Complement properties $P V \neg P \equiv T$ (excluded middle)

 $P \land \neg P \equiv F$ (contradiction)

6. Double negation $\neg (\neg P) \equiv P$

7. Idempotency (consumption) $P V P \equiv P$

 $P \land P \equiv P$

8. De Morgan's Laws $\neg (P \lor Q) \equiv \neg P \land \neg Q$

 $\neg (P \land Q) \equiv \neg P \lor \neg Q$

9. Universal bound laws (Domination) P V $T \equiv T$

 $P \Lambda F \equiv F$

10. Absorption Laws $P V (P \Lambda Q) \equiv P$

 $P \land (P \lor Q) \equiv P$

11. Negation of T and F: $\neg T \equiv F$

 $\neg F \equiv T$

For practical purposes, instead of \equiv , or \Leftrightarrow , we can use =. Also, sometimes instead of \neg , we will use the symbol \sim .

3. Negation of compound expressions

In essence, we use De Morgan's laws to negate expressions.

- 1. If the expression A is an atomic expression, then the negation is $\neg A$.
- 2. If the expression is $\neg A$, then its negation is $\neg (\neg A) = A$ (by law 6: double negation)
- 3. If the expression A contains the connectives \rightarrow , \leftrightarrow , and \oplus , rewrite the expression so that it contains only the basic connectives AND, OR and NOT.
- 4. Represent A as a disjunction P V Q or a conjunction P Λ Q.

Example: Let
$$A = B \oplus C$$
. Then, A can be represented as $(B \land \neg C) \lor (\neg B \land C)$

This is a disjunction of the form P V Q, where P = (B $\Lambda \neg C$) and Q = ($\neg B \Lambda C$)

- 5. Apply De Morgan's laws: $\neg (PVQ) = \neg P \land \neg Q; \neg (P \land Q) = \neg P \lor \neg Q$.
- 6. If both P and Q are atomic expressions, stop.
- 7. Otherwise repeat the above steps to obtain the negations of P and/or Q

Example:

$$\sim$$
(B \oplus C) = \sim ((B \wedge \sim C) V (\sim B \wedge C)) =

apply De Morgan's Laws

$$= \sim (B \land \sim C) \land \sim (\sim B \land C) =$$

apply De Morgan's laws to each side

$$= (\sim B \ V \sim (\sim C)) \Lambda (\sim (\sim B) \ V \sim C) =$$

apply double negation

$$= (\sim B \ V \ C) \ \Lambda \ (B \ V \sim C) =$$

apply distributive law

$$= (\sim B \land B) \lor (\sim B \land \sim C) \lor (C \land B) \lor (C \land \sim C) =$$

apply complement properties

=
$$F V (\sim B \Lambda \sim C) V (C \Lambda B) V F =$$

apply identity laws

$$= (\sim B \Lambda \sim C) V (C \Lambda B) =$$

apply commutative laws

$$= (C \land B) \lor (\sim B \land \sim C) =$$

apply commutative laws

$$= (B \land C) \lor (\sim B \land \sim C) = B \leftrightarrow C$$

Exercises

Use the equivalence $A \rightarrow B = A V B$, and the equivalence laws.

- 1. Show that $(A \rightarrow B) \Lambda A$ is equivalent to $A \Lambda B$
- 2. Show that $(A \rightarrow B) \land B$ is equivalent to B
- 3. Show that $(A \rightarrow B) \land (B \rightarrow A)$ is equivalent to $A \leftrightarrow B$
- 4. Show that $\sim ((A \to B) \land (B \to A))$ is equivalent to $A \oplus B$
- 5. Show that $\neg ((P \rightarrow Q) \rightarrow P) \land P$ is a contradiction
- 6. Replace the conditions in the following if statements with equivalent conditions without using the logical operators \parallel and &&
- a) if ((a > 0 && b > 0) || (b > 0)) c = a*b;
- b) if ((a > 0 | | b > 0) & (b > 0)) c = a*b;