VİTMO

Исследование характеристик биполярного транзистора и расчёт усилительного каскада

Николаев Николай Анатольевич

Цель работы

- Изучение входной ВАХ и семейства выходных ВАХ биполярного транзистора в схеме включения с общим эмиттером;
- Расчёт усилительного каскада с общим эмиттером с заданием рабочей точки транзистора с помощью отрицательной обратной связи по току.
- Исследование усилительного каскада с общим эмиттером

Перед выполнением лабораторной работы рекомендуется ознакомиться с теоретическими сведениями из описания лабораторной работы, материалов лекционного курса. Дополнительная информация может быть получена, например, из источников, приведенных в презентации.

ВАХ биполярного транзистора

Исходные данные для построения ВАХ берем из технических характеристик транзистора:

- максимальный ток коллектора
- максимальное напряжение коллектор-эмиттер
- коэффициент усиления по току
- максимальная рассеиваемая мощность.

Для снятия входной ВАХ рекомендуется пересчитать границы изменения тока базы исходя значений максимального тока коллектора и коэффициента усиления по току.

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	75	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	1.0	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Symbol	Characteristic	Max			Units
		PN2222A	*MMBT2222A	**PZT2222A	
P_D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	1,000 8.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	2.0	0.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

h _{FE}	DC Current Gain	I_{C} = 0.1 mA, V_{CE} = 10 V I_{C} = 1.0 mA, V_{CE} = 10 V I_{C} = 10 mA, V_{CE} = 10 V I_{C} = 10 mA, V_{CE} = 10 V, T_{A} = -55°C I_{C} = 150 mA, V_{CE} = 10 V* I_{C} = 150 mA, V_{CE} = 1.0 V*	35 50 75 35 100 50	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage*	$I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V*}$ $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	40	9. 3 1.0	V V
V _{BE(sat)}	Base-Emitter Saturation Voltage*	I_C = 150 mA, I_B = 15 mA I_C = 500 mA, I_B = 50 mA	0.6	1.2 2.0	V

Соберите схему эксперимента. В лабораторной работе рассматривается схема включения с общим эмиттером.

Входная ВАХ биполярного транзистора

Определить

$$h_{11} = \frac{\Delta U_{\text{B9}}}{\Delta I_{\text{B}}} \bigg|_{U_{\text{K9}} = const} \qquad h_{12} = \frac{\Delta U_{\text{B9}}}{\Delta U_{\text{K9}}} \bigg|_{I_{\text{B}} = const}$$

$$h_{11} \coloneqq \frac{\Delta U_{\text{B9}}}{\Delta I_{\text{B}}} = 15,26 \qquad h_{12} \coloneqq \frac{\Delta U_{\text{B9}}}{\Delta U_{\text{K9}}} = 0,0184$$

ВАХ биполярного транзистора

Выходная ВАХ биполярного транзистора

По выходной ВАХ можно определить

$$h_{21} = \frac{\Delta I_K}{\Delta I_{\rm B}} \bigg|_{\Delta U_{\rm K9} = const}$$

$$h_{22} = \frac{\Delta I_K}{\Delta U_{\text{K}\Im}} \bigg|_{I_{\text{B}} = const}$$

Зададим напряжение питания усилительного каскада (0.3...0.9) $U_{{
m K}\Im_{max}}$

Рассчитаем

$$h_{21} = \frac{\Delta I_K}{\Delta I_{\rm B}} \bigg|_{\Delta U_{\rm K9} = const}$$

$$h_{22} = \frac{\Delta I_K}{\Delta U_{\text{K}\Im}} \bigg|_{I_{\text{B}} = const}$$

$$R_{
m BHX}{}_{VT} = rac{1}{h_{22}}$$
 $h_{21} \coloneqq rac{\Delta I_k}{\Delta I_B} = 130,6667$
 $h_{22} \coloneqq rac{\Delta I_k}{\Delta U_{K9}} = 0,0013$ CM
 $R_{
m BHX} \coloneqq rac{1}{h_{22}} = 791,5567$ OM

Выберем значения сопротивлений R_K и R_{\ni} Из условия передачи максимальной мощности от источника энергии к потребителю (согласованный режим) [5].

Выберем $R_K = (0.3 \dots 1) R_{\rm BbIX_{VT}}$ =680 Ом.

Выберем $R_3 = (0.05 \dots 0.15) R_K = 68 \text{ Ом}$

Чтобы увеличить коэффициенты усиления каскада с ОЭ, величину R_K выбирают в 3...5 раз больше, чем $R_{
m H}$.

Предположим, что данный каскад является промежуточным и его нагрузкой является аналогичный усилитель, но значение $R_{
m H}$ определяется входным сопротивлением транзистора $R_{
m H}=R_{
m BX_{VT}}.$

Таким образом выберем $R_K=56$ Ом и $R_{\it H}=5$,6 Ом.

Для точки А имеем

$$U_{\rm K3_{II}} = 5.84 \, \rm B$$

$$I_{\mathrm{K}_{\mathrm{II}}}=100$$
 мА

$$I_{\rm B_{\rm II}} = 0.6~{\rm MA}$$

$$U_{\mathrm{B}3_{\Pi}}=0.77~\mathrm{B}$$

Расчет элементов схемы

Зададим ток делителя $I_{\pi} = 5I_{6\pi}$

Таким образом $I_{R_1} = I_{\pi} = 3$ мА

Зная ток, текущий через резистор R_1 , можно найти значение его сопротивления

$$R_1 = \frac{E_{K} - U_{69_0} - U_{R_3}}{I_{R_1}}$$

$$R_{1} = \frac{E_{K} - U_{69_{0}} - U_{R_{9}}}{I_{R_{1}}}$$

$$R_{1} := \frac{E_{K} - U_{69_{1}} - U_{R9}}{I_{II}} = 3555,5467$$

где
$$U_{R_9} = \left(I_{\kappa_0} + I_{6_0}\right) R_9 = \mathrm{E}_{\kappa} - I_{\kappa_0} R_{\kappa} - U_{\kappa 9_0}$$

Таким образом имеем $U_{R_2} = 0.56$ В, тогда $R_1 = 3.555$ кОм. Выберем стандартное значение сопротивления из ряда E96 $R_1 = 3.6 \text{ кOm}$.

Далее находим значение сопротивления резистора

$$R_2 = \frac{U_{69_0} + U_{R_9}}{I_{R_1} - I_{6_0}}$$

вистора
$$R_2 = \frac{U_{69_0} + U_{R_9}}{I_{R_1} - I_{6_0}}$$
 $R_2 := \frac{U_{69_{_{//}}} + U_{_{R9}}}{I_{//} - I_{6_{_{//}}}} = 555,5667$

Получаем $R_2 = 555 \, \mathrm{Om}$. Выберем стандартное значение сопротивления из ряда E96 $R_3 = 0.56 \, \mathrm{KOm}$.

Расчет элементов схемы

Рассчитаем значение емкостей конденсаторов.

Для расчета емкости конденсаторов можно воспользоваться соотношениями

$$C_{9} = \frac{10 \dots 50}{2\pi f_{\rm H} R_{9}}$$

$$C_{p1} = \frac{10 \dots 50}{2\pi f_{\rm H} R_{\rm BX}}$$

$$C_{p2} = \frac{10 \dots 50}{2\pi f_{\rm H} R_{\rm H}}$$

$$C_{p2} = \frac{10 \dots 50}{2\pi f_{\rm H} R_{\rm H}}$$

$$C_{p2} = \frac{30}{2 \cdot \mathbf{n} \cdot 1000 \cdot R_{BX}} = 0,0003$$

$$C_{p2} = \frac{10 \dots 50}{2\pi f_{\rm H} R_{\rm H}}$$

$$C_{p2} = \frac{30}{2 \cdot \mathbf{n} \cdot 1000 \cdot R_{BX}} = 0,0003$$

При расчете $\mathcal{C}_{\mathtt{p2}}$ предположим, что нагрузкой является аналогичный каскад, т.о.

$$R_{\rm H}=R_{\rm BX}$$

Определение параметров схемы

$$K_U = \frac{1,21}{0.01} = 121$$

$$K_I = \frac{(118,56 - 73,1)10^{-3}}{(749,75 - 408)10^{-6}} = 133$$

Частотная характеристика

Выберем значения сопротивлений R_K и R_{\ni} Из условия передачи максимальной мощности от источника энергии к потребителю (согласованный режим) [5].

Выберем $R_K = (0.3 \dots 1) R_{\rm BbIX_{VT}}$ =680 Ом.

Выберем $R_3 = (0.05 \dots 0.15) R_K = 68 \text{ Ом}$

$$U_{\mathrm{K}}$$
 = 6 B

$$I_{\rm K_{\Pi}}=8$$
 мА

$$I_{\rm B_{\rm II}} = 0.045~{\rm MA}$$

$$U_{\mathrm{E}3_{\Pi}}=0.7~\mathrm{B}$$

Расчет элементов схемы

Зададим ток делителя $I_{\pi} = 5I_{6\pi}$

Таким образом $I_{R_1} = I_{\pi} = 0.2$ мА

Зная ток, текущий через резистор R_1 , можно найти значение его сопротивления

$$R_1 = \frac{E_{\kappa} - U_{69_0} - U_{R_9}}{I_{R_1}}$$

$$R_{1} = \frac{E_{K} - U_{69_{0}} - U_{R_{3}}}{I_{R_{1}}} \qquad \qquad R_{1} := \frac{E_{K} - U_{69_{\Pi}} - U_{R9}}{I_{\Pi}} = 47790,8444$$

где
$$U_{R_{9}} = \left(I_{\kappa_{0}} + I_{6_{0}}\right) R_{9} = \mathrm{E}_{\kappa} - I_{\kappa_{0}} R_{\kappa} - U_{\kappa_{9_{0}}}$$

Таким образом имеем $U_{R_2} = 0.55$ В, тогда $R_1 = 47.8$ кОм. Выберем стандартное значение сопротивления из ряда E96 $R_1 = 51 \text{ кOm.}$

Далее находим значение сопротивления резистора

$$R_2 = \frac{U_{69_0} + U_{R_9}}{I_{R_1} - I_{6_0}}$$
 $R_2 := \frac{U_{69_{II}} + U_{R9}}{I_{II} - I_{6_{II}}} = 6928, 1111$

Получаем $R_2 = 6928$ Ом. Выберем стандартное значение сопротивления из ряда E96 $R_3 = 7.5$ кОм.

Расчет элементов схемы

Рассчитаем значение емкостей конденсаторов.

Для расчета емкости конденсаторов можно воспользоваться соотношениями

$$C_{9} = \frac{10 \dots 50}{2\pi f_{H} R_{9}}$$

$$C_{p1} = \frac{10 \dots 50}{2\pi f_{H} R_{BX}}$$

$$C_{p2} = \frac{10 \dots 50}{2\pi f_{H} R_{H}}$$

$$C_{p2} = \frac{10 \dots 50}{2\pi f_{H} R_{H}}$$

$$C_{p2} = \frac{30}{2\pi f_{H} R_{H}} = 0,0003$$

$$C_{p2} = \frac{10 \dots 50}{2\pi f_{H} R_{H}}$$

При расчете $\mathcal{C}_{\mathtt{p2}}$ предположим, что нагрузкой является аналогичный каскад, т.о.

$$R_{\rm H}=R_{\rm BX}$$

Определение параметров схемы

$$K_U = \frac{1,726}{0,01} = 172,6$$

$$K_I = \frac{(11,06 - 5,54)10^{-3}}{(60,82 - 30,12)10^{-6}} = 179,8$$

Частотная характеристика

Практическое исследование

1. После сборки схемы проверить режим работы по постоянному току.

- 2. Исследовать работу схемы при подаче гармонического входного сигнала, частота 1...10 кГц.
- 3. Снять осциллограмму максимального по амплитуде неискаженного выходного сигнала
- 4. Исследовать влияние величины емкости разделительного и шунтирующего конденсаторов на работу схемы
- 5. Рассчитать коэффициенты усиления по току, напряжению и мощности
- 6. Снять амплитудно-частотную характеристику усилительного каскада.

Список использованных источников

1. Гуртов, В. А. Твердотельная электроника: Учеб. пособие / В. А. Гуртов. – Москва, 2005. – 492

- 2. Платт Ч. Энциклопедия электронных компонентов. Том 1. Резисторы, конденсаторы, катушки индуктивности, переключатели, преобразователи, реле, транзисторы: Пер. с англ. СПб.: БХВ-Петербург, 2017. 352 с.: ил.
- 3. Электроника. Теория и практика 4-е издание.: Пер. с англ. / Саймон Монк, Пауль Шерц. СПб.: БХВ-Петербург, 2018. 1168 с.: ил.
- 4. https://www.chipdip.ru/
- 5. Родюков М.С., Коновалов Н.Н. Электроника. Расчёт усилительного каскада с общим эмиттером: методические указания по выполнению домашней работы, 2-е изд., испр.— М.: МГУПИ, 2011г. 48с.
- 6. https://www.ruselectronic.com/bipolyarniy-tranzistor/#i-36
- 7. Бочаров Л.Н. Расчет электронных устройств на транзисторах/ Бочаров Л.Н., Жебряков С.К., Колесников И.Ф. М.: Энергия, 1978
- 8. Расчет усилительных устройств: Учеб. пособие / В.И. Давидич, Ю.Т. Давыдов, Ю.Ю. Мартюшев, Б.М. Породин, А.Н. Харламов: под ред. Ю.Т. Давыдова. М.: Изд-во МАИ, 1993

Спасибо за внимание!

ITSMOre than a UNIVERSITY