Теорема о существовании топологической сортировки. Цепи, пути, расписания. Теорема о кратчайшем расписании

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 26.09.2023

Содержание лекции

В предыдущих сериях:

- Бинарные отношения, отношения порядка
- Минимальный, наименьший, максимальный, наибольший элементы в множестве
- Лемма о существовании минимального (максимального) элемента в множестве
- Топологическая сортировка (определение и пример)

Сегодня:

- Теорема о существовании топологической сортировки
- Цепь, путь, расписание
- Теорема о кратчайшем расписании

Теорема о существовании топологической сортировки

Определение: Топологической сортировкой множества A, (строго) частично упорядоченного отношением R, называется такой (строгий) линейный порядок Q на A, что $(a,b) \in R \Rightarrow (a,b) \in Q$.

Теорема: У любого конечного частично упорядоченного относительно ${\cal R}$ множества ${\cal A}$ существует топологическая сортировка.

Док-во: Обозначим $A_0 := A$.

Далее организуем итерационный процесс "упорядочивания" A через конструирование множеств $\{A_i\}$: если $A_i=\varnothing, \forall i\in\mathbb{N}_0, i\leq |A|$, то его топологическая сортировка $T_i=\varnothing$.

Если $A_i \neq \varnothing$ по лемме \exists минимальный элемент $\eqqcolon m_i$.

Определим $A_{i+1} \coloneqq A_i \setminus \{m_i\}, \ T_i \coloneqq \{(m_i, a) : a \in A_{i+1}\} \cup T_{i+1}.$

Докажем, что T_i является линейным порядком на A_i и *согласовано* с R, то есть $T=T_0$ является топологической сортировкой $A_0=A$.

Лемма: если $(a,b) \in R$, то $\exists i,j \in 0 : (|A|-1) : a=m_i,b=m_j$. Док-во: \exists -ие следует их построения T, i < j т.к., если j < i, то $a \in A_i$,

 $a \neq b$, но тогда b — не минимальный в A_j , т.к. $(a,b) \in R$.

Заметим, что т.к. $i \leq j$, то $b \in A_i$, то есть $(a,b) \in T$ (согласованность).

Рефлексивность: по определению T_i .

Транзитивность: $\forall a,b,c\in A, (a,b)\in T, (b,c)\in T\Rightarrow$ по построению T $\exists i,j,k\in 0$: (|A|-1) такие, что $a=m_i,b=m_j,c=m_k$, причем i< j и j< k. Значит i< k и $\Rightarrow c\in A_i\Rightarrow (a,c)\in T$.

Антисимметричность: пусть $\exists a,b \in A: \ (a,b) \in T, (b,a) \in T \Rightarrow$ по построению $T \ \exists i,j \in 0 \dots (|A|-1): a=m_i,b=m_j.$ Т.к. $(a,b) \in T, i \leq j$ и т.к. $(b,a) \in T, j \leq i \Rightarrow i=j \Rightarrow a=b.$

Линейный порядок: $\forall a,b\in A\ \exists i,j\in 0\ldots (|A|-1)\ :a=m_i,b=m_j.$ Если i< j, то $(a,b)\in T$, иначе $(b,a)\in T$ по построению T.

Согласованность следует из Леммы.

Пример

 $A_0 = A = \{1, 2, 3, 4\}, m_0 = 1$

Пусть определен частичный порядок R на множестве $A=\{1,2,3,4\}$:

$$A_1 = A_0 \setminus \{m_0\} = \{2,3,4\}, \ T_0 = \{(1,2),(1,3),(1,4)\} \cup T_1$$

$$m_1 = 2, \ A_2 = A_1 \setminus \{m_1\} = \{3,4\}, \ T_1 = \{(2,3),(2,4)\} \cup T_2$$

$$m_2 = 3, \ A_3 = A_2 \setminus \{m_2\} = \{4\}, \ T_2 = \{(3,4)\} \cup T_3$$

$$T_3 = \varnothing \Rightarrow T = T_0 = \{(1,2),(1,3),(1,4)\} \cup \{(2,3),(2,4)\} \cup \{(3,4)\}$$
 Другая топологическая сортировка:
$$A_0 = A = \{1,2,3,4\}, \ m_0' = 2$$

$$A_1' = A_0 \setminus \{m_0'\} = \{1,3,4\}, \ T_0' = \{(2,1),(2,3),(2,4)\} \cup T_1'$$

$$T_1' = \{(1,3),(1,4)\} \cup T_2', \ T_2' = \{(3,4)\} \cup T_3', \ T_3' = \varnothing$$

Диаграмма Хассе

Диаграмма Хассе – графическое представление конечного частичного упорядоченного множества W. Элементы частично упорядоченного множества изображаются на плоскости в виде точек (вершин графа) таким образом, что

- если $(b,a) \in R$, то a изображается выше b;
- между b и a есть ребро (линия), если $(b,a)\in R$ и не существует c такого, что $(b,c)\in R$ и $(c,a)\in R$.

Цепи и пути

Определение: На множестве A задано отношение R, $\varnothing \neq X \subseteq A$.

Отношение $R(X)\coloneqq R\cap X^2$ называют **сужением** R на X.

Замечание: в результате сужения свойства могут появиться, но не исчезнуть (сужение нерефлексивного может быть рефлексивным).

Определение: **Цепью** на множестве A, (строго) частично упорядоченном R, называют всякое подмножество $X\subseteq A$, линейно упорядоченное сужением R(X).

Определение: Длиной цепи называют её мощность.

Определение: Пусть Z — наибольшая по длине цепь, заканчивающаяся в $a \in A$, тогда Z называют **критическим путём** для a.

Определение: Если критический путь для a конечен, то его длину d(a) называют глубиной a.

Определение: Пусть A (строго) упорядоченно относительно $R, A \neq \varnothing, \{A_1, \dots A_n\}$ — разбиение A, тогда оно называется расписанием, если $\forall a,b \in A \ a \neq b$ и $(b,a) \in R$ и $a \in A_k \Rightarrow b \in A_j, j < k$.

Топологическая сортировка

Теорема о существовании кратчайшего расписания

Теорема: A — конечное, строго частично упорядоченное отношением R множество. Рассмотрим $A_i = \big\{x \in A: d(x) = i\big\}, i \in 1:h$. Тогда $\big\{A_i\big\}_{i \in 1:h}$ задает кратчайшее (наименьшей мощности) расписание на A.

Док-во: Для начала рассмотрим какой-то критический путь Z, который заканчивается в z_n . На этом пути есть предыдущий элемент z_{n-1} . Множество $Z\setminus\{z_n\}$ имеет те же свойства, что имеет Z. Для Z наибольшим элементом является z_n , для $Z\setminus\{z_n\}$ наибольший элемент – z_{n-1} .

Покажем, что $d(z_{n-1}) \neq d(z_n)$.

Если $d(z_{n-1})=d(z_n)$, то \exists критический путь Z', который заканчивается в z_{n-1} . При этом $z_n\notin Z'$, т.к. z_{n-1} — наибольший элемент $Z',\ (z_{n-1},z_n)\in R$ и $(z_n,z_{n-1})\notin R$.

$$\Rightarrow d(z_{n-1}) \neq d(z_n), \ Z \setminus \{z_n\}$$
 – цепь, которая заканчивается в z_{n-1} , $|Z \setminus \{z_n\}| = d(z_n) - 1 \Rightarrow d(z_{n-1}) = d(z_n) - 1$.

Рассмотрим самый длинный критический путь X. |X| = h, т.к.

X заканчивается в своем наиб. элементе $x_n,\ d(x_n)=h=\max_{a\in A}d(a).$ В X все элементы строго линейно упорядочены, тогда $d(x_n)=h,$

 $d(x_{n-1}) = h-1, \ d(x_{n-2}) = h-2$ и т.д. $\Rightarrow \forall i \in 1: h \ A_i \cap X \neq \emptyset$.

Покажем, что $\{A_i\}_{i\in 1:h}$ – кратчайшее расписание:

- 1. $\forall i \in 1 : h A_i \neq \varnothing$ проверили.
- 2. $\forall i \neq j \in 1$: h $A_i \cap A_j = \varnothing$ т.к. глубина элемента определяется единственным образом.
- $3. \cup A_i = A$:
 - $\circ \ \cup A_i \subseteq A$ очевидно
 - $\circ \ \cup A_i \supseteq A$ т.к. $\forall a \in A \ \exists \ d(a) \in \mathbb{N}$
- $\Rightarrow \{A_i\}_{i\in 1:h}$ разбиение A.
- 4. Если $\forall a \neq b \in A \ (b,a) \in R \ \exists \ k \in 1 : h \ \mathsf{что} \ a \in A_k \Rightarrow \exists \ j < k : b \in A_j.$
- Предположим противное, что $j \geq k$, или $d(b) \geq d(a)$. Рассмотрим критический путь B, который заканчивается в $b, d(b) \geq k$. $a \notin B$, иначе было бы верно, что $\forall a \neq b \in A \ (a,b) \in R$ противоречит асимметричности. Можем взять $B \cup \{a\}$ по транзитивности, т.к. $\forall x \in B \ (x,b) \in R$ и $\forall a \neq b \in A \ (b,a) \in R$, то $(x,a) \in R \Rightarrow B \cup \{a\}$ строго линейно упорядочено $\Rightarrow B \cup \{a\}$ цепь, заканчивающаяся в $a \Rightarrow d(a) \geq |B \cup \{a\}| \geq k+1$ этого быть не может, т.к. $d(a) = k \Rightarrow d(b) < d(a)$.
- 5. $\{A_i\}_{i\in 1:h}$ кратчайшее: рассмотрим другое расписание A_1',\ldots,A_s' . X самая длинная цепь в A, |X| = h. Все элементы X должны быть "назначены" в различные элементы расписания в силу строгой линейной упорядоченности X.
- $\stackrel{\cdot \cdot \cdot}{\Rightarrow}$ по принципу Дирихле $|X|=h\leq s.$
- $\Rightarrow \{A_i\}_{i\in 1:h}$ кратчайшее расписание на A.