KU LEUVEN

How Dangerous are Decryption Failures in Lattice-based Encryption?

Jan-Pieter D'Anvers

20 november 2019

1 Outline

- 1 Introduction
- Mow to find 1st failure
- 3 How to find next failure
- Recovering the secret
- 6 Conclusion

1 LWE hard problem

- ► LWE problem
- $ightharpoonup A \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n})$
- $ightharpoonup oldsymbol{s}, oldsymbol{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n imes k})$

1 LWE hard problem

- ► LWE problem
- $ightharpoonup A \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n})$
- $ightharpoonup s, e \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k})$
- $(A, b = A \cdot s + e)$

Alice Bob

 $\boldsymbol{b}, \boldsymbol{A}$

$$\begin{split} & \pmb{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ & \pmb{s}, \pmb{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ & \pmb{b} = \pmb{A} \cdot \pmb{s} + \pmb{e} \end{split}$$

$$b = A \cdot s + e$$

Alice Bob $\begin{aligned} & A \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ & \textbf{s}, \textbf{e} \leftarrow \text{small}(\mathbb{Z}_q^{n \times k}) \\ & \textbf{b} = \textbf{A} \cdot \textbf{s} + \textbf{e} \end{aligned} \qquad \begin{aligned} & \textbf{b}, \textbf{A} \\ & \textbf{b}', \textbf{e}', \textbf{e}', \textbf{e}'' \leftarrow \text{small}(\mathbb{Z}_q^{n \times k}) \\ & \textbf{b}' = \textbf{A}^T \cdot \textbf{s}' + \textbf{e}' \end{aligned}$

Alice

$$\begin{split} & \pmb{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ & \pmb{s}, \pmb{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ & \pmb{b} = \pmb{A} \cdot \pmb{s} + \pmb{e} \end{split}$$

$$\begin{array}{c|c} \boldsymbol{b}, \boldsymbol{A} & \boldsymbol{s'}, \boldsymbol{e'}, \boldsymbol{e''} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ & \boldsymbol{b'} = \boldsymbol{A}^T \cdot \boldsymbol{s'} + \boldsymbol{e'} \\ & \boldsymbol{b'}, v' & v' = \boldsymbol{b}^T \cdot \boldsymbol{s'} + \boldsymbol{e''} + \lfloor \frac{q}{2} \rceil m \end{array}$$

Alice Bob
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ \mathbf{s}, \mathbf{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b} = A \cdot \mathbf{s} + \mathbf{e} \\ v = \mathbf{b}'^T \cdot \mathbf{s} \\ m' = \lfloor \lfloor \frac{2}{q} \rceil (v' - v) \rceil$$

$$b \rightarrow b \rightarrow b \rightarrow b' = A^T \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' \cdot \mathbf{s}' + \mathbf{e}'' \leftarrow \mathbf{small}(\mathbb{Z}_q^{n \times k})$$

Alice Bob
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ \mathbf{s}, \mathbf{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \\ v = \mathbf{b}'^T \cdot \mathbf{s} \\ m' = \lfloor \lfloor \frac{2}{q} \rceil (v' - v) \rceil$$

$$b, \mathbf{A} \quad \mathbf{s}', \mathbf{e}', \mathbf{e}'' \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' = \mathbf{A}^T \cdot \mathbf{s}' + \mathbf{e}' \\ v' = \mathbf{b}^T \cdot \mathbf{s}' + \mathbf{e}'' + \lfloor \frac{q}{2} \rceil m$$

$$m' = \lfloor \frac{2}{q} (\mathbf{s}'^T \mathbf{A} \mathbf{s} + \mathbf{e}^T \mathbf{s}' + \mathbf{e}'' + \lfloor \frac{q}{2} \rceil m - \mathbf{s}'^T \mathbf{A} \mathbf{s} - \mathbf{e}'^T \mathbf{s}) \rceil$$

Alice Bob
$$A \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ \mathbf{s}, \mathbf{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b} = A \cdot \mathbf{s} + \mathbf{e} \\ v = \mathbf{b}'^T \cdot \mathbf{s} \\ m' = \lfloor \lfloor \frac{2}{q} \rceil (v' - v) \rceil$$

$$b, A \\ \mathbf{b}', \mathbf{s}', \mathbf{e}', \mathbf{e}'' \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ \mathbf{b}' = A^T \cdot \mathbf{s}' + \mathbf{e}' \\ v' = \mathbf{b}^T \cdot \mathbf{s}' + \mathbf{e}'' + \lfloor \frac{q}{2} \rceil m$$

$$m' = \lfloor \frac{2}{q} (\mathbf{s}'^T A \mathbf{s} + \mathbf{e}^T \mathbf{s}' + \mathbf{e}'' + \lfloor \frac{q}{2} \rceil m - \mathbf{s}'^T A \mathbf{s} - \mathbf{e}'^T \mathbf{s}) \rceil$$

1 Failures

- lacksquare failure if: $||oldsymbol{e}^Toldsymbol{s}'+oldsymbol{e}''-oldsymbol{e}'^Toldsymbol{s}||_{\infty}\geq rac{q}{4}$
- typically small failure probability $\delta \approx 2^{-128}$

1 How calculated

- calculate some bounds
- lacktriangle assume Gaussian and calculate σ and μ
- calculate pdf exhaustively

1 Variations

- lacktriangle polynomials, vectors/matrices of polynomials $\mathbb{Z}_q[X]/(X^n+1)$
- learning with rounding
- ▶ NTRU version, Mersenne prime, Threebears

1 Chosen ciphertext attacks

- Easy to attack with chosen ciphertexts
- We can not check the adversary

Alice Bob

$$\begin{aligned} & \pmb{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ & \pmb{s}, \pmb{e} \leftarrow \mathsf{small}(\mathbb{Z}_q^{n \times k}) \\ & \pmb{b} = \pmb{A} \cdot \pmb{s} + \pmb{e} \end{aligned} \qquad \qquad \pmb{b}, \pmb{A}$$

Alice

$$\begin{aligned} & \pmb{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ & \pmb{s}, \pmb{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ & \pmb{b} = \pmb{A} \cdot \pmb{s} + \pmb{e} \end{aligned} \qquad \begin{aligned} & \pmb{b}, \pmb{A} \\ & \pmb{b}', \pmb{v}' \end{aligned} \qquad \begin{aligned} & \pmb{b}', \pmb{e}', \pmb{e}', \pmb{e}'' \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}; \mathcal{H}(m)) \\ & \pmb{b}' = \pmb{A}^T \cdot \pmb{s}' + \pmb{e}' \end{aligned}$$

Alice

$$\begin{aligned} & \pmb{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{n \times n}) \\ & \pmb{s}, \pmb{e} \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}) \\ & \pmb{b} = \pmb{A} \cdot \pmb{s} + \pmb{e} \end{aligned} \qquad \begin{aligned} & \pmb{b}, \pmb{A} \\ & \pmb{b}', \pmb{e}', \pmb{e}', \pmb{e}'' \leftarrow \operatorname{small}(\mathbb{Z}_q^{n \times k}; \mathcal{H}(m)) \\ & \pmb{b}' = \pmb{A}^T \cdot \pmb{s}' + \pmb{e}' \\ & \pmb{b}', v' \end{aligned} \qquad v' = \pmb{b}^T \cdot \pmb{s}' + \pmb{e}'' + \lfloor \frac{q}{2} \rfloor m \end{aligned}$$

Alice

Bob

1 Error term

let's group secret and ciphertext terms:

$$oldsymbol{S} = egin{pmatrix} -oldsymbol{s} \ oldsymbol{e} \end{pmatrix} \quad oldsymbol{C} = egin{pmatrix} oldsymbol{e}' \ oldsymbol{s}' \end{pmatrix}$$

1 Error term

let's group secret and ciphertext terms:

$$m{S} = egin{pmatrix} -m{s} \ m{e} \end{pmatrix} \quad m{C} = egin{pmatrix} m{e}' \ m{s}' \end{pmatrix}$$

► failure if:

$$||m{S}^Tm{C} + m{e}''||_{\infty} \geq rac{q}{4}$$

2 Outline

- Introduction
- 2 How to find 1st failure
- 3 How to find next failure
- 4 Recovering the secret
- 6 Conclusion

2 Attack model

precomputation: Grover's algorithm

2 Attack model

- precomputation: Grover's algorithm
- only classical access to decryption oracle

- find weak ciphertexts
- query weak ciphertexts

- find weak ciphertexts
 - generate ciphertext
 - estimate failure probability
 - accept if higher than f_t
- query weak ciphertexts

- ightharpoonup find weak ciphertexts lpha
 - generate ciphertext
 - estimate failure probability
 - ullet accept if higher than f_t
- ightharpoonup query weak ciphertexts β

- ightharpoonup find weak ciphertexts lpha
 - generate ciphertext
 - estimate failure probability
 - accept if higher than f_t
- ightharpoonup query weak ciphertexts β
- general model for schemes with decryption failures
- works if:
 - can estimate failure probability of ciphertexts
 - estimated failure probability of ciphertexts is different

2 Failure boosting technical

- probability of finding weak ciphertext

2 Failure boosting technical

- probability of finding weak ciphertext
- $\beta = P[c \text{ fails} | p_e(c) > f_t]$
- ► failure probability of weak ciphertext

2 Lattice based schemes: simple case

$$ightharpoonup ||S^TC + e''||_{\infty} \geq rac{q}{4}$$

2 Lattice based schemes: simple case

- $ightharpoonup |S^TC| \geq rac{q}{4}$
- $||S^T||_2 ||C||_2 |\cos(\theta)| \ge \frac{q}{4}$

2 Lattice based schemes: matrices

 $ightharpoonup ||S^TC||_\infty \geq rac{q}{4}$

2 Lattice based schemes: matrices

- $ightharpoonup ||S^TC||_\infty \geq rac{q}{4}$
- Gaussian assumption
- $\mu = 0$
- σ

$$Var((\mathbf{S}^{T}\mathbf{C})_{ij}) = Var(\sum_{k} \mathbf{S}_{kj}\mathbf{C}_{ki})$$
$$= \sum_{k} \mathbf{C}_{ki}^{2} \cdot Var(\mathbf{S}_{kj})$$
$$= ||\mathbf{C}_{k:}||_{2}^{2} \cdot \sigma_{s}^{2}$$

2 How to calculate

l	$P[\boldsymbol{C} _2 = l]$	$P[fail \boldsymbol{C} _2 = l]$
100	2^{-30}	2^{-100}
101	2^{-30}	2^{-99}
102	2^{-29}	2^{-98}
103	2^{-29}	2^{-97}

2 How to calculate

\overline{l}	$P[\boldsymbol{C} _2 = l]$	$P[fail \boldsymbol{C} _2 = l]$
100	2^{-30}	2^{-100}
101	2^{-30}	2^{-99}
102	2^{-29}	2^{-98}
103	2^{-29}	2^{-97}
	α	β

2 How to calculate

\overline{l}	$P[\boldsymbol{C} _2 = l]$	$P[fail \boldsymbol{C} _2 = l]$
100	2^{-30}	2^{-100}
101	2^{-30}	2^{-99}
102	2^{-29}	2^{-98}
103	2^{-29}	2^{-97}
	α	β

3 Outline

- Introduction
- 2 How to find 1st failure
- 3 How to find next failure
- 4 Recovering the secret
- 6 Conclusion

3 Failure boosting

 $m{ert} |m{S}^Tm{C}| \geq rac{q}{4}$ $m{E}$

- $ightharpoonup |S^TC| \geq rac{q}{4}$
- \triangleright E

$$lacksquare |oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\parallel} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\perp} + oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\perp} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\parallel}| \geq rac{q}{4}$$

- $ightharpoonup |S^TC| \geq rac{q}{4}$
- \triangleright E
- $\qquad \qquad |\boldsymbol{S}_{\parallel}^T\boldsymbol{C}_{\parallel} + \boldsymbol{S}_{\perp}^T\boldsymbol{C}_{\perp} + \boldsymbol{S}_{\parallel}^T\boldsymbol{C}_{\perp} + \boldsymbol{S}_{\perp}^T\boldsymbol{C}_{\parallel}| \geq \tfrac{q}{4}$
- lacksquare $|oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\parallel}^T + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\perp}| \geq rac{q}{4}$

- $ightharpoonup |S^TC| \geq rac{q}{4}$
- \triangleright E
- $lacksquare |oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\parallel} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\perp} + oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\perp} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\parallel}| \geq rac{q}{4}$
- $ullet |oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\parallel} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\perp}| \geq rac{q}{4}$
- $ullet egin{array}{c|ccc} ||oldsymbol{S}_{\parallel}||_2 \cdot ||oldsymbol{C}_{\parallel}||_2 + \ ||oldsymbol{S}_{\perp}||_2 \cdot ||oldsymbol{C}_{\perp}||_2 \cos(t) \ \end{array} \geq rac{q}{4}$

- $|S^TC| \geq \frac{q}{4}$

$$lacksquare |oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\parallel} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\perp} + oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\perp} + oldsymbol{S}_{\perp}^Toldsymbol{C}_{\parallel}| \geq rac{q}{4}$$

$$lacksquare$$
 $|oldsymbol{S}_{\parallel}^Toldsymbol{C}_{\parallel}^T+oldsymbol{S}_{\perp}^Toldsymbol{C}_{\perp}|\geq rac{q}{4}$

$$lacksquare \left| egin{array}{c} ||oldsymbol{S}_{\parallel}||_2 \cdot ||oldsymbol{C}_{\parallel}||_2 + \ ||oldsymbol{S}_{\perp}||_2 \cdot ||oldsymbol{C}_{\perp}||_2 \cos(t) \end{array}
ight| \geq rac{q}{4}$$

$$\begin{array}{|c|c|c|} \hline & ||S_{\parallel}||_2 \cdot ||C_{\parallel}||_2 + \\ & ||S_{\perp}||_2 \cdot ||C_{\perp}||_2 \cos(t) \\ \hline & ||S||_2 \cdot ||C||_2 \cos(\theta_{SE}) \cos(\theta_{CE}) + \\ & ||S||_2 \cdot ||C||_2 \sin(\theta_{SE}) \sin(\theta_{CE}) \cos(t) \\ \hline \end{array}$$

- $||\mathbf{S}||_2 \cdot ||\mathbf{C}||_2 \cos(\theta_{SE}) \cos(\theta_{CE}) + ||\mathbf{S}||_2 \cdot ||\mathbf{C}||_2 \sin(\theta_{SE}) \sin(\theta_{CE}) \cos(t)| \ge \frac{q}{4}$
- ▶ $P[\cos(t) \ge \frac{q/4 ||S||_2 \cdot ||C||_2 \cos(\theta_{SE})\cos(\theta_{CE})}{||S||_2 \cdot ||C||_2 \sin(\theta_{SE})\sin(\theta_{CE})}]$

▶
$$P[\cos(t) \ge \frac{q/4 - ||S||_2 \cdot ||C||_2 \cos(\theta_{SE}) \cos(\theta_{CE})}{||S||_2 \cdot ||C||_2 \sin(\theta_{SE}) \sin(\theta_{CE})}]$$

 $||S||_2$: independent of ciphertext

►
$$P[\cos(t) \ge \frac{q/4 - ||S||_2 \cdot ||C||_2 \cos(\theta_{SE}) \cos(\theta_{CE})}{||S||_2 \cdot ||C||_2 \sin(\theta_{SE}) \sin(\theta_{CE})}]$$

- $||S||_2$: independent of ciphertext
- $ightharpoonup \cos(heta_{SE})$: independent of ciphertext, depends on how good $m{E}$ is

$$P[\cos(t) \ge \frac{q/4 - ||\mathbf{S}||_2 \cdot ||\mathbf{C}||_2 \cos(\theta_{SE}) \cos(\theta_{CE})}{||\mathbf{S}||_2 \cdot ||\mathbf{C}||_2 \sin(\theta_{SE}) \sin(\theta_{CE})}]$$

- $||S||_2$: independent of ciphertext
- $ightharpoonup \cos(heta_{SE})$: independent of ciphertext, depends on how good $m{E}$ is
- $ightharpoonup \cos(t)$: independent of ciphertext

- ► $P[\cos(t) \ge \frac{q/4 ||S||_2 \cdot ||C||_2 \cos(\theta_{SE}) \cos(\theta_{CE})}{||S||_2 \cdot ||C||_2 \sin(\theta_{SE}) \sin(\theta_{CE})}]$
- $||S||_2$: independent of ciphertext
- $ightharpoonup \cos(heta_{SE})$: independent of ciphertext, depends on how good $m{E}$ is
- $ightharpoonup \cos(t)$: independent of ciphertext
- $|C||_2, \cos(\theta_{CE})$: ciphertext dependent

- $||S^TC||_{\infty} \geq \frac{q}{4}$
- how to use this vector notation?
- what coefficient/position failed?

- $||S^TC||_{\infty} \geq \frac{q}{4}$
- how to use this vector notation?
- what coefficient/position failed?

$$\mathbf{S} = \begin{bmatrix} s_{0,0} + s_{0,1}X + s_{0,2}X^2 \\ s_{1,0} + s_{1,1}X + s_{1,2}X^2 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} c_{0,0} + c_{0,1}X + c_{0,2}X^2 \\ c_{1,0} + c_{1,1}X + c_{1,2}X^2 \end{bmatrix} \quad (1)$$

for a ring $\mathbb{Z}_q[X]/(X^n+1)$

$$\mathbf{S} = \begin{bmatrix} s_{0,0} + s_{0,1}X + s_{0,2}X^2 \\ s_{1,0} + s_{1,1}X + s_{1,2}X^2 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} c_{0,0} + c_{0,1}X + c_{0,2}X^2 \\ c_{1,0} + c_{1,1}X + c_{1,2}X^2 \end{bmatrix} \quad (1)$$

for a ring $\mathbb{Z}_q[X]/(X^n+1)$

$$\overline{\boldsymbol{S}} = \begin{bmatrix} s_{0,0} \\ s_{0,1} \\ s_{0,2} \\ s_{1,0} \\ s_{1,1} \\ s_{1,2} \end{bmatrix}, \quad \overline{\boldsymbol{C}^{(0)}} = \begin{bmatrix} c_{0,0} \\ -c_{0,2} \\ -c_{0,1} \\ c_{1,0} \\ -c_{1,2} \\ -c_{1,1} \end{bmatrix} \quad \overline{\boldsymbol{C}^{(1)}} = \begin{bmatrix} c_{0,1} \\ c_{0,0} \\ -c_{0,2} \\ c_{1,1} \\ c_{1,0} \\ -c_{1,2} \end{bmatrix} \quad \overline{\boldsymbol{C}^{(3)}} = \begin{bmatrix} -c_{0,0} \\ c_{0,2} \\ c_{0,1} \\ -c_{1,0} \\ c_{1,2} \\ c_{1,1} \end{bmatrix}$$

$$C \to X^r C(X^{-1})$$

- $ightharpoonup \overline{S}^T \overline{C^{(r)}} \ge q/4$

- $ightharpoonup \overline{S}^T \overline{C^{(r)}} \ge q/4$
- for $r \in [0, 2N 1]$
- ightharpoonup what r value is responsible for the failure
- ▶ how to construct E?

- $ightharpoonup \overline{S}^T \overline{C^{(r)}} \ge q/4$
- for $r \in [0, 2N 1]$
- ightharpoonup what r value is responsible for the failure
- \triangleright how to construct E?
- ▶ for 1 ciphertext: does not matter
 - \boldsymbol{C} fails at r=5
 - we think r = 0
 - now we find a C such that:
 - $oldsymbol{\overline{C}^{(0)}}$ is aligned with $\overline{oldsymbol{C}_*^{(0)}}$

- $ightharpoonup \overline{S}^T \overline{C^{(r)}} \ge q/4$
- ▶ for $r \in [0, 2N 1]$
- ightharpoonup what r value is responsible for the failure
- ▶ how to construct E?
- ▶ for 2 ciphertexts: does matter!
 - we need relative position

• fix $r_1=0$ and thus $\overline{m{C}_1^{(0)}}$

- fix $r_1=0$ and thus $\overline{\boldsymbol{C}_1^{(0)}}$
- lacktriangle we know $\overline{m{S}}^T\overline{m{C}_1^{(0)}} \geq q/4$
- lacktriangle and $\overline{m{S}}^T\overline{m{C}_2^{(r_2)}} \geq q/4$

- fix $r_1=0$ and thus $\overline{m{C}_1^{(0)}}$
- lacktriangle we know $\overline{m{S}}^T\overline{m{C}_1^{(0)}} \geq q/4$
- lacktriangledown and $\overline{m{S}}^T\overline{m{C}_2^{(r_2)}} \geq q/4$
- $lackbox{both }\overline{m{C}_1^{(0)}}$ and $\overline{m{C}_2^{(r_2)}}$ are correlated with $\overline{m{S}}$

	2 ciphertexts	3 ciphertexts	4 ciphertexts	5 ciphertexts
$\overline{P[success]}$	84.0%	95.6%	> 99.0%	> 99.0%

4 Outline

- 1 Introduction
- 2 How to find 1st failure
- 3 How to find next failure
- 4 Recovering the secret
- 6 Conclusion

4 Recovering the secret

ightharpoonup we have an estimate $m{E}$ of $m{S}$

$$lackbox{m E} = egin{pmatrix} -m s_* \ m e_* \end{pmatrix}$$

4 Recovering the secret

ightharpoonup we have an estimate $m{E}$ of $m{S}$

$$lackbox{m E} = egin{pmatrix} -m s_* \ m e_* \end{pmatrix}$$

- ▶ LWE problem $(A, b = A \cdot s + e)$
- lacktriangle simplify $m{b}_* = (m{A}\cdot m{s} + m{e}) (m{A}\cdot m{s}_* + m{e}_*)$
- $m{b}_* = m{A} \cdot (m{s} m{s}_*) + (m{e} m{e}_*)$

5 Outline

- 1 Introduction
- 2 How to find 1st failure
- 3 How to find next failure
- 4 Recovering the secret
- **5** Conclusion