

Lecture 2: CMOS logic design and layout DC response

Invention of the Transistor

- Vacuum tubes ruled in first half of 20th century: Large, expensive, power-hungry, unreliable
- 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - Read Crystal Fire
 by Riordan, Hoddeson

Transistor Types

- Bipolar transistors
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration

MOS Integrated Circuits

- 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM Intel 4004 4-bit μProc

1980s-present: CMOS processes for low idle power

Moore's Law

- 1965: Gordon Moore plotted transistor on each chip
 - Fit straight line on semilog scale: most economical!!
 - Transistor counts of Intel uPs have doubled every 26 months (following fiugure)

- Moore's Law: Transistor counts doubles every 18 months.

Corollaries

- Many other factors grow exponentially
 - Ex: clock frequency, processor performance

CMOS Gate Design

- Activity:
 - Sketch a 4-input CMOS NOR gate

Complementary CMOS

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

• nMOS: 1 = ON

• pMOS: 0 = ON

Series: both must be ON

Parallel: either can be ON

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates

Compound gates can do any inverting function

• Ex: $Y = A \square B + C \square D$ (AND-AND-OR-INVERT, AOI22)

Example: O3AI

$$\bullet \quad Y = \overline{(A+B+C)\Box D}$$

Signal Strength

- Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus nMOS are best for pull-down network

Pass Transistors

Transistors can be used as switches

$$g = 0$$
$$s - - d$$

$$g = 1$$

 $s \rightarrow d$

$$g = 0$$
$$s \longrightarrow d$$

$$g = 1$$
 $s \longrightarrow d$

$$\begin{array}{ccc}
\text{Input} & g = 1 & \text{Output} \\
0 & & \text{strong 0}
\end{array}$$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

Input Output

$$g = 1$$
, $gb = 0$
 $0 \rightarrow \sim strong 0$

$$g = 1$$
, $gb = 0$
 $1 \rightarrow \sim strong 1$

Tristates

Tristate buffer produces Z when not enabled

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tristate

Transmission gate acts as tristate buffer

VLSI Design

- Only two transistors
- But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Tristate Inverter

- Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Multiplexers

• 2:1 *multiplexer* chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Multiplexers

• 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Gate-Level Mux Design

- $Y = SD_1 + \overline{S}D_0$ (too many transistors)
- How many transistors are needed? 20

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- When CLK = 1, latch is *transparent*
 - D flows through to Q like a buffer
- When CLK = 0, the latch is *opaque*
 - Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch

D Latch Design

Multiplexer chooses D or old Q

D Latch Operation

D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

Built from master and slave D latches

D Flip-flop Operation

Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called hold-time failure or race condition

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- We will use them in this class for safe design
 - Industry manages skew more carefully instead

Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Wiring Tracks

- A wiring track is the space required for a wire
 - 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
- Transistors also consume one wiring track

Well spacing

- Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

VLSI Design

Example: O3AI

 Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)\Box D}$$

- Decide the W and L of a CMOS circuit to provide equal current driving capability in both directions (PUN and PDN) as the basic inverter.
 - $\mathbf{If}(W/L)_n = n$, $(W/L)_p = p$, $p = (\mu n/\mu p) \cdot n$ for a matched design.
- PDN's capacitor discharge current should be at least equal that of NMOS TR of inverter.
- PUD's capacitor charging current should be at least equal that of PMOS TR of inverter.
 - ⇒ the above two conditions will guarantee a worst-cast gate delay equal to that of the basic inverter.
 - ⇒ we need to find the equivalent W/L ratio of a network of MOS transistor as that of an inverter.

- Equivalent series resistance when a number of MOSFETs are connected in series

$$R_{series} = r_{DS1} + r_{DS2} + \cdots = \frac{constant}{(W/L)_1} + \frac{constant}{(W/L)_2} + \cdots$$

$$= constant \left[\frac{1}{(W/L)_1} + \frac{1}{(W/L)_2} + \cdots \right]$$

$$= \frac{constant}{(W/L)_{eq}}$$

$$(W/L)_{eq} = \frac{1}{(W/L)_1} + \frac{1}{(W/L)_2} + \cdots$$

- In the same manner, for parallel connection of TRs

$$(W/L)_{eq} = (W/L)_1 + (W/L)_2 + \cdots$$

Proper transistor sizing for a four-input NOR gate. Note that n and p denote the (W/L) ratios of Q_N and Q_P , respectively, of the basic inverter.

Proper transistor sizing for a four-input NAND gate. Note that n and p denote the (W/L) ratios of Q_N and Q_P , respectively, of the basic inverter.

$$Q_{NR}: W/L = 2n = 3 = 0.75/0.25$$

$$Q_{NC}$$
: W / L = $2n = 3 = 0.75 / 0.25$

$$Q_{ND}: W/L = 2n = 3 = 0.75/0.25$$

$$Q_{NA}: W/L = n = 1.5 = 0.375/0.25$$

$$Q_{PA}: W/L = 3p = 15 = 3.75/0.25$$

$$Q_{PC}: W/L = 3p = 15 = 3.75/0.25$$

$$Q_{PD}$$
: W / L = 3p = 15 = 3.75 / 0.25

$$Q_{PB}: W/L = 1.5p = 7.5 = 1.875/0.25$$

46

DC & Transient Response

Outline

- DC Response
- Logic Levels and Noise Margins
- Transient Response
- Delay Estimation

Activity

1) If the width of a transistor increases, the current will

increase decrease not change

2) If the length of a transistor increases, the current will

increase decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will

increase decrease not change

4) If the width of a transistor increases, its gate capacitance will

increase decrease not change

5) If the length of a transistor increases, its gate capacitance will

increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will

increase decrease not change

Activity

If the width of a transistor increases, the current will

increase

decrease

not change

2) If the length of a transistor increases, the current will

increase

decrease

not change

3) If the supply voltage of a chip increases, the maximum transistor current will

increase decrease

not change

4) If the width of a transistor increases, its gate capacitance will

increase decrease

not change

5) If the length of a transistor increases, its gate capacitance will

increase

decrease

not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will

VLSI Design

increase

decrease

not change

51

DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter

- When
$$V_{in} = 0$$
 -> $V_{out} = V_{DD}$

- When
$$V_{in} = V_{DD}$$
 -> $V_{out} = 0$

- In between, V_{out} depends on transistor size and current
- By KCL, must settle such that V_{ir} $I_{dsn} = |I_{dsp}|$
- We could solve equations
- But graphical solution gives more insight

Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

Cutoff	Linear	Saturated
V _{gsn} <	V _{gsn} >	V _{gsn} >
	V _{dsn} <	V _{dsn} >

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$

$$V_{gsn} = V_{in}$$

$$V_{gsn} = V_{in}$$
 $V_{dsn} = V_{out}$

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{\rm dsn} < V_{\rm gsn} - V_{\rm tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} < V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$

$$V_{gsn} = V_{in}$$

$$V_{dsn} = V_{out}$$

Cutoff	Linear	Saturated
V _{gsp} >	V _{gsp} <	V _{gsp} <
	V _{dsp} >	V _{dsp} <

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$

$$V_{gsp} = V_{in} - V_{DD} \qquad V_{tp} < 0$$

$$V_{dsp} = V_{out} - V_{DD}$$

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

I-V Characteristics

• Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. V_{out}, V_{in}

- For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where |currents| are equal in

•
$$V_{in} = 0$$

• $V_{in} = 0.2V_{DD}$

• $V_{in} = 0.4V_{DD}$

• $V_{in} = 0.6V_{DD}$

VLSI Design

• $V_{in} = 0.8V_{DD}$

•
$$V_{in} = V_{DD}$$

Load Line Summary

DC Transfer Curve

• Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

Revisit transistor operating regions

Region	nMOS	pMOS
Α		
В		
С		
D		
E		

Operating Regions

Revisit transistor operating regions

Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturati on	Linear
С	Saturati on	Saturati on
D	Linear	Saturati on
Е	Linear	Cutoff

VLSI Design

Beta Ratio

- If β_p / $\beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called skewed gate
- Other gates: collapse into equivalent inverter

Noise Margins

 How much noise can a gate input see before it does not recognize the input?

Logic Levels

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

Transient Response

- DC analysis tells us V_{out} if V_{in} is constant
- Transient analysis tells us V_{out}(t) if V_{in}(t) changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

Inverter Step Response

 Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} t \leq t_0 \\ V_{out} > V_{DD} - V_t \\ V_{out} < V_{DD} - V_t \end{cases}$$

Inverter Step Response

 Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \le t_0 \\ \frac{\beta}{2} (V_{DD} - V)^2 & V_{out} > V_{DD} - V_t \\ \beta (V_{DD} - V_t - \frac{V_{out}(t)}{2}) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Inverter Step Response

 Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \leq t_0 \\ \frac{\beta}{2} (V_{DD} - V)^2 & V_{out} > V_{DD} - V_t \\ \beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

$$t \le t_0$$

$$V_{out} > V_{DD} - V_t$$

$$\frac{V_{out}}{V_{DD}} - V_{DD}$$

Delay Definitions

- t_{pdr}: maximum rising propagation delay
 - From input to rising output crossing $V_{DD}/2$
- t_{pdf}: maximum falling propagation delay
 - From input to falling output crossing $V_{DD}/2$
- t_{pd}: average propagation delay
 - $-t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- **t**_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions

- t_{cdr}: minimum rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- **t**_{cdf}: minimum falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- **t**_{cd}: average contamination delay

$$-t_{pd} = (t_{cdr} + t_{cdf})/2$$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

Prof. Jinsang Kim

RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_{i}$$

$$= R_{1}C_{1} + (R_{1} + R_{2})C_{2} + \dots + (R_{1} + R_{2} + \dots + R_{N})C_{N}$$

$$\begin{array}{c} R_{1} & R_{2} & R_{3} & R_{N} \\ \hline & C_{1} & C_{2} & C_{3} & C_{3} \end{array}$$

 Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

 Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

 Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

h copies

 Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

 Estimate rising and falling propagation delays of a 2-input NAND driving h identical gates.

$$t_{pdf} = (2C)(\frac{R}{2}) + \left[(6+4h)C\right](\frac{R}{2} + \frac{R}{2})$$

$$= (7+4h)RC$$

Delay Components

- Delay has two parts
 - Parasitic delay
 - 6 or 7 RC
 - Independent of load
 - Effort delay
 - 4h RC
 - Proportional to load capacitance

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If both inputs fall simultaneously

Diffusion Capacitance

- we assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Layout Comparison

Which layout is better?

