(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 20 septembre 2001 (20.09.2001)

PCT

(10) Numéro de publication internationale WO 01/68235 A1

- (51) Classification internationale des brevets⁷: B01J 13/14, 13/16
- (21) Numéro de la demande internationale :

PCT/FR01/00623

- (22) Date de dépôt international : 2 mars 2001 (02.03.2001)
- (25) Langue de dépôt : français
- (26) Langue de publication : français
- (30) Données relatives à la priorité : 00/03133 10 mars 2000 (10.03.2000) FF
- (71) Déposant (pour tous les États désignés sauf US): UNI-VERSITE CLAUDE BERNARD LYON I [FR/FR]; 43, boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): MON-TASSER, Imed [TN/FR]; 1, allée Athéna, F-69100 Villeurbanne (FR). FESSI, Hatem [FR/FR]; 40, rue d'Aubigny, F-69003 Lyon (FR). BRIANCON, Stéphanie [FR/FR]; 75, rue du 1er Mars, F-69100 Villeurbanne (FR). LIETO, Joseph [FR/FR]; 13, rue du Château d'Eau, F-69740 Genas (FR).

- (74) Mandataire: THIBAULT, Jean-Marc; Cabinet Beau de Loménie, 51, avenue Jean Jaurès, B.P. 7073, F-69301 Lyon (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: METHOD FOR PREPARING COLLOIDAL PARTICLES IN THE FORM OF NANOCAPSULES
- (54) Titre: PROCEDE DE PREPARATION DE PARTICULES COLLOIDALES SOUS FORME DE NANOCAPSULES
- (57) Abstract: The invention concerns a method for preparing dispersible colloidal systems, in the form of nanocapsules whereof the shell wall consists of a polymer obtained by polycondensation of two monomers α and β and whereof the core consists of a substance B, characterised in that it consists in: (1) preparing a first liquid phase consisting of a monomer α solution in a solvent or a mixture of solvents, and containing one or several surfactant(s) and the substance B in solution or in suspension; (2) preparing a second liquid phase consisting of a non-solvent or a mixture of non-solvents of monomer α , containing monomer β and one or several surfactant(s), the solvent or mixture of solvents of the first phase being miscible in all proportions with the non-solvent or mixture of non-solvents of nanocapsules, the stirring being maintained until complete polymerisation of monomers α and β ; (4) optionally eliminating all or part of the solvent or mixture of solvents and of the non-solvent or mixture of non-solvents so as to obtain a colloidal suspension with the desired concentration in nanocapsules.
- (57) Abrégé : L'invention concerne un procédé de préparation de systèmes colloïdaux dispersibles, sous forme de nanocapsules dont la paroi est constituée par un polymère obtenu par polycondensation de deux monomères α et β et dont le coeur est constitué par une substance b, caractérisé en ce que : (1) on prépare une première phase liquide constituée par une solution de monomère α dans un solvant ou un mélange de solvants, et contenant un ou plusieurs agent(s) tensioactif(s) ainsi que la substance B en solution ou en suspension, (2) on prépare une seconde phase liquide constituée par un non-volvant ou un mélange de non-solvants du monomère α , contenant le monomère β et un ou plusieurs agent(s) tensioactif(s) ; le solvant ou le mélange de solvants de la première phase étant miscible en toutes propertions au non-solvant ou au mélange de non-solvants de la seconde phase, (3) on ajoute, sous agitation modérée, la première phase à la seconde, de manière à obtenir une suspension colloïdale de nanocapsules, l'agitation étant maintenue jusqu'à polymérisation complère des monomères α et β , (4) si on le désire, on élimine tout ou partie du solvant ou du mélange de solvants et de non-solvant ou du mélange de nanocapsules.

0.01/68235

PROCEDE DE PREPARATION DE PARTICULES COLLOIDALES SOUS FORME DE NANOCAPSULES

L'invention a pour objet un nouveau procédé de préparation de particules colloïdales sous forme de nanocapsules par polycondensation interfaciale.

5

10

15

20

25

30

La vectorisation des principes actifs est une technique qui a pris un essor considérable et fait l'objet de nombreuses recherches ces dernières années, aboutissant à la conception de diverses formes de particules colloïdales associant une molécule active et un support. L'utilisation de vecteurs médicamenteux présente en effet l'avantage de pouvoir intervenir sur le processus de distribution du principe actif dans l'organisme et d'en augmenter l'efficacité. La molécule active incorporée dans un matériau support peut être orientée spécifiquement vers la cible à traiter où sa concentration est alors localement élevée. L'efficacité est ainsi accrue, tout en diminuant les doses nécessaires et par là aussi les risques d'effets secondaires par imprégnation d'autres organes.

L'association entre le matériau support et le principe actif peut se faire de diverses façons en fonction du type de particules et de l'effet recherché. La molécule active peut être dissoute, dispersée ou encapsulée dans la particule, ou alors elle peut être adsorbée ou fixée en surface de la particule. Dans le premier cas, la libération du principe actif se fera par dissolution du polymère constituant la particule ou sa membrane ou par diffusion à travers ce dernier. La nature et la structure du réseau de polymère et notamment sa porosité jouent alors un rôle fondamental. Dans le cas d'une liaison en surface, cette dernière doit être réversible pour libérer le principe au niveau de la cible à traiter. Il est également intéressant de modifier la nature du polymère utilisé afin de faire varier des caractéristiques telles que porosité, biodégradabilité, propriétés de transfert, ainsi que la biodisponibilité du principe actif.

Les méthodes de préparation de vecteurs colloïdaux sont diverses, chacune d'entre elles permettant l'utilisation de réactifs particuliers et conduisant à un type donné de particules.

Les méthodes faisant appel à une polymérisation en solution utilisent principalement deux types de monomères : les dérivés de l'acide acrylique et les cyanoacrylates d'alkyle. Les brevets BE-A-808 034, BE-A-839 748 décrivent la

10

15

20

25

30

formation de particules submicroniques par polymérisation micellaire d'un dérivé de l'acide acrylique, par exemple le méthacrylate de méthyle ou de butyle, ou un mélange de plusieurs monomères afin de préparer un copolymère méthacrylique. La réaction de polymérisation s'effectue en phase aqueuse, en présence d'un initiateur chimique de radicaux libres, sous agitation, à une température voisine de 90°C. L'initiation peut également être faite par exemple par irradiation de rayons gamma. Les particules obtenues sont sphériques, de taille comprise entre 200 et 500 nm. Elles peuvent être utilisées comme vecteur de médicament par fixation sur leur surface de diverses molécules pharmacologiquement actives. Bien que leur formulation soit stable et reproductible, cette stabilité constitue un des inconvénients majeurs de ce type de particules. En effet, la plupart des polymères acryliques présentent une biodégradabilité très lente, voire nulle d'où la possibilité d'une accumulation du matériau dans les tissus.

La demande EP 007 895 décrit la formation de nanoparticules obtenues par polymérisation d'un cyanoacrylate d'alkyle et contenant une substance biologiquement active. Dans ce procédé, le monomère est ajouté à une phase aqueuse contenant un agent tensioactif, sous agitation importante. La polymérisation anionique, initiée par les ions hydroxyles de la phase aqueuse, a lieu à température ambiante. Le pH de la solution contrôle la vitesse de polymérisation et doit être faible (entre 2 et 3) pour optimiser la formation des particules. Le principe actif est généralement introduit pendant la polymérisation afin d'être incorporé aux particules, sauf s'il risque d'être dégradé par l'acidité du milieu. Il doit alors être adsorbé en surface après formation des particules. Les polymères à base de cyanoacrylate d'alkyle sont rapidement biodégradables, mais la toxicité des produits de dégradation, non négligeable, peut en limiter l'utilisation.

Les demandes FR-A-2 504 408 et FR-A-2 515 960 présentent une méthode de formation de nanocapsules à base de cyanoacrylate d'alkyle, dans laquelle le monomère cyanoacrylique est dissous dans un solvant miscible à l'eau contenant une huile. Cette solution est introduite dans une phase aqueuse sous agitation. La diffusion du solvant organique se produit simultanément à la polymérisation du monomère à l'interface huile/eau. Les nanocapsules ont un diamètre moyen compris

10

15

20

25

30

entre 200 et 300 nm, avec une épaisseur de paroi très faible de quelques nanomètres selon ALKHOURI et Coll, Pharm. Acta Helv, 61, 274-281, 1986.

Le procédé selon l'invention permet l'obtention de nanocapsules à base de polymères nouvellement associés dans cette application, par une technique de polycondensation interfaciale de deux monomères. Dans un aspect avantageux, lesdites nanocapsules ont un diamètre moyen inférieur à 600 nm, notamment compris entre 50 et 600 nm.

L'invention a donc pour objet un procédé de préparation de systèmes colloïdaux dispersibles, sous forme de nanocapsules dont la paroi est constituée par un polymère obtenu par polycondensation de deux monomères α et β et dont le cœur est constitué par une substance B, caractérisé en ce que :

- (1) on prépare une première phase liquide constituée par une solution de monomère α dans un solvant ou un mélange de solvants, et contenant au moins un agent tensioactif ainsi que la substance B en solution ou en suspension,
- (2) on prépare une seconde phase liquide constituée par un non-solvant ou un mélange de non-solvants du monomère α et de la substance B, contenant le monomère β et au moins un agent tensioactif; le solvant ou le mélange de solvants de la première phase étant miscible en toutes proportions au non-solvant ou au mélange de non-solvants de la seconde phase, et la concentration du monomère β étant en excès d'au moins 5 fois en nombre de moles par rapport à la concentration du monomère α ,
- (3) on ajoute, sous agitation modérée, la première phase à la seconde, de manière à obtenir une suspension colloïdale de nanocapsules, l'agitation étant maintenue jusqu'à polymérisation complète des monomères α et β ,
- (4) si on le désire, on élimine tout ou partie du solvant ou du mélange de solvants et de non-solvant ou du mélange de non-solvants de manière à obtenir une suspension colloïdale de concentration voulue en nanocapsules.

A l'étape (4), on peut également, si on le désire, obtenir une poudre de nanocapsules en mettant en oeuvre une technique de dessiccation (nébulisation, lyophilisation), après addition de substances stabilisantes telles que des sucres, lactose, glucose etc.

10

15

20

25

30

Contrairement aux procédés décrits précédemment, les 2 monomères sont mis en oeuvre dès le départ dans les 2 phases, et non successivement après l'obtention d'une nanoémulsion stable dans la première phase.

Le solvant ou le mélange de solvants de la première phase étant miscible en toutes proportions au non-solvant ou au mélange de non-solvants de la seconde phase, sa diffusion vers la seconde phase lors de l'injection entraı̂ne la formation instantanée de gouttelettes huileuses de diamètre moyen inférieur à 300 nm. Simultanément, le monomère β diffuse vers la première phase et la réaction de polycondensation a lieu à l'interface huile/eau formant la membrane des nanocapsules.

La formation des gouttes et le début de la polymérisation ont lieu simultanément. La polymérisation n'est pas libre, elle a effectivement lieu à l'interface huile/eau et les particules formées sont de type capsules. L'originalité du procédé selon l'invention réside dans le fait que les deux monomères présents initialement dans chacune des phases réagissent à l'interface des gouttelettes dès la formation de ces dernières, et ce malgré la faible taille de la dispersion. Il n'est donc pas nécessaire de mettre en oeuvre un processus en deux phases successives comprenant la création de l'émulsion dans un premier temps, suivie de l'addition du deuxième monomère pour débuter la polymérisation.

Par rapport à une polymérisation en émulsion, qui demande souvent une méthodologie longue et difficile à mettre en oeuvre, le procédé selon l'invention présente donc l'avantage d'une grande simplicité dans la mesure où il ne nécessite pas la présence d'un initiateur de polymérisation ni de dispositif particulier pour créer l'émulsion.

La formation des particules est instantanée. Cependant, la réaction de polymérisation a lieu avec une cinétique dépendant de la nature chimique et de la concentration des deux monomères dans les 2 phases.

Le solvant ou le mélange de solvants de la première phase est avantageusement un solvant organique ou un mélange de solvants organiques, de sorte que la première phase constituera la phase organique, et le non-solvant ou le mélange de non-solvants de la seconde phase constitueront la phase aqueuse.

Selon un autre aspect du procédé selon l'invention, on peut également utiliser deux phases organiques ou deux phases aqueuses dans la mesure où sont remplies les conditions de solubilité du monomère α dans le solvant ou le mélange de solvants de la première phase, d'insolubilité du monomère α dans le non-solvant ou le mélange de non-solvants de la seconde phase, de miscibilité du solvant ou du mélange de solvants de la première phase et du non-solvant ou du mélange de non-solvants de la seconde phase, ainsi que de leur non-réactivité avec les monomères.

5

10

15

20

25

30

Dans la mesure où il n'est pas réactif avec le monomère α , le solvant peut être par exemple un solvant organique, de préférence volatil, choisi parmi une cétone inférieure (acétone, méthyléthylcétone, etc...), un hydrocarbure léger ou un mélange d'hydrocarbures légers (hexane, etc...), un hydrocarbure léger chloré (chloroforme, chlorure de méthylène), d'autres solvants usuels (acétonitrile, dioxane, tétrahydrofurane, etc...), et leurs mélanges.

Dans la mesure où les conditions de solubilité, d'insolubilité, de miscibilité et de non réactivité avec les monomères sont remplies, le solvant ou le mélange de solvants de la première phase peut constituer de 10 à 90% du mélange final, de préférence de 20 à 60% du mélange final, de préférence encore de 25 à 50%.

Le non- solvant ou le mélange de non-solvants, dans la mesure où il n'est pas réactif avec le monomère β et où il est miscible en toutes proportions au solvant ou au mélange de solvants de la première phase, peut être par exemple de l'eau ou une solution aqueuse ou tout autre solvant ou liquide organique remplissant les conditions précitées.

Avantageusement, la concentration du monomère α dans le solvant ou le mélange de solvants de la première phase est comprise entre 0,01 et 20% en poids de préférence entre 0,1 et 10 % et plus préférentiellement entre 0,2 et 5 %. La concentration du monomère β dans le non-solvant ou le mélange de non-solvants de la seconde phase peut également être comprise entre 0,05 et 50% en poids de préférence entre 0,5 et 40 % et plus préférentiellement entre 1 et 25 %.

Dans un aspect préféré, le monomère α est choisi parmi les dichlorures d'acides et les diisocyanates. Des monomères α particulièrement préférés sont le chlorure de téréphtaloyle, le chlorure de sébacolyle, le toluylène-2,4-diisocyanate et l'hexaméthylène diisocyanate.

Selon un autre aspect préféré de l'invention, le monomère β est une diamine, par exemple la diéthylène triamine, la diéthylène diamine ou l'hexaméthylène diamine, ou un dérivé de glycol.

Dans un aspect avantageux, la concentration du monomère β est en excès par rapport à celle du monomère α , de préférence en excès d'au moins 5 fois en nombre de moles.

5

10

30

35

En effet, de manière surprenante, on a trouvé que ces conditions confèrent une grande stabilité aux nanocapsules et permettent, en augmentant la concentration en monomère α, d'augmenter l'épaisseur de la membrane des nanocapsules à volonté, ce qui conduit à une augmentation du diamètre moyen des nanocapsules. Comme le montre le tableau ci-dessous et sachant que toutes les autres proportions étant gardées, cette augmentation du diamètre moyen ne peut être expliquée que par une augmentation de l'épaisseur de la membrane des nanocapsules.

Influence de la quantité de chlorure de téréphtaloyle sur la taille des nanocapsules

Une hypothèse à cet égard est que la polymérisation continue à se produire au niveau de la membrane des nanocapsules, alors que selon les procédés décrits dans l'art antérieur, la polymérisation s'arrête après la formation d'une première membrane polymérique fine.

Le procédé selon l'invention permet donc avantageusement, selon les monomères mis en oeuvre et l'épaisseur de la membrane polymérique, d'obtenir des nanocapsules ayant une biodégradabilté contrôlée, voire si on le souhaite, des nanocapsules ayant une membrane non biodégradable et insoluble, pouvant

constituer un réservoir de principe actif dont la libération s'effectue uniquement par diffusion à travers la membrane polymérique.

La substance B peut être n'importe quelle substance soluble ou dispersible dans le solvant ou le mélange de solvants choisi. En particulier, la substance B peut être une huile végétale ou minérale, ou toute substance huileuse, par exemple l'huile d'olive, le benzoate de benzyle, le myristate d'isopropyle, des glycérides d'acide gras ou l'huile d'amande douce.

5

10

15

20

25

30

La substance B peut également être une substance biologiquement active, par exemple une molécule utilisable comme principe actif de médicament ou comme précurseur d'un principe actif de médicament, ou encore un produit de contraste ou un réactif biologique.

La substance B peut également être un pigment, une encre, un lubrifiant ou un agent de traitement de surface.

On peut également utiliser en tant que substance B un mélange des substances ci-dessus, par exemple une huile contenant une ou plusieurs de ces substances en solution ou en suspension.

Les agents tensioactifs utilisés peuvent être des agents tensioactifs naturels, ou des agents tensioactifs synthétiques ioniques, non ioniques ou amphotères.

Dans chacune des phases, l'agent tensioactif ou le mélange d'agents tensioactifs est présent à raison de 0,01 à 10% en poids, de préférence 0,1 à 1% en poids.

En tant qu'agent tensioactif ionique, on utilisera par exemple le laurylsulfate de sodium.

En tant qu'agent tensioactif non ionique, et selon la phase dans laquelle ils seront mis en oeuvre, on utilisera de préférence des agents tensioactifs dont la balance hydrophile/lipophile (de l'anglais « HLB » : hydrophilic/lipophilic balance) est élevée tels que, par exemple, les dérivés de sorbitanne polyoxoéthylénés (de type Tween[®]), des copolymères d'oxyde d'éthylène et de propylène (de type Pluronic[®]) ou des éthers d'alcools gras et de polyoxoéthylèneglycol ou au contraire des agents tensioactifs dont la balance hydrophile/lipophile est basse, tels que les dérivés de sorbitanne (de type Span®).

En tant qu'agent tensioactif amphotère, on utilisera par exemple la lécithine d'oeuf ou de soja ou ses dérivés purifiés.

Selon un aspect préféré du procédé, la première phase est une phase organique et on utilise comme agent tensioactif un ou plusieurs agent(s) tensioactif(s) amphotères et/ou non ioniques, de préférence, ceux dont la balance hydrophile/lipophile est basse parmi ceux mentionnés ci-dessus.

5

10

15

20

25

30

Avantageusement, la seconde phase est une phase aqueuse dans laquelle on utilise comme agent tensioactif un ou plusieurs agent(s) tensioactif(s) ioniques et/ou non ioniques, de préférence ceux dont la balance hydrophile/lipophile est élevée parmi ceux mentionnés ci-dessus.

La réaction a lieu à température ambiante, sous agitation modérée. La durée de polymérisation est variable et dépend de la composition de chacune des phases.

L'agitation n'est pas indispensable pour la formation des nanocapsules mais permet d'homogénéiser la préparation, notamment lorsqu'on utilise de grands volumes.

Lorsque la polymérisation est complète, le solvant ou le mélange de solvants ainsi que le non solvant ou le mélange de non-solvants du mélange final peuvent être au moins pour partie, éliminés par évaporation sous pression réduite ou par une méthode de dessiccation appropriée ou encore par ultrafiltration tangentielle, cette technique permettant également d'éliminer les éventuels monomères résiduels.

Les nanocapsules obtenues ont un diamètre moyen compris entre 50 et 600 nm, leur population étant monodispersée. Les nanocapsules peuvent être conservées en milieu aqueux.

Le procédé selon l'invention peut être adapté à divers couples de monomères pour former différents types de polymères selon l'application envisagée, par exemple polyamide, polyurée, polyuréthane, polyester, polycarbonate, polysulfonate, polysulfonamide, etc.

Le large choix des couples des monomères permet d'avoir des nanocapsules de biodégradabilité contrôlée (selon l'épaisseur de la membrane et la nature du couple choisi), ce que ne peut offrir l'art antérieur.

Selon les monomères, et contrairement à l'art antérieur, on peut obtenir une membrane non biodégradable et insoluble et on obtient ainsi un réservoir du produit actif, dont la libération s'effectue uniquement par diffusion à travers la membrane polymérique.

Le choix de différents types de polymères permet d'utiliser les particules formées pour des applications très variées dans de nombreux domaines industriels et notamment en médecine humaine et vétérinaire, cosmétique, chimie, agrochimie, etc.

L'invention est illustrée de manière non limitative par les exemples ci-après :

EXEMPLE 1 : Préparation de nanocapsules de polyamide

On prépare une solution organique en dissolvant, dans 20 ml d'acétone, 100 mg de chlorure de téréphtaloyle, 200 mg d'huile Miglyol[®] 812 (huile neutre formée d'un mélange de triglycérides d'acide gras en C₈-C₁₀) et 40 mg de lécithine (Lipoïd[®] S75).

On prépare une phase aqueuse en dissolvant, dans 40 ml d'eau, 500 mg de diéthylènetriamine et 60 mg de Pluronic[®] F68 (polymère mixte d'oxyde d'éthylène et de propylène glycol). On injecte la phase organique dans la phase aqueuse, les nanocapsules se forment instantanément. On maintient une agitation magnétique modérée (500 r.p.m.) jusqu'à la fin de la polycondensation. Enfin, on élimine le solvant organique et une partie de l'eau par évaporation. Le diamètre moyen des nanocapsules mesuré à l'aide d'un granulomètre à rayon laser (COULTER[®] LS 230) est de 300 nm.

EXEMPLE 2:

5

10

15

20

On procède comme dans l'exemple 1, mais en remplaçant la diéthylènetriamine par la diéthylènediamine. On obtient des nanocapsules ayant un diamètre moyen de 285 nm.

EXEMPLE 3:

On procède comme dans l'exemple 1, mais en remplaçant les 500 mg de 30 diéthylènetriamine par 500 mg d'hexaméthylènediamine. On obtient des nanocapsules ayant un diamètre moyen de 500 nm.

EXEMPLE 4:

On procède comme dans l'exemple 1, mais en remplaçant les 100 mg de chlorure de téréphtaloyle par 100 mg de chlorure de sébacolyle. On obtient des nanocapsules ayant un diamètre moyen de 300 nm.

EXEMPLE 5:

On procède comme dans l'exemple 1, mais en augmentant la quantité de Miglyol[®] 812 à 300mg. On obtient des nanocapsules ayant un diamètre moyen de 10 415 nm.

EXEMPLE 6:

On procède comme dans l'exemple 1, mais en augmentant la quantité de chlorure de téréphtaloyle à 140 mg. On obtient des nanocapsules ayant un diamètre moyen de 440 nm.

EXEMPLE 7:

15

25

30

On procède comme dans l'exemple 1, mais en ajoutant dans la phase acétonique 20 mg de Span[®] 80. On obtient des nanocapsules ayant un diamètre 20 moyen de 280 nm.

EXEMPLE 8:

On procède comme dans l'exemple 1, mais en ajoutant dans la phase aqueuse, 30 mg de Tween[®] 80. On obtient des nanocapsules ayant un diamètre moyen de 290 nm.

EXEMPLE 9 : Préparation de nanocapsules de polyurée

On procède comme dans l'exemple 1, mais en remplaçant les 100 mg de chlorure de téréphtaloyle par 100 mg de toluylène-2,4-diisocyanate. Les nanocapsules obtenues ont un diamètre moyen de 120 nm.

EXEMPLE 10:

5

10

15

20

On procède comme dans l'exemple 1, mais en remplaçant les 100 mg de chlorure de téréphtaloyle par 100 mg d'hexaméthylène diisocyanate. Les nanocapsules obtenues ont un diamètre moyen de 118 nm.

EXEMPLE 11 : Préparation de nanocapsules de polyamide contenant de la lidocaïne

On prépare une solution organique en dissolvant, dans 20 ml d'acétone, 100 mg de chlorure de téréphtaloyle, 40 mg de lidocaïne dissous dans 200 mg d'huile (Mygliol[®] 812), et 40 mg de lécithine (Lipoïd[®] S75).

On prépare une phase aqueuse en dissolvant, dans 40 ml d'eau, 500 mg de diéthylènetriamine et 60 mg de Pluronic[®] F68.

On injecte la phase organique dans la phase aqueuse, les nanocapsules se forment instantanément.

On maintient l'agitation jusqu'à la fin de la polycondensation. Enfin, on élimine le solvant organique et une partie de l'eau par évaporation. Les nanocapsules obtenues ont un diamètre moyen de 318 nm.

Après un repos prolongé de plusieurs jours, l'aspect blanc à reflets bleutés de la suspension demeure inchangé et on n'observe, en particulier, ni rupture ni variation considérable de la taille des nanocapsules.

EXEMPLE 12 : Préparation de nanocapsules de polyamide contenant de la progestérone

On procède comme dans l'exemple 9, mais en ajoutant 5 mg de progestérone dans la phase organique. Les nanocapsules obtenues ont un diamètre moyen de 148 nm. La suspension garde son aspect après plusieurs jours de stockage.

REVENDICATIONS

5

10

15

20

25

- 1 Procédé de préparation de systèmes colloïdaux dispersibles, sous forme de nanocapsules dont la paroi est constituée par un polymère obtenu par polycondensation de deux monomères α et β et dont le cœur est constitué par une substance B, caractérisé en ce que :
- (1) on prépare une première phase liquide constituée par une solution de monomère α dans un solvant ou un mélange de solvants, et contenant au moins un agent tensioactif ainsi que la substance B en solution ou en suspension,
- (2) on prépare une seconde phase liquide constituée par un non-solvant ou un mélange de non-solvants du monomère α et de la substance B, contenant le monomère β et au moins un agent tensioactif; le solvant ou le mélange de solvants de la première phase étant miscible en toutes proportions au non-solvant ou au mélange de non-solvants de la seconde phase et la concentration du monomère β étant en excès d'au moins 5 fois en nombre de moles par rapport à la concentration du monomère α ,
 - (3) on ajoute, sous agitation modérée, la première phase à la seconde, de manière à obtenir une suspension colloïdale de nanocapsules, l'agitation étant maintenue jusqu'à polymérisation complète des monomères α et β ,
 - (4) si on le désire, on élimine tout ou partie du solvant ou du mélange de solvants et de non-solvant ou du mélange de non-solvants de manière à obtenir une suspension colloïdale de concentration voulue en nanocapsules.
 - 2 Procédé selon la revendication 1, caractérisé en ce que le solvant ou le mélange de solvants de la première phase est un solvant organique ou un mélange de solvants organiques et le non-solvant ou le mélange de non-solvants de la seconde phase constituent une phase aqueuse.
 - 3 Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la concentration du monomère α dans le solvant ou le mélange de solvants de la première phase est comprise entre 0,01 et 20% en poids, de préférence entre 0,1 et 10 % et plus préférentiellement entre 0,2 et 5 %.
- 4 Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la concentration du monomère β dans le non-solvant ou le mélange de non-

10

15

20

25

30

solvants de la seconde phase est. comprise entre 0,05 et 50 % en poids, de préférence entre 0,5 et 40 % et plus préférentiellement entre 1 et 25 %.

- 5 Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le monomère α est choisi parmi les dichlorures d'acides et les diisocyanates.
- 6 Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le monomère β est une diamine ou un dérivé de glycol.
 - 7 Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la substance B est une huile végétale ou minérale ou toute substance huileuse.
- 8 Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la substance B est une substance biologiquement active.
- 9 Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la substance B est une huile contenant une ou plusieurs substance(s) biologiquement active(s) en solution ou en suspension.
- 10 Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'agent tensioactif ou le mélange d'agents tensioactifs est présent dans chaque phase à raison de 0,01 à 10% en poids, de préférence 0,1 à 1% en poids.
- 11 Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la première phase est une phase organique et on utilise comme agent tensioactif au moins un agent tensioactif amphotère et/ou non ionique, de préférence ayant une balance hydrophile/lipophile basse.
- 12 Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la seconde phase est une phase aqueuse et on utilise comme agent tensioactif au moins un agent tensioactif ionique et/ou non ionique, de préférence ayant une balance hydrophile/lipophile élevée.
- 13 Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les nanocapsules obtenues ont un diamètre moyen compris entre 50 et 600 nm.
- 14 Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le solvant ou le mélange de solvants de la première phase et le cas échéant le non-solvant ou le mélange de non-solvants de la seconde phase sont éliminés au moins pour partie par évaporation ou par une méthode de dessiccation appropriée ou par ultrafiltration tangentielle.

15 - Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que qu'on obtient une poudre de nanocapsules après addition à la suspension colloïdale obtenue à l'étape (4) de substances stabilisantes telles que des sucres, lactoses, etc ; et mise en oeuvre d'une technique de dessiccation (lyophilisation, nébulisation).

INTERNATIONAL SEARCH REPORT

International plication No PCT/FR U1/00623

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B01J13/14 B01J13/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\label{localization} \begin{array}{ll} \mbox{Minimum documentation searched (classification system followed by classification symbols)} \\ \mbox{IPC 7} & \mbox{B01J} & \mbox{A61K} \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 13139 A (DU PONT ;BEESTMAN GEORGE BERNARD (US)) 23 June 1994 (1994-06-23) page 2, line 22 -page 2, line 35; claims 1-4; examples 1-12	1-15
А	WO 94 15590 A (ABACOL LTD ;KATZ GEORGY ARKADIEVICH (RU); DYATLOV VALERY A (RU)) 21 July 1994 (1994-07-21) page 9, line 4 -page 9, line 11; examples 1-8	1-15
A	US 5 500 224 A (VRANCKX HENRI ET AL) 19 March 1996 (1996-03-19) claim 6	1-15
А	FR 2 766 368 A (UNIV CLAUDE BERNARD LYON) 29 January 1999 (1999-01-29) the whole document	1-15
	-/	

	'
X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
21 May 2001	29/05/2001
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Willsher, C

INTERNATIONAL SEARCH REPORT

International Discation No
PCT/FR U1/00623

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	I Data was a second
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 018, no. 506 (C-1252), 22 September 1994 (1994-09-22) & JP 06 170214 A (FUJI XEROX CO LTD), 21 June 1994 (1994-06-21) abstract	1-15
A	PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08, 29 September 1995 (1995-09-29) & JP 07 116500 A (FUJI XEROX CO LTD), 9 May 1995 (1995-05-09) abstract	1-15

INTERNATIONAL SEARCH REPORT

Inforn. on patent family members

International offication No

				101/11	01/00023
Patent document cited in search report		Publication date	Patent fam member(s		Publication date
WO 9413139	A	23-06-1994	AU 5681 CA 2150 EP 0671	2465 B .394 A .9920 A .878 A .206 T	03-10-1996 04-07-1994 23-06-1994 20-09-1995 07-05-1996
WO 9415590	A	21-07-1994	AU 5714 CA 2153 EP 0682 EP 0682 WO 9415 JP 8505 PL 310	1194 A 1294 A 1342 A 1513 A 1651 A 1907 A 1383 T 10072 A	15-08-1994 15-08-1994 21-07-1994 22-11-1995 22-11-1995 21-07-1994 11-06-1996 27-11-1995 27-11-1995
US 5500224	A	19-03-1996	AU 670 AU 5309 CA 2113 DE 69413 DE 69413 DK 608 EP 0608 ES 2122 FI 940 HU 67 JP 6256 NO 940 NZ 250 PL 301 SG 43	2111 T 0840 B 0794 A 0857 D 0857 T 0207 A 0217 T 0115 A 0213 A 0111 A 0673 A 0841 A 08682 A	15-10-1998 01-08-1996 21-07-1994 19-07-1994 19-11-1998 15-04-1999 23-06-1999 27-07-1994 16-12-1998 19-07-1994 28-03-1995 13-09-1994 19-07-1994 25-11-1994 25-07-1994 14-11-1997 22-08-1994
FR 2766368	A	29-01-1999	BR 9815 EP 1003	5198 A 5562 A 3488 A 3766 A	16-02-1999 16-01-2001 31-05-2000 04-02-1999
JP 06170214	Α	21-06-1994	NONE		
JP 07116500	Α	09-05-1995	NONE		

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Int ationale No PCT/FR u1/00623

A. CLASSEN	IENT DE L'	'OBJET DE	LA DEMANDE	
CIB 7	B01J1	13/14	B01J13/	′16

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 B01J A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relevent des domaines sur lesquels a poné la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ

C. DOCUM	ENTS CONSIDERES COMME PERTINENTS	
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Α	WO 94 13139 A (DU PONT ;BEESTMAN GEORGE BERNARD (US)) 23 juin 1994 (1994-06-23) page 2, ligne 22 -page 2, ligne 35; revendications 1-4; exemples 1-12	1-15
Α	WO 94 15590 A (ABACOL LTD ;KATZ GEORGY ARKADIEVICH (RU); DYATLOV VALERY A (RU)) 21 juillet 1994 (1994-07-21) page 9, ligne 4 -page 9, ligne 11; exemples 1-8	1–15
A	US 5 500 224 A (VRANCKX HENRI ET AL) 19 mars 1996 (1996-03-19) revendication 6	1-15
Α	FR 2 766 368 A (UNIV CLAUDE BERNARD LYON) 29 janvier 1999 (1999-01-29) le document en entier/	1–15

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette dale "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	 T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X' document particulièrement pertinent; l'invent ion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolement Y' document particulièrement pertinent; l'invent iton revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 21 mai 2001	Date d'expédition du présent rapport de recherche internationale 29/05/2001
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Willsher, C

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Intractionale No
PCT/FR U1/00623

		PC1/FR 01/00623		
C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS			
Catégorie ^c	Identification des documents cités, avec,le cas échéant, l'indicationdes passages pertinents	no. des revendications visées		
А	PATENT ABSTRACTS OF JAPAN vol. 018, no. 506 (C-1252), 22 septembre 1994 (1994-09-22) & JP 06 170214 A (FUJI XEROX CO LTD), 21 juin 1994 (1994-06-21) abrégé	1-15		
A	PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08, 29 septembre 1995 (1995-09-29) & JP 07 116500 A (FUJI XEROX CO LTD), 9 mai 1995 (1995-05-09) abrégé	1-15		

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux men s de familles de brevets

Demande int/ ationale No PCT/FR U1/00623

					101/11 01/00023		
Document brevet c au rapport de recher		Date de publication		embre(s) de la lle de brevet(s)		Date de publication	
WO 9413139	А	23-06-1994	AU AU CA EP JP	672465 5681394 2150920 0671878 8504206	A A A	03-10-1996 04-07-1994 23-06-1994 20-09-1995 07-05-1996	
WO 9415590	А	21-07-1994	AU AU CA EP EP WO JP PL PL	5714194 5714294 2153342 0682513 0682651 9415907 8505383 310072 310073	A A A T A	15-08-1994 15-08-1994 21-07-1994 22-11-1995 22-11-1995 21-07-1994 11-06-1996 27-11-1995	
US 5500224	A	19-03-1996	AT AU CA DE DK EP ES FI HU JP NO NZ PL SG ZA	172111 670840 5309794 2113243 69413857 69413857 608207 0608207 2122217 940115 67213 6256172 940111 250673 301841 43682 9400205	B A A D T T A T A A A A A A A	15-10-1998 01-08-1996 21-07-1994 19-07-1994 19-11-1998 15-04-1999 23-06-1999 27-07-1994 16-12-1998 19-07-1994 28-03-1995 13-09-1994 19-07-1994 25-11-1994 25-07-1994 14-11-1997 22-08-1994	
FR 2766368	A	29-01-1999	AU BR EP WO	8866198 9815562 1003488 9904766	A A	16-02-1999 16-01-2001 31-05-2000 04-02-1999	
JP 06170214	Α	21-06-1994	AUCU	N			
JP 07116500	A	09-05-1995	AUCU	 N			