PROGRAMMAL

NTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1 INVENTORS NAME:

YMMETRICAL TUNNEL

1/18

FIG. 1A (PRIOR ART)

TOOKET. TELEPOOL

TOOWS TWINDOW

, DOCKET NO.: 1303.020US1

FIG. 1C (PRIOR ART)

FIG. 2

INVENTORS NAME:

3/18

COCHULUTE TO THE COL

KODESO. HEYEHOGO

INVENTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1

5/18

TODEAD. 4ETETPED

NTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1 INVENTORS NAME:

7/18

COCKAC" TARKECT

NTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1 INVENTORS NAME:

8/18

CODESC. TELETOR

9/18

DOSHEXEN . DESIDI

TODERD. PETETODI

INVENTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1

11/18

DOSHELEH OBEGGI

FIG. 6B

INVENTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1

12/18

TOOKED. TELETORO

LODEAD" 1ETEHEGD

SYMMETRICAL TUNNEL

FIG. 7B

COOKET PETEROCI

NTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1 INVENTORS NAME:

FIG. 7C

LODEAD.4ETE1001

INVENTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1

Al ~ 4.1eV Pt ~ 5.3eV	ϕ_{o}							
E _F						_		
·		FIG.	8					
	E _G	ϵ_{r}	€∞	χ	φ _o (Pt)	φ _o (Al)		
Conventional Insulators								
SiO ₂	~ 8 eV	4	2.25	0.9 eV		3.2 eV		
Si ₃ N ₄	~ 5 eV	7.5	3.8			2.4 eV		
Metal Oxides								
Al_2O_3	7.6 eV	9 to 11	3.4			~ 2 eV		
NiO								
Transition Metal Oxides								
Ta ₂ O ₅	4.65 - 4.85		4.8	3.3	2.0	0.8 eV		
TiO ₂	6.8	30 80	7.8	3.9	est. 1.2 eV			
ZrO ₂	5 - 7.8	18.5 25	4.8	2.5		1.4		
Nb ₂ O ₅	3.1	35-50						
Y_2O_3	6		4.4			2.3		
Gd ₂ O ₃								
Perovskite Oxides								
SrBi ₂ Ta ₂ O ₃	4.1		5.3	3.3	2.0	0.8 eV		
SrTiO ₃	3.3		6.1	3.9	1.4	$0.2\mathrm{eV}$		
PbTiO ₃	3.4		6.25	3.5	1.8	0.6 eV		
PbZrO ₃	3.7		4.8		est. 1.4 eV	0.2 eV		

FIG. 9

TODEAD" - FETEROLE

Metal	Osygen Solub.**, at. %	Oxide Stability Range***	Semicond. Type	Structure Temp.	Transform Temp., °C
Ta	0.8	TaO _{4.7-5.0}	n	Orthorhom.	t.p. 1350
Ti	28	TiO _{3.82-5.0}	n	Rutile	m.p. 1920
Zr	29	ZrO _{3.66-5.0}	n	Monoclinic	t.p. 1170
Nb	2.3	$Nb_2O_{4.86-5.0}$	n	Monoclinic	m.p. 1495
Al	v. small	Al ₂ O _{2.999-3.0}	n	Corundum	m.p. 2050
Pb	v. small	PbO	(p)	Orthorhom.	m.p. 885
Si	v. small	SiO ₂	n or p	Tetra. (Cyst.)	m.p. 1713

FIG. 10

		Work Function, eV	
Metal	From C-V	From Photoresponse	From Vacuum
Cs			2.2
Eu			2.5
Sm	•		2.7
Li			2.9
Ca			3.0
Al	4.1	4.1	4.25
Cu	4.7	4.7	4.25
Au	5.0	5.0	4.8
Ag	5.1	5.05	4.3
Ti .			4.3
Mo	·		4.7
Rh			5.1
Ir			5.3
Pt			5.8
Se	•		5.9

FIG. 11

TODEAD" TETETOPO

INVENTORS NAME:

Leonard Forbes et al. DOCKET NO .: 1303.020US1

RRAY LOGIC OR MEMORY DEVICES WIND BARRIERS
INVENTORS NAME: Leonard Forbes et al.
DOCKET NO.: 1303.020US1

18/18

YMMETRICAL TUNNEL

FODESO. TETETOR