

Self-Adaptive Security Systems

Self-Adaptive Security System Aimee Borda

Motivational Example¹

Security Policy: No visitor should be left alone with Server in R₃

¹ Pasquale, Liliana et al. "Topology aware adaptive security." in *Proc of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems* 2014.

Motivational Example¹

Security Policy: No visitor should be left alone with Server in R₃

¹ Pasquale, Liliana et al. "Topology aware adaptive security." in *Proc of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems* 2014.

Motivational Example¹

20 Visitors & 20 Employees

$$e_1$$
 in $R_1 \Rightarrow v_1$ allowed in R_1
 e_1 in $R_1 \Rightarrow v_1$ allowed in R_2
 e_1 in $R_1 \Rightarrow v_1$ not allowed in R_3
 e_1 in $R_1 \Rightarrow v_1$ allowed in R_4
 e_1 in $R_2 \Rightarrow v_1$ allowed in R_1
 e_1 in $R_2 \Rightarrow v_1$ allowed in R_2
 e_1 in $R_2 \Rightarrow v_1$ not allowed in R_3
 e_1 in $R_2 \Rightarrow v_1$ allowed in R_4
 e_1 in $R_3 \Rightarrow v_1$ allowed in R_4
 e_1 in $R_3 \Rightarrow v_1$ allowed in R_2
 e_1 in $R_3 \Rightarrow v_1$ allowed in R_3
 e_1 in $R_3 \Rightarrow v_1$ allowed in R_4
 e_1 in $R_3 \Rightarrow v_1$ allowed in R_4
 e_1 in $R_3 \Rightarrow v_1$ allowed in R_4
 e_1 in $R_4 \Rightarrow v_1$ allowed in R_4

$$20 * 20 * 4$$
 $= 1600$

¹ Pasquale, Liliana et al. "Topology aware adaptive security." in *Proc of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems* 2014.

MAPE Feedback Loop²

4-Step Adaptive Process:

- 1. Monitor
- 2. Analysis
- 3. Planning
- 4. Execution

² Tsigkanos, Christos et al. "Engineering topology aware adaptive security: Preventing requirements violations at runtime." *Requirements Engineering Conference (RE), 2014 IEEE*

What exactly do we want to Verify?

We want to show that our system is **correct** wrt a set of Security Policies

Because of the increased complexity, we need **compositional** reasoning:

- Monitoring: all events are <u>detected</u>
- Analysis: all violations are <u>found</u>
- Planning: counter-measures guards against all violations
- Execution: plan implemented <u>faithfully</u>

² Tsigkanos, Christos et al. "Engineering topology aware adaptive security: Preventing requirements violations at runtime." *Requirements Engineering Conference (RE)*, 2014 IEEE

How can we verify such Systems?

Run-time Monitoring^{3,4}

⁴ Bauer, Lujo, et al. "More enforceable security policies." in *Proc. of the Workshop on Foundations of Computer Security (FCS'02)*, Denmark 2002.

³ Schneider, Fred B. "Enforceable security policies." ACM Transactions on Information and System Security (TISSEC) 2000

Our Approach: Adaptive Monitors

Verifying Adaptive Monitors

Conclusion

Research Questions:

- What is the right model for SASS?
- When is a SASS correct?
- What verification techniques can we apply?
- How can we tackle complexity?

Thank You!

