® BUNDESREPUBLIK DEUTSCHLAND

© Offenlegungsschrift © DE 31 06 856 A 1

⑤ Int. Cl. ³: H 02 P 5/16

DEUTSCHES PATENTAMT (21) Aktenzeichen:

2 Anmeldetag:

(4) Offenlegungstag:

P 31 06 856.1

24. 2. 8110. 12. 81

(72) Erfinder:

Abe, Fumiyoshi, Atsugi, Kanag awa, JP

🔞 Unionsprioritāt: 🕸

2) 33) 3

25.02.80 JP P22606-80

26.02.80 JP P23245-80

Come Core

(1) Anmelder:

Sony Corp., Tokyo, JP

(74) Vertreter:

Mitscherlich, H., Dipl.-Ing.; Gunschmann, K., Dipl.-Ing.; Körber, W., Dipl.-Ing. Dr.rer.nat.; Schmidt-Evers, J., Dipl.-Ing., Pat.-Anw., 8000 München

(A) Gleichstrommotor-Ansteuerschaltung

Es wird eine Ansteuerschaltung für einen insbesondere bürstenlosen Gleichstrommotor angegeben, bei der eine Variabel-Konstantstromquelle in Reihe mit den Motorwicklungen angeschlossen ist, wobei ein Motordrehmoment proportional zu den Motorströmen durch Steuern des Stromwertes der Variabel-Konstantstromquelle eingestellt wird. Weiter ist eine Versorgungsspannungs-Regelschleife vorgesehen, so daß Leistungsverluste an der Variabel-Konstantstromquelle minimal werden. (31 06 856 – 10.12.1981)

Dipl.-Ing. H. MITSCHERLICH
Dipl.-Ing. K. GUNSCHMANN
Dr. rer. nat. W. KÖRBER
Dipl.-Ing. J. SCHMIDT-EVERS
PATENTANWÄLTE

D-8000 MUNCHEN 22 Steinsdorfstraße 10 (089) * 29 66 84

24. Februar 1981

SONY CORPORATION
7-35, Kitashinagawa 6-chome
Shinagawa-ku

Tokyo / JAPAN

Ansprüche:

- 1.) Gleichstrommotor-Ansteuerschaltung zum Steuern des Drehmomentes eines Gleichstrommotors, mit
 - A) einem ersten Versorgungsanschluß.
 - B) einem zweiten Versorgungsanschluß und
 - C) zwischen dem ersten Versorgungsanschluß und dem zweiten Versorgungsanschluß angeschlossenen Motorwicklungen, die mit einer Antriebsleistung versorgt sind, gekennzeichnet durch
 - D) eine Variabel-Konstantstromschaltung (A_2) zwischen den Motorwicklungen (L_1 - L_3) und einem der Versorgungs-anschlüsse zum Steuern des Drehmomentes des Gleichstromnotors abhängig von einem der Variabel-Konstantstromschaltung (A_2) zugeführten Steuersignal.
 - 2. Gleichstrommotor-Ansteuerschaltung nach Anspruch 1, gekennzeichnet durch
 - E) eine Erfassungsschaltung (R_0) , die mit der Variabel-Konstantstromschaltung (A_2) verbunden ist zum Erfassen von Spannungsabfällen über die Konstantstromschaltung (A_2) und

130050/0624

- F) eine Versorgungs-Steuerschaltung (A_0) , die mit der Erfassungsschaltung (R_0) verbunden ist zum Einstellen der Versorgungsspannung zwischen erstem und zweitem Versorgungsanschluß auf einen vorgegebenen Wert.
- 3. Gleichstrommotor-Ansteuerschaltung nach Ansprüch 1 oder 2, dadurch gekennzeichnet, daß der Gleichstrommotor ein bürstenloser Motor ist, der mehrere Wicklungen (L_1-L_3) und Lagedetektoren (H_1-H_3) aufweist, und daß mehrere Sätze von Schalteinrichtungen (Q_1-Q_6) in Zuordnung zu den Wicklungen (L_1,L_3) und abhängig von Ausgangssignalen von den Lagedetektoren (H_1-H_3) vorgesehen sind zum Ansteuern des Gleichstrommotors in Vorwärtsund Rückwärtsrichtung.
- 4. Gleichstrommotor-Ansteuerschaltung nach Anspruch 3, dadurch gekennzeichnet, daß jeder der mehreren Sätze der Schalteinrichtungen (Q_1-Q_6) ein Paar von reihengeschalteten Schaltgliedern aufweist, und daß die Motorwicklungen (L_1-L_3) jeweils mit einem Verbindungspunkt der reihengeschalteten Schaltglieder verbunden sind.
- 5. Gleichstrommotor-Ansteuerschaltung nach Anspruch 4, dadurch gekennzeichnet, daß eines der Schaltglieder in dem Satz der Schalteinrichtungen vorgespannt ist zur Arbeit als Variabel-Konstantstromschaltung.
- 6. Gleichstrommotor-Ansteuerschaltung nach Anspruch 5, gekennzeichnet durch
 - E) eine Erfassungsschaltung, die mit dem Verbindungspunkt verbunden ist zum Erfassen von Spannungsabfällen über

einem der Schaltglieder und

F) eine Versorgungs-Steuerschaltung (A7), die mit der Erfassungsschaltung verbunden ist zum Einstellen der Versorgungsspannung zwischen erstem und zweiten Versorgungsanschluß auf einen vorgegebenen Wert.

Dipl.-Ing. H. MITSCHERLICH
Dipl.-Ing. K. GUNSCHMANN
Dr. rer. nat. W. KÖRBER
Dipl.-Ing. J. SCHMIDT-EVERS
PATENTANWÄLTE

D-8000 MUNCHEN 22 Steinsdorfstraße 10 (089) * 29 66 84

24. Februar 1981

SONY CORPORATION
7-35, Kitashinagawa 6-chome
Shinagawa-ku

Tokyo / JAPAN

Gleichstrommotor-Ansteuerschaltung

Die Erfindung betrifft eine Gleichstrommotor-Ansteuerschaltung, und insbesondere eine Steuerschaltung für einen bürstenlosen Motor, die das Drehmoment des bürstenlosen Motors linear steuern bzw. regeln kann.

Ein bürstenloser Gleichstrommotor und dessen theoretische Ansteuerschaltung ist wie gemäß Fig. 1 aufgebaut.

Gemäß Fig. 1 sind Statorwicklungen L_1, L_2, L_3 des Motors mit einem Winkelabstand von 120° gegeneinander angeordnet. Weiter ist ein Rotor R_t vorgesehen, der aus einem Permanentmagnet hergestellt ist, und sind Detektorglieder H_1, H_2 und H_3 vorgesehen, die jeweils beispielsweise aus einer Hall-Effekt-Einrichtung bestehen. Diese Einrichtungen H_1-H_3 sind mit einem Winkelabstand von 120° zueinander dem Rotor R_t gegenüberliegend angeordnet zum Erfassen einer Drehphase des Rotors R_t . Die Ausgangssignale der Detektoreinrichtungen H_1-H_3 werden einer schaltenden Logik-Steuer-

130050/0624

schaltung A_1 zugeführt, die das schaltende Steuern von ausgangsseitigen Schalttransistoren Q_1 - Q_6 in einem Kreisbzw. einem Zyklus durchführt.

Daher werden die Wicklungen L_1 - L_3 mit Ansteuerimpulsen V_1 - V_3 wie gemäß Fig. 2A versorgt und dreht sich der Rotor R_t in diesem Fall in Vorwärtsrichtung. Zu diesem Zeitpunkt erzeugen die Wicklungen L_1 - L_3 auch elektromotorische Gegenspannungen E_1 - E_3 wie gemäß Fig. 2B. Wenn der Logikpegel an einem Anschluß T_1 der Steuerschaltung A_1 geändert wird, wird der Ansteuerimpuls V_2 der Wicklung L_3 und der Ansteuerimpuls V_3 der Wicklung L_3 und der Motor sich in Gegenrichtung bzw. rückwärts dreht.

Wenn ein derart aufgebauter Motor zum Durchführen irgendeiner Beschleunigung oder Verlangsamung über einen breiten Drehungsbereich verwendet wird, beispielsweise von 1000 U/min in Vorwärtsrichtung bis 1000 U/min in Rückwärtsrichtung, oder wenn der Motor in dem Walzenantriebssystem eines Videobandgerätes (VTR) zur Einstellung bezüglich jeder Bandspannung oder zum Durchführen der Beschleunigung und der Verlangsamung bei der Bandgeschwindigkeit verwendet wird, muß das Drehmoment des Motors linear gesteuert bzw. geregelt werden, sowohl während des Bremsbetriebes als auch während des Antriebsbetriebes.

Jedoch kann bei der herkömmlichen Ansteuerschaltung gemäß Fig. 1 das Drehmoment nicht auf einem gewünschten bzw. Sollwert geregelt werden. Das heißt, wenn die Transistoren Q_1 - Q_6 jeweils als Diode aufgefaßt werden, da sie eine unidirektionale Einrichtung bilden, ergibt sich ein Äquivalentschaltbild während des Antriebsbetriebes wie gemäß Fig. 3 und ein Äquivalentschaltbild während des Bremsbetriebes wie gemäß Fig. 4, wobei ein Widerstand R_n den Widerstand R_n

stand irgendeiner Statorwicklung wiedergibt und ein Strom I_n durch die obige Windung fließt bei einer Versorgungsspannung V_m . Folglich fließt während des Bremsbetriebes (Fig. 4), selbst obwohl $V_m = 0$, ein Strom I_n entsprechend dem Betrag der elektromotorischen Gegenspannung E_n , wodurch ein Drehmoment entsprechend dem Strom I_n erzeugt wird, so daß das Drehmoment nicht auf einen Sollwert geregelt werden kann.

Es ist Aufgabe der Erfindung, eine Ansteuerschaltung für einen Gleichstrommotor, insbesondere einen bürstenlosen Gleichstrommotor, anzugeben, mit der eine Drehmomentenregelung bei geringem Leistungsverlust möglich ist.

Gemäß einem Merkmal der Erfindung ist eine Variabel-Konstantstromschaltung in Reihe zu einem bürstenlosen Gleichstrommotor geschaltet und wird das Motordrehmoment einschließlich
des Bremsmomentes durch den Strom bestimmt, bzw. dessen
Betrag, der durch die Variabel-Konstantstromschaltung festgelegt ist.

Weiter ist zur dynamischen Versorgung mit einer geringsten Betriebsvorspannung für die Variabel-Konstantstromschaltung in Reihe zu den Motorwicklungen vorzugsweise eine Stromversorgungsspannungs-Regelschleife vorgesehen.

Als Anwendungsfall für die Erfindung ist eine Regelschaltung für einen Walzenantriebsmotor für ein Bandgerät und ein Videobandgerät von Bedeutung.

Die Erfindung wird anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Es zeigen

Fig. 1 eine Ansteuerschaltung für einen herkömmlichen bürstenlosen Gleichstrommotor,

- Fig. 2A, 2B Signalverläufe zur Erläuterung der herkömmlichen Ansteuerschaltung,
- Fig. 3 u.4 Äquivalentschaltbilder der obigen Ansteuerschaltung,
- Fig. 5 ein Schaltbild eines Ausführungsbeispiels einer Gleichstrommotor-Ansteuerschaltung gemäß der Erfindung.
- Fig. 6-8 Schaltbilder anderer Ausführungsbeispiele der Erfindung,
- Fig. 9 u. 10 Schaltbilder praktischer Ausführungsbeispiele der Erfindung entsprechend den Schaltungen gemäß den Fig. 5 bzw. 7.
- Fig. 11 ein Schaltbild eines weiteren praktischen Ausführungsbeispiels einer Gleichstrommotor-Ansteuerschaltung gemäß der Erfindung,
- Fig. 12A, 12B Darstellungen der Spannungs/Drehmoment-Charakteris12C
 tik zur Erläuterung der Schaltung gemäß Fig. 11,
- Fig. 13,14 Schaltbilder zusätzlicher Schaltungen für die Ansteuerschaltung gemäß Fig. 11.

Die herkömmliche Ansteuerschaltung wurde bereits anhand der Fig. 1-4 näher erläutert.

Bei der Schaltung gemäß Fig. 5 ist zwischen einem Versorgungsanschluß T_2 für Gleichspannung V_m und Masse bzw. Erde eine Reihenschaltung aus der Emitter/Kollektor-Strecke eines Transistors Q_1 , Dioden D_1 und D_4 , der Emitter/Kollektor-Strecke eines Transistors Q_4 und einer Variabel-Konstantstromschaltung A_2 nach Art einer Stromsenke angeschlossen. Weiter sind eine Reihenschaltung aus einem Transistor Q_2 , Dioden D_2 und D_5 und einem Transistor D_5 und einem Transistor D_6 und einem Transistor D_6 und einem Transistor D_6 und einem Transistor D_6 inden D_6 inden D_6 und einem Transistor D_6 inden D_6

Dioden D₁ und D₄, D₂ und D₅ bzw. D₃ und D₆ Statorwicklungen L₁-L₃ des Motors angeschlossen. Die Variabel-Konstantstromquelle A wird in ihrem Stromwert über ein Steuersignal gesteuert, ² das von einem Anschluß T₃ zugeführt wird.

Gemäß dem obigen Schaltungsaufbau werden Ströme I_1-I_3 , die durch die Wicklungen L_1-L_3 fließen, in der Konstantstromschaltung A_2 sequentiell absorbiert, derart, daß diese Ströme durch die Konstantstromschaltung A_2 gesteuert bzw. geregelt werden können. Folglich kann das Motordrehmoment frei und linear durch Ändern der Konstantstromschaltung A_2 gesteuert werden.

In diesem Fall werden die Dioden $\mathrm{D}_1\text{-}\mathrm{D}_6$ zum Schutz der Transistoren $\mathrm{Q}_1\text{-}\mathrm{Q}_6$ gegen entsprechende Basis/Emitter-Durchbruchsspannungen verwendet.

Bei dem Ausführungsbeispiel gemäß Fig. 6 besitzt die Konstantstromquelle $\rm A_2$ Stromquellenaufbau und ist an dem stromführenden Ende der Motorwicklungen $\rm L_1-L_3$ angeschlossen.

Bei der Schaltung gemäß Fig. 7 sind die Transistoren $Q_4^{-Q}_6$ vorgespannt, derart, daß sie im A-Betrieb arbeiten und dienen diese sowohl als Schalteinrichtung als auch als Konstantstromquelle A_2 . Die Steuerschaltung A_1 wirkt nämlich zum Steuern des Einschalt- und Ausschaltbetriebes (Durchschalten bzw. Sperren) der Transistoren $Q_{11}^{-Q}_{13}$. Weiter wird der Motorstrom I_n mittels eines Widerstands R_0 erfaßt und wird ein Erfassungsausgangssignal einem Vergleicher A_3 zugeführt, in dem es mit dem Steuersignal vom Anschluß T_3 verglichen wird. Dann wird ein Vergleichsausgangssignal vom Vergleicher A_3 über die Transistoren $Q_{11}^{-Q}_{13}$ den Transistoren $Q_4^{-Q}_6$ derart zugeführt, daß die Transistoren $Q_4^{-Q}_6$ als Konstantstromschaltung A_2 arbeiten können.

Daher können bei diesem Ausführungsbeispiel, da die Transistoren Q_4 - Q_6 sowohl als Schalteinrichtung, als auch als Konstantstromschaltung arbeiten, die Kosten für die Gesamtschaltung verringert werden. Weiter arbeitet jeder der Transistoren Q_4 - Q_6 als Konstantstromquelle lediglich während einem Drittel der Zeitperiode, so daß jeder Transistor wenig Wärme erzeugt, was bezüglich der Wärmestrahlung vorteilhaft ist.

Bei dem Ausführungsbeispiel gemäß Fig. 8 sind die Transistoren Q_1-Q_3 in ähnlicher Weise angeschlossen wie die Transistoren Q_4-Q_6 gemäß Fig. 7, weshalb sie sowohl als Konstantstromschaltung als auch als Schalteinrichtung arbeiten.

Fig. 9 zeigt ein praktisches Ausführungsbeispiel entsprechend der Schaltung gemäß Fig. 5. Bei dieser Schaltung sind die Transistoren Q_1 - Q_6 jeweils in Darlington-Schaltung angeschlossen und ist die Konstantstromschaltung A_2 durch einen Operationsverstärker A_0 , einen Ausgangstransistor Q_0 und einen Stromerfassungswiderstand R_0 gebildet. Folglich wird, wenn die Steuerspannung am Anschluß T_3 geändert wird, der Kollektorstrom des Transistors Q_0 geändert zum freien Steuern des Motordrehmomentes abhängig von der Steuerspannung.

Die Transistoren Q₇-Q₉ und Q₁₅-Q₁₇ sind Schalt-Puffertransistoren, die jeweils von der Emitterseite gesteuert werden.

Fig. 10 zeigt ein praktisches Ausführungsbeispiel entsprechend der Schaltung gemäß Fig. 7. Bei dieser Schaltung ist der Vergleicher A_3 durch einen Operationsverstärker A_0 und einen Stromerfassungswiderstand R_0 gebildet.

Fig. 11 zeigt ein weiteres praktisches Ausführungsbeispiel, das für einen Walzenantriebsmotor eines Videobandgerätes (VTR) in besonderer Weise ausgebildet ist. Bei dem Ausführungsbeispiel gemäß Fig. 11 wird auch eine dynamische Steuerung der Versorgungsspannung des Motors durchgeführt. Da nämlich die Konstantstromschaltung A2, die in Reihe zum Gleichstrommotor geschaltet ist, so angeordnet ist, daß die Kollektor-Emitter-Strecke eines Transistors zum Erzeugen eines Konstantstroms verwendet wird, erreicht zumindest ein Spannungsabfall der Kollektor/Emitter-Spannung V_{CE} einen Leistungsverlust um einen Betrag entsprechend dem Produkt der abgefallenen Spannung V_{CE} und des Motorstroms. Zum Festlegen des obigen Leistungsverlustes auf einen Minimalwert verwendet die Schaltung gemäß Fig. 11 eine zusätzliche Schaltung, wie sie in den Fig. 13 und 14 dargestellt ist.

Gemäß Fig. 13 ist ein Operationsverstärker A₇ vorgesehen und wird eine Bezugsspannung V_r diesem Operationsverstärker A₇ an dessen nichtinvertierendem Eingang von einer Spannungsquelle V_O zugeführt. Der Motor M und die Konstantstromschaltung A₂ sind in Reihe zwischen dem Ausgang des Operationsverstärkers A₇ und Masse bzw. Erde angeschlossen, und der Verbindungspunkt zwischen dem Motor M und der Konstantstromschaltung A₂ ist mit dem invertierenden Eingang des Operationsverstärkers A₇ verbunden.

Bei dieser Anordnung wird ein durch den Motor M fließender Strom mittels der Konstantstromschaltung A_2 bestimmt, weshalb das Drehmoment des Motors M durch die Steuerspannung von dem Anschluß T_1 frei gesteuert werden kann. In diesem Fall wird der Spannungsabfall $V_{\rm CE}$ über der Konstantstromschaltung A_2 mit der Bezugsspannung $V_{\rm r}$ in dem Operationsverstärker A_7 verglichen und wird das Vergleichsausgangs-

signal V_h davon dem Motor M derart zugeführt, daß $V_{CE} = V_r$ erhalten wird. Folglich kann, wenn die Bezugsspannung V_r auf den Minimalwert gehalten werden kann, der für den Betrieb eines Konstantstromtransistors erforderlich ist, der Spannungsabfall V_{CE} klein gemacht werden bei in normalem Betriebszustand gehaltenem Konstantstromtransistor. Als Ergebnis ermöglicht es das Hinzufügen der erwähnten Schaltung, daß das Drehmoment des Gleichstrommotors frei regelbar ist und auch dessen Leistungsverlust verringert wird.

Bei dem Ausführungsbeispiel gemäß Fig. 14 ist ein Addierer A_d zwischen dem Ausgang des Operationsverstärkers A_7 und dem Motor M vorgesehen und wird die Steuerspannung vom Anschluß T_1 über einen Widerstand R_m dem Addierer A_d zugeführt. Der Wert des Widerstands R_m wird gleich dem Gleichstromwiderstand des Motors M gemacht. Folglich wird in diesem Fall der Gleichstromwiderstand des Motors M durch den Widerstand R_m kompensiert, derart, daß die Steuerspannung vom Anschluß T_1 in weitem Maße das Drehmoment des Motors M steuern bzw. regeln kann.

Zum Durchführen des obigen Betriebes bei der Schaltung gemäß Fig. 11 ist der Operationsverstärker A, vorgesehen und wird eine Regelschleife über die Dioden D, D, und D, gebildet. Die Betriebsspannungen der Transistoren Q_{4} - Q_{6} werden nämlich zum Operationsverstärker A, zurückgeführt, und die erforderliche Minimalspannung wird der Motorschaltung zugeführt.

Die Schaltung gemäß Fig. 11 ist weiter mit einem Vergleicher A₆, einem Operationsverstärker A₄ und einer Schalteinrichtung A₅ für dessen Zweirichtungs-Steuerung versehen. Das heißt, der Anschluß T₃ wird mit einer Steuerspannung versorgt, die in der Polarität und dem Pegel entsprechend dem erforderlichen Moment geändert wird, wie das in Fig. 12A durch eine

Vollinie dargestellt ist, wobei diese Steuerspannung dem Operationsverstärker A₄ zum Erzeugen einer Steuerspannung zugeführt wird, die in komplementärer Weise zur ursprünglichen Steuerspannung geändert wird, wie das in Fig. 12A durch eine Strichlinie dargestellt ist. Diese Steuerspannungen werden der Schalteinrichtung A5 zugeführt. Die Steuerspannung vom Anschluß T3 wird auch dem Vergleicher A6 zugeführt, in dem sie in ein Signal umgesetzt wird, das im Pegel abhängig von der Richtung des Drehmomentes wie gemäß Fig. 12B geändert wird, wobei dieses Signal der Schalteinrichtung A5 als dessen Steuersignal zugeführt wird, so daß eine Gleichspannung mit einem Pegel entsprechend dem Absolutwert des Drehmoments, wie gemäß Fig. 12C, von der Schalteinrichtung A₅ abgeleitet wird. Diese Gleichspannung wird dem Operationsverstärker A3 zur Motordrehmomentsteuerung zugeführt.

Die Ausgangsspannung des Vergleichers A_6 wird auch dem Anschluß T_1 als Signal zum Steuern bzw. Einstellen der Richtung des Drehmomentes bzw. der Drehung zugeführt.

Weiter führt der Operationsverstärker A7 die Steuerung der Motor-Antriebsspannung durch, wie das in Fig. 12 dargestellt ist, um so eine Motordrehmoment-Ansteuerschaltung hohen Wirkungsgrades zu erreichen.

Selbstverständlich sind noch andere Ausführungsformen möglich.

Patentanwalt

13. Leerseite

 Nummer: Int. Cl.³:

Anmeldetag: Offenlegungstag:

31 06 856 H 02 P 5/16 24. Februar 1981 10. Dezember 1981

3106856

-23-

F/G. 1

130050/0624

130050/0624

