

CLASS: S.E. 5 E &TC SUBJECT: DC

EXPT. NO.: 2 Roll No.: 22119

DATE:17th September, 2020

TITLE: STUDY OF DEMULTIPLEXER / DECODER.

PRE-REQUISTITES

FOR EXPT. :

Definition of Demultiplexer/ Decoder, Implementation and operation of DEMUX/ Decoder using logic gates, Operation of Demultiplexer / Decoder IC-74LS138.(Refer Data-Sheet)

OBJECTIVE:

- 1. Verification of function table of IC-74LS138.
- 2. Design & Implement full adder circuit using IC-74LS138.
- 3. Design & Implement full subtractor circuit using IC-74LS138.
- 4. Design & Implement 3-bit Binary to Gray code converter-using IC-74LS138.
- 5. Design & Implement 3-bit Gray to Binary code converter-using IC-74LS138
- 6. Design & Implement following logical expression using IC-74LS138.

 $F1 (A,B,C) = \sum_{M} (0,1,2,3)$

 $F2 (A,B,C) = \sum_{M} (2,3,4,5)$

 $F3 (A,B,C) = \sum_{M} (4,5,6,7)$

APPARATUS :

Digital-Board, GP-4Patch-Cords, IC-74LS138, IC-74LS32, IC-74LS00 / IC-74LS04.

THEORY:

De-Multiplexer/Decoder is a combinational logic device, which has one input & many output, one output can be selected according to select input. IC-74LS138 is 3 to 8 Line Decoder/Demultiplexer. It is a 16-pin dual packaged IC, which has three enable pins (2-STROBE Active Low and one Active High). IC-74LS138 produces

complementary output. i.e. the output of 74LS138 is Active Low. We can design any combinational circuits using IC-74LS138. DEMUX/Decoder performs reverse operation to that of Multiplexer.

PIN Diagram:

PROCEDURE

- 1. Verify operation of IC 74138.
- 2. Design and implement 3 / 4 variables function using decoder and Verify its Truth Table.
- 3. Design and implement the logic diagram of Full adder / Subtractor circuit and Verify its Truth Table.
- 4. Design and implement 3-bit code converter circuit and Verify its Truth Table.

1) Verification of Function Table (IC-74LS138):

Select I/P				Active Low Output									
G1	G2	G3	A	В	С	$\overline{\mathbf{Y}_{0}}$	$\overline{\mathbf{Y}}_{\!\scriptscriptstyle 1}$	$\overline{\mathbf{Y}_{2}}$	$\overline{\mathbf{Y}_{3}}$	$\overline{\mathbf{Y}_{4}}$	$\overline{\mathbf{Y}_{5}}$	$\overline{\mathbf{Y}_{_{6}}}$	$\overline{\mathbf{Y}_7}$
0	0	1	0	0	0	0	1	1	1	1	1	1	1
0	0	1	0	0	1	1	0	1	1	1	1	1	1
0	0	1	0	1	0	1	1	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1	0	1	1	1	1
0	0	1	1	0	0	1	1	1	1	0	1	1	1
0	0	1	1	0	1	1	1	1	1	1	0	1	1
0	0	1	1	1	0	1	1	1	1	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	1	0

Logic Diagram: (Verification of IC-74LS138)

2) Design of full adder using IC 74LS138

TRUTH -TABLE:

S	elect I/	Output			
			Sum	Carry	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Sum=
$$\Sigma_m$$
 (1,2,4,7)
Carry= Σ_m (3,5,6,7)

Logic Diagram:

3) Full- Subtractor Circuit using IC74LS138

S	elect I/	P	Output		
			DIFF	BORROW	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Difference = $\sum m (1,2,4,7)$ Barrow = $\sum m (1,2,3,7)$

Logic Diagram:

4) 3-bit Binary to 3-bit Gray code Converter:

	Binary		Gray			
B2	B1	В0	G2	G1	G0	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	1	1	
0	1	1	0	1	0	
1	0	0	1	1	0	
1	0	1	1	1	1	
1	1	0	1	0	1	
1	1	1	1	0	0	

$$=\sum m (4,5,6,7)$$

5) Logic <u>Diagram: (3-bit Gray code To 3-bit Binary code Converter)</u>

	Gray		Binary			
G2	G1	G0	B2	B1	В0	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	1	1	
0	1	1	0	1	0	
1	0	0	1	1	1	
1	0	1	1	1	0	
1	1	0	1	0	0	
1	1	1	1	0	1	

$$=\sum m (4,5,6,7)$$

 $=\sum m (2,3,4,5)$

 $=\sum m (1,2,4,7)$

6). Design & Implement following logical expression using IC-74LS138.

F1 (A,B,C) =
$$\Sigma_M$$
 (0,1,2,3)
F2 (A,B,C) = Σ_M (2,3,4,5)
F3 (A,B,C) = Σ_M (4,5,6,7)

S	elect I/	'P	Output			
A	В	C	F1	F2	F3	
0	0	0	1	0	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	1	0	1	1	
1	1	0	0	0	1	
1	1	1	0	0	1	

Logic Diagram:

CONCLUSION:

- 1) Function table of IC74LS138 verified
- 2)successfully designed and implemented full adder circuit with IC74LS138
- 3)successfully designed and implemented full subtractor circuit with IC74LS138
- 4)Sucessfully designed and implemented 3bit binary to 3bit Gray code converter using IC74LS138
- 5) Sucessfully designed and implemented 3bit gray to 3bit binary Code converter
- 6)successfully designed and implemented given logical expressions
 Using IC74LS138

REFFRENCE:

1): R.P. Jain, "Modern digital electronics", 3rd edition

2): A. Anand Kumar, "Fundamentals of digital circuits" 1st edition

Subject teacher Sign with Date

Remark

