Isabel Valera

Machine Learning Group Department of Mathematics and Computer Science Saarland University, Saarbrücken, Germany

10.06.2024

Bibliography ●OO

- Bibliography
- 2 Lagrange function
- 3 Dual problem
- Example
- Summary

Main references

Bibliography OOO

- Bishop: Chapters 1-5
- Summary from Zico Kolter

Bibliography

Motivation of the Lagrange dual problem:

The general form of an optimization problem (OP) is given by

$$p^* = \min_{\mathbf{x} \in Domain} f(\mathbf{x}),$$

subject to: $g_i(\mathbf{x}) \le 0, i = 1, ..., r$
 $h_j(\mathbf{x}) = 0, j = 1, ..., s.$

From now on, we will refer to the above OP as the **primal problem**.

Idea behind the Lagrange dual problem:

Map a hard constrained optimization problem (primal problem) into an easier (e.g., unconstrained) one (dual problem)!

- Bibliography
- 2 Lagrange function
- 3 Dual problem
- Example
- 5 Summary

The Lagrange function I

Definition

The Lagrangian or Lagrange function $L: \mathbb{R}^n \times \mathbb{R}^r_+ \times \mathbb{R}^s \to \mathbb{R}$ associated with the optimization problem is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_{j=0}^{r} \lambda_j g_j(\mathbf{x}) + \sum_{i=0}^{s} \nu_i h_i(\mathbf{x}),$$

with $\mathrm{dom}\,L = D \times \mathbb{R}^r_+ \times \mathbb{R}^s$ where D is the domain of the OP. The variables λ_j and ν_i are called **Lagrange multipliers** associated with the inequality and equality constraints.

Note: The Lagrange multipliers $\{\lambda_j\}_{j=1}^r$ of inequality constraints are non-negative!

For all feasible \mathbf{x} (reminder: \mathbf{x} is feasible if the inequality and equality constraints hold at \mathbf{x}), the Lagrange function $L(\mathbf{x}, \lambda, \nu)$ is a lower-bound of the objective function $f(\mathbf{x})$, since

$$\sum_{i=0}^{r} \lambda_{j} g_{j}(\mathbf{x}) + \sum_{i=0}^{s} \nu_{i} h_{i}(\mathbf{x}) \leq 0 \quad \Longrightarrow \quad \boxed{L(\mathbf{x}, \lambda, \nu) \leq f(\mathbf{x})}$$

- Bibliography
- 2 Lagrange function
- 3 Dual problem
- 4 Example
- Summary

The dual function I

Definition

The Lagrange dual function $q:\mathbb{R}^r_+\times\mathbb{R}^s\to\mathbb{R}$ associated with the OP is defined as

$$q(\lambda, \nu) = \inf_{\mathbf{x} \in D} L(\mathbf{x}, \lambda, \nu) = \inf_{\mathbf{x} \in D} \left(f(\mathbf{x}) + \sum_{j=0}^{r} \lambda_j g_j(\mathbf{x}) + \sum_{i=0}^{s} \nu_i h_i(\mathbf{x}) \right),$$

 $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ is unbounded from below in \mathbf{x} .

The dual function II

Properties:

- The dual function $q(\lambda, \nu)$ is a pointwise infimum of a family of concave functions (in λ and ν) and therefore concave. This holds irrespectively of the character of the primal problem (even if non-convex). Moroever, $q(\lambda, \nu)$ can be $-\infty$ for some values of λ, ν . Note: The pointwise supremum of a family of convex functions is convex. The pointwise infimum of family of concave functions is concave. Refer to Boyd for operations that preserve convexity.
- ullet For any $oldsymbol{\lambda}\succeq oldsymbol{0}$ and $oldsymbol{
 u}\in\mathbb{R}^s$, any feasible \mathbf{x}' satisfies that

$$\inf_{\mathbf{x} \in D} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f(\mathbf{x}') \quad \Longrightarrow \quad \boxed{q(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^*}.$$

In other words, the dual function lower-bounds the optimal value of the primal problem.

What is the best possible lower bound of p^* ?

Definition

The Lagrange dual problem is defined as

$$d^* = \max_{\boldsymbol{\lambda}, \boldsymbol{\nu}} q(\boldsymbol{\lambda}, \boldsymbol{\nu}),$$
subject to: $\lambda_i \ge 0, \ i = 1, \dots, r.$

Dual problem

Properties:

- For each OP the dual problem is convex, as the objective to be maximized is concave and the constraint is convex.
- The dual problem finds the best lower bound on p^* , obtained from Lagrange dual function. Dual problems are often be easier to solve than their corresponding primal problems.
- (λ, ν) is dual feasible if $q(\lambda, \nu) > -\infty$.

Weak and strong duality

Definition

Let d^* and p^* be the optimal values of the dual and primal problem. Then, weak duality holds (independently of the nature of the primal problem), i.e,

$$d^* \le p^*.$$

Definition

We say that **strong duality** holds if $d^* = p^*$.

- The difference $p^* d^*$ is the **optimal duality gap**.
- Strong duality does not hold in general. But for convex problems strong duality holds most of the times.
- Constraint qualifications are conditions under which strong duality holds.

Theorem

Assume a convex primal problem, then if there exists a primal feasible ${\bf x}$ such that

$$g_i(\mathbf{x}) < 0, \quad i = 1, \dots, r,$$

(i.e., all the inequality constraints are strictly satisfied) then Slater's condition holds, which implies that strong duality holds, i.e., $p^* = d^*$.

Note: Strict inequality is not necessary if $g_i(\mathbf{x})$ is an affine constraint. *Observation:* There exist many other types of constraint qualifications.

Theorem: Given that:

- f, g_i and h_j differentiable, and
- strong duality holds.

Then, the necessary conditions for primal and dual optimal points \mathbf{x}^* and (λ^*, ν^*) are the **Karush-Kuhn-Tucker(KKT) conditions:**

primal constraints:

$$g_i(\mathbf{x}^*) \le 0, \ i = 1, \dots, r, \quad h_j(\mathbf{x}^*) = 0, \ j = 1, \dots, s,$$

- \bullet dual constraints: $\lambda_i^* \geq 0, \ i = 1, \dots, r$
- **o** complementary slackness: $\lambda_i^* g_i(\mathbf{x}^*) = 0, \ i = 1, \dots, r$
- **9** gradient of Lagrangian with respect to \mathbf{x}^* vanishes: $\nabla f(\mathbf{x}^*) + \sum_{i=1}^r \lambda_i^* \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^s \nu_j^* \nabla h_j(\mathbf{x}^*) = 0$

Observation: If the primal problem is convex, then the KKT conditions are necessary and sufficient for primal and dual optimality with zero duality gap (i.e., strong duality holds).

KKT conditions for Convex Problems

- If x', λ', ν' satisfy KKT for a convex problem, then they are optimal:
 - from complementary slackness: $f(\mathbf{x}') = L(\mathbf{x}', \boldsymbol{\lambda}', \boldsymbol{\nu}')$
 - from 4th condition and convexity: $g(\lambda', \nu') = L(\mathbf{x}', \lambda', \nu')$

Hence, $f(\mathbf{x}') = g(\lambda', \nu')$ (i.e., zero duality gap).

- If Slater's condition is satisfied: \mathbf{x}' is optimal if and only if there exist λ', ν' that satisfy the KKT conditions. Remarks:
 - Recall that Slater's qualification implies strong duality and dual optimum is attained.
 - Thus, it generalizes optimality condition

- Bibliography
- 2 Lagrange function
- 3 Dual problem
- 4 Example
- 5 Summary

Example ●O

Convex optimization problem

Question: what is the minimum distance of a hyperplane $\{\mathbf{x} | \langle \mathbf{w}, \mathbf{x} \rangle + b = 0\}$ to the origin?

Primal problem: $\min_{\mathbf{x} \in R^d} \|\mathbf{x}\|^2$ s.t. $\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$

Primal Lagrangian formulation: $L(\mathbf{x}, \lambda) = \frac{1}{2} ||\mathbf{x}||^2 - \lambda(\langle \mathbf{w}, \mathbf{x} \rangle + b)$

Dual Lagrangian fomulation: Using that $\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = \mathbf{x} - \lambda \mathbf{w} \stackrel{!}{=} 0$, we can write:

$$q(\lambda) = \inf_{\mathbf{x} \in R^d} L(\mathbf{x}, \lambda) = -\frac{\lambda^2}{2} \|\mathbf{w}\|^2 - \lambda b,$$

which is convex w.r.t λ . Thus, we can find a stationary point of the dual problem by $\frac{dq(\lambda)}{\partial \lambda} = -\lambda \|\mathbf{w}\|^2 - b \stackrel{!}{=} 0$, to obtain

$$\lambda^* = \arg_{\lambda} \max q(\lambda) = -\frac{b}{\|\mathbf{w}\|^2} \text{and, thus } \mathbf{x}^* = \lambda^* \mathbf{w} = -\frac{b\mathbf{w}}{\|\mathbf{w}\|^2}$$

Then, the solution to the original question is $\|\mathbf{x}^*\|^2 = \frac{b}{\|\mathbf{y}\|}$.

- Bibliography
- 2 Lagrange function
- 3 Dual problem
- 4 Example
- **5** Summary

Summary

Why is the dual problem useful?

- Every dual feasible point (λ, ν) satisfies that $p^* \geq q(\lambda, \nu)$,
- ullet Every feasible point ${f x}$ satisfies that $d^* \leq f({f x})$,
- Any primal/dual feasible pair ${\bf x}$ and $({\boldsymbol \lambda}, {\boldsymbol \nu})$ provides an upper bound on the duality gap: $f({\bf x}) q({\boldsymbol \lambda}, {\boldsymbol \nu})$, or

$$p^* \in [q(\lambda, \nu), f(\mathbf{x})], \qquad d^* \in [q(\lambda, \nu), f(\mathbf{x})].$$

ullet Duality gap is zero $\Longrightarrow \mathbf{x}$ and $(oldsymbol{\lambda}, oldsymbol{
u})$ is primal/dual optimal.

Practical considerations

- Equivalent formulations of a problem can lead to very different duals
- Reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting
- Common reformulations include:
 - introduce new variables and equality constraints
 - make explicit constraints implicit or vice-versa
 - transform objective or constraint functions, e.g., replace f(x) by $\phi(f(x))$ with ϕ convex, increasing
- Refer to supplementary material for more examples.