

M2.883 Aprendizaje por refuerzo

PEC3:

Revisión del estado del arte

Contenidos

1. Presentación	3
2. Competencias	3
3. Objetivos	3
4. Descripción del trabajo a realizar	3
5. Recursos	3
6. Criterios de valoración	4
7. Entrega	4

1. Presentación

En esta actividad se plantea la lectura y comprensión de literatura científica avanzada sobre el estado del arte en aprendizaje por refuerzo (*reinforcement learning*).

2. Competencias

En esta actividad se trabajan las siguientes competencias:

- Comprensión de literatura científica del estado del arte.
- Capacidad crítica y de resumen de literatura científica.
- Capacidad de síntesis.
- Comprensión lectora del idioma inglés.

3. Objetivos

Los objetivos concretos de esta actividad son:

- Leer y comprender un artículo científico reciente sobre aprendizaje por refuerzo.
- Familiarización con la literatura científica, tanto en lenguaje como en formato.

4. Descripción del trabajo a realizar

Lectura y comentario crítico de un artículo científico del estado del arte a elegir entre los disponibles. El comentario crítico debe tener una extensión aproximada de unas 800-1200 palabras (que vienen a ser dos páginas), sin excederlas. Se puede complementar con otras lecturas que enlacen con el propio artículo en cualquier aspecto relacionado.

5. Recursos

Se adjuntan varios artículos científicos, de los cuales **solamente hay que elegir uno** para esta actividad:

- [1] Lillicrap, T. et al, (2015). Continuous control with deep reinforcement learning. https://deepmind.com/research/publications/continuous-control-deep-reinforcement-learning
- [2] Schulman, J. et al. (2017). **Trust Region Policy Optimization**. https://arxiv.org/pdf/1502.05477.pdf
- [3] Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588, 604–609 (2020). https://doi.org/10.1038/s41586-020-03051-4
- [4] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang and D. Cao, "Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep Reinforcement Learning," in IEEE Access, vol. 8, pp. 177804-177814, 2020, https://ieeexplore.ieee.org/document/9190040

6. Criterios de valoración

- Hay que demostrar que se ha alcanzado la comprensión del texto, del contexto, la metodología utilizada, resultados y conclusiones.
- Se valorará la conexión con los conocimientos obtenidos a lo largo del curso.
- También se valorará la capacidad de síntesis.

7. Entrega

El entregable será un documento, preferiblemente en **formato PDF**, con dos páginas de producción propia que trabajen el artículo elegido.