2021 창원 빅데이터 공모전 분석보고서

│. 공모명 : 창원시 클린로드 최적입지 선정

Ⅱ. 세부 내용

○ 분석 개요

[배경 및 필요성]

1.1 창원시 미세먼지 실태

- · 2018년 기준 창원시는 미세먼지 농도가 전국 미세먼지 평균농도 대비 1.1%, 인구 100만 이상. 광역시 평균대비 3.5% 정도 높음
- · 창원시 미세먼지 주요발생원인 중 59%가 비산먼지 때문으로 분석되며, 그 중 도로 재비산먼지가 34%를 차지하고 있음. 도로변에서의 미세먼지는 지표면에 가까울수록 농도가 5~6 배 이상 증가하므로 미세먼지 취약계층(영유아 등)에 대한 영향이 높음

1.2 창원시 폭염 실태

- · 2018년도 창원시 8월 최고기온의 평균이 10년 전보다 2.1도 상승해 도시 열섬현상이 가속화되는 추세이며, 도시 열섬현상이 여름철의 폭염과 열대야를 야기함
- · 연중 가장 더운 날인 8월 4일, 창원시와 전국 주요 도시의 폭염과 연관된 요소를 비교했을 때, 창원시의 최고체감온도와 최고기온이 타 도시에 비해 높은 것을 확인할 수 있음

일시	지점	폭염여부(0	최고체감은최	고기온(*평	균기온(˚최	저기온('평	균상대(폭염특	보((폭염영	향0열대0	냐(O/ 자외선지수(단계)
2021-08-04	서울(108)	0	33.8	33.2	28.9	26.3	70.6 O	주의	0	높음
2021-08-04	인천(112)	X	31.3	30.7	28.1	26.4	66.8 O	주의	0	매우높음
2021-08-04	대전(133)	0	35	34.2	29.7	25.1	76.9 O	주의	0	매우높음
2021-08-04	대구(143)	0	35	35.5	30.1	25	65.1 O	경고	0	매우높음
2021-08-04	창원(155)	0	35.3	35.4	29.7	24.8	67 O	경고	0	매우높음
2021-08-04	광주(156)	0	35	34.2	28.6	23.6	79.5 O	경고	X	매우높음
2021-08-04	부산(159)	0	33.8	32.7	29.4	26.4	70.5 O	경고	0	매우높음

<표 1-1 주요 도시와 창원시의 폭염 데이터셋>

자료: 기상청 기상자료 개방 포털

2. 문제 해결 방안

2.1 미세먼지 저감 및 폭염 완화 대책 : 클린로드 시스템

(1) 클린로드 정의

미세먼지, 아스팔트 분진 등의 대기오염물질 제거 및 폭염으로 인한 도시 열섬현상 완화를 위해 용수를 이용하여 도로에 물을 분사하는 고정식 자동 살수 시스템

(2) 클린로드 효과 분석: 대구광역시 사례

· 미세먼지 저감 효과

- 클린로드 시스템 설치 전후의 연평균 미세먼지는 미설치 지역 대비 13% 감소
- 클린로드 시스템 가동 기간(4월~10월) 중 미세먼지는 미설치 지역 대비 20% 감소

	구분		설치 전 (2008~2010)	설치 후 (2011~2013)	설치이전 대비 설치이후 증감	저감효과	
4 H J	설치	남산동 (도로변)	65μg/m³	47μg/m'	28% 감소	미설치 지역	
연평균	미설치	평리동 (도로변)	72µg/m²	63µg/m³	15% 감소	대비 13% 감소	
4월~	설치	남산동 (도로변)	55μg/m°	43μg/m'	22% 감소	미설치 지역	
 10월	미설치	평리동 (도로변)	64μg/m³	63μg/m'	2% 감소	대비 20% 감소	

- · 온도 저감 효과
- 여름철 낮 시간(14시)에는 최고 19° C, 밤 시간대(19시)에는 최대 10° C의 도로 표면 온도 저감 효과 확인

<그림2-2> 클린로드 시스템 운영에 따른 도로 노면 온도 저감 효과
자료 :「도시열환경개선을 위한 대구 클린로드 시스템의 확대 운영방안에 관한 연구」
정응호 외, 2016

- (3) 클린로드 시스템 적용 필요성
- ① 도로 청소 차량 문제점 해결

- 노후화된 청소 차량의 운행 시 매연으로 인한 2차 대기오염 우려
- 도로 청소 효율을 높이기 위해서는 차량의 저속 운행이 필요하며, 이에 따른 교통 체증 유발 가능성 상승
- 클린로드 시스템은 비상저감 조치 발령 시 도로 상황, 날씨 등에 따라 즉각적/유동적 운 영 가능
- ② 습식 청소에 의한 높은 도로 청소 효과
- 습식 도로 청소는 건식 도로 청소보다 시민이 호흡하는 공간영역에서 미세먼지를 제거하는데 더 효과적인 것으로 확인되고, 도로 내 살수를 통한 온도 저감 효과도 기대 가능

③ 비용적 장점

- 도로 청소 차량 및 클린로드 시스템의 20년 기준 운영비용 비교 시, 클린로드 시스템을 설치하는 경우 살수차 대비 약 1.1억 원의 비용 편익이 발생
- 클린로드 시스템의 경우 청소 차량 대비 청소 빈도수가 많아 미세먼지 저감 효과가 더 높음에 따라 비용 편익 효과는 더욱 증가할 것으로 예측됨

구분	설치비	청소차로	청소주기	유지관리비	운영비 (20년 기준)
청소차량 (살수)	2억 원/대	1차로 (25km)	1회	6,320만원/년 (인건비·유류비 포함)	17.6억/대 (8년 주기 교체)
클린로드 시스템	13.5억 원/km	8차로	2~4호	1,500만원/년	16.5억 원/km

<표2-3> 청소 형식별 설치 및 운영비용

자료 : 수도권지역 클린로드 시스템 구축 가이드라인 및 관리방안 마련 연구」 수도권대기환경청, 2015

[분석목적]

- · 미세먼지 및 폭염으로 인해 불편함을 겪는 창원시민의 삶의 질을 개선하고자 미세먼지 및 온도 저감이 가능한 클린로드 시스템을 대책으로 제시
- · 클린로드 시스템은 미세먼지 및 온도 저감 효과가 매우 뛰어나지만, 설치 시 도로에 대한 고려 조건이 많을 뿐 아니라 설치 및 유지 비용이 크므로 환경적/경제적인 측면을 고려해 야 함
- · 빅데이터에 기반하여 최적의 입지를 선정함에 따라 클린로드 시스템의 효과를 극대화시킬 수 있는 도로를 찾고자 함. 클린로드 설치에 적합한 환경을 갖춘 지역 및 도로를 분석하고, 창원시의 클린로드 추가 증설을 제안

○ 분석 결과 상세 내용

1. 탐색적 분석 (EDA: Exploratory Data Analysis)

1.1 상관분석

(1) 시각화

(2) 상관분석 결과

- 교통량과 미세먼지는 양의 상관계수를 가지고 있을 것이라 예상했지만, 실제로는 음의 상관계수를 가짐. 그 이유는 산업단지 근처는 교통량이 적지만, 공장으로부터 발생하는 미세먼지가 많기 때문
- 행정동별 하절기 평균 기온(avg_temp)과 행정동별 하절기 평균 최고기온(max_temp)의 경우, 상관계수가 0.82로 강한 양의 상관관계가 있음. 따라서 향후 분석에 두 변수 중 하나의 변수만 사용하는 것이 적합함.
- : 두 변수를 비교했을 때, 하절기 평균 기온(avg_temp)은 행정동별 차이가 미미하여 행정 동의 특성을 나타내기에 부적절하며, 열섬현상을 고려하기 위해서는 최고기온(max_temp)을 변수로써 사용하는 것이 적합.

1.2 행정동별 일변량 분석

(1) 행정동별 면적대비 교통량

면적대비 교통량의 경우, 마산회원구와 마산합포구가 많고, 성산구와 의창구가 적음. 마산회원구는 의창구에 비해 면적대비 교통량이 약 8배 이상

(2) 행정동별 하절기 최고기온

월평균 최고기온의 경우, 5개의 구가 모두 비슷한 수치를 보이지만 자세히 보면 의창구가 가장 높고, 진해구가 가장 낮음을 알 수 있음

(3) 행정동별 면적대비 유동인구 수

면적대비 유동인구 수의 경우, 성산구가 가장 높고 의창구가 가장 낮음.

4) 행정동별 면적대비 노약자 수

면적대비 노약자 수의 경우, 성산구가 가장 높고, 의창구가 가장 낮음

(5) 행정동별 미세먼지

행정동별 미세먼지의 경우, 마산합포구가 가장 높고, 의창구가 가장 낮음

2. 분석 프로세스

2.1 분석 프로세스 요약

클린로드 최종입지 선정을 위해 크게 3단계로 분석 프로세스를 거침

① Step 1: 클린로드 설치 후보 행정동 선정

- 유사한 특성을 가진 지역을 분류하기 위해 창원시 55개의 행정동을 K-means / K-medoids / DBSCAN / GMM을 통해 군집화 진행
- 4가지 군집화 기법별로 클린로드 입지에 가장 적합한 하나의 군집을 정한 후, 각 군집화 기법에 따라 적절한 군집으로 산출된 총 4개의 군집을 모두 고려하기 위해 군집에 속한 행 정동의 합집합 진행
- 합집합으로 산출된 행정동 중 클린로드 설치 후보 행정동을 선정하기 위해 PCA 기법으

로 행정동의 순위를 정렬

시군구별 4위까지의 행정동을 입지 후보 행정동으로 산출함에 따라 총 16개의 행정동이 입지 후보 행정동으로 선정

- ② Step 2 : 클린로드 설치 최종 도로 선정
- (1) AHP를 통해 도로선정 고려변수 3(면적대비 교통량, 2km 내 산업단지 수, 약자인구)에 대한 중요도를 의미하는 가중치 도출
- 클린로드의 세부적인 입지를 선정하기 위해 Q-GIS를 통한 공간분석 진행
- (2) 창원시를 500m*500m 표준 격자로 나눈 뒤, 각각의 표준 격자에 대한 도로선정 고려변수에 가중치를 곱하여 나온 점수를 토대로 설치 우선순위 산정
- (3) 도로선정 필수변수(반경 3KM이내 수원지 여부, 6차선 이상 도로 존재여부)를 바탕으로 설치 부적합 격자 필터링
- (4) 도로 재비산먼지농도와 로드뷰를 통한 인도와의 유격거리를 확인한 뒤 최종 클린로드 입지 선정

2.2 클린로드 설치 후보 행정동 선정

- (1) 변수 선정
- 행정동별 하절기 평균 최고기온 (max_temp)
- 행정동별 하절기 평균 미세먼지 (dust_naver)
- 행정동별 면적대비 교통량 (traffic/area)
- 행정동별 면적대비 유동인구 (f_pop/area)
- 행정동별 면적대비 노약자 수 (young_old/area)
- (2) 변수 선정 근거
- ① '대기환경청'에서 제시하는 클린로드 설치 우선순위를 검토하여 분석에 사용될 변수를 선정함. 설치 우선순위는 연평균 미세먼지 농도가 높은 곳, 차량 통행량 규모가 높은 곳, 인구 밀도가 높은 곳 등으로 제시됨.
- ② 상관분석을 통해 상관계수가 서로 높은 두 변수 중 하나의 변수만 이용.
- 행정동별 하절기 평균 기온(avg_temp)과 행정동별 하절기 평균 최고기온(max_temp)의 경우, 상관계수가 0.82로 강한 양의 상관관계가 있음.
- 행정동별 하절기 평균 최고기온(max_temp)을 변수로 사용. 두 변수를 비교했을 때, 하절기 평균 기온(avg_temp)은 행정동별 차이가 미미하여 행정동의 특성을 나타내기에 부적절하며, 열섬현상 완화에는 최고기온을 변수로써 사용하는 것이 적합.
- ③ 단순 수치가 아닌 행정동별 밀집도를 확인하기 위해서 교통량, 유동인구, 노약자 수를 각 행정동의 면적으로 나눈 행정동별 면적대비 교통량 (traffic/area), 행정동별 면적대비 유동인구 (f_pop/area), 행정동별 면적대비 노약자 수 (young_old/area)를 파생변수로 생성하여 분석에 적용

2.2.1 행정동 군집분석

(1) 분석목적

창원시의 55개의 행정동 중 유사한 특성을 가진 행정동을 몇 개의 지역 군집으로 분류하고 각 특성을 파악하여 클린로드 설치 후보 지역으로 선정하기 위해 군집화 진행

(2) 군집분석 결과

	K-Means	K-Medoids	GMM	DBSCAN
시각화	00 00 00 00 00 00 00 00 00 00 00 00 00	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06 06 04 02 00 05 10 15 20 25 30	Cutare County Co
동작 원리	각 군집에서 가장 중심에 위치한 객체 (medoids)를 임의로 찾음으로써 데이터 간의 모든 거리 비 용을 medoids가 변 하지 않을 때까지 반복적으로 계산하 여 군집을 찾는 방	주어진 데이터를 여러 개의 그룹으로 나누어 K개의 군집 으로 군집화 하며 각 군집에 할당된 포인트의 평균 좌표를 이용해 중심점을 기준으로 반복적으로 군집화 하는 방식	전체 데이터의 확률 분포가 여러 개의 가우시안 분포의 조 합으로 이루어져 있 다고 가정하고 각각 의 분포에 속할 확 률이 높은 데이터끼 리 군집화 하는 방	밀도 기반의 군집 분석으로 어느 점 을 기준으로 반경 x내에 점이 n개 이 상 있으면 동일 군 집으로 인식하는 방식
Scaling	MinMax	MinMax	MinMax	Standard
군집 개수	5	4	3	4
군집 개수 선정 이유	Elbow method, ir 종합적으로 고려하	nertia, silhouette 여 군집 개수 선정	각 군집의 정규분포 를 비교하여 가장 정규분포에 가까운 군집 개수 선정	군집 개수 선정이 불필요한 알고리즘

- 아래와 같이 4가지 군집분석 기법별로 하나의 군집을 선정

	CLusterDB:	Scan	traffic/a	rea max	temp	dust_naver	f_pop/area	young_old/area		traffic/area	max_temp	dust_naver	f_pop/area	young_old/area
0		0	93.308	480 35.7	00002	11.200000	1238.870382	13.995112	0	22.055456	35.615791	9.894737	232.713423	2.307299
1		1	62.943	998 34.3	69231	22.423077	441.042293	5.803225	1	110.572015	34.500001	22.076923	855.469713	10.910235
2		2	11.726	239 36.8	90911	12.545455	258.283582	2.509214	2	15.793014	34.459999	22.866667	109.040916	1.960644
3		3	25.473	293 34.1	12500	9.000000	183.049659	1.655290	3	101.127331	35.900002	10.875000	1372.880633	14.574657
	atomer									traffic/area	max_temp	dust_naver	f_pop/area	young_old/area
	cluster	tram	c/area	max_ten	пр а	ust_naver	f_pop/area	young_old/area	0	20.673500	35.330001	13.000000	210.697483	1.809201
0	0	23.6	26275	36.5846	17	12.307692	345.157178	3.066320	1	124.489026	34.510001	22.000000	953.516879	12.212880
1	1	113.2	87536	35.5153	37	15.846154	1312.541906	15.126222	2	101.127331	35.900002	10.875000	1372.880633	14.574657
2	. 2	25.6	35749	34.1125	00	7.875000	111.300866	1.690698	3	23.590962	35.933334	6.44444	257.175578	2.860742
3	3	43.6	87532	34.2428	57	22.666667	272.420242	3.888097	4	23.857842	34.461111	22.777778	178.975068	2.728551

- 군집분석 기법별로 하나의 군집을 선택하기 위해, 평균값이 제일 높은 변수를 가장 많이 가진 군집을 해당 기법의 입지선정 후보 군집으로 선정
- 평균값이 가장 높은 변수를 고려했던 이유는 각 변수의 값이 높을수록 클린로드 설치를 하기 적합하기 때문. 면적대비 교통량, 행정동별 하절기 평균 최고기온, 면적대비 유동인구, 면적대비 노약자수 모두 높은 값을 가질수록 클린로드가 필요함

2.2.2 행정동 합집합

(1) 목적

4가지 군집화 기법 모두 각각의 장/단점이 있기 때문에 하나의 군집화 기법을 선택하기보다는 4개의 군집분석 결과를 모두 종합적으로 고려하는 분석 방법 선택

(2) 합집합 결과

마산합포구 마산합포구 월영동 / 마산합포구 반월중앙동

	마산합포구 자산동 / 마산합포구 합포동 마산합포구 산호동 / 마산합포구 문화동 마산합포구 오동동 / 마산합포구 교방동
마산회원구	마산회원구 양덕 2 동 / 마산회원구 석전동 마산회원구 구암 2 동 / 마산회원구 양덕 1 동 마산회원구 회원 1 동 / 마산회원구 구암 1 동
성산구	성산구 상남동 / 성산구 반송동 성산구 가음정동 / 성산구 용지동
진해구	진해구 태백동 / 진해구 석동 진해구 이동 / 진해구 병암동

2.2.3 행정동 PCA

(1) 목적

군집분석 결과로 나온 행정동 중 우선순위를 정렬하기 위해 여러 가지 변수들을 한 번에 고려하여 점수를 낼 수 있는 PCA 기법 사용

(2) PCA 결과

마산합포구	마산합포구 자산동 / 마산합포구 합포동 마산합포구 문화동 / 마산합포구 교방동
마산회원구	마산회원구 석전동 / 마산회원구 양덕 1 동 마산회원구 회원 1 동 / 마산회원구 구암 1 동
성산구	성산구 상남동 / 성산구 반송동 / 성산구 가음정동 / 성산구 용지동
진해구	진해구 태백동 / 진해구 석동 진해구 이동 / 진해구 병암동

- 구 단위로 고르게 후보 지역을 선정하기 위해 구별로 4순위까지의 행정동을 선정
- PCA 결과, 4개의 구(마산합포구/마산회원구/성산구/진해구)에서 각각 4순위까지의 행정 동을 후보 지역으로 산출

2.3 클린로드 설치요인에 대한 가중치 산정

2.3.1 AHP 분석 (계층화 분석)

(1) 분석목적

- 클린로드 최종입지를 선정하기에 앞서, 여러 요인들 중 클린로드 설치 시 우선적으로 고려해야 할 요인을 전문가의 의견을 기반으로 산출
- 가중치 산정 요인
- ① 면적대비 교통량 : 교통량이 많을수록 차량 타이어가 마모되면서 재비산먼지가 많이 발생
 - ② 2km 이내 산업단지 수 : 창원시 미세먼지 농도는 공장 밀집 지역일수록 높음
- ③ 약자인구 수(어린이, 노인) : 호흡기 질환 위험이 높은 노인과 어린이가 많은 지역에 클린로드를 우선적으로 설치해야 한다고 판단

(2) AHP 설문 진행

클린로드 입지선정 요인 설문조사

본 설문지는 클란로드 입지를 분석하기 위해 설문을 시험하고 있습니다. 조사에 용해주셔서 정말 감사드리며, 설문 결과는 프로젝트 이외의 목적으로 사용되지 않을 것을 약속드립니다.

→ x와 y중 x(or y)가 1~9(중요정도)만큼 더 중요하다 / 또는 x와 y가 동일하게 중요하다(1)

면적대비 9 8 7 6 5 8 3 2 1 2 3 4 5 6 7 6 9 최대본도	평 가 항 목	절대중요		매우중요		중요		약간중요		갑다		약간중요		중 요		매우중요		절 대 중요	평 가 항 목
	면적대비	9	8	(D)	6	(5)	4	(3)	(2)	0	(2)	3	4	(5)	6	9	8	9	최대본도

조사디	개상자
소속 및 직위	이름
대구광역시	7) O CH
클린로드 담당자	김응영
대구경북 연구원	서상언
고양시	0 E 81
클린로드 담당자	우동환
서울연구원	이하식

- 9점 척도 설문조사를 클린로드 전문가 5인에게 실시하여 그 결과를 각각 쌍대비교 행렬로 변환
- 일관성 지수(CI)를 무작위 지수(RI)로 나누어 일관성 비율(CR) 계산 후 일관성 비율이 0.2 이하인 4개의 설문결과만 가중치 산정에 반영

(3) 가중치 도출 결과

	요인	가중치
AHP 가중치	면적대비 교통량	0.37811016
HIL 184	2km 내 산업단지 수	0.33115588
	약자인구 수 (어린이/노약자)	0.29073396

클린로드 입지선정 시, 면적대비 교통량이 가장 우선적으로 고려되어야 하며, 다음으로 2km 내 산업단지 수, 약자인구 수 순서대로 고려되어야 함.

2.4 클린로드 설치 최종 도로 선정

2.4.1 Q-GIS 공간분석

(1) 분석목적

창원시를 500m*500m 표준 격자로 격자화한 뒤, 격자별 우선 설치점수와 세부 요소들을 고려하여 최종적인 클린로드 입지 제시

(2) 분석과정

① 창원시를 500*500m 표준 격자를 이용해 격자화 진행

② 격자별 면적대비 교통량, 2km 내 산업단지 수, 약자인구를 파악

면적대비 교통량 : 각 격자 내에 포함되는 도로들의 교통량 평균을 구함

2km 이내 산업단지 수 : 창원시 산업단지 점(point) 데이터를 중심으로 2km 버퍼를 그린 뒤, 격자별로 중첩되는 버퍼의 개수를 산출

- 약자인구 : 국토정보플랫폼의 500m*500m 격자 내 노인 인구와 어린이 인구 자료 이용

- ③ 클린로드 설치 후보 행정동으로 선정된 16개 동에 해당하는 격자 추출
- ④ 클린로드 설치 요건 고려 : 왕복 6차선인 도로를 포함하고 수원지(저수지, 물재생센터)와 의 거리가 3km 내인 격자 추출

(3) 최종 입지 선정

- 우선 설치점수 상위 25개 격자 내의 도로에서, 도로별 재비산먼지농도, 수원지, 인도/상 가와의 유격 거리를 종합적으로 고려하여 최종 5개의 클린로드 입지 제시
- 인도/상가와의 유격 거리는 네이버 지도의 로드뷰를 통해 사전 점검 진행

○ 결과 해석 및 시사점

[클린로드 설치 최종 도로 선정]

1. 마산회원구 : 구암1동 3.15대로

- 구암1동 3.15대로를 따라 1.1km가량의 클린로드 설치 제안
- 8차선 일반국도로 클린로드 설치에 충분한 도로 폭
- 상가건물, 인도와 유격거리가 여유로워 물튀김으로 인한 민원이 적을 것으로 예상
- 구암소류지 천주산소류지 1.5km이내, 봉암저수지 2.5km이내로 수원지와의 거리가 가까 워 경제적
- 3.15대로를 따라 마산역 방향으로 클린로드 추가증설 가능
- 2. 마산합포구 : 문화동 해안대로

- 문화동 해안도로를 따라 0.27km가량의 클린로드 설치 제안
- 6차선의 도로
- 상가건물, 인도와 유격거리가 여유로워 물튀김으로 인한 민원이 적을 것으로 예상
- 2.5km이내에 가포지, 5km이내에 덕동1지와 묵지골 소류지가 존재. 5.5km반경에 덕동물 재생센터도 존재함.
- 해안도로를 따라 위아래로 클린로드 추가증설 가능

3. 성산구 : 반송/용지동 원이대로

- 반송동과 용지동을 따라 원이대로에 1.64km가량의 클린로드 설치 제안
- 8차선 도로로 클린로드 설치에 충분한 도로 폭
- 상가건물, 인도와 유격거리가 여유로워 물튀김으로 인한 민원이 적을 것으로 예상
- 가장 단가리를 기준으로 삼동소류지 1km이내, 봉림저수지, 소봉지 2.5km이내 차상소류지, 남지동저수지, 성주저수지 2.5km이내로 수원지와의 거리가 가까워 경제적

4. 성산구 : 가음정동 창원대로

- 가음정동 창원대로에 1.78km가량의 클린로드 설치 제안
- 8차선 일반국도로 클린로드 설치에 충분한 도로 폭
- 상가건물, 인도와 유격거리가 여유로워 물튀김으로 인한 민원이 적을 것로 예상
- 성주저수지와 불모산 저수지가 2.5km 내외 거리에 위치

5. 진해구 : 석동 진해대로

- 석동 진해도로를 따라 0,83km 길이의 클린로드 제안
- 6차선의 도로
- 진해 물재셍센터가 2km이내 거리에 위치
- 3km이내 성주저수지와 서재소류지, 4km이내 불모산저수지 위치

○ 활용방안 및 기대효과

[기대효과]

- 1. 주요 기대효과
- 고농도 미세먼지 저감을 통한 대기질 환경과 도시미관 개선
- 도로 재비산먼지 제거를 통한 도로환경 개선
- 여름철 도심 내 열섬현상 완화
- 도로 공극의 밀폐화를 감소하여 도로 수명 증대
- 통행 차량에 의해 설치구간보다 넓은 구간의 청소 효과 발생
- 2. 추가 기대효과
- 동절기 도로 결빙 방지
- 살수차 운영비 절감

[활용방안]

- 1. 호흡기 질환 취약계층을 고려한 입지선정에 따른 공공성
- 2. 구체적인 위치를 도출함으로써 창원시의 미세먼지 저감& 폭염으로 인한 피해 예방에 보다 실질적인 방안 제시
- 3. '미세먼지 저감', '2030 스마트 기후환경도시 창원'등 창원시가 추구하는 정책적 방안과 발을 같이하는 주제를 선정하였으며, 관련된 시설물 설치를 고려할 때 본 입지선정을 위한 알고리즘은 향후 다양한 방안으로 활용될 수 있음

○ 활용데이터 및 참고 문헌 출처 등

[활용데이터]

- · 월별 AWS 기온 관측값 (기상청 : 기상자료 개방 포털)
- · 추정교통량 및 경상남도 주요도로망 (한국교통연구원)
- · 창원시 행정동별 주거인구 (공공 데이터 포털)
- · 창원시 행정동별 유동인구 (KT 인구 데이터 : 빅데이터로 보는 경남경기현황)
- · 호수. 저수지 데이터 (국토지리정보원)
- · 격자별 주거인구 (국토정보플랫폼)
- · 재비산먼지 및 미세먼지 데이터 (에어코리아)
- · 읍면동별 미세먼지 데이터 (네이버)

[참고 문헌]

1. 논문

- 도시 열 환경 개선을 위한 대구 클린로드 시스템의 확대 운영방안에 관한 연구
- 여름철 대구의 클린로드 시스템 운영에 따른 도로변 열 환경 개선 효과와 효율적 운영방 안 연구
- 대구의 여름철 도로 열 환경과 클린로드 시스템의 효과 조사를 위한 관측연구
- 대구의 클린로드 시스템 운영에 따른 대기 질 개선 효과 평가

2. 웹사이트

- 창원시 빅데이터 포털
- 국토교통과학기술진흥원

3. 문헌

- 핸즈온 머신러닝 (사이킷런, 케라스, 텐서플로2를 활용한 머신러닝, 딥러닝 완벽 실무), 한빛미디어
- 파이썬 머신러닝 완벽가이드, 위키북스

4. 그 외

- 수도권 지역 클린로드 시스템 구축 가이드 라인 및 관리방안 마련 연구 제안요청서, 수도 권대기환경청 자동차관리과
- 대전시 폭염대응 정책방향을 위한 사례조사 연구
- 도로변 자동살수 장치 설치에 따른 미세먼지 저감효과 분석

대구광역시 클린로드 설치 정책방향 연구

※ 결과내용을 10장 내외 자유형식으로 작성