

Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Algebra

Henri Mühle Wintersemester 2017/18

## 1. Übungsblatt zur Vorlesung "Geordnete Mengen in Hyperebenenarrangements"

## Halbordnungen und Verbände

- Ü1. Sei  $(P, \leq)$  eine endliche geordnete Menge mit kleinstem Element  $\hat{0}$ , sodass für je zwei Elemente  $x, y \in P$  eine kleinste obere Schranke  $x \vee y$  existiert. Zeigen Sie, dass  $(P, \leq)$  ein Verband ist.
- Ü2. Beweisen Sie das folgende Prinzip von Inklusion und Exklusion.

Sei X eine endliche Menge, und sei  $\{A_1,A_2,\ldots,A_n\}$  eine Familie von Teilmengen von X. Für  $J\subseteq\{1,2,\ldots,n\}$  sei  $A_J=\bigcap_{j\in J}A_j$ . Die Anzahl der Elemente, die in keiner der Mengen  $A_1,A_2,\ldots,A_n$  liegt ist gerade

$$\sum_{J\subseteq\{1,2,...,n\}} (-1)^{\#J} \# A_J.$$

Hinweis: Verwenden Sie Möbius-Inversion.

Ü3. Beweisen Sie Satz 0.10.

Sei  $(P, \leq)$  eine endliche, beschränkte geordnete Menge mit # $P \geq 2$ . Es bezeichne  $c_i$  die Anzahl aller Ketten  $\hat{0} = x_0 < x_1 < \cdots < x_i = \hat{1}$  der Länge i. Dann gilt

$$\mu(\hat{0},\hat{1}) = \sum_{i \geqslant 1} (-1)^i c_i.$$

Hinweis: Verwenden Sie die Inzidenzalgebra.

Ü4. Beweisen Sie Satz 0.15.

Sei  $(L, \leq)$  ein endlicher Verband mit  $\#L \geq 2$ , und sei  $a \in L \setminus \{\hat{0}\}$ . Dann gilt

$$\sum_{x \in L: x \vee a = \hat{1}} \mu(\hat{0}, x) = 0.$$

Hinweis: Verwenden Sie die Möbiusalgebra.

Ü5. Beweisen Sie Satz 0.16.

Sei  $(L, \leq)$  ein endlicher Verband, und sei  $z \in L$ . Dann gilt

$$\sigma_{\hat{0}} = \left(\sum_{v \in L: v \leqslant z} \mu(\hat{0}, v)v\right) \left(\sum_{y \in L: y \land z = \hat{0}} \mu(\hat{0}, y)y\right).$$

Ü6. Zeigen Sie, dass ein endlicher gradierter Verband  $(L, \leq)$  genau dann submodular ist, wenn er die folgende Bedingung erfüllt:

Für alle  $x, y \in L$  gilt, dass aus  $x \land y \lessdot x$  stets  $y \lessdot x \lor y$  folgt.

- Ü7. Finden Sie je einen Verband, der
  - atomar, aber nicht submodular ist;
  - submodular, aber nicht atomar ist;
  - weder submodular, noch atomar ist;
  - atomar ist, aber ein nicht-atomares Intervall enthält.
- Ü8. Zeigen Sie, dass jedes Intervall eines geometrischen Verbandes wieder ein geometrischer Verband ist.