

IN THE CLAIMS

What is claimed is:

1. 1. A computer software product including one or more recordable media having executable instructions stored thereon which, when executed by a processing device, causes the processing device to:
 4. initialize a symbolic simulation relation for an assertion graph on a first symbolic lattice domain.
1. 2. The computer software product recited in Claim 1 wherein initializing the symbolic simulation relation comprises causing the processing device to:
 3. join a Boolean predicate for an outgoing edge from an initial vertex in the assertion graph with a symbolic antecedent labeling of an edge in the assertion graph.
1. 3. The computer software product recited in Claim 2 wherein the symbolic antecedent labeling comprises a symbolic indexing function to encode a plurality of antecedent labels for a plurality of assertion graph instances, having at least one assertion graph instance on a second lattice domain different from the first symbolic lattice domain.
1. 4. The computer software product recited in Claim 1 wherein the assertion graph on the first symbolic lattice domain is configurable to express a justification property to verify by computing the symbolic simulation relation.
1. 5. The computer software product recited in Claim 4 which, when executed by a processing device, further causes the processing device to:
 3. compute the symbolic simulation relation for the assertion graph on the first symbolic lattice domain; and
 5. check the symbolic simulation relation to verify a plurality of properties

6 expressed by a plurality of assertion graph instances, having at least one
7 assertion graph instance on a second lattice domain different from the first
8 symbolic lattice domain.

- 1 6. The computer software product recited in Claim 1 which, when executed by a
2 processing device, further causes the processing device to:

3 compute the symbolic simulation relation for the assertion graph on the
4 first symbolic lattice domain; and

5 compare the symbolic simulation relation to a symbolic consequence
6 labeling for the edge for the assertion graph on the first symbolic lattice
7 domain.

- 1 7. The computer software product recited in Claim 6 wherein computing the
2 symbolic simulation relation comprises causing the processing device to:

3 join the symbolic simulation relation for the assertion graph on the first
4 symbolic lattice domain, to any states that are contained by a symbolic
5 antecedent for a first plurality of edges of the assertion graph on the first
6 symbolic lattice domain and also contained by a symbolic post-image for a
7 second plurality of edges incoming to the first plurality of edges.

- 1 8. The computer software product recited in Claim 1 which, when executed by a
2 processing device, further causes the processing device to:

3 compute the symbolic simulation relation for the assertion graph on the
4 first symbolic lattice domain to verify the assertion graph according to a
5 normal satisfiability criteria.

- 1 9. A method comprising:

2 initializing a symbolic simulation relation for an assertion graph on a first
3 symbolic lattice domain.

- 1 10. The method recited in Claim 9 wherein initializing the symbolic simulation
2 relation comprises:
3 joining a Boolean predicate for an outgoing edge from an initial vertex in
4 the assertion graph with a symbolic antecedent labeling of an edge in the
5 assertion graph.
- 1 11. The method recited in Claim 10 wherein the symbolic antecedent labeling
2 comprises a symbolic indexing function to encode a plurality of antecedent
3 labels for a plurality of assertion graph instances, having at least one
4 assertion graph instance on a second lattice domain different from the first
5 symbolic lattice domain.
- 1 12. The method recited in Claim 9 further comprising:
2 computing the symbolic simulation relation for the assertion graph on the
3 first symbolic lattice domain; and
4 comparing the symbolic simulation relation to a symbolic consequence
5 labeling for the edge for the assertion graph on the first symbolic lattice
6 domain.
- 1 13. The method recited in Claim 12 wherein computing the symbolic simulation
2 relation comprises:
3 joining the symbolic simulation relation for the assertion graph on the first
4 symbolic lattice domain, to any states that are contained by a symbolic
5 antecedent for a first plurality of edges of the assertion graph on the first
6 symbolic lattice domain and also contained by a symbolic post-image for a
7 second plurality of edges incoming to the first plurality of edges.
- 1 14. The method recited in Claim 9 wherein the assertion graph on the first
2 symbolic lattice domain is configurable to express a justification property to
3 verify through computing the symbolic simulation relation.

- 1 15. The method recited in Claim 14 further comprising:
- 2 computing the symbolic simulation relation for the assertion graph on the
- 3 first symbolic lattice domain; and
- 4 checking the symbolic simulation relation to verify a plurality of properties
- 5 expressed by a plurality of corresponding assertion graph instances, having
- 6 at least one assertion graph instance on a second lattice domain different
- 7 from the first symbolic lattice domain.
- 1 16. A method comprising:
- 2 specifying a justification property with an assertion graph.
- 1 17. The method recited in Claim 16 wherein the assertion graph is on a first
- 2 symbolic lattice domain; and the justification property is expressed by one of
- 3 a plurality of instances of the assertion graph, at least one assertion graph
- 4 instance on a second lattice domain different from the first symbolic lattice
- 5 domain.
- 1 18. The method recited in Claim 17 further comprising:
- 2 computing a symbolic simulation relation for the assertion graph on the
- 3 first symbolic lattice domain; and
- 4 checking the symbolic simulation relation with a symbolic consequence
- 5 labeling for the assertion graph on the first symbolic lattice domain according
- 6 to a normal satisfiability criteria.
- 1 19. A method comprising:
- 2 merging a plurality of properties in an assertion graph on a first symbolic
- 3 lattice domain by using a symbolic labeling.
- 1 20. The method recited in Claim 19 wherein the symbolic labeling comprises a
- 2 symbolic indexing function to encode a plurality of labels for a plurality of

3 assertion graph instances, having at least one assertion graph instance on a
4 second lattice domain different from the first symbolic lattice domain.

1 21. A formal verification method comprising:

2 defining an assertion graph including an antecedent label and a
3 consequence label;

4 simulating a finite state system having an initial state condition or an input
5 to generate a subsequent state condition or an output;

6 comparing the initial state condition or the input to any antecedent along
7 an infinite transition path through the assertion graph to identify any
8 antecedent violation; and

9 comparing the subsequent state condition or the output to the
10 consequence if no antecedent violation was identified.

1 22. A verification system comprising:

2 means for initializing a symbolic simulation relation for an assertion graph
3 on a first symbolic lattice domain.

1 23. The verification system of Claim 22 wherein the means for initializing the
2 symbolic simulation relation comprises:

3 means for joining a Boolean predicate for an outgoing edge from an initial
4 vertex in the assertion graph with a symbolic antecedent labeling of an edge
5 in the assertion graph.

1 24. The verification system of Claim 23 wherein the symbolic antecedent labeling
2 comprises a symbolic indexing function to encode a plurality of antecedent
3 labels for a plurality of assertion graph instances, having at least one
4 assertion graph instance on a second lattice domain different from the first
5 symbolic lattice domain.

- 1 25. The verification system of Claim 22 further comprising:
- 2 means for computing the symbolic simulation relation for the assertion
- 3 graph on the first symbolic lattice domain; and
- 4 means for comparing the symbolic simulation relation to a symbolic
- 5 consequence labeling for the edge for the assertion graph on the first
- 6 symbolic lattice domain.
- 1 26. The method recited in Claim 25 wherein the means for computing the
- 2 symbolic simulation relation comprises:
- 3 means for joining into what is already contained by the symbolic
- 4 simulation relation for the assertion graph on the first symbolic lattice domain,
- 5 any states that are contained by a symbolic antecedent for a first plurality of
- 6 edges of the assertion graph on the first symbolic lattice domain and also
- 7 contained by a symbolic post-image for a second plurality of edges incoming
- 8 to the first plurality of edges.
- 1 27. The verification system of Claim 9 wherein the assertion graph on the first
- 2 symbolic lattice domain is configurable to express a justification property to
- 3 verify through computing the symbolic simulation relation.
- 1 28. The verification system of Claim 27 further comprising:
- 2 means for computing the symbolic simulation relation for the assertion
- 3 graph on the first symbolic lattice domain; and
- 4 means for checking the symbolic simulation relation to verify a plurality of
- 5 properties expressed by a plurality of corresponding assertion graph
- 6 instances, having at least one assertion graph instance on a second lattice
- 7 domain different from the first symbolic lattice domain.
- 1 29. A verification system comprising:
- 2 means for specifying a justification property with an assertion graph.

- 1 30. The verification system of Claim 29 wherein the assertion graph is on a first
2 symbolic lattice domain; and the justification property is expressed by one of
3 a plurality of instances of the assertion graph, at least one assertion graph
4 instance on a second lattice domain different from the first symbolic lattice
5 domain.

00000000000000000000000000000000