数值方法 Homework 1

Problem 1

线性映射为 $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (x+y, x-y)^{\top}$.

- (1) 定义域和陪域都是 \mathbb{R}^2 .
- (2) 定义域的一组基为 $\langle e_1, e_2 \rangle = \langle (1,0)^{\top}, (0,1)^{\top} \rangle$.

陪域的两组基分别为 $\langle v_1, v_2 \rangle = \langle (1,0)^\top, (0,1)^\top \rangle$ 和 $\langle w_1, w_2 \rangle = \langle (0,1)^\top, (1,0)^\top \rangle$

(3) 对第一组基:
$$Te_1 = [v_1 \ v_2] \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $Te_2 = [v_1 \ v_2] \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, 对应的矩阵为 $M_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ 对第二组基: $Te_1 = [w_1 \ w_2] \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $Te_2 = [w_1 \ w_2] \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, 对应的矩阵为 $M_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

(4) 选取向量为 $v = (3,5)^{\top}$. 直接计算线性映射 $Tv = (3+5,3-5)^{\top} = (8,-2)^{\top}$.

在第一组基下的坐标: $x_1 = v^{\mathsf{T}} M_1 = (8, -2)$

在第二组基下的坐标: $x_2 = v^{\mathsf{T}} M_2 = (-2, 8)$

代码如下:

```
v = [3 5];
% 选取的向量

M1 = [1 1; 1 -1]; % 第一组基下的

M2 = [1 1; -1 1];

result1 = v * M1; % 在第一组基下的坐标

result2 = v * M2; % 在第二组基下的坐标

disp(result1); % [8 -2]

disp(result2); % [-2 8]
```