Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 4. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

f([], -1). f([H|T],S):-H>0, $\underline{f(T,S1)}$,S1<H,!,S is H. $f([_|T],S):-\underline{f(T,S1)}$, S is S1.

Rescrieți această definiție pentru a evita apelul recursiv <u>f(T,S)</u> în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

C. Dându-se o listă formată din numere întregi, să se genereze în PROLOG lista submulțimilor cu cel puțin **N** elemente având suma divizibilă cu 3. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[2,3,4] și $N=1 \Rightarrow [[3],[2,4],[2,3,4]]$ (nu neapărat în această ordine)

D. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2)
Se cere să se înlocuiască nodurile de pe nivelul **k** din arbore cu o valoare **e** dată. Nivelul rădăcinii se consideră a fi 0. Se va folosi o funcție MAP.

Exemplu pentru arborele (a (b (g)) (c (d (e)) (f))) și **e**=h

- a) k=2 => (a (b (h)) (c (h (e)) (h))) b) k=4 => (a (b (g)) (c (d (e)) (f)))