Lesson 13-1 – Sensitivity Analysis

Sensitivity & economic break-even analysis

- Projected and actual cash flows may differ due to:
 - technological change: changes to production costs;
 - changes in the size and number of competing firms;
 - introduction of new products: substitutes or complements;
 - changes to key macroeconomic variables, e.g. inflation, unemployment, economic growth, exchange rate;
 - international events.

Sensitivity Analysis

- Since economic problem solving often considers future consequences, there is uncertainty regarding accuracy.
- We can calculate how much a change in an input variable affects the output. This is "sensitivity analysis"
 - Example: How much does the NPV of investing in some equipment upgrade change if the savings are 10% worse than anticipated?
- Types of Sensitivity Analyses:
 - Break-Even Analysis
 - 'What-if' Analysis

Break-Even Analysis

- Break-even analysis is a form of sensitivity analysis
- Typically presented as a break-even chart.
- It indicates the point at which two alternatives are equal to each other.

Break-Even Analysis: Example 9-11

- Shows present worth of building both stages now versus building a second stage at a later date.
- The point at which they are equal is when the second stage is built in Year 15.

What if analysis

- Financial and economic data are typically estimates or projections into the future, an inherently uncertain
- Our decision parameter (NPV, IRR, etc) is dependent on these uncertain estimates
- A "what if" analysis can show us how much a financial or economic parameter must change to alter the decision
- This allows us to make an assessment of the inherent risk in a project

Doing 'What-If' Analysis with Spreadsheets

- What-if analysis can be done easily in a spreadsheet
- Adjust variables to see potential outcomes
 - What if construction costs are higher than expected?
 - What if revenues are lower than expected?
- What-if analysis changes one or many estimates to see alternate results

Sensitivity analysis ...

- Sensitivity example which properties is the NPV most sensitive to?
 - system cost = \$300,000
 - annual benefit = \$85,000
 - salvage value = \$60,000;
 - lifetime = 6 years

• MARR = 14%

			Cashflows		
Property	-30%	-15%	Base Case	15%	30%
Initial Investment	\$210,000	\$255,000	\$300,000	\$345,000	\$390,000
Annual Benefits	\$59,500	\$72,250	\$85,000	\$97,750	\$110,500
Salvage Value	\$42,000	\$51,000	\$60,000	\$69,000	\$78,000
Project Lifetime	4	5	6	7	8
Interest Rate	9.8%	11.9%	14.0%	16.1%	18.2%
		Net Present Values			
	-30%	-15%	Base Case	15%	30%
Initial Investment	\$147,872	\$102,872	\$57,872	\$12,872	(\$32,128)
Annual Benefits	(\$41,289)	\$8,291	\$57,872	\$107,452	\$157,033
Salvage Value	\$49,671	\$53,772	\$57,872	\$61,972	\$66,072
Project Lifetime	(\$8,431)	\$26,673	\$57,872	\$85,600	\$110,244
Interest Rate	\$106,617	\$81,023	\$57,872	\$36,874	\$17,779

Sensitivity & economic break-even analysis ...

- What is the break even point for the two most sensitive properties?
 - Which properties? Initial investment and annual benefits
 - Keeping the base case and changing just initial investment, what initial investment sets NPV to zero?
 - NPV is \$57,872 increasing investment by that will set NPV to zero
 - Initial investment = \$357,872, NPV = 0
 - Annual benefits use goal seek, or guess between \$59,500 and \$72,500
 - Annual benefits = \$70,118, NPV = 0

Sensitivity analysis - cases

- Above analysis only adjusts one parameter at a time
 - Worst case (not all the +/-30% values, but selected values)
 - \$360,000 investment, \$65,000 annual benefits, \$42,000 salvage value, lifetime five years, 16% interest.
 - Best case:
 - \$260,000 investment, \$100,000 annual profit, \$42,500 salvage value, lifetime seven years, MARR 10.5%.

		Cashflows			
Property	Worst Case	Base Case	Best Case		
Initial Investment	\$360,000	\$300,000	\$260,000		
Annual Benefits	\$65,000	\$85,000	\$100,000		
Salvage Value	\$42,000	\$60,000	\$42,000		
Project Lifetime	5	6	7		
Interest Rate	16.0%	14.0%	10.5%		
NPV	\$ (127,174)	\$ 57,872	\$ 239,809		