Simple RNN

Recurrent Neural Network

How does RNN reduce complexity?

Given function f: h',y=f(h,x)

h and h' are vectors with the same dimension

$$x^n = vector$$

Only need one function f.

Naïve RNN

• Given function f: h',y=f(h,x)

Note:y is computed from h'

Deep RNN

$$h',y = f_1(h,x), g',z = f_2(g,y)$$

Bidirectional RNN

$$y,h=f_1(x,h)$$
 $z,g = f_2(g,x)$

Problems with naive RNN

"memory" to short.

Gradient vanishing

Gradient exploding

How to Training RNN

RNN-based network

RNN-based network is not always easy to learn

The error surface is rough.

 $w \leftarrow w - \eta \partial L / \partial w$

Update Weights

$$w = 1$$
 \longrightarrow $y^{1000} = 1$
 $w = 1.01$ \longrightarrow $y^{1000} \approx 20000$
 $w = 0.99$ \longrightarrow $y^{1000} \approx 0$
 $w = 0.01$ \longrightarrow $y^{1000} \approx 0$

$$y^n = 1 * W^{n-1}$$

Backpropagation

$$\frac{\partial C^n}{\partial W} = \frac{\partial C^n}{\partial y^n} \frac{\partial y^n}{\partial W}$$

LSTM

RNN vs LSTM

c changes slowly \longrightarrow c^t is c^{t-1} added by something

h changes faster \longrightarrow h^t and h^{t-1} can be very different $h_t = o_t * \tanh(C_t)$

LSTM

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

is to be updated.

C, provides change contents

i, decides what component

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Updating the cell state

C,: Cell's memory changed slowly

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$
 Decide what part of the cell $h_t = o_t * \tanh\left(C_t\right)$ state to output

Cell's memory

Forget Gate

if 1 > sigmoid > 0, remember C^{t-1} if sigmoid = 0, forget C^{t-1}

Input Gate

if 1 > sigmoid > 0, remember \dot{C}_t if sigmoid = 0, forget \dot{C}_t

$$z = tanh(W)$$

$$h^{t-1}$$

$$z^{i} = \sigma(w^{i})$$

$$z^f = \sigma(\frac{W^f}{h^{t-1}})$$

$$z^{\circ} = \sigma(W^{\circ}$$
 h^{t-1}

Constant Error Carousels

Gradient Vanishing / Exploding in RNN

the repeated application of the recurrent weight matrix

Gradients Vanish in LSTM

Only some of them, gradient information local in time will still be present.

Peephole LSTM

$$f_t = \sigma \left(W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [C_t, h_{t-1}, x_t] + b_o \right)$$

GRU – gated recurrent unit

(more compression)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

It combines the forget and input into a single update gate. It also merges the cell state and hidden state. This is simpler than LSTM. There are many other variants too.

X,*: element-wise multiply

BPTT

Backpropagation Through Time

Gradient Exploding / Vanishing

$a \setminus \delta \circ b$ LSTM BPTT flow $b \delta \circ a$ ct+1 ct-1 0 \odot 0 tanh tanh 0 \odot zo Z^{0} X^{t+1} h^{t-1} ht \mathbf{x}^{t}

LSTM BPTT

$$T_t = O(W_f \Lambda_t + W_{recf} n_{t-1} + O_f)$$

$$I_{t} = \sigma(W_{i} X_{t} + W_{reci} h_{t-1} + b_{i})$$

$$O_t = \sigma(W_o X_t + W_{reco} h_{t-1} + b_o)$$

$$F_{t} = \sigma(W_{f}X_{t} + W_{recf}h_{t-1} + b_{f}) \quad \dot{C}_{t} = tanh(W_{\dot{C}}X_{t} + W_{rec\dot{C}}h_{t-1} + b_{\dot{C}})$$

$$C_t = C_{t-1} F_t + I_t \dot{C}_t$$

$$Output_t = O_t tanh(C_t)$$

$$Cost_t = \frac{1}{t} \left(Output_t - \widehat{y}_t \right)^2$$

Cell memory(t=2)

Memory Backpropagation (t=2)

$$\begin{split} \frac{dCost_2}{dW_{\dot{\mathbb{C}}}} &= \frac{dCost_2}{dOutput_2} \ \frac{dOutput_2}{dC_2(out)} \ \frac{dC_2(out)}{dC_2(in)} \ \frac{dC_2(in)}{d\dot{C}_2(out)} \ \frac{d\dot{C}_2(out)}{d\dot{C}_2(in)} \ \frac{d\dot{C}_2(in)}{d\dot{C}_2(in)} \ \frac{d\dot{C}_2(in)}{d\dot{C}_2(in)} \ \frac{d\dot{C}_2(in)}{d\dot{C}_2(in)} \end{split}$$

$$&= \left(Output_2 - \hat{y}_2\right) O_2 \left(1 - tanh(C_2)^2\right) I_2 \left(1 - tanh()^2\right) X_2$$

$$\frac{dCost_2}{dW_{rec\dot{C}}} = \frac{dCost_2}{dOutput_2} \frac{dOutput_2}{dC_2(out)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(in)}{d\dot{C}_2(out)} \frac{d\dot{C}_2(out)}{d\dot{C}_2(in)} \frac{d\dot{C}_2(out)}{d\dot{C}_2(in)} \frac{d\dot{C}_2(in)}{d\dot{C}_2(in)} \frac{d\dot{C}_2(in)}{d\dot{C}_2(in)} \frac{d\dot{C}_2(in)}{d\dot{C}_2(in)} = (Output_2 - \hat{y}_2) O_2 (1 - tanh(C_2)^2) I_2 (1 - tanh()^2) Output_1$$

Output Gate Backpropagation (t=2)

$$\begin{split} \frac{dCost_2}{dW_o} &= \frac{dCost_2}{dOutput_2} \ \frac{dOutput_2}{dO_2(out)} \ \frac{dO_2(out)}{dO_2(in)} \ \frac{dO_2(in)}{dW_o} \\ &= (Output_2 - \hat{y}_2) \ tanh(C_2) \left(\sigma() \ (1 - \sigma())\right) X_2 \end{split}$$

$$\begin{split} \frac{dCost_2}{dW_{reco}} &= \frac{dCost_2}{dOutput_2} \ \frac{dOutput_2}{dO_2(out)} \ \frac{dO_2(out)}{dO_2(in)} \ \frac{dO_2(in)}{dW_{reco}} \\ &= (Output_2 - \widehat{y}_2) \ tanh(C_2) \left(\sigma() \ (1 - \sigma())\right) \ Output_1 \end{split}$$

Input Gate Backpropagation (t=2)

$$\begin{split} \frac{dCost_2}{dW_{recI}} &= \frac{dCost_2}{dOutput_2} \ \frac{dOutput_2}{dC_2(out)} \ \frac{dC_2(out)}{dC_2(in)} \ \frac{dC_2(in)}{dI_2(out)} \ \frac{dI_2(out)}{dI_2(in)} \ \frac{dI_2(in)}{dW_{recI}} \\ &= (Output_2 - \hat{y}_2) \ O_2 \ (1 - tanh(C_2)^2) \ \dot{\mathbf{C}}_2(\sigma() \ (1 - \sigma())) Output_1 \end{split}$$

Forget Gate Backpropagation (t=2)

$$\begin{split} \frac{dCost_2}{dW_F} &= \frac{dCost_2}{dOutput_2} \ \frac{dOutput_2}{dC_2(out)} \ \frac{dC_2(out)}{dC_2(in)} \ \frac{dC_2(in)}{dF_2(out)} \ \frac{dF(out)}{dF_2(in)} \ \frac{dF_2(in)}{dW_F} \\ &= \left(Output_2 - \widehat{y}_2\right) O_2 \left(1 - tanh(C_2)^2\right) C_1(\sigma() \left(1 - \sigma()\right)) X_2 \end{split}$$

$$\begin{split} \frac{dCost_2}{dW_{recF}} &= \frac{dCost_2}{dOutput_2} \ \frac{dOutput_2}{dC_2(out)} \ \frac{dC_2(out)}{dC_2(in)} \ \frac{dC_2(in)}{dF_2(out)} \ \frac{dF(out)}{dF_2(in)} \ \frac{dF_2(in)}{dW_{recF}} \\ &= \left(Output_2 - \widehat{y}_2\right) O_2 \left(1 - tanh(C_2)^2\right) C_1(\sigma() \left(1 - \sigma()\right)) \ Output_1 \end{split}$$

Backpropagation to Cell1 (t=1)

Backpropagation to Cell1 Output Gate(t=1)

$$\frac{dCost_{total}}{dW_o} = \frac{dCost_1}{dW_o} + \frac{dCost_2}{dW_o}$$

$$=\frac{dCost_2}{dOutput_1} \frac{dOutput_1}{dO_1(out)} \frac{dO_1(out)}{dO_1(in)} \frac{dO_1(in)}{dW_o} + \frac{dCost_2}{dOutput_2} \frac{dOutput_2}{dO_2(out)} \frac{dO_2(out)}{dO_2(in)} \frac{dO_2(in)}{dOutput_1} \frac{dOutput_1}{dO_1(out)} \frac{dO_1(out)}{dO_1(in)} \frac{dO_1(in)}{dW_o} + \frac{dCost_2}{dOutput_2} \frac{dOutput_2}{dC_2(out)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(in)}{dI_2(out)} \frac{dI_2(out)}{dI_2(in)} \frac{dI_2(in)}{dOutput_1} \frac{dOutput_1}{dO_1(out)} \frac{dO_1(out)}{dO_1(in)} \frac{dO_1(in)}{dW_o} + \frac{dCost_2}{dOutput_2} \frac{dOutput_2}{dC_2(out)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(in)}{dC_2(out)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(out)}{dOutput_1} \frac{dO_1(out)}{dO_1(out)} \frac{dO_1(in)}{dO_1(out)} \frac{dO_1(in)}{dW_o} + \frac{dCost_2}{dOutput_2} \frac{dOutput_2}{dC_2(out)} \frac{dC_2(out)}{dC_2(in)} \frac{dC_2(in)}{dC_2(out)} \frac{dF_2(in)}{dC_2(in)} \frac{dOutput_1}{dOutput_1} \frac{dO_1(out)}{dO_1(out)} \frac{dO_1(in)}{dO_1(in)} \frac{dO_1(in)}{dW_o} + \frac{dCost_2}{dOutput_2} \frac{dOutput_2}{dC_2(out)} \frac{dC_2(out)}{dC_2(in)} \frac{dF_2(in)}{dF_2(out)} \frac{dF_2(in)}{dOutput_1} \frac{dOutput_1}{dO_1(out)} \frac{dO_1(out)}{dO_1(in)} \frac{dO_1(in)}{dW_o} + \frac{dO_1(in)}{dO_1(out)} \frac{dO_1(in)}{dO_1(in)} \frac{d$$

Simplify Backpropagation(t=1)

$$\frac{dCost_{total}}{dW_o} = \frac{dCost_1}{dW_o} + \frac{dCost_2}{dW_o}$$

```
 = (Output_2 - \widehat{y}_1) \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) \tanh(C_2) \left(\sigma() \left(1 - \sigma()\right)\right) W_{recO} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) I_2 \left(1 - \tanh()^2\right) W_{recC} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) \dot{C}_2 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recI} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \tanh(C_1) \left(\sigma() \left(1 - \sigma()\right)\right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \left(1 - \sigma()\right) W_{recF} \left(1 - \sigma()\right) \right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \left(1 - \sigma()\right) W_{recF} \left(1 - \sigma()\right) W_{recF} \left(1 - \sigma()\right) \right) X_1 + \\ (Output_2 - \widehat{y}_2) O_2 \left(1 - \tanh(C_2)^2\right) C_1 \left(\sigma() \left(1 - \sigma()\right)\right) W_{recF} \left(1 - \sigma()\right) W_{recF} \left(
```

Thank you