

第五讲二体轨道力学和运动方程

主讲:周军

西北工业大学 精确制导与控制研究所

第五讲 二体轨道力学和运动方程

- 1、从N体问题到二体问题
- 2、二体轨道运动常数

1、从N体问题到二体问题

N 体问题

假定存在某个合适的惯性坐标系 O'X'Y'Z', 该坐标系内,有n个质量块 $m_1, m_2, ..., m_n$, 它们的位置分别为 $\vec{r}_1, \vec{r}_2, ..., \vec{r}_n$ 。

由牛顿万有引力定律, m_i 受到 m_1 的引力为:

$$\vec{F}_{g1i} = -\frac{Gm_1m_i}{r_{1i}^3} (\vec{r}_{1i}) \qquad \vec{r}_{1i} = \vec{r}_i - \vec{r}_1$$

作用在第 i 个物体上的所有引力的矢量和 \vec{F}_{si} 为:

$$\vec{F}_{gi} = \left[-\frac{Gm_1m_i}{r_{1i}^3} (\vec{r}_{1i}) \right] + \dots + \left[-\frac{Gm_nm_i}{r_{ni}^3} (\vec{r}_{ni}) \right]$$

$$= -Gm_i \sum_{\substack{j=1\\j \neq i}}^n \frac{m_j}{r_{ji}^3} (\vec{r}_{ji})$$

其它外力 $\vec{F}_{\text{#E}}$,包括阻力、推力、太阳辐射压力、非球形造成的摄动力等。

$$ar{F}_{ ext{#c}} = ar{F}_{ ext{Md}} + ar{F}_{ ext{#d}} + ar{F}_{ ext{kned}} + ar{F}_{ ext{Tt}} + ar{C}$$

作用在第i个物体上的合力 $F_{\mathbb{R}}$ 为:

$$ec{F}_{\!\!eta}=ec{F}_{\!\!gi}+ec{F}_{\!\!ar{f g}i}$$

应用牛顿第二运动定律:

$$\frac{d}{dt}(m_i\vec{v}_i) = \vec{F}_{\boxtimes}$$

$$m_i \frac{d\vec{V}_i}{dt} + \vec{V}_i \frac{dm_i}{dt} = \vec{F}_{i}$$

- 1)物体排出质量产生以推力;
- 2)某些与相对论 有关的效应导 致质量随时间 变化。

$$\dot{\vec{r}}_{i} = \frac{F_{\boxtimes}}{m_{i}} - \dot{\vec{r}}_{i} \frac{\dot{m}_{i}}{m_{i}}$$

假设:

- 1、第 i 个物体的质量保持不变 (即无动力飞行, \dot{m}_i =0);
- 2、阻力和其它外力不存在。

$$\vec{r}_i = \frac{\vec{F}_{\boxtimes}}{m_i} - \vec{r}_i \frac{\vec{m}_i}{m_i} \qquad \vec{r}_i = \frac{\vec{F}_{\boxtimes}}{m_i} = \frac{\vec{F}_{\boxtimes} - \vec{F}_{\boxtimes}}{m_i}$$

$$\dot{\vec{r}}_{i} = -G \sum_{\substack{j=1\\j\neq i}}^{n} \frac{m_{j}}{r_{ji}^{3}} (\vec{r}_{ji})$$

$$\vec{r}_{i} = \frac{\vec{F}_{gi}}{m} = \frac{-Gm_{i} \sum_{\substack{j=1 \ j \neq i}} \frac{m_{j}}{r_{ji}^{3}} (\vec{r}_{ji})}{m}$$

$$\overrightarrow{\overrightarrow{r}}_{i} = -G \sum_{\substack{j=1\\j\neq i}}^{n} \frac{m_{j}}{r_{ji}^{3}} (\overrightarrow{r}_{ji})$$

 m_1 为一个绕地球运行的航天器的质量, m_2 为地球质量,

 m_3, m_4, \cdots, m_n 是月球、太阳等的质量。

$$\dot{\vec{r}}_{1} = -G \sum_{j=2}^{n} \frac{m_{j}}{r_{j1}^{3}} (\vec{r}_{j1})$$

 $\vec{r}_{i} = -G \sum_{j=1}^{n} \frac{m_{j}}{r_{ji}^{3}} (\vec{r}_{ji})$ ·绕地球运行的航天器的质量,

 m_1 为一个绕地球运行的航天器的质量 m_2 为地球质量,

 m_3, m_4, \cdots, m_n 是月球、太阳等的质量。

$$\dot{\vec{r}}_{2} = -G \sum_{\substack{j=1\\j\neq 2}}^{n} \frac{m_{j}}{r_{j2}^{3}} (\vec{r}_{j2})$$

$$\vec{r}_{1} = -G \sum_{j=2}^{n} \frac{m_{j}}{r_{j1}^{3}} (\vec{r}_{j1}) \qquad \vec{r}_{2}$$

$$\vec{r}_{21} = \vec{r}_1 - \vec{r}_2$$

$$\ddot{\vec{r}}_{21} = \ddot{\vec{r}}_1 - \ddot{\vec{r}}_2$$

$$\frac{\vec{r}}{\vec{r}_{21}} = -G \frac{m_2}{r_{21}^3} \vec{r}_{21} - G \sum_{j=3}^n \frac{m_j}{r_{j1}^3} (\vec{r}_{j1}) + G \frac{m_1}{r_{12}^3} \vec{r}_{12} + G \sum_{j=3}^n \frac{m_j}{r_{j2}^3} (\vec{r}_{j2})$$

$$\vec{\vec{r}}_{21} = -G \frac{m_2}{r_{21}^3} \vec{r}_{21} - G \sum_{j=3}^n \frac{m_j}{r_{j1}^3} (\vec{r}_{j1}) + G \frac{m_1}{r_{12}^3} \vec{r}_{12} + G \sum_{j=3}^n \frac{m_j}{r_{j2}^3} (\vec{r}_{j2})$$

$$\vec{r}_{12} = -\vec{r}_{21}$$

$$\frac{\vec{r}}{\vec{r}_{21}} = -\frac{G(m_1 + m_2)}{r_{21}^3} (\vec{r}_{21}) + \sum_{j=3}^n Gm_j (\frac{\vec{r}_{j2}}{r_{j2}^3} - \frac{\vec{r}_{j1}}{r_{j1}^3})$$

地球引力

摄动影响

轨道高度370km, 各种天体对航天器 的相对加速度(以g 为单位),以及地 球的非球形(扁率 造成的影响。

地球 8.9×10 ⁻¹ 太阳 6.0×10 ⁻⁴ 水星 2.6×10 ⁻¹⁰ 金星 19×10 ⁻⁸ 火星 7.1×10 ⁻¹⁰ 木星 3.2×10 ⁻⁸
水星 2.6×10 ⁻¹⁰ 金星 19×10 ⁻⁸ 火星 7.1×10 ⁻¹⁰
全星 19×10 ⁻⁸ 火星 7.1×10 ⁻¹⁰
火星 7.1×10 ⁻¹⁰
7.1 ^ 10
^{木星} 3.2×10 ⁻⁸
土星 2.3×10 ⁻⁹
天王星 8.0×10 ⁻¹¹
海王星 3.6×10 ⁻¹¹
冥王星 10×10 ⁻¹²
月球 3.3×10 ⁻⁶
地球扁率 10×10 ⁻³

因为: 地球的引力 >> 其他摄动力

$$\frac{\vec{r}}{\vec{r}_{21}} = -\frac{G(m_1 + m_2)}{r_{21}^3} (\vec{r}_{21}) + \sum_{j=3}^n Gm_j (\frac{\vec{r}_{j2}}{r_{j2}^3} - \frac{\vec{r}_{j1}}{r_{j1}^3})$$

$$\ddot{\vec{r}}_{21} = -\frac{G(m_1 + m_2)}{m_2 r_{21}^3} \vec{r}_{21}$$

$$\ddot{\vec{r}} = -\frac{G(m+M)}{r^3}\vec{r}$$

N体问题 — 二体问题

方程中只有两天体间的相对失径,没有天体到绝对惯性系的绝对矢径。

选择一个不转动的非惯性坐标系,例如原点在地球质心O,三轴与惯性系平行的坐标系OXYZ描述相对位置、速度和加速度。

考虑到实际情况

 $\overline{G(M+m)} \approx \overline{GM}$

中心引力体质量

引力参数 $\mu \equiv GM$

$$\ddot{\vec{r}} = -\frac{G(M+m)}{r^3} \vec{r} \approx -\frac{GM}{r^3} \vec{r}$$

对不同的中心引力体, μ 的值不同:

对于地球, $\mu = 3.986 \times 10^5 \text{ km}^3 / \text{ s}^2$; 对于太阳, $\mu = 1.327 \ 154 \times 10^{11} \text{ km}^3 / \text{ s}^2$ 。

2、轨道运动常数

机械能守恒

$$\vec{r} + \frac{\mu}{r^3}\vec{r} = 0$$

$$\vec{r} \cdot (\vec{r} + \frac{\mu}{r^3}\vec{r}) = 0$$

$$\vec{r} \cdot \vec{r} + \vec{r} \cdot \frac{\mu}{r^3}\vec{r} = 0$$

$$\vec{v} = \vec{r} \quad \dot{\vec{v}} = \ddot{\vec{r}}$$

$$\vec{v} = \ddot{\vec{r}} \quad \dot{\vec{v}} = \ddot{\vec{r}}$$

$$\vec{v} \cdot \dot{\vec{v}} + \frac{\mu}{r^3} \vec{r} \cdot \dot{\vec{r}} = 0$$

$$\vec{a} \cdot \vec{a} = a\vec{a}$$

$$v \cdot \dot{v} + \frac{\mu}{r^3} r \cdot \dot{r} = 0$$

$$d \cdot v^2$$

$$\frac{d}{dt}(\frac{v^2}{2} - \frac{\mu}{r}) = 0$$

$$\frac{v^2}{2} - \frac{\mu}{r} = -c$$

$$\varepsilon = \frac{v^2}{2} + (c - \frac{\mu}{r})$$

-比机械能

$$\varepsilon = \frac{v^2}{2} + (c - \frac{\mu}{r})$$

比动能: 单位质量的动能 比势能: 单位质量的势能

当航天器沿着轨道运行时,航天器的比机械能 ε 既不增加,也不减少,而是保持常值。

c 的选取依赖于零势能面的选取,若以无穷远 $(r=\infty)$ 为零势能面,

$$c - \frac{\mu}{r} = 0 \qquad \qquad \varepsilon = \frac{v^2}{2} - \frac{\mu}{r}$$

角动量守恒

$$\vec{r} + \frac{\mu}{r^3}\vec{r} = 0$$

$$\vec{r} \times \left(\vec{r} + \frac{\mu}{r^3}\vec{r} \right) = 0$$

$$\vec{r} \times \vec{r} + \vec{r} \times \frac{\mu}{r^3}\vec{r} = 0$$

$$\vec{a} \times \vec{a} = 0$$

$$\vec{r} \times \ddot{\vec{r}} = 0$$

$$\vec{r} \times \ddot{\vec{r}} = 0$$

$$\frac{d}{dt}(\vec{r} \times \dot{\vec{r}}) = \underline{\dot{r}} \times \dot{\vec{r}} + \underline{\vec{r}} \times \dot{\vec{r}} = 0 + 0 = 0$$

$$\frac{d}{dt}(\vec{r}\times\dot{\vec{r}}) = \mathbf{0}$$

$$\frac{d}{dt}(\vec{r} \times \vec{v}) = \mathbf{0}$$

$$\vec{h} = \vec{r} \times \vec{v} =$$
常数 _

-比角动量

比角动量沿着其轨道为一常矢量。

$$\vec{h} = \vec{r} \times \vec{v}$$

 $\vec{h} \perp \vec{v}$ 、 \vec{r} 所在平面

 \vec{h} =常数

戸和 → 所处平面不变 轨道平面具有定向性。

比角动量沿着其轨道为一常矢量。

$$\vec{h} = \vec{r} \times \vec{v}$$

 $\vec{h} \perp \vec{v}$ 、 \vec{r} 所在平面

 \vec{h} =常数

京和 京 所处平面不变 轨道平面具有定向性。

