■ BASICS OF ANALUM COMPUTING

•
$$107:=\begin{pmatrix} t \\ 0 \end{pmatrix}$$
 , $1\pm7:=\begin{pmatrix} t \\ 1 \end{pmatrix}$

• $1+7:=\frac{10}{\sqrt{2}}+10$; $1-7:=\frac{107-117}{\sqrt{2}}$; $1\pm77:=\frac{107\pm2}{\sqrt{2}}$

• X,Y,Z Roub: $-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}$

• X,Y,Z Roub: $-\frac{1}{\sqrt{2}}+\frac{$

OTHE	R	GATES	•
9 11	-	01111	-0

G (AL C. O(1) E.) •		
Operator	Gate(s)	Matrix	
Pauli-X (X)	x	$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = ie^{-i\frac{\pi}{2}}$	$= \left(GS\left(\frac{1}{2}\right) \mathcal{I} - i Sin\left(\frac{7}{2}\right) X\right) i$
Pauli-Y (Y)	$-\mathbf{Y}$	$egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$	P2 11 =) -igP
Pauli-Z (Z)	$-\mathbf{z}-$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \lambda \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	2 = 658 1 - i sin 8
Hadamard (H)	— H —	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \xrightarrow{\text{abound } 2} \frac{2}{\text{in the Plack sphere}}$	$\begin{pmatrix} e &= \sum_{i=1}^{\infty} A_{i} \\ &= R_{i}(\Im) \end{pmatrix}$
Phase (S, P)		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \begin{pmatrix} f & o \\ o & e^{\frac{1}{2}\frac{\pi}{2}} \end{bmatrix}$	2 il = et e 4
$\pi/8~({ m T})$	-[T] $-$	$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$	
Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	107 v [+-y-
Controlled Z (CZ)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$	-> -> -> -> -> -> -> -> -> ->
SWAP		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	Caction of X.
Toffoli (CCNOT, CCX, TOFF)		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$	
· < - () = 10><0 A	3 I _B + 117<	CILA & VB	
· HZH = X	, X= HZ	H	
HZHIOZ = HZI+> HZHIYZ = ×(1)	H -> = 1 > =	: X 0 / = 1 Z H =	= X = > 2 = HXH H ² = H
• $(HS^{\dagger})^{\frac{1}{2}}(HS^{\dagger}) = Y$	$(5\times5'=Y)$		

