LECTURE 11, ERGODIC DECOMPOSITION OF UNIPOTENT INVARIANT PROBABILITY MEASURES

RUNLIN ZHANG

CONTENTS

1.	U-ergodic measures	1
2.	Candidates of homogeneous orbit closure	2
3.	Tubes	4
References		6

The main reference of this lecture is [Sha91] and [MS95, Section 2]. Notations

- $X := G/\Gamma$ with $G := SL_n(\mathbb{R})$ and $\Gamma := SL_n(\mathbb{Z})$;
- $U = \{\mathbf{u}_s\}$ is a one-parameter unipotent subgroup of G.

1. U-ERGODIC MEASURES

The following is the description of ergodic U-invariant probability measures due to Ratner [Ra91].

Theorem 1.1. Let μ be a U-invariant ergodic probability measure on X, then there exists $x \in X$ and a closed connected subgroup $H \leq G$ containing U such that

- 1. *H.x is closed and supports an H-invariant probability measure* $\hat{\mathbf{m}}_{H.x}$;
- 2. $\mu = \hat{m}_{H.x}$.

By writing $x = [g]_{\Gamma}$ and replacing H by $g^{-1}Hg$, we may rephrase the above theorem as

Theorem 1.2. Let μ be a U-invariant ergodic probability measure on X, then there exists $g \in G$ and a closed connected subgroup $H \leq G$ containing $g^{-1}Ug$ such that

- 1. $[H]_{\Gamma} := H\Gamma/\Gamma$ is closed and supports an H-invariant probability measure $\widehat{\mathbf{m}}_{[H]_{\Gamma}}$;
- 2. $\mu = g_* \hat{m}_{[H]_{\Gamma}}$.

In particular, supp $(\mu) = g[H]_{\Gamma}$.

Example 1.3. If $G = SL_2(\mathbb{R})$ and $U := \{\mathbf{u}_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{R}\}$, then candidates of H are $\{U, G\}$.

Example 1.4. If $G = SL_2(\mathbb{C})$ $(\Gamma = SL_2(\mathbb{Z}[i]))$ and $U := \{\mathbf{u}_s = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{R}\}$, then candidates of H are $\{U, V, SL_2(\mathbb{R}), G\}$, where $V = \{\begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{C}\}$.

Date: 2022.04.

We attempt to define where the pair (g, H) is supposed to live in.

Definition 1.5. For two subgroups A, B of G, define

$$N(A, B) := \{ g \in G \mid gAg^{-1} \supset B \}.$$

In this terminology, g as above belongs to N(H, U). When H = U, N(U, U) is just the normalizer of U in G. When H = G, N(G, U) = G. Where is H? (We do not want U to appear in the definition of this space.)

Definition 1.6. Let \mathcal{H} be the collection of subgroup L of G satisfying

- 1. L is a connected and closed subgroup;
- 2. $[L]_{\Gamma}$ is closed and supports an L-invariant probability measure $\widehat{m}_{[L]_{\Gamma}}$;
- 3. some one-parameter unipotent subgroup of L acts ergodically on $\widehat{\mathbf{m}}_{[L]_{\Gamma}}$.

Thus H as above belongs to \mathcal{H} .

Thus from μ we get a pair (g, H). To recover μ , we take the unique probability Haar measure supported on the $gH\Gamma/\Gamma$.

Lemma 1.7. Let H_1, H_2 be two connected closed subgroups of G such that $H_i\Gamma$ (i=1,2) are both closed. Let $g_1, g_2 \in G$. Then $g_1H_1\Gamma = g_2H_2\Gamma$ iff there exist $h_2 \in H_2$ and $\gamma_2 \in \Gamma$ such that

$$g_2 h_2 \gamma_2 = g_1$$
, $\gamma_2^{-1} H_2 \gamma_2 = H_1$.

Proof. It only suffices to prove the " \Longrightarrow " direction. The other direction follows directly. So assume $g_1H_1\Gamma=g_2H_2\Gamma$. Then

$$H_1\Gamma = g_3H_2\Gamma$$
, $g_3 := g_1^{-1}g_2$.

Thus id $\in g_3H_2\Gamma$ and

$$1 = g_3 h_2 \gamma_2, \exists h_2 \in H_2, \gamma_2 \in \Gamma_2.$$

This already implies that

$$g_2h_2\gamma_2=g_2g_3^{-1}=g_1.$$

Now we have

2

$$H_1\Gamma = \gamma_2^{-1} \, h_2^{-1} \, H_2\Gamma = \gamma_2^{-1} \, H_2\gamma_2\Gamma.$$

By inspecting a small neighborhood of $[id]_{\Gamma}$ and use the fact that $[H_1]_{\Gamma}$ and $[\gamma_2^{-1}H_2\gamma_2]_{\Gamma}$ are both embedded submanifolds, we see that $H_1 = \gamma_2^{-1}H_2\gamma_2$.

However, not every such pair give one *U*-ergodic measure.

2. CANDIDATES OF HOMOGENEOUS ORBIT CLOSURE

Now we take some $x_0 \in X$. Eventually, we would know that the closure of $U.x_0$ is homogeneous and the homogeneous measure is finite and U-ergodic. But this does not follow immediately from the Thm. 1.1 above. Nevertheless, we can say something (without appealing to Thm. 1.1 above).

Definition 2.1. Let \mathcal{A} (depending on $x_0 \in X$ and U) be the collection of subgroup L of G satisfying

- 1. L is a connected closed subgroup of G containing U;
- 2. $L.x_0$ is closed.

Lemma 2.2. The collection \mathscr{A} has a smallest element. Indeed, if $L_1, L_2 \in \mathscr{A}$ then $(L_1 \cap L_2)^{\circ} \in \mathscr{A}$.

Proof. First we remark that for a closed subgroup $L \leq G$, if $L\Gamma$ is closed then $L^{\circ}\Gamma$ is also closed. Indeed, one shows that every orbit of L° on $L/L \cap \Gamma$, which is homeomorphic to $L\Gamma/\Gamma$ (Exercise, use Baire Category theorem), is open and hence closed. So it suffices to show that if $L_3 := L_1 \cap L_2$, then $L_3\Gamma$ is closed. This follows from a similar reasoning. Indeed, every orbit of L_3 on $[L_1]_{\Gamma} \cap [L_2]_{\Gamma}$ is open and hence closed. To see why every orbit is open, one may take a local neighborhood.

Take $g_0 \in G$ such that $x_0 = [g_0]_{\Gamma}$.

Theorem 2.3. Let $H := H_{\mathscr{A}}$ be this smallest element in \mathscr{A} , then

- 1. the closed set $H.x_0$ supports a finite H-invariant measure $m_{H.x_0}$;
- 2. the measure $m_{H.x_0}$ is U-ergodic;
- 3. there exists a \mathbb{Q} -algebraic subgroup \mathbf{H}' of SL_n such that $g_0^{-1}Hg_0 = \mathbf{H}'(\mathbb{R})^\circ$, more precisely, \mathbf{H}' is the smallest \mathbb{Q} -algebraic subgroup containing $g_0^{-1}Ug_0$. In particular, H is algebraic.

[You may ignore the last statement if you are allergic to algebraic groups.]

Before the proof, note that there is a locally finite measure m_{H,x_0} that is only "quasi-invariant under H" (for instance, the one induced from a right invariant Riemannian metric). A priori, it is not clear why it is H-invariant. But one can still talk about ergodicity and the associated unitary representation (with suitably twisted action). You may ignore this issue by pretending m_{H,x_0} is H-invariant from the start.

Here is a sketch of proof.

Step 1. By Mautner's phenomenon (see [Moo80, Theorem 1.1] and some supplementary arguments in [Sha91, Proposition 2.7]), there exists a closed normal subgroup $F \triangleleft H$ containing U such that for every unitary representation of H, every U-fixed vector is F-fixed. Thus to show U-ergodicity, suffices to show F-ergodicity.

Step 2. Let Γ_H be the stabilizer of x_0 in H. Explicitly, $\Gamma_H = H \cap g_0 \Gamma g_0^{-1}$. Define

$$F' := \overline{F \cdot \Gamma_H}.$$

Since F is normal, F' is a closed subgroup of H. Since F' is right invariant under Γ_H , $F'\Gamma_H/\Gamma_H$ is closed in H/Γ_H . Thus $F'.x_0$ is closed. And F' contains U. By minimality of H, F' = H.

Step 3. Now we show F-ergodicity of m_{H,x_0} . Let Ω be a F-invariant measurable set of H/Γ_H . Assume $m_{H,x_0}(\Omega)>0$, we want to show its complement has zero measure. Since F is normal, we see that its preimage $\widetilde{\Omega}$ right invariant under the group $F \cdot \Gamma_H$. Let m_H be the right H-invariant Haar measure on H. Then $\mu:=m_H|_{\widetilde{\Omega}}$ is right $F \cdot \Gamma_H$ -invariant. Since μ is a locally finite measure, by continuity, the stabilizer of μ in H (under the action from the right) is a closed subgroup. Thus μ is right F'-invariant, hence H-invariant. By uniqueness of Haar measure, $\mu=m_H$ (up to a scalar, which has to be 1). In particular, the complement of $\widetilde{\Omega}$ has zero measure. This implies that the complement of Ω also has zero measure.

Step 4. It remains to show that $m_{H.x_0}$ is a finite measure. In fact every U-ergodic locally finite measure v is finite. By pointwise ergodic theorem (see [Wal82, Theorem 1.14, Section 1.6]), for every $f \in L^1(v)$, for v-almost every x,

$$f^*(x) := \lim_{S \to +\infty} \frac{1}{S} \int_0^S f(\mathbf{u}_s.x) \, ds \text{ exists.}$$

RUNLIN ZHANG

Moreover $f^* \in L^1(v)$ and is *U*-invariant. By ergodicity, f^* is a constant, which has to be 0 if v is an infinite measure.

On the other hand, by non-divergence of unipotent flow, there exists a compact set C such that if f is the indicator function of C, then $f^* \neq 0$.

Thus ν has to be finite. This finishes the proof of 1 and 2 of Thm.2.3.

Step 5. To save notation, we assume $g_0 = id$ here.

Let \mathbf{L} be the smallest \mathbb{Q} -algebraic subgroup of SL_n containing U. Let $\pi_1: \mathbf{L} \to \mathbf{T}$ be the maximal quotient (algebraic) torus of \mathbf{L} . π_1 is defined over \mathbb{Q} . Since U is unipotent and π_1 preserves this property, the image of $\pi_1(U)$ consists of unipotent elements. But torus \mathbf{T} only contains semisimple elements. Thus U is contained in the kernel of π_1 , which is in the form of a semisimple (algebraic) group semidirect product with a unipotent (algebraic) group. In particular, \mathbf{L} admits no nontrivial characters (:=algebraic group morphisms to $\mathbb{C}^\times = \mathrm{GL}_1$). By a theorem of Borel–Harish-Chandra (see for instance [Bor19, Corollary 13.2]), $\mathbf{L} \cap \Gamma$ ($\mathbf{L} := \mathbf{L}(\mathbb{R})^\circ$) is a lattice in \mathbf{L} and in particular (by Exer. 6.2 from Exercise Sheet 3.), $\mathbf{L}\Gamma/\Gamma$ is closed. By minimality of H, $H \subset \mathbf{L}$. Our goal is to show $H = \mathbf{L}$ (this is what we mean by saying H is "algebraic"). We do know that the Zariski closure of H is equal to \mathbf{L} .

Step 6. Let \mathfrak{h} be the Lie algebra of H. By Levi's decomposition (reference? probably Bourbaki's book?), there exists a semisimple \mathfrak{m} and solvable ideal \mathfrak{r} of \mathfrak{h} such that $\mathfrak{h}=\mathfrak{m}\ltimes\mathfrak{r}$. By [Bor91, ChII, Corollary 7.9], since $\mathfrak{m}=[\mathfrak{m},\mathfrak{m}]$, \mathfrak{m} is already algebraic (the corresponding Lie subgroup M is algebraic). Let M be the corresponding \mathbb{R} -algebraic subgroup. We seek to show that \mathfrak{r} consists of nilpotent matrices and hence is algebraic. By [Bor91, ChII, Corollary 7.7], this shows that H is algebraic. Since H normalizes \mathfrak{r} and "normalizing \mathfrak{r} " is an algebraic condition, we have that L normalizes \mathfrak{r} . Thus \mathfrak{r} is an ideal of \mathfrak{l} . Let $\pi_2: \mathfrak{l} \to \mathfrak{l}/\mathfrak{u} \cong \mathfrak{m}$ (here \mathfrak{u} is the Lie algebra of the unipotent radical of L), then $\pi_2(\mathfrak{r})$ is an ideal of $\mathfrak{l}/\mathfrak{u}$. But every non-zero ideal of a semisimple Lie algebra is semisimple and can not be solvable. Thus $\pi_2(\mathfrak{r})=0$, or $\mathfrak{r}\subset\mathfrak{u}$, which consists of nilpotent matrices. The rest of the claim in 3. of Thm. 2.3 also follows by Borel density theorem.

3. Tubes

Assume U acts on $g_*m_{[H]}$ ergodically, it is still possible for some $h \in H$, $U[gh]_{\Gamma}$ is trapped in a closed homogeneous set of smaller dimension.

Definition 3.1. *For* $H \in \mathcal{H}$ *, define*

$$\begin{split} & \operatorname{Sing}(H,U) := \bigcup_{L \in \mathcal{H}, L \nleq H} N(L,U); \\ & NS(H,U) := N(H,U) \setminus \operatorname{Sing}(H,U); \\ & T(H,U) := NS(H,U) \Gamma/\Gamma. \end{split}$$

Lemma 3.2. Let $H_1, H_2 \in \mathcal{H}$. If $NS(H_1, U)\Gamma \cap NS(H_2, U)\Gamma \neq \emptyset$, then H_1 is Γ -conjugate to H_2 and $NS(H_1, U)\Gamma = NS(H_2, U)\Gamma$.

Proof. So assume $NS(H_1, U)\Gamma \cap NS(H_2, U)\Gamma \neq \emptyset$, which means that we can find $g_1 \in NS(H_1, U)$ and $\gamma_1 \in \Gamma$ such that $g_1\gamma_1 \in NS(H_2, U)$. By definition, we have

$$g_1^{-1}Ug_1\subset H_1\cap\gamma_1H_2\gamma_1^{-1}.$$

We know (the connected component of) $H' := H_1 \cap \gamma_1 H_2 \gamma_2^{-1}$ has a closed orbit based at $[id]_{\Gamma}$. But we do not know whether it supports a finite H'-invariant measure. This

is where we apply Thm.2.3 (to the unipotent group $g_1^{-1}Ug_1$ and $x_0 = [\mathrm{id}]_{\Gamma}$) to conclude that there exists $L \subset H'$, $L \in \mathcal{H}$ such that $g_1^{-1}Ug_1 \subset L$, or $g_1 \in N(L,U)$.

Therefore $H_1 = \gamma_1 H_2 \gamma_1^{-1}$ for otherwise L will be strictly contained in at least one of H_1 or $\gamma_1 H_2 \gamma_1^{-1}$ and this would imply $g_1 \notin NS(H_1, U)$ or $g_1 \gamma_1 \notin NS(H_2, U)$, contradicting against our assumption. $NS(H_1, U)\Gamma = NS(H_2, U)\Gamma$ follows immediately.

Since *U* acts ergodically on m_X , we have $G \in \mathcal{H}$ and

$$X = \bigsqcup_{[H] \in \mathcal{H}/\sim_{\Gamma}} T(H, U)$$

thanks to the Lem.3.2.

Definition 3.3. For $[H] \in \mathcal{H} / \sim_{\Gamma}$, let

$$\mu^{[H]} := \mu|_{T(H,U)}.$$

Example 3.4. If $X = \operatorname{SL}_2(\mathbb{R}) / \operatorname{SL}_2(\mathbb{Z})$ and $U = \{ \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, s \in \mathbb{R} \}$, then $\mathscr{H} / \sim_{\Gamma} = \{ U, \operatorname{SL}_2(\mathbb{R}) \}$ (if you pass to a smaller subgroup of $\operatorname{SL}_2(\mathbb{Z})$ then this set has other $\operatorname{SL}_2(\mathbb{Q})$ -conjugates of U that are not conjugate over Γ). And T(U,U) consists of compact orbits of U, T(G,U) is

We have proved

the complement of T(U, U).

Theorem 3.5. For a U-invariant probability measure μ ,

$$\mu = \sum_{[H] \in \mathcal{H}/\sim_{\Gamma}} \mu^{[H]}$$

and each $\mu^{[H]}$ is *U*-invariant.

We have not used Thm.1.1 yet. For a finite positive measure μ on X, let $\widehat{\mu} := \mu/\mu(X)$ be the unique probability measure proportional to μ .

Theorem 3.6. Assume $\mu^{[H]} \neq 0$. For almost every U-ergodic component v of $\widehat{\mu^{[H]}}$, there exists $g_v \in N(H, U)$ such that $v = (g_v)_* m_{[H]_{\Gamma}}$.

Proof. First we have the (abstract) ergodic decomposition

$$\widehat{\mu^{[H]}} = \int_{\operatorname{Prob}(X)^{U,\operatorname{Erg}}} v \, \lambda(v).$$

Thus for almost every v, v(T(H,U)) = 1. Take such a v, by Thm.1.2, there exists $H_1 \in \mathcal{H}$ and $g_1 \in N(H_1,U)$ such that $v = (g_1)_* \widehat{\mathbf{m}}_{[H_1]_\Gamma}$. By pointwise ergodic theorem, we can find a full measure set of $h_1 \in H_1$ such that

$$\lim_{S\to +\infty}\frac{1}{S}\int_0^S (\mathbf{u}_s)_*\delta_{[g_1h_1]_\Gamma}\,\mathrm{d}s=(g_1)_*\widehat{\mathbf{m}}_{[H_1]_\Gamma}.$$

In particular, $\overline{U}.[g_1h_1]_{\Gamma}=g_1[H_1]_{\Gamma}$. One sees that $g_1h_1\in N(H_1,U)$ and we claim that $g_1h_1\in NS(H_1,U)$. Otherwise, there exists $L\nsubseteq H_1$ with $L\in \mathscr{H}$ such that $g_1h_1\in N(L,U)$. This implies that $\overline{U}.[g_1h_1]_{\Gamma}\subset g_1h_1[L]_{\Gamma}$. Since $\dim L$ is strictly smaller than $\dim H_1$, we have a contradiction.

So now $[g_1h_1]_{\Gamma} \in T(H_1, U)$, moreover, all such h_1 is of full measure in H_1 and consequently $v(T(H_1, U)) = (g_1)_* \widehat{\mathfrak{m}}_{[H_1]_{\Gamma}}(T(H_1, U)) = 1$. But v(T(H, U)) = 1. Thus $T(H_1, U)$ and T(H, U) have nontrivial intersection. By Lem.3.2, for some $\gamma_1 \in \Gamma$, $H_1 = \gamma_1 H \gamma_1^{-1}$ and $T(H_1, U) = T(H, U)$. Hence $[g_1H_1]_{\Gamma} = g_1\gamma_1[H]_{\Gamma}$. Let $g_v := g_1\gamma_1$. One can check that $g_v \in N(H, U)$ and $v = (g_v)_* \widehat{\mathfrak{m}}_{[H]_{\Gamma}}$

RUNLIN ZHANG

6

REFERENCES

- [Bor91] Armand Borel, *Linear algebraic groups*, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- [Bor19] ______, Introduction to arithmetic groups, University Lecture Series, vol. 73, American Mathematical Society, Providence, RI, 2019, Translated from the 1969 French original [MR0244260] by Lam Laurent Pham, Edited and with a preface by Dave Witte Morris. MR 3970984
- [Moo80] Calvin C. Moore, *The Mautner phenomenon for general unitary representations*, Pacific J. Math. **86** (1980), no. 1, 155–169. MR 586875
- [MS95] Shahar Mozes and Nimish Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 149–159. MR 1314973
- [Ra91] Marina Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607.
 MR 1135878
- [Sha91] Nimish A. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991), no. 2, 315–334. MR 1092178
- [Wal82] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108