Activités Mentales

24 Août 2023

$$-13(4x-3)(-5x-10) > 0$$

$$13(10x+11)(-3x-7)<0$$

$$-5(-3x-11)(8x-2) < 0$$

$$9(-7x-15)(4x-3) \le 0$$

$$11(11x+6)(-2x+3) \ge 0$$

On pose
$$A(x) = -13(4x-3)(-5x-10) = -13 \times f(x) \times g(x)$$
 avec $f(x) = 4x-3$ et $g(x) = -5x-10$.

- f est une fonction affine avec m=4>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{3}{4}$.
- g est une fonction affine avec m=-5<0. g est donc décroissante sur \mathbb{R} .

De plus $g(x) = 0 \Leftrightarrow x = -2$.

On rappelle que f(x) = 4x - 3 et g(x) = -5x - 10 et A(x) = -13(4x - 3)(-5x - 10). Son tableau de signe est alors

x	$-\infty$		-2		$\frac{3}{4}$		+∞
-13		-		-		_	
f(x)		-		-	0	+	
g(x)		+	0	-		_	
A(x)		+	0	-	0	+	

Finalement l'ensemble de solutions de -13(4x-3)(-5x-10) > 0 est

$$S =]-\infty; -2[\cup \left[\frac{3}{4}; +\infty \right[$$

On pose
$$A(x) = 13(10x+11)(-3x-7) = 13 \times f(x) \times g(x)$$
 avec $f(x) = 10x+11$ et $g(x) = -3x-7$.

- f est une fonction affine avec m=10>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{-11}{10}$.
- g est une fonction affine avec m=-3<0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{-7}{3}$$
.

On rappelle que f(x) = 10x + 11 et g(x) = -3x - 7 et A(x) = 13(10x + 11)(-3x - 7). Son tableau de signe est alors

x	$-\infty$		$\frac{-7}{3}$		$\frac{-11}{10}$		+∞
13		+		+		+	
f(x)		_		_	0	+	
g(x)		+	0	-	+	-	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de 13(10x+11)(-3x-7) < 0 est

$$S = \left| \frac{-7}{3}; \frac{-11}{10} \right|$$

On pose
$$A(x) = -5(-3x-11)(8x-2) = -5 \times f(x) \times g(x)$$
 avec $f(x) = -3x-11$ et $g(x) = 8x-2$.

• f est une fonction affine avec m = -3 < 0. f est donc décroissante sur \mathbb{R} .

De plus
$$f(x) = 0 \Leftrightarrow x = \frac{-11}{3}$$
.

• g est une fonction affine avec m=8>0. g est donc croissante sur \mathbb{R} . De plus $g(x)=0 \Leftrightarrow x=\frac{1}{4}$.

On rappelle que f(x) = -3x - 11 et g(x) = 8x - 2 et A(x) = -5(-3x - 11)(8x - 2). Son tableau de signe est alors

x	$-\infty$		$\frac{-11}{3}$		$\frac{1}{4}$		+∞
-5		_		_		_	
f(x)		+	0	_		_	
g(x)		-		_	0	+	
A(x)		+	0	_	0	+	

Finalement l'ensemble de solutions de -5(-3x-11)(8x-2) < 0 est

$$S = \left[\frac{-11}{3}; \frac{1}{4} \right[$$

On pose $A(x) = 9(-7x - 15)(4x - 3) = 9 \times f(x) \times g(x)$ avec f(x) = -7x - 15 et g(x) = 4x - 3.

• f est une fonction affine avec m = -7 < 0. f est donc décroissante sur \mathbb{R} .

De plus
$$f(x) = 0 \Leftrightarrow x = \frac{-15}{7}$$
.

• g est une fonction affine avec m=4>0. g est donc croissante sur \mathbb{R} . De plus $g(x)=0 \Leftrightarrow x=\frac{3}{4}$.

On rappelle que f(x) = -7x - 15 et g(x) = 4x - 3 et A(x) = 9(-7x - 15)(4x - 3). Son tableau de signe est alors

x	$-\infty$		$\frac{-15}{7}$		$\frac{3}{4}$		+∞
9		+		+		+	
f(x)		+	0	_		_	
g(x)		-		_	0	+	
A(x)		-	0	+	0	_	

Finalement l'ensemble de solutions de $9(-7x-15)(4x-3) \le 0$ est

$$S = \left] -\infty; \frac{-15}{7} \right] \cup \left[\frac{3}{4}; +\infty \right[$$

On pose $A(x) = 11(11x+6)(-2x+3) = 11 \times f(x) \times g(x)$ avec f(x) = 11x+6 et g(x) = -2x+3.

- f est une fonction affine avec m=11>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{-6}{11}$.
- g est une fonction affine avec m=-2<0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{3}{2}$$
.

On rappelle que f(x)=11x+6 et g(x)=-2x+3 et A(x)=11(11x+6)(-2x+3). Son tableau de signe est alors

x	$-\infty$		$\frac{-6}{11}$		$\frac{3}{2}$		+∞
11		+		+		+	
f(x)		_	0	+		+	
g(x)		+		+	0	_	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de $11(11x+6)(-2x+3) \ge 0$ est

$$S = \left[\frac{-6}{11}; \frac{3}{2}\right]$$

