ELEC-313 Lab 3: Diode Circuits

September 28, 2013

Date Performed: September 25, 2013 Partners: Charles Pittman

Stephen Wilson

Contents

1	Objective	3			
2	Equipment				
3	Schematics	3			
4	Procedure 4.1 Rectifier	3 3			
5	Results				
6	Conclusion				
7	' Equations				
${f L}$	ist of Figures				
	Circuits used in this lab	3 4			
\mathbf{L}	ist of Tables				
	Comparison of nominal and measured resistance in Part A	3 4 4 5			

1 Objective

The objective is to observe the basic operation of a diode. In addition, the Schockley equation (Eq 2) is used to find the diode's reverse saturation current (I_S) and thermal voltage (V_T) using values measured in the lab.

2 Equipment

Diode: 1N4007 Power supply: HP E3631A Function generator: HP 33120A Resistors: $47\,\Omega$ Multimeter: Fluke 8010A Oscilloscope: Agilent 54622D

Resistive decade box: HeathKit IN-3117

3 Schematics

(a) Circuit used for Parts A and Part B.

(b) Circuit used for Part C.

Figure 1: Circuits used in this lab.

4 Procedure

4.1 Rectifier

4.2 Voltage Regulator

5 Results

	Nominal	Measured	% Difference
	(Ω)	(Ω)	
R_1	470	465.3	1.00

Table 1: Comparison of nominal and measured resistance in Part A.

6 Conclusion

7 Equations

$$\%_{diff} = \frac{|nominal - measured|}{nominal} 100\%$$
 (1)

Figure 2: AC input vs. DC output of circuit, where $R_L=10\,\mathrm{k}\Omega$

$R(\Omega)$	V_d (V)	$I_d \text{ (mA)}$
200	0.751	46.00
500	0.713	18.60
1k	0.682	9.30
2k	0.650	4.70
5k	0.605	1.85
10k	0.571	0.94
20k	0.538	0.47
50k	0.494	0.19
100k	0.464	0.10

Table 2: Diode characteristics measured in Part B.

$$V_d \text{ (V)} \quad I_d \text{ (mA)} \quad V_{OC} \text{ (V)} \\ \hline 0.712 \quad 27.2 \quad 6.70$$

Table 3: Diode characteristics measured in Part C.

$$\frac{m}{21.772} \ \ \, \frac{V_T \ (\text{V})}{0.046} \ \ \, \frac{V_d \ (\text{V})}{0.687} \ \ \, \frac{I_d \ (\text{mA})}{10.18} \ \ \, \frac{I_s \ (\text{\mu A})}{0.325}$$

Table 4: Results from data analysis.

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \tag{2}$$

$$m = \frac{ln(I_2) - ln(I_1)}{V_2 - V_1} = \frac{1}{V_T}$$
(3)