Payments Channel

TON vision

Made by Nick Kozlov github.com/enorage ver 0.1

Blockchain

State of the Pool

Withdraw funds

Trustless payment channels

Trustless payment channels

If channel was closed

Disagreed exit

Shared money pool

When the other party submits its version and it turns out to be compatible with the already submitted version, the "true" final state is computed by the smart contract and used to distribute the money accordingly. If the other party fails to present its version of the final state to the smart contract, then the money is redistributed according to the only copy of the final state presented

Synchronous payment channel as a simple virtual blockchain with two validators

Synchronous payment channel as a simple virtual blockchain with two validators

Synchronous payment channel as a simple virtual blockchain with two validators

Asynchronous payment channel

Each have it's own virtual blockchain A create blocks at A chain

States
Block sequence number
Total amount from A to B
Block sequence number of B chain
Amount of money transferred from B to A

Asynchronous payment channel

Asynchronous payment channel

Promises

A agrees to send c coins to B only if B can present some string u with Hash(u) = v for a known value of v

Lightning networks

 $A \longrightarrow E$

A wants to send sum to E

A and E do not have open channel

Chain money transfer

A will send x coins to B and ask to send coins to C

A will create u and v = Hash (u)

Promise to pay x coins to B if a number u with hash v is presented

Promise contains v, but not u, which is still kept secret

Chain money transfer

A will need to present u to B

$$A \longrightarrow B$$

B creates a similar promise to C
B is not afraid of it, because A already have promise to B