احتمال پیشرفته			
Rosenthal, J. S. Company.	(2006). A first look at rigorous probability theory. World Scientific Publishing	مرجع	
صفحه 13	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

هفتهی چهارم - جلسهی هشتم

به صورت شهودی، دو پشامد $A,B\in\mathcal{F}$ را مستقل گوییم هرگاه رخ دادن هر کدام بر احتمال رخداد دیگری تأثیری نداشته باشد. تعریف دقیق مفهوم استقلال دو پیشامد به صورت زیر است.

 $P(A \cap B) = P(A)P(B)$ تعریف: پشامدهای $A, B \in \mathcal{F}$ را مستقل گویند هرگاه

تعریف استقلال را میتوان به هر گردایهی دلخواهی از پیشامدها تعیم داد.

تعریف: برای هرI ، فرض کنید F که در آن I یک مجموعهی اندیسگذار دلخواه است. گردایهی $lpha_1,\dots,lpha_n\in I$ و هر $lpha_1,\dots,lpha_n\in I$ را مستقل گویند هرگاه برای هر $lpha_1,\dots,lpha_n\in I$ و هر

$$P(\bigcap_{i=1}^{n} A_{\alpha_i}) = \prod_{i=1}^{n} P(A_{\alpha_i}).$$

برای بررسی استقلال پیشامدهای A_1,\dots,A_m ، تعداد 1-m-1 شرط (احتمال اشتراک) باید بررسی شوند. گردایه ی $\{E_lpha:lpha\in I\}$ که در آن $E_lpha=A_lpha$ یا $\{A_lpha:lpha\in I\}$ که در آن $\{A_lpha:lpha\in I\}$ ان پیشامدها مستقل هستند اگـر و تنهـا اگـر $\{E_lpha:lpha\in I\}$ که در آن $\{E_lpha=A_lpha\}$ یا است، مستقل باشند. بنابراین استقلال تحت متممگیری حفظ میشود.

تعریف: برای هرI ه رض کنید X_lpha یک متغیر تصادفی دلخواه است. گردایهی متغیرهای تصادفی $B_1,\dots,B_n\in\mathcal{B}(\mathbb{R})$ و هر $X_lpha: \alpha\in I$ را مستقل گویند هرگاه برای هر $X_lpha: \alpha\in I$ هر $X_lpha: \alpha\in I$

$$P\{X_{\alpha_1} \in B_1, \dots, X_{\alpha_n} \in B_n\} = \prod_{i=1}^n P\{X_{\alpha_i} \in B_i\}.$$

 $B_1,B_2\in\mathcal{B}(\mathbb{R})$ به عنوان حالت خاص، دو متغیر تصادفی X و X مستقلاند اگر برای هر $P\{X\in B_1,Y\in B_2\}=P\{X\in B_1\}P\{Y\in B_2\}.$

 $x,y\in\mathbb{R}$ میتوان نشان داد این شرط معادل با آن است که برای هر

$$P\{X \leq x, Y \leq y\} = P\{X \leq x\}P\{Y \leq y\} \text{ .}$$

احتمال پیشرفته			
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع	
صفحه 14	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

g(Y) و f(X) و نامند، آنگاه (X و X متغیرهای تصادفی مستقل و X و X تابعهای اندازهپذیری باشند، آنگاه (X و نیز متغیرهای تصادفی مستقلی هستند.