QF620 Additional Examples Session 3: Brownian Motion and Martingale

1 Examples

- 1. Let $S_n = \sum_{i=1}^n X_i$ denote an n-step random walk, where X_i is independent and identically distributed with $\mathbb{P}(X_i = 1) = p$ and $\mathbb{P}(X_i = -1) = 1 p$. Evaluate
 - (a) $\mathbb{E}[S_n]$.
 - (b) $V[S_n]$.
 - (c) $\mathbb{E}_m[S_n]$ (conditional on S_m , where m < n)
- 2. If W_t and W_s are Brownian processes, and t > s, determine

$$\mathbb{E}[(W_t - W_s)^4].$$

- 3. If W_t is a Brownian motion, show that $e^{\theta W_t \frac{\theta^2 t}{2}}$ is a martingale.
- 4. Let X_i denote a sequence of random variables taking the values of either +1 or -1 with equal probability $\frac{1}{2}$, and let $S_n = \sum_i^n X_i$ where $n \in \mathbb{N}$. If $m \in \mathbb{N}$, m < n, show that $\mathbb{E}[S_n S_m] = 0$ and $\text{Cov}(S_n S_m, S_m) = 0$.
- 5. Let W_t denote a Brownian motion, write down the probability density function of W_t . Let 0 < s < t, write down the probability density function of $W_t W_s$.
- 6. Let W_t denote a Brownian motion. Evaluate the expectation $\mathbb{E}[W_t]$, $\mathbb{E}[W_t^2]$, and $\mathbb{E}[W_t^4]$.
- 7. Let W_t denote a Brownian motion. Evaluate the expectation $\mathbb{E}[W_t]$ in full by making use of its probability density function.
- 8. Let W_t denote a Brownian motion. Find $\mathbb{E}[W_t^{125}]$.
- 9. Let W_t denote a Brownian motion. If $W_1 > 0$, what is the probability $\mathbb{P}(W_2 > 0 | W_1 > 0)$?
- 10. Let W_t denote a Brownian motion. What is the probability $\mathbb{P}(W_1 \times W_2 > 0)$? Chapters 1-3 Review
 - 11. Let X be a standard normally distributed random variable, i.e. $X \sim N(0,1)$, show that its mean, mode and median is given by

$$Mean = 0$$
, $Mode = 0$, $Median = 0$.

12. Let X be a normally distributed random variable, i.e. $X \sim N(\mu, \sigma^2)$, show that its mean, mode and median is given by

$$Mean = \mu, \quad Mode = \mu, \quad Median = \mu.$$

13. Show that

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \mu.$$

14. Show that

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu)^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \sigma^2.$$

15. Consider a normally distributed random variable $X \sim N(\mu, \sigma^2)$. Define $Y = e^X$, show that

$$\mathbb{E}[Y] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = e^{\mu + \frac{1}{2}\sigma^2}.$$

- 16. Consider a normally distributed random variable $X \sim N(\mu, \sigma^2)$. Evaluate $\mathbb{E}[e^{\theta X}]$, where $\theta \in \mathbb{R}$ is a constant, using the following method:
 - (a) completing the square.
 - (b) moment generating function.
- 17. If $X \sim N(0,1)$. Let $Y_t = \sqrt{t}X$, show that $V[Y_t] = t$.
- 18. Let $f(t,x)=tx^2$. Work out the Taylor expansion up to the 2^{nd} order.

2 Suggested Solutions

1. First, given the probability distribution of X_i , we note that

$$\mathbb{E}[X_i] = p \times (1) + (1 - p) \times (-1)$$

= 2p - 1

and

$$V[X_i] = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2$$

= $[p \times (1)^2 + (1-p) \times (-1)^2] - (2p-1)^2$
= $4p(1-p)$

(a) The unconditional expectation of the random walk is given by

$$\mathbb{E}[S_n] = \mathbb{E}[X_1 + X_2 + \dots + X_n]$$

$$= \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_n]$$

$$= \underbrace{(2p-1) + (2p-1) + \dots + (2p-1)}_{\text{n terms}} = n(2p-1)$$

(b) The unconditional variance of the random walk is given by

$$V[S_n] = V[X_1] + V[X_2] + \dots + V[X_n]$$

$$= \underbrace{4p(1-p) + 4p(1-p) + \dots + 4p(1-p)}_{\text{n terms}} = 4np(1-p)$$

(c) The conditional expectation of the random walk is given by

$$\mathbb{E}_{m}[S_{n}] = \mathbb{E}_{m} \left[S_{m} + \sum_{i=m+1}^{n} X_{i} \right]$$

$$= S_{m} + \mathbb{E}_{m}[X_{m+1}] + \mathbb{E}_{m}[X_{m+2}] + \dots + \mathbb{E}_{m}[X_{n}]$$

$$= S_{m} + (n-m)(2p-1)$$

2. First we note that if $X \sim N(0,1)$, then we have the following

$$\mathbb{E}[X] = 0$$
, $\mathbb{E}[X^2] = 1$, $\mathbb{E}[X^3] = 0$, $\mathbb{E}[X^4] = 3$.

Next, note that

$$(W_t - W_s)^4 \sim N(0, (t-s))^4 = (t-s)^2 N(0, 1)^4 = (t-s)^2 X^4.$$

Hence,

$$\mathbb{E}[(W_t - W_s)^4] = \mathbb{E}[(t - s)^2 X^4] = 3(t - s)^2.$$

3. We can show that

$$\mathbb{E}\left[\exp\left(\theta W_t - \frac{1}{2}\theta^2 t\right) \middle| s\right] = \mathbb{E}\left[\exp\left(\theta (W_t - W_s)\right) \exp\left(\theta W_s - \frac{1}{2}\theta^2 t\right) \middle| s\right]$$

$$= \exp\left(\theta W_s - \frac{1}{2}\theta^2 t\right) \mathbb{E}\left[\exp(\theta (W_t - W_s)) \middle| s\right]$$

$$= \exp\left(\theta W_s - \frac{1}{2}\theta^2 t\right) \exp\left[\frac{1}{2}\theta^2 (t - s)\right]$$

$$= \exp\left(\theta W_s - \frac{1}{2}\theta^2 s\right).$$

4. Since S_n is made up of a sequence of identical and independently distributed Bernoulli trial with mean 0 and variance 1, we have

$$\forall n \in \mathbb{N} : \mathbb{E}[S_n] = 0.$$

And so

$$\mathbb{E}[S_n - S_m] = \mathbb{E}[S_n] - \mathbb{E}[S_m] = 0.$$

Next, we note that

$$\operatorname{Cov}(S_n - S_m, S_m) = \mathbb{E}[(S_n - S_m)S_m] - \mathbb{E}[S_n - S_m]\mathbb{E}[S_m]$$

$$= \mathbb{E}[(S_n - S_m)S_m] - 0 \cdot 0$$

$$= \mathbb{E}[S_nS_m] - \mathbb{E}[S_m^2]$$

$$= \mathbb{E}[\mathbb{E}[S_nS_m|m]] - m$$

$$= \mathbb{E}[S_m\mathbb{E}[S_n|m]] - m$$

$$= \mathbb{E}[S_m^2] - m$$

$$= m - m = 0. \quad \triangleleft$$

5. We know that $W_t \sim N(0,t)$, i.e. it is normally distributed with 0 mean and a variance of t, which measures the time elapsed. A normal probability density function $N(\mu, \sigma^2)$ is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

So the probability density function for W_t is

$$f(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

By the definition of Brownian motion, $W_t - W_s \sim N(0, t - s)$. So the probability density function of $W_t - W_s$ is given by

$$f(x) = \frac{1}{\sqrt{2\pi(t-s)}} e^{-\frac{x^2}{2(t-s)}}.$$

6. Since $W_t \sim N(0,t)$, we can already conclude that

$$\mathbb{E}[W_t] = 0$$
 : mean is 0

and

$$\begin{split} V[W_t] &= t = \mathbb{E}[W_t^2] - \mathbb{E}[W_t]^2 \quad \because \text{ variance is } t \\ &= \mathbb{E}[W_t^2] - 0 \\ \Rightarrow \quad t = \mathbb{E}[W_t^2]. \quad \lhd \end{split}$$

Finally, we have

$$\begin{split} \mathbb{E}[W_t^4] &= \mathbb{E}[t^2 X^4] \quad \text{ where } X \sim N(0,1) \\ &= 3t^2. \quad < \end{split}$$

7. We need to evaluate

$$\mathbb{E}[W_t] = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} w e^{\frac{-w^2}{2t}} dw.$$

Let

$$u = \frac{w^2}{2t} \quad \Rightarrow \quad du = \frac{w}{t}dw.$$

We have

$$\frac{1}{\sqrt{2\pi t}} \int w e^{-\frac{w^2}{2t}} dw = \frac{\sqrt{t}}{\sqrt{2\pi}} \int e^{-\frac{w^2}{2t}} \frac{w}{t} dw = \frac{\sqrt{t}}{\sqrt{2\pi}} \int e^{-u} du = \frac{\sqrt{t}}{\sqrt{2\pi}} [-e^{-u} + C] = \frac{\sqrt{t}}{\sqrt{2\pi}} \left[-e^{-\frac{w^2}{2t}} + C \right].$$

So back to our definite integral

$$\begin{split} \mathbb{E}[W_t] &= \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} w e^{-\frac{w^2}{2t}} dw \\ &= \frac{\sqrt{t}}{\sqrt{2\pi}} \left[-e^{-\frac{w^2}{2t}} \right]_{-\infty}^{\infty} \\ &= 0. \quad \lhd \end{split}$$

8. You should have observed a pattern in the previous question – when taking the expectation of W_t , all odd-powered expectations evaluate to 0. This is due to the fact that W_t has symmetrical probability density function:

Since taking expectation involves integrating the random variable weighted by the density function (which is symmetrical across the *y*-axis), the integrand, given by

$$x^n \times e^{-\frac{x^2}{2t}}, \quad n = 1, 2, 3, \cdots$$

when n is odd will always remain 0, as we would end up integrating equal area above and below the x-axis. So $\mathbb{E}[W_t^{125}]=0$. \lhd

9. Given that $W_1 > 0$, two cases will yield the required event: $\{W_2 > 0 | W_1 > 0\}$. The first is that W_2 is an upward step, which occurs with probability $\frac{1}{2}$. The second case is when W_2 steps down, but the step size is not as large as W_1 , so that W_2 is still above the x-axis. The event

$$|W_2 - W_1| < |W_1 - W_0|$$

occurs with probability $\frac{1}{2}$. So

$$\begin{split} \mathbb{P}(W_2 > 0 | W_1 > 0) &= \mathbb{P}(W_2 > W_1) + \mathbb{P}(\{W_2 < W_1\} \cap \{|W_2 - W_1| < |W_1 - W_0|\}) \\ &= \frac{1}{2} + \mathbb{P}(\{|W_2 - W_1| < |W_1 - W_0|\} | \{W_2 < W_1\}) \mathbb{P}\Big(\{W_2 < W_1\}\Big) \\ &= \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}. \quad \lhd \end{split}$$

10. In order to have the event $\{W_1 \times W_2 > 0\}$, W_1 and W_2 would both need to be simultaneously positive or negative. This probability can be calculated as follow:

$$\begin{split} \mathbb{P}(W_1 \times W_2 > 0) &= \mathbb{P}\Big(\{W_2 > 0\} \cap \{W_1 > 0\}\Big) + \mathbb{P}\Big(\{W_2 < 0\} \cap \{W_1 < 0\}\Big) \\ &= \mathbb{P}\Big(\{W_2 > 0\} | \{W_1 > 0\}\Big) \mathbb{P}\Big(W_1 > 0\Big) + \mathbb{P}\Big(\{W_2 < 0\} | \{W_1 < 0\}\Big) \mathbb{P}\Big(W_1 < 0\Big) \\ &= \frac{3}{4} \times \frac{1}{2} + \frac{3}{4} \times \frac{1}{2} = \frac{3}{4}. \quad \lhd \end{split}$$

** Without thinking it through, it might be tempting to guess that $\mathbb{P}(W_1 \times W_2 > 0) = \mathbb{P}(W_1 \times W_2 < 0) = \frac{1}{2}$, given the independent increment property. Why is this "intuition" wrong?

11. If $X \sim N(0,1)$, then the mean is given by $\mathbb{E}[X] = 0$. The mode is determined as follow:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$\phi'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \times (-x) = 0 \quad \Rightarrow \quad x = 0.$$

The median is given by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du = 0.5.$$

Since the probability density function of the standard normal distribution is symmetric across the y-axis, we can infer that $\Phi(0) = 0.5$.

12. For $X \sim N(\mu, \sigma^2)$, mean is given by $\mathbb{E}[X] = \mu$. The mode is given by

$$f'(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \times \left[-\frac{(x-\mu)}{\sigma^2} \right] = 0 \quad \Rightarrow \quad x = \mu.$$

Again due to the symmetric property of normal distribution, we know that

$$F(m) = \int_{-\infty}^{m} f(x)dx = 0.5$$
 $\Rightarrow m = F^{-1}(0.5) = \mu. \triangleleft$

13. This can be worked out using either moment generating function (MGF) or just basic integration. Under the MGF approach, we see that

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \mathbb{E}[X], \quad X \sim N(\mu, \sigma^2).$$

The MGF for X, a normally distributed random variable, is given by

$$M_X(t) = \mathbb{E}[e^{tX}] = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Taking the first derivative, we obtain

$$\frac{dM_X(t)}{dt} = (\mu + \sigma^2 t)e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

We can therefore conclude that

$$\mathbb{E}[X] = \frac{dM_X(0)}{dt} = \mu.$$

Alternatively, using basic integration approach, we can write

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \underbrace{\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu) e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx}_{\text{first integral}} + \underbrace{\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \mu e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx}_{\text{second integral}}$$

The second integral evaluates to μ . The first integral evaluates to 0. To see this, let $u = \frac{x-\mu}{\sqrt{2}\sigma}$, we have $du = \frac{dx}{\sqrt{2}\sigma}$, and hence the first integral becomes

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} u e^{-u^2} du,$$

which is 0. \triangleleft

14. Similar to the previous question, this can be worked out using either MGF or just basic integration technique. To use the MGF approach, first expand the integral, and we obtain

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu)^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x^2 - 2x\mu + \mu^2) e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
$$= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2$$
$$= \mathbb{E}[X^2] - \mu^2$$

Using the MGF approach, taking the 2^{nd} derivative of the normal random variable's moment generating function with respect to t, we obtain

$$\frac{dM_X(t)}{dt} = (\mu + \sigma^2 t)e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$
$$\frac{d^2 M_X(t)}{dt^2} = (\sigma^2 + (\mu + \sigma^2 t)^2)e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Hence

$$\mathbb{E}[X^2] = \frac{d^2 M_X(0)}{dt^2} = \sigma^2 + \mu^2$$

And so we've shown that the integral evaluates to σ^2 . Alternatively, we can just use integration by parts as follow:

$$\int u \, dv = uv - \int v \, du,$$

where

$$u = x - \mu \quad \Rightarrow \quad du = dx,$$

$$v = -\sigma^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \Rightarrow \quad dv = (x-\mu)e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx.$$

Hence we obtain

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu)^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} u \, dv$$

$$= -\frac{1}{\sqrt{2\pi}\sigma} \left((x-\mu)\sigma^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} \right|_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \sigma^2 e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$= 0 + \sigma^2 \times 1 = \sigma^2. \quad \triangleleft$$

15. The MGF of a normally distributed random variable $X \sim N(\mu, \sigma^2)$ is given by

$$\mathbb{E}[e^{tX}] = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Hence we have

$$\mathbb{E}[Y] = \mathbb{E}[e^X] = \mathbb{E}[e^{tX}]|_{t=1} = e^{\mu + \frac{1}{2}\sigma^2}$$

Alternatively, we can solve the question by completing the square (see the next question).

16. (a) By completing the square, we have

$$\begin{split} \mathbb{E}[e^{\theta X}] &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{\theta x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{\theta x - \frac{x^2 - 2\mu x + \mu^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{x^2 - 2\mu x + \mu^2 - 2\sigma^2 \theta x}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{x^2 - 2(\mu + \sigma^2 \theta) x + \mu^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{x^2 - 2(\mu + \sigma^2 \theta) x + (\mu + \sigma^2 \theta)^2 - (\mu + \sigma^2 \theta)^2 + \mu^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + \sigma^2 \theta))^2 - (\mu + \sigma^2 \theta)^2 + \mu^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + \sigma^2 \theta))^2 - \mu^2 - 2\mu\sigma^2 \theta - \sigma^4 \theta^2 + \mu^2}{2\sigma^2}} dx \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + \sigma^2 \theta))^2}{2\sigma^2}} e^{\mu\theta + \frac{1}{2}\sigma^2\theta^2} dx \\ &= e^{\mu\theta + \frac{1}{2}\sigma^2\theta^2} \leq 1 \end{split}$$

(b) By the MGF approach, we have

$$\mathbb{E}[e^{\theta X}] = \mathbb{E}[e^{tX}]\big|_{t=\theta} = e^{\mu \theta + \frac{1}{2}\sigma^2 \theta^2} \quad \triangleleft$$

17. Since $X \sim N(0,1)$, we know that V[X]=1, as the variance of X is already given to be equal to 1. Therefore,

$$V[Y_t] = V[\sqrt{t}X] = t \cdot V[X] = t.$$

18. First work out the partial derivatives:

$$\frac{\partial f}{\partial t} = x^2$$
, $\frac{\partial f}{\partial x} = 2tx$, $\frac{\partial^2 f}{\partial t^2} = 0$, $\frac{\partial^2 f}{\partial x^2} = 2t$, $\frac{\partial^2 f}{\partial t \partial x} = 2x$.

Expanding around (t_0, x_0) , we obtain

$$f(t,x)|_{(t_0,x_0)} = f(t_0,x_0) + \frac{\partial f}{\partial t}(t-t_0) + \frac{\partial f}{\partial x}(x-x_0) + \frac{1}{2!} \left[\frac{\partial^2 f}{\partial t^2}(t-t_0)^2 + 2\frac{\partial^2 f}{\partial t \partial x}(t-t_0)(x-x_0) + \frac{\partial^2 f}{\partial x^2}(x-x_0)^2 \right] + \cdots$$

Writing

$$\Delta t = t - t_0,$$

$$\Delta x = x - x_0,$$

$$\Delta f = f(t, x) - f(t_0, x_0),$$

we have

$$\Delta f \approx x_0^2 \Delta t + 2t_0 x_0 \Delta x + 2x_0 \Delta t \Delta x + t_0 \Delta x^2$$
.