

图论及其应用

北京邮电大学理学院

Ch2 最短路问题

Ch2 主要内容

- ▶最短路问题
- **■** Dijkstra 算法
- **▶** Bellman-Ford算法
- Floyd-Warshall算法
- ➡ 最短路问题的应用

4 2.3 Floyd-Warshall算法

- 点到多点最短路: Dijkstra、Bellman-Ford
- 有负权(没有负圈), 若求所有点之间的最短路, 怎么求?

ν次调用Bellman-Ford?

- $O(\nu^4)$ 或者至少 $O(\nu^2\epsilon)$,复杂度高
- Floyd-Warshall算法。1962年

适用多点对多点的最短路

算法原理

$$\begin{cases} u_{i,j}^{(1)} = w_{i,j} & i, j = 1, \dots, v \\ u_{i,j}^{(k+1)} = \min\{u_{i,j}^{(k)}, u_{i,k}^{(k)} + u_{k,j}^{(k)}\} & i, j, k, = 1, \dots, v \end{cases}$$

标号 $u_{i,j}^{(k)}$ ($k=1,2,\cdots,\upsilon$) 表示第k 次迭代得到的顶点 v_i 到顶点 v_j ($1 \le i,j \le \upsilon$) 的临时

标号(表示从 v_i 到 v_i 不通过顶点 $v_k,v_{k+1},\cdots v_v$ 的最短路或最短有向路路长)

最后得到的 $u_{i,j}^{(v+1)}$ 就是从顶点 v_i 到顶点 v_j 的最终路长, $w_{i,j}$ 表示顶点 v_i 到 v_j 的边或有向弧的

权重;)

算法的正确性

定理 2-2 在式子(**2-4**)中,标号 $u_{i.i}^{(k)}$ ($i,j=1,\cdots,\upsilon$, $k=1,2,\cdots,\upsilon$)是不通过顶点

 $v_k, v_{k+1}, \dots v_v$ (v_i, v_j 除外) 时从顶点 v_i 到顶点 v_i 的最短路(或有向路)路长。

证明:对k用归纳法。当k=1时,显然成立。假设结论对k时成立,下面考虑k+1时 的情况。

从顶点 v_i 到顶点 v_i 且不通过顶点 $v_{k+1},v_{k+2},\cdots v_v$ 的最短(有向)路有两种可能:

- (人) 该最短路不经过顶点 v_k ,则根据归纳假设,此最短路路长就是 $u_{i,i}^{(k)}$;
- (2) 该最短路经过顶点 v_k ,则该最短路路长为由顶点 v_k 分开的两条子路的最短路路长

口,即 $u_{i,k}^{(k)} + u_{k,j}^{(k)}$ 。在这两种可能中取最小值,正好就是 $u_{i,j}^{(k+1)}$ 。

根据定理 2-2,当 $k = \upsilon + 1$ 时一定有 $u_{i,j}^{(k)}$ 就是最短路路长 $u_{i,j}$,即Floyd-Warshall算法一定在 第 υ 步迭代后收敛,所以Floyd-Warshall算法是正确的。

算法复杂性

Floyd-Warshall 算法主要计算量是一个三重循环,最外层循环是对k,循环v次,里面分别是

对所有顶点i和j,所以其计算量至多为 $O(v^3)$ 。

8 算法

 $\Pr_{i,i}^{(k)}$ 表示在第k 次迭代时从顶点i 到顶点j 的当前最短路中第一条弧的头端点

最后根据最终的二维数组 $\mathbf{Pr}_{i,i}^{(v+1)}$,采用正向追踪的方式得到最短路。

- (1). k=1, 对所有顶点i和j, 令 $u_{i,j}^{(1)}=w_{i,j}$; $Pr_{i,j}^{(1)}=j$ 。
- (2). 对于所有顶点i和j,若 $u_{i,j}^{(k)} \le u_{i,k}^{(k)} + u_{k,j}^{(k)}$,则令 $u_{i,j}^{(k+1)} = u_{i,j}^{(k)}$, $\Pr_{i,j}^{(k+1)} = \Pr_{i,j}^{(k)}$,否

则令
$$u_{i,j}^{(k+1)} = u_{i,k}^{(k)} + u_{k,j}^{(k)}$$
, $\Pr_{i,j}^{(k+1)} = \Pr_{i,k}^{(k)}$ 。

(3). 如果k = v, 结束; 否则令k = k + 1, 转步骤 (2).

注:

- ► Floyd-Warshall算法要将 U 次关于k 迭代进行完,才能保证得到所有正确的结果
- 适当修改 $Pr_{ij}^{(k)}$ 的取值,也可以用Floyd-Warshall算法求出各种希望得到的路线(多条最短有向路,次最短有向路等)。但是会有额外的计算量。
- 也可以用于判断图 (有向图) 是否含有负圈

对任意的 $k(1 \le k \le \upsilon)$,如果图中没有负圈,则 $u_{i,i}^{(k)} = 0$ $(1 \le i \le \upsilon)$;

如果在某次迭代时(存在 $k_0(1 \le k_0 \le \upsilon)$)发现某个顶点($v_j(1 \le j \le \upsilon)$)有 $u_{j,j}^{(k_0)} < 0$,则说明图中有负圈。

例2-4:

▼求下面的赋权图(图2-10)中所有顶点之间的最短有向路的路长及路线。

解:记最短路长矩阵为U,最短路矩阵为 \Pr ,行和列都按照顶点 v_1,v_2,v_3,v_4 的顺序存

$$U^{(1)} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 6 & 0 \end{bmatrix} \qquad \Pr^{(1)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$Pr^{(1)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

 $u_{i,j}^{(k+1)} = \min\{u_{i,j}^{(k)}, u_{i,k}^{(k)} + u_{k,j}^{(k)}\} \quad i, j, k, = 1, \dots, \nu$

第一次迭代后得到:

$$U^{(2)} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 2 & 0 \end{bmatrix} \qquad \Pr^{(2)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{bmatrix}$$

$$Pr^{(2)} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{vmatrix}$$

第一次迭代后得到:

$$U^{(2)} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 2 & 0 \end{bmatrix} \qquad \text{Pr}^{(2)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{bmatrix}$$

$$Pr^{(2)} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{vmatrix}$$

第二次迭代后得到:

$$U^{(3)} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \qquad \mathbf{Pr}^{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$\mathbf{Pr}^{(3)} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{vmatrix}$$

第二次迭代后得到: ↓

$$U^{(3)} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \qquad \Pr^{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$\Pr^{(3)} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{vmatrix}$$

第三次迭代后得到:

$$U^{(4)} = \begin{bmatrix} 0 & 4 & -3 & 0 \\ -3 & 0 & 1 \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \qquad \Pr^{(4)} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$Pr^{(4)} = \begin{vmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{vmatrix}$$

第四次迭代后得到:

$$U^{(5)} = \begin{bmatrix} 0 & 4 & -3 & 0 \\ -3 & 0 & -7 & -4 \\ 6 & 9 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \qquad \text{Pr}^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 4 & 4 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$\mathbf{Pr}^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 4 & 4 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

最后得到的最短路长为 $U^{(5)}$ 所示,最短路线根据 $\Pr^{(5)}$ 正向追踪可得表 2-1: ightarrow

終点↓ 起点↓	<i>v</i> ₁ ↔	v ₂ ↔	v ₃ ↔	v ₄ ∅	₽
<i>v</i> ₁ ↔	₽	<i>v</i> ₁ <i>v</i> ₂ ↔	<i>v</i> ₁ <i>v</i> ₃ ₽	<i>v</i> ₁ <i>v</i> ₃ <i>v</i> ₄ ₽	₽
v ₂ ↔	v_2v_1 φ	4	v ₂ v ₃ ₽	v ₂ v ₃ v ₄ ↔	Þ
V ₃ ↔	$v_3v_4v_2v_1 +$	<i>v</i> ₃ <i>v</i> ₄ <i>v</i> ₂ ₽	₽.	v ₃ v ₄ ↔	Þ
v ₄ ↔	v ₄ v ₂ v ₁	v ₄ v ₂ ₽	<i>v</i> ₄ <i>v</i> ₂ <i>v</i> ₃ <i>\varphi</i>	¢.	₽

$$U^{(5)} = \begin{bmatrix} 0 & 4 & -3 & 0 \\ -3 & 0 & -7 & -4 \\ 6 & 9 & 0 & 3 \\ \hline 3 & 6 & -1 & 0 \end{bmatrix} \qquad \Pr^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 4 & 4 & 3 & 4 \\ \hline 2 & 2 & 2 & 4 \end{bmatrix}$$

$$Pr^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 4 & 4 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

习题2-3

►用Floyd-Warshall算法求下图中所有顶点之间的最短路路线及距离(弧旁的数字表示一条弧的距离):

