Graphs

1 Graph Operators

Definition 1.1. Let \mathscr{G} be a graph where V are its vertexes and \mathscr{E} are its edges, let $f,g:L^2(V)$ and $F,G\in L^2(\mathscr{E})$ be real valued functions, we define $\langle f,g\rangle_{L^2(V)}:=\sum_{\mathscr{V}}a_if_ig_i,\ a_i\in\mathbb{R}$ and $\langle F,G\rangle_{L^2(\mathscr{E})}:=\sum_{\mathscr{E}}w_{ij}F_{ij}G_{ij},\ w_{ij}\in\mathbb{R}$.

Definition 1.2. Graph gradient and divergence

Let $f \in L^2(\mathcal{V})$ and $F \in L^2(\mathscr{E})$ we define $grad: L^2(\mathcal{V}) \to L^2(\mathscr{E})$ and $div: L^2(\mathscr{E}) \to L^2(\mathcal{V})$, such that $(grad f)_{ij} = f_i - f_j$ and $(div F)_i = \frac{1}{a_i} \sum_{j \in \mathcal{V}: (i,j) \in \mathscr{E}} w_{ij} F_{ij}$.

Proposition 1.1. Let $f \in L^2(\mathcal{V})$ and $F \in L^2(\mathscr{E})$: $F_{ij} = -F_{ji}$ then $\langle f, divF \rangle_{L^2(\mathcal{V})} = \langle gradf, F \rangle_{L^2(\mathscr{E})}$, i.e. $divF^{\dagger} = grad$.

Proof.
$$\sum_{\mathcal{V}} a_i f_i (div F)_i = \sum_{\mathcal{E}} w_{ij} F_{ij} (f_i - f_j) = \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} w_{ij} F_{ij} f_i$$
 thus $a_i (div F)_i = \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} w_{ij} F_{ij}$.

Theorem 1.2. Gauss theorem

Let $F \in L^2(\mathscr{E})$: $F_{ij} = -F_{ji}$, let $\mathscr{A} \subset V$ then if $a_i = w_{ij} = 1$ we have $\sum_{\mathscr{A}} (divF)_i = \sum_{\partial^0 \mathscr{A}} F_{ij}$.

Proof. First of all we recall $\partial_+^0 \mathscr{A} := \{(i,j) \in \mathscr{E}, i \in \mathscr{A}, j \in \mathscr{V} \setminus \mathscr{A}\}$, then we see that $\sum_{\mathscr{A}} (divF)_i = \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{V}: (i,j) \in \mathscr{E}} F_{ij} = \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{V} \setminus \mathscr{A}: (i,j) \in \mathscr{E}} F_{ij} + \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{A}: (i,j) \in \mathscr{E}} F_{ij} = \sum_{\partial_+^0 \mathscr{A}} F_{ij} + \sum_{(i,j) \in \mathscr{A}^2} adj(\mathscr{A})_{ij} F_{ij}$ where since $adj(\mathscr{A})_{ij} = adj(\mathscr{A})_{ji}$ we have by renaming dummy indexes $adj(\mathscr{A})_{ij} F_{ij} = -adj(\mathscr{A})_{ij} F_{ij} = 0$.

Definition 1.3. Graph laplacian

Let $f \in L^2(V)$ we have that $\langle gradf, gradf \rangle = \langle div(gradf), f \rangle =: \langle \Delta f, f \rangle = \langle f, \Delta f \rangle$, where $\Delta : L^2(V) \to L^2(V)$ is the Laplacian.