TIME SERIES ANALYSIS HANDS-ON

(21060641042)

TIME SERIES PLOT

Interpretation: There is decreasing trend visible along with seasonality.

DECOMPOSITION OF TIME SERIES DATA

Interpretation: Using decomposition we can confirm that there is clear decreasing trend and seasonal pattern present.

PARTITIONING DATA INTO TRAIN AND TEST

Length of train data: 168

Length of test data: 12

FITTING REGRESSION MODEL

Forecasts from Linear regression model

Black line: Actual values

Red line: Predicted values

Blue line: Forecasted values

ACF PLOTS FOR RESIDUAL

ACTUAL V/S FORECAST PLOT

Comparision of original & predicted values

ACCURACY

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set 135.4991 426.5323 362.69 6.997418 **16.25365** 0.2161928 0.9317167

The MAPE value is high: 16.25365

i. Examining this plot, which of the following statements

are reasonable?

- Decembers (month 12) are not captured well by the model.
- There is a strong correlation between sales on the same calendar month.
- The model does not capture the seasonality well.
- We should try to fit an autoregressive model with

lag-12 to the residuals

Answer: The model does not capture the seasonality well and Decembers (month 12) are not captured well by the model.

ARIMA MODEL

KPSS TEST

Null Hypothesis (HO): Series is trend stationary or series has no unit root.

Alternate Hypothesis(HA): Series is non-stationary or series has a unit root.

If p-value < 0.05 – Reject Null Hypothesis(HO)

i.e., time series has a unit root, meaning the series is non stationary.

```
KPSS Test for Level Stationarity

data: data1

KPSS Level = 2.1912, Truncation lag parameter = 4, p-value = 0.01
```

Since, p value<0.05, we reject null hypothesis.

Therefore, the time series is not stationery.

Hence, we use differencing of order 1.

From the ACF and PACF plots, the Arima model is fitted using ARIMA(2,1,0)(2,1,1) for forecasting.

ARIMA(2,1,0)(2,1,1)

ACCURACY

ME RMSE MAE MPE MAPE MASE ACF1
Training set 5.140095 325.7143 246.1573 -0.175025 **8.460413** 0.4309342 -0.05251176

Auto Arima model: ARIMA(0,0,0)(2,1,1)

Series: data1

ARIMA(0,0,0)(2,1,1)[12] with drift

Coefficients:

sar1 sar2 sma1 drift 0.2431 0.0981 -0.7687 -9.8689 s.e. 0.1755 0.1254 0.1542 0.8464

sigma² = 90430: log likelihood = -1197.55 AIC=2405.1 AICc=2405.47 BIC=2420.72

ACCURACY

ME RMSE MAE MPE MAPE MASE ACF1
Training set -69.38058 309.2621 228.2054 -2.762399 **7.820937** 0.3995068 0.1115797

SELECTION AND INTERPRETATION OF MODEL

RESULTS	
Model	MAPE
Regression	16.25365
ARIMA(2,1,0)(2,1,1)	8.460413
ARIMA(0,0,0)(2,1,1)	7.820937

Interpretation: The ARIMA(0,0,0)(2,1,1) model is better than the Regression and ARIMA(2,1,0)(2,1,1).

We choose ARIMA(0,0,0)(2,1,1) model for forecasting as the MAPE value is lower. Therefore, it is more accurate.