1. Линейные функционалы. Сопряженное пространство

Определение 1. Линейный функционал это линейный оператор $f: H \to \mathbb{R}(\mathbb{C})$

Пример:

$$f(x) = (x, x_0), \ x, x_0 \in H$$

 $f: H \to \mathbb{C}$

Определение 2. Множество всех линейных непрерывных функционалов заданных на H называется пространством, сопряженным к H и обозначается H^* .

$$||f(x)|| = \sup_{||x||=1} |f(x)|$$

Определение 3. Множество $\{x \in H | f(x) = 0\}$ называется ядром f и обозначается $\ker f$.

Свойства ядра линейного функционала:

1) $\forall f: H \to \mathbb{C} \text{ ker } f$ является подпространством в H;

Доказательство.

 $0 \in \ker f$: предположим, что $f(0) \neq 0$

$$f(x_1) = y$$

$$f(0) = f(x_1 - x_1) = y_1 - y_1 = 0$$

 $x,y \in \ker f, \ \alpha,\beta$ - числа :

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) = \alpha 0 + \beta 0 = 0 \Rightarrow \alpha x + \beta y \in \ker f$$

#

2) $f: H \to C$ непрерывный линейный функционал, то $\ker f$ замкнутое подпространство в H.

Доказательство.

 x_0 - предельная точка $\ker f.\ x2 \to x_0 \ \forall n\ x_0 \in \ker f$

$$f(x_0) = f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 0 = 0$$
 $x_0 \in \ker f$

#

 $3) \ f: H \to \mathbb{C}$ ненулевой непрерывный линейный функционал, то $1 = \dim(\ker f)^\perp = \operatorname{codim}(\ker f)$ - размерность ортогонального дополнения к ядру = коразмерность

Доказательство.

f - непрерывный $\stackrel{1)\,\text{м}\,2)}{\Rightarrow}$ ker f - замкнутое подпространство в H (гильбертово пространство) $\Rightarrow H = \ker f \oplus (\ker f)^{\perp}$

f - ненулевой $\ker f \neq H \Rightarrow (\ker f)^{\perp} \neq \{0\} \Rightarrow \exists x_0 \in (\ker f)^{\perp}, \ x_0 \neq 0$ Докажем, что x_0 базис в $(\ker f)^{\perp}$, то $\forall x \in (\ker f)^{\perp}$.

$$\exists \alpha : x_1 = \alpha x_0$$

Положим
$$\alpha = \frac{f(x_1)}{f(x_0)}$$
 и $y = (\alpha x_0 - x_1) \in (\ker f)^{\perp}$
$$f(y) = f(\alpha x_0 - x_1) = \alpha f(x_0) - f(x_1) = \frac{f(x_1)}{f(x_0)} f(x_0) - f(x_1) = 0$$
 $\Rightarrow y \in \ker f \Rightarrow y = 0$

Так как y = 0, то: $y = (\alpha x_0 - x_1) \Rightarrow \alpha x_0 = x_1$

#

Теорема 1 (Теорема Рисса об общем линейном непрерывном функционале).

H - гильбертово пространство, тогда:

- 1) $\forall f \in H^* \exists ! x_0 \in H : f(x) = (x, x_0) \ \forall x \in H, \ npu \ \text{этом} \ ||f|| = ||x_0||$
- 2) $\forall x_0 \in H$ формула $f(x) = (x, x_0)$ задает линейный непрерывный функционал на H (то есть $f \in H^*$), при этом $||f|| = ||x_0||$

Доказательство.

Для пункта 2):

 $f(x) = (x, x_0)$ - линейность по первому аргументу скалярного произведения влечет линейность f.

$$||f|| = \sup_{\|x\|=1} |f(x)| = \sup_{\|x\|=1} |(x, x_0)| \stackrel{(*)}{\leq} \left[\sup_{\|x\|=1} ||x|| \right] ||x_0|| = ||x_0|| < \infty$$

, где (*) - неравенство Коши-Буняковскго

$$||f|| = \sup_{\|x\|=1} |f(x)| = \sup_{\|x\|=1} |(x, x_0)| \ge \left| \left(\frac{x_0}{\|x_0\|}, x_0 \right) \right| = \frac{1}{\|x_0\|} (x_0, x_0) = \frac{1}{\|x_0\|} \underbrace{\|x_0\|^2}_{(**)} \Rightarrow ||f|| = ||x_0||$$

, где (**): в гильбертовом пространстве $||x_0|| = \sqrt{x_0, x_0}$ (если $x_0 = 0$, то ||f|| = 0)

Для пункта 1):

Докажем, что $\exists x_0 \in H \ f(x) = (x, x_0) \ \forall x \in H$, если f = 0, то $x_0 = 0 \Rightarrow \|f\| = \|x_0\|$ f - ненулевой линейный непрерывный функционал $\stackrel{1) \text{ if } 2}{\Rightarrow} \ker f$ - замкнутое подпространство (в гильбертовом пространстве)

$$H = (\ker f) \oplus (\ker f)^{\perp} \ \forall x \in H \ \exists ! x = x_1 + x_2$$

, где $x_1 \in \ker f$, $x_2 \in (\ker f)^{\perp}$

По свойству 3) $\exists x3 \in (\ker f)^{\perp} ||x_3|| = 1 \forall x_2 \in (\ker f)^{\perp} \exists \alpha \in \mathbb{C} : x_2 = \alpha x_3 \Rightarrow \forall x \in H : x = x_1 + \alpha x_3$

$$f(x) = f(x_1 + \alpha x_3) = \underbrace{f(x_1)}_{=0} + \alpha f(x_3) = \alpha f(x_3) = f(x_3)(x_1, x_3) + \alpha f(x_3)(x_3, x_3) = \underbrace{x_1 \perp x_3}_{x_1 \perp x_3} + \underbrace{\alpha f(x_3)(x_3, x_3)}_{x_1 \perp x_3} = \underbrace{(x_1, \overline{f(x_3)}x_3) + (\alpha x_3, \overline{f(x_3)}x_3) = (x_1 + \alpha x_3, \overline{f(x_3)}x_3) = (x, \underline{f(x_3)}x_3) = (x, x_0)$$

 \Rightarrow существование x_0 доказано.

Проверим единственность: Пусть $\exists \tilde{x}_0 \in H \ f(x) = (x, \tilde{x}_0)$. Покажем, что $(x, x_0) = f(x) = (x, \tilde{x}_0)$:

$$(x_0 - \tilde{x}_0, x_0) = (x, \tilde{x}_0)$$

 $||x_0 - \tilde{x}_0|| = 0 \Rightarrow x_0 = \tilde{x}_0$

По второму пункту: $||f|| = ||x_0||$

#

2. Бра- и кет- векторы

 $(x,y) = \langle y|x \rangle = \{\langle y|\}\{|x \rangle\}$, где $\langle y|$ - бра-вектор (отождествляют с вектором из H^*), $|x \rangle$ - кет-вектор (отождествляют с вектором $x \in H$ - исходное пространство)

$$f(x) = \langle y|x \rangle$$
: $||f|| = ||y||$ (Теорема Рисса.)

1) H - гильбертово пространство, $\dim H = n, x_1, \dots, x_n$ - ортонормированный базис в H

$$x = \sum_{1}^{n} \alpha_k x_k, \ \alpha_k = (x_1, x_k)$$
 $|x> = \sum_{1}^{n} |x_k> \alpha_k, \ \alpha_k = < x_k |x>$ $x = \sum_{1}^{n} (x_1, x_k) x_k$ $|x> = \sum_{1}^{n} |x_k> < x_k |x> = \left[\sum_{1}^{n} |x_k> < x_k|\right] |x>$ $I|x> = \left[\sum_{1}^{n} |x_k> < x_k|\right] |x> \Rightarrow I = \sum_{1}^{n} |x_k> < x_k|$ Удобная запись для I

2) dim H = n, где H - гильбертово пространство. Тогда:

 $A: H \to H$ - линейный оператор

векторы x_1, \ldots, x_n образуют базис в H

$$Ax_n = \lambda_k x_n, x_n \neq 0$$
 $Ax - \lambda x = y$ относительно x

$$(A - \lambda I)^{-1}$$
 резольвента, если $\lambda \in \rho(A)$

$$x = (A - \lambda I)^{-1}y$$

$$(A - \lambda I)^{-1} = \sum_{j=1}^{n} \frac{|x_j| < x_j|}{x_j - \lambda}$$

$$x = \dots$$

$$|x| = \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| > \sum_{j=1}^{n} |x_j| > \alpha_j, \ \alpha_j = < x_j|x| >$$