

FÍGURE 1

FIGURE 2

FIGURE 3

	Composition of Microemulsion (wt%)*						
Samples	1	2	3	4	5		
Water	26.0	20.0	26.0	25.0	25.0		
AIPSA	28.0	30.0	29.0	29.0	-		
AUPSA	-	-	-	-	29.0		
AN	-	15.0	-	-	-		
MMA	25.0	23.5	30.0	20.0	30.0		
SPM	20.0	-	14.0	14.0	-		
SPI	-	10.0	-	-	15.0		
NAMAP :	-		-	8.0	-		
A174	-	-	-	3.0	-		
MBAA-	-	1.5	-	-	-		
EGDMA.	1.0	-	1.0	1.0	1.0		
Io	n Conductivit	y after trea	nted with 0.	.5M H ₂ SO ₄			
S/cm	0.16	0.11	0.11	0.14	0.09		

• Polymerization by UV-initiator: 0.3wt%

FIGURE 4

FIGURE 5

$$N \longrightarrow N \longrightarrow R_2OH$$
 X: halogen

 $N \longrightarrow R_2OH$
 N

FIGURE 6A

FIGURE 6B

Sample	Composit	Composition of precursor microemulsions			Appearance	
	Water	MMA	AIPSA	BP	AP	
AIPSA-1	25	37.5	37.5	Clear	Clear	
AIPSA-2	30	35	. 35	Clear	Clear	
AIPSA-3	35	32.5	32.5	Clear	Clear	
AIPSA-4	40	30	30	Clear	Clear	

FIGURE 7