Universität Ulm

Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2019

Übungen Analysis 1 für Ingenieure und Informatiker: Blatt 12

57. Wir betrachten für x > 0 die Gammafunktion

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t.$$

- (a) Zeige, dass das Integral für alle x > 0 (absolut) konvergiert.
- (b) Zeige, dass

$$\Gamma(x+1) = x\Gamma(x), \quad x > 0,$$

und dass insbesondere für $n \in \mathbb{N}$ die Gleichung $\Gamma(n+1) = n!$ gilt.

(c) Berechne mithilfe der Gammafunktion das uneigentliche Integral

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x.$$

Hinweis: a) Betrachte \int_0^1 und \int_1^∞ getrennt und schätze die Integranden durch Potenzen von t ab, welche auf den jeweiligen Teilintervallen integrierbar sind (vgl. Satz 5.6.6). Für \int_1^∞ fixiere ein $m \in \mathbb{N}$ mit m > x und benutze, dass $\frac{t^m}{m!} \le e^t$ fü $t \ge 0$. c) Ohne Beweis, darf benutzt werden, dass $\Gamma(1/2) = \sqrt{\pi}$. Zeige zunächst, dass für gerade Funktionen $f : [-a, a] \to \mathbb{R}$ gilt:

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

58. Man berechne die Werte der folgenden uneigentlichen Integrale:

a)
$$\int_0^1 \frac{\arcsin x}{\sqrt{1-x^2}} \, \mathrm{d}x$$

b)
$$\int_0^\infty \frac{\log x}{x^2} \, \mathrm{d}x$$

a)
$$\int_0^1 \frac{\arcsin x}{\sqrt{1-x^2}} \, dx$$
 b)
$$\int_0^\infty \frac{\log x}{x^2} \, dx$$
 c)
$$\int_0^\infty \frac{\log x}{1+x^2} \, dx.$$

Hinweis: c) Betrachte \int_0^1 und benutze die Substitution x=1/u, um zu zeigen, dass $\int_0^1 \frac{\log x}{1+x^2} \, \mathrm{d}x = 1$ $-\int_1^\infty \frac{\log x}{1+x^2} dx$. Hierbei darf ohne Beweis benutzt werden, dass $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

59. Sei $f:[a,b]\to\mathbb{R}$. Existiert der Cauchysche Hauptwert von $\int_a^b f(x)\,\mathrm{d}x$, so schreibt man dafür auch $VP\int_a^b f(x)\,\mathrm{d}x$ (französisch: valeur principal). Man berechne die folgenden Cauchyschen Hauptwerte:

a)
$$VP \int_{-1}^{1} \frac{1}{x} dx$$

b)
$$VP \int_{-\pi/2}^{\pi/2} \frac{1}{\sin x} \, dx$$

b)
$$VP \int_{-\pi/2}^{\pi/2} \frac{1}{\sin x} dx$$
 c) $VP \int_{-1}^{1} \frac{1}{x(6+x-x^2)} dx$.

Hinweis: b) Bringe mithilfe der Additionstheoreme sin x auf die Form $\sin x = 2\tan(x/2)\cos^2(x/2)$ und substituiere anschließend $u = \tan(x/2)$, c) Partialbruchzerlegung.