Super-polynomial accuracy of median of means

Zexin Pan & Art B. Owen Stanford University

Annotated I

These are slides that I presented at MCQMC 2022 in Linz after Zexin Pan was unable to attend. That's a pity. He would have interacted well with much that took place.

The project began with the question about what would happen if base 2 generator matrices were chosen completely at random. The matrices could be bad (e.g., all zeros) but they could also be good (e.g., Niederreiter-Xing) and as it turns out good choices are much more common than bad ones. Better than random generator matrices is to use a random Matousek scramble. Those also are mostly good but every once in a while bad. If we take the median of a modest number of replicates the result can be much more accurate than taking the mean.

Annotated II

We choose some example functions. For instance $x \exp(x)$ is analytic as our theory requires. It is not highly oscillatory which would make it less likely that we see the asymptotic behavior in a modest sample size. It is a 'positive control'. However, it is not symmetric or anti-symmetric or a polynomial or trigonometric polynomial or specially sensitive to dyadic numbers. Those are things that might make it artificially easy.

We also use $\max(0, (x-1/3))$. This is a harder function than our theory assumes because it is not smooth. Also the value 1/3 has a slowly converging base 2 expansion which we think is a disadvantage for Sobol' points.

Zexin Pan

- Sobol' Gains are powers of 2
- Where are the logs? There are functions in BVHK with error $> c\log(n)^{(d-1)/2-\epsilon}/n$ infinitely often

E. Novak \rightarrow Traub, Wasilkowski, Wozniakowski (1988) \rightarrow unpublished Trojan

What if Sobol' had used completely random generator matrices?

Idea in brief

Usual randomized QMC:

- Randomize via Matousek (1998)
- ullet Replicate R times

$$\hat{\mu}_r = \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{x}_i^{(r)}), \quad r = 1, \dots, R$$

$$\hat{\mu} = \frac{1}{R} \sum_{r=1}^{R} \hat{\mu}_r$$

Our proposal

$$\hat{\mu} = \mathsf{median}ig(\hat{\mu}_1, \dots, \hat{\mu}_Rig)$$

Because

Most of the $\hat{\mu}_r$ are very good A few are very bad outliers

Median of means

Classic method in theoretical computer science

Jerrum, Valiant, Vazirani (1986), Lecué & Lerasle (2020)

Uses in information based complexity

Kunsch, Novak, Rudolf (2019)

Recent uses in (R)QMC

Goda, L'Ecuyer (2022) [Random lattices]

Hofstadler, Rudolf (2022) [Laws of large numbers]

Gobet, Lerasle, Métivier (2022) [Robust RQMC]

Superpolynomial accuracy

```
For d=1 and (0,m,1)-net in base b=2 Analytic f error like O(n^{-c\log_2(n)}) c<3\log(2)/\pi^2\approx 0.21 f^{(\alpha)} \text{ is H\"older-}\lambda error like O(n^{-\alpha-\lambda+\epsilon}) P & O (2021) arXiv:2111.12676
```

Conjecture

```
Analytic f  {\rm Error~like}~O(n^{-c\log_2(n)/d})~{\rm for}~d\geqslant 1  Work in progress.
```

Algorithm for d=1

$$\mathbb{N}_0 \longrightarrow \{0,1\}^m \longrightarrow [0,1)$$

$$i = \sum_{k=1}^{m} i_k 2^{k-1}$$
 $\vec{i} = (i_1, i_2, \dots, i_m)^{\mathsf{T}} \in \{0, 1\}^m$
 $a = \sum_{k=1}^{\infty} a_k 2^{-k}$ $\vec{a} = (a_1, a_2, \dots, a_m)^{\mathsf{T}} \in \{0, 1\}^m$

Unscrambled net

$$a_0, a_1, \dots, a_{2^m-1}$$
 with

$$\vec{a}_i = C\vec{i} \mod 2$$
$$C \in \{0, 1\}^{m \times m}$$

C has full rank over \mathbb{Z}_2

 $C = I_m$ for van Der Corput

Linearly scrambled net

$$\vec{x}_i = M \vec{a}_i = M C \vec{i} \, \bmod 2$$

$$M = \begin{pmatrix} 1 & & & & \\ u & 1 & & & \\ u & u & 1 & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \\ u & u & u & u & \cdots & 1 \\ u & u & u & u & \cdots & u \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ u & u & u & u & \cdots & u \end{pmatrix} \in \{0, 1\}^{E \times m} \qquad E \geqslant m$$

 $u \sim \text{IID } \mathbf{U}\{0,1\}$

Apply digital shift

$$\vec{x}_i = MC\vec{i} + \vec{D} \mod 2 \qquad D_k \stackrel{\mathrm{iid}}{\sim} \mathbf{U}\{0, 1\}$$

$$\implies$$
 each $x_i \sim \mathbf{U}[0,1]$ for $E = \infty$

$$\int_0^1 x e^x \, \mathrm{d}x = 1$$

 $n=2^m$ random linear Same shift D for all n points

QMCPy, Hickernell, Sorokin

Precision

 $M \in \{0,1\}^{E \times m}$ produces x_i to E bits

Infinite precision $E=\infty$ and $M\in\{0,1\}^{\infty\times m}$

Produces $\hat{\mu}_{\infty}$

based on $n=2^m$ points

Stratification

Without randomization we get

$$i/n \text{ for } 0 \leqslant i < n$$

in some order

With randomization we get one point in

Bottleneck

Maybe

$$M(m+1,:) = (0,0,\ldots,0) = \mathbf{0} \in \{0,1\}^m$$

Then

$$x_{0,m+1} = x_{1,m+1} = \dots = x_{n-1,m+1} = D_{m+1}$$

This has probability $2^{-m} = 1/n$

Consequence

$$D_{m+1}=0 \implies \text{all points in } \left[\frac{i}{n},\frac{i+1/2}{n}\right)\text{'s}$$

$$D_{m+1}=1 \implies \text{all points in } \left[\frac{i+1/2}{n},\frac{i+1}{n}\right)\text{'s}$$

$$\implies \text{Half of } [0,1) \text{ is empty}$$

$$\mathbb{E}(|\hat{\mu} - \mu| \mid M(m+1, :) = \mathbf{0}) = O(1/n)$$
 (Taylor)

Summary

This rare event contributes $O(1/n^3)$ to $\mathrm{Var}(\hat{\mu}_\infty)$

Cannot reduce by more smoothness

More trouble

Problematic whenever

$$\sum_{\ell \in L} M(\ell,:) = \mathbf{0} \quad \text{for some } L \subseteq \mathbb{N}$$

Can't happen if $L\subseteq\{1,2,\ldots,m\}$ because M has full rank

Probability 2^{-m} otherwise: "last row" of M(L,:) does it

That is

$$\Pr\left(\sum_{\ell\in L} M(\ell,:) = \mathbf{0}\right) = \begin{cases} 0, & L\subseteq\{1,2,\ldots,m\}\\ 2^{-m}, & L\not\subseteq\{1,2,\ldots,m\} \end{cases}$$

Magnitudes

$$|L| = \operatorname{card}(L) \qquad \|L\|_1 = \sum_{\ell \in L} \ell$$

Decomposition

$$\mathcal{L} := \{ L \subset \mathbb{N} \mid 0 < |L| < \infty \}$$

Let f be analytic on $\left[0,1\right]$ with

$$\left|f^{(k)}\left(\frac{1}{2}\right)\right|\leqslant A\alpha^k k!,\quad A<\infty,\quad \alpha<2,\quad \text{all }k\in\mathbb{N}$$

$$C\in\{0,1\}^{m\times m}\text{ full rank}$$

Theorem 3.1

$$\hat{\mu}_{\infty} - \mu = \sum_{L \in \mathcal{L}} \mathbf{1} \left\{ \sum_{\ell \in L} M(\ell, :) = \mathbf{0} \right\} S_L(D) 2^{-\|L\|_1} B_L$$

$$S_L(D) = \prod_{\ell \in L} (-1)^{D_\ell}$$

$$|B_L| \leqslant 6A(|L| - 1)! \left(\frac{\alpha/2}{1 - \alpha/2} \right)^{|L|}$$

The B_L involve Walsh coefficients of f

Significant use of Dick & Pillichshammer (2010)

Norm of L

The bound includes $2^{-\|L\|_1}$

Things are bad for small $\|L\|_1$

worst is $L = \{m+1\}$ (bottleneck example)

Fortunately

Not too many $L \in \mathcal{L}$ with $\|L\|_1 = N$ small

p(N)=# ways to partition $N\in\mathbb{N}$ into a sum of natural numbers.

Analytic combinatorics

Hardy & Ramanujan (1918) show that

$$p(N) \sim \frac{1}{N4\sqrt{3}} \exp\left(\pi \left(\frac{2N}{3}\right)^{1/2}\right) = o(2^N)$$

Bidar (2012) reduces this for *distinct* natural numbers

$$\frac{\pi}{2\sqrt{3N}}\exp\left(\pi\left(\frac{N}{3}\right)^{1/2}\right)$$

Trouble spots

Let m=3

Weighted by $2^{-\|L\|_1}$

The rows grow in cardinality but they do not double in size.

Controlling bad $L \in \mathcal{L}$

For
$$\lambda = 3(\log(2)/\pi)^2 \approx 0.146$$

$$|\{L \in \mathcal{L} \mid ||L||_1 \leqslant \lambda m^2\}| \sim \frac{3^{1/4}}{2\pi\lambda^{1/4}} \frac{2^m}{\sqrt{m}}$$

$$\Pr\left(\sum_{\ell\in L} M(\ell,:)\right) = \mathbf{0}) = \mathbf{2}^{-m}$$

Expect $O(\frac{1}{\sqrt{m}})$ problematic sets L

Quality of estimate

Bound
$$\Pr(|\hat{\mu}_{\infty} - \mu| \gg 2^{-\lambda m^2})$$

Then median over infinite replicates has

$$|\mathrm{median}(\hat{\mu}_{\infty}) - \mu)| = o(2^{-(\lambda - \epsilon)m^2})$$

Sample median

$$\left| \mathsf{median}(\hat{\mu}_{\infty,1},\hat{\mu}_{\infty,2},\ldots,\hat{\mu}_{\infty,2k-1}) - \mathsf{median}(\hat{\mu}_{\infty}) \right|$$

letting
$$k = \Omega(m) = \Omega(\log_2(n))$$
.

Cost is now $O(n \log(n))$

Example d=1

RMSE for f(x) = x*exp(x)

n

Example d = 6

Surjanovic & Bingham

Standard Deviation for OTL Circuit Integrand

QMCPy, Hickernell, Sorokin

$$\int_0^1 (x - 1/3)_+ \, \mathrm{d}x = 2/9$$

Random linear scramble with digital shift Kink: f(x) = max(x-1/3,0) - 2/9

m

Challenge

It is *hard* to estimate

$$\operatorname{Var}(\operatorname{median}(\hat{\mu}_1,\ldots,\hat{\mu}_{2k-1}))$$

It is *easy* to get a confidence interval for

median(Distribution of
$$\hat{\mu}_r$$
)

But we want to know about

$$\int f(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} = \mathsf{mean}(\mathsf{Distribution} \; \mathsf{of} \; \hat{\mu}_r)$$

Thanks

- Zexin Pan who could not be here today
- Fred Hickernell and Aleksei Sorokin for QMCPy help
- NSF IIS-1837931
- Aicke Hinrichs, Peter Kritzer, Friedrich Pillichshammer