

1 1. A capillary array electrophoresis plate, comprising:
2 an array of separation channels formed on said plate; and
3 an array of sample reservoirs formed on said plate and
4 coupled to said separation channels.

1 2. The plate of claim 1, wherein said array of sample
2 reservoirs are organized into one or more sample injectors.

1 3. The plate of claim 2, further comprising a waste
2 reservoir positioned in each sample injector.

1 4. The plate of claim 3, wherein one of said waste
2 reservoirs is coupled to one or more sample reservoirs in each
3 sample injector.

1 5. The plate of claim 1, further comprising a cathode
2 reservoir, said cathode reservoir being connected to one or more
3 separation channels.

1 6. The plate of claim 1, further comprising an anode
2 reservoir common to one or more separation channels.

1 7. The plate of claim 1, wherein the plate has one set of
2 reservoirs positioned near an outer perimeter, and one set of
3 reservoirs positioned near a center and the separation channels
4 connect the reservoirs near the outer perimeter to reservoirs

1 near the center.

1 8. The plate of claim 7, wherein the separation channels
2 radially connect the outer perimeter to the center.

1 9. The plate of claim 1, further comprising an electrode
2 array coupleable to said reservoir array.

1 10. The plate of claim 9, further comprising a reservoir
2 array layer having an array of openings coupleable to said
reservoir array.

1 11. The plate of claim 1, wherein said reservoir array is
2 regularly spaced in one or two dimensions on said plate and
3 adapted to engage a multi-headed pipetter.

1 12. A capillary array electrophoresis plate, comprising:
2 a plurality of separation channels formed at a surface of
3 said plate;

4 one or more anode reservoirs formed at a surface of said
5 plate; and

6 one or more injectors formed at a surface of said plate,
7 said injector having:

8 a plurality of sample reservoirs formed on said plate
9 and coupled to said separation channels;

10 a plurality of waste reservoirs formed on said plate

1 and coupled to said separation channels; and
2 at least one cathode reservoir multiplexed with a
plurality of said separation channels.

1 13. The plate of claim 12, further comprising an electrode
array coupleable to said reservoirs.

1 14. The plate of claim 12, wherein the plate has an outer
2 perimeter and a center and the separation channels connect the
3 outer perimeter to the center.
4
5
6
7
8
9

10 15. A capillary array electrophoresis plate comprising:
11 an array of microfabricated separation channels formed at a
12 surface of a first microfabricated substrate and a corresponding
13 surface of a second substrate bonded to said first and second
14 substrates, each of said channels having first and second ends;
15 an array of sample reservoirs formed at a surface of said
16 plate;
17 an array of waste reservoirs formed at a surface of said
18 plate;
19 an array of cathode reservoirs coupled to the first end of
20 each of the separation channels;
21 an array of anode reservoirs coupled to the second end of
22 each of the separation channels; and
23 an injector formed by an injection channel connected to one
24 or more sample reservoirs that crosses a separation channel and

10 connects to a waste reservoir.

1 16. The capillary array electrophoresis plate of claim 15,
2 wherein both substrates are microfabricated.

1 17. The capillary array electrophoresis plate of claim 15,
2 wherein the substrates are made of glass.

1 18. The capillary array electrophoresis plate of claim 15,
2 wherein the substrates are made of plastic.

1 19. The capillary array electrophoresis plate of claim 15,
2 wherein one or more separation channels are connected to a common
3 cathode reservoir.

1 20. The capillary array electrophoresis plate of claim 15,
2 wherein one or more separation channels are connected to a common
3 waste reservoir.

1 21. The capillary array electrophoresis plate of claim 15,
2 wherein one or more separation channels are connected to a common
3 anode reservoir.

1 22. The capillary array electrophoresis plate of claim 15,
2 wherein one or more sample reservoirs are connected to one
3 separation channel and one or more waste reservoirs.

1. 23. The capillary array electrophoresis plate of claim 15,
2 further comprising a reservoir array layer mounted above the
3 plate, the reservoir array layer having openings positioned to
4 couple to the sample reservoirs, the waste reservoirs, the
5 cathode reservoirs, and the anode reservoirs.

6

7 24. The plate of claim 15, further comprising an electrode
8 array coupleable to said reservoir array layer.

3 25. The capillary array electrophoresis plate of claim 15,
4 wherein the first substrate has an array of electrodes aligned
5 with the sample reservoirs, the waste reservoirs, the cathode
6 reservoirs, and the anode reservoirs to make electrical contacts
7 with the solutions in the reservoirs.

1 26. The capillary array electrophoresis plate of claim 24
2 wherein said electrode array is integral with the two substrates.

1 27. The capillary array electrophoresis plate of claim 26,
2 wherein the sample reservoirs are regularly spaced on the plate
3 to receive solutions from a multi-headed pipetter system.

1 28. The capillary array electrophoresis plate of claim 15,
2 wherein the plate has H holes, and wherein H is approximately
3 equal to $5N/4$, with N being the number of samples to be

1 processed.

1 29. The capillary array electrophoresis plate of claim 15,
2 wherein the distance from each cathode reservoir to a
3 corresponding injector is approximately equal and where the
4 distance from each injector to its corresponding anode reservoir
5 for each separation channel is approximately equal.

1 30. The capillary array electrophoresis plate of claim 15,
2 wherein the plate is made of glass or plastic.

1 31. A method of forming a capillary array electrophoresis
2 plate, comprising:

3 forming an array of microfabricated separation channels at a
4 surface of the plate;

5 forming an array of microfabricated sample reservoirs at a
6 surface of the plate; and

7 connecting the array of microfabricated sample reservoirs to
8 the array of microfabricated separation channels.

1 32. The method of claim 31, further comprising grouping the
2 array of sample reservoirs into one or more injectors.

1 33. The method of claim 32, further comprising forming a
2 waste reservoir in each sample injector.

1 34. The method of claim 33, further comprising multiplexing
2 a cathode reservoir with the sample reservoirs.

1 35. The method of claim 34, further comprising multiplexing
2 an anode reservoir to all sample reservoirs on the plate, wherein
3 a distance from each cathode reservoir to a corresponding
4 injector is approximately equal and where the distance from each
5 injector to its corresponding anode reservoir for each separation
6 channel is approximately equal.

1 36. A method for injecting a sample through a capillary
2 array electrophoresis plate with microfabricated separation
3 channels connected to sample reservoirs, waste reservoirs,
4 cathode reservoirs, and anode reservoirs, the method comprising:

5 applying an injection voltage between a first reservoir and
6 a waste reservoir to draw the sample into a cross channel region
7 while applying a bias voltage to the cathode and anode reservoirs
8 to control injection plug width;

9 applying a running voltage between the cathode and anode
10 reservoirs; and

11 applying a biasing voltage to the waste and injector
12 reservoirs to pull away residuals of the sample.

Pd2 > A2

Accl
Cz