Note 1

Introduction to Maximum Likelihood Estimation

The Likelihood Function

Let X_1, \ldots, X_n be an iid sample with pdf $f(x_i; \theta)$, where θ is a $(k \times 1)$ vector of parameters that characterize $f(x_i; \theta)$.

Example: Let $X_i N(\mu, \sigma^2)$ then

$$f(x_i; \theta) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$
$$\theta = (\mu, \sigma^2)'$$

The *joint density* of the sample is, by independence, equal to the product of the marginal densities

$$f(x_1,\ldots,x_n;\theta)=f(x_1;\theta)\cdots f(x_n;\theta)=\prod_{i=1}^n f(x_i;\theta).$$

The joint density is an n dimensional function of the data x_1, \ldots, x_n given the parameter vector θ and satisfies

$$f(x_1,\ldots,x_n;\theta) \geq 0$$

$$\int \cdots \int f(x_1,\ldots,x_n;\theta) dx_1 \cdots dx_n = 1.$$

The *likelihood function* is defined as the joint density treated as a function of the parameters θ :

$$L(\theta|x_1,\ldots,x_n)=f(x_1,\ldots,x_n;\theta)=\prod_{i=1}^n f(x_i;\theta).$$

Notice that the likelihood function is a k dimensional function of θ given the data x_1, \ldots, x_n .

It is important to keep in mind that the likelihood function, being a function of θ and not the data, is not a proper pdf. It is always positive but

$$\int \cdots \int L(\theta|x_1,\ldots,x_n)d\theta_1\cdots d\theta_k \neq 1.$$

To simplify notation, let the vector $\mathbf{x} = (x_1, \dots, x_n)$ denote the observed sample. Then the joint pdf and likelihood function may be expressed as $f(\mathbf{x}; \theta)$ and $L(\theta|\mathbf{x})$, respectively.

Example 1 Bernoulli Sampling

Let X_i Bernoulli(θ). That is,

$$X_i = 1$$
 with probability θ

$$X_i = \mathbf{0}$$
 with probability $\mathbf{1} - \theta$

The pdf for X_i is

$$f(x_i; \theta) = \theta^{x_i} (1 - \theta)^{1 - x_i}, \ x_i = 0, 1$$

Let X_1, \ldots, X_n be an iid sample with X_i Bernoulli(θ). The joint density / likelihood function is given by

$$f(\mathbf{x}; \theta) = L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i}$$

Since X_i is a discrete random variable

$$f(\mathbf{x};\theta) = \Pr(X_1 = x_1, \dots, X_n = x_n)$$

Example 2 Normal Sampling

Let X_1, \ldots, X_n be an iid sample with $X_i N(\mu, \sigma^2)$. The pdf for X_i is

$$f(x_i; \theta) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu)^2\right),$$

$$\theta = (\mu, \sigma^2)'$$

$$-\infty < \mu < \infty, \ \sigma^2 > 0, \ -\infty < x_i < \infty$$

The likelihood function is given by

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left(-\frac{1}{2\sigma^{2}}(x_{i} - \mu)^{2}\right)$$
$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (x_{i} - \mu)^{2}\right)$$

The Maximum Likelihood Estimator

Suppose we have a random sample from the pdf $f(x_i; \theta)$ and we are interested in estimating θ .

The maximum likelihood estimator, denoted $\hat{\theta}_{mle}$, is the value of θ that maximizes $L(\theta|\mathbf{x})$. That is,

$$\hat{\theta}_{mle} = \arg\max_{\theta} L(\theta|\mathbf{x})$$

Alternatively, we say that $\hat{\theta}_{mle}$ solves

$$\max_{\theta} L(\theta|\mathbf{x})$$

It is often quite difficult to directly maximize $L(\theta|\mathbf{x})$. It usually much easier to maximize the log-likelihood function $\ln L(\theta|\mathbf{x})$. Since $\ln(\cdot)$ is a monotonic function

$$\hat{\theta}_{mle} = \arg\max_{\theta} \ln L(\theta|\mathbf{x})$$

With random sampling, the log-likelihood has the particularly simple form

$$\ln L(\theta|\mathbf{x}) = \ln \left(\prod_{i=1}^n f(x_i;\theta)\right) = \sum_{i=1}^n \ln f(x_i;\theta)$$

Example 3 Bernoulli example continued

Given the likelihood function

$$L(\theta|\mathbf{x}) = \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i},$$

the log-likelihood is

$$\ln L(\theta|\mathbf{x}) = \ln \left(\theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i}\right)$$
$$= \left(\sum_{i=1}^{n} x_i\right) \ln(\theta) + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-\theta)$$

Recall the results

$$\ln(x \cdot y) = \ln(x) + \ln(y), \ \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y), \ \ln(x^y) = y \ln(x)$$

Example 4 Normal example continued

Given the likelihood function

$$\ln L(\theta|\mathbf{x}) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

the log-likelihood is

$$\ln L(\theta|\mathbf{x}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2.$$

Recall the result

$$\ln(e^x) = x$$

Since the MLE is defined as the maximization problem, we can use the tools of calculus to determine its value. That is, we may find the MLE by differentiating In $L(\theta|\mathbf{x})$ and solving the first order conditions

$$rac{\partial \ln L(\hat{ heta}_{mle}|\mathbf{x})}{\partial heta} = \mathbf{0}$$

Since θ is $(k \times 1)$ the first order conditions define k, potentially nonlinear, equations in k unknown values:

$$rac{\partial \ln L(\hat{ heta}_{mle}|\mathbf{x})}{\partial oldsymbol{ heta}} = \left(egin{array}{c} rac{\partial \ln L(\hat{ heta}_{mle}|\mathbf{x})}{\partial heta_1} \ dots \ rac{\partial \ln L(\hat{ heta}_{mle}|\mathbf{x})}{\partial heta_k} \end{array}
ight) = \mathbf{0}$$

Example 5 Bernoulli example continued

To find the MLE for θ , we maximize the log-likelihood function

$$\ln L(\theta|\mathbf{x}) = \sum_{i=1}^{n} x_i \ln(\theta) + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1 - \theta)$$

The derivative of the log-likelihood is

$$\frac{\partial \ln L(\theta|\mathbf{x})}{\partial \theta} = \frac{1}{\theta} \sum_{i=1}^{n} x_i - \frac{1}{1-\theta} \left(n - \sum_{i=1}^{n} x_i \right) = 0$$

The MLE satisfies $\frac{\partial \ln L(\theta|\mathbf{x})}{\partial \theta} = \mathbf{0}$ and solving for θ gives

$$\hat{\theta}_{mle} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Example 6 Normal example continued

To find the MLE for $\theta = (\mu, \sigma^2)'$, we maximize the log-likelihood function

$$\ln L(\theta|\mathbf{x}) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2.$$

The derivative of the log-likelihood is a (2×1) vector given by

$$\frac{\partial \ln L(\theta|\mathbf{x})}{\partial \theta} = \begin{pmatrix} \frac{\partial \ln L(\theta|\mathbf{x})}{\partial \mu} \\ \frac{\partial \ln L(\theta|\mathbf{x})}{\partial \sigma^2} \end{pmatrix}$$

where

$$\frac{\partial \ln L(\theta|\mathbf{x})}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)$$

$$\frac{\partial \ln L(\theta|\mathbf{x})}{\partial \sigma^2} = -\frac{n}{2} (\sigma^2)^{-1} + \frac{1}{2} (\sigma^2)^{-2} \sum_{i=1}^n (x_i - \mu)^2$$

Solving $\frac{\partial \ln L(\theta|\mathbf{x})}{\partial \theta} = \mathbf{0}$ gives the *normal equations*

$$\frac{\partial \ln L(\hat{\theta}_{mle}|\mathbf{x})}{\partial \mu} = \frac{1}{\hat{\sigma}_{mle}^2} \sum_{i=1}^n (x_i - \hat{\mu}_{mle}) = 0$$
$$\frac{\partial \ln L(\hat{\theta}_{mle}|\mathbf{x})}{\partial \sigma^2} = -\frac{n}{2} (\hat{\sigma}_{mle}^2)^{-1}$$
$$+\frac{1}{2} (\hat{\sigma}_{mle}^2)^{-2} \sum_{i=1}^n (x_i - \hat{\mu}_{mle})^2 = 0$$

Solving the first equation for $\hat{\mu}_{mle}$ gives

$$\hat{\mu}_{mle} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

Solving the second equation for $\hat{\sigma}_{mle}^2$ gives

$$\hat{\sigma}_{mle}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{mle})^2.$$

Notice that $\hat{\sigma}_{mle}^2$ is not equal to the sample variance.

Invariance Property of Maximum Likelihood Estimators

One of the attractive features of the method of maximum likelihood is its invariance to one-to-one transformations of the parameters of the log-likelihood.

That is, if $\hat{\theta}_{mle}$ is the MLE of θ and $\alpha = h(\theta)$ is a one-to-one function of θ then $\hat{\alpha}_{mle} = h(\hat{\theta}_{mle})$ is the mle for α .

Example 7 Normal Model Continued

The log-likelihood is parameterized in terms of μ and σ^2 and

$$\hat{\mu}_{mle} = \bar{x}$$

$$\hat{\sigma}_{mle}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_{mle})^2$$

Suppose we are interested in the MLE for

$$\sigma = h(\sigma^2) = (\sigma^2)^{1/2}$$

which is a one-to-one function for $\sigma^2 > 0$.

The invariance property says that

$$\hat{\sigma}_{mle} = (\hat{\sigma}_{mle}^2)^{1/2} = \left(\frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu}_{mle})^2\right)^{1/2}$$

The Precision of the Maximum Likelihood Estimator

Intuitively, the precision of $\hat{\theta}_{mle}$ depends on the curvature of the log-likelihood function near $\hat{\theta}_{mle}$.

If the log-likelihood is very curved or "steep" around $\hat{\theta}_{mle}$, then θ will be precisely estimated. In this case, we say that we have a lot of *information* about θ .

If the log-likelihood is not curved or "flat" near $\hat{\theta}_{mle}$, then θ will not be precisely estimated. Accordingly, we say that we do not have much information about θ .

If the log-likelihood is completely flat in θ then the sample contains no information about the true value of θ because every value of θ produces the same value of the likelihood function. When this happens we say that θ is not identified.

The curvature of the log-likelihood is measured by its second derivative matrix (Hessian)

$$H(\theta|\mathbf{x}) = \frac{\partial^2 \ln L(\theta|\mathbf{x})}{\partial \theta \partial \theta'} = \begin{bmatrix} \frac{\partial^2 \ln L(\theta|\mathbf{x})}{\partial \theta_1 \partial \theta_1} & \cdots & \frac{\partial^2 \ln L(\theta|\mathbf{x})}{\partial \theta_1 \partial \theta_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 \ln L(\theta|\mathbf{x})}{\partial \theta_k \partial \theta_1} & \cdots & \frac{\partial^2 \ln L(\theta|\mathbf{x})}{\partial \theta_k \partial \theta_k} \end{bmatrix}$$

Since the Hessian is negative semi-definite, the *information* in the sample about θ may be measured by $-H(\theta|\mathbf{x})$. If θ is a scalar then $-H(\theta|\mathbf{x})$ is a positive number.

The expected amount of information in the sample about the parameter θ is the information matrix $I(\theta|\mathbf{x}) = -E[H(\theta|\mathbf{x})]$.

As we shall see, the Hessian and information matrix are directly related to the precision of the MLE.

Asymptotic Properties of Maximum Likelihood Estimators

Let X_1, \ldots, X_n be an iid sample with probability density function (pdf) $f(x_i; \theta)$, where θ is a $(k \times 1)$ vector of parameters that characterize $f(x_i; \theta)$.

Under general regularity conditions, the ML estimator of θ is consistent and asymptotically normally distributed. That is,

$$\hat{\theta}_{mle} \stackrel{p}{\to} \theta \text{ as } n \to \infty$$

and for n large enough the Central Limit Theorem gives

$$\hat{\theta}_{mle} \sim N(\theta, I(\theta|\mathbf{x})^{-1})$$

Computing MLEs in R: the maxLik package

The R package maxLik has the function maxLik() for computing MLEs for any user-defined log-likelihood function

- uses the optim() function for maximizing the log-likelihood function
- Automatically computes standard errors by inverting the Hessian matrix

Remarks

• In practice we don't know $I(\theta|\mathbf{x}) = -E[H(\theta|\mathbf{x})]$ but we can estimate its value using $-H(\hat{\theta}_{mle}|\mathbf{x})$. Hence, the practically useful asymptotic normality result is

$$\hat{\theta}_{mle} \sim N(\theta, -H(\hat{\theta}_{mle}|\mathbf{x})^{-1})$$

• Estimated standard errors for the elements of $\hat{\theta}_{mle}$ are the square roots of the diagonal elements of $-H(\hat{\theta}_{mle}|\mathbf{x})^{-1}$:

$$\widehat{SE}(\hat{\theta}_{i,mle}) = \sqrt{\left[-H(\hat{\theta}_{mle}|\mathbf{x})^{-1}\right]_{ii}}$$
$$\left[-H(\hat{\theta}_{mle}|\mathbf{x})^{-1}\right]_{ii} = (i,i) \text{ element of } -H(\hat{\theta}_{mle}|\mathbf{x})^{-1}$$