Polynomial time
Easy
Tractable

Binary search (n*logn)
Bubble sort (n*n)
Merge sort (n*logn)

Exponential time Hard Intractable

CNF satisfuability
Hamiltonion cycle problem
Travelling salesman problem

2ⁿ (Brut force)

Running time	Maximum size solvable in 1 secured			
of algorithm ((n)	Current	100 times faster	faster.	
n	$N_0 = 100$ million	100No	1000No	
100n	$N_1 = 1$ million	100Ni	1000A1	
n2	$N_2 = 10,000$	10/2	31.6N ₂	
n ²	$N_2 = 464$	4.64N ₂	10%	
2"	$N_4 = 26$	Na+ 6.64	No + H OZ	

HAMILTONION CYCLE PROBLEM

BRUT FORCE- N!

POLYNOMIAL TIME VERF - N

TRAVELLING SALESMAN PROBLEM

BRUT FORCE- N!

POLYNOMIAL TIME VERF - N

CONJUCTIVE NORMAL FORM SATIFIABILITY PROBLEM

$$f(a,b,c,d) = \frac{(a \lor b \lor c) \cdot (a \lor b \lor \bar{c}) \cdot (\bar{a} \lor c \lor d)}{(\bar{a} \lor c \lor \bar{d}) \cdot (\bar{b} \lor \bar{c} \lor d) \cdot (\bar{b} \lor \bar{c} \lor d)}$$

BRUT FORCE- 2^N

POLYNOMIAL TIME VERF - N

P, NP COMPLETE AND HARD

P: POLYNOMIAL DETERMINISTIC TIME ALGO {SOLVED IN POLYNOMIAL TIME AND ALGO IS DETERMINISTIC}

NP HARD :NON POLYNOMIAL NON-DETERMINISTIC TIME ALGO {SOLVED IN NON POLYNOMIAL AND INSTANCE WITH POLYNOMIAL TIME DOES NOT EXIST}

NP COMPLETE :NON POLYNOMIAL NON-DETERMINISTIC TIME ALGO {SOLVED IN NON POLYN TIME AND INSTANCE WITH POLYNOMIAL TIME EXIST}

PROOF THEM NP COMPLETE
REDUCTION
A <= P* B
COOK'S P=NP