Generative Adversarial Networks (GANs)

Adapted from material by Goodfellow, Binglin, Shashank, Bhargav

GANs

Generative

Learn a generative model

Adversarial

Trained in an adversarial setting

Networks

Use Deep Neural Networks

Why Generative Models?

Discriminative models:

- Given an image X, predict a label Y
- Estimates P(Y | X)

Discriminative models have several key limitations

- Can't model P(X), i.e. the probability of seeing a certain image
- Thus, can't sample from **P(X)**, i.e. can't generate new images

Generative models try to address these:

- model **P(X)**
- generate new data (e.g. images)

Magic of GANs...

Which one is Computer generated?

Magic of GANs...

Adversarial Training

• Generator: generate fake samples, tries to fool the Discriminator

Discriminator: tries to distinguish between real and fake samples

Train them against each other

Repeat this and we get better Generator and Discriminator

GAN's Architecture

- **Z** is some random vector (Gaussian/Uniform).
- **Z** can be thought as the latent representation of the image.

Training Discriminator

Training Generator

GAN's formulation

$$\min_{G} \max_{D} V(D,G)$$

- It is formulated as a **minimax game**, where:
 - The Discriminator is trying to maximize its reward V(D,G)
 - The Generator is trying to minimize Discriminator's reward (or maximize its loss)

$$V(D,G) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \mathbb{E}_{z \sim q(z)}[\log(1 - D(G(z)))]$$

- The Nash equilibrium of this particular game is achieved at:
 - $P_{data}(x) = P_{gen}(x) \ \forall x$ $D(x) = \frac{1}{2} \ \forall x$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Discriminator updates

Generator updates

Faces

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

CIFAR

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

DCGAN: Bedroom images

Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016 Neutral woman Neutral man Smiling woman Smiling Man Samples from the model Average Z vectors, do arithmetic

Generative Adversarial Nets: Interpretable Vector Math

Glasses man

No glasses man No glasses woman

Radford et al, **ICLR 2016**

