Основы глубинного обучения

Лекция 3

Свёрточные сети

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2024

Поле восприятия (receptive field)

Свёртка инвариантна к сдвигам

Свёртки в компьютерном зрении

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

- Пиксель в результирующем изображении зависит только от небольшого участка исходного изображения (local connectivity)
- Веса одни и те же для всех пикселей результирующего изображения (shared weights)

- Обычно исходное изображение цветное!
- Это означает, что в нём несколько каналов (R, G, B)
- Учтём в формуле:

$$\operatorname{Im}^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K(i,j,c) \operatorname{Im}^{in}(x+i,y+j,c) + b \right)$$

- Одна свёртка выделяет конкретный паттерн на изображении
- Нам интересно искать много паттернов
- Сделаем результат трёхмерным:

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_t(i, j, c) \operatorname{Im}^{in}(x+i, y+j, c) + b_t \right)$$

Число параметров

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_{t}(i, j, c) \operatorname{Im}^{in}(x+i, y+j, c) + b_{t} \right)$$

- Обучается только фильтр
- $((2d+1)^2 * C + 1) * T$ параметров
- Как из этого сделать модель обсудим позже

- Возьмём пиксель в итоговом изображении (после свёрточных слоёв)
- От какой части входного изображения зависит значение в этом пикселе?

Поле восприятия: 3 х 3

Поле восприятия: 5 х 5

Поле восприятия для свёртки 3 х 3:

- После 1 свёрточного слоя: 3 х 3
- После 2 свёрточных слоев: 5 х 5
- После 3 свёрточных слоёв: 7 х 7

Поле восприятия для свёртки 5 х 5:

Поле восприятия: 5 х 5

Поле восприятия для свёртки 5 х 5:

- После 1 свёрточного слоя: 5 х 5
- После 2 свёрточных слоев: 9 х 9
- После 3 свёрточных слоёв: 13 х 13

Нужно очень много слоёв, если изображение размера 512 х 512

Свёртки с пропусками (strides)

Свёртки с пропусками (strides)

Поле восприятия: 7 х 7

Свёртки с пропусками (strides)

Подробности про подсчёт размера поля:

https://distill.pub/2019/computing-receptive-fields/

Dilated convolutions («раздутые» свёртки)

Dilated convolutions («раздутые» свёртки)

Dilated convolutions («раздутые» свёртки)

Pooling

1	0	2	1	0	0				
0	1	3	2	1	2		1	3	Ī
							-	3	
						\rightarrow			

Pooling

- Разбивает изображение на участки $n \times m$ и считает некоторую статистику в каждом участке (обычно максимум)
- Существенно сокращает размер изображения (значит, увеличивает поле восприятия следующих слоёв)
- Не имеет параметров

Зачем это всё?

• Важно следить за тем, чтобы последние свёрточные слои имели размер поля восприятия, сравнимый со всей картинкой

Padding

Свёртки

• Если применять свёртку по формуле, то выходное изображение будет меньше входного

Свёртки

Valid mode

• При честном подсчёте свёрток пиксели на краях не оказывают большого влияния на результат

Zero padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Zero padding

- Добавляем по границам нули так, чтобы посчитанная после этого свёртка в valid mode давала изображение такого же размера, как исходное
- Есть риск, что модель научится понимать, где на изображении края можем потерять инвариантность

Reflection padding

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

Reflection padding

- Не получится легко находить края изображения
- Но теперь модель может начать находить зеркальные отражения и подбирать фильтры под них

Replication padding

1	1	1	2	3				
1	1	1	2	3				
1	1	1	2	3	4	5	6	
6	6	6	7	8	9	8	7	
1	1	1	2	3				

Replication padding

• Пиксель на границе равен ближайшему пикселю из изображения

• Модель всё ещё может настроиться под паттерны, которые возникают из-за такого паддинга

Резюме

- Паддинг позволяет контролировать размер выходных изображений
- Паддинг позволяет учитывать даже объекты на краях
- Разные типа паддингов допускают разные способы переобучения под края

Структура свёрточных сетей

Свёрточный слой

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_{t}(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_{t} \right)$$

Типичная архитектура

Типичная архитектура

- Последовательное применение комбинаций вида «свёрточный слой -> нелинейность -> pooling» или «свёрточный слой -> нелинейность»
- Выпрямление (flattening) выхода очередного слоя
- Серия полносвязных слоёв

LeNet

AlexNet

- Важное наблюдение: выходы полносвязных слоёв являются хорошими признаковыми описаниями изображений
- Полезны во многих задачах
- Например, поиск похожих изображений

- Не интерпретируется (в отличие от классического компьютерного зрения)
- По смыслу «индикаторы» наличия каких-то паттернов

Layer 1

