BILAG 3

Kravspecifikation

Indholdsfortegnelse

Indledning

På baggrund af et møde med Jim Jensen fra Hammel Neurocenter, hvor udfordringer med nuværende behandling af dysfagi blev diskuteret, er der udarbejdet en kravspecifikation til synkerefleksmonitor(SRM). Kravet til dette system er udspecificeret af projektgruppens medlemmer uden at der er indgået en kontrakt med Hammel Neurocenter som kunde. Med andre ord er projektgruppens medlemmer ikke forpligtet til at levere et produkt til nogen.

Kravspecifikationen har til formål at specificere kravene til SRM. SRM'en består af en bioimpedans måler(BI) og en EMG måler. Kravene til SRM'en er blevet prioriteret i MoSCoW analyse, hvor "must kravet"prioriteres højst. Kravspecifikationen der indeholder, en beskrivelse af projektets funktionelle krav, en aktør-kontekstdiagram, systemets usecases og ikke-funktionelle krav. Til kravspecifikationen er der lavet en accepttest, som primært har til formål at teste de opstillede funktionelle- og ikke-funktionelle krav. Accepttesten kan ses i "bilag 9 - Accepttestspecifikation".

Kravspecifikation 2

${\bf 2.1}\quad {\bf Systembes krivelse}$

Sundhedspersonalet foretager en BI- og EMG-måling ved at tilkoble elektroder fra hhv. BI- og EMG-måleren til et måleobjekt. Vha. en funktiongenerator sendes en konstant strøm til måleobjektet via. et print og elektroder. Herved måles spændingen over elektroderne. De målte spændinger omdannes til et digital signal vha. en A/D-konverter. Dette digital signal vises på en PC-skærm i form af en graf. Sundhedspersonalet har herved mulighed for at evaluere måleobjektets synkefrekvens. Sundhedspersonalet foretager også EMG-måling ved at tilkoble elektroder på måleobjektet. Dataindsamling fra måleobjektet omdannes ligeledes til et digital signal og vises på en PC-skærm.

2.1.1 Aktør kontekstdiagram

Figur 2.1: Aktør-kontext diagram

2.2. Funktionelle krav

2.1.2 Aktørbeskrivelse

Aktørnavn	Type	Beskrivelse
Sundhedspersonale	Primær	Sundhedspersonalet tilkobler BI- og EMG-måleren til måleobjektet vha. elektroder, samt starter og afslut- ter målingen. Yderligere interagerer sundhedsperso- nalet med en brugergrænseflade.
Bioimpedans måler	Sekundær	Bioimpedans måleren anvendes til at måle bioimpedans signaler fra måleobjektet
EMG måler	Sekundær	EMG-måleren anvendes til at måle EMG-signaler fra måleobjektet.
Måleobjekt	Sekundær	Måleobjektet er kilden hvorfra bioimpedans signalerne indhentes. Måleobjektet er tilkoblet til både BIog EMG-måleren.
${ m A/D} ext{-}{ m konverter}$	Sekundær	${\rm A/D}$ -konverterens funktion er at konvertere analog signaler fra hhv. BI-og EMG-måler til digital signaler.
PC	Sekundær	Denne brugergrænseflade bruges til at visualisere de målte signaler i graf form.

Tabel 2.1: Aktørbeskrivelse

2.2 Funktionelle krav

2.2.1 Use Case diagram

2.2.1.1 Version 1.0

Figur 2.2: Use Case diagram

2.2. Funktionelle krav

2.2.1.2 Version 1.1

Diagrammet i figur ?? viser systemets fire Use Cases: Start BI-måling, Start EMG-måling, Beregn BI, Vis BI og EMG. Herunder følger en nærmere beskrivelse af de enkelte Use Cases, gennem et fully-dressed Use Case skema.

Systemet består af en softwaredel, en A/D-konverter, BI-måler, EMG-måler med tilhørende hardware. Systemet gør det muligt at foretage en BI- og EMG-måling på et måleobjekt. BI- og EMG-målingerne bliver sendt ind i systemet via A/D-konverter, hvor signalet vises i Matlab. I softwaren er det muligt at få simultane signaler på en graf og samtidig benyttes der algoritme for at vise synkefrekvensen. Denne algoritme undersøger signalet for, ved en omregning fra den kendte spænding og strøm, impedans og dens ændringer som der ligner et synk. Brugergrænsefladen er det som sundhedspersonalet initierer med, altså hvorfra systemet aktiveres.

2.2.2 Use Cases - fully dressed

2.2.2.1 Version 1.0

Use Case 1

Scenarie		Hovedscenarie
Navn		Start BI-måling
Mål		At få foretaget en BI-måling
Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær), Måleobjekt (sekundær)
Referencer		
Samtidige forekomster		En BI-måling pr. kørsel
Forudsætninger		Alle systemer er ledige og operationelle. Elektroder påsat måleobjekt og GUI-vindue er åbent
Resultat		BI-målingen er blevet foretaget efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Start BI-måling"
	2.	Systemet foretager målingen indtil der trykkes på knappen "Stop måling"
	3.	Systemet har gemt målingen i en fil
		[Undtagelse 3.a:] Systemet har ikke gemt målingen i en fil
Undtagelser	3.a.	Hovedscenarie 1 i Use Case 1 gentages

Tabel 2.2: Fully dressed Use Case 1

2.2. Funktionelle krav

Use Case 2

Scenarie		Hovedscenarie
Navn		Start EMG-måling
Mål		At få foretaget en EMG-måling
Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær), Måleobjekt (sekundær)
Referencer		
Samtidige forekomster		En EMG-måling pr. kørsel
Forudsætninger		Alle systemer er ledige og operationelle. Elektroder påsat måleobjekt og GUI-vindue er åbent
Resultat		EMG-målingen er blevet foretaget efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Start EMG-måling"
	2.	Systemet foretager målingen indtil der trykkes på knappen "Stop måling"
	3.	Systemet har gemt målingen i en fil
		[Undtagelse 3.a:] Systemet har ikke gemt målingen i en fil
Undtagelser	3.a.	Hovedscenarie 1 i Use Case 2 gentages

Tabel 2.3: Fully dressed Use Case 2

Use Case 3

Scenarie	Hovedscenarie
Navn	Beregn BI
Mål	At få beregnet BI
Initiering	Startes af Sundhedspersonale
Aktører	Sundhedspersonale (primær)
Referencer	Use Case 1
Samtidige forekomster	En BI-beregning pr. kørsel
Forudsætninger	Use case 1 er foretaget

2.3. Ikke-funktionelle krav

Resultat		BI-beregningen er foretaget efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Beregn-BI"
	2.	Systemet har gemt BI-beregningen i en fil
		$[\mathit{Undtagelse~2.a:}]$ Systemet har ikke gemt BI-beregningen i en fil
Undtagelser	2.a.	Hovedscenarie 1 i Use Case 3 gentages

Tabel 2.4: Fully dressed Use Case 3

Use Case 4

Scenarie		Hovedscenarie
Navn		Vis BI & EMG
Mål		At få vist BI- & EMG-måling over tid på en graf
Initiering		Startes af Sundhedspersonale
Aktører		Sundhedspersonale (primær)
Referencer		
Samtidige forekomster		En graf pr. kørsel
Forudsætninger		Use case 2 og 3 er foretaget
Resultat		Grafen er vist efter ønske
Hovedscenarie	1.	Sundhedspersonale trykker på knappen "Vis BI & EMG"
	2.	Grafen vises i GUI-vinduet
Undtagelser		_

Tabel 2.5: Fully dressed Use Case 4

2.2.2.2 Version 1.1

2.3 Ikke-funktionelle krav

nielsen?

2.3. Ikke-funktionelle krav

2.3.1 (F)URPS+

Usability

- 1. Sundhedspersonalet skal kunne anvende synkerefleksmonitoren efter 10 minutters instruktion.
- 2. Sundhedspersonalet skal kunne efter endt introduktion til synkerefleksmonitoren foretage en måling uden fejl.
- 3. Sundhedspersonalet skal kunne efter en periode, på en uge væk fra synkerefleksmonitoren, foretage en måling uden fejl.
- 4. Sundhedspersonalet får mulighed for, at give karakter til GUI-designet på en skala fra 1-5, hvor 5 er yderst tilfredsstillende.
- 5. Sundhedspersonalet skal kunne aflæse graferne fra GUI'en på 2 meters afstand.

Reliability

- 6. Det skal maksimalt tage 5 timer at gendanne Synkerefleksmonitor (MTTR Mean Time To Restore).
- 7. Synkerefleksmonitor skal have en oppetid uden nedbrud på minimum 1 dag (24 timer) (MTBF Mean Time Between Failure).
- 8. Synkerefleksmonitor skal have en oppetid/køretid på:

$$Availability = \frac{MTBF}{MTBF + MTTR} \cdot 100 = \frac{24}{24 + 5} \cdot 100 = 82,76\% \tag{2.1}$$

Performance

- 9. Synkerefleksmonitorens hardware skal kunne tændes indenfor 3 minutter.
- 10. Synkerefleksmonitorens GUI skal kunne vises indenfor 3 minutter.
- 11. GUI'ens responstid skal maksimum være 10 sekunder.

Supportability

- 12. Sundhedspersonalet skal kunne udskifte batterierne til hardwaren inden for 2 minutter.
- 13. Sundhedspersonalet skal kunne udskifte elektroderne inden for 2 minutter.
- 14. Softwaren skal opbygges med lav samhørlighed.

Figurer

Tabeller