Conjuntos Abertos Introdução a Topologia

Yuri Kosfeld

Abril 2025

O estudo de conjuntos abertos é motivado por querer entender a forma de um espaço metrico olhando para as vizinhanças de todos os pontos desse espaço. Vamos relembrar alguns detalhes importantes sobre distâncias.

Definição (**Distância**). Seja M um conjunto. Uma **distância** em M é uma função $d: M \times M \to [0, \infty)$ que satisfaz as seguintes propriedades:

- 1. d(x,x) = 0 para todo $x \in M$.
- 2. d(x,y) > 0 para todos $x, y \in M$ com $x \neq y$.
- 3. d(x,y) = d(y,x) para todos $x, y \in M$.
- 4. $d(x,z) \leq d(x,y) + d(y,z)$ para todos $x, y, z \in M$.

Conseguimos agora então entender a proximidade de dois pontos. Para então formalizar matematicamente essa ideia de vizinhança de um ponto, vamos definir o que é uma **bola aberta**.

Definição (Bola Aberta). Sejam (M, d) um espaço métrico, $x \in M$ e $\varepsilon > 0$. Definimos a **bola aberta** centrada em x e de raio ε como:

$$B(x,\varepsilon) = \{ y \in M \mid d(x,y) < \varepsilon \}$$

Não é dificil notar que em \mathbb{R} com a distância usual, temos que a bola $B(x,\varepsilon)=(x-\varepsilon,x+\varepsilon)$. Pela definição, segue que $B(x,\varepsilon)=\{y\in\mathbb{R}\mid |x-y|<\varepsilon\}$. Então tomando $y\in B(x,\varepsilon)$ temos $|x-y|<\varepsilon$ e então

$$-\varepsilon < x - y < \varepsilon$$
$$-\varepsilon < y - x < \varepsilon$$
$$x - \varepsilon < y < x + \varepsilon$$
$$\Leftrightarrow y \in (x - \varepsilon, x + \varepsilon)$$

Outro exemplo é a bola em \mathbb{R}^2 , com a distância euclidiana centrada na origem:

$$B((0,0),\varepsilon) = \{(x,y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} < \varepsilon\} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < \varepsilon^2\}$$

Assim note, que com essa distância, as bolas em \mathbb{R}^2 são discos.

Um resultado interessante é o que acontecem com bolas no espaço produto levando em conta a distância produto. Sejam $(M_1, d_1), \ldots, (M_n, d_n)$ espaços metrico, e defina $M = M_1 \times \cdots \times M_n$ com a distância produto.

Vamos mostrar que a bola produto é o produto das bolas, ou seja, $B((x_1, \ldots, x_n), \varepsilon) = B(x_1, \varepsilon) \times \cdots \times B(x_n, \varepsilon)$. Lembre que a distância produto é dada por

$$d_{max}(x,y) = \max\{d_1(x_1,y_1),\ldots,d_n(x_n,y_n)\}\$$

Então segue que se $y \in B((x_1, \dots, x_n), \varepsilon)$, $d_i(x_i, y_i) < \varepsilon \quad \forall i$. Equivalente a dizer que $\forall i \quad y_i \in B(x_i, \varepsilon)$ e então $y \in B(x_1, \varepsilon) \times \dots \times B(x_n, \varepsilon)$. Agora tome $y \in B(x_1, \varepsilon) \times \dots \times B(x_n, \varepsilon)$, note que para cada $i, y_i \in B(x_i, \varepsilon)$. Logo pela definição de bola e da distância produto vale $d(y, x) < \varepsilon$. Donde segue que $y \in B(x, \varepsilon)$.