430.457

Introduction to Intelligent Systems

Prof. Songhwai Oh ECE, SNU

Chapter 12. Quantifying Uncertainty

PROBABILITY

"Very" Simple Example

Trial: Flip two identical fair coins sequentially

- Possible outcomes:
 - {HH, HT, TH, TT}
- What is the probability that the two coins face the same direction?
 - This event is {HH,TT}
 - $P(\{HH,TT\}) = ?$
- What if the set of outcomes is not discrete? Can we generalize the concept?

Probability Space

A probability space is a triple (Ω, \mathcal{F}, P)

- Ω is a set of outcomes
- \mathcal{F} is a set of events
- P: $\mathcal{F} \rightarrow [0,1]$ is a function that assigns probabilities to events

Note: ${\mathcal F}$ is a σ -field, i.e., collection of subsets of Ω such that

- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
- If $A_i \in \mathcal{F}$ is a countable sequence of sets then $\cup_i A_i \in \mathcal{F}$

Random Variables (r.v.)

• X: $\Omega \to \mathbb{R}$ is a random variable if for every measurable set B $\subset \mathbb{R}$,

$$\mathsf{X}^{\text{-}1}(\mathsf{B}) = \{\omega : \mathsf{X}(\omega) \in \mathsf{B}\} \in \mathcal{F}$$
.

Probability Axioms

1. Nonnegativity

$$P(A) \geq 0 \quad \forall A \in \mathcal{F}$$

2. Normalization

$$P(\Omega) = 1$$

3. Additivity

A₁, A₂, ... disjoint events

$$P(\bigcup_i A_i) = \sum_i P(A_i)$$

Conditional Probability

Conditional probability

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Multiplication rule

$$P(A \cap B) = P(A) P(B|A)$$

Bayes rule

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

Urn

Example

A: blue on first draw

B: blue on second draw

P(A,B) = ?

$$P(A)=$$

$$P(B|A)=$$

$$P(A,B)=$$

Independence

Events A and B are **independent** if P(B|A) = P(B), i.e., $P(A \cap B) = P(A) P(B)$.

Example

Roll 2 dice

 $A = 1^{st}$ die is 4

 $B_1 = 2^{nd}$ die is 2

 B_2 = sum of 2 dice is 9

 B_3 = sum of 2 dice is 7

Q1: Are A and B₁ independent?

Q2: Are A and B₂ independent?

Q3: Are A and B₃ independent?

Some Discrete Random Variables

• Bernoulli distribution: $X \sim Bernoulli(p)$

$$P(X=1) = p$$

$$P(X=0) = 1-p$$

• Binomial distribution: $X \sim Binomial(n, p)$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$
 for $k = 0, ..., n$

• Geometric distribution: $X \sim Geometric(p)$

$$P(X = n) = (1 - p)^{n-1}p$$
 for $n = 1, 2, ...$

• Poisson distribution: $X \sim Poisson(\lambda)$, where $\lambda > 0$

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 for $k = 0, 1, 2, ...$

Density, Distribution

Density function (f)

$$\forall x \quad f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Distribution function (F)

$$F(x) = P(X \le x)$$

$$= P(-\infty \le X \le x)$$

$$= \int_{-\infty}^{x} f(x)dx$$

$$P(a \le X \le b) = F(b) - F(a)$$

Joint Distribution, Marginal Distribution

- \bullet Two random variables X and Y.
- **Joint** distribution:

• Marginal distribution:

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

• If X and Y are independent,

$$P(X+Y=z) = \sum_{x} P(X=x, Y=z-x)$$
$$= \sum_{x} P(X=x)P(Y=z-x)$$

Expected Value

X discrete r.v.

$$\mathbb{E}h(X) = \sum_{x} h(x)P(X = x)$$

$$h(x) = x$$
 $\mathbb{E}X$ expected value of X $h(x) = x^k$ $\mathbb{E}X^k$ k -th moment of X $h(X) = (X - \mathbb{E}(X))^2$ $\mathbf{var}(X)$ variance of X

Standard deviation: $\sigma(X) = \sqrt{\mathbf{var}(X)}$.

Poisson Distribution

For $k = 0, 1, 2, \dots$,

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\mathbb{E}(X) = \sum_{k=0}^{\infty} kP(X=k)$$

$$= \sum_{k=0}^{\infty} ke^{-\lambda} \frac{\lambda^k}{k!} = \lambda \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!} = \lambda \sum_{n=0}^{\infty} e^{-\lambda} \frac{\lambda^n}{n!}$$

$$= \lambda \left(\sum_{n=0}^{\infty} e^{-\lambda} \frac{\lambda^n}{n!}\right)$$

$$= \lambda$$

Practice: $\mathbf{var}(X) = \lambda$

Some Facts about Expectation

- X_1, X_2, \ldots, X_n , random variables
- Linearity of expectation

$$\mathbb{E}(X_1 + \dots + X_n) = \mathbb{E}X_1 + \dots + \mathbb{E}X_n$$

• If X_1, X_2, \ldots, X_n are independent,

$$\mathbb{E}(X_1 \cdots X_n) = \mathbb{E}X_1 \cdots \mathbb{E}X_n$$

$$\mathbf{var}(X_1 + \cdots + X_n) = \mathbf{var}(X_1) + \cdots + \mathbf{var}(X_n)$$

• For $c \in \mathbb{R}$,

$$\mathbb{E}(X+c) = \mathbb{E}(X) + c$$

$$\mathbf{var}(X+c) = \mathbf{var}(X)$$

$$\mathbb{E}(cX) = c\mathbb{E}(X)$$

$$\mathbf{var}(cX) = c^2\mathbf{var}(X)$$

Moment-Generating Function

$$\varphi_{X}(t) = \mathbb{E}(e^{tX})$$

$$\varphi'_{X}(t) = \mathbb{E}(Xe^{tX}) \qquad \varphi'_{X}(0) = \mathbb{E}(X)$$

$$\varphi''_{X}(t) = \mathbb{E}(X^{2}e^{tX}) \qquad \varphi''_{X}(0) = \mathbb{E}(X^{2})$$

$$\vdots \qquad \vdots$$

$$\varphi_{X}^{(k)}(t) = \mathbb{E}(X^{k}e^{tX}) \qquad \varphi_{X}^{(k)}(0) = \mathbb{E}(X^{k})$$

Theorem: X and Y are independent. Then $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$.

$$\varphi_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right) \\
= \mathbb{E}\left(e^{tX}e^{tY}\right) \\
= \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right) \\
= \varphi_X(t)\varphi_Y(t)$$

Important property of MGF: it determines the distribution of the r.v.

Laws of Large Numbers

Strong law of large numbers:

- $X_1, X_2, ...,$ i.i.d. (independently and identically distributed) with $E(X_i) = \mu$ and integrable.
- $\bullet \ S_n = X_1 + \dots + X_n$
- Then w.p. (with probability) one

$$\frac{S_n}{n} \to \mu \text{ as } n \to \infty.$$

Central limit theorem:

• Sum of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately **normally** distributed.

Markov Chains

An important tool in probability

- Markov property
- Classification of states
- Limit behavior, convergence, stationary distribution
- Applications: Hidden Markov model, Markov random field, Markov chain Monte Carlo, ...