Calculo para instalaciones eléctricas comerciales

Planteamiento del Sistema

Durante el proceso de diseño se deben tomar en consideración numerosos factores que pueden tener impacto sobre el sistema eléctrico.

En primer lugar se debe recordar que cada proyecto es distinto y que posee características únicas, sin embargo existen muchas otras que son de tipo universal. Algunos de los factores que se deben tomar en consideración, son los siguientes:

- Consideraciones arquitectónicas.
- Coordinación mecánica y de plomería.
- Requerimiento del propietario.
- Coordinación con la empresa eléctrica suministradora y la compañía de teléfonos.

Metodología de diseño

El diseño de los sistemas comienza con la localización e identificación de todos los equipos que se conectaran al sistema eléctrico de potencia. Se localizan los tableros y se diseña los circuitos para alimentar varias cargas. El agregado de todas las cargas conectadas a un tablero o centro de cargas, determina el tamaño apropiado en amperes del tablero o panel. Las cargas de los distintos tableros a su vez se consideran para elegir el tamaño del tablero principal de distribución. Estos tableros o paneles principales asociados con las cargas fundamentales, determinan la capacidad apropiada.

Se debe considerar también, que algunos tipos de cargas, no operan en forma simultánea, lo que significa que no todos los circuitos o contactos serán operados a plena carga simultáneamente. Aun cuando se pueden diseñar sistemas, suponiendo que sus cargas operaran a la vez; esto no es realista desde un punto de vista de los costos.

Circuitos para Motores

Se debe tomar en consideración la corriente de arranque o de inserción durante el proceso de arranque y conocer perfectamente las diferencias entre fusibles e interruptores en caja moldeada; los fusibles con retardo de tiempo se aplican con frecuencia para el arranque de motores ya que soportan la corriente de arranque de los motores y son de alguna manera mejores que los interruptores en caja moldeada. Como resultado de esto, se puede seleccionar el dispositivo de sobrecorriente en forma distinta, dependiendo, de si el dispositivo es un interruptor o un fusible.

También, algunos circuitos alimentan a más de un motor, por lo que se requiere de consideraciones especiales.

Primero, se revisa el caso de un motor individual alimentado por un interruptor o fusible.

En este caso, la corriente nominal del motor (I_N) se refiere a la corriente de plena carga.

Para interruptores de caja moldeada:

Se selecciona el valor estándar inmediato superior.

$$I_{SC} = 1.75 x I_N$$

Corriente para el calibre del conductor.

$$I = 1.25 x I_N$$

Para fusibles con retardo de tiempo:

Se selecciona el valor estándar inmediato superior.

$$I_{SC} = 1.25 x I_N$$

Para el calibre del conductor:

$$I = 1.25 x I_N$$

Los datos para las corrientes nominales de los motores, se obtienen de la tabla de interruptores de seguridad tipo navaja con y sin portafusiles.

Ejemplo 1.

Diseñar el circuito alimentador para alimentar a un motor de 10 HP, 220 V de tres fases. El dispositivo de protección contra sobrecorriente es un interruptor en caja moldeada.

Solución:

De la tabla de interruptores de seguridad tipo navaja con y sin portafusiles, la corriente a plena carga para el motor trifásico de 10 HP a 220v es:

$$I_N = 29 A$$

El dispositivo de protección contra sobrecorriente usando un interruptor de caja moldeada es.

$$I_{SC} = 1.75 x I_N$$

$$I_{SC} = 1.75 \times 29 = 50.75 A$$

Por lo que se puede seleccionar un interruptor de 60 A.

Para el conductor de tipo THW.

$$I = 1.25 x I_N$$

$$I = 1.25 x 29$$

$$I = 36.25$$

De la tabla de interruptores de seguridad tipo navaja con y sin portafusiles se puede seleccionar el calibre del cable No. 8 AWG.

Si el dispositivo de protección fuera un fusible, entonces la corriente seria de:

$$I_{SC} = 1.25 x I_N$$

$$I_{SC} = 1.25 \ x \ 29 = 36.25$$

Entonces se puede seleccionar un fusible de 40 A. El calibre del cable es No. 8 AWG.

Circuitos que alimentan varios motores.

Si varios motores están conectados al mismo circuito, por ejemplo, el motor de un compresor y sus ventiladores asociados en una unidad de aire acondicionado montada en techo, entonces se selecciona el dispositivo de protección contra sobrecorriente y el calibre del conductor, como sigue:

Para un interruptor en caja moldeada:

Se selecciona el valor estándar inmediato superior.

 $I_{SC} = 1.75 x I_N(Del\ motor\ mayor) + Suma\ de\ las\ I_N\ de\ los\ otros\ motores$

Para el conductor:

 $I = 1.25 x I_N(Del\ motor\ mayor) + Suma\ de\ las\ I_N\ de\ los\ otros\ motores$

Para fusibles con retardo de tiempo:

 $I = 1.25 x I_N(Del\ motor\ mayor) + Suma\ de\ las\ I_N\ de\ los\ otros\ motores$

Para el conductor (en fusibles con retardo de tiempo):

 $I = 1.25 x I_N(Del\ motor\ mayor) + Suma\ de\ las\ I_N\ de\ los\ otros\ motores$

Ejemplo 2:

Un equipo de aire acondicionado tipo techo tiene dos motores, uno de 7 ½ HP de

compresor y otro de 1 HP para el ventilador. Ambos motores son trifásicos a 220V. Averigüe el tipo de protección contra sobre corriente usando un interruptor de caja moldeada y el calibre del cable alimentador.

Solución.

De la tabla de interruptores de seguridad tipo navaja con y sin portafusiles, la corriente a plena carga para los motores trifásicos a 220V son.

$$7\frac{1}{2}HP --- -- \rightarrow I_N = 23 A$$

$$1 HP --- -- \rightarrow I_N = 3.8 A$$

La protección contra sobrecorriente del alimentador, es:

 $I_{SC} = 1.75 x I_N(Del\ motor\ mayor) + Suma\ de\ las\ I_N\ de\ los\ otros\ motores$

$$I_{SC} = 1.75 \times 23 + 3.8 = 44.05 A$$

Se selecciona un interruptor de caja moldeada de 50 A.

El conductor del alimentador se selecciona de acuerdo a:

 $I = 1.25 x I_N(Del\ motor\ mayor) + Suma\ de\ las\ I_N\ de\ los\ otros\ motores$

$$I = 1.25 \times 23 + 3.8 = 32.25 A$$

Para el conductor de tipo THW corresponde un No. 8 AWG.

Ejemplo de práctica 1.

A) Diseñar el circuito alimentador para alimentar a un motor de 5 HP, 220 V de tres fases. Realice el cálculo para un dispositivo de protección contra sobrecorriente

- para un interruptor en caja moldeada y el calibre del conductor y un fusible con retardo de tiempo.
- B) Asuma que el motor mencionado en el punto A trabaja en el mismo circuito que un motor de ½ HP. Calcule el dispositivo de protección contra sobrecorriente y el calibre del conductor.

Ejemplo de práctica 2.

- A) Diseñar el circuito alimentador para alimentar a un motor de 3 HP, 440 V de tres fases. Realice el cálculo para un dispositivo de protección contra sobrecorriente para un interruptor en caja moldeada y el calibre del conductor. Adicionalmente, suponga que se sustituye el interruptor por un fusible con retardo de tiempo.
- B) Asuma que el motor mencionado en el punto A trabaja en el mismo circuito que un motor de 3/4 HP y un motor de 1 HP. Calcule el dispositivo de protección contra sobrecorriente interruptor en caja moldeada y el calibre del conductor.

INTERRUPTORES DE SEGURIDAD TIPO NAVAJA CON Y SIN PORTAFUSIBLES

TABLA PARA SELECCION DE INTERRUPTORES TIPO FUSIBLES EN APLICACION DE PROTECCION A MOTORES INDIVIDUALES

POTENCIA CORRIENTE DEL A MOTOR PLENA		CALIBRE MINIMO DE CONDUCTOR TIPO		FUSIBLE E INTERRUPTOR RECOMENDADO PARA APLICACION EN MOTORES		POTENCIA DEL MOTOR	CORRIENTE A PLENA	CALIBRE MINIMO DE CONDUCTOR TIPO		FUSIBLE E INTERRUPTOR RECOMENDADO PARA APLICACION EN MOTORES	
СР	CARGA A	60° AWG 6	75° AWG 6 MCM	FUSIBLE DOBLE ELEM. A	INT. TIPO PESADO A	CP	CARGA A	60° AWG of MCM	75' AWG 6 MCM	FUSIBLE DOBLE ELEM. A	
	MOTORES MONOFASICOS 127 VCA 60 Hz.						MOTORES TRIFASICOS 220 VCA 60 Hz.				
1/6 1/4 1/3 1/2 3/4 1 11/2 2 3 5 71/2	4.0 5.3 6.5 8.9 11.5 14.0 22.0 31.0 51.0 72.0 91.0	14 14 14 14 14 12 10 10 8 4 2 2	14 14 14 14 14 12 10 10 8 6 3	6.25 8 10 15 17.5 25 30 30 50 80 110	30 30 30 30 30 30 30 30 30 60 100 200	10 15 20 25 30 40 50 60 75 100 125 150 200	29.0 44.0 56.0 71.0 84.0 109.0 136.0 161.0 201.0 259.0 326.0 376.0 502.0	8 6 4 2 1 00 0000 250M 350M 600M 2-250M 2-300M 2-500M	2-250M 2-400M	40 60 80 100 125 150 200 225 300 350 450 500 600	
	MOTORES MONOFASICOS 220 VCA 60 Hz.					MOTORES TRIFASICOS 440 VCA 60 Hz.					
1/6 1/4 1/3 1/2 3/4 1 11/2 2 3 5 71/2	2.3 3.0 3.8 5.1 7.2 8.4 10.0 13.0 18.0 29.0 42.0 52.0	14 14 14 14 14 14 14 12 10 8 6	14 14 14 14 14 14 14 12 10 8 6	3.5 4.5 6.25 8 12 15 15 20 30 45 60 80	30 30 30 30 30 30 30 30 30 60 60	1/2 3/4 1 11/2 2 3 5 71/2 10 15 20 25	1.0 1.5 1.9 2.7 3.6 5.0 7.9 11.0 15.0 22.0 28.0 36.0	14 14 14 14 14 14 14 12 10 8	14 14 14 14 14 14 14 12 10 8	1.6 2.25 2.8 4.0 6.0 8.0 12.0 17.5 20.0 30.0 40.0 50.0	

1/2 3/4 1 1/12 2 3 5 71/2	2.1 2.9 3.8 5.4 7.1 10.0 15.9 23.0	14 14 14 14 14 14 12 10	14 14 14 14 14 14 12 10	3.2 4.5 5.6 8 10 15 25 35	30 30 30 30 30 30 30 60	30 40 50 60 75 100 125 150 200	42.0 54.0 68.0 80.0 100.0 130.0 163.0 188.0 251.0	6 4 2 1 0 000 250M 300M 500M	6 4 4 3 1 00 0000 250M 400M	60.0 80.0 100.0 100.0 150.0 175.0 225.0 250.0
--	---	--	--	--	--	--	---	--	---	--

Tabla No. 5.1. Capacidad de corriente de conductores de cobre aislado en Amperes (Reproducción de la tabla 302.4 de las NTIE, 1981).

Tipo de aislam.	THWN, RUW, T, TW, TWD, MTW			THWN, XHHW,	PILC, V, MI		TBS, AVB SIS, THHW TA, SA, FEP THW, RHH EP, MTV,		
Temp. máxima	60	°c	75	°c	85	°c	XHHW*		
Calibre AWG/MCM	en tubo	al	en tubo	al aire	en tubo	al aire	en tubo	al aire	
14	15	20	15	20	25	30	25	30	
12	20	25	20	25	30	40	30	40	
10	30	40	30	40	40	55	40	55	
8	40	55	45	65	50	70	50	70	
6	55	80	65	95	70	100	70	100	
4	70	105	85	125	90	135	90	135	
3	80	120	100	145	105	155	105	155	
2	95	140	115	170	120	180	120	180	
1	110	165	130	195	140	210	140	210	
0	125	195	150	230	155	245	155	245	
00	145	225	175	265	185	285	-185	285	
000	165	260	200	310	210	330	210	330	
0000	195	300	230	360	235	385	235	385	
250	215	340	255	405	270	425	270	425	
300	240	375	285	445	300	480	300	480	
350	260	420	310	505	325	530	325	530	
400	280	455	335	545	360	575	360	575	
500	320	515	380	620	405	660	405	660	
600	355	575	420	690	455	740	455	740	
700	385	630	460	755	490	815	490	815	
750	400	655	475	785	500	845	500	845	
800	410	680	490	815	515	880	515	880	
900	435	730	520	870	555	940	555	940	
1000	455	780	545	935	585	1000	585	1000	