

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

Guía 1 de Cálculo I

Ejercicio 1 Determine la derivada de las siguientes funciones:

a)
$$f(x) = \sqrt{1-x} + \sqrt{1+x}$$

g)
$$f(x) = (3x^4 + x + 2) \cdot \sin(x^2 + 4x - 1)$$

b)
$$f(x) = (x^3 + x^2 + x + 5)^5$$

$$h) f(x) = x \cdot e^{2x+1}$$

c)
$$f(x) = \frac{(2x+3)^3}{(3x^2-2x+6)^2}$$

$$i) \ f(x) = e^{(2x^4 - 4x^2 + 7x + 4)^5}$$

d)
$$f(x) = \frac{x^2 + 5x - 2}{\sqrt[3]{3}x^2 - 2x + 5}$$

$$(y) y(x) = \sec(\ln(x^2 + x) + \cos x)$$

e)
$$f(x) = \sin^3(x^3)$$

$$k) \ u(x) = e^{\sqrt{x} + \ln x}$$

$$f(x) = \sin(3x^2 - x)$$

$$t(x) = \sqrt[6]{x^3 \cos x + x^5 + 8}$$

Ejercicio 2 La Ley de enfriamiento de Newton dice: "La temperatura de un cuerpo cambia a una velocidad que es proporcional a la diferencia de las temperaturas entre el medio externo y el cuerpo". Esto da paso a la siguiente ecuacion diferencial:

$$\frac{dT}{dt} = -k(T - T_m)$$

donde T es la temperatura del cuerpo, T_m es la temperatura del medio externo, t es el tiempo y k es la constante de proporcionalidad.

Verifique que $T = T_m + ce^{-kt}$ es solución de la ecuacion diferencial donde c es una constante.

Ejercicio 3 En la relación $\arctan\left(\frac{x}{y}\right) = \pi - \ln\left(\sqrt{x^2 + y^2}\right)$ se define implícitamente y como función de x. Muestre que

$$y' = \frac{x+y}{x-y}$$

Ejercicio 4 En cada caso, determine y', donde y está definida implícitamete como función de x:

a)
$$x^2 - 2xy = 5$$

b)
$$x^{2/3} + y^{2/3} = a^{2/3}$$
. $a \in \mathbb{R}$.

c)
$$2x^2 - 3xy - 4y^2 = 5$$

Ejercicio 5 En cada caso determinar una ecuación para la recta tangente a la gráfica de la ecuación dada en el punto P.

a)
$$x^2 + y^2 - 4x + 6y - 24 = 0$$
, $P(1,3)$.

b)
$$y^2 = 4ax$$
. $P(a, 2a)$ con $a > 0$.

c)
$$x - y = \sqrt{x + y}$$
, $P(3, 1)$.

Ejercicio 6 Dos carreteras se cruzan formando un ángulo de 45° . Dos automóviles A y B avanzan, por rutas distintas, con una rapidez de 80Km/hr y 60Km/hr, respectivamente. Sabiendo que en el instante t_0 ambos distan 100Km del cruce, determine la rapidez con que se separan uno del otro en el instante t_0 . **Indicación:** Analice cada uno de los casos posibles.

Ejercicio 7 Derive las siguientes funciones:

a)
$$f(x) = \arcsin(x^2 + 2)$$

$$d) f(x) = (2x + \ln x)^x$$

b)
$$f(x) = \arccos(3x^2 - 4x + 1)$$

e)
$$p(x) = (3x+2)^{\ln x}$$

c)
$$f(x) = \arctan(x^3 + 5)$$

$$f) \ a(x) = 2^{x^2 + \cos x}$$

Ejercicio 8 Calcule, si existen:

a)
$$(f^{-1})'(4)$$
 si $f(x) = x^5 + x^2 + 2$.

b)
$$f^{-1}$$
 y $(f^{-1})'(3)$ si $f(x) = 3\ln(1+x)$ para $x > -1$.

c)
$$(f^{-1})'(3)$$
 si $f: \mathbb{R} \to \mathbb{R}$ y se sabe que $f(1) = 3$ y $f'(x) = e^{x(1+\cos^2 \pi x)}$.

Ejercicio 9 Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f'(x) = e^x(1 + \cos^2 \pi x)$ y f(1) = 3. Muestre que

$$\frac{2a(f^{-1})'(3) + f^{-1}(3)}{2a^2(f^{-1})'(3) - \frac{1}{2(f^{-1})'(3)}} = \frac{1}{a - e}.$$

Ejercicio 10 Sea f una función derivable cuya inversa es g, definida en \mathbb{R} . Determine h'(2) si $h(x) = g(g(x^3)), f(2) = 8, f(5) = 2, f'(2) = 4 y f'(5) = -1.$

Ejercicio 11 Sea f una función derivable en \mathbb{R} tal que $(f^{-1})'(2) = \frac{1}{3}$. Determine la ecuación de la recta tangente a y = f(x) en el punto (1,2).

Ejercicio 12 Sea f una función derivable tal que f'(x) > 0, $\forall x \in \mathbb{R}$. La ecuación de la recta tangente a y = f(x) en el punto (2,3) es y = 4x - 5. Determine la ecuación de la recta tangente a $y = f^{-1}(x)$ en el punto de abscisa 3.

Ejercicio 13 Sea f una función derivable e invertible, definida en \mathbb{R} . Si f(2) = 1 $y\left(f^{-1}\right)'(1) = \frac{1}{3}$, calcule h'(1) donde $h(x) = f(x \cdot f^{-1}(x))$.

Ejercicio 14 Para cada una de las siguientes curvas definidas paramétricamente, determine $\frac{dy}{dx}$.

a)
$$\gamma(t) = \begin{cases} x(t) = \cos t \\ y(t) = \sin t \end{cases}$$
, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. $c) \omega(t) = \begin{cases} x(t) = t^3 + 1 \\ y(t) = t^3 - 1 \end{cases}$, $t \in [-2, 2]$.

$$b) \ \delta(u) = \begin{cases} x(u) &= \frac{1-u^2}{1+u^2}, \\ y(u) &= \frac{2u}{1+u^2}, \end{cases} \quad u \in [-1,1].$$

$$d) \ \tau(t) = \begin{cases} x(t) &= t \\ y(t) &= \sqrt{t^2 - 2t + 1}, t \in [0,4]. \end{cases}$$

Ejercicio 15 Encuentre, indicado los puntos de tangencia, la ecuación de la recta tangente horizontal a la curva definida por:

$$\gamma(t) = \left\{ \begin{array}{lcl} x(t) & = & 4t^2 - 4t \\ y(t) & = & 1 - 4t^2 \end{array} \right., \quad t \in \mathbb{R}.$$

Ejercicio 16 Dada la curva definida por:

$$\omega(t) = \left\{ \begin{array}{lcl} x & = & 2\sin t \\ y & = & 5\cos t \end{array} \right. ; \ t \in [0, 2\pi].$$

determine:

- a) La recta tangente a esta curva en el punto donde $t = \frac{\pi}{3}$.
- b) El(los) punto(s) donde la recta tangente sea horizontal.

Ejercicio 17 Para la curva, llamada lemniscata, definida por

$$L(t) = \begin{cases} x = \cos t \\ y = \sin(2t) \end{cases} ; t \in [0, \pi].$$

determine:

- a) El(los) punto(s) donde la recta tangente es paralela al eje X.
- b) Los valores del parámetro t para los cuales la recta tangente es vertical.