

Lecture 2: Fabrication and Layout

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and crosssection of wafer in a simplified manufacturing process

Silicon Ingot & Wafer

Silicon Ingot

Silicon Wafer

From Smithsonian, 2000

Similarity between pizza and IC manufacturing

Photolithographic Process

(A method to accomplish selective masking)

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Why Well and Substrate Taps are needed?

- P-N junctions exists between p substrate and n+
 - Forward-biasing p-n junctions may occurs between p substrate and nmos source and drain if V_{Substrate} > 0
- To avoid forward-biasing the p-n junctions
 - Substrate must be tied to GND and n-well to V_{DD}
- Use heavily doped well and substrate contacts / taps

Well and Substrate Taps

Use heavily doped well and substrate contacts / taps

To avoid forward-biasing the p-n junctions

Inverter Mask Views

- Transistors and wires are defined by masks
- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication

- Chips are built in huge factories called fabs
- Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (Oxidation)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - -900-1200 C with H_2O or O_2 in oxidation furnace

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Photoresist

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranha etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

Before

After

N-diffusion cont.

Strip off oxide to complete patterning step

After

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metalization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Layout Design Rules

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance
 between source and drain
 - Set by minimum width of polysilicon

Layout and Design Rules

- Feature size f improves 30% every 3 years or so
- Design Rules to specify width to avoid breaks in a line, minimum spacing to avoid shorts.
- Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.09 μm in 0.18 μm process

Simplified Design Rules

- Metal and diffusion: 4 λ
- Contact is 2 λ x2 λ , polysilicon: 2 λ

Many more....

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In f = 0.6 μm process, this is 1.2 μm(4 λ) wide, 0.6 μm(2 λ) long

Inverter annotated with width and length

Only width is specified. Length is assumed minimum.

Standard cell design methodology

- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ

Stick Diagrams

- Stick diagrams: faster ways to plan cells and estimate area
- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Wiring Tracks

- A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor = 8λ pitch
- Transistors also consume one wiring track

A transistor can be inserted in a wire track

Well spacing

- Wells must surround transistors by 6 λ
 - Implies 12λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation for 3-input NAND

- Area Estimation for 3-input NAND
- 4 vertical metal track: 32 λ
- 5 vertical metal track: 40 λ

Area Estimation

Sketch a stick diagram for O3AI and estimate area

$$Y = \overline{(A+B+C)\cdot D}$$

Area Estimation

Sketch a stick diagram for O3AI and estimate area

$$Y = \overline{(A+B+C)\cdot D}$$

Packaging

Package

- Package Functionality
 - Bring signal and supply wires in and out of die
 - Remove the heat generated by the circuit
 - Protect the die against environmental conditions such as humidity
- Major impact on the performance and power of the chip
 - 50% delay of a high-performance chip caused by package
 - Cost vs. power dissipation tradeoff

http://www.analog.com/en/technical-library/packages/sipsingle-inline-package/index.html

Package (cont.)

- Package requirement:
 - Electrical: Low parasitics
 - Mechanical: Reliable and robust
 - Thermal: Efficient heat removal
 - Economical: Cheap
- Package materials
 - Plastics/polymers:
 - Cheaper but inferior thermal properties
 - Ceramic: more expensive
- Two Levels
 - Die to package substrate
 - · Wire bonding or tap-automated bonding
 - Package substrate to Board
 - Through hole or surface mount

Rent's rule

 The number of connections going off-chip (I/O pins) tends to be roughly proportional to the complexity of the circuitry on the chip

$$P = K \times G^{\beta}$$

K: average number of I/O per gates

G: the number of gates

 β : the Rent exponent, 0.1 \sim 0.7

P: the number of I/O pin

Die to package substrate - Wire bonding

- Pros: Cheap, and easier
- Cons:
 - Wire must be attached serially.
 - Difficult to find bonding pattern for larger pin counts
 - Hard to predict parasitics with irregular outlay

Package-to-Board Interconnect

- Connection between the package to PC board
 - Through-hole mounting
 - Surface mounting

(a) Through-Hole Mounting

(b) Surface Mount

Through-hole mounting

- Cheap, Mechanically reliable and sturdy
- Lower packaging density
 - A min pitch of 2.54mm between holes is required
- PC board is weaker when pin count is larger
- Additional routing layer may be needed
 - Hole is blocking routing path
- Through-hole mounting
 - DIP (Dual-in-line package)
 - PGA (Pin-grid-array package)

Surface mount

- Surface mount avoids many shortcomings of the through hole mounting, packing density is increased because
- Advantage
 - No through hole, more wiring space
 - Lead pitch is reduced
 - Both side of board can be mounted
- Disadv.
 - Chip and board connection is weaker
 - Test of the board is more complex
- Types of Surface mounting
 - Small-outline package
 - Plastic leaded Chip Carrier
 - Leadless chip carrier
 - Ball grid array (BGA)

(b) Surface Mount

Small outline package

Plastic leaded **Chip Carrier**

Leadless Chip Carrier

Top

Bottom

Multi-Chip Modules

Thermal Considerations in packaging

- As the power of consumption of integrated circuits, it becomes increasingly important to efficiently remove the heat
- To prevent the failure of the chip, the temperature of the die must be kept within certain ranges
 - Range for commercial devices: 0°C to 70°C
 - Range for military parts: -55°C to 125°C
- Improving heat removal efficiency
 - Better material
 - Finned metal heat sinks
 - Force air, liquid...etc.

Heat flow equation

The temperature difference between chip and environment is

$$\Delta T = T_{chip} - T_{env} = \theta \, Q$$
 • T_{chip}: chip temperature, T_{env}: env temperature

- O: thermal resistance, expressed in °C/W
- Q is the heat flow (in Watt) (c.f. V=R*I)
- Example: A DIP has a thermal resistance of 25°C/W when natural air is used. How many watts of heat can it remove, when the temperature between the die and environment is 75°C

Heat flow equation

The temperature difference between chip and environment is

$$\Delta T = T_{\text{chip}} - T_{\text{env}} = \theta Q$$

- $\Delta T = T_{chip} T_{env} = \theta \, Q$ T_{chip}: chip temperature, T_{env}: env temperature
- Θ: thermal resistance, expressed in °C/W
- Q is the heat flow (in Watt) (c.f. V=R*I)
- Example: A DIP has a thermal resistance of 25°C/W when natural air is used. How many watts of heat can it remove, when the temperature between the die and environment is 75°C

Ans: 3W. Because 75/25 = 3

Coping with Complexity

- How to design System-on-Chip?
 - Many millions (even billions!) of transistors
 - Tens to hundreds of engineers
- Structured Design
- Design Partitioning

Structured Design

- Hierarchy: Divide and Conquer
 - Recursively system into modules
- Regularity
 - Reuse modules wherever possible
 - Ex: Standard cell library
- Modularity: well-formed interfaces
 - Allows modules to be treated as black boxes
- Locality
 - Physical and temporal

Backup slides