CS677 HW 3

By: Ahnaf Tajwar

Question 1

- 1. See code
- 2. Correlation Matrices
 - a. Death Event = 0

i.

b. Death Event = 1

i.

3. Correlations

- a. For surviving patients, serum_sodium and serum_creatinine have the highest correlation of -0.22.
- b. For surviving patients, serum_sodium and creatinine_posphokinase, as well as serum_sodium and platelets have the lowest correlation of 0.0.
- c. For deceased patients, serum_sodium and creatinine_posphokinase have the highest correlation of 0.15.
- d. For deceased patients, serum_creatinine and creatinine_posphokinase, as well as serum creatinine and platelets have the lowest correlation of -0.03.
- e. The results are not the same for both cases. In fact, the lowest feature correlations of surviving patients are the highest correlations for the same features for deceased patients.

Question 2

1. See code

- a. Linear Regression
 - i. Surviving

ii. Deceased

b. Quadratic

i. Surviving

ii. Deceased

1.

1.

c. Cubic

i. Surviving

ii. Deceased

 $d. \quad y = a \log x + b$

i. Surviving

1.

ii. Deceased

1.

e. $\log y = a \log x + b$

i. Surviving

ii. Deceased

1.

Question 3

Model	SSE (death event=0)	SSE (death event=1)
y = ax + b	1114142677733	489272557690
$y = ax^2 + bx + c$	1156251304018	490804335614
$y = ax^3 + bx^2 + cx + d$	1156401636003	491966262897
$y = a \log x + b$	1133210760949	485925037113
$\log y = a \log x + b$	1144612941344	564539865998

1. Best Model

- a. Surviving Patients
 - i. y = ax + b, lowest SSE
- b. Deceased Patients
 - i. $y = a \log x + b$, lowest SSE
- 2. Worst Model
 - a. Surviving Patients

i.
$$y = ax^3 + bx^2 + cx + d$$
, highest SSE

- b. Deceased Patients
 - i. $\log y = a \log x + b$, highest SSE