

some continuous random variables and their pdfs

standard normal distribution $Z \sim N(0,1)$

some continuous random variables and their pdfs

standard normal distribution $Z \sim N(0,1)$

The normal distribution with parameters $\mu=0$ and $\sigma=1$ is the standard normal distribution and a random variable with that distribution is a standard normal random variable, usually named Z and with the following probability density function.

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

The corresponding cumulative distribution function is written $\Phi(z)$

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^2}{2}} dx$$

some continuous random variables and their pdfs

the importance of normal distribution...

