Intro to Big Data Science: Assignment 2

Due Date: March 25, 2025

Exercise 1: (Maximum Likelihood Estimate)

Suppose that the samples $\{x_i\}_{i=1}^n$ are drawn from Normal distribution $\mathcal{N}(\mu, \sigma^2)$ with p.d.f. $f_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$, where $\theta = (\mu, \sigma^2)$. The Maximum likelihood estimator (MLE) of θ is the one that maximize the likelihood function

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

1. Show that the MLE estimator of the parameters (μ, σ^2) is

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

2. Show that

$$\mathrm{E}\hat{\mu} = \mu, \qquad \mathrm{E}\Big(\frac{n}{n-1}\hat{\sigma}^2\Big) = \sigma^2,$$

where E is the expectation. This means that $\hat{\mu}$ is an unbiased estimator of μ , but $\hat{\sigma}^2$ is a biased estimator of σ^2 .

Exercise 2 (Linear regression) Consider fitting the linear regression model for the data

1. Fit $y_i = w_0 + \epsilon_i$ (degenerated linear regression), find w_0 .

- 2. Fit $y_i = w_1 x_i + \epsilon_i$ (linear regression without constant term), find w_1 .
- 3. Fit $y_i = w_0 + w_1 x_i + \epsilon_i$ (full linear regression), find w_0 and w_1 .
- 4. Repeat 3 by using ridge regression with hyperparameter $\lambda = 1$.

Exercise 3 (Properties of Linear regression)

Consider a multivariate liner model $\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon$ with $\mathbf{y} \in \mathbb{R}^{n \times 1}$, $\mathbf{X} \in \mathbb{R}^{n \times (d+1)}$, $\mathbf{w} \in \mathbb{R}^{(d+1) \times 1}$, and $\epsilon \in \mathbb{R}^{n \times 1}$, where $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$, follows the normal distribution, where \mathbf{f} and \mathbf{f} is the \mathbf{f} is the \mathbf{f} in items of \mathbf{f} . Suppose \mathbf{f} and \mathbf{f} are given.

- 1. Show that the least square linear regression predictor is given by $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$.
- 2. Show that $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is an unbiased estimator of \mathbf{w} , i.e., $\mathbf{E}(\hat{\mathbf{w}}) = \mathbf{w}$. Also show that $\text{Var}(\hat{\mathbf{w}}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$. (Note that by definition, $\text{Var}(\hat{\mathbf{w}}) = \mathbf{E}[(\hat{\mathbf{w}} \mathbf{E}(\hat{\mathbf{w}}))(\hat{\mathbf{w}} \mathbf{E}(\hat{\mathbf{w}}))^T]$).
- 3. Let $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$, show that \mathbf{P} has only 0 and 1 eigenvalues.
- 4. Recall the definition of R^2 score: $R^2 := 1 \frac{SS_{res}}{SS_{tot}}$, where $SS_{tot} = \sum_{i=1}^{n} (y_i \bar{y})^2$, $SS_{reg} = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$, and $SS_{res} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$. Prove that for linear regression, $SS_{tot} = SS_{reg} + SS_{res}$. (So that R^2 score can also be defined as $R^2 = \frac{SS_{reg}}{SS_{tot}}$)
- 5. Now we want to use ridge regression with a tuning parameter $\lambda > 0$ to estimate **w**. The ridge regression estimator is given by $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_d)^{-1} \mathbf{X}^T \mathbf{y}$. Is $\hat{\mathbf{w}}$ unbiased, i.e., $\mathbf{E}\hat{\mathbf{w}} = \mathbf{w}$? Prove your result.
- 6. Show that the ridge regression predictor is given by $\hat{\mathbf{y}} = \mathbf{Q}\mathbf{y}$, where $\mathbf{Q} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_d)^{-1}\mathbf{X}^T$. Please also compute the limit $\lim_{k\to\infty}\mathbf{Q}^k$.
- 7. Discuss the influence of the hyper-parameter λ : what happens to the bias and the variance of the estimator $\hat{\mathbf{v}}$ as $\lambda \to 0$ or ∞ ?

Exercise 4 (Generalized Cross-Validation, Optional) Consider ridge regression:

$$\min_{\mathbf{w}} \left[(\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2 \right]$$

It has the solution $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$ and prediction $\hat{\mathbf{y}} = \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{P} \mathbf{y}$ with $\mathbf{P} = \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T$ be the projection matrix.

1. Define the leave-one-out cross validation estimator as

$$\hat{\mathbf{w}}^{[k]} = \arg\min_{\mathbf{w}} \left[\sum_{i=1, i \neq k}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|_2^2 \right].$$

Show that $\hat{\mathbf{w}}^{[k]} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I} - \mathbf{x}_k \mathbf{x}_k^T)^{-1} (\mathbf{X}^T\mathbf{y} - \mathbf{x}_k y_k)$

2. Define the ordinary cross-validation (OCV) mean squared error as $V_0(\lambda) = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k^T \hat{\mathbf{w}}^{[k]} - y_k)^2$. Show that $V_0(\lambda)$ can be rewritten as $V_0(\lambda) = \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\hat{y}_k - y_k}{1 - p_{kk}}\right)^2$, where $\hat{y}_k = \sum_{j=1}^{n} p_{kj} y_j$ and p_{kj} is the (k, j)-entry of \mathbf{P} .

(Hint: You may need to use the Sherman-Morrison Formula for nonsingualar matrix \mathbf{A} and vectors \mathbf{x} and \mathbf{y} with $\mathbf{y}^T \mathbf{A}^{-1} \mathbf{x} \neq -1$: $(\mathbf{A} + \mathbf{x} \mathbf{y}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1} \mathbf{x} \mathbf{y}^T \mathbf{A}^{-1}}{1 + \mathbf{y}^T \mathbf{A}^{-1} \mathbf{x}}$

3. Define weights as $w_k = \left(\frac{1-p_{kk}}{\frac{1}{n}tr(\mathbf{I}-\mathbf{P})}\right)^2$ and weighted OCV as $V(\lambda) = \frac{1}{n}\sum_{k=1}^n w_k(\mathbf{x}_k^T\hat{\mathbf{w}}^{[k]} - y_k)^2$. Show that $V(\lambda)$ can be written as

$$V(\lambda) = \frac{\frac{1}{n} \|(\mathbf{I} - \mathbf{A})\mathbf{y}\|^2}{\left[1 - tr(\mathbf{P})/n\right]^2}$$

Exercise 5 Online study and exercises.