(I'm Fun) Digital Image Fundamentals

Week 3: Histogram Equalization

Thuong Nguyen Canh
Institute for Datability Science, Osaka University

November 2019

Histogram (1)

- The histogram of an image is the density probability distribution of the pixel values in the image over the entire gray scale range.
 - For 8-bit image, 256 discrete gray level from 0 to 255, normalized histogram is

$$h[i] = \frac{n_i}{M \times N},$$

 $(i = 0, ..., L - 1 = 255)$

- n_i number of pixels of gray level i
- Image size $M \times N$

Histogram (2)

Histogram (3)

Simple implementation (Binsize = 1)

```
For each pixel of the image
    value = Intensity(pixel)
    histogram(value)++
end
```

$$binsize = \left[rac{\max - \min}{n} \right]$$

Implementation with bin information

```
define bin width

For each value read from the image

value belong to [min,max] interval ?

if yes find in which bin and increment bin

else return

end

end
```

```
% Load test image
img = imread('bay.jpg');
[counts, index] = imhist(img);
```

Histogram (4)

Histogram of image channels are difference

Histogram Equalization

- A way to distribute the image histogram uniformly within the image
 - Find a non-linear transformation for each pixel

```
% Perform histogram equalization
eqImg = histeq(img);
```

$$g = T(f)$$

Using the Cumulative Frequency Distribution as a "transform information"

Mapping the image intensity

Enhance the quality of images (poor contrast images)

Example (1)

Under exposed images (dark images)

Pixel value is equally distributed

Example (2)

Over exposed images

Example (3)

Low Contrast Image

Example (4)

High Contrast Image

Histogram equalization not only stretches histogram, but also tries to make it flat,

Enhance the quality of images (poor contrast images) but not always

Input image (a) has a large area low- intensity background.

Histogram (d) has a spike component corresponding to the background gray level.

The output image (b) has a severe washed- out appearance while its dynamic range actually becomes smaller (e).

Enhance the quality of images (poor contrast images) but not always

Original image Moon

.. after histogram equalization

Noise is also enhanced after histogram equalization

> Adaptive Histogram **Equalization**

Contrast-Limited Histogram Equalization

Sliding window approach: different histogram (and mapping) for every pixel

Tiling approach: subdivide into overlapping regions, mitigate blocking effect by smooth blending between neighboring tiles

Limit contrast expansion in flat regions of the image, e.g., by clipping histogram values. ("Contrast-limited adaptive histogram equalization")

Original image Parrot

Global histogram equalization

Adaptive histogram equalization, 8x8 tiles

Adaptive histogram equalization, 16x16 tiles

Original image Dental Xray

Global histogram equalization

Adaptive histogram equalization, 8x8 tiles

Adaptive histogram equalization, 16x16 tiles

Original image Skull Xray

Global histogram equalization

Adaptive histogram equalization, 8x8 tiles

Adaptive histogram equalization, 16x16 tiles

BLC, WDR, DWDR LÀ GÌ?

CAMERA CHỐNG NGƯỢC SÁNG

