Práctico 5

- 1. Sea $f: U \longrightarrow \mathbb{R}$ diferenciable, con $U \subset \mathbb{R}^2$ abierto, y sea S el gráfico de f, es decir $S = \{(u, v, f(u, v)) : (u, v) \in U\}.$
 - (a) Hallar los coeficientes de la primera forma fundamental de S respecto del sistema coordenado canónico.
 - (b) Probar que, si U es acotado, el área de S es igual a

$$\iint_U \sqrt{1 + f_u^2 + f_v^2} \, \mathrm{d}u \, \mathrm{d}v.$$

2. Calcular la primera forma fundamental para el paraboloide hiperbólico

$$S_{a,b} = \{(au \cosh v, bu \operatorname{senh} v, u^2) : u, v \in \mathbb{R}\}.$$

- 3. Calcular el área de la esfera de radio r y del cilindro de radio r y altura h.
- 4. Superficies de revolución II. Sea $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ una curva regular en el plano con $\gamma_1(t) > 0$ para todo t en un cierto intervalo abierto I. Si
 - I = (0, a) y γ es inyectiva con inversa continua, o bien
 - $I = \mathbb{R}$ y γ es periódica de período a e invectiva en [0, a),

entonces

$$S = \{ (\gamma_1(t)\cos(\theta), \gamma_1(t)\sin(\theta), \gamma_2(t)) \mid t \in I, \theta \in \mathbb{R} \}$$

es una superficie regular, llamada superficie de revolución con curva generatriz γ .

- (a) Encontrar dos (o cuatro) sistemas coordenados que cubran a S, y calcular los coeficientes de la primera forma fundamental respecto de uno de ellos.
- (b) Si γ tiene rapidez unitaria, mostrar que el área de S es $2\pi \int_0^a \gamma_1(s) ds$.
- (c) Hallar el área del toro de revolución con curva generatriz $\gamma(s) = (2 + \cos s, \sin s)$.
- 5. Probar por definición que la esfera es orientable (intentar probarlo sin hacer un cálculo directo).
- 6. Sea A un abierto de \mathbb{R}^3 y sea $a \in \mathbb{R}$ un valor regular de la función diferenciable $f: A \to \mathbb{R}$. Probar que la superficie $f^{-1}(a)$ es orientable.
- 7. Sea S una superficie regular. Probar que las siguientes afirmaciones son equivalentes.
 - (a) S es orientable.
 - (b) S tiene un campo normal continuo nunca nulo.
 - (c) S tiene un campo normal diferenciable nunca nulo.
- 8. Sea S_2 una superficie orientable y $\phi: S_1 \longrightarrow S_2$ una función diferenciable que es un difeomorfismo local en todo punto. Probar que S_1 es también orientable.