Kapitola 1

Rešerše

V této kapitole seznámíme se známými výsledky v oblasti klastrové rovinnosti. Jedná se o výsledky, kde pro omezenou verzi klastrové rovinnosti je znám polynomiální deterministický algoritmus pro otestování klastrové rovinnosti, případně je znám i algoritmus pro nakreslení.

Věta 1.1. Mějme klastrový graf (G, C), kde každý klastr $K \in C$ je souvislý. Pak existuje lineární deterministický algoritmus rozhodující zda (G, C) je klastrově rovinný.

Viz [1]

Tento výsledek užijeme později při konstrukci lineární nedeterministického algoritmu pro obecné klastrové grafy (viz kapitola Složitost).

Před uvedením dalšího výsledku uvedeme jednu definici tak zvaného úplně souvislého klastrové grafu

Definice 1.2. Klastrový graf (G, \mathcal{C}) je *úplně souvislý*, pokud pro každý klastr $K \in \mathcal{C}$ je K souvislý a i $V \setminus K$ je souvislý.

Věta 1.3. Úplně souvislý klastrový graf (G, \mathcal{C}) je klastrově rovinný $\iff G$ je rovinný.

Rovinnost lze rozpoznávat v lineárním čase. A navíc je i možné získat v tomto případě v lineárním čase klastrové nakreslení. Viz [2]

Věta 1.4. Mějme klastrový graf (G, \mathcal{C}) a nakreslení grafu G. Pokud každý klastr $K \in \mathcal{C}$ indukuje nejvýše dvě komponenty , pak existuje lineární algoritmus pro rozhodnutí, zda (G, \mathcal{C}) je klastrově rovinný.

Viz [3]

Věta 1.5. Všechny nesouvislé klastry leží na stejné cestě začínající v koření klastrové hierarchie. Pak pro klastrový graf (G, \mathcal{C}) lze v kvadratickém čase rozhodnout, zda je klastrově rovinný.

Věta 1.6. Mějme klastrový graf (G, \mathcal{C}) . Pro každý nesouvislý klastr $K \in \mathcal{C}$ platí, že jeho rodič a sourozenci v klastrové hierarchii jsou souvislé klastry.

Pro obě věty viz [4]

Věta 1.7. Mějme klastrový graf (G, \mathcal{C}) . Každý nesouvislý klastr K má souvislého rodiče a souvislé komponenty K mají napojení mimo rodiče. Pak je algoritmus pracující v polynomiálním čase rozhodující o klastrové rovinnosti a dávající klastrové nakreslení v případě kladné odpovědi.

Viz [5]

Další výsledky se týkají tak zvaných placatých klastrových grafů

Definice 1.8. Klastrový graf (G, \mathcal{C}) je placatý pokud všechny klastry kromě kořene (klastru obsahující všechny vrcholy) mají jako rodiče kořen (jednovrcholové klastry ignorujeme).

Věta 1.9. Mějme placatý klastrový graf (G, \mathcal{C}) , kde G je kružnice. Pokud každý klastr obsahuje nejvýše tři vrcholy, pak lze v polynomiálním čase rozhodnout, zda je (G, \mathcal{C}) klastrově rovinný.

Viz [6]

Věta 1.10. Mějme placatý klastrový graf (G, C), kde G je kružnice. Pokud klastry jsou uspořádané do cyklu nebo cesty, pak lze v polynomiálním čase rozhodnout, zda je (G, C) klastrově rovinný.

Viz [7]

Věta 1.11. Mějme placatý klastrový graf (G, C), kde G je kružnice. Pokud klastry jsou uspořádané do nakresleného rovinného grafu, pak lze v polynomiálním čase rozhodnout, zda je (G, C) klastrově rovinný.

Viz [8]

Literatura

- [1] Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of connected clustered graphs. J. Graph Alg. Appl. 12(2), 225–262 (2008)
- [2] Cornelsen, Sabine and Wagner, Dorothea: Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science 2880, 168-179, (2003)
- [3] V. Jelínek, E. Jelínková, J. Kratochvíl, B. Lidický: Clustered Planarity: Embedded Clustered Graphs with Two-Component Clusters (extended abstract), Proceedings of Graph Drawing 2008, LNCS 5417 (2009), 121-132
- [4] Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD'02. LNCS, vol. 2528, pp. 220–235. Springer (2002)
- [5] Goodrich, Michael T. and Lueker, George S. and Sun, Jonathan Z.: Graph Drawing. Lecture Notes in Computer Science. 3843, 211-222, 2005
- [6] E. Jelínková, J. Kára, J. Kratochvíl, M. Pergel, O. Suchý, and T. Vyskočil: Clustered Planarity: Small Clusters in Eulerian Graphs. In: Hong S., Nishizeki T., Quan W. (eds.) GD 2007. LNCS, vol. 4875, pp. 303-314. Springer, Heidelberg (2008)
- [7] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering cycles into cycles of clusters. Journal of Graph Algorithms and Applications, 9(3):391–413, 2005.

[8] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. On embedding a cycle in a plane graph. In Proceedings of 13th International Symposium on Graph Drawing 2005, volume 3843 of LNCS, pages 49–60. Springer, Heidelberg, 2006.