Geometria simplética

1 Aula 1

1.1 Origem da geometria simplética

- Formulação da geométrica da mecânica (séc XIX).
- Versão moderna, 1960-70.
- Diferentes descripções da mecânica clásica:
 - Newtoniano: F = ma, ecuação diferencial ordinária de segunda ordem.
 - Lagrangiano: princípio gravitacional (Eq. E-L). Following Tong, these equations are:
 - Hamiltoniano.

1.2 Formalismo hamiltoniano (simplificado)

This happened in the 1880's (according to Tong).

- Espaço de base $\mathbb{R}^2 = \{(p, q)\}$ (conjunto de estados)
- Função Hamiltoniana $H \in C^{\infty}(\mathbb{R}^{2m})$.
- Campo Hamiltoniano: $X_H \in \mathfrak{X}(\mathbb{R}^{2n})$.

$$X_{H} = \begin{pmatrix} \frac{\partial H}{\partial p_{i}} \\ -\frac{\partial H}{\partial q_{i}} \end{pmatrix} = \begin{pmatrix} 0 & | Id_{n} \\ -Id_{n} & 0 \end{pmatrix}$$

Which coincides with Lee's formula

$$\dot{x}^{i}(t) = \frac{\partial H}{\partial y^{i}}(x(t), y(t)),$$

$$\dot{y}^{i}(t) = -\frac{\partial H}{\partial x^{i}}(x(t), y(t))$$

where Lee defined the *Hamiltonian vector field* as the *analogue of the gradient with* respect to the symplectic form, that is, satisfying $\omega(X_H, Y) = dH(Y)$ for any vector field Y.

Also look at Tong's formulation:

$$\begin{split} \dot{p}_i &= -\frac{\partial H}{\partial q_i} \\ \dot{q}_i &= \frac{\partial H}{\partial p_i} \\ -\frac{\partial L}{\partial t} &= \frac{\partial H}{\partial t} \end{split}$$

where L is the Lagrangian and the Hamiltonian function H is obtained as the Legendre transform of the Langrangian. Tong shows how the Hamiltonian formalism allows to replace the $n\ 2^{nd}$ order differential equations by $2n\ 1^{st}$ order differential equations for q_i and p_i .

In practice, for solving problems, this isn't particularly helful. But, as we shall see, conceptually it's very useful!

At least for me, it looks like a first insight on why symplectic geometry lives on even-dimensional spaces.

1.3 Evolução temporal (equações de Hamilton)

Curvas integrais

$$c(t) = (q_i(t), p_i(t))$$

de X_H, ie.

$$c'(t) = X_H(c(t)) \iff \begin{cases} \dot{q}_{\mathfrak{i}} &= \frac{\partial H}{\partial p_{\mathfrak{i}}} \\ \dot{p}_{\mathfrak{i}} &= \frac{\partial H}{\partial q_{\mathfrak{i}}} \end{cases}$$

que são as Equações de Hamilton (de novo).

Exemplo. Partícula de massa m em $\mathbb{R}^3 = \{q_1, q_2, q_3\}$ sujeita a campo de força conservativa

$$\begin{aligned} F = -\nabla V, \quad V \in C^{\infty}(\mathbb{R}^3 \\ q(t) = (q_1, q_2, q_3) \end{aligned}$$

Equação de Newton:

$$m\ddot{q}=\partial V(q)\iff m\ddot{q}_{\dot{\iota}}=\frac{\partial V}{\partial q_{\dot{\iota}}}(q), \qquad \dot{\iota}=1,2,3.$$

Ponto de vista Hamiltoniano:

- Espaçode fase $\mathbb{R}^5 = \{(q_i, p_i)\}.$
- Hamiltoniano: $H(\mathfrak{p},\mathfrak{q}) = \frac{1}{2\mathfrak{m}} \sum_{\mathfrak{i}} \mathfrak{p}_{\mathfrak{i}}^2 + V(\mathfrak{q})$
- Equações de Hamilton

$$\begin{cases} \dot{q}_i = p_i/m \iff p_i = m\dot{q}_i \\ \dot{p}_i = -\frac{\partial V}{\partial q_i} \end{cases}$$

$$H \in C^{\infty}(\mathbb{R}^{2n}) \longrightarrow \nabla H \xrightarrow{-J_0 \nabla H} X_H$$

where $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$. So it looks like another way of obtaining (defining?) the Hamiltonian vector field is to take the gradient of H and then applying J_0 . So it would be nice to see eventually that this is the same as Lee's definition of "symplectic gradient" so to say.

Compondo ∇H e X_H : taxa de variação de H ao longo dos fluxos. Mas: o que é a composição de dois campos vetoriais?

• Fluxo gradiente

$$\begin{split} c'(t) &= \nabla H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle = \| \nabla H(c(t)) \|^2 \end{split}$$

 ∇ H aponta na direção que H variação.

• Fluxo hamiltoniano

$$\begin{split} c'(t) &= X_H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle \\ &= \langle \nabla H(c(t)), -J_0 \nabla H(c(t)) \rangle \\ &= 0 \end{split}$$

?, $H \in C^{\infty}(\mathbb{R}^{2n})$, $H \rightsquigarrow dH \in \Omega^{1}(\mathbb{R}^{2n})$.

• *Gradiente*. $\nabla H(x) \in T_x \mathbb{R}^{2n} = \mathbb{R}^{2n}$ é único.

$$g_0(\nabla H(x), \cdot) = \langle \nabla H(x), \cdot \rangle = dH(x)$$

onde g_0 é a métrica Euclidiana. De outra forma,

$$g_0^{\flat}: \mathbb{R}^{2n} \overset{\sim}{\to} (\mathbb{R}^{2n})^*$$
$$u \mapsto g_0(u, \cdot)$$

assim,

$$\nabla H(x) \stackrel{\sim}{\to} dH(x).$$

Analogamente, $X_H(x) \in \mathbb{R}^{2n}$ é único tal que?

$$\Omega_0(X_H(x), \cdot) = dH(x), \qquad \Omega_0(u, v) = -dJ_0V,$$

ou:

$$\Omega_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$
$$X_{\mathsf{H}}(x) \longleftrightarrow d\mathsf{H}(x)$$

Observação. Note que Ω_q define uma 2-forma (c...?) em $\mathbb{R}^{2n} = \{(q_i, p_i)\}$.

$$\omega_0 = \sum_{i=1}^n dq_i \wedge dp_i \in \Omega_2(\mathbb{R}^{2n}),$$

 X_H é único tal que $i_{X_H}\omega_0=dH$. So this was Lee's definition $\ddot{\smile}$.

Definição (temporária). Uma *variedade simplética* é (M, ω) , $\omega \in \Omega^2(M)$ localmente isomorfa a $(\mathbb{R}^{2n}, \sum_i dq_i \wedge dp_i)$.

[Dessenho mostrando que o pullback da carta coordenada leva ω em $\sum_i dq_i \wedge dp_i$.

Teorema (de Darboux, em Lee). Let (M, ω) be a 2n-dimensional symplectic manifold. For any $p \in M$ there are smooth coordinates $(x^1, \ldots, x^n, y^1, \ldots, y^n)$ centered at p in which ω has the coordinate representation $\omega = \sum_{i=1}^n dx^i \wedge dy^i$.

And Lee does a proof using the theory of time-dependant flows.

2 Álgebra linear simplética

 $V \ espaço \ vetorial \ real, \ \Omega: V \times V \to \mathbb{R} \ forma \ bilinea \ ansimétrica, i.e. \ \Omega \in \Lambda^2 V^*.$

Definição. Ω é não degenerada se $\Omega(\mathfrak{u}, \mathfrak{v}) = 0 \forall \mathfrak{v} \iff \mathfrak{u} = 0$.

Following Lee, this can also be stated as: for each nonzero $v \in V$ there exists $w \in V$ such that $\omega(v,w) \neq 0$; and it is equivalent to the linear map $v \mapsto \omega(v,\cdot) \in V^*$ being invertible, and also that in terms of some (hence every) basis, the matrix (ω_{ij}) representing ω is nonsingular.

Ou seja, se

$$\ker \Omega := \{ u \in V | \Omega(u, v) = 0 \ \forall v \}$$

então Ω é não degenerada se e somente se $\ker(\Omega) = \{0\}.$

 $\Omega \in \Lambda^2 V^*$ é não degenerada é chamada simplética. (V,Ω) é um *espaço vectorial simplético*.

Observação.

1. $\{e_1, ..., e_n\}$ base de V, Ω é representado por uma matriz antisimétrica

$$A = (A_{ij}),$$
 $A_{ij} = \Omega(e_i, e_j),$ $\Omega(u, v) = u^t A, v.$

2. Ω é não degenerada se e somente se $det(A) \neq 0$.

Note que

$$\det A = \det A^t = \det(-A) = (-1)^{\dim V} \det(A)$$
 implica que
$$\det A \neq 0 \implies m = \dim V = 2n$$

3. $\Omega \in \Lambda^2 V^*$. Defina

$$\begin{array}{c} \Omega^{\flat}:V\longrightarrow V^{*}\\ u\longmapsto \Omega(u,\cdot) \end{array}$$

note que $\ker \Omega = \ker(\Omega^{\flat})$, assim Ω é não degenerada se e somente se Ω^{\flat} é isomorfismo.