Differentialrechnung für vektorwertige Abbildungen

Def Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$. f heißt (total) differenzierbar in $x_0 \in U$, falls es eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^m$ gibt, sodass

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Ah\|}{\|h\|} = 0.$$

In diesem Fall nennt man A das Differential von f in x_0 . Bezeichnung: $Df_{|x_0} := A$.

Satz 3.1 Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$ habe die Komponentenfunktionen $f_i: U \to \mathbb{R}, i = 1, ..., m$. Dann gilt:

- 1) f ist in x_0 genau dann total differenzierbar, wenn $f_1, ... f_m$ in x_0 total differenzierbar sind.
- 2) Ist f total differenzierbar in $x_0 \in U$, so ist

$$Df_{|x_0}h = \begin{pmatrix} Df_{1|x_0}h\\ \vdots\\ Df_{m|x_0}h \end{pmatrix}$$

und $Df_{|x_0}$ ist bezüglich der Standardbasen in \mathbb{R}^n und \mathbb{R}^m durch die Matrix

$$J_f(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \dots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \dots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

gegeben. Diese $m \times n$ -Matrix heißt Jacobi-Matrix von f.

Schreibweise: $J_f(x_0) := \left(\frac{\partial f_i}{\partial x_j}(x_0)\right)_{\substack{1 \le i \le m \\ 1 \le j \le n}}$

Satz 3.2(Kettenregel) Seien $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ offen, $f: U \to \mathbb{R}^m$, $g: V \to \mathbb{R}^k$, $f(U) \subset V$. Ist f in $a \in U$ differenzierbar und g in f(a) differenzierbar, dann ist $g \circ f$ in a differenzierbar und es gilt:

$$D(g \circ f)_{|a} = Dg_{|f(a)}Df_{|a} \qquad \left(J_{g \circ f}(a) = J_g(f(a))J_f(a)\right)$$

Satz 3.3 Sei $U \subset \mathbb{R}^n$ offen, $f \in C^1(U, \mathbb{R}^m)$. Sei $a \in U$ und $h \in \mathbb{R}^n$ derart, dass die Strecke $\{a+th\colon 0 \leq t \leq 1\}$ in U liegt. Dann gilt:

$$||f(a+h) - f(a)|| \le \sup_{t \in [0,1]} ||Df_{|a+th}|| ||h||.$$