COE835 - Controle adaptativo

Simulações do exemplo 1

Algoritmo: Standard MRAC

Caso: n=1 (ordem da planta) $n^*=1$ (grau relativo) $n_p=1$ (# de parâmetros)

Conteúdo

1	Resumo das equações do sistema	2
2	Diagramas de blocos	2
3	Resultados das simulações	4
	3.1 Simulação #1	4
	3.2 Simulação #2	6
	3.3 Simulação #3	8
	3.4 Simulação #4	10

1 Resumo das equações do sistema

Planta $\dot{y}_p = a_p y_p + u$

Modelo $\dot{y}_m = -a_m y_m + r$

Erro de saída $e_0 = y_p - y_m$

Lei de controle : $u = \theta y_p + r$

Lei de adaptação: $\dot{\theta} = -\gamma e_0 y_p$

2 Diagramas de blocos

Figura 1: Diagrama de blocos do sistema. (Model: MRAC-111.mdl)

Figura 2: Diagrama de blocos da planta.

Figura 3: Diagrama de blocos do modelo de referência.

Figura 4: Diagrama de blocos do gerador de sinais de referência.

Figura 5: Diagrama de blocos da lei de adaptação.

3 Resultados das simulações

Simulação utilizando Matlab/Simulink.

3.1 Simulação #1

Avaliação do efeito do ganho de adaptação no caso em que as condições iniciais são todas nulas.

$$a_p = -2,$$
 $y_p(0) = 0,$ $\theta(0) = 0,$ $\alpha_m = 1,$ $y_m(0) = 0,$ $\gamma = 2, 100,$ $\gamma = 1.$

Figura 6: Diagrama $e_0 \times \tilde{\theta}$. (Script: simu01.m)

Figura 7: Resultado da simulação com algoritmo MRAC Standard. (Script: simu01.m)

Na figura correspondente a θ observa-se que o aumento no ganho de adaptação somente causa um aumento na frequência de oscilação. A envoltória permanece aproximadamente a mesma.

3.2 Simulação #2

Avaliação do efeito do ganho de adaptação para o caso de uma condição inicial pequena.

$$a_p = -2,$$
 $y_p(0) = 2,$ $\theta(0) = 0,$ $q_m = 1,$ $y_m(0) = 0,$ $q_m = 1,$ q

Figura 8: Diagrama $e_0 \times \tilde{\theta}$. (Script: simu02.m)

Figura 9: Resultado da simulação com algoritmo MRAC Standard. (Script: simu02.m)

Esta simulação mostra a não uniformidade do transitório de adaptação em relação às condições iniciais. O comportamento de θ para $\gamma=2$ é completamente diferente do comportamento para $\gamma=100$.

3.3 Simulação #3

Idem caso da simulação anterior, com condição inicial maior.

$$a_p = -2$$
, $y_p(0) = \{5, -5\}$, $\theta(0) = 0$, $a_m = 1$, $y_m(0) = 0$, $\gamma = 2$, 100 , $r = 1$.

Figura 10: Diagrama $e_0 \times \tilde{\theta}$. (Script: simu03.m)

Figura 11: Resultado da simulação com algoritmo MRAC Standard. (Script: simu03.m)

A duração do transitório de adaptação aumenta com as condições iniciais. Note o salto inicial do parâmetro adaptado. Ocorre uma super-estabilização inicial do sistema.

3.4 Simulação #4

Este exemplo mostra uma simulação contínua onde o parâmetro da planta sofre variações descontínuas.

$$a_p = \begin{bmatrix} -2, & -1, & 0, & 1, & 2 \end{bmatrix},$$
 $y_p(0) = \frac{2}{2},$ $\theta(0) = 0,$ $a_m = 1,$ $y_m(0) = 0,$ $\gamma = 10$ $r = 1.$

Figura 12: Resultado da simulação com algoritmo MRAC Standard. (Script: simu04.m)