

AI COACH APP

TABLE OF CONTENTS

TEAM ID: 19

Mohamed AbdElhamed Taha

ID: 162020527

Mohamed Adel Ali

ID: 162020522

Mohamed Atef Amin

ID: 162020526

TASK DESCRIPTION

TASK DESCRIPTION

 The task involves developing an application that counts bicep curls using computer vision techniques.

- Utilizing pose estimation, the application tracks key points of the human body to determine bicep curl movements.
- The application provides real-time feedback on correct and incorrect curls.

DEMO OF APP

DEMO OF APP

GITHUB LINK: https://github.com/MohamedBinSalman/Al-Coach-App

CONTRIBUTION

CONTRIBUTION

- Developed algorithm to calculate angles between body keypoints to identify bicep curls.
- Integrated real-time feedback for correct and incorrect curl counts.
- The accuracy of the bicep curl detection is calculated by comparing the total counts of correct and incorrect curls detected by the app with the counts provided by the user.
- Error analysis: the details of incorrect bicep curls, including the count number, flag indicating whether it's an up or down motion, and the angle at which the error occurred.

DATA

DATA

Training Data:

 The model is trained and evaluated on a custom dataset comprising 60,000 images featuring one or few people in common poses, along with 25,000 images of individuals performing fitness exercises.

Testing Data:

 The AR dataset served as the primary testing data for evaluating the performance of our pose estimation model.

PROJECT ARCHITECTURE

PROJECT ARCHITECTURE

Figure: Workflow of the project

METHODS

METHODS

1. Pose Estimation

- Purpose: Provides accurate spatial information for analyzing arm movements during bicep curls.
- Functionality: Detects and tracks key body landmarks such as shoulders, elbows, and wrists.

2. Angle Calculation

- Purpose: Computes the angle formed at the elbow joint using three points: shoulder, elbow, and wrist.
- Functionality: Utilizes vector algebra to determine the angle between lines joining shoulder-elbow and elbow-wrist.

METHODS

3. Bicep Curl Counting

- Approach: Processes video frames, extracts landmark coordinates, and calculates angles for left and right arms.
- Count Logic: Tracks transitions of the hand position to increment counters for correct and incorrect bicep curls.

4. Visualization and Analysis

- OpenCV Integration: Displays annotated video frames with detected landmarks and connection lines.
- Accuracy Evaluation: Calculates accuracy metrics for correct and incorrect bicep curl counts.

RESULTS

RESULTS

Metric: accuracy

We build a dataset consists of 7 video, with total correct count 90 and 22 incorrect bicep curls, the accuracy is: 95.55 % for correct and 54.54 % for incorrect as it gives 86 correct count and 12 incorrect count.

2 Model Performance

AR Dataset:

• Metric: <u>PCK@0.2</u>

BlazePose Full: 84.1%

BlazePose Lite: 79.6%

Ref: Valentin Bazarevsky ,Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, Matthias Grundmann,BlazePose: On-device Real-time Body Pose tracking,2020

DO YOU HAVE ANY QUESTIONS?

