

Fizika u video igrama

Miloš Beočanin, MSc

https://github.com/mbeocanin

Sadržaj

- 1. Game engine
- 2. Phyisics Engine
 - model
 - kinematika
 - ograničeno kretanje
- 3. Demo
- 4. Pitanja

Literatura

- Game Physics Second Edition, David Eberly
- Erin Catto (<u>https://box2d.org/publications/</u>)

Game Engine

Game Engine

Physics Engine

Oblasti:

- 1. Fizika (mehanika)
- 2. Teorija sistema (automatika)
- 3. Numerika
- 4. Grafika
- 5. Optimizacija

Physics Engine

- Model
 - Opis prostora
 - II. Opis tela
- 2. Kinematika (kinematics)
 - 1. Njutnovi zakoni kretanja
 - 2. Integracija
 - 3. Spoljašnje sile
- 3. Ograničeno kretanje (constrained motion):
 - I. Otkrivanje sudara (collision detection)
 - II. Modelovanje ograničenja (constraint modeling)
 - III. Rešavanje ograničenja (constraint solving)

Kako opisati stanje fizičkog sistema u datom trenutku?

1. Opis prostora

- 1. Opis prostora
 - vektori

1. Opis prostora

- vektori
- + uopštavaju problem (ista rešenja važe za 2D i 3D)
- + uprošćavaju zapis (istovremeno se zapisuju operacije po svim dimenzijama)
- + brže izvršavanje (istovremeno se obavljaju operacije po svim dimenzijama)
- + pogodni za savremeni hardver
- + većina grafičih API-a obezbeđuje model vektora sa potrebnim operacijama
- zahtevaju poznavanje vektorske algebra (treba se navići)

2. Opis tela

l. položaj

- 2. Opis tela
 - I. položaj

2D II. trenutna brzina

2. Opis tela

IV. geometrija

2. Opis tela

V. orjentacija

Opis tela

• transformacija tela: pozicija + orjentacija (homogene koordinate)

2. Opis tela

• transformacija tela

I. lokalni koord. sistem

- 2. Opis tela
 - transformacija tela
 - I. lokalni koord. sistem
 - II. globalni koord. sistem

- 2. Opis tela
 - transformacija tela
 - I. lokalni koord. sistem
 - II. globalni koord. sistem

 \vec{v} gde se u prostoru nalazi ova tačka?

Model 2. Opis tela • transformacija tela gde se u telu nalazi ova tačka? lokalni koord. sistem II. globalni koord. sistem

2. Opis tela

• (inverzna) transformacija tela

I. lokalni koord. sistem

II. globalni koord. sistem

2. Opis tela

- transformacija tela
- + geometrija tela se modeluje jednom u lokalnom koord. sistemu i više se ne menja
- + pri kretanju se menjaju samo položaj i orjentacija tela, a ne cela geometrija (mnogo manje zahtevno za procesor)
- + za prikaz se grafičkom API-u prosleđuje originalna geometrija tela i matrica transformacije, a grafički hardver obavlja sve potrebne proračune
- + većina grafičkih API-a obezbeđuje model matrice transformacije sa potrebnim operacijama
- za proračune koji obuhvataju geometriju više tela (npr. otkrivanje sudara), potrebno je transformisati tačke u isti prostor (globalni ili lokalni istog tela); ove proračune u opštem slučaju obavlja <u>procesor</u>, ali je potreba za tim najčešće ređa od prikaza

2. Opis tela

• geometrijski centar

$$\vec{C}_g = \frac{\sum_{i=1}^n \vec{v}_i}{n}$$

$$\vec{v}_1,\vec{v}_2,\vec{v}_3,\dots$$

2. Opis tela

- geometrijski centar
- centar mase

$$\vec{C}_g = \frac{\sum_{i=1}^n \vec{v}_i}{n}$$

$$\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots$$

za homogena tela:

$$\vec{C}_m = \vec{C}_g$$

$$\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots$$

 $m_1, m_2, m_3 \dots$

2. Opis tela

- geometrijski centar
- centar mase

 \vec{C}_g (ili \vec{C}_m ako postoji) treba da bude u koordinatnom počektu lokalnog koord. sistema! (transformacije se vrše u odnosu na njega)

2. Opis tela

VI. trenutna ugaona brzina

2. Opis tela

VIII. trenutna sila

2. Opis tela

VIII. trenutna sila

2. Opis telaX. masa

Linearno kretanje	Rotaciono kretanje
2D/3D	
masa	
m	

2. Opis tela

X. masa

XI. moment inercije

U tabeli su momenti inercije za rotaciju oko $ec{\mathcal{C}}_g$

Linearno kretanje		
2D/3D	2D	
masa	moment inercije (skalar)	
m	krug: $I = \frac{mr^2}{2}$ pravougaonik: $I = \frac{m}{12}(w^2 + h^2)$	

2. Opis tela

X. masa

XI. tenzor inercije

U tabeli su tenzori inercije za rotaciju oko \vec{C}_g

Linearno kretanje	Rotaciono kretanje					
2D/3D	2D	3D				
masa	moment inercije (skalar)	tenzor inercije (matrica)				
	krug: $I = \frac{mr^2}{2}$	sfera: $I = \begin{bmatrix} \frac{2}{5}mr^2 & 0 & 0\\ 0 & \frac{2}{5}mr^2 & 0\\ 0 & 0 & \frac{2}{5}mr^2 \end{bmatrix}$				
m	pravougaonik: $I = \frac{m}{12}(w^2 + h^2)$	kvadar: $I = \begin{bmatrix} \frac{m}{12}(h^2 + d^2) & 0 & 0\\ 0 & \frac{m}{12}(w^2 + d^2) & 0\\ 0 & 0 & \frac{m}{12}(w^2 + h^2) \end{bmatrix}$				

2. Opis tela

Linear	no kretanje				Rotaciono kr	etanje	
2D/3D		2D			3D		
geometrija:	$\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots$	[m]	geo	metrija:	$\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots$	[m]	
položaj:	$ec{p}$	[m]	ugao: $ heta$	[rad]	orjentacija:	$\overrightarrow{\theta} = \begin{bmatrix} \theta_x \\ \theta_y \\ \theta_z \end{bmatrix}$	[rad]
brzina:	\vec{v}	$\left[\frac{m}{s}\right]$	ugaona brzina:	$\left[\frac{rad}{s}\right]$	ugaona brzina:	$\overrightarrow{\omega} = \begin{bmatrix} \omega_{\chi} \\ \omega_{y} \\ \omega_{z} \end{bmatrix}$	$\left[\frac{rad}{s}\right]$
sila:	$ec{F}$	[<i>N</i>]	moment sile: $ au$	[Nm]	moment sile:	$\vec{\tau} = \begin{bmatrix} \tau & x \\ \tau & y \\ \tau & z \end{bmatrix}$	[Nm]
masa:	m	[kg]	moment I	$\left[\frac{kg}{m^2}\right]$	tenzor inercije:	$I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$	$\left[\frac{kg}{m^2}\right]$

Kinematika

Kako opisati promene stanja fizičkog sistema između dva uzastopna trenutka?

Kinematika

Za poznate početne uslove kretanja:

Linearno kretanje	Rotaciono kretanje			
2D/3D	2D	3D		
početni položaj: $ec{p}_0$	početni ugao: $ heta_0$	početna orjentacija: $ec{ heta}_0$		
počenta brzina $ec{v}_{0}$	početna ugaona brzina ω_0	početna ugaona brzina: $ \overrightarrow{\omega}_0 $		

Potrebno je naći:

Linearno kretanje	Rotaciono kretanje		
2D/3D	2D	3D	
položaj: $\vec{p}(t) = ?$	ugao: $\theta(t) = ?$	orjentacija: $\overrightarrow{\theta}(t) = ?$	

Kinematika

• analitičko rešenje (ako je \vec{F} konstantna):

$$\vec{p}(t) = \vec{p}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

$$\vec{p}(t) = \vec{p}_0 + \vec{v}_0 t + \frac{1}{2} \frac{\vec{F}}{m} t^2$$

- ne može se opisati složeno kretanje
- ne može se opisati interaktivno kretanje (uslovljeno reakcijom korisnika)

Vratimo se na početak! Odakle ova jednačina?

• 2. Njutnov zakon kretanja:

$$\vec{F} = m\vec{a}$$

$$\vec{a} = \frac{\vec{F}}{m}$$

$$\frac{d^2\vec{p}(t)}{dt^2} = \frac{\vec{F}}{m}$$

Diferencijalna jednačina 2. reda!

• 2. Njutnov zakon kretanja:

$$\frac{d^2\vec{p}(t)}{dt^2} = \frac{\vec{F}(t)}{m}$$

Kako izgleda analitičko rešenje kada $\vec{F}(t)$ nije konstantna? Zavisi od $\vec{F}(t)$, a ona zavisi od interakcije!

Funkcija se u svakom trenutku $(t + \Delta t)$ može razviti u Tejlorov red:

$$f(t + \Delta t) = f(t) + \Delta t \frac{df(t)}{dt} + \frac{\Delta t^2}{2} \frac{d^2 f(t)}{dt^2} + \dots + \frac{\Delta t^n}{n!} \frac{d^n f(t)}{dt^n}$$

Preskočiti analitičko rešenje i umesto toga rešiti dif. jedn. numerički!

Ojlerov metod

$$f(t + \Delta t) = f(t) + \Delta t \frac{df(t)}{dt} + \frac{\Delta t^2}{2} \frac{d^2 f(t)}{dt^2} + \dots + \frac{\Delta t^n}{n!} \frac{d^n f(t)}{dt^n}$$

$$f(t + \Delta t) \approx f(t) + \Delta t \frac{df(t)}{dt}$$

Ojlerov metod

funkcija položaja:

$$\vec{p}(t + \Delta t) = \vec{p}(t) + \Delta t \frac{d\vec{p}(t)}{dt}$$

Ojlerov metod

jednom diferencirane obe strane jednačine:

$$\vec{p}(t + \Delta t) = \vec{p}(t) + \Delta t \frac{d\vec{p}(t)}{dt}$$

$$\frac{d\vec{p}(t+\Delta t)}{dt} = \frac{d\vec{p}(t)}{dt} + \Delta t \frac{d^2\vec{p}(t)}{dt^2}$$

Ojlerov metod

smena:
$$\frac{d\vec{p}(t)}{dt} = \vec{v}(t)$$

$$\vec{p}(t + \Delta t) = \vec{p}(t) + \Delta t \vec{v}(t)$$

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \Delta t \frac{\vec{F}(t)}{m}$$

Ojlerov metod

iterativni zapis:

$$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_{i-1}$$

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{i-1}}{m}$$

Ojlerov metod

$$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_{i-1}$$

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{i-1}}{m}$$

- koristi brzinu iz prošle iteracije za izračunavanje položaja

• simplektički (Semi-implicit) Ojlerov metod

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{i-1}}{m}$$

$$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_i$$

- + prvo izračuna brzinu za tekuću iteraciju, a zatim je koristi za izračunavanje položaja
- + unapređena stabilnost metode za isti broj operacija!

0	
$ec{v}_0$	
$ec{p}_0$	

0	
$ec{\omega}_0$	
$ec{ heta}_0$	

0	$0 + \Delta t$	
$ec{v}_0$	$\vec{v}_1 = \vec{v}_0 + \Delta t \frac{\vec{F}_0}{m}$	
$ec{p}_0$	$\vec{p}_1 = \vec{p}_0 + \Delta t \vec{v}_1$	

0	$0 + \Delta t$	
$ec{\omega}_0$	$\vec{\omega}_1 = \vec{\omega}_0 + \Delta t \frac{\vec{\tau}_0}{I}$	
$ec{ heta}_0$	$\vec{\theta}_1 = \vec{\theta}_0 + \Delta t \vec{\omega}_1$	

0	$0 + \Delta t$	$0 + 2\Delta t$
$ec{v}_0$	$\vec{v}_1 = \vec{v}_0 + \Delta t \frac{\vec{F}_0}{m}$	$\vec{v}_2 = \vec{v}_1 + \Delta t \frac{\vec{F}_1}{m}$
$ec{p}_0$	$\vec{p}_1 = \vec{p}_0 + \Delta t \vec{v}_1$	$\vec{p}_2 = \vec{p}_1 + \Delta t \vec{v}_2$

0	$0 + \Delta t$	$0 + 2\Delta t$
$ec{\omega}_0$	$\vec{\omega}_1 = \vec{\omega}_0 + \Delta t \frac{\vec{\tau}_0}{I}$	$\vec{\omega}_2 = \vec{\omega}_1 + \Delta t \frac{\vec{\tau}_1}{I}$
$ec{ heta}_0$	$\vec{\theta}_1 = \vec{\theta}_0 + \Delta t \vec{\omega}_1$	$\vec{\theta}_2 = \vec{\theta}_1 + \Delta t \vec{\omega}_2$

0	$0 + \Delta t$	$0 + 2\Delta t$	$0 + \mathbf{i}\Delta t$
$ec{v}_0$	$\vec{v}_1 = \vec{v}_0 + \Delta t \frac{\vec{F}_0}{m}$	$\vec{v}_2 = \vec{v}_1 + \Delta t \frac{\vec{F}_1}{m}$	$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{i-1}}{m}$
$ec{p}_0$	$\vec{p}_1 = \vec{p}_0 + \Delta t \vec{v}_1$	$\vec{p}_2 = \vec{p}_1 + \Delta t \vec{v}_2$	$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_i$

0	$0 + \Delta t$	$0 + 2\Delta t$	$0 + \mathbf{i}\Delta t$
$ec{\omega}_0$	$\vec{\omega}_1 = \vec{\omega}_0 + \Delta t \frac{\vec{\tau}_0}{I}$	$\vec{\omega}_2 = \vec{\omega}_1 + \Delta t \frac{\vec{\tau}_1}{I}$	$\vec{\omega}_i = \vec{\omega}_{i-1} + \Delta t \frac{\vec{\tau}_{i-1}}{I}$
$ec{ heta}_0$	$\vec{\theta}_1 = \vec{\theta}_0 + \Delta t \vec{\omega}_1$	$\vec{\theta}_2 = \vec{\theta}_1 + \Delta t \vec{\omega}_2$	$\vec{\theta}_i = \vec{\theta}_{i-1} + \Delta t \vec{\omega}_i$

• postupak (pipeline):

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{i-1}}{m}$$

$$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_i$$

$$\vec{\omega}_i = \vec{\omega}_{i-1} + \Delta t \frac{\vec{\tau}_{i-1}}{l}$$

$$\vec{\theta}_i = \vec{\theta}_{i-1} + \Delta t \vec{\omega}_i$$

Šta je poznato a šta nepoznato?

• 1. Njutnov zakon:

ako su
$$\vec{F}_{i-1} = 0$$
 i $\vec{\tau}_{i-1} = 0$:

a) ako su $\vec{v}_{i-1} \neq 0$ i $\vec{\omega}_{i-1} \neq 0$:

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{0}{m} = \vec{v}_{i-1} = const.$$

$$\vec{\omega}_i = \vec{\omega}_{i-1} + \Delta t \frac{0}{I} = \vec{\omega}_{i-1} = const.$$

b) ako su
$$\vec{v}_{i-1}=0$$
 i $\vec{\omega}_{i-1}=0$:
$$\vec{v}_i=0+\Delta t\frac{0}{m}=0=const.$$

$$\vec{\omega}_i=0+\Delta t\frac{0}{I}=0=const.$$

$$\vec{F}_0 = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$\vec{v}_0 = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$\vec{p}_0 = \begin{bmatrix} 5.00 \\ 5.00 \\ 5.00 \end{bmatrix}$$

$$t = 0$$

$$\vec{F}_0 = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$\vec{v}_1 = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$\vec{p}_1 = \begin{bmatrix} 5.00 \\ 5.00 \\ 5.00 \end{bmatrix}$$

$$t = \Delta t$$

$$\vec{F}_1 = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$\vec{v}_2 = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$\vec{p}_2 = \begin{bmatrix} 5.00 \\ 5.00 \\ 5.00 \end{bmatrix}$$

$$t = 2\Delta t$$

$$\vec{F}_2 = \begin{bmatrix} 0.00 \\ 0.00 \\ -mg \end{bmatrix}$$

$$\vec{v}_3 = \begin{bmatrix} 0.00 \\ 0.00 \\ -2.45 \end{bmatrix}$$

$$\vec{p}_3 = \begin{bmatrix} 5.00 \\ 5.00 \\ 4.38 \end{bmatrix}$$

$$t = 3\Delta t$$

$$\vec{F}_3 = \begin{bmatrix} 10.0 \\ 0.00 \\ -mg \end{bmatrix}$$

$$\vec{v}_4 = \begin{bmatrix} 3.33 \\ 0.00 \\ -4.90 \end{bmatrix}$$

$$\vec{p}_4 = \begin{bmatrix} 6.11 \\ 5.00 \\ 3.15 \end{bmatrix}$$

$$t = 4\Delta t$$

$$\vec{F}_4 = \begin{bmatrix} 0.00 \\ 0.00 \\ -mg \end{bmatrix}$$

$$\vec{v}_5 = \begin{bmatrix} 3.33 \\ 0.00 \\ -9.81 \end{bmatrix}$$

$$\vec{p}_5 = \begin{bmatrix} 7.22 \\ 5.00 \\ 1.31 \end{bmatrix}$$

$$t = 5\Delta t$$

$$\vec{F}_5 = \begin{bmatrix} 0.00 \\ 0.00 \\ -mg \end{bmatrix}$$

$$\vec{v}_6 = \begin{bmatrix} 3.33 \\ 0.00 \\ -7.35 \end{bmatrix}$$

$$\vec{p}_6 = \begin{bmatrix} 8.33 \\ 5.00 \\ -1.14 \end{bmatrix}$$

$$t = 6\Delta t$$

vakum:

$$\vec{F} = \vec{F}_{weight}$$

(samo težina tela)

$$v_1 = 0 + \Delta t \frac{m_1 g}{m_1}$$
 $v_2 = 0 + \Delta t \frac{m_2 g}{m_2}$

X

vakum:

$$\vec{F} = \vec{F}_{weight}$$

(samo težina tela)

fluid:

$$\vec{F} = \vec{F}_{weight} + \vec{F}_{drag}$$

(težina tela + otpor fluida)

Х

fluid:

$$\vec{F} = \vec{F}_{weight} + \vec{F}_{drag}$$

(težina tela + otpor fluida)

$$v_1 < v_2$$

Dve osnovne vrste tela:

- 1. Materijalne tačke, tj. čestice (particles)
- 2. Čvrsta tela (rigid bodies)

Složene vrste tela (na neki način kombinacije osnovnih vrsta):

- 1. Meka tela (soft bodies)
- 2. Fluidi
- 3. Tkanina
- 4. Ragdolls
- 5. itd.

 materijalna tačka (particle):

- + nema definisanu orjentaciju ni rotaciju
- + sve spoljašnje sile deluju na $\overrightarrow{C_g}$

- materijalna tačka (particle):
- + nema definisanu orjentaciju ni rotaciju
- + sve spoljašnje sile deluju na C_g

(za otkrivanje sudara telo mora imati nekakvu geometriju, a najčešće je simetrično)

• čvrsto telo (rigid body):

 ima definisanu orjentaciju i rotaciju

• čvrsto telo (rigid body):

ima definisanu
 orjentaciju i rotaciju

• čvrsto telo (rigid body):

- ima definisanu
 orjentaciju i rotaciju
- potrebno je izračunati linearnu komponentu sile \vec{F} i moment sile $\vec{\tau}$ na osnovu delovanja spoljašnje sile \vec{F}_{ext}

• čvrsto telo (rigid body):

$$1. \quad \vec{r} = \vec{p} - \vec{p}_{ext}$$

• čvrsto telo (rigid body):

$$1. \quad \vec{r} = \vec{p} - \vec{p}_{ext}$$

2.
$$\vec{F} = \vec{F}_{ext} \cdot \vec{r} \frac{\vec{F}_{ext}}{|\vec{F}_{ext}|}$$

• čvrsto telo (rigid body):

$$1. \quad \vec{r} = \vec{p} - \vec{p}_{ext}$$

2.
$$\vec{F} = \vec{F}_{ext} \cdot \vec{r} \frac{\vec{F}_{ext}}{|\vec{F}_{ext}|}$$
3. $\vec{\tau} = \vec{F}_{ext} \times \vec{r}$

3.
$$\vec{\tau} = \vec{F}_{ext} \times \vec{r}$$

• čvrsto telo (rigid body):

što su više \vec{r} i \vec{F}_{ext} paralelni, linearno kretanje postaje dominantnije

• čvrsto telo (rigid body):

što su više \vec{r} i \vec{F}_{ext} normalni, rotaciono kretanje postaje dominantnije

• čvrsto telo (rigid body):

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \cdots$$

$$\vec{\tau} = \vec{\tau}_1 + \vec{\tau}_2 + \cdots$$

108

• skaliranje:

Ako je npr. potrebno da objekat za vreme:

$$t = 1s$$

promeni položaj iz \vec{p}_1 u \vec{p}_2 koji su udaljeni:

$$d = 3m$$

brzina bi trebalo da bude:

$$\vec{v} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \frac{m}{s}$$

• skaliranje:

bez skaliranja:

$$1m = 1px$$

$$\vec{p}_1 = \begin{bmatrix} 960 \\ 540 \end{bmatrix} px$$

$$\vec{v} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \frac{px}{s}$$

• skaliranje:

bez skaliranja:

$$1m = 1px$$

$$\vec{p}_1 = \begin{bmatrix} 960 \\ 540 \end{bmatrix} px$$

$$\vec{v} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \frac{px}{s}$$

$$t = 1s$$

$$\vec{p}_2 = \begin{bmatrix} 963 \\ 540 \end{bmatrix} px$$

108 $m \approx 80 kg$ $h \approx 1.8m$ $w \approx 1m$

Jako sporo?

• skaliranje:

bez skaliranja:

$$1m = 1px$$

$$\vec{p}_1 = \begin{bmatrix} 960 \\ 540 \end{bmatrix} px$$

$$\vec{v} = \begin{bmatrix} 600 \\ 0 \end{bmatrix} \frac{px}{s}$$

$$t = 1s$$

$$\vec{p}_2 = \begin{bmatrix} 1560 \\ 540 \end{bmatrix} px$$

Rešenje?

• skaliranje:

bez skaliranja:

$$1m = 1px$$

$$\vec{p}_1 = \begin{bmatrix} 960 \\ 540 \end{bmatrix} px$$

$$\vec{v} = \begin{bmatrix} 600 \\ 0 \end{bmatrix} \frac{px}{s}$$

$$t = 1s$$

$$\vec{p}_2 = \begin{bmatrix} 1560 \\ 540 \end{bmatrix} px$$

108 $m \approx 80 kg$ $d \approx 600 \text{px}$ $h \approx 270 \text{px}$

Rešenje?

• skaliranje:

bez skaliranja:

$$1m = 1px$$

$$\vec{p}_1 = \begin{bmatrix} 960 \\ 540 \end{bmatrix} m$$

$$\vec{v} = \begin{bmatrix} 600 \\ 0 \end{bmatrix} \frac{m}{s}$$

brzina F22

Da bi telo razvilo ovoliku brzinu tokom samo 1s, potrebna je sila: $\lceil 600 \rceil \frac{m}{}$

$$F = 80kg \frac{\begin{bmatrix} 800 \\ 0 \end{bmatrix} \frac{m}{s}}{1s} = \begin{bmatrix} 48000 \\ 0 \end{bmatrix} N$$

potisak mlaznog motora

• skaliranje:

sa skaliranjem:

$$1m = 200px$$

$$\vec{p}_1 = \begin{bmatrix} 4.8 \\ 2.8 \end{bmatrix} m$$

$$\vec{v} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \frac{m}{s}$$

$$t = 1s$$

$$\vec{p}_2 = \begin{bmatrix} 7.8 \\ 2.8 \end{bmatrix} m$$

Odnos se određuje u zavisnosti od primene, a poželjno je da je da bude dinamički izmenljiv (zoom).

 $X = \begin{bmatrix} 200.0 & 0 & 1.0 \\ 0 & 200.0 & 2.0 \\ 0 & 0 & 1 \end{bmatrix}$

prostor ekrana:

$$X = \begin{bmatrix} s_x & 0 & p_x \\ 0 & s_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Što je faktor skaliranja manji, više stane na ekran i obrnuto!

• prostor ekrana:

$$X = \begin{bmatrix} s_x & 0 & p_x \\ 0 & s_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Što je faktor skaliranja manji, više stane na ekran i obrnuto!

• prostor ekrana:

$$X = \begin{bmatrix} s_x & 0 & p_x \\ 0 & s_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

• prostor ekrana:

$$X = \begin{bmatrix} s_x & 0 & p_x \\ 0 & s_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

• prostor ekrana:

$$X = \begin{bmatrix} s_x & 0 & p_x \\ 0 & s_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

• prostor ekrana:

$$X = \begin{bmatrix} s_x & 0 & p_x \\ 0 & s_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Kako sprečiti slobodno kretanje/rotaciju tela u određenim uslovima?

• kontaktna ograničenja: dozvoljeno stanje

• kontaktna ograničenja: nedozvoljeno stanje

• klatna: dozvoljeno stanje

• klatna: nedozvoljeno stanje

• zglobovi (joints): dozvoljeno stanje

• zglobovi (joints): nedozvoljeno stanje

- opruge
- fluidi
- tkanina
- ragdolls
- itd.

• postupak (pipeline):

Primena sile

Integracija

Otkrivanje (narušenja) ograničenja

Rešavanje ograničenja

Prikaz

Pauza

1. Otrkivanje sudara

• karakteristična obeležja geometrije (features)

- temena (veritces)
- ivice (edges)
- stranice (faces)
- šta je spolja, a šta unutra?

- 1. Otrkivanje sudara
 - karakteristična obeležja geometrije (features)

- 1. Otrkivanje sudara
 - normale (3D)

$$\vec{e}_1 = \vec{v}_2 - \vec{v}_1$$

- 1. Otrkivanje sudara
 - normale (3D)

$$\vec{e}_1 = \vec{v}_2 - \vec{v}_1$$

$$\vec{e}_2 = \vec{v}_3 - \vec{v}_2$$

- 1. Otrkivanje sudara
 - normale (3D)

$$\vec{e}_1 = \vec{v}_2 - \vec{v}_1$$

$$\vec{e}_2 = \vec{v}_3 - \vec{v}_2$$

$$\vec{n} = \frac{\vec{e}_2 \times \vec{e}_1}{|\vec{e}_2 \times \vec{e}_1|}$$

- 1. Otrkivanje sudara
 - normale (2D)

$$\vec{e}_1 = \vec{v}_2 - \vec{v}_1 = (x_1, y_1)$$

- 1. Otrkivanje sudara
 - normale (2D)

$$\vec{e}_1 = \vec{v}_2 - \vec{v}_1 = (x_1, y_1)$$

$$\vec{n}_1 = \frac{(y_1, -x_1)}{|(y_1, -x_1)|}$$

1. Otrkivanje sudara

- konveksna ljuska (convex hull):
 - a) poligon (2D)
 - b) poliedar (3D)

- 1. Otrkivanje sudara
 - konveksna ljuska (convex hull):

1. Otrkivanje sudara

pristupi (algoritmi):

- SAT (Separating Axis Test), test razdvajajuće ose
- Gilbert–Johnson–Keerthi distance algoritam + Expanding Polytope Algorithm

- oslanjaju se na postojanje konveksnih ljuski!

- 1. Otrkivanje sudara
 - Separating Axis Theorem:

"Ako postoji prava, duž koje se projekcije tela ne preklapaju, tela se ne sudaraju, a ta prava je za njih razdvajajuća osa."

nije razdvajajuća osa (možda neka druga jeste)

- 1. Otrkivanje sudara
 - Separating Axis Test:

- 1. Otrkivanje sudara
 - Separating Axis Test:

Skalarni proizvod

$$\vec{v}_2 \cdot \vec{x} - \vec{v}_1 \cdot \vec{x} > 0$$

Ne postoji kontakt!

 $\vec{v}_2 \cdot \vec{x} - \vec{v}_1 \cdot \vec{x}$

- 1. Otrkivanje sudara
 - Separating Axis Test:

Skalarni proizvod

$$\vec{v}_2 \cdot \vec{x} - \vec{v}_1 \cdot \vec{x} \le 0$$

Postoji kontakt!

 $\vec{v}_2 \cdot \vec{x} - \vec{v}_1 \cdot \vec{x}$

- 1. Otrkivanje sudara
 - Separating Axis Test:

Vektor rastojanja:

$$\vec{d} = \vec{v}_2 - \vec{v}_1$$

- 1. Otrkivanje sudara
 - Separating Axis Test:

Vektor rastojanja:

$$\vec{d} = \vec{v}_2 - \vec{v}_1$$

- 1. Otrkivanje sudara
 - Separating Axis Test:

Skalarni proizvod

$$\vec{d} \cdot \vec{x} > 0$$

Ne postoji kontakt!

- 1. Otrkivanje sudara
 - Separating Axis Test:

Skalarni proizvod

$$\vec{d} \cdot \vec{x} \le 0$$

Postoji kontakt!

- 1. Otrkivanje sudara
 - Separating Axis Test:

Koliko osa postoji? Koliko osa treba ispitati?

- 1. Otrkivanje sudara
 - Separating Axis Test:

U 2D prostoru dovoljno je ispitati normale stranica konveksne ljuske!

- 1. Otrkivanje sudara
 - Separating Axis Test:

$$\vec{d} = \vec{v}_1 - \vec{c}$$

Dovesti geometriju tela u isti prostor!

- 1. Otrkivanje sudara
 - Separating Axis Test:

$$\vec{d} = \vec{v}_1 - \vec{c}$$

$$p = \vec{n}_3 \cdot \vec{d}$$

- 1. Otrkivanje sudara
 - Separating Axis Test:

$$\vec{d} = \vec{v}_1 - \vec{c}$$

$$p = \vec{n}_3 \cdot \vec{d}$$

$$s = p - r$$

Nije razdvajajuća osa!

- 1. Otrkivanje sudara
 - Separating Axis Test:

$$\vec{d} = \vec{v}_1 - \vec{c}$$

- 1. Otrkivanje sudara
 - Separating Axis Test:

$$\vec{d} = \vec{v}_1 - \vec{c}$$

$$p = \vec{n}_2 \cdot \vec{d}$$

- 1. Otrkivanje sudara
 - Separating Axis Test:

$$\vec{d} = \vec{v}_1 - \vec{c}$$

$$\vec{p} = \vec{n}_2 \cdot \vec{d}$$

$$s = p - r$$

Jeste razdvajajuća osa! Dalje provere nisu potrebne!

- 1. Otrkivanje sudara
 - Separating Axis Test:

Razdvajajuća osa se traži za sva temena jednog tela naspram svih temena drugih tela po svim normalama stranica oba tela.

Šta ako se razdvajajuća osa ne nađe?

- 1. Otrkivanje sudara
 - Separating Axis Test:
- 1. Uzima se najveće negativno rastojanje s (najmanje po apsolutnoj vrednosti).

- 1. Otrkivanje sudara
 - Separating Axis Test:
- Uzima se najveće negativno rastojanje s (najmanje po apsolutnoj vrednosti).
- 2. Čuvaju se:
 - normala sudara
 - negativno rastojanje (upad)
 - temena oba tela

- 1. Otrkivanje sudara
 - Separating Axis Test:

Za 3D prostor, potrebno je tražiti i razdvajajuću osu među vektorskim proizvodima svih normala stranica!

1. Otrkivanje sudara

- Separating Axis Test:
- + eksplicitan geometrijski pristup rešavanju
- + usput nalazi sve što je potrebno za opis sudara
- + čim se nađe razdvajajuća osa, pretraga se završava, a to se mnogo češće dešava od suprotnog slučaja (efikasnost).
- treba pokriti mnogo specijalnih slučajeva, naročito u 3D prostoru

Rešavanje ograničenja

Pokušaj #1 (bez rotacije u ovom primeru):

Rešavanje ograničenja Pokušaj #1 (bez rotacije u ovom primeru):

1. korekcija pozicija

Rešavanje ograničenja

Pokušaj #1 (bez rotacije u ovom primeru):

- 1. korekcija pozicija
- 2. izračunavanje brzina (zakon održanja impulsa)

$$\vec{v}_1(t + \Delta t) = \frac{\vec{v}_1(m_1 - m_2) + 2m_2\vec{v}_2}{m_1 + m_2}$$

$$\vec{v}_2(t + \Delta t) = \frac{\vec{v}_2(m_2 - m_1) + 2m_1\vec{v}_1}{m_1 + m_2}$$

Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  if narusenaOgranicenja()
     resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  if narusenaOgranicenja()
     resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  if narusenaOgranicenja()
     resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  if narusenaOgranicenja()
     resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  if narusenaOgranicenja()
     resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  if narusenaOgranicenja()
     resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja Pokušaj #1:

- + jednostavan za implementaciju
- + dovoljan za sporadične pojave sudara
- rešava se svako ograničenje za sebe, pa ne može da reši složen sistem ograničenja
- rešavanje ograničenja se izvodi na nivou položaja (nultog izvoda) – neprecizna simulacija

Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while harusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

```
while true
  primenaSile();
  integracija();
  while narusenaOgranicenja()
    resavanjeOgranicenja();
  end
  prikaz();
  pauza();
end
```


Rešavanje ograničenja

- + jednostavan za implementaciju
- + rešava složenije sisteme ograničenja
- spor (i za malo veći broj ograničenja)
- rešavanje ograničenja se izvodi na nivou položaja (nultog izvoda) – neprecizna simulacija

Rešavanje ograničenja

- definisati apstraktni model ograničenja (tako da različite vrste ograničenja imaju isti oblik)
- 2. napraviti sistem jednačina svih ograničenja
- 3. naći rešenje sistema (istovremeno rešiti sva ograničenja)
- primeniti rešenje sistema modifikujući silu koja deluje na telo pre integracije
- 5. pri integraciji kretanje tela će odvijati na dozvoljen način tako da ne narušava ograničenja

• postupak (pipeline):

Primena sile

Otkrivanje (narušenja) ograničenja

Rešavanje ograničenja

Integracija

Prikaz

Pauza

 Modelovanje ograničenja (odabrani primer)

Kontaktno ograničenje za 2 kruga (pairwise):

$$c(\vec{p}_1, \vec{p}_2) = 0$$
$$(\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1 = 0$$

 Modelovanje ograničenja (odabrani primer)

Da bi stanje ostalo nepromenjeno:

$$c(\vec{p}_1, \vec{p}_2) = 0$$

1. izvod ograničenja ne sme da se menja:

$$\frac{dc}{dt} = 0$$

 Modelovanje ograničenja (odabrani primer)

Ograničenja su već narušena:

$$c(\vec{p}_1, \vec{p}_2) < 0$$

 Modelovanje ograničenja (odabrani primer)

pretpostavka:

ograničenja su zadovoljena

$$c = 0$$

rešavamo:

$$\frac{dc}{dt} = 0$$

rešenje će biti takve brzine da položaji ostanu nepromenjeni

neispravni položaji

2. Modelovanje ograničenja (odabrani primer)

Baumgarte stabilization (J. Baumgarte):

pretpostavka:

ograničenja su narušena

rešavamo:

$$\frac{dc}{dt} + \frac{c}{\Delta t} = 0$$

rešenje će biti takve brzine da položaji budu korigovani

korigovani položaji

 Modelovanje ograničenja (odabrani primer)

Baumgarte stabilization:

pretpostavka:

ograničenja su narušena c < 0

rešavamo:

$$\frac{dc}{dt} + \beta \frac{c}{\Delta t} = 0$$

ograničiti uvođenje energije

$$0 \le \beta \le 1$$

pri integraciji se uvode greške, pa položaji neće biti u potpunosti korigovani onako kako je to određeno brzinama (*numerical drift*), tj. može doći do uvođenja energije u sistem

rešenje će biti takve brzine da položaji budu korigovani

korigovani položaji

unapred definisana konstanta

Modelovanje ograničenja (odabrani primer)

$$c(\vec{p}_1, \vec{p}_2) = (\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1$$

rešavamo:

poluprečnici se ne menjaju

$$\frac{dc}{dt} + \beta \frac{c}{\Delta t} = 0$$

$$\frac{dc}{dt} = -\beta \frac{c}{\Delta t}$$
normala se ne menja
$$\frac{d}{dt} \left((\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1 \right) = -\beta \frac{c}{\Delta t}$$

$$\frac{d}{dt} \left((\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1 + (\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \frac{d}{dt} \vec{n}_1 = -\beta \frac{c}{\Delta t}$$

$$\left(\frac{d}{dt} \vec{p}_2 + \frac{d}{dt} \vec{r}_2 - \frac{d}{dt} \vec{p}_1 - \frac{d}{dt} \vec{r}_1 \right) \cdot \vec{n}_1 = -\beta \frac{c}{\Delta t}$$
nolunrečnici se ne menjaju

Modelovanje ograničenja (odabrani primer)

$$c(\vec{p}_1, \vec{p}_2) = (\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1$$

rešavamo:

$$-\vec{v}_1 \cdot \vec{n}_1 + \vec{v}_2 \cdot \vec{n}_1 = -\beta \frac{c}{\Delta t}$$
tražimo poznato

Modelovanje ograničenja (odabrani primer)

$$\sigma = (\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1$$

rešavamo:

izračunato pri otkrivanju sudara

$$-\vec{v}_1 \cdot \vec{n}_1 + \vec{v}_2 \cdot \vec{n}_1 = -\beta \frac{\sigma}{\Delta t}$$
tražimo poznato

Modelovanje ograničenja (odabrani primer)

$$c(\vec{p}_1, \vec{p}_2) = (\vec{p}_2 + \vec{r}_2 - (\vec{p}_1 + \vec{r}_1)) \cdot \vec{n}_1$$

vektorski:

$$-\vec{v}_1\cdot\vec{n}_1+\vec{v}_2\cdot\vec{n}_1=-\beta\frac{\sigma}{\Delta t}$$
 drugačiji oblik za različita ograničenja
$$[-\vec{n}_1\quad\vec{n}_1]\begin{bmatrix}\vec{v}_1\\\vec{v}_2\end{bmatrix}=-\beta\frac{\sigma}{\Delta t}$$
 uvek isto
$$jv=-\beta\frac{\sigma}{\Delta t}$$

 Modelovanje ograničenja (odabrani primer)

Za složen sistem:

$$\begin{bmatrix} -\vec{n}_1 & \vec{n}_1 \end{bmatrix} \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix} = -\beta \frac{\sigma_1}{\Delta t}$$
$$\begin{bmatrix} -\vec{n}_2 & \vec{n}_2 \end{bmatrix} \begin{bmatrix} \vec{v}_2 \\ \vec{v}_3 \end{bmatrix} = -\beta \frac{\sigma_2}{\Delta t}$$
$$\vdots$$

Modelovanje ograničenja (odabrani primer)

Sistem 1. izvoda ograničenja:

$$\begin{bmatrix} -\vec{n}_1 & \vec{n}_1 \end{bmatrix} \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix} = -\beta \frac{\sigma_1}{\Delta t}$$

$$\begin{bmatrix} -\vec{n}_2 & \vec{n}_2 \end{bmatrix} \begin{bmatrix} \vec{v}_2 \\ \vec{v}_3 \end{bmatrix} = -\beta \frac{\sigma_2}{\Delta t}$$

$$\vdots$$

$$\begin{bmatrix} -\vec{n}_n & \vec{n}_n \end{bmatrix} \begin{bmatrix} \vec{v}_n \\ \vec{v}_{n+1} \end{bmatrix} = -\beta \frac{\sigma_n}{\Delta t}$$

Modelovanje ograničenja (odabrani primer)

 $\begin{bmatrix} -n_{1x} & -n_{1y} & n_{1x} & n_{1y} \end{bmatrix} \begin{vmatrix} v_{1x} \\ v_{1y} \\ v_{2x} \\ v_{2x} \end{vmatrix} = -\beta \frac{\sigma_1}{\Delta t}$

Prošireno za svaku dimenziju vektora:
$$[-n_{2x} \quad -n_{2y} \quad n_{2x} \quad n_{2y}] \begin{bmatrix} v_{2x} \\ v_{2y} \\ v_{3x} \\ v_{3y} \end{bmatrix} = -\beta \frac{\sigma_2}{\Delta t}$$
 :

 $\begin{bmatrix} -n_{nx} & -n_{ny} & n_{nx} & n_{ny} \end{bmatrix} \begin{vmatrix} v_{nx} \\ v_{ny} \\ v_{(n+1)x} \end{vmatrix} = -\beta \frac{\sigma_n}{\Delta t}$

2. Modelovanje ograničenja (odabrani primer)

ograničenja brzine (upadi)

narušenja

$$\begin{bmatrix} v_{1x} & v_{1y} & v_{2x} & v_{2y} \dots \\ -n_{1x} & -n_{1y} & n_{1x} & n_{1y} & 0 & 0 \\ 0 & 0 & -n_{2x} & -n_{2y} & n_{2x} & n_{2y} \\ \vdots & & & \ddots & & \vdots \\ 0 & 0 & 0 & -n_{nx} & -n_{ny} & n_{nx} & n_{ny} \end{bmatrix} \begin{bmatrix} v_{1x} \\ v_{1y} \\ v_{2x} \\ v_{2y} \\ \vdots \\ v_{nx} \\ v_{ny} \end{bmatrix} = -\beta \frac{1}{\Delta t} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix}$$

$$JV = -\beta \frac{1}{\Delta t} S$$

Da bi narušenje ograničenja <u>bilo rešeno</u> brzina u pravcu narušavanja ograničenja mora da poništi narušenje ograničenja.

3. Rešavanje ograničenja:

Potrebno je izračunati silu koja će poništiti narušenje ograničenja!

3. Rešavanje ograničenja:

$$\frac{d^2\vec{p}(t)}{dt^2} = \frac{\vec{F}(t)}{m}$$
$$\frac{d\vec{v}(t)}{dt} = \frac{\vec{F}(t)}{m}$$

matrično:

2. Njutnov zakon!

$$\frac{dV}{dt} = \frac{1}{M}F \leftarrow \text{ukupna sila}$$

$$\uparrow$$
2. izvod
položaja

3. Rešavanje ograničenja:

$\frac{d^2\vec{p}(t)}{dt^2} = \frac{\vec{F}(t)}{m}$ $\frac{d\vec{v}(t)}{dt} = \frac{\vec{F}(t)}{m}$

matrično:

$$\frac{dV}{dt} = \frac{1}{M}F$$

$$\frac{dV}{dt} = \frac{1}{M}(F_{ext} + F_c) \leftarrow \text{tražena}$$

$$\uparrow \qquad \qquad \qquad \text{korektivna sila}$$
2. izvod poznata poznata
položaja masa spoljašnja sila

3. Rešavanje ograničenja:

$$\frac{d^{2}\vec{p}(t)}{dt^{2}} = \frac{\vec{F}(t)}{m}$$
$$\frac{d\vec{v}(t)}{dt} = \frac{\vec{F}(t)}{m}$$

1. izvod položaja

1. rešenje: diferencirati još jednom matrično:

$$\frac{dV}{dt} = \frac{1}{M}F$$

$$\frac{dV}{dt} = \frac{1}{M}(F_{ext} + F_c) \leftarrow \text{tražena}$$
korektivna sila

1
2. izvod poznata poznata
položaja masa spoljašnja sila

Rezultat: izvod Jakobijana se komplikuje!

3. Rešavanje ograničenja:

$$\frac{d^2\vec{p}(t)}{dt^2} = \frac{\vec{F}(t)}{m}$$
$$\frac{d\vec{v}(t)}{dt} = \frac{\vec{F}(t)}{m}$$

poznati poznato pravac narušenja narušenje ograničenja ograničenja $IV(t+\Delta t)=-\beta \frac{1}{\Delta t}S$

matrično:

$$\frac{dV}{dt} = \frac{1}{M}F$$

$$\frac{V(t + \Delta t) - V}{\Delta t} = \frac{1}{M}(F_{ext} + F_c) \leftarrow \text{tražena korektivna silator poznata poznata trenutna masa spoljašnja sila brzina}$$

brzina u narednom vremenskom trenutku

rešenje: konačna razlika

Rezultat: uvodi se aproksimacija!

3. Rešavanje ograničenja:

$$V(t + \Delta t) = -\beta \frac{1}{dt} J^T S$$

$$\frac{d^2\vec{p}(t)}{dt^2} = \frac{\vec{F}(t)}{m}$$
$$\frac{d\vec{v}(t)}{dt} = \frac{\vec{F}(t)}{m}$$

matrično:

$$\frac{dV}{dt} = \frac{1}{M}F$$

$$V(t + \Delta t) - V = \Delta t \frac{1}{M} (F_{ext} + F_c)$$

3. Rešavanje ograničenja:

$$-\beta \frac{1}{\Delta t} J^T S - V = \Delta t \frac{1}{M} (F_{ext} + F_c)$$

3. Rešavanje ograničenja: Korektivne sile:

$$F_c \perp V(t + \Delta t)$$

- poništavaju deo trenutne brzine koji narušava ograničenje
- ne deluju duž pravca dozvoljene brzine, već normalno na njega
- ne dodaju energiju u sistem (vrše virtuelni rad)

3. Rešavanje ograničenja: Korektivne sile:

$$F_c \perp V(t + \Delta t)$$

- poništavaju deo trenutne brzine koji narušava ograničenje
- ne deluju duž pravca dozvoljene brzine, već normalno na njega
- ne dodaju energiju u sistem (vrše virtuelni rad)

3. Rešavanje ograničenja:

svaka vrsta Jakobijana je normalna na rezultujuće brzine

$$\frac{dc}{dt} = 0$$

$$JV(t + \Delta t) = 0$$

Ako je:

korektivne sile su $F_C \perp V(t + \Delta t) \leftarrow \text{normalne na}$ rezultujuće brzine

Tada važi:

korektivne sile tada moraju biti paralelne sa vrstama od J^T $F_C = J^T \lambda$ pravac intenzitet

3. Rešavanje ograničenja:

$$-\beta \frac{1}{\Delta t} J^T S - V = \Delta t \frac{1}{M} (F_{ext} + F_c)$$

3. Rešavanje ograničenja:

$$-\beta \frac{1}{\Delta t} J^T S - V = \Delta t \frac{1}{M} (F_{ext} + J^T \lambda)$$

3. Rešavanje ograničenja:

$$-\beta \frac{1}{\Delta t} J^T S - V = \Delta t \frac{1}{M} (F_{ext} + J^T \lambda)$$

$$-\beta \frac{1}{\Delta t} J^T S - V = \Delta t \frac{1}{M} F_{ext} + \Delta t \frac{1}{M} J^T \lambda$$

$$\Delta t \frac{1}{M} J^T \lambda = -\beta \frac{1}{\Delta t} J^T S - V - \Delta t \frac{1}{M} F_{ext}$$

$$J \frac{1}{M} J^T \lambda = -\beta \frac{1}{\Delta t^2} S - \frac{1}{\Delta t} J V - J \frac{1}{M} F_{ext}$$

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

Šta je poznato a šta nepoznato?

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

efektivna inverzna masa

koliko ubzanje je potrebno da reši trenutno narušenje ograničenja?

koliko ubzanje je potrebno da spreči dalje narušavanje ograničenja pod uticajem trenutne brzine?

$$\frac{m}{s^2}$$

koliko ubzanje je potrebno da spreči dalje narušavanje ograničenja pod uticajem spoljašnje sile?

$$\frac{1}{kg}$$

$$\frac{m}{s^2}$$

$$\frac{1}{kg}\frac{kg \cdot m}{s^2} = \frac{m}{s^2}$$

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

efektivna inverzna masa

koliko ubzanje je potrebno da reši trenutno narušenje ograničenja?

koliko ubzanje je potrebno da spreči dalje narušavanje ograničenja pod uticajem trenutne brzine?

 $\frac{m}{s^2}$

vektor $n \times 1!$

koliko ubzanje je potrebno da spreči dalje narušavanje ograničenja pod uticajem spoljašnje sile?

$$\frac{1}{kg}\frac{kg \cdot m}{s^2} = \frac{m}{s^2}$$

vektor n \times 1!

$$\frac{1}{kg}$$

matrica $n \times n!$

 $\frac{m}{s^2}$

vektor n \times 1!

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

$$A\lambda = b$$

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

$$A\lambda = b$$
$$\lambda = A \setminus b$$

rešavanje sistema liearnih algebarskih jednačina

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

$$A\lambda = b$$
$$\lambda = A \setminus b$$

$$F_c = J^T \lambda$$

Na 1. korektivu silu utiče množilac samo 1. ograničenja

Na 2. korektivu silu utiču

$$F_c = J^T \lambda$$

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta\frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

$$A\lambda = b$$

$$\lambda = A\backslash b$$
 rešavanje sistema liearnih algebarskih jednačina

integracija:

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{ext} + \vec{F}_c}{m}$$
$$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_i$$

3. Rešavanje ograničenja:

Ograničenja tipa jednakosti (equality constraints):

$$c(\vec{p}_1, \vec{p}_2) = 0$$

rezultujuća pozitivna (odgurujuća) sila F_c

3. Rešavanje ograničenja:

Ograničenja tipa jednakosti (equality constraints):

$$c(\vec{p}_1,\vec{p}_2)=0$$

Sprečen upad!

3. Rešavanje ograničenja:

Ograničenja tipa jednakosti (equality constraints):

$$c(\vec{p}_1,\vec{p}_2)=0$$

Sprečeno i odvajanje!

rezultujuća negativna (privlačeća) sila F_c

3. Rešavanje ograničenja:

Ograničenja tipa jednakosti (equality constraints):

$$c(\vec{p}_1, \vec{p}_2) = 0$$

Sprečeno i odvajanje!

3. Rešavanje ograničenja:

Ograničenja tipa jednakosti (equality constraints):

$$c(\vec{p}_1, \vec{p}_2) = 0$$

npr. krute veze (distance joints)!

3. Rešavanje ograničenja:

Ograničenja tipa jednakosti (equality constraints):

$$c(\vec{p}_1, \vec{p}_2) = 0$$

npr. krute veze (distance joints)!

3. Rešavanje ograničenja:

Ograničenja tipa nejednakosti (inequality constraints):

$$c(\vec{p}_1, \vec{p}_2) \ge 0$$

npr. kontaktna ograničenja!

3. Rešavanje ograničenja:

Ograničenja tipa nejednakosti (inequality constraints):

$$c(\vec{p}_1, \vec{p}_2) \leq 0$$

npr. klatna (pendulums)!

- 3. Rešavanje ograničenja:
 - sistem linearnih algebarskih jednačina

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$
$$A\lambda = b$$

Rešava samo sistem ograničenja tipa jednakosti!

3. Rešavanje ograničenja:

Jednakost: c(...) = 0

Nejednakost tipa \geq : $c(...) \geq 0$

Nejednakost tipa \leq : $c(...) \leq 0$

3. Rešavanje ograničenja:

Jednakost: $A\lambda = b$

Nejednakost tipa \geq : $A\lambda \geq b$

Nejednakost tipa \leq : $A\lambda \leq b$

- 3. Rešavanje ograničenja:
 - I. prevođenje nejednakosti u jednakosti

```
traži se (teži da proizvede F_c) slack promenljiva (jednakost i nejednakosti važe)
```

Jednakost: $\lambda \lambda + F_c = b$ $F_c = 0$

Nejednakost tipa \geq : $A\lambda + F_c = b$ $F_c \leq 0$

Nejednakost tipa \leq : $A\lambda + F_c = b$ $F_c \geq 0$

- 3. Rešavanje ograničenja:
 - I. prevođenje nejednakosti u jednakosti

```
nađeno (proizvodi F_c) slack promenljiva (sada je višak)

Jednakost: A\lambda + F_c = b F_c = 0 -\infty \le \lambda \le \infty

Nejednakost tipa \ge: A\lambda + F_c = b F_c = 0 0 \le \lambda \le \infty

Nejednakost tipa \le: A\lambda + F_c = b F_c = 0 -\infty \le \lambda \le 0
```

• ograničenja su zadovoljena ako i samo ako je λ u svojim granicama (nema sile F_c koja bi trebalo da deluje)

- 3. Rešavanje ograničenja:
 - I. prevođenje nejednakosti u jednakosti
 - II. uopštenje graničnih vrednosti λ da bi bile izmenljive

```
nađeno (proizvodi F_c) slack promenljiva (sada je višak)

Jednakost: A\lambda + F_c = b F_c = 0 \lambda_{min} \leq \lambda \leq \lambda_{max}

Nejednakost tipa \geq: A\lambda + F_c = b F_c = 0 \lambda_{min} \leq \lambda \leq \lambda_{max}

Nejednakost tipa \leq: A\lambda + F_c = b F_c = 0 \lambda_{min} \leq \lambda \leq \lambda_{max}
```

• ograničenja su zadovoljena ako i samo ako je λ u svojim granicama (nema sile F_c koja bi trebalo da deluje)

- 3. Rešavanje ograničenja:
 - I. prevođenje nejednakosti u jednakosti
 - II. uopštenje graničnih vrednosti λ da bi bile izmenljive
 - III. komplementarnost

dostiglo granice (ne može da proizvede F_c) slack promenljiva (jednakost i nejednakosti više ne važe)

Jednakost:
$$A\lambda + F_c = b$$
 $F_c \neq 0$ $\lambda_{min} = \lambda$ V $\lambda = \lambda_{max}$ Nejednakost tipa \geq : $A\lambda + F_c = b$ $F_c \geq 0$ $\lambda_{min} = \lambda$ Nejednakost tipa \leq : $A\lambda + F_c = b$ $A\lambda + B\lambda = 0$ $\lambda_{max} = \lambda_{max}$

• ograničenja su narušena ako i samo ako je λ dostiglo svoje granice (postoji sila F_c koja bi trebalo da deluje)

3. Rešavanje ograničenja:

(mešoviti) linearni komplementarni problem (MLCP)

$$J\frac{1}{M}J^{T}\lambda + F_{c} = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

mixed linear complementarity problem

$$A\lambda + F_{c} = b$$

$$F_{c_{i}} = 0 \iff \lambda_{min_{i}} \leq \lambda_{i} \leq \lambda_{max_{i}} , \forall i \in N$$

$$F_{c_{i}} \geq 0 \iff \lambda_{i} = \lambda_{min_{i}} , \forall i \in N$$

$$F_{c_{i}} \leq 0 \iff \lambda_{i} = \lambda_{max_{i}} , \forall i \in N$$

- ograničenja su zadovoljena ako i samo ako je λ u svojim granicama (nema sile F_c koja bi trebalo da deluje)
- ograničenja su narušena ako i samo ako je λ dostiglo svoje granice (postoji sila F_c koja bi trebalo da deluje)

3. Rešavanje ograničenja:

• (mešoviti) linearni komplementarni problem (MLCP)

c() = 0	$c() \ge 0$	$c() \leq 0$
$-\infty < \lambda < \infty$	$\lambda \geq 0$	$\lambda \leq 0$

$$c_{1}(\dots) = 0$$

$$c_{2}(\dots) \geq 0$$

$$c_{3}(\dots) \leq 0 \qquad \lambda_{min} = \begin{bmatrix} -\infty \\ 0 \\ -\infty \end{bmatrix} \lambda_{max} = \begin{bmatrix} \infty \\ \infty \\ 0 \\ \vdots \\ \infty \end{bmatrix}$$

$$\vdots$$

$$c_{n}(\dots) = 0$$

Drugim rečima:

Traži se λ samo u opsezima u kojima dati tip ograničenja treba zadovoljiti!

- 3. Rešavanje ograničenja:
 - Gauss-Seidel metoda (rešava sistem linearnih algebarskih jednačina):

end

end

Ograničeno kretanje

3. Rešavanje ograničenja:

• Projected Gauss-Seidel metoda (rešava MLCP):

postoje i drugi algoritmi, među kojima je najpoznatiji Lemke algoritam (*Carlton E. Lemke*)

3. Rešavanje ograničenja:

$$J\frac{1}{M}J^{T}\lambda = -\beta \frac{1}{\Delta t^{2}}S - \frac{1}{\Delta t}JV - J\frac{1}{M}F_{ext}$$

$$A\lambda = b$$

$$\lambda = A \setminus b$$

$$F_{c} = J^{T}\lambda$$
 rešavanje MLCP sa poznatim
$$\lambda_{min} i \lambda_{max}$$

integracija:

$$\vec{v}_i = \vec{v}_{i-1} + \Delta t \frac{\vec{F}_{ext} + \vec{F}_c}{m}$$
$$\vec{p}_i = \vec{p}_{i-1} + \Delta t \vec{v}_i$$

3. Rešavanje ograničenja:

- keširanje kontakata (contact caching):
- + velika je verovatnoća da će rešenje u narednom trenutku biti blizu rešenja u prošlom. Keširanjem se dramatično smanjuje broj potrebnih iteracija.
- + ako je sistem ograničenja peodređen, ima beskonačno mnogo rešenja. Bez keširanja se u svakom trenutku nalazi novo rešenje. Ovo prouzrokuje jiggle efekat.
- ograničenja se formiraju u svakom vremenskom trenutku. Vektor λ u narednom vremenskom trenutku može imati više ili manje elemenata, a elementi se mogu javiti u drugačijem redosledu. Potrebno je za svako ograničenje pronaći odgovarajući element vektora λ iz prošlog vremenskog trenutka. Problem se svodi na pretragu.

3. Rešavanje ograničenja:

• keširanje kontakata (contact caching):

```
trenutak \Delta t:

lambda1 = projectedGS(A, b, 0, lambdaMin, lambdaMax, iterations, 10^-4);

trenutak 2\Delta t:

lambda2 = projectedGS(A, b, lambda1, lambdaMin, lambdaMax, iterations, 10^-4);

trenutak 3\Delta t:

lambda3 = projectedGS(A, b, lambda2, lambdaMin, lambdaMax, iterations, 10^-4);
```


3. Rešavanje ograničenja:

- deo sile koji postoji isključivo da bi poništio narušenje ograničenja biva integrisan u brzinu
- brzina biva integrisana i položaj i već u tekućoj iteraciji se narušenje poništava
- "višak" brzine (koji nije potekao od spoljašnje sile) se prenosi u narednu iteraciju (energija se akumulira) i prouzrokuje nestabilnost

"veštački" uveden faktor da bi poništio narušenje ograničenja jer:

1. ono biva otkriveno nakon što se desi

2. čak i da 1. nije slučaj, desilo bi se usled numeričkih grešaka integracija:

- je $J\frac{1}{M}J^{T}\lambda_{v} = -\frac{1}{\Delta t}JV J\frac{1}{M}F_{ext}$ $A\lambda_{v} = b_{v}$ $A\lambda_{v} = A \setminus b_{v}$ (prostor za optimizaciju) $F_{cv} = J^{T}\lambda_{v}$
- 3. Rešavanje ograničenja:
- I. razdovjiti problem
- II. integrisati deo sile koja vrši korekciju brzine kao i do sada
- III. integrisati deo sile koja vrši korekciju položaja direktno u položaj

$$J\frac{1}{M}J^{T}\lambda_{p} = -\beta \frac{1}{\Delta t^{2}}S$$

$$A\lambda_{p} = b_{p}$$

$$\lambda_{p} = A \setminus b_{p}$$

$$F_{cp} = J^{T}\lambda_{p}$$

integracija:

$$V(t + \Delta t) = V + \Delta t \frac{F_{ext} + F_{cv}}{m}$$

$$P(t + \Delta t) = P + \Delta t \left(V(t + \Delta t) + \Delta t \frac{F_{cp}}{m}\right)$$

- 3. Rešavanje ograničenja:
 - kontaktna ograničenja:

- 3. Rešavanje ograničenja:
 - kontaktna ograničenja:

$$J\frac{1}{M}J^T\lambda_p = -\beta\frac{1}{\Delta t^2}S$$

Sprečiti razrešavanje malog dela upada (ograničenje se održava aktivnim):

$$S = \sigma + \sigma_{slop}$$

†

realni upad

(negatvna vrednost)

 $0 < \sigma_{slop} \ll 1$

- 3. Rešavanje ograničenja:
 - kontaktna ograničenja:

$$J\frac{1}{M}J^{T}\lambda_{p} = -\beta \frac{1}{\Delta t^{2}}S$$

sprečiti da suma bude pozitivna:

$$S = min(\sigma + \sigma_{slop}, 0)$$

Demo

https://github.com/mbeocanin/MLCP-Particle-Phyiscs-Sandbox

Pitanja

© 2021 Miloš Beočanin

https://github.com/mbeocanin