

CRIATIVIDADE: PERSONALIZAÇÃO DE MÁSCARA COM SECADOR CASO

- L Paciente do sexo masculino, 36A, C31, lesão em fossa nasal
- Ly Prescrição: 3000 cGy (10 × 300 cGy) em fossa nasal

SIMULAÇÃO E ACESSÓRIOS

- La Decúbito dorsal, *head first*
- La Máscara termoplástica curta + apoio de cabeça + extensor de ombros
- Slice da CT: 2,5 mm

Ly CTV 10x300cGy, PTV 10x304cGy, Cristalino (E), Olho (E), Tronco (PRV), PRV VV00 (Quiasma + Nervos Ópticos), Quiasma, Olho (D).

Le Em função do acometimento do olho direito, o paciente perdeu parte da visão. Dessa maneira, o cristalino direito não foi desenhado e o olho direito não foi considerado como órgão crítico. O olho esquerdo e o cristalino esquerdo foram fortemente otimizados para preservar parte da visão do paciente, mesmo em se tratando de um tratamento paliativo.

DEFINIÇÃO DOS PONTOS

MARCADOR CT → X: 0.00 Y: 9.73 Z: 0.00

ISOCENTRO → X: -1.00 Y: 5.73 Z: 9.50

La Deslocamento do primeiro dia (1.0, 4.0 e 9.5)

CONFIGURAÇÃO DE CAMPOS

ACELERADOR → Synergy

IGRT: Imagem Portal (iView)

ENERGIA → 6 MV

GEOMETRIA → 2 arcos (ida e volta)

CAMPO	1_CW	2_CW
Gantry	40° ⇄ 180°	0° ⇄ 180°
Incremento	15°	15°
Colimador	10°	350°
Mesa *	O°	O°

* Não foi usado arco não-coplanar por se tratar de um tratamento paliativo

PROPRIEDADES DE CÁLCULO E SEGMENTAÇÃO

 $MODO \rightarrow Dose to medium$

GRADE DE CÁLCULO → 0.30 [1] [2]

INCERTEZA DE DOSE → 1% por cálculo

CONTROL POINTS | COMP. SEGMENTO → 180 *control points* | 1 cm

Em função do crescimento da lesão, a máscara ficou apertada. No primeiro dia, foi usado um secador para amolecer um pouco a região da lesão para que o paciente pudesse suportar o tratamento.

ESTRATÉGIAS DE OTIMIZAÇÃO

L Modo → Otimização por restrição nas duas fases, MCO ativo nas duas fases.

L PTV 10x300 cGy

Target Penalty (3000 cGy, 98% de volume, surface margim, p = 50)

L Cristalino

Maximum Dose (500 cGy, Opt. Over All Voxels, p = 1)

L Olho Esquerdo

QOD (3000 cGy, RMS = 2, SM = 0, p = 1) I Parallel (1000 cGy, 40%, PLE = 3, SM = 0.0, p = 5) Parallel (2000 cGy, 10%, PLE = 3, SM = 0.0, p = 5)

L Cérebro - PTV

QOD (3000 cGy, RMS = 2, SM = 0, p = 1) I Parallel (1500 cGy, 45%, PLE = 3, SM = 0.0, p = 30) Parallel (750 cGy, 45%, PLE = 3, SM = 0.0, p = 10)

L Patient

QOD (3000, RMS = 2, SM = 0.1) I QOD (2500, RMS = 2, SM = 0.5) I QOD (2000, RMS = 2, SM = 1.0) I Maximum Dose (2250 cGy, SM = 1.8, p = 1) Maximum Dose (3300 cGy - 110% - Opt. Over All Voxels, p = 20)

NORMALIZAÇÃO → 3000 cGy cobrindo 95% do PTV 10x300

DISTRIBUIÇÃO DE ISODOSES

ESTATÍSTICAS DO DVH

ESTRUTURA	DESCRITOR DVH	IDEAL	ACEITÁVEL	RESULTADO	VALOR
PTV 10x300 CGY	D95% [Gy]	>= 30.00 (100%)	>= 29.40 (98%)		30.00 Gy
	D0.03% [Gy]	<= 32.40 (108%)	<= 33.00 (110%)		31.87 Gy
PRV VVOO	Máx [Gy]	50 Gy	50 Gy		30.85 Gy
QUIASMA	Máx [Gy]	50 Gy	54 Gy		29.96 Gy
TRONCO PRV	Máx [Gy]	59 Gy	59 Gy		29.89 Gy
OLHO E	Máx [Gy]	<= 7 Gy	<= 10 Gy		28.08 Gy
CRISTALINO E	Máx [Gy]	<= 7 Gy	<= 10 Gy		4.53 Gy

REFERÊNCIAS

- [1] WOLFF, Dirk. *Monaco TPS Advanced Workshop*, Istanbul. 2019.
- [2] PRAH, Douglas. *Guidelines for Monaco VMAT/IMRT Optimization*. Wisconsin. 2022