Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_tehnologic*Barem de evaluare și de notare

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1+\sqrt{2})^2 = 3+2\sqrt{2}$ $3+2\sqrt{2}-2\sqrt{2}=3$	3p
	$3 + 2\sqrt{2} - 2\sqrt{2} = 3$	2 p
2.	$f(x) = 0 \Rightarrow x - 1 = 0$	3 p
	Coordonatele punctului de intersecție sunt $x = 1$ și $y = 0$	2 p
3.	x+1=2	3 p
	x=1	2p
4.	Numerele naturale de o cifră, divizori ai lui 8, sunt 1, 2, 4 și 8, deci sunt 4 cazuri favorabile	2p
	Sunt 10 numere naturale de o cifră, deci sunt 10 cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{4}{1} = \frac{2}{1}$	•
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{10} = \frac{1}{5}$	2 p
5.	AB = 2	2p
	$BC = 2 \Rightarrow AB = BC$, deci $\triangle ABC$ este isoscel	3p
6.	$\sin 30^\circ = \frac{AB}{10}$	2p
	AB = 5	3p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\det B = \begin{vmatrix} 1 & 1 \\ 8 & 3 \end{vmatrix} =$	2p
	8 3	- r
	=3-8=-5	3p
b)	$\det A = \begin{vmatrix} a & 1 \\ 8 & 3 \end{vmatrix} = 3a - 8$	3р
	$a \in \mathbb{Z} \Rightarrow 3a - 8 \neq 0$	2p
c)	$A^{-1} = \frac{1}{3a - 8} \begin{pmatrix} 3 & -1 \\ -8 & a \end{pmatrix}$	3p
	$3a-8=-1 \Rightarrow a=\frac{7}{3}$ nu este număr întreg	1p
	$3a-8=1 \Rightarrow a=3$ pentru care inversa matricei A are toate elementele numere întregi	1p
2.a)	$1*5 = 1 \cdot 5 - 5 \cdot 1 - 5 \cdot 5 + 30$	3 p
	=-25+30=5	2p
b)	x * y = xy - 5x - 5y + 25 + 5 =	2 p
	$=x(y-5)-5(y-5)+5=(x-5)(y-5)+5$ pentru orice numere reale $x \neq y$	3 p
c)	$(x-5)^2 + 5 = x \Leftrightarrow x^2 - 11x + 30 = 0$	3 p
	$x_1 = 5$ și $x_2 = 6$	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \left(x^2 - x\right)' =$	2p
	$=(x^2)^{'}-x'=2x-1, x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x^2} = \lim_{x \to +\infty} \frac{x^2 - x}{x^2} =$	2p
	=1	3 p
c)	y - f(1) = f'(1)(x-1)	2p
	f(1) = 0, $f'(1) = 1$, deci ecuația tangentei este $y = x - 1$	3 p
2.a)	$\int_{1}^{e} \frac{1}{x} dx = \ln x \bigg _{1}^{e} =$	3p
	$= \ln e - \ln 1 = 1$	2p
b)	$F'(x) = (x^2 + \ln x + 2)' = 2x + \frac{1}{x} =$	3p
	$= f(x)$ pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} \left(2x + \frac{1}{x}\right) dx = \left(x^{2} + \ln x\right)\Big _{1}^{2} = 3 + \ln 2$	3р
	$2 < e \Rightarrow \ln 2 < \ln e \Rightarrow 3 + \ln 2 < 3 + 1 \Rightarrow \mathcal{A} < 4$	2p