

Software for Autonomous Systems SFfAS-31391:

Robot Kinematics, Trajectory Planning Motion Planning and Execution

Lecturer, Course Coordinator: Evangelos Boukas—PhD

Outline of today

- Summary of the exercises from last time
- Kinematics of robot arms
 - Describing kinematics
 - Forward kinematics
 - Inverse kinematics
- Trajectories for robot arms

One-slide kinematics

- Kinematics is the "equations of motion"
- No regard to forces that cause the motion
- Our goal is to be able to use the robot in Cartesian coordinates
- Let's consider a simple robot
 - If we know the joint angles, where is the endeffector? How is the end-effector oriented?
 - = Forward Kinematics
- Forward kinematics only have 1 solution Why?

One-slide kinematics, slide 2

- A more complicated case is this:
 - Given a desired (x,y,yaw), what should the joint angles be?
 - = Inverse Kinematics
- Inverse kinematics can have multiple solutions!
- How many solutions for this case?
- How about this one?
- Commonly 4 solutions for many robot arms

Describing robot arm kinematics

- Deals with describing the chain of transformations between the links in the robot arm
- Some convention is needed
- The standard is Denavit-Hartenberg parameters (from 1955)
- Describes robot kinematics using 4 parameters for each joint
- Remember there can be different types of joints, and arms
 - "RRRRR" articulated robot, with only rotational joints
 - "RRPRRR" this robot has one prismatic joint
- In the toolbox, one extra parameter defines the type of each joint
 - 0 = rotational
 - 1 = prismatic

DH parameters

- Robot has *N* joints, and *N*+1 links
- Joint j connects link j-1 to link j
 - Joint j moves link j
- Link described by two parameters:
 - Length a_j (sometimes called r_j)
 - Twist α_j
- Joint described by two parameters:
 - Link offset d_i
 - Joint angle θ_j
- Joint 1 connects Link 0 (the base of the robot) to Link 1
- Joint N connects Link N-1 to Link N (the end-effector of the robot)

DH parameters

Joint angle	θ_{j}	the angle between the x_{j-1} and x_j axes about the z_{j-1} axis	revolute joint variable
Link offset	d_{j}	the distance from the origin of frame $j-1$ to the x_j axis along the z_{j-1} axis	prismatic joint variable
Link length	a _j	the distance between the z_{j-1} and z_j axes along the x_j axis; for intersecting axes is parallel to $\hat{z}_{j-1} \times \hat{z}_j$	constant
Link twist	α_j	the angle from the z_{j-1} axis to the z_j axis about the x_j axis	constant
Joint type	σ_{j}	σ = 0 for a revolute joint, σ = 1 for a prismatic joint	constant

From these parameters, we can define the transformations per link as:

$$^{j-1}A_j(\theta_j, d_j, a_j, \alpha_j) = T_{Rz}(\theta_j)T_z(d_j)T_x(a_j)T_{Rx}(\alpha_j)$$

$$f^{j-1}A_j = egin{pmatrix} \cos heta_j & -\sin heta_j\coslpha_j & \sin heta_j\sinlpha_j & a_j\cos heta_j \ \sin heta_j & \cos heta_j\coslpha_j & -\cos heta_j\sinlpha_j & lpha_j\sin heta_j \ 0 & \sinlpha_j & \coslpha_j & d_j \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Common terminology

- The set of joint coordinates **q** is called the *joint space*
 - For articulated robots, usually called joint angles
- Also referred to as the pose of the arm
- Not the same as the *pose of the end-effector*!

Joint angle offset

- The DH notation does not relate directly to a real robot
- Specifically, the zero pose is not usually the same pose as the pose for joint angles of 0 in the controller
- In practice, we define an offset joint vector \mathbf{q}_0
- Whenever we perform any kinematic function, the offset vector is first added to the joint vector, i.e. $\mathbf{q} + \mathbf{q}_0$

Forward kinematics

- The goal is to find the end-effector pose, as a function of the joint angles
 - How do we do this?
- Transformation from base to end-effector ^BT_E
 - How do we find this?
- By joining the transformations for each link j-1Aj and multiplying

$${}^{0}\boldsymbol{T}_{E}={}^{0}\boldsymbol{A}_{1}{}^{1}\boldsymbol{A}_{2}\cdots{}^{N-1}\boldsymbol{A}_{N}$$

Forward kinematics

- The forward kinematics solution exists and is unique for *any* serial-link robot
- A serial-link robot is a robot where the links are connected in series
- In the toolbox, this is defined as a SerialLink object
- First, define a vector L with the Links
- Then construct the SerialLink to have the complete robot:
 - my_robot = SerialLink(L, 'name', 'My Cool Robot')

Inverse kinematics

- The goal is to find the joint angles that locate the end-effector at some desired pose
- A problem of real practical interest, since we usually know where e.g. objects are in Cartesian coordinates
- Solution is not unique, and in some cases no *closed-form* solution exists

Closed-form solution

- Requires that
 - The robot has 6 axes
 - The 3 axes in the wrist intersect at a single point
- Thus, motion of the wrist joints only change the orientation of the end-effector
- What if we don't have this type of robot?
 - We don't for the UR robots

Numerical solution

- Can deal with any number of joints, and any type of robot
- Considerably slower than the closed-form solution
- Basic principle is to model the pose change as a special spring
- Spring forces and torques (wrench) are proportional to pose change
- Method:
 - Calculate wrench for current pose difference
 - Calculate pose for current estimate of inverse kinematics
 - Resolve wrench to joint torques
 - Calculate joint velocities due to torques
 - Calculate discrete-time update of joint angles
 - Repeat until wrench is small

Trajectories of robot arms

- The same applies as we discussed in the last lecture
 - It's all about smooth motion!
- Two different strategies:
 - Straight lines in joint space joint-space motion
 - Straight lines in Cartesian space Cartesian motion

Examining the trajectory

Joint positions

Cartesian positions

Cartesian in xyplane only

RPY angles

Cartesian trajectories

- In joint space, we cannot guarantee a specific motion of the end-effector
- Cartesian trajectories are useful for
 - Welding, painting, grinding, drawing....
 - Avoiding obstacles

Examining the trajectory

Cartesian positions

RPY angles

Cartesian in xyplane only

Singularities

- We will now have a look at Cartesian motion through a singularity
- Again, we can generate the Cartesian trajectory, and examine the corresponding joint trajectory for different cases
 - Closed-form solution
 - Numeric solution
 - Pure joint-space trajectory

Joint trajectories

Closed-form solution

Numeric solution

Joint-space trajectory

1,5

Manipulability