Zásobníkový automat a gramatika

Analýza odvození slova

Analýza podle gramatiky

- Ověření, zda lze slovo odvodit = analýza
- Dva typy podle startu a cíle:
 - Zdola: od slova k počátečnímu symbolu
 - Shora: od počátečního symbolu ke slovu
- Zásobník:
 - Záznam odvození zde se přepisují symboly dle typu analýzy
- Rozkladová tabulka:
 - Pravidla gramatiky přepsaná do řeči zásobníkového automatu
 - Různá pro analýzu shora a zdola

Analýza shora

- Start: Počáteční symbol, Cíl: Slovo
- LL analýza: přes levé derivace hledáme levou derivaci, vstupní slovo analyzujeme zleva
 - Přesně určuje volbu pravidel při analýze a umožňuje jednoznačný postup při odvození
 - Gramatika, která je jednoznačná a lze ji takto analyzovat: LL gramatika
- LL(k) označení gramatiky pro LL analýzu, číslo k určuje, kolik následujících symbolů je nutné znát pro analýzu slova
- LL(1): nejpoužívanější gramatika, stačí znát jeden následující symbol
- **LL(0)**: umožňuje jen jazyky s konečným počtem slov
- LL gramatiky s k>1 lze převést na LL gramatiky s k = 1
 - Existují přesné popisy, jak jednotlivá pravidla nahrazovat (přidávají se neterminály a pravidla se upravují, aby při analýze stačilo znát jeden další symbol)

Zásobníkový automat pro analýzu shora

- Q = {q0}: jen jeden vnitřní stav
- Abeceda gramatiky a automatu je shodná
- Abeceda zásobníku jsou terminály i neterminály z gramatiky
- Rozkladová tabulka: zobrazení přiřazující změnu situace; konstruuje se z pravidel gramatiky
- Rozpoznávání do prázdného zásobníku

Rozkladová tabulka při rozpoznávání shora

- Rozkladová tabulka je zobrazení:
 (∏U∑U#) x (∑U εU\$) → {expand i, pop, accept, error}
- Význam funkčních hodnot:
 - Expand i: Na vrcholu zásobníku je netereminál A, který je přepsán na pravou stranu pravidla, jež má A na levé straně
 - Pop: Na vrcholu zásobníku a na vstupu je stejný terminál, ten je z vrcholu zásobníku odstraněn a čte se další znak.
 - Accept: Konec rozpoznávání s přijetím; prázdný zásobník.
 - Error: Chyba při rozpoznávání, vstupní řetězec do jazyka nepatří.

Gramatika pro přednášku

Algebraické výrazy:

$$G = (\sum, \prod, P, S)$$
 kde:

- 1. $\sum = \{a,+,*,(,)\}$
- 2. $\square = \{S,T,F\}$
- 3. S je počáteční symbol.
- 4. Produkční pravidla:
 - 1) $S \rightarrow T + S$
 - 2) $S \rightarrow T$
 - 3) $T \rightarrow F * T$
 - 4) $T \rightarrow F$
 - 5) $F \rightarrow (S)$
 - 6) $F \rightarrow a$

Levá strana	Pravé strany	Čísla pravidel
S	T + S T	(1) (2)
Т	F*T F	(3) (4)
F	(S) a	(5) (6)

První znaky a následníci

- Příklad: (a + a) * a.
- Při hledání derivačního stromu kresleného shora:
 - Dosazujeme zleva (intuitivně předpokládáme gramatiku LL).
 - Chceme vědět, zda řetězec vůbec může začínat symbolem, jímž začíná, hledáme totiž neterminál, jenž mohl takový začátek generovat.
 - Chceme vědět, zda za již analyzovanou částí řetězce smí následovat zbytek - pro něj také hledáme neterminály.

First(N): Množina možných začátků

N je libovolná větná forma generovaná gramatikou G. First(N) je množina všech terminálních symbolů, jimiž začínají řetězce odvozené z N.

Pokud v dané gramatice existuje odvození $N \rightarrow^* \epsilon$, potom i ϵ patří do First (N).

Množinu First hledáme pro pravé strany pravidel - zajímá nás, čím to vlastně může začínat.

Follow(N): Množina možných pokračování neterminálu N

Do množiny Follow(N) patří ty terminály, které se při libovolném odvození mohou ocitnout bezprostředně vpravo za neterminálem N:

Pokud S \rightarrow * XNaY, potom a \in Follow(N).

Poznámka: Jestliže za symbolem N v nějakém odvození nic nenásleduje, patří do Follow(N) také symbol pro konec řetězce (nepatří mezi terminály, přidáváme navíc).

Konstrukce množin First(N)

Algoritmus pro řešení konkrétní pravé strany jednoho pravidla:

- **1. Je-li N=** ε: First(ε) = {ε}. Konec.
- **2. Je-li N ve tvaru aX, potom:** First(N) = {a}. Konec, jiný začátek není možný.
- 3. N začíná neterminálem (N=AX):
 - Nalezneme všechna Ai, jež lze odvodit z A.
 - Zjistíme, čím mohou začínat (nalezneme First(A;)).
 - Množina First(N) je sjednocením všech dílčích množin First(A_i).
- 4. N začíná neterminálem (N=AX) a současně lze A přepsat na prázdný symbol
 - Jako další symbol zvolíme to, co za A následuje a hledáme množinu First(X) tím může řetězec začínat.
 - Nalezneme také množiny First (A_i) , pokud lze A přepsat i na jiné neterminály.
 - Hledaná množina je sjednocení First(X) a množin First(Ai)

Příklad pro G

Levá strana	Pravé strany	Čísla pravidel
S	T+S T	(1) (2)
Т	F*T F	(3) (4)
F	(S) a	(5) (6)

"N"	First(N)
T+S	{(, a}
Т	{(, a}
F*T	{(, a}
F	{(,a}
(S)	{(}
а	{a}

Konstrukce množin Follow(N)

- 1. $\$ \in Follow(S)$
 - \$ konec řetězce, S poč. symbol
- 2. First(X) \subseteq Follow(N), pokud Y \rightarrow ZNX
 - Procházíme všechny pravé strany G a všude hledáme výskyt N.
 - U jednotlivých výskytů zjistíme, co následuje za N, pro tuto část pravidla hledáme First(X) - to jsou možní bezprostřední následníci N.
- Follow(Y) ⊆ Follow(N), pokud Y → ZNX a současně X →*
 - Lze-li X přepsat do prázdného slova, musíme ještě zjistit Follow(Y) - levé strany pravidla.

Příklad pro G

Levá strana	Pravé strany	Čísla pravidel
S	T + S T	(1) (2)
Т	F*T F	(3) (4)
F	(S) a	(5) (6)

N	Follow(N)	Odkud?
S	\$,)	Z definice. Pravidlo (5), X je zde řetězec ")".
Т	+,)	Pravidlo (1), X je zde řetězec "+ S", First(+S) = +; Pravidlo(1), X je nyní prázdný řetězec, bereme tedy celé S z levé strany.
F	*,)	Pravidlo (3): X je *T, Pravidlo (5): X je)

Jak poznáme gramatiku LL(1)?

- Pro její pravidla platí:
 - Vlastnost First-First:

```
Pokud Y \rightarrow X1 | X2...|Xn, potom musí platit:
```

 $First(Xi) \cap First(Xj) = \{\}$ pro všechna $i \neq j$

Vlastnost First-Follow (někdy též FFL):

Lze-li z Xi odvodit prázdný symbol, potom:

 $First(Xi) \cap Follow(Y)={}$

 Poznámka: Naše gramatika G není typu LL(1), protože tato kritéria nesplňuje (příklad gramatiky generující stejný jazyk bude dále).

Konstrukce rozkladové tabulky

- Rozkladová tabulka je zobrazení:
 (∏∪#) x (∑∪ ε) → {expand i, pop, accept, error}
- Význam funkčních hodnot:
 - Expand i: Na vrcholu zásobníku je netereminál A, který je přepsán na pravou stranu pravidla, jež má A na levé straně
 - Pop: Na vrcholu zásobníku a na vstupu je stejný terminál, ten je z vrcholu zásobníku odstraněn a čte se další znak.
 - Accept: Konec rozpoznávání s přijetím; prázdný zásobník.
 - Error: Chyba při rozpoznávání, vstupní řetězec do jazyka nepatří.

Rozkladová tabulka prakticky I.

- Tabulka určuje, podle kterého pravidla se provádí expanze jednotlivých neterminálů, když chceme získat konkrétní symboly.
- Řádky tabulky tvoří vše, co může obsahovat zásobník: neterminály, terminály, symbol konce zásobníku (#).
- Sloupce tvoří to, co může být vstup: terminály a symbol konce řetězce (\$).

Rozkladová tabulka prakticky II.

- Pro každé pravidlo s číslem (i) A→ X:
 - Nalezneme množinu U = First(X.Follow(A))
 (Zjistíme, čím může začínat rozklad a jak může pokračovat).
 - V řádku označeném A ve sloupcích, v nichž jsou prvky množiny U uvedeme hodnotu expand(i).
- V řádcích označených terminály uvádíme pop tam, kde je sloupec nadepsán stejným terminálem.
- Buňka tabulky v řádku (#,\$) má hodnotu accept.
- Buňky, jež jsou dosud prázdné, mají hodnotu error.

Struktura obecné rozkladové tabulky

Zásobník

Vstup

	T (sloupce terminálů)	\$
N (řádky neterminálů)	Dle pravidel a algoritmu hodnoty expand(i) nebo error.	
T (řádky terminálů)	pop	
	pop	
# (řádek konce zásobníku)		accept

Příklad – rozkladová tabulka pro LL(1) gramatiku

- Algebraické výrazy, $\Pi = \{S, A, B, C, D\}, \Sigma = \{a, *, +, \epsilon\}, S$
- 1. $S \rightarrow AB$
- 2. $B \rightarrow + AB$
- 3. $B \rightarrow \epsilon$
- 4. $A \rightarrow CD$
- 5. $D \rightarrow *CD$
- 6. $D \rightarrow \epsilon$
- 7. $C \rightarrow (S)$
- 8. $C \rightarrow a$

Levá stran a	Pravé strany	Čísla pravidel	Follow(L)	First(P.FoII(L))
S	AB	(1)	\$,)	First(AB .Foll(S))={a}
В	+ΑΒ ε	(2) (3)	\$,)	First($+AB$.Foll(B))={+} First(ϵ .Follow(B))={\$,)}
Α	CD	(4)	+	First(CD. Follow(A))={a,(}
D	*CD E	(5) (6)	+,\$	First(*CD.Follow(D))= $\{*\}$ First(ϵ .Follow(D))= $\{+,\$\}$
С	(S) a	(7) (8)	+,*,\$	First((S).Follow(C))={(} First(a.Follow(C))={a}

	а	+	*	()	\$
S	e1					
Α	e4			e4		
В		e2			e3	e3
С	e8			e7		
D		e6	e5			e6

Celá rozkladová tabulka

	а	+	*	()	\$
S	e1					
Α	e4			e4		
В		e2			e3	e3
С	e8			e7		
D		e6	e5			e6
а	pop					
+		pop				
*			pop			
(pop		
)					pop	
#						acc

Analýza slova a+a*a

S	AB	(1)
В	+ΑΒ ε	(2) (3)
Α	CD	(4)
D	*CD ε	(5) (6)
С	(S) a	(7) (8)

	а	+	*	()	\$
S	e1					
Α	e4			e4		
В		e2			e3	еЗ
С	e8			e7		
D		e6	e5			e6

Vstup	Zásobník	Akce
a+a*a\$	S#	e1
a+a*a\$	AB#	e4
a+a*a\$	CDB#	e8
a+a*a\$	aDB#	рор
+a*a\$	DB#	e6
+a*a\$	B#	e2
+a*a\$	+AB#	рор
a*a\$	AB#	e4
a*a\$	CDB#	e8
a*a\$	aDB#	рор
*a\$	DB#	e5
*a\$	*CDB#	рор
a\$	CDB#	e8
a\$	aDB#	рор
\$	DB#	e6
\$	B#	e3
\$	#	acc

Analýza slova a+*a

S	AB	(1)
В	+ΑΒ ε	(2) (3)
Α	CD	(4)
D	*CD ε	(5) (6)
С	(S) a	(7) (8)

	а	+	*	()	\$
S	e1					
Α	e4		*	e4		
В		e2			e3	e3
С	e8			e7		
D		e6	e5			e6

Vstup	Zásobník	Akce	
a+*a\$	S#	e1	
a+*a\$	AB#	e4	
a+*a\$	CDB#	e8	
a+*a\$	aDB#	рор	
+*a\$	DB#	e6	
+*a\$	B#	e2	
+*a\$	+AB#	рор	
*a\$	AB#	error	

Buňka rozkladové tabulky A,* je prázdná. Nelze tedy použít žádné pravidlo a dále pracovat se zásobníkem. Proto zásobník nebude prázdný.

Analýza zdola - LR(k)

- Left-to-right: vstup čteme zleva
- Right od "pravý rozklad" odpovídá analýze zdola
- Při rozhodování mezi pravidly potřebujeme znát nejvýše k symbolů

Jak poznáme LR(k) gramatiku?

Pro pravidla platí:

V případě existence dvou pravých derivací:

```
S \to^* \alpha Ax \to \alpha \gamma x
```

$$S \rightarrow^* \beta By \rightarrow \beta \gamma y$$

takových, že $First_k(x) = First_k(y)$,

vždy platí: αA = βB

Souvislost mezi LL a LR

Čím se liší analýza zdola?

- Postup od řetězce k počátečnímu symbolu
- Jdeme "proti" šipkám v derivačním stromu
- Rozkladová tabulka má akci redukce pro přepis části řetězce na nějaký terminál. (Analýza shora má akci expanze.)
- V řetězci na zásobníku hledáme strukturu, která půjde redukovat. (Při analýze shora hledáme pravidlo, které použijeme pro expanzi.)

Pomocné množiny

- Before(N):
 - N je neterminál.
 - Analogie follow, nyní ale hledáme vše, co neterminálu v pravidlech předchází.
- EFF(X):
 - Vycházíme z množin First(X), u každého prvku zkoumáme derivaci, díky níž je prvek do množiny First zařazen.
 - Vyřadíme ty symboly, které se do First dostaly s použitím ε pravidla pro nejlevější symbol.

Rozkladová tabulka při rozpoznávání zdola

- Rozkladová tabulka je zobrazení:
 (□∪∑∪#) x (∑∪ε∪\$) → {push, reduce, accept, error}
- Význam funkčních hodnot:
 - Push: Čtený symbol se přesouvá do zásobníku
 - Reduce: Provádí se redukce podle nějakého z pravidel gramatiky, nahrazujeme řetězce neterminály z levé strany
 - Accept: Konec rozpoznávání s přijetím; prázdný zásobník.
 - Error: Chyba při rozpoznávání, vstupní řetězec do jazyka nepatří.

Stručně ke konstrukci rozkladové tabulky

- Analogické s analýzou LL
- Pro každé pravidlo (i) A → αX a pro všechny řetězce u ∈ Follow(A) je buňka (X,u) = reduce(i)
- Pro každé pravidlo (i) A → ε, pro všechny symboly X ∈ Before(A) a pro všechny řetězce u ∈ Follow(A)
 je buňka (X,u) = reduce(i)
- Pro každé B → βXγ, u ∈ EFF(γ.Follow(B))
 je buňka (X,u) = push
- Buňka (S,\$) = accept
- Ostatní buňky generují chybu.