

Al Under the Microscope

Team Members

Omnia Gamal

Hazem Medhat

Toka Magdy

01 Problem Statement

02 Project Objective

03 Data Set

04 Visuals & Insights

05 Predictions & Results

O6 Recommendation & Conclusion

Problem Statement

Introduction

Project Objective

Objectives

Predict Al performance

Forecast future AI capabilities

Interpret user behavior patterns

Understand user interactions with AI

Examine user reliance on Al

Assess user dependency on AI

Data Set

 This dataset contains information about individuals' Al usage patterns, including demographic details, Al tool usage, purposes, and related metrics.

Number of records: 10,000

Number of Features: 22

Challenges: Handle Missing Values and Outliers

Column Name	Туре	Description
Age	Integer	Age of the individual
Gender	Categorical	Male, Female
Occupation	Categorical	Job Title
Daily_AI_Usage_Hours	Integer	Daily hours spent using Al tools
Al_Usage_Purpose	Categorical	Purpose to use Al
Specialization	Categorical	Medicine, Law, Education, Engineering, Art, Business, Computer Science
Al_Tools_Used	Categorical	Midjourney, ChatGPT, Notion AI, Copilot,

Column Name	Туре	Description
AI_Usage_Frequency	Categorical	Daily, Often, Sometimes
AI_Skill_Level	Categorical	Beginner, Intermediate, Advanced
Device_Used	Categorical	Mobile, Laptop, Desktop, Tablet
Data_Privacy_Concern	Categorical	Low, Medium, High
AI_Trust_Level	Categorical	Low, Moderate, High
Location	Categorical	Urban, Suburban, Rural
Language_Preference	Categorical	English, Arabic, Spanish

Column Name	Туре	Description
Internet_Speed	Categorical	Slow, Medium, Fast
AI_Usage_Change_in_6_ Months	Categorical	Increased, Decreased, Same
Uses_Paid_Al_Tools	Categorical	Yes, No
Satisfaction_Level	Integer	1 to 10, indicating satisfaction with AI tools
Can_Live_Without_Al	Categorical	Yes, No
Task_Complexity	Integer	1 to 5, indicating complexity of tasks performed with Al
Time_to_Respond_Second	Integer	Time in seconds to respond
Performance	Integer	Performance percentage

Data Cleaning

- Apply Forward-fill approach in missing values in (Gender, Uses_Paid_Al_Tools)
- Fill Missing Values in "Al_Tools_Used" with "other" value
- Filling Missing Values in Multiple Columns with Mode: ['Al_Usage_Purpose', 'Specialization', 'Al_Usage_Frequency', 'Al_Skill_Level', 'Device_Used', 'Al_Trust_Level', 'Internet_Speed']

Visuals & Insights

05

Predictions & Results

Objective

Al Dependency and Performance Assessment

Al Dependency Classification

Classify if life is possible without AI

AI Performance Prediction

Forecast AI model effectiveness in scenarios

Pre Processing

- Split data for <u>Classification</u> and <u>Regression</u> Model
- Apply <u>Label Encoding</u> For Target Column in Classification Problem
- Encode Features using 2 approaches: Target and Label Encoding
- Scale Data Using Different Approaches : <u>Standard Scaling, Robust Scaler</u>

Classification Models

Model	Accuracy
Random Forest	100%
Decision Tree	100%
Logistic Regression	100%
SVM	99%
Naïve Bayes	100%

Regression Models

Model	Accuracy
Random Forest	95%
Decision Tree	92%
Linear Regression	49%
SVR	62%

Regression Models

06

Recommendation & Conclusion

Let's Stay in Control

- Let's not let Al take over our lives. Reduce how much you depend on it.
- Al was created by a human, a brain just like ours is what led to these powerful tools.
- We must remember that AI tools should go back to their proper place in our lives.
- They are helpful? yes, but they should not become the center of everything.
- Let's use Al wisely, without letting it replace the value of our own thinking, creativity, and control.

Thanks!

Data Gathering

- We searched for Al usage datasets but found most were either too small or already clean, limiting preprocessing work.
- After extensive searching, we decided to generate the dataset using Al, guided by reference data and custom column definitions.
- We explained each column's purpose and type in detail to ensure accurate generation.
- Then we reviewed the data row by row, cleaned illogical entries, and refined some columns through multiple iterations.
- The final dataset was rich in features, suitable for both prediction and classification, and ideal for applying what we learned.