Demostración de NP-Completitud de 3D-Matching

Francisco Vicente Suárez Bellón Septiembre de 2024

Contents

1	Descripción del problema	3
2	Demostración de NP-Completitud	4
3	DM es NP	5
4	Problema NP-Completo para hacer la reducción	5
	.1 Definición de 3-SAT	5
	.2 Traducción desde 3-SAT hacia 3-DM	5
	.3 Definición de los Componentes	6
	4.3.1 Definición de las Ternas de asignación	6
	4.3.2 Definición ternas de satisfacción	
	.4 Componentes de recolección (Garbage collection)	
	.5 Ejemplo de X, Y, W	9
5	Demostración $\exists M^{'} \subseteq M \Leftrightarrow (U,C)$ es satisfacible	10
	.1 (U,C) satisfacible $\implies M' \subseteq M \Leftrightarrow \text{es un matching} \dots$	10
	2 $M' \subset M \Leftrightarrow \text{es un matching} \implies (U, C) \text{ satisfacible} \implies$	10

1 Descripción del problema

- 1. Sea $M \subseteq W \times X \times Y$
- 2. $W \cap Y \cap X = \emptyset$ (disjuntos)
- 3. |W| = |X| = |Y| = q

Se quiere conocer si existe un matching en M, osea un $M^{'}\subseteq M$ tal que:

- 1. |M'| = q
- 2. Todos los elementos de $W \cup X \cup Y$ están en algún triplo de $M^{'}$ sin repetir ninguno.

Figure 1: Ejemplo de posible entrada

2 Demostración de NP-Completitud

Pasos Principales:

- 1. Demostrar que 3DM \in NP
- 2. Seleccionar un problema el cual se NP-Completo para hacer la reducción
- $3.\,$ Construir la transformacion del problema hacia 3DM
- 4. Demostrar que la transformación es en tiempo polinomial

3 3DM es NP

Dada una instancia de (M, X, Y, M) del 3DM se construye un algoritmo no determinista que genere una solución de |W| triplos y compruebe en un tiempo polinomial que no hay dos tercetas con elementos comunes.

4 Problema NP-Completo para hacer la reducción

Para ello elegimos el 3-SAT

4.1 Definición de 3-SAT

- 1. Sea un conjunto de m cláusulas $C = c_1, \ldots, c_m$ con $|c_i| = 3$ $1 \le i \le m$
- 2. Sobre un conjunto finito de n variables booleanes $U = u_1, \dots, u_n$

Se responde si existe alguna asignación válida de U que satisfaga todas las cláusulas

3SAT α 3DM

Figure 2: Reducciíon de 3-SAT a 3-DM

4.2 Traducción desde 3-SAT hacia 3-DM

3-Sat	3-DM	
Variables: u_1, \ldots, u_n	Variables: $u_i(j), b_i(j), S_x(j), G_y(j)$	
Literales: $u_1, \neg u_1$	Variables: $u_i, \neg u_i(j)$	
Cláusulas: $C_j = (u_1, \neg u_2, u_3)$	Tercetas:	
	$C_{j}\{(u_{1}(j), S_{x}(j), S_{y}(j)), (\neg u_{2}(j), S_{x}(j)\}\}$	$(s, S_y(j)), (u_3, S_x(j), S_y(j))$

Table 1: Comparación entre 3-Sat y 3-DM

4.3 Definición de los Componentes

Para realizar la demostración contruiremos unas abstracciones llamadas componentes de las cuales hay 3 tipos:

- 1. Ternas de asignación
- 2. Ternas de satisfacción
- 3. Ternas de recolección

4.3.1 Definición de las Ternas de asignación

- 1. Para cada variable $u_i \in U$ se introduce una componente T_i
 - (a) T_i depende del número de cláusulas de m en C
- 2. La estructura del T_i
 - (a) Elementos internos: $a_i[j] \in X$, $b_i[j] \in Y$, $1 \le j \le m$ No van a pertener a otras ternas de otro T_i .
 - (b) Elementos externos:
 - (c) $\neg u_i[j] \in W$, $1 \le j \le m$ Pueden pertenecer a otras ternas.
- 3. El literal u_i en 3-SAT puede ser usado en varias cláusula, en el 3-DM debemos tener muchas m copias de u_i

Figure 3: Ejemplo terna de asignación

- 4. Si ningún elemento interno de la componente T_i aparece en otra T_h con $h \neq i$
- 5. M' será matching con m elementos de T_i

Figure 4: Ejeplo para cuando $u_i = False$ y $u_i = True$

6. Si $u_i = True$ se elegirá como M' las ternas en gris, dejando libre el resto para poder utilizarlas en la contrucción del resto de componentes

4.3.2 Definición ternas de satisfacción

Para cada cláusula $c_j \in C$ introducimos una componente C_j La estructura será la siguiente:

- Elementos internos: $s_x[j] \in X$, $s_y[j] \in Y$, $1 \le j \le m$
- Elementos externos: $u_i[j], \neg u_i[j] \in W, 1 \le j \le m$

Donde tendremos que $C_j = \{(u_i[j], s_x[j], s_y[j]) : \text{si el literal } u_i \in c_j \cup (\neg u_i[j], s_x[j], s_y[j]) : \text{si el literal } \neg u_i \in c_j \}$

Figure 5: Ejemplo de la componente de satisfacción

Además se tiene que cumplir que: Para cualquier matching $M^{'}\subseteq M$ debe contener una terna de C_j para emparejar los elementos internos $s_x[j]$ y $s_y[j]$ bajo esta condición:

- $s_x[j]$ y $s_y[j]$ pueden estar emparejados, ssi, al menos uno de los literales u_i de c_j no ha sido emparejado en alguna componente de asignación $T_i, (T_i \cap M')$
- Si tenemos una 3-SAT instancia factible, entonces las variables $s_x[j]$ y $s_y[j]$ pueden ser emparejadas.
- Si tenemos una 3-SAT instancia no factible, entonces las variables $s_x[j]$ y $s_y[j]$ no pueden ser emparejadas.

4.4 Componentes de recolección (Garbage collection)

Al existir muchos $u_i[j]$ que no se emparejan con componentes de asignación ni con los componentes de satisfacción Introducimos m(n-1) nuevas varibles. $g_x[k] \in X, g_y \in Y: 1 \le k \le m(n-1)$ dado que hay $m \times n$ variables des asignación u sin emparejar después de calcularr las tercetas de asignación. Además si todas las m cláusulas se satisfacen se han emparejado m variables, por lo tanto quedan sin emparejar $(m \times n) - m = m(n-1)$

Finalmente cada pareja $(g_x[k], g_y[k])$ se enlazará con una única variable $u_i[j]$ o $\neg u_i[j]$ que no estén en las tercetas que se han formado con las componentes anteriores:

Figure 6: Ejemplo componente de recolección

$$W = \{u_i[j], \neg u_i[j] : 1 \le i \le n, 1 \le j \le m\}$$

```
• X = A \cup S_x \cup G_x  (2mn)

- A = \{a_i [j] : 1 \le i \le n, 1 \le j \le m\}

- S_x = \{s_x [j] : 1 \le j \le m\}

- G_x = \{g_x [j] : 1 \le j \le m(n-1)\}

• Y = B \cap S_y \cup G_y  (2mn)

- B = \{b_i [j] : 1 \le i \le n, 1 \le j \le m\}

- S_y = \{s_y [j] : 1 \le j \le m\}

- G_y = \{g_y [j] : 1 \le j \le m(n-1)\}

• M = \bigcup_{i=1}^n T_i \cup \bigcup_{j=1}^m C_j \cup G. 2mn + 3m + 2m^2n(n-1)
```

Significado	Enumeración
Cantidad de variables en $\langle U, C \rangle$	n
Cantidad de cláusulas en $\langle U, C \rangle$	m
Cantidad de componentes de asignación triple en M	2mn
Cantidad de componentes de asignación* triple en M	mn
Cantidad de componentes de satisfacción triple en M	3m
Cantidad de componentes de satisfacción triple en M	m
Cantidad de componentes recolección en M	$2m^2n(n-1)$
Cantidad de componentes recolección en M [*]	m(n-1)
Cardinalidad del emparejamiento perfecto	2mn
Cardinalidad de M	$2mn = 3m = 2m^2n(n-1)$

4.5 Ejemplo de X, Y, W

W	X	Y
$u_1[1]$	$a_{1}[1]$	$b_1[1]$
$\overline{u}_1[1]$	$a_{1}[2]$	$b_{1}[2]$
$u_1[2]$	$a_{2}[1]$	$b_{2}[1]$
$\overline{u}_1[2]$	$a_{2}[2]$	$b_{2}[2]$
$u_2[1]$	$a_{3}[1]$	$b_{3}[1]$
$\overline{u}_2[1]$	$a_{3}[2]$	$b_{3}[2]$
$u_{2}[2]$	$a_{4}[1]$	$b_{4}[1]$
$\overline{u}_2[2]$	$a_{4}[2]$	$b_4[2]$
$u_{3}[1]$	$s_x[1]$	$s_y[1]$
$\overline{u}_3[1]$	$s_x[2]$	$s_y[2]$
$u_{3}[2]$	$g_x[1]$	$g_y[1]$
$\overline{u}_3[2]$	$g_x[2]$	$g_y[2]$
$u_4[1]$	$g_x[3]$	$g_y[3]$
$\overline{u}_4[1]$	$g_x[4]$	$g_y[4]$
$u_4[2]$	$g_x[5]$	$g_y[5]$
$\overline{u}_4[2]$	$g_x[6]$	$g_y[6]$

Figure 7: n=4 y m=2

Se puede observar que las ternas resultantes M son el producto cartesiano de $W\times X\times Y$

Esta es la forma de definir las ternas desde su definición en términos de una instancia (U,C) de 3-SAT además M se construye en tiempo polinomial

5 Demostración $\exists M^{'} \subseteq M \Leftrightarrow (U,C)$ es satisfacible

5.1 (U,C) satisfacible $\implies M' \subseteq M \Leftrightarrow \text{es un matching}$

Sea $t: U \to \{T, F\}$ el dominio de los valores en U que satisfacen las cláusulas C Para ello se construye un matching $M' \subset M$ donde:

- 1. Para cada cláusula $c_j \in C$: $Z_j \in \{u_i \neg u_i : 1 \le i \le n\} \cap c_j$
- 2. Construyendo $M' = \bigcup_{t(u_i)=T} T_i^t \cup \bigcup_{t(u_i)=F} T_i^f \cup \left(\bigcup_{j=1}^m \{(Z_j[j], S_x[j], S_y[j])\}\right)$ Ahora definamos G' conjunto de m(n-1) ternas de G las incluyen todos los $g_x[k] \in X, g_y[k]$ inY y los $u_i[j], \neg u_i[j] \in W$ que no se han emparejado. Es fácil de verificar que siempre se puede construir un G' para que el resultado del conjunto M' sea una matching.

5.2 $M' \subseteq M \Leftrightarrow \text{es un matching} \implies (U, C) \text{ satisfacible} \implies$

Se ha visto que para cada $u_i \in U$ $M^{'}$ incluía exactamente m ternas de $T_i: T_i^t$ o T_i^f . Ahora, sea $t \to \{T, F\}$ donde $t(u_i) = T \leftrightarrow M^{'} \cap T_i = T_i^t$ donde t será una asignación correcta que satisface a C. Consideremos ahora una cláusula cualquiera $c_j \in C$, para cubrir todos los elementos internos de la componente C_j (de la componente de satisfacción) Necesitamos al menos una terna de C_j contenida en $M^{'}$, esta terna contiene un literal $c_j \in C$ que no estará en $M^{'} \cap T_i$. Además como $t(u_i) = T \leftrightarrow M^{'} \cap T_i = T_i^t$ entonces t satisface la cláusula c_j y como todas las cláusulas $c_j \in C$ se satisfacen (U, C) es satisfacible. Se cumplen los pasos previstos entonces 3-DM es NP-Completo