Lecture 2 In-Class Exercise Solutions

1. This problem will estimate population regression functions using data from a known population that we define ourselves. Draw a N=100 random sample of three indpendent N(0,1) variables: x_1 , x_2 , and u. The relevant command in Stata is drawnorm. From these, generate two outcome variables: $y_1 = 10 + x_1 + u$ and $y_2 = 10 + x_1 + 2x_2 + u$. Note: if you want to be able to replicate work done with randomly generated values in Stata, put the set seed # command at the beginning of your do-file. You will then get the same set of random numbers every time you run your program.

```
clear
set seed 626
// random draws of x1 x2 u (independent, standard normal variables)
drawnorm x1 x2 u, n(100)
corr

// DGP for y1 and y2
gen y1 = 10 + x1 + u
gen y2 = 10 + x1 + 2*x2 + u
```

(a) What is the population mean of y_1 , $E[y_1]$? What is the population variance of y_1 , $\sigma_{y_1}^2$? What is the conditional expectation function $E[y_1|x_1]$? Is it linear? What is the conditional variance of y_1 given x_1 ? Note: these questions can be answered without use of the data.

See the handout with rules for expectation, variance, and covariance.

$$\begin{split} & E[y_1] = E[10+x_1+u] = E[10] + E[x_1] + E[u] = 10+0+0 = 10 \\ & \sigma_{y1}^2 = Var[x_1] + Var[u] = 2, \text{ since } x_1 \text{ and } u \text{ are independent.} \\ & E[y_1|x_1] = 10+x_1, \text{ a linear CEF.} \\ & Var[y_1|x_1] = Var[u] = 1 \text{ (homoskedasticity—variance is unrelated to } x_1) \end{split}$$

(b) What is the population mean of y_2 , $E[y_2]$? What is the population variance of y_2 , $\sigma_{y_2}^2$? What is the conditional expectation function $E[y_2|x_1]$? Is it linear? Note: these questions can be answered without use of the data.

See the handout with rules for expectation, variance, and covariance.

$$\mathbf{E}[\mathbf{y_2}] = \mathbf{E}[\mathbf{10} + \mathbf{x_1} + (\mathbf{2} * \mathbf{x_2}) + \mathbf{u}] = \mathbf{E}[\mathbf{10}] + \mathbf{E}[\mathbf{x_1}] + \mathbf{2} * \mathbf{E}[\mathbf{x_2}] + \mathbf{E}[\mathbf{u}] = \mathbf{10} + \mathbf{0} + \mathbf{2} * \mathbf{0} + \mathbf{0} = \mathbf{10}$$

$$\begin{split} \sigma_{y2}^2 &= 1^2 Var[x_1] + 2^2 Var[x_2] + Var[u] + 2*1*2*Cov[X1,X2] = 1+4+1+0 = 6, \\ since \ x_1 \ and \ x_2 \ are \ independent. \end{split}$$

 $E[y_1|x_1] = 10 + x_1 + 2x_2$, a linear CEF. Note that this CEF depends on the value of x_2

(c) Regress y_1 on x_1 (i.e., estimate the model $y_1 = \beta_0 + \beta_1 x_1$ using OLS). Note the slope coefficient and its standard error. Do the intercept and slope equal the known population intercept and slope? Why or why not?

. reg y1 x1

Source	SS	df	MS		er of obs	=	100
Model Residual	129.848833 100.312116	1 98	129.848833 1.02359302	B Prob R-squ	ıared	=	126.86 0.0000 0.5642
Total	230.16095		2.32485808	•	R-squared MSE	=	0.5597 1.0117
y1		Std. Err.		P> t	2 - 10	f.	Interval]
x1 _cons	1.139554 10.07918	.1011765	11.26 99.12	0.000	.9387729 9.877374		1.340336 10.28098

Naturally the estimated intercept and slope $\hat{\beta}_0$ and $\hat{\beta}_1$ differ from the known population values of 10 and 1 since they are estimated from a random sample.

(d) Regress y_2 on x_1 (i.e., estimate the model $y_2 = \tilde{\gamma}_0 + \tilde{\gamma}_1 x_1$ using OLS). Note the slope coefficient and its standard error. If you are interested in an unbiased estimate of the slope on x_1 in the population regression function for y_1 , will your slope estimator suffer from omitted variables bias? Why or why not?

. reg y2 x1

Source	SS	df	MS	Number	of obs	=	100
+				F(1, 9	8)	=	29.41
Model	127.188444	1	127.188444	Prob >	· F	=	0.0000
Residual	423.858659	98	4.32508836	R-squa	red	=	0.2308
+				Adj R-	squared	=	0.2230
Total	551.047103	99	5.56613236	Root M	ISE	=	2.0797
y2	Coef.	Std. Err.		P> t		ıf.	Interval]
x1	1.12782	.2079761		0.000	.7150983	3	1.540542
_cons	10.24087	.2090337	48.99	0.000	9.826046	3	10.65569

We know the population model for y_2 includes x_2 . A condition for omitted variables bias, however, is that $Cov(x_1, x_2) \neq 0$. In this case, we know these two variables are independent and thus uncorrelated in the population.

(e) Now regress y_2 on x_1 and x_2 (i.e., estimate the model $y_2 = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2$ using OLS). Why does $\hat{\gamma_1}$ differ from $\hat{\tilde{\gamma_1}}$, even though we know the population correlation between x_1 and x_2 is zero?

. reg y2 x1 x2

Source	SS	df	MS	Number of obs	=	100
+				F(2, 97)	=	230.45
Model	455.239049	2	227.619525	Prob > F	=	0.0000
Residual	95.8080541	97	.987711898	R-squared	=	0.8261
+				Adj R-squared	=	0.8225
Total	551.047103	99	5.56613236	Root MSE	=	.99384

y2					[95% Conf.	Interval]
x1 x2	1.138324 1.790231	.099389	11.45 18.22	0.000	.9410639 1.595267 9.89725	1.335583 1.985195 10.29502

The estimated coefficient on x_1 changes a bit when we add x_2 as a covariate. In the population there is no OVB since x_1 and x_2 are uncorrelated. We are working with sample data, however, and there may be chance correlation between x_1 and x_2 in the sample.

(f) Compare the estimated standard errors on $\hat{\tilde{\gamma}}_1$ from part (d) and $\hat{\gamma}_1$ from part (e). How and why did it change?

The standard error dropped considerably, from 0.208 to 0.099, because we reduced variation in the error term. In part (d), x_2 remains in the error term and contributes to the variation in y_2 .

(g) Now modify x_2 to purge it of any sample correlation with x_1 . Call this variable x_{2a} . Hint: you are looking for variation in x_2 that is orthogonal to ("not explained" by) x_1 .

```
reg x2 x1
predict x2a, resid
```

By construction, the residuals from a regression of x_2 on x_1 are uncorrelated with x_1 . We know that x_2 and x_1 are not correlated in the population, but there is a small amount of correlation between them in the sample. This step "purges" the tiny amount of correlation between the two.

(h) Generate a new y_2 (call it y_{2a}) using x_{2a} in place of x_2 . Repeat parts (d) and (e). What changed, and why? Why does the standard error on $\hat{\gamma}_1$ change with the inclusion of x_{2a} , when we know x_{2a} is uncorrelated (by construction) with x_1 ?

```
. \text{ gen } y2a = 10 + x1 + 2*x2a + u
```

x1 |

x2a |

_cons |

1.139554

1.790231

10.07918

reg v2a v1

. reg y2a x1						
Source	l ss	df	MS	Number of o	bs =	100
	+			F(1, 98)	=	30.02
	129.848831				=	0.0000
Residual	423.85866	98	4.32508837	R-squared	=	0.2345
	+			naj n bquar		0.2267
Total	553.707491	99	5.59300496	Root MSE	=	2.0797
y2a	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
	+					
x1	1.139554	.2079761	5.48	0.000 .726	8325	1.552276
_cons	10.07918	.2090337	48.22	0.000 9.66	4356	10.494
. reg y2a x1	x2a					
Source	l ss	df	MS	Number of o	bs =	100
	+			F(2, 97)	=	231.80
	457.899438				=	0.0000
Residual	95.8080524	97	.987711881			0.8270
	+			naj n bquar		0.8234
Total	553.707491	99	5.59300496	Root MSE	=	.99384
y2a	Coef.	Std. Err.	t	P> t [95%	Conf.	<pre>Interval]</pre>
	+					

Now the estimated coefficient on x_1 is identical, whether one controls for x_{2a} or not. The reason is that x_1 is now uncorrelated with x_{2a} . The standard error drops, again because we have reduced variation in the error term with the inclusion of x_{2a} .

11.47

18.22

100.90

0.000

0.000

0.000

.942298

1.595268

9.880917

1.336811

1.985195

10.27744

.0993874

.0982322

.0998928

(i) Return to part (c). Compare the reported standard error for $\hat{\beta}_1$ to the *population* standard error for $\hat{\beta}_1$. Hint: you know the population σ^2 .

In a simple regression the population standard error for $\hat{\beta}_1$ is:

$$se(\hat{\beta}_1) = \frac{\sigma_u}{\sqrt{(n-1)Var(x)}}$$

Where $\sigma_{\rm u}$ is the square root of the error variance. The syntax below manually calculates the population standard error of $\hat{\beta}_1$ (0.10000369), which can be compared to the estimated standard error in the regression (0.1011765). These differ, since Stata is estimating σ using residuals. Note I used Var(x) from the sample data here $(1.005^2 = 1.01)$ rather than using the known Var(x) of 1. This is taking the point of view that x is fixed from sample to sample and the only random variation is in u. This is how the usual statistical assumptions are stated. An alternative approach would use the known Var(x) = 1.

. summ x1

- . local varx1 r(Var)
- . local nobs r(N)
- . display sqrt(1/(('nobs'-1)*('varx1')))
- .10000369

. reg y1 x1

Source		df	MS	Number of obs		100
	+			F(1, 98)	=	126.86
Model	129.848833	1	129.848833	Prob > F	=	0.0000
Residual	100.312116	98	1.02359302	R-squared	=	0.5642
	+			Adj R-squared	. =	0.5597
Total	230.16095	99	2.32485808	Root MSE	=	1.0117
	+			Adj R-squared	=	0.5

y1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
:		.1011765			.9387729 9.877374	

[.] display _se[x1]

^{.10117651}

(j) Start with an empty dataset and recreate your random variables x_1 , u, and y_1 , but this time draw a N=10,000 random sample. Repeat part (i). Now how do your reported $\hat{\beta}_1$ and standard error for $\hat{\beta}_1$ compare to the population β_1 and standard error for $\hat{\beta}_1$?

```
. clear
. drawnorm x1 x2 u, n(10000)
(obs 10,000)
. gen y1 = 10 + x1 + u
```

. sum x1

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	10,000	.011974	1.005396	-3.667296	3.615652

- . local varx1 r(Var)
- . local nobs r(N)
- . display sqrt(1/(('nobs'-1)*('varx1')))
 .00994683
- . reg y x1

Source	•	_	df	MS	Number of obs F(1, 9998)	s = =	10,000 9908.03
Model			1	10054.2942	Prob > F	=	0.0000
			0 000				
Residual	•		•	1.01476214	R-squared	=	0.4977
	•				-	1 =	
Total	20199	.886	9,999	2.02019062	Root MSE	=	1.0074
	+				Adj R-squared	l =	0.497

y1				[95% Conf.	Interval]
x1	.01002	99.54	0.000	.9777384	

```
. display _se[x1] .01001998
```

Proportionally speaking, the estimated standard error is closer to the population standard error with the larger sample size.

2. This problem is similar to #1, but we will assume x_1 and x_2 come from a bivariate normal distribution, so that we know x_1 and x_2 are correlated. The relevant command in Stata is drawnorm, but we need to specify a correlation matrix for the distribution (call this C). $\sigma_{x_1}^2$ and $\sigma_{x_2}^2$ will continue to be 1, but assume they have a correlation of 0.5. Continue to use N = 100. Create the outcome variable $y_2 = 10 + x_1 + 2x_2 + u$. See the syntax below for the drawnorm command and its correlation matrix.

```
clear
matrix C = (1, .5 , 0 \ .5, 1, 0 \ 0, 0, 1)
drawnorm x1 x2 u, n(100) corr(C)
corr
gen y2 = 10 + x1 + 2*x2 + u
```

(a) What is the population variance of y_2 ? How does this compare with your answer in question #1 part (b)?

The population variance of y_2 is:

$$\sigma_{y2}^2 = 1^2 Var[x_1] + 2^2 Var[x_2] + Var[u] + (2*1*2)Cov[x_1, x_2]$$

= 1 + 4 + 1 + 4(0.5)
= 8

This uses the fact that Corr(X,Y) = Cov(X,Y)/sd(X)sd(Y), and that we know the correlation between x_1 and x_2 is 0.5 and their respective standard deviations are 1.

(b) For fun, use the user-written Stata command tddens to visualize the bivariate distribution of (x_1, x_2) as a "heat map".

```
ssc install tddens
tddens x1 x2
```

(c) Regress y_1 on x_1 . Note the slope coefficient and its standard error. If you are interested in an unbiased estimate of β_1 (the slope coefficient on x_1 in the population), does this regression suffer from omitted variables bias? Why or why not? If so, in what direction is the bias?

The simple regression of y_1 on x_1 is shown below. Unlike in question 1, we now know that x_1 and x_2 are correlated. If our interest is in an unbiased estimate of β_1 in the full model, we have omitted variables bias. We can use the omitted variables bias formula to think about the direction of bias: $\beta_s = \beta_\ell + \pi \gamma$. Here we know $\gamma > 1$ (from the population model) and $\pi > 1$ (since we know x_1 and x_2 are positively correlated). So the short regression coefficient is biased upward. As expected, including x_2 as a covariate reduces the estimated coefficient on x_1 :

. reg y2 x1

Source	SS	df	MS		r of obs	=	100
	605.877978 457.521779	1 98	605.877978 4.66858958	Prob R-squ	ared		129.78 0.0000 0.5698
Total	1063.39976	99		•	-squared MSE	=	0.5654 2.1607
y2		Std. Err.				nf.	Interval]
x1 _cons	2.155543	.1892156	11.39	0.000	1.78005 9.46898		2.531036 10.32862

(d) Now regress y_2 on x_1 and x_2 . What changed, and why?

As expected, including x_2 as a covariate reduces the estimated coefficient on x_1 (see part c):

. reg y2 x1 x2

Source	SS	df	MS	Numb	er of obs	=	100
+-				- F(2,	97)	=	556.49
Model	978.150139	2	489.0750	7 Prob	> F	=	0.0000
Residual	85.249617	97	.87886203	1 R-sq	uared	=	0.9198
				- Adj	R-squared	=	0.9182
Total	1063.39976	99	10.741411	7 Root	MSE	=	.93748
y2	Coef.	Std. Err.		P> t		 f .	Interval]
x1	.9126716	.1019149	8.96	0.000	.7103988		1.114944
x2	2.136519	.1038094	20.58	0.000	1.930486		2.342552
_cons	10.06019	.0943007	106.68	0.000	9.873029		10.24735

(e) Apply the "regression anatomy" formula. That is, show that $\hat{\beta}_2$ is equal to the slope coefficient from a simple regression of y_2 on \tilde{x}_2 , where \tilde{x}_2 is the residual from a regression of x_2 on x_1 . Equivalently, $\hat{\beta}_2 = Cov(y_1, \tilde{x}_2)/Var(\tilde{x}_2)$.

The code below shows this calculation. The first step is the "auxiliary" regression of x_2 on x_1 where the residuals are obtained.

. reg x2 x1

Source	SS	df	MS	Number of obs	=	100
+-				F(1, 98)	=	53.03
Model	44.1276395	1	44.1276395	Prob > F	=	0.0000
Residual	81.5543213	98	.832186952	R-squared	=	0.3511

+- Total		1.26951476	3	-squared = MSE =	= 0.3445 = .91224
x2				[95% Conf	. Interval]
x1	.0798867	7.28	0.000	.4231948	.74026 .1059333

- . predict uhat, resid
- . reg y2 uhat

Source	SS	df	MS		01 000	= 100
Model Residual	372.272159	1 98	372.272159 7.05232242	Prob >	F	= 52.79 = 0.0000 = 0.3501 = 0.3434
Total		99	10.7414117	•	bquarca	= 2.6556
y2	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
uhat _cons	2.136519 10.07001	. 2940645	– .	0.000	1.552958 9.543007	2.720081 10.59701

Alternatively I show the Cov/Var version of this below (you get the same answer):

- . local covyu 'r(cov_12)'
- . summ uhat

- . local varu 'r(Var)'
- . display 'covyu' / 'varu'

2.1365191

(f) Demonstrate the omitted variables bias formula by showing the coefficient in the "short" regression (part b) is equal to the coefficient on x_1 in the "long" regression (part c) + the product of β_2 (the coefficient on x_2 in the "long" regression) and π (the coefficient from a regression of the omitted on the included).

The code below shows this. Note the scalars _b[] are one way of referencing estimated regression coefficients. These are temporary, so we store them as local macros.

. reg y2 x1 x2

Source	SS	df	MS		er of obs	=	100 556.49
Model	978.150139	2	489.07507 Prob > F		-	=	0.0000
Residual	85.249617 	97 	.87886203 		uared R-squared	=	0.9198 0.9182
Total	1063.39976	99	10.741411	5	MSE	=	.93748
y2	 Coef.	 Std. Err.		P> t	 [95% Con	 f.	Interval]
x1 x2 _cons	.9126716 2.136519 10.06019	.1019149 .1038094 .0943007	8.96 20.58 106.68	0.000 0.000 0.000	.7103988 1.930486 9.873029		1.114944 2.342552 10.24735

- . local x1long = $_b[x1]$
- . local x2long = b[x2]
- . reg y2 x1

Source	SS	df	MS	Number of obs	=	100
Model Residual	457.521779	1 98	605.877978 4.66858958	F(1, 98) Prob > F R-squared		129.78 0.0000 0.5698
Total	1063.39976	99		Adj R-squared Root MSE	=	0.5654 2.1607
y2		 Std. Err.	t 1		 onf.	Interval]
x1 _cons	2.155543 9.898806	.1892156 .2165912		0.000 1.7800 0.000 9.4689		2.531036 10.32862

. local x1short = $_b[x1]$

. reg x2 x1

Source	SS	df	MS	Number	of obs	=	100
+				- F(1, 98	3)	=	53.03
Model	44.1276395	1	44.1276395	5 Prob >	F	=	0.0000
Residual	81.5543213	98	.832186952	2 R-squar	red	=	0.3511
+				- Adj R-	squared	=	0.3445
Total	125.681961	99	1.26951476	Root M	SE	=	.91224
x2	Coef.	Std. Err.		P> t		f.	Interval]
x1	.5817274	.0798867	7.28	0.000	.4231948		.74026

_cons | -.0755356 .0914447 -0.83 0.411 -.2570046 .1059333

- . local pi = $_b[x1]$
- . display 'x1long'
- .91267159
- . display 'x2long'
- 2.1365192
- . display 'pi'
- .5817274
- . display 'x1long' + ('x2long'*'pi')
- 2.1555433
- . // compare to:
- . display 'x1short'
- 2.1555433