Vorlesung "Software-Engineering"

Prof. Ralf Möller, TUHH, Arbeitsbereich STS

Übung: Miguel Garcia

Heute:

- Spezifikation mit UML
- Verhaltensdiagramme

UML 2.0

Die neue Version der Standardmodellierungssprache

Prof. Mario Jeckle

Fachhochschule Furtwangen mario@jeckle.de http://www.jeckle.de

Die Verhaltensdiagramme

Die Verhaltensdiagramme

Use-Case Diagramm

Eine abstrakte funktionale Sicht auf das Gesamtsystem aus Sicht des späteren Anwenders

- Aktivitätsdiagramm
 Darstellung eines dynamischen Ablaufs
- Zustandsautomat
 Beschreibt die internen Zustände eines Classifiers
- Sequenzdiagramm
 Beschreibt den Intra- und Intersystem-Datenaustausch
- Kommunikationsdiagramm
 Statische Sicht auf dynamische Interaktion
- Timing-Diagramm
 Zeitabhängige Zustandsdarstellung
- Interaktionsübersichtsdiagramm
 Darstellung des Zusammenspiels verschiedener Interaktionen

Use-Case-Diagramm

Aufgabe:

 Darstellung einer abstrakten funktionalen Sicht auf das Gesamtsystem aus Sicht des späteren Anwenders

Aussage:

Technikfern spezifizierter Leistungsumfang des Systems

Aufgabe im Projekt:

Dokumentation erster früher Analyseergebnisse

Änderungen durch UML 2:

- Akteur muß zwingend benannt sein
- Vorbedingungen und Erweiterungspunkte werden als Notiz notiert
- Classifier können Use Cases besitzen
- Classifier können Use Cases realisieren

Use-Case-Diagramm

- System (Betrachtungsgegenstand):
 - Umgrenzt die Einheit, welche die Use-Cases realisiert
 - Darstellung ist nicht zwingend notwendig
- Assoziationen:
 - beschreiben die Beziehungen zwischen Akteuren und Use-Cases
 - extend-Beziehung: Verhalten eines Use-Case kann durch einen anderen erweitert werden
 - include-Beziehung: Verhalten eines Use-Case ist vollständig in einem anderen enthalten

Use-Case-Diagramm

Aufgabe:

Darstellung eines dynamischen Ablaufs

Aussage:

Realisierung eines bestimmten Verhaltens durch das System

Aufgabe im Projekt:

- Geschäftsprozeßmodellierung
- Beschreibung von Use Cases
- Dokumentation der Implementierung einer Operation

Änderungen durch UML 2:

- Aktivitäten unabhängig von Zustandsautomaten
- Petri-Netz-ähnliche Semantik
- Diagrammtyp wird als Aktivität bezeichnet
- Vor- und Nachbedingungen
- Notation der Aktion und des Zustandes vereinheitlicht
- Multiple Startknoten
- Verschiedene End(-knoten)-Semantiken
- Neue Notationselemente

•

- Tokenkonzept
 - aus den Petri-Netzen übernommen
 - Tokenfluss steuert Ablauf einer Aktivität
 - Ermöglicht die präzise Beschreibung des Verhaltens
 - nur gedankliches Konstrukt (keine explizite Modellierung)

jeckle.de

- Diagrammtyp heißt Aktivität
- Eine Aktivität kann Ein- und Ausgangsparameter besitzen
- Aktionen sind Verhaltensaufrufe
- Summe der Aktionen realisiert die Aktivität

jeckle.de

Aktivitätsdiagramm

Kontrollelemente

- steuern den Ablauf der Aktivität
- starten und beenden Abläufe
- ermöglichen Nebenläufigkeit
- dienen der Synchronisation
- lassen alternative Abläufe zu

- Unterbrechungsbereich:
 - Beinhaltet eine Menge von Aktionen
 - Kann über Unterbrechungskante verlassen werden.
 Alle Aktionen im Bereich werden dann beendet.
- Exception-Handler:
 - Ermöglicht die Beschreibung von Ausnahmen
 - Exception-Handler substituiert eine Aktion

- Strukturierte Knoten:
 - Umfassen Ausschnitt einer Aktivität
 - Ausführung startet mit dem Anliegen aller Token der Eingangsknoten
 - Objektknoten als Ein- und Ausgangsparameter möglich

- Strukturierte Knoten zur Visualisierung komplexer Entscheidungen
- if: prüfen der Bedingung
- then: auszuführende Elemente
- else: möglicher Ablauf, wenn kein if-Bereich zutrifft
- else if: wie if-Bereich nur mit vorgegebener Prüfreihenfolge

- Mengenverarbeitung
 - Einzelne Betrachtung der Elemente welche in der restlichen Aktivität nur als Sammlung betrachtet werden
 - z.B. Listen, Vektoren, hashtable...
 - Elemente werden als Objektknoten (Pin) übergeben

- Aktivitätsbereiche
 - Teilung des Diagramms logisch gruppierte Partitionen
 - Hierarchische und mehrdimensionale Partitionierung möglich

Aufgabe:

Beschreibt die internen Zustände eines Classifiers

Aussage:

 Zugelassene Status eines Classifiers durch Betrachtung als Zustandsautomat

Aufgabe im Projekt:

- Zustandbeschreibung eines Classifiers
- Detaillierung eines Use Cases
- Verhaltensbeschreibung einer extern angebotenen Schnittstelle

Änderungen durch UML 2:

- Protokollzustandsautomat neu eingeführt (Spezialisierung des allgemeinen Zustandsdiagramms)
- Explizierung von Ein- und Austrittspunkten sowie Terminatoren
- Vererbungssemantik (Overriding und Extension) geregelt

- Unterscheidung:
 - Verhaltenszustandsautomaten (Zustandsdiagramm)
 - Protokollzustandsautomaten
- Ein Verhaltenszustandsautomat bildet das diskrete Verhalten einer Instanz eines Classifiers ab.
- Ein Protokollzustandsautomat beschreibt die erlaubte Aufrufsabfolge der Instanz eines Classifiers.

Zustandsname
entry / Aktivität
exit / Aktivität
do / Aktivität
Trigger [Guard] / Aktivität
Trigger [Guard] / defer

- Ein Zustand beschreibt eine bestimmte Ausprägung:
 - eine statische Situation
 - auf ein externes Ereignis wartend
- Zustände können Aktivitäten enthalten:
 - entry, do und exit activity
 - verzögerte Ereignisse
 - Eine Transition ist der Übergang von einem Quell- in einen Zielzustand

Verschiedene Zustandsübergänge

Konzepte

Sprache

Diagramm-

typen

- Zusammengesetzter Zustand:
 - Setzt sich aus Zuständen, Pseudozuständen und Transitionen zusammen
 - Steht stellvertretend für einen vollständigen Zustandsautomaten
 - Kann Ein- und Austrittspunkte besitzen

- Startzustand:
 - Verweist auf den ersten Zustand
 - Einer pro Region

- Ausgehende Transition wird während der Ausführung der Transition bestimmt
- Kreuzung:
 - Ausgehende Transition ist vor der Ausführung der Transition bekannt
- Ein- und Austrittspunkt:
 - Zum Betreten und Verlassen von Unterzustandsautomaten

Konzepte

Sprache
graphische DiagrammPrimitive typen

- Gabelung und Vereinigung:
 - Teilen eine Transition auf mehrere parallele Zustände auf bzw. fügen mehrere Transitionen zu einer zusammen

- Flache Historie:
 - Speichert den zuletzt aktiven Unterzustand eines komplexen Zustands

- Tiefe Historie:
 - Speichert den zuletzt aktiven Unterzustand eines in einem komplexen Zustand enthaltenen Zustands

- Terminator:
 - Bei Erreichen endet die Lebensdauer der Instanz des beschriebenen Classifiers

- Spezialisierung von Zustandsautomaten durch
 - Erweiterung um Regionen, Zustände und Transitionen
 - Erweiterung von Regionen und Zuständen
 - Erweiterung von Transitionen

jeckle.de

Aufgabe:

Beschreibt den Intra- und Intersystem-Datenaustausch

Aussage:

 Wie spielen die einzelnen Systeme oder –komponenten zusammen

Aufgabe im Projekt:

Darstellung der dynamischen Aurufbeziehungen

• Änderungen durch UML 2:

- Erweiterung der möglichen Kommunikationspartner
- Referenzierung und Hierarchisierung möglich
- Kontrollflüsse ausdrückbar
- Neue Elemente
 - Interationsrahmen
 - Kombinierte Fragmente
 - Sprungmarken und Coregionen
 - Interaktionsreferenzen
 - Gates für Nachrichten

- alt: Bedingungsgesteuerte Alternativen (min. zwei)
- ignore: Gezielte Unterspezifikation (d.h. Realitätsausschnitt fehlt)
- consider: Betonung der Bedeutung
- opt: Optionale Ausführung
- loop: Zählschleife
- neg: Nicht zugelassener Ablauf
- assert: Zusicherung, die gelten muß
- par: Nebenläufigkeit oder Parallelität (wird nicht unterschieden)
- critical: Ununterbrechbarer kritischer Abschnitt

• Coregion:

- Alternativdarstellung zum parallel kombinierten Fragment
- Nur zugelassen wenn genau eine Lebenslinie betroffen ist
- Ablaufreihenfolge innerhalb der Coregion nicht festgelegt

- Referenziert (ref) auf eine beliebige Interaktion
- Wiederverwendung in mehreren Diagrammen möglich
- "Zooming"–Gedanke
- Auch für Lebenslinien möglich

Kommunikationsdiagramm

Aufgabe:

Statische Sicht auf dynamische Interaktion

Aussage:

 Stellt Teile einer komplexen Struktur und ihre Beziehungen in der Zusammenschau dar

Aufgabe im Projekt:

Dokumentation aller ausgetauschten Nachrichten

• Änderungen durch UML 2:

- Diagrammtyp neu eingeführt (entspricht inhaltlich und konzeptionell dem Kollaborationsdiagramm)
- Untermenge des Sequenzdiagramms
 - Keine Verweise
 - Keine kombinierten Fragmente
 - Keine Berücksichtigung der Ereignisreihenfolge

Kommunikationsdiagramm

- Notationselemente:
 - Interaktion
 - Lebenslinien
 - Nachrichten
 - Sequenzbezeichner

Kommunikationsdiagramm

- Notation etwas unübersichtlich:
 - Nebenläufigkeit dokumentiert durch Buchstaben im Sequenzbezeichner
 - Definition von Schleifen mit einem Stern "*"
 - Kennzeichnung von nebenläufigen Schleifen-durchläufen mit Doppelstrich "||"

Timing-Diagramm

- Aufgabe:
 - Zeitabhängige Zustandsdarstellung
- Aussage:
 - Dokumentation des Zeitpunktes eines Zustandswechsels eines Kommunikationspartner
- Aufgabe im Projekt:
 - Dokumentation des zeitlichen (System-)Verhaltens analog einer Schaltung
- Änderungen durch UML 2:
 - Diagrammtyp neu eingeführt

D'accessorial	Discourse de la Francia	Current
Diagrammtyp	Diese zentrale Frage beantwortet das Diagramm	Stärken
Klassendiagramm	Aus welchen Klassen besteht mein System und wie stehen diese untereinander in Beziehung?	Beschreibt die statische Struktur des Systems. Enthält alle relevanten Strukturzusammenhänge/Datentypen. Brücke zu dynamischen Diagrammen. Normalerweise unverzichtbar.
Paketdiagramm	Wie kann ich mein Modell so schneiden, dass ich den Überblick bewahre?	Logische Zusammenfassung von Modellelementen. Modellierung von Abhängigkeiten/ Inklusion möglich.
Objektdiagramm	Welche innere Struktur besitzt mein System zu einem bestimmten Zeitpunkt zur Laufzeit (Klassendiagramm- schnappschuss)?	Zeigt Objekte u. Attributbelegungen zu einem bestimmten Zeitpunkt. Verwendung beispielhaft zur Veranschaulichung Detailniveau wie im Klassen- diagramm. Sehr gute Darstellung von Mengenverhältnissen.

jeckle.de

Die Diagrammtypen im Überblick graphische typen				
Diagrammtyp	Diese zentrale Frage beantwortet das Diagramm	Stärken		
Kompositionsstruktur- diagramm	Wie sieht das Innenleben einer Klasse, einer Komponente, eines Systemteils aus?	Ideal für die Top-Down- Modellierung des Systems (Ganz- Teil-Hierarchien). Zeigt Teile eines "Gesamtelements" und deren Mengenverhältnisse. Präzise Modellierung der Teile- Beziehungen über spezielle Schnittstellen (Ports) möglich.		
Komponentendiagramm	Wie werden meine Klassen zu wieder verwendbaren, verwaltbaren Komponenten zusammengefasst und wie stehen diese in Beziehung?	Zeigt Organisation und Abhängig- keiten einzelner technischer Systemkomponenten. Modellierung angebotener und benötigter Schnittstellen möglich.		
Verteilungsdiagramm	Wie sieht das Einsatzumfeld (Hardware, Server, Datenbanken,) des	Zeigt das Laufzeitumfeld des Systems mit den "greifbaren" Systemteilen.		

Darstellung von

Notationselemente.

"Softwareservern" möglich.

Hohes Abstraktionsniveau, kaum

Systems aus? Wie werden

die Komponenten zur

Laufzeit wohin verteilt?

Konzepte

Die Diagrammtypen im Überblick graphische Diagrammtypen im Diagr

Diagrammtyp	Diese zentrale Frage beantwortet das Diagramm	Stärken
Use-Case-Diagramm	Was leistet mein System für seine Umwelt (Nachbarsysteme, Stakeholder)?	Außensicht auf das System. Geeignet zur Kontextabgrenzung. Hohes Abstraktionsniveau, einfache Notationsmittel.
Aktivitätsdiagramm	Wie läuft ein bestimmter fluss- orientierter Prozess oder ein Algorithmus ab?	Sehr detaillierte Visualisierung von Abläufen mit Bedingungen, Schleifen, Verzweigungen. Parallelisierung und Synchronisation. Darstellung von Datenflüssen.
Zustandsautomat	Welche Zustände kann ein Objekt, eine Schnittstelle, ein Use Case, bei welchen Ereignissen annehmen?	Präzise Abbildung eines Zustands- modells mit Zuständen, Ereignissen, Nebenläufigkeiten, Bedingungen, Ein- und Austrittsaktionen. Schachtelung möglich.
Sequenzdiagramm	Wer tauscht mit wem welche Informationen in welcher Reihenfolge aus?	Darstellung des Informationsaustauschs zwischen Kommunikationspartnern Sehr präzise Darstellung der zeitlichen Abfolge auch mit Nebenläufigkeiten.

jeckle.de

Die Diagrammtypen im Überblick graphische Diagrammtypen im Diagr

Diagrammtyp	Diese zentrale Frage beantwortet das Diagramm	Stärken
Kommunikations- diagramm	Wer kommuniziert mit wem? Wer "arbeitet" im System zusammen?	Stellt den Informationsaustausch zwischen Kommunikationspartnern dar. Überblick steht im Vordergrund (Details und zeitliche Abfolge weniger wichtig).
Timingdiagramm	Wann befinden sich verschiedene Interaktionspartner in welchem Zustand?	Visualisiert das exakte zeitliche Verhalten von Klassen, Schnittstellen, Geeignet für die Detailbetrachtungen, bei denen es wichtig ist, dass ein Ereignis zum richtigen Zeitpunkt eintritt.
Interaktionsübersichts- diagramm	Wann läuft welche Interaktion ab?	Verbindet Interaktionsdiagramme (Sequenz-, Kommunikation- und Timingdiagramme) auf Top-Level- Ebene. Hohes Abstraktionsniveau.