Sentence Matching With Deep Self-Attention and Co-Attention Features

Introduction

Motivation

- Transformers 强大编码能力;
- Transformers运行速度优势;

Contribution

- 目前来看,第一个在编码阶段仅使用Attention机制,其他论文均是要用CNN或者LSTM提取特征
- 保持领先的准确率的同时,减少模型推理时间

Framework

Embedding

使用预训练好的开源词向量, glove-800B-300D

Self-Encoder

使用Self-Attention对句子进行编码

Cross-Encoder

使用Cross-Attention对两个句子进行交互编码

Add-Norm

Add是一个残差连接, Norm是一个LayerNorm

CNN-Pooling

CNN-Pooling是指使用TextCNN对输出进行Pooling操作

Prediction

Prediction是一个两层的全联接网络,输入是[a, b, a-b, abs(a-b), a * b]

Experiments

Experiments on SNLI

Todo

Num	Model	Acc on SNLI test
1	ESIM	88.6
2	RE2	88.9
3	DRCN	88.9
4	Our Model	88.72

注意: 88.72是之前跑出来的, 当时没保存模型, 记得大概模型参数, 现在在复现

Experiments on Quora

Todo

Experiments on WikiQA

Todo

Conclusion

- 模型能达到State-of-the-art, 验证了模型的有效性
- 模型推理时间减少了***倍,验证了模型的实用性