UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

INFORMATICS 1 - COMPUTATION AND LOGIC

Tuesday $21 \frac{\text{st}}{}$ August 2012

14:30 to 16:30

Convener: J Bradfield External Examiner: A Preece

INSTRUCTIONS TO CANDIDATES

- 1. Note that ALL QUESTIONS ARE COMPULSORY.
- 2. DIFFERENT QUESTIONS MAY HAVE DIFFERENT NUMBERS OF TOTAL MARKS. Take note of this in allocating time to questions.

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1. (a) You are given the following equivalences:

1	$not(X) \ or \ Y$	\longleftrightarrow	$X \to Y$
2	$not(X \ or \ Y)$	\longleftrightarrow	not(X) and $not(Y)$
3	$not(X \ and \ Y)$	\longleftrightarrow	$not(X) \ or \ not(Y)$
4	$(X \ and \ Y) \ or \ Z$	\longleftrightarrow	$(X \ or \ Z) \ and \ (Y \ or \ Z)$
5	(X or Y) or Z	\longleftrightarrow	X or (Y or Z)

Using the equivalence rules above prove the following equivalences:

i.
$$((A \ and \ B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$$

ii.
$$((A \to C) \ and \ (B \to C)) \leftrightarrow ((A \ or \ B) \to C)$$

[10 marks]

(b) For each of the following two expressions, show whether it is tautologous using a truth table.

i.
$$(A \ and \ (not(B) \rightarrow (B \rightarrow C))) \leftrightarrow A$$

ii.
$$((A \rightarrow B) \ and \ (B \rightarrow C)) \rightarrow (A \rightarrow C)$$

[10 marks]

2. You are given the following proof rules:

Rule name	Sequent	Supporting proofs
immediate	$\mathcal{F} \vdash A$	$A \in \mathcal{F}$
and_intro	$\mathcal{F} \vdash A \ and \ B$	$\mathcal{F} \vdash A, \ \mathcal{F} \vdash B$
or_intro_left	$\mathcal{F} \vdash A \ or \ B$	$\mathcal{F} \vdash A$
or_intro_right	$\mathcal{F} \vdash A \ or \ B$	$\mathcal{F} \vdash B$
or_elim	$\mathcal{F} \vdash C$	$(A \text{ or } B) \in \mathcal{F}, [A \mathcal{F}] \vdash C, [B \mathcal{F}] \vdash C$
and_elim	$\mathcal{F} \vdash C$	$(A \ and \ B) \in \mathcal{F}, \ [A, B \mathcal{F}] \vdash C$
imp_elim	$\mathcal{F} \vdash B$	$A \to B \in \mathcal{F}, \ \mathcal{F} \vdash A$
imp_intro	$\mathcal{F} \vdash A \to B$	$[A \mathcal{F}] \vdash B$

where $\mathcal{F} \vdash A$ means that expression A can be proved from set of axioms \mathcal{F} ; $A \in \mathcal{F}$ means that A is an element of set \mathcal{F} ; $[A|\mathcal{F}]$ is the set constructed by adding A to set \mathcal{F} ; $A \to B$ means that A implies B; A and B means that A and B both are true; and A or B means that at least one of A or B is true.

Prove the sequent $[p \ or \ q \ or \ z \to r, r \to p] \vdash (q \ or \ z) \to r$ using the rules in the table above.

[10 marks]

3. Assume we have the following conjunctive set of premises:

$$[not(c) \ and \ d, (b \ and \ e) \rightarrow c, \ not(a) \rightarrow e, \ not(b) \rightarrow not(e \ and \ d), \ e]$$

- (a) Convert the above expression into a Conjunctive Normal Form (CNF). [8 marks]
- (b) Convert the CNF into a clausal form. [2 marks]

(c) Using Resolution show whether the proposition a can be proved from the premises.

[10 marks]

4. (a) Briefly describe one advantage each of deterministic and non-deterministic FSMs.

[4 marks]

- (b) Consider the language L of strings over the alphabet $\{a,b\}$ that contain the substring "abb".
 - i. Draw a deterministic FSM that accepts L.

[5 marks]

ii. Draw a deterministic FSM that accepts the language that is the complement of ${\cal L}$

[5 marks]

(c) Draw a FSM that accepts all strings with length K such that: $K \mod 3 \neq 0$.

[4 marks]

(d) Convert the following non-deterministic FSM to a deterministic FSM.

[10 marks]

- 5. The following languages are defined over the alphabet $\{a, b\}$:
 - (a) Is the language $L = \{a^m b^n \mid m \text{ is even}, n \text{ is odd}\}$ a regular language? [2 marks]
 - (b) Give a regular expression for each of the following languages:
 - i. $L_1 = \text{strings beginning with } aa.$ [2 marks]
 - ii. $L_2 = \text{strings ending with } bb.$ [2 marks]
 - iii. $L_1 \cap L_2$ (the intersection of L_1 and L_2). [2 marks]
 - iv. Strings with length an odd number. [4 marks]
 - (c) Draw the following FSMs:
 - i. M_1 that accepts language L_1 . [2 marks]
 - ii. M_2 that accepts language L_2 . [2 marks]
 - iii. M_2 that accepts language $L_1 \cap L_2$, with a single final state. [6 marks]