МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения»

Тема: Расчет метрических характеристик качества разработки программ
по метрикам Холстеда

Студент гр. 7304	 Ажель И.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Цель работы:

Расчет и сравнение метрик Холстеда для программ, написанных на языках Паскаль, Си, Ассемблер.

Задание:

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер.

Для каждой из разработанных программ(включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
- число простых (отдельных) операторов, в данной реализации;
- число простых (отдельных) операндов, в данной реализации;
- общее число всех операторов в данной реализации;
- общее число всех операндов в данной реализации;
- число вхождений ј-го оператора в тексте программы;
- число вхождений ј-го операнда в тексте программы;
- словарь программы;
- длину программы.
- 2. Расчетные характеристики программы:
- длину программы;
- реальный и потенциальный объемы программы;
- уровень программы;
- интеллектуальное содержание программы;
- работу программиста;
- время программирования;
- уровень используемого языка программирования;
- ожидаемое число ошибок в программе.

Ход работы:

1. Расчет метрик вручную

Программа на языке Паскаль, а также реализованные программы на языках Си и Ассемблер представлены в приложениях А, Б и В соответственно.

В таблицах 1-3 представлены результаты подсчета количества операторов и операндов для программ, написанных на языках Паскаль, Си, Ассемблер.

Таблица 1 — Количество операторов и операндов в программе, написанной на языке Паскаль.

N₂	Оператор	Число вхождений	№	Операнд	Число вхождений
1	;	29	1	X	14
2	beginend	5	2	x2	1
3	:=	9	3	x1	4
4	writeln	5	4	alldone	1
5	if then	1	5	fx	6
6	repeat until	2	6	dfx	10
7	+	3	7	dx	4
8	write	6	8	a	2
9	>	1	9	b	3
10	readln	1	10	c	3
11	abs	3	11	logp	2
12	ı	8	12	tol	5
13	/	4	13	real	2
14	*	3	14	false	1
15	<=	1	15	true	1
16	()	17	16	1.0E-4	1
17	>=	1	17	18.19	1
18	ln	1	18	23180.0	1
			19	0.8858	1
			20	4.60517	1
			21	0.0	1
			22	999	1

Таблица 2 — Количество операторов и операндов в программе, написанной на языке Си.

№	Оператор	Число вхождений	N₂	Операнд	Число вхождений
1	log	1	1	X	16

2	-	8	2	fx	6
3	!	1	3	dfx	10
4	ifelse	3	4	x1	4
5	==	1	5	alldone	4
6		21	6	a	2
7	/	4	7	b	3
8	+	3	8	c	3
9	<	4	9	a	5
10	>	3	10	error	1
11	;	26	11	tol	5
12	scanf	1	12	dx	4
13	*	12	13	true	1
14	abs	3	14	false	1
15	printf	3	15	18.19	1
16	&	4	16	23180.0	1
17	()	20	17	0.8858	1
18	>=	1	18	4.60517	1
19	dowhile	2	19	0.0	1
20	<=	1	20	999	1

Таблица 3 — Количество операторов и операндов в программе, написанной на языке Ассемблер.

_	Г	TI		0	II
N₂	Оператор	Число	№	Операнд	Число
		вхождений			вхождений
1	push	3	1	rbp	6
2	mov	90	2	rsp	6
3	movss	42	3	QWORD PTR [rbp-40]	7
4	nop	2	4	rdi	4
5	movd	8	5	QWORD PTR [rbp-32]	2
6	ret	3	6	rsi	3
7	sub	4	7	rax	14
8	jmp	4	8	xmm0	66
9	mulss	3	9	DWORD PTR [rax]	6
10	add	4	10	DWORD PTR [rbp-44]	4
11	addss	4	11	48	2
12	cmp	1	12	DWORD PTR [rbp-20]	12
13	divss	4	13	xmm1	31
14	call func	1	14	eax	18
15	lea	7	15	DWORD PTR [rbp-8]	6
16	comiss	5	16	xmm2	4

17	je	2	17	16	1
18	pxor	4	18	.LC12	1
19	jb	2	19	BYTE PTR [rbp-1]	11
20	seta	1	20	1	3
21	xor	5	21	DWORD PTR [rbp-12]	4
22	test	2	22	.LC11	1
23	jne	2	23	0	8
24	movq	4	24	DWORD PTR [rbp-16]	4
25	leave	3	25	.LC10	1
26	movapd	2	26	.LC9	1
27	div	4	27	rdx	2
28	setnb	1	28	rcx	2
29	cvtss2sd	4	29	.L7	3
30	ucomiss	2	30	al	10
			31	.LC1	1
			32	.LC2	1
			33	.LC3	1
			34	.LC4	1
			35	.LC5	1
			36	.LC6	1
			37	.LC7	1
			38	.LC8	1

В таблице 4 представлены результаты расчета метрик Холстеда вручную для программ, реализованных на языках Паскаль, Си, Ассемблер.

Таблица 4 – Результаты расчета метрик вручную.

Характеристики	Паскаль	Си	Ассемблер
Число уникальных операторов	18	20	30
Число уникальных операндов	20	20	38
Общее число операторов	101	122	174
Общее число операндов	65	72	251
Алфавит	38	40	68
Экспериментальная длина программы	166	194	425
Теоретическая длина программы	161,16	172,8	414,5
Объем программы	871,168	1032,274	2876,055
Потенциальный объем	11,6	11,6	11,6
Уровень программы	0,013	0,011	0,004
Интеллектуальное содержание	29,511	28,66	34,116

Работа по программированию	67012,92	93818,18	719022,54
Ожидание времени кодирования	6701,2	9381,8	71902,2
Уровень языка программирования	0,151	0,128	0,046
Уровень ошибок	1	1	3

2. Программный расчет метрик

Результаты программного расчета метрик для программ, реализованных на языках Паскаль, Си представлены в приложениях Г и Д соответственно.

В таблицах 5-6 представлены результаты программного подсчета количества операторов и операндов для программ, написанных на языках Паскаль, Си.

Таблица 5 — Количество операторов и операндов в программе, написанной на языке Паскаль.

№	Оператор	Число вхождений	№	Операнд	Число вхождений
1	()	10	1	a	2
2	*	3	2	alldone	2
3	+	3	3	b	3
4	-	7	4	С	3
5	/	4	5	dfx	10
6	<	1	6	dx	4
7	<=	1	7	error	1
8	=	14	8	false	1
9	>=	1	9	fx	6
10	abs	3	10	logp	2
11	const	2	11	newdr	1
12	func	2	12	tol	5
13	if	1	13	X	14
14	ln	1	14	x1	4
15	newton	1	15	x2	1
16	program	1	16	0.0	1
17	readln	1	17	0.8858	1
18	repeat	1	18	1.0E-4	1
19	write	1	19	18.19	1
20	writeln	2	20	23180.0	1
			21	4.60517	1
			22	999	1

	23	',dfx='	1
	24	',fx='	1
	25	'First guess	1
		'First guess (999. to exit): '	
	26	'x='	1

Таблица 6 — Количество операторов и операндов в программе, написанной на языке Си.

N₂	Оператор	Число вхождений	No	Операнд	Число
					вхождений
1	!	1	1	"x = %f fx = %f	1
				$dfx = \%f \n"$	
2	()	6	2	0.0	1
3	*	3	3	0.8858	1
4	+	3	4	18.19	1
5	,	11	5	1e-4	1
6	-	2	6	23180.0	1
7	/	4	7	4.60517	1
8	• •	17	8	a	2
9	<	1	9	b	3
10	<=	1	10	С	3
11		12	11	dfx	10
12	>=	1	12	dx	4
13	_&	2	13	fx	6
14	_*	6	14	logp	2
15		5	15	tol	5
16	*	3	16	X	12
17	const	5	17	x1	4
18	dowhile	1	18	x2	1
19	fabs	3			
20	float	11			
21	func	2			
22	if	2			
23	int	1			
24	log	1			
25	newton	1			
26	void	2			
27	printf	1			

В таблице 7 представлены результаты программного расчета метрик Холстеда для программ, реализованных на языках Паскаль, Си.

Таблица 7 – Результаты программного расчета метрик.

Характеристики	Паскаль	Си
Число уникальных операторов	20	27
Число уникальных операндов	26	18
Общее число операторов	61	108
Общее число операндов	70	59
Алфавит	46	45
Экспериментальная длина программы	131	167
Теоретическая длина программы	208.65	203,441
Объем программы	723.587	917,139
Потенциальный объем	19,6515	19,6515
Уровень программы	0,0271584	0,0214269
Интеллектуальное содержание	26,8761	20,7263
Ожидание уровня программы	0,0371429	0,0225998
Работа по программированию	26643.2	42803.1
Ожидание времени кодирования	1480.18	2377.95
Уровень языка программирования	0,533704	0,421071
Уровень ошибок	1	1

3. Сравнение полученных результатов

В таблице 8 представлены результаты программного и ручного расчета метрик Холстеда для программ, реализованных на языках Паскаль, Си.

Таблица 8 – Сводная таблица расчетов на языках Паскаль, Си.

Характеристики	Ручной	Программный	Ручной	Программный
	расчет	расчет	расчет	расчет
	Паскаль	Паскаль	Си	Си
Число уникальных	18	20	20	27
операторов				
Число уникальных	20	26	20	18
операндов				
Общее число	101	61	122	108
операторов				
Общее число	65	70	72	59
операндов				
Алфавит	38	46	40	45

Экспериментальная	166	131	194	167
длина программы				
Теоретическая длина	161,16	208.65	172,8	203,441
программы				
Объем программы	871,168	723.587	1032,274	917,139
Потенциальный	11,6	19,6515	11,6	19,6515
объем				
Уровень программы	0,013	0,0271584	0,011	0,0214269
Интеллектуальное	29,511	26,8761	28,66	20,7263
содержание				
Ожидание уровня	0,018	0,0371429	0,012	0,0225998
программы				
Работа по	67012,92	26643.2	93818,18	42803.1
программированию				
Ожидание времени	6701,2	1480.18	9381,8	2377.95
кодирования				
Уровень языка	0,151	0,533704	0,128	0,421071
программирования				
Уровень ошибок	1	1	1	1

Выводы:

Метрические характеристики программ, написанных на языках Си и Паскаль выглядят похожим образом, так они имеют схожую структуру. Характеристики программы на языке Ассемблер сильно отличаются. Это связано с тем, что язык Ассемблер является языком низкого уровня.

В ходе выполнения данной работы все характеристики были посчитаны вручную и автоматически. Различия в полученных результатах обусловлены тем, что автоматический метод считает не только функциональную часть программы, но и объявления типов переменных и функций. Также различия для программы на языке Си обусловлены тем, что инструмент автоматического подсчета не имеет возможности обработки типа данных bool, который присутствует в коде программы.

ПРИЛОЖЕНИЕ А. КОД ПРОГРАММЫ НА ЯЗЫКЕ ПАСКАЛЬ.

```
b = -23180.0;
   c = -0.8858;
   logp = -4.60517; \{ ln(.01) \}
begin
  fx := a + b/x + c*ln(x) - logp;
  dfx := -b/(x*x) + c/x
end; { func }
procedure newton(var x: real);
          tol = 1.0E-4;
var fx,dfx,dx,x1: real;
begin{ newton }
  repeat
    x1:=x;
    func (x, fx, dfx);
    if(abs(dfx) < tol) then
       begin
          if (dfx \ge 0.0) then dfx := tol
          else dfx := -tol
       end;
    dx:=fx/dfx;
    x := x1 - dx;
    writeln('x=',x1,',fx=',fx,',dfx=',dfx);
  until abs(dx) \le abs(tol*x)
end; { newton }
begin
          { main program }
  alldone:=false;
  repeat
    writeln;
    write('First guess (999. to exit): '); { first guess }
    readln(x);
    if x=999. then alldone:=true
    else
      begin
newton(x);
writeln;
writeln('The solution is ',x);
writeln
      end
  until alldone
end.
```

приложение Б.

КОД ПРОГРАММЫ НА ЯЗЫКЕ СИ.

```
#include <math.h>
#include <stdio.h>
#include <stdbool.h>
void func(float x, float*fx, float*dfx) {
     const float a = 18.19;
     const float b = -23180.0;
     const float c = -0.8858;
     const float logp = -4.60517;
     *fx = a + b / x + c * log(x) - logp;
     *dfx = -b / (x * x) + c / x;
}
void newton(float* x) {
     const float tol = 1e-4;
     float fx, dfx, dx, x1;
     do {
          x1 = *x;
          func(*x, &fx, &dfx);
          if (fabs(dfx) < tol) {</pre>
               if (dfx >= 0.0) dfx = tol;
               else dfx = -tol;
          dx = fx / dfx;
          *x = x1 - dx;
          printf("x= %f fx = %f dfx = %f \n", x1, fx, dfx);
     } while (!(fabs(dx) \le fabs(tol * *x)));
}
int main() {
     float x, x2;
    bool alldone;
     bool error;
```

```
alldone = false;
do {
    printf("First guess (999. to exit): ");
    scanf("%f", &x);
    if (x == 999.0) {
        alldone = true;
    } else {
        newton(&x);
        printf("\nThe solution is %f \n", x);
    }
} while (!alldone);
}
```

приложение в.

КОД ПРОГРАММЫ НА ЯЗЫКЕ АССЕМБЛЕР.

```
func(float, float*, float*):
    push    rbp
    mov    rbp, rsp
    sub    rsp, 48
    movss    DWORD PTR [rbp-20], xmm0
    mov    QWORD PTR [rbp-32], rdi
    mov    QWORD PTR [rbp-40], rsi
    movss    xmm0, DWORD PTR .LC1[rip]
    movss    DWORD PTR [rbp-4], xmm0
```

```
xmm0, DWORD PTR .LC2[rip]
movss
movss DWORD PTR [rbp-8], xmm0
movss xmm0, DWORD PTR .LC3[rip]
movss DWORD PTR [rbp-12], xmm0
movss xmm0, DWORD PTR .LC4[rip]
movss DWORD PTR [rbp-16], xmm0
       xmm0, DWORD PTR .LC2[rip]
movss
movaps xmm1, xmm0
divss xmm1, DWORD PTR [rbp-20]
movss xmm0, DWORD PTR .LC1[rip]
addss xmm1, xmm0
movss DWORD PTR [rbp-44], xmm1
mov eax, DWORD PTR [rbp-20]
movd
      xmm0, eax
      std::log(float)
call
      xmm1, DWORD PTR .LC3[rip]
movss
mulss xmm0, xmm1
movss xmm1, DWORD PTR [rbp-44]
addss xmm1, xmm0
movss xmm0, DWORD PTR .LC5[rip]
addss xmm0, xmm1
      rax, QWORD PTR [rbp-32]
mov
movss DWORD PTR [rax], xmm0
movss xmm0, DWORD PTR [rbp-20]
movaps xmm2, xmm0
mulss xmm2, xmm0
movss
       xmm0, DWORD PTR .LC6[rip]
movaps xmm1, xmm0
divss xmm1, xmm2
movss xmm0, DWORD PTR .LC3[rip]
divss xmm0, DWORD PTR [rbp-20]
       xmm0, xmm1
addss
      rax, QWORD PTR [rbp-40]
mov
      DWORD PTR [rax], xmm0
movss
nop
```

```
leave
        ret
.LC10:
        .string "x = %f fx = %f dfx = %f \n"
newton(float*):
        push
                rbp
                rbp, rsp
        mov
                rsp, 48
        sub
                QWORD PTR [rbp-40], rdi
        mov
                xmm0, DWORD PTR .LC7[rip]
        movss
              DWORD PTR [rbp-4], xmm0
        movss
.L11:
                rax, QWORD PTR [rbp-40]
        mov
              xmm0, DWORD PTR [rax]
        movss
              DWORD PTR [rbp-8], xmm0
        movss
               rax, QWORD PTR [rbp-40]
        mov
                eax, DWORD PTR [rax]
        mov
                rcx, [rbp-20]
        lea
        lea
                rdx, [rbp-16]
                rsi, rcx
        mov
                rdi, rdx
        mov
                xmm0, eax
        movd
                func(float, float*, float*)
        call
                eax, DWORD PTR [rbp-20]
        mov
                xmm0, eax
        movd
        call
                std::fabs(float)
                xmm1, DWORD PTR .LC7[rip]
        movss
        comiss xmm1, xmm0
                al
        seta
                al, al
        test
        jе
                .L7
                xmm0, DWORD PTR [rbp-20]
        movss
                xmm1, xmm1
        pxor
        comiss xmm0, xmm1
                .L13
        jb
```

```
xmm0, DWORD PTR .LC7[rip]
       movss
       movss DWORD PTR [rbp-20], xmm0
       qmŗ
            .L7
.L13:
              xmm0, DWORD PTR .LC9[rip]
       movss
       movss DWORD PTR [rbp-20], xmm0
.L7:
            xmm0, DWORD PTR [rbp-16]
       movss
       movss xmm1, DWORD PTR [rbp-20]
       divss xmm0, xmm1
       movss DWORD PTR [rbp-12], xmm0
       movss xmm0, DWORD PTR [rbp-8]
       subss xmm0, DWORD PTR [rbp-12]
       mov rax, QWORD PTR [rbp-40]
       movss DWORD PTR [rax], xmm0
       movss xmm0, DWORD PTR [rbp-20]
             xmm1, xmm1
       pxor
                     xmm1, xmm0
       cvtss2sd
       movss xmm0, DWORD PTR [rbp-16]
                     xmm0, xmm0
       cvtss2sd
       pxor xmm3, xmm3
                     xmm3, DWORD PTR [rbp-8]
       cvtss2sd
       movq rax, xmm3
       movapd xmm2, xmm1
       movapd xmm1, xmm0
             xmm0, rax
       movq
             edi, OFFSET FLAT:.LC10
       mov
             eax, 3
       mov
       call
             printf
             eax, DWORD PTR [rbp-12]
       mov
       movd
             xmm0, eax
             std::fabs(float)
       call
             DWORD PTR [rbp-44], xmm0
       movss
       mov rax, QWORD PTR [rbp-40]
       movss xmm1, DWORD PTR [rax]
```

```
xmm0, DWORD PTR .LC7[rip]
       movss
       mulss xmm1, xmm0
       movd
              eax, xmm1
       movd
              xmm0, eax
              std::fabs(float)
       call
              eax, xmm0
       movd
              xmm4, eax
       movd
       comiss xmm4, DWORD PTR [rbp-44]
       setnb al
       xor
              eax, 1
              al, al
       test
       jе
               .L14
       jmp
               .L11
.L14:
       nop
       leave
       ret
.LC11:
        .string "First guess\t(999. to exit): "
.LC12:
       .string "%f"
.LC14:
       .string "\nThe solution is %f \n"
main:
       push rbp
       mov
              rbp, rsp
       sub
               rsp, 16
               BYTE PTR [rbp-1], 0
       mov
.L20:
              edi, OFFSET FLAT:.LC11
       mov
              eax, 0
       mov
       call
               printf
               rax, [rbp-8]
       lea
               rsi, rax
       mov
               edi, OFFSET FLAT:.LC12
       mov
```

```
mov eax, 0
             isoc99 scanf
       call
       movss xmm0, DWORD PTR [rbp-8]
       ucomiss xmm0, DWORD PTR .LC13[rip]
               .L16
       jр
       ucomiss xmm0, DWORD PTR .LC13[rip]
              .L16
       jne
       mov
              BYTE PTR [rbp-1], 1
       фmр
               .L18
.L16:
       lea
             rax, [rbp-8]
             rdi, rax
       mov
       call newton(float*)
       movss xmm0, DWORD PTR [rbp-8]
       pxor xmm1, xmm1
                     xmm1, xmm0
       cvtss2sd
       movq rax, xmm1
       movq xmm0, rax
       mov edi, OFFSET FLAT:.LC14
             eax, 1
       mov
       call
             printf
.L18:
              BYTE PTR [rbp-1], 0
       cmp
       jne
              .L19
               .L20
       jmp
.L19:
              eax, 0
       mov
       leave
       ret
.LC0:
       .long 2147483647
       .long
              0
       .long 0
       .long 0
.LC1:
```

	.long	1100055839
.LC2:	.long	-961210368
.LC3:		
.LC4:	.long	-1084046390
	.long	-1064084083
.LC5:		
	.long	1083399565
.LC6:		
	.long	1186273280
.LC7:		
	.long	953267991
.LC9:		
	.long	-1194215657

.LC13:

ПРИЛОЖЕНИЕ Г. РЕЗУЛЬТАТ ПРОГРАММНОГО РАСЧЕТА МЕТРИК ДЛЯ ПРОГРАММЫ НА ЯЗЫКЕ ПАСКАЛЬ.

Statistics for module pas.lxm

.long 1148829696

The number of different operators : 20
The number of different operands : 26
The total number of operators : 61
The total number of operands : 70

Dictionary (D): 46

Length	(N)	:	131
Length estimation	(^N)	:	208.65
Volume	(V)	:	723.587
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0271584
Programming level estimation	(^L)	:	0.0371429
Intellect	(I)	:	26.8761
Time of programming	(T)	:	1480.18
Time estimation	(^T)	:	1723.81
Programming language level	(lambda)	:	0.533704
Work on programming	(E)	:	26643.2
Error	(B)	:	0.297351
Error estimation	(^B)	:	0.241196

Table:

Operators:

-	1	-	10	- 1	()
	2	1	3		*
	3	1	3		+
	4	1	7		_
	5	1	4		/
	6	1	1		<
	7	1	1		<=
	8	1	14		=
	9	1	1		>=
	10	1	3		abs
-	11	1	2		const
	12	1	2		func
-	13	1	2		if
	14	1	1		ln
-	15	1	1		newton
	16		1		program

```
| 17 | 1 | readln
| 18 | 1 | repeat
| 19 | 1 | write
| 20 |
        2
            | writeln
Operands:
| 1
     | 1
           | ',dfx='
  2
        1
           | ',fx='
     3
        1
           | 'First guess (999. to exit): '
            | 'x='
 4
        1
        1
            0.0
 5
     6
     | 1
            0.8858
 7
      | 1
            | 1.0E-4
     | 1
 8
          | 18.19
        1 | 23180.0
 9
 10
     | 1
            | 4.60517
            | 999
  11
     | 1
     | 2
  12
            | a
13
     | 2 | alldone
  14
     | 3
           | b
     | 3
  15
           | C
  16
     | 10
            | dfx
  17
     | 4
            | dx
     | 1
            | error
  18
| 19
     | 1 | false
  20
            | fx
     | 6
| 21
     | 2
            | logp
  22
     | 1
            | newdr
| 23
     | 5
            | tol
  24
     | 14 | x
  25
     | 4 | x1
  26
     | 1 | x2
```

Summary:

The number of different opera	ators	:	20
The number of different opera	ands	:	26
The total number of operators	:	61	
The total number of operands		:	70
Dictionary	(D)	:	46
Length	(N)	:	131
Length estimation	(^N)	:	208.65
Volume	(V)	:	723.587
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0271584
Programming level estimation	(^L)	:	0.0371429
Intellect	(I)	:	26.8761
Time of programming	(T)	:	1480.18
Time estimation	(^T)	:	1723.81
Programming language level	(lambda)	:	0.533704
Work on programming	(E)	:	26643.2
Error	(B)	:	0.297351
Error estimation	(^B)	:	0.241196

ПРИЛОЖЕНИЕ Д. РЕЗУЛЬТАТ ПРОГРАММНОГО РАСЧЕТА МЕТРИК ДЛЯ ПРОГРАММЫ НА ЯЗЫКЕ СИ.

Statistics for module output.lxm

The number of different operators : 27
The number of different operands : 18
The total number of operators : 108
The total number of operands : 59

Dictionary (D) : 45
Length (N) : 167
Length estimation (^N) : 203.441

Volume	(V)	:	917.139
Potential volume	(*V)	:	19.6515
Limit volume	(**V)	:	38.2071
Programming level	(L)	:	0.0214269
Programming level estimation	(^L)	:	0.0225989
Intellect	(I)	:	20.7263
Time of programming	(T)	:	2377.95
Time estimation	(^T)	:	2746.61
Programming language level	(lambda)	:	0.421071
Work on programming	(E)	:	42803.1
Error	(B)	:	0.407877
Error estimation	(^B)	:	0.305713

Table:

Operators:

- T -					
	1		1		!
	2		6		()
	3		3		*
	4		3		+
	5		11		,
	6		2		_
	7		4		/
	8		17		;
	9		1		<
	10		1		<=
	11		12		=
	12		1		>=
	13		2	1	_&
	14		6		_*
	15		5		
	16		3		*
	17		5		const
	18		1		dowhile
	19		3		fabs
	20		11		float
	21		2		func
	22		2		if
	23		1		int
	24		1		log
1	25		1		newton
	26		1		printf
1	27	I	2	I	void

```
Operands:
```

```
1
     | 1 | "x= %f fx = %f dfx = %f n"
       1
          | 0.0
     | 1
          0.8858
 3
          | 18.19
 4
    | 1
| 5
    | 1
          | 1e-4
 6
    | 1
          | 23180.0
| 7
    | 1
          | 4.60517
| 8
    | 2
          | a
| 9
    | 3
          | b
    | 3
 10
          | C
 11 | 10 | dfx
 12
    | 4 | dx
 13 | 6
          | fx
 14 | 2
          | logp
 15 | 5 | tol
| 16 | 12 | x
| 17 | 4 | x1
| 18 | 1 | x2
```

Summary:

The number of different operators : 27

The number of different opera	:	18	
The total number of operators	:	108	
The total number of operands		:	59
Dictionary	(D)	:	45
Length	(N)	:	167
Length estimation	(^N)	:	203.441
Volume	(V)	:	917.139
Potential volume	(★∀)	:	19.6515
Limit volume	(**∀)	:	38.2071
Programming level	(L)	:	0.0214269
Programming level estimation	(^L)	:	0.0225989
Intellect	(I)	:	20.7263
Time of programming	(T)	:	2377.95
Time estimation	(^T)	:	2746.61
Programming language level	(lambda)	:	0.421071
Work on programming	(E)	:	42803.1
Error	(B)	:	0.407877
Error estimation	(^B)	:	0.305713