311 SR Data How clean is it?

Presented by:

David Tussey & Dr. Jun Yan (Uconn)

Visit <u>open-data.nyc</u> to view the full program.

First, you should clean the data. It's probably dirty.

- Data cleansing is a necessary first step for data analysis.
- It is tedious, often taking longer than the analysis itself.
- Failing to do so can lead to invalid conclusions.
- Data cleansing is almost always unique to the dataset and not typically scalable.

Clean datasets are all alike; every dirty dataset is dirty in its own way.

-Hadley Wickham (cf. LeoTolstoy)

311 SR volume has grown 50% in last 10 years

10-yr Yearly SR count (w/trendline)

10-yr Daily data. Noisy!

Using 311 Service Requests (SRs) for 2022-2023

- This analysis uses CY 2022-2023 data:
 - 47 columns per row
 - Representing 16 Agencies
 - 210 different Complaint Types
 - Each row is a single SR ~6.4 million rows
- Service Requests (SRs) come from three channels:
 - Online submission (website) 44%
 - Phone calls 27%
 - Mobile app 20%
 - Other 9%

How to get the data: Query Data from the Actions drop down

Filter by Created Date and "Apply"

Export in CSV format. Analyze in a custom R program.

Monthly data: 2022-2023

Daily Data: 2022-2023

Responsible Agencies: 'Big 6' comprise 90% of SRs

210 Complaint types

Top Five Complaints comprise 50%

- Noise 22% in-total (8 different types)
 - Noise Residential (~ ½ of the noise complaints)
 - Noise Street/Sidewalk
 - 3. Noise Commercial
 - Noise Vehicle
 - Noise
 - 6. Noise Helicopter
 - 7. Noise Park
 - 8. Noise House of Worship
- Illegal Parking 14%
- Heat/Hot Water 8%
- Blocked Driveway 5%
- Unsanitary Condition 3%

Fewest Complaints

- **Trans Fat**
- **Tanning**
- **Tattooing**
- Unlicensed Dog (1)
- Quality of Life
- Taxi Compliment (3)
- Radioactive material (!)

Data Cleansing: What should we check for?

Identifying dirty data. What to include/exclude?

Six areas to investigate:

- 1. Structural issues with the data. Is it in the expected format?
- 2. Missing/blank data
- Do data fields contain the correct data types?
- 4. Invalid values?
- **5.** Logical inconsistencies? Concerning patterns?
- 6. Redundant columns?

1. Structural: What does the 311 SR data look like?

- Four date fields (created, closed, updated date, due date)
- Three borough fields; two of which are duplicates
- Two zip code fields; one has many invalid codes
- Seven street fields; two pair of which are (near) duplicates (cross street, intersection st)
- Agency abbreviation and Agency formal name
- Two Police Precinct fields (precinct, precincts); not 100% duplicates
- Six *computed* fields that have validity issues.
- Three *location* fields in addition to street: lat/long, X/Y state plane, Block # (BBL)

1. Structural Issues: Computed fields not in the Data Dictionary

- Data Dictionary defines 41 columns
- However, data extracts contain 47 columns
- The extra columns are 6 computed fields. (Displayed as such in the Open Data Portal, but not in the Dictionary.)
 - zip_codes
 - community_districts
 - borough boundaries
 - city council districts
 - police precincts
 - police_precinct
- What is the validity of these fields?

1. Structural: computed fields not in Data Dictionary

Computed fields are shown as such in portal Column Manager

2. Missing/blank data: three groups (mostly, some, none)

- **Mostly blanks** (93–99.9% blank) 10 fields
 - Taxi & Limo fields? (pickup location, taxi company)
 - due date, highway fields (ramp, bridge, name)
 - Facility, park facility name, landmark
- **Some blanks** (29-41% blank) 5 fields
 - Intersection_street(s), cross_street,(s), location_type, borough
- No/few blanks (0-12% blank) 32 fields
 - created date, closed date, complaint type, agency, status, community_board , zip, descriptor, borough, etc.

2. Missing data: mostly blank, some blanks, almost none

3. Data types: Do columns contain the correct data type? Yes

- Subjected all columns to data "type" validation (numeric, character, date)
 - Almost all were compliant ⁽³⁾
- All four date fields are valid dates
 - All missing dates are represented as "NA"

4. Valid data: Allowable values

- Lat/Long's are all within boundaries of NYC
- All unique_key values are in fact unique
- Most columns have a domain of legal values:
 - address_type
 - status
 - borough & borough_boundaries & park_borough
 - data_channel
 - vehicle type
 - city_council_district

4. Invalid data: Non-allowable values

- 58% (3.6 million) of computed zip_codes are invalid
- 35% (2 million) of computed police_precincts are invalid
- 0.4% (27,000) of community_board's are invalid
- 0.1% (4,000) of incident_zip are invalid values
- Data representation issues prevent evaluating computed community_district.
 However, there are 72 unique entries, and only 59 valid Community Districts.
- Latitude & Longitude are captured as a 14-decimal field (atomic level)
 - Ex: Lat: 40.8676918602251<u>1</u> : (1.1nm or ~3 atoms wide)

4. Invalid data: zip_codes by Agency (3.6 million/58%)

Case Study: Where are Noise Complaints by Zipcode?

- NYC Office of Nightlife wants to know: What are the top 10 zip codes for Noise **Complaints** (all 8 types) over the last two years?
- Select 2022-23 SRs where *complaint_type* begins with 'Noise', select the zip_codes column and aggregate by count. Voila!

Rank	zip_codes	Counts
1	11275	104,556
2	12420	27,503
3	12428	26,564
4	10935	25,508
5	10934	23,448
6	10931	22,381
7	10930	22,121
8	17613	21,963
9	10936	21,707
10	11606	21,435

Case study: What went wrong?

- Unfortunately, 58% of the computed *zip_codes* are invalid.
- Luckily, the *incident_zip* field is more accurate (99.93%).
- This is a typical issue when faced with duplicate fields; which one is right?

zip_codes	Count	Valid?	incident_zip	Count	Valid?
11275	104,556	FALSE	 10466	104,562	TRUE
12420	27,503	TRUE	10023	27,972	TRUE
12428	26,564	TRUE	10031	25,548	TRUE
10935	25,508	FALSE	10457	25,066	TRUE
10934	23,448	FALSE	10453	24,752	TRUE
10931	22,381	TRUE	10456	24,751	TRUE
10930	22,121	TRUE	10452	22,527	TRUE
17613	21,963	FALSE	10025	21,705	TRUE
10936	21,707	FALSE	10458	21,689	TRUE
11606	21,435	FALSE	10032	20,622	TRUE

5. Inconsistent & Unusual patterns with dates

- 12,000 (0.2%) SRs are "closed" before they are "created" creating a <u>negative duration</u>/response time
 - max: -44,602 days (122 yrs) Some have *closed date* of 01/01/1900 Excel?
- 193,000 SRs (3%) "created" and "closed" at the exact same time (to the second) creating a zero duration
- 7,500 SRs (0.1%) are updated >30 days after they were "closed" (resolution_action_update_date). Is this an error?
 - max: 44,602 days -- max (excluding extreme outliers): 636 days

5. Logical inconsistencies: closed before created

Problem: closed before created (negative duration)

Case Study: Homeless Person Assistance

- DHS wants to know: How quickly are 311 calls for "Homeless Person" Assistance" resolved?
- Filter data by complaint_type = "Homeless Person Assistance"
 - ~75K SRs
- Compute the *duration* (*closed_date created_date*)
- Take an average of the "duration" field. Voila!
 - **Answer: -4.8 days (!)** What? How can that be?

Case study: What went wrong?

- As it turns out, there are <u>8 DHS SRs</u> with a closed_date of **01/01/1900** (Excel?)
 - Each of these SRs creates a **negative** *duration* **of -44,602 days**
- As a result, Average duration: -4.8 days. (Median 0.2 days)
- If you remove the obviously incorrect *closed_date*'s
 - Now the Average is 1.7 days (Median 0.2 days)
- **BUT** note that the median is 0.2 days (~5 hrs), meaning half of the Homeless Assistance requests are solved quite rapidly.
- Given the outliers, **MEDIAN** is the better descriptive statistic in this case.

Homeless Response times: Outliers distort average

Response time for 'Homeless Person Assistance (cleaned data)' SRs

5. Logical inconsistencies: ~200K closed & created at same time (zero duration)

5. Logical inconsistencies: Post-closed resolution updates

Problem?: post-closed updates (lots of outliers)

6. Redundant/Duplicate columns: Which is right?

- 100% match of borough & park_borough (redundant)
- 98% match of borough & borough boundaries (redundant)
- 0.05% match of borough & taxi_company_borough (mismatched)
- 99.9% match of police_precincts & police_precinct (redundant)
- Location is a pure concatenation of Lat & Long (redundant)
 - Latitude: 40.62730881954446 Longitude: -74.00862444250549
 - Location: (40.62730881954446, -74.00862444250549)

6. Redundant or Duplicate columns: Which is right?

- 88% match of cross_street_1 & intersection_street_1
- 88% match of cross_street_2 & intersection_street_2

Which field do you trust when one of the (almost) duplicate fields differ or one is blank and the other is not?

Overall problems in the data

- Blank/missing fields. Which fields are useful for analysis?
- Duplicate fields make analysis challenging and increase file size.
 Which field is the correct one?
- Invalid values distorts analysis especially computed fields zipcodes, police precincts, and community board.
- Incorrect *Closed* and *Created* dates can create negative/zero durations which distorts response time analysis.

Recommendations

- Many of the fixes lie at the Agency source, not 311 per se.
- Update Data Dictionary to provide more clarity and value domains (can provide draft)
- Review fields with high percentage of blank/unknown values.
- Evaluate eliminating invalid values; incorporate drop-downs, pick-lists, field validation, etc. Improve computed fields.
- Create logical controls on selected fields, especially dates
 - created_date, closed_date, resolution_action_update_date?
- Eliminate/consolidate duplicate fields
 - Intersection_street(s)/cross_street(s)
 - borough, borough_boundaries, taxi_company_borough, park_borough
 - location and latitude, longitude
- Correct excessive precision in Lat/Long fields (14 digits)

Final thoughts

- Data cleansing is a critical step before beginning analysis.
 - Data Cleansing determines which data fields can be trusted.
 - Data Cleansing indicates which data elements should be evaluated, possibly removing invalid, unusual, and illogical values.
- A full report is available for review including more examples, graphs, and R code.
- NYC ODW/School of Data might consider a basic course in data cleansing.
- Recommend data cleansing be included as part of a Data Science academic courses

311 SR Data: How Clean is It?

For further information contact:

David Tussey davidtussey@gmail.com

Dr Jun Yan (Uconn) jun.yan@uconn.edu

Join us at more events through Sunday March 24. Program at open-data.nyc.

