Planche nº 14. Fonctions trigonométriques réciproques

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***IT)

Domaine de définition et calcul des fonctions suivantes :

 $\sin(\operatorname{Arcsin} x)$, $\operatorname{Arcsin}(\sin x)$, $\cos(\operatorname{Arccos} x)$, $\operatorname{Arccos}(\cos x)$, $\tan(\operatorname{Arctan} x)$, $\operatorname{Arctan}(\tan x)$.

Exercice nº 2 (IT)

- 1) (**) Calculer Arccos x + Arcsin x pour x élément de [-1;1].
- 2) (**) Calculer $\operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x}$ pour x réel non nul.
- 3) (**) Calculer $\cos(\arctan a)$ et $\sin(\arctan a)$ pour a réel donné.
- 4) (***) Calculer, pour a et b réels tels que $ab \neq 1$, Arctan a + Arctan b en fonction de Arctan $\frac{a+b}{1-ab}$ (on étudiera d'abord $\cos(\operatorname{Arctan} a + \operatorname{Arctan} b)$ et on distinguera les a = a + b et a =

Exercice no 3 (***I)

Existence et calcul de $\int_0^{\sin^2 x} Arcsin \sqrt{t} \ dt + \int_0^{\cos^2 x} Arccos \sqrt{t} \ dt$.

Exercice nº 4 (***)

Simplifier les expressions suivantes :

1)
$$f_1(x) = Arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$$
.

2)
$$f_2(x) = Arccos\left(\frac{1-x^2}{1+x^2}\right)$$
.

3)
$$f_3(x) = Arcsin \sqrt{1-x^2} - Arctan \left(\sqrt{\frac{1-x}{1+x}}\right)$$
.

4)
$$f_4(x) = \operatorname{Arctan} \frac{1}{2x^2} - \operatorname{Arctan} \frac{x}{x+1} + \operatorname{Arctan} \frac{x-1}{x}$$
.

Exercice no 5 (**I)

Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$.

Exercice nº 6 (***I)

Calculer $u_n = \operatorname{Arctan} \frac{2}{1^2} + \operatorname{Arctan} \frac{2}{2^2} + ... + \operatorname{Arctan} \frac{2}{n^2}$ pour n entier naturel non nul donné puis déterminer $\lim_{n \to +\infty} u_n$. (Utiliser le $n^{\circ} 2.4$))

Exercice nº 7 (***) (Mines de DOUAI 1984)

On considère la fonction numérique f telle que :

$$f(x) = (x^2 - 1) Arctan \frac{1}{2x - 1},$$

et on appelle (\mathscr{C}) sa courbe représentative dans un repère orthonormé.

- 1) Quel est l'ensemble de définition \mathcal{D} de f?
- 2) Exprimer, sur $\mathcal{D} \setminus \{0\}$, la dérivée de f sous la forme : f'(x) = 2xg(x).
- 3) Montrer que : $\forall x \in \mathbb{R}$, $2x^4 4x^3 + 9x^2 4x + 1 > 0$ et en déduire le tableau de variation de q.
- 4) Dresser le tableau de variation de f.

Exercice nº 8 (**)

Simplifier les expressions suivantes

1)
$$\sin(2 \operatorname{Arcsin} x)$$
 2) $\cos(2 \operatorname{Arccos} x)$ 3) $\sin^2 \left(\frac{\operatorname{Arccos} x}{2}\right)$

Exercice nº 9

Résoudre dans $\mathbb R$ les équations suivantes :

1) (*)
$$\cos x = \frac{1}{3}$$

3) (*)
$$\tan(x) = 3$$

5) (***)
$$Arcsin(2x) = Arcsin(x \sqrt{2})$$

7) (***)
$$Arctan(x-1) + Arctan(x) + Arctan(x+1) = \frac{\pi}{2}$$
.

2) (*)
$$\sin(2x) = -\frac{1}{4}$$

2) (*)
$$\sin(2x) = -\frac{1}{4}$$

4) (***) $Arcsin(x) + Arcsin(\frac{x}{2}) = \frac{\pi}{4}$
6) (***) $2 Arcsin x = Arcsin(2x\sqrt{1-x^2})$

6) (***)
$$2 \operatorname{Arcsin} x = \operatorname{Arcsin} \left(2x \sqrt{1 - x^2} \right)$$