OPEN ACCESS

Quick Protocol for Oligonucleotide Cleanup Using the Monarch® PCR & DNA Cleanup Kit (5 μg) (NEB #T1030)

New England Biolabs

Abstract

Quick Protocol for Oligonucleotide Cleanup Using the Monarch® PCR & DNA Cleanup Kit (5 μg) (NEB #T1030)

Citation: New England Biolabs Quick Protocol for Oligonucleotide Cleanup Using the Monarch® PCR & DNA Cleanup Kit (5 μg) (NEB #T1030). **protocols.io**

dx.doi.org/10.17504/protocols.io.nyfdftn

Published: 06 Apr 2018

Guidelines

DNA Cleanup and Concentration: for the purification of up to 5 μ g of DNA (ssDNA > 200 nt and dsDNA > 50 bp) from PCR and other enzymatic reactions. A <u>detailed protocol</u> and a <u>quick protocol</u> are available for your convenience.

Oligonucleotide Cleanup (steps): for the purification of up to 5 μ g of DNA fragments \geq 15 bp (dsDNA) or \geq 18 nt (ssDNA). Expected recovery is > 70%. When purifying ssDNA of any size, recovery can be increased by using this protocol; however, it is important to note that this protocol shifts the cutoff for smaller fragments to 18 nt (rather than 50 nt for the DNA Cleanup and Concentration Protocol).

Before start

- All centrifugation steps should be carried out at 16,000 x q (~13,000 RPM).
- Add 4 volumes of ethanol (≥ 95%) to one volume of DNA Wash Buffer.

Materials

Monarch® PCR & DNA Cleanup Kit (5 μg) T1030 by New England Biolabs

Protocol

Step 1.

Add 100 µl DNA Cleanup Binding Buffer to the 50 µl sample.

■ AMOUNT

100 µl Additional info: DNA Cleanup Binding Buffer

NOTES

Danielle Freedman 21 Mar 2018

We recommend a sample volume of 50 μ l. For smaller samples, adjust the volume with nuclease-free water.

Step 2.

Add 300 μ l ethanol (\geq 95%). Mix well by pipetting up and down or flicking the tube. Do not vortex.

■ AMOUNT

300 µl Additional info: Ethanol (≥ 95%)

Step 3.

Insert column into collection tube and load sample onto column.

Step 4.

Spin for 1 minute, then discard flow-through.

Step 5.

Re-insert column into collection tube.

Step 6.

Add 500 µl DNA Wash Buffer and spin for 1 minute.

■ AMOUNT

500 μl Additional info: DNA Wash Buffer

Step 7.

Discard flow-through.

Step 8.

Repeat steps 5-7 (Optional). Recommended for removal of enzymes that may interfere with downstream applications (e.g., Proteinase K).

PGOTO

Repeating steps 5-7 -> go to step #5

Step 9.

Transfer column to a clean 1.5 ml microfuge tube. Use care to ensure that the tip of the column does not come into contact with the flow-through. If in doubt, re-spin for 1 minute.

Step 10.

Add \geq 6 μ l of DNA Elution Buffer to the center of the matrix.

■ AMOUNT

6 μl Additional info: DNA Elution Buffer

Step 11.

Wait for 1 minute, then spin for 1 minute to elute DNA.

P NOTES

Danielle Freedman 21 Mar 2018

Typical elution volumes are $6\text{--}20~\mu l$. Nuclease-free water (pH 7-8.5) can also be used to elute the DNA. Yield may slightly increase if a larger volume of DNA Elution Buffer is used, but the DNA will be less concentrated.

Warnings

Please refer to SDS for safety warnings.