Book 3 Proposition 37

If some point is taken outside a circle, and two straightlines radiate from the point towards the circle, and one of them cuts the circle, and the (other) meets (it), and the (rectangle contained) by the whole (straight-line) cutting (the circle), and the (part of it) cut off outside (the circle), between the point and the convex circumference, is equal to the (square) on the (straight-line) meeting (the circle), then the (straight-line) meeting (the circle) will touch the circle.

For let some point D have been taken outside circle ABC, and let two straight-lines, DCA and DB, radiate from D towards circle ABC, and let DCA cut the circle, and let DB meet (the circle). And let the (rectangle contained) by AD and DC be equal to the (square) on DB. I say that DB touches circle ABC.

For let DE have been drawn touching ABC [Prop. 3.17], and let the center of the circle ABC have been found, and let it be (at) F. And let FE, FB, and FD have been joined. (Angle) FED is thus a right-angle [Prop. 3.18]. And since DE touches circle ABC, and DCA cuts (it), the (rectangle contained) by AD and DC is thus equal

to the (square) on DE [Prop. 3.36]. And the (rectangle contained) by AD and DC was also equal to the (square) on DB. Thus, the (square) on DE is equal to the (square) on DB. Thus, DE (is) equal to DB. And FE is also equal to FB. So the two (straight-lines) DE, EF are equal to the two (straight-lines) DB, BF (respectively). And their base, FD, is common. Thus, angle DEF is equal to angle DBF [Prop. 1.8]. And DEF (is) a right-angle. Thus, DBF (is) also a right-angle. And FB produced is a diameter, And a (straight-line) drawn at right-angles to a diameter of a circle, at its extremity, touches the circle [Prop. 3.16 corr.]. Thus, DB touches circle ABC. Similarly, (the same thing) can be shown, even if the center happens to be on AC.

Thus, if some point is taken outside a circle, and two straight-lines radiate from the point towards the circle, and one of them cuts the circle, and the (other) meets (it), and the (rectangle contained) by the whole (straight-line) cutting (the circle), and the (part of it) cut off outside (the circle), between the point and the convex circumference, is equal to the (square) on the (straight-line) meeting (the circle), then the (straight-line) meeting (the circle) will touch the circle. (Which is) the very thing it was required to show.