PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-069509

(43) Date of publication of application: 09.03.1999

(51)Int.CI.

B60L 11/14 B60K 17/04 B60K 41/28 F02D 29/00 F02D 29/02

(21)Application number: 09-222122

(71)Applicant: NISSAN MOTOR CO LTD

(22)Date of filing:

19.08.1997

PROBLEM TO BE SOLVED: To avoid giving feeling of

(72)Inventor: GOTO YUJI

(54) TRANSMISSION CONTROLLING DEVICE FOR HYBRID VEHICLE

(57)Abstract:

reduction in speed due to the disengagement of a clutch, when changing speed in a hybrid vehicle whose speed is made automatically changeable, using the clutch to be engaged or disengaged by control signals.

SOLUTION: A clutch 2 to be engaged and disengaged by control signals is provided between a stepped gear reducer 3, allowing automatic speed change and an internal combustion engine 1. The instant the clutch 2 is disengaged by speed change command signals, and then speed is changed. At the same time, the opening of a throttle is reduced automatically to prevent the engine 1 from racing. An electric motor 11 for helping the start or regeneration of power is coupled directly to the intermediate shaft of the reducer 3. Upon the disengagement of the clutch 2 for speed change, the

driving torque of the electric motor 11 is increased and

instantly applied to the side of driving wheels 5.

LEGAL STATUS

[Date of request for examination]

26.11.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-69509-

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl. ⁶	識別記号	FΙ	
B60L 11/1	4	B60L 11/14	
B60K 17/0	4	B60K 17/04	G
41/2	8	41/28	
F02D 29/0	0	F 0 2 D 29/00	Н
29/0	2	29/02	D
		審査請求未請求。請求	
(21)出願番号	特願平9-222122	(71)出願人 000003997	
		日産自動車	株式会社
(22)出顧日	平成9年(1997)8月19日	神奈川県横浜市神奈川区宝町2番地	
		(72)発明者 後藤 裕二	<u>.</u>
			浜市神奈川区宝町2番地 日産
		自動車株式	
	·• ,	(74)代理人 弁理士 志	複 富士弥 (外3名)
		· .	

(54) 【発明の名称】 ハイブリッド車両の変速制御装置

(57)【要約】

【課題】 制御信号により断・接動作するクラッチ装置 2を用いて自動変速を可能としたものにおいて、変速時 のクラッチ装置2の切断に伴う減速感の発生を回避す る。

【解決手段】 自動変速可能な有段歯車変速機3と内燃機関1との間に、制御信号により断・接動作するクラッチ装置2が介装されており、変速指令信号によりクラッチ装置2が切断されると同時に変速が実行される。同時に、内燃機関1の吹き上がり防止のために、スロットル開度が自動的に減少する。発進時等の補助や電力回生を行うための電動機11が変速機3の中間軸に直結されており、変速時にクラッチ装置2の切断と同時に、電動機11の駆動トルクが増大し、駆動輪5側に付加される。

1:内燃機関 2:クラッチ装置

3:変速機

11:電動機

30

.1

【特許請求の範囲】

【請求項1】 内燃機関と、制御信号により変速可能な有段歯車変速機と、上記内燃機関と上記変速機との間に介装され、かつ制御信号により断・接動作するクラッチ接置と、運転条件に応じて上記変速機の変速を行う変速制御手段と、この変速動作の際に上記クラッチ装置の切断および接続を行うクラッチ制御手段と、上記変速動作の際に内燃機関のスロットル開度を減少させるスロットル制御手段と、上記クラッチ装置の出力側から駆動輪に至る動力伝達系の適宜位置に接続され、かつ駆動輪の駆 10動ならびに該駆動輪による電力回生が可能な電動機と、を備えてなるハイブリッド車両において、上記の変速動作に伴う上記クラッチ装置の切断時に上記電動機の駆動トルクを増大させることを特徴とするハイブリッド車両の変速制御装置。

【請求項2】 アクセルペダルの踏込量が一定の状態で行われる変速と、アクセルペダル踏込量の増加中に行われる変速と、に対して上記電動機の駆動トルクの増大を実行し、アクセルペダルの解放による減速中の変速に対しては駆動トルクの増大を行わないことを特徴とする請求項1記載のハイブリッド車両の変速制御装置。

【請求項3】 アクセルペダルの踏込量が一定の状態で行われる変速に対して、変速直前の機関回転数とスロットル開度とから定まるエンジントルクを目標として上記電動機の駆動トルクを増大させ、アクセルペダル踏込量の増加中に行われる変速に対して、変速後の予測機関回転数と現在のアクセルペダル踏込量に対応するスロットル開度とから定まるエンジントルクを目標として上記電動機の駆動トルクを増大させることを特徴とする請求項2記載のハイブリッド車両の変速制御装置。

【請求項4】 クラッチ装置のクラッチストロークを検出するクラッチストローク検出手段を有し、クラッチストロークがクラッチミートポイントよりも大きくなった時点で駆動トルクの増加を開始し、かつ変速後にクラッチミートポイントよりも小さくなった時点で駆動トルクの減少を開始することを特徴とする請求項1~3のいずれかに記載のハイブリッド車両の変速制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、車両の駆動源として内燃機関とともに電動機を用いたハイブリッド車両に関し、特に、制御信号により断・接可能なクラッチ装置を介して有段歯車変速機の自動変速を行うようにしたハイブリッド車両における変速制御装置に関する。

[0002]

【従来の技術】内燃機関と電動機とを組み合わせたハイブリッド車両の一例としては、例えば、特開平8-266012号公報に示されているように、内燃機関でもって車両の走行を行うとともに、この内燃機関の出力と並列に電動機を設け、発進時等に電動機の動力を付加でき

2

るようにしたハイブリッドシステムが知られている。このハイブリッドシステムでは、内燃機関の後段にクラッチ装置を介してベルト式無段変速機が接続されており、この変速機から終減速装置を介して駆動輪へ動力伝達がなされている。そして、この変速機の出力軸に電動機が直結されている。この電動機は、発進時等、内燃機関の出力が不十分なときに動力を付加するために駆動されるとともに、車両減速時には、駆動輪側から逆に駆動されることにより電力回生を行うことができるようになっている。

【0003】また、一方、車両の変速装置として、制御 信号により変速可能な有段歯車変速機と、同じく制御信 号により断・接動作する機械的なクラッチ装置と、を組 み合わせることにより、車両の運転条件に応じた自動変 速を実現するようにした自動変速装置が知られており、 一部で実用に供されている(特開平9-112586号 公報等)。これは、例えば、油圧により動作するクラッ チ装置を用いたもので、制御装置がアクセルペダル踏込 **量および車速に応じて変速すべきことを決定すると、ク** ラッチ装置が自動的に切断され、かつ油圧機構等により 変速機の変速が行われる。そして、変速後に、再びクラ ッチ装置が接続される構成となっている。また、クラッ チ装置を切断したときの内燃機関の吹き上がりを防止す るために、この種の変速装置では、一般に内燃機関のス ロットル開度をステップモータ等により制御する構成と なっており、変速時には、アクセルペダル踏込量と無関 係にスロットル開度が一時的に減少し、内燃機関の出力 が抑制されるようになっている。

[0004]

【発明が解決しようとする課題】しかしながら、上記のような自動変速装置を用いた車両においては、車速とアクセルペダル踏込量とで定まる変速タイミングにおいて上述したように変速が実行されると、運転者の意志と無関係にスロットルが閉じられ、エンジントルクが一時的に減少するとともに、これと同時にクラッチ装置が切断されるので、運転者が減速感を感じ、違和感を覚えるという不具合がある。特に、アクセルペダルを踏込んで行って加速しようとしているときの変速では、運転者が加速しようとしているにも拘わらず駆動輪に伝達されるトルクの低下が生じるので、減速感が一層顕著なものとなる。

[0005]

【課題を解決するための手段】そこで、この発明は、ハイブリッド車両における電動機を利用して、変速時の減速感の発生を回避するようにした。すなわち、この発明は、内燃機関と、制御信号により変速可能な有段歯車変速機と、上記内燃機関と上記変速機との間に介装され、かつ制御信号により断・接動作するクラッチ装置と、運転条件に応じて上記変速機の変速を行う変速制御手段と、この変速動作の際に上記クラッチ装置の切断および

50

接続を行うクラッチ制御手段と、上記変速動作の際に内 燃機関のスロットル開度を減少させるスロットル制御手 段と、上記クラッチ装置の出力側から駆動輪に至る動力 伝達系の適宜位置に接続され、かつ駆動輪の駆動ならび に該駆動輪による電力回生が可能な電動機と、を備えて なるハイブリッド車両において、上記の変速動作に伴う 上記クラッチ装置の切断時に上記電動機の駆動トルクを 増大させることを特徴としている。

【0006】上記変速制御手段は、例えば車速とアクセ ルペダル踏込量とに基づいて最適な変速段を決定し、変 10 速指令信号を出力する。これに基づいて、クラッチ装置 は、切断され、かつ変速機の変速が行われる。また、こ の際に、スロットル制御手段によって内燃機関のスロッ トル開度が小さくなり、内燃機関の吹き上がりが防止さ れる。ここで、本発明では、クラッチ装置の切断と実質 的に同時に、電動機の駆動トルクが増大する。そのた め、車両の減速感の発生が回避される。そして、変速の 終了後、クラッチ装置は接続状態に戻り、かつスロット ル開度もアクセルペダル踏込量に対応した開度に復帰す る。これと実質的に同時に、電動機の駆動トルクも減少

【0007】また、請求項1の発明をさらに具体化した 請求項2の発明は、アクセルペダルの踏込量が一定の状 態で行われる変速と、アクセルペダル踏込量の増加中に 行われる変速と、に対して上記電動機の駆動トルクの増 大を実行し、アクセルペダルの解放による減速中の変速 に対しては駆動トルクの増大を行わないことを特徴とし ている。

【0008】アクセルペダルの踏込量が一定のまま保持 されても、例えば車速が増加すると、これに伴って変速 30 段が高速段側へ変速される。このとき、エンジントルク が減少すると、違和感が発生する。またアクセルペダル を踏込んで加速しようとしているときには、変速段が低 速段側へ変速されるが、このときにも、エンジントルク が減少すると、大きな減速感が発生し、好ましくない。 従って、これらの変速に対しては電動機によって駆動ト ルクを付加するのである。これに対し、運転者がアクセ ルペダルを離して減速しようとしているときには、減速 感の発生は問題とならず、むしろ電動機による減速エネ ルギの回生を行うべきであるので、電動機による駆動ト ルクの付加は行わない。

【0009】この請求項2の発明をさらに限定した請求 項3の発明は、アクセルペダルの踏込量が一定の状態で 行われる変速に対して、変速直前の機関回転数とスロッ トル開度とから定まるエンジントルクを目標として上記 電動機の駆動トルクを増大させ、アクセルペダル踏込量 の増加中に行われる変速に対して、変速後の予測機関回 転数と現在のアクセルペダル踏込量に対応するスロット ル開度とから定まるエンジントルクを目標として上記電 動機の駆動トルクを増大させることを特徴としている。

【0010】すなわち、内燃機関が発生するエンジント ルクは、機関回転数とスロットル開度とによって定まる のであるが、アクセルペダル踏込量が一定の場合には、 主に車速の変化に伴う変速であるから、変速開始時のエ ンジントルクを保つように電動機の駆動トルクを付加す ることが、トルクの段差感の発生を回避する上で好まし い。これに対し、アクセルペダル踏込量が増加している 加速中の変速は、主に加速のための低速段側への変速で あるから、変速後のエンジントルクを予測し、予めこれ に沿って電動機の駆動トルクを与えることが、加速性能 の上で好ましいものとなる。

【0011】また請求項4の発明は、クラッチ装置のク ラッチストロークを検出するクラッチストローク検出手 段を有し、クラッチストロークがクラッチミートポイン トよりも大きくなった時点で駆動トルクの増加を開始 し、かつ変速後にクラッチミートポイントよりも小さく なった時点で駆動トルクの減少を開始することを特徴と している。クラッチディスク押付荷重が0となる点であ るクラッチミートポイントは、例えば、クラッチストロ ークに対する変速機側の回転数変化等から検出でき、か つ逐次学習することが可能である。変速時にクラッチス トロークがこのクラッチミートポイントよりも大きくな れば、その時点でクラッチ装置が実質的に切断されたも のとみなすことができる。従って、同時に電動機の駆動 トルクを増大させることにより、駆動輪に加わるトルク の変動を抑制できる。また変速後にクラッチストローク がクラッチミートポイントよりも小さくなれば、その時 点で内燃機関からの動力伝達が開始される。従って、同 時に電動機の駆動トルクを減少させれば、同様に、駆動 輪に加わるトルクの変動が小さなものとなる。

[0012]

【発明の効果】本発明によれば、制御信号により断・接 動作するクラッチ装置を用いて有段歯車変速機の自動変 速を可能としたハイブリッド車両において、変速時のク ラッチ装置の切断および内燃機関の出力抑制に伴う減速 感の発生を回避でき、運転性が向上する。

【0013】特に請求項2の発明によれば、アクセルペ ダルを一定の踏込量に保持している状態での変速や加速 中の変速における一時的なトルクの低下を回避でき、運 転者に違和感を与えることがないとともに、減速に対し ては不必要な電動機の駆動を防止でき、回生による総合 的な燃費向上を図ることができる。

【0014】また請求項3の発明によれば、変速の態様 に応じて適切な駆動トルクを与えることができ、アクセ ルペダル踏込量が一定の場合にトルクの段差感を非常に 小さなものとすることができるとともに、加速時には、 車両に与えられるトルクを一層速やかに立ち上げること ができる。

【0015】さらに請求項4の発明によれば、電動機の 50 駆動トルクを適切なタイミングで付加することができ、

5

トルク変化を抑制できる。

[0016]

【発明の実施の形態】以下、この発明の一実施例を図面 に基づいて詳細に説明する。

【0017】図1は、この発明に係るハイブリッド車両 の駆動系の構成を示すスケルトン図であって、車体にい わゆる横置状態に搭載された内燃機関1のクランクシャ フトが、クラッチ装置2を介して変速機3の入力軸に接 続可能となっており、この変速機3から終減速装置4を 介して駆動輪5へ動力伝達がなされている。上記変速機 10 3は、油圧機構により変速可能な有段歯車変速機であっ て、油圧の切換を行う複数の油圧制御弁等からなる変速 制御機構6を具備している。また上記クラッチ装置2 は、例えば油圧式クラッチからなり、その油圧を制御す るクラッチ制御機構7によって切断および接続の制御が 可能となっている。なお、上記クラッチ装置2と変速機 3と終減速装置4は、図示するようにトランスアクスル として一体化されている。

【0018】上記内燃機関1の図示せぬスロットルバル ブは、スロットル制御機構8の一部をなす図示せぬステ ップモータによって開度制御されるようになっている。 このスロットルバルブの開度は、基本的には、図示せぬ アクセルペダルの踏込量に対応した開度に保たれるが、 変速時つまりクラッチ装置2が切断されるときには、ア クセルペダル踏込量と無関係に全閉に制御される。上記 変速制御機構6、クラッチ制御機構7およびスロットル 制御機構8は、コントロールユニット9によってそれぞ れ制御され、後述するように、運転条件に応じた自動変 速を実現している。なお、詳細な図示は省略するが、車 両および内燃機関1の運転条件を検出するために、種々 のセンサ類が設けられている。例えば、図示せぬアクセ ルペダルの踏込量を検出するアクセル開度センサ、車速 を検出する車速センサ、内燃機関1の回転数を検出する クランク角センサ、変速機3のセレクトレバーによるレ ンジ位置を検出するレンジ位置検出スイッチ、等が設け られており、これらのセンサ類の検出信号は、コントロ ールユニット9に入力されている。

【0019】また、上記変速機3の中間軸に、電動機1 1の回転軸が直結されている。この電動機11は、電力 の供給により駆動輪5に駆動トルクを与える電動機とし て動作するほか、逆に駆動輪5側から駆動されることに より一種の発電機として電力の回生が可能となってい る。この電動機11の駆動や回生は、インバータ回路1 2を介してコントロールユニット9によって制御されて いる。この電動機11の駆動トルクは、例えば、内燃機 関1の出力が不十分な車両発進時の補助、加速時の補 助、変速機3がニュートラルに保持されている車両停車 中のクリープ力の付与、などのために基本的に用いら れ、また減速時には減速エネルギの回生を行うことで、

お、この実施例では、変速機3の中間軸に対し電動機1 1を接続しているが、この位置に限られず、動力伝達系 の適宜位置に設けることができる。

【0020】また、この実施例では、車両停車中の内燃 機関1の停止を可能とするために、補機駆動用電動機1 3をさらに備えている。すなわち、内燃機関1の動力の 一部がベルト伝動機構14を介して取り出され、油圧式 もしくは電磁式のクラッチ15を介して空調装置用コン プレッサやパワーステアリング用ポンプ等の補機16を 駆動している。そして、上記クラッチ15よりも補機1 6 側に、上記補機駆動用電動機13が接続されている。 従って、上記補機16は、内燃機関1の運転中はクラッ チ15を介して機関出力によって駆動され、また内燃機 関1の停止中は、クラッチ15を切断した状態として補 機駆動用電動機13によって駆動される。

【0021】次に、図2に示すフローチャートを参照し て、上記実施例の構成における変速制御、特に電動機1 1の制御について説明する。この図2に示すルーチン は、コントロールユニット9において繰り返し実行され るものであって、まず、ステップ1で上述した種々のセ ンサ類からの検出信号を読み込む。次にステップ2で、 アクセル開度(アクセルペダル踏込量)およびその変化 量に基づき、減速中であるか否かを判定する。具体的に は、「アクセル開度変化量≥0でかつアクセル開度> 0」の条件を満たすか否かを判定する。アクセル開度が 0つまりアクセルペダルが解放されている状態、あるい はアクセル開度は0ではないが減少している状態であれ ば、車両を減速させようとしているものとみなし、電動 機11による変速中のトルク付加は行わず、ステップ3 へ進んで、電動機11の回生制御を行う。

【0022】一方、減速でない場合は、ステップ4へ進 み、変速が必要か否か判定する。つまり、車速とアクセ ル開度とに基づき、所定の変速マップを参照して、変速 段が決定されるのであり、車速やアクセル開度の変化に 伴って変速が必要であると判定した場合には、ステップ 5へ進んで、変速指令信号が出力される。この変速指令 信号によって、クラッチ制御機構6を介してクラッチ装 置2が一時的に切断され、かつ変速制御機構6を介して 変速機3の変速が実行される。また、このクラッチ装置 2の切断に伴う内燃機関1の吹き上がりを回避するため に、スロットル制御機構8を介してスロットルバルブが 一時的に閉じられる。

【0023】次に、ステップ6へ進み、アクセル開度変 化量が正であるかりであるかを判別する。アクセル開度 変化量が0である場合には、ステップ7へ進み、変速指 令直前のエンジントルクを演算する。これは、予め設定 したマップに基づき、変速直前の機関回転数とスロット ル開度とから求められる。なお、変速に伴ってスロット ル開度を全閉とするとき以外の一般的な状況では、アク 電力消費ひいては総合的な燃費の改善を図っている。な 50 セル開度とスロットル開度とは、1対1に対応している

40

ので、スロットル開度に代えてアクセル開度から求める ことも可能である。このようにアクセル開度が一定のま ま変速されるのは、車速の増加に伴って高速段側へ変速 される場合が主に考えられる。

【0024】一方、アクセル開度が増加する加速中に行われる変速は、低速段側への変速となるが、この場合は、ステップ6からステップ8へ進み、変速後の機関回転数を予測する。具体的には、現在の車速と変速後のギア比とを用いて演算する。そして、この変速後の機関回転数と、現在のアクセル開度に対応するスロットル開度 10とから、やはり所定のマップに基づき、エンジントルクを演算する。このエンジントルクは、変速の終了時点で発生すると考えられるエンジントルクに相当する。

【0025】このようにして電動機11によって付加す べき駆動トルクを求めた後に、ステップ10へ進み、ク ラッチストロークの変化を監視する。そして、クラッチ ストロークがクラッチミートポイントに達したら、ステ ップ11へ進み、駆動トルクの増加指令を出力する。こ の駆動トルクは、上記のステップ7もしくはステップ9 において求められたエンジントルクと等しくなるように 20 与えられる。なお、クラッチ装置2のクラッチストロー クは、そのアクチュエータの移動量を検出するようにし てもよく、あるいはアクチュエータに対し与えられる制 御信号から求めることも可能である。また、クラッチミ ートポイントは、予め所定値として設定してもよく、あ るいはクラッチ装置2の切断状態からクラッチストロー クを減少させていって変速機3入力軸が回転し始める点 をクラッチミートポイントとして検出し、逐次学習する ように構成することもできる。

【0026】従って、クラッチストロークがクラッチミ 30 ートポイント以上となって該クラッチ装置2が実質的に 切断状態となったときに、電動機11による駆動トルク Q

が速やかに駆動輪 5 側に付加され、減速感の発生が回避される。特に、アクセル開度が一定のままの高速段側への変速では、そのときのエンジントルクを維持するように駆動トルクが付加されるので、トルクの段差感が非常に小さなものとなり、他方、加速に伴う低速段側への変速では、変速により生じるエンジントルクの増加を見込んだ形で、変速後に発生するであろう一層大きなエンジントルクが予め電動機 1 1 によって与えられるのて、減速感の回避のみならず、加速性能が向上する。

【0027】そして、このようにクラッチ装置2が切断している間に、上述したように変速機3の変速が行われる。ステップ12では、この変速が完了したか否かを判定し、変速完了時点でステップ13へ進む。なお、この変速完了に伴ってクラッチ装置2は、再び接続状態へ復帰するように制御される。ステップ13では、この接続方向へ変化するクラッチストロークを監視しており、クラッチストロークがクラッチミートポイント以下となった時点でステップ14へ進み、電動機11の駆動トルクを減少させる。この電動機11の駆動トルクは、変速開始前の初期状態に戻され、例えば他の目的のために電動機11が駆動されていなければ、0に復帰する。

【図面の簡単な説明】

【図1】この発明に係るハイブリッド車両の変速制御装置の一実施例を示す構成説明図。

【図2】この実施例における制御の流れを示すフローチャート。

【符号の説明】

1…内燃機関

2…クラッチ装置

30 3…変速機

11…電動機

1:内燃機関 2:クラッチ装置 3:変速機 11:電動機

`5

