THE SQUARES IN THE SMARANDACHE FACTORIAL PRODUCT SEQUENCE OF THE SECOND KIND

Maohua Le

Abstract . In this paper we prove that the Smarandache factorial product sequence contains only one square 1.

Key words . Smarandache product sequence, factorial, square.

For any positive integer n, let

(1)
$$F(n) = \prod_{k=1}^{n} k! - 1.$$
Then the sequence $F = \{F(n)\}_{n=1}^{\infty}$ is called

Then the sequence $F = \{F(n)\} n = 1$ is called the Smarandache factorial product sequence of the second kind (see [2]). In this paper we completely determine squares in F. We prove the following result.

Theorem. The Smarandache factorial product sequence of the second kind contains only one square F(2)=1.

Proof. Since F(1)=0 by (1), we may assume that n>1. If F(n) is a square, then from (1) we get

(2)
$$a^2 = \prod_{k=1}^n k!,$$

where a is a positive integer. By [1,Theorem 82], if p is a prime divisor of a^2+1 , then either p=2 or $p\equiv 1 \pmod{4}$. Therefore, we see from (2) that n<3. Since F(2)=1 is a square, the theorem is proved.

References

- [1] G.H Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1937.
- [2] F. Russo, Some results about four Smarandache U-product sequence, Smarandache Notions J. 11(2000)42-49.

Department of Mathematics Zhanjiang Normal College Zhanjiang, Guangdong P.R. CHINA