Лабораторная работа № 5.5.1

Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

С помощью сцинтилляционного счетчика измеряются линейные коэффициенты ослабления потока γ-лучей в свинце, железе и алюминии; по их величине определяется энергия γ-квантов.

Теоретическая справка

Проходя через вещество, поток γ -квантов постепенно ослабляется.

$$I = I_0 e^{-\mu l} = I_0 e^{-\mu' m_1}$$

 μ' в отличие от μ не зависит от плотности среды, т.е. при увеличении плотности в два раза μ увеличится в два раза.

Фотоэлектрическое поглощение

Свободный электрон не может поглотить или испустить фотон. Вероятность фотоэффекта пропорциональна \mathbb{Z}^5 . Возникает при не очень больших энергиях.

Комптоновское рассеяние

Происходит на слабосвязанных электронах.

Образование пар

При энергиях γ -лучей, превышающих $2mc^2=1.02~{
m M}$ эВ. Вероятность возникновения электрон-позитронных пар пропорциональна Z^2 .

Полный коэффициент ослабления потока γ -лучей

Равна сумме коэффициентов для всех трех рассмотренных процессов.

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}$$

Экспериментальная установка

Ход работы и обработка результатов

Включим и настроим приборы. Убедимся, что установка чувствует γ -лучи. При открытом коллиматоре 257438 за 10 секунд, при закрытом 104 за 10 секунд (фоновое излучение, обусловленное космическим излучение, соседними источниками, квантами, рассеяными на стенах комнаты и в стенках прибора). Значит, установка работает исправно.

$$I_0 = 25743.8$$
 шт/сек $\epsilon_{N_0} = 0.19\%$

Измерим более точно фоновое излучение:

Время измерения	Количество частиц	Ошибка	
250	3046	1.8%	

Алюминий

N, количество частиц	t, c	ϵ , %	b, см	I, шт/сек	$\ln \frac{I_0}{I}$
271432	20	0.19	1.95	13571.60	0.640
153323	20	0.26	3.90	7666.15	1.211
139478	30	0.27	5.85	4649.27	1.711
116700	40	0.29	7.80	2917.50	2.177
135757	70	0.27	9.75	1939.39	2.586

Железо

N, количество частиц	t, c	ϵ , %	b, см	I, шт/сек	$\ln \frac{I_0}{I}$
220349	20	0.21	1	11017.45	0.849
130991	25	0.28	2	5239.64	1.592
133361	51	0.27	3	2614.92	2.287
117676	80	0.29	4	1470.95	2.862
111458	130	0.30	5	857.37	3.402

Свинец

N, количество частиц	t, c	$\epsilon,\%$	ь, см	І, шт/сек	$\ln \frac{I_0}{I}$
219121	20	0.21	0.47	10956.05	0.854
217850	40	0.21	0.94	5446.25	1.553
142124	50	0.27	1.41	2842.48	2.204
130133	80	0.28	1.88	1626.66	2.762
120486	130	0.29	2.35	926.82	3.324
128081	200	0.28	2.82	640.40	3.694

$$\mu_{Al} = 0.264 \text{ 1/cm}$$
 $\mu_{Fe} = 0.678 \text{ 1/cm}$
 $\mu_{Pb} = 1.309 \text{ 1/cm}$

По таблице из описания работы определим среднюю энергию γ -лучей, испускаемых источником:

$$(hw)_{Al} = 0.38 \text{ MэВ}, (hw)_{Fe} = 0.42 \text{ МэВ}, (hw)_{Pb} = 0.59 \text{ МэВ}$$
 $hw = 0.46 \text{ МэВ}$

Вывод

Измерили коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их величине определяется энергия γ -квантов.