

ONIP

2023-2024

5N-028-Phy

Objectif principal

Construire une boite à outils de méthodes numériques pour de futur.es ingénieur.es en physique

Mots clefs

Physique; Outils Numériques; Méthodes Numériques; Python;

Sessions

0.5 Cours(s) - 1h30

0 TD(s) - 1h30

3 x 4 TD(s) Machine - 2h00

0 TP(s) - 4h30

Travail

Seul ou par équipe de 2

Institut d'Optique

Graduate School, France https://www.institutoptique.fr

GitHub - Digital Methods

 ${\rm https://github.com/IOGS\text{-}Digital-} \\ {\rm Methods}$

Outils Numériques pour l'Ingénieur en Physique

Responsables pédagogiques

 $\begin{array}{ccc} {\rm SYLVIE\ LEBRUN} & {\rm sylvie.lebrun@institutoptique.fr} \\ {\rm JULIEN\ VILLEMEJANE} & {\rm julien.villemejane@institutoptique.fr} \end{array}$

Déroulement du module

Ce module est décomposé en ${\bf 3}$ thèmes de 4 séances chacun :

- Méthodes numériques
- Traitement de données 2D
- Traitement de données 1D

Déroulement d'un thème

Chaque thème sera découpé de la façon suivante :

- Séance 1 Appropriation de la problématique
- Séance 2 Mise en oeuvre numérique
- Séance 3 Mise en forme des résultats / Evaluation
- Séance 4 Synthèse / Evaluation

Evaluation du module

A la fin de chaque thématique, votre travail sera évalué selon la grille proposée en page 2 de ce document par l'un ou l'une des encadrant.es.

Les thèmes 2 et 3 feront l'objet d'une notation à hauteur de 50% pour chacun des blocs.

Vous pouvez vous servir d'une partie des grilles pour vous autoévaluer.

Retrouvez l'ensemble des documents pédagogiques sur

http://lense.institutoptique.fr/ONIP/

ou sur le dépôt GitHub suivant :

https://github.com/IOGS-Digital-Methods/semester-5

ONIP / Outils Numériques pour l'Ingénieur.e en Physique

ONIP / Outils Numériques pour l'Ingénieur.e en Physique

NOMS:					NOMS:				
Gpe :	Auto Evaluat.				Gpe:	Evaluat.			
		E OC 1	BIOC 2	B10C3			B 00.1	BIOC 3	810C3
		DEOC 1	DEOC 2	BLUC 3			DEOC 1	DLUC 2	DEOC 3
METHODES NUMERIQUES		A B C D	A B C D	A B C D	METHODES NUMERIQUES		A B C D	A B C D	A B C D
Ecriture Matricielle / Vectorielle	/ Vectorielle				Ecriture Matricielle / Vectorielle	le / Vectorielle			
Organisation en actions élémentaires	élémentaires				Organisation en actions élémentaires	s élémentaires			
Description des tests de validation	de validation				Description des tests de validation	s de validation			
Organisation des informations à traiter	tions à traiter				Organisation des informations à traiter	ations à traiter			
PROGRAMMATION		A B C D	A B C D	A B C D	PROGRAMMATION		A B C D	A B C D	A B C D
Ecriture et commentaires (PEP 8)	taires (PEP 8)				Ecriture et commentaires (PEP 8)	ntaires (PEP 8)			
Utilisation, écriture et validation de fonctions	de fonctions				Utilisation, écriture et validation de fonctions	n de fonctions			
Documentation des fonctions (PEP257)	ions (PEP257)				Documentation des fonctions (PEP257)	tions (PEP257)			
Utilisation de bibliothèques	oibliothèques				Utilisation de	Utilisation de bibliothèques			
Ecriture et validation d'une bibliothèque	bibliothèque				Ecriture et validation d'une bibliothèque	e bibliothèque			
INGENIEUR.E PHYSIQUE		A B C D	A B C D	A B C D	INGENIEUR.E PHYSIQUE		A B C D	A B C D	A B C D
Graphiques pertinents et légendés	s et légendés				Graphiques pertinents et légendés	nts et légendés			
Génération de données pertinentes de tests	entes de tests				Génération de données pertinentes de tests	nentes de tests			
Analyse des données et validation modèle	ation modèle				Analyse des données et validation modèle	dation modèle			

Outils Numériques pour l'Ingénieur·e en Physique

2023-2024

5N-028-Phy / ONIP

Bloc 1 - Python et calcul scientifique (0%)

Concepts étudiés

[Num] Bases de Python pour l'ingénieur e en Physique

[Phys] Mise en équation de systèmes régis par des équations différentielles

[Math] Systèmes d'équations linéaires

[Num] Résolutions numériques : calcul formel, équations différentielles, systèmes

Mots clefs

Python; Matrices (Numpy); Calcul formel (Sympy); Méthode d'Euler; Systèmes (control); Classes et objets

Sessions

- 0 Cours(s) 1h30
- **0** TD(s) 1h30
- 4 TD(s) Machine 2h00
- 0 TP(s) 4h30

Travail

Seul ou par équipe de 2

Institut d'Optique

Graduate School, France https://www.institutoptique.fr

GitHub - Digital Methods

 ${\rm https://github.com/IOGS\text{-}Digital-}\\ {\rm Methods}$

Démystifier Python et résoudre des problèmes à l'aide d'outils numériques

Les physicien es sont souvent confronté es à des problèmes faisant appel à des résolutions numériques.

• • •

Ce bloc est constituée de trois grandes parties :

- 1. Bases du langage Python et premiers calculs
- 2. Résolution d'une équation différentielle (3 méthodes) :
 - (a) Calcul formel / symbolique
 - (b) Intégration numérique (Euler)
 - (c) Approche système
- 3. Un monde d'objets

Chacun des thèmes est présenté plus spécifiquement dans les pages suivantes.

Acquis d'Apprentissage Visés

En résolvant ce problème, les étudiant-e-s seront capables de :

Côté Numérique

- Générer des signaux numériques à partir de fonctions mathématiques
- 2. **Définir et documenter des fonctions** pour générer des signaux numériques
- 3. **Produire des figures** claires et légendées à partir de signaux numériques incluant un titre, des axes, des légendes
- 4. [Bonus] Construire des bibliothèques de fonctions

Côté Physique

- 1. Analyser le contenu spectral d'un signal électrique
- 2. **Déterminer les paramètres** d'une modulation d'amplitude
- 3. **Décoder** un signal modulé en amplitude

Livrables attendus

Pour valider cette session, il n'y a pas de livrables à fournir.

Cependant, vous devez faire valider par un e encadrant e, durant les séances, les différents travaux personnels à réaliser. Ces travaux sont repérés dans les fichiers PDF par les repères suivants :

S'ENTRAINER

Il sera en particulier évalué :

- Vos bonnes pratiques en programmation
 - Code propre / documenté
 - Utilisation de fonctions
- Pertinence des résultats présentés
- Analyse et critiques des résultats (aspect physique/mathématique)

Les figures générées devront être pertinentes et légendées (axes, titres...). Les différentes fonctions devront être documentées selon la norme PEP 257.

Données de départ

Dans cette séquence, vous serez amenés à utiliser des fichiers contenant des **notions de Python à tester**. Ces fichiers se trouvent dans le répertoire EXEMPLES.

Les fichiers sont nommés selon un ordre chronologique. Des **notions plus théoriques** ainsi que des **astuces de programmation** sont proposées dans les fichiers au format PDF B1_sN_exXX_nnnn.pdf (où N correspond au numéro de la séance et XX au numéro de l'exemple).

Ressources

Cette séquence est basée sur le langage Python.

Vous pouvez utiliser l'environnement **JupyterHub@Paris-Saclay** -https://jupyterhub.ijclab.in2p3.fr/ ou l'environnement **Spyder 5** inclus dans *Anaconda 3*.

Des tutoriels Python (et sur les bibliothèques classiques : Numpy, Matplotlib or Scipy) sont disponibles à l'adresse : http://lense.institutoptique.fr/python/. Parmi ces tutoriels, nous vous suggérons de lire les suivants :

- Python / Bases du langage
- Python / Bases scientifiques
 - Premiers pas avec Numpy
 - Premiers pas avec Matplotlib
 - Premiers pas avec Scipy

Outils Numériques

Fonctions et bibliothèques conseillées :

- Python
 - type, size
 - print
- Numpy Gestion de matrices
 - linspace, logspace
 - zeros, ones
 - shape
- Matplotlib Affichage de données
 - plotly
 - figure, plot
 - subplot
 - legend, title
 - xlabel, ylabel
 - show
- Sympy Calcul symbolique
 - symbols, Functions
 - Derivative
 - dsolve, lambdify
- **Scipy** Fonctions scientifiques
 - integrate (sousbibliothèque)
 - solve_ivp
- Control Étude de systèmes
 - tf
 - bode_plot
 - step_response
 - impulse_response

Outils avancés :

• rcParams de Mat-PlotLib.pyplot pour l'amélioration de l'affichage de courbes