

DESCRIPTION

GT3136 is an FM IF detector IC, which contains Mixer, IF Amplifier, RSSI circuit, Quadrature Detector and Noise Detector.

FEATURES

■ Low operating voltage : Vcc = 1.8 ~ 5.5V

Operating frequency: 10 ~ 100MHz

- Excellent temperature characteristics
- High sensitivity12dB sensitivity : 5dBuV (11dBuV EMF)
- Quadrature detector,
 both ceramic and coil discriminators are usable
- High intercept point : 98dBuV
- Noise detection circuit
- RSSI function
- SSOP16 package (Pb-free and RoHS compliant)

APPLICATIONS

- Cordless phone, R/C receiver for mobile toy, car key, walkie-talkie and shortwave radio set
- Other wireless communication systems

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Symbol	Function Description	Internal Equivalent Circuit
1	OSCIN	Local Oscillator base input	VCC SHEET OF ORD
2	OSCOUT	Local Oscillator emitter input	2 S S MIXER
3	MIXOUT	Mixer output (Output impedance : 1.8kΩ)	VCC from MIXER 1.6kQ The state of the sta
4	VCC	Power Supply	
5	IFIN	IF Amplifier input (Input impedance : 1.8kΩ)	VCC SHOW SHOW SHOW SHOW SHOW SHOW SHOW SHOW
6	DEC	Decoupling input for bias.	910 Q P P P P P P P P P P P P P P P P P P
7	FILOUT	Inverter Amp. output	VCC 100 Q 7
8	FILIN	Inverter Amp. input	8 ± 500 \(\text{2} \) \(\text{30 p} \) \(\text{30 p} \) \(\text{30 p} \)

Pin No.	Symbol	Function Description	Internal Equivalent Circuit
9	AFOUT	Demodulated Signal output (Output impedance : 360Ω)	9 VCC
10	QUAD	Phase shift signal input of Quadrature Detector.	VCC \$ 500 \text{Q} \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
11	IFOUT	IF Amplifier output.	VCC from IF AMPS 100 Q The property of the
12	RSSI	RSSI output	VCC 12 12 12 12 12 12 13 15 16 17 17 18 18 18 18 18 18 18 18
13	NDET	Noise Comparator output	13

Pin No.	Symbol	Function Description	Internal Equivalent Circuit
14	NREC	Rectifier output	VCC
15	GND	Ground	
16	MIXIN	Mixer input	VCC SkQ SkQ SkQ SkQ SkQ SkQ SkQ SkQ SkQ Sk

DC voltage for pins (Typical values for reference)

(V_{CC}=2V)

Pin No.	Pin Name	Voltage	Pin No.	Pin Name	Voltage
1	OSCIN	1.91	9	AFOUT	-
2	OSCOUT	1.22	10	QUAD	2.00
3	MIXOUT	0.69	11	IFOUT	1.05
4	VCC	2.00	12	RSSI	-
5	IFIN	1.58	13	NDET	-
6	DEC	1.58	14	NREC	-
7	FILOUT	0.66	15	GND	0.00
8	FILIN	0.70	16	MIX IN	0.93

(UNIT : V)

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Rating	Unit
Supply Voltage	Vcc	7	V
Power Dissipation	P_{D}	560	mW
Operation Temperature	T _{opr}	-30 ~ 85	$^{\circ}$
Storage Temperature	T _{stg}	-50 ~ 150	$^{\circ}$

Unless otherwise specified,

 $(V_{CC} = 2.0V, F_{IN(MIX)} = 21.7MHz, f_{IN(IF)} = 450kHz, \Delta f = \pm 1.5kHz, f_{MOD} = 1kHz, Ta = 25 °C)$

$(V_{CC} = 2.0V, F_{IN(MIX)} = 21.7MHz, f_{IN(IF)} = 450KHz, \Delta t = \pm 1.5KHz, f_{MOD} = 1KHz, 1a = 25$							u - 20 0)	
Characteristic		Symbol	Test Condition		Min	Тур.	Max	Unit
Power Supply Vo	oltage	V _{CC}	-		1.8	2	5.5	V
Current Consum	ption	Iccq		-	-	3.3		mA
Mixer Conversio	n Gain	G _{VC}	Measured through ceramic filter. [V _{IN(MIX)} = 46dBuV]		16	19	22	dB
Mixer Intercept F	Point	P_IM	Input 50Ω		-	96	1	dBuV
Mixer Input Impe	ndanco	$R_{IN(MIX)}$			-	4.8	-	kΩ
wiikei iriput irripe	cuarice	C _{IN(MIX)}		-	-	2.8	-	pF
Mixer Output Resistance		R _{O(MIX)}	-		1.2	1.8	2.4	kΩ
12dB Sensitivity		12dB SN	-		-	5	-	dBuV
Demodulation O	utput Level	V _{OD}	V _{IN(IF)} = 80dBuV		-	102	-	mVrms
SN Ratio		SN	V _{IN(IF)} = 80dBuV		43	62	-	dB
AM Rejection Ra	atio	AMR	V _{IN(IF)} = 80dBuV, AM = 30%		-	40	-	dB
IF AMP. Input Ro	esistance	R _{IN(IF)}	-		1.2	1.8	-	kΩ
DSSI Output Val	ltaga	V _{RSSI-1}	\/ - 2\/	V _{IN(IF)} = 30dBuV	200	441	520	mV
RSSI Output Vol	lage	V _{RSSI-2}	$V_{CC} = 3V$	V _{IN(IF)} = 100dBuV	1.4	2.2	2.6	V
Noise Detection Output Voltage		V _{NDET}	I SINK = 0.2mA		-	0.1	0.5	V
Noise Detection Output Leak Current		I _{LEAK}	V _{NREC} = 0.6V, V _{NDET} = 2V		-	0	5	uA
Noise	"H" Level	V _{TH-H}			-	0.50	0.7	V
Detection Level "L" Level V _{TH-L}		V _{TH-L}	-		0.3	0.43	ı	v

TEST CIRCUIT

APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTIC CURVES

PAKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	in millimeter	Dimensions in inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.200	0.300	0.008	0.012	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	0.635(BSC)		0.025(BSC)		
L	0.400	1.270	0.016	0.050	
Θ	0°	8°	0°	8°	