Regression Analysis Examples in R

Simple Linear Regression

Example. Airfreight Data

	1	2	3	4	5	6	7	8	9	10
Shipment Route (x)	1	0	2	0	3	1	0	1	2	0
Airfreight Breakage (y)	16	9	17	12	22	13	8	15	19	11

- a) Compute the ANOVA table
- b) Compute the confidence intervals for the parameters
- c) Compute the confidence interval on the average (mean) response when X=1.

Solution.

Part a.

We can compute the anova table manually as follows,

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 = 20 - \frac{1}{10} (100) = 10$$

$$S_{xy} = \sum_{i=1}^{n} y_i (x_i - \bar{x}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i = 182 - \frac{1}{10} (10)(142) = 40$$

Therefore,

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{40}{10} = 4$$

Then, $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$, so

$$\hat{\beta}_0 = \frac{1}{10}(142) - 4 \cdot \frac{1}{10}(10) = 10.2$$

This gives us our linear model

$$\hat{y} = 10.2 + 4x$$

The sum of squares for regression is

$$SSR = \hat{\beta}_1^2 \sum_{i=1}^n (x_i - \bar{x})^2 = \hat{\beta}_1^2 S_{xx} = 16 \cdot 10 = 160$$

The total sum of squares is

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2 = 2194 - 10(14.2)^2 = 177.6$$

Then, the residual sum of squares is

$$SSE = SST - SSR = 177.6 - 160 = 17.6$$

Now we can construct the anova table

Source	Sum of Squares	DF	MS=SS/df	F = MSR/MSE
Regression	160	1	160	72.727
Error	17.6	8	2.2	
Total	177.6			

We conclude that the regression is highly significant since the F value is very large. We can also do this in R

We can see that we get the same results and reach the same conclusion.

Part b.

We can construct confidence intervals, first we need to compute $se(\hat{\beta}_1)$ and $se(\hat{\beta}_0)$.

$$se^{2}(\hat{\beta}_{0}) = MSE\left(\frac{1}{n} + \frac{\bar{x}}{S_{xx}}\right) = 2.2\left(\frac{1}{10} + \frac{1}{10}\right) = 0.44 \implies se(\hat{\beta}_{0}) = \sqrt{0.44} = 0.6633$$
$$se^{2}(\hat{\beta}_{1}) = \frac{MSE}{S_{xx}} = \frac{2.2}{10} = 0.22 \implies se(\hat{\beta}_{1}) = \sqrt{0.22} = 0.490$$

Then, we have to compute $t_{\alpha/2,n-2} = t_{0.025,8}$, we either use a t look up table or in R,

qt(0.025, 8, lower.tail=FALSE)

[1] 2.306004

Thus, our confidence intervals are

$$\hat{\beta}_0 - t_{\alpha/2, n-2} se(\hat{\beta}_0) \le \hat{\beta}_0 \le \hat{\beta}_0 + t_{\alpha/2, n-2} se(\hat{\beta}_0) \to 10.2 \pm 2.306(0.6633) = (8.6704, 11.7296)$$

$$\hat{\beta}_1 - t_{\alpha/2, n-2} se(\hat{\beta}_1) \leq \hat{\beta}_1 \leq \hat{\beta}_1 + t_{\alpha/2, n-2} se(\hat{\beta}_1) \rightarrow 4 \pm 2.306(0.490) = (2.9392, 5.0608)$$

We can compute these confidence intervals in R as well

confint(model, level=0.95)

```
## 2.5 % 97.5 %
## (Intercept) 8.670370 11.729630
## x 2.918388 5.081612
```

Part c.

We want to compute first $E(y|x_0)$, where $x_0 = 1$. An unbiased estimator for $E(y|x_0)$ is

$$\widehat{E(y|x_0)} = \widehat{\mu}_{y|x_0} = \widehat{\beta}_0 + \widehat{\beta}_1 x_0 = 10.2 + 4(1) = 14.2$$

Then, the confidence interval is

$$\left[\hat{\mu}_{y|x_0} \pm t_{\alpha/2, n-2} \sqrt{MSE\left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}\right] = \left[14.2 \pm 2.306 \sqrt{2.2\left(\frac{1}{10} + \frac{(1-1)^2}{S_{xx}}\right)}\right] = (13.11839, 15.28161)$$

We can do this in R with

```
predict(model, newdata = data.frame(x=1), interval = 'confidence', level=0.95)
```

```
## fit lwr upr
## 1 14.2 13.11839 15.28161
```