# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

#### ОТЧЕТ

### по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

| Студент гр. 6304 | Иванов Д.В   |
|------------------|--------------|
| Преподаватель    | Жангиров Т.Р |

Санкт-Петербург 2020

#### Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

#### Ход работы

#### Загрузка данных

1. В датафрейм загружен исходный датасет, исключены бинарные признаки и признаки времени (рис. 1).

```
df = pd.read_csv('heart_failure_clinical_records_dataset.csv')
df = df.drop(columns=['anaemia','diabetes','high_blood_pressure','sex','smo
king','time','DEATH_EVENT'])
print(df)
```

|      |        |                 |              |                   | 1 . 1     |
|------|--------|-----------------|--------------|-------------------|-----------|
|      | age    | creatinine_     |              | ejection_fraction |           |
| 0    | 75.0   |                 | 582          | 20                |           |
| 1    | 55.0   |                 | 7861         | 38                | 263358.03 |
| 2    | 65.0   |                 | 146          | 20                | 162000.00 |
| 3    | 50.0   |                 | 111          | 20                |           |
| 4    | 65.0   |                 | 160          | 20                | 327000.00 |
|      |        |                 |              |                   |           |
| 294  | 62.0   |                 | 61           | 38                | 155000.00 |
| 295  | 55.0   |                 | 1820         | 38                | 270000.00 |
| 296  | 45.0   |                 | 2060         | 60                | 742000.00 |
| 297  | 45.0   |                 | 2413         | 38                | 140000.00 |
| 298  | 50.0   |                 | 196          | 45                | 395000.00 |
|      |        |                 |              |                   |           |
|      | serum  | _creatinine     | serum_sodium |                   |           |
| 0    |        | 1.9             | 130          |                   |           |
| 1    |        | 1.1             | 136          |                   |           |
| 2    |        | 1.3             | 129          |                   |           |
| 3    |        | 1.9             | 137          |                   |           |
| 4    |        | 2.7             | 116          |                   |           |
|      |        |                 |              |                   |           |
| 294  |        | 1.1             | 143          |                   |           |
| 295  |        | 1.2             | 139          |                   |           |
| 296  |        | 0.8             | 138          |                   |           |
| 297  |        | 1.4             | 140          |                   |           |
| 298  |        | 1.6             | 136          |                   |           |
|      |        | 1.0             | 130          |                   |           |
| [299 | rows   | x 6 columns]    |              |                   |           |
| [233 | TONS . | . o cordiii13 j |              |                   |           |

Рис. 1 — Загруженный датасет

2. Построены гистограммы признаков (рис. 2).

#### Input data



Рисунок 2 — Гистограмма признаков

3. На основании гистограмм определены диапазоны значений каждого признака и значения, около коротых лежит наибольшее количество наблюдений.

| Признак                  | Диапазон        | Значение с наибольшим количеством наблюдений |
|--------------------------|-----------------|----------------------------------------------|
| age                      | (40, 95)        | 61.25                                        |
| creatinine_phosphokinase | (0, 7900)       | 200                                          |
| ejection_fraction        | (7, 80)         | 38.3                                         |
| platelets                | (40000, 840000) | 260000                                       |
| serum_creatinine         | (0.25, 9.5)     | 1.4                                          |
| serum_sodium             | (110, 150)      | 137.5                                        |

4. Датафрейм приведен к формату numpy.

#### Стандартизация данных

1. Выполнена стандартизация всех наблюдений на основе первых 150, затем построены гистограммы признаков (рис. 3)



Рисунок 3 — Гистограмма стандартизированных признаков

2. На основании гистограмм были определены диапазоны значений каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.

| Признак                  | Диапазон    | Значение с наибольшим количеством наблюдений |
|--------------------------|-------------|----------------------------------------------|
| age                      | (-2, 2.6)   | -0.1                                         |
| creatinine_phosphokinase | (-0.7, 6.4) | -0.1                                         |
| ejection_fraction        | (-2, 3.3)   | 0                                            |
| platelets                | (-3, 6.5)   | 0                                            |
| serum_creatinine         | (-1.5, 7)   | -0.2                                         |
| serum_sodium             | (-5.5, 2.3) | 0                                            |

Из-за примененного преобразования (стандартизации) диапазон и значение с наибольшим количеством наблюдений полученных данных изменились.

3. Проведена стандартизация на полном наборе наблюдений.

```
full_scaler = preprocessing.StandardScaler()
full data scaled = full scaler.fit transform(data)
```

4. Вычислены мат. ожидание и СКО каждой выборки.

| Выборка                           | Статистика | age       | creatinine<br>_phospho<br>kinase | ejection_f<br>raction | platelets  | serum_cr<br>eatinine | serum_so<br>dium |
|-----------------------------------|------------|-----------|----------------------------------|-----------------------|------------|----------------------|------------------|
| Оригиналь<br>ная                  | Мат. ожид. | 60.833    | 581.839                          | 38.084                | 263358.029 | 1.394                | 136.625          |
| ная                               | СКО        | 11.875    | 968.664                          | 11.815                | 97640.548  | 1.032                | 4.405            |
| Стандарти<br>зированная<br>на 150 | Мат. ожид. | -0.170    | -0.021                           | 0.011                 | -0.035     | -0.109               | 0.038            |
|                                   | СКО        | 0.955     | 0.816                            | 0.908                 | 1.017      | 0.887                | 0.972            |
| Стандарти<br>зированная           | Мат. ожид. | 5.703e-16 | 0.0                              | -3.267e-17            | 7.723e-17  | 1.426e-16            | -8.675e-16       |
|                                   | СКО        | 1.0       | 1.0                              | 1.0                   | 1.0        | 1.0                  | 1.0              |

На основании результатов сравнения можно сделать вывод, что стандаризация имеет следующую форму:

$$Y = \frac{X - \mu(X)}{std(X)}$$
, где  $\mu(X)$  - мат. ожидание, а  $std(X)$  - СКО.

5. Поля *mean\_* и *var\_* объекта *StandartScaler* содержат мат. ожидание и дисперсия величин, на основании которых стандартизируются данные.

#### Приведение к диапазону

1. Посредством *MinMaxScaler* данные приведены к диапазону (рис. 4)

min\_max\_scaler = preprocessing.MinMaxScaler().fit(data)
data\_min\_max\_scaled = min\_max\_scaler.transform(data)

MinMaxScaled data



Рисунок 4 — Гистограмма после MinMaxScaler

Основываясь на гистограммах, можно заметить, что данные приводятся к диапазону [0,1]. Подобное преобразование можно осуществить с помощью формулы:

$$Y = \frac{X - min(X)}{max(X) - min(X)}$$

2. Определены минимальное и максимальное значения каждого признака, посредством объекта *MinMaxScaler*.

|     | age       | creatinine_phos<br>phokinase | ejection_fractio<br>n | platelets | serum_creatini<br>ne | serum_sodium |
|-----|-----------|------------------------------|-----------------------|-----------|----------------------|--------------|
| Min | 4.00e+01  | 2.30e+01                     | 1.40e+01              | 2.51e+04  | 5.00e-01             | 1.13e+02     |
| Max | 9.500e+01 | 7.861e+03                    | 8.000e+01             | 8.500e+05 | 9.400e+00            | 1.480e+02    |

## 3. С помощью *MaxAbsScaler* и *RobustScaler* выполнено приведение данных к диапазону (рис. 5 - 6)



Рисунок 5 — Гистограмма после MaxAbsScaler



Рисунок 6 — Гистограмма после RobustScaler

*MaxAbsScaler* приводит данные таким образом, что максимальное по модулю значение равно 1.

RobustScaler вычитает медиану и масшабирует данные в соответствии с межквартильным размахом.

4. Также была написана функция, которая приводит данные к диапазону [-5,10].

def range\_5\_10(data): return preprocessing.MinMaxScaler().fit(data).transfo
rm(data)\*15-5

Результат на рис. 7.



Рисунок 7 — Гистограмма после range\_5\_10

#### Нелинейные преобразования

1. С помощью *QuantileTransformer* данные приведены к равномерному и нормальному распределениям (рис. 8-9).



Рисунок 8 — Гистограмма после QuantileTransformer, равномерное распределение



Рисунок 9 — Гистограмма после QuantileTransformer, нормальное распределение

 $n\_quantiles$  — параметр, указывающий количество квантилей, используемых для дискретизации функции распределения, чем больше количество квантилей, тем ближе полученная гистаграмма к требуемому распределению.

2. С помощью *PowerTransformer* данные были приведены к нормальному распределениям (рис. 10).



Рисунок 10 — Гистограмма после PowerTransformer

#### Дискретизация признаков

1. Выполнена дискретизация признаков (рис. 11)



Рисунок 10 — Гистограмма после PowerTransformer Диапазоны интервалов

- age: [40., 55., 65., 95.]
- creatinine\_phosphokinase: [ 23., 116.5, 250., 582., 7861.]
- ejection\_fraction: [14., 35., 40., 80.]
- platelets: [25100., 153000., 196000., 221000., 237000., 262000.,
  265000., 285200., 319800., 374600., 850000.]
- serum\_creatinine: [0.5, 1.1, 9.4]
- serum\_sodium: [113., 134., 137., 140., 148.]

#### Выводы

В ходе выполнения лабораторной работы изучены методы предобработки данных с помощью методов библиотеки Scikit Learn. При изучении стандартизации данных было выяснено, что при настройке на неполных данных происходит снижение качества результирующего набора данных, а приведение к диапазону не изменяет форму распределения. С помощью нелинейных преобразований преобразована изначальная форма распределения.