p-VEX

A Reconfigurable and Extensible VLIW Processor

MSc Defense Thijs van As

CE-MS-2008-12

http://r-vex.googlecode.com/

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

Introduction

Motivation and means

- Advances in reconfigurable hardware
- MOLEN polymorphic processor
- Very Long Instruction Word (VLIW)
- → VLIW co-Processor for MOLEN
 - VEX ISA
 - Extensible
 - Availability of compiler + simulator
 - Stand-alone: VLIW research

September 19, 2008

Introduction

Goals

- Preliminary study: performance analysis
- ρ-VEX
 - Extensible ISA
 - Support for custom operations
- ρ-ASM

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

Processor parallelism

- Vector processing
- Multiprocessing
- Multithreading
- Micro-SIMD
- Instruction Level Parallelism (ILP)
 - Multimedia applications expose a lot of ILP

Processor parallelism

Instruction Level Parallelism (ILP)

MyProgram

Thijs van As

Processor parallelism

Instruction Level Parallelism (ILP)

MyProgram

ρ-VEX : A Reconfigurable and Extensible VLIW Processor

Thijs van As

Processor parallelism

Instruction Level Parallelism (ILP)

MyProgram2

September 19, 2008

ρ-VEX : A Reconfigurable and Extensible VLIW Processor

Thijs van As

Processor parallelism

Instruction Level Parallelism (ILP)

- Execute multiple different operations at once
- Two architectural solutions:
 - Very Long Instruction Word (VLIW)
 - Operation scheduling by compiler
 - Superscalar
 - Dynamic operation scheduling

Very Long Instruction Word (VLIW)

- Multi-operation instruction stream
- Compiler schedules operations
- Processor design transparent to compiler
- Industrial examples:
 - Intel Itanium (IA-64/EPIC)
 - Philips/NXP TriMedia (TMA)
 - Transmeta Crusoe (IA-32)

September 19, 2008

The VEX ISA

- Lx (HP/ST) descendant
- Multi-cluster support
- Extensible ISA
- Custom operations
- Compiler + simulator toolchain by HP

The MOLEN polymorphic processor

- Fixed GPP with reconfigurable processor
- CCUs as small application-specific computing elements
- Configuration by reconfigurable microcode (ρμ-code)
- Only a few extra instructions
- Architecture-independent
- Delft Workbench workflow

September 19, 2008

The MOLEN polymorphic processor

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

Performance Analysis

Lx analysis

Thijs van As

Performance Analysis

VEX analysis

Thijs van As

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

General approach

- Harvard architecture
- Designed custom instruction/syllable layout
- 73 standard VEX operations
- All ALU/MUL operations support immediate operands
- 32 bit syllables (128 bit instructions for 4-issue)
- First 1-issue, then 4-issue (standard cluster ISA)

Organization

Instruction path

Data path

Instruction Memory

Control path

Control path

Extensibility

ρ-OPS

- Reconfigurable operations
- 24 available opcodes
- Easily extendable
- Not just combinatorial operators allowed

Extensibility

VEX machine models

- Issue-width
- Number of ALU units
- Number of MUL units
- Number of GR/BR registers

September 19, 2008

Verification

Unified Verification Methodology (UVM)

- System-level design
- Subsystem verification
- System integration
- System verification

September 19, 2008

Verification

System wrapper

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

September 19, 2008

ℱ T∪Delft

Development Framework

Development framework

September 19, 2008

ρ-VEX : A Reconfigurable and Extensible VLIW Processor

الم

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

Experimental Results

Fibonacci's Sequence

- Calculates 45th Fibonacci Number
- Hand-coded VEX assembly
- 1-, 2- and 4-issue versions
- ρ-OPS exploiting version

September 19, 2008

Experimental Results

Fibonacci's Sequence

ρ-VEX	Cycles
I-issue	1906
2-issue	1080
4-issue	537
4-issue (ρ-OPS)	141

Experimental Results

Resource utilization on XC2VP30

ρ- VEX	Freq. (MHz)	Slices	Slices GR
l-issue	89.44	1895 (13%)	I (0%)
2-issue	89.44	5105 (37%)	3370 (24%)
4-issue	89.44	10433 (76%)	3927 (28%)

Overview

- 1. Introduction
- 2. Background
- 3. Performance Analysis
- 4. Design & Implementation
- 5. Development Framework
- 6. Experimental Results
- 7. Conclusions

September 19, 2008

Conclusions

Performed work (chronologically)

- Performance/pay-off analysis for MOLEN
- Designed custom instruction layout for ρ-VEX
- 1-issue ρ-VEX hardware implementation
- n-issue ρ-VEX hardware implementation
- Paper (accepted on ICFPT 2008 in Taiwan)
- ρ-ASM VEX assembler/instruction ROM generator
- Published project as open source on Google Code

September 19, 2008

Conclusions

Main contributions

- ρ-VEX
 - Extensible and scalable ISA
 - Support for reconfigurable operations (ρ-OPS)
- ρ-ASM
- Application development framework
- Performance/pay-off analysis for MOLEN

Conclusions

Future work

- ρ-VEX
 - Pipelining the implementation
 - Wishbone bus connectivity
- ρ-ASM
 - BRAM initialization
- Application development framework
 - Boot loader functionality
- MOLEN
 - Resolve CCU timing constraints

September 19, 2008

Questions

Thank you for your attendance!

ρ-VEX : A Reconfigurable and Extensible VLIW Processor

Thijs van As

Questions

Thank you for your attendance!

ρ-VEX : A Reconfigurable and Extensible VLIW Processor

Thijs van As