Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2016-2017

Prova scritta - 24 gennaio 2018

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7
							SI NO

Leggere le tracce con attenzione!

Giustificare le risposte, risposte non giustificate non saranno valutate.

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti.

È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning lunedì 29 gennaio.

1. (15 punti)

- Dare la definizione di espressione regolare, indicando anche il linguaggio rappresentato.
- Definire un'espressione regolare che denoti il linguaggio delle stringhe sull'alfabeto $\{a,b\}$ di lunghezza pari e che iniziano con un simbolo diverso da quello con cui terminano.
- Definire un automa finito non deterministico che riconosca il linguaggio delle stringhe sull'alfabeto $\{a,b\}$ di lunghezza pari e che iniziano con un simbolo diverso da quello con cui terminano.

2. (15 punti)

Dati due automi finiti deterministici \mathcal{A} e \mathcal{B} , definire un automa finito deterministico \mathcal{C} tale che $L(\mathcal{C}) = L(\mathcal{A}) \cup L(\mathcal{B})$.

- 3. (15 punti) Dare le definizioni di:
 - Macchina di Turing deterministica;
 - Linguaggio riconosciuto da una Macchina di Turing deterministica;
 - Linguaggio Turing-riconoscibile;
 - Linguaggio decidibile;
 - Macchina di Turing non deterministica.

4. (15 punti)

- (1) Enunciare il teorema di Rice.
- (2) A quale dei seguenti linguaggi è possibile applicarlo?

 $X = \{\langle M \rangle \mid M \text{ è una MdT che rifiuta } ab \text{ ed accetta le stringhe che terminano con } a\}$

 $Y = \{\langle M \rangle \mid M \text{ è una MdT che accetta un linguaggio finito}\}$

Motivare la risposta. Risposte non motivate non saranno valutate.

Prova scritta 2

- 5. (15 punti)
 - Definire il linguaggio 3-SAT.
 - \bullet Definire il linguaggio SUBSET-SUM
 - Data la seguente espressione booleana in 3-CNF

$$\phi = (\overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee x_3 \vee \overline{x}_4) \wedge (\overline{x}_2 \vee \overline{x}_3 \vee x_4)$$

si descriva l'immagine di $\langle \phi \rangle$ nella riduzione polinomiale di 3-SAT a SUBSET-SUM.

- 6. (15 punti)
 - (a) Definire il concetto di chiusura di un insieme rispetto a un'operazione.
 - (b) Definire le classi di complessità P ed NP.
 - (c) Provare che la classe P è chiusa rispetto alle seguenti operazioni:
 - unione
 - concatenazione
 - complemento.
- 7. Si consideri il linguaggio

$$L = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ ed } M_2 \text{ sono } TM \text{ ed } L(M_1) \cap L(M_2) = \emptyset \}.$$

Provare che L è indecidibile.