Introducción al DSP

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2019

¿Qué es una Señal?

Señal

- Resultado de la observación o medición del comportamiento de una magnitud física.
- Con algún contenido de información.
- Que se desea extraer o modificar.

- Representamos las señales por funciones matemáticas:
 - Una variable
 - Más variables

Características de las señales

•	Característica	Valores	
	Número de variables Dimensionalidad	una variable escalar	multiples variables vectorial (multicanal)
	Variables independientes Valores de la señal Naturaleza estadística	discretas discretos deterministas	continuas continuos aleatorias

Número de Variables

Una variable

Número de Variables

Múltiples variables

Características de las señales

Característica		Valores
Número de variables	una variable	multiples variables
Dimensionalidad	escalar	vectorial (multicanal)
Valeres de la señal	discretas	continuas
Valores de la señal	discretos	continuos
Naturaleza estadística	deterministas	aleatorias

Dimensionalidad

Una dimensión

Dimensionalidad

Múltiples dimensiones

Dimensionalidad

Unidimensionales contra multidimensionales

Características de las señales

_	Característica	Valores	
_	Número de variables Dimensionalidad	una variable escalar	multiples variables vectorial (multicanal)
	Variables independientes	discretas	continuas
	Valores de la señal	discretos	continuos
	Naturaleza estadística	deterministas	aleatorias

Variables Independientes

Señales continuas contra discretas

Características de las señales

Característica	Valores	
Número de variables Dimensionalidad	una variable escalar	multiples variables vectorial (multicanal)
Variables independientes	discretas	continuas
Valores de la señal	discretos	continuos
Naturaleza estadística	deterministas	aleatorias

Variables dependientes

Valores continuos contra discretos

Características de las señales

Característica	Valores	
Número de variables Dimensionalidad	una variable escalar	multiples variables vectorial (multicanal)
Variables independientes	discretas	continuas
Valores de la señal	discretos	continuos
Naturaleza estadística	deterministas	aleatorias

Naturaleza estadística

Señales deterministas contra aleatorias

Variable\Valor	Continuo	Discreto
Continuo	analógica	_
Discreto	variable discreta	digital

En este curso:

- Una variable
- Valor Escalar
- En tiempo discreto
- Deterministas o aleatorias

Señales

Digitales

Analógicas

Variable Discreta

¿Qué es un Sistema?

Sistema

- Colección o conjunto de elementos interrelacionados que conforman un todo unificado.
- Un sistema puede formar parte de otro sistema de mayor nivel, en cuyo caso al primero se le denomina subsistema.
- Los diferentes subsistemas intercambian por lo general información, materia o energía para lograr un objetivo.
- Los términos señales de entrada o de salida se utilizan entonces para abstraer esa información en el concepto matemático de funciones.

• Un sistema puede interpretarse como un conjunto de subsistemas que logran transformar una señal en otra.

Procesamiento vs. análisis

- Procesamiento:
 - Salida con el mismo tipo de información que la entrada

- Análisis
 - Salida con diferente contenido de información que la entrada

Procesamiento Digital de Señales

 Es el proceso de modificación de una señal digital en un sistema, realizado para destacar o suprimir diferentes características de la señal, las cuales tienen algún significado especial para una aplicación en particular.

Procesamiento analógico

Señal analógica (mundo real):

Procesamiento digital

Desventajas del procesamiento digital

- Digitalización requiere frecuencia de muestreo suficientemente alta, y energía.
- Tecnología digital impone límites de velocidad de procesamiento.
- Mayor consumo de energía.

Ventajas del procesamiento digital

- Baratos y confiables.
- Uso de sistemas programables conduce a mayor flexibilidad.
- Mayor precisión a pesar de ruido de cuantificación.
- Precisión se mantiene independiente del número de etapas.
- Funcionamiento no se deteriora con el tiempo u otras variables, siendo más robustos.
- Posibilidad de almacenamiento.
- Operación fuera de línea.
- Mayor complejidad algorítmica alcanzable.

Áreas de aplicación

- Aplicaciones automotrices: Control de un motor, sistemas antibloqueo (ABS), sistemas de navegación, análisis de vibración, etc.
- Electrónica de consumo: Radio y televisión digital, sistemas de video (DVD, Blue-Ray, etc), juguetes educativos, instrumentos musicales, sistemas de impresión y despliegue, como monitores de plasma, LED, LCD, etc.
- Industria: Control numérico, monitorización de líneas de potencia, robótica, sistemas de seguridad.

Áreas de aplicación

- Instrumentación: Generación de funciones, emparejamiento de patrones, procesamiento sísmico, análisis espectral, análisis de transcientes.
- Medicina: Equipos de diagnóstico, monitorización de pacientes, prótesis auditivas, visuales y mecánicas, equipos de ultrasonido, tomografía, MRI, etc.

Áreas de aplicación

- Telecomunicaciones: Modems, ecualizadores de señal, codificadores y decodificadores, telefonía celular, multiplexación, cancelación de eco, repetidores de señal, compensación de canal, modulaciones de espectro ensanchado, video-conferencia, cifrado de datos.
- Voz/Habla: Verificación de locutor, mejoramiento de señal, reconocimiento de habla, síntesis de habla.

Algoritmos

- Compresión
- Cifrado
- Reconocimiento
- Identificación
- Sintetización
- Eliminación de ruido
- Estimación espectral
- Filtrado
- Etc.

Implementación

- Plataformas de propósito general (PC).
- Plataformas empotradas (celulares, PDA, controles en máquinas, etc.). Según sea la demanda computacional: microprocesadores de propósito general, o microcontroladores especializados en el tratamiento de señales digitales (PDS, procesadores digitales de señales).
- Hardware reconfigurable, que se emplea en aplicaciones de alto desempeño, para el cual los PDS no tienen suficientes prestaciones.

Implementación

- Circuitos integrados de aplicación específica (ASIC), utilizados si se espera una producción en masa (como decodificadores del formato de audio Mp3).
- Implementación de circuitos de procesamiento en tiempo discreto.

Bibliografía

• [1] P. Alvarado, Procesamiento Digital de Señales. Instituto Tecnológico de Costa Rica. Instituto Tecnológico de Costa Rica, 2011.

