

Imputation

Mark van der Loo and Edwin de Jonge

Statistics Netherlands Research & Development Twitter: @markvdloo @edwindjonge

ENBES|EESW 2019

Try the code

O3valid/impute.R

Imputing data

Need to specify

- Imputation method
- Variable(s) to impute
- Variables used as predictor

Simputation's goal

Easy to experiment, robust enough for production.

Simputation interface

```
impute <model>(data, imputed variables ~ predictors, ...)
```


Imputing data with simputation

<model></model>	description
proxy	copy (transformation of) other variable(s)
median	(group-wise) median
rlm, lm, en	(robust) linear model, elasticnet regression
cart, rf	Classification And Regression Tree, RandomForest
em, mf	EM-alogithm (multivariate normal) missForest
knn	k nearest neighbours
shd, rhd	sequential, random, hot-deck
pmm	predictive mean matching
impute_model	use pre-trained model

Imputation of the mean

Adding a random residual

Adding a random residual with simputation

Example

```
impute_rlm(companies, other.rev ~ turnover
          , add_residual = "normal")
```

Options

- "none": (default)
- "normal": from $N(0,\hat{\sigma})$
- "observed": from observed residuals

Chaining methods

Example

```
companies %>%
  impute_lm(turnover ~ staff + profit) %>%
  impute_lm(turnover ~ staff)
```


Assignment

- 1. Read errors_located.csv (stringsAsFactors=FALSE)
- 2. Make a separete data frame, selecting columns 7–14 (staff-vat)
- 3. Implement the following imputation sequence:
 - Impute turnover by copying the vat variable (impute proxy)
 - Impute staff with a robust linear model based on staff.costs
 - Impute staff with a robust linear model based on total.costs
 - Impute profit as total.rev total.costs (impute proxy)
 - Impute everything else using missForest (formula: . ~ .)

More on missing data and (s)imputation

Missing data

Missing data

Reasons

- nonresponse, data loss
- · Value is observed but deemed wrong and erased

Solutions

- Measure/observe again
- Ignore
- Take into account when estimating
- Impute

Missing data mechanisms

Missing comletely at Random (MCAR)

Missingness is totally random.

Missing at Random (MAR)

Missingness probability can be modeled by other variables

Not Missing at Random (NMAR)

Missingness probability depends on missing value.

You can't tell the mechanism from the data

NMAR can look like MCAR

Given Y, X independent. Remove all $y \ge y^*$. Observer 'sees' no correlation between missingness and values of X: MAR.

NMAR can look like MAR

Given Y, X with Cov(Y, X) > 0. Remove all $y \ge y^*$. Observer 'sees' that higher X correlates with more missings in Y: MCAR.

Dealing with missing data mechanisms

Missing comletely at Random (MCAR)

Model-based imputation

Missing at Random (MAR)

Model-based imputation

Not Missing at Random (NMAR)

No real solution.

Imputation methodology

Model based

Estimate a value based on observed variables.

Donor-imputation

Copy a value from a record that you did observe.

The simputation package

Provide

- a uniform interface,
- with consistent behaviour,
- · across commonly used methodologies

To facilitate

- experimentation
- configuration for production

The simputation package

An imputation prodedure is specified by

- 1. The variable to impute
- 2. An imputation model
- 3. Predictor variables

The simputation interface

```
impute_<model>(data
, <imputed vars> ~ <predictor vars>
, [options])

data

data

impute_<model>()

data

data
```

Chaining methods

```
ret %>%
impute_rlm(other.rev ~ turnover) %>%
impute_rlm(other.rev ~ staff) %>% head(3)
```

```
staff turnover other.rev total.rev staff.costs total.costs profit
##
        75
                                                  NA
                                                                          NA
## 1
                 NA
                     64.88174
                                   1130
                                                           18915
                                                                  20045
## 2
               1607 17.25247
                                   1607
                                                 131
                                                            1544
                                                                     63
                                                                          NA
        NA
               6886 -33,00000
                                   6919
                                                 324
                                                            6493
                                                                    426
                                                                          NA
## 3
```


Example: Multiple variables, same predictors

```
ret %>%
  impute_rlm(other.rev + total.rev ~ turnover)

ret %>%
  impute_rlm( . - turnover ~ turnover)
```


Example: grouping

```
retailers %>% impute_rlm(total.rev ~ turnover | size)

# or, using dplyr::group_by
retailers %>%
  group_by(size) %>%
  impute_rlm(total.rev ~ turnover)
```


Imputation and univariate distribution

Imputation and bivariate distribution

Adding a random residual

$$\hat{y}_i = \hat{f}(X_i) + \varepsilon_i$$

- \hat{y}_i estimated value for record i
- $\hat{f}(X_i)$ model value
- ε_i random perturbation
 - Either a residual from the model training
 - OR sampled from $N(0,\hat{\sigma})$
- + Better (multivariate) distribution
- Less reproducible

Adding a random residual

Adding a residual with simputation

Code

```
ret %>%
  impute_rlm(other.rev ~ turnover
  , add_residual = "normal") %>% head(3)
```

Options

- add_residual = "none": (default)
- add_residual = "normal": from $N(0, \hat{\sigma})$
- add_residual = "observed": from observed residuals

Compute the variance of other.rev after each option.

Ten models.

1. Impute a proxy

$$\hat{\mathbf{y}} = \mathbf{x} \text{ or } \mathbf{y} = f(\mathbf{x}),$$

where x is another (proxy) variable (e.g. VAT value for turnover), and f a user-defined (optional) transformation.

```
# simputation
impute_proxy()
```


2. Linear model

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}},$$

where

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i} \epsilon_{i}^{2}$$

```
# simputation:
```


3. Regularized linear model (elasticnet)

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}},$$

where

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \frac{1}{2} \sum_{i} \epsilon_{i}^{2} + \lambda \left[\frac{1 - \alpha}{2} \|\boldsymbol{\beta}^{*}\|^{2} + \alpha \|\boldsymbol{\beta}^{*}\|_{1} \right]$$

- $\alpha = 0$ (Lasso) · · · $\alpha = 1$ (Ridge)
- β^* : β w/o intercept.

simputation:

impute_en()

4. *M*-estimator

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}},$$

where

$$\hat{oldsymbol{eta}} = rg\min_{oldsymbol{eta}} \sum_i
ho(\epsilon_i)$$

$$\#$$
 simputation:

impute_rlm()

5. Classification and regression tree (CART)

$$\hat{\boldsymbol{y}} = T(\boldsymbol{X}),$$

where T represents a set of binary questions on variables in X. There are spare questions for when one of the predictors is missing.

simputation:
impute_cart()

6. Random forest

$$\hat{\boldsymbol{y}} = rac{1}{| ext{Forest}|} \sum_{i \in ext{Forest}} \mathcal{T}_i(\boldsymbol{X}),$$

where each T_i is a simple decision tree without spare questions. For categorical y, the majority vote is chosen.

```
# simputation
impute_rf()
```


7. Expectation-Maximization

Dataset
$$\mathbf{X} = \mathbf{X}_{obs} \cup \mathbf{X}_{mis}$$
. Assume $\mathbf{X} \sim P(\boldsymbol{\theta})$.

- 1. Choose a $\hat{\boldsymbol{\theta}}$.
- 2. Repeat until convergence:

2.1
$$Q(\theta|\hat{\theta}) = \ell(\theta|\mathbf{X}_{obs}) + E_{mis}[\ell(\mathbf{X}_{mis}|\theta,\mathbf{X}_{obs})|\hat{\theta}]$$

2.2 $\hat{\theta} = \arg\max_{\theta} Q(\theta|\hat{\theta})$

2.2
$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}})$$

3.
$$\hat{\boldsymbol{X}}_{mis} = \arg\max_{\boldsymbol{X}_{mis}} P(\boldsymbol{X}_{mis}|\hat{\boldsymbol{\theta}})$$

```
# simputation (multivariate normal):
impute em()
```


8. missForest

Dataset $\boldsymbol{X} = \boldsymbol{X}_{obs} \cup \boldsymbol{X}_{mis}$.

- 1. Trivial imputation of X_{mis} (median for numeric variables, mode for categorical variables)
- 2. Repeat until convergence:
 - 2.1 Train random forest models on the completed data
 - 2.2 Re-impute based on these models.

```
# simputation:
impute_mf()
```


9.a Random hot deck

- 1. Split the data records into groups (optional)
- 2. Impute missing values by copying a value from a random record in the same group

```
# simputation
impute_rhd(data, imputed_variables ~ grouping_variables)
```


9.b Sequential hot-deck

- 1. Sort the dataset
- 2. For each row in the sorted dataset, impute missing values from the last observed.

```
# simputation
impute_shd(data, imputed_variables ~ sorting_variables)
```


9.c *k*-nearest neighbours

For each record with one or more missings:

- 1. Find the k nearest neighbours (Gower's distance) with observed values
- 2. Sample value(s) from the k records.

```
# simputation
impute_knn(data, imputed_variables ~ distance_variables)
```


10. Predictive mean matching

- 1. For each variable X_i with missing values, estimate a model \hat{f}_i .
- 2. Estimate all values, observed or not.
- 3. For each missing value, impute the observed value, of which the prediction is closest to the prediction of the missing value.

```
# simputation: (currently buggy!)
impute_pmm()
```


