DIALOG SYSTEMS INC BELMONT MA
INTELLIGENCE REPORT VOICE INPUT. (U)
NOV 78 L BAHLER, P MARKEY, S MOSHIER AD-A062 845 F/G 17/2 F30602-76-C-0257 RADC-TR-78-239 UNCLASSIFIED NL OF AD A062845 END DATE FILMED 2-79 DDC

RADG-TR-78-239 Final Technical Report Nevember 1978

INTELLIGENCE REPORT VOICE INPUT

Dialog Systems Incorporated

- L. Bahler P. Markey S. Moshier

Approved for public release; distribution unlimited

FILE COPY 36

> ROME AIR DEVELOPMENT CENTER **Air Force Systems Command** Griffiss Air Force Base, New York 13441

> > 79 01 02 004

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-78-239 has been reviewed and is approved for publication.

APPROVED:

Mela SHanija MELVIN G. MANOR, JR. Project Engineer

APPROVED: Hon zul Dain

HOWARD DAVIS Technical Director

Intelligence & Reconnaissance Division

FOR THE COMMANDER: John P. Huse

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (IRAA), Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED ASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER RADCHTR-78-239 TYPE OF REPORT & PERIOD COVERED Final Technical Report INTELLIGENCE REPORT VOICE INPUT 6. PERFORMING ORG. REPO N/A 8. CONTRACT OR GRANT NUMBER(s) Bahler F30602-76-C-025 P. Markey Moshier ERFORMING ORGANIZATION NAME AND ADDRESS Dialog Systems, Inc. 32 Locust Street 62702F 45940623 Belmont MA 02178 11. CONTROLLING OFFICE HAME AND ADDRESS 12. REPORT DATE November 1978 Rome Air Development Center (IRAA) Griffiss AFB NY 13441 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) UNCLASSIFIED Same 15a. DECLASSIFICATION DOWNGRADING N/A 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Melvin G. Manor, Jr. (IRAA) 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Automatic Word Recognition Speech Recognition Pattern Recognition ABSTRACT (Continue on reverse side if necessary and identify by block number) This work was an initial effort in the use of voice data entry for information data handling. The objective of this effort was to develop the technology for a large vocabulary (1000 word) isolated word recognition system capable of quick adaptation and high accuracy for a limited number of people. Techniques for word boundary detection, noise suppression, and frequency sealing were examined. Tests were conducted on a 1000 word and a 100 word unstructured vocabulary. Recognition accuracies of 30.5 percent and 66 percent were obtained for the untrained case and 62.4 percent and 90 percent after training each word once. DD 1 JAN 73 1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

UNCLASSIFIED RITY CLASSIFICATION OF THIS PAGE (When Date E	
State of the September 1999	A SERGE DOCUMENTALION PAGE
VISTON WAST	

Table of Contents

						P -	age
1.0 Summa	ry			e force	50114	en O	1
2.0 Speed	h Recogn	ition Fa	cility			•••	1
2.1	Data Col	lection		• • • • • •		•••	1
2.2	Hardware						2
2.3	Software			•••••		•••	8
3.0 Expe	îments .			•••••		•••	11
3.1	Algorithm	n Improv	ements	• • • • • •			11
3.2	Archetyp	ical Ref	erence	Patteri	ns		18
3.3	Large Vo	cabulary	Tests	•••••			26
3.4	The Synta	ax Tree	Facilit	у		•••	28
Appendix	A. 1000	Word Li	st			•••	A-1
Appendix	B. DAMT	AD Docum	entatio	n			B-1
Appendix	C. VEDIT	r Docume	ntation				C-1
Appendix	D. LBLLS	ST Docum	entatio	n			D-1

Appendix	E.	S4I36 Documentation	E-1
Appendix	F.	STAT9 Documentation	F-1
Appendix	G.	S4IT Documentation	G-1
Appendix	н.	List of Audio Tapes	H-1
Appendix	ı.	100 Required Words	1-1

2.0 Spreed Mecognition Pacifity

List of Figures

1.	Speech Processing Facility	3/4
1A.	Voice Recognition Program Flow Diagram	5/6
2.	Algorithm	7
3.	Data Base Generation, Block Diagram	9
4.	Cumulative Distribution Function of Speech Events Ranked by Population of Analysis Cells	19
	1A. 2. 3.	 Algorithm

List of Tables

Table	1.	Recognition Rates (Old/New)	12	
Table	2.	Effect of BWIDTH on Recognition Rate		
Table	3.	Effect of NBKUP and NTHRSH on Recognition Rate	15	
Table	4	Effect of EWIDTH on Recognition		
Table		Rate	16	
Table	5.	Percent Talker-Independent Recognition as a Function of Number of Alternate Patterns at Each Word		
		Segment	21	
Table	6.	1000 Word Recognition Rate,		
		Untrained	25	
Table	7.	1000 Word Vocabulary Recognition Accuracy, Trained with One Sample	25	
		of Each Word	25	

EVALUATION

This contract was in support of TPO R1B, and has application to the voice input of information to data bases. The objective of this effort was to develop the technology for a large vocabulary (1000 word) isolated word recognition system capable of quick adaptation and high accuracy for a limited number of people. Reasonable accuracies were obtained for an unstructured large vocabulary and highlighted areas where additional technology development is required.

Melon & Mano, h. MELVIN G. MANOR, JR. Project Engineer

1.0 Summary

An isolated word speech recognition facility was used to test the recognition accuracy of a 1000 word speaker independent data base. Software and hardware improvements were designed, tested and implemented to accomodate the larger vocabulary. Two major sections of effort are dis-The first section describes the speech recognition facility. This discussion includes the data collection process, and the hardware and software facilities which were developed during the contract period. The second section, Experiments, contains a detailed description of efforts to improve the recognition algorithm. Techniques for word boundary detection, noise suppression, and frequency scaling are examined with respect to their effects on recognition Several strategies were employed to develop archetypical reference patterns and a detailed analysis of the results is included. Experiments on large vocabularies (1000 words) were conducted under several conditions using six speakers not included in the data base. These tests indicated that more speakers should be added to the data base and that the isolated word algorithm should be examined with a view of increasing recognition accuracy for multi-syllabic A general facility for investigating the effect of syntactic constraints on large vocabulary data bases was also developed. This facility was demonstrated to Government representatives and the results of these tests are included in the final section of the report.

2.0 Speech Recognition Facility

2.1 Data Collection

Isolated word speech samples were collected on location and in the laboratory from locally available individuals, members of various community groups, university students and faculty, and business people. For on location recording, a Teac cassette recorder (TRQ-2040D) with a Teledyne MC057 dynamic microphone was used. Laboratory recordings were made on a Teac 2300SX reel to reel tape deck with an AKG K108 headset microphone. Recording environments were, for the most part, quiet but not noise free. Field recordings of word lists as spoken by about 200 individuals were obtained (See Appendix A, 1000 Word List). Due to the length of time re-

quired to record all of the 1400 target words, in most instances, only partial lists were collected from each individual. About 130,000 samples were collected on the cassette recorder. These were copied onto 7 inch reel to reel audio tapes for further processing.

In our laboratory, two sets of recordings of each of 1430 words were obtained from each of six subjects. Automatic prompting, driven by a PDP-11/03 computer was employed to insure good isolation between words. The word list was randomized and presented on a CRT computer terminal at a rate of one word every 3 seconds. Each subject sat for 24 sessions each lasting about 20 minutes. Each of the resulting tape recordings was then transcribed by hand and preliminary problems such as mispronunciations and loud background noise were identified. These transcriptions were used as a guide during further processing.

2.2 Hardware

The audio signal was band limited by a high pass, 18 dB per octave 300 Hz filter and by a low pass sharp cutoff 3.6 KHz filter, and digitized at 8 KHz with 12 bits resolution. Two PDP-11/04 controlled analog to digital conversion systems were built to implement the data base gathering part of the task. Each system consisted of the following devices:

- A Digital Equipment Corporation PDP-11/04 with 28 K words of memory.
- 2. A Dynastor Inc floppy disk drive and interface.
- 3. A Lear Siegler Inc ADM3 CRT and interface.
- A Digi-Data 1600 BPI Phase encoded 9-track digital tape drive and interface.
- A Tektronix XY oscilloscope display and interface.
- A Teac 2300 SX 2-track audio tape recorder.
- A Dialog Systems analog to digital and digital to analog interface.
- A Computer Operations Inc link tape drive and interface.
- A BGW Model-100 stereo audio amplifier and 2 Acoustic Research 17 speakers.

FIGURE 1A VOICE RECOGNITION PROGRAM FLOW DIAGRAM.

 A Dialog Systems analog cursor control and interface.

This equipment and associated power supplies were mounted in one or two 6 feet high standard 19 inch rack cabinets and located in an area acoustically remote from the operators. (See figure 1)

Two additional systems were available for recognition processing. These two systems were essentially identical to the first two but had, in addition, the following devices:

- 11. A Control Data Corporation 80-megabyte disk drive.
- An Electronic Memories and Magnetics Corporation Caelus 5 MB disk drive.
- 13. A Dialog Systems vector processor.

2.3 Software

Early efforts to generate a large data base utilized a hardware auto correlator to process, directly, the 96 kbps digitized analog data stream from the audio tape recordings. (See figure 2) Auto correlation frames were labeled with a word name and subject identification code and stored on digital tape. Considerable operator error was observed in this data reduction process as well as a large degree of uncertainty as to just what part of the audio record was processed. This scheme was abandoned in favor of the current labeling process. (See Figure 3)

To implement the current labeling process, several computer software programs were written to run under Digital Equipment's RT-11 operating system. They were, in their order of use in the process:

DAMTAD, a program to transfer digitized audio data to and from digital tape in real time (See Appendix B for command menu).

VEDIT, a program to read digital tapes containing audio data, display audio wave forms, play back a corresponding acoustic wave form and generate a

FIGURE 3 DATA BASE GENERATION

label file identifying the subject, name of the word and its starting location and length on the digital tape. (See Appendix C for command menu.)

LBLLST, a FORTRAN program to provide a hardcopy list of files generated by VEDIT. This program would also count the number of samples of a given word. Several label files could be listed at the same time. (See appendix D for command menu.)

Using these programs, two operators labeled and checked about 72,000 isolated word tokens. To insure the accuracy of this process, each of the four steps described so far --recording, transcribing, labeling, and checking -- was performed by a different individual. Thus, three independent evaluations as to what was said by the speaker were used to select the data.

At this point, the data set consisted of about 72,000 machine readable audio productions. One of the two duplicate data sets collected from each of six speakers in our laboratory was reserved as a test set and the other was used as a post-design training set. The remaining 56,000 speech samples were used as the design set to construct the data base reference templates.

The programs written to generate the data base reference templates were as follows:

S4I36, a program which, using the Dialog vector computer, calculated and selected twelve spectrum frames distributed over the length of the word. These twelve frames, called Picked Points, were stored for future use on a CDC disk and on digital magtape. (See Appendix E for command menu.)

STAT9, a program which generates master reference patterns from picked points. Each pattern of like type in the data set is used to compute the mean value and standard deviation for each of thirty-two spectral points in each of the twelve picked points. (See Appendix F for command menu.)

S4IT, a program which is functionally similar to S4I36 but with the addition of modules which enable syntax tree manipulation. This program accepts real time audio input, picked point files,

or digitized audio files as input, and performs maximum likelihood recognition using reference statistics generated by STAT9. (See Appendix G for command menu and user interaction.)

3.0 Experiments

3.1 Algorithm Improvements

We have attempted to reduce erroneous samples that occur before and after the actual spoken word by measuring the background noise level each time the talker is cued to say a word. The amplitude threshold derived from the background level measurement has produced some improvement but has not eliminated these errors. If the recognition program should pick a frame containing voice only, the remaining chosen frames would, likely, be chosen in inappropriate This type of error would generate places in the word. reference templates with poor alignment and thus increase the correlation between adjacent picked points. We preserve the spectrum of the background noise and subtract this spectrum from each subsequent spectrm frame taken. This produces esentially zero movement of the subjective time function during intervals of background noise, and thus makes it nearly impossible for the algorithm to choose samples in these intervals. Under some conditions this approach may also improve the signal-to-noise ratio tolerance of the system.

This method operates by measuring the power spectrum of the input 50 milliseconds after the user is cued to say a word, and subtracting this power spectrum from the spectrum in each subsequent frame to the detected end of word. Any negative terms in the difference spectra are replaced by zeros. The operational performance of the algorithm was improved qualitatively, although there was only a slight improvement evidenced by tests of the digital data base (which excludes most data having noticeable background or cross talk noise). The noise subtracter did reduce the incidence of sample frames drawn erroneously from background noise, and this seems to be the source of a slight improvement in measured recognition accuracy.

To test the possibility that performance is limited by arithmetic truncation error in the likelihood calculation,

the software was modified to permit carrying extra precision in the reference patterns. There was a slight overall performance increase when the precision was increased from 8 to 9 bits, and no further increase from 9 to 10 bits. This result agrees with a similar finding several years ago with an earlier version of the algorithm. The current 8-bit precision will be retained.

The procedure by which representative samples are selected from an unknown word has been improved, but it appears that erroneous sampling decisions are still the largsource of error in the algorithm. To counteract this problem and allow for variant pronunciations, we have examined sample frequency histograms for some words and partitioned the data base to make two alternate reference patterns for these words. This partitioning has definitely improved the performance. For example, in a digit vocabulary with six of the words partitioned into alternate patterns, a preliminary test of a population of 110 male and female voices resulted in a correct recognition score of 99%. The alternate patterns should also improve the accuracy when the system is trained to the talker, since the sample variances represented in the reference patterns are more representative of particular pronunciations after the partitioning. No partitioning has yet been implemented in the 1000 word vocabulary experiments.

"Unbiased" likelihood parameters were implemented isolated word training sets of 50 and 80 subjects. In each case the performance on the training set was closer to the performance on a large test set than when the "biased" parameters were employed. However, the improvements in prediction were not large enough to be considered statistically significant. A possible explanation lies in the fact that the variances of the individual pattern elements are in the same general range for all vocabulary words. Thus it is possible to reorder the pattern vectors so that corresponding elements of different word patterns have nearly the same variance. This makes the "biased" and "unbiased" likelihood ratio tests give essentially the same results, since a difference can arise only if the variances or the sample sizes are different. There continues to be an unexplained, statistically significant difference between the performance on training and test sets, even for training populations as large as 100 voices.

To match the behavior of the human auditory system more closely, we modified the spectrum analysis by changing the frequency scale to correspond with the S. S. Stevens "mel" scale. The pitch p and frequency f (Hz) in this scale are related by a power law which we took to be

$$p = \left(\frac{f-30}{1000}\right)^{0.65} \tag{3.1}$$

The spectrum analysis was adjusted to give samples at equally spaced pitches between 300 Hz and 3400 Hz. There was no detectable change in recognition accuracy. However, because the system is insensitive to signals below 300 Hz or above 3400 Hz, it is likely that under operational conditions spurious signals such as power line noise and signals above the 3400 Hz cutoff of the aliasing filter would be suppressed, leading to better performance in the field.

One motivation for testing the pitch scale was to permit a "tuning" adjustment for different talkers based on translation in pitch. An experiment done some years ago involved translation in log frequency; the results were negative and the frequency scale seemed inappropriate, since the first formant and higher formants appeared to vary differently. The following tests were run, using the pitch scale:

- 1. The pitch of each frame of a word was translated so as to maximize the likelihood score for the correct-choice reference pattern. Then the scores for all reference patterns were computed and the recognition rate tabulated. In many instances translation bettered the score for the correct choice. But on the average the scores for wrong choices improved even more, producing a net performance deterioration.
- 2. After maximizing the score for the correct pattern as above, the translated data were saved to form a new data base from which a new set of reference patterns was computed. This procedure was iterated several times, always with the same result as above.
- 3. To "tune" with unknown data the procedure was modified by computing and examining all likelihood scores for the vocabulary, and finding the pitch translation which produced the best score for any of the reference patterns. Again, the overall performance worsened.

A possible problem with these experiments was that the initial reference patterns represented a large population, rather than a single talker, and perhaps the tuning produced divergent motions toward irrelevant features of the average patterns. A set of patterns for a typical single talker

could be used instead to initialize the procedure.

There remain also the questions whether the pitch scale is really appropriate, and whether translation on any scale should be the best method of tuning.

An arbitrary smooth mapping of the frequency scale can be well approximated by multiplying the spectrum vector by a suitable matrix. For example, translation is produced by an off-diagonal matrix, and various nonlinear maps can be constructed with the aid of Lagrange interpolation polynomials. For reference data y and other data x the matrix T which minimizes the expected magnitude of y-Tx has a closed-form solution involving the correlation matrices R and R:

$$T = R R (3.2)$$

$$yx xx$$

Evaluation and testing of this "tuning matrix" T for many subjects would tend to show whether any talker dependent constant frequency mapping can improve recognition scores.

The table below gives the performance of the "official" isolated word algorithm and the "modified" algorithm (as described below) on "digits," "non-digits," and both. The "digits" consist of 3436 spoken words roughly evenly distributed over the ten digits, plus "yes" and "no," from both male and female speakers. The non-digits consist of 3940

Table 1
Recognition Rates (Old/New)

Pattern	Digits	Non-Digits	Both
Digits	88.2/89.3	elledig itt im sec es t t ech.	spalariage and three
Non-digit		86.5/88.9	
Both	81.6/82.0	80.5/84.9	81.0/83.6

Test Set

spoken words roughly evenly distributed over the words:

affirmative, negative, close, file, briefing, amend, niner, specialist, north, south, east, west, and local, from both male and female speakers. No alternate patterns were used. The recognition rates were found by scoring the reference patterns on the same data base that was used in generating them. The recognition rates for the "official" algorithm were adjusted to include "duration" errors ("too-soons," timeouts, etc.) that were not found in the "modified" algorithm.

Reported below are changes made to the isolated word algorithm and some of their measured effects on recognition rate.

The following changes have been made to a version of S4I:

- I. Noise subtractor:
 - A. Any sub-threshold frames are zeroed.
 - B. The noise-defining frames (1-6) are also zeroed.
- II. Beginning-of-word detector:
 - A. To find the beginning of word:
 - Find the first frame where NTHRSH out of BWIDTH frames are above threshold.
 - 2. Back up NBKUP frames from II-A-1.
 - First frame at or to right of II-A-2 that is above threshold is defined as beginning of word.

#NT sets NTHRSH (default 6)

#BW sets BWIDTH (default 12)

#NB sets NBKUP (default 8)

Table 2 gives the effect of BWIDTH on recognition rate. Table 3 gives the effect of NBKUP and NTHRSH on recognition rate. The values of these parameters do not appear to be too critical, with the values used initially (defaults) working as well as any.

B. All frames before the onset of listening are considered silent frames (zeroed). (This together with I-B makes the treadmill unnecessary.)

III. End-of-word detector:

- A. To and the end of word:
 - Find first frame after beginning of word where EWIDTH contiguous frames are subthreshold.
 - Run beginning-of-word detector backwards in time from III-A-1.

#EW sets EWIDTH (default 24)

Table 4 gives the effect of EWIDTH on the recognition rate. Again, the value of this parameter does not appear very critical.

- B. All frames after the end of the input stream (i.e. after the end label for an A/D file input) are considered silent frames (zeroed). Overflowing the JIN buffer is now an error.
- IV. Linear Time Point Picking:

The twelve points are picked, equally spaced, in real time from the beginning of word (first point) to the end of the word (last point).

V. Averaged Noise Sample:

The noise sample used by the noise subtractor consists of the average of the third and the sixth frames. The threshold used by the beginning-ofword detector consists of twice the average of the amplitude of the third through the sixth frames.

Using an averaged noise sample increased the recognition rate by 0.9%.

TABLES 2-4

- BWIDTH = Width of beginning-of-word characteristic function
- NTHRSH = Number of frames needed above threshold for beginning of word
- NBKUP = Number of frames to back up at beginning of word

EWIDTH = Number of contiguous sub-threshold frames
 needed at end of word before applying
 symmetrical end-of-word detector

Table 2

Effect of BWIDTH on Recognition Rate

BWIDTH	Recognition Rate			
6	88.9			
9	88.9	NTHRSH	=	6
		NBKUP	=	8
12	89.2	EWIDTH	_	18
15	89.1	2101		- 0

Table 3

Effect of NBKUP and NTHRSH on Recognition Rate

				NI	вкир			
NT	HRSH	2	4	6	8	10	12	14
	3	88.7	89.1	89.3	88.9	88.9		
	6	87.1	88.4	89.1	89.2	88.9	89.0	
	9		85.3	87.8	88.6	88.6	89.0	89.1
				Recogni	tion Ra	tes		

EWIDTH = 18

Table 4

Effect of EWIDTH on Recognition Rate

EWIDTH	Recognition Rate			
12	89.0			
15	89.1			
18	89.2	umun au		
18	89.2	NTHRSH		
21	89.2	NBKUP	=	8
24	89.3	BWIDTH	=	12
27	89.3			

3.2 Archetypical Reference Patterns

Software to determine a set of single spectrum frame archetypes was developed. The initial strategy was to partition the amplitude range at each frequency into p equal segments. With 32 frequencies in each spectrum there would thus be p possible cells. A data base of about 1500 words (18,000 frames) was analyzed by determining which cell each frame fell into and counting the number of frames in each cell. For p>2 nearly every cell had less than three occupants, making it impossible to tell where the natural clusters were located. With p=2, and considering only the lowest 16 frequencies, the occupancy distribution of Figure 4 was observed.

A set of the most densely occupied cells was chosen, and a reference pattern for each cell made by computing means and standard deviations of the 32 spectrum points for all the frames contained in the cell. The resulting mean spectra exhibited characteristic formant resonances but did not in general resemble the reference patterns derived from labeled words. Apparently only the speech frames showing relatively narrow (high-Q) resonances or essentially no resonance had sufficiently consistent behavior near the average spectral amplitude to show up as clusters, and the detection of cluster centers was biased by this effect. The standard deviations were essentially constant with frequency in the region defined by the Euclidean cells, reflecting

FIGURE 4 CUMULATIVE DISTRIBUTION FUNCTION OF SPEECH EVENTS RANKED BY POPULATION OF ANALYSIS CELLS.

perhaps a uniform distribution of data in each cell. This effect was also quite different from the normal "word" patterns. These data were nevertheless used in preliminary tests of the recognition software.

A program to determine the closest fitting sequence of single frame patterns was implemented next. For any input word the result was the best "spelling" that could be found in terms of the reference patterns derived from the detected cluster centers. A master spelling was derived by choosing the most likely match over a training set at each of the 12 sample frames in a word. A set of master spellings used as reference patterns for the digits 0-9 gave about 60% accuracy at this stage. To improve the performance it appeared that we would need to eliminate the bias in finding the cluster centers and determine the actual shape of each cluster by including data not actually in the central cell. An alternate method of determining the cell boundaries increased the digit recognition accuracy to 80%, which is about what one would expect from the fact that the likelihood function with constant variance is equivalent to a Euclidean distance function.

Starting with the data base of 18,000 speech spectrum frames, a sequence of small data cells was generated as follows: the first spectrum frame of the data base is the center of the first cell. For each subsequent frame, measure the taxicab distance (sum of absolute values of coordinate differences) between the new frame and every cell center found to date; if the smallest distance is greater than a constant threshold, then the new frame is the center of a new cell; otherwise it is a member of the closest cell.

The 65 cells with the greatest number of occupants were selected and the statistical means and variances of the data frames lying in each cell were computed. These parameters constituted a set of elementary, single-frame reference patterns. The data base of 1500 isolated words was then analyzed by computing the likelihood statistic for each frame of each word with respect to each of the 65 elementary patterns. At each word frame the six highest scoring pattern matches were tablated. A master spelling for each word was then derived by selecting at each frame the most frequently-appearing pattern among the tabulated ones.

A recognition test was then conducted by summing the pattern likelihood scores over each master spelling and choosing the spelling with the best cumulative score as the final word decision. Spoken digits tested in this way had an overall talker-independent recognition accuracy of 81%, which corresponds to results for a Euclidean distance function with one reference pattern per word.

Next, the 65 elementary reference patterns were refined by including all frames of the data base that were not already members of the 65 chosen cells. Each non-member frame was compared to the chosen cells by computing the likelihood statistic with respect to each of the 65 elementary reference patterns. Each frame was thereby assigned to the cell yielding the highest likelihood score. A new set of likelihood parameters was then computed for all the cells. With these parameters the recognition accuracy for digits was the same as before. Increasing the number of elementary patterns to 90 did not change the situation.

On the presumption that the above results were limited by particular choice of spellings, the following method of determining alternate word spellings was tested. Starting with the above set of "most popular" spellings for digits, the algorithm attempted to recognize words in a digit data base. At each error, the spelling (i.e. the sequence of elementary patterns having the best likelihood score at each frame of the word) for the mistaken word token was added to the list of alternates for that vocabulary word. After two training passes throuth a set of 150 digits (15 talkers) there were 3.2 spellings per digit on the average and zero errors. Testing on 20 additional talkers yielded 84% recognition. A test of "difficult" digits obtained under different conditions resulted in 55% to 65% recognition scores in the several tests described.

The principal conclusion to be drawn from these experiments is that the reference patterns found do not provide a particularly good estimate of the conditional probability densities of spoken digits.

The objective was to find unconditional densities (independent of any particular vocabulary word) which could be selected to build conditional densities for specific words. The variance terms of these reference patterns tended to be almost constant with frequency, even after including data frames not in the original cells. This tended to make the likelihood functions into Euclidean distance functions which could be made to yield reasonable recognition only by providing a number of alternate patterns for each vocabulary word.

Since the computation of likelihood functions is a great deal more time consuming than the process of accumulating word scores, experiments to examine the tradeoff between number of patterns and number of spellings were planned.

To examine the tradeoff between the number of elementary reference patterns and number of "spelling" templates a data base of digits spoken by 100 male and female talkers

was analyzed. For each test condition the number of templates required to obtain 99% recognition of this data base as a training set was tabulated. The reference patterns were derived by initializing clusters of frames having a constant taxicab metric radius followed by inclusion of all frames into a selected set of cells on the basis of likelihood ratio. With the number of selected cells as the variable, the following data were obtained:

Relative Radius of Initial Cell	Number of Elementary Patterns	Average Number of Templates per Word		
1500	33	39		
1024	60	35		
1024 (conditional	90	34		
density)	120	27		

Variations in conditions, such as a change in the radius of the initial cells, did not affect the results appreciably. The conclusion appears to be that this general method of deriving reference patterns requires a large number of spelling templates, and that the number of templates is not very sensitive to the number of elementary patterns.

To differentiate between the effects of particular pattern choices and the method of determining template spellings, a standard set of patterns was selected for a series of experiments on the method of choosing representative spellings. The patterns consisted of all the conditional density parameters obtained by partitioning the digit reference patterns used in the standard 12-frame reference patterns with one complete pattern per vocabulary word. It was reasoned that since these reference patterns yield the best available recognition scores, a good template-finding procedure should be able to discover the spellings corresponding to the sequence before the 12-frame patterns were partitioned. It turned out that the method of adding a spelling whenever an error occurred did not find the original reference pattern sequence. However, a modification of this technique was found that produced recognition accuracy as good as that of the standard algorithm.

The modified procedure was to permit the reference frame to be chosen independently for each frame comprising

the word pattern. Thus, the template for a vocabulary word consists of a set of alternate pattern names for each frame position in the word. Any spelling consisting of a sequence of one alternate elementary pattern chosen at each position in the word is a legal spelling. The likelihood score for the word is then the sum of the scores of the best-fitting pattern at each of the positions. The method is similar to the strategy used in our continuous speech keyword detection system.

For the selected data base of 1000 digits, the standard isolated word algorithm with one 12-frame reference pattern per word scored 91% correct recognition. The following table shows the results of the strategy just described as a function of the number of alternate elementary patterns established at each sample frame. Comparable results for the elementary patterns derived by the constant taxicab metric method are also shown. Reference patterns are elected by counting the number of times their likelihood scores appear in the top six choices for a given set of exemplar patterns.

Table 5

Percent	Tall	cer-Ind	lepen	dent	Recog	gnition	as	s a
Function	of	Number	of	Alte	rnate	Patteri	ns	at
		Each	Word	Segr	ment			

Number of Alternates:	1	2	3	4	5	6	7
Conditional Density Parameters:	89	89	90	90	91	90	90
Unconditional Cluster Parameters:							
60 Patterns			83	84	83	84	84
90 Patterns			84			86	85
120 Patterns			84		86	86	86

The revised template finding procedure yielded significantly better recognition performance than the earlier method, and it can be seen from the table that performance did not change much as a function of the total number of elementary patterns.

An intermediate method of template finding was imple-

mented. In this method, consecutive pairs of elementary patterns constituted a sequence of sub-word spellings, and alternates were chosen freely at each sub-word position. The objective was to increase recognition accuracy at a given total number of elementary likelihood calculations by tightening the restriction on allowable template sequences at a cost of increasing the complexity of the template search.

For each test condition (number of alternate patterns permitted) the results were marginally better, but the improvement was 0.5% or less. At 5 alternate choices per comparison the elementary patterns consisting of either one frame or an ordered pair of comparison frames yield essentially the same performance as the standard set of 12-frame reference patterns. The results to date suggest that comparable performance cannot be obtained with unconditional density functions.

In smaller vocabularies for which large data bases are available, much effort has been expended trying to produce alternate statistical patterns to better represent the words. We experimented with an isolated word data base, consisting of 6197 exemplars of the ten digits and /yes/ and /no/. Using four alternates per word, statistics were compiled from the data base. The same data base when tested gave a 12-alternative forced-choice identification rate of 95% correct; the rate was 93% for an unknown test set of 900 words. The alternates were produced by manually labeling male, female, general and Southern dialects, followed by an iterative clustering algorithm.

We explored whether the number of alternative patterns used to represent each word was currently limiting the performance. If we attempted to increase the number of alternatives indefinitely, the alternatives would be highly trained to the exemplars over which their statistics were collected. Thus these exemplars would have to be excluded as possible matches, because of the training effect in our Gaussian maximum likelihood decision model. To circumvent these training effects, a nonparametric model was used, in which each exemplar in the data base was compared to each other word by computing their separation as measured by the Euclidean distances.

In the twelve alternative forced-choice experiment, in which each example was identified as the name of its nearest neighbor, performance was 92% correct. Each of the 6197 examples was compared to the 6196 other exemplars.

An experiment based on the maximum likelihood choice over a region was also run. For each unknown word, the set of 100 closest neighbors was found by using the Euclidean

distance measure. Then the unknown word was identified as the word occurring most often in that set of neighbors. Performance was the same.

To model the effect of using the most neighbors rather than the nearest neighbor as the decision rule, assume that, in a neighborhood about an unknown exemplar, there are uniformly distributed exemplars from two words, w and w,

with relative frequencies p and p, respectively, 1 2

$$p + p = 1.$$
 (3.3)

Also assume that these measured relative frequencies are the true probabilities for an unknown exemplar in this neighborhood. The maximum likelihood decision rule would identify the unknown as word $\mathbf{w_i}$ if $\mathbf{p_i} > \mathbf{p_j}$ for each j, to give the best expected correct identification rate, equal to max $(\mathbf{p_1},\mathbf{p_2})$. This decision rule corresponds to identifying with the most neighbors. On the other hand, the nearest neighbor would be word w with probability \mathbf{p} .

Thus averaged over the data base, the nearest neighbor rule picks w

in proportion to its relative frequency p ,

giving a correct identification rate of

which is less than or equal to max (p, p), assuming

To identify a word as its nearest neighbor is a sub-optimal

rule. Depending on the actual values of the relative frequencies, the maximum likelihood error rate E

is bounded between the closest neighbor error rate E $$\operatorname{cr}$$ and one-half E ${\operatorname{c}}$

We conclude that the performance is not limited by the number of alternatives used in representing the statistics, but that performance is limited by the instrinsic overlap of words' patterns as produced by present preprocessing techniques.

3.3 Large Vocabulary Tests

Preliminary tests were conducted on portions of the data base as they became available. Initially, a statistics file was generated from approximately 1430 different lexical items as spoken by six individuals. In this experiment the test subject was included in the data base and represented one-sixth of the data base. When tested, 53% of 1404 lexical items were recognized. In this and all following experiments, each test word was compared to all words in the data base. All gross mispronunciations had been deleted from the test sets.

A design set of approximately forty speakers, male and female, consisting of approximately 53,000 speech samples was used to generate a data base. (See Appendix H, Audio Tape List) Two test conditions were examined. In the first condition, six speakers not included in the design set, were tested against the data base. The results, summarized below, for 6315 lexical events, produced an average recognition of 30.5%. Each lexical event was tested against each of 1078 lexical items in the vocabulary, where recognition was defined as a match between the most likely items and the name of the event. The vocabulary was not selected for good phonetic distribution; thus, for example, the spoken letter "b" and the word "be," the letter "c" and the word "sea," all are different vocabulary words.

The second condition tested the recognition accuracy against the data base after a single training trial with a weight of 50%. That is, the mean value of a spectral point

Table 6
1000 Word Recognition Rate, Untrained

	Subject Number	Number of Events	Number of Errors	Correct
	0	1056	708	32
	1 00 1 barr	1054	818	22
	2	1055	779	26
	3	1055	697	33
	4	1050	668	36
	5	1045	700	33
Totals:	6	6315	4390	30.5

in the reference pattern was averaged with the value of a like spectral point from the training sample. A second, independent sample of each word as spoken by each subject from the first test condition was used to evaluate recognition accuracy after training. These data are summarized in tabular form below. In 6311 lexical events tested against the trained data base of 1078 lexical items, 4390 errors occurred. The resulting recognition accuracy was, averaged over six subjects, 62.4%.

Table 7

1000 Word Vocabulary Recognition Accuracy,
Trained with One Sample of Each Word

- 50	Subject Number	Number of Events	Number of Errors	% Correct
	0	1053	388	67
	1 1	1051	405	61
	2	1050	325	69
	3	1055	395	62
	4	1049	426	59
	5	1053	481	54
Totals:	6	6311	2370	62.4

Additional experiments were run on the 1400 word vocabulary. The nearest Euclidean neighbor decision rule was used. There were two recordings of each of six subjects, numbered 0 through 5. One set of recordings was used as a reference set of up to 8413 patterns; the other was the test set. Results are summarized in the table below.

Test Set Subjects	Number of Trials	Reference Subjects	Number of Patterns	Percent Correct
0-3, part of 4	6563	0-5	8413	53.1
0	1404	0	1408	54.3
0	1404	1-5	7005	26.0

Because there are only six tokens per word it is hard to draw any conclusion about the intrinsic overlap of the word pattern distributions. Examination of actual pattern data does support the idea that many or most errors are due to gross misalignment of spectrum sampling times between unknown and reference word patterns.

3.4 The Syntax Tree Facility

In some applications, only words in a subset of the total stored vocabulary are legal alternatives at any given point. A facility exists for entering such constraints into a syntax tree and for traversing the tree, significantly improving recognition accuracy and response time for large vocabularies.

Each syntax tree consists of a set of numbered nodes and named branches between the nodes. The name of a branch corresponds to the vocabulary word that can cause a transition between the spanned nodes. For example, in the simple tree below, saying an odd digit will cause a transition to node 1 and saying an even digit will cause a transition to node 2:

Run-time commands exist for invoking a tree, moving around in a tree, and printing out information on a tree.

Furthermore, arbitrary subroutines may be associated with particular nodes so that a transition to a node can invoke code. The path taken through the tree is saved and transitions can be taken back under both keyboard and voice control.

Non digits from the 100 required word list (Appendix I) were entered at a node in the syntax tree and tested by a government representative who was not included in the data base. Of the 67 words in the node, 66% were recognized correctly. After training each word once, 90% were recognized.

APPENDIX A

1500	A
1600	ABLE
0502	ABOVE
0400	ACCOUNT
0503	ACKNOWLEDGE
0504	ACKNOWLEDGED
0401	ACT
0372	ACTION
1400	ACTIVATE
0403	ACTIVITY
0384	ADD
0506	ADDED
0404	ADDRESS
0507	ADDRESSEE
0405	ADMINISTRATION
0510	AFRICA
0511	AFRICAN
0512	AFTER
0513	AGAIN
0514	AGAINST
0515	AGE
0406	AID
0409	AIM
0407	AIR
0408	AIRFORCE
1474	ALARM
0517	ALGERIA
0518	ALL
0410	ALLIANCE
1800	ALPHA
0519	ALREADY
0522	ALWAYS
0411	AMBASSADOR
0523	AMERICAN
0412	AMMUNITION
0524	AMOUNT
0526	AN
0414	ANALYSIS
0527	ANCIENT
0321	AUCT DIAT

0528	AND
1465	ANSWER
0530	ANTI
0531	ANY
1442	APOSTROPHE
0534	APPREHEND
0536	APPROVE
0537	APPROVED
0539	APRIL
0541	ARAB
0542	ARABIAN
0543	ARCTIC
0544	ARE
0545	AREA
0546	ARGENTINA
0415	ARMEDFORCES
0416	ARMY
0549	AROUND
0550	ARREST
0417	ARTILLERY
0551	AS
0552	ASIA
0553	ASKED
0555	ASSOCIATE
0556	ASSOCIATED
1460	ASTERISK
0557	AT
0558	ATLANTIC
0418	ATOMIC
0420	ATTACHE
0559	ATTACK
0419	ATTENTION
0421	ATTRITION
0561	AUGUST
	AUSTRALIA
0562	
0563	AUSTRIA
0422	AUTO
0564	AUTOMATIC
0423	AVENUE
1501	В
0424	BACK
1443	BACKSPACE
0325	BACKWARD
0570	BAD
1601	BAKER
0571	BALL
0425	BANK
0426	BANKER
0427	BASE
0575	BASES
0429	BATTALION
0428	BATTLE
0577	BAY

0578	BE
0579	BEACH
0582	BECAUSE
	BECOME
1464	BEDLIGHT
1414	BEDMOTOR
0585	BEEN
0586	BEFORE
0587	BEIRUT
0588	BELGIUM
0589	BELIEVE
0591	BENT
0593	BEST
0594	BETTER
0595	BETWEEN
0596	BIG
0597 0363	BIOLOGICAL BLACK
	BLOC
	BLOODY
0367	BLUE
0431	BOAT
0599	BOILING
0432	BOMBERS
0433	BOMBS
0602	ВОТН
0434	BOUNDARIES
1441	BRACKET
1801	BRAVO
0604	BRAZIL
0435	BRICK
0608	BRIEF
1412	BRIGHTER
0609	BRITAIN
0610 0611	BRITISH
0436	BROOK BUG
0612	BUILD
0437	BULLETS
0615	BURMA
0616	BURN
0438	BUSINESS
0617	BUT
0618	BUYING
1448	BY
1502	C
1445	CALCULATOR
1440	CALL
0621	CALM
0623	CAME
0439	CAMPS
0624	CAN
0625	CANADA

0626	CANAL
0322	CANCEL
0628	CANNOT
1426	CAPITAL
0440	CARE
0441	CARGO
0442	CARRIER
0443	CASE
1602	CAST
0444	CASUALTY
0632	CATCH
0634	CAUGHT
0636	CENTER
0637	CENTURY
1403	CHANNEL
0638	CHANGE
0639	CHAOTIC
0445	CHARACTER
0640	CHARGE
1802	CHARLIE
0446	CHIEF
0645	CHINA
0646	CHINESE
0647	CHRISTIAN
0649	CIRCULAR
0650	
0651	CITY
	CIVIL
0447	CLARIFICATION
0356	CLEAR
0655	CLIFF
1459	CLOSE
0448	CLOTHES
0656	CLOUDS
0449	COALITION
0659	COLD
0660	COLLATE
1432	COLON
0455	COLONEL
0346	COLOR
0664 1430	COME
	COMMA
0665	COMMAND
0450	COMMERCE
0666	COMMON
0668	COMMUNIST
0451	COMPANY
0700	COMPLETED
0701	COMPLEX
0704	CONCEAL
0706	CONCERNED
0371	CONDITION
0709	CONDUCT
0710	CONDUCTED

0452	CONFRONTATION
0453	CONGRESS
0454	CONGRESSMAN
0457	CONSUL
0458	CONSULATE
0456	CONTEST
0717	CONTINENT
1471	CONTROL
0720	CONVENTIONAL
0459	CONVERSATION
0460	CONVICTION
0722	COOL
0724	COPY
0461	CORPS
0463	COSINE
0725	COULD
0727	COUNTRY
0462	COURSE
0728	COVER
0464	CRAFT
0730	CRETE
0731	CROOKED
0465	CRUISER
0733	CUBA
0734	CURE
0735	CURRENT
0328	CURSOR
0466	CURTAIN
0467	CUSTOMS
0737	CYLINDRICAL
0738	CYPRUS
1503	D
0740	DAMASCUS
1433	DASH
0741	DATE
0468	DATA
0742	DAY
0743	DEAD
0744	DEAR
0745	DECADE
0746	DECEMBER
0747	DEEP
0469	DEFENDERS
0470	DEFENSE
1444	DEFINE
1470	DELETE
0749	DELIVER
0750	DELTA
0751	DEMOCRATIC
0752	DEMOLISH
0753	DENMARK
0755	DEPLOY
0758	DEPRESSED

0761	DESERT
0762	DESTROY
0471	DESTROYER
0763	DETERIORATING
0764	DEVELOP
0472	DEVELOPMENT
1419	DIAL
0473	DIALOGUE
0474	DICTATOR
0765	DID
0766	DIED
0475	DIESEL
1413	DIMMER
0767	DIRECT
0768	DIRECTED
0772	DISPATCHED
0774	DISPLAY
0777	DIVING
0476	DIVISION
0778	DO
0477	DOCK
0478	DOCTOR
1603	DOG
0479	DOLLAR
0352	DONE
0779	DONT
0329	DOWN
0781	DRY
1504	E
0783	EARLY
0784	EARTH
0053	EAST
1604	EASY
0785 0786	EAT
1804	EBB
0787	ECHO
1469	ECONOMIC EDIT
0481	EFFORT
0788	EGYPT
0789	EGYPTIAN
0008	EIGHT
0308	EIGHTEEN
0316	EIGHTY
0790	EITHER
0791	ELECTRIC
0482	ELECTION
0793	ELECTRONIC
0795	ELEVATED
0333	ELITE
0483	EMBARGO
0484	EMBASSY
0485	EMBLEM
0403	BUDDEL

0797	EMPLACEMENT
0798	ENCLOSED
0799	END
0378	ENDTAPE
0802	ENGLAND
0486	ENROUTE
0351	ENTER
0803	ENTIRE
0805	ENTRY
0806	ENVIOUS
1401	ENVIRONMENT
0487	ENVY
0808 0355	EQUAL
0488	EQUALS
0321	EQUIPMENT
0809	ERASE
0489	ESCAPE
0811	ESTIMATE
0812	ESTIMATED
0490	EUROPE
0813	EVACUATION EVALUATE
0814	EVEN
0815	EVENTUAL
0816	EVER
0817	EVERY
0818	EVOLVE
0819	EXCEED
0820	EXCEPT
0821	EXCITE
1438	EXCLAMATION
1421	EXECUTE
0491	EXERCISE
0822	EXPAND
0492	EXPANSION
0823	EXPECT
0824	EXPELL
0825	EXPLAIN
0826	EXPLORE
0827	EXPLOSIVE
0493	EXPLOSIVES
1456	EXPONENT
0831	EXTERIOR
0832	EXTERNAL
0833	EXTINGUISH
0834	EXTRA
0835	EXTRACT
0836	EXTREME
1505	F
0494	FACE
0837	FACILITY
0838	FACING
0496	FACT

0497	FACTION
0498	FACTOR
0840	FACTUAL
0841	FADE
0842	FAIR
0843	FAITHFUL
0844	FALL
0845	FALSE
0846	FAMILIAR
0847	FASCIST
0848	FAST
0849	FASTER
0850	FAT
0851	FATAL
0852	FATIGUE
0499	FAULT
0853	FAVOR
0854	FAVORITE
0855	FEAT
0856	FEBRUARY
0857	FEELER
0858	FEELING
0860	FELL
0863	FEUD
0864	FIELD
0865	FIERCE
0305	FIFTEEN
0866	FIFTH
0313	FIFTY
0867	FIGHTERS
0868	FIGHTING
0869	FIGURE
0013	FILE
0870	FINAL
0871	FIND
0873	FINLAND
0874	FIRE
0876	FIRST
0877	FISSION
0005	FIVE
0879	FIX
0880	FIXED
0881	FLAME
0882	FLAG
0883	FLAW
0884	FLED
0885	FLEE
0886	FLEW
0887	FLIGHT
0889	FLO D
0890	FLOTILLA
0891	FLOW
0892	FLY

0893	FOG
0894	FORCE
0895	FOREIGNERS
0896	FOREST
0897	FORM
0334	FORMAT
0898	FORMATION
0899	FORT
0900	FORTIFICATION
0901	FORTIFIED
0312	FORTY
0324	FORWARD
0902	FOUND
0004	FOUR
0304	FOURTEEN
0904	FOURTH
1605	FOX
1805	FOXTROT
0905	FRAME
0908	FREEZING
0910	FRENCH
0912	FRESH
0913	FRIGHT
0914	FROM
0915	FRONT
0916	FUEL
0917	FURTHER
0918	FUSION
0919	FUTURE
1506	G
0920	GALE
1468	GAME
0923	GENERAL
0924	GENERATE
1606 0926	GEORGE
0926	GERMANY
0927	GET GIVE
0929	GLAD
0931	GLADLY
0932	GO
0933	GOING
1806	GOLF
0934	GOOD
0935	GOT
0335	GRAPHICS
0939	GREAT
0940	GREECE
0941	GREED
0942	GREEDY
0943	GREEK
0365	GREEN
0944	GROUND
0744	GROOMD

```
0945
         GROUP
0946
         GROW
         GROWTH
0947
0949
         GUERILLA
0951
         GUIDE
0952
         GUIDED
0953
         GUIDEDMISSILE
0954
         GUILTY
0956
         GUNS
1507
0958
         HABIT
         HAD
0959
0960
         HAIL
1422
         HANG
1467
         HANGUP
0963
         HARBOR
0965
         HARDCOPY
         HAS
0968
0969
         HATRED
0970
         HAVE
0971
         HAZE
0972
         HE
1415
         HEAD
0975
         HEALTH
0976
         HEAR
1463
         HEIGHT
0981
         HELP
0982
         HER
         HIGH
0361
0983
         HIGHER
0984
         HIGHWAY
0985
         HILL
0986
         HIM
0987
         HINDER
0988
         HISTORY
1405
         HOLD
         HOLLAND
0989
0990
         HOME
0991
         HOPE
         HORIZONTAL
0344
0992
         HOSPITAL
0993
         HOT
1807
         HOTEL
0994
         HOUR
1607
         HOW
0996
         HOWEVER
0997
         HUGE
0998
         HUMID
0318
         HUNDRED
0999
         HUNGARY
1000
         HURRICANE
1002
         HYDROGEN
1508
         I
```

1003 1004	ICE
	ICELAND
1005 1007	IDEA
1007	IDEOLOGY IDLE
0382	
1010	IF
1011	IMPLICATIONS IMPORTANT
0130	IN
0383	
0363	INCREMENT INDEX
1014	INDIA
1015	INDICATE
1016	INDICATED
1017	INDONESIA
1022	INFERIOR
1022	INFORM
1025	INLET
1026	INNER
1027	INNOCENT
0323	INSERT
1031	INSTANT
1034	INTEND
1035	INTENSE
1036	INTENSITY
1037	INTERACTIVE
1040	INTERNAL
1042	INTO
1043	IRANIAN
1044	IRAQ
1045	IRAQI
1046	IRELAND
1048	ISOLATED
1049	ISOLATION
1050	ISRAELI
1051	IT
1052	ITALIAN
1608	ITEM
1053	ITSELF
1509	J
1054	JAIL
1609	JAKE
1055	JANUARY
1056	JAPAN
1057	JERUSALEM
1058	JEWISH
1059	JORDAN
1060	JORDANIAN
1061	JOURNAL
1809	JULIET
1062	JULY
1064	JUNE
1065	JUST

1510	K
1810	KILO
1068	KINDLY
1610	KING
1416	KNEES
1511	L
0380	LABEL
1069	LAKE
1070	LAND
1071	LANDING
1072	LARGE
1073	LARGELY
1074	LAST
1076	LATITUDE
1077	LAUNCH
1080	LEADER
1081	LEANING
1082	LEARN
1083	LEBANON
1084	LEBANESE
0331	LEFT
1086	LET
1087	LETTER
1425	LETTERS
1088	LEVEL
1089	LIBYA
1090	LIBYAN
1411	LIGHT
1091	LIGHTS
1092	LIKE
1811	LIMA
1093	LIMIT
0381	LINE
0342	LINEPLOT
1097	LIRA
1098	LISTEN
1099	LITTLE
1100	LIVE
1101	LIVING
0055	LOCAL
1457	LOGARITHM
1107	LONG
1108	LONGITUDE
1109	LOSS
1611	LOVE
0360	LOW
1110	LOWER
1512	M
1113	MACHINE
1114	MADE
0368	MAGENTA
1115	MAGNETIC
1116	MAIN

1118	MAJOR
0336	MAKE
1119	MALAYSIA
1120	MAN
1121	MANNING
1123	MANY
1124	MARCH
0386	MARGIN
1125	MARINE
1437	MARK
1127	MATTER
0358	MAXIMUM
1128	MAY
1130	ME
1131	MEAN
1132	MEANT
1135	MECHANICAL
1137	MEDICINE
1138	MEDITERRANEAN
1140	MEMORY
1141	MEN
1142	MENU
1143	MERCHANT
1144	MERIDIAN
1145	MERIT
1146	MESSAGE
1148	MEXICO
1150	MIDDLE
1612	MIKE
0320	MILLION
1152	MINE
1155	MINIMUM
1156	MIŅOR
1451	MINUS
1157	MINUTE
1160	MISSING
1161	MISSION
1162 1164	MISTER
1166	MODELLED
	MODIFY
1167 1169	MOMENT
1170	MOON
	MOON
1171	MORE MOROCCO
1172	MOST
1173 1177	
1179	MOUNTAIN MOVE
1180	MOVEMENT
1513	N
0362	NAME
1613	NAN
1184	NATION
1104	MULTON

1185	NATIONAL
1186	NATIONALIST
1187	NATIVE
1189	NAVAL
0327	NEGATIVE
1191	NEGOTIATE
1192	NEITHER
1194	NEVER
1195	NEW
0326	NEWLINE
0119	NEXT
1196	NIGHT
0009	NINE
0309	NINETEEN
0317	NINETY
0010	NO
1197	NOISY
1198	NOR
0051	NORTH
0056	NORTHEAST
0057	NORTHWEST
	NORWAY
1200	NOT
	NOTICE
1202	NOVEMBER
1203	NOW
1204	NUCLEAR
1205	NUMBER
1466	NUMBERS
1423	NURSE
1514	0
1614	
	OBOE
1209	OCEAN
1210	OCTOBER
1211	OF
1406	OFF
1212	OFFENSE
1215	OFFICE
1216	OFFICER
1217	OLD
1420	ON
1219	ONCE
0001	ONE
1220	ONLY
1221	OPEC
1222	OPEN
1224	
1224	OPERATE
1226	OPPORTUNITY
1228	OR
1229	ORDER
1231	ORDINARY
1233	ORIGINALLY
1814	OSCAR
1014	OSCAR

1234	OUR
1235	OUT
1236	OUTER
1237	OVAL
1238	OVER
1240	OWN
1515	P
1243	PACIFIC
0387	PAGE
1245	PALESTINIAN
1815	PAPA
1434	PARENTHESIS
1250	PAST
0375	PAUSE
1253	PEAK
1254	PENDING
1255	PENINSULA
1256	PEOPLES
1258	PERHAPS
1429	PERIOD
1260	PERMANENT
1615	PETER
1446	PI
0332	PICA
1265	PHILLIPINES
1267	PLAINS
1268	PLANETS
1271	PLEASE
1450	PLUS
1439	POINT
1273	POLAND
1274	POLE
1275	POLITICAL
1276	POND
1277	POOL
1278	PORTUGAL
1280	POSITIVE
1283	PRECIOUS
1287	PRESENT
1288	PRESIDENTIAL
1289	PRIMARY
1291	PRIOR
1293	PROBABLY
1428	PUNCTUATION
1516	Q
1302	QUALITY
1816	QUEBEC
1616	QUEEN
1305	QUERY
1436	QUESTION
1306	OUEUE
1307	QUIET
1435	QUOTATION

1517	
1517	R
1407	RADIO
1311	RAILROAD
1312	RAIN
1313	RAISE
0339	READ
1314	REAR
1315	RECALLED
1316	RECEIVE
1317	RECEIVED
0364	RED
1321	REFERENCE
1323	REFORMAT
1325	REFUGEE
1329	RELATED
1330	RELEASE
1331	REMIND
1332	REMINDER
1334	RENAME
1336	REPEAT
1337	REPORT
1338	REROUTE
1342	RESIDENT
1343	RESIST
1344	RESPONSE
1344	RESPONSIBLE
0376	RESUME
1346	RETREAT
1347	RETRIEVAL
1348	RETRIEVE
1417	RETURN
1351	RIVER
1352	ROAD
1617	ROGER
1355	ROMANIA
1817	ROMEO
0347	ROTATE
1356	ROUGH
1357	ROUND
1358	ROUNDS
1359	RULER
1360	RUN
1361	RUNNING
1362	RUNWAY
1363	RUSSIA
1364	RUSSIAN
1518	S
1365	SAID
1618	SAIL
1367	SAME
1369	SAUDI
1371	SAY
1371	SCALE
13/2	SCAPE

1374 1375	SCIENTIFIC SCOTLAND
0357 1376	SCREEN SEA
1377	SECOND
1378	SECONDARY
1381	SEE
1384	SEEMED
1431	SEMICOLON
1386 1387	SEND
1387	SENT SEPARATE
1389	SEPTEMBER
1473	SET
1393	SETTLEMENT
0007	SEVEN
0307	SEVENTEEN
0315	SEVENTY
1394	SHALL
1395	SHALLOW
1396 1397	SHATTERED SHE
	SHIFT
1478	SHORT
1479	SHOULD
0337	SHOW
1818	SIERRA
1481	SILENT
	SINCE
1453	SINE
00	SIX
0306 0314	SIXTEEN SIXTY
0377	SKIP
1485	SLEET
1486	SLOW
1487	SLOWLY
1488	SMALL
	SMOOTH
1490	SO
1491 1492	SOCIALIST
1492	SOME SOON
0052	SOUTH
0058	SOUTHEAST
0059	SOUTHWEST
1494	SOVIET
1427	SPACE
1495	SPAIN
1498	SPHERICAL
0359	SQUARE
1458	SQUAREROOT
1527	STARS

1528 1529 0385 1410 1531 1461 1475 1535 1536 1538 1539 1540 1542 1544 1546 1567 1568 1569 1570 1571	START STARTED STARTOVER STATION STEAM STEP STOP STORE STORM STRAIGHT STRATEGIC STREAM STUDY SUBDUE SUBTRACT SUCH SUEZ SUFFERING SUNSHINE SUPPORT
1575	SURELY
1578 1580	SUSPENDED SWEDEN
1581	SWITZERLAND
1583	SYRIA
1584	SYRIAN
1519	T
0388 1585	TAB TABLE
1303	TAIWAN
1588	TAKE
1589	TALL
1455	TANGENT
1819	TANGO
1590 1591	TANKS
1619	TAPE TARE
1592	TARGET
1594	TECHNICAL
1418	TELEPHONE
1402	TELEVISION
1596 0300	TEMPERATURE TEN
1599	TERMINAL
1626	TERRAIN
1627	TEST
1628	TESTING
0345	TEXT
1629 1630	THAILAND THANK
1631	THAT
1632	THE

1633	THEIR
1634	THEM
1635	THEN
1637	THESE
1638	THEY
1639	THIN
1640	THING
1641	THINK
1642	THIRD
0303	THIRTEEN
0311	THIRTY
1643	THIS
1644	THOSE
0319	THOUSAND
0003	THREE
1645	THROW
1646	TIDE
1647	TIME
1449	TIMES
1648	TIMING
1649	TITLE
1650 1651	TIRED
1652	TODAY
1653	TOLL
1654	TOMORROW
0350	TORNADO
1659	TRACKBALL TRAGEDY
1662	TRAIN
1664	TRANSFER
.349	TRANSLATE
1667	TRANSMIT
1671	TRAP
1672	TRAVELLER
1673	TREES
1674	TRIANGULAR
1676	TROOPS
1678	TRUCK
1680	TUNDRA
1682	TURKEY
0302	TWELVE
0310	TWENTY
1683	TWICE
0002	TWO
1424	TYPEWRITER
1684	TYPHOON
1520	U
1620	UNCLE
1685	UNDER
1462	UNDERLINE
1687	UNDERWAY
1689	UNIFORM
1690	UNITEDSTATES

1691	UNTIL
0330	UP
1692	UPPER
1693	UPON
1694	UPRIGHT
1695	USA
1696	USE
1697	USER
1698	USING
1699	USSR
1521	٧
1700	VAIN
1700	VALLEY
1701 1703	VENEZUELA
0343	VERTICAL
1704	VERY
1705	VESSEL
1706	VETERAN
1621	VICTOR
1707	VIETNAM
1707 1708	VIRTUALLY
1709	VISION
1404	VOLUME
1710	VOTE
1522	W
1711	WAIT
1711	WALK
1712 1713 1714	WANT
1713	
1/14	WAR
1715	WARFARE
1716	WARHEAD
1719	WARPED
1720	WAS
1721 1722 1724	WATCH
1722	WATER
1724	WAY
1725	WE
1726	WEAPONS
0113	WEATHER
1727	WEEK
1728	WELCOME
1728 1729	WELFARE
1730	WELL
1731	WERE
0054	WEST
1732	WHAT
	WHEN
1733	
1734 1735	WHERE
1/35	WHICH
1822	WHISKEY
0370	WHITE
1736	WHOSE
1826	WHY

1737	WILL
1622	WILLIAM
1738	WIND
0338	WINDOW
1739	WING
1740	WISH
1741	WITH
1742	WHO
1743	WOMAN
1745	WORK
1746	WORKING
1748	WORLD
1749	WORST
1750	WOULD
1751	WOUNDED
0340	WRITE
1523	X
1623	XRAY
1524	Y
1824	YANKEE
1752	YEAR
0366	YELLOW
0011	YES
1753	YET
1624	YOKE
1754	YOU
1755	YOUNG
1756	YOUR
1757	YUGOSLAVIA
1525	Z
0000	ZERO
1625	ZED
1825	ZULU

APPENDIX B

DAMTAD Documentation

Sample User Interaction

Mount audio tape to be digitized. Mount magtape.

Type:

Call the program.
Initialize the tape.
Start the audio tape.
Start the magtape.
Any keyboard input will
terminate the process.
Rewind the tape.
Read back data just
written to the tape
(audio and visual
displays).
Terminate.

<CR> indicates carriage return.

DAMTAD Documentation

```
:THE TAPE FUNCTIONS ARE INITALIZED BY 'RW'.
; WHICH REWINDS; THEN SPACES FORWARD OVER THE BEGINNING
; END-OF-FILE MARK; AND SETS THE CURRENT BLOCK NUMBER TO ZERO
SELECTED BY THE BAKBRD INTERPRETER, THE FOLLOWING FUNCTIONS
PERFORM CONTINUOUSLY UNTIL THE KEYBOARD IS STRUCK:
        THE A/D CONVERTOR (CHO) IS DUMPTED TO MAGTAPE:
                                                         WW
        THE MAGTAPE IS DUMPED TO THE D/A CONVERTOR:
                                                         RR
        THE CORE BUFFER IS PLAYED THRU THE D/A:
                                                         PP
        THE LOW BYTE OF THE A/D INPUT SCALED BY THE
        SWITCHES IS DISPLAYED FOR OFFSET CHECKING:
                                                         AD
        THE HIGH BYTE OF A/D INPUT IS DISPLAYED:
                                                         SC
THE FOLLOWING FUNCTIONS POSITION THE MAGTAPE TO (AND PLAY
; CONTINUOUSLY THE EIGHT BLOCKS PRECEDING) THE BLOCK
; SPECIFIED: A SECOND IS TAKEN TO BE 8 BLOCKS.
"# REPRESENTS A DECIMAL NUMBER.
        ABSOLUTE BLOCK NUMBER:
                                                         #BA
        ABSOLUTE SECOND:
                                                         #SA
        BLOCK RELATIVE TO CURRENT BLOCK:
                                                          #BR
        SECONDS RELATIVE TO CURRENT BLOCK:
                                                         #SR
        BECAUSE THE MAGTAPE AND D/A ARE ASYNCHRONOUS,
        SPACES BACK TO WHAT WAS JUST HEARD FROM 'RR':
                                                         SP
: AN END-OF-FILE MARK CAN BE WRITTEN:
                                                         EF
WHICH SHOULD BE DONE ONCE AT THE BEGINNING OF THE
:TAPE AS AN INITIALIZATION FOR UTRAN COMPATIBILITY
:THE CURRENT BLOCK NUMBER OFTEN PRINTS
; AUTOMATICALLY OR CAN BE CALLED:
                                                         BN
THE PEAK AMPLITUDE IS DETERMINED ANEW
        DURING THE FUNCTIONS -- WW, RR, PP, SC-- AND
        PRINTS AUTOMATICALLY OR CAN BE CALLED:
                                                         AM
UNDER ERROR CONDITIONS THE MAGTAPE STATUS REGISTER IS
: PRINTED.
```

APPENDIX C

VEDIT Documentation

Sample User Interaction

THIS PAGE IS DEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Load magtape. Load label file to match tape.

.R VEDIT <CR>

*OA (CR)

Digitized file =

*TAO: (CR)

*OL (CR)

*LABEL FILE =

*LABEL 6A (CR)

*1000TH <CR>

*8GP <CR>

*PL <CR>

*S <CR>

*E <CR>

*100SN <CR>

*EN wordname <CR>

Write label. "Wordname" is name of word. 100 is name of

Move cursor to end of word.

Set trigger number of frames

to advance after trigger to

subject. SN remains valid

Open audio file (magtape)

Name of device

Set threshold for amp

center video display. Get next word, move cursor to start of word by inspection

and allow 60 milliseconds minimum of silence.

Name of file

until changed. Get next word.

Mark end of word.

*PL <CR>

(continue to end of tape)

*CL <CR> ^C

Close label file.

Exit

<CR> indicates "carriage return".

VEDIT Documentation

COMMANDS:

	/H	HELP - TYPE OUT ALL COMMANDS ALONG WITH A BRIEF
		DESCRIPTION.
	DM	DEFINE A MACRO
N	EM	EXECUTE THE MACRO N TIMES
	PL	START THE CONTINOUS PLAY OF THE TAPE
N	VO	ADJUST VOLUME, N IS A SHIFT COUNT
N	GP	SET NUMBER OF FRAMES TO PROCEED AFTER BOF
		IS TRIGGERED
N	TH	SET THRESHOLD FOR AMPLITUDE TRIGGER
N	CU	MOVE CURSOR N LOCATIONS, OCU MEANS USE KNOB
	S	SET BEGINNING OF WORD
	E	SET END OF WORD
N	SN	SET SUBJECT NUMBER
N	WN	SET WORD NUMBER
	SWNAME.	ENTER WORD NAME AND SET WORDNO
	LNNAME.	CONVERTS A NAME TO A WORD NUMBER
N	WD	SET DIALECT OF THIS WORD TO N
N	SD	SET DIALECT OF ALL WORDS OF THIS SUBJECT IN LABEL
		FILE
N	NL	CONVERTS A WORD NUMBER TO A NAME
	OA	OPEN RAW A/D FILE
	PB	PLAY THE ENTIRE CORE BUFFER
	PC	PLAY THE BUFFER FROM THE CURSOR TO END
	PW	PLAY THE MARKED WORD
N	BN	LOCATE AT BLOCK NUMBER N AND PLAY BUFFER
	OL	OPEN THE LABEL FILE
	IL	INITIALIZE LABEL FILE, WRITE AN INIT EOF RECORD
	FL	WRITE END OF LABEL RECORD AT THIS SPOT
	RL	READ NEXT LABEL
	RP	READ NEXT LABEL BUT DON'T PLAY
N	WL	WRITE THE LABEL FOR THE CURRENT WORD, NAME IT N
	ENNAME.	
	UL	UPDATE LABEL FILE, WRITE NEW LABEL BUT NO EOF
	AL	UPDATE LABEL FILE, CHANGE REC AFTER CURRENT REC
	BL	GO TO BEGINNING OF LABEL FILE
	EL	GO TO END OF LABEL FILE
N	MP	MOVE N LABELS IN THE LABEL FILE BUT DON'T PLAY
N	ML	MOVE N LABELS IN THE LABEL FILE AND PLAY WORD
N	LS	LOCATE SUBJECT NAMED N
N	LW	LOCATE WORD N OF CURRENT SUBJECT
N	NW	LOCATE NEXT EXAMPLE OF WORD N
	CM	COPY LABEL OF THIS WORD TO END OF SECONDARY FILE
	CL	CLOSE THE LABEL FILE
N	SC	SET THE SCALE FACTOR FOR THE FINE DISPLAY
N	DS	START THE DISPLAY
		USING NON-ZERO ARGUMENT CHANGES TO FINE DISPLAY
	OD	CALL ODT
N	KE	UNLOCK COMMANDS DM, EM, IL, FL, OD, AL (KEY IS 32000)
N	<cr></cr>	CARRIAGE RETURN, MOVE N BLOCKS AND PLAY THE MARKED WORD
	00	OPEN SECONDARY LABEL FILE
	os	OPEN SECONDARI LABEL FILE

VEDIT Documentation

		NOTE - SECONDARY FILE WILL BE ACTIVE
	SS	SWITCH TO SECONDARY LABEL FILE
	PP	SWITCH BACK TO PRIMARY LABEL FILE
N	SI	PLAY N/100 SECONDS OF SILENCE
N	PD	QUICKLY ACCESS AND PLAY THE NEXT N (BUT AT LEAST
		ONE) WORDS INDICATED BY THE LABEL FILE
		DIRECTLY FROM THE RAW A/D FILE
	PR	PRINT ENTIRE LABEL RECORD ON TT
	8PR	PRINT LABEL RECORD IN OCTAL
MDD		

. ENDR

.REPT 0

LINKING INSTRUCTIONS

.R LINK

*VEDIT<VEDIT,ODTX,UTRT11.NOE,SY:SLIBR,DK:VEDBUF *C

** NOTE **

VEDBUF MUST BE THE LAST FILE IN THE LINK.

UTRT11 IS THE NO EAE VERSION. FOR INSTRUCTIONS ON GETTING IT, ASK ONE OF THE PROGRAMMERS.
.R MACRO
UTRT11.NOE<FAKEAE.PRE,F.MAC,UTRT11.MAC
*^C

APPENDIX D

LBLLST Documentation

LBLLST (LABEL LIST) IS DESIGNED TO MAKE LISTINGS FROM LABEL FILES CREATED BY VEDIT IN TWO BASIC WAYS:

- 1. IT CAN LIST ALL THE WORDS SAID BY EACH SUBJECT.
- 2. IT CAN LIST THE NUMBER OF TIMES EACH WORD WAS SAID (TOKENS/TYPE). THIS CAN OPTIONALLY BE REQUESTED FOR EITHER ALL FILES GIVEN AS INPUT COLLECTIVELY OR FOR EACH INPUT FILE.

THE NAMES.COH FILE IS USED TO LOOK UP THE WORDS CORRESPONDING TO THE WORD NUMBERS FOUND IN THE LABEL FILES.

GENERAL PROCEDURE-----

C

C

C

C

C

C

C

CCC

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

THE MAIN PROGRAM IS A VEHICLE FOR REQUESTING INPUT AND OUTPUT FILES AND FINDING WHICH LISTINGS ARE DESIRED. THE SUBROUTINE LOCATE FINDS THE POSITION OF EACH WORD NUMBER IN THE NAMES FILE (AS OFFSET FROM THE BEGINNING OF THE FILE) AND ENTERS IT INTO THE ARRAY WRDMEM USING THE WORD NUMBER ITSELF AS THE INDEX.

SUBWRD LOCATES SUBJECT NUMBERS IN THE INPUT LABEL FILES AND PUTS ALL WORD NUMBERS CITED AFTER CONSECUTIVE OCCURRENCES OF A SPECIFIC SUBJECT NUMBER

INTO THE ARRAY NUMWRD. WHEN A NEW SUBJECT NUMBER IS COME ACROSS OR A PARTICULAR FILE ENDED (AS SIGNALLED BY THE OCCURRENCE OF 8 CONSECUTIVE BLANK (0) WORDS) OUTSUB IS CALLED. OUTSUB PRINTS THE SUBJECT NUMBER AND ALL THE WORDS SAID BY THAT SUBJECT. THE SUBROUTINE GETWRD USES THE ARRAY WRDMEM (FORMED IN LOCATE) TO RETRIEVE THE WORD CORRESPONDING TO EACH WORD NUMBER STORED IN NUMWRD. IF THE WORD NUMBER WAS NOT FOUND IN THE NAMES FILE USED, "NO WORD NUM" IS

LBLLST Documentation

С	OUTPUTTED IN PLACE OF THE WORD.
C C C	TOTAL READS EACH WORD NUMBER IN THE LABEL FILES AND USES IT AS THE INDEX FOR THE ARRAYS ALLWRD AND LSTWRD, WHICH TOTAL ALL THE OCCURENCES OF A WORD IN ALL INPUT FILES AND ALL THE OCCURRENCES OF A WORD IN
C C	THE PARTICULAR FILE BEING READ, RESPECTIVELY. OUTTOT IS PASSED THE ARRAY LSTWRD (IF A PER FILE LISTING IS
C C C C	REQUESTED) AFTER EACH FILE IS GONE THROUGH AND OUTPUTS (USING GETWRD) THE WORD FOLLOWED BY THE NUMBER OF TIMES THAT WORD OCCURRED IN THE FILE. WHEN ALL FILES ARE FINISHED, ALLWRD IS PASSED TO OUTTOT (IF A GRAND TOTAL COUNT IS REQUESTED).
00000000000000	NOTES: COMPILING FORMAT: LBLLST=LBLLST/E/N:17 LINKING FORMAT: LBLLST=LBLLST, ASSIGN, NOWORD, SLIBR/F IF THE FORLIB (/F) USED HAS THE VESION OF ASSIGN WHICH TAKES TTY INPUT, THE ASSIGN MODULE MAY BE OMITTED. IT IS ASSUMED THE READER HAS KNOWLEDGE OF THE STRUCTURES OF THE NAMES AND LABEL FILES. IF NOT, FAMILIARIZATION WITH THESE WOULD BE HELPFUL IN UNDERSTANDING THE WORKINGS OF THE PROGRAM THOUGH THE ESSENTIAL FEATURES ARE BRIEFLY DESCRIBED IN THE APPROPRIATE PLACES BELOW. THE PROGRAM MUST BE LINKED WITH NOWORD, SLIBR, AND FORLIB.

APPENDIX E

S4I36 Documentation

DOCUMENTATION FOR S4136 AND SPIN36

THIS IS THE DRIVING PROGRAM FOR THE SINGLE CHANNEL ISOLATED WORD ALGORITHM. IT IS USED FOR DEBUGGING AND CHECKOUT OF THE ALGORITHM, STAND-ALONE RECOGNITION AND DEMONSTRATION, ALGORITHM DEVELOPMENT

AND ENHANCEMENT AND POINT PICKING FOR REFERENCE PATTERN GENERATION.

S4136 AND SPIN36 CAN BE ASSEMBLED WITH A VARIETY OF OPTIONS. THE CURRENT STANDARD VERSIONS ARE:

S4IC DEBUGGING AND DEVELOPEMENT, CORRELATION FILE FUNCTIONS

S4IA POINT PICKING AND REFERENCE PATTERN GENERATION RAW A/D FILE FUNCTIONS

S4IP RECOGNITION ENVOLVING LARGE REFERENCE PATTERN FILES

ASSEMBLY INSTRUCTIONS FOR S4136:

S4136<S4IC, CSECTI, S4136 S4136<S4IA, CSECTI, S4136 S4136<S4IP, CSECTI, S4136

ASSEMBLY INSTRUCTIONS FOR SPIN36:

SPIN36<S4IC, CSECTI, SPIN36 SPIN36<S4IA, CSECTI, SPIN36 SPIN36<S4IP, CSECTI, SPIN36

LINK INSTRUCTIONS:

S4IC<S4I36, VNEWL, SPIN36, SY:SLIBR

S4IA<S4I36, VNEWL, SPIN36, SY:SLIBR S4IP<S4I36, VNEWL, SPIN36, SY:SLIBR

ALL VERSIONS MAY BE ASSEMBLED AND LINKED BY RUNNING THE BATCH FILE \$4136.BAT

; COMMANDS:

;		GO	RECOGNIZE A WORD USING ANALOG INPUT
;		AD	TRAIN PATTERN NAME N WITH LAST WORD SPOKEN
;		AW	TRAIN PATTERN N WITH LAST WORD SPOKEN
;		PR	TYPE WORD NAME N ON CONSOLE
;	N	AU	INCREMENT NC FOR NEXT COMMAND IN MACRO USING
;			COUNTER N
;		DS	START THE DISPLAY
;		CL	CLEAR OUT ALL BUFFERS
;		DL	DISPLAY LOG FRAMES ONLY (USEFUL IN NOEAE VERSION)
;		PL	PLOT THE CURRENT DISPLAY
;		FT	DRAW MOIRE PATTERN FORMAT TRACKS
;	N	DB	SET OR RESET A BREAK POINT TO CALL THE DEBUGGER
;			AT DEBUG POINT N IN SPIN36
;	N	SL	SCALE THE SIZE OF THE LOG FRAMES IN THE DISPLAY
;	N	SA	SCALE THE SIZE OF THE AMPLITUDE CURVE DISPLAYED
;	N	SS	SCALE THE SIZE OF THE SUBJECTIVE TIME CURVE
;			DISPLAYED
;	N	SP	SCALE THE SIZE OF THE POWER SPECTURM FRAMES
;			DISPLAYED
;	N	SH	SHIFT RAW A/D FRAME UP IN AMPLITUDE
;	N	ST	SHIFT RAW A/D FRAME IN TIME
;	N	FR	MOVE THE CURSOR TO FRAME N AND DISPLAY POWER
;			SPECTRUMS STARTING AT THAT FRAME
		KB	TURN KNOB ON
;	N	NR	SET NUMBER OF LIKLIHOOD SCORES TO PRINT
;		KS	PRINT OUT SCORE (PERCENT RIGHT) AND START OVER
;	N	NW	SET NUMBER OF WORDS IN VOCABULARY
;		WS	DEFINE THE NAMES OF THE WORDS IN THE VOCABULARY
;			(WL10,11,0,1,2,3)
;		NM	READ IN NAME FILE WITH LIST OF WORD NAMES
;		AN	ANSWER OR HANGUP THE PHONE
;		NS	STOP COMPUTING STATISTICS AFTER RECOGINIZING A
;			WORD
;		NP	STOP PRINTING AMPLITUDE, DURATION THRESHOLD
;			INFORMATION
;	N	FS	DEFINE THE N STATISTICS FILES CONTAINING THE
;			VOCABULARY
;	N	TF	DEFINE N STAT FILES AND N TRAINING FILES
;		TR	SPECIFY THE FACTOR ANALYSIS TRANSFORMATION FILE
;		FF	SPECIFY A NONSTANDARD FOURIER TRANSFORM MATRIX
;			FILE
;		OL	OPEN LABEL FILE
;		BL	GO TO BEGINNING OF LABEL FILE
;	N	ML	SPACE IN LABEL FILE (FORWARD OR BACKWARD)
;		CL	CLOSE LABEL FILE

S4I36 Documentation

;	RL	READ NEXT LABEL
;	OA	OPEN RAW A/D FILE
;	CA	CLOSE RAW A/D FILE
;	RA	RECOGNIZE FROM RAW A/D FILE USING CURRENT LABEL
;		AS POSITION
;	GA	RECOGNIZE FROM RAW A/D FILE USING CURRENT
;		POSITION OF TAPE
;	RB	RECOGNIZE FROM RAW A/D FILE USING CURRENT LABEL
;		AS THE POSITION BUT DON'T CHECK FOR END OF WORD
;		USING LENGTH FROM LABEL FILE
;	PP	RECOGNIZE A WORD USING AUTO CORR FRAMES IN CORE
;	AC	READ AUTO CORR FRAMES INTO JIN BUFFER FROM ANALOG
;	00	INPUT
•	OC	OPEN THE RAW AUTO CORRELATION FILE GO TO THE BEGINNING OF THE AUTOCORRELATION FILE
,	BC	GO TO THE BEGINNING OF THE AUTOCORRELATION FILE
; 	EC MC	MOVE N RECORDS (SPOKEN WORDS) IN THE CORRELATION
; N	MC	FILE
	RC	READ A WORDS WORTH OF CORRELATION FRAMES INTO
	RC	BUFFER
	WC	WRITE A WORD OF CORRELATION FRAMES FROM BUFFER TO
	WC	FILE
	DC	DELETE A RECORD (SPOKEN WORD) FROM THE
:	50	CORRELATION FILE
	CC	CLOSE THE CORRELATION FILE, AN END OF FILE RECORD
		IS WRITTEN ONLY IF THE CORRELATION FILE WAS
;		WRITTEN INTO
;	OP	OPEN THE PICKED POINT FILE
;	BP	GO TO BEGINNING OF PICKED POINT FILE
;	EP	GO TO END OF PICKED POINT FILE
; N	MP	BACKSPACE N RECORDS (SPOKEN WORDS) IN THE PP FILE
;	RP	READ FROM PICKED POINT FILE AND RECOGNIZE THE
;		WORD
;	WP	WRITE PICKED POINT RECORD FROM 12 FRAMES IN LOG
;		BUFFER
;	KP	WRITE PICKED POINT RECORD,
;	an.	BUT FIRST ASK FOR OPERATOR CONFIRMATION CLOSE THE PICKED POINT FILE
,	CP	DEFINE A MACRO (COMMANDS THAT FOLLOW COMPOSE THE
;	DM	MACRO UNTIL A DOUBLE CARRIAGE RETURN IS
		ENCOUNTERED)
, N	EM	EXECUTE THE MACRO N TIMES
, IN	EX	EXIT THE PROGRAM AND CLOSE ANY OPEN FILES
	OD	GO TO ODT
,	OD	GO 10 OD1
; FILES:		
,11000.		
	FILTER	FILE A 32 X 32 BYTE PACKED FILE USE TO PERFORM
		THE FOURIER TRANSFORM OR OTHER
;		SPECTRAL ANALYSIS
,		
	TRANSFO	RM FILE A 32 X 32 BYTE PACKED FILE USED TO
;		PERFORM THE CLUSTERING

S4I36 Documentation

```
TRANSFORMATION
STATISTICS FILE -- A FILE OF MAX SIZE = STSIZE CONTAINING
                 REFERENCE PATTERNS
         THE FORMAT IS AS FOLLOWS:
         NVOCAB
                         NUMBER OF PATTERNS IN THIS FILE
         NFS
                         NUMBER OF ELEMENTS PER PATTERN
         NBYTE
                         NUMBER OF BYTES PER ELEMENT
         WORD NAMES
                         SIZE = NVOCAB
         MEANS
                         SIZE = NVOCAB X NFS X NBYTE
         STANDARD DEVS SIZE = NVOCAB X ((NFS X NBYTES)+4)
NAME FILE --
         UNUSED (PUT OUT BY THE LINKER IF NAME FILE IS
 1 - 256.
                 BUILT BY ASSEMBLING A SOURCE FILE OF
                 SPECIFIED FORMAT)
         NUMBER OF NAME IN NAME FILE
1:
         NAMES OF WORDS
 2-N
 RAW AUTO CORRELATION FILE --
HEADER FORMAT:
         PTR TO NEXT HEADER IN FILE (WORD COUNT - STARTS
         AT 1)
 2:
         POINTERS ARE DOUBLE PRECISION
         IARG, NO OF FRAMES (DATA RECORDS) IN WORD
 3:
         36., LENGTH OF FRAME
 4:
 5:
         2, POINTERS ARE DOUBLE PRECISION
         SUBJECT NO
 6:
7:
         WORD NO
         PTR TO LAST HEADER RECORD
33:
         POINTERS ARE DOUBLE PRECISION
34:
35:
         PTR TO CURRENT HEADER RECORD
36:
         POINTERS ARE DOUBLE PRECISION
DATA RECORD FORMAT:
         SHIFT COUNT
2:
         AUTO CORRELATION TERMS
 34:
         AMPLITUDE
         AMPLITUDE
 35:
 36:
         AMPLITUDE
PICKED POINT FILE -- CONTAINS 12 LOGTRANSFORMED FRAMES
                  FOR EACH WORD IN THE DATA BASE
HEADER FORMAT:
         PTR TO NEXT HEADER IN FILE (WORD COUNT - STARTS
         AT 1)
```

54I36 Documentation

```
2:
         POINTERS ARE DOUBLE PRECISION
 3:
         12, NUMBER OF PICKED POINTS PER WORD
         36., LENGTH OF FRAME
4:
5:
         2, POINTERS ARE DOUBLE PRECISION
         SUBJECT NO
6:
         WORD NO
7:
33:
         PTR TO LAST HEADER RECORD
         POINTERS ARE DOUBLE PRECISION
34:
         PTR TO CURRENT HEADER RECORD
35:
         POINTERS ARE DOUBLE PRECISION
36:
DATA RECORD FORMAT:
1:
2:
         SUBJECTIVE TIME
 3:
4:
         REAL TIME
         LOG TRANSFORMED FRAME
 5:
LABEL FILE --
1:
         SUBJECT NUMBER
         WORD NAME NUMBER
2:
         POINTER TO LOCATION IN RAW A/D FILE OF BEGINNING
3:
         OF WORD
 4:
         POINTERS ARE DOUBLE PRECISION
5:
         LENGTH OF WORD IN FRAMES (79. WORDS = 1 FRAME)
6:
         UNUSED
         UNUSED
7:
 8:
         UNUSED
```

STANDARD INTERACTION:

< > SPECIFIES OPTIONAL COMMAND

.R S4IC
<*FF>
<FILTER FILE=>
<*[ENTER COSINE MATRIX FILE]>
*DS START DISPLAY
*FS
STAT FILE=

S4I36 Documentation

*[ENTER STAT FILE NAME]

*OC CORR FILE= *[ENTER RAW CORRELATIONS FILE]

READ ONE WORD FROM CORRELATION FILE *RC

RECOGNIZE IT *PP

<*BC> GO TO BEGINNING OF CORRELATION FILE < * ' N ' MC > SPACE N WORDS IN CORRELATION FILE

OR

*GO RECOGNIZE LIVE INPUT

.R S4IA

<*FF> <FILTER FILE=> <*[ENTER COSINE MATRIX]>

*OP PICKED POINT FILE= *[ENTER PICKED POINT FILE NAME]

*OA RAW A/D FILE= *[ENTER RAW A/D FILE]

*OL LABEL FILE= *[ENTER LABEL FILE]

*NM NAME FILE= [ENTER NAME FILE]

READ LABEL, RECOGNIZE LABELED WORD, *DMRLRAWO SAVE PICKED POINTS

RECOGNIZE FISRT WORD *RA WRITE FIRST WORD'S PICKED POINTS *WP START DISPLAY *DS DON'T PRINT AMPLITUDE DATA *NP

*10000EM

*CP

CLOSE PICKED POINT FILE

.R S4IP

<*FF>

<FILTER FILE=>

<*[ENTER FILTER FILE NAME]>

*OP

*FS

STAT FILE=

*{ENTER STAT FILE NAME}

<*FF>

<FILTER FILE=>

<*[ENTER COSINE MATRIX FILE NAME]>

*GO

RECOGNIZE LIVE INPUT

OR

*OP

PICKED POINT FILE=

*{ENTER PICKED POINT FILE NAME}

*DMMPRP0

PRINT OUT PICKED POINT NAME AND RECOGNIZE

THE WORD

<*NP>

NO PRINT

<*NR>

NO STAT RANKING

*10000EM

*KS

PRINT OUT RIGHT

Power Spectrum Calculation

Every 10 milliseconds the hardware produces an autocorrelation frame. Each autocorrelation frame undergoes processing, the result of which is a power spectrum frame, a graph of frequency vs. amplitude which which tells us what frequencies were present in the 10 millisecond frame.

Every 10 milliseconds a 32 term autocorrelation frame is read from the hardware "autocorrelator". Each term is 32 bits long.

The frame is smoothed in time with its two neighbors ("Triangular Smoothing"). This eliminates transient noise and pitch aliasing.

The "second derivative" of the frame is taken to maintain precision at high frequencies.

The 32 values in the frame are scanned. The maximum value is called the "Power".

The square root of the power is taken. It is called the "Amplitude".

The frame is "power normalized". Each term is divided by the power. The resulting 16 most significant bits of each term are saved. This reduces the amount of computation to be done and data stored.

The 32 term frame is multiplied by a 32 by 32 "cosine matrix". This is called a cosine transform, the result of which is a 32 term power spectrum. The 32nd term is thrown away and replaced with the amplitude term. This 32 element frame is called th "Power Spectrum".

Triangular Smoothing

The 3 time-adjacent frames are averaged. For each lag the smoothed value is equal to the first frame plus two times the second frame, plus the third frame.

The triangular method replaces the previous 5 frame moving average which smoothes five neighboring frames (each

given equal weight).

The 3 frame method was chosen because it does not smooth away fast transitions and better maintains independence between adjacent sounds.

The triangular method also provides some protection against aliasing produced by the 100 Hz frame rate beating against the pitch period.

Change to the triangular smoothing produced no improvement in recognition.

Autocorrelation Function

Let f be a function of time.

$$R(+) = \int_{-\infty}^{+\infty} f(x) \cdot f(x+t) dx$$
 (E1.1)

The autocorrelation function resembles the time function in shape. The most important difference is that the phase has been "thrown away". The autocorrelation function of two functions that differ only in phase will be identical.

Autocorrelator

The Dialog hardware autocorrelator or "correlator"

An analog signal is sampled every 125 micro seconds by an A/D converter. These digitized samples are fed to the autocorrelator. Every 10 milliseconds a 32 frame autocorrelation frame is output by the correlator. This frame is an estimation of the autocorrelation function of the input signal. The autocorrelation frame is defined as follows:

Rt =
$$\sum_{i=1}^{79} x_i x_i t_i = 0,1,...31$$
 (E1.2)

R is called the zero delay term, R , the first delay 0

term, etc. The inputs to the autocorrelator are 12 bit numbers, the outputs are 32 bit numbers.

NOTE: The autocorrelator has reduced the number of terms we deal with while increasing their significance. An autocorrelation frame or correlation is the output of the autocorrelator, one 32 term frame.

Second Derivative

The purpose of the second is to maintain the high frequency resolution of the power spectrum. The result of taking the second derivative of an autocorrelation frame is the same as having applied a 6 decibel per octave filter to the input signal.

The formula for the first derivative is:

$$d = X - X$$

$$i \qquad i \qquad i+1$$
(E1.3)

X is the ith term of th autocorrelation frame i

for the second derivative it is:

$$S = d - d$$

$$i \quad i \quad i+1$$

$$= (x - x) - (x - x)$$

$$i \quad i+1 \quad i+1 \quad i+2$$

$$= x - 2 + x$$

$$i \quad xi+1 \quad i+2$$
(E1.4)

The effect of the second derivative is based on the formula

$$sin'(2x) = 2cos(2x)$$

hence

$$sin''(2x) = -4sin(2x)$$

while

$$sin''(x) = -sin(x)$$

The effect of taking the second derivative shows up during the cosine trans where multiplying by large numbers instead of small numbers produces a more significant answer.

Amplitude

By the definition of the autocorrelation function

$$R(0) = \int_{-\infty}^{+\infty} f(x) \quad f(x) \, dx \qquad (E1.5)$$

hence $\sqrt{R(0)}$ is the RMS amplitude of the f(x) and if R exists R(0) >= R(x). However the "autocorrelation frame" is the short-term estimation of the autocorrelation function R and it is not true that

$$R >= R$$
0 i

(for a Ramp, R $$ is the largest term in the frame).

To overcome this problem the amplitude is defined to be the square root of the largest term in the autocorrelation frame.

Power

The power is the square of amplitude or the maximum value in the autocorrelator.

APPENDIX F

STAT9 Documentation

C	SLM, 30 OCT 72						
0000	UNBIASED, USING NO. OF DEGREES OF FREEDOM = NO. OF SUBJECTS						
0 0 0	COMPUTES ISOLATED WORD (ONE BYTE) OR CONTINUOUS SPEECH (TWO BYTE) REFERENCE PATTERNS USING "PICKED POINTS" DATA BASE PRODUCED BY S41 OR DBASE SERIES PROGRAMS						
000000000000	THE FORMATS OF THE PICKED POINT FILE AND THE REFERENCE PATTERN FILE (OUTPUT FILE) ARE FOUND IN S4136.DOC						
	AN INTERMEDIATE SCRATCH FILE USED AS ACCUMULATOR STORAGE MUST BE PROVIDED . THE LENGTH OF THIS FILE (CALLED THE "STATMP" FILE) IS						
	(4*NFS+1)*NWORD						
00000	16-BIT WORDS, WHERE NFS IS THE TOTAL NUMBER OF DATA ELEMENTS PER PATTERN AND NWORD IS THE TOTAL NUMBER OF REFERENCE PATTERNS TO BE COMPUTED.						
C 38 M	NORMAL INTERACTION FOR MAKING ISOLATED WORD PATTERNS						
000000	R STAT9 PICKED POINT FILE= *[PICKED POINT FILE] STATMP FILE= *[STATMP FILE] OUTPUT FILE= *[NEW PATTERN FILE]						
00000	*NM YOU MUST SPECIFY THE NUMBER OF NAMES AND THE NAMES BEFORE TYPING "GO". THIS CAN BE DONE EITHER WITH THE "NM" OPTION OR WITH THE "NW", "WS" COMBINATION. NAME FILE=						

STAT9 Documentation

C *1 C KEEP IT	(START PROGRAM) D STATMP FILE? (YES) AFTER USE?
C *0 C C C C C (MUCH C	(NO) NO MEANS DON'T CLOSE THE FILE. 1 MEANS CLOSE THE FILE. THIS HAS NO EFFECT UNLESS THE FILE WAS CREATED WITH THE /C:0 OR /C:-1 OPTION.
	ALCULATION) PICKED POINT FILE? (NO)
C POINTS C TERMS A	OUT FOLLOWS CONTAINING NUMBER OF PICKED PER CLASS, MIN AND MAX MEANS AND STDEV ND THE RANGE OF THE LOG TERMS.
C EACH WO	FOLLOWED BY A PRINT OUT OF THE NUMBER OF TIMES RD APPEARED IN THE PICKED POINT FILE WHICH WENT KING UP THE REFERENCE PATTERNS
C C	COMMAND MENU FOR STAT9:
C N BY C C C	SET OF BYTES PER REFERENCE PATTERN DATA ELEMENT TO N (1 OR 2) 1 IS DEFAULT. 1 IS FOR DISCRETE WORDS 2 IS FOR CONTINUOUS SPEECH
C N NW C WS C	;SET OF PATTERNS TO N SET UP TO ENTER ID NUMBERS OF ALL PATTERNS IN THE ORDER THEY WILL APPEAR IN THE OUTPUT FILE. ENTER EXACTLY "NW" NUMBERS AFTER THIS COMMAND,
C WS C C C C C C C C C C C	SEPARATED BY ANY NON-NUMERIC DELIMITER. READ IN A FILE CONTAINING PATTERN NAMES FORMAT IS: 256 WORDS GARBAGE (OUTPUT BY THE LINKER) IVOCAB = NO OF PATTERNS IN VOCABULARY IVOCAB NO OF PATTERN NAMES
C C C SO C N SL C N SC C N MS C	THIS FORMAT WAS CHOSEN SO THE NAME FILE CAN BE BUILT WITH THE EDITOR. AN EXAMPLE: .WORD IVOCAB .WORD NAME1, NAME2,NAMEN .END
C C C SO	THE EDITOR FILE IS THEN ASSEMBLED AND LINKED. THE SAV IMAGE IS READABLE BY STAT9. SPECIAL FUNCTION: BUILD REFERENCE PATTERN FILE FROM EXISTING DATA IN INTERMEDATE "STATMP" FILE
C N SL C N SC	SUBTRACT CONSTANT N*1000 FROM LOG TERM SET SPECIAL SCALE FACTOR FOR INVERTED STANDARD DEVIATIONS IN REFERENCE PATTERNS
C N MS	MASK OUT THE N-TH DATUM OF EACH 32-ELEMENT FRAME AND GIVE IT A WEIGHT OF ZERO IN THE REFERENCE FILE

STAT9 Documentation

C	N TD	SET TOTAL NUMBER OF DIMENSIONS PER PATTERN (READ
C		FROM THE BEGINNING OF THE PATTERN)
C	GO	PROCEED TO COMPUTE REFERENCE PATTERNS
C		

APPENDIX G

S4IT Documentation

S4IT.DOC

MR 25-Jun-78

DOCUMENTATION ON SYNTAX TREE VERSION OF S41

COMMAND SUMMARY:

(FOR GREATER EXPLANTION AND VARIATIONS, SEE FOLLOWING PAGES).

TO OPEN TREE FILE 10T OPEN AND INITIALIZE TREE FILE CLOSE TREE FILE CT JUMP TO 2ND NODE 2JT MAKE TRANSITION ON BASIS OF LAST RECOGNIZED WORD TAKE BACK TWO TRANSITIONS 2BT XT EXECUTE NODE SUBROUTINE INSERT 1: RED=>2 1,2IT RED DELETE 1: RED=>2 1,2DT RED PRINT OUT INFO ON 2ND NODE 2PT PRINT OUT INFO ON WHOLE TREE -PT

IN THE S4IT VERSION OF S4I, THE USER CAN DEFINE AND USE A SYNTAX TREE TO LIMIT THE SET OF WORDS TO BE RECOGNIZED

AT ANY GIVEN POINT. EACH SYNTAX TREE CONSISTS OF A SET OF NUMBERED NODES AND NAMED BRANCHES BETWEEN THE NODES. THE NAME OF A BRANCH CORRESPONDS TO A VOCABULARY WORD THAT CAN CAUSE A TRANSITION BETWEEN THE SPANNED NODES. THE NUMBER OF NODES, NUMBER OF BRANCHES, AND THEIR LINKING IS ARBITRARY (A CORE BUFFER (BRBUF) MUST BE ALLOCATED AS LARGE AS THE MAX. NUMBER OF BRANCHES PER NODE. ITS DEFAULT SIZE IS 256.). ONCE A TREE HAS BEEN GENERATED (ACTUALLY AN ARBITRARY GRAPH), A STARTING NODE CAN BE SPECIFIED AND

ARBITRARY GRAPH), A STARTING NODE CAN BE SPECIFIED AND A PATH TAKEN FROM THE STARTING NODE CAN SAVED (IN CASE YOU WANT TO BACK UP).

RUN-TIME COMMANDS EXIST FOR INVOKING A TREE, MOVING AROUND IN A TREE, CREATING AND EDITING A TREE, PRINTING OUT INFO ON A TREE, AND EXECUTING SUBROUTINES ASSOCIATED WITH NODES IN A TREE.

EXPLANATION OF COMMANDS:

NOTE THAT ALL NODES MUST BE POSITIVE. "-" (OR A NEG. NUMBER) USED AS A NODE WILL MATCH ALL NODES. IN THE EXAMPLES BELOW, "*" AND "\$" ARE PROMPTS FOR TTY.

(1) INVOKING A TREE:

*OT

OPEN TREE FILE

TREE FILE=

*<ENTER TREE FILE>

NAME FILE=

*<ENTER NAMES FILE>

IF THIS COMMAND IS PRECEEDED BY A "1", IT INITIALIZES THE TREE FILE (DONE WHEN CREATING A NEW TREE).

*CT

CLOSE TREE FILE

THIS OR EX (EXIT) MUST BE DONE IF ANY CHANGES TO THE TREE ARE SURE TO BE SAVED IN THE TREE FILE.

- (2) MOVING AROUND IN A TREE:
 - (A) DEFINING CURRENT STARTING NODE:

*3JT

JUMP TO 3RD NODE

(B) SPEECH-DRIVEN TRANSITIONS:

*2MT

MAKE TRANSITION ON BASIS OF 2ND MOST LIKELY RECOGNIZED BRANCH (DEFAULT IS 1).

(C) UN-DOING TRANSITIONS:

2BT TAKE BACK TWO TRANSITIONS (DEFAULT IS 1).

- (3) CREATING AND EDITING A TREE:
 - (A) INSERTING BRANCHES:

*3,5IT

INSERTS BRANCH "RED" FROM NODE 3 TO NODE 5. (DEFAULT ARE CURRENT PARENT AND SON NODES).

(B) DELETING BRANCHES:

*3,5DT \$RED

DELETES BRANCH "RED" FROM NODE 3 TO NODE 5. (DEFAULT ARE CURRENT PARENT AND SON NODES).

THE "-" ARGUMENT CAN BE USED TO MAKE GLOBAL INSERTIONS/DELETIONS, E.G.:

> *-,4IT SHELP

INSERTS THE BRANCH "HELP" FROM EVERY NODE TO NODE 4.

THIS WILL NOT AFFECT TERMINAL NODES OR ANY NODES DEFINED AFTER THIS COMMAND WAS EXECUTED.

IF ANY TREE EDITING IS PLANNED, IT IS SUGGESTED THAT YOU WORK ON A COPY, RATHER THAN THE ORIGINAL, IN CASE SOMETHING GOES WRONG (E.G. SYSTEM CRASH, ERRORS, ETC).

(4) PRINTING OUT INFO ON A TREE:

*3PT

PRINTS OUT INFO ON 3RD NODE (DEFAULT IS CURRENT NODE).

3: RED=>5 BLUE=>6

"-" GIVEN AS AN ARGUMENT PRINTS OUT THE WHOLE TREE.

- (5) NODE SUBROUTINES:
 - (A) EXECUTING NODE SUBROUTINES:

XT

EXECUTES SUBROUTINE ASSOCIATED WITH CURRENT NODE. THE DEFAULT SUBROUTINE (I.E. IF NOT DEFINED AS BELOW) IS A NOP.

(B) ASSOCIATING SUBROUTINES WITH NODES:

A SUBROUTINE MAY BE ASSOCIATED WITH A NODE BY LINKING THE SUBROUTINE IN WITH S4IT AND ENTERING

THE SUBROUTINE INTO THE "NODE TABLE." THE LATTER IS DONE BY INSERTING A MACRO CALL OF THE FORM:

ASSOC NODE, SUBR

INTO THE ROUTINE THAT LOADS THE NODE TABLE. THE NEXT PAGE SHOWS AN EXAMPLE OF A NODE SUBROUTINE FILE THAT CONTAINS A SUBROUTINE THAT RINGS THE TTY BELL AND THE NODE TABLE LOADING SUBROUTINE. A USER DEFINED FILE OF THIS FORM WITH HIS OWN SUBROUTINES MAY EASILY BE LINKED WITH ALL THE OTHER NECESSARY FILES BY CALLING THE USER'S FILE DK:NSUBRS.OBJ, MOUNTING FLOPPY M.RILEY2, AND EXECUTING THE INDIRECT FILE FD:S4IT.COM. THIS WILL PUT S4IT.SAV, WITH THE USER'S NODE SUBROUTINES, ON DK. THE DEFAULT NODE SUBROUTINES AND THEIR LINKING ARE:

- (1) 100. = BACK UP TWO TRANSITIONS.
- (2) 101. = BACK UP ONE TRANSITION AND DO A "PT".
- (3) 102. = BACK UP ONE TRANSITION AND RING TTY BELL.

THUS, FOR EXAMPLE, IF EVERY NODE HAS A BRANCH CALLED "NO" FROM IT TO NODE 100, THEN A SPOKEN "NO" CAN CAUSE THE TRANSITION BEFORE THE "NO" WAS SAID TO BE TAKEN BACK.

A TYPICAL MACRO MIGHT BE:

PTGOMTXT,

WHICH PRINTS INPUT CHOICES (PT), LISTENS FOR INPUT (GO), MAKES TRANSITION ON BASIS OF INPUT (MT), AND EXECUTES NEW NODE'S SUBROUTINE (XT).

ASSEMBLY INSTRUCTIONS:

S4136<S4IT, CSECTI, S4136 SPIN36<S4IT, CSECTI, SPIN36 STSWAP<S4IT, CSECTI, FBLOCK. PRE, STSWAP MKTREE<S4IT, CSECTI, MKTREE RNTREE<S4IT, CSECTI, RNTREE NSUBRS<NSUBRS

LINKING INSTRUCTIONS:

S4IT<S4I36, SPIN36, STSWAP, MKTREE, RNTREE, VNEWL/C NSUBRS, SLIBR

ISLIBR MUST CONTAIN "ITRAN" AND "GETLIN".)

TREE FILE FORMAT:

1-2: DOUBLE PREC. END-OF-FILE WORD COUNT

<N-1 NODES>

X: N = NODE

X+1: K = BRANCH COUNT

X+2-

X+K+1: BRANCH NAMES

X+K+2-

X+2K+1: SON NODES

NODE SUBROUTINE FILE EXAMPLE:

.TITLE NSUBRS.MAC

; THIS FILE, TO BE LINKED IN WITH S4IT, CONTAINS THE NODE

; TABLE LOADER, THE ALLOC. OF THE NODE TABLE, A SUBR. THAT

; RINGS THE TTY BELL, AND THE LINKING OF THAT SUBR. TO NODE

; 100.

.GLOBL LOADND, NDBUF, NDS12

.MCALL .TTYOUT

; ASSOCLATES NODE WITH PARTICULAR SUBROUTINE

.MACRO ASSOC NODE, SUBR

MOV NODE, RO

ASL RO

MOV SUBR, NDBUF-2 (RO)

. ENDM

ROUTINE THAT LOADS NODE TABLE.

LOADND: ASSOC 100., BELL ; RING TTY BELL

RTS PC

BELL: MOV 7,R0

.TTYOUT

RTS PC

NDBUF: .BLKW 200. ; NODE TABLE

NDSIZ: .WORD 200. ; NODE TABLE SIZE

. END

APPENDIX H

List of Audio Tapes

Audio Tape	Tape Counter	Materi Copie		Wor	Date Copied	
282	0-243 250-623 230	Cassette "	43 S-1 43 S-2 44 S-2	"	2 (1000)	6/9/78
283	0-252 260-647 0-250 260-648	u u	47 S-1 47 S-2 48 S-1 48 S-2	e 4 es	2 (1000)	6/13/78
286	0-243 245-591 0-245 250-605	Cassette " "	35 S-1 35 S-2 36 S-1 36 S-2	ROME ROME	REQ. 2 (NOUNS) REQ. 2 (NOUNS)	
287	0-245 250-626 0-244 250-627	Cassette " "	39 S-1 39 S-2 40 S-1 40 S-2		2 (1000)	6/7/78
288	0-245 250-625 0-243 250-626	(0001), 5 91	41 S-1 41 S-2 42 S-1 42 S-2	g 👸 es	2 (1000)	6/8/78
289	0-200 0-248 250-629	Cassette	37 S-1 38 S-1 38 S-2	. "	2 (NOUNS) 2 (1000)	
292	0-245 250-626 0-243 250-624	Cassette " "	51 S-1 51 S-2 52 S-1 52 S-2	"	2 (1000)	6/13/78

293	0-248	Cassette	49	S-1	ROME	2	(1000)	6/13/78
	250-626	"		S-2-		**		
	0-249			S-1	**	**	"	
	255-640		50	S-2	"	"		
295	0-243	Cassette	45	S-1	ROME	2	(1000)	6/12/78
	250-628	"		S-2		**		
	0-243	"		S-1	11	**	"	
	250-505	•	46	S-2	"	"		
297	0-247	Cassette	53	s-1	ROME	2	(1000)	6/13/78
	250-633	"		S-2		**		
	0-247	n n	54	S-1	**	**		
	250-635	•	54	S-2	"	"	•	
316	0-245	Cassette	55	s-1	ROME	2	(1000)	6/14/78
	250-627	Hadda 1	55	S-2	"	**		
	0-248	"	56	S-1		**		
	250-633		56	S-2	"	"	"	
322	0-246	Cassette	73	S-1	ROME	2	(1000)	6/16/78
	250-632		73	S-2		**	u	
	0-246	"	74	S-1	**	"		
	250-632	pat in to a	74	S-2	"	"		
323	0-243	Cassette	71	s-1	ROME	2	(1000)	6/16/78
	250-588	11		S-2	11	**		
	0-245		72	S-1	11	**		
	250-594		72	S-2	"	"		
324	0-243	Cassette	67	S-1	ROME	2	(1000)	6/16/78
	250-626		67	S-2		**	"	
	0-243		68	S-1	"	**	"	
	250-627	2007 5 3	68	S-2	"	"		
325	0-249	Cassette	65	S-A	ROME	2	(1000)	6/16/78
	255-577	".	65	S-B	"	**		
	0-243		66	S-1	"	"	"	
	250-627	00001 9 8	66	S-2	•	"		
326	0-246 .	Cassette		S-1	ROME	2	(1000)	6/14/78
	250-634			S-2	"	"		
	0-238			S-1	"	"	"	
	245-624	S RECORNE	58	S-2	•	"	one so	
327	0-243	Cassette		S-1	ROME	2	(1000)	6/15/78
	250-624			S-2	"	"		
	0-244	00011 5 9		S-1		"		
	250-627		62	S-2	"	"		

328	0-247 250-632 0-243 250-622	Cassette " "	59 60	S-1 S-2 S-1 S-2	ROME "	2 "	(1000)	6/14/78
329	0-243 250-527 0-246 250-632	Cassette " "	63 64	S-1 S-2 S-A S-B	ROME "	2 "	(1000)	6/15/78
333	246 250-628 0-246	Cassette "	77	S-1 S-2 S-1	ROME "	2 "	(1000)	6/20/78
334	0-249 260-651	Cassette "		S-1 S-2	ROME "	2	(1000)	6/19/78
	0-248 260-581	" "		S-1 S-2	" "	"	" "	
337	0-250 260-311	Cassette "		S-A S-B	ROME	2	(1000)	6/21/78
338	0-250 260-656 0-246 250-626	Cassette "	83 84	S-A S-B S-A S-B	ROME "	2 "	(1000)	6/21/78
339	0-243 260-621 0-246 250-628	Cassette " "	81 82	S-1 S-2 S-1 S-2	ROME	2 " " "	(1000)	6/21/78
347	0-667 0-12.5 20-667	Tape "	130	S-1 S-1 S-2	ROME	2 "	(1000)	6/23/78
348	0-661 0-645	Tape		S-1 S-2	ROME	2	(1400)	6/21/78
349	0-654 0-661	Tape		S-1 S-2	ROME	2	(1400)	6/21/78
350	0-657 0-657	Tape		S-1 S-2	ROME	2	(1400)	6/22/78
351	0-28 30-64 70-150 160-241	Tape	130 183	S-2 S-2 S-1 S-2	ROME	2 " " "	(1400)	6/23/78

List of Audio Tapes

PAGE H-4

352 0-664 Tape 117 S-1 ROME 2 (1400) 6/23/78 0-15 " 117 S-1 " " " " " " "

APPENDIX I

100 Required Words

forward

zero one two three four five six seven eight nine ten eleven twelve thirteen fourteen fifteen sixteen seventeen eighteen nineteen twenty thirty forty fifty sixty seventy eighty ninety hundred thousand million erase cancel insert

backward newline negative cursor down up left pica elite format graphics make show window read write point lineplot vertical horizontal text color rotate scale translate trackball enter done x Y equals clear screen maximum

low high name black red green yellow blue magenta cyan white condition action index set limit pause resume skip endtape call label line if increment add startover margin page tab shift

square

MISSION of Rome Air Development Center

nememberenemententententententententen

RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C³) activities, and in the C³ areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

numementanementanementanem