Survival Analysis on Employee Attrition Data

Presented by : **Mahendra Nandi & Sourav Karmakar** Guided by : **Sudipta Das**

Definition of the variables of the data

able Definition	Variable
7-YY Reporting Date (Monthly)	MMMM-YY
p_ID Unique id for employees	Emp_ID
Age of the employee	Age
nder Gender of the employee	Gender
City Code of the employee	City
Level Education level : Bachelor, Master or College	Education_Level
alary Salary of the employee	Salary
ining Joining date for the employee	Dateofjoining
Date Last date of working for the employee	LastWorkingDate
ation Designation of the employee at the time of joining	Joining Designation
ation Designation of the employee at the time of reporting	Designation
Quarterly rating of the employee: 1,2,3,4 (higher is better)	Quarterly Rating
The total business value acquired by the employee in a month	Total_Business_Value
(negative business indicates cancellation/refund of sold insurance policies)	

Analysis details

Start of study: 01st January 2016 End of study: 31st December 2017

Time of event or time of censoring:

"survival_months"
Binary event indicator: "left"

We have 1409 total observations of the employees for each month he/she is in the company, 542 right-censored observation.

Total employee attrition and survival days in the company

Estimate of the survival function using Kaplan Meier Estimate

Employee attrition and survival days with **Gender**

Km curve for different Genders:

Logrank test

Test statistics: 1.61

P-value: 0.21

Median Survival Time

Male: 6 months

Female: 6 months

Employee attrition and survival days with age

Age: young(<30),mature(30-38),aged(>38)

Km curve for different Age Group:

Employee attrition and survival days with Education Level

Km curve for different education level:

Logrank test

Test statistic: 6.59 P-value: 0.04

Median Survival Time

College: 5 months Master: 6 months Bachelor: 7 months

Employee attrition and survival days with Joining Designation

Km curve for different Joining Designation:

Logrank test

Test statistic: 16.15 P-value: <0.005

Median Survival Time

Designation 1: 6

months

Designation 2: 7

months

Designation 3 and above : 7 months

Summary of Cox-proportional Hazard Model:

Covariates	coef	exp(coef)	Z	p	
avg_rating	-1.04	0.35	-5.55	<0.005	
avg_salary	-0.01	0.99	-0.59	0.56	
average_business_value	-0.12	0.89	-2.72	0.01	
current_value	-1.27	0.28	-10.63	<0.005	
gender_Male	0.03	1.03	0.36	0.72	
education_level_College	0.04	1.05	0.53	0.6	
education_level_Master	0.14	1.15	1.64	0.1	
joining_designation_2	-0.03	0.97	-0.33	0.74	
joining_designation_3	-0.25	0.78	-2.14	0.03	Concordance
					Partial AIC

0.80

10439.32

Coefficient values and their 95% confidence interval:

Feature Selection

Name of the Covariate

Concordance values after fitting single covariate

averag	e_business_value	0.813212
avg_ra	ting	0.741244
current	t_value	0.676032
joining	_designation_3	0.562179
Avg_sa	alary	0.537836
educat	ion_level_College	0.523045
joining	_designation_2	0.522168
gendei	_Male	0.511090
educat	ion_level_Master	0.502353

Summary of Cox-proportional Hazard Model after fitting with the best covariates

Covariates	coef	exp(coef)	z	р
average_business_value	-0.13	0.88	-2.91	<0.005
current_value	-1.27	0.28	-10.61	<0.005
joining_designation_3	-0.26	0.77	-3.45	<0.005
avg_rating	-1.01	0.36	-5.45	<0.005

Concordance 0.81

Partial AIC 10432.59

Prediction of survival function of different Employee

ld	avg_rating	average_business_value	current_value
6	2.5	4.345300	0
14	2.0	3.055521	1
15	1.0	1.083367	0

Thank You

The interpretation of concordance value is identical to the traditional area under the ROC curve metric for binary classification: - a value of 0.5 denotes a random model, - a value of 1.0 denotes a perfect model, - a value of 0.0 denotes a perfectly wrong model.

Business value

Correlation among the final Covariates

Physical Interpretation of Coding covariates

 $Z_1 = 1$ if the subject is male, 0 otherwise $Z_2 = 1$ white

$$h(t|z_1=1,z_2=0)=h_o(t) exp(beta1)$$

 $h(t|z_1=0,z_2=1)=h_o(t) exp(beta2)$
 $h(t|z_1=0,z_2=0)=h_o(t)$

The risk of the events occurring among male relative to the risk of the events occurring among whites is exp(beta1-beta2)

White pink exp(b_2)
Black Pink exp(b_1)

Two samples are concordant if the one with a higher estimated risk score has a shorter actual survival time.

Two samples are comparable if (i) both of them experienced an event (at different times), or (ii) the one with a shorter observed survival time experienced an event, in which case the event-free subject "outlived" the other.

Observed Ratio:

Above all: 1409 867/542 = 1.60

Male: 847

523/324 = 1.61

Female: 562 344/218 = 1.58

Salary

