

First Semester 2018-2019 Instruction Division Course Handout (Part II)

Date: 02/08/2018

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : MATH F211
Course Title : Mathematics-III
Instructor In-charge : SANGITA YADAV

Instructor(s) : Ashish Tiwari, Balram Dubey, Bhupendra K Sharma,

Devendra Kumar, Gaurav Dwivedi, Jitender Kumar,

Krishnendra Shekhawat, Navin Singh, Pradeep Kr H Keskar,

Rakhee, RR Mishra, Shivi Agarwal, Sumanta Pasari

1. Course Description

This course reviews and continues the study of differential equations with the objective of introducing classical methods for solving boundary value problems. This course serves as a basis of the applications for differential equations, Fourier series and Laplace transform in various branches of engineering and sciences. This course emphasizes the role of orthogonal polynomials in dealing with Sturm-Liouville problems.

2. Scope and Objectives

- To understand the theory of first and second order ordinary differential equations and learn the methods to solve them.
- To understand the series solution of second order ordinary differential equations and their interval of convergence.
- To understand the Laplace transform, their properties and applications to solve IVPs and BVPs.
- To understand the Fourier series expansion of a function.
- To understand the concept of eigenvalues and eigenfunctions and to use them in solving heat and wave equations.
- **3. Text Book:** Simmons G.F., Differential Equations with Applications and Historical Notes, Tata McGraw Hill, 2nd ed., 1991.

Reference Books:

- 1. Zill, Differential Equations, Thomson Learning, 5th ed., 2004
- 2. Shepley L. Ross: Differential Equations, John Willy & Sons, 3rd ed., 1984.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

3. Edwards & Penney: Differential Equation and Boundary Value Problems, Pearson Education, 3rd ed., 2009.

4. Course Plan

4. Course Plan Module Number	Lecture session	Secti	Learning Outcome
Module Number	Lecture session	ons	Learning Outcome
	Revision and self study	1-6	
1. To introduce the classical methods to	Teevision and sen study	1 0	Students will be able to solve
	L1.1. First order equations	7	first order differential equations of various types.
solve first order ordinary differential	L1.2. Exact differential equations	8, 9	
equations	L 1.3. Linear differential equation	10	-
-	L1.4. Reduction of order	11	
2. To introduce the classical methods to solve second order ordinary differential equations	L2.1-2.2 General solutions of second order ordinary differential equations and some results on linearly dependent (L.D.) and independent (L.I.) solutions L2.3. Use of a known solution to determine another L.I. solution of differential equation L2.4-2.5. Solving second order homogeneous linear ordinary differential equations	14-15 16 17	Students will be able to solve homogeneous second order ordinary differential equations with the knowledge of theoretical details of solutions of differential equations and methods too.
3. To obtain	L3.1 Method of undetermined coefficients	18	Students will be able to
particular solution of	L3.2. Method of variation of parameters	19	obtain a particular solution of
nonhomogeneous second order ordinary differential equations.	L3.3-3.4. Operator method	23	nonhomogeneous second order Linear ordinary differential equations.
4. Properties of	L4.1 Oscillations, Sturm Separation	24	Students will be able to know
solutions	theorem and theorem on infinitely many positive zeros of solution	24	the behavior of solution of second order ordinary
	L4.2. Sturm comparison theorem	25	differential equations without solving them.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

5. To introduce Series solutions method to solve second order Linear differential equation with variable coefficients	L5.1-5.2 .Review of power series and series solution of first order ordinary differential equation, series solutions about ordinary point L5.3-5.4 Series solutions about regular singular point L5.5-5.6 Hypergeometric equations	26, 27, 28 29, 30	Students will be able to solve second order Linear differential equations with variable coefficients by using series solution approach.
6. Special functions arising from series solutions of second order Linear ordinary differential equation	L6.1-6.3 Legendre polynomials L6.4-6.6 Bessel functions	44, 45 46, 47	Students will be able to apply properties of Legendre polynomials and Bessel functions to solve various initial/boundary value problems in their respective engineering and science streams
7. Introduction to Laplace Transform, its properties and applications	L7.1 Laplace transform and its existence, inverse Laplace transform L7.2 Applications to differential equations. L7.3 Derivatives and integrals of Laplace transforms L7.4 Convolution theorem and applications	50 51 53	Students will be able to use properties of Laplace transform in solving initial value problems and boundary value problems.
8. To introduce system of first order ordinary differential equations.	L8.1 Theory on system of equations and introduction to linear system (without proof) L8.2. Homogeneous linear systems with constant coefficients (including Q.5 on page-433 on variation of parameters approach)	54, 55	Students will be able to solve linear system of first order differential equations with the knowledge of theory of system of first order differential equations.
9. To introduce Fourier series	L 9.1 Fourier coefficients and problem of convergence L9.2 Even and odd functions, cosine and sine series	33-34	Students will be able to obtain Fourier series expansion of functions in a given interval, to know its convergence and apply it in

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

	L9.3 Extension to arbitrary intervals	36	their respective streams such as getting solution of a vibrating string etc.
10. Boundary value problems.	L10.1 Eigenvalues and eigen functions	40	Students will be able to solve boundary value problems and
	L10.2 Sturm Liouville problems	43	using orthogonality property of eigenfunctions of Sturm Liouville problems to get eigenfunction expansion of a function.
11. To introduce	L11.1. One dimensional wave equation	40	Students will be able to use
separation of variables method to	L11.2 One dimensional heat equation	41	separation of variable technique for solving some
solve Partial Differential	Laplace equation (Self study)	42	partial differential equations.
Equations.			

^{*}In common hours, practice problems will be done on topics covered in previous lectures.

6. Evaluation Scheme:

Evaluation Component	Weightage (Marks)	Date & Time	Remarks
Mid-Sem.	35% (105)	12/10 11:00 - 12:30 PM	Closed Book
Comprehensive	45% (135)	8/12 AN	Closed Book/Open Book
Two Quizzes (Announced)	20% (60)	TBA	Closed Book

After completing this course the student will be able to

- 1) solve differential equations appearing in modeling of various processes in their respective engineering or science stream.
- 2) understand whether a given initial value problem is solvable or not.
- 3) understand the region in which the solution is valid (like in series solution approach).
- 4) solve the problems involving linear system of first order differential equations.
- 5) understand the eigenfunction expansion/Bessel series expansion of a function using respective orthogonality properties which can be further helpful in solving various problems in their engineering and science streams.

Closed Book Test: No reference material of any kind will be permitted inside the exam hall.

Open Book Exam: Use of textbook and original class notes will be permitted inside the exam hall. Any kind of loose sheets of paper will not be permitted. Computers of any kind will not be allowed inside the exam hall. Use of calculators will not be allowed in any exam. No exchange of any material will be allowed.

Chamber consultation hour: To be announced in the class.

Notices: All notices regarding MATH F211 will be displayed on NALANDA and the notice board of the Department of Mathematics.

Note: It shall be the responsibility of the individual student to be regular in maintaining the self study schedule as given in the course handout, attend lectures and common hours as per the schedule mentioned in time-table. Quizzes, mid Semester test and comprehensive examination are according to the evaluation scheme given in the respective course handout. If the student is unable to appear for the regular test/examination due to genuine exigencies, the student must refer to the procedure for applying for make-up test/examination.

(SANGITA YADAV) Instructor In charge MATH F211.

