

SCHOOL OF ELECTRONICS ENGINEERING Winter Semester 2024-2025 BECE301P – Digital Signal Processing LAB

L47 +L48

FACULTY: SUDHAKAR M

S

Task -3

Realization of OFDM waveforms For the given OFDM system generate the waveforms corresponding to each block.

DONE BY

KAUSHIK KUMAR PS 23BEC0142

Task 3

Realization of OFDM waveforms

For the given OFDM system generate the waveforms corresponding to each block.

CODE:

```
Documents - 23BEC0142/main.c - Code Composer Studio
 File Edit View Project Tools Run Scripts Window Help
📵 main.c 🛭 🔁 exit.c
  *
                  1#include <stdio.h>
                   3#include <complex.h>
 ⊜
                    5#define PI 3.14159265358979
                   6#define N 128 // Number of Samples
7#define PHASE_DIFF (PI/4) // Phase Difference
8#define QUANT_LEVELS 256 // Quantization Levels
                   9int i;
                 10 int k;
                11 int n;
12 #define pd1 90
               13#define pd2 135

14 float pulset[N], pulse2[N], pulse3[N], pulse4[N];

15 float ifft1_real[N], ifft2_real[N], ifft3_real[N], ifft4_real[N];

16 float ifft1_imag[N], ifft2_imag[N], ifft3_imag[N], ifft4_imag[N];

17 float mag1[N], mag2[N], mag3[N], mag4[N];

18 float phase1[N], phase2[N], phase3[N], phase4[N];

19 float quant_ifft1_real[N], quant_ifft2_real[N], quant_ifft3_real[N], quant_ifft4_real[N];

20 float quant_ifft1_imag[N], quant_ifft2_real[N], inv_quant_ifft3_real[N], inv_quant_ifft4_real[N];

21 float inv_quant_ifft1_real[N], inv_quant_ifft2_real[N], inv_quant_ifft3_real[N], inv_quant_ifft4_real[N];

22 float inv_quant_ifft1_imag[N], inv_quant_ifft2_imag[N], inv_quant_ifft3_imag[N], inv_quant_ifft4_imag[N];

23 float fft1_real[N], fft2_real[N], fft3_real[N], fft4_real[N];

24 float fft1_imag[N], fft2_imag[N], fft4_imag[N];

25 float recon1[N], recon2[N], recon3[N], recon4[N];
                 13 #define pd2 135
                 26
27
                                 // Arrays to store magnitude and phase of inverse quantized signals
float inv_quant_mag1[N], inv_quant_mag2[N], inv_quant_mag3[N], inv_quant_mag4[N];
float inv_quant_phase1[N], inv_quant_phase2[N], inv_quant_phase3[N], inv_quant_phase4[N];
                float quant_mag1[N], quant_mag2[N], quant_mag3[N], quant_mag4[N];
float quant_phase1[N], quant_phase2[N], quant_phase3[N], quant_phase4[N];
float sinc(float x) {
    if (x == 0) return 1.0;
    return sin(PI * x) / (PI * x);
                3/
38 void generate_sinc(float signal[], float phase) {
39     for (i = 0; i < N; i++) {
40         float t = (N-i / 2.0) / 10.0; // Centered around zero
41         signal[i] = sinc(t) * cos(phase); // Real component only
                42
                 45 void quantize(float input[]. float output[]) {
```

```
Occuments - 23BEC0142/main.c - Code Composer Studio
 File Edit View Project Tools Run Scripts Window Help
....
8
           444
45 void quantize(float input[], float output[]) {
46    float max_val = 1.0; // Assuming maximum amplitude is 1.0
47    float step_size = (2 * max_val) / (QUANT_LEVELS - 1);
                    for ( i = 0; i < N; i++) {
    output[i] = round(input[i] / step_size) * step_size;</pre>
                    }
           51
52 }
          53
54void inverse_quantize(float quantized[], float output[]) {
55    for ( i = 0; i < N; i++) {
56        output[i] = quantized[i]; // Simply copy back the quantized values for inverse quantization 57 }
58}
           60 void FFT(float real[], float imag[], float result_real[], float result_imag[]) {
                     _Complex float x[N];
_Complex float X[N];
           61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
                      // Combine real and imaginary parts into complex numbers for ( i = 0; i < N; i++) {  x[i] = real[i] + imag[i] * I; 
                     // Perform FFT using DFT Formula
for ( k = 0; k < N; k++) {
    X[k] = 0.0 + 0.0 * I;
    for ( n = 0; n < N; n++) {
        float angle = -2 * PI * k * n / N;
        X[k] += x[n] * (cos(angle) + I * sin(angle));
}
                     // Store Real and Imaginary Parts
for ( i = 0; i < N; i++) {
    result_real[i] = crealf(X[i]);
    result_imag[i] = cimagf(X[i]);</pre>
           81
          84

85 void IFFT(float real[], float result_real[], float result_imag[], float magnitude[], float phase[]) {

86     _Complex float X[N];

87     Complex float x[N]:
```

```
Documents - 23BEC0142/main.c - Code Composer Studio
File Edit View Project Tools Run Scripts Window Help
_ @ main.c ⋈ 🛍 exit.c
           for ( k = 0; k < N; k++) {
 X[k] = 0.0 + 0.0 * I;
     70
枠
      71
                for ( n = 0; n < N; n++) {
    float angle = -2 * PI * k * n / N;
    X[k] += x[n] * (cos(angle) + I * sin(angle));</pre>
     72
▣
      74
      75
               }
           }
           // Store Real and Imaginary Parts
for ( i = 0; i < N; i++) {
    result_real[i] = crealf(X[i]);
    result_imag[i] = cimagf(X[i]);</pre>
      79
      81
      82
      83 }
      85 void IFFT(float real[], float result_real[], float result_imag[], float magnitude[], float phase[]) {
      87
            _Complex float x[N];
            // Step 1: Convert Real Signal to Complex (Imaginary = 0) for ( i = 0; i < N; i++) { X[i] = real[i] + 0.0 * I; // Real to Complex Conversion
      89
      91
      93
      94
            // Step 2: Perform IFFT using DFT Formula
            for ( n = 0; n < N; n++) { x[n] = 0.0 + 0.0 * I;
      95
                 float angle = 2 * PI * k * n / N;

x[n] += X[k] * (cos(angle) + I * sin(angle));
      97
98
      99
     100
     101
                 x[n] /= N; // Scaling
           }
     102
     103
            // Step 3: Store Real, Imaginary, Magnitude, and Phase Components
     104
     105
            for ( i = 0; i < N; i++) {
               106
     108
     109
     110
     114
```

```
File Edit View Project Tools Run Scripts Window Help
 a main.c ⋈ 🛍 exit.c
          121
122 }
123 }
                                           signal[i] = sqrt(real[i] * real[i] + imag[i] * imag[i]);
  桦
 ...
B
124
125
126
127
                 125 void main() {
                                 // Generate 4 sinc pulses
generate_sinc(pulse1, 0);
generate_sinc(pulse2, PHASE_DIFF);
generate_sinc(pulse3, pd1);
generate_sinc(pulse4, pd2);
                                  // Perrorm lb+|
IFFT(pulse1, ifft1_real, ifft1_imag, mag1, phase1);
IFFT(pulse2, ifft2_real, ifft2_imag, mag2, phase2);
IFFT(pulse3, ifft3_real, ifft3_imag, mag3, phase3);
IFFT(pulse4, ifft4_real, ifft4_imag, mag4, phase4);
                                  // Perform Quantization and Inverse Quantization
quantize(ifft1_real, quant_ifft1_real);
inverse_quantize(quant_ifft1_real, inv_quant_ifft1_real);
quantize(ifft1_imag, quant_ifft1_imag);
inverse_quantize(quant_ifft1_imag, inv_quant_ifft1_imag);
                                  quantize(ifft2_real, quant_ifft2_real);
inverse_quantize(quant_ifft2_real, inv_quant_ifft2_real);
quantize(ifft2_imag, quant_ifft2_imag);
inverse_quantize(quant_ifft2_imag, inv_quant_ifft2_imag);
                                  quantize(ifft3_real, quant_ifft3_real);
inverse_quantize(quant_ifft3_real, inv_quant_ifft3_real);
quantize(ifft3_immag, quant_ifft3_immag);
inverse_quantize(quant_ifft3_immag, inv_quant_ifft3_immag);
                                  quantize(ifft4_real, quant_ifft4_real);
inverse_quantize(quant_ifft4_real, inv_quant_ifft4_real);
quantize(ifft4_immg, quant_ifft4_immg);
inverse_quantize(quant_ifft4_immg, inv_quant_ifft4_immg);
                                  // Compute Magnitude and Phase of Quantized Signals compute magnitude and phase(quant_ifftl_real, quant_ifftl_imag, quant_mag1, quant_phase1); compute magnitude and phase(quant_ifftl_real, quant_ifftl_imag, quant_mag2, quant_phase2); compute magnitude and phase(quant_ifftl_real, quant_ifftl_imag, quant_mag3, quant_phase3); commute magnitude and phase(quant ifftl_real, quant_ifftl_imag, quant_mag4, quant_hase4).
```

```
File Edit View Project Tools Run Scripts Window Help
in main.c ⋈ 🏗 exit.c
*
                compute_magnitude_and_phase(quant_ifft2_real, quant_ifft2_imag, quant_mag2, quant_phase2);
      16/
                compute_magnitude_and_phase(quant_ifft3_real, quant_ifft3_imag, quant_mag3, quant_phase3);
      165
                compute_magnitude_and_phase(quant_ifft4_real, quant_ifft4_imag, quant_mag4, quant_phase4);
      166
▣
       167
                // Print Magnitude and Phase of Quantized Signals
 8
      168
                printf("Magnitude and Phase of Quantized Signals:\n");
      169
                for (i = 0; i < 10; i++) {
8
                    printf("Quantized Signal 1 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, quant_mag1[i], i, quant_phase1[i]);
printf("Quantized Signal 2 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, quant_mag2[i], i, quant_phase2[i]);
printf("Quantized Signal 3 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, quant_mag3[i], i, quant_phase3[i]);
printf("Quantized Signal 4 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, quant_mag4[i], i, quant_phase4[i]);
      170
      171
      172
       173
      174
      175
      176
                // Compute Magnitude and Phase of Inverse Quantized Signals
      177
                compute_magnitude_and_phase(inv_quant_ifft1_real, inv_quant_ifft1_imag, inv_quant_mag1, inv_quant_phase1);
      178
                compute_magnitude_and_phase(inv_quant_ifft2_real, inv_quant_ifft2_imag, inv_quant_mag2, inv_quant_phase2);
       179
                compute_magnitude_and_phase(inv_quant_ifft3_real, inv_quant_ifft3_imag, inv_quant_mag3, inv_quant_phase3);
      180
                compute\_magnitude\_and\_phase (inv\_quant\_ifft4\_real,\ inv\_quant\_ifft4\_imag,\ inv\_quant\_mag4,\ inv\_quant\_phase4);
      181
      182
                // Print Magnitude and Phase of Inverse Quantized Signals
                printf("Magnitude and Phase of Inverse Quantized Signals:\n");
      184
                for (i = 0; i < 10; i++) {
                    rintf("Inverse Quantized Signal 1 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, inv_quant_mag1[i], i, inv_quant_phase1[i]);
printf("Inverse Quantized Signal 2 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, inv_quant_mag2[i], i, inv_quant_phase2[i]);
printf("Inverse Quantized Signal 3 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, inv_quant_mag3[i], i, inv_quant_phase3[i]);
printf("Inverse Quantized Signal 4 - Magnitude[%d]: %f, Phase[%d]: %f\n", i, inv_quant_mag4[i], i, inv_quant_phase4[i]);
      185
      186
      187
       188
      189
               }
      190
      191
                // Perform FFT on Inverse Quantized Signals
      192
       193FFT(inv_quant_ifft1_real, inv_quant_ifft1_imag, fft1_real, fft1_imag);
       194FFT(inv_quant_ifft2_real, inv_quant_ifft2_imag, fft2_real, fft2_imag);
      195FFT(inv_quant_ifft3_real, inv_quant_ifft3_imag, fft3_real, fft3_imag);
      196FFT(inv_quant_ifft4_real, inv_quant_ifft4_imag, fft4_real, fft4_imag);
      197
      198// Debug: Print FFT Output
      199 printf("FFT Output (Real):\n");
      200 for (i = 0; i < 10; i++) {
      201 printf("%f ", fft1_real[i]);
      202 }
       203 printf("\n");
      204
      205 printf("FFT Output (Imaginary):\n");
     206 for (i = 0; i < 10; i++) {
207 printf("%f ". fft1 imag[i]):
```

OUTPUT:

```
■ Console X
23BEC0142:CIO
[C674X_0] Magnitude and Phase of Quantized Signals:
Quantized Signal 1 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Quantized Signal 2 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Quantized Signal 3 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Quantized Signal 4 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Quantized Signal 1 - Magnitude[1]: 0.000000, Phase[1]: 0.000000
Quantized Signal 2 - Magnitude[1]: 0.000000, Phase[1]: 0.000000
Quantized Signal 3 - Magnitude[1]: 0.000000, Phase[1]: 0.000000
Quantized Signal 4 - Magnitude[1]: 0.000000, Phase[1]: 0.000000
Quantized Signal 1 - Magnitude[2]: 0.000000, Phase[2]: 0.000000
Quantized Signal 2 - Magnitude[2]: 0.000000, Phase[2]: 0.000000
Quantized Signal 3 - Magnitude[2]: 0.000000, Phase[2]: 0.000000
Quantized Signal 4 - Magnitude[2]: 0.000000, Phase[2]: 0.000000
Quantized Signal 1 - Magnitude[3]: 0.015686, Phase[3]: 0.000000
Quantized Signal 2 - Magnitude[3]: 0.007843, Phase[3]: 0.000000
Quantized Signal 3 - Magnitude[3]: 0.007843, Phase[3]: 3.141593
Quantized Signal 4 - Magnitude[3]: 0.015686, Phase[3]: 3.141593
Quantized Signal 1 - Magnitude[4]: 0.000000, Phase[4]: 0.000000
Quantized Signal 2 - Magnitude[4]: 0.000000, Phase[4]: 0.000000
Quantized Signal 3 - Magnitude[4]: 0.000000, Phase[4]: 0.000000
Quantized Signal 4 - Magnitude[4]: 0.000000, Phase[4]: 0.000000
Quantized Signal 1 - Magnitude[5]: 0.000000, Phase[5]: 0.000000
Quantized Signal 2 - Magnitude[5]: 0.000000, Phase[5]: 0.000000
Quantized Signal 3 - Magnitude[5]: 0.000000, Phase[5]: 0.000000
Quantized Signal 4 - Magnitude[5]: 0.000000, Phase[5]: 0.000000
Quantized Signal 1 - Magnitude[6]: 0.000000, Phase[6]: 0.000000
Quantized Signal 2 - Magnitude[6]: 0.000000, Phase[6]: 0.000000
Quantized Signal 3 - Magnitude[6]: 0.000000, Phase[6]: 0.000000
Quantized Signal 4 - Magnitude[6]: 0.000000, Phase[6]: 0.000000
Quantized Signal 1 - Magnitude[7]: 0.000000, Phase[7]: 0.000000
Quantized Signal 2 - Magnitude[7]: 0.000000, Phase[7]: 0.000000
Quantized Signal 3 - Magnitude[7]: 0.000000, Phase[7]: 0.000000
Quantized Signal 4 - Magnitude[7]: 0.000000, Phase[7]: 0.000000
Quantized Signal 1 - Magnitude[8]: 0.000000, Phase[8]: 0.000000
Quantized Signal 2 - Magnitude[8]: 0.000000, Phase[8]: 0.000000
Quantized Signal 3 - Magnitude[8]: 0.000000, Phase[8]: 0.000000
Quantized Signal 4 - Magnitude[8]: 0.000000, Phase[8]: 0.000000
Quantized Signal 1 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Quantized Signal 2 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Quantized Signal 3 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Quantized Signal 4 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Magnitude and Phase of Inverse Quantized Signals:
Inverse Quantized Signal 1 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Trivence Muentized Signal 2 - Magnitude[al. a aaaaaa Phace[al. a aaaaaa
```

```
23BEC0142:CIO
Quantized Signal 4 - Magnitude[8]: 0.000000, Phase[8]: 0.000000
Quantized Signal 1 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Quantized Signal 2 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Quantized Signal 3 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Quantized Signal 4 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Magnitude and Phase of Inverse Quantized Signals:
 Inverse Quantized Signal 1 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Inverse Quantized Signal 2 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
Inverse Quantized Signal 3 - Magnitude[0]: 0.000000, Phase[0]: 0.000000
 Inverse Quantized Signal 4
                                                                                           Magnitude[0]: 0.000000, Phase[0]: 0.000000
 Inverse Quantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 3
                                                                                      - Magnitude[1]: 0.000000, Phase[1]: 0.000000
 Inverse Quantized Signal 4
 Inverse Quantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 3
Inverse Quantized Signal 4
                                                                                          Magnitude[2]: 0.000000, Phase[2]: 0.000000
Magnitude[2]: 0.000000, Phase[2]: 0.000000
Magnitude[2]: 0.000000, Phase[2]: 0.000000
Magnitude[2]: 0.000000, Phase[2]: 0.000000
                                                                                      - Magnitude[3]: 0.900000, Phase[2]: 0.000000
- Magnitude[3]: 0.907843, Phase[3]: 0.000000
- Magnitude[3]: 0.907843, Phase[3]: 3.141593
- Magnitude[3]: 0.907843, Phase[3]: 3.141593
- Magnitude[4]: 0.900000, Phase[4]: 0.000000
 Inverse Quantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 3
 Inverse Quantized Signal 4
 Inverse Quantized Signal 1
 Inverse Quantized Signal 2
Inverse Quantized Signal 3
                                                                                           Magnitude[4]: 0.000000, Phase[4]:
 Inverse Quantized Signal 4
                                                                                                                                                                                                        0.000000
 Inverse Quantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 3
                                                                                          Magnitude[5]: 0.000000, Phase[5]: 0.000000
Magnitude[5]: 0.000000, Phase[5]: 0.000000
Magnitude[5]: 0.000000, Phase[5]: 0.000000
Magnitude[5]: 0.000000, Phase[5]: 0.000000
 Inverse Quantized Signal 4
 Inverse Quantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 3
                                                                                          Magnitude[6]: 0.000000, Phase[6]: 0.000000
Magnitude[6]: 0.000000, Phase[6]: 0.000000
Magnitude[6]: 0.000000, Phase[6]: 0.000000
 Inverse Quantized Signal 4
                                                                                            Magnitude[6]: 0.000000, Phase[6]: 0.000000
                                                                                      - Magnitude[6]: 0.000000, Phase[7]: 0.000000
- Magnitude[7]: 0.000000, Phase[7]: 0.000000
- Magnitude[8]: 0.000000, Phase[8]: 0.000000
 Inverse Quantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 3
 Inverse Quantized Signal 4
 Inverse Ouantized Signal 1
Inverse Quantized Signal 2
Inverse Quantized Signal 2
Inverse Quantized Signal 3
Inverse Quantized Signal 4
 Inverse Quantized Signal 1 - Magnitude[9]: 0.000000, Phase[9]: 0.000000

Toyonca Quantized Signal 2 - Magnitude[9]: 0.000000

Phase[9]: 0.000000
```

```
23BEC0142:CIO
Inverse Quantized Signal 1 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Inverse Quantized Signal 2 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Inverse Quantized Signal 3 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
Inverse Quantized Signal 4 - Magnitude[9]: 0.000000, Phase[9]: 0.000000
FFT Output (Real):
0.031373 0.031033 0.030022 0.028360 0.026085 0.023246 0.019903 0.016129 0.012006 0.007623
FFT Output (Imaginary):
0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.000000 -0.000000 -0.000000
Reconstructed Signals:
Reconstructed Signal1[0]: 0.031373
Reconstructed Signal2[0]: 0.015686
Reconstructed Signal3[0]: 0.015686
Reconstructed Signal4[0]: 0.031373
Reconstructed Signal1[1]: 0.031033
Reconstructed Signal2[1]: 0.015516
Reconstructed Signal3[1]: 0.015516
Reconstructed Signal4[1]: 0.031033
Reconstructed Signal1[2]: 0.030022
Reconstructed Signal2[2]: 0.015011
Reconstructed Signal3[2]: 0.015011
Reconstructed Signal4[2]: 0.030022
Reconstructed Signal1[3]: 0.028360
Reconstructed Signal2[3]: 0.014180
Reconstructed Signal3[3]: 0.014180
Reconstructed Signal4[3]: 0.028360
Reconstructed Signal1[4]: 0.026085
Reconstructed Signal2[4]: 0.013043
Reconstructed Signal3[4]: 0.013043
Reconstructed Signal4[4]: 0.026085
Reconstructed Signal1[5]: 0.023246
Reconstructed Signal2[5]: 0.011623
Reconstructed Signal3[5]: 0.011623
Reconstructed Signal4[5]: 0.023246
Reconstructed Signal1[6]: 0.019903
Reconstructed Signal2[6]: 0.009951
Reconstructed Signal3[6]: 0.009951
Reconstructed Signal4[6]: 0.019903
Reconstructed Signal1[7]: 0.016129
Reconstructed Signal2[7]: 0.008064
Reconstructed Signal3[7]: 0.008064
Reconstructed Signal4[7]: 0.016129
Reconstructed Signal1[8]: 0.012006
Reconstructed Signal2[8]: 0.006003
```

```
PFI OULPUL (IMAGINATY).
0.000000 -0.000000 -0.000000 -0.000000 -0.000000 0.000000 -0.0000
Reconstructed Signals:
Reconstructed Signal1[0]: 0.031373
Reconstructed Signal2[0]: 0.015686
Reconstructed Signal3[0]: 0.015686
Reconstructed Signal4[0]: 0.031373
Reconstructed Signal1[1]: 0.031033
Reconstructed Signal2[1]: 0.015516
Reconstructed Signal3[1]: 0.015516
Reconstructed Signal4[1]: 0.031033
Reconstructed Signal1[2]: 0.030022
Reconstructed Signal2[2]: 0.015011
Reconstructed Signal3[2]: 0.015011
Reconstructed Signal4[2]: 0.030022
Reconstructed Signal1[3]: 0.028360
Reconstructed Signal2[3]: 0.014180
Reconstructed Signal3[3]: 0.014180
Reconstructed Signal4[3]: 0.028360
Reconstructed Signal1[4]: 0.026085
Reconstructed Signal2[4]: 0.013043
Reconstructed Signal3[4]: 0.013043
Reconstructed Signal4[4]: 0.026085
Reconstructed Signal1[5]: 0.023246
Reconstructed Signal2[5]: 0.011623
Reconstructed Signal3[5]: 0.011623
Reconstructed Signal4[5]: 0.023246
Reconstructed Signal1[6]: 0.019903
Reconstructed Signal2[6]: 0.009951
Reconstructed Signal3[6]: 0.009951
Reconstructed Signal4[6]: 0.019903
Reconstructed Signal1[7]: 0.016129
Reconstructed Signal2[7]: 0.008064
Reconstructed Signal3[7]: 0.008064
Reconstructed Signal4[7]: 0.016129
Reconstructed Signal1[8]:
                                          0.012006
Reconstructed Signal2[8]: 0.006003
Reconstructed Signal3[8]: 0.006003
Reconstructed Signal4[8]: 0.012006
Reconstructed Signal1[9]: 0.007623
Reconstructed Signal2[9]: 0.003811
Reconstructed Signal3[9]: 0.003811
Reconstructed Signal4[9]: 0.007623
```

WAVEFORMS:

Sinc function 1

Sinc function 2

Sinc function 3

Sinc function 4

Inverse FFT real value 1

Inverse FFT real value 2

Inverse FFT real value 3

Inverse FFT real value 4 re - 0 8 Single Time - 1 8 Single Time - 2 8 Single Time - 3 8 Single Time - 4 8 Single Time - 5 8 Single Time - 6 8 Single Time - 7 8 Single Time - 6 8 Single Time - 7 Single Tim 2.000x10-03 0.000 -2.000x10-03 -4.000x10-03 -6,000x10-03 -8.000x10-03 -1.200x10-02 -1.400x10-02 LE Inverse FFT imag value 1 Problems Single Time - 0 Single Time - 1 Single Time - 2 Single Time - 2 Single Time - 3 Single Time - 4 Single Time - 5 Single Time - 5 Single Time - 6 Single Time - 7 Single Time - 8 Singl 到 宇 🏗 🖡 ▼ 🌣 ▼ 🍳 🔍 🖈 ▼ 🚱 🦃 💸 径 🛔 🐎 ▼ 🔠 📋 4.000x10-03 3.000x10-03 2.000x10-03 1.000x10-03 -1.000x10-03 -2.000x10-03 -3.000x10-03 -4.000x10-03 +60 +80 Inverse FFT imag value 2 🖳 Problems 💹 Single Time - 0 🏡 Single Time - 1 🏡 Single Time - 2 🏡 Single Time - 3 🏡 Single Time - 3 🏡 Single Time - 4 🏡 Single Time - 5 🏡 Single Time - 6 🚵 Single Time - 7 🏡 Single Time - 8 🛣 Single Time - 9 🗵 3.000x10-03 2.000x10-03 1.000x10-03 -1.000x10-03 +10 +40 +100 +110 +120 LE Inverse FFT imag value 3 🗜 Problems 📐 Single Time... 🔛 Single Time... 🔛 Single Time... ե Single Time... Single Time... Single Time... Single Time... Single Time... Single Time... 到 〒 🗒 📴 ▼ 🍁 ▼ 🍳 🔍 😭 🚱 🌺 🔀 🛗 券 ▼ 🔠 🗒 💆 2.000x10-03 1.600x10-03 1,200x10-03 4.000x10-04 0.000 -4.000x10-04 -8.000x10-04

+60 sample

+70

+90

+80

+120

LE

Inverse FFT imag value 4

+20

+40

+50

-1,200x10-03

Inverse quantization IFFT real value 1

Inverse quantization IFFT real value 2

Inverse quantization IFFT real value 3

Inverse quantization IFFT real value 4

Magnitude of Sinc2 FFT

Magnitude of Sinc3 FFT

Magnitude of Sinc4 FFT

Phase of Sinc1 FFT

Phase of Sinc2 FFT

Phase of Sinc3 FFT

Phase of Sinc4 FFT

Sinc function1 FFT real

Sinc function1 FFT imag

Sinc function2 FFT real

Sinc function 2 FFT imag

Sinc function3 FFT real

Sinc function3 FFT imag

Sinc function4 FFT real

Sinc function4 FFT imag

Inverse quantisation real 1:

Inverse quantisation imaginary 1:

Inverse quantisation real 2:

Inverse quantisation imaginary 2:

Inverse quantisation real 3:

Inverse quantisation imaginary 3:

Inverse quantization real 4:

Inverse quantization imaginary 4:

Fast fourier transform real 1:

Fast fourier transform imaginary 1

Fast fourier transform real 2

Fast fourier transform imaginary 2

Fast fourier transform real 3

Fast fourier transform imaginary 3

Fast fourier transform real 4

Fast fourier transform imaginary 4

Reconstructed signal 1

Reconstructed signal 2

Reconstructed signal 3

