

Ingénieur en informatique Orientation logiciels et systemes complexes

Yohann Perez

Ingénieur en informatique Orientation logiciels et systemes complexes

Mon parcours

- CFC Informatique accéléré (15-18ans)
- Bachelor I.T.I. (18-21ans)
- Service civil (21-22ans)

- B2 : Anglais (FCE) & Espagnol
- B1 : Allemand

• Loisirs : VTT, ...

CFC, ce que j'en retiens

- Développement WEB
 - HTML, JS ES6, PHP, SQL & CSS
- Développement d'application Windows
 - C#
- Configuration de poste et de réseaux
 - Windows 7 & Cisco

• J'ai appris le métier d'informaticien

Quelques travaux de mon CFC

GE-SOIF, AGENDA21

BUY & DRIVE, CFC

Bachelor ITI, ce que j'en retiens

- Développement WEB & apps mobiles avec interactions (senseurs & API)
 - Angular, NodeJS, Express & MongoDB
- Algorithmiques, mathématiques avancées
 & machine learning
 - · Octave, Python & Java
- Programmation bas niveau (système)
 - C & C++
- Meilleur compréhension du fonctionnement d'un ordinateur
- Développement personnel (capacité de réflexion & capacité d'analyse)

Quelques travaux de mon bachelor

SIMPLIFIED BITTORENT

FUNSPEECH

FunSpeech

Travail final de bachelor

Description de FunSpeech

- Application de rééducation orthophonique
- Destinée aux enfants sourds implantés
- A été développée par HEPIA (+2ans)
- But : Encourager les enfants à la production de sons

FunSpeech - la problématique

- Algorithme de reconnaissance de sons de base de la parole (phones) ne fonctionne pas
- Investiguer les algorithmes de reconnaissance de sons, d'extraction de caractéristiques et de classification.
- Trouver une meilleure combinaison d'algorithmes

Algorithme actuel

- Energies des bandes
- $Ebande = \frac{\sum x_i^2}{\text{\'energie tot.}}$
- [0.098, 0.136, 0.174, 0.244, 0.347]

• Plus proche barycentre

• Distance
$$(p,q) = \sqrt{\sum_{i=1}^{n=5} (q_i - p_i)^2}$$

Démarche pour résoudre la problématique

- Acquérir des jeux de données
- Comprendre le mécanisme de production d'un son
- Investiguer les caractéristiques acoustiques
- Investiguer les algorithmes de classification
- Définir et implémenter des protocoles de tests et de validations

FunSpeech 4-Voices

- 287 données
- 4 locuteurs
- 7 phones suisse/français
- Classes équitablement réparties

- Inconvénients:
 - Phones adultes → Jeunes enfants
 - Peu de diversité
 - Nécessite un prétraitement (silence), + des vérifications

Western Michigan Uni.

- 1667 données
- 12 phones américains
- 139 locuteurs
 - 48 femmes + 45 hommes
 - 19 filles + 27 garçons
- Classes équitablement réparties

Mécanisme de production d'un son

- Expiration
- Intensité du son (faible ou fort)

- Impulsion glottale
- Hauteur du son (aigu ou grave)

- Forme du canal vocal
- Phone qui va être produit

• Dans un signal vocal, l'impulsion glottale et la forme du canal sont convoluées

Domaine du cepstre

- Distinguer l'impulsion glottale et la forme du canal vocal = Analyse cepstrale
- $Cepstre = FFT^{-1}(\ln (|FFT(x)|))$

- Evolution de la forme du canal vocal et de l'impulsion glottale au cours du temps
- Banc de filtres ou analyse du cepstre

Algorithmes de classification

Algorithmes de classification

BAGGING Resamples Models h1

COMBINAISON DE CLASSIFIEURS

Que dois faire mon protocole de tests ?

- Déterminer si l'utilisation de phones uniquement produits par des adultes pour l'entrainement d'un modèle suffit pour correctement classifier des phones produits par des d'enfants
- Déterminer combien le fait d'ajouter des données d'entrainement est bénéfique à la résolution de la problématique
- Comparer les différents combinaisons d'algorithme d'extraction et de classification pour déterminer laquelle est la plus performante et la plus adaptée pour résoudre la problématique

Protocole de tests

QUALITÉ DE PRÉDICTION DU MODÈLE

- Métriques
 - Précision
 - Incertitude
 - Temps

PROCÉDURE DE VALIDATION

- Validation croisée
- Train, Validation &
 Test sets
- Courbes d'apprentissage

OPTIMISATION DES CLASSIFIEURS

 Recherche exhaustive des paramètres

Train, validation & test sets

- Train → Pouvoir prédire
- Validation → Ajustement des paramètres
- Test → Estimation non biaisée

Courbes d'apprentissage

Résultats (+ de 120 fichiers)

- Caractéristiques
 - Energies
 - MFCC, MW-FCC, L-FCC & ERB-FCC
 - Log(banc de filtres)
- Echantillon et signal complet
- Deux jeux de données

- Algorithmes de classification
 - Plus proche barycentre
 - K-plus proche voisins
 - Séparateurs à vastes marges
 - Bagging
 - · Combinaison de classifieur

Résultat: SVM + ERB-FCC (matrice de confusion)

Résultats (Train, Validation & Test) (avant / après)

Un des meilleurs résultats (Train & Test)

Meilleur résultat combinaison de classifieurs

Conclusion

- Classifieur : SVM
- Caractéristiques: ERB-FCC
- Des sons adultes suffisent à classifier des sons enfants
- La limitation de la taille d'entrainement est possible
- Grande amélioration, de 44% à 82%
- stagnance à 82% de reconnaissance