Высшая математика

Лисид Лаконский

October 2022

Содержание

1 Высшая математика - 14.10.2022		2		
	1.1	Беско	нечно большие и бесконечно малые функции	2
		1.1.1	Применение бесконечно малых к вычислению пределов	2
		1.1.2	Таблица эквивалентных бесконечно малых	2
		1.1.3	Некоторые соображения и примеры	3
	1.2	2 Производные и дифференциалы функции		3
		1.2.1	Свойства производных	3
		1.2.2	Дифференцируемость функций	4
		1.2.3	Геометрический смысл производной	4
		1.2.4	Уравнение касательной и нормали к графику функции	4
		1.2.5	Производная сложной функции	4
		1.2.6	Обратная функция и ее производная	5

Высшая математика - 14.10.2022 1

Бесконечно большие и бесконечно малые функции

Функция называется бесконечно малой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$.

Функция называется бесконечно большой при $x \to x_0,$ если $\lim_{x \to x_0} f(x) = \inf.$

Теорема 1. $\alpha + \beta, \alpha - \beta$ - бесконечно малые, если α, β - бесконечно малые

Теорема 2. Произведение бесконечно малой на ограниченую функцию является бесконечно малой

Определение. Если $\alpha(x), \beta(x)$ бесконечно малы при $x \to x_0$, то

 $\exists\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\mathrm{const}\neq 0\neq \pm\inf,$ то α и β - бесконечно малые одного порядка

Если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, то α, β - эквивалентные бесконечно малые

Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, то α - бесконечно малое более высокого порядка малости по сравнению с β .

Если, наоборот, $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = \inf$, то говорят, что β более высокого порядка малости, чем α .

Например, $\alpha = x^3 + 2x^2$, $\beta = 2x + 3x^2$, $\lim_{x \to 0} \frac{x^3 + 2x^2}{3x^2 + 2x} = \lim_{x \to 0} \frac{x^2(x+2)}{x(3x+2)} = \lim_{x \to 0} \frac{x+2}{3x+2}$

 $\exists\lim_{x o x_0} rac{eta(x)}{lpha^k(x)} = C
eq 0
eq \pm \inf$, то $eta, lpha^k$ - бесконечно малые одного порядка.

Например, $\alpha=sin^3x, \beta=x, \lim_{x\to 0}\frac{\sin^3x}{x^3}=\lim(\frac{\sin x}{x})^3=1\neq 0\neq \pm\inf, \sin^3x$ величина такого же порядка малости, как x^3 .

Применение бесконечно малых к вычислению пределов

Если при $x \to x_0$ $f(x) \sim f_1(x), g(x) \sim g_1(x)$, то $\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \Longrightarrow \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$

$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \implies \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$$

Например, $\lim_{x\to 0} \frac{\sin^3(4x)}{x^2+3x} = \dots$

Допустим, $\lim_{x\to 0} \frac{x^2+3x}{x} = \lim(x+3) = 3.$

Допустим, $\lim_{x\to 0} \frac{x^2+3x}{x^2} = \lim_{x\to 0} \frac{x(x+3)}{x} = \inf.$

Посчитали без толку, теперь продолжим, ... = $\lim_{x\to 0} \frac{(4x)^3}{x(x+3)} = \lim_{x\to 0} \frac{64x^2}{x+3} = 0$.

Таблица эквивалентных бесконечно малых

 $\sin x \sim x, \tan x \sim x, \arcsin x \sim x, \arctan x \sim x, \ln(x+1) \sim x, e^x - 1 \sim x, a^x - 1 \sim x \ln a, \sqrt[n]{1+x} - 1 \sim \frac{x}{n}, 1 - \cos x \sim \frac{x^2}{2}, \cos x \ 1 - \frac{x^2}{2}$

Это все подходит к умножению или делению, но никак не к сложению или вычитанию.

1.1.3 Некоторые соображения и примеры

При $x \to \inf f(x) = x^3 + 2x + 1$ больший вклад вносит x^3 , при $x \to 0$ $f(x) = x^3 + x^2$ больший вклад вносит x^2

Пример. $\lim_{x\to 0} \frac{\sqrt[3]{1+4x}-1}{\ln(1+2x)} = \lim_{x\to 0} \frac{\frac{4x}{3}}{2x} = \frac{2}{3}$ - применение таблицы эквивалентных бесконечно малых

O(x) - бесконечно малая более высокая порядка малости.

1.2 Производные и дифференциалы функции

Тут есть рисунок, который мне тяжело воспроизвести. Поэтому его тут нет. Но на нем показаны Δx (приращение аргумента), Δf (приращение функции), касательная к функции.

$$\mathrm{d}f=f'(x)\,\mathrm{d}x$$
 - дифференциал функции, $\Delta f=\mathrm{d}f+O(\Delta x)$

Производной функции называется $\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$. Производная равна пределу приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Пример. Пусть у нас $y=x^3+2x-1$. Попробуем вычислить производную. $y(x+\Delta x)=(x+\Delta x)^3+2(x+\Delta x)-1=x^3+3x^2*\Delta x+3x(\Delta x)^2+(\Delta x)^3+2x+2\Delta x-1$ $y'(x)=\lim_{\Delta x\to 0}\frac{x^3+3x^2*\Delta x+3x(\Delta x)^2+(\Delta x)^3+2x+2\Delta x-1-x^2-3x+1}{\Delta x}=\lim_{\Delta x\to 0}(3x^2+3x(\Delta x)+(\Delta x)^2+2)=3x^2+2$

Поздравляю, вы написали такую простыню. Вы великолепны.

Другой пример. Попробуем доказать, что производная $y'(\sin x) = \cos x$ $y(x + \Delta x) = \sin(x + \Delta x)$ $y'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \text{вспоминайте формулы} = \dots = \lim_{\Delta x \to 0} \frac{2 \sin \frac{x + \Delta x - x}{\Delta x}}{\Delta x} = \lim_{x \to 0} \frac{2 \sin \frac{\Delta x}{\Delta x} \cos(x + \frac{\Delta x}{\Delta})}{\Delta x} = \lim_{x \to 0} \frac{2 \cos x}{2} = \cos x$

1.2.1 Свойства производных

1.
$$(u \pm v)' = u' \pm v'$$

2.
$$(u*v)' = u'v + vu', (u*v*w)' = u'vw + u*v'w + u*v*w'$$

3.
$$(cu)' = cu'$$

4.
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

1.2.2 Дифференцируемость функций

Если функция y=f(x) имеет производную в точке x_0 , то есть $\exists\lim_{x\to x_0} \frac{\Delta f(x)}{\Delta x}=\lim_{x\to x_0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$, то функция дифференцируема в точке x_0 .

Теорема. Если функций y=f(x) дифференцируема в точке x_0 , то она в этой точке непрерывна.

Замечание. Обратное высказывание может быть и неверным.

Пример функции непрерывной в какой-то точке, но не дифференцируемой в ней.

1.2.3 Геометрический смысл производной

Производная - это тангенс угла наклона касательной... $\lg \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

1.2.4 Уравнение касательной и нормали к графику функции

Пусть у нас есть y = kx + b, дана какая-то точка $M_0(x_0; y_0)$

Уравнение касательной. $y - y_0 = y'(x_0)(x - x_0)$

Уравнение нормали. $y-y_0=-\frac{1}{y'(x_0)}(x-x_0)$

1.2.5 Производная сложной функции

Пусть функция u=u(x) имеет в некоторой точке производную $u_x'(x)$, а функция y=y(u) имеет при соответствующем значении u производную y_u' . Тогда сложная функция y(x)=y(u(x)) имеет производную $y_x'=y_u'*u_x'$

Пример 0. Например, у нас есть y(x) = y(g(f(x))), то $y_x' = y_g' * g_f' * f_x'$

Пример 1.
$$y = 2x^2 + 3x, y' = 4x + 3$$

Пример 2.
$$y = \cos(2x^2 + 3x), y' = \sin(2x^2 + 3x) * (4x + 3)$$

Пример 3.
$$y = \sqrt{\cos(2x^2 + 3x)}, y' = \frac{1}{2\sqrt{\cos 2x^2 + 3x}} * (-\sin(2x^2 + 3x)) * (4x + 3)$$

Пример 4.
$$y=\operatorname{tg}\sqrt{\cos(2x^2+3x)}, y'=\frac{1}{\cos^2(\sqrt{\cos(2x^2+3x)}}*\frac{1}{2\sqrt{\cos(2x^2+3x)}}*(-\sin(2x^2+3x))*(4x+3)$$

1.2.6 Обратная функция и ее производная

Пусть у нас есть функция $y=f(x),\, x=a, x=b,\,$ а $y(a)=c, y(b)=d,\,$ где [a;b] - область определения, [c;d] - область изменения функции.

Теорема. Если для y=f(x) существует обратная функция $x=\phi(y),$ у которой $\phi'(y)\neq 0$ в некоторой точке $y_0,$ то $f'(x)=\frac{1}{\phi'(y)}$

Пример 1. $y = \arcsin x$, функция обратная к ней $x = \sin y, x' = \cos y$. Таким образом, $(\arcsin x)' = \frac{1}{\cos x} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-\sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}}$