

8/13~8/31新朋友&老朋友共賞全年最優惠

112面授/VOD:8/13~15報名全修課程,加碼贈高點補課券20堂

司法特考	高考
・ 全修 :特價 <mark>27, 000</mark> 元起	・法制全修:特價 44, 000 元
・ 四等考取班 :特價 49, 000 元	・ 法廉/ 財廉全修 :特價 33, 000 元起
行政警察	調査局特考
・ 全修 :特價 31, 000 元起	・全修:特價 33,000 元起
差異科目/弱科加強	實力進階
· 監所管理員全修+警察法規:	
特價 42, 000 元	・申論寫作班: 特價 2, 500 元起/科 │
· 四等書記官或法警全修+公務員法概要	│・矯正三合一題庫班 :特價 4, 000 元起 ┃
特價 40, 000 元	· 犯罪學題庫班 :特價 1,700 元起
・ 四等小資 :特價 16, 000 元起	

112雲端函授:8/13~15報名全修課程,加碼再優1,000元

112公司国12、0710 10张日王珍陈任 加岭门及1,000元				
司法特考	高普考			
・ 全修 :特價 39, 000 元起	・ 法制全修 :特價 <mark>58, 000</mark> 元			
	・ 法廉/財廉全修 :特價 <mark>46, 000</mark> 元起			
行政警察	調查局特考			
・ 全修 :特價 40, 000 元起	·三等全修:特價 47, 000 元			
實力進階	弱科加強			
・ 申論寫作班:單科 特價 3,000 元起	・ 四等小資 :特價 20,000 元起			

※諮詢&報名詳洽【法政瘋高點】LINE 生活圈(ID:@get5586)
※報名全修考生若當年度考取相同等級類科,二週內可回班辦理退費

《電子學與電路學》

歷屆考題題數皆為五題,其中:大約二題為電路學,三題為電子學;但110年度考題變為四題,其中三題為電子學,一題為邏輯設計簡單化減題目,無電路學題目,且從109年至110年連續三年只考一命題意旨 題邏輯設計題目,是較為異常的現象,因為考試科目名字為:電子學與電路學,原則上考試方向不應該偏離科目。不過,近三年,雖有考邏輯設計題目,但均為非常簡單的化減題目而已,同學可以放心。

第一題:本題為理想OPA基本運算推導即可,得 V_o 值已達飽和電壓值以上,因題目未述說OPA飽和電壓值為若干,故僅能以求得之答案值回答。

第二題:本題為達靈頓放大器小信號AC分析,利用基本電路學分流觀念,即可求得電流增益值。

第三題:本題為邏輯設計布林函數基本化簡,可利用卡諾圖化減法,即可輕鬆求得;若選 "0" 作答 則為NOR閘實現設計,若選 "1" 作答,則為NAND閘實現設計。

第四題:本題用非常基本的節點分析法即可求得,可利用超節點觀念求解。

答題關鍵 第五題:本題為一階開關電路,首先須先求得開關在 $t=0^-$ 且電路已達穩態時,電容器之初始值,

再配合一階RC且電源為DC時之公式: $v_c(t) = v_c(\infty) + [v_c(0) - v_c(\infty)]e^{\frac{-ic}{RC}}$,即可求得。

第六題:本題原始題目電路圖中有二處錯誤,左邊電壓源單位及右邊電流源符號,在解答中已作修正,可利用題幹所述之重疊定理方法求得答案。

第七題:本題為電路學中之雙埠網路,利用上課過程中講解過的基本推導方法,即可求得導納參數: v_{11} 及 v_{21} 。

 $y_{11} \times y_{21}$

一、如圖所示為理想運算放大器(OPA)電路,若輸入電壓 $V_i = 0.2 \, \mathsf{V}$,試求輸出電壓 V_o 為何?(15分)

【擬答】

$$\begin{cases} \frac{0-0.2}{10^3} + \frac{0-V_A}{10^3} = 0 \cdot \dots \cdot \text{ } \\ \frac{V_A - 0}{10^3} + \frac{V_A - 0}{10.2} + \frac{V_A - V_o}{10^3} = 0 \cdot \dots \cdot \text{ } \end{cases}$$

 $\Rightarrow V_A = -0.2$ 代入②式,可得:

 V_o ' -20.01 V

【註】實際上此輸出端 V_o 之值,已超過OPA輸出端飽和電壓值,但題目未述說此值,故只好回答上述 V_o 端電壓 所計算之結果。

二、如圖所示電路,若經由小信號分析得知 $Z_i = 2 M\Omega$,試求其電流增益 $Ai = i_o/i_i$ 為何?(15分)

【擬答】

AC小信號分析:

得:
$$A_i = \frac{i_o}{i_i} = \frac{i_o}{i_2} \cdot \frac{i_2}{i_1} \cdot \frac{i_1}{i_i} = \frac{6}{6+4} \cdot (1+\beta_2) \cdot (1+\beta_1) \cdot \frac{\frac{2}{3}}{\frac{2}{3}+2} = 750$$

三、設布林函數表示式為 $F = (x+y)(\overline{x}+z)(y+z)$,試求其化簡?(15分)

 $\overline{F} = \overline{x+y} + \overline{\overline{x}+z} + \overline{y+z} = \overline{xy} + x\overline{z} + \overline{yz}$ 版權所有,重製必究!

利用卡諾圖化減:

$\searrow xy$						
z	00	01	11	10		
0	0	$/\widehat{1}$	0	0		
1	0	$\langle 1 \rangle$	(1	1)		

111 高點司法特考 · 全套詳解

得: $F = \overline{x}y + xz$

四、如圖所示,試依節點電壓法 (Nodal analysis) 求v及i分別為何? (15分)

【擬答】

利用超節點法,求得:

$$\frac{V_A - 7}{4} + \frac{V_A}{3} + \frac{V_A + 3}{2} + \frac{V_A + 3}{6} = 0$$

$$\Rightarrow V_A = -\frac{1}{5} \text{ V}$$

得:
$$v = -\frac{1}{5} \text{ V}$$
 , $i = \frac{V_A + 3}{2} = \frac{7}{5} \text{ A}$

五、如圖所示,開關於A位置使電路到達穩態後,於t=0 sec 時、開關切換至B位置。試求電壓v(t)的表示式為何?(10分)

【擬答】

當
$$t = 0^-$$
時,可得: $v(0^-) = \frac{5}{3+5} \times 24 = 15 \text{ V}$

當t > 0時,可得:

$$v(t) = [30 + (15 - 30)e^{-\frac{t}{4 \times 10^3 \times 0.5 \times 10^{-3}}}] \text{ V} = (30 - 15e^{-\frac{t}{2}}) \text{ V}$$

111 高點司法特考 · 全套詳解

六、如圖所示,試依重疊定理(Superposition theorem) 求 $v_o(t)$ 為何?(15 分)

【擬答】

題目電路圖有錯誤,請更正為:

利用重疊定理,可得:

(1)當w = 5 rad/s 時:

$$\overline{V}_{01} = \frac{j5/(-j1)}{8 + [j5/(-j1)]} \times 30 \angle 0^{\circ}$$
, $4.63 \angle -81^{\circ}$

(2)當w = 10 rad/s時:

$$\overline{V}_{02} = 2\angle 0^{\circ} \cdot \left[8// j10// \left(-j\frac{1}{2} \right) \right], 1.05\angle -86^{\circ}$$

得: $v_o(t) = v_{01}(t) + v_{02}(t) = [4.63\sin(5t - 81^\circ) + 1.05\cos(10t - 86^\circ)]$ V

七、如圖所示之雙埠網路(two-port network), 試求其導納參數(admittance parameter) y_{11} 及 y_{21} 分別 為何?(15 分)

【擬答】

111 高點司法特考 · 全套詳解

$$\begin{cases} I_1 = \frac{V_1}{5} + 0.2V_1 = 0.4V_1 + 0V_2 \\ I_2 = \frac{V_2}{10} - 0.2V_1 = -0.2V_1 + 0.1V_2 \\ \end{cases}$$
 \Leftrightarrow $: y_{11} = 0.4 \text{ Å} , y_{21} = -0.2 \text{ Å}$

【高點法律專班】

版權所有,重製必究!