DEUX EXEMPLES D'ACP

EXEMPLE 1

On étudie les consommations annuelles en 1972, exprimées en francs, de 8 denrées alimentaires (les variables), les individus étant 8 catégories socio-professionnelles. Les données sont des moyennes par CSP :

	PAO	PAA	VIO	VIA	POT	LEC	RAI	PLP
AGRI	167	1	163	23	41	8	6	6
SAAG	162	2	141	12	40	12	4	15
PRIN	119	6	69	56	39	5	13	41
CSUP	87	11	63	111	27	3	18	39
CMOY	103	5	68	77	32	4	11	30
EMPL	111	4	72	66	34	6	10	28
OUVR	130	3	76	52	43	7	7	16
INAC	138	7	117	74	53	8	12	20

AGRI = Exploitants agricoles PAO = Pain ordinaire SAAG= Salariés agricoles PAA = Autre painPRIN = Professions indépendantes VIO = Vin ordinaire CSUP = Cadres supérieurs VIA=Autre vin POT= Pommes de terre CMOY= Cadres moyens EMPL= Employés LEC=Légumes secs OUVR = Ouvriers RAI=Raisin de tables INAC = Inactifs PLP= Plats préparés

Le programme SAS permettant d'obtenir les sorties ci-dessous est en Annexe.

The PRINCOMP Procedure

Observations 8 Variables 8

Tableau 1

Correlation	Matrix

	PAO	PAA	VIO	VIA	POT	LEC	RAI	PLP
PAO	1.0000	7737	0.9262	9058	0.6564	0.8886	8334	8558
PAA	7737	1.0000	6040	0.9044	3329	6734	0.9588	0.7712
VIO	0.9262	6040	1.0000	7502	0.5171	0.7917	6690	8280
VIA	9058	0.9044	7502	1.0000	4186	8386	0.9239	0.7198
POT	0.6564	3329	0.5171	4186	1.0000	0.6029	4099	5540
LEC	0.8886	6734	0.7917	8386	0.6029	1.0000	8245	7509
RAI	8334	0.9588	6690	0.9239	4099	8245	1.0000	0.8344
PLP	8558	0.7712	8280	0.7198	5540	7509	0.8344	1.0000

Tableau 2

Eigenvalues of the Correlation Matrix

	Eigenvalue	Difference	Proportion	Cumulative
1	6.20794684	5.32826545	0.7760	0.7760
2	0.87968139	0.46372027	0.1100	0.8860
3	0.41596112	0.10950645	0.0520	0.9379
4	0.30645467	0.13801317	0.0383	0.9763
5	0.16844150	0.15037379	0.0211	0.9973
6	0.01806771	0.01462094	0.0023	0.9996
7	0.00344677	0.00344677	0.0004	1.0000
8	0.00000000		0.0000	1.0000

Tableau 3

Eigenvectors

Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8

PAO	391311	0.137823	0.161714	0.119350	0.294045	397748	0.106920	0.728963
PAA	0.348674	0.440585	0.319950	0.217909	265442	520704	423079	117773
VIO	349193	0.201682	0.680632	028883	0.245716	0.464752	253923	180130
VIA	0.373625	0.260309	0.073482	396545	345605	0.422866	033345	0.575000
POT	246371	0.743826	557660	073992	0.175725	0.107747	093428	135449
LEC	364822	0.128021	0.032401	0.518889	669192	0.184942	0.313107	0.012735
RAI	0.373052	0.325980	0.254250	0.063706	0.271532	016265	0.765903	158952
PLP	0.361676	050227	161692	0.708103	0.332914	0.360245	224966	0.218851

Tableau 4

Coordonnees et	qualite	de re	presentation	des	individus
----------------	---------	-------	--------------	-----	-----------

csp	Prin1	Prin2	qlt1	qlt2
AGRI	-3.37158	-0.24582	0.88444	0.00470
SAAG	-3.52171	-0.44740	0.89806	0.01449
PRIN	1.47203	0.05851	0.57460	0.00091
CSUP	4.35879	0.17611	0.94182	0.00154
CMOY	1.71808	-0.85665	0.75288	0.18717
EMPL	0.80653	-0.80853	0.42778	0.42990
OUVR	-0.89910	-0.18304	0.36060	0.01495
INAC	-0.56304	2.30681	0.05552	0.93193

Tableau 5

Coordonnees des variables sur les axes

N = 8	pefficients,	Correlation C	Pearson
.2	Prin	Prin1	
7	0.1292	-0.97498	PAO
3	0.4132	0.86875	PAA
6	0.1891	-0.87004	VIO
5	0.2441	0.93092	VIA
4	0.6976	-0.61385	POT
7	0.1200	-0.90898	LEC
4	0.3057	0.92949	RAI
1	-0.0471	0.90114	PLP

INTERPRETATION

1) Choix du nombre d'axes à retenir

Nous utilisons pour cela le tableau 2. Le critère de Kaiser nous conduit à sélectionner un seul axe, qui retient 77% de l'inertie totale. L'axe 2 retient tout de même 11% de l'inertie, ce qui n'est pas négligeable, et qui conduit à un taux d'inertie expliquée de 89%, ce qui est un très bon résultat. Il peut être donc intéressant de l'étudier aussi. Nous le retiendrons si nous pouvons l'interpréter.

Remarque:

Le critère du coude ainsi que celui du Scree-test nous conduisent à retenir les deux premiers axes (voir cidessous).

Differences	Différences secondes
5,32826545	4,86454518
0,46372027	0,35421382
0,10950645	-0,02850672
0,13801317	-0,01236062
0,15037379	0,13575285
0,01462094	0,01117417

2) Graphes sur le plan factoriel (1,2)

Representation des variables axe2 * axe1

Representation des individus axe2 * axe1

3) <u>Interprétation des axes</u>

L'interprétation des axes factoriels se fait séquentiellement, pour chaque axe et chaque nuage de points, en regardant les contributions à la formation des axes.

<u>Axe 1 :</u>

<u>Variables</u>: On sait que les variables contribuant le plus à la formation de l'axe 1 sont celles dont les coordonnées sur cet axe sont proches de 1 en valeur absolue. Pour repérer les contributions significatives, on

utilise le tableau 3 : on compare les valeurs de la colonne Prin1, coordonnées du premier axe factoriel, à la racine de la contribution moyenne $1/\sqrt{8}$ =35%, le signe donnant le sens de contribution. On obtient :

-	+
PAO	RAI
LEC	VIA
LEC (VIO)	PLP
	(PAA)

PAA et VIO sont très proches de la contribution moyenne, on les intègrera donc dans l'interprétation de l'axe si elles vont dans le sens de l'interprétation que l'on peut en faire, sans elles.

L'axe 1 oppose les individus consommant du pain ordinaire, des légumes secs (et éventuellement du vin ordinaire) à ceux qui consomment du raisin, du vin (éventuellement du pain) plus sophistiqué et des plats préparés.

L'axe 1, et donc la première composante principale, mesure la répartition entre aliments ordinaires bon marchés et aliments plus recherchés.

Toutes les variables sont bien représentées sur l'axe (tableau 5 : la qualité de représentation est égale à la coordonnée au carré ; ainsi, la qualité de représentation de la variable PAO est égale à (-0,97²)=0,94 ; plus simplement, on peut avoir une idée de la qualité de représentation d'une variable sur un axe en lisant directement le graphique : une variable bien représentée est proche du bord du cercle des corrélation et à proximité de l'axe). La première composante principale explique donc correctement tous les types de consommations alimentaires.

<u>Individus</u>: De même, les individus contribuant le plus à la formation de l'axe 1 sont ceux dont les coordonnées sur cet axe sont les plus élevées en valeur absolue. Pour repérer les contributions significatives, on utilise le tableau 4 : on compare les valeurs de la colonne Prin1, coordonnées des individus, à la racine carrée de la première valeur propre $\sqrt{6,2079} = 2,49$, le signe donnant le sens de contribution. On obtient :

-	+
AGRI	CSUP
SAAG	

Le premier axe met donc en opposition quant à leurs habitudes alimentaires les agriculteurs et les cadres supérieurs.

Les autres catégories socio-professionnelles, assez bien représentées sur l'axe à l'exception des inactifs (cf. contributions des individus sur l'axe 1), s'échelonnent suivant la hiérarchie habituelle. Elles sont bien expliquées par l'axe.

<u>Conclusion</u>: L'axe 1 reflète donc l'opposition qui existe entre les catégories socio-professionnelles dans leur alimentation, opposant les CSP modestes qui consomment des produits basiques aux catégories favorisées qui consomment des produits plus recherchés.

Axe 2:

<u>Variables</u>: Dans le tableau 3, on compare les valeurs de la colonne Prin2 à 35%, le signe donnant le sens de contribution. On obtient :

-	+
	POT
	PAA

L'axe 2 est défini par les variables POT et PAA. Compte tenu de la différence de contribution existant entre ces deux variables, de la contribution élevée de POT (55%), et de la qualité de représentation moyenne de PAA, la deuxième composante principale peut être considérée comme essentiellement liée à la consommation de pommes de terre.

Les variables, à l'exception de POT et de PAA (dans une moindre mesure) sont assez mal représentées sur l'axe (tableau 5). La deuxième composante principale n'explique donc qu'un aspect très particulier de la consommation alimentaire.

<u>Individus</u>: Pour repérer les individus ayant une contribution significative, on utilise le tableau 4 : on compare les valeurs de la colonne Prin2, coordonnées des individus sur l'axe 2, à la racine de la deuxième valeur propre $\sqrt{0.8797}$ =0,94, le signe donnant le sens de contribution. On obtient :

-	+
	INAC

Le deuxième axe est caractéristique des inactifs (expliquant $\frac{c_{i2}^2}{n\lambda_2}$ =75% de l'inertie de l'axe).

Les autres catégories socio-professionnelles sont mal représentées sur l'axe.

<u>Conclusion</u>: L'axe 2 reflète donc la particularité des inactifs quant à leur alimentation, fortement composée de pommes de terre (un retour aux données d'origine vient confirmer cette conclusion).

Synthèse:

Ici, il n'y a rien de plus à tirer de cette analyse au vu du graphique (pas de regroupement particuliers de points, autres qu'à proximité des axes, ce qui a déjà été analysé). On peut en revanche synthétiser les résultats de l'analyse dans un tableau C « réduit », tableau contenant l'essentiel (88%) de l'inertie (i.e. de l'information) totale du tableau d'origine.

CSP	C1	C2
A CD T	2 27150	0 04500
AGRI	-3.37158	-0.24582
SAAG	-3.52171	-0.44740
PRIN	1.47203	0.05851
CSUP	4.35879	0.17611
CMOY	1.71808	-0.85665
EMPL	0.80653	-0.80853
OUVR	-0.89910	-0.18304
INAC	-0.56304	2.30681

C1=répartition entre aliments ordinaires et aliments plus recherchés

C2=répartition de la consommation de pommes de terre

EXEMPLE 2

Le tableau suivant fournit la structure du bilan d'un groupe pétrolier de 1969 à 1984 :

Année	NET	INT	SUB	LMT	DCT	IMM	EXP	VRD
1969	17.93	3.96	0.88	7.38	19.86	25.45	5.34	19.21
1970	16.21	3.93	0.94	9.82	19.11	26.58	5.01	18.40
1971	19.01	3.56	1.91	9.43	17.87	25.94	5.40	16.88
1972	18.05	3.33	1.73	9.72	18.83	26.05	5.08	17.21
1973	16.56	3.10	2.14	9.39	20.36	23.95	6.19	18.31
1974	13.09	2.64	2.44	8.10	25.05	19.48	11.61	17.59
1975	13.43	2.42	2.45	10.83	22.07	22.13	11.17	15.49
1976	9.83	2.46	1.79	11.81	24.10	22.39	11.31	16.30
1977	9.46	2.33	2.30	11.46	24.45	23.07	11.16	15.77
1978	10.93	2.95	2.25	10.72	23.16	24.17	9.64	16.20
1979	13.02	3.74	2.21	7.99	23.04	19.53	12.60	17.87
1980	13.43	3.60	2.29	7.09	23.59	17.61	16.67	15.72
1981	13.37	3.35	2.58	6.76	23.94	18.04	15.42	16.54
1982	11.75	2.74	3.11	7.37	25.04	18.11	14.71	17.18
1983	12.59	3.05	3.85	7.12	23.40	19.17	11.86	18.97
1984	13.00	3.00	4.00	7.00	24.00	20.00	12.00	17.00

Les postes de bilan sont les suivants :

NET : Situation nette ; représente l'ensemble des capitaux propres de l'entreprise. INT : Intérêts ; représente l'ensemble des frais financiers supportés par l'entreprise.

SUB: Subventions; représente le montant total des subventions accordées par l'Etat.

LMT : Dettes à long et moyen terme.

DCT : Dettes à court terme.

IMM : Immobilisations ; représente l'ensemble des terrains et du matériel de l'entreprise.

EXP: Valeurs d'exploitation.

VRD : Valeurs réalisables et disponibles ; ensemble des créances à court terme de l'entreprise.

Les données ont été ventilées en pourcentage par année, la somme des éléments d'une même ligne vaut 100, de manière à éviter les effets dus à l'inflation. On cherche à répondre aux questions suivantes :

- Quelle a été l'évolution de la structure de bilan sur 15 ans ?
- Peut-on mettre en évidence plusieurs périodes ? Si oui, comment se caractérisent-elles ?

The PRINCOMP Procedure

Observations 1 Variables

<u>Tableau 0 :</u>

	<u>Simple Statistics</u>				
LMT	SUB	INT	NET		
8.874375000 1.674100388	2.304375000 0.818084415	3.135000000 0.514575067	13.85375000 2.81018432	Mean StD	
	ics	Simple Statist			
VRD	EXP	IMM	DCT		
17.16500000 1.11731822	10.32312500 3.72700402	21.97937500 3.05337409	22.36687500 2.29420389	Mean StD	

<u>Tableau1:</u>

			<u>Coi</u>	rrelation Ma	<u>atrix</u>			
	NET	INT	SUB	LMT	DCT	IMM	EXP	VRD
NET	1.0000	0.6861	4614	2041	8908	0.5536	7045	0.4784
INT	0.6861	1.0000	4494	4600	6007	0.2455	3398	0.5296
SUB	4614	4494	1.0000	4093	0.6127	6932	0.6079	1421
LMT	2041	4600	4093	1.0000	1884	0.5976	3904	4195
DCT	8908	6007	0.6127	1884	1.0000	8168	0.8644	3535
IMM	0.5536	0.2455	6932	0.5976	8168	1.0000	9446	0.2021
EXP	7045	3398	0.6079	3904	0.8644	9446	1.0000	4614
VRD	0.4784	0.5296	1421	4195	3535	0.2021	4614	1.0000

<u>Tableau2:</u>

cigenvai	ues o	tile	COLLE.	Tation	Ma CL.TX	
envalue	Dif	ferend	re l	Proport	ion	

	Eigenvalue	Difference	Proportion	Cumulative
1	4.47037150	2.35552573	0.5588	0.5588
2	2.11484576	1.43418677	0.2644	0.8232
3	0.68065899	0.17991239	0.0851	0.9082
4	0.50074660	0.34116829	0.0626	0.9708
5	0.15957831	0.09542998	0.0199	0.9908
6	0.06414833	0.05449844	0.0080	0.9988
7	0.00964990	0.00964928	0.0012	1.0000
Q	0 00000062		0 0000	1 0000

<u>Tableau3:</u>

				Eigenvecto	<u>ors</u>			
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8
NET	0.402088	0.238457	076441	472312	500342	0.075090	0.322932	0.438493
INT	0.297792	0.427526	452436	0.165899	0.628110	0.023067	0.307945	0.080227
SUB	351008	0.189653	0.498151	579440	0.473763	0.051376	0.116887	0.127148
LMT	0.094674	661253	0.059523	0.111232	0.189935	0.552888	0.356877	0.262189
DCT	451140	0.001154	0.063719	0.367209	129641	473781	0.537313	0.357195
IMM	0.410473	307837	0.150543	017412	0.270322	526713	374049	0.472619
EXP	437830	0.144302	362700	0.045132	019013	0.312604	469622	0.579022
VRD	0.231873	0.414183	0.616025	0.513900	066083	0.293067	103434	0.173649

<u>Tableau4:</u>

Coordonnees et qualite de representation des individus sur les axes

annee	Prin1	Prin2	qlt1	qlt2
1969	3.55662	1.50535	0.78441	0.14052
1970	3.57546	-0.04273	0.93110	0.00013
1971	3.12027	-0.21808	0.83031	0.00406
1972	2.87553	-0.54758	0.89332	0.03239
1973	1.84936	0.02352	0.75517	0.00012
1974	-1.42432	0.32194	0.57269	0.02926
1975	-0.79476	-1.97215	0.11144	0.68621
1976	-1.16070	-2.50400	0.15851	0.73770
1977	-1.59726	-2.65758	0.25931	0.71786
1978	-0.37918	-1.74803	0.03739	0.79463
1979	-0.36150	1.35612	0.04004	0.56350
1980	-1.75965	1.20307	0.34868	0.16299
1981	-1.75001	1.40025	0.49152	0.31468
1982	-2.51840	0.84115	0.87166	0.09724
1983	-1.37918	1.88579	0.21797	0.40752
1984	-1.85228	1.15298	0.50000	0.19373

<u>Tableau5:</u>

Coordonnees des variables sur les axes

Dearson	Correlation	Coefficients.	N	_	16
Pear Son	connegation	COETTICIENTS,	IN	=	ΤО

Prin2	Prin1	
0.34678	0.85014	NET
0.62173	0.62963	INT
0.27580	-0.74214	SUB
-0.96163	0.20017	LMT
0.00168	-0.95386	DCT
-0.44767	0.86787	IMM
0.20985	-0.92571	EXP
0.60233	0.49025	VRD

INTERPRETATION

1) Choix du nombre d'axes à retenir

Nous utilisons pour cela le tableau 2. Le critère de Kaiser nous conduit à sélectionner deux axes, expliquant 82% de l'inertie totale du nuage.

Le critère du coude conduit ici à sélectionner 4 axes ainsi que le Scree-test. En réalité, on peut ici se contenter de sélectionner deux axes. En effet, d'un coté, la chute d'inertie est très importante dès le troisième axe, qui ne conserve plus que 8% de l'inertie totale ; de l'autre, les deux premiers axes conservent plus de 80% de l'inertie ce qui est très bon. Avec les deux premiers axes, nous disposons donc d'un espace compréhensible par l'œil sans subir une déformation trop prononcée du nuage.

2) Graphes sur le plan factoriel (1,2)

Representation des variables axe2 * axe1

Representation des individus axe2 * axe1

3) Interprétation des axes

<u>Axe 1:</u>

<u>Variables</u>: On utilise le tableau 3 : on compare les valeurs de la colonne Prin1, coordonnées du premier axe factoriel, à la racine de la contribution moyenne $1/\sqrt{8} = 35\%$, le signe donnant le sens de contribution. On obtient :

-	+
DCT	NET
EXP	IMM
(SUB)	

SUB est très proche de la contribution moyenne, on l'intègrera dans l'interprétation si elle va dans le sens de celle qui est faite sans elle.

L'axe 1 oppose les postes DCT, EXP (dettes à court terme et valeur d'exploitation élevée) et éventuellement SUB (subventions) aux postes NET et IMM (capitaux propres élevés et nombre important d'immobilisation).

Toutes les variables sont bien représentées sur l'axe excepté LMT (et VRD dans une moindre mesure) (tableau 5). La première composante principale explique donc correctement tous les postes, sauf ces deux derniers.

<u>Individus</u>: On utilise le tableau 4 : on compare les valeurs de la colonne Prin1à la racine de la première valeur propre $\sqrt{4,470}$ =2,11, le signe donnant le sens de contribution. On obtient :

-	+
1982	1969
	1970
	1971
	1972

Le premier axe met donc en opposition la structure de bilan l'année 1982 aux quatre années précédant le premier choc pétrolier. En fait, il isole les secondes, les autres coordonnées étant toutes négatives.

Sont bien représentées sur l'axe les années 73 74 81 84, en plus des années contribuant fortement à l'axe.

<u>Conclusion</u>: L'axe 1 oppose donc les années 1969 à 1972, marquées par un poids important dans la structure de leur bilan des postes NET et IMM, et un poids faible des postes DCT et EXP aux années plus récentes (à l'exception de 73), qui présentent le profil inverse. Pour illustrer ce résultat, nous pouvons revenir aux données sources. En nous servant des indications du tableau 0, nous avons :

Année	NET	DCT	IMM	EXP
1969	17.93	19.86	25.45	5.34
1970	16.21	19.11	26.58	<u>5.01</u>
1971	<u>19.01</u>	<u>17.87</u>	25.94	5.40
1972	18.05	18.83	26.05	5.08
1973	16.56	20.36	23.95	6.19
1982	11.75	25.04	18.11	14.71
Moyenne	13.85	22.37	21.98	10.32
Minimum	9.46	<u>17.87</u>	17.61	<u>5.01</u>
maximum	<u>19.01</u>	25.05	26.58	16.67

Axe 2:

<u>Variables</u>: Dans le tableau 3, on compare les valeurs de la colonne Prin2 à 35% le signe donnant le sens de contribution. On obtient :

-	+
LMT	INT
	VRD

L'axe 2 oppose le poste LMT (endettement à moyen et long terme) aux postes INT et VRD (créances à court terme et capitaux propres).

Les autres variables sont assez mal représentées sur l'axe, donc assez mal expliquées par celui-ci.

<u>Individus</u>: On utilise le tableau 4 : on compare les valeurs de la colonne Prin2, à $\sqrt{2,11}$ =1,45, le signe donnant le sens de contribution. On obtient :

-	+
1975	1983
1976	(1969)
1977	
1976 1977 1978	

L'axe 2 oppose les années 75 à 78 aux années 83 et éventuellement 69. Les années 75 à 78 sont celles de l'entre deux chocs pétroliers. Les années 83, et plus encore 69 sont assez mal représentées sur l'axe. Elles ne sont pas bien expliquées par l'axe ; on ne les fera donc pas intervenir dans l'interprétation.

<u>Conclusion</u>: L'axe 2 isole les années de l'entre deux chocs, 75 à 78, caractérisées par un poids important du poste LMT et un poids faible des postes VRD et INT. La encore, un retour aux données brutes vient confirmer cette interprétation :

Année	INT	LMT	VRD
1975	2.42	10.83	<u>15.49</u>
1976	2.46	<u>11.81</u>	16.30
1977	2.33	11.46	15.77
1978	2.95	10.72	16.20
1983	3.05	7.12	18.97
moyenne	3.13	8.87	17.16
minimum	2.33	6.76	<u>15.49</u>
maximum	3.96	11.81	19.21

Synthèse:

L'interprétation de l'ACP peut être achevée par une analyse des proximités entre points sur les plans factoriels. En effet, au vu des graphiques, on peut distinguer plusieurs groupes. Avant d'interpréter ces proximités, il s'agit de s'assurer de la qualité de représentation des points :

Les qualités de représentation sur le plan (1,2) des individus sont données ci-dessous :

0,92493
0,93123
0,83437
0,92571
0,75529
0,60195
0,79765
0,89621
0,97717
0,83202
0,60354
0,51167
0,8062
0,9689
0,62549
0,69373

Les individus sont donc tous à peu près bien représentés sur les axes.

Il n'est pas nécessaire de calculer les qualités de représentation des variables. Les variables bien représentées sont celles qui sont proches du bord du cercle des corrélations (telles que $x^2 + y^2 = 1$; en particulier les variables qui sont situées sur les axes et de coordonnée 1).

Ici, schématiquement, trois périodes apparaissent :

- la période antérieure au premier choc pétrolier 1969-1973. Le bilan est alors marqué par les postes situation nette et immobilisations. En revanche, l'endettement à court terme et le poste valeurs d'exploitation sont peu importants.
- Le période de l'entre deux chocs, 1975-1978, au cours de laquelle le groupe s'engage dans une politique d'endettement à long et moyen terme.
- La période postérieure au second choc, après 1979, qui voit l'essor de l'endettement à court terme, ainsi que dans une moindre mesure des subventions.

On peut également donner le tableau C, constitué des deux premières colonnes du tableau 4.

<u>Conclusion</u>: Sur cet exemple aux dimensions modestes, apparaissent les résultats que l'analyse des données permet d'obtenir :

- -une mise en évidence des traits majeurs contenus dans les données et qui sont sériés axe par axe.
- l'existence de relations d'attraction ou d'opposition entre variables.
- -une mise en évidence de sous-groupes homogènes que l'analyse permet d'interpréter.

Ici, la partition peut être opérée à vue sur le plan correspondant dans la mesure où le nombre d'éléments à représenter étant faible, le nuage ne présente pas de continuum de points. Tel n'est pas le cas lorsque le jeu de données est plus important.

Signalons que le plan précédent livré avec les commentaires appropriés constitue un excellent outil d'analyse. Cet exemple permet de souligner les écueils à éviter. Il importe de rendre les représentations graphiques lisibles et de les accompagner d'un texte expliquant à la fois leur obtention et leur signification.

Representation des individus axe2 * axe1

ANNEXE

data alim; input csp \$ PAO PAA VIO VIA POT LEC RAI PLP;

cards;

AGRI 167 1 163 23 41 8 6 6 SAAG 162 2 141 12 40 12 4 15 PRIN 119 6 69 56 39 5 13 41 CSUP 87 11 63 111 27 3 18 39 CMOY 103 5 68 77 32 4 11 30 EMPL 111 4 72 66 34 6 10 28 OUVR 130 3 76 52 43 7 7 16 INAC 138 7 117 74 53 8 12 20; run:

proc princomp data=alim out=b vardef=n; var PAO PAA VIO VIA POT LEC RAI PLP; run;

data c; set b; array k{*} prin1-prin8; disto=uss(of k{*}); qlt1=prin1*prin1/disto; qlt2=prin2*prin2/disto;

```
keep prin1-prin2 qlt1-qlt2 csp;
run;
proc print data=c;
id csp;
var prin1-prin2 qlt1-qlt2;
title 'Coordonnees et qualite de representation des individus sur les axes';
run;
proc corr data=b out=d noprob nosimple;
var prin1-prin2;
with PAO PAA VIO VIA POT LEC RAI PLP;
run;
data indiv;set b;
x=prin1;y=prin2;
xsys='2';ysys='2';
text = csp;
run;
proc gplot data=indiv;
title "Representation des individus axe2 * axe1";
plot y*x /annotate=indiv frame href=0 vref=0;
symbol1 v=none;
run;
data varia;set d;
x=prin1;y=prin2;xsys='2';ysys='2';
xmin=-1;xmax=1;ymax=1;ymin=-1;
text = _name_;
run;
proc gplot data=varia;
title "Representation des variables axe2 * axe1";
plot y*x /annotate=varia frame href=0 vref=0 haxis=-1 to 1 vaxis=-1 to 1;
symbol1 v=none;
run;
quit;
```