

Faculdade de Engenharia Elétrica Teoria da Computação Prof. Felipe A. Louza

Lista 7

Autômatos de Pilha

Questão 1

Considere o seguinte AP $P = (\{q_0, q_1\}, \{0, 1\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_1\})$ com a seguinte função de transição:

1.
$$\delta(q_0, 0, Z_0) = \{(q_0, BZ_0)\}.$$

5.
$$\delta(q_0, 1, B) = \{(q_0, \mathcal{E})\}.$$

2.
$$\delta(q_0, 0, B) = \{(q_0, BB)\}.$$

6.
$$\delta(q_0, 1, A) = \{(q_0, AA)\}.$$

3.
$$\delta(q_0, 0, A) = \{(q_0, \mathcal{E})\}.$$

$$7 \delta(a_0 \mathcal{E} Z_0) = \{(a_1 Z_0)\}$$

4.
$$\delta(q_0, 1, Z_0) = \{(q_0, AZ_0)\}.$$

7.
$$\delta(q_0, \mathcal{E}, Z_0) = \{(q_1, Z_0)\}.$$

- (a) Qual é a linguagem L reconhecida por P?
- (b) Mostre a sequência de descrições instantâneas do AP ao processar as cadeias:

(a)
$$w = 0101$$

(b)
$$w = 001110$$

(c)
$$w = 010$$

Questão 2

Considere a linguagem $L = \{a^n b^n \mid n \ge 0\}.$

- (a) Projete um AP para reconhecer a linguagem L (por estado final).
- (b) Mostre a sequência de descrições instantâneas do AP ao processar as cadeias:

(a)
$$w = \mathcal{E}$$

(b)
$$w = ab$$

(c)
$$w = aabbb$$

Questão 3

Considere a linguagem $L = \{wcw^R \mid w \in \{a, b\}^+\}.$

- (a) Projete um AP para reconhecer a linguagem L (por estado final).
- (b) Mostre a sequência de descrições instantâneas do AP ao processar as cadeias:

1

(a)
$$w = c$$

(b)
$$w = abcba$$

(c)
$$w = acb$$

Questão 4

Considere a linguagem $L = \{a^n b^m a^{n+m} \mid n \ge 0 \text{ e } m \ge 0\}.$

- (a) Projete um AP para reconhecer a linguagem L (por estado final).
- (b) Mostre a sequência de descrições instantâneas do AP ao processar as cadeias:
 - (a) w = abaaa
 - (b) w = aabaaa
 - (c) w = aabbbaaaaa

Questão 5

Considere a linguagem $L = \{w \mid \text{w possui o mesmo número de } \mathbf{a}\text{'s e } \mathbf{b}\text{'s, com } w \in \{a,b\}^*\}.$

- (a) Projete um AP para reconhecer a linguagem L (por pilha vazia).
- (b) Mostre a sequência de descrições instantâneas do AP ao processar as cadeias:
 - (a) w = abbaa
 - (b) w = bbbaaa
 - (c) w = abbaabba

Questão 6

Considere a linguagem $L = \{a^n b^{2n} \mid n > 0\}.$

- (a) Projete um AP para reconhecer a linguagem L (por pilha vazia).
- (b) Mostre a sequência de descrições instantâneas do AP ao processar as cadeias:
 - (a) w = abb
 - (b) w = aabbb
 - (c) w = aaabbbb

Questão 7

Considere o seguinte Autômato de Pilha P_N (com aceitação por pilha vazia):

- (a) Qual é a linguagem L reconhecida por P_N ?
- (b) Converta o AP P_N para que ele reconheça a linguagem $N(P_N)$ por estado final, isto é, $N(P_N) = L(P_N)$.

Utilize o procedimento visto em aula.

Questão 8

Considere o seguinte Autômato de Pilha P_F (com aceitação por estado final):

- (a) Qual é a linguagem L reconhecida por P_F ?
- (b) Converta o AP P_F para que ele reconheça a linguagem L por pilha vazia, isto é, $L(P_F) = N(P_F)$.

 Utilize o procedimento visto em aula.

Questão 9

É possível que um AP nunca pare? Se sim, mostre um exemplo.

Questão 10

Seja um AP P que aceita uma linguagem L por pilha vazia, e suponha que \mathcal{E} não está em L. Como você modificaria P para que ele aceite $L \cup \{\mathcal{E}\}$ por pilha vazia?