Chapter 1

Appendix C

Roy (2009) presents two nested models that specify the condition of equality as required, with a third nested model for an additional test. There three formulations share the same structure, and can be specified by making slight alterations of the code for the Reference Model.

For these tests, four candidate LME models are constructed. The differences in the models are specifically in how the the D and Σ matrices are constructed, using either an unstructured form or a compound symmetry form. To illustrate these differences, consider a generic matrix A,

Matrix

1.1 Roy's Candidate Models

For the blood pressure data used in Roy (2009), all four candidate models are implemented by slight variations of this piece of code, specifying either pdSymm or pdCompSymm in the second line, and either corSymm or corCompSymm in the fourth line.

1.2 Test 1

The first of Roy's candidate model can be implemented using the following code;

```
> Ref.Fit = lme(y ~ meth-1, data = dat, #Symm , Symm#
+    random = list(item=pdSymm(~ meth-1)),
+    weights=varIdent(form=~1|meth),
+    correlation = corSymm(form=~1 | item/repl),
+    method="ML")
```

1.2.1 Model Fit 1

This is a simple model with no interactions. There is a fixed effect for each method and a random effect for each subject.

$$y_{ijk} = \beta_j + b_i + \epsilon_{ijk}, \qquad i = 1, \dots, 2, j = 1, \dots, 85, k = 1, \dots, 3$$

$$b_i \sim \mathcal{N}(0, \sigma_b^2), \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Linear mixed-effects model fit by $\ensuremath{\mathsf{REML}}$

Data: dat

Log-restricted-likelihood: -2155.853

Fixed: BP ~ method

(Intercept) methodS

127.40784 15.61961

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 29.39085 12.44454

Number of Observations: 510

Number of Groups: 85

The following output was obtained.

Linear mixed-effects model fit by REML

Data: dat

Log-restricted-likelihood: -2047.714

Fixed: BP ~ method

(Intercept) methodS

127.40784 15.61961

Random effects:

Formula: ~1 | subject

(Intercept)

StdDev: 28.28452

Formula: ~1 | method %in% subject

(Intercept) Residual

StdDev: 12.61562 7.763666

Number of Observations: 510

Number of Groups:

subject method %in% subject

85 170

Using this R implementation for other data sets requires that the data set is structured appropriately (i.e. each case of observation records the index, response, method and replicate). Once formatted

properly, implementation is simply a case of re-writing the first line of code, and computing the four candidate models accordingly.

The fixed effects estimates are the same for all four candidate models. The inter-method bias can be easily determined by inspecting a summary of any model. The summary presents estimates for all of the important parameters, but not the complete variance-covariance matrices (although some simple R functions can be written to overcome this). The variance estimates for the random effects for MCS2 is presented below.

Random effects:

Formula: ~method - 1 | subject

Structure: Compound Symmetry

StdDev Corr

methodJ 30.765

methodS 30.765 0.829

Residual 6.115

Similarly, for computing the limits of agreement the standard deviation of the differences is not explicitly given. Again, A simple R function can be written to calculate the limits of agreement directly.

This is a simple model, this time with an interaction effect. There is a fixed effect for each method. This model has random effects at two levels b_i for the subject, and another, b_{ij} , for the respective method within each subject.

$$y_{ijk} = \beta_j + b_i + b_{ij} + \epsilon_{ijk},$$
 $i = 1, \dots, 2, j = 1, \dots, 85, k = 1, \dots, 3$
 $b_i \sim \mathcal{N}(0, \sigma_1^2),$ $b_{ij} \sim \mathcal{N}(0, \sigma_2^2),$ $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

In this model, the random interaction terms all have the same variance σ_2^2 . These terms are assumed to be independent of each other, even within the same subject.

1.3 Roy's Reference Model

Conventionally LME models can be tested using Likelihood Ratio Tests, wherein a reference model is compared to a nested model.

1.4 Variability Test 1: Within item Variability

```
> NMW.fit = lme(y ~ meth-1, data = dat, #Symm , CS#
+ random = list(item=pdSymm(~ meth-1)),
+ weights=varIdent(form=~1|meth),
+ correlation = corCompSymm(form=~1 | item/repl),
+ method="ML")
```

1.4.1 Test 2

The second variability test determines maximum likelihood estimates of the within-subject variance covariance matrix, for both the reference model, in CS form, and the alternative model in symmetric form.

For the null model the MLE of the within-subject variance covariance matrix is given below.

$$\hat{\Sigma}_{Symm} = \begin{pmatrix} 37.40 & 16.06 \\ 16.06 & 83.14 \end{pmatrix} \tag{1.1}$$

With the alternative model the MLE is as follows:

$$\hat{\Sigma}_{CS} = \begin{pmatrix} 60.27 & 16.06 \\ 16.06 & 60.27 \end{pmatrix}$$

$$\hat{\Sigma}_{CS} = \begin{pmatrix} 60.27 & 16.06 \\ 16.06 & 60.27 \end{pmatrix}, \qquad \hat{\Sigma}_{Symm} = \begin{pmatrix} 37.40 & 16.06 \\ 16.06 & 83.14 \end{pmatrix}.$$

$$(1.2)$$

The outcome of this test is that it can be assumed that they have equal The test statistic is the difference of the -2 log likelihoods; 28.617. The p-value is less than 0.0001. In this case we reject the null hypothesis that both models have the same within-subject variabilities.

A likelihood ratio test is perform to compare both candidate models. The log-likelihood of the alternative model model is -2045.0. As before, the null model has a log-likelihood of -2030.7. The

test statistic is computed as 28.617, again presented with greater precision. The p-value is less than 0.0001. In this case we reject the null hypothesis of equal within-subject variability. Consequently the third of Roy's criteria is unfulfilled.

```
> anova(MCS1,MCS2)
>

Model df    AIC    BIC logLik    Test L.Ratio p-value
MCS1    1  8 4077.5 4111.3 -2030.7
MCS2    2  7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
```

The test statistic is the difference of the -2 log likelihoods; 0.153. The p-value is 0.696. Therefore we fail to reject the hypothesis that both have the same between-subject variabilities.

1.5 Variability Test 2: Between Subject Variances

This is a test on whether both methods A and B have the same between-subject variability or not.

$$H_0: g_A = g_B$$
 (1.3)

$$H_A: g_A \neq g_B \tag{1.4}$$

When implemented using R, this test is facilitated by constructing a model specifying a symmetric form for G (i.e. the alternative model) and comparing it with a model that has compound symmetric form for G (i.e. the null model). For this test $\hat{\Sigma}$ has a symmetric form for both models, and will be the same for both.

Nested Model (Between-Item Variability)

For example, the first test model 'test1.nlme' is implemented with the same code as ref.nlme, except for the term pdCompSymm in the second line, rather than pdSymm.

Nested Model (Between-Item Variability)

```
> NMB.fit = lme(y ~ meth-1, data = dat, #CS , Symm#
+ random = list(item=pdCompSymm(~ meth-1)),
+ correlation = corSymm(form=~1 | item/repl),
+ method="ML")
```

With the alternative model, the MLE of the between-subject variance covariance matrix G is given by

$$\hat{\boldsymbol{G}}_{Symm} = \begin{pmatrix} 923.98 & 785.24 \\ 785.24 & 971.30 \end{pmatrix} \tag{1.5}$$

With the refence model the MLE is as follows:

$$\hat{\boldsymbol{G}}_{CS} = \begin{pmatrix} 946.50 & 784.32 \\ 784.32 & 946.50 \end{pmatrix} \tag{1.6}$$

1.6 Variability Test 3: Overall Variability

Additionally there is a third nested model, that can be used to test overall variability, substantively a a joint test for between-item and within-item variability. The motivation for including such a test in the suite is not clear, although it does circumvent the need for multiple comparison procedures in certain circumstances, hence providing a simplified procedure for non-statisticians.

```
> NMO.fit = lme(y ~ meth-1, data = dat, #CS , CS#
+ random = list(item=pdCompSymm(~ meth-1)),
+ correlation = corCompSymm(form=~1 | item/repl),
+ method="ML")
```

1.6.1 Model Fit 3

This model is a more general model, compared to 'model fit 2'. This model treats the random interactions for each subject as a vector and allows the variance-covariance matrix for that vector to be estimated from the set of all positive-definite matrices. y_i is the entire response vector for the *i*th subject. X_i and Z_i are the fixed- and random-effects design matrices respectively.

$$y_i = X_i \boldsymbol{\beta} + Z_i b_i + \epsilon_i, \qquad i = 1, \dots, 85$$

$$oldsymbol{Z_i} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Psi}), \qquad oldsymbol{\epsilon_i} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\sigma^2}oldsymbol{\Lambda})$$

1.6.2 Test 3

The last of the three variability tests is carried out to compare the overall variabilities of both methods. With the null model the MLE of the within-subject variance covariance matrix is given below. The overall variabilities for the null and alternative models, respectively, are determined to be as follows;

$$\hat{\Omega}_{CS} = \begin{pmatrix} 1007.92 & 801.65 \\ 801.65 & 1007.92 \end{pmatrix}, \qquad \hat{\Omega}_{Symm} = \begin{pmatrix} 961.38 & 801.40 \\ 801.40 & 1054.43 \end{pmatrix},$$

The log-likelihood of the alternative model model is -2045.2, and again, the null model has a log-likelihood of -2030.7. The test statistic is 28.884, and the p-value is less than 0.0001. The null hypothesis, that both methods have equal overall variability, is rejected. Further to the second variability test, it is known that this difference is specifically due to the difference of within-subject variabilities.

This is a test on whether both methods A and B have the same overall variability or not.

$$H_0: \ \sigma_A = \sigma_B \tag{1.7}$$

$$H_A: \ \sigma_A = \sigma_B \tag{1.8}$$

The null model is constructed a symmetric form for both \hat{D} and $\hat{\Lambda}$ while the alternative model uses a compound symmetry form for both.

With the null model the MLE of the within-subject variance covariance matrix is given below.

$$\hat{\Sigma}_{Symm} = \begin{pmatrix} 961.38 & 801.40 \\ 801.40 & 1054.43 \end{pmatrix}$$
 (1.9)

With the alternative model the MLE is as follows:

$$\hat{\Sigma}_{CS} = \begin{pmatrix} 1007.92 & 801.65 \\ 801.65 & 1007.92 \end{pmatrix}$$
 (1.10)

The test statistic is the difference of the -2 log likelihoods; 28.884. The p-value is less than 0.0001. We again reject the null hypothesis. Each model has a different overall variability, a foregone conclusion from the second variability test.

Bibliography

Roy, A. (2009). An application of the linear mixed effects model to ass the agreement between two methods with replicated observations. *Journal of Biopharmaceutical Statistics* 19, 150–173.