Wydział	lmię i nazwisko		Rok 2	Grupa 2	Zespół 2
WFiIS	Kotłowska Karolina				
	2. Such Katarzyna				
PRACOWNIA	Temat:			Nr ćwiczenia 2	
FIZYCZNA WFiIS AGH	Zależność okresu drgań wahadła od amplitudy				
Data wykonania 29.03.2021	Data oddania 12.03.2021	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

1 Cel ćwiczenia

Zapoznanie się z ruchem drgającym i parametrami opisującymi ten ruch. Wyznaczenie zależności okresu drgań od amplitudy dla układu zbliżonego do wahadła matematycznego. Doświadczalne badanie funkcji gęstości prawdopodobieństwa dla błędów przypadkowych.

2 Wykonanie ćwiczenia

2.1 Opis problemu

Do wykonania doświadczenia użyłyśmy następujących przedmiotów:

- kulka zawieszona na dwóch niciach
- katomierz
- stoper

Najpierw wykonałyśmy 6 pomiarów 50 okresów dla wahadła wychylanego o 3 stopnie. Następnie wykonałyśmy pomiary 10 okresów zwiększając co każdy pomiar wychylenie o 5 stopni (zakres od 5 do 50). Końcowym etapem było wykonanie 100 pomiarów dla 2 okresów wahadła wychylanego o 3 stopnie.

3 Wyniki

Pomiar okres
u $\mathcal{T}_0,$ wychylenie: Pomiar okresów dla różnych kątów wychylenie:

liczba okresów k	czas t trwania m okresów [s]	czas trwania okresu [s]
50	64,530	1,291
50	64,500	1,290
50	64,540	1,291
50	64,470	1,289
50	64,500	1,290
50	64,410	1,288

Rysunek 1: Tabela 1. Pomiar okresu ${\cal T}_0$ dla kąta 3 stopnie

_						
	Kąt 1 [°]	Kąt 2 [°]	średni kąt [°]	m*T [s]	T [s]	(T-T0)/T0
	5,0	3,5	4,250	64,720	1,294	0,004
	10,0	7,5	8,750	64,650	1,293	0,002
	15,0	12,5	13,750	64,780	1,296	0,004
	20,0	17,0	18,500	65,060	1,301	0,009
	25,0	22,0	23,500	65,340	1,307	0,013
	30,0	26,0	28,000	65,660	1,313	0,018
	35,0	30,0	32,500	65,870	1,317	0,021
	40,0	35,0	37,500	66,440	1,329	0,030
	45,0	38,5	41,750	66,710	1,334	0,034
	50,0	43,0	46,500	67,340	1,347	0,044

Rysunek 2: Tabela 2. Pomiar zależności okresu od amplitudy

Pomiar okresów drgań, dla małego wychylenia: (kolejna strona)

nr pomiaru	mTi	Ti	nr pomiaru	mTi	Ti
1	2,450	1,225	51	2,480	1,240
2	2,500	1,250	52	2,660	1,330
3	2,660	1,330	53	2,580	1,290
4	2,530	1,265	54	2,510	1,255
5	2,490	1,245	55	2,620	1,310
6	2,610	1,305	56	2,560	1,280
7	2,540	1,270	57	2,630	1,315
8	2,660	1,330	58	2,320	1,160
9	2,540	1,270	59	2,580	1,290
10	2,600	1,300	60	2,480	1,230
11	2,640	1,320	61	2,430	1,215
12	2,460	1,230	62	2,600	1,300
13	2,630	1,315	63	2,500	1,250
14	2,680	1,340	64	2,660	1,330
15	2,550	1,275	65	2,520	1,260
16	2,600	1,300	66	2,620	1,310
17	2,490	1,245	67	2,640	1,320
18	2,510	1,255	68	2,520	1,260
19	2,590	1,295	69	2,600	1,300
20	2,510	1,255	70	2,590	1,295
21	2,340	1,170	71	2,570	1,285
22	2,680	1,340	72	2,590	1,295
23	2,580	1,290	73	2,620	1,310
24	2,530	1,265	74	2,440	1,220
25	2,580	1,290	75	2,720	1,360
26	2,510	1,255	76	2,520	1,260
27	2,600	1,300	77	2,640	1,320
28	2,550	1,275	78	2,560	1,280
29	2,710	1,355	79	2,570	1,285
30	2,540	1,270	80	2,600	1,300
31	2,610	1,305	81	2,380	1,190
32	2,670	1,335	82	2,570	1,285
33	2,500	1,250	83	2,580	1,290
34	2,610	1,305	84	2,500	1,250
35	2,580	1,290	85	2,580	1,290
36	2,630	1,315	86	2,430	1,215
37	2,510	1,255	87	2,530	1,265
38	2,630	1,315	88	2,620	1,310
39	2,480	1,240	89	2,540	1,270
40	2,650	1,325	90	2,600	1,300
41	2,480	1,240	91	2,630	1,315
42	2,370	1,185	92	2,540	1,270
43	2,600	1,300	93	2,620	1,310
44	2,570	1,285	94	2,470	1,235
45	2,690	1,345	95	2,640	1,320
46	2,560	1,280	96	2,680	1,340
47	2,710	1,355	97	2,560	1,280
48	2,520	1,260	98	2,670	1,335
49	2,640	1,320	99	2,430	1,215
50	2,710	1,355	100	2,630	1,315

Rysunek 3: Tabela 3. 100 pomiarów dla 2 okresów wahadła

4 Opracowanie wyników pomiarów

$$T_0 = \frac{\sum T_i}{n} = \frac{7,739}{6} = 1,290[s] \tag{1}$$

Estymator odchylenia standardowego dla okresów, korzystając z tabeli (1) (6 pomiarów):

$$s_T = \sqrt{\frac{\sum (T_i - T_0)^2}{n * (n - 1)}} = \sqrt{\frac{0,00001}{5}} = 0,001[s]$$
 (2)

Niepewność wyników pomiarów:

$$u(T) = \frac{s_T}{\sqrt{n}} = \frac{0,001}{\sqrt{6}} = 0,0005[s]$$
(3)

Rysunek 4: Wykres 1. Zależność względnej zmiany okresu wahadła od średniej amplitudy, gdzie niebieska krzywa - nasze pomiary, a pomarańczowa - krzywa teoretyczna

Krzywa teoretyczna powstała ze wzoru: $\frac{1}{16}\Theta^2 + \frac{11}{3072}\Theta^4$. Przykładowe obliczenia: $\frac{1}{16}*0,0005476 + \frac{11}{3072}*0,000029987 = 0,000344$

Wykresy teoretyczny i wyznaczony przez nas z wartości pomiarów, zbliżone są do siebie kształtem. Nasze wartości mieszczą się również w błędzie pomiaru - wygenerwoany wykres jest akceptowalny.

Dla trzeciej częsci ćwiczenia, średni okres drgań: $\bar{T} = 1,283[s]$,

Estymator odchylenia standardowego

$$s_T = \sqrt{\frac{\sum (T_i - \bar{T})^2}{(n-1)}} = \sqrt{\frac{0,168}{99}} = 0,041[s]$$
(4)

Niepewność wyników pomiaru okresu, tabela 3 (100 pomiarów):

$$u(T) = \frac{s_T}{\sqrt{n}} = \frac{0.041}{\sqrt{100}} = 0.004[s]$$
 (5)

Niepewność rozszerzona:

$$U(T) = k \cdot u(t) = 2 \cdot 0.004 = 0,008[s] \tag{6}$$

Histogram doświadczalny porównałyśmy z przeskalowaną krzywą Gaussa opisaną równaniem:

$$f(x) = n\Delta x \cdot \frac{1}{s\sqrt{2\pi}} \exp\left[-\frac{(x-\bar{x})^2}{2s^2}\right]$$
 (7)

$$f(x) = 100 * 0.05 * \frac{1}{0.04\sqrt{2\pi}} \exp\left[-\frac{(0.00345)^2}{2*0.0016}\right] = 17,205$$
 (8)

np. dla pierwszego pomiaru, gdzie n
 - liczba pomiarów, x - , \tilde{x} - , s -

Rysunek 5: Histogram dla $\Delta x=0.05s$

Liczba pomiarów	Przedział
4	1,16-1,21
26	1,21-1,26
44	1,26-1,31
24	1,31-1,36
2	1,36-1,41

Rysunek 6: Tabela 4. Liczba pomiarów przypadająca na dany przedział

W przedziale $(\bar{T} - s_T, \bar{T} + s_T) = (1,242s, 1,324s)$ znajduje sie 70 pomiarów. Jest to $\frac{70}{100} \cdot 100\% = 70\%$ całości, co jest zgodne z oczekiwaniami ponieważ według teoretycznych przewidywań wartość ta powinna wynosić 68%.

W przedziale $(\bar{T} - 2s_t, \bar{T} + 2s_T) = (1,201s, 1,365s,)$ znajduje się 96 pomiarów. Jest to $\frac{96}{100} \cdot 100\% = 96\%$ całości co jest zgodne z oczekiwaniami ponieważ według teoretycznych przewidywań wartość ta powinna wynosić 95%.

5 Wnioski

5.1

Wyniki, które otrzymałyśmy, nie są zadowalające dla części A, dla części B jest lepiej.

5.2

Niedokładności pomiarów wynikają z czasu reakcji człowieka przy pomiarze czasu, niedokładności w odczycie kąta (między innymi Θ_2 w zadaniu drugim przy braku odpowiednich narzędzi do zatrzymania wahadła w danym położeniu) oraz z nieidealnych drgań wahadła, wykonującego drgania nie tylko w danej płaszczyźnie, lecz również "na boki".

Dla tak małych wartości, które mierzyliśmy, błąd ludzki może być dużą częścią wyniku.

Sporym utrudnieniem w wykonywaniu pomiarów było położenie stanowiska pomiarowego. Pracowałyśmy w ciągłym pisku, słyszalnym z nieodległego stanowiska pomiarowego. Mogło to utrudnić skupienie się na poprawnym liczeniu do 40 czy 50. Warto zaznaczyć, że ciągłe patrzenie na wahadło, jest dość hipnotyzujące, co również mogło wpłynąć na zaburzenie wyników.