Introduction to Formal Semantics Probeklausur, 13. Juli 2022

Teachers: Dr. Volha Petukhova, Nicolaie Dominik Dascalu

NOTE/ Anmerkungen: number

- Please write your name on each page; matriculation number on the 1st page is sufficient/Bitte schreiben Sie Ihren Namen auf jedes Blatt. Die Immatrikulationsnummer reicht auf Seite 1.
- You can answer and provide examples either in English or German/Sie können Ihre Antworten sowohl auf Deutsch als auch auf Englisch geben und auch Ihre Beispiele auf Deutsch oder Englisch wählen.
- Please write clear and legibly. If the examiners will be not capable to read your answers, they will be not graded/If will Schreiben Sie bitte leserlich. Wenn wir etwas nicht lesen können, wird es nicht in die Bewertung mit einbezogen.
- Please do not use pencil; answers written in pencil will not be graded/Schreiben Sie Ihre Antworten bitte nicht mit Bleistift. Wir korrigieren nur Antworten, die nicht mit Bleistift geschrieben sind.
- Pay attention that all question parts are answered/Achten Sie darauf, alle Teile der Fragen zu beantworten.
- You have 90 minutes for 8 exam questions/ Sie haben 90 Minuten, um 8 Fragen zu beantworten.

Name:

Matriculation number/Matrikelnummer:

Bewertung:

Frage	Max. Punktzahl	Bewertung
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	
Note		

(a) Do the following entailments hold? Conversely, dash the entailment and show the correct answer.
 Sabrina and Tom are married. Sabrina and Tom are married to each other. Some student will go to the party. All students will go to the party. John thinks that pigs do not have wings. Pigs do not have wings.
(b) Are the following syllogisms correct?
P1. This is yellow.P2. This is a fountain pen.C. This is a yellow fountain pen.
[yes] [no]
P1 P2 C
(c) Translate the following sentences into FOL formulas.
 Bryan is the king of Ireland. Tom bought Carol a ring. Every sailor loves a mermaid.
(d) Represent a formal model for the following set of sentences. Note: All sentences have to belong to the same model. e.g. "Mirco runs", "Susan runs" $[[Mirco]]^M = \{a\}; [[runs]]^M = \{a,b\};$
 Tom plays soccer. Ann plays volleyball. Susan and Mark play soccer. Susan is healthy.

- (a) Identify all presupposition **triggers** in the sentences below and generate a corresponding **presupposition**.
- (b) Show how the generated in (b) presuppositions can be **cancelled** (**defeated**).
- (c) Represent the correct types and lambdas abstractions (as well as beta reductions) of the sentence in (iv), make use of the following tree. Please respect the defineteness condition.

- (i) Mary's husband cheated on her.
- (ii) Muriel spoke to her brother.
- (iii) John is happy there will be ice cream again.
- (iv) Neither thieves escaped penalty.

(a) Represent a matrix as a right-to-left curried function for the following set:

$$f_{Likes} = \left\{ \left\langle bonnie, clyde \right\rangle, \left\langle clyde, bonnie \right\rangle, \left\langle susan, megan \right\rangle \right\}$$

(b) Complete the following table accordingly: sentence - type - lambda abstraction

Yoda <u>floats</u>	$\langle e, t \rangle$	$\lambda x.Floats(x)$
Susan hates <u>herself</u>	•••	
	$\langle\langle e, t \rangle, \langle e, t \rangle\rangle$	
Cloe gave Mark the keys	•••	
	•••	$\lambda x.x$
Susann <u>is</u> scared of the dark	•••	
	$\langle t, t \rangle$	
Anakin is Luke <u>'s</u> father	•••	
		$\lambda P.\lambda Q. \forall x. [P(x) \to Q(x)]$

(c) Compute the following tree:

- (a) Represent the following sentences as generalised quantifiers:
 - 1. 10 tables have been reserved.
 - 2. Some of the cats play the piano.
 - 3. I pay you not more than 5 dollars.
 - 4. Sadly, none of the students tipped the waitress.
- (b) Compute the following trees:
 - 1. Sentence...

2. Sentence...

- Apply predicate modification to the **definite description** in (i).
- Transform the description in (i) into the sentence with relative clause and draw full tree including types and applying lambda conversion. HINT: do not forget to apply iota operators and traces
- Apply both quantifier raising and type shifting to the sentence in (ii), exemplify both readings due to the scope ambiguity.
 - (i) The broken cup.
 - (ii) Every student reads something.

(a) The only predicate that holds in the respective worlds is the one where "there is an $e \in D_e$ and e skates".

Task 1. Give a matrix representation of:

- 1. the intension of homer.
- 2. the intension of to skate.
- 3. the intension of Bart skates.

Task 2. Show if there is a necessary condition that holds within the model.

- (b) Represent a tree and the intensional reading of the following sentence:
 - 1. Prue is Piper's sister.
- (c) Give a formal representation of the *de re* and *de dicto* reading of the following sentences, and motivate your choice with a brief explanation:
 - 1. sentence ...
 - $2.\ sentence\ \dots$

- Specify the **Aktionsart** of the sentences below and apply a **coercion** mechanisms to change the eventuality type.
- Compute 'inner' aspect/ terminativity value of the sentence in (iii), use Verkuyl's approach.
- Provide a derivation for the sentence in (iv). Use the following tree:

- (i) John lived in Paris.
- (ii) Diane played the minute waltz.
- (iii) Jacqueline drinks wine.
- (iv) Simon failed.

- Represent the (i)-(iv) sentences below in event semantics, use **Neo- Davidsonian style**.
- Explain why **diamond entailments** for sentences below cannot be captured in terms of predicate logics but they can be captured in event semantics.
- **Negate** the event in (iv) and give a tree representation of it indicating types and applying lambda conversion. Respect two possible readings.
 - (i) I flew my spaceship to the Morning Star at night.
 - (ii) I flew my spaceship to the Morning Star.
 - (iii) I flew my spaceship at night.
 - (iv) I flew my spaceship.