CRP 4080: Introduction to Geographic Information Systems for planners

Lecture 5: Geocoding and digitizing

Wenzheng Li, Ph.D.
City and Regional Planning
Fall 2024

Recap – Geoprocessing tools

Key differences:

Spatial extent:

Clip: The output includes only the geometry of the input features that fall within the boundary of the clip layer.

Intersect: The output includes only the geometry that is common to all input layers.

Attributes:

Clip: The output retains the attributes of the input layer; no attributes from the clip layer are added.

Intersect: The output includes attributes from all intersecting layers, creating a new feature class with combined attributes.

Recap – Geoprocessing tools

Spatial extent: The output includes the full extent of both input layers. It retains all areas from all input layers, regardless they overlap or not.

Attribute table:

- The output feature class contains attributes from all input features.
- areas where features do not overlap the attributes of the non-overlapping areas are included (with null values)

Recap – Geoprocessing tools

Recap - Spatial join

- Spatial Join Relation: One to One and One to Many
- One-to-one operation: If multiple join features are found that have the same spatial relationship with a single target feature, the attributes from the multiple join features will be aggregated using a field map merge rule (e.g., count, mean, first/last, sum, etc).

Туре	Key	Count				
Apartment	Α	3				
House	В	1				

Keep all target features = False

Туре	Key	Count					
Apartment	Α	3					
House	В	1					
Commercial	С	0					

Keep all target features = True

Recap – Spatial join

- Spatial Join Relation: One to One and **One to Many**
- One-to-many operation: If multiple join features are found that have the same spatial relationship with a single target feature, the output feature class will contain multiple copies (records) of the target feature.

Join Layer

Туре	Key	Building_Name	Occupants			
Apartment	Α	Silverbirch Estates	130			
Apartment	Α	Pine Ridge	8			
Apartment	Α	Lake View	250			
House	В	Yellow	3			

Spatial join – example (Question 7 in the assignment)

Landmark.shp – 856 features

Tompkins Boundary (TCMnuis) – 16 features

Spatial join – example (Question 7 in the assignment)

- Target feature: Landmark.shp 856 features
- Join feature: Tompkins Boundary (TCMnuis) 16 features
- One to one:
 - Each landmark is lined to its corresponding municipalities
 - 856 features

- One to many:
 - Each landmark can link to multiple munis
 - Each landmark is within the boundary of only ONE munis
 - 856 features

Spatial join – example (Question 7 in the assignment)

- Target feature: Tompkins Boundary (TCMnuis) 16 features
- Join feature: Landmark.shp 856 features
- One to one:
 - Each munis contains multiple landmarks, but only ONE is linked to attribute table.
 - join_count (default field mapping rule)
 - 16 features

- One to many:
 - Each munis links to multiple landmarks
 - The number of features in the attribute table is equal to the number of links between munis and landmarks.
 - 854 features (why not 856?)

Overview

- Geocoding
- Topology
- On-screen Digitizing: Creating Vector Data

What is Geocoding?

Geocoding is the process of converting addresses or place names into geographic coordinates that can be mapped and analyzed spatially.

- Step 1: convert a description of addresses or place names into geographic coordinates (longitude/latitude)
- Step 2: convert geographic coordinates to points on map.

Address Matching Geocoding

Two inputs:

- 1) a text table with the address records to be geocoded.
- 2) a geographic reference layer, like streets

Output: a point file, where each point represents an address record; includes all attributes from original address table

Reference layer

Address Matching Geocoding in ArcGIS Pro

address locator:

- the functional tool in ArcGIS runs geocoding based on criteria you set.
- The address locator will match tabular address data to a reference file.
- Manual troubleshooting process for unmatched records.

How are addresses matched?

- Common method: matching address to street ranges.
- In urban areas, usually each street segment (arc) corresponds to a block. Each segment (which represents a record in the attribute table) has attributes for the left from and to and right from and to addresses.
- Hence Arc knows the left address and right address and the beginning and end of the block.
- You give it an address and it matches the street name, finds the address range it falls in (that is, the street segment it falls along) and interpolates the position of the address point based on its numeric distance between the from and to addresses on that block

Geocoding with streets: Address ranges

It looks for Main street, then for the 1000-1100 block

- •It places it on even (upper) side of street
- Position of 1060 is interpolated

Address Matching Geocoding in ArcGIS Pro

- Addresses to be matched are parsed into separate components (number, street name, etc.)
- Each component is compared to the same fields in the reference layer

The reference layer – TC road

FromLeft	ToLeft	FromRight	ToRigi	t L	. R	 	StreetNa	StreetType	PostType	FullStreet	 	ZipLeft	ZipRight	 MsagComLF	с	ountyL	 LeftState
2	20	1	19	Е	О		AYLA	WAY	WAY	AYLA WAY		14850	14850	 LANSING VILLAGE	T	OMPKINS	 NY
2	20	1	19	Е	О		MILLCROFT	WAY	WAY	MILLCRO		14850	14850	 LANSING VILLAGE	T	OMPKINS	 NY
2	98	1	99	Е	О		CROFT	PL	PLACE	CROFT PL		14850	14850	 LANSING VILLAGE	Т	OMPKINS	 NY
82	98	81	99	Е	0		BUSH	LN	LANE	BUSH LN		14850	14850	 LANSING VILLAGE	T	OMPKINS	 NY
														<u> </u>			

84 Bush LN, Lansing Village, Tompkins County, NY

Address	City	State	ZIP Code	Address2	84 Bush Lin, L
1728 Slaterville Rd	Ithaca	NY	14850	1728 Slaterville Rd, Ithaca, NY, 14850	
2309 N Triphammer Rd	Ithaca	NY	14850	2309 N Triphammer Rd, Ithaca, NY, 14850	
505 3rd St	Ithaca	NY	14850	505 3rd St, Ithaca, NY, 14850	
217 Jessup Rd	Ithaca	NY	14853	217 Jessup Rd, Ithaca, NY, 14853	
40 Graham Rd W	Ithaca	NY	14850	40 Graham Rd W, Ithaca, NY, 14850	
491 Brooktondale Rd	Brooktondale	NY	14817	491 Brooktondale Rd, Brooktondale, NY, 14817	
214 Cliff Park Rd	Ithaca	NY	14850	214 Cliff Park Rd, Ithaca, NY, 14850	
176 Main St	Newfield	NY	14867	176 Main St, Newfield, NY, 14867	
33 North St	Dryden	NY	13053	33 North St, Dryden, NY, 13053	dresses to be
15 Royal Rd	Ithaca	NY	14850	15 Royal Rd, Ithaca, NY, 14850 matche	ad
321 Eddy St	Ithaca	NY	14850	321 Eddy St, Ithaca, NY, 14850	z u

"Fuzzy" matching

- Joins and queries are based on exact matches
- Geocoding is able to match records when values may be close but not identical

- In ArcGIS Pro, candidates are scored based on closeness of matches (0-100)
- 80-100 is a good match.

Dealing with unmatched Records

- Manual Review and Correction: Manually inspect, identify potential errors: typos, incomplete information, etc.
- Adjust Matching Tolerance: Increase the tolerance or "fuzziness" in the matching algorithm to allow for more variation.
- Provide Default Matches: placing them in a general "unknown" category for further review.
- Use Alternative Data Sources: e.g., web-based mapping Apps use Google Map for geocoding

Geocoding based on web API

The Google Map Geocoding service which returns the corresponding longitude and latitude in terms
of the address

• An API allows one program to talk to another program. Many websites or services provide an API so you can query for information or download datasets in an automated way.

Topology

- Deals with geometric properties that remain invariable under certain transformations
- What properties of geographic objects remain constant when our geographic space is distorted (pulled and stretched)?
 - Properties like distance change, but adjacency or connectivity does not.

the Euler's Seven Bridges problem

Topology

Topology in GIS refers to the spatial relationships between features, such as adjacency, connectivity, and containment.

TOPOLOGY SPATIAL RELATIONSHIPS

CHAIN 1

LEFT POLY = A

RIGHT POLY = B

ADJACENCY

NODE 1 = CHAINS A, B, C

CHAIN A IS CONNECTED TO CHAINS B and C

CONNECTIVITY

POLY B CONTAINED WITHIN POLY A

CONTAINMENT

Topology Importance:

- Spatial Analysis allows GIS to perform spatial queries.
 i.e. Point in polygon, buffering, network analysis, polygon overlay
- Allows automated error detection and elimination. Open polygons, slivers, polygons that cannot exist next/within each other
- Processing Speed- is faster since relationships are defined
- Data Storage- less data is required to be stored; allows smaller files i.e.
 Polygon A & B share same polyline, thus need to store only once

Topology Importance:

Spatial Analysis - allows GIS to perform spatial queries.
 i.e. Point in polygon, buffering, network analysis, polygon overlay

Relationship (Optional)

selection on the client.

Specifies the spatial relationship that will be evaluated.

- Intersect—The features in the input layer will be selected if they intersect a selecting feature. This is the default.
- Intersect 3D—The features in the input layer will be selected if they
 intersect a selecting feature in three-dimensional space (x, y, and z).
- Intersect (DBMS)—The features in the input layer will be selected if
 they intersect a selecting feature.
 This option applies to enterprise geodatabases only. The selection
 will be processed in the enterprise geodatabase DBMS rather than
 on the client when all requirements are met (see usage notes).
 This option may provide better performance than performing the
- Within a distance—The features in the input layer will be selected if
 they are within the specified distance (using Euclidean distance) of a
 selecting feature. Use the Search Distance parameter to specify the
 distance.
- Within a distance 3D—The features in the input layer will be selected
 if they are within a specified distance of a selecting feature in threedimensional space. Use the Search Distance parameter to specify
 the distance.
- Within a distance geodesic—This spatial relationship is the same as Within a distance except that geodesic distance is used rather than planar distance. Distance between features will be calculated using a geodesic formula that takes into account the curvature of the

What I usually use: intersect, completely within, have their center in

Topological errors – sliver

- tiny polygon that is unintentionally created due to slight misalignments between the boundaries of adjacent polygons
- resulting from digitization errors or inaccuracies during spatial operations like overlay.

Source: wikpimedia

Topological errors

Exceptions

Sometimes topological "errors" reflect actual real-world situations.

- A dead-end street is necessarily a dangle.
- All roads end at the boundary of the data set.
- A highway overpass does not actually intersect the interstate.
- Such situations are termed **exceptions** and do not need to be fixed.

Creating Vector Data

Raster: aerial photograph

Vector objects, some digitized from the photograph

Snapping tolerance

- The snapping tolerance is the distance within which the pointer or a feature is snapped to another location.
- If the element being snapped to, such as a vertex or edge, is within the distance you set, the pointer automatically snaps to the location.
- In ArcGIS pro, the pointer icon will change as you enter within the snapping tolerance.

Tolerance units

- Screen units
 - User sets the tolerance as the number of pixels on the screen.
 - snapping tolerance distance vary depending on the zoom level of your map.
 - Easy to work with at all scales

- Map units
 - User sets the tolerance in map units (meters, feet, degrees)
 - Ensures consistent precision at all scales
 - May become difficult to work with when zoomed far in or far out from normal editing scale

Creating Vector Data

- By receiving signals from navigational satellites GPS (x, y coordinates)
- Automated vectorization converts a raster file into vector objects(ArcScan)
- Creating data from pre-existing data: Geoprocessing
- Creating data from attribute information: Geocoding/Address matching
- Through "heads up" (on-screen) digitizing Create vectors from raster layers (DOQs, aerials, scanned images) directly off a computer screen

"Heads-up" (on-screen) digitizing: a demo

Digitizing in ArcGIS Pro (youtube.com)

Part 2 - Lab 5: updating building polygons and road poly lines using on-screen digitizing

Creating new polygons

Creating new lines Editing attributes