- A) What is an outlier?

- An outlier is a data point in a dataset that is distant from all other observations.
- A data point that lies outside the overall distribution of the dataset.
- An outlier is an extremely high or extremely low value in the dataset.

The reason for an outlier to exists in a dataset are:

- · Variability in the data
- · An experimental measurement error

The impact of an outlier:

Outliers makes it difficult to analyze data and build a predictive model/algorithm, therefore there is a need to identify and remove them.

How to identify an outlier in any dataset?

There is no clear criteria for determining whether or not a data point is an outlier. As a result, there are a variety of standard approaches that are used to identify outliers.

The most common used technique using data visualization.

Example of Outlier in graph are:

B) Data Visualization / (Using Plotting to find outliers)

- Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics, and even animations.
- These visual displays of information communicate complex data relationships and data-driven insights in a way that is

C) Plotting in Pandas

- Pandas is a data analysis tool, but it also provides great options for data visualization.
- Pandas uses the plot() method to create graphs.

The Pandas plot() Method

• Pandas plot() make plots of Series or DataFrame.

Syntax:

df.plot()

Parameters:

- data: Series or DataFrame
- x and y parameters specify the values that you want on the x and y column.
- figsize specifies the size of the figure object.
- Title to be used for the plot.
- · legend to be placed on-axis subplots.
- X and y label: name to use for the label on the x-axis and y-axis.
- Subplots: make separate subplots for each column.
- Kind: the kind of plot to produce.

Different Plotting methods

In df.plot(), the kind parameter has the following options to implement plotting. These are:

1. Line Plot

kind = 'line'

By default, Line is used for plot()

2. Bar plot

kind = 'bar' or king = 'barh'

A bar plot is a plot that presents categorical data with rectangular bars. The lengths of the bars are proportional to the values that they represent.

barh gives horizontal plotting.

3. Scatter plot or Point plot

kind = 'scatter'

A scatter plot is used to plot correlations between two variables. These correlations are plotted in the form of markers of varying colors and sizes.

4. 'hist' for histogram

kind = 'hist'

A histogram is the most commonly used graph to show frequency distributions.

A histogram is a graphical display of data with bars of different heights, where each bar groups numbers into ranges.

5. 'kde' or 'density' for density plots

kind = 'density' or king = 'kde'

Pandas can generate a **Kernel Density Estimate (KDE)** plot using Gaussian kernels. A kernel density estimate plot shows the distribution of a single variable and can be thought of as a smoothed histogram.

6. 'pie' for pie plots

kind = 'pie'

▼ Let's create a DataFrame to learn to apply plot() in it.

```
import pandas as pd

df = pd.DataFrame({
    'name':['john','mary','peter','jeff','bill','lisa','jose'],
    'age':[23,78,22,19,45,33,20],
    'gender':['M','F','M','M','F','M'],
    'state':['california','dc','california','texas','texas'],
    'num_children':[2,10,3,3,20,15,4],
    'num_pets':[5,1,0,5,2,2,3]
})

df
```

	name	age	gender	state	num_children	num_pets
0	john	23	М	california	2	5
1	mary	78	F	dc	10	1
2	peter	22	М	california	3	0
3	jeff	19	М	dc	3	5
4	bill	45	М	california	20	2

→ 1) Line Plot

In df.plot(), we give kind = 'line', x axis column name, y axis column name, color of line, size of output image.

```
df.plot(kind='line', x='state', y='num_children', color='red', figsize=(10,6))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe5a23fbf90>

→ 2) Bar Plot

In df.plot(), we give kind = 'bar', x axis column name, y axis column name, color of line, size of output image.

```
df.plot(kind='bar',x='name',y='num_children',color='green', figsize=(10,6))
```


- 3)Scatter

10.0

In df.plot(), we give kind = 'scatter', x axis column name, y axis column name, color of line, size of output image.

df.plot(kind='scatter',x='name',y='age')

<matplotlib.axes._subplots.AxesSubplot at 0x7fe5a2261a90>

4) Histogram

In df.plot(), we give kind = 'hist', x axis column name, y axis column name, color of line, size of output image.

df.plot(kind='hist',y='age',x='num_children',color='red', figsize=(10,6))

→ 5) Density

df.plot(kind='kde',x='name',y='num_children',color='red', figsize=(10,6))

<matplotlib.axes._subplots.AxesSubplot at 0x7fe5adf08fd0>

→ 6) Pie Plot

df.plot(kind='pie',x='name',y='num_children', figsize=(10,6))

<matplotlib.axes._subplots.AxesSubplot at 0x7fe5a24ea690>

- Additional Points

The Complete parameters of plot() are:

DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)

Parameter Description:

- x The columns argument mentions the set of columns to be considered as the x axis in the plotting process. The default value of the argument is None.
- y The columns argument mentions the set of columns to be considered as the y axis in the plotting process. The default value of the argument is None.
- kind The kind argument is used to mention the type of graph to be used as a process of this plotting process. 'line': line plot (This is the default plotting kind value). 'bar': vertical bar plot. 'barh': horizontal bar plot. 'hist': histogram. 'box': boxplot. 'kde': Kernel Density Estimation plot. 'density': same as 'kde'. 'area': area plot. 'pie': pie plot. 'scatter': scatter plot. 'hexbin': hexbin plot.
- ax The Index argument mentions the axes object, the default value of this argument is none.
- subplots This is another boolean argument which is used to apply separate subplots for each and every column in place.
- sharex This is another boolean argument when the subplots=True, some among the x axis labels are set as invisible and x axis is shared, defaulting to True if ax is None otherwise False when an ax is passed in.
- sharey This is another boolean argument when the subplots=True, some among the y axis labels are set as invisible and y axis is shared, defaulting to True if ay is None otherwise False when an ay is passed in.
- layout This is a tuple type based on which the subplots are laid upon.
- figsize This mentions the size value in inches. use_index This uses the index as ticks for the x axis.
- title This is used for setting the title value for the graph. The value mentioned in the title will be in the top of the graph.
- grid A boolean argument with the default value as None, this is used to maintain the axis grid lines.
- legend Place the legend on the subplots of the axis.
- style The style argument holds values in list or dict. This argument is used to represent the style of line for each column.
- logx X axis level log scaling, this is a boolean argument and the default value is false.
- logy Y axis level log scaling, this is a boolean argument and the default value is false.
- loglog The loglog is used to maintain the log scaling in both x axis and y axis levels. This is a boolean argument and the default value is false.
- xticks The Xticks are associated with a value using this xticks argument. This argument takes input in the form of sequence.
- yticks The yticks are associated with a value using this yticks argument. This argument takes input in the form of sequence.
- xlim 2-tuple/list.
- ylim 2-tuple/list.
- rot The default value is None and this argument holds value in integer format. This mentions the rotation value for the ticks.
- fontsize The xticks and yticks are associated with a fontsize using this argument. The default value is None and this argument holds value in integer format.
- colormap The colormap is used for selecting colors from. This argument is ofstring type.
- colorbar This is of boolean type, when set to true it is helpfull in plotting the colorbar.
- position The bar and plot layout specific alignments. table When set to true it maps a table using the data associated to the dataframe. So the matplotlib's default layout will be used to meet this data. If a Series or DataFrame is passed, use passed data to draw a table.
- yerr The error bars will be displayed for more detail, corresponds to y axis.
- xerr The error bars will be displayed for more detail. corresponds to x axis. stacked Bar plots.
- sort_columns The plot ordering is determined based on the column names used.

- secondary_y Determines which column to plot.
- mark_right On using the secondary_y axis automatically markings are placed on the column labels.
- kwds keywords.

Note:

A histogram represents the frequency distribution of continuous variables Conversely, a bar graph is a diagrammatic comparison of discrete variables.

Histogram presents numerical data whereas bar graph shows categorical data.

Colab paid products - Cancel contracts here