Announcement: Error in text

At the bottom of page 949, there is a sign error, where it says:

"From this form you can see that the direction of dB/dt is the same as the direction of -\(\text{AB} \), ..."

It should read:

"From this form you can see that the direction of dB/dt is the same as the direction of $+\Delta B$, ..."

Last Time

• Faraday's Law:

$$emf = \oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot \hat{n} dA = -\frac{d\Phi_{\text{mag}}}{dt}$$

Today

- Superconductors
- Inductors

Metals

- Shiny
- Smooth
- Malleable
- Carry current(conduct electricity)

Metals and Current

- $P = IV = I^2R$
- Nonzero Resistance
- Wires radiate power away as heat
- You pay for more electricity than you receive!
- Electrons "scatter" off lattice, and lose energy

Can we reduce R?

Can we reduce R?

Resistivity $\rho = R/A$

METALS

Low T \rightarrow Small ρ Low T \rightarrow Smaller power loss

SUPERCONDUCTORS

Superconductors have R = 0

Superconductors

http://micro.magnet.fsu.edu

- Carry current perfectly
- Do not lose energy
- Current in a loop will run forever
- Expel magnetic fields (Meissner effect)

How does it happen?

iClicker Poll

(participation points only)

Can two pieces of matter occupy the same space at the same time?

A) YES

B) NO

Two kinds of particles

Fermions

(spin 1/2, 3/2, 5/2, etc.)

- Cannot occupy the same space at the same time
- Pauli exclusion principle

Antisocial

Bosons

(spin 0, 1, 2, etc.)

• Can occupy the same space at the same time

All Follow the Crowd

Electrons are Fermions

Pauli exclusion principle

Why most matter cannot occupy the same space at the same time

Bosons

Can occupy the same space at the same time

Photons are bosons

→ lasers

Helium is a boson → superfluidity

Bose condensation

- At low temperature, bosons flock to the lowest level
- Very stable state!
- Dissipationless flow
- Superfluidity (Helium)
- Superconductivity

(most metals do this at low T)

Lowest Energy State Cannot Dissipate Energy

Releasing a photon decreases the energy

Excited Atom

Atom in ground state *cannot* lose anymore energy.

→ Quantum Stability of Ground State

Ground State Atom

Superconductivity

- Pair electrons \rightarrow form bosons
- Bosons condense into the lowest energy state
- Lowest energy state *cannot* lose energy \rightarrow Electron pairs *cannot* dissipate energy
- Dissipationless current flow

And then there was 1986

http://www.eere.energy.gov/superconductivity/pdfs/frontiers.pdf

Mysteries of High Temperature Superconductors

- Brittle
- Ceramic
- Not Shiny
- Not metallic
- Magnetic inside!
- Make your own

http://www.superconductivecomp.com/

http://www.ornl.gov/reports/m/ornlm3063r1/pt7.html

We don't know how they work!

Prof. Carlson's Research on Superconductors:

Read the story at www.physics.purdue.edu

Magnetic flux through SC ring cannot change

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_{\mathrm{mag}}}{dt}$$
 Faraday's Law

Assume:
$$\oint \vec{E} \cdot d\vec{l} \neq 0$$

Then we would have: $I = \frac{|emf|}{R} \to \infty$ Impossible!

We are forced to conclude that $\frac{d\Phi_{\mathrm{mag}}}{dt} = 0$ must always

be true for the flux through a superconducting ring.

Meissner Effect

Even more extreme! Superconductors *expel* magnetic fields.

Inductance

Basic idea: Because of Faraday's Law, coils of wire take awhile to reach steady state.

Think about a solenoid in steady state: $B = \frac{\mu_o NI}{I}$

Now let the current change.

→ Induces emf in every loop:

$$emf_{\text{loop}} = \left| \frac{d\Phi_{\text{mag}}}{dt} \right| = \frac{d}{dt} \left[\frac{mu_o NI}{d} \pi R^2 \right]$$

$$= \frac{mu_o N \pi R^2}{d} \frac{dI}{dt} \quad each \ loop$$

N turns in the solenoid \rightarrow

$$emf_{\rm tot} = N(emf_{\rm loop}) = \frac{mu_oN^2\pi R^2}{d}\frac{dI}{dt}$$
 Induced emf opposes the change

$$|emf_{
m tot}| \equiv L igg| rac{dI}{dt} igg| \;\;\; {
m Definition \ of \ Inductance \ L}$$

$$L = rac{m u_o N^2}{d} \pi R^2 egin{array}{c} ext{INDUCTANCE} \ ext{OF SOLENOID} \end{array}$$

Energy Stored in Inductor

$$P = IV$$
 Power

$$|emf_{
m tot}| \equiv L \left| rac{dI}{dt} \right|$$
 Inductor

As inductor reaches steady state, Power going into it is: $P = I(emf_{\text{tot}}) = LI\frac{dI}{dt}$

To find the total energy in the inductor in steady state, integrate P:

$$E_{\mathrm{tot}} \equiv \int P dt = L \int I \frac{dI}{dt} dt$$
 Cancel the dt's
$$= L \int I dI = L \left[\frac{1}{2} I^2 \right]_{I_i=0}^{I_f=I} = \left[\frac{1}{2} L I^2 = E_{\mathrm{tot}} \right]$$
 Energy stored in INDUCTOR

Energy Stored in Solenoid

$$E_{
m tot}=rac{1}{2}LI^2$$
 Inductor $B=rac{\mu_o NI}{d}$ Solenoid $L=rac{mu_o N^2}{d}\pi R^2$ Inductance of Solenoid

$$I = \frac{Bd}{\mu_o N} \qquad \Rightarrow E = \frac{1}{2} L \left(\frac{Bd}{\mu_o N}\right)^2 = \frac{1}{2} \left(\frac{mu_o N^2}{d} \pi R^2\right) \left(\frac{Bd}{\mu_o N}\right)^2$$
$$= \frac{1}{2} \frac{1}{\mu_o} (\pi R^2 d) B^2 = \frac{1}{2} \frac{1}{\mu_o} (\text{Volume}) B^2$$

$$\frac{E}{\text{Volume}} = \frac{1}{2} \frac{1}{\mu_o} B^2$$

Energy Density of Magnetic Field

(Result is more general than solenoid)

Electromagnetic Energy Density

$$\frac{E}{\text{Volume}} = \frac{1}{2} \frac{1}{\mu_o} B^2$$

$$\frac{E}{\text{Volume}} = \frac{1}{2} \epsilon_o E^2 \quad \text{(Ch. 17)}$$

$$\frac{E_{\text{tot}}}{\text{Volume}} = \frac{1}{2}\epsilon_o E^2 + \frac{1}{2}\frac{1}{\mu_o}B^2$$

Total Energy in any Electromagnetic Field

LC Circuit

$$E_{\mathrm{tot}} = \frac{1}{2}LI^2$$
 Inductor

$$E = \frac{1}{2}CV^2$$
 Capacitor (Ch. 17)

$$E_{\text{tot}} = \frac{1}{2}CV^2 + \frac{1}{2}LI^2$$

Which term is most like KE? Which term is most like PE?

LC Circuit is a Harmonic Oscillator

$$E_{
m tot} = rac{1}{2} L I^2$$
 Inductor

$$E = \frac{1}{2}CV^2$$
 Capacitor (Ch. 17)

Kinetic Energy in Inductor
$$E_{\rm tot} = \frac{1}{2}CV^2 + \frac{1}{2}LI^2$$
 Potential Energy in Capacitor

When C is fully charged, $I \rightarrow 0$.

When C is fully discharged, I → max, and inductor's reluctance to change "swings" the electrons the other way fully charging the capacitor with the opposite polarity.

KE and PE trade back and forth, just like any Harmonic Oscillator.

$$T = 2\pi\sqrt{LC}$$
 Period of LC circuit

Today

- Superconductors
- Inductors