

Identification nommée du locuteur par analyse conjointe

4 mai 2011 LIUM - Le Mans

Cadre de travail

- Collaboration entre Le Mans (LIUM) et Nantes (LINA)
- Deux domaines de recherche
 - Reconnaissance de la parole (Le Mans)
 - TALN (Nantes)

Nommer les locuteurs Qui parle, et quand ?

Contexte

- Domaine assez peu étudié
- Étape importante pour plusieurs applications
 - Systèmes de compréhension
 - Recherche documentaire

Propositions (I)

- Méthodes utilisant des modèles acoustiques
 - Reconnaissance automatique du locuteur
 - Enregistrements de chaque locuteur
 - Difficile à obtenir

Propositions (2)

- Méthodes utilisant la transcription du signal
- Extraction des noms de locuteurs
 - Reconnaissance automatique de la parole
 - Détection d'entités nommées

Attributions locales

4 possibilités

- Pour chaque nom de locuteur détecté
 - Locuteur suivant
 - Locuteur courant
 - Locuteur précédent
 - Autre locuteur

Aperçu global

Locu 1

Locu 2

Locu 3

Maude Bayeu Joël Collado Didier Julia

Maude Bayeu
Didier Julia
Emmanuel Cugny
Jacques Chirac

...

Difficultés

- Attribuer un couple prénom/nom à un des tours de paroles (étiquettes)
- Prendre en compte les conflits
- Affecter un seul couple prénom/nom à un locuteur

Hypothèses

- Locuteurs annoncés par leur prénom/nom
- Prénoms/noms correctement transcrits
- Contexte lexical exploitable

Identification nommée

- État de l'art, 3 méthodes :
 - Règles manuelles LIMSI (Canseco 05)
 - Modèle n-grammes Cambridge (Tranter 06)
 - Arbre de classification (SCT) LIUM (Mauclair 06)

Règles manuelles Canseco 2005

- Travaux précurseurs en langue anglaise
- Classes sémantiques : [location], [title]
- Caractère joker :
 - * [person] reporting from [location] *
 => It was **John Smith** reporting from **Bagdad**
- Pas de décision globale

Modèles n-grammes Tranter 2006

- N-grammes autour des noms de locuteurs
- Utilisation de classes sémantiques étiquetées manuellement
- Premières expériences sur des sorties de systèmes automatiques
- Combinaison simple des règles
- Modèle entropie (Chenguyan 07)

Arbres de classification sémantique (SCT)

- Expressions régulières simples autour des noms de locuteurs
- Détection d'entités nommées pour les classes sémantiques
- Plus robuste que les n-grammes (Estève 07)

Système du LIUM

Identification nommée

Transcription enrichie (I)

Traitement à partir de l'acoustique

Transcription enrichie (2)

Traitement à partir de la transcription

- Détection des entités nommées
 - Classes sémantiques
 - Couple prénom et patronyme

3

Détection et catégorisation des entités nommées

LOCU1 (H): les grands titres de l'actualité PERSONNE (Maude Bayeu) bonjour
LOCU2 (F): bonjour, la polémique sur la mission de PERSONNE (Didier Julia) pour libérer les otages en LIEU (Irak) [...]
LOCU1 (H): Merci PERSONNE (Maude Bayeu), maintenant la météo [...]

Attribution des étiquettes (1)

Attribution des étiquettes (1)

Attribution des étiquettes (2)

Existant : système du LIUM à base de SCT

- Utilisation de Nemesis pour détecter les entités nommées
- Analyse des erreurs

Analyse des erreurs

transcriptions manuelles, corpus développement

Problèmes	Nombre	% total
Entités nommées	16	18,6%
Arbre / Décision	62	72,1%
Hypothèse non vérifiée	3	2,6%
Autres problèmes (transcription, noms partiels)	5	6,7%

Nombre total d'EN détectées : 1445

Nouveau système Milesin

Apports

- Utilisation de LIA_NE : meilleur système de la campagne ESTER 2
- Prise en compte du genre des locuteurs
- Nouveau processus de décision

Prise en compte du genre

Prise en compte du genre

Difficultés de la décision

- Informations incomplètes qui peuvent se renforcer
- Conflits lors de l'affectation d'un nom

Fonctions de croyance (1)

- Théorie des fonctions de croyances
- Introduite par Dempster & Shafer (76)
 - Modélise la croyance, l'ignorance et le conflit
 - Permet de raisonner avec des connaissances imparfaites

Fonctions de croyance (2)

- Fonction de croyance m sur Ω (ensemble fini)
 - Application $m: 2^{\Omega} \to [0, 1]$ t.q. $\sum_{A \subseteq \Omega} m(A) = 1$.

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- État de connaissance sur une variable dans Ω
 - m(X) = part de croyance allouée à l'hypothèse X
 - $m(\Omega)$ = degré d'ignorance
 - $m(\emptyset) = degré de conflit$

Exemple (I)

- $\Omega = \{ \text{ Emmanuel Cugny, Jacques Chirac, ...} \}$
- Pour le locuteur LOCU3
 - Score SCT : E. Cugny => suivant = 0,60
 - m_I (Emmanuel Cugny) = 0,60
 - $m_I(\Omega) = 0.40$
 - $m_I(\varnothing) = 0$

Exemple (2)

- J. Chirac => précédent = 0,15
- m_2 (Jacques Chirac) = 0,15
- $m_2(\Omega) = 0.85$
- $m_2(\varnothing) = 0$

Combinaison (1)

- Soient 2 fonctions de croyances m₁ et m₂
- Opérateur de combinaison $m_{1,2} = m_1 \cap m_2$

$$\forall A\subseteq\Omega,\ m_{1,2}(A)=\sum_{B\cap C=A}m_1(B)m_2(C).$$

Combinaison (2)

 m_1 m_2

$$m_I(\Omega) = 0.40$$

m₂(Jacques Chirac) = 0,15

$$m_2(\Omega) = 0.85$$

Combinaison (3)

 $m_{1,2}$

m _{1,2} (Emmanuel Cugny)	$0.6 \times 0.85 = 0.51$
m _{1,2} (Jacques Chirac)	$0,4 \times 0,15 = 0,06$
$m_{1,2}(\Omega)$	$0,4 \times 0,85 = 0,34$
$m_{1,2}(\varnothing)$	0,09

$$\sum = 1$$

Problème d'assignation

Locu 3 (H)

Locu 1 (F)

Locu 4 (H)

Emmanuel Cugny: 0,51 Jacques Chirac: 0,06

Maude Bayeu: 0,52 Brigitte Dagot: 0,2 Marjorie Roulman: 0,1

Emmanuel Cugny: 0,4 Joel Collado: 0,2

Algorithme de Kuhn Munkres

- Problème classique en recherche opérationnelle : N travailleurs pour M tâches
- Algorithme de Kuhn-Munkres : maximise une fonction de coût entre les locuteurs et les noms

Matrice d'assignation

	E. Cugny	J. Chirac	M. Bayeu	B. Dagot	J. Collado
LOCUI	0	0	0,89	0,2	0
LOCU3	0,51	0,06	0	0	0
LOCU4	0,4	0	0	0	0,2

Évaluation

Corpus

- Campagne ESTER 2005
 - Journaux d'information français
 - 6 radios différentes
- EPAC : parole conversationnelle
- 3 corpus : apprentissage (81h),
 développement (10h) et évaluation (10h)

Métriques d'évaluation

- Identité proposée correcte (CI)
- Pas d'identité (C2)
- Erreur de substitution (S)
- Erreur de suppression (D)
- Erreur d'insertion (I)

$$P = \frac{C_1}{C_1 + S + I}$$

$$R = \frac{C_1}{C_1 + S + D}$$

$$Err = \frac{S + I + D}{S + I + D + C_2 + C_1}$$

Transcriptions manuelles

Système	Corpus	Tx. Erreur Durée	Tx. Erreur Nombre
Base (LIUM 06)	Dev	26,64 %	37,40%
Proposé (Milesin)	Dev	11,44 %	12,43 %
Proposé (Milesin)	Test	22,85 %	28,23 %

Transcriptions automatiques

Corpus	Tx. Err. Dur.
Développement	69,43 %
Test	61,23 %

Système du LIUM pour ESTER2

WER: 17,83 %

DER: 10%

Conclusion

Conclusion

- Système basé sur une analyse conjointe signal/texte disponible en OpenSource
- Système de décision : taux d'erreur divisé par deux
- Passage à l'automatique problématique

Perspectives

- Passage à l'automatique : analyse des erreurs
- Travail sur les noms propres : modèles n-grammes à classes et phonétisation automatique
- Adaptation des systèmes à la tâche
- Exploitation d'autres informations (sous-titres, modèles acoustiques, ...)

Merci de votre attention

Influence de la transcription

	En durée			En nb de locuteurs
Transcription	Rappel	Précision	ErrDur	ErrLoc
LIUM	41,74 %	85,44 %	54,79 %	61,35 %
LIMSI	56,31 %	86,17 %	41,24 %	51,79 %

Influence de la transcription

En durée			En nb de locu	iteurs
Rappel	Précision	ErrDur	ErrLoc	
41,74 %	85,44 %	54,79 %	61,35 %	
56,31 %	86,17 %	41,24 %	51,79 %	
	41,74 %	Rappel Précision 41,74 % 85,44 %	Rappel Précision ErrDur 41,74 % 85,44 % 54,79 %	Rappel Précision ErrDur ErrLoc 41,74 % 85,44 % 54,79 % 61,35 %

Vers des transcriptions automatiques

			En durée	En nb de Locuteur				
Trans.	Seg/Class.	R	P	ErrDur	ErrLoc			
	Corpus de développement							
M	M	88,35 %	96,46 %	10,95 %	11,46 %			
M	A	59,66 %	79,47 %	38,35 %	- %			
A	M	41,74 %	85,44 %	54,79 %	61,35 %			
Α	A	25,15 %	65,99 %	69,85 %	-			
		Co	rpus de te	est				
M	M	78,00 %	95,68 %	21,95 %	25,81 %			
M	A	34,41 %	64,62 %	65,59 %	-			
A	M	54,66 %	89,03 %	45,34 %	49,19 %			
A	A	42,50 %	85,48 %	57,50 %	-			

Publications

- Speaker identification using belief functions IPMU 2010 (IEEE), Dortmund
- Analyse conjointe du signal sonore et de sa transcription pour l'identification nommée du locuteur
 Revue TAL
- Automatic named identification of speakers using diarization and asr systems - ICASSP 09 (IEEE), Taïwan
- Étude pour l'amélioration d'un système d'identification nommée du locuteur JEP 08, Avignon

Connaissance des noms

	En durée			En nb de Locuteur
Noms complets	Rappel	Précision	ErrDur	ErrLoc
connus	83,16%	89,72%	16,66%	19,5%
inconnus	69,05%	76,48%	31,49%	33,59%

Tableau 5. Résultats avec et sans connaissance a priori sur les noms complets, évaluation faite sur le corpus d'évaluation ESTER 1 phase II

Les résultats sont données en utilisant la transcription enrichie de référence.

Noms complets connus : le système connaît les noms complets des locuteurs potentiels.

Noms complets inconnus : le système ne connaît pas les noms complets des locuteurs potentiels.

Rappel et Précision calculés en en durée.

ErrDur: Taux d'erreur en durée.

ErrLoc: Taux d'erreur en nombre de locuteurs.

Connaissance des noms

	En durée			En 1	nb de Locu	teur
Noms complets	Rappel	Précision	ErrDur		ErrLoc	
connus	83,16%	89,72%	16,66%		19,5%	
inconnus	69,05%	76,48%	31,49%		33,59%	
	<u> </u>				,	

Tableau 5. Résultats avec et sans connaissance a priori sur les noms complets, évaluation faite sur le corpus d'évaluation ESTER 1 phase II

Les résultats sont données en utilisant la transcription enrichie de référence.

Noms complets connus : le système connaît les noms complets des locuteurs potentiels.

Noms complets inconnus : le système ne connaît pas les noms complets des locuteurs potentiels.

Rappel et Précision calculés en en durée.

ErrDur: Taux d'erreur en durée.

ErrLoc: Taux d'erreur en nombre de locuteurs.

Matrice d'assignation

	E. Cugny	J. Chirac	M. Bayeu	B. Dagot	J. Collado
LOCUI	0	0	1,52	0,2	0
LOCU3	0,51	0,06	0	0	0
LOCU4	0,4	0	0	0	0,2

Métriques

Précision / Rappel

$$P = \frac{C_1}{C_1 + S + I}$$

$$P = \frac{C_1}{C_1 + S + I} \qquad R = \frac{C_1}{C_1 + S + D}$$

- Taux d'erreur
 - En durée

$$Err = \frac{S + I + D}{S + I + D + C_2 + C_1}$$

En nombre de locuteurs

Transcriptions manuelles et entités nomées

Système	Tx. Erreur Durée	Tx. Erreur Nombre
Nemesis	17,77 %	21,58 %
LIA_NE	11,44 %	12,43 %