

Examen 2023/24-1

Asignatura	Código	Fecha	Hora inicio
Fundamentos de matemáticas	71.516	27/1/2024	09:30

Este enunciado también corresponde a las siguientes asignaturas:

• 21.401 - Fundamentos de matemáticas

Ficha técnica del examen

- No es necesario que escribas tu nombre. Una vez resuelta la prueba final, solo se aceptan documentos en formato .doc, .docx (Word) y .pdf.
- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la que te has matriculado.
- Tiempo total: 2 horas Valor de cada pregunta: 1,25 puntos cada pregunta corta. 2,5 puntos cada ejercicio.
- ¿Se puede consultar material durante la prueba? **NO** ¿Qué materiales están permitidos?
- ¿Puede utilizarse calculadora? **SÍ** ¿De qué tipo? **PROGRAMABLE**
- Si hay preguntas tipo test, ¿descuentan las respuestas erróneas? **NO** ¿Cuánto?
- Indicaciones específicas para la realización de este examen: Es necesario desarrollar tanto las preguntas cortas como los ejercicios. El examen se puede enviar manuscrito. No se pueden usar herramientas de Inteligencia Artificial durante la realización del examen.

Examen 2023/24-1

Asignatura	Código	Fecha	Hora inicio
Fundamentos de matemáticas	71.516	27/1/2024	09:30

Enunciados

PREGUNTAS CORTAS

PREGUNTA 1.

Considerar la base de \mathbb{R}^2 formada por los vectores $B = \{(1,2), (2,1)\}$ de \mathbb{R}^2 . ¿Cuáles son las componentes en la base B del vector que tiene por componentes (4,5) en la base canónica)?

PREGUNTA 2.

Considera la serie geométrica que depende del valor del parámetro k > 0:

$$\sum_{n=1}^{\infty} \left(\frac{k^2 + 7}{8k} \right)^n.$$

Analiza para qué valores del parámetro k la serie geométrica anterior es convergente.

PREGUNTA 3.

Dadas las rectas con ecuaciones r_1 : y = ax + 2 y r_2 : y = bx - 2:

- a) Determinar los valores de los parámetros a y b para que las rectas r_1 y r_2 sean paralelas y la recta r_2 pase por el punto (2,4).
- b) Determinar los valores de los parámetros a y b para que las rectas r_1 y r_2 sean perpendiculares y la recta r_1 pase por el punto (2,4).

PREGUNTA 4.

Calculad el valor del área de la región delimitada por el gráfico de la función $y = x^2 - 2x - 3$ y el eje de las x.

EJERCICIOS

EJERCICIO 1.

Dado el sistema de ecuaciones

$$\begin{cases}
 ax + y = 2 \\
 x + z = a \\
 3x + 2y + az = 5
 \end{cases}$$

- a) Determinar para qué valores del parámetro ℓ el sistema es compatible determinado, compatible indeterminado o incompatible. (1 punto)
- **b)** Resolver el sistema para a = 1. (0,75 puntos)
- c) Resolver el sistema para a = -1. (0,75 puntos)

Examen 2023/24-1

Asignatura	Código	Fecha	Hora inicio
Fundamentos de matemáticas	71.516	27/1/2024	09:30

EJERCICIO 2.

Dada la función $f(x) = x^2 \cdot e^{-x^2}$,

- a) Determinad su dominio. (0,5 puntos)
- **b)** Calculad sus puntos de corte con los ejes de coordenadas. (0,5 puntos)
- c) Determinad los intervalos de crecimiento y decrecimiento de la función. (1 punto)
- **d)** Hallad los óptimos locales de la función, indicando en cada caso si es un máximo o un mínimo. (0,5 puntos)