Ahsanullah University of Science and Technology

Department of Computer Science and Engineering

Program: Bachelor of Science in Computer Science and Engineering

Course No: CSE 4108

Course Title: Artificial Intelligence Lab

Project Report

Group No: B102

Submitted to

Mr. Md. Siam Ansary

Lecturer, Department of CSE, AUST.

Ms. Tamanna Tabassum Lecturer, Department of CSE, AUST.

Submitted by

Hasan Bin Jamal 18.01.04.070

Fatima Juairiah 18.01.04.071

Mostafa Mahatabe 18.01.04.074

The Description of The Problem

The name of our project is "Outfit Price Prediction" where we tried to predict the outfit price of varsity students. Effective price prediction helps businesses price increases or decreases may affect customer demand.

Description of The Dataset

For our project we took the most of our data from the students of "Ahsanullah University of Science & Technology". The sample in the dataset has 7 features. We tried to work on the best features which can help us to predict in an efficient way. The features are Gender, Style, Type, Dress, Size, Brand, Price Range. We took more than 300 data.

Description of The Used ML Models

We used the regression model. We used six regression model for predicting the outfit price prediction. Those are,

- 1. Linear Regression
- 2. Polynomial Linear Regression
- 3. Decision Tree Regression
- 4. Random Forest Regression
- 5. Support Vector Machine Regression
- 6. Bayesian Ridge Regression

Comparison of the performance scores of the models

	Linear	Polynomial	Random	Decisioin	Bayesian	Support
	Regression	Regression	Forest	Tree	Regression	Vector
MSE	0.64924511 24633372	0.00014795 2242945294 06	Regression 0.01977641 0106872297	0.61953622 20365611	0.62449414 94215172	Regression 0.24992724 776870973
RMSE	0.80575747	0.01216356	0.14062862	0.78710623	0.78710623	0.49992724
	74479832	209937262	477771834	30057875	30057875	247505227
MAE	0.58461962 71093196	0.00218006 1879717111 7	0.06336482 876962933	0.67437023 52423022	0.57806571 21967184	0.31753230 06772609
R_square	0.15380782	0.99980716	0.97422445	0.19252884	0.18606693	0.67425787
	452652242	67727323	98070271	088620503	723967982	66637293

Discussion

The Polynomial Regression has the lowest MSE among all that is 0.00014795224294529406. Therefore, Polynomial Regression gives the best result or the accurate one. It's RMSE: 0.01216356209937262, MAE - 0.0021800618797171117 and R_Square: 0.9998071667727323

Then gives the accurate result Random Forest Regression, Support Vector Regression, Decision Tree Regression, Bayesian Regression, Linear Regression respectively.

So Linear Regression gives the worst result which has the MSE of 0.6492451124633372, RMSE 0.8057574774479832, MAE 0.5846196271093196 and R_suare 0.15380782452652242.

Contribution

Dataset creation and data collection is made and collected by all.

Hasan Bin Jamal - 33.33%

Random Forest Regression

Bayesian Ridge Regression

Fatima Juairiah - 33.33%

Polynomial Linear Regression

Decision Tree Regression

Mostafa Mahatabe - 33.33%

Linear Regression

Support Vector Machine Regression