MAD 3105 Assignment 01	NAME:					
Relations and Their Properties	DUE:	Thursday, Ja	anuary	18 th	(11:59pm EST)

Directions: Show ALL work for credit. There are 5 questions. Write on <u>your own paper</u>. Each part is worth 3 points, unless stated otherwise. **40 points total**. You may type or neatly write your solutions. Make sure you write your name on all papers that you use. **Scan this page at the front of your work**, and compile as ONE .pdf file. Check that all work was saved and scanned legibly.

Save your file as: **A01xyLASTNAME.pdf.** (where "xy" is your first and middle initial)

Once completed, attach your file under "Assignment 01" on Canvas. Thank you!

- 1) For the relation $R = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$ on the set $A = \{1,2,3,4\}$, explain/show whether or not the relation is the following: (For any credit, be sure to give a reason why for each). (2 points each)
- (a) reflexive,
- (b) symmetric,
- (c) antisymmetric,
- (d) transitive.
- 2) Let the sets be relations on the real numbers: $R_1 = \{(a,b) \in \mathbb{R}^2 | a \ge b\}$, the "greater than or equal to" relation and let $R_2 = \{(a,b) \in \mathbb{R}^2 | a \ne b\}$, the "unequal to" relation.

Find:

- (a) $R_1 \cap R_2$ (write out the relation in the set notation, as R_1 and R_2 were written)
- (b) $R_1 R_2$ (write out the relation in the set notation, as R_1 and R_2 were written)
- (c) $R_1 \oplus R_2$ (write out the relation in the set notation, as R_1 and R_2 were written)
- 3)(a) How many binary relations are there on the set $\{a, b, c\}$? (2 points) (b) If $R = \{(1, 1), (1, 2), (2, 4), (3, 1), (3, 0)\}$, $S = \{(1, 2), (2, 0), (3, 1), (0, 0), (4, 3)\}$ find $S \circ R$, with elements listed as above.
- 4) *R* is the relation represented by the matrix $\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, find the <u>matrix</u> for:
- (a) R^{-1}
- (b) \overline{R}
- (c) $R \circ R$ (i.e. R^2)
- 5) (a) The relation R is on $\{1, 2, 3\}$. Represent the relation **(4 points)** $R = \{(1, 1), (2, 1), (2, 2), (2, 3), (3, 2)\}$ with a matrix.
- (b) By looking at the matrix, is the relation R reflexive? Why or why not? (2 points)
- (c) Draw the <u>directed graph</u> that represents the relation R. (3 points)