3 (51) B 04 C 7/00

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3429529/23-26
- (22) 28.04.82
- (46) 23.09.83. Бюл. № 35
- (72) Г.Г. Шауберт, Б.К. Нурумбетов,
- Х.Е. Абдиев и В.Ф. Сиротилов
- (71) Казахский научно-исследовательский и проектный институт фосфорной промышленности
- (53) 621.928.93 (n88.8)
- (56) 1. Банит Ф.Г., Мальгин А.Д. Пылеулавливание и очистка газов в промышленности строительных материалов. М., Стройиздат, 1979, с. 67.
- 2. Страус В. Промышленная очистка газов. И., "Химия", 1981, с. 296.
- 3. Справочник по пыле- и золоулавливанию. Под ред. А.А. Русакова. М., "Энергия", 1975, с. 60, рис. 2-7 (прототип),
- (54)(57) 1. ПЫЛЕУЛОВИТЕЛЬ, содержащий цилиндро-коническую циклонную камеру, бункер, тангенциальный входной патрубок, осевой патрубок с улит-

кой и полый обратный усеченный конус; расположенный по оси камеры в ее нижней части, от личающийся тем, что, с целью увеличения эффективности пылеулавливания, пылеуловитель снабжен дополнительной циклонной камерой, включающей цилиндрический корпус, тангенциальный подводной и осевой выхлопной патрубки, расположенные в верхней части корпуса, входной осевой патрубок и пылевыводной клапан, расположенные в нижней части корпуса, при этом подводной патрубок соединен с улиткой, клапан подсоединен к бункеру, а входной конец входного осевого патрубка расположен внутри обратного конуса.

2. Пылеуловитель по п. 1, о т л ичающийся тем, что внутри обратного конуса установлен обтекатель, выполненный в виде обращенной вниз воронки с осевым отверстием, укреплен ной большим основанием на поверхности обратного конуса.

Изобретение относится технике обеспыливания газов и может быть использовано в различных отраслях народного хозяйства, в частности в химической промышленности при производстве минеральных удобрений.

Известен прямоточный циклон, состоящий из цилиндрического корпуса, входного осевого патрубка с завихрителем, выходного осевого патрубка и бункера [1].

Однако известный циклон обладает невысокой эффективностью улавливания мелкодисперсных частиц пыли и исполь-зуется только для грубой очистки.

Известен также двухступенчатый пы- 15 леуловитель, состоящий из последовательно установленных противоточных циклонов. Оба циклона снабжены бункерами для сбора пыли 27.

Недостатками известного пылеулови- 20 теля являются большие гидравлическое сопротивление и удельная металлоем- кость.

Наиболее близким к изобретению по технической сущности и достигаемому результату является циклон ВЦНИИОТ, содержащий цилиндро-коническую камеру с входным тангенциальным и выходным осевым патрубками, бункер и внутренний обратный полый усеченный конус, расположенный по оси циклона в его нижней части. На выходном осевом патрубке может быть установлена улитка [3].

Данный циклон имеет невысокую эф- 3 фективность пылеулавливания из-за уно- са тонкодисперсных частиц выходящим потоком газа.

Целью изобретения является увеличение эффективности пылеулавливания.

Цель достигается тем, что пылеуловитель, содержащий цилиндро-коническую циклонную камеру, бункер, тангенциальный входной патрубок, осевой патрубок с улиткой и полый обратный усеченный конус, расположенный по оси камеры в ее нижней части, снабжен дополнительной циклонной камерой, включающей цилиндрический корпус, тангенциальный подводной и осевой выхлопной патрубки, расположенные в верхней части корпуса, входной осевой патрубок и пылевыводной клапан, расположенные в нижней части корпуса при этом подводной патрубок соединен с улиткой, клапан подсоединен к бункеру, а входной конец входного осевого патрубка расположен внутри обратно го конуса.

Кроме Эго, в ри обратного конуса установлен обтекатель, выполненный в виде обращенной вниз воронки с осевым отверстием, укрепленной большим основанием на поверхности конуса.

На чертеже изображен пылеуловитель, общий вид.

Пылеуловитель содержит циклонную ·камеру 1 с входным тангенциальным 2 и выходным осевым 3 патрубками, бункер 4, дополнительную циклонную камеру 5, полый обратный усеченный конус б, размещенный в нижней части циклонной камеры 1 по ее оси, входной осевой патрубок 7. Патрубок 7 установлен таким образом, что его начальный участок размещен внутри конуса б, а конечный - по оси камеры 5. К патрубку 3 присоединена улитка 8, выход которой соединен с тангенциальным подводным патрубком 9. Камера 5 снабжена осевым выхлопным патрубками 10 и пылевыводным клапаном 11, через который сообщаются полости бункера 4 и камеры 5. Щелевое отверстие 12 клапана 11 закрыто шторкой 13 из гибкого материала, которая может отклоняться от вертикального положения. Внутри конуса 6 установлен обтекатель 14. Патрубки 7 и 9 имеют шиберные устройства 15, на патрубке 7 установлена подпорная шайба 16.

Пылеуловитель работает следующим образом.

Запыленный газ через тангенциальный патрубок 2 поступает в верхнюю цилиндрическую часть циклонной камеры 1 и,приобретая вращательное движение, опускается вниз вдоль ее внутренних стенок, образуя внешний вращающийся вихрь. При этом взвешенные частицы под действием центробежной силы отбрасываются к периферии и осаждаются на стенках циклонной камеры 1 как цилиндрической, так и конической ее части. Приблизившись к конусу 6, газовый поток разделяется. Часть газового потока, в котором сконцентрированы пылевые частицы, продолжая опускаться, транспортирует пыль в бункер 4 через кольцевое пространство, образованное стенками корпуса циклонной камеры 1 и полого обратного усеченного конуса 6. Другая его часть, в свою очередь, делится на составляющие. Одна часть очищенного газа изменяет направление своего движения на противоположное, образуя внутренний вращающийся вихрь, и выводится из циклонной камеры 1 через пат-

рубок 3 и улитку 8 в камеру 5. Другая часть частично очищенного газа через верхнее основание конуса 6 входит в патрубок 7 и совместно с газом, поступающим из бункера 4 через кольцевое пространство между стенками обте-кателя 14 и патрубка 7, направляется в камеру 5. Объемные расходы составляющих газового потока, поступающего в камеру 5, регулируются с помощью шиберных устройств 15. Газовый поток, вошедший в верхнюю часть камеры 5 через патрубок 9, вращаясь, опускается из кольцевого пространства; образуемого корпусом камеры и осевым патрубком 10, в направлении клапана 11 и воздействует при этом на поток газа, выходящий из патрубка 7. Указанный поток газа, поднимаясь вверх, также приобретает вращательное движение. Возникающие при этом центробежные силы отбрасывают неуловленные в циклонной камере 1 частицы пыли к стенкам камеры 5, а оттуда в наружный спиральный поток газа, направлят 25 ющий их вниз к клапану 11. Очищенный таким образом газ поднимается винтообразно вверх и удаляется через патрубок 10. Пыль через клапан 11 периодически по мере накопления , минуя 30 щелевое отверстие 12, пересыпается в бункер 4. Безвозвратный спуск ее обеспечивается при помощи подпорной

шайбы 16 и шторки 13 из гибкого ма-

териала. Из бункера 4 пыль удаляется обычным путем.

Степень очистки газа от взвешенных частиц в данном пылеуловителе составляет 96-98%. Такая эффективность пылеулавливания достигается путем разделения выходящего из циклонной камеры газового потока на составляющие, что, в свою очередь, значительно уменьшает его скорость. В результате снижается унос мелкодисперсных частиц пыли. Кроме того, вторичный унос отсепарированной пыли снижается путем обеспечения благоприятных условий для выгрузки пыли из циклонной камеры в бункер и ее осаждения там.

Описанный пылеуловитель по сравнению с циклоном ЦНИИОТ позволяет повысить степень пылеулавливания на 24-26%, имеет технические преимущества и перед применяемым в настоящее время в промышленности высокоэффективным циклоном СК-ЦН-34, обеспечивающим степень очистки газов от пыли, равную 75%, надежней при работе с абразивными и налипающими пылями.

Использование данного пылеуловителя для обеспыливания газов, отходящих от шаровых мельниц в производстве кормовых обесфторенных фосфатов на Джамбульском суперфосфатном заводе, позволит снизить выбросы пыли в атмосферу на 1700 т в год. При этом годовой экономический эффект составит 163 тыс. руб.

Составитель Л. Титов
Редактор С. Патрушева Техред С. Мигунова Корректор А. Повх
Заказ 7187/10 Тираж 579 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
филиал ППП Патент , г. Ужгород, ул. Проектная, 4