## Chapter 2 Network Devices



## Objectives

- Explain the uses, advantages, and disadvantages of repeaters, hubs, wireless access points, bridges, switches, and routers
- Define the standards associated with wireless media
- Explain basic wireless connection parameters, security, and troubleshooting
- Define network segmentation

## Objectives (continued)

- Explain network segmentation using bridges, switches, routers, brouters, and gateways
- Explain Ethernet operations
- Define Fast Ethernet and Gigabit Ethernet

## Repeaters

- The number of nodes on a network and the length of cable used
  - Influence the quality of communication on the network

### Attenuation

The degradation of signal clarity

### Repeaters

- Work against attenuation by repeating signals that they receive on a network
  - Typically cleaning and regenerating the digital transmission in the process



## Repeaters (continued)

- Note that on analog networks, devices that boost the signal are called amplifiers
- These devices do not have the same signal regeneration capabilities as repeaters
  - Because they must maintain the shape of the received signal
- Repeaters work in the Physical layer (layer 1)
- On optical networks, signal amplification is handled by optical repeaters
- Some repeaters can be used to connect two physically different types of cabling



## Repeaters (continued)



Figure 2-2 Repeater in the network

### Hubs

#### Hub

 Generic connection device used to tie several networking cables together to create a link between different stations on a network

#### Active hubs

Amplify or repeat signals that pass through them

### Passive hub

- Merely connects cables on a network and provides no signal regeneration
- Topology refers to the physical layout of network cable and devices





A digital signal distorted by noise and then repeated

## Hubs (continued)



Figure 2-3 Star topology

# Advantages and Disadvantages of Repeaters and Hubs

### Advantages

- Can extend a network's total distance
- Do not seriously affect network performance
- Certain repeaters can connect networks using different physical media

# Advantages and Disadvantages of Repeaters and Hubs (continued)

### Disadvantages

- Cannot connect different network architectures, such as Token Ring and Ethernet
- Do not reduce network traffic
  - They repeat everything they receive
- Do not segment the network
- Do not reformat data structures
  - Cannot connect networks that require different types of frames

# Advantages and Disadvantages of Repeaters and Hubs (continued)

- Repeaters do not segment a network
  - Frames that are broadcast on a given segment may collide
- Devices that "see" the traffic of other devices are said to be on the same collision domain



### Wireless Access Points

### Wireless access points

- Provide cell-based areas where wireless clients such as laptops and PDAs can connect to the network
  - By associating with the access point
- Operate at the Physical and Data Link layers of the OSI model
  - In most respects, a wireless access point functions exactly like a hub





Figure 2-4 Wireless access point in the network

## Wireless Standards and Organizations

| Standard        | Frequency Band (GHz) | Transmission Method                                                                  | Data Rates (Mbps)                                    |
|-----------------|----------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|
| Original 801.11 | 2.4                  | infrared, frequency hopping<br>spread spectrum, direct<br>sequence spread spectrum   | 1, 2                                                 |
| 802.11b         | 2.4                  | direct sequence spread spectrum                                                      | 1, 2, 5.5, 11                                        |
| 802.11a         | 5                    | orthogonal frequency division multiplexing                                           | 6, 9, 12, 18, 24, 36,<br>48, 54                      |
| 802.11g         | 2.4                  | direct sequence spread<br>spectrum and orthogonal<br>frequency division multiplexing | 1, 2, 5.5, 11 and<br>6, 9, 12, 18, 24, 36,<br>48, 54 |

Table 2-1 802.11 Standards

## Wireless Network Components

### In ad hoc mode

- Wireless clients can connect and communicate directly with each other
- There is no access point

### In infrastructure mode

- Wireless clients attach wirelessly to an access point
- Involves the access point wired back into a switch
- Basic Service Set (BSS)
  - When a single access point is available in infrastructure mode



## Wireless Network Components (continued)

- Extended Service Set (ESS)
  - Involve multiple access points connected to various switches in the network
  - Allows users to roam around the building and remain connected to the WLAN as well as the LAN and WAN



## Wireless Connectivity

- Access points typically broadcast their network name
- The Service Set Identifier (SSID)
  - The network name
- When wireless clients are powered on, they begin scanning the airspace for available access points
- They detect the broadcasted SSID of the various access points in the area
  - Attempt to associate with the one that has the highest signal level and the lowest error rate



## Wireless Connectivity (continued)

- If the system is open, the client is accepted by the access point and begins communications
- When SSID is not broadcasted
  - Wireless clients must already be configured with the correct SSID
- The client will send out a probe request with:
  - Configured SSID
  - Access point with that SSID configured will allow the client to associate

## Wireless Security Measures

- While security is always necessary in WLANs due to the broadcast nature of the medium
  - These devices are not designed to handle the most complex and highest levels of security
- The most important reason to implement security on your WLAN at home
  - Others in your neighborhood do not use your bandwidth for free





# Wireless Security Measures (continued)

- Workspace situations call for security that not only requires the client device to authenticate
  - But that also prompts the device user to enter a username and password
- 802.1x is used at the physical layer to block ports
- The Extensible Authentication Protocol (EAP) is used at layer 2 to transfer the authentication frames



# Wireless Security Protocols (continued)

| 802.11 Security Option                          | Type of Encryption                                                                                             | Uses                  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| WEP<br>(Wired Equivalent Privacy)               | Lower-level encryption:<br>RC4 algorithm, static key                                                           | Home                  |
| WPA<br>(Wi-Fi Protected Access)                 | Higher level encryption:<br>TKIP algorithm, dynamic<br>keys, user authentication<br>also supported (802.1x)    | Home and small office |
| WPA2<br>(Wi-Fi Protected Access<br>version 2)   | Highest level of encryption:<br>AES algorithm, dynamic keys,<br>user authentication also<br>supported (802.1x) | Home and small office |
| 802.11i<br>(The IEEE standard based<br>on WPA2) | Highest level of encryption:<br>AES algorithm, dynamic keys,<br>user authentication with<br>802.1x/EAP         | Businesses            |

Table 2-2 802.11 Security

## Advantages and Disadvantages of Wireless Access Points

### Advantages

- Provide the ability to work anywhere within range of your access points
- Extends the range of your network without running additional wires

### Disadvantages

- Introduces serious security concerns
- 802.11 provides much less bandwidth than wired devices
- Many situations exist where 802.11 will not function well due to serious interference from various sources

## Network Segmentation

### Segmentation

 The breaking down of a single heavily populated network segment into smaller segments, or collision domains, populated by fewer nodes

### Segment

- Part of a network that is divided logically or physically from the rest of the network
- When network administrators place too many nodes on the same network segment
  - Causes the number of collisions to increase







Figure 2-5 Network segmentation

## Bridges

### Bridges

- Operate at the Data Link layer of the OSI model
- Filter traffic between network segments by examining the destination MAC address
  - Based on the destination MAC address, the bridge either forwards or discards the frame
- Reduce network traffic by keeping local traffic on the local segment

### Broadcast frame

Frame destined for all computers on the network





## **Transparent Bridges**

- Also called learning bridges
  - Because they build a table of MAC addresses as they receive frames
- They "learn" which addresses are on which segments
- The bridge uses the source MAC addresses to determine which addresses are on which segments
  - By determining a frame's origin, the bridge knows where to send frames in the future
- Ethernet networks mainly use transparent bridges



## Source-Routing Bridges

- Rely on the source of the frame transmission to provide the routing information
  - The source computer determines the best path by sending out explorer frames
- The source includes the routing information returned by its explorer frames in the frame sent across the network
  - The bridge uses this information to build its table

## **Translation Bridges**

- Can connect networks with different architectures, such as Ethernet and Token Ring
- These bridges appear as:
  - Transparent bridges to an Ethernet host
  - Source-routing bridges to a Token Ring host



# Advantages and Disadvantages of Bridges

### Advantages

- Can extend a network by acting as a repeater
- Can reduce network traffic on a segment by subdividing network communications
- Increase the available bandwidth to individual nodes because fewer nodes share a collision domain
- Reduce collisions
- Some bridges connect networks using different media types and architectures

# Advantages and Disadvantages of Bridges (continued)

### Disadvantages

- Slower than repeaters and hubs
  - Extra processing by viewing MAC addresses
- Forward broadcast frames indiscriminately, so they do not filter broadcast traffic
- More expensive than repeaters and hubs

### Broadcast storm

When two or more stations engage in the transmission of excessive broadcast traffic

### **Switches**

### Switches

- Operate at the Data Link layer of the OSI model
- Increase network performance by reducing the number of frames transmitted to the rest of the network
- Switch opens a virtual circuit between the source and the destination
  - Prevents communications between just two computers from being broadcast to every computer on the network or segment
  - Called microsegmentation



## Switches (continued)

- When two machines have a virtual circuit
  - They do not have to share the bandwidth with any other computers
- Multiple virtual circuits can be in use at the same time, each with its own full **bandwidth**
  - Called "switched bandwidth"
- When machines must share a wire and compete for available bandwidth with other machines, they experience contention





Figure 2-7 Star topology using a switch

## Advantages and Disadvantages of Switches

### Advantages

- Switches increase available network bandwidth
- Switches reduce the workload on individual computers
- Switches increase network performance
- Networks that include switches experience fewer frame collisions because switches create collision domains for each connection (a process called microsegmentation)
- Switches connect directly to workstations

# Advantages and Disadvantages of Switches (continued)

### Disadvantages

- Switches are significantly more expensive than bridges
- Network connectivity problems can be difficult to trace through a switch
- Broadcast traffic may be troublesome

## Routers

#### Routers

- Operate at the Network layer of the OSI model
- Provide filtering and network traffic control on LANs and WANs
- Can connect multiple segments and multiple networks

#### Internetworks

- Networks connected by multiple routers
- Similar to switches and bridges in that they segment a network and filter traffic
  - Routers use the logical address



## Physical vs. Logical Addresses

- MAC address
  - Found at the Data Link layer of the OSI model
  - Used by bridges and switches to make forwarding decisions within a network or subnetwork

#### IP address

- Logical address when TCP/IP is used on an internetwork
- Routers use the IP address to route packets to the correct network segment

# Physical vs. Logical Addresses (continued)



Figure 2-8 Router

# Advantages and Disadvantages of Routers

#### Advantages

- Can connect different network architectures, such as Ethernet and Token Ring
- Can choose the best path across an internetwork using dynamic routing techniques
- Reduce network traffic by creating collision domains
- Reduce network traffic by creating broadcast domains

# Advantages and Disadvantages of Routers (continued)

### Disadvantages

- Routers work only with routable network protocols;
   most but not all protocols are routable
- Routers are more expensive than other devices
- Dynamic router communications (inter-router communication) cause additional network overhead, which results in less bandwidth for user data
- Routers are slower than other devices because they must analyze a data transmission from the Physical through the Network layer



Figure 2-9 Router connecting network to the Internet

## **Brouters**

#### Brouter

- Hybrid device
- Functions as both a bridge for nonroutable protocols and a router for routable protocols
- Provides the best attributes of both a bridge and a router
- Operates at both the Data Link and Network layers and can replace separate bridges and routers



## Gateways

#### Gateway

- Usually a combination of hardware and software
- Translates between different protocol suites
- Has the most negative effect on network performance
  - Packets must be rebuilt not just at the lower levels but at the very upper levels
    - So that actual data content can be converted into a format the destination can process
- Creates the most latency



## **Ethernet Operations**

#### Ethernet

- A network access method (or media access method) originated by the University of Hawaii
- Later adopted by Xerox Corporation, and standardized as IEEE 802.3 in the early 1980s
- Today, Ethernet is the most commonly implemented media access method in new LANs



## CSMA/CD

- Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
  - Used by Ethernet to prevent data packets from colliding on the network
  - Allows any station connected to a network to transmit anytime there is not already a transmission on the wire
- After each transmitted signal, each station must wait a minimum of
   9.6 microseconds before transmitting another frame
  - Called the interframe gap (IFG), or interpacket gap (IPG)



## CSMA/CD (continued)

#### Collisions

- Two stations could listen to the wire simultaneously and not sense a carrier signal
  - In such a case, both stations might begin to transmit their data simultaneously
    - A collision would occur on the network wire
- The first station to detect the collision transmits a 32-bit jam signal
  - Tells all other stations not to transmit for a brief period



# CSMA/CD (continued)

- Collision domain
  - The physical area in which a frame collision might occur
  - Routers, switches, bridges, and gateways do segment networks
    - And thus create separate collision domains

### Fast Ethernet

- Fast Ethernet (100BaseT)
  - Uses the same network access method (CSMA/CD) as common 10BaseT Ethernet
  - Provides ten times the data transmission rate
- When you upgrade from 10BaseT to Fast Ethernet
  - All the network cards, hubs, and other connectivity devices that are now expected to operate at 100 Mbps must be upgraded
- Fast Ethernet is defined under the IEEE 802.3u standard

## Gigabit Ethernet

- Gigabit Ethernet (1000BaseX)
  - The next iteration of Ethernet, increasing the speed to 1000 Mbps
  - Defined in the IEEE 802.3z standard
- Gigabit Ethernet can work in half-duplex mode through hubs
  - Not typical
  - Almost all applications of the standard are fullduplexed through switches
- 10 Gigabit Ethernet (10GBaseX, 10GbE or 10GigE) is the fastest of the Ethernet standards

## Half- and Full-Duplex Communications

- Half-duplex communications
  - Devices can send and receive signals, but not at the same time
- Full-duplex communications
  - Devices can send and receive signals simultaneously
- Most Ethernet networks can use equipment that supports half- and fullduplex communications
- Full-duplex communications use one set of wires to send and a separate set to receive

  Half-Duplex





# Half- and Full-Duplex Communications (continued)

- Benefits of using full-duplex:
  - Time is not wasted retransmitting frames, because there are no collisions
  - The full bandwidth is available in both directions because the send and receive functions are separate
  - Stations do not have to wait until other stations complete their transmissions