

What is claimed is:

1. A method to compress a matrix, the method comprising:
 - partitioning the matrix into a set of overlapping sub-blocks $\{m_k, k = 1, \dots, V\}$;
 - weighting each sub-block m_k by a weight matrix w_k to form a weighted sub-block $m_k * w_k$, where w_k has the same dimension as m_k and $*$ denotes element-by-element multiplication, wherein $m_k * w_k$ has a decomposition

$$m_k * w_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v_i'(k);$$

and representing each weighted sub-block $m_k * w_k$ by a set of scalar weights $\{\sigma_i(k), i = 1, \dots, n(k)\}$, a set of vectors $\{u_i(k), i = 1, \dots, n(k)\}$, and a set of vectors $\{v_i(k), i = 1, \dots, n(k)\}$, where $n(k) \leq N(k)$.

2. The method as set forth in claim 1, wherein the matrix has elements $M(i, j), i = 1, \dots, P; j = 1, \dots, Q$ where P and Q are the number of rows and the number of columns, respectively, of the matrix, wherein the weight matrices $w_k, k = 1, \dots, V$ are such that for any image pixel element $M(i, j)$, the sum of all weight elements in the set of weight matrices $w_k, k = 1, \dots, V$ multiplying $M(i, j)$ when weighting each sub-block m_k by w_k is a predetermined value.
3. The method as set forth in claim 2, wherein the predetermined value is unity.

4. The method as set forth in claim 2, wherein

for each k , the decomposition

$$m_k * w_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v'_i(k)$$

is the singular value decomposition of the weighted sub-block $m_k * w_k$.

5. The method as set forth in claim 4, wherein for each index k , $n(k)$ is

the smallest index i for which $\sigma_{i+1}(k) < C$, where C is a positive constant, the singular values are such that $\sigma_1(k) \geq \sigma_2(k) \geq \dots \geq \sigma_{N(k)}(k)$, and if there is no such smallest integer, then $n(k) = N(k)$.

6. The method as set forth in claim 1, wherein

for each k , the decomposition

$$m_k * w_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v'_i(k)$$

is the singular value decomposition of the weighted sub-block $m_k * w_k$.

7. The method as set forth in claim 6, wherein for each index k , $n(k)$ is

the smallest index i for which $\sigma_{i+1}(k) < C$, where C is a positive constant, the singular values are such that $\sigma_1(k) \geq \sigma_2(k) \geq \dots \geq \sigma_{N(k)}(k)$, and if there is no such smallest integer, then $n(k) = N(k)$.

8. The method as set forth in claim 6, wherein there is at least one k for which $n(k) < N(k)$.

9. The method as set forth in claim 6, wherein $n(k) = \min\{C, N(k)\}$, where C is independent of k .

10. An article of manufacture comprising a computer readable medium, the computer readable medium comprising instructions to cause a computer system to:

partition a matrix into a set of overlapping sub-blocks $\{m_k, k = 1, \dots, V\}$;

weight each sub-block m_k by a weight matrix w_k to form a weighted sub-block $m_k * w_k$, where w_k has the same dimension as m_k and $*$ denotes element-by-element multiplication, wherein $m_k * w_k$ has a decomposition

$$m_k * w_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v_i'(k);$$

and represent each weighted sub-block $m_k * w_k$ by a set of scalar weights $\{\sigma_i(k), i = 1, \dots, n(k)\}$, a set of vectors $\{u_i(k), i = 1, \dots, n(k)\}$, and a set of vectors $\{v_i(k), i = 1, \dots, n(k)\}$, where $n(k) \leq N(k)$.

11. The method as set forth in claim 10, wherein the matrix has elements $M(i, j), i = 1, \dots, P; j = 1, \dots, Q$ where P and Q are the number of rows and the number of columns, respectively, of the matrix, wherein the weight matrices $w_k, k = 1, \dots, V$ are such that for any image pixel element $M(i, j)$, the sum of all weight elements in the set

of weight matrices w_k , $k = 1, \dots, V$ multiplying $M(i, j)$ when weighting each sub-block m_k by w_k is a predetermined value.

12. The method as set forth in claim 11, wherein the predetermined value is unity.

13. The method as set forth in claim 11, wherein
for each k , the decomposition

$$m_k * w_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v'_i(k)$$

is the singular value decomposition of the weighted sub-block $m_k * w_k$.

14. The method as set forth in claim 13, wherein for each index k , $n(k)$ is
the smallest index i for which $\sigma_{i+1}(k) < C$, where C is a positive constant, the singular
values are such that $\sigma_1(k) \geq \sigma_2(k) \geq \dots \geq \sigma_{N(k)}(k)$, and if there is no such smallest
integer, then $n(k) = N(k)$.

15. The article of manufacture as set forth in claim 10, wherein
for each k , the decomposition

$$m_k * w_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v'_i(k)$$

is the singular value decomposition of the weighted sub-block $m_k * w_k$.

16. The article of manufacture as set forth in claim 15, wherein for each index k , $n(k)$ is the smallest index i for which $\sigma_{i+1}(k) < C$, where C is a positive constant, the singular values are such that $\sigma_1(k) \geq \sigma_2(k) \geq \dots \geq \sigma_{N(k)}(k)$, and if there is no such smallest integer, then $n(k) = N(k)$.

17. The article of manufacture as set forth in claim 15, wherein there is at least one k for which $n(k) < N(k)$.

18. The article of manufacture as set forth in claim 15, wherein $n(k) = \min\{C, N(k)\}$, where C is independent of k .

19. A method to compress a matrix, the method comprising:
partitioning the matrix into a set of overlapping sub-blocks $\{m_k, k = 1, \dots, V\}$,

where each m_k has a decomposition

$$m_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v_i'(k);$$

and representing each sub-block m_k by a set of scalar weights $\{\sigma_i(k), i = 1, \dots, n(k)\}$, a set of vectors $\{u_i(k), i = 1, \dots, n(k)\}$, and a set of vectors $\{v_i(k), i = 1, \dots, n(k)\}$, where $n(k) \leq N(k)$.

20. The method as set forth in claim 19, wherein
for each k , the decomposition

$$m_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v_i'(k)$$

is the singular value decomposition of the sub-block m_k .

21. The method as set forth in claim 20, wherein for each index k , $n(k)$ is the smallest index i for which $\sigma_{i+1}(k) < C$, where C is a positive constant, the singular values are such that $\sigma_1(k) \geq \sigma_2(k) \geq \dots \geq \sigma_{N(k)}(k)$, and if there is no such smallest integer, then $n(k) = N(k)$.

22. The method as set forth in claim 20, wherein there is at least one k for which $n(k) < N(k)$.

23. The method as set forth in claim 20, wherein $n(k) = \min\{C, N(k)\}$, where C is independent of k .

24. An article of manufacture comprising a computer readable medium, the computer readable medium comprising instructions to cause a computer system to:
partition a matrix into a set of overlapping sub-blocks $\{m_k, k = 1, \dots, V\}$, wherein m_k has a decomposition

$$m_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v_i'(k);$$

and represent each sub-block m_k by a set of scalar weights $\{\sigma_i(k), i = 1, \dots, n(k)\}$, a set of vectors $\{u_i(k), i = 1, \dots, n(k)\}$, and a set of vectors $\{v_i(k), k = 1, \dots, n(k)\}$, where $n(k) \leq N(k)$.

25. The article of manufacture as set forth in claim 24, wherein

for each k , the decomposition

$$m_k = \sum_{i=1}^{N(k)} \sigma_i(k) u_i(k) v_i'(k)$$

is the singular value decomposition of the sub-block m_k .

26. The article of manufacture as set forth in claim 25, wherein for each index k ,

$n(k)$ is the smallest index i for which $\sigma_{i+1}(k) < C$, where C is a positive constant, the singular values are such that $\sigma_1(k) \geq \sigma_2(k) \geq \dots \geq \sigma_{N(k)}(k)$, and if there is no such smallest integer, then $n(k) = N(k)$.

27. The article of manufacture as set forth in claim 25, wherein there is at least one k for which $n(k) < N(k)$.

28. The article of manufacture as set forth in claim 25, wherein $n(k) = \min\{C, N(k)\}$, where C is independent of k .

29. A method to synthesize a matrix \hat{M} , the method comprising:

receiving families of sets comprising:

a family of sets of scalar weights $\{\{\sigma_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

a family of sets of vectors $\{\{u_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$; and

a family of sets of vectors $\{\{v_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

forming weighted vector outer products and summing to provide $\hat{m}_k, k = 1, \dots, V$

where

$$\hat{m}_k = \sum_{i=1}^{n(k)} \sigma_i(k) u_i(k) v_i'(k);$$

and overlaying \hat{m}_k for $k = 1, \dots, V$ and summing to provide the synthesized matrix \hat{M} .

30. An article of manufacture comprising a readable computer medium, the readable computer medium comprising instructions to cause a computer system to synthesize a matrix \hat{M} by

receiving families of sets comprising:

a family of sets of scalar weights $\{\{\sigma_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

a family of sets of vectors $\{\{u_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$; and

a family of sets of vectors $\{\{v_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

forming weighted vector outer products and summing to provide $\hat{m}_k, k = 1, \dots, V$

where

$$\hat{m}_k = \sum_{i=1}^{n(k)} \sigma_i(k) u_i(k) v_i'(k);$$

and overlaying \hat{m}_k for $k = 1, \dots, V$ and summing to provide the synthesized matrix \hat{M} .

31. A method to synthesize a matrix \hat{M} , the method comprising:
receiving families of sets comprising:

a family of sets of scalar weights $\{\{\sigma_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

a family of sets of vectors $\{\{u_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$; and

a family of sets of vectors $\{\{v_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

forming weighted vector outer products and summing to provide $\hat{m}_k, k = 1, \dots, V$

where

$$\hat{m}_k = \sum_{i=1}^{n(k)} \sigma_i(k) u_i(k) v_i'(k);$$

weighting each \hat{m}_k by a weight matrix w_k to form $\hat{m}_k * w_k$ where $*$ denotes element-by-element multiplication; and

overlaying $\hat{m}_k * w_k$ for $k = 1, \dots, V$ and summing to provide the synthesized matrix \hat{M} .

32. An article of manufacture comprising a computer readable medium, the computer readable medium comprising instructions to cause a computer system to synthesize a matrix \hat{M} by

receiving families of sets comprising:

a family of sets of scalar weights $\{\{\sigma_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

a family of sets of vectors $\{\{u_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$; and

a family of sets of vectors $\{\{v_i(k), i = 1, \dots, n(k)\}, k = 1, \dots, V\}$;

forming weighted vector outer products and summing to provide $\hat{m}_k, k = 1, \dots, V$

where

$$\hat{m}_k = \sum_{i=1}^{n(k)} \sigma_i(k) u_i(k) v_i'(k);$$

weighting each \hat{m}_k by a weight matrix w_k to form $\hat{m}_k * w_k$ where $*$ denotes element-by-element multiplication; and

overlaying $\hat{m}_k * w_k$ for $k = 1, \dots, V$ and summing to provide the synthesized matrix \hat{M} .