Bayes' Nets: Independence

Instructors: Fatemeh Mansoori--- University of Isfahan

[These slides were created by Dan Klein and Pieter Abbeel for AI Course at UC Berkeley.]

Probability Recap

nditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

oduct rule

$$P(x,y) = P(x|y)P(y)$$

ain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$

and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

Bayes' Nets

Bayes' net is an fficient encoding a probabilistic nodel of a domain

uestions we can ask:

- Inference: given a fixed BN, what is P(X | e)?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?

Bayes' Net Semantics

directed, acyclic graph, one node per random variable conditional probability table (CPT) for each node

A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

ayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

В	P(B)
+b	0.001
<u></u>	0.999

P(J|A)

0.9

0.1

0.05

0.95

+j

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999
			<u> </u>

Example: Alarm Network

P(J|A)

0.9

0.1

0.05

+j

+j

Е	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

d 1		0.93						-a	-111	0.33			
	,	0.95								0.99		+b	-е
	7	,	•		`							-b	+6
		-e, +e		•								-b	
b)	P(-	-e)P(-e)	+a +	$b, -\epsilon$	$e)P(\cdot$	-j -	+a	$P(\cdot$	+m	+a) =	=	-b	-е
$\begin{bmatrix} ' \\ 1 \end{bmatrix}$	×	0.998 >	, O OA	× 0 1	, 1 × 0	7	,	`	'	,		-b	-е
T	\wedge \cup	1.330 /	\ U.34	\wedge \cup .	$L \wedge U$	1.1							

В	Е	Α	P(A B,
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Student

Example: Traffic

Causal direction

D	T	D)
\boldsymbol{I}	(I,	R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

ausal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts

BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Drips*
- End up with arrows that reflect correlation, not causation

What do the arrows really mean?

- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Size of a Bayes' Net

v big is a joint distribution over N lean variables?

v big is an N-node net if nodes e up to k parents?

$$N * 2^{k+1}$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\! \perp Y$$

and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\!\perp Y|Z$$

Conditional) independence is a property of a distribution

xample: $Alarm \bot Fire | Smoke$

Bayes Nets: Assumptions

umptions we are required to make to define the result when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

ond above "chain rule → Bayes net" conditional ependence assumptions

Often additional conditional independences

They can be read off the graph

oortant for modeling: understand assumptions made en choosing a Bayes net graph

onditional independence assumptions directly from simplifications in chain rule:

dditional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

Study independence properties for triples

Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such queries

Causal Chains

is configuration is a "causal chain"

Low pressure

Y: Rain

Z: Traffic

$$P(x,y,z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? N
 - One example set of CPTs for which X is n independent of Z is sufficient to show th independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic
 traffic
 - In numbers:

■
$$P(+x) = \frac{1}{2}$$
 $P(-x) = \frac{1}{2}$

■
$$P(+y \mid +x) = 1$$
, $P(-y \mid -x) = 1$,

■
$$P(+z | +y) = 1$$
, $P(-z | -y) = 1$

Causal Chains

is configuration is a "causal chain"

$$(x, y, z) = P(x)P(y|x)P(z|y)$$

Guaranteed X independent of Z giver

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|x)}{P(x)P(y|x)}$$

$$= P(z|y)$$

Yes!

Evidence along the chain "blocks' influence

Common Cause

is configuration is a "common cause"

Z: Lab full

$$P(x,y,z) = P(y)P(x|y)P(z|y)$$

- Guaranteed X independent of Z? N
 - One example set of CPTs for which X is n independent of Z is sufficient to show th independence is not guaranteed.
 - Example:
 - Project due causes both forums buss and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Common Cause

is configuration is a "common cause"

Guaranteed X and Z independent giv

Z: Lab full

P(x,y,z) = P(y)P(x|y)P(z|y)

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$

Observing the cause blocks influe between effects.

Yes!

Common Effect

t configuration: two causes of one ect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, be they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballga competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases

Reachability

ecipe: shade evidence nodes, look or paths in the resulting graph

ttempt 1: if two nodes are connected y an undirected path not blocked by shaded node, they are conditionally dependent

Imost works, but not quite

- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

estion: Are X and Y conditionally independent given lence variables {Z}?

'es, if X and Y "d-separated" by Z

Consider all (undirected) paths from X to Y

Io active paths = independence!

ath is active if each triple is active:

Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)

Common cause $A \leftarrow B \rightarrow C$ where B is unobserved

Common effect (aka v-structure)

 $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed

t takes to block a path is a single inactive segment

Active Triples

Inactive Trip

D-Separation

Query:
$$X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$$
 ?

Check all (undirected!) paths between X_i and X_j

If one or more active, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \bot\!\!\!\bot B$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Variables:

R: Raining

■ T: Traffic

D: Roof drips

S: I'm sad

• Questions:

Bayes' Nets

- **✓** Representation
- **✓** Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data