

实分析讲义

前言

2020-2021 研究生课程《实分析》讲义。

曹军 2020年1月

目录

1	Sobolev 函数		1
	1.1	定义与基本性质	1
	1.2	Sobolev 函数的迹与延拓	9

第一章 Sobolev 函数

1.1 定义与基本性质

在本节中,设 $U \subset \mathbb{R}^n$ 为一个开集.

定义 1.1. 弱导数

设 $f \in L^1_{loc}(U)$ 为 U 上的局部可积函数, $1 \le i \le n$,称 $g_i \in L^1_{loc}(U)$ 为 f 在 U 上 关于 x_i 的弱导数,若对任意的 $\varphi \in C^1_c(U)$,有

$$\int_{U} f \frac{\partial \varphi}{\partial x_{i}} dx = -\int_{U} g_{i} \varphi dx. \tag{1.1}$$

此时,记 $g_i := \frac{\partial f}{\partial x_i}$,并记 $Df := (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ 为f的梯度向量.

定义 1.2. Sobolev 空间

设 $1 \le p \le \infty$.

- (i) 称 $f \in W^{1,p}(U)$, 若 $f \in L^p(U)$ 且对任意 $1 \le i \le n$, 其弱导数 $g_i \in L^p(U)$;
- (ii) 称 $f \in W^{1,p}_{loc}(U)$,若对任意 $V \subset \subset U$,有 $f \in W^{1,p}(V)$;
- (iii) 称 f 为一个 **Sobolev** 函数,若存在 $1 \le p \le \infty$,使得 $f \in W^{1,p}_{loc}(U)$.
- (iv) 对任意 $f \in W^{1,p}(U)$, 定义其范数如下

$$\|f\|_{W^{1,p}(U)} := \begin{cases} \left[\int_{U} \left| f(x) \right|^{p} + \left| Df(x) \right|^{p} \, dx \right]^{\frac{1}{p}}, & 1 \leq p < \infty, \\ \sup_{x \in U} \left[\left| f(x) \right| + \left| Df(x) \right| \right], & p = \infty. \end{cases}$$

注 设 f 为一个 Sobolev 函数,由定义知存在 $p \in [1, \infty)$ 使得, $f \in W^{1,p}_{loc}(U)$,从而对任意 $V \subset\subset U, f \in W^{1,p}(V)$,且 f 在 V 上存在弱导数 $\frac{\partial}{\partial x_j}f$,其中 $j \in \{1, \ldots, n\}$. 因此对任 意 $\varphi \in C^1_c(U)$,由于 $\operatorname{supp} \varphi$ 紧,知存在开集 $V \subset\subset U$ 满足 $\operatorname{supp} \varphi \subset V$,故根据弱导数定义(1.1),

$$\int_{U} f \frac{\partial \varphi}{\partial x_{i}} dx = -\int_{U} g_{i} \varphi dx. \tag{1.2}$$

这说明,上述分部积分公式对任意的 Sobolev 函数都成立。

定义 1.3. 收敛

设 $\{f_k\}_{i\in\mathbb{N}}$ 与 f 为 Sobolev 函数.

(i) 称 $f_k \to f$ in $W^{1,p}(U)$, 若当 $k \to \infty$ 时,

$$||f_k - f||_{W^{1,p}(U)} \to 0;$$

(ii) 称 $f_k \to f$ in $W^{1,p}_{\mathrm{loc}}(U)$,若对任意的 $V \subset\subset U$,有当 $k \to \infty$ 时,

$$||f_k - f||_{W^{1,p}(V)} \to 0.$$

定义 1.4. 磨光

设U为 \mathbb{R}^n 中一个开集.

- (i) 对任意 $\epsilon > 0$, 令 $U_{\epsilon} := \{x \in U : \operatorname{dist}(x, \partial U) > \epsilon\}.$

$$\eta(x) := \begin{cases} C \exp\left(\frac{1}{|x|^2 - 1}\right), & |x| < 1, \\ 0, & |x| \ge 1, \end{cases}$$

其中常数 C > 0 满足 $\int_{\mathbb{R}^n} \eta(x) dx = 1$. 对任意 $\epsilon > 0$, 定义

$$\eta_{\epsilon}(x) := \frac{1}{\epsilon^n} \eta\left(\frac{x}{\epsilon}\right).$$

(iii) 对任意 $f \in L^1_{loc}(U)$ 及 $x \in U_{\epsilon}$, 定义

$$f^{\epsilon}(x) := \eta_{\epsilon} * f(x) = \int_{U} \eta_{\epsilon}(x - y) f(y) \, dy. \tag{1.3}$$

定理 1.1. 磨光逼近

设 U 为 \mathbb{R}^n 中的一个开集, η 为一个磨光子, $f \in L^1_{loc}(U)$. 则如下结论成立.

- (i) 对任意 $\epsilon > 0$, $f^{\epsilon} \in C^{\infty}(U_{\epsilon})$;
- (ii) 若 $f \in C(U)$, 则当 $\epsilon \to 0$ 时, $f^{\epsilon} \to f$, 在 U 中任意紧子集上一致收敛;
- (iii) 若 $f \in L^p_{loc}(U)$, 其中 $p \in [1, \infty)$, 则当 $\epsilon \to 0$ 时, $f^{\epsilon} \to f$ in $L^p_{loc}(U)$.
- (iv) $\exists x \in U \$ 为 f 的 Lebesgue 点,则当 $\epsilon \to 0$ 时, $f^{\epsilon}(x) \to f(x)$,点态收敛. 特别地, $f^{\epsilon} \to f$,在 Lebesgue 测度 \mathcal{L}^n 下几乎处处收敛;
- (v) 若 $f \in W_{loc}^{1,p}(U)$, 其中 $p \in [1, \infty]$, 则对任意 $\epsilon > 0$ 和 $j \in \{1, \ldots, n\}$, 有

$$\frac{\partial f^{\epsilon}}{\partial x_{i}} = \eta_{\epsilon} * \frac{\partial f}{\partial x_{i}}$$

在 Uc 上点态成立:

 $(\mathrm{vi}) \ \, \not = f \in W^{1,p}_{\mathrm loc}(U), \ \, \not = p \in [1,\,\infty), \ \, \not = \epsilon \to 0 \ \, \mathrm{bf}, \ \, f^\epsilon \to f \ \, \mathrm{in} \ \, W^{1,p}_{\mathrm loc}(U).$

证明 Step1: (i) 的证明. 固定 $x \in U_{\epsilon}$, $j \in \{1, ..., n\}$. 令 $e_j = \{0, ..., 1, ..., 0\}$ 为单位向量. 由 U_{ϵ} 为开集知,当 h > 0 充分小时, $x + he_j \in U_{\epsilon}$.

考虑差商,由磨光的定义(1.3)知

$$\frac{f^{\epsilon}(x+he_{j})-f^{\epsilon}(x)}{h} = \frac{1}{h} \left[\int_{U} \eta_{\epsilon}(x+he_{j}-y)f(y) \, dy - \int_{U} \eta_{\epsilon}(x-y)f(y) \, dy \right]$$
$$= \frac{1}{\epsilon^{n}} \int_{U} \frac{1}{h} \left[\eta \left(\frac{x+he_{j}-y}{\epsilon} \right) - \eta \left(\frac{x-y}{\epsilon} \right) \right] f(y) \, dy.$$

注意到

$$\lim_{h \to 0} \frac{1}{h} \left[\eta \left(\frac{x + he_j - y}{\epsilon} \right) - \eta \left(\frac{x - y}{\epsilon} \right) \right] = \frac{1}{\epsilon} \frac{\partial \eta}{\partial x_j} \left(\frac{x - y}{\epsilon} \right) = \epsilon^n \frac{\partial \eta_{\epsilon}}{\partial x_j} \left(x - y \right),$$

以及对任意 h > 0 充分小,

$$\left| \frac{1}{h} \left[\eta \left(\frac{x + he_j - y}{\epsilon} \right) - \eta \left(\frac{x - y}{\epsilon} \right) \right] f(y) \right| \le \frac{1}{\epsilon} \left\| D \eta \right\|_{L^{\infty}(U)} |f(y)| \in L^1_{loc}(U).$$

因此, 由控制收敛定理知,

$$\frac{\partial f^{\epsilon}}{\partial x_{i}}(x) = \lim_{h \to 0} \frac{f^{\epsilon}(x + he_{j}) - f^{\epsilon}(x)}{h} = \int_{U} \frac{\partial \eta_{\epsilon}}{\partial x_{i}}(x - y) f(y) \, dy.$$

这说明 $f^{\epsilon} \in C^{1}(U_{\epsilon})$. 类似可证明 f^{ϵ} 的其它阶导数也存在,从而 $f^{\epsilon} \in C^{\infty}(U_{\epsilon})$.

Step 2: (ii) 的证明. 设 $f \in C^1(U)$. 任取 U 的紧子集 V, 知存在开集 W 满足 $V \subset W \subset U$, 从而 f 在 W 上一致连续. 因此对任意 $x \in V$, 利用变量替换公式知

$$f^{\epsilon}(x) = \frac{1}{\epsilon^n} \int_{B(x,\epsilon)} \eta\left(\frac{x-y}{\epsilon}\right) f(y) \, dy = \int_{B(0,1)} \eta(z) f(x-\epsilon z) \, dz. \tag{1.4}$$

由此及 $\int_{B(0.1)} \eta(z) dz = 1$ 知

$$|f^{\epsilon}(x) - f(x)| \le \int_{B(0,1)} \eta(z) |f(x - \epsilon z) - f(x)| dx.$$

当 ϵ 充分小时, $x, x - \epsilon z \in W$, 由此及 f 在 W 上一致连续知 $f^{\epsilon} \to f$ 在 V 上一致收敛.

Step 3: (iii) 的证明. 设 $f \in L^p_{loc}(U)$, 则对任意 $V \subset\subset W \subset\subset U$, $x \in V$ 以及 $\epsilon > 0$ 充分小, 对 $1 \leq p < \infty$ 分两种情况.

情形 1: 当 $1 时. 此时对任意 <math>x \in V$, 由(1.4), 知

$$|f^{\epsilon}(x)| \leq \int_{B(0,1)} \eta^{1-1/p}(z) \eta^{1/p}(z) |f(x - \epsilon z)| dz$$

$$\leq \left(\int_{B(0,1)} \eta(z) dz \right)^{1/p'} \left(\int_{B(0,1)} \eta(z) |f(x - \epsilon z)|^p dz \right)^{1/p}$$

$$= \left(\int_{B(0,1)} \eta(z) |f(x - \epsilon z)|^p dz \right)^{1/p}.$$

因此, 由于当 $\epsilon > 0$ 充分小时, $x - \epsilon z \in W$, 可知

$$||f^{\epsilon}||_{L^{p}(V)}^{p} \leq \int_{V} \left[\int_{B(0,1)} \eta(z) |f(x - \epsilon z)|^{p} dz \right] dx$$

$$= \int_{B(0,1)} \eta(z) \left[\int_{V} |f(x - \epsilon z)|^{p} dx \right] dz$$

$$\leq \int_{W} |f(y)|^{p} dy.$$
(1.5)

现对任意 $\delta > 0$ 充分小, 由于 $f \in L^p(W)$, 知存在 $g \in C(\overline{W})$, 使得

$$||f - g||_{L^p(W)} < \delta.$$

由此及(1.5)知 $||f^{\epsilon}-g^{\epsilon}|| < \delta$. 从而

$$||f^{\epsilon} - f||_{L^{p}(V)} \le ||f^{\epsilon} - g^{\epsilon}||_{L^{p}(V)} + ||g^{\epsilon} - g||_{L^{p}(V)} + ||g - f||_{L^{p}(V)} \le \delta.$$

这说明 $f^{\epsilon} \to f$ in $L^p_{loc}(U)$.

情形 2: p=1 的情形类似,细节略去。

Step 4: (iv) 的证明. 设 $f \in L^1_{loc}(U)$ 且 $x \in U$ 为 f 的一个 Lebesgue 点,易知

$$|f^{\epsilon}(x) - f(x)| \le \frac{1}{\epsilon^n} \int_{B(x,\epsilon)} \eta\left(\frac{x-y}{\epsilon}\right) |f(x) - f(y)| \ dy$$
$$\le C \|\eta\|_{L^{\infty}} \frac{1}{|B|} \int_{B(x,\epsilon)} |f(y) - f(x)| \ dy.$$

由于 x 为 Lebesgue 点知, 最后一项随着 $\epsilon \to 0$ 而趋于 0. 从而 $f^{\epsilon}(x) \to f(x)$, 点态收敛.

Step 5: (v) 的证明. 设 $f \in W^{1,p}_{loc}(U)$, $1 \le p \le \infty$, 知对任意 $j \in \{1,\ldots,n\}$, f 存在弱导数 $\frac{\partial f}{\partial x_i}$. 利用弱导数的定义知对任意 $\epsilon > 0$ 与 $x \in U_{\epsilon}$,

$$\begin{split} \frac{\partial f^{\epsilon}}{\partial x_{j}}(x) &= \int_{U} \frac{\partial \eta_{\epsilon}}{\partial x_{j}}(x - y) f(y) \, dy \\ &= -\int_{U} \frac{\partial \eta_{\epsilon}}{\partial y_{j}}(x - y) f(y) \, dy \\ &= \int_{U} \eta_{\epsilon}(x - y) \frac{\partial f}{\partial y_{j}}(y) \, dy \\ &= \eta_{\epsilon} * \frac{\partial f}{\partial x_{j}}(x). \end{split}$$

Step 6: (vi) 的证明. (vi) 可由 (v) 与 (iii) 联立证明.

定理 1.2. 光滑函数的局部逼近

设 $U \subset \mathbb{R}^n$ 为一个开集, $f \in W^{1,p}(U)$, $(1 \leq p < \infty)$. 则存在函数列 $\{f_k\}_{k \in \mathbb{N}} \subset W^{1,p}(U) \cap C^{\infty}(U)$ 使得

$$f_k \to f \text{ in } W^{1,p}(U).$$

证明 Step 1: 环形分解. 固定 $\epsilon > 0$, 定义 $U_0 : \emptyset$ 且对任意 $k \in \mathbb{N}$, 定义

$$U_k := \{x \in U : \operatorname{dist}(x, \partial U) > \frac{1}{k}\} \cap B(0, k).$$

令 $V_k := U_{k+1} \setminus \overline{U}_{k-1}$. 取 $\{\xi_k\}_{k \in \mathbb{N}}$ 为光滑函数列满足如下条件:

- a. 对任意 $k \in \mathbb{N}$, $\xi_k \in C_c^{\infty}(V_k)$ 且 $0 \le \xi_k \le 1$;
- b. $\sum_{k\in\mathbb{N}} \xi_k \equiv 1$ on U.

由此可得对任意 $k \in \mathbb{N}$, $f\xi_k \in W^{1,p}(U)$ 且 $\operatorname{supp}(f\xi_k) \subset V_k$. 因此, 应用磨光逼近定理1.1(vi), 知对任意 $\epsilon > 0$, 存在 $\epsilon_k > 0$ 充分小, 使得

- supp $(\eta_{\epsilon_k} * (f\xi_k)) \subset V_k$;
- $\|\eta_{\epsilon_k}*(f\xi_k)-f\xi_k\|_{L^p(U)}<\frac{\epsilon}{2^k};$
- $\|\eta_{\epsilon_k} * D(f\xi_k) D(f\xi_k)\|_{L^p(U)} < \frac{\epsilon}{2^k};$
- $\bullet \ f = \sum_{k=1}^{\infty} f \xi_k.$

Step 2: 磨光逼近. 对任意 $\epsilon > 0$ 充分小,令

$$f_{\epsilon} := \sum_{k=1}^{\infty} \eta_{\epsilon_k} * (f\xi_k).$$

对任意 $x \in U$, 由存在 x 的邻域 U_x ,使得上述求和在 U_x 上只有有限项非零, 因此 $f_{\epsilon} \in C^{\infty}(U) \cap W^{1,p}(U)$.

另一方面,考虑

$$||f_{\epsilon} - f||_{L^{p}(U)} + ||D(f_{\epsilon} - f)||_{L^{p}(U)}$$

$$\leq \sum_{k=1}^{\infty} \left[||\eta_{\epsilon_{k}} * (f\xi_{k}) - (f\xi_{k})||_{L^{p}(U)} + ||\eta_{\epsilon_{k}} * D(f\xi_{k}) - D(f\xi_{k})||_{L^{p}(U)} \right] < \epsilon.$$

这说明 $f_{\epsilon_k} \to f$ in $W^{1,p}(U)$.

定义 1.5. Lipschitz 边界

设 $U \subset \mathbb{R}^n$ 为一个开集, ∂U 为其边界. 称 ∂U 是 Lipschitz 的, 若对任意 $x \in \partial U$, 存在 r > 0 与一个 Lipschitz 映射 $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ 使得 (在相差一个旋转和坐标重排下),

$$U \cap Q(x,r) = \{ y \in \mathbb{R}^n : \gamma(y_1, \dots, y_{n-1} < y_n) \} \cap Q(x,r),$$

其中 $Q(x,r):=\{y\in\mathbb{R}^n:\,|y_j-x_j|< r,j=1,\ldots,n\}$ 为一个中心在 x, 边长为 2r 的方体.

定理 1.3. 光滑函数的整体逼近

设 $U \subset \mathbb{R}^n$ 为一个有界开集, 满足 ∂U 为 Lipschitz. 若 $f \in W^{1,p}(U)$, $(1 \leq p < \infty)$, 则存在函数列 $\{f_k\}_{k \in \mathbb{N}} \subset W^{1,p}(U) \cap C^{\infty}(\overline{U})$ 使得 $f_k \to f$ in $W^{1,p}(U)$.

证明 Step 1: 函数在小方体的平移. 对任意 $x \in \partial U$, 令 r > 0 和 $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ 为 Lipschitz 边界定义中的边长与映射, 记 Q := Q(x,r) 和 Q' := Q(x,r/2).

先假设f 在 $\partial Q' \cap U$ 的一个小邻域上为 0, 则对任意 $y \in \overline{U \cap Q'}$, $\epsilon > 0$ 与 $\alpha > 0$, 令 $y^{\epsilon} := y + \epsilon \alpha e_n$ 为 y 沿着 e_n 方向的一个平移. 易知当 ϵ 充分小时,有 $B(y^{\epsilon}, \epsilon) \subset U \cap Q$. 对任意 $y \in U \cap Q'$, 定义

$$f_{\epsilon}(y) := \frac{1}{\epsilon^n} \int_{U} \eta(z/\epsilon) f(y^{\epsilon} - z) dz$$
 (1.6)

$$= \frac{1}{\epsilon^n} \int_{B(y^{\epsilon}, \epsilon)} \eta \left(\frac{y - w}{\epsilon} + \alpha e_n \right) f(w) dw. \tag{1.7}$$

易知 f_{ϵ} 满足如下性质:

- a. $f_{\epsilon} \in C^{\infty}(\overline{U \cap Q'});$
- b. $f_{\epsilon} \to f$ in $W^{1,p}(U \cap Q')$.

进一步,由假设: $f\equiv 0$ 在 $\partial Q'\cap U$ 的一个小邻域,知当 $\epsilon>0$ 充分小时, $f_\epsilon\equiv 0$ 在 $\partial Q'\cap U$ 的一个小邻域成立. 由此可知,此时 f_ϵ 可零延拓至 $U\setminus Q'$.

Step 2: 构造有限单位分解. 由 ∂U 为紧集,知在 Lipschitz 边界的定义中,存在有限 (不妨设为 N) 个方体 $Q(x_i, r_i), j = 1, \ldots, N$,使得

$$\partial U \subset \bigcup_{j=1}^{N} Q(x_j, r_j/2).$$

令 $\{\xi_j\}_{j\in\mathbb{N}}$ 为光滑函数列,满足对任意 $j\in\{1,\ldots,n\}$,

- supp $\xi_i \subset Q_i'$, $0 \le \xi_i \le 1$;
- $\sup \xi_0 \subset U, 0 \le \xi_0 \le 1;$
- $\sum_{j=0}^{N} \xi_j = 1$ on U.

对任意 $j \in \{1, ..., N\}$, 令 $f^j := f\xi_j$. 对任意充分小 $\delta > 0$, 构造形如(1.6) 的平移函数 $g^j := (f^j)_{\epsilon_i} \in C^{\infty}(\overline{U})$ 使得 $\sup g^j \subset \overline{U} \cap Q_i$

$$\|g^i - f^i\|_{W^{1,p}(U \cap Q_j)} < \frac{\delta}{2}.$$

对 j=0, 令 g^0 为局部逼近定理1.1中逼近函数满足 $g^0 \in W^{1,p}(U) \cap C^{\infty}(U)$ 使得

$$||g^0 - f^0||_{W^{1,p}(U)} < \delta/2.$$

$$\diamondsuit g := \sum_{i=0}^N g^9 \in C^\infty(\overline{U}),$$
知

$$||f - g||_{W^{1,p}(U)} \le ||f^0 - g^0||_{W^{1,p}(U)} + \sum_{j=1}^N ||f^j - g^j||_{W^{1,p}(U)} < \delta.$$

定理 1.4. 乘积与链式法则

设 $U \subset \mathbb{R}^n$ 为一个开集, $1 \le p < \infty$. 则如下性质成立.

(i) (**乘法法则**) 若 $f,g \in W^{1,p}(U) \cap L^{\infty}(U)$, 则 $fg \in W^{1,p}(U) \cap L^{\infty}(U)$ 且对任意 $j \in \{1,\ldots,n\}$,

$$\frac{\partial (fg)}{\partial x_i} = \frac{\partial f}{\partial x_i} g + f \frac{\partial g}{\partial x_i}$$

依 Lebesgue 测度 \mathcal{L}^n -a.e. 成立;

(ii) (链式法则) 若 $f \in W^{1,p}(U)$, $F \in C^1(\mathbb{R})$ 满足 $F' \in L^{\infty}(\mathbb{R})$ 且 F(0) = 0. 则 $F(f) \in W^{1,p}(U)$ 且对任意 $j \in \{1, \dots, n\}$,

$$\frac{\partial F(f)}{\partial x_i} = F'(f) \frac{\partial f}{\partial x_i};$$

(iii) (正负部弱导数) 若 $f \in W^{1,p}(U)$, 则 $f^+, f^-, |f| \in W^{1,p}(U)$ 且

$$Df^{+} = \begin{cases} Df, & \mathcal{L}^{n} - a.e. \text{ on } \{f > 0\} \\ 0, & \mathcal{L}^{n} - a.e. \text{ on } \{f \le 0\}, \end{cases}$$

$$Df^{-} = \begin{cases} 0, & \mathcal{L}^{n} - a.e. \text{ on } \{f \ge 0\} \\ Df, & \mathcal{L}^{n} - a.e. \text{ on } \{f < 0\}, \end{cases}$$

$$D|f| = \begin{cases} Df, & \mathcal{L}^n - a.e. \text{ on } \{f > 0\} \\ 0, & \mathcal{L}^n - a.e. \text{ on } \{f = 0\} \\ -Df, & \mathcal{L}^n - a.e. \text{ on } \{f < 0\}. \end{cases}$$

特别地, Df = 0 在 $\{f = 0\}$ 上 \mathcal{L}^n -a.e. 成立.

证明 Step 1: (i) 的证明. 取 $\varphi \in C_c^1(U)$, 满足 $\operatorname{supp} \varphi \subset V \subset U$. 对任意 $\epsilon > 0$ 充分小,令

$$f^{\epsilon} := \eta_{\epsilon} * f \quad \not = g^{\epsilon} := \eta_{\epsilon} * g.$$

知

$$\begin{split} \int_{U} fg \frac{\partial \varphi}{\partial x_{j}} \, dx &= \int_{V} fg \frac{\partial \varphi}{\partial x_{j}} \, dx \\ &= \lim_{\epsilon \to 0} \int_{V} f^{\epsilon} g^{\epsilon} \frac{\partial \varphi}{\partial x_{j}} \, dx \\ &= -\lim_{\epsilon \to 0} \int_{V} \left[\frac{\partial f^{\epsilon}}{\partial x_{j}} g^{\epsilon} + f^{\epsilon} \frac{\partial g^{\epsilon}}{\partial x_{j}} \right] \varphi \, dx. \end{split}$$

由 $f^{\epsilon} \to f$, $g^{\epsilon} \to g$ in $W^{1,p}_{loc}(U)$, 以及 $f^{\epsilon}, g^{\epsilon} \in L^{\infty}(U)$, 并应用控制收敛定理, 知上式等于

$$-\int_{V} \left[\frac{\partial f}{\partial x_{i}} g + f \frac{\partial g}{\partial x_{i}} \right] \varphi \, dx.$$

由弱导数定义, 这说明 $fg \in W^{1,p}(U) \cap L^{\infty}(U)$ 且

$$\frac{\partial (fg)}{\partial x_j} = \frac{\partial f}{\partial x_j}g + f\frac{\partial g}{\partial x_j}$$

依 Lebesgue 测度 \mathcal{L}^n -a.e. 成立.

Step 2: (ii) 的证明. 设 $F \in C^1(\mathbb{R})$ 满足 $F' \in L^\infty(\mathbb{R})$ 且 F(0) = 0. 易知 $\lim_{\epsilon \to 0} F(f^{\epsilon}) = F(f)$ 点态 \mathcal{L}^n -a.e. 成立. 进一步,类似于 Step 2, 取 φ , f^{ϵ} 以及 V, 利用控制收敛定理知对任意 $j \in \{1, \ldots, n\}$,

$$\int_{U} F(f) \frac{\partial \varphi}{\partial x_{j}} dx = \int_{V} F(f) \frac{\partial \varphi}{\partial x_{j}} dx$$

$$= \lim_{\epsilon \to 0} \int_{V} F(f^{\epsilon}) \frac{\partial \varphi}{\partial x_{j}} dx$$

$$= -\lim_{\epsilon \to 0} \int_{V} F'(f^{\epsilon}) \frac{\partial f^{\epsilon}}{\partial x_{j}} \varphi dx$$

$$= -\int_{V} F'(f) \frac{\partial f^{\epsilon}}{\partial x_{j}} \varphi dx$$

$$= -\int_{U} F'(f) \frac{\partial f^{\epsilon}}{\partial x_{j}} \varphi dx.$$

这说明 $F(f) \in W^{1,p}(U)$ 且 $\frac{\partial F(f)}{\partial x_i} = F'(f) \frac{\partial f}{\partial x_i}$.

Step 3: (iii) 和 (iv) 的证明. 对任意 $\epsilon > 0$ 充分小, 定义

$$F_{\epsilon}(r) := \begin{cases} \left(r^2 + \epsilon^2\right)^{1/2} - \epsilon, & r \ge 0, \\ 0, & r < 0. \end{cases}$$

易知 $F_{\epsilon} \in C^1(\mathbb{R})$, $\lim_{\epsilon \to 0} F_{\epsilon}(f) \to f^+$ 点态收敛,且 $F'_{\epsilon}(r) = \frac{1}{2} \left(r^2 + \epsilon^2\right)^{-1/2} \mathbf{1}_{\{r \ge 0\}} \in L^{\infty}(\mathbb{R})$. 因此,应用 (ii) 知,对任意 $\varphi \in C^1_c(U)$ 有,

$$\int_{U} F_{\epsilon}(f) \frac{\partial \varphi}{\partial x_{i}} dx = -\int_{U} F'_{\epsilon}(f) \frac{\partial f}{\partial x_{i}} \varphi dx.$$

$$\int_{U} f^{+} \frac{\partial \varphi}{\partial x_{j}} dx = - \int_{U \cap \{f > 0\}} \frac{\partial f}{\partial x_{j}} \varphi dx.$$

这说明 $f^+ \in W^{1,p}(U)$ 且 $\frac{\partial f^+}{\partial x_j} = \frac{\partial f}{\partial x_j} \mathbf{1}_{\{f>0\}} \mathcal{L}^n$ -a.e. 意义下成立. $f^-,|f|$ 和 (iv) 的情形类似,细节略去.

定理 1.5. Sobolev 与 Lipscthiz 函数

设 $U \subset \mathbb{R}^n$ 为一个开集, $f: U \to \mathbb{R}$ 为一个U 上的函数. 则 f 在U 内局部 Lipschitz 当且仅当 $f \in W^{1,\infty}_{loc}(U)$.

证明 Step1: Lipschitz 到 Sobolev. 假设 f 在 U 内局部 Lipschitz, 对任意 $j \in \{1, \ldots, n\}$ 以及

取 $0 < h < \operatorname{dsit}(\underline{V}, \underline{\partial W})$ 并对任意 $x \in V$, 定义

$$g_j^h(x) := \frac{f(x + he_j) - f(x)}{h}.$$

知

$$\sup_{0 < h < \operatorname{dsit}(V, \partial W), x \in V} \left| g_j^h(x) \right| \le \operatorname{Lip}(f|_W) < \infty.$$

从而对任意 $p \in (1, \infty)$, 有

$$\sup_{0 < h < \mathrm{dsit}(V, \partial W)} \left\| \left| g_j^h \right| \right\|_{L^p(V)} < \infty.$$

根据 $L^p(V)$ 的弱紧性知,存在子序列 $\{h_k\}_{k\in\mathbb{N}}$ 以及 $g_j\in L^\infty_{\mathrm{loc}}(U)$,满足 $\lim_{k\to\infty}h_k=0$ 以及

$$g_j^{h_k} \rightharpoonup g_j$$

在 $L^p(V)$ 中弱收敛. 因此,对任意 $\varphi \in C^1_c(V)$ 以及 $j \in \{1, ..., n\}$,有

$$\int_{U} f(x) \frac{\varphi(x + h_k e_j) - \varphi(x)}{h_k} dx = -\int_{U} g_j^{h_k} \varphi(x + h_k e_j) dx.$$

 $\diamondsuit k \to \infty$,得

$$\int_{U} f(x) \frac{\partial \varphi(x)}{\partial x_{j}} dx = -\int_{U} g_{j} \varphi(x) dx.$$

这说明 g_j 为 f 关于 x_j 的弱导数, 从而 $f \in W^{1,\infty}_{loc}(U)$.

Step 2: Sobolev 到 Lipschitz. 设 $f \in W^{1,\infty}_{loc}(U)$. 令 $B \subset\subset U$ 为 U 中任意闭球,取 $\epsilon_0 > 0$ 充分小,知

$$\sup_{0<\epsilon<\epsilon_0} \|Df^{\epsilon}\|_{L^{\infty}(B)} < \infty.$$

又由于 $f^{\epsilon} \in C^{\infty}(B)$, 知对任意 $x, y \in B$,

$$f^{\epsilon}(x) - f^{\epsilon}(y) = \int_0^1 Df^{\epsilon}(y + t(x - y)) dt(x - y).$$

从而 $|f^{\epsilon}(x) - f^{\epsilon}(y)| \lesssim |x - y|$. 令 $\epsilon \to 0$, 得 f 为局部 Lipschitz.

 \Diamond

1.2 Sobolev 函数的迹与延拓

定理 1.6. 迹定理

设 $U \subset \mathbb{R}^n$ 为一个有界开集,其边界 ∂U 为 Lipschitz 光滑,且 $1 \leq p < \infty$. 则如下 结论成立.

- (i) 存在有界线性算子 $T: W^{1,p}(U) \to L^p(\partial U, \mathcal{H}^{n-1})$ 使得对任意 $f \in W^{1,p}(U) \cap C^1(\overline{U})$,有 Tf = f on ∂U ;
- (ii) 对任意 $\varphi \in C^1(\mathbb{R}^n; \mathbb{R}^n)$ 与 $f \in W^{1,p}(U)$, 有

$$\int_{U} f \operatorname{div} \varphi \, dx = - \int_{U} Df \cdot \varphi \, dx + \int_{\partial U} (\varphi \cdot \nu) \, Tf \, d\mathcal{H}^{n-1},$$

其中 ν 为 ∂U 上的单位外法向量.

定义 1.6. Sobolev 函数的迹

给定 $f \in W^{1,p}(U)$, 上述定理中的函数 Tf 称为函数 f 在 ∂U 上的迹.

证明 [迹定理的证明]

Step 1: 外法向量估计. 假设 $f \in C^1(\overline{U})$. 由 ∂U 为 Lipschitz,知对任意 $x \in U$,存在 r > 0 以及 Lipschitz 函数 $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ 满足在相差旋转和坐标重排下,

$$U \cap Q(x,r) = \{y : \gamma(y_1, \dots, y_{n-1}) < y_n\} \cap Q(x,r).$$

进一步, 假设 $f \equiv 0$ on $U \setminus Q$, 设 ν 为定义在 $Q \cap \partial U$ 上的单位外法向量, 知

$$\nu = \frac{\left(\nabla_{y'}\gamma(y'), -1\right)}{\sqrt{1 + |\nabla_{y'}\gamma(y')|^2}},$$

其中 $y' := (y_1, \ldots, y_{n-1})$. 从而由 γ 为 Lipschitz 函数, 知

$$-e_n \cdot \nu = \frac{1}{\sqrt{1 + |\nabla_{y'} \gamma(y')|^2}} \ge \frac{1}{\sqrt{1 + (\text{Lip}(\gamma))^2}} > c_0$$
 (1.8)

在 $Q \cap \partial U$ 上依 \mathcal{H}^{n-1} -a.e. 成立, 其中 $c_0 > 0$ 为一个正常数.

Step 2: $f \in C^1(\overline{U}) \coprod f \equiv 0$ on $U \setminus Q$.

固定 $\epsilon > 0$, 对任意 $t \in \mathbb{R}$. 令

$$\beta_{\epsilon}(t) := (t^2 + \epsilon^2)^{1/2} - \epsilon.$$

易知 $\beta_{\epsilon}(t)$ 随着 $\epsilon \to 0$ 单调递增趋于 |t|. 进一步, 由于 $\beta'_{\epsilon}(t) = t(t^2 + \epsilon^2)^{-1/2}$, 知 $|\beta'_{\epsilon}| < 1$.

回顾 Gauss-Green 公式. 即对任意有界集合 $E \subset \mathbb{R}^n$, 以及 $\varphi \in C^1_c(\mathbb{R}^n; \mathbb{R}^n)$ 有

$$\int_{E} \operatorname{div} \varphi \, dx = \int_{\partial E} \varphi \cdot \nu_{E} \, d\mathcal{H}^{n-1}. \tag{1.9}$$

利用(1.9), 并根据 $f \equiv 0$ on $U \setminus Q$, 可得

$$\int_{\partial U} \beta_{\epsilon}(f) d\mathcal{H}^{n-1} = \int_{\partial U \cap Q} \beta_{\epsilon}(f) d\mathcal{H}^{n-1}$$

$$\leq C \int_{\partial U \cap Q} \beta_{\epsilon}(f) (-e_n \cdot \nu) d\mathcal{H}^{n-1}$$

$$= -C \int_{U \cap Q} \frac{\partial}{\partial y_n} (\beta_{\epsilon}(f)) dy$$

$$= -C \int_{U \cap Q} \beta'_{\epsilon}(f) \frac{\partial f}{\partial y_n} dy.$$

由此可知

$$\int_{\partial U} \beta_{\epsilon}(f) d\mathcal{H}^{n-1} \le C \int_{U \cap Q} \left| \beta'_{\epsilon}(f) \right| |D(f)| dy \le C \int_{U} |D(f)| dy.$$

$$\int_{\partial U} |f| \, d\mathcal{H}^{n-1} \le C \int_{U} |D(f)| \, dy.$$

Step 2: $f \in C^1(\overline{U})$. 此时将 ∂U 用有限个在 Lipschitz 边界中定义的方体覆盖, 并使用单位分解, 得

$$f = \sum_{i=1}^{N} f^{i} = \sum_{i=1}^{N} f \xi_{i},$$

其中每一个 f^i 满足 Step 2 中条件. 因此, 应用 Step 2 中结论, 并利用 Gauss-Green 定理得

$$\begin{split} \int_{\partial U} |f| \, d\mathcal{H}^{n-1} &= \sum_{i=1}^{N} \int_{\partial U} |f^{i}| \, d\mathcal{H}^{n-1} \\ &= \sum_{i=1}^{N} \int_{(\partial U \cap Q_{i}) \cup (U \cap \partial Q_{i})} |f^{i}| \, d\mathcal{H}^{n-1} \\ &= C \sum_{i=1}^{N} \int_{(\partial U \cap Q_{i}) \cup (U \cap \partial Q_{i})} (0, \dots, 0, -|f^{i}|) \cdot \nu \, d\mathcal{H}^{n-1} \\ &= C \sum_{i=1}^{N} \int_{U \cap Q_{i}} \left[-\frac{\partial |f^{i}|}{\partial x_{i}} \xi_{i} - \frac{\partial \xi_{i}}{\partial x_{i}} |f| \right] \, dy \\ &= C \sum_{i=1}^{N} \int_{U \cap Q_{i}} \left[|Df| + |f| \right] \, dy. \end{split}$$

类似地,对任意 $1 ,用 <math>|f|^p$ 代替 |f| 并重复上面讨论,可得

$$\int_{\partial U} |f|^p \mathcal{H}^{n-1} \le C \int_U [|Df|^p + |f|^p] dy.$$

Step 4: $f \in W^{1,p}(U)$. 此时根据整体逼近定理, 取 $\{f_j\}_{j\in\mathbb{N}} \subset W^{1,p}(U) \cap C^1(\overline{U})$, 定义迹算子为

$$T(f) := \lim_{j \to \infty} f_j|_{\partial U}.$$

由 Step 3 中结果, 知 T 可延拓为从 $W^{1,p}(U)$ 到 $L^p(\partial U, \mathcal{H}^{n-1})$ 有界的线性算子.

定理 1.7. 延拓定理

设 $U \subset \mathbb{R}^n$ 为一个有界开集, 其边界 ∂U 为 Lipschitz 光滑, 且 1 , 且存在开集 <math>V 满足 $U \subset C$ V. 则存在一个有界线性算子 $E: W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$ 使得对任意 $f \in W^{1,p}(U)$, 有

- (i) supp $Ef \subset V$;
- (ii) Ef = f on U.

\Diamond

定义 1.7. Sobolev 函数的延拓

给定 $f \in W^{1,p}(U)$, 上述定理中的函数 Ef 称为函数 f 的延拓.

证明 [延拓定理的证明] **Step 1: 构造圆柱体.** 给定 $x = (x_1, ..., x_n) \in \mathbb{R}^n$, 记 $x = (x', x_n)$, 其中 $x' = (x_1, ..., x_{n-1}) \in \mathbb{R}^{n-1}$, $x_n \in \mathbb{R}$. 对任意 r, h > 0, 定义开圆柱体 C(x, r, h) 如下

图 1.1: 开圆柱体

由于 ∂U 为 Lipschitz, 知对任意 $x\in\partial U$, 存在 r,h>0 以及一个 Lipschitz 函数 $\gamma:\mathbb{R}^{n-1}\to\mathbb{R}$ 使得

- $\max_{|x'-y'| < r} |\gamma(y') x_n| < h/4;$
- $U \cap C(x, r, h) = \{y : |x' y'| < r, \gamma(y') < y_n < x_n + h\};$
- $C(x,r,h) \subset V$.

令 $C := (x, r, h), C' := C(x, r/2, h/2), U^+ := C' \cap U, U^- := C' \setminus \overline{U}.$ 如下图.

Step 2: 局部对称延拓. 设 $f \in C^1(\overline{U})$, 满足 supp $f \subset C' \cap \overline{U}$. 定义如下两个函数

$$\begin{cases} f^+(y) := f(y) & \text{if } y \in \overline{U}^+; \\ f^-(y) := f(y', 2\gamma(y') - y_n) & \text{if } y \in \overline{U}^-. \end{cases}$$

易知 $f^+ = f^-$ on $\partial U \cap C'$. 进一步, $f^- \in W^{1,p}(U^-)$ 且

$$||f^-||_{W^{1,p}(U^-)} \le C||f||_{W^{1,p}(U)}.$$
 (1.10)

事实上, 设 $\varphi \in C_c^1(U^-)$, 取 $\{\gamma_k\}_{k=1}^{\infty}$ 为一列 C^{∞} 函数列, 满足

- $\gamma_k \geq \gamma$;
- $\gamma_k \to \gamma$ 一致收敛;
- $D\gamma_k \to D\gamma$ 依测度 \mathcal{L}^n -a.e. 收敛;

图 1.2: U+ 与 U-

• $\sup_{k\in\mathbb{N}}\|D\gamma_k\|_{L^\infty}<\infty.$ 则对任意 $i\in\{1,\ldots,n-1\}$, 有

$$\begin{split} \int_{U^{-}} f^{-} \frac{\partial \varphi}{\partial y_{i}} \, dy &= \int_{U^{-}} f(y', 2\gamma(y') - y_{n}) \frac{\partial \varphi}{\partial y_{i}} \, dy \\ &= \lim_{k \to \infty} \int_{U^{-}} f(y', 2\gamma_{k}(y') - y_{n}) \frac{\partial \varphi}{\partial y_{i}} \, dy \\ &= -\lim_{k \to \infty} \int_{U^{-}} \left[\frac{\partial f}{\partial y_{i}} (y', 2\gamma_{k}(y') - y_{n}) + 2 \frac{\partial f}{\partial y_{n}} (y', 2\gamma_{k}(y') - y_{n}) \frac{\partial \gamma_{k}}{\partial y_{i}} (y') \right] \varphi \, dy \\ &= -\int_{U^{-}} \left[\frac{\partial f}{\partial y_{i}} (y', 2\gamma(y') - y_{n}) + 2 \frac{\partial f}{\partial y_{n}} (y', 2\gamma(y') - y_{n}) \frac{\partial \gamma}{\partial y_{i}} (y') \right] \varphi \, dy. \end{split}$$

类似地,有

$$\int_{U^{-}} f^{-} \frac{\partial \varphi}{\partial y_{i}} dy = \int_{U^{-}} \frac{\partial f}{\partial y_{n}} (y', 2\gamma(y') - y_{n}) \varphi dy.$$

利用 $\|D\gamma\|_{L^{\infty}} < \infty$, 得

$$\int_{U^{-}} |Df(y', 2\gamma(y') - y_n)|^p dy \le C \int_{U} |Df|^p dy.$$

Step 3: 局部延拓算子. 定义延拓算子如下.

$$Ef := \overline{f} := \begin{cases} f^+, & x \in \overline{U}^+, \\ f^-, & x \in \overline{U}^-, \\ 0, & x \in \mathbb{R}^n \setminus (\overline{U}^+ \cup \overline{U}^-). \end{cases}$$

易知 \overline{f} 在 \mathbb{R}^n 上连续,且满足如下性质.

- (a) $E(f) \in W^{1,p}(\mathbb{R}^n) \perp ||E(f)||_{W^{1,p}(\mathbb{R}^n)} \leq C||f||_{W^{1,p}(U)};$
- (b) supp $(Ef) \subset C' \subset V$.

事实上, 根据由 $\overline{U}^+ \cup \overline{U}^- = C'$, 易知 (b) 成立. 为证 (a), 设 $\varphi \in C^1_c(C')$, 对任意 $i \in \{1, \ldots, n\}$, 应用迹定理, 以及 $T(f^+) = T(f^-)$ on ∂U , 知

$$\int_{C'} \overline{f} \frac{\partial \varphi}{\partial y_i} \, dy = \int_{U^+} f^+ \frac{\partial \varphi}{\partial y_i} \, dy + \int_{U^-} f^- \frac{\partial \varphi}{\partial y_i} \, dy
= -\int_{U^+} \frac{\partial}{\partial y_i} f^+ \varphi \, dy - \int_{U^-} \frac{\partial}{\partial y_i} f^- \varphi \, dy + \int_{\partial U} \left[T(f^+) - T(f^-) \right] \varphi \nu_i \, d\mathcal{H}^{n-1}
= -\int_{U^+} \frac{\partial}{\partial y_i} f^+ \varphi \, dy - \int_{U^-} \frac{\partial}{\partial y_i} f^- \varphi \, dy.$$

由此可得

$$\frac{\partial}{\partial y_i}\overline{f} = \frac{\partial}{\partial y_i}f^+\mathbf{1}_{U^+} + \frac{\partial}{\partial y_i}f^-\mathbf{1}_{U^-}.$$

因此, 根据 Step 2 中结论, 知 $E(f) \in W^{1,p}(\mathbb{R}^n)$ 且 $||E(f)||_{W^{1,p}(\mathbb{R}^n)} \leq C||f||_{W^{1,p}(U)}$. 这说明 (a) 成立.

Step 4: 一般的情形. 假设 $f \in C^1(\overline{U})$ 且 supp f 不一定包含于 $C' \cap \overline{U}$. 此时由于 ∂U 紧, 知 ∂U 可被有限个开圆柱体 $C_k := C(x_k, r_k, h_k)$ 覆盖, $(k \in \{1, ..., N\})$. 令 $\{\xi_k\}_{k=1}^N$ 为相关于圆柱体的单位分解, 对任意 $\xi_k f$, 类似于 Step 3 中操作, 定义延拓算子 $E(\xi_k f)$, 则利用 Step 3 中结论, 定义一般的延拓算子

$$E(f) := \sum_{k=1}^{N} E(\xi_k f) + \xi_0 f.$$

知 $E(f) \in W^{1,p}(\mathbb{R}^n)$ 满足 $||Ef||_{W^{1,p}(\mathbb{R}^n)} \le C||f||_{W^{1,p}(U)}$.

对一般的 $f \in W^{1,p}(U)$, 则取 $\{f_k\}_{k \in \mathbb{N}} \subset W^{1,p}(U) \cap C^1(\overline{U})$ 满足 $f_k \to f$ in $W^{1,p}(U)$, 并定义延拓算子

$$E(f) := \lim_{k \to \infty} E(f_k).$$

利用稠密性讨论,知 Ef 即为所求延拓算子.