Mandatory assignment

Fredrik Meyer

March 31, 2015

Exercise 1. For $c \in \mathbb{R} \setminus \{0\}$, consider the set $C \subset \mathbb{R}^2$ defined by

$$C = \{(x, y) \mid x^3 + xy + y^3 = c\}$$

- 1. Show that for $c \neq \frac{1}{27}$, the set C is a closed one-dimensional submanifold of \mathbb{R}^2 .
- 2. Prove or disprove that for $c = \frac{1}{27}$, the set C is an embedded submanifold of \mathbb{R}^2 .

Solution 1. 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = x^3 + xy + y^3$. Then $C = f^{-1}(c)$. By the inverse function theorem, we are interested in for which values of c the Jacobian of f have maximal rank for all points of f. In this case, the Jacobian is

$$\nabla(f) = \left(3x^2 + y, 3y^2 + x\right).$$

This has maximal rank if and only if not both of the components are zero. So suppose they are. Then $y=-3x^2$, and hence $0=3y^2+x=27x^4+x$ by the second component. Thus x=0 or $x^3=-\frac{1}{27}$. If x=0, then also y=0, but since $(x,y)\in C$, this forces c=0, which was not an option. So $x\neq 0$, so $x=-\frac{1}{3}$. Then $y=-\frac{1}{3}$ also because of the symmetric form the equation.

Hence

$$c = -\frac{1}{27} + \frac{1}{9} - \frac{1}{27} = \frac{-1+3-1}{27} = \frac{1}{27}.$$

Thus for $c \neq \frac{1}{27}$, the inverse function theorem holds, and C is a one-dimensional submanifold of \mathbb{R}^2 . It is closed because f is continuous.

2. Now suppose $c = \frac{1}{27}$. Then one can check that

$$x^{3} + y^{3} + xy - \frac{1}{27} = (x + y - \frac{1}{3})(x^{2} - xy + y^{2} + \frac{1}{3}x + \frac{1}{3}y + \frac{1}{9}).$$

Thus C is the union of the two zero sets defined by the two components. Thus we must check two things: the two components must not intersect, and they must both be smooth. Any line is smooth, so the first component is okay.

Solving the quadratic in terms of x (treating the y as a constant), we see that the discriminant is $-3(y+\frac{1}{3})^2$. Thus if we want real solutions, the only hope is $y=-\frac{1}{3}$. By symmetry, we must have $x=-\frac{1}{3}$ as well. Thus C is the disjoint union of a line and a point, and thus C is a non-equidimensional manifold.

 \Diamond

Exercise 2. Let X be a smooth vector field on a manifold M. Suppose there exists an $\epsilon > 0$ such that for every $p \in M$ there is an integral curve $\gamma: (-\epsilon, \epsilon) \to M$ of X such that $\gamma(0) = p$. Then the maximal integral curves of X are defined on the whole line \mathbb{R} .

Solution 2. The condition says that there is a single ϵ that works for every point $p \in M$.

Let $p \in M$ and let $\gamma : (-\epsilon, \epsilon) \to M$ be an integral curve starting at p. Then let $q = \gamma(\frac{\epsilon}{2})$. Then there is an integral curve $\tilde{\gamma} : (-\epsilon, \epsilon) \to M$.

Then by uniqueness of integral curves we must have $\tilde{\gamma}(s) = \gamma(t + \epsilon/2)$ (they both satisfy the same differential equation). In this way we can extend the domain of γ by $\frac{\epsilon}{2}$, and we continue this process indefinitely. Since \mathbb{R} is the increasing union of the intervals $(-\epsilon - n\frac{\epsilon}{2}, \epsilon + \frac{\epsilon}{2})$, this will define γ on all of \mathbb{R} .