Lógica El

	Exame de Recurso — 23 de junho de 2021 -		— duração: 2 horas
nome:		número:	

Grupo I

Responda a cada uma das 8 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

1. Dê exemplo de uma fórmula φ do Cálculo Proposicional tal que $subf(\neg(p_0 \land \varphi) \lor p_2)$ tem cinco elementos.

Resposta:

2. Para cada fórmula do Cálculo Proposicional φ , considere o conjunto $\Gamma_{\varphi} = \{p_0 \vee \varphi, p_0 \to (p_1 \wedge \varphi)\}$. Dê exemplo de φ tal que $p_1 \in var(\varphi)$ e Γ_{φ} é um conjunto inconsistente.

Resposta:

- 3. Seja $\Gamma = \{\neg p_1 \land p_0, p_2 \leftrightarrow \neg p_0\}$. Dê exemplo de uma valoração v tal que v não satisfaz Γ . Resposta:
- 4. Considere a fórmula $\varphi = \neg p_0 \land (p_1 \lor \neg p_2)$. Dê exemplo de uma fórmula ψ do Cálculo Proposicional tal que $\psi \Leftrightarrow \varphi$ e cujos conetivos estão no conjunto $\{\neg, \rightarrow\}$.

Resposta:

Nas restantes questões deste grupo, considere o tipo de linguagem $L=(\{0,s,\times\},\{P,=\},\mathcal{N})$ em que $\mathcal{N}(0)=0,\,\mathcal{N}(s)=1,\,\mathcal{N}(\times)=2,\,\mathcal{N}(P)=1$ e $\mathcal{N}(=)=2$, e considere a L-estrutura $E=(\mathbb{Z},\overline{})$ tal que:

$$\overline{\mathsf{0}} = 0 \qquad \qquad \overline{\mathsf{P}} = \{z \in \mathbb{Z} : z > 0\}$$

$$\overline{\mathsf{s}} : \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{\mathsf{s}}(z) = -z \qquad \qquad \overline{=} = \{(z_1, z_2) \in \mathbb{Z}^2 : z_1 = z_2\}$$

$$\overline{\times} : \mathbb{Z}^2 \to \mathbb{Z} \text{ tal que } \overline{\times}(z_1, z_2) = z_1 \times z_2$$

- 5. Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = i+2$. Indique o valor de: $\mathsf{s}(\mathsf{s}(x_1) \times x_2) \ [a]_E$. Resposta:
- 6. Indique uma fórmula de tipo L válida em E que represente a afirmação: Para qualquer número estritamente positivo, o seu simétrico é um número estritamente negativo.

Resposta:

7. Seja φ a L-fórmula: $\forall x_0 P(x_0) \to \forall x_1 P(x_1 \times x_0)$. Calcule $\varphi[s(x_1)/x_0]$.

Resposta:

8. Seja φ a *L*-fórmula: $P(x_0) \to \forall x_1 \neg P(x_1 \times x_0)$. Indique um *L*-termo t tal que x_0 não está livre para t em φ .

Resposta:

Grupo II

Responda às 6 questões deste grupo na folha de exame, justificando convenientemente as respostas.

- 1. Defina por recursão estrutural a função $f: \mathcal{F}^{CP} \longrightarrow \{0,1\}$ tal que $f(\varphi) = 1$ se e só se $var(\varphi) \subseteq \{p_1\}$.
- 2. Indique uma forma normal disjuntiva logicamente equivalente à fórmula $((\neg p_1 \leftrightarrow p_2) \rightarrow p_3) \lor \bot$. (Justifique.)
- 3. Diga se: $\neg p_0 \lor p_1, (p_1 \to \neg p_2) \land p_0 \models p_0 \land \neg p_2$. (Justifique.)
- 4. Sejam $\varphi = (p_0 \wedge p_1) \rightarrow p_2 \in \psi = p_0 \rightarrow (p_1 \rightarrow p_2).$
 - (a) Construa uma demonstração em DNP da fórmula $\varphi \to \psi$.
 - (b) Mostre que: $\varphi, \psi \not\vdash \perp$.
- 5. Considere o tipo de linguagem $L = (\{0, s, \times\}, \{P, =\}, \mathcal{N})$ e a L-estrutura $E = (\mathbb{Z}, \overline{})$ do Grupo I. Seja φ a L-fórmula: $P(x_0) \to \exists x_1 \neg P(s(x_1) \times x_0)$.
 - (a) Prove que φ é válida em E.
 - (b) Mostre que φ não é universalmente válida.
- 6. Sejam L um tipo de linguagem, φ e ψ fórmulas de tipo L e x uma variável tal que $x \notin LIV(\psi)$. Prove que: $(\exists x \varphi) \to \psi, \varphi \models \forall x \psi$.

Cotações	II (8 valores)	II (12 valores)
Cotações	1+1+1+1+1+1+1+1	1,75+1,75+1,75+3,25+2,5+1