Nets and Riemann Integration

Jaewook Jeon

Department of Mathematics Sungkyunkwan University

May 9, 2023

Motivation

Riemann Integral = Limit of a Riemann sum(?)

Table of Contents

- Directed Sets
- Nets
- Oarboux Integral
- Riemann Integral
- Equivalence of two definitions

Directed Sets

Definition

A **directed set** is a set A equipped with a binary relation \leq such that

- $a \prec a$ for all $a \in A$.
- If $a \leq b$ and $b \leq c$ then $a \leq c$.
- For any $a, b \in A$ there exists $c \in A$ such that $a \leq c$ and $b \leq c$.

Examples

- The set of positive integers \mathbb{N} , with $j \leq k$ iff $j \leq k$.
- The set $\mathbb{R}^n \setminus \{a\} \ (a \in \mathbb{R}^n)$, with $x \leq y$ iff $||x a|| \geq ||y a||$.
- The set $\mathcal N$ of all neighborhoods of a point x in a topological space X, with $U \prec V$ iff $U \supset V$.

Directed Sets

Definition

A **directed set** is a set A equipped with a binary relation \leq such that

- $a \prec a$ for all $a \in A$.
- If $a \prec b$ and $b \prec c$ then $a \prec c$.
- For any $a, b \in A$ there exists $c \in A$ such that $a \leq c$ and $b \leq c$.

Examples (Continued)

 $\mathfrak{P}[a,b]$: The set of all partitions of [a,b]. $(a,b\in\mathbb{R},a< b)$ (i.e. $\,\mathfrak{P}[a,b]$ is the set of all finite subsets of [a,b] containing a,b.) For $P_1,P_2\in\mathfrak{P}[a,b]$, define

- $P_1 \leq_1 P_2$ iff $P_1 \subseteq P_2$.
- $P_1 \leq_2 P_2$ iff $||P_1|| \geq ||P_2||$.

Nets

Definition

A **net** in a set X is a mapping $\alpha \mapsto x_{\alpha}$ from a directed set A into X. We denote it by $\langle x_{\alpha} \rangle_{\alpha \in A}$.

Definition

Let X be a topological space and $\langle x_{\alpha} \rangle_{\alpha \in A}$ be a net in X.

We say that $\langle x_{\alpha} \rangle_{\alpha \in A}$ converges to $x \in X$, if for each neighborhood U of x, there exists $\alpha_0 \in A$ such that $x_{\alpha} \in U$ for all $\alpha \succeq \alpha_0$.

Examples

- A sequence in a topological space
- A function from \mathbb{R} to \mathbb{R}

Darboux Integral

Fix a bounded $f:[a,b]\to\mathbb{R}$, and let

$$P = \{x_0(=a), x_1, ..., x_{n-1}, x_n(=b)\}\$$

be a partition of [a, b]. For each i = 1, ..., n, put

$$M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\},$$
 $m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\},$

and define

$$U(f,P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}), \qquad L(f,P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}).$$

Let

$$U(f) = \inf\{U(f,P): P \in \mathcal{P}[a,b]\}, \qquad \qquad L(f) = \sup\{L(f,P): P \in \mathcal{P}[a,b]\}.$$

Definition

If U(f)=L(f), we say that f is **Darboux integrable** on [a,b], and denote its common value by $\int_a^b f(x)dx$.

Darboux Integral

Recall that the set $\mathfrak{P}[a,b]$, together with a binary relation \preceq_1 defined by

$$P_1 \leq_1 P_2 \quad \text{iff} \quad P_1 \subseteq P_2 \qquad (P_1, P_2 \in \mathcal{P}[a, b])$$

is a directed set.

Proposition

For a bounded $f:[a,b]\to\mathbb{R}$ and $A\in\mathbb{R}$, the following are equivalent.

- **1** f is Darboux integrable and $\int_a^b f(x)dx = A$.
- 2 Two nets

$$P\mapsto U(f,P), P\mapsto L(f,P): \mathcal{P}[a,b]\to \mathbb{R}$$

converge to the same real number A.

Riemann Integral

Definition

1 A **tagged partition** of [a, b] is a partition

$$\dot{P} = \{x_0, x_1, ..., x_{n-1}, x_n\}$$

together with a choice of sample points in each sub-interval; numbers $(t_i)_1^n$ with $t_i \in [x_{i-1}, x_i]$.

② If $f:[a,b] \to \mathbb{R}$ is bounded and \dot{P} is a tagged partition of [a,b], we define the **Riemann sum** of f as

$$\Re(f, \dot{P}) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}).$$

3 Suppose that $f:[a,b]\to\mathbb{R}$ is bounded. We say that f is **Riemann integrable** on [a,b], if there exists $A\in\mathbb{R}$ with the following property: For a given $\epsilon>0$, there exists $\delta>0$ such that

$$|\mathcal{R}(f, \dot{P}) - A| < \epsilon$$

for all tagged partition \dot{P} of [a,b] with $\|\dot{P}\|<\delta.$

In this case, the number A is called the **Riemann integral** of f, and is denoted by $\int_a^b f(x)dx$.

Riemann Integral

Remark: Reformulation of Riemann's definition

f is **Riemann integrable** on [a,b] if and only if there exists $A\in\mathbb{R}$ with the following property:

For a given $\epsilon>0$, there exists $\delta>0$ such that

$$|U(f,P)-A|<\epsilon, \qquad |L(f,P)-A|<\epsilon$$

for all partition P of [a,b] with $\|P\| < \delta$.

Riemann Integral

Recall that the set $\mathcal{P}[a,b]$, together with a binary relation \leq_2 defined by

$$P_1 \leq_2 P_2 \text{ iff } ||P_1|| \geq ||P_2|| \qquad (P_1, P_2 \in \mathcal{P}[a, b])$$

is a directed set.

Proposition

For a bounded $f:[a,b]\to\mathbb{R}$ and $A\in\mathbb{R}$, the following are equivalent.

- f is Riemann integrable and $\int_a^b f(x)dx = A$.
- 2 Two nets

$$P \mapsto U(f, P), P \mapsto L(f, P) : \mathcal{P}[a, b] \to \mathbb{R}$$

converge to the same real number A.

Equivalence of two definitions

Remark: Comparison between Darboux and Riemann

Two nets

$$P \mapsto U(f, P), P \mapsto L(f, P) : \mathcal{P}[a, b] \to \mathbb{R}$$

must converge to the same real number A, w.r.t. \leq , where

- ① (Darboux) $P_1 \leq P_2$ iff $P_1 \subseteq P_2$.
- ② (Riemann) $P_1 \leq P_2$ iff $||P_1|| \geq ||P_2||$.