LAB- 2 CPU SCHEDULING PART - 2

Priority Scheduling (Non-Preemptive) - Example Calculation

Given Data:

Process Burst Time Priority

P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

Step 1: Sort by Priority

(Smaller number = Higher priority)

Process Burst Time Priority

P2	1	1
P5	5	2
P1	10	3
P3	2	4
P4	1	5

Step 2: Calculate Completion Time (CT)

Process Burst Time Priority Completion Time

P2	1	1	1
P5	5	2	1 + 5 = 6
P1	10	3	6 + 10 = 16
P3	2	4	16 + 2 = 18
P4	1	5	18 + 1 = 19

Step 3: Calculate Turnaround Time (TAT)

TAT=CompletionTime-ArrivalTimeTAT = Completion Time - Arrival Time

(Since no arrival times are given, assume all arrive at **time 0**.)

Process Completion Time Arrival Time Turnaround Time

P2	1	0	1 - 0 = 1
P5	6	0	6 - 0 = 6
P1	16	0	16 - 0 = 16
P3	18	0	18 - 0 = 18
P4	19	0	19 - 0 = 19

Step 4: Calculate Waiting Time (WT)

WT=TurnaroundTime-BurstTimeWT = Turnaround Time - Burst Time

Process Turnaround Time Burst Time Waiting Time

P2	1	1	1 - 1 = 0
P5	6	5	6 - 5 = 1
P1	16	10	16 - 10 = 6
P3	18	2	18 - 2 = 16
P4	19	1	19 - 1 = 18

Step 5: Compute Averages

- Average Waiting Time = (0 + 1 + 6 + 16 + 18) / 5 = 8.2
- Average Turnaround Time = (1 + 6 + 16 + 18 + 19) / 5 = 12

Final Output:

```
Process 2: Waiting Time: 0 Turnaround Time: 1
Process 5: Waiting Time: 1 Turnaround Time: 6
Process 1: Waiting Time: 6 Turnaround Time: 16
Process 3: Waiting Time: 16 Turnaround Time: 18
Process 4: Waiting Time: 18
Turnaround Time: 19
Average Waiting Time: 8.2
Average Turnaround Time: 12
```

Round Robin Scheduling Example (Time Quantum = 4)

Given Data:

Process Arrival Time Burst Time

P1	0	8
P2	1	4

Process Arrival Time Burst Time

P3 2 9 P4 3 5

Step 1: Gantt Chart Simulation

• **Time Quantum = 4** (Each process runs for max 4 units before switching)

Time Process Remaining Burst Time

0-4 P1 4
4-8 P2 0 (Completed)
8-12 P3 5
12-16 P4 1
16-20 P1 0 (Completed)
20-24 P3 1
24-25 P4 0 (Completed)
25-26 P3 0 (Completed)

Step 2: Calculate Completion Time (CT)

Process Completion Time

P1 20 P2 8 P3 26 P4 25

Step 3: Calculate Turnaround Time (TAT)

Formula:

TAT = Completion Time - Arrival Time TAT = Completion Time - Arrival Time TAT = Completion Time - Arrival Tim

Process Completion Time Arrival Time Turnaround Time

P1 20 0 20 - 0 = 20P2 8 1 8 - 1 = 7P3 26 2 26 - 2 = 24P4 25 3 25 - 3 = 22

Step 4: Calculate Waiting Time (WT)

Formula:

WT=TurnaroundTime-BurstTimeWT = Turnaround Time - Burst

Process Turnaround Time Burst Time Waiting Time

P1	20	8	20 - 8 = 12
P2	7	4	7 - 4 = 3
P3	24	9	24 - 9 = 15
P4	22	5	22 - 5 = 17

Step 5: Compute Averages

- Average Waiting Time = (12 + 3 + 15 + 17) / 4 = 11.75
- Average Turnaround Time = (20 + 7 + 24 + 22) / 4 = 18.25

Steps to solve this problem

- 1. Initialize a queue with processes sorted by arrival time and process them in cyclic order using a fixed time quantum.
- 2. **Execute each process for the time quantum or remaining burst time**, then push it back to the queue if it's not completed.
- 3. **Track completion time, waiting time, and turnaround time** while updating the remaining burst times dynamically.
- 4. Calculate waiting time (WT = TAT Burst) and turnaround time (TAT = CT Arrival), then compute averages.