Lekce 01

Harmonogram

- Úvod o robotovi
- Rychlý kvíz na Python
- Praktická cvičení
- Volný souboj robotů

Rychlý kvíz na Python

Až budete mít chvilku, tak prosím vyplňte krátký kvíz:

Odkaz na kvíz (https://forms.gle/V96ChH11spFH2go49)

O robotovi

Názvosloví

- API: aplikační rozhraní
- Gimbal: hlava robota otáčecí hlaveň s kamerou
- Chassis: tělo robota může se otáčet nezávisle
- LED: osvětlení. Robot má osvětlenou hlavu, tělo a diodu pod hlavní
- Marker: piktogram s čísly/písmeny/znaky
- Python: proměnná, funkce, cyklus, podmínka

Zdroje

- Online příručka, Scratch a Python (https://www.dji.com/cz/robomaster-s1/programming-guide)
- Oficiální příklady v Pythonu (https://github.com/ROBOMASTER-S1/ROBOMASTER-S1-Python-Examples)
- <u>Seznam příkazů v Pythonu (https://github.com/ROBOMASTER-S1/ROBOMASTER-S1-Python-Examples/blob/master/Robomaster%20S1%20Python%20Commands.py)</u>
- Manuál v češtině (https://www.dji.com/cz/robomaster-s1/programming-guide)
- Manál v angličtině (https://dl.djicdn.com/downloads/robomaster-s1/20200324/RoboMaster S1 User Manual v1.8 EN.pdf)
- Kurz na Python (https://naucse.python.cz/course/pyladies/)

Úkoly

Plňte zadané úkoly. Ideálně se snažte na řešení přijít a nedívejte se rovnou na výsledek (je uvedený vždy na další stránce). Pokud se vám budou zadané úkoly zdát moc jednoduché, plňte i bonusové úkoly. Nebojte se ptát, pokud něco nepůjde :).

#1 Rozblikat robota

Zadání

Diody na hlavě (gimbal) robota rozsviťte postupně červeně, zeleně a modře. Každá barva bude rozsvícená 0.5 sekundy. Toto 3x opakujte.

Postup

Veškerý kód budeme psát do těla funkce start(), tedy takto:

```
def start():
    # zde bude kód
```

Pro rozsvícení LED použijeme funkci:

```
led_ctrl.set_top_led(rm_define.armor_top_all, R, G, B, rm_define.effect_always_on)
# R, G, B jsou kombinace barev
```

Kde je proměnná led_ctrl objekt ovládající diody. Objekt led_ctrl má metodu (funkci) set_top_led, kterou využijeme pro rozsvícení požadovaných diod. První parameter rm_define.armor_top_all odkazuje na objekt rm_define, což je soubor definic *konstant*, pomocí kterých adresujeme prvky robota. rm_define.armor_top_all adresuje horní diody.

Proměnné R, G a B jsou intenzity *červné*, *zelené* a *modré* (v počítači jsou barvy definované intenzitou těchto tří složek/barev). R, G a B mohou být od 0 do 255. (víte proč?) (bonus: kolik barevných kombinací takto můžeme reprezentovat?)

Čekání

Aby bylo vidět, že jsme požadovanou barvu rozsvítili, tak než dáme příkaz pro rozsvícení další barvy, musíme s rozsvícením počkat (spinkat = sleep).

```
time.sleep(x) # kde x je počet sekund, kolik se má čekat.
# Může být i desetinné číslo - např. 0.1, pak se jedná o zlomky vteřiny
```

Nyní poskládejte rozsvícení tří požadovaných barev a čekání před každým rozsvícením.

Opakování rozsvícení - cyklus

Výsledek příkazů opakujte v cylku. Příklad cyklu:

for i in range(3):
 print(i) # vypíše 0,1,2 - tzn. cyklus se 3x provede

Řešení

```
def start():
    cekani = 0.5 # půl sekundy
    cyklu = 3
    for i in range(cyklu):
        led_ctrl.set_top_led(rm_define.armor_top_all, 255, 0, 0, rm_define.effect_always_on)
        time.sleep(cekani)
        led_ctrl.set_top_led(rm_define.armor_top_all, 0, 255, 0, rm_define.effect_always_on)
        time.sleep(cekani)
        led_ctrl.set_top_led(rm_define.armor_top_all, 0, 0, 255, rm_define.effect_always_on)
        time.sleep(cekani)
```

Bonus: zvládnete tento kód napsat přehledněji (nebo jinak)?.

#2 Rozpoznávat číslice

Nyní se můžeme vrhnout na další úkol. Lze rozšířit předchozí příklad, ale také můžeme začít od nuly.

Zadání

Rozpoznejte robotem, která číslice je ukázána.

Postup

Nejprve zapneme rozpoznávání markerů (marker = piktogram, neboli jednoduchý QR kód):

```
vision_ctrl.enable_detection(rm_define.vision_detection_marker)
```

Definujeme funkci start, kde pouze budeme čekat. Po dobu tohoto čekání se budou detekovat markery.

```
def start():
    time.sleep(10)
```

Dále definujeme tzv. callback (funkce která se zavolá, když se něco stane). Tento callback se zavolá, když se rozpozná marker s číslem:

```
def vision_recognized_marker_number_all(msg):
    # tady si zadefinujeme, co se má stát, když detekujeme marker s číslem
```

A tento callback rozšíříme o vypsání rozpoznané číslice

```
def vision_recognized_marker_number_all(msg):
    print(vision_ctrl.get_marker_detection_info())
```

Co se nám vypsalo?

```
[1, 11, 0.5, 0.5666..., 0.123..., 0.277...]
```

Vypsal se nám objekt detection_info, viz https://www.dji.com/cz/robomaster-s1/programming-guide -> Smart -> 14. Identified marker info. Jednotlivé prvky v poli značí [počet detekovaných markerů, ID detekovaného markerů, souřadnice X, Y, šířka markerů, výška]. Pro zjištění o jakou číslici se jedná budeme potřebovat to 2. číslo. V příkladu výše je tam hodnota 11. Ale pozor, jedná se o tzv. ID markerů, nejedná se o jeho hodnotů (co je na obrázků). ID jsou obrázkům přiřazena následujícím způsobem (viz předchozí odkaz):

```
ID=0: emit sounds
ID=1: stop
ID=2: dice
ID=3: target
ID=4: left arrow
ID=5: right arrow
ID=6: forward arrow
ID=8: red heart
ID=10-19: 0-9
ID=20-45: A-Z
```

Pokud tedy chceme zjistit detekované číslo, musíme od ID markeru odečíst 10.

Detekované číslo - řešení

```
vision_ctrl.enable_detection(rm_define.vision_detection_marker)

def vision_recognized_marker_number_all(msg):
    cislo = vision_ctrl.get_marker_detection_info()[1] - 10
    print(cislo)
```

Řešení otestujte na dostupných obrázcích (markerech). Rozpozná toto řešení i jiné markery než čísla?

Bonus: rozsviťte robota barvou v závislosti na ukázaném markeru. Bonus bonusu: číslo na markeru bude definovat "sytost" barvy (např. lineární škálou).

#3 Rozpoznávat číslice - střelba

Zadání

Definujte si funkci strelba() (nebo anglicky fire()), která bude simulovat střelbu bliknutím diody pod hlavní. Pokud robotovi ukážete marker s číslem, robot "vystřelí" na marker tolikrát kolik je na markeru číselná hodnota.

Postup

Vyjděte z předchozího příkladu.

Diodu pod hlavní ovládáme funkcemi led_ctrl.gun_led_on() a led_ctrl.gun_led_off(). Zvolte tedy vhodné čekání mezi rozsvícením a zhasnutím aby byla frekvence blikání vhodná pro simulaci střelby. Nezapomeňte po detekování číslice chvíli počkat na další číslici. Detekce totiž probíhá kontinuálně a to několikrát za vtřeřinu, robot by vám tedy neustále "střílel",

Řešení

```
def fire():
    led_ctrl.gun_led_on()
    time.sleep(0.2)
    led_ctrl.gun_led_off()
    time.sleep(0.2)

def vision_recognized_marker_number_all(msg):
    cislo = vision_ctrl.get_marker_detection_info()[1] - 10
    for _ in range(cislo):
        fire()
        time.sleep(4) # počkáme před detekcí dalšího markeru

def start():
    vision_ctrl.enable_detection(rm_define.vision_detection_marker) # nezapomeneme zapnout detekci markerů
        time.sleep(60) # program poběží minutu
```

Bonus: při střelbě přehrajte zvuk.

#3 Pohybovat hlavou dokola a střílet na číslice

Zadání

Úkolem je nyní rozpohybovat hlavu robota. Cílem je, aby se hlava (gimbal) otáčela, postupně na jednu a pak na druhou stranu (hlava se nemůže točit neomezeně dokola). Hlava se bude otáčet o půl otočky dozadu vždy na jednu a pak na druhou stranu. Pokud v průběhu otáčení bude detekován marker s číslem, otáčení hlavy se zastaví a robot vystřelí. Poté bude v otáčení pokračovat.

Postup

Pro otáčení hlavy (gimbalu) použijte následující funkce:

- robot.set mode(rm define.robot mode free) Nastaví volný pohyb hlavy (tělo nebude následovat otáčení hlavy).
- gimbal_ctrl.set_rotate_speed(speed) Nastaví rychlost otáčení hlavy (můžete zkusit různé stupně rychlosti 0-540, avšak otestujte, že i ve větší rychlosti robot rozpozná markery)
- gimbal ctrl.yaw ctrl(degree) Otočí hlavu o degree stupňů (povolené hodnoty jsou od -250° do 250°).
- gimbal ctrl.suspend() Pozastaví otáčení
- gimbal ctrl.resume() Pokračuje v otáčení

Bonus: místo čekání na další rozpoznání markeru s číslem si veďte evidenci již "rozstřílených" číslic a na takové markery pak nestřílejte.

#4 Bonus - Hlídkování

Zadání

Rozšiře předchozí úkol tak, aby se robot po otočce na každou stranu přesunul cca metr do strany a tam hledal makery stejným způsobem. Následně se zase vraťte na původní místo a opakujte hledání.