

PCT

WORLD INTELLECTUAL PROPERTY ORGAN
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 7/46, 7/50, C11D 9/00	A1	(11) International Publication Number: WO 99/24008 (43) International Publication Date: 20 May 1999 (20.05.99)
--	----	---

(21) International Application Number: PCT/US98/23626 (22) International Filing Date: 6 November 1998 (06.11.98) (30) Priority Data: 60/064,766 7 November 1997 (07.11.97) US 60/097,234 20 August 1998 (20.08.98) US 09/187,085 5 November 1998 (05.11.98) US (71)(72) Applicants and Inventors: KAUFMAN, Stacy, R. [US/US]; 1750 N.W. 65th Avenue, Plantation, FL 33313 (US). DULAK, Michael [US/US]; 9227 N.W. 44th Court, Coral Springs, FL 33065 (US). (74) Agent: SCHWARTZ, Robert, M.; Robert M. Schwartz, P.A., Suite 1122, 169 E. Flagler Street, Miami, FL 33131-1205 (US).	(81) Designated States: AU, BR, CA, IL, JP, MX, RU, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published <i>With international search report.</i>
--	--

(54) Title: SUN PROTECTIVE BODY CLEANSER COMPOSITION

(57) Abstract

Disclosed in a body cleansing composition providing upon a single application protection against sunburn measured by Sun Protection Factor (SPF) of at least 15 as applied and SPF of at least 4, and preferably at least 5, after rinsing, consisting essentially of water; at least one first sunscreen compound which is a paramethoxycinnamate ester, and at least one second sunscreen compound able to absorb at least 50 % of incident radiation at wavelengths from 290 to 320 nanometers; a combination of at least two surface active agents including a first anionic agent which can be an alkyl sulfate salt or an alkoxylated alkyl sulfate salt, and a second agent which can be nonionic, anionic or zwitterionic; at least one hydroxyethylated organic nitrogen compound fixative to enhance retention of SPF on the user's skin selected from the group consisting of N-(2-hydroxyethyl)lactamide and a polymeric quaternary ammonium salt having a plurality of quaternary ammonium groups and at least one 2-hydroxyethyl group; and at least one additive selected from the group consisting of non-aggressive volatile organic liquids boiling within the range of 15 to 60 °C, water-immiscible non-volatile organic carriers, and preservatives able to retard microbial spoilage, whereby protection against sunburn is imparted to a person in need thereof in a single application.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Title: SUN PROTECTIVE BODY CLEANSER COMPOSITION

5

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/064,766, filed November 7, 1997, and Provisional Application No. 60/097,234, filed August 20, 1998.

BACKGROUND OF THE INVENTION

10 1. Field of the Invention

This invention relates to a body cleansing composition containing sunscreen material whose use in bathing or showering imparts protection against sunburn measured by Sun Protection Factor (SPF) as applied at least 15 and after rinsing at least 4, and to a method of imparting protection against sunburn by the application of such composition.

15

2. Prior Art

It is generally understood that people's ideas about one's ideal appearance change with time. At a time when most heavy work was done outdoors in the sun, as in farming and construction, a sun-bronzed appearance was the mark of the laborer and conversely a light "peaches and cream" complexion was considered emblematic of the leisure class. More recently, as work activities have increasingly moved indoors, the "healthy suntan" look has come to be appreciated as a status symbol, and from seaside resort to suburban backyard to apartment house roof people have deliberately exposed their bodies to the sun, and sometimes to sun-simulating ultraviolet devices, in order to acquire the desired suntan. Unfortunately,

many light skinned people have experienced uncomfortable and even dangerous sunburns instead of the desired tan. This has given rise to a demand for products to apply to a person's skin in order to provide protection against sunburn while interfering as little as possible with the acquisition of a tan. One such product has long been promoted with the slogan "Tan, 5 don't burn, with ____".

Such products typically contain a selective ultraviolet absorber or sunscreen, that is a compound with the ability to absorb a large fraction of the sunshine radiation of those wave-lengths believed to be responsible for burning of the skin, namely 290-320 nanometers, while allowing the passage of most of the longer wave length radiation believed to be 10 beneficial for tanning. These sunscreens are typically formulated in products suitable for application to human skin and desirably able to provide protection for as long as needed. A substantial body of art has accumulated as formulators have endeavored to provide safe, effective, long lasting and cosmetically elegant products.

Van Cleave U.S. patent 4,335,104 discloses a multi-purpose anhydrous cosmetic 15 composition comprising a major portion of a water insoluble non-ionic surfactant with HLB of 12 or less, in combination with a small but effective amount of an active ingredient soluble in the surfactant. For use as a suntan lotion, the composition includes a sunscreen as the active ingredient, along with a diluent such as propylene glycol, an emollient such as isopropyl myristate and a preservative. The disclosed anhydrous product is stated to have 20 numerous advantages compared to products containing water.

Ciaudelli et al US patent 4,567,038 discloses a sunscreen mousse product which, when applied to a person's hair, blocks or reduces the amount of radiation reaching the hair and thereby inhibits bleaching of the hair. The mousse base comprises a cationic surfactant substantive to the hair by electrostatic attraction and a nonionic resin film-former to coat and

thereby provide holding effect to the hair in alcohol and water. The sunscreen agents in the composition must be at least water miscible and preferably water soluble for compatibility with the mousse. Disclosed presentation of the composition is in cans pressurized with propellents using conventional techniques.

5 Aronson et al US patent 4,606,913 discloses electrolyte stabilized high internal phase emulsions (HIPE) which can contain sunscreen agents. HIPE are defined as oil-in-water emulsions containing at least 75% of internal oil phase and water-in-oil emulsions containing at least 75% of internal aqueous phase. Thus a sunscreen cream is stated to contain an internal phase of water, an external phase of mineral oil, and uv screening agent, and a 10 "waterproof suntan cream" is formulated with an internal phase of water, an external phase of mineral oil/silicone oil, sunscreen agent and perfume. Aronson's emulsifiers are non-ionic materials with HLB of 1 to 7, preferably 2 to 6.

Bernstein US patents 4,701,321 and 4,933,174 discloses incorporation of sunscreen into nonionic and amphoteric liquid detergents so that repeated washing and bathing with 15 such detergents leaves a long-lasting substantive and effective amount of the incorporated sunscreen in the stratum corneum of the skin. Previous attempts to incorporate sunscreen into soap are said to have failed because ionic soaps would rapidly degrade the incorporated sunscreen. Effectiveness is shown of compositions applied to the skin of human subjects repeatedly, such as 12 times during a six hour period, twice daily for ten days, or once daily 20 for four weeks, before being subjected to solar or artificial ultraviolet exposure.

Strobridge US patent 5,041,281 discloses an oil-in-water emulsion sunscreen composition including between about 0.5 and about 20 weight per cent of a copolymer of ethylene and vinyl acetate, and a second film forming polymer which increases the substantivity of the composition and is present at between about 0.5 and about 10 percent.

The composition is stated to have improved substantivity in water.

Birtwhistle US patent 5,186,928 discloses a hair shampoo comprising water, an anionic surfactant, a water-insoluble sunscreen, a cationic derivative of a polygalactomannan gum and, when the sunscreen is in the form of a solid at 20°C, a non-volatile solvent for the 5 solid sunscreen. The composition is stated to enable enhanced levels of sunscreen to be deposited on hair surfaces.

Khoshdel et al US patent 5,372,804 discloses a cosmetic composition comprising at least one cosmetic agent for deposition onto hair or skin, and as a carrier for the agent, latex particles of a polymer material having a particle size of less than about 1 micron. The 10 cosmetic agent can be a sunscreen present in the compositions, for example, in an amount of from about 0.1 to 5% by weight. Additional components normally found in cosmetic compositions for the hair or the skin can be present, including one or more surfactants, preferably selected from anionic, nonionic, amphoteric and zwitterionic surfactants, present in the compositions in an amount of from 1 to 70% by weight, preferably from 2 to 40%.

15 McAtee et al US patent 5,607,980 discloses compositions for topical application to human skin for improved skin feel, in the form of leave-on products or products that are rinsed or wiped off after use. The compositions comprise from 0.1% to about 20% of an amphoteric surfactant defined by the structural formula

20 in which R1 is unsubstituted, saturated or unsaturated, straight or branched chain alkyl having from about 9 to about 22 carbon atoms; m is an integer from 1 to about 3, n is 0 or 1; R2 and R3 are independently selected from alkyl having from 1 to about 3 carbon atoms and monohydroxyalkyl having from about 1 to about 3 carbon atoms; R4 is selected from saturated or unsaturated alkyl having from 1 to about 5 carbon atoms and saturated or

unsaturated monohydroxyalkyl having from 1 to about 5 carbon atoms; X is selected from the group consisting of CO₃, SO₃, and SO₄ and pharmaceutically acceptable salts of the foregoing compounds; from about 0.1% to about 20% by weight of an anionic surfactant, from about 0.1% to about 15% by weight of a cationic surfactant, and from about 45% to 5 about 99.7% by weight of water. The composition can comprise a wide range of additional components spanning the alphabet from abrasives to viscosity increasing agents and including mention of sunscreen agents and ultraviolet light absorbers.

10 Linares US patent 5,770,183 discloses a waterproof water-in-oil emulsion sunblock composition wherein the aqueous phase consists predominantly of deionized water and the oil phase includes sunscreen active ingredients, silicone emulsifiers, oil soluble solubilizers and skin conditioning agents. The emulsion provides sun protection higher than SPF 30 and is characterized by a mean particle size of the oil phase ingredients of 2 microns.

15 Gers-Barlag et al German published specification 19,548,016 dated 26 June 1997 discloses sunscreen oil-in-water and water-in-oil emulsions with lipophilicity which depends on pH and temperature such that lipophilicity increases with increasing temperature.

Absent from all the above disclosures is any suggestion of a composition applied to the body in bathing or showering and able to impart in a single application thereof adequate protection from sunburn upon exposure to natural or artificial sources of ultraviolet radiation.

20 SUMMARY OF THE INVENTION

In accordance with this invention, a body cleansing composition providing upon a single application protection against sunburn measured by Sun Protection Factor (SPF) of at least 15 as applied and SPF of at least 4, and preferably at least 5, after rinsing consists essentially of water; at least one first sunscreen compound which is a paramethoxycinnamate

ester, and at least one second sunscreen compound able to absorb at least 50% of incident radiation at wave lengths from 290 to 320 nanometers; a combination of at least two surface active agents including a first anionic agent which can be an alkyl sulfate salt or an alkoxylated alkyl sulfate salt, and a second agent which can be nonionic, anionic or 5 zwitterionic; at least one hydroxyethylated organic nitrogen compound fixative to enhance retention of SPF on the user's skin selected from the group consisting of N-(2-hydroxyethyl)lactamide and a polymeric quaternary ammonium salt having a plurality of quaternary ammonium groups and at least one 2-hydroxyethyl group; and at least one additive selected from the group consisting of non-aggressive volatile organic liquids boiling 10 within the range of 15 to 60° C, water-immiscible non-volatile organic carriers, and preservatives able to retard microbial spoilage, whereby protection against sunburn is imparted to a person in need thereof in a single application.

The term "consisting essentially of" is used in its art-recognized meaning to indicate that the composition is open to the inclusion of only such additional ingredients as do not 15 adversely affect the advantageous properties of the composition. The term "non-aggressive" is used to indicate that strongly irritating, odorous, toxic or chemically reactive volatile organic liquids boiling within the stated range are excluded. Among such excluded volatile organic liquids are acetyl chloride, ethyl methyl sulfide, hydrogen cyanide, and isoprene.

20 When the composition of the invention contains a volatile liquid additive boiling in the range from 15 to 60° C, the composition is quiescent in its shipping and storage container whether open or closed, and begins to froth when poured out if its container on the user's body or other air exposed surface and thereby affords a refreshing sensation, and also imparts in a single use as in bathing or showering sufficient sunscreen to leave a person well

protected even after normal rinsing and drying. With or without such volatile liquid additive the composition is well suited to presentation in simple non-pressurized containers but can also be presented as pressurized aerosol with addition of a suitable propellant.

5 DESCRIPTION OF PREFERRED EMBODIMENTS

SPF values for compositions such as those of this invention, as well as control compositions without sunscreen and compositions containing known standards, can be measured according to a procedure recommended by the US Food and Drug Administration and published in the Federal Register, vol. 43, pages 38264-38267, 1978.

10 The light source employed is a 150 watt Xenon Arc Solar Simulator (Solar Light Co, Philadelphia PA) having a continuous emission spectrum in the UV-B range from 290 to 320 nanometers.

According to the above mentioned procedure, there is first determined a Minimal Erythema Dose (MED) for each subject by exposing the subject's unprotected back to a series 15 of timed incremental UV exposures at 25% intervals. The subject's MED is the shortest time of exposure that produces minimally perceptible erythema at 20 to 24 hours post irradiation. A homosalate standard or any test material whose SPF is to be determined is to a defined area test site by syringe and the protected MED determined. To determine the water resistance of a test material, a rinse can be included after application of the material. The SPF is calculated 20 according to the equation

$$\text{SPF} = \frac{\text{MED Protected Skin}}{\text{MED Unprotected Skin}}$$

A sunscreen compound is defined as a compound that absorbs at least 85% of incident radiation at wave lengths of 290 to 320 nanometers and may or may not absorb radiation at 25 wave lengths greater than 320 nanometers.

Preferred p-methoxycinnamic acid ester first sunscreen compounds include amyl p-methoxycinnamate, 2-ethylhexyl p-methoxycinnamate, 2-ethoxyethyl p-methoxycinnamate, diethanolamine p-methoxycinnamate, n-octyl p-methoxycinnamate and propyl p-methoxycinnamate.

5 Second sunscreen compounds recognized as safe and effective by the US Food and Drug Administration include p-aminobenzoic acid, Cinoxate, Avobenzone, digalloyl trioleate, dioxybenzone, ethyl 4-[bis(hydroxypropyl)]aminobenzoate, glyceryl aminobenzoate, homosalate, lawsone with dihydroxyacetone, methyl anthranilate, octocrylene ethyl 2-cyano-3,3-diphenyl acrylate, octyl salicylate, oxybenzone, Padimate O, 10 phenylbenzimidazole sulfonic acid, red petrolatum, sulisobenzone, titanium dioxide, zinc oxide, including regular grades and grades of such fine particle size as enable the composition to be translucent or transparent, and triethanolamine salicylate. Additional sunscreen compounds recognized by European authorities include N,N,N-trimethyl-4-(2-oxoborn-3-ylidene methyl)anilinium methyl sulfate, 15 3-imidazol-4-ylacrylic acid and its ethyl ester, 2-phenylbenzimidazole-5-sulfonic acid and its salts, ethoxylated 4-aminobenzoic acid, amyl 4-dimethylaminobenzoate, 3,3,5-trimethylcyclohexyl-2-acetamidobenzoate, potassium cinnamate, 4-methoxycinnamic acid salts, propyl 4-methoxycinnamate, salicylic acid salts, amyl 4-methoxycinnamate, mexenone, sulisobenzone, 2-ethylhexyl 2-(4-phenylbenzoyl)-benzoate, 20 5-methyl-2-phenylbenzoxazole, sodium 3,4-dimethoxyphenylglyoxylate, 1,3-bis(4-methoxyphenyl)propane-1,3-dione, 5-(3,3-dimethyl-2-norbornylidene)-3-penten-2-one, alpha-(2-oxoborn-3-ylidene)-p-xylene-2-sulfonic acid, alpha-(2-oxoborn-3-ylidene)toluene-4-sulfonic acid and its salts,

3-(4-methylbenzylidene)bornan-2-one, 3-benzylidenebornan-2-one, alpha-cyano-4-methoxycinnamic acid and its hexyl ester, 1-p-cumenyl-3-phenylpropane-1,-3-dione, 4-isopropylbenzyl salicylate, cyclohexyl 4-methoxycinnamate, and 1-(4-t-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione.

5 Preferred para-methoxycinnamate ester first sunscreen compounds include the the methyl, ethyl, 2-ethylhexyl, heptyl, n-octyl, isoctyl, isodecyl and lauryl esters of p-methoxycinnamic acid and mixtures thereof.

Preferred second sunscreen compounds include sunscreen compounds selected from the group consisting of a 2-hydroxy-4-alkoxybenzophenone, a dibenzoylmethane compound, 10 a salicylic acid ester, zinc oxide and mixtures thereof.

Particularly preferred salicylate ester sunscreen compounds include 2-ethylhexyl salicylate, lauryl salicylate, n-octyl salicylate, and p-octylphenyl salicylate and mixtures thereof.

Particularly preferred 2-hydroxy-4-alkoxybenzophenone sunscreen compounds 15 include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone and mixtures thereof.

Particularly preferred 1,3-diphenylpropane-1,3-dione (also known as dibenzoylmethane) sunscreen compounds include 20 1,3-bis(4-methoxyphenyl)propane-1,3-dione, 1-(4-t-butylphenyl)-3-(4-methoxyphenyl)propane-1,3-dione, 1-p-cumenyl-3-phenylpropane-1,-3-dione and mixtures thereof.

Zinc oxide when present is preferably of a fine particle size in the range from 2 to 50 microns and can be surface coated to facilitate dispersion.

The quantity of water in the composition is in the range from 30 to 90 parts by weight.

The total level of first and second sunscreen agents in the composition can be in the range of 3 to 40 parts by weight, preferably 6 to 19 parts by weight, and the proportions of first and second sunscreen agents are preferably in the range from 3:1 to 1:3. The test method 5 described herein provides means for establishing the use level required for the desired effect and avoiding wasteful and unnecessary overuse of this ingredient.

First anionic cleansing agents according to this invention include alkyl sulfate salts, alkyl ethoxylate sulfate salts, alkylphenyl ethoxylate sulfate salts and mixtures thereof. Preferred salts include potassium, sodium, ammonium, and triethanolamine salts. Particularly 10 preferred first anionic cleansing agents include alkali metal and ammonium lauryl sulfates, sodium lauryl ether (2EO) sulfate, sodium lauryl ether (3EO) sulfate, sodium C10 - C16 alkyl ether sulfate, sodium laureth sulfate, among which sodium alkyl ether sulfates are most preferred.

Second cleansing agents according to this invention when anionic include alpha olefin 15 sulfonate salts, alkylbenzenesulfonate salts, alkali metal fatty acylisethionates having 8 to 18 carbon atoms in the fatty acyl group, and mixtures thereof in addition to the above.

The level of anionic cleansing agent in the composition can be in the range of 3 to 15 parts by weight, preferably 4 to 13 parts by weight when a plurality of anionic cleansing agents is used and 3 to 6 parts by weight when a single anionic cleansing agent is used 20 together with a nonionic or zwitterionic cleansing agent. The test method described herein provides means for establishing the use level required for the desired effect and avoiding wasteful and unnecessary overuse of this ingredient.

Preferred second cleansing agents when nonionic include 8 to 18 carbon atom fatty acid monoglycerides and diglycerides, sorbitan esters of 8 to 18 carbon atom fatty acids and

ethoxylated derivatives thereof, ethoxylated alcohols having 9 to 16 carbon atoms in the alkyl group and 4 to 14 or 20 to 30 units of ethylene oxide, and polyoxypropylenepolyoxyethylene copolymers (CTFA name Poloxamer).

Preferred second cleansing agents when zwitterionic include fatty acylamidopropyl 5 betaine and fatty acylamidopropyl hydroxysultaine having 1 to 18 carbon atoms in the fatty acyl group and mixtures thereof. The level of zwitterionic cleansing agent in the composition can be in the range of 1 to 10% by weight, preferably 2 to 6% by weight. The test method described herein provides means for establishing the use level required for the desired effect and avoiding wasteful and unnecessary overuse of this ingredient.

10 The fixatives that enhance SPF and the retention of SPF according to this invention are characterized by at least one amine or amide nitrogen, which can be substituted or quaternized, a plurality of quaternary ammonium nitrogen atoms and a terminal hydroxyethyl group. Preferred fixatives that fit this description include N-2-hydroxyethyl lactamide, water soluble quaternary ammonium compounds having a plurality of quaternary ammonium 15 groups and at least one 2-hydroxyethyl group, and polymeric quaternary ammonium derivative of hydroxyethyl cellulose. Particularly preferred are certain members of a class of multi-functional quaternary ammonium compounds to which the CTFA designated name POLYQUATERNIUM(followed by a number)has been applied, as shown in Table 1, among which POLYQUATERNIUM 10 is most especially preferred..

20

25

POLYQUATERNIUM 1 DIMETHYLMONIUM	TABLE 1 POLYQUATERNIUM 1 DIMETHYLMONIUM	POLYMERIC 2-BUTEN-1,4-DIYL CHLORIDE TERMINATED WITH TRIETHANOLAMMONIUM QUATERNARY GROUPS COPOLYMER OF HYDROXYETHYLCELLULOSE AND
POLYQUATERNIUM 4		

		DIALYL DIMETHYLAMMONIUM CHLORIDE
	POLYQUATERNIUM 10	POLYMERIC QUATERNARY AMMONIUM SALT OF HYDROXYETHYL CELLULOSE REACTED WITH TRIMETHYLAMMONIUM SUBSTITUTED EPOXIDE
5		
	POLYQUATERNIUM 24	POLYMERIC QUATERNARY AMMONIUM SALT OF HYDROXYETHYL CELLULOSE REACTED WITH LAURYL DIMETHYLAMMONIUM SUBSTITUTED
10	EPOXIDE	

The level of such fixative in the composition can be in the range of 0.1 parts to 12 parts by weight, preferably 0.1 to 1 parts by weight of a multifunctional 2-hydroxyethyl quaternary ammonium compound and 0.1 to 12 parts by weight of N-(2-hydroxyethyl)lactamide. Excessive amounts of multifunctional 2-hydroxyethyl quaternary ammonium compound are undesirable and wasteful, and can contribute to excessively viscous solutions and products that feel tacky.

Non-aggressive volatile organic compounds used as additives according to this invention can be water soluble or water insoluble and include aliphatic and cycloaliphatic hydrocarbons such as 2-methylbutane, n-pentane, 2,2-dimethylpropane, 1,1-dimethylcyclopropane and 2,2-dimethylbutane; open chain and cyclic oxygenated organic compounds such as dimethoxymethane, methyl formate, ethyl formate, furan, methyl t-butyl ether, propylene oxide and diethyl ether; and polyhalogenated organic compounds in which at least one halogen is fluorine such as 2-chloro-1,1-difluoroethane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-2,2,2-trifluoroethane, 1,2-dichloro-1,1,2-trifluoroethane, 1,2-dichloro-1,2-difluoroethane, 1,1-dichloro-2-2-difluoroethane, 1,2-dichloro-1,1-difluoroethane, 1,2-difluoroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, 1-fluoro-1,1-dichloroethane and mixtures thereof. The quantity of volatile organic compound is in the range from 0 to 12 parts by weight, preferably from 3 to 10 parts by weight.

Water-immiscible non-volatile organic carriers used as additives according to this invention can be liquid or solid emulsifiable materials and include fatty glycerides such as lard oil, olive oil, canola oil, soybean oil, medium chain triglyceride, acetylated mono-and diglyceride and glycerol monooleate; high molecular weight hydrocarbons with at least 30 carbon atoms such as paraffin wax, microcrystalline wax, mineral oil, gelled mineral oil, petrolatum, and hydrogenated oligomers of 1-decene; silicone oils and modified silicones such as dimethicone, cyclomethicone, alkoxylated hydroxypropyl(polydimethylsiloxanes) and cyclomethicone and dimethicone copolyol (CTFA) products; phospholipids such as lecithin, phosphatidylcholine and phosphatidylserine; emulsifiable oxidized waxes and 10 oxidized polyethylenes; copolymers of 1-olefins with unsaturated carboxylate esters, dicarboxylic acids and their anhydrides; and unsaturated lactams, such as 1-octadecene - maleic anhydride and 1-eicosene - vinylpyrrolidone copolymers; and open chain or cyclic high molecular weight esters having 16 to 60 carbon atoms such as cetyl palmitate, dibutyl sebacate, di-isonyl adipate, dihexyl phthalate, isopropyl myristate, isopropyl palmitate, 15 methyl stearate, mixed long chain alkyl benzoates; butyl epoxystearate and epoxidized soybean oil and mixtures thereof. When present, the quantity of water insoluble non-volatile carrier is in the range from 0 to 25 parts by weight, when present preferably from 3 to 19%.

Preservatives used as additives according to this invention are preferably free of heavy metals and can be polyfunctional acids and their alkali metal and ammonium salts such as 20 citric acid, tartaric acid, phosphoric acid, iminodiacetic acid, nitrilotriacetic acid, hydroxyethyleneaminodiacetic acid and ethylenediaminetetraacetic acid and salts thereof; para-hydroxybenzoates such as butyl paraben, methyl paraben and propyl paraben; imidazolinylurea, triclosan, dimethyloldimethylhydantoin, isothiazolidinone compounds and

mixtures thereof. When present, the quantity of preservative in the range from 0.001 to 2 parts by weight, preferably from 0.01 to 0.2 parts by weight.

Among additional ingredients that can be included in the composition of this invention as needed there can be included fragrances; foam boosters such as 5 lauryldimethylamine oxide and fatty alkanolamides; clarifyers, gelling agents, moisturizers such as glycerin, propylene glycol and butylene glycol; thickeners such as polyethylene glycol 6000 distearate; emollients such as silicone and aloe vera, vitamins such as Vitamin A, Vitamin C and Vitamin E, alpha-hydroxy acids such as glycolic acid and lactic acid, and pigments and colors for pearlescent, metallic, gold and other esthetic effects. Ingredients of 10 satisfactory quality for the preparation of compositions according to the invention are commercially available and can be compounded by conventional procedures including emulsification as required at any convenient temperature at which water is liquid.

It is a feature of this invention that the composition can be formulated at a pH that allows the composition to be mild to the skin, suitably within the range of 3.0 to 7.5.

15 As formulated for use, the quantity of composition used in a single application preferably ranges from 5 to 100 grams. Typically, the user applies the desired quantity to the dry or wet skin in the course of bathing or showering, allows it to remain on the skin for a dwell period of 15 seconds to about 5 minutes, lathers and massages, and rinses off.

Packaging and presentation can take a variety of forms including simple glass and 20 plastic bottles, decorative cream jars, squeeze tubes, and foil pouches holding a single use quantity. The composition of the invention can also be presented as an aerosol in conventional aluminum or steel aerosol containers with the addition of a suitable propellant. Fluorotrichloromethane propellant can be used where regulations permit; elsewhere,

isobutane, dimethyl ether, 1,1-difluoro-1-chloroethane and other ecologically acceptable replacement candidates are suitable.

EXAMPLES 1-5

Body cleanser preparations were formulated as shown in TABLE 2 below and tested
5 by the method described below combining the measurement of static SPF and retention of
SPF after a specified rinse test.

The light source employed was a 150 watt Xenon Arc Solar Simulator (Solar Light
Co, Philadelphia PA) having a continuous emission spectrum in the UV-B range from 290 to
320 nm. The device is equipped with a dichroic mirror which reflects all radiation below 400
10 nm and works in conjunction with a 1 mm thick Schott WG-320 filter absorbing all radiation
below 290 nm to produce simulation of the solar UVA-UVB spectrum. A 1 mm thick UG 5
or UG 11 filter (black lens) was added to remove reflected (infra-red, >700 nm) heat and
remaining visible radiation. UV exposure was monitored continuously during exposure using
a Model DCS-1 Sunburn UV Meter/Dose Controller System. Measurements were taken at a
15 position within 8 mm from the surface of the skin. The field of irradiation was 1 cm in
diameter.

The procedure for the measurement of SPF was that outlined in Federal Register vol.
43, pages 38264-267 (1978) with the modification shown below. One test area served to
determine each subject's Minimal Erythema Dose (MED). This was executed by exposing
20 the back to a series of timed incremental UV exposures at 25% intervals. The individual
subject's MED is the shortest time of exposure that produces minimally perceptible erythema
at 20 to 24 hours post irradiation. The test area is described as the infrascapular area of the
back to the right and left of the midline.

An 8% homosalate standard was delivered to the defined area test site through volumetric plastic syringes. The material was then evenly applied to a rectangular area measuring 5 cm by 10 cm for 50 square centimeter area for a final concentration of 2 milligram per square centimeter.

5 Fifteen minutes after application, a series of UV light exposures in 25% increments calculated from previously determined MED's bracketing the intended SPF were administered from the solar simulator to subsites within the treated area. On the actual day of testing another series of exposures similar to the one given on the previous day was administered to an adjacent untreated site of unprotected skin to redetermine the MED. An 10 adjacent test site was then selected to perform a static determination on the test substance. In order to test for retention of SPF at the same time, the protocol was modified to select an additional test site for each test material, wherein test materials were applied to moistened back using 0.05 ml of water and rubbed into a lather. Test sites were then rinsed with approximately 3.0 ml of water until removal of lather (approximately 1 minute). UV 15 exposures were begun immediately following this procedure.

Twenty to twenty four hours post exposure, the subjects were instructed to return to the testing facility for evaluation of delayed erythemic response. The smallest exposure or the least amount of energy required to produce erythema (MED) in the treated site was recorded. The SPF was then calculated according to the equation

20
$$\text{SPF} = \frac{\text{MED Protected Skin}}{\text{MED Unprotected Skin}}$$

In the following TABLE 2 of formulation ingredients for each example and SPF results obtained, all parts are by weight of active ingredient.

TABLE 2

	EXAMPLE	CONTROL A	1	2	3	4	5
5	Ingredient						
	Sunscreens:						
	2-ethylhexyl						
	p-methoxycinnamate	7.5	4.75	7.5	7.5	4.75	7.5
	octyl salicylate	none	none	5	5	none	5
10	2-hydroxy-4-methoxy-						
	benzophenone	6	4	6	6	4	6
	Anionic cleansing agents:						
	Ammonium lauryl sulfate	6	6.0	8.3	8.3	6	8.3
	Sodium cocoyl isethionate	1.67	1.67	1.8	1.8	1.67	1.8
15	Zwitterionic cleansing agents:						
	Cocoylamidopropylhydroxysultaine	2.5	2.5	2.5	2.5	2.5	2.5
	Fixatives:						
	N-(2-hydroxyethyl)lactamide	none	none	5	none	none	5
	Polyquaternium 10	none	0.3	0.5	0.5	0.6	0.5
	Preservatives:						
20	Tetrasodium EDTA	0.2	0.2	0.2	0.2	0.2	0.2
	Methyl paraben	0.2	0.2	0.2	0.2	0.2	0.2
	Imidazolidinylurea	0.2	0.2	0.2	0.2	0.2	0.2
	Dimethyloldimethylhydantoin	0.1	0.1	0.1	0.1	0.1	0.1
	Other ingredients:						
25	Soy fatty acyl diethanolamide	0.8	0.8	none	none	0.8	none
	Propylene glycol	0.2	0.2	0.2	0.2	0.2	0.2
	N-vinylpyrrolidone/1-eicosene						
	copolymer	none	none	none	3	none	1.5
	fragrance	0.6	0.6	none	none	none	none
30	Dimethicone 344FL	none	none	none	none	none	none
	titanium dioxide	none	none	none	none	none	none
	water	to 100	to 100	to 100	to 100	to 100	to 100
	pH	6.0	6.0	6.0	6.0	6.0	6.0
	Static SPF	20.6	16.5	28.7	32.1	25.7	21.5
35	SPF after rinse	3.5	8.5	8.4	9.5	9.4	11.0

The homosalate standard tested in the same way had static SPF 4.67 without rinse and was not tested with rinse.

40 As shown by these results, the compositions of the invention achieve the objective of imparting in a single application sufficient sunscreen to leave a person well protected even

after a rinse test simulating real life conditions of bathing, showering, and rinsing in removing sunscreen from the skin. Accordingly, finding after such exposure a level of protection far greater than that of a standard without any rinse or a control composition lacking fixative and otherwise comparable is dramatic and unexpected.

5

EXAMPLES 6-9

Body cleanser preparations were formulated as shown in TABLE 3 below and tested by the procedure described above.

TABLE 3

	EXAMPLE	6	7	8	9
10	Ingredient				
	Sunscreens:				
15	2-ethylhexyl p-methoxycinnamate	7.5	7.5	7.5	7.5
	octyl salicylate	5	5	5	5
20	2-hydroxy-4-methoxy- benzophenone	none	none	6	6
	Anionic cleansing agent:				
	Sodium Laureth sulfate	3.85	3.85	3.85	3.85
25	Zwitterionic cleansing agent:				
	Cocoylaminopropylbetaine	3.33	3.33	3.33	3.33
	Fixative:				
	N-(2-hydroxyethyl)lactamide	5	10	none	2.5
30	Polyquaternium 10	none	none	0.5	none
	Preservative:				
	KATHON CG isothiazolidinone compound	0.04	0.04	0.04	0.04
	Other ingredients:				
35	Cocoyldiethanolamide	3.33	3.33	3.33	3.33
	Sodium chloride	none	0.4	none	none
	water	to 100	to 100	to 100	to 100
	pH	6.0	6.0	6.0	6.0
	Static SPF	32.5	28.7	32.1	32.1
	SPF after rinse	9.5	8.7	13.6	10.5

The homosalate standard tested in the same way had static SPF 4.67 without rinse and was not tested with rinse.

As shown by these results, the compositions of the invention achieve the objective of imparting in a single application sufficient sunscreen to leave a person well protected even 5 after a rinse test simulating real life conditions of bathing, showering, and rinsing in removing sunscreen from the skin.

EXAMPLE10

A sunscreen containing body cleanser preparation that frothed upon placing upon the 10 skin was formulated as shown below and tested by the method described above combining the measurement of static SPF and retention of SPF after the specified rinse test. All ingredients are shown in parts by weight.

Ingredient	
Sunscreens:	
2-ethylhexyl p-methoxycinnamate	5.63
octyl salicylate	3.75
2-hydroxy-4-methoxy- benzophenone	4.5
Anionic cleansing agent:	
Sodium Laureth sulfate	3.85
Sodium lauryl ether sulfate	1.05
Zwitterionic cleansing agent:	
Cocoyl amidopropylbetaine	3.33
Volatile organic liquid:	
n-Pentane	5.0
Non-volatile organic liquid carrier:	
Water soluble petrolatum	4.63
Fixative:	
Polyquaternium 10	0.5
Preservative:	
KATHON CG isothiazolidinone compound	0.04
Other ingredients:	
Cocoyl diethanolamide	3.33
Lauryl amine oxide	0.75

	Fragrance	1.0
	water	to 100
	pH	6.5 to 7.5
	Static SPF	23.0
5	SPF after rinse	7.2

The composition was prepared by first combining the sunscreens and petrolatum with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, 10 organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

15

EXAMPLE11

A sunscreen containing body cleanser preparation that frothed upon placing upon the skin was formulated as shown above and tested by the method described below combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are 20 shown in parts by weight.

	Ingredient	
25	Sunscreens:	
	2-ethylhexyl	
	p-methoxycinnamate	7.5
	2-hydroxy-4-methoxy-	
	benzophenone	6.0
30	Anionic cleansing agent:	

	Sodium Laureth sulfate	3.85
	Sodium lauryl ether sulfate	1.05
	Zwitterionic cleansing agent:	
5	Cocoylamidopropylbetaine	3.33
	Volatile organic liquid:	
	n-Pentane	5.0
	Non-volatile organic liquid carrier:	
	General Electric SF1528	
10	Cyclomethicone Dimethicone Copolyol	5.0
	Fixative:	
	Polyquaternium 10	0.5
	Preservative:	
15	KATHON CG isothiazolidinone compound	0.04
	Other ingredients:	
	Cocoyldiethanolamide	3.33
	Lauryl amine oxide	0.75
	Fragrance	1.0
	water	to 100
20	pH	6.5-7.5
	Static SPF	24.5
	SPF after rinse	8.0

The composition was prepared by first combining the sunscreens and SF1528 with
25 gentle warming as needed to dissolve and then adding this blend to a separately prepared
blend of the surfactants, homogenizing to a cream, and combining with a solution of water,
organic nitrogen compound fixative, preservative, fragrance and other water soluble
ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of
30 imparting in a single application sufficient sunscreen to leave a person well protected even
after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLE12

A sunscreen containing body cleanser preparation that frothed upon placing upon the
35 skin was formulated as shown below and tested by the method described above combining

the measurement of static SPF and retention of SPF after a specified rinse test. All ingredients are shown in parts by weight.

	Ingredient	
	Sunscreens:	
5	2-ethylhexyl	
	p-methoxycinnamate	5.63
	octyl salicylate	3.75
	2-hydroxy-4-methoxy-	
	benzophenone	4.5
10	Anionic cleansing agent:	
	Sodium Laureth sulfate	3.85
	Sodium lauryl ether sulfate	1.05
	Zwitterionic cleansing agent:	
	Cocoyl amidopropylbetaine	3.33
15	Volatile organic liquid:	
	n-Pentane	5.0
	Non-volatile organic liquid carrier:	
	Mineral Oil Gel	4.63
	Fixative:	
20	Polyquaternium 10	0.5
	Preservative:	
	KATHON CG isothiazolidinone	
	compound	0.04
	Other ingredients:	
25	Cocoyldiethanolamide	3.33
	Lauryl amine oxide	0.75
	Fragrance	1.0
	water	to 100
	pH	6.5-7.5
30		

The composition was prepared by first combining the sunscreens and mineral oil gel with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLE 13

A sunscreen containing body cleanser preparation that frothed upon placing upon the skin was formulated as shown above and tested by the method described below combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown 5 in parts by weight.

	Ingredient	
	Sunscreens:	
10	2-ethylhexyl p-methoxycinnamate	5.63
	Octyl salicylate	3.75
	2-hydroxy-4-methoxy- benzophenone	4.5
15	Anionic cleansing agent:	
	Sodium Laureth sulfate	3.85
	Sodium lauryl ether sulfate	1.05
	Zwitterionic cleansing agent:	
	Cocoyl amidopropylbetaine	3.33
	Volatile organic liquid:	
20	n-Pentane	5.0
	Non-volatile organic liquid carrier:	
	General Electric SF1528	
	Cyclomethicone Dimethicone Copolyol	4.63
	Fixative:	
25	Polyquaternium 10	0.5
	Preservative:	
	KATHON CG isothiazolidinone compound	0.04
	Other ingredients:	
30	Cocoyldiethanolamide	3.33
	Lauryl amine oxide	0.75
	Fragrance	1.0
	water	t o 100
	pH	6.5 - 7.5
	Static SPF	23.2
35	SPF after rinse	6.4

The composition was prepared by first combining the sunscreens and SF1528 with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water,

organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even 5 after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLE14

A sunscreen containing body cleanser preparation that frothed upon placing upon the skin was formulated as shown below and tested by the method described above combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown 10 in parts by weight.

Ingredient	
Sunscreens:	
2-ethylhexyl	
p-methoxycinnamate	5.63
15 octyl salicylate	3.75
2-hydroxy-4-methoxy-	
benzophenone	4.5
Anionic cleansing agent:	
Sodium Laureth sulfate	3.85
20 Sodium lauryl ether sulfate	1.70
Zwitterionic cleansing agent:	
Cocoylaminopropylbetaine	3.33
Volatile organic liquid:	
n-Pentane	5.0
25 Non-volatile organic liquid carrier:	
Petrolatum	4.63
Fixative:	
Polyquaternium 10	0.5
Preservative:	
30 KATHON CG isothiazolidinone	
compound	0.04
Other ingredients:	
Cocoyldiethanolamide	1.0
Lauryl amine oxide	0.75
35 Fragrance	1.0
water	to 100
pH	6.5 - 7.5

The composition was prepared by first combining the sunscreens and petrolatum with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

10 EXAMPLE15

A sunscreen containing body cleanser preparation that frothed upon placing upon the skin was formulated as shown above and tested by the method described below combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by weight.

15	Ingredient	
	Sunscreens:	
	2-ethylhexyl	
	p-methoxycinnamate	7.5
20	2-hydroxy-4-methoxy-	
	benzophenone	6.0
	Anionic cleansing agent:	
	Sodium Laureth sulfate	3.85
	Sodium lauryl ether sulfate	1.05
25	Zwitterionic cleansing agent:	
	Cocoylamidopropylbetaine	3.33
	Volatile organic liquid:	
	n-Pentane	5.0
	Non-volatile organic liquid carrier:	
	Petrolatum	5.0
30	Fixative:	
	Polyquaternium 10	0.5
	Preservative:	
	KATHON CG isothiazolidinone	
	compound	0.04

Other ingredients:

Cocoylethanolamide	3.33
Lauryl amine oxide	0.75
Fragrance	1.0
water	to 100
pH	6.5 - 7.5
Static SPF	19.6
SPF after rinse	10.0

5

10

The composition was prepared by first combining the sunscreens and petrolatum with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

15

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

20

EXAMPLE16

A sunscreen containing body cleanser preparation that frothed upon placing upon the skin was formulated as shown below and tested by the method described above combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by weight.

25

Ingredient

Sunscreens:

2-ethylhexyl	
p-methoxycinnamate	5.63
octyl salicylate	3.75
2-hydroxy-4-methoxy-	
benzophenone	4.5
Anionic cleansing agent:	

30

	Sodium Laureth sulfate	3.85
	Sodium lauryl ether sulfate	1.05
	Zwitterionic cleansing agent:	
5	Cocoylaminopropylbetaine	3.33
	Volatile organic liquid:	
	n-Pentane	5.0
	Non-volatile organic carrier:	
10	1-octadecene - maleic anhydride copolymer	4.63
	Fixative:	
10	Polyquaternium 10	0.5
	Preservative:	
15	KATHON CG isothiazolidinone compound	0.04
	Other ingredients:	
	Cocoyldiethanolamide	3.33
	Lauryl amine oxide	0.75
20	Fragrance	1.0
	water	to 100
	pH	6.5 - 7.5

The composition was prepared by first combining the sunscreens and octadecene copolymer with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLE17

A sunscreen containing body cleanser preparation that frothed upon placing upon the skin was formulated as shown below and tested by the method described above combining

the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by weight.

	Ingredient	
	Sunscreens:	
5	2-ethylhexyl	
	p-methoxycinnamate	5.0
	octyl salicylate	3.34
	2-hydroxy-4-methoxy-	
	benzophenone	4.0
10	Anionic cleansing agent:	
	Sodium Laureth sulfate	3.85
	Sodium lauryl ether sulfate	1.05
	Zwitterionic cleansing agent:	
	Cocoylaminopropylbetaine	3.33
15	Volatile organic liquid:	
	n-Pentane	5.0
	Non-volatile organic liquid carrier:	
	Petrolatum	6.16
	Fixative:	
20	Polyquaternium 10	0.5
	Preservative:	
	KATHON CG isothiazolidinone	
	compound	0.04
	Other ingredients:	
25	Cocoylethanolamide	3.33
	Lauryl amine oxide	0.75
	Fragrance	1.0
	water	to 100
	pH	6.5 - 7.5
30	Static SPF	22.0
	SPF after rinse	10.0

The composition was prepared by first combining the sunscreens and petrolatum with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

5 EXAMPLES 18 and 19, and CONTROL B

Sunscreen containing body cleanser preparations according to the invention that frothed upon placing upon the skin, and a Control B composition lacking the non-volatile water immiscible carrier, were formulated as shown below and tested by the method described above

10

combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by weight.

	Ingredient:	EX. 18	EX. 19	CONTROL B
	Sunscreens:			
15	2-ethylhexyl p-methoxycinnamate	5.63	5.63	5.63
	octyl salicylate	3.75	3.75	3.75
	2-hydroxy-4-methoxy- benzophenone	4.5	4.5	4.5
20	Anionic cleansing agent:			
	Sodium Laureth sulfate	3.85	3.85	3.85
	Sodium lauryl ether sulfate	1.05	1.05	1.05
	Zwitterionic cleansing agent:			
25	Cocoylamidopropylbetaine	3.33	3.33	3.33
	Volatile organic liquid:			
	n-Pentane	5.0	5.0	5.0
	Non-volatile organic carrier:			
	Petrolatum	4.63	NONE	NONE
30	1-eicosene - vinylpyrrolidone copolymer	NONE	4.63	NONE
	Fixative:			
	Polyquaternium 10	0.5	0.5	0.5
	Preservative:			
35	KATHON CG isothiazolidinone compound	0.04	0.04	0.04
	Other ingredients:			

Cocoylethanolamide	3.33	3.33	3.33
Lauryl amine oxide	0.75	0.75	0.75
Fragrance	1.0	1.0	1.0
water	to 100	to 100	to 100
pH	6.5 - 7.5	6.5 - 7.5	6.5 - 7.5

5 The composition was prepared by first combining the sunscreens and petrolatum or eicosene copolymer with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with 10 a solution of water, organic nitrogen compound fixative, preservative, fragrance and other water soluble ingredients and then with the volatile liquid, and packaged in screw cap bottles.

15 The results show that the compositions of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLES 20-25

Sunscreen containing a basic body cleanser preparation according to the invention and additional compositions according the invention containing non-volatile water insoluble 20 organic compound carriers were formulated as shown below and tested by the method described above combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by weight.

	Ingredient:	EX.20	21	22	23	24	25
25	Sunscreens:						
	2-ethylhexyl						
	p-methoxycinnamate	7.5	7.5	7.5	7.5	7.5	7.5
30	octyl salicylate	5.0	NONE	5.0	5.0	5.0	5.0
	2-hydroxy-4-methoxy-						
	benzophenone	6.0	6.0	6.0	5.0	6.0	6.0
	Anionic cleansing agent:						

	Sodium Laureth sulfate	3.85	3.85	3.85	3.85	3.85	3.85
	Sodium lauryl ether sulfate	1.05	1.05	1.05	1.05	1.05	1.05
	Zwitterionic cleansing agent:						
5	Cocoylaminopropylbetaine	3.33	3.33	3.33	3.33	3.33	3.33
	Non-volatile carrier:						
	Petrolatum	NONE	5.0	5.0	NONE	NONE	NONE
	C12-C15 Alkyl benzoate	NONE	NONE	NONE	5.0	NONE	NONE
	GE SF1528 Cyclomethicone						
10	Dimethicone Copolyol	NONE	NONE	NONE	NONE	6.0	12.0
	Fixative:						
	Polyquaternium 10	0.5	0.5	0.5	0.5	0.5	0.5
	Preservative:						
15	KATHON CG isothiazolidinone compound	0.04	0.04	0.04	0.04	0.04	0.04
	Other ingredients:						
	Cocoyldiethanolamide	3.33	3.33	3.33	3.33	3.33	3.33
	Lauryl amine oxide	0.75	0.75	0.75	0.75	0.75	0.75
	water	to 100					
20	pH	6.7	6.7	6.7	6.7	6.7	6.7

The composition was prepared by first combining the sunscreens and carrier liquid when present with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, and other water soluble ingredients, and packaged in screw cap bottles.

The following results were obtained:

Static SPF	23.0	22.3	24.5	25.7	24.5	24.5
SPF after rinse	9.4	11.7	9.0	10.5	6.4	6.4

The results show that the compositions of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLES 26-28

Sunscreen containing body cleanser preparations according to the invention containing petrolatum as non-volatile carrier, were formulated as shown below and tested by the method described above combining the measurement of static SPF and retention of SPF after the 5 rinse test. All ingredients are shown in parts by weight.

	Ingredient:	EX. 26	EX.27	EX. 28
	Sunscreens:			
10	2-ethylhexyl p-methoxycinnamate	7.5	7.5	7.5
	octyl salicylate	5.0	5.0	5.0
	2-hydroxy-4-methoxy- benzophenone	6.0	6.0	6.0
	Octocrylene	NONE	5.0	7.0
15	Anionic cleansing agent:			
	Sodium Laureth sulfate	3.3	3.3	3.0
	Sodium lauryl ether sulfate	1.05	1.05	1.05
	Zwitterionic cleansing agent:			
	Cocoyl amidopropyl betaine	2.85	2.85	2.6
20	Non-volatile organic carrier:			
	Petrolatum	10.0	5.0	5.0
	Fixative:			
	Polyquaternium 10	0.5	0.5	0.5
	Preservative:			
25	KATHON CG isothiazolidinone compound	0.04	0.04	0.04
	Other ingredients:			
	Cocoylethanolamide	4.0	4.0	3.8
	Lauryl amine oxide	0.75	0.75	0.75
	water	to 100	to 100	to 100
30	pH	6.5 - 7.5	6.5 - 7.5	6.5 - 7.5

The composition was prepared by first combining the sunscreens and petrolatum with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, 35 organic nitrogen compound fixative, preservative, and other water soluble ingredients, and packaged in screw cap bottles.

The following results were obtained:

Static SPF	22.5	20.3	22.5
SPF after rinse	8.3	9.4	10.3

The results show that the compositions of the invention achieved the objective of
 5 imparting in a single application sufficient sunscreen to leave a person well protected even
 after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLES 29-32

10 Sunscreen containing body cleanser preparations according to the invention including
 a commercial silicone-treated zinc oxide in the combined sunscreen agents were formulated
 as shown below and tested by the method described above combining the measurement of
 static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by
 weight.

	Ingredient:	EX. 29	EX. 30	EX. 31	EX. 32
	Sunscreens:				
15	2-ethylhexyl p-methoxycinnamate	7.5	7.5	7.5	7.5
	octyl salicylate	5.0	5.0	5.0	5.0
20	2-hydroxy-4-methoxy- benzophenone	NONE	6.0	5.0	6.0
	Octocrylene	NONE	5.0	7.0	NONE
	Zinc oxide	5.0	5.0	5.0	5.0
	Anionic cleansing agent:				
25	Sodium Laureth sulfate	3.75	3.5	3.5	3.85
	Sodium lauryl ether sulfate	1.05	1.05	1.05	1.05
	Zwitterionic cleansing agent:				
	Cocoylamidopropylbetaine	3.25	3.0	3.0	3.33
	Fixative:				
30	Polyquaternium 10	0.5	0.5	0.5	0.5
	Preservative:				
	KATHON CG isothiazolidinone compound	0.04	0.04	0.04	0.04
	Other ingredients:				

Cocoylethanolamide	4.3	4.1	4.1	4.33
Lauryl amine oxide	0.75	0.75	0.75	0.75
water	to 100	to 100	to 100	to 100
pH	6.5 - 7.5	6.5 - 7.5	6.5-7.5	6.5 - 7.5

5

The composition was prepared by first combining the sunscreens with gentle warming and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, and other water soluble ingredients, and packaged in screw cap bottles.

10

The following results were obtained:

Static SPF	24.5	30.6	30.6	28.7
SPF after rinse	8.2	9.0	10.0	13.3

The results show that the composition of the invention achieved the objective of 15 imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

EXAMPLES 33-35

Sunscreen containing body cleanser preparations according to the invention 20 containing a commercial grade of silicone-treated zinc oxide among the sunscreen agents and a non-volatile compound carrier were formulated as shown below and tested by the method described above combining the measurement of static SPF and retention of SPF after the rinse test. All ingredients are shown in parts by weight.

	Ingredient:	EX. 33	EX.34	EX.35
	Sunscreens:			
	2-ethylhexyl			
	p-methoxycinnamate	7.5	7.5	7.5
	octyl salicylate	5.0	5.0	5.0
30	2-hydroxy-4-methoxy-			

	benzophenone	5.0	5.0	6.0
	zinc oxide	5.0	5.0	5.0
	Anionic cleansing agent:			
5	Sodium Laureth sulfate	3.5	3.5	3.5
	Sodium lauryl ether sulfate	1.05	1.05	1.05
	Zwitterionic cleansing agent:			
	Cocoylaminopropylbetaine	3.0	3.0	3.0
	Non-volatile organic carrier			
10	Petrolatum	5.0	5.0	NONE
	C12-C15 Alkyl benzoate	NONE	5.0	5.0
	Fixative:			
	Polyquaternium 10	0.5	0.5	0.5
	Preservative:			
15	KATHON CG isothiazolidinone compound	0.04	0.04	0.04
	Other ingredients:			
	Cocoylethanolamide	4.1	4.1	4.1
	Lauryl amine oxide	0.75	0.75	0.75
	water	to 100	to 100	to 100
20	pH	6.5 - 7.5	6.5 - 7.5	6.5 - 7.5

The composition was prepared by first combining the sunscreens and petrolatum or alkyl benzoate with gentle warming as needed to dissolve and then adding this blend to a separately prepared blend of the surfactants, homogenizing to a cream, and combining with a solution of water, organic nitrogen compound fixative, preservative, and other water soluble ingredients, and packaged in screw cap bottles.

The following results were obtained:

Static SPF	27.5	25.7	25.7
SPF after rinse	11.8	11.9	13.2

30 The results show that the composition of the invention achieved the objective of imparting in a single application sufficient sunscreen to leave a person well protected even after a rinse test simulating real life conditions of bathing, showering, and rinsing.

WE CLAIM:

1. A body cleansing composition providing upon a single application to a person in need of protection against sunburn protection measured by Sun Protection Factor (SPF) of at least 15 as applied and SPF of at least at least 4 after rinsing consists essentially of water; at least one first sunscreen compound which is a paramethoxycinnamate ester, and at least one second sunscreen compound able to absorb at least 50% of incident radiation at wave lengths from 290 to 320 nanometers; a combination of at least two surface active agents including a first anionic agent which can be an alkyl sulfate salt or an alkoxyolated alkyl sulfate salt, and a second agent which can be nonionic, anionic or zwitterionic; at least one hydroxyethylated 5 organic nitrogen compound fixative to enhance retention of SPF on the user's skin selected from the group consisting of N-(2-hydroxyethyl)lactamide and a polymeric quaternary ammonium salt having a plurality of quaternary ammonium groups and at least one 10 2-hydroxyethyl group; and at least one additive selected from the group consisting of non-aggressive volatile organic liquids boiling within the range of 15 to 60° C, 15 water-immiscible non-volatile organic carriers, and preservatives able to retard microbial spoilage, whereby protection against sunburn is imparted to a person in need thereof in a single application.
2. A composition according to claim 1 in which the first sunscreen compound is selected 20 from the group consisting of 2-ethylhexyl p-methoxycinnamate, 2-ethoxyethyl p-methoxycinnamate, diethanolamine p-methoxycinnamate, n-octyl p-methoxycinnamate and mixtures thereof.

3. A composition according to claim 1 in which the second sunscreen compound is selected from the group consisting of a 2-hydroxy-4-alkoxybenzophenone, a dibenzoylmethane compound, a salicylic acid ester, octocrylene, zinc oxide, and mixtures thereof
- 5 4. A composition according to claim 3 in which the second sunscreen compound includes zinc oxide with particle size in the range from 2 to 50 microns.
- 10 5. A composition according to claim 1 in which the first surface active agent is selected from the group consisting of ammonium lauryl sulfate, sodium laureth sulfate, sodium lauryl ether sulfate and mixtures thereof.
- 15 6. A composition according to claim 1 in which the zwitterionic agent is selected from the group consisting of fatty acylamidopropylhydroxysultaine, fatty acylamidopropylbetaine and mixtures thereof in which the fatty acyl group contains from 8 to 18 carbon atoms.
7. A composition according to claim 6 in which the zwitterionic agent is cocoylamidopropylbetaine..
- 20 8. A composition according to claim 1 in which the fixative organic nitrogen compound is N-(2-hydroxyethyl)lactamide.
9. A composition according to claim 1 in which the fixative organic nitrogen compound is selected from the group consisting of Polyquaternium 1, Polyquaternium 4, Polyquaternium 10, and Polyquaternium 24.

10. A composition according to claim 9 in which the fixative organic nitrogen compound is Polyquaternium 10.
11. A composition according to claim 1 in which the additive is at least one preservative 5 selected from the group consisting of butyl paraben, methyl paraben, propyl paraben, imidazolidinylurea, dimethyloldimethylhydantoin, an isothiazolidone compound and mixtures thereof.
12. A composition according to claim 1 frothing after being placed on the skin of a person in 10 which a non-aggressive volatile organic compound additive is an aliphatic or cycloaliphatic hydrocarbon.
13. A composition according to claim 12 in which the hydrocarbon is pentane.
14. A composition according to claim 1 whereby protection measured by SPF after rinsing of 15 at least 5 is imparted by a single application thereof.
15. A composition according to claim 1 frothing after being placed on the skin of a person in which a non-aggressive volatile organic compound additive is a polyhalogenated organic 20 compound in which at least one halogen is fluorine.
16. A composition according to claim 1 in which a water-immiscible non-volatile organic carrier additive is selected from the group consisting of high molecular weight hydrocarbons

with at least 30 carbon atoms, esters having from 16 to 60 carbon atoms, silicone oils, and modified silicones.

17. A composition according to claim 16 in which the water-immiscible organic carrier
5 additive is petrolatum.

18. A composition according to claim 16 in which the water-immiscible organic carrier
additive is C12-C15 alkyl benzoate.

10 19. A composition according to claim 1 in which the combined amounts of first sunscreen
compound and second sunscreen compound are in the range from 3 to 40 parts by weight; the
amount of first anionic agent is in the range from 3 to 15 parts by weight; the amount of
second surface active agent is in the range from 1 to 10 parts by weight; the amount of
N-(2-hydroxyethyl)lactamide is in the range from 0 to 12 parts by weight and the amount of
15 polymeric 2-hydroxyethyl quaternary ammonium salt is in the range from 0 to 1 part by
weight, provided that said amounts are not simultaneously 0; the amount of non-aggressive
volatile organic liquid is in the range from 0 to 12 parts by weight; the amount of
water-immiscible non-volatile organic liquid is in the range from 0 to 25 parts by weight; the
amount of preservative is in the range from 0.001 to 2 parts by weight, and the amount of
20 water is in the range from 30 to 90 parts by weight.

20. The method of imparting to a person in need thereof protection against sunburn
measured by Sun Protection Factor of at least 15 as applied and at least 4 after rinsing,
comprising applying once to the body of said person a body cleansing composition according

to claim 1, allowing said composition to remain on said person for a dwell period, and rinsing the person's body, thereby imparting protection against sunburn.

21. The method according to claim 20 in which the quantity of composition applied is in the
5 range from 5 to 100 grams.

22. The method according to claim 20 in which the dwell period is in the range from 15
seconds to 5 minutes.

10 23. The method according to claim 20 in which the composition includes a fixative selected
from the group consisting of Polyquaternium 1, Polyquaternium 4, Polyquaternium 10, and
Polyquaternium 24.

15 24. The method according to claim 20 in which the composition includes a non-aggressive
volatile organic liquid boiling in the range from 15 to 60° C.

25. The method according to claim 20 in which the composition includes a water insoluble
non-volatile organic compound carrier.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/23626

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : A61K 7/46, 7/50; C11D 9/00
US CL : 510/130, 131, 424, 463, 466, 504,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 510/130, 131, 424, 463, 466, 504,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
none

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS: cinnamates#, anionic, nonionic, polyquaternium#

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4,699,781 A (GOUPIL) 13 October 1987 (13-10-87), column 3, lines 50-65.	2
A	US 4,661,343 A (ZABOTTO ET AL) 28 April 1987 (28-04-87), col. 3, lines 40-49; col. 4, lines 16-21	16-17
A,P	US 5,776,438 A (TOKUE ET AL) 07 July 1998 (07-07-98) col. 2, lines 48-60; col. 3, lines 1-15; col. 3, lines 63-65; col. 4, lines 14-17.	1-3,
A	US 5,540,853 A (TRINH ET AL) 30 July 1996 (30-07-96) col. 2, lines 5-63; col. 6, lines 54-67; columns 7-11; column 15, lines 30-55; column 21, lines 23-45; column 37, lines 60-column 38, line 15.	1-25

 Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
"O" document referring to an oral disclosure, use, exhibition or other means	"A"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

19 DECEMBER 1998

Date of mailing of the international search report

03 FEB 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

NECHOLUS OGDEN

Telephone No. (703) 308-0661

