Introducción

La interpolación de Newton y la interpolación de Lagrange, que son herramientas fundamentales en análisis numérico. El método de interpolación de Newton emplea diferencias divididas y es especialmente útil cuando se requiere añadir nuevos puntos al conjunto de datos. Se construye de forma incremental, lo que facilita la incorporación de nuevos valores sin necesidad de recalcular el polinomio completo. Por otro lado, la interpolación de Lagrange se basa en la construcción de un polinomio único que pasa exactamente por todos los puntos dados. Aunque esta fórmula es directa y simple, no es la más adecuada cuando se desea añadir o modificar puntos, ya que requiere el cálculo de todo el polinomio desde el principio.

Estos métodos son útiles para calcular el punto de ebullición del agua en diferentes altitudes. De esta manera podemos observar los resultados sobre cual método es más efectivo.

Desarrollo del análisis

Para desarrollar estos métodos se nos brindó un ejercicio sobre el punto de ebullición en diferentes alturas sobre el nivel del mar y desarrollamos el método de Newton y de LaGrange.

	Ejercicio	El Alto	La Paz
Altura el (m)	5000	4100	3650
Altura en (ft)	16404,2	13451,44	11975,07

En la tabla observamos las alturas en metros y su conversión a pies los datos brindados son los siguientes:

	h(ft)	T°(F)
0	-1000	213,9
1	0	212
2	3000	206,2
3	8000	196,2
4	15000	184,4
5	22000	172,6
6	28000	163,1

Resultados de los métodos

Método de Newton Para x = 5000 m

			N	ΛΈΤΟDO D	E NEWTON					
x		у	1er nivel	2 nivel	3er nivel	2do nivel	3 nivel	4to nivel		
0	-1000	213,9	-0,0019	-8,3333E-09	-3,1249E-27	1,43849E-16	-1,35271E-20	7,59756E-25		
1	0	212	-0,00193333	-8,3333E-09	2,30159E-12	-1,6727E-16	8,50582E-21			
2	3000	206,2	-0,002	2,619E-08	-1,37845E-12	7,08888E-17				
3	8000	196,2	-0,00168571	-2,9428E-22	3,93773E-13					
4	15000	184,4	-0,00168571	7,8755E-09						
5	22000	172,6	-0,00158333							
6	28000	163,1								
	16404,2									
		182,276432								

Para x = 4100 m

MÉTODO DE NEWTON									
X		У	1er nivel	2 nivel	3er nivel	2do nivel	3 nivel	4to nivel	
0	-1000	213,9	-0,0019	-8,3333E-09	-3,1249E-27	1,43849E-16	-1,35271E-20	7,59756E-25	
1	0	212	-0,00193333	-8,3333E-09	2,30159E-12	-1,6727E-16	8,50582E-21		
2	3000	206,2	-0,002	2,619E-08	-1,37845E-12	7,08888E-17			
3	8000	196,2	-0,00168571	-2,9428E-22	3,93773E-13				
4	15000	184,4	-0,00168571	7,8755E-09					
5	22000	172,6	-0,00158333						
6	28000	163,1							
	13451,44								
		186,758942							

Para x = 3650

I	MÉTODO DE NEWTON									
)	K	У	1er nivel	2 nivel	3er nivel	2do nivel	3 nivel	4to nivel		
0	-1000	213,9	-0,0019	-8,3333E-09	-3,1249E-27	1,43849E-16	-1,35271E-20	7,59756E-2		
1	0	212	-0,00193333	-8,3333E-09	2,30159E-12	-1,6727E-16	8,50582E-21			
2	3000	206,2	-0,002	2,619E-08	-1,37845E-12	7,08888E-17				
3	8000	196,2	-0,00168571	-2,9428E-22	3,93773E-13					
4	15000	184,4	-0,00168571	7,8755E-09						
5	22000	172,6	-0,00158333							
6	28000	163,1								
	11975,07									
		189,104498								

• Método de Lagrange

Se halla en los siguientes cuadros los resulados para las diferentes alturas en pies.

Para x = 5000m

			IVIL	TODO DE I	LAGRANGE			
	h(ft)	T°(F)						
0	-1000	213,9						
1	0	212						
2	3000	206,2		xk=	16404,2			
3	8000	196,2						
4	15000	184,4						
5	22000	172,6						
6	28000	163,1						
	p(x)=L03(x)y	0+L13(x)Y1+L	23(x)Y2+L33()	()Y3+L43(x)Y4	l+L53(x)Y5+L63	3(x)Y6		182,276
	L03(X)=(x-x1)(x-x2)(x-x3)((x-x4)(x-x5)(x	-x6)/(x0-x1)(x0-x2)(x0-x3)	(x0-x4)(x0-x	5)(x0-x6)	0,438264
	L13(X)=(x-x0)(x-x2)(x-x3)((x-x4)(x-x5)(x	(-x6)/(x1-x0)	x1-x2)(x1-x3)	(x1-x4)(x1-x	5)(x1-x6)	-0,80556
	L23(X)=(x-x0)(x-x1)(x-x3)((x-x4)(x-x5)(x	(-x6)/(x2-x0)	x2-x1)(x2-x3)	(x2-x4)(x2-x	5)(x2-x6)	0,639250
	L33(X)=(x-x0)(x-x1)(x-x2)((x-x4)(x-x5)(x	(-x6)/(x3-x0)	x3-x1)(x3-x2)	(x3-x4)(x3-x5	5)(x3-x6)	-0,49417
	L43(X)=(x-x0)(x-x1)(x-x2)((x-x3)(x-x5)(x	(-x6)/(x4-x0)	x4-x1)(x4-x2)	(x4-x3)(x4-x5	5)(x4-x6)	1,137568
	L53(X)=(x-x0)(x-x1)(x-x2)((x-x3)(x-x4)(x	-x6)/(x5-x0)(x5-x1)(x5-x2)	(x5-x3)(x5-x4	4)(x5-x6)	0,092639
	L63(X)=(x-x0)(x-x1)(x-x2)((x-x3)(x-x4)(x	(-x5)/(x6-x0)	x6-x1)(x6-x2)	(x6-x3)(x6-x4	4)(x6-x5)	-0,007980

MÉTODO DE LAGRANGE								
	h(ft)	T°(F)						
0	-1000	213,9						
1	0	212						
2	3000	206,2		xk=	13451,44			
3	8000	196,2						
4	15000	184,4						
5	22000	172,6						
6	28000	163,1						
	p(x)=L03(x)y	0+L13(x)Y1+L2	23(x)Y2+L33(x	()Y3+L43(x)Y4	1+L53(x)Y5+L63	3(x)Y6		186,758942
	L03(X)=(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x	-x6)/(x0-x1)	(x0-x2)(x0-x3)	(x0-x4)(x0-x5	5)(x0-x6)	-0,384192463
	L13(X)=(x-x0)(x-x2)(x-x3)(x-x4)(x-x5)(x	-x6)/(x1-x0)	(x1-x2)(x1-x3)	(x1-x4)(x1-x5	5)(x1-x6)	0,715082731
	L23(X)=(x-x0)(x-x1)(x-x3)(x-x4)(x-x5)(x	-x6)/(x2-x0)	(x2-x1)(x2-x3)	(x2-x4)(x2-x5	5)(x2-x6)	-0,59676871
	L33(X)=(x-x0)(x-x1)(x-x2)(x-x4)(x-x5)(x	-x6)/(x3-x0)	(x3-x1)(x3-x2)	(x3-x4)(x3-x5	5)(x3-x6)	0,554547144
	L43(X)=(x-x0)(x-x1)(x-x2)(x-x3)(x-x5)(x	-x6)/(x4-x0)	(x4-x1)(x4-x2)	(x4-x3)(x4-x5	5)(x4-x6)	0,750841597
	L53(X)=(x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x	-x6)/(x5-x0)	(x5-x1)(x5-x2)	(x5-x3)(x5-x4	1)(x5-x6)	-0,044140157
	L63(X)=(x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x	-x5)/(x6-x0)	(x6-x1)(x6-x2)	(x6-x3)(x6-x4	1)(x6-x5)	0,004629858

Para 3650 m

			MÉ	TODO DE	LAGRANGE			
	h(ft)	T°(F)						
0	-1000	213,9						
1	0	212						
2	3000	206,2		xk=	11975,07			
3	8000	196,2						
4	15000	184,4						
5	22000	172,6						
6	28000	163,1						
	p(x)=L03(x)y	0+L13(x)Y1+L2	23(x)Y2+L33()	()Y3+L43(x)Y4	1+L53(x)Y5+L63	3(x)Y6		189,104498
	L03(X)=(x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x	-x6)/(x0-x1)	(x0-x2)(x0-x3)	(x0-x4)(x0-x	5)(x0-x6)	-0,5403873
					(x1-x2)(x1-x3)			1,014382
					(x2-x1)(x2-x3)			-0,8776053
					(x3-x1)(x3-x2)			0,9604170
					(x4-x1)(x4-x2)			0,4854180
					(x5-x1)(x5-x2)			-0,0475335
					(x6-x1)(x6-x2)			0,005308

Resultados del Error

Tablas donde se halla el error de la interpolación de Newton y Lagrange, haciendo la comparativa ambas están cerca al valor original sin embargo para el caso de La Paz se muestra un ligero aumento en el error de la interpolación de Lagrange.

ERROR DE LA INTERPOLACIÓN DE NEWTON

Punto de Ebullsion en °F	Ejercicio	El Alto	La Paz
Real	183	187	190
Interpolado por Newton	182,276432	186,758942	189,387287
ERROR	0,39539235	0,12890802	0,32248053

Punto de Ebullsion en °F	Ejercicio	El Alto	La Paz
Real	183	187	190
Inperpolado por			
Lagrange	182,276431	186,758942	189,104498
ERROR	0,3953929	0,12890802	0,47131674

ERROR DE LA INTERPOLACIÓN DE LAGRANGE

Conclusión

En base a los datos obtenidos y a los reales se pudo observar que la interpolación de Newton puede llegar a tener un error menor esto más visible al realizar para la altura de la paz que es a 3650 metros sobre el nivel del mar.

Como el análisis es en base a varios puntos se recomienda manejar con el método de Newton por ser incremental y el método de Lagrange la fórmula es directa y simple, no es la más adecuada cuando se desea añadir o modificar puntos.

Podemos observar que los datos hallados no están lejos de los datos reales lo que interpolar nos permite hacer estimaciones en ejercicios como el punto de ebullición.