CNet

Generated by Doxygen 1.8.13

Contents

1	Todo	o List		1
2	Hier	archica	Index	3
	2.1	Class	Hierarchy	3
3	Clas	s Index		5
	3.1	Class	ist	5
4	File	Index		7
	4.1	File Lis	#	7
5	Clas	s Docu	mentation	9
	5.1	AFActi	vationFunction< T, N, M > Class Template Reference	9
		5.1.1	Member Function Documentation	9
			5.1.1.1 derivative()	9
			5.1.1.2 evaluate()	10
	5.2	AFLos	sFunction< T, N, M > Class Template Reference	10
		5.2.1	Member Function Documentation	10
			5.2.1.1 derivative()	10
			5.2.1.2 evaluate()	11
	5.3	AFMat	rix < T, ROWS, COLS > Class Template Reference	11
		5.3.1	Constructor & Destructor Documentation	12
			5.3.1.1 AFMatrix() [1/3]	12
			5.3.1.2 AFMatrix() [2/3]	12
			5.3.1.3 AFMatrix() [3/3]	12

ii CONTENTS

		5.3.1.4	~AFMatrix()	 13
	5.3.2	Member	Function Documentation	 13
		5.3.2.1	add()	 13
		5.3.2.2	copyValues() [1/4]	 13
		5.3.2.3	copyValues() [2/4]	 14
		5.3.2.4	copyValues() [3/4]	 14
		5.3.2.5	copyValues() [4/4]	 14
		5.3.2.6	equals()	 15
		5.3.2.7	getCol()	 15
		5.3.2.8	getIndex()	 15
		5.3.2.9	getRow()	 16
		5.3.2.10	getValue()	 16
		5.3.2.11	innerProduct() [1/4]	 16
		5.3.2.12	innerProduct() [2/4]	 18
		5.3.2.13	innerProduct() [3/4]	 18
		5.3.2.14	innerProduct() [4/4]	 18
		5.3.2.15	scale()	 19
		5.3.2.16	setValue()	 19
		5.3.2.17	subtract()	 20
		5.3.2.18	toArray()	 20
		5.3.2.19	transpose() [1/2]	 20
		5.3.2.20	transpose() [2/2]	 20
	5.3.3	Member	Data Documentation	 21
		5.3.3.1	numCols	 21
		5.3.3.2	numRows	 21
		5.3.3.3	vals	 21
5.4	AFSqu	areLossFu	unction< T, N, M > Class Template Reference	 22
	5.4.1	Member	Function Documentation	 22
		5.4.1.1	derivative()	 22
		5.4.1.2	evaluate()	 22

CONTENTS

5.5	Identity	/Function<	< T, N, M > Class Template Reference	23
	5.5.1	Member	Function Documentation	23
		5.5.1.1	derivative()	23
		5.5.1.2	evaluate()	23
5.6	Layer<	< LEN_IN,	LEN_OUT > Class Template Reference	23
	5.6.1	Detailed	Description	24
	5.6.2	Construc	ctor & Destructor Documentation	25
		5.6.2.1	Layer()	25
		5.6.2.2	~Layer()	25
	5.6.3	Member	Function Documentation	25
		5.6.3.1	backpropagate() [1/2]	25
		5.6.3.2	backpropagate() [2/2]	26
		5.6.3.3	backpropagateBase() [1/2]	26
		5.6.3.4	backpropagateBase() [2/2]	27
		5.6.3.5	forwardPass() [1/2]	27
		5.6.3.6	forwardPass() [2/2]	27
		5.6.3.7	randomizeWeights()	28
		5.6.3.8	updateWeights()	28
	5.6.4	Member	Data Documentation	28
		5.6.4.1	activationFunction	28
		5.6.4.2	deltas	28
		5.6.4.3	inputVals	28
		5.6.4.4	lenin	29
		5.6.4.5	lenOut	29
		5.6.4.6	output Vals	29
		5.6.4.7	sums	29
		5.6.4.8	weightGradient	29
		5.6.4.9	weights	30
5.7	Net<	Γ > Class	Template Reference	30
5.8	ReLU<	< T, N, M	> Class Template Reference	30
	5.8.1	Member	Function Documentation	30
		5.8.1.1	derivative()	30
		5.8.1.2	evaluate()	31

iv CONTENTS

6	File	Docum	entation		33
	6.1	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/AFFunctions.h File Reference	33
	6.2	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/AFMatrix.cpp File Reference	33
	6.3	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/AFMatrix.h File Reference	33
		6.3.1	Macro De	efinition Documentation	34
			6.3.1.1	ACCEPTABLE_DOUBLE_DIFF	34
		6.3.2	Function	Documentation	34
			6.3.2.1	doubleVectorEqual()	34
			6.3.2.2	vectorInnerProduct()	34
			6.3.2.3	vectorInnerProductBounded()	35
	6.4	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/Layer.cpp File Reference	35
	6.5	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/Layer.h File Reference	35
	6.6	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/main.cpp File Reference	36
		6.6.1	Function	Documentation	36
			6.6.1.1	main()	36
	6.7	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/Net.cpp File Reference	36
	6.8	C:/Use	ers/Aryan/C	CLionProjects/CNet/src/Net.h File Reference	36
Inc	dex				37

Chapter 1

Todo List

2 Todo List

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$AFActivationFunction < T, N, M > \dots \dots$	9
IdentityFunction< T, N, M >	:3
$ReLU \! < T, N, M \! > \ldots \ldots$	C
AFActivationFunction< double, LEN_IN, LEN_OUT >	9
$AFLossFunction < T,N,M > \ldots$	0
AFSquareLossFunction< T, N, M >	2
$AFMatrix < T, ROWS, COLS > \dots $	1
$AFMatrix < double, LEN_OUT, LEN_IN > \dots $	1
Layer < LEN_IN, LEN_OUT >	3
Net< T >	C

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

$FActivationFunction < T, N, M > \dots $	
$FLossFunction < T, N, M > \ \ldots \ldots$. 10
FMatrix $<$ T, ROWS, COLS $>$. 11
$FSquareLossFunction < T, N, M > \dots $. 22
entityFunction< T, N, M >	 . 23
ayer< LEN_IN, LEN_OUT >	 . 23
et< T >	 . 30
eLU< T. N. M >	 . 30

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h	3
C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.cpp	3
C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.h	3
C:/Users/Aryan/CLionProjects/CNet/src/Layer.cpp	5
C:/Users/Aryan/CLionProjects/CNet/src/Layer.h	5
C:/Users/Aryan/CLionProjects/CNet/src/main.cpp	6
C:/Users/Aryan/CLionProjects/CNet/src/Net.cpp	6
C:/Users/Aryan/CLionProjects/CNet/src/Net.h	6

8 File Index

Chapter 5

Class Documentation

5.1 AFActivationFunction < T, N, M > Class Template Reference

```
#include <AFFunctions.h>
```

Inheritance diagram for AFActivationFunction< T, N, M >:

Public Member Functions

- void evaluate (array< T, N > *input, array< T, N > *output)
- void derivative (array< T, M > *input, array< T, M > *output)

5.1.1 Member Function Documentation

5.1.1.1 derivative()

5.1.1.2 evaluate()

The documentation for this class was generated from the following file:

C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h

5.2 AFLossFunction < T, N, M > Class Template Reference

```
#include <AFFunctions.h>
```

Inheritance diagram for AFLossFunction< T, N, M >:

Public Member Functions

- void evaluate (array< T, N > *actualVals, array< T, N > *expectedVals, array< T, N > *output)
- void derivative (array < T, N > *actualVals, array < T, N > *expectedVals, array < T, N > *output)

5.2.1 Member Function Documentation

5.2.1.1 derivative()

5.2.1.2 evaluate()

```
template<typename T , size_t N, size_t M>
void AFLossFunction< T, N, M >::evaluate (
            array < T, N > * actualVals,
            array < T, N > * expectedVals,
            array< T, N > * output ) [inline]
```

The documentation for this class was generated from the following file:

• C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h

5.3 AFMatrix < T, ROWS, COLS > Class Template Reference

```
#include <AFMatrix.h>
```

```
Public Member Functions

    AFMatrix ()

    AFMatrix (AFMatrix < T, ROWS, COLS > *copyFrom)

    AFMatrix (array< T, ROWS *COLS > *copyFromArray)

    ∼AFMatrix ()

    int getIndex (int row, int col)

    T getValue (int row, int col)

    array< T, ROWS > * getCol (int col)

    array< T, COLS > * getRow (int row)

    void setValue (int row, int col, T newValue)

    • template<size_t OTHER_COLS>
      void innerProduct (AFMatrix < T, COLS, OTHER COLS > *other, AFMatrix < T, ROWS, OTHER COLS >
      *out)
    template<size_t OTHER_COLS>
      void innerProduct (AFMatrix< T, COLS, OTHER_COLS > *other, AFMatrix< T, ROWS, OTHER_COLS >
      *out, size_t outStartRow, size_t outStartCol)
    • template<size t COLSOUT>
      void innerProduct (array< T, COLS > *other, AFMatrix< T, ROWS, COLSOUT > *out, int outCol)

    void innerProduct (array< T, COLS > *other, array< T, ROWS > *out)

    void transpose (AFMatrix < T, COLS, ROWS > *out)

    AFMatrix * transpose ()

    • void scale (double factor, AFMatrix *out)

    void add (AFMatrix < T, ROWS, COLS > *other, AFMatrix < T, ROWS, COLS > *out)
```

void subtract (AFMatrix < T, ROWS, COLS > *other, AFMatrix < T, ROWS, COLS > *out)

void copyValues (AFMatrix < T, ROWS, COLS > *dst, array < T, ROWS *COLS > *src)

void copyValues (array< T1, N > *dst, array< T1, N > *src) bool equals (AFMatrix< T, ROWS, COLS > *otherMat)

void copyValues (AFMatrix < T, ROWSDST, COLSDST > *dst, AFMatrix < T, ROWS, COLS > *src)

void copyValues (AFMatrix< T, ROWSDST, COLSDST > *dst, AFMatrix< T, ROWS, COLS > *src, size_t

 array
 T, ROWS *COLS > * toArray () template < size_t ROWSDST, size_t COLSDST>

• template<size t ROWSDST, size t COLSDST>

srcRowStart, size_t srcColStart)

• template<typename T1 , size_t N>

Public Attributes

- int numRows
- · int numCols
- array< T, ROWS *COLS > * vals

5.3.1 Constructor & Destructor Documentation

Creates a new copy and copies data.

Todo Make this effecient and non-copying

Parameters

copyFrom

5.3.1.3 AFMatrix() [3/3]

Creates a new copy and copies data from copyFrom.

Todo Make this effecient and non-copying

Parameters

copyFrom

5.3.1.4 \sim AFMatrix()

```
template<class T, size_t ROWS, size_t COLS>
AFMatrix< T, ROWS, COLS >::~AFMatrix ( ) [inline]
```

5.3.2 Member Function Documentation

5.3.2.1 add()

Adds two matrices and writes result into out

Parameters

other	- The matrix to add to this.
out	- The matrix to write the result to

Warning

requires

5.3.2.2 copyValues() [1/4]

Copies values from ${\tt src}$ to ${\tt dst}.$ The two matrices will be exactly identitcal.

dst	
src	

5.3.2.3 copyValues() [2/4]

Copies values from src to dst. The two matrices will be exactly identitcal.

Parameters

dst	
src	

5.3.2.4 copyValues() [3/4]

Copies data from the src array to dst->vals.

Todo Clarify how things work if matrices can be row-major or column-major.

Parameters

dst	
src	

5.3.2.5 copyValues() [4/4]

Copies values from src to dst. The arrays will be identical afterwards.

Template Parameters

N - The size of the arrays, must be equal

Parameters

dst	
src	

5.3.2.6 equals()

5.3.2.7 getCol()

```
template<class T, size_t ROWS, size_t COLS>
array<T, ROWS>* AFMatrix< T, ROWS, COLS >::getCol (
         int col ) [inline]
```

Parameters

Returns

An std:array filled with the column values of this matrix

Warning

Delete the new array to free memory

5.3.2.8 getIndex()

row	
col	

Returns

```
the index i such that this->vals[i] = (row, col).
```

5.3.2.9 getRow()

Parameters

Returns

An std:array filled with the row values of this matrix

Warning

Delete the new array to free memory

5.3.2.10 getValue()

Parameters

row	
col	

Returns

```
the index i such that this->vals[i] = (row, col).
```

5.3.2.11 innerProduct() [1/4]

```
template<class T, size_t ROWS, size_t COLS>
template<size_t OTHER_COLS>
```

Parameters

other	The other matrix to multiply this against
out	The matrix to write the output values

5.3.2.12 innerProduct() [2/4]

Parameters

other	The other matrix to multiply this against
out	The matrix to write the output values

5.3.2.13 innerProduct() [3/4]

Multiplies a matrix on the left against a array on the right. The array on the right is treated as a column vector.

Precondition

```
this.numCols = other.size()
```

other	The other array to inner product with.	
out	Output matrix to write values to. It has this.numRows rows and 1 column.	1

```
5.3.2.14 innerProduct() [4/4]
```

```
template<class T, size_t ROWS, size_t COLS>
```

Multiplies a matrix on the left against a vector on the right.

Precondition

```
this.numRows = other.size()
```

Parameters

other	The other vector to inner product with.]
out	Output matrix to write values to. It has this.numRows rows and 1 column.	1

5.3.2.15 scale()

Multiplies all entries of a matrix by factor

Parameters

factor	
out	

5.3.2.16 setValue()

```
template<class T, size_t ROWS, size_t COLS>
void AFMatrix< T, ROWS, COLS >::setValue (
    int row,
    int col,
    T newValue ) [inline]
```

row	
col	
newValue	The new value to put in this row/col

5.3.2.17 subtract()

Subtracts two matrices and writes result into out

Parameters

other	- The matrix to subtract from this.
out	- The matrix to write the result to

5.3.2.18 toArray()

```
template<class T, size_t ROWS, size_t COLS>
array<T, ROWS*COLS>* AFMatrix< T, ROWS, COLS >::toArray ( ) [inline]
```

Dynamically makes a new vector that is this.numRows * this.numCols elements long and copies this.vals into it.

Returns

The new dynamically allocated vector (we call reserve () on it though).

5.3.2.19 transpose() [1/2]

Transposes this matrix and writes result to out

```
out | - Matrix that has this.numCols rows and this.numRows cols. The result will be written to out.
```

```
5.3.2.20 transpose() [2/2]
```

```
template<class T, size_t ROWS, size_t COLS>
AFMatrix* AFMatrix< T, ROWS, COLS >::transpose ( ) [inline]
```

Returns

A new, dynamically allocated matrix that is the transpose of this

Warning

Remember to delete the returned Matrix when done

5.3.3 Member Data Documentation

5.3.3.1 numCols

```
template<class T, size_t ROWS, size_t COLS>
int AFMatrix< T, ROWS, COLS >::numCols
```

5.3.3.2 numRows

```
template<class T, size_t ROWS, size_t COLS>
int AFMatrix< T, ROWS, COLS >::numRows
```

5.3.3.3 vals

```
template<class T, size_t ROWS, size_t COLS>
array<T, ROWS*COLS>* AFMatrix< T, ROWS, COLS >::vals
```

This is the values of the matrix stored in one long array regardless of the matrix's actual shape. The values are stored in row-by-row

```
Todo Is vals dynamically allocated or what?? | a b | | c d | = [a b c d e f] | e f |
```

The documentation for this class was generated from the following file:

C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.h

5.4 AFSquareLossFunction< T, N, M > Class Template Reference

```
#include <AFFunctions.h>
```

Inheritance diagram for AFSquareLossFunction< T, N, M >:

```
AFLossFunction< T, N, M >

AFSquareLossFunction< T, N, M >
```

Public Member Functions

- T evaluate (array< T, N > *actualVals, array< T, N > *expectedVals)
- void derivative (array < T, N > *actualVals, array < T, N > *expectedVals, array < T, N > *output)

5.4.1 Member Function Documentation

5.4.1.1 derivative()

Finds derivative of squared loss L(inputVal, actualVal, expectedVal) w.r.t. actualVals.

Parameters

actualVals	
expectedVals	
output	

5.4.1.2 evaluate()

The documentation for this class was generated from the following file:

C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h

5.5 IdentityFunction < T, N, M > Class Template Reference

#include <AFFunctions.h>

Inheritance diagram for IdentityFunction< T, N, M >:

Public Member Functions

- void evaluate (array< T, N > *input, array< T, N > *output)
- void derivative (array< T, M > *input, array< T, M > *output)

5.5.1 Member Function Documentation

5.5.1.1 derivative()

5.5.1.2 evaluate()

The documentation for this class was generated from the following file:

• C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h

5.6 Layer < LEN_IN, LEN_OUT > Class Template Reference

```
#include <Layer.h>
```

Public Member Functions

- Layer (int lenIn, int lenOut, AFActivationFunction < double, LEN IN, LEN OUT > *activationFn)
- ~Laver ()
- void randomizeWeights ()
- void forwardPass (array< double, LEN_IN > *inputVals, array< double, LEN_OUT > *outputVals)
- void forwardPass (array< double, LEN_IN > *inputVals)
- template<size_t LEN_OUT_NEXT>

void backpropagate (array< double, LEN_IN > *nextDeltas, AFMatrix< double, LEN_OUT_NEXT, LEN_IN > *nextWeights, array< double, LEN_OUT > *newDeltas)

template<size_t LEN_OUT_NEXT>
 void backpropagate (array< double, LEN_IN > *nextDeltas, AFMatrix< double, LEN_OUT_NEXT, LEN_IN
 > *nextWeights)

- void backpropagateBase (array< double, LEN_OUT > *actualVals, array< double, LEN_OUT > *expectedVals, AFLossFunction *lossFn, array< double, LEN_OUT > *newDeltas)
- void backpropagateBase (array< double, LEN_OUT > *actualVals, array< double, LEN_OUT > *expectedVals, AFLossFunction *lossFn)
- void updateWeights ()

Public Attributes

int lenIn

The size of the vector that this layer takes as input.

int lenOut

The size of the vector that this layer outputs.

array< double, LEN_IN > * inputVals

The values that this layer receives from the previous layer.

• array< double, LEN_OUT > * sums

The sums after the weights are multiplied by input value'.

• array< double, LEN_OUT > * deltas

The intermediate gradients of the loss, $deltas[i] = d(Error)/d(sum_i)$

array< double, LEN OUT > * outputVals

The values after the sums are put through the activation function.

AFMatrix< double, LEN_OUT, LEN_IN > * weights

The weights which are multiplied against the input values. This has lenOut rows and lenIn cols.

AFMatrix< double, LEN_OUT, LEN_IN > * weightGradient

The weight gradients. weightGradient[i,j] = d(Error)/d(weights[i,j]). Same shape as weights.

AFActivationFunction
 double, LEN IN, LEN OUT > * activationFunction

The activation function g such that 'output Values = g(weights * Input Vals). Note that g takes a vector.

5.6.1 Detailed Description

```
template < size_t LEN_IN, size_t LEN_OUT > class Layer < LEN_IN, LEN_OUT >
```

Author

Aryan Falahatpisheh

5.6.2 Constructor & Destructor Documentation

5.6.2.1 Layer()

Parameters

lenIn	The input length of this layer
lenOut	The output size of this layer
activationFn	Pass an AFActivationFunction by value so this layer knows how to calculate output values.

5.6.2.2 \sim Layer()

```
template<size_t LEN_IN, size_t LEN_OUT>
Layer< LEN_IN, LEN_OUT >::~Layer ( ) [inline]
```

5.6.3 Member Function Documentation

5.6.3.1 backpropagate() [1/2]

Performs backpropogation algorithm. Writes this layer's new d(Err)/d(Sums) into newDeltas.

Template Parameters

LEN_OUT_NEXT	The next layer's output length
--------------	--------------------------------

nextDeltas	The next layer's d(Err)/d(sums);
------------	----------------------------------

Parameters

nextWeights	
newDeltas	

5.6.3.2 backpropagate() [2/2]

Performs backpropogation algorithm and writes output to this->deltas.

Template Parameters

```
LEN_OUT_NEXT
```

Parameters

nextDeltas nextWeights

5.6.3.3 backpropagateBase() [1/2]

The backprop algorithm for the last layer. First calculates d(Err)/d(outputVals), which is the derivative of the loss function w.r.t to actualVals. It then calculates d(Err)/d(sums).

actualVals	
expectedVals	
newDeltas	

5.6.3.4 backpropagateBase() [2/2]

The backprop algorithm for the last layer. First calculates d(Err)/d(outputVals), which is the derivative of the loss function w.r.t to actualVals. It then calculates d(Err)/d(sums).

Parameters

actualVals	
expectedVals	
newDeltas	

5.6.3.5 forwardPass() [1/2]

Will perform the forward pass on this Layer. Will take in inputVals, calculate weighted sums, and then pass that result to this layer's activation function. The output will be written to outputVals.

Parameters

inputVals	
outputVals	- outputVals[i] = this->weights.row(i).innerProduct(inputVals).

5.6.3.6 forwardPass() [2/2]

Will perform the forward pass on this Layer. Will take in inputVals, calculate weighted sums, and then pass that result to this layer's activation function. The output will be written to outputVals.

inputVals	
outputVals	- outputVals[i] = this->weights.row(i).innerProduct(inputVals).

5.6.3.7 randomizeWeights()

```
template<size_t LEN_IN, size_t LEN_OUT>
void Layer< LEN_IN, LEN_OUT >::randomizeWeights ( ) [inline]
```

5.6.3.8 updateWeights()

```
template<size_t LEN_IN, size_t LEN_OUT>
void Layer< LEN_IN, LEN_OUT >::updateWeights ( ) [inline]
```

5.6.4 Member Data Documentation

5.6.4.1 activationFunction

```
template<size_t LEN_IN, size_t LEN_OUT>
AFActivationFunction<double, LEN_IN, LEN_OUT>* Layer< LEN_IN, LEN_OUT >::activationFunction
```

The activation function g such that 'outputValues = g(weights * InputVals). Note that g takes a vector.

5.6.4.2 deltas

```
template<size_t LEN_IN, size_t LEN_OUT>
array<double, LEN_OUT>* Layer< LEN_IN, LEN_OUT >::deltas
```

The intermediate gradients of the loss, $deltas[i] = d(Error)/d(sum_i)$

5.6.4.3 inputVals

```
template<size_t LEN_IN, size_t LEN_OUT>
array<double, LEN_IN>* Layer< LEN_IN, LEN_OUT >::inputVals
```

The values that this layer receives from the previous layer.

5.6.4.4 lenIn

```
template<size_t LEN_IN, size_t LEN_OUT>
int Layer< LEN_IN, LEN_OUT >::lenIn
```

The size of the vector that this layer takes as input.

Hello!

5.6.4.5 lenOut

```
template<size_t LEN_IN, size_t LEN_OUT>
int Layer< LEN_IN, LEN_OUT >::lenOut
```

The size of the vector that this layer outputs.

5.6.4.6 outputVals

```
template<size_t LEN_IN, size_t LEN_OUT>
array<double, LEN_OUT>* Layer< LEN_IN, LEN_OUT >::outputVals
```

The values after the sums are put through the activation function.

5.6.4.7 sums

```
template<size_t LEN_IN, size_t LEN_OUT>
array<double, LEN_OUT>* Layer< LEN_IN, LEN_OUT >::sums
```

The sums after the weights are multiplied by input value'.

5.6.4.8 weightGradient

```
template<size_t LEN_IN, size_t LEN_OUT>
AFMatrix<double, LEN_OUT, LEN_IN>* Layer< LEN_IN, LEN_OUT >::weightGradient
```

The weight gradients. weightGradient[i,j] = d(Error)/d(weights[i,j]). Same shape as weights.

5.6.4.9 weights

```
template<size_t LEN_IN, size_t LEN_OUT>
AFMatrix<double, LEN_OUT, LEN_IN>* Layer< LEN_IN, LEN_OUT >::weights
```

The weights which are multiplied against the input values. This has lenOut rows and lenIn cols.

The documentation for this class was generated from the following file:

• C:/Users/Aryan/CLionProjects/CNet/src/Layer.h

5.7 Net < T > Class Template Reference

```
#include <Net.h>
```

The documentation for this class was generated from the following file:

C:/Users/Aryan/CLionProjects/CNet/src/Net.h

5.8 ReLU< T, N, M > Class Template Reference

```
#include <AFFunctions.h>
```

Inheritance diagram for ReLU< T, N, M >:

```
AFActivationFunction< T, N, M >

ReLU< T, N, M >
```

Public Member Functions

- void evaluate (array< T, N > *input, array< T, N > *output)
- void derivative (array< T, M > *input, array< T, M > *output)

5.8.1 Member Function Documentation

5.8.1.1 derivative()

5.8.1.2 evaluate()

The documentation for this class was generated from the following file:

• C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h

Chapter 6

File Documentation

6.1 C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h File Reference

```
#include <math.h>
#include <array>
```

Classes

- class AFActivationFunction
 T, N, M >
- class ReLU< T, N, M >
- class IdentityFunction< T, N, M >
- class AFLossFunction< T, N, M >
- class AFSquareLossFunction< T, N, M >

6.2 C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.cpp File Reference

```
#include "AFMatrix.h"
```

6.3 C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.h File Reference

```
#include <array>
```

Classes

- class AFMatrix< T, ROWS, COLS >

Macros

• #define ACCEPTABLE_DOUBLE_DIFF 0.000000001

34 File Documentation

Functions

```
    template<typename T, size_t N>
        T vectorInnerProductBounded (array< T, N > *vec1, array< T, N > *vec2, size_t start1, size_t start2, size_t len)
```

```
    template<typename T, size_t N>
        T vectorInnerProduct (array< T, N > *vec1, array< T, N > *vec2)
```

template<size_t N>
 bool doubleVectorEqual (array< double, N > *vec1, array< double, N > *vec2)

6.3.1 Macro Definition Documentation

6.3.1.1 ACCEPTABLE_DOUBLE_DIFF

```
#define ACCEPTABLE_DOUBLE_DIFF 0.000000001
```

6.3.2 Function Documentation

6.3.2.1 doubleVectorEqual()

6.3.2.2 vectorInnerProduct()

```
template<typename T , size_t N> T vectorInnerProduct (  array< \text{T, N}>* vec1, \\ array< \text{T, N}>* vec2 )
```

Template Parameters

 $T \mid$ The type of data in the vectors being multiplies. Probably a double.

vec1	- Left vector
vec2	- Right vector

Returns

The dot product (inner product) of two vectors.

Precondition

vec1 and vec2 have the same length.

6.3.2.3 vectorInnerProductBounded()

Template Parameters

The type of data in the vectors being multiplies. Probably a double.

Parameters

vec1	- Left vector
vec2	- Right vector

Returns

The dot product (inner product) of two vectors.

Precondition

vec1 and vec2 have the same length.

6.4 C:/Users/Aryan/CLionProjects/CNet/src/Layer.cpp File Reference

```
#include "Layer.h"
```

6.5 C:/Users/Aryan/CLionProjects/CNet/src/Layer.h File Reference

```
#include "AFFunctions.h"
#include "AFMatrix.h"
#include <iostream>
```

36 File Documentation

Classes

• class Layer< LEN_IN, LEN_OUT >

6.6 C:/Users/Aryan/CLionProjects/CNet/src/main.cpp File Reference

```
#include <iostream>
```

Functions

• int main ()

6.6.1 Function Documentation

```
6.6.1.1 main()
```

int main ()

6.7 C:/Users/Aryan/CLionProjects/CNet/src/Net.cpp File Reference

```
#include "Net.h"
```

6.8 C:/Users/Aryan/CLionProjects/CNet/src/Net.h File Reference

Classes

class Net< T >

Index

\sim AFMatrix	Layer, 25, 26
AFMatrix, 13	backpropagateBase
\sim Layer	Layer, 26
Layer, 25	
	C:/Users/Aryan/CLionProjects/CNet/src/AFFunctions.h
ACCEPTABLE_DOUBLE_DIFF	33
AFMatrix.h, 34	C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.cpp,
AFActivationFunction	33
derivative, 9	C:/Users/Aryan/CLionProjects/CNet/src/AFMatrix.h, 33
evaluate, 9	C:/Users/Aryan/CLionProjects/CNet/src/Layer.cpp, 35
AFActivationFunction $<$ T, N, M $>$, 9	C:/Users/Aryan/CLionProjects/CNet/src/Layer.h, 35
AFLossFunction	C:/Users/Aryan/CLionProjects/CNet/src/Net.cpp, 36
derivative, 10	C:/Users/Aryan/CLionProjects/CNet/src/Net.h, 36
evaluate, 10	C:/Users/Aryan/CLionProjects/CNet/src/main.cpp, 36
AFLossFunction $<$ T, N, M $>$, 10	copyValues
AFMatrix	AFMatrix, 13, 14
\sim AFMatrix, 13	daltaa
AFMatrix, 12	deltas
add, 13	Layer, 28 derivative
copyValues, 13, 14	
equals, 15	AFL confunction, 9
getCol, 15	AFLossFunction, 10
getIndex, 15	AFSquareLossFunction, 22
getRow, 16	IdentityFunction, 23 ReLU, 30
getValue, 16	
innerProduct, 16, 18	doubleVectorEqual
numCols, 21	AFMatrix.h, 34
numRows, 21	equals
scale, 19	AFMatrix, 15
setValue, 19	evaluate
subtract, 19	AFActivationFunction, 9
toArray, 20	AFLossFunction, 10
transpose, 20	AFSquareLossFunction, 22
vals, 21	IdentityFunction, 23
AFMatrix< T, ROWS, COLS >, 11	ReLU, 30
AFMatrix.h	
ACCEPTABLE_DOUBLE_DIFF, 34	forwardPass
doubleVectorEqual, 34	Layer, 27
vectorInnerProduct, 34	
vectorInnerProductBounded, 35	getCol
AFSquareLossFunction	AFMatrix, 15
derivative, 22	getIndex
evaluate, 22	AFMatrix, 15
AFSquareLossFunction $<$ T, N, M $>$, 22	getRow
activationFunction	AFMatrix, 16
Layer, 28	getValue
add	AFMatrix, 16
AFMatrix, 13	The enter of
	IdentityFunction
backpropagate	derivative, 23

38 INDEX

evaluate, 23 IdentityFunction < T, N, M >, 23 innerProduct AFMatrix, 16, 18 inputVals Layer, 28	toArray AFMatrix, 20 transpose AFMatrix, 20 updateWeights Layer, 28
Layer ~Layer, 25 activationFunction, 28 backpropagate, 25, 26 backpropagateBase, 26 deltas, 28 forwardPass, 27 inputVals, 28 Layer, 25 lenIn, 28 lenOut, 29 outputVals, 29 randomizeWeights, 28 sums, 29 updateWeights, 28 weightGradient, 29 weights, 29	vals AFMatrix, 21 vectorInnerProduct AFMatrix.h, 34 vectorInnerProductBounded AFMatrix.h, 35 weightGradient Layer, 29 weights Layer, 29
Layer < LEN_IN, LEN_OUT >, 23 lenIn Layer, 28	
lenOut Layer, 29	
main main.cpp, 36 main.cpp main, 36 Net < T >, 30 numCols AFMatrix, 21 numRows	
AFMatrix, 21 outputVals	
Layer, 29 randomizeWeights Layer, 28 ReLU < T, N, M >, 30 ReLU derivative, 30 evaluate, 30	
scale AFMatrix, 19 setValue AFMatrix, 19 subtract AFMatrix, 19 sums Layer, 29	