Diwali Sales Analysis

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/Diwali Sales Data.csv', encoding= 'unicode_escape')

df.shape
    (11251, 15)
df.head()
```

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Category	0r
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	
3	1001425	Sudevi	P00237842	M	0-17	16	0	Karnataka	Southern	Construction	Auto	
4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western	Food Processing	Auto	

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 11251 entries, 0 to 11250
     Data columns (total 15 columns):
         Column
                          Non-Null Count Dtype
         _ _ _ _ _
                           _____
                           11251 non-null int64
         User ID
                          11251 non-null object
        Cust_name
     1
        Product ID
                          11251 non-null object
                          11251 non-null object
      3
         Gender
     4
         Age Group
                          11251 non-null object
                          11251 non-null int64
         Age
                          11251 non-null int64
      6
         Marital Status
                          11251 non-null object
     7
         State
                          11251 non-null object
     8
         Zone
         Occupation
                          11251 non-null object
     10 Product Category 11251 non-null object
                          11251 non-null int64
     11 Orders
     12 Amount
                          11239 non-null float64
     13 Status
                          0 non-null
                                          float64
     14 unnamed1
                           0 non-null
                                          float64
     dtypes: float64(3), int64(4), object(8)
    memory usage: 1.3+ MB
#drop unrelated/blank columns
df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
#check for null values
pd.isnull(df).sum()
    User_ID
                         0
                         0
    Cust name
    Product ID
                         0
     Gender
                         0
     Age Group
                         0
     Age
    Marital Status
                         0
                         0
     State
                         0
     Zone
```

```
Occupation
    Product_Category
     Orders
     Amount
                       12
    dtype: int64
# drop null values
df.dropna(inplace=True)
df['Amount'] = df['Amount'].astype('int')
df['Amount'].dtypes
     dtype('int64')
df.columns
    Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
           'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
           'Orders', 'Amount'],
          dtype='object')
#rename column
df.rename(columns= {'Marital Status':'Shaadi'})
```

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	Occupation	Product_Category	Order
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	
3	1001425	Sudevi	P00237842	M	0-17	16	0	Karnataka	Southern	Construction	Auto	
4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western	Food Processing	Auto	
		•••										
11246	1000695	Manning	P00296942	M	18-25	19	1	Maharashtra	Western	Chemical	Office	
11247	1004089	Reichenbach	P00171342	M	26-35	33	0	Haryana	Northern	Healthcare	Veterinary	
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office	
11249	1004023	Noonan	P00059442	M	36-45	37	0	Karnataka	Southern	Agriculture	Office	
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office	
	ows × 13 co	lumns										

df.describe()

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

df[['Age', 'Orders', 'Amount']].describe()

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

∨ Gender

```
# plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender',data = df,hue='Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascer sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen,hue='Gender') <Axes: xlabel='Gender', ylabel='Amount'>

Age

```
ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age,hue="Amount")

<Axes: xlabel='Age Group', ylabel='Amount'>

State

```
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders',hue="State")
```


sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount',hue="Amount")

<Axes: xlabel='State', ylabel='Amount'> 1e7 2.00 Amount 6000000 1.75 9000000 12000000 1.50 15000000 18000000 1.25 Amount 1.00 0.75 0.50 0.25

Marital_Status

0.00

```
ax = sns.countplot(data = df, x = 'Marital_Status',hue="Marital_Status")
sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```



```
sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', asc
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
```

<Axes: xlabel='Marital_Status', ylabel='Amount'>

Occupation

```
sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Occupation',hue='Occupation')
for bars in ax.containers:
    ax.bar_label(bars)
```


sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount',hue='Amount')

Product_Category

```
sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Product_Category',hue='Product_Category')
for bars in ax.containers:
    ax.bar label(bars)
```


sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=F
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales state, x = 'Product Category',y= 'Amount',hue='Product Category')