

2

3

4

使用 Meta-Apo 对 16S 扩增子的微生物组功能信息进行校正

Calibration of 16S-amplicon-based microbiome function by Meta-Apo

张明乾1,张文科1,荆功超2,苏晓泉1\$*

5

6 1 计算机科学技术学院,青岛大学,青岛市,山东省;

- 7 2 单细胞中心,中国科学院青岛生物能源与过程研究所,青岛市,山东省;
- 8 \$现工作单位: 计算机科学技术学院, 青岛大学, 青岛市, 山东省
- 9 *通讯作者邮箱: suxq@qdu.edu.cn

10

- 11 **摘要:** 微生物组的功能谱(functional profile)在宿主疾病诊断、生态健康检测等方面
- 12 具有重要的研究和应用价值。目前功能谱可通过鸟枪法宏基因组测序(Shotgun
- Metagenomic Whole Genome Sequencing;以下简称WGS)数据直接解析;或基于
- 14 16S rRNA 基因扩增子(以下简称 16S 扩增子)测序数据,根据其参照基因组的关联进
- 15 行预测。16S 扩增子测序在实验和计算上的成本比 WGS 低得多,因此 PICRUSt2 等工
- 16 具己广泛用于基于 16S 来预测微生物组的功能谱。然而,由于扩增子测序的 PCR 偏好
- 17 性和 16S rRNA 基因-全基因组关联信息的不足,同一微生物组样本基于 16S 扩增子的
- 18 功能谱与 WGS 产生的结果之间会存在偏差,从而导致相左的结论。为了解决以上问题,
- 19 我们提出了 Meta-Apo (Metagenomic Apochromat),它可以极大地减少甚至消除这
- 20 种偏差。我们对来自 4 个身体部位超过 5,000 例人体微生物组的 16S 扩增子样本进行
- 21 测试发现, Meta-Apo 仅使用 15 个 WGS: 16S 扩增子的配对样本来进行训练, 就可以
- 22 显著降低两种测序之间功能解析的差异。因此,利用 Meta-Apo,可以让低成本的 16S
- 23 扩增子测序产生与 WGS 相近的、可靠的、高分辨率的微生物组功能图谱。Meta-Apo
- 24 可以在 https://github.com/qibebt-bioinfo/meta-apo 下载。它以少数 WGS: 16S 扩增子
- 25 配对样本 (例如,约 15 对配对样本)的功能谱作为训练集,可以对大量 **16S** 扩增子样
- 26 本的功能信息进行校正。
- 27 关键字:微生物组,宏基因组,扩增子,功能预测,功能校正

29	仪器设	各
<i></i>		. #

- 30 Meta-Apo 仅需要具有约 1GB 内存的标准计算机即可支持其安装与执行。目前 Linux
- 31 (如 Ubuntu、CentOS、RedHat 等)、Mac OS 或 Windows 10 内置 Linux 子系统
- 32 等操作系统均能够支持 Meta-Apo。
- 33 软件
- 34 Meta-Apo 软件最新版本为 1.01。该软件主要由 C++语言开发编写,所以软件的安
- 35 装需要 C++编译器 (例如 g++)。对于 Linux 操作系统,大多版本已经在系统中安装
- 36 了 g++。对于 Mac OS, 建议从 App Store 安装 Xcode 应用程序,即可完成编译器
- 37 的安装与配置。

38 实验步骤

- 39 1. 安装 Meta-Apo
- 40 我们建议选择步骤 1.1 中自动安装的方式来配置 Meta-Apo 软件。但如果自动安装
- 41 程序失败,可以按照步骤 1.2 中的步骤手动安装 Meta-Apo 软件。
- 42 1.1 自动安装(首选方案)
- 43 1)下载安装包
- git clone https://github.com/qibebt-bioinfo/meta-apo.git
- 45 2) 安装
- 46 运行以下安装命令:
- 47 cd meta-apo
- 48 source install.sh
- 49 按照上述步骤操作,该软件包可以在1分钟内安装到计算机上,安装成功
- 50 后提示信息如下(**图1**)所示:

52

53

54

56

57

58

59

60

61

62

Meta-Apo Installation

Meta-Apo src package
g++ -o bin/meta-apo-train src/key_calibrate_train.cpp -Wno-deprecate
d -w -ffunction-sections -fdata-sections -fmodulo-sched -msse
g++ -o bin/meta-apo-calibrate src/key_calibrate.cpp -Wno-deprecated
-w -ffunction-sections -fdata-sections -fmodulo-sched -msse

Build Complete

Environment Variables Configuration Complete

Meta-Apo Installation Complete

Meta-Apo Installation Complete

图 1. Meta-Apo 安装成功提示信息

示例数据集在安装包内"examples"文件夹下,可以查看 "examples/Read me"中的内容来获取演示运行的详细信息,或直接运行:

sh Readme

来自动演示示例数据集的处理运行。

该示例数据集包含有三个文件,其中,training.16s.ko.abd 为训练建模所需的 16S 扩增子样本的相对丰度表(图 2),training.wgs.ko.abd 为训练建模所需的 WGS 样本的相对丰度表,16s.ko.abd 为待校正 16S 扩增子样本的相对丰度表。相对丰度表的格式详见表 1。

Sample	K00001	K00002	K00003	K00004
SRS016665	0.0000494453	0	0.000517453	0.0001875480
SRS1041095	0.0004735200	0	0.000286303	0.0000008258
SRS024381	0.0001601050	0	0.000700677	0.0002842970
SRS024140	0.0001000740	0	0.000690772	0.0000418544
SRS063478	0.0000304711	0.0000007838	0.000527807	0.0000917116
SRS1041118	0.0005429400	0.0000007258	0.000224864	0.0000004838
SRS024132	0.0002234470	0.0000005071	0.000621228	0.0000207898
SRS016503	0.0000401203	0.0000002623	0.000613076	0.0000835889
SRS023841	0.0001899870	0	0.000556029	0.0001887390
SRS042983	0.0001562070	0.0000002785	0.000704472	0.0001830740

图 2. 示例数据集中训练建模所需的 16S 扩增子样本的相对丰度表

- 手动安装 (备选方案) 63 1.2 1)下载安装包 64 git clone https://github.com/qibebt-bioinfo/meta-apo.git 65 2) 配置环境变量 66 将以下内容写入环境变量配置文件(一般默认的文件是"~/.bashrc") 67 export MetaApo=Path to MetaApo 68 export PATH="\$PATH:\$MetaApo/bin/" 69 并启用环境变量 70 source ~/.bashrc 71 3)编译源代码 72 73 cd meta-apo make 74
- 75 **2. Meta-Apo** 校正原理

77

图 3. 通过对少量成对的 WGS: 16S 扩增子样本进行训练来校正微生物组扩增子样本的预测功能图谱

前期工作中,通过比较 WGS 和 16S 扩增子测序方法得出的功能谱,两种方法得到的 WGS 与 16S 扩增子之间距离高度相关(Jing 等, 2021)。Meta-Apo 仅使用少量的 WGS: 16S 扩增子配对数据(即每一个样本都分别进行 WGS 和 16S 扩增子测序)用作训练集(如,15 对训练样本),Meta-Apo 就可以为大规模 16S 扩增子样本(如,数千例样本)的功能谱进行校正,使之结果与 WGS 更加一致(图 3)。Meta-Apo 主要包含两个部分:训练和校正。在训练部分中,Meta-Apo 使用线性回归建模利用少量的 WGS:16S 配对样本来估算等式(1)中的 f。在校正部分中,将WGS 结果视为"黄金标准",使用模型 f 校正 16S 扩增子样本的预测功能图谱。

$$K_{WGS} = f(K_{16S}) \tag{1}$$

3. 样本处理与输入格式

Meta-Apo 仅使用少量的 WGS: 16S 扩增子配对数据用作训练集。根据前期对来自 4 个身体部位超过 5,000 例人体微生物组的 16S 扩增子样本进行测试发现,Meta-Apo 仅使用 15 个 WGS: 16S 扩增子配对样本来进行训练,就可以显著降低两种测序之间功能解析的差异(Jing 等, 2021)(详见"结果与分析")。因此我们建议训练集中包含 10-20 例 WGS: 16S 扩增子配对数据即可。

训练集中每一个 WGS: 16S 扩增子配对样本都分别进行 WGS 和 16S 扩增子测序,其功能谱信息需使用 KEGG Orthology(Kanehisa 等, 2011)(KO)来注释。其中,WGS 样本我们建议用 HUMAnN2(Franzosa 等, 2018)进行功能分析,16S 扩增子样本我们建议用 PICRUSt2(Douglas 等, 2020)进行功能预测。同时,待校正的 16S 扩增子样本,需按照与训练集中 16S 扩增子完全相同的测序流程和分析流程来处理。以上所有样本的输入文件中包含 KO 号和 KO 的丰度两类信息。目前Meta-Apo 接受以下两种格式的输入文件格式(可任选其一)。

3.1 丰度表

一个丰度表中可以包含多个样本的功能丰度信息。含有 N 个样本的丰度 表格式如**表 1** 所示。表中第一行为表头信息,接下来的 N 行为功能丰度信息。 其中,第一列为样本的名称,其余列均为样本中所含有的 KO 功能的丰度。

表 1. 丰度表格式

Sample	K00001	K00002	K00003	K00004	K00005
Sample1	0.1	0	0.3	0.1	0.1
Sample2	0.3	0.1	0.1	0	0.1
Sample3	0	0.2	0.1	0.3	0
SampleN	0	0.1	0.2	0.4	0

在训练集中,16S 扩增子样本与 WGS 样本分别用单独的丰度表,两者格式相同,且要求待训练的 WGS:16S 配对样本在各自丰度表中样本的顺序一致。

3.2 样本列表

一个样本列表中含有多个样本的功能丰度文件的地址路径,如表2所示:

表 2. 文件列表格式

~ ~)	1 / J/VCIH / C			
Sample1	/home/data/sample1.ko.out			
Sample2	/home/data/sample2.ko.out			
Sample3	/home/data/sample3.ko.out			
SampleN	/home/data/sampleN.ko.out			

该文件有两列信息,其中,第一列为样本的名称,第二列表示每个样本单独的功能信息文件的路径。在训练集中,16S 扩增子样本与 WGS 样本分别用单独的文件列表,两者格式相同,且要求待训练的 WGS: 16S 配对样本在各自文件列表中样本的顺序一致。为了保证路径的合法性,我们强烈建议使用绝对地址(即包含完整的路径名称,如表 2 所示)。列表中每个样本单独的功能信息文件格式如表 3 所示:

表 3. 样本的功能信息文件

#KO	Count
K00001	0.1
K00003	0.3
K00004	0.1
K00005	0.1
K00006	0.1
K00010	0.2
K00012	0.1

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

142

其中,第一列为 KO 号,第二列为样本中该 KO 功能的丰度。

4. 训练与校正

4.1 以丰度表为输入输出

训练建模由 Meta-Apo 程序包中的 meta-apo-train 程序提供。以 WGS 样本的 KO 相对丰度表 training.wgs.ko.abd(由"-T"指定)和其配对的 16S 扩增子样本的 KO 相对丰度表 training.16s.ko.abd(由"-t"指定)为例,训练过程如下:

meta-apo-train -T training.wgs.ko.abd -t training.16s.ko.abd -o meta-apo.model

训练过程所输出的模型文件为 meta-apo.model。

接下来,就用生成的模型文件来校正大量的 16S 扩增子样本的功能信息。校正由 Meta-Apo 程序包中 meta-apo-calibrate 程序提供。在该程序中,模型文件由"-m"来指定,以待校正的 16S 扩增子样本 KO 相对丰度表 16s.ko.abd(由"-t"指定)为例,校正过程如下:

meta-apo-calibrate -t 16s.ko.abd -m meta-apo.model -o 16s.ko.calibrated.abd

140 输出的文件 **16s.ko.calibrated.abd**(由"-o"指定)是校正后的 **KO** 丰度表, 141 其格式与输入文件 **16s.ko.abd** 一致(格式参考**表 1**)。

4.2 以样本列表为输入输出

143		训练建模由 Meta-Apo 程序包中 meta-apo-train 程序提供。以 WGS 样本
144		列表 training.wgs.list(由"-L"指定)和其配对的 16S 扩增样本列表
145		training.16s.list(由"-l"指定)为例,训练过程如下:
146	ı	meta-apo-train -L training.wgs.list -l training.16s.list -o meta-apo.model
147		训练过程所输出的模型文件为 meta-apo.model。
148		接下来,就用生成的模型文件来校正大量的 16S 扩增子样本的功能信息。
149		校正由 Meta-Apo 程序包中 meta-apo-calibrate 程序提供。在该程序中,模型
150		文件由"-m"来指定,以待校正的 16S 扩增子样本列表 16s.ko.list(由"-l"
151		指定)为例,校正过程如下:
152	me	ta-apo-calibrate -l 16s.ko.list -m meta-apo.model -o 16s.ko.calibrated.out
153		输出的文件夹 16s.ko.calibrated.out(由 "-o"指定)包含每个输入样本
154		校准后的功能信息文件(格式参考表3),同时校准后样本的文件列表也输出
155		到 16s.ko.calibrated.out.list 中,格式与输入的 16s.ko.list 列表一致(格式参考
156		表 2)。
157		需注意的是,采用 4.1 和 4.2 两种不同格式的输入输出,训练程序
158		meta-apo-train 所生成的模型是通用的,可以被用不同输入格式的校正程序,
159		无需重新训练。
160	5. Me	ta-Apo 的计算过程
161	5.1	训练
162		每个微生物群落的功能由一系列代谢功能(例如 KEGG Orthology; KO)
163		及其相对丰度组成,如等式(2)
164		$K_{microbiome} = \{K_{function 1}, K_{function 2},, K_{function i}\}$ (2)
165		其中 Kfunction i 代表功能 i 的相对丰度,由于 WGS 和扩增子之间的功能分布
166		存在强线性相关性,对于每个功能 k ,我们可以在两种办法之间建立联系,如
167		等式(3)

170

171

172

175

177

$$k_{WGS} = f(k_{16S}) = \theta_0 k_{16S} + \theta_1$$
 (3)

在等式(3)中 Meta-Apo 使用 N(例如 N=15)例 WGS: 16S 扩增子配 对样本进行训练来计算模型 f,通过优化等式(3)中的 θ_0 和 θ_1 ,尽可能地降 低 k_{16S} 和 K_{WGS} 的差异,即等式(4)中的总差值 E 最小。

$$E = \frac{1}{2} \sum_{i=1}^{N} (f(k_{16S}) - k_{WGS})^2$$
 (4)

具体来讲,在训练步骤中,Meta-Apo 采用最小二乘法(Least Square Method)计算参数 θ₀ 和 θ₁,如等式(5)和等式(6)所示:

 $\theta_0 = \frac{N \times \sum_{i=1}^{N} k_{16S} \times k_{WGS} - \sum_{i=1}^{N} k_{16S} \times \sum_{i=1}^{N} k_{WGS}}{N \times \sum_{i=1}^{N} k_{16S}^2 - (\sum_{i=1}^{N} k_{16S})^2}$ (5)

 $\theta_1 = \frac{\sum_{i=1}^{N} k_{16S}^2 \times \sum_{i=1}^{N} k_{WGS} - \sum_{i=1}^{N} (k_{16S} \times k_{WGS}) \times \sum_{i=1}^{N} k_{16S}}{N \times \sum_{i=1}^{N} k_{16S}^2 - (\sum_{i=1}^{N} k_{16S})^2}$ (6)

179 5.2 校正

180 **Meta-Apo** 利用从训练中得到的模型 *f*,可以利用等式(**7**)估算出 **16S** 扩 增子样本中每个功能校正后的丰度。

$$k_{\text{expected}} = \theta_1 k_{16S} + \theta_0 \approx k_{WGS}$$
 (7)

183 由于已经优化了映射模型 *f*,使得从 16S rRNA 基因预测的功能丰度和来 184 自 WGS 的真实的功能丰度之间的差异最小化,因此 Meta-Apo 可以将 16S 扩 185 增子样本的预测功能谱校准为 WGS 的水平。

结果与分析

186

187 为了验证 Meta-Apo 对于校准扩增样本功能丰度的可靠性、准确性,本工作采用了188 5个来自人类微生物组计划 HMP(Huttenhower *等*, 2012)的数据集(**表 4**)进行验证。

表 4. 测试数据集

	12244H214					
Dataset	# of WGS sample	# of amplicon samples	Amplicon type	Paired	Source study	Body
数据集 1	622	622	V3-V5 16S rRNA	Yes	HMP	Gut, Oral, Skin and Vaginal
数据集 2	295	295	V1-V3 16S rRNA	Yes	HMP	Gut, Oral and Vaginal
数据集 3	2,354	5,350	V3-V5 16S rRNA	No	HMP	Gut, Oral, Skin and Vaginal
数据集 4	2,045	2,186	V1-V3 16S rRNA	No	HMP	Gut, Oral and Vaginal

191

198

199

200

201

202

204

205

208

192 以上测试中所有的数据集均可在 Meta-Apo 软件下载页面的 "Supplementary" 部分中 193 下载。

194 我们首先比较了622例配对的人体微生物组功能谱(数据集1;来自四个身体部位:

195 肠道,皮肤,口腔和生殖道;表4)来评估两种测序策略之间的差异程度。每个样本都

196 通过 WGS 和 V3-V5 区 16S rRNA 扩增子进行测序。WGS 的功能谱由

197 HUMAnN2(Franzosa 等, 2018)分析生成。16S 扩增子则使用 PICRUSt2(Douglas 等,

2020)预测得出,均使用 KEGG Orthology(Kanehisa 等, 2011)(KO)注释。通过比

较从两种测序方法得出的功能谱,我们发现配对的 WGS: 16S 扩增子之间差异显著高

于 WGS 的内部差异(即来自同一部位的 WGS 样本之间的距离;图 4A)。两种策略之

间的差异十分显著,β多样性也表现出非常不同的模式(图5A; PC1 双尾配对 Wilcox

秩和检验 p < 0.01; PC2 双尾配对 Wilcox 秩和检验 p < 0.01) 并导致了一些错误的分

203 类。例如,一些皮肤的 16S 扩增子的功能谱与口腔的 WGS 的功能谱被错误的分成一类。

然而,这两种方法得到的 WGS 与 16S 扩增子之间距离高度相关(图 5B; Pearson 相

关性 R = 0.86, p < 0.01), 而且其 β 多样性之间的总体形状相似 (图 5A; 蒙特卡洛检

206 验 p < 0.01)。

207 为了定量评估 Meta-Apo 的效果,我们分别从数据集 1 中随机选择了 N = 5、10、

15、20、50 和 100 个 WGS:16S 扩增子配对样本作为训练集,并使用 Meta-Apo 校正

209 该数据集中其他 16S 扩增子样本。当使用 N = 15 个训练对建立模型 f 时,Meta-Apo 校

210 正效果变得稳定,并且在增加更多训练对之后(最多 100 个;图 4B),校正效果也不会

明显增加。在校正后(即N=15个训练对),配对的WGS:16S扩增子距离(0.121±0.055)显著低于WGS 样本的组内距离(0.136±0.056)。经主坐标分析(PCoA)证实,Meta-Apo消除了两种测序策略产生的样本之间的总体功能分布差异(图 5C; PC1 双尾配对 Wilcox 秩和检验 p=0.30,PC2 双尾配对 Wilcox 秩和检验 p=0.29;图 5D。与此同时,Meta-Apo 对于来自数据集 2(表 4)的 V1-V3 区 16S rRNA 序列也同样适用(图 6)。

图 4. Meta-Apo 显著减少了数据集 1 中 WGS 和 16S 扩增子配对样本之间的功能谱的 距离。A. WGS:16S 扩增子配对样本之间的 Bray-Curtis 距离(未校正,橙色条)高于 WGS 体内位点距离(来自同一部位的 WGS 样本之间的距离,蓝色条)。B. 仅使用 15 个训练对,校正的 16S 扩增子样本与其配对的 WGS 样本之间的 Bray-Curtis 距离变得稳定,且显著低于 WGS 的组内距离。两个图像共用 X 轴。通过双尾 Wilcox 秩和检验计算 p 值,**表示 p < 0.05,***表示 p < 0.01。

图 5. 数据集 1 的 622 个 WGS: 16S 扩增子配对样本的 beta 多样性。A. 16S 扩增子和 WGS 方法的总体功能模式是同构的,但在 PC1 和 PC2 分布上存在明显差异。B. 由 WGS 和 16S 扩增子计算的 Bray-Curtis 距离高度相关(Pearson 相关 R=0.86,p<0.01)。C. Meta-Apo 使用 15 个配对样本进行训练,将 16S 扩增子样本的预测功能谱与 WGS 样本的预测功能谱进行比对,从而使校正的功能谱的 PC1 和 PC2 比原始的未校正的 16S 扩增子样品更接近 WGS 样品。D. WGS: 16S 扩增子对的 Δ PC 显著降低。PCoA 使用 Bray-Curtis 距离计算主坐标。通过双尾配对的 Wilcox 秩和检验计算 p 值,***表示 p<0.01。

图 6. 数据集 2 的 295 个 WGS: 16S 扩增子配对样本的 beta 多样性。A. 16S 扩增子和 WGS 方法的总体功能模式是同构的,但在 PC1 和 PC2 分布上存在明显差异。B. 由 WGS 和 16S 扩增子计算的 Bray-Curtis 距离高度相关(Pearson 相关 R=0.90, p<0.01)。 C. Meta-Apo 使用 15 个配对样本进行训练,将 16S 扩增子样本的预测功能谱与 WGS 样本的预测功能谱进行比对,从而使校正的功能谱的 PC1 和 PC2 比原始的未校正的 16S 扩增子样品更接近 WGS 样品。通过双尾配对的 Wilcox 秩和检验计算 p 值,***表示 p<0.01。

我们进一步将 Meta-Apo 样本扩展至 5,350 个 V3-V5 16S rRNA 扩增子样本和与 2,354 个 WGS 样本(数据集 3,同数据集 1 一样从四个身体部位收集,并使用相同的 方法处理序列; 表 4),从而评估大规模 16S 扩增子功能图谱的校正性能。该数据集尽管是来自于相同的健康宿主队列,并由同一研究进行测序(HMP),但 WGS 和 16S 扩增子样品并未配对。另外我们发现,无论选择何种测序策略(Rausch 等, 2019),由 WGS 和 16S 扩增子所得出的物种结构组成是一致的,但在功能图谱上则有显著差异(图

7A; PC1 双尾 Wilcox 秩和检验 p < 0.01; PC2 双尾 Wilcox 秩和检验 p < 0.01)。例如,在功能图谱上,肠道部位的 16S 扩增子与口腔中 WGS 聚类在一起,口腔等相同部位的样本会按照不同的测序策略分离,即身体部位在人类微生物组的功能格局中占主导地位(Turnbaugh 等,2009; Huttenhower 等,2012)。之后,我们使用 Meta-Apo,利用数据集 1 的 WGS:16S 扩增子对做训练样本(训练样本 N = 15)构建的模型,对所有扩增子样本的预测功能图谱进行校正。经 β 多样性的分析证明,Meta-Apo 校正后的16S 扩增子和 WGS 样本之间功能谱的偏差大大降低(图 **7B**; PC1 双尾 Wilcox 秩和检验 p = 0.20; PC2 双尾 Wilcox 秩和检验 p = 0.03)。

接下来,为了测试对不同可变区 16S 数据集的校正效果,我们也将 Meta-Apo 应用于表 4 中数据集 4 的 2,186 个 V1-V3 区 16S 扩增子样本。使用数据集 2 的 WGS: 16S 扩增子对做训练样本(训练样本 N=15)来构建的模型,Meta-Apo 也可以有效地提高 16S 扩增子的功能谱重建的准确性(图 8)。因此,Meta-Apo 普遍适用于 16S rRNA 基因的多个可变区域。

图 7. 来自数据集 3 的 2,354 个 WGS 样本和 5,350 个 16S 扩增子样本的功能 beta 多样性。A.16S 扩增子和 WGS 方法获得的功能模式在 PC1 和 PC2 分布上有显著差异。B. Meta-Apo 使用 15 个配对样本进行训练,将扩增子样本的预测功能图谱与 WGS 样本的预测功能图进行比较,与原始的未经校正的扩增子样品相比,校正后的扩增子样本

268 的功能谱的 PC1 和 PC2 更接近 WGS 样本。PCoA 使用 Bray-Curtis 距离计算主坐标。 269 通过双尾 Wilcox 秩和检验计算 *p* 值,***表示 *p* <0.01。

270

271

272

273

274

275

276

277

图 8. 来自数据集 4 的 2,045 个 WGS 样本和 2,186 个 16S 扩增子样本的功能 beta 多样性。A.16S 扩增子和 WGS 方法获得的功能模式在 PC1 和 PC2 分布上有显著差异。B. Meta-Apo 使用 15 个配对样本进行训练,将扩增子样本的预测功能图谱与 WGS 样本的预测功能图进行比较,与原始的未经校正的扩增子样品相比,校正后的扩增子样本的功能谱的 PC1 和 PC2 更接近 WGS 样本。PCoA 使用 Bray-Curtis 距离计算主坐标。通过双尾 Wilcox 秩和检验计算 p 值,***表示 p <0.01。

278

279

失败经验

280 问题 1

281 安装提示: "make: g++: command not found"

282 问题原因: 没有安装 Meta-Apo 所需要的 g++编译器。

283 解决方法:根据不同的操作系统,利用相应的命令安装 q++,常见的操作系统:

- 284 Ubuntu Linux 系统: sudo apt-get install g++
- 285 CentOS Linux 系统: sudo yum install g++
- 286 Mac OS 系统: 通过 App Store 安装 Xcode 应用程序
- 287 问题 2
- 288 运行提示: "Please set the environment variable MetaApo to the directory"
- 289 问题原因:环境变量设置失败。
- 290 解决方法:请参考实验步骤 1.2.2 中手动配置环境变量的方法将 Meta-Apo 所需要
- 291 的环境变量添加到配置文件中。
- 292 问题 3
- 293 运行提示: "meta-apo-train: command not found"
- 294 问题原因:环境变量设置失败。
- 295 解决方法: 请参考实验步骤 1.2.2 中手动配置环境变量的方法将 Meta-Apo 所需要
- 296 的环境变量添加到配置文件中。
- 297 问题 4
- 298 运行提示: "Error: Cannot open file: XXX"
- 299 问题原因:输入了错误的输入/输出文件路径。
- 300 解决方案: 请检查正确的输入文件路径(可在输入时用 Tab 键自动补全),并确保
- 301 用户在输出路径下有足够的写权限。
- 302 问题 5
- 运行提示: "Argument #X Error: Arguments must start with -"
- 304 问题原因:运行命令中所有参数选项名称必须以"-"开头。
- 305 解决方法:请检查第 X 个参数并更正。

砅	Ή
÷Υ	WH.

330

307 本项工作得到了国家自然科学基金 **31771463**、**32070086** 和 **32000389** 项目,以 308 及山东省自然科学基 **ZR201807060158** 项目的资助。

309 参考文献

- Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M.,
 Huttenhower, C. and Langille, M. G. I. (2020). <u>PICRUSt2 for prediction of metagenome</u>
 functions. Nature Biotechnology
- Franzosa, E. A., Mciver, L. J., Rahnavard, G., Thompson, L. R., Schirmer, M., Weingart, G., Lipson, K. S., Knight, R., Caporaso, J. G. and Segata, N. (2018). Species-level functional profiling of metagenomes and metatranscriptomes. *Nature Methods* 15
- 316 3. Huttenhower, C., Gevers, D., Knight, R., Abubucker, S. and White, O. (2012). <u>The Human</u>
 317 <u>Microbiome Project (HMP) Consortium. Structure, function and diversity of the healthy human</u>
 318 <u>microbiome</u>. Nature 486: 207-214. *Nature* 486(7402): 207–214
- 319 4. Jing, G., Zhang, Y., Cui, W., Liu, L. and Su, X. (2021). Meta-Apo improves accuracy of 320 16S-amplicon-based prediction of microbiome function. BMC Genomics 22(1)
- Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. and Tanabe, M. (2011). <u>KEGG for integration</u>
 and interpretation of large-scale molecular data sets. *Nucleic Acids Research* 40(D1):
 D109-D114.
- 324 6. Rausch, P., Rühlemann, M., Hermes, B. M., Doms, S. and Baines, J. F. (2019). <u>Comparative</u>
 325 <u>analysis of amplicon and metagenomic sequencing methods reveals key features in the</u>
 326 evolution of animal metaorganisms. *Microbiome* 7(1)
- Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M.
 L., Jones, W. J., Roe, B. A. and Affourtit, J. P. (2009). A core gut microbiome in obese and lean
 twins. Nature 457(7228): 480