

Question 1

The ${\it D}$ latch is constructed with four NAND gates and an inverter. Consider the following three other ways for obtaining a ${\it D}$ latch. In each case, draw the logic diagram and verify the circuit operation.

- (a)Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be needed.
- (b) Use NOR gates for all four gates. Inverters may be needed.
- (c) Use four NAND gates only (without an inverter). This can be done by connecting the output of the upper gate

Solution of Question 1

(a)Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be needed.

Solution of Question 1

(b) Use NOR gates for all four gates. Inverters may be needed.

Solution of Question 1

(c) Use four NAND gates only (without an inverter). This can be done by connecting the output of the upper gate

Question 2

Chapte

A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when inputs P and N are 00, 01, 10, and 11, respectively.

- (a) Tabulate the characteristic table.
- (b) Derive the characteristic equation.
- (c) Tabulate the excitation table.
- (d) Show how the PN flip-flop can be converted to a $\mathcal D$ flip-flop.

Question 3

A sequential circuit has two $\it JK$ flip-flops $\it A$ and $\it B$, two inputs $\it x$ and $\it y$, and one output $\it z$.

The flip-flop input equations and circuit output equation are

$$J_A = Bx + B'y'$$
 $K_A = B'xy'$
 $J_B = A'x$ $K_B = A + xy'$
 $z = Ax'y' + Bx'y'$

- (a) Draw the logic diagram of the circuit.
- (b) Tabulate the state table.
- (c) Derive the state equations for A and B .

Solution of Question 3

(a)
$$J_A = Bx + B'y'$$
 $J_B = A'x$
 $K_A = B'xy'$ $K_B = A + xy'$ $z = Axy + Bx'y'$

