Lógica para Computação Aula 02 - Lógica Proposicional¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a introduzir a sintaxe da Lógica Proposicional.
- Este material foi construído com base nos slides do prof. Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Introdução à Lógica Proposicional

2 Próxima Aula

Relembrando: Definição

Lógica

"É a ciência que estuda princípios e métodos de inferência com o objetivo principal de determinar em que condições certas coisas se seguem (são consequência), ou não de outras". (Mortari, 2001)

Por que estudar lógica ?

- Lógica é a base de todo pensamento matemático, e portanto da teoria da computação.
- Lógica é usada em (Aplicações):
 - Projeto de circuitos para computadores
 - Programação, linguagens de programação (PROgramação em LOGica = PROLOG)
 - Especificação e verificação de sistemas
 - Representação de conhecimento e demonstração automática (Inteligência Artificial)

Por que estudar lógica ?

- As regras da lógica permitem a construção de argumentos corretos.
 - Argumento: conjunto não vazio e finito de sentenças (proposições), das quais uma é chamada de conclusão e as outras de premissas.
 - Em um argumento, pretende-se que as premissas justifiquem, garantam ou deem evidência para conclusão.
 - Premissa: Todo homem é mortal.
 - Premissa: João é homem.
 - Conclusão: João é mortal.
- Raciocinar é o processo de construir argumentos para aceitar ou rejeitar uma certa proposição.

- O estudo de lógica segue basicamente 3 passos básicos:
 - Especificação de uma linguagem, a partir da qual o conhecimento é representado (Sintaxe & Semântica).
 - Estudo de métodos que produzam ou verifiquem as fórmulas ou os argumentos válidos.
 - Oefinição de sistemas de dedução formal em que são consideradas as noções de prova e consequência lógica.

- O estudo de lógica segue basicamente 3 passos básicos:
 - Especificação de uma linguagem, a partir da qual o conhecimento é representado (Sintaxe & Semântica).
 - Conjunto de símbolos. Ex: p, q, ∧,∨, ...
 - Regras indutivas que permitem gerar os termos dessa linguagem (sintaxe). Ex: p, q, p ∧ q, ...
 - Interpretação desses termos (semântica). Ex: tabela verdade
 - **2** ..

- O estudo de lógica segue basicamente 3 passos básicos:
 - 1
 - Estudo de métodos que produzam ou verifiquem as fórmulas ou os argumentos válidos.

Se está chovendo, então a rua está	Se tenho mais de 1 milhão de
molhada. Está chovendo. Logo, a	dólares, sou milionário. Tenho mais
rua está molhada.	de 1 milhão de doláres. Portanto,
	sou milionário.

Alguns gregos são lógicos e alguns lógicos são chatos, por isso, alguns gregos são chatos.

Ou estamos todos condenados ou todos nós somos salvos, não somos todos salvos por isso estamos todos condenados.

- O estudo de lógica segue basicamente 3 passos básicos:
 - **①** .
 - Estudo de métodos que produzam ou verifiquem as fórmulas ou os argumentos válidos.
 - Um argumento é considerado válido quando a conclusão é verdadeira sempre que as premissas também são. Além disso, a conclusão deve ser uma consequência lógica das premissas.

	Premissa: Todo homem é mortal. Premissa: João é homem.
Conclusão: João é verde.	Conclusão: João é mortal.
Argumento inválido.	Argumento válido.

	Premissa: Alguns lógicos são chatos, Conclusão: alguns gregos são chatos.	Premissa: Ou estamos todos condenados ou todos nós somos salvos Premissa: Não somos todos salvos Conclusão: Estamos todos condenados.
ı		Argumento válido.

. . .

• O estudo de lógica segue basicamente 3 passos básicos:

1

2.

Oefinição de sistemas de dedução formal em que são consideradas as noções de prova e consequência lógica.

Premissa: Se hoje é quinta-feira, então temos aula de Lógica. Premissa: Hoje é quinta-feira. Conclusão: Temos aula de Lógica. Premissa: Se P, então Q. Premissa: P.

Conclusão: O.

 Quando estudarmos Dedução Natural, veremos um conjunto de regras sintáticas que permitirão mostrar se a conclusão é consequência lógica das premissas.

- Proposições: sentenças declarativas que podem ser verdadeiras ou falsas.
 - Sentença: sequência de palavras que contenha ao menos um verbo flexionado e respeite as regras gramaticais da língua.
 - Exemplos:
 - Porto Alegre é capital do Rio Grande do Sul.
 - A PUCRS é a melhor universidade privada da região Sul.
 - Vítor gostava de maçãs.
 - Diego será um grande advogado.

- Não são proposições (sentenças interrogativas, imperativas, exclamativas, ...):
 - Qual a sua idade ?
 - Vá estudar!
 - Não feche a porta!
 - Socorro!!!
- Não são proposições aquelas que esse referem ao seu próprio valor lógico (paradoxo) :
 - "Esta afirmação é falsa".
 - "Eu estou mentindo agora". (Paradoxo do mentiroso)

- Usa-se letras (p, q, r, ...) para denotar variáveis proposicionais; também chamados símbolos proposicionais.
- O valor verdade de uma proposição é denotado por:
 - V (para verdadeiro) ou
 - F (para falso)
- Produz-se proposições compostas usando operadores lógicos (conectivos: ¬, ∧, ∨, →, ↔)

Lógica Proposicional - Negação

- Seja p uma proposição, a negação de p é a proposição: "Não é o caso que p."
- Sintaxe: A negação é denotada pelo operador unário:
- Semântica: A fórmula $\neg p$ é lida como "não p"; seu valor verdade é o oposto de p.
- Expressões que indicam negação: "Não é o caso que p.", "É falso que p.", "Não é verdade que p.", ...

	р	$\neg p$
Semântica	V	F
	F	V

Lógica Proposicional - Conjunção

- Sejam p e q proposições.
- A conjunção de p e q é a proposição "p e q."
- Sintaxe: A conjunção é denotada pelo operador binário: ∧
- Semântica: A fórmula p ∧ q é verdadeira quando p e q são verdadeiros, e falsa c.c.
- Expressões que podem indicar conjunção: "p e q ", "p mas q ",

- - -

р	q	$p \wedge q$
F	F	F
F	V	F
V	F	F
V	V	V

Lógica Proposicional - Disjunção

- Sejam p e q proposições.
- A disjunção de p e q é a proposição "p ou q."
- Sintaxe: A disjunção é denotada pelo operador binário:
- Semântica: A fórmula p ∨ q é falsa quando p e q são falsas, e verdadeira c.c.
- Expressões que podem indicar disjunção: " ... ou p ou q ", "...
 ora p ora q", "p e/ou q", ...

р	q	$p \lor q$
F	F	F
F	V	V
V	F	V
V	V	V

Lógica Proposicional - Implicação

- Sejam p e q proposições.
- A sentença condicional $p \rightarrow q$ (também chamada implicação) de p e q é a proposição "se p, então q."
 - p é o antecedente (ou premissa, ou hipótese)
 - q é o consequente (ou conclusão, or consequência)
- Sintaxe: A implicação p o q é denotada pelo operador binário o
- Semântica: A fórmula é falsa quando p é verdadeira e q é falsa, e verdadeira c.c.

р	q	$p \rightarrow q$
F	F	V
F	V	V
V	F	F
V	V	V

Lógica Proposicional - Implicação

- ullet Dada uma implicação p o q
 - Converso: $q \rightarrow p$
 - Contrapositivo: $\neg q \rightarrow \neg p$
 - Inverso: $\neg p \rightarrow \neg q$
- Somente o contrapositivo sempre tem o mesmo valor verdade da implicação original.

Lógica Proposicional - Expressando a Implicação

```
"se p, então q"
    "se p, q"
    "p é suficiente para q"
    "q se p"
    "q quando p"
"uma condição necessária para q é p"
    "q a menos que ¬p"
```

```
"p implica q"

"p somente se q"

"uma condição suficiente para q é p"

"q sempre que p"

"q é necessário para p"

"q segue de p"
```

Lógica Proposicional - Bi-implicação

- Sejam *p* e *q* proposições.
- A bi-implicação de p e q é a proposição "p se e somente se q"
- Sintaxe: A bi-implicação é denotada pelo operador binário:
- Semântica: A fórmula é verdadeira quando p e q são ou ambos verdadeiros ou ambos falsos, e falso c.c.
- Outras formas de expressar: "p é necessário e suficiente para q"; "se p então q, e conversamente"; "p sse q"; " p é valente a q".

р	q	$p \leftrightarrow q$
F	F	V
F	V	F
V	F	F
V	V	V

Lógica Proposicional - Precedência dos Operadores

- Prioridade dos operadores:
 - negação (¬)
 - ② conjunção (∧)
 - disjunção (∨)
 - lacktriangle implicação (o)
 - bi-implicação (↔)
- Operadores com mesma prioridade são associados à direita.

Lógica Proposicional - Precedência dos Operadores

Com parênteses	Sem parênteses
$(p \land q)$	$p \wedge q$
$(p ightarrow (q \wedge r))$	$p \rightarrow q \wedge r$
$((p \to q) \leftrightarrow ((\ulcorner p) \lor q))$	$p \rightarrow q \leftrightarrow \neg p \lor q$
$((p o q) \wedge r)$	$(p \rightarrow q) \wedge r$
(p ightarrow (q ightarrow r))	p o q o r

Lógica Proposicional - Sintaxe

- Definição indutiva das fórmulas proposicionais:
 - **1** Símbolos proposicionais α e β são fórmulas
 - 2 Se α é uma fórmula, $\neg \alpha$ também é
 - $\begin{tabular}{l} \textbf{3} & \text{Se } \alpha \in \beta \text{ são fórmulas } \alpha \lor \beta, \ \alpha \land \beta, \ \alpha \to \beta \text{ e } \alpha \leftrightarrow \beta \text{ também são} \\ \end{tabular}$
 - Nada mais é uma fórmula proposicional

Lógica Proposicional - Exercícios

 Atividade 1: Assinale as fórmulas bem formadas para as proposições p,q e r.

Leitura

- Mortari, C. A. Introdução à Lógica. Ed. UNESP, 2001:
 - Capítulos 2, 3 e 4.
- Souza, João Nunes. Lógica para Ciência da Computação:
 - Capítulo 2 e 3