Solusi UN IPS Paket 1

MATA PELAJARAN

Mata Pelajaran : Matematika Jenjang : SMA/MA

Program Studi : IPS

WAKTU PELAKSANAAN

Hari/Tanggal : Rabu, 17 April 2013

Jam : 07.30 - 09.30

PETUNJUK UMUM

- 1. Periksalah Naskah Sola yang Anda terima sebelum mengerjakan soal yang meliputi:
 - a. Kelengkapan jumlah halaman atau urutannya.
 - b. Kelengkapan dan urutan nomor soal.
 - c. Kesesuaian Nama Mata Uji dan Program Studi yang tertera pada kanan atas Naskah Soal dengan Lembar Jawaban Ujian Nasional (LJUN).
 - d. Pastikan LJUN masih menyatu denga naskah soal.
- 2. Laporkan kepada pengawas ruang ujian apabila terdapat lembar soal, nomor soal yang tidak lengkap atau tidak urut, serta LJUN yang rusak atau robek untuk mendapat gantinya.
- 3. Tulislah Nama dan Nomor Peserta Ujian Anda pada koklom yang disediakan di halaman pertama butir soal.
- 4. Isilah pada LJUN Anda dengan:
 - a. Nama peserta pada kotak yang disediakan, lalu hitamkan bulatan di bawahnya sesuai dengan huruf di atasnya.
 - b. Nomor Peserta dan Tanggal Lahir pada kolom yang disediakan, lalu hitamkan bulatan di bawahnya sesuai huruf/angka di atasnya.
 - c. Nama Sekolah, Tanggal Ujian, dan bubuhkan Tanda Tangan Anda pada kotak yang disediakan.
- 5. Pisahkan LJUN dari Naskah Ujian secara hati-hati dengan cara menyobek pada tempat yang ditentukan.
- 6. Tersedia waktu 120 menit untuk mengerjakan Naskah Soal tersebut.
- 7. Jumlah soal sebanyak 40 butir, pada setiap butir soal terdapat 5 (lima) pilihan jawaban.
- 8. Tidak diizinkan menggunakan kalkulator, HP, tabel matematika atau alat bantu hitung lainnya.
- 9. Periksalah pekerjaan Anda sebelum diserahkan kepada pengawas ruang ujian.
- 10. Lembar soal boleh dicorat-coret, sedangkan LJUN tidak boleh dicorat-coret.

- 1. Ingkaran dari pernyataan "Cuaca buruk dan semua penerbangan ditunda" adalah....
 - A. Cuaca tidak buruk atau beberapa penerbangan tidak ditunda.
 - B. Beberapa penerbangan ditunda tetapi cuaca buruk.
 - C. Semua penerbangan ditunda dan cuaca buruk.
 - D. Cuaca baik tetapi beberapa penerbangan tidak ditunda.
 - E. Cuaca buruk tetapi beberapa penerbangan tidak ditunda.

Konsep:
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

Jadi, pernyataan tersebut setara dengan pernyataan "Cuaca tidak buruk atau beberapa penerbangan tidak ditunda." \rightarrow [A]

- 2. Pernyataan yang setara dengan "Jika cuaca buruk maka semua penerbangan ditunda" adalah....
 - A. Jika beberapa penerbangan tidak ditunda maka cuaca baik.
 - B. Jika beberapa penerbangan ditunda maka cuaca buruk.
 - C. Jika semua penerbangan ditunda maka cuaca buruk.
 - D. Jika cuaca baik maka beberapa penerbangan tidak ditunda.
 - E. Cuaca buruk tetapi beberapa penerbangan tidak ditunda.

Solusi:

Konsep:
$$p \rightarrow q \equiv \neg q \rightarrow \neg p \equiv \neg p \lor q$$

Jadi, pernyataan tersebut setara dengan pernyataan "Jika beberapa penerbangan tidak ditunda maka cuaca baik." \rightarrow [A]

- 3. Diketahui premis-premis berikut:
 - Premis 1: Jika Pak Amir kaya maka ia rajin bersedekah.
 - Premis 2: Jika Pak Amir rajin bersedekah maka semua orang senang.
 - Kesimpulan yang sah dari kedua premis tersebut adalah....
 - A. Jika Pak Amir orang yang pelit maka semua orang senang.
 - B. Jika Pak Amir kaya maka semua orang senang.
 - C. Jika Pak Amir tidak kaya maka ia tidak rajin bersedekah.
 - D. Jika Pak Amir tidak rajin bersedekah maka ia tidak kaya.
 - E. Jika Pak Amir rajin bersedekah maka ia kaya.

Solusi:

Kaidah Silogisme:

$$p \rightarrow q$$

$$q \rightarrow r$$

$$\therefore p \to r$$

Jadi, kesimpulan yang sah dari kedua premis tersebut adalah "Jika Pak Amir kaya maka semua orang senang.". \rightarrow [B]

4. Bentuk sederhana dari $\frac{8a^5b^5c}{2a^3b^{11}c^7} = \dots$

A.
$$\frac{4bc^2}{a}$$

B.
$$\frac{4a}{bc^2}$$

C.
$$\frac{4b^6c^6}{a^2}$$

D.
$$\frac{4a^2}{(bc)^6}$$

E.
$$4b^4c^2$$

$$\frac{8a^5b^5c}{2a^3b^{11}c^7} = \frac{4a^{5-3}}{b^{11-5}c^{7-1}} = \frac{4a^2}{b^6c^6} = \frac{4a^2}{(bc)^6} \to [D]$$

- 5. Bentuk sederhana dari $\sqrt{72} \sqrt{242} \sqrt{18} + \sqrt{32} = ...$
 - A. $-7\sqrt{2}$
 - B. $-6\sqrt{2}$
 - C. $-5\sqrt{2}$
 - D. $-4\sqrt{2}$
 - E. $-2\sqrt{2}$

Solusi:

$$\sqrt{72} - \sqrt{242} - \sqrt{18} + \sqrt{32} = 6\sqrt{2} - 11\sqrt{2} - 3\sqrt{2} + 4\sqrt{2} = (6 - 11 - 3 + 4)\sqrt{2} = -4\sqrt{2} \rightarrow [D]$$

- 6. Nilai dari ${}^{3}\log 5 {}^{3}\log 15 + {}^{3}\log 9 = \dots$
 - A. 1
 - B. 2
 - C. 3
 - D. 5
 - E. 9

Solusi:

$$^{3}\log 5 - ^{3}\log 15 + ^{3}\log 9 = ^{3}\log \frac{5 \times 9}{15} = ^{3}\log 3 = 1 \rightarrow [A]$$

- 7. Persamaan grafik fungsi kuadrat yang memotong sumbu X di titik (-3,0) dan (4,0) serta melalui titik (0,-24) adalah....
 - A. $y = x^2 x 24$
 - B. $y = x^2 + 2x 24$
 - C. $y = 2x^2 + 2x 24$
 - D. $y = 3x^2 2x 24$
 - E. $y = 2x^2 2x 24$

Solusi:

Kita mengetahui bahwa grafik fungsi kuadrat yang memotong sumbu X di titik $(x_1,0)$ dan $(x_2,0)$ mempunyai persamaan $y = a(x-x_1)(x-x_2)$.

$$y = a(x+3)(x-4)$$

Kurva melalui titik (0,–24), sehingga

$$-24 = a(0+3)(0-4)$$

$$-24 = -12a$$

a=2

Jadi,
$$y = 2(x+3)(x-4) = 2x^2 - 2x - 24 \rightarrow [E]$$

- 8. Diketahui fungsi $f(x) = x^2 + 4x + 1$ dan g(x) = 2x + 1. Fungsi komposisi $(f \circ g)(x) = \dots$
 - A. $4x^2 + 12x + 6$
 - B. $4x^2 + 8x + 6$

C.
$$2x^2 + 12x + 4$$

D.
$$2x^2 + 8x + 4$$

E.
$$2x^2 + 8x + 1$$

$$(f \circ g)(x) = f(g(x))$$

$$= f(2x+1)$$

$$= (2x+1)^2 + 4(2x+1) + 1$$

$$= 4x^2 + 4x + 1 + 8x + 4 + 1$$

$$= 4x^2 + 12x + 6 \rightarrow [A]$$

9. Fungsi $f: R \to R$ didefinisikan dengan $f(x) = \frac{2x-1}{3x+4}$, $x \neq \frac{-4}{3}$. Invers fungsi f(x) adalah...

A.
$$f^{-1}(x) = \frac{4x-1}{3x+2}, x \neq \frac{-2}{3}$$

B.
$$f^{-1}(x) = \frac{x+1}{3x-2}, x \neq \frac{2}{3}$$

C.
$$f^{-1}(x) = \frac{4x+1}{2-3x}, x \neq \frac{2}{3}$$

D.
$$f^{-1}(x) = \frac{4x-1}{3x-2}, x \neq \frac{2}{3}$$

E.
$$f^{-1}(x) = \frac{4x+1}{3x+4}, x \neq \frac{-4}{3}$$

Solusi:

Cara 1:

$$f(x) = \frac{2x-1}{3x+4}, \quad x \neq \frac{-4}{3}$$

$$x = \frac{2y-1}{3y+4}$$

$$3xy + 4x = 2y - 1$$

$$(3x-2)y = -4x-1$$

$$y = \frac{-4x-1}{3x-2}$$

$$f^{-1}(x) = \frac{4x+1}{2-3x}, x \neq \frac{2}{3} \rightarrow [C]$$

Cara 2:

Kita mengetahui bahwa jika $f(x) = \frac{ax+b}{cx+d}$, maka $f^{-1}(x) = \frac{-dx+b}{cx-a}$

$$f(x) = \frac{2x-1}{3x+4}, \ x \neq \frac{-4}{3} \to f^{-1}(x) = \frac{-4x-1}{3x-2} = \frac{4x+1}{2-3x}, \ x \neq \frac{2}{3} \to [C]$$

10. Akar-akar persamaan $2x^2 + 5x - 3 = 0$ adalah $a \operatorname{dan} b$. Nilai dari $a^2 + b^2 - 2ab = \dots$

A.
$$-\frac{49}{3}$$

B.
$$-\frac{25}{4}$$

C.
$$\frac{21}{4}$$

D.
$$\frac{25}{4}$$

E.
$$\frac{49}{4}$$

$$2x^2 + 5x - 3 = 0$$
, akar-akarnya $a \operatorname{dan} b$

$$a+b=\frac{-5}{2}$$

$$ab = \frac{-3}{2}$$

$$a^{2} + b^{2} - 2ab = (a+b)^{2} - 2ab - 2ab = (a+b)^{2} - 4ab = \left(\frac{-5}{2}\right)^{2} - 4\left(\frac{-3}{2}\right) = \frac{25}{4} + 6 = \frac{49}{4} \rightarrow [E]$$

11. Penyelesaian dari pertidaksamaan $2x^2 - 9x + 7 < 0$ adalah....

$$A. \quad \left\{ x \middle| -\frac{7}{2} < x < -1 \right\}$$

$$B. \quad \left\{ x \middle| -1 < x < \frac{7}{2} \right\}$$

$$C. \quad \left\{ x \middle| \frac{1}{2} < x < 7 \right\}$$

$$D. \quad \left\{ x \middle| 1 < x < \frac{7}{2} \right\}$$

E.
$$\{x | 2 < x < 7\}$$

Solusi:

Kita mengetahui jika $a(x-x_1)(x-x_2) \le 0$ dengan $x_1 \le x_2$, maka $x_1 \le x \le x_2$.

$$2x^2 - 9x + 7 < 0$$

$$(2x-7)(x-1)<0$$

$$1 < x < \frac{7}{2}$$

Jadi, himpunan penyelesaiannya adalah $\left\{x \middle| 1 < x < \frac{7}{2}\right\} \rightarrow [D]$

12. Diketahui m dan n merupakan penyelesaian dari sistem persamaan $\begin{cases} 3x + 2y = 17 \\ 2x + 3y = 8 \end{cases}$. Nilai m + n =

Solusi:

$$3x + 2y = 17 \dots (1)$$

$$2x + 3y = 8....(2)$$

Jumlah persamaan (1) dan (2) menghasilkan:

$$5x + 5y = 25$$

$$x + y = 5$$

Jadi,
$$m+n=5 \rightarrow [E]$$

- 13. Ari membeli 3 buah jeruk dan 2 buah apel dengan harga Rp4.500,00 dan Tuti membeli 2 buah jeruk dan 2 buah apel dengan harga Rp3.500,00. Bila Yuni membeli 5 buah jeruk dan 3 buah apel, berapa rupiah yang harus dibayar Yuni?
 - A. Rp8.250,00
 - B. Rp8.000,00
 - C. Rp7.750,00
 - D. Rp7.500,00
 - E. Rp7.250,00

Ambillah harga 1 buah jeruk dan 1 buah apel masing-masing adalah j dan a rupiah.

$$3j + 2a = 4.500....(1)$$

$$2j + 2a = 3.500....(2)$$

Persamaan (1) dikurangi persamaan (2) menghasilkan:

$$i = 1.000$$

$$3 \cdot 1.000 + 2a = 4.500$$

$$2a = 1.500$$

$$a = 750$$

Jadi, Yuni harus membayar untuk 5 buah jeruk dan 3 buah apel sebesar $5 \times \text{Rp1.000,00+} \ 3 \times \text{Rp750,00} = \text{Rp7.250,00} \rightarrow \text{[E]}$

- 14. Nilai maksimum dari f(x, y) = 300x + 500y yang memenuhi pertidaksamaan $x + 2y \le 4$, $x + y \le 3$, $x \ge 0$, dan $y \ge 0$ adalah....
 - A. 900
 - B. 1.000
 - C. 1.100
 - D. 1.200
 - E. 1.500

Solusi:

$$x + 2y = 4....(1)$$

$$x + y = 3 \dots (2)$$

Persamaan (1) – persamaan (2) menghasilkan:

$$y = 1$$

$$x+1=3$$

$$x=2$$

Koordinat titik potong garis x+2y=4 dan x+y=3 adalah (2,1)

Titik (x, y)	f(x,y) = 300x + 500y	Keterangan
(0,0)	$300 \times 0 + 500 \times 0 = 0$	
(3,0)	$300 \times 3 + 500 \times 0 = 900$	
(2,1)	$300 \times 2 + 500 \times 1 = 1.100$	Maksimum
(0,2)	$300 \times 0 + 500 \times 2 = 1.000$	

Jadi, nilai maksimumnya adalah $1.100. \rightarrow [C]$

- 15. Seorang pemilik toko sandal memiliki modal Rp4.000.000,00. Ia membeli setiap pasang sandal A Rp10.000,00, dan sandal B Rp8.000,00. Setiap pasang sandal A dan sandal B masing-masing memberi keuntungan Rp5.000,00 dan Rp4.000,00. Kapasitas tempat penjualan yang tersedia tidak lebih dari 450 pasang. Keuntungan maksimum yang diperoleh pemilik toko tersebut jika semua sandal habis terjual adalah....
 - A. Rp1.800.000,00
 - B. Rp1.900.000,00
 - C. Rp2.000.000,00
 - D. Rp2.050.000,00
 - E. Rp2.250.000,00

Ambillah banyak pasangan sandal A dan B masing-masing adalah x dan y pasang.

Koordinat titik potong garis $5x + 4y = 2.000 \,\text{dan} \, x + y = 450 \,\text{adalah} \, (200,250)$

Titik (x, y)	f(x,y) = 5.000x + 4.000y	Keterangan
(0,0)	$5.000 \times 0 + 4.000 \times 0 = 0$	
(400,0)	$5.000 \times 400 + 4.000 \times 0 = 2.000.000$	Maksimum
(200,250)	$5.000 \times 200 + 4.000 \times 250 = 2.000.000$	Maksimum
(0,450)	$5.000 \times 0 + 4.000 \times 450 = 1.800.000$	

Jadi, keuntungan maksimum yang diperoleh pemilik toko tersebut jika semua sandal habis terjual adalah Rp2.000.000,00. \rightarrow [C]

16. Diketahui
$$3\begin{pmatrix} p & q \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} p & 6 \\ -1 & 5 \end{pmatrix} + \begin{pmatrix} 4 & p+q \\ 7 & 13 \end{pmatrix}$$
. Nilai $2q+p$ adalah....

- A. 2
- B. 4
- C. 6
- D. 8
- E. 10

Solusi:

$$3\begin{pmatrix} p & q \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} p & 6 \\ -1 & 5 \end{pmatrix} + \begin{pmatrix} 4 & p+q \\ 7 & 13 \end{pmatrix}$$

$$3p = p + 4$$

$$2p = 4$$

$$p = 2$$

$$3q = 6 + p + q$$

$$2q = 6 + p = 6 + 2 = 8$$

Jadi,
$$2q + p = 8 + 2 = 10 \rightarrow [E]$$

- 17. Diketahui operasi matriks $\begin{pmatrix} 4 & -3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & -6 \\ 1 & 5 \end{pmatrix} = A$. Determinan matriks $A = \dots$
 - A. -11
 - B. -5
 - C. -2
 - D. 5
 - E. 11

Kita mengetahui bahwa jika $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, maka $\det A = |A| = ad - bc$.

$$\begin{pmatrix} 4 & -3 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -6 \\ 1 & 5 \end{pmatrix} = A$$

$$\begin{pmatrix} 4-2 & -3+6 \\ 2-1 & 1-5 \end{pmatrix} = A$$

$$\begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} = A$$

$$|A| = 2 \times (-4) - 3 \times 1 = -11 \rightarrow [A]$$

18. Diketahui matriks $A = \begin{pmatrix} 2 & 0 \\ -4 & 1 \end{pmatrix}$ dan $B = \begin{pmatrix} 1 & 3 \\ 3 & -8 \end{pmatrix}$. Invers dari matriks A + B adalah....

A.
$$-\frac{1}{18} \begin{pmatrix} -7 & 3 \\ 1 & -3 \end{pmatrix}$$

B.
$$-\frac{1}{18}\begin{pmatrix} -7 & -3\\ 1 & 3 \end{pmatrix}$$

C.
$$-\frac{1}{18} \begin{pmatrix} 7 & -3 \\ 1 & 3 \end{pmatrix}$$

D.
$$-\frac{1}{18}\begin{pmatrix} -7 & -3 \\ -1 & 3 \end{pmatrix}$$

E.
$$-\frac{1}{18} \begin{pmatrix} -7 & 3 \\ -1 & 3 \end{pmatrix}$$

Solusi:

Kita mengetahui bahwa jika $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, maka $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

$$A + B = \begin{pmatrix} 2 & 0 \\ -4 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 3 & -8 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -1 & -7 \end{pmatrix}$$

$$(A+B)^{-1} = \frac{1}{-21+3} \begin{pmatrix} -7 & -3 \\ 1 & 3 \end{pmatrix} = -\frac{1}{18} \begin{pmatrix} -7 & -3 \\ 1 & 3 \end{pmatrix} \rightarrow [B]$$

- 19. Diketahui barisan aritmetika dengan suku ke-9 = 51 dan suku ke-13 = 79. Suku ke-6 adalah....
 - A. 23
 - B. 28
 - C. 30
 - D. 32
 - E. 35

Kita mengetahui bahwa suku ke-n barisan aritmetika dirumuskan sebagai $u_n = a + (n-1)b$.

$$u_{13} - u_9 = 79 - 51$$

 $a + 12b - (a + 8b) = 28$
 $4b = 28$
 $b = 7$

$$b=7 \rightarrow u_9 = 51$$

 $a+8b=51$
 $a+8 \times 7 = 51$
 $a=51-56=-5$

:.
$$u_6 = a + 5b = -5 + 5 \times 7 = -5 + 35 = 30 \rightarrow [C]$$

- 20. Dari suatu deret aritmetika diketahui suku keenam adalah 17 dan suku kesepuluh 33. Jumlah tiga puluh suku pertama adalah
 - A. 1.650
 - B. 1.710
 - C. 3.300
 - D. 4.280
 - E. 5.300

Solusi:

Kita mengetahui bahwa suku ke-n barisan aritmetika dirumuskan sebagai $u_n = a + (n-1)b$.

$$u_{10} - u_6 = 33 - 17$$

 $a + 9b - (a + 5b) = 16$
 $4b = 16$
 $b = 4$
 $b = 4 \rightarrow u_6 = 17$
 $a + 5b = 17$
 $a + 5 \times 4 = 17$

Jumlah n suku pertama dari barisan aritmetika adalah $S_n = \frac{n}{2} [2a + (n-1)b]$

$$S_{30} = \frac{30}{2} [2(-3) + (30 - 1)4] = 1.650$$

a = 17 - 20 = -3

Jadi, jumlah Jumlah tiga puluh suku pertama adalah 1.650. \rightarrow [A]

- 21. Diketahui suatu barisan geometri dengan suku ke-3 adalah 12 dan suku ke-6 adalah $\frac{4}{9}$. Suku kedua adalah....
 - A. 42
 - B. 36
 - C. 24

Kita mengetahui bahwa suku ke-n dari barisan geometri adalah $u_n = ar^{n-1}$.

Barisan geometri: $u_3 = 12 \,\text{dan } u_6 = \frac{4}{9}$

$$\frac{u_6}{u_3} = \frac{\frac{4}{9}}{12}$$

$$\frac{ar^5}{ar^2} = \frac{1}{27}$$

$$r^3 = \frac{1}{27}$$

$$r = \sqrt[3]{\frac{1}{27}} = \frac{1}{3}$$

$$r = \frac{1}{3} \rightarrow u_3 = 12$$

$$ar^2 = 12$$

$$a\left(\frac{1}{3}\right)^2 = 12$$

$$a = 12 \times 9 = 108$$

$$u_2 = ar = 108 \times \frac{1}{3} = 36 \rightarrow [B]$$

22. Suku ke-2 dan suku ke-6 dari suatu deret geometri berturut-turut adalah 6 dan 96. Jumlah tujuh suku pertama dari deret tersebut adalah....

Kita mengetahui bahwa suku ke-n dari barisan geometri adalah $u_n = ar^{n-1}$.

Deret geometri: $u_2 = 6 \text{ dan } u_6 = 96$

$$\frac{u_6}{u_2} = \frac{96}{6}$$

$$\frac{ar^5}{ar} = 16$$

$$r^4 = 16$$

$$r = \pm \sqrt[4]{16} = \pm 2$$

$$r = \pm 2 \rightarrow u_2 = 6$$

$$ar = 6$$

$$a(\pm 2)=6$$

$$a = \frac{6}{\pm 2} = \pm 3$$

Jumlah *n* suku pertama dari barisan geometri adalah $S_n = \frac{a(r^n - 1)}{r - 1}$

$$S_7 = \frac{3(2^7 - 1)}{2 - 1} = 381$$
 atau $S_7 = \frac{-3(-2)^7 - 1}{-2 - 1} = -129$

Jadi, jumlah tujuh suku pertama dari deret tersebut adalah 381. \rightarrow [D]

- 23. Diketahui deret $3+2+\frac{4}{3}+\frac{8}{9}+...$ Jumlah deret tak hingga adalah....
 - A. $4\frac{4}{9}$
 - B. $6\frac{1}{9}$
 - C. $6\frac{1}{3}$
 - D. $6\frac{2}{3}$
 - E. 9

Solusi:

Kita mengetahui jumlah deret geometri tak terhingga (deret geometri konvergen) dengan $\left|r\right|<1$ adalah

$$S = \frac{a}{1-r} .$$

$$a=3$$
 dan $r=\frac{2}{3}$

$$S = \frac{3}{1 - \frac{2}{3}} = 9 \rightarrow [E]$$

- 24. Seorang karyawan mampunyai gaji pertama Rp1.000.000,00 dan setiap bulan naik Rp50.000,00 jumlah gaji yang diterima karyawan tersebut selama satu tahun adalah....
 - A. Rp12.600.00000
 - B. Rp15.300.000,00
 - C. Rp15.600.000,00
 - D. Rp15.800.000,00
 - E. Rp16.000.000,00

Solusi:

Soal ini berkaitan dengan masalah deret aritmetika, dengan $u_1 = a = 1.000.000 \,\mathrm{dan} \ b = 50.000$

Jumlah n suku pertama dari barisan aritmetika adalah $S_n = \frac{n}{2} [2a + (n-1)b]$

$$S_{12} = \frac{12}{2} [2 \times 1.000.000 + (12 - 1)50.000] = 15.300.000$$

Jadi, jumlah gaji yang diterima karyawan itu selama satu tahun adalah Rp15.300.000,00 \rightarrow [B]

- 25. Nilai $\lim_{x\to 3} \frac{x^2-9}{x-3} = \dots$
 - A. 6
 - B. 5

- C. 4
- D. 3
- E. 1

Cara 1: Metode Faktorisasi

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6 \to [A]$$

Cara 2: Teorema L'Hospital

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{2x}{1} = 2 \times 3 = 6 \to [A]$$

- 26. Diketahui $f(x)=2x^3-2x^2-4x+1$. Turunan pertama dari f(x) adalah f'(x)=...
 - A. $6x^2 4x 4$
 - B. $2x^2 2x 4$
 - C. $6x^2 4x 3$
 - D. $6x^3 4x^2 4$
 - E. $6x^3 4x^2 4x$

Solusi:

Kita mengetahui bahwa jika $f(x)=ax^n$, maka $f'(x)=anx^{n-1}$ dan jika f(x)=c, dengan c adalah konstanta, maka f'(x)=0.

$$f(x)=2x^3-2x^2-4x+1$$

$$f'(x) = 6x^2 - 4x - 4 \rightarrow [A]$$

- 27. Diketahui fungsi $f(x) = \frac{2x-1}{3x-1}$. Turunan pertama dari f(x) adalah f'(x). Nilai dari $f'(1) = \dots$
 - A. -3
 - B. $\frac{1}{4}$
 - C. $\frac{1}{2}$
 - D. $\frac{2}{3}$
 - E. $\frac{5}{2}$

Solusi:

Kita mengetahui bahwa jika $f(x) = \frac{u}{v}$, maka $f'(x) = \frac{u'v - v'u}{v^2}$.

$$f(x) = \frac{2x-1}{3x-1}$$

$$f'(x) = \frac{2(3x-1)-3(2x-1)}{(3x-1)^2}$$

$$\therefore f'(x) = \frac{2(3 \cdot 1 - 1) - 3(2 \cdot 1 - 1)}{(3 \cdot 1 - 1)^2} = \frac{4 - 3}{4} = \frac{1}{4} \to [B]$$

28. Toko elektronik "SINAR TERANG" dapat menjual televisi sebanyak x buah, dengan harga tiap unit televisi $\left(160 - \frac{800}{x} - 2x\right)$ dalam puluhan ribu rupiah. Hasil penjualan maksimal yang diperoleh took

tersebut adalah....

A. Rp24.000.00000

B. Rp25.600.000,00

C. Rp26.500.000,00

D. Rp27.000.000,00

E. Rp28.400.000,00

Solusi:

Penjualan TV adalah
$$b(x) = x \left(160 - \frac{800}{x} - 2x\right) = 160x - 800 - 2x^2$$

$$b'(x)=160-4x$$

Nilai stasioner b dicapai jika b'(x)=0, sehingga

$$160 - 4x = 0$$

$$x = 40$$

$$b(40)=160\times40-800-2\times40^2=2.400$$
 puluhan ribu rupiah

Jadi, hasil penjualan maksimal yang diperoleh took tersebut adalah Rp24.000.000,00 \rightarrow [A]

29. Hasil dari
$$\int (2x+3)(x-4)dx =$$

A.
$$\frac{2}{3}x^3 + \frac{5}{2}x^2 - 12x + C$$

B.
$$\frac{2}{3}x^3 - \frac{5}{2}x^2 - 12x + C$$

C.
$$2x^3 - 5x^2 - 12x + C$$

D.
$$4x^3 - 10x^2 - 12x + C$$

E.
$$6x^3 - 8x^2 - 12x + C$$

Solusi:

Kita mengetahui bahwa $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$, dengan $n \neq -1$.

$$\int (2x+3)(x-4)dx = \int (2x^2 - 5x - 12)dx = \frac{2}{3}x^3 - \frac{5}{2}x^2 - 12x + C \to [B]$$

30. Nilai dari
$$\int_{2}^{3} (3x^2 - 2x + 1) dx = \dots$$

Solusi:

Kita mengetahui bahwa $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a).$

- 31. Luas daerah yang dibatasi oleh kurva $y = 3x^2 1$, sumbu X, garis x = 1, dan garis x = 2 adalah....
 - A. 41satuanluas
 - B. 20satuanluas
 - C. 8satuanluas
 - D. 7 satuanluas
 - E. 6satuanluas

Luas daerah adalah $L = \int_{a}^{b} f(x)dx$

$$L = \int_{1}^{2} (3x^{2} - 1) dx$$

$$= \left[x^{3} - x \right]_{1}^{2}$$

$$= 8 - 2 - (1 - 1) = 6 \text{ satuan luas} \rightarrow [E]$$

- 32. Banyak bilangan genap tiga angka berbeda yang dapat disusun dari angka-angka 2, 3, 4, 5, 6, 7,8 adalah....
 - A. 120
 - B. 168
 - C. 196
 - D. 210
 - E. 243

Solusi:

6	5	4
---	---	---

Banyak bilangan genap tersebut adalah $6 \times 5 \times 4 = 120 \rightarrow [A]$

- 33. Dalam pemilihan pengurus karang taruna akan dipilih ketua, sekretaris, dan bendahara dari 10 orang. Bamyak cara yang dapat dilakukan adalah....
 - A. 72
 - B. 120
 - C. 360
 - D. 720
 - E. 810

Solusi:

Banyak cara yang dapat dilakukan adalah $_{10}P_3 = \frac{10!}{(10-3)!} = \frac{10 \times 9 \times 8 \times 7!}{7!} = 720 \rightarrow [D]$

- 34. Disebuah warung penjual martabak manis, kamu dapat memesan martabak biasa dengan 2 dua macam isi: mentega dan gula. Kamu juga dapat memesan martabak manis dengan isi **tambahan**. Kamu dapat memilih empat macam isi berikut keju, coklat, pisang, dan kacang. Pipit ingin memesan martabak manis dengan dua macam isi **tambahan**. Berapakah banyaknya jenis martabak berbeda yang dapat dipilih oleh Pipit?
 - A. 4
 - B. 6
 - C. 8

- D. 12
- E. 24

Banyaknya jenis martabak berbeda yang dapat dipilih oleh Pipit adalah $2 \times_2 C_4 = 2 \times 6 = 12 \rightarrow [D]$

- 35. Dalam suatu kotak terdapat 4 bola hijau, 5 bola biru, dan 3 bola merah. Jika dari kotak tersebut diambil 2 bola sekaligus secara acak, peluang terambil 2 bola biru atau 2 bola merah adalah....
 - A. $\frac{5}{33}$
 - B. $\frac{1}{22}$
 - C. $\frac{2}{11}$
 - D. $\frac{13}{66}$
 - E. $\frac{15}{66}$

Solusi:

Kita mengetahui bahwa

- 1. Kombinasi ${}_{n}C_{k} = \frac{n!}{k!(n-k)!}$
- 2. Peluang $P(A) = \frac{n(A)}{n(S)}$
- 3. Peluang $P(A \cup B) = P(A) + P(B)$

Peluang terambil 2 bola biru atau 2 bola merah adalah

$$\frac{{}_{5}C_{2} + {}_{3}C_{2}}{{}_{12}C_{2}} = \frac{10 + 3}{66} = \frac{13}{66} \rightarrow [D]$$

Kotak
4 H
5 B
2 M

- 36. Dua buah dadu dilempar undi bersama-sama sebanyak 216 kali. Frekuensi harapan munculnya mata dadu berjumlah 5 adalah....
 - A. 24
 - B. 30
 - C. 36
 - D. 144
 - E. 180

Solusi:

Ruang sampel adalah $S = \{(1,1), (1,2), \dots, (6,5), (6,6)\} \rightarrow n(S) = 36$

 $A = \text{mata dadu berjumlah 5} = \{(1,4),(2,3),(3,2),(4,1)\} \rightarrow n(A) = 4$

Dadu 1/ Dadu 2	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{36} = \frac{1}{9}$$

Kita mengetahui bahwa frekuensi harapan dirumuskan sebagai $f_h = P(A) \times N$

Jadi, frekuensi harapan munculnya mata dadu berjumlah 5 adalah $\frac{1}{9} \times 216 = 24 \rightarrow [A]$

37. Grafik dibawah ini memberikan informasi tentang ekspor dari Zedia, sebuah Negara yang menggunakan satuan mata uang Zed.

Berapakah harga jus buah yang diekspor dari Zedia tahun 2000?

- A. 1.8 juta zed
- B. 2,3 juta zed
- C. 2,4 juta zed
- D. 3,4 juta zed
- E. 3.8 juta zed

Solusi:

Harga jus buah yang diekspor dari Zedia tahun 2000 adalah $9\% \times 42,6 = 3,834 \approx 3,8$ juta zed \rightarrow [E]

- 38. Modus pada data dari tabel berikut adalah....
 - A. 26,5
 - B. 27
 - C. 27,5
 - D. 28
 - E. 5

f	
8	
20	
12	
6	
4	

Solusi:

Kita mengetahui bahwa modus untuk data berkelompok dirumuskan sebagai $Mo = L + \frac{d_1}{d_1 + d_2} \times p$

dengan: Mo = modus

L = Tepi bawah kelas modus (yang memiliki frekuensi tertinggi)

 d_1 = selisih frekuensi kelas modus dengan kelas sebelumnya.

 d_2 = selisih frekuensi kelas modus dengan kelas sesudahnya.

p = panjang kelas atau interval kelas.

Kelas modus terletak pada interval kelas 25 - 29.

$$Mo = 24.5 + \frac{12}{12 + 8} \times 5 = 24.5 + 3 = 27.5 \rightarrow [C]$$

- 39. Simpangan rata-rata dari data 20, 35, 50, 45, 35, 55 adalah....
 - A. 36
 - B. 24
 - C. 10
 - D. 6
 - E. 5

Simpangan rata-rata dari kumpulan data $x_1, x_2, x_3, ..., x_n$ dirumuskan sebagai $SR = \frac{1}{n} \sum_{i=1}^{k} f_i |x_i - \overline{x}|$

dengan: SR = simpangan rata-rata

$$\bar{x}$$
 = rata-rata hitung = $\frac{x_1 + x_2 + x_3 + ... + x_n}{n}$

 x_i = nilai datum yang ke-i

 f_i = frekuensi dari datum ke-i

n =banyak datum

$$\bar{x} = \frac{20+35+50+45+35+55}{6} = 40$$

$$SR = \frac{1}{6} \left[\left| 20 - 40 \right| + 2 \left| 35 - 40 \right| + \left| 45 - 40 \right| + \left| 50 - 40 \right| + \left| 55 - 40 \right| \right] = \frac{1}{6} \left(20 + 10 + 5 + 10 + 15 \right) = 10 \rightarrow [C]$$

- 40. Varians (ragam) dari data 6, 11, 8, 7, 4, 6 adalah....
 - A. $\frac{16}{3}$
 - B. $\frac{15}{3}$
 - C. $\frac{14}{3}$
 - D. $\frac{12}{3}$
 - E. $\frac{10}{3}$

Solusi:

Simpangan rata-rata dari kumpulan data $x_1, x_2, x_3, ..., x_n$ dirumuskan sebagai $S^2 = \frac{1}{n} \sum_{i=1}^k f_i \left(x_i - \overline{x} \right)^2$

dengan: $S^2 = \text{ragam (varians)}$

$$\bar{x}$$
 = rata-rata hitung = $\frac{x_1 + x_2 + x_3 + ... + x_n}{n}$

 f_i = frekuensi dari datum ke-i

 x_i = nilai datum yang ke-i

n =banyak datum

$$\bar{x} = \frac{6+11+8+7+4+6}{6} = \frac{42}{6} = 7$$

$$S^{2} = \frac{1}{6} \left[(4-7)^{2} + 2(6-7)^{2} + (7-7)^{2} + (8-7)^{2} + (11-7)^{2} \right] = \frac{1}{6} (9+2+0+1+16) = \frac{28}{6} = \frac{14}{3} \rightarrow [C]$$