HYDROGRAPHÍC DATA FROM THE OPTOMA (OCEAN PREDICTION THROUGH OBSERVATIONS. (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA P A MITTMANN ET AL. HAR 85 NPS-68-85-811 F/G 8/3 AD-A154 866 1/3. UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

0

NPS-68-85-011

NAVAL POSTGRADUATE SCHOOL Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM
OPTOMA11
5 JUNE - 5 AUGUST 1984

by

Paul A. Wittmann Michele M. Rienecker Edward A. Kelley, Jr. Christopher N.K. Mooers

March 1985

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research Environmental Sciences Directorate (Code 420) Arlington, VA 22217

G

5 5 17 0 3 1

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

Commodore R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was Prepared by:

Oceanographer

Adjunct Prof., Oceanography

Michele MRuncher MICHELE M. RIENECKER Adjunct Prof., Oceanography

CHRISTOPHER N. W. MODERS Professor and Chairman, Department of Oceanogrpahy

Reviewed by:

Christopher N.K. Mooers, Chairman Department of Oceanography

Released by:

Dean of Science and Engineering

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
	3. RECIPIENT'S CATALOG NUMBER					
η <i>υ 1</i> 7137 .	866					
4. TITLE (and Subtitio) HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA11	Report for October 1982 to March 1985					
5 June - 5 August 1984	4. PERFORMING ORG. REPORT NUMBER					
Paul A Wittmann, Michele M. Rienecker, Edward A. Kelley, Jr., Christopher N.K. Mooers	S. CONTRACT OR GRANT NUMBER(*)					
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Naval Postgraduate School Monterey, CA 93943	61153N NOO0148WR24051					
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE					
Office of Naval Research (Code 420)	March 1985					
Arlington, VA 22217	13. NUMBER OF PAGES					
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified					
	15a. DECLASSIFICATION/DOWNGRADING					
16. DISTRIBUTION STATEMENT (of this Report)						
Approved for public release; distribution unlimit	ted					
	Accession For					
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	DTIC TAB Unannounced Justification					
18. SUPPLEMENTARY NOTES	By					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	Digit (Octive					
California Current System Physical Oceanography Dynamic Oceanography	4/1					
The six cruises and one aircraft flight comprising OPTOMA11 were undertaken in June, July and August 1984 to sample two subdomains of the California Current. This report presents the hydrographic data, acquired by XBT, AXBT and CTD casts, from the cruises and the flight.						

BTIC STOY MEPEORIE

Hydrographic Data from the OPTOMA Program:

OPTOMA11
5 June - 5 August, 1984

by

Paul A. Wittmann Michele M. Rienecker Edward A. Kelley, Jr. Christopher N. K. Mooers

Chief Scientists:

C. N. K. Mooers, L. J. Walstad E. F. Carter, A. R. Robinson T. H. Calhoon, A. A. Bird, M. C. Colton

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	11
LIST OF FIGURES	111
I NTRODUCTI ON	2
DATA ACQUISITION	3
DATA PROCESSING	4
DATA PRESENTATION .	• 4
SECTION 1: LEG AI	7
SECTION 2: LEG AII	39
SECTION 3: LEG AIII	73
SECTION 4: LEG DI	89
SECTION 5: LEG DII	119
SECTION 6: LEG DIII	153
SECTION 7: LEG P	187
ACKNOWLEDGEMENTS	203
REFERENCE	204
INITIAL DICTRIBUTION LICT	20.5

LIST OF TABLES

Table No.	Caption	Page
1.	Scientific instruments aboard R/V ACANIA	6
2.	Leg AI Station Listing	11
3.	Leg AII Station Listing	43
4.	Leg AIII Station Listing	77
5.	Leg DI Station Listing	93
6.	Leg DII Station Listing	123
7.	Leg DIII Station Listing	157
8.	leg P Station Listing	101

LIST OF FIGURES

<u>Figure</u>	No.	Caption	<u>Page</u>
1.		The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.		The cruise track for OPTOMA11, Leg AI.	8
3.		XBT and CTD locations for OPTOMA11, Leg AI.	9
4.		Station numbers for OPTOMA11, Leg AI.	10
5	(a)-(d).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg AI).	14
6	(a)-(c).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA11, Leg AI).	18
7	(a)-(v).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg AI).	21
8	(a)-(e).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA11, Leg AI).	29
9.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA11, Leg AI).	34
10.		Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA11, Leg AI).	35
11.		(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA11, Leg AI).	36
12.		Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $T(z)$ and $S(z)$ is also shown (\cdots) . (OPTOMA11, Leg AI).	37

Figure No.	Caption	Page
13.	The cruise track for OPTOMAll, Leg AII. The first excursion of the track is shown as a solid line, the second excursion as a broken line.	40
14.	XBT and CTD locations for OPTOMA11, Leg AII.	41
15.	Station numbers for OPTOMA11, Leg AII.	42
16 (a)-(g).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg AII).	47
17 (a)-(b).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA11, Leg AII).	54
18 (a)-(y).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg AII).	56
19 (a)-(c).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA11, Leg AII).	66
20.	Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA11, Leg AII).	69
21.	Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA11, Leg AII).	70
22.	(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA11, Leg AII).	71
23.	Mean N^2 profile (), with + and - the standard deviation (). The N^2 profile from $T(z)$ and $\overline{S}(z)$ is also shown (). (OPTOMA11, Leg AII).	72
24.	The cruise track for OPTOMA11, Leg AIII.	74
25.4	XBT and CTD locations for OPTOMA11, Leg AIII.	75

Figure No.	Caption	Page
26.	Station numbers for OPTOMA11, Leg AIII.	76
27 (a)-(c).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg AIII).	79
28.	CTD temperature and salinity profiles (OPTOMA11, Leg AIII).	82
29 (a)-(g).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg AIII).	83
30.	Mean temperature profile, with + and - the standard deviation. (OPTOMA11, Leg AIII).	87
31.	The cruise track for OPTOMA11, Leg DI.	90
32.	XBT and CTD locations for OPTOMA11, Leg DI.	91
33.	Station numbers for OPTOMA11, Leg DI.	92
34 (a)-(e)	XBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg DI).	96
35 (a)-(c).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA11, Leg DI).	101
36.	CTD casts to 3000m. Temperature profiles are staggered by 5C and salinity profiles by 4 ppt. (OPTOMA11, Leg DI).	104
37 (a)-(p).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg DI).	105
38 (a)-(c).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMAll, Leg DI).	112
39.	Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA11, Leg DI).	115

Figure	No.	Caption	Page
40.		Mean profiles of (a) salinity and (b) sigma-t, with + and -the standard deviations, from the CTD's (OPTOMA11, Leg DI).	116
41.		(a) T-S pairs and(b) mean T-S relation, with+ and - the standard deviation, from the CTD's.Selected sigma-t contours are also shown.(OPTOMA11, Leg DI).	117
42.		Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $T(z)$ and $S(z)$ is also shown $()$. (OPTOMA11, Leg DI).	118
43.		The cruise track for OPTOMAll, Leg DII. The second traversal along interior semi-diagonals is shown as a broken line.	120
44.		XBT and CTD locations for OPTOMA11, Leg DII.	121
45.		Station numbers for OPTOMA11, Leg DII.	122
46	(a)-(d).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg DII).	127
47	(a)-(c).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA11, Leg DII).	131
48.		CTD casts deeper than 800m. (OPTOMA11, Leg DII).	134
49.		Nearshore CTD casts plotted to 500m or less. (OPTOMA11, Leg DII).	135
50	(a)-(z).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg DII).	136
51	(a)-(b).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA11, Leg DII).	147
52.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA11, Leg DII).	149

Figure No.	<u>Caption</u>	<u>Page</u>
53.	Mean profiles of (a) salinity and (b) sigma-t with + and - the standard deviations, from the CTD's. (OPTOMA11, Leg DII).	150
54.	(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA11, Leg DII).	151
55.	Mean N ² profile (—), with $+$ and $-$ the standard deviation (). The N ² profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (••••). (OPTOMA11, Leg DII).	152
56.	The cruise track for OPTOMAll, Leg DIII.	154
57.	XBT and CTD locations for OPTOMA11, Leg DIII.	155
58.	Station numbers for OPTOMA11, Leg DIII.	156
59 (a)-(g). XBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg DIII).	161
60 (a)-(c). CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA11, Leg DIII).	168
61.	CTD casts deeper than 800m. (OPTOMA11, Leg DIII)	171
62 (a)-(p). Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg DIII).	172
63 (a)-(c). Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA11, Leg DIII).	180
64.	Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA11, Leg DIII).	183
65.	Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA11, Leg DIII).	184

<u>Figure</u>	No.	<u>Caption</u>	Page
66.		(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA11, Leg DIII).	185
67.		Mean N ² profile (—), with + and - the standard deviation (). The N ² profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (····). (OPTOMA11, Leg DIII).	186
68.		The flight track for OPTOMA11, Leg P.	188
69.		AXBT locations for OPTOMA11, Leg P.	189
70.		Station numbers for OPTOMA11, Leg P.	190
71	(a)-(c).	AXBT temperature profiles, staggered by multiples of 5C (OPTOMA11, Leg P).	193
72	(a)-(1).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA11, Leg P).	196
73.		Mean temperature profile, with + and - the	202

THE STREET STREET STREET

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM		SURFACE SALINIT (PPT)		SALINITY
91 92	CTD XBT	84164 84164	935 1122	38.03 38.11	124.53 124.50	10.9 12.9	33.08	99.9	33.27
93 94 95	XBT CTD XBT	84164 84164 84165	1503 1930 148	38.27 38.34 38.42	124.49 124.43 124.49	13.2 13.2 13.3	32.50	13.6	32.60
96 97 98	XBT XBT XBT	84165 84165 84165	635 1550 1838	38.49 38.55 79.00	124.54 124.59 125.04	13.4 13.4 13.5			
99 100	CTD XBT	84165 84165	2200 2325	39.09 39.04	125.09 125.03	13.5 13.6	32.60	13.5	32.69
101 102 103	XBT XBT XBT	84166 84166 84166	25 105 228	38.58 38.53 38.48	124.55 124.49 124.42	13.6 13.5 13.5			
104 105 106	CTD XBT XBT	84166 84166 84166	335 533 625	38.41 38,37 38.32	124.36 124.29 124.22	13.3 13.5 13.2	32.62	13.4	32.71
107 108 109	CTD XBT XBT	84166 84166 84166	715 942 1035	38.26 38.20 38.15	124.16 124.08 124.01	12.5 11.4 11.5	32.59	99.9	32.66
110 111	CTD XBT	84166 84166	1122 1302	38.10 38.03	123.55 123.57	10.0 10.3	33.18	10.1	33.26
112 113 114	CTD XBT CTD	84166 84166 84166	1356 1535 1635	37.55 37.48 37.39	123.58 123.59 124.01	12.3	33.50 33.48	12.3 12.4	33.59 33.57
115 116 117	XBT CTD XBT	84166 84166 84166	1842 1957 2208	37.45 37.46 37.50	124.12 124.20 124.29	11.6 12.0 12.2	33.47	12.2	33.57
118 119 120	CTD XBT CTD	84166 84167 84167	2335 112 210	37.52 37.46 37.37	124.39 124.40 124.41	10.4 11.9 11.8	33.36 33.40	10.7 12.0	33.45 33.51
121 122	XBT CTD	84167 84167	337 430	37.30 37.23 37.19	124.44 124.46	12.3 11.7	33.39	11.8	33.40
123 124 125	XBT XBT XBT	84167 84167 84167	630 745 850	37.17 37.13		11.9 12.0 12.0	/-		
126 127 128	CTD XBT XBT	84167 84167 84167	1005 1150 1300	37.10 37.07 37.04	123.57 123.44 123.32	12.5 12.5 12.4	33.41	12.2	33.49
129 130 131	XBT CTD XBT	84167 84167 84167	1415 1528 1707	37.01 36.58 36.55	123.20 123.08 122.55	12.4 12.5 13.0	33.57	12.6	33.65
132 133 134	XBT XBT XBT	84167 84167 84167	1931 2045 2100	36.49 36.45 36.41	122.32 122.19 122.06	12.3 12.5 12.0			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM		SALINIT		SALINITY
46 47 48 49 50 51 52 53	XBT CTD XBT XBT XBT XBT XBT XBT XBT	84160 84160 84160 84160 84160 84160 84160 84160	1115 1244 1440 1538 1638 1738 1955 2045 2140	38.21 38.28 38.32 38.37 38.41 38.45 38.45 38.42 38.35	126.36 126.37 126.27 126.18 126.10 126.00 125.47 125.42 125.37	14.0 14.1 14.2 13.7 13.6 13.6 13.9 13.8	32.89	13.8	33.05
55 56 57	XBT CTD XBT	84160 84160 84161	2228 2321 140	38.21 38.14 38.19	125.33 125.26 125.18	13.0 12.9 12.9	32.66	13.0	32.77
58 59 60 61	CTD CTD XBT XBT	84161 84161 84161 84162	310 2120 2330 330	38.21 38.26 38.32 38.37	125.11 125.03 125.06 124.58	12.3 12.8 12.9 13.0	32.56 32.50	13.0 13.0	32.62 32.61
62 63 64 65	XBT XBT XBT XBT	84162 84162 84162 84162	644 1100 1427 1922	38.42 38.49 38.55 39.02	124.51 124.54 124.59 125.04	13.1 12.6 13.4 12.8			
66 67 68 69 70 71	CTD XBT XBT XBT XBT XBT	84162 84163 84163 84163 84163	2320 239 500 646 830 1020	39.08 39.05 39.01 38.57 38.55 38.48	125.09 125.18 125.27 125.35 125.44	13.6 13.6 13.7 13.8 13.7	32.60	13.6	32.67
72 73 74 75 76	XBT XBT CTD XBT XBT	84163 84163 84163 84163 84163	1152 1306 1405 1545 1655	38.47 38.45 38.43 38.41 38.39	125.53 125.43 125.33 125.24 125.13 125.03	13.8 13.8 13.4 13.0 12.8	32.60	13.4	32.68
77 78 79	XBT CTD XBT	84163 84163 84163	1750 1850 2030	38.37 38.34 38.28	124.51 124.44 124.38	12.9 13.0 13.0	32.52	13.0	32.63
80 81 82	CTD XBT XBT	84163 84163 84163	2126 2300 2355	38.21 38.14 38.07	124.33 124.27 124.22	13.0 12.6 12.4	32.49	13.4	32.54
83 84 85 86	CTD XBT XBT XBT	84164 84164 84164 84164	42 230 255 350	38.00 37.56 37.52 37.48	124.19 124.25 124.34 124.43	10.8 10.7 11.8 11.8	33.05	11.4	33.10
87 88 89 90	XBT CTD XBT XBT	84164 84164 84164 84164	436 536 745 838	37.44 37.40 37.48 37.56	124.51 125.00 124.57 124.55	12.4 11.9 12.2 11.4	33.49	12.2	33.56

Table 2: Leg AI Station Listing

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)		SALINIT	Y TEMP	BOTTLE SALINITY (PPT)
1 2 3	XBT XBT XBT	84157 84157 84157	1755 1910 2025	36.42 36.46 36.50	122.05 122.16 122.28	11.8 11.5 11.7			
4 5	XBT XBT	84157 84157	2141 2255	36.55 36.58	122.43 122.53	12.2 11.9			
6 7	XBT XBT	84157 84158	2357 105	37.01 37.05	123.02 123.14	12.7 12.2			
8	XBT	84158	220	37.09	123.26	13.1			
9	XBT	84158	320	37.13	123.36	12.1			
10	XBT	84158	430	37.17	123.48	12.5			
11	XBT	84158	540	37.20	124.00	12.5			
12 13	XBT XBT	84158 84158	650 818	37,24 37.28	124.11 124.25	11.9 12.2			
14	XBT	84158	940	37.20	124.23	11.7			
15	XBT	84158	1111	37.36	124.48	11.8			
16	CTD	84158	1245	37.40	124.59	11.7	32.95	12.0	33.05
17	XBT	84158	1442	37.36	125.09	13.0			
18	XBT	84158	1555	37.31	125.18	13.8			
19 20	XBT XBT	84158 84158	1700 1805	37.26 37.22	125.27 125.36	14.1 14.1			
21	CTD	84158	1910	37.19	125.39	13.8	32.72	13.8	32.82
22	XBT	84158	2146	37.26	125.46	14.1	72172	20.0	32.02
23	XBT	84159	14	37.33	125.56	14.0			
24	XBT	84159	153	37.40	126.01	14.2			
25	XBT	84159	330	37.47	126.06	14.1	20.05	1/ 0	20 05
26 27	CTD XBT	84159 84159	518 724	37.52 37.58	126.11 126.02	14.1 14.0	32.85	14.0	32.95
28	XBT	84159	825	38.03	125.53	14.0			
29	CTD	84159	925	38.06	125.44	13.8	32.73	13.6	32.81
30	XBT	84159	1134	38.11	125.36	13.3			
31	CTD	84159	1235		125.26	12.5	32.63	12.7	32.71
32	XBT	84159	1426	38.08	125.21	12.5	22 07		22.00
33 34	CTD XBT	84159 84159	1515 1730	38.00 37.54	125.17 125.11	11.6 12.1	33.27	11.7	33.29
35	XBT	84159	1815	37.34	125.11	12.1			
36	XBT	84159	1915	37.39	125.00	12.8			
37	XBT	84159	2022	37.43	125.11	12.0			
38	XBT	84159	2136	37.44	125.21	12.4			
39	CTD	84159	2240	37.46	125.29	13.0	32.61	12.8	32.78
40	XBT	84160	120	37.48	125.40	13.8			
41 42	XBT XBT	84160 84160	225 335	37.50 37.52	125.50 126.01	14.1 14.2			
43	XBT	84160	457	37.52	126.11	14.1			
44	XBT	84160	635	38.01	126.16	14.2			
45	XBT	84160	950	38.14	126.31	14.1			

Figure 4: Station numbers for OPTOMAll, Leg AI.

Figure 3: XBT and CTD locations for OPTOMA11, Leg AI.

Figure 2: The cruise track for OPTOMA11, Leg AI.

Section 1
OPTOMAll Leg AI
5 - 15 June, 1984

Table 1: Scientific instruments aboard the R/V ACANIA

	Instrument	Variable	Sensor	Accuracy	Resolution
	Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gage thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmho
	Sippican BT	temperature depth	thermistor descent speed	0.2 C greater of 4.6 m and 2% of depth	
*	Guildline Autosal	conductivity	electrode cell	0.003 ppt	0.0002 ppt
+	Amatek straza ADVP	velocity profiles to 100m	4 beam sonar	3 cm/sec relative to ship speed	3 cm/sec
	Rosemount Sensor	sea surface temperature	platinum thermometer	0.05 C	0.005 C
	Sea-Bird Sensors	temperature conductivity at 2 meters	thermistor electrode cell	0.003 C 0.003 mmho	0.0005 C 0.0005 mmho
	Rosemount Sensor	air temperature	thermometer	0.01 C	
	Kavolico Barometer	atmospheric pressure	pressure transducer	1.5 mb	0.1 mb
*	1200 EPS Hygrometer	dew point	condensation temp. sensor	0.2 C	0.02 C
	Meteorology Res. Inc.	wind speed	anemometer	0.15 mph or 1%	
	Meteorology Res. Inc.	wind direction	vane	2.5 degrees	
	Internav LC408 LORAN C	position	two chain LORAN receiver	100 meters	10 meters
	Motorola Miniranger	position	microwave transponders	4 meters	2 meters

^{*} Not operating on the OPTOMA11 cruise.

⁺ Intermittent

the next seven sections, which present the data from Legs AI, AII, AIII, DI, DII, DIII and P respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise tracks. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow (except Leg P). Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed by isopleths of temperature, salinity and sigma-t, from the CTD's, when four or more casts were acquired along a transect. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to ± 20 m. The tick marks identify station positions and, again, the transect extremes are shown on these plots.

Each section includes mean profiles of temperature from the XBT's. In addition, for all sections except 3 and 7, mean profiles of temperature, salinity and sigma-t from the CTD's are given, as well as a scatter diagram of the T-S pairs and the mean S(T) curve, with the \pm standard deviation envelope; the data presentation concludes with a plot of the mean N^2 (Brunt-Vaisala frequency squared) profile, with \pm the standard deviation. On the sigma-t and N^2 plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

AI, AII, and AIII were determined ashore.

During Leg P, when shallow (305m) Sippican AXBT's were deployed, the aircraft maintained an altitude of approximately 1500 ft and an airspeed of 210 knots. The data were recorded on audio tapes. Station positions are accurate to within 1 km, temperature values to within 0.2°C and depth values to within 2% or 5 m (whichever is larger).

DATA PROCESSING

The processing of the AXBT data was carried out in Mr. Meredith Sessions' laboratory at Scripps using his audio-to-digital signal conversion system. The data were stored on magnetic tape and transferred to the IBM 3033 at the Naval Postgraduate School where obvious noise spikes were edited from the profiles.

The processing of cruise data, such as estimating depth profiles for the XBT temperature profiles based on the XBT's descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 96%, 97%, 100%, 97%, 99%, 99%, and 87%, of casts were retained in the data set of Legs AI, AII, AIII, DI, DIII, DIII, and P, respectively. From a comparison of the CTD surface salinities with the surface salinities from the bottle samples it was determined that no correction to the CTD salinities was needed. The CTD data were interpolated to 5 m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations (with XBT's, CTD's and AXBT's identified) and station numbers are shown in the first three figures of each of

Leg P was carried out on 18 July aboard a USNR P3A aircraft, and sampled an area approximately 250km square in the NOCAL area, as shown in Figure 68.

On each cruise track, transect extremes are identified by letter to aid in cross-referencing the data presented in subsequent figures. On each of these cruises, hydrographic stations were occupied at approximately 15 km along the track. For the AXBT flight, the along-track station spacing was about 35 km. DATA ACQUISITION

Data acquired during OPTOMA11 Legs AI, AII, AIII, DI, DII, and DIII include XBT and CTD profiles. Bucket surface temperature and water samples for salinity were taken at every CTD station. These surface values were used for calibration purposes as well as contributions to the data base. Legs AI, AII, and AIII also acquired continuous 2 m thermosalinograph measurements, continuous meteorological data such as atmospheric pressure at a height of 2 m and wind speed and direction at a height of 20 m, and intermittent acoustic Doppler velocity data. The XBT data were digitized using a Sippican MK9 unit. The continuous "underway" data were digitized using an HP 5328 frequency counter and a 40 channel digital voltmeter. The continuous data were averaged over two-minute intervals. All data were recorded, using an HP 200 series computer, on data disks and transferred ashore to the IBM 3033 mainframe computer for editing and processing.

Station positions were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. Table 1 on page 6 summarizes the various sensors available on the R/V ACANIA and their accuracy. A Neil Brown CTD and Sippican XBT's were also used on the USNS DE STEIGUER; their accuracies are the same as stated in Table 1. The bottle surface salinity samples were determined by a Guildline Model 8400 "Autosal" salinometer with an accuracy of +0.003ppt. Samples from Legs DI, DII, and DIII were determined onboard; samples from Legs

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The six cruises and one AXBT flight comprising OPTOMA11 were undertaken, during June, July, and August 1984, in the R/V ACANIA (Legs AI, AII, AIII), the USNS DE STEIGUER (Legs DI, DII, DIII) and a Reserve Patrol Wing P3A aircraft (Leg P). Hydrographic data were acquired off the coast of California in an area which covered and extended the NOCAL region. The sampling was concentrated in a central 150km square domain centered about 190km off the coast between Pt. Reyes and Pt. Arena in the NOCAL domain.

Leg AI was carried out from 5 to 15 June, Leg AII from 21 June to 30 June and Leg AIII from 5 to 13 July. These three legs sampled the central domain with additional transects to and from the domain, as shown in Figures 2, 13, and 24, respectively.

Leg DI was carried out from 23 to 30 June, Leg DII from 30 June to 10 July, and DIII from 27 July to 5 August. Leg DI sampled areas to the north, south and inshore of the central domain, as shown in Figure 31. Leg DII sampled the central domain area with additional legs to the west and south of the area, as shown in Figure 43. Leg DIII, with an intensive sampling pattern which differed from the previous cruises, covered the central and inshore domains, as shown in Figure 56.

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

される。しゃくらんのとうないというないのでは、これのは、これのでは、これ

なれていているとう。これのなどなどは、これのないでは、これのないでは、

Figure 6(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt. (OPTOMA11, Leg AI).

Figure 6(b).

Figure 6(c).

Some station numbers are given. Dashed lines are used if Figure 7(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used it the cast was too shallow. (OPTOMAll, Leg AI).

Figure 7(f).

Figure 7(g).

Figure 7(h).

Figure 7(m).

Figure 7(o).

J 83

10

Figure 7(p).

Figure 7(q).

Figure 7(r).

Figure 7(u).

Figure 7(v).

Figure 15: Station numbers for OPTOMA11, Leg AII.

Figure 14: XBT and CTD locations for OPTOMA11, Leg AII.

Figure 13: The cruise track for OPTOMAll, Leg AII. The first excursion of the track is shown as a solid line, the second excursion as a broken line.

Section 2
OPTOMAll Leg AII
21 - 30 June, 1984

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 12: Mean N^2 profile $(\frac{1}{z})$, with $\frac{1}{z}$ and $\frac{1}{z}$ rofile from $\frac{1}{z}$ and $\frac{1}{z}$ is also shown $(\frac{1}{z})$.

Figure 11: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA11, Leg AI). Selected sigma-t contours are also shown. (OPTOMAll, Leg AI).

Figure 10: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's. (OPTOMAll, Leg AI).

Figure 9: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA11, Leg AI).

Figure 8(d).

Figure 8(c).

こうかい こうじゅうしゅう かいこうかん ないない かんかん かんしゅう かんしょうしょう

Figure 8(b).

Figure 8(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's. (OPTOMA11, Leg AI).

Table 3: Leg AII Station Listing

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)		SALINIT	Y TEMP	SALINITY
1	XBT	84174	335	36.42	122.06	12.0			
2	XBT	84174	578	36.46	122.18	12.3			
3	XBT	84174	719	36.50	122.29	12.7			
4	XBT	84174	907	36.54	122.41	12.6			
5	XBT	84174	1043	36.57	122.52	12.7			
6	XBT	84174	1233	37.02	123.06	11.8			
7 8	XBT	84174	1408	37.05	123.15	11.9			
9	XBT XBT	84174 84174	1555	37.09	123.27	12.2			
10	XBT	84174	1738 1928	37.13 37.17	123.39 123.50	12.6			
11	XBT	84174	2115	37.17	123.30	12.0 12.6			
12	XBT	84174	2315	37.25	124.02	12.6			
13	XBT	84175	100	37.28	124.25	12.7			
14	XBT	84175	306	37.32	124.36	12.7			
15	XBT	84175	504	37.37	124.48	12.6			
16	CTD	84175	714	37.39	125.00	12.5	33.35	12.2	33.43
17	XBT	84175	907	37.35	125.08	12.7			
18	XBT	84175	1018	37.31	125.17	12.2			
19	XBT	84175	1130	37.28	125.26	12.5			
20	XBT	84175	1240	37.23	125.35	11.9			
21	CTD	84175	1413	37.19	125.44	12.4	32.79	12.2	32.68
22 23	XBT	84175	1707	37.26	125.50	11.8			
24	XBT XBT	84175 84175	1820 1930	37.33 37.40	125.56	11.7			
25	XBT	84175	2040	37.47	126.01 126.06	11.9 11.8			
26	CTD	841	2145	37.53	126.12	11.8	32.90	11.9	32.97
27	XBT	84175	2351	37.58	126.07	13.0	32.90	11.7	32.97
28	XBT	84176	111	38.03	125.52	13.7			
29	CTD	84176	226	38.05	125.46	13.6	32.60	13.7	32.54
30	XBT	84176	520	38.11	125.35	13.6			
31	CTD	84176	638	38.14	125.27	13.5	32.68		
32	XBT	84176	840	38.08	125.21	13.7			
33	CTD	84176	943	38.00	125.19	13.5	32.64	13.5	32.69
34	XBT	84176	1232	37.54	125.11	12.0			
35	XBT			37.46		10.9			
36 37	XBT XBT			37.40		12.5			
38	XBT	84176 84176	1545 1637	37.42	125.10	11.7			
39	CTD	84176	1745	37.44 37.46	125.21 125.31	11.7 11.3	33.44	11 2	22 / 0
40	XBT	84176	1905	37.48	125.31	11.5	JJ.44	11.2	32.48
41	XBT	84176	2000	37.50	125.50	11.6			
42	XBT	84176	2101	37.52	126.01	11.8			
43	CTD	84176	2215	37.53	126.12	12.7	32.78	13.2	32.84
44	XBT		35	38.02	126.18	14.0			32.04
45	XBT	84177	100	38.06	126.19	13.8			

STN	TYPE	YR/DAY	GMT	(NORTH)		SURFACE TEMP (DEG C)	SALINIT		SALINITY
46 47 48 49 50	XBT XBT CTD XBT XBT	84177 84177 84177 84177	200 255 356 600 650	38.11 38.16 38.21 38.20 38.18	126.14 126.08 126.02 126.16 126.21	13.8 13.7 13.8 14.0	32.68	13.7	32.69
51 52 53 54 55 56	XBT XBT CTD XBT XBT XBT	84177 84177 84177 84177 84177	733 815 930 1053 1155 1255	38.18 38.22 38.28 38.32 38.37 38.41	126.34 126.32 126.37 126.27 126.18 126.09	13.8 14.0 13.9 13.9 13.9	32.70	13.8	32.69
57 58 59 60 61	XBT CTD XBT XBT XBT	84177 84177 84177 84177 84177	1353 1443 1615 1707 1800	38.45 38.48 38.42 38.35 38.28	126.00 125.53 125.47 125.42 125.37	14.0 14.2 13.8 13.9 13.8	32.65	14.1	32.70
62 63 64 65	XBT CTD XBT CTD	84177 84177 84177	1855 1941 2138 2242	38.21 38.14 38.19 38.22	125.32 125.27 125.17 125.09	13.7 13.7 13.7	32.60 32.57	13.7 13.7	32.64 32.97
66 67 68 69 70	XBT XBT CTD XBT XBT	84178 84178 84178 84178 84178	46 150 250 455 600	38.27 38.31 38.34 38.42 38.49	125.01 124.51 124.43 124.48 124.54	14.0 14.0 13.8 13.9 13.9	32.66	13.7	32.69
71 72 73 74 75	XBT XBT CTD XBT XBT	84178 84178 84178 84178 84178	700 750 855 1030 1126	38.56 39.02 39.09 39.05 39.01	124.59 125.05 125.09 125.18 125.27	13.9 14.0 13.6 13.6 13.8	32.53	13.6	32.57
76 77 78 79 80	XBT XBT CTD XBT XBT	84178 84178 84178 84178 84178	1223 1323 1426 1600 1652	38.57 38.53 38.48 38.47 38.45	125.27 125.35 125.45 125.53 125.42 125.32	14.6 14.1 14.5 14.5	32.67	14.4	32.68
81 82 83 84	CTD XBT XBT XBT	84178 84178 84178 84178	1745 1908 2000 2055	38.43 38.41 38.39 38.37	125.32 125.23 125.13 125.03 124.53	14.2 14.3 14.0 14.0 14.5	32.61	14.2	32.66
85 86 87 88	CTD XBT CTD XBT	84178 84178 84179 84179	2150 2340 25 218	38.34 38.28 38.20 38.14	124.43 124.37 124.33 124.27	14.2 13.8 12.0 11.8	32.66 32.93	14.2 12.0	32.70 32.97
89 90	XBT XBT	84179 84179	245 336	38.11 38.09	124.25 124.17	12.2 11.4			

THE REPORT OF THE PROPERTY OF

91 CTD 84179 425 38.06 124.09 11.7 33.66 11.5 32.68 92 XBT 84179 702 38.04 124.29 11.7 93 XBT 84179 702 38.04 124.29 11.9 94 CTD 84179 805 38.03 124.43 11.3 95 XBT 84179 1005 37.59 124.40 11.9 96 XBT 84179 1005 37.59 124.40 12.8 97 XBT 84179 1005 37.50 124.40 12.8 97 XBT 84179 1055 37.44 124.45 13.0 98 XBT 84179 1150 37.38 124.50 13.4 99 XBT 84179 1244 37.31 124.55 13.2 100 XBT 84179 1340 37.25 125.01 13.0 101 XBT 84179 1430 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.12 12.3 103 XBT 84179 1627 37.31 125.06 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2345 37.47 126.06 14.1 111 XBT 84180 43 37.54 126.02 12.7 110 XBT 84180 43 38.01 126.17 14.4 113 XBT 84180 43 38.01 126.17 14.4 113 XBT 84180 630 38.32 126.32 14.8 115 XBT 84180 630 38.32 126.32 14.8 115 XBT 84180 630 38.32 126.32 14.8 115 XBT 84180 125 38.08 126.22 14.5 114 XBT 84180 125 38.08 126.22 14.5 115 XBT 84180 125 38.08 126.22 14.5 116 XBT 84180 125 38.08 126.22 14.5 117 XBT 84180 126 38.38 126.37 14.7 118 XBT 84180 125 38.38 125.57 120 XBT 84180 125 38.53 125.56 14.7 121 XBT 84180 1226 38.57 125.35 14.7 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1226 38.57 125.50 13.2 124 XBT 84180 1226 38.57 125.51 13.9 125 XBT 84180 1226 38.57 125.52 15.0 126 XBT 84180 1273 38.53 125.56 14.6 127 XBT 84180 1273 38.53 125.56 14.6 128 XBT 84180 1273 38.53 125.56 14.6 129 XBT 84180 1753 38.48 125.50 14.2 120 XBT 84180 1753 38.53 125.50 14.2 120 XBT 84180 1753 38.53 124.58 14.0 122 XBT 84180 1753 38.53 124.58 14.0 123 XBT 84180 1753 38.53 124.58 14.0 124 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 216 38.57 125.50 13.7 131 XBT 84180 2216 38.57 125.51 13.9 125 XBT 84180 1753 38.53 124.58 14.0 128 XBT 84180 1753 38.53 124.58 14.0 129 XBT 84180 1753 38.53 124.48 13.3 131 XBT 84180 2118 38.22 124.33 13.3 132 XBT 84180 2118 38.22 124.33 13.3	STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)		SURFACE TEMP (DEG C)	SALINIT		SALINITY
94 CTD 84179 915 37.59 124.40 11.9 96 XBT 84179 1005 37.50 124.40 11.9 97 XBT 84179 1005 37.50 124.40 12.8 97 XBT 84179 1055 37.44 124.45 13.0 98 XBT 84179 1105 37.34 124.55 13.2 100 XBT 84179 1244 37.31 124.55 13.2 100 XBT 84179 1340 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.12 12.3 103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1930 37.27 125.28 13.8 105 XBT 84179 1930 37.27 125.28 13.8 105 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2245 37.33 125.56 12.3 109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.12 14.3 111 XBT 84180 43 38.01 126.17 14.4 113 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 1019 38.49 125.55 15.0 122 XBT 84180 1323 39.01 125.06 14.7 117 XBT 84180 1323 39.01 126.17 14.7 118 XBT 84180 1323 39.01 126.17 14.7 119 XBT 84180 1323 39.01 126.17 14.7 110 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 1323 39.01 126.17 14.7 117 XBT 84180 1323 39.01 126.17 14.7 118 XBT 84180 1323 39.01 126.17 14.7 119 XBT 84180 1323 39.01 125.06 14.7 110 XBT 84180 1323 39.01 125.06 14.6 124 XBT 84180 1323 39.01 125.06 14.6 124 XBT 84180 1323 39.01 125.06 14.6 124 XBT 84180 1125 38.53 125.47 15.0 125 XBT 84180 126 38.57 125.35 14.7 126 XBT 84180 1323 39.01 125.26 14.6 127 XBT 84180 1521 39.09 125.08 14.2 128 XBT 84180 1521 39.09 125.08 14.2 129 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 2118 38.35 124.48 14.2 131 XBT 84180 2118 38.82 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2118 38.42 124.43 13.8 131 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2118 38.42 124.43 13.8 131 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2118 38.14 124.27 12.2 135 XBT 84180 2118 38.42 124.43 13.8 131 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2118 38.14 124.27 12.2 135 XBT 84180 2118 38.14 12				610		124.19	11.7	33.66	11.5	32.68
95 XBT 84179 1055 37.59 124.40 11.9 96 XBT 84179 1055 37.50 124.40 12.8 97 XBT 84179 1150 37.38 124.50 13.4 98 XBT 84179 1244 37.31 124.55 13.2 100 XBT 84179 1340 37.25 125.01 13.0 101 XBT 84179 1340 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.12 12.3 103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1843 37.23 125.36 13.7 106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 43 37.54 126.17 14.4 113 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 630 38.28 126.22 14.5 114 XBT 84180 630 38.31 126.16 18.47 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1019 38.49 125.52 15.0 122 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.56 14.7 119 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 115 39.00 15.1 122 XBT 84180 117 38.53 125.56 14.6 124 XBT 84180 117 38.53 125.56 14.6 125 XBT 84180 117 38.53 125.56 14.6 126 XBT 84180 117 38.53 125.56 14.6 127 XBT 84180 117 38.53 125.56 14.6 128 XBT 84180 1165 39.02 125.04 13.7 127 XBT 84180 1173 38.43 124.58 14.0 128 XBT 84180 1175 38.43 124.58 14.0 128 XBT 84180 1175 38.43 124.58 14.0 129 XBT 84180 1184 88.42 124.43 13.8 131 XBT 84180 216 38.57 124.43 13.8 131 XBT 84180 2216 38.57 124.43 13.8 133 XBT 84180 2216 38.17 124.27 12.2 134 XBT 84180 2216 38.07 124.22 11.4										_
96 XBT 84179 1005 37.50 124.40 12.8 97 XBT 84179 1055 37.44 124.45 13.0 98 XBT 84179 1150 37.38 124.55 13.2 100 XBT 84179 1244 37.31 124.55 13.2 100 XBT 84179 1340 37.25 125.06 13.5 101 XBT 84179 1530 37.25 125.06 13.5 102 XBT 84179 1630 37.25 125.01 13.0 103 XBT 84179 1630 37.25 125.12 12.3 104 XBT 84179 1630 37.27 125.28 13.8 105 XBT 84179 1843 37.23 125.18 13.5 104 XBT 84179 1843 37.23 125.36 13.7 106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84179 2345 37.47 126.06 14.1 111 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 30 38.28 126.37 14.7 116 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 126 38.57 125.35 14.7 123 XBT 84180 126 38.57 125.35 14.7 123 XBT 84180 126 38.57 125.35 14.7 124 XBT 84180 1323 39.01 125.56 14.6 124 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 126 38.57 125.35 14.7 128 XBT 84180 1323 39.01 125.25 15.0 121 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1323 39.01 125.26 14.6 128 XBT 84180 153 38.85 124.48 14.2 130 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1848 38.42 124.58 14.0 128 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1848 38.42 124.48 14.2 131 XBT 84180 216 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2216 38.07 124.22 11.4								33.17	11.1	33.48
97 XBT 84179 1055 37.44 124.45 13.0 98 XBT 84179 1150 37.38 124.55 13.2 100 XBT 84179 1244 37.31 124.55 13.2 100 XBT 84179 150 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.01 13.0 102 XBT 84179 1627 37.31 125.06 13.5 103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1930 37.20 125.26 13.7 106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84179 2345 37.47 126.06 14.1 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 330 38.28 126.37 14.7 116 XBT 84180 330 38.28 126.37 14.7 117 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1019 38.49 125.52 15.0 122 XBT 84180 125 38.53 125.47 15.0 124 XBT 84180 125 38.53 125.47 15.0 125 XBT 84180 126 38.53 125.47 15.0 126 XBT 84180 125 38.53 125.47 15.0 127 XBT 84180 125 38.53 125.47 15.0 128 XBT 84180 125 38.53 125.47 15.0 129 XBT 84180 125 38.53 125.47 15.0 120 XBT 84180 125 38.53 125.47 15.0 121 XBT 84180 125 38.53 125.47 15.0 122 XBT 84180 125 38.53 125.47 15.0 123 XBT 84180 1723 39.09 125.08 14.2 124 XBT 84180 1723 39.09 125.08 14.2 125 XBT 84180 1753 38.48 124.53 14.5 127 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.53 124.58 14.0 128 XBT 84180 1753 38.53 124.58 14.0 129 XBT 84180 1753 38.53 124.58 14.0 129 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 2118 38.22 124.38 13.3 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2118 38.22 124.38 13.3 134 XBT 84180 2118 38.22 124.38 13.3 135 XBT 84180 2118 38.22 124.38 13.3 134 XBT 84180 2118 38.07 124.22 11.4										
98										
99 XBT 84179 1244 37.31 124.55 13.2 100 XBT 84179 1340 37.25 125.01 13.0 101 XBT 84179 1530 37.25 125.01 13.5 102 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1843 37.23 125.36 13.7 106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 2345 37.47 126.06 14.1 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 43 38.01 126.17 14.4 113 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.27 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 126 38.53 125.47 15.0 122 XBT 84180 126 38.53 125.57 15.0 121 XBT 84180 126 38.53 125.57 15.0 122 XBT 84180 126 38.53 125.57 15.0 121 XBT 84180 126 38.53 125.47 15.0 122 XBT 84180 125 38.53 125.47 15.0 122 XBT 84180 125 38.53 125.47 15.0 123 XBT 84180 125 38.53 125.47 15.0 124 XBT 84180 1521 39.09 125.08 14.2 125 XBT 84180 1615 39.09 125.08 14.2 126 XBT 84180 1615 39.09 125.08 14.2 127 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.48 124.53 14.2 130 XBT 84180 2030 38.28 124.38 13.3 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2118 38.27 124.33 12.5 133 XBT 84180 2118 38.07 124.22 11.4										
100 XBT 84179 1340 37.25 125.01 13.0 101 XBT 84179 1430 37.19 125.06 13.5 102 XBT 84179 1530 37.25 125.12 12.3 103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1930 37.27 125.28 13.7 106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.12 14.3 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 630 38.28 126.32 14.8 115 XBT 84180 630 38.32 126.32 14.8 115 XBT 84180 730 38.37 126.18 14.7 116 XBT 84180 932 38.49 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1125 38.53 125.47 15.0 121 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 126 38.57 125.35 14.7 124 XBT 84180 1521 39.09 125.52 14.0 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1521 39.09 125.08 14.2 127 XBT 84180 1521 39.09 125.08 14.2 128 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1521 39.09 125.08 14.2 128 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1615 39.02 125.04 13.7 128 XBT 84180 1615 39.02 125.04 13.7 129 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1615 39.02 125.04 13.7 120 XBT 84180 1615 39.02 125.04 13.7 121 XBT 84180 1615 39.02 125.04 13.7 122 XBT 84180 1615 39.02 125.04 13.7 123 XBT 84180 1615 39.02 125.04 13.7 124 XBT 84180 1615 39.02 125.04 13.7 125 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1615 39.02 125.04 13.7 128 XBT 84180 1615 39.02 125.04 13.7 129 XBT 84180 1615 39.02 125.04 13.7 120 XBT 84180 1615 39.02 125.04 13.7 121 XBT 84180 1615 39.02 125.04 13.7 122 XBT 84180 1615 39.02 125.04 13.7 123 XBT 84180 1615 39.02 125.04 13.7 124 XBT 84180 1615 39.02 125.04 13.7 125 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1615 39.02 125.04 13.7 128 XBT 84180 1615 39.02 125.04 13.7 129 XBT 84180 1615 39.02 125.04 13.7 120 XBT 84180 1615 39.02 125.04 13.7 121 XBT 84180 1615 39.02 125.04 13.7 122 XBT 84180 1618 38.24 124.48 14.2 123 XBT 84180 2312 38.07 124.22 11.4										
101 XBT 84179 1430 37.19 125.06 13.5 102 XBT 84179 1530 37.25 125.12 12.3 103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1843 37.27 125.28 13.8 105 XBT 84179 1843 37.23 125.36 13.7 106 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.02 12.7 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 40 38.01 126.17 14.4 113 XBT 84180 425 38.08 126.22 14.5 114 XBT 84180 630 38.22 126.28 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.09 15.1 119 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 126 38.57 125.35 14.7 123 XBT 84180 1226 38.57 125.35 14.7 124 XBT 84180 1521 39.09 125.08 14.2 125 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.48 124.53 14.2 120 XBT 84180 1521 39.09 125.08 14.2 121 XBT 84180 1753 38.48 124.53 14.2 122 XBT 84180 1753 38.53 125.47 15.0 123 XBT 84180 1753 38.53 125.47 15.0 124 XBT 84180 1753 38.53 125.47 15.0 125 XBT 84180 1753 38.53 125.47 15.0 127 XBT 84180 1753 38.53 125.47 15.0 128 XBT 84180 1753 38.53 125.47 15.0 129 XBT 84180 1753 38.53 125.47 15.0 120 XBT 84180 1753 38.53 125.47 15.0 121 XBT 84180 1753 38.53 125.47 15.0 122 XBT 84180 1753 38.53 125.47 15.0 123 XBT 84180 1753 38.53 125.47 15.0 124 XBT 84180 1753 38.53 125.47 15.0 125 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.53 125.47 15.0 128 XBT 84180 1753 38.58 124.48 14.2 130 XBT 84180 1753 38.48 124.53 14.2 131 XBT 84180 1753 38.58 124.48 13.3 132 XBT 84180 1848 38.42 124.48 13.3 133 XBT 84180 2030 38.28 124.38 13.3 134 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2118 38.22 124.33 12.5 134 XBT 84180 2118 38.22 124.33 12.5 134 XBT 84180 2116 38.07 124.22 11.4										
102 XBT 84179 1630 37.25 125.12 12.3 103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1843 37.27 125.28 13.8 105 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2145 37.33 125.56 12.3 108 XBT 84179 2245 37.31 125.56 12.3 109 XBT 84179 2245 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.12 14.3 111 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 530 38.28 126.32 14.8 115 XBT 84180 630 38.22 126.32 14.8 115 XBT 84180 830 38.41										
103 XBT 84179 1627 37.31 125.18 13.5 104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.12 14.3 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 630 38.31 126.28 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1226 38.57 125.35 14.7 124 XBT 84180 125 38.53 125.47 15.0 125 XBT 84180 1226 38.57 125.35 14.7 127 XBT 84180 1226 38.57 125.35 14.7 128 XBT 84180 1226 38.57 125.04 13.7 127 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.53 124.58 14.0 128 XBT 84180 1753 38.53 124.58 14.0 128 XBT 84180 1753 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.58 14.0 128 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1848 38.42 124.48 14.2 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 218 38.25 124.43 13.8 131 XBT 84180 2118 38.22 124.38 13.3 132 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2118 38.22 124.38 13.3 134 XBT 84180 2118 38.22 124.38 13.3 135 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2118 38.07 124.22 11.4										
104 XBT 84179 1730 37.27 125.28 13.8 105 XBT 84179 1843 37.23 125.36 13.7 106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2345 37.47 126.06 14.1 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 530 38.22 126.32 14.8 115 XBT 84180 630 38.22 126.32 14.8 115 XBT 84180 630 38.32 126.28 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 932 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1226 38.57 125.35 14.7 124 XBT 84180 125 38.53 125.47 15.0 125 XBT 84180 126 38.57 125.35 14.7 127 XBT 84180 1226 38.57 125.35 14.7 128 XBT 84180 1521 39.09 125.06 14.6 124 XBT 84180 1521 39.09 125.06 14.6 124 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1521 39.09 125.08 14.2 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1733 38.48 124.53 14.2 129 XBT 84180 1733 38.48 124.53 14.2 129 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2030 38.28 124.38 13.3 133 XBT 84180 2030 38.28 124.38 13.3 134 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 218 38.07 124.22 11.4										
105										
106 XBT 84179 1930 37.20 125.40 13.9 107 XBT 84179 2040 37.26 125.50 13.3 108 XBT 84179 2145 37.33 125.56 12.3 109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 630 38.22 126.32 14.8 115 XBT 84180 630 38.32 126.28 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 932 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1521 39.09 125.08 14.2 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1723 38.53 124.58 14.0 129 XBT 84180 1723 38.53 124.58 14.0 127 XBT 84180 1723 38.53 124.58 14.2 128 XBT 84180 1723 38.53 124.58 14.2 129 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1723 38.53 124.58 14.0 129 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1723 38.53 124.58 14.0 129 XBT 84180 1723 38.53 124.58 14.2 130 XBT 84180 2030 38.28 124.38 13.3 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
107										
109 XBT 84179 2250 37.41 126.02 12.7 110 XBT 84179 2345 37.47 126.06 14.1 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 630 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 830 38.31 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 830 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 126 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 173 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 131 XBT 84180 1936 38.35 124.48 14.2 132 XBT 84180 1936 38.35 124.48 13.3 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4	107	XBT	84179	2040			13.3			
110 XBT 84179 2345 37.47 126.06 14.1 111 XBT 84180 43 37.54 126.12 14.3 112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1226 38.57 125.35 14.7 124 XBT 84180 1221 39.09 125.08 14.2 126 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1723 38.53 124.58 14.0 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1753 38.48 124.53 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4			84179		37.33	125.56				
111 XBT 84180										
112 XBT 84180 140 38.01 126.17 14.4 113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.48 13.3 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
113 XBT 84180 245 38.08 126.22 14.5 114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 932 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1521 39.05 125.17 13.9 125 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.48 13.3 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
114 XBT 84180 426 38.22 126.32 14.8 115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.43 13.8 131 XBT 84180 2118 38.22 124.43 13.8 133 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
115 XBT 84180 530 38.28 126.37 14.7 116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 2030 38.28 124.48 14.2 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
116 XBT 84180 630 38.32 126.28 14.7 117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 2030 38.28 124.43 13.8 131 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
117 XBT 84180 730 38.37 126.18 14.7 118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.38 13.3 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
118 XBT 84180 830 38.41 126.09 15.1 119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.58 14.0 128 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 2030 38.28 124.48 14.2 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
119 XBT 84180 932 38.45 126.00 15.2 120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
120 XBT 84180 1019 38.49 125.52 15.0 121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.58 14.0 128 XBT 84180 1848 38.42 124.48 14.2 129 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 2030 38.28 124.48 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
121 XBT 84180 1125 38.53 125.47 15.0 122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.58 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
122 XBT 84180 1226 38.57 125.35 14.7 123 XBT 84180 1323 39.01 125.26 14.6 124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
124 XBT 84180 1420 39.05 125.17 13.9 125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
125 XBT 84180 1521 39.09 125.08 14.2 126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4		XBT	84180	1323						
126 XBT 84180 1615 39.02 125.04 13.7 127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4						125.17				
127 XBT 84180 1723 38.53 124.58 14.0 128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
128 XBT 84180 1753 38.48 124.53 14.2 129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
129 XBT 84180 1848 38.42 124.48 14.2 130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
130 XBT 84180 1936 38.35 124.43 13.8 131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
131 XBT 84180 2030 38.28 124.38 13.3 132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
132 XBT 84180 2118 38.22 124.33 12.5 133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
133 XBT 84180 2216 38.14 124.27 12.2 134 XBT 84180 2312 38.07 124.22 11.4										
134 XBT 84180 2312 38.07 124.22 11.4										
- 135 XBT 84181 - 5 38.01 124.18 11.4	135	XBT	84181	5	38.07	124.22	11.4			

STN	TYPE	YR/DAY	GMT	LAT	LONG	SURFACE
				(NORTH)		
				(DD.MM)	(DDD.MM)	(DEG C)
136	XBT	84181	100	37.57	124.27	
137	XBT	84181	153	37.52	124.34	12.8
138	XBT	84181	250	37.48	124.43	13.2
139	XBT	84181	340	37.44	124.51	13.8
140	XBT	84181	440	37.40	125.00	13.9
141	XBT	84181	540	37.47	125.06	12.4
142	XBT	84181	640	37.54	125.11	13.1
143	XBT	84181	747		125.21	14.4
144	XBT	84181	847	38.08	125.25	
145	XBT	84181	947	38.15	125.26	14.3
146	XBT	84181	1045	38.14	125.20	14.4
147	XBT	84181	1147	38.12	125.10	14.4
148	XBT	84181	1247	38.10	124.57	13.8
149	XBT	84181	1352	38.07	124.45	13.3
150	XBT	84181	1508	38.05	124.37	11.5
151	XBT	84181	1618	38.03	124.27	11.4
152	XBT	84181	1720	38.01	124.18	12.8
153	XBT	84181	1895	37.54	124.15	13.0
154	XBT	84181	1900	37.47	124.12	13.3
155	XBT	84181	2000	37.43	124.03	13.4
156	XBT	84181	2057	37.39	123.55	13.4
157	XBT	84181	2217	37.33	123.43	13.1
158	XBT	84181	2333	37.28	123.33	13.0
159	XBT	84182	55	37.23	123.22	12.3
160	XBT	84182	215	37.17	123.11	12.5
161	XBT	84182	333	37.12	123.00	12.8
162	XBT	84182	454	37.06	122.50	13.1
163	XBT	84182	615	37.01	122.39	
164	XBT	84182	753	36.55	122.27	11.8
165	XBT	84182	980	36.50	122.16	11.0
166	XBT	84182	1025	36.45	122 07	11.6

CASA DAMASA TANSANA SERIA

Figure 17(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt. (OPTOMA11, Leg AII).

Figure 17(b).

Dashed lines are used if Figure 18(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. the cast was too shallow. (OPTOMAll, Leg AII).

Figure 21: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's. (OPTOMAll, Leg AII).

Figure 20: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMAll, Leg AII).

Figure 19(b).

Figure 19(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's. (OPTOMA11, Leg AII).

Figure 18(x).

Figure 18(u).

Figure 18(s).

Figure 18(t).

Figure 18(p).

Figure 18(q).

Figure 18(r).

Figure 18(m).

Figure 18(n).

Figure 18(o).

Figure 18(f).

Figure 18(g).

Figure 18(h).

(OPTOMA11, Leg AII). Figure 22: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA) Selected sigma-t contours are also shown.

Figure 23: Mean N^2 profile (---), with + and - the standard deviation (----). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (\cdots) . (OPTOMA11, Leg AII).

Section 3
OPTOMAll Leg AIII
5 - 13 July, 1984

Figure 24: The cruise track for OPTOMAll, Leg AIII.

Figure 25: XBT and CTD locations for OPTOMA11, Leg AIII.

Figure 26: Station numbers for OPTOMA11, Leg AIII.

Table 4: Leg AIII Station Listing

STN	TYPE	YR/DAY	GMT	LAT	LONG	SURFACE	SURFACE BUCKET BOTTLE
		•		(NORTH)	(WEST)	TEMP	SALINITY TEMP SALINITY
				(DD.MM)	(DDD.MM)	(DEG C)	(PPT) (DEG C) (PPT)
	***	0/107	1703	26 62	122 06	1/. 0	
1	XBT	84187	1723	36.42	122.06 122.17	14.0 14.7	
2	XBT	84187	1835	36.46 36.50	122.17	14.7	
3	XBT	84187	1949	36.54	122.29	15.1	
4	XBT	84187	2108		122.41	14.9	
5	XBT	84187	2218	36.58 37.01	123.04	15.0	
6	XBT	84187	2336		123.04	13.0	
7	XBT	84188	49	37.05		13.9	
8	XBT	84188	201	37.09	123.27		
9	XBT	84188	318	37.13	123.39	13.7 13.6	
10	XBT	84188	435	37.16	123.50		
11	XBT	84188	603	37.20	124.01	14.5	
12	XBT	84188	741	37.24	124.14	13.9	
13	XBT	84188	1016	37.29	124.25	13.9	
14	XBT	84188	1557	37.35	124.33	13.6	
15	XBT	84188	2221	37.42	124.42	13.7	
16	XBT	84189	1846	37.40	125.00	13.8	
17	XBT	84189	2021	37.36	125.09	14.0	
18	XBT	84189	2201	37.31	125.18	13.9	
19	XBT	84189	2338	37.27	125.27	13.5	
20	XBT	84190	110	37.23	125.36	13.5	33 28 * *
21	CTD	84190	255	37.19	125.44	13.2	33.28 * *
22	XBT	84190	532	37.26	125.50	13.9	
23	XBT	84190	1055	37.33	125.56	11.8	
24	XBT	84190	1701	37.40	126.03	12.6	
25	XBT	84191	31	37.47	126.06	14.2	
26	XBT	84191	550	37.54	126.12	14.4	
27		84191	1116	38.01	126.17	14.8	
28	XBT	84191	1607	38.08	126.22	14.6	
29	XBT	84191	2106	38.15	126.27	14.5	
30		84192	155	38.22	126.32	14.9 14.7	
31	XBT	84192	616	38.28	126.37 126.27	14.7	
32		84192	1013		126.27	14.8	
33		84192	1443 1853		126.20	15.1	
34		84192	1033		126.00	15.1	
35		84193	400		125.53	15.1	
36		84193	857		125.43	14.9	
37		84193	1310		125.43	14.0	
38		84193	1803		125.33	13.9	
39		84193 84193	1845		125.20	14.0	
40			1941		125.22	13.4	
41		84193 84193	2036		125.16		
42 43		84193	2106		125.14		
43		84193	2122		125.10		
44		84193	2227		125.05		
43	VDI	07173	2421	50.10	123.03	10.7	

^{*} Data not available

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	SURFACE BUCKET BOTTLE SALINITY TEMP SALINITY (PPT) (DEG C) (PPT)
46	XBT	84193	2333	38.08	125.01	12.6	
47	XBT	84194	34	38.02	124.57	12.8	
48	XBT	84194	140	37.54	124.52	13.3	
49	XBT	84194	247	37.46	124.48	13.5	
50	XBT	84194	910	37.53	124.55	13.3	
51	XBT	84194	1759	37.46	124.52	13.3	
52	XBT	84194	1928	37.38	124.45	13.6	
53	XBT	84194	2058	37.30	124.39	13.6	
54	XBT	84194	2235	37.21	124.31	13.1	
55	XBT	84194	2358	37.14	124.24	13.0	
56	XBT	84195	200	37.03	124.16	13.5	
57	XBT	84195	346	37.05	124.07	13.6	
58	XBT	84195	609	37.11	123.55	13.1	
59	XBT	84195	815	37.17	123.43	12.8	
60	XBT	84195	1018	37.22	123.32	12.8	
61	XBT	84195	1209	37.27	123.21	13.8	
62	XBT	84195	1331	37.20	123.11	12.9	

Figure 28: CTD temperature and salinity profiles. (OPTOMA11, Leg AIII).

Figure 29(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMAll, Leg AIII).

Figure 29(b).

Figure 29(c).

HYDROGRAPHIC DATA FROM THE OPTOMA (OCEAN PREDICTION THROUGH OBSERVATIONS. (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA P A WITTMANN ET AL. MAR 85 MPS-68-85-011 F/G 8/3 AD-A154 866 2/3 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Figure 29(d).

Figure 29(e).

Figure 30: Mean temperature profile, with + and - the standard deviation. (OPTOMA11, Leg AIII).

THIS PAGE INTENTIONALLY LEFT BLANK

Section 4 OPTOMA11 Leg DI 23 - 30 June 1984

Figure 31: The cruise track for OPTOMA11, Leg DI.

Figure 32: XBT and CTD locations for OPTOMA11, Leg DI.

Figure 33: Station numbers for OPTOMA11, Leg DI.

Table 5: Leg DI Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SALINIT		SALINITY
1	XBT	84175	1556	42.48	125.49	14.1			
2	XBT	84175	1625	42.43	125.51	14.1			
3	CTD	84175	2341	41.55	126.09	13.5	31.90	*	*
4	XBT	84176	103	41.18	126.30	12.7			
5	XBT	84176	156	41.10	126.34	13.5			
6	XBT	84176	236	41.03	126.38	13.7			
7	XBT	84176	330	40.54	126.45	14.1			
8	CTD	84176	443	40.49	126.50	14.0	32.68	14.1	32.67
9	XBT	84176	553	40.43	126.54	13.9			
10	XBT	84176	647	40.33	127.02	14.0			
11	XBT	84176	746	40.24	127.06	14.1			
12	XBT	84176	806	40.20	127.12	14.1			
13	XBT	84176	855	40.27	127.15	14.2			
14	XBT	84176	938	40.33	127.22	14.0			
15	XBT	84176	1026	40.42	127.25	14.3	20 (0	1/ 0	20 (0
16	CTD	84176	1130	40.49	127.30	14.2	32.68	14.2	32.68
17	XBT	84176	1247	40.41	127.35	14.2			
18	XBT	84176	1327	40.34	127.42	14.2			
19	XBT	84176	1418	40.27	127.45	14.2	22 97	14.4	22 00
20	CTD	84176	1510	40.19	127.52 127.44	14.4	32.87	14.4	32.89
21 22	XBT XBT	84176 84176	1642 1736	40.11 40.01	127.44	14.5 14.4			
23	XBT	84176	1824	39.53	127.36	14.4			
24	CTD	84176	1938	39.44	127.34	14.1	32.48	14.3	32.47
25	XBT	84176	2050	39.35	127.30	14.1	32.40	14.5	32.71
26	XBT	84176	2142	39.26	127.24	14.1			
27	XBT	84176	2239	39.18	127.13	14.2			
28	CTD	84177	10	39.11	127.10	14.7	32.79	14.6	32.83
29	XBT	84177	305	39.19	127.07	14.6	32.77	14.0	32.03
30	XBT	84177	356	39.28	127.04	13.9			
31	XBT	84177	438	39.35	127.02	14.2			
32	CTD	84177	634	39.45	127.00	14.0	32.47	14.0	*
33	XBT	84177	739	39.53	126.54	14.1			
34	XBT	84177	851	40.02	126.47	14.2			
35	XBT	84177	953	40.11	126.38	14.3			
36	CTD	84177	1105	40.20	126.30	14.1	32.66	14.2	32.68
37	XBT	84177	1243	40.11	126.26	14.4			
38	XBT	84177	1335	40.01	126.22	14.0			
39	XBT	84177	1419	39.52	126.20	14.1			
40	CTD	84177	1527	39.44	126.18	13.8	32.36	13.8	32.41
41	XBT	84177	1646	39.35	126.12	14.0			
42	XBT	84177	1739	39.27	126.03	13.8			
43	XBT	84177	1844	39.18	125.55	13.7			
44	CTD	84177	2010	39.10	125.48	13.7	32.45	13.7	32.49
45	XBT	84177	2302		125.43	14.2			

^{*} Data not available

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP	SURFACI	E BUCKET	BOTTLE
						(DEG C)	(PPT)	(DEG C)	SALINITY (PPT)
46	XBT	84177	2350	39.26	125.40	14.3			
47	XBT	84178	55	39.37	125.35	12.8			
48	CTD	84178	135	39.42	125.32	12.8	33.02	12.6	33.05
49	XBT	84178	306	39.51	125.26	13.5		-2.0	50.05
50	XBT	84178	400	40.00	125.21	13.8			
51	XBT	84178	501	40.11	125.18	13.2			
52	CTD	84178	615	40.20	125.10	12.8	32.79	13.0	32.77
53	XBT	84178	631	40.20	125.10	12.9			
54	XBT	84178	743	40.10	125.05	13.0			
55	XBT	84178	834	40.02	124.59	13.5			
56	XBT	84178	936	39.53	124.53	13.4			
57	CTD	84178	1110	39.42	124.50	14.0	32.66	14.0	32.70
58	XBT	84178	1242	39.34	124.55	13.9			
59 60	XBT XBT	84178	1325	39.26	125.00	14.0			
61	CTD	84178 84178	1418 1513	39.18	125.05	13.9	20 50		
62	XBT	84178	1835	39.11	125.10	13.6	32.50	13.8	32.51
63	XBT	84178	1928	39.14 39.16	124.57 124.47	14.1			
64	XBT	84178	2050	39.16	124.47	14.1 14.4			
65	CTD	84178	2125	39.29	124.38	14.4	32.59	14.5	22 (4
66	XBT	84178	2300	39.21	124.20	13.9	32.39	14.5	33.64
67	XBT	84179	3	39.10	124.10	11.9			
68	XBT	84179	56	39.01	124.03	11.1			
69	CTD	84179	219	38.54	123.53	11.0	33.42	10.8	33.44
70	XBT	84179	335	38.48	124.07	11.7		10.0	33.44
71	CTD	84179	439	38.44	124.18	11.2	33.31	11.5	33.35
72	XBT	84179	511	38.44	124.18	11.2			30.03
73	XBT	84179	607	38.37	124.31	13.1			
74	CTD	84179	705	38.29	124.40	14.1	32.64	14.3	33.70
75	XBT	84179	746	38.29	124.40	14.2			
76	XBT	84179	906	38.34	124.29	12.4			
77 79	XBT	84179	1019	38.33	124.20	11.6			
78 79	CTD	84179	1110	38.35	124.14	12.1	33.50	12.2	33.51
80	XBT XBT	84179	1252	38.38	124.00	11.6			
81	XBT	84179 84179	1346 1438	38.39	123.47	10.7			
82	CTD	84179	1539	38.39	123.34	9.7	22 44	10.0	
83	XBT	84179	1725	38.37 38.30	123.40 123.56		33.44	10.9	33.44
84	CTD	84179	1810	38.26	123.36	11.4 11.9	33 /7	11 7	_
85	XBT	84179	2011	38.19	124.04	12.0	33.47	11.7	*
86	XBT	84179	2244	38.17	124.17	12.0			
87	CTD	84180	22	38.19	124.02		33.33	12.1	33.30
88	XBT	84180	128	38.20	123.52	11.8		16.1	JJ.JU
89	XBT	84180	215	38.22	123.42	11.7			
90	XBT	84180	300	38.24	123.31	10.1			

^{*} Data not available

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)		SURFACE TEMP (DEG C)	SALINIT		SALINITY
91	XBT	84180	350	38.23	123.23	9.6			
92	XBT	84180	414	38.22	123.25	10.0			
93	XBT	84180	546	38.15	123.38	11.5			
94	CTD	84180	735	38.11	123.47	11.2	33.37	11.5	33.39
95	XBT	84180	905	38.06	124.00	10.8			
96	XBT	84180	1005	38.03	124.06	11.3	22 -1		22 55
97	CTD	84180	1125	37.59	124.15	11.5	33.54	11.5	33.55
98	XBT	84180	1314	38.00	124.03	11.2			
99	XBT	84180	1415	38.02	123.52	10.4			
100	XBT	84180	1805	38.12	123.13	9.9	22 66	0 0	*
101	CTD	84180	1939	38.07	123.21	9.6	33.64	9.9	
102	XBT	84180	2116	37.58	123.12 123.03	10.3 11.0			
103	XBT	84180	2214	37.51	123.03	11.0			
104	XBT	84180	2314 15	37.42 37.37	122.34	11.5			
105 106	XBT XBT	84181 84181	114	37.34	123.00	12.5			
107	XBT	84181	214	37.33	123.12	12.6			
108	XBT	84181	314	37.32	123.24	13.3			
109	XBT	84181	414	37.31	123.51	13.3			
110	XBT	84181	515	37.32	124.06	13.2			
111	XBT	84181	613	37.32	124.16	13.3			
112	XBT	84181	718	37.32	124.30	13.8			
113	XBT	84181	821	37.32	124.47	13.6			
114	XBT	84181	914	37.32	124.58	13.7			
115	XBT	84181	1007	37.32	125.11	13.8			
116	XBT	84181	1114	37.33	125.25	13.6			
117	XBT	84181	1214	37.32	125.34	13.9			
118	XBT	84181	1315	37.33	125.41	12.6			
119	CTD	84180	1600	37.35	125.52	12.6	33.30	12.6	32.30
120		84181	1814	37.22	125.45	12.5			
121		84181	1927	37.10	125.38	14.0			
122		84181	2036	37.02	125.35	15.1	32.76	15.3	32.80
123		84181	2314	37.00	125.21	14.9			
124		84182	14	37.01	125.08	14.2	20 74	12 0	20 00
125		84182	225	37.00	124.49		32.76	13.9	32.82
126		84182	400		124.40	13.3			
127	XBT	84182	500	36.58	124.23	13.1			

^{*} Data not available

Figure 37(g).

Figure 37(h).

Figure 37(e).

Figure 37(f).

station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMAll, Leg DI).

Figure 36: CTD casts to 3000m. Temperature profiles are staggered by multiples of 5C and salinity profiles by 4 ppt. (OPTOMA11, Leg DI).

Figure 35(c).

Figure 35(b).

Figure 35(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt. (OPTOMA11, Leg DI).

Figure 37(p).

Figure 38(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's. Dotted lines are used if the cast was too shallow. (OPTOMA11, Leg DI).

Figure 38(b).

Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard (OPTOMA11, Leg DI). Figure 39: deviation.

(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from Selected sigma-t contours are also shown. (OPTOMA11, Leg DI). Figure 41: the CTD's.

Figure 42: Mean N^2 profile (---), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (---). (OPTOMA11, Leg DI).

Section 5
OPTOMAll Leg DII
30 June - 10 July, 1984

Figure 43: The cruise track for OPTOMA11, Leg DII. The second traversal of the interior semi-diagonals is shown as a broken line.

Figure 44: XBT and CTD locations for OPTOMAll, Leg DII.

Figure 45: Station numbers for OPTOMA11, Leg DII.

Table 6: Leg DII Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)		SURFACE TEMP (DEG C)	SALINI	TEMP	SALINITY
1 2 3 4 5 6 7 8 9 10 11 12	XBT XBT XBT XBT XBT XBT XBT XBT XBT XBT	84183 84183 84183 84183 84183 84183 84183 84183 84183	113 200 300 407 503 603 700 815 906 1014 1105 1243	36.47 36.53 36.59 37.04 37.09 37.15 37.21 37.28 37.33 37.37 37.42	122.10 122.21 122.31 122.41 122.50 122.58 123.06 123.17 123.25 123.37 123.45 123.59	11.2 11.6 11.6 11.9 11.8 12.0 12.3 12.2 12.9 13.0 12.6 12.4			
13 14 15 16 17 18 19 20 21 22 23 24 25 26	XBT CTD XBT XBT XBT XBT XBT XBT XBT XBT XBT XBT	84183 84183 84183 84183 84184 84184 84184 84184 84184 84184 84184 84184 84184	1350 1514 1722 2036 2210 19 430 806 1106 1705 1800 1850 1957 2022 2102	37.57 38.01 38.09 38.28 38.34 38.45 38.54 39.02 39.09 39.02 38.52 38.52 38.43 38.32	124.10 124.17 124.24 124.38 124.45 125.01 125.04 125.11 125.19 125.21 125.23 125.27 125.28 125.28	12.7 13.0 11.1 12.0 13.3 14.1 13.8 13.9 14.0 14.0 14.2 13.8 14.0	33.49	13.5	33.50
28 29 30 31	XBT CTD XBT XBT	84184 84184 84184 84185	2139 2224 2344 228	38.15 38.10 38.00 37.30	125.28 125.31 125.36 125.43	14.2 13.8 13.8 13.6	32.62	14.4	*
32 33 34 35 36 37 38	CTD XBT XBT XBT XBT XBT XBT	84185 84185 84185 84185 84185 84185	335 700 800 900 1000 1122 1206	37.20 37.30 37.35	125.43 125.21 125.13 125.04 124.52 124.40 124.28	13.2 13.6 13.7	33.44	13.5	33.04
39 40 41 42 43 44	CTD XBT XBT XBT XBT XBT XBT CTD	84185 84185 84185 84185 84185 84185 84185	1313 1444 1544 1636 1722 1810 1938	38.01 38.03 38.03 38.05 38.05 38.07 38.10	124.26 124.16 124.30 124.44 124.59 125.08 125.21 125.31	13.8 13.6 11.8 12.2 13.9 14.1	33.45	14.0	32.68

^{*} Data not available

3TN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)			SALINIT		BOTTLE SALINITY (PPT)
46 47 48 49 50 51 52 53	XBT XBT XBT CTD XBT XBT XBT XBT	84185 84186 84186 84186 84186 84186 84186 84186	2158 2302 6 102 134 248 426 514 619	38.14 38.18 38.22 38.25 38.28 38.31 38.38 38.43 38.43	125.54 126.06 126.23 126.28 126.37 126.32 126.15 126.05 125.54	14.2 14.7 14.6 14.6 14.4 14.5 14.7	32.66	14.8	32.69
55 56 57 58 59 60 61 62	XBT XBT XBT CTD XBT XBT XBT XBT	84186 84186 84186 84186 84186 84186 84186	739 850 930 1122 1226 1336 1434 1534	38.55 39.00 39.03 39.09 39.02 38.48 38.38 38.28	125.42 125.31 125.20 125.11 125.10 125.17 125.20 125.24	15.1 14.7 14.5 14.5 14.3 14.2 14.4	32.56	14.6	32.59
63 64 65 66 67 68 69 70	XBT CTD XBT XBT XBT XBT XBT CTD	84186 84186 84186 84186 84186 84186 84186	1627 1716 1910 2000 2055 2135 2230 2311	38.19 38.09 38.13 38.15 38.19 38.21 38.25 38.28	125.24 125.32 125.46 125.56 126.12 126.17 126.28 126.37	14.5 14.3 14.1 14.8 14.8 14.7 14.9	32.64	14.9 15.2	* 32.70
71 72 73 74 75 76 77	XBT XBT XBT XBT XBT XBT XBT	84187 84187 84187 84187 84187 84187	44 138 221 319 430 517 621	38.25 38.18 38.14 38.13 38.10 38.08 38.05	126.49 126.58 127.02 126.50 126.35 126.23 126.30	14.9 14.6 14.7 14.5 14.4 14.4	32.07	13.2	32.70
78 79 80 81 82 83	XBT CTD XBT XBT XBT XBT	84187 84187 84187 84187	722 800 1021 1134 1300 1346 1427	38.01 38.00 37.55 37.53 37.52 37.48 37.44	126.43 126.50 126.38 126.24 126.12 126.20	13.9 14.1 13.4 13.0 14.0 13.4	32.63	14.4	32.64
85 86 87 88 89 90	CTD XBT XBT XBT XBT XBT	84187 84187 84187 84187 84187 84187	1526 1733 1816 1933 2013 2058	37.40 37.38 37.38 37.35 37.32 37.28	126.37 126.21 126.11 126.00 126.08 126.15	12.1 12.1 11.9 12.5 12.3 13.8	32.73	13.3	32.67

^{*} Data not available

Figure 50(d).

Figure 50(e).

Figure 50(b).

Figure 50(c).

Figure 50(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA11, Leg DII).

Figure 49: Nearshore CTD casts plotted to 500m or less. (OPTOMA11, Leg DII).

Figure 48: CTD casts deeper than 800m. (OPTOMA11, Leg DII).

Figure 47(c).

Figure 47(b).

Figure 47(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt. (OPTOMAIL, Leg DII).

Figure 46(d).

Figure 46(c).

Figure 46(b).

(OPTOMA11, Leg DII). Figure 46(a): XBT temperature profiles, staggered by multiples of 5C.

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SURFACI SALINI (PPT)	E BUCKET TY TEMP (DEG C)	SALINITY
136	XBT	84191	55	36.52	122.09	14.2			
137	XBT	84191	202	37.00	122.19	13.4			
138	CTD	84190	247	37.02	122.23	12.5	33.70	12.8	33.47
139	XBT	84191	440	37.04	122.41	12.8			
140	XBT	84191	607	37.05	122.57	14.0			
141	CTD	84191	814	37.09	123.15	14.2	33.25	14.3	33.26
142	CTD	84191	1314	37.21	123.16	12.5	33.52	*	*
143	XBT	84191	1921	37.33	123.18	12.8			
144	XBT	84191	2239	37.47	123.23	12.4			
145	XBT	84192	122	37.59	123.21	11.7			
146	CTD	84192	318	38.08	123.21	10.6	33.73	10.2	33.75
147	CTD	84192	411	38.03	123.15	12.7	33.60	10.8	33.38
148	XBT	84192	538	37.56	123.08	11.9			
149	CTD	84192	710	37.48	123.00	11.8	33.70	12.0	*

^{*} Data not available

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SALINI		SALINITY
91 92 93	CTD XBT	84187 84187	2139 2344	37.24 37.21	126.24 126.10	13.9 14.2	33.37	14.0	*
94 95	XBT CTD XBT	84188 84188 84188	36 144 402	37.20 37.19 37.12	126.00 125.46 126.00	14.0 14.0 14.1	33.39	*	*
96 97 98	XBT XBT CTD	84188 84188 84188	502 556 721	37.07 37.03 36.59	126.09 126.19 126.33	14.5 15.0 15.4	32.91	15.3	32.94
99 100 101	XBT XBT CTD	84188 84188 84188	944 1044 1134	36.42 36.32 36.24	126.21 126.15 126.13	15.7 15.5 15.5	32.88	15.4	33.33
102 103 104	XBT XBT CTD	84188 84188 84188	1328 1410 1510	36.17 36.10 36.00	126.06 126.01 125.55	15.5 15.4 15.6	32.90	15.9	32.76
105 106 107	XBT XBT XBT	84188 84188 84188	1744 2025 2308	36.08 36.17 36.29	125.50 125.44 125.39	15.4 15.6 15.5			
108 109 110	CTD XBT XBT	84189 84189 84189	100 346 531	36.39 36.49 36.57	125.34 125.27 125.22	15.5 14.5 14.3	32.88	15.8	32.91
111 112 113	CTD XBT CTD	84189 84189 84189	752 1056 1300	37.05 37.13 37.20	125.17 125.13 125.11	12.8 13.4 12.8	32.91 33.25	12.7 13.0	32.91 33.28
114 115 116	XBT XBT XBT	84189 84189 84189	1436 1543 1649	37.12 37.04 36.56	124.59 124.48 124.39	13.1 13.9 14.2			
117 118 119	XBT CTD XBT	84189 84189 84189	1755 1919 2136	36.50 36.39 36.51	124.31 124.16 124.12	13.1 13.4 14.1	32.97	13.7	32.98
120 121 122	XBT XBT CTD	84189 84190 84190	2342 110 300	37.00 37.09 37.20	124.05 124.01 123.58	14.0 13.9 13.3	33.43	13.0	33.28
123 124 125	XBT XBT XBT	84190 84190 84190	440 534 634		123.53 123.49 123.45	14.4 13.9 14.7			
126 127 128	XBT XBT XBT	84190 84190 84190	731 923 1057	36.41 36.50 37.00	123.40 123.34 123.30	14.6 14.7 14.7			
129 130 131	XBT XBT CTD	84190 84190 84190	555 1400 1510	37.09 37.05 37.00	123.24 123.13 123.01	14.2 14.0 14.4	33.21	14.3	33.23
132 133 134 135	XBT XBT XBT XBT	84190 84190 84190 84190	1719 1814 1932 2014	36.56 36.52 36.47 36.45	122.48 122.37 122.21 122.12	14.0 13.3 13.9 14.1			
199	VDI	04170	2014	30.73	166.16	14.1			

^{*} Data not available

Figure 50(f).

Figure 50(g).

Figure 50(h).

Figure 50(i).

Figure 50(j).

Figure 50(m).

Figure 50(1).

Figure 50(n).

Figure 50(o).

Figure 50(p).

Figure 50(q).

Figure 50(r).

Figure 50(s).

Figure 50(t).

Figure 50(w).

Figure 50(z).

Figure 51(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's. (OPTOMA11, Leg DII).

Figure 51(b).

Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard (OPTOMAI1, Leq DII). Figure 52: deviation.

Figure 53: Mean profiles of (a) salintiy and (b) sigma-t, with + and - the standard deviations, from the CTD's. (OPTOMAll, Leg DII).

Figure 54: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMAll, Leg DII).

Figure 55: Mean N^2 profile (---), with + and - the standard deviation (----). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown(---). (OPTOMAll, Leg DII).

Figure 59(f).

Figure 59(e).

Figure 59(c).

Figure 59(b).

(OPTOMAll, Leg DIII). Figure 59(a): XBT temperature profiles, staggered by multiples of 5C.

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	TEMP	SALINIT	TEMP	BOTTLE SALINITY (PPT)
136 137 138 139 140 141	XBT XBT XBT XBT XBT XBT	84217 84217 84217 84217 84217 84217	51 147 247 331 417 431	38.19 38.28 38.35 38.40 38.44 38.41	126.18 126.21 126.28 126.35 126.41 126.41	15.6 16.1 15.7 16.0 16.3 16.2			
142 143 144 145 146 147	XBT CTD XBT XBT XBT XBT	84217 84217 84217 84217 84217 84217	605 625 843 950 1034 1139	38.29 38.28 38.20 38.09 38.02 37.54	126.38 126.39 126.33 126.26 126.20 126.15	16.2 16.4 16.0 15.6 15.6 15.8	32.48	16.1	32.52
148 149 150 151 152 153	XBT CTD XBT XBT XBT XBT	84217 84217 84217 84217 84217 84217	1147 1405 1452 1552 1658 1730	37.54 37.54 37.46 37.37 37.28 37.21	126.15 126.15 126.08 126.01 125.55 125.49	14.4 14.8 13.4 14.8 15.3	32.54	15.0	32.63
154 155 156 157 158 159	CTD XBT XBT XBT XBT XBT	84217 84217 84217 84217 84217 84217	1735 1800 2102 2141 2255 2349	37.21 37.21 37.10 37.14 37.19 37.23	125.51 125.51 125.41 125.34 125.21 125.13	15.3 15.2 15.5 15.0 15.3 14.8	33.18	15.5	33.22
160 161 162 163 164	XBT CTD XBT XBT XBT	84218 84218 84218 84218 84218	40 45 219 303 409	37.28 37.28 37.33 37.36 37.41	125.05 125.05 124.55 124.47 124.38	14.9 14.5 15.0 14.2 15.0	32.71	14.7	*
165 166 167 168 169	CTD XBT XBT CTD XBT	84218 84218 84218 84218 84218	418 531 625 738 746	37.41 37.44 37.48 37.52 37.52	124.38 124.28 124.20 124.13 124.13	14.6 14.5 14.4 14.5 14.9	33.31 33.50	14.7	*
170 171 172 173 174 175 176	XBT XBT XBT XBT XBT XBT XBT	84218 84218 84218 84218 84218 84218	910 1002 1102 1203 1302 1406 1518	37.46 37.40 37.34 37.28 37.21 37.15 37.08	123.59 123.48 123.37 123.25 123.14 123.02 122.48	14.2 13.6 12.6 13.3 13.8 14.5			
177 178 179	XBT XBT XBT	84218 84218 84218	1602 1716 1808	37.03 36.56 36.50	122.40 122.26 122.17	14.9 13.7 13.2			

^{*} Data not available

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	TEMP	SURFACE BUCKET BOTTLE SALINITY TEMP SALINITY (PPT) (DEG C) (PPT)		
91 92 93 94 95	XBT XBT CTD XBT	84215 84215 84215 84215 84215	109 218 330 335	38.42 38.51 38.58 38.58	125.22 125.29 125.34 125.34	14.5 13.2 14.4 14.7	32.60	14.6	32.68
96 97 98 99	XBT CTD XBT XBT XBT	84215 84215 84215 84215 84215	527 602 705 756 853	38.53 38.51 38.44 38.35 38.26	125.41 125.46 125.42 125.36 125.29	15.1 15.6 14.5 14.5	32.46	15.4	32.52
100 101 102 103	XBT XBT XBT XBT	84215 84215 84215 84215	944 1046 1118 1243	38.18 38.09 38.00 37.51	125.22 125.14 125.11 125.02	14.0 14.4 15.1 14.4			
104 105 106 107	XBT CTD XBT XBT	84215 84215 84215 84215	1336 1500 1519 1747	37.43 37.37 37.38 37.46	124.57 125.10 125.11 125.16	14.2 14.2 14.4 14.6	32.84	14.4	32.93
108 109 110 111 112	XBT XBT CTD XBT CTD	84215 84215 84215 84216 84216	1855 2003 2130 100 105	37.54 38.04 38.14 38.20 38.20	125.21 125.27 125.37 125.41 125.41	14.4 14.6 14.5 14.8 14.7	33.45 33.41	15.0 15.0	33.49
113 114 115 116	XBT XBT XBT CTD	84216 84216 84216 84216	322 430 553 700	38.31 38.39 38.44 38.40	125.49 125.54 126.01 126.15	14.8 15.4 15.7 15.6	32.44	15.7	32.49
117 118 119 120	XBT XBT XBT XBT	84216 84216 84216 84216	725 910 1013 1055	38.39 38.30 38.20 38.14	126.15 126.09 126.02 125.56	15.7 15.8 15.7 14.9			
121 122 123 124	XBT XBT XBT	84216 84216 84216 84216	1244 1200 1339 1435	38.07 38.07 37.58 37.49	125.49 125.49 125.43 125.37	14.6 14.9 14.8 14.6	33.45	14.7	33.49
125 126 127 128	XBT XBT XBT CTD	84216 84216 84216 84216	1530 1619 1730 1735	37.40 37.32 37.26 37.26	125.31 125.25 125.38 125.38	14.3 15.1 15.0	33.01	15.5	33.04
129 130 131 132 133	XBT XBT XBT XBT XBT	84216 84216 84216 84216 84216	1810 1900 1955 2102 2203	37.26 37.33 37.40 37.48 37.56	125.38 125.43 125.49 125.54 126.02	15.4 15.2 14.5 13.4 14.7			
134 135	XBT XBT	84216 84217	2255	38.03 38.12	126.07 126.14	13.4 16.2			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM		SURFACE BUCKET BOTTLE SALINITY TEMP SALINITY (PPT) (DEG C) (PPT)		
46	CTD	84212	950	38.55	124.23	13.2	33.48	13.4	33.45
47 48	XBT CTD	84212 84212	1144 1240	38.47 38.41	124.18 124.13	13.7 13.5	33.50	13.6	33.53
49 50	XBT CTD	84212 84212	1396 1502	38.32 38.27	124.08 124.05	13.1 13.3	33.48	13.3	33.50
51	XBT	84212	1642	38.19	123.58	13.8	33.40	13.3	33.30
52	XBT	84212	1814	38.12	123.55	13.7			
53	XBT	84212	1858	38.10	124.01	14.2			
54 55	XBT XBT	84212 84212	1942 2036	38.17 38.24	124.06 124.11	14.0 13.9			
56	XBT	84212	2127	38.30	124.11	14.0			
57	XBT	84212	2221	38.38	124.20	14.2			
58	XBT	84212	2317	38.45	124.26	14.3			
59	XBT	84213	14	38.51	124.31	13.1			
60	XBT	84213	106	38.59	124.36	14.0			
61	XBT	84213	203	39.06	124.40	12.2			
62 63	XBT XBT	84213 84213	256 403	39.12 39.18	124.45 124.49	11.4 12.3			
64	XBT	84213	542	39.11	124.53	11.3			
65	XBT	84213	638	39.01	124.49	12.7			
66	XBT	84213	718	38.55	124.41	13.5			
67	XBT	84213	839	38.47	124.39	13.8			
68	XBT	84213	930	38.40	124.33	14.0			
69	XBT	84213	1011	38.33	124.27	14.1			
70 71	XBT XBT	84213 84213	1219 1432	38.38 38.43	124.39 124.48	14.3			
72	XBT	84213	1755	38.57	124.46	14.1 12.9			
73	XBT	84213	1933	39.04	125.02	12.6			
74	XBT	84213	2111	39.11	125.09	12.5			
75	XBT	84213	2238	39.06	125.21	12.8			
76	XBT	84213	2336	38.55	125.15	14.2			
77	XBT	84214	23	38.48	125.10	13.8			
78 79	XBT XBT	84214 84214	115 211	38.40 38.32	125.04 124.57	14.2 14.1			
80	XBT	84214	314		124.50	14.1			
81	CTD		431	38.13	124.42	14.2	33.29	14.2	*
82	XBT		600	38.04	124.37				
83	XBT		655	37.55	124.29				
84	XBT		830	37.43	124.35	14.8			
85	XBT	84214	1243	37.50	124.43	14.5			
86 87	XBT XBT	84214 84214	1514	37.59 38.07	124.49 124.55	14.5 14.6			
88	XBT	84214	1755 1942	38.15	124.33	14.6			
89	CTD	84214	2211	38.25	125.04		33.34	15.0	33.44
90	XBT	84215	0	38.33	125.16		2 - · ·	•	

^{*} Data not available

Table 7: Leg DIII Station Listing

STN	TYPE	YR/DAY	GMT	LAT	LONG	SURFACE			
				(NORTH)	(WEST)	TEMP	SALINIT		SALINITY
				(DD.MM)	(MM . עטע)	(DEG C)	(PPT)	(DEG C)	(PPT)
1	XBT	84210	81	37.52	122.52	13.7			
2	XBT	84210	150	37.57	123.04	13.5			
3	XBT	84210	622	38.06	123.12	12.4			
4	XBT	84210	1031	38.15	123.21	11.8			
5	CTD	84210	1532	38.25	123.29	10.7	33.68	11.3	33.72
6	XBT	84210	1730	38.31	123.34	11.5			
7	CTD	84210	1927	38.41	123.41	12.6	33.49	13.1	33.53
8	XBT	84210	2136	38.44	123.46	12.3	22 5/	30 /	22 50
10	CTD XBT	84210 84211	2310	38.50	123.52	11.9	33.54	12.4	33.58
10 11	CTD	84211 84211	44 138	38.54 39.06	123.51 123.55	12.6	22 55	ד פו	22 (0
12	XBT	84211	255	39.12	123.55	12.3 12.3	33.55	12.7	33.60
13	XBT	84211	326	39.20	123.57	10.9			
14	CTD	84211	451	39.23	123.58	11.8	33.73	11.9	33.78
15	XBT	84211	615	39.23 39.29	123.59	12.4	33.73	11.7	33.70
16	XBT	84211	717	39.37	123.59	12.1			
17	CTD	84211	750	39.41	123.59	11.5	33.68	11.9	33.66
18	XBT		902	39.37	124.05	11.3		_	
19	XBT	84211	947	39.28	124.04	12.0			
20	XBT	84211	1030	39.21	124.02	10.9			
21	XBT	84211	1114	39.13	124.01	13.1			
22	XBT	84211	1200	39.06	124.01	13.4			
23	XBT	84211	1250	38.57	123.59	12.0			
24	XBT	84211	1342	38.47	123.57	12.5			
25	XBT	84211	1423	38.41	123.52	13.2			
26 27	XBT XBT	84211 84211	1510 1605	38.35 38.28	123.46 123.39	12.6			
28	XBT	84211	1644	38.21	123.39	11.2 10.8			
29	XBT	84211	1747	38.19	123.45	12.6			
30	XBT	84211	1828	38.24	123.49	12.4			
31	XBT	84211	1919	38.30	123.54	12.8			
32	XBT	84211	2013	38.37	124.00	14.1			
33	XBT	84211	2108	38.44	124.04	13.8			
34	XBT	84211	2152	38.51	124.06	12.5			
35	XBT	84211	2250	38.59	124.09	13.5			
36	XBT	84211	2324	39.08	124.11	14.2			
37	XBT	84212	30	39.14	124.13	12.1			
38	XBT	84212	126	39.23	124.16	11.7			
39	XBT	84212	217	39.30	124.17	11.2			
40	XBT	84212	238	39.29	124.21	11.1			
41 42	XBT	84212 84212	256	39.27	124.26	11.7	22 71	12 0	20 71
42	CTD XBT	84212	430 603	39.22 39.15	124.41 124.36	12.8 11.5	32.71	13.0	32.71
44	CTD	84212	750	39.13	124.36	11.8	33.66	12.0	33.70
45	XBT	84212	903	39.02	124.27	14.1	33.00	12.0	33.70
7.5		· · · · · ·	, 0 3	57.02	161,61	***			

Figure 58: Station numbers for OPTOMAll, Leg DIII.

Figure 57: XBT and CTD locations for OPTOMAll, Leg DIII.

Figure 56: The cruise track for OPTOMA11, Leg DIII.

Section 6
OPTOMAll Leg DIII
27 July - 5 August, 1984

Figure 59(g).

Figure 60(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt. (OPTOMAll, Leg DIII).

Figure 60(b).

Figure 60(c).

Figure 61: CTD casts deeper than 800m. (OPTOMA11, Leg DIII).

Figure 62(a), (b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMAIL, Leg DIII).

Figure 62(c).

Figure 62(d).

Figure 62(e).

Figure 62(f).

Figure 62(g).

Figure 62(h).

Figure 62(j).

Figure 62(k).

Figure 62(1).

Figure 62(m).

Figure 62(n).

Figure 62(o).

Figure 62(p).

Figure 63(a): Impleths of (1) temperature and salinity and (2) sigma-t from the CTD's. (OPTOMA11, Leg DIII).

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

PARTICIPATION OF THE PROPERTY OF THE PROPERTY

Figure 63(b).

Figure 63(c).

Figure 64: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMAll, Leg DIII).

Figure 65: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's. (OPTOMA11, Leg DIII).

Figure 66: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMAll, Leg DIII).

Figure 67: Mean N^2 profile (_____), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (****). (OPTOMA11, Leg DIII).

Section 7 OPTOMAll Leg P 18 July, 1984

Figure 68: The flight track for OPTOMA11, Leg P.

Figure 69: AXBT locations for OPTOMA11, Leg P.

Figure 70: Station numbers for OPTOMA11, Leg P.

Table 8: Leg P Station Listing

3TN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP
				(DD.MM)	(DDD.MM)	(DEG C)
1	AXBT	84200	1741	37.52	123.42	14.4
2	AXBT	84200	1748	37.46	124.06	15.0
3 4	AXBT	84200	1800	37.31	124.31	14.4
	AXBT	84200	1805 1814	37.17	124.48	15.5
5 6	AXBT	84200		37.03	125.32	13.9
7	AXBT AXBT	84200 84200	1820	36.51 37.39	125.56	13.6
8	AXBT	84200	1843 1851	38.01	124.45 124.01	14.4 14.4
9	AXBT	84200	1858	38.11	123.56	14.4
LO	AXBT	84200	1908	37.57	123.36	14.2
11	AXBT	84200	1913	37.37 37.46	124.19	14.2
12	AXBT	84200	1918	37.46	125.04	14.4
13	AXBT	84200	1923	37.33 37.26	125.28	14.4
14	AXBT	84200	1927	37.20	125.28	14.2
15	AXBT	84200	1937	37.22	126.00	12.7
16	AXBT	84200	1944	37.22	125.37	12.7
17	AXBT	84200	1956	37.56	124.57	13.0
18	AXBT	84200	2007	38.14	124.13	13.9
19	AXBT	84200	2012	38.34	124.02	13.1
20	AXBT	84200	2019	38.20	124.30	14.1
21	AXBT	84200	2031	38.08	124.51	13.8
22	AXBT	84200	2038	38.00	125.11	13.3
23	AXBT	84200	2048	37.53	125.34	13.2
24	AXBT	84200	2104	37.30	126.16	15.2
25	AXBT	84200	2110	37.41	126.15	15.1
26	AXBT	84200	2116	37.51	125.52	14.9
27	AXBT	84200	2127	38.12	125.08	14.0
28	AXBT	84200	2137	38.30	124.28	13.5
29	AXBT	84200	2140	38.45	124.21	13.1
30	AXBT	84200	2148	38.36	124.42	13.7
31	AXBT	84200	2154	38.26	125.05	13.7
32	AXBT	84200	2159	38.16	125.26	13.3
33	AXBT	84200	2204	38.04	125.49	15.5
34	AXBT	84200	2208	37.54	126.11	15.5
35	AXBT	84200	2212	37.45	126.32	13.6
36	AXBT	84200	2220	37.59	126.26	15.3
37	AXBT	84200	2226	38.08	126.04	15.4
38	AXBT	84200	2237	38.29	125.21	13.4
39	AXBT	84200	2248	38.49	124.40	13.1
40	AXBT	84200	2251	39.04	124.32	12.7
41	AXBT	84200	2304	38.44	125.17	12.9
42	AXBT	84200	2310	38.32	125.39	12.7
43	AXBT	84200	2316	38.20	126.01	15.3
44	AXBT	84200	2321	38.12	126.21	15.4
45	AXBT	84200	2326	38.02	126.42	15.4

N	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)		SURFACE TEMP (DEG C)
5	AXBT	84200	2342	38.25	126.14	15.3
7	AXBT	84200	2354	38.45	125.31	14.9
3	AXBT	84200	2359	38.56	125.11	12.7
9	AXBT	84200	10	39.09	124.47	13.4
)	AXBT	84200	14	39.22	124.45	14.9
1	AXBT	84200	20	39.12	125.07	15.0
2	AXBT	84200	26	39.01	125.28	14.6
3	AXBT	84200	32	38.51	125.53	15.3
4	AXBT	84200	37	38.42	126.14	15.3
5	AXBT	84200	41	38.30	126.30	15.6
5	AXBT	84200	46	38.21	126.55	15.5
7	AXBT	84200	49	38.32	126.44	15.3
3	AXBT	84200	56	38.42	126.24	14.9
9	AXBT	84200	108	39.03	125.46	15.1
)	AXBT	84200	114	39.14	125.22	14.8
1	AXBT	84200	119	39.23	125.01	15.0
7	AVDT	9/200	121	20 22	124 40	17. 0

6.	Commanding Officer Fleet Numerical Oceanography Center (FNOC) Monterey, CA 93943	
	CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LCDR Michael R. Frost, RN	1 1 1 1
7.	Sandia National Laboratories Div. 6334 Albuquerque, NM 97185	
	Dr. Mel Marietta Dr. Eugene S. Hertel Dr. Stuart L. Kupferman	1 1 1
8.	Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, D.C. 20233	
	LCDR Craig S. Nelson, NOAA Corps	1
9.	National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307	
	Dr. Dale B. Haidvogel	1
10.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Prof. Russ E. Davis Dr. Jerome A. Smith Mr. Phillip Bogden	1 1 1
11.	Princeton University Geophysical Fluid Dynamics Program P.O. Box 308 Princeton, NJ 08540	
	Prof. George L. Mellor	1
12.	Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118	
	Dr. Robert N. Miller	1

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker Dr. Edward A Kelley Ms. Marie C. Colton Mr. Paul A. Wittmann Dr. Mary L. Batteen Dr. Laurence C. Breaker LCDR J. Edward Johnson, USN	33 1 1 1 1 1 1
2.	Harvard University Division of Applied Sciences Pierce Hall, Room 100D Cambridge, MA 02138	
	Prof. Allan R. Robinson Dr. James A. Carton Dr. Everett F. Carter Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering	1 1 1 1 1 1
3.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217	
	Dr. Thomas W. Spence Dr. Thomas B. Curtin	1
4.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Prof. Robert L. Smith Dr. Adrian Huyer	1
5.	Jet Propulsion Laboratory (JPL) California Institute of Tech. 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Denise E. Hagan (Code 183-501) Dr. Mark Abbott (also at Scripps)	1

REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the crew of the R/V ACANIA, USNS DE STEIGUER and the P3 Reserve Patrol Wing and Mr. Meredith Sessions. Members of the scientific cruise party were:

Leg AI - Prof. C.N.K. Mooers, Chief Scientist, NPS
Dr. James Carton, Harvard
Dr. Edward Kelley, Jr., FSU
Mr. Paul Wittmann, Co-Party Chief, NPS
Ms. Marie Colton, Co-Party Chief, NPS
Ms. Arlene Bird, NPS
AG3 Judith Kirnon, FNOC
Ms. Cindy Halbert, UCSC

Leg AII - Mr. Leonard Walstad, Chief Scientist, Harvard Mr. Paul Wittmann, Party Chief, NPS Mr. Geoffrey Flyer, NPS Ms. Nadia Pinardi, Harvard Mr. Michael Spahl, Harvard

Leg AIII - Dr. Everett Carter/A.R. Robinson, Chief Scientists, Harvard Mr. Paul Wittmann, Party Chief, NPS Mr. Wayne Leslie, Harvard Ms. Elzbet Diaz de Leon, UCSC Ms. Laura McClelland, UCSC Ms. Tonya Hull, FNOC

Leg DI - Mr. Theodore Calhoon, Chief Scientist, NPS Mr. Stephan Lamont, NPS Mr. Rusty Brainard, NOAA Mr. Luke Chung, Harvard

Leg DII - Prof. C.N.K. Mooers, Chief Scientist, NPS
Ms. Marie Colton, Party Chief, NPS
Mr. Luke Chung, Harvard
AG3 Mary Robinette, FNOC
AG3 Lisa Campbell, FNOC
DP2 Marianne Drewett, FNOC
Mr. Robert Sylvia, LSU

Leg DIII - Ms. Arlene Bird, Chief Scientist, NPS
Mr. Paul Wittmann, Party Chief, NPS
Mr. James Moore, UCSC
Mr. Spencer Yeh, Hopkins Marine Station
Mr. Samual Shabb, Hopkins Marine Station
Mr. Don Wobber, NPS

Leg P - Ms. Marie Colton, NPS
Mr. Meredith Sessions, Scripps

Figure 73: Mean temperature profile, with + and - the standard deviation. (OPTOMA11, Leg P).

Figure 72(k).

Figure 72(1).

Figure 72(i).

Figure 72(j).

Figure 72(g).

Figure 72(h).

Figure 72(e).

Figure 72(f).

Figure 72(c).

Figure 72(d).

Figure 72(a), (b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA11, Leg P).

これないできることに 種のないない

Figure 71(a): AXBT temperature profiles, staggered by multiples of 5C. (OPTOMAll, Leg P).

13.	Woods Hole Oceanographic Institution Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley	1
14.	Naval Ocean Research and Development Activity (NORDA) NSTL Station Bay St. Louis, MS 39525	
	Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas	1 1 1 1
15.	Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4	
	Prof. Lawrence A. Mysak	1
16.	Department of Oceanography University of Hawaii 2525 Correa Road Honolulu, HI 96822	
	Prof. Lorenz Magaard	1
17.	NAVOCEANCOMFAC Keflavik Iceland FPO NY 09571	
	LTJG Diane C. Durban, USN	1
18.	Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2	
	Dr. Motoyoshi Ikeda	1
19.	Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France	
	Dr. Jacques Saurel	1

20.	Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149	
	Dr. Otis Brown	
21.	Applied Physics Laboratory University of Washington 1013 NE 40th Str. Seattle, WA 98105	
	Dr. Thomas B. Sanford	
22.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Steven C. Riser	
23.	California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093	
	Dr. Robert L. Bernstein	1
24.	Marine Sciences Research Center State University of New York Stony Brook, NY 11794	
	Dr. Dong-Ping Wang	1
25.	Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707	
	Dr. Jack Calman	1
26.	Pacific Marine Environmental Lab NOAA Bldg. 3 7600 Sand Point Way, NE Seattle, WA 98115	
	Mr. James R. Holbrook	1
27.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
28.	Dudley Knox Library Code 0142 Naval Postgraduate School	2

END

FILMED

7-85

DTIC