第三章 偏相関係数と回帰¹

劉慶豊2

小樽商科大学

May 20, 2011

1 / 41

劉慶豊 (小樽商科大学) 第三章 偏相関係数と回帰 May 20, 2011

¹第二章からの資料は森棟公夫先生著「基礎コース 計量経済学」をもとに作成した ものである。

$$\{(x_1, y_1, z_1), (x_2, y_2, z_2), \cdots, (x_n, y_n, z_n)\}$$
 (1)

分散共分散行列

$$V = \begin{pmatrix} s_{xx} & s_{xy} & s_{xz} \\ s_{yx} & s_{yy} & s_{yz} \\ s_{zx} & s_{zy} & s_{zz} \end{pmatrix}, \tag{2}$$

相関係数行列

$$R = \begin{pmatrix} 1 & r_{xy} & r_{xz} \\ r_{yx} & 1 & r_{yz} \\ r_{zx} & r_{zy} & 1 \end{pmatrix}$$
(3)

$7.56647E + 09 = 7.56647 \times 10^9 = 7566470000$

表3.1 所得および支出データ

20	771 19 00 0 10	, <u>, , , , , , , , , , , , , , , , , , </u>		
所得	教育	教養娯楽	教育残差	教娯残差
198,005	2,854	17,662	-247.0	-478.2
254,020	5,880	24,208	-2111.6	-651.6
290,237	11,995	30,538	841.4	1333.9
348,839	19,605	36,568	3335.0	334.2
452,356	23,490	48,113	-1817.8	-538.4

表3.2	相関係数行列	分散•共分散行列
120.2	101天川不安(117)	カ 似 一

	所得	教育支出	教養娯楽	所得	教育支出	教養娯楽
所得	1.00000	0.96757	0.99741	7.56647E+09		
教育支出	0.96757	1.00000	0.97653	6.60610E+08	6.16071E+07	
教養娯楽	0.99741	0.97653	1.00000	9.07653E+08	8.01868E+07	1.09446E+08

nで割って求めている

第3変数の影響

- 今まで学んだ2変数間の共分散、相関係数(単相関係数と呼ぶこと もある)は第3変数の影響を考慮していない。
- 場合によって、第3変数の影響を取り除いて、残りの二つの変数の 間の関係を調べる必要がある
- 例、見せかけの相関 Xをエアコンの使用時間、Yをビールの消費量、Z を気温とする。XとYの間は正の単相関があると予想され るが、しかしそれは気温を通じての相関であると考えられ る。XとYの間の相関は見せかけの相関である可能性が大 きい。この場合、第三の変数Zの影響を除いた相関を調べ たい。それが偏相関である。

偏共分散と偏相関係数の計算方法

• まず、xをzに回帰して、その残差 \hat{u}_{xi} を求める

$$x_i = \alpha_x + \beta_x z_i + u_{xi}, i = 1, 2, \cdots, n$$
(4)

$$\widehat{x}_i = \widehat{\alpha}_x + \widehat{\beta}_x z_i$$

$$\widehat{u}_{xi} = x_i - \widehat{x}_i = x_i - \widehat{\alpha}_x - \widehat{\beta}_x z_i$$
(5)

• 次は、yをzに回帰して、その残差 \hat{u}_{yi} を求める

$$y_{i} = \alpha_{y} + \beta_{y}z_{i} + u_{yi}, i = 1, 2, \dots, n$$

$$\widehat{y}_{i} = \widehat{\alpha}_{y} + \widehat{\beta}_{y}z_{i}$$

$$\widehat{u}_{yi} = y_{i} - \widehat{y}_{i} = y_{i} - \widehat{\alpha}_{y} - \widehat{\beta}_{y}z_{i}$$

(6)

偏共分散と偏相関係数計算方法

標本偏分散

$$s_{xx|z} = \frac{1}{n-2} \sum_{i=1}^{n} (\widehat{u}_{xi})^2,$$
 (7)

$$s_{yy|z} = \frac{1}{n-2} \sum_{i=1}^{n} (\widehat{u}_{yi})^2,$$
 (8)

標本偏共分散

$$s_{xy|z} = \frac{1}{n-2} \sum_{i=1}^{n} \left(\widehat{u}_{xi} \widehat{u}_{yi} \right), \tag{9}$$

標本偏相関係数

$$r_{xy|z} = \frac{s_{xy|z}}{\sqrt{s_{xx|z}s_{yy|z}}} \tag{10}$$

残差の性質

$$\sum_{i=1}^{n} \widehat{u}_{xi} = 0, \sum_{i=1}^{n} \widehat{u}_{xi} z_i = 0,$$

$$\sum_{i=1}^{n} \widehat{u}_{yi} = 0, \sum_{i=1}^{n} \widehat{u}_{yi} z_i = 0$$

を利用して

$$s_{xy|z} = \sum_{i=1}^{n} (\widehat{u}_{xi}\widehat{u}_{yi}) = \sum_{i=1}^{n} (\widehat{u}_{xi}y_i) = \sum_{i=1}^{n} (x_i\widehat{u}_{yi}), \qquad (11)$$

テキスト例 3.2 所得の影響を除いた教育費と娯楽費との偏相関

$$\widehat{x} = -14186.3 + 0.0873z$$

$$\widehat{u}_x = x + 14186.3 - 0.0873z$$

$$\widehat{u}_y = y + 5612.0 - 0.120z,$$

$$r_{xy|z} = \frac{1569883}{\sqrt{6551485 \times 944718}} = 0.6310$$

所得の影響を除いた教育費と娯楽費との偏相関はその影響 を除く前の相関(単相関)0.97653より大きく下がった。

表3.3 標本偏分散と標本偏共分散

	教育残差	娯楽残差				
教育残差	6551485					
娯楽残差	1569883	944718				
n_0で割って式めている						

n-2で割って求めている

標本相関係数 r_{xy} 、偏相関係数 $r_{xy|z}$ はそれぞれ母相関係数 ρ_{xy} と母偏相関係数 $\rho_{xy|z}$ の推定量となっている。標本相関係数 r_{xy} 、偏相関係数 $r_{xy|z}$ を用いて、 ρ_{xy} と $\rho_{xy|z}$ が 0 になっているかどうかを検定する。すなわち、2 つの変数の間に相関、偏相関があるかどうかを検定する。

相関係数の検定 帰無仮説 $H_0:
ho_{xy}=0$ のもとでは

$$t = \sqrt{n-2} \frac{r_{xy}}{\sqrt{1 - r_{xy}^2}}$$

が自由度n-2のt分布に従う。

偏相関係数の検定 帰無仮説 $H_0:
ho_{\mathsf{xv}|_{\mathcal{Z}}} = 0$ のもとでは

$$t = \sqrt{n-3} \frac{r_{xy|z}}{\sqrt{1 - r_{xy|z}^2}}$$

が自由度n-3のt分布に従う。

テキスト例、表3-4

表3.4 一人あたり所得と野菜支出ならびに外食支出

年間収入(万円)	89	125	145	154	172	183	211	239	287	428
野菜•海藻(円)	2784	2964	2904	2578	2556	2467	2658	2683	2904	3042
外食(円)	2053	2502	2830	3065	3591	3722	3997	4301	4675	5699

家計調査年報(平成14年)

	収入	野菜	外食
年間収入	1		
野菜∙海藻	0.3878	1	
外食	0.9658	0.1814	1

相関係数の検定 外食支出と野菜・海藻品支出との相関係数は $r_{xy}=0.1814$ 。

$$t = \sqrt{8} \frac{0.1814}{\sqrt{1 - 0.1814^2}} = 0.52$$

t=0.52は自由度8のt分布の5%有意水準点1.86より小さいので、帰無仮説 $H_0: \rho_{xy}=0$ を棄却できない。相関が殆どないと考えられる。

偏相関係数の検定 外食支出と野菜・海藻品支出との偏相関係数は $r_{xy|z}=-0.808$ 。

$$t = \sqrt{7} \frac{-0.808}{\sqrt{1 - 0.808^2}} = -3.63$$

|t|=3.62は自由度7のt分布の5%有意水準点1.90より大きいので、帰無仮説 $H_0: \rho_{xy|z}=0$ を棄却する。所得の影響を除いた外食支出と野菜・海藻品支出の間に負の相関がある。外食する人は料理の材料をあまり購入しないことの現れである。

標本分散、共分散による偏共分散、偏相関係数の表現

テキスト81ページ(3.13)ー(3.16)式。

3変数の回帰分析

$$\{(y_1, x_1, z_1), (y_2, x_2, z_2), \cdots, (y_n, x_n, z_n)\}$$
 (12)

$$y_i = \alpha + \beta x_i + \gamma z_i + u_i \qquad i = 1, 2, \cdots, n$$
 (13)

$$V(u_i) = \sigma^2, i = 1, 2, \dots, n$$
 (14)

 u_i がiに関して独立で同じ分布に従うとする。

例 yが停止距離xがスピードzが車の重さ

Excel分析ツールによる回帰計算

図 3.2 Excel による回帰分析

	C	D	Е	F	G	Н	I	J	K
7									
8									
9	У	х	z		回帰総	た計			
10	5.3	45	8.0		重相関 R	0.91			
11	7.5	50	0.9		重決定 R2	0.82			
12	5.9	55	0.65		補正 R2	0.73			
13	9.2	60	1.3		標準誤差	1.17			
14	8.8	65	1.2		観測数	7			
15	7.5	70	0.95						
16	12	75	1.2		分散分析表				
17	(m)	(km/h)	1000kg			自由度	変動	分散	分散比
18					回帰	2.00	24.83	12.42	9.13
19					残差	4.00	5.44	1.36	
20					合計	6.00	30.27		
21									
22						係数	標準誤差	t	P-値
23					切片	-2.90	2.73	-1.06	0.35
24					x	0.10	0.05	1.75	0.15
25					z	5.16	2.47	2.09	0.10
26									

図 3.3 ダイアログ・ボックス

$$\hat{y} = -2.90(-1.06) + 0.10(1.75)x + 5.16(2.09)z$$

$$\hat{y} = -1.8294(-0.527) + 0.1643(2.881)x.$$

$$\hat{y} = -2.90(2.73) + 0.10(0.05)x + 5.16(2.47)z$$

自由度 n-3=4 の 2.5% 点=2.78, γ の 95% 信頼区間は

$$5.16 \pm 2.78 \times 2.47 = 5.16 \pm 6.87$$

最小2乗推定量の導出

$$\Phi = \sum_{i=1}^{n} \{ y_i - (\widehat{\alpha} + \widehat{\beta} x_i + \widehat{\gamma} z_i) \}^2$$
 (15)

 $rac{\partial\Phi}{\partial\widehat{lpha}}=0$, $rac{\partial\Phi}{\partial\widehat{eta}}=0$, $rac{\partial\Phi}{\partial\widehat{eta}}=0$, より

$$\sum_{i=1}^{n} \{ y_i - (\widehat{\alpha} + \widehat{\beta} x_i + \widehat{\gamma} z_i) \} = 0$$
 (16)

$$\sum_{i=1}^{n} \{ y_i - (\widehat{\alpha} + \widehat{\beta} x_i + \widehat{\gamma} z_i) \} x_i = 0$$
 (17)

$$\sum_{i=1}^{n} \{ y_i - (\widehat{\alpha} + \widehat{\beta} x_i + \widehat{\gamma} z_i) \} z_i = 0$$
 (18)

直行性

前のスライドの式から直交性を導出できる。

$$\sum_{i=1}^{n} \widehat{u}_i = 0 \tag{19}$$

$$\sum_{i=1}^{n} \widehat{u}_i x_i = 0 \tag{20}$$

$$\sum_{i=1}^{n} \widehat{u}_i z_i = 0 \tag{21}$$

正規方程式

$$\left(\sum_{i=1}^{n} y_{i}\right) = n\widehat{\alpha} + \left(\sum_{i=1}^{n} x_{i}\right)\widehat{\beta} + \left(\sum_{i=1}^{n} z_{i}\right)\widehat{\gamma}$$
(22)

$$(\sum_{i=1}^{n} y_i x_i) = (\sum_{i=1}^{n} x_i) \widehat{\alpha} + (\sum_{i=1}^{n} x_i^2) \widehat{\beta} + (\sum_{i=1}^{n} z_i x_i) \widehat{\gamma}$$
 (23)

$$(\sum_{i=1}^{n} y_{i} z_{i}) = (\sum_{i=1}^{n} z_{i}) \widehat{\alpha} + (\sum_{i=1}^{n} x_{i} z_{i}) \widehat{\beta} + (\sum_{i=1}^{n} z_{i}^{2}) \widehat{\gamma}$$
(24)

点(ȳ, x̄, z̄) は必ず回帰直線上に位置する

$$\overline{y} = \widehat{\alpha} + \widehat{\beta}\overline{x} + \widehat{\gamma}\overline{z} \tag{25}$$

正規方程式の行列表現

$$\begin{pmatrix}
 n & \sum_{i} x_{i} & \sum_{i} z_{i} \\
 \sum_{i} x_{i} & \sum_{i} x_{i}^{2} & \sum_{i} z_{i} x_{i} \\
 \sum_{i} z_{i} & \sum_{i} x_{i} z_{i} & \sum_{i} z_{i}^{2}
 \end{pmatrix}
\begin{pmatrix}
 \widehat{\alpha} \\
 \widehat{\beta}
 \end{pmatrix} = \begin{pmatrix}
 \sum_{i} y_{i} \\
 \sum_{i} y_{i} x_{i}
 \end{pmatrix}$$
(26)

停止距離の例

$$56.2 = 7\widehat{\alpha} + 420\widehat{\beta} + 7\widehat{\gamma}$$

$$3487 = 420\widehat{\alpha} + 25900\widehat{\beta} + 429.25\widehat{\gamma}$$

$$58.87 = 7\widehat{\alpha} + 429.25\widehat{\beta} + 7.345\widehat{\gamma}$$

$$\begin{pmatrix} 7 & 420 & 7 \\ 420 & 25900 & 429.25 \\ 7 & 429.25 & 7.345 \end{pmatrix} \begin{pmatrix} \widehat{\alpha} \\ \widehat{\beta} \\ \widehat{\gamma} \end{pmatrix} = \begin{pmatrix} 56.2 \\ 3487 \\ 58.87 \end{pmatrix}$$

偏回帰係数と偏相関係数

単回帰の係数

$$\widehat{\beta} = \frac{s_{xy}}{s_{xx}} = r_{xy} \sqrt{\frac{s_{yy}}{s_{xx}}} = r_{xy} \frac{s_y}{s_x}$$
 (27)

三変数の場合(重回帰)の係数

$$\widehat{\beta} = \frac{s_{xy|z}}{s_{xx|z}} = r_{xy|z} \sqrt{\frac{s_{yy|z}}{s_{xx|z}}},$$
(28)

$$\widehat{\gamma} = \frac{s_{zy|x}}{s_{zz|x}} = r_{zy|x} \sqrt{\frac{s_{yy|x}}{s_{zz|x}}}$$
 (29)

$$\widehat{\alpha} = \overline{y} - \widehat{\beta}\overline{x} - \widehat{\gamma}\overline{z} \tag{30}$$

回帰値と残差2乗和

$$\widehat{y}_i = \widehat{\alpha} + \widehat{\beta} x_i + \widehat{\gamma} z_i, i = 1, 2, \dots, n$$
 (31)

$$\widehat{u}_i = y_i - \widehat{y}_i = y_i - (\widehat{\alpha} + \widehat{\beta}x_i + \widehat{\gamma}z_i)$$
(32)

$$RSS = \sum_{i=1}^{n} \hat{u}_i^2 \tag{33}$$

$$= \sum_{i=1}^{n} y_i^2 - \widehat{\alpha} \sum_{i=1}^{n} y_i - \widehat{\beta} \sum_{i=1}^{n} x_i y_i - \widehat{\gamma} \sum_{i=1}^{n} z_i y_i$$
 (34)

残差分散

$$s^2 = \frac{\sum_{i=1,n} \hat{u}_i^2}{n-3} \tag{35}$$

全変動

$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

決定係数

$$R^2 = 1 - \frac{RSS}{TSS} \tag{36}$$

回帰変動

$$ESS = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$
 (37)

総変動の分解

$$(y_i - \overline{y}) = (\widehat{y}_i - \overline{y}) + (y_i - \widehat{y}_i)$$
(38)

$$TSS = ESS + RSS \tag{39}$$

$$R^2 = \frac{ESS}{TSS}$$

偏回帰係数に関するt検定

$$z = \frac{\widehat{\beta} - c}{\sqrt{V(\widehat{\beta})}} \tag{40}$$

$$V(\widehat{\beta}) = \frac{\sigma^2}{(n-2)s_{xx|z}} \tag{41}$$

$$t_{\beta} = \frac{(\widehat{\beta} - c)}{\sqrt{s^2/\{(n-2)s_{xx|z}\}}} = \frac{(\widehat{\beta} - c)}{s_{\widehat{\beta}}}$$
(42)

$$t_{\gamma} = \frac{(\widehat{\gamma} - d)}{\sqrt{s^2/\{(n-2)s_{zz|x}\}}} = \frac{(\widehat{\gamma} - d)}{s_{\widehat{\gamma}}}$$
(43)

自由度n-3のt分布に従う。

27 / 41

信頼空間

$$\widehat{\gamma} - t_{97.5} imes s_{\widehat{\gamma}} < \gamma < \widehat{\gamma} + t_{97.5} imes s_{\widehat{\gamma}}$$

$$s_{\widehat{\gamma}}^2 = \frac{s^2}{(n-2)s_{zz|x}}$$

 β に関しても同様な方法で求める。

回帰式に関するF検定

$$H_0: \beta = 0, \gamma = 0$$

f = 回帰分散/残差分散、回帰分散 $= \frac{1}{2}ESS$

$$f = \frac{1}{2} \frac{ESS}{s^2} = \frac{ESS/2}{RSS/(n-3)}$$
 (44)

$$f = \frac{R^2/2}{(1-R^2)/n-3} \tag{45}$$

f値が分子の自由度がr(仮定の中の仮説の数),分母の自由度がn-K(Kは定数項を含んだ説明変数の数)F分布(F(r, n-K)と表す)に従う。

$$\widehat{y}_i - \overline{y} = \widehat{\beta}(x_i - \overline{x}) + \widehat{\gamma}(z_i - \overline{z})$$

 \hat{eta} 、 $\hat{\gamma}$ の値が0に近ければ、fが0に近い小さい値になる。

例

$$\hat{y} = -2.898(-1.06) + 0.096(1.75)x + 5.164(2.09)z$$

$$\hat{y}_1 = -2.898 + 0.096 \times 45 + 5.164 \times 0.8 = 5.553$$

$$\hat{u}_1 = y_1 - \hat{y}_1 = 5.3 - 5.553 = -0.253$$

$$TSS = (481.48 - \frac{1}{7}56.2^2) = 30.27,$$

$$RSS = 481.48 - (-2.898)56.2 - 0.096 \times 3487 - 5.164 \times 58.87$$

= 5.59 (46)

$$30.27 - 5.59 = 24.68,$$

$$f = \frac{12.42}{1.36} = 9.1$$

$$f = \frac{7 - 3}{2} \frac{0.82}{(1 - 0.82)} = 9.1$$

図3.4 F(2,4)の密度関数

コブ・ダグラス生産関数

Yは生産額、Kは資本額、Lは労働の投入量

$$Y = \alpha K^{\beta} L^{\gamma} \tag{47}$$

$$\log Y = \alpha' + \beta \log K + \gamma \log L \tag{48}$$

弾力性

$$\theta = \frac{\triangle Y/Y}{\triangle K/K} = \frac{\triangle Y}{\triangle K} \frac{K}{Y}$$

$$\theta = \frac{\partial Y}{\partial K} \frac{K}{Y} = \frac{\partial \log Y}{\partial \log K} = \beta$$

マクロ生産関数の推定

表3.5 経済活動別国内総生産(実質)

(単位:10億円) http://www.esri.cao.go.j	p/
(平成7暦年基準)	平成14暦年
項 目	2002
1. 産業	501,639.0
(1)農林水産業	8,193.1
(2)鉱業	971.0
(3)製造業	119,993.2
(4)建設業	35,300.0
(5)電気・ガス・水道業	15,941.3
(6)卸売・小売業	74,101.6
(7)金融•保険業	35,693.7
(8)不動産業	66,567.2
(9)運輸・通信業	39,120.3
(10)サービス業	105,757.5
2. 政府サービス生産者	46,877.5
3. 対家計民間非営利サービス生産者	9,773.8
小計	558,290.3
輸入品に課される税・関税	2,651.1
(控除)総資本形成に係る消費税	2,053.1
(控除)帰属利子	29,045.7
国内総生産(不突合を含まず)	529,842.6
統計上の不突合	3,119.3
国内総生産(不突合を含む)	532 961 9

$$\log Y_t = \alpha + \beta \log K_t + \gamma \log L_t + \varepsilon_t \tag{49}$$

$$\widehat{\log Y} = 0.55(3.5) + 0.71(53) \log K + 0.25(5.4) \log L$$
 (50)

収穫の不変性 $\beta + \gamma = 1$ であれば、 $K \ge L$ をc 倍に増やしたら、Yもc 倍まで増える。

$$Y = \alpha (cK)^{\beta} (cL)^{\gamma} = c^{\beta + \gamma} \{ \alpha K^{\beta} L^{\gamma} \}$$
 (51)

$$\log Y = \alpha + \beta \log K + (1 - \beta) \log L + \varepsilon$$
$$\log(Y/L) = \alpha + \beta \log(K/L) + \varepsilon$$

Per Capita(パーキャピタ) 式による検定

$$H_0: \beta + \gamma = 1,$$

 $H_1: \beta + \gamma < 1,$

$$\delta = \beta + \gamma - 1 \tag{52}$$

とする。

$$H_0:\delta=0$$

$$\log Y = \alpha + \beta \log K + (1 + \delta - \beta) \log L + \varepsilon \tag{53}$$

$$y = Y/L, k = K/L \ge U$$

$$\log y = \alpha + \beta \log k + \delta \log L + \varepsilon \tag{54}$$

$$\widehat{\log y} = 0.55(3.5) + 0.71(53) \log k - 0.034(-0.63) \log L,$$
 (55)

$$\widehat{\log y} = 0.46(15) + 0.71(71)\log k,\tag{56}$$

一変数のF値 $=(t値)^2$

$$(23-3)\frac{0.99595 - 0.99587}{1 - 0.99595} = 0.395, (57)$$

$$(t_{\delta})^2 = (-0.6282)^2 = 0.395$$

表3.6 製造業の生産関数

10.0 秋花				
製造業GDP	民間資本ストック	稼働率	就業者	労働時間
68921	145910	1.104	1.367	178.3
72010	154206	1.053	1.385	177.6
75123	162466	1.022	1.380	176.9
77606	170363	1.036	1.406	177.9
83306	180196	1.096	1.438	180.4
88973	192710	1.098	1.453	179.2
87589	203003	1.048	1.444	177.8
91663	212704	1.049	1.425	178.6
99001	225110	1.109	1.454	180.9
105492	241073	1.131	1.484	178.9
112676	258955	1.143	1.505	176.6
118334	280096	1.119	1.550	172.8
115995	295824	1.027	1.569	167.0
111750	305737	0.979	1.531	163.2
110107	313455	0.975	1.496	163.2
114669	322394	1.000	1.456	164.2
119524	331200	1.010	1.445	165.5
123571	344180	1.044	1.442	165.2
116237	357011	0.956	1.382	162.4
118177	362712	0.950	1.345	162.4
126691	371963	0.993	1.321	165.5
122401	381234	0.925	1.284	164.0
119993	382896	0.935	1.222	164.2

期間は82-02年.GDPと資本ストックは95年基準の実質値で,10億円単位. 就業者数は1000万人,労働時間は月平均を測定単位とする.

Excelによる生産関数の推定

表3.6のデータを利用して

$$\log Y_t = \alpha + \beta \log K_t + \gamma \log L_t + \varepsilon_t \tag{58}$$

を推定する。 Y_t は製造業 GDP、K = 民間資本ストック×稼働率、L = 就業者×労働時間。さらに、以上の三つの変数に関して対数を取る。 $\log Y_t$, $\log K_t$, $\log L_t$ をデータとして Excel の分析ツールで回帰分析を行う。

Excelによる生産関数の推定結果

回帰統計							
0.996996							
0.994							
0.994							
0.9934							
0.0001							
0.006824							
0.006824							
23							
20							

分散分析表

	自由度	変動	分散	Jされた分i	有意 F
回帰	2	0.154293	0.077146	1656.74	6E-23
残差	20	0.000931	4.66E-05		
合計	22	0.155224			

	係数	標準誤差	t	P−値	下限 95%	上限 95%	下限 95.0%.	上限 95.0%
切片	0.554135	0.159961	3.464179	0.00245	0.22046	0.887809	0.220461	0.887809
X 値 1	0.707453	0.013283	53.2588	5E-23	0.67974	0.735161	0.679744	0.735161
X 值 2	0.25808	0.047414	5.443109	2.5E-05	0.15918	0.356985	0.159176	0.356985

以上の結果を利用してt検定などを行える。

練習問題(成績に加算しない、提出不要) テキストの3.63式を Excelで 推定しなさい。 $H_0: \delta = 0$ の検定に関しても考えなさい。 データは http://www.econ.kyoto-u.ac.jp/~morimune/の (「基礎コース 計量経済学」 の全データです。 ALL-TABLES)からダウンロードできる。直接のリンクは http://www.econ.kyoto-u.ac.jp/~morimune/basic-ECONOMETRICS-Tables//ALL-TABLES.xlsである。表3.6 のデータはそのファイルの中の表3.6のシートにある。