7,1400

SEQUENCE LISTING

<110>	Gao, Zeren Hart, Charles E. Piddington, Christopher S. Sheppard, Paul O. Shoemaker, Kimberly E. Gilbertson, Debra G. West, James W.
<120>	GROWTH FACTOR HOMOLOG ZVEGF3
<130>	98-60
<160>	50
<170>	FastSEQ for Windows Version 3.0
<210> <211> <212> <213>	1760
<220> <221> <222>	CDS (154)(1191)
agtgcagcct	1 aactaccetg cgattetetg etgecagage aggeteggeg ettecaceee 60 teceetggeg gtggtgaaag agacteggga gtegetgett ecaaagtgee 120 gageteteac eccagteage eaa atg age ete tte ggg ett ete Met Ser Leu Phe Gly Leu Leu 1 5
	tct gcc ctg gcc ggc cag aga cag ggg act cag gcg gaa Ser Ala Leu Ala Gly Gln Arg Gln Gly Thr Gln Ala Glu 15 20
	agt agt aaa ttc cag ttt tcc agc aac aag gaa cag aac Ser Ser Lys Phe Gln Phe Ser Ser Asn Lys Glu Gln Asn 30 35

		cag Gln 45									318
		cca Pro									366
		tta Leu					_				414
		aga Arg		-	_		-	-	_		462
		gta Val									510
		ggt Gly 125									558
		agg Arg									606
		tgc Cys				-	-				654
		cct Pro									702
		gct Ala					_	_	_		750
		cca Pro 205									798

	agg Arg								_	_		-			-	846
	tcc Ser															894
	agc Ser															942
	aga Arg 265		-							-		-	-		•	990
	ggt Gly													_		1038
	gtc Val															1086
	cca Pro							_						_		1134
	ctg Leu								_		_	_		-		1182
	gga Gly 345	tag *	ccg	catca	acc a	accag	gcago	ct ct	tgco	ccaga	a gct	gtgo	cagt			1231
gcti agaa ctta ttaa ggta aact ttti	caag attag caatg catg aatgt	gga ogga g gga g gta og ca g aag o	cttt gttgt ggaaa gtat gtaca ctcca tatta	cato gcaa agaaa tcca aggaa atgto cacat	et to accompany to the	agga jctct aaat igctg aact jggco jtaaa	attta ttttg tgttg gggtt gggg taaa	a cag g aga g tat c ctg c aag a ato g aac	gtgca aggag taat gtatt gtgag cgtat	attc ggcc atag atca gcac aaa atat	tgaa taaa atca gtto ctga atct gtao	agagagagagagagagagagagagagagagagagagag	gga g cag g gct a cga t cgt t ctt t	gacat gagaa agttt tacgg tgcct	ctgttt ccaaac aaaggt ccagag gcttag ctgctt cttttt	1291 1351 1411 1471 1531 1591 1651 1711 1760

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Leu Phe Gly Leu Leu Leu Thr Ser Ala Leu Ala Gly Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser Pro Arg Phe Pro 55 His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe Asp Glu Arg Phe Gly Leu 85 90 Glu Asp Pro Glu Asp Asp Ile Cys Lys Tyr Asp Phe Val Glu Val Glu 100 105 Glu Pro Ser Asp Gly Thr Ile Leu Gly Arg Trp Cys Gly Ser Gly Thr Val Pro Gly Lys Gln Ile Ser Lys Gly Asn Gln Ile Arg Ile Arg Phe 135. 140 Val Ser Asp Glu Tyr Phe Pro Ser Glu Pro Gly Phe Cys Ile His Tyr 150 155 160 Asn Ile Val Met Pro Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu 165 170 175 Pro Pro Ser Ala Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala 180 185 Phe Ser Thr Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp 200 Gln Leu Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly 220 215 Lys Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu 230 235 Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser 245 250 Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro 265 270 Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu 280 285 His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys 295 300

Ļ≟ ΓU ű

Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Val Arg Gly Leu 305 310 315 320 His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp

His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp 325 330 335

Cys Val Cys Arg Gly Ser Thr Gly Gly 340 345

<210> 3

<211> 116

<212> PRT

<213> Artificial Sequence

<220>

<223> peptide motif

<221> VARIANT

<222> (2)...(19)

<223> Xaa is any amino acid

<221> VARIANT

<222> (20)...(34)

<223> Xaa is any amino acid or not present

<221> VARIANT

<222> (36)...(36)

<223> Xaa is any amino acid

<221> VARIANT

<222> (38)...(38)

<223> Xaa is any amino acid

<221> VARIANT

<222> (40)...(45)

<223> Xaa is any amino acid

<221> VARIANT

<222> (46)...(72)

<223> Xaa is any amino acid or not present

<221> VARIANT

<222> (74)...(93)

<223> Xaa is any amino acid

<221> VARIANT

<222> (94)...(113)

IHH

```
<223> Xaa is any amino acid not present
   <221> VARIANT
   <222> (115)...(115)
   <223> Xaa is any amino acid
   <400> 3
10
Xaa Xaa Cys Xaa Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
55
65
90
100
                  105
                             110
Xaa Cys Xaa Cys
    115
   <210> 4
   <211> 24
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> peptide motif
   <221> VARIANT
   <222> (2)...(2)
   <223> Xaa is Lys or Arg
   <221> VARIANT
   <222> (4)...(4)
   <223> Xaa is Asp, Asn or Glu
   <221> VARIANT
   <222> (5)...(5)
   <223> Xaa is Trp, Tyr or Phe
```

<221> VARIANT

```
<222> (6)...(16)
     <223> Xaa is any amino acid
     <221> VARIANT
     <222> (17)...(20)
     <223> Xaa is any amino acid or not present
     <221> VARIANT
     <222> (22)...(22)
     <223> Xaa is Lys or Arg
     <221> VARIANT
     <222> (23)...(23)
     <223> Xaa is Trp, Tyr or Phe
     <400> 4
10
Xaa Xaa Xaa Gly Xaa Xaa Cys
           20
     <210> 5
     <211> 6
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> peptide tag
     <400> 5
Glu Tyr Met Pro Met Glu
 1
               5
     <210> 6
     <211> 1035
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> degenerate sequence derived from SEQ ID NOS: 1 and
     <221> misc feature
     <222> (1)...(1035)
     <223> n = A,T,C or G
```

<400> 6	
atgwsnytht tyggnythyt nythythach wsngchythg chggncarmg ncarggnach	60
cargengarw snaayytnws nwsnaartty carttywsnw snaayaarga rearaayggn	120
gtncargayc cncarcayga rmgnathath acngtnwsna cnaayggnws nathcaywsn	180
conmunity concayaonta yoonmgnaay acnginying iniggmgnyi ngingongin	240
gargaraayg tntggathca rytnacntty gaygarmgnt tyggnytnga rgayccngar	300
gaygayatht gyaartayga yttygtngar gtngargarc cnwsngaygg nacnathytn	360
ggnmgntggt gyggnwsngg nacngtnccn ggnaarcara thwsnaargg naaycarath	420
mgnathmgnt tygtnwsnga ygartaytty ccnwsngarc cnggnttytg yathcaytay	480
aayathgtna tgccncartt yacngargen gtnwsneenw sngtnytnee neenwsngen	540
ytnccnytng ayytnytnaa yaaygcnath acngcnttyw snacnytnga rgayytnath	600
mgntayytng arccngarmg ntggcarytn gayytngarg ayytntaymg nccnacntgg	660
carytnytng gnaargcntt ygtnttyggn mgnaarwsnm gngtngtnga yytnaayytn	720
ytnacngarg argtnmgnyt ntaywsntgy acnccnmgna ayttywsngt nwsnathmgn	780
gargarytna armgnacnga yacnathtty tggccnggnt gyytnytngt naarmgntgy	840
ggnggnaayt gygcntgytg yytncayaay tgyaaygart gycartgygt nccnwsnaar	900
gtnacnaara artaycayga rgtnytncar ytnmgnccna aracnggngt nmgnggnytn	960
cayaarwsny tnacngaygt ngcnytngar caycaygarg artgygaytg ygtntgymgn	1020
ggnwsnacng gnggn	1035
<210> 7 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <221> misc_feature <222> (1)(17) <223> n = A,T,C or G	
<400> 7 mgntgyggng gnaaytg	17
<210> 8 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<221> misc_feature	


```
<222> (1)...(17)
      <223> n = A,T,C or G
      <400> 8
mgntgydsng gnwrytg
                                                                          17
      <210> 9
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 9
carywnccns hrcanck
                                                                          17
      <210> 10
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 10
ttytggccng gntgyyt
                                                                         17
      <210> 11
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
```



```
<222> (1)...(17)
      <223> n = A,T,C or G
      <400> 11
ntnddnccnn sntgybt
                                                                          17
      <210> 12
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 12
avrcansnng gnhhnan
                                                                         17
      <210> 13
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 13
caygargart gygaytg
                                                                         17
      <210> 14
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A.T.C or G
      <400> 14
```

[49

caynnnnvnt gyvvntg		17
<210> 15 <211> 17 <212> DNA		
<213> Artificia	al Sequence	
<220> <223> Oligonucl	leotide primer	
<221> misc_feat <222> (1)(17 <223> n = A,T,C	7)	
<400> 15 canbbrcanb nnnnrtg		17
<210> 16 <211> 17 <212> DNA <213> Artificia	al Sequence	
<220> <223> Oligonucl	eotide primer	
<221> misc_feat <222> (1)(17 <223> n = A,T,C	")	
<400> 16 tgyacnccnm gnaaytt		17
<210> 17 <211> 17 <212> DNA <213> Artificia	1 Sequence	
<220> <223> Oligonucl	eotide primer	
<221> misc_feat <222> (1)(17 <223> n = A,T,C	')	
<400> 17		

tgynnnmcnm kn	nrmnan	1/
<210> 1 <211> 1 <212> D <213> A	.7	
<220> <223> 0	Oligonucleotide primer	
<222> (nisc_feature (1)(17) n = A,T,C or G	
<400> 1 dhnkynmkng kn		17
<210> 1 <211> 1 <212> D <213> A	.7	
<220> <223> 0	Oligonucleotide primer	
<400> 1 tgyaartayg ay		17
<210> 2 <211> 1 <212> D <213> A	7	
<220> <223> 0	Digonucleotide primer	
<400> 2 acrwartcrt ay	· · · · · · · · · · · · · · · · · · ·	17
<210> 2 <211> 1 <212> D <213> A	7	
<220>		

</th <th>223> Oligonucleotide primer</th> <th></th>	223> Oligonucleotide primer	
<'	221> misc_feature 222> (1)(17) 223> n = A,T,C or G	
	400> 24 hnt knggvha	17
<' _c	210> 25 211> 20 212> DNA 213> Artificial Sequence	
	220> 223> Oligonucleotide primer	
	400> 25 cca gtggcaaagc	20
<' _c	210> 26 211> 21 212> DNA 213> Artificial Sequence	
	220> 223> Oligonucleotide primer	
	400> 26 tga aagatttggg c	21
<2 <2	210> 27 211> 21 212> DNA 213> Artificial Sequence	
	220> 223> Oligonucleotide primer	
	400> 27 tat ataagcagag c	21
<2	210> 28 211> 18	

	<213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
taaca	<400> 28 gagga ggtaagat	18
	<210> 29 <211> 18 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
tcggt1	<400> 29 tctct ttagttct	18
	<210> 30 <211> 25 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
tctgga	<400> 30 acgtc ctcctgctgg tatag	25
	<210> 31 <211> 25 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
ggtatg	<400> 31 ggagc caggggcaag ttggg	25
	<210> 32 <211> 27 <212> DNA <213> Artificial Sequence	

	<220> <223> Oligonucleotide primer	
	<400> 32 caac ttccagggcc aggagag	27
	<210> 33 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
	<400> 33 ctag cctcaaccct gactatc	27
	<210> 34 <211> 35 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer ZC20,180	
	<400> 34 gttt aaacgccacc atgagcctct tcggg	35
	<210> 35 <211> 32 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer ZC20,181	
	<400> 35 ggcg cgccctatcc tcctgtgctc cc	32
•	<210> 36 <211> 1882 <212> DNA <213> Homo sapiens	

<220> <221> CDS

<222> (226)...(1338) <400> 36 ccgtcaccat ttatcagctc agcaccacaa ggaagtgcgg cacccacacg cgctcggaaa 60 gttcagcatg caggaagttt ggggagagct cggcgattag cacagcgacc cgggccagcg 120 cagggcgagc gcaggcggcg agagcgcagg gcggcgcggc gtcggtcccg ggagcagaac 180 ccggcttttt cttggagcga cgctgtctct agtcgctgat cccaa atg cac cqg ctc 237 Met His Arg Leu 1 atc ttt gtc tac act cta atc tgc gca aac ttt tgc agc tgt cgg gac 285 Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys Ser Cys Arg Asp 5 10 15 20 act tot goa acc cog cag ago goa too atc aaa got ttg ogo aac goo 333 Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala Leu Arg Asn Ala aac ctc agg cga gat gag agc aat cac ctc aca gac ttg tac cga aga 381 Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp Leu Tyr Arg Arg 40 45 50 gat gag acc atc cag gtg aaa gga aac ggc tac gtg cag agt cct aga 429 Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val Gln Ser Pro Arg 55 60 65 477 ttc ccg aac agc tac ccc agg aac ctg ctc ctg aca tgg cgg ctt cac Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr Trp Arg Leu His 70 75 tct cag gag aat aca cgg ata cag cta gtg ttt gac aat cag ttt gga 525 Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp Asn Gln Phe Gly 85 90 95 100 tta gag gaa gca gaa aat gat atc tgt agg tat gat ttt gtg gaa gtt 573 Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp Phe Val Glu Val 105 110 115

gaa gat ata too gaa acc agt acc att att aga gga cga tgg tgt gga

Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly Arg Trp Cys Gly

125

120

130

												att Ile		669
												ttc Phe	-	717
												tca Ser		765
					_					-		tat Tyr 195		813
	_	_	-			-			_	-	•	gac Asp		861
			_			-	_	_		-		ttc Phe		909
			_	-				_		-	-	acc Thr		957
						-		_			-	gac Asp	_	1005
 		_	-	-	_	_		_	-			agg Arg 275		1053
												gtc Val		1101
												ggc Gly		1149

gga act gtc aac tgg agg tcc tgc aca tgc aat tca ggg aaa acc gtg Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser Gly Lys Thr Val 310 315 320	1197
aaa aag tat cat gag gta tta cag ttt gag cct ggc cac atc aag agg Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly His Ile Lys Arg 325 330 335 340	1245
agg ggt aga gct aag acc atg gct cta gtt gac atc cag ttg gat cac Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile Gln Leu Asp His 345 350 355	1293
cat gaa cga tgc gat tgt atc tgc agc tca aga cca cct cga taa His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro Pro Arg * 360 365 370	1338
gagaatgtgc acatccttac attaagcctg aaagaacctt tagtttaagg agggtgagat aagagaccct tttcctacca gcaaccaaac ttactactag cctgcaatgc aatgaacaca agtggttgct gagtctcagc cttgctttgt taatgccatg gcaagtagaa aggtatatca tcaacttcta tacctaagaa tataggattg catttaataa tagtgtttga ggttatatat gcacaaacac acacagaaat atattcatgt ctatgtgtat atagatcaaa tgttttttt ttttggtata tataaccagg tacaccagag gttacatatg tttgagttag actcttaaaa tcctttgcca aaataaggga tggtcaaata tatgaaacat gtctttagaa aatttaggag ataaatttat ttttaaattt tgaaacacga aacaattttg aatcttgctc tcttaaagaa agcatcttgt atattaaaaa tcaaaagatg aggctttctt acatatacat cttagttgat tatt	1398 1458 1518 1578 1638 1698 1758 1818 1878 1882

<210> 37

<211> 370

<212> PRT

<213> Homo sapiens

<400> 37

 Met His Arg Leu Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys

 1
 5
 10
 15

 Ser Cys Arg Asp Asp Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala 20
 25
 30

 Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 35
 40
 45

 Leu Tyr Arg Arg Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val 50
 55
 60

 Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Leu Thr 75
 80

 Trp Arg Leu His Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp 90
 95


```
Asn Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp
            100
                                 105
Phe Val Glu Val Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly
                             120
Arg Trp Cys Gly His Lys Glu Val Pro Pro Arg Ile Lys Ser Arg Thr
                         135
Asn Gln Ile Lys Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys
                    150
                                         155
Pro Gly Phe Lys Ile Tyr Tyr Ser Leu Leu Glu Asp Phe Gln Pro Ala
                                     170
Ala Ala Ser Glu Thr Asn Trp Glu Ser Val Thr Ser Ser Ile Ser Gly
            180
                                 185
                                                     190
Val Ser Tyr Asn Ser Pro Ser Val Thr Asp Pro Thr Leu Ile Ala Asp
                             200
                                                 205
Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp Thr Val Glu Asp Leu Leu
    210
                         215
                                             220
Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu Asp Leu Glu Asn Met Tyr
                    230
                                         235
Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser Tyr His Asp Arg Lys Ser
                                     250
                                                          255
Lys Val Asp Leu Asp Arg Leu Asn Asp Asp Ala Lys Arg Tyr Ser Cys
                                 265
Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala
                             280
Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly
                         295
                                             300
Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser
305
                                         315
                    310
                                                              320
Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly
                325
                                     330
His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile
                                 345
Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro
        355
                             360
                                                 365
Pro Arg
    370
      <210> 38
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> oligonucleotide primer ZC21,222
```

<400> 38 tgagccctcg ccccagtcag	20
<210> 39 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide primer ZC21,224	
<400> 39 acatacagga aagccttgcc caaaa	25
<210> 40 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide primer ZC21,223	
<400> 40 aaactaccct gcgattctct gctgc	25
<210> 41 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide primer ZC21,334	
<400> 41 ggtaaatgga gcttggctga g	21
<210> 42 <211> 3571 <212> DNA <213> Mus musculus	
<220> <221> CDS <222> (1049)(2086)	

<400> 42				
qaattcccgg gtcgacccac ggcggcattc ctcgccgcag ctgcccggccg ccagccccgc ggggacaaga gcgatcctcc ccacctctc tcagccctgc ctccgagccg ccaagctct tcggtggca ccgactgcag tcgtcccca ggcgctccc ggcgctccc gtccccag gtgggggtgg cccaaggtg tcgccccag gtcgctccc ctcgcctgt tcgccccag gtcctctg tcgccctgc tcgcctcc ccgcgtccc tcggcacag tcgccctgt gtcctgctcc tcggcacag ctcagattt ttgatcctt tcaaaaactg attatgtga aactaccctg agcgcagcc ctcgcccag	tgtgggctcc greecegcagetg geccegcagetg geccegcaget gecceggettcc caaggaggag geccegcceggg are gecgacetgg caaactgac are accettett tegttaaacet tegggagacacaga are gggctgagec treagccaa atg	tctgccgcg gg ccgcccgcg cc cgcccgctg gg gccttccct ta ccttagggc ag gcagcactt cg ctccgcggt gg cccgcccga tc ttccagtct gg ggtgctccc tg cgggaaactg gt gagggctct ag tgccagagc cg tggagtcgt cg ctc ctc ctc	ggcccgcag tgc cccccgcgc ccc gggaaagtg gag agccgcccg tgc ggcatccga gcg gccggtacc cga gatccgggc cag actcgcagg gca cagcagctt tgt gcttggcgg gac gcgagtcgc cac ctacccca ccc ttcaggtcc agg ggaaaaact ttt ggccaggcg ctt	cccctgt 120 ccgcgcc 180 acgggga 240 ttagccg 300 ctcgcga 360 gggaact 420 tcccgag 540 cattgat 600 cccgagt 660 gactcat 720 cccgcac 780 ttttgct 840 ggatggg 900 ccaccgc 960 cccgccg 1020 ctg 1072
ctg aca tct gcc ctg g Leu Thr Ser Ala Leu A 10		g Thr Gly Th		₹
aac ctg agc agc aag t Asn Leu Ser Ser Lys L 25				
gtg caa gat ccc cgg c Val Gln Asp Pro Arg H 45	is Glu Arg Va	1 Val Thr Il	le Ser Gly As	n Gly
agc atc cac agc ccg a Ser Ile His Ser Pro L 60	=	s Thr Tyr Pr	_	
ctg gtg tgg aga tta g Leu Val Trp Arg Leu V 75				
aca ttt gat gag aga t Thr Phe Asp Glu Arg P 90			lu Asp Asp Il	

_	tat Tyr	-	_	_	_				_	-		-	-		1408
	cgc Arg														1456
	aat Asn				-		-		-						1504
	ccc Pro														1552
	acc Thr 170														1600
_	ctc Leu		_			-		_		_	-		_		1648
	tac Tyr														1696
	cca Pro														1744
	aaa Lys														1792
_	tgc Cys 250										_	-		-	1840
	aca Thr	_						-		Leu	_	_	-	-	1888

gga gga aat tgt gcc tgt tgt ctc cat aat tgc aat gaa tgt cag tgt Gly Gly Asn Cys Ala Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys 285 290 295	1936
gtc cca cgt aaa gtt aca aaa aag tac cat gag gtc ctt cag ttg aga Val Pro Arg Lys Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg 300 305 310	1984
cca aaa act gga gtc aag gga ttg cat aag tca ctc act gat gtg gct Pro Lys Thr Gly Val Lys Gly Leu His Lys Ser Leu Thr Asp Val Ala 315 320 325	2032
ctg gaa cac cac gag gaa tgt gac tgt gtg tgt aga gga aac gca gga Leu Glu His His Glu Glu Cys Asp Cys Val Cys Arg Gly Asn Ala Gly 330 335 340	2080
ggg taa ctgcagcett cgtagcagca cacgtgagca ctggcattet gtgtaceee Gly * 345	2136
acaagcaacc ttcatcccca ccagcgttgg ccgcagggct ctcagctgct gatgctggct	2196
atggtaaaga tcttactcgt ctccaaccaa attctcagtt gtttgcttca atagccttcc	2256
cctgcaggac ttcaagtgtc ttctaaaaga ccagaggcac caagaggagt caatcacaaa	2316
gcactgcctt ctagaggaag cccagacaat ggtcttctga ccacagaaac aaatgaaatg	2376 2436
tagcttagtt gtcttgatat gggcaagtga tgtcagcaca agaaaatggt gaaaaacaca	2436
cacttgattg tgaacaatgc agaaatactt ggatttctcc aacctgtttg catagataga	2556
cagatgctct gttttctaca aactcaaagc ttttagagag cagctatgtt aataggaatt	2616
aaatgtgcca tgctgaaagg aaagactgaa gttttcaatg cttggcaact tctccgcaat	2676
ttggaggaaa ggtgcggtca tggtttggag aaagcacacc tgcacagagg agtggccttc	2736
ccttcccttc cctctgaggt ggcttctgtg tttcattgtg tatattttta tattctcctt	2796
ttgacattat aactgttggc ttttctaatc ttgttaaata tttctatttt taccaaaggt	2856
atttaatatt cttttttatg acaacctaga gcaattattt ttagcttgat aattttttt	2916
tctaaacaaa attgttatag ccagaagaac aaagatgatt gatataaaaa tcttgttgct	2976
ctgacaaaaa catatgtatt tcttccttgt atggtgctag agcttagcgt catctgcatt	3036
tgaaaagatg gaatggggaa gtttttagaa ttggtaggtc gcagggacag tttgataaca	3096
actgtactat catcaattcc caattctgtt cttagagcta cgaacagaac agagcttgag	3156
taaatatgga gccattgcta acctacccct ttctatggga aataggagta tagctcagag	3216
aagcacgtcc ccagaaacct cgaccatttc taggcacagt gttctgggct atgctgcgct	3276 3336
gtatggacat atcctattta tttcaatact agggttttat tacctttaaa ctctgctcca tacacttgta ttaatacatg gatattttta tgtacagaag tatatcattt aaggagttca	3396
cttattatac tctttggcaa ttgcaaagaa aatcaacata atacattgct tgtaaatgct	3456
taatctgtgc ccaagttttg tggtgactat ttgaattaaa atgtattgaa tcatcaaata	3516
aaataatctg gctattttgg ggaaaaaaaa aaaaaaaaa aaaaagggcg gccgc	3571

<210> 43

<211> 345

<212> PRT

<213> Mus musculus

<400> 43

290

Met Leu Leu Leu Gly Leu Leu Leu Thr Ser Ala Leu Ala Gly Gln Arg Thr Gly Thr Arg Ala Glu Ser Asn Leu Ser Ser Lys Leu Gln Leu Ser Ser Asp Lys Glu Gln Asn Gly Val Gln Asp Pro Arg His Glu Arg 40 Val Val Thr Ile Ser Gly Asn Gly Ser Ile His Ser Pro Lys Phe Pro His Thr Tyr Pro Arg Asn Met Val Leu Val Trp Arg Leu Val Ala Val Asp Glu Asn Val Arg Ile Gln Leu Thr Phe Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Ser Val Leu Gly Arg Trp Cys Gly Ser Gly Thr 120 Val Pro Gly Lys Gln Thr Ser Lys Gly Asn His Ile Arg Ile Arg Phe 135 140 Val Ser Asp Glu Tyr Phe Pro Ser Glu Pro Gly Phe Cys Ile His Tyr 150 155 Ser Ile Ile Met Pro Gln Val Thr Glu Thr Thr Ser Pro Ser Val Leu 170 Pro Pro Ser Ser Leu Ser Leu Asp Leu Leu Asn Asn Ala Val Thr Ala 185 Phe Ser Thr Leu Glu Glu Leu Ile Arg Tyr Leu Glu Pro Asp Arg Trp 200 205 Gln Val Asp Leu Asp Ser Leu Tyr Lys Pro Thr Trp Gln Leu Leu Gly 215 Lys Ala Phe Leu Tyr Gly Lys Lys Ser Lys Val Val Asn Leu Asn Leu 230 235 Leu Lys Glu Glu Val Lys Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser 245 250 Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro 260 265 Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu 280 His Asn Cys Asn Glu Cys Gln Cys Val Pro Arg Lys Val Thr Lys Lys

295

164

Tyr 305	His	Glu	Val	Leu	Gln 310	Leu	Arg	Pro	Lys	Thr 315	Gly	Val	Lys	Gly	Leu 320		
His	Lys	Ser	Leu	Thr 325		Val	Ala	Leu	G1u 330		His	Glu	Glu	Cys 335			
Cys	Val	Cys	Arg 340		Asn	Ala	Gly	Gly 345									
	<2 <2	210> 211> 212> 213>	65 DNA	ific ⁻	ial S	Seque	ence										
		220> 223>	olig	gonud	cleot	cide	prin	mer Z	ZC20	,572							
tcac ggcg	cacg	100> jcg ā		eggta	ac cg	gctgg	gttco	c gcg	gtgga	atcc	ggco	cagaç	gac a	agggg	gactc	a	60 65
	<2 <2	210> 211> 212> 213>	65 DNA	ifici	ial S	Seque	ence										
		220> 223>	olig	gonuc	cleot	ide	prin	mer Z	'C20 ,	.573							
tctg tgca	tato	100> :ag g	_	aaat	cc tt	atct	cato	c cgc	caaa	aca	ctat	ccto	cct g	gtgct	ccct	C .	60 65
	<2 <2	?10> ?11> ?12> ?13>	40 DNA	fici	ial S	Seque	ence										
		?20> ?23>	olig	jonuc	leot	ide	prim	ner Z		372							
tgtc		.00> ıaa g		gaaa	ig ac	gcgc	agac	: taa	itteg	jagc							40
	<2	?10> ?11> ?12>	60														

(66

tttgtagaag	ttgaggaacc	cagtgatgga	actatattag	ggcgctggtg	tggttctggt	420
actgtaccag	gaaaacagat	ttctaaagga	aatcaaatta	ggataagatt	tgtatctgat	480
gaatattttc	cttctgaacc	agggttctgc	atccactaca	acattgtcat	gccacaattc	540
acagaagctg	tgagtccttc	agtgctaccc	ccttcagctt	tgccactgga	cctgcttaat	600
aatgctataa	ctgcctttag	taccttggaa	gaccttattc	gatatcttga	accagagaga	660
tggcagttgg	acttagaaga	tctatatagg	ccaacttggc	aacttcttgg	caaggctttt	720
gtttttggaa	gaaaatccag	agtggtggat	ctgaaccttc	taacagagga	ggtaagatta	780
tacagctgca	cacctcgtaa	cttctcagtg	tccataaggg	aagaactaaa	gagaaccgat	840
${\it accattttct}$	ggccaggttg	tctcctggtt	aaacgctgtg	gtgggaactg	tgcctgttgt	900
ctccacaatt	gcaatgaatg	tcaatgtgtc	ccaagcaaag	ttactaaaaa	ataccacgag	960
gtccttcagt	tgagaccaaa	gaccggtgtc	aggggattgc	acaaatcact	caccgacgtg	1020
gccctggagc	accatgagga	gtgtgactgt	gtgtgcagag	ggagcacagg	aggatagtgt	1080
tttggcggat	gagat					1095

(67)