- (b) Differentiate between 1-butene and 1-butyne using IR spectroscopy.
- (c) Explain, why [2+2] cycloaddition reaction are photochemically allowed and thermally forbidden. (5,5,5)
- 8. Write short notes on (Any three):
 - (a) Haworth synthesis of naphthalene
 - (b) Norrish Type II reaction
 - (c) Witt's theory of colour
 - (d) Claisen rearrangement

(5,5,5)

[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 5546

J

Unique Paper Code

: 2172013602

Name of the Paper

: DSC: Polynuclear

Hydrocarbons,

Photochemistry, Pericyclic reactions, and Spectroscopy

of Organic Compounds

Name of the Course

: B.Sc. (H) Chemistry

Semester

: VI

Duration: 3 Hours

Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt six questions. All parts of a question should be attempted together.
- 3. Each question carries 15 marks.

1. (a) Complete the following reaction

 C_6H_5 + $H_2C=C-CH_3$ hv A (major) + B (minor)

- (i) Write the name of the reaction.
- (ii) Explain the formation of products.
- (b) Calculate the λ_{max} value for the following compounds

i) ii)

Base value for homo annular diene = 253 nm, Base value for heteroannular diene = 215 nm; Alkyl group or Ring residue = 5 nm, Exocyclic double bond = 5 nm, Double bond extended conjugation = 30 nm

- (c) Acetylenic protons are more shielded as compared to ethylenic protons. Explain. (5,5,5)
- 2. (a) An organic compound with molecular formula $C_6H_{12}O$ showed the following spectral data:

- (c) In an organic compound, three kinds of protons appear at 60,100 and 180 Hz when the spectra are recorded at 60 MHz spectrometer.
 - (i) Determine the chemical shift.
 - (ii) Relative position (in Hz) when 90 MHz spectrometer is used. (5,5,5)
- 7. (a) Give the number of PMR signal in each of the following:

(i) CH_3 (ii) H_3C H_3C CI H_3C CI

(iii) Br
(iv) Cr

(v) CH₃-CH-CH₃ Cl H_COOH H_COOH

C₆H₅ H H C₆H₅

- (c) Draw the PMR of pure and impure ethanol. Give reasons for the difference.
- 6. (a) Arrange the following compounds in order of increasing order of carbonyl absorption frequency in IR spectroscopy. Give reasons.

(i)
$$H_{3}C$$
 NH_{2} , $H_{3}C$ CH_{3} , $H_{3}C$ $H_{4}C$

(b) Complete the following reaction and explain the formation of products

(2E,4Z) 2,4-Hexadiene

UV: $\lambda_{max} = 288$ nm, $\epsilon = 24$; IR: A very strong band at 1715 cm⁻¹; ¹HNMR: δ values 2.0 (3H, s) and 1.0 (9H, s)

- (i) Calculate the double bond equivalence
- (ii) Deduce the structure of the compound
- (iii) Explain (a) UV transition (b) IR absorption band (c) NMR peaks along with splitting patterns
- (b) Complete the following reactions:

(iii)
$$V_2O_5/O_2$$

- (c) Explain giving reason. Why IR spectrum of liquid t-butyl alcohol shows a strong absorption at 3360 cm⁻¹? Whereas a very dilute solution of the same compound in CCl₄ shows a strong absorption band at 3620 cm⁻¹ instead of 3360 cm⁻¹. (5,5,5)
- 3. (a) Using the Frontier Molecular orbital approach, explain why [1,3] sigmatropic hydrogen shift is photochemically allowed and thermally forbidden.

$$H_3C-HC=CD_2 \xrightarrow{h\nu} H_2C=CH-CHD_2$$

- (b) Write the full form and structure of TMS. Why it is used as internal reference?
- (c) An organic compound (A) on partial hydrogenation with one equivalent of H_2 gives three isomers with molecular formula $C_{10}H_{14}$. Show how UV can distinguish these isomers.

- 4. (a) How will you establish that in naphthalene two benzene rings are fused at *ortho* positions.
 - (b) Write the structural formula for the compounds with the following molecular formula that shows only one signal in their PMR spectra
 - (i) $C_3H_6Cl_2$
- (ii) C_5H_{12}
- (iii) C₄H₆
- (iv) C_5H_{10}
- $(v) C_2H_6O$
- (b) A carbonyl compound shows the following data:

Solvent	λ _{max} (ε)	λ_{max} (ϵ)
Hexane	230 (12,600)	327 (98)
Water	245 (10,000)	305 (60)

Assign the various transitions. Explain the shift when the solvent is changed from hexane to water.

(5,5,5)

- 5. (a) Explain, why electrophilic substitution in anthracene occurs at C-9 and C-10 position.
 - (b) Explain, which one is having higher λ_{max} (in UV spectroscopy) and higher value of $v_{c=0}$ (in IR spectroscopy)