| رشته : <b>ریاضی فیزیک</b> | ساعت شروع: ٩ صبح | پایه: <b>یازدهم</b> دوره دوم متوسطه      | سوالات امتحان هماهنگ درس: حسابان ۱        |
|---------------------------|------------------|------------------------------------------|-------------------------------------------|
| مدت امتحان: •• ا دقیقه    | تعداد صفحات : 🏲  | تاریخ امتحان: ۱۴۰۲/۰۵/۳۰                 | نام و نام خانوادگی :                      |
|                           |                  | ِ نوبت <b>شهريور</b> ماه سال <b>۱۴۰۲</b> | دانش آموزان روزانه داخل و خارج از کشور در |
|                           |                  |                                          |                                           |

| بارم | استفاده از ماشین حساب ساده، بلا مانع است.                                                                                                   | ردیف |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| ١    | درستی یا نادرستی عبارتهای زیر را مشخص کنید.                                                                                                 | ١    |  |
|      | الف) حاصل عبارت $+8+8+\cdots+7+8+7$ برابر $+20$ است.                                                                                        |      |  |
|      | ب) دو تابع $f\left(x ight)=\sqrt{x^{ \gamma}}$ و $g\left(x ight)=\sqrt{x^{ \gamma}}$ با هم برابرند.                                         |      |  |
|      | .پ) در تابع $a^x = f(x) = a^n$ ، اگر $a>$ ، با افزایش مقدار $a>$ ، مقادیر $a>$ افزایش مییابد                                                |      |  |
|      | $\cos \alpha + \cos(\pi - \alpha) = \circ$ ت                                                                                                |      |  |
| ١    | درجاهای خالی عبارت مناسب قرار دهید.                                                                                                         | ۲    |  |
|      | الف) حاصل ضرب ریشههای معادلهٔ $\lambda = \lambda = x^{+} + \pi x$ مساوی است.                                                                |      |  |
|      | ب) مجموعه جواب معادلهٔ $\sqrt{x^{}-9}+7\sqrt{x^{}-9}$ ، برابر $\left\{\ldots\ldots\right\}$ میباشد.                                         |      |  |
|      | پ) حاصل عبارت $\log_{a}^{\sqrt[7]{70}}$ برابر است.                                                                                          |      |  |
|      | ت) در دایرهای به شعاع $\frac{\mathbf{r}}{2}$ متر، اندازهٔ زاویه مرکزی رو به رو به کمانی به طول $\frac{\mathbf{r}}{2}$ متر برابر رادیان است. |      |  |
| 1/۲۵ | طول ضلع مربعی یک متر است. ابتدا نیمی از مساحت آن را رنگ میکنیم. سپس نیمی از مساحت باقی مانده را و                                           | ٣    |  |
|      | به همین ترتیب در هر مرحله نیمی از مساحت باقی مانده از قبل را رنگ میکنیم. پس از دست کم چند مرحله                                             |      |  |
|      | حداقل <u>۹۹</u> درصد سطح مربع رنگ شده است؟<br>                                                                                              |      |  |
| ١    | در شکل زیر نمودار سهمی $p(x) = a  x^{Y} + b x + c$ داده شده است. صفرهای تابع را در صورت وجود به دست                                         | ۴    |  |
|      | آورید و ضابطهٔ تابع را مشخص کنید.<br>3 -2 -1 -1 -0                                                                                          |      |  |
| ١    | یکی از اضلاع مربعی بر خط $y=7x-1$ واقع است. اگر $\left( \mathbf{r},\circ  ight)$ یکی از رئوس این مربع باشد، مساحت مربع را محاسبه کنید.      | ۵    |  |
| 1/۲۵ | مشخص کنید هر نمودار زیر با کدام یک از توابع داده شده، متناظر است؟                                                                           | ۶    |  |
|      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      |      |  |
|      | $f(x) = \frac{-1}{x}$ , $g(x) = \sqrt{-x}$ , $h(x) = -\sqrt{x}$ , $r(x) = -\sqrt{-x}$ , $t(x) = \frac{1}{x}$ «ادامه سوالات در صفحه دوم»     |      |  |

# www.konkur.in

| : ریاضی فیزیک      | رشته  | ساعت شروع: ٩ صبح | پایه: <b>یازدهم</b> دوره دوم متوسطه | سوالات امتحان هماهنگ درس: حسابان ۱        |
|--------------------|-------|------------------|-------------------------------------|-------------------------------------------|
| امتحان: •• ا دقیقه | مدت ا | تعداد صفحات : 🏲  | تاریخ امتحان: ۱۴۰۲/۰۵/۳۰            | نام و نام خانوادگی :                      |
|                    |       |                  | ِ نوبت <b>شهریور</b> ماه سال ۱۴۰۲   | دانش آموزان روزانه داخل و خارج از کشور در |

| (وباید) الفائشان دهبید تابیع و به یک نیست.  Y تابیع $T \times T $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ،ا،  | . [ et al. d. ]                                                                                                             | . ذ. ف   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------|----------|
| الف)نشان دهید تایع و یک به یک نیست.  (الف)نشان دهید تایع و یک به یک نیست.  (الف)نشان دهید تایع و یک به یک نیست.  (الف) با معدود کردن دامنه تابع و ی تابعی وارون پذیر به تام $f$ بسازید و وارون آن را به دست آورید.  (الف) توابع $\frac{1}{x} = \frac{1}{x}$ و $f(x) = \frac{1}{x}$ و $f(x) = \frac{1}{x}$ و $f(x) = \frac{1}{x}$ و توابع $f(x) = \frac{1}{x}$ و $f(x) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | بارم | استفاده از ماشین حساب ساده، بلا مانع است.                                                                                   | ردیف     |
| y   y   y   y   y   y   y   y   y   y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/۵  | ÷ 12 - 2                                                                                                                    | <b>Y</b> |
| را با استفاده از تعریف به دست آورید. $g(x) = \sqrt{\mathbf{F} - \mathbf{x'}}  f(x) = \frac{1}{x'}$ $\mathbf{F}$ $F$ |      | الف)نشان دهید تابع $g$ ، یک به یک نیست.                                                                                     |          |
| $f(x) = \sqrt{x} + \sqrt{x}$ و $f(x) = \sqrt{x}$ و $f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | ب) با محدود کردن دامنه تابع $g$ ، تابعی وارون پذیر به نامِ $f$ بسازید و وارون آن را به دست آورید.                           |          |
| $(\frac{x}{2} + 1)$ $(\frac{x}{2} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ١    | . توابع $f(x)=rac{1}{x^{3}}$ و $g(x)=\sqrt{\mathfrak{r}-x^{3}}$ مفروضند، دامنهٔ تابع $f(x)=f(x)=rac{1}{x^{3}}$ توابع      | ٨        |
| $\log_{\Upsilon}^{(x-1)} + \log_{\Upsilon}^{(\frac{X}{x}+1)} = \Upsilon$ $\log_{\Upsilon}^{(x-1)} + \log_{\Upsilon}^{(x-1)} = \frac{\pi}{\alpha}$ $\log_{\Upsilon}^{(x-1)} + \log_{\Upsilon}^{(x-1$                                                                                                                                                                                              | ١    | خط ۱ $y=1$ نمودار تابع $y=(\circ / \circ 1)^x$ را در چه نقطهای قطع می $y=1$ راه حل نوشته شود)                               | ٩        |
| $y = - \cos x  + 1$ انمودار تابع $y = - \cos x  + 1$ انمودار تابع را مشخص کنید. $y = - \cos x  + 1$ انمودار تابع را مشخص کنید. $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان $y = - \cos x  + 1$ اگر $y = - \cos x  + 1$ و انتهای کمان و انتهای و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/۵  | معادلهٔ لگاریتمی مقابل را حل کرده و مجموعه جواب را مشخص کنید.                                                               | 1.       |
| (مراحل رسم را نشان دهید)  (مراحل رسم و از را بیابید که تابع $a$ در نقطهای به طول $a$ ییوسته باشد.  (مراحل رسم را نشان دهید)  (مراحل مید نش                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $\log_{\tau}^{(x-1)} + \log_{\tau}^{(\frac{x}{2}+1)} = \Upsilon$                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/۲۵ | را در بازهٔ $y=- \cos x +1$ رسم کرده و برد تابع را مشخص کنید. $y=- \cos x +1$ نمودار تابع                                   | 11       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | (مراحل رسم را نشان دهید)                                                                                                    |          |
| ۱۱۳ اگر بازهٔ $(x-1,7y+2)$ یک همسایگی راست محذوف $T$ باشد، مجموعه مقادیر $T$ و $T$ را به دست آورید.  ۱۴ با توجه به شکل، حاصل عبارت زیر را در صورت وجود به دست آورید.  ۲ $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/70 | 73                                                                                                                          | ١٢       |
| ۱۱۵ $\lim_{x \to v^+} \frac{x^{\gamma} x  - \Lambda}{x - y}$ $\lim_{x \to v} \frac{f(x) + \nabla f(x) - \lim_{x \to v} f(x)}{x - y}$ $\lim_{x \to v} \frac{\sin xx}{ax}$ (Itis $f(x) + \nabla f(x) - \lim_{x \to v} f(x) = 0$ $\lim_{x \to v} \frac{\sin x}{ax}$ $\lim_{x \to v} \frac{\sin x}{ax}$ (Itis $f(x) + \nabla f(x) - \lim_{x \to v} f(x) = 0$ $\lim_{x \to v} \frac{\sin x}{ax}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ١    | اگر بازهٔ $(x-1,7y+\Delta)$ یک همسایگی راستِ محذوفِ $x$ باشد، مجموعه مقادیر $x$ و $y$ را به دست آورید.                      | ١٣       |
| الف $\lim_{x \to \tau^{+}} \frac{x^{\tau} x  - h}{x - \tau} \qquad \lim_{x \to \infty} \frac{\sin \tau x}{\delta x}$ $\int_{x \to \tau^{+}} \frac{\sin \tau x}{x - \tau} \qquad \sin \tau x$ $\int_{x \to \tau^{+}} \frac{\sin \tau x}{\delta x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    | Y $\lim_{x \to \infty} f(x) + \forall f(x) - \lim_{x \to \infty} f(x) =$                                                    | 14       |
| مقادیر $a$ و $d$ را چنان بیابید که تابع $f$ در نقطهای به طول $=$ پیوسته باشد. $f(x) = \begin{cases} \frac{\sqrt{1+x}-1}{x} & x > 0 \\ x-\frac{a}{x} & x = 0 \\ b+\frac{[x]}{x} & x < 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/۵  | مقدار حدهای زیر را بیابید.                                                                                                  | ۱۵       |
| 1/\Delta $f(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{x} & x > 0 \\ x - \frac{a}{x} & x = 0 \\ b + \frac{[x]}{x} & x < 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | $\lim_{x \to r^+} \frac{x^{r} x  - \lambda}{x - r}$ (الف $\lim_{x \to \infty} \frac{\sin rx}{\Delta x}$                     |          |
| " موفق باشيد " جمع نمره "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | $f(x) = \begin{cases} \frac{\sqrt{1+x} - 1}{x} & x > 0 \\ x - \frac{a}{y} & x = 0 \\ b + \frac{[x]}{y} & x < 0 \end{cases}$ | 18       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.   | " موفق باشيد " جمع نمره                                                                                                     |          |

# www.konkur.in

| ساعت شروع: ٩ صبح | رشته : <b>ریاضی فیزیک</b> | راهنمای تصحیح سوالات امتحان هماهنگ درس: حسابان۱                |
|------------------|---------------------------|----------------------------------------------------------------|
| تعداد صفحات : ۲  | تاریخ امتحان : ۱۴۰۲/۰۵/۳۰ | پایه: <b>یازدهم</b> دوره دوم متوسطه                            |
|                  | اه سال ۱۴۰۲               | دانش آموزان روزانه داخل و خارج از کشور در نوبت <b>شهریور</b> م |

| بارم |                                                                                                                                                                                                                                                                                                      | ردیف |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ١    | الف)نادرست (۰/۲۵) ب) نادرست (۰/۲۵) پ) درست (۰/۲۵) ت) درست (۰/۲۵)                                                                                                                                                                                                                                     | ١    |
| ١    | $(\cdot/7\Delta)$ ۴ (ت $(\cdot/7\Delta)$ $\frac{7}{\pi}$ (پ $(\cdot/7\Delta)$ $\pi$ (ب $(\cdot/7\Delta)$ $(\cdot/7\Delta)$ $(\cdot/7\Delta)$ $(\cdot/7\Delta)$                                                                                                                                       | ٢    |
| 1/۲۵ | $\frac{1}{r}, \frac{1}{r}, \frac{1}{\lambda}, \dots \qquad S_n \ge \frac{44}{1 \cdots}  (\cdot / r \delta)  \Rightarrow \frac{1}{r} \times \frac{1 - (\frac{1}{r})^n}{1 - \frac{1}{r}} \ge \frac{44}{1 \cdots}  (\cdot / r \delta)  \Rightarrow$                                                     | ٣    |
|      | $1 - \left(\frac{1}{r}\right)^n \ge \frac{99}{1 \cdot \cdot \cdot}  (\cdot / \Upsilon \delta)  \Rightarrow  \frac{1}{1 \cdot \cdot \cdot} \ge \left(\frac{1}{r}\right)^n  \Rightarrow  \Upsilon^n \ge 1 \cdot \cdot \cdot  (\cdot / \Upsilon \delta)  \Rightarrow n = V  (\cdot / \Upsilon \delta)$  |      |
| 1    | تابع، صفری ندارد. ( ۲۵/۰۸)                                                                                                                                                                                                                                                                           | ۴    |
|      | $y = a(x - Y)^{Y} + 1 \qquad (\cdot / Y \delta)  \Rightarrow Y = a(\circ - Y)^{Y} + 1  (\cdot / Y \delta)  \Rightarrow$                                                                                                                                                                              |      |
|      | $a = \frac{1}{r}$ $\Rightarrow$ $y = \frac{1}{r}(x - r)^r + 1$ $(\cdot / r\delta)$                                                                                                                                                                                                                   |      |
| ١    | $d = \frac{\left ax_{\circ} + by_{\circ} + c\right }{\sqrt{a^{'} + b^{''}}} = \frac{\left \mathbf{Y} \times \mathbf{Y} - \circ - 1\right }{\sqrt{\mathbf{Y} + 1}} = \frac{\delta}{\sqrt{\delta}} = \sqrt{\delta}  (\cdot / \mathbf{Y} \delta)  \Rightarrow  S = \delta  (\cdot / \mathbf{Y} \delta)$ | ۵    |
| 1/۲۵ | (۱) هر مورد (۲۵ $g(x)$ (۵) $h(x)$ (۴) $f(x)$ (۳) $f(x)$ (۲) $f(x)$ (۱)                                                                                                                                                                                                                               | ۶    |
| 1/۵  | $g(x) = (x-1)^{r} + r$ $(\cdot/r\Delta)$ , $g(\circ) = g(r) = r$ $(\cdot/r\Delta)$                                                                                                                                                                                                                   | ٧    |
|      | $f:[1,+\infty) \to R$ $f(x) = (x-1)^{Y} + Y$ $(\cdot / Y \Delta)$                                                                                                                                                                                                                                    |      |
|      | $x - 1 = \pm \sqrt{y - Y}$ $(\cdot/Y\delta) \Rightarrow f^{-1}(x) = \sqrt{x - Y} + 1$ $(\cdot/\delta)$                                                                                                                                                                                               |      |
| ١    | $D_f = R - \{\circ\}$ $(\cdot / \Upsilon \Delta)$ , $D_g = [-\Upsilon, \Upsilon]$ $(\cdot / \Upsilon \Delta)$                                                                                                                                                                                        | ٨    |
|      | $D_{fog} = \underbrace{\{x \in [-\Upsilon, \Upsilon] \mid \sqrt{\Upsilon - x^{\Upsilon}} \neq 0\}}_{\bullet / \Upsilon \Delta} = (-\Upsilon, \Upsilon)$                                                                                                                                              |      |
| ١    | $1\circ = (\circ / \circ 1)^{x}  (\cdot / \Upsilon \Delta) \Rightarrow 1\circ = (1 \circ^{-\Upsilon})^{x}  (\cdot / \Upsilon \Delta) \Rightarrow -\Upsilon x = 1  (\cdot / \Upsilon \Delta) \Rightarrow x = \frac{-1}{\Upsilon}  (\cdot / \Upsilon \Delta)$                                          | ٩    |
| 1/۵  | $\log_{\gamma}(x-1)(\frac{x}{\gamma}+1) = \gamma  (\cdot/\gamma\delta) \Rightarrow (x-1)(\frac{x}{\gamma}+1) = \gamma  (\cdot/\gamma\delta) \Rightarrow x^{\gamma} + x - \gamma\circ = \circ  (\cdot/\gamma\delta)$                                                                                  | 1.   |
|      | $(\cdot/\Upsilon$ ک) $x=-$ ه جواب $x=+$ و $(\cdot/\Upsilon$ ک) و $(\cdot/\Upsilon$ ک) و $(\cdot/\Upsilon$ ک                                                                                                                                                                                          |      |
|      | « ادامه در صفحه دوم »                                                                                                                                                                                                                                                                                |      |

| اعت شروع: ٩ صبح | ي <b>زيک</b> س | رشته : <b>ریاضی ف</b> | راهنمای تصحیح سوالات امتحان هماهنگ درس: حسابان ا               |
|-----------------|----------------|-----------------------|----------------------------------------------------------------|
| داد صفحات : ۲   | ۱۴۰۲/۰۵/۳۰     | تاريخ امتحان :        | پایه: <b>یازدهم</b> دوره دوم متوسطه                            |
|                 |                | باه سال <b>۱۴۰۲</b>   | دانش آموزان روزانه داخل و خارج از کشور در نوبت <b>شهریور</b> ه |



مصححین گرامی: لطفا به راه حل های درست و منطبق بر کتاب درسی بارم به تناسب منظور شود.