DISMATH Q2

Name:	Section:
1. Use the Insert sort algorithm to sort alphabetically the S, P, T, W.	<u> </u>
Write the state of the full list for every assignment oper the execution of the algorithm. Use asterisk (*) to denote the test booklet). How many comparisons are needed in What is the time complexity (big-Theta notation) of Institute of the state of the full list for every assignment oper the execution of the algorithm.	ration or when an element changes value during ote elements that are already sorted. (Solution in this case?
2. Let $f: \mathbb{N} \longrightarrow \mathbb{R}$ be defined by	
$f(n) = \frac{n^4 + \log}{n^2 + 1}$	$\frac{n}{2} \frac{n}{n}$.
a. Θ () b. Upper-bound witnesses:	-
3. If A = {1, 2, 3}, B = {2, 4, 6, 8} and the universal set a. A - B = {} b. B' = {} c. Power set of A = {}	$U = \{1, 2, 3,\}$ find
4. Give a proof of or a counterexample to the following $A \cap (B \cup C) = (A \cup C)$	
5. Construct a table showing the interchanges that occur applied to the following list: 6, 4, 5, 7, 3	r at each step when bubble sort is
steps lists	Continue the solution to the booklet if necessary.
6. Given the following function: $f(x) = (x^2 + 5x + 5x)$ a. f(x) is O(x ⁴): True/ False d. f(x)	·
b. f(x) is O(x ³): True/ False e. f(x) c. f(x) is O(x ²): True/ False	x) is O(x²log x): True/ False
7. Given: Procedure A (<i>n</i> : po	ositive integer)
s := 0	Ositive integer)
for $i := 1$ to n for $j := 1$ to i s := s + j	

return s

a. Suppose that procedure A is started with input n = 4. Then what number is returned by the algorithm?

b. The worst-case time complexity of procedure A is:

- 8. (a) How many functions are there from $\{1,2\}$ to $\{a,b,c\}$?
- (b) How many of these functions are one-to-one?
- (c) How many of these functions are onto?
- (d) How many of these functions are bijective?

end if

9. Count the number of comparisons for the ff. algorithm:

What is its time complexity? _____

```
Require: \{a_1, a_2, \ldots, a_i, \ldots, a_n\}_{\neq} \in \mathbb{Z}, where a_1 < a_2 < a_2 < a_3 < a_4 < a_4 < a_4 < a_5 < a_5 < a_6 < a_6 < a_6 < a_6 < a_7 < a_8 < 
                 \ldots < a_n; x \in \mathbb{Z}
 Ensure: result = k, where (a_k = x) and k \in \{1, ..., n\} if
                  the element is found; otherwise k = -1
                  i \leftarrow 1
                 i \leftarrow n
                  while i < j do
                              mid \leftarrow \left\lfloor \frac{i+j}{2} \right\rfloor
                                  if x > a_{mid} then
                                                     i \leftarrow mid + 1
                                   else
                                                     j \leftarrow mid
                                   end if
                  end while
                 if x == a_i then
                                   result \leftarrow i
                  else
                                   result \leftarrow -1
```

- 10. Given a set of two-dimensional points, $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$, in the Cartesian plane.
- a. Write a pseudocode to find the farthest pair of points by computing the distances between all pairs of the n points and determining the largest distance.
- b. Write a pseudocode to sort the points according to the abscissa of the corresponding points.
- c. Write a pseudocode to sort the points according to the ordinate of the corresponding points.
- d. Give the time complexity estimate (Big Theta) for each of the previous algorithms.