Geometric Distribution Notes

1. Motivation

- Previous distributions counted how many successes occur in a fixed number of trials.
- Geometric question: "How many trials until the first success?"
- Repeated Bernoulli(p) trials until a success appears.

Let

$$X \sim \text{Geo}(p), \qquad X \in \{1, 2, 3, \dots\},\$$

where X counts the trial number of the first success.

2. Probability Mass Function (PMF)

$$P(X = k) = (1 - p)^{k-1} p, \qquad k = 1, 2, \dots$$

Why? Need k-1 consecutive failures $((1-p)^{k-1})$ followed by one success (p).

3. Example (Biased coin)

Heads = 0.3 (p = 0.3):

$$P(X=3) = (1-p)^2 p = 0.7^2(0.3) = 0.147, P(X=7) = 0.7^6(0.3) = 0.0353.$$

4. Cumulative Distribution Function (CDF)

$$F(k) = P(X \le k) = \sum_{j=1}^{k} (1-p)^{j-1} p = p \frac{1 - (1-p)^{k}}{1 - (1-p)} = 1 - (1-p)^{k}.$$

Tail probability.

$$P(X > k) = 1 - F(k) = (1 - p)^{k}.$$

5. Memoryless Property

$$P(X>m+n\mid X>m)=P(X>n).$$

Interpretation: After waiting m failures, the process "restarts"—future waiting time is independent of the past.

6. Expectation (Mean)

$$\mu = \mathbb{E}[X].$$

$$\mu = p \cdot 1 + (1 - p)(1 + \mu)$$

$$= p + (1 - p) + (1 - p)\mu$$

$$\Longrightarrow \mu(1 - (1 - p)) = 1 \implies \boxed{\mu = \frac{1}{p}}.$$

7. Variance

$$Var(X) = \mathbb{E}[X^2] - \mu^2.$$

Compute $\mathbb{E}[X^2]$ via recursion.

$$\mathbb{E}[X^2] = p \cdot 1^2 + (1-p)(1+\mu)^2 = p + (1-p)(1+2\mu+\mu^2).$$

Substitute $\mu = \frac{1}{p}$ and simplify:

$$\mathbb{E}[X^2] = \frac{2-p}{p^2}.$$

Hence

$$Var(X) = \frac{2-p}{p^2} - \frac{1}{p^2} = \boxed{\frac{1-p}{p^2}}.$$

8. Shape Insights

Figure 1: Geometric Distribution - taken from video

• PMF decays exponentially—often called a discrete exponential.

• Larger $p \Rightarrow$ steeper drop (success likely early). Smaller $p \Rightarrow$ flatter curve (longer wait).

9. Quick Reference Table

Measure	Formula
PMF	$(1-p)^{k-1}p$
CDF	$1 - (1 - p)^k$
Mean	1/p
Variance	$(1-p)/p^2$
Memoryless	$P(X > m + n \mid X > m) = (1 - p)^n$

10. Summary

- Counts trials until the first success in repeated Bernoulli(p) experiments.
- PMF $(1-p)^{k-1}p$; CDF $1-(1-p)^k$.
- $\bullet\,$ Only discrete distribution with the memoryless property.
- Mean 1/p, variance $(1-p)/p^2$.