

International Baccalaureate® Baccalauréat International Bachillerato Internacional

CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 2

Jeudi 16 mai 2013 (après-midi)

2 heures 15 minutes

	Nun	nero	ae se	28810	n au	cano	lidat	
0	0							

Code de l'examen

|--|

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Section A: répondez à toutes les questions.
- Section B: répondez à deux questions.
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du *Recueil de Données de Chimie* est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est [90 points].

SECTION A

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1. Des comprimés de fer sont souvent prescrits à des patients. Dans ces comprimés, le fer est d'habitude présent sous la forme de sulfate de fer(II), FeSO₄.

(a)	Exprimez la fonction du fer dans i organisme numain.	[1]

Deux élèves ont réalisé une expérience en vue de déterminer le pourcentage en masse de fer dans une marque de comprimés vendue à Chypre.

Procédure expérimentale :

- Les élèves ont pris cinq comprimés de fer et ont déterminé que la masse totale était de 1,65 g.
- Les cinq comprimés ont été broyés et dissous dans $100\,\mathrm{cm^3}$ d'acide sulfurique dilué, $\mathrm{H_2SO_4(aq)}$. La solution et les liquides de lavage ont été transférés dans un ballon jaugé de $250\,\mathrm{cm^3}$ et le volume a été complété au trait avec de l'eau désionisée (distillée).
- 25,0 cm³ de cette solution de Fe²+ (aq) ont été transférés dans un ballon conique au moyen d'une pipette. De l'acide sulfurique dilué y a été ajouté.
- Un titrage a ensuite été réalisé en utilisant une solution étalon $5,00 \times 10^{-3} \, \text{mol dm}^{-3}$ de permanganate de potassium, KMnO₄(aq). Le point de fin de titrage était indiqué par une couleur rose pâle.

Les résultats suivants ont été enregistrés.

	Titre approximatif	Premier titre précis	Second titre précis
Lecture initiale de la burette / cm³ ± 0,05	1,05	1,20	0,00
Lecture finale de la burette / cm³ ± 0,05	20,05	18,00	16,80

(b)	Quand la solution de Fe ²⁺ (aq) a été préparée dans le ballon jaugé de 250 cm³, de l'eau désionisée (distillée) a été ajoutée jusqu'à ce que la base de son ménisque corresponde au trait de graduation sur le ballon. On a remarqué que l'un des élèves avait mesuré le volume de la solution en partant du haut du ménisque et non de sa base. Exprimez le nom de ce type d'erreur.	[1]
(c)	Exprimez ce que signifie le terme <i>précision</i> .	[1]
(d)	Quand les élèves ont relevé les lectures de la burette, après le titrage avec le KMnO ₄ (aq), le haut du ménisque a été utilisé et non la base. Suggérez pourquoi les élèves ont lu la valeur en haut du ménisque et non à sa base.	[1]

(e) Cette expérience implique la réaction d'oxydo-réduction (redox) suivante.

$$5\text{Fe}^{2+}(aq) + \text{MnO}_4^-(aq) + 8\text{H}^+(aq) \rightarrow 5\text{Fe}^{3+}(aq) + \text{Mn}^{2+}(aq) + 4\text{H}_2\text{O}(1)$$

(i)	Définissez le terme <i>réduction</i> en considérant les électrons.	[1]
(ii)	Déduisez le nombre d'oxydation du manganèse dans l'ion MnO ₄ -(aq).	[1]

(i)	Déterminez la quantité, en mol, de MnO ₄ ⁻ (aq), utilisée dans chaque titre précis.	L
(ii)	Calculez la quantité, en mol, d'ions Fe ²⁺ (aq) dans 250 cm ³ de la solution.	
(iii)	Déterminez la masse totale de fer, en g, dans 250 cm³ de solution.	
(iii)	Déterminez la masse totale de fer, en g, dans 250 cm³ de solution.	
(iii)	Déterminez la masse totale de fer, en g, dans 250 cm³ de solution.	
(iii)	Déterminez la masse totale de fer, en g, dans 250 cm³ de solution.	
(iii)	Déterminez la masse totale de fer, en g, dans 250 cm³ de solution. Déterminez le pourcentage en masse de fer dans les comprimés.	

	ant le titrage approximatif, les élèves se sont aperçus qu'il s'était formé un ipité brun, \mathbf{X} .	
(i)	Quand les élèves ont discuté de la nature du précipité avec leur enseignant, il leur a dit que \mathbf{X} était le même composé que celui utilisé comme catalyseur dans la décomposition du peroxyde d'hydrogène, $H_2O_2(aq)$, pour préparer l'oxygène, $O_2(g)$. Suggérez la formule chimique et le nom de \mathbf{X} .	[2]
	Formule chimique :	
	Nom:	
(ii)	Exprimez l'équation chimique équilibrée de la décomposition du peroxyde d'hydrogène.	[1]
(iii)	Suggérez comment on pourrait empêcher la formation du précipité brun.	[1]
1		

[1]

[2]

(Suite de la question 1)

(h)	(i)	Après l'expérience, les élèves ont avancé l'hypothèse suivante :
		« Étant donné que l'acide sulfurique est un acide fort, deux autres acides forts tels que l'acide nitrique, HNO ₃ (aq), ou l'acide chlorhydrique, HCl(aq), pourraient également être utilisés dans cette expérience ».
		Suggérez un problème avec cette hypothèse.

																			_		 _				
	 	 	 •	 	•	 •	 •	 •	•	 •	 ٠	 ٠	 •	•	 •	 •	 ٠	 •	 •	•	 ٠	•	 •	•	

(ii)	Les élèves ont également exploré le rôle de l'acide sulfurique dans les processus
	de tous les jours et ils ont découvert que l'acide sulfurique présent dans les
	pluies acides pouvait endommager les bâtiments construits avec du calcaire.
	Prédisez l'équation chimique équilibrée de la réaction entre le calcaire et
	l'acide sulfurique, en incluant les symboles d'état.

2. Considérez le graphique suivant de $\ln k$ en fonction de $\frac{1}{T}$.

(a) Un catalyseur fournit une autre voie pour une réaction, en réduisant l'énergie d'activation, E_a . Définissez le terme énergie d'activation, E_a . [1]

(b) Exprimez comment la constante de vitesse, k, varie avec la température, T. [1]

)	eX								•	u	a	CI	11,	<i>l</i> a	ΙLI	.O.	п,	,	L	'a '	•	C)1.	10	C	le	í	au	u	U	151	le.	Ш	le	(111	111	116	5	SI	g	Ш	111	Ca	ll1	1,	е	ι	
		•		•	•		٠	•		•	•	•			٠	•			•	•	•		•	•			٠	•	 ٠	-		•			•		•		•	•			•		٠			•	
						 					•					•				•								-		-							•												
						 								. .														-																					
						 								. .																																			
						 								. .																																			
						 																						-																					
						 								. .																																			
						 								. .																																			

3. Le carboplatine, utilisé dans le traitement du cancer du poumon, a la structure tridimensionnelle suivante.

(a)	Identifiez le nom du groupe fonctionnel entouré dans la structure du carboplatine.	[1]
(b)	Exprimez le type de liaison entre le platine et l'azote dans le carboplatine.	[1]

[2]

(Suite de la question 3)

- (c) L'élément platine possède des électrons occupant les orbitales atomiques s, p, d et f.
 - (i) Dessinez la forme d'une orbitale s et d'une orbitale p_x . Légendez les axes x, y et z sur chaque schéma.

(ii)	Exprimez le nombre maximum d'orbitales dans le niveau d'énergie $n = 4$.	[1]

(d) Un certain nombre de médicaments anti-cancéreux à base de ruthénium ont également été développés. Exprimez la configuration électronique **complète** de l'ion ruthénium(II), Ru²⁺.

(e) Le fer est dans le même groupe du tableau périodique que le ruthénium.

	_	` -	présentation par des flèches veaux d'énergie $n = 3$ et $n = 3$	
uniquement, et	t légendez chaque sou	ıs-niveau sur le diagra	amme.	[1]

(i)	Déduisez l'expression de la constante d'équilibre, K_c , pour la formation de $HI(g)$
(ii)	Déterminez les concentrations d'équilibre, en mol dm ⁻³ , de l'hydrogène, de l'iod et de l'iodure d'hydrogène.
	atifiez les forces intermoléculaires présentes dans l'iodure d'hydrogène à l'étide, HI(l).

Tournez la page

(i)	Exprimez et expliquez quel composé peut former des liaisons hydrogène avec l'eau.	[2]
(ii)	Dessinez un schéma montrant les liaisons hydrogène résultantes entre l'eau et le	
	composé choisi en (i).	[1]
(iii)	Appliquez les règles de l'UICPA pour exprimer le nom de (CH ₃) ₂ NH.	[1]

SECTION B

Répondez à deux questions. Rédigez vos réponses dans les cases prévues à cet effet.

- 5. Le chlorure de phosphoryle, POCl₃, est un agent déshydratant.
 - (a) Le POCl₃(g) se décompose selon l'équation suivante.

$$2POCl_3(g) \rightarrow 2PCl_3(g) + O_2(g)$$

(i)	Prédisez et expliquez le signe de la variation d'entropie, ΔS , pour cette réaction.	[1]

(ii) Calculez la variation d'entropie standard pour la réaction, ΔS^{\ominus} , en JK⁻¹ mol⁻¹, en utilisant les données ci-dessous.

Substance	S [⊕] / J K ⁻¹ mol ⁻¹
POCl ₃ (g)	325,0
PCl ₃ (g)	311,7
$O_2(g)$	205,0

[1]

(iii) Définissez le terme variation d'enthalpie standard de formation, $\Delta H_{\rm f}^{\,\,\ominus}$. [1]

(iv)	Calculez la	variation	d'enthalpie	standard	pour	la	réaction,	ΔH^{\ominus} ,	en	$kJ mol^{-1}$
	en utilisant	les donnée	s ci-dessous							

Substance

 $POCl_3(g)$

 $\Delta H_{\rm f}^{\Theta}$ / kJ mol⁻¹

-542,2

		PCl ₃ (g)	-288,1		[1]
()	Dátamain az la vania	tion d'Anoncie libre e	ton dond nove lo máco	AC^{Θ} on $AI = 1^{-1}$	
(v)	à 298 K.	tion a energie libre s	tandard pour la react	tion, ΔG^{\ominus} , en kJ mol ⁻¹ ,	[1]
(vi)	Déduisez la tempér	ature, en K, à laquell	e la réaction devient	spontanée.	[1]
		, , , 1		1	

	POCl ₃	PCl ₃
Structure de Lewis (représentation des électrons par des points)		
Forme		
	ez et expliquez l'angle de liaison Cl–P–C	Cl dans PCl ₃ .
	ez et expliquez l'angle de liaison Cl–P–C	Cl dans PCl ₃ .
	ez et expliquez l'angle de liaison Cl–P–C	Cl dans PCl ₃ .
	ez et expliquez l'angle de liaison Cl–P–C	Cl dans PCl ₃ .

(iii)	Exprimez l'équation chimique équilibrée de la réaction entre PCl ₃ (l) et l'eau.	[1]

(i)

(iv)	PCl ₃ Br ₂ a la même forme moléculaire que PCl ₅ . Dessinez les trois isomères du	
	PCl ₃ Br ₂ et déduisez si chaque isomère est polaire ou non polaire.	[3]

	Isomère 1	Isomère 2	Isomère 3
Structure			
Polarité moléculaire			

(d)	PCl ₃ et Cl ⁻ peuvent agir en tant que ligands dans des complexes de métaux de transition
	tels que $Ni(PCl_3)_4$ et $[Cr(H_2O)_3Cl_3]$.

(i)	Définissez le terme <i>ligand</i> .	[2]
(ii)	Expliquez pourquoi le complexe [Cr(H ₂ O) ₃ Cl ₃] est coloré.	[3]

•	•	•	•	 •	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•									 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	
	•		•								•	•	•	•	•	•	•	•						•	•	•			•												 		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•			
										•														•																	 								•														
																								•																	 							•	•														
																								•																	 								•														

6.

	ions 1	moniac, NH ₃ , peut être utilisé pour nettoyer les fours. La concentration des nydroxyde, OH ⁻ (aq), dans une solution d'ammoniac est de 3,98 × 10 ⁻³ mol dm ⁻³ . lez son pH, correct à une décimale près, à 298 K.	[2
		naigre blanc, qui contient de l'acide éthanoïque, CH ₃ COOH, peut servir d'agent vant pour dissoudre des dépôts minéraux dans les machines à café.	
((i)	Définissez un <i>acide</i> selon la théorie de Brønsted-Lowry et selon la théorie de Lewis.	[2
		Théorie de Brønsted-Lowry :	
		Théorie de Lewis :	
(L'acide éthanoïque est un exemple d'acide faible. Distinguez entre un <i>acide fort</i> et un <i>acide faible</i> en termes d'ampleur de la dissociation.	

(c`)	Les s	olution	s tam	nons	ionent	ıın r	ôle i	essentiel	dans	la	chim	ie de	S SC	alutio	ns
1	Ψ,	, ,	LCS S	orunon	s tairi	pons	Jouent	uni	OIC '	CSSCIILICI	uans	Ia	CIIIIII	ic ac	10 O	Jiuno	113.

(i) Exprimez si les mélanges suivants, dans des rapports molaires appropriés, peuvent être classés parmi les solutions tampons. Montrez votre réponse en choisissant **oui** ou **non** dans le tableau ci-dessous.

[1]

Mélange	Tampon
HCOOH et HCOO ⁻ K ⁺	
HCl et excès de NH ₃	

(ii)	Une solution tampon contient de l'acide lactique, CH ₃ CH(OH)COOH(aq),
	à une concentration de 1,55 × 10 ⁻¹ mol dm ⁻³ et du lactate de sodium,
	$NaCH_3CH(OH)COO(aq)$, à une concentration de $1,05 \times 10^{-1} \text{mol dm}^{-3}$.
	Déterminez le pH de cette solution tampon, correct à deux décimales près.
	$(K_a \text{ pour l'acide lactique} = 1,40 \times 10^{-4} \text{ à } 298 \text{ K.})$

[4]

 	,	

Les i	indicateurs acide-base sont souvent des teintures organiques.	
(i)	Décrivez l'action d'un indicateur acide-base de manière qualitative.	[3]
(ii)	En utilisant le Tableau 16 du Recueil de Données, identifiez l'indicateur qui convient le mieux pour le titrage de l'acide éthanoïque par l'hydroxyde de sodium. Expliquez votre choix.	[2]
(iii)	150 cm³ de HCl(aq) 5,00 × 10 ⁻¹ mol dm⁻³ sont mélangés à 300 cm³ de NaOH(aq) 2,03 × 10 ⁻¹ mol dm⁻³. Déterminez le pH de la solution, correct à deux décimales près.	[4]

	Exprimez et expliquez si les solutions suivantes seront acides, basiques ou neutres.
	FeCl ₃ :
	CH ₃ CH ₂ NH ₃ NO ₃ :
1	
(ii)	La valeur du K_a de HF est 6.80×10^{-4} à 298 K. En utilisant cette information, et toute autre information donnée dans les Tableaux 2 et 15 du Recueil de Données, déduisez si une solution de NH_4F serait acide, basique ou neutre.
(ii)	et toute autre information donnée dans les Tableaux 2 et 15 du Recueil de Données,
(ii)	et toute autre information donnée dans les Tableaux 2 et 15 du Recueil de Données,
(ii)	et toute autre information donnée dans les Tableaux 2 et 15 du Recueil de Données,
(ii)	et toute autre information donnée dans les Tableaux 2 et 15 du Recueil de Données,
(ii)	et toute autre information donnée dans les Tableaux 2 et 15 du Recueil de Données,

(a)	Défi	nissez l'oxydation en termes du nombre d'oxydation.	[
	• • •		
(b)	(i)	Déduisez l'équation chimique équilibrée de la réaction d'oxydoréduction (redox) du cuivre, Cu(s), avec les ions nitrate, NO ₃ ⁻ (aq), en milieu acide , pour produire des ions cuivre(II), Cu ²⁺ (aq), et du dioxyde d'azote, NO ₂ (g).	
	(ii)	Déduisez les agents oxydant et réducteur dans cette réaction.	
		Agent oxydant :	
		Agent réducteur :	

(i)	Décrivez l'électrode standard à hydrogène, en incluant un schéma entièrement légendé.	[3]
(ii)	Définissez le terme potentiel standard d'électrode, E^{\ominus} .	[1]
(iii)	Déduisez une équation chimique équilibrée, incluant les symboles d'état, de	
()	la réaction globale qui se produira spontanément quand les deux demi-piles	<i>[</i> 27
	seront reliées.	[2]

	e autre pile voltaïque a été construite, en utilisant une demi-pile $Sn^{2+}(aq)/Sn(s)$ une demi-pile $Cu^{2+}(aq)/Cu(s)$ dans les conditions standard.	
(i)	Dessinez un schéma entièrement légendé de la pile voltaïque, en montrant l'électrode positive (cathode), l'électrode négative (anode) et le sens de déplacement des électrons dans le circuit externe.	[3]
(ii)	En utilisant le Tableau 14 du Recueil de Données, calculez la force électromotrice	
	de cette pile, E_{cell}^{Θ} , en V, quand les deux demi-piles sont reliées.	[1]

ne se	u dans un bécher sous une pression de 1,01×10 ⁵ Pa et à une température de 298 K e décomposera pas spontanément. Cependant, la décomposition de l'eau peut être ite au moyen de l'électrolyse.	
(i)	Déduisez le signe de la variation d'énergie libre standard, ΔG^{\ominus} , pour toute réaction non spontanée.	
(ii)	Exprimez pourquoi il est nécessaire d'ajouter de l'acide sulfurique dilué pour que le courant circule dans la cellule électrolytique.	
(iii)	Exprimez pourquoi des électrodes de cuivre ne peuvent pas être utilisées dans l'électrolyse de l'eau. Suggérez d'autres électrodes métalliques qui conviendraient pour ce processus électrolytique.	
		_

Déduisez les demi-équations des réactions qui se produisent à l'électrode positive (anode) et à l'électrode négative (cathode).	[2]
Électrode positive (anode) :	
Électrode négative (cathode) :	
Déduisez la réaction globale dans la cellule, en incluant les symboles d'état.	[1]
	(anode) et à l'électrode négative (cathode). Électrode positive (anode): Électrode négative (cathode): Déduisez la réaction globale dans la cellule, en incluant les symboles d'état.

cellule à 273	e). Une cellule pour l'électrolyse de l'eau produit 100 cm³ d'oxygène, mesuré
cellule à 273	e). Une cellule pour l'électrolyse de l'eau produit $100\mathrm{cm^3}$ d'oxygène, mesuré K et $1.01 \times 10^5\mathrm{Pa}$. La seconde cellule contient du bromure de plomb(II) fondu
cellule à 273	e). Une cellule pour l'électrolyse de l'eau produit $100\mathrm{cm^3}$ d'oxygène, mesuré K et $1.01 \times 10^5\mathrm{Pa}$. La seconde cellule contient du bromure de plomb(II) fondu
cellule à 273	e). Une cellule pour l'électrolyse de l'eau produit $100\mathrm{cm^3}$ d'oxygène, mesuré K et $1.01 \times 10^5\mathrm{Pa}$. La seconde cellule contient du bromure de plomb(II) fondu
cellule à 273	e). Une cellule pour l'électrolyse de l'eau produit $100\mathrm{cm^3}$ d'oxygène, mesuré K et $1.01 \times 10^5\mathrm{Pa}$. La seconde cellule contient du bromure de plomb(II) fondu
cellule à 273	e). Une cellule pour l'électrolyse de l'eau produit $100\mathrm{cm^3}$ d'oxygène, mesuré K et $1,01\times10^5\mathrm{Pa}$. La seconde cellule contient du bromure de plomb(II) fondu
cellule à 273	cellules d'électrolyse sont reliées en série (le même courant traverse chaque). Une cellule pour l'électrolyse de l'eau produit 100 cm³ d'oxygène, mesurés K et 1,01×10 ⁵ Pa. La seconde cellule contient du bromure de plomb(II) fondu. Déterminez la masse, en g, de plomb produit.

	Décrivez ce que signifie le terme stéréoisomères.
(b)	Les isomères géométriques ont des propriétés physiques différentes et de nombreux médicaments, tels que la doxépine (qui a des propriétés anti-dépressives), ont des isomères géométriques.
	Exemple d'un isomère géométrique de la doxépine

(c) Le clomifène, un médicament pour la fertilité, dont la structure tridimensionnelle est représentée ci-dessous, a également des isomères géométriques.

Identifiez le nom d' un groupe fonctionnel présent dans le clomifène.	[1]

(d) Le composé ${\bf P}$ a la structure tridimensionnelle suivante. ${\bf P}$ a également des isomères géométriques.

	Dessinez deux autres isomères quelconques de P.	[2
)	Appliquez les règles de l'UICPA pour exprimer les noms de tous les isomères à chaîne droite des composés répondant à la formule moléculaire C_4H_8 ($\bf P$ compris).	
)		1
)		
)		l

(iii) Exprimez la formule structurale des produits organiques, Q, R, S et T, formés dans les réactions suivantes. [4]

$$CH_3CH=CHCH_3 + HBr(g) \longrightarrow Q$$

 $Q:$

$$CH_{3}CH=CHCH_{3} \xrightarrow{\begin{array}{c} (1) \ H_{2}SO_{4}(aq) \\ \text{concentr\'e} \\ \hline (2) \ H_{2}O(l) \end{array}} \mathbf{R}$$

$$\mathbf{R}:$$

$$CH_3CH=CHCH_3 + Br_2(aq) \longrightarrow S$$

S:

$$\mathbf{Q}$$
 + $\mathrm{OH}^{-}(\mathrm{aq})$ \longrightarrow \mathbf{T}

				U, quand R	est [1]
uez les règles de l'	UICPA pour	indiquer le i	nom de ce prod	uit, U.	[1]
-	fé à reflux avec du d	fé à reflux avec du dichromate(V	fé à reflux avec du dichromate(VI) de potassi	fé à reflux avec du dichromate(VI) de potassium acidifié.	mez la formule structurale du produit organique formé, U, quand R fé à reflux avec du dichromate(VI) de potassium acidifié. quez les règles de l'UICPA pour indiquer le nom de ce produit, U.

(e)	Le menthol peut être utilisé dans les médicaments contre la toux.	Le composé contient
	du C, de l'H et de l'O seulement.	

(i)	Quand on fait brûler $6,234 \times 10^{-2}$ g du composé, $1,755 \times 10^{-1}$ g de dioxyde de carbone et $7,187 \times 10^{-2}$ g d'eau sont produits. Déterminez la formule moléculaire du composé en montrant comment vous êtes arrivé(e) à votre réponse, compte tenu que sa masse molaire est $M = 156,30$ g mol ⁻¹ .	[4]
(ii)	Le menthol est produit naturellement et il a plusieurs isomères. Exprimez la caractéristique structurale du menthol responsable du fait qu'il a des énantiomères.	[1]

(111)	ils pourraient être distingués à l'aide de cet instrument.	[1]
(iv)	Comparez les propriétés physiques et chimiques des énantiomères.	[2]
	Propriétés physiques :	
	Propriétés chimiques :	

