André Alexandre (114143), Luís Sousa (108583), Tomás Oliveira (113939), <u>José Santos (112909)</u>, Gabriel Monteiro (107987)

Grupo 502, v2024-03-08.

RELATÓRIO

Lab 4: Modelação com classes

Exercício 3.4

No exercício em questão, um sistema de pedidos de restaurante é modelado com várias classes, cada uma desempenhando um papel específico. Os clientes usam uma aplicação para visualizar ofertas de menus em restaurantes e fazer pedidos. Eles podem adicionar itens aos seus pedidos, que então passam por um processo de pagamento e entrega, com a intervenção de estafetas. As pessoas encarregadas da plataforma têm acesso aos pedidos feitos pelos clientes, permitindo uma gestão eficiente do sistema.

Exercício 3.5

No codigo fornecido identificamos os seguintes objetos principais: Ementa, Cliente, Pedido, Prato, Alimento, Carne, PratoDieta, PratoOvolactovegetariano, PratoVegetariano, Cereal, Legume, OvoLacto e Peixe.

Observamos que a classe Alimento tem subclasses, o que nos levou a estabelecer as devidas heranças.

Além das relações explícitas no código, identificamos outras associações, tais como: uma associação entre Pedido e Cliente, uma associação entre Pedido e Prato, uma agregação entre Ementa e Pedido, e outra entre Prato e Alimento.

Para representar o tipo de peixe e a variedade de carne, utilizamos duas classes Enumeration, ligadas respectivamente às classes correspondentes.

Exercício 3.6

No diagrama de objetos criado usou-se o pedido gerado utilizando os pratos 'Combinado n.2' e 'Combinado n.4', excluindo 'Dieta n.1' e 'Vegetariano n.3'. Portanto, optamos por representar apenas os objetos relevantes para esse contexto específico, simplificando o diagrama para destacar os pratos selecionados no pedido em questão.

