Exercise 3. Show that $\mathscr{B}(\mathbb{R})$ is generated by the collection of all compact subsets of \mathbb{R} .

Proof. Let \mathscr{K} be the set of all compact subsets of \mathbb{R} and \mathscr{F} the set of all closed sets of \mathbb{R} . Let $F \in \mathscr{F}$, and for all $n \in \mathbb{N}$, let $F_n = F \cap [-n, n]$. As the intersection of closed sets, each F_n is closed; and since it is also bounded, we conclude that F_n is compact. Moreover, $F = \bigcup_{n \in \mathbb{N}} F_n$ is the countable union of elements of \mathscr{K} , so that $F \in \sigma(\mathscr{K})$.

Conversely, every compact subset of $\mathbb R$ is closed, so $\mathscr K\subset \mathscr F$, and $\sigma(\mathscr K)\subset \sigma(\mathscr F)$. Since $\mathscr B(\mathbb R)=\sigma(\mathscr F)$, we conclude that $\mathscr B(\mathbb R)=\sigma(\mathscr K)$.