Esercizio 1

Si consideri un piano cartesiano su cui insistono tre punti A, B, C, a coordinate intere rappresentate su n bit in complemento alla radice. Sintetizzare la rete combinatoria che ha:

- In ingresso, le rappresentazioni delle coordinate dei tre punti
- In uscita, due variabili eq e iso, che sono a 1 se il triangolo ABC è, rispettivamente, equilatero o isoscele, e zero altrimenti.

Descrivere esplicitamente qualunque rete non decritta a lezione.

Si consiglia di scomporre la rete in sottoreti più semplici per semplificare il disegno.

Esercizio 2

Con riferimento alla Fig. 1, <u>descrivere</u>, <u>disegnare il diagramma di temporizzazione e sintetizzare</u> l'Unità *XXX* che al reset iniziale accende le lampade, le tiene accese fino allo scadere del primo ciclo di clock e poi compie ciclicamente i seguenti passi:

- 1) spenge le lampade e le tiene spente per 21 (4 nella simulazione) cicli di clock
- 2) accende *la lampada* gestita da *z*2 e poi le altre, intervallando le accensioni di **7** (**2** nella simulazione) cicli di clock
- 3) tiene tutte le lampade accese per 12 (3 nella simulazione) cicli di clock e torna al passo 1).

(nella simulazione)

Impostare la descrizione come segue:

```
module XXX(z2_z0,p,reset_);
input p,reset_;
output [2:0] z2_z0;
        [2:0] OUT; assign z2 z0=OUT;
        [4:0] COUNT;
reg
        [..:0] STAR; parameter S0=0, S1=1, ..., RR=...;
parameter T_spente=..., I_accensione=..., T_accese=...;
always @(posedge p or negedge reset_)
 if (reset_==0) begin OUT='B111; STAR=RR; end else #3
 casex(STAR)
 RR: begin COUNT=T_spente; STAR<= S0; end
 S0: begin OUT<='B000; ...
 . . .
 endcase
endmodule
```


Esercizio 1 - Soluzione

La rete "lato" che calcola il quadrato di un lato dati i due punti sul piano cartesiano è la seguente:

Con questa rete, la soluzione è la seguente:

In cui la tabella di verità di RC è la seguente:

x2 x1 x0	eq iso	,
000	0	0
001	0	1
010	0	1
0 1 1	-	-
100	0	1
101	-	-
110	-	-
111	1	0

Esercizio 2 - Una Possibile Soluzione (non troppo ottimizzata)

```
module XXX(z2_z0,p,reset_);
input p,reset_;
output [2:0] z2 z0;
       [2:0] OUT; assign z2 z0=OUT;
       [4:0] COUNT;
reg
       [2:0] STAR; parameter S0=0, S1=1, S2=2, S3=3, RR=4;
parameter T_spente=4, I_accensione=2, T_accese=3;
always @(posedge p or negedge reset_)
 if (reset ==0) begin OUT='B111; STAR=RR; end else #3
casex(STAR)
 RR: begin COUNT=T_spente; STAR<= S0; end
 S0: begin OUT<='B000; COUNT<=(COUNT==1)?I_accensione:(COUNT-1);
           STAR<=COUNT<=(COUNT==1)?S1:S0; end
 S1: begin OUT<='B100; COUNT<=(COUNT==1)? I_accensione:(COUNT-1);
            STAR<=(COUNT==1)?S2:S1; end
 S2: begin OUT<='B110; COUNT<=(COUNT==1)? T_accese:(COUNT-1);
            STAR<=(COUNT==1)?S3:S2; end
 S3: begin OUT<='B111; COUNT<=(COUNT==1)? T_spente:(COUNT-1);
            STAR<=(COUNT==1)?S0:S3; end
 endcase
endmodule
```

1.038us 1.038us	Ons	s	200)ns	400)ns	600	Ons	800)ns	1.0	us	1.2	us	[1.4	us	1.60	ıs	1.8	us	J2.0u	ıs	2.2L	JS
reset_	F	_	\vdash				\vdash		Н			\vdash			Н									Ė
. b		$ \frown $	abla	abla	u	abla	abla	$ \frown $	abla	abla	\neg	abla	\neg	$ \frown $	abla	\neg		\neg	\neg	\neg	\neg	$\neg \Box$	$\neg \Box$	_
COUNT	'bx	4	3	2	1	2	1	2	1	(3	2	1	4	3	2	1	2	1	2	1	3	2	1	\subset
z2_z0		111		0	00		1	00	1	10		111			0	00		11	00	1	0		111	
STAR	4			0		/	1		2		3				0		$\overline{}$			2		3		┌