MAP 534 Introduction to machine learning Bayesian machine learning

Alain Durmus

Outline

Motivations

Bayesian statistics

Modeling view of machine learning

- Decide what the input-output pairs are.
- Decide how to encode inputs and outputs. This defines the input space X, and the output space Y and the dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$.
- Choose a class of hypotheses/representations $\mathcal{F} = \{f_w : \mathsf{X} \to \mathsf{Y} : w \in \mathbb{R}^d\}.$
- Choose a loss function ℓ .
- Define the error function

$$E_{\ell}(w) = N^{-1} \sum_{i=1}^{N} \ell(y_i, f_w(x_i)) . \tag{1}$$

Choose an algorithm to solve

minimize
$$E_{\ell}$$
 . (2)

How to do so: vanish the gradient or gradient descent (see later)...

Modeling view of machine learning

- Decide what the input-output pairs are.
- ullet Decide how to encode inputs and outputs. This defines the input space X, and the output space Y and $\mathcal{D}.$
- Choose a class of hypotheses/representations $\mathcal{F} = \{f_w : X \to Y : w \in \mathbb{R}^d\}.$
- Choose a loss function ℓ .
- Define the error function

$$E_{\ell}(w) = N^{-1} \sum_{i=1}^{n} \ell(y_i, f_w(x_i)) . \tag{3}$$

Choose an algorithm to solve

$$\hat{w} \in \operatorname{argmin} E_{\ell} . \tag{4}$$

Prediction:

$$\hat{y}_{\text{pred}} = f_{\hat{w}}(x_{\text{new}}) . \tag{5}$$

This framework is called the deterministic discriminative setting.

Going back to the example of polynomial curve fitting

• Consider N observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ such that

$$x_i \in X = [0,1] \text{ and } y_i \in Y = \mathbb{R}$$
. (6)

• We consider here that

$$\mathcal{P}_{d} = \left\{ f_{w}(x) = \sum_{i=1}^{d} w_{i} x^{(i)} \right\} . \tag{7}$$

- This corresponds to the choice of basis function $\phi_j(x) = x^j$.
- Justification: polynomials can approximate continuous any function on [0,1].
- LSE:

$$\hat{w} \in \underset{w}{\operatorname{argmin}} E(w) , \quad E(w) = \frac{1}{2N} \sum_{j=1}^{N} \left\{ y_j - \sum_{i=1}^{d} w_i x_j^i \right\}^2 .$$
 (8)

Model selection and uncertainties

- Two main questions still remain:
 - Can we weight the possible choices for \mathcal{F}/d ?
 - Can we quantify the uncertainty of the prediction?
- The two questions are related and addressed with the use of Bayesian statistics:
 - For these two problems, we give some weights/probabilities on models/coefficients based on a priori knowledge.
 - Regarding the second point, Bayesian inference "sees" the parameter w as random!

Outline

Motivations

Bayesian statistics

Probabilistic modeling in machine learning

- No modeling view discussed previously: no probability!
- Here we consider a statistical model on the observations $\{(x_i, y_i)_{i=1}^N$
- This model as in your statistics course is specified by a likelihood, i.e., a family of parametrized probability density functions (p.d.f.)

$$\{(x,y)\mapsto L_w(x,y): w\in\Theta\subset\mathbb{R}^d\}$$
.

- Examples:
 - Regression:

$$Y_i = f_w(X_i) + \epsilon_i , \quad \epsilon_i \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) .$$
 (9)

Likelihood:

$$L_w(x,y) = ? (10)$$

Probabilistic modeling in machine learning

- No modeling view discussed previously: no probability!
- Here we consider a statistical model on the observations $\{(x_i, y_i)_{i=1}^N$
- This model as in your statistics course is specified by a likelihood, i.e., a family of parametrized probability density functions (p.d.f.)

$$\{(x,y)\mapsto L_w(x,y): w\in\Theta\subset\mathbb{R}^d\}$$
.

- Examples:
 - Classification $(Y = \{0, 1\})$:

$$Y_i = \mathbb{1}\left\{f_w(X_i) + \epsilon_i \ge 0\right\} , \quad \epsilon_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(0,1) . \tag{11}$$

Likelihood:

$$L_w(x,y) = ? (12)$$

Probabilistic modeling in machine learning: discriminative setting

- No modeling view discussed previously: no probability!
- Here we consider a statistical model on the observations $\{(x_i, y_i)\}_{i=1}^N$.
- Here, we fix a distribution p for x but does not matter, so the likelihood has the form:

$$\{(x,y)\mapsto \mathrm{L}_w(x,y)=p_w(y|x)p(x)\,:\,w\in\Theta\subset\mathbb{R}^d\}\;.$$

MLE:

$$\hat{w} \in \operatorname*{argmax}_{w} \{ \log p_{w}(y|x) \} \tag{13}$$

• Prediction:

$$y_{\text{pred}} = \underset{y}{\operatorname{argmax}} \, p_{\hat{w}}(y|x_{\text{new}}) \,. \tag{14}$$

- In our examples, what would y_{pred} be?
- We only care about the conditional y|x!
- This framework is referred to as the probabilistic discriminative framework.

Probabilistic modeling in machine learning: generative setting

- Here we consider a statistical model on the observations $\{(x_i, y_i)\}_{i=1}^N$.
- We can also take a generative model approach:

$$\{(x,y)\mapsto \mathrm{L}_w(x,y)=p_w(x|y)p(y): w\in\Theta\subset\mathbb{R}^d\}$$
.

• Still the MLE:

$$\hat{w} \in \underset{w}{\operatorname{argmax}} \{ \log p_{w}(y|x) \} \tag{15}$$

Prediction:

$$y_{\text{pred}} = \underset{y}{\operatorname{argmax}} p_{\hat{w}}(y|x_{\text{new}}). \tag{16}$$

- What is $p_w(y|x)$? p(y)?
- Answer: Bayes theorem/formula and p(y) is a prior to choose (details further...)
- This framework is referred to as the probabilistic generative framework.
- Pros: access to $p_{\hat{w}}$ which allows detection of outliers.
- Cons: computational demanding...
- Example in the next course!

Link with statistics: Gaussian regression and maximum likelihood estimation

• The statistical model associated with the LSE is:

$$Y_i \stackrel{\text{iid}}{\sim} \sum_{i=1}^d w_j \phi_j(X_i) + \sigma^2 Z_i , \quad i \in \{1, \dots, N\} ,$$
 (17)

where

- $Z_i \stackrel{\text{iid}}{\sim} N(0, 1)$;
- X_i are i.i.d random variables with unknown distribution;
- w is the parameter to infer.
- Then, if we are just interested in inferring w, the log-likelihood is

$$\ell(w) = \frac{1}{2\sigma} \sum_{i=1}^{N} \left\{ y_i - \sum_{i=1}^{d} w_j \phi_j(x_i) \right\}^2 , \qquad (18)$$

where the observations are $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$.

 Therefore, maximizing the log-likelihood leads to the same solution as minimizing the error function.

Uncertainty and model selection in frequentist statistics

- MLE: Only point estimate! No uncertainty quantification!
- Confident intervals on the coefficients of w defined by bootstrap:

```
\mathcal{D}_{\mathsf{rand},i} \subset \mathcal{D}_{\mathsf{train}} uniformly random, and consider \hat{w}(d, \mathcal{D}_{\mathsf{rand},i}). (19)
```

- Consider the intervals which contains ..% of the solutions.
- Analysis of variance (ANOVA, using an F-test): test the null hypothesis that a model \mathcal{M}_1 is sufficient to explain the data against the alternative hypothesis that a more complex model \mathcal{M}_2 .
- Do not generalize well and have pathologies¹:
 - counter-intuitive behavior on confident intervals for some simple models;
 - p-values tend to overstate the evidence against the null no matter how large the sample size;
 - p-values is sensible to slight changes in the statistical models;
 - many frequentist methods regarding uncertainties/model selection does not follow likelihood principle: are based on hypothetical future observations.
- All these problems can be addressed by Bayesian inference!

¹[Mur13, Section 6.6]

Going back to our questions

• Consider N observations $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ such that

$$x_i \in X = [0,1] \text{ and } y_i \in Y = \mathbb{R}$$
. (20)

We consider here that

$$\mathcal{P}_d = \left\{ f_w(x) = \sum_{i=1}^d w_i x^i \right\} . \tag{21}$$

- We would like to quantify uncertainties with respect to
 - the parameters w;
 - our prediction;
 - the hypothesis class complexity d.
- This generalizes to any parametrized hypothesis class

$$\mathcal{F} = \{ f_w : X \to Y : w \in \Theta \} . \tag{22}$$

Open questions

- Do we think that all hypothesis/models are equally probable... before we see any data?
- Here an hypothesis is a fixed function f_w for some fixed parameter w.
- What does the probability of a model/hypothesis even mean?
- Do we need to choose a single "best" model \mathcal{F} or can we consider several $\mathcal{F}_1, \mathcal{F}_2$ for our predictions?
- We need a framework to answer such questions.

Bayes paradigm

- Bayes rule tells us how to do inference about hypothesis (the uncertain quantities) from data (measured quantities).
- Learning and prediction can be seen as a form of inference

$$p(\mathsf{hypothesis}|\mathsf{data}) = \frac{p(\mathsf{data}|\mathsf{hypothesis})p(\mathsf{hypothesis})}{p(\mathsf{data})} \ . \tag{23}$$

- p(data|hypothesis) is the likelihood associated with the family of hypothesis we first consider.
- p(hypothesis|data) is called the posterior distribution of the hypothesis.
- However, in contrast to frequentist statistics, we choose a prior on our hypothesis!

Bayes paradigm: formalism

- Bayes inference recipe:
 - Consider a staistical model for \mathcal{D} parametrized by $w \in \Theta$:

$$p(\mathcal{D}|w) = L_w(x, y) . \tag{24}$$

- We treat the likelihood as the conditional distribution of the data given the parameter!
- Choose a prior for w, p(w).
- Consider the posterior:

$$p(w|\mathcal{D}) \propto p(\mathcal{D}|w)p(w) = L_w(x,y)p(w)$$
. (25)

• All the conclusions are then drawn from the posterior.

Bayes paradigm: example, the Bernouilli model

• Consider the observations $\{y_i\}_{i=1}^N$ be i.i.d from

$$Y_i = \text{Ber}(q), \ q \in [0, 1] \text{ is the parameter to infer }.$$
 (26)

• The likelihood is

$$p_q(y) = ? (27)$$

• We chose as a prior Beta (α, β) , for $\alpha, \beta > 0$:

$$p(q|y) \propto ?$$
 (28)

- The posterior distribution for q is ?...
- Notation here if p(q|y) is a conditional density:

$$p(q|y) \propto h(q,y)$$
, if $p(q|y) = h(q,y) / \int h(q,y) dq$. (29)

Bayes paradigm: formalism

- Bayes inference recipe:
 - Consider a staistical model for \mathcal{D} parametrized by $w \in \Theta$:

$$p(\mathcal{D}|w) = L_w(x, y) . \tag{30}$$

- We treat the likelihood as the conditional distribution of the data given the parameter!
- Choose a prior for w, p(w).
- Consider the posterior:

$$p(w|\mathcal{D}) \propto p(\mathcal{D}|w)p(w) = L_w(x, y)p(w)$$
. (31)

- All the conclusions are then drawn from the posterior.
- The posterior is known up to a multiplicative constant:

$$Z(\mathcal{D}) = \int p(\mathcal{D}|w)p(w)dw = \int L_w(x,y)p(w)dw.$$
 (32)

This constant is also known as the marginal likelihood.

 In many models, this constant can not be computed and the posterior does not belong to "common" distribution.

Why Bayesian inference seems to be a sensible option?

- A robot, in order to behave intelligently, should be able to represent beliefs about propositions in the world:
 - charging station is at location (x,y,z)
 - that cat is hostile...
- Using probabilistic models, we want to represent the strengths of these beliefs, and be able to manipulate these beliefs based on a priori.
- The prior distribution models this prior knowledge.
- Data are then used to update our knowledge and give the posterior.
- Probabilistic learning can also be used for calibrated models and prediction uncertainty - getting systems that know what they do not know.

Prior and multiple explanations of the data

- Choosing a prior and following the Bayesian paradigm, we do not believe all models are equally probable to explain the data.
- We may believe that a simpler model is more probable than a complex one based on Occam's razzor (Aristotle, Ockham, Newton, Russel...)

We consider it a good principle to explain the phenomena by the simplest hypothesis possible.

- Ptolemy (c. AD 90 - c. 168) -

- Bayesian allows us to consider/combine a collection of hypothesis/models:
 - We do not know what particular function generated the data.
 - More than one of our models can perfectly fit the data.
 - We believe more than one of our models could have generated the data.
 - We want to reason in terms of a set of possible explanations, not just one.

Point estimate and uncertainty quantification on the parameter

The first Bayesian estimator, the maximum a posterior estimator (MAP):

$$\hat{w}_{\mathsf{MAP}} \in \operatorname{argmax} p(w|\mathcal{D}) . \tag{33}$$

- The MAP is not fully Bayesian (not an admissible estimator)...
- The usual Bayesian estimator is the posterior mean:

$$\hat{w}_{post} = \int wp(w|\mathcal{D})dw.$$
 (34)

- To quantify the uncertainties over w we consider $1-\alpha$ -credible region for $\alpha \in (0,1)$.
- ullet C $_{lpha}$ is set to be a 1-lpha-credible region if

$$\int \mathbb{1}\left\{w \in \mathsf{C}_{\alpha}\right\} p(w|\mathcal{D}) \mathrm{d}w \ge 1 - \alpha \ . \tag{35}$$

Example of point estimates

• Consider the observations $\{y_i\}_{i=1}^N$ be i.i.d from

$$Y_i = Ber(q), q \in [0,1]$$
 is the parameter to infer. (36)

• We chose as a prior Beta (α, β) , for $\alpha, \beta > 0$:

$$p(q|y) \propto q^{\alpha - 1 + \sum_{i=1}^{N} y_i} (1 - q)^{\beta - 1 + N - \sum_{i=1}^{N} y_i}$$
 (37)

- The posterior distribution for q is Beta $(\alpha + \sum_{i=1}^{N} y_i, \beta + N \sum_{i=1}^{N} y_i)$.
- MAP:

$$\hat{\mathbf{w}}_{\mathsf{MAP}} = \frac{\alpha - 1 + \sum_{i} y_{i}}{\alpha + \beta - 2 + N} \,. \tag{38}$$

• Posterior mean:

$$\hat{w}_{post} = \frac{\alpha + \sum_{i} y_{i}}{\alpha + \beta + N} . \tag{39}$$

Bayes paradigm: linear regression

• We consider the statistical model associated with the LSE is:

$$Y_i \stackrel{\text{iid}}{\sim} \sum_{i=1}^d w_j \phi_j(X_i) + \sigma^2 Z_i , \quad i \in \{1, \dots, N\} ,$$
 (40)

where

- $Z_i \stackrel{\text{iid}}{\sim} N(0, 1)$;
- X_i are i.i.d random variables with unknown distribution;
- w is the parameter to infer.
- What does it mean to choose a prior on the hypothesis here?

Prior on parameters induce priors on functions

- A hypothesis f_w is a choice of a model structure \mathcal{F} (first block) and a parameter value (second block) w.
- Consider the linear regression example:

$$f_w(x) = \sum_{i=1}^d w_i \phi_i(x)$$
, (41)

- The number d and the choices of basis functions $\{\phi_i\}$ constitute the model structure;
- The coefficient w, the parameter value.
- Setting a prior p(w) determines what functions this model can generate.
- For the moment \mathcal{F} is fixed but we can also set a prior on the model structure (see after)!
- What is the posterior in this case?

Posterior for the linear regression model

• The likelihood setting $\beta = \sigma^{-2}$ the precision:

$$L(\mathcal{D}|w) = N_n(\text{vector}(f_w(x_i)), \beta^{-1}I_n)$$
(42)

$$= (\beta/2\pi)^{N/2} \exp\left(-\frac{\beta}{2} \sum_{i=1}^{N} (y_i - \phi(x_i)^{\mathrm{T}} w)^2\right)$$
(43)

$$= (\beta/2\pi)^{N/2} \exp\left(-\frac{\beta}{2} \|y - \Phi_x w\|^2\right) , \qquad (44)$$

with $\Phi_x = ??$.

• If we choose $p(w) = N_d(m_0, S_0)$, we get

$$p(w|\mathcal{D}) = N(m_N, S_n), \qquad (45)$$

Proof of (49).

Posterior for the linear regression model

• The likelihood setting $\beta = \sigma^{-2}$ the precision:

$$L(\mathcal{D}|w) = N_n(\text{vector}(f_w(x_i)), \beta^{-1}I_n)$$
(46)

$$= (\beta/2\pi)^{N/2} \exp\left(-\frac{\beta}{2} \sum_{i=1}^{N} (y_i - \phi(x_i)^{\mathrm{T}} w)^2\right)$$
(47)

$$= (\beta/2\pi)^{N/2} \exp\left(-\frac{\beta}{2} \|y - \Phi_x w\|^2\right) , \qquad (48)$$

with $\Phi_x = ??$.

• If we choose $p(w) = N_d(m_0, S_0)$, we get

$$p(w|\mathcal{D}) = N(m_N, S_n),$$

$$m_N = S_N(S_0^{-1} m_0 + \beta \Phi_x^T y), \quad S_N = (S_0^{-1} + \beta \Phi_x^T \Phi_x)^{-1}.$$
(49)

Proof of (49).

Prediction using Bayesian inference

• Consider the linear regression example:

$$f_w(x) = \sum_{i=1}^d w_i \phi_i(X_i)$$
 (50)

- Based on the posterior $p(w|\mathcal{D})$, $\mathcal{D} = \{(y_i, x_i)\}_{i=1}^N$, how to make our predictions?
- First frequentist-like option:

$$y_{\text{pred}} = f_{\hat{w}}(x_{\text{new}}) , \qquad (51)$$

where \hat{w} is either the MAP or the posterior mean.

- Not really Bayesian...
- Indeed, Bayesian inference is also guided by the aim to give an "optimal" prediction.
- To define what we mean by an "optimal" prediction, we rely on decision theory.

Decision theory for prediction

• Given a dataset $\mathcal{D} = \{(y_i, x_i)\}_{i=1}^N$ with a probabilistic model

$$\{(\tilde{x}, \tilde{y}) \mapsto L_w(\tilde{x}, \tilde{y}) : w \in \Theta\}$$
,

we would like to find the best estimator for the prediction y_{pred} based on x_{new} .

• By estimator, here, we mean a function $\mathcal{D} \mapsto \hat{y}^{\mathcal{D}}$ which outputs a function:

$$y_{\text{pred}} = \hat{y}^{\mathcal{D}}(x_{\text{new}}). \tag{52}$$

- How to compare estimator?
- We need a loss function $\ell: \mathsf{Y} \times \mathsf{Y} \to \mathbb{R}_+$ and a prior on $w, w \mapsto p(w)$.
- ullet We define then the conditional risk (given ${\mathcal D}$ and w) as

$$\operatorname{cR}(\hat{y}^{\mathcal{D}}, w) = \mathbb{E}_{(Y_{\mathsf{new}}, X_{\mathsf{new}}) \sim L_w} [\ell(Y_{\mathsf{new}}, \hat{y}^{\mathcal{D}}(X_{\mathsf{new}}))]$$
 (53)

$$= \int \ell(y_{\text{new}}, \hat{y}^{\mathcal{D}}(x_{\text{new}})) L_{w}(x_{\text{new}}, y_{\text{new}}) d(x_{\text{new}}, y_{\text{new}}) . \tag{54}$$

Decision theory for prediction

ullet Given a dataset $\mathcal{D} = \{(y_i, x_i)\}_{i=1}^N$ with a probabilistic model

$$\{(\tilde{x}, \tilde{y}) \mapsto L_w(\tilde{x}, \tilde{y}) : w \in \Theta\}$$
,

we would like to find the best estimator for the prediction y_{pred} based on x_{new} .

ullet By estimator, here, we mean a function $\mathcal{D}\mapsto \hat{y}^{\mathcal{D}}$ which outputs a function:

$$y_{\text{pred}} = \hat{y}^{\mathcal{D}}(x_{\text{new}}) . \tag{55}$$

ullet We define then the conditional risk (given ${\mathcal D}$ and w) as

$$cR(\hat{y}^{\mathcal{D}}, w) = \mathbb{E}_{(Y_{\text{new}}, X_{\text{new}}) \sim L_w} [\ell(Y_{\text{new}}, \hat{y}^{\mathcal{D}}(X_{\text{new}}))].$$
 (56)

An ideal estimator is the one which minimizes the integrated/Bayesian risk:

$$IR = \mathbb{E}_{\mathcal{D},w}[R(\hat{y}^{\mathcal{D}}, w)] = \int R(\hat{y}^{\mathcal{D}}, w) L_w(\mathcal{D}) \rho(w) d\mathcal{D}dw.$$
 (57)

• Here $L_w(\mathcal{D})$ is the complete likelihood $L_w(x,y) = \prod_{i=1}^N L_w(x_i,y_i)$.

Posterior predictive distribution

- Given a dataset $\mathcal{D} = \{(y_i, x_i)\}_{i=1}^N$ with a probabilistic model $\{(\tilde{x}, \tilde{y}) \mapsto L_w(\tilde{x}, \tilde{y}) : w \in \Theta\}$, we would like to find the best estimator for the prediction y_{pred} based on x_{new} .
- By estimator, here, we mean a function $\mathcal{D}\mapsto \hat{y}^\mathcal{D}$ which outputs a function:

$$y_{\mathsf{pred}} = \hat{y}^{\mathcal{D}}(x_{\mathsf{new}}) \ . \tag{58}$$

• In the case $\ell(y_1,y_2)=(y_1-y_2)^2/2$, we can show that the best estimator is

$$\hat{y}_{\star,L^2}^{\mathcal{D}} = \int \tilde{y}_{\text{new}} L_w(\tilde{y}_{\text{new}} | x_{\text{new}}) p(w|\mathcal{D}) d(\tilde{y}_{\text{new}}, w) , \qquad (59)$$

where $p(w|\mathcal{D})$ is the posterior distribution associated with prior p.

• It is called the Bayes estimator.

Posterior predictive distribution

- Given a dataset $\mathcal{D} = \{(y_i, x_i)\}_{i=1}^N$ with a probabilistic model $\{(\tilde{x}, \tilde{y}) \mapsto L_w(\tilde{x}, \tilde{y}) : w \in \Theta\}$, we would like to find the best estimator for the prediction y_{pred} based on x_{new} .
- By estimator, here, we mean a function $\mathcal{D} \mapsto \hat{y}^{\mathcal{D}}$ which outputs a function:

$$y_{\text{pred}} = \hat{y}^{\mathcal{D}}(x_{\text{new}}) . \tag{60}$$

• In the case $\ell(y_1, y_2) = (y_1 - y_2)^2/2$, we can show that the best estimator is

$$\hat{y}_{\star,L^2}^{\mathcal{D}} = \int \tilde{y}_{\text{new}} L_w(\tilde{y}_{\text{new}}|x_{\text{new}}) p(w|\mathcal{D}) d(\tilde{y}_{\text{new}}, w) , \qquad (61)$$

where $p(w|\mathcal{D})$ is the posterior distribution associated with prior p.

• This gives rise to the posterior predictive distribution:

$$p_{\mathsf{post}}(\tilde{y}_{\mathsf{new}}|\mathcal{D}) = \int L_w(\tilde{y}_{\mathsf{new}}|x_{\mathsf{new}})p(w|\mathcal{D})d(w) . \tag{62}$$

• With this notation:

$$\hat{y}_{\star,L^2}^{\mathcal{D}} = \int \tilde{y}_{\text{new}} p_{\text{post}}(\tilde{y}_{\text{new}} | \mathcal{D}, x_{\text{new}}) d\tilde{y}_{\text{new}} . \tag{63}$$

 This distribution give a point estimate for our prediction but also completely characterizes the uncertainties about our predictions!

Posterior predictive distribution

- Given a dataset $\mathcal{D} = \{(y_i, x_i)\}_{i=1}^N$ with a probabilistic model $\{(\tilde{x}, \tilde{y}) \mapsto L_w(\tilde{x}, \tilde{y}) : w \in \Theta\}$, we would like to find the best estimator for the prediction y_{pred} based on x_{new} .
- By estimator, here, we mean a function $\mathcal{D}\mapsto \hat{y}^\mathcal{D}$ which outputs a function:

$$y_{\text{pred}} = \hat{y}^{\mathcal{D}}(x_{\text{new}}) . \tag{64}$$

• In the case $\ell(y_1,y_2)=(y_1-y_2)^2/2$, we can show that the best estimator is

$$\hat{y}_{\star,L^{2}}^{\mathcal{D}}(x_{\text{new}}) = \int \tilde{y}_{\text{new}} L_{w}(\tilde{y}_{\text{new}}|x_{\text{new}}) p(w|\mathcal{D}) d(\tilde{y}_{\text{new}}, w) , \qquad (65)$$

where $p(w|\mathcal{D})$ is the posterior distribution associated with prior p.

Proof of (65).

Predictive posterior for the linear regression model

• The likelihood setting $\beta = \sigma^{-2}$ the precision:

$$L(\mathcal{D}|w) = N_n(\text{vector}(f_w(x_i)), \beta^{-1}I_n)$$

$$= (\beta/2\pi)^{N/2} \exp\left(-\frac{\beta}{2N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2\right) .$$
(66)

• If we choose $p(w) = N_d(m_0, S_0)$, we get

$$p(w|\mathcal{D}) = N(m_N, S_n) , \quad m_N = S_N(S_0^{-1}m_0 + \beta \Phi_x^{\mathrm{T}} y) , \quad S_n = (S_0^{-1} + \beta \Phi_x^{\mathrm{T}} \Phi_x)^{-1} .$$
(68)

• Since $p(y_{\text{new}}|w, x_{\text{new}}) = N(f_w(x_{\text{new}}), \beta^{-1})$, we get that the predictive posterior is

$$p(y_{\text{new}}|x_{\text{new}}) = N(\phi(x_{\text{new}})^{T} m_{N}, \beta^{-1} + \phi(x_{\text{new}}) S_{N} \phi(x_{\text{new}})), \qquad (69)$$

• the Bayes estimator:

$$\hat{y}_{\star,L^2} = \phi(x_{\text{new}})^{\mathrm{T}} m_N . \tag{70}$$

• Proof in practical sessions.

Model selection

- What if we are unsure which model is right? So far we assumed we were able to start by making a definite choice of model.
- We can compare models based on marginal likelihoods (also known as model evidence) for each model - this is the probability the model assigns to the observed data.
- This is the normalizing constant in Bayes rule which we ignored previously.

Model comparisons and selections

- ullet Let us say that we have two models $\mathcal{F}_1, \mathcal{F}_2$.
- Question: given some data, can we say if one of them is most probable?
- Examples:

$$\mathcal{F}_{1} = \left\{ f_{w} = \sum_{i=1}^{d_{1}} w_{j} \phi_{j}(X_{i}) : w \in \mathbb{R}^{d_{1}} \right\} , \quad \mathcal{F}_{2} = \left\{ f_{w} = \sum_{i=1}^{d_{2}} w_{j} \phi_{j}(X_{i}) : w \in \mathbb{R}^{d_{2}} \right\}$$
(71)

- d_1 or d_2 should be privileged?
- Solution: Bayesian paradigm.
- We treat the prior $p(w|\mathcal{F}_1), p(w|\mathcal{F}_2)$ used for $\mathcal{F}_1, \mathcal{F}_2$ as likelihood/conditional probability.
- We set some prior on the models \mathcal{F}_i , i=1,2.

Model comparisons and selections

- ullet Let us say that we have two models $\mathcal{F}_1, \mathcal{F}_2.$
- Question: given some data, can we say if one of them is most probable?
- Solution: Bayesian paradigm.
- We treat the likelihoods $p(\mathcal{D}|w, \mathcal{F}_1)$, $p(\mathcal{D}|w, \mathcal{F}_1)$ and priors $p(w|\mathcal{F}_1)$, $p(w|\mathcal{F}_2)$ used for \mathcal{F}_1 , \mathcal{F}_2 as likelihood/conditional probability.
- ullet We set some prior on the models \mathcal{F}_i , i=1,2.
- In most cases, the uniform prior is chosen...
- The posterior distribution for (w, \mathcal{F}_i) is by Bayes theorem:

$$p(w, \mathcal{F}_i|\mathcal{D}) = p(\mathcal{F}_i)p(w|\mathcal{F}_i)p(\mathcal{D}|w, \mathcal{F}_i)/p(\mathcal{D}), \qquad (72)$$

$$p(\mathcal{D}) = \sum_{i} \int_{w} p(\mathcal{F}_{i}) p(w|\mathcal{F}_{i}) p(\mathcal{D}|w, \mathcal{F}_{i}) dw.$$
 (73)

• The posterior distribution for \mathcal{F}_i is then:

$$p(\mathcal{F}_i|\mathcal{D}) = \frac{p(\mathcal{F}_i)}{p(\mathcal{D})} \int p(w|\mathcal{F}_i) p(\mathcal{D}|w, \mathcal{F}_i) dw.$$
 (74)

Model comparisons and selections

- ullet Let us say that we have two models $\mathcal{F}_1, \mathcal{F}_2.$
- Question: given some data, can we say if one of them is most probable?
- The posterior distribution for (w, \mathcal{F}_i) is by Bayes theorem:

$$p(w, \mathcal{F}_i|\mathcal{D}) = p(\mathcal{F}_i)p(w|\mathcal{F}_i)p(\mathcal{D}|w, \mathcal{F}_i)/p(\mathcal{D}), \qquad (75)$$

$$p(\mathcal{D}) = \sum_{i} \int_{w} p(\mathcal{F}_{i}) p(w|\mathcal{F}_{i}) p(\mathcal{D}|w, \mathcal{F}_{i}) dw.$$
 (76)

• The posterior distribution for \mathcal{F}_i is then:

$$p(\mathcal{F}_i|\mathcal{D}) = \frac{p(\mathcal{F}_i)Z_i(\mathcal{D})}{p(\mathcal{D})} , \quad Z_i(\mathcal{D}) = \int p(w|\mathcal{F}_i)p(\mathcal{D}|w,\mathcal{F}_i)dw . \quad (77)$$

• If $p(\mathcal{F}_i) = 1/2$, the posterior distribution for \mathcal{F}_i simplifies:

$$p(\mathcal{F}_i|\mathcal{D}) = \frac{Z_i(\mathcal{D})}{Z_1(\mathcal{D}) + Z_2(\mathcal{D})}.$$
 (78)

This easily generalizes to finite number of models.

Model selection: summary

• From looking at the equation of posterior distribution, the marginal likelihood is given by

$$Z(\mathcal{D},\mathcal{M}) = \int p(\mathcal{D}|w,\mathcal{M})p(w|\mathcal{M})\mathrm{d}w = \int L_w^{\mathcal{M}}(x,y)p(w|\mathcal{M})\mathrm{d}w \ . \ \ (79)$$

• Second level inference : model comparison

$$p(\mathcal{M}|\mathcal{D}) \propto Z(\mathcal{D}, \mathcal{M})p(\mathcal{M})$$
. (80)

- ullet Represents some belief/probability on our models given \mathcal{D} .
- Model selection:

$$\mathcal{M}^{\star} = \underset{\mathcal{M}}{\operatorname{argmax}} \, p(\mathcal{M}|\mathcal{D}) \; . \tag{81}$$

Marginal likelihood for the linear regression model

• The likelihood setting $\beta = \sigma^{-2}$ the precision:

$$L(\mathcal{D}|w) = N_n(\text{vector}(f_w(x_i)), \beta^{-1}I_n)$$

$$= (\beta/2\pi)^{N/2} \exp\left(-\frac{\beta}{2N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2\right) .$$
(82)

• If we choose $p(w) = N_d(m_0, S_0)$, we get

$$p(w|\mathcal{D}) = N(m_N, S_n) , \quad m_N = S_N(S_0^{-1}m_0 + \beta \Phi_x^{\mathrm{T}} y) , \quad S_n = (S_0^{-1} + \beta \Phi_x^{\mathrm{T}} \Phi_x)^{-1} .$$
(84)

• The marginal likelihood is in the case $p(w) = N_d(0, \alpha^{-1}I_d)$:

$$Z(\mathcal{D}) = \alpha^{d/2} \beta^{N/2} (2\pi)^{-N/2} [\det S_N]^{1/2} \exp\left(-\beta \|y\|^2 / 2 + \beta \left\langle S_N m_N, \Phi_x^{\mathrm{T}} y \right\rangle / 2\right)$$

$$= \alpha^{d/2} \beta^{N/2} (2\pi)^{-N/2} [\det S_N]^{1/2} \exp\left(-\beta \|y - \Phi_x m_N\|^2 / 2 - \alpha \|m_N\|^2 / 2\right) .$$
(86)

• Proof in small classes.

Hyper-parameter selection

- Let us say that we have some hyperparameters β and α for the likelihoods $p_w((x,y)|\beta)$ and the prior $p(w|\alpha)$ respectively.
- Question: given some data, can we make some recommandations on the choice of these hyperparameters?
- ullet Examples: linear regression (again!) (recall $f_w(x_1) = \sum_{j=1}^d w_j \phi_j(x_1)$)

$$p_{w}((x_{1}, y_{1})|\beta) = (2\pi\sigma^{2})^{1/2} \exp(-(y_{1} - f_{w}(x_{i}))^{2}/(2\sigma^{2})), \beta = \sigma^{-2}, (87)$$
$$p(w|\alpha) = \alpha ||w||^{2}. (88)$$

- Solution: Bayesian paradigm (again...).
- We set some prior on α and β and treat them as parameter as it was the case for models.
- In most cases, the uniform prior is chosen uniform $p(\alpha) = 1$, $p(\beta) = 1$ (even if they do not define a well-defined distribution...).

Hyper-parameter selection

- ullet Let us say that we have some hyperparameters eta and lpha for the likelihoods $p_w((x,y)|\beta)$ and the prior $p(w|\alpha)$ respectively.
- Question: given some data, can we make some recommandations on the choice of these hyperparameters?
- The posterior distribution for (w, λ, β) is by Bayes theorem:

$$p(w,\lambda,\beta|\mathcal{D}) = p(\alpha)p(\beta)p(w|\alpha,\beta)p(\mathcal{D}|w,\alpha,\beta)/p(\mathcal{D}), \qquad (89)$$

$$p(\mathcal{D}) = \sum_{i} \int_{w} p(\alpha)p(\beta)p(w|\alpha,\beta)p(\mathcal{D}|w,\alpha,\beta)dw$$
 (90)

• The posterior distribution for α, β is then:

$$p(\alpha, \beta | \mathcal{D}) = \frac{p(\alpha)p(\beta)}{p(\mathcal{D})} \int p(w|\alpha, \beta)p(\mathcal{D}|w, \alpha, \beta)dw.$$
 (91)

• Pragamtic choice:

$$(\hat{\alpha}, \hat{\beta}) \in \operatorname{argmax} p(\alpha, \beta | \mathcal{D}),$$
 (92)

this corresponds maximization of the marginal likelihood or empirical Bayes approach.

• Example: Bayesian linear regression 🖏 .

Conjugate priors

- For most Bayesian inference problems, the integrals needed to do inference and prediction are not analytically tractable - hence the need for variaous approximations.
- Most of the exceptions involve conjugate priors, which combine nicely with the likelihood to give a posterior distribution of the same form.
- Basic Idea: Given likelihood function $L_w(x, y)$, choose a family of prior distributions such that integrals can be obtained tractably.
- If the prior p(w) and posterior p(w|D) belong to same family of distributions, the prior is called a conjugate prior.
- Example: if likelihood function is Gaussian, choosing Gaussian prior over mean will ensure that the posterior distribution is also Gaussian.

Monte Carlo needs: Representing Prior and Posterior by Samples

- The complex distributions we will often use as priors, or obtain as posteriors, may not be easily represented.
- A general technique is to represent a distribution by sampling of many values drawn randomly from it. We can then
 - Visualize the distribution by viewing these sample values, or low dimensional projections of them (PCA..later).
 - Make Monte Carlo estimates for probabilities or expectations with respect to the distribution, by taking averages over these sample values.
- Obtaining a sample from the prior is easy! Obtaining a sample from the
 posterior is usually more difficult nevertheless a dominant approach to
 Bayesian computation.

Bibliography i

Kevin P. Murphy. Machine learning : a probabilistic perspective. Cambridge, Mass. [u.a.]: MIT Press, 2013. ISBN: 9780262018029 0262018020.