Séquence 2 : Droites, segments et codage

24 décembre 2019

Objectifs

- Connaître les différents types de droites et utiliser les notations correspondantes;
- Savoir coder et lire une figure;
- Différencier des droites, sécantes, perpendiculaires et parallèles.
- Utiliser des propriétés géométriques dans une démonstration.

Compétences

- Représenter (R3) : Reconnaître et utiliser des premiers éléments de codage d'une figure.
- Raisonner (Ra3) : Raisonner à l'aide de propriétés de figures.

I. Droites

II. Longueurs et codages

III. Sécantes, perpendiculaires et parallèles

Une <u>droite</u> est un objet géométrique formé de <u>points alignés</u>. Une droite est illimitée des deux cotés.

Une <u>droite</u> est un objet géométrique formé de <u>points alignés</u>. Une droite est illimitée des deux cotés.

Propriétés

- Une droite qui passe par deux points A et B, se note (AB) ou (BA);
- Si un point C appartient à la droite (AB), on note $C \in (AB)$.
- Si il n'appartient pas à la droite (AB), on note $C \notin (AB)$.

Une <u>droite</u> est un objet géométrique formé de <u>points alignés</u>. Une droite est illimitée des deux cotés.

Propriétés

- Une droite qui passe par deux points A et B, se note (AB) ou (BA);
- Si un point C appartient à la droite (AB), on note $C \in (AB)$.
- Si il n'appartient pas à la droite (AB), on note $C \notin (AB)$.

Exemple

Les points M, R et A sont alignés.

- La droite (d) passant par les points M et R se note
- Le point A appartient à la droite (MR), on note :
- Le point S n'appartient pas à la droite (MR), on note :

Une <u>demi-droite</u> est une portion de droite limitée d'un seul côté par un point, son <u>origine</u>.

Une <u>demi-droite</u> est une portion de droite limitée d'un seul côté par un point, son <u>origine</u>.

Propriété

La demi-droite d'origine A et passant par B se note [AB).

Une <u>demi-droite</u> est une portion de droite limitée d'un seul côté par un point, son <u>origine</u>.

Propriété

La demi-droite d'origine A et passant par B se note [AB).

Exemple

La demi droite

Un <u>segment</u> est une portion de droite limitée par deux points : ses <u>extrémités</u>.

Propriété

Le segment d'extrémités A et B se note [AB] ou [BA].

Exemple

Le segment

I. Droites

II. Longueurs et codages

III. Sécantes, perpendiculaires et parallèles

La mesure (distance entre ses deux extrémités) d'un segment est sa longueur.

Propriété

La longueur d'un segment [AB], se note AB ou BA.

Exemple

La longueur du segment [AB] est de 3,5 cm, on note

Le milieu d'un segment est le point qui appartient au segment et qui est à égale distance de ses extrémités.

Remarque

Des segments de même longueur sont codés de façon identique.

Exemple

On a : $M \in [AB]$ et AM = MB, donc le point M est le milieu du segment

[AB]. On a ainsi $AM = AB \div 2$.

I. Droites

II. Longueurs et codages

III. Sécantes, perpendiculaires et parallèles

Deux droites sont **sécantes** si elles n'ont qu'un seul point commun : leur **point d'intersection**.

Exemple

Les droites (d) et (d') sont sécantes en

qui est leur

Deux droites sont **perpendiculaires** si elles se coupent en formant **quatre** angles droits. Si deux droites (d_1) et (d_2) sont deux droites perpendiculaires, on note $(d_1)\bot(d_2)$.

Exemple

Les droites (d) et (d') sont

en H. H est le à (d').

Deux droites qui ne sont pas sécantes sont **parallèles**. Si deux droites (d_3) et (d_4) sont parallèles, on note $(d_1)/(d_2)$.

Exemple

Les droites (d) et (d') sont

. Même en les

prolongeant à l'infini, elles ne se rencontreront jamais.

(d)

(d')

Propriété

Si deux droites sont perpendiculaires à une même troisième droite, **alors** ces deux droites sont parallèles.

Exemple

On sait que (d_1) et (d_2) sont toutes deux perpendiculaires à (D). Donc (d_1) et (d_2) sont parallèles.

