PLANNING AND SCHEDULING: PLAN-SPACE PLANNING (PSP)

Prof. Dr.-Ing. Gerhard K. Kraetzschmar

Acknowledgements

- These slides are based on those slides by Dana Nau and Manuela Veloso
- Some improvements have been added by Iman Awaad

Remember?

- Planning as search...
- Which search space?
- State Space
 - Each node represents a state of the world
 - A plan is a path through the space
- Plan Space
 - Each state is a partially complete plan, i.e. a set of partially instantiated operators and some constraints
 - We impose more and more constraints until we get a plan

Motivation

- Problem with state-space search
 - In some cases we may try many different orderings of the same actions before realising there is no solution

PSP: adopt a least-commitment strategy:
 Do not commit to orderings, instantiations, etc., until necessary.

Partial order vs total order plans

Partial Order Plan: Start Left Right Sock Sock RightSockOn LeftSockOn Left Right Shoe Shoe LeftShoeOn, RightShoeOn Finish

Outline

- Basic idea of plan space planning
- PSP plan representation
- What we mean by constraints
- Flaws & their resolutions
- The PSP algorithm
- An example
- Comments
- Partially-ordered vs totally-ordered plans
- The POP algorithm

Plan-Space Planning: Basic Idea

- Backward search from the goal
- Each node of the search space is a partial plan
 - A set of partially-instantiated operators, called steps
 - Several sets of constraints
 - Make more and more refinements, until we have a solution a(x)
- Types of constraints:
 - Precedence constraints: a must precede b
 - Binding constraints:
 - Inequality constraints, e.g., $v1 \neq v2$ or $v \neq c$
 - Equality constraints (e.g., vI = v2 or v = c) or substitutions
 - Causal links: use step a to establish the precondition p needed by step c
- How to tell we have a solution: no more flaws in the plan
 - Will discuss flaws and how to resolve them

PSP Representation (I)

- A plan is a quadruplet <Steps, Orderings, Bindings, CausalLinks>
- Example

```
Plan(STEPS: \{S_1 : Op(Action: Start),\}
                S_2: Op(Action:Finish,
                     PREC: RightShowOn \land LeftShowOn)
       Orderings:\{S_1 \prec S_2\}
       Bindings: { }
                                         Start
                                                                      Start
       CausalLinks:{} )
                                      Initial State
                                                               LeftShoeOn, ↓ RightShoeOn
                                      Goal & State
                                        Finish
                                                                      Finish
                                          (a)
                                                                       (b)
```

PSP representation (II)

Initial state: an arbitrary logical sentence

$$At(Home, S_0) \land \neg Have(Milk, S_0)$$

 $\land \neg Have(Bananas, S_0)$
 $\land \neg Have(Drill, S_0)$

Goal state: a logical query asking for suitable situations

$$\exists s[At(Home, s) \land Have(Milk, s)$$

 $\land Have(Bananas, s)$
 $\land Have(Drill, s)]$

Operators: triples of (Action, Precondition, Effects)

```
At(here), Path(here, there)

Go(there)

At(there), \neg At(here)

Op(Action:Go(there), Go(there), Go(there), PRECONDITION:At(here) <math>\land Path(here, there)

Effects:At(there) \land \neg At(here)
```

Flaw 1: open goal

- Flaw:
 - A plan step b has a precondition p that we haven't decided how to establish

a(y) Precond: ... Effects: p(y)

b(x)
Precond: p(x)
Effects: ...

- Resolving the flaw:
 - Find a step a ... (either one already in the plan, or a newly inserted one)
 - that can be used to establish p (can precede b and produce p)
 - Instantiate variables
 - Create a causal link

Causal link protection

Consider the following situation

Plan step S_3 threatens the execution of S_2 by potentially destroying the precondition c needed by S_2

- Step S₃ is called
 - a threat or
 - a clobberer

Flaw 2: threat

- Flaw: a precondition/effect interaction
 - \blacksquare A step a establishes an effect p(x) needed as precondition for a step b
 - Another plan step c, possibly executable between steps a and b, is capable of falsifying condition p(x)
- Resolving the flaw:
 - Impose a constraint to prevent c from being able to falsify p(x)
- Several possibilities:
 - Promotion (c after b)
 - Demotion (c before a)
 - Separation
 - White knight

Causal link protection: promotion and demotion

- Promotion
 - Add ordering link to promote action S_3 after action S_2

- Demotion
 - Add ordering link to demote action S₃ before action S₁

Causal link protection

- Separation
 - \blacksquare Constrain the variables involved to prevent c from falsifying p(x)
 - For example, by an inequality constraint
- Sometimes, neither promotion nor demotion nor separation lead to a solution!
 - In this case, introducing an additional plan step (ensured to happen between c and b) could help. Such a plan step is called a white knight.
 - However, the planning algorithms do NOT explicitly use this for resolving threats.
 - Failure to resolve a threat will eventually lead, via backtracking, to undoing unfavorable choices -- here, of a causal link -- and generating an alternative solution

What do we know so far?

- Search space: plan space
- Node: a set of partially-instantiated plan steps + sets of constraints
- Backward search (start at the goal)
- First node: the two dummy steps start, and finish,
 - Start has effects = initial state
 - Finish has preconditions = goal statement
- Goal set (not a stack as in state space planning)
- Plan contains steps, bindings, ordering constraints, and causal links
- Flaws are resolved on each iteration until none remain:
 - Open goal
 - Solved by creating a causal link from an existing or newly added step (i.e. by finding an operator that establishes the goal)
 - Threat/clobberer
 - Solved by promoting or demoting the clobberer or adding a binding constraint

The PSP procedure

```
\begin{aligned} & \operatorname{PSP}(\pi) \\ & \operatorname{flaws} \leftarrow \operatorname{OpenGoals}(\pi) \cup \operatorname{Threats}(\pi) \\ & \operatorname{if} \ flaws = \emptyset \ \operatorname{then} \ \operatorname{return}(\pi) \\ & \operatorname{select} \ \operatorname{any} \ \operatorname{flaw} \ \phi \in flaws \\ & \operatorname{resolvers} \leftarrow \operatorname{Resolve}(\phi,\pi) \\ & \operatorname{if} \ \operatorname{resolvers} = \emptyset \ \operatorname{then} \ \operatorname{return}(\operatorname{failure}) \\ & \operatorname{nondeterministically} \ \operatorname{choose} \ \operatorname{a} \ \operatorname{resolver} \ \rho \in \operatorname{resolvers} \\ & \pi' \leftarrow \operatorname{Refine}(\rho,\pi) \\ & \operatorname{return}(\operatorname{PSP}(\pi')) \\ & \operatorname{end} \end{aligned}
```

PSP is both sound and complete

Example

- Similar (but not identical) to an example in Russell and Norvig's Artificial Intelligence: A Modern Approach
- Operators:
 - Start
 - Precond: none
 - Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk), Sells(SM,Banana)
 - Finish
 - Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)
 - Go(l,m)
 - Precond:At(I)
 - Effects: At(m), $\neg At(I)$
 - Buy(p,s)
 - Precond: At(s), Sells(s,p)
 - Effects: Have(p)

Initial plan

The only possible ways to establish the "Have" preconditions

The only possible way to establish the "Sells" preconditions

- The only ways to establish At(HWS) and At(SM)
- Note the threats

- To resolve the third threat, make Buy(Drill) precede Go(SM)
 - This resolves all three threats

Establish $At(I_1)$ with I_1 =Home

Establish $At(l_2)$ with $l_2=HWS$

Establish At(Home) for Finish

Constrain Go(Home) to remove threats to At(SM)

Final Plan

Establish $At(I_3)$ with $I_3=SM$

Comments

- PSP doesn't commit to orderings and instantiations until necessary
 - Avoids generating search trees like this one:
- Problem: how to prune infinitely long paths?
 - Loop detection is based on recognizing states we've seen before

- In a partially ordered plan, we don't know the states
- Can we prune if we see the same action more than once?

$$\dots$$
 go(b,a) go(a,b) go(b,a) at(a)

No!
 Sometimes we might need the same action several times in different states of the world (see next slide)

Example

- 3-digit binary counter starts at 000, want to get to 110
 - $s_0 = \{d_3=0, d_2=0, d_1=0\}$
 - $g = \{d_3 = 1, d_2 = 1, d_1 = 0\}$
- Operators to increment the counter by I:
 - incr0
 - Precond: $d_1=0$
 - Effects: $d_1 = I$
 - incr01
 - Precond: $d_2=0$, $d_1=1$
 - Effects: $d_2=1$, $d_1=0$
 - incr011
 - Precond: $d_3=0$, $d_2=1$, $d_1=1$
 - Effects: $d_3=1$, $d_2=0$, $d_1=0$

A weak pruning technique

- We can prune all paths of length > n, where n = ||{all possible states}||
 - This doesn't help very much, though
- It is not clear whether there's a good pruning technique for plan-space planning

Partial order vs total order plans: The shoe example

Partial Order Plan: Start Left Right Sock Sock LeftSockOn RightSockOn Left Right Shoe Shoe LeftShoeOn, RightShoeOn Finish

POP algorithm: The basic idea

- 1) Terminate if the goal set is empty
- 2) Select a goal g from the goal set & identify the plan step that needs it, S_{need}.
- 3) Let S_{add} be a step (operator) that adds g, either a new step or a step that is already in the plan. Add the causal link $S_{add} \rightarrow g$ S_{need} , constrain S_{add} to come before S_{need} , and enforce bindings that make S_{add} add g.
- 4) Update the goal set with all the preconditions of the step S_{add} , and delete g.
- 5) Identify threats and resolve the conflicts by adding ordering or bindings constraints.
 - A step S_k threatens a causal link $S_i \rightarrow g S_j$ when it occurs between S_i and S_j , and it adds or deletes p.
 - Resolve threats by using promotion, demotion, or separation.

The POP planning algorithm

```
function POP(initial, goal, operators) returns plan

plan \leftarrow MAKE-MINIMAL-PLAN(initial, goal)

loop do

if SOLUTION?(plan) then return plan

S_{need}, c \leftarrow SELECT-SUBGOAL(plan)

CHOOSE-OPERATOR(plan, operators, S_{need}, c)

RESOLVE-THREATS(plan)

end
```

POP planning algorithm: Select-Subgoal

function Select-Subgoal(plan) returns S_{need} , c

pick a plan step S_{need} from STEPS(plan) with a precondition c that has not been achieved return S_{need} , c

POP planning algorithm: Choose-Operator

```
procedure Choose-Operator(plan, operators, S_{need}, c)
```

```
choose a step S_{add} from operators or STEPS(plan) that has c as an effect if there is no such step then fail add the causal link S_{add} \stackrel{c}{\longrightarrow} S_{need} to LINKS(plan) add the ordering constraint S_{add} \prec S_{need} to ORDERINGS(plan) if S_{add} is a newly added step from operators then add S_{add} to STEPS(plan) add S_{add} to STEPS(plan) add S_{add} \prec S_{add} \prec S_{add} \prec S_{add} \prec S_{add} \prec S_{add}
```

POP planning algorithm: Resolve-Threats

```
procedure RESOLVE-THREATS(plan)

for each S_{threat} that threatens a link S_i \stackrel{c}{\longrightarrow} S_j in LINKS(plan) do choose either

Promotion: Add S_{threat} \prec S_i to ORDERINGS(plan)

Demotion: Add S_j \prec S_{threat} to ORDERINGS(plan)

if not CONSISTENT(plan) then fail
```

end

POP with partially-instantiated operators: Choose-Operator

```
procedure Choose-Operator(plan, operators, S_{need}, c)
  choose a step S_{add} from operators or STEPS(plan) that has c_{add} as an effect
            such that u = \text{UNIFY}(\mathbf{c}, c_{add}, \text{BINDINGS}(plan))
  if there is no such step
       then fail
  add u to BINDINGS(plan)
  add S_{add} \stackrel{c}{\longrightarrow} S_{need} to LINKS( plan)
  add S_{add} \prec S_{need} to ORDERINGS( plan)
  if S_{add} is a newly added step from operators then
       add S_{add} to STEPS(plan)
       add Start \prec S_{add} \prec Finish to ORDERINGS(plan)
```

POP with partially-instantiated operators: Resolve-Threats

```
procedure RESOLVE-THREATS(plan)
  for each S_i \stackrel{c}{\longrightarrow} S_j in LINKS(plan) do
      for each S_{threat} in STEPS(plan) do
          for each c' in EFFECT(S_{threat}) do
              if Subst(Bindings(plan), c) = Subst(Bindings(plan), \neg c') then
                  choose either
                       Promotion: Add S_{threat} \prec S_i to ORDERINGS(plan)
                       Demotion: Add S_i \prec S_{threat} to ORDERINGS(plan)
              if not CONSISTENT(plan)
                  then fail
          end
      end
  end
```