Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S₁, S₂, ...
 - Recur: solve the subproblems recursively
 - Conquer: combine the solutions for S_1 , S_2 , ..., into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

Iterative Substitution

In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn

$$= 2(2T(n/2^{2})) + b(n/2)) + bn$$

$$= 2^{2}T(n/2^{2}) + 2bn$$

$$= 2^{3}T(n/2^{3}) + 3bn$$

$$= 2^{4}T(n/2^{4}) + 4bn$$

$$= ...$$

$$= 2^{i}T(n/2^{i}) + ibn$$

- Note that base, T(n)=b, case occurs when $2^{i}=n$. That is, $i=\log n$.
- \bullet So, $T(n) = bn + bn \log n$
- Thus, T(n) is O(n log n).

Solving Recurrences by Substitution: Guess-and-Test

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

Thus

$$T(n) = 2T(n/2) + n$$

Guess
$$(#1)$$
 $T(n) = O(n)$

Need
$$T(n) \le cn$$

for some constant c>0

Assume
$$T(n/2) \le cn/2$$

 $T(n/2) \le cn/2$ Inductive hypothesis

$$T(n) \le 2cn/2 + n = (c+1) n$$

Our guess was wrong!!

COT 5407

Solving Recurrences by Substitution: 2

$$T(n) = 2T(n/2) + n$$
Guess (#2) $T(n) = O(n^2)$
Need $T(n) <= cn^2$ for some constant c>0
Assume $T(n/2) <= cn^2/4$ Inductive hypothesis
Thus $T(n) <= 2cn^2/4 + n = cn^2/2 + n$

Works for all n as long as c>=2!!
But there is a lot of "slack"

Solving Recurrences by Substitution: 3

```
T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)
Need T(n) <= cnlogn \text{ for some constant } c>0
Assume T(n/2) <= c(n/2)(log(n/2)) \text{ Inductive hypothesis}
Thus T(n) <= 2 c(n/2)(log(n/2)) + n
<= cnlogn - cn + n <= cnlogn
Works for all n as long as c>=1 \text{ !!}
This is the correct guess. WHY?
```

More Examples

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

◆ Guess: T(n) < cn log n.</p>

$$T(n) = 2T(n/2) + bn \log n$$

$$= 2(c(n/2)\log(n/2)) + bn \log n$$

$$= cn(\log n - \log 2) + bn \log n$$

$$= cn \log n - cn + bn \log n$$

Wrong: we cannot make this last line be less than cn log n

More Examples

Recall the recurrence equation:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

♦ Guess #2: T(n) < cn log² n.
</p>

$$T(n) = 2T(n/2) + bn \log n$$

$$= 2(c(n/2)\log^2(n/2)) + bn \log n$$

$$= cn(\log n - \log 2)^2 + bn \log n$$

$$= cn\log^2 n - 2cn\log n + cn + bn\log n$$

$$\leq cn\log^2 n$$

- if c > b.
- ♦ So, T(n) is O(n log² n).
- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

COT 5407

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

9/9/08 COT 5407 10

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.