Apriori Algorithm

James Kwok

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Association Rule Mining

- find all frequent itemsets
 - by definition, all these itemsets satisfy min_sup
- generate strong association rules
 - analyze the frequent itemsets further to extract rules that also satisfy min_conf
 - the problem of association rule mining <u>reduces</u> to finding the frequent itemsets

how to discover frequent itemsets in large transactional databases?

brute-force approach

- enumerate all candidate itemsets
- find the support count of each candidate

Brute-Force: Step 1

enumerate all candidate itemsets

• by creating an itemset lattice

• for a dataset that contains d items, the total number of (nonempty) candidate itemsets is $2^d - 1$

Brute-Force: Step 2

find the support count of each candidate

 by scanning the database and matching each transaction against the candidate

Figure 6.2. Counting the support of candidate itemsets.

```
for each transaction t in database do
    for each candidate contained in t do
        increment the support count;
    end
```

end

potential problems

- the total number of candidates can be very huge
- one transaction may contain many candidates

Reduce Number of Candidate Itemsets

Example

if {beer, diaper, nuts} is frequent, so is {beer, diaper}

every transaction having {beer, diaper, nuts} also contains {beer, diaper}

Any subset of a frequent itemset must be frequent

Support-Based Pruning

Antimonotone property of the support measure

 \forall itemsets X, Y,

 $X \subseteq Y$ implies support_count $(X) \ge \text{support_count}(Y)$

 if there is any itemset which is infrequent, its superset should not be generated/tested!

Example

Apriori Algorithm: Basic Idea

- Step 1:
 - enumerate the candidate 1-itemsets
 - remove the candidate 1-itemsets that are not frequent by measuring their support counts
- Step 2:
 - generate the candidate 2-itemsets, based on the remaining (frequent) 1-itemsets
 - remove the candidate 2-itemsets that are not frequent by measuring their support counts
- ...[continue the same process until no other itemsets can be generated] . . .

The final set of frequent itemsets is the union of the itemsets that remained in every step

Effectiveness: Example

Brute-force

- enumerates all itemsets
- produce $\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 41$ candidates of size up to 3

Apriori

• produces $\binom{6}{1}+\binom{4}{2}+1=13$ candidates of size up to 3

Pseudo-Code

- C_k: candidate itemset of size k
- *L_k*: frequent itemset of size *k*

```
L_1 = frequent items;
for (k = 1; L_k \neq \emptyset; k + +) do
    C_{k+1} = candidates generated from L_k;
    for each transaction t in database do
        for each candidate in C_{k+1} that are contained in t do
            increment the support count;
        end
    end
    L_{k+1} = \text{candidates in } C_{k+1} \text{ with min\_support};
end
return \bigcup_k L_k;
```

Example

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

$p_{min} = 2$	1
C_{I}	
1st scan	

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
-5.00	{B}	3
→	{C}	3
	{E}	3

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

, [Itemset	sup
	{A, B}	1
ſ	{A, C}	2
	{A, E}	1
ſ	{B, C}	2
	{B, E}	3
ľ	{C, E}	2

 $\begin{array}{c} C_2 \\ 2^{\mathrm{nd}} \ \mathrm{scan} \end{array}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

Itemset	sup
{B, C, E}	2

Generation of Candidates (Simple Method)

recall that

• based on the frequent (k-1)-itemsets found in the previous iteration, we generate new candidate k-itemsets

How?

• extend every frequent (k-1)-itemset with other frequent items

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Duplicates

Example

{bread, diapers, milk} can be generated by merging

- {bread, diapers} with {milk}
- {bread, milk} with {diapers}
- {diapers, milk} with {bread}

How to avoid duplicates?

Avoiding Duplicates

sort the items in lexicographic order

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

- itemset X is extended only by frequent items that are lexicographically larger than the items in X
 - e.g., {bread, diapers} can be augmented with {milk}, but {diapers, milk} cannot be augmented with {bread}

Candidate Pruning

may still produce a large number of unnecessary candidates

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

from support-based pruning

- for {beer, diapers, milk} to be a candidate 3-itemset, {beer, diapers}, {diapers, milk} and {beer, milk} should be frequent 2-itemsets
- {beer, diapers, milk} cannot be a frequent 3-itemset because
 {beer, milk} is infrequent

Generation of Candidates in Apriori

(self-join) Generate candidate k-itemsets by merging frequent (k-1)-itemsets

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

- A, B: any pair of (k-1)-frequent itemsets
 - $A = \{a_1, a_2, \dots, a_{k-1}\}$ and $B = \{b_1, b_2, \dots, b_{k-1}\}$
- merge A and B if and only if their first (k-2) items are identical
 - i.e., if $a_i = b_i$ for $i = 1, 2, \dots, k-2$ and $a_{k-1} < b_{k-1}$ (avoid duplicates), then form $\{a_1, a_2, \dots, a_{k-1}, b_{k-1}\}$

James Kwok

Example ({beer, diapers, milk})

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

- does not have to merge {beer, diapers} with {diapers, milk} because the first item in both itemsets are different
- if {beer, diapers, milk} is a frequent itemset, it would have been obtained by merging {beer, diapers} with {beer, milk} instead

Candidate Pruning

• remove an itemset if it contains a (k-1)-itemset that is not frequent

Example

- frequent 3-itemsets: {abc, abd, acd, ace, bcd}
- candidate 4-itemset: {abcd, acde}
 - abcd from abc and abd
 - acde from acd and ace
- candidate pruning $\rightarrow \{abcd\}$
 - acde is removed because ade is not a frequent 3-itemset

Do we need to check if the candidate contains a

- (k-2)-itemset,
- (k-3)-itemset, ...

that is not frequent?