GROUND STATE VIBRATIONAL ANALYSIS OF FEW AROMATIC HYDROCARBONS AND AMINO ACIDS: AN AB INITIO STUDY

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

by
DEBASHIS CHAKRABORTY

to the

DEPARTMENT OF CHEMISTRY

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

December, 1996

Dedicated to my parents

-6 AUG 1997
CENTRAL LIBRARY
LILT, KANPUR
A 123646

HM-1996-D-CHA-GRO

STATEMENT

I hereby declare that the matter embodied in this thesis is the result of investigations arried out by me in the Department of Chemistry, Indian Institute of Technology, Canpur, India under the supervision of Dr. S. Manogaran.

In keeping with the general practice of reporting scientific observations, due acmowledgement has been made wherever the work described is based on the findings of other investigators.

Kanpur

Debashis Chakrabosty

Debashis Chakraborty

DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY KANPUR INDIA CERTIFICATE I

This is to certify that Mr. Debashis Chakraborty has satisfactorily completed all the courses required for the Ph.D. degree program. These courses include:

CHM 605 Principles of Organic Chemistry

CHM 621 Chemical Binding

CHM 624 Modern Physical Methods in Chemistry

CHM 625 Principles of Physical Chemistry

CHM 645 Principles of Inorganic Chemistry

CHM 679 Molecular Reaction Dynamics

CHM 800 General Seminar

CHM 801 Special Seminar

CHM 900 Ph.D. Thesis

Mr. Debashsis Chakraborty was admitted to the candidacy of the Ph.D. degree in July 1991, after he successfully completed the written and oral qualifying examinations.

(S. K. Dogra)

Head,

Department of Chemistry

IIT Kanpur

 \mathcal{M}

(T. K. Chandrashekhar)

Convenor,

Departmental Post Graduate Committee

Department of Chemistry

IIT Kanpur

It is certified that the work contained in this thesis entitled *Ground State Vibrational Analysis of Few Aromatic Hydrocarbons and Amino Acids: An Ab Initio Study* by *Debashis Chakraborty* has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

Dr. S. Manogaran

Associate Professor Department of Chemistry Indian Institute of Technology, Kanpur Kanpur-208016 (INDIA)

December, 1996

Acknowledgments

I wish to express my profound sense of gratitude to Dr. S. Manogaran for his excellent guidance and inspiration. The rare opportunity I got, to explore the vast frontiers of science was only possible under his astute guidance. His encouraging words and the kind of help he rendered on me during this five years of time is really appreciable.

I thank Professor N. Sathyamurthy for providing Gaussian programs and for his valuable suggestions and help during this period. I thank Professor P. K. Bharadwaj for his interest in my work and also for keeping a lively atmosphere in the lab. I really thank him for all the care and advice he gave me during my stay in the lab. I also want to express my thank to Dr. A. Chandra for his help at the time of need.

This work would not have been feasible had it not been for the cooperation and support I received from the computer center. I thank Professor H. Karnik, Dr. R. Tewari, Dr. K. S. Singh, Mr. A. Alam, Mr. N. Roberts, Mr. Y. D. S. Arya, Mr. H. P. S. Parihar and all the operating staff for the patience with which they bore my byte crunching computations.

Mrs. Geeta Manogaran, Divya and Kartik are fondly remembered for all their love and care they bestowed on me and make my stay a homely one.

I thank all my lab-mates Indrajit, Pradyut, Dillip, Prasun, Gopal, Janmejaya, Vaibhav and Bappaditya and also all my friends of Chemistry Department. I should really thank Nilu, Biswajit, Sanjib and Shirshendu for helping me at the final stage of processing the thesis. Special thanks to all my C-top friends Tapo, Tapan, Debada, Manoj and Prasen for making life more kaleidoscopic during my stay at Hall V. Subit, Sankarda, Arun, Swapanda, Abirda, Kishore, Mama and all members of our drama troop and also to host of other friends who are already left should be thanked for making life a memorable one at various stages here.

I am grateful to my elder brother for his constant inspiration and mental support at every step of my work.

Last but not the least is the constant encouragement and love I received from Sangita, as a friend and my wife, which always kept me cheerful and enthusiastic even at the crucial stage of this work.

Debashis Chakraborty

Synopsis

An accurate knowledge of molecular force fields is essential in the prediction and interpretation of vibrational spectra and also in molecular mechanics and dynamics simulation [1]. Attempts to deduce molecular force field from spectral data alone have not been successful so far for molecules containing more than a few atoms [2]. Ab initio molecular orbital methods offer an attractive alternative to resolve this problem. Due to the recent advances in the quantum chemical methodology, an accurate description of molecular force field is possible for small molecules by extending the atomic orbital basis sets and including the electron correlation. Such a physical representation of systems of interest in chemistry and structural biology is not possible due to limited computational resources. A new approach has been introduced in this regard by using the ab initio Hartree-Fock calculations employing an optimal basis set to derive preliminary quantum mechanical force field, whose parameters are then systematically scaled by fitting the available experimental data. These scale factors are then transferred to structurally related larger systems [3]. In the present study, a new algorithm has been developed in this regard and interpretation and prediction of the vibrational spectra of few aromatic hydrocarbons [4] and amino acids have been carried out using this newly developed methodology.

In chapter 1 of the thesis, the use of ab initio calculations in the development of force field has been reviewed. Importance of the force constants for the interpretation and prediction of vibrational spectra has been discussed and the existing methodologies on scaling of ab initio force field have been reviewed along with their advantages and disadvantages. A brief outline of the thesis is also presented.

In chapter 2, the basic framework of ab initio calculations has been presented. A brief description of the basis sets employed, the Hartree-Fock model, methods of inclusion of

electron correlation and the theory behind the evaluation of force constants is given. The conversion of cartesian force constants (available from ab initio studies) to non-redundant local and symmetric force constants is also discussed. All the ab initio calculations have been carried out with Gaussian and GAMESS suit of programs.

In chapter 3, a novel method is described to obtain a scale factor for each force constant in the force constant matrix as a quantitative measure of the systematic error in the ab initio methods. These scale factors offer a simple solution to the problem of interpretation and prediction of vibrational spectra using the Scaled Quantum Mechanical (SQM) approach of Pulay et al. [3]. A detailed description of the methodology and its theoretical justification are presented. The advantages of the present methodology over the existing ones are listed. The performance of the method compared to the SQM procedure is demonstrated by using acrolein as example. A nearly unique force field of benzene is obtained by fitting the ab initio force field of five different calculations (HF/4-21G, 6-31G*, 6-311G**, 6-311++G** and MP2/6-311G**) to the harmonic frequencies of Ozkabak and Goodman [5]. Transferability of the scale factors for the prediction of vibrational spectra has been demonstrated by using pyridine and benzaldehyde as test cases.

In chapter 4, a complete set of force constants and their corresponding scale factors are obtained by fitting the experimental frequencies of naphthalene- d_0 and $-d_8$ to the ab initio force field obtained at HF/4-21G level using the methodology described in chapter 3. The fitting is extremely successful in producing a force field which reproduces the frequencies within an average deviation of 5.7 cm⁻¹ for naphthalene- d_0 and d_0 cm⁻¹ for $-d_8$ from the experimentally observed fundamentals. The ab initio force constants of anthracene are obtained using the same level of theory and scaled using the scale factors of naphthalene. The earlier assignments are either confirmed or reassigned utilizing the frequencies and potential energy distributions (PED) derived from the scaled force field. The agreement between the experimental and predicted fundamentals are excellent for this molecule containing 24 atoms giving an average deviation of 8.2 cm⁻¹.

In chapter 5, the force fields of glycine hydrochloride (GH) and glycylglycine hydrochloride (GGH) are presented. A conformational study was undertaken for GGH at HF/6-31G** level of theory. By fitting the experimental vibrational frequencies of seven

isotopomers of GH to the ab initio force field for the lowest energy conformation using the methodology described in chapter 3 a complete set of force constants and their corresponding scale factors are obtained. The fitting is extremely successful in producing a force field with an average deviation of 9.7 cm⁻¹ from the experimentally observed fundamentals for all the seven isotopomers. The scale factors of GH are used to obtain the scaled ab initio force field of the minimum energy conformer of GGH, which in turn was used to predict the vibrational frequencies and their PED. The very good agreement between the experimental and predicted fundamentals offer a "real" example to the concept of building a reliable force field from a smaller unit to a larger unit i.e. of a dipeptide from its parent amino acids.

In chapter 6, transferability of scale factors from smaller constituents to a larger is successfully attempted for two important amino acid hydrochlorides cysteine and serine. The scale factors of GH from chapter 5 are used to scale the ab initio force field of both the molecules. Scale factors of the side chain residues of cysteine and serine are obtained by fitting the ab initio force field of ethanethiol and ethanol to their respective experimental frequencies at the same level of theory. In both the cases the prediction of the frequencies and their normal mode descriptions are very good. This further indicates that the scale factors of structurally related small organic molecules (ethanethiol and ethanol in the present case) can be used to mimic the right features of the amino acid side chain residues.

In chapter 7, the ab initio calculation of isolated glycine zwitterion to study the vibrational spectral features is presented. Such an ab initio calculation on amino acids do not reproduce the experimental PED of the normal modes because of the strong intramolecular H-bonding which is absent in the condensed phase. Using Onsager reaction field model with a proper choice of solute radius and dielectric constant, it is shown that the ab initio method mimics the features of experimental PED very well. Several basis sets are used for identifying the right ab initio model. By fitting this ab initio force field of the solvated model to the experimental vibrational frequencies of four different isotopomers at $HF/6-31++G^*$ level a complete set of non-redundant force constants are obtained. The fitting produced a force field which produces the frequencies with an average deviation of 7.9 cm⁻¹ from the experimentally observed fundamentals of all the four isotopomers.

Since most of the experimental data on amino acids are available for solution and/or solid phases, their correct interpretation requires a good theoretical model.

In chapter 8, based on our earlier glycine ab initio solvated model calculations, a complete set of scale factors are generated for alanine by fitting the ab initio solvated model force field to the experimental frequencies of five different isotopomers. Theses scale factors are then used to scale the ab initio force field of two important amino acids, cysteine and serine. Scale factors of the side chain residues of both cysteine and serine are obtained by fitting the ab initio solvated model force field of ethanethiol and ethanol to their respective experimental frequencies at the same level of theory. In both the cases the prediction of the frequencies and their normal mode descriptions are excellent compared to the size and complexity of the molecules.

In chapter 9, a summary of the findings of the present study and suggestions for future work have been forwarded.

Bibliography

- [1] Derreumaux, P.; Vergoten, G. J. Chem. Phys., 1995, 102, 8586.
- [2] Ozkabak, A. G.; Goodman, L. J. Chem. Phys, 1987, 87,2564.
- [3] a) Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A. J. Am. Chem. Soc., 1983, 105, 7037. b) Fogarasi, G.; Pulay, P. Annu. Rev. Phys. Chem., 1984,35, 191; in Vibrational Spectra and Structure, Vol. 14, (Edited by Durig, J. R.), Elsevier, Amsterdam, 1985.
- [4] Chakraborty, D.; Ambashta, R.; Manogaran, S. J. Phys. Chem, 1996, 100, 13963.
- [5] Goodman, L.; Ozkabak, A. G.; Thakur, S. N. J. Phys. Chem., 1991, 95, 9044.

Contents

1	Intro	oduction	1			
	1.1	Outline of the Thesis	5			
2	Methodology 1					
	2.1	Ab Initio Methods	12			
		2.1.1 Hartree Fock Theory	13			
		2.1.2 Electron Correlation	15			
		2.1.3 Basis Sets	17			
		2.1.4 Reaction Field Model of Solvation	19			
		2.1.5 Force Constants	20			
	2.2	Transformation of Force Constants	22			
	2.3	Computational Details	24			
3	Inte	expretation and Accurate Prediction of Vibrational Spectra - A Modification				
	to S	caled Quantum Mechanical Approach	30			
	3.1	Methodology	31			
	3.2	Results	36			
		3.2.1 Interpretation of Vibrational Spectra	36			
		3.2.2 Prediction of Vibrational Frequencies	39			
	3.3	Conclusions	40			
4	For	ce Field and Assignment of the Vibrational Spectra of Naphthalene and				
	Ant	thracene	60			
	4.1	Calculations	61			

	4.2	Results	62
		4.2.1 Force Field of Naphthalene and Anthracene	62
		4.2.2 Vibrational Spectra of Naphthalene	63
		4.2.3 Vibrational Spectra of Anthracene	65
		4.2.4 In-plane frequencies	66
		4.2.5 Out of plane frequencies '	67
	4.3	Conclusions	68
5	The	oretical Prediction of Vibrational Spectrum of N-Glycylglycine Hydrochlo-	
	ride		94
	5.1	Calculations	95
	5.2	Results	96
		5.2.1 Conformations of GH	97
		5.2.2 Conformations of GGH	97
		5.2.3 Vibrational Frequencies of GH	97
		5.2.4 Vibrational Frequencies of GGH	98
	5.3	Conclusions	100
ó	Tho	oratical prodiction of wibrational amounts of anything at 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ride	oretical prediction of vibrational spectra of cysteine and serine Hydrochlo-	110
	6.1	Calculations	119
	6.2	P 16	120 121
		6.2.1 EtSH	
		6.2.2 EtOH	
		6.2.2 Vilandia III	
			122
	6.3	Conclusions	l24 l25
7	¥ 712	·	۔ کے۔
7			145
	7.1		L47
	7.2		l47
		7.2.1 Geometry	147

			xxi
		7.2.2 Selection of the right model	148
		7.2.3 Vibrational Frequencies	149
	7.3	Conclusions	150
8	The	oretical Prediction of the Vibrational spectra of Cysteine and Serine Zwitte	:-
	rion	s	163
	8.1	Calculations	164
	8.2	Results	165
		8.2.1 Vibrational Frequencies of Ala	165
		8.2.2 Vibrational Frequencies of Cys	167
		8.2.3 Vibrational Frequencies of Ser	168
	8.3	Conclusions	170
a	Con	clusions and Future Scope	194

List of Tables

3.1	Force constants obtained after fitting to 'simulated frequencies'	43
3.2	Calculated(4-21G) and Experimental frequencies $$ of acrolein and acrolein- d_1	44
3.3	Fitted ab initio harmonic force field of benzene in different basis sets in	
	terms of symmetry coordinates	45
3.4	Fitted ab initio harmonic frequencies of benzene in different basis sets	46
3.5	Fitted ab initio harmonic frequencies of C_6D_6 , $C^{13}{}_6H_6$ and $C^{13}{}_6D_6$	47
3.6	Predicted frequencies of pyridine using 4-21G basis set	48
3.7	Predicted frequencies of benzaldehyde using 4-21G basis set	49
3.8	Fitted force field of acrolein	50
3.9	In plane scale factors of benzene	51
3.10	Out of plane scale factors of benzene	52
3.11	Internal coordinates of acetaldehyde	53
3.12	Scale factors of acetaldehyde taken for prediction	53
3.13	Internal coordinates of benzaldehyde	53
3.14	Symmetry coordinates of benzaldehyde	54
3.15	Non-redundant scaled 4-21G force constants of benzaldehyde	55
3.15	(Continued): Non-redundant scaled 4-21G force constants of benzaldehyde	56
4.1	Non-redundant local coordinates of naphthalene	73
4.2	Non-redundant local coordinates of anthracene	<i>7</i> 3
4.3	Selected scaled force constants of naphthalene and anthracene	74
4.4	Fitted ab initio(1-21G) frequencies of naphthalene	<i>7</i> 5
4.4	(Continued): Fitted frequencies of naphthalene	76
4.5	Anharmonic and harmonic frequencies and force constants	77

4.6	6 Predicted vibrational frequencies of anthracene	78
4.6		79
4.7		80
4.7		81
4.8		81
4.8		82
4.9	Naphthalene in plane symbolic F matrix in non-redundant local coordinates	83
4.9	(Continued): Naphthalene in plane symbolic F matrix in local coordinates	84
4.1	0 Naphthalene out of plane symbolic F matrix in non-redundant local coor-	
	dinates	85
4.13	1 Anthracene in plane symbolic F matrix in non-redundant local coordinates	86
4.13	1 (Continued): Anthracene in plane symbolic F matrix in local coordinates .	87
4.11	l (Continued): Anthracene in plane symbolic F matrix in local coordinates .	88
4.12	2 Anthracene out of plane symbolic F matrix in non-redundant local coordinates	89
4.13	Mean amplitudes of vibration(Å) of naphthalene	90
5.1	Non-redundant local coordinates, at CII	
5.2	Non-redundant local coordinates of CCII	.04
5.3	Relative energies (in kl/mol) of CU and CCU	.04
5.4	Fitted vibrational frequencies of CH (cm-1)	.05
5.5	Fitted vibrational frequencies of all the assessing	.06
5.6	Predicted Vibrational Frequencies of CCLI (cm =1)	07
5.6	(Continued): Predicted vibrational fragues is a Corr	08
5.7	Optimized cartesian coordinates of the minimum energy conformation of	09
	GH at 6-31G** basis set	
5.8	Optimized cartesian coordinates of the minimum energy conformation of	10
	GGH at 6-31G** basis set	
5.9	GGH at 6-31G** basis set	10
5.9	(Continued): Non-redundant fitted force and the force and	11
5.10	(Continued): Non-redundant fitted force constants of GH	12
5.10	Non-redundant scaled force constants of GGH	12
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13

5.10	(Continued): Non-redundant scaled force constants of GGH	114
5.10	(Continued): Non-redundant scaled force constants of GGH	115
5.10	(Continued): Non-redundant scaled force constants of GGH	116
6.1	Local symmetry coordinates of EtSH and EtOH	129
6.2	Local symmetry coordinates of CYSH and SERH	129
6.3	Optimized geometrical parameters of CYSH and SERH (6-31G**)	130
6.4	Fitted frequencies of EtSH and EtOH	131
6.5	Predicted frequencies and PED of CYSH	132
6.6	Predicted frequencies and PED of SERH	133
6.7	Comparative calculated frequencies of	134
6.8	Comparative calculated frequencies of	134
6.9	Non-redundant scaled force constants of CYSH	135
6.9	(Continued): Non redundant scaled force constants of CYSH	136
6.9	(Continued): Non redundant scaled force constants of CYSH	137
6.9	(Continued): Non redundant scaled force constants of CYSH	138
6.10	Non redundant scaled force constants of SERH	138
6.10	(Continued): Non redundant scaled force constants of SERH	139
6.10	(Continued): Non redundant scaled force constants of SERH	140
6.10	(Continued): Non redundant scaled force constants of SERH	141
7.1	Local symmetry coordinates of Gly	153
7.2	Optimized geometries of Gly at different basis sets	154
7.3	Selective unscaled vibrational frequencies of solvated Gly at different basis	
	sets	155
7.4	Frequencies of isolated and solvated (radius 3.2 Å) Gly-d ₀ at 6-31++G* basis	
	set	156
7.5	Fitted isotopic frequencies of Gly	157
7.6	The symbolic F matrix of Gly in nonredundant local coordinates	158
7.6	(Continued): The symbolic F matrix of Gly in local coordinates	159
8.1	Local symmetry coordinates of Ala	174

8.2	Local symmetry coordinates of Cys and Ser	174
8.3	Optimized geometrical parameters of Ala	1 <i>7</i> 5
8.4	Optimized geometrical parameters of Cys and Ser	1 <i>7</i> 5
8.5	Fitted frequencies of EtSH and EtOH	176
8.6	Fitted frequencies and PEDs of Ala-d0 \ldots	177
8.7	Fitted frequencies and PEDs of Ala-Cd3 and Ala-N+d3	178
8.8	Fitted frequencies and PEDs of Ala-CdN+d3 and Ala-Cd3N+d3 $\ \ldots \ \ldots$	179
8.9	Predicted frequencies and PEDs of Cys	180
8.10	Predicted frequencies and PEDs of Ser	181
8.11	Ala symbolic F matrix in non-redundant local coordinates	182
8.11	(Continued): Ala Symbolic F matrix in local coordinates	183
8.11	(Continued): Ala Symbolic F matrix in local coordinates	184
8.12	Non-redundant scaled force constants of Cys	185
8.12	(Continued): Non-redundant scaled force constants of Cys	186
8.12	(Continued): Non-redundant scaled force constants of Cys	187
8.13	Non-redundant scaled force constants of Ser	188
8.13	(Continued):Non-redundant scaled force constants of Ser	189
8.13	(Continued):Non-redundant scaled force constants of Ser	190

List of Figures

3.1	Flowchart of the fitting algorithm	41
3.2	Atom numberings of a. benzene b. acetaldehyde c. benzaldehyde	42
4.1	Internal coordinates of naphthalene	70
4.2	Internal coordinates of anthracene	70
4.3	Flowchart of the modified algorithm	71
4.4	Mean amplitudes of vibration of naphthalene and anthracene (\mathring{A})	72
5.1	Internal coordinates of GH	101
5.2	Internal coordinates of GGH	101
5.3	HF/6-31G** optimized structures of the two conformers of GFL	102
5.4	HF/6-31G** optimized structures of the eight conformers of GGH	103
6.1	Internal coordinates of EtSH and EtOH	126
6.2	Internal coordinates of CYSH and SERH	127
6.3	Optimized structure of a) CYSH and b) SERH at HF/6-31G** level	128
7.1	Internal coordinates of Gly	151
7.2	Structure of X-ray and optimized Gly using 6-31++G* basis set	152
8.1	Internal coordinates of Ala	171
8.2	Internal coordinates of Cys and Ser	172
8.3	Optimized structure of a) Cvs and b) Ser at HF/6-31++G* level	173

Chapter 1

Introduction

Numerical simulations of structures and dynamics of molecules serve as an invaluable complement to experiments due to the significant developments in new generation computers, improved programs and wide accessibility to these programs. Simulation of molecular force field as an important tool in the study of structure and dynamics of molecules rest on the hypothesis that the potential energy of a molecule or assembly of molecules can be reproduced by a low order Taylor series expansion in terms of internal coordinates. At the harmonic level the prediction of good vibrational spectra greatly enhances its use as a structural tool in cases where other structural methods such as NMR or diffraction methods cannot be applied, e.g. transient species, polymers, low temperature matrices, adsorbed layers or for structural phenomena which are fast in the NMR time scale. Improved thermodynamic functions can be obtained from the vibrational spectra whose fundamentals are correctly identified. Another important application of accurate force fields is the evaluation of the vibrational averaging effects on observed molecular properties, e.g. geometries, dipole moments etc. There is a great deal of interest in the field due to the recent technical developments of molecular spectroscopy [1-9].

Attempts to deduce molecular force fields from spectral data alone have not been successful so far for molecules containing more than a few atoms [10-12]. As the number of atoms increase, the number of force constants to be determined becomes more than the experimentally available frequencies and multiple solution becomes a problem. Ab initio calculations due to their firm theoretical basis tend to be more systematic and reliable, than other methods available for the development of force fields. With the advent of

faster computers and widely accessible programs, rapid strides have been made in the calculation of ab initio force fields at various levels of sophistication [13-20]. As an outcome, in the last decade, there has been a tremendous growth in the ab initio quantum mechanical calculation of force constants for polyatomic molecules and the prediction of vibrational spectra [21-30].

Due to the recent advances in the quantum chemical methodology, an accurate description of molecular force field is possible for small molecules by extending the atomic orbital basis sets and including electron correlation. Such a physical representation of a typically large macro molecular system of interest in structural biology is not possible due to the limited computational resources. As a result, the simulation of macromolecules such as proteins and nucleic acids and their interactions have led to a large number of empirical force fields through refinement of parameters and their transferability from small model systems [31-50]. Most of these currently available force fields involve the electrostatic potential and the solvation free energy as the focus of attention. These force fields are perfectly adequate to the applications of molecular recognition or identification of closely related minima. However, these force fields largely ignore the accurate reproduction of the vibrational frequencies [50]. The acceptability of the force field is apparently gauged by the agreement between the calculated and experimentally observed fundamental vibrational frequencies of the parent molecule and its isotopomers. Thus it seems that an accurate description of vibrational frequencies of some model compounds using theoretically sound methodology (ab initio) can provide improved force field parameters for a better description of molecular mechanics or molecular dynamics simulation of biologically important macromolecules.

Transferability of molecular force constants between structurally related molecules and refining them with the aid of experimental vibrational frequencies using normal coordinate analysis is known for long [51]. In this method the force constants are simply guessed based on their values in related molecules and modified so as to reproduce all the isotopic frequencies closely. Ab initio methods could give better force constants because they are evaluated based on firm theoretical basis [52,53]. However at the Hartree-Fock (HF) level of ab initio theory, finite basis set and neglect of electron correlation result in

over-estimated values of force constants and frequencies. Although highly sophisticated methods like CCSD(T) and CASS are capable of yielding more accurate harmonic force constants can not be applied on a routine basis to medium sized molecules. Even when accurate harmonic force constants become available, for prediction of experimental frequencies we need anharmonic force constants which involve the evaluation of cubic and quartic force constants.

As a reasonable solution to this problem use of both the experimental data and the ab initio information had been advocated. A new approach has been introduced in this regard by using the ab initio Hartree-Fock calculations employing an optimal basis set to derive a preliminary quantum mechanical force field, whose parameters are then systematically scaled by fitting them to the available experimental data [11,54-66]. All these approaches are based on the assumption that the errors involved in the ab initio calculations are fairly systematic. Analysis of the calculated harmonic force constants of a large number of molecules using HF theory leads to the following general conclusions [10].

- i) Diagonal stretching force constants are systematically overestimated by 10-15%.
- ii) Diagonal bending force constants are systematically overestimated by 20-30%, slightly higher than stretching.
- iii) For coupling constants the errors are less systematic, large values are reproduced within 10-30% and for small values an absolute error seems more appropriate, within 0.05-0.10 mdyne/Å.

The combination of theory and experiment in evaluating the force constants was first attempted by Pulay and Meyer through their simple scaling scheme of 10% reduction of the stretchings, 20% reduction for the bendings and the interaction terms left unchanged at their theoretical values [54]. Another procedure proposed by Botschwina et al. [55,56] and Pouchan et al. [58] involves fitting of the diagonal force constants to the experimental frequencies while the off-diagonal terms are taken from calculated results. Blom and Altona in their more detailed scaling scheme introduced separate scale factors for several types of distortions and also optimization of these scale factors by fitting them to the experimental frequencies in a least squares procedure [59]. Ha, Mayer and Günthard

proposed a relatively different scaling scheme of using both unscaled force constants and experimental frequencies as experimental data and the best compromised force constants were determined as those reproducing both sets of data as closely as possible in the least squares sense [62]. But so far, the most successful and most widely used scaling procedure was the scaled quantum mechanical (SQM) approach proposed by Pulay et al. [2,60]. In their method all the diagonal force constants are separated into different groups according to their chemical type and a scale factor is assigned to each group and the geometric mean of the diagonal scale factors are used for the off-diagonal force constants. The scale factors are optimized by minimizing the weighted mean square deviation between the calculated and observed fundamental frequencies. An arithmetic mean rather than the geometric mean of the diagonal scale factors for the off-diagonal force constants were attempted by Hipps and Poshusta in their scaling scheme [61]. More recently several other simpler scaling schemes were found in the literature where a fixed set of scale factors were used for every molecule [63,64] e.g. a scale factor of 0.9 for stretchings, 0.8 for bendings and their respective geometric mean for the coupling force constants was proposed by Durig et al. [64]. In all these scaling procedures the diagonal force constants are modified by using different scale factors while the off-diagonal force constants may be left unaltered or scaled down in some average manner. Since each force constant is physically distinct, it is more realistic to think that each force constant is associated with its own scale factor. Besides, the least squares method need not converge all the time, specially when the parameters are many and do not lead to a unique assignment, specially in less symmetric molecules. Goddard et al. for the first time proposed a different scheme of evaluating the force constants in the cartesian space from the experimental frequencies to use in their molecular mechanical studies [65]. Very recently Vijay and Sathyanarayana proposed their RECOVES (recovery in the eigenvector space) procedure. This procedure uses a computationally simple scheme where the ab initio force constants are modified in a single step by the direct use of experimental eigenvalues of vibrational secular equation in the ab initio calculated eigenvector space. This method works well if the assignments are correct. However, it does not retain the sign of the ab initio force constants.

In this thesis we propose a new way of scaling the ab initio force constants and show

its applicability in the evaluation of reliable force constants and also in the theoretical prediction of vibrational spectra. The aim of this work is to present the methodology for scaling of ab initio force constants and compare its performance with the existing methods. As a result, we have chosen few very well studied systems like acrolein, benzene, naphthalene etc. for which earlier SQM results are available.

Secondly, a set of amino acids and a small dipeptide are chosen to show how this methodology can be extended to these systems to obtain a reliable theoretical force fields for these less symmetric molecules as an aid to determination of the force field parameters for molecular mechanics or molecular dynamics simulation of large biologically important molecules. Amino acids, being the building block of biologically active compounds are of special interest in both biological and structural chemistry. Amino acids exist as zwitterions in the condensed phase, whereas isolated molecules exhibit a neutral structure. While the zwitterionic structure is accessible via X-ray methods, the structure determination of neutral form posses severe experimental problems, since amino acids usually decompose before melting. As a result, so far the gas phase vibrational frequencies of amino acids are limited to glycine only. Any fitting or scaling procedure will perform well only when the ab initio model can reasonably mimic the gross features of experimental spectra. Since the ab initio calculations are mostly performed on isolated molecules, the best compromise between the theory and experiment is possible with gas phase vibrational data. The presence of intermolecular forces in the solid and solution phase leads to shift in the frequencies from the isolated molecular spectra. Thus, a judicial choice of the level of calculation or an improvement of the ab initio isolated model itself to account for this intermolecular effects, are very often needed to reproduce the experimental solid or solution phase spectra with all the isotopic shifts for amino acids [67]. Onsager reaction field approach of using a dielectric continuum is attempted to include the intermolecular H-bonding effects. A brief outline of the thesis is discussed in the next section.

1.1 Outline of the Thesis

The thesis has been arranged in the following manner:

In chapter 2, a brief discussion of the theory underlying ab initio force field calculations

are presented. In chapter 3, The newly developed scaling procedure is described in detail and testing of the present methodology is discussed with the examples of benzene, pyridine, acrolein and benzaldehyde. Benzene is used to compare the reliability of the force constants generated by the present methodology with that of Ozkabak and Goodman [3]. In chapter 4, the studies of naphthalene and anthracene in the light of transferability of scale factors between structurally related molecules are discussed in detail. In chapter 5, conformational and vibrational analysis of glycine hydrochloride and glycylglycine hydrochloride along with a theoretical prediction of the latter one from the former by the transfer of scale factors are discussed. In chapter 6, results of the calculations on cysteine and serine hydrochloride and a theoretical prediction of them from glycine hydrochloride and ethanethiol and ethanol respectively are discussed. Chapter 7, deals with glycine zwitterion. We explicitly show in this chapter that the isolated ab initio model fails to mimic the experimental spectra properly and incorporation of solvent effect can only improve the model. A set of non-redundant scale factors are obtained for solvated glycine zwitterion. In chapter 8, we use the same strategy as in glycine zwitterion to model the experimental spectra of alanine followed by a theoretical prediction of the vibrational spectra of cysteine and serine zwitterions using the alanine scale factors. Conclusions and future scope of the present work is discussed in chapter 9.

Bibliography

- [1] Barron, L. D. in *Vibrational Spectra and Structure*, Vol. 17B, p.343(Edited by Bist, H. D., Durig, J. R. and Sullivan, J. F.) Elsevier, Amsterdam, 1989.
- [2] Nafie, L. A.; Zimba, C. G. in *Biological Applications of Raman Spectroscopy*, Vol. 1, p.307(Edited by Spiro, T. G.) Wiley, New York, 1987.
- [3] Bose, P. K.; Barron, L. D.; Polavarapu, P. L. Chem. Phys., 1989, 155, 423.
- [4] Bose, P. K.; Polavarapu, P. L.; Barron, L. D.; Hecht, L. J. Phys. Chem., 1990, 94, 1734.
- [5] Diem. M.; Polavarapu, P. L.; Oboodi, M.; Nafie, L. A. J. Am. Chem. Soc., 1982, 104, 3329.
- [6] Black, T. M.; Bose, P. K.; Polavarapu, P. L.; Barron, L. D.; Hecht, L. J. Am. Chem. Soc., 1990, 112, 1479.
- [7] Barron, L. D.; Gargaro, A. R.; Wen, Z. Q. J. Chem. Soc., Chem. Comm., 1990, 1034.
- [8] Barron, L. D.; Gargaro, A. R.; Hecht, L.; Polavarapu, P. L. Spectrochim. Acta., 1992, 48A, 261.
- [9] Barron, L. D.; Wen, Z. Q.; Hecht, L. J. Am. Chem. Soc., 1992, 114, 784.
- [10] Fogarasi, G.; Pulay, P. Annu. Rev. Phys. Chem., 1984,35, 191; in Vibrational Spectra and Structure, Vol. 14, (Edited by Durig, J. R.), Elsevier, Amsterdam, 1985.
- [11] Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A. J. Am. Chem. Soc., 1983, 105, 7037.

- [12] Goodman, L.; Ozkabak, A. G.; Thakur, S. N. J. Phys. Chem., 1991, 95, 9044.
- [13] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian 94, Revision C.2, Gaussian Inc., Pittsburgh, PA, 1995.
- [14] Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J.comput.Chem., 1993, 14, 1347.
- [15] Texas: TX 90, Pulay, P. Fayetville, AR, 1990; Pulay, P. Theor. Chim. Acta, 1979, 50, 299.
- [16] Hondo: Dupuis, M.; Rys, J.; King, H. F. Quantum Chem. Program Exch. Bull., 1977, 11, 336: 1977, 11, 338: 1981, 13, 401; J. Chem. Phys., 1976, 65, 111.
- [17] Turbomole: Ahlrichs, R.; Bär, M.; Häser. M.; Horn, H.; Kölmel, C. Chem. Phys. Lett., 1989, 162, 165.
- [18] Cadpac: Amos, R. D.; Rice, J. E. CADPAC: The Cambridge Analytic Derivatives Package, Issue 4.0, Cambridge, 1987.
- [19] Molecule-Sweden: Almlöf, J.; Bauschlicher, C. W.; Blomberg, M. R. A.; Chong, D. P.; Heiberg, A.; Langhoff, S. R.; Malmqvist, P.-A.; Rendell, A. P.; Roos, B. A.; Siegbahn, P. E. M.; Taylor, P. R.
- [20] Monstergauss: Peterson, M. R.; Poirier, R. A.; Program MONSTERGAUSS, University of Toronto, Canada, 1981.
- [21] Schutte, C. J. H.; in Structure and Bonding, Vol. 9, p 213, Springer Verlag, Berlin, 1971.
- [22] Schrader, B.; Bougeard, D.; Niggeman, W. in Computational methods in Chemistry, (Edited by Bargan, J.), Plenum, New York, 1980.

- [23] Fredkin, D. R.; Komoronicki, A.; White, S. R.; Wilson, K. R. J. Chem. Phys., 1983, 78, 7077.
- [24] a) Pulay, P.; Fogarasi, G.; Boggs, J. E. J. Chem. Phys., 1981, 74, 3999. b) Sellers, H.; Pulay, P.; Boggs, J. E. J. Am. Chem. Soc., 1985, 107, 6487.
- [25] Hess, B. A., Jr.; Schaad, L. J.; Cársky, P.; Zahradník, R.; Chem. Rev., 1986, 86, 709.
- [26] Dulter, R.; Rauk, A.; Shaw, R. A. J. Phys. Chem., 1990, 94, 118.
- [27] Murphy, W. F.; Fernández-Sánchez. J. M.; Raghavachari, K. J. Phys. Chem., 1991, 95, 1124.
- [28] a) Bérces, A. R.; Szalay, P. G.; Magdó, I.; Fogarasi, G.; Pongor, G. J. Phys. Chem., 1993,
 97, 1356. b) Durig, J. R.; Wang, A. J. Mol. Struct., 1993, 294, 13.
- [29] Estirin, D. A.; Paglieri, L.; Corongiu, G. J. Phys. Chem, 1994, 98, 5653.
- [30] Rauhut, G.; Pulay, P. J. Phys. Chem., 1995, 99. 3093.
- [31] Momany, F. A.; McGuire, R. F.; Burgess, A. W.; Scheraga, H. A. J. Phys. Chem., 1975, 79, 2361.
- [32] Nemethy, G.; Pottle, M. S.; Scheraga, H. A. J. Phys. Chem., 1983, 87, 1883.
- [33] Sippl, M. J.; Nemethy, G.; Scheraga, H. A. J. Phys. Chem., 1984, 88, 6231.
- [34] a) Weiner, P.; Kollman, P. J. Comput. Chem., 1981, 2, 287. b) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem., 1986, 7, 230.
- [35] Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, C.; Profeta, S.; Weiner, P. J. Am. Chem. Soc., 1984, 106, 765.
- [36] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M. Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc., 1995, 117, 5179.

- [37] Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem., 1983, 4, 187.
- [38] Momany, F. A.; Klimkowsky, V. J.; Schäfer, L. J. Comput. Chem., 1990, 11, 654.
- [39] Allinger, N. L.; Burkert, U. Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington DC, 1982.
- [40] Allinger, N. L. J. Am. Chem. Soc., 1977, 99, 8127.
- [41] a) Allinger, N. L.; Yuh, Y. H.; Lii, H. J. J. Am. Chem. Soc., 1989, 111, 8551. b) Lii, H. J.; Allinger, N. J. J. Am. Chem. Soc., 1989, 111, 8566.
- [42] Lii, H. J.; Allinger, N. J. J. Comput. Chem., 1991, 12, 186.
- [43] Allinger, N. L. J. Am. Chem. Soc., 1992, 114, 1.
- [44] Hermans, J.; Berendsen, H. J. C.; van Günsteren, W. F.; Postma, J. P. M. *Biopolymers*, 1984, 33, 1513.
- [45] a) Jorgensen, W. L.; Swenson, C. J. J. Am. Chem. Soc., 1985, 107, 569. b) Jorgensen, W.
 L.; Swenson, C. J. J. Am. Chem. Soc., 1985, 107, 1489.
- [46] a) Hagler, A. T.; Lifson, S.; Huler, E. J. Am. Chem. Soc., 1974, 96, 5319. b) Lifson, S.;
 Hagler, A. T.; Dauber, P. J. J. Am. Chem. Soc., 1979, 101, 5111. c) Hagler, A. T.; Stern, P. S.; Sharon, R.; Becker, J. M.; Naider, F. J. Am. Chem. Soc., 1979, 101, 6842. d) Lifson, S.;
 Stern, P. S. J. Chem. Phys., 1982, 77, 4542.
- [47] Dauber-Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. *Proteins: Struct. Funct. Genetics*, 1988, 4, 31.
- [48] Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. J. Phys. Chem., 1990, 94, 8897.
- [49] Amodeo, P.; Barone, V. J. Am. Chem. Soc., 1992, 114, 9085.
- [50] Derreumaux, P.; Vergoten, G. J. Chem. Phys., 1995, 102, 8586.

- [51] a) Wilson, E. B.; Decius, J. C.; Cross, P, C. Molecular Vibrations, Mc Graw Hill, New York, 1955. b) Schachtschneider, J. H.; Synder, R. G. Spectrochim. Acta, 1963, 19, 117.
- [52] Pulay, P.; in *Modern Theoretical Chemistry*, Vol. 4, p.153, (Edited by Schaefer, H. F. III), Plenum, New York, 1977.
- [53] Flanigan, M. C.; Komornicki, A.; McIver, J. W.; in *Modern Theoretical Chemistry*, Vol. 8, p.1, (edited by Segal G. A.), Plenum, New York, 1977.
- [54] Pulay, P.; Meyer, W. Mol. Phys., 1974, 27, 473.
- [55] Bleicher, W.; Botschwina, P. Mol. Phys., 1975, 30, 1029.
- [56] Botschwina, P.; Meyer, W.; Semkow, A. M. Chem. Phys., 1976, 15, 25.
- [57] Fogarasi, G.; Pulay, P.; Molt, K.; Sawodny, W. Mol. Phys., 1977, 33, 1565.
- [58] Pouchan. C.; Liotard, D.; Dargelos, A.; Chaillet, M. J. Chim. Phys., 1976, 73, 1046.
- [59] Blom, C. E.; Altona, C. Mol. Phys., 1976, 31, 1377.
- [60] a) Fogarasi, G.; Pulay, P.; J. Mol. Struct., 1977, 39, 275. b) Török, F.; Hegedüs, A.; Kosa, K.; Pulay, P. J. Mol. Struct., 1976, 32, 93.
- [61] Hipps, K. W.; Poshusta, R. D. J. Phys. Chem., 1982, 86, 4112.
- [62] Ha, T.-K.; Meyer, R.; Günthard, Hs. H. Chem. Phys. Lett., 1978, 59, 17.
- [63] Nobes, R. H.; Radom, L. Org. Mass Spectrom., 1982, 17, 340.
- [64] Durig, J. R.; Wang, A. Y.; Little, J. S.; Brletic, P. A. J. Chem. Phys., 1990, 93, 905.
- [65] a) Goddard, W. A. III.; Wendel, J. A. J. Chem. Phys., 1992, 97, 5048. b) Dasgupta, S.; Goddard, W. A. III. J. Chem. phys., 1989, 90, 7207.
- [66] Sathyanarayana, D. N.; Vijay, A. J. Mol. Struct., 1994, 328, 269.
- [67] Yu, G.; Freedman, T. B.; Nafie, L. A.; Deng, Z.; Polavarapu, P. L. J. Phys. Chem., 1995, 99, 835.

Chapter 2

Methodology

The literature on ab initio calculations and normal coordinate analysis is vast and extensive. Hence this chapter does not purport to be a review of these methods. A flavour of the various theories and nuances underlying these methods are however presented in this chapter. Detailed description of these methods is given in references [1-19].

2.1 Ab Initio Methods

The Hamiltonian of a molecule consisting of N electrons and M nuclei in atomic units is -

$$\hat{H} = -\sum_{\alpha=1}^{M} \frac{1}{2m_{\alpha}} \nabla \alpha^2 - \sum_{i=1}^{N} \frac{1}{2} \nabla i^2 - \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{r_{i\alpha}} + \sum_{\beta>\alpha} \sum_{\alpha} \frac{Z_{\alpha} Z_{\beta}}{r_{\alpha\beta}} + \sum_{j>i} \sum_{i} \frac{1}{r_{ij}}$$
(2.1)

where m_{α} is the ratio of the mass of nucleus α to the mass of an electron, Z_{α} is the atomic number of nucleus α , $r_{i\alpha}$ is the distance between electron i and nucleus α , r_{ij} is the distance between electron i and electron j and $r_{\alpha\beta}$ is the distance between the nucleus α and nucleus β respectively.

Within Born-Oppenheimer (B.O) approximation [20] one can consider that electrons in a molecule to be moving in the field of fixed nuclei and hence the kinetic energy of the nuclei can be neglected and the nuclear-nuclear repulsion can be considered to be a constant. Hence the Schrödinger equation for the electronic motion is -

$$\hat{H}_{el}\psi_{el} = E_{el}\psi_{el} \tag{2.2}$$

where,

$$\hat{H}_{el} = -\sum_{i=1}^{N} \frac{1}{2} \nabla i^2 - \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{r_{i\alpha}} + \sum_{j>i} \sum_{i} \frac{1}{r_{ij}}$$
(2.3)

The solution to Schrödinger equation involving the electronic Hamiltonian, is the electronic wave function,

$$\psi_{el} = \psi_{el}(r_i; r_\alpha) \tag{2.4}$$

which describes the motion of the electrons and explicitly depends on the electronic coordinates but depends parametrically on the nuclear coordinates, as does the electronic energy,

$$E_{el} = E_{el}(r_{\alpha}) \tag{2.5}$$

Thus the electronic energy including nuclear-nuclear repulsion for a fixed nuclei system must be

$$U = E_{el} + \sum_{\beta > 0} \sum_{\alpha} \frac{Z_{\alpha} Z_{\beta}}{r_{\alpha\beta}}$$
 (2.6)

The vibration, rotation or translation of a molecule needs the solution to a nuclear Schrödinger equation

$$\hat{H}_{nuc}\phi_{nuc} = E_{tot}\phi_{nuc} \tag{2.7}$$

where E_{tot} is the total energy. The nuclear Hamiltonian for the motion of the nuclei in the average field of the electrons can be written as

$$\hat{H}_{nucl} = -\sum_{\alpha=1}^{M} \frac{1}{2m_{\alpha}} \nabla \alpha^2 + U(r_{\alpha})$$
 (2.8)

Thus the total electronic energy including nuclear-nuclear repulsion constitutes a potential energy surface for the nuclear motion obtained by solving the electronic problem.

2.1.1 Hartree Fock Theory

The electronic problem is solved by considering a single Slater determinant as the ground state antisymmetric wave function in terms of molecular orbital Ψ_i ,

$$\Psi_i = \sum_{\mu=1}^{N} C_{\mu_i} \Phi_{\mu} \tag{2.9}$$

where each molecular orbital is approximated as linear combination of finite set of basis functions and $C_{\mu i}$ are the molecular orbital expansion coefficients.

The coefficients C_{μ_i} are chosen in such a way that the calculated total energy is minimum. This leads to the well known Roothan equations [21,22];

$$\sum_{\nu=1}^{N} (F_{\mu\nu} - \epsilon_i S_{\mu\nu}) C_{\nu i} = 0, \qquad \mu = 1, 2, \dots, \gamma; \qquad i = 1, 2, \dots, \gamma$$
 (2.10)

where N is the total number of basis functions, ϵ_i is the orbital energy of the i^{th} molecular orbital Ψ_i , $S_{\mu\nu} = \langle \Phi_\mu \mid \Phi_\nu \rangle$ are the overlap integrals and $F_{\mu\nu}$ are the elements of the Fock matrix given by

$$F_{\mu\nu} = H_{\mu\nu}^{core} + \sum_{\lambda=1}^{N} \sum_{\sigma=1}^{N} P_{\lambda\sigma} \left[(\mu\nu \mid \lambda\sigma) - \frac{1}{2} (\mu\lambda \mid \nu\sigma) \right]$$
 (2.11)

where

$$H_{\mu\nu}^{core} = \left\langle \Phi_{\mu} \mid -\frac{1}{2} \nabla^2 - \sum_{\alpha} V_{\alpha} \mid \Phi_{\nu} \right\rangle$$

is the one electron integral and

$$P_{\lambda\sigma} = 2\sum_{i=1}^{OCC} C_{\lambda i}^* C_{\sigma i}$$
 (2.12)

is the density matrix. The summation in equation (2.12) is over the occupied molecular orbitals only. Here $P_{\lambda\sigma}$ represents the total electron population existing in the overlap region of the basis functions Φ_{μ} and Φ_{ν} . The factor 2 indicates that two electrons occupy each molecular orbital and the asterisk denotes complex conjugation. The electronic energy E_{el} can be expressed as

$$E_{el} = \frac{1}{2} \sum_{\mu=1}^{N} \sum_{\nu=1}^{N} P_{\mu\nu} (F_{\mu\nu} + H_{\mu\nu}^{core})$$
 (2.13)

The Roothan-Hall equation 2.10 is nonlinear, since the Fock matrix $F_{\mu\nu}$ itself depends on the molecular orbital coefficients, $C_{\mu i}$, through the density matrix expression 2.12. Solution of it necessarily involves an iterative procedure. Since the resulting molecular orbitals are derived from their own effective potential, the technique is frequently called Self Consistent Field (SCF) theory. SCF calculations are known to give a good account of

the energy hypersurface only in the region close to the equilibrium molecular geometry. At larger deviations from the minima, the SCF potential curve starts to depart considerably from the "experimental" curve because of the neglect of electron correlation.

2.1.2 Electron Correlation

The inability of the Hartree Fock (HF) procedure to adequately account for the correlation of electron motion can be corrected by using more elaborate models comprising a multi-determinant wave function. Two techniques are widely used to incorporate the effect of electron correlation, one the configuration interaction [23] and the other the Moller Plesset perturbation theory [24]. The first method is variational but not size consistent but the second is size consistent but not variational. Variational implies that the calculated electronic energy should correspond to an upper bound to the energy that would result from the exact solution of the Schrödinger equation. Size consistency means that the method must give additive results when applied to an assembly of isolated molecules.

Thus the non-relativistic exact energy would be

$$E_{(exact)} = E_{(HF)} + E_{(correlation)}$$
 (2.14)

Configuration Interaction (CI)

CI methods begin by noting that the exact wave function Ψ cannot be expressed as a single determinant, as HF theory assumes. CI proceeds by constructing other determinants by replacing one or more occupied orbitals within the HF determinant with virtual orbitals. A detailed account of CI and its applications are given in reference [25]. The size consistency of these methods can also be improved by coupled cluster methods [25]. Full CI is the most complete non-relativistic treatment of the molecular system possible, within the limitations imposed by the chosen basis set, though generally not computationally feasible. The rapid advancement of computer technology made it possible to consider yet upto one billion determinants full CI energy calculation of Be₂ molecule so far [26].

Moller-Plesset Perturbation Theory (MP)

Since we have only employed the second order MP theory in our calculations, we briefly discuss the features of the second order Moller Plesset (MP2) calculations [27].

Perturbation theory is based upon dividing the Ḥamiltonian into two parts

$$H = H_0 + \lambda V \tag{2.15}$$

such that H_0 is soluble exactly. λV is a perturbation applied to H_0 , a correction which is assumed to be small in comparison to it. The assumption that V is a small perturbation to H_0 suggests that the perturbed wave function and the energy can be expressed in a power series in terms of λ according to the Rayleigh-Schrödinger perturbation theory [27].

In the MP theory H_0 is defined as the sum of the one electron Fock operators.

$$H_0 = \sum_i F^i \tag{2.16}$$

The HF determinant and all other substituted determinants are eigenfunctions of H_0 and we get

$$H_0\Psi_s = E_s\Psi_s \tag{2.17}$$

where Ψ_s are the unperturbed functions representing all possible Slater determinants formed from n different spin orbitals.

When $\Psi^{(0)}$ denotes the ground state, its energy is simply the sum of the orbital energies

$$E^{(0)} = \left\langle \Psi^{(0)} \mid \sum_{i} F^{i} \mid \Psi^{(0)} \right\rangle = \sum_{i} \epsilon_{i}$$
 (2.18)

The first order correction to the energy is given by

$$E^{(1)} = \left\langle \Psi^{(0)} \mid V \mid \Psi^{(0)} \right\rangle \tag{2.19}$$

Adding $E^{(0)}$ and $E^{(1)}$ yields the HF energy (since H_0+V is the full HF Hamiltonian).

$$E^{(0)} + E^{(1)} = \langle \Psi^{(0)} \mid (H_0 + V) \mid \Psi^{(0)} \rangle = E^{(HF)}$$
(2.20)

Thus the first order term does not incorporate any correction to the HF approximation.

The second order correction to the energy is given by

$$E^{(2)} = \left\langle \Psi^{(0)} \mid V \mid \Psi^{(1)} \right\rangle \tag{2.21}$$

where $\Psi^{(1)}$ is a linear combination of substituted determinantal wave functions

$$\Psi^{(1)} = \sum_{s} a_s \Psi_s \tag{2.22}$$

Perturbation theory gives the following expression for $\Psi^{(1)}$

$$\Psi^{(1)} = \sum_{s} \left[\frac{\left\langle \Psi_{s} \mid V \mid \Psi^{(0)} \right\rangle}{E^{(0)} - E_{s}} \right] \Psi_{t}$$
 (2.23)

The second order energy correction can be written as [27]

$$E^{(2)} = -\sum_{s} \frac{\left| \left\langle \Psi^{(0)} \mid V \mid \Psi_{s} \right\rangle \right|^{2}}{E_{s} - E^{(0)}}$$
 (2.24)

Thus, the value $E^{(2)}$, the first correction to the HF energy, will always be negative. The numerator will be nonzero only for double substitutions. Single substitutions are known to make this expression zero by Brillouin's theorem.

2.1.3 Basis Sets

Basis sets play an important role in the evaluation of the energies. A limiting HF treatment would involve an infinite number of basis functions. This is clearly impractical since the computational expense of HF molecular orbital calculation is formally proportional to the fourth power of the total number of basis functions. Therefore the ultimate choice of basis set size depends on a compromise between accuracy and cost. For computational utilities it is desirable to use gaussian basis functions g(r),[28] where r is the position vector (x,y,z). Excellent reviews exist on basis sets [19,29-32] and their limitations. Methods to construct new basis sets are described in reference [19]. We discuss here briefly the salient features of different basis sets.

Minimal Basis Set

The STO-3G minimal basis set was developed by Pople and co workers for first row elements [33]. It was later extended to the second row [34], third row [35] and fourth row [36] elements. It has also been applied to first and second row transition metals [37]. It is characterized by its small size and effectiveness in predicting geometries [38]. The remarkable agreement of the STO-3G geometries to the experimental geometries is due to the large basis set superposition error which helps cancel other defects to produce

reasonable bond parameters. It can be expressed as

$$\Phi_{nl}(\zeta = 1, r) = \sum_{k=1}^{3} d_{nl,k} \ g_l(\alpha_n, k, r)$$
 (2.25)

where the subscripts n and l define the specific principal and angular quantum numbers, $g_l s$ are the normalized gaussian functions, $\alpha_n s$ are the gaussian exponents and $d_{nl,k} s$ are the linear expansion coefficients. The values of α are determined by minimizing the error in the fit of the gaussian expansion to the exact Slater orbitals. The STO-3G basis description of conjugated systems and polar molecules is far from satisfactory. This is due to the fact that all the elements of a single row of the periodic table have the same description.

Split Valence Basis Set

A basis set formed by doubling or tripling all functions of the minimal representation is usually termed a double-zeta or triple-zeta basis set. An even simpler extension of the minimal basis set is to double or triple only the number of basis functions representing the valence region and is known as split valence basis set. These split valence basis sets are a compromise between the speed obtained using a minimal basis and the accuracy of the larger ones. The 4-21G [38] basis is extremely suitable for geometry optimizations utilizing the analytic gradients. A reduced version of the 4-21G basis set, the 3-21G basis set [39,40] is also used in routine calculations. The characteristics of both the basis sets are similar. The 4-31G and 6-31G bases are generated by increasing the number of primitives devoted to the core and first valence electron functions. The 4-31G [41] and 6-31G [42] bases improve upon 3-21G energetics at the expense of increased computer time.

Polarization Basis Set

Polarization functions are needed for the description of the highly polar molecules and of systems incorporating small strained rings. These systems require that some allowance be made for the possibility of non-uniform displacement of charges away from the atomic centers. Adding all the five components of a cartesian d function to the first row elements of 6-31G basis set gives the 6-31G* basis set. Further addition of p functions to the hydrogen atoms results in the 6-31G** basis set. These basis sets are first proposed by Hariharan and Pople [43] for the first row elements and later extended to the second

row elements [44]. A larger polarization basis set, 6-311G** has been formulated for the first row elements [45]. It comprises an inner core of six s type gaussians and an outer (valence) region, which has been split into three parts, represented by three, one and one primitives, respectively. This basis set is supplemented by a single set of five /six d-type gaussian functions for first row atoms and a single set of uncontracted p-type gaussians for hydrogen.

Diffused Basis Set

This set of functions are needed for species with significant electron density far removed from the nuclear center. Such species involve anions for which the extra electron is only weakly bound and hence is needed to include in the basis representation one or more sets of highly diffuse functions [46]. The 3-21+G and 6-31+G* basis sets for the first row elements and 3-21+G, 3-21+G* and 6-31+G* basis sets for second row elements [47] are constructed from the underlying 3-21G, 3-21G* and 6-31G* representations by the addition of a single set of diffuse gaussian s and p-type functions. The higher 6-31+G* and 6-31+G* basis sets include an extra diffuse function to the hydrogen of the corresponding 6-31+G* and 6-31+G* basis sets.

2.1.4 Reaction Field Model of Solvation

In the vibrational analysis of amino acid zwitterions the Onsager reaction field model is used in this thesis. A brief outline of this method is presented here.

Onsager Reaction Field Model

In this model [48] the solute is placed in a cavity (usually spherical) immersed in a continuum medium with a dielectric constant ϵ [49]. A dipole in the molecule will induce a dipole in the medium and the electric field applied to the solute by the solvent (reaction) dipole will in turn interact with the molecular dipole leading to a net stabilization. In the MO theory, the electrostatic solvent effect may be taken as an additional term H_1 in the Hamiltonian of the isolated molecule H_0 giving,

$$H_{rf} = H_0 + H_1 (2.26)$$

The perturbation term (H_1) describes the coupling between the molecular dipole operator $(\hat{\mu})$ and the reaction field, \vec{R}

$$H_1 = -\hat{\mu}\vec{R} \tag{2.27}$$

The reaction (electric) field, \vec{R} , is proportional to the molecular dipole moment, $\vec{\mu}$

$$\vec{R} = q\vec{\mu} \tag{2.28}$$

The proportionality constant g, which gives the strength of the reaction field depends on the dielectric constant of the medium ϵ [50], and on the radius of the spherical cavity a_0 . The value of g is given by the equation

$$g = \frac{2(\epsilon - 1)}{(2\epsilon - 1)a_0^3} \tag{2.29}$$

For the case of a self-consistent field wave function the effects of the reaction field can be incorporated as an additional term in the Fock matrix as

$$F_{\lambda\sigma} = F_{\lambda\sigma}^{\ 0} - g\vec{\mu} \langle \phi_{\lambda} \mid \hat{\mu} \mid \phi_{\sigma} \rangle \tag{2.30}$$

where ϕ_{λ} and ϕ_{σ} are basis functions. When the solvent polarization is included, the energy of the system is given by

$$E = \langle \Psi \mid H_0 \mid \Psi \rangle - \frac{1}{2} \vec{\mu} \vec{R}$$
 (2.31)

where Ψ is the full wave function of the molecule.

2.1.5 Force Constants

The evaluation of force fields is one of the foci of this thesis. The starting point of all force field evaluations is the harmonic approximation.

Harmonic Approximation

Within the harmonic approximation, the nuclear potential $V(R_1...R_M)$ is expressed as the quadratic terms in a power series expansion of the total energy $E(R_1...R_M)$ about the equilibrium position,

$$E = E(X_1^o, \dots X_{3M}^o) + \sum_{i=1}^{3M} \frac{\partial E}{\partial X_i} \mid_o \Delta X_i + \frac{1}{2} \sum_{j=1}^{3M} \frac{\partial^2 E}{\partial X_i \partial X_j} \mid_o \Delta X_i \Delta X_j + \dots$$
 (2.32)

where $X_1, X_2, ... X_{3M}$ are the cartesian coordinates of the M nuclei. The first term in the R. H. S of equation (2.32) is constant for all E_{nucl} and hence can be ignored. Since E is a minimum at the equilibrium geometry

$$\frac{\partial E}{\partial X_i} \mid_{o} = 0 \tag{2.33}$$

Hence the second term in equation (2.32) vanishes. If all terms of order higher than two are neglected, the potential is a quadratic function of the nuclear displacements ΔX_i

$$E(X_1...X_{3M}) \equiv \frac{1}{2} \sum_{i=1}^{3M} F_{ij} \Delta X_i \Delta X_j$$
 (2.34)

where the force constants F_{ij} are given by

$$F_{ij} = \frac{\partial^2 E}{\partial X_i \partial X_j} \mid_{o}$$
 (2.35)

Equation (2.34) represents the harmonic approximation. For small displacements about the equilibrium position, equation (2.34) is valid, but it is not accurate for large distortions.

A transformation to mass weighted cartesian coordinates $\rho_i = (m_i)^{\frac{1}{2}} \Delta X_i$ followed by rotation of the coordinates to coincide with the principal axes of the quadratic form in equation (2.34) gives an expression for V containing only squared terms.

$$V = \frac{1}{2} \sum_{i=1}^{3M} \lambda_i Q_i^2 \tag{2.36}$$

where Q_i are coordinates relative to the principal axes and hence called "normal coordinates". As a result of these transformations equation (2.34) which depends on 3M variables separates into 3M equations, each depending upon a single Q_i . Further each of these is a harmonic oscillator equation with eigen value λ_i .

For non linear molecules six of the λ_i s corresponding to three translational and three rotational motions of the entire molecule are zero. These six λ_i s can be removed by working in a coordinate system having the origin at the center of mass and rotating with the molecule. The remaining 3M-6 degrees of freedom are usually specified by internal coordinates such as bond lengths, bond angles and dihedral angles. As a result, fewer force constants need to be evaluated and those that are evaluated have physical interpretation.

Though the harmonic approximation is good enough for most vibrational calculations, recent studies indicate that the inclusion of anharmonicity leads to a better agreement with the experimental frequencies. But these are limited to small molecules [51] and extension of the anharmonic treatment to a relatively large system of chemists' interest is yet in its infancy.

Anharmonicity

Most of the vibrational calculations to date have used the harmonic approximation of equation (2.34) but with the progress in ab initio calculations, cubic and quartic force constants can now be evaluated. These are the third and fourth order terms dropped from equation (2.34). The inclusion of them in equation (2.34) allows the possibility of including anharmonicity in ab initio treatments. Perturbation theory yields the following formula for anharmonicity [17].

$$\chi_{rr} = \frac{1}{16} \Phi_{rrrr} - \frac{1}{16} \sum_{s} \Phi_{rrs}^{2} \frac{[8\omega_{r}^{2} - 3\omega_{s}^{2}]}{\omega_{s}(4\omega_{r}^{2} - \omega_{s}^{2})}$$
(2.37)

Equation (2.37) contains the quadratic, diagonal quartic and semi diagonal cubic force constants. The ω_k are the harmonic frequencies. The evaluation of the quartic force constant Φ_{rrrr} is given in reference [52]. A detailed treatment of anharmonicity and its inclusion in force field calculations is given in references [53-55].

2.2 Transformation of Force Constants

The quantum mechanically calculated ab initio force constants are generally derived with respect to the cartesian coordinates. Transformation of these cartesian force constants to internal coordinates helps to interpret the results within the GF matrix formalism of the vibrational problem by Wilson [11].

In cartesian coordinates the diagonal force constants are not necessarily dominant and the useful concept of partitioning the potential into dominant diagonal versus less important coupling terms is lost. The force constants in internal coordinates are physically meaningful and are easy to compare and transfer between structurally related molecules.

The basic types of internal coordinates bond stretching, valence angle bending, out of plane bending and torsions proposed by Wilson, Decius and Cross [11] are generally accepted, although there are variations in handling of redundancy and symmetry. A set of non-redundant internal coordinates were recommended by Pulay et al. as an alternative [18]. These coordinates are local, i.e., use of local coordinates which extend over a few neighbouring atoms only, based on local symmetry. These non-redundant local coordinate facilitate the transfer of force constants from one molecule to the other.

The main bottleneck in the conversion of the cartesian force constants to internal force constants is that the force field matrix in cartesian coordinates spans a 3N dimensional space, N being the number of atoms, while the number of non-redundant internal coordinates is only 3N-6 (or 3N-5 for linear molecules). The transformation from cartesian to internal coordinates can be described as follows [56]. The potential energy surface of a given state can be described both in cartesian coordinates and in internal coordinates as

$$E(x) = E_o(x) + g.x + 0.5.x^{\dagger}.H.x \cdots$$
 (2.38)

$$E(q) = E_o(q) + f \cdot q + 0.5 \cdot q^{\dagger} \cdot F \cdot q \cdots$$
 (2.39)

where q is the internal coordinate vector, x is the cartesian vector, g and f are the gradients, H and F are the second derivative matrices in the two frameworks. Wilson's B matrix transforms cartesian into internal coordinates, as q=Bx [11] and from 2.38 and 2.39 we get

$$F = B^{-1\dagger}.H.B^{-1} \tag{2.40}$$

Since B is a rectangular matrix, to invert it, it is necessary to use the notion of a generalized inverse matrix.

$$B^{-1\dagger} = (BB^{\dagger})^{-1}.B \tag{2.41}$$

However BB^{\dagger} could be singular so that the conversion is always not possible. The symmetric G is non-singular [57] and can be inverted. If A is the inverse of B and M is the atomic mass diagonal matrix of order 3Nx3N then we have

$$AB = E$$

$$ABM^{-1}B^{\dagger} = EM^{-1}B^{\dagger}$$

$$AG = M^{-1}B^{\dagger}$$
$$A = M^{-1}B^{\dagger}G^{-1}$$

as given in [58]. Translating to local symmetry,

$$A_{loc}B_{loc} = E$$
 where $B_{loc} = U_{loc}B$

Postmultiplying $M^{-1}B^{\dagger}_{loc}$ on both sides we have

$$A_{loc}B_{loc}M^{-1}B_{loc}^{\dagger} = M^{-1}B_{loc}^{\dagger}$$
$$A_{loc}G_{loc} = M^{-1}B_{loc}^{\dagger}$$
$$A_{loc} = M^{-1}B_{loc}^{\dagger}G_{loc}^{-1}$$

From equation 2.40,

$$F_{loc} = A_{loc}^{\dagger} F_{cart} A_{loc}$$

Here A_{loc} , G_{loc} , F_{loc} are the local symmetric A, G and F matrices respectively. U_{loc} is the transformation matrix which contains the description of the local symmetry coordinates in terms of internal coordinates.

The local symmetric force constants could be transformed to the symmetric force constants easily using

$$F_{sym} = U_{ortho} F_{loc} U_{ortho}^{\dagger} \tag{2.42}$$

where U_{ortho} is the orthogonal transformation matrix.

2.3 Computational Details

All ab initio calculations were done using Gaussian 90-94 [59] and GAMESS [60] suit of programs installed on Convex-C220, HP-9000/735 and Dec-Alpha computer systems. The normal coordinate analyses were done based on the modified version of the programs of Schachtschneider [61]. The conversion of cartesian force constants to local symmetric force constants were done using a modified version of the program VECEIG kindly provided by Dr. Amarendra Vijay and Professor D. N. Satyanarayana.

Bibliography

- [1] Richards, N. G.; Cooper, D. L. Ab Initio Molecular Orbital Calculations for Chemists, second edn., Clarendon Press, Oxford, 1983.
- [2] Wilson, S. Electron Correlation in Molecules, Clarendon Press, Oxford, 1984.
- [3] Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
- [4] Advances in Chemical Physics, *Ab Initio Methods in Quantum Chemistry*, Vols. 67 and 69, Wiley, New York, 1987.
- [5] Naray-Szabo, G.; Surjan, P.; Angyan, J. A. Applied Quantum Chemistry, Akademiai Kiado, Budapest, 1987.
- [6] Hirst, D. M. A Computational approach to Chemistry, Blackwell Scientific, London, 1990.
- [7] Szabo, A.; Ostlund, N. S.; Modern Quantum Chemistry, Mc Graw Hill, New York, 1989.
- [8] Dykstra, C. E. Quantum Chemistry and Molecular Spectroscopy, Prentice Hall, Englewood Cliffs., N. J., 1992.
- [9] Schatz, G. C.; Ratner, M. A. Quantum Mechanics in Chemistry, Prentice Hall, Englewood Cliffs., N. J., 1993.
- [10] Pople, J. A. in *Modern Theoretical Chemistry*, Ed. Schaefer III, H. F., Vol. 4, Plenum, New York, 1977.
- [11] Wilson, E. B.; Decius, J. C.; Cross, P, C. Molecular Vibrations, Mc Graw Hill, New York, 1955.

- [12] Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules, D. van Nostrand, New York, 1945.
- [13] Shimanouchi, T. in *Physical Chemistry an Advanced Treatise*, Vol. IV, Molecular Properties, Ed. Henderson, D., Ch. 6, Academic Press, New York, 1970
- [14] Sverdlov, L. M.; Kovner, M. A.; Krainiv, E. P. Vibrational Spectra of Polyatomic Molecules, Halsted Press, Wiley, New York, 1974.
- [15] Bauschewitz, P. Spectroscopic Infrarouge, Vols. 1 and 2, Gauthier Villars, Paris, 1961, 1967.
- [16] Cyvin, S. J. Molecular Vibrations and Mean Square Amplitudes, Elsevier, Amsterdam, 1968.
 - [17] Mills, I. M.; in *Molecular Spectroscopy*, Eds. Rao, K. N. and Mathews, C. W., Academic Press, New York, 1972.
- Durig, J. R. Vol. 14, Elsevier, Amsterdam, 1985.
 - [19] Poirier, R.; Kari, R.; Csizamadia, I. G. Handbook of Gaussian Basis sets, Elsevier Science, New York, 1985.
 - [20] Born, M.; Oppenheimer, R. Ann. Phys. (Leipzig), 1927, 84, 457.
 - [21] Roothan, C. C. J. Rev. Mod. Phys., 1951, 23, 69.
- [22] Hall, G. Proc. Roy. Soc. (London), 1951, A205, 541.
 - [23] a) Salem. L.; Rowland, C. Angew. Chem. Int. Edn. Engl., 1972, 11, 92. b) Hehre, W. J.; Salem, L.; Wilcott, M. R. J. Am. Chem. Soc., 1974, 96, 4328. c) Townshend, R. E.; Ramuni, G.; Segal, G.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc., 1976, 98, 2190. d) Langhoff, S. R.; Davidson, E. R. Int. J. Quant. Chem., 1974, 8, 61. e) Pople, J. A.; Seeger, R.; Krishnan, R. Int. J. Quant. Chem. Symp., 1977, 11, 149.

- [24] a) Moller, C.; Plesset, M. S. Phys. Rev., 1934, 46, 618. b) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quant. Chem. Symp., 1976, 10, 1.
- [25] Bauschlicher, C. W.; Lanhoff, S. R.; Taylor, P. R. Adv. Chem. Phys., 1990, 77, 103.
- [26] Evangelisti. S.; Bendazzoli, G. L.; Ansaloni, R.; Duri, F.; Rossi, E. Chem. Phys. Lett., 1996, 252, 437.
- [27] a) Levine, I. N. Quantum Chemistry, p.222, Fourth edn., Prentice Hall, Englewood Cliffs., N. J., 1991. b) Foresman, J. B.; Frisch, A. in Exploring Chemistry with Electronic Structure Methods, Second Edition, Gaussian, Inc., Pittsburgh, PA.
- [28] Boys, S. F. Proc. Roy. Soc. (London), 1950, A200, 542.
- [29] Davidson, E. R.; Feller, D. Chem. Rev., 1986, 86, 681.
- [30] Setters, H.; Almlöf, J. J. Phys. Chem., 1989, 93, 5136.
- [31] Dunning, T. H.; Hay, P. J. in *Modern Theoretical Chemistry*, Ed. Schaefer III, H. F., Vol. 3, p.1; Plenum Press, New York, 1977.
- [32] Gaussian Basis Sets for Molecular Calculations, Ed. Huzinaga, S., Elsevier, Amsterdam, 1984.
- [33] Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys., 1969, 51, 2657.
- [34] Hehre, W. J.; Ditchfield, R.; Stewart, R. F.; Pople, J. A. J. Chem. Phys., 1970, 52, 2769.
- [35] Pietro, W. J.; Levi, B. A.; Hehre, W. J.; Stewart, R. F. Inorg. Chem., 1980, 19, 2225.
- [36] Pietro, W. J.; Blurock, F. S.; Hout, R. S.; Hehre, W. J.; Defrees, D. J.; Stewart, R. F. Inorg. Chem., 1981, 20, 3650.
- [37] Pietro, W. J.; Hehre, W. J. J. Comput. Chem., 1983, 4, 241.
- [38] Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc., 1979, 101, 2550.
- [39] Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem: Soc., 1980, 102, 939.

- [40] Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc., 1982, 104, 2797.
- [41] a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys., 1971, 54, 724. b) Hehre, W. J.; Pople, J. A. ibid, 1972, 56, 4233. c) Dill, J. D.; Pople, J. A. ibid, 1975, 62, 2921. d) Hehre, W. J.; Lathan, W. A. ibid, 1972, 56, 5255.
- [42] a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys., 1972, 56, 2257. b) Binkley, J. S.; Pople, J. A. ibid, 1977, 66, 879
- [43] Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett., 1972, 66, 217.
- [44] Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys., 1982, 77, 3654.
- [45] Krishnan, R.; Frisch, M. J.; Pople, J. A. J. Chem. Phys., 1980, 72, 4244.
- [46] a) Dykstra, C. E.; Hereld, M.; Lucchese, R. R.; Scaefer, H. F. III; Meyer, W. J. Chem. Phys., 1977, 67, 4071. b) Dykstra, C. E.; Arduengo, A. J.; Fukunga, T. J. Am. Chem. Soc., 1978, 100, 6007. c) Jordon, K. D. Acc. Chem. Res., 1979, 12, 36. d) Carsky, P.; Urban, M. Lectures Note in Chemistry, 16, Ab Initio Calculations. Methods and Applications in Chemistry, Springer-Verlag, Berlin 1980 and references cited there in.
- [47] Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem., 1983, 4, 294. b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys., 1984, 80, 3265.
- [48] Wong, M. W.; Frisch, M. J.; Wiberg, K. B. J. Am. Chem. Soc., 1991, 113, 4776.
- [49] Onsager, L. J. Am. Chem. Soc., 1936, 58, 1486.
- [50] a) A Handbook of Chemistry and Physics, 70th. ed., Weast, R. C. Ed.; CRC Press, Boca Raton, Fl, 1989. b) Lange's Handbook of Chemistry, Dean, J. A. Ed., McGraw-Hill, New York, 1985.
- [51] East, A. L. L.; Allen, W. D.; Klippenstein, S. J.; J. Chem. Phys., 1995, 102, 8506.
- [52] Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc., 1979, 101, 256.

- [53] a) Botschwina, P. Chem. Phys. Lett., 1974, 29, 98. b) Botschwina, P. Chem. Phys., 1979, 40, 33. c) Botschwina, P.; Härtner, H.; Sawodny, W. Chem. Phys. Lett., 1980, 74, 156. d)
 Botschwina, P.; Chem. Phys., 1982, 68, 41. (e) Botschwina, P. Mol. Phys., 1982, 47, 241.
- [54] a) Pulay, P.; Ruoff, A.; Sawodny, W. Mol. Phys., 1975, 30, 1123. b) Pulay, P.; Meyer, W.; Boggs, J. E.; J. Chem. Phys., 1978, 68, 5077. c) Pulay, P.; Lee, J. G.; Boggs, J. E. J. Chem. Phys., 1983, 79, 3382. (d) see reference 17, p.198.
- [55] a) Schlegel, H. B.; Wolfe, S.; Bernardi, F. J. Chem. Phys., 1977, 67, 4181, 4194, 1975,
 63, 3632. b) Bock, C. W.; Trachtman, M.; George, P. J. Mol. Spectrosc., 1980, S4, 256. c)
 Bock, C. W.; Trachtman, M.; George, P. J. Mol. Str., 1981, 89, 76. d) Steel, D.; Person,
 W. B.; Brown, K. G. J. Phys. Chem., 1981, 85, 2007.
- [56] Pulay, P. Mol. Phys., 1969, 17, 197.
 - [57] Papoušek, D.; Plíva, J. Czech. Chem. Commun., 1963, 28, 755.
- [58] Crawford, B. L.; Fletcher, W. H. J. Chem. Phys., 1951, 19, 141.
 - [59] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision C.2, Gaussian Inc., Pittsburgh, PA, 1995.
 - [60] Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J.comput.Chem., 1993, 14, 1347.
 - [61] Schachtschneider, J. H. Vibrational Analysis of Polyatomic Molecules, Part-V, Technical Report No. 23164, Shell Development Company, Emeryville CA, 1964.

Chapter 3

Interpretation and Accurate Prediction of Vibrational Spectra - A Modification to Scaled Quantum Mechanical Approach

An accurate knowledge of molecular force fields is essential in the prediction and interpretation of vibrational spectra and also in molecular mechanics and dynamics calculations [1-4]. Attempts to deduce molecular force fields from spectral data alone have not been successful so far for molecules containing more than a few atoms [1,2]. As the number of atoms increases, the number of force constants to be determined becomes more than the experimentally available frequencies and multiple solutions become a problem. Ab initio molecular orbital methods offer an attractive alternative to resolve these problems. However, finite basis set and neglect of electron correlation in the HF procedure overestimates most of the harmonic force constants by 10-30% [1]. Although recent methods like CCSD(T) and CASS are capable of yielding more accurate harmonic force constants compared to Hartree-Fock theory, still produce errors compared to the experimental values [5]. These methods can not be applied on a routine basis to medium sized molecules of 5-30 atoms which are of chemists' interest. Even when accurate harmonic force constants become available, for prediction of experimental frequencies we need anharmonic force constants which involve the evaluation of cubic and quartic force constants. So it appears that, as pointed out by Pulay, the realistic solution is to stay at the Hartree Fock level of theory and make a correction for the systematic errors by means of some scaling procedure [6]. Of the different scaling procedures, the scaled quantum mechanical(SQM)

approach of Pulay appears to be the most successful one [1]. However, SQM approach uses least squares procedure to optimize a small number of scale factors as a measure of the systematic errors in the ab initio calculation. Since each force constant is physically distinct, it is more realistic to think that each force constant is associated with its own scale factor. Besides, the least-squares method need not converge all the time, specially when the parameters are many and do not lead to a unique assignment [7]. In this chapter we give a novel numerical procedure which overcomes these difficulties.

In the first part of the chapter a detailed description of the methodology and its theoretical justification is presented. The advantages of the present methodology over the existing ones are listed. In the second part the performance of the method is demonstrated by using acrolein, benzene, pyridine and benzaldehyde as examples.

3.1 Methodology

Evaluation of force constants of a molecule involves the solution of the inverse eigenvalue equation GFL=L Λ where F is the force constant matrix, Λ the frequency matrix(λ_i =4 $\pi^2\nu_i^2$), G the Wilson's G matrix and L the eigenvector matrix describing the normal modes [8]. Usually F is varied and Λ is calculated until Λ matches with the experimental frequencies. As long as we are modifying the force constants to obtain the frequencies of the molecule, the method would involve intuition and an element of arbitrariness depending on how we modify the F matrix elements. To get around this difficulty we modify the frequencies in the proposed method, so that the force constants automatically get refined in the right direction to reproduce the experimental frequencies.

The method involves the following steps:

- (1) Diagonalize G matrix: $G=D\Gamma D^t$
- (2) Form $W_1 = D\Gamma^{1/2}$ and $W_2 = D\Gamma^{-1/2}$

iter=0

(3) Start F_1 ; iter=iter+1

- (4) Form $W_1^t F_1 W_1 = H_1$
- (5) Diagonalize H_1 matrix: $H_1 = C\Lambda_1 C^t$
- (6) Form $L=W_1C$ and normalize C such that LL'=G
- (7) Modify Λ_1 with a small correction $\Delta\Lambda$ given by $\Delta\Lambda = (\Lambda_{exp} \Lambda_1)(\text{iter-1})/\text{Niter}$ where Niter is the total number of iterations (we used Niter=1000);

$$\Lambda_2 = \Lambda_1 + \Delta \Lambda$$

- (8) Form $H_2=CA_2C^t$
- (9) $F_2 = W_2 H_2 W_2^t$

The F_2 elements are averaged to retain the symmetry. This means that the force constants which are equal in the unscaled F matrix will be made equal. For example, benzene in-plane F matrix contains only 26 different numbers as described in references 2 and 8.

(10) Replace F_1 by F_2 and go to step 3.

After going through the cycle Niter times Λ_{calc} , will be equal to Λ_{exp} and we will have the refined F which will reproduce the experimental frequencies. The frequencies of many isotopically substituted molecules could be fitted, using the fact that the F matrix is the same for the different isotopomers. In each cycle F_2 is calculated for each isotopic species and an average F_2 is used as F_1 in the next cycle.

To get the scale factors in the desired range we can define values for the lowest and the highest permitted scale factor. After step 9, the F₂ elements are compared with the unscaled ab initio force constants. If the scale factors are between the allowed values they are updated; otherwise the value from the last cycle is retained. The flowchart of the algorithm is given in Figure 3.1.

Theoretical Justification

The theoretical justification for the above procedure could be given based on perturbation theory. Each step in the iteration is a small perturbation. The Wilson's GF matrix

equation can be written in terms of time independent Schrödinger equation [8] -

$$H_0 \Psi_0 = E_0 \Psi_0 \tag{3.1}$$

where, $GF_1=H_0$, $L_1=\Psi_0$ and $\Lambda_1=E_0$

When a small perturbation (ΔF) is applied (since each step is a small perturbation), $H'=G\Delta F$ and the first order correction is given by

$$E_1 = \left\langle \Psi_0 \mid H' \mid \Psi_0 \right\rangle = \Delta \Lambda = (L_1)^{-1} G \Delta F(L_1) \tag{3.2}$$

Since $G=L_1L_1^t$,

$$\Delta \Lambda = (L_1)^{-1} L_1 L_1^t \Delta F(L_1) = L_1^t \Delta F L_1$$
 (3.3)

As long as the perturbation ΔF is small compared to F, the perturbation theory is expected to give valid results. Our goal is to retain the characteristics of the ab initio force field as far as possible when making the correction for the systematic over-estimation of the force constants. So we choose ΔF in such a way that $\Delta \Lambda$ is diagonal. This means L_1 is an eigenfunction of H' also and so the ab initio characteristics are retained. Since we do not calculate $\Delta \Lambda$ from ΔF but calculate only ΔF from $\Delta \Lambda$ choosing ΔF such that $\Delta \Lambda$ is diagonal is not a problem.

From $GF_1L_1=L_1\Lambda_1$ and $G=L_1L_1^t$, it can be easily shown that

$$\Lambda_1 = L_1^t F_1 L_1 \tag{3.4}$$

In each iteration $\Delta\Lambda$ (λ_{exp} - λ_1 is negative for overestimated ab initio frequencies) is added to the previous calculated frequency to get the modified frequency. Since, Λ_2 = Λ_1 + $\Delta\Lambda$, combining 3.3 and 3.4 we get

$$\Lambda_2 = L_1^t(F_1 + \Delta F)L_1 \tag{3.5}$$

or,

$$\Lambda_2 = L_1^t F_2 L_1 \tag{3.6}$$

which leads to

$$F_2 = (L_1^t)^{-1} \Lambda_2(L_1)^{-1} \tag{3.7}$$

Since, $L_1=W_1C$, we get

$$F_2 = [(W_1C)^t]^{-1} \Lambda_2 [W_1C]^{-1} = (D\Gamma^{-1/2})(C\Lambda_2C^t)(D\Gamma^{-1/2})^t = (D\Gamma^{-1/2})H_2(D\Gamma^{-1/2})^t$$
 (3.8)

from which we get,

$$F_2 = W_2 H_2 W_2^t (3.9)$$

The justification for averaging the F_2 elements according to symmetry comes from the fact that the F matrix always should reflect the symmetry of the molecule. For example in C_6H_6 , all C-C stretching force constants should be equal. Because of the <u>numerical</u> procedure of calculating F_2 ($F_2=W_2H_2W_2{}^t$), the C-C force constants will not agree in all decimal places, although they are all close. To impose the symmetry constraint, we average all the C-C stretching force constants so that they are equal in all decimal places.

Since F_2 elements are averaged to retain the symmetry and only those elements which give the right scale factors are updated, in the next cycle many of the new F_1 elements will be different from the corresponding F_2 elements obtained using equation 3.9. If the perturbation is small, this difference will be very small reproducing the same calculated Λ_2 . However, since the ΔF is different from that of F_2 obtained from equation 3.9, $\Delta \Lambda = L_1' \Delta F L_1$ is not diagonal. As a result the eigenvectors of the last cycle will get mixed up in the present cycle.

Using first order perturbation theory

$$\Psi_n^{(1)} = \sum_{k \neq n} \frac{\left\langle \Psi_k^0 \mid H' \mid \Psi_n^0 \right\rangle}{E_n^0 - E_k^0} \Psi_k^0 \tag{3.10}$$

where, $\langle \Psi_k^0 \mid H' \mid \Psi_n^0 \rangle$ is very small in each step as explained above. Hence only when λ_n - λ_k is small, the eigenvectors will get mixed. This means that when two frequencies are close, their potential energy distributions will get mixed up and in the worst case, the assignments will get interchanged. Since the ab initio calculation is for a non-interacting isolated molecule whereas the *real experimental frequencies are from 'interacting environment'*, when the frequencies are close, a certain amount of mixing or interchange of assignments could be justified. This happens most of the time among the CH₃ stretching frequencies, where a certain amount of mixing or exchange between the assignments are permitted. It is to be noted that the mixing among degenerate modes does not create any problem.

To investigate the performance of the present methodology to obtain corrections for the over-estimation of the force constants we used benzene as the test case. The experimentally determined force constants of Ozkabak and Goodman from reference [2] are used to

obtain the harmonic frequencies of benzene. These calculated frequencies are used as 'simulated experimental frequencies' and the force constants are randomly over-estimated by multiplying with a scale factor between 1/0.6 and 1.0. These over-estimated force constants are fitted to the simulated frequencies and the results are given in Table-3.1. As indicated in the Table, with one decimal accuracy in the harmonic frequencies the 2x2 blocks of force constants are reproduced. When the accuracy is $\pm 1cm^{-1}$, the A_{1g} block off-diagonal element is off by 8%. In 3x3 block even one decimal accuracy in frequencies does not reproduce OG values for $F_{18,20}$ and $F_{19,20}$. This clearly proves that the true force constants could not be obtained from frequency data alone for 3x3 blocks and higher. However, with an error limit of $\pm 1cm^{-1}$ which is the accuracy for the experimental frequencies, the numbers are very close to the real ones and represents a reliable force field. It appears that if the ab initio force field is the right one except for the over-estimation, the present methodology produces a satisfactory set of force constants when sufficient number of frequencies are available.

The choice of the number of iterations only requires that $\Delta\Lambda$ is small compared to Λ so that the perturbation $G\Delta F$ is small. We tested with Niter=100 to Niter=1500 in steps of 100. It appears that after Niter=500, the results do not change significantly, at least for the molecules we have tested. If there are sufficient number of experimental frequencies as long as $\Delta\Lambda$ is small, the results are expected to be largely independent of Niter. When there are not enough experimental frequencies, for example, when only one isotopomer experimental frequencies are available, the final force constants are good approximations to the true values and different Niter values may not produce force constants which agree in all decimals although they will be close to each other (see the pyridine results described latter). However, since the present method offers a systematic procedure, the force constants from two structurally related molecules fitted with same Niter could be compared or scale factors could be transferred among them to obtain good results. Similar considerations apply to the lower and upper limit of the scale factors, which is based on the assumption that the errors are systematic.

If ab initio theory is a good model for the real system then the assignments are reasonable if the final potential energy distributions (PED)s are close to that of the original

unscaled PEDs. If the assignment is incorrect, the fitted frequency will be very much off form the experimental frequency and the PEDs will be unacceptable.

The Advantages of the Current Procedure are:

- (1) We get a set of scale factors which could be used to study the trends related to structural variations and for predicting the frequencies of the structurally related molecules.
- (2) There is an in-built check to detect the mathematical inconsistencies arising from a wrong assignment by giving fitted frequencies which are very different from the experimental numbers.
- (3) The effort needed to fit the frequencies of one isotopomer is almost the same as fitting the frequencies of any number of isotopically substituted molecules and very much less than that of the least squares method.

This method could be used for other inverse eigenvalue problems, for example in NMR spectroscopy [9]. Another interesting application could be in obtaining a good estimate for electron correlation by scaling the Fock matrix of the Hartree-Fock theory.

The normal coordinate analyses are done with a modified version of the UMAT program [10].

3.2 Results

3.2.1 Interpretation of Vibrational Spectra

Acrolein

To see how this method performs compared to the known SQM cases, we calculated the fitted force constants, frequencies and potential energy distributions of all the molecules described in reference 1. The results for a representative case, acrolein- d_0 and d_1 are shown in Table-3.2. We used the same scale factor limits of 0.7 and 1.0. The agreement with the experimental frequencies are almost quantitative. The average deviations of all the frequencies of acrolein- d_1 and acrolein- d_1 is only 2.3 cm⁻¹. Since, the gas phase

experimental numbers are used, the agreement is so excellent and the final fitted PEDs exactly reproduce the ab initio unscaled PEDs, as expected. In almost all the bands, our calculated numbers show an improvement over the earlier SQM results [1].

Benzene

The first demonstration of benzene potential surface was due to the pioneering work of Wilson as early as 1934, using only six force constants [11]. After that several papers appeared on the generation of the force field and reliable vibrational frequency assignments for benzene [12-17]. But the real improvement in the frequency data came in the last decade with the introduction of new experimental techniques [18-20]. Accurate measurement of the inactive fundamentals in IR and Raman spectra and unambiguous identification of A_{2g} and B_{1u} modes in lower symmetry isotopically labelled benzenes had become possible due to the invention of the two-photon spectroscopy [19,20]. So far the most reliable and detailed analysis of benzene ground state vibrational force field available was that of OG [2]. On the other hand, there was a good deal of advancement in the theoretical force field of benzene through the analytic derivatives of the electronic energy at the HF and correlated level using the gradient algorithm of Pulay [21]. A reliable theoretical force field was first proposed by Pulay et al. by scaling the ab initio force constants using their SQM methodology [22]. HF and higher correlated level ab initio calculations were carried out by Guo and Karplus to obtain the benzene force constants for planar vibrations [23]. These theoretical force fields differ in some values especially in the off-diagonal force constants compared to the OG force field.

Since we start with the assumption that the ab initio force field is the right one except for the systematic errors, the multiple solution problem in the usual sense i.e. entirely different sets of force constants giving identical frequencies [24] does not arise although the different ways of scaling could produce different approximations to the *same* theoretical force field which are very similar to each other. After correcting the systematic errors by means of scaling what we get is the scaled ab initio force field.

All the 34 different scaled ab initio force constants of benzene obtained by fitting

the harmonic frequencies of the four D₆h isotopomers using five different basis sets (4-21G, 6-31G*, 6-311G**, 6-31++G** at HF level and 6-311G** at MP2 level) are shown in Table-3.3 along with the OG force field [2] and that of Pulay et al. [22]. Table-3.4 contains the corresponding scaled frequencies of benzene-do along with the calculated harmonic frequencies of OG. Since, the calculated frequencies are almost same in all the different levels of calculation, the harmonic frequencies for all the three (C_5D_5 , $^{13}C_6H_6$ and ¹³C₆D₆, C₆H₆ frequencies appear in Table-3.4) isotopes are shown in Table-3.5 only at HF/4-21G level. The force field is obtained by fitting the respective ab initio force constants to the most accurate OG experimental frequencies at the experimental geometry of benzene. The fitted force constants presented in Table-3.3 are nearly unique with respect to different levels of calculations and obviously appear as an improvement over the earlier theoretical force fields. The agreement with the experimental OG force field is very good in the diagonal force constants and in many of the off-diagonal force constants. But the discrepancy arises (mainly in the off-diagonal constants) at those places, where the ab initio model itself predict entirely different values including the sign. The scaling procedure retains the sign of the ab initio force constants. Such a difficulty cannot be resolved by merely scaling the force constants.

It is tempting to explain the scaled force constants of benzene given in Table-3.3 in the following way. In the one dimensional cases (A_{2y}, A_{2u}, E_{1g}) only one frequency is needed and it gives a unique force constant. In 2x2 $(A_{1g}, B_{1u}, B_{2u}, B_{2g}, E_{2u})$ we require at least three observed frequencies to get a unique set of force constants (3 equations and 3 unknowns). In 3x3 (E_{1u}) we need 6 frequencies to make 6 equations with 6 unknown force constants. In 4x4 (E_{2g}) we require 10 frequencies to solve for 10 force constants. The scaled force field is nearly identical in all blocks except for E_{2g} because sufficient number of frequencies are not available for exact solution in E_{2g} . Only 9 distinct frequencies are available when 10 are required for exact solution [24]. As a result the force field varies marginally for E_{2g} based on the starting F matrix. But unfortunately, 'uniqueness' does not imply 'accuracy' as shown in the methodology section. Some of the force constants are very sensitive to frequencies to the extent that their correct values could not be determined from frequency data alone. For example, in the 2x2 solutions, A_{1g} and B_{1u} off-diagonal

elements are different from that of OG although the OG numbers are reproduced when calculated frequencies from OG force constants are used as simulated experimental data with 3 decimal accuracy! Probably the 'uniqueness' is an 'accidental coincidence' due to the selection of range of scale factors for the different basis sets (see Table-3.3).

The question whether ab initio methods can produce the true force constants, however, cannot be answered at this point. Extended basis set calculations including correlation appears to disagree in some values with the experimental force field of OG. However, in many of the force constants the agreement with experimental force field is quantitative after scaling with the present methodology. Since experimental force field is available only for few small symmetric molecules, the scaled ab initio values appear to offer an attractive alternative.

3.2.2 Prediction of Vibrational Frequencies

Pyridine

Experimental vibrational spectra of pyridine in crystalline as well as matrix isolated form along with several deuterium substituted species are widely available in the literature [25-32]. Transferability of benzene force constants/scale factors to predict pyridine fundamentals had been attempted by several authors [6,33,34]. But so far the most successful study of this kind was done by Pulay et al. where they transferred the ab initio 4-21G scale factors of benzene to predict the pyridine spectra [6]. We obtained a set of scale factors of benzene-d₀ and d₆ individually and collectively at HF/4-21G level and used them to predict the frequencies of pyridine-d₀ and d₅ from ab initio force constants. No experimental numbers are used in prediction. For comparison we list the predicted values by the SQM method in Table-3.6. Table-3.6 clearly shows that the overall fitted frequencies are in better agreement compared to the individual ones, except for the C-H and C-D stretching frequencies. Since the associated anharmonicity is more in these modes, the individual fitted scale factors when transferred can produce better correction to the calculated frequencies compared to the overall fitted scale factors. Our predicted frequencies are in good agreement with the earlier predicted SQM frequencies which included

the cubic force constants also in the analysis.

Benzaldehyde

As an additional test the same set of scale factors, as obtained by fitting benzene-d₀ individually to the experimental spectra, combined with scale factors of acetaldehyde-d₀ at 4-21G level are used to predict the frequencies of benzaldehyde-d₀ using ab initio force constants obtained at the same level of theory. The results are in excellent agreement with the experimental numbers [35] as shown in Table-3.7. The average error of the predicted frequencies is less than 5.9 cm⁻¹. Larger deviations are found mainly in the 3000 cm⁻¹ (C-H stretching) region, which are highly anharmonic.

Internal coordinates of acetaldehyde and benzaldehyde, force constants of acrolein, benzaldehyde and scale factors of benzene and acetaldehyde are presented in Tables-3.8 to 3.15.

3.3 Conclusions

All the results presented in this study indicate that the present methodology of fitting the experimental frequencies to the ab initio force constants and transferring the scale factors from structurally related molecules to predict the fundamental frequencies offer an attractive solution to the vibrational spectral interpretation and prediction.

- Step 1: Convert cartesian force constants obtained from the ab initio program to force constants in local symmetry coordinates. We refer to this F matrix as F ab
- Step 2: Input: No. of isotopic species (nmol), masses (M), Wilson's B matrix (B), local U (U_{loc}). We used Niter = 1000 and a scale factor range of 0.7 to 1.0.

Figure 3.1: Flowchart of the fitting algorithm

Figure 3.2: Atom numberings of a. benzene b. acetaldehyde c. benzaldehyde

Table 3.1: Force constants obtained after fitting to 'simulated frequencies' of different accuracies of four isotopomers of C_6H_6

Rar	ndom scalin	g with fa	actors be	etween 1	/0.6 and	i 1.0
Symmetry	F-matrix	A	В	С	D	Ozkabak-
blocks	elements					Goodman ^e
$\overline{A_{1g}}$	F _{1.1}	7.631	7.599	7.615	7.616	7.616
	$F_{1,2}$	0.167	0.169	0.168	0.157	0.157
	$F_{2,2}$	5.559	5.553	5.556	5.554	5.554
A_{2g}	$F_{3.3}$	0.879	0.876	0.877	0.877	0.877
B_{1u}	$F_{12,12}$	0.659	0.656	0.657	0.658	0.658
	$F_{12,13}$	-0.234	-0.235	-0.234	-0.239	-0.237
	$F_{13,13}$	5.573	5.566	5.570	5.572	5.571
B_{2u}	$F_{14,14}$	3.944	3.934	3.939	3.939	3.939
	$F_{14,15}$	0.299	0.298	0.298	0.298	0.298
	$F_{15.15}$	0.830	0.826	0.828	0.828	0.828
E_{1u}	$F_{18,18}$	0.929	0.925	0.927	0.927	0.926
	$F_{18,19}$	0.211	0.208	0.209	0.209	0.209
	$F_{18,20}$	0.161	0.161	0.161	0.160	0.151
	F _{19,19}	7.387	7.364	7.376	7.381	<i>7</i> .380
	F _{19,20}	0.579	0.573	0.576	0.584	0.572
	F _{20.20}	5.571	5.563	5.567	5.568	5.568

 $F_{20,20}$ 5.571 5.563 5.567 5.568 A. Frequencies rounded to nearest integer +1.0

B. A-2.0 C. A-1.0 D. rounded to one decimal

e. Ref. 2.

Table 3.2: Calculated(4-21G) and Experimental frequencies of acrolein and acrolein-d₁

3102 3115 3102 ν CH ₂ 2994 3082 (3000) ν CH"+ ν CH ₂ 2994 3024 3000 ν CH"+ ν CH ₂ 2780 2768 2777 ν CH ^f 1725 1732 1723 ν CO 1624 1623 1625 ν C=C+ δ CH ₂ 1423 1434 1422 δ CH ₂ + ρ CH ^f 1363 1383 1361 ρ CH"+ δ CH ₂ 1276 1266 1276 ρ CH"+ ρ CH ₂ + ν C=C 1160 1149 1159 ν C-C+ ρ CH"+ ρ CH ₂ 1160 1149 1159 ν C-C+ ρ CH"+ ρ CH ₂ 1160 1149 313 ρ CH ₂ + ν C-C 1160 564 559 564 δ CCO+ ν C-C 1160 323 314 324 δ CCC+ δ CCO Out-of-Plane 998 1003 993 ν CH ₂ + ν CH"+ τ CH ₂ 1001 976 1002 (980) τ CH ₂ + ν CH"+ τ CH ₂	acrolein-	i
In-Plane 3102 3115 3102 ν CH ₂ 2994 3082 (3000) ν CH"+ ν CH ₂ 2994 3024 3000 ν CH"+ ν CH ₂ 2780 2768 2777 ν CH' 1725 1732 1723 ν CO 1624 1623 1625 ν C=C+ δ CH ₂ 1423 1434 1422 δ CH ₂ + ρ CH' 1363 1383 1361 ρ CH'+ δ CH ₂ 1276 1266 1276 ρ CH"+ ρ CH ₂ + ν C=C 1160 1149 1159 ν C-C+ ρ CH"+ ρ CH ₂ 914 910 913 ρ CH ₂ + ν C-C 564 559 564 δ CCO+ ν C-C+ δ CCC 323 314 324 δ CCC+ δ CCO Out-of-Plane 998 1003 993 ν CH ₂ + ν CH'+ ν CH 976 1002 (980) ν CH ₂ + ν CH'+ ν CH	This SQM	Expt
2994 3082 (3000) ν CH"+ ν CH ₂ 2994 3024 3000 ν CH"+ ν CH ₂ 2780 2768 2777 ν CH ^f 1725 1732 1723 ν CO 1624 1623 1625 ν C=C+ δ CH ₂ 1423 1434 1422 δ CH ₂ + ρ CH ^f 1363 1383 1361 ρ CH"+ δ CH ₂ 1276 1266 1276 ρ CH"+ ρ CH ₂ + ν C=C 1160 1149 1159 ν C-C+ ρ CH"+ ρ CH ₂ 1 914 910 913 ρ CH ₂ + ν C-C 564 559 564 δ CCO+ ν C-C+ δ CCC 323 314 324 δ CCC+ δ CCO	thod	
588 580 589 w CH"++ CH	3102 3115 2994 3082 2994 3024 2058 2049 1707 1713 1622 1622 1402 1419 059 1057 276 1266 152 1145 876 877 561 557 314 306 997 1003 970 975 348 869 551 546	3101 (2988) 2988 2060 1709 1621 1403 1060 1275 1153 877 561 313 993 959 846 556

Table 3.3: Fitted ab initio harmonic force field of benzene in different basis sets in terms of symmetry coordinates^{a,b}

Symm.	F-elem	A	В	С	D^c	Ec	OG^d	4-2	1G
blocks	ents							$this^e$	SQM^f
A_{1g}	$F_{1,1}$	7.610	7.610	7.610	7.610	7.610	7.616	7.604	7.609
	$F_{1,2}$	0.137	0.137	0.137	0.137	0.136	0.157	0.100	0.110
	$F_{2.2}$	5.526	5.526	5.526	5.526	5.526	5.554	5.185	5.218
A_2g	$F_{3,3}$	0.877	0.877	0.877	0.877	0.877	0.877	0.864	0.855
B_1u	$F_{12,12}$	0.652	0.652	0.652	0.652	0.652	0.658	0.653	0.650
	$F_{12,13}$	-0.160	-0.161	-0.162	-0.162	-0.164	-0.237	-0.156	-0.184
	$F_{13,13}$	5.565	5.566	5.566	5.566 '	5.568	5.571	5.219	5.154
B_2u	$F_{14,14}$	3.936	3.936	3.936	3.936	3.936	3.939	3.952	3.917
	$F_{14.15}$	0.297	0.297	0.297	0.297	0.297	0.298	0.308	0.290
	$F_{15,15}$	0.828	0.828	0.828	0.828	0.828	0.828	0.817	0.811
E_2g	$F_{6.6}$	0.644	0.641	0.642	0.643	0.641	0.644	0.647	0.639
	$F_{6,7}$	-0.137	-0.134	-0.136	-0.137	-0.136	-0.136	-0.144	-0.123
	$F_{6,8}$	0.296	0.308	0.305	0.302	0.320	0.308	0.306	0.280
	$F_{6,9}$	-0.153	-0.146	-0.160	-0.159	-0.189	-0.140	-0.107	-0.125
	$F_{7,7}$	5.539	5.538	5.547	5.546	5.568	5.510	5.164	5.156
	f _{7,8}	0.087	0.101	0.099	0.097	0.096	0.054	0.061	0.061
	$F_{7,9}$	0.036	0.040	0.042	0.040	0.056	-0.066	0.025	0.028
	$F_{8,8}$	6.615	6.636	6.626	6.621	6.648	6.690	6.622	6.700
	$F_{8,9}$	-0.392	-0.386	-0.389	-0.389	-0.386	-0.398	-0.411	-0.421
	$F_{9,9}$	0.902	0.903	0.902	0.902	0.902	0.895	0.898	0.881
E_1u	$F_{18,18}$	0.926	0.926	0.926	0.926	0.926	0.926	0.916	0.910
	$F_{18,19}$	0.212	0.212	0.212	0.212	0.212	0.209	0.221	0.221
	$F_{18,20}$	0.002	0.003	0.004	0.004	0.002	0.151	0.003	0.006
	$F_{19,19}$	7.362	7.362	7.364	7.364	7.361	7.380	7.352	7.270
	$F_{19,20}$	0.226	0.230	0.225	0.222	0.232	0.572	0.159	0.175
	$F_{20,20}$	5.524	5.524	5.523	5.522	5.525	5.568	5.165	5.185
A_2u	$F_{11,11}$	0.250	0.250	0.250	0.250	0.250	0.249	0.249	0.241
B_2g	$F_{4,4}$	0.202	0.202	0.202	0.202	0.202	0.202	0.201	0.193
	$F_{4,5}$	0.249	0.249	0.249	0.249	0.250	0.249	0.248	0.236
	$F_{5,5}$	0.520	0.520	0.520	0.520	0.520	0.519	0.520	0.505
E_1g	$F_{10,10}$	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.330
E_2u	$F_{16,16}$	0.160	0.160	0.160	0.160	0.160	0.160	0.159	0.162
	$F_{16,17}$	-0.168	-0.168	-0.168	-0.168	-0.168	-0.168	-0.166	-0.168
	F _{17,17}	0.419	0.419	0.419	0.419	0.419	0.420	0.419	0.418
	1/ , 1/	g 0.6-1.0	0.7-1.1	0.7-1.2	0.7-1.2	0.6-1.55			

A. HF/4-21G; B. HF/6-31G* C. HF/6-311G** D. HF/6-311++G** E. MP2/6-311G**

a. Non-redundant symmetry coordinates are as defined in ref 2. b.Symmetry coordinates for ring deformation and CH rock and wagg are multiplied by the respective bond lenths. c. Ab initio force constants are taken from ref 2. d. Ref 2. e. Experimental frequencies and reference geometry of Pulay et al.(ref.22) is used for comparison f. Ref 22. g. Scale factors range used for each basis set.

Table 3.4: Fitted ab initio harmonic frequencies of benzene in different basis sets

Symmetry blocks	•	,	HF/	HF/	MP2/	Will of the Control o	
The state of the s	4-21G		6-311G**	6-311++G**	6-311G**	Ozkabak-	
A_{1g}	3184.0	_	3184.1	3184.1	3184.0	Goodman"	The same of the sa
Δ - α	993.8	993.8	993.8	993.8	993.8	3191.0	
A_2g	1366.7	1366.7	1366.7	1366.7		994.4	994.
B_1u	3176.1	3176.2	3176.2	3176.2	1366.7	1367.0	1367.0
B_2u	1010.7	1010.6	1010.6	1010.6	3176.4	3166.3	3174.0
D_2 u	1309.5	1309.5	1309.5	1309.5	1010.6	1014.4	1010.0
E ₂ g	1149.7	1149.7	1149.7	1149.7	1309.5	1309.4	1309.4
L28	3169.3	3169.4	3170.3	3170.1	1149.7	1149.7	1149.7
	1609.7	1609.7	1609.5	1609.6	3172.5	3167.5	3174.0
	1179.8	1179.8	1179.7	1179.7	1609.1	1609.9	1607.0
Ξιu	607.4	607.4	607.4	607.4	1179.3	1178.2	1177.8
J _I u	3177.2	3177.3	3177.2	3177.1	607.4	607.2	607.8
	1494.9	1494.8	1494.9	1494.9	3177.4	3181.9	3181.0
Λ_2 u	1039.2	1039.2	1039.3	1039.3	1494.8	1494.4	1494.0
2g	674.9	674.9	674.9	674.9	1039.2	1038.3	1038.3
25	990.7	990.7	990.7	990.7	674.9	674.0	674.0
1 g	707.5	<i>707</i> .5	707.5	707.5	990.7	990.0	990.0
ıs 2u	847.8	847.8	847.8	847.8	707.5	707.0	707.0
<u>z</u> u	966.4	966.4	966.4	966.4	847.8	847.1	847.1
Ref 2.	397.7	397.7	397.7	397.7	966.4	967.0	967.0
NCI Z.				371./	397.7	398.0	398.0

Table 3.5: Fitted ab initio harmonic frequencies of C_6D_5 , $C^{13}{}_6H_6$ and $C^{13}{}_6D_6$

Symmetry		C_6D_6	***************************************		¹³ C ₆ H ₆		¹³ C	$\overline{_{6}D_{6}}$
blocks	calc	O.G. ^a	expt ^a	calc	O.G.	expt	calc	expt
$\overline{\mathrm{A}_{1g}}$	2361.8	2366.1	2362.0	3172.9	3179.8	3167.0	2344.0	2343.0
	947.7	948.6	947.0	958.0	958.8	957.4	917.3	918.0
A_2g	1063.1	1063.3	0.0	1355.6	1354.1	0.0	1048.3	0.0
B_1u	2342.5	2326.7	2344.0	3166.5	3157.6	0.0	2326.8	0.0
	969.4	976.5	970.0	973.8	977.1	0.0	936.5	0.0
B_2u	1286.0	1286.3	1286.3	1270.3	1269.6	1270.1	1236.1	1236.3
	828.1	827.9	827.9	1138.6	1138.8	1138.4	827.7	828.0
E_2g	2335.7	2340.7	2332.0	3159.9	3157.6	0.0	2320.2	0.0
	1561.3	1559.8	1564.0	1556.1	1556.0	0.0	1504.3	0.0
	865.5	863.5	867.0	1172.1	1170.8	0.0	862.0	0.0
	579.7	579.1	580.5	585.5	585.3	584.2	561.2	561.3
E_1u	2350.4	2346.7	2345.9	3166.8	3172.2	3180.0	2333.6	2325.0
	1340.2	1342.5	1341.0	1464.7	1464.0	1463.0	1299.4	1301.0
	813.9	813.9	814.3	1019.2	1018.1	1018.4	807.7	808.6
A_2u	495.5	494.9	496.2	672.9			492.8	
B_2g	828.4	827.8	829.0	982.8			804.4	
	598.6	598.1	599.0	685.1			592.1	
E_1g	659.4	658.9	660.0	840.9			650.6	
E_2 u	787.5	788.0	787.0	955.5			771.3	
	345.2	345.5	345.0	386.4			338.6	

a. Ref 2.

Table 3.6: Predicted frequencies of pyridine using 4-21G basis set

expt.		H ₅ N	(20)		C ₅	D ₅ N	Pi bida laborido de identació establica
cxpi.	indiv.b	alc.	SQM	expt.	C	alc.	SQM
3079		overall ^b			indiv.	overall	
3079	3093	3108	3093	2294	2295	2309	2305
3065	3085	3098	3102	2281	2284	2295	2292
	3073	3086	3078	2271	2274	2285	2280
3042	3066	3080	3065	2252	2262	2273	2267
3034	3062	3074	3071	2248	2261	2270	2262
1581	1584	1585	1585	1550	1547	1542	1544
1574	1580	1578	1582	1537	1545	1538	
1483	1476	1480	1475	1339	1335	1335	1546
1437	1435	1436	1436	1298	1300	1298	1330
1355	1339	1345	1353	1228	1245		1290
1227	1256	1246	1240	1041	1027	1236	1231
1217	1205	1207	1214	1009	993	1032	1036
1146	1151	1153	1156	963	968	994	1005
1069	1057	1058	1073	888		969	954
1052	1057	1058	1053	835	882	888	885
1030	1028	1029	1025	824	837	843	840
991	1005	1005	980	824	819	822	822
654	652	655	654		819	821	819
603	596	596	604	624	623	625	627
all coord		d experir	004	581	575	574	583

a. all coordinates and experimental frequencies are taken from ref 6 b. indiv.- refers to fitting one molecule C_6H_6 or C_6D_6 , overall- refers to fitting two isotopic molecules simultaneously.

Table 3.7: Predicted frequencies of benzaldehyde using 4-21G basis set

Expt. ^a	Calc.	% Error	Expt.	Calc.	% Error
3099	3088	0.3	_	1035	_
3081	3078	0.1	1026	1030	-0.5
3065	3068	0.4	1026	1028	-0.2
3043	3058	-0.5	1003	1003	0.0
3034	3045	-0.4	996	987	0.9
2806	2834	-1.0	918	939	-2.2
1728	1728	0.0	(852)	844	1.0
1614	1609	0.3	825	827	-0.2
1603	1595	0.5	740	738	0.2
(1492)	1495	-0.2	688	681	1.0
1460	1461	0.0	649	652	-0.4
1387	1388	-0.1	617	616	0.1
1314	1326	-0.9	450	443	1.5
1292	1309	-1.4	437	441	-0.9
1202	1197	0.4	(400)	399	0.2
1168	1171	-0.3	224	232	-3.5
(1158)	1161	-0.2	217	215	1.0
1074	1080	-0.6	(126)	122	2.9

a. experimental frequencies are taken from ref 35 and numbers within paranthesis are taken from liquid phase spectra

Table 3.8: Fitted force field of acrolein*

	0.564	
	0.440	
	0.627 -0.003 -0.003	
	0.483 0.012 0.013 0.031	
	1.282 -0.091 0.068 -0.022 0.016	
	1.132 0.246 0.036 -0.038 -0.022 0.072	
	4.970 -0.042 -0.003 -0.018 0.015 0.050	
	5.240 0.044 0.047 0.012 0.010 0.064 0.061	
	4.267 0.002 0.015 -0.023 -0.147 0.026 0.030 -0.008	22
	4.914 0.004 0.009 -0.003 -0.114 -0.116 0.026 -0.006	0.272
19 196	0.046 0.046 0.067 0.007 0.051 0.274 -0.009 -0.390 0.029	0.419
8.740	0.053 0.053 0.062 0.117 0.283 0.092 -0.166 0.009 0.007	0.003
j	0.009 0.097 -0.012 -0.008 0.227 0.174 0.168 0.168 0.182 0.006 0.0251	-0.003
In-Plane C-C st C=C st C=O st	CH ^e st CCC de CCO de CCO de CH ^e ro	Lwa
		55

'All condinates are as given in ref. I.

scale factors of benzene*
of
In plane scale factors of b
scale
plane
Ξ
Table 3.9:

																			28.
																		28	0
																	22	С	С
																17	0	-27	32
															17	18	0	27	32
														17	18	19	0	0	31
													17	18	10	20	0	-27	32
												17	18	19	20	19	0	27	32
											17	8	19	20	19	18	0	0	31
										∞	-15	-16	0	16	15	0	-21	20	-30
									8									26	
								∞										25	
							8												
						~												3 26	
																		26	
					∞	9	10	11	10	0	0	. 5	-16	0	16	15	21	25	0
				_	r,	9	7	7	9	ro	- 2	<u>∷</u>	-14	14	13	12	0	23	-29
			-	2	9	-1	1	9	2	ಬ	-13	-	14	13	12	-12	0	2.1	С
			∵ 1	က	2	2	9	ಬ	ಸು	9	-14	Ξ	13	12	-12	-13	0	53	29
	_	∴ 1																	
,	7 67																		
• •	1 60	चा	3	c)															
•		-4		- 1	-•	J.	_		•	_	_	_	-	÷	<u> </u>	_	_	23	Ų

 $13 \underbrace{\textbf{1}}_{19} \underbrace{\textbf{1}}_{1000,1.000,1.000,1.000,0.783,1}, 14 = (0.781,1.000,0.783), 15 = (0.999,0.998,0.700), 16 = (0.701,0.700,1.000), 17 = (0.770,0.782,0.778), 18 = (0.894,1.000,0.893), 19 \underbrace{\textbf{1}}_{19} \underbrace{\textbf{1}}_{1000,1.000,1.000,0.736}, 21 = (0.700,0.700,0.701), 22 = (0.774,0.778,0.778), 23 = 24 = 29 = (0.948,0.888,1.000), 21 = (0.798,0.788,0.778,0.778), 22 = (0.948,0.888,1.000), 21 = (0.798,0.788,0.778,0.778), 22 = (0.778,0.778,0.778), 23 = 24 = 29 = (0.948,0.888,1.000), 21 = (0.798,0.788,0.778,0.778), 22 = (0.778,0.778,0.778), 23 = 24 = 29 = (0.948,0.888,1.000), 21 = (0.798,0.788,0.788), 21 = (0.798,0.78$ 7 = (0.700, 0.907, 0.998), 8 = (0.828, 0.844, 0.834), 9 = (0.700, 0.715, 0.707), 10 = (1.000, 0.999, 0.999), 11 = (0.711, 0.997, 0.999), 12 = (0.786, 0.832, 0.789), 12 = (0.786, 0.786, 0.789), 12 = (0.786, 0.786, 0.786), 12 = (0.786, 0.786, 0.786), 12 = (0.786, 0.786, 0.786), 12 = (0.786, 0.786, 0.786), 12 = (0.786, 0.786, 0.786), 12 = (0.786, 0.786), 12 $1 = (0.877, 0.869, 0.873), \ 2 = (0.701, 0.715, 0.720), \ 3 = (0.729, 0.720, 0.719), \ 4 = (0.700, 0.700, 0.702), \ 5 = (1.000, 1.000, 0.730), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.700, 0.726), \ 6 = (0.704, 0.726$ 25.26 = 30 = (0.700, 0.872, 0.700), 27 = 31 = 32 = (0.700, 0.771, 0.845), 28 = (0.740, 0.750, 0.753)

Anumbers within paranthesis are the fitted scale factors for C_6H_6, C_6D_6 and their combined fit. * All coordinates are according to ref 2.

40 No. 3 123646

Table 3.11: Internal coordinates of acetaldehyde

C=O	$=r_1$
C-C	$=r_2$
$C-H_{ald}$	$=r_3$
$ heta_1$	$=2\alpha_1-\alpha_2-\alpha_2$
$ heta_2$	$=\alpha_2-\alpha_2$
$C-H_{wag}$	$=\gamma$
$C-C_{tor}$	$=\tau$

Table 3.12: Scale factors of acetaldehyde taken for prediction

	r_1	r ₂	r ₃	θ_1	θ_2	?.	τ
r_1	0.831						
r_2	1.000	0.883					
\mathbf{r}_3	0.833	0.808	0.798				
θ_1	0.977	1.000	0.836	0.872			
θ_2	0.706	0.890	1.000	0.753	0.797		
γ						0.761	
au							0.771

 r,θ etc. are internal coordinates as defined in Table-3.11

Table 3.13: Internal coordinates of benzaldehyde

$r_1 =$	1-3	a_{15} - a_{20} =	$\beta_{1-6}(\beta=217-317)$
$r_2 =$	3-5	a_{21} - a_{26} =	$\alpha_{1-6}(\alpha=213)$
$r_3 =$	5-6	$a_{27} =$	178
$r_4 =$	6-4	$a_{28} =$	179 .
$r_5=$	4-2	$a_{29} =$	879
$r_6 =$	2-1	$a_{30} =$	γC_7
$r_7 =$	1-7	$a_{31} =$	γH_{11}
$r_8 =$	3-11	$a_{32} =$	γH_{13}
r ₉ =	5-13	$a_{33} =$	γH_{14}
$r_{10} =$	6-14	$a_{34} =$	$\gamma extsf{H}_{12}$
$r_{11} =$	4-12	$a_{35} =$	$\gamma { m H}_{10}$
$r_{12} =$	2-10	$a_{36} =$	γH_9
$r_{13} =$	7-8	a_{37} - a_{42} =	$ au_{1-6}$
r ₁₄ =	7-9	a ₄₃ =	$ au_7$

Table 3.14: Symmetry coordinates of benzaldehyde

1 1 1.000 2 2 1.000 3 3 1.000 4 4 1.000 5 5 5 1.000 6 6 6 1.000 7 7 7 1.000 8 11 1.000 9 13 1.000 10 14 1.000 11 12 1.000 12 10 1.000 13 8 1.000 14 9 1.000 15 15 1.000 16 16 1.000 17 17 1.000 18 18 1.000 19 19 1.000 20 20 1.000 21 21 0.408 22 -0.408 23 0.408 24 -0.408 25 0.408 26 -0.408 18 18 1.000 19 19 1.000 20 20 1.000 21 21 0.577 22 -0.289 23 -0.289 24 0.577 25 -0.289 26 -0.289 23 22 0.500 23 -0.500 25 0.500 26 -0.500 24 27 0.816 28 -0.408 29 -0.408 25 28 0.707 29 -0.707 26 30 1.000 27 31 1.000 28 32 1.000 29 33 1.000 30 34 1.000 31 35 1.000 32 36 1.000 33 37 0.408 38 -0.408 39 0.408 40 -0.408 41 0.408 42 -0.408 34 37 0.577 38 -0.289 39 -0.289 40 0.577 41 -0.289 42 -0.289 35 38 0.500 39 -0.500 41 0.500 42 -0.500		The state of the s	
35 38 0.500 39 -0.500 41 0.500 40 0.577 41 -0.289 42 -0.408	2 2 1.000 3 3 1.000 4 4 1.000 5 5 1.000 6 6 1.000 7 7 1.000 8 11 1.000 10 14 1.000 11 12 1.000 12 10 1.000 13 8 1.000 14 9 1.000 15 15 1.000 16 16 1.000 17 17 1.000 18 18 1.000 19 19 1.000 20 20 1.000 21 21 0.408 2 22 21 0.577 2 23 22 0.500 2 24 27 0.816 28 25 28 0.707 29 26 30 1.000 27 31 1.000 28 32 1.000 29 33 1.000 29 33 1.000 30 34 1.000 31 35 1.000 32 36 1.000 33 37 0.408 38	2 -0.408 23	
	34 37 0.577 38 35 38 0.500 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 3.15: Non-redundant scaled 4-21G force constants of benzaldehyde*

```
1
         6.753
      1
2
      1
           .624
                    6.773
                 2
3
         -.459
                 2
                      .662
                                6.747
                            3
4
           . 435
                 2
                    -.449
                            3
                                 .657
                                           6.640
                                       4
5
         -.427
                 2
                      .456
                            3
                               -.449
                                       4
                                            .665
                                                     6.908
                                                  5
6
          .612
                    -.425
      1
                 2
                            3
                                 .419
                                       4
                                           -.458
                                                  5
                                                       .621
                                                             6
                                                                 6.694
7
      1
          .331
                 2
                    -.037
                            3
                                -.079
                                       4
                                           -.042
                                                  5
                                                      -.057
                                                              6
                                                                  .421
                                                                        7
                                                                            4.607
8
      1
         -.019
                 2
                    -.020
                            3
                                -.003
                                       4
                                            .101
                                                  5
                                                       .105
                                                              6
                                                                 -.004
                                                                        7
                                                                            -.001
      8
         5.169
9
      1
         -.102
                                -.034
                                                  5
                 2
                      .048
                            3
                                       4
                                           -.013
                                                       .034
                                                             6
                                                                 -.069
                                                                             .820
      8
           .009
                 9 11.930
      1
           .042
10
                 2
                      .013
                                -.009
                                           -.001
                                                  5
                            3
                                       4
                                                       .005
                                                             6
                                                                  .008
                                                                        7
                                                                             .077
      8
           .003
                 9
                      .394 10
                                4.433
         -.007
11
      1
                 2
                    -.017
                            3
                                -.017
                                       4
                                            .001
                                                  5
                                                       .080
                                                             6
                                                                  .105
                                                                            -.053
      8
           .009
                      .027 10
                 9
                                 .001 11
                                           5.218
12
      1
         -.019
                     -.002
                            3
                 2
                                 .099
                                       4
                                            .099
                                                 5
                                                     -.002
                                                             6
                                                                 -.020
                                                                             .002
      8
           .010
                 9
                      .003 10
                                 .001 11
                                            .002 12
                                                      5.155
                                -.002
                                           -.020
                                                                 -.001
13
      1
           .119
                 2
                      .099
                            3
                                       4
                                                 5
                                                     -.019
                                                             6
                                                                            -.005
      8
           .001
                 9
                      .009 10
                                 .015 11
                                            .001 12
                                                                 5.095
                                                       .004 13
14
      1
         -.004
                 2
                      .101
                            3
                                 .101
                                       4
                                           -.004
                                                  5
                                                     -.020
                                                             6
                                                                 -.018
                                                                            -.001
      8
           .003
                 9
                      .009 10
                                 .003 11
                                            .001 12
                                                       .010 13
                                                                  .010 14
                                                                            5.168
                                                 5
15
      1
           .464
                 2
                      .056
                            3
                                -.052
                                       4
                                            .098
                                                     -.054
                                                             6
                                                                 -.624
                                                                        7
                                                                            -.270
                                                     -.066 14
                                                                  .016 15
         -.016
                 9
                      .040 10
                                -.105 11
                                            .151 13
                                                                            5.511
                                          -.040
                                                  5
                                                       .049
                                                             6
16
      1
         -.413
                 2
                      .414
                            3
                                 .036
                                       4
                                                                -.024
                                                                             .034
      9
                     -.033 11
                                -.014 12
                                            .015 14
                                                      -.019 15
                                                                  .004 16
           .034 10
                                                                            3.608
                     -.439
                                 .432
                                            .027
                                                 5
                                                     -.048
                                                             6
                                                                  .052
17
      1
         -.029
                 2
                            3
                                       4
                                                                        7
                                                                            -.018
                     -.023 10
                                -.003 12
                                           -.019 13
                                                       .022 15
                                                                 -.101 16
                                                                             .059
      8
          .015
                 9
          3.583
     17
18
      1
          .054
                     -.039
                            3
                                -.423
                                       4
                                            .416 5
                                                       .040
                                                             6
                                                                 -.050
                                                                        7
                                                                             .005
                 2
                                                     -.016 14
                     -.006 10
                                .002 11
                                            .012 13
                                                                  .019 15
                                                                            -.020
         -.018
                 9
                      .056 18
                                3.589
     16
         -.086 17
                                -.026
                                       4
                                           -.430 5
                                                       .432
                                                             6
                                                                  .023
                                                                       7
19
         -.052
                 2
                      .050
                            3
                                                                             .011
      1
                                                      -.015 15
                                                                 -.073 16
                                -.020 12
                                            .019 14
                                                                            -.007
      9
           .013 10
                      .009 11
                                3.576
                      .057 19
         -.08518
                                           -.025 5
                                                      -.401
                                                            6
                                                                  .419
                                                                        7
                                                                            -.044
                                 .049 4
20
           .023
                  2
                     -.054
                            3
      1
                      .083 10
                                -.009 12
                                           -.014 13
                                                       .019 15
                                                                  .065 16
                                                                            -.092
      8
           .020
                 9
                     -.082 19
                                 .054 20
                                           3.499
          -.004 18
                                           -.038 11
                                                       .166 12
                                                                  .163 13
                                                                             .171
                     -.161
                            9
                                -.048 10
21
          -.458
                 8
         -.162 21
                     4.505
     14
                                                      -.601
                                                                  .180
                                                                        7
                                                                            -.497
                                            .305 5
                                                             6
                            3
                                 .338
                                       4
22
      1
           .231
                  2
                     -.619
                                                                   .087 14
                                            .099 12
                                                      -.160 13
                                                                              .081
                     -.087 10
                                -.04411
           .080
                  9
                                -.290 20
                                                      4.390
                      .296 19
                                            .328 22
          -.28817
```

Table 3.15 (Continued): Non-redundant scaled 4-21G force constants of benzaldehyde 23 .569 3 -.508 4 .503 6 -.541 7 .034 8 . 126 0: ; 10 -.009 11 .129 13 -.144 14 .136 15 .321 16 - 170 17 - 17 .350 19 -.170 20 -.156 23 4.240 24 1 .143 2 .051 3 -.085 4 .021 5 -.008 6 - 077 55 8 -.002 9 .453 10 -.263 11 -.090 12 .006 13 010 14 01 15 .381 16 -.021 17 -.032 18 .011 19 - 026 20 - 041 21 22 -.165 23 05 .227 24 3.645 25 -.015 2 .003 3 -.007 4 -.012 5 .008 6 078 8 40 .005 9 -.528 10 .071 11 .003 12 .000 13 022 14 15 -.289 16 00 -.025 17 -.001 18 .003 19 .021 20 003 21 - 09 -.088 23 -.046 24 .204 25 2.207 26 26 1.198 27 26 .045 27 1.160 28 26 -.072 27 .042 28 1.117 29 26 -.118 27 -.081 28 .051 29 1.183 30 -.088 27 26 -.103 28 -.076 29 .051 30 31 1.127 26 .020 27 -.076 28 -.103 29 -.079 30 .049 31 32 26 -.142 27 1.221 -.030 28 .022 29 .016 30 -.001 31 33 -.060 32 26 .098 27 1.633 -.110 28 .089 29 -.101 30 .096 31 33 -.085 32 1.305 .086 34 27 -.098 28 .004 30 -.085 31 .016 32 35 .083 34 26 .045 27 1.059 .062 28 -.111 29 .049 30 .056 31 35 1.086 -.092 32 020 36 26 -.066 27 -.018 28 .031 29 .010 30 -.019 31 33 .007 34 -.013 32 .042 35 .063

-.082 36

.418

^{*} Non-redundant local coordinates are according to Table-3.14.

Bibliography

- [1] Pulay, P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A. J. Am. Chem. Soc., 1983, 105, 7037.
- [2] Goodman, L.; Ozkabak, A. G.; Thakur, S. N. J. Phys. Chem., 1991, 95, 9044 and references there in.
- [3] Palmo, K.; Pietila. L. O.; Krimm, S. J. Comput. Chem., 1991, 12, 385.
- [4] Nakamura, R.; Machida, K.; Oobatake, M.; Havashi, S. Mol. Phys., 1988, 64, 215.
- [5] Francisco, J. S.; Sander, S. P. J. Chem. Phys., 1995, 102, 9615.
- [6] Pongor, G.; Pulay, P.; Fogarasi, G.; Boggs, J. E. J. Am. Chem. Soc., 1984, 106, 2765.
- [7] Williams, R. W.; Kalasinsky, V. F.; Lowrey, A. H. J. Mol. Struct. (Theochem), 1993, 281, 157.
- [8] Wilson, Jr., E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations, The Theory of Infrared and Raman Vibrational Spectra McGraw-Hill Book Company, New York, 1955. For perturbation results see page 231.
- [9] Toman, S.; Pliva, J. J. Mol. Spectrosc., 1966,21, 362.
- [10] McIntosh, D. F.; Peterson, M. R. General Vibrational Analysis System, QCPE 576, Indiana University, Bloomington, Indiana, 47405.
- [11] Wilson, Jr., E. B. Phys. Rev., 1934, 45, 706.
- [12] a) Miller, F. A.; Crawford, Jr., B. L. J. Chem. Phys., 1946, 14, 282. b) Crawford, Jr., B. L.; Miller, F. A. J. Chem. Phys., 1949, 17, 249.

di

- [13] a) Ingold, C. K.; Angus, W. R.; Bailey, C. R.; Hale, J. B.; Leckie, A. H.; Raisin, L. (; Thompson, J. W. J. Chem. Soc. London, 1936, p.912. b) Ingold, C. K.; Bailey, C. R.; Be.; A. P.; Carson, S. C.; Gordon, R. R.; Hale, J. B.; Harzfeld, N; Hodden, J. W.; Poole, J. G.; Weldon, I. H. P.; Wilson, C. L. J. Chem. Soc. London, 1946, p.222.
- [14] a) Whiffen, D. H. Philos. Trans. R. Soc. London, 1955, 248A, 131. b) Albrecht, A. C. Mol. Spectrosc., 1960, 5, 236.
- [15] Duinker, J. C.; Mills, I. M. Spectrochim. Acta, 1968, 24A, 417.
- [16] Brodersen, S.; Langseth, A. Mat. Fys. Skr. Dan. Vid. Selsk., 1956, 1, 1, 1959, 1, 7.
- [17] Colloman, J. H.; Dunn, T. M.; Mills, I. M. Philos. Trans. R. Soc. London , 1966, 259, 499
- [18] a) Pliva, J.; Pine, A. S. J. Mol. Spectrosc., 1982, 93, 209; J. Mol. Spectrosc., 1987, 107, 318
 b) Pliva, J.; Johns, J. W. C. Can. J. Phys., 1983, 61, 269; J. Mol. Spectrosc., 1984, 107, 318
 c) Pliva, J.; Valentin, A.; Chazelas, J.; Henry, L. J. Mol. Spectrosc., 1989, 134, 220. d
 Pliva, J.; Johns, J. W. C.; Goodman, L. J. Mol. Spectrosc., 1989, 134, 227; 1990, 140, 214.
- [19] a) Hochstrasser, R. M.; Sung, H. N.; Wessel, J. E. J. Am. Chem. Soc., 1973, 95, 8179. b.
 Hochstrasser, R. M.; Wessel, J. E.; Sung, H. N. J. Chem. Phys., 1974, 60, 317. c) Wunsch,
 L.; Metz, F.; Neusser, H. J.; Schlag, E. W. J. Chem. Phys., 1977, 66, 386.
- [20] Berman, J. M.; Goodman, L. J. Chem. Phys. 1987, 87, 1479.
- [21] Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc., 1979, 101, 2550.
- [22] Pulay, P.; Fogarasi, G.; Boggs, J. E. J. Chem. Phys., 1981, 74, 3999.
- [23] Guo, H.; Karplus, M. J. Chem. Phys., 1988, 89, 4235.
- [24] Ozkabak, A. G.; Goodman, L. J. Chem. Phys., 1987, 87,2564.
- [25] Innes, K. K.; Byrne, J. P.; Ross, I, G. J. Mol. Spectrosc., 1967, 22, 125.
- [26] Loisel, J.; Lorenzelli, V. J. Mol. Struct., 1967, 1, 157.
- [27] Castellucci, E.; Sbrana, G.; Verderame, E. D. J. Chem. Phys., 1969, 51, 3762.

- [28] Kakiuti, Y.; Akiyama, M.; Saito, N.; Saito, H. J. Mol. Spectrosc., 1976, 61, 164.
- [29] Stidham, H. D.; DiLella, D. P. J. Raman. Spectrosc., 1979, 8, 180.
- [30] DiLella, D. P.; Stidham. H. D. J. Raman. Spectrosc., 1980, 9, 90.
- [31] DiLella, D. P. J. Raman. Spectrosc., 1980, 9, 239.
- [32] Stidham, H. D.; DiLella, D. P. J. Raman. Spectrosc., 1980, 9, 247.
- [33] a) Long, D. A.; Murfin, F. S.; Thomas, E. L. Trans. Faraday. Soc., 1963, 59, 12. b) Long,
 D. A.; Thomas, E. L. Ibid., 1963, 59, 783.
- [34] Harsanyi, L.; Kilar, F. J. Mol. Struct., 1980, 61, 141.
- [35] a) Green, J. H. S.; Harrison, D. J. Spectroclim. Acta, 1976, 32A, 1265. b)Pietila, L. O.; Mannfors, B.; Palmo, K. Spectroclim. Acta, 1988, 44A, 141.

Chapter 4

Force Field and Assignment of the Vibrational Spectra of Naphthalene and Anthracene

The vibrational spectra of polyaromatic hydrocarbons and their cations received mu h attention recently due to their importance as the origin of infrared emission bands in t. e. intersteller radiation from many gallactic sources [1]. Naphthalene is the smallest memb r in the family and was studied by several authors [2-18]. Pulay et al. reported for the fit t time a complete theoretical force field of naphthalene obtained by using the scale facto; from their benzene work [3]. However benzene and naphthalene are not really structural related (naphthalene is a coupled ring system) and the direct transfer of scale factors from benzene leads to poor predicted numbers. A geometry refinement which includes the approximate cubic force constants was needed to obtain a good fit between experimenta and predicted frequencies of naphthalene. Also, the number of force constants liste for naphthalene(208) is more than the number of symmetric force constants(189). Mor recently the vibrational spectra of naphthalene and its radical cation were studied using matrix isolation spectroscopy by Szczepanski et al. [2]. The second simplest member anthracene, is also studied by several theoretical and experimental methods [19-28]. The early work of Bruhn and Mecke [21] and Califano [22] identified many of the fundamenta frequencies of anthracene and anthracene- d_{10} based on their polarization measurements The IR spectra of anthracene and anthracene- d_{10} crystals were analyzed by Bree and Kydo [23]. Bekke et al. using a five parameter approximation analyzed all the in-plane fundamentals of anthracene and proposed their probable assignments [20]. More recently, Szczepanski et al. analyzed the vibrational spectra of anthracene and its radical cation using matrix isolation spectroscopy [19]. On the theoretical side, a detailed calculation of the normal modes of anthracene and anthracene-d₁₀ was reported by Krainov using the complete system of induction coefficients from naphthalene [25]. A simplified valence force field calculation for benzene, naphthalene and anthracene was reported by Neto et al. [9]. Evans and Scully [26] reported a theoretical calculation for the out of plane vibrations of anthracene, anthracene-d₂ and anthracene-d₁₀ by transferring the benzene force constants. Although a number of vibrational spectral studies have been reported for anthracene, some of the assignments still remain uncertain and the complete force field is not yet available. In this chapter we report the ab initio force field of naphthalene and anthracene at the HF/4-21G level. We explicitly show that the benzene molecule is not structurally related to anthracene whereas naphthalene and anthracene are structurally related. Using the newly developed methodology described in chapter 3 we report a set of 189 non-redundant local force constants which reproduces the naphthalene fundamental frequencies with an average error of 5.7 cm⁻¹. The scale factors obtained from naphthalene force constants were used to obtain the complete anthracene force field which simulates the vibrational spectra of anthracene with remarkable accuracy. It is to be noted that no experimental data is used in the prediction of anthracene frequencies.

4.1 Calculations

The ab initio force constants and frequencies of naphthalene and anthracene were calculated using 4-21G basis set. The cartesian force constant matrices were then transformed to the non-redundant local coordinate space. The non-redundant local coordinates of naphthalene and anthracene are shown in Table-4.1 and Table-4.2 and in Figure 4.1 and Figure 4.2. The number of force constants getting adjusted due to the change in frequencies is smaller when the fitting is done in symmetry blocks compared to local coordinates. Also mixing between degenerate modes is avoided by fitting the frequencies in symmetry

coordinates. Hence the fitting is done in symmetry coordinates adjusting the scale fa tors in local coordinates. A flow chart of the modified algorithm is given in Figure 4.3.

4.2 Results

As pointed out by Pulay et al. [3] in their SQM study of naphthalene, the naphthalene force field is quite different from that of benzene and hence simple transfer of benzene force field would poorly reproduce the naphthalene fundamental vibrational frequencies. So, our present method also fails to achieve a better fit for naphthalene by simple transfer of benzene scale factors largely because of the absence of inter-ring CC CC couplings in benzene. However, it is possible to predict the vibrational frequencies of anthracine from naphthalene as naphthalene and anthracene resemble each other even in CC. It couplings. Because the prediction requires a complete set of scale factors, we fitted the experimental frequencies of naphthalene-d₀ and -d₈ to the theoretically calculated ab in the HF/4-21G force field. The fitting produced an excellent agreement between the experimental and the calculated frequencies. The average deviation is 5.7cm ⁻¹(4.0cm ⁻¹ in C₁₀ ⁻⁸) including C-H frequencies and 3.6cm ⁻¹(2.4cm ⁻¹ in C₁₀D₈) excluding C-H frequencies.

4.2.1 Force Field of Naphthalene and Anthracene

The force constant values obtained for benzene are 6.715 for C-C stretch, 5.181 for C-1 stretch, 0.510 for C-H deformation, 1.274 and 1.239 for ring deformation and 0.319 at 1 0.388,0.307 are for out of plane C-H wag and ring bending respectively. These when corpared to naphthalene force constants indicate clearly that the benzene force field is very different from that of naphthalene. For naphthalene our fitted force field shows a good agreement with the earlier SQM predicted force field in both in-plane and out of plane diagonal force constants. Obviously such a good agreement is not expected in the case of the coupling constants because of the oversimplification involved in the evaluation of the coupling force constants in the SQM procedure. The fitted force field produced frequencies for both naphthalene and naphthalene-d₈ better than the earlier SQM prediction so

can be considered as an improvement over the earlier force field. A representative set of force constants of naphthalene and anthracene is listed in Table-4.3 and the complete force field is given in Tables-4.9 to 4.12 from which we can draw the following conclusions.

- (1) C-H diagonal force constants of naphthalene and anthracene are almost identical except for a minor deviation of the anthracene central ring. Interactions involving C-H bonds(σ bond) are small and only the first neighbours contribute significantly.
- (2) C-C force constants exhibit similar trends although the absolute values are different because of π - π interaction. The trend and the accuracy of the predicted C-C frequencies indicate the transferability of the scale factors. The diagonal force constants are in accordance with the Huckel π bond order [29]. Interactions involving C-C bonds(σ and π bonds) are much stronger and extend over the entire ring in both systems confirming the earlier preliminary conclusion based on only naphthalene [30].
- (3) Diagonal f_{β_i} s are almost the same for the naphthalene and anthracene. $CH_i \beta_i$ interactions are less than 0.01 and negligible in most cases. $CC_i \beta_i$ interactions are substantial only for the connecting bonds. For outer rings of naphthalene and anthracene they are almost the same while central ring has slightly higher values.
- (4) Diagonal ring deformation force constants are similar for naphthalene and the outer rings of anthracene and somewhat higher for the central ring.

These conclusions clearly indicate that the force field of the outer rings of anthracene is almost identical with that of naphthalene and the central ring differ to some extent. As a result the prediction is excellent for the outer ring modes of anthracene and the deviation is slightly more from the experimental frequencies for the central ring.

4.2.2 Vibrational Spectra of Naphthalene

The 48 normal modes of naphthalene in D_{2h} symmetry factorize in 8 symmetry blocks as $9A_g$, $8B_{3g}$, $8B_{1u}$, $8B_{2u}$, $4A_u$, $4B_{3u}$, $3B_{1g}$ and $4B_{2g}$. The calculated fundamentals from the fitting procedure of naphthalene $-d_0$ and $-d_8$ are given in Table-4.4 along with their assignments. The assignments agree well with that of Pulay et al. in almost all the modes. However there is a controversy regarding one of the B_{2u} fundamentals. It could be at 1144 or 1163

cm⁻¹. In the SQM method, the predicted number 1158 cm⁻¹ was closer to 1163 cm⁻¹. We tried fitting both the frequencies separately. 1163 cm⁻¹ gave the C-C force constant in agreement with the expected bond orders. As a result we assigned it at 1163 cm⁻¹. In 3_{18} , the band at 810 [9,11-12] and 748 cm⁻¹ [6] were suggested as possible alternatives for the $\delta_1+\delta_3$ mode. The fitting using 810 cm⁻¹ produced 805 cm⁻¹ as the calculated fundamental while the 748 cm⁻¹ produced 765 cm⁻¹ as the calculated frequency. This clearly indicates that 810 cm⁻¹ band is more likely to be the correct one and this is in agreement with the earlier SQM assignment.

C-H stretching vibrations:

Due to anharmonicity and the perturbations because of Fermi resonance the C-H indamentals are difficult to assign. However, we used the following strategy to address the effect of anharmonicity on the naphthalene frequencies. We started with the assump on that the anharmonicity of the C-H and C-D bonds are the same for benzene and not thalene because the C-H force constants are nearly same(5.181- C_6H_6 , 5.113- α - $C_{10}H_8$ and 5.153- β - $C_{10}H_8$) and the C-H and C-D stretching frequencies appear in the same narrow range of frequencies. The harmonic frequencies could be estimated from the equation

$$\omega_i = \nu_i + \Delta,\tag{.1}$$

where Δ_i represents the total anharmonic corrections to the fundamental frequency. ollowing Goodman et al. [31] we adopted a 117 cm⁻¹ anharmonic correction for C-H fur lamentals and 59 cm⁻¹ for C-D ones. The second assumption we made is that the deuterred fundamentals are not perturbed by Fermi resonance because there is no frequency in he 1100-1150 cm⁻¹ range whose overtone can interact with the C-D fundamentals (2200-200 cm⁻¹). (However, it is possible to have a combination band of the right frequency. We reglect such a possibility because without further experimental data this problem could not be addressed). The best fitted C-D fundamentals are converted to harmonic frequencies based on equation(2) and fitted to get the harmonic force constants. During the fitting all $C_{10}H_8$ and $C_{10}D_8$ frequencies other than C-H stretching ones are used. The computed harmonic force constants are in good agreement with the benzene value obtained by Goodman et al. [31] (5.567- C_6H_6 , 5.459- α - $C_{10}H_8$ and 5.486- β - $C_{10}H_8$). These harmonic

force constants are used to predict the harmonic C-H frequencies which in turn used to calculate the corresponding anharmonic frequencies using equation 4.1. The predicted anharmonic frequencies agree well with the observed fundamentals except for one of the B_{3g} modes (3031 cm⁻¹) as shown in Table-4.5 indicating that this particular frequency is a likely candidate for Fermi resonance. The computed mean amplitudes of vibration (Figure 4.4) are in good agreement with the reported values [32,33] indicating that the final force field is reliable.

4.2.3 Vibrational Spectra of Anthracene

Anthracene is planar with D₂h symmetry and is characterized by 66 vibrational degrees of freedom. The 45 in-plane and 21 out of plane normal vibrations span the irreducible representations as $12A_g + 11B_{3g} + 11B_{1u} + 11B_{2u} + 4b_{1g} + 6b_{2g} + 5a_{1u} + 6b_{3u}$. The fundamental frequencies of anthracene are predicted separately by transferring scale factors of benzene and naphthalene respectively. Table-4.6 shows the predicted frequencies obtained from the scale factors of benzene and naphthalene along with their assignments. The table clearly indicates that transferring the diagonal force constants and taking their geometric mean for the off-diagonal elements give poor agreement compared to transferring all the scale factors. When the molecules are structurally related the assumption that each force constant is associated with its own scale factor, works well rather than the geometric mean of diagonal force constants for the off-diagonal elements because the characteristics of each force constant is retained. The average deviations for the 66 frequencies are 15.0, 13.5 and 9.2 $\rm cm^{-1}$ (13.6,13.2 and 8.2 $\rm cm^{-1}$ excluding CH stretch) for the different predictions as shown in Table-4.6. As expected the predicted anthracene frequencies from naphthalene scale factors are better than those predicted from benzene even in geometric mean approximation. In the prediction, corrections for basis set error, correlation and anharmonicity were transferred through scale factors from naphthalene to anthracene.

4.2.4 In-plane frequencies

C-H stretching vibrations:

The ν C-H frequencies appear as independent modes and all the C-H stretching fundamentals appear in the region $\nu > 3000 \, \mathrm{cm}^{-1}$. To address the problem of anharmonicity, the harmonic scale factors are transferred from naphthalene to anthracene to predict the harmonic frequencies. The harmonic frequencies are then corrected for anharmonicity as in the case of naphthalene. The final values are given in Table-4.5 along with the experimental numbers. The agreement is good for six frequencies indicating the other four are possibly perturbed by Fermi resonance.

A_q modes:

The frequencies in this block is only Raman active, and the earlier assignments proposed by several authors are quite consistent and agree within the experimental error. One of the R_{CC} band in the earlier assignment was doubtful, either at 1412 or 1400 cm⁻¹ [20], which was resolved later assigning 1412 cm⁻¹ to A_{1g} mode and 1400 cm⁻¹ to B_{2u} fundamental [19]. The predicted numbers 1408 cm⁻¹ and 1404 cm⁻¹ agree very well with the later assignment. The prediction is poor only in the case of 1264 cm⁻¹ band with a deviation of 21 cm⁻¹. This is clearly due to the differences between the naphthalene and anthracene force constants for the diagonal R_1 , R_7 and their interactions.

B_{3g} modes:

In this block a weak Raman band observed by Bakke et al. [20] at 1574 cm⁻¹ was assigned at 1596 cm⁻¹ by Neto et al. [9] and Colombo [24]. Our predicted number 1596 cm⁻¹ exactly matches with the latter assignment. So we confirm this mode at 1596 cm⁻¹. With this modification all predicted frequencies match well with the earlier assignments except the one at 1433 cm⁻¹. This band shows a deviation of 55 cm⁻¹, the predicted one being at 1388 cm⁻¹. It is unlikely that the force fields of naphthalene and anthracene are very different to cause this much error. It is likely that either this assignment is incorrect or something like Fermi interaction occurs for this mode. Bakke et al. observed a Raman band at 1384 cm⁻¹ [20] which agrees well the predicted value of 1388 cm⁻¹. It is interesting to note that the earlier calculated values based on NCA also occur at 1389 cm⁻¹ [9] and 1396 cm⁻¹ [25].

B_{1u} modes:

These IR and Raman active bands are available from the more recent work [19]. The agreement with the earlier experimental numbers are within few cm⁻¹, except for the one at 1346 cm⁻¹. The earlier workers assigned this band at around 1317 cm⁻¹ [9,20-24,28]. The predicted frequency at 1340 cm⁻¹ agrees well with the recent assignment. All the other predicted numbers in this block agree very well with the experimental numbers.

B_{2u} modes:

This is probably the most controversial block in the anthracene spectra. Deviations of $100\text{-}150~\text{cm}^{-1}$ could be found in the existing assignments. The R_{CC} band is assigned at different frequencies by different authors. 1695 [23], 1720 [24], 1690 [20], 1533 [9,22] and 1524 [28] cm⁻¹ are some of the available assignments. The most recent work [19] assigned it at 1542 cm⁻¹. The predicted number 1560 cm⁻¹ confirms this assignment. The other controversial bands were assigned at 1460,1400,and 1318 cm⁻¹ in the latest work [19]. For the 1460 cm⁻¹ fundamental earlier assignments were made at 1534 [20], 1533 [23], 1680 [24] and 1462 [9,22]. The predicted number appear at 1445 cm⁻¹ is in agreement with 1460 cm⁻¹. The 1400 cm⁻¹ band was assigned at 1494 [20], 1398 [9,22], 1495 [23], 1537 [24] and 1350 [28] cm⁻¹. Our predicted frequency 1404 cm⁻¹ confirms the assignment at 1400 cm⁻¹. The predicted frequency corresponding to the experimental 1318 cm⁻¹ band [19] occurs at 1283 cm⁻¹, off by 33 cm⁻¹. This band corresponds to $(R_7 + \beta_5)$ which represent the central ring and there is no exact counterpart of this in naphthalene. Hence, the deviation is higher than the expected one.

4.2.5 Out of plane frequencies

A_{1u} modes:

This class is inactive in both Raman and IR spectra of the free molecule and hence comparison is made with the IR active crystal bands. Only three out of five fundamentals were reported [20,21,27]. The highest frequency mode was assigned at 988 cm⁻¹ [20] and 979 cm⁻¹ [27]. The predicted value 984 cm⁻¹ is closer to the first one. The other two bands agree between the different authors as well as with the predicted ones. For the two lower

frequencies the predictions are at 491 and 126 cm⁻¹. Early work of Chantry et al. [27] gives the experimental frequency at 126 cm⁻¹.

B_{3u} modes:

The highest frequency in this symmetry is assigned at around 956 [2,20-24.27] and at 920 cm⁻¹ [28]. The predicted frequency 970 cm⁻¹ supports the higher number in agreement with most of the literature. The next higher band is assigned at 883 cm⁻¹ [20] and 879 cm⁻¹ [19]. These are within experimental error and we took the most recent value of 879 cm⁻¹ for the predicted value 895 cm⁻¹. The other three numbers are in excellent agreement with the most recent paper [19]. It is of interest to note that the torsional numbers > 300 cm⁻¹ were predicted very well compared to the out of plane wag fundamentals. Again this is a reflection of the differences in force fields between naphthalene and anthracene. It is known that the ab initio method gives very low value for the torsions below 300 cm⁻¹. B_{1g} and B_{2g} modes:

The earlier work of Evans and Scully [26] do not agree with that of bakke et al. [20]. It appears that the only reliable values are that of Bakke et al. [20] for these modes. Although there is overall agreement between the predicted and the experimental frequencies, deviations are quite large in three of the fundamentals assigned at 896,773 and 580 cm⁻¹. The 896 cm⁻¹ band if assigned at 852 cm⁻¹ [26] gives better agreement with the predicted 831 cm⁻¹. An experimental reinvestigation of these frequencies may give a better agreement with the prediction.

The symbolic force constant matrices in terms of symmetry unique local force constants and the orthogonal transformation matrices from local to symmetric coordinates for naphthalene and anthracene and the complete mean amplitudes of vibration of naphthalene are given in Tables-4.7 to 4.13.

4.3 Conclusions

The fitting procedure to obtain the scale factors and frequencies from the ab initio force field has shown to be remarkably successful for naphthalene producing an average devi-

ation of 5.7 cm⁻¹ between the predicted and experimental frequencies. These scale factors when used to predict the frequencies of anthracene, the results are in excellent agreement with the experimental ones with an average average deviation of 8.2 cm⁻¹ for a molecule of 24 atoms. From the accuracies of the computed frequencies it is clear that the methodology could be used successfully for the prediction of frequencies of unknown molecules. The earlier assignments of naphthalene were confirmed and the anthracene assignments were either confirmed or reassigned. A complete set of non-redundant force constants are obtained for both naphthalene and anthracene.

 $\boldsymbol{\tau}$ numberings are same as defined in R

Figure 4.1: Internal coordinates of naphthalene

Figure 4.2: Internal coordinates of anthracene

- Step 1: Convert cartesian force constants obtained from the ab initio program to force constants in local symmetry coordinates as recommended by Pulay et al. We refer to this F matrix as F ab
- Step 2: Input: No. of isotopic species(nmol), masses(M), Wilson's B matrix(B), local U (U loc), orthogonal U (U ortho) transformation matrix from local U to symmetric U. We used Niter=1000.

Figure 4.3: Flowchart of the modified algorithm

Figure 4.4: Mean amplitudes of vibration of naphthalene and anthracene (Å)

Numbers are obtained from our predicted force field. Numbers in the parentheses re observed values taken from ref. 33.

Table 4.1: Non-redundant local coordinates of naphthalene

```
In plane
           S_{1-11}
                         = R(CC-stretch)(R_i)
           S_{12-19}
                         = r(CH-stretch)(r_i)
                         =2^{-1/2}(\phi_1-\phi_2);2^{-1/2}(\phi_3-\phi_4);... etc. (CH-deform.)(\beta_i)
           S_{20-27}
           S_{28.31}
                         =6^{-1/2}(\alpha_1-\alpha_2+\alpha_3-\alpha_4+\alpha_5-\alpha_6) (ring deform.)(\delta_1,\delta_4,)
           S_{29,32}
                         =12^{-1/2}(2\alpha_1-\alpha_2-\alpha_3+2\alpha_4-\alpha_5-\alpha_6) (ring deform.)(\delta_2,\delta_5)
           S_{30.33}
                         =2^{-1/2}(\alpha_2-\alpha_3+\alpha_5-\alpha_6) (ring deform.)(\delta_3,\delta_6)
Out of plane
           S_{1-8}
                         =\gamma(CH-wagg)(\gamma_i)
                         =6^{-1/2}(\tau_1-\tau_2+\tau_3-\tau_4+\tau_5-\tau_6)(ring torsion)(\tau_1,\tau_4)
           S_{9.12}
                         =12^{-1/2}(\tau_1-2\tau_2+\tau_3+\tau_4-2\tau_5+\tau_6)(ring torsion)(\tau_2,\tau_5)
           S_{10,13}
                         =2^{-1/2}(\tau_1-\tau_3+\tau_4-\tau_6)(ring torsion)(\tau_3,\tau_6)
           S_{11.14}
           S_{15}
                         =\tau_{3126}-\tau_{4215}(\tau)
                *All internal coordinates are according to figure-4.1.
```

Table 4.2: Non-redundant local coordinates* of anthracene

```
In plane
                            = R(CC-stretch)(R_i)
            S_{1-16}
                            = r(CH-stretch)(r_i)
            S_{17-26}
            S_{27-36}
                            =2^{-1/2}(\phi_1-\phi_2);2^{-1/2}(\phi_3-\phi_4);... etc. (CH-deform.)(\beta_i)
                            =6^{-1/2}(\alpha_1-\alpha_2+\alpha_3-\alpha_4+\alpha_5-\alpha_6) (ring deform.)(\delta_1,\delta_4,\delta_7)
            S_{37,40,43}
                            =12^{-1/2}(2\alpha_1-\alpha_2-\alpha_3+2\alpha_4-\alpha_5-\alpha_6) (ring deform.)(\delta_2,\delta_5,\delta_8)
            S<sub>38,41,44</sub>
                            =2^{-1/2}(\alpha_2-\alpha_3+\alpha_5-\alpha_6) (ring deform.)(\delta_3,\delta_6,\delta_9)
            S_{39,42,45}
Out of plane
                            =\gamma(CH-wagg)(\gamma_i)
            S_{1-10}
                            =6^{-1/2}(\tau_1-\tau_2+\tau_3-\tau_4+\tau_5-\tau_6) (ring torsion)(\tau_1,\tau_4,\tau_7)
            S_{11.14.17}
                            =12^{-1/2}(\tau_1-2\tau_2+\tau_3+\tau_4-2\tau_5+\tau_6) (ring torsion)(\tau_2,\tau_5,\tau_8)
            S_{12.15.18}
                            =2^{-1/2}(\tau_1-\tau_3+\tau_4-\tau_6) (ring torsion)(\tau_3,\tau_6,\tau_9)
            S_{13,16,19}
                            =\tau_{7342}-\tau_{1348}(\tau')
            S_{20}
                            =\tau_{15610}-\tau_{9562}(\tau^{"})
                    *All internal coordinates are according to figure-4.2.
```

Table 4.3: Selected scaled force constants of naphthalene and anthrace e*

page speciment is about the street of the control of the	Naphth	alene			An	thracene			
local		force	π bond	lo	cal	for	rce nb	on	- Colonia,
coordinat	es cor	nstants	order	- "	inates	constar	and the statement	de	
$\overline{(R_1,R_3,R_7,I)}$		6.076	0.554	$(R_1,R_3,$	R_{12}, R_{16}			.53	and the same of th
$(R_4, R_6, R_8, I$		7.513	0.725	$(R_4, R_6,$	R_{13}, R_{15}	7.9	188 ().	.73	
(R_5,R_9)	107	6.112	0.603	$(R_5,$	(R_{14})	5.7	703 0.	.58	
(R_2)		5.607	0.518	(R_2)	R_9	5.2	242 ().	48	
$\frac{(R_1,r_1)}{(R_1,r_1)}$		0.060		(R ₁	(r_1)	().())57	Andropologia	-
(R_6,r_1)		0.076		(R_e)	(r_1)	0.0	177		
$(\mathbf{r}_1,\mathbf{r}_1)$		5.113		$(r_1$	$,\mathbf{r}_{1})$	5.1	15		
(R_4,r_3)		0.075		(R_4)	(r_3)	().()	76		
(R_5, r_3)		0.096			(r_3)	().()	193		
(r_3,r_3)		5.153		(r ₃	$,r_3)$	5.1	55		
(=0/-5/					(r_5)	0.0	192		
					,r ₅)	().()	192		
					,r ₅)	5.0	185		
C-C coupling	······································		an de estado estado estado de tentra de estado de e		ozagyatas Atanapal Pri Sirin katili nekali nelikenia misilan	tanka infrastritika infrastritika kilopori esitetiti teksettiini esi eres kilopolia infrastriti esi eres kilopolia	nn en mellefeld i själlen nyeldenstandeljensfelden likker staljon, yn	v Amintopop	Michigandon
	R_1	R_2	R_3	R_4	R ₅	R,	R ₇	ni-fridhtiansbath	F
$R_1(nap)$	6.076	0.586	-0.332	0.301	-0.438	0.608	0.705	-1	16
$R_1(anth)$	5.695	0.442	-0.241	0.217	-0.363	0.529	0.769	-(25
r ₁ (nap)	0.060	-0.015	-0.020	-0.016	0.002	0.076	0.003	(00
r_1 (anth)	0.057	-0.015	-0.019	-0.016	0.001	0.077	0.004	(00
eta_1 (nap)	-0.183	0.001	0.017	-0.019	0.005	0.164	0.018	(00
β_1 (anth)	-0.183	0.005	0.016	-0.017	0.003	0.167	0.018	(00
-	R ₉	R ₁₀	R ₁₁	R ₁₂	R ₁₃	R ₁₄	R ₁₅	THE BEST PROPERTY.	R
R ₁ (nap)	0.073	-0.251	0.135		• 67				
R ₁ (anth)	0.025	-0.193	0.141	0.103	-0.047	0.053	-0.051	0)4
r ₁ (nap)	0.005	0.013	-0.001						
$r_1(anth)$	0.005	0.008	-0.002	0.000	0.002	-0.002	0.001	-0	10
eta_1 (nap)	-0.006	0.000	-0.004						
β_1 (anth)	-0.006	0.000	-0.003	-0.001	0.000	0.000	0.000	0	Ю
C-H coupling									-
r ₁ (nap)	r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	r 7	ang garan in robot diliber	1
	5.113	0.002	0.004	0.011	0.013	0.001	0.000	0.	
r ₁ (anth)	5.115	0.002	0.004	0.011	0.011	0.002	0.000	0.	0
r ₁ (anth)	r ₉	r_{10}							
il(aimi)	0.000	0.000							

^{*}stretch,bend and stretch-bend constants are in mdyn/Å,mdynÅ/rad and mdy i/rad respectively.

Table 4.4: Fitted ab initio(4-21G) frequencies of naphthalene

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Symmetry	presen	twork	SO	\1a	HF/6-31G*b	Evnorin	nont ^a	PED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•								reb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									r.lr.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1119								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c} 762 \\ 513 \\ 494 \\ 505 \\ 486 \\ 517 \\ 514 \\ 493 \\ 52+R_1 \\ 494 \\ 3063 \\ 2270 \\ 3067 \\ 2273 \\ 3069 \\ 3055 \\ 2276 \\ r_3+r_1 \\ 175 \\ 1624 \\ 1605 \\ 1602 \\ 1644 \\ 1617 \\ 1673 \\ 1624 \\ 1605 \\ 1604 \\ 1617 \\ 1673 \\ 1624 \\ 1605 \\ 1605 \\ 1634 \\ 1605 \\ 1605 \\ 1605 \\ 1617 \\ 1673 \\ 1624 \\ 1605 \\ 1605 \\ 1605 \\ 1616 \\ 1605 \\ 1617 \\ 1673 \\ 1624 \\ 1605 \\ 1605 \\ 1605 \\ 1605 \\ 1617 \\ $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D_{3g}								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c} 1153 & 1024 & 1156 & 1030 \\ 940 & 882 & 940 & 879 \\ 508 & 491 & 512 & 495 \\ 3066 & 2274 & 3070 & 2275 \\ 3071 & 3056 & 2295 & r_3+r_1 \\ 3050 & 2252 & 3049 & 2249 \\ 3047 & 3029 & 2278 & r_1+r_3 \\ 1594 & 1546 & 1595 & 1546 \\ 1654 & 1595 & 1545 & R_4+\beta_2 \\ 1395 & 1254 & 1391 & 1248 & 1364 & 1389 & 1260 & \beta_2+\beta_1+R_1 \\ 1271 & 1044 & 1272 & 1049 & 1261 & 1265 & 1045 & \beta_1+R_1+\delta_1 \\ 1129 & 887 & 1137 & 882 & 1130 & 1125 & 885 & \delta_1+\beta_2+R_4+\beta_1 \\ 805 & 740 & 792 & 737 & 781 & 810 & 734 & \delta_1+\delta_3+R_1 \\ 358 & 327 & 354 & 323 & 364 & 359 & 326 & \delta_3+R_1 \\ 82u & 3077 & 2284 & 3083 & 2288 & 3083 & 3056 & 2295 & r_3+r_1 \\ 3048 & 2250 & 3052 & 2253 & 3052 & 3029 & 2258 & r_1+r_3 \\ 1509 & 1446 & 1515 & 1446 & 1539 & 1509 & 1445 & R_5+\beta_2+R_1+\beta_1 \\ 1354 & 1294 & 1341 & 1288 & 1321 & 1361 & 1290 & R_4+\beta_1 \\ 1208 & 1090 & 1204 & 1081 & 1165 & 1209 & 1089 & R_1+\beta_2 \\ 1154 & 839 & 1158 & 840 & 1091 & 1163 & 840 & \beta_1+R_1+\beta_2+R_4 \\ 1008 & 827 & 1002 & 826 & 988 & 1008 & 828 & R_5+R_4+\beta_1 \\ 620 & 593 & 626 & 600 & 596 & 619 & 594 & \delta_2 \\ A_{1u} & 975 & 816 & 981 & 815 & 970 & 970 & - & \gamma_3+\gamma_1 \\ 837 & 657 & 825 & 647 & 824 & 841 & - & \gamma_1+\gamma_3 \\ 591 & 501 & 622 & 531 & 606 & 581 & - & \tau_1+\gamma_1 \\ \end{array}$									
$\begin{array}{c} 940 \\ 508 \\ 491 \\ 512 \\ 495 \\ 491 \\ 508 \\ 491 \\$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B_{1u}								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									δ_3 + R_1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B_{2u}	3077	2284	3083					r_3+r_1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3048	2250	3052					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1509	1446	1515	1446				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1354	1294	1341	1288	1321	1361		$R_4+\beta_1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1208	1090	1204	1081	1165	1209	1089	$R_1+\beta_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1154	839	1158	840	1091	1163	840	$\beta_1+R_1+\beta_2+R_4$
A_{1u} 975 816 981 815 970 970 $-\gamma_3+\gamma_1$ 837 657 825 647 824 841 $-\gamma_1+\gamma_3$ 591 501 622 531 606 581 $-\tau_1+\gamma_1$		1008	827	1002	826	988	1008	828	$R_5+R_4+\beta_1$
837 657 825 647 824 841 $-\gamma_1+\gamma_3$ 591 501 622 531 606 581 $-\tau_1+\gamma_1$		620	593	626	600	596	619	594	$\delta_{ exttt{2}}$
837 657 825 647 824 841 $-\gamma_1+\gamma_3$ 591 501 622 531 606 581 $-\tau_1+\gamma_1$	A_{1n}	975	816	981	815	970	970	_	$\gamma_3 + \gamma_1$
591 501 622 531 606 581 $-\tau_1+\gamma_1$		837	657	825	647	824	841	_	$\gamma_1 + \gamma_3$
*			501	622	531	606	581	_	$\tau_1 + \gamma_1$
					169	184	195	_	$\tau_2 + \tau_1$

Table 4.4: (Continued): Fitted frequencies of naphthalene

Symmetry	presen	t work	SQ	M^a	HF/6-31G*"	Exper	ment"	PED
blocks	d_0	d_8	d_0	d_8	scaled(da)	d_0	ds	ordensates y della m. et as was destrussed as a constant of the a stabilization and
B_{3u}	962	790	969	797	977	958	791	*******
J.	781	629	777	627	791	780	629	39439
	476	401	480	404	485	476	401	アルナナナウェ
	166	153	172	159	172	166	153	T+T3
B_{1g}	954	762	952	761	968	951	766	71+73
19	712	538	<i>7</i> 05	532	708	717	541	73+71
	392	345	387	341	397	386	350	73+73
B_{2q}	992	871	987	857	985	983	875	73+71+71+7
29	887	<i>7</i> 58	879	766	880	876	761	$\gamma_1 + \gamma_3$
	772	635	<i>77</i> 3	634	785	772	646	$\tau_1 + \tau_2$
	472	417	471	413	478	470	413	72+71+73
Ave. error	[5.7]	[4.0]	incl.	C-H			ur de de la companyación de la c	ilipalani vuu annaateri mitto (in guvaliimi kuoruu sessi Mirkki oli yressa ni intimustassa siiliku ili Milkinesti K
Ave. error	[3.6]	[2.4]	excl.	C-H				

a. Ref 3.

b. Ref 2.

c. Number in the parenthesis is not used in fitting.

Table 4.5: Anharmonic and harmonic frequencies and force constants of C-H and C-D vibrations of naphthalene and anthracene

Na	phth	alene

Tapitalaicie					
Symmetry	Anhar	monic	Expt	Harn	nonic
blocks	$C_{10}D_{8}$	$C_{10}H_{8}$	[3]	$C_{10}D_{8}$	$C_{10}H_{8}$
A_{1g}	2291	3060	3060	2350	3177
	2257	3034	3031	2315	3150
B_{3g}	2276	3046	3055	2334	3162
	2257	3031	(3055)	2315	3146
B_{1u}	2295	3048	3056	2354	3164
	2278	3034	3029	2336	3150
B_{2u}	2295	3058	3056	2354	3175
	2258	3030	3029	2316	3145
$f_{C-H_{\alpha}}$	5.113			5.459	
$f_{C-H_{\beta}}$	5.153			5.486	

Ant	hracene	
4 24 6		

Symmetry	Harmonic	Anharmonic	Expt
blocks	$C_{14}H_{10}$	$C_{14}H_{10}$	[19]
$\overline{A_{1q}}$	3177	3079	3072
-3	3150	3052	3048
	3141	3040	3027
B_{3g}	3164	.3066	3054
,	3149	3049	3017
B_{1u}	3165	3066	3084
	3150	3050	3052
	3150	3050	3052
	3143	3042	3022
B_{2u}	3176	3079	3067
	3148	3051	3021
$f_{C-H_{\alpha}}$	5.461	5.115	
$f_{C-H_{\beta}}$	5.489	5.155	
f_{C-H}	5.429	5.085	

Table 4.6: Predicted vibrational frequencies of anthracene

Symmetry	Benzene	Naphthalene		Expt		PED
blocks	$G.M^a$	$\hat{G}.\hat{M}^a$	All^b			
$\overline{A_{1g}}$	-19	-8	-7	3072	ucaki diga ing gagapan kuman nga atong atong atong	T-1 + T1
19	-15	-4	-4	3048		$r_1 + r_3$
	-28	-17	-13	3027		r=
	-28	-9	-3	1561		$R_4 + R_2 + R_5 + R_7$
	3	-10	-4	1480		$R_5 + \beta_1 + \beta_1 + R_7$
	-9	6	4	1412		$R_2 + R_4 + R_1 + R_7$
	4	-11	-21	1264		$R_1 + R - + \beta_1$
	-15	-11	-8	1164		324 31
	13	1	8	1007		$R_4+R_4+i_1$
	1	9	5	754		R=+1=+R-+R1
	3	()	-1	625		9 •
	8	3	()	397		17+R7+R1
B_{3g}	-22	-11	-12	3054		$r_1 + r_1$
	-39	-28	-32	3017		$r_1 + r_1$
	-37	-46	-2	1632		$R_4 + R_7 + R_1$
	-24	-22	0	1596		R7+R4
	-2	-4	-4	1384^{d}	,1433	$3_3 + 3_1 + R_1$
	-13	-13	-20	1273		35+31
	-11	-8	0	1187		$\beta_{1} + \beta_{5} + R_{1}$
	-1	-6	-1	1098		$R_1 + \beta_3 + R_4$
	-13	-20	-13	903		d ₁
	1	-2	-2	522		da
	10	7	9	397		do
B_{1u}	7	18	18	3084		r_1+r_1
	-5	6	2	3052		$r_1 + r_3 + r_5$
	-30	-20	-20	3022		rx+r1
	-44	-30	-9	1627		$R_4 + R_1$
. 00	-7	-18	-7	1450		$3_3 + R_1 + R_7$
	24	13	6	1346		$R_7 + \delta_1 + \beta_3$
	5	0	1	1272		$\beta_1 + \alpha_2 + R_1$
	-12	-7	-4	1151		$\beta_3 + \beta_1 + R_4$
	1	-5	-4	908		01
	7	0	7	652		$\delta_3 + \delta_1 + R_1$
	5	3	2	234		33+R7
B_{2u}	-24	-12	-12	3067		r_3+r_1
	-40	-29	-30	3021		
	-28	-23	-18	1542		r_1+r_3 $R_4+R_5+R_7$
	10	8	15	1460		
	-7	13	-4	1400		$\beta_1 + \beta_2 + R_5 + R_1$
			T	LTUU	PACINE NEW AMERICAN AND RESIDENCE OF COMME	$R_{2}+3_{5}+R_{1}+R_{4}$

Table 4.6: (Continued): Predicted frequencies of anthracene

Symmetry	Benzene	Naphthalene		Expt ^c	PED
blocks	$G.M^a$	$G.M^a$	All^b	1	
	35	38	33	1318	$R_7+\beta_5+\beta_1$
	-2	1	0	1167	$\beta_3 + R_1 + \beta_5$
	38	31	-13	1124	$R_7 + \beta_1 + R_4$
	19	5	5	998	$R_5 + \beta_1$
	16	18	13	809	R_1+R_2
	6	4	1	603	δ_2
A_{1u}	-11	-6	4	988	$\gamma_3 + \gamma_1$
	17	18	3	858	$\gamma_1 + \gamma_3$
	-6	5	4	743	$ au_1 + au_2$
	7	-9	0	$(491)^f$	$ au_2 + \gamma_1 + au_1$
	9	3	0	126	$ au_2 + au_1$
B_{3u}	-18	-26	-12	958	$\gamma_1 + \gamma_3 + \tau_3$
	-17	-20	-16	879	$\gamma_5 + \tau_3 + \gamma_3$
	12	14	5	· 726	$\gamma_1 + \gamma_3 + \gamma_5$
	7	8	4	469	$ au$ "+ $ au'$ + $ au_3$
	14	4	-1	380	$ au_{\mathfrak{Z}}$
	19	19	19	106	au'+ au"+ $ au$ 3
B_{1g}	-14	-22	-8	956	$\gamma_1+\gamma_3+ au_3$
	16	20	9	<i>7</i> 60	$\gamma_1 + \gamma_3$
	11	12	8	479	au'+ au"+ $ au$ 3
	22	20	21	244	$ au_3$ + $ au$ "+ $ au'$
B_{2g}	-23	-19	-9	977	$\gamma_3 + \gamma_1$
-3	1	7	0	916	$\gamma_5 + \gamma_3$
	29	36	21	852°,896	$\gamma_1 + \gamma_3 + \gamma_5$
	-9	24	16	773	$ au_1$
	6	21	29	580	$ au_1$ + γ_1 + $ au_2$
	29	22	24	287	$ au_2$ + $ au_1$
Ave.error	[15.0]	[13.5]	[9.2]	including CH	
Ave.error	[13.6]	[13.2]	[8.2]	excluding CH	

a. Geometric mean of the respective diagonal scale factors are taken for the off-diagonal scale factors.

b. All(diagonal and off-diagonal) scale factors are taken.

c. Ref. 19.

d. Ref. 23.

e. Ref. 26.

f. Number in the parenthesis is our predicted frequency.

Table 4.7: Orthogonal transformation matrix of naphthalene

```
In-plane
  1
       1
          0.5000 3
                    0.5000 7 0.5000 11
                                           0.5000
  2
          1.0000
  3
          0.5000 6
                               0.5000 10
                     0.5000 8
                                           0.5000
  4
       5
          0.7071 9
                     0.7071
  5
      12
          0.5000 13
                     0.5000 16
                               0.5000 19
                                           0.5000
  6
      14
          0.5000 15
                     0.5000 17
                               0.5000 18
                                           0.5000
  7
          0.5000 21 -0.5000 24 -0.5000 27
      20
                                           0.5000
  8
      22
          0.5000 23 -0.5000 25
                               0.5000 26 -0.5000
  9
      29
          0.7071 32
                   0.7071
 10
          0.5000 3 -0.5000 7 -0.5000 11
 11
          0.5000 6 -0.5000
                              0.5000 10 -0.5000
                           8
 12
         0.5000 13 -0.5000 16 -0.5000 19
      12
                                         0.5000
 13
      14
         0.5000 15 -0.5000 17
                               0.5000 18 -0.5000
 14
      20
         0.5000 21
                   0.5000 24
                               0.5000 27
                                          0.5000
 15
      22
         0.5000 23
                   0.5000 25
                               0.5000 26
                                          0.5080
16
         0.7071 31 -0.7071
     28
17
     30
         0.7071 33
                   0.7071
18
      1
         0.5000 3
                    0.5000
                           7 -0.5000 11 -0.5000
19
         0.5000 6 0.5000
                            8 -0.5000 10 -0.5000
20
         0.7071 9 -0.7071
      5
         0.5000 13 0.5000 16 -0.5000 19 -0.5000
21
     12
22
     14 0.5000 15
                   0.5000 17 -0.5000 18 -0.5000
23
         0.5000 21 -0.5000 24 0.5000 27 -0.5000
     20
     22 0.5000 23 -0.5000 25 -0.5000 26
24
25
     29
         0.7071 32 -0.7071
26
         0.5000 3 -0.5000 7 0.5000 11 -0.5000
      1
     4 0.5000 6 -0.5000
27
                          8 -0.5000 10
     12 0.5000 13 -0.5000 16 0.5000 19 -0.5000
28
29
        0.5000 15 -0.5000 17 -0.5000 18 0.5000
     14
30
        0.5000 21 0.5000 24 -0.5000 27 -0.5000
     20
31
        0.5000 23 0.5000 25 -0.5000 26 -0.5000
     22
32
     28 0.7071 31
                   0.7071
33
        0.7071 33 -0.7071
    30
Out-of-plane
1
     1
        0.5000
                2 -0.5000
                           5 0.5000
                                      8 -0.5000
2
       0.5000 4 -0.5000
     3
                           6 -0.5000
                                      7
                                         0.5000
     9 0.7071 12 -0.7071
3
4
        0.7071 13 -0.7071
    10
5
     1
        0.5000
                2
                  0.5000
                          5 -0.5000
                                      8 -0.5000
```

Table 4.7: (Continued): Orthogonal matrix of naphthalene

```
6
      3
         0.5000
                  4
                      0.5000
                               6 -0.5000
                                           7 -0.5000
 7
     11
         0.7071 14 - 0.7071
 8
      1
         0.5000
                  2 -0.5000
                               5 -0.5000
                                              0.5000
 9
         0.5000
      3
                  4 -0.5000
                                  0.5000
                                           7 -0.5000
10
      9
         0.7071 12
                      0.7071
11
         0.7071 13
                      0.7071
     10
                                  0.5000
12
      1
         0.5000
                  2
                      0.5000
                                              0.5000
                                           8
13
      3
         0.5000
                      0.5000
                                  0.5000
                                           7
                                              0.5000
14
     11
          0.7071 14
                      0.7071
15
     15
          1.0000
```

Table 4.8: Orthogonal transformation matrix of anthracene

In-	plane							
1	1	0.5000	3	0.5000	12	0.5000	16	0.5000
2	2	0.7071	9	0.7071				
3	4	0.5000	6	0.5000	13	0.5000	15	0.5000
4	5	0.7071	14	0.7071				
5	7	0.5000	8	0.5000	10	0.5000	11	0.5000
6	17	0.5000	18	0.5000	23	0.5000	26	0.5000
7	19	0.5000	20	0.5000	24	0.5000	25	0.5000
8	21	0.7071	22	0.7071				
9	27	0.5000	28	-0.5000	33	-0.5000	36	0.5000
10	29	0.5000	30	-0.5000	34	0.5000	35	-0.5000
11	38	0.7071	44	0.7071				
12	41	1.0000						
13	1	0.5000	3	-0.5000			16	0.5000
14	4	0.5000	6	-0.5000	13	0.5000	15	-0.5000
15	7	0.5000	8	-0.5000	10	0.5000	11	-0.5000
16	17	0.5000	18	-0.5000	23	-0.5000	26	0.5000
17	19	0.5000	20	-0.5000	24	0.5000	25	-0.5000
18	27	0.5000	28	0.5000	33	0.5000	36	0.5000
19	29	0.5000	30	0.5000	34	0.5000	35	0.5000
20	31	0.7071	32	0.7071				
21	37	0.7071	43	-0.7071				
22	39	0.7071	45	0.7071				
23	42	1.0000				•		
24	1	0.5000	3	0.5000	12	-0.5000	16	-0.5000
25	2	0.7071	9	-0.7071				
26	4	0.5000	. 6	0.5000	13	-0.5000	15	-0.5000

Table 4.8: (Continued): Orthogonal matrix of anthracene

```
27
           0.7071 14 -0.7071
  28
           0.5000 8 -0.5000 10 -0.5000 11
                                            0.5000
           0.5000 18 0.5000 23 -0.5000 26 -0.5000
  29
          0.5000 20 0.5000 24 -0.5000 25 -0.5000
  30
       19
  31
       27
           0.5000 28 -0.5000 33
                               0.5000 36 -0.5000
           0.5000 30 -0.5000 34 -0.5000 35 0.5000
  32
       29
  33
           0.7071 32 -0.7071
       31
  34
           0.7071 44 -0.7071
       38
           0.5000 3 -0.5000 12 0.5000 16 -0.5000
  35
        1
          0.5000 6 -0.5000 13 -0.5000 15
  36
  37
          0.5000 8 0.5000 10 -0.5000 11 -0.5000
       7
  38
          0.5000 18 -0.5000 23 0.5000 26 -0.5000
       17
  39
          0.5000 20 -0.5000 24 -0.5000 25
       19
  40
      21
          0.7071 22 -0.7071
  41
      27
          0.5000 28 0.5000 33 -0.5000 36 -0.5000
 42
          0.5000 30 0.5000 34 -0.5000 35 -0.5000
      29
 43
      37
          0.7071 43
                     0.7071
 44
          0.7071 45 -0.7071
      39
 45
      40
          1.0000
 Out-of-plane
  1
       1
          0.5000
                 2 -0.5000 7 0.5000 10 -0.5000
  2
         0.5000 4 -0.5000 8 -0.5000 9 0.5000
       3
       5 0.7071 6 -0.7071
  3
     11 0.7071 17 -0.7071
  4
  5
         0.7071 18 -0.7071
      12
  6
     14 1.0000
 7
        0.5000 2
      1
                    0.5000
                            7 -0.5000 10 -0.5000
. 8
        0.5000 4
      3
                    0.5000
                            8 -0.5000 9 -0.5000
 9
         0.7071 19 -0.7071
     13
10
        0.7071 21 -0.7071
     20
11
        0.5000 2 -0.5000
      1
                           7 -0.5000 10
        0.5000 4 -0.5000
                                          0.5000
12
      3
                           8 0.5000 9 -0.5000
13
        0.7071 17
     11
                    0.7071
14
     12
        0.7071 18
                    0.7071
15
     15
        1.0000
16
     1
        0.5000
                2
                   0.5000
                           7
                              0.5000 10
17
                                          0.5000
      3
        0.5000 4
                   0.5000
                              0.5000 9
18
                                          0.5000
     5
        0.7071 6
                   0.7071
19
     13
        0.7071 19
                   0.7071
20
     16
        1.0000
21
        0.7071 21
    20
                   0.7071
```

Table 4.9: Naphthalene in plane symbolic F matrix in non-redundant local coordinates

```
1
  2
       3
  4
       2
           1
  5
       6
           7
               8
  9
      10
           9
               11
                   12
  7
       6
           5
               13
                   11
                        8
 14
       2
          15
               16
                   17
                       18
                            7
 18
       6
          16
               19
                   20
                       21
                                 8
 17
      10
          17
               20
                       20
                            9
                   22
                                11
                                    12
 16
       6
          18
               21
                   20
                       19
                            5
                                13
                                    11
                                          8
 15
       2
          14
               18
                             4
                   17
                       16
                                 5
                                     9
                                          7
                                              1
 23
          25
               26
      24
                   27
                       28
                            29
                                30
                                    31
                                         32
                                             33
                                                 34
 25
      24
          23
               28
                   27
                       26
                            33
                                32
                                         30
                                             29
                                    31
                                                 35
                                                     34
 36
      37
          38
               39
                   40
                       41
                            42
                                43
                                    44
                                         45
                                             46
                                                 47
                                                     48
                                                          49
 38
      37
          36
               41
                   40
                       39
                            46
                                45
                                    44
                                         43
                                             42
                                                 48
                                                     47
                                                          50
                                                              49
 29
      24
          33
               32
                   31
                       30
                            23
                                28
                                    27
                                         26
                                             25
                                                 51
                                                     52
                                                          53
                                                              54
                                                                  34
 46
      37
          42
               43
                   44
                       45
                            38
                                39
                                    40
                                         41
                                             36
                                                 54
                                                          55
                                                     53
                                                              56
                                                                  48
                                                                       49
 42
      37
          46
                            36
               45
                   44
                       43
                                41
                                    40
                                         39
                                             38
                                                 53
                                                      54
                                                          56
                                                                   47
                                                              55
                                                                       50
                                                                           49
 33
      24
          29
               30
                       32
                            25
                                26
                                    27
                                         28
                                             23
                                                 52
                                                      51
                                                          54
                                                              53
                                                                   35
                                                                       47
                   31
                                                                            48
                                                                                34
                                             67
                                                      69
                                                          70
                                                              71
                                                                   72
                                                                           -4
 57
      58
          59
               60
                   61
                       62
                            63
                                64
                                    65
                                         66
                                                 68
                                                                       73
                                                                                75
                                                                                    76
-59 -58 -57 -62 -61 -60 -67 -66 -65 -64 -63 -69 -68 -71 -70 -75 -74 -73 -72
                                                                                    77
 76
 78
      79
          80
               81
                  82
                      83
                           84
                               85
                                    86
                                        87
                                             88
                                                 89
                                                     90
                                                          91
                                                              92
                                                                  93
                                                                       94
                                                                           95
                                                                                96
                                                                                    97
 98
      99
-80 -79 -78 -83 -82 -81 -88 -87 -86 -85 -84 -90 -89 -92 -91 -96 -95 -94 -93
 97 100
          99
-63 -58 -67 -66 -65 -64 -57 -62 -61 -60 -59 -72 -75 -74 -73 -68 -71 -70 -69 101
102 103 104
               76
 88
     79
          84
               85
                       87
                           80 81
                                   82 83
                                            78 96 93
                                                         94
                                                              95
                                                                  90
                                                                       91
                                                                           92
                                                                                89 104
                   86
103 105 106
               98
                   99
-84 -79 -88 -87 -86 -85 -78 -83 -82 -81 -80 -93 -96 -95 -94 -89 -92 -91 -90 103
104 106 105
               97 100
                       99
                                    61 62
                                            57
                                                75
                                                     72 73
                                                              74
                                                                  69
                                                                       70
                                                                           71
                       66
                            59
                                60
 67
      58
         63
               64
                   65
101 104 103
               77
                   97
                       98
                            76
                                      0-110-109 111-111 112-112 113 114-114-113 115
                    0-108 109 110
       0-107 108
 115 116 116 117 118 118 117 119
120 121 120 122 123 122 124 125 126 125 124 127 127 128 128 129 130 130 129 131
-131 132-132 133 134-134-133
                                 0 135
```

Table 4.9: (Continued): Naphthalene in plane symbolic F matrix in loc l coordinates

```
136
 144 145 145 146 147 147 146 148 0 149
     0-109-110 0 110 107-108
                         0 108-107 113-113-114 114 111-112 112-1 1-117
-117-118-118-115-116-116-115 150
                           0 151 119
124 121 124 125 126 125 120 122 123 122 120 129 129 130 130 127 128 128 1 7-133
133 134-134-131 132-132 131 0 152
                             0
                                0 135
     -138
                          0-137 136-142 142 143-143-140 141-141 1 0 146
146 147 147 144 145 145 144-151
                          0 153-148 0 149
```

Fitted in plane force constants of naphthalene

^{*} The non-redundant local coordinates are as given in Table-4.1.

Table 4.10: Naphthalene out of plane symbolic F matrix in non-redundant local coordinates

```
1
  2
       1
  3
       4
            5
  4
       3
            6
                 5
            9
  7
       8
                10
                      1
 10
       9
           11
                12
                      4
                           5
  9
      10
           12
                      3
                           6
                                5
                11
       7
                      2
                           3
  8
           10
                 9
                                4
                                     1
 13 -13
           14 -14
                     15
                          16 -16 -15
                                        17
 18 -18
           19 -19
                     20
                          21 -21 -20
                                        22
                                             23
 24
      24
           25
                25
                     26
                          27
                              27
                                   26
                                         0
                                               0
                                                  28
-15
      15
           16 -16 -13
                          14 -14
                                        29
                                                   0
                                   13
                                             30
                                                       17
-20
                                                       22
      20
           21 -21 -18
                          19 -19
                                             31
                                                   0
                                                            23
                                   18
                                        30
                                          0
                                                        0
                                                             0
 26
      26
           27
                27
                     24
                          25
                               25
                                   24
                                               0
                                                  32
                                                                 28
 33
      33
           34
                34
                     33
                          34
                               34
                                   33
                                          0
                                               0
                                                  35
                                                        0
                                                             0
                                                                 35
                                                                      36
```

Fitted out of plane force constants of naphthalene.

```
0.007
                           0.030
                                    0.320
                                             0.010
                                                      0.006
                                                              -0.011
                                                                       -0.004
 0.315
        -0.025
                 -0.023
                                                      0.328
                                                               0.029
                                                                       -0.039
                                                                                 0.020
-0.001
                                   -0.014
                                            -0.012
          0.005
                  -0.022
                          -0.032
                                                      0.001
                                                               0.312
                                                                       -0.043
                                                                                 0.048
 0.013
          0.010
                          -0.039
                                   -0.014
                                             0.008
                   0.310
                                   -0.062
                                             0.347
-0.056
         -0.018
                   0.012
                            0.034
```

^{*} The non-redundant local coordinates are as given in Table-4.1.

Table 4.11: Anthracene in plane symbolic F matrix in non-redundant local coordinates

```
1
       2
            3
       4
            2
                1
       5
            6
                7
                    8
       9
          10
                9
                   11
                        12
       7
           6
                5
                   13
                        11
                             8
      14
          15
               16
                   17
                       18
                            19
                                 20
     21
          22
              23
                   24
                       25
                            26
                                27
                                     20
     28
          29
              28
                   30
                       31
                            30
                                22
                                     15
                                          3
     23
          22
              21
                   26
                       25
                            24
                                32
                                     33
                                         15
                                              20
     16
          15
              14
                  19
                       18
                           17
                                33
                                     32
                                         22
                                              27
                                                  20
     34
         28
              35
                  36
                       37
                           38
                                21
                                     14
                                          2
                                             16
                                                  23
     38
         30
              36
                  39
                       40
                           41
                                26
                                     19
                                          6
                                             17
                                                  24
                                                        7
                                                            8
     37
         31
              37
                  40
                       42
                           40
                                25
                                    18
                                         10
                                             18
                                                  25
                                                        9
                                                           11
                                                                12
     36
         30
              38
                  41
                       40
                           39
                                24
                                    17
                                          6
                                             19
                                                  26
                                                       5
                                                           13
                                                                11
                                                                      8
    35
         28
             34
                  38
                       37
                           36
                                23
                                    16
                                          2
                                             14
                                                  21
                                                       4
                                                            5
                                                                 9
                                                                      7
                                                                           1
    43
         44
             45
                  46
                      47
                           48
                               49
                                    50
                                         51
                                             52
                                                  53
                                                      54
                                                           55
                                                                56
                                                                    57
                                                                         58
                                                                              59
    45
         44
             43
                  48
                      47
                           46
                               53
                                    52
                                        51
                                             50
                                                 49
                                                      58
                                                           57
                                                                56
                                                                    55
                                                                         54
    61
                                                                              60
         62
                                                                                   59
             63
                  64
                      65
                           66
                               67
                                    68
                                        69
                                             70
                                                 71
                                                      72
                                                           73
                                                               74
                                                                    75
                                                                         76
                                                                              77
    63
        62
                                                                                   78
             61
                                                                                       79
                  66
                      65
                           64
                               71
                                    70
                                        69
                                             68
                                                 67
                                                      76
                                                           75
                                                               74
                                                                    73
                                                                         72
    81
        82
                                                                              78
             83
                 84
                                                                                   77
                                                                                       80 79
                      85
                           86
                               87
                                    87
                                        82
                                            88
                                                 88
                                                      81
                                                          86
                                                               85
    93
                                                                    84
                                                                         83
                                                                              89
                                                                                   90
                                                                                       91 92
    83
        82
             81
                 86
                     85
                          84
                               88
                                   88
                                        82
                                            87
                                                 87
                                                     83
                                                          84
                                                               85
    94
        93
                                                                    86
                                                                         81
                                                                              90
                                                                                  89
                                                                                       <del>32</del> 91
    54
        51
             58
                 57
                     56
                          55
                               50
                                   49
                                        44
                                            53
                                                 52
                                                     43
                                                          48
   89
                                                               47
                                                                    46
        90
                                                                         45
             59
                                                                              95
                                                                                  96
                                                                                       17 98
   76
        69
            72
                73
                     74
                          75
                              70
                                   71
                                        62
                                            67
                                                 68
                                                     63
                                                          64
   92
                                                               65
        91
                                                                   66
            78
                                                                        61
                                                                             98
                 79
                                                                                  97
                                                                                       9 100
   72
       69
            76
                75
                     74
                         73
                              68
                                   67
                                       62
                                           71
                                                70
                                                     61
                                                          66
   91
       92
                                                              65
                                                                   64
            77
                80
                                                                        63
                                                                             97
                     79
                                                                                  98 1 0
   58
       51
            54
                55
                     56
                         57
                              52
                                   53
                                       44
                                           49
                                                50
                                                     45
   90
                                                         46
       89
                                                              47
            60
                                                                   48
                77
                     78
                                                                        43
                                                                             96
                                                                                  95
                         59
 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 1 7 120
-103-102-101-106-105-104-111-110-109-108-107-116-115-114-113-112-118-117-1: )-119
 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 14 148
 149 150 151 152 153 154 155 156 157
-131-130-129-134-133-132-139-138-137-136-135-144-143-142-141-140-146-145-14 -147
-150-149-154-153-152-151 156 155 158 157
```

Table 4.11: (Continued): Anthracene in plane symbolic F matrix in local coordinates

```
159 160 161 162 163 164 165-165-160 166-166-159-164-163-162-161 167 168 169 170
             0-167-170-169-168 171 172 173 174 175
-161-160-159-164-163-162 166-166 160 165-165 161 162 163 164 159-168-167-170-169
             0 168 169 170 167 172 171 174 173 176 175
-112 - 109 - 116 - 115 - 114 - 113 - 108 - 107 - 102 - 111 - 110 - 101 - 106 - 105 - 104 - 103 - 123 - 126 - 125 - 124
-121-122-117-120-119-118 177 178 179 180 171 172 127
  144 137 140 141 142 143 138 139 130 135 136 131 132 133 134 129 154 151 152 153
  150 149 146 147 148 145 180 179 181 182 174 173 156 157
-140 - 137 - 144 - 143 - 142 - 141 - 136 - 135 - 130 - 139 - 138 - 129 - 134 - 133 - 132 - 131 - 151 - 154 - 153 - 152 - 154 - 153 - 152 - 154 - 153 - 154 - 153 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154 - 154
-149-150-145-148-147-146 179 180 182 181 173 174 155 158 157
  116 109 112 113 114 115 110 111 102 107 108 103 104 105 106 101 126 123 124 125
  122 121 118 119 120 117 178 177 180 179 172 171 128 155 156 127
                                 0-184 185 186
             0-183 184
                                                                  0-186-185 187 188
                                                                                                         0-188-187 189-189 190-190
  191-191 192 193-193-192 194 194 195 195 196 196 197 198 198 197 199
  200 201 200 202 203 202 204 205 206 205 204 207 208 209 208 207 210 210 211 211
  212 212 213 214 214 213 215-215 216-216 217-217 218 219-219-218
                                                                                                                                0 220
             0-221 222
                                     0-226-225 227-227 228-228
  229-229 230 231-231-230 232 232 233 233 234 234 235 236 236 235 237
                                     0-240 241 241
                                                                   0-241-241 239-240
                                                                                                          0 240-239 242-242 243-243
              0-239 240
  244-244 242-243 243-242 245 245 246 246 0
                                                                                          0-245-246-246-245 247
                                                                                                                                        0 248 249
  250 251 250 252 253 252 254 254 251 254 254 250 252 253 252 250 255 255 256 256
  257 257 255 256 256 255 258-258 259-259 0 0-258 259-259 258
                                                                                                                                0 260
  261
                                     0-263 264-264
                                                                   0 264-264-262 263
                                                                                                          0-263 262 265-265 266-266
  262
              0-262 263
              0-265 266-266 265 267 267 268 268 269 269 267 268 268 267 270
                                                                                                                                         0 271
      0 272
                                     0 188 186 185
                                                                   0-185-186 183-184
                                                                                                          0 184-183 192-192-193 193
              0-187-188
  191-191 189-190 190-189-197-197-198-198-196-196-194-195-195-194 273
                                                                                                                                        0 274 247
      0-270 199
  207 206 207 208 209 208 205 204 201 204 205 200 202 203 202 200 213 213 214 214
  212 212 210 211 211 210-218 218 219-219-217 217-215 216-216 215
                                                                                                                              0 275
                      0 220
  260
              0
                                     0-226-224-223
                                                                    0 223 224-221 222
                                                                                                        0-222 221-230 230 231-231
              0 225 226
 -229 229-227 228-228 227 235 235 236 236 234 234 232 233 233 232-274 0 276-248
      0 271-237
                            0 238
```

Table 4.11: (Continued): Anthracene in plane symbolic F matrix in lc al coordinates

Scaled in plane force constants of anthracene

5.695 0.579 -0.253 0.167 0.039 0.005 -0.026 0.005 0.000 -0.183 -0.003 -0.010 0.007 0.001 0.007 0.004 -0.004 0.000 -0.006 -0.090 0.045 0.058 0.000	5.703 -0.432 0.279 0.069 0.008 -0.024 0.000 -0.011 0.005 -0.001 -0.003 0.181 -0.001 0.000 -0.001 0.000 -0.011 0.000 -0.011 0.000 -0.011 0.000 -0.001 0.006 -0.011 0.285 -0.070	3 -0.291 -0.193 -0.394 0.057 -0.002	0.769 0.144	0.728 -0.125 0.042 -0.019 0.002 0.093 0.001 0.007 0.000 0.003 0.000 -0.002 -0.006 -0.009 0.209 0.511 0.294 -0.002 -0.031 0.003 -0.005	0.141 0.157 -0.051 -0.016 -0.002 0.000 0.004 0.000 0.167 0.000 0.000 -0.009 0.008 0.016 -0.001 0.096 0.009 -0.176 0.002	-0.263 0.785 0.053 0.001 0.001 0.000 0.004 0.092 0.000 0.018 0.005 0.502 -0.003 0.008 0.506 0.010 0.000 0.008 -0.001 0.004 -0.006 0.004	0.098 0.025 -0.047 0.077 -0.001 0.000 0.011 -0.017 0.000 0.000 -0.001 0.004 0.004 0.007 0.003 0.000 0.001 0.003 0.001 -0.072	-0.194 0.105 0.046 0.004 5.115 -0.003 5.155 0.011 0.000 -0.006 0.019 0.005 0.001 -0.014 0.000 0.000 -0.093 1.429 -0.009 0.001 0.008		316 001
0.045 0.058 0.000 0.147	-0.011 0.285 -0.070 -0.005 -0.036	0.002 -0.223 0.051 -0.005 -0.154 -0.056	0.002 -0.057 -0.008 -0.101 0.231	0.003	-0.176 0.061	0.004 -0.006	0.003	-0.009 0.001	-(1	093 316

^{*} Non-redundant local coordinates are as given in Table-4.2.

Table 4:12: Anthracene out of plane symbolic F matrix in non-redundant local coordinates

```
1
  2
       1
  3
       4
            5
  4
       3
            6
                 5
  7
       8
            9
                10
                     11
  8
       7
           10
                 9
                     12
                          11
 13
      14
           15
                16
                      7
                           8
                                1
           17
                     10
 16
      15
                18
                           9
                                4
                                     5
 15
      16
           18
                17
                      9
                          10
                                3
                                     6
                                          5
 14
      13
           16
                15
                      8
                           7
                                2
                                     3
                                          4
                                               1
 19 -19
           20 -20
                     21 -21
                               22
                                    23 -23 -22
                                                   24
 25 -25
           26 -26
                     27 -27
                               28
                                    29 -29 -28
                                                   30
                                                        31
 32
      32
                33
                          34
           33
                     34
                               35
                                    36
                                         36
                                              35
                                                    0
                                                         0
                                                             37
 38 -38
           39 -39
                     40 -40
                               38
                                   -39
                                         39
                                            -38
                                                   41
                                                        42
                                                              0
                                                                  43
 44 -44
           45 -45
                      0
                           0 - 44
                                    45 -45
                                              44
                                                   46
                                                        47
                                                              0
                                                                   0
                                                                       48
 49
      49
           50
                50
                     51
                          51
                               49
                                    50
                                         50
                                              49
                                                    0
                                                             52
                                                         0
                                                                   0
                                                                        0
                                                                            53
                                    20 -20
                                                                                 24
-22
      22
           23 -23 -21
                          21 -19
                                              19
                                                   54
                                                        55
                                                              0
                                                                -41
                                                                       46
                                                                             0
-28
           29 -29 -27
                          27 -25
                                    26 -26
                                              25
                                                                -42
                                                                                 30
      28
                                                   55
                                                        56
                                                              0
                                                                       47
                                                                             0
                                                                                      31
 35
      35
                     34
                               32
                                    33
                                         33
                                              32
                                                    0
                                                         0
                                                             57
                                                                   0
                                                                        0
                                                                            52
                                                                                  0
                                                                                       0
                                                                                           37
           36
                36
                          34
                                                                                           65
 58
      58
           59
                59
                     60
                          60
                               61
                                    62
                                         62
                                              61
                                                    0
                                                         0
                                                             63
                                                                    0
                                                                        0
                                                                            64
                                                                                       0
                                                                                                66
 61
      61
           62
                62
                     60
                          60
                               58
                                    59
                                         59
                                              58
                                                    0
                                                         0
                                                             65
                                                                    0
                                                                            64
                                                                                            63
                                                                                                67
 66
```

Scaled out of plane force constants of anthracene

```
0.315
                                             0.008
                                                      0.007
                                                              -0.011
                                                                      -0.004
                                                                                0.006
 0.307
        -0.024
                  -0.020
                           0.036
                           0.001
                                    0.001
                                            -0.001
                                                      0.000
                                                               0.000
                                                                      -0.016
                                                                               -0.030
 0.310
        -0.030
                   0.000
                           0.315
                                    0.040
                                            -0.039
                                                      0.025
                                                             -0.002
                                                                      -0.001
                                                                                0.014
-0.018
          0.001
                   0.001
                                                                      -0.010
                                                                                0.020
                            0.009
                                   -0.001
                                             0.000
                                                      0.301
                                                               0.009
 0.283
        -0.033
                  -0.031
                                                     -0.068
                                                               0.341
                                                                        0.014
                                                                               0.005
-0.031
          0.037
                   0.305
                          -0.029
                                    0.014
                                             0.059
                                                      0.003
                                                              -0.015
                                                                       -0.035
                                                                               -0.005
                                   -0.004
                                             0.004
-0.030
         -0.017
                   0.294
                            0.003
                                             0.342
                                                     -0.048
                            0.017
                                   -0.002
 0.004
          0.003
                   0.080
```

^{*} The non-redundant local coordinates are as given in Table-4.2.

Table 4.13: Mean amplitudes of vibration(A) of naphthalene

parameter*		[ref.32]	[ref.33]	parameter*	calc.	[ret.32]	[ret.33]
14-18		0.159	0.159	10-12	0.132	0.133	0.133
14-17		0.134	0.134	2-15		0.095	
12-18		0.159	0.159	6-11	0.106	0.108	0.095
14-12		0.188	0.188	10-11	0.124	0.123	0.108
14-16		0.171	0.171	6-15		0.099	0 123
14-13	0.119	0.119	0.119	10-16	0.102		0.099
14-11	0.130	0.133	0.133	10-15	0.099	0.107	0.107
14-15	0.145	0.145	0.145	6-10		0.101	0.101
18-16	0.135	0.141	0.141	1-2	0.044	0.047	0.047
18-15	0.123	0.125	0.125		0.047	0.047	0.047
6-14	0.077	0.077	0.076	2-6	0.047	0.048	0.047
10-14	0.101	0.100	0.097	10-9	0.047	0.048	0.047
6-18	0.098	0.100	0.097	2-10	0.054	0.056	0.058
2-14	0.099	0.101	0.097	6-9	0.056	0.056	0.058
10-17	0.099	0.101		2-5	0.056	0.057	0.060
6-12	0.132	0.132	0.098	3-5	0.060	0.065	0.068
6-17	0.094	0.132	0.132	2-9	0.062	0.061	0.070
2-18	0.095		0.098	6-5	0.063	0.060	0.070
10-13	0.096	0.097	0.097	6-8	0.062	0.068	0.072
2-13	0.096	0.098	0.098	6-3	0.060	0.064	0.068
2-17	0.094	0.098	0.098	6-7	0.066	0.067	0.077
		0.095	0.098	8-10	0.063	0.068	0.078
 0-13	0.095	0.095	0.095	7-10	0.066	0.068	0.078
	Arom	nimboria	the state of	THE RESIDENCE OF THE PERSON OF	40.00	248487878	UUIZO

*Atom numberings are according to Figure 4.1.

Bibliography

- [1] Szczepanski, J.; Vala, M. Nature, 1993, 363, 699.
- [2] a) Szczepanski, J.; Roser, D.; Personette, W.; Eyring, M.; Pellow, R.; Vala, M. J. Phys. Chem., 1992, 96, 7876. b) Pauzat, F.; Talbi, D.; Miller, M. D.; Defrees, D. J.; Ellinger, Y. J. Phys. Chem., 1992, 96, 7882.
- [3] Sellers, H.; Pulay, P.; Boggs, J. E. J. Am. Chem. Soc., 1985, 107, 6487.
- [4] a) Hanson, D. M.; Gee, A. R. J. Chem. Phys., 1969, 51, 5052. b) Hanson, D. M. ibid., 1969, 51, 5063.
- [5] Behlen, F. M.; Mcdonald, D. B.; Sethuraman, V.; Rice, S. A. J. Chem. Phys., 1981, 75, 5685.
- [6] Krainov, E. P. Opt. Spektrosk., 1964,16, 415 and 763.
- [7] Freeman, S. D. E.; Ross, I. G.; Spectrochim. Acta, 1960, 16, 1393.
- [8] Mitra, S. S.; Bernstein, H. J. Can. J. Chem., 1959, 37, 553.
- [9] Neto, N.; Scorocco, M.; Califano, S. Spectrochim. Acta, 1966, 22, 1981.
- [10] Bree, A.; Kydd, R. A.; Spectrochim. Acta, 1970, 26A, 1791.
- [11] Scully, D. B.; Whiffen, D. H. Spectrochim. Acta, 1960, 16, 1409.
- [12] Ohno, K. J. Mol. Spectrosc., 1978, 72, 238.
- [13] a) Luther, H.; Feldmann, K.; Hampel, B. Z. Electrochem., 1955, 59, 1008. b) Luther, H.; Brandes, G.; Guenzler, H.; Hampel, B. ibid., 1955, 59, 1012.

- [14] Stenman, F.; J. Chem. Phys., 1971, 54, 4217.
- [15] Lippincot, E. R.; O'Reilly, E. J. J. Chem. Phys., 1955, 23, 238.
- [16] Hollas, J. M. J. Mol. Spectrosc., 1962, 9, 138.
- [17] Rich, N.; Dows, D. Mol. Cryst. Liq. Cryst., 1968, 5, 111.
- [18] Pietila, L. O.; Stenmann, F. Commentat. Phys-Math. Soc. Sci. Fenn., 1978, 48, 145.
- [19] Szczepanski, J.; Vala, M.; Talbi, D.; Parisel, O.; Ellinger, Y. J. Chem. Phys., 1993, 9, 4494.
- [20] Bakke, A.; Cyvin, V. N.; Whitmer, J. C.; Cyvin, S. J.; Gustavsen, J. E.: Klaeboe, P. A. Naturforsch. Teil. A., 1979, 43, 579.
- [21] Bruhn, W.; Mecke, R.; Z. Elektrochemie., 1961, 65, 543.
- [22] Califano, S.; J. Chem. Phys., 1962, 36, 903.
- [23] a) Bree, A.; Kydd, R. A. J. Chem. Phys., 1968, 48, 5319. b) Bree, A.; Kydd, R. A. ibia 1969, 51, 989.
- [24] Colombo, L. Spectrochim. Acta, 1964, 20, 547.
- [25] Krainov, E. P. Opt. Spektrosk., 1964, 16, 984.
- [26] Evans, D. J.; Scully, D. B. Spectrochim. Acta, 1964, 20, 891.
- [27] Chantry, G. W.; Anderson, A.; Browning, D. J.; Gebbie, H. A. Spectrochim. Acta, 196! 21, 217.
- [28] Mecke, R.; Bruhn, W.; Chafik, A. Z. Naturforsch, 1964, 19a, 41.
- [29] Streitweiser, A. jr., Molecular Orbital Theory for Organic Chemists, John Wiley, Nev York, 1961, p-170.
- [30] Fogarasi, G.; Pulay, P. in Vibrational Spectra and Structure, Ed.J.R.Durig, 1985, vol.14 p-193.

- [31] Goodman, L.; Ozkabak, A. G.; Thakur, S. N. J. Phys. Chem., 1991, 95, 9044.
- [32] Cyvin, S. J.; Cyvin, B. N.; Brunvoll, J. Z. Naturforsch. Teil.A., 1979, 34, 887.
- [33] Kethkar, S. N.; Fink, M. J. Mol. Struct., 1981, 77, 139.

Chapter 5

Theoretical Prediction of Vibrational Spectrum of N-Glycylglycine Hydrochloride

In this chapter, theoretical prediction of the vibrational spectrum of the smallest dipeptide hydrochloride from its parent amino acid frequencies is presented by transferring the complete set of scale factors obtained by using the fitting procedure described in chapte 3.

The scaled quantum mechanical (SQM) approach proved to be very successful for a large number of symmetric organic molecules [1,2]. However the success is limited when the SQM procedure is applied to amino acids. Since there is no symmetry in the amino acids (point group C_1), each force constant is different from the other and many set of scale factors give equally good fit and hence becomes difficult to obtain a unique solution [3]. Also, equally difficult problem is that the ab initio PEDs are different from the experimentally obtained PEDs implying that the ab initio result of isloted molecule is a poor model for amino acids in condensed phase [4]. This is because the ab initic calculation of isolated zwitterion either goes to neutral gas phase spectrum [5] or ever when it retains the geometry exhibits intramolecular H-bonding which is absent in the solution or solid state [4,6]. Attempts are being made to improve the model by explicitly including water molecules in the calculation (supermolecular calculation) or implicitly by introducing a dielectric medium (Onsager reaction field) [3,7-15]. SQM force field calculation on glycine cation supermolecule is available for cis and trans conformations

at HF/4-31G* level [3]. Such supermolecular calculations although aimed at building a generalized scale factors for peptides, are difficult to extend to higher systems because of the increase in the number of atoms included as water molecules. Also the PEDs of water molecules get mixed up with amino acid vibrations and difficult to separate. Alanine zwitterion is studied by the reaction field approach in water environment [14]. This improves the ab initio model of isolated molecule although the agreement is not very good with the experimental PEDs.

An alternative solution to this problem could be the transfer of scale factors from smaller amino acids to the larger dipeptides for which the ab initio model correctly describes the gross features of experimental vibrational spectra. Ab initio calculations of isolated amino acids in their cationic or anionic forms (in acidic or basic solution) grossly resemble the experimental features because the intramolecular H-bonding is less pronounced in these molecules compared to their zwitterions. It appears that if the basis set is chosen carefully the intramolecular H-bonding problem could be reduced further. Hence, the present study involves a complete conformational and vibrational analysis of glycine hydrochloride (GH) and glycylglycine hydrochloride (GGH) and transfer of scale factors between them to obtain a reliable theoretical force field for the smallest dipeptide hydrochloride.

Many ab initio conformational and vibrational analyses of neutral amino acids are found in the literature [4,16-17]. To the best of our knowledge a complete ab initio vibrational analysis of any peptide is limited to our study of GGH [18]. An experimental Raman study of glycylglycine zwitterion (GG) and its normal mode analysis was reported by Lagant et al. [19].

5.1 Calculations

The geometry optimizations and frequency calculations for both GH and GGH were done using 4-21G and 6-31G** basis sets. The ab initio force constants and frequencies of GH were calculated analytically and that of GGH numerically. The cartesian force constants of both GH and GGH were then transformed to the non-redundant local coordinates. The

non-redundant local coordinates of GH and GGH are shown in Table-5.1. Table-5.2 and Figure 5.1 and 5.2. The fitting procedure described in chapter 3 was used to get the 1 ale factors for GH by fitting the frequencies of seven different isotoporners simultaneo sky. The fitting is extremely successful in producing an average deviation of 9.7 cm⁻¹ from the available experimental data. The ab initio force constants of GGH are scaled using the scale factors of GH. Durig's scaling procedure [20] was applied when there is no equivalent local symmetry coordinates between the two compounds. Durig's scaling invoices using a scale factor of 0.9 for stretching, 0.8 for bending and their geometric mean for the off-diagonal ones. The experimental IR spectra of GGH was taken from our reposed spectra [18]. Glycylglycine methyl ester hydrochloride (GGMH) was prepared by reaching SOCl₂ with N-glycylglycine in methanol. The solution was dried under high vacual m. The IR spectrum was recorded using a Perkin-Elmer spectrophotometer.

5.2 Results

Amino acid hydrochlorides in solution dissociates into amino acid cation and Cl⁻ and hence, to a good approximation the spectral features could be accounted by the cation. Similar treatments were given successful results for other systems, for example, acelectholine [21]. In solid state, each Cl⁻ is ionically bonded to the planar H-atom of the N⁺ Is group with a bond distance of 2.59 Åin GH. The room temperature spectra of NH. If and NH₄Br are essentially identical, indicating that the anion has very small effect on the spectra [22]. The difference between the solid and solution phase spectra can be accounted in most cases to the phase change (mainly the strong intermolecular H-bonded network in the crystal structure vs. intermolecular H-bonding in a dielectric medium). Thus, are assonable approximation, the cations can be considered as a good theoretical most optimization and frequency calculations were performed with the respective cations of GH and GGH. Furthermore, the fully optimized structure of GH at HF/6-31G** level of calculation by including Cl⁻ explicitly results in the dissociation of GH into neutral amino acid and HCl.

5.2.1 Conformations of GH

The conformational space of GH has been studied by several authors using ab initio theory. These studies clearly indicate that the lowest energy conformation is basis set dependent [23,24]. Since we are looking for a conformation in which the intramolecular H-bonding will be minimum so that it will mimic the solution or solid state spectra, we used 4-21G, a low level and 6-31G**, a high level basis sets. For the present work we took only the two lowest energy conformations of GH from the earlier study [24]. At 4-21G level C1 is the lowest energy form whereas at 6-31G**, C2 is the most stable one (Figure 5.3). Inclusion of correlation at the MP2 level does not improve 4-21G results while C2 changes to a structure closer to C1 at 6-31G** level indicating that the HF/4-21G calculation reproduces the structure close to the global minima, though C2 is closer to the crystal structure [25]. In all the cases the frequency calculations on the optimized structure were done to make sure that they are real minima. Since the minimum energy conformation at HF/6-31G** does not have the intramolecular H-bonding and also replicate the crystal structure, this basis set is used for the vibrational spectral study.

5.2.2 Conformations of GGH

Eight possible different conformations were selected by rotating the N-terminal and C-terminal groups of GGH. Each conformation is fully optimized at 6-31G** basis set. The optimized structures are given in Figure 5.4 and the final results of different calculations are listed in Table-5.3. C1 is the minimum energy structure. Further MP2/6-31G** single point calculations were performed to see the effect of correlation on the relative energies of these eight conformations. Frequency calculation was done only on the minimum energy conformation.

5.2.3 Vibrational Frequencies of GH

The solution phase IR and Raman spectra of several isotopomers of GH were reported by Williams et al. [3]. However, the supermolecular calculation with water molecules introduces strong coupling between the vibrational modes of GH and water. As a result regions below 600 cm⁻¹ are not very well described in their work. Also since the least

squares method does not lead to unique assignment, they constrained the scale factor in their SQM approach to yield PEDs that were in agreement with their empirical assignment. In the present work the fitting of the experimental trequences of second in GH 10. For this mode the absolute deviation from the fitted one is 30 cm⁻¹. It is possible at this frequency might have been misassigned. For all fundamentals the assignments are very close to that of unscaled ab initio normal modes. The PEDs of scaled force field are in good agreement with that of Williams et al. [3] and hence the assignment for GH ill not be discussed further. The force field cannot be compared, as our results are based on isolated molecule. The fitted frequencies and their PEDs for GH-da are given in Table i.4 and the corresponding fitted frequencies for the isotopomers are given in Table-5.5.

5.2.4 Vibrational Frequencies of GGH

The frequencies obtained from the scaled force field and the corresponding PEDs of G. H are shown in Table-5.6. The predicted frequencies are in excellent agreement with ne available experimental data with an average deviation of 7.6 cm⁻¹. For a comparative study, the experimental frequencies of GG and GGMH are also given in the table.

The ν C=O acid and ν C=O amide bands are predicted at 1738 and 1676 cm⁻¹ and re observed at 1746 and 1677 cm⁻¹. This is in agreement with the 1724 and 1678 cm⁻¹ bands of the corresponding GGMH. The C=O in acetic acid [3] is observed at 1712 cm⁻¹ and at 1682 cm⁻¹ in GG [19].

Both the δ_a N+H₃ modes are predicted at 1641 and 1602 cm⁻¹ and are not observed in our IR spectra. However the 1629 and 1611 cm⁻¹ Raman bands of GG [19] are in very good agreement with our predicted numbers. These modes appear as degenerate bands at 1–37 cm⁻¹ in GH in accordance with the prediction. The 1648 cm⁻¹ band and the weak shouler at 1622 cm⁻¹ in the corresponding GGMH spectra compare well with these assignments. The asymmetric NH(amide) bend is predicted at 1593 cm⁻¹ along with ν CN, ν C=O(amile) and ν NC' is assigned to 1584 cm⁻¹. This amide II mode is observed at a lower frequency (1531 cm⁻¹) in the zwitterion. The 1535 cm⁻¹ band observed in the GGMH spectrum is in agreement with this assignment. The symmetric N⁺H₃ deformation is predicted at

1472 cm⁻¹ agrees very well with the 1480 cm⁻¹ in the zwitterionic spectra. This mode is assigned to the 1452 cm⁻¹ peak in the corresponding GGMH. Both the ρ N⁺H₃ modes are predicted at 1155 and 1126 cm⁻¹ and are observed at 1135 and 1117 cm⁻¹ in the GGH spectra, 1158 and 1100 cm⁻¹ in the zwitterion and 1130 and 1090 cm⁻¹ in the GGMH. In many amino acids these ρ N⁺H₃ modes appear as two closely spaced bands around 1100 to 1150 cm⁻¹ [26-28].

The observed band at 1487 cm⁻¹ is predicted very well at 1486 cm⁻¹ and is assigned to the mixed mode of ω C'H₂, ν C'C, ν C-O and ω CH₂. The various CH₂ bending modes (δ CH₂, ω CH₂ and tCH₂) are predicted at 1443, 1433, 1408, 1329 and 1242 cm⁻¹ and are assigned to the observed bands at 1434, 1434, 1410, 1308 and 1219 cm⁻¹ respectively. The 1447 cm⁻¹ Raman band assigned to δ CH₂ by Lagant et al. in the zwitterion spectra agrees very well with our predicted 1443 cm⁻¹ band. This mode is assigned to the observed band at 1437 cm⁻¹ in the GGMH. The ω CH₂ mode at 1408 cm⁻¹ is assigned to 1399 and 1402 cm⁻¹ in the corresponding GG and GGMH. The CH₂ rocking modes are predicted at 1002 and 925 cm⁻¹. Higher one is assigned to the observed band at 1013 cm⁻¹ and is consistent with the earlier assignment of Lagant et al. at 1007 cm⁻¹ in the zwitterionic spectra for this mode. Although there is no band corresponding to the lower one in our hydrochloride spectra this agrees well with the 918 cm⁻¹ band assignment of the zwitterionic spectra [19].

The predicted band at 1362 cm⁻¹ is assigned to δ COH and ω C'H₂ is in agreement with the observed band at 1350 cm⁻¹. This band is observed at 1378 cm⁻¹ in GH and is consistent with this assignment. There is no corresponding mode in the zwitterion spectra but appear at 1362 cm⁻¹ in the spectrum of GGMH. The ν N+C and one of the ν CC'+ ν CC modes are predicted at 1050 and 907 cm⁻¹ are in excellent agreement with the observed bands of all the three compounds and also consistent with the 1044 and 873 cm⁻¹ bands of GH.

Bands predicted at 700 and $661\,\mathrm{cm^{-1}}$ agree very well with the observed bands at 708 and $661\,\mathrm{cm^{-1}}$ in the hydrochloride spectra, 708 and $665\,\mathrm{cm^{-1}}$ in the zwitterion and 708 and $644\,\mathrm{cm^{-1}}$ in the GGMH. Bands below $600\,\mathrm{cm^{-1}}$ are not available for GGH and hence the predicted numbers below $600\,\mathrm{cm^{-1}}$ are compared with the zwitterionic spectra of Lagant

et al. [19].

The optimized cartesian coordinates obtained by using 6-31G** basis set for the ninimum energy conformation of GH and GGH and their non-redundant scaled force constants are given in Table-5.7 to Table-5.10.

5.3 Conclusions

The fitting procedure to obtain the scale factors from the ab initio force field of GF has shown to be very successful giving an average deviation of 9.7cm⁻¹ between the predicted and the experimental frequencies for seven isotopomers. These scale factors when us distopredict the frequencies of GGH the results were shown to be in good agreement with the experimental ones with an average deviation of 7.6 cm⁻¹ for the smallest dipeptide hydrochloride. A complete set of non-redundant force constants were obtained for both GH and GGH. From the accuracy of the predicted frequencies it is clear that the methodology could, in principle, be used successfully for the prediction of vibrational frequencies and their force fields of larger polypeptides from their parent amino acids.

$$\begin{split} &a_1 = C_2 \ C_1 \quad O_4 \ , b_1 = C_2 \ C_1 \quad O_5 \ , \quad b_2 = O_4 \quad C_1 \ O_5 \ , a_2 = C_1 \ O_4 \ H_6 \\ &a_3 = H_7 \ C_2 \ H_8 \ a_4 = N_3 \ C_2 \ H_7 \ , a_5 = N_3 \ C_2 \ H_8 \ , b_3 = N_3 \ C_2 \ C_1 \\ &b_4 = C_1 \quad C_2 \ H_7 \ , b_5 = C_1 \quad C_2 \ H_8 \ a_6 = H_{10} \ N_3 \ H_{11} \ a_7 = H_9 \ N_3 \ H_{10} \\ &a_8 = H_9 \ N_3 \ H_{11} \ b_6 = C_2 \ N_3 \ H_9 \ , \quad b_7 = C_2 \ N_3 \ H_{10} \ b_8 = C_2 \ N_3 \ H_{11} \end{split}$$

Figure 5.1: Internal coordinates of GH.

 $\begin{array}{l} a_{1} = H_{5} \quad N_{1} \quad H_{6} \quad a_{2} = H_{4} \quad N_{1} \quad H_{5} \quad a_{3} = H_{4} \quad N_{1} \quad H_{6} \quad b_{1} = C_{2} \quad N_{1} \quad H_{4} \quad b_{2} = C_{2} \quad N_{1} \quad H_{5} \quad b_{3} = C_{2} \quad N_{1} \quad H_{6} \\ a_{4} = H_{7} \quad C_{2} \quad H_{8} \quad a_{5} = N_{1} \quad C_{2} \quad H_{7} \quad a_{5} = N_{1} \quad C_{2} \quad H_{8} \quad b_{4} = N_{1} \quad C_{2} \quad C_{3} \quad b_{5} = C_{3} \quad C_{2} \quad H_{7} \quad b_{6} = C_{3} \quad C_{2} \quad H_{8} \\ a_{7} = C_{2} \quad C_{3} \quad N_{9} \quad a_{8} = C_{3} \quad N_{9} \quad H_{12} \quad a_{9} = C_{11} \\ N_{9} \quad H_{12} \quad b_{7} = C_{2} \quad C_{3} \quad O_{10} \quad b_{8} = N_{9} \quad C_{3} \quad O_{10} \quad b_{9} = C_{3} \quad N_{9} \quad C_{11} \\ a_{10} = N_{9} \quad C_{11} \\ C_{13} \quad a_{11} = N_{9} \quad C_{11} \\ H_{14} \quad a_{12} = N_{9} \quad C_{11} \\ H_{15} \quad b_{10} = H_{14} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{14} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_{11} \quad H_{15} \quad b_{12} = C_{13} \\ C_{11} \quad H_{15} \quad b_{11} = C_{13} \\ C_$

Figure 5.2: Internal coordinates of GGH.

Figure 5.3: HF/6-31G** optimized structures of the two conformers of GH.

Figure 5.4: $HF/6-31G^{**}$ optimized structures of the eight conformers of GGH.

Table 5.1: Non-redundant local coordinates* of GH											
S_{1-10}	$=r_{1-10}(all\ stretch)$	S_{19}	$=2a_6-a_7-a_8(\delta_a N^+ H_3)$								
S_{11}	$=2a_1-b_1-b_2(\delta_sCO)$	S_{20}	$=a_7-a_8(\delta_aN^+H_3)$								
S_{12}	$=b_1-b_2(\delta_aCO)$	S_{21}	$=2b_6-b_7-b_8(\rho N^+H_3)$								
S_{13}	$=4a_3-a_4-a_5-b_4-b_5(\delta CH_2)$	S_{22}	$=b_7-b_8(\rho N^+H_3)$								
S_{14}	$=a_4+a_5-b_4-b_5(\omega CH_2)$	S_{23}	$=a_2(\delta COH)$								
S_{15}	$=a_4-a_5+b_4-b_5(\rho CH_2)$	S_{24}	$= 2 C_1 O_5 (-CO)$								
S ₁₆	$=a_4-a_5-b_4+b_5(tCH_2)$	S_{25} .	$=\tau_{12}(\tau CC)$								
S ₁₇	$=5b_3-a_3-a_4-a_5-b_4-b_5(\delta N^+CC)$	S_{26}	$=\tau_{14}(\tau CO)$								
S ₁₈	$=a_6+a_7+a_9-b_6-b_7-b_9(\delta_9N^+H_3)$	S ₂₇	$=\tau_{23}(\tau CN^{+})$								

* All internal coordinates are according to Figure 5.1.

	Table 5.2: Non-redundant	local	coordinates* of GGH
S_{1-17}	=r ₁₋₁₇ (all stretch)	S_{33}	$=a_{11}+a_{12}-b_{11}-b_{12}(\omega C'H_2)$
S_{18}	$=a_1+a_2+a_3-b_1-b_2-b_3(\delta_s N^+H_3)$	S_{34}	$=a_{11}-a_{12}+b_{11}-b_{12}(\rho C'H_2)$
S_{19}	$=2a_1-a_2-a_3(\delta_a N^+ H_3)$	S_{35}	$=a_{11}-a_{12}-b_{11}+b_{12}(tC'H_2)$
S_{20}	$=a_2-a_3(\delta_a N^+ H_3)$	S_{36}	$=5a_{10}-b_{10}-a_{11}-a_{12}-b_{11}-b_{12}(\delta NC'C)$
S_{21}	$=2b_1-b_2-b_3(\rho N^+H_3)$	S_{37}	$=2b_{13}-a_{13}-a_{14}(\delta_s CO_{actd})$
S_{22}	$=b_2-b_3(\rho N^+H_3)$	S_{38}	$=a_{13}-a_{14}(\delta_aCO_{acrd})$
S_{23}	$=4a_4-a_5-a_6-b_5-b_6(\delta CH_2)$	S_{39}	$=b_{14}(\delta COH)$
S_{24}	$=a_5+a_6-b_5-b_6(\omega CH_2)$	S_{40}	$=\gamma C_3 O_{10}(\gamma CO_{amide})$
S_{25}	$=a_5-a_6+b_5-b_6(\rho CH_2)$	S_{41}	$=\gamma N_9H_{12}(\gamma NH)$
S_{26}	$=a_5-a_6-b_5+b_6(tCH_2)$	S_{42}	$=\gamma C_{13}O_{16}(\gamma CO_{acid})$
S_{27}	$=5b_4-a_4-a_5-a_6-b_5-b_6(\delta N^+CC)$	S_{43}	$=\tau_{12}(\tau N^+C)$
S_{28}	$=2a_7-b_7-b_8(\delta_sCO_{amide})$	S_{44}	$=\tau_{23}(\tau CC)$
S_{29}	$=b_7-b_8(\delta_a CO_{amide})$	S_{45}	$=\tau_{39}(\tau CN)$
S_{30}	$=2b_9-a_8-a_9(\delta_sNH)$	S_{46}	$=\tau_{911}(\tau NC')$
S_{31}	$=a_8-a_9(\delta_a NH)$	S ₄₇	$=\tau_{1113}(\tau C'C)$
S_{32}	$=4b_{10}-a_{11}-a_{12}-b_{11}-b_{12}(\delta C'H_2)$	S_{48}	$=\tau_{1317}(\tau CO)$

* All internal coordinates are according to Figure 5.2.

Table 5.3: Relative energies (in kJ/mol) of GH and GGH

	0 \	
Structure	HF/6-31G**	MP2/6-31G**
GH		
C1	15.30	0.03
	(0.00)	
C2	0.00	. 0.00
	(5.07)	
GGH		
C1	0.0	0.0
C2	2.2	7.1
C3	21.2	18.5
C4	23.3	25.4
C5	36.2	33.5
C6	38.2	40.2
C7	61.6	54.8
C8	60.7	53.9

The numbers in the parenthesis are the 4-21G energies.

Table 5.4: Fitted vibrational frequencies of GH (cm⁻¹)

1ab.		ted vibrational frequencies of C		1
Sym.	6-31G**	Assignments	Expt. ^a	SQM
species	scaled			
1	3412		(3200)	-
2	3179	$ u N^+ H$	3182	-
3	3124	$\nu N^+ H$	3152	
4	3060	$ u N^+ H$	3058	Viceropitean.
5	3019	uCH	3012	3022
6	2961	ν CH	2973	2961
7	1746	νC=O	1740	1750
8	1616	$\delta_a N^+ H_3$	1607	1618
9	1610	$\delta_a N^+ H_3$	1607	1594
10	1512	$\delta_s \text{N}^+ \text{H}_3 + \omega \text{CH}_2$	1512	1518
11	1489	δ_s N+H ₃ + ω CH ₂ + ν CC+ ν C-O	(1484)	1476
12	1427	δCH_2	1435	1434
13	1378	δ COH+ ω CH ₂ + ν C-O	1378	1384
14	1328	$tCH_2 + \rho N^+ H_3$	1320	1324
15	1252	ν C-O+ δ COH	1263	1284
16	1148	$ ho N^+ H_3 + \omega C H_2 + \nu C N^+$	1135	1153
17	1121	$tCH_2 + \rho N^+ H_3$	1125	1137
18	1042	ν CN+	1044	1058
19	923	$\rho \text{CH}_2 + \rho \text{N}^+ \text{H}_3 + \gamma \text{CO}$	917	923
20	884	ν CC+ ρ N ⁺ H ₃	873	880
21	657	τCO+γCO	657	669
22	598	δ_a CO+ δ N+CC	568	563
23	521	γ CO+ τ CO+ ρ CH ₂	504	453
24	498	δ_s CO	(483)	Mentológica
25	297	$\delta N^{+}CC + \delta_{s}CO + \delta_{a}CO$	301	250
26	174	$\tau \text{CN}^+ + \tau \text{CC}$	(175)	***************************************
27	34	τ CC+ τ CN ⁺	(35)	atmosfessussa.

a. Experimental frequencies are taken from ref. 3.

Since the fitting algorithm requires all the experimental frequencies at least for one isotopic species, the numbers in parenthesis are introduced as a good guess for GH- d_0 and do not have any other significance.

	Lacood	Calc.	2484	2347	2306	2199	3019	2961	1687	1160	1153	1186	1464	1427	1290	1271	1078	992	789	1003	1034	956	589	550	417	468	274	148	27
	N+D3CH213COOD	Expt.		appropriate the	-		į	·	1688	1168	;	1168	1438	1406	1321	1271	1066	922	808	1007	1025	949	61.4	555	i i	483	287	!	
	N+D313CH2COOD	Calc.	2484	23.17	2306	2199	3007	2955	1731	1159	1152	1182	1.16.1	1.123	1311	1270	1076	764	793	986	1032	9.15	597	550	419	468	275	146	27
	N+D3 13(Expt.			1	i	;		1732	1166		1166	1.435	1411	1336	1277	1060	775	805	989	1032	941	809	558		483	590	ŧ	
	N+D3CH2COOD	Calc.	2.184	2347	2306	2199	3019	2961	1732	1160	1153	1186	1480	1427	1313	1272	1078	208	793	1003	1043	926	598	552	419	470	275	148	27
H (cm ⁻¹)	N^+D_3CI	Expt.		2341	2263	2203	3015	2975	1733	i	1		;	1429	1340	1278	1073	780	815	1008	1043	951	618	561	!	485	287	!	1
es of all the seven isotopomers of GH (cm ⁻¹)	N+H3CD2COOH	Calc.	3412	3179	3124	3060	2249	2161	1744	1614	1607	1503	1455	1037	1302	1217	1227	921	917	1100	802	837	632	592	463	487	295	166	33
en isotope	N+H,C	Expt.	1	3182	3152	3058	2232	2166	1741	1608	1608	1518	1443	1044	1317	1201	1210	926	918	1112	804	842	6:14		1	480	301	-	!
all the sev	GH2 ¹³ COOH	Calc.	3412	3179	3124	3060	3019	2961	1703	1614	1610	1507	1475	1427	1367	1328	1243	1147	1117	1042	916	881	653	596	514	497	296	174	34
prencies of	N+H3CH2	Expt.	**************************************	Í	1	***	-	1	1700	1614	1614	1520		1437	1370	1320	1246	1139	1119	1044	910	869	656	559	502	İ	301	Į	-
tional free	2COOH	Calc.	3412	3179	3124	3000	3007	2955	1745	1616	1609	1507	1481	1424	1374	1325	1252	1140	1118	1024	919	873	657	595	521	496	296	172	34
Fitted vibrational frequenci	N+H ₃ ¹³ CH ₂ COOH	Expt.			1	1	-	į.	1741	1608	1608	1510		1431	1360	1316	1263	1133	1113	1027	915	86.1	6.18	266	501		301		
Table 5.5:	HOO:	Calc.	3412	3179	3124	3000	3019	2961	1746	1616	1610	1512	1.189	1427	1378	1328	1252	1148	1121	1042	923	88.1	657	598	521	861	297	17.1	34
Ta	N+H3CH2COOH	Expt.	Accordance unique	3182	3152	3058	3012	2973	1740	1607	1607	1512		1435	1378	1320	1263	1135	1125	10.14	917	873	657	568	505	3	301		

Table 5.6: Predicted Vibrational Frequencies of GGH (cm⁻¹)

		: Predicted Vibrational Frequency			CCMI
Sym.	6-31G**	9	GGH	GG	GGMH
species	scaled		expt.	expt.a	expt.
1	3436		nuth-gallings.		Printed Company of the Company of th
2	3265			3285	*****
3	3161	ν N ⁺ H	ann _{agairea} .	************	
4	3109				3080
5	3017			3013	M-Principles.
6	2977		***********	2960	2960
7	2964	ν N ⁺ H+ ν CH	***************************************	**************************************	Minimum.
8	2957	$\nu CH + \nu N^+H$	*******	d _{escondens}	**************************************
. 9	2938	νC'H		2927	Australian
10	1738	ν C=O _{acid}	1746	sizual neintripress.	1724
11	1676	$\nu C = O_{amide} + \nu CN$	1677	1682	1678
12	1641	$\delta_a N^- H_3$	and the same of th	1629	1648
13	1602	δ_a N $^-$ H $_3$	-	1611	1622
14	1593	δ_a NH+ ν CN+ ν C=O _{amide} + ν NC'	1584	1531	1535
15	1486	$\omega C'H_2 + \nu C'C + \nu C - O + \omega CH_2$	1487	projektelete	Analog Antonion,
16	1472	$\delta_s N^+ H_3 + \omega C' H_2$		1480	1452
17	1443	$\delta C'H_2$	1434	1447	1437
18	1433	$\delta \text{CH}_2 + \delta_s \text{N}^+ \text{H}_3$	1434	Arrangaintes	1420
19	1408	$\omega \text{CH}_2 + \delta \text{CH}_2$	1410	1399	1402
20	1362	$\delta COH + \omega C'H_2$	1350		1362
21	1329	$tCH_2 + \rho N^+ H_3$	1308	1315	1307
22	1266	δ_s NH+ ν C-O	1265	1249	1249
23	1247	ν C-O+ ω C'H ₂ + δ COH		Principality	
24	1242	tC'H ₂	1219	1242	1219
25	1188	νCN		A. Aust. A. dam	1217
26	1155	ρ N ⁺ H ₃ + ω CH ₂ +tCH ₂	1135	1158	1130
27	1126	$tCH_2 + \rho N^+ H_3$	1117	1100	1090
28	1050	ν N+C	1040	1046	1032
29	1002	$ ho C'H_2 + \gamma CO_{acid}$	1013	1007	1002
30	985	ν CC+ ν C'C	1010	968	000
31	925	$\rho \text{CH}_2 + \gamma \text{CO}_{amide} + \rho \text{N}^+ \text{H}_3$			980
32	907	vCC'+vCC	903	918	946
33	700	$\delta_a CO_{amide} + \delta NCC$		910	*************
34	661	$\tau CO_{acid} + \gamma CO_{acid} + \rho C'H_2$	708	708	708
35	618	$\tau \text{CN+} \tau \text{CO}_{amide} + \gamma \text{NH+} \rho \text{CH}_2$	661	665	644
36	594	$\delta_a CO_{acid} + \delta NC'C$	-		- Accordance
37	568			598	-
38	537	$\delta_s CO_{acid} + \delta_a CO_{amide}$	_	588	termina.
39	508	$\gamma CO_{amide} + \gamma NH$	Name of Street	535	singularization of the state of
0,	500	$\gamma CO_{acid} + \tau C - O$	-	**********	Contraction and

Table 5.6: (Continued): Predicted vibrational frequencies of GGH

40	405	$\delta N^+CC + \delta_s CO_{acid}$		396	
41	331	$\delta_s CO_{amide} + \delta_s CO_{acid} + \delta_a CO_{amide}$		317	
		δ NC'C+ δ_a CO _{acid}		298	
43	196	$\tau C'C+\tau CC+\gamma NH+\tau N^+C$			
44	179	$ au N^+C+ au C^{'}C$			
45	111	$\delta_s \mathrm{NH}_{amide} + \delta_s \mathrm{CO}_{amide} + \mathrm{tCH}_2$			
46	89	$\tau CC + \tau N^+C$			-
47	79	τ C'C+ τ CN	-		
48	40	τ NC'+ γ NH+ τ CC			

a. Taken from ref. 12.

Table 5.7: Optimized cartesian coordinates of the minimum energy conformation of GH* at 6-31G** basis set

1	6	0.00000	0.000000	0.000000
2	6	0.00000	0.00000	1.516600
3	7	1.430186	0.00000	1.949957
4	8	-1.209458	0.00000	-0.475575
5	8	1.017835	0.000000	-0.606826
6	1	-1.211000	0.00000	-1.427873
7	1	-0.486890	-0.881658	1.909255
8	1	-0.486890	0.881658	1.909255
9	1 .	1.521335	0.000000	2.955535
10	1	1.916723	-0.805370	1.579298
11	1	1.916723	0.805370	1.579298

^{*} Atom numberings are according to Figure 5.1.

Table 5.8: Optimized cartesian coordinates of the minimum energy conformation of GGH* at 6-31G** basis set

1 2 3 4 5 6 7 8 9	7 6 6 1 1 1 1 7	0.000000 0.000000 1.477563 0.925435 -0.105207 -0.718988 -0.485599 -0.544079 1.724873	0.000000 0.000000 0.000000 0.336112 -0.928158 0.583323 0.902803 -0.859478 -0.202930	0.000000 1.494700 1.909195 -0.279188 -0.380962 -0.398060 1.838720 1.857572 3.188811
10 11 12 13 14 15 16 17	8 6 1 6 1 1 8 8	2.296971 3.069443 0.994800 2.966343 3.690395 3.545475 1.932781 4.144177 4.058569	0.202016 -0.181293 -0.372897 -0.442684 -0.941255 0.777382 -0.625710 -0.439886 -0.605608	1.048108 3.731447 3.849195 5.215785 3.273683 3.566448 5.772838 5.788509 6.720221

^{*} Atom numberings are according to Figure 5.2.

Table 5.9: Non-redundant fitted force constants of GH*

1	1	5.176												
2	1	.161	2	4.935										
3	1	.271	2	.011	3	7.435								
4	1	.524	2	.043	3	1.147	4	11.593						
5	1	017	2	002	3	.143	4	090	5	6.517				
6	1	.041	2	. 059	3	.001	4	007	5	.005	6	4.908		
7	1	.041	2	. 059	3	.001	4	007	5	.005	6	.029	7	4.908
8	1	003	2	.031	3	012	4	008	5	.001	6	. 005	7	.005
	8	5.550									Ŭ	. 000	,	.000
9	1	021	2	. 044	3	010	4	019	5	.002	6	.004	7	019
	8	.013	9	5.341							•		•	.010
10	1	021	2	. 044	3	010	4	019	5	.002	6	019	7	.004
	8	.013	9	.020	10	5.341					-		•	.001
11	1	. 089	2	. 187	3	.374	4	649	5	.061	6	017	7	017
	8	004	9	.004	10	.004	11	1.136						
12	1	. 449	2	062	3	264	4	.100	5	.056	6	.011	7	.011
	8	005	9	035	10	035	11	.050	12	1.008				
13	1	119	2	197	3	.005	4	023	5	001	6	.062	7	.062
	8	.002	9	.001	10	.001	11	. 025	12	025	13	. 527		
14	1	131	2	. 477	3	024	4	068	5	.004	6	007	7	007
	8	020	9	004	10	004	11	. 049	12	050	13	043	14	.742
15	6	.072	7	072	9	016	10	.016	15	. 689				
16	6	028	7	.028	9	014	10	.014	15	. 134	16	. 662		
17	1	. 530	2	. 398	3	.019	4	.063	5	.007	6	031	7	031
	8	.025	9	062	10	062	11	. 085	12	.115	13	.008	14	014
	17	1.634												
18	1	.004	2	295	3	.006	4	019	5	004	6	008	7	008
	8	.056	9	. 056	10	.056	11	031	12	.014	13	.016	14	039
	17	021	18	. 562										,
19	1	019	2	021	3	030	4	.046		.003	6	.000	7	.000
	8	071	9	. 069	10	.069	11	.020	12	016	13	. 005	14	002
	17	021	18	.015	19	. 575								
20	6	.001	7	001	9	.064	10			.020				. 583
21	1	.021	2	034	3	. 055	4			004		001		
	8	.030	9	014	10	014	11	.028	12	010	13	.022	14	057
	17	.069	18	. 023	19	.001	21	.735						
22	6	004	7	.004	9	.025	10	025	15	062		070		. 032
23	1	.053	2	.018	3	. 255	4	.018	5	.139		.003		
	8	.001	9	001	10	001	11	.102		.116	13	.000	14	.003
	17	.028	18	004	19	.005	21	.002		.801				-
24	6	.015	7	015	9	004	10	.004	15	.070	16	064	20	007
	22	.018	24	. 433										

Table 5.9: (Continued): Non-redundant fitted force constants of GH*

25	6	009	7	.009	013	10	.013	15	.071	16	003	20	019
	22	.031 2	4	009 25	.102								
26	6	.006	7	006	.002	10	002	15	.001	16	016	20	001
	22	001 2	4	.018 25	029	26	.156						
27	6	001	7	.001	021	10	.021	15	004 1	16	009	20	025
	22	.037 24	4	006 25	038	26	.000	27	.027				

^{*} Local symmetry coordinates are as given in Table 5.1.

Table 5.10: Non-redundant scaled force constants of GGH*

```
1
       5.023
 1
 2
    1
        . 195
             2 4.991
 3
        . 225
             2 -.008 3
                          4.893
 4
        .016
             2 -.001 3
                           .031
    1
                                4
                                   5.423
 5
    1
        .010
             2 -.002 3
                           .019
                                 4
                                     .010 5
                                             5.460
 6
    1
        .055
                .046 3
                                         5
             2
                          -.002
                                4
                                   -.015
                                              .014
                                                       4.880
                                                   6
 7
    1
        .048
                 .029
                      3
                          -.007
                                             -.003
                                                        .032
                                     .012
                                          5
                                                   6
                                                              7
                                                                 4.920
 8
    1
      -.073
                 .262 3
                           .071
                                4 -.016
                                         5 -.012 6
                                                        .002
                                                              7
                                                                  .012
    8
      8.623
    1
        .054
                 .626 3 -.148 4
                                     .004 5 -.007 6
                                                      -.001
             2
                                                             7
                                                                  .002
      1.436
    8
             9 10.177
10
   1
        .008
             2 -.009 3
                          -.009 4
                                    .003 5
                                              .002 6
                                                        .004 7
                                                                  .004
       .160
             9 -.060 10
                          6.068
      -.002 2
11
   1
                 .012 3
                          -.004 4
                                     .003 5
                                              .003 6
                                                        .002 7
                                                                  .006
       .048
   8
             9 -.067 10
                           .067 11
                                   5.896
12
   1
        .002 2 -.001 3
                          .000
                                4
                                   -.001 5
                                            -.001 6
                                                        .000
                                                             7
                                                                  .000
   8
        .001
             9
                .021 10
                          .180 11
                                   -.040 12 5.323
13
  1
       .002
             2
                .000 3
                           .000 4
                                    .000 5
                                              .000 6
                                                        .000 7
                                                                 -.001
      -.033 9
                 .025 10
                          .154 11
                                   -.005 12
                                              .039 13
                                                       4.814
14
   1
       .002 2
                 .000 3
                          .000 4
                                    .000 5
                                              .000 6
                                                       -.001
                                                             7
                                                                 -.001
      -.033
   8
                 .026 10
             9
                          .154 11
                                   -.005 12
                                              .039 13
                                                        .054 14
                                                                 4.811
      -.003
15
   1
             2
                 .005 3
                           .005 4
                                   -.002 5 -.001 6
                                                        .000
                                                             7
                                                                  .000
        .019
   8
             9 -.020 10
                           .051 11
                                   -.049 12
                                              .455 13
                                                       -.009 14
                                                                 -.009
  15 11.351
   1
       .000
             2
                 .000 3
                           .003 4
                                   -.003 5
                                            -.003 6
                                                       -.001
                                                             7
                                                                 -.002
   8 -.053 9
                 .050 10
                         -.005 11
                                    .026 12
                                              .259 13
                                                        .004 14
                                                                  .004
  15 1.203 16
               7.027
17
       .001 2
                 .001 3
                         -.001 4
                                    .001 5
                                              .001 6
                                                        .000 7
                                                                  .000
       .010 9
               -:006 10
                         -.003 11
                                  -.00212
                                            -.022 13
                                                        .005 14
                                                                  .005
  15
     -.085 16
                .132 17
                         6.610
```

Table 5.10: (Continued): Non-redundant scaled force constants of GGH* .033 3 -.066 4 -.325 2 .068 5 .063 6 -.007 7 -.006.031 9 -.044 10 -.009 11 8 -.00212.000 13 .000 14 .000 15 .002 16 .005 17 -.001 18 . 562 -.003 2 -.031 3 19 1 -.040 4 .037 5 .049 6 .001 7 .001 -.001 9 -.002 10 .000 11 -.001 12 .000 14 .000 15 .001 .000 17 .000 18 16 .007 19 . 568 20 1 -.031 2 -.020 3 .088 4 .098 5 -.083 6 -.003 7 .002 -.021 8 9 .040 10 .004 11 .002 12 .000 13 .000 14 .000 15 -.002 16 -.002 17 .001 18 .026 19 -.00420.602 .032 2 -.061 3 21 1 .270 4 -.011 5 -.016 6 .002 7 .003 -.077 .009 12 9 .079 10 .011 11 -.001 13 .000 14 .000 15 -.006 16 -.00917.001 18 -.022 19 -.024 20 -.027 21 .806 .007 -.007 3 22 1 2 .025 4 .011 5 -.009 6 .010 7 -.008 -.014 .012 10 8 9 .002 11 .003 12 .000 13 .000 14 .000 15 -.001 16 -.002 17 .000 18 -.006 19 .007 20 .015 21 -.010 22 .754 -.211 -.106 .009 5 .007 6 23 1 2 3 -.007 4 .066 7 .071 -.022 10 -.003 11 8 .001 9 -.005 12 .000 13 .000 14 .000 15 .001 16 .000 17 .000 18 .020 19 .004 20 .004 21 -.01422 -.013 23 .527 -.020 4 -.011 5 -.016 6 -.007 7 . 528 -.135 .005 24 1 2 3 -.001 11 .004 12 .001 13 .001 14 -.044 9 -.055 10 .001 8 -.004 16 -.001 17 .000 18 -.055 19 .007 20 .000 21 .036 15 .021 23 -.06024.766 22 .021 5 -.018 6 .028 4 .070 7 -.06125 1 -.005 2 .038 3 .000 12 .000 13 .000 14 .000 .003 11 -.018 9 .017 10 -.009 20 -.012 21 -.045.000 18 .009 19 15 -.00216.000 17 .010 25 .702 .038 23 .005 24 22 .018 5 -.016 6 -.023 7 .016 -.029 4 .001 3 26 1 .008 2 .000 13 .000 14 .000 -.001 12 -.003 11 .011 10 8 .006 9 .001 20 -.056 21 -.027 22 .040 -.008 19 .000 17 .000 18 16 .685 .146 26 .001 24 .010 25 23 -.031 7 -.035.132 4 -.016 5 .010 6 .390 .865 3 27 1 .009 12 .001 13 .001 14 .000 .026 11 .218 10 8 -.1059 .016 19 -.052 20 -.04321-.049.002 18 -.0051715 -.012162.084 .044 26 -.006 27 .010 25 -.0012422 -.04423-.004 7 .002 6 -.017 .005 5 -.049 4 .002 3 28 1 . 188 2 -.006 13 .005 14 . 005 -.033 12 .047 11 -.712108 . 186 9 .010 20 .016 21 .032 .002 18 -.063 19 -.0061715 .020 16 -.021 28 .001 26 -.018 27 1.188 .016 25 -.01423.026 24 22 -.001 4 -.019 5 -:011 6 .007 7 .015 .695 3 29 1 -.092 2 .005 12 -.014 13 .004 14 .003 .074 11 .161 10 8 -.379 9 .045 19 -.019 20 -.015 21 -.052 .004 18 -.016 17 15 -.026 16 .022 27 .376 28 -.085 .014 26 -.025 24 -.039 25 22 .007 23 29 1.181

Table 5.10: (Continued): Non-redundant scaled force constants of GGH* .001 7 .000 6 .000 .000 5 4 -.015 .037 3 30 .028 2 -.016 14 .003 13 -.016 -.069 12 .118 11 -.033 10 .114 9 8 003 21 -.006 19 -.001 20 .005 -.003 18 .049 17 15 -.006 16 -.003 27 .042 28 .077 .003 26 .003 25 .001 24 -.001 23 22 .658 29 .062 30 .003 .001 6 .005 5 .001 .008 4 -.018 .014 3 31 1 2 - 009 14 .029 13 - 009 -.102 12 -.151 11 .029 10 .182 9 8 .000 20 - .001 21 -.004 .003 19 -.005 18 -.065 16 .039 17 15 .004 27 - 015 28 -.004 -.001 26 -.009 25 22 .000 23 .001 24 .522 .011 31 29 -.052 30 .001 .001 5 .001 6 .001 -.001 4 .000 -.001 3 32 1 2 078 14 078 -.009 12 -.127 13 -.004 10 -.201118 .006 9 .000 20 000 21 001 -.001 18 -.001 19 -.022 16 .006 17 15 002 28 .000 27 004 .000 25 .001 26 .000 24 22 .000 23 .009 30 .004 31 .017 32 .542 29 -.001 - 001 - .002 -.0016 7 .004 2 .003 3 -.001 4 5 33 1 - 013 14 - 171 13 -.013 .490 11 .001 12 8 -.094 9 .052 10 .000 20 000 21 - .001 -.025 17 .005 18 .000 19 -.065 16 15 -.001 27 .001 28 -.00125.001 26 .012 22 .000 23 .000 24 .732 -.04132-.017 3329 -.02531.010 30 5 .000 -.001 .002 .000 .000 6 7 34 1 .001 2 -.002 3 .000 13 .082 14 .000 10 -.00111.001 12 -.0828 .002 9 .000 20 .000 21 15 .001 16 -.001 17 .000 18 .000 19 .000 22 .001 24 .001 25 -.002 26 .002 28 -.001 29 .000 .003 27 30 .000 31 .000 32 .000 33 .707 .000 34 35 1 .001 2 -.002 3 .000 4 .000 5 .000 - 002 7 .002 6 8 .002 9 .000 10 .000 11 .001 13 -. 037 14 037 15 - .001 .000 17 16 .000 18 .000 19 .000 20 .000 21 000 22 .001 23 .000 24 .001 25 -.00426.004 27 .002 28 - .001 29 .000 30 .000 31 .000 32 .000 33 -.001 34 .114 35 .674 36 1 .005 2 .005 3 .002 4 -.004 5 -.003 6 -.001 7 -.001 8 .019 9 .067 10 .353 11 -.024 12 .612 13 -.035 14 -.035 15 .074 16 .015 17 .010 18 .002 19 .000 20 -.002 21 -.005 22 -.00223-.001 24 .000 25 -.001 26 -.001 27 .001 28 .001 29 -.024 30 .032 31 .036 32 .011 33 -.042 34 .000 35 .000 36 1.683 37 1 .003 2 .006 3 .000 4 -.001 5 .000 .000 6 .000 8 .004 9 -.009 10⁻ .166 11 -.00312.078 13 -.020 14 -.020 15 -.623 16 .339 17 .068 18 .000 19 .000 20 .000 21 -.002 22 -.001 23 .000 24 -.001 25 .000 26 .000 27 .003 28 .025 29 .009 30 .029 31 -.028 32 .026 33 .042 34 .000 35 .000 36 .054 37 1.198

Table 5.10: (Continued): Non-redundant scaled force constants of GGH* -.005 3 38 1 -.003 2 .004 4 -.004 5 -.004 6 -.001 7 -.001 -.040 9 .060 10 -.053 11 -.022 12 .450 13 .013 14 .013 -.01416-.286 17 15 .060 18 .004 19 .000 20 -.002 21 -.009 22 -.00223-.001 25 .000 24 -.00126.000 27 -.015 28 -.014 29 -.03130-.00531.025 32 -.025 33 -.04934.000 35 .000 36 .176 37 .054 38 1.049 39 1 .001 2 .002 3 .000 4 .000 5 .000 6 .000 7 .000 8 .008 9 -.006 10 .017 11 -.00412.042 13 .004 14 .004 .019 16 .241 17 15 .147 18 -.001 19 .000 20 .000 21 .001 22 .000 23 .000 24 .000 27 .001 28 .003 29 .004 30 .000 31 -.00432.001 33 .003 34 .000 36 .031 37 .119 .106 38 39 .816 40 1 -.004 2 .019 3 -.015 4 -.002 5 .000 6 .018 7 -.014 -.001 8 9 .002 10 .001 11 -.002 12 .002 14 .000 13 -.002 -.0011715 .001 16 .000 18 -.00419.004 20 -.023 21 .014 22 -.01323-.005 24 -.01025.064 26 -.048 27 -.002 28 .002 29 .018 30 .002 31 .000 32 .000 33 .001 34 -.008 35 -.010 .000 38 .000 40 36 .000 37 .000 39 .453 .000 2 -.004 3 -.001 4 .001 5 -.001 6 41 1 .001 7 .001 .006 9 -.002 10 .003 11 .004 12 .000 13 .011 8 -.01114.001 17 .000 19 -.002 21 -.001 16 .000 18 .000 20 .001 15 .003 26 .002 27 -.00122 -.00223.002 24 .002 25 .002 28 -.001 32 .000 33 .000 34 -.014 35 -.02029 .001 30 .001 31 .000 40 -.03741.000 38 .000 39 .102 36 .001 37 .000 3 .000 4 .000 5 .000 6 .000 7 .000 .000 2 42 1 .000 12 .000 13 .019 14 -.018.000 10 .000 11 8 .000 9 .000 20 .000 21 .000 -.001 16 .000 17 .000 18 .000 19 15 .000 26 .000 27 .000 28 .000 22 .000 23 .000 24 .000 25 -.062 37 .000 .000 34 .062 35 .000 33 29 .000 30 · .000 31 -.01442.478 .004 41 38 .000 39 .000 40 :011 6 .007 7 .005 .006 5 -.1104-.024 3 43 1 -.031 2 .000 -.002 12 .000 13 .000 14 -.003 11 -.028 10 8 .025 9 .015 20 -.07321.055 .000 18 -.015 19 .002 17 15 .001 16 .001 28 .000 .013 27 -.023 25 -.009 26 .007 24 22 -.03223.000 .000 34 .000 35 .002 32 -.00133-.003 31 29 -.00830.000 43 .065 .001 42 .000 40 .013 41 .001 38 .002 39 36 .003 7 .003 .001 6 -.004 5 -.038 4 .033 3 44 1 .013 2 .000 13 .000 14 .000 .004 12 .002 11 .010 10 .002 9 8 -.013 19 .006 20 -.08721.030 .000 18 .002 17 15 -.002 16 .047 28 -.025.075 26 .006 27 .004 25 -.0052422 -.01823.003 35 .002 .001 34 .000 33 .000 32 .000 31 29 .034 30 .016 42 -.001 .000 40 .013 41 .001 39 .000 38 .000 37 36 43 .068 44 .169

Table 5.10: (Continued): Non-redundant scaled force constants of GGH* .001 6 .011 7 -.002 5 -.011 4 .014 3 .001 -.006 2 45 1 .000 13 002 14 -.002 .002 12 -.001 11 -.007 9 .005 10 .000 19 .000 20 .000 21 .002 -.001 18 .001 17 15 -.001 16 -.024 27 -.008 28 .007 .006 26 -.00425.002 24 -.00323-.017 35 .000 33 .000 34 -.016 .001 32 -.001 31 29 .000 30 -.050 42 .002 43 .000 40 -.034 41 .001 .000 38 .000 39 36 44 -.029 45 .294 .000 5 .000 6 000 7 - .001 .000 3 .000 4 46 1 .001 2 016 14 .000 12 .000 13 - 016 -.001 9 .000 10 .000 11 8 .000 20 .001 21 - 001 22 .000 19 .001 -.003 16 .001 18 15 .001 27 .000 28 001 29 000 -.00124.000 25 -.0012623 .014 35 .000 34 044 36 .001 32 .000 33 000 30 .000 31 .008 41 -.03442.017 43 37 .000 38 .000 39 .000 40 -.001 44 -.004 45 .004 46 .066 47 1 .000 3 .000 6 .000 7 .001 2 .000 4 .000 5 .000 .000 13 -.015 14 8 .000 9 .000 10 .000 11 .000 12 .015 15 -.001 16 .000 17 -.001 18 .000 19 .000 20 .000 21 .000 .000 25 22 .001 23 -.001 24 -.002 26 .001 27 .001 28 .000 .000 32 29 .000 30 .000 31 .000 33 .000 34 .058 35 .014 36 .000 37 .000 39 .000 40 .004 41 -.036 42 -.008 43 .000 44 -.00345-.00346.047 47 .144 48 1 .000 2 .000 3 .000 4 .000 5 .000 6 000 7 .000 8 .000 10 .000 12 .000 13 .007 14 -.007 15 .000 16 .000 17 .000 19 .000 20 .000 21 .000 22 .000 23 .000 24 .000 25 .001 26 .000 27 .000 28 .000 29 .000 30 .000 31 .000 33 .000 34 .001 35 -.015 36 .000 37 .000 39 .000 40 .000 41 .003 42 .012 43 .000 44 .001 45 -.001 46 .001 47 -.029 48 .157

^{*} Local symmetry coordinates are as given in Table 5.2.

Bibliography

- [1] Kozlowski, P. M.; Jarzecki, A. A.; Pulay, P.; Li, X. Y.; Zgierski, M. Z. J. Phys. Chem., 1996, 100, 13985.
- [2] Pongor, G.; Pulay, P.; Fogarasi, G.; Boggs, J. E. J. Am. Chem. Soc., 1984, 106, 2765.
- [3] Williams, R. W.; Kalasinsky, V. H.; Lowrey, A. H. J. Mol. Struct. (Theochem), 1993, 281, 157.
- [4] Barron, L. D.; Gargaro, A. R.; Hecht, L.; Polavarapu, P. L. Spectrochim. Acta., 1991, 47A, 1001.
- [5] Alper, J. S.; Dothe, H.; Lowe, M. A. Chem. Phys., 1992, 161, 199.
- [6] Tarakeshwar, P.; Manogaran, S. Spectrochim. Acta, 1995, 51A, 925.
- [7] Lowrey, A. H.; Williams, R. W. Struct. Chem., 1993, 4, 289.
- [8] Williams, R. W. Biopolymers, 1992, 32, 829.
- [9] Lowrey, A. H.; Williams, R. W. J. Mol. Struct. (Theochem), 1992, 253, 57.
- [10] Lowrey, A. H.; Williams, R. W. J. Mol. Struct. (Theochem), 1992, 253, 35.
- [11] Williams, R. W.; Lowrey, A. H. J. Comput. Chem., 1991, 12, 761.
- [12] Mirkin, N. G.; Krimm, S. J. Am. Chem. Soc., 1991, 113, 9742.
- [13] Guo, H.; Karplus, M. J. Phys. Chem., 1992, 96, 7273.
- [14] Yu, G.; Freedman, T. B.; Nafie, L. A.; Deng, Z.; Polavarapu, P. L. J. Phys. Chem., 1995, 99, 835.

- [15] Ding, Y.; Krogh-Jespersen, K. J. Comput. Chem., 1996, 17, 338.
- [16] Vijay, A.; Sathyanarayana, D. N. J. Phys. Chem., 1992, 96, 10735.
- [17] Tarakeshwar, P.; Manogaran, S. J. Mol. Struct. (Theochem), 1994,
- [18] Chakraborty, D.; Manogaran, S. J. Mol. Struct. (Theochem), 1994, 303, 265.
- [19] Lagant, P.; Vergoten, G.; Loucheuxlefebvre, M. H.: Fleury, G. Biopolymers, 1983, 22, 1267.
- [20] Durig, J. R.; Wang, A. Y.; Little, J. S.; Breltic, P. A. J. Chem. Phys., 1990, 93, 905.
- [21] Aslanian, D. in *Molecules in Physics, Chemistry and Biology*, Ed. Maruani, J., Kluwer Academic Press, 1989, vol.IV, p.233-280.
- [22] Wagner, E. L.; Hornig, D. F. J. Chem. Phys., 1950, 18, 296 and 305.
- [23] Jensen, F. J. Am. Chem. Soc., 1992, 114, 9533.
- [24] Yu, D.; Rauk, A.; Armstrong, D. A. J. Am. Chem. Soc., 1995, 117, 1789.
- [25] Al-Karaghouli, A. R.; Cole, F. E.; Lehmann, M. S.; Miskell, C. F.; Verbist, J. J.; Koetzle, T. F. J. Chem. Phys., 1975, 63, 1360.
- [26] Ghazanfar, S. A. S.; Myers, D. V.; Edsall, J. T. J. Am. Chem. Soc., 1964, 86, 3439.
- [27] Kakihana, M.; Akiyama, M.; Nagumo, T.; Okamoto, M. Z. Naturforsch., 1988, 43A, 774.
- [28] Diem, M.; Polavarapu, P. L.; Oboodi, M.; Nafie, L. A. J. Am. Chem. Soc., 1982, 104, 3329.

Chapter 6

Theoretical prediction of vibrational spectra of cysteine and serine Hydrochloride

In continuation with our earlier investigation of the vibrational spectra of hydrochlorides of amino acids glycine (GH) and glycylglycine (GGH) (chapter 5), in this chapter we address this problem, using cysteine and serine hydrochloride (CYSH and SERH).

Cysteine (CYS) owing to the presence of thiol group SH is one of the most important amino acids. It is responsible for the stabilization of secondary structures of proteins through the formation of H-bonds and more importantly disulfide bridges. Thus the CYS residue side chain, -CH₂SH was the subject of a number of spectroscopic studies for characterization of its conformers [1-23]. The theoretical modelling of thiol group in CYS is very important because the earlier force field developers have shown that an inaccurately described SH group does not tend to form H-bonds [24]. The H-bonding effect on ν SH frequency has been studied in different proteins [1-8]. Effect of the C_{α}-C_{β}-S-H dihedral angles on the ν SH mode has been sought through experimental [9-11] and normal mode analyses [12,13] of some model alkanethiols. Information on rotational barriers from the low frequency torsional modes have also been reported in the literature [14-16]. The conformational assignment of ν CS frequency with respect to C-C_{α}-C_{β}-S dihedral angle in several thiols, [17,18] dialkyl disulfide [19,20] or alkyl sulfides [21], and the normal coordinate analyses [22,23] are found in the literature. Serine (SER) due to the presence of two hydroxyl groups readily forms H-bonds and hence is found in turns of

protein secondary structures. A study of the effect of the torsional angle C-C $_{\alpha}$ -C $_{\beta}$ -O on the ν C $_{\beta}$ O frequency in SER was reported. [25]. There is a large number of experimental vibrational spectral study (IR and Raman) on CYS and SER zwitterions [26-31]. The most recent one being the ROA spectra of Gargaro et al. [31] based on their alanine results [32]. But a detailed theoretical vibrational analysis of both CYS and SER in their gaseous and zwitterionic forms is limited to the recent study from our laboratory based on their isolated ab initio model [25].

In this chapter our endeavour is to generate a reliable force field for CYSH and SERH. The scale factors of glycine hydrochloride from previous chapter is used to scale the ab initio force field of both the compounds at the same level of theory (HF/6-31G**). The side chain residues of CYSH and SERH are scaled by using the scale factors of ethanethiol (EtSH) and ethanol (EtOH) respectively, obtained by fitting their ab initio force field to the respective experimental vibrational spectra [13,33]. A complete set of nonredundant force constants were obtained for CYSH and SERH.

6.1 Calculations

The ab initio force constants and frequencies of CYSH, SERH, EtSH and EtOH were calculated analytically for the optimized geometry at 6-31 G^{**} level. The cartesian force constant matrices were transformed to the non-redundant local coordinate space. The nonredundant local coordinates of both EtSH and EtOH are given in Table-6.1 and Figure 6.1 and that of CYSH and SERH are given in Table-6.2 and Figure 6.2. The optimized geometries of CYSH and SERH are given in Table-6.3. The ab initio force fields of EtSH and EtOH were then fitted to their corresponding experimental spectra to obtain a non-redundant set of force constants and scale factors using the methodology described in chapter 3. The fitting is very successful for both the compounds. The scale factors of EtSH and EtOH along with glycine hydrochloride when used to scale the ab initio force field of CYSH and SERH, a very good agreement is obtained with experimental frequencies for both the molecules.

6.2 Results

6.2.1 EtSH

Of the different possible conformers, the gauche form (H(4)-S(2)-C(1)-C(3) $\sim 60^{\circ}$) of EtSH is most stable in the ground state, as shown by Qian and Krimm, based on their ab initio (3-21G and 4-31G*) calculations [34]. We did not do any conformational analysis further at our required level of theory (6-31G**) in the present study. The fully optimized geometry of EtSH at this level generates the gauche form as the most stable one. Since the intermolecular H-bonding is less pronounced in EtSH, the isolated molecule ab initio calculation serves as a good model for the condensed phase vibrational spectra. Several experimental vibrational spectra of EtSH were found in the literature [9.13,16]. We used the condensed phase spectra [13] for the analysis. Fitted frequencies of all the fundamentals are shown in Table-6.4. Such a force field obtained from a single isotopomer frequencies might be considered as a good approximation but the reliability of this force field should be judged by its ability to predict the vibrational frequencies of CYSH. The fitted force field retains the ab initio PEDs in all the frequencies. The 2571 cm⁻¹ band is assigned to ν SH, the ν CC mode appears at 1052 cm⁻¹ and 970 cm⁻¹ and ν CS is assigned to the band at $657\,\mathrm{cm^{-1}}$. These are in good agreement with the earlier assignments of EtSH and Propane thiol (PrSH) [34].

6.2.2 EtOH

In EtOH the most staggered conformation is the most stable one at 6-31G** level of calculation [35]. The trans-gauche rotational barrier is known to be 4.89 kJ/mol [36]. The earlier microwave study also indicates the trans form as the more stable one over the gauche form [37]. So we calculated the ab initio force field for the fully optimized staggered(trans) conformer of EtOH only at the required 6-31G** level of theory. In condensed phase there exists intermolecular H-bonding in EtOH and the corresponding vibrational spectra will be different from the isolated molecular spectra. However the isolated molecule-ab initio model can serve as a reasonable approximation to the condensed phase vibrational spectra

when fitted to the experimental numbers. Several experimental vibrational spectra of EtOF in liquid, crystal and/or vapour phase are available in the literature [33,38,39]. For the present study we used the liquid and crystal frequencies of EtOH and EtOD of Mikawa et al. [33]. The fitted numbers are in good agreement for all the fundamentals, except the uOH, which is highly overestimated in the isolated model calculation compared to the condensed phase experimentally observed frequency. So this frequency is not included in the error estimation. The average error is 4.0 cm⁻¹ for the observed fundamentals. The normal modes obtained after fitting the experimental frequencies to the calculated one agree well with the earlier reported assignments with few exceptions. The oCOH appear as a mixed mode in the ab initio PED with "CH2 at 1430 cm⁻¹, while the earlier experimental assignment was at 1328 cm⁻¹, which we assign to tCH- mode. The assignment of the corresponding δ COD (954 cm $^{-1}$) matches well with the earlier assignment. We assigned the δ CCO(γ OH) mode at 439 cm⁻¹, which was earlier assigned at 657 cm⁻¹ in IR and 660 cm⁻¹ in polarized Raman [33]. The usefulness of the calculated force field could be tested by its ability to predict the vibrational spectra of the side chain residue of SERH successfully.

6.2.3 Vibrational Frequencies of CYSH

The predicted frequencies of CYSH are given in Table-6.5 along with their PEDs. The prediction is in good agreement with the experimental frequencies producing an average error of 11.9 cm⁻¹ for CYSH spectra. Since glycine does not have any chiral carbon atom, the scale factors for the methylene group is difficult to transfer to the higher amino acids. But these bending modes generally appear around 1000-1400 cm⁻¹ and a simple Durig's scaling produces reasonable agreement with the observed bands in this region. The side chain -CH₂SH residue is successfully represented by using the scale factors from EtSH. There is no detailed assignment of IR/Raman spectra of CYSH in the literature except the earlier report from our laboratory [25]. We re-recorded the spectra of CYSH (commercial sample of L-cysteine hydrochloride from S. D. Fine Chemicals, India) as a mull in Nujol in the spectral range of 600-4000 cm⁻¹. The CYS-OMe spectra [25] and the L-CYS zwitterionic spectra [30] are also included in the Table-6.5 for a comparison.

The observed band at 3377 cm $^{-1}$ in CYSH is assigned to ν OH and is calculated at 3407 cm $^{-1}$. All the three ν N+H bands are predicted above the ν CH bands at 3166, 3115 and 3019 cm⁻¹. These bands are not observed in our spectra of CYSH and CYS-OMe. However in L-CYS zwitterion, these bands appear at 3167 and 3055 cm $^{-1}$. The ν SH band is predicted at 2590 cm⁻¹ and is observed at 2567 cm⁻¹ in the CYSH spectra. This assignment is in accordance with the observed bands at 2571 $\rm cm^{-1}$ in EtSH, 2564 $\rm cm^{-1}$ in PrSH and around $2590\,\mathrm{cm^{-1}}$ in the model protein for cysteine residue [34] and also $2582\,\mathrm{cm^{-1}}$ in zwitterion. The $\nu C_3 S$ is predicted at 680 cm⁻¹ and is also comparable to EtSH (660 cm⁻¹) and PtSH (655 cm^{-1}) but appear at 696 cm^{-1} in the zwitterion. This band is not observed in our CYSH and CYS-OMe spectra. The ν C=O band is slightly overestimated in the predicted spectra (1776 cm⁻¹) and this mode is assigned to the observed band at 1743 cm⁻¹ in CYSH and 1735 cm⁻¹ in CYS-OMe. This band is observed at 1750 cm⁻¹ in glycine hydrochloride. Both the $\delta_a N^+ H_3$ appear very close in our predicted spectra followed by $\delta_s N^+ H_3$ band. Both the $\delta_a N^+ H_3$ are predicted at 1634 and 1614 cm⁻¹ and are assigned to the observed bands at 1633 and 1613 cm⁻¹ in our CYSH spectra and the lower one corresponds to the 1593 cm⁻¹ CYS-OMe spectra. These two bands are observed at 1616 cm⁻¹ in the zwitterion. The $\delta_s N^+ H_3$ band is predicted at 1481 cm⁻¹ and is assigned to the observed band at 1490 cm $^{-1}$ in CYSH. In our predicted spectra the ν CC+ ν CO mode appear above δCH_2 in accordance with glycine hydrochloride. But in zwitterion they appear in the reverse order. The predicted bands at 1444 and 1410 cm $^{-1}$ are assigned to ν CC+ ν CO and $\delta C_{\beta}H_{2}$ and are observed at 1428 and 1399 cm $^{-1}$ in CYSH and 1437 and 1408 cm $^{-1}$ in CYS-OMe and 1427 and 1400 cm $^{-1}$ in the zwitterion. The δ COH mode is predicted at 1348 cm⁻¹, and is observed at 1348 cm⁻¹ in CYSH spectra and obviously absent in the CYS-OMe and zwitterionic spectra. Both the $\omega C_{\beta}H_2$ and $tC_{\beta}H_2$ modes are attributed to the predicted bands at 1292 and 1196 $\rm cm^{-1}$ and are observed at 1309, 1203 $\rm cm^{-1}$ in CYSH and 1313, 1205 $\rm cm^{-1}$ in CYS-OMe spectra. These bands appear at 1300 and 1201 $\rm cm^{-1}$ in CTC \angle with with with with the ρ N⁺H $_3$ modes are predicted at 1161 and 1102 cm⁻¹ as expected and only one of them appear in our observed spectra. The 1069 cm⁻¹ predicted band is assigned to $\nu C_{\alpha} N^+$ and is attributed to the observed band at 1059 cm⁻¹ in CYSH and $1068\,\mathrm{cm^{-1}}$ in zwitterion. The observed band at $736\,\mathrm{cm^{-1}}$ in both the spectra is assigned to

 γ CO+ ν CC+ ν CN⁺ mode and is predicted at 732 cm⁻¹. The lower frequency modes below 400 cm⁻¹ are not available and hence our predicted numbers cannot be compared.

6.2.4 Vibrational Frequencies of SERH

The predicted frequencies of SERH along with the PED is given in Table-6.6. Same strategy of transferring the scale factors of glycine hydrochloride and EtOH, as in CYSH was used. There is no report on the IR or Raman spectra of SERH in the literature except that reported from our laboratory earlier [25]. We have used the same reported spectra for SERH and SER-OMe for the present study. Since only few bands are observed in these two spectra it is difficult to judge the accuracy of our prediction. As a result, vibrational frequencies from both L-serine and D,L-serine [29] are included in Table-6.6. The average error is difficult to estimate in such cases. In case of SERH and SER-OMe spectra the average is quite high (13.1 and 12.2 cm⁻¹) for 11 and 17 observed frequencies respectively out of the expected 39 fundamentals. The ν OH $_{(ale)}$ is predicted above ν OH $_{(acid)}$ as expected. The ν C=O band is predicted at 1744 cm⁻¹ and matches very well with the observed numbers at 1734 in SERH ans 1735 in SER-OMe spectra. Both the $\delta_a N^+ H_3$ bands appear at the same region in our predicted spectra, as in case of CYSH. Both the δC_1H_2 and $\delta_1N^4H_3$ modes are predicted very close to each other, though $\delta_s N^+ H_3$ appear below $\delta C_d H_2$. Many of the other modes ρ CC₃H (1365), δ COH (1340), ν CO + δ COH (1249), ρ N⁺H₃ (1174,1144), ν CN⁺ (1094) and γ CO (728) in our predicted SERH spectra appear very similar to their corresponding observed frequencies. The tCH2 (1297) appear above the ω CH2 (1225) in the predicted SERH spectra, reverse to that of CYSH. The δ C₃OH mode is expected to appear at much higher frequency compared to the $\delta C_i SH$ mode in CYSH. As a result the 1437 cm $^{-1}$ band in SERH correspond to $\delta C_3 OH$, whereas the $\delta C_4 SH$ band in CYSH appear at 991 cm⁻¹ in our prediction. A comparison of the amino acid backbone and side chain frequencies of all related molecules used in the present study appear in Tables-6.7 and 6.8.

The predicted non redundant force constants of both CYSH and SERH are given in Table-6.9 and 6.10 respectively.

6.3 Conclusions

The theoretical prediction of amino acid hydrochloride vibrational spectra based on isolated ab initio calculation is found to be very successful. The choice of right basis set is considered to be an important factor for mimicking the experimental spectra through isolated molecule ab initio model. The scale factors of smallest amino acid, glycine is found to be very useful in predicting the higher chiral amino acids. The earlier prediction of glycylglycine hydrochloride and the present study, led us to infer that this nonredundant set of scale factors of glycine hydrochloride could be used to predict successfully the vibrational spectra of other amino acids and structurally related dipeptides in acidic pH. However further study of other amino acids is needed to verify this conclusion. This further implies that the structurally related small organic compounds can be used to mimic the amino acid side chain residues.

a= C(1)-O(2)/S(2)-H(4), al= H(5)-C(1)-H(6), a2= C(3)-C(1)-H(5)

a 3= C(3)-C(1)-H(6), b1= C(3)-C(1)-O(2)/S(2), b2= O(2)/S(2)-C(1)-H(5)

b3= O(2)/S(2)-C(1)-H(6), a 4= H(8)-C(3)-H(9), a5= H(7)-C(3)-H(8)

-a 6= H(7)-C(3)-H(9), b4= C(1)-C(3)-H(7), b5= C(1)-C(3)-H(8), b6= C(1)-C(3)-H(9)

Figure 6.1: Internal coordinates of EtSH and EtOH.

Figure 6.3: Optimized structure of a) CYSH and b) SERH at HF/6-31G** level.

Table 6.1: Local symmetry coordinates of EtSH and EtOH *

$S_{1-8} =$	r _{1–8} (all stretch)	S ₁₅ =	$a_4 + a_5 + a_6 - b_4 - b_5 - b_6 (\delta_s CH_3)$
$S_9 =$	$4a_1-a_2-a_3-b_2-b_3(\delta CH_2)$	$S_{16} =$	
$S_{10} =$	$a_2 + a_3 - b_2 - b_3(\omega CH_2)$	$S_{17} =$	a_5 - $a_6(\delta_a CH_3)$
$S_{11} =$	$a_2-a_3+b_2-b_3 (\rho CH_2)$	$S_{18} =$	$2b_4-b_5-b_6(\rho CH_3)$
$S_{12} =$	$a_2-a_3-b_2+b_3$ (tCH ₂)	$S_{19} =$	b_5 - $b_6(\rho CH_3)$
$S_{13} =$	$5b_1-a_1-a_2-a_3-b_2-b_3$ (δ CCS/ δ CCO)	$S_{20} = \frac{1}{2}$	$\tau_{1-2}(\tau CS/\tau CO)$
$S_{14} =$	a (δCSH/δCOH)	$S_{21} =$	$ au_{1-3}(auCC)$

* Internal coordinate numberings are according to Figure 6.1.

Table 6.2: Local symmetry coordinates of CYSH and SERH *

$r_{1-14}(all\ stretch)$	$S_{27} =$	b_7 - b_8 (ρ COO)
$a_1+a_2+a_3-b_1-b_2-b_3 (\delta N^+C_{\alpha}C)$	$S_{28} =$	a_8 (δ COH)
$2a_1-a_2-a_3(\delta C_{\beta}C_{\alpha}C)$	$S_{29} =$	$4a_9$ - a_{10} - a_{11} - b_{10} - $b_{11}(\delta C_{\beta}H_2)$
a_2 - a_3 ($\rho C_{\beta} C_{\alpha} C$)	$S_{30} = 1$	$a_{10}+a_{11}-b_{10}-b_{11} \ (\omega C_{\beta}H_2)$
$2b_1-b_2-b_3$ ($\delta C_{\alpha}C_{\alpha}H$)	$S_{31} =$	a_{10} - a_{11} + b_{10} - b_{11} ($\rho C_{\beta} H_2$)
$b_2-b_3 (\rho C_{ij}C_{\alpha}H)$	$S_{32} =$	a_{10} - a_{11} - b_{10} + b_{11} (t $C_{\beta}H_2$)
a $(\delta C_{\beta}SH/\delta C_{\beta}OH)$	$S_{33} =$	$5b_9-a_9-a_{10}-a_{11}-b_{10}-b_{11} (\delta C_{\alpha}C_{\beta}S/\delta C_{\alpha}C_{\beta}O)$
$a_4+a_5+a_6-b_4-b_5-b_6 (\delta_s N^+H_3)$	$S_{34} =$	$\gamma_{710}/\gamma_{26} (\gamma C=0)$
$2a_4-a_5-a_6 (\delta_a N^+ H_3)$	$S_{35} =$	$ au_{15}/ au_{48} \left(au C_{ec{artheta}} S/ au C_{ec{artheta}} O ight)$
a_5 - a_6 ($\delta_a N^+ H_3$)	$S_{36} =$	$ au_{26}/ au_{13}~(au \mathrm{C}_{lpha}\mathrm{N}^+)$
$2b_4-b_5-b_6 (\rho N^+H_3)$	$S_{37} =$	$ au_{12}/ au_{14} \; (au C_{lpha} C_{eta})$
$b_5 - b_6 (\rho N^+ H_3)$	$S_{38} =$	$ au_{27}/ au_{12} (au C_{\alpha}C)$
$2a_7$ - b_7 - b_8 (δ COO)	$S_{39} =$	$ au_{711}/ au_{27}$ ($ au$ CO)
	$\begin{array}{c} a_2\text{-}a_3 \ (\rho C_{ij}C_{\alpha}C) \\ 2b_1\text{-}b_2\text{-}b_3 \ (\delta C_{ij}C_{\alpha}H) \\ b_2\text{-}b_3 \ (\rho C_{ij}C_{\alpha}H) \\ a \ (\delta C_{ij}SH/\delta C_{ij}OH) \\ a_4\text{+}a_5\text{+}a_6\text{-}b_4\text{-}b_5\text{-}b_6 \ (\delta_s N^+H_3) \\ 2a_4\text{-}a_5\text{-}a_6 \ (\delta_a N^+H_3) \\ a_5\text{-}a_6 \ (\delta_a N^+H_3) \\ 2b_4\text{-}b_5\text{-}b_6 \ (\rho N^+H_3) \\ b_5\text{-}b_6 \ (\rho N^+H_3) \end{array}$	$\begin{array}{lll} a_1 + a_2 + a_3 - b_1 - b_2 - b_3 \ (\delta N^+ C_{\alpha} C) & S_{28} = \\ & 2a_1 - a_2 - a_3 \ (\delta C_{\beta} C_{\alpha} C) & S_{29} = \\ & a_2 - a_3 \ (\rho C_{\beta} C_{\alpha} C) & S_{30} = \\ & 2b_1 - b_2 - b_3 \ (\delta C_{\beta} C_{\alpha} H) & S_{31} = \\ & b_2 - b_3 \ (\rho C_{\beta} C_{\alpha} H) & S_{32} = \\ & a \ (\delta C_{\beta} SH / \delta C_{\beta} OH) & S_{33} = \\ & a_4 + a_5 + a_6 - b_4 - b_5 - b_6 \ (\delta_s N^+ H_3) & S_{34} = \\ & 2a_4 - a_5 - a_6 \ (\delta_a N^+ H_3) & S_{35} = \\ & a_5 - a_6 \ (\delta_a N^+ H_3) & S_{36} = \\ & 2b_4 - b_5 - b_6 \ (\rho N^+ H_3) & S_{37} = \\ & b_5 - b_6 \ (\rho N^+ H_3) & S_{38} = \\ \end{array}$

*. Internal coordinate numberings are according to Figure 6.2.

Table 6.3: Optimized geometrical parameters of CYSH and SERH (6-31G**)

param	CYSH	SERH	param	CYSH	SERH	param	CYSH	SERH
\mathbf{r}_1	1.530	1.531	a ₃	112.8	113.6	the second companies of the second se	114.0	104.6
r_2	1.083	1.088	b_1	110.2	109.4	b ₁₀	106.6	111.6
r_3	1.079	1.083	b_2	106.4	107.3	b ₁₁	110.5	112.9
r_4	1.818	1.395	b_3	107.0	110.7	T2159 / T14N15	79.7	173.5
r_5	1.505	1.497	a ₄	107.7	109.4	Th213 / T31412	-65.3	
r_6	1.527	1.518	a ₅	108.2	106.4			-72.2
r_7	1.085	1.082	a ₆	108.6	110.0	76215 / 73148	54.2	48.0
r_8	1.326	0.946	b_4	111.3		77213 / 721412	171.6	46.7
r ₉	1.176	1.185	-		110.4	77215 / T 2148	-68.8	166.1
			b ₅	109.5	111.9	T12612 / T4139	-169.7	81.1
r_{10}	1.321	1.304	b_6	111.5	108.8	$\tau_{82612} / \tau_{5139}$	70.6	-160.7
r_{11}	1.011	1.012	a ₇	111.5	111.5			
r ₁₂	1.015	1.013	ag	111.0		T72612 / T2139	-44.8	-41.9
r_{13}	1.010	1.009	_ ''		111.3	T12710/T4126	-31.0	-114.1
			b ₇	122.4	121.5	T62710 / T3126	-154.7	5.6
r_{14}	0.953	0.952	b_8	126.0	127.0	T82710 / T5126	90.3	122.3
a	97.8	112.2	ag	107.5	108.7			
a_1	109.4	107.0	a ₁₀	109.8		T271115 / T12714	176.8	-179.4
a_2	110.7	108.5			110.6	T1071115 / T62714	-1.2	-0.4
	110./		a ₁₁	108.1	108.3			

* All internal coordinates are according to Figure 6.2.

H. O.B.				5 $^{\nu}\mathrm{C}(\mathrm{H}_{3})$	$10 \nu \text{C(II_3)}$	$0 \nu C(H_2)$		$7 - \nu C(H_2)$					٦	_	_	_	_	$6 \delta \text{COD} + \rho \text{CH}_3 + \omega \text{CH}_2$	$0 \nu \text{CO} + \nu \text{CC} + \rho \text{CH}_3$	$\rho_{\rm CH_2} + \rho_{\rm CH_3} + t_{\rm CH_2}$. ~	,		3 100+100	
	,	- 1	2557	2975	2940	2920	2890	2877	1490 1490	1474 1475	47 1449	04 1401	1365 1357	_	1170 1170	_	1055 1054	54 946		797 799	135 429		-	183	
		expt		1					146	14	11	,		13(Ξ	Ξ	10	Ö	.∞	5.2	7				
	EtOH	PED	МОН	$ \nu_{\rm C(H_3)} $	$\nu_{\mathrm{C}(\mathrm{H}_3)}$	$\nu_{\rm C(H_2)}$	$ \nu_{ m C(H_3)} $	$ \nu \mathrm{C(H_2)} $	δCH,	$\delta_n ext{CH}_3$	$\delta_a \text{CH}_3 + \rho \text{CH}_3$	$\delta COH + \omega CH_2 + \delta CH_2 + \delta_n CH_3$	δ , CH ₃	$tCII_2 + \rho CH_3$	ωCH ₂ +δCOH	$\rho \text{CH}_2 + \rho \text{CH}_3 + \text{tCH}_2$	$\rho_{ m CH_3}$	/CC+/CO	νCO+νCC+ρCH ₃	OCH, + OCH, +tCH,	ACCO+oCH,		ううともつうと	rCC+rCO	
		calc	3511	2975	2940	2920	2890	2877	1494	1478	1449	1446	1385	1318	1277	1153	1001	1051	887	200	430	201	707	219	
		expt _b	3336	2975	2940	2920	2890	2877	1498	1480	1450	1430	1381	1328	1273	1149	1089	1050	880	202	433	000	707	200	
Table 6.4: Fitted frequencies of EtSH and EtOH		PED	"C(H ₂)+"C(H ₃)	"C(H ₂) + "C(H ₃)	(H.)	C(H ₂)	VO(112)	, SH	A CH.	S CH.	ACH.	δ.CH.,		(CH, + oCH,	ACH. 4 & CSH +1 CH. + ACH.	n(3) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ACSULT CILATOCHA	ocar rectal action		5,7,5 2,7,5	0,5,5	1CC	τC/S	
tted fre		Calc	2088	2007	1007	2002	2002	9571	1.160	1450	1434	1376	1973	1951	1001	1050	020	020	2.77	0.00	000	010	2.47	191	-
6.4: Fi	EtSH	exnta	1				2002											000	000	15.	700	319	2.17	191	
Table		100		ء د	4 0	د د	4, n	י פ	·1 c	- o	0 0	, C	11	11.	4 F	· 	- 1	0 0	2 t	71	0 :	GT.	50	21	-

a. ref. [14] b. ref. [34]

Table 6.5: Predicted frequencies and PED of CYSH

			Algebra Commence of the commen	expt	and the second s
no.			CYSH ^a	CYS-OMe"	CYS-zwitt.
1			3377	- Annight and Annie Anni	The artificial and a grant program of the artificial and the artificia
2			-vontilitées de	U-SIANS(SSE)	3167
3				er sydministre to	- 10/
4				exercises (spe	3055
5	3003	- 3	HOLONOGRA	3000	2998
6	2950	,9	2943	2953	2960
7	2934	-4	2943	vo-ellowings.	2918
8	2590		2567	epundridinalismi	2582
9	1776		1743	1735	2002
10	1634	4	1633	yealindedgijk	1616
11	1614	$\delta_a N^+ H_3$	1613	1593	1616
12	1481	$\delta_s \mathrm{N^+H_3}$	1490	en e	1010
13	1444	ν CC+ ν CO+ ρ C $_{3}$ C $_{\alpha}$ H	1428	1437	1427
14	1410	$\delta C_{\vartheta}H_{2}$	1399	1408	
15	1357	$\rho C_{\beta} C_{\alpha} H + \delta C_{\beta} C_{\alpha} H$	1371	1377	1400
16	1348	δ COH+ δ C $_{\sigma}$ C $_{\alpha}$ H+ ρ N $^{+}$ H $_{3}$	1348	A 1, 17 F	1351
17	1292	$\omega C_{\beta}H_{2}$	1309	1313	1200
18	1221	ν CO+ δ COH+ ρ C $_{\delta}$ C $_{\alpha}$ H	1222	1 2 1 1 2 1	1300
19	1196	$tC_{\beta}H_{2}+\delta C_{\beta}C_{\alpha}H$	1203	1205	1001
20	1161	$\rho N^+H_3+\rho C_{\beta}C_{\alpha}H$	1141		1201
21	1102	$\rho N^+H_3+tC_3H_2+\delta C_3C_\alpha H$	1141	1176	******
22	1069	$\nu C_{\alpha} N^{+} + \delta C_{\beta} SH$	1059	1176	1000
23	991	$\delta C_{\beta}SH + \nu C_{\alpha}C_{\beta} + \rho N^{+}H_{3} + \rho C_{\beta}H_{2}$	988	1/2/262	1068
24	943	$\nu C_{\alpha} N^{+} + \nu C_{\alpha} C_{\beta} + \delta C_{\beta} SH + \nu C_{\alpha} C$	931	1009	1004
25	852	$\delta N^+ C_{\alpha} C + \gamma CO + \nu C_{\alpha} C$		942	943
26	<i>77</i> 9	$\rho C_{\vartheta} H_2 + \delta C_{\vartheta} SH$	863	882	870
27	732	$\gamma CO + \nu C_{\alpha}C + \nu C_{\alpha}N^{-}$	777	781	773
28	680	$\nu C_{\vartheta} S$	736	736	medicana
29	621	$\tau CO + \nu C_{\beta}S$	endestrone	20250Estabala	696
30	549	$\delta COO + \delta C_{d} C_{\alpha} C$	644	637	642
31	513	ρ COO	150c organização	4/44/00/00gg	disposition
32	444	$\delta N^+ C_\alpha C + \gamma CO + \delta C_\alpha C_\beta S$	524	Historial energy	SABOLISTAN
33	327	$\rho C_{\beta} C_{\alpha} C + \delta C_{\beta} C_{\alpha} C + \tau C_{\beta} S$	458	AlleyMedicitys	
34	315	$\tau C_3 S$	Assange	since(s)dyblege	angent of the second
5		$\rho C_{3}C_{3}C_{4}C_{5}N_{4}+iC_{5}C_{5}$	Minimumpy	ülütemeniler.	-
6	242	$\rho C_{\beta} C_{\alpha} C + \tau C_{\alpha} N^{+} + \delta COO + \delta C_{\beta} C_{\alpha} C + \tau C_{\beta} S$ $\tau C_{\alpha} N^{+} + \tau C_{\beta} S$	Parameters.	2010 Professional	
7		SC C SISNI+C C C	- Personal de la compansa del compansa del compansa de la compansa	A strike film opening	-
8	94	$\delta C_{\alpha} C_{\beta} S + \delta N^{+} C_{\alpha} C + \tau C C_{\beta}$ $\tau C_{\alpha} C_{\beta}$	Members.	interdistanta	·
9		$\tau C_{\alpha}C_{\beta}$	a) William being	KANTANIANA	
		C_{α}	and the same of th	NAME OF THE PARTY	

a. Ref. [26] and present study b. Ref. [31]

Table 6.6: Predicted frequencies and PED of SERH

	,	DED		expt	
no.	calc	PED	SERH ^o	SER-ÔMe ^a .	SER-zwitt.
1	3490	ı∕OH _{alc}			******
2	3412	$ u$ OH $_{acid}$	3385		
3	3155	ν N ⁺ H			_
4	3132	ν N ⁺ H			
5	3045	ν N+H			_
6	3000	$\nu C_{\beta}H_{2}$	-	***************************************	
7	2970	$\nu C_{\alpha} H$. —	2956	2975
8	2937	$\nu C_{\beta}H_{2}$	**********		2945
9	1744	1/C=O	1734	1 <i>7</i> 35	
10	1628	$\delta_a N^+ H_3$			(1637)
11	1612	$\delta_a N^+ H_3$		1596	(1626)
12	1484	$\delta C_3 H_2$		-	
13	1481	$\delta_s N^+ H_3$	***********		
14	1471	$\delta_s N^+ H_3 + \nu C - O + i C_\alpha C$		1450	1450
15	1437	$\delta C_{\beta}OH + \omega C_{\beta}H_{2} + \nu C_{\alpha}C_{\beta}$	1408	and the same of th	1435
16	1365	$\rho C_{\beta} C_{\alpha} H + \delta C_{\beta} C_{\alpha} H + \delta COH$	_	1378	136 1
17	1340	$\delta COH + \delta C_{\beta}C_{\alpha}H + \delta C_{\beta}OH$	1344	1346	
18	1297	tC₃H₂		1309	1312
19	1249	ν C-O+ δ COH	1242	-	1248
20	1225	$\omega C_3 H_2 + \delta C_3 OH$	_	1227	
21	1174	$\delta C_{\beta}C_{\alpha}H+\rho N^{+}H_{3}+tC_{\beta}H_{2}+\rho C_{\beta}H_{2}$		1177	1180
22	1144	$\rho N^+ H_3 + \rho C_3 C_\alpha H + \nu C_\alpha N^+$	1132	1131	1162
23	1094	$\nu C_{\alpha} N^{+} + \nu C_{\alpha} C_{\beta}$	1077	1064	1095
24	1030	$\nu C_3 O$	1025	10 44	1030
25	980	$\rho C_{\beta} H_2 + \nu C_{\alpha} C_{\beta} + \rho N^+ H_3$	970	espaintinales	983
26	947	$\rho C_{\beta} H_2 + \nu C C_{\alpha}$		945	
27	852	$\nu C_{\alpha} N^{+} + \rho C_{\beta} H_{2} + \nu C_{\alpha} C_{\beta}$	829	857	849
28	728	°CO+rCO			
29	620	PCOO+TCO		635	(619)
30	583	τ CO+ δ C $_{\alpha}$ C $_{\beta}$ O+ ρ COO+ γ CO		562	566
31	539	$\delta COO + \delta N^- C_{\alpha} C$	538	514	525
32	425	$\delta C_{\alpha}C_{\beta}O + \delta COO + \nu CC_{\alpha}$			· · · —
33	340	$\delta N^{+}C_{\alpha}C + \delta CC_{\alpha}C_{\beta} + \delta C_{\alpha}C_{\beta}O$			
34	300	$\delta CC_{\alpha}C_{\beta} + \delta COO + \delta N^{+}C_{\alpha}C + \rho COO$			
35	265	$\tau C_3 O$			* _
36	201	$\tau C_{\alpha} N^{+} + \rho C C_{\alpha} C_{5}$			
37	177	$\tau C_{\alpha} N^{+} + \rho C C_{\alpha} C_{\beta}$	· •		
38	114	$\tau C_{\alpha}C_{\beta}$	* * *		
39	65	$\tau CC_{\alpha} + \tau CO$			
		a Ref [26]	b. Ref. [30]		

a. Ref. [26]
* Numbers in the parentheses are from D,L-serine³³

Table 6.7: Comparative calculated frequencies of the amino acid hydrochloride backbone

				The second secon	AND AND REAL PROPERTY OF THE P
	CYSH	SERH	GH^n	GGH ^a	PED
•	3407	3412	3412	3436	νOH
	3166	3155	3179	3161	νN^-H
	3115	3132	3124	3109	νN^+H
	3019	3045	3060	2964	$\nu N^- H$
	1776	1744	1746	1738	ν C=O
	1634	1628	1616	1641	JaN"H1
	1614	1612	1610	1602	SaN-Hi
	1481	1481	1512	1472	8.N-H1
	1348	1340	1378	1362	OCOH+4 CH;
	1221	1249	1252	1247	··CO+··COH
	1161	1174	1148	1155	N'H
	1102	1144	1121	1126	N'Ha
	1069	1094	1042	1050	7.C.N.
	732	728	657	661	· C=O
	549	539	598	594	OCOO+ON'CC
			Mark a Company of the		distributed a definition of the contract of

a. Ref.[1]

Table 6.8: Comparative calculated frequencies of the amino acid hydrochloride sidechain

•	77.07.				
	EtSH	CYSH	EtOH	SERH	PED
		teriority.	3336	3490	νOH
	2932	3003	2920	3000	vCH,
	2902	2950	2877	2937	νCH_2
	2571	2590	Androphispage	neorouppen,	vSH
	1434	1410	1494	1484	oCH,
	1273	1292	1277/	1225/	CH,
			1446	1437	
	1251	1196	1318	1297	tCH ₂
			1051	1030	vC-O
	737	779	799/	947/	/CH2
			1153	980	1
	657	680		- 00	ν CS
				OR THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, ON THE OWNER,	CONTRACTOR OF THE PARTY OF THE

Table 6.9: Non-redundant scaled force constants of CYSH

```
4.321
    .067
1
          2
            4.872
1
    .036
          2
             .024
                   3 4.866
1
   . 222
          2
             .063
                    3
                      .038
                               3.145
                             4
1
    . 204
          2
             .021
                    3
                      -.018
                             4 -.009
                                       4.533
                                     5
1
   .193
          2 -.009
                    3
                      -.038
                               -.009
                                     5
                                        .187 6 5.042
                             4
1
    .064
          2
             .006
                    3
                      .006
                             4
                               -.004
                                     5
                                        .068 6
                                                 .073
                                                       7
                                                          4.737
1
   -.006
          2
             -.015
                    3
                               -.012
                                     5
                                       .002
                                              6 -.004
                                                       7
                       .008
                             4
                                                          .000
   3.862
8
   -.007
          2 -.005
1
                   3
                      .009
                            4
                               .032
                                     5 .039 6
                                                 . 420
                                                       7
                                                          -.003
8
   -.003
          9 12.134
1
   -.025
                                        .053 6
          2
            .007 3 -.005 4 -.009
                                    5
                                                 .321
                                                           .003
8
    .002
          9 1.177 10
                      6.588
   -.008
                                        .051 6 -.039
                                                       7
1
          2
             .002 3
                      -.003
                            4
                               -.005
                                    5
                                                          .001
8
    .000
             -.003 10
          9
                      -.062 11
                               5.506
1
    .005
          2
            .003 3
                               .004 5.
                                        .111 6
                                                 -.001
                                                       7 -.011
                      .000
                             4
                               .023 12 5.124
8
   -.001
          9
             -.035 10
                       .005 11
                                        .033 6 -.014 7 .007
1
   .009
          2
             .002 3
                       .000
                            4
                               .001
                                     5
                                        .013 13
             -.009 10
                               .013 12
                                                 5.396
8
    .000
          9
                      -.001 11
                                                          .004
                               .002 5
                                                -.011 7
                      .002
                                        .004 6
1
    .003
          2
             -.002 3
                            4
                                                 .001 14 6.499
                               -.002 12
                                        .004 13
8
    .000
            -.087 10
                       .153 11
          9
             .014 3
                               .012 5
                                                 . 256 7
                                         .186 6
1
    .318
          2
                       .000 4
                                                  .013 14
                                                           .003
                               -.016 12
                                         .016 13
8
   -.009
          9
             .050 10
                       .030 11
15
   1.084
                                                  .286 7
                                                           .014
                               -.006 5
                                         .266 6
   -.295
          2
             -.018 3
                       .026 4
1
                                                  .014 14
                                                           .006
                               -.070 12
                                        -.030 13
   .006 9 .056 10
                       .127 11
8
    .061 16
             1.322
15
                                        .310 6
                                                 -.238 7
                                                           .004
                               .033 5
                       .058 4
    .066
             -.018 3
1
          2
                                                 -.016 14
                                                          -.002
                               .008 12
                                        .002 13
8
    .011
          9
             -.013 10
                      -.049 11
             -.007 17
                      1.112
15
    .115 16
                                                 -.088 7
                               .044 5 -.179 6
                                                          -.030
                       .001 4
             -.001 3
1
    . 137
          2
                               .008 12 .000 13
                                                          -.001
                                                 .006 14
                      -.027 11
             -.005 10
8
   -.002
         9
                               .609
             -.044 17
                      -.017 18
15
   -.004 16
                                                 -.099 7
                                                           -.025
                                        .304 6
                               -.004 5
                       .008 4
             -.002 3
1
   -.013
          2
                                                 -.019 14
                              -.012 12<sup>·</sup> -.002 13
                                                          .000
                       -.021 11
   -.006 9
             -.036 10
8
                                        .711
                               -.051 19
                       .020 18
             .008 17
15
   -.093 16
                                                 .004 7 -.001
                                        -.007 6
                               .227 5
                      -.017 4
             .017 3
    .011
1
          2
                               .000 12 -.006 13
                                                 .000 14
              .022 10 -.009 11
   -.004 9
8
                                                  .846
             -.008 17 .003 18 -.001 19
                                       .002 20
15
    .014 16
```

Table 6.9: (Continued): Non-redundant scaled force constants of CYSH .002 5 -.276 6 - .002 .000 4 21 .002 2 -.005 3 -.008 1 .015 13 .065 14 -.023 11 .041 12 -.002 10 8 -.002 9 -.006 -.028 20 -.019 18 .011 19 .001 21 -.00416-.022 17 15 . 553 .003 5 -.011 -.001 4 6 - 013 22 .014 2 .006 3 -.001 -.06012.053 13 -.010 11 .047 14 -.001 .004 10 8 9 -.001 -.009 19 .005 20 .011 18 .004 21 15 .004 16 -.041 17 .009 22 .593 23 1 .011 2 .002 3 .000 4 .003 5 .001 6 - .005 7 -.002 .058 13 .022 12 8 .001 9 -.017 10 .031 11 - 090 14 .006 -.017 15 .020 16 -.005 17 .017 18 .011 19 20 - 001 21 -.001 22 -.00923.586 24 .020 -.008 3 .004 4 -.007 5 1 2 .010 6 011 7 .002 8 -.001 -.042 10 .048 11 .052 12 -.053 13 9 dos 008 14 .008 .046 16 15 -.054 17 .062 18 .013 19 -.032 20 002 21 -.004 22 -.013 23 -.008 24 .740 25 1 -.011 -.008 3 2 -.0024.006 5 .019 6 - 004 7 .006 8 .003 9 -.026 10 .005 11 -.002 12 .102 13 - 021 14 .004 15 -.06316-.040 17 -.008 18 -.034 19 .065 20 .002 21 -.008 22 -.007 23 .030 24 -.00525.760 26 1 .034 2 .000 .020 4 .011 5 -.084 .306 6 7 .001 8 .003 9 -.613 10 .456 11 -.066 12 -.016 13 - 006 14 .070 15 .067 16 .164 17 -.035 18 -.031 19 .010 20 .007 21 .025 22 -.01023-.00724.008 25 .022 26 1.474 27 -.016 2 .004 3 -.031 4 -.001 5 .085 6 .351 .005 -.007 9 -.078 10 -.288 11 -.02012-.009 13 -.004 14 .054 15 .066 16 .099 17 -.06718-.024 20 -.00219-.001 21 -.014 22 -.002 23 .010 24 .003 25 -.016 26 .127 27 .916 28 1 .007 2 .001 3 .001 4 .001 5 .016 6 .043 .002 7 8 .000 9 .028 10 .208 11 .004 12 .003 13 .001 14 . 131 15 .005 16 -.01517-.015 18 -.001 19 -.002 20 .001 21 -.012 22 .002 23 .007 24 .018 25 .004 26 .097 27 .115 28 .803 29 1 -.1512 .056 3 .060 4 -.1215 -.017 6 .004 7 .000 8 .001 9 -.02310.006 11 -.00112-.002 13 .000 14 -.002 15 -.019 16 .019 17 -.019 18 .012 19 -.003 20 -.015 21 .004 -.004 23 22 -.00324-.00125.004 26 -.013 27 .005 28 -.002 29 .537 30 1 . 228 2 .009 3 .030 4 -.254 5 .046 6 .011 -.006 8 -.003 9 .020 10 .014 11 .000 12 -.011 13 .000 -.003 14 15 .050 16 -.054 17 .014 18 -.017 19 -.003 20 -.045 21 -.007 22 .001 23 .000 24 .009 25 -.001 26 .021 27 .001 28 .003 29 -.01330.591

Table 6.9: (Continued): Non-redundant scaled force constants of CYSH .106 3 -.058 4 -.012 5 -.061 6 .048 2 31 1 -.003 7 .021 9 -.02010.042 11 .001 12 .007 13 .005 14 -.00315 .017 16 .007 17 .008 18 -.011 19 -.01920.089 21 .007 22 -.00623.009 24 -.001 26 -.026 25 .026 27 -.018 28 .001 29 .002 30 .003 31 .787 32 1 -.005 2 .017 3 -.044 4 .001 5 -.045 6 .008 7 -.004 -.013 9 .000 10 .022 11 .002 12 .005 13 .004 14 -.001 15 -.028 16 .009 17 -.115 18 -.003 19 .008 20 -.089 21 .002 22 .010 23 -.007 24 -.023 25 -.006 26 .016 27 -.004 28 .003 29 -.01530.018 31 .012 32 .572 -.054 3 33 1 . 354 2 -.029 4 .285 5 -.071 6 -.018 7 .030 -.012 9 .030 10 -.032 11 -.007 12 .034 13 -.001 14 -.001 15 .124 16 -.018 17 .088 18 .080 19 -.016 20 -.006 21 .029 22 .016 23 .014 24 -.005 25 -.024 26 -.006 27 .006 28 -.00129 .016 30 .004 31 .026 32 -.033 33 1.044 34 .003 1 2 -.002 3 -.002 4 .000 5 -.020 6 .049 7 .020 8 -.005 9 .003 10 .001 11 -.012 12 .000 13 -.001 14 .002 15 -.053 16 .008 17 .014 18 -.039 19 -.054 20 -.001 21 .001 22 .004 23 -.009 24 .014 25 .000 26 .026 27 .034 28 .001 29 .003 30 -.002 31 -.012 32 -.004 33 .010 34 .450 35 1 .014 2 -.002 3 .007 4 -.017 5 .000 6 .006 7 .000 8 .016 9 .004 10 -.001 11 -.002 12 .005 13 -.00214.002 15 .018 16 .006 17 -.027 18 .003 19 -.002 20 -.014 21 .001 22 -.020 23 .012 24 .009 25 .004 26 .000 27 .005 28 .001 29 .006 30 .013 31 -.049 32 -.003 33 .049 34 -.005 35 .096 36 -.022 2 .002 3 .000 4 .008 5 -.018 6 1 -.027 .005 7 -.001 8 .001 .003 10 -.017 11 -.017 12 -.033 13 .006 14 9 -.02216-.029 17 -.011 18 .017 19 -.011 20 -.004 21 -.011 15 -.030 23 .003 24 .009 25 .035 26 -.027 27 -.006 28 -.00429 -.00130-.001 31 .004 32 -.008 33 -.010 34 -.005 35 .019 36 .118 .018 7 .032 5 -.004 6 -.00837 -.005 4 1 .100 2 -.017 3 -.004 12 .011 13 .001 14 .000 .008 11 8 .029 -.00710-.041 20 .013 21 .005 .000 19 -.010 17 .087 18 15 .059 16 .002 27 .005 28 .000 .005 26 22 -.034 23 .027 24 .008 25 .081 32 -.043 33 .057 34 -.010 35 .046 .008 31 29 .017 30 .022 37 .246 36 .004 5 .014 6 .015 7 -.005 .006 4 -.002 3 38 1 .015 2 -.024 12 -.008 13 -.00014.003 .033 11 -.040 10 8 .010 9 .004 21 -.007 .016 20 .031 18 -.030 19 .088 17 .012 16 15 -.004 -.035 28 .001 26 .088 27 .006 25 -.0252422 .008 23 .002 33 -.001 34 -.001 35 .013 32 29 -.001 30 -.003 31 .090 -.008 37 .021 38 36

Table 6.9: (Continued): Non-redundant scaled force constants of CYSH .000 4 -.001 5 .002 6 -.010 7 39 .001 3 -.002 1 -.001 2 .003 12 .003 13 .000 14 .008 11 8 .000 9 -.003 10 .001 .007 19 .010 20 .001 21 .004 16 -.008 17 -.006 18 15 .000 .000 24 -.001 25 -.001 26 -.005 27 -.001 28 22 .000 23 .003 .002 33 -.002 34 -.013 35 -.003 .001 32 29 -.001 30 .000 31 .000 37 -.004 38 .001 39 .158 36

Table 6.10: Non-redundant scaled force constants of SERH

1	1	4.558	}											
2	1	. 068	3 2	4.802	2									
3	1	. 035	2	.041	. 3	4.891								
4	1	.382		. 185	3	.142	4	4.986						
5	1	.210	2	. 020	3	024	4	.004	5	4.857				
6	1	.168		.005	3	016	4	027	5	.172	6	5 156		
7	1	.044		014	3	.007	4	.002	5	.065	6	.052	7	4.849
8	1	008		009	3	003	4	027	5	.000	6	.002	7	.000
	8	6.804												
9	1	047		.016		005	4	.064	5	. 035	6	.501	7	003
	8	007	9	11.578										
10	1	000	2	.006		.011	4	.007	5	. 005	6	. 258	7	. 003
	8	003	9	1.159		7.267								
11	1	.003	2	002		002	4	.006	5	.070	6	037	7	015
10	8	.003	9	033	10	.002	11	5.460						
12	1	012	2	000	3	003	4	006	5	.026	6	007	7	. 009
10	8	.002	9	004		013	11	.023	12	5.426				
13	1	030	2	.005	3	.004	4	059	5	.095	6	018	7	001
1 /	8.	008	9	.004		012	11	.015	12	.011	13	5.252		
14	1	.009	2	.001	3	.002	4	009	5	002	6	016	7	.004
15	8	.003	9	088		. 144	11	.001	12	.002	13	.002	14	6.519
15	1	. 144	2	.002	3	.017	4	.015	5	.227	6	. 263	7	098
	8	.006	9	.039	10	004	11	037	12	.012	13	015	14	. 005
16	15 1	.963	•											
10	8	298	2	006	3	.012	4	087	5	.242	6	. 361	7	.002
	15	006	9		10	.016	11	042	12	029	13	.005	14	.006
17	15	. 193	16	1.313										
1	8	. 235	2	008	3	.021	4	010	5	.361	6	102	7	.015
	15	.010	9		10	021	11	029	12	.002	13	013	14	001
18	1		16	175		1.120								
	8	.180	2	.018	3	013	4	017	5	168	6	085	7	013
	15	.034	9		10	002		006	12	.015	13		14	.000
	10	.034	ΤD	024	17	.002	18	.622						

11

Table 6.10: (Continued): Non-redundant scaled force constants of SERH .039 19 2 -.005 3 .007 4 .004 5 .311 6 -.079 7 -.014 8 .002 -.060 10 9 -.020 11 .011 12 -.021 13 -.003 14 .003 -.054 16 15 .020 17 .090 18 -.090 19 .702 1 .049 2 20 .008 3 .004 4 .354 5 .022 6 -.001 7 .001 .075 8 9 .006 10 .003 11 .002 12 .002 13 -.00414.000 .007 16 15 -.016 17 -.013 18 -.003 19 .002 20 .830 21 1 .007 2 -.004 3 .002 4 -.009 5 -.303 6 .002 -.008 8 -.004 -.020 10 9 .008 11 .039 12 .065 13 .002 14 -.00415 -.016 16 -.026 17 -.016 18 .014 19 -.017 20 -.01421.562 22 1 .006 2 -.002 3 .002 4 -.004 5 .003 6 -.008 7 .000 -.003 8 9 -.010 10 .006 11 -.063 12 .028 13 .018 14 -.000 15 -.013 16 -.020 17 .006 18 -.017 19 .010 20 -.002 21 -.004 22 .584 -.018 -.007 3 23 1 2 .002 4 -.004 5 -.024 6 -.025 7 -.000 -.003 9 .047 10 -.023 11 .049 12 .103 13 -.070 14 .003 15 -.032 16 -.015 17 -.034 18 -.011 19 .008 20 .001 21 .021 22 .009 23 .573 24 .010 .012 1 3 -.002 4 -.019 5 .006 6 -.023 7 .005 -.000 8 .040 10 -.049 11 .064 12 -.004 13 -.050 14 .003 15 -.07116-.019 17 -.01918-.029 19 .060 20 -.01121-.01122 -.01523-.01524.769 25 .015 .000 3 1 2 .008 4 -.028 5 -.0086 -.024 7 -.005-.007 9 .032 10 -.033 11 .017 12 .024 13 -.12214.003 .045 18 15 -.003 16 -.075 17 -.007 19 -.007 20 -.022 21 -.00122 .002 23 .014 24 .006 25 .777 26 -.002 2 .004 3 -.023 4 .005 5 .092 7 1 .171 6 -.023 8 -.003 9 -.644 10 .376 11 .002 12 .002 13 .001 14 .026 16 15 .062 17 -.021 18 .026 19 .023 20 -.002 21 -.033 -.003 25 -.016 26 22 -.00223.020 24 1.176 .457 7 .006 4 .023 5 -.059 .015 27 1 .006 2 .006 3 6 -.028 12 -.022 13 -.27411-.018 14 .057 -.004 9 .064 10 8 .015 -.02219-.03720.002 21 .064 16 .081 17 -.0321815 .057 27 1.015 -.00825-.0012622 -.00323-.019 24 -.006 5 .020 6 .048 .003 .003 4 .005 .000 3 28 1 -.000 -.002 12 .000 13 1 .139 .246 11 .019 10 8 .002 9 .002 19. .001 20 .000 21 -.006.004 18 .025 17 15 .018 16 .116 28 .805 .001 25 -.002 26 .102 27 .002 24 22 -.00323.006 7 -.002 -.206 5 -.010 6 .079 4 .085 3 29 1 -.119 2 .000 13 -.00414-.000 .001 12 -.000 11 -.005 10 .005 9 8 .002 20 .008 21 . 002 -.022 18 -.013 19 .001 17 -.006 16 15 .002 27 -.000 28 -.005 26 .004 24 -.004 25 22 -.000 23 29 .564

Table 6.10: (Continued): Non-redundant scaled force constants of SERH .049 6 30 .226 .010 4 -.416 5 1 2 .007 3 -.017 .007 -.000 13 8 .030 9 .005 10 .017 11 -.00212- 017 14 .002 .012 16 15 -.035 17 .064 18 .034 19 -.000 20 008 21 -.010 22 -.002 23 -.001 24 -.004 25 .003 26 .004 27 007 28 .002 29 -.008 30 .697 31 1 .079 2 .083 3 -.073 4 .059 5 -.073 6 - 021 .039 8 .007 9 -.008 10 .003 11 .001 12 -.005 13 - 004 14 - 000 15 -.058 16 .008 17 .019 18 .061 19 .026 20 004 21 .013 22 .020 23 .006 24 .003 25 -.01126-.002 27 - 003 28 .000 29 -.007 30 .012 31 .753 32 -.0112 .043 3 -.040 4 -.032 5 -.042 6 - 015 7 .012 8 -.004 9 .015 10 -.012 11 .005 12 -.001 13 007 14 -.001 15 -.06416.048 17 -.084 18 - 005 20 .052 19 - 010 21 001 22 -.00723-.00424.010 25 -.014 26 .004 27 - 005 28 - .001 29 -.002 30 .014 31 -.068 32 .735 33 1 .543 2 -.045 3 -.042 4 .611 -5 -.086 6 030 - 029 8 .054 9 .056 10 .050 11 -.013 12 -.012 13 - 036 14 -.005 15 .085 16 -.15417.080 18 -.059 19 .040 20 083 21 039 22 .006 23 -.025 24 .027 25 .003 26 -.019 27 .048 28 -.002 -.027 30 .123 31 .110 32 -.029331.607 34 1 -.012 2 -.004 3 -.009 4 -.010 5 -.002 6 .000 .016 -.001 8 9 .012 10 .009 11 .009 12 -.000 13 -.000 14 .001 15 -.061 16 .031 17 .048 18 -.02719-.052 20 -.005 21 .004 -.007 23 22 .003 24 -.013 25 .007 26 .001 27 .001 28 -.000 29 .002 30 -.003 31 -.004 32 -.002 33 -.025 34 .438 35 1 -.009 2 -.002 3 -.003 4 .003 5 .010 6 .001 7 -.003 8 -.007 9 .000 10 .004 11 .002 12 -.000 13 .002 14 -.000 -.006 16 15 .004 17 -.013 18 .001 19 -.002 20 .016 21 -.005 22 -.002 23 .001 24 -.003 25 -.007 26 -.001 27 .002 28 -.000 29 -.001 30 .002 31 -.028 32 .010 33 -.002 34 .000 35 .031 36 1 -.021 2 .002 3 .003 4 -.002 5 -.042 6 -.028 7 .007 8 -.003 9 -.016 10 .018 11 -.042 12 .010 13 -.018 14 -.001 15 -.009 16 .001 17 -.035 18 -.008 19 -.010 20 -.001 21 -.009 22 .064 23 .025 24 .017 25 .005 26 .002 27 -.014 28 -.004 29 -.002 30 -.004 31 .009 32 -.004 33 -.008 34 .003 35 -.004 .080 36 37 -.233 2 1 .018 3 .006 4 -.052 5 .020 6 .015 7 -.005 -.003 9 .016 10 -.006 11 .004 12 .008 13 .004 14 -.000 15 .014 16 .046 17 -.103 18 -.027 19 -.039 20 -.006 21 -.011 -.036 23 22 -.013 24 .001 25 -.001 26 .016 27 -.005 28 -.001 .002 30 29 -.034 31 -.071 32 .016 33 -.140 34 .010 35 .010 36 -.018 37 .170

Table 6.10: (Continued): Non-redundant scaled force constants of SERH 1 -.002 2 38 .004 3 -.013 4 .008 5 .023 6 .007 7 -.002 9 -.014 10 .006 11 -.032 12 .002 13 -.014 14 .000 .093 16 15 -.067 17 -.008 18 .042 19 -.012 20 .001 21 -.018.001 23 -.021 24 .026 25 -.022 26 .006 27 .009 28 .004 -.006 30 29 .003 31 -.003 32 .005 33 .004 34 .014 35 -.001 36 -.047 37 .008 38 . 173 39 -.003 2 .002 3 -.001 4 -.003 5 .013 6 1 .007 7 .003 8 .000 9 -.001 10 -.010 11 -.001 12 .001 13 -.015 14 -.001 15 .022 16 -.046 17 .009 18 .017 19 -.010 20 .000 21 -.008 22 -.013 23 -.007 24 -.001 25 -.016 26 .008 27 -.000 28 .006 .001 33 -.001 34 .001 30 .000 31 -.000 32 .002 35 -.000 29 -.031 37 .002 38 .078 39 .073 . 36

Bibliography

- [1] Bare, G. H.; Alben, J. O.; Bromberg, P. A. Biochemistry, 1975, 14, 1578.
- [2] Moh, P. P.; Fiamingo, F. G.; Alben, J. O. Biochemistry, 1987, 26, 6243.
- [3] Yu, N. T.; East, E. J. J. Biol. Chem., 1975, 250, 2196.
- [4] Chen, W.; Nie, S.; Kuck, J. F. R., Jr.; Yu, N. T. Biophys. J., 1991, 60, 447.
- [5] Pande, J.; McDermott, M. J.; Callender, R. H.; Spector, A. Arch. Biochim. Biophys., 1989, 60, 250.
- [6] Byler, D. M.; Susi, H.; Farrell, H. M., Jr. Biopolymers, 1983, 22, 2507.
- [7] Thomas, G. J., Jr.; Li, Y.; Fuller, M. T.; King, J. Biochemistry, 1982, 21, 3866.
- [8] Li, T.; Chen, Z.; Johnson, J. E.; Thomas, G. J., Jr. Biochemistry, 1990, 29, 5018.
- [9] Smith, D.; Delvin, J. P.; Scott, D. W. J. Mol. Spectrosc., 1968, 25, 174.
- [10] Richter, W.; Schiel, D. Chem. Phys. Lett., 1984, 108, 480.
- [11] Li, H., Thomas, G. J., Jr. J Am. Chem. Soc., 1991, 113, 456.
- [12] Hayashi, M.; Shiro, Y.; Murata, H. Bull. Chem. Soc. Jpn., 1966, 39, 112.
- [13] Scott, D. W.; El-Sabban, M. Z. J. Mol. Spectrosc., 1969, 30, 317.
- [14] Inagaki, F.; Harada, I.; Shimanouchi, T. J Mol. Spectrosc., 1973, 46, 381.
- [15] Manocha, A. S.; Fateley, W. G.; Shimanouchi, T. J. Phys. Chem., 1973, 77, 1977.

- [16] Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A. J. Phys. Chem., 1975, 79, 988.
- [17] Pennington, R. E.; Scott, D.W.; Finke, H. L.; Mccullough, J. P.; Messerley, J. F.; Hossenlopp, I. A.; Waddington, G. J. Am. Chem. Soc., 1956, 78, 3266.
- [18] Ozazki, Y.; Sugeta, H.; Miyazawa, T. Chemm. Lett., 1975, 713.
- [19] Sugeta, H.; Go, A.; Miyazawa, T. Chem. Lett., 1972, 83.
- [20] Sugeta, H.; Go, A.; Miyazawa, T. Bull. Chem. Soc. Jpn., 1973, 46, 3407.
- [21] Nogami, N.; Sugeta, H.; Miyazawa, T. Chemm. Lett., 1975, 147.
- [22] Sugeta, H. Spectrochim. Acta 1975, 31A, 1729.
- [23] Nogami, N.: Sugeta, H.; Miyazawa, T. Bull. Chem. Soc. Jpn., 1975, 48, 2417.
- [24] Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc., 1984, 106, 765.
- [25] a) Tarakeshwar, P.; Manogaran, S. J. Mol. Struct. (Theochem), 1994, 305, 205. b) Tarakeshwar, P.; Manogaran, S. Spectrochim. Acta, 1994, 51A, 925.
- [26] Susi, H.; Byler, D. M.; Gerasimowicz, W. V. J. Mol. Struct., 1983, 102, 63.
- [27] Madec, C.; Lauransan, J.; Garrigou-Lagrange, C. Can. J. Spectrosc., 1980, 25, 47.
- [28] Madec, C.; Lauransan, J.; Garrigou-Lagrange, C. Can. J. Spectrosc., 1978, 23, 166.
- [29] Machida, K.; Izumi, M.; Kagayama, A. Spectrochim. Acta, 1979, 35A, 1333.
- [30] Li, H.; Wurrey, C. J.; Thomas, G. J., Jr. J. Am. Chem. Soc., 1992, 114, 7463.
- [31] Gargaro, A. R.; Barron, L. D.; Hecht, L. J. Raman Spectrosc., 1993, 24, 91.
- [32] Barron, L. D.; Gargaro, A. R.; Hecht, L.; Polavarapu, P. L. Spectrochim. Acta, 1991, 47A, 1001.
- [33] Mikawa, Y.; Brasch, J. W.; Jakobsen, R. J. Spectrochim. Acta, 1971, 27A, 529.

- [34] Qian, W.; Krimm, S. Biopolymers, 1992, 37, 1503.
- [35] Von-Nagy-Felsobuki, E. I.; Kimura, K. J. Phys. Chem., 1990, 94, 8041.
- [36] Kakar, R. K.; Quade, C. R. J. Chem. Phys., 1980, 72, 4300.
- [37] Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc., 1971, 38, 33.
- [38] a) Hadzi, H.; Jeramic, D. Spectrochim. Acta, 1957, 9, 263. b) Stuart, A. V.; Sutherland, G. B. B. M. J. Chem. Phys., 1956, 24, 559. c) Krimm, S.; Liang, C. Y.; Sutherland, G. B. B. M. J. Chem. Phys., 1956, 25, 778.
- [39] a)Tanaka, C. J. Chem. Soc. Japan, 1962, , 792. b) Lake, R. F.; Thompson, H. W. Proc. Roy. Soc., 1966, A291, 469.

Chapter 7

Vibrational Analysis of Glycine Zwitterion

In this chapter, vibrational analysis of the smallest amino acid, glycine (Gly) is presented using Onsager reaction field approach. A complete set of scale factors is obtained for this important amino acid by using the fitting procedure described in chapter 3.

Gly, the smallest member of the amino acid family was the center of attention of many investigations [1-22]. Gly is one of the non essential amino acids and most commonly found in proteins along with leucine and serine. Gly is one of the three amino acids essential for the biosynthesis of the non-proteinic nitrogenous material, creatine, in human and animal tissues. Gly and succinyl CoA are the starting compounds in heme synthesis. Its role in the genesis of nucleotide purine ring as one of the important amino acids cannot be augmented [23].

The experimental IR and Raman spectra of Gly in solution phase is very limited [24,25]. This is because in aqueous solution, the absorption due to the water molecules, especially in the mid IR range, interferes with that of Gly. As a result most of the recent spectroscopic studies of Gly are based on α crystalline form [26-28]. Another important point is that since there is no chiral carbon atom in Gly, the more accurate solution phase VCD and ROA measurements are not available. As a result the correct interpretation of the available solution and/or solid phase experimental spectra requires a good theoretical model.

The structure of Gly is completely different in the gas and liquid phases. In gas phase it exhibits a non-ionic structure (NH₂CH₂COOH), whereas in the liquid or solid it exists

as a zwitterion (N+H₃CH₂COO-). The ab initio potential energy surface (PES) of gaseous Gly has been studied extensively [1-14]. But the theoretical studies on Gly zwitterion are relatively few [20-22]. Attempts to study the isolated Gly zwitterion using ab initio methods have not been successful so far because the calculation of isolated Gly zwitterion either goes to the gas phase structure or even when optimized restrictively generates imaginary frequency. For example, attempts to deduce the ab initio force field on the Gly zwitterion crystal geometry retains the residual linear forces because this is not a true minima in the PES [20]. Here we show that the choice of appropriate basis set can reach the right minima in the PES but suffer from the intramolecular H-bonding problem which is absent in solid or solution phase. As a result such ab initio calculation on isolated molecule cannot reproduce the true features of experimental vibrational spectra. The extra stability of amino acid zwitterion in the solution or solid phase over the gas phase, comes through the interaction with the solvent and through the intermolecular interactions. Thus the effect of the solvent environment and the intermolecular H-bonding cannot be ignored in the theoretical calculation of amino acid zwitterion. Two different theoretical approaches have emerged for the improvement of the ab initio model in this regard; the supermolecular approach and the Onsager reaction field model. As discussed in chapter 5, the supermolecular approach although produces improved results over the ab initio force field, difficult to generalize to higher systems. This is because with the increase in the number of atoms, the number of water molecules also increases and hence becomes computationally intensive. Also the PEDs get mixed up with the water modes and is difficult to separate. Using the more general Onsager reaction field approach with judicial choice of basis set and the radius of the molecular volume at a particular dielectric medium appears to give the more appropriate solution for describing the amino acid zwitterions.

Thus in this chapter our endeavour is to present a solvated Gly zwitterion calculation with an appropriate choice of basis set and the radius of the cavity (which is achieved on a trial and error basis) which will produce the equivalent of inter-molecular H-bonded environment in the condensed phase of Gly zwitterion. Different basis sets $(4-21G, 6-31G^*, 6-31+G, 6-31+G^*)$, are used to select $6-31+G^*$ as the right one

for the Onsager model of the Gly zwitterion. Also a complete set of nonredundant force constants for Gly based on the solvated ab initio calculation is presented.

7.1 Calculations

The ab initio force constants and frequencies of Gly were calculated analytically at the optimized geometry. The recommended ab initio radius of solvent model is reduced by 0.5 A° for all the calculations unless otherwise mentioned. The cartesian force constant matrix was transformed to the nonredundant local coordinate. The nonredundant local coordinates of Gly are given in Table-7.1 and Figure 7.1. The fitting procedure described in detail in chapter 3 is used to get the force field of Gly by fitting four different isotopomers. The fitting produced an average deviation of 7.9 cm⁻¹ from the available experimental data.

7.2 Results

7.2.1 Geometry

The optimized geometry of solvated Gly obtained by using different basis sets is shown in Table-7.2 along with the crystal structure [29], molecular dynamics (MD) simulated structure [20] and the calculated HF/6-31++G* isolated zwitterion structure. Table-7.2 clearly indicates that the ab initio calculated structure is slightly different from the experimental structure. Even if the optimization is done at its full degree of freedom, the ab initio model produces a structure closer to planar symmetric (Cs) compared to the crystal geometry irrespective of the basis set. In the crystal structure all the three N+H bond lengths are quite different (1.054, 1.037 and 1.025), with the planar N+H slightly longer than the other two. This may be due to different extent of H-bonding experienced by each N+H bond in the crystal environment. In the ab initio calculation, both the out of plane N+H bond lengths are the same in isolated as well as solvated calculations. But the only improvement introduced through the solvent model is the relative difference between the planar and nonplanar N+H gets reduced significantly. In the isolated model the intramolecular H-bonding is more pronounced and hence the planar N+H bond length

(1.053) is much longer than the solvated one (1.020). The CC and CN+ bond lengths are overestimated and do not change much from the isolated model. Both the CO bond lengths are exactly the same in the crystal structure due to the equal extent of H-bonding with the neighbouring N+H₃ groups and calculations for the different basis sets produce results close to this. The calculated bond angles for various basis sets are relatively of the same order but 6-31++G* produces slightly improved results over others. The low value of the C(2)-N+(1)-H(3) (planar) angle (98.9°) in the isolated model is probably due to the formation of a five membered ring through intramolecular H-bonding. The 4-21G and 6-31++G** basis sets in solvated model produce structures oriented differently from the other basis sets and are closer to the isolated structure. The optimized structures in isolated and solvated models at 6-31++G* basis set along with the X-ray structure are shown in Figure 7.2.

7.2.2 Selection of the right model

The aim of the present work is to choose a suitable ab initio model for proper description of the features of the experimental vibrational spectra of amino acids, using Gly as a test case. The existing literature on the vibrational spectra of amino acids and their isotopomers infer the following general observations.

- i) In most of the solution or solid state spectra N^+H_3 asymmetric bend and CO asymmetric stretch appear at around 1600 cm⁻¹, the first one appearing at a higher frequency.
- ii) N^+H_3 symmetric bend appears next at around 1520 cm⁻¹, followed by CO symmetric stretch at around 1400 cm⁻¹. The 1400 cm⁻¹ is confirmed to be CO stretch because of its invariance to isotopic substitution. Also, in alanine the more accurate VCD spectra show the same difference of around 200 cm⁻¹ between the two CO stretches.
- iii) Most of the other band positions vary depending on the structure of the amino acids.

Criterion 1: The sensitive frequencies obtained from different basis sets in solvated model are given in Table-7.3 along with their PEDs. The PEDs match with the expected order for $\delta_a N^+ H_3$, $\nu_a CO$ and $\delta_s N^+ H_3$ as discussed above only for 6-31++G* basis set.

Criterion 2: The radii used in the solvated model for different basis sets are reduced by 0.5 Åfrom the recommended value since the recommended one corresponds to a value increased by 0.5 Åfrom the actual computed value [30]. Although criterion 1 is met by 6-31++G* basis set, criterion 2 i.e. ν_s CO should appear as a major component below δ_s N+H₃ is not fulfilled properly. So we investigated the effect of the cavity radius on the PEDs. We tried different possibilities and the best model appears to be the one corresponding to a value 3.2 Åas shown in Table-7.3 [31].

After fitting to the experimental frequencies of the four different isotopomers, the fitted force constants produced excellent description of the different normal modes as shown in Tables-7.4 and 7.5.

7.2.3 Vibrational Frequencies

Fitted frequencies of Gly-d₀ is given in Table-7.4 along with their PEDs. Table-7.5 contains the calculated frequencies of different isotopomers. The fitted frequencies are in excellent agreement with the experimental frequencies except for the lowest three, mainly torsions and skeletal deformations. Ab initio model is known to be very poor for these modes. Thus we excluded these numbers in calculating the average error. Our fitted PEDs match very well with the earlier reported PEDs obtained by using the MD simulated force field, [20] with few exceptions. In the fitting we used the experimental data from both crystal and solution spectra. The N+H and CH frequencies were overestimated significantly in the earlier work, [20] while the present numbers are in good agreement. In this region we choose all bands from the crystal spectra except for 3011 cm⁻¹ which is from the solution Gly-d₀. Both the $\delta_a N^+ H_3$ appear above νCO followed by $\delta_s N^+ H_3$ in the Gly-d₀ spectra as expected. All these four bands are calculated at 1645, 1624, 1595 and 1523 $\rm cm^{-1}$ and get shifted to 1174, 1167, 1588 and 1205 cm⁻¹ in Gly-N⁺D₃, 1643, 1622, 1592 and 1522 cm $^{-1}$ in Gly-CD $_2$ and 1176, 1168, 1585 and 1208 cm $^{-1}$ in Gly-N+D $_3$ CD $_2$ spectra. The δCH_2 and $\nu {\rm CO}$ modes give a better fit with the 1440 and 1410 cm $^{-1}$ solution phase frequencies and so these are used for the fitting. This 1410 cm $^{-1}$ ν CO+ ν CC mode remain invariant in different isotopomers as expected. The 1327 cm⁻¹ solution band matches very well with

our fitted frequency of $1326~\rm cm^{-1}$ and is assigned to $tCH_2 + \rho CH_2$. This band gets shifted to 1316, 935, $930~\rm cm^{-1}$ in Gly-N+D₃, Gly-CD₂ and Gly-N+D₃CD₂ respectively. The 1138 and $1119~\rm cm^{-1}$ bands are both assigned as mixed modes of ρ N+H₃, tCH_2 and ρ CH₂. These two bands shift in isotopic spectra to 821, $763~\rm cm^{-1}$ in N+D₃, 1215, $1178~\rm cm^{-1}$ in CD₂ and $807~\rm and~707~\rm cm^{-1}$ in N+D₃CD₂ spectra respectively. The $1037~\rm cm^{-1}$ crystal band is used for ν CN+ mode in Gly-d₀ and it agrees very well with our $1039~\rm cm^{-1}$ band. The δ COO + δ CCN+ + ρ COO mixed mode could be assigned to either $704~\rm cm^{-1}$ from the crystal spectra or to $665~\rm cm^{-1}$ from the solution in Gly-d₀. Earlier SQM assignment matches well with the solution phase value. Our fitting produces this band at $668~\rm cm^{-1}$ and is in support to the earlier SQM assignment. This frequency gets shifted to 634, 646, $618~\rm cm^{-1}$ respectively in the other three isotopomers, in good agreement with the expected experimental fundamentals confirming the assignment.

The non redundant fitted force constants of Gly is given in Table-7.6.

7.3 Conclusions

The Onsager reaction field approach is found to be very successful in reproducing the vibrational spectra of the smallest amino acid, Gly. The selection of basis set and the radius of the molecular volume is considered as two prime factors for mimicking the experimental spectra within this model. The fitting procedure to obtain the scale factors from the ab initio force field of Gly has shown to be very successful giving an average deviation of 7.9 cm⁻¹ between the predicted and the experimental frequencies for four isotopomers. A complete set of non redundant force constants were obtained for Gly. The excellent agreement between the fitted and experimental frequencies clearly implies that the methodology could, in principle, be applied successfully to other amino acids.

 $a1 = O(9)-C(4)-O(10), \ b1 = C(2)-C(4)-O(10), \ b2 = C(2)-(4)-O(10)$ $a2 = H(5)-C(2)-H(6), \ a3 = C(4)-C(2)-H(5), \ a4 = C(4)-C(2)-H(6)$ $b3 = N(1)-C(2)-H(5), \ b4 = N(1)-C(2)-H(6), \ b5 = N(1)-C(2)-C(4)$ $a5 = H(3)-N(1)-H(7), \ a6 = H(3)-N(1)-H(8), \ a7 = H(7)-N(1)-H(8)$ $b6 = C(2)-N(1)-H(3), \ b7 = C(2)-N(1)-H(7), \ b8 = C(2)-N(1)-H(8)$

Figure 7.1: Internal coordinates of Gly.

Figure 7.2: Structure of X-ray and optimized Gly using 6-31++G* basis set. a) X-ray structure b) isolated c) solvated with radius 3.2 Å

Table 7.1: Local symmetry coordinates^a of Gly

$S_{1-9} =$	r ₁₋₉ (all stretch)	S ₁₇ =	$a_5 + a_6 + a_7 - b_6 - b_7 - b_8 (\delta_s N^+ H_3)$
$S_{10} =$	$2a_1-b_1-b_2$ (δ COO)	$S_{18} =$	$2a_7-a_5-a_6 (\delta_a N^+ H_3)$
$S_{11} =$	b_1 - b_2 (δ COO)	$S_{19} =$	a_5 - $a_6 (\delta_a N^+ H_3)$
$S_{12} =$	$4a_2$ - a_3 - a_4 - b_3 - b_4 (δ CH ₂)	$S_{20} =$	$2b_6-b_7-b_8 (\rho N^+H_3)$
$S_{13} =$	$a_3+a_4-b_3-b_4 \ (\omega CH_2)$	$S_{21} =$	$b_7 - b_8 (\rho N^+ H_3)$
$S_{14} =$	$a_3-a_4+b_3-b_4 (\rho CH_2)$	$S_{22} =$	$\gamma_{24910} \ (\gamma CO)$
$S_{15} =$	$a_3-a_4-b_3+b_4$ (tCH ₂)	$S_{23} =$	$ au_{24} \ (auCC)$
$S_{16} =$	$5b_5-a_2-a_3-a_4-b_3-b_4 (\delta CCN^+)$	$S_{24} =$	$ au_{21} (au \text{CN}^+)$
			1. , 777. , 77.4

a. Internal coordinate numberings are according to Figure 7.1.

Table-7.2: Optimized geometries of Gly at different basis sets *

Internal ^a		So	lvated zwit	Solvated zwitterion at different basis sets	ferent ba	sis sets		Molecular	Crystal	Isolated
coord.	4-21G	6-31G*	6-31+G	6-31++G	6-31++G*	+G*	6-31++G**	dynamics		6-31++G*
					3.1	3.2				
N1-C2	1.527	1.504	1.514	1.510	1.502	1.501	1.502	1.510	1.476	1.504
N1-H3	1.041	1.024	1.032	1.024	1.020	1.018	1.014	1.064	1.054	1.053
N1-II7	1.017	1.011	1.013	1.011	1.011	1.010	1.013	1.051	1.037	1.005
N1-I18	1.017	1.011	1.013	1.011	1.011	1.010	1.010	1.033	1.025	1.005
C2-H5	1.078	1.080	1.081	1.080	1.080	1.080	1.079	1.081	1.089	1.079
C2-116	1.078	1.080	1.081	1.080	1.080	1.080	1.081	1.080	1.090	1.079
(22-(34	1.575	1.559	1.560	1.546	1.553	1.552	1.552	1.536	1.526	1.566
C:1-O9	1.259	1.226	1.252	1.252	1.228	1.229	1.231	1.245	1.250	1.245
-C4-O10	1.245	1.252	1.305	1.290	1.250	1.244	1.240	1.260	1.250	1.207
C2-N1-H3	113.5	111.8	110.3	110.9	111.9	112.3	113.2	115.8	112.1	98.9
C2-N1-H7	101.2	113.5	115.2	113.7	112.9	112.0	108.6	117.0	111.7	114.0
C2-N1-H8	113.5	113.5	115.2	113.7	112.9	112.4	112.8	113.8	110.4	114.0
N1-C2-H5	109.1	106.4	106.1	106.8	. 106.8	107.2	108.4	105.3	109.0	109.6
N1-C2-H6	109.1	106.4	106.1	106.8	106.8	107.0	107.5	105.4	108.5	109.6
N1-C2-C4	106.6	117.0	121.0	117.4	115.0	113.5	112.1	112.2	111.8	105.4
C2-C4-O9	113.8	126.8	122.9	120.6	118.0	117.0	116.3	114.7	117.5	112.0
C2-C4-O10	116.5	118.9	115.2	115.2	114.4	114.5	114.8	113.8	117.1	115.0
II3-N1-C2-II5	119.2	56.9	56.5	57.2	57.4	62.5	93.1	48.5	55.6	-119.8
117-N1-C2-H5	-120.9	176.2	173.9	175.9	177.3	-177.1	-145.3	169.4	177.9	123.0
H8-N1-C2-H5	-1.1	-62.3	-60.8	-61.6	-62.5	-58.1	-26.8	-72.1	-63.7	-2.7
H3-N1-C2-H6	1.1	-57.0	-56.6	-57.2	-57.6	-53.4	-23.5	-65.1	-62.8	119.8
H3-N1-C2-C4	-119.8	179.9	180.0	180.0	179.8	-175.2	-143.6	170.3	183.7	-0.0
N1-C2-C4-09	-0.0	-0.0	-0.0	-0.0	-0.0	2.1	7.1	21.9	18.9	-0.0
NI-C2-C4-O10	-180.0	180.0	180.0	180.0	-179.9	-178.3	-174.2	-158.0	-161.8	180.0

a. Bond lengths are in A° and angles are in rad.
b. Ref. [20]
c. Ref. [29]
* The recommended radius in Gaussian-94 is reduced by 0.5 A° in different basis set calculations. In 6-31++G*, this corresponds to 3.1 (see text).

Ę	T. 1.1. 1 9.		vihratic	Salastive inscelled vibrational frequencies of solvated Gly at different basis sets.	Gly at	different basis sets*				
Dane a	anie-1.3			6-31G*	,	6-31+G		6-31++G	6-31++G**	
Expt.	0,00	DIT.I.	1040	00"	1830	S.N+H ₂	1838	δ,N+H ₃	1817 vCO	
1634	1842	Oan' H3	1040	000	0001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0	C TITLE		
1618	1840	δ.N+H3+VCO .	1812	δ ₄ N+H ₃	1827	$\delta_a N^+ H_3 + \delta_s N^+ H_3$	1830			
0101		11+14 3 . 00	1000	N+H.	1776	S N+H3+5 N+H3	1774	δ,N+H ₃	$1776 \delta_a N^+ H_3$	
1597	1817	VCO+0aN H3	1003	0a14 113	2	S** *** *** ***				
		δ,N+H ₃								
1533	1646	δ.N+H3+δCH3	1708	δ _s N ⁺ H ₃	1640	ν CO+ δ CH ₂	1648	VCO+6CH2	1040 05N H3	
	9	CHU.								
1	,	#O112	1566	$OD^{n+1}HD^{n+1}$	1539	1,1CH2+1/CO	1541	ωCH ₂ +νCC	1548 ωCH ₂ +νCC	C)
1410	1467	ωCH ₂	1000	W0112+700	2004	00 1 7110 3			00.	
				νCC		VCC		VCO		
1120	1001	N+H-+"CH"	1197	$tCH_3 + \rho CH_3$	1238	$\rho N^+ H_3 + tCH_2$	1232	$ ho \mathrm{N^{+}H_{3}+tCH_{2}}$	1189 tCH ₂ +ρCH ₂	13
1100	1771					115		HJ	OD~+ H+No	Ç
				PN+H3+7CO		PCH2		pon2		2 5
1110	1101	1101 AN+H, ++CH,	1161	N+H3+CH3	1202	$\rho_{\rm N}^{+}{ m H}_3$	1208	$\rho N^+ H_3 + \omega C H_2$	1169 pN H3+WCH2	JH2
1115	1011	par angli come	•			•			,	
		$ ho \text{CH}_2$						1 4 1 1 2		
Frent a		6-31++(3*(31)		6-31++G*(3.6)		6-31++G*(3.35)		$6-31++G^*(3.2)$		
-10/21		(2.5)	000	(10)(0)	1025	(6F)"H±\ \$+(8F)()0"	18:04	8 N+H, (63)+1,(CO(28)		
1634	1818	$\delta_a N^+ H_3(80)$	1865	VCO(84)	1000	VCC (40) + 0a. \ 113(42)	100	Carrie (20)		
1618	1805	δ.N+H4(94)	1836	$\delta_a N^+ H_3(96)$	1832	$\delta_n N^+ H_3(52) + \nu CO(38)$	1806	δaN T 113(74)		
1507	1700	VCO(74)	1813	δ,N+H ₂ (81)	1804	$\delta_a N^+ H_3(70)$	1799	$\nu \text{CO}(52) + \delta_a \text{N}^+ \text{H}_3(32)$		
1001		(02/11+14.3	1640	(11)"HUY (84) TYUH" (12)	1669	(2.7) H+N-3	1695	δ _ε N+H ₃ (83)		
1533	1099	0sN H3(19)	7101	0,112(00)+(00) 113(01)	7001	OS11 113(11)	001	(00)00000000000000000000000000000000000		
1410	1564	$\omega \text{CH}_2(40) + \nu \text{CC}(18)$	1534	$\nu CO(45) + \nu CC(20)$	1549	$\nu CO(37) + \omega CH_2(24)$	1503	WCH2(33)+VCO(29)		
		"CO(15)		$\omega \text{CH}_2(16)$		$\nu \text{CC}(20)$		vCC(19)		
1138	1108	oN+H,(31)+tCH,(28)	1188	$\rho_{\rm N}^{+}{\rm H}_{3}(28)$ +tCH ₂ (27)	1194	$\rho N^{+} H_{3}(37) + t C H_{2}(26)$	1194	$tCH_2(30) + \rho N^+ H_3(29)$		
		CH. (95) L2(14)		$^{0}\text{CH}_{3}(21) + ^{3}\text{CO}(12)$		$\rho_{\rm CII_2(22)+7CO(12)}$		$\rho \text{CH}_2(25) + \gamma \text{CO}(14)$		
	1170		1121	N+H, (67) ± (12)	1176	$aN + H_3(64) + \omega CH_3(12)$	1172	$\rho N^{+}H_{3}(62)+\omega CH_{2}(13)$		
1119	1119 1170	pin ' 113(64)+won2(13)	1101	pix 113(01) 1 m 0112(12)		1-12-1-11-11-11-11-11-11-11-11-11-11-11-				

a. Ref. [24,25] \star The recommended radius in Gaussian-94 is reduced by 0.5 A° in different basis set calculations. In 6-31++G*, this corresponds to 3.1 (see text).

Table-7.4: Frequencies of isolated and solvated (radius=3.2 A*) Gly-do at 6-31++G* bi

		ed	ed expt ^a PED	3180	3152	3058	3011	2973		1618	1597	1533	1440	1410	1327	1315	1138	1119	1037					ουν ρυσο+δσοο+νσς+νσν+	$\frac{-}{364}$	238 7CC+7CV+ 18 N+11	
is set	000	Solvated	fitted	3188	3162	3078	3025	2975	1645	1624	1595							1096	1039	938	700	615	408	749	169	22	
Grant Annual Control of the Pasis set		unscaled PED	3740 vN+H		3590 vN+H	3347 vCH	3289 ν CH	$1824 \delta_a N^+ H_3(63) + \nu CO(98)$			$1695 \delta_s N^+ H_3(83)$				1454 tCH ₂ + ρ N+H ₃		$1172 \rho N^{+} H_{3}(62) + \omega CH_{2}(13)$	$1057 \nu \text{CN}^+ + \nu \text{CC}$		$928 \delta COO + \nu CC + \nu CN + \delta COO + $		$\begin{array}{ccc} 043 & \gamma \text{CO} + \rho \text{CH}_2 \\ 603 & 600 \end{array}$			•	1771+001	
	unscaled PED	3806 WH+H						·	_	1697 SCH.	1537 6,N+H ₂ +\(\rangle C\rangle \)	1467 VCO+wCH3+WCC	1413 $\omega \text{CH}_2 + \delta_1 \text{N} + H_1 + \iota_1 \text{CO}$	-	$1170 \rho N^+ H_3 + \omega CH_3$	1166 tCH ₂ +ρN+H ₃ +ρCH ₂ +ΩCO	1007 VCN+	$996 \rho \text{CH}_2 + \rho \text{N}^+ \text{H}_3 + \gamma \text{CO}$	-	-		_		i	0 rCN++rCC		
	Sun		2	က	7	22	6 1	7 1	8 1	9	10	11 15	12 15	. 13 IA	14 11	15 11	16 10	17 99	18 9.	19 748	20 615			23 299	24 90	a. Ref. [24.25]	

Table 7.6: The symbolic F matrix of Gly in non-redundant local coordinates

```
1
   2
      3
   4
      5
          6
   7
      8
         9 10
  11 12 13 14 15
  16
         18 19 20 21
     17
  22
     23 24 25 26 27
                        28
  29
     30 31
            32 33 34 35 36
  37 38 39 40 41 42 43 44
                               45
  46 47 48 49 50 51 52 53 54 55
  56 57 58 59 60 61
                        62 63 64 65 66
 67 68 69 70 71 72
                       73 74
                               75 76 77 . 78
 79 80 81 82 83
                    84
                        85 86 87 88 89 90 91
 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
190
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
250 251 252 253
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
272 273 274 275 276
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
295 296 297 298 299 300
```

Fitted non-redundant force constants of Gly

8.577 4.719	2.154 0.011	10.089	0.461 0.023	0.544 0.082	4.123	0.104	-0.005	0.080
0.085	0.038	4.948	-0.027	-0.044	4.949 -0.031	0.010	0.011	0.026
5.312	0.009	-0.035	-0.011	0.044	-0.031	0.027	0.001	0.002
0.012	-0.038	-0.009	0.037	0.003	-0.022	0.002	0.028	5.570
0.325	0.299	-0.374	-0.021	-0.002	-0.004	0.022	0.030	5.556
1.174	0.398	-0.342	0.042	-0.261	0.036	0.030	0.015 -0.010	0.016
-0.018	-0.017	1.104	-0.017	0.007	-0.083	-0.200	0.078	-0.020
0.006	-0.003	-0.001	0.005	-0.043	0.548	0.061	0.078	0.074 0.100
					_		0.021	0.100

Table 7.6: (Continued): The symbolic F matrix of Gly in local coordinates

0 400	-0.025	-0.022	0.016	0.004	0.005	-0.032	0.057	0.068
-0.432	0.002	-0.001	0.000	0.001	0.089	-0.093	0.005	0.023
0.632	-0.001	0.001	-0.002	0.003	0.949	0.001	0.001	0.000
-0.029	-0.001	0.001	-0.002	-0.011	0.009	-0.000	0.007	0.001
0.004	-0.196	0.606	-0.058	0.072	0.144	0.076	-0.051	-0.035
-0.004	-0.190	-0.046	-0.010	-0.179	0.017	0.038	-0.003	-0.002
-0.013	-0.049	0.038	0.014	-0.258	-0.011	-0.011	0.069	0.067
1.079	-0.008	0.052	0.011	0.027	-0.002	-0.002	0.031	0.565
0.075	-0.008	-0.044	-0.039	-0.001	-0.002	-0.074	0.050	0.042
0.020	-0.028	0.004	0.006	0.003	-0.003	-0.039	0.018	0.594
0.018	0.003	0.004	0.003	-0.001	0.001	-0.006	0.067	-0.072
-0.007	0.006	-0.000	0.001	-0.041	-0.001	0.013	-0.003	0.002
-0.001	-0.007	0.081	0.034	-0.002	-0.002	-0.004	-0.008	-0.006
0.623	-0.022	-0.010	0.033	0.036	-0.000	-0.003	0.100	-0.021
0.004	-0.022	0.738	0.003	-0.008	-0.006	-0.001	0.006	-0.005
0.008	0.001	-0.000	0.002	-0.003	-0.001	-0.001	0.070	-0.071
-0.003	0.003	-0.002	0.043	0.001	0.664	0.002	0.002	-0.001
-0.006		-0.002	-0.001	-0.003	0.008	0.003	0.002	0.002
0.000	0.020 0.044	0.021	0.003	0.001	0.002	0.019	0.001	-0.009
-0.002	-0.004	0.003	-0.002	0.004	0.014	-0.014	-0.000	-0.023
0.532		0.003	-0.002	-0.000	-0.111	0.009	0.004	-0.003
0.012	0.001	-0.003	0.023	0.074	0.105	-0.005	0.005	-0.002
-0.006	-0.009	0.001	0.005	-0.008	-0.008	0.001	0.000	0.001
-0.011	0.003	-0.010	0.004	-0.002	-0.004	-0.060	-0.008	0.019
0.005	-0.003			0				
0.007	-0.028	0.024						

Bibliography

- [1] a) Vijay, A.; Sathyanarayana, D. N. J. Phys. Chem., 1992, 96, 10735. b) Grenie, Y.; Lagrange, C. G. J. Mol. Spectrosc., 1972, 41, 240.
- [2] Csaszar, A. G. J. Am. Chem. Soc., 1992, 114, 9568.
- [3] Frey, R. F.; Coffin, J.; Newton, S. Q.; Ramek, M.; Cheng, V. K. W.; Momany, F. A.; Schafer, L. J. Am. Chem. Soc., 1992, 114, 5369.
- [4] Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc., 1991, 113, 7917.
- [5] a) Ramek, M. Int. J. Quantum Chem., Quantum Biol. Symp., 1990, 17, 45. b) Ramek, M.; Cheng, V. K. W.; Frey, R. F.; Newton, S. Q.; Schafer, L. J. Mol. Struct. (Theochem), 1991, 235, 1.
- [6] a) Sellers, H. L.; Schafer, L. J. Am. Chem. Soc., 1978, 100, 7728. b) Schafer, L.; Sellers, H. L.; Lovas, F. J.; Suenram, R. D. J. Am. Chem. Soc., 1980, 102, 6566.
- [7] a) Vishveshwara, S.; Pople, J. A. J. Am. Chem. Soc., 1977, 99, 2422. b) Tse, Y. C.; Newton,
 M. D.; Vishveshwara, S.; Pople, J. A. J. Am. Chem. Soc., 1978, 100, 4329.
- [8] Dykstra, C. E.; Chiles, R. A.; Garrett, M. D. J. Comput. Chem., 1981, 2, 266.
- [9] a) Clementi, E.; Cavallone, F.; Scordamagila, R. J. J. Am. Chem. Soc., 1977, 99, 5531. b)
 Carozzo, L.; Corongiu, C.; Petrongolo, C.; Clementi, E. J. Chem. Phys., 1978, 68, 787.
- [10] Siam, K.; Klimkowski, V. J.; Ewbank, J. D.; Van Alsenoy, C.; L. J. Mol. Struct. (Theochem), 1984, 110, 171.

- [11] a) Palla, P.; Petrongolo, C.; Tomasi, J. J. Phys. Chem., 1980, 84, 435. b) Bonaccorsi, R.; Palla, P.; Tomasi, J. J. Am. Chem. Soc., 1984, 106, 1945.
- [12] Wright, L. R.; Borkman, R. F. J. Am. Chem. Soc., 1980, 102, 6207.
- [13] a) Imamura, A.; Fujita, H.; Nogata, C. Bull. Chem. Soc. Jpn., 1969, 3118. b) Oegerle, W. R.; Sabin, J. R. J. Mol. Struct., 1973, 15, 131. c) Chung, K.; Hedges, R. M.; Macfarlane, R. D. J. Am. Chem. Soc., 1976, 98, 7523. d) Kier, L. B.; George, J. M. Theor. Chim. Acta, 1969, 14, 258.
- [14] Millefiori, S.; Millefiori, A. J. Mol. Struct., 1983, 91, 391.
- [15] Sulzbatch, H. M.; Schleyer, P. V. R.; Schaefer, H. F. J. Am. Chem. Soc., 1994, 116, 3967.
- [16] a) Brown, R. D.; Godfrey, P. D.; Storey, J. W. V.; Bassez, M. P. J. Chem. Soc. Chem. Commun., 1978, 547. b) Brown, R. D.; Godfrey, P. D.; Storey, J. W. V.; Bassez, M. P.; Robinson, B. J.; Batchelor, R. A.; McCulloch, M. G.; Rydbeck, O. E. H.; Hjalmarson, A. G. Mon. Not. R. Astron. Soc., 1979, 186, 5.
- [17] a) Suenram, R. D.; Lovas, F. J. J. Mol. Struct., 1978, 72, 372. b) Suenram, R. D.; Lovas,
 F. J. J. Am. Chwem. Soc., 1980, 102, 7180.
- [18] Iijima, K.; Tanaka, K.; Onuma, S. J. Mol. Struct., 1991, 246, 257.
- [19] Almlof, J.; Kvick, A.; Thomas, J. O. J. Chem. Phys, 1973, 59, 3901.
- [20] a) Alper, J. S.; Dothe, H.; Coker, D. F. Chem. Phys., 1991, 153, 51. b) Alper, J. S.; Dothe,
 H.; Lowe, M. A. Chem. Phys., 1992, 161, 199.
- [21] Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc., 1995, 117, 8159.
- [22] Ding, Y.; Korgh-Jespersen, K. K. Chem. Phys. Lett., 1992, 199, 261.
- [23] Stroev, E. A.. in Biochemistry, Mir Publishers Moscow, 1989.
- [24] Takeda, M.; Iavazzo, R. E. S.; Garfinkel, D.; Scheinberg, I. H.; Edsall, J. T. J. Am. Chem. Soc., 1958, 80, 3813.

- [25] Ghazanfar, S. A. S.; Myers, D. V.; Edsall, J. T. J. Am. Chem. Soc., 1964, 86, 3439.
- [26] Kakihana, M.; Akiyama, M.; Nagumo, T.; Okamoto, M. Z. Naturforsch, 1988, 43A, 774.
- [27] Destrade, C.; Garrigou-Lagrange, C.; Forel, M. T. J. Mol. Struct., 1971, 10, 203.
- [28] Machida, K.; Kagayama, A.; Saito, Y.; Kuroda, Y.; Uno, T. Spectrochim. Acta, 1977, 33A, 569.
- [29] Jonsson, P. G.; Kvick, A. Acta Cryst., 1972, 28B, 1827.
- [30] Frisch, M. J.; Frisch, A.; Foresman, J. B. in Gaussian 94 User's Reference, Gaussian, Inc., Pittsburgh, 1994, p 151.
- [31] Between 3.21 to 3.33 Åradius the calculation of the Onsager model produces one imaginary frequency for the lowest torsional mode (τCC). The calculated frequency for this particular mode changes from radius 3.10 to 3.35 Åas follows: 42 cm⁻¹ at 3.1, 20 cm⁻¹ at 3.2, -4 cm⁻¹ at 3.21, -25 cm⁻¹ at 3.25, -42 cm⁻¹ at 3.30 and 64 cm⁻¹ at 3.35 Å. The optimized structures for all these radii resemble very closely and so it is difficult to explain why some values produce negative frequency. It appears that the shallow potential for this coordinate is partly responsible for this problem as mentioned by Bour et al. (Bour, p.; Tam, C. N.; Shaharuzzaman, M.; Chickos, J. S.; Keiderling, T. A. *J. Phys. Chem.*, **1996**, 100, 15041.).

Chapter 8

Theoretical Prediction of the Vibrational spectra of Cysteine and Serine Zwitterions

There have been a number of ab initio studies of the gas phase vibrational analysis of amino acids, such as glycine [1], alanine (Ala) [2], cysteine (Cvs), serine (Ser) [3], and proline [4]. In the zwitterionic form a solvated model of glycine was used to obtain the vibrational frequencies and assignments as described in chapter 7. A good number studies of Ala in the solid state in both IR and Raman spectroscopy is available in the literature [5-18]. Ala being the smallest chiral amino acid, was the subject of interest for VCD and ROA spectra [2,19,20]. A complete vibrational assignment based on VCD spectra using Urey-Bradeley force field of Ala in solution was first presented by Diem et al. [20]. The ab initio calculations of isolated molecule [2] and more recently the Onsager reaction field model [19] were used to assign the experimental vibrational spectra of Ala zwitterion in the region 800 to $1600 \,\mathrm{cm^{-1}}$. Ab initio isolated model calculations of Cys and Ser were used to assign their experimental spectra [21]. The previous quantum mechanical calculations of Cys include studies of protonation and ionization potential [22], a comparison of PCILO and SCF results [23] and minimum energy conformations [24]. Calculations of Ser include studies of protonation [23,25,26], lattice energies [27], energy differences of enantiomers [28,29], crystal and peptide structures [30] and low energy conformations [31,32]. The thiol group in the Cys residue side chain is responsible for the stabilization of the secondary structure of proteins and hence was the subject of a number of spectroscopic studies for characterizing its conformers (chapter 6). In the experimental side, solid state structures of L-Cys and L-Ser have been determined by neutron diffraction [33,34] and a large number of vibrational spectral studies of Cys and Ser zwitterions are available [35-40], the most recent one being that of Gargaro et al. based on their ROA study [40].

In this chapter, the scale factors of Ala, EtSH and EtOH are generated by fitting their ab initio force constants to their respective experimental spectra. The vibrational spectra of Cys and Ser zwitterions are theoretically predicted by transferring the scale factors of Ala for the backbone and EtSH and EtOH for the side chain respectively. A complete set of non-redundant force constants of Cys and Ser are also presented.

8.1 Calculations

The ab initio force constants and frequencies of Cys, Ser, Ala, EtSH and EtOH were calculated analytically for the optimized geometries at 6-31++G* level using the Onsager reaction field approach to include the solvent effect. The cartesian force constant matrices were then transformed to the non-redundant local coordinate space. The non-redundant local coordinates of EtSH and EtOH are same as used in chapter 6, that of Ala is given in Table-8.1 and Figure 8.1 and the corresponding Cys and Ser are given in Table-8.2 and Figure 8.2. The optimized geometry of Ala is given in Table-8.3 and those of Cys and Ser are given in Table-8.4. The ab initio force fields of Ala, EtSH and EtOH were then fitted to their corresponding experimental spectra to obtain a non-redundant set of force constants and scale factors using the methodology described in chapter 3. We used experimental frequencies from five different isotopomers namely, Ala- d_0 , Ala- Cd_3 , AlaN $^+$ d $_3$, Ala-CdN $^+$ d $_3$ and Ala-Cd $_3$ N $^+$ d $_3$ for the present study. Radius of 3.3 Åwas used for the solvated model calculation of Ala. The scale factors of EtSH and EtOH along with Ala when used to scale the ab initio force fields of Cys and Ser, good agreements were obtained with experimental frequencies. Cavity radii of 3.5 and 3.4 Awere used for the solvated model calculations of Cys and Ser respectively.

8.2 Results

EtSH and EtOH

The most stable gauche form in the isolated EtSH calculation (chapter 6) is retained in the solvated model calculation for the present study at 6-31++ G^* level. The ab initio calculated frequencies are fitted to the experimental ones reported in chapter 6. In EtOH again the most staggered conformation is retained as the most stable one in the solvated model calculation, following our earlier EtOH result reported in chapter 6. In condensed phase the presence of intermolecular H-bonding causes a lowering of the ν OH frequency in EtOH. In the present solvated study of EtOH the ν OH frequency is lowered compared to the earlier ab initio calculation on the isolated molecule as expected. We used the same experimental frequencies (as reported in chapter 6) to fit the ab initio calculated frequencies in the present study. The fitted frequencies and their PEDs of both EtSH and EtOH are shown in Table-8.5.

8.2.1 Vibrational Frequencies of Ala

The fitted spectra of Ala and its deuterated isotopomers are shown in Tables-8.6 to 8.8. The fitted frequencies are very close to the experimentally observed frequencies for all the five isotopomers considered here with an average deviation of 7.2 cm⁻¹. The lowest two torsions and the NH₃ stretching frequencies are omitted from the error calculation. The torsional modes are not well described in the HF calculation [41].

The recent work of Yu et al. based on their Onsager reaction field model ab initio calculation and experimental ROA spectra gives the theoretical assignments of Ala zwitterion in the range 800 to 1600 cm⁻¹. In their study, Yu et al. assigned the 1613 cm⁻¹ band as a mixed mode of ν CO + δ_a N⁺H₃ followed by δ_s N⁺H₃ at 1503 cm⁻¹. Due to the presence of strong intermolecular H-bonding in the solution phase, the δ_a N⁺H₃ mode is expected to appear above ν CO. Earlier Diem et al. [20] assign based on their normal mode analysis both the δ_a N⁺H₃ (1645,1625 cm⁻¹) above ν CO (1607 cm⁻¹). We, in the present study consider 1645, 1625 and 1613 cm⁻¹ bands as the three fundamentals in this region for Ala-d₀.

In the ν N+H and ν CH stretching regions we used experimental frequencies of Diem et al. [20] wherever available. Our assignment matches very well with that of Diem et al. for Ala-d₀, Ala-Cd₃ and Ala-N+d₃. The agreement between the calculated and experimental bands is excellent in all the modes except that of the highest two ν N+H , which were significantly overestimated in the ab initio model calculation. In the solvated model ab initio calculation the intramolecular H-bonding is avoided by putting the molecule in a dielectric continuum and hence the discrepancy in the isolated model (the H-bonded N+H stretching frequency appearing below ν CH) is overcome in the present case.

From the VCD spectra it was observed that the difference between the two ν CO stretching bands in Ala-d₀ appear around 200 cm⁻¹ [19]. We assigned the higher ν CO band at 1613 cm¹⁻ and the lower one as a mixed mode at 1412 cm⁻¹, in agreement with this observation. In the 1600-1400 cm⁻¹ region we consider the earlier assignment of Diem et al. [20] appears to be the satisfactory ones and our fitted PEDs agree very well with that. In Ala-d₀ we assigned the 1645 and 1625 cm⁻¹ bands as δ_a N⁺H₃ and 1503 cm⁻¹ band as δ_s N⁺H₃. These numbers appear at 1647, 1623 and 1507 cm⁻¹ in Ala-d₀, 1647, 1622 and 1506 cm⁻¹ in Ala-Cd₃, 1176, 1141 and 1201 cm⁻¹ in Ala-N⁺d₃, 1175,1162 and 1207 cm⁻¹ in Ala-CdN⁺d₃ and 1178, 1154 and 1200 cm⁻¹ in Ala-N⁺d₃Cd₃ after scaling. Both the δ_a C₃H₃ modes are assigned at 1457 cm⁻¹ and are calculated at 1464 and 1458 cm⁻¹. The corresponding δ_s C₃H₃ appear at 1359 cm⁻¹ and is calculated at 1375 cm⁻¹. The ρ C₃C_aC mode is assigned at 1379 cm⁻¹ and is calculated at 1382 cm⁻¹. These two closely spaced bands got exchange during the fitting. Both the δ_a C₃H₃ and δ_s C₃H₃ appeared at 1044, 1032, 1058 cm⁻¹ in Ala-Cd₃, 1464, 1459, 1377 cm⁻¹ in Ala-N⁺d₃ and 1460, 1456, 1372 cm⁻¹ in Ala-CdN⁺d₃ and 1055, 1043, 1072 cm⁻¹ in Ala-Cd₃N⁺d₃ in our calculated spectra.

The two ρ N⁺H₃ modes appear as a mixed modes with ρ C_{β}H₃ and δ C_{β}C_{α}C at 1241 and 1147 cm⁻¹ for Ala-d₀ after scaling. These two modes are assigned to the experimental bands at 1238 and 1145 cm⁻¹ of Susi et al. [5]. These bands get shifted to 1194 and 1155 cm⁻¹ in Ala-Cd₃, 887, 842 cm⁻¹ in Ala-N⁺d₃, 846, 797 cm⁻¹ in Ala-CdN⁺D₃ and 818, 794 cm⁻¹ in Ala-Cd₃N⁺d₃. The ν C_{α}N⁺ mode in Ala-d₀ is assigned to the observed band at 1113 and 922 cm⁻¹ as a mixed mode with ρ C_{β}H₃, ν CC_{α} and ν C_{α}C_{β} and are calculated at 1130 and 928 cm⁻¹ respectively. The γ CO and δ COO appear as mixed mode in Ala-

 d_0 at 781 cm⁻¹ and is calculated at 796 cm⁻¹. This band is calculated at 736 cm⁻¹ in Ala-Cd₃, 782 cm⁻¹ in Ala-N⁺d₃, 749 cm⁻¹ in Ala-CdN⁺d₃ and 732 cm⁻¹ in Ala-Cd₃N⁺d₃ spectra. The observed band at 633 cm⁻¹ is assigned to a mixed mode of $\nu C_{\alpha}C + \delta COO + \nu C_{\alpha}C_{\beta} + \gamma CO$ and is calculated at 640 cm⁻¹. This band is more or less invariant with the isotopic substitution and appear at 611 cm⁻¹ in Ala-Cd₃, 612 cm⁻¹ in Ala-N⁺d₃, 597 cm⁻¹ in Ala-CdN⁺d₃ and 594 cm⁻¹ in Ala-Cd₃N⁺d₃ in our fitted spectra.

8.2.2 Vibrational Frequencies of Cys

We transferred all the scale factors from Ala except for the CH₂SH stretching, bending and torsional modes. The side chain residue is successfully represented by using the scale factors of EtSH. The predicted frequencies of Cys are given in Table-8.9 along with their PEDs. The prediction is in good agreement with the experimental frequencies producing an average error of 9.0 cm⁻¹ for Cys spectra observed bands excluding NH₃ stretchings. Many ambiguities regarding the assignment of vibrational modes, especially in the 1600-1400 cm⁻¹ region observed in our earlier ab initio calculated results on isolated molecule with simple Durig's scaling [42] are resolved successfully in the present study.

Unlike the isolated model, in the ν N⁺H₃ stretching region, all the N⁺H stretching bands appear above the C_{\wp} H₂ and C_{α} H modes as expected. The predicted ν N⁺H₃ frequencies are less than the observed values and the predicted numbers are quite close to that of Ala. The predicted values of both the C_{\wp} H₂ and the C_{α} H agree very well with the observed bands of L-Cys and D,L-Cys. The predicted band at 2947 cm⁻¹ (ν C_{\wp}H₂ + ν C_{α}H) agree well with the observed band at 2935 cm⁻¹ in D,L-Cys compared to 2918 cm⁻¹ in L-Cys. The ν SH frequency predicted at 2573 cm⁻¹ matches very well with the observed bands of L-Cys and D,L-Cys. The present assignment in this region matches very well with that of Li et al. [39].

In the 1600 cm⁻¹ region the predicted frequencies appear at 1646 ($\delta_a N^+ H_3$), 1636 ν CO) and 1599 ($\delta_a N^+ H_3$) cm⁻¹. This is not in agreement with the gross experimental features of amino acids, namely $\delta_a N^+ H_3$ modes appear above ν CO. Changing the basis set and the cavity radii would have resolved this problem. However our aim is to compare the force fields of different amino acids in the same basis set. Surprisingly our predicted

assignment matches exactly with that of Li et al. [39]. The $\delta_s N^+ H_3$ band matches well with the experimental frequencies of L-Cys and D, L-Cys and also in agreement with the earlier assignment of Li et al. [39] and Madec et al. [37]. The $\delta C_3 H_2$ appear as a mixed mode with $\nu C_\alpha C$ at 1431 and 1409 cm⁻¹ in the prediction and agrees quite well with the observed bands of L-Cys and D,L-Cys. The lower ν CO appear as a mixed mode in our predicted spectra at 1431 cm⁻¹ and 1316 cm⁻¹. This band was earlier assigned at 1400 cm⁻¹ in L-Cys by Li et al. [39] and at 1406 cm⁻¹ by Madec et al. [37] in D, L-Cys spectra.

The $\omega C_3 H_2$ mode is predicted at 1292 cm $^{-1}$ and are assigned to the observed band at 1296 in L-Cys and at 1308 cm $^{-1}$ in D,L-Cys. The tC $_{\it B}$ H $_{\it 2}$ mode is assigned at 1206 cm $^{-1}$ in our predicted spectra and agrees well with the earlier assignment at 1203 cm⁻¹ by Madec et al. for L-Cys. Both the ρN^+H_3 modes are predicted at 1144 and 1124 cm $^{-1}$ and agrees well with the observed bands at $1140~{\rm cm^{-1}}$ in the Raman spectra of L-Cys by Madec et al. [37] and at 1118 cm $^{-1}$ of L-Cys in the ROA spectra of Gargaro et al. [40]. The $\nu C_{\alpha}N^{+}$ mode appear as a mixed mode at 1085 and 934 cm⁻¹ in the predicted spectra and is in agreement with the Ala assignment. These two bands are assigned at 1069 and 936 $\rm cm^{-1}$ in L-Cys and 1073 and 934 cm $^{-1}$ in D, L-Cys. The γ CO mode also appear as a mixed mode in the predicted spectra with δ COO at 881 and 823 cm $^{-1}$. This band appear at a higher frequency compared to Ala where it is assigned at 796 cm⁻¹. The $\nu C_{\beta}S$ frequency is predicted at $693\,\mathrm{cm^{-1}}$ and agrees very well with the $692\,\mathrm{cm^{-1}}$ band in L-Cys. This band is observed at 657 $\rm cm^{-1}$ in EtSH spectra. The predicted band at 610 $\rm cm^{-1}$ is assigned to $\nu C_{\alpha}C$ and matches very well with the observed band of 615 cm⁻¹ in both L-Cys and D, L-Cys. The lower frequency modes below $400\ \mathrm{cm^{-1}}$ are not available in the experimental spectra and hence our predicted numbers cannot be compared.

8.2.3 Vibrational Frequencies of Ser

Same strategy of transferring the scale factors of Ala and EtOH, as in Cys is applied. The predicted frequencies of Ser along with the PED is given in Table-8.10. The agreement is excellent with the zwitterionic frequencies for both L and D,L-Ser with an average error of $10.1~\rm cm^{-1}$. The $\nu \rm OH~(_{(alc)}$ mode appears at 3392 cm $^{-1}$ in our prediction and the corresponding experimental frequencies are not available. Both the $\delta_a \rm N^+H_3$ bending

vibrations appear above νCO followed by $\delta_s N^+ H_3$ in our predicted spectra as expected. These modes are predicted at 1645, 1626, 1611 and 1493 cm⁻¹ respectively and agrees very well with our Ala assignment. These bands are not observed in the L-Ser spectra but matches quite well with the D,L-Ser spectra. The δC_3H_2 mode appear at higher frequency compared to that of Cys. This frequency appears at 1460 and 1455 cm⁻¹ in the experimental spectra deviates considerably form the predicted band at 1482 cm⁻¹. This could be due to the structural variation of $C_{\beta}H_2$ in Ser and EtOH. The fundamental predicted at 1414 cm⁻¹ is assigned to a mixed mode of $\omega C_{\beta}H_{2}$ and $\delta C_{\beta}OH$ and agrees reasonably well to the observed band at 1430 cm⁻¹ in EtOH spectrum. The tC₃H₂mode is predicted at 1275 cm⁻¹ and is in agreement with that of L-Cys predicted value. The predicted band at 1210 cm⁻¹ is also assigned to a mixed mode of ωC_3H_2 and δC_3OH and appear at a lower frequency compared to the experimental ones at 1242 and 1247 cm⁻¹ in L-Ser and D,L-Ser respectively. The corresponding band is observed at 1276 cm⁻¹ in EtOH spectrum. Both the ρ N⁺H₃ appear at 1187 and 1154 cm⁻¹ as mixed modes in the predicted spectra and matches very well with the observed bands of L-Ser and D,L-Ser. The $\nu C_{\alpha}N^{+}$ mode appear at 1093 and 868 cm⁻¹ in the calculated spectra and are observed at 1090 and 851 cm⁻¹ in L-Ser and 1093 and 852 cm⁻¹ in D,L -Ser. The ν C₀O mode is predicted spectra at 1039 cm⁻¹ and agrees well with the observed band at 1040 and 1029 cm⁻¹ in L-Ser and D,L-Ser respectively. This mode was earlier assigned at 978 cm⁻¹ by Machida et al. [36]. The observed band at 978 cm⁻¹ is predicted at 985 cm⁻¹ and is assigned to a mixed mode of $\rho C_{\beta}H_2 + \rho N^+H_3 + \nu C_{\alpha}C_{\beta}$. The main discrepancy appear in the observed bands at 773 and 620 cm⁻¹ in the ROA spectra of L-Ser. We do not have any frequency correspond to these in our prediction. The earlier assignment of Ser based on isolated model calculation predicted these two bands at 796 and 615 $\rm cm^{-1}$ respectively. In the lower frequency range $200\text{-}400~\text{cm}^{-1}$ our predicted frequencies match quite well with the observed D,L- Ser spectra.

The predicted non-redundant force constants of both Cys and Ser and the fitted non-redundant force constants of Ala are given in Tables-8.11 to 8.13.

8.3 Conclusions

The theoretical prediction of the vibrational spectra of Cys and Ser based on solvated ab initio calculation is found to be satisfactory. The scale factors of smallest chiral amino acid, Ala is found to be very useful in predicting the higher chiral amino acids. The present study, led us to infer that the non-redundant set of scale factors of Ala could be used to predict the vibrational spectra of other structurally related amino acids and peptides. However further studies of other amino acids are needed to verify this conclusion. This further implies that the structurally related small organic compounds can be used to mimic the force fields of amino acid side chain residues.

 $\begin{array}{l} a=&C(1)-C(2)-O(3) \;,\;\; a1=&C(4)-C(2)-O(1),\;\; b1=&C(4)-C(2)-O(3) \\ a2=&C(2)-C(4)-H(7),\;\; a3=&N(5)-C(4)-H(7),\;\; a4=&C(6)-C(4)-H(7) \\ b2=&N(5)-C(4)-C(6),\;\; b3=&C(2)-C(4)-N(5),\;\; b4=&C(2)-C(4)-C(6) \\ a5=&H(8)-N(5)-H(9),\;\; a6=&H(8)-N(5)-H(10),\;\; a7=&H(9)-N(5)-H(10) \\ b5=&C(4)-N(5)-H(8),\;\; b6=&C(4)-N(5)-H(9),\;\; b7=&C(4)-N(5)-H(10) \\ a8=&H(11)-C(6)-H(12),\;\; a9=&H(11)-C(6)-H(12),\;\; a10=&H(12)-C(6)-H(13) \\ b8=&C(4)-C(6)-H(11),\;\; b9=&C(4)-C(6)-H(12),\;\; b(10)=&C(4)-C(6)-H(13) \\ \end{array}$

Figure 8.1: Internal coordinates of Ala

 $\begin{array}{l} a=O(10)-C(7)-O(11), \ a1=C(2)-C(7)-O(10), \ b1=C(2)-C(7)-O(11), \ a2=C(7)-C(2)-H(8) \\ a3=N(6)-C(2)-H(8), \ a4=C(1)-C(2)-H(8), \ b2=C(1)-C(2)-N(6), \ b3=C(1)-C(2)-C(7) \\ b4=N(6)-C(2)-C(7), \ a5=H(12)-N(6)-H(13), \ a6=H(12)-N(6)-H(14), \ a7=H(13)-N(6)-H(14) \\ b5=C(2)-N(6)-H(12), \ b6=C(2)-N(6)-H(13), \ b7=C(2)-N(6)-H(14), \ a8=H(3)-C(1)-H(4) \\ a9=H(3)-C(1)-S(5), \ a10=H(4)-C(1)-S(5), \ b8=C(2)-C(1)-S(5), \ b9=C(2)-C(1)-H(4) \\ b10=C(2)-C(1)-H(4), \ b=C(1)-S(5)-H(9) \end{array}$

 $\begin{array}{l} a=O(6)-C(2)-O(7), \ a1=C(1)-C(2)-O(6), \ b1=C(1)-C(2)-O(7), \ a2=C(2)-C(1)-H(5) \\ a3=N(3)-C(1)-H(5), \ a4=C(4)-C(1)-H(5), \ b2=C(4)-C(1)-N(3), \ b3=C(4)-C(1)-H(5) \\ b4=N(3)-C(1)-C(2), \ a5=H(9)-N(3)-H(10), \ a6=H(9)-N(3)-H(11), \ a7=H(10)-N(3)-H(11) \\ b5=C(1)-N(3)-H(9), \ b6=C(1)-N(3)-H(10), \ b7=C(1)-N(3)-H(11), \ a7=H(10)-N(3)-H(11) \\ a9=H(12)-C(4)-O(8), \ a10=H(13)-C(4)-O(8), \ b(8)=C(1)-C(4)-O(8), \ b9=C(1)-C(4)-H(13) \\ b10=C(1)-C(4)-H(13), \ b=C(4)-O(8)-H(14) \end{array}$

Figure 8.2: Internal coordinates of Cys and Ser.

Figure 8.3: Optimized structure of a) Cys and b) Ser at $HF/6-31++G^*$ level.

Table 8.1: Local symmetry coordinates of Ala *

$S_{1-12}=$	r_{1-12} (all stretch)	$S_{23} =$	$2a_7 - a_5 - a_6 (\delta_a N^+ H_3)$
$S_{13} =$	$2a-a_1-b_1$ (δ COO)	$S_{24} =$	$a_{5}-a_{6} (\delta_{a}N^{+}_{3})$
$S_{14} =$	a_1 - $b_1(\rho COO)$	$S_{25} =$	$a_8+a_9+a_{10}-b_8-b_9-b_{10}(\delta_s C_{beta} H_3)$
$S_{15} =$	$a_2+a_3+a_4-b_2-b_3-b_4 (\delta N^+C_{\alpha}C)$	$S_{26} =$	$2a_{10}$ - a_8 - a_9 (δ_a C $_\beta$ H $_3$)
$S_{16} =$	$2a_2-a_3-a_4$ ($\delta C_3 C_{\alpha}C$)	$S_{27} =$	a_8 - a_9 ($\delta_a C_B H_3$)
$S_{17} =$	a_3 - a_4 ($\rho C_3 C_\alpha C$)	$S_{28} =$	$2b_8-b_9-b_{10} (\rho C_{\beta}H_3)$
$S_{18} =$	$2b_2-b_3-b_4$ ($\delta C_3 C_\alpha H$)	$S_{29} =$	$b_9 - b_{10} (\rho C_{\beta} H_3)$
$S_{19} =$	$b_3-b_4 (\rho C_3 C_\alpha H)$	$S_{30} =$	$\gamma_{4213} (\gamma CO)$
$S_{20} =$	$a_5+a_6+a_7-b_5-b_6-b_7 (\delta_s N^+H_3)$	$S_{31} =$	$\tau_{24} (\tau C_{\alpha}C)$
$S_{21} =$	$2b_5-b_6-b_7 (\rho N^+H_3)$	$S_{32} =$	$ au_{45} \left(au \mathrm{N}^{+} \mathrm{C}_{\alpha} \right)$
$S_{22} =$	$b_6-b_7 (\rho N^+ H_3)$	$S_{33} =$	$ au_{46} (au C_{\alpha} C_{\beta})$

^{*.} Internal coordinate numberings are according to Figure 8.1.

Table 8.2: Local symmetry coordinates of Cys and Ser *

$S_{1-13} =$	r_{1-13} (all stretch)	$S_{25} =$	a_5 - $a_6(\delta_a N^+ H_3)$
$S_{14} =$	$2a-a_1-b_1$ (δ COO)	$S_{26} =$	$4a_8-a_9-a_{10}-b_9-b_{10} (\delta_s C_3 H_2)$
$S_{15} =$	a_1 - $b_1(\mu COO)$	$S_{27} =$	$a_9 + a_{10} - b_9 - b_{10} (\omega C_{beta} H_2)$
$S_{16}=$.	$a_2+a_3+a_4-b_2-b_3-b_4 (\delta N^+C_{\alpha}C)$	$S_{28} =$. $a_9-a_{10}+b_9-b_{10} (\rho C_3 H_2)$
$S_{17} =$	$2a_2$ - a_3 - a_4 ($\delta C_3 C_\alpha C$)	$S_{29} =$	$a_9-a_{10}-b_9+b_{10}$ (tC ₃ H ₂)
$S_{18} =$	a_3 - a_4 ($\rho C_3 C_{\alpha} C$)	$S_{30} =$	$5b_8-a_8-a_9-a_{10}-b_9-b_{10}$ ($\delta C_{\alpha}C_{\beta}S/\delta C_{\alpha}C_{\beta}O$)
$S_{19} =$	$2b_2-b_3-b_4 (\delta C_3 C_{\alpha} H)$	$S_{31} =$	b (δ CSH/ δ COH)
$S_{20} =$	$b_3-b_4 (\rho C_3 C_{\alpha} H)$	$S_{32} =$	$\gamma_{271011}/\gamma_{1267}$ (γ CO)
$S_{21} =$	$a_5+a_6+a_7-b_5-b_6-b_7 (\delta_s N^+H_3)$	$S_{33} =$	$ au_{12}/ au_{14} \left(auC_{lpha}C_{eta} ight)$
$S_{22} =$	$2b_5-b_6-b_7 (\rho N^+H_3)$	$S_{34} =$	$ au_{15}/ au_{48} \left(auC_{eta}S/ auC_{eta}O\right)$
$S_{23} =$	$b_{6}-b_{7}(\rho N^{+}H_{3})$	$S_{35} =$	$ au_{27}/ au_{12} (au CC_{lpha})$
$S_{24} =$	$2a_7-a_5-a_6 (\delta_a N^+ H_3)$	$S_{36} =$	$ au_{26}/ au_{13} (au C_{lpha} N^+)$
	* 1-111		1: 00

^{*.} Internal coordinate numberings are according to Figure 8.2.

Table 8.3: Optimized geometrical parameters of Ala

param*	Ala	param	Ala	param	Ala
r_{1-2}	1.233	a ₂₄₅	110.0	a ₁₁₆₁₂	108.4
r ₃₋₂	1.239	a ₂₄₆	115.0	a ₁₁₆₁₃	108.3
r ₄₋₂	1.558	a ₅₄₆	108.9	a ₁₂₆₁₃	108.4
	1.512	a ₅₄₇	105.1	$ au_{3218}$	-168.2
r ₅₋₄	1.524	a ₂₄₇	107.6	τ_{1245}	5.2
r ₆₋₄	1.082	a ₄₅₈	110.4	T ₁₂₄₆	128.5
r ₇₋₄	1.010	a ₄₅₉	112.1	τ_{1247}	-108.8
r ₈₋₅	1.011	a ₄₅₁₀	112.6	$ au_{2458}$	-36.7
r ₉₋₅	1.015	a ₈₅₉	106.1	τ_{24611}	-59.9
r_{10-5}	1.015		109.1	τ_{2459}	81.4
r_{6-11}	1.080	a ₈₅₁₀	106.2	τ_{24612}	-158.9
r ₆₋₁₂		a ₉₅₁₀	111.2	τ_{12647}	-62.0
r_{6-13}	1.084	a ₄₆₁₁	108.8		178.6
a ₁₂₃	128.4	a ₄₆₁₂		τ_{11647}	78.9
a ₁₂₄	116.3	a ₄₆₁₃	111.6	$ au_{8547}$	70.7
T9547	-163.0		1	na to Ei	711ro 8 1

^{*} Internal coordinates are according to Figure 8.1.

Table 8.4: Optimized geometrical parameters of Cys and Ser

*	Cys	Ser	param	Cys	Ser	param	Cys	Ser
param*			<u> </u>	107.7	108.3	b ₉	111.2	110.7
\mathbf{r}_1	1.563	1.552	a ₃	105.9	105.2	b ₁₀	108.0	108.8
\mathbf{r}_2	1.504	1.504	a ₄		107.6	$ au_{6213}/ au_{31412}$	-55.5	-66.9
r_3	1.525	1.526	b_1	108.7			64.1	53.4
r ₄	1.232	1.237	b_2	110.9	106.4	$ au_{6215}/ au_{3148}$		58.3
	1.232	1.237	b_3	114.8	117.5	$ au_{7213}/ au_{21412}$	-178.9	
r ₅	1.823	1.392	b ₄	108.5	111.1	$ au_{7215}/ au_{2148}$	59.3	178.6
r_6		1.082		106.7	106.1	$ au_{8213}/ au_{51412}$	60.5	-179.2
r_7	1.083		a ₅	107.5	107.4	$ au_{8215}/ au_{5148}$	-179.9	-58.9
r_8	1.014	1.016	a_6		109.9	$ au_{12710}/ au_{4126}$	-42.7	-129.2
r ₉	1.012	1.007	a ₇	110.0	-		78.4	108.7
r ₁₀	1.012	1.009	b_5	107.6	109.8	$ au_{82710}/ au_{5126}$	-167.4	-6.3
	1.084	1.088	b_6	111.1	111.6	$\dot{ au}_{62710}/ au_{3126}$		-62.9
r ₁₁ .	1.078	1.082	b_7	113.7	111.9	$ au_{12627}/ au_{2139}$	-29.7	
r_{12}		0.952	a ₈	108.0	108.6	$ au_{12621}/ au_{4139}$	-156.6	66.1
r ₁₃	1.328		_	105.8	104.1	$ au_{13627}/ au_{10312}$	86.9	55.8
a	129.9	129.0	a ₉		112.6	,	-40.0	-175.1
a_1	115.0	115.8	a ₁₀	109.6			62.2	-170.3
b_1	115.0	115.2	b_8	114.0	111.8	τ_{2159}/τ_{14814}		
<u> </u>	*	Itorma	coordin	ates are	accord	ing to Figure 8	0.4	

* Internal coordinates are according to Figure 8.2

-	E	RISH	RISH			ELOH .			ELOD
110.	expt	calc	PED	expt	calc	PED	expt	calc	PED
1	2988	2988	$\nu \mathrm{C}(\mathrm{H}_2) + \nu \mathrm{C}(\mathrm{H}_3)$	3336	3437	νОН		2503	νOD
2	2967	2967	$ \nu \mathrm{C}(\mathrm{H}_3) + \nu \mathrm{C}(\mathrm{H}_2) $	2975	2975	$ u \mathrm{C}(\mathrm{H}_3) $	and America	2975	$ \nu { m C(H_3)} $
က	2932	2932	$ u\mathrm{C}(\mathrm{H}_3)$	2940	2943	$ u \mathrm{C}(\mathrm{H}_3)$	1	2940	$ \nu { m C(H_3)} $
4	2902	2902	$ u { m C(H_2)} $	2920	2920	$ u \mathrm{C}(\mathrm{H}_2) $		2920	$ \nu \mathrm{C}(\mathrm{H}_2) $
ro	2875	2875	$ \nu { m C}({ m H}_3)$	2890	2890	$ u \mathrm{C}(\mathrm{H}_3) $	1	2890	$ \nu { m C(H_3)} $
9	2571	2571	νSH	2877	2877	$ u \mathrm{C}(\mathrm{H}_2)$	1	2877	$ \nu { m C(H_2)} $
7	1460	1460	$\delta_a \mathrm{CH}_3$	1498	1492	$\delta \mathrm{CH}_2$	1490	1490	$\delta \text{CH}_2 + \delta_a \text{CH}_3$
∞	1450	1450	$\delta_a ext{CH}_3$	1480	1478	δ_n CH ₃	1474	1475	$\delta_a \text{CH}_3 + \delta \text{CH}_2$
0	1434	1434	$\delta \mathrm{CH}_2$	1450	1449	$\delta_a \text{CH}_3 + \rho \text{CH}_3$	1447	1440	$\delta_a \text{CH}_3 + \rho \text{CH}_3$
10	1376	1376	$\delta_{s} \text{CII}_{3}$	1430	1446	$\delta \text{COH} + \omega \text{CH}_2 + \delta \text{CH}_2 + \delta_a \text{CH}_3$	1401	1401	$\delta_s \text{CH}_3 + \omega \text{CH}_2 + \nu \text{CC}$
_	1273	1273	$\omega { m CH}_2$	1381	1385	$\delta_{ m s}{ m CH}_3$	1365	1357	$\omega \text{CH}_2 + \delta_s \text{CH}_3$
12	1251	1251	$tCH_2 + \rho CH_3$	1328	1318	$tCH_2 + \rho CH_3$	1309	1318	$^{\mathrm{tCH}_2+ ho\mathrm{CH}_3}$
13	1001	1094	ρCH ₃ +δCSH+tCH ₂ +ρCH ₂	1273	1277	$\omega \text{CH}_2 + \delta \text{COH}$	1170	1169	$\rho \text{CH}_3 + \delta \text{COD} + \delta \text{CCO} + \nu \text{CC}$
14	1052	1052	ν CC+ ρ CH ₃ +tCH ₂	1149	1153	$ ho \text{CH}_2 + ho \text{CH}_3 + \text{tCH}_2$	1158	1154	$ ho \text{CH}_2 + ho \text{CH}_3 + \text{tCH}_2$
75	970	026	$\nu \text{CC} + \rho \text{CH}_3$	1089	1001	pCH ₃	1055	1053	VCO+VCC
91	869	869	$\delta \text{CSH} + \text{tCH}_2 + \rho \text{CH}_3$	1050	1052	VCC+vCO	954	9.46	$\delta \text{COD} + \rho \text{CH}_3 + \omega \text{CH}_2$
17	737		$\rho_{\text{CH}_3} + \rho_{\text{CH}_3} + \delta_{\text{CSH}}$	880	887	$\nu \text{CO} + \nu \text{CC} + \rho \text{CH}_3$	877	870	$ \nu { m CO} + \nu { m CC} + ho { m CH}_3$
200	657		, CS	805	800	$\rho \text{CH}_3 + \rho \text{CH}_2 + \text{CCH}_2$	7.07	799	$ ho \mathrm{CH}_2 + ho \mathrm{CH}_3 + \mathrm{CH}_2$
10	319		SCCS	433	439	$\delta \text{CCO} + \dot{\rho} \text{CH}_3$	435	429	$\delta \text{CCO} + \rho \text{CH}_3$
50	2.47		τ CC	260	264	rCO+rCC	1	236	$ au_{\mathrm{CC}}$
21	191		rCS	217	219	rCC+rCO	1	180	$\tau \text{CO} + \tau \text{CC}$

Table 8.6: Fitted frequencies and PEDs of Ala- d_0

	Ala-d ₀								
no.	unscaled	scaled	expt ^a	PED					
1	3734	3124	3080	$\nu N^+ H_3$					
2	3 7 07	3100	3060	$\nu N^+ H_3$					
3	3614	3028	3020	$\nu N^+ H_3$					
4	3324	3015	3003	$\nu C_{\beta}H_{3}$					
5	3288	3005	2993	$\nu C_{\beta}H_{3}$					
6	3271	2961	2962	$\nu C_{\alpha}H$					
7	3213	2945	2949	$\nu C_3 H_3$					
8	1829	1647	1645	$\delta_a N^+ H_3$					
9	1808	1623	1625	$\delta_a N^+ H_3$					
10	1791	1613	1613	ν CO+ δ_s N ⁺ H ₃					
11	1672	1507	1503	$\delta_s N^+ H_3$					
12	1636	1464	1457	$\delta_a C_{\beta} H_3$					
13	1630	1458	1457	$\delta_a C_{\beta} H_3$					
14	1577	1420	1412	$\delta_a C_\beta H_3 + \nu CO + \nu CC_\alpha + \delta_s C_\beta H_3$					
15	1540	1382	1379 ⁶	$\rho C_{\beta} C_{\alpha} C$					
16	1497	1375	1359 ^b	$\delta_s C_d H_3$					
17	1449	1306	1302	$\delta C_{\beta} C_{\alpha} C + \nu CO$					
18	1314	1241	1238^{b}	$\rho N^+ H_3 + \rho C_B H_3$					
19	1221	1147	1145	$\rho N^+ H_3 + \delta C_{\beta} C_{\alpha} C$					
20	1187	1130	1113	$\nu C_{\alpha} N^{+} + \rho C_{\beta} H_{3} + \nu C_{\alpha} C_{\beta}$					
21	1050	1023	1003	$\rho C_{\beta} H_3 + \rho N^+ H_3 + \rho C_{\beta} C_{\alpha} C$					
22	1037	1001	995	$\nu C_{\alpha}C_{\beta}+\rho N^{+}H_{3}+\rho C_{\beta}H_{3}$					
23	973	928	922	$\nu C_{\alpha} N^{+} + \rho C_{\beta} H_{3} + \nu C C_{\alpha}$					
24	891	856	848	$\delta COO + \nu C_{\alpha}N^{+} + \nu C_{\alpha}C_{\beta} + \gamma CO$					
25	844	796	781	γ CO+ δ COO					
26	642	633	640	$\nu C_{\alpha}C + \delta COO + \nu C_{\alpha}C_{\beta} + \gamma CO$					
27	532	525	527	ρ COO+ ν C $_{\alpha}$ N+					
28	422	402	399	$\delta C_{\beta}C_{\alpha}H+\delta N^{+}C_{\alpha}C$					
29	324	318	296	•					
30		266	283	$\rho C_3 C_\alpha H + \rho COO$					
31	249	247		$ auC_{\pmb{lpha}}C_{\pmb{eta}}$					
32	. 126	135	184	$\tau N^+ C_{\alpha}$					
33	58			$\tau C_{\alpha}C + \tau N^{+}C_{\alpha}$					
		a. R	ef [19,20)] b. Ref. 5.					

Table 8.7: Fitted frequencies and PEDs of Ala-Cd $_3$ and Ala-N $^+$ d $_3$

. 1 1		Ala-Cd ₃			Ala-N ⁺ d ₃
scaled	expt ^e		scaled	expt ^a	
3124	3080	·	3015	3003	
3100	3060		3005	2993	- 55
3028	3020		2962	2962	- 5 - 2
2962	2962	- u	2945	2949	
2239	2251	-,p — 3	2306	2290	- 0 3
2229	2236	-D 3	2288		ν N+D ₃
2116	2126	- ,5 3	2176	2160	ν N+D ₃
1647	1645	·3	1605	1608	νCO
1622	1625	<u>u</u> – –5	1464	1459	$\delta_a C_\beta H_3 + \rho C_\beta H_3$
1612	1615	ν CO+ δ_s N+H ₃	1459	1459	$\delta_a C_{\beta} H_3 + \rho C_{\beta} H_3$
1506	1511	$\delta_s \mathrm{N^+H_3}$	1416	1409	
1421	1414	ν CC+ ν CO+ δ C ₃ C ₄ O+ δ COO	1377	1376	$\delta_a C_\beta H_3 + \nu CO + \nu CC + \delta_s C_\beta H$ $\delta_s C_\beta H_3$
1378	1360	$ ho C_{\beta} C_{\alpha} C$	1365	1355^{b}	$\rho C_{\beta} C_{\alpha} C$
1304	1305	$\delta C_{\beta} C_{\alpha} C + \nu CO$	1298	1299^{b}	$\delta C_{\beta} C_{\alpha} C + \nu CO$
1199	1194	$\rho N^+ H_3 + \rho C_{\beta} C_{\alpha} C_{+\nu} C_{\alpha} C_{\beta}$	1201	1193	$\delta_s N^+ D_3 + \nu C_\alpha N^+$
1145	1155	$\rho N^+ H_3 + \delta C_{\beta} C_{\alpha} C$	1187		3 - 3 · 5 CQ1 4
1120	1128	$\delta_s \text{CD}_3 + \nu \text{C}_\alpha \text{C}_\beta + \nu \text{C}_\alpha \text{N}^+$	1176		$ \rho C_{\beta}H_{3} + \nu C_{\alpha}C_{\beta} + \rho N^{+}D_{3} $ $ \delta_{a}N^{+}D_{3} $
1058	1066	$\delta_s \text{CD}_3 + \delta_a \text{CD}_3 + \nu \text{C}_a \text{N}^-$	1149	1161	$\delta_a N^+ D_3$
1044	1051	$\delta_a \text{CD}_3$	1114	1100	-
1032		$\delta_a \text{CD}_3 \nu \text{C}_\alpha \text{N}^+$	1070	1058	$\rho C_{\beta}H_3 + \delta_s N^+ D_3 + \delta C_{\beta}C_{\alpha}C$
950	954	$\nu C_{\alpha}C + \rho N^{+}H_{3} + \delta_{s}C_{3}D_{3} + \nu C_{\alpha}C_{3}$	919	922	$\nu C_{\alpha}C_{\beta} + \rho C_{\beta}H_3 + \delta_s N^+D_3$
930	931	$\rho C_{\beta} D_3 + \gamma CO + \rho N^- H_3 + \delta N^+ C_{\alpha} C$	887	878	$\rho C_{\beta} H_3 + \nu C C_{\alpha} + \nu C_{\alpha} N^+$
839	832	$\delta COO + \rho C_{\vartheta}D_{3}$	842	849	$\rho N^+ D_3 + \rho C_3 H_3 + \nu C_\alpha N^+$
777	804	$\rho C_{\beta} D_3 + \nu C_{\alpha} N^{+}$	812	815	$\rho N^+ D_3 + \delta COO$
736	<i>7</i> 58	$\gamma CO + \rho C_{\beta}D_{3}$	782	776	$\rho N^+ D_3 + \nu C_{\alpha} C_{\beta} + \delta COO + \nu C_{\alpha}$
611	610	$\nu C_{\alpha}C + \delta COO + \nu C_{\alpha}C_{\beta}$	612		$\gamma CO + \rho N^+D_3$
514	509	ρ COO+ ν C $_{\alpha}$ C	50 <i>7</i>	613	$\nu C_{\alpha}C + \delta COO$
371	374	$\delta C_{\beta} C_{\alpha} H + \delta N^{+} C_{\alpha} C$	376	513	ρ COO+ ν C $_{\alpha}$ N+
304	297	$\delta N^+ C_{\alpha} C + \delta C_{\beta} C_{\alpha} H + \beta COO$			$\delta N^+ C_{\alpha} C + \delta C_{\beta} C_{\alpha} H$
246	220	$\rho C_{\beta} C_{\alpha} H + \rho COO$	304	335	$\delta C_{\beta} C_{\alpha} H + \delta N^{\dagger} C_{\alpha} C$
180	191	$\tau C_{\alpha}C_{\beta}$	255		$\rho C_{\beta} C_{\alpha} H + \rho COO$
134	184	$\tau C_{\alpha} N^{+}$	247		$\tau C_{\alpha}C_{\beta}+\rho C_{\beta}C_{\alpha}H$
70		$\tau C_{\alpha}C + \tau C_{\alpha}N^{+}$	105 65		$ \tau C_{\alpha} N^{+} + \tau C_{\alpha} C \tau C_{\alpha} C + \tau C_{\alpha} N^{+} $

a. Ref. [19,20] b. Ref. 5.

Table 8.8: Fitted frequencies and PEDs of Ala-CdN+d $_3$ and Ala-Cd $_3$ N+d $_3$

scaled expt* PED scaled expt* PED 3015 — νC ₂ H ₃ 2962 — νC ₂ H 3004 — νC ₃ H ₃ 2306 — νN+D ₃ 2945 — νC ₃ H ₃ 2238 — νN+D ₃ 22305 — νN+D ₃ 2239 — νC ₃ D ₃ 2288 — νN+D ₃ 2229 — νC ₃ D ₃ 2176 — νN+D ₃ 2116 — νN+D ₃ 2176 — νN+D ₃ 2116 — νC ₃ D ₃ 1605 1605 νCO 1605 1608 νCO 1460 1460 δ _α C ₃ H ₃ +ρC ₃ H ₃ 1415 1412 νCC+νCO+δCOO+δC ₃ C ₃ C 1456 1460 δ _α C ₃ H ₃ +ρC ₃ H ₃ 1360 1343 ρC ₃ C ₃ C 1460 1414 δ ₈ C ₃ H ₃ +νC ₃ H ₃ 1360 1343 ρC ₃ C ₃ C 1372 1380 δ ₃ C ₃ H ₃ +νC ₃ H ₃ 1178 1175 δ _α N+D ₃ +νC _α C ₃ 1207 1212 δ ₃ N ⁴ D ₃ +ρC ₃ H ₃ 1178 1175 δ _α N ⁴ D ₃ +νC _α N ⁴ <th></th> <th></th> <th>Ala-CdN+d₃</th> <th></th> <th></th> <th>Ala-Cd₃N+d₃</th>			Ala-CdN+d ₃			Ala-Cd ₃ N+d ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	scaled	$expt^a$	PED	scaled		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3015		$\nu C_{\vartheta}H_{3}$	2962		$\nu C_{\alpha}H$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3004		$\nu C_{\beta}H_{3}$	2306		$\nu N^+ D_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2945		$\nu C_{\beta}H_{3}$	2288	-	$\nu N^+ D_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2305		ν N ⁺ D ₃			$\nu C_{\mathcal{J}} D_3$
2176 $-\nu N^+ D_3$ 2116 $-\nu C_3 D_3$ 1605 1605 νCO 1605 1608 νCO 1460 1460 $\delta_a C_3 H_3 + \rho C_3 H_3$ 1415 1412 $\nu CC + \nu CO + \delta COO + \delta C_3 C_3 C_3 C_3 C_4 C_4 C_3 C_3 C_4 C_4 C_3 C_3 C_4 C_4 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5$	2288		$\nu N^+ D_3$	2229		$ u C_{\beta}D_3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2186		$\nu C_{\alpha}D$	2176	-	$\nu N^+ D_3$
1460 1460 $\delta_{\alpha}C_{\beta}H_{3} + \rho C_{\beta}H_{3}$ 1415 1412 $\nu CC + \nu CO + \delta COO + \delta C_{\beta}C_{\alpha}C$ 1456 1460 $\delta_{\alpha}C_{\beta}H_{3} + \rho C_{\beta}H_{3}$ 1360 1343 $\rho C_{\beta}C_{\alpha}C$ 1406 1414 $\delta_{s}C_{\beta}H_{3} + \nu CO + \nu C_{\alpha}C + \delta COO$ 1295 1291 $\delta C_{\beta}C_{\alpha}C + \nu CO$ 1372 1380 $\delta_{s}C_{\beta}H_{3} + \nu CO$ 1200 1206 $\delta_{s}N^{+}D_{3} + \nu C_{\alpha}N^{-}$ 1235 $-\nu C_{\alpha}C_{\beta} + \rho N^{+}D_{3}$ 1178 1175 $\delta_{\alpha}N^{+}D_{3}$ 1207 1212 $\delta_{s}N^{+}D_{3} + \nu C_{\alpha}N^{+}$ 1154 1147 $\delta_{\alpha}N^{+}D_{3}$ 1162 1159 $\delta_{\alpha}N^{+}D_{3} + \rho C_{\beta}H_{3}$ 1072 1080 $\delta_{s}C_{\beta}D_{3} + \rho C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 1148 $-\nu C_{\alpha}C_{\beta} + \delta_{s}C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 1148 $-\nu C_{\alpha}C_{\beta} + \delta_{\alpha}N^{+}D_{3}$ 1074 1080 $\delta_{s}C_{\beta}D_{3} + \rho C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 1148 $-\nu C_{\alpha}C_{\beta} + \delta_{\alpha}N^{+}D_{3} + \nu C_{\alpha}C_{\beta}$ 1055 1057 $\delta_{\alpha}C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 1149 1134 $\delta_{s}N^{+}D_{3} + \delta_{\alpha}N^{+}D_{3}$ 1043 $-\delta_{\alpha}C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 1101 1009 $\rho C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\beta}C_{\beta}C_{\alpha}C$ 1027 1026 $\delta_{\alpha}C_{\beta}D_{3} + \delta C_{\beta}C_{\alpha}C$ 1101 1009 $\rho C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\alpha}C_{\alpha}C_{\beta}C_{\alpha}C_{\alpha}C_{\alpha}C_{\alpha}C_{\alpha}C_{\alpha}C_{\alpha}C_{\alpha$	2176		=			- •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1605	1605	νCO	1605	1608	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1460	1460	$\delta_a C_\beta H_3 + \rho C_\beta H_3$	1415		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1456	1460				* * **
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1406	1414	$\delta_s C_\beta H_3 + \nu CO + \nu C_\alpha C + \delta COO$			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1372	1380	$\delta_s C_d H_3 + \nu CO$			• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1235		$\nu C_{\alpha}C_{\beta}+\rho N^{+}D_{3}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1207	1212	$\delta_s N^+ D_3 + \nu C_\alpha N^+$	1154	1147	~ -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1175		$\delta_a N^+ D_3$			<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1162	1159	$\delta_a N^+ D_3 + \rho C_3 H_3$	1072		
1011 1009 $\rho C_{\beta} C_{\alpha} C + \rho C_{\beta} H_{3} + \rho N^{+} D_{3} + \delta C_{\beta} C_{\alpha} C$ 1027 1026 $\delta_{\alpha} C_{\beta} D_{3} + \delta N^{+} C_{\alpha} C$ 941 944 $\delta C_{\beta} C_{\alpha} C + \gamma CO + \nu C_{\alpha} N^{+}$ 1007 $-\delta_{s} C_{\beta} D_{3} + \nu C_{\alpha} N^{+}$ 901 894 $\nu CC_{\alpha} + \delta COO + \rho C_{\beta} H_{3} + \nu C_{\alpha} N^{+}$ 859 857 $\delta COO + \nu C_{\alpha} C + \rho N^{+} D_{3}$ 846 845 $\rho N^{+} D_{3} + \nu C_{\alpha} C_{\beta} + \delta COO$ 818 821 $\rho N^{+} D_{3} + \gamma CO$ 826 825 $\rho C_{\beta} C_{\alpha} C + \nu C_{\alpha} C_{\beta} + \rho C_{\beta} H_{3} + \delta COO$ 794 796 $\rho N^{+} D_{3} + \nu C_{\alpha} C_{\beta} + \delta COO$ 797 $-\rho N^{+} D_{3} + \rho C_{\beta} C_{\alpha} C + \nu C_{\alpha} N^{+} + \delta COO$ 756 754 $\rho C_{\beta} D_{3} + \nu C_{\alpha} N^{+}$ 749 $-\gamma CO + \delta C_{\beta} C_{\alpha} C + \rho N^{+} D_{3}$ 732 $-\gamma CO + \rho C_{\beta} D_{3}$ 597 $-\nu C_{\alpha} C + \delta COO + \rho COO$ 594 $-\nu C_{\alpha} C + \delta COO + \nu C_{\alpha} C_{\beta}$ 501 $-\rho COO + \nu C_{\alpha} N^{+}$ 500 $-\rho COO + \nu C_{\alpha} N^{+}$ 374 $-\delta C_{\beta} C_{\alpha} D + \delta N^{+} C_{\alpha} C$ 347 $-\delta N^{+} C_{\alpha} C + \delta C_{\beta} C_{\alpha} H$ 302 $-\delta C_{\beta} C_{\alpha} D + \delta N^{+} C_{\alpha} C$ 284 $-\delta C_{\beta} C_{\alpha} H + \delta N^{+} C_{\alpha} C$ 255 $-\rho C_{\beta} C_{\alpha} D + \rho COO$ 241 $-\rho C_{\beta} C_{\alpha} H + \rho COO$ 247 $-\tau C_{\alpha} C_{\beta} + \rho C_{\beta} C_{\alpha} D$ 180 $-\tau C_{\alpha} C_{\beta}$	1148	***************************************	$\rho C_{\beta} H_3 + \delta_a N^+ D_3 + \nu C_{\alpha} C_{\beta}$	1055	1057	$\delta_a C_\beta D_3 + \rho C_\beta D_3$
941 944 $\delta C_{\beta}C_{\alpha}C + \gamma CO + \nu C_{\alpha}N^{+}$ 1007 — $\delta_{s}C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 901 894 $\nu CC_{\alpha} + \delta COO + \rho C_{\beta}H_{3} + \nu C_{\alpha}N^{+}$ 859 857 $\delta COO + \nu C_{\alpha}C + \rho N^{+}D_{3}$ 846 845 $\rho N^{+}D_{3} + \nu C_{\alpha}C_{\beta} + \delta COO$ 818 821 $\rho N^{+}D_{3} + \gamma CO$ 826 825 $\rho C_{\beta}C_{\alpha}C + \nu C_{\alpha}C_{\beta} + \rho C_{\beta}H_{3} + \delta COO$ 794 796 $\rho N^{+}D_{3} + \nu C_{\alpha}C_{\beta} + \delta COO$ 797 — $\rho N^{+}D_{3} + \rho C_{\beta}C_{\alpha}C + \nu C_{\alpha}N^{+} + \delta COO$ 756 754 $\rho C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 749 — $\gamma CO + \delta C_{\beta}C_{\alpha}C + \rho N^{+}D_{3}$ 732 — $\gamma CO + \rho C_{\beta}D_{3}$ 597 — $\nu C_{\alpha}C + \delta COO + \rho COO$ 594 — $\nu C_{\alpha}C + \delta COO + \nu C_{\alpha}C_{\beta}$ 500 — $\rho COO + \nu C_{\alpha}N^{+}$ 374 — $\delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C$ 347 — $\delta N^{+}C_{\alpha}C + \delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C$ 284 — $\delta C_{\beta}C_{\alpha}H + \delta N^{+}C_{\alpha}C$ 255 — $\rho C_{\beta}C_{\alpha}D + \rho COO$ 241 — $\rho C_{\beta}C_{\alpha}H + \rho COO$ 247 — $\tau C_{\alpha}C_{\beta} + \rho C_{\beta}C_{\alpha}D$ 180 — $\tau C_{\alpha}C_{\beta}$	1140	1134	$\delta_s N^+ D_3 + \delta_a N^+ D_3$	1043		
901 894 $\nu CC_{\alpha} + \delta COO + \rho C_{\beta} H_{3} + \nu C_{\alpha} N^{+}$ 859 857 $\delta COO + \nu C_{\alpha} C + \rho N^{+} D_{3}$ 846 845 $\rho N^{+} D_{3} + \nu C_{\alpha} C_{\beta} + \delta COO$ 818 821 $\rho N^{+} D_{3} + \nu C_{\alpha} C_{\beta} + \rho C_{\beta} H_{3} + \delta COO$ 794 796 $\rho N^{+} D_{3} + \nu C_{\alpha} C_{\beta} + \delta COO$ 797 — $\rho N^{+} D_{3} + \rho C_{\beta} C_{\alpha} C + \nu C_{\alpha} N^{+} + \delta COO$ 756 754 $\rho C_{\beta} D_{3} + \nu C_{\alpha} N^{+}$ 749 — $\gamma CO + \delta C_{\beta} C_{\alpha} C + \rho N^{+} D_{3}$ 732 — $\gamma CO + \rho C_{\beta} D_{3}$ 597 — $\nu C_{\alpha} C + \delta COO + \rho COO$ 594 — $\nu C_{\alpha} C + \delta COO + \nu C_{\alpha} C_{\beta}$ 501 — $\rho COO + \nu C_{\alpha} N^{+}$ 500 — $\rho COO + \nu C_{\alpha} N^{+}$ 374 — $\delta C_{\beta} C_{\alpha} D + \delta N^{+} C_{\alpha} C$ 347 — $\delta N^{+} C_{\alpha} C + \delta C_{\beta} C_{\alpha} C_{\alpha} C_{\beta} C_{\alpha} C_{\alpha} C_{\beta} C_{\alpha} C_{\beta} C_{\alpha}	1011	1009	$\rho C_{\beta} C_{\alpha} C + \rho C_{\beta} H_3 + \rho N^+ D_3 + \delta C_{\beta} C_{\alpha} C$		1026	•
846 845 ρ N ⁺ D ₃ + ν C _α C _β + δ COO 818 821 ρ N ⁺ D ₃ + γ CO 826 825 ρ C _β C _α C+ ν C _α C _β + ρ C _β H ₃ + δ COO 794 796 ρ N ⁺ D ₃ + ν C _α C _β + δ COO 797 — ρ N ⁺ D ₃ + ρ C _β C _α C+ ν C _α N ⁺ + δ COO 756 754 ρ C _β D ₃ + ν C _α N ⁺ 749 — γ CO+ δ C _β C _α C+ ρ N ⁺ D ₃ 732 — γ CO+ ρ C _β D ₃ 597 — ν C _α C+ δ COO+ ρ COO 594 — ν C _α C+ δ COO+ ν C _α C _β 501 — ρ COO+ ν C _α N ⁺ 500 — ρ COO+ ν C _α N ⁺ 374 — δ C _β C _α D+ δ N ⁺ C _α C 347 — δ N ⁺ C _α C+ δ C _β C _α H 302 — δ C _β C _α D+ δ N ⁺ C _α C 284 — δ C _β C _α H+ δ N ⁺ C _α C 255 — ρ C _β C _α D+ ρ COO 247 — τ C _α C _β + ρ C _β C _α D	941	944	$\delta C_{\beta} C_{\alpha} C + \gamma CO + \nu C_{\alpha} N^{+}$	1007		5 2 5
826 825 $\rho C_{\beta} C_{\alpha} C_{+} \nu C_{\alpha} C_{\beta} + \rho C_{\beta} H_{3} + \delta COO$ 797 — $\rho N^{+} D_{3} + \rho C_{\beta} C_{\alpha} C_{+} \nu C_{\alpha} N^{+} + \delta COO$ 756 754 $\rho C_{\beta} D_{3} + \nu C_{\alpha} N^{+}$ 749 — $\gamma CO + \delta C_{\beta} C_{\alpha} C_{+} \nu N^{+} D_{3}$ 732 — $\gamma CO + \rho C_{\beta} D_{3}$ 597 — $\nu C_{\alpha} C_{+} \delta COO + \rho COO$ 594 — $\nu C_{\alpha} C_{+} \delta COO + \nu C_{\alpha} C_{\beta}$ 501 — $\rho COO + \nu C_{\alpha} N^{+}$ 500 — $\rho COO + \nu C_{\alpha} N^{+}$ 374 — $\delta C_{\beta} C_{\alpha} D + \delta N^{+} C_{\alpha} C$ 347 — $\delta N^{+} C_{\alpha} C + \delta C_{\beta} C_{\alpha} H$ 302 — $\delta C_{\beta} C_{\alpha} D + \delta N^{+} C_{\alpha} C$ 284 — $\delta C_{\beta} C_{\alpha} H + \delta N^{+} C_{\alpha} C$ 255 — $\rho C_{\beta} C_{\alpha} D + \rho COO$ 247 — $\tau C_{\alpha} C_{\beta} + \rho C_{\beta} C_{\alpha} D$ 180 — $\tau C_{\alpha} C_{\beta}$	901	894	$\nu CC_{\alpha} + \delta COO + \rho C_{\beta}H_{3} + \nu C_{\alpha}N^{+}$			
797 — $\rho N^{+}D_{3} + \rho C_{\beta}C_{\alpha}C + \nu C_{\alpha}N^{+} + \delta COO$ 756 754 $\rho C_{\beta}D_{3} + \nu C_{\alpha}N^{+}$ 749 — $\gamma CO + \delta C_{\beta}C_{\alpha}C + \rho N^{+}D_{3}$ 732 — $\gamma CO + \rho C_{\beta}D_{3}$ 597 — $\nu C_{\alpha}C + \delta COO + \rho COO$ 594 — $\nu C_{\alpha}C + \delta COO + \nu C_{\alpha}C_{\beta}$ 501 — $\rho COO + \nu C_{\alpha}N^{+}$ 500 — $\rho COO + \nu C_{\alpha}N^{+}$ 374 — $\delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C$ 347 — $\delta N^{+}C_{\alpha}C + \delta C_{\beta}C_{\alpha}H$ 302 — $\delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C$ 284 — $\delta C_{\beta}C_{\alpha}H + \delta N^{+}C_{\alpha}C$ 255 — $\rho C_{\beta}C_{\alpha}D + \rho COO$ 241 — $\rho C_{\beta}C_{\alpha}H + \rho COO$ 247 — $\tau C_{\alpha}C_{\beta} + \rho C_{\beta}C_{\alpha}D$ 180 — $\tau C_{\alpha}C_{\beta}$	846	845	$\rho N^+D_3 + \nu C_{\alpha}C_{\beta} + \delta COO$			·
$ 797 - \rho N^{+}D_{3} + \rho C_{\beta}C_{\alpha}C + \nu C_{\alpha}N^{+} + \delta COO $ $ 756 754 \rho C_{\beta}D_{3} + \nu C_{\alpha}N^{+} $ $ 749 - \gamma CO + \delta C_{\beta}C_{\alpha}C + \rho N^{+}D_{3} $ $ 732 - \gamma CO + \rho C_{\beta}D_{3} $ $ 597 - \nu C_{\alpha}C + \delta COO + \rho COO $ $ 594 - \nu C_{\alpha}C + \delta COO + \nu C_{\alpha}C_{\beta} $ $ 501 - \rho COO + \nu C_{\alpha}N^{+} $ $ 500 - \rho COO + \nu C_{\alpha}N^{+} $ $ 374 - \delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C $ $ 347 - \delta N^{+}C_{\alpha}C + \delta C_{\beta}C_{\alpha}H $ $ 302 - \delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C $ $ 284 - \delta C_{\beta}C_{\alpha}H + \delta N^{+}C_{\alpha}C $ $ 255 - \rho C_{\beta}C_{\alpha}D + \rho COO $ $ 241 - \rho C_{\beta}C_{\alpha}H + \rho COO $ $ 247 - \tau C_{\alpha}C_{\beta} + \rho C_{\beta}C_{\alpha}D $ $ 180 - \tau C_{\alpha}C_{\beta} $	826	825	$\rho C_{\beta} C_{\alpha} C + \nu C_{\alpha} C_{\beta} + \rho C_{\beta} H_{3} + \delta COO$	794	796	$\rho N^+D_3 + \nu C_{\alpha}C_{\beta} + \delta COO$
$ 749 \qquad - \gamma \text{CO} + \delta \text{C}_{\beta} \text{C}_{\alpha} \text{C} + \rho \text{N}^{+} \text{D}_{3} $ $ 597 \qquad - \nu \text{C}_{\alpha} \text{C} + \delta \text{COO} + \rho \text{COO} $ $ 594 \qquad - \nu \text{C}_{\alpha} \text{C} + \delta \text{COO} + \nu \text{C}_{\alpha} \text{C}_{\beta} $ $ 501 \qquad - \rho \text{COO} + \nu \text{C}_{\alpha} \text{N}^{+} $ $ 500 \qquad - \rho \text{COO} + \nu \text{C}_{\alpha} \text{N}^{+} $ $ 374 \qquad - \delta \text{C}_{\beta} \text{C}_{\alpha} \text{D} + \delta \text{N}^{+} \text{C}_{\alpha} \text{C} $ $ 347 \qquad - \delta \text{N}^{+} \text{C}_{\alpha} \text{C} + \delta \text{C}_{\beta} \text{C}_{\alpha} \text{H} $ $ 302 \qquad - \delta \text{C}_{\beta} \text{C}_{\alpha} \text{D} + \delta \text{N}^{+} \text{C}_{\alpha} \text{C} $ $ 284 \qquad - \delta \text{C}_{\beta} \text{C}_{\alpha} \text{H} + \delta \text{N}^{+} \text{C}_{\alpha} \text{C} $ $ 255 \qquad - \rho \text{C}_{\beta} \text{C}_{\alpha} \text{D} + \rho \text{COO} $ $ 241 \qquad - \rho \text{C}_{\beta} \text{C}_{\alpha} \text{H} + \rho \text{COO} $ $ 247 \qquad - \tau \text{C}_{\alpha} \text{C}_{\beta} + \rho \text{C}_{\beta} \text{C}_{\alpha} \text{D} $ $ 180 \qquad - \tau \text{C}_{\alpha} \text{C}_{\beta} $	797					•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	749			732		
$374 - \delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C$ $347 - \delta N^{+}C_{\alpha}C + \delta C_{\beta}C_{\alpha}H$ $302 - \delta C_{\beta}C_{\alpha}D + \delta N^{+}C_{\alpha}C$ $284 - \delta C_{\beta}C_{\alpha}H + \delta N^{+}C_{\alpha}C$ $255 - \rho C_{\beta}C_{\alpha}D + \rho COO$ $241 - \rho C_{\beta}C_{\alpha}H + \rho COO$ $247 - \tau C_{\alpha}C_{\beta} + \rho C_{\beta}C_{\alpha}D$ $180 - \tau C_{\alpha}C_{\beta}$	597			594		
$302 - \delta C_{\beta} C_{\alpha} D + \delta N^{+} C_{\alpha} C$ $284 - \delta C_{\beta} C_{\alpha} H + \delta N^{+} C_{\alpha} C$ $255 - \rho C_{\beta} C_{\alpha} D + \rho COO$ $241 - \rho C_{\beta} C_{\alpha} H + \rho COO$ $247 - \tau C_{\alpha} C_{\beta} + \rho C_{\beta} C_{\alpha} D$ $180 - \tau C_{\alpha} C_{\beta}$	501		$\rho COO + \nu C_{\alpha} N^{+}$	500		,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	374		$\delta C_{i}C_{\alpha}D + \delta N^{+}C_{\alpha}C$	347		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 284		
$247 \qquad -\tau C_{\alpha}C_{\beta} + \rho C_{\beta}C_{\alpha}D \qquad 180 \qquad -\tau C_{\alpha}C_{\beta}$	255			241		•
			•	180		
100				183		$\tau C_{\alpha} N^{+} + \tau C_{\alpha} C$
$65 \qquad -\tau C_{\alpha}C + \tau C_{\alpha}N^{+} \qquad \qquad 64 \qquad -\tau C_{\alpha}C + \tau C_{\alpha}N^{+}$				64		$\tau C_{\alpha}C + \tau C_{\alpha}N^{+}$

a. Ref. [19]

Table 8.9: Predicted frequencies and PEDs of Cys

no.	calc	e	xpt	PED
	-	L-Cvs ^a	D,L-Cys ^b	
1	3108	3167		ν N ⁺ H ₃
2	3099	3167	-	$\nu N^+ H_3$
3	3034	3055	-	$\nu N^+ H_3$
4	3003	2998	2989	$\nu C_3 H_2$
5	2960	2960	2976	$\nu C_{\alpha}H+\nu C_{\beta}H_{2}$
6	2947	2918	2935	$\nu C_{\beta}H_{2}+\nu C_{\alpha}H$
7	2573	2582	2570	uSH
8	1646		1663	$\delta_a N^- H_3$
9	1636	1616	1628	νCO
10	1599	1576	1585	$\delta_a N^+ H_3$
11	1491	1510	1500	$\delta_s N^+ H_3$
12	1431	1427	1426	$\delta C_3 H_2 + \nu C_\alpha C + \nu CO$
13	1409	1400	1406	$\delta C_{\beta}H_2+\nu C_{\alpha}C$
14	1393	1376	1366	$-\rho C_3 C_{\alpha} C$
15	1316	1320		$\delta C_3 C_\alpha C + \nu CO + \delta COO$
16	1292	1296	1308	
17	1206	1203	1265	$tC_{\beta}H_{2}+\nu C_{\alpha}N^{+}$
18	1144	1140	1163	$\rho N^+H_3+\delta C_3C_\alpha C$
19	1124	1118	1128	$\rho N^+ H_3 + \omega C_3 H_2 + \rho C_\beta C_\alpha C$
20	1085	1069	1073	$\nu C_{\alpha}N^{+} + \delta C_{\beta}SH + \rho C_{\beta}H_{2} + tC_{\beta}H_{2}$
21	992	990	1000	$\rho N^+H_3+\delta C_3SH+\nu C_{\alpha}C_3$
22	934	936	934	$\nu C_{\alpha} N^{+} + \delta C_{\beta} SH + \nu C_{\alpha} C + \nu C_{\alpha} C_{\beta}$
23	881	875	892	$\gamma CO + \delta COO + \delta N^+ C_{\alpha} C$
24	823	823	826	δCOO+^CO+δC ₃ SH
25	792	779	775	$\rho C_{ij}H_2 + \delta C_{ij}SH + \nu C_{\alpha}N^+$
26	693	692		$\nu C_{\beta}S + \gamma CO$
27	610	615	615	$\nu C_{\alpha}C + \nu C_{\alpha}N^{+} + \delta COO$
28	543	538	540	$\rho COO + \rho C_{\beta} C_{\alpha} H$
29	495		464	$\delta N^+ C_{\alpha} C + \delta C_{\alpha} C_{\beta} S + \delta C_{\beta} C_{\alpha} H$
30	341			$\delta C_{\beta} C_{\alpha} H + \tau C_{\beta} S + \tau C_{\alpha} C_{\beta}$
31	327			$\tau C_{3}S + \tau C_{\alpha}N^{+}$
32	273			$\tau C_{\alpha} N^{-} + \rho C_{\beta} C_{\alpha} H + \tau C_{\beta} S$
33	268			$\tau C_{\alpha} N^{\perp}$
34	187		-	$\delta C_{\beta} C_{\alpha} S + \tau C_{\alpha} C + \delta N^{+} C_{\alpha} C + \tau C_{\alpha} C_{\beta}$
35	107			$\tau C_{\alpha} C_{\beta} + \tau C_{\alpha} C + \nu CO$
36	91			$\tau C_{\alpha}C + \tau C_{\alpha}C_{\beta}$

a. Ref. [39,21] b. Ref [37]

Table 8.10: Predicted frequencies and PEDs of Ser

no.	calc	ex	φt .	PED
		L-Ser ^a	D,L-Ser ^a	
1	3392			νŌΗ
2	3160		-	ν N ⁺ H ₃
3	3115		***************************************	$\nu N^+ H_3$
4	3018	Anadogganga		ν N ⁺ H ₃
5	2971	*********		$\nu C_{\alpha}H+\nu C_{\beta}H_{2}$
6	2958	nanta (managan		$\nu C_{3}H_{2}+\nu C_{\alpha}H$
7	2886	National Property and Property		$\nu C_3 H_2$
8	1645		1637	$\delta_a N^+ H_3$
9	1626	Profesional Contraction of the C	1626	$\delta_a N^+ H_3$
10	1611	Ann	1587	νCO
11	1493		1523	$\delta_s N^+ H_3$
12	1482	1460	1455	$\delta C_{3}H_{2}$
13	1438	**********	1436	$\nu C_{\alpha}C + \rho C_{\beta}C_{\alpha} + \nu CO$
14	1414	1412		$\omega C_{\beta}H_2 + \delta C_{\beta}OH + \nu C_{\alpha}C_{\beta} + \nu CC_{\alpha}$
15	1381	1390	1377	$\rho C_{\beta} C_{\alpha} C + \delta C_{\beta} O$
16	1318	1323	1309	$\delta C_{\beta} C_{\alpha} C + \nu CO$
17	1275			$tC_3H_2+\rho N^+H_3$
18	1210	1242	1247	$\omega C_{\beta}H_{2}+\delta C_{\beta}OH$
19	1187	-	1182	$tC_{\beta}H_2+\rho C_{\beta}H_2+\rho N^+H_3+\rho C_{\beta}C_{\alpha}C$
20	1154	1150	1156	$\rho N^+ H_3 + \delta C_{\beta} C_{\alpha} C + \nu C_{\alpha} N^+$
21	1093	1090	1093	$\nu C_{\alpha} N^{+} + \nu C_{\dot{\alpha}} C_{\dot{\beta}}$
22	1039	1040	1029	$\nu C_3 O$
23	985	978	982	$\rho C_{\beta} H_2 + \rho N^+ H_3 + \nu C_{\alpha} C_{\beta}$
24	957	919		$\nu C_{\alpha}C + \rho C_{\beta}H_{2}$
25	868	851	852	$\nu C_{\alpha}N^{+} + \rho C_{\beta}H_{2}$
26	805	809	815	δ COO+ γ CO
27	687	-		γ CO+ δ C $_{\alpha}$ C $_{\beta}$ O+ δ COO
28	535	525	528	ρ COO+ ρ C $_{\beta}$ C $_{\alpha}$ H
29	433			$\delta C_{\beta} C_{\alpha} H + \delta C_{\alpha} C_{\beta} O + \nu C_{\alpha} C + \delta_{s} N^{+} H_{3}$
30	375		383	$\delta C_{\alpha}C_{\beta}O + \delta N^{+}C_{\alpha}C + \delta N^{+}C_{\alpha}H$
31	322		324	
32	291		288	
33	207		222	$\rho C_{\beta} C_{\alpha} H + \delta C_{\beta} C_{\alpha} H + \rho COO$
34	170			$\tau C_{\alpha}N^{-}$
35	114		-	$\tau C_{\alpha}C_{\beta} + \tau C_{\beta}O$
36	52			$\tau C_{\alpha}C + \tau C_{\alpha}N^{+}$ Ref. [21]

Table 8.11: Ala symbolic F matrix in non-redundant local coordinates .

```
1
     2
        3
    4
        5
            6
    7
        8
            9
              10
   11 12 13 14 15
   16 17 18 19 20 21
   22 23 24 25 26 27 28
   29 30 31 32 33 34 35 36
   37 38 39 40 41 42 43 44 45
   46 47 48 49 50 51 52 53 54 55
   56 57 58 59 60 61 62 63 64 65 66
   67 68 69 70 71 72
                         73 74 75 76 77 78
   79 80 81 82 83 84 85 86 87 88 89
                                            90 91
   92 93 94 95 96 97 98 99 100 101 102 103 104 105
  106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
 207 208 209 210
 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 227 228 229 230 231
 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 248 249 250 251 252 253
 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
 270 271 272 273 274 275 276
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
342 343 344 345 346 347 348 349 350 351
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
368 369 370 371 372 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
395 396 397 398 399 400 401 402 403 404 405 406
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
423 424 425 426 427 428 429 430 431 432 433 434 435
```

Table 8.11: (Continued): Ala symbolic F matrix in local coordinates

```
      436
      437
      438
      439
      440
      441
      442
      443
      444
      445
      446
      447
      448
      449
      450
      451

      452
      453
      454
      455
      456
      457
      458
      459
      460
      461
      462
      463
      464
      465
      466
      467
      468
      469
      470
      471
      472
      473
      474
      475
      476
      477
      478
      479
      480
      481

      482
      483
      484
      485
      486
      487
      488
      489
      490
      491
      492
      493
      494
      495
      496

      497
      498
      499
      500
      501
      502
      503
      504
      505
      506
      507
      508
      509
      510
      511
      512

      513
      514
      515
      516
      517
      518
      519
      520
      521
      522
      523
      524
      525
      526
      527
      528

      529
      530
      531
      532
      533
      534
      535
      536
      5
```

Non-redundant fitted force constants

9.755	1.495	7.882	0.466	0.359	4.139	0.098	-0.003	0.112
4.384	-0.003	-0.004	0.108	0.208	4.358	0.016	0.011	0.053
0.069	0.060	4.818	-0.019	-0.014	-0.033	0.122	-0.002	0.001
5.351	0.009	-0.036	-0.010	0.054	0.009	-0.016	0.022	5.332
-0.011	-0.037	-0.026	0.033	0.003	0.006	0.022	0.027	5.168
0.013	0.016	0.002	0.021	0.066	-0.011	-0.001	-0.001	-0.002
4.913	0.004	0.016	-0.035	-0.007	0.034	0.006	-0.005	-0.007
-0.004	0.049	4.913	0.010	0.001	-0.010	0.015	0.044	0.006
0.003	0.002	0.005	0.048	0.043	4.942	0.226	0.327	-0.450
-0.015	-0.002	-0.009	0.028	0.015	0.032	-0.011	0.013	-0.005
1.497	0.433	-0.351	0.130	-0.242	0.026	0.038	-0.027	-0.012
-0.006	-0.001	0.031	-0.002	-0.078	1.246	-0.001	-0.019	-0.129
-0.148	-0.100	0.095	0.007	0.054	-0.016	0.016	-0.020	-0.012
0.028	0.005	0.968	0.047	0.016	0.143	-Ö.183	-0.110	0.004
0.013	-0.002	0.014	-0.016	-0.004	0.007	-0.026	0.037	-0.066
0.616	-0.008	-0.007	0.017	0.372	-0.183	0.012	-0.008	0.014
-0.024	-0.027	0.009	0.000	0.006	0.031	0.053	-0.065	0.786
-0.051	-0.017	-0.285	0.277	0.213	0.006	0.052	-0.009	-0.009
-0.001	0.068	-0.014	0.085	0.014	-0.062	-0.046	0.016	1.268
-0.022	0.037	0.149	0.297	-0.181	0.012	-0.052	-0.037	-0.015
-0.008	0.044	-0.021	-0.031	-0.008	-0.206	-0.041	0.046	-0.122
1.277	-0.059	0.040	0.020	-0.245	-0.012	-0.013	0.040	0.077
0.071	-0.009	0.002	-0.004	-0.013	0.058	-0.005	0.026	-0.029
-0.050	0.019	0.565	0.025	-0.052	-0.035	0.000	0.023	0.001
0.082	-0.009	-0.008	-0.004	0.015	-0.007	0.027	-0.006	-0.034
0.007	-0.019	0.089	-0.044	0.015	0.735	0.007	-0.055	-0.012
0.005	-0.003	0.007	0.011	-0.002	0.008	0.016	-0.005	-0.004
0.012	0.017	0.057	-0.029	0.052	0.019	-0.050	0.007	-0.011
0.721	0.004	0.004	-0.004	0.002	0.005	0.000	-0.069	0.051
0.051	0.001	-0.004	0.004	-0.004	-0.001	-0.011	-0.013	-0.002

Table 8.11: (Continued): Ala Symbolic F matrix in local coordinates

*								
0.017		0.003	-0.029	0.013	0.605	0.031	-0.028	0.000
-0.044	0.007	-0.002	0.042			-0.004		
0.013		0.007			-	-0.045		
-0.001	0.005	0.591				-0.034	0.034	- 1 0 0 0
-0.002	0.001	0.002		_	0.069	0.005	-0.328	
0.010	0.018	-0.059	0.003	0.010	0.002	-0.001	-0.020	0.017
0.554	0.020	-0.015	0.009	0.005	-0.010	-0.001	-0.005	-0.001
0.000	-0.111	0.047		-0.004	-0.005	0.004	-0.001	-0.003
-0.019	-0.011	0.000	0.003	0.004	-0.007	0.001	0.003	-0.006
-0.001	-0.008	0.004	0.005	-0.017	0.007		-0.003	0.534
-0.008	0.072	-0.070	0.000	-0.006	0.020	-0.001	0.002	-0.002
-0.017	0.002	0.003	-0.006	-0.003	0.020	0.004	-0.003	-0.019
-0.011	-0.014	-0.029	-0.055	0.019	0.003	0.013	0.010	0.530
0.076	-0.054	-0.024	0.006	-0.014	0.028	-0.004	0.011	0.001
0.037	0.004	-0.013	0.010	-0.001		-0.037	-0.071	-0.061
0.739	-0.034	-0.011	-0.004	0.001	-0.001	-0.005	-0.006	-0.014
-0.004	0.002	0.101	-0.063	0.031	-0.025	0.003	0.000	-0.010
0.150	0.061	-0.005	0.030	0.014	-0.027	-0.033	0.001	-0.002
0.009	0.009	0.673	0.012	0.001	-0.002	0.001	0.025	0.020
0.009	0.008	-0.003	0.000	0.011	-0.008	0.003	0.033	-0.023
-0.060	0.010	-0.023	-0.022		0.001	0.010	0.018	-0.043
-0.014	-0.001	0.005	-0.002	0.004	-0.012	0.003	-0.016	0.002
0.030	0.007	-0.011	-0.044	-0.012	0.537	-0.012	0.021	-0.029
0.010	0.042	0.061	0.009	0.000	0.001	0.004	0.024	-0.003
-0.001	0.014	-0.021	0.009	0.047	-0.010	0.063	-0.020	0.038
0.119	-0.026	0.012	-0.016	-0.011	0.006	0.003	-0.002	0.043
0.017	-0.001	-0.001	-0.002	-0.034	-0.001	0.005	-0.043	-0.018
-0.014	0.003	-0.013	0.002	0.007	-0.004	0.006	0.010	-0.020
0.001	0.003	-0.006		0.002	0.035	0.001	-0.003	-0.001
-0.006	-0.003	0.000	0.003	-0.012	0.033	0.004	-0.003	0.022
-0.005	-0.010	-0.018	0.001	-0.005	0.002	0.004	0.001	-0.006
-0.001	-0.002	0.001	0.007	-0.010	-0.015	-0.017	0.000	-0.004
-0.001	-0.005		0.006	0.017	0.010	0.009	-0.007	-0.009
	0.000	0.121						

^{*} Non-redundant local coordinates are according to Table-8.1.

Table 8.12: Non-redundant scaled force constants of Cys

```
4.363
1
2
         .083
               2 4.828
     1
                         3
                             4.837
         .048
               2
                   .031
3
                                       3.086
               2
                   .072
                          3
                              .041
                                    4
         .269
4
                                       -.044
                                               5
                                                  4.677
                             -.065
                                    4
                  -.020
5
         .230
               2
                          3
                                               5
                                                   .060
                                                         6
                                                            4.142
                                         .054
                             -.007
         .103
                   .011
                          3
6
               2
                                                                      4.792
                                       -.002
                                               5
                                                   .065
                                                         6
                                                             .028
                                                                   7
                                     4
                              .008
7
     1
         .060
               2
                   .009
                          3
                                                         6
                                                              .035
                                                                   7
                                                                        .001
                                               5
                                                  -.016
                              .006
                                     4
                                        -.038
                  -.016
                          3
8
     1
        -.028
               2
     8
        3.801
                                                                   7
                                                                        .011
                                                        6
                                                              .450
                                                  -.132
                                               5
        -.056
                  -.023
                         3
                               .000
                                    4
                                         . 125
9
     1
               2
         .001
                9
                   9.710
                                                                        .008
                                         .206
                                                 -.061
                                                        6
                                                              .466
                                                                   7
                                              5
                              .031
                                     4
10
        -.072
                2
                    .036
                         3
                             8.331
         .014
                   1.424 10
                9
                                                                      -.001
                                                              .068
                                                                   7
                                                   . 229
                                                         6
                                        -.082
                                              5
                    .007
                             -.016
                                    4
        -.046
                2
                          3
11
                                        4.921
                             -.135 11
     8
        -.005
                9
                    .081 10
                                                                   7 -.011
                                                    .102 6
                                                              .014
                                              5
                                        -.049
                             -.005
                                    4
12
         .010
                2
                    .000
                          3
      1
                                                  5.229
                                         .031 12
                              .009 11
        -.001
                9
                   -.041 10
                                                                        .008
                                                    .093 6
                                                              .022
                                                                   7
                                        -.098
                                               5
                              -.001 4
13
      1
         .000
                2
                    .012
                         3
                                                             5.147
                                         .018 12
                                                    .031 13
                              -.009 11
      8
        -.006
                9
                    .007 10
                                                                         .000
                                                             -.579
                                                                   7
                              .003 4
                                        -.016
                                              5
                                                   -.013 6
                   -.012
14
      1
         -.008
                2
                         3
                                                                       1.488
                                                    .007 13
                                                              .006 14
                                         .001 12
                             -.051 11
         -.007
                    .240 10
                9
                                                                    7
                                                                       -.041
                                                             -.241
                                                    .160 6
                               .068 4
                                        -.010 5
         -.002
                2
                    .094 3
15
                                                             -.10414
                                                                        .175
                                                    .016 13
                                        -.264 12
                    .261 10 -1.052 11
         -.004 9
      8
     15
         1.458
                                                                         .079
                                                            -.144 7
                                                   -.342 6
                                          .025
                                              5
                               .011 4
16
      1
         -.255
               2
                   .006 3
                                                                         .064
                                                   -.059 13
                                                             -.30214
                              .362 11
                                        -.137 12
      8
          .084
                9
                   -.040 10
     15
         -.05316
                    1.161
                                                                       -.108
                                                              .147 7
                                                         6
                                                   -.233
                                          .009 5
                               .106 4
                    .102
17
      1
         -.089
                2
                          3
                                                                       -.038
                                                              .199 14
                                                    .084 13
                                          .146 12
                              .056 11
      8
          .037
                   -.038 10
                9
                               .667
                    -.085 17
     15
         -.030 16
                                                                         .055
                                                            -.005 7
                                        -.059 5
                                                    .389 6
                               -.047 4
18
                    -.048
                          3
         -.153
                 2
      1
                                                               .064 14
                                                                        -.026
                                                    .020 13
                                          .088 12
                               -.30711
                   -.160 10
         -.020
                 9
                               -.081 18
                                          .767
         -.020 16
                     .012 17
     15
                                                                         .030
                                                             -.350
                                                                    7
                                          .022 5
                                                    .172 6
                               -.056
                                     4
          . 171
19
                   -.126 3
                 2
                                                                         .102
                                                    .152 13
                                                             -.299 14
                                         -.687 12.
                               -.091 11
      8
           .064 9
                   -.188 10
                                                    1.461
                               -.041 18
                                          .000 19
                    -.008 17
      15
           .027 16
                                                             -.328 7
                                                                        -.044
                                                   -.488 6
                              .128 4
                                          .008 5
 20
           .316
                 2
                    .205 3
                                                                          .085
                                                              -.186 14
                                                    .115 13
                                         -.545 12
                              -.580 11
                    -.090 10
      8
          -.044
                9
                                                    .214 20
                                                              1.673
                                         -.057 19
                                .005 18
                    .212 17
      15
           .126 16
```

Table 8.12: (Continued): Non-redundant scaled force constants of Cys 21 1 -.007 2 -.003 3 .005 4 -.002 5 -.312 6 .039 7 .002 9 -.011 .058 10 -.034 11 -.306 12 -.033 13 .235 14 15 -.049 16 .020 17 -.018 .040 18 -.031 19 -.003 20 .017 21 22 1 .021 2 -.005 .659 3 .011 4 -.025 5 .107 6 -.037 8 7 .001 9 -.079 10 .004 .029 11 1.087 12 -.228 13 .477 14 15 -.021 16 -.138 17 .033 .042 18 -.002 19 .008 20 -.031 21 22 1.009 -.050 23 1 .004 2 .004 3 .002 4 .003 5 .049 6 -.004 7 8 .001 9 -.018 10 .003 .026 11 .143 12 .149 13 .219 14 15 -.034 16 .009 .020 17 -.019 18 .055 19 .021 20 .039 21 22 .046 23 .789 -.032 24 1 .018 2 .003 3 -.005 -.005 4 5 .000 6 -.023 7 8 -.002 -.001 9 -.004 10 .007 11 -.089 12 .121 13 -.197 14 15 .021 16 .001 -.041 17 .000 18 -.007 19 .105 20 .070 21 22 -.104 23 -.050 .037 24 .604 25 1 .002 2 .002 3 .005 4 -.002 5 -.042 6 -.009 7 -.002 8 .001 9 -.013 10 .037 11 .348 12 .026 13 -.181 14 15 .026 16 .003 .062 17 .022 18 .000 19 -.002 20 .039 21 22 .009 23 -.069 24 .004 .017 25 .606 26 1 -.114 2 .198 3 -.127 -.140 5 4 -.011 6 .014 7 8 -.007 -.001 9 -.030 10 .010 11 .001 12 -.001 13 .000 14 15 .018 16 -.003 .019 17 -.005 18 -.012 19 -.037 20 .009 21 22 .002 23 .005 .002 24 -.006 25 -.001 26 .554 27 1 -.231 2 .004 3 -.009 4 .277 5 -.052 6 .004 7 8 .014 .008 9 -.031 10 -.035 11 .008 12 .010 13 .009 14 15 .021 16 .012 .043 17 -.004 18 -.016 19 -.024 20 -.040 21 22 -.006 23 .008 .005 24 .001 25 -.001 26 -.007 27 28 .590 1 .027 2 -.165 3 -.277 4 .029 5 -.047 6 .018 7 8 .159 .034 9 -.195 10 .041 11 -.168 12 .018 13 -.094 14 15 -.050 16 -.034.043 17 -.009 18 .000 19 -.002 20 -.025 21 22 -.045 23 .007 .001 24 .017 25 -.036 26 -.040 27 29 .016 28 1 .796 .014 2 .093 3 .118 4 .009 5 .052 6 .002 7 8 .012 .031 9 -.070 10 -.04111-.047 12 -.002 13 15 .020 16 -.044 17 -.02414.002 .005 18 .001 19 .087 20 -.040 21 22 .022 23 -.003 .001 24 -.002 25 -.006 26 .019 27 .017 28 29 -.009 .567 30 1 . 291 2 -.089 3 .021 4 .276 5 -.029 6 -.044 7 8 .052 -.115-.232 10 9 -.404 11 .050 12 .112 13 .129 14 15 -.030 .042 16 -.143 17 -.054 18 -.047 19 .028 20 .003 21 .023 22 .027 23 .013 24 .041 25 -.010 26 .000 27 .009 28 29 -.002.018 30 1.042

.054

.009 35

.056 34

Table 8.12: (Continued): Non-redundant scaled force constants of Cys .004 2 .017 -.002 4 .198 5 -.010 6 3 .008 7 31 -.205 9 .039 10 -.003 11 -.006 12 -.004 13 -.002 14 8 -.033 17 .008 18 .008 19 -.019 20 -.002 16 .030 21 .001 .000 24 -.001 25 .001 26 - .020 27 .004 23 .054 28 .071 .105 30 -.01431.871 29 -.030 -.0364-.018 5 -.004 2 3 .006 6 .015 7 .034 32 1 -.269 11 -.034 9 .202 10 -.020 12 -.02413-.016 14 .001 8 .051 16 .040 17 .048 18 .008 19 .020 20 -.015 21-.007 15 22 .006 23 -.003 24 .006 25 -.023 26 .003 27 .000 28 .001 29 .010 30 .017 31 -.00332.460 .058 7 .383 3 .452 4 .170 5 .033 6 .052 33 1 .037 2 -.095 14 -.418 10 -.035 11 -.185 12 .022 13 -.061 .171 9 8 -.025 19 .072 20 -.030 21 .001 .003 16 .038 18 15 .027 17 .054 -.001 24 .010 25 -.038 26 .015 27 .041 28 -.0192322 .379 -.037 31 .031 32 -.0043329 .036 30 -.0024. 033 .015 6 .007 7 -.00234 1 .007 2 -.003 3 8 -.086 9 -.024 10 -.028 11 .007 12 .009 13 .009 14 -.002-.022 17 .001 18 -.001 19 -.02420.009 21 -.00215 .007 16 .005 28 -.039-.010 25 .007 26 .006 27 22 .011 23 .001 24 .039 32 -.008 33 .020 34 .099 .020 31 29 .012 30 .036 5 -.002 6 -.066 -.029.061 4 .010 2 .034 3 35 1 -.787 11 -.104 12 -.044 13 -.094 14 -.082 -.753 10 .036 9 .007 18 .029 20 -.045 21 -.016.095 19 -.002 16 .030 17 15 .019 28 .029 -.040 26 -.00327-.01424-.002 25 22 -.00423.057 34 -.008 35 .363 .014 32 .003 33 29 .017 30 .049 31 -.059 6 -.036 7 .007 .027 5 .002 4 36 1 -.009 2 -.002 3 -.227 13 -.570 14 .008 -.73112.010 10 -.014118 .006 9 .061 21 -.039-.04819.080 20 -.038 18 15 .057 16 .045 17 .044 .007 25 .000 27 -.004 28 -.13726-.068 24 22 -.110 23

.013 33

-.03231

29

36

.009 30 .357 -.001 32

^{*} Non-redundat local coordinates are according to Table-8.2.

Table 8.13: Non-redundant scaled force constants of Ser

1		4.419											
2		.091	2 4.615										
3	1	.039	2 .055	3	4.814								
4		.419	2 .196	3	.190	4	5.136	3					
5		. 233	2 .025	3	016	4			4.581				
6		.078	2 .003	3	040	4					1 100		
7	1	.050	2011	3	.008	4	.002						
8	1	016	2006	3	007	4	032		-				025
	8	6.430						- 0	.000	, 0	021	7	002
9	1		2 .008	3	.002	4	.117	5	.092	6	400	-	
	8.		9.739					Ū	.002	. 0	. 480	7	.012
10	1		.009	3	.014	4	.054	. 5	.010	6	407		
	8		1.465	10	8.106				.010	0	. 407	7	.010
11	1	.008 2	001	3	005	4	.003	5	.071	6	021	7	0.1-
4.0	8	.002	.009	10	029	11	5.394			O	.021	7	017
12	1	005 2		3	005	4	006	5	.053	6	022	7	004
4.0	8	.009 9	.003	10	030	11	.019		5.495	Ŭ	.022	1	.004
13	1	030 2		3	.000	4	035	5	.104	6	030	7	000
4.4	8	012 9		10	035	11	.025	12	.021	13	5.109	,	.000
14	1	.007 2		3	.012	4	071	5	019	6	440	7	007
15	8	.027 9	.217 1	.0	.302	11	.021	12	.018		.032	14	1.476
15	1	.016 2		3	.037	4	.006	5	231	6	.129	7	. 035
	8	.006 9	.444 1	0	373	11	023	12	022		012		069
16	15 1	1.183											.003
10		087 2		3		4	032	5	176	6	097	7	. 099
	ູ8 15	.008 9	.013 1	0	031 1	.1	.046	12	004	13	.016		.017
17	1	.005 16	.972	_									.017
	8	152 2 003 9	008			4	.011	5	223	6	.128	7	017
	15	003 9 .031 16	.040 10		.016 1	1	001	12	.011	13		14	022
18	1	169 2	055 17		.601								
	8	.002 9	(.014		.014	5	. 366	6	.024	7	. 009
	15		,		003 1	1		12	021	13	028		.004
19	1	.503 2	049 17				.820						
	8	.056 9	007 3		.037		016			6	203	7	.009
	15	.022 16			017 1		.007	12	.051	13	017	L4	.047
20	1	.102 2	154 17		073 18		.035		1.529				
		026 9	.016 3		043		. 099		296	6	156	7	010
	15	.056 16	.035 10		069 1:		.052		.068 1	13	.014 1	.4	. 033
		.000 10	.211 17		.039 18	3 .	040	19	.109 2	20	1.134		

Table 8.13: (Continued): Non-redundant scaled force constants of Ser -.013 .005 4 -.016 5 -.255 6 .012 7 -.006 3 .007 2 21 .023 14 .060 13 -.009.076 12 .032 11 -.049 10 -.005 8 -.006 21 -.022 20 .569 -.027 19 .013 18 .005 17 .046 16 15 -.014 7 .008 -.011 5 .004 6 -.006 4 .015 3 -.001 2 1 22 -.033 14 .012 .023 12 -.010 13 -.024 11 .006 10 .001 9 8 .031 21 -.003 -.014 20 .056 19 -.036 18 .110 17 .007 16 15 .754 22 .000 -.0257 -.005 6 .011 4 -.028 5 .002 3 2 .014 1 23 .020 -.06214.027 13 -.074 11 .000 12 -.016 9 .011 10 8 .093 20 .057 21 .019 -.001 18 -.001 19 .006 17 .007 16 15 .735 .007 23 22 .002 .024 7 .026 6 -.018 5 .002 4 3 .003 .004 2 1 24 -.007 -.001 14 -.087 12 .019 13 .016 11 -.030 10 -.005 9 8 -.031 21 -.035.001 20 .025 19 .004 18 .003 17 .025 16 15 .592 .009 24 -.026 23 22 -.022 7 -.001 -.025 6 .003 4 -.002 5 -.007 3 2 -.020 25 1 .013 .077 13 -.06414.002 12 -.02311.019 10 -.009 9 8 .028 21 .018 .004 20 .007 19 .010 18 .025 17 -.0231615 .580 -.009 24 .020 25 -.020 23 -.004.007 7 -.010 6 -.212 5 .086 4 .090 3 -.136 2 26 1 -.001 -.003 14 .001 12 -.001 13 -.006 11 .000 10 .005 9 8 .013 21 .003 -.027 20 .011 19 .005 18 .011 17 -.006 16 15 . 563 -.001 25 .004 26 -.005 24 -.005 23 22 -.015-.043 6 .016 7 .386 5 -.012 4 -.004 3 -.245 2 27 1 .009 .013 14 .000 13 .001 12 -.025 11 -.004 10 -.0279 .008 .015 21 -.07420.031 19 .015 18 -.001 17 -.002 16 15 . 675 .005 27 .001 26 .004 25 -.00624.004 23 22 .040 -.020 7 -.077 6 .007 5 .099 3 -.084 4 .086 2 28 1 .003 -.017 14 -.004 13 .005 12 .019 11 -.015 10 .006 9 8 .011 -.025 21 .012 20 -.041 19 -.052 18 .058 17 .008 16 15 .856 -.008 28 -.010 27 .005 26 .016 25 -.016 24 .005 23 22 -.012 .006 7 .000 5 .046 6 .044 4 .000 2 -.033 3 29 1 -.010 14 .002 .001 13 -.008 12 .003 11 -.008 10 -.011 9 8 .000 -.004 21 .095 20 .051 19 .021 18 -.06917.006 16 15 .074 .018 28 .005 27 .005 26 .005 25 .014 24 -.015 23 22 .707 29 -.047.039 7 -.068 6 .603 5 -.047 4 -.055 3 1 .486 -.063 30 -.039 14 -.013 13 -.009 12 .082 11 .102 10 9 .111 8 .031 .082 21 .118 20 .072 19 -.005 18 -.071 17 .056 16 15 -.128 28 .104 -.014 26 -.031 27 .009 25 .008 24 .028 23 22 .013 30 1.661 29

Table 8.13: (Continued): Non-redundant scaled force constants of Ser

								- 201
31	1	.026 2	2 .001 3	.008 4	.354 5	.018 6	0.1.0	
	8	.021		_	.002 12		,	.003
	15	.002 16			.002 12	10		.014
	22	008 23			002 26	20	.020 21	007
	29	001 30			.002 20	.007 27	005 28	003
32	1	020 2			005 5	009 6	0.0.0	
	8	010 9			005 12		004 7	.022
	15	001 16					001 14	010
	22	009 23		009 25	006 19 009 26	.031 20	029 21	.000
	29	.000 30	015 31	001 32	.514	.000 27	.004 28	003
33	1	111 2	.007 3	.001 32		201		
	8	005 9	.000 10	002 11		.024 6	.024 7	011
	15	016 16	045 17		.003 12	.007 13	.019 14	003
	22	.004 23	.002 24	.045 18 032 25	.005 19	118 20	.023 21	011
	29	021 30	082 31		016 26	.002 27	.011 28	097
34	1	037 2	.002 31	016 32	.013 33	. 230		
	8	007 9	.027 10	.002 4	024 5	.005 6	.000 7	003
	15	006 16	.021 17	029 11	004 12	001 13	.008 14	.001
	22	003 23	003 24	.012 18	008 19	027 20	.010 21	.001
	29	022 30		.000 25	.005 26	.002 27	.006 28	071
35	1	009 2	046 31	.007 32	003 33	.051 34	.044	
	8		002 3	017 4	.020 5	006 6	.002 7	.012
	15		.020 10	027 11	007 12	.018 13	.002 14	003
	22		058 17	010 18	042 19	.008 20	.030 21	.006
	29	.022 23	015 24	.008 25	.020 26	008 27	.001 28	003
36		.000 30	004 31	.000 32	.032 33	.003 34	002 35	.090
30	1	035 2	.003 3	.004 4	014 5	.002 6	.004 7	.003
	8	005 9	.010 10	004 11	.007 12	.016 13	040 14	003
	15	.002 16	006 17	001 18	.007 19	019 20	.011 21	006
	22	.001 23	050 24	.056 25	.065 26	002 27	.004 28	004
	29		022 31	.000 32	.006 33	001 34		028
	36	. 058					.001 30	.020

^{*} Non-redundant local coordinates are according to Table-8.2.

Bibliography

- [1] Vijay, A.; Sathyanarayana, D. N. J. Phys. Chem., 1992, 96, 10735.
- [2] Barron, L. D.; Gargaro, A. R.; Hecht, L.; Polavarapu, P. L. Spectrochim. Acta, 1991, 47A, 1001.
- [3] Tarakeshwar, P.; Manogaran, S. J. Mol. Struct. (Theochem), 1994, 305, 205.
- [4] Tarakeshwar, P.; Manogaran, S. J. Mol. Struct. (Theochem), 1996, 365, 167.
- [5] Susi, H.; Byler, M. J. Mol. Struct., 1980, 63, 1.
- [6] Takeda, M.; Iavazzo, R. E. S.; Garfinkel, D.; Scheinberg, J. H.; Edsall, J. T. J. Am. Chem. Soc., 1958, 80, 3813.
- [7] Fukushima, K.; Onishi, T.; Shimanouchi, T.; Mizushima, S. Spectrochim. Acta, 1959, 15, 236.
- [8] Suzuki, S.; Oshima, T.; Tamiya, N.; Fukushima, K.; Shimanouchi, T.; Mizushima, S. *Spectrochim. Acta*, **1961**, 17, 969.
- [9] Oshima, T.; Tamiya, N. Spectrochim. Acta, 1961, 17, 384.
- [10] Tsuboi, T.; Takenishi, T.; Nakamura, A. Spectrochim. Acta, 1961, 17, 634.
- [11] Wang, C. H.; Storms, R. D. J. Chem. Phys., 1971, 55, 3291.
- [12] Srivastava, R. B.; Gupta, V. D. Indian J. Pure Appl. Phys., 1972, 10, 596.
- [13] Fross, S.; Stenman, R. Phys. Fenn., 1973, 8, 365.

- [14] Adamowicz, R. F.; Sage, M. L. Spectrochim. Acta, 1974, 30, 1007.
- [15] Machida, K.; Kagayama, A.; Saito, Y.; Uno, T. Spectrochim. Acta, 1978, 34A, 909.
- [16] Machida, K.; Kagayama, A.; Saito, Y. J. Raman Spectrosc., 1978, 7, 188.
- [17] Byler, D. M.; Susi, H. Spectrochim. Acta, 1979, 35A, 1365.
- [18] Percy, G. C.; Stenton, H. S. J. Chem. Soc., Dalton Trans., 1976, 2429.
- [19] Yu, G.; Freedman, T. B.; Nafie, L. A.; Deng, Z.; Polavarapu, P. L. J. Phys. Chem., 1995, 99, 835.
- [20] Diem, M.; Polavarapu, P. L.; Oboodi, M.; Nafie, L. A. J. Am. Chem. Soc., 1982, 104, 3329.
- [21] Tarakeshwar, P.; Manogaran, S. Spectrochim. Acta, 1995, 51A, 925.
- [22] Sellers, H. L.; Schafer, L. J. Am. Chem. Soc., 1978, 100, 7728.
- [23] Lawrence, P. R.; Thomson, C. Theor. Chim. Acta, 1981, 58, 121.
- [24] Schafer, L.; Siam, K.; Klimkowski, V. J.; Ewbank, J. D.; Alsenoy, C. V. J. Mol. Struct., 1990, 204, 361.
- [25] Maezey, P. G.; Ladik, J. J.; Suhai, S. Theor. Chim. Acta, 1979, 51, 323.
- [26] Wright, L. R.; Borkman, R. F. J. Am. Chem. Soc., 1980, 102, 6207.
- [27] Voogd, J.; Derssen, J. L.; Duijenveldt, F. B. J. Am. Chem. Soc., 1981, 103, 7701.
- [28] Tranter, G. E. Mol. Phys., 1985, 4, 825.
- [29] Tranter, G. E. J. Theor. Biol., 1986, 119, 467.
- [30] Smolyar, A. E.; Abramov, A. R.; Narimanbekov, O. A.; Shakhtakhtinski, T. N. Azerb. Khim. Zhu., 1984, 42.
- [31] Alsenoy, C. V.; Scarsdale, J. N.; Sellers, H. L.; Schafer, L. Chem. Phys. Lett., 1981, 80, 124.

- [32] Alsenoy, C. V.; Kulp, S.; Siam, K.; Klimkowski, V. J.; Ewbank, J. D.; Schafer, L. Chem. *Phys. Lett.*, **1981**, 80, 124.
- [33] Kerr, K. A.; Ashmore, J. P.; Koetzle, T. F. Acta Crystallogr., 1975, 31B, 2022.
- [34] Frey, M. N.; Lehmann, M. S.; Koetzle, T. F. Acta Crystallogr., 1973, 29B, 876.
- [35] Susi, H.; Byler, D. M.; Gerasimowicz, W. V. J. Mol. Struct., 1983, 102, 63.
- [36] Machida, K.; Izumi, M.; Kagayama, A. Spectrochim. Acta, 1979, 35A, 1333.
- [37] Madec, C.; Lauransan, J.; Garrigou-Lagrange, C. Can. J. Spectrosc., 1980, 25, 47.
- [38] Madec, C.; Lauransan, J.; Garrigou-Lagrange, C. Can. J. Spectrosc., 1978, 23, 166.
- [39] Li, H.; Wurrey, C. J.; Thomas, G. J., Jr. J. Am. Chem. Soc. 1992, 114, 7463.
- [40] Gargaro, A. R.; Barron, L. D.; Hecht, L. J. Raman Spectrosc., 1993, 24, 91.
- [41] Bour, p.; Tam, C. N.; Shaharuzzaman, M.; Chickos, J. S.; Keiderling, T. A. J. Phys. Chem., 1996, 100, 15041.
- [42] Durig, J. R.; Wang, A. Y.; Little, J. S.; Breltic, P. A. J. Chem. Phys., 1990, 93, 905.

Chapter 9

Conclusions and Future Scope

The availability of a number of empirical force fields and their popularity in getting useful chemical and biochemical insights clearly demonstrate the necessity of having a dependable force field for the molecules of interest. It has been shown that adjusting the empirical parameters to reproduce the experimental vibrational frequencies have significant improvement on the inferences made from the simulations. Ab initio force fields having a firm theoretical basis is expected to provide more reliable parameters than the empirical ones. To this end, in this thesis we proposed an alternative methodology for scaling the ab initio force constants. The resulting scaled quantum mechanical force field in terms of a complete set of non-redundant force constants is utilized for interpretation and prediction of the vibrational spectra of few organic molecules and amino acids. The results show that the methodology works as good as other known scaling procedures and better in few favourable cases.

In the case of organic molecules many well studied systems are available in the literature. We used some of them like acrolein, benzene, naphthalene etc. to interpret their vibrational spectra. By transferring the scale factors from structurally related molecular systems the predictive ability of the present methodology has been tested for few molecules like pyridine, benzaldehyde and anthracene. The final results suggest the general applicability of the scaling methodology. A set of reliable non-redundant scaled force constants have been obtained for all the organic molecules studied. However incorporating these parameters, into simulation of molecular mechanics and dynamics is deferred for future work.

The use of ab initio methods to describe the vibrational characteristics of amino acids is still in its infancy. The nature of intermolecular H-bonding present in the condensed phase poses serious problems in mimicking the experimental features of vibrational spectra using ab initio calculations on isolated molecules. Different ways of incorporating this environmental effect into calculations involving single molecule are explored. Single molecular calculation on hydrochlorides of amino acids and Onsager reaction field approach of immersing the molecule in a dielectric continuum on amino acid zwitterions are found to give reasonably good results. A complete set of non-redundant force constants were obtained for the amino acids and their hydrochlorides investigated in this thesis. To incorporate these results into molecular mechanics simulations require the data for other amino acids, work in this direction is in progress in our laboratory.

List of Publications:

- 1. Theoretical study of the ground state vibrations of methoxydifluorophosphine- d_0 and d_3
- D.Chakraborty and S.Manogaran, J.Mol.Struct.(THEOCHEM), 1993, 284, 163.
- 2.Ground state vibrations of N-glycylglycine hydrochloride An ab initio study D.Chakraborty, A.Yash and S.Manogaran, *J.Mol.Struct.*(THEOCHEM), 1994, 303, 265.
- 3.Ground state vibrations of guanidinium and methylguanidinium ions An ab initio study
- D.Chakraborty, and S.Manogaran, Indian J. Chem., 1994, 33A, 969.
- 4. Force field and assignment of vibrational spectrum of anthracene Theoretical prediction.
- D.Chakraborty, R.Ambashta and S.Manogaran, J.Phys.Chem., 1996 100, 13693
- 5.Accurate prediction and interpretation of vibrational spectra a modified ab initio scaled quantum mechanical approach
- S.Manogaran and D.Chakraborty, J. Phys. Chem., manuscript under revision.
- 6. Theoretical prediction of vibrational spectra of N-glycylglycine hydrochloride An ab initio study
- D.Chakraborty and S.Manogaran J.Phys.Chem., manuscript under revision.
- 7. Vibrational analysis of glycine zwitterion An ab initio study
- D.Chakraborty and S.Manogaran, J. Phys. Chem., manuscript under revision.
- 8. Groud state vibrational spectra of cystien and serine hydrochloride A Theoretical

prediction

D.Chakraborty and S.Manogaran, J. Mol. Struct. (THEOCHEM) submitted.

9.An accurate prediction and interpretation of vibrational spectrum of L-cystiene and L-serine - An ab initio study

D.Chakraborty and S.Manogaran, Manuscript under preparation.

CHM-1996- D-CHA-GRO