

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS™ P6

600V CoolMOS™ P6 Power Transistor IPx60R160P6

Data Sheet

Rev. 2.2 Final

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ P6 series combines the experience of the leading SJ MOSFET supplier with high class innovation. The offered devices provide all benefits of a fast switching SJ MOSFET while not sacrificing ease of use. Extremely low switching and conduction losses make switching applications even more efficient, more compact, lighter and cooler.

Features

- Increased MOSFET dv/dt ruggedness
- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- Very high commutation ruggedness
- Easy to use/drive
- Pb-free plating, Halogen free mold compound
- Qualified for industrial grade applications according to JEDEC (J-STD20 and JESD22)

PFC stages, hard switching PWM stages and resonant switching stages for e.g. PC Silverbox, Adapter, LCD & PDP TV, Lighting, Server, Telecom and UPS.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Gate

Table 1 Key Performance Parameters

rable i Rey i crioimance i arameters								
Parameter	Value	Unit						
V _{DS} @ T _{j,max}	650	V						
R _{DS(on),max}	160	mΩ						
$Q_{g.typ}$	44	nC						
I _{D,pulse}	68	A						
E _{oss} @400V	5.7	μЈ	·					
Body diode di/dt	500	A/µs						

Type / Ordering Code	Package	Marking	Related Links		
IPW60R160P6	PG-TO 247				
IPB60R160P6	PG-TO 263	CD4C0D0			
IPP60R160P6	PG-TO 220	- 6R160P6	see Appendix A		
IPA60R160P6	PG-TO 220 FullPAK				

Table of Contents

Description	2
Maximum ratings	4
Thermal characteristics	5
Electrical characteristics	6
Electrical characteristics diagrams	8
Test Circuits	13
Package Outlines	14
Appendix A	18
Revision History	19
Disclaimer	19

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Danamatan	Ola a l		Value	S	11		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	23.8 15.0	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	68	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	497	mJ	I_D =4.1A; V_{DD} =50V; see table 12	
Avalanche energy, repetitive	E AR	-	-	0.75	mJ	I_D =4.1A; V_{DD} =50V; see table 12	
Avalanche current, repetitive	I _{AR}	-	-	4.1	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	100	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation (Non FullPAK) TO-220, TO-263, TO-247	P _{tot}	-	-	176	W	T _C =25°C	
Power dissipation (FullPAK) TO-220FP	P _{tot}	-	-	34	W	T _C =25°C	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating junction temperature	T _j	-55	-	150	°C	-	
Mounting torque (Non FullPAK) TO-220, TO-247	-	-	-	60	Ncm	M3 and M3.5 screws	
Mounting torque (FullPAK) TO-220FP	-	-	-	50	Ncm	M2.5 screws	
Continuous diode forward current	Is	-	-	20.6	Α	T _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	68	Α	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	15	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <= $I_{\rm S}$, $T_{\rm j}$ =25°C see table 10	
Maximum diode commutation speed	di _f /dt	-	-	500	A/μs	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <= $I_{\rm S}$, $T_{\rm j}$ =25°C see table 10	
Insulation withstand voltage for TO-220FP	V _{ISO}	-	-	2500	V	V _{rms} , T _C =25°C, <i>t</i> =1min	
						1	

Final Data Sheet Rev. 2.2, 2015-07-10 4

 $^{^{1)}}$ Limited by $T_{j\,max}.$ Maximum duty cycle D=0.75 $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ Identical low side and high side switch with identical \textit{R}_{G}

3 Thermal characteristics

Table 3 Thermal characteristics (Non FullPAK) TO-220, TO-247

Development	Cumbal	Values			11	Note / Took Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case	R _{thJC}	-	-	0.71	°C/W	-	
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	leaded	
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s	

Table 4 Thermal characteristics (FullPAK) TO-220FP

Davamatav	Cumbal	Values			Unit	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	3.67	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	80	°C/W	leaded
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s

Table 5 Thermal characteristics TO-263

Davamatav	Values			5	11:4	Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.71	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	35	45	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave & reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1

Final Data Sheet 5 Rev. 2.2, 2015-07-10

4 Electrical characteristics

at T_j=25°C, unless otherwise specified

Table 6 Static characteristics

Parameter	Corrects of	Values			11!4	N 4 7 4 6 1111	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	V_{GS} =0V, I_D =1mA	
Gate threshold voltage	$V_{(GS)th}$	3.5	4.0	4.5	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=0.75{\rm mA}$	
Zero gate voltage drain current	I _{DSS}	-	- 10	1 -	μΑ	V _{DS} =600, V _{GS} =0V, T _j =25°C V _{DS} =600, V _{GS} =0V, T _j =150°C	
Gate-source leakage current	I_{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	0.144 0.374	0.160	Ω	V _{GS} =10V, I _D =9A, T _j =25°C V _{GS} =10V, I _D =9A, T _j =150°C	
Gate resistance	R _G	-	1.6	-	Ω	f=1MHz, open drain	

Table 7 Dynamic characteristics

Damamatan	0		Values			Nata / Tank Oan distant
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	C _{iss}	-	2080	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz
Output capacitance	Coss	-	89	-	pF	V _{GS} =0V, V _{DS} =100V, f=1MHz
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	72	-	pF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	313	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V
Turn-on delay time	$t_{\sf d(on)}$	-	12.5	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =11.3A, $R_{\rm G}$ =1.7 Ω ; see table 11
Rise time	t _r	-	7.6	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =11.3A, $R_{\rm G}$ =1.7 Ω ; see table 11
Turn-off delay time	$t_{\sf d(off)}$	-	40	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =11.3A, $R_{\rm G}$ =1.7 Ω ; see table 11
Fall time	t _f	-	5.8	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13 V, $I_{\rm D}$ =11.3A, $R_{\rm G}$ =1.7 Ω ; see table 11

Table 8 Gate charge characteristics

Parameter	Cymphal	Values			11:4	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	13	-	nC	V_{DD} =400V, I_{D} =11.3A, V_{GS} =0 to 10V
Gate to drain charge	Q _{gd}	-	15	-	nC	V_{DD} =400V, I_{D} =11.3A, V_{GS} =0 to 10V
Gate charge total	Q_g	-	44	-	nC	V_{DD} =400V, I_{D} =11.3A, V_{GS} =0 to 10V
Gate plateau voltage	V _{plateau}	-	6.1	-	V	V_{DD} =400V, I_{D} =11.3A, V_{GS} =0 to 10V

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

Final Data Sheet 6 Rev. 2.2, 2015-07-10

Table 9 Reverse diode characteristics

Parameter	Cymbal	Values			l lmi4	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.9	-	V	V _{GS} =0V, I _F =11.3A, T _j =25°C
Reverse recovery time	t _{rr}	_	350	-	ns	V_R =400V, I_F =11.3A, di_F/dt =100A/ μ s; see table 10
Reverse recovery charge	Qrr	-	5.3	-	μC	V_R =400V, I_F =11.3A, di_F/dt =100A/ μ s; see table 10
Peak reverse recovery current	I _{rrm}	_	28	-	А	V_R =400V, I_F =11.3A, di_F/dt =100A/ μ s; see table 10

Final Data Sheet 7 Rev. 2.2, 2015-07-10

5 Electrical characteristics diagrams

Final Data Sheet 11 Rev. 2.2, 2015-07-10

6 Test Circuits

Table 10 Diode characteristics

Table 11 Switching times

Table 12 Unclamped inductive load

7 Package Outlines

Figure 1 Outline PG-TO 247, dimensions in mm/inches

Final Data Sheet 14 Rev. 2.2, 2015-07-10

Figure 2 Outline PG-TO 263, dimensions in mm/inches

Final Data Sheet 15 Rev. 2.2, 2015-07-10

Figure 3 Outline PG-TO 220, dimensions in mm/inches

Final Data Sheet 16 Rev. 2.2, 2015-07-10

DIM	MILLIN	METERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	4.50	4.90	0.177	0.193			
A1	2.34	2.85	0.092	0.112			
A2	2.42	2.86	0.095	0.113			
b	0.65	0.90	0.026	0.035			
b1	0.95	1.38	0.037	0.054			
b2	0.95	1.51	0.037	0.059			
b3	0.65	1.38	0.026	0.054			
b4	0.65	1.51	0.026	0.059			
С	0.40	0.63	0.016	0.025			
D	15.67	16.15	0.617	0.636			
D1	8.97	9.83	0.353	0.387			
E	10.00	10.65	0.394	0.419			
е	2.54	(BSC)	0.100	(BSC)			
e1	5	.08	0.2	:00			
N		3	3	3			
Н	28.70	29.75	1.130	1.171			
L	12.78	13.75	0.503	0.541			
L1	2.83	3.45	0.111	0.136			
øΡ	2.95	3.38	0.116	0.133			
Q	3.15	3.50	0.124	0.138			

Figure 4 Outline PG-TO 220 FullPAK, dimensions in mm/inches

Final Data Sheet 17 Rev. 2.2, 2015-07-10

8 Appendix A

Table 13 Related Links

• IFX CoolMOS[™] P6 Webpage: www.infineon.com

• IFX CoolMOS[™] P6 application note: <u>www.infineon.com</u>

• IFX CoolMOS[™] P6 simulation model: www.infineon.com

• IFX Design tools: www.infineon.com

Final Data Sheet 18 Rev. 2.2, 2015-07-10

Revision History

IPW60R160P6, IPB60R160P6, IPP60R160P6, IPA60R160P6

Revision: 2015-07-10, Rev. 2.2

ъ.			Re	: -	. :
\mathbf{r}	$-\Delta V$	פותו	~~	W	מחוי

Revision	Date	Subjects (major changes since last revision)	
2.0	2013-12-04	Release of final version	
2.1	2013-12-05	Release of multi-package datasheet	
2.2	2015-07-10	PG-TO 263 package added	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 19 Rev. 2.2, 2015-07-10