Local Binary Pattern descriptor

comparison between sequential and two parallel implementations

Parallel Computing (9 CFU)

Francesca Del Lungo and Matteo Petrone
Prof. Marco Bertini

January 2021

Contents overview

- 1 Introduction
- 2 Implementation
 - Sequential
 - Parallel
 - Java Threads
 - CUDA
- 3 Experiments
- 4 Conclusions

Introduction

LBP

Introduction •0

- Non-parametric visual descriptor
- Analyse local structure of images to extract texture
- Works in a 3×3 pixels window
- LBP histogram
- **Embarrassingly parallel** algorithm structure

LBP procedure

00

Implementation

Sequential

- Classical LBP descriptor
- Implemented in java

```
procedure LBP(img)
   neighbors \leftarrow 3
   radius \leftarrow |neighbors/2|
   for row in img.height do
      for col in img.width do
         lbp_v := array[neighbors * neighbors - 1]
         for r, c = -radius, ..., radius do
            if img[row + r][col + c] > img[row][col] then
               lbp_{-}v[idx + +] \leftarrow 1
            else
               lbp_v[idx + +] \leftarrow 0
         sum \leftarrow 0
         for c_i dx in lbp_v do
            sum + = 2^{c\_idx} * Ibp\_v[c\_idx]
         new\_img[row][col] \leftarrow sum
   COMPUTEHISTOGRAM(new_img)
```

Parallel: Java Threads

- CPU parallelism
- Each thread takes a split of the image and operates on it
- Each thread compute a **partial histogram** and the results are merged together
- No synchronization among threads needed during execution
- Multithreaded programming via java.lang. Thread

Parallel: CUDA

- GPU parallelism
- Naive and tiling versions
- Each pixel is assigned to a thread

LBP histogram

- For each block: local histogram on shared memory
- Initialization needed
- **Atomic operations** inside block and at the end to merge local histogram with the global one
- Atomic operations slow down the execution time of the CUDA kernel.

```
procedure CudalBPkernel(img, hist_gm)
   hist\_sm := sm\_array[n\_bins]
  ctr x \leftarrow blockldx.x * blockDim.x + threadldx.x
  ctr_v \leftarrow blockldx.v * blockDim.v + threadldx.v
  INITIALIZEHISTOGRAM(hist_sm)
  __syncthreads()
  if ctr_x < img.width and ctr_y < img.height then
     lbp_v \leftarrow ComputeLBPPixelValue(ctr_x, ctr_y)
     new\_img[ctr\_x][ctr\_y] \leftarrow lbp\_v
     ATOMICADD(hist_sm, pix_val)
     __syncthreads()
     for bin in hist sm do
        ATOMICADD(hist_gm, bin)
```

- Objective: decrease global memory accesses
- **Shared memory**: small, but fast
- Phases:
 - Data loading from global to shared memory
 - Data processing
 - Store data back to global memory
- Partition the data into subsets called tiles.

CUDA tiling

The size of each thread block matches the size of an output tile

$$BLOCK_DIM = (TILE_WIDTH, TILE_WIDTH)$$

So:

- All threads participate in calculating output elements
- Some threads need to load more than one input element into the shared memory

CUDA tiling: data loading I

- Portion of image to be processed
- Dimension:

TILE_WIDTH*TILE_WIDTH

- Pixels needed for the computation
- Shared memory allocation: $(TILE_WIDTH + neighbors-1) *$ (TILE_WIDTH + neighbors-1)

CUDA tiling: data loading III

- Two step loading phase
- First step: Load TILE_WIDTH * TILE_WIDTH elements

CUDA tiling: data loading IV

- Two step loading phase
- Second step: Load the data outside the TILE_WIDTH * TILE_WIDTH

- Same as CUDA naive solution
- Only shared memory access in LBP comparisons

Experiments

Experiments 0000000

Images of different resolution:

- 480×360
- 640×480 (NTSC)
- 1280×720 (HD)
- 1920×1080 (FullHD)
- 3840×2160 (4K)
- 7680×4320 (8K)
- 15360×8640 (16K)

Experiments setting

All the tests have been performed on a machine equipped with:

- CPU: Intel Core i7-860 @ 2.80GHz, with 4 cores/ 8 threads
- GPU: NVidia GeForce GTX 980, 4 GB (with CUDA 10.1)
- Average over 15 runs

SpeedUp

To compare the performance of a sequential respect to a parallel implementation: **speedup** metric.

Experiments 00000000

$$S = \frac{t_S}{t_P}$$

Ideally it should be equal to the number of processors of the parallel version (linear speedup).

Experiments 00000000

Speedup: Sequential over Java Threads

CPU: Intel(R) Core(TM) i7-860 @2.80GHz, with 4 cores/8 threads, Cache L2 1MB

Speedup: Sequential over Java Threads

CPU: Intel(R) Core(TM) i7-860 @2.80GHz, with 4 cores/ 8 threads, Cache I 2 1MB

CPU: Apple M1 Octa-Core (4@3.20GHz, 4@2.00GHz), Cache L2 (4@12MB, 4@4MB).

Varying tile width

- BLOCK_DIM = TILE_WIDTH²
- Best tile value 32

Experiments 0000000

CUDA naive and tiling

Image	CUDA naive	CUDA tiling	Speedup
360p	98.599 μs	71.466 μs	1.38
NTSC	126.266 μs	$106.533~\mu s$	1.19
HD	377.33 μs	$289.46 \mu s$	1.30
FullHD	760.33 μs	628.79 μs	1.21
4K	2990.067 μs	2453.13 μs	1.22
8K	$11739.467~\mu s$	$9775.400 \mu s$	1.20
16K	41791.469 μs	$39585.867~\mu s$	1.08

Conclusions

Conclusion

- **Embarrassingly parallel** structure makes it suitable for parallel implementation
- Good results both for CPU and GPU parallelism
- CUDA makes LBP applicable to very large images that cannot be processed sequentially

Thanks for the attention