Math 357 Expositional homework 06

Assigned: 2024–03–29 (F) Due: 2024–04–12 (F)

The goal of this homework is to strengthen our understanding of field theory, through proof and example.

Proofs

- (a) Prove Proposition 13.12:¹ Let $K: K_0$ be a field extension, and let $\alpha \in K$. Then α is algebraic over K_0 if and only if $[K_0(\alpha): K_0] < \infty$.
- (b) Prove Theorem 13.25^2 on the existence of splitting fields: Let K_0 be a field, and let $f \in K_0[t]$. Then there exists an extension field $K: K_0$ such that f splits completely in K[t].
- (c) Let $K: K_0$ be a field extension such that $[K: K_0] < \infty$. Prove that $K: K_0$ is normal if and only if for all irreducible polynomials $f \in K_0[t]$, if there exists an $\alpha \in K$ such that $f(\alpha) = 0$, then f splits completely in K[t]. (One may take this as the definition of a normal field extension, in which case one can prove the definition we gave in class as a proposition.)
- (d) Let K_0 be a field, and let $f_1, f_2 \in K_0[t]$. Prove that the formal derivative D_t of a polynomial in $K_0[t]$ satisfies the following relations (as does the derivative operator from calculus):⁴

$$D_t(f_1 + f_2) = D_t f_1 + D_t f_2 \qquad \qquad D_t(f_1 f_2) = (D_t f_1) \cdot f_2 + f_1 \cdot (D_t f_2)$$

Examples

- (e) Determine the degree over **Q** of $2 + \sqrt{3}$ and $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- (f) Let $K: K_0$ be a field extension of finite degree n, and let $\alpha \in K$.

¹See DF3e, p 521.

²See DF3e, p 536. If you are up for it, then you can also prove that any two splitting fields for f are isomorphic; see Corollary 13.28, p 542. This will take a little work, but the theory and proof are both accessible and rewarding.

³See DF3e, Exercise 13.4.5, p 545.

⁴See DF3e, Exercise 13.5.1, p 551.

⁵See DF3e, Exercise 13.2.4, p 530.

⁶See DF3e, Exercises 13.2.19(a) and 20, p 531.

(i) Prove that the map

$$T_{\alpha}: K \to K$$
$$\beta \mapsto \alpha\beta$$

which is (left) multiplication by α , is a K_0 -linear transformation of K.

Let $n \in \mathbb{Z}_{>0}$, let M be an $n \times n$ matrix, let I be the $n \times n$ identity matrix, and let t be an indeterminate. The **characteristic polynomial** of M is $\det(tI - M) = (-1)^n \det(M - tI)$.

- (ii) Let \mathcal{B} be a K_0 -basis of K, and let $M_{\mathcal{B}}(T_{\alpha})$ be the matrix of T_{α} with respect to \mathcal{B} . Prove that α is a zero of the characteristic polynomial of $M_{\mathcal{B}}(T_{\alpha})$.
- (iii) Use this technique to find monic polynomials in $\mathbf{Q}[t]$ of degree 3 satisfied by $\sqrt[3]{2}$ and by $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- (g) Let $p \in \mathbf{Z}_{>0}$ be prime, let $\mathbf{F}_p = \mathbf{Z}/(p)$ (a finite field of order p), let $a \in \mathbf{F}_p$ be nonzero, and let $f = t^p t + a \in \mathbf{F}_p[t]$. Prove that f is irreducible in $\mathbf{F}_p[t]$ and separable.⁷

Exercise (a)

See DF3e, pp 521-2.

Exercise (b)

For existence, see DF3e, p 536. For uniqueness (which we were not required to prove on this homework), see DF3e, pp 541–2.

Exercise (c)

(⇒) Let $K : K_0$ be normal. Then by definition, there exists a set $S \subseteq K_0[t]$ such that K is a splitting field of S. By hypothesis, $[K : K_0] < \infty$, so there exists a finite subset $S' \subseteq S$ such that K is a splitting field of S'. Let $f_0 = \prod_{g \in S'} g$. (Note that this construction uses that S' is finite.)

Let $f \in K_0[t]$ such that there exists an $\alpha \in K$ such that $f(\alpha) = 0_K$. Let β be a zero of f, potentially in some extension field over K. (For example, view $f \in K[t]$, let \tilde{K}_f be a splitting field for f over K, and take $\beta \in \tilde{K}_f$.) By Theorem 13.8, there exists an isomorphism $\sigma_0 : K_0(\alpha) \to K_0(\beta)$ such that $\sigma_0(\alpha) = \beta$ and $\sigma_0|_{K_0} = \mathrm{id}_{K_0}$. Note that $K(\alpha)$ is a splitting field of f_0 over $K_0(\alpha)$, and $K(\beta)$ is a splitting field of f_0 over $K_0(\beta)$. Thus by Theorem 13.27, σ_0 extends to an isomorphism $\sigma : K(\alpha) \to K(\beta)$ such that $\sigma|_{K_0(\alpha)} = \sigma_0$. By hypothesis, $\alpha \in K$, so $K(\alpha) = K$. We conclude that $K(\beta) \cong K(\alpha) = K$, so $K(\alpha) = K$ as well.

 (\Leftarrow) By Theorem 13.17, $[K:K_0]<\infty$ if and only if K is generated by a finite number, say n, of elements $\alpha_i\in K$, each of which is algebraic over K_0 . Because α_i is algebraic over K_0 , each α_i has a (unique) minimal polynomial $m_{\alpha_i,K_0}\in K_0[t]$, which by definition is irreducible. By definition, each m_{α_i,K_0} has a zero in K, namely α_i ; so by hypothesis, each m_{α_i,K_0} splits completely in K.

Let $f_0 = \prod_{i=1}^n m_{\alpha_i, K_0}$. (Again, note that this construction uses that the indexing set of the product is finite.) Our argument in the preceding paragraph shows that f splits completely in K, and that K is generated by the zeros of f. Thus K : K_0 is normal (take $S = \{f_0\}$).

⁷See DF3e, Exercise 13.5.5, p 551.

Exercise (d)

This is a straightforward if tedious bookkeeping exercise.

Let $n_i = \text{deg } f_i$, let $n = \text{max}(n_1, n_2)$, let $N = n_1 + n_2$, and let

$$f_i = \sum_{j=0}^{n_i} \alpha_{i,j} t^j \qquad \qquad \text{so} \qquad \qquad D_t f_i = \sum_{j=1}^{n_i} j \cdot \alpha_{i,j} t^{j-1}$$

Let us adopt the convention that if the index $j > n_i$, then $a_{i,j} = 0$. Then

$$\begin{split} D_t(f_1+f_2) &= D_t \left(\sum_{j=0}^n (\alpha_{1,j}+\alpha_{2,j}) t^j \right) & \text{by definition of} + \text{in a polynomial ring} \\ &= \sum_{j=1}^n j \cdot (\alpha_{1,j}+\alpha_{2,j}) t^{j-1} & \text{by definition of formal derivative} \\ &= \sum_{j=1}^n j \cdot \alpha_{1,j} t^{j-1} + \sum_{j=1}^n j \cdot \alpha_{2,j} t^{j-1} & \text{by field axioms} \\ &= D_t f_1 + D_t f_2 & \text{by definition of formal derivative} \end{split}$$

Similarly,

$$\begin{split} D_t(f_1f_2) &= D_t \left(\sum_{j=0}^N \sum_{k=0}^j \alpha_{1,k} \alpha_{2,j-k} t^j \right) \\ &= \sum_{j=1}^N \sum_{k=0}^j j \cdot \alpha_{1,k} \alpha_{2,j-k} t^{j-1} \\ &= \sum_{j=1}^N \sum_{k=0}^j (k+j-k) \cdot \alpha_{1,k} \alpha_{2,j-k} t^{j-1} \\ &= \sum_{j=1}^N \sum_{k=0}^j k \cdot \alpha_{1,k} \alpha_{2,j-k} t^{j-1} + \sum_{j=1}^N \sum_{k=0}^j (j-k) \cdot \alpha_{1,k} \alpha_{2,j-k} t^{j-1} \\ &= D_t f_1 \cdot f_2 + f_1 \cdot D_t f_2 \end{split}$$

Exercise (e)

Let $\alpha = 2 + \sqrt{3}$. Then

$$\alpha - 2 = \sqrt{3}$$
 \Rightarrow $(\alpha - 2)^2 = 3$ \Leftrightarrow $\alpha^2 - 4\alpha + 1 = 0$

so α is a zero of the polynomial

$$f = t^2 - 4t + 1$$

Note that f is irreducible (why?⁸) and monic, so it is the minimal polynomial of α over **Q**. Hence

$$\deg_{\mathbf{O}} \alpha = \deg \mathfrak{m}_{\alpha,\mathbf{O}} = \deg \mathfrak{f} = 2$$

⁸One can see that f is irreducible in various ways. One way is to reduce the coefficients mod 2 and show that the image of f has no zeros in $\mathbb{Z}/(2)$. Another way is to apply the rational zeros test to f directly.

Now let $\alpha = 1 + \sqrt[3]{2} + \sqrt[3]{4}$. Then

$$(\alpha - 1)^3 = (\sqrt[3]{2} + \sqrt[3]{2}^2)^3 = 2 + 3\sqrt[3]{2}^4 + 3\sqrt[3]{2}^5 + 4 = 6(1 + \sqrt[3]{2} + \sqrt[3]{2}^2) = 6\alpha \quad \Leftrightarrow \quad (\alpha - 1)^3 - 6\alpha = 0$$

so α is a zero of the polynomial

$$f = t^3 - 3t^2 - 3t - 1$$

Note that f is irreducible (why?⁹) and monic, so it is the minimal polynomial of α over **Q**. Hence

$$\deg_{\mathbf{O}} \alpha = \deg \mathfrak{m}_{\alpha, \mathbf{Q}} = \deg \mathfrak{f} = 3$$

Exercise (f)

Part (i): Let $\beta_1, \beta_2 \in K$, and let $\alpha \in K_0$. Then

$$\begin{split} T_{\alpha}(\alpha\beta_1+\beta_2) &= \alpha(\alpha\beta_1+\beta_2) & \text{by definition of } T_{\alpha} \\ &= \alpha\alpha\beta_1+\alpha\beta_2 & \text{by the axioms of a field} \\ &= \alpha T_{\alpha}(\beta_1) + T_{\alpha}(\beta_2) & \text{by definition of } T_{\alpha} \end{split}$$

so T_{α} is K_0 -linear.

Part (ii): Let M denote $M_{\mathcal{B}}(T_{\alpha})$; let $\mathfrak{p}=\det(tI-M)$ denote the characteristic polynomial of M; and let id_K denote the identity map on K, so $I=M_{\mathcal{B}}(id_K)$. The intuition is that the matrix $\alpha I-M$ that appears in the expression for $\mathfrak{p}(\alpha)$ represents the map αid_K-T_{α} , and for all $\beta \in K$,

$$(\alpha \operatorname{id}_K - T_\alpha)(\beta) = \alpha \operatorname{id}_K(\beta) - T_\alpha(\beta) = \alpha\beta - \alpha\beta = 0$$

We may be tempted to apply a result from linear algebra 10 that says $det(\alpha I-M)=0$ if and only if α is an eigenvalue of the corresponding linear map. However, we must be careful to correctly apply any theory from linear algebra. In our current setting, we view K as a K0-vector space. In particular, $\alpha \in K$ corresponds to a vector, not a scalar. As such, α cannot be an eigenvalue. As illustrated in our response to part (iii) below, the matrix $\alpha I-M$ is not the zero matrix if (and only if) $\alpha \notin K_0$. Instead, we could view the characteristic polynomial $p \in K_0[t]$ as being an element of K[t], or we could view the $n \times n$ matrix $\alpha I-M$ as operating on K^n and find an eigenvector there with eigenvalue α .

Part (iii): Let

Note that $\alpha, \beta \in \mathbf{Q}(\alpha)$; and $\mathfrak{m}_{\alpha,\mathbf{Q}} = t^3 - 2$ is the minimal polynomial for α over \mathbf{Q} (why?), so $[\mathbf{Q}(\alpha):\mathbf{Q}] = \deg \mathfrak{m}_{\alpha,\mathbf{Q}} = 3$. Therefore, one \mathbf{Q} -basis for $\mathbf{Q}(\alpha)$ is $\mathcal{B} = (1,\alpha,\alpha^2)$. We compute the matrix representations with respect to this basis for the multiplication by α (respectively, β) map to be

$$M_{\mathcal{B}}(T_{\alpha}) = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad M_{\mathcal{B}}(T_{\beta}) = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

⁹The same approaches we took for $\alpha = 2 + \sqrt{3}$ above also work here.

¹⁰See DF3e, Proposition 12.12, p 473.

From these, we compute the characteristic polynomials to be

$$p_{T_{\alpha}} = t^3 - 2$$
 $p_{T_{\beta}} = t^3 - 3t^2 - 3t - 1$

By construction, the characteristic polynomial is monic; by part (ii), it has the given element (α or β) as a zero; and (for these particular polynomials) one can verify each is irreducible. We conclude that each is the minimal polynomial of its respective element over **Q**. (In general, the minimal polynomial will be a factor, irreducible over the base field, of the characteristic polynomial.)

Exercise (g)

Let K_0 be a perfect field, and let $f \in K_0[t]$. We have seen that if f is irreducible, then f is separable. In particular, finite fields (for example, \mathbf{F}_p) are perfect. Thus for this exercise, it suffices to prove that f is irreducible. 12

Lemma. Let $K: F_p$, and let $\alpha \in K$ such that $f(\alpha) = 0_K$. Then K contains n distinct zeros of f. Proof of lemma. Note that char $K = \operatorname{char} F_p = p$. By hypothesis,

$$0_{K} = f(\alpha) = \alpha^{p} - \alpha + \alpha$$

Note that, for all $x, y \in K$,

$$(x+y)^p = x^p + \binom{p}{1} \cdot x^{p-1}y + \dots + \binom{p}{p-1} \cdot xy^{p-1} + y^p = x^p + y^p$$

where for the final equality, we observe that for $1 \le m \le p-1$, $\binom{p}{m}$ is divisible by p in **Z**; because char K = p, all "middle" terms are zero in K. Using this, we compute

$$f(\alpha + 1_K) = (\alpha + 1_K)^p - (\alpha + 1_K) + \alpha = \alpha^p + 1_K - \alpha - 1_K + \alpha = \alpha^p - \alpha + \alpha = f(\alpha) = 0$$

We conclude that if an extension field $K: \mathbf{F}_p$ contains one zero α of f, then it contains all n zeros of f. More precisely, these zeros are

$$\alpha$$
, $\alpha + 1_K$, ..., $\alpha + (p-1) \cdot 1_K$

Because char K = p, these zeros are distinct, ¹⁴ as desired.

Note that the lemma also shows, directly, that f is separable.

Corollary. f contains no zeros in F_p .

Proof. Suppose for the sake of contradiction that there exists an $\alpha \in F_p$ such that $f(\alpha) = 0$. Then the lemma implies that

$$f = \prod_{\beta \in F_p} (t - \beta)$$

$$D_t f = D_t (t^p - t + a) = (p \cdot 1_{F_n}) t^{p-1} - 1 + 0 = -1$$

Therefore $gcd(f, D_t f) = 1$, so f is separable.

¹¹See DF3e, p 549.

¹²That said, we can give a quick proof that f is separable using the formal derivative. Recall (see DF3e, Proposition 13.33, p 547.) that a polynomial f is separable if and only if $gcd(f, D_t f) = 1$. Using that char $F_p = p$, we compute

 $^{^{13}}$ This follows immediately in both the subfield (F $_p\subseteq K$) and injective field homomorphism (F $_p\to K$) view of a field extension $K:F_p$.

 $^{^{14}}$ More precisely, suppose that there were $\mathfrak{m},\mathfrak{n}\in\{0,\ldots,\mathfrak{p}-1\}$ such that $\mathfrak{m}\neq\mathfrak{n}$ and $\alpha+\mathfrak{m}\cdot 1_K=\alpha+\mathfrak{n}\cdot 1_K$ in K. Without loss of generality, assume $\mathfrak{n}>\mathfrak{m}$. Then $0=(\mathfrak{n}-\mathfrak{m})\cdot 1_K$ with $\mathfrak{n}-\mathfrak{m}<\mathfrak{p}$, contradicting char $K=\mathfrak{p}$.

In particular, a = f(0) = 0, contradicting the hypothesis that $a \neq 0$.

We now use the lemma to show that f is irreducible (and hence separable). Let

$$f = \prod_{i=1}^{n} f_i$$

be a factorization of f into irreducible factors $f_i \in F_p[t]$. Because f is monic, without loss of generality, we may assume that each f_i is monic.¹⁵ We wish to show that n = 1.

Claim: The degree of each factor f_i of f is equal. To see this, let K be a splitting field for f over F_p . For each $i \in \{1, \ldots, n\}$, let $\alpha_i \in K$ be a zero of f_i . Because each f_i is irreducible and monic, f_i is the minimal polynomial of α_i over F_p , denote it m_{α_i, F_p} . Because α_i is a zero of f_i , it is also a zero of f. Hence by the lemma,

$$\alpha_i \in \{\alpha_1, \alpha_1 + 1_K, \dots, \alpha_1 + (p-1) \cdot 1_K\} \subseteq K$$

That is, for each $i \in \{1, ..., n\}$, there exists a $m_i \in \{0, ..., p-1\} \subseteq \mathbf{Z}$ such that

$$\alpha_i = \alpha_1 + m_i \cdot 1_K$$

It follows that, for each $i \in \{1, ..., n\}$,

$$f_1(t-m_i\cdot 1_K)$$

is an irreducible, monic polynomial in $F_p[t]$ with α_i as a zero. That is,

$$f_1(t - m_i \cdot 1_K) = m_{\alpha_i,F_n}(t) = f_i(t)$$

so

$$deg f_i(t) = deg f_1(t - m_i \cdot 1_K) = deg f_1(t)$$

proving the claim.

Let $d = \text{deg}\,f_i$ denote the common degree of each (irreducible) factor f_i of f. Because F_p is a field (and hence an integral domain),

$$p = \deg f = \deg \prod_{i=1}^{n} f_i = \sum_{i=1}^{n} \deg f_i = nd$$

Because p is prime, p|n or p|d. If p|n, then we must have n = p and d = 1. However, d = 1 implies that each $\alpha_i \in F_p$, contradicting the corollary above. Therefore we must have n = 1 and d = p. That is, f is irreducible in $F_p[t]$, as desired.

 $^{^{15}}$ Because F_p is a field, by definition of polynomial multiplication, the product of the leading coefficients of all the f_i equals the leading coefficient of f, which is 1_{F_p} . Factoring out the leading coefficient from each f_i leaves each f_i monic, and the product of these leading coefficients equals 1_{F_p} and hence does not change the product.