CS 7172 Parallel and Distributed Computation

OpenMP

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Outline

- OpenMP introduction
- Scope of variables
- The reduction clause
- Parallel for
- Loops in OpenMP and scheduling
- Producers and Consumers

OpenMP

An API for shared-memory parallel programming.

MP = multiprocessing

https://www.openmp.org/

Distributed Memory

- Each processor has its own memory
- Parallel programming by message passing (MPI)

Shared Memory

- Processors shared memory
- Two parallel programming approaches
 - message passing (MPI)
 - directives-based interface OpenMP

OpenMP

- Designed for systems in which each thread or process can potentially have access to all available memory.
- System is viewed as a collection of cores or CPU's, all of which have access to main memory.

Pros and Cons Of OpenMP

Pros

- Prevalence of multi-core computers
- Requires less code modification than using MPI
- OpenMP directives can be treated as comments if OpenMP is not available
- Directives can be added incrementally

Pros and Cons Of OpenMP

Cons

- OpenMP codes cannot be run on distributed memory computers (exception is Intel's OpenMP)
- Requires a compiler that supports OpenMP (most do)
- limited by the number of processors available on a single computer
- often have lower parallel efficiency
- rely more on parallelizable loops
- tend to have a higher % of serial code
- Amdahl's Law if 50% of code is serial will only half wall clock time no matter how may processors

Examples of Applications That Use OpenMP

- Applications
 - Matlab
 - Mathematica

https://www.wolfram.com/mathematica/

```
#include <omp.h>
#include <stdlib.h>
void Hello(void)
                                                        Return 0,1,2,3
        int my_thread_ID = omp_get_thread_num();
        int thread_count = omp_get_num_threads();
       printf( "Hello from thread %d of %d\n", my_thread_ID , thread_count );
int main (int argc, char *argv[]) {
       Hello();
                         Thread number is
        return 0;
                      decided by core number
```

Pragmas

- Special preprocessor instructions.
- Typically added to a system to allow behaviors that aren't part of the basic C specification.
- Compilers that don't support the pragmas ignore them.

```
int main (int argc, char *argv[]) {

#pragma omp parallel
    Hello();
```


Master thread

worker thread

How to Compile and Run an OpenMP Program

Compiler	Compiler Options	Default behavior for # of threads (OMP_NUM_THREADS not set)
GNU (gcc, g++, gfortran)	-fopenmp	as many threads as available cores
Intel (icc ifort)	-openmp	as many threads as available cores
Portland Group (pgcc,pgCC,pgf77,pgf90)	-mp	one thread

Compile

 gcc -fopenmp omphelloworld.c -o omphelloworld.o

Hello from thread 0 Hello from thread 1 Hello from thread 2 Hello from thread 3

Hello from thread 1

Hello from thread 2

Hello from thread 0

Hello from thread 3

ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld.o
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4
ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld.o
Hello from thread 0 of 4
Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld.o
Hello from thread 2 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

Hello from thread 3
Hello from thread 1

Hello from thread 2

Hello from thread 0

```
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
void Hello(void)
        int my_thread_ID = omp_get_thread_num();
        int thread_count = omp_get_num_threads();
        printf( "Hello from thread %d of %d\n", my_thread_ID , thread_count );
int main (int argc, char *argv□)
        /* Get number of threads from command line */
        int thread_count = strtol(argv[1], NULL, 10);
        Hello();
                                             Thread number is
        return 0;
                                           decided by user input
```

Compile

 gcc -fopenmp -o omphelloworld-2.o omphelloworld-2.c

```
ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld-2.o 8
Hello from thread 3 of 8
Hello from thread 4 of 8
Hello from thread 1 of 8
Hello from thread 6 of 8
Hello from thread 5 of 8
Hello from thread 2 of 8
Hello from thread 7 of 8
Hello from thread 0 of 8
ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld-2.o 8
Hello from thread 0 of 8
Hello from thread 6 of 8
Hello from thread 1 of 8
Hello from thread 4 of 8
Hello from thread 3 of 8
Hello from thread 5 of 8
Hello from thread 7 of 8
Hello from thread 2 of 8
ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld-2.o 8
Hello from thread 1 of 8
Hello from thread 6 of 8
Hello from thread 2 of 8
Hello from thread 0 of 8
Hello from thread 5 of 8
Hello from thread 3 of 8
Hello from thread 7 of 8
Hello from thread 4 of 8
```

clause

 The num_threads clause can be added to a parallel directive.

 It allows the programmer to specify the number of threads that should execute the following block.

Of note...

- There may be system-defined limitations on the number of threads that a program can start.
- The OpenMP standard doesn't guarantee that this will actually start thread_count threads.
- Most current systems can start hundreds or even thousands of threads.
- Unless we're trying to start a lot of threads, we will almost always get the desired number of threads.

Of note...

fish /home/ksuo/cs7172 ksuo@ksuo-VirtualBox ~/cs7172> ./omp-helloworld-2.o 10000 libgomp: Thread creation failed: Resource temporarily unavailable

10000 threads fail!

Too many.

Some terminology

 In OpenMP parlance the collection of threads executing the parallel block — the original thread and the new threads — is called a team, the original thread is called the master, and the additional threads are called slaves.

In case the compiler doesn't support OpenMP

include <omp.h>

#ifdef _OPENMP

include <omp.h>

#endif

In case the compiler doesn't support OpenMP

```
# ifdef _OPENMP
  int my_rank = omp_get_thread_num ();
  int thread_count = omp_get_num_threads ();
# else
  int my_rank = 0;
  int thread_count = 1;
# endif
```

The Trapezoidal Rule

The trapezoidal rule

Serial algorithm

```
double f(double x)
        return sin(x) + 2;
double Trap(double a, double b, int n)
        double h = (b-a)/n;
        int i;
        for (i = 0; i < n; i++) {
                double x_i = a + i*h;
                Size = Size + f(x_1) * h;
        return Size;
```


A First OpenMP Version

```
double f(double x)
       return sin(x) + 2;
double Trap(double a, double b, int n)
       double h = (b-a)/n;
       int i:
                                    (a)
       for (i = 0; i < n; i++)
                double x_i = a + i*h;
                Size = Size + f(x_i) * h;
                                      (b)
       return Size;
```

- 1) We identified two types of tasks:
 - a) computation of the areas of individual trapezoids, and
 - b) adding the areas of trapezoids.

2) There is no communication among the tasks in the first collection, but each task in the first collection communicates with task 1b.

A First OpenMP Version

3) We assumed that there would be many more trapezoids than cores.

 So we aggregated tasks by assigning a contiguous block of trapezoids to each thread (and a single thread to each core).

Assignment of trapezoids to threads

Unpredictable results

```
double f(double x)
{
          return sin(x) + 2;
}

double Trap(double a, double b, int n)
{
          double h = (b-a)/n;
          int i;

          for (i = 0; i < n; i++) {
               double x_i = a + i*h;
                Size = Size + f(x_i) * h;
          }

          return Size;
}</pre>
```


 Unpredictable results when two (or more) threads attempt to simultaneously execute:

Size = Size +
$$f(x_i) * h$$
;

Mutual exclusion

only one thread can execute the following structured block at a time

OpenMP Version

https://github.com/kevinsuo/CS7172/blob/master/trapezoidal-omp.c

```
S = a * h
                                                 Χ
                           local_n = n/thread_count
local a
= a + (n/thread\_count) * h * my\_thread\_ID
```

```
double Size;
double f(double x)
        return sin(x) + 2;
double Trap(double a, double b, int n)
        double h = (b-a)/n;
        double local_a;
        int local_n;
        double local_Size;
        int my_thread_ID = omp_get_thread_num();
        int thread_count = omp_get_num_threads();
        local_n = n/thread_count;
        local_a = a + (n/thread_count)*h*my_thread_ID;
        for (i = 0; i < local_n; i++) {</pre>
                double x_i = local_a + i*h;
                local\_Size = local\_Size + f(x_i) * h;
        Size = Size + local_Size;
        return Size;
```

OpenMP Version

https://github.com/kevinsuo/CS7172/blob/master/trapezoidal-omp.c


```
int main(int argc, char* argv[]) [
        double a, b, Size;
        struct timeval tvs,tve;
        gettimeofday(&tvs,NULL); //get start time
        /* Get number of threads from command line */
        int thread_count = strtol(argv[1], NULL, 10);
        Size = Trap(a, b, n);
        printf("Size = %.2lf\n", Size);
        gettimeofday(&tve, NULL); //get end time
        double span = tve.tv_sec-tvs.tv_sec + (tve.tv_usec-tv
s.tv_usec)/1000000.0;
        printf("Time: %.12f\n", span);
```

OpenMP Version

```
ksuo@ksuo-VirtualBox ~/cs7172> ./trapezoidal-serial.o
Size = 19.39
Time: 0.000133000000
ksuo@ksuo-VirtualBox ~/cs7172> ./trapezoidal-omp.o 10
Size = 19.39
Time: 0.000494000000
ksuo@ksuo-VirtualBox ~/cs7172> ./trapezoidal-omp.o 100
Size = 19.39
Time: 0.002283000000
```

 Sometime the overhead of synchronization is larger than the benefit of parallelism

Scope of Variables

Scope

• *In serial programming*, the scope of a variable consists of those parts of a program in which the variable can be used.

 In OpenMP, the scope of a variable refers to the set of threads that can access the variable in a parallel block.

Scope in OpenMP

 A variable that can be accessed by all the threads in the team has shared scope.

 A variable that can only be accessed by a single thread has private scope.

 The default scope for variables declared before a parallel block is shared.

The default clause

 Lets the programmer specify the scope of each variable in a block.

 With this clause the compiler will require that we specify the scope of each variable we use in the block and that has been declared outside the block.

The default clause

Vairable k and factor are private;
Variable n is shared.

```
double sum = 0.0;
pragma omp parallel for num_threads(thread_count) \
    default(none) reduction(+:sum) private(k, factor) \
    shared(n)

for (k = 0; k < n; k++) {
    if (k % 2 == 0)
        factor = 1.0;
    else
        factor = -1.0;
    sum += factor/(2*k+1);
}</pre>
```

The Reduction Clause

Our example

If we write the code like this...

```
global_result = 0.0;
# pragma omp parallel num_threads(thread_count)
{
    pragma omp critical
      global_result += Local_trap(double a, double b, int n);
}
```

... we force the threads to execute sequentially.

Our example

 We can avoid this problem by declaring a private variable inside the parallel block and moving the critical section after the function call.

```
global_result = 0.0;

pragma omp parallel num_threads(thread_count)
{
    double my_result = 0.0; /* private */
    my_result += Local_trap(double a, double b, int n);
    pragma omp critical
    global_result += my_result;
}
```

The Reduction Clause

A common loop is to accumulate variables

The Reduction Clause

```
int sum = 0;
for (int i = 0; i < 100; i++) {
    sum += array[i];
}</pre>
```



```
int sum = 0;

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < 100; i++) {
        sum += array[i];
}</pre>
```

In the internal implementation, OpenMP provides a private sum variable for each thread.

When the thread exits, OpenMP adds the sum of each thread's parts to get the final result.

Reduction operators

 A reduction operator is a binary operation (such as addition or multiplication).

 A reduction is a computation that repeatedly applies the same reduction operator to a sequence of operands in order to get a single result.

 All of the intermediate results of the operation should be stored in the same variable: the reduction variable.

Reduction operators

```
reduction(<operator>: <variable list>)  
+, *, -, \&, |, ^, \&\&, ||
```

```
global_result = 0.0;
pragma omp parallel num_threads(thread_count) \
    reduction(+: global_result)
global_result += Local_trap(double a, double b, int n);
```

The global_result is private for each thread and public for the master thread

The "Parallel For" Directive

Parallel for

 Forks a team of threads to execute the following structured block.

 However, the structured block following the parallel for directive must be a for loop.

```
int sum = 0;

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < 100; i++) {
         sum += array[i];
}</pre>
```

Parallel for

• Furthermore, with the parallel for directive the system parallelizes the for loop by dividing the iterations of the loop among the threads.

Parallel for Example

```
int sum = 0;
for (int i = 0; i < 100; i++) {
    sum += array[i];
}</pre>
```



```
int sum = 0;

#pragma omp parallel for reduction(+:sum)
for (int i = 0; i < 100; i++) {
        sum += array[i];
}</pre>
```

Legal forms for parallelizable for statements

Caveats

• The variable index must have integer or pointer type (e.g., it can't be a float).

• The expressions start, end, and incr must have a compatible type. For example, if index is a pointer, then incr must have integer type.

Caveats

 The expressions start, end, and incr must not change during execution of the loop.

 During execution of the loop, the variable index can only be modified by the "increment expression" in the for statement.

Data dependencies

```
fibo[0] = fibo[1] = 1;
         for (i = 2; i < n; i++)
            fibo[i] = fibo[i-1] + fibo[i-2];
                                                   note 2 threads
         fibo[0] = fibo[1] = 1;
      # pragma omp parallel for num_threads(2)
         for (i = 2; i < n; i++)
           fibo[i] = fibo[i-1] + fibo[i-2];
                                            but sometimes
                                            we get this
1 1 2 3 5 8 13 21 34 55
        this is correct
                               1123580000
```

Data dependencies

Fibonacci in serial

```
#include <stdio.h>
int main()
        int fibo[10];
        fibo[0] = fibo[1] = 1;
        int i;
        printf("%d\n", fibo[0]);
        printf("%d\n", fibo[1]);
        for (i = 2; i < 10; i++)
                fibo[i] = fibo[i-1] + fibo[i-2];
                printf("%d\n", fibo[i]);
        return 0;
```

```
ksuo@ksuo-VirtualBox ~/cs7172> ./fibonacci.o

1
1
2
3
5
8
13
21
34
55
```

Data dependencies

Fibonacci in openmp

```
#include <stdio.h>
#include <omp.h>
int main()
        int fibo[10];
        fibo[0] = fibo[1] = 1;
        int i:
        printf("%d\n", fibo[0]);
        printf("%d\n", fibo[1]);
        for (i = 2; i < 10; i++)
                fibo[i] = fibo[i-1] + fibo[i-2];
                printf("%d\n", fibo[i]);
        return 0;
```

```
ksuo@ksuo-VirtualBox ~/cs7172> ./fibonacci-omp.o

1

2

3

5

8

303804267

303804275

607608542

911412817
```

What happened?

 OpenMP compilers don't check for dependences among iterations in a loop that's being parallelized with a parallel for directive.

 A loop in which the results of one or more iterations depend on other iterations cannot, in general, be correctly parallelized by OpenMP.

Example: Estimating π

$$\pi = 4\left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right] = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$

```
double factor = 1.0;
double sum = 0.0;
for (k = 0; k < n; k++) {
    sum += factor/(2*k+1);
    factor = -factor;
}
pi_approx = 4.0*sum;</pre>
```

OpenMP solution #1

```
double factor = 1.0;
double sum = 0.0;

# pragma omp parallel for num_threads(thread_count) \
    reduction(+:sum)

for (k = 0; k < n; k++) {
    sum += factor/(2*k+1);
    factor = -factor;
}

pi_approx = 4.0*sum;</pre>
```

OpenMP solution #2

```
double sum = 0.0;
pragma omp parallel for num_threads(thread_count) \
    reduction(+:sum) private(factor)

for (k = 0; k < n; k++) {
    if (k % 2 == 0)
        factor = 1.0;
    else
        factor = -1.0;
    sum += factor/(2*k+1);
}</pre>
Insures factor has
private scope.
```

More Loops in OpenMP: Sorting

Bubble Sort

```
for (list_length = n; list_length >= 2; list_length--)
  for (i = 0; i < list_length-1; i++)
    if (a[i] > a[i+1]) {
       tmp = a[i];
       a[i] = a[i+1];
       a[i+1] = tmp;
    }
```


Serial Odd-Even Transposition Sort

```
for (phase = 0; phase < n; phase++)
  if (phase % 2 == 0)
    for (i = 1; i < n; i += 2)
       if (a[i-1] > a[i]) Swap(&a[i-1],&a[i]);
  else
    for (i = 1; i < n-1; i += 2)
       if (a[i] > a[i+1]) Swap(&a[i], &a[i+1]);
```

Serial Odd-Even Transposition Sort

First OpenMP Odd-Even Sort

```
for (phase = 0; phase < n; phase++) {
   if (phase \% 2 == 0)
      pragma omp parallel for num_threads(thread_count) \
         default(none) shared(a, n) private(i, tmp)
      for (i = 1; i < n; i += 2)
         if (a[i-1] > a[i]) {
           tmp = a[i-1];
            a[i-1] = a[i]:
           a[i] = tmp;
   else
      pragma omp parallel for num_threads(thread_count) \
         default(none) shared(a, n) private(i, tmp)
      for (i = 1; i < n-1; i += 2)
         if (a[i] > a[i+1]) {
            tmp = a[i+1];
            a[i+1] = a[i]:
           a[i] = tmp;
```

ition

Second OpenMP Odd-Even Sort

```
pragma omp parallel num_threads(thread_count) \
   default(none) shared(a, n) private(i, tmp, phase)
for (phase = 0; phase < n; phase++) {
   if (phase \% 2 == 0)
      pragma omp for
      for (i = 1; i < n; i += 2)
         if (a[i-1] > a[i]) {
            tmp = a[i-1];
            a[i-1] = a[i];
            a[i] = tmp;
   else
      pragma omp for
      for (i = 1; i < n-1; i += 2)
         if (a[i] > a[i+1]) {
            tmp = a[i+1];
            a[i+1] = a[i];
            a[i] = tmp;
```

Performance

Odd-even sort with two parallel for directives and two for directives. (Times are in seconds.)

thread_count	1	2	3	4
Two parallel for directives	0.770	0.453	0.358	0.305
Two for directives	0.732	0.376	0.294	0.239

Scheduling Loops

Scheduling Loops

We want to parallelize this loop.

Thread	Iterations
0	$0, n/t, 2n/t, \ldots$
1	$1, n/t + 1, 2n/t + 1, \dots$
:	:
<i>t</i> – 1	$t-1, n/t+t-1, 2n/t+t-1, \dots$

Assignment of work using cyclic partitioning.

Scheduling Loops

```
double f(int i) {
   int j, start = i*(i+1)/2, finish = start + i;
   double return_val = 0.0;

   for (j = start; j <= finish; j++) {
      return_val += sin(j);
   }
   return return_val;
} /* f */</pre>
```

Our definition of function *f*.

Results

- f(i) calls the sin function i times.
- Assume the time to execute f(2i) requires
 approximately twice as much time as the time
 to execute f(i).

- n = 10,000
 - one thread
 - run-time = 3.67 seconds.

Results

- n = 10,000
 - two threads
 - default assignment
 - run-time = 2.76 seconds
 - speedup = 1.33
- n = 10,000
 - two threads
 - cyclic assignment
 - o run-time = 1.84 seconds
 - speedup = 1.99

The Schedule Clause

Default schedule:

```
sum = 0.0;

pragma omp parallel for num_threads(thread_count) \
    reduction(+:sum)

for (i = 0; i <= n; i++)
    sum += f(i);</pre>
```

Cyclic schedule:

```
# pragma omp parallel for num_threads(thread_count) \
    reduction(+:sum) schedule(static,1)

for (i = 0; i <= n; i++)
    sum += f(i);</pre>
```

schedule (type, chunksize)

Type can be:

- static: the iterations can be assigned to the threads before the loop is executed.
- dynamic or guided: the iterations are assigned to the threads while the loop is executing.
- auto: the compiler and/or the run-time system determine the schedule.
- runtime: the schedule is determined at run-time.

The chunksize is a positive integer.

The Static Schedule Type

• twelve iterations, 0, 1, . . . , 11, and three threads

```
schedule(static, 1)
```

Thread 0: 0, 3, 6, 9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

The Static Schedule Type

• twelve iterations, 0, 1, . . . , 11, and three threads

schedule(static, 2)

Thread 0: 0, 1, 6, 7

Thread 1: 2,3,8,9

Thread 2: 4, 5, 10, 11

The Static Schedule Type

• twelve iterations, 0, 1, . . . , 11, and three threads

schedule(static, 4)

Thread 0: 0, 1, 2, 3

Thread 1: 4,5,6,7

Thread 2: 8,9,10,11

The Dynamic Schedule Type

 The iterations are also broken up into chunks of chunksize consecutive iterations.

 Each thread executes a chunk, and when a thread finishes a chunk, it requests another one from the run-time system.

- This continues until all the iterations are completed.
- The chunksize can be omitted. When it is omitted, a chunksize of 1 is used.

The Guided Schedule Type

- Each thread also executes a chunk, and when a thread finishes a chunk, it requests another one.
- However, in a guided schedule, as chunks are completed the size of the new chunks decreases.

If no chunksize is specified, the size of the chunks decreases down to
 1.

 If chunksize is specified, it decreases down to chunksize, with the exception that the very last chunk can be smaller than chunksize.

The Guided Schedule Type

Thread	Chunk	Size of Chunk	Remaining Iterations
0	1 – 5000	5000	4999
1	5001 – 7500	2500	2499
1	7501 – 8750	1250	1249
1	8751 – 9375	625	624
0	9376 – 9687	312	312
1	9688 – 9843	156	156
0	9844 – 9921	78	78
1	9922 – 9960	39	39
1	9961 – 9980	20	19
1	9981 – 9990	10	9
1	9991 – 9995	5	4
0	9996 – 9997	2	2
1	9998 – 9998	1	1
0	9999 – 9999	1	0

Assignment of trapezoidal rule iterations 1–9999 using a guided schedule with two threads.

The Runtime Schedule Type

 The system uses the environment variable OMP_SCHEDULE to determine at run-time how to schedule the loop.

 The OMP_SCHEDULE environment variable can take on any of the values that can be used for a static, dynamic, or guided schedule.

Producers and Consumers

Queues

 Can be viewed as an abstraction of a line of customers waiting to pay for their groceries in a supermarket.

- A natural data structure to use in many multithreaded applications.
- For example, suppose we have several "producer" threads and several "consumer" threads.
 - Producer threads might "produce" requests for data.
 - Consumer threads might "consume" the request by finding or generating the requested data.

Message-Passing

 Each thread could have a shared message queue, and when one thread wants to "send a message" to another thread, it could enqueue the message in the destination thread's queue.

 A thread could receive a message by dequeuing the message at the head of its message queue.

Message-Passing

```
for (sent_msgs = 0; sent_msgs < send_max; sent_msgs++) {
    Send_msg();
    Try_receive();
}
while (!Done())
    Try_receive();</pre>
```

Sending Messages

```
mesg = random();
dest = random() % thread_count;

# pragma omp critical
Enqueue(queue, dest, my_rank, mesg);
```

Receiving Messages

```
if (queue_size == 0) return;
else if (queue_size == 1)

pragma omp critical
Dequeue(queue, &src, &mesg);
else
Dequeue(queue, &src, &mesg);
Print_message(src, mesg);
```

Termination Detection

```
queue_size = enqueued - dequeued;
if (queue_size == 0 && done_sending == thread_count)
    return TRUE;
else
    return FALSE;
```

each thread increments this after completing its for loop

Startup (1)

 When the program begins execution, a single thread, the master thread, will get command line arguments and allocate an array of message queues: one for each thread.

 This array needs to be shared among the threads, since any thread can send to any other thread, and hence any thread can enqueue a message in any of the queues.

Startup (2)

 One or more threads may finish allocating their queues before some other threads.

 We need an explicit barrier so that when a thread encounters the barrier, it blocks until all the threads in the team have reached the barrier.

 After all the threads have reached the barrier all the threads in the team can proceed.

```
# pragma omp barrier
```

The Atomic Directive (1)

 Unlike the critical directive, it can only protect critical sections that consist of a single C assignment statement.

```
# pragma omp atomic
```

 Further, the statement must have one of the following forms:

```
x <op>= <expression >;
x++;
++x;
x--;
--x;
```

The Atomic Directive (2)

Here <op> can be one of the binary operators

$$+, *, -, /, \&, ^, |, <<, or>>$$

- Many processors provide a special load-modify-store instruction.
- A critical section that only does a load-modify-store can be protected much more efficiently by using this special instruction rather than the constructs that are used to protect more general critical sections.

Critical Sections

 OpenMP provides the option of adding a name to a critical directive:

```
# pragma omp critical(name)
```

 When we do this, two blocks protected with critical directives with different names can be executed simultaneously.

 However, the names are set during compilation, and we want a different critical section for each thread's queue.

Locks

 A lock consists of a data structure and functions that allow the programmer to explicitly enforce mutual exclusion in a critical section.

Locks

```
/* Executed by one thread */
Initialize the lock data structure;
/* Executed by multiple threads */
Attempt to lock or set the lock data structure;
Critical section;
Unlock or unset the lock data structure;
/* Executed by one thread */
Destroy the lock data structure;
```

Matrix-vector multiplication

$$y_i = a_{i0}x_0 + a_{i1}x_1 + \dots + a_{i,n-1}x_{n-1}$$

a_{00}	a_{01}		$a_{0,n-1}$
<i>a</i> ₁₀	a_{11}		$a_{1,n-1}$
:	:		:
a_{i0}	a_{i1}	• • •	$a_{i,n-1}$
a_{i0}	a_{i1} :	•••	$a_{i,n-1}$

	уо
	У1
	:
_	$y_i = a_{i0}x_0 + a_{i1}x_1 + \cdots + a_{i,n-1}x_{n-1}$
	:
	y_{m-1}

```
for (i = 0; i < m; i++) {
   y[i] = 0.0;
   for (j = 0; j < n; j++)
      y[i] += A[i][j]*x[j];
}</pre>
```

Matrix-vector multiplication

```
# pragma omp parallel for num_threads(thread_count) \
    default(none) private(i, j) shared(A, x, y, m, n)
for (i = 0; i < m; i++) {
    y[i] = 0.0;
    for (j = 0; j < n; j++)
        y[i] += A[i][j]*x[j]; Run-times and efficiencies
        of matrix-vector multiplication
        (times are in seconds)</pre>
```

	Matrix Dimension						
	$8,000,000 \times 8$		8000×8000		$8 \times 8,000,000$		
Threads	Time	Eff.	Time	Eff.	Time	Eff.	
1	0.322	1.000	0.264	1.000	0.333	1.000	
2	0.219	0.735	0.189	0.698	0.300	0.555	
4	0.141	0.571	0.119	0.555	0.303	0.275	

Concluding Remarks (1)

 OpenMP is a standard for programming sharedmemory systems.

 OpenMP uses both special functions and preprocessor directives called pragmas.

 OpenMP programs start multiple threads rather than multiple processes.

Many OpenMP directives can be modified by clauses.

Concluding Remarks (2)

 A major problem in the development of shared memory programs is the possibility of race conditions.

- OpenMP provides several mechanisms for insuring mutual exclusion in critical sections.
 - Critical directives
 - Named critical directives
 - Atomic directives
 - Simple locks

Concluding Remarks (3)

 By default most systems use a block-partitioning of the iterations in a parallelized for loop.

OpenMP offers a variety of scheduling options.

 In OpenMP the scope of a variable is the collection of threads to which the variable is accessible.

Concluding Remarks (4)

 A reduction is a computation that repeatedly applies the same reduction operator to a sequence of operands in order to get a single result.