

ICIC 2015

Paper ID: ES 794

Multi-Taper Spectral Features for Emotion Recognition from Speech

Santosh Chapaneri & Deepak Jayaswal

St. Francis Institute of Technology
University of Mumbai

Rich Information contained in Speech

Why Emotion Recognition?

 Detecting frustration of callers to automated help line

Computer tutorials via virtual avatars

Lie detection

Humanoid Robots

Basic Emotions

NEUTRAL

FEAR

HAPPINESS

SADNESS

DISGUST

ANGER

Speech Database

- Berlin Emotional Database (EMO-DB) [1]
- Total 535 utterances:

Anger	Boredom	Disgust	Fear	Happiness	Sadness	Neutral
127	81	46	69	71	62	79

- 70% used for training, 30% for testing
- Sampling frequency 16 kHz
- 16-bit resolution, mono channel samples

Single Taper Spectrum

Single Taper Spectrum

$$\hat{S}(f) = \left| \sum_{n=0}^{N-1} w(n) s(n) e^{-j2\pi nf} \right|^2, |f| \le \frac{1}{2}$$

- Problem: Spectral estimate has large variance relative to true spectrum [2]
- Trivial solution: Use Welch's periodogram to reduce variance => but increases bias [3]
- Use concept of multi-taper spectral
 estimates; an idea proposed in 1982 by
 Thomson and later by several others [4 6]

Multi-Taper Concept

- From statistics: If a random variable X has variance of σ^2 , then the statistical average of n independent samples of X will have variance of σ^2/n
- Use multiple orthonormal tapers => resulting in eigen-spectra
- Take weighted average of these to obtain a spectral estimate with reduced variance
- Orthonormal => Uncorrelated => Less Variance [7]
- Types of Multi-tapers:
 - Thomson
 - Multi-Peak
 - Sine Weighted Cepstrum Estimator (SWCE)

Multi-Taper Concept

Multi-Peak Multi-Tapers

Multi-Taper Spectral Estimate

Spectrograms of speech signal with Hamming Single-taper (left), Multi-peak Multi-taper (right)

Features for Emotion Recognition

- Spectral features computed from single as well as multitaper spectral estimates: Energy, Centroid, Spread, Skewness, Kurtosis, Rolloff, Decrease, Slope, Variation, Flatness, Crest, Entropy, MFCC (Mel Frequency Cepstral Coefficients), OBSC (Octave Based Spectral Contrast)
- 12 (statistical features) + 13 (MFCC) + 12 (contrast features) per frame
- To reduce dimensionality, take statistics of each spectral feature contour using mean, standard deviation, median and inter-quartile range
- This results in (12 + 13 + 12) x 4 = 148 spectral features per emotion speech signal

Feature Classification

- Support Vector Machine => determines the optimal separating hyperplane
- RBF kernel, 10-fold cross validation
- One-against-one for multiclass classification

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{L} \xi_i$$
s.t. $y_i \left(\mathbf{w}^T \varphi(\mathbf{x}_i) + b \right) \ge 1 - \xi_i, \, \xi_i \ge 0$

Results: Variance Reduction

Results: Classification Accuracy

Emotions	Hamming (1 taper)	Thomson (6 tapers)	Multi-peak (6 tapers)	SWCE (6 tapers)
Two	100%	100%	100%	100%
Three	90.32%	91.43%	93.45%	92.33%
Four	82.5%	83.55%	85.32%	82.80%
Five	82.17%	84%	88.38%	85.53%
Six	75.65%	76.74%	81.43%	79.83%
<u>Seven</u>	72.57%	73.53%	<u>81.08</u> %	77.49%
+ / - Activation	93.28%	95.34%	96.94%	94.67%
+ / - Valence	92.11%	94.50%	95.52%	95.92%
+/-Emotion	95.71%	96.35%	98.21%	97.25%

Results: Confusion Matrix

A:Anger, B:Boredom, D:Disgust, F:Fear, H:Happy, N:Neutral, S:Sad

	Α	В	D	F	Н	N	S	Recall
Α	16		1		2			84.21
В		9					2	81.82
D		1	14	1	1		1	77.78
F			1	10	2	1	1	66.67
Н	1			1	17			89.47
N		3				11		78.57
S		1		1		0	13	86.67
Prec.	94.12	64.29	87.50	76.92	77.27	91.67	76.47	

Results: Impact of Number of Tapers

Conclusion

- Multi-taper spectral estimates result in better performance relative to single-taper
- Due to reduced variance, spectral estimate and thus features are more discriminatory per emotion
- Multi-peak multi-tapers outperform other techniques
- Future scope:
 - Indian native speech language
 - App for Aakash tablets

References

[1]	F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and B. Weiss, "A database of German emotional speech", <i>Proc. Interspeech-2005</i> , Lisbon, Portugal, pp. 1-4, Jan 2005
[2]	B. Babadi, and E. Brown, "A review of multi-taper spectral analysis", <i>IEEE Tran. Biomedical Engg.</i> , vol. 61, no. 5, pp. 1555-1564, May 2014
[3]	P. Abry, P. Gonçalves, and P. Flandrin, "Wavelets, spectrum analysis and 1/f processes", <i>Lecture Notes in Statistics: Wavelets and Statistics</i> , vol. 103, pp. 15-29, Aug 1995
[4]	D. Thomson, "Spectrum estimation and harmonic analysis", <i>Proc. IEEE</i> , vol. 70, no. 9, pp. 1055–1096, Sep 1982
[5]	M. Hansson, and G. Salomonsson, "A multiple window method for estimation of peaked spectra", <i>IEEE Trans. Signal Proc.</i> , vol. 45, no. 3, pp. 778-781, Mar 1997
[6]	K. Riedel, and A. Sidorenko, "Minimum bias multiple taper spectral estimation", <i>IEEE Trans. Signal Proc.</i> , vol. 43, no. 1, pp. 188-195, Jan 1995
[7]	T. Kinnunen, R. Saeidi, F. Sedlak, K. Lee, J. Sandberg, M. Sandsten, and H. Li, "Low-variance multi-taper MFCC features: a case study in robust speaker verification", <i>IEEE Tran. Audio, Speech, and Language Processing</i> , vol. 20, no. 7, pp. 1990-2001, Sep 2012

Thank You