

Electron Identification without the Pixel Detector

Jim Pivarski

Cornell University

31 May, 2006

Outline for this talk

- ► Project outline and goals
- Disadvantages and advantages of electron-finding in the Si-strip tracker
- ► The importance of realistic Monte Carlo
- Status and next steps

Project Outline and Goals

Goal: Identify electrons (HLT and offline) by matching ECAL superclusters to Si-strip tracker hits

fast	robust	flexible
	ϵ indep. of	
$\lesssim 100$ ms per	misalignments	provide parameters
supercluster	(\sim 500 μ m in tracker,	to tune
	${\sim}1$ mm tracker-ECAL)	ϵ vs. rejection,
$\mathcal{O}(hits^{p})$ where		e vs. rejection,
$p\lesssim 2$	ϵ indep. of	ϵ vs. speed
	occupancy	

HLT Context: Level 2.5

After ECAL clustering and before track-finding

Provide a list of electron candidates: HLT should accept the event if # candidates > 0

Level 2.0 \rightarrow we insert candidates into event \rightarrow Level 2.5 Filter \rightarrow Level 3.0 tracking

Provide track parameters and possibly cloud of hits for Level 3.0 tracking

Why it's harder without the Pixel detector

Pixel's 2D hits allow for a smaller search region (larger signal/noise)

Pixel's resolution is 150 $\mu \mathrm{m}/\sqrt{12}$, strip tracker's resolution is

- ▶ 1 mm/ $\sqrt{12}$ in tracker's four stereo layers
- ▶ 10–20 cm/ $\sqrt{12}$ in segmented RPHI layers

Why it's harder without the Pixel detector

Pixel's 2D hits allow for a smaller search region (larger signal/noise)

Pixel's resolution is 150 $\mu \text{m}/\sqrt{12}$, strip tracker's resolution is

- ▶ 1 mm/ $\sqrt{12}$ in tracker's four stereo layers
- ▶ 10–20 cm/ $\sqrt{12}$ in segmented RPHI layers

Advantages of the Strip tracker

- ▶ More layers: regain signal/noise with coincidence of hits
- Hits close to and far from the ECAL...

Two approaches to electron identification

Thm: if electron and all bremsstrahlung photons are included in a supercluster, energy-weighted position is on the initial helix

Two approaches to hit matching:

- ▶ Inner hits point to supercluster position
- Outer hits point to a basiccluster position

The two approaches may be combined

"Event Displays"

- \blacktriangleright vertical axis is ϕ of each hit with supercluster's ϕ as zero
- horizontal axis is cylindrical radius of each hit

Electron pathologies

Scatter before tracker (\sim 4%)

Scatter in tracker (\sim 4%)

Wrong supercluster position (\sim 12% at 10 GeV)

Typical occupancy (superimposed minbias event)

Background: minbias with a 17 GeV supercluster

Analysis of a simple algorithm

Define a 10 mrad $\Delta\phi$ band around hypothesis, count hits within that band

Good discrimination between electrons and minbias, poor discrimination between electrons and minbias passing L1

minbias passing L1 (\geq 17 GeV supercluster) points into a jet

Narrow $\Delta \phi$ to 2 mrad?

Not narrow enough to distinguish electrons from background, and too narrow for robustness goals

Pixelless Electrons — Jim Pivarski (14/15)

Widen $\Delta\phi$ to 100 mrad and cut on *maximum* number of hits?

That would be a track isolation cut, not track matching! Can we afford to isolate electors?

MC studies drive algorithm development

Status

- Performed informal first studies of signal and background
- ► Implemented placeholder SiStripElectronCandidate and SiStripElectronProducer in CMSSW_0_7_0_pre2

Next Steps

1. Obtain realistic Monte Carlo

```
signal: physics electrons (jet overlap?)
superimpose hadronic background at the
generator level
```

background: large minbias sample which has passed L2

2. Study event properties (in CMSSW/FWLite)

3. Improve algorithm (in CMSSW)