Priprema za ponovljeni 1. MI iz FIZ2 AG 2009/2010

TEORIJA

NAPOMENA:

Ne odgovaram ako će netko učiti po ovome i SAMO na to se osloniti jer tko zna što sve može doći i što sve njima gore na ZPF-u može past na pamet.

Trudit ću se da ovo bude na pomoć ali ne želim da ako nešto krene
naopačke da ja budem kriv ©.

SRETNO S UČENJEM...

Izvor:

- 1. predavanja grupa 2.R1 (dr.sc. Sanda Pleslić)
- 2. knjiga Valovi i optika (Petar Kulišić)

Ukupno 36 izvoda (i teorijskih pitanja) © maksimalno.

- 1. Do sad ih se **10** pojavilo **(boldani)** u teorijskom dijelu 1. međuispita, ponovljenog 1. međusispita ili u nekom od završnih ispita (redovni ili ponovljeni)
- Podcrtani izvodi će biti oni za koje su pojedini profesori rekli na predavanjima ovaj semestar da su važni.

Znači tražite **podcrtane i boldane (9)** i to su ziceri za međuispit ©.

Za sve što mislite da je krivo ili imate nešto za nadopuniti javite na PM (http://www.fer2.net/private.php?do=newpm&u=1846) ...

FER2.net tema - http://www.fer2.net/showthread.php?t=38856

TITRANJE

- 1. Elastičnost materijala. Naprezanje i deformacija.
- 2. Vlačno naprezanje
- 3. Tlačno naprezanje
- 4. Smicanje i torzija
- 5. Moduli elastičnosti materijala
- 6. Harmonički oscilator uvod
- 7. Harmonički oscilator jednadžba gibanja i rješenje (IZVOD)
- 8. Rotirajući vektor fazor
- 9. Energija titranja
- 10. Torziono niihalo
- 11. Matematičko njihalo
- 12. Fizičko njihalo. Reducirana duljina.
- 13. Reverziono njihalo
- 14. Centar udara (objasniti pokus)
- 15. Prigušeno titranje. Jednadžba gibanja i rješenja za slabo prigušenje.
- 16. Prigušeno titranje. Aperiodičko i kritično gušenje.
- 17. <u>Prigušeno titranje. Logaritamski dekrement prigušenja i Q-faktor.</u> (samo formule, ne treba znati izvode)
- 18. Prigušeno titranje. Energija.

Zadnja izmjena: 31.1.2010 18:35

- 19. Prisilno titranje. Rezonantna frekvencija
- 20. Analogija s električnim titrajnim krugom
- 21. Slaganje titraja. Vezani oscilatori (Oberbeckovo njihalo)
- 22. Slaganje titranja. Zbrajanje harmoničkih titraja na istom pravcu
- 23. Slaganje titraja. Zbrajanje međusobno okomitih harmoničkih titraja (Lissajousove krivulje)

MEHANIČKI VALOVI

- 24. Uvod u mehaničke valove
- 25. Širenje valova u sredstvu
- 26. Matematički opis valnog gibanja
- 27. Jednadžba transverzalnog vala na žici
- 28. Superpozicija valova
- 29. Valni paket. Grupna brzina.
- 30. Refleksija valova
- 31. Stojni valovi
- 32. Transverzalni stojni valovi na napetoj žici
- 33. Longitudionalni val u štapu
- 34. Longitudionalni val u plinu
- 35. Brzina zvuka
- 36. Stojni longitudionalni val

Popis izvoda (teorije) sa prijašnjih ispita iz FIZ2

(za one koji vole kladionicu i statistiku ⁽²⁾)

1. 2006/2007

- 1.1. 1. MI 2006/2007
 - 1.1.1. Transverzalni val na žici (5)
 - 1.1.2. Harmoničko njihalo (5)
- 1.2. P1. MI 2006/2007
 - 1.2.1. Longitudinalni stojni val na žici (5)
 - 1.2.2. Oberbeckova njihala (5)
- 1.3. ZI 2006/2007
 - 1.3.1. Izvedite rješenje jednadžbe fizičkog njihala (3)
 - 1.3.2. Definirajte reduciranu duljinu fizičkog njihala (1)
 - 1.3.3. Opišite pokuse vezane uz centar udara (1)
- 1.4. PZI 2006/2007
 - 1.4.1. Izvedite jednadžbu gibanja i rješenja za amplitudu i fazu prisilnog titranja (stacionarnog stanja) čestice mase m (5)

2. 2007/2008

- 2.1. 1. MI 2007/2008
 - 2.1.1. Oberbeckova njihala. Izvedite rješenja za harmonijsko titranje u fazi i protufazi (5)
 - 2.1.2. Izvedite izraze za amplitude reflektiranog i transmitiranog transverzalnog vala (na užetu) (3)
 - 2.1.3. Izvedite slučajeve čvrstog kraja i slobodnog kraja užeta (prijenosnog medija) (2)
- 2.2. P 1.MI 2007/2008
 - 2.2.1. ?

- 2.3. ZI 2007/2008 nije bilo pitanja vezanih uz prvi ciklus –
- 2.4. PZI 2007/2008
 - 2.4.1. Fizičko njihalo (3)
 - 2.4.2. Reducirana duljina fizičkog njihala (2)

3. 2008/2009

- 3.1. 1. MI 2008/2009
 - 3.1.1. Jednadžba prigušenog titranja za slabo prigušenje
 - 3.1.2. Definiraj reduciranu duljinu fizičkog njihala
 - 3.1.3. Jednadžba transverzalnog vala na žici
 - 3.1.4. Kod refleksije se faza promjeni za ... ?
 - 3.1.5. Kod destruktivne interferencije je razlika u fazi ... ?
- 3.2. P 1.MI 2008/2009
 - 3.2.1. ?
- 3.3. Zl 2008/2009 nije bilo pitanja vezanih uz prvi ciklus –
- 3.4. PZI 2008/2009
 - 3.4.1. ?

4. 2009/2010

- 4.1. 1. MI 2009/2010
 - 4.1.1. Izvesti jednadžbu prigušenog titranja za slabo prigušenje (4)
 - 4.1.2. Definirati logaritamski dekrement prigušenja (1)
 - 4.1.3. Izvesti jednadžbu transverzalnog vala (5)
- 4.2. P 1.MI 2009/2010
 - 4.2.1. ?
- 4.3. ZI 2009/2010
 - 4.3.1. Izvedite jednadžbu gibanja (1) i rješenja za amplitudu (2) i fazu (3) prisilnog titranja (stacionarnog stanja) čestice mase m

Izvodi i teorija 1. ciklusa

1. ELASTIČNOST MATERIJALA. NAPREZANJE I DEFORMACIJA

- sila na tijelo može djelovati na **2 načina** (promjena stanja gibanja i promjena oblika i veličine)
- na tijelo mogu djelovati **2 vrste vanjskih sila** (površinske sila hidrostatskog tlaka u fulidima i volumne gravitacijska sila)
- **deformacija čvrstog tijela** promjena dimenzija i volumena tijela te je obično praćena i promjenom oblika tijela
- **elastičnost** svojstvo materijala da nakon prestanka djelovanja vanjskih sila se vrati u početni oblik (savršeno elastična tijela), potpuno zadrže svoj deformirani oblik (savršeno plastična tijela) ili se ponašaju negdje između ova dva ekstrema (djelomično elastična tijela)
- naprezanje (σ) fizikalna veličina definirana kao iznos sile F na površinu S. $\sigma = \frac{F}{S} \left[\frac{N}{m^2} \right]$
- relativna deformacija (ε) nastaje kao posljedica naprezanja, a definira se kao omjer promjene dimenzije nakon djelovanja sile i početne (originalne) dimenzije tijela prije djelovanja sile. $\varepsilon = \frac{\Delta x}{x}$

- o u **području elastičnosti (OA)** naprezanje materijala linearno je proporcionalno relativnoj deformaciji (Hookeov zakon $\sigma = E * \varepsilon$) u našim razmatranjima ćemo se na ovom zadržati
- točka B je granica elastičnosti nakon koje dolazi područje plastičnosti
- točka C određuje maksimalnu čvrstoću, tj. maksimalno naprezanje koje materijal može izdržati bez popuštanja
- o **u točki D** dolazi do kidanja materijala.
- prekidno rastezanje deformacija koja nastaje pri graničnom naprezanju

- anizotropni materijali materijali koji općenito imaju različita svojstva (optička, toplinska, električna) u različitim smjerovima
- izotropni materijali jednaka svojstva u svim smjerovima
- tenzor matematička veličina naprezanja (ono nije ni skalar ni vektor već tenzor)
- za određivanje naprezanja u pojedinoj točki potrebno je znati 6 veličina (3 za normalno i 3 za tangencijalno naprezanje) pomoću kojih pokrivamo bilo koju ravninu koja prolazi tom točkom (u jendostavnim slučajevima sve te komponente iščezavaju osim jedne pa s naprezanjem radimo kao sa skalarnom veličinom.

$$\sigma_n = \frac{F_n}{S} = \frac{F\cos\alpha}{S}, \sigma_t = \frac{F_t}{S} = \frac{F\sin\alpha}{S}$$

• **modul elastičnosti** – konstanta propocionalnosti koja u sebi sadrži svojstvo materijala s obzirom na odgovarajuće naprezanje

modul elastičnosti=
$$\frac{\text{naprezanje}}{\text{relativna deformacija}} = \frac{\sigma}{\varepsilon} = \frac{\frac{F}{S}}{\varepsilon} = \frac{F}{S * \varepsilon}$$

2. VLAČNO NAPREZANJE

- istezanje naprezanje na vlak (okomita napetost)
- karakteristična relativna deformacija: $L \rightarrow L + \Delta L, \mathcal{E}_I$
- relativna deformacija \mathcal{E}_L je omjer promjene (povećanja) duljine štapa ΔL i početne duljine štapa $L:\mathcal{E}_L=\frac{\Delta L}{L}$

• s obzirom da je u području elastičnosti naprezanje proporcionalno relativnoj deformaciji

$$(\frac{F}{S} \propto \frac{\Delta L}{L})$$
, slijedi da je konstanta proporcionalnosti **Youngov modul elastičnosti** $E = \frac{\frac{F}{S}}{\frac{\Delta L}{L}}$

(veličina karakteristična za pojedini materijal, red veličine 109 do 1010 N/m²)

- eksperimentalno je utvrđeno da se materijal zbog rastezanja u duljinu steže u svim smjerovima okomito na smjer rastezanja
 - kod longitudionalnog rastezanja imamo lateralno stezanje (poprečne dimenzije se smanjuju) koje opisuje Poissonov broj

$$\mu = -\frac{\frac{\Delta d}{d}}{\frac{\Delta L}{L}}$$
 koji je pozitivna veličina jer je

 $\Delta d > 0 \, (\mathrm{od} \; 0.2 \; \mathrm{do} \; 0.5)$

3. TLAČNO NAPREZANJE

- naprezanje na tlak (okomita napetost)
- karakteristična relativna deformacija: $V \rightarrow V + \Delta V, \mathcal{E}_V$
- razmatrat ćemo kocku na čije stranice sa svih strana djeluju jednake sile te zbog naprezanja dolazi do deformacije koja predstavlja promjenu (smanjenje) volumena

- javlja se **Volumni modul elastičnosti** $B = -\frac{\sigma}{\mathcal{E}_V} = -\frac{\frac{F}{S}}{\frac{\Delta V}{V}}$ čiji je
 - predznak minus jer se moduli elastičnosti definiraju kao pozitivni, a $\Delta V < 0$ je volumna kontrakcija tijela
- tlačno naprezanje se češće razmatra kod tekućina pa se uvodi veličina **kompresibilnost** K koja opisuje promjenu volumena

kao posljedicu djelovanja tlaka na fluid $\kappa = \frac{1}{B} = -\frac{1}{V} \frac{\Delta V}{\Delta p}$

4. SMICANJE I TORZIJA

- torziono naprezanje (tangencijalna napetost)
- karakteristična relativna deformacija:

$$\phi \rightarrow \phi + \Delta \phi, \mathcal{E}_{\phi}$$

 smicanje nastaje kad je sila usmjerena tangencijalno jednoj površini dok je druga površina, paralelna njoj, učvršćena

rel. deformacija= $\frac{\text{pomak gornje str. površ. S na koju djeluje sila paral. površ.}}{\text{debljina materijala}} = \varepsilon_x = \frac{\Delta x}{h}$

- modul smicanja ili torzije $G = \frac{\text{naprezanje na smicanje}}{\text{relativna deformacija}} = \frac{\frac{F}{S}}{\frac{\Delta x}{h}}$
- do smicanja (torzije) dolazi i **kod zakretanja valjkastog tijela** (okrugli štap, žica ili sl.) duljine l i promjera 2r koji je učvršćen na jednom kraju, a na slobodnom kraju djeluje par sila (gornjom bazom tap ostaje učvšćen za podlogu, a ostali se presjeci zakreću više što su dalje od učvršćene baze dok je θ kut zakreta slobodnog kraja štapa)
- kut torzije proporcionalan je momentu para sila $M=D\theta$,

$$D = \frac{G\pi r^4}{2l}$$

- modul smicanja G
- \circ polumjer valjka r
- \circ duljina (visina) valjka l
- o moment para sila M
- o kut torzije θ

5. MODULI ELASTIČNOSTI MATERIJALA

$$E = 2G(1 + \mu)$$

• veza između modula elastičnosti - $B = \frac{E}{3(1-2\mu)}$

$$\frac{1}{E} = \frac{1}{3G} + \frac{1}{9B}$$

 \circ E (Youngov modul elastičnosti), G (modul smicanja ili torzije), B (volumni modul elastičnosti), μ (Poissonov broj)

6. HARMONIČKI OSCILATOR – UVOD

- periodično gibanje gibanje koje se ponavlja u jednakim vremenskim razmacima
- titranje posebna vrsta periodičnog gibanja kod kojeg se materijalna točka giba "amo-tamo" oko ravnotežnog položaja
- period T trajanje jednog potpunog titraja i za to vrijeme materijalna točka 2 puta prođe kroz ravnotežni položaj
- frekvencija $f = \frac{1}{T} [\text{Hz ili s}^{-1}] broj titraja u$ jedinici vremena
- faza titranja trenutno stanje određenog titranja (položaj i brzina tijela u određenom vremenskom trenutku
- jednostavno harmoničko titranje ono kod kojeg je sila proporcionalna iznosu pomaka iz položaja ravnoteže, a suprotna njegovu smjeru (npr. uteg obješen na vertikalnu oprugu – sustav oprgua + masa)
 - uteg izvučemo iz ravnotežnog položaja i pustimo da titra – on se giba gore-dolje, a rezultantna sila koja uzrokuje titranje sustava je vektorski zbroj napetosti opruge i

težine, a skalarno $F=mg-k(l+s-l_0)=k(l-l_0)-k(l-l_0)-ks=-ks$ gdje je s pomak iz položaja ravnoteže (**elongacija**), a k **konstanta opruge** ili **elastična konstanta** (pozitivna veličina)

- **elastična ili harmonička sila** $\overrightarrow{F} = -k \overrightarrow{s}$ proporcionalna je i suprotna po smjeru pomaku iz ravnotežnog položaja ravnoteže s (predznak minus)
- harmonički oscilator sustav koji titra zbog utjecaja harmoničke sile

7. HARMONIČKI OSCILATOR – JEDNADŽBA GIBANJA I RJEŠENJE (IZVOD)

Za gibanje sa slike 1.1 vrijedi $F = ma = m\frac{d^2s}{dt^2} = -ks / *\frac{1}{m}$ pa je $\frac{d^2s}{dt^2} + \frac{k}{m}s = 0$. (*)

To je homogena linearna diferencijalna jednadžba 2. reda i postoje 2 linearno neovisna rješenja; $\sin \omega t$ i $\cos \omega t$. Opće rješenje je kombinacija ta dva neovisna rješenja; $s(t) = a \sin \omega t + b \cos \omega t$.

Kada zamjenimo a sa $A\cos \varphi_0$ i b sa $A\sin \varphi_0$ rješenje popirima oblik

 $s(t) = A\cos\varphi_0\sin\omega t + A\sin\varphi_0\cos\omega t.$

A i φ_0 su konstante koje ćemo odrediti kasnije.

Koristeći da je $\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta$ dobivamo $s(t) = A \sin(\omega t + \varphi_0)$.

Prva derivacija je $\frac{ds}{dt}s(t) = A\omega\cos(\omega t + \varphi_0)$, a druga $\frac{d^2s}{dt^2} = -A\omega^2\sin(\omega t + \varphi_0)$.

$$-A\omega^2\sin(\omega t + \varphi_0) + \frac{k}{m}A\sin(\omega t + \varphi_0) = 0$$

Sve to uvrstimo u (*) i dobijemo

$$\omega = \sqrt{\frac{m}{k}}$$

Jednadžba (*) ima rješenje u obliku sinusne (harmoničke) funkcije $s(t) = A\sin(\sqrt{\frac{m}{k}}t + \varphi_0)$. (**)

Period T **funkcije** s(t) je vrijeme u kojem se argument sinusa poveća za 2π :

$$\sqrt{\frac{m}{k}}(t+T) = \sqrt{\frac{m}{k}}t + 2\pi$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Izokronizam - period T ne ovisi o amplitudi titranja (karakteristika svakog harmoničkog titranja).

Kružna frekvencija iznosi
$$\omega = \frac{2\pi}{T} = 2\pi f \left[s^{-1} \right].$$

U (**) konstanta A je **amplituda**, tj. pomak u času kad se čestica zaustavi i promjeni smjer titranja. **Faza titranja** jednaka je $(\omega t + \varphi_0)$. Početna faza u t = 0 je φ_0 .

Brzina tijela koje titra je prva derivacija elongacije po vremenu: $v = \frac{d}{dt}s(t) = A\omega\cos(\omega t + \varphi_0)$.

Akceleracija tijela je druga derivacija elongacije po vremenu:

$$a = \frac{d^2}{dt^2}s(t) = -A\omega^2\sin(\omega t + \varphi_0) = -\omega^2s(t).$$

Vremenska ovisnost elongacije, brzine i akceleracije pri jednostavnom harmoničkom titranju → slika desno

a) POČETNI UVJETI:

Točno rješenje jednadžbe (*) određeno je ako znamo 2 početna uvjeta, npr. elongaciju i brzinu u t=0.

$$s(t) = A\sin(\omega t + \varphi_0)$$

$$s(t = 0) = A\sin\varphi_0$$

$$v = \frac{d}{dt}s(t) = A\omega\cos(\omega t + \varphi_0)$$

$$v = \frac{d}{dt}s(t = 0) = A\omega\cos\varphi_0$$

$$\frac{s(0)}{v(0)} = \frac{A\sin\varphi_0}{A\omega\cos\varphi_0} = \frac{1}{\omega}tg\varphi_0$$

$$\omega \frac{s(0)}{v(0)} = tg \varphi_0$$

$$s^{2}(0) + \frac{v^{2}(0)}{\omega^{2}} = A^{2} \sin^{2} \varphi_{0} + A^{2} \omega^{2} \cos^{2} \varphi_{0} = A^{2}$$

I amplitudu i početnu fazu možemo izraziti pomoću početnih uvjeta:

1. Ako je u t=0 tijelo u ravnotežnom položaju onda je elongacija s(t=0)=s(0)=0 i amplituda $A=\frac{V(0)}{\omega}$.

Elongacija se mijenja kao $s(t) = \frac{V(0)}{\omega} \sin \omega t$.

2. Ako je tijelo u početnom trenutku t=0 maksimalno udaljeno od položaja ravnoteže, tj. π

$$v(0)=0$$
 onda je $A=s(0)$ i početna faza $\varphi_0=\frac{\pi}{2}$

Elongacija se mijenja kao $s(t) = s(0)\sin(\omega t + \frac{\pi}{2}) = s(0)\cos(\omega t)$.

b) KOMPLEKSNI BROJEVI

Svaki kompleksni broj z = x + iy može se prikazati u polarnim koordinatama:

$$z = |z| e^{i\varphi}$$

$$|z| = \sqrt{x^2 + y^2}, \varphi = arctg \frac{y}{x}$$

Eulerova relacija: $e^{i\varphi} = \cos \varphi + i \sin \varphi$.

Računamo s eksponencijalnom funkcijom umjesto s trigonometrijskom funkcijom...

Jednadžba harmonijskog oscilatora: $\frac{d^2s}{dt^2} + \frac{k}{m}s = 0$.

Pretpostavljamo rješenje jednadžbe u obliku: $s(t) = Ae^{i(\omega t + \varphi)} = A[\cos(\omega t + \varphi) + i\sin(\omega t + \varphi)]$.

Deriviramo:

$$\frac{d}{dt}s(t) = Ai\omega e^{i(\omega t + \varphi)}$$

$$\frac{d^2}{dt^2}s(t) = Ai^2\omega^2 e^{i(\omega t + \varphi)} = -A\omega^2 e^{i(\omega t + \varphi)}$$

Uvrstimo u jednadžbu gibanja:

$$-mA\omega^2 e^{i(\omega t + \varphi)} + kAe^{i(\omega t + \varphi)} = 0$$

$$-m\omega^2 + k = 0$$

$$\omega = \sqrt{\frac{k}{m}}$$

Zaključujemo da je i $s(t)=Ae^{i(\omega t+\phi)}$ rješenje jednadžbe gibanja, ali uz kružnu frekvenciju

$$\omega = \sqrt{\frac{k}{m}}$$
.

Ovo rješenje je kompleksna funkcija, a funkcija koja opisuje titranje je realna funkcija. Stoga tješenjem možemo smatrati i imaginarni i realni dio funkcije: $s(t) = A\cos(\omega t + \varphi)$ i

 $s(t) = A\sin(\omega t + \varphi)$. $A i \varphi$ se određuju iz početnih uvjeta.

8. ROTIRAJUĆI VEKTOR – FAZOR

Harmoničko titranje možemo povezati s jednolikim gibanjem po kružnici.

Zamislimo da se točka P giba po kružnici polumjera A stalnom kutnom brzinom ω . Pri tom se projekcija točke P na os x, odnosno na os y giba po toj osi.

Ako je u t=0 položaj točke P određen kutom φ_0 , tada će u trenutku

t polumjer \overline{OP} zatvoriti kut $\varphi = \omega t + \varphi_0$ s osi x.

Gibanje projekcije P': $x = A\cos(\omega t + \varphi)$ Gibanje projekcije P'': $y = A\sin(\omega t + \varphi)$

Kad se neka točka giba jednoliko po kružnici, njezina projekcija na bilo koji promjer te kružnice harmonički titra.

kutna brzina = kružna frekvencija ophodno vrijeme gibanja po kružnici = period titranja projekcije te točke polumjer kružnice = amplituda prijeđeni kut = faza titranja

Vektor \overrightarrow{OP} spaja ishodište O s točkom P = rotirajući vektor ili fazor

Neka je rješenje jednadžbe gibanja harmoničkog oscilatora dano izrazom: $s(t) = A\cos(\omega t + \varphi_0)$ gdje φ_0 određuje položaj tijela u početnom trenutku.

Iz rješenja $s(t) = A\cos(\omega t + \varphi_0)$ možemo izvesti izraze za brzinu i akceleraciju:

$$v(t) = \frac{d}{dt}s(t) = -A\omega\sin(\omega t + \varphi_0) = A\omega\cos(\omega t + \varphi_0 + \frac{\pi}{2})$$

$$a(t) = \frac{d^2}{dt^2}s(t) = -A\omega^2\cos(\omega t + \varphi_0) = A\omega^2\cos(\omega t + \varphi_0 + \pi)$$

Vidimo da je fazna razlika između elongacije i brzine jednaka $\frac{\pi}{2}$, a između elongacije i akceleracije π .

Pomoću fazora možemo zbrajati titraje različitih amplituda i faza. Rezultantno titranje dano je vektorskim brojem fazora.

9. ENERGIJA TITRANJA

Kinetička energija pri titranju materijalne točke stalno prelazi u potencijalnu i obrnuto.

U ravnotežnom položaju kinetička energija je *maksimalna*, a potencijalna *iznosi 0*, dok je **u amplitudnom položaju** kinetička energija *jednaka 0*, a potencijalana u *maksimumu*.

Kinetička energija harmonijskog oscilatora = kinetička energija materijalne točke mase m i brzine $v(t) = A\omega\cos(\omega t + \varphi_0)$.

Elongacija materijalne točke koja harmonički titra iznosi $s(t) = A\sin(\omega t + \varphi_0)$.

Brzina iznosi $v(t) = A\omega\cos(\omega t + \varphi_0)$.

Kinetička energija iznosi $E_k = \frac{mv^2}{2} = \frac{m}{2}A^2\omega^2\cos^2(\omega t + \varphi_0)$.

Uz
$$\omega^2 = \frac{k}{m}$$
 slijedi $E_k = \frac{mv^2}{2} = \frac{k}{2}A^2\cos^2(\omega t + \varphi_0) = \frac{k}{2}A^2\left[1 - \sin^2(\omega t + \varphi_0)\right] = \frac{k}{2}(A^2 - s^2)$.

Kad na materijalnu točku mase m djeluje sila F = -ks, njena **potencijalna energija** je rad te sile pri pomaku točke za elongaciju s iz položaja ravnoteže:

$$E_p = -W = -\int_0^s (-ks)ds = \frac{ks^2}{2} = \frac{k}{2}A^2 \sin^2(\omega t + \varphi_0)$$

Ukupna energija jednaka je zbroju kinetičke i potencijalne:

$$E = E_k + E_p = \frac{k}{2}A^2\cos^2(\omega t + \varphi_0) + \frac{k}{2}A^2\sin^2(\omega t + \varphi_0) = \frac{kA^2}{2}$$

Ukupna energija *ne ovisi o vremenu*, konstanta jer je harmonički oscilator zatvoreni sustav za koji vrijedi zakon očuvanja energije $E=E_{\scriptscriptstyle k}+E_{\scriptscriptstyle p}=konst$.

10.TORZIONO NJIHALO

Sastoji se od tijela obješenog na žicu tako da je objesište na vertikali koja prolazi kroz težište tijela ${\cal T}$.

Tijelo iz ravnotežnog položaja zakrenemo za kut θ , žica se tordira i djeluje na tijelo momentom sile koji je proporcionalan θ , ali je suprotnog smjera: $M=-D\theta$.

M - zbog utjecaja tog **momenta sile** tijelo titra oko ravnotežnog položaja D - **torziona konstanta** — ovisi o materijalu i dimenzijama žice

$$M = I\alpha = I\frac{d^2\theta}{dt^2} = -D\theta$$

$$\frac{d^2\theta}{dt^2} + \frac{D}{I}\theta = 0$$

I - **moment tromosti** s obzirom na os OT

Rješenje je $\theta(t) = \theta_0 \sin(\omega t + \varphi_0)$.

Kružna frekvencija –
$$\omega = \sqrt{\frac{D}{I}}$$

 $\textbf{Period} \hspace{0.1cm} \textbf{koji} \hspace{0.1cm} \textit{ovisi o momentu tromosti} \hspace{0.1cm} I \hspace{0.1cm}, \textbf{o} \hspace{0.1cm} \textit{elastičnim svojstvima žice}$

(torziona konstanta
$$D$$
) i *ne ovisi o amplitudi* – $T=2\pi\sqrt{\frac{D}{I}}$

Titranje torzionog njihala je *harmoničko i za velike amplitude* što nije slučaj kod matematičkog i fizičkog njihala.

11.MATEMATIČKO NJIHALO

To je sitno tijelo ili materijalna točka koja se njiše obješena o nerastezljivu, laganu nit duljine l čiju masu zanemarujemo.

Na slici 1.15 **pod a) njihalo je u miraovanju** – napetost niti uravnotežuje silu težu: N=G=mg

Na slici 1.15 **pod b) njihalo je izvučeno za neki kut** θ iz položaja ravnoteže.

- normalnu komponentu sile teže uravnotežuje napetost niti: $N=G=mg\cos\theta$
- tangencijalna komponenta sile usmjerena je

prema ravnotežnom položaju: $F_t = -mg\sin\theta$ (zbog djelovanja te sile materijalna točka njiše oko položaja ravnoteže; predznak minus jer sila djeluje u smjeru suprotnom od smjera povećanja kuta θ)

Sila nije proporcionalna pomaku θ , već $\sin\theta$ pa sila nije harmonička i gibanje njihala nije harmoničko.

No $za\ male\ \theta$ vrijedi $\sin\theta\approx\theta$ "pa je $F=-mg\theta$ i **sila je harmonička** i gibanje njihala je analogno gibanju harmoničkog oscilatora ($za\ male\ amplitude$).

Za velike amplitude njihanje matematičkog njihala **nije** harmoničko.

$$ma_t = F_t = -mg\sin\theta$$

Za male amplitude vrijedi $ma_{\scriptscriptstyle t} = -mg\theta$, tj. $a_{\scriptscriptstyle t} = -g\theta$.

Uz $a_{t} = l\alpha$ gdje je a_{t} tangencijalna akceleracija, $\alpha = \frac{d^{2}\theta}{dt^{2}}$

kutna akceleracija i
$$l$$
 polumjer putanje
$$\frac{a_{\rm t}=l\frac{d^2\theta}{dt^2}=-g\,\theta}{\frac{d^2\theta}{dt^2}+\frac{g}{l}\,\theta=0}$$

Rješenje:

$$\theta(t) = \theta_0 \sin(\omega t + \varphi_0)$$
 gdje je θ_0 amplituda, $\omega = \sqrt{\frac{g}{l}}$ kružna frekvencija, φ_0 početna faza i

 $T=2\pi\sqrt{rac{l}{g}}$ **period** koji *ne ovisi o amplitudi i masi* već samo o duljini njihala l i akceleraciji sile teže g .

Za veće amplitude period njihala ovisi o amplitudi θ_0 i raste s njom:

$$T = 2\pi \sqrt{\frac{l}{g}} \left[1 + \frac{1^2}{2^2} \sin^2 \frac{\theta_0}{2} + \frac{1^2 * 3^2}{2^2 * 4^2} \sin^4 \frac{\theta_0}{2} + \frac{1^2 * 3^2 * 5^2}{2^2 * 4^2 * 6^2} \sin^6 \frac{\theta_0}{2} + \dots \right]$$

Članovi reda brzo se smanjuju pa je dovoljno uzeti prva 2-3 člana...

Ovisnost perioda matematičkog njihala o amplitudi se može pogledati u tablici u knjizi ali mi se time nećemo baviti već ćemo razmatranja najčešće svesti na matematičko njihalo koje njiše malim amplitudama.

12. FIZIČKO NJIHALO. REDUCIRANA DULJINA. REVERZIONO NJIHALO

To je kruto tijelo koje zbog utjecaja sile teže njiše oko horizontalne osi koja ne prolazi kroz težište tijela.

Moment sile uzrokuje titranje: $M = -mgL\sin\theta$

L - udaljenost osi rotacije O od težišta tijela T

 θ - kut koji spojnca \overline{OT} zatvara s vertikalom

Predznak minus jer moment tromosti nastoji smanjiti kut .

Za male amplitude vrijedi $\sin \theta \approx \theta$ pa je $M = -mgL\theta$.

Jednadžba gibanja fizičkog njihala, tj. jednadžba rotacije krutog tijela oko nepomične osi za male amplitude glasi:

$$M = I\alpha = I\frac{d^2\theta}{dt^2} = -mgL\theta$$

Jednadžba harmoničkog titranja glasi $\frac{d^2\theta}{dt^2} + \frac{mgL}{I}\theta = 0$ gdje je I moment tromosti tijela s obzirom na os rotacije.

Rješenje jednadžbe gibanja je $\theta(t) = \theta_0 \sin(\omega t + \varphi_0)$ pri čemu je $\omega = \sqrt{\frac{mgL}{I}}$, a period fizičkog

njihala za male amplitude
$$T=2\pi\sqrt{\frac{I}{mgL}}$$
 .

Računamo koliko duljinu (**reducirana duljina fizičkog njihala**) mora imati matematičko njihalo da bi imalo isti period kao fizičko njihalo...

$$\begin{split} T_{\scriptscriptstyle m} &= 2\pi \sqrt{\frac{l}{g}} \\ T_{\scriptscriptstyle f} &= 2\pi \sqrt{\frac{I}{mgL}} \\ T_{\scriptscriptstyle m} &= T_{\scriptscriptstyle f} \\ 2\pi \sqrt{\frac{l}{g}} &= 2\pi \sqrt{\frac{I}{mgL}} \\ l_{\scriptscriptstyle r} &= \frac{I}{mL} \to \text{reducirana duljina fizičkog njihala} \end{split}$$

Promatrajmo fizičko njihalo u obliku štapa koje njiše oko osi koja prolazi jednim krajem štapa.

$$d$$
 - duljina štapa
$$I = \frac{md^2}{3} - \text{moment tromosti štapa}$$

Reducirana duljina takvog njihala iznosila

$$\operatorname{bi} l_{r} = \frac{I}{mL}, L = \frac{d}{2} \Longrightarrow l_{r} = \frac{2}{3}d \; .$$

Matematičko njihalo duljine $l_r = \frac{2}{3}d$ imat će isti

period kao štap duljine d.

Točka C na štapu koja je od osi udaljne za reduciranu duljinu l_r zove se **središte titranja**.

Može se dokazati da fizičko njihalo obješeno u središtu titranja (točka ${\cal C}$) ima isto vrijeme titranja kao i kad njiše oko točke ${\cal O}$.

Isti primjer štapa...

a)
$$T=2\pi\sqrt{\frac{I_0}{mgL}},I_0=I_{\rm CM}+ML^2$$

prema Steinerovom poučku

b)
$$T' = 2\pi \sqrt{\frac{I_1}{mgL_1}}, I_1 = I_{CM} + ML_1^2$$

 $I_{\it CM}$ - moment tromosti s obzirom na os kroz težište T

$$L + L_{\rm l} = l_{r} = \frac{I_{\scriptscriptstyle 0}}{mL} \, \, - \, {\rm reducirana \, \, duljina} \label{eq:loss}$$

$$L_{1} = l_{r} - L = \frac{I_{0}}{mL} - L = \frac{I_{0} - mL^{2}}{mL} = \frac{I_{CM}}{mL}$$

$$T' = 2\pi \sqrt{\frac{I_1}{mgL_1}} = 2\pi \sqrt{\frac{I_{CM} + mL_1^2}{mgL_1}} = 2\pi \sqrt{\frac{I_{CM} + \frac{mI_{CM}^2}{m^2L^2}}{mg\frac{I_{CM}}{mL}}} = 2\pi \sqrt{\frac{1 + \frac{I_{CM}}{mL^2}}{\frac{g}{L}}}$$

$$= 2\pi \sqrt{\frac{\frac{mL^2 + I_{CM}}{mL^2}}{\frac{g}{L}}} = 2\pi \sqrt{\frac{I_{CM} + mL^2}{mgL}} = 2\pi \sqrt{\frac{I_0}{mgL}} = T$$

Njihalo koje se može objesiti tako da njiše oko točke ${\it O}$ i oko točke ${\it C}$ (središta titranja) zove se **reverziono njihalo**.

Za reverziono njihalo je lako odrediti reduciranu duljinu pa se mjerenjem perioda T reverzionog njihala može izračunati akceleracija sile teže $\ g$.

13. CENTAR UDARA (OBJANSITI POKUS)

Promatrat ćemo gibanje krutog tijela kad na njega djeluje impulsna sila u kratkom vremenskom intervalu.

Promatrat ćemo fizičko njihalo u obliku štapa obješenog na jednom njegovom kraju.

Ako štap udarimo na udaljnosti a od osi u točku P, onda će impuls momenta sile biti $M \, \Delta t = Fa \Delta t \,$ gdje sila F djeluje na kraju sile a. !!! malo zbunjujuća rečenica ali tako piše u predavanju "NJIHALA" grupe 2.R1 !!!

Odatle je kutna brzina
$$\omega = \omega_0 + \frac{Fa\Delta t}{I}$$
 .

$$v_{CM} = \frac{l}{2}(\omega_0 + \frac{Fa\Delta t}{I})$$

Pri djelovanju sile na štap doći će do gibanja štapa u smjeru sile pa će objesište djelovati silom \vec{R} (reakcijom prema 3. Newtonovom zakonu) na tijelo $(F-R)\Delta t = m\Delta v_{CM} = mv_{CM} - mv_{CM0}$ (skalarno pisano).

$$v_{CM0} = \frac{l\omega_0}{2}$$

$$F\Delta t - R\Delta t = m\frac{l}{2}(\omega_0 + \frac{Fa\Delta t}{I} - \omega_0) = \frac{ml}{2}\frac{Fa\Delta t}{l}$$

$$R = F(1 - m\frac{l}{2}\frac{a}{I})$$

Ako želimo da os "ne osjeti" da je tijelo udareno moramo staviti da je sila reakcije $\,R=0\,.\,$

$$0 = F(1 - m\frac{l}{2}\frac{a}{I}), a = \frac{2I}{ml}$$

Za štap je
$$I = \frac{ml^2}{3}$$
 pa je $a = \frac{2I}{ml} = \frac{2ml^2}{3ml} = \frac{2l}{3}$.

Od prije znamo da je reducirana duljina fizičkog njihala za štap jednaka $l_r = \frac{2}{3}l$ što znači da je $a = l_r$.

Točku P zovemo centar udara.

14. PRIGUŠENO TITRANJE. JEDNADŽBA GIBANJA I RJEŠENJA ZA SLABO PRIGUŠENJE

U jednostavnom harmoničkom titranju nema gubitaka zbog trenja i ukupna mehanička energija je održana. Amplituda se ne mijenja s vremenom i smatramo je konstantom.

a) NEPRIGUŠENO titranje

Uteg koji titra na opruzi u zraku (prigušeno slabo – gotovo neprigušeno). Ako postoje gubici energija (npr. zbog trenja i sl.) amplituda će se s vremenom smanjivati i na kraju će titranje prestati.

b) PRIGUŠENO titranje

Uteg koji titra na opruzi uronimo u neku viskoznu tekućinu (npr. ulje). Kod prigušenog titranja energija nije konstantna nego se s vremenom

smanjuje
$$\frac{dE}{dt} < 0$$
.

Pretpostavljamo da je sila trenja proporcionalna brzini: $\vec{F} = -b\vec{v} = -b\frac{d\vec{s}}{dt}$.

Tu je b konstanta trenja (pozitivna veličina), a minus predznak je jer su sila trenja i brzina suprotnog smjera.

Jednadžba gibanja (2. Newtonov zakon) glasi:

$$\overrightarrow{ma} = \overrightarrow{F_{opr}} + \overrightarrow{F_{tr}} \rightarrow \text{vektorski}$$

$$m\frac{d^2s}{dt^2} = -ks - b\frac{ds}{dt} / *\frac{1}{m} \rightarrow \text{skalarno}$$

$$\frac{d^2s}{dt^2} + \frac{b}{m}\frac{ds}{dt} + \frac{ks}{m} = 0$$
Označimo $\frac{b}{m} = 2\delta$ i $\frac{k}{m} = \omega_0^2$

Dobivamo homogenu linearnu diferencijalnu jednadžbu: $\frac{d^2s}{dt^2} + 2\delta\frac{ds}{dt} + \omega_0^2s = 0$

Vlastita frekvencija neprigušenog oscilatora iznosi $\omega_0 = \sqrt{\frac{k}{m}}$ a faktor prigušenja je δ .

Rješenje je oblika $s(t) = a(t)\sin(\omega t + \varphi_0) = Ae^{-\delta t}\sin(\omega t + \varphi_0)$.

Sa slike za prigušeno titranje vidimo da je s(t) sinusoidalna funkcija čija se amplituda eksponencijalno smanjuje.

Derivirmo jednom pa dva puta s(t):

$$s(t) = Ae^{-\delta t}\sin(\omega t + \varphi_0)$$

$$\frac{ds}{dt} = A(-\delta)e^{-\delta t}\sin(\omega t + \varphi_0) + \omega A e^{-\delta t}\cos(\omega t + \varphi_0)$$

$$\frac{d^2s}{dt^2} = A(-\delta)^2 e^{-\delta t} \sin(\omega t + \varphi_0) - A\omega \delta e^{-\delta t} \cos(\omega t + \varphi_0) + \omega A(-\delta) e^{-\delta t} \cos(\omega t + \varphi_0) - \omega^2 A e^{-\delta t} \sin(\omega t + \varphi_0)$$

Uvrstimo to u jednadžbu gibanja:

$$A(-\delta)^{2}e^{-\delta t}\sin(\omega t + \varphi_{0}) - A\omega\delta e^{-\delta t}\cos(\omega t + \varphi_{0}) + \omega A(-\delta)e^{-\delta t}\cos(\omega t + \varphi_{0}) - \omega^{2}Ae^{-\delta t}\sin(\omega t + \varphi_{0})$$
$$-2\delta^{2}Ae^{-\delta t}\sin(\omega t + \varphi_{0}) + 2\delta A\omega e^{-\delta t}\cos(\omega t + \varphi_{0}) + \omega_{0}^{2}Ae^{-\delta t}\sin(\omega t + \varphi_{0}) = 0$$

Izlučimo $Ae^{-\delta t}\sin(\omega t+\varphi_0)$, $Ae^{-\delta t}\cos(\omega t+\varphi_0)$ i dobijemo:

$$Ae^{-\delta t}\sin(\omega t + \varphi_0)\left[\delta^2 - \omega^2 - 2\delta^2 + \omega_0^2\right] + Ae^{-\delta t}\cos(\omega t + \varphi_0)\left[-\omega\delta - \omega\delta + 2\delta\omega\right] = 0$$

$$Ae^{-\delta t}\sin(\omega t + \varphi_0)\left[\omega_0^2 - \omega^2 - \delta^2\right] = 0 \rightarrow (*)$$

U svakom trenutku relacija (*) mora biti zadovoljena pa je onda $\left[\omega_0^2-\omega^2-\delta^2\right]=0\,$ iz čega slijedi $\omega^2=\omega_0^2-\delta^2$, tj. $\omega=\sqrt{\omega_0^2-\delta^2}\,$ je **frekvencija prigušenih titraja**. $\omega<\omega_0$

Što je trenje veće, to je veće prigušenje. Amplituda $a=Ae^{-\delta t}$ se eksponencijalno smanjuje s vremenom.

Što je faktor prigušenja δ veći to se amplituda a brže smanjuje.

Možemo pretpostaviti i rješenje oblika:

$$\begin{split} s(t) &= A e^{i(\omega t + \varphi_0)} \\ \frac{ds}{dt} &= A i \omega e^{i(\omega t + \varphi_0)} \\ \frac{d^2 s}{dt^2} &= A (i\omega)^2 e^{i(\omega t + \varphi_0)} = A i^2 \omega^2 e^{i(\omega t + \varphi_0)} = -A \omega^2 e^{i(\omega t + \varphi_0)} \end{split}$$

Uvrstimo u $\frac{d^2s}{dt^2} + 2\delta \frac{ds}{dt} + \omega_0^2 s = 0$ i dobijemo:

$$-A\omega^2 e^{i(\omega t + \varphi_0)} + 2\delta Ai\omega e^{i(\omega t + \varphi_0)} + \omega_0^2 A e^{i(\omega t + \varphi_0)} = 0$$

Izlučimo $Ae^{i(\omega t + \varphi_0)}$ i dobivamo:

$$Ae^{i(\omega t + \varphi_0)} \left[-\omega^2 + 2\delta i\omega + \omega_0^2 \right] = 0$$

$$-\omega^2 + 2\delta i\omega + \omega_0^2 = 0 \Rightarrow \omega_{1,2} = \frac{-2\delta i \pm \sqrt{4(\delta i)^2 + 4\omega_0^2}}{-2}$$

$$\omega_{1,2} = \frac{-2\delta i \pm 2\sqrt{-\delta^2 + \omega_0^2}}{-2} = -i\delta \pm \sqrt{\omega_0^2 - \delta^2}$$

Razmatramo 3 moguća slučaja:

- 1. $\delta^2 < \omega_0^2$ malo ili slabo prigušenje
- 2. $\delta^2 > \omega_0^2$ aperiodičko prigušenje
- 3. $\delta^2 = \omega_0^2$ kritično prigušenje

Za slabo prigušenje je $\omega_0^2 - \delta^2 > 0$ pa rješenje jednadžbe možemo pisati kao

$$s(t) = Ae^{-\delta t}e^{i(\omega t + \varphi_0)} = Ae^{-\delta t}e^{i\omega t}e^{i\varphi_0} \text{ gdje je } \omega^2 = \omega_0^2 - \delta^2 \,.$$

Realni dio te funkcije je $s(t) = Ae^{-\delta t}\cos(\omega t + \varphi_0)$, a imaginarni $s(t) = Ae^{-\delta t}\sin(\omega t + \varphi_0)$.

Oba dijela su rješenja jednadžbe gibanja pa možemo uzeti samo jedno od njih, npr. $s(t) = Ae^{-\delta t}\sin(\omega t + \varphi_0)$.

15. PRIGUŠENO TITRANJE. APERIODIČKO I KRITIČNO GUŠENJE

Ako je trenje preveliko sustav ne može titrati.

Prigušenje δ je tada tako veliko ($\delta^2 > \omega_0^2$) da se zatitrano tijelo, kad dosegne određenu amplitudu vraća u ravnotežni položaj umjesto da titra. To je aperiodičko titranje.

U $\omega_{0,2} = -i\delta \pm \sqrt{\omega_0^2 - \delta^2}$ je izraz ispod korijena negativan, a **frekvencija** *je imaginarna*.

Ako je $\omega = i\omega'$ onda rješenje jednadžbe gibanja možemo pisati u obliku

$$s(t) = e^{-\delta t} (Ash\omega' t + Bch\omega' t)$$
.

$$sh\omega't = \frac{(e^{\omega't} - e^{-\omega't})}{2}$$
 unkcije su
$$ch\omega't = \frac{(e^{\omega't} + e^{-\omega't})}{2}.$$

Hiperbolne funkcije su

$$ch\omega't = \frac{(e^{\omega't} + e^{-\omega't})}{2}$$

Ako je u t = 0 s(t) = 0 onda je $s(t) = Ae^{-\delta t}sh\omega't$ (**). a $\omega' = \sqrt{\delta^2 - \omega^2}$.

- eksponencijalne
- sinusa hiperbolnog

Ovisno o omjeru $\frac{\delta}{\omega_0}$ aperiodičko titranje može imati

različite oblike. U slučaju 3 elongacija relativno brzo pada na nulu što je granica između prigušenog i aperiodičkog titranja i zove se kritično gušenje.

Sustav se pri kritičnom prigušenju vraća u položaj ravnoteže u najkraćem vremenu.

Zato se kritično gušenje javlja kod mjernih instrumenata koji mjere iznenadni impuls i zatim se moraju vratiti u ravnotežno stanje u što kraćem vremenu (npr. seizmograf).

16. PRIGUŠENO TITRANJE. LOGARITAMSKI DEKREMENT PRIGUŠENJA I Q-FAKTOR

Omjer dviju susjednih amplituda $\,a_{\!\scriptscriptstyle 1}\,$ i $\,a_{\!\scriptscriptstyle 2}\,$ (slika s početka) koje se razlikuju u vremenu za period $\,T\,$ je:

$$\frac{a_1}{a_2} = \frac{a(t)}{a(t+T)} = \frac{Ae^{-\delta t}}{Ae^{-\delta(t+T)}} = \frac{Ae^{-\delta t}}{Ae^{-\delta t}} = e^{\delta T}$$

Logaritamski dekrement prigušenja λ je logaritam tog omjera:

$$\lambda = \ln \frac{a(t)}{a(t+T)} = \ln(e^{\delta T}) = \delta T$$

Logaritamski dekrement λ i period T se mogu mjeriti pa pomoću njih određujemo faktor prigušenja δ , odnosno konstantu trenja $b=2m\delta$.

Q-faktor (faktor kvalitete ili dobrote) pokazuje kako brzo sustav gubi energiju pri prigušenom

titranju (uz slabo prigušenje):
$$Q = \frac{\pi}{\lambda} = \frac{\pi}{\delta T_0} = \frac{\omega_0}{2\delta}$$

Što je Q-faktor veći prigušenje $\,\delta\,$ je manje, odnosno manji je gubitak energije iz titrajnog sustava.

Često se Q-faktor definira kao omjer srednje ukupne energije titrajnog sustava \overline{E} između 2 susjedne pozitivne amplitude (npr. a_1 i a_2) i gubitka energije u tom intervalu:

$$Q = 2\pi \frac{\overline{E}}{\Delta E}$$

$$\overline{E} = \frac{k(a_1^2 + a_2^2)}{4}$$

$$\Delta E = \frac{k(a_1^2 + a_2^2)}{2}$$

$$Q = 2\pi \frac{\frac{k(a_1^2 + a_2^2)}{4}}{\frac{k(a_1^2 + a_2^2)}{2}} = \pi \frac{k(A^2 e^{-2\delta t} + A^2 e^{-\delta 2(t+T)})}{k(A^2 e^{-2\delta t} - A^2 e^{-\delta 2(t+T)})} = \pi \frac{e^{-2\delta t} + e^{-\delta 2(t+T)}}{e^{-2\delta t} - e^{-\delta 2(t+T)}} = \pi \frac{1 + e^{-2\delta T}}{1 - e^{-2\delta T}} = \frac{\pi(1 + e^{-\delta T} e^{-\delta T})}{1 - e^{-\delta T} e^{-\delta T}} = \frac{\pi e^{-\delta T}}{e^{-\delta T}} \frac{e^{\delta T} + e^{-\delta T}}{e^{\delta T} - e^{-\delta T}}$$

$$Q = \pi \frac{e^{\lambda} + e^{-\lambda}}{e^{\lambda} - e^{-\lambda}} \text{ uz } tgh\lambda = \frac{e^{\lambda} - e^{-\lambda}}{e^{\lambda} + e^{-\lambda}}$$

$$Q = \frac{\pi}{tgh\lambda}$$

Za mali λ je $tgh\lambda = \lambda$ pa slijedi $Q = \frac{\pi}{\lambda}$.

U dobrim titrajnim sustavima Q-faktor je reda veličine 10³ do 10⁴.

Što je veći Q-faktor manje je prigušenje $\,\delta\,$. Kod neprigušenog harmoničkog oscilatora $\,Q \to \infty\,$.

17. PRIGUŠENO TITRANJE. ENERGIJA

Za idealni harmonički oscilator vrijedi da je energija konstanta veličina u vremenu.

Kod prigušenog harmoničkog oscilatora energija se smanjuje. Brzina promjene energije u vremenu je:

$$\frac{dE}{dt} = \frac{d}{dt}(E_k(s') + E_p(s')) = \frac{ds'}{ds'}\frac{dE_k}{dt} + \frac{ds}{ds}\frac{dE_p}{dt} = \frac{ds'}{dt}\frac{d}{ds'}(\frac{1}{2}ms'^2) + \frac{ds}{dt}\frac{d}{ds}(\frac{1}{2}ks^2)$$

$$\frac{dE}{dt} = s'' \frac{1}{2} m s'^2 + s' \frac{1}{2} k s^2 = m s'' s' + k s' s = (m s'' + k s) s'$$

ms"+ bs'+ ks = 0 (jednadžba prigušenog harmoničkog titranja)

$$ms'' + ks = -bs'$$

$$\frac{dE}{dt} = -bs's' = -bs'^2 = -bv^2$$

Brzina gubitka energije sustava proporcionalna je kvadratu brzine v^2 kad je disipativna sila linearno proporcionalna brzini ($F_{tr} \propto v$).

Ovo vrijedi bez obzira na jakost prigušenja.

Vremenska promjena energije je snaga, a snaga je umnožak sile (-bv) i brzine (v).

18. PRISILNO TITRANJE. REZONANTNA FREKVENCIJA

Kad vanjska sila djeluje na sustav koji titra i nadoknađuje energiju izgubljenu zbog trenja tada govorimo o **prisilnom titranju**.

Dok ploča miruje sustav titra kao prigušeni oscilator. Kad se ploča okreće kutnom brzinom ω kraj poluge spojen s oscilatorom titra istom kružnom frekvencijom ω i na oscilator djeluje vanjska periodička sila $F_{\nu}=F_0\sin\omega t$.

- kad je frekvencija ω vanjskog oscilatora manja od vlastite frekvencije ω_0 sustav titra, ali su amplitude male $\omega < \omega_0$.
- kad se približava ω_0 amplitude postaju sve veće $\omega \to \omega_0$.
- kad se javi rezonancija amplitude su maksimalne $\omega = \omega_0$.
- daljnjim povećanjem ω amplitude se ponovo smanjuju $\omega > \omega_0$.

Jednadžba gibanja za prisilni harmonički oscilator:

$$m\frac{d^2s}{dt^2} = -ks - b\frac{ds}{dt} + F_0 \sin \omega t$$

F = -ks - harmonička sila

$$F_{tr} = -bv = -b\frac{ds}{dt}$$
 - sila trenja

 $F_{v} = F_{0} \sin \omega t$ - vanjska periodička sila

Uz
$$\frac{b}{m} = 2\delta$$
 faktor prigušenja $\omega_0^2 = \frac{k}{m}$ i $A_0 = \frac{F_0}{m}$ pa slijedi $\frac{d^2s}{dt^2} + 2\delta\frac{ds}{dt} + \omega_0^2s = A_0\sin\omega t$.

Pretpostavljamo rješenje oblika: $s(t) = A(\omega)\sin(\omega t - \varphi)$

 $A(\omega)$ - ampituda

 φ - kašnjenje u fazi iza titraja vanjskog oscilatora

$$s(t) = A(\omega)\sin(\omega t - \varphi)$$

$$\frac{ds}{dt} = A(\omega)\omega\cos(\omega t - \varphi)$$

$$\frac{d^2s}{dt^2} = -A(\omega)\omega^2 \sin(\omega t - \varphi)$$

Uvrštavajući u jednadžbu gibanja dobivamo:

$$-A(\omega)\omega^{2}\sin(\omega t - \varphi) + 2\delta A(\omega)\omega\cos(\omega t - \varphi) + \omega_{0}^{2}A(\omega)\sin(\omega t - \varphi) = A_{0}\sin(\omega t - \varphi) + \frac{1}{A(\omega)}$$

$$(\omega_0^2 - \omega^2)\sin(\omega t - \varphi) + 2\delta\omega\cos(\omega t - \varphi) = \frac{A_0}{A(\omega)}\sin\omega t$$

$$(\omega_0^2 - \omega^2)\sin(\omega t - \varphi) + 2\delta\omega\sin(\omega t - \varphi + \frac{\pi}{2}) = \frac{A_0}{A(\omega)}\sin\omega t$$

$$(\omega_0^2 - \omega^2)\sin(\omega t - \varphi)$$
 i $2\delta\omega\sin(\omega t - \varphi + \frac{\pi}{2})$ su 2 međusobno okomita titranja s amplitudama $(\omega_0^2 - \omega^2)$ i $2\delta\omega$.

S desne strane imamo titranje amplitude $\frac{A_0}{A(\omega)}$ dobiveno zbrajanjem ova dva titranja.

Jednadžba u svakom trenutku mora biti uspunjena pa se za određivanje $A(\omega)$ služimo fazorskim prikazom titranja.

Iza pravokutnog trokuta OPP_1 slijedi:

$$\left(\frac{A_0}{A(\omega)}\right)^2 = \left(\omega_0^2 - \omega^2\right)^2 + \left(2\delta\omega\right)^2 / \sqrt{1}$$

$$\frac{A_0}{A(\omega)} = \sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(2\delta\omega\right)^2} \Rightarrow A(\omega) = \frac{A_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(2\delta\omega\right)^2}}$$

$$tg\varphi = \frac{2\delta\omega}{\omega_0^2 - \omega^2}$$

$$A(\omega) = \frac{A_0}{\omega_0^2 \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\delta\omega}{\omega_0^2}\right)^2}}$$

Vidimo da amplituda $A(\omega)$ ovisi o omjeru $\dfrac{\omega}{\omega_{\!_{0}}}$ i faktoru prigušenja δ .

 $A(\omega)$ je maksimalna pri rezonantnoj frekvenciji ω_r koja se određuje izračunavanjem maksimuma funkcije $A(\omega)$:

$$\frac{d}{d\omega} \left[\left(\omega_0^2 - \omega^2 \right)^2 + 4\delta^2 \omega^2 \right]^{\frac{1}{2}} = \frac{1}{2} \left[\left(\omega_0^2 - \omega^2 \right)^2 + \left(2\delta\omega \right)^2 \right]^{-\frac{1}{2}} * \left[2\left(\omega_0^2 - \omega^2 \right) \left(-2\omega \right) + 4\delta^2 2\omega \right] = 0$$

$$2\left(\omega_0^2 - \omega^2 \right) \left(-2\omega \right) + 4\delta^2 2\omega = 0$$

$$-\left(\omega_0^2 - \omega^2 \right) + 2\delta^2 = 0$$

$$\omega^2 = \omega_0^2 - 2\delta^2$$

$$\omega_r = \sqrt{\omega_0^2 - 2\delta^2} \text{ rezonantna frekvencija}$$

 $\pmb{\omega}_r$ je malo manje od $\pmb{\omega}_{\!\!0}$, a razlika je manja što je prigušenje manje.

U graničnom slučaju bez trenja $\omega_r = \omega_0$.

Ovisnost amplitude $A(\omega)$ o omjeru $\frac{\omega}{\omega_{\!\scriptscriptstyle 0}}$ i

prigušenju δ :

- ullet prigušenje δ utječe na rezonanciju
- kad nema trenja (1) amplituda $A(\omega)$ pri 0,5 1 1,5 rezonanciji $\omega_r = \omega_0$ je beskonačno velika (toga nema u prirodi nema titranja bez gubitaka) rezonantna amplituda je uvijek konačna
- što je prigušenje veće Q-faktor je manji rezonantna amplituda je manja, a rezonantna frekvencija ω_r se razlikuje od vlastite frekvencije ω_0 .

$$v(t) = \frac{ds}{dt} = \frac{d}{dt}A(\omega)\sin(\omega t - \varphi) = A(\omega)\omega\cos(\omega t - \varphi)$$

Kašnjenje u fazi (fazni pomak) je
$$tg\varphi = \frac{2\delta\omega}{\omega_0^2 - \omega^2}$$
.

Za $\omega << \omega_0$ fazni pomak je $\varphi = 0$ i oba titranja su u fazi.

Za $\omega=\omega_0$ sustav kasni za vanjskim oscilatorom za $\frac{T}{4}$, a fazni pomak je $\varphi=\frac{\pi}{2}$.

Za $\omega\!>\!>\!\omega_{_0}$ fazni pomak je $\varphi\!=\!\pi$.

Q=1,25

Vratimo se na jednadžbu gibanja prisilnog

oscilatora:
$$\frac{d^2s}{dt^2} + 2\delta + \omega_0^2 s = A_0 \sin \omega t \ (*)$$

To je nehomogena diferencijalna jednadžba drugog reda s konstantnim koeficijentima.

Opće rješenje dobijemo tako da općem rješenju s_1 pripadajuće homogene jednadžbe

$$(\frac{d^2s}{dt^2} + 2\delta + \omega_0^2 s = 0)$$
 pribrojimo posebno rješenje s_2 nehomogene jednadžbe (*):

$$s_1(t) = Ae^{-\delta t}\sin(\omega_p t + \varphi_0)$$

$$\omega_{p} = \sqrt{\omega_{0}^{2} - \delta^{2}}$$

$$s_2(t) = A(\omega)\sin(\omega t - \varphi)$$

$$s(t) = s_1(t) + s_2(t) = Ae^{-\delta t}\sin(\omega_n t + \varphi_0) + A(\omega)\sin(\omega t - \varphi)$$

Kod prisilnog titranja sustav počne titrati vlastitom frekvencijom $\omega_p = \omega_0$ i pri tome nastoji slijediti titranje vanjskog oscilatora.

Rezultantno titranje je superpozicija tih dviaju titranja.

Nakon određenog vremena vlastito tiranje zbog prigušenja iščezne i sustav titra frekvencijom vanjskog oscilatora bez obzira na početne uvjete i vlastitu frekvenciju.

Znači, prvi dio rješenja je $s_1(t) = Ae^{-\delta t}\sin(\omega_p t + \varphi_0)$ koji zbog $e^{-\delta t}$ iščezava i ostaje samo rješenje $s_2(t) = A(\omega)\sin(\omega t - \varphi)$ koje se zove **stacionarno rješenje jednadžbe prisilnog oscilatora.**

19. ANALOGIJA S ELEKTRIČNIM TITRAJNIM KRUGOM

Trenutno preskačem... (21.10.2009 11:45)

20. SLAGANJE TITRAJA. VEZANI OSCILATORI (OBERBECKOVO NJIHALO)

Dva matematička njihala povezana elastičnom vezon, npr. oprugom, čine Oberbeckovo njihalo – primjer vezanog titrajnog sustava. Titranja ovih njihala nisu neovisna već su povezana.

Drugi primjer. Dva harmonička oscilatora – dva tijela masa m_1 i m_2 oprugama konstanti k_1 i k_2 međusobno povezana oprugom konstante k .

Za Oberbeckovo njihalo ćemo pretpostaviti da su $m_1=m_2 \over l_1=l_2$. Prvo njihalo izvučemo iz ravnotežnog

položaja dok drugo miruje. Prvo njihalo preko opruge prenosi energiju na drugo njihalo te se i ono počne njihati. Dok amplituda drugog njihala raste, amplituda prvog se postepeno smanjuje dok se

potpuno ne umiri, a drugo titra amplitudom koju je prvo njihalo imalo na početku. Za to je potrebno $\frac{T}{2}$ vremena.

Pretpostavili smo idealni slučaj u kome su gubici zbog trenja zanemarivi.

U drugoj polovini perioda uloge su zamijenjene i drugo njihalo pobuđuje prvo. Proces se ponavlja s periodom ${\it T}$.

Jednadžbe gibanja za svaki oscilator:

 s_1 - pomak tijela mase m_1 iz ravnoteže

 $s_{\scriptscriptstyle 2}$ - pomak tijela mase $m_{\scriptscriptstyle 2}$ iz ravnoteže

dogovor: pomaci su pozitivni ako se tijelo giba s lijeva na desno, a negativni za suprotni smjer

$$m_1 \frac{d^2 s_1}{dt^2} = -k_1 s_1 + k(s_2 - s_1)$$

$$m_2 \frac{d^2 s_2}{dt^2} = -k_2 s_2 - k(s_2 - s_1)$$
(*)

 $-k_1 s_1$ - sila opruge konstante

 $-k_2s_2$ - sila opruge konstante

 $k(s_2 - s_1)$ - sila opruge konstante na masu

 $-k(s_2 - s_1)$ - sila opruge konstante na masu

Ovo su jednadžbe gibanja materijalnih točaka, a ako su amplitude male, jednadžbe vrijede iza Oberbeckovo njihalo.

Vidimo da su jednadžbe vezane jer se s_1 i s_2 javljaju u obje jednadžbe. Ako nema opruge koja veže sustave onda svaki sustav za sebe predstavlja harmonički oscilator.

Znači da će vezani sustav imati rješenje $s_1(t)$ i $s_2(t)$.

$$T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{m}{k}} = \frac{l}{g} = \frac{m}{k} \Rightarrow k = \frac{mg}{l} \Rightarrow k_1 = \frac{m_1 g}{l_1} \Rightarrow k_2 = \frac{m_2 g}{l_2}$$

Pretpostavljamo da su oba oscilatora jednaka, $m_1 = m_2$ i $k_1 = k_2$.

Pretpostavljamo da su rješenja harmoničke funkcije:

$$s_1(t) = A\sin(\omega_1 t + \varphi_1)$$

$$s_2(t) = B\sin(\omega_2 t + \varphi_2)$$

Uvrstimo u (*) nakon deriviranja i dobivamo:

$$\frac{ds_1}{t} = A\omega_1 \cos(\omega_1 t + \varphi_1) \Rightarrow \frac{d^2 s_1}{dt^2} = -A\omega_1^2 \sin(\omega_1 t + \varphi_1)$$

$$\frac{ds_2}{t} = B\omega_2 \cos(\omega_2 t + \varphi_2) \Rightarrow \frac{d^2 s_2}{dt^2} = -B\omega_2^2 \sin(\omega_2 t + \varphi_2)$$

$$-m_1 A\omega_1^2 \sin(\omega_1 t + \varphi_1) = -k_1 A \sin(\omega_1 t + \varphi_1) + k(B \sin(\omega_2 t + \varphi_2) - A \sin(\omega_1 t + \varphi_1))$$

$$-m_2 B\omega_2^2 \sin(\omega_2 t + \varphi_2) = -k_2 B \sin(\omega_2 t + \varphi_2) - k(B \sin(\omega_2 t + \varphi_2) - A \sin(\omega_1 t + \varphi_1))$$

Između s_1 i s_2 postoji jednostavan odnos: ili su u fazi ili su u protufazi. Znači imamo 2 rješenja:

titranje u fazi

protufazno titranje

a) TITRANJE U FAZI

$$A = B = A_1$$

$$\omega_1 = \omega_0 = \sqrt{\frac{k}{m}}$$

$$s_1(t) = A_1 \sin(\omega_1 t + \varphi_1)$$

$$s_2(t) = A_1 \sin(\omega_1 t + \varphi_2)$$

Njihala titraju u fazi jednakim amplitudama, tj. kad se oba njihala gibaju zajedno lijevo, pa desno. Oscilatori titraju kao da nisu povezani i to vlastitom frekvencijom $\omega_{\rm l}=\omega_{\rm 0}=\sqrt{\frac{k}{m}}$ kojom svaki od njih titra kad je sam.

b) PROTUFAZNO TITRANJE

$$A = -B = A_2$$

$$\omega_2 = \sqrt{\frac{k_1}{m_1} + \frac{2k}{m_1}} = \sqrt{\omega_0 + \frac{2k}{m_1}}$$

$$s_1(t) = A_2 \sin(\omega_2 t + \varphi_2)$$

$$s_2(t) = -A_2 \sin(\omega_2 t + \varphi_2)$$

Oscilatori titraju protufazno, tj. jedan ide na lijevo, a drugi na desno i obrnuto. Oscilatori imaju jednake amplitude ali im je frekvencija malo veća nego kad nisu vezani.

Općenito rješenje je zbroj ovih dvaju osnovnih načina titranja:

$$s_1(t) = A_1 \sin(\omega_1 t + \varphi_1) + A_2 \sin(\omega_2 t + \varphi_2)$$

$$s_2(t) = A_1 \sin(\omega_1 t + \varphi_1) - A_2 \sin(\omega_2 t + \varphi_2)$$

Ako su amplitude jednake što pretpostavljamo radi jednostavnosti onda nakon trigonometrijske transformacije dobivamo:

$$\begin{split} s_1 &= 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t + \frac{\varphi_1 - \varphi_2}{2}\right)\sin\left(\frac{\omega_1 + \omega_2}{2}t + \frac{\varphi_1 + \varphi_2}{2}\right) \\ s_2 &= 2A\sin\left(\frac{\omega_1 - \omega_2}{2}t + \frac{\varphi_1 - \varphi_2}{2}\right)\cos\left(\frac{\omega_1 + \omega_2}{2}t + \frac{\varphi_1 + \varphi_2}{2}\right) \end{split}$$
(**)

Vezani oscilatori titraju frekvencijom $\frac{(f_1+f_2)}{2}$.

$$\text{Amplituda titranja je } 2A\cos\bigg(\frac{\omega_{\text{l}}-\omega_{\text{2}}}{2}t+\frac{\varphi_{\text{l}}-\varphi_{\text{2}}}{2}\bigg), \text{ odnosno } 2A\sin\bigg(\frac{\omega_{\text{l}}-\omega_{\text{2}}}{2}t+\frac{\varphi_{\text{l}}-\varphi_{\text{2}}}{2}\bigg).$$

Amplituda se mijenja od maksimalne 2A do 0 i varira u vremenu frekvencijom $f_a = \frac{(f_1 + f_2)}{2}$,

odnosno periodom $T_a = \frac{1}{f_a}$.

Amplituda je modulirana.

Suprotno osnovnim načelima titranja (pod a i b) titranje (**) nije harmoničko te se naziva udarima.

Frekvencija kojom se ponavlja maksimalna amplituda, tj. frekvencija udara je

$$f_u = \frac{\omega_1 - \omega_2}{2\pi} = f_1 - f_2.$$

Frekvencija udara je 2 puta veća od frekvencije mijenjanja amplituda: $f_u = 2f_a$.

Razlika u fazi između amplitude prvog i drugog oscilatora je $\frac{\pi}{2}$ jer

$$2A\sin\left(\frac{\omega_1-\omega_2}{2}t+\frac{\varphi_1-\varphi_2}{2}\right)=2A\cos\left(\frac{\omega_1-\omega_2}{2}t+\frac{\varphi_1-\varphi_2}{2}-\frac{\pi}{2}\right).$$

21. SLAGANJE TITRAJA. ZBRAJANJE HARMONIČKIH TITRAJA NA ISTOM PRAVCU

Trenutno preskačem... (21.10.2009 17:58)

22. SLAGANJE TITRAJA. ZBRAJANJE MEĐUSOBNO OKOMITIH HARMONIČKIH TITRAJA (LISSAJOUSOVE KRIVULJE)

Trenutno preskačem... (21.10.2009 17:58)

23. UVOD U MEHANIČKE VALOVE

Trenutno preskačem... (22.10.2009 11:44)

24. ŠIRENJE VALOVA U SREDSTVU

Trenutno preskačem... (22.10.2009 11:44)

25. MATEMATIČKI OPIS VALNOG GIBANJA

Trenutno preskačem... (22.10.2009 11:44)

26. JEDNADŽBA TRANSVERZALNOG VALA NA ŽICI

Jednadžba bilo kojeg vala je rješenje diferencijalne valne jednadžbe pa ćemo na još jedan ali

matematički precizniji način odbiti matematički izraz za valno gibanje i brzinu vala.

Sile su jednake, tj. $\left| \overrightarrow{F_1} \right| = \left| \overrightarrow{F_2} \right| = F$

1. pretpostavka je da imamo tanko homogeno uže (žicu) čija je debljina puno manja od valne duljine valova

(
$$\mu = \frac{m}{l}$$
) te da gledamo beskonačno

mali dio užeta na kojem se horizontalne sile ponište a vertikalne ostanu jer se žica giba samo gore dolje.

Sile koje djeluju na djelić žice dl=dx su sile u horizontalnom smjeru koje su jednakog iznosa ali suprotnog smjera i sila u transverzalnom (vertikalnom smjeru) čiji je iznos

$$dF_s = F_{s2} - F_{s1} = F \sin \alpha_2 - F \sin \alpha_1 = F(\sin \alpha_2 - \sin \alpha_1)$$
 (*).

Zbog te sile dF_s djelić žice dl transverzalno titra.

2. pretpostavka je da je amplituda puno manja od valne duljine ($A << \lambda$) pa su samim time i

kutevi α_1 i α_2 mali, a ako su kutevi mali onda vrijedi $\sin \alpha_1 = tg\alpha_1 \sin \alpha_2 = tg\alpha_2$

Kada to uvrstimo u (*) dobivamo $dF_s = Ftg\alpha_2 - Ftg\alpha_1$.

$$tg\alpha_1 = \left(\frac{\partial s}{\partial x}\right)_x$$
$$tg\alpha_2 = \left(\frac{\partial s}{\partial x}\right)_x$$

Uvrstimo u gornju jednadžbu i dobivamo
$$dF_s = F\left[\left(\frac{\partial s}{\partial x}\right)_{x \in \mathcal{X}} - \left(\frac{\partial s}{\partial x}\right)_x\right].$$

$$\left(\frac{\partial s}{\partial x}\right)_{x+dx} \text{ hoćemo pretvoriti u } \left(\frac{\partial s}{\partial x}\right)_{x} \text{ pa slijedi } f(x+dx) = f(x) + \left(\frac{\partial s}{\partial x}\right)_{x} dx \, .$$

Opet vraćamo u gornju jednadžbu pa dobivamo

$$dF_s = F\left[\left(\frac{\partial s}{\partial x}\right)_x + \frac{\partial}{\partial x}\left(\frac{\partial s}{\partial x}\right)_x dx - \left(\frac{\partial s}{\partial x}\right)_x\right] = F\frac{\partial^2 s}{\partial x^2} dx \ (^{\star\star}).$$

Primjenjujući na djelić žice dx čija je masa $dm=\mu dx$ 2. Newtonov zakon F=ma dobivamo $dF_s=\mu dx\frac{\partial^2 s}{\partial t^2}$ (***) gdje je $\frac{\partial^2 s}{\partial t^2}$ akceleracija djelića žice.

Kad uvrstimo (**) u (***) dobivamo diferencijalnu valnu jednadžbu za transverzalne valove u jednoj dimenziji $\frac{\partial^2 s}{\partial x^2} dx - \frac{\mu}{F} \frac{\partial^2 s}{\partial t^2} = 0$ (****).

Konstantu $\frac{\mu}{F}$ obično pišemo kao $\frac{1}{v^2}$ jer $\sqrt{\frac{F}{\mu}}$ ima dimenziju brzine pa s oznakom $v=\sqrt{\frac{F}{\mu}}$

valna jednadžba poprima sljedeći oblik: $\frac{\partial^2 s}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 s}{\partial t^2} = 0$.

RJEŠENJE JEDNADŽBE

Prema teoriji diferencijalnih jednadžbi opće rješenje ove jednadžbe je oblika

$$s(x,t)=f(t-\frac{x}{v})+g(t+\frac{x}{v})$$
 ili drukčije pisano $s(x,t)=f(x-vt)+g(x+vt)$ gdje je $s(x,t)$ elongacija čestice sredstva na udaljenosti x u trenutku t , a f i g proizvoljne funkcije.

Moramo pokazati da funkcija $f(t-\frac{x}{v})$ opisuje val koji se kreće udesno (u smjeru osi x) brzinom v, tj. da za vrijeme Δt val prijeđe put $v\Delta t$.

Ako u trenutku t_1 određena faza vala bude u točki x_1 onda će u trenutku t_2 ona biti u točki x_2 , tj. $f(t_1-\frac{x_1}{v})=f(t_2-\frac{x_2}{v})\,.$

To mora vrijediti za svaku fazu što je ispunjeno samo u slučaju

$$t_1 - \frac{x_1}{v} = t_2 - \frac{x_2}{v} \Rightarrow x_2 = x_1 + v(t_2 - t_1).$$

Posebno rješenje valne jednadžbe (****) je harmonički val koji se prostire u smjeru osi x. On nastaje kada izvor vala harmonički titra. Ako početak žice (x = 0) titra s elongacijom $s(0,t) = A \sin \omega t$ tada čestice udaljene od početka za x također titraju sinusoidalno

$$s(x,t) = A\sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right) = A\sin \omega \left(t - \frac{x}{v}\right) \text{ gdje je } T \text{ period titranja, } \omega = \frac{2\pi}{T} = 2\pi f \text{ kružna}$$

frekvencija, λ valna duljina, a v brzina vala.

BRZINA I AKCELERACIJA POJEDINE ČESTICE

Dok je brzina vala za homogeno sredstvo konstanna, **brzina pojedine čestice** sredstva se mijenja i računa deriviranjem elongacije po vremenu: $\frac{\partial s}{\partial t} = A\omega\cos(\omega t - kx)$

Akceleracija čestice je druga derivacija elongacije po vremenu: $\frac{\partial^2 s}{\partial t^2} = -A\omega^2 \sin(\omega t - kx)$

27. SUPERPOZICIJA VALOVA

Trenutno preskačem... (22.10.2009 11:44)

28. VALNI PAKET. GRUPNA BRZINA

Trenutno preskačem... (22.10.2009 11:44)

29. REFLEKSIJA VALOVA

Trenutno preskačem... (22.10.2009 11:44)

30.STOJNI VALOVI

Trenutno preskačem... (22.10.2009 11:44)

31. TRANSVERZALNI STOJNI VALOVI NA NAPETOJ ŽICI

Ako zatitramo jedan kraj napete žice duljine L, nastalo će se valno gibanje širiti žicom, doći na njezin kraj, reflektirati i vratiti natrag te se ponovo reflektirati na početku žice i tako ćemo dobiti valove koji u žici putuju u jednom i drugom smjeru.

Po principu superpozicije rezultantno gibanje vala u jednom i drugom smjeru biti će zbroj gibanja valova u jednom i drugom smjeru te će iznositi $s(x,t) = A_1 \sin(\omega t - kx) + A_2 \sin(\omega t + kx + \varphi)$ (*).

Pretpostavka je da je $\varphi = 0$ i da su oba kraja žice učvršćena, tj. da su rubni uvjeti $\begin{cases} s(x = 0, t) = 0 \\ s(x = L, t) = 0 \end{cases}$

Primjenjujući **1. uvjet** $s(x=0,t)=0 \\ \varphi=0$ na (*) dobivamo $s(x=0,t)=A_{\rm l}\sin(\omega t)+A_{\rm 2}\sin(\omega t)=0$ što

može biti ispunjeno jedino ako je $A_1 = -A_2$, tj.

$$s(x,t) = A\sin(\omega t - kx) - A\sin(\omega t + kx) = -2A\sin(kx)\cos(\omega t) = 2A\sin(kx)\sin\left(\omega t - \frac{\pi}{2}\right).$$

Dobili smo stojni val na žici koja je na kraju (za x = 0 i x = L) učvršćena i tu su čvorovi stojnog

vala. Amplituda titranja ovisi o mjestu na žici, tj.

koordinati x.

Primjenom **2. rubnog uvjeta** s(x = L,t) = 0 dobivamo:

$$\sin kL = 0$$

$$kL = n\pi$$

$$k_n = \frac{n\pi}{L}$$

$$\frac{2\pi}{\lambda_n}L = n\pi \Rightarrow L = n\frac{\lambda_n}{2} \Rightarrow \lambda_n = \frac{2L}{n}$$

n = 1, 2, 3, ...

Frekvencije kojima titra napeta žica zovemo **vlastite frekvencije** i određene su brzinom prostiranja valova $f_n = \frac{v}{\lambda_n} = n \frac{v}{2L} = \frac{n}{2L} \sqrt{\frac{F}{\mu}}$ gdje je F sila kojom je žica zategnuta, a μ linearna gustoća žice.

Najniža frekvencija zove se osnovna frekvencija i odgovara najvećoj valnoj duljini.

Žica osim osnovnom frekvencijom može titrati i drugim frekvencijama, tkz. **višim harmonicima** (npr. tanka lagana jako zategnuta žica daje visoku osnovnu frekvenciju dok debela i malo zetegnuta žica daje duboki ton).

 $\text{Konstante } A \text{ i } \varphi \text{ u (*) određujemo iz početnih uvjeta } t = 0 \text{ , } s(x,0) = s_0(x) \text{ i } \frac{\partial s}{\partial x}(x,0) = v_0(x) \text{ .}$

Valna funkcija koja opisuje pomak čestica žice je superpozicija svih vlastitih titranja, tj.

$$s(x,t) = \sum_{n=0}^{\infty} (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin k_n x.$$

32.LONGITUDIONALNI VAL U ŠTAPU

Trenutno preskačem... (22.10.2009 11:44)

33.LONGITUDIONALNI VAL U PLINU

Trenutno preskačem... (22.10.2009 11:44)

34. BRZINA ZVUKA

Trenutno preskačem... (22.10.2009 11:44)

35.STOJNI LONGITUDIONALNI VAL

Kada stakleni štap određene duljine prevučemo mokrom krpom čuje se određeni zvuk. Ako štap držimo u sredini na tom će mjestu biti čvor a na krajevima trbusi nastalog stojnog vala.

Da bismo dobili matematički oblik stojnog vala u štapu moramo zbrojiti valove koji putuju po štapu, jedan s lijeva na desno, a drug s desna na lijevo: $s = A\sin(\omega t - kx)$ i $s = A\sin(\omega t + kx)$.

Rubni uvjeti određuju frekvencije (valne duljine) titranja, a brzina vala određena je modulom elastičnosti i gustoćom štapa.

Uzimajući u ozbir da su krajevi štapa slobodni zbrajanjem upadnog i reflektiranog vala dobivamo $s = \underline{s} + \underline{s} = A\sin(\omega t - kx) + A\sin(\omega t + kx) = 2A\cos(kx)\sin(\omega t)$ (*).

Da bi val predočen (*) na oba kraja imao trbuhe, a u sredini čvor mora također biti ispunjeno da $\cos kl = \pm 1$ i $\cos k \frac{l}{2} = 0$ tj. presjek $\lambda = \frac{2l}{2n+1}$ gdje je l duljina štapa.

PRIKAZ STOJNIH VALOVA U SVIRALAMA

Svirale mogu biti različite duljine, otvorene ili zatvorene te će o tome ovisiti frekvencija tona svirale.

Otvorena svirala ima valnu duljinu

$$\lambda_m = \frac{2l}{m}, m = 1, 2, 3, ...,$$
 odnosno valna duljina je jednaka dvostrukoj duljini svirale.

Zatvorena svirala pak ima čvor na kraju svirale (otvorena ima trbuh) te je valna duljina

$$\lambda_n = \frac{4l}{2n+1}, n = 0,1,2,3,\dots$$

Frekvencija tona zatvorene svirale dva puta je manja nego frekvencija tona otvorene svirale jednake duljine.

