01H-读线圈状态

1)描述:读从机线圈寄存器,位操作,可读单个或者多个;

2) 发送指令:

假设从机地址位0x01,寄存器开始地址0x0023,寄存器结束抵制0x0038,总共读取21个线圈。协议图如下:

从机 地址	功能 码	寄存器起 始地址高 八位	寄存器起 始地址低 八位	寄存器数量 高八位	寄存器数 量低八位	CRCH	CRCL
0x01	0x01	0x00	0x23	0x00	0x17	0xXX	0xXX

3)响应:

返回数据的每一位对应线圈状态,1-ON,0-OFF,如下图;

从机 地址	功能 码	返回字节 数	data1	data2	data3	CRCH	CRCL
0x01	0x01	0x15	0xa5	0xd4	0x18	0xXX	0xXX

上表中data1表示0x0023-0x002a的线圈状态, data1的最低位代表最低地址的线圈状态, 可以理解为小端模式;

0x2a	0x29	0x28	0x27	0x26	0x25	0x24	0x23
1	0	1	0	0	1	0	1

data2表示地址0x002b-0x0033的线圈状态,如下表:

0x33	0x32	0x31	0x30	0x2e	0x2d	0x2c	0x2b
1	1	0	1	0	1	0	0

data3表示地址0x0034-0x0038的线圈状态,不够8位,字节高位填充为0,如下表:

Оххх	Оххх	Оххх	0x38	0x37	0x36	0x35	0x34
0	0	0	1	1	0	0	0

02H-读离散输入状态

1):读离散输入寄存器,位操作,可读单个或多个,协议类似功能码0X01协议,此处省;

03H-读保持寄存器

1)描述:读保持寄存器,字节指令操作,可读单个或者多个;

2) 发送指令:

从机地址0x01,保持寄存器起始地址0x0032,读2个保持寄存器

	从机 地址	功能 码	寄存器起 始地址高 八位	寄存器起 始地址低 八位	寄存器数量 高八位	寄存器数 量低八位	CRCH	CRCL
C	0x01	0x03	0x00	0x32	0x00	0x02	0xXX	0xXX

3)响应:

从机地址	功能 码	返回字 节数	Data1H	Data1L	Data2H	Data2L	CRCH	CRCL
0x01	0x03	0x4	0xa5	0xd4	0x18	0x12	0xXX	0xXX

数据存储顺序

11	***			11
0x0035	0x0034	0x0033	0x0032	
0x18	0x12	0xa5	0xd4	

04H-读输入寄存器

1)描述:读输入寄存器,字节指令操作,可读单个或者多个;

2)发送指令:同03H;

3)响应:同03H;

05H-写单个线圈

1)描述:写单个线圈,位操作,只能写一个,写0xff00表示设置线圈状态为ON,写0x0000表示设

置线圈状态为OFF

2)发送指令:

设置0x0032线圈为ON;

从机 地址	寄存器起 始地址高 八位	DATAH	DATAL	CRCH	CRCL

0x01 0x05 0x00 0x32 0xff 0x00 0xXX 0xXX

3)响应:

同发送指令;

06H-写单个保持寄存器

1)描述:写单个保持寄存器,字节指令操作,只能写一个;

2)发送指令:

写0x0032保持寄存器为0x1232;

*****	从机 地址	功能码	寄存器起 始地址高 八位	寄存器起 始地址低 八位	DATAH	DATAL	CRCH	CRCL
	0x01	0x06	0x00	0x32	0x12	0x32	0xXX	0xXX

3)响应:同发送指令;

0FH-写多个线圈

1)描述:写多个线圈寄存器。若数据区的某位值为"1"表示被请求的相应线圈状态为ON,若某位值为"0",则为状态为OFF。

2)发送指令:

线圈地址为0x04a5,写12个线圈,

****	从机 地址	功能码	ADDR EH	ADDR EL	寄存 器数 量高 字节	寄存 器数 量低 字节	字节 数	DATA1	DATA2	CRCH	CRCL
,	0x01	0x0f	0x04	0xa5	0x00	0x0d	0x02	0x0C	0x02	0xXX	0xXX

上图中DATA1为0x0c,表示:

0x04ac	0x004ab	0x04aa	0x04a9	0x04a8	0x04a7	0x04a6	0x04a5
0	0	0	0	1	1	0	0

DATA2为0x02,不够8位,字节高位填充0:

	0x04b3	0x004b2	0x04b1	0x04b0	0x04af	0x04ae	0x04ad	0x04ac
-11								

0	0	0	0	0	0	1	0

3)响应:

从机地址	功能码	ADDREH	ADDREL	寄存器 数量高 字节	寄存器 数量低 字节	字节数	CRCH	CRCL
0x01	0x0f	0x04	0xa5	0x00	0x0d	0x02	0xXX	0xXX

10H-写多个保持寄存器

1)描述:写多个保持寄存器,字节指令操作,可写多个;

2)发送指令:

保持寄存器起始地址为0x0034,写2个寄存器4个字节的数据;

从机 地址	功能码	ADDR EH	ADDR EL	寄存 器数 量高 字节	寄存 器数 量低 字节	字节数	DATA1 H	DATA1 L	DATA2 H	DATA2 L	CRCH	CRCL
0x01	0x10	0x00	0x34	0x00	0x02	0x04	0x0C	0x02	0X12	0X45	0xXX	0xXX

3)响应:

*****	从机地址	功能码	ADDREH	ADDREL	寄存器 数量高 字节	寄存器 数量低 字节	CRCH	CRCL
1	0x01	0x10	0x00	0x34	0x00	0x02	0xXX	0xXX