

Algorithmen und Komplexität TIF 21A/B Dr. Bruno Becker

7. Symbol- und Hashtabellen

www.dhbw-loerrach.de

Symbol- und Hashtabellen

- Symboltabellen
- Hashtabellen
- Hashverfahren

Symboltabellen

- Eine Symboltabelle ist eine Datenstruktur für Schlüssel-Wert-Paare, die folgende Operationen unterstützt:
 - 1. Einfügen eines neuen Paares in die Tabelle (put).
 - 2. Suchen nach dem Wert, der mit einem gegebenen Schlüssel verbunden ist (get).

Die Schlüssel stammen aus einer (großen) Menge möglicher Schlüssel

Anwendungen für Symboltabellen

...sind sehr vielfältig!

Anwendung	Schlüssel	Wert
Wörterbuch	Wort	Übersetzung
Telefonbuch	Name	Telefonnummer
Web-Suche	Suchbegriff	Liste von URLs
Dateisystem	Dateiname	Speicherort
DNS	Domain-Name	IP-Adresse

Symboltabellen

API

```
Public class SymbolTable <Key, Value >
SymbolTable() /* Symboltabelle anlegen
void put(Key key, Value value) /* Lege Wert value unter Schlüssel key ab,
überschreibe ggfs. vorh. Wert
Value get (Key key). /* Liefert den Wert zurück, der zu dem Schlüssel key gehört, sonst null
void delete(Key key) /* Entfernt den Schlüssel (und seinen Wert) aus der Tabelle
boolean isEmpty() /* Ist Symboltabelle leer?
int size() /* Anzahl der Schlüssel-Werte Paare in der Tabelle
```

Unterschiede zu Arrays

Array

- Integer-Schlüssel 0,...,n-1
- Feste Größe
- Reserviert Speicherplatz für alle möglichen Schlüssel

Symboltabelle

- Schlüssel: Objekte aus beliebiger Klasse (evtl. ohne Totalordnung)
- Variable Größe: Abhängig von Anzahl aktueller Einträge
- Anzahl tatsächlicher Einträge i.a. << Anzahl möglicher Schlüssel
 - z.B. 2.000 Kunden mit je 10-stelliger Kundennummer

Listen-Implementierungen von Symboltabellen

- Unsortierte Liste
 - get
 - put

Sortierte Liste

- Voraussetzung Schlüssel mit Totalordnung
- get
- put

Suchbaum-Implementierungen von Symboltabellen

- Einfache (unbalancierte) binäre Suchbäume
 - Voraussetzung: Schlüssel mit Totalordnung
 - Keine O(log n) Garantie im worst case
 - Average Case-Analyse schwierig, wenn zahlreiche Löschungen
 - Speicher-Overhead für Baumstruktur
- Balancierte binäre Suchbäume
 - Voraussetzung: Schlüssel mit Totalordnung
 - get, put mit O (log n) Garantie
 - Komplizierte Implementierung

Implementierung von Symboltabellen

Ziele

- Datenstruktur mit wenig Speicher-Overhead
- Einfache Implementierung
- Totalordnung der Schlüssel nicht erforderlich
- Worst case O(log n)
- Average case O(1)

Idee: Nicht suchen - Speicherort aus Schlüsselwert berechnen...

Symbol- und Hashtabellen

- Symboltabellen
- Hashtabellen
- Hashverfahren

Hashtabellen

Hashtabelle

- Speicherung Schlüssel/Wert-Paare in Array a der Größe m
- Hashfunktion: Schlüsselraum $K \rightarrow \{0,...,m-1\}$
- Paar mit Schlüssel *k* wird unter Index *hash(k)* in Array *a* gespeichert

Fragen:

- Wahl der Array-Größe *m* ?
- Welche Hash-Funktion ?
- Was tun bei Kollision: 2 verschiedene Schlüssel k und k` mit hash (k) = hash (k`)?

Hashtabellen – Wahl der Tabellengröße

"Unbegrenzter Platz"

- Wähle m = ||K||: Reserviert Speicher für jeden möglichen Schlüssel
- Hashfunktion: K durchnummerieren, bijektive Abbildung
- Kollisionsfrei
- Zugriffszeit?

"Unbegrenzte Zeit"

- Wahl *m* = Anzahl der Einträge *n*, d.h. minimaler Speicher
- Sequentielle Suche zur Kollisionsbehandlung, Hashfunktion unwichtig
- Zugriffszeit?

Kompromiss zwischen Zeit- und Platz-Bedarf → Hashing

Hashfunktion

Wahl der Hashfunktion entscheidend für Performance vom Hashing

- Anforderungen
 - Hashfunktion schnell berechenbar
 - Alle Indexwerte erreichbar (d.h. surjektive Abbildung)
 - Schlüsselraum möglichst gleichverteilt auf Indexraum

Beispiele:

- Telefonnummern:
 - Führende Ziffern: Schlecht
 - Hintere Ziffern: Gut
- Datumswert:
 - Jahr oder Nummer vom Tag?

Hashfunktion

- Modulo-Funktion ist naheliegende Hashfunktion
 - hash (k) = k mod m
- Ggfs. vorgeschaltet eine Funktion, die einen Schlüssel k in eine ganzzahlige Zahl überführt.

Wahl von *m* auch wichtig:

- Primzahl ist günstig (kein gemeinsamer Teiler mit Schlüssel)
- m nicht zu klein, sonst sind Kollisionen sehr wahrscheinlich
 - Kollisionen immer möglich, sobald ||K|| > m
 - Geburtstags-Paradox Ab 23 Personen im Raum haben wahrscheinlich 2 Personen am selben Tag Geburtstag $(n \ge 1, 2 * \sqrt{m})$

Symbol- und Hashtabellen

- Symboltabellen
- Hashtabellen
- Hashverfahren

Hashverfahren

- Hashfunktion und Größe m gegeben
- Annahme:
 - Uniform Hashing-Annahme: Für jeden betrachteten Schlüssel ist jeder der m möglichen Hashwerte gleich wahrscheinlich, unabhängig von den anderen betrachteten Schlüsseln
 - → n Schlüssel auf m Positionen hashen:
 Auf jede Position entfallen im Erwartungswert α = n/m Schlüssel
 (α ist der Belegungsfaktor einer Hashtabelle der Größe m, die gerade n Elemente speichert)
- Wie soll die Kollisionsbehandlung stattfinden?

Offene Hashverfahren: Kollisionen werden innerhalb der Hashtabelle gespeichert

Lineares Sondieren, Quadratisches Sondieren

(Halb-)Dynamische Hashverfahren:

- Hashverfahren mit Verkettung der Überläufer (in der Vorlesung)
- Dynamische Hashverfahren (s. Ottmann/Widmayer Kap 4.4.)

Lineares Sondieren

- Verwendet array a mit m > n Elementen
 - $h(k) = k \mod m$
 - Bei Einfügen (put) von k: Sei i = h(k)
 - Falls a[i] besetzt, dann versuche a[i-1], a[i-2], ...
 - nach a[0] versuche a[m-1]

Beispiel: $K = \{0, 1, ...500\}, h(k) = k \mod 7: 53-12-5-15-2-19: h(12)=5; h(53)=4$

0	1	2	3	4	5	6
				53	12	

Einfügen von 5: h(5) = 5: a[5] besetzt, a[4] besetzt => speichere in a[3]

Danach Einfügen von 15,2,19 ergibt

0	1	2	3	4	5	6
19	15	2	5	53	12	

Lineares Sondieren - Aufwand

 Beispiel zeigt, dass man evtl. lange braucht, um Schlüssel zu finden (19 wird an Position 0 gespeichert, Hashwert ist aber 5, d.h. get sucht an Position 5,4,3,2,1,0)

Analyse: Für die durchschnittliche der bei erfolgloser bzw. erfolgreicher Anzahl betrachteten Einträge C'_n bzw C_n beim Linearen Sondieren gilt (α Belegungsfaktor):

$$C_n^* \approx \frac{1}{2} * (1 + \frac{1}{(1-\alpha)^2})$$
 $C_n^* \approx \frac{1}{2} * (1 + \frac{1}{(1-\alpha)^2})$

Belegungsfaktor α	Erfolgreiche Suche	Erfolglose Suche
0,5	1,5	2,5
0,9	5,5	50,5
0,95	10,5	200,5

Quadratisches Sondieren

Verwendet array a mit m > n Elementen

- $h(k) = k \mod m$, m Primzahl der Form 4i + 3
- Bei Einfügen (put) von k: Sei i = h(k)
 - Falls a[i] besetzt, dann versuche a[i-1], a[i+1], a [h(k) -4], a [h(k) + 4], a [h(k) -9],...
 - Plätze um h(k) herum wachsen mit quadratischem Abstand

Analyse: Für C'_n bzw C_n beim Quadratischem Sondieren gilt

$$C_n \approx \frac{1}{(1-\alpha)} - \alpha + \ln(\frac{1}{(1-\alpha)})$$
 $C_n \approx 1 + \ln(\frac{1}{(1-\alpha)}) - \frac{\alpha}{2}$

Belegungsfaktor α	Erfolgreiche Suche	Erfolglose Suche
0,5	1,44	2,5
0,9	2,85	11,4
0,95	3,52	22,05

Hashing mit Verkettung der Überläufer

- Verwendet Array a mit m < n Elementen (separate Verkettung Überläufer)
 - put: Eintrag am Anfang von Liste i, wenn noch nicht drin
 - Get: Lineare Suche in Liste i

0	1	2	3	4	5	6
	15	2		53	12	
		•		•	1	
	43				5	

- Frage: Wieviele Vergleiche benötigt erfolgreiche Suche in diesem Beispiel im Duchschnitt?
- Variante: Direkte Verkettung der Überläufer Jedes Element in Array ist nur Zeiger auf Liste
 Algorithmen und Komplexität - 7 Symbol- und

19

Hashing mit Verkettung Überläufer - Aufwand

Analyse: Für die durchschnittliche der bei erfolgloser bzw. erfolgreicher Anzahl betrachteten Einträge C'_n bzw C_n bei separater Verkettung der Überläufer gilt (α Belegungsfaktor):

$$C_n \approx \alpha + e^{-\alpha}$$
 $C_n \approx 1 + \frac{\alpha}{2}$

Belegungsfaktor α	Erfolgreiche Suche	Erfolglose Suche
0,5	1,25	1,11
0,9	1,45	1,31
0,95	1,48	1,34
1	1,5	1,37

■ Typische Wahl in der Praxis $m \approx n/5$

Zusammenfassung

- Symboltabellen für Speicherung von Datensätzen mit Schlüsseln aus großem Datenraum
- Anstatt Suche nach Schlüssel Berechnung der Adresse aus Schlüsselwert
- Hash-Verfahren als Kompromiss zwischen Platz- und Zeitbedarf
- Offene Hash-Verfahren: Behandlung innerhalb Hash-Tabelle
 - Cluster vermeiden, Hash-Tabellen nicht zu voll, sonst Suche aufwändig
 - Löschen mit Clustern auch problematisch → ggfs. viele Adressen ändern
- "Halbdynamisch": Hash-Verfahren mit Verkettung Überläufer
 - Stabiler bei größerem Füllgrad als offene Hashverfahren
 - Benötigt zusätzlichen Platz für Überläufer