ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
Канд. техн. наук, доцент		О.О. Жаринов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О Л	АБОРАТОРНОЙ РАБ	OTE №2
РАЗРАБОТКА ПРЕОБРАЗО	ОВАТЕЛЕЙ КОДОВ Н	ІА ОСНОВЕ ТИПОВЫХ
ФУНКЦИОНАЛЬНЫХ	узлов комьинац	ИОННОИ ЛОГИКИ
по куј	рсу: СХЕМОТЕХНИК.	A
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. №4142		Некрасов К.С
	подпись, дата	инициалы, фамилия

Вариант 2

1. Цель работы.

Изучить принципы работы типовых функциональных узлов комбинационной логики: шифраторов, дешифраторов, мультиплексоров. Разработать проект преобразователя кодов на их основе.

2. Заданная таблица истинности.

Таблица 1. Заданная таблица истинности

Состояние входных сигналов		Состояние выходных сигналов		
x2	x1	х0	y1	y0
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

3. Две схемы устройств в графическом формате в среде Quartus

Составим обратную таблицу истинности для выходов дешифратора:

Таблица 2. Обратная таблица истинности

Состояние входных сигналов		Состояние выходных сигналов		
x2	x1	x0	ny1	ny0
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1

0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

Зададим таблицу для правильного соединения выходов дешифратора и входов шифратора. Оставшиеся входы замкнем на источник.

Таблица 3. Подключение выходов дешифратора

x2	x1	x0	Z
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

ny1	ny0	N
1	0	2N
0	0	0N
0	1	1N
0	1	1N
0	1	1N
1	0	2N
0	0	0N
0	1	1N

Когда выходные сигналы имеют одинаковые значения, выходы дешифратора нужно объединять логическим элементом ИЛИ, но, так как дешифратор работает инверсно, мы будем использовать логически элемент И (инверсированный ИЛИ).

Рис.1 – Схема устройства шифратор-дешифратор

Составим также таблицу для мультиплексора:

Таблица 4. Данные для мультиплексора

K	E	Зході	Ы	Выходы		Д _i	
	x2	x1	x0	y1	y0	y1	y0
0	0	0	0	0	1	x0	1
	0	0	1	1	1	710	1
1	0	1	0	1	0	1	0
_	0	1	1	1	0		
2	1	0	0	1	0	!x0	x0
_	1	0	1	0	1	•110	710
3	1	1	0	1	1	1	!x0
	1	1	1	1	0	1	•210

Рис. 2 – Схема устройства через мультиплексоры

Схема подключения ПЛИС

Рис. 3 – ПЛИС

4. Временная диаграмма работы схемы в среде Quartus.

Рис. 4 — Временная диаграмма схемы шифратор-дешифратор Временная диаграмма соответствует исходной таблице истинности из индивидуального задания.

Рис. 5 – Временная диаграмма схемы мультиплексора

Временная диаграмма соответствует исходной таблице истинности из индивидуального задания

5. Выводы.

Мною был разработан проект комбинационного устройства на основе программируемой логической интегральной схемы в среде

программирования Quartus: были приобретены навыки формирования проекта комбинационного устройства по заданной таблице истинности.