Computergrafik

Universität Osnabrück, Henning Wenke, 2012-06-11

Was bisher geschah

Kapitel X:

Rasterization

OpenGL Graphics Pipeline

Fixed Stage

Memory

Window Coordinates vs. Monitor

Bestimme einzufärbende Pixel

- Pixel direkt einfärbbar?
 - Nein
- Pixel können von mehreren Primitives überlappt werden
- Primitives werden parallel und auch nacheinander verarbeitet
- Eindeutige Zuordnung unmöglich
- Was pro Pixel erzeugen?
 - "Pixelvorstufe"...
 - ...mit Tiefeninformation:
 - Fragment

Vertices vs. Pixel: Koordinaten

Vertices: 1-3

- Koordinaten x & y
 - Window Coords
 - Kontinuierlich
 - Dreieck: 3 Koordinaten
- Koordinate z
 - Vorhanden

Fragment

- Koordinaten x & y
 - Die des überlappten Pixels...
 - Berechnet aus den Koordinaten der Vertices
- Koordinate z
 - Interpolierter Wert f
 ür diese Pixelkoordinate

Pixel

- Koordinaten x & y
 - Window Coords
 - Diskret
 - Eine Koordinate
- Koordinate z
 - Undefiniert

Vertices vs. Pixel: Farbe

Vertices: 1-3

Pixel

- > Farbe?
 - "Nein",
 - Keine Build-In VS-Out gl_Color

Farbe?

Immer

⇒ Fragment kann initial keine Farbe erhalten

Vertices vs. Pixel: Eigene Daten

Vertices: 1-3

- Beliebige Daten, z.B.
 - Farbe
 - Normale
 - Deformierbarkeit
 - Position in WC
 - •
 - Nur wir kennen deren Bedeutung!

Fragment

- Erhält für seine Pixelposition interpolierte Vertexdaten
- Hier:
 - Farbe $(x_{pixel}, y_{pixel}, Farbe_0, Farbe_1, Farbe_2)$,
 - Normale $(x_{pixel}, y_{pixel}, Normale_0, Normale_1, Normale_2), ...$

Pixel

- Beliebige Daten
 - Keine

3 Stufen im Leben eines Fragments

> Initial

- Pixelposition
- Tiefeninformation
- Für diese Position interpolierte Daten
- Fragment-Pixel Verhältnis?
- (0-n) zu 1
- Verarbeitung (typisch)
 - Berechne, basierend auf Fragmentdaten, eine Farbe
 - Fragment Shader (morgen)
- Per Fragment Ops?
 - Lege, basierend auf allen zu einem Pixel gehörigen Fragments dessen Farbe fest

Beispiel

Definitionen

- Rasterizer
 - Algorithmus
 - Bestimmt von Primitiv überlappte Pixel
 - Erzeugt für jeden davon ein Fragment
- > Fragment
 - Datenstruktur
 - Informell: Vorstufe eines Pixels mit Tiefeninformation
 - Erhält initial für diese Pixelposition interpolierte Daten der Vertices des Primitivs

X.1

Einschub: Perspektivische Vertex Attribut Interpolation

Problemstellung

Depth Interpolation I

Erinnerung: Z in NDC:

•
$$z_{ndc} = -\frac{2nf}{f-n} \left(-\frac{1}{z_{cc}} \right) + \frac{f+n}{f-n}$$

•
$$= const_1 \frac{1}{z_{cc}} + const_2$$

- Gegeben:
 - Linie definiert durch Punkte V_1 und V_2
 - Projiziert auf: Linie definiert durch Punkte P_1 und P_2 in xy-Bildebene bei z = -e
- Zu zeigen:
 - Für einen Punkt P_i auf dieser Ebene kann $1/z_{cc}$ linear zwischen P_1 und P_2 interpoliert werden und
 - Ergebnis mit Interpoliertem Punkt V_i zwischen V_1 und V_2 identisch
 - Und damit perspektivisch korrekt

Dann können in NDC bzw. Window Coords z-Werte linear zwischen beliebigen Punkten interpoliert werden

Depth Interpolation II

Geradengleichung

$$z = mx + b$$

Strahlensatz

$$\frac{p}{x} = \frac{-n}{z} \Longrightarrow x = \frac{pz}{-n}$$

Einsetzen in Geradengleichung

$$z = \frac{mpz}{-n} + b$$

ightharpoonup Nach $\frac{1}{z}$ auflösen

$$\implies \frac{1}{z} = \frac{1}{b} + \frac{mp}{bn}$$

ightharpoonup Setze $z = z_i$, $p = (1 - t)p_1 + t \cdot p_2$ ein

$$\implies \frac{1}{z_i} = \frac{1}{b} + \frac{m \cdot ((1-t) \cdot p_1 + t \cdot p_2)}{b \cdot n} \implies \frac{1}{z_i} = \left(\frac{m \cdot p_1}{b \cdot n} + \frac{1}{b}\right) (1-t) + \left(\frac{m \cdot p_2}{b \cdot n} + \frac{1}{b}\right) \cdot t$$

$$\implies \frac{1}{z_i} = \frac{1}{z_1}(1-t) + \frac{1}{z_2} \cdot t$$

⇒ Lineare Interpolation von $\frac{1}{z}$ in x-Richtung ist korrekt (y analog)

Attribute Interpolation I

- Gegeben Vertices mit Attribut a:
 - V_1 : { x_1 , z_1 , a_1 , ...}, V_2 : { x_2 , z_2 , a_2 , ...}
- Gesucht: Interpoliertes Attribut V_i . a bzw. P_i . a
- Idee: Beschreibe Interpolation der Attribute durch Verhältnis zur z-Interpolation
- Es gilt:
 - $\cos(\alpha) = \frac{a_i a_1}{z_i z_1} = \frac{a_2 a_1}{z_2 z_1}$
 - $\bullet \quad \Longleftrightarrow \frac{a_i a_1}{a_2 a_1} = \frac{z_i z_1}{z_2 z_1}$
- Hinweis:
 Interpolationsverhältnis gilt auch für mehrdimensionale
 Attribute

Attribute Interpolation II

- \triangleright Gegeben: V_1 : { x_1 , z_1 , a_1 , ...}, V_2 : { x_2 , z_2 , a_2 , ...}
- \triangleright Gesucht: P_i . a bzw. V_i . a
- Wir erwarten:

•
$$\frac{a_i - a_1}{a_2 - a_1} = \frac{z_i - z_1}{z_2 - z_1} (I)$$

 $\succ Z_i$ linear interpoliert zwischen P_1 und P_2 :

•
$$z_i = 1/(\frac{1}{z_1}(1-t) + \frac{1}{z_2}t)$$
 (Folie 16)

> Einsetzen in (*I*) und etwas umformen:

•
$$a_i \left(\frac{1}{z_1} (1-t) + \frac{1}{z_2} t \right) = \frac{a_1}{z_1} (1-t) + \frac{a_2}{z_1} t$$

•
$$\frac{a_i}{z_i} = \frac{a_1}{z_1}(1-t) + \frac{a_2}{z_2}t$$

- \rightarrow a/z linear zwischen P_1 und P_2 interpolierbar
- $a_i = z_i \left(\frac{a_1}{z_1} (1 t) + \frac{a_2}{z_2} t \right)$

Überblick: Rastern der GL-Primitives

X.2

Rastern von Punkten

Erzeugen der Fragments

- Gegeben: Punkt mit:
 - Vertex $p(p_x, p_y)$ als Mittelpunkt
 - Ausdehnung size in Pixeln
- Ermittle size · size Pixel großen Bereich um p
- Erzeuge Fragments für alle Pixel, deren Mittelpunkte überlappt sind
- > Attribute?
 - Fragments erhalten genau die Attribute des Vertex

size = 5,5

Point Coordinates

- Erzeuge für Fragments PointCoords s, t ausgehend vom Ursprung des Einflussbereichs
- Mit dem Vertex $p(p_x, p_y)$ und dem Fragment $f(f_x, f_y)$ sind diese:

•
$$S = \frac{1}{2} + \frac{(f_x + 0.5 - p_x)}{size}$$

•
$$t = \frac{1}{2} + \frac{(f_y + 0.5 - p_y)}{size}$$

Hinweis: Origin kann sich auch linksoben befinden

OpenGL Point Rasterizer State

```
// Aktivieren einer variablen Größe des Einflussbereichs für
// alle GL_POINTs
glEnable(GL_PROGRAM_POINT_SIZE);

// Dann kann diese als Build-In Variable, etwa im VS, gesetzt werden.
float gl_PointSize; // Breite und Höhe des Einflussbereichs in Pixeln
```

```
// Alternative: Setzen einer konstanten Größe für alle GL_POINTs
glDisable(GL_PROGRAM_POINT_SIZE); // Variable Größe deaktivieren
glPointSize(
  float size // Breite und Höhe des Einflussbereichs in Pixeln
);
```

Demonstration

X.3

Rastern von Linien

Erzeugen der Fragments (OpenGL Spec)

- Gegeben: Linie mit Eckunkten a, b
- > Bestimme Mittelpunkte (x_p, y_p) der "Kandidatenpixel" p_c
- \triangleright Definiere $\forall p_c$ Bereich R_p

•
$$R_p = \{(x, y) | |x - x_p| + |y - y_p| < \frac{1}{2} \}$$

- \triangleright Erzeuge Fragments für p_c f.d.g.:
 - Linie schneidet R_p
 - Punkt b ∉ R_p, da dieses auch für nächstes Liniensegment des Linienzuges erzeugt wird
- ▶ Breite ≠ 1? Keine Vorgaben in der OpenGL Specification

Erzeugen der Fragments (mögl. Impl. I)

- Berechne Linie von A nach B
 - $AB(t) = a + t \cdot (b a), t \in [0,1]$
- > Bestimme Kandidatenpixel $p_{c,i}(x_{p,i}, y_{p,i})$
- Z.B. alle Pixel, die in rechteckigem Bereich um a und b liegen

Erzeugen der Fragments (mögl. Impl. II)

- Beobachtung: Pixelausdehnung in x-Richtung bei $y = y_{p,i}$ und in y-Richtung bei $x = x_{p,i}$ am größten
- ightharpoonup Führe $\forall p_{c,i}$ folgende Schritte aus:
- Bestimme, sofern existent, Schnittpunkte $S_{y,i}$ von AB(t) mit senkrechter Gerade bei $x_{p,i}$ und $S_{x,i}$ mit waagerechter Gerade bei $y_{p,i}$
- ➤ Teste, ob $S_{x,i}$ oder $S_{y,i} \in R_p$ ist
 - Ja: Erzeuge Fragment für dieses $p_{c,i}$
 - Nein: Teste Sonderfall

Erzeugen der Fragments (mögl. Impl. III)

- Sonderfall: Linie endet in einem Pixelviertel und schneidet daher Achsen nicht
- In diesem Fall liegt/liegen \boldsymbol{a} und/oder \boldsymbol{b} in $R_{p,i}$
- Es muss demnach das Fragment zu einem Kandidatenpixel $p_{c,i}$ erzeugt werden, wenn eine Bedingung erfüllt ist aus:
 - $S_{x,i}$ existiert und $S_{x,i} \in R_p$
 - $S_{y,i}$ existiert und $S_{y,i} \in R_p$
 - $a \in R_n$
 - $\boldsymbol{b} \in R_p$

