Chapitre 1

La topologie quotient

Dans tout ce chapitre X dénote un espace *topologique*, q une surjection. Sauf mention du contraire lorsqu'il est question d'espaces topologiques une application est considérée continue.

1.1 Théorie générale

Définition 1.1.1 (Topologie quotient). La topologie quotient sur Y a pour ouverts les sous ensembles $U \subset Y$ tels que $q^{-1}(U)$ est ouvert dans X.

Remarque. Une caractérisation équivalente de cette topologie peut se faire en définissant les fermés de Y par les fermés de X.

Définition 1.1.2 (Quotient). On dit que $q: X \longmapsto Y$ est un quotient si elle est surjective continue et que la topologie quotient induite par q coïncide avec la topologie de Y.

Proposition 1.1.3. Si $q: X \longmapsto Y$ est une application surjective continue et ouverte alors q est un quotient et Y est muni de la topologie quotient définie par q.

Démonstration. Si U est ouvert dans Y alors $q^{-1}(U)$ est ouvert dans X par continuité de q. Réciproquement si $U \subset Y$ et $q^{-1}(U)$ est ouvert dans X alors par surjectivité de q

$$q(q^{-1}(U)) = U$$

et on en conclut que U est ouvert dans X puisque q est ouverte.

Remarque. Ce critère reste valable si q est une application fermée, la preuve est identique en remplaçant les ouverts par des fermés.

Exemple 1.1.4. Il est cependant important de noter que ce critère bien que suffisant n'est pas nécessaire. Définissons l'application

q est une application continue, c'est un quotient pour la topologie euclidienne sur [0,3], [0,2] mais elle n'est pas ouverte, (1,2) est envoyé sur 1.

Proposition 1.1.5. La composition de deux quotients est également un quotient.

Proposition 1.1.6 (Propriété universelle). La topologie quotient est la plus fine telle que l'application q soit continue. De plus, $g: Y \longmapsto Z$ est un e application continue si et seulement si $g \circ q: X \longmapsto Z$ est continue.

Démonstration. Soit U un ouvert d'une topologie sur Y telle que q soit continue. Par continuité de q $q^{-1}(U)$ est ouvert dans X et donc U est ouvert dans Y pour la topologie quotient. Si g est continue $g \circ q$ est continue en tant que composition d'applications continues. Réciproquement, si $g \circ q$ est continue prenons $V \subset Z$ un ouvert, $(g \circ q)^{-1}(Z)$ est ouvert dans X par continuité de la composée et de plus

$$q^{-1}(g^{-1}(Z)) = (g \circ q)^{-1}(Z)$$

est ouvert. Ainsi par définition de la topologie quotient $g^{-1}(Z)$ est ouvert dans Y ce qui conclut quant à la continuité de g.

Exemple 1.1.7. Considérons le cercle unité

$$C := \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = 1\}.$$

On définit q une application surjective comme suit

$$q: \mathbf{R} \longmapsto \mathbf{C}$$

$$t \longmapsto e^{2\pi it}$$

Il s'agit d'une application continue surjective et ouverte pour la topologie euclidienne, c'est donc un quotient.

Proposition 1.1.8. Si q est un quotient $X \mapsto Y$ et que X est compact alors Y est aussi compact.

 $D\acute{e}monstration$. L'image d'un compact par une fonction continue est compacte.

1.2 Quotient par une relation

Étant donné une relation d'équivalence \sim on note [x] la classe d'équivalence de $x \in X$.

Définition 1.2.1 (Espace quotient). On définit une application

$$q: X \longmapsto^{X}/_{\sim}$$
$$x \longmapsto [x]$$

alors l'espace quotient de X par \sim est l'ensemble $^X/_{\sim}$ munit de la topologie quotient induite par q.

Exemple 1.2.2. Le cercle C définit précédemment peut être vu comme espace quotient de [0, 1] par la relation

$$x \sim y \iff \begin{cases} x = y \\ x, y \in \{0, 1\} \end{cases}$$
.

Proposition 1.2.3 (Propriété universelle). Soit \sim une relation d'équivalence sur un espace X, pour toute application $f: X \longmapsto Y$ vérifiant $x \sim x' \implies f(x) = f(x')$ il existe une unique application $\hat{f}: X/_{\sim} \longmapsto Y$ telle que $\hat{f} \circ q = f$. Le diagramme suivant résume cette propriété, \hat{f} est l'unique fonction le faisant commuter

Démonstration. Comme on veut $\hat{f} \circ q = f$ on doit avoir $f([x]) = \hat{f}(q(x)) = f(x)$ et l'unicité est garantie. Cette application est bien définie puisqu'on a imposé que f soit compatible avec \sim . Pour vérifier la continuité de \hat{f} il suffit de réaliser que la composition $\hat{f} \circ q$ est continue puisqu'il s'agit de f et d'appliquer le Lemme précédent.

Définition 1.2.4 (Collapse de X par A). Le collapse de X par A est le quotient $X/_{\sim}$ où

$$x \sim x' \iff \begin{cases} x = x' \\ x, x' \in A \end{cases}$$
.

On le note $X/_A$.

Exemple 1.2.5. Le cercle unité définit précédemment s'écrit comme le collapse $C = [0,1]/\{0,1\}$.

Définition 1.2.6 (Wedge). Si (X_i, x_i) est un espace épointé pour $i \in I$ un ensemble d'indices non vide, alors le wedge ou *bouquet* en français, est le quotient de la réunion disjointe des X_i par la relation

$$x \sim x' \iff \begin{cases} x = x' \\ x, x' \in \{x_i \mid i \in I\} \end{cases}$$
.

On le note $\bigvee_{i \in I} X_i$.

Exemple 1.2.7. Le wedge $S^1 \bigvee S^1$ est un huit, par abus de notation on admet de mentionner le point de base lorsque le choix de ce dernier n'a pas d'importance.

Définition 1.2.8 (Cylindre et cône de base X). Pour un espace X, le cylindre de base X est $X \times I$ avec le plus souvent I = [0, 1]. Le cône de base X est le quotient $X \times I/X \times 0$, on le note CX.

Proposition 1.2.9. Le cône CX est toujours contractile.

Démonstration. On définit

$$H: X \times I \times I \longmapsto X \times I$$

 $(x, s, t) \longmapsto (x, st).$

Cette application est clairement continue, elle passe aux quotients et induit une application

$$\overline{H}: CX \times I \longmapsto CX$$

 $([x,s],t) \longmapsto [x,st].$

Cette dernière application est bien définie puisque H(x,0,t)=(x,0). Cette application \overline{H} est une homotopie entre $\overline{H}|_{CX\times 0}$ qui est l'application constante sur [x,0] et $\overline{H}|_{CX\times 1}=Id_{CX}$. Ainsi \overline{H} est une contraction du cône sur un point.

5

1.3 Quotient et séparabilité

Dans toute cette section séparé et Hausdorff sont synonymes. En général le quotient d'un espace Hausdorff n'est pas nécessairement Hausdorff.

Exemple 1.3.1. L'exemple classique est la droite avec deux origines D obtenue comme quotient de $\mathbf{R} \times \{0,1\}$ par la relation

$$(x,s) \sim (y,t) \iff \begin{cases} (x,s) = (y,t) \\ x = y \neq 0 \end{cases}$$
.

On ne peut pas séparer ces deux origines par des ouverts. On peut s'intéresser au graphe de cette relation

$$\Gamma := \{(d, d') \in (\mathbf{R} \times \{0, 1\})^2 \mid d \sim d'\}^1$$

Proposition 1.3.2. Si $X/_{\sim}$ est séparé, alors le graphe de la relation \sim est fermé.

^{1.} Le 0 n'est pas inclut pour le graphe de la classe (0,1) et de la classe (1,0).

Pour arriver à ce résultat nous aurons besoin du Lemme suivant.

Lemme 1.3.3. Un espace est Hausdorff si et seulement si la diagonale

$$\Delta := \{(x, x) \in X \times X\}$$

est fermée.

 $D\acute{e}monstration$. Soient $x \neq y \in X$ et $x \in U, y \in V$ des voisinages distincts. Alors $U \times V$ est un voisinage ouvert de $(x,y) \in X \times Y$ munit de la topologie produit. On observe que $U \cap V \neq \emptyset \iff U \times V \cap \Delta = \emptyset$. On peut séparer x et y par des ouverts si et seulement si Δ^c est ouvert.

Démonstration de la proposition. Si le quotient $X/_{\sim}$ est séparé, la diagonale $\Delta \subset (X/_{\sim})^2$ est fermée par le Lemme précédent. On considère $q \times q: X \times X \longmapsto (X/_{\sim}) \times (X/_{\sim})$ une application continue et on identifie

$$(q \times q)^{-1}(\Delta) = \{(x, y) \in X \times X \mid [x] = [y]\} = \Gamma$$

qui est donc fermé.

Notons cependant que cette condition n'est pas suffisante. Le critère suivant fournit quant à lui une condition suffisante, bien que non nécessaire.

Définition 1.3.4 (Saturé de A). On appelle saturé de A l'ensemble $q^{-1}(q(A))$ pour $A \subset X$.

Proposition 1.3.5. Si X est un espace séparé tel que $q^{-1}(q(x))$ est compact pour tout $x \in X$ et $q^{-1}(q(F))$ est fermé dans X pour tout F fermé dans X, alors $X /_{\sim} = q(X)$ est séparé

Démonstration. Prenons deux classes disjointes du quotient $[x] \neq [y]$. Puisque X est séparé on peut trouver deux ouverts disjoints de X, U et V, avec $q^{-1}(x) \in U$ et $q^{-1}(y) \in V$ puisque $q^{-1}([x])$ et $q^{-1}([y])$ sont compacts. En regardant les complémentaires fermés on a que

$$U^c \subset q^{-1}(q(U^c))$$
 et $V^c \subset q^{-1}(q(V^c))$.

Soient donc

$$U' := X \setminus (q^{-1}(q(U^c))) \subset U \text{ et } V' := X \setminus (q^{-1}(q(V^c))) \subset V.$$

On va prouver que q(U') et q(V') sont des voisinages ouverts et disjoints de [x] et [y] respectivement. D'abord $[x] \in q(U')$ car $x \notin q^{-1}(q(U^c))$ et de même $[y] \in q(V')$. Pour montrer que q(U') est ouvert, on montre que $U' = q^{-1}(q(U'))$. La première inclusion est

toujours vérifiée, montrons la seconde. Soit $u \in q^{-1}(q(U'))$, alors $q(u) \in q(U')$ et donc $q(u) \notin q(U^c)$. Ainsi $u \notin q^{-1}(q(U^c))$, donc $u \in U'$ par construction de U', de même pour V'. Pour terminer la preuve, montrons que q(U') et q(V') sont disjoints. Supposons par l'absurde que ce ne soit pas le cas. Soit $[z] \in q(U') \cap q(V')$, il existe donc $u' \in U'$ tel que $[z] = q(u') \in q(V')$. Ainsi $u' \in q^{-1}(q(V')) = V'$ mais U' et V' sont disjoints, contradiction.

Corollaire 1.3.6. Si $A \subset X$ est un sous espace compact et X séparé, alors X/A est séparé.

Démonstration. Le critère précédent est vérifié puisque la saturation d'un point

$$q^{-1}(q(x)) = \begin{cases} A \text{ si } x \in A \\ \{x\} \text{ sinon} \end{cases}.$$

Dans les deux cas ce sont des compacts. Si $F \subset X$ est fermé alors

$$q^{-1}(q(F)) = \begin{cases} F \text{ si } A \cap F = \emptyset \\ F \cup A \text{ sinon} \end{cases}.$$

Notons que F est fermé puis que compact dans un espace séparé, ce qui implique que $F \cup A$ l'est également.

Exemple 1.3.7. On montre à travers cet exemple que cette proposition n'est pas nécessaire. On définit sur \mathbb{R}^2 la relation

$$\mathbf{x} \sim \mathbf{y} \iff \exists \mathbf{a} \in \mathbf{Z}^2 \mid \mathbf{x} + \mathbf{a} = \mathbf{y}.$$

Alors ${f R}^2/_{\sim}$ est compact et séparé mais $q^{-1}(q({f 0}))={f Z}^2$ n'est pas compact.

Définition 1.3.8 (Espace projectif réel). Soit $S^n \subset \mathbf{R}^{n+1}$ la sphère unité et \sim la relation définie par $x \sim y \iff x = \pm y$ pour $x, y \in S^n$. L'espace projectif réel \mathbf{RP}^n est le quotient $S^n/_{\sim}$.

Proposition 1.3.9. \mathbb{RP}^n est compact et séparé.

Démonstration. S^n est compact le quotient l'est aussi. De plus $q^{-1}(q(x)) = \{\pm x\}$ est compact et $q^{-1}(q(F)) = F \cup -F$ est fermé comme union de deux fermés et donc par la proposition précédente le quotient est séparé.

On passe de \mathbf{R} à \mathbf{C} et on remplace les nombre réels de valeur absolue 1 par $S^1 \subset \mathbf{C}$ les nombres complexes de module 1.

Définition 1.3.10 (Espace projectif complexe). Soit $S^{2n+1} \subset \mathbf{C}^{n+1}$ la sphère unité et la relation \sim définie par $x \sim y \iff x = a \cdot y$ pour un $a \in S^1$. Le quotient \mathbf{CP}^n est l'espace projectif complexe de dimension n.

1.4 Quotient par des actions de groupe

Définition 1.4.1 (Groupe topologique). Un groupe topologique G est un ensemble m'unit d'une loi de groupe · ainsi que d'une topologie telle que la multiplication et l'inversion soient des applications continues.

Exemple 1.4.2. On donne quelques exemples de base de groupes topologiques

- 1. Tout groupe munit de la topologie discrète est un groupe topologique, il est parfois noté G^{δ} .
- 2. $(\mathbf{R}^n, +)$ est un groupe topologique pour la topologie euclidienne.
- 3. $(GL_n(\mathbf{R}), \cdot)$ est un groupe topologique muni de la topologie de sous espace de $M_n(\mathbf{R}) \cong \mathbf{R}^{n^2}$. La multiplication et l'inversion de matrices sont des applications continues.

Lemme 1.4.3. Tout sous groupe d'un groupe topologique est encore un groupe topologique.

Définition 1.4.4. Une action d'un groupe topologique G à droite sur un espace X est donnée par une application continue

$$X \times G \longmapsto X$$

 $(x,g) \longmapsto x \cdot g$

satisfaisant

- 1. $x \cdot 1_G = x$
- $2. \ x \cdot (gh) = (x \cdot g) \cdot h$

Définition 1.4.5 (Espace des orbites). Soit X un espace sur lequel G agit. L'espace des orbites X/G est le quotient de X par la relation $x \sim y \iff \exists g \in G \mid x = y \cdot g$.

Exemple 1.4.6. 1. Le groupe C_2 agit sur $S^n \subset \mathbf{R}^{n+1}$ par l'action antipodale, le générateur $g \in C_2$ agit par $x \cdot g = -x$. Alors $S^n / C_2 \cong \mathbf{RP}^n$.

2. Le groupe $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ agit par multiplication à droite sur les coordonnées de $S^{2n+1} \subset \mathbb{C}^{n+1}$. Pour $z \in S^1$ et $a = (a_0, \dots, a_n) \in S^{2n+1}$, $a \cdot z = (a_0 z, \dots, a_n z)$. Le quotient $S^{2n+1}/S^1 \cong \mathbb{CP}^n$.

- 3. Le groupe (discret) $(\mathbf{Z}^2, +)$ agit par translation sur le plan \mathbf{R}^2 , le quotient $\mathbf{R}^2/\mathbf{Z}^2$ est un tore.
- 4. Le groupe S^1 agit par rotations d'axe vertical sur S^2 , les orbites sont les parallèles et les pôles. Le quotient $S^2/S^1 \cong I$, les classes des pôles sont les extrémités de l'intervalle.

Remarque. Étant donne un groupe G et un sous groupe H de G, H agit sur G par multiplication

$$G \times H \longmapsto G$$

 $(q,h) \longmapsto qh.$

L'espace quotient G/H est l'espace des orbites gH. En particulier ces dernières ont toutes le même cardinal. Lorsque $H \triangleleft G$, l'espace quotient G/H hérite d'une structure de groupe.

Proposition 1.4.7. Soit G un groupe topologique agissant sur un espace X, alors

- 1. Le quotient $q: X \longrightarrow X/_G$ est une application ouverte.
- 2. Si X est compact alors le quotient l'est aussi.
- 3. Si X et G sont compact et séparés alors le quotient l'est aussi.

 $D\acute{e}monstration.$ 1. Puisque la multiplication par g est un homéomorphisme

$$X \longmapsto X$$
$$x \longmapsto x \cdot g$$

si $U \subset X$ est ouvert alors $U \cdot g$ l'est aussi. Pour montrer que q(U) est ouvert dans le quotient on doit montrer par définition de la topologie quotient que la primage est ouverte dans X. Or $q^{-1}(q(U)) = \bigcup_{g \in G} U \cdot g$, est ouvert comme union d'ouverts.

- 2. L'image d'un compact par une fonction continue est compact.
- 3. Comme X est séparé, la diagonale Δ est fermée dans $X \times X$ par le **Lemme 1.3.3** donc compacte. On pose

$$X \times X \times G \longmapsto X \times X$$

 $(x, y, g) \longmapsto (x, yg).$

L'image de $\Delta \times G$, compact, est le graphe Γ de la relation, qui est compact. X étant séparé Γ est fermé. Soient $x,y \in X$ avec $xG \neq yG$. Comme $(x,y) \notin \Gamma$, il existe un voisinage dans $X \times X$ de (x,y) disjoint de Γ . On peut choisir ce dernier par définition de la topologie produit comme $U \times V$ avec $U,V \subset X$ des ouverts.

On affirme que les ouverts q(U) et q(V) (ouverts par le premier point de la proposition) séparent les orbites xG et yG. Si $zG \in q(U) \cap q(V)$ alors $z = ug_1 = vg_2$ avec $u \in U, v \in V, g_1, g_2 \in G$. Mais alors $(u, v) = (u, ug_1g_2^{-1}) \in U \times V \cap \Gamma$, contradiction.

Exemple 1.4.8. \mathbb{RP}^n et \mathbb{CP}^n sont compacts et séparés.

1.5 Les espaces projectifs

Définition 1.5.1 (Stabilisateur). Le stabilisateur de $x \in X$ est l'ensemble

$$G_x := \{ g \in G \mid g \cdot x = x \}.$$

Proposition 1.5.2. Soit G un groupe topologique compact qui agit à gauche transitivement sur un espace X séparé, alors pour tout point $x \in X$ on a un homéomorphisme

$$G/_{G_x} \cong X$$
.

Démonstration. On pose l'application

$$\varphi_x: G \longmapsto X$$

$$g \longmapsto g \cdot x.$$

Puisque l'action est transitive on obtient que φ_x est surjective. De plus

$$\varphi_x(g) = \varphi_x(g') \iff g \cdot x = g' \cdot x \iff g^{-1}g' \in G_x$$

. Ainsi φ_x passe au quotient $\overline{\varphi_x}: {}^G/_{G_x} \longmapsto X$ et on a vu que cette application est surjective et injective. Puisque ${}^G/_{G_x}$ est compact et X est séparé c'est un homéomorphisme. \square

Exemple 1.5.3. Pour $n \geq 2$, le groupe $\mathcal{SO}(n)$ agit transitivement sur $S^{n-1} \subset \mathbf{R}^n$ par multiplication matricielle à gauche sur les vecteurs colonnes de norme 1. Le stabilisateur de e_n est isomorphe à $\mathcal{SO}(n-1)$. Par abus de notation on considère $\mathcal{SO}(n-1)$ comme un sous groupe de $\mathcal{SO}(n)$. On a $\mathcal{SO}(n)/\mathcal{SO}(n-1) \cong S^{n-1}$.

En petites dimensions on a $\mathcal{SO}(1) = \{(1)\}$. Puis $\mathcal{SO}(2) \cong S^1$, enfin $\mathcal{SO}(3)/\mathcal{SO}(2) \cong S^2$.

Remarque.
$$\mathbf{RP}^0 \cong \{\pm 1\}/_{-1} \sim 1$$
, $\mathbf{RP}^1 \cong S^1$, $\mathbf{RP}^2 \cong D^2/_{\sim}$

Proposition 1.5.4. On a un homéomorphisme $\mathcal{RP}^3 \cong \mathcal{SO}(3)$.

1.6 Recoller des espaces

Soient $f:A\longmapsto X$ et $g:A\longmapsto Y$ deux applications continues. On aimerait construire un nouvel espace à partir de X et Y en identifiant leur 'partie commune' A.

Définition 1.6.1 (Recollement). Le recollement $X \cup_A Y$ est l'espace quotient $X \sqcup Y /_{\sim}$ où \sim est la relation d'équivalence engendrée par $f(a) \sim g(a) \ \forall a \in A$.

Remarque. Voir Ph

Proposition 1.6.2 (Propriété universelle). Pour toutes applications $\alpha: X \longmapsto Z$ et $\beta: Y \longmapsto Z$ telles que $\alpha \circ f = \beta \circ g$ il existe une unique application $\gamma: X \cup_A Y \longmapsto Z$ telle que $\gamma \circ i = \alpha$ et $\gamma \circ j = \beta$.

 $D\acute{e}monstration$. Pour définir γ on pose

$$\begin{split} H: X \sqcup Y &\longmapsto Z \\ x &\longmapsto \alpha(x) \\ y &\longmapsto \beta(x). \end{split}$$

Ce choix passe au quotient car $H(f(a)) = \alpha(f(a)) = \beta(g(a)) = H(g(a))$. On pose $\gamma := \overline{H}$ l'unicité est quant à elle claire.