TIPE

Propagation des épidémies dans la ville

Khalil BENKHALI

numéro de candidat 15025

Sommaire

Introduction

Présentation de la théorie de percolation

Modélisation numérique des épidémies

Conclusion

Un peu d'histoire:

- L'épidémiologie daterait du Ve siècle avant J.C
- ☐ Hippocrate (460 av. J.-C,377 av. J.-C) serait le premier épidémiologue
- ☐ Les mathématiques n'avaient pas leur place en épidémiologie
- ☐ Ce n'est qu'au XVIII e siècle avec les travaux de Daniel Bernoulli (1700-1782) que l'on commence à comprendre leur importance.

Définition et facteurs influençant:

Le R_0 , ou taux de reproduction de base, représente la moyenne du nombre de nouveaux cas générés par une seule personne infectée dans une population sans immunité. Il est principalement influencé par :

- → la durée de la contagiosité après l'infection.
- la probabilité d'infection suite à un contact entre une personne infectée et une personne susceptible.
- la fréquence des contacts humains.

Analyse:

En 2003 , les épidémiologistes mathématiques estimaient que R_0 était de l'ordre de 2,2 à 3,6 pour le virus SARS – une estimation bien supérieure à 1.

Malgré cette estimation et une susceptibilité quasi universelle, le SARS n'est pas devenu une pandémie mondiale.

Problématique:

Comment peut-on expliquer ce désaccord?

Origine de ce désaccord:

- * Négligence de la configuration des réseaux de contact.
- * Erreur : risque d'infection égal pour toutes les personnes sensibles.
- * SARS se propage vite dans immeubles résidentiels et hôpitaux en raison de contacts étroits élevés par rapport à la population générale.

Inspirée à l'origine par des questions de physique, la théorie de percolation permet d'étudier certaines propriétés des réseaux. Elle aide notamment à comprendre la propagation des épidémies, à concevoir des réseaux de communication décentraliser ou à caractériser la diffusion des informations au sein d'un réseau social. Afin d'étudier le modèle de percolation, il est important de rappeler quelques notions sur la théorie des graphes.

Définition:

Un graphe (non orienté) est un couple G=(S,A) où S est l'ensemble des sommets de G, et A est un ensemble de paires d'éléments distincts de S, les arrêtes de G.

Définition:

Soit $s = \{x,y\}$ une arrête du graphe G.

Les sommets de x et y sont appelés les extrémités de l'arrête s. Deux sommets qui sont les extrémités d'une même arrête sont dits **voisins** ou **adjacents**.

Definition:

Soit G = (S,A) un graphe.

Un **chemin** de longueur $n \ge 0$ du sommet x au sommet y est une suite $P = (x_0 = x, x_1, ..., x_n = y)$ de sommets de G telle que pour tout $k \in [0, n-1]$, $\{x_k, x_{k+1}\} \in A$. On dit que les sommets x et y sont reliés par le chemin P.

Définition:

Un graphe dans lequel tous les sommets sont reliés par au moins un chemin est dit **connexe**.

Définition:

Soit d > 1.

On définit la distance de **Manhattan** entre deux points x et y appartenants à \mathbb{Z}^d comme :

$$\delta(x,y) = \sum_{i=1}^{d} |x_i - y_i|$$

La théorie de la percolation repose alors sur l'étude du graphe $\mathbb{L}^d=(\mathbb{Z}^d,\mathbb{E}^d).$

Où $\mathbb{E}^d = \{\{x,y\} \in \mathbb{Z}^{2d}, \delta(x,y) = 1\}$ est l'ensemble des arrêtes de ce graphe.

Il y a deux types de percolation. La percolation par lien (bond percolation) et la percolation par site (site percolation). Soit G un graphe non orienté, la percolation par lien est l'étude des phénomènes de percolation sur les arêtes de G. La percolation par site, quant à elle, est l'étude des phénomènes de percolation sur les sommets de G. Ces deux formes de percolation bien que différentes possèdent des propriétés similaires.

Nous allons étudier ces propriétés sur l'espace \mathbb{L}^d .

Soit $\mathcal{T}=(\Omega,\mathcal{F})$, avec $\Omega=\{0,1\}^{|\mathbb{E}^d|}$ et $\mathcal{F}\subset\mathcal{P}(\Omega)$. \mathcal{T} est un espace mesurable.

Définition:

Soient $\mathbb{L}^d=(\mathbb{Z}^d,\mathbb{E}^d)$, $\omega\in\Omega$ une configuration.

On dit qu'une arête $e\in\mathbb{E}^d$ est ouverte avec une probabilité p lorsque $\omega(\mathbf{e})=1$ et qu'elle est fermée avec une probabilité 1 - p si $\omega(\mathbf{e})=0$ pour $0\le p\le 1$. La même terminologie est utilisée pour les sommets de \mathbb{Z}^d .

On munit \mathcal{T} de la mesure μ_e dite mesure de Bernoulli.

Définition:

$$\mu_e(\omega(e) = 0) = 1 - p$$
 $\mu_e(\omega(e) = 1) = p$

On définit alors la mesure produit comme :

Définition:

$$\mathbb{P}_p = \prod_{e \in \mathbb{E}^d} \mu_e$$

Posons K = $\{e \in \mathbb{E}^d \mid \omega(e) = 1\}$. K est alors un sous-ensemble de \mathbb{E}^d et on obtient ainsi des sous-graphes de \mathbb{L}^d .

Dans le cadre général, pour un graphe $G=(V,\,E)$, un cluster ou un amas est un ensemble C de composantes connexes de G.

Définition:

Soit $G = (\mathbb{Z}^d, K)$ un sous-graphe de \mathbb{L}^d contenant tous ses sommets et les arêtes ouvertes.

Chaque composante connexe de G est appelée cluster ouvert.

On pose $C(x) = \{y \in \mathbb{Z}^d \mid y \text{ est connect\'e à } x \text{ par un chemin ouvert}\}.$

C(x) est le cluster contenant x.

Figure 1: Mise en évidence des clusters pour une percolation par lien.

Figure 2: Mise en évidence des clusters pour une percolation par sites.

On cherche la probabilité p permettant d'obtenir des clusters de taille infinie. On dira qu'il y a percolation si notre graphe possède un cluster de taille infinie (i.e si $|C| = \infty$). On introduit :

Définition:

La fonction croissante
$$heta(p): egin{cases} [0,1]
ightarrow [0,1] \\ p \mapsto \mathbb{P}_p\{|C(0)| = \infty\} \end{cases}$$
 .

On remarque que pour des valeurs de p inférieur à un certain seuil, on a $\theta(p)=0$: il y a un phénomène de transition de phase. On définit alors la probabilité critique ou seuil de percolation comme :

Définition:

$$p_c(d) = \sup\{p \mid \theta(p) = 0\}$$

On remarque que p_c dépend de d le degré du graphe \mathbb{L}^d qu'on étudie, dans le cadre de l'étude des feux de forêts on s'intéresse à \mathbb{L}^2 .

Nous avons pu tout d'abord observer expérimentalement l'existence du seuil de percolation :

On modélise notre ville par une matrice carré représentant un réseau carré fini, où chaque carré est un sommet contenant un entier compris entre 0 et 9 représente un état de la ville ou des habitants:

```
colors e ((46, 48, 48), (0, 118, 0), (6,70,0), (167,108,00), (255, 48, 20), (256,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48,20), (128,48
```

On commence par créer une matrice vide

```
def carre_vide (n):
  A = zeros ((n, n), int)
  return A
```

Puis on peuple notre ville d'habitants :

Ensuite on infecte un côté de notre ville :

```
def Contamination_front_nord (A):
    n = A.shape[0]
    R= []
    for i in range (1 ,n - 1):
        if A[1,i] == 1:
            A[1,i] = 4
            R.append ([1,i])
    return R
```

De la même manière, on écrit une fonction Contamination_front_ouest.

À l'aide des fonctions définies en annexe et du module PIL, on obtient les images de la ville avant et après l'épidémie :

Figure 3: Ville de 500 pixels avec p = 0.6

Figure 4: Début de l'épidémie sur le côté nord.

Figure 5: État de la ville après l'épidémie.

Figure 6: Début de l'épidémie sur le côté ouest.

Figure 7: État de la ville après l'épidémie.

On introduit ensuite la fonction test_percolation, prenant pour argument p et n et renvoyant si le réseau est en percolation:

```
def test_percolation(n, p):
    A = carre_vide(n)
    peuplement (A, p)
    B = epidemie_front_nord (A)
    for j in range(n):
        if B[n-2][j] == 7 :
            return True
    B = epidemie_front_ouest (A)
    for j in range(n):
        if B[i][n-2] == 7:
            return True
    return False
```

On peut ainsi implémenter la fonction θ sur python:

```
def theta(p, k, n):
    s = 0
    for i in range(k):
        if test_percolation(n, p):
            s += 1
    return s/k
```

Ainsi à l'aide d'une dichotomie on peut approximer le seuil de percolation p_c :

```
def p_c(eps, k, n):
    x, y = 0, 1
    while y - x > eps:
        p = (x + y) / 2
        prob = theta(p,k, n)
        if prob < 0.5:
            x = p
        elif prob > 0.6:
            y = p
    return (x + y) / 2
```

Dans nos différentes simulations on a pu trouvé p_c (e*10-4, 500, 500) = 0.5927 ce qui correspond bien à une valeur approchée de p_c .

29/38

Nous avons ensuite implémenté à travers les fonctions dans l'annexe une ville comprenant trois types d'habitants selon leurs systèmes immunitaires:

Figure 8: Ville de 25000 pixels dont 7500 font parties de la population 2 avec p = 0.7.

Figure 9: État de la ville après l'épidémie avec $p_{a1} = 0.9$, $p_{a2} = 0.7$ et $p_b = 0.5$.

On établit ensuite pour les mêmes paramètres que précédemment, à l'aide de la fonction pourcentage détaillée en annexe le pourcentage de la population 1 (P_1) , de la population 2 (P_2) et de la population 3 (P_3) infectés pour différentes valeurs de p.

р	0.1	0.2	0.3	0.4	0.5
$P_1(\%)$	0.01	0.01	0.01	0.01	0.01
P ₂ (%)	0.22	0.45	0.16	0.14	0.25
P ₃ (%)	0.01	0.01	0.01	0.01	0.02

р	0.6	0.7	0.8	0.9	1
$P_1(\%)$	0.05	16.00	88.28	95.97	98.12
$(P_2\%)$	0.63	14.37	71.99	79.95	82.57
P ₃ (%)	0.05	17.47	92.58	98.17	99.07

On remarque que la population est pas ou quasiment pas infectée pour p < 0.6, on observe encore une fois un phénomène critique caractéristique à une transition de phase. En réajustant les fonctions utilisées pour déterminer p_c précédemment on trouve un nouveau seuil de percolation dépendant des probabilités d'inflammations valant dans ce cas à peu près à 0,6334.

Réseaux de contacts:

Figure 10: Les points représentent les individus et les lignes entre les points représentent les contacts entre les individus qui pourraient potentiellement conduire à la transmission de la maladie

Sommets des réseaux de contact :

Figure 11: Réseaux de la loi de puissance

Figure 12: Réseau de Poisson

Interprétation des résultats des simulations:

Réseaux de la loi de puissance : Diminution du nombres de supers-propagateurs impliquant une diminution de probabilité de propagation de l'épidémie

Réseau de Poisson: Foyers au-dessus du seuil impliquant une propagation du virus.

Conclusion

Conclusion

- Percolation modèle simple permettant de retranscrire certains phénomènes complexes comme la propagation des épidémies.
- Mise en évidence de l'importance de la géométrie et de la densité de la population dans la propagation des épidémies.
- Toutefois ce modèle est incomplet dans sa description du phénomène réel et peut être complété comme nous l'avons proposé.
- Nécessité alors d'étudier la contagibilité des personnes constituants notre population.
- Mise en évidence de l'impossibilité d'un modèle général: singularité du modèle.

Merci pour votre attention !!!