Tennis Shots Classification With Deep Learning

MSCA 37011 Spring 2022

Vritti Gandhi, Shikhar Madrecha, Haider Waseem, Nihaal Zaveri

Agenda

- Abstract
- Exploratory Data Analysis
- Modeling
- Results and Future Work

Abstract

- Soal: identify the type of tennis shots from a video
- Data taken from Thetis dataset

- Implemented three different models
 - Base CNN model
 - Binary classification CNN model
 - LRCNN

EDA

Data Dictionary

The data has been taken from *THree DimEnsional TennIs Shots (THETIS)* dataset.

THETIS set is comprised of a set of 12 basic Tennis shots performed by 31 amateurs and 24 experienced players. Each shot has been performed several times resulting in 1980 (single period cropped) videos, converted to AVI format. Videos were captured using an Xbox Kinect.

The total duration of the videos is 2 hours and 15 minutes.

Two handed backhand

Forehand Flat

One handed backhand

Smash

The complete set of classes which are included in the dataset are:

- 1. backhand,
- 2. backhand 2 hands,
- 3. backhand slice,
- 4. backhand volley,
- 5. flat service,
- 6. forehand flat,
- 7. forehand open stands,
- 8. forehand slice,
- 9. forehand volley,
- 10. kick service,
- 11. slice service,
- 12. smash

Distribution of Classes and Data Size

Original Video and Frames data size

The THETIS dataset contains 5 second videos for each shot. To be able to input these videos in the model, we split every video in different frames and use these frames as an input into the model.

We have total **1980** videos split equally between 12 classes, i.e., **165** videos for each class.

From these videos, we extract the frame at the end of every second which leads to generation of c. 9k frames in total and around 700-800 frames for each class.

Extracting Frames

Method 1: Extracting the last frame of every second

For the LRCN model, we extract 16 frames evenly spread out throughout the video.

Resizing Frames

The original size of the frames extracted from videos was 480*640 pixels. This was too large to be used as an input on our local machines and was making the model run into OOM errors.

We decided to resize the images to 120*160 pixels to improve model speed and performance.

We also normalize all images by dividing the pixels by 255.

Infrastructure Used

As running CNNs can be computationally very expensive, we have tried variety of platforms / infrastructures to boost training and prediction speed.

Office of Research and

RCC - Skyway

Modeling

Base Model

For our baseline model, we use all 12 shot classes

We selected 200 frames of each shot type for training the model

50 frames of each shot were used for validation

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 118, 158, 32)	896
conv2d_1 (Conv2D)	(None, 114, 154, 64)	51264
<pre>batch_normalization (BatchNormalization)</pre>	None, 114, 154, 64)	256
conv2d_2 (Conv2D)	(None, 114, 154, 64)	102464
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 57, 77, 64)	0
<pre>batch_normalization_1 (Batching has been been been been been been been bee</pre>	(None, 57, 77, 64)	256
flatten (Flatten)	(None, 280896)	0
dense (Dense)	(None, 12)	3370764

Total params: 3,525,900 Trainable params: 3,525,644 Non-trainable params: 256

Base Model

Test loss: [36.97636795043945, 0.10833333432674408] Train loss: [16.63172721862793, 0.2212500125169754]

True Class

Predicted Class

Binary Classification

Instead of using all 12 shot classes, we simplified our approach to a binary classification

Groundstrokes: 2 handed backhand and flat forehand

Service: combine three types of serve – slice, flat, kick

1776 groundstroke frames

2553 service frames

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 118, 158, 32)	896
conv2d_1 (Conv2D)	(None, 116, 156, 64)	18496
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 116, 156, 64)	256
conv2d_2 (Conv2D)	(None, 116, 156, 64)	65600
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 58, 78, 64)	0
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 58, 78, 64)	256
flatten (Flatten)	(None, 289536)	0
dense (Dense)	(None, 2)	579074

Total params: 664,578 Trainable params: 664,322 Non-trainable params: 256

Binary Classification

Test loss: [6.450009822845459, 0.8764433860778809] Train loss: [3.3866405487060547, 0.9347386956214905]

Binary Classification – 4D Input

Instead of using each frame as a single data point, we also decided to use 4 frames from each video as a single data point and created a 4-dimensional input array instead of a 3-dimension input array.

One input

The idea behind this approach was to somehow provide a sequence of inputs in the traditional CNN architecture.

The **accuracy** from the binary classification problem is **around 60%** from this model.

Model Architecture

Model: "sequential_6"

Layer (type)	Output Shape	Param #
conv2d_15 (Conv2D)	(None, 4, 118, 158, 32)	896
conv2d_16 (Conv2D)	(None, 4, 114, 154, 32)	25632
<pre>max_pooling3d_10 (MaxPoolin g3D)</pre>	(None, 1, 57, 77, 32)	0
${\tt batch_normalization_5}~({\tt BatchNormalization})$	(None, 1, 57, 77, 32)	128
dropout_10 (Dropout)	(None, 1, 57, 77, 32)	0
conv2d_17 (Conv2D)	(None, 1, 57, 77, 64)	51264
<pre>max_pooling3d_11 (MaxPoolin g3D)</pre>	(None, 1, 29, 39, 64)	0
dropout_11 (Dropout)	(None, 1, 29, 39, 64)	0
flatten_5 (Flatten)	(None, 72384)	0
dense_5 (Dense)	(None, 2)	144770

Total params: 222,690 Trainable params: 222,626 Non-trainable params: 64

LRCN processes the (possibly) variable-length visual input with a CNN, whose outputs are fed into a stack of recurrent sequence models. A variable-length prediction is then produced.

Both the CNN and LSTM weights are shared across time, resulting in a representation that scales to arbitrarily long sequences.

All serves were combined and labeled as serves. Backhand volley, forehand volley, and smash are kept separate, resulting in 6 classes.

LSTM Architecture

Layer (type)	Output Shape	Param #
dropout_20 (Dropout)	(None, 16, 2048)	0
lstm_10 (LSTM)	(None, 16, 128)	1114624
<pre>time_distributed_20 (TimeDi stributed)</pre>	(None, 16, 128)	0
<pre>time_distributed_21 (TimeDi stributed)</pre>	(None, 16, 6)	774
lambda_10 (Lambda)	(None, 6)	0

	precision	recall	f1-score	support
backhand	0.82	0.90	0.86	30
bvolley	0.73	0.65	0.69	17
forehand	0.87	0.87	0.87	30
fvolley	1.00	0.65	0.79	17
service	0.64	0.97	0.77	30
smash	0.43	0.18	0.25	17
accuracy			0.76	141
macro avg	0.75	0.70	0.70	141
weighted avg	0.76	0.76	0.74	141

Conclusion & Future Work

Model	Number of Output Classes Used	Test Accuracy
Base CNN	12	11%
Binary Classification CNN	2	87%
Binary Classification CNN – 4D input	2	60%
LRCNN	6	76%

- Deploy model using Streamlit
- Build more complex model in the future and identify all 12 classes
- Solve overfitting problem
- Solve problem of Nans in training loss of LRCNN
- >> Have model run in real-time over a tennis video for live shot prediction

References

- Donahue, Jeff, et al. Long-term Recurrent Convolutional Networks for Visual Recognition and Description, 2014
- https://github.com/ganasank/CS230
- https://github.com/chow-vincent/tennis_action_recognition
- http://thetis.image.ece.ntua.gr/textfiles/thetis.pdf
- http://thetis.image.ece.ntua.gr/