$D \to K^+ K^- \pi^+ \pi^-$ strong phase analysis at BESIII

Martin Tat

Oxford LHCb

27th February 2023

Recap of BESIII analysis

Analysis of
$$D^0 o K^+K^-\pi^+\pi^-$$

- ullet Study D^0 - $ar{D^0}$ strong phase difference in bins of the 5D phase space
- ullet Measurement of amplitude averaged strong phases c_i and s_i
- ullet c_i and s_i are important inputs to the γ measurement at LHCb
 - \bullet LHCb result: $\gamma = (116^{+12}_{-14})^\circ$ with model dependent inputs
 - $oldsymbol{\circ}$ γ may change when updated with model independent c_i and s_i
- Measurement technique unique to charm factories: Study decays of quantum correlated $D\bar{D}$ pairs using a double tag method

• $\psi(3770) o D^0 ar{D^0}$ decay conserves $\mathcal{C} = -1$

- But since they are quantum correlated, we must consider their CP eigenstates $D_{\pm}=(|D^0\rangle\pm|\bar{D^0}\rangle)/\sqrt{2}$
- Total wavefunction is $|D^0
 angle|\bar{D^0}
 angle-|\bar{D^0}
 angle|D^0
 angle=|D_+
 angle|D_angle+|D_angle|D_+
 angle$

The two D mesons do <u>not</u> communicate, but the $D \to KK\pi\pi$ decay is perfectly correlated with the tagged D

- Tag mode can be a flavour tag
 - *K*π, *K*ππ⁰, *K*πππ, *Ke*ν

Use flavour tags to measure fraction of $D^0 \to KK\pi\pi$ decays in bin i: $\frac{N_i^{\rm DT}}{N^{\rm ST}} = \mathcal{B}(KK\pi\pi) \times K_i$

- Tag mode can be a CP even tag
 - KK, $\pi\pi$, $\pi\pi\pi^0$, $K_S\pi^0\pi^0$, $K_L\pi^0$, $K_L\omega$

 $D \to K^+ K^-$, which is *CP* even, forces $D \to K^+ K^- \pi^+ \pi^-$ to be *CP* odd

- Tag mode can be a CP odd tag
 - $K_S\pi^0$, $K_S\omega$, $K_S\eta$, $K_S\eta'$, $K_L\pi^0\pi^0$

 $D o K_S^0 \pi^0$, which is $C\!P$ odd, forces $D o K^+ K^- \pi^+ \pi^-$ to be $C\!P$ even

The asymmetry between CP even and CP odd double tag yields is sensitive to c_i :

$$rac{N_i^{ ext{DT}}}{N^{ ext{ST}}} = \mathcal{B}(\mathcal{K}\mathcal{K}\pi\pi) imes (\mathcal{K}_i + ar{\mathcal{K}}_i \pm 2\sqrt{\mathcal{K}_iar{\mathcal{K}}_i}c_i)$$

- K_i : Fraction of D^0 decays in bin i
- ② \bar{K}_i : Fraction of $\bar{D^0}$ decays in bin i
- **3** $2\sqrt{K_i\bar{K}_i}c_i$: Interference term, which depend on the cosine of the phase difference between D^0 and \bar{D}^0 decays

Double tag yields of partially reconstructed events

- Reconstruction efficiency of $D \to KK\pi\pi$ is very low (18%), compared to other four body modes such as $D \to \pi\pi\pi\pi$ (49%)
 - Soft kaons get stuck in magnetic field...
- Try out partially reconstructed $D \to KK\pi\pi$ technique
 - No overlap with the fully reconstructed sample

In MC, the yields were found to be similar to fully reconstructed DTs

First look at partially reconstructed $D \to KK\pi\pi$ vs $D \to KK$:

- Large background from $D \to K\pi\pi\pi\pi^0$, $\pi\pi^0$ not reconstructed
- Background is non-peaking since two particles are missing
- No reliable MC because no model for this decay exists!

Method for removing π^0 backgrounds: Veto events with π^0 candidates Signal efficiency is reduced by 30%, but 65% of $K\pi\pi\pi\pi^0$ is rejected

Figure 1: Study of π^0 veto

Using the method of trial and error, I also discovered that a cut on the kaon energy is highly efficient at removing the $K\pi\pi\pi\pi^0$ background:

Figure 2: The energy spectrum of the kaon from the background $D \to K\pi\pi\pi\pi^0$ and the signal $D \to KK\pi\pi$

Unfortunately a cut of $E > m_K$ affects the mass shape...

Figure 3: Mass shape before and after a $E > m_K$ cut

... but luckily a $E < 0.7 \,\text{GeV}$ cut does not change the mass shape!

Figure 4: Mass shape before and after a $E < 0.7 \,\text{GeV}$ cut

Finally, I can run the fit and the yields were found to be similar to the fully reconstructed samples

Figure 5: Double tag fit of partially reconstructed $KK\pi\pi$ vs KK

Finally, I can run the fit and the yields were found to be similar to the fully reconstructed samples

Figure 6: Double tag fit of partially reconstructed $KK\pi\pi$ vs $K_S\pi^0$

Partially reconstructed $KK\pi\pi$ vs $\pi\pi\pi^0$ mode not understood yet... Probably background from light hadrons, such as $e^+e^- \to K_1\bar{K^*}\rho \to KK\pi\pi\pi\pi\pi^0$

Figure 7: Double tag fit of partially reconstructed $KK\pi\pi$ vs $\pi\pi\pi^0$

 c_i and s_i fit

Equations for c_i and s_i

$$\begin{split} \frac{N_i^{\rm DT}}{N^{\rm ST}} &= \mathcal{B}(KK\pi\pi) \times \left(K_i + \bar{K}_i \pm 2\sqrt{K_i\bar{K}_i}c_i\right) \\ \frac{N_{ij}^{\rm DT}}{N^{\rm ST}} &= \mathcal{B}(KK\pi\pi) \times \left(K_i\bar{K}_j' + \bar{K}_iK_j' - 2\sqrt{K_i\bar{K}_iK_j'\bar{K}_j'}(c_ic_j' + s_is_j')\right) \end{split}$$

Fit setup:

- **1** K_i and $N^{\rm ST}$ are fixed, apply systematic or Gaussian constrain
- ② $\mathcal{B}(KK\pi\pi)$, c_i and s_i are floating
- Onstruct likelihood from DT yields and their (asymmetric) uncertainties, using the equations above
- Correct K_i for DCS decays directly in the fit

- What are DCS corrections?
 - Naively, we expect a $K^-\pi^+$ to originate from D^0 (CF mode)
 - ullet Therefore the other decay must be $ar{D^0} o KK\pi\pi$

- What are DCS corrections?
 - But what if $D^0 o K^+\pi^-$ (DCS mode)?
 - This leads to a bias in K_i because the flavour of $D \to KK\pi\pi$ is wrong

- Since $|\mathcal{A}(CF)| = r_D |\mathcal{A}(DCS)|$, where $r_D \approx 5\%$, DCS decays are suppressed by $r_D^2 = \mathcal{O}(10^{-3})$
- ullet However, since $Dar{D}$ are quantum correlated, there is an interference!
- Interference depends on the CF/DCS ratio r_D , coherence factor R and strong phase δ_D
- It also depends on c_i and s_i , which we are trying to determine...

The true K_i has contributions from CF and DCS decays, and their interference:

$$K_i^{\mathrm{true}} = K_i^{\mathrm{obs}} + r_D^2 \bar{K_i}^{\mathrm{obs}} - 2r_D R \sqrt{K_i^{\mathrm{obs}} K_i^{\mathrm{\bar{obs}}}} (c_i \cos(\delta_D) - s_i \sin(\delta_D))$$

DCS correction factors:

$$f_i = \frac{1}{1 + r_D^2 \frac{\bar{K_i}^{\text{obs}}}{K_i^{\text{obs}}} - 2r_D R \sqrt{\frac{K_i^{\text{obs}}}{K_i^{\text{obs}}}} \left(c_i \cos(\delta_D) - s_i \sin(\delta_D) \right)}$$

- In previous analyses of $D \to K_S \pi \pi$ and $K_S K K$, f_i were calculated using model predictions of c_i and s_i
- Unfortunately, we don't know if the model prediction of $D \to KK\pi\pi$ strong phases is accurate
- In the $D \to K_S \pi \pi \pi^0$ analysis, only the $D \to Ke\nu$ flavour tag was used, because no amplitude model exists (yet)

Solution: Add DCS corrections directly into the fit Calculate K_i^{true} , using 3 iterations, with the fitted c_i/s_i

With this strategy, the fit will determine the DCS corrections for us Here, using $D \to K\pi$ as an example:

Bin	f_i	f_{-i}
1	0.95	0.98
2	0.94	0.97

Bonus measurement: Instead of using the $K\pi$ tag to measure K_i , we can actually float $\delta_D^{K\pi}$ directly in the fit, and hence simultaneously measure the strong phase of the $D \to K\pi$ decay!

Perform fit of c_i and s_i , using the fully reconstructed KK, $\pi\pi\pi^0$, $K_S\pi^0$ and $K_S\pi\pi$ tags, as well as partially reconstructed $KK\pi\pi$ vs KK and $K_S\pi^0$

Figure 8: Comparison of fitted values of c_i and s_i (left), and the model predictions (right)

 c_i agrees well with F_+ measurement (as it should), but s_i clearly shows a tension with the model!

Summary and next steps

- BESIII measurement of c_i and s_i is progressing well
- A partially reconstructed $D \to KK\pi\pi$ method has been tested, but there were some challenges with large $D \to K\pi\pi\pi\pi^0$ backgrounds
- The preliminary fit of c_i and s_i shows promising results
 - A method for direct DCS decay corrections is working well
 - Results of c_i agree with the F_+ measurement
 - s_i shows tensions with the LHCb model
- Next steps:
 - Finish calculation of peaking backgrounds in each bin
 - Reprocess all data and generate new MC once new data is available
 - Add the rest of the tags
 - Charm WG review

Thank you for listening!

Backup: Double tag yields of fully reconstructed events

Strategy for measuring DT yields of fully reconstructed events:

- Fit the beam constrained mass $M_{
 m BC} = \sqrt{E_{
 m beam}^2 \sum_i |ec{p_i}|^2}$
- Signal shape: MC-derived shape, convolved with Gaussian
- Flat background: Argus function
- Peaking background: Fixed from MC

Problem: Fully pionic tag modes have very large backgrounds!

Figure 9: $D \rightarrow KK\pi\pi$ with pionic tags

Flat background mainly from light hadrons, such as $e^+e^- \to K^*\bar{K^*}\rho \to KK\pi\pi\pi\pi$

However, in the $\pi\pi\pi^0$ tag there is track swap background we can veto $K\pi\pi^0$ vs $K\pi\pi\pi \to \pi\pi\pi^0$ vs $KK\pi\pi$ Consider $M_{\rm BC}$ with a track swap:

Figure 10: Track swapped $M_{\rm BC}$

A veto in the region [1.86, 1.87] GeV removes 20% of the flat background

Double tag yield uncertainties improved, but still lots of background

Figure 11: Double tag fit of $\pi\pi\pi^0$ tag