Задачи к экзамену по Алгебре

Задача 1

Пусть $p_1, p_2...p_n$ — простые идеалы над А. $I\subset A$ - идеал. Пусть $I\subset \cup p_i$ Доказать, что: $\exists i: I \subset p_i$

Задача 2

Доказать, что I - максимальный, значит A/I- поле

Задача 3

Доказать, что если A - евклидово кольцо, с нормой $||||_1$, то на A существует

- 1) А евклидово относительно $||||_2$
- $|ab||_2 \ge ||b||_2; \forall a, b \ne 0$

Задача 4

Кольцо \mathbb{Z} - евклидово, при этом $\mathbb{Z}[\sqrt{5}]$ -нет.

Доказать, что:

 $1)\mathbb{Z}[\sqrt{-2}]$ - евклидово $2)A=\{rac{a+b\sqrt{3}}{2}\},a,b\in\mathbb{Z},a\equiv b(mod2)$ - евклидово