NB.03.F2

July 23, 2024

1 Proposition

Let P_1, P_2, P_3, P_4 be four distinct points of the plane such that P_1, P_2, P_3 are aligned and let r be the line joining them.

If $\operatorname{rk} \Phi(P_1, P_2, P_3, P_4) \leq 7$ then r is tangent to the isotropic conic in one of the three points P_1, P_2 , and P_3 .

```
[2]: load("basic_functions.sage")
```

We distinguish two cases: $P_1 = (1:0:0)$ and $P_1 = (1:i:0)$.

```
1.1 Case P_1 = (1:0:0)
```

We define four points, so that $P_1,\,P_2,\,$ and P_3 are aligned.

```
[3]: P1 = vector((1, 0, 0))
P2 = vector((A2, B2, C2))
P3 = u1*P1 + u2*P2
P4 = vector((A4, B4, C4))
```

We define the matrix of conditions of P_1 , P_2 , P_3 and P_4 .

```
[4]: M = condition_matrix([P1, P2, P3, P4], S, standard="all")
```

We compute the ideal of minors of order 8 of M.

```
[5]: J8 = S.ideal(M.minors(8))
```

We saturate J_8 with respect to the conditions that the points P_1 , P_2 , P_3 , and P_4 are distinct.

```
)[0].saturation(
    S.ideal(matrix(S, [P3, P4]).minors(2))
)[0]
```

We saturate J_8 with respect to the conditions that the points P_1 , P_2 , and P_4 are not aligned.

The condition imposed by J_8 is equivalent to the one that the line joining P_1 , P_2 , and P_3 is tangent to the isotropic conic in one of the three points, namely, $\sigma(P_1, P_2) = 0$ and $\langle P_1, P_2 \rangle = \langle P_1, P_3 \rangle = 0$.

1.2 Case $P_1 = (1:i:0)$

We define four points, so that P_1 , P_2 , and P_3 are aligned.

```
[21]: P1 = vector((1, ii, 0))
P2 = vector((A2, B2, C2))
P3 = u1*P1 + u2*P2
P4 = vector((A4, B4, C4))
```

We define the matrix of conditions of P_1 , P_2 , and P_4 .

```
[22]: M = condition_matrix([P1, P2, P3, P4], S, standard="all")
```

We compute the ideal of minors of order 8 of M.

```
[23]: J8 = S.ideal(M.minors(8))
```

We saturate J_8 with respect to the conditions that the points P_1 , P_2 , P_3 , and P_4 are distinct.

```
S.ideal(matrix(S, [P3, P4]).minors(2))
)[0]
```

We saturate J_8 with respect to the conditions that the points P_1 , P_2 , and P_4 are not aligned.

The condition imposed by J_8 is equivalent to the one that the line joining P_1 , P_2 , and P_3 is tangent to the isotropic conic in one of the three points, namely, $\langle P_1, P_2 \rangle = 0$.