НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Лабораторна робота № 1

з дисципліни «Прикладні задачі машинного навчання»

Тема: «Часові ряди і прості лінійна регресія»

Прийняв: Виконав:

студент групи ІП-13

Недельчев €.О.

Завдання:

- 1. В даній лабораторній роботі Вам треба завантажити метеорологічні дані в 1895-2022 роках з CSV-файлу в DataFrame. Після цього дані треба буде відформатувати для використання.
- 2. Бібліотеку Seaborn використати для графічного представлення даних DataFrame у вигляді регресійної прямої, що представляє графік зміни обраних показників за період 1895-2018 років.
 - 3. Спрогнозуйте дані на 2019, 2020, 2021 та 2022 рік.
- 4. Оцініть за формулою, якою могли б бути показники до 1895 року. Наприклад, оцінка середньої температури за січень 1890 року може бути отримана наступним чином.
- 5. Скористайтесь функцією regplot бібліотеки Seaborn для виведення всіх точок даних; дати представляються на осі х, а показники на осі у. Функція regplot будує діаграму розкиду даних, на якій точки представляють показники за заданий рік, а пряма лінія регресійну пряму.
- 6. Виконайте масштабування осі у від (приклад від 10 до 70 градусів):
- 7. Порівняйте отриманий прогноз для 2019, 2020, 2021 та за 2022 роки з даними на NOAA «Climate at a Glance»: https://www.ncdc.noaa.gov/cag/ і зробити висновок.

Виконання

1. Завантажимо дані та продивимося їх структуру:

Перейменуємо назви стовпчиків на більш інтуїтивно зрозумілі:

Оскільки будемо обробляти тільки січневі дані, мітки осі х будуть краще читатися без позначення 01 (для січня); видалимо місяць з Date:

2. Використаємо бібліотеку seaborn для графічного представлення даних DataFrame у вигляді регресійної прямої, що представляє графік зміни обраних показників за період 1895-2018 років.

3. Спрогнозуємо дані на 2019, 2020, 2021 та 2022 рік.

4. Оцінимо, які могли б бути дані у випадковий рік на проміжку з 1800 по 1890.

```
Ввод [7]: random_year = random.randint(1800, 1890)
predict = linear_regression.slope * random_year + linear_regression.intercept
print(f'Можлива температура в {random_year} poui: {predict}')
Можлива температура в 1822 році: 61.25212890637293
```

5 & 6. Скористаємось функцією regplot бібліотеки Seaborn для виведення всіх точок даних. Також виконаємо масштабування осі у від 58 до 69 для кращої візуалізації:

7. Порівняємо отримані в результаті лабораторної роботи прогнози із реальними даними.

Рік	NOAA «Climate at a	Дані, отримані в ході	Різниця
	Glance»	роботи	
2019	62.78	64.46	+1.68
2020	65.34	64.49	-0.85
2021	64.82	64.50	-0.32
2022	65.19	64.52	-0.67

Досить легко помітити, що похибка є досить суттєвою, оскільки таких підхід прогнозування даних ігнорує безліч чинників. Такий спосіб прогнозування дозволяє лише приблизно оцінити необхідні дані.

Висновок

Виконуючи цю лабораторну роботу я ознайомився з бібліотекою seaborn та використав на практиці графік лінійної регресії. Також були спрогнозовані дані на підставі старих даних та було зроблено висновок, що прогнозування подій із використанням лінійної регресії ϵ досить неточним і дозволя ϵ лише приблизно оцінити необхідні нам дані.