Hugo Marquerie 22/02/2025

La independencia de π -sistemas implica la independencia de las σ -álgebras generadas

Proposición 1. Sean S_1, \ldots, S_n π -sistemas independientes

$$\implies \sigma(S_1), \ldots, \sigma(S_n) \text{ son independientes.}$$

Demostración: Fijamos $A_2 \in S_2, \ldots, A_n \in S_n$ y definimos

$$F := \bigcap_{j=2}^{n} A_j \quad \wedge \quad L_F := \{ A \in \Sigma : \mathbb{P}(A \cap F) = \mathbb{P}(A) \cdot \mathbb{P}(F) \}.$$

Veamos que (a) $S_1 \subset L_F$ y (b) L_F es un λ -sistema:

(a) Sea $A_1 \in S_1$, entonces

$$\mathbb{P}(A_1 \cap F) = \mathbb{P}\left(\bigcap_{j=1}^n A_j\right) \stackrel{\text{indep}}{=} \prod_{j \in \mathbb{N}_n} \mathbb{P}(A_j) \stackrel{\text{indep}}{=} \mathbb{P}(A_1) \cdot \mathbb{P}\left(\bigcap_{j=2}^n A_j\right) = \mathbb{P}(A_1) \cdot \mathbb{P}(F).$$

Luego $A_1 \in L$ y, por tanto, $S_1 \subset L$.

(b) Comprobamos las propiedades de la definición de λ -sistema:

(i)
$$\mathbb{P}(\Omega \cap F) = \mathbb{P}(F) = 1 \cdot \mathbb{P}(F) = \mathbb{P}(\Omega) \cdot \mathbb{P}(F) \implies \Omega \in L$$
.

(ii) Sean $A, B \in L_F$ tales que $A \subset B$, entonces

$$\begin{split} \mathbb{P}\big(\left[B \setminus A\right] \cap F\big) &= \mathbb{P}\big(\left[B \cap F\right] \setminus \left[A \cap F\right]\big) = \mathbb{P}\left(B \cap F\right) - \mathbb{P}\left(A \cap F\right) \\ &\stackrel{A,B \in L}{=} \mathbb{P}(B) \cdot \mathbb{P}(F) - \mathbb{P}(A) \cdot \mathbb{P}(F) = \mathbb{P}(B \setminus A) \cdot \mathbb{P}(F) \implies B \setminus A \in L. \end{split}$$

(iii) Sea $\{A_j\}_{j=1}^{\infty} \subset L_F$ tal que $A_1 \subset A_2 \subset \cdots$, entonces

$$\mathbb{P}\left(\left[\bigcup_{j\in\mathbb{N}}A_{j}\right]\cap F\right) = \mathbb{P}\left(\bigcup_{j\in\mathbb{N}}(A_{j}\cap F)\right)^{\overset{\mathsf{TCM}}{=}}\lim_{j\to\infty}\mathbb{P}\left(A_{j}\cap F\right) = \lim_{j\to\infty}\mathbb{P}(A_{j})\cdot\mathbb{P}(F)$$
$$= \mathbb{P}\left(\bigcup_{j\in\mathbb{N}}A_{j}\right)\cdot\mathbb{P}(F) \implies \bigcup_{j\in\mathbb{N}}A_{j}\in L.$$

Entonces, por el teorema π - λ , $\sigma(S_1) \subset L_F$.