Prediction of Students at Risk on 5th Semester

Code ▼

Vanessa Gonzalez

2018-06-27

Open Libraries.

Hide

```
library("mlbench")
library("caret")
library("randomForest")
library("lattice")
library("ggplot2")
library("rpart")
library("e1071")
library("caret", lib.loc="/Library/Frameworks/R.framework/Versions/3.4/Resources/library")
```

Random Forest model using less variables for semester 6

Hide

```
colnames(dfDataSet4YGImpute) <- c("FourYG", "One.CSCI101","One.MATH111","Two.CSCI261"
,"Two.MATH112","Two.MATH201","Three.CSCI262","Three.MATH213","Four.CSCI341","Four.CSC
I358","Four.MATH225","Five.CSCI306","Five.CSCI403","Five.MATH332","Six.CSCI406","Seve
n.CSCI370","Eight.CSCI400","Eight.CSCI442")
LessVariablesSet.Sem5 <- dfDataSet4YGImpute</pre>
```

Hide

LessVariablesSet.Sem5

	Fou <fctr></fctr>	One.CSCI101 <dbl></dbl>	One.MATH <dbl></dbl>	Two.CSCI261 <dbl></dbl>	Two.MATH <dbl></dbl>	Two.MATH <dbl></dbl>	Three.CSCI26 <dbl< th=""></dbl<>
1	Yes	4.000000	3.000000	4.000000	2.000000	3.000000	3.00000
2	No	3.625546	3.000000	4.000000	2.000000	3.000000	3.60393

5	Yes	3.776819	3.000000	4.000000	3.000000	3.000000	3.66579
6	Yes	4.000000	3.000000	3.000000	3.000000	2.000000	3.00000
7	Yes	4.000000	4.000000	4.000000	4.000000	4.000000	4.00000
8	Yes	4.000000	3.000000	3.000000	4.000000	3.790084	4.00000
10	Yes	3.328175	3.000000	3.000000	2.000000	1.000000	2.98414
11	Yes	4.000000	3.000000	4.000000	3.000000	3.000000	4.00000
12	Yes	4.000000	2.000000	3.000000	3.000000	2.000000	4.00000
13	Yes	3.000000	4.000000	4.000000	3.000000	2.000000	3.00000
1-10	of 396 rows	1-8 of 18 colu	mns	Previous	1 2 3	4 5 6 4	0 Next

Create data partitions and remove variables to leave only classes before 6th semester.

Hide

```
# Creates Data Partitions and removes variables
inTrainingLess.Sem5 <- createDataPartition(LessVariablesSet.Sem5$FourYG, p = 0.80, li
st = FALSE)
LessVariablesSet.Sem5 <- LessVariablesSet[-(2:3)]
LessVariablesSet.Sem5 <- LessVariablesSet[-(3)]
LessVariablesSet.Sem5 <- LessVariablesSet[-(5)]
LessVariablesSet.Sem5 <- LessVariablesSet[-(7)]
LessVariablesSet.Sem5 <- LessVariablesSet[-(11)]
LessVariablesSet.Sem5 <- LessVariablesSet[-(10:12)]
str(LessVariablesSet.Sem5)</pre>
```

```
'data.frame': 396 obs. of 9 variables:
$ FourYG : Factor w/ 2 levels "No", "Yes": 2 1 2 2 2 2 2 2 2 2 2 ...
$ Two.CSCI261 : num 4 4 4 3 3 3 4 3 4 ...
$ Two.MATH201 : num 3 3 3 2 4 ...
$ Three.CSCI262: num 3 3.6 3.67 3 4 ...
$ Four.CSCI341 : num 2 3.1 3.66 3 4 ...
$ Four.CSCI358 : num 4 3.1 3.72 2 4 ...
$ Five.CSCI306 : num 3 3.62 3.74 4 4 ...
$ Five.CSCI403 : num 4 3.9 4 4 4 ...
$ Five.MATH332 : num 3 2.56 2.78 3 4 ...
```

```
# Creates Training data Set
trainingLess.Sem5 <- LessVariablesSet.Sem5[inTrainingLess.Sem5, ]
# Creates Testing data Set
testingLess.Sem5 <- LessVariablesSet.Sem5[-inTrainingLess.Sem5, ]
# Data Set with less variables
head(LessVariablesSet.Sem5)</pre>
```

Fou <fctr></fctr>	Two.CSCI261 <dbl></dbl>	Two.MATH <dbl></dbl>	Three.CSCI262 <dbl></dbl>	Four.CSCl341 <dbl></dbl>	Four.CSCI358 <dbl></dbl>	Five.CSCI3 <dl< th=""></dl<>	
1 Yes	4	3.000000	3.000000	2.000000	4.000000	3.0000	
2 No	4	3.000000	3.603932	3.100057	3.099580	3.6212	
5 Yes	4	3.000000	3.665798	3.664659	3.720739	3.7434	
6 Yes	3	2.000000	3.000000	3.000000	2.000000	4.0000	
7 Yes	4	4.000000	4.000000	4.000000	4.000000	4.0000	
8 Yes	3	3.790084	4.000000	3.517370	3.942883	4.0000	
6 rows 1-8 of 9 columns							

Hide

trainingLess.Sem5

	Fou <fctr></fctr>	Two.CSCI261 <dbl></dbl>	Two.MATH <dbl></dbl>	Three.CSCI262 <dbl></dbl>	Four.CSCl341 <dbl></dbl>	Four.CSCI358 <dbl></dbl>	Five.CS
5	Yes	4.000000	3.000000	3.665798	3.664659	3.720739	3.74
6	Yes	3.000000	2.000000	3.000000	3.000000	2.000000	4.00
7	Yes	4.000000	4.000000	4.000000	4.000000	4.000000	4.00
8	Yes	3.000000	3.790084	4.000000	3.517370	3.942883	4.00
10	Yes	3.000000	1.000000	2.984141	3.000000	2.166370	3.05
11	Yes	4.000000	3.000000	4.000000	4.000000	4.000000	4.00
12	Yes	3.000000	2.000000	4.000000	3.000000	4.000000	4.00
13	Yes	4.000000	2.000000	3.000000	3.000000	3.000000	4.00
14	No	3.000000	2.000000	2.000000	2.000000	4.000000	3.00
16	Yes	4.000000	3.000000	4.000000	4.000000	4.000000	4.00

Hide

testingLess.Sem5

	Fou <fctr></fctr>	Two.CSCI261 <dbl></dbl>	Two.MATH <dbl></dbl>	Three.CSCI262 <dbl></dbl>	Four.CSCI341 <dbl></dbl>	Four.CSCl358 <dbl></dbl>	Five.CS
1	Yes	4.000000	3.000000	3.000000	2.000000	4.000000	3.00
2	No	4.000000	3.000000	3.603932	3.100057	3.099580	3.62
20	Yes	4.000000	3.014598	3.000000	3.000000	4.000000	4.00
25	No	4.000000	2.000000	4.000000	2.000000	2.000000	2.00
29	Yes	3.000000	3.000000	3.000000	4.000000	2.000000	1.00
57	No	4.000000	3.000000	4.000000	3.000000	3.000000	3.00
59	No	4.000000	2.000000	2.000000	1.000000	1.000000	3.30
61	No	0.500000	2.245680	2.873061	1.888522	2.412753	2.94
62	Yes	4.000000	2.000000	4.000000	3.000000	4.000000	3.00
63	Yes	4.000000	2.700000	3.000000	3.000000	3.000000	3.30
1-10	of 78 rc	ws 1-8 of 9 col	umns	Previou	s 1 2 3	4 5 6	8 Next

Regresion Partition with method "class" for less variables for 5th semester courses.

Hide

FourYG.rp.Less.Sem5 = rpart(FourYG ~ ., data=trainingLess.Sem5, method = "class")
FourYG.rp.Less.Sem5

```
n = 318
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 318 90 Yes (0.2830189 0.7169811)
   2) Five.CSCI306< 2.15 16 2 No (0.8750000 0.1250000) *
   3) Five.CSCI306>=2.15 302 76 Yes (0.2516556 0.7483444)
     6) Three.CSCI262< 2.779332 31 14 No (0.5483871 0.4516129)
      12) Two.MATH201< 2.85 23 7 No (0.6956522 0.3043478) *
      13) Two.MATH201>=2.85 8 1 Yes (0.1250000 0.8750000) *
     7) Three.CSCI262>=2.779332 271 59 Yes (0.2177122 0.7822878)
      14) Five.CSCI403< 3.460277 36 15 Yes (0.4166667 0.5833333)
        28) Five.CSCI306< 3.716578 29 14 No (0.5172414 0.4827586)
          56) Five.MATH332< 2.111122 15 4 No (0.7333333 0.2666667) *
          57) Five.MATH332>=2.111122 14 4 Yes (0.2857143 0.7142857) *
        29) Five.CSCI306>=3.716578 7 0 Yes (0.0000000 1.0000000) *
      15) Five.CSCI403>=3.460277 235 44 Yes (0.1872340 0.8127660) *
```

Hide

```
printcp(FourYG.rp.Less.Sem5)
```

```
Classification tree:
rpart(formula = FourYG ~ ., data = trainingLess.Sem5, method = "class")
Variables actually used in tree construction:
[1] Five.CSCI306 Five.CSCI403 Five.MATH332 Three.CSCI262 Two.MATH201
Root node error: 90/318 = 0.28302
n = 318
        CP nsplit rel error xerror
1 0.133333
                   1.00000 1.00000 0.089255
2 0.050000
                   0.86667 1.00000 0.089255
               1
3 0.025926
               3 0.76667 0.96667 0.088330
4 0.010000
                   0.68889 0.94444 0.087686
```

Summary for regression partition.

```
summary(FourYG.rp.Less.Sem5)
```

```
Call:
rpart(formula = FourYG ~ ., data = trainingLess.Sem5, method = "class")
  n = 318
          CP nsplit rel error
                                              xstd
                                 xerror
                  0 1.0000000 1.0000000 0.08925501
1 0.13333333
2 0.05000000
                  1 0.8666667 1.0000000 0.08925501
3 0.02592593
                 3 0.7666667 0.9666667 0.08833027
4 0.01000000
                  6 0.6888889 0.9444444 0.08768622
Variable importance
Five.CSCI306 Three.CSCI262 Five.CSCI403 Five.MATH332 Two.MATH201 Four.CSCI341
Four.CSCI358
               Two.CSCI261
           40
                         15
                                       11
                                                     11
                                                                   10
                                                                                  6
              3
Node number 1: 318 observations,
                                    complexity param=0.1333333
  predicted class=Yes expected loss=0.2830189 P(node) =1
    class counts:
                     90
                          228
   probabilities: 0.283 0.717
  left son=2 (16 obs) right son=3 (302 obs)
  Primary splits:
      Five.CSCI306 < 2.15
                                             improve=11.808260, (0 missing)
                               to the left,
      Five.CSCI403 < 3.448139 to the left,
                                             improve= 8.370112, (0 missing)
                   < 2.460774 to the left,
                                             improve= 8.351350, (0 missing)
      Two.MATH201
      Four.CSCI358 < 2.716514 to the left,
                                             improve= 7.191370, (0 missing)
      Three.CSCI262 < 2.779332 to the left,
                                             improve= 7.093058, (0 missing)
Node number 2: 16 observations
  predicted class=No
                      expected loss=0.125 P(node) =0.05031447
    class counts:
                     14
   probabilities: 0.875 0.125
Node number 3: 302 observations,
                                    complexity param=0.05
  predicted class=Yes expected loss=0.2516556 P(node) =0.9496855
    class counts:
                     76
                          226
   probabilities: 0.252 0.748
  left son=6 (31 obs) right son=7 (271 obs)
  Primary splits:
      Three.CSCI262 < 2.779332 to the left,
                                             improve=6.083543, (0 missing)
      Two.MATH201 < 2.460774 to the left,
                                             improve=5.965326, (0 missing)
      Four.CSCI358 < 1.85
                               to the left.
                                             improve=5.275627, (0 missing)
      Five.CSCI306 < 3.704042 to the left,
                                             improve=4.828336, (0 missing)
                                            improve=3.963796, (0 missing)
      Five.CSCI403 < 3.448139 to the left,
  Surrogate splits:
      Four.CSCI358 < 0.85
                              to the left, agree=0.904, adj=0.065, (0 split)
      Four.CSCI341 < 0.6
                              to the left, agree=0.901, adj=0.032, (0 split)
```

```
Node number 6: 31 observations,
                                  complexity param=0.05
                       expected loss=0.4516129 P(node) =0.09748428
  predicted class=No
    class counts:
                     17
                           14
   probabilities: 0.548 0.452
  left son=12 (23 obs) right son=13 (8 obs)
  Primary splits:
      Two.MATH201 < 2.85
                              to the left, improve=3.865708, (0 missing)
      Four.CSCI358 < 2.15
                              to the left, improve=2.183899, (0 missing)
      Five.CSCI403 < 3.805304 to the right, improve=1.869124, (0 missing)
      Five.CSCI306 < 3.008861 to the left, improve=0.813172, (0 missing)
      Four.CSCI341 < 2.682523 to the right, improve=0.455679, (0 missing)
  Surrogate splits:
      Four.CSCI341 < 3.5
                              to the left, agree=0.806, adj=0.25, (0 split)
      Five.MATH332 < 1.5
                              to the right, agree=0.806, adj=0.25, (0 split)
Node number 7: 271 observations,
                                    complexity param=0.02592593
  predicted class=Yes expected loss=0.2177122 P(node) =0.8522013
    class counts:
                     59
                          212
   probabilities: 0.218 0.782
  left son=14 (36 obs) right son=15 (235 obs)
  Primary splits:
      Five.CSCI403 < 3.460277 to the left, improve=3.286559, (0 missing)
      Five.MATH332 < 1.5
                              to the left,
                                           improve=3.163609, (0 missing)
      Five.CSCI306 < 3.704042 to the left,
                                            improve=2.469819, (0 missing)
      Two.MATH201 < 2.371775 to the left, improve=2.052260, (0 missing)
      Four.CSCI358 < 3.386122 to the left, improve=1.951435, (0 missing)
  Surrogate splits:
      Two.MATH201 < 0.85
                             to the left, agree=0.875, adj=0.056, (0 split)
Node number 12: 23 observations
                       expected loss=0.3043478 P(node) =0.07232704
  predicted class=No
    class counts:
                    16
   probabilities: 0.696 0.304
Node number 13: 8 observations
  predicted class=Yes expected loss=0.125 P(node) =0.02515723
    class counts:
                     1
   probabilities: 0.125 0.875
Node number 14: 36 observations,
                                   complexity param=0.02592593
  predicted class=Yes expected loss=0.4166667 P(node) =0.1132075
    class counts:
                     15
   probabilities: 0.417 0.583
  left son=28 (29 obs) right son=29 (7 obs)
  Primary splits:
      Five.CSCI306 < 3.716578 to the left,
                                            improve=3.017241, (0 missing)
```

```
Five.MATH332 < 2.111122 to the left,
                                            improve=2.722222, (0 missing)
      Two.CSCI261 < 3.935162 to the left,
                                            improve=2.344156, (0 missing)
                                            improve=1.529091, (0 missing)
      Four. CSCI341 < 2.468953 to the left,
      Two.MATH201 < 2.732976 to the left,
                                            improve=1.406355, (0 missing)
  Surrogate splits:
      Five.CSCI403 < 3.333953 to the left,
                                            agree=0.833, adj=0.143, (0 split)
      Five.MATH332 < 3.201832 to the left,
                                            agree=0.833, adj=0.143, (0 split)
Node number 15: 235 observations
  predicted class=Yes expected loss=0.187234 P(node) =0.7389937
    class counts:
                    44
                          191
   probabilities: 0.187 0.813
Node number 28: 29 observations,
                                    complexity param=0.02592593
  predicted class=No
                       expected loss=0.4827586 P(node) =0.09119497
    class counts:
                     15
   probabilities: 0.517 0.483
  left son=56 (15 obs) right son=57 (14 obs)
  Primary splits:
      Five.MATH332 < 2.111122 to the left,
                                            improve=2.9018060, (0 missing)
      Two.CSCI261 < 3.935162 to the left,
                                            improve=2.2180530, (0 missing)
      Four. CSCI341 < 2.468953 to the left,
                                            improve=1.7716480, (0 missing)
      Two.MATH201 < 2.802334 to the left,
                                            improve=0.8827586, (0 missing)
      Four.CSCI358 < 3.02763 to the left,
                                            improve=0.8362940, (0 missing)
  Surrogate splits:
      Two.CSCI261 < 3.455126 to the left, agree=0.724, adj=0.429, (0 split)
      Four.CSCI341 < 2.468953 to the left, agree=0.724, adj=0.429, (0 split)
      Four.CSCI358 < 2.286852 to the left, agree=0.690, adj=0.357, (0 split)
      Five.CSCI306 < 3.336597 to the left, agree=0.655, adj=0.286, (0 split)
      Five.CSCI403 < 3.215924 to the right, agree=0.621, adj=0.214, (0 split)
Node number 29: 7 observations
  predicted class=Yes expected loss=0 P(node) =0.02201258
    class counts:
   probabilities: 0.000 1.000
Node number 56: 15 observations
  predicted class=No
                       expected loss=0.2666667 P(node) =0.04716981
    class counts:
                     11
   probabilities: 0.733 0.267
Node number 57: 14 observations
  predicted class=Yes expected loss=0.2857143 P(node) =0.04402516
    class counts:
                      4
                           10
   probabilities: 0.286 0.714
```

Prediction for regretion partition for less courses before Semester 5.

Hide

predictionsLess.Sem5 = predict(FourYG.rp.Less.Sem5, testingLess.Sem5, type="class")
table(testingLess.Sem5\$FourYG, predictionsLess.Sem5)

```
predictionsLess.Sem5
No Yes
No 11 11
Yes 5 51
```

Confusion Matrix

Hide

```
library(caret)
confusionMatrix(table(predictionsLess.Sem5, testingLess.Sem5$FourYG))
```

```
Confusion Matrix and Statistics
predictionsLess.Sem5 No Yes
                No
                    11
                 Yes 11 51
               Accuracy : 0.7949
                 95% CI: (0.6884, 0.878)
    No Information Rate: 0.7179
    P-Value [Acc > NIR] : 0.08014
                  Kappa : 0.4478
 Mcnemar's Test P-Value: 0.21130
            Sensitivity : 0.5000
            Specificity: 0.9107
         Pos Pred Value: 0.6875
         Neg Pred Value: 0.8226
             Prevalence: 0.2821
         Detection Rate: 0.1410
   Detection Prevalence: 0.2051
      Balanced Accuracy: 0.7054
       'Positive' Class : No
```

```
min(FourYG.rp.Less.Sem5$cptable[,"xerror"])
 [1] 0.9444444
                                                                                           Hide
 which.min(FourYG.rp.Less.Sem5$cptable[,"xerror"])
 4
 4
Get the cost complecity parameter of the record
                                                                                           Hide
 FourYG.cp.Less.Sem5 = FourYG.rp.Less.Sem5$cptable[2,"CP"]
 FourYG.cp.Less.Sem5
 [1] 0.05
Prune tree.
                                                                                           Hide
```

```
prune.tree.Less.Sem5 = prune(FourYG.rp.Less.Sem5, cp = FourYG.cp.Less.Sem5)
predictionsLessPrune.Sem5 = predict(prune.tree.Less.Sem5, testingLess.Sem5, type="class")
table(testingLess.Sem5$FourYG, predictionsLessPrune.Sem5)
```

```
predictionsLessPrune.Sem5
No Yes
No 1 21
Yes 2 54
```

Confusion Matrix

Hide

confusionMatrix(table(predictionsLessPrune.Sem5, testingLess.Sem5\$FourYG))

```
Confusion Matrix and Statistics
predictionsLessPrune.Sem5 No Yes
                      No
                      Yes 21 54
               Accuracy : 0.7051
                 95% CI: (0.5911, 0.803)
    No Information Rate: 0.7179
    P-Value [Acc > NIR] : 0.6527659
                  Kappa : 0.0132
 Mcnemar's Test P-Value: 0.0001746
            Sensitivity : 0.04545
            Specificity: 0.96429
         Pos Pred Value: 0.33333
         Neg Pred Value: 0.72000
             Prevalence: 0.28205
         Detection Rate: 0.01282
   Detection Prevalence: 0.03846
      Balanced Accuracy: 0.50487
       'Positive' Class : No
```

Top 10 variables

Hide

str(LessVariablesSet.Sem5)

```
'data.frame': 396 obs. of 9 variables:
$ FourYG : Factor w/ 2 levels "No","Yes": 2 1 2 2 2 2 2 2 2 2 2 ...
$ Two.CSCI261 : num 4 4 4 3 4 3 4 3 4 ...
$ Two.MATH201 : num 3 3 2 4 ...
$ Three.CSCI262: num 3 3.6 3.67 3 4 ...
$ Four.CSCI341 : num 2 3.1 3.66 3 4 ...
$ Four.CSCI358 : num 4 3.1 3.72 2 4 ...
$ Five.CSCI306 : num 3 3.62 3.74 4 4 ...
$ Five.CSCI403 : num 4 3.9 4 4 4 ...
$ Five.MATH332 : num 3 2.56 2.78 3 4 ...
```

Random Forest method with less variables on 5th semester.

Training

Hide

```
FourYG.rf.Less.Sem5 <- randomForest(FourYG ~Two.CSCI261+Two.MATH201+Four.CSCI341+Four
.CSCI358+Five.CSCI306+Five.CSCI403+Five.MATH332 , data = trainingLess.Sem5)
FourYG.rf.Less.Sem5</pre>
```

Prediction

Hide

```
FourYG.rf.prediction.Less.Sem5 <- predict(FourYG.rf.Less.Sem5, testingLess.Sem5)
table(FourYG.rf.prediction.Less.Sem5, testingLess.Sem5$FourYG)</pre>
```

```
FourYG.rf.prediction.Less.Sem5 No Yes
No 11 8
Yes 11 48
```

Importance of variables.

```
importance(FourYG.rf.Less.Sem5)
```

Mear	nDecreaseGini
Two.CSCI261	12.11959
Two.MATH201	15.41650
Four.CSCI341	12.30205
Four.CSCI358	16.15024
Five.CSCI306	20.36310
Five.CSCI403	19.09542
Five.MATH332	14.36175

Plot of importance of Variabels.

Hide

varImpPlot(FourYG.rf.Less.Sem5)

FourYG.rf.Less.Sem5

Confusion Matrix

Hide

confusionMatrix(table(FourYG.rf.prediction.Less.Sem5, testingLess.Sem5\$FourYG))

```
Confusion Matrix and Statistics
FourYG.rf.prediction.Less.Sem5 No Yes
                           No 11
                           Yes 11 48
              Accuracy: 0.7564
                 95% CI: (0.646, 0.8465)
   No Information Rate: 0.7179
   P-Value [Acc > NIR] : 0.2685
                  Kappa : 0.3726
Mcnemar's Test P-Value: 0.6464
           Sensitivity: 0.5000
            Specificity: 0.8571
         Pos Pred Value: 0.5789
         Neg Pred Value: 0.8136
            Prevalence: 0.2821
         Detection Rate: 0.1410
   Detection Prevalence: 0.2436
      Balanced Accuracy: 0.6786
       'Positive' Class : No
```

Logistic Regression method for variable importance

```
# Template code
# Step 1: Build Logit Model on Training Dataset
FourYG.lr.Less.Sem5 <- glm(FourYG ~Two.CSCI261+Two.MATH201+Four.CSCI341+Four.CSCI358+
Five.CSCI306+Five.CSCI403+Five.MATH332, family= "binomial", data = trainingLess.Sem5)
FourYG.lr.Less.Sem5</pre>
```

```
Call: glm(formula = FourYG ~ Two.CSCI261 + Two.MATH201 + Four.CSCI341 +
   Four.CSCI358 + Five.CSCI306 + Five.CSCI403 + Five.MATH332,
   family = "binomial", data = trainingLess.Sem5)
```

Coefficients:

(Intercept) Two.CSCI261 Two.MATH201 Four.CSCI341 Four.CSCI358 Five.CSCI306 F

ive.CSCI403 Five.MATH332

-5.268031 0.338626 0.096701 -0.223781 0.380202 0.774678

0.433775 0.006658

Degrees of Freedom: 317 Total (i.e. Null); 310 Residual

Null Deviance: 378.9

Residual Deviance: 333 AIC: 349

Hide

```
# Step 2: Predict Y on Test Dataset
predicted.lr.Less.Sem5 <- predict(FourYG.lr.Less.Sem5, testingLess.Sem5, type="respon
se")</pre>
```

Variable Importance

```
gbmImp.Less.Sem5 <- varImp(FourYG.rf.Less.Sem5, scale = FALSE)
gbmImp.Less.Sem5</pre>
```

	Overall <dbl></dbl>
Two.CSCl261	12.11959
Two.MATH201	15.41650
Four.CSCl341	12.30205
Four.CSCl358	16.15024
Five.CSCI306	20.36310
Five.CSCI403	19.09542
Five.MATH332	14.36175
7 rows	