Artificial Intelligence for Robotics 1

Armando Tacchella

Sample test 4

1 Propositional Logic

Given the following formulas in propositional logic

- φ_1 : $(p \to q)$
- φ_2 : $(q \to (s \land t))$
- φ_3 : $(r \to (s \land t))$
- φ_4 : $(p \vee r)$

show whether the formula $s \wedge t$ is a logical consequence of the theory $\Phi = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$. State your answer as a proof using either a deduction mechanism of your choice. Truth-tables are not accepted as an answer.

2 First Order Logic

Consider the following model for the "sorority world" where an "×" in the cell x,y denotes that x "likes" y

	Abby	Bess	Cody	Dana
Abby	×	-	×	×
Bess	-	×	-	×
Cody	-	-	×	-
Dana	-	×	×	-

and tell which of the following sentences is true in the model:

- $1. \ \forall x.likes(x,x)$
- 2. $\forall x. \exists y. likes(x, y)$
- 3. $\exists y. \forall x. likes(x, y)$
- 4. $\forall x. \forall y. likes(x, y) \rightarrow likes(y, x)$
- 5. $\forall x. \forall y. (\exists z. likes(x, z) \land likes(z, y)) \rightarrow likes(x, y).$

3 Description Logic

Consider a knowledge base Σ in \mathcal{ALC} where the TBox is the following:

- $Person \sqsubseteq Animal \sqcap Biped$
- $Woman \equiv Person \sqcap Female$
- $Mother \equiv Woman \sqcap \exists ParentOf.Person$
- $Parent \equiv Mother \sqcup Father$
- $Man \equiv Person \sqcap \neg Woman$
- conMotherWithoutDaughter \equiv Mother $\sqcap \forall ParentOf. \neg Female$
- $GrandMother \equiv Woman \sqcap \exists ParentOf.Parent$

and the ABox is the following:

- GrandMother(Sally)
- $(Person \sqcap Man)(John)$

Using a deduction mechanism or a semantic argument, tell whether the following assertions hold:

- $\Sigma \models Woman \sqsubseteq Biped$
- $\Sigma \models Man \sqsubseteq Parent$
- $\Sigma \models \exists ParentOf.Man$
- $\Sigma \models \exists ParentOf.Person \sqsubseteq Woman$
- $\Sigma \models (\neg Woman)(John)$