

Human-Centered Data & Al

Vinicius Caridá, Ph.D.

 Executive Specialist, Artificial Intelligence and Data - Itaú

MBA Professor – FIAP and ESPM

Google for Startups
Accelerator Mentor

- ORGANIZAÇÃO DATA DRIVEN
- VISUALIZAÇÃO DE DADOS
- MODELOS PREDITIVOS PARA A TOMADA DE DECISÃO
- DATA STORYTELLING E DATA ART
- > CIÊNCIA DE DADOS APLICADA AOS NEGÓCIOS
- INTELIGÊNCIA ARTIFICIAL
- JORNADA ANALÍTICA

- > ORGANIZAÇÃO DATA DRIVEN
- > VISUALIZAÇÃO DE DADOS
- > MODELOS PREDITIVOS PARA A TOMADA DE DECISÃO
- DATA STORYTELLING E DATA ART
- > CIÊNCIA DE DADOS APLICADA AOS NEGÓCIOS
- > INTELIGÊNCIA ARTIFICIAL
- JORNADA ANALÍTICA

- > ORGANIZAÇÃO DATA DRIVEN
- > VISUALIZAÇÃO DE DADOS
- MODELOS PREDITIVOS PARA A TOMADA DE DECISÃO
- DATA STORYTELLING E DATA ART
- CIÊNCIA DE DADOS APLICADA AOS NEGÓCIOS
- > INTELIGÊNCIA ARTIFICIAL
- JORNADA ANALÍTICA

Três caminhos de Al na Google Cloud

Customização

Facilidade de Uso

Três caminhos de Al na Google Cloud

When Generative AI Is and Is Not Effective

When Generative Al Is and Is Not Effective

Use-case family	Generative models' current usefulness	Example use cases
Prediction/ forecasting	Low	Risk prediction, customer churn prediction, sales/ demand forecasting
Decision intelligence	Low	Decision support, augmentation, automation
Segmentation/ classification	Medium	Clustering, customer segmentation, object classification
Recommendation systems	Medium	Recommendation engine, personalized advice, next best action
Content generation	High	Text generation, image and video generation, synthetic data
Conversational user interfaces	High	Virtual assistant, chatbot, digital worker

Gartner.

1 Ambiente Cloud

2 Algoritmos e técnicas

3 Fuzzy e Algoritmos Genéticos

4 Redes Neurais avançadas

5 Inteligência Artificial Generativa

Al Platform Overview

Como conectar usuários para produzir resultados 10x mais impactantes?

ML APIs AutoML Escolha o seu nível de abstração **BQML Al Platform** Kubeflow **Deep Learning VM images**

ML frameworks

Application developers

Data scientists & ML engineers

Introdução ao Cloud Al Platform

Ambiente de desenvolvimento fim-a-fim para

IA dentro da console GCP

- Construído com Kubeflow, oferece uma cadeia de ferramentas integrada de engenharia de dados à implementação de modelos. Sem "lock-in"
- Permite implementar suas soluções onpremises ou na Google Cloud sem mudanças significativas de código
- Acesso à tecnologias Google Al de ponta como Tensorflow, Tensorflow Extended (TFX), TPUs quando implementando sua solução em produção

O que está incluso no Cloud Al Platform

Deep learning VM image (DLVM)

Machine Learning mais rápido e fácil no GCE

- Prototipação Acelerada
 Prototipe seu projeto rapidamente utilizando VMs préconfiguradas para Deep Learning
- Suporte a CPU, GPU e TPU
 Utilize aceleradores para seus modelos, como GPU ou TPU, com poucos cliques
- Performance otimizada para Google Cloud
 Bibliotecas e configurações otimizadas para a melhor performance para a sua infraestrutura - assim você não se preocupa com isso
- Flexibilidade
 Escolha entre diferentes ML frameworks como TensorFlow, PyTorch e scikit-learn ou instale o framework que você preferir sob a imagem base

Gerenciamento serverless de modelos

- Treine modelos abstraindo a infraestrutura.
- Suporta os frameworks de machine learning mais populares. Suporta, também, containers Docker customizados
- Realiza treinamentos distribuídos e utiliza GPUs e TPUs para finalizar jobs mais rápido
- Melhora modelos através da otimização de hiperparâmetros automatizada

Notebooks gerenciados e ambientes pré-configurados

Bibliotecas GCP pré-instaladas

Ambientes pré-configurados para:

Crie uma instância de Notebook

Importe seus dados do Cloud Storage

```
[ ]: !pip3 install tensorflow hub
[1]: import sys
     # Workaround: pip installs to a wrong location on these notebooks
     sys.path.insert(0,'/home/jupyter/.local/lib/python3.5/site-packages')
     import os
     import json
     import random
     import base64
     import tensorflow as tf
     import tensorflow hub as hub
     import tensorflow.keras as ks
     import IPython.display
     from tensorflow.python.lib.io import file io
     storage bucket = 'qs://cancer-demo-data/ht-kq-histopathologic-cancer-detection/'
     train files = [storage bucket+f for f in ['train 0.tfrecords', 'train 1.tfrecords', 'train 2.tfrecords']]
     eval files = [storage bucket+f for f in ['train 3.tfrecords']]
     xval files = [storage bucket+f for f in ['train 4.tfrecords']]
     row count file = storage bucket + 'record counts.json'
     examples file = storage bucket + 'examples.zip'
```

Treine seu modelo onde quiser

On-Premises

Simples modificações para treinar seu modelo on-premises com Kubeflow ou na Google Cloud using AI Platform

Google Cloud

Implemente seu modelo com facilidade

Modelos Built-in no Cloud Al Platform

- Otimização de hiperparâmetros embutida
- Suporte à algorítimos populares
- Busque soluções no Al Hub
- Facilidade para incluir novos algorítimos como containers

Três caminhos de Al na Google Cloud

Customização

Facilidade de Uso

- ORGANIZAÇÃO DATA DRIVEN
- VISUALIZAÇÃO DE DADOS
- MODELOS PREDITIVOS PARA A TOMADA DE DECISÃO
- DATA STORYTELLING E DATA ART
- CIÊNCIA DE DADOS APLICADA AOS NEGÓCIOS
- INTELIGÊNCIA ARTIFICIAL
- JORNADA ANALÍTICA

BigQuery ML Overview

BigQuery ML

BigQuery ML empowers both data analysts and data scientists **Execute** ML initiatives without moving data from BigQuery

Iterate on models in SQL in BigQuery to increase development speed

Automate model selection, and hypertuning

BigQuery ML

Execute ML initiatives
without moving data from
BigQuery

lterate on models in SQL in BigQuery to increase development speed

Automate common ML tasks and hyperparameter tuning

Behind the scenes

Through two lines of SQL

- Leverage BigQuery's processing power to build a model
- Auto-tuned learning rate
- Auto-split of data into training and test
- Null imputation
- Standardization of numeric features
- One-hot encoding of strings
- Class imbalance handling

Accelerator families comparison

TPU v1

int8 only - inference only required model quantization

TPU v2

bfloat16 - inference and training no model changes necessary

TPU v3

bfloat16 - inference and training no model changes necessary

420 TFLOPS

(bfloat16) / board

NVIDIA P100

3584 CUDA cores - float16 but float16 x float16 => float32 not available

18 TFLOPS (float16)

/ chip

NVIDIA V100

5120 CUDA cores + 640 TensorCores - float16 model tweaking necessary for float16

112 TFLOPS (float16)

/ chip

Reference models for Cloud TPUs

Image Recognition
Object Detection

Image Recognition

AmoebaNet-D ResNet-50/101/152/200 Inception v2/v3/v4 DenseNet

Object Detection

RetinaNet

Low-Resource Models

MobileNet SqueezeNet Machine Translation & Language Modeling

Models

Machine translation Language modeling Sentiment analysis Question-answering (all Transformer-based) Speech Recognition

Models

ASR Transformer (LibriSpeech)

Image Generation

Models

Image Transformer DCGAN

MLOps (ML Operationalization)

age is missing

country not in:

- China
- India
- USA

China \rightarrow [1, 0, 0]

India \rightarrow [0, 1, 0]

USA \rightarrow [0, 0, 1]

Machine Learning | Produção

Além de treinar um modelo incrível...

Código ML

Machine Learning | Produção

Realidade: ML requer DevOps

Typical machine learning lifecycle

Step-by-step solution of ML problem

Machine learning pipeline @ GCP

Operational ML - end-to-end ML solution on GCP

Implementação de Exemplo

Thank you!

@vinicius caridá

https://linktr.ee/vfcarida