

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Метод наложения теней в дополненной реальности на основе информации о глубине точек кадра

Студент: Малышев Иван Алексеевич, ИУ7-81Б

Научный руководитель: Кивва Кирилл Андреевич

Дополненная реальность

Области применения:

- Медицина
- Построение анатомических моделей
- Образование
- Туризм и другое

Проблема: виртуальный объект не отбрасывает тень с учетом внешнего освещения или тень, отбрасываемая им, не учитывает геометрию окружения

Цель и задачи

• Цель: разработать метод наложения теней в дополненной реальности.

Задачи:

- провести анализ предметной области наложения теней;
- провести обзор существующих методов наложения теней в дополненной реальности на основе информации о глубине точек кадра и привести результаты сравнительного анализа;
- разработать и описать собственный метод наложения теней в дополненной реальности на основе информации о глубине точек кадра, который будет вычислять положения источников света только в начале сессии или при необходимости;
- разработать программное обеспечение, реализующее описанный метод, и проверить его работоспособность;
- провести исследование результатов разработанного метода при проецировании теней от виртуального объекта на различные поверхности;
- выполнить сравнение результатов работы реализованного метода с результатами, полученными с помощью существующих аналогов.

Этапы наложения тени от виртуального объекта

- Отобразить реальные источники света в виртуальное окружение
- Учесть геометрию окружения при наложении тени

Существующие методы:

	Восстановление нескольких ИС	Работа метода в помещении	Работа метода вне помещения	Динамическая смена окружения	Возможность не пересчитывать положение ИС без необходимости
Метод на основе анализа контуров теней ИС	+	+	-	+	-
Метод на основе построения теневых объемов	-	-	+	+	-
Метод с использованием сверточных нейронных сетей и трассировки теневых лучей	+	+	-	+	-

Постановка задачи

Ограничения:

- частота изменения системы освещения минимальна или равна нулю
- отношение максимального значения яркости к среднему значению яркости сферической панорамы окружения должно быть не менее 1.5
- любой источник света интерпретируется как точечный с белым свечением
- полигональная сетка окружения не учитывает свойства поверхности, такие как прозрачность и альбедо
- обе сферические панорамы должны иметь одинаковое разрешение

Метод наложения теней в дополненной реальности

Этап 1: поиск областей с источниками света

Этап 2: поиск трехмерного положения источников света

Координаты источника света в сферических координатах:

$$\theta = 2\pi \times \frac{x_{pixel}}{width}$$

$$\varphi = \pi \times \frac{height - y_{pixel}}{height}$$

r = средняя глубина в прямоугольнике без учета нулевых значений

Перевод в декартовые координаты:

$$x = r \times \sin(\theta) \cos(\phi)$$

$$y = r \times \sin(\theta) \sin(\phi)$$

$$z = r \times \cos(\phi)$$

 θ — азимут источника света, ϕ — зенит источника света, r — радиус источника света, width — ширина панорамы окружения в пикселях, height — высота панорамы окружения в пикселях

Этап 3: построение геометрии окружения

Данные о глубине точек кадра

- Структурированный свет
- Стереокамера
- Время полета (ToF)
- Лидар (LiDAR)

Этап 3: построение геометрии окружения

Этап 4: получение формы тени виртуального объекта на трехмерной геометрии окружения

Этап 5: синтез тени и кадра окружения

Схема структуры разработанного приложения

Входные и выходные данные

Данные	Формат	
Сферическая панорама окружения	Цветное изображение формата PNG с глубиной цвета 32 бит	
Сферическая панорама глубины окружения	Изображение в оттенках серого формата PNG с глубиной цвета 64 бит	
Виртуальный трехмерный объект	Файл формата prefab	
Кадр окружения	Цветное изображение с разрешением 640 на 480 пикселей и глубиной цвета 32 бит	
Кадр глубины окружения	Изображение в оттенках серого с разрешением 640 на 480 пикселей и глубиной цвета 64 бит	

Выходные данные - цветное изображение с разрешением 640 на 480 пикселей и глубиной цвета 32 бит

Демонстрация работы приложения

Взаимодействие с пользователем

- Управление виртуальной камерой
 - Перемещение вдоль осей X, Y, Z
 - Поворот вверх, вниз, влево, вправо
- Управление моделями на сцене
 - Создание
 - Выбор
 - Удаление
 - Перемещение и поворот

Классификация поверхностей

Плоская поверхность

Неровная поверхность с высотными различиями, текстурой или рельефом

Поверхность с наличием объектов или препятствий

Результаты исследования

Количество человек, участвовавших в опросе - 10

Тип поверхности	Средняя оценка	
Плоская поверхность	4.3	
Неровная поверхность	4.1	
Поверхность с наличием объектов или препятствий	3.9	

Сравнение с аналогами

Технические характеристики ПК:

• ЦПУ: Intel Core i7 4790K;

• ОЗУ: 16 Гб DDR3;

• ГПУ: Nvidia RTX 3070;

• OC: Windows 10

Метод	Время определения положения ИС, мс
Метод на основе анализа контуров теней	32
Метод на основе построения теневых объемов	97
Метод с использованием сверточных нейронных сетей и трассировки теневых лучей	932
Разработанный метод	215

Заключение

Цель работы достигнута: был разработан метод наложения теней в дополненной реальности на основе информации о глубине точек кадра.

В ходе выполнения работы были выполнены все задачи:

- Проведен анализ предметной области наложения теней;
- Проведен обзор существующих методов наложения теней в дополненной реальности на основе информации о глубине точек кадра и привести результаты сравнительного анализа;
- Разработан и описан собственный метод наложения теней в дополненной реальности на основе информации о глубине точек кадра, который будет вычислять положения источников света только в начале сессии или при необходимости;
- Разработано программное обеспечение, реализующее описанный метод, и проверена его работоспособность;
- Проведено исследование результатов разработанного метода при проецировании теней от виртуального объекта на различные поверхности;
- Выполнено сравнение результатов работы реализованного метода с результатами, полученными с помощью существующих аналогов.

Развитие проекта

В качестве развития проекта можно предложить:

- реализацию автоматического определения ориентации камеры в пространстве
- определение типа источника света по характеру свечения (точечный, направленный и т. д.).