1. Dados os vetores

1

- a) $\vec{u} \vec{v}$
- b) $\vec{v} \vec{u}$
- c) $-\vec{v}$ 2 \vec{u}
- d) $2\vec{u} 3\vec{v}$
- 2. Determinar a extremidade do segmento que representa o vetor \vec{v} = (2, -5), sabendo que a sua origem é o ponto A(-1, 3)
- 3. Dados os pontos A(-1, 3), B(2, 5) e C(3,-1), calcular OA AB, OC BC, E 3BA 4CB.
- 4. Determinar a e b de modo que os vetores $\vec{u} = (4, 1, -3)$ e $\vec{v} = (6, a, b)$, sejam paralelos.
- 5. Se o vetor $\vec{u} = (x + 1, 4)$ é igual ao vetor $\vec{v} = (5, 2y 6)$, calcule x e y.
- 6. Dados os vetores $\vec{u} = (4, 1) \, e \, \vec{v} = (2, 6)$
 - a) Calcular \vec{u} + \vec{v}
 - b) $2\vec{u}$
- 7. Determinar o vetor \vec{w} na igualdade $3\vec{w}$ + $2u = \frac{1}{2}\vec{v} + \vec{w}$, sendo dados $\vec{u} = (3, -1)$ e $\vec{v} = (-2, 4)$
- 8. Encontrar os números a_1 e a_2 tais que $W = a_1 \vec{u} + a_2 \vec{v}$, sendo u = (1, 2), $\vec{v} = (4, -2)$ e w = (-1, 8)
- 9. Dados os pontos A(-1, 2), B (3, -1) e C(-2, 4), determinar D(x, y) de modo que CD = 1/2AB