Math 118B HW3 - Lebesgue Criterion of Riemann Integrability

Zih-Yu Hsieh

February 3, 2025

The goal of this Homework is to understand and prove the Lebesgue Criterion of Riemann Integrability.

Setup 1

Definition 1 A set $E \subset \mathbb{R}$ is said to be of measure zero if given $\epsilon > 0$ there is a countable collection of open intervals $\{I_j\}_{j \in \mathbb{Z}_+}$ which covers E, i.e. $E \subseteq \bigcup_{j \in \mathbb{Z}_+} I_j$ and such that

$$\sum_{j=1}^{\infty} |I_j| < \epsilon$$

1

Question 1 Prove that every countable set of \mathbb{R} is a set of measure zero.

Pf:

Given $E \subset \mathbb{R}$ that is countable, then there exists a bijection $f: E \to \mathbb{N}$, which generates an index for all element $a \in E$.

Then, given any $\epsilon > 0$, for all $a \in E$, let j = f(a), consider the open inverval $I_j = (a - \frac{\epsilon}{2^{j+2}}, a + \frac{\epsilon}{2^{j+2}})$: the collection $\{I_j\}_{j \in \mathbb{Z}_+}$ is countable, and $E \subseteq \bigcup_{j \in \mathbb{Z}_+} I_j$, since for all $a \in E$, let $j = f(a) \in \mathbb{Z}_+$, we have $f(a) \in I_j = (a - \frac{\epsilon}{2^{j+2}}, a + \frac{\epsilon}{2^{j+2}})$.

On the other hand, the following is true for the length of the countable set:

$$\forall j \in \mathbb{Z}_+, \quad |I_j| = \left| (a + \frac{\epsilon}{2^{j+2}}) - (a - \frac{\epsilon}{2^{j+2}}) \right| = \left| 2 \cdot \frac{\epsilon}{2^{j+2}} \right| = \frac{\epsilon}{2^{j+1}}$$
$$\sum_{i=1}^{\infty} |I_j| = \sum_{i=1}^{\infty} \frac{\epsilon}{2^{j+1}} = \frac{\epsilon}{2} < \epsilon$$

The above series is converging since it's a geometric series with radius $\frac{1}{2} < 1$. Hence, for all $\epsilon > 0$, there is a countable collection of open intervals covering E with the series of length bounded by ϵ , proving that E the countable set has measure 0.

Question 2 Prove that the countable union of sets of measure zero has measure zero.

Pf:

Let $\{E_n\}_{n\in\mathbb{Z}_+}$ be a countable collection of sets, each with measure 0. Then, for any given $\epsilon > 0$, for every $n \in \mathbb{Z}_+$, since $\frac{\epsilon}{2^n} > 0$, there exists a countable collection of open interval $\{I_j^n\}_{j\in\mathbb{Z}_+}$, with $E_n \subseteq \bigcup_{j\in\mathbb{Z}_+} I_j^n$, and $\sum_{j=1}^{\infty} |I_j^n| < \frac{\epsilon}{2^n}$.

Now, consider the collection $\mathcal{F} = \bigcup_{n \in \mathbb{Z}_+} \{I_j^n\}_{j \in \mathbb{Z}_+}$, a countable union of "countable collection of open intervals", which is again countable. Which, since $E_n \subseteq \bigcup_{j \in \mathbb{Z}_+} I_j^n$ for all $n \in \mathbb{Z}_+$, then:

$$\bigcup_{n\in\mathbb{Z}} E_n \subseteq \bigcup_{n\in\mathbb{Z}_+} \left(\bigcup_{j\in\mathbb{Z}_+} I_j^n\right)$$

Which the left side is countable union of sets with measure 0, while the right side is the union of open intervals in family \mathcal{F} .

Then, to consider the length of \mathcal{F} , since it is countable, there exists a bijection $f: \mathcal{F} \to \mathbb{N}$ that generates the index. Which, for the first k elements in this index of \mathcal{F} , the elements are $\{I_{j_1}^{n_1},...,I_{j_k}^{n_k}\}$. let $J = \max\{j_1,...,j_k\}$ and $N = \max\{n_1,...,n_k\}$, then these elements are in the collection $\bigcup_{n=1}^{N}\{I_j^n\}_{j=1}^{J}$. Which, the collection has the length being bounded:

$$\forall n \in \{1, ..., N\}, \quad \sum_{j=1}^{J} |I_j^n| \le \sum_{j=1}^{\infty} |I_j^n| = \frac{\epsilon}{2^n}$$

$$\sum_{n=1}^{N} \left(\sum_{j=1}^{J} |I_j^n| \right) \le \sum_{j=1}^{\infty} |I_j^n| \le \sum_{n=1}^{N} \frac{\epsilon}{2^n} \le \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon$$

The above two inequalities are true, since each partial sum is monotonically non-decreasing, and bounded above. Hence, the sum of length $s_k = \sum_{i=1}^k |I_{j_i}^{n_i}| \leq \sum_{n=1}^N \left(\sum_{j=1}^J |I_j^n|\right) \leq \epsilon$ for any positive integer k, while this partial sum of length s_k is also monotonically non-decreasing, hence the series of length converges, and the following is true:

$$\lim_{k \to \infty} s_k = \sum_{k=1}^{\infty} |I_{j_k}^{n_k}| = \sup\{s_k\} \le \epsilon$$

(Note: since ϵ is the upper bound of the partial sums, hence the above inequality is true). Then, since \mathcal{F} covers the $\bigcup_{n\in\mathbb{Z}_+} E_n$, and the series of \mathcal{F} elements' length satisfy $\sum_{k=1}^{\infty} |I_{j_k}^{n_k}| \leq \epsilon$, then we can conclude that $\bigcup_{n\in\mathbb{Z}_+} E_n$ has measure 0.

Question 3 Let E be the set of all $x \in [0,1]$ whose decimal expansion contains only the digits 4 and 7. We have seen that E is uncountable. Prove that E is a set of measure zero.

Pf:

From the description, $E = \{x \in [0,1] \mid x = 0.a_1a_2...a_n..., \forall n \in \mathbb{N}, a_n \in \{4,7\}\}$. For each $n \in \mathbb{N}$, let $E_n = \{x \in [0,1] \mid x = 0.a_1a_2...a_n..., \forall i \in \{1,...,n\}, a_i \in \{4,7\}\}$ (set of reals in [0,1] with the first n decimals being 4 or 7).

Notice that for $n \geq 2$, there are $2^{(n-1)}$ distinct cases for $0.a_1a_2...a_{(n-1)}$ (first (n-1) decimals) in E_n , then for each case, if $x \in E_n$ has this arrangement for the first (n-1) decimals:

$$0.a_1a_2...a_{(n-1)}3 < x < 0.a_1a_2...a_{(n-1)}8$$

Hence, for each arrangement, they're contained in the open interval $(0.a_1a_2...a_{(n-1)}3, 0.a_1a_2...a_{(n-1)}8)$, which has length $(0.a_1a_2...a_{(n-1)}8 - 0.a_1a_2...a_{(n-1)}3) = \frac{8-3}{10^n} = \frac{5}{10^n}$.

All $2^{(n-1)}$ collection of these open intervals would cover E_n , since the first (n-1) decimals for each $x \in E_n$ must be some arrangement of 4 and 7. Hence, E_n can be covered by unions of $2^{(n-1)}$ open intervals, each with length $\frac{5}{10^n}$, hence the total length of the open cover is $2^{(n-1)} \cdot 5 \cdot \frac{1}{10^n} = \frac{1}{2} \cdot (\frac{2}{10})^{(n-1)} = \frac{1}{2} (\frac{1}{5})^{(n-1)}$.

Now, since for each $x \in E$, the first n decimals are consist of 4 and 7, hence $x \in E_n$, or $E \subseteq E_n$. From the previous part, since for each $n \in \mathbb{N}$, the set E_n could be covered by a finite collection of open intervals with sum of length $\frac{1}{2}(\frac{1}{5})^{(n-1)}$, so does the set E.

Then, becase $\lim_{n\to\infty} \frac{1}{2} (\frac{1}{5})^{(n-1)} = 0$, then for all $\epsilon > 0$, there exists n, with $\frac{1}{2} (\frac{1}{5})^{(n-1)} < \epsilon$. Hence, choose the collection of open intervals for E_n (along with countable empty sets), E can be covered with the given collection of open intervals, with total length $\frac{1}{2} (\frac{1}{5})^{(n-1)} < \epsilon$, showing that E in fact has measure 0.

Setup 2

Definition 2 Let $f:[a,b] \to \mathbb{R}$ be a bounded function, $(b-a) < \infty$. For $x \in [a,b]$ and $\eta > 0$ define

$$\Omega(f, x, \eta) = \sup\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x - \eta, x + \eta) \cap [a, b]\}$$

and the oscillation of f at a point $x \in [a, b]$

$$\omega_f(x) = \lim_{\eta \to 0^+} \Omega(f, x, \eta) = \inf_{\eta > 0} \{\Omega(f, x, \eta)\}$$

4

Question 4 Prove that $\omega_f(x)$ is defined for any $x \in [a,b]$.

Pf:

Given any $x \in [a, b]$, and $\eta_1, \eta_2 > 0$ with $\eta_1 > \eta_2$, since $(x - \eta_2, x + \eta_2) \subset (x - \eta_1, x + \eta_1)$, hence:

$$\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x - \eta_2, x + \eta_2) \cap [a, b]\} \subseteq \{|f(x_1) - f(x_2)| : x_1, x_2 \in (x - \eta_1, x + \eta_1) \cap [a, b]\}$$

This implies $\Omega(f, x, \eta_2) \leq \Omega(f, x, \eta_1)$, since the supremum of the set on the right, is also an upper bound of the set on the left.

On the other hand, since the set $\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x - \eta, x + \eta) \cap [a, b]\}$ for all $\eta > 0$ is a collection of distance in \mathbb{R} , hence 0 is always a lower bound of the set, showing that $0 \leq \Omega(f, x, \eta)$.

Now, since for all $\eta > 0$, the value $\Omega(f, x, \eta)$ is bounded below by 0 for all $\eta > 0$, this implies $\inf_{\eta > 0} \{\Omega(f, x, \eta)\}$ exists. Then, to prove that $\lim_{\eta \to 0^+} \Omega(f, x, \eta) = \inf_{\eta > 0} \{\Omega(f, x, \eta)\} = \omega$, for all $\epsilon > 0$, since $\omega + \epsilon$ is no longer a lower bound of the set, there exists $\eta > 0$, with $\omega \leq \Omega(f, x, \eta) < \omega + \epsilon$. Then, choose $\delta = \eta > 0$, for all $\mu' > 0$ with $\mu' < \mu = \delta$, from the previous section, $\omega \leq \Omega(f, x, \eta') \leq \Omega(f, x, \eta) < \omega + \epsilon$, hence:

$$|\omega - \Omega(f, x, \eta')| < \epsilon$$

This demonstrates that $\lim_{\eta\to 0^+} \Omega(f,x,\eta) = \omega = \inf_{\eta>0} \{\Omega(f,x,\eta)\}$, hence $\omega_f(x)$ is defined.

5

Question 5 Prove that f is continuous at x_0 if and only if $\omega_f(x_0) = 0$.

Pf:

 \Longrightarrow : Suppose f is continuous at x_0 , for all $\epsilon > 0$ (since $\frac{\epsilon}{2} > 0$), there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \epsilon$. Then, choose $\eta = \delta$, consider $\Omega(f, x_0, \delta) = \sup\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x_0 - \delta, x_0 + \delta) \cap [a, b]\}$:

For all $x_1, x_2 \in (x_0 - \delta, x_0 + \delta) \cap [a, b]$, since $x_1, x_2 \in B_\delta(x_0)$, then by assumption $|f(x_1) - f(x_0)|, |f(x_2) - f(x_0)| < \frac{\epsilon}{2}$. Hence, the following is true:

$$|f(x_1) - f(x_2)| = |(f(x_1) - f(x_0)) + (f(x_0) - f(x_2))| \le |f(x_1) - f(x_0)| + |f(x_2) - f(x_0)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence, ϵ is an upper bound of the set $\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x_0 - \delta, x_0 + \delta) \cap [a, b]\}$, showing that $\Omega(f, x_0, \delta) \leq \epsilon$.

Because the choice $\epsilon > 0$ is arbitrary, then with the corresponding $\delta > 0$, $\omega_f(x_0)\Omega(f, x_0, \delta) \leq \epsilon$. Then, $\omega_f(x_0) \leq \epsilon$ for all $\epsilon > 0$, showing that $\omega_f(x_0) \leq 0$; also, $\omega_f(x_0)$ is an infimum of all nonnegative numbers (in 4 we've proven $0 \leq \Omega(f, x, \eta)$ for all $\eta > 0$), hence $\omega_f(x_0) \geq 0$. The two statements imply $\omega_f(x_0) = 0$.

 \Leftarrow : Suppose $\omega_f(x_0) = 0$. Then, by definition, for all $\epsilon > 0$, since $\epsilon = 0 + \epsilon$ is no longer a lower bound of the set $\{\Omega(f, x_0, \eta) \mid \eta > 0\}$, there exists $\delta = \eta > 0$, such that $0 \le \Omega(f, x_0, \delta) < \epsilon$.

Hence, for all $x \in B_{\delta}(x_0) \cap [a, b]$, $|f(x) - f(x_0)| \le \Omega(f, x_0, \delta) < \epsilon$, proving that f is continuous at x_0 .

The above two implications shows that f is continuous at x_0 if and only if $\omega_f(x_0) = 0$.

6

Question 6 Prove that for any $\mu > 0$ the set $A_{\mu} = \{x \in [a,b] : \omega_f(x) \ge \mu\}$ is compact.

D£.

Since $A_{\mu} \subseteq [a, b]$ while [a, b] is compact, then to prove that A_{μ} is compact, it suffices to show that A_{μ} is closed, or $A'_{\mu} \subseteq A_{\mu}$.

For all $x_0 \in A'_{\mu}$, for every radius r > 0, there exists $x_1 \in B_r(x_0) \setminus \{x_0\} \cap A_{\mu}$. Hence, $\omega_f(x_1) \ge \mu$. Now, take $\eta = r - |x_0 - x_1| > 0$, for all $x \in B_\eta(x_1)$, since $|x - x_1| < \eta = r - |x_0 - x_1|$, then:

$$|x - x_0| = |(x - x_1) + (x_1 - x_0)| \le |x - x_1| + |x_1 - x_0| < (r - |x_0 - x_1|) + |x_1 - x_0| = r$$

This indicates that $x \in B_r(x_0)$, or $B_n(x_1) \subseteq B_r(x_0)$.

Hence, for all $x_c, x_d \in (B_n(x_1) \cap [a, b]) \subseteq (B_r(x_0) \cap [a, b])$, since the following is true:

$$|f(x_c) - f(x_d)| \le \Omega(f, x_0, r) = \sup\{|f(x) - f(x')| : x, x' \in B_r(x_0) \cap [a, b]\}$$

Hence, $\Omega(f, x_0, r)$ is an upper bound of the set $\{|f(x) - f(x')| : x, x' \in B_{\eta}(x_1) \cap [a, b]\}$, which implies the following:

$$\Omega(f, x_0, r) \ge \Omega(f, x_1, \eta) = \sup\{|f(x) - f(x')| : x, x' \in B_{\eta}(x_1) \cap [a, b]\}$$

Thus, we can further conclude that $\Omega(f, x_0, r) \ge \Omega(f, x_1, \eta) \ge \omega_f(x_1) \ge \mu$.

Now, because for all r > 0, $\Omega(f, x_0, r) \ge \mu$, then μ is the lower bound of the set $\{\Omega(f, x_0, r) \mid r > 0\}$, showing that $\mu \le \omega_f(x_0) = \inf\{\Omega(f, x_0, r) \mid r > 0\}$. Hence, $x_0 \in A_\mu$, showing that $A'_\mu \subseteq A_\mu$.

This proves that A_{μ} is closed, and since $A_m u \subseteq [a, b]$ a compact set, then A_{μ} is also compact.

7

Question 7 Prove that the set of discontinuities of f can be written as

$$D_f = \bigcup_{j \in \mathbb{Z}_+} A_{1/j} = \bigcup_{j \in \mathbb{Z}_+} \left\{ x \in [a, b] : \omega_f(x) \ge \frac{1}{j} \right\}$$

Pf:

In **Question 5**, we've proven the equivalence of continuity at x_0 and $\omega_f(x_0) = 0$, hence $x \in [a, b]$ is a discontinuity of f iff $\omega_f(x) \neq 0$ (which actually is $\omega_f(x) > 0$). Hence, $D_f = \{x \in [a, b] \mid \omega_f(x) > 0\}$.

Now, for all $x \in D_f$, since $\omega_f(x) > 0$, by Archimedean's Property, there exists $j \in \mathbb{Z}_+$, with $\omega_f(x) > \frac{1}{j} > 0$, this implies $x \in A_{1/j} = \left\{ x \in [a,b] : \omega_f(x) \geq \frac{1}{j} \right\}$, hence $x \in \bigcup_{j \in \mathbb{Z}_+} A_{1/j}$. This implies $D_f \subseteq \bigcup_{j \in \mathbb{Z}_+} A_{1/j}$.

8

Question 8 Prove that if for some $\epsilon > 0$, $\omega_f(x) < \epsilon$ for any $x \in [a, b]$, then there exists $\eta > 0$ such that for all $x \in [a, b]$,

$$\Omega(f,x,\eta)<\epsilon$$

Pf:

Suppose there exists $\epsilon > 0$, with $\omega_f(x) < \epsilon$ for all $x \in [a, b]$, then since ϵ is not a lower bound of the set $\{\Omega(f, x, \eta) \mid \eta > 0\}$, then there exists $\eta_x > 0$, such that $\omega_f(x) \le \Omega(f, x, \eta_x) < \epsilon$.

Now, consider the collection of open intervals $\mathcal{F} = \{(x - \eta_x/2, x + \eta_x/2) \mid x \in [a, b]\}$: Since $[a, b] \subseteq \bigcup \mathcal{F}$, then \mathcal{F} is an open cover of [a, b]; hence, by the compactness of [a, b], there exists $x_1, ..., x_n \in [a, b]$, such that $[a, b] \subseteq \bigcup_{i=1}^n (x_i - \mu_{x_i}/2, x_i + \mu_{x_i}/2)$.

Then, let $\eta = \min\{\frac{1}{2}\eta_{x_1},...,\frac{1}{2}\eta_{x_n}\} > 0$. For all $x \in [a,b]$, from the above construction, there exists $i \in \{1,...,n\}$ with $x \in B_{\eta_{x_i}/2}(x_i)$. Now, consider the set $S = \{|f(x_c) - f(x_d)| : x_c, x_d \in (x - \eta, x + \eta) \cap [a,b]\}$: For all $x_c, x_d \in (x - \eta, x + \eta) \cap [a,b]$, they satisfy $|x_c - x|, |x_d - x| < \mu \le \frac{1}{2}\eta_{x_i}$. Hence, the following inequalities are true:

$$|x_c - x_i| = |(x_c - x) + (x - x_i)| \le |x_c - x| + |x - x_i| < \frac{1}{2}\eta_{x_i} + \frac{1}{2}\eta_{x_i} = \eta_{x_i}$$

$$|x_d - x_i| = |(x_d - x) + (x - x_i)| \le |x_d - x| + |x - x_i| < \frac{1}{2}\eta_{x_i} + \frac{1}{2}\eta_{x_i} = \eta_{x_i}$$

These two inequalities imply $x_c, x_d \in (x_i - \eta_{x_i}, x_i + \eta_{x_i})$, which $|f(x_c) - f(x_d)| \leq \Omega(f, x_i, \eta_{x_i})$. Hence, $\Omega(f, x_i, \eta_{x_i})$ is an upper bound of the set S, showing that $\sup(S) = \Omega(f, x, \eta) \leq \Omega(f, x_i, \eta_{x_i}) < \epsilon$ regarding the initial construction.

So, this $\eta > 0$ satisfies the desired condition.

Proof of the Main Theorem

Theorem 1 Let $f:[a,b] \to \mathbb{R}$ be a bounded function $(b-a) < \infty$. Then f is Riemann integrable on [a,b] if and only if the set of discontinuities of f, D_f is a set of measure zero.

9

Question 9 Prove the theorem.

Pf:

 \Longrightarrow : We'll approach this by contradiction. Suppose $f:[a,b]\to\mathbb{R}$ is Riemann Integrable, yet D_f has measure greater than 0.

In **Question 7**, we've proven that $D_f = \bigcup_{j \in \mathbb{Z}_+} A_{1/j}$ (Countable union of A_j), with $A_{1/j}$ being defined in **Question 6**. With the assumption that D_f has measure 0, there exists $j_0 \in \mathbb{Z}_+$, with A_{1/j_0} having measure greater than 0: If all $j \in \mathbb{Z}_+$ has measure 0, then by the statement proven in **Question 2**, the countable union $D_f = \bigcup_{j \in \mathbb{Z}_+} A_{1/j}$ should also have measure 0, which contradicts the assumption.

With the given $j_0 \in \mathbb{Z}_+$, consider any partition $P = \{x_0 = a, x_1, ..., x_{n-1}, x_n = b\}$ with $x_{i-1} < x_i$ for all index i. Since $A_{1/j_0} \subseteq [a, b]$, there exists some intervals in the partition $I_{n_1}, ..., I_{n_i}$ that covers A_{1/j_0} (here, assume every chosen interval covered some part of A_{1/j_0} , not disjoint with it).

WLOG, we can assume that for each interval I_{n_j} , there exists a point of discontinuity $x \in A_{1/j_0}$ that is an interior point of I_{n_j} : If $x = x_i$ for some $i \neq 0$ and $i \neq n$, then we can combine two intervals $I' = I_i \cup I_{i+1} = [x_{i-1}, x_{i+1}]$, which x_i becomes the interior point of the modified interval; else if x = a or x = b, since all the definition only consider the cases in [a, b], then a, b is could be considered as the interior point of [a, b] under subspace topology.

Because A_{1/j_0} has nonzero measure, then there exists $\epsilon > 0$, such that for any open interval covering $\{I_j\}_{j \in \mathbb{Z}_+}$ of A_{1/j_0} , the sum of length of the intervals $\sum_{j=1}^{\infty} |I_j| \ge \epsilon$, regardless of the collection of open intervals (in particular, $\sum_{j=1}^{i} |I_{n_j}| \ge \epsilon$, since each interval has the same length with its interior).

Furthermore, from the previous assumption, there exists $x \in A_{1/j_0}$ that is an interior point of I_{n_j} for each $j \in \{1, ..., i\}$, hence there exists radius $r_j > 0$, with $B_{r_j}(x) \cap [a, b] \subseteq I_{n_j}$. Now, by definition, since for all $x_1, x_2 \in B_{r_j}(x) \cap [a, b] \subseteq I_{n_j}$ satisfies $\inf_{x \in I_{n_j}} \{f(x)\} \le f(x_1), f(x_2) \le \sup_{x \in I_{n_j}} \{f(x)\}$, hence:

$$|f(x_1) - f(x_2)| \le \left(\sup_{x \in I_{n_j}} \{f(x)\} - \inf_{x \in I_{n_j}} \{f(x)\} \right)$$

This implies the following:

$$\sup\{|f(x_1) - f(x_2)| : x_1, x_2 \in B_{r_j}(x) \cap [a, b]\} = \Omega(f, x, r_j) \le \left(\sup_{x \in I_{n_j}} \{f(x)\} - \inf_{x \in I_{n_j}} \{f(x)\}\right)$$

$$\frac{1}{j_0} \le \omega_f(x) \le \Omega(f, x, r_j) \le \left(\sup_{x \in I_{n_j}} \{f(x)\} - \inf_{x \in I_{n_j}} \{f(x)\}\right)$$

Hence, consider the difference in upper and lower sum, we yield:

$$U(f,P) - L(f,P) = \sum_{k=1}^{n} \left(\sup_{x \in I_{k}} \{f(x)\} - \inf_{x \in I_{k}} \{f(x)\} \right) \cdot |I_{k}| \ge \sum_{j=1}^{i} \left(\sup_{x \in I_{n_{j}}} \{f(x)\} - \inf_{x \in I_{n_{j}}} \{f(x)\} \right) \cdot |I_{n_{j}}|$$

$$U(f,P) - L(f,P) \ge \sum_{j=1}^{i} \left(\sup_{x \in I_{n_{j}}} \{f(x)\} - \inf_{x \in I_{n_{j}}} \{f(x)\} \right) \cdot |I_{n_{j}}| \ge \sum_{j=1}^{i} \frac{1}{j_{0}} |I_{n_{j}}|$$

$$U(f,P) - L(f,P) \ge \frac{1}{j_{0}} \sum_{i=1}^{i} |I_{n_{j}}| \ge \frac{1}{j_{0}} \cdot \epsilon$$

(Note: The above is true, since the collection $I_{n_1},...,I_{n_j}$ is part of the partition).

Hence, the difference in the upper and lower sum for any P is at least $\epsilon/j_0 > 0$, showing that f is not Riemann Integrable. Yet, this contradicts our initial assumption; hence, the assumption is false, f is Riemann Integrable implies D_f has measure 0.

 \Leftarrow : Suppose D_f has measure 0. Then, for all $\epsilon > 0$, since $\frac{\epsilon}{2(b-a)} > 0$, by Archimedean's Property, there exists $j \in \mathbb{N}$, with $\frac{1}{j} < \frac{\epsilon}{2(b-a)}$. Then, consider the set $A_{1/j} \subseteq D_f$:

Partition for Points in $A_{1/i}$:

Before starting this, since the function f is bounded, there exists M > 0, such that |f(x)| < M for all $x \in [a, b]$. In other word, for all $x \in [a, b]$, -M < f(x) < M.

Given that $A_{1/j} \subseteq D_f$ and D_f has measure 0, then $A_{1/j}$ has measure 0 (or else, if $A_{1/j}$ has nonzero measure, then ever open interval cover of D_f covers $A_{1/j}$, which must have some nonzero total length greater than some r > 0, showing that D_f also has nonzero measure).

Hence, for given $\epsilon > 0$, since $\frac{\epsilon}{4M} > 0$, there exists collection of open interval covering $\{I_n\}_{n \in \mathbb{Z}_+}$ for $A_{1/j}$, with $\sum_{n=1}^{\infty} |I_n| < \frac{\epsilon}{4M}$. Then, by statement proven in **Question 6**, since $A_{1/j}$ is compact, there exists $n_1, ..., n_k \in \mathbb{Z}_+$, with $A_{1/j} \subseteq \bigcup_{i=1}^k I_{n_i}$.

Let P_1 be a partition consists of the infimum and supremum of each interval $I_{n_i} \cap [a, b]$, which for each $x_i \in P_1$, it is the endpoints of the closure of $I_{n_i} \cap [a, b]$ (which, any point $x \in A_{1/j}$ must be contained in between some $x_{i-1}, x_i \in P_1$).

Then, for any interval described by P_1 (each is a closure of $I_{n_i} \cap [a, b]$), since for $x \in \overline{I_{n_i} \cap [a, b]}$, we have -M < f(x) < M. Hence:

$$-M \leq \inf_{x \in \overline{I_{n_i} \cap [a,b]}} (f(x)) \leq \sup_{x \in \overline{I_{n_i} \cap [a,b]}} (f(x)) \leq M$$

$$\left(\sup_{x\in\overline{I_{n_i}\cap[a,b]}}(f(x)) - \inf_{x\in\overline{I_{n_i}\cap[a,b]}}(f(x))\right) \le 2M$$

So, taking the difference of upper sum and lower sum over these intervals, we get:

$$U(f, P_1) - L(f, P_1) = \sum_{i=1}^k \left(\sup_{x \in \overline{I_{n_i} \cap [a, b]}} (f(x)) - \inf_{x \in \overline{I_{n_i} \cap [a, b]}} (f(x)) \right) \cdot |\overline{I_{n_i} \cap [a, b]}|$$

$$\leq \sum_{i=1}^k 2M \cdot |I_{n_i}| \leq 2M \sum_{n=1}^\infty |I_n| < 2M \cdot \frac{\epsilon}{4M} = \frac{\epsilon}{2}$$

So, consider the partition over the region covering $A_{1/j}$, the difference in upper and lower sum is bounded by $\frac{\epsilon}{2}$.

(Note: this upper and lower sum is evaluating over the intervals covering $A_{1/j}$ only, not the whole [a,b]).

Partition for Points outside $A_{1/j}$:

Consider the set $K = [a,b] \setminus (\bigcup_{i=1}^k I_{n_i})$: By definition of $A_{1/j}$ in **Question 6**, for every $x \in K$, since $x \notin \bigcup_{i=1}^k I_{n_i}$ while $A_{1/j} \subseteq \bigcup_{i=1}^k I_{n_i}$, then $x \notin A_{1/j}$, hence $\omega_f(x) < \frac{1}{j}$. Then, because $\bigcup_{i=1}^k I_{n_i}$ is open, then $\left(\bigcup_{i=1}^k I_{n_i}\right)^C$ is closed, hence $K = [a,b] \cap \left(\bigcup_{i=1}^k I_{n_i}\right)^C$ is closed and bounded, which is compact. Which, using the same proof in **Question 8**, since $\omega_f(x) < \frac{1}{j}$ for all $x \in K$ while K is compact, then there exists $\eta > 0$, such that for all $x \in K$, $\Omega(f, x, \eta) < \frac{1}{j}$ (Note: the proof is by swapping [a, b] with K; since K is compact, same proof relying on the compactness of [a, b] would work on K also).

Then, Consider the partition P'_2 of [a, b] with $||P'_2|| = \max\{(x_i - x_{i-1})\} < \eta$, and take $P_2 = P'_2 \setminus (\bigcup_{i=1}^k I_{n_i})$ (the goal here is to construct partitions for the rest of the part not covered by the open interval covering of $A_{1/j}$).

For any interval I_i described by P_2 (the interval disjoint from the previous part that cover $A_{1/j}$), since each $x \in I_i$ is not in $A_{1/j}$, then we know:

$$\sup\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x - \eta, x + \eta) \cap [a, b]\} = \Omega(f, x, \eta) < \frac{1}{i}$$

Also, notice that since $|I_i| \leq ||P_2'|| < \eta$, hence $I_i \subseteq (x - \eta, x + \eta)$, hence for all $x_1, x_2 \in I_i$ (WLOG, assume $f(x_1) > f(x_2)$), we have $|f(x_1) - f(x_2)| = (f(x_1) - f(x_2)) \leq \Omega(f, x, \eta) < \frac{1}{j}$, which $\frac{1}{j}$ is an upper bound of the difference.

Hence, if consider the fact that $(f(x_1) - f(x_2)) \leq (\sup_{x \in I_i} (f(x)) - \inf_{x \in I_i} (f(x)))$, and this quantity is the supremum of the difference, then $(\sup_{x \in I_i} (f(x)) - \inf_{x \in I_i} (f(x))) \leq \frac{1}{i}$.

If there are total of m intervals described in P_2 , then the following is true:

$$U(f, P_2) - L(f, P_2) = \sum_{i=1}^{m} (\sup_{x \in I_i} (f(x)) - \inf_{x \in I_i} (f(x))) \cdot |I_i| \le \sum_{i=1}^{m} \frac{1}{j} \cdot |I_i|$$
$$\le \frac{\epsilon}{2(b-a)} \sum_{i=1}^{m} |I_i| \le \frac{\epsilon}{2(b-a)} (b-a) = \frac{\epsilon}{2}$$

(Note: the initial construction states that $\frac{1}{j} < \frac{\epsilon}{2(b-a)}$, and the sum of all length of intervals in P_2 , is at most (b-a) due to the fact that $P_2 \subseteq P_2'$, and P_2' is a partition of [a,b], which the total length is at most (b-a)).

(Note 2: the upper and lower sum here is only for the regions not covered by the intervals used to cover $A_{1/j}$, which might not cover the whol [a, b]).

Hence, for both cases above, take $P = P_1 \cup P_2$, then evaluating the difference in upper sum and lower sum, it will be the sum of the difference from above, which is at most $\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Then, because we can choose a partition, such that the difference in upper and lower sum is at most ϵ for arbitrary ϵ , we can conclude that f is Riemann Integrable on [a, b].

Combining both statements above, we can conclude that f is Riemann Integrable, iff the points of discontinuities, D_f has measure 0.