Graph Algorithms

Peter Lammich

3. Februar 2020

Outline

- 1 Directed Graphs
 Formal Definition
 Implementation
- 2 Graph Traversal Algorithms Generic Graph Traversal DFS and BFS Topological Sorting Shortest Paths
- 3 Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

Outline

- Directed Graphs
 Formal Definition
 Implementation
- 2 Graph Traversal Algorithms Generic Graph Traversal DFS and BFS Topological Sorting Shortest Paths
- Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

Outline

- 1 Directed Graphs
 Formal Definition
 Implementation
- 2 Graph Traversal Algorithms Generic Graph Traversal DFS and BFS Topological Sorting Shortest Paths
- 3 Shortest Path in Weighted Graphs Single-Source Shortest Path Bellman Ford Algorithm

• Shortest route between Manchester and London?

• Shortest route between Manchester and London?

- Shortest route between Manchester and London?
- Model map as graph: Nodes=Cities, Edges=Roads
 - Label each road with length (estimated travel time, ...)

- Shortest route between Manchester and London?
- Model map as graph: Nodes=Cities, Edges=Roads
 - Label each road with length (estimated travel time, ...)
- Compute *shortest path* between two nodes

Formal Stuff

- Graph as weight matrix w
 - $E = \{(u, v) \mid w(u, v) \neq \infty\}$
 - w(u, v) = d Edge between u and v has weight d
 - $w(u, v) = \infty$ No edge between u and v

Formal Stuff

- Graph as weight matrix w
 - $E = \{(u, v) \mid w(u, v) \neq \infty\}$
 - w(u, v) = d Edge between u and v has weight d
 - $w(u, v) = \infty$ No edge between u and v
- Recall: path p is list of nodes.
 - Path between *u* and *v*: *upv*
 - Weight of path: $|u_1...u_n| := \sum_{i=1}^{n} w(u_i, u_{i+1})$
 - $|p| = \infty$ means path p not feasible!

Formal Stuff

- Graph as weight matrix w
 - $E = \{(u, v) \mid w(u, v) \neq \infty\}$
 - w(u, v) = d Edge between u and v has weight d
 - $w(u, v) = \infty$ No edge between u and v
- Recall: path p is list of nodes.
 - Path between *u* and *v*: *upv*
 - Weight of path: $|u_1...u_n| := \sum_{i=1}^{n} w(u_i, u_{i+1})$
 - $|p| = \infty$ means path p not feasible!
- $\delta(u, v)$ distance between u and v
 - $\delta(u, v) := \min |upv|$ for all paths p
 - $\delta(u, v) = \infty$ No path from u to v!

Weight Matrix

Shortest path: abdhWeight: |abdh| = 11Distance: $\delta(a, h) = 11$ (weight of shortest path)

Shortest path not always unique:

Shortest paths: acfe, abe

But distance is!

Weight: |acfe| = |abe| = 9

Distance: $\delta(a, h) = 9$ (weight of shortest path)

- Compute shortest paths from *start node s* to any node
 - Notation: $\delta(u) := \delta(s, u)$

- Compute shortest paths from *start node s* to any node
 - Notation: $\delta(u) := \delta(s, u)$
- Start with over-estimate D. $D(u) \ge \delta(u)$

- Compute shortest paths from *start node s* to any node
 - Notation: $\delta(u) := \delta(s, u)$
- Start with over-estimate D. $D(u) \ge \delta(u)$
 - D(s) = 0, $D(u) = \infty$, $u \neq s$

- Compute shortest paths from start node s to any node
 - Notation: $\delta(u) := \delta(s, u)$
- Start with over-estimate D. $D(u) \ge \delta(u)$
 - D(s) = 0, $D(u) = \infty$, $u \neq s$
- Improve estimate until precise

- Compute shortest paths from start node s to any node
 - Notation: $\delta(u) := \delta(s, u)$
- Start with over-estimate D. $D(u) \ge \delta(u)$

•
$$D(s) = 0$$
, $D(u) = \infty$, $u \neq s$

- Improve estimate until precise
 - For edge (u, v) (relax edge) procedure RELAX(u, v)if D(u) + w(u, v) < D(v) then $D(v) \leftarrow D(u) + w(u, v)$

- Compute shortest paths from start node s to any node
 - Notation: $\delta(u) := \delta(s, u)$
- Start with over-estimate D. $D(u) \ge \delta(u)$
 - D(s) = 0, $D(u) = \infty$, $u \neq s$
- Improve estimate until precise
 - For edge (u, v) (relax edge) procedure RELAX(u, v)if D(u) + w(u, v) < D(v) then $D(v) \leftarrow D(u) + w(u, v)$
 - If path over (u, v) better than current D(v): adjust D(v)

- Compute shortest paths from start node s to any node
 - Notation: $\delta(u) := \delta(s, u)$
- Start with over-estimate D. $D(u) \ge \delta(u)$

•
$$D(s) = 0$$
, $D(u) = \infty$, $u \neq s$

- Improve estimate until precise
 - For edge (u, v) (relax edge) procedure RELAX(u, v)if D(u) + w(u, v) < D(v) then $D(v) \leftarrow D(u) + w(u, v)$
 - If path over (u, v) better than current D(v): adjust D(v)
- Now: Strategies of relaxing edges, to reach precise estimate

```
procedure INITESTIMATE(s)
D(u) \leftarrow \infty \text{ for all } u
D(s) \leftarrow 0 \text{ return } D
\text{procedure BellmanFord}(s)
D \leftarrow \text{INITESTIMATE}(s)
\text{for } i \in 0.. < |V| - 1 \text{ do}
\text{for all } (u, v) \text{ with } w(u, v) \neq \infty \text{ do } \text{Relax}(u, v)
\text{return } D
```

- Relax each edge. Repeat (at most) |V| 1 times.
 - If a round changes nothing, we can stop!

```
procedure INITESTIMATE(s)
D(u) \leftarrow \infty \text{ for all } u
D(s) \leftarrow 0 \text{ return } D
procedure BellmanFord(s)
D \leftarrow \text{INITESTIMATE}(s)
for i \in 0.. < |V| - 1 do
for all (u, v) with w(u, v) \neq \infty do Relax(u, v)
return D
```

- Relax each edge. Repeat (at most) |V| 1 times.
 - If a round changes nothing, we can stop!
- Claim: Returns $D = \delta$, i.e., precise estimate

```
procedure INITESTIMATE(s)
D(u) \leftarrow \infty \text{ for all } u
D(s) \leftarrow 0 \text{ return } D
procedure BellmanFord(s)
D \leftarrow \text{INITESTIMATE}(s)
for i \in 0... < |V| - 1 do
for all (u, v) with w(u, v) \neq \infty do Relax(u, v) return D
```

- Relax each edge. Repeat (at most) |V| 1 times.
 - If a round changes nothing, we can stop!
- Claim: Returns $D = \delta$, i.e., precise estimate
- Idea: In step *i*, estimate for shortest path up to length *i* is precise

```
procedure INITESTIMATE(s)
D(u) \leftarrow \infty \text{ for all } u
D(s) \leftarrow 0 \text{ return } D
procedure BellmanFord(s)
D \leftarrow \text{INITESTIMATE}(s)
for i \in 0... < |V| - 1 do
for all (u, v) with w(u, v) \neq \infty do Relax(u, v) return D
```

- Relax each edge. Repeat (at most) |V| 1 times.
 - If a round changes nothing, we can stop!
- Claim: Returns $D = \delta$, i.e., precise estimate
- Idea: In step *i*, estimate for shortest path up to length *i* is precise
 - ullet All shortest paths have length at most |V|-1

```
procedure INITESTIMATE(s)
D(u) \leftarrow \infty \text{ for all } u
D(s) \leftarrow 0 \text{ return } D
procedure BellmanFord(s)
D \leftarrow \text{INITESTIMATE}(s)
for i \in 0... < |V| - 1 do
for all (u, v) with w(u, v) \neq \infty do Relax(u, v) return D
```

- Relax each edge. Repeat (at most) |V| 1 times.
 - If a round changes nothing, we can stop!
- Claim: Returns $D = \delta$, i.e., precise estimate
- Idea: In step *i*, estimate for shortest path up to length *i* is precise
 - ullet All shortest paths have length at most |V|-1
 - Thus, D precise after algorithm

In each round, relax every edge once. Next round \dots

In each round, relax every edge once. Next round \dots

In each round, relax every edge once. Round changed nothing: terminate

Order of edges can affects number of required rounds!

Nothing will change any more ...

- A loop invariant is a statement that
 - 1 holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- A loop invariant is a statement that
 - 1 holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- A loop invariant is a statement that
 - 1 holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

In round *i*, estimate for shortest paths up to length *i* is precise and $\forall u \in V. \ D(u) \geq \delta(u)$

1 Initially, D precise up to length 0 (we have D(s) = 0)

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i.

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i. Show: After one more round, precise up to length i+1

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path assume: spuv is s.p. of length i+1. Thus spu is s.p. of length i

- A loop invariant is a statement that
 - nolds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- ② Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path assume: spuv is s.p. of length i+1. Thus spu is s.p. of length i thus, D(u) precise, and round relaxes edge (u, v)

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- ② Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path assume: spuv is s.p. of length i+1. Thus spu is s.p. of length i thus, D(u) precise, and round relaxes edge (u, v) thus, D(v) precise after round

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path assume: spuv is s.p. of length i+1. Thus spu is s.p. of length i thus, D(u) precise, and round relaxes edge (u, v) thus, D(v) precise after round
- **3** Assume path up to length |V| 1 precise

- A loop invariant is a statement that
 - holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path assume: spuv is s.p. of length i+1. Thus spu is s.p. of length i thus, D(u) precise, and round relaxes edge (u, v) thus, D(v) precise after round
- $oxed{3}$ Assume path up to length |V|-1 precise as no negative-weight cycles exist: any shortest path is cycle free

- A loop invariant is a statement that
 - 1 holds initially
 - 2 is preserved by loop iteration
 - 3 implies correctness when loop terminates

- **1** Initially, D precise up to length 0 (we have D(s) = 0)
- 2 Assume D precise up to length i. Show: After one more round, precise up to length i+1 prefix of shortest path is shortest path assume: spuv is s.p. of length i+1. Thus spu is s.p. of length i thus, D(u) precise, and round relaxes edge (u, v) thus, D(v) precise after round
- § Assume path up to length |V|-1 precise as no negative-weight cycles exist: any shortest path is cycle free thus, length at most |V|-1

Negative Weight Cycles

• What if negative weight cycle exists?

Negative Weight Cycles

- What if negative weight cycle exists?
- No shortest paths to nodes reachable from cycle!

Negative Weight Cycles

- What if negative weight cycle exists?
- No shortest paths to nodes reachable from cycle!
- Bellman-Ford can detect this:
 - Iterate until D does not change.
 - If D still changed in |V|th round: Report negative cycle

Complexity

- In worst case, we do |V| rounds
- Each round inspects | E | edges
- Time for relaxing edge: O(1)
- Complexity is O(|V||E|)