中国科学技术大学六系研究生课程《数字图像分析》

第十章:图像识别

中国科学技术大学 电子工程与信息科学系

目标检测

- □ 简单形状检测
 - 霍夫变换 (Hough Transform)
 - 倒角距离变换 (Chamfer Distance Transform)
- □ 图像分类
- □ 图像检索

霍夫变换 (Hough Transform)

□ 应用场景:直线拟合

如何从边缘检测的结果得到直线拟合的结果?

- □ 直线拟合的难点
 - 边缘检测点杂乱且多余
 - 不同的检测点属于不同的直线
 - 部分线段可能漏检
 - 边缘检测点上存在噪声

霍夫变换 (Hough Transform)

- □ 基本思想:基于投票的机制
 - 视待检测形状为一个模型(model)
 - 让每个样本(像素)对所有与其兼容的模型进行投票
 - 假设噪声样本不会偏好任何单个模型
 - 即使有部分样别缺失,当有足够的样本保留时,仍可将目标模型 (形状)检测出来

霍夫变换基本原理:以直线检测为例题

- Hough Transform
 - 图像空间与参数空间之间的一种变换
- □ Hough参数空间
 - 在图像空间中的一条直线,对应于Hough参数空间中的一个点

霍夫变换:直线检测

图像空间

- □ 参数空间的一条直线对应图像空间的一个点
- □ 图像空间中同一条直线上的任意两个点,在参数空间中 对应于两条相交的直线
 - 即在图像空间共线的n个点,对应于参数空间n条共点(p_0, q_0)的 直线

Hough参数空间

 $y = p_{0}x + q_{0}$ (x_{1}, y_{1}) (x_{2}, y_{2}) $q = -x_{1}p + y_{1}$ (p_{0}, q_{0}) $q = -x_{2}p + y_{2}$ p_{0}

霍夫变换:直线检测

□ 具体方法

■ 将参数空间离散成一个 2-D的累加数组*A*(*p*, *q*)

$$p \in [p_{\min}, p_{\max}]$$

 $q \in [q_{\min}, q_{\max}]$

A(p,q) = A(p,q) + 1A(p,q): 共线点数(p,q): 直线方程参数

□ 潜在的问题

■ p_{max} q_{max} 可能为无穷大,难以对其进行离散化

霍夫变换:直线检测的改进形式

□ 直线的极坐标方程

$$\lambda = x cos\theta + y sin\theta$$

- 参数λ和θ唯一确定一条直线
- □ X-Y平面的一个点对应参数空间的一条正弦曲线

其中
$$\alpha = \tan^{-1}\left(\frac{x_0}{y_0}\right)$$
, $A = \sqrt{x_0^2 + y_0^2}$

霍夫变换: 其他形状的检测

- □ 对于满足解析式 f(x, c) = 0形式的各类曲线, Hough Transform可以将其检测出来,并把曲线上的点完整地 连接起来
- □ 示例:以圆周检测为例
 - 圆周方程: $(x-a)^2 + (y-b)^2 = r^2$
 - 三个参数a,b,r, 所以需要在参数空间中建立3-D累加数组,其中的元素可以记为A(a,b,r)

霍夫变换:圆周检测

□ 示例

图(a)为256x256, 灰度256级, 叠加随机噪声;

图(b)为求梯度(Sobel算子)取阈值后的结果;

图(c)哈夫变换累计器图;

图(d)为检测出的圆周附加在原图上的效果

霍夫变换:圆周检测

- □ 利用梯度降维
 - 使累加数组的维度减少一维
 - 圆周——圆周对偶性

霍夫变换:圆周检测

□ 利用梯度降维

■ 圆周圆心在圆周边缘点的梯度方向上

$$a = x - r\sin\theta$$

$$b = y + r\cos\theta$$

1个3-D累加器数组

>

2个2-D累加器数组

利用梯度与否 2 种情况下的累加数组示意

广义霍夫变换

- □ 广义Hough变换将一般的**模板匹配与Hough变换**相结合
- □ 先对模板与图象上的物点作<mark>坐标变换</mark>,然后求相关
- □ 并用类似Hough变换检测物体的表决方法来确定匹配点

- □ 给定模板的一组点集
 - **B** = { $(x_i, y_i), i = 1, 2, \dots, m$ }
- □ $P(x_0, y_0)$ 为一参考点,常把P取为**B**的中心点。
 - 从而将**B** 表达为**B** = { $(dx_i, dy_i), i = 1, 2, \dots, m$ }

H(B,P)

$$\{(dx_i, dy_i), i = 1, 2, \dots, n\}$$

$$dx_i = x_0 - x_i = -(x_i - x_0)$$

$$dy_i = y_0 - y_i = -(y_i - y_0)$$

- \square 检测时,将待测图象,记为点集E:
 - $E = \{(x_j, y_j), j = 1, 2, \dots, n\}$
- □ 将待检测点集与变换后的模板B做相关运算
 - $\forall i, j,$ 计算 $v(i,j) = (dx_i + x_j, dy_i + y_j),$
 - 如果有很多点v(i,j)都对应同一个坐标点,则该点为与B相匹配的形状的中心位置

□ 在所需检测的曲线或目标轮廓没有或不易用解析式表达时,可以利用表格来建立曲线或轮廓点与参考点间的关系,从而可继续利用哈夫变换进行检测

建立参考点与轮廓点的联系:

$$p = x + r(\theta) \cdot \cos(\phi(\theta))$$
$$q = y + r(\theta) \cdot \sin(\phi(\theta))$$

图 6.1.8 建立参考点和轮廓点的对应关系

- □ 已知轮廓形状、朝向和尺度而只需检测位置信息
- □ 根据 θ ,r和 ϕ 的函数关系作出参考表

梯度角θ		矢角 $\phi(\theta)$
θ_{1}	$r_1^1, r_1^2, \cdots, r_1^{N_1}$	$\phi_1^1, \ \phi_1^2, \ \cdots, \ \phi_1^{N_1}$
θ_2	$r_2^1, r_2^2, \dots, r_2^{N_2}$	$\phi_{1}^{1}, \ \phi_{1}^{2}, \ \cdots, \ \phi_{1}^{N_{1}}$ $\phi_{2}^{1}, \ \phi_{2}^{2}, \ \cdots, \ \phi_{2}^{N_{2}}$ \cdots $\phi_{M}^{1}, \ \phi_{M}^{2}, \ \cdots, \ \phi_{M}^{N_{M}}$
$ heta_M$	r_M^1 , r_M^2 ,, $r_M^{N_M}$	ϕ_M^1 , ϕ_M^2 ,, $\phi_M^{N_M}$

- □ 给定一个测试点(x', y') 及其梯度角 θ ',即可确定一组可能的参考点位置
 - lacksquare 根据梯度角heta',找到表中对应梯度角所在行的矢径和视角序列
 - 基于坐标(x', y')和序列中每一组 (r, ϕ) 值,反推出形状参考点坐标 $p' = x' + r(\theta) \cdot \cos(\phi(\theta)), q' = y' + r(\theta) \cdot \sin(\phi(\theta))$

轮廓点	а	a'	b	b'	С	c'	d	d'
矢径 $r(\theta)$	$\sqrt{2}/2$	1/2	$\sqrt{2}/2$	1/2	$\sqrt{2}/2$	1/2	$\sqrt{2}/2$	1/2
	$1\pi/4$							

梯度角 θ	矢径	$r(\theta)$	矢角	$\phi(\theta)$
$\theta_a = \pi/2$	$\sqrt{2}/2$	1/2	$\pi/4$	$2\pi/4$
$\theta_b = 2\pi/2$		1/2	$3\pi/4$	$4\pi/4$
$\theta_c = 3\pi/2$	$\sqrt{2}/2$	1/2	$5\pi/4$	$6\pi/4$
$\theta_d = 4\pi/2$	$\sqrt{2}/2$		$7\pi/4$	

- \square 利用正方形上的8个轮廓点判断可能参考点位置(p',q')
- □ 对每个 θ 有 2个 r 及2个 ϕ 与之对应

$$p' = x' + r(\theta) \cdot \cos(\phi(\theta))$$

$$q' = y' + r(\theta) \cdot \sin(\phi(\theta))$$

梯度角	轮廓点	可能	参考点	轮廓点	可能参	参考点
θ_a	а	0	d'	a'	b'	0
θ_{b}	b	0	a'	b'	c'	O
θ_{c}	С	0	b'	c'	d'	0
θ_d	d	0	c'	d'	a'	O

广义霍夫变换的性能

- □ 运算量较小
- □ 抗干扰性也较强
- □ 可以求出曲线的某些参数
- □ 可适用于不规则曲线
- □ 仍不具有不变性

完整广义霍夫变换

- □ 轮廓的平移 + 轮廓放缩、旋转
- □ 累加数组:
- \square $A(p_{\min}; p_{\max}, q_{\min}; q_{\max}, \beta_{\min}; \beta_{\max}, S_{\min}; S_{\max})$

$$p = x + S \times r(\theta) \times \cos[\phi(\theta) + \beta]$$

$$q = y + S \times r(\theta) \times \sin[\phi(\theta) + \beta]$$

□ 累加数组的累加: $A(p, q, \beta, S) = A(p, q, \beta, S) + 1$

完整广义霍夫变换

计算示例

原梯度角 θ	新梯度角 θ'	矢径 r	(θ)	新矢角	$\hat{\mathbf{p}}\phi(heta)$
$\theta_a = \pi/2$	$\theta'_a = 3\pi/4$	$\sqrt{2}/2$	1/2	$2\pi/4$	$3\pi/4$
	$\theta'_b = 5\pi/4$				
$\theta_c = 3\pi/2$	$\theta'_c = 7\pi/4$	$\sqrt{2}/2$	1/2	6π/4	$7\pi/4$
	$\theta'_d = \pi/4$				

梯度角	轮廓点	可能参	考点	轮廓点	可能参	考点
θ'_a	а	0	ď	a'	b'	0
θ'_b	b	0	a'	b'	C'	O
θ'_c	С	0	b'	c'	d'	O
θ'_d	d	0	C'	d'	a'	O

目标检测

- □ 简单形状检测
 - 霍夫变换 (Hough Transform)
 - 倒角距离变换 (Chamfer Distance Transform)
- □ 图像分类
- □ 图像检索

- □ 从一个问题出发
 - 如何从下面左图二值边缘图像中检测匹配右图所示的三角形形状?

- □ 基本思路:
 - 把右图作为模板,将其中心置于左图所有可能的像素位置
 - \blacksquare 对于每个放置位置x,计算模板形状与测试图像边缘的匹配距离

$$D(x) = \frac{1}{|T|} \sum_{t \in T} d_I(t + x)$$

- •T是模板形状(像素点的集合), t为其中一个点的坐标
- I 是待匹配的边缘图像(像素点的集合)
- $\bullet d_I(y)$ 是坐标点y到 I 中所有边缘点的最近点的距离
- lacksquare 将最小匹配距离 所对应的位置x,视为匹配位置

- □ 计算复杂度分析
 - 假设测试图像中边缘点数量为M、像素点数量为P,模板中边缘点数量为N,上述距离计算的复杂度为O(MNP)
 - 上面距离测度存在大量计算冗余
- □ 如何降低冗余?
 - 事先计算测试图像中边缘点的距离变换
 - 图I中的边缘点集合E,像素点p的距离变换结果为:

 $DF_I(\mathbf{p}) = \min_{\mathbf{x} \in \mathbf{E}} dist(\mathbf{p}, \mathbf{x})$,其中 $dist(\cdot, \cdot)$ 表示距离函数,如棋盘距离

边缘图

距离变换结果

			-				
1	0	1	2	3	4	3	2
1	0	1	2	3	3	2	1
1	0	1	2	3	2	1	0
1	0	0	1	2	1	0	1
3	1	1	2	1	0	1	2
3	2	2	2	1	0	1	2
4	3	3	2	1	0	1	2
5	4	4	3	2	1	0	1

□ 倒角距离变换:

■ 基于 DF_I , 对模板形状进行倒角匹配(Chamfer matching)

$$D_{chamfer}(\mathbf{x}) = \frac{1}{|T|} \sum_{\mathbf{t} \in T} d_I(\mathbf{t} + \mathbf{x}) = \frac{1}{|T|} \sum_{\mathbf{t} \in T} DF_I(\mathbf{t} + \mathbf{x})$$

- T是模板形状(像素点的集合)
- I 是待匹配的边缘图像(像素点的集合)
- $d_I(t)$ 是模板中的点t到I中边缘点的最小的距离
- 计算复杂度: $O(MNP) \rightarrow O(NP)$

~	·······································	T
77	733	ľXJ
IJ		

	<u> </u>			

距离变换结果

		-	1-1-	<u> </u>	1/1-	<u>H / N</u>	•	
1		0	1	2	3	4	3	2
1		0	1	2	3	3	2	1
1		0	1	2	3	2	1	0
1		0	0	1	2	1	0	1
2	, (1	1	2	1	0	1	2
3	,	2	2	2	1	0	1	2
4	Ļ	3	3	2	1	0	1	2
5	,	4	4	3	2	1	0	1

模板

倒角变换距离

	_	1-17	ハメ		4	
1	1	3				
2	1	4				
3	1	5				
4	0	4				
6	2	5				
9	5	6				
13	9	8				
18	14	13				

(后面五列结果自行计算)

□ 距离变换实例

■ 在距离变换的结果中,每个位置的值表示这个位置到最近的边缘点(或者其他二值化的图片结构)的距离

$$DF_I(\mathbf{p}) = \min_{\mathbf{x} \in \mathbf{E}} dist(\mathbf{p}, \mathbf{x})$$

原图

边缘检测结果

距离变换结果

倒角距离变换:如何做距离变换?

- □ 1-D距离变换
 - 1-D L_1 范数的距离变换是一个计算复杂度为O(n)的算法
 - 算法步骤
 - 1. 对图中任意位置的值进行初始化,当j在特征P中时初始化为0,否则初始化为inf。将第 j 个位置的值记为D[j]
 - 2. 前向过程: for j from 1 up to n-1, 更新D[j] $D[j] = \min(D[j], D[j-1] + 1)$
 - 3. 后向过程: for j from n-2 down to 0,更新D[j] $D[j] = \min(D[j], D[j+1]+1)$

倒角距离变换:如何做距离变换?

- □ 2-D距离变换: 算法步骤与1-D情况类似
 - 初始化距离矩阵
 - 前向过程:从上方和左方找离特征点最近的距离 $D[i,j] = \min(D[i,j], D[i,j-1] + 1, D[i-1,j] + 1)$
 - 后向过程:从下方和右方找离特征点最近的距离 $D[i,j] = \min(D[i,j], D[i,j+1] + 1, D[i+1,j] + 1)$

-	1
1	0
0	1
1	-

8	8	8	8
8	0	8	×
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	8
8	0	8	8
8	8	8	8

8	8	8	8
8	0	1	2
8	0	1	2
8	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

倒角距离变换: 倒角匹配实例

□ 手型匹配

边缘图的距离变换图

Chamfer Matching响应图

- 口 优点
 - 对混乱背景干扰较为鲁棒
 - 计算效率高
- □ 缺点
 - 对缩放和旋转变换敏感
 - 对形状的小的形变敏感
 - 需要大量的模板形状,应应对目标形状的形变
- □ 改进方法
 - 多尺度匹配
 - 层级模型组织(hierarchical model organization)

图像识别

- □ 简单形状检测
- □ 图像分类
 - 空间金字塔匹配
 - KNN
 - SVM
- □ 图像检索

面向图像分类的空间金字塔匹配

- □ 空间金字塔匹配 (Spatial Pyramid Matching)
 - 基于局部视觉特征(如SIFT)和词袋模板,一副图像中的各个局部 视觉特征可表达为相应的视觉单词
 - 不同类别的图像,视觉单词在图像平面服从某种<mark>空间分布</mark>
 - 如何表达视觉单词间的空间上下文关系?
 - ✓ 空间金字塔:在第 l 层,将图像平面均匀划分为 $2^l \times 2^l$ 份, $0 \le l \le L$

 Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. IEEE CVPR, 2006, 2: 2169-2178.

面向图像分类的空间金字塔匹配

- □ 视觉单词的空间金字塔表达
 - 空间金字塔:在第l层,将图像平面均匀划分为 $2^l \times 2^l$ 个格子区域
 - 对每个划分的格子区域,将其表达为视觉单词直方图
 - 在第 l 层,两幅图像X 和 Y匹配的视觉单词数量(直方图交):

$$\mathcal{I}^{\ell} = \mathcal{I}(H_X^{\ell}, H_Y^{\ell}) = \sum_{i=1}^{D} \min \left(H_X^{\ell}(i), H_Y^{\ell}(i) \right). \quad (D 为格子数量)$$

面向图像分类的空间金字塔匹配

□ 视觉单词的空间金字塔表达

- 对于两幅图像,第l层匹配的视觉单词包含第l+1层匹配的所有视觉单词
- 所以,相对于第 l+1 层,第 l 层的新增匹配定义为 I^l-I^{l+1} ,对应的权值为 $\frac{1}{2^{L-l}}$,反比于该层格子宽度
 - ✔ 格子越大, 匹配噪声越严重, 越不可靠, 故权值越小

■ 空间金字塔匹配 (SPM)

✓ 对于两幅图像 X 和 Y, 其L 层的空间金字塔匹配核:

$$\kappa^{L}(X,Y) = \mathcal{I}^{L} + \sum_{\ell=0}^{L-1} \frac{1}{2^{L-\ell}} (\mathcal{I}^{\ell} - \mathcal{I}^{\ell+1})$$
$$= \frac{1}{2^{L}} \mathcal{I}^{0} + \sum_{\ell=1}^{L} \frac{1}{2^{L-\ell+1}} \mathcal{I}^{\ell}.$$

图像分类模型

□ K-NN分类器

- 将类别预测转换为求解最近邻问题
- 预测类别 → 数据库中近邻图像的类别(多数类别)
- 参数K的影响

- 优点:不需要训练分类模型,简洁
- 缺点:依赖训练数据,预测速度慢(受ANN算法性能影响)

图像分类模型: SVM分类器

□ 基于SVM的二类分类

■ 学习几何间隔最大的分离超平面

$$\min_{oldsymbol{w},b} \; rac{1}{2} \|oldsymbol{w}\|^2$$

$$s.t. \;\; y_i \left(oldsymbol{w} \cdot oldsymbol{x_i} + b
ight) \geq 1, \; i = 1, 2, \dots, N$$

■ 将有约束的原始目标函数转换为无约束的拉格朗日目标函数

$$L\left(oldsymbol{w},b,oldsymbol{lpha}
ight)=rac{1}{2}\|oldsymbol{w}\|^2-\sum_{i=1}^Nlpha_i\left(y_i\left(oldsymbol{w}\cdotoldsymbol{x_i}+b
ight)-1
ight)$$

□ 基于SVM的K类分类

- One-versus-all rule:训练SVM分类器将某一类与其他(*K*-1)类分开
- 对于每一类图像,均训练一个one-versus-all SVM分类器
- 测试时,图像被分到响应最强的分类器所对应的类别

图像识别

- □ 简单形状检测
- □ 图像分类
- □ 图像检索
 - 倒排索引
 - 空间验证
 - 二值哈希

图像数据库索引: 正向索引

□ 正向索引

- 每幅图像表达为一个维度为*K*的矢量
- 遍历数据库图像,一一计算与查询图像的相似性得分

- ■在大规模图像检索中: $M \gg K$ 。遍历M张图像逐一计算相似性,耗时太久
- ■如何改进?
 - ✓去除向量距离计算时的计算冗余

图像数据库索引: 倒排索引

- □ 先验条件
 - 图像视觉表征向量的<mark>稀疏性</mark>:非零元素比例低,比如< 1%
 - 只需存储向量中的非零元素 → 视觉单词在词典中的索引
- □ 倒排索引的优势:高效的存储和计算
 - 根据向量距离公式,仅存储和比较向量中的非0元素

$$D(I_q, I_m) = \sum_{i=1}^{K} |q_i - m_i|^p = 2 + \sum_{i|q_i \neq 0, m_i \neq 0} (|q_i - m_i|^p - q_i^p - m_i^p)$$

	D_1	D_2	•••	D_{j}	•••	$D_{\!\scriptscriptstyle K}$
I_1	0	0.5	•••	0	•••	0.5
I_2	0.8	0.2	•••	0	•••	0
I_3	0	0	•••	0.4	• • •	0
:	:	•••	•••	•	•••	:
I_{M}	0	0		0.9		0.1

D_1	D_2	•••	D_j
I_2	I_1		I_3
0.8	0.5		0.4
	+	•	+
	I_2		
	0.2		+
			I_{M}
			0.9

图像数据库索引:倒排索引-示例

- □ 给定查询图像的K维 L_1 归一化的特征向量为 $I_q = [0.7, 0.3, 0, \dots, 0]$
 - I_q 仅在第1、2维的值为非零
- □ 计算 I_q 和 I_1 、 I_2 的距离:

$$\begin{split} D\big(I_q, I_1\big) &= 2 + \sum_{i \mid q_i \neq 0, m_i \neq 0} (|q_i - m_i| - q_i - m_i) \\ &= 2 + (|q_2 - m_2| - q_2 - m_2) = 2 + 0.2 - 0.3 - 0.5 = 1.4 \end{split}$$

$$D(I_q, I_2) = 2 + \sum_{i|q_i \neq 0, m_i \neq 0} (|q_i - m_i| - q_i - m_i)$$

= 2 + (|q_1 - m_1| - q_1 - m_1) + (|q_2 - m_2| - q_2 - m_2) = 2 - 1.4 - 0.4 = 0.2

□ 计算 I_q 和 I_m (m > 2) 的距离:

$$D(I_q, I_m) = 2 + \sum_{i|q_i \neq 0, m_i \neq 0} (|q_i - m_i| - q_i - m_i) = 2$$

图像数据库索引: 倒排索引

图像分类与检索

- □ 图像分类
- □ 图像检索
 - 倒排索引
 - 空间验证
 - 二值哈希

空间验证

□ 动机

- 局部特征匹配时缺少对位置信息的校验
- 通过检验几何一致性去掉错误的匹配点对

红线: 几何一致的匹配点对

蓝线: 几何不一致的匹配点对

视觉几何上下文表达

- □ 视觉单词以特定<mark>空间布局表达视觉语义</mark>
 - 利用几何上下文提升图像匹配质量
 - 有助于准确度量图像内容相关性

- □ 困难和挑战
 - 几何上下文结构化表达:便于图像匹配
 - 几何上下文快速匹配:保证实时检索

几何校验(1): RANSAC

- □ RANSAC算法示例
 - 通过匹配的特征点对估计图像的仿射变换

• Fischler, et al., **RAN**dom **SA**mple Consensus: a paradigm for model fitting with applications to image analysis and automated cartography, *Comm. of the ACM*, 24:381-395, 1981.

几何校验(1): RANSAC

 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}$

☐ RANSAC:

- 通过正确匹配点对估计仿射模型来排除错误匹配点对
- inliers: 正确的匹配点对
- outliers: 错误的匹配点对
- □ RANdom SAmple Consensus (RANSAC)的先验条件
 - 原始数据由inliers和outliers组成
 - inliers的子集可以正确的估计图像间的仿射变换
- □ 通过RANSAC估计仿射变换
 - 1.迭代的随机选取匹配点对当作假设的inliers
 - 2.根据假设的inliers计算一个仿射模型
 - 3.其他数据点根据上述的仿射模型判断是否是inliers
 - 4.通过所有的inliers重新估计仿射模型
 - 5.通过所有的匹配点对与模型的拟合程度计算误差

□ 缺点:由于随机采样点对估计模型要重复多次导致计算量大,计算 复杂度为
$$O(N^3)$$

Fischler, et al., RANdom SAmple Consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Comm. of the ACM, 24:381-395, 1981

几何校验(2): 空间编码(Spatial Coding)

□ 核心思想: 建立空间编码矩阵

■ 匹配特征的相对空间位置关系

$$Xmap(i,j) = \begin{cases} 0 & \text{if } x_j > x_i \text{ right to } x_i \\ 1 & \text{if } x_j \le x_i \text{ left to } x_i \end{cases} Ymap(i,j) = \begin{cases} 0 & \text{if } y_j > y_i \text{ above } y_i \\ 1 & \text{if } y_j \le y_i \text{ below } y_i \end{cases}$$

参考点: i

• Wengang Zhou, Yijuan Lu, Houqiang Li, Y. Song, and Qi Tian, "Spatial coding for large scale partial-duplicate web image search," *ACM International Conference on Multimedia (MM)*, pp.131-140, 2010.

空间编码矩阵生成

- □ 在前面的例子中,每个象限只有一个部分
 - 现在将每个象限均匀的分成两个部分

空间编码矩阵生成

- □ 生成空间矩阵GX和GY
 - 每个象限均匀的分成r个部分

• Wengang Zhou, Yijuan Lu, Houqiang Li, Y. Song, and Qi Tian, "Spatial coding for large scale partial-duplicate web image search," *ACM International Conference on Multimedia (MM)*, pp.131-140, 2010.

局部特征匹配的空间校验

□ 基于空间矩阵GX和GY的验证

■ 将匹配特征对的空间矩阵进行对比

$$V_x(i,j,k) = GX_q(i,j,k) \oplus GX_m(i,j,k)$$
 V_x : 空间矩阵X中不一致的程度 $V_y(i,j,k) = GY_q(i,j,k) \oplus GY_m(i,j,k)$ V_y : 空间矩阵Y中不一致的程度 k = $0, ..., r$ - $1; i, j$ = $1, ..., N; N$: 匹配特征对的数量

■ 迭代地**查找**和删除最不一致的匹配对

$$S_x(i) = \sum_{k=0}^{r-1} \sum_{j=1}^{N} V_x(i, j, k)$$
 $i^* = \arg\max_i S_x(i)$ 找到 i^{*/j^*} ,并从 V_x 和 V_y 中删除对应的行和列

局部匹配的空间校验实例

相关图像

不相关图像

识别的错误匹配对

空间验证后

图像识别

- □ 简单形状检测
- □ 图像分类
- □ 图像检索
 - 倒排索引
 - 空间验证
 - 二值哈希

哈希算法

- 大规模数据集图像检索任务的要求
 - 存储开销
 - 检索速度
- □ 二值哈希算法
 - 减小了存储开销加快了检索速度

基于异或的汉明距离

哈希算法

□ 哈希算法原理示意

■ 特征提取: 首先将一副图像表征为高维特征空间的一个向量

■ 二值哈希: 然后把图像特征向量映射为高维立方体的一个顶点

✓ 是否存在最优二值哈希函数? 未知

Image space

High dimensional floating-point vector Euclidean space: L2 distance

Low dimensional bit vector Binary space: Hamming distance

哈希算法

□ 哈希算法过程图例

哈希算法(1): 局部敏感哈希

- □ 局部敏感哈希定义
 - 高维空间的两点若距离很近,则这两点映射后的哈希值相同概 率较大。
 - 若两点之间的距离较远,则他们哈希值相同概率较小。
- □ 正整数向量投影到汉明空间

```
n (2) 维向量的数据集: A=(1,1) B=(2,1) C=(1,2) 坐标最大值: D=(2,2) E=(4,2) F=(4,3)
```

每个向量转换为n*C维哈希码:

值为k的坐标转换为长度为C的哈希码,前k位为1,后续位为0

```
A=(1,1) (1000, 1000) 10001000

B=(2,1) (1100, 1000) 11001000

......

F=(4,3) (1111, 1110) 11111110
```

哈希算法(1): 局部敏感哈希

□ 一族哈希函数定义

$$h_r(p) = \{ \begin{array}{l} 0, \overline{z}_p \in \mathbb{R} \\ 1, \overline{z}_p \in \mathbb{R} \end{array} \}$$

□ 选择k个哈希函数组成构成哈希表g

□ 查询时查找被哈希表映射在同一个桶内的点

■ 再将q与E,F比较,得到F是q的最近邻

哈希算法(1): 局部敏感哈希

- □ 选择多组k个哈希函数组成构成多个哈希表g
 - 假设有如下结果。
 - ✓ g1分别抽取第2,4位。
 - ✓ g2分别抽取第1,6位。
 - ✓ g3分别抽取第3,8位

哈希算法(2): 迭代量化(ITQ)

□ ITQ算法动机

- 将原始数据映射到超立方体的顶点,求解量化误差最小的映射
- 将超立方体在空间中<mark>旋转</mark>,求解旋转矩阵即能得到最好的映射
- 迭代这两个步骤

哈希算法(2): 迭代量化(ITQ)

□ ITQ(Iterative Quantization)算法步骤

- 对原始数据进行PCA降维 V = XW
- 最小化量化误差函数 $Q(B,R) = \|B VR\|_F^2$

- ✓ 固定R更新B: $B = \operatorname{sgn}(VR)$
- ✓ 固定B更新R
 - ightarrow 计算CxC矩阵 B^TV 的SVD分解 $S\Omega \hat{S}^T$ 然后令 $R=\hat{S}S^T$
- ✓ 迭代上述步骤,文中为五十次

口 优点

- 没有显式的对量化过程作正交限制
- 通过学习旋转矩阵代替了对汉明空间的操作
- Yunchao Gong and Svetlana Lazebnik, "Iterative Quantization: A Procrustean Approach to Learning Binary Codes," in CVPR 2011.

哈希算法(3): 球面哈希

- □ 动机:用超球面而非超平面来分割空间
 - 特征空间更紧凑
 - 分割D维特征空间需要一个超球面,D+1个超平面
 - 局部敏感性较超平面更佳

- □ 选择哈希函数即构建超球面:
 - 确定球心和半径
- Heo J P, Lee Y, He J, et al. Spherical Hashing: Binary Code Embedding with Hyperspheres, IEEE TPAMI, 2015.

哈希算法(3): 球面哈希

□ 球哈希示意

$$h_k(x) = \begin{cases} -1 & \text{when } d(p_k, x) > t_k \\ +1 & \text{when } d(p_k, x) \le t_k \end{cases}$$

□ 理想的超球面性质

■ 平衡性:每个球把样本空间均分,即球内球外各占一半

■ 独立性:每个球的交叉部分尽量少,即每个哈希函数相对独立

✓ 任意两个球交叉区域内的样本占总样本的四分之一

$$\begin{array}{rcl} o_i & = & | \{s_k | h_i(s_k) = +1, 1 \leq k \leq m\} |, \\ \\ o_{i,j} & = & | \{s_k | h_i(s_k) = +1, h_j(s_k) = +1, 1 \leq k \leq m\} |, \end{array}$$

哈希算法(3): 球面哈希

- □ 对于训练样本点集 $S = \{s_1, s_2, \dots, s_n\}$, 迭代确定超球面
 - 1. 初始化:从训练样本中随机选l个点作为初始球心 p_1, p_2, \cdots, p_l ;

平衡性

- 2. 对各个球心,确定半径 t_1, t_2, \dots, t_l ,使得 $o_l = \frac{n}{2}$;
- 3. 对每一对哈希函数,计算 $o_{i,j}$;

4. $\forall i, j,$ 计算 $f_{i \leftarrow j} = \frac{1}{2} \frac{o_{i,j} - n/4}{\frac{n}{4}} (p_i - p_j)$

- 独立性
- 5. $\forall i$,计算 $f_i = \frac{1}{l} \sum_{j=1}^{l} f_{i \leftarrow j}$, $p_i = p_i + f_i$
- 6. 重复步骤2~5,直至收敛,即满足下述条件 $avg(|o_{i,j}-n/4|) < \varepsilon_m \frac{m}{4} \text{ 且 } std dev(o_{i,j}) < \varepsilon_s \frac{m}{4}$
- □ 基于球哈希定义的汉明距离计算:

$$d_{shd}(b_i,b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$
 其中 \oplus : 异或; Λ : 逻辑与