Technische Universität Braunschweig

Institut für Robotik und Prozessinformatik Prof. J. Steil

Übungen für Grundlagen Maschinelles Lernen

SS 2019 Blatt 4

Übungstermin: 17. 05. 2017

Task 4.1 Cramer-Rao Schranke am Boccia-Beispiel:

Betrachten Sie das Boccia-Datenmodell aus dem Vorlesungsskript mit $y_i=wx^2+\nu_i$ mit konstanter Anfangsgeschwindigkeit x=0.5 und dem Schätzer

$$\hat{w} = \frac{1}{N} \sum_{i=1}^{N} \frac{y_i}{x^2}$$

Dabei sei $\nu_i \sim \mathcal{N}(0,\sigma^2)$ normalverteiltes Rauschen mit Varianz $\sigma^2 = 0.1$. Zeige experimentell über je 100 Wiederholungen, dass für $N \in \{1,2,3,5,10,100,1000\}$ die Varianz der Schätzung, d.h. $Var(\hat{w})$, gegen die Cramer-Rao Schranke $\frac{\sigma^2}{Nx^4}$ konvergiert. Plotte dazu $Var(\hat{w})$ und $\frac{\sigma^2}{Nx^4}$ in Abhängigkeit von N. Wie veränderen sich die Schranke und die Schätzungen bei Variation von σ^2 .

Task 4.2 Regularisierte Polynom-Regression:

Berechnen Sie die Regressionsformel für die quadratische Fehlerfunktion

$$E = \frac{1}{2} \sum_{i=1}^{N} (y(x_i) - \hat{y}(x_i))^2 + \lambda \frac{1}{2} \sum_{m=0}^{M} \hat{w}_m^2 (e^m - 1)$$

mit speziellem Regularisierungsterm gewichtet mit Parameter λ für einen Polynomapproximator

$$\hat{y}(x) = \sum_{m=0}^{M} \hat{w}_m x^m.$$

Welche Idee steckt hinter diesem speziellem Regularisierungsansatz und wie wirkt sich die Regularisierung auf die Lösungen der Regression aus?

Task 4.3 Bias-Varianz Dilemma am Beispiel der Polynom-Regression:

Untersuchen Sie den Einfluss der oben eingeführten Regularisierung auf die Schätzgenauigkeit. Als Datenmodell sei das Polynom $y(x,\mathbf{w})+\nu$ gegeben mit wahren Parametern $w_0=0.8,\ w_1=2.4,\ w_2=-1.55,\ w_3=-0.15,\ w_4=0.1$ und $\nu\sim\mathcal{N}(0,\sigma^2)$ mit $\sigma^2=2.$

Schätzen Sie wiederholt Modellparameter $\hat{\mathbf{w}}$ für Polynome 8-ten Grades mittels der regularisierten Regression aus Aufgabe 3.2. Erstellen Sie dazu 100 Datensaetze bestehend aus je 20 Datenpunkten $(x_i,\ y(x_i)+\nu_i)$ mit uniform verteilten $x_i\in[-5,5]$ und wiederholen Sie die Schätzung der Parameter für jeden Datensatz und Regularisierungen $\lambda\in\{0,10^{-5},10^{-4},\ldots,10^{5}\}$. Welchen Einfluss hat λ auf die Aufteilung des Schätzfehlers $\langle||\mathbf{w}-\hat{\mathbf{w}}||^2\rangle$ in Bias- und Varianz-Anteile? Plotten Sie dazu den Bias des Schätzers, d.h. $||\langle\hat{\mathbf{w}}\rangle-\mathbf{w}||^2$, sowie dessen Varianz $\langle||\hat{\mathbf{w}}-\langle\hat{\mathbf{w}}\rangle||^2\rangle$ in Abhängigkeit von λ .

