MA 4710 Homework 9

Benjamin Hendrick April 6, 2016

Problem 7.3

Load the data and rename the columns.

```
brand <- read.table("~/GitHub/MA-4710/Homework 8/brand.txt", quote="\"", comment.char="")
names(brand) <- c("Yi","Xi1", "Xi2")</pre>
```

Part A

Find the linear models for $Y + i = \beta_1 X_1$, $Y_i = \beta_2 X_2$, and $Y_i = \beta_1 X_1 + \beta_2 X_2$

```
brand.fit1 <- lm(Yi ~ Xi1, data = brand)
brand.fit2 <- lm(Yi ~ Xi2, data = brand)
brand.fit3 <- lm(Yi ~ Xi1 + Xi2, data = brand)</pre>
```

Find the ANOVA table for the third model $(Y_i = \beta_1 X_1 + \beta_2 X_2)$ using the anova function.

anova(brand.fit3)

From the above outpout, the following ANOVA table is produced:

Name	df	SS	MS	F^*
Responce	2	1872.8	936.4	215.947
X_1	1	1566.45	1566.45	216.06
X_2	1	306.25	306.25	42.219
Error	13	94.30	7.25	
Total	17	1967.1		

Part B

$$H_0: \beta_2 = 0$$

```
H_a: \beta_2 \neq 0
```

The F test statistic to see if X_2 can be dropped is 10.704032. The critical value is 3.8979442

Becasue the test statistic is greater than the critical value, we reject the null hypothesis H_0 . Therefore we should not drop X_2 .

Problem 7.12

Problem 7.16

Part A

The following code transforms the data and standardizes the regression model.

```
n <- dim(brand)[1]
brand.trans <- data.frame(1/sqrt(n-1)*scale(brand))
names(brand.trans) <- c("tYi", "tXi1", "tXi2")
brand.trans.fit <- lm(tYi ~ -1 + tXi1 + tXi2, data = brand.trans)</pre>
```

Part B

```
brand.trans.fit$coefficients
```

```
## tXi1 tXi2
## 0.8923929 0.3945807
```

The transformed coefficient b_1 means that the transformed b_1 increased 0.8924 per standard deviation.

Part C

Problem 7.24

Part A

```
brand.simple <- lm(Yi ~ Xi1, data = brand)
brand.simple$coefficients

## (Intercept) Xi1
## 50.775 4.425</pre>
```

The simple regression model is $Y_i = 50.775 + 4.425X_1$.

Part B

```
brand.lm.6.5 <- lm(Yi ~ Xi1 + Xi2, data=brand)
brand.lm.6.5$coefficients

## (Intercept) Xi1 Xi2
## 37.650 4.425 4.375</pre>
```

The coefficients for moisture content are the same between Problem 7.24a and Problem 6.5b.

Part C

Part D

Recall the correlation matrix from Problem 6.5a.

cor(brand)

```
## Yi Xi1 Xi2
## Yi 1.0000000 0.8923929 0.3945807
## Xi1 0.8923929 1.0000000 0.00000000
## Xi2 0.3945807 0.0000000 1.0000000
```

According to the matrix, there is no correlation between X_1 and X_2 . Therefore, Part B is justified because X_2 has no influence on X_1 . Likewise, Part C is justified because the error of X_2 has no influence on X_1 .