Lektion #8 Computer netværk, fortsat.

The Internet

Side 2

IP- adresser

- 32 bit
- 4 billion possible adresses.
- ddd.ddd.ddd.ddd
- f.eks.:
 - · 192.168.1.12

Internet Addressing

- ◆ IP address: pattern of 32 or 128 bits often represented in dotted decimal notation
- Mnemonic address:
 - Domain names
 - Top-Level Domains
- Domain name system (DNS)
 - Name servers
 - DNS lookup

I virkeligheden vil vi bare kommunikere fra en proces til en anden proces.

Nettet er transparent.

The Internet

Side 6

SDU 4 Creating a network app

write programs that:

- run on (different) end systems
- communicate over network
 - e.g., web server software communicates with browser software

no need to write software for network-core devices

- network-core devices do not run user applications
- applications on end systems allows for rapid app development, propagation

Lagdeling.

Layered protocol stack

Every layer must...

- 1. offer services to an upper layer.
- 2. comply with agreed protocols.
- 3. utilize services from the underlying layer.

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

Introduction 1-60

Lagdelte netværksmodeller.

TCP/IP 5-lag	Bogens 4-lag	OSI 7-lag
		Applikationslag
Applikationslag	Applikationslag	Præsentationslag
		Sessionslag
Transportlag	Transportlag	Transportlag
Netværkslag	Netværkslag	Netværkslag
Linklag		Linklag
Fysisk lag	Linklag	Fysisk lag

TCP 5-lagsmodellen

TCP/IP 5-lag	
Applikationslag	Her kører applikationens processer
Transportlag	er ansvarlig for at transmitere data fra proces til proces.
Netværkslag	er ansvarlig for at transmittere data fra host til host.
Linklag	er ansvarlig for at transmittere data via en link fra node til node.
Fysisk lag	Overfører de fysiske bit via et transmissionsmedie.

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Introduction 1-62 ansen mon@sdu.dk

The application layer...

- has no upper layer.
- hosts an application.
- utilizes services from the transport layer through sockets.

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out door
 - sending process relies on transport
 infrastructure on other side of door to deliver
 message to socket at receiving process

Application view

Application eg. GET object Socket Application eg. respond with object

Real view

Side 19

Some network apps

- e-mail
- web
- text messaging
- remote login
- P2P file sharing
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)

- voice over IP (e.g., Skype)
- real-time video conferencing
- social networking
- search
- •
- ...
- Custom/proprietary applications.

Side 20 Morten Hansen moh@sdu.dk

Application architectures

possible structure of applications:

- client-server
- peer-to-peer (P2P)
- Publish / subscribe

Client-server architecture

server:

- always-on host
- permanent IP address
- data centers for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Processes communicating

process: program running within a host

- within same host, two processes communicate using inter-process communication (defined by OS)
- processes in different hosts communicate by exchanging messages

clients, servers

client process: process that initiates communication

server process: process that waits to be contacted

Addressing processes

- to receive messages, process must have identifier
- host device has unique
 32-bit IP address
- identifier includes both IP address and port numbers associated with process on host.

- example port numbers:
 - HTTP server: 80
 - mail server: 25
- to send HTTP message to gaia.cs.umass.edu web server:
 - IP address: 128.119.245.12
 - port number: 80
- more shortly...

App-layer protocol defines

- types of messages exchanged,
 - e.g., request, response
- message syntax:
 - what fields in messages & how fields are delineated
- message semantics
 - meaning of information in fields
- rules for when and how processes send & respond to messages

- open protocols:
 - defined in RFCs
 - allows for interoperability
 - e.g., HTTP, SMTP
- proprietary protocols:
 - e.g., Skype

What transport service does an app need?

data integrity

some apps (e.g., file transfer, web transactions) require 100% reliable data transfer

other apps (e.g., audio) can tolerate some loss

throughput

- some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- other apps ("elastic apps")
 make use of whatever
 throughput they get

timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

security

encryption, data integrity, ...

Internet transport protocols services

TCP service:

- reliable transport between sending and receiving process
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantee, security
- connection-oriented: setup required between client and server processes

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, or connection setup,

Web and HTTP

- web page consists of objects
- object can be HTML file, JPEG image, Java applet, audio file,...
- web page consists of base HTML-file which includes several referenced objects
- each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name

path name

HTTP overview

HTTP:

hypertext transfer protocol

- Web's application layer protocol
- client/server model
 - client: browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

Side 29

HTTP overview (continued)

uses TCP:

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
- HTTP messages

 (application-layer protocol messages) exchanged
 between browser (HTTP client) and Web server
 (HTTP server)
- TCP connection closed

HTTP is "stateless"

 server maintains no information about past client requests

aside

protocols that maintain "state" are complex!

- past history (state) must be maintained
- if server/client crashes, their views of "state" may be inconsistent, must be reconciled

SDU 4

Computersystemer

Non-persistent HTTP

suppose user enters URL:

www.someSchool.edu/someDepartment/home.index
(contains text, references to 10 jpeg images)

- 1a. HTTP client initiates TCP connection to HTTP server (process) at www.someSchool.edu on port 80
- 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket.

 Message indicates that client wants object someDepartment/home.index
- 1b. HTTP server at host www.someSchool.edu waiting for TCP connection at port 80. "accepts" connection, notifying client
- 3. HTTP server receives request message, forms *response message* containing requested object, and sends message into its socket

time

Side 31

HTTP sekvens (cont.)

time

- 5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects
- 6. Steps 1-5 repeated for each of 10 jpeg objects

4. HTTP server closes TCP connection.

SDU Computersystemer HTTP request message: general

format

HTTP request message

- two types of HTTP messages: request, response
- HTTP request message:
 - ASCII (human-readable format)

request line (GET, POST,

HEAD commands)

header lines

carriage return, line feed at start of line indicates_

end of header lines

```
GET /index.html HTTP/1.1\r\n
```

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us, en; q=0.5\r\n

Accept-Encoding: gzip, deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

 $\r\rangle$

carriage return character

line-feed character

ASCII codes.

Computersystemer

ASCII	Hex	Symbol	ASCII	Hex	Symbol	ASCII	Hex	Symbol	ASCII	Hex S	Symbo
0	0	NUL	16	10	DLE	32	20	(space)	48	30	0
1	1	SOH	17	11	DC1	33	21	1	49	31	1
2	2	STX	18	12	DC2	34	22	II .	50	32	2
3	3	ETX	19	13	DC3	35	23	#	51	33	3
4	4	EOT	20	14	DC4	36	24	\$	52	34	4
5	5	ENQ	21	15	NAK	37	25	%	53	35	5
6	6	ACK	22	16	SYN	38	26	&	54	36	6
7	7	BEL	23	17	ETB	39	27	-2	55	37	7
8	8	BS	24	18	CAN	40	28	(56	38	8
9	9	TAB	25	19	EM	41	29)	57	39	9
10	A	LF	26	1A	SUB	42	2A	*	58	3A	Š
11	В	VT	27	1B	ESC	43	2B	+	59	3B	-
12	C	FF	28	1C	FS	44	2C	,	60	3C	<
13	D	CR	29	1D	GS	45	2D	-	61	3D	=
14	E	SO	30	1E	RS	46	2E	10	62	3E	>
15	F	SI	31	1F	US	47	2F	1	63	3F	?
ASCII Hex Symbol		ASCII	Hex	Symbol	ASCII	Hex	Symbol	ASCII	Hex S	Symbo	
			80	50	Р	96	60	•	112	70	р
64	40	@	00	00		00					
64 65	40 41	@ A	81	51	Q	97	61	а	113	71	q
		1.7	2555		Q R	0.000	61 62	a b	113 114	71 72	q r
65	41	Α	81	51		97			100		
65 66	41 42	A B	81 82	51 52	R	97 98	62	b	114	72	r
65 66 67	41 42 43	A B C	81 82 83	51 52 53	R S	97 98 99	62 63	b c	114 115	72 73	r s
65 66 67 68	41 42 43 44	A B C D	81 82 83 84	51 52 53 54	R S T	97 98 99 100	62 63 64	b c d	114 115 116	72 73 74	r s t
65 66 67 68 69	41 42 43 44 45	A B C D	81 82 83 84 85	51 52 53 54 55	R S T U	97 98 99 100 101	62 63 64 65	b c d e f	114 115 116 117	72 73 74 75	r s t u
65 66 67 68 69 70	41 42 43 44 45 46	A B C D E F	81 82 83 84 85 86	51 52 53 54 55 56	R S T U V	97 98 99 100 101 102	62 63 64 65 66	b c d e	114 115 116 117 118	72 73 74 75 76	r s t u v
65 66 67 68 69 70 71	41 42 43 44 45 46 47	A B C D E F G	81 82 83 84 85 86 87	51 52 53 54 55 56 57	R S T U V	97 98 99 100 101 102 103	62 63 64 65 66 67	b c d e f g	114 115 116 117 118 119	72 73 74 75 76 77	r s t u v
65 66 67 68 69 70 71 72	41 42 43 44 45 46 47 48	A B C D E F G H	81 82 83 84 85 86 87 88	51 52 53 54 55 56 57 58	R S T U V W X	97 98 99 100 101 102 103 104	62 63 64 65 66 67 68	b c d e f g h	114 115 116 117 118 119 120	72 73 74 75 76 77 78	r s t u v w
65 66 67 68 69 70 71 72 73	41 42 43 44 45 46 47 48 49	A B C D E F G H	81 82 83 84 85 86 87 88	51 52 53 54 55 56 57 58 59	R S T U V W X	97 98 99 100 101 102 103 104 105	62 63 64 65 66 67 68 69	b c d e f g h i	114 115 116 117 118 119 120 121	72 73 74 75 76 77 78 79	r s t u v w x y
65 66 67 68 69 70 71 72 73 74	41 42 43 44 45 46 47 48 49 4A	A B C D E F G H I J	81 82 83 84 85 86 87 88 89	51 52 53 54 55 56 57 58 59 5A	R S T U V W X Y Z	97 98 99 100 101 102 103 104 105 106	62 63 64 65 66 67 68 69 6A	b c d e f g h i	114 115 116 117 118 119 120 121	72 73 74 75 76 77 78 79 7A	r s t u v w x y z {
65 66 67 68 69 70 71 72 73 74 75	41 42 43 44 45 46 47 48 49 4A 4B	A B C D E F G H I J K	81 82 83 84 85 86 87 88 89 90	51 52 53 54 55 56 57 58 59 5A 5B	R S T U V W X Y Z [97 98 99 100 101 102 103 104 105 106 107	62 63 64 65 66 67 68 69 6A 6B	b c d e f g h i j k	114 115 116 117 118 119 120 121 122 123	72 73 74 75 76 77 78 79 7A 7B	r s t u v w x y z {
65 66 67 68 69 70 71 72 73 74 75 76	41 42 43 44 45 46 47 48 49 4A 4B 4C	A B C D E F G H I J K L	81 82 83 84 85 86 87 88 89 90 91	51 52 53 54 55 56 57 58 59 5A 5B 5C	R S T U V W X Y Z	97 98 99 100 101 102 103 104 105 106 107 108	62 63 64 65 66 67 68 69 6A 6B 6C	b c d e f g h i j k	114 115 116 117 118 119 120 121 122 123 124	72 73 74 75 76 77 78 79 7A 7B 7C	r s t u v w x y z {

Method types

HTTP/1.0:

- GET
- POST
- HEAD
 - asks server to leave requested object out of response

HTTP/1.1:

- ◆ GET, POST, HEAD
- PUT
 - uploads file in entity body to path specified in URL field
- DELETE
 - deletes file specified in the URL field

HTTP response message

```
status line
(protocel
status code
status phrase)
```

header

lines

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n

 $r\n$

data data data data ...

data, e.g., requested HTML file

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive/

HTTP response status codes

- status code appears in 1st line in server-toclient response message.
 - some sample codes:

200 OK

request succeeded, requested object later in this msg

301 Moved Permanently

requested object moved, new location specified later in this msg (Location:)

400 Bad Request

request msg not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

Extensible Markup Language (XML)

- XML: A language for constructing markup languages
 - A descendant of the Standard Generalized Markup Language
 - Opens door to a Worldwide Semantic Web (En af mange måder).

Example:

en mon@sau.dk

Hypertext Markup Language (HTML)

- Encoded as text file
- Contains tags to communicate with browser
 - Appearance
 - <h1> to start a level one heading
 - to start a new paragraph
 - Links to other documents and content
 -
 - Insert images
 - <

A simple webpage

a. The page encoded using HTML.

```
Tag indicating
                   <html>
   beginning of -
     document
                   <head>
  Preliminaries -
                   <title>demonstration page</title>
                   </head>
                   <body>
 The part of the
 document that -
                   <h1>My Web Page</h1>
will be displayed
                   Click here for another page.
   by a browser
                   </body>
  Tag indicating
                   </html>
end of document
```


Morten Hansen moh@sdu.dk

A simple webpage

An enhanced simple webpage – hyperlink

a. The page encoded using HTML.

```
<html>
             <head>
             <title>demonstration page</title>
             </head>
             <body>
             <h1>My Web Page</h1>
             Click
Anchor tag
containing -
                <a href="http://crafty.com/demo.html">
parameter
                here
  Closing
                </a>
anchor tag
                for another page.
             </body>
             </html>
```


An enhanced simple webpage – hyperlink

My Web Page

Click here

An enhanced simple webpage - Image

```
<html>
<head>
<title>Demo page</title>
</head>
<body>
<h1>My Web Page</h1>
<img src="SDU_BLACK_RGB.jpg"/>
</body>
</html>
```


An enhanced simple webpage – Image

Sockets

Client Server Program using sockets

- Socket: an abstraction for processes at the application layer to connect to the network via the transport layer
 - Needs to know
 - UDP or TCP
 - Source Address name (localhost)
 - Source Port number(1023...65535)
 - Destination Address
 - Destination Port number

TCP Server Script in Python

```
from socket import *
serverPort = 12001
serverSocket = socket(AF INET, SOCK STREAM)
serverSocket.bind(('',serverPort))
#Queue up as many as 1 connect requests before refusing outside
connections.
serverSocket.listen(1)
print ('The server is ready to receive')
while 1:
         #Wait for clients connecting
         connectionSocket, addr = serverSocket.accept()
         print('connection ' + str(addr))
         #Read message from client
         sentence = connectionSocket.recv(1024)
         print(sentence.decode())
         capitalizedSentence = sentence.upper()
         connectionSocket.send(capitalizedSentence) #Reply client
         #close connection
         connectionSocket.close()
```


TCP Client Script in Python

```
from socket import *
serverPort = 12001
serverName = 'localhost'
#Create a socket using TCP (SOCK STREAM), AF INET = IPv4
clientSocket = socket(AF INET, SOCK STREAM)
#Connect to server
clientSocket.connect((serverName, serverPort))
message = input('Input lowercase sentence:')
#Send messages to server
clientSocket.sendto(bytes(message,"utf-8"),(serverName, serverPort))
#Read message from server
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print (modifiedMessage.decode())
#close connection
clientSocket.close()
```


UDP Server Script in Python

```
from socket import *
serverPort = 12000
#Create a socket using UDP (SOCK DGRAM)
serverSocket = socket(AF INET, SOCK DGRAM)
#bind the socket to localhost:12000
serverSocket.bind(('localhost', serverPort))
print ('The server is ready to receive')
while 1:
        #Wait for messages
        message, clientAddress = serverSocket.recvfrom(2048)
        print('Received: ' + str(message.decode()))
        modifiedMessage = message.upper()
        #Send messages back to sender
        serverSocket.sendto(modifiedMessage, clientAddress)
```


UDP Client Script in Python

```
from socket import *
serverName = 'localhost'
serverPort = 12000

#Create a socket using UDP (SOCK_DGRAM), AF_INET = IPv4
clientSocket = socket(AF_INET, SOCK_DGRAM) #UDP

message = input('Input lowercase sentence:')
#Send messages to sender server
clientSocket.sendto(bytes(message,"utf-8"),(serverName,
serverPort))
#wait for server to reply
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print (modifiedMessage.decode())
clientSocket.close()
```


Spørgsmål?

Morten Hansen moh@sdu.dk