$$I(a_k, b_l) = \log_2(\frac{1}{p(a_k)}) = -\log_2(p(a_k)) = I(a_k)$$
 (6ut) (4.2.)

Выражение (4.2.) определяет информацию о X и называется **собственной информацией**. Она является информационной мерой Шеннона.

Свойства собственной информации.

- 1. Пусть $p(a_k) = 1$, тогда $I(a_k) = 0$, т.е. достоверное событие информации не несет. Собственная информация является меройнеопределенности.
- 2. Пусть a_k , a_q независимы, тогда $I(a_k, a_q) = -\log_2(p(a_k, a_q)) = -\log_2(p(a_k)p(a_q)) =$ $= -\log_2(p(a_k)) \log_2(p(a_a)) = I(a_k) + I(a_a), \ k = 1, 2, ..., L, q = 1, 2, ..., L.$
- 3. Если источник выдает за τ_s секунд цифру «0» или «1» (L=2) с равными вероятностями $p(a_k)=0.5$, то $I(a_k)=-\log_2(0.5)=1$ бит.
- 4. Пусть имеется блок a'_k символов источника из n двоичных цифр $a'_k = (10110100 \dots 1)_{l \times n}$. Тогда существует 2^n возможных n битовых блоков, появляющихся с одинаковыми вероятностями $p(a'_k) = 2^{-n}$. Средняя собственная информация такого блока равна $I(a'_k) = -\log_2(p(a'_k)) = -\log_2(2^{-n}) = n$ бит.

Зная взаимную информацию (4.1), связанную с парой событий (a_k, b_l) , которые являются возможной реализацией двух случайных величин X, Y, можно получить **среднее значение взаимной информации** следующим образом:

$$I(X,Y) = \sum_{k=1}^{L} \sum_{l=1}^{M} p(a_k, b_l) I(a_k, b_l) = \sum_{k=1}^{L} \sum_{l=1}^{M} p(a_k, b_l) \log_2(\frac{p(a_k, b_l)}{p(a_k) p(b_l)}) = I(Y, X)$$
(4.3)

Аналогично определяем среднюю собственную информацию источника:

$$H(X) = \sum_{k=1}^{L} p(a_k)I(a_k) = -\sum_{k=1}^{L} p(a_k)\log_2(p(a_k))$$
 (4.4)

Выражение (4.4) называют энтропией ДИ.

Свойства энтропии ДИ.

- 1. $H(X) \ge 0$, т.е. энтропия величина неотрицательная.
- 2. $H(X) = H_{\text{max}}$, если $p(a_k) = p = \frac{1}{L}$, k = 1, 2, ..., L. Энтропия ДИ максимальна, когда символы на его выходе равновероятны.

$$H_{\text{max}} = -\sum_{k=1}^{L} \frac{1}{L} \log_2(\frac{1}{L}) = \log_2(L)$$
 (4.5)