CS 349 10 Some History

Byron Weber Becker Spring 2009

Slides mostly by Michael Terry

The History of Interaction...

- History of interaction is the history of making the input and output languages of the machine closer to the language of the user and their tasks
- Interaction has evolved from forms that favored the machine (when its time was more valuable) to those that favor the user

Interactive Cycle

From Dix, Finlay, Abowd, & Beale (2004)

Interactive Cycle: Steps

- User
 formulates a
 goal, plans a
 method to
 achieve goal
- 2. User translates task into system input language
- 3. System performs instructions, changes its state

Interactive Cycle: Steps

- 4. System translates its state into its output language
- 5. User interprets result, repeats the cycle

Interaction

Where do translations occur in this process?

Interaction

- Translations occur:
 - From intention to system input language
 - From input language to core system language
 - From core system language to output channel
 - From output channel to user's interpretation of output

Interaction

- Input/output channels affect what can, cannot be expressed
 - Can result in an interactive language far removed from task domain
 - User may need to expend effort translating between task domain's language and that of the system
 - Examples?
- Example: Doctor remotely examining a patient
 - May wish to physically examine patient, but cannot actually touch, feel patient

A (Brief) History of Interaction

- History of interactive interfaces is history of moving system's interactive language closer to user's language, needs, expectations, and the task domain
- Major paradigms of interaction
 - Batch interfaces
 - Conversational interfaces
 - Graphical interfaces
 - "Ubicomp"
- Visionaries who inspired advances
 - Vannevar Bush, Douglas Engelbart, Alan Kay, Mark Weiser

Batch Interfaces

- Time period: ca. 1945-1965
- Interaction style
 - Set of instructions prepared a priori, fed to computer via punch cards, paper tape, magnetic tape
 - Response typically received via paper printout
 - No real interaction possible as system executes instructions
 - Responses received in hours, days
- Users
 - Only used by highly trained individuals
- System time costs more than human time
 - \$100's/hr vs. \$10-30/hr

Conversational Interfaces

- Time period: ca. 1965 1985+
- Command line interface
 - First commonly used interactive style
- Interaction style
 - User types command, waits for response
 - Programs usually run to completion
 - Feedback can be given during execution
 - User can be prompted for information during execution
- User is guided through heavily scripted / structured interaction

Conversational Interface

- First commonly used interactive style
- Advantages
 - Highly flexible: Can combine commands to create sophisticated sets of operations
- Disadvantages
 - Requires recall rather than recognition
 - What does this mean and what are consequences?
 - System in control during execution: User cannot refine execution / make modifications during program execution

Recognizing User Needs

- Batch and Conversational interfaces offer interaction language closer to system language than task language
 - Onus on user to conform to system
- These interfaces were common at a time when computer's time was more expensive than a person's time
- Several visionaries imagined a different form of humancomputer interaction

Vannevar Bush

- Headed Office of Scientific Research and Development
 - Manhattan project, other WWII science efforts
- 1945 article, "As We May Think" in The Atlantic inspires computer scientists to present day (http:// www.theatlantic.com/doc/194507/ bush)
- Goal was to augment human intellect

Vannevar Bush

- "A memex is a device in which an individual stores all his books, records, and communications... It is an enlarged intimate supplement to his memory."
- Proposes associative links between content
- Dual display setup!
- Direct annotation of stored content
- Proposes direct connection to nervous system
- But hardware a long way off

Douglas Engelbart

"By 'augmenting human intellect' we mean increasing the capability of a man to approach a complex problem situation, to gain comprehension to suit his particular needs, and to derive solutions to problems...

[We seek] more-rapid comprehension, better comprehension, the possibility of gaining a useful degree of comprehension in a situation that previously was too complex, speedier solutions, better solutions, and the possibility of finding solutions to problems that before seemed insoluble

Augmenting Human Intellect, 1962 SRI Report

Douglas Engelbart

- Known for...
- Creating the mouse, chording keyboard
- Demonstrates concepts such as copy/paste, computer-supported collaborative work in a 1968 live demo

Beyond the Knowledge Worker

- Ivan Sutherland's Sketchpad (1963)
 - Light pen
 - Direct manipulation
 - Early "WYSIWYG"
- Expands computer domain to include artists, draftsmen, and more
- Language of interface moves substantially closer to task domains

Graphical User Interface

- Time period: ca. 1984 present
- Hardware interface
 - High resolution, high refresh graphics display
 - Keyboard
 - Pointing device (e.g., mouse)
- Typical instantiation: WIMP interface
 - Windows, Icons, Menus, and Pointer
- First instantiation of WIMP interface?

Graphical User Interfaces

- Xerox's 8010 Star Information System (1981) first commercial WIMP offering
 - Xerox's Alto the experimental precursor
 - Many ideas from Engelbart's earlier work
- Apple's Macintosh follows years later, brings the GUI to the masses

(See http://www.digibarn.com/stories/finalstardemo for videos of these early systems)

Graphical User Interfaces

- Interaction style
 - User in control: System waits for input, responds
 - Recognition over recall enables discovery of options, experimentation
 - Simulated world metaphor employed
 - What does this mean and what are its consequences for interaction?

Graphical User Interfaces

- Interaction style continued...
 - Simulated world metaphor uses real-world metaphors to represent data, enable interaction
 - Interaction language closer to users' own language, closer to task domain
 - Examples:
 - Files, folders, trashcan
 - How to "refile" a file?

Users

 Language of interaction opens interface up to broader audience

Direct Manipulation

- Defining characteristic of many GUI's is *direct* manipulation
- Direct manipulation (Shneiderman, 1982)
 - Sense of directly manipulating objects of interest

Direct Manipulation

- Objects of interest visible
- Incremental action with rapid feedback
- Reversibility of all actions
 - Users can explore without severe consequences
- Syntactic correctness of all actions
 - Every user action is a legal operation
- Complex command languages replaced by directly manipulating visible objects

What is, is not, direct manipulation in modern UI's?

Interaction: Now What?

- Where can we go from here?
- What other paradigms are possible?

1990's: Get off the Desktop

- Two visions of the future digital age
 - Virtual reality
 - Ubiquitous computing

Mark Weiser

- "The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it." (Scientific American, 1991)
- Envisions computing on three scales: inches, feet, yards
- Computing as "natural" as writing, fading into the environment

Ubicomp

- Ubiquitous computing (ubicomp) highly active research area now
- Goal is to create language of interaction so close to task domain that the computer and its interface essentially become invisible
 - Not conscious of the fact that we are interacting with a computer
- How can this be achieved?

Some Ubicomp Approaches

- Make use of greater context in interaction
 - What is context?
- Context is the current physical, social, and psychological situation
 - Emotional, psychological state of user
 - Nature of task, where user is within a larger task
 - Who is present, what they are doing
 - Other examples?

Ubicomp and Context

- How can context change nature of interaction?
- System can potentially do more for you, act more "intelligently" if it knows more about your goals

Some Ubicomp Approaches

- Increase range of input, output devices
 - Sensors (heat, light, sound, etc.) throughout the environment
 - Artifacts at appropriate scales, in appropriate form factors (handheld devices, wall-sized devices...)
 - Computation embedded in situationally appropriate places
- Fold in machine learning to aid in interpreting new inputs
 - Not necessarily interfaces that work for you
 - Rather, system may offer assistance by being able to interpret, manage your data at a higher semantic level
 - Example: Determine whether you are interruptable, help you find interesting features of a large data set

Pushing the Boundaries of Interaction

- Interfaces should rise to meet us and our task domain
 - We shouldn't need to expend effort translating our intentions, actions into a language far removed from task for the convenience of the system
- Throughout term, you should be thinking how interfaces you construct are rising to meet needs of users
 - Focus on creating interaction language close to the way users conceive of the task
- Some inspirations...

Pushing the Interface

- EyeDraw (Hornof et al, 2003)
 - http://www.cs.uoregon.edu/research/cm-hci/EyeDraw/
- MIT's Counter-Intelligence (Bonanni et al, 2005)
 - http://web.media.mit.edu/~jackylee/kitchen.htm
 - http://web.media.mit.edu/~jackylee/projects/ckitchen/augkitchen s.avi
- I/O Brush (Ryokai et al, 2004)
 - http://web.media.mit.edu/~kimiko/iobrush/
- Kick-Ass Kung Fu (Hämäläinen *et al*, 2005)
 - http://www.kickasskungfu.net/en/

