

مرکز آموزش های کاربردی و حرفه ای دانشگاه تهران

پروژه پیش بینی ابتلا به دیابت

استاد:

دكتر محمدرضا محتاط

دانشجو:

بهنام امان اللهي

دی ۱۴۰۲

فهرست

۲	۱. شناخت کسب و کار:۱
۶	۲. درک داده:
	۱-۲ نوع توزیع ویژگی ها:
	۲-۲. چالش همخطی:
	۳. آماده سازی و پیش پردازش داده:
	۳–۱. مدیریت داده های نویزی:
	۳–۲. مدیریت داده های پرت:
٩	۳-۳. مدیریت داده های مفقوده:
11	۳–۴. نرمال سازی: ۳–۵. چالش همخطی:
17	۴. انتخاب ویژگی (Feature Selection):
١٣	۵. مدیریت دادگان نامتوازن:
١۵	۶. مدلسازی:
١۵	8-١. الگوريتم KNN:
١٧	8-٢. الگوريتم SVM:
71	۶-۳. الگوريتم شبكه عصبي (Neural Network):
74	۶-۶. الگوريتم C&RT:
٢٧	۵-۶. الگوريتم QUEST:
۲۸	۶-۶. الگوريتم CHAID:
٣١	۶-۷. الگوريتم C5.0:
٣٣	۶-۸. الگوريتم جنگل تصادفي (Random Forest):
	۷. انتخاب مدل:
	۷. نتیجه گیری:
۴٠	۸. فهرست شکل ها:
۴۲	٩. فهرست جدول ها:
* *	

۱. شناخت کسب و کار:

این مجموعه داده در اصل از موسسه ملی دیابت و بیماری های گوارشی و کلیوی تهیه شده است. این داده ها از اعمال محدودیت هایی روی یک پایگاه داده بزرگتر استخراج شده است. به طور خاص، همه بیماران در اینجا زنان حداقل ۲۱ ساله هندی پیما هستند. هدف مجموعه داده این است که بر اساس اندازه گیری های تشخیصی خاص موجود در مجموعه داده، پیش بینی کند که آیا بیمار مبتلا به دیابت است یا خیر. هدف از این پروژه پیش بینی ابتلای یک فرد به بیماری دیابت بر اساس ویژگی های زیر است:

:Pregnancies .1

تعداد بارداری فرد

:Glucose . Y

تست تحمل گلوکز خوراکی (OGTT) یک آزمون پزشکی است که در آن ۷۵ گرم گلوکز خوراکی به بیمار داده شده و پس از ۲ ساعت از بیمار نمونه خون گرفته و سرعت پاک سازی آن از خون در آن بررسی می شود. از این تست معمولاً برای تشخیص دیابت، مقاومت به انسولین و اختلال سلول های بتا استفاده می شود.

میزان گلوکز خون کمتر از ۱۴۰ mg/dL نرمال، ۱۴۰-۱۹۹ نشان دهنده اختلال در تحمل گلوکز و ۲۰۰ mg/dL و بیشتر از آن نشان دهنده ابتلا به دیابت است.

:BloodPressure . T

قلب بین ضربان ها، استراحت می کند تا بتواند دوباره با خون پر شود. پزشکان این مکث بین ضربانها را «دیاستول» مینامند. فشار خون دیاستولیک، در واقع اندازه گیری در مدت این مکث و پیش از ضربان قلب بعدی است. فشار خون دیاستولیک نشان می دهد در حالی که عضله قلب در بین انقباضات در حال استراحت است، خون چقدر فشار روی دیواره شریان وارد می کند.

مقادیر مختلف این ویژگی در جدول زیر آورده شده است.

BLOOD PRESSURE CATEGORY	DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	80 – 89
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	90 OR HIGHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 120

جدول ۱: درجه بندی فشار خون

:SkinThickness . F

ضخامت چین های پوستی سه سر بازو که توسط کولیس لانگ بر حسب میلیمتر اندازه گیری میشود. (تصویر زیر)

شکل ۱: نحوه اندازه گیری ضخامت چین های پوستی

۵. Insulin:

انسولین سرم ۲ ساعته یک روش اندازه گیری سطح انسولین در خون دو ساعت پس از مصرف یک نوشیدنی شیرین است. انسولین هورمونی است که به بدن کمک می کند از گلوکز یا قند برای انرژی استفاده کند. سطوح بالای انسولین می تواند نشانهای از مقاومت به انسولین باشد، وضعیتی که استفاده موثر از انسولین را برای بدن دشوار می کند.

در اینجا جدولی از سطوح طبیعی انسولین در زمان های مختلف پس از آزمایش چالش گلوکز آمده است:

توضيح	سطح انسولين
ناشتا	< 25 μU/mL
۳۰ دقیقه پس از مصرف گلوکز	30-230 μU/mL
۱ ساعت پس از مصرف گلوکز	18-276 μU/mL
۲ ساعت پس از مصرف گلوکز	16-166 μU/mL
۳ ساعت و بیشتر پس از مصرف گلوکز	< 25 μU/mL

جدول ۲: درجه بندی میزان انسولین

:BMI .9

شاخص توده بدنی یا بیام آی سنجشی آماری برای مقایسه وزن و قد یک فرد است. در واقع این سنجش میزان چاقی را اندازه گیری نمی کند بلکه ابزاری مناسب است تا سلامت وزن فرد با توجه به قدش تخمین زده شود.

$$BMI = \frac{weight(kg)}{height^2(m)}$$

شکل ۲: درجه بندی شاخص توده بدنی

:DiabetesPedigreeFunction .Y

می است که استعداد ژنتیکی فرد برای ابتلا به دیابت نوع ۲ (DPF) Diabetes pedigree function (T2DM) را بر اساس سابقه خانوادگی بیماری تخمین می زند. DPF بالاتر نشان دهنده خطر ژنتیکی بالاتر برای T2DM است. افراد با DPF برابر T2DM بیشتر در معرض خطر ابتلا به T2DM قرار دارند. DPF یک ابزار تشخیصی برای T2DM نیست، اما T2DM می توان از آن برای غربالگری زودهنگام T2DM استفاده کرد.

Age .۸:

امکان ابتلا به دیابت نوع ۲ در هر سنی، حتی در دوران کودکی وجود دارد. با این حال، دیابت نوع ۲ اغلب در افراد میانسال و مسن رخ می دهد. هرچند احتمال ابتلا به دیابت نوع ۲ در افراد بالای ۴۵ سال بیشتر است.

:Outcome .4

نشان دهنده ابتلا (1) یا عدم ابتلای فرد (0) به دیابت است.

۲. درک داده:

تمامی ویژگی ها بجز outcome داده های عددی هستند لذا از نوع continuous در نظر گرفته شده است. ویژگی outcome چون دو حالت 0 و 1 دارد، از نوع flag و نقش آن Target تعریف شده است.

Field =	Measurement	Values	Missing	Check	Role
Pregnancies	Continuous	[0,17]		None	> Input
Glucose	Continuous	[0,199]		None	> Input
BloodPressu	Continuous	[0,122]		None	> Input
SkinThickness		[0,99]		None	> Input
Insulin	Continuous	[0,846]		None	> Input
⊕ BMI	Continuous	[0.0,67.1]		None	> Input
DiabetesPed		[0.078,2.42]		None	> Input
🔷 Age	Continuous	[21,81]		None	> Input
Outcome	🖁 Flag	1/0		None	Target

شکل ۳: نوع ویژگی های ورودی

	1								
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
1	6	148	72	35	0	33	0.627	50	1
2	1	85	66	29	0	26	0.351	31	0
3	8	183	64	0	0	23	0.672	32	1
4	1	89	66	23	94	28	0.167	21	0
5	0	137	40	35	168	43	2.288	33	1
6	5	116	74	0	0	25	0.201	30	0
7	3	78	50	32	88	31	0.248	26	1
8	10	115	0	0	0	35	0.134	29	0
9	2	197	70	45	543	30	0.158	53	1
10	8	125	96	0	0	0.0	0.232	54	1

شکل ۴: بخشی از داده ورودی

۱-۲. نوع توزیع ویژگی ها:

برای یافتن نوع توزیع ویژگی ها دو روش Anderson-Darling و Anderson-Darling وجود دارد که تفاوت آنها در انتخاب نوع توزیع ویژگی BMI است. در روش اول نوع توزیع را گاما و در روش دوم نوع توزیع را نرمال محاسبه کرده است. با توجه به اینکه این ویژگی دارای میانگین ۳۲.۴ میانه ۳۲.۳ و مد ۳۲ است بنابراین میتوان با اندکی اغماض آن را نرمال در نظر گرفت. پس از روش Kolmogorov-Smirnov برای این کار استفاده شده است.

Field	Storage	Status	Distribution	Parameters	Min,Max
Pregnancies	Integer	€	Exponential	[scale=0.3029366	[Max=,Min=]
Glucose	Integer	Ø	Lognormal	[a=118.872658692	[Max=,Min=]
BloodPressure	Integer	∅	Normal	[mean=70.663265	[Max=,Min=]
SkinThickness	Integer	∅	Weibull	[shape1=32.66296	[Max=,Min=]
Insulin	Integer	Ø	Lognormal	[a=123.115102908	[Max=,Min=]
BMI	⊕ Real	Ø	Normal	[mean=33.086224	[Max=,Min=]
DiabetesPedigree	⊕ Real	Ø	Lognormal	[a=0.43208120745	[Max=,Min=]
Age	Integer	Ø	Lognormal	[a=29.4789886441	[Max=,Min=]
Outcome	Integer	Ø	Categorical	[0=0.66836734693	

شکل ۵: نوع توزیع ویژگی ها

۲-۲. چالش همخطی:

با فرض اینکه مقدار همبستگی مجاز برابر ۰.۷ باشد، چالش هم خطی ندارد. اما ویژگی های Pregnancies و Age و همچنین SkinThickness و BMI و Mge و همچنین SkinThickness

Age	BMI	BloodPressu	DiabetesPed	Glucose	Insulin	Pregnancies	SkinThickness
1.000	0.070	0.300	0.085	0.344	0.217	0.680	0.168
0.070	1.000	0.304	0.159	0.210	0.226	-0.025	0.664
0.300	0.304	1.000	-0.016	0.210	0.099	0.213	0.233
0.085	0.159	-0.016	1.000	0.140	0.136	0.008	0.160
0.344	0.210	0.210	0.140	1.000	0.581	0.198	0.199
0.217	0.226	0.099	0.136	0.581	1.000	0.079	0.182
0.680	-0.025	0.213	0.008	0.198	0.079	1.000	0.093
0.168	0.664	0.233	0.160	0.199	0.182	0.093	1.000
	1.000 0.070 0.300 0.085 0.344 0.217 0.680	1.000 0.070 0.070 1.000 0.300 0.304 0.085 0.159 0.344 0.210 0.217 0.226 0.680 -0.025	1.000 0.070 0.300 0.070 1.000 0.304 0.300 0.304 1.000 0.085 0.159 -0.016 0.344 0.210 0.210 0.217 0.226 0.099 0.680 -0.025 0.213	1.000 0.070 0.300 0.085 0.070 1.000 0.304 0.159 0.300 0.304 1.000 -0.016 0.085 0.159 -0.016 1.000 0.344 0.210 0.210 0.140 0.217 0.226 0.099 0.136 0.680 -0.025 0.213 0.008	1.000 0.070 0.300 0.085 0.344 0.070 1.000 0.304 0.159 0.210 0.300 0.304 1.000 -0.016 0.210 0.085 0.159 -0.016 1.000 0.140 0.344 0.210 0.210 0.140 1.000 0.217 0.226 0.099 0.136 0.581 0.680 -0.025 0.213 0.008 0.198	1.000 0.070 0.300 0.085 0.344 0.217 0.070 1.000 0.304 0.159 0.210 0.226 0.300 0.304 1.000 -0.016 0.210 0.099 0.085 0.159 -0.016 1.000 0.140 0.136 0.344 0.210 0.210 0.140 1.000 0.581 0.217 0.226 0.099 0.136 0.581 1.000 0.680 -0.025 0.213 0.008 0.198 0.079	1.000 0.070 0.300 0.085 0.344 0.217 0.680 0.070 1.000 0.304 0.159 0.210 0.226 -0.025 0.300 0.304 1.000 -0.016 0.210 0.099 0.213 0.085 0.159 -0.016 1.000 0.140 0.136 0.008 0.344 0.210 0.210 0.140 1.000 0.581 0.198 0.217 0.226 0.099 0.136 0.581 1.000 0.079 0.680 -0.025 0.213 0.008 0.198 0.079 1.000

شکل ۶: همبستگی ویژگی ها

۳. آماده سازی و پیش پردازش داده:

۱–۳. مدیریت داده های نویزی:

پنج ویژگی Glucose, BloodPressure, SkinThickness, Insulin, BMI مقادیر 0 دارند که مجاز نیست. بنابراین با کمک یک نود Filler آنها را به null تبدیل شده است.

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
1	6	148	72	35	\$null\$	33	0.627	50	1
2	1	85	66	29	\$null\$	26	0.351	31	0
3	8	183	64	\$null\$	\$null\$	23	0.672	32	1
4	1	89	66	23	94	28	0.167	21	0
5	0	137	40	35	168	43	2.288	33	1
6	5	116	74	\$null\$	\$null\$	25	0.201	30	0
7	3	78	50	32	88	31	0.248	26	1
8	10	115	\$null\$	\$null\$	\$null\$	35	0.134	29	0
9	2	197	70	45	543	30	0.158	53	1
10	8	125	96	\$null\$	\$null\$	\$n	0.232	54	1

شکل ۷: مدیریت داده های نویزی

۲-۳. مدیریت داده های پرت:

با توجه به نرمال بودن نوع توزیع دو ویژگی Blood Pressure و BMI از روش تبدیل Z استفاده شده است.

Field =	Measurement	Outliers	Extremes	Action
Pregnancies	Continuous	4	0	None
Glucose	Continuous	0	0	None
BloodPressu	Continuous	8	0	Coerce
SkinThickness	Continuous	1	1	None
Insulin		7	1	None
⊕ BMI	Continuous	3	1	Coerce
DiabetesPed	Continuous	7	4	None
Age	Continuous	5	0	None
Outcome	🖁 Flag			

شکل ۱۸: تبدیل Z برای مدیریت داده های پرت

• به دلیل اینکه تعداد داده های پرت و خیلی پرت در ویژگی BloodPressure و BMI زیاد نیست از Coerce برای جایگزینی آنها استفاده شده است.

برای سایر ویژگی ها از روش IQR استفاده شده است.

Field =	Measurement	Outliers	Extremes	Action
Pregnancies		4	0 0	Coerce
Glucose		0	10	None
BloodPressu		14	10	None
SkinThickness		2	1(Coerce
Insulin		16	18	Nullify
⊕ BMI		8	10	None
DiabetesPed		23	1 6	Nullify
Age 🔆		9	0 (Coerce
Outcome				-

شکل ۹: IQR برای مدیریت داده های پرت

- برای ویژگی های Pregnancies, SkinThickness, Age به دلیل کم بودن تعداد داده های پرت و خیلی پرت از Coerce
- برای ویژگی های Insulin, DiabetesPedigreeFunction به دلیل زیاد بودن تعداد داده های پرت و خیلی پرت از Nullify استفاده شده است تا از ایجاد یک Bin بلند در نمودار فراوانی جلوگیری شود. در نتیجه آنها را مانند دادگان مفقوده در نظر گرفته و در مرحله بعد با الگوریتم پر می شود.
 - روی ویژگی Glucose به دلیل نداشتن داده پرت و خیلی پرت هیچ عملی انجام نشده است.

۳-۳. مدیریت داده های مفقوده:

ویژگی هایی که درصد Complete آنها ۱۰۰ نباشد دارای داده مفقوده هستند. برای مدیریت آنها به روش های زیر عمل میشود:

Field	Measurement	Impute Missing	Method	% Complete 🗸	Valid Records	Null Value
Insulin	Continuous	Never	Fixed	48.177	370	398
SkinThickness	Continuous	Never	Fixed	70.443	541	227
BloodPressu	. 🔗 Continuous	Never	Fixed	95.443	733	35
DiabetesPed	. 🔗 Continuous	Never	Fixed	96.224	739	29
BMI	Continuous	Never	Fixed	98.568	757	11
Glucose		Never	Fixed	99.349	763	5
Pregnancies	Continuous	Never	Fixed	100	768	0
♠ Age	Continuous	Never	Fixed	100	768	0
Outcome	🖁 Flag	Never	Fixed	100	768	0

شکل ۱۰: داده های مفقوده

- ویژگی Insulin به دلیل داشتن بیش از ۵۰ درصد داده مفقوده از مدل حذف میشود.
- برای ویژگی SkinThickness به دلیل داشتن تعداد زیاد داده مفقوده، نمی توان از روش Fixed استفاده کرد زیرا نوع توزیع را به هم می زند. از طرفی چون توزیع نرمال ندارد نمی توان آن را با اعداد رندوم از توزیع نرمال پر کرد. از طرفی به دلیل عدم وجود فرد خبره نمیتوان از قوانین خبرگی در Expression استفاده کرد. پس تنها گزینه موجود روش Algorithm
- داده های مفقود ویژگی های BloodPressure و BMI به دلیل نرمال بودن، توسط روش Random و با توزیع نرمال پر میشوند.

- داده های مفقوده ویژگی DiabetesPedigreeFunction به دلیل کم بودن و همچنین اهمیت سابقه خانوادگی در ابتلا به دیابت، از طریق Algorithm پر می شود.
 - داده های مفقود ویژگی Glucose به دلیل کم بودن با روش Fixed و با میانگین پر میشوند.

Field	Measurement	Impute Missing	Method	% Complete 🗸	Valid Records	Null Value
SkinThickness	Continuous	Blank & Null Val	Algorithm	70.443	541	227
BloodPressu	Continuous	Blank & Null Val	Random	95.443	733	35
DiabetesPed	Continuous	Blank & Null Val	Algorithm	96.224	739	29
⊕ BMI	Continuous	Blank & Null Val	Random	98.568	757	11
Glucose	Continuous	Blank & Null Val	Fixed	99.349	763	5
⟨#⟩ Pregnancies	Continuous	Never	Fixed	100	768	0
⊕ Age	Continuous	Never	Fixed	100	768	0
Outcome	🖁 Flag	Never	Fixed	100	768	0

شکل ۱۱: مدیریت داده های مفقوده

در نهایت داده های مفقوده تمام ویژگی ها پر شده است.

Field =	Measurement	Outliers	Extremes	Action	Impute Missing	Method	% Complete	Valid Records	Null Value	Empty String	White Space	Blank Value
Pregnancies	Continuous	0	0	None	Never	Fixed	100	768	0	0	0	0
Glucose	Continuous	0	0	None	Never	Fixed	100	768	0	0	0	0
BloodPressu	Continuous	14	0	None	Never	Fixed	100	768	0	0	0	0
SkinThickness	Continuous	4	0	None	Never	Fixed	100	768	0	0	0	0
⊕ BMI	Continuous	8	0	None	Never	Fixed	100	768	0	0	0	0
DiabetesPed	Continuous	15	0	None	Never	Fixed	100	768	0	0	0	0
⊕ Age	Continuous	0	0	None	Never	Fixed	100	768	0	0	0	0
Outcome	🖁 Flag				Never	Fixed	100	768	0	0	0	0

شکل ۱۲: مدیریت داده های مفقوده

۴-۳. نرمال سازی:

به منظور نرمال سازی تمامی داده ها را با روش Min/Max Transformation به مقیاس ۰ تا ۱۰۰ تبدیل شده است.

	Outcome	Pregnancies_transformed	Glucose_transformed	BloodPressure_transformed	SkinThickness_transformed	BMI_transformed	DiabetesPedigreeFunction_transformed	Age_transformed
1	1	44.444	67.097	49.455	56.000	43.959	49.326	63.736
2	0	7.407	26.452	41.378	44.000	23.978	24.528	21.978
3	1	59.259	89.677	38.686	16.435	14.558	53.369	24.176
4	0	7.407	29.032	41.378	32.000	28.260	7.996	0.000
5	1	0.000	60.000	6.382	56.000	71.077	42.663	26.374
6	0	37.037	46.452	52.147	28.426	21.123	11.051	19.780
7	1	22.222	21.935	19.842	50.000	36.538	15.274	10.989
8	0	74.074	45.806	59.708	51.266	48.812	5.031	17.582
9	1	14.815	98.710	46.763	76.000	35.110	7.188	70.330
10	1	59.259	52.258	81.759	63.026	75.098	13.836	72.527

شکل ۱۳: نرمال سازی داده ها

۵-۳. چالش همخطی:

نکته قابل توجه این است که بعد از پاکسازی ویژگی SkinThickness و BMI بخاطر همبستگی بالاتر از ۰.۷ دچار چالش هم خطی شده اند. از این رو از ویژگی SkinThickness بخاطر داده های مفقود زیاد (۲۲۷ رکورد) در مدلسازی صرف نظر شده است.

	Age	BMI	BloodPressure	DiabetesPedig	Glucose	Pregnancies	SkinThickness
Age	1.000	0.034	0.320	0.050	0.269	0.550	0.089
BMI	0.034	1.000	0.289	0.143	0.235	0.021	0.736
BloodPressure	0.320	0.289	1.000	0.025	0.217	0.200	0.232
DiabetesPedigr	0.050	0.143	0.025	1.000	0.092	-0.003	0.102
Glucose	0.269	0.235	0.217	0.092	1.000	0.127	0.213
Pregnancies	0.550	0.021	0.200	-0.003	0.127	1.000	0.087
SkinThickness	0.089	0.736	0.232	0.102	0.213	0.087	1.000

شکل ۱۴: چالش همخطی

در نهایت داده ها به دو بخش Train و Test با نسبت ۸۰٪ و ۲۰٪ تقسیم شدند.

۴. انتخاب ویژگی (Feature Selection):

برای انتخاب ویژگی از روش F-score استفاده شده است. F-score یک تکنیک ساده است که تمایز دو مجموعه از اعداد حقیقی را اندازه گیری می کند. با توجه به داده x_k که x_k که x_k و x_k تعداد داده های با کلاس مثبت یا منفی است، اگر تعداد نمونه های مثبت و منفی به ترتیب x_k و x_k برای ویژگی x_k ام به صورت زیر تعریف می شود:

$$F(i) \equiv \frac{\left(\bar{x}_{i}^{(+)} - \bar{x}_{i}\right)^{2} + \left(\bar{x}_{i}^{(-)} - \bar{x}_{i}\right)^{2}}{\frac{1}{n_{+}-1} \sum_{k=1}^{n_{+}} \left(x_{k,i}^{(+)} - \bar{x}_{i}^{(+)}\right)^{2} + \frac{1}{n_{-}-1} \sum_{k=1}^{n_{-}} \left(x_{k,i}^{(-)} - \bar{x}_{i}^{(-)}\right)^{2}}$$

در اینجا $\overline{x}_i^{(+)}$ ، $\overline{x}_i^{(+)}$ و داده های کلاس مثبت و داده های کلاس منفی هستند. $\overline{x}_i^{(+)}$ به ترتیب میانگین ویژگی $\overline{x}_i^{(+)}$ ام در داده های با کلاس مثبت و $\overline{x}_{k,i}^{(-)}$ ویژگی $\overline{x}_{k,i}$ ام از داده های با کلاس مثبت و $\overline{x}_{k,i}^{(-)}$ ویژگی $\overline{x}_{k,i}$ ام از داده های با کلاس مثبت و منفی هستند.

صورت نشان دهنده تمایز بین مجموعه های مثبت و منفی و مخرج نشان دهنده یکی از هر یک از دو مجموعه است. هرچه F-score بزرگتر باشد، این ویژگی بیشتر متمایز است. بنابراین از این امتیاز به عنوان معیار انتخاب ویژگی استفاده می کنیم.

برای این دیتاست مقدار F-score به صورت جدول زیر محاسبه شده است.

	Feature	F-Score
1	Glucose	0.218
2	BMI	0.104
3	Age	0.066
4	Pregnancies	0.057
5	DiabetesPedigreeFunction	0.028
6	BloodPressure	0.025

جدول ۳: مقدار F-Score برای ویژگی ها

از نصف میانگین F-score ها به عنوان حد آستانه برای انتخاب ویژگی استفاده شده که در نهایت ۴ ویژگی Age ،BMI ،Glucose و Pregnancies برای مدلسازی انتخاب شدهاند.

اطلاعات بالا در فایل f-score-feature-selection.xslx قابل مشاهده است.

۵. مدیریت دادگان نامتوازن:

برای بررسی توازن دادگان از نمودار توزیع ویژگی Outcome استفاده شده است.

شكل ۱۵: عدم توازن داده ها

همانطور که مشخص است ۶۵.۱ درصد از داده ها به کلاس 0 (فرد سالم) و π ۴.۹ درصد از داده ها به کلاس 1 (فرد مبتلا به دیابت) تعلق دارد. به دلیل نامتوازن بودن داده ها از تکنیک های Under-Sampling و Over-Sampling برای متوازن کردن داده ها استفاده شده است.

شکل ۱۶: مدیریت دادگان نامتوازن به روش Under-Sampling

شکل ۱۷: مدیریت دادگان نامتوازن به روش Over-Sampling

لازم به ذکر است که مدلسازی هم با داده نامتوازن و هم متوازن انجام شده و نتایج آن در بخش مربوطه آمده است.

۶. مدلسازي:

در مدلسازی از الگوریتم های KNN، KNN، C5.0 ،CHAID ،QUEST ،C&RT ،Neural Network ،SVM ،KNN و C5.0 ،CHAID ،QUEST ،C

مدلسازی در سه بخش شامل موارد زیر انجام شده است:

- ۱. مدلسازی بدون Feature Selection: در این بخش از تمام ویژگی های موجود پس از پاکسازی داده ها استفاده شده است.
- مدلسازی با Feature Selection: در این بخش از روش f-score برای انتخاب بهترین ویژگی ها استفاده شده است.
- . مدلسازی بدون پاکسازی داده ها: در این بخش که مختص به الگوریتم های درختی است از تمام ویژگی های موجود بدون پاکسازی داده ها استفاده شده است.

در ادامه، در هر سه بخش بالا، مدلسازی به سه حالت داده نامتوازن، Under-Sampling و Over-Sampling انجام شده است.

1-8. الگوريتم KNN:

در این الگوریتم، از K=[1..50] و تعداد ۱۰ فولد برای Cross-Validation استفاده شده است. لازم به ذکر است که این الگوریتم با فولد های بیشتر نیز امتحان شد که نتایج بدست آمده بهبودی نداشت.

شكل ۱۸: تنظيمات الگوريتم KNN

شكل 19: تنظيمات الكوريتم KNN

نتایج مدل به صورت زیر است. باید توجه داشت که K های بهینه با تغییر داده های train ممکن است تغییر کند.

	Clean Data Without Feature Selection						
KNNالگوريتم	Imbalance		Under-S	ampling	Over-Sampling		
	Train	Test	Train	Test	Train	Test	
Acc	81.26%	78.66%	75.24%	75.45%	93.93%	94.61%	
K	7		34		1		

جدول 4: دقت الگوريتم KNN بدون Feature Selection

مشاهده می شود که روش Over-Sampling دقت بیشتری دارد.

با استفاده از Feature Selection نتیجه به صورت زیر است:

	Clean Data With Feature Selection							
الگوريتم KNN	Imbalance		Under-S	ampling	Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Acc	79.58%	79.47%	77.16%	74.17%	94.36%	91.39%		
K	9		11		1			

جدول 5: دقت الگوريتم KNN با Feature Selection

باز هم مشاهده می شود که روش Over-Sampling دقت بیشتری دارد.

۲-۶. الگوریتم SVM:

در این روش از C=[1, 10, 100, 1000, 1000, 1000) و C=[1, 10, 100, 1000, 10000] برای تمام کرنل ها تست شد که در هر کرنل مقادیر بهینه به صورت زیر بدست آمد:

Kernel Type	С	Gamma
RBF	100	100
Polynomial	10	1
Sigmoid	1000	10
Linear	100	-

جدول ۶: پارامتر های بهینه برای الگوریتم SVM

شكل ۲۰: تنظيمات الكوريتم SVM

شكل ۲۱: تنظيمات الگوريتم SVM

شكل ٢٢: تنظيمات الگوريتم SVM

شكل ٢٣: تنظيمات الكوريتم SVM

خروجی مدل ها به صورت زیر است:

	No Feature Selection							
الگوريتم SVM	Imbalance		Under-S	ampling	Over-Sampling			
	Train	Test	Train	Test	Train	Test		
RBF	91.85%	91.02%	86.47%	86.96%	95.43%	94.12%		
Polynomial	79.20%	79.04%	77.68%	75.32%	76.10%	78.48%		
Sigmoid	76.18%	72.26%	70.33%	65.52%	69.43%	67.09%		
Linear	77.76%	75.16%	76.85%	74.51%	75.47%	77.85%		

جدول 7: دقت الگوريتم SVM بدون Feature Selection

مشاهده می شود که روش RBF دقت بیشتری به نسبت سایر روش ها دارد. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۲۴: اهميت ويژگى هاى الگوريتم SVM بدون

با استفاده از Feature Selection نتایج به صورت زیر است:

الگوريتم SVM	Clean Data With Feature Selection							
	Imbalance		Under-S	ampling	Over-Sampling			
	Train	Test	Train	Test	Train	Test		
RBF	95.29%	93.64%	85.78%	82.66%	93.67%	91.25%		
Polynomial	78.13%	76.72%	74.37%	72.99%	74.91%	72.99%		
Sigmoid	74.51%	73.72%	75.70%	73.72%	75.38%	73.72%		
Linear	78.10%	74.36%	73.83%	72.44%	74.37%	73.08%		

جدول 8: دقت الگوريتم SVM با Feature Selection

باز هم مشاهده می شود که روش RBF دقت بیشتری به نسبت سایر روش ها دارد. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۲۵: اهميت ويژگى هاى الگوريتم SVM با Feature Selection

۳-۶. الگوریتم شبکه عصبی (Neural Network):

در این روش دو روش MLP و RBF با تعداد نرون های پنهان (5,10,15,20,25,30) با تعداد مدل (10,20,30,40) برای Boosting و Boosting آزمایش شد. در نهایت مدل MLP با دو لایه پنهان که هرکدام ۲۰ نرون دارند و برای Boosting و Bagging استفاده از ۱۰ مدل، نتایج بهتری را نشان داد.

خروجی مدل ها به صورت زیر است:

الگوريتم شبكه عصبى	No Feature Selection						
	Imbalance		Under-S	ampling	Over-Sampling		
	Train	Test	Train	Test	Train	Test	
Standard	78.45%	78.12%	74.77%	71.52%	78.29%	75.15%	
Boosting	92.32%	91.67%	86.54%	83.23%	90.39%	92.66%	
Bagging	92.58%	90.54%	86.60%	86.36%	90.10%	91.93%	

جدول 9 دقت الگوريتم شبكه عصبي بدون Feature Selection

مشاهده می شود که روش های Boosting و Bagging در داده های نامتوازن و Over-Sampling دقت بیشتری دارند. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل 26: اهميت ويژگى هاى الگوريتم شبكه عصبي بدون Feature Selection

با استفاده از Feature Selection نتایج به صورت زیر است:

الگوريتم شبكه عصبى	Clean Data With Feature Selection							
	Imbalance		Under-S	ampling	Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	78.43%	74.36%	74.53%	73.72%	80.18%	76.28%		
Boosting	94.61%	94.23%	78.97%	78.21%	93.69%	94.87%		
Bagging	92.32%	90.38%	81.92%	78.21%	93.22%	90.38%		

جدول 10: دقت الگوريتم شبكه عصبي با Feature Selection

باز هم مشاهده می شود که روش های Boosting و Bagging در داده های نامتوازن و Over-Sampling دقت بیشتری دارند. تنها تفاوت این است که دقت به نسبت مدلسازی بدون Feature Selection افزایش داشته است. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۲۷: اهميت ويژگى هاى الگوريتم شبكه عصبي با Feature Selection

۴-8. الگوريتم C&RT:

یکی از انواع الگوریتم بر پایه درخت تصمیم است. پس از آزمایش مقادیر مختلف، حداکثر عمق ۱۰۰ نود، شرط توقف ۲ رکورد در والد و ۱ رکورد در فرزند و استفاده از ۱۰ مدل برای Boosting و Bagging ، نتایج بهتری را نشان داد.

شكل ۲۸: تنظيمات الگوريتم C&RT

خروجی مدل ها به صورت زیر است:

الگوريتم C&RT	Clean Data Without Feature Selection							
	Imbalance		Under-S	ampling	Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	81.17%	82.89%	81.51%	79.26%	85.93%	84.57%		
Boosting	92.77%	93.05%	87.59%	86.21%	94.35%	93.96%		
Bagging	92.88%	92.68%	84.82%	84.09%	93.06%	92.26%		

جدول 11: دقت الگوريتم C&RT بدون Feature Selection

مشاهده می شود که روش های Boosting و Bagging در داده های نامتوازن و Over-Sampling دقت بیشتری دارند. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل 29: اهميت ويژگى هاى الگوريتم C&RTبدون Peature Selection

با استفاده از Feature Selection نتایج به صورت زیر است:

54	Clean Data With Feature Selection							
الگوريتم C&RT	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	92.95%	92.65%	81.41%	80.28%	85.68%	84.62%		
Boosting	94.27%	93.59%	87.32%	86.54%	93.27%	94.23%		
Bagging	94.77%	94.87%	89.44%	85.26%	92.71%	91.03%		

جدول 12: دقت الگوريتم C&RT با Feature Selection

مشاهده می شود که تمام روش ها در داده های نامتوازن و Boosting و Bagging در Over-Sampling دقت بیشتری دارند. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۳۰: اهميت ويژگى هاى الگوريتم C&RT با Feature Selection

برای مدلسازی بدون پاکسازی داده ها نیز نتایج به صورت زیر است:

	Without Data Cleaning						
الگوريتم C&RT	Imbalance		Under-Sampling		Over-Sampling		
	Train	Test	Train	Test	Train	Test	
Standard	79.32%	77.92%	89.19%	79.19%	86.03%	83.67%	
Boosting	96.06%	95.60%	87.32%	83.14%	92.85%	91.84%	
Bagging	95.44%	94.16%	88.18%	85.03%	93.35%	90.97%	

جدول 13: دقت هاى الگوريتم C&RT بدون ياكسازى داده ها

مشاهده می شود که روش های Boosting و Bagging در داده های نامتوازن و Over-Sampling دقت بیشتری دارند. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۳۱: اهميت ويژگي هاي الگوريتم C&RT بدون پاكسازي داده ها

۵-۶. الگوريتم QUEST:

یکی از انواع الگوریتم بر پایه درخت تصمیم است. پس از آزمایش مقادیر مختلف، حداکثر عمق ۱۰۰ نود، شرط توقف ۲ رکورد در والد و ۱ رکورد در فرزند و استفاده از ۱۰ مدل برای Boosting و Bagging ، نتایج بهتری را نشان داد. ولی در نهایت مدلی با دقت بالاتر از ۹۰٪ بدست نیامد.

خروجی مدل ها به صورت زیر است:

4.0	Clean Data Without Feature Selection							
الگوريتم QUEST	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	76.43%	72.61%	70.18%	73.12%	74.62%	72.50%		
Boosting	85.16%	84.46%	81.38%	80.14%	90.81%	88.31%		
Bagging	80.33%	79.11%	77.29%	77.22%	82.57%	79.10%		

جدول :14 دقت الگوريتم QUEST بدون QUEST

مشاهده می شود که روش Boosting در داده های نامتوازن و Over-Sampling دقت بیشتری به نسبت بقیه دارند. با استفاده از Feature Selection نتایج به صورت زیر است:

الگوريتم QUEST	Clean Data With Feature Selection							
	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	75.37%	72.96%	74.42%	73.87%	76.07%	73.58%		
Boosting	83.63%	80.25%	79.18%	78.98%	85.96%	84.08%		
Bagging	77.67%	77.99%	76.17%	75.47%	82.40%	81.76%		

جدول 15: دقت الگوريتم QUEST با Peature Selection

باز هم مشاهده می شود که روش Boosting در داده های نامتوازن و Over-Sampling دقت بیشتری به نسبت بقیه دارند. برای مدلسازی بدون پاکسازی داده ها نیز نتایج به صورت زیر است:

=	Without Data Cleaning							
الگوريتم QUEST	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	75.37%	72.96%	74.42%	73.87%	76.07%	73.58%		
Boosting	83.63%	80.25%	79.18%	78.98%	85.96%	84.08%		
Bagging	77.67%	77.99%	76.17%	75.47%	82.40%	81.76%		

جدول :16 دقت الگوريتم QUEST بدون پاکسازی داده ها

باز هم مشاهده می شود که روش Boosting در داده های نامتوازن و Over-Sampling دقت بیشتری به نسبت بقیه دارند.

۶-۶. الگوريتم CHAID:

یکی از انواع الگوریتم بر پایه درخت تصمیم است. پس از آزمایش مقادیر مختلف، حداکثر عمق ۱۰۰ نود، شرط توقف ۲ رکورد در والد و ۱ رکورد در فرزند و استفاده از ۱۰ مدل برای Boosting و Bagging ، نتایج بهتری را نشان داد.

خروجی مدل ها به صورت زیر است:

	Clean Data Without Feature Selection							
الگوريتم CHAID	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	74.28%	78.08%	76.99%	73.97%	82.18%	78.77%		
Boosting	93.58%	91.72%	84.86%	83.45%	94.29%	95.17%		
Bagging	87.54%	84.94%	83.02%	83.73%	89.07%	87.95%		

جدول :17 دقت الگوريتم CHAID بدون Feature Selection

مشاهده می شود که روش Boosting در داده های نامتوازن و Over-Sampling دقت بیشتری دارد. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ٣٢: اهميت ويژگى هاى الگوريتم CHAID بدون

با استفاده از Feature Selection نتایج به صورت زیر است:

الگوريتم CHAID	Clean Data With Feature Selection							
	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	79.15%	79.25%	77.57%	77.99%	78.95%	76.73%		
Boosting	94.25%	90.57%	87.85%	86.79%	92.73%	91.19%		
Bagging	83.02%	79.89%	80.34%	78.21%	85.08%	84.36%		

جدول 18: دقت الگوريتم CHAID با Feature Selection

باز هم مشاهده می شود که روش Boosting در داده های نامتوازن و Over-Sampling دقت بیشتری دارد. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۳۳: اهميت ويژگى هاى الگوريتم CHAID با CHAID

برای مدلسازی بدون پاکسازی داده ها نیز نتایج به صورت زیر است:

	Without Data Cleaning							
الگوريتم CHAID	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	80.00%	77.12%	76.80%	73.20%	81.16%	79.08%		
Boosting	95.00%	93.92%	86.56%	87.16%	93.88%	94.59%		
Bagging	86.44%	83.97%	85.75%	80.13%	94.14%	91.03%		

جدول 19 : دقت الگوريتم CHAID بدون پاکسازي داده ها

باز هم مشاهده می شود که روش Boosting در داده های نامتوازن و Over-Sampling و روش Bagging در Boosting در Over-Sampling در قت بیشتری دارند. اهمیت ویژگی ها برای مدل های برتر به صورت زیر است:

شكل ۳۴: اهميت ويژگى هاى الگوريتم CHAID بدون پاكسازى داده ها

٧- *٩. الگوريتم* C5.0:

یکی از انواع الگوریتم بر پایه درخت تصمیم است. پس از آزمایش مقادیر مختلف، شرط وجود حداقل ۱ رکورد در فرزند، استفاده از ۱۰ مدل برای Boosting و ۱۰ فولد برای Cross-Validation ، نتایج بهتری را نشان داد.

شكل ٣٥: تنظيمات الكوريتم C5.0

خروجی مدل ها به صورت زیر است:

الگوريتم C5.0	Clean Data Without Feature Selection							
	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	81.63%	77.22%	78.07%	75.56%	88.10%	86.67%		

جدول 20: دقت الگوريتم C5.0 بدون C5.0 دقت الگوريتم

مشاهده میشود که هیچ مدلی دقت بالای ۹۰٪ را ندارد.

با استفاده از Feature Selection نتایج به صورت زیر است:

	Clean Data With Feature Selection						
الگوريتم 50 م	Imbalance		Under-Sampling		Over-Sampling		
C5.0	Train	Test	Train	Test	Train	Test	
Standard	80.14%	77.65%	79.30%	74.61%	80.24%	78.77%	

جدول 21: دقت الگوريتم C5.0 با Feature Selection

باز هم مشاهده می شود که هیچ مدلی دقت بالای ۹۰٪ را ندارد.

برای مدلسازی بدون پاکسازی داده ها نیز نتایج به صورت زیر است:

	Without Data Cleaning						
الگوريتم 50 م	Imbalance		Under-Sampling		Over-Sampling		
C5.0	Train	Test	Train	Test	Train	Test	
Standard	85.92%	84.19%	80.79%	86.62%	94.77%	93.66%	

جدول :22 دقت الگوريتم C5.0 بدون پاکسازي داده ها

برای داده های پاکسازی نشده Over-Sampling دقت بیشتری دارد. اهمیت ویژگی ها برای مدل برتر به صورت زیر است:

شكل 36: اهميت ويژگى هاى الگوريتم 55.0 بدون پاكسازى داده ها

٨-٩. الگوريتم جنگل تصادفي (Random Forest):

این الگوریتم با ساخت تعداد زیادی درخت تصمیم اقدام به پیش بینی هدف میکند. در اینجا با ساخت ۱۰۰ مدل با حداکثر عمق ۲۰ برای هر درخت و تعداد حداقل ۱ رکورد در گره فرزند بهترین نتیجه بدست آمد. لازم به ذکر است با فعال کردن گزینه Handle imbalance data، در تمام سناریوها دقت مدل افزایش یافت.

شكل ٣٧: تنظيمات الگوريتم Random forest

خروجی مدل ها به صورت زیر است:

الگوريتم	Clean Data Without Feature Selection							
Random Forest	Imbalance		Under-Sampling		Over-Sampling			
	Train	Test	Train	Test	Train	Test		
Standard	90.35%	86.22%	87.90%	85.71%	94.33%	93.41%		

جدول 23: دقت الگوريتم Random forest بدون 23

مشاهده می شود که در داده های تمیز شده و بدون Feature Selection دقت مدل با Over-Sampling بیشینه شده است. اطلاعات مدل برتر به صورت زیر است:

Model Information			
Target Field		Outcome	
Model Building Method		Random Trees Classification	
Number of Predictors Input		6	
Gmean		0.814	
True Positive Rate 0		0.726	
	1	0.913	

جدول 24: اطلاعات مدل Random forest بدون Feature Selection

با استفاده از Feature Selection نتایج به صورت زیر است:

الگوريتم	Clean Data With Feature Selection					
Random	Imba	lance	Under-S	ampling	Over-Sa	ampling
Forest	Train	Test	Train	Test	Train	Test
Standard	89.08%	85.55%	87.44%	83.82%	93.09%	90.75%

جدول 25: دقت الگوريتم Random forest با Feature Selection

مشاهده می شود که در داده های تمیز شده و با Feature Selection نیز دقت مدل با Over-Sampling بیشینه شده است. اطلاعات مدل برتر به صورت زیر است:

Model Information			
Target Field		Outcome	
Model Building Method		Random Trees Classification	
Number of Predictors	nput	4	
Gmean		0.819	
True Positive Rate 0		0.761	
	1	0.881	

جدول 26: اطلاعات مدل Random forest با Random forest

برای مدلسازی بدون پاکسازی داده ها نیز نتایج به صورت زیر است:

الگوريتم			Without Da	ta Cleaning		
Random	Imba	lance	Under-S	ampling	Over-Sa	ampling
Forest	Train	Test	Train	Test	Train	Test
Standard	90.71%	87.97%	87.89%	87.97%	94.06%	93.98%

جدول 27: دقت الگوريتم Random forest بدون پاکسازی داده ها

مشاهده می شود که در داده های تمیز نشده نیز دقت مدل با Over-Sampling بیشینه شده است. اطلاعات مدل برتر به صورت زیر است:

Model Information			
Target Field		Outcome	
Model Building Method		Random Trees Classification	
Number of Predictors	Input	8	
Gmean		0.792	
True Positive Rate 0		0.715	
	1	0.878	

جدول 28 : اطلاعات مدل Random forest بدون پاکسازی داده ها

مدل های ساخته شده در این بخش در فایل diabetes-all-models.str قابل مشاهده است.

۷. انتخاب مدل: پس از بررسی تمامی مدل ها و با توجه به دقت آنها مدل های زیر انتخاب شدند:

	Clean Data Without Feature Selection					
الگوريتم	Imba	lance	Under-S	ampling	Over-Sa	ampling
	Train	Test	Train	Test	Train	Test
KNN	81.26%	78.66%	75.24%	75.45%	93.93%	94.61%
SVM ¹	91.85%	91.02%	86.47%	86.96%	95.43%	94.12%
Neural Network ²	92.58%	90.54%	86.60%	86.36%	90.10%	91.93%
C&RT ³	92.77%	93.05%	87.59%	86.21%	94.35%	93.96%
QUEST ⁴	85.16%	84.46%	81.38%	80.14%	90.81%	88.31%
CHAID ⁵	93.58%	91.72%	84.86%	83.45%	94.29%	95.17%
C5.0	81.63%	77.22%	78.07%	75.56%	88.10%	86.67%
Random Forest	90.35%	86.22%	87.90%	85.71%	94.33%	93.41%
الگوريتم		Clean	Data With I	Feature Se	lection	
KNN	79.58%	79.47%	77.16%	74.17%	94.36%	91.39%
SVM ¹	95.29%	93.64%	85.78%	82.66%	93.67%	91.25%
Neural Network ²	94.61%	94.23%	78.97%	78.21%	93.69%	94.87%
C&RT ³	94.27%	93.59%	87.32%	86.54%	93.27%	94.23%
QUEST ⁴	83.63%	80.25%	79.18%	78.98%	85.96%	84.08%
CHAID ⁵	94.25%	90.57%	87.85%	86.79%	92.73%	91.19%
C5.0	80.14%	77.65%	79.30%	74.61%	80.24%	78.77%
Random Forest	89.08%	85.55%	87.44%	83.82%	93.09%	90.75%
الگوريتم			Not Clea	ned Data		
C&RT ³	96.06%	95.60%	87.32%	83.14%	92.85%	91.84%
QUEST ⁴	83.63%	80.25%	79.18%	78.98%	85.96%	84.08%
CHAID ⁵	95.00%	93.92%	86.56%	87.16%	93.88%	94.59%
C5.0	85.92%	84.19%	80.79%	86.62%	94.77%	93.66%
Random Forest	90.71%	87.97%	87.89%	87.97%	94.06%	93.98%

جدول 29 : مدل های برتر

- ۱. در SVM از روش RBF استفاده شده است.
- ۲. در شبکه عصبی در حالت Bagging از Clean Data Without Feature Selection و در حالت Boosting و در حالت Boosting استفاده شده است.
 - ۳. در C&RT از Boosting استفاده شده است.
 - ۴. در QUEST از Boosting استفاده شده است.
 - ۵. در CHAID از Boosting استفاده شده است.

همانگونه که مشاهده می شود در هر سه حالت فوق، روش Over-Sampling از دقت بالاتری برخوردار است. پس در هر سه حالت مدل های با دقت بالای ۹۰٪ را انتخاب و به صورت موازی استفاده شده و از خروجی آنها به روش Voting برای پیشبینی استفاده می شود. سپس دقت هر سه حالت با هم مقایسه شده و حالت برتر بدست می آید.

اطلاعات زیر در فایل final-evaluation.xlsx قابل مشاهده است.

برای حالت Clean Data Without Feature Selection داریم:

Train Set:

		pred	icted
		1	0
octual	1	391	0
actual	0	4	395

	class			
	1 0			
accuracy	0.995			
precision	0.990	1.000		
recall	1.000	0.990		
F1	0.995	0.995		

Test Set:

		pred	icted
		1	0
actual	1	60	2
actual	0	4	95

	class			
	1 0			
accuracy	0.963			
precision	0.938	0.979		
recall	0.968	0.960		
F1	0.952	0.969		

جدول ۳۰: ارزیابی مدل های برتر موازی بدون Feature Selection

برای حالت Clean Data With Feature Selection داریم:

Train Set:

		predicted	
		1	0
actual	1	422	2
actual	0	2	392

	class			
	1 0			
accuracy	0.995			
precision	0.995	0.995		
recall	0.995	0.995		
F1	0.995	0.995		

Test Set:

		predicted	
		1	0
o otu ol	1	36	0
actual	0	1	99

	class	
	1	0
accuracy	0.9	93
precision	0.973	1.000
recall	1.000	0.990
F1	0.986	0.995

جدول ۳۱: ارزیابی مدل های برتر موازی با Feature Selection

برای حالت بدون پاکسازی داریم:

Train Set:

		predicted	
		1	0
o otu ol	1	396	2
actual	0	4	399

	class	
	1	0
accuracy	0.9	93
precision	0.990	0.995
recall	0.995	0.990
F1	0.992	0.993

Test Set:

		pred	icted
		1	0
actual	1	53	0
	0	2	95

	class	
	1	0
accuracy	0.9	87
precision	0.964	1.000
recall	1.000	0.979
F1	0.981	0.990

جدول ۳۲: ارزیابی مدل های برتر موازی بدون پاکسازی داده ها

همانطور که مشاهده می شود حالت Clean Data With Feature Selection بهترین عملکرد را داشته است.

مدل های ساخته شده در این بخش در فایل diabetes-best-models.str قابل مشاهده است.

۷. نتيجه گيري:

پس از آزمایش مدل ها و هایپرپارامتر های مختلف، در نهایت استفاده از شرایط و مدل های زیر به صورت موازی بهترین نتیجه را برای پیش بینی ابتلا به دیابت ارائه داد:

- ۱. حذف ویژگی Insulin به دلیل داده مفقوده زیاد
- ۲. حذف ویژگی SkinThickness به دلیل وجود چالش همخطی و همچنین داده مفقوده زیاد
- ۳. استفاده از روش F-Score برای انتخاب ویژگی که ۴ ویژگی Age ،BMI ،Glucose و Pregnancies انتخاب شدند.
 - ۴. تقسیم دادگان به دو گروه ۸۰ و ۲۰ درصدی برای Train و Test
 - نامتوازن استفاده از روش Over-Sampling برای مدیریت دادگان نامتوازن Δ
 - ۶. استفاده از مدل های Random Forest و CHAID ،C&RT ،Neural Network ،SVM ،KNN برای مدلسازی
 - ۷. پیش بینی با استفاده از روش Voting روی خروجی مدل ها

در نهایت دقت پیش بینی ۹۹.۵٪ برای داده های Train و ۹۹.۳٪ برای داده های Test به صورت زیر بدست آمد:

Train Set:

		pred	icted
		1	0
ootuol	1	422	2
actual	0	2	392

	class	
	1	0
accuracy	0.9	95
precision	0.995	0.995
recall	0.995	0.995
F1	0.995	0.995

Test Set:

		predicted	
		1	0
ootuol	1	36	0
actual	0	1	99

	class	
	1	0
accuracy	0.9	93
precision	0.973	1.000
recall	1.000	0.990
F1	0.986	0.995

مدل نهایی در فایل diabetes-final-model.str قابل مشاهده است.

۸. فهرست شکل ها:

٣	شکل ۱: نحوه اندازه گیری ضخامت چین های پوستی
۴	شکل ۲: درجه بندی شاخص توده بدنی
۶	شکل ۳: نوع ویژگی های ورودی
۶	شکل ۴: بخشی از داده ورودی
٧	شکل ۵: نوع توزیع ویژگی ها
٧	شکل ۶: همبستگی ویژگی ها
٨	شکل ۷: مدیریت داده های نویزی
٨	شکل ۸: تبدیل Z برای مدیریت داده های پرت
	شکل ۹: IQR برای مدیریت داده های پرت
٩	شکل ۱۰: داده های مفقوده
	شکل ۱۱: مدیریت داده های مفقوده
١	شکل ۱۲: مدیریت داده های مفقوده
	شکل ۱۳: نرمال سازی داده ها
	شکل ۱۴: چالش همخطی
١	شکل ۱۵: عدم توازن داده ها
	شکل ۱۶: مدیریت دادگان نامتوازن به روش Under-Sampling
١	شکل ۱۷: مدیریت دادگان نامتوازن به روش Over-Sampling
	شكل ١٨: تنظيمات الگوريتم KNN
١	شكل ١٩: تنظيمات الگوريتم KNN
١	شكل ٢٠: تنظيمات الگوريتم SVM
	شكل ٢١: تنظيمات الگوريتم SVM
	شكل ٢٢: تنظيمات الگوريتم SVM
	شكل ٢٣: تنظيمات الگوريتم SVM
	شكل ۲۴: اهميت ويژگى هاى الگوريتم SVM بدون Feature Selection
۲	شکل ۲۵: اهمیت ویژگی های الگوریتم SVM با Feature Selection
۲	شكل ۲۶: اهميت ويژگى هاى الگوريتم شبكه عصبى بدون Feature Selection
۲	شکل ۲۷: اهمیت ویژگی های الگوریتم شبکه عصبی با Feature Selection
۲	شكل ٢٨: تنظيمات الگوريتم C&RT
۲	شكل ۲۹: اهميت ويژگى هاى الگوريتم C&RTبدون Feature Selection
	شکل ۳۰: اهمیت ویژگی های الگوریتم C&RT با Feature Selection
	شکل ۳۱: اهمیت ویژگی های الگوریتم C&RT بدون پاکسازی داده ها
	شكل ٣٢:اهميت و يژگي هاي الگوريتي CHAID بدون Feature Selection

٣٠	شكل ٣٣: اهميت ويژگى هاى الگوريتم CHAID با Feature Selection
٣١	شكل ٣۴: اهميت ويژگى هاى الگوريتم CHAID بدون پاكسازى داده ها
٣١	شكل ٣۵: تنظيمات الگوريتم C5.0
٣٢	شكل ۳۶: اهميت ويژگى هاى الگوريتم C5.0 بدون پاكسازى داده ها
٣٣	شكل ٣٧: تنظيمات الگوريتم Random forest

٩. فهرست جدول ها:

٢	جدول ۱: درجه بندی فشار خون
٣	جدول ۲: درجه بندی میزان انسولین
١	جدول ۳: مقدار F-Score برای ویژگی ها
١	جدول ۴: دقت الگوريتم KNN بدون Feature Selection
١	جدول ۵: دقت الگوريتم KNN با Feature Selection
١	جدول ۶: پارامتر های بهینه برای الگوریتم SVM
١	جدول۷: دقت الگوريتم SVM بدون Feature Selection
۲	جدول ٨: دقت الگوريتم SVM با Feature Selection
۲	جدول ٩: دقت الگوريتم شبكه عصبى بدون Feature Selection
۲	جدول ۱۰: دقت الگوریتم شبکه عصبی با Feature Selection
۲	جدول ۱۱: دقت الگوريتم C&RT بدون Feature Selection
۲	جدول ۱۲: دقت الگوريتم C&RT با Feature Selection
۲	جدول ۱۳: دقت های الگوریتم C&RT بدون پاکسازی داده ها
۲	جدول ۱۴: دقت الگوريتم QUEST بدونFeature Selection
۲.	جدول ۱۵: دقت الگوريتم QUEST با Feature Selection
۲.	جدول ۱۶: دقت الگوریتم QUEST بدون پاکسازی داده ها
۲	جدول ۱۷: دقت الگوريتمCHAID بدونFeature Selection
۲	جدول ۱۸: دقت الگوريتم CHAID با Feature Selection
٣	جدول ۱۹: دقت الگوريتم CHAID بدون پاکسازی داده ها
٣	جدول ۲۰: دقت الگوريتم C5.0 بدون Feature Selection
٣	جدول ۲۱: دقت الگوريتم C5.0 با Feature Selection
٣	جدول ۲۲: دقت الگوريتم C5.0 بدون پاکسازی داده ها
٣	جدول ۲۳: دقت الگوريتم Random forest بدون Feature Selection
٣	جدول ۲۴: اطلاعات مدل Random forest بدون Feature Selection
	جدول ۲۵: دقت الگوريتم Random forest با Feature Selection
	جدول ۲۶: اطلاعات مدل Random forest با Feature Selection
٣	جدول ۲۷: دقت الگوریتم Random forest بدون پاکسازی داده ها
	جدول ۲۸: اطلاعات مدل Random forest بدون پاکسازی داده ها
	جدول ۲۹: مدل های برتر
٣	جدول ۳۰: ارزیابی مدل های برتر موازی بدون Feature Selection
٣.	جدول ۳۱: ارزیابی مدل های برتر موازی با Feature Selection
٣.	جدول ۳۲: ارزیابی مدل های برتر موازی بدون یاکسازی داده ها

- 1. Amatul Zehra: A comparative study on the pre-processing and mining of Pima Indian Diabetes Dataset, https://core.ac.uk/download/pdf/159180503.pdf
- 2. Yi-Wei Chen and Chih-Jen Lin, Combining SVMs with Various Feature Selection Strategies, https://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf
- Ilango, B.S., Ramaraj, N.: Hybrid Prediction Model with F-score Feature Selection for Type II Diabetes Databases, https://doi.org/10.1145/1858378.1858391
- 4. Hussan, B.M., Data Mining based Prediction of Medical data Using K-means algorithm, http://dx.doi.org/10.1109/ICCRD.2011.5764179
- Karegowda, A.G., Jayaram, M.A., Manjunath, A.S.: Cascading K-means Clustering and K-Nearest Neighbor Classifier for Categorization of Diabetic Patients, https://www.ijeat.org/wp-content/uploads/papers/v1i3/C0211021312.pdf
- Giveki, D., Salimi, H., Bahmanyar, G.R., Khademian, Y.: Automatic Detection of Diabetes Diagnosis using Feature Weighted Support Vector Machines based on Mutual Information and Modified Cuckoo Search, https://arxiv.org/abs/1201.2173
- Karegowda, A.G., Punya, V., Jayaram, M.A., Manjunath, A.S.: Rule based Classification for Diabetic Patients using Cascaded K-Means and Decision Tree C4.5, https://www.ijcaonline.org/archives/volume45/number12/6836-9460
- 8. Breault, J.L.: Data Mining Diabetic Databases: Are Rough Sets a Useful Addition?, https://www.researchgate.net/publication/215899115 Data mining diabetic database s Are rough sets a useful addition
- 9. Han, J., Rodriguze, J.C., Beheshti, M.: Diabetes data analysis and prediction model discovery using RapidMiner, https://ieeexplore.ieee.org/document/4734287
- 10. Pradhan, M., Sahu, R.K.: Predict the onset of diabetes disease using Artificial Neural Network,
 - https://www.researchgate.net/publication/228850003 Predict the onset of diabetes disease using Artificial Neural Network ANN