Titulación: GRADO INGENIERIA INFORMATICA

Año Académico: 2017/2018 -- Curso: 2º Asignatura: Ficheros y bases de datos

Ejercicio 6 – Organización Serial

SOLUCIÓN AL PROBLEMA

a) Halla la densidad ideal del diseño inicial (O₀)

Útil =
$$10.5 + 23.6 + 1.6*(17*0.9 + 24) + 10 + 7.4 + 0.99*4.2*14 + 0.38*2.3*7.4 + 24 + 0.99*11 + 10 + 0.05*21 + 12.4 + 0.8*37*(9+10) + 0.7*137 = 886.7

Real = $13 + 50 + 420 + 10 + 20 + 250 + 225 + 30 + 14 + 10 + 50 + 25 + 1900 + 500 = 3517

di = $886.7 / 3517 = 25.2\%$$$$

b) Si O₀ es serial consecutiva, halla el coste parcial de cada proceso y el coste global

$$n = 3517 * 10^5 / 2048 = 171729 \text{ bloques} \Rightarrow T_f = 335,4 \text{ MB}$$

$$C(O_0, P_1) = \text{loc} + \text{borr} + \text{ins} = (171729+1)/2 + 1 + 2 = 85868 \text{ acc}$$

$$C(O_0, P_2) = n = 171729 \text{ acc}$$

$$C(O_0, P) = 0,2*85868 + 0,8*171729 = 154.556,8 \text{ acc}$$

c) Plantea un diseño físico-lógico optimizado, y halla la nueva densidad ideal

Diseño físico lógico mejorado:

Elemento de datos	Tipo	tamaño	bytes	Veces	bytes totales	bytes útiles
ISBN	cod. num.	6	6	1	6	6
long_tit	marca	1	1	1	1	
Título		long_tit	23,6	1	23,6	23,6
num autor	marca	1	1	1	1	,
Autor/es				num_autor	1,6*41,3	1,6*39,3
long_nom	marca	1	1	1		
Nombre		long_nom	17	0,9		
long_ape	marca	1	1	1		
 Apellidos 		long_ape	24	1		
Signatura		10	10	1	10	10
long_idi	marca	1	1	1	1	
Idioma		long_idi	7,4	1	7,4	7,4
num_mat	marca	1	1	1	1	
long_mat	marca	1	1	0,99*num_mat	4,158*1	
Materia		long_mat	14	0,99*num_mat	4,158*14	4,158*14
num_kw	marca	1	1	1	1	
long_kw	marca	1	1	0,38*num_kw	0,874*1	
Palabras clave		long_kw	7,4	0,38*num_kw	0,874*7,4	0,874*7,4
long_loc	marca	1	1	1	1	
Localización		long_loc	24	1	24	24
Fecha publ.	cod. fecha	3	3	1	3	3
Fecha edición	cod. fecha	3	3	1	3	3
long_col	marca	1	1	1	1	
Colección		long_col	21	0,05	0,05*21	0,05*21
long_edi	marca	1	1	1	1	
Editorial		long_edi	12,4	1	12,4	12,4
num_prest	marca	1	1	1	1	
Préstamos				0,8*num_prest	0.8*37*6	0.8*37*6
• cód. usuario	cod. num.	4	4	1		
• Fecha prést.	cod. fecha	2	2	1		
long_desc	marca	2	2	2	2	
Descripción		long_desc	137	0,7	0,7*137	0,7*137

Útil = 6 + 23,6 + 1,6*39,3 + 10 + 7,4 + 4,158*14 + 0,874*7,4 + 24 + 3 + 3 + 0,05*21 + 12,4 + 0.8*37*6 + 0,7*137 = **491,5**

Real = 6 + 1 + 23,6 + 1 + 1,6*41,3 + 10 + 1 + 7,4 + 1 + 4,158*1 + 4,158*14 + 1 + 0,874*1 + 0,874*7,4 + 1 + 24 + 3 + 3 + 1 + 0,05*21 + 1 + 12,4 + 1 + 0.8*37*6 + 1 + 0,7*137 =**509,74**

 d_i = 491,5 / 509,74 = **96,422%**

d) Se plantean dos nuevas organizaciones a partir del diseño f-l optimizado: O₁ serial consecutiva, y O₂ serial no consecutiva con E_c=4096 B y espacio libre distribuido del 10% (no info control).
 Halla la densidad real inicial y la densidad de ocupación de las dos organizaciones.

$$n(O_1) = 509,74 * 10^5 / 2048 = 24890 \text{ bloques} \rightarrow T_f = 48,6 \text{ MB}$$

$$d_r(O_1) = 10^{5*}491,5 \text{ B} / 2\text{KB*}24890 = 96,420\%$$

$$T_c = 4096*0,9 / 509,74 = 7 \text{ reg/cubo}$$

$$N(O_2) = 10^5 \text{ reg} / 7 \text{ reg/cubo} = 14286 \text{ cubos} \rightarrow T_f = 55,8 \text{ MB}$$

$$d_r(O_2) = 10^{5*}491,5 \text{ B} / 4\text{KB*}14286 = 84\%$$

e) Halla los costes parciales y el coste global de cada organización (O1 y O2). Discute su conveniencia.

$$C(O_1,P_1) = loc + borr + ins = (24890 + 1)/2 + 1 + 1 = 12447,5 acc$$
 $C(O_1,P_2) = n = 24890 acc$
 $C(O_1,P) = 0,2*12447,5 + 0,8*24890 = 22.401,5 acc$
 $C(O_2,P_1) = loc + borr = ((14286 + 1)/2 + 1) * 2 = 14289 acc$
 $C(O_2,P_2) = n = 14286 * 2 = 28572 acc$
 $C(O_1,P) = 0,2*12447,5 + 0,8*24890 = 25.715,4 acc$

- Debe observarse que la primera organización, aunque conlleva mejor coste, degenera bastante, y pasado cierto tiempo llegará a ser peor
- f) En caso de que se requieran procesos de mantenimiento, expón la periodicidad de los mismos.
- O₂ no degenera, pero O₁ sí. Sin embargo, como sólo crece 500KB/día, el espacio de almacenamiento no es un problema. Y dado que el fichero es pequeño y los req. de proceso bajos, tardaría casi 12,87 años en degenerar tanto que su operación diaria no fuera posible.
- Calculemos cada cuanto hay que reorganizar O₁ para que no sea peor que O₂

$$n'(O_1) = 509,74 * (10^5 + x)/2048 = 24890 + x/4 \text{ bloques},, x \text{ son los registros modificados}$$

$$C(O_1,P_1) = 12447,5 + x/8 \text{ acc}$$

$$C(O_1,P_2) = 24890 + x/4 \text{ acc}$$

$$C(O_1,P) = 0,2*12447,5 + 0,8*24890 = 22.401,5 + x/40 + x/5 \text{ acc}$$

$$25.715,4 \text{ acc} = 22.401,5 + 9 \cdot x/40 \text{ acc} \rightarrow x = 14728,4 \text{ registros} \rightarrow 14,7 \text{ días}$$

Tengo que compactar cada dos semanas para que O₁ sea mejor opción.