浙江工业大学高等数学(上)期中考试试卷 A12

-										
. 4										
, !	Ste	门谷趔(在	手小题 4 分); ×-×?						
1.	$当 x \rightarrow$	∞时, <i>y</i>	$=\frac{x^2-1}{x^2+3}$	→1,则	$X = \sqrt{397}$	<mark>/_</mark> 时,使	当 x >X	[时,有]	y-1 < 0.01 .	
2.	设 <i>y</i> =	$\frac{x^2+1}{\sqrt{x}},$	则 $y'=_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	3 X = -	1 - 2 2 × .					
3.	设 y=	· y(x) 由7	方程 xsir	$1y + ye^x$	= 0 所确:	定,则 <i>y'</i>	$(0) = \underline{ C}$	7000	o	
4.	曲线)	$y = x \ln(1 + x)$	+ x) 在区	间(0	,tw)		是单调增力	印的。		
5.	质点沿	曲线 y=	f(x)运动	力,曲线在	E点 $M(x,$	y) 处的切	刀线斜率为	$\frac{1}{2}$, 在点	M 处质点的	
坐村	示以 5(单位/秒)	的速率增	加,则在	点 M 处质	点的纵坐	经标的变化	3 / 速率是_	<u>5</u>	
			孙题 4 分							
			,则极限		$\lim_{x\to 1^-} y$	(A)			
	A)有 C)者	在且相等	;		00000	存在但不 只有一个				
2.	设 $f(x)$	在 $x = 0$	处连续, [1 当 $x \rightarrow 0$	0时 $f(x)$	+2与x-	+ sin x 为	等价无穷	小,则(D)	
	A) <i>f</i>	"(0)不存	在;	B)	f'(0) =	1: lm	0 X+EX	=1	f10)=-2	
	C) f	'(0) = 0;		= D	f'(0) =	= 2;	= fix)-	f10) = 1	f10)=-2 = 1x)+2 x+6x = x	=1-2
3.	设 f'(z	(c_0) 存在,	则 $\lim_{h\to 0}$ B) $ \int$	$\frac{f(x_0)-f}{h}$	$f(x_0-h)$	= (/)	,		
	A) f'	(x_0) ;	B) - J	$f'(-x_0);$	C	f'((x_0) ;	D) - j	$C'(x_0)$;	
4.	过点	/(2,0)所	引曲线y					B)	
		=-4(x-2)	2);		В	2x + y $y = -($	z=4;			
	C) y =	=2x-4;			- D	y = -((x-2);	r)		
5.	设 $f(x)$)在含有 >	x_0 的区间	(a, b) 连约	卖, $f(x_0)$	$)=0\; \exists \; \underset{x}{1}$	$\lim_{x \to x_0} \frac{\int (x-x)^{-x}}{(x-x)^{-x}}$	$\left(\frac{x^{3}}{x^{3}}\right)^{2/3} = k$	< 0,则必有	•
	(B	1)				-1=1	3 vl	<0, 则必有 xい有f(x)<0=	f(x-)
	A) $f($	(x_0) 是 $f(x_0)$	x) 的极小	值;		B) $f(x)$	f_0) \not \not \not \not $f(x)$)的极大(直;	

三、试解下列各题 (每小题 6 分):

1. 求极限
$$\lim_{x \to 0^+} x \ln x$$

$$= \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} -x = 0$$

2. 求极限
$$\lim_{x\to 0} \frac{e^{\sin x} - e^x}{x^3}$$

$$= \lim_{X\to 0} \frac{e^{x} \left(e^{\sin x} - 1\right)}{x^3} = \lim_{X\to 0} \frac{\sum x - x}{x^3} = \lim_{X\to 0} \frac{Co_3 x - 1}{x^3} = -\frac{1}{6}$$

3. 已知
$$f(x) = \frac{ax^3 + bx^2 + cx + d}{x^2 + x - 2}$$
, 求常数 a,b,c,d 使 $\lim_{x \to \infty} f(x) = 1$, $\lim_{x \to 1} f(x) = 0$.

$$(x) = \frac{(x)^3 + bx^3 + (x + c)}{x^2 + x - 2} = 1$$

$$(x) = 0 \quad b = 1$$

$$(x) = \frac{(x)^3 + bx^3 + (x + c)}{x^2 + x - 2} = 0$$

$$(x) = 0 \quad b = 1$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x) = 0 \quad (x) = 0 \quad (x) = 0$$

$$(x) = 0 \quad (x) = 0 \quad (x$$

四、(8分) 设函数
$$f(x) = \begin{cases} \cos \omega x & x < 0 \\ 2x^2 + 1 & x \ge 0 \end{cases}$$
, 讨论 $f(x)$ 在 $x = 0$ 处的二阶可导性。

$$\lim_{X\to 0^{-}} \frac{f(x)-f(0)}{X} = \lim_{X\to 0^{-}} \frac{G_{X}w_{X}-1}{X} = 0$$

$$\lim_{X\to 0^{+}} \frac{f(x)-f(0)}{X} = \lim_{X\to 0^{+}} \frac{2X+1-1}{X} = 0$$

$$f(x) = \begin{cases} -\omega S_{mwx} & x < 0 \\ 0 & x = 0 \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\ x + 0 & x \end{cases}$$

$$\begin{cases} I_{m} f(x) - f(0) = I_{m} - \omega S_{mwx} = -\omega^{2} \\$$

五、试解下列各题 (每小题 6 分):

1. 设
$$y = f(1 - \cos x)$$
, $f''(x)$ 存在, 求: $\frac{d^2y}{dx^2}$

$$\frac{dy}{dx} = Sm\chi \cdot f'(1 - Coxx)$$

$$\frac{d^2y}{dx^2} = Coxx \cdot f'(1 - Coxx) + Sm\chi \cdot f'(1 - Coxx)$$

2.
$$\forall \begin{cases} x = 2te^{t} + 1 \\ y = t^{3} - 3t \end{cases}$$
, $\forall x : \frac{dy}{dx}\Big|_{x=1}$, $\frac{d^{2}y}{dx^{2}}\Big|_{x=1}$

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{3t^{2} - 3}{2e^{t} + 2te^{t}}$$

$$\frac{dy}{dx} = \frac{dx}{dx} = \frac{3t^{2} - 3}{2e^{t} + 2te^{t}}$$

$$\frac{dy}{dx}\Big|_{x=1} = \frac{3}{2}$$

$$\frac{dy}{dx}\Big|_{x=1} = -\frac{3}{2}$$

$$\frac{dy}{dx}\Big|_{x=1} = -\frac{3}{2}$$

3. 证明不等式:
$$\sqrt{1+x} > 1 + \frac{x}{2} - \frac{x^2}{8}$$
 $(x > 0)$
 $\lambda = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x}{8} + \frac{x^2}{2!} + \frac{x^2}{8} + \frac{x^2}{8$

就
$$2^{\circ}$$
 全 $f(x) = \sqrt{1+x} - 1 - \frac{2}{2} + \frac{x^{\circ}}{8}$ $f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2} + \frac{x}{4}$ $f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1+x}} + \frac{x}{4}$ $f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1+x}} + \frac{x}{4}$ $f'(x) = \frac{x}{4}$ $f'(x$

六、(10分) 在第一象限部分内的椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 上求一点,使在该点的切线与两坐标轴所围的面积最小。

七、(6分)下列陈述中,哪些是对的,哪些是错的?如果是对的,说明理由;如果是错的试给出一个反例。

- (1) 如果 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} g(x)$ 不存在,那么 $\lim_{x \to x_0} [f(x) + g(x)]$ 不存在;
- (2) 如果 $\lim_{x \to x_0} f(x)$ 和 $\lim_{x \to x_0} g(x)$ 都不存在,那么 $\lim_{x \to x_0} [f(x) + g(x)]$ 不存在;
- (3) 如果 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} g(x)$ 不存在,那么 $\lim_{x \to x_0} f(x)g(x)$ 不存在。

11)对用自语法,设加门和了标框.

| lim g(x) = lim[f(x)+g(x)] - limf(x) Tiste : 3 fts

i. lin [fix)+gix)] 7 to te.

(2) 锅. ~ ~ 和如一文不存在,但你(x-文)存在.

13)箱. lim X 标准, lim Six 不标准, 但 lim XSix 存在.