Probabilidad y Estadística (93.24) Trabajo Práctico Nº 9

Pruebas de hipótesis

- 1. De una producción de tubos de hormigón se extrajo una muestra de tamaño 16 y se los pesó resultando una media muestral de 17.5 kg. La varianza del peso de un tubo es de 4 kg² y se puede suponer que el peso de esos tubos tiene distribución normal con una media de 18 kg (¡eso lo dice el fabricante!). Considerando un nivel de significación del 5 %, ¿se puede concluir que el peso medio de los tubos es significativamente inferior al especificado por el fabricante?. Calcule el valor P de la prueba.
- 2. Se supone que un nuevo procedimiento para producir cemento dará por resultado que tenga una resistencia a la compresión de 5000 kg/cm² con una desviación estándar de 120 kg/cm². Para poner a prueba la hipótesis nula H0: $\mu=5000$ frente a la alternativa H1: $\mu<5000$ se analiza una muestra de 50 probetas de hormigón a las que se somete a ensayo. Se rechaza la hipótesis nula si la media muestral es menor que 4970 kg/cm².
 - a) Determine la probabilidad de cometer error de tipo I.
 - b) Evalúe la probabilidad de cometer error tipo II para las alternativas $\mu=4960$ y $\mu=4950$.
- 3. Una empresa desea iniciar una campaña de ventas de aparatos de TV. Se considera que la decisión de comenzar la campaña debe estar relacionada con los ingresos medios mensuales por familia, de modo que será afirmativa si éstos son iguales o superiores a 500 U\$S y negativa cuando los ingresos no lleguen a esa suma.
 - Un punto de vista respecto del error de tipo I (de probabilidad α) es que la empresa desea evitar el error de no empezar la campaña cuando debería hacerlo; no quiere perder la oportunidad de ganar dinero.
 - El otro punto de vista es que la empresa desea evitar el error que supone iniciar la campaña cuando no deba hacerlo, si las familias no tienen suficiente dinero se deben evitar las pérdidas que acarrea una campaña inútil de ventas.
 - a) El desvío estándar poblacional es 20 U\$S y se extrae una muestra de 100 personas. Elaborar la regla de decisión al 5% de nivel de significación de la hipótesis nula $\mu = 500$ frente a la alternativa $\mu < 500$. Calcular la probabilidad β de cometer error de tipo II de este regla de decisión para la alternativa $\mu = 495$ U\$S. Construir en forma aproximada la gráfica de β en función de μ (curva OC o de operación característica).
 - b) Supongamos ahora que la empresa desea evitar el error que supone empezar la campaña de ventas cuando no debe hacerlo; trata de evitar las pérdidas monetarias que origina una campaña de ventas inútil. En este caso las hipótesis nula y alternativa son: H0: $\mu \leq 500$ y H1: $\mu > 500$ respectivamente.
 - En este caso el error de tipo I es el que se comete al empezar la campaña cuando no debería hacerse, y el error de tipo II es el que aparece cuando no se empieza debiéndose hacer. Obtener la regla de decisión para los mismos valores de α , n y el desvio estándar poblacional del ingreso. Realizar la curva OC para valores de μ entre 500 U\$S y 510 U\$S.

- c) Obtener la regla de decisión dados $\alpha=0.025,\,\beta(470)=0.05,$ el desvío estándar del ingreso es 50 U\$S, para el contraste de hipótesis H0: $\mu\geq 500$ y H1: $\mu<500$. Esto significa que la empresa no desea iniciar la campaña de ventas (con probabilidad 0.95) cuando los ingresos medios son tan bajos como 470 U\$S. Representar la curva OC para alternativas entre 460 U\$S v 500 U\$S.
- 4. La resistencia a la rotura de cierto tipo de alambre tiene distribución normal con media 280 kg y desvío estándar 20 kg. Se cree que un proceso de fabricación recién desarrollado puede aumentar la resistencia sin modificar el desvío estándar, pero sólo se lo implantará si se tiene una razonable seguridad de que efectivamente es así. Se ha establecido en 0.05 la probabilidad de implantar el nuevo método cuando en realidad la resistencia no se modifica, y en 0.15 la probabilidad de no implantarlo si se incrementa en 10 kg.
 - a) Establezca la hipótesis nula, la condición de rechazo y la regla de decisión.
 - b) ¿Cuál es la probabilidad de implantar el nuevo método si la resistencia media aumenta en 5 kg?.
 - c) Represente gráficamente las curva OC y de potencia de este ensayo.
- 5. En una pieza fabricada que ha de acoplarse a otras piezas, hay una dimensión crítica cuyo valor debe ser aproximadamente de 11.5 cm. La variabilidad del proceso de fabricación está dada por un desvío estándar de 0.1 cm. El proceso se considera bajo control si, para una muestra de n piezas, no hay motivos para pensar que la media es diferente de 11.5 cm.
 - a) ¿Cuál deberá ser el tamaño de la muestra si se establece en 0.1 la probabilidad de revisar el proceso equivocadamente y en 0.05 la probabilidad de no revisarlo cuando la media es de 11.4 cm?.
 - Sugerencia: Para aproximar el cálculo suponga que la $cola\ derecha$, cuando la media es de 11.4 cm, tiene aproximadamente área nula. Una vez calculado el valor de n verifique que la suposición fue acertada.
 - b) ¿Cuál es la probabilidad de revisar el proceso cuando la media es de 11.46 cm?
- 6. Una compañía debe diseñar un sistema de muestreo periódico para controlar la recepción de grandes partidas de un producto. El proveedor desea tener la seguridad de que le rechacen a lo sumo el 5 % de las partidas buenas, que son aquellas que cumplen con la especificación de que la resistencia media mínima es de 1250 kg. A su vez, el cliente desea rechazar al menos el 90 % de las partidas malas, que son aquellas cuya resistencia media es inferior a 1100 kg. Ambos firman un contrato en el cual constan las condiciones anteriores y se establece que la decisión de rechazar o aceptar una partida se tomará en función del resultado de una muestra de n unidades elegidas al azar de la misma. Existen registros históricos por los cuales se sabe que el desvío de la resistencia a la rotura es de 180 kg.
 - a) Indique la hipótesis nula apropiada, su condición de rechazo y la regla de decisión.
 - b) Calcule la probabilidad de detectar que una partida dada resiste en promedio 1200 kg.
 - c) Represente gráficamente en forma aproximada las curvas de operación característica (curva OC) y de potencia indicando claramente las abscisas y ordenadas de al menos tres puntos.

- 7. El contenido de los paquetes de cereal llenados por una determinada máquina tiene una distribución normal con desvío estándar de 30 g. Se desea establecer un control periódico del proceso de llenado y se establece en un 5 % la probabilidad de detener la máquina innecesariamente cuando el peso promedio de los paquetes es igual a 360 g (que es el peso neto indicado en el envase), y en 2 % la probabilidad de no realizar las correcciones necesarias en el proceso cuando el peso promedio de cereal difiere por caja en un 10 % del valor indicado en el envase. Indique el criterio de decisión y el tamaño de muestra adecuado que daría usted a la persona encargada de controlar el proceso.
- 8. Según un fabricante, la resistencia media extrema de cierto alambre aleado de Al es de $250 \ MN/m^2$. Un contratista adquiere un lote de alambre y pone a prueba una muestra de tamaño 35. El valor medio y la desviación estándar obtenidos a partir de esa muestra son respectivamente $274.4 \ MN/m^2$ y $11.2 \ MN/m^2$. ¿Es justificable que el contratista concluya que la remesa tiene una resistencia significativamente diferente a lo especificado por el fabricante ?. Tomar un nivel de significación del 5% y suponga que la variable que se mide tiene distribución normal.
- 9. Se vende una marca especial de cemento en bolsas de 50 kg. Se eligieron 11 de ellas al azar y se observa que su masa en kg es: 49.2 50.1 49.8 49.7 50.1 50.5 49.6 49.9 50.4 50.2 49.7. ¿Son tales resultados consistentes con que la media del cemento en una bolsa es 50 kg? Suponga que el contenido de una bolsa es una variable con distribución normal. Tomar el nivel de significación $\alpha = 0.1$.
- 10. Un fabricante de lámparas eléctricas ha desarrollado un nuevo proceso de producción que él espera aumentará la eficiencia (se supone una variable normal) media (en lúmenes/watt) de su producto que hasta el momento es de 9.5. Los resultados de un experimento realizado sobre 10 lámparas se dan a continuación: 9.28, 10.25, 11.52, 13.02, 11.58, 9.97, 11.46, 12.05, 9.87, y 10.85. ¿Debe el fabricante concluir que la eficiencia aumentó? Usar 5% como nivel de significación del test. Usando una planilla de cálculo u otro software adecuado calcular el valor P (la probabilidad de que el estadístico de prueba tome valores superiores al observado, para esta prueba de hipótesis de cola derecha) de esta prueba de hipótesis.
- 11. En una planta de armado se diseña una operación específica que toma un tiempo promedio de 5 minutos. El gerente de planta sospecha que para una máquina en particular el tiempo promedio es mayor. Entonces toma una muestra de 15 tiempos de operación para esa máquina y obtiene los siguientes resultados (en minutos):

5.2	4.2	5.7	6.8	6.7	7.2	3.3	5.3	6.6	4.4	4.8	3.8	3.7	4.5	4.7]
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---

Puede suponerse que el tiempo para esa operación es una variable aleatoria con distribución normal. ¿Se encuentra la sospecha del gerente apoyada por la evidencia si se supone un nivel de significación del 5 %? Justifique su respuesta detallando el test de hipótesis correspondiente

12. Tomado de **EL HOMBRE ANUMERICO** - . El analfabetismo matemático y sus consecuencias, Autor: John Allen Paulos - Tusquets Ed., Barcelona, 1995.

"Supongamos que formulo la hipótesis de que por lo menos el 15 por ciento de los coches de determinada región son Corvette, y que después de observar el paso de mil coches por unos cuantos cruces representativos de dicha región sólo he visto ochenta Corvette. Utilizando la teoría de la probabilidad, calculo que, en el supuesto de que mi hipótesis sea cierta, la probabilidad de este resultado es bastante inferior al 5 por ciento, cifra que comúnmente se usa como nivel de significación. Así pues, se rechaza la hipótesis de que el 15 por ciento de los coches de la región son Corvette."

Verificar los resultados que se comentan en el texto.

Comentario: Hay dos tipos de errores que se pueden cometer al aplicar este test estadístico u otro cualquiera y se llaman, en un derroche de imaginación, errores del Tipo I y errores del Tipo II. Se comete un error del Tipo I cuando se rechaza una hipótesis verdadera, y uno del Tipo II, cuando se acepta una hipótesis falsa. Así, si una gran cantidad de Corvette procedentes de una exposición automovilística atravesara la región y esto nos llevara a aceptar la hipótesis falsa de que al menos el 15 por ciento de los coches de la región son Corvette, estaríamos cometiendo un error del Tipo II. Por el contrario, si no nos hubiéramos percatado de que la mayoría de los Corvette de la región no estaban en circulación, sino guardados en sus garajes, al rechazar la hipótesis verdadera estaríamos cometiendo un error del Tipo I.

- 13. Considere la siguiente situación. Ud. recibe una caja con 12 unidades de una pieza y desea ensayar la hipótesis: H0) Las 12 piezas son buenas, extrayendo una única unidad de la caja. La condición de rechazo, obvia, es que la pieza extraída sea defectuosa. Si la pieza extraída es buena, Ud. no puede rechazar la hipótesis, pero en modo alguno puede aceptarla ¿verdad?. Calcule la probabilidad β de cometer error de tipo II para las alternativas de que haya $1, 2, \ldots, R$ piezas defectuosas en la caja. Este es un caso sencillo para ilustrar los conceptos básicos del tema de ensayo de hipótesis.
- 14. En un experimento para determinar la efectividad de un nuevo medicamento, se ensaya en 400 pacientes que sufren la afección que este medicamento dice curar. Si mas de 300 pero menos de 340 pacientes se curan se concluye que el medicamento tiene una efectividad del 80
 - a) Determinar la probabilidad de cometer error de tipo I.
 - b) ¿Cuál es la probabilidad de cometer error de tipo II si el nuevo medicamento tiene una efectividad del $70\,\%$?
- 15. Se sabe que el 30 % de los automovilistas en una ciudad cruzan semáforos en rojo. Para disminuir este porcentaje, la municipalidad realiza una intensiva campaña publicitaria. Luego de la misma se quiere evaluar si la campaña tuvo éxito o no. Para tal fin se dispone, en una esquina representativa, una cámara de video que filma durante varias horas lo ocurrido en el semáforo. Luego de este lapso de tiempo, se contabilizaron 400 autos pasando por la esquina, de los cuales 92 cruzaron el semáforo en rojo. ¿Se puede afirmar, con una probabilidad de error del 5 %, que la campaña hizo descender el porcentaje inicial? Justifique detalladamente planteando una prueba de hipótesis adecuada.
- 16. La proporción de defectuosos en un proceso es 2%. Como se desea establecer un control sobre el mismo se inspeccionan con una frecuencia de una vez por hora muestras de tamaño n y se revisa

el proceso si se encuentran c ó más defectuosas entre las n. Para determinar n y c se han fijado un riesgo del 10% (0.1 es la probabilidad de detener el proceso cuando en realidad no habría que hacerlo) y una probabilidad 0.2 de cometer el error de no detener el proceso en el caso en que el porcentaje de defectuosos sea de 6%.

- a) Especifique claramente la prueba de hipótesis planteada (hipótesis nula, alternativa, nivel de significación, estadístico de prueba y zona de rechazo).
- b) Determine los valores de n y c.
- c) Represente gráficamente en forma aproximada las curvas de operación característica (curva OC) y de potencia indicando claramente las abscisas y ordenadas de al menos tres puntos.
- 17. Una máquina dosificadora en una operación de producción se debe ajustar si el porcentaje de envases con falta de llenado es significativamente superior al 8%. En una muestra aleatoria de 145 envases de la producción de un día se encontraron 18 envases incompletos en su llenado.
 - a) ¿Indican los resultados que hay que ajustar la máquina dosificadora? Detalle una prueba de hipótesis adecuada. Considere un nivel de significación del 5%. Calcule el valor P de esta prueba de hipótesis (la probabilidad de que el estadístico de prueba tome valores superiores al observado, en esta prueba de hipótesis de cola derecha).
 - b) ¿Cuál es la probabilidad de decidir que la máquina no debe ser ajustada cuando en realidad la verdadera proporción de envases mal llenados (incompletos) es igual a 0.13?
 - c) Represente gráficamente en forma aproximada las curvas de operación característica (curva OC) y de potencia indicando claramente las abscisas y ordenadas de al menos tres puntos.
- 18. En un diario de gran circulación de esta ciudad se publicó el resultado de una encuesta en la que se indicaban, para una muestra de tamaño n, varias proporciones de preferencia por varios equipos de fútbol. En ese reporte figuraba una ficha técnica en la que se indicaba lo siguiente:
 - Tamaño de la muestra n = 9300
 - Nivel de confianza 95 %
 - Error máximo: 1 % (semiamplitud máxima de un intervalo de confianza).

En esa encuesta se indicaba que los hinchas de Boca no son la mitad mas uno dado que el 41% (0.403) de la muestra correspondió a hinchas de Boca. Explique el significado de esta afirmación analizando una prueba de hipótesis de cola izquierda. Calcule el valor P de esta prueba y compare con algún nivel de significación típico. En este caso el valor P es la probabilidad de que el estadístico de prueba tome valores inferiores al observado, por tratarse de una prueba de hipótesis de cola izquierda.

19. Para estimar el rendimiento de un proceso químico, se observaron datos correspondientes a las últimas 10 corridas del mismo. El rendimiento promedio de estas corridas fue de 64.8 %, y el desvío estándar de las mismas fue de 9.8 %. El responsable del proceso está decidido a invertir en su mejora, sólo si recibe evidencia estadística de que el rendimiento medio del proceso es inferior al 70 %. Si le preguntaran a usted ¿justificaría la inversión?. Suponga que el rendimiento tiene distribución normal y explique detalladamente su respuesta y los criterios utilizados.

- 20. En un proceso químico se producen en promedio, 800 toneladas de un producto químico por día. Las producciones diarias de una semana fueron: 805, 790, 790, 780, y 770.
 - a) En base a este resultado, ξ se puede afirmar que la producción promedio es menor a 800 toneladas y que, por lo tanto, algo anda mal en el proceso? Decida a un nivel de significación del $5\,\%$.
 - b) ¿Cuál es el intervalo del 90 % de confianza para estimar la varianza de la producción diaria?
 - c) ¿Qué supuestos se requieren para que sea válido el procedimiento para analizar estos datos?

Apéndice: Una simulación en Octave. Optativo y recomendable para fijar conceptos.

Suponga una prueba de hipótesis de cola derecha en la que se quiere poner a prueba la hipótesis nula $\mathbf{H0}$: $\mu = \mu_0$ frente a la hipótesis alternativa $\mathbf{H1}$: $\mu > \mu_0$. Suponga que la variable aleatoria involucrada en esta prueba tiene distribución normal de media μ y desvío estándar σ . Si se conoce el valor de σ entonces el estadístico de prueba es la variable aleatoria

$$Z = \frac{(\overline{X} - \mu_0)\sqrt{n}}{\sigma}$$

que tiene distribución normal estándar. Si al evaluar este estadístico resulta mayor que el valor crítico $z_{1-\alpha}$ entonces se rechaza la hipótesis nula al nivel de significación 100 α %. El valor de α mide la probabilidad de cometer el error de tipo I. En promedio si se realizase esta prueba N veces entonces α N veces se rechazaría la hipótesis nula a pesar que el valor de μ no es mayor que μ_0 .

Si no se conoce el valor de σ entonces se estima en cada muestra con el desvío estándar muestral S y asi resulta que el estadístico de prueba es la variable aleatoria

$$T = \frac{(\overline{X} - \mu_0)\sqrt{n}}{S}$$

que tiene distribución de Student con n-1 grados de libertad. Si al evaluar este estadístico resulta mayor que el valor crítico $t_{1-\alpha,n-1}$ entonces se rechaza la hipótesis nula al nivel de significación 100 α %. El valor de α mide la probabilidad de cometer el error de tipo I. En promedio si se realizase esta prueba N veces entonces α N veces se rechazaría la hipótesis nula a pesar que el valor de μ no es mayor que μ_0 .

El siguiente código en Octave simula la generación de N muestras de tamaño n y determina en cada una de ellas la condición de rechazo en los dos casos comentados anteriormente para esta prueba de hipótesis de cola derecha. También se calcula la frecuencia de ocurrencia de la comisión del error de tipo I:

```
mu = 10; sigma = 2.5;
n = 10; N = 1000; X = mu+sigma*randn(n,N);
XR = mean(X); S = std(X);
Z = (XR - mu)/(sigma/sqrt(n));
T = (XR - mu)./(S/sqrt(n));
zc = 1.6449; tc = tinv(0.95,n-1);
[zc tc]
pZ = mean(Z > zc); pT = mean(T > tc);
[pZ pT]
```

Breve explicación: La matriz X de n filas y N columnas contiene números aleatorios provenientes de una variable aleatoria con distribución normal de media μ y desvío estándar σ . Luego se calcula para cada columna (que corresponde a una muestra de tamaño n) la media que se almacena en el vector XR; de igual manera la matriz S almacena los valores del desvío estándar de cada muestra. Se definen a continuación los estadísticos Z y T y se calculan los valores críticos (en este ejemplo si $\alpha=0.05$) para las distribuciones de probabilidad de estos estadísticos. Los valores de pZ y pT miden la frecuencia de ocurrencia de rechazo. En una ejecución de este código se obtuvieron estos valores:

0.043000 0.044000

Ambos valores resultan próximos a 0.05.