studyguide

Shantanu Vyas

October 17, 2016

Contents

1	Cha	apter 1	2				
	1.1	Propositional Logic	2				
		1.1.1 Converse Contrapositive and Inverse (p -> q)	2				
	1.2	Applications of Propositional Logic	2				
		1.2.1 Examples of turning sentences into propositional Logic.	2				
	1.3						
		1.3.1 Logical Equivalences	2				
		1.3.2 Logical Equivelences Involving Conditional Statements	3				
		1.3.3 Logical Equivalences Involving Biconditional Statements	3				
	1.4	Predicates and Quantifiers	3				
		1.4.1 Quantifiers	3				
	1.5	Nested Quantifers	4				
		1.5.1 Nested Quantifiers can be used when there are multiple					
		variables such as x and y	4				
		1.5.2 Quantification of Two Variables	4				
	1.6	Rules of Inference	4				
	1.7	Introduction to Proofs	4				
	1.8	Proof methods and Strategy	4				
2 Chapter 2		apter 2	4				
	2.1	Sets	4				
	2.2	Set Operations	4				
	2.3	Functions	4				
	2.4	Sequences and Summations	4				
	2.5	Cardinality of Sets	4				
	2.6	Matrices	4				

1 Chapter 1

1.1 Propositional Logic

- 1.1.1 Converse Contrapositive and Inverse (p -> q)
 - Coverse

$$- q \rightarrow p$$

• Contrapositive

$$- q \rightarrow \neg p$$

ullet Inverse

$$- \neg p \rightarrow \neg q$$

1.2 Applications of Propositional Logic

1.2.1 Examples of turning sentences into propositional Logic.

1.3 Propositional Equivalences

1.3.1 Logical Equivalences

$p \wedge T$	p	Identity Laws
$p \lor F$	p	
$p \lor T$	T	Domination Laws
$p \wedge F$	\mathbf{F}	
$p \lor p$	p	Idempotent Laws
$p \land p$	p	
$\neg(\neg p)$	p	Double Negation Laws
$p \lor q$	$q \lor p$	Commutative Laws
$p \land q$	$q \wedge p$	
$(p \lor q) \lor r$	$p \lor (q \lor r)$	Associative Laws
$(p \land q) \land r$	$p \land (q \land r)$	
$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$	Distributive Laws
$p \land (q \lor r)$	$(p \land q) \lor (p \land r)$	
$\neg(p \land q)$	$\neg p \lor q$	De Morgans Laws
$\neg(p \ v \ q)$	$\neg p \land q$	
$p \lor (p \land q)$	p	Absorption Laws
$p \land (p \lor q)$	p	
р v ¬р	T	Negation Laws
$p \land p$	F	

1.3.2 Logical Equivelences Involving Conditional Statements

$p \rightarrow q$	$\neg p \lor q$
$p \to q$	$\neg \mathbf{q} \to p$
$p \lor q$	$\neg \mathbf{p} \to q$
$p \land q$	$\neg(\mathbf{p} \to q)$
$\neg(p \to q)$	$p \land q$
$(p \to q) \land (p \to r)$	$p \to (q \land r)$
$\overline{(p \to r) \land (q \to r)}$	$(p \lor q) \to r$
$(p \to q) \lor (p \to r)$	$p \to (q \lor r)$
$\overline{(\mathbf{p} \to r) \lor (q \to r)}$	$(p \land q) \to r$

1.3.3 Logical Equivalences Involving Biconditional Statements

$\mathbf{p} \leftrightarrow q$	$(p \to q) \land (q \to p)$
$\mathbf{p} \leftrightarrow q$	$\neg p \leftrightarrow q$
$p \leftrightarrow q$	$(p \land q) \lor (p \land q)$
$\neg(\mathbf{p} \leftrightarrow q)$	$p \leftrightarrow q$

1.4 Predicates and Quantifiers

1.4.1 Quantifiers

- Universal Quantifer
 - $\forall (x) P(x)$
 - * Definition: For all x in the universe P(x) is true;
 - * Negation
 - $\neg \forall (x) \ P(x) \ can also be written as \exists \neg P(x)$
 - · There exists an x such that P(x) is false
- Existential Quantifer
 - $-\exists (x) P(x)$
 - * Definition: For all x in the universe P(x) is true for at least one x;
 - * Negation
 - $\cdot \neg \exists (x) P(x)$ can also be written as $\forall \neg P(x)$
 - All x in the universe make P(x) false

1.5 Nested Quantifers

1.5.1 Nested Quantifiers can be used when there are multiple variables such as x and y

•
$$\forall$$
 (x) \exists (y) (x + y = 0)

1.5.2 Quantification of Two Variables

Statement	When True	When False
$\forall (x) \forall (y) P(x,y)$	P(x,y) is true for every pair	When there is a x,y
		for which $P(x,y)$ is false
$\forall (x) \exists (y) P(x,y)$	For every x there is a y	When there is an x such
	for which $P(x,y)$ is true	that $P(x,y)$ is false for every y
$\exists (x) \forall (y) P(x,y)$	There is an x for which $P(x,y)$	When for every x there is a y
	is true for every y	for which $P(x,y)$ is false
$\exists (x)\exists (y)P(x,y)$	There is a pair for x,y	P(x,y) is false for
$\exists (y) \exists (x) P(x,y)$	for which $P(x,y)$ is true	every pair of x and y

1.6 Rules of Inference

- 1.7 Introduction to Proofs
- 1.8 Proof methods and Strategy
- 2 Chapter 2
- 2.1 Sets
- 2.2 Set Operations
- 2.3 Functions
- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets
- 2.6 Matrices

 \emptyset