

1. Definición

Es una relación entre dos conjuntos, digamos X y Y, de los que a cada elemento de X se le asigna un único elemento de Y. Su notación es la siguiente

Primero se indica sobre que conjuntos X y Y esta definida

$$f: X \to Y$$

Después se indica la regla de relación, es decir

$$x \in X, y \in Y, f(x) = y$$

Al conjunto X le llamamos el **dominio**, al conjunto Y le llamamos el **codominio** o **contradominio** y a la relación f(x) = y regla de **correspondencia**.

2. Ejemplos

Las siguientes dos funciones pueden parecer muy simples, pero son muy importantes.

• Función constante:

Son las funciones $f: X \to Y$ dadas por

$$f(x) = b, x \in X, b \in Y$$
 fijo.

• Función identidad:

Son las funciones $f: X \to X$ dadas por

$$f(x) = x, x \in X.$$

Normalmente es denotada por Id(x).

3. Operaciones

Apartir de dos funciones podemos generar otra función con una operación entre ellas.

• Suma y resta:

Sean $f, g: X \to Y$ funciones. La suma y la resta estan definidas por

$$(f \pm g)(x) = f(x) \pm g(x)$$

■ Producto y Cociente:

Sean $f,g:X\to Y$ funciones. El producto esta definido por

$$(f \cdot g)(x) = f(x) \cdot g(x),$$

y si $g(x) \neq 0$ para todo $x \in X$ entonces el cociente esta definido por

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

■ Composición:

Sean $f:X \to Y,\,g:Y \to Z$ funciones. La composición esta definida por

$$(f \circ g)(x) = f(g(x)).$$

4. Propiedades

A las funciones se pueden caracterizar de diferentes formas, esto para poder apartir de ciertas características de una función encontrar propiedades de esta.

4.1. Dominio - Codominio

Sea $f: X \to Y$ una función

• Inyectiva:

fes inyectiva si para todo $x_1,x_2\in X$ tales que $x_1\neq x_2$ entonces

$$f(x_1) \neq f(x_2)$$
.

Suprayectiva:

f es inyectiva si para todo $y \in Y$ existe un $x \in X$ tal que

$$f(x) = y$$
.

Biyectiva:

f es biyectiva si es inyectiva y suprayectiva.

4.2. Paridad(signos)

Sea $f:X\to Y$ una función

■ Par:

f es par si

$$f(x) = f(-x).$$

Impar:

f es impar si

$$f(x) = -f(-x).$$

4.3. Periodicidad

Una función $f: \mathbb{R} \to \mathbb{R}$ es periodica si existe $a \neq 0 \in \mathbb{R}$ tal que

$$f(x+a) = f(x).$$

4.4. Orden

Sea $f: X \to Y$ una función, $x_1, x_2 \in X$.

• Creciente:

Una función es creciente si $x_1 < x_2$ entonces

$$f(x_1) < f(x_2).$$

Decreciente:

Una función es decreciente si $x_1 > x_2$

$$f(x_1) > f(x_2).$$

■ No Creciente:

Una función es no creciente si $x_1 \ge x_2$ entonces

$$f(x_1) \ge f(x_2)$$
.

No Decreciente:

Una función es decreciente si $x_1 \leq x_2$

$$f(x_1) \le f(x_2).$$

4.5. Acotadas

Sea $f:\mathbb{R}\to\mathbb{R}$ una función. La función f es acotada si existe un $M\in\mathbb{R}$ tal que para todo $x\in\mathbb{R}$ se cumple que

$$|f(x)| \leq M$$
.

5. Ecuaciones Funcionales

Las ecuaciones funcionales son aquellas ecuaciones cuya incógnita es una función. El objetivo de estos problemos puede ser determinar la función que cumple una ecuación o determinar propiedades de una función que cumple una ecuación.

Ejercicio 5.1. Encuentra todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(y+x) - f(y-x) = 4yx$$
, para todos $x, y \in \mathbb{R}$.

Ejercicio 5.2. Encuentra todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(x+y) - f(x-y) = f(x) + 6xy^2 + x^3$$
, para todos $x, y \in \mathbb{R}$.

Ejercicio 5.3. Encuentra todas las funciones $f: \mathbb{N} \to \mathbb{N}$ tales que

$$(m^2 + f(n))|(mf(m) + n)$$
, para todos $n, m \in \mathbb{N}$.

Ejercicio 5.4. Las funciones $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ que satisfacen

$$f(xf(y)) = \frac{f(x)}{y}$$
, para todos $x, y \in \mathbb{Q}^+$.

Ejercicio 5.5. Encuentra todas las funciones $f: \mathbb{Q} \to \mathbb{Q}$ tales que

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
, para todos $x, y \in \mathbb{Q}$.

Ejercicio 5.6. Considera la una función $f: \mathbb{N} \to \mathbb{N}$ tal que

$$f(n) = f(n + f(n)), para toda n \in \mathbb{N}.$$

Demuestre que si la imagen de d es finita entonces f es periódica.

Ejercicio 5.7. Encuentra todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(x^2 + f(y)) = y + f(x)^2$$
, para todos $x, y \in \mathbb{R}$.

Ejercicio 5.8. Sea $m \geq 2$ un número entero. Encuentra todas las funciones $f : [0,1] \to \mathbb{R}$ tales que

$$f(x) = \frac{1}{m^2} \left\{ f(0) + f\left(\frac{x}{m}\right) + f\left(\frac{2x}{m}\right) \right\} + \dots + f\left(\frac{(m-1)x}{m}\right), \text{ para todo } x \in [0,1].$$

5.1. Recomendaciones paara resolver ecuaciones funcionales

Hay ciertas formas de atacar estos tipos de problemas, que pueden ser muy distintas entre ellas, y también complicadas. Por lo que daremos una serie de recomendaciones para atacar estos problemas.

- Sustituir variables por valores
- Inducción matemática
- Propiedades básicas de las funciones
- Sustituciones
- Simetría en las variables
- Comprobación

5.2. Ejercicios