Deep Generative Models: Discrete Latente Variables

```
Philip Schulz and Wilker Aziz

https:
//github.com/philschulz/VITutorial
```

First Attempt: Wake-Sleep

Neural Variational Inference

Score function estimator

Variance reduction

Generative Models

Joint distribution over observed data x and latent variables Z.

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

The likelihood and prior are often standard distributions (Gaussian, Bernoulli) with simple dependence on conditioning information.

Deep generative models

Joint distribution with deep observation model

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

mapping from z to $p(x|z,\theta)$ is a NN with parameters θ

Deep generative models

Joint distribution with deep observation model

$$p(x, z|\theta) = \underbrace{p(z)}_{\text{prior}} \underbrace{p(x|z, \theta)}_{\text{likelihood}}$$

mapping from z to $p(x|z,\theta)$ is a NN with parameters θ

Marginal likelihood

$$p(x|\theta) = \int p(x, z|\theta) dz = \int p(z)p(x|z, \theta) dz$$

intractable in general

We want

richer probabilistic models

We want

- richer probabilistic models
- complex observation models parameterised by NNs

We want

- richer probabilistic models
- complex observation models parameterised by NNs

but we can't perform gradient-based MLE

We want

- richer probabilistic models
- complex observation models parameterised by NNs

but we can't perform gradient-based MLE

We need approximate inference techniques!

First Attempt: Wake-Sleep

Neural Variational Inference

Score function estimator

Variance reduction

Wake-sleep Algorithm

- ► Generalise latent variables to Neural Networks
- ► Train generative neural model
- ► Use variational inference! (kind of)

2 Neural Networks:

▶ A generation network to model the data (the one we want to optimise) – parameters: θ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ
- Original setting: binary hidden units
- ► Training is performed in a "hard EM" fashion

Generator

Inference Network

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize join log-likelihood of data and latents $p(x, z|\theta)$

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize join log-liklelihood of data and latents $p(x, z|\theta)$

Sleep Phase

- Produce dream sample \tilde{x} from random hidden unit z
- ▶ Update inference parameters λ to maximize probability of latent state $q(z|\tilde{x}, \lambda)$

Objective

$$\underset{\theta}{\operatorname{arg\,min}} \operatorname{\mathsf{KL}} \left(q(z|x,\lambda) \mid\mid p(z|x,\theta) \right)$$

Objective

$$\begin{aligned} & \operatorname*{arg\,min}_{\theta} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|x,\theta)\right) \\ & = \operatorname*{arg\,max}_{\theta} \ \ \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbb{H}[q(z|x,\lambda)\right]}_{\mathcal{G}(\theta)} \end{aligned}$$

Objective

$$\begin{aligned} & \operatorname*{arg\,min}_{\theta} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|x,\theta)\right) \\ & = \operatorname*{arg\,max}_{\theta} \ \ \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbb{H}[q(z|x,\lambda)\right]}_{\mathcal{G}(\theta)} \end{aligned}$$

$$\mathbf{\nabla}_{ heta} \mathcal{G}(heta) = \mathbf{\nabla}_{ heta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta) \right] + \mathbf{\nabla}_{ heta} \mathbb{H}[q(z|x,\lambda)]$$

Objective

$$\begin{aligned} & \operatorname*{arg\,min}_{\theta} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|x,\theta)\right) \\ & = \operatorname*{arg\,max}_{\theta} \ \ \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbb{H}[q(z|x,\lambda)\right]}_{\mathcal{G}(\theta)} \end{aligned}$$

$$egin{aligned} oldsymbol{
abla}_{ heta} \mathcal{G}(heta) &= oldsymbol{
abla}_{ heta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(z,x| heta)
ight] + oldsymbol{
abla}_{ heta} \mathbb{H}[q(z|x,\lambda)] \ &= \mathbb{E}_{q(z|x,\lambda)} \left[oldsymbol{
abla}_{ heta} \log p(z,x| heta)
ight] \end{aligned}$$

Objective

$$\begin{aligned} & \operatorname*{arg\,min}_{\theta} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|x,\theta)\right) \\ & = \operatorname*{arg\,max}_{\theta} \ \ \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbb{H}[q(z|x,\lambda)\right]}_{\mathcal{G}(\theta)} \end{aligned}$$

$$\begin{split} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathcal{G}(\boldsymbol{\theta}) &= \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\lambda})} \left[\log p(\boldsymbol{z},\boldsymbol{x}|\boldsymbol{\theta}) \right] + \boldsymbol{\nabla}_{\boldsymbol{\theta}} \mathbb{H}[q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\lambda})] \\ &= \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\lambda})} \left[\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{z},\boldsymbol{x}|\boldsymbol{\theta}) \right] \\ &\stackrel{\mathsf{MC}}{\approx} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p(\boldsymbol{z},\boldsymbol{x}|\boldsymbol{\theta}) \quad \text{where } \boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\lambda}) \end{split}$$

Assumes latent state z to be fixed random draws from $q(z|x, \lambda)$.

$$\underset{\theta}{\operatorname{arg \, min}} \operatorname{KL} \left(q(z|x,\lambda) \mid\mid p(z|x,\theta) \right)$$

$$\overset{\operatorname{MC}}{\approx} \underset{\theta}{\operatorname{arg \, max}} \log p(z,x|\theta)$$

This is simply supervised learning with imputed latent data!

Wake Phase Sampling

Sampling $z \sim q(z|x,\lambda)$

 $\overline{z_3}$

 $\left(z_1\right)$

 $\left(z_{2}\right)$

 x_1

*X*₂

*X*₃

Wake Phase Sampling

Sampling $z \sim q(z|x,\lambda)$

Wake Phase Update

Update θ

Objective

$$\underset{\lambda}{\operatorname{arg\,min}} \operatorname{\mathsf{KL}} \left(q(z|x,\lambda) \mid\mid p(z|x,\theta) \right)$$

Objective

Objective

$$\begin{aligned} & \operatorname*{arg\,min}_{\lambda} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|x,\theta)\right) \\ & = \operatorname*{arg\,max}_{\lambda} \ \ \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbb{H}[q(z|x,\lambda)\right]}_{\mathcal{R}(\lambda)} \end{aligned}$$

$$\mathbf{\nabla}_{\lambda}\mathcal{R}(\lambda) = \mathbf{\nabla}_{\lambda}\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbf{\nabla}_{\lambda}\mathbb{H}[q(z|x,\lambda)]$$

Objective

$$\begin{aligned} & \operatorname*{arg\,min}_{\lambda} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|x,\theta)\right) \\ & = \operatorname*{arg\,max}_{\lambda} \ \ \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x|\theta)\right] + \mathbb{H}[q(z|x,\lambda)\right]}_{\mathcal{R}(\lambda)} \end{aligned}$$

Gradient estimate

$$abla_{\lambda}\mathcal{R}(\lambda) = oldsymbol{
abla}_{\lambda}\mathbb{E}_{q(z|x,\lambda)}\left[\log p(z,x| heta)\right] + oldsymbol{
abla}_{\lambda}\mathbb{H}[q(z|x,\lambda)]$$

Let's change the objective!

Sleep Phase (Convenient) Objective

Flip the direction of the KL

$$\operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x, \theta) \mid\mid q(z|x, \lambda) \right)
ight]$$

Sleep Phase (Convenient) Objective

Flip the direction of the KL

$$\begin{split} & \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x,\theta) \mid\mid q(z|x,\lambda) \right) \right] \\ & = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \end{split}$$

Sleep Phase (Convenient) Objective

Flip the direction of the KL

$$\begin{split} & \underset{\lambda}{\arg\min} \, \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x,\theta) \mid\mid q(z|x,\lambda) \right) \right] \\ & = \underset{\lambda}{\arg\min} \, \mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \underset{\lambda}{\arg\max} \, \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right]}_{\mathcal{R}(\lambda)} - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\text{constant}} \end{split}$$

Flip the direction of the KL

$$\begin{split} & \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x,\theta) \mid\mid q(z|x,\lambda) \right) \right] \\ & = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \operatorname*{arg\,max}_{\lambda} \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right]}_{\mathcal{R}(\lambda)} - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\mathsf{constant}} \end{split}$$

Gradient

$$\nabla_{\lambda} \mathcal{R}(\lambda) = \nabla_{\lambda} \mathbb{E}_{p(x,z|\theta)} [\log q(z|x,\lambda)]$$

Flip the direction of the KL

$$\begin{split} & \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x)} \left[\mathsf{KL} \left(p(z|x,\theta) \mid\mid q(z|x,\lambda) \right) \right] \\ & = \operatorname*{arg\,min}_{\lambda} \mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) - \log q(z|x,\lambda) \right] \\ & = \operatorname*{arg\,max}_{\lambda} \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right]}_{\mathcal{R}(\lambda)} - \underbrace{\mathbb{E}_{p(x,z|\theta)} \left[\log p(z|x,\theta) \right]}_{\text{constant}} \end{split}$$

Gradient

$$egin{aligned} oldsymbol{
abla}_{\lambda} \mathcal{R}(\lambda) &= oldsymbol{
abla}_{\lambda} \mathbb{E}_{p(x,z| heta)} \left[\log q(z|x,\lambda)
ight] \ &= \mathbb{E}_{p(x,z| heta)} \left[oldsymbol{
abla}_{\lambda} \log q(z|x,\lambda)
ight] \end{aligned}$$

Assumes fake data \tilde{x} and latent variables z to be fixed random draws from $p(x, z|\theta)$.

$$\underset{\lambda}{\operatorname{arg max}} \ \mathbb{E}_{p(x,z|\theta)} \left[\log q(z|x,\lambda) \right]$$

Assumes fake data \tilde{x} and latent variables z to be fixed random draws from $p(x, z|\theta)$.

$$rg \max_{\lambda} \; \mathbb{E}_{p(x,z| heta)} \left[\log q(z|x,\lambda)
ight] \ \stackrel{\mathsf{MC}}{pprox} \; rg \max_{\lambda} \; \log q(z| ilde{x},\lambda)$$

where $z \sim p(z)$ and $\tilde{x} \sim p(x|z)$

(fake data!)

Sleep Phase Sampling

Sampling $(z, \tilde{x}) \sim p(x, z|\theta)$

$$\left(z_1\right)$$

$$\left(z_{2}\right)$$

Sleep Phase Sampling

Sampling $(z, \tilde{x}) \sim p(x, z|\theta)$

Sleep Phase Update

$\mathsf{Update}\ \lambda$

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- ightharpoonup Amortised inference: all latent variables are inferred from the same weights λ

Wake-sleep Algorithm

Advantages

- ► Simple layer-wise updates
- ightharpoonup Amortised inference: all latent variables are inferred from the same weights λ

Drawbacks

- Inference and generative networks are trained on different objectives
- ▶ Inference weights λ are updated on fake data \tilde{x}
- Generative weights are bad initially, giving wrong signal to the updates of λ

☐ Neural Variational Inference

First Attempt: Wake-Sleep

Neural Variational Inference

Score function estimator

Variance reduction

Generative model with NN likelihood

Generative model with NN likelihood

Let us consider a latent factor model for topic modelling:

Generative model with NN likelihood

Let us consider a latent factor model for topic modelling:

▶ a document $x = (x_1, ..., x_N)$ consists of n i.i.d. categorical draws from that model

Generative model with NN likelihood

Let us consider a latent factor model for topic modelling:

- ▶ a document $x = (x_1, ..., x_N)$ consists of n i.i.d. categorical draws from that model
- ▶ the categorical distribution in turn depends on binary latent factors $z = (z_1, ..., z_K)$ which are also i.i.d.

Latent factor model

$$Z_j \sim \mathsf{Bernoulli}\left(\phi
ight) \qquad (1 \leq k \leq K) \ X_i | z \sim \mathsf{Categorical}\left(f(z; heta)
ight) \quad (1 \leq i \leq N)$$

Here $0 < \phi < 1$ specifies a Bernoulli prior and $f(\cdot; \theta)$ is a function computed by a neural network with softmax output, e.g.

$$f(z; \theta) = \text{softmax}(Wz + b)$$

 $\theta = \{W, b\}$

Example Model

At inference time the latent variables are marginally dependent. For our variational distribution we are going to assume that they are not (recall: mean field assumption).

Mean Field Inference

The inference network needs to predict K Bernoulli parameters b_1^K . Any neural network with sigmoid output will do that job.

Inference Network

$$q(z|x,\lambda) = \prod_{k=1}^K \mathsf{Bern}(z_k|b_k)$$
 where $b_1^K = g(x;\lambda)$

Example architecture

$$h = \frac{1}{N} \sum_{i=1}^{N} E_{x_i}$$
 $b_1^K = sigmoid(Mh + c)$

$$\lambda = \{E, M, c\}$$

Objective

$$egin{aligned} \mathsf{ELBO} &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z| heta)
ight] + \mathbb{H} \left(q(z|x,\lambda)
ight) \ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z, heta)
ight] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)
ight) \end{aligned}$$

Parameter estimation

$$\argmax_{\theta,\lambda} \; \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \; || \; p(z) \right)$$

KL

KL between K independent Bernoulli distributions is tractable

$$egin{aligned} \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z|\phi)
ight) &= \sum_{k=1}^K \mathsf{KL}\left(q(z_k|x,\lambda) \mid\mid p(z_k|\phi)
ight) \ &= \sum_{k=1}^K b_k \log rac{b_k}{\phi} + (1-b_k) \log rac{1-b_k}{1-\phi} \end{aligned}$$

Generative Network Gradient

$$\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right)$$

Generative Network Gradient

$$\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right)$$

$$= \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right]}_{\mathsf{expected gradient } :)}$$

Generative Network Gradient

$$\begin{split} &\frac{\partial}{\partial \theta} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{\mathsf{constant wrt } \theta} \right) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{expected gradient } :)}{\underset{\approx}{\mathsf{E}} \sum_{s=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z^{(s)},\theta)} \quad \mathsf{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{\mathsf{analytical}} \right)$$

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{\mathsf{analytical}} \right)$$

$$= \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\mathsf{analytical computation}}$$

$$\frac{\partial}{\partial \lambda} \left(\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{\mathsf{analytical}} \right)$$

$$= \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}_{\mathsf{analytical computation}}$$

The first term again requires approximation by sampling, but there is a problem

$$rac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{ heta}(x|z) \right]$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)] \\ = \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta) \\ &= \underbrace{\sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)}_{\text{not an expectation}} \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta) \\ &= \underbrace{\sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)}_{\text{not an expectation}} \end{split}$$

MC estimator is non-differentiable

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)]$$

$$= \frac{\partial}{\partial \lambda} \sum_{z} q(z|x,\lambda) \log p(x|z,\theta)$$

$$= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)$$
not an expectation

- MC estimator is non-differentiable
- Differentiating the expression does not yield an expectation: cannot approximate via MC

Score function estimator

We can again use the log identity for derivatives

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} [\log p_{\theta}(x|z)] \\
= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta)$$

Score function estimator

We can again use the log identity for derivatives

$$egin{align*} & rac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z)
ight] \ &= \sum_{z} rac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta) \ &= \sum_{z} q(z|x,\lambda) rac{\partial}{\partial \lambda} (\log q(z|x,\lambda)) \log p(x|z,\theta) \end{aligned}$$

Score function estimator

We can again use the log identity for derivatives

$$\begin{split} &\frac{\partial}{\partial \lambda} \mathbb{E}_{q_{\lambda}(z|x)} \left[\log p_{\theta}(x|z) \right] \\ &= \sum_{z} \frac{\partial}{\partial \lambda} (q(z|x,\lambda)) \log p(x|z,\theta) \\ &= \sum_{z} q(z|x,\lambda) \frac{\partial}{\partial \lambda} (\log q(z|x,\lambda)) \log p(x|z,\theta) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ &= \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]}_{\text{expected gradient :)} \end{split}$$

Score function estimator: remarks

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \end{split}$$

Score function estimator: remarks

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ & \overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{s=1}^{S} \log p(x|z^{(s)},\theta) \frac{\partial}{\partial \lambda} \log q(z^{(s)}|x,\lambda) \\ & \text{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

Score function estimator: remarks

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ & \stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{s=1}^{S} \log p(x|z^{(s)},\theta) \frac{\partial}{\partial \lambda} \log q(z^{(s)}|x,\lambda) \\ & \text{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

ightharpoonup magnitude of $\log p(x|z,\theta)$ varies widely

Score function estimator: remarks

We can now build an MC estimator

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \\ & \stackrel{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{s=1}^{S} \log p(x|z^{(s)},\theta) \frac{\partial}{\partial \lambda} \log q(z^{(s)}|x,\lambda) \\ & \text{where } z^{(s)} \sim q(z|x,\lambda) \end{split}$$

- ightharpoonup magnitude of log $p(x|z,\theta)$ varies widely
- model likelihood does not contribute to direction of gradient

inference model

inference model

inference model

generation model

inference model

generation model

inference model

generation model

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions

Pros and Cons

- Pros
 - Applicable to all distributions
 - Many libraries come with samplers for common distributions
- Cons
 - ► High Variance!

First Attempt: Wake-Sleep

Neural Variational Inference

Score function estimator

Variance reduction

When variance is high we can

When variance is high we can

sample more

When variance is high we can

- sample more
- use variance reduction techniques (e.g. baselines and control variates)

Control variates

Suppose we want to estimate $\mathbb{E}[f(Z)]$

$$\hat{f} \stackrel{\mathsf{MC}}{pprox} \frac{1}{S} \sum_{s=1}^{S} f(z^{(s)})$$

and we know the expected value of another function $\psi(z)$ on the same support.

Control variates

Suppose we want to estimate $\mathbb{E}[f(Z)]$

$$\hat{f} \stackrel{\mathsf{MC}}{pprox} \frac{1}{S} \sum_{s=1}^{S} f(z^{(s)})$$

and we know the expected value of another function $\psi(z)$ on the same support.

It holds that

$$\mathbb{E}[f(Z)] = \mathbb{E}[f(Z) - \psi(Z)] + \mathbb{E}[\psi(Z)]$$

Variance reduction

$$\hat{d} = rac{1}{S} \left(\sum_{s=1}^{S} f(z^{(s)}) - \psi(z^{(s)}) \right) + \underbrace{\mathbb{E}[\psi(Z)]}_{\mu_{\psi}}$$

In general

$$\mathsf{Var}(\hat{d}) = \mathsf{Var}(\hat{f}) - 2\,\mathsf{Cov}(\hat{f},\hat{\psi}) + \underbrace{\mathsf{Var}(\mu_{\psi})}_{0}$$

If f and ψ are strongly correlated, then we improve on the original estimation problem.

Fact

The Expectation of the score function is 0.

Fact

The Expectation of the score function is 0.

$$\mathbb{E}_{q(z|x,\lambda)}\left[\frac{\partial}{\partial\lambda}\log q(z|x,\lambda)\right]=0$$

We attempt to centre the gradient estimate. To do this we learn a quantity C that we subtract from the reconstruction loss.

$$\mathbb{E}_{q(z|\lambda)}\left[\log q(z|\lambda)\left(\log p(x|z,\theta)-C\right)\right]$$

We call C a baseline. It does not change the expected gradient (Williams, 1992).

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \left(\log p(x|z,\theta) - C \right) \right] =$$

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \left(\log p(x|z,\theta) - C \right) \right] =$$

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \log p(x|z,\theta) \right] -$$
score function gradient

$$\mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \left(\log p(x|z,\theta) - C \right) \right] = \\ \mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \log p(x|z,\theta) \right] - \\ \mathbb{E}_{q(z|\lambda)} \left[\frac{\partial}{\partial \lambda} \log q(z|\lambda) \right] C$$

We can make baselines input-dependent to make them more flexible.

$$\log q(z|\lambda) \left(\log p(x|z,\theta) - C(x;\omega)\right)$$

We can make baselines input-dependent to make them more flexible.

$$\log q(z|\lambda) \left(\log p(x|z,\theta) - C(x;\omega)\right)$$

However, baselines may not depend on the random value z! Quantities that may depend on the random value (C(z)) are called **control variates**.

See Blei et al. (2012); Ranganath et al. (2014); Gregor et al. (2014).

Baselines are predicted by a regression model (e.g. a neural net).

The model is trained using an L_2 -loss.

$$\min_{\omega} \left(C(x; \omega) - \log p(x|z, \theta) \right)^2$$

Deep Generative Models: Discrete Latente Variables

─Variance reduction

Summary

► Wake-Sleep: train inference and generation networks with separate objectives

Summary

- ► Wake-Sleep: train inference and generation networks with separate objectives
- NVIL: a single objective (ELBO) for both models

Summary

- Wake-Sleep: train inference and generation networks with separate objectives
- NVIL: a single objective (ELBO) for both models
- Use score function estimator

Summary

- Wake-Sleep: train inference and generation networks with separate objectives
- NVIL: a single objective (ELBO) for both models
- Use score function estimator
- ► Always use baselines for variance reduction!

Implementation

Check one of our notebooks, e.g.

▶ inducing rationales for sentiment classification https://github.com/probabll/dgm4nlp/ tree/master/notebooks/sst

Literature I

David M. Blei, Michael I. Jordan, and John W. Paisley. Variational bayesian inference with stochastic search. In *ICML*, 2012. URL http://icml.cc/2012/papers/687.pdf.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive networks. In Eric P. Xing and Tony Jebara, editors, *ICML*, pages 1242–1250, 2014. URL http://proceedings.mlr.press/v32/gregor14.html.

Literature II

- G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised neural networks. *Science*, 268:1158–1161, 1995. URL http://www.gatsby.ucl.ac.uk/~dayan/papers/hdfn95.pdf.
- Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In *Proceedings of the 31st International Conference on International Conference on Machine Learning Volume 32*, ICML'14, pages II–1791–II–1799.

Literature III

```
JMLR.org, 2014. URL http://dl.acm.org/
citation.cfm?id=3044805.3045092.
```

Rajesh Ranganath, Sean Gerrish, and David Blei.
Black Box Variational Inference. In Samuel Kaski and Jukka Corander, editors, *AISTATS*, pages 814–822, 2014. URL http://proceedings.mlr.press/v33/ranganath14.pdf.

Literature IV

```
Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4): 229–256, 1992. URL https://doi.org/10.1007/BF00992696.
```