Complexitatea problemelor

Ștefan Ciobâcă, Dorel Lucanu

Faculty of Computer Science Alexandru Ioan Cuza University, Iași, Romania dlucanu@info.uaic.ro

PA 2015/2016

- Complexitatea problemelor
- Complexitatea sortării
- Complexitatea căutării divide-et-impera
- Reducerea polinomială problemelor

Plan

- Complexitatea problemelor
- Complexitatea sortării
- Complexitatea căutării divide-et-impera
- 4 Reducerea polinomială problemelor

De ce definim complexitatea unei probleme

Pentru o problemă rezolvabilă pot exista mai mulți algoritmi care să o rezolve.

De fapt dacă există unul, atunci există o infinitate. (De ce?)

Ce putem spune despre eficiența rezolvării unei probleme?

Definițiile de la eficiența algoritmilor pot fi ușor transferate la probleme.

Definiția complexității O(f(n)) a unei probleme

Oferă o margine superioară pentru efortul computațional necesar rezolvării unei probleme.

Definition

Problema P are complexitatea timp în cazul cel mai nefavorabil O(f(n)) dacă există un algoritm A care rezolvă P și $T_A(n) = O(f(n))$.

Definiția complexității $\Omega(f(n))$ a unei probleme

Oferă o margine inferioară pentru efortul computațional necesar rezolvării unei probleme.

Definition

P are complexitate timp în cazul cel mai nefavorabil $\Omega(f(n))$ dacă orice algoritm A care rezolvă P are $T_A(n) = \Omega(f(n))$.

Algoritm optim pentru o problemă

Definition

A este algoritm optim (din punct de vedere al complexității timp pentru cazul cel mai nefavorabil) pentru problema P dacă

- A rezolvă P şi
- P are complexitatea timp în cazul cel mai nefavorabil $\Omega(T_A(n))$.

Plan

- Complexitatea problemelor
- Complexitatea sortării
- Complexitatea căutării divide-et-impera
- 4 Reducerea polinomială problemelor

Problema sortării

Considerăm cazul particular al sortării tablourilor:

```
SORT Input n și tabloul a = [v_0, \dots, v_{n-1}]. Output tabloul a' = [w_0, \dots, w_{n-1}] cu proprietățile: w_0 \le \dots \le w_{n-1} și w = (w_0, \dots, w_{n-1}) este o permutare a secvenței v = (v_0, \dots, v_{n-1});
```

Notații:

SORTED(a): tabloul a este sortat

Perm(v, w): w este o permutare a lui v

Sortare prin interschimbare (BubbleSort) 1/2

caracterizarea SORTED(a)

$$SORTED(a) \iff (\forall i)(0 \le i < n-1) \Rightarrow a[i] \le a[i+1]$$

unde n = a.size(). (Aceasta e parte a domeniului problemei.)

De la domeniul problemi la algoritm:

```
for (i=0; i < n-1; ++i) {
  if (a[i] > a[i+1]) {
    swap (a, i, i+1);
}
```

Sortare prin interschimbare (BubbleSort) 2/2

Procesul de restabilire de mai sus trebuie repetat până nu mai sunt inversiuni:

```
while (posibil să mai existe inversiuni) {
  for (i=0; i < n-1; ++i) {
    if (a[i] > a[i+1]) {
      swap (a, i, i+1);
}
```

(Acesta este pseudocod!)

Testul *posibil să mai existe inversiuni* poate fi verificat ținând minte poziția ultimei inversiuni:

BubbleSort: algoritmul

```
bubbleSort(a, n) {
 ultim = n-1;
  while (ultim > 0) {
    n1 = ultim;
    ultim = 0;
    for (i=0; i < n1; ++i) {
      if (a[i] > a[i+1]) {
        swap (a, i, i+1);
        ultim = i;
```

```
swap(a, i, j) {
  temp = a[i];
  a[i] = a[j];
  a[j] = temp;
}
```

Evaluarea algoritmului BubbleSort 1/2

Corectitudine

```
Invariant bucla while: a[ultim+1 .. n - 1] include cele mai mari n-1-ultim elemente din a și SORTED(a[ultim+1 .. n-1]) Invariant bucla for: a[j] \leq a[i] pentru j=0,\ldots,i.
```

swap menține proprietatea $\operatorname{Perm}(u,u')$, unde u este valoarea variabilei a înainte de swap și u' cea de după

Evaluarea algoritmului BubbleSort 1/2

Timp de execuție

- dimensiune instanță: n (= a.size())
- operații măsurate: comparațiile care implică elementele tabloului
- cazul cel mai nefavorabil: când secvența de intrare este ordonată descrescător
- numărul de comparații pentru acest caz este

$$(n-1)+(n-2)+\cdots+1=\frac{(n-1)n}{2}=O(n^2)$$

Sortare prin inserție directă (InsertSort) 1/2

```
Principiul de bază
for j in 1 .. n-1
  inserează a[j] în a[0..j-1] a.î. SORT(a[0..j])
(Acesta este un pseudo-cod!)
```

Sortare prin inserție directă (InsertSort) 2/2

Analiza domeniului problemei

Poziția i pe care trebuie inserat a[j]:

- i = j dacă $a[j] \ge a[j-1]$;
- i = 0 dacă a[j] < a[0];
- 0 < i < j și satisface $a[i-1] \le a[j] < a[i]$
- $\implies a[i..j-1]$ trebuie deplasate la dreapta cu o poziție!
- condiția pentru deplasarea la dreapta: $i \geq 0 \wedge a[i] > a[j]$

Algoritmic:

```
i = j - 1;
temp = a[j];
while ((i >= 0) && (a[i] > temp)) {
   a[i+1] = a[i];
   i = i -1;
}
```

InsertSort: algoritmul

```
insertSort(a, n) {
  for (j = 1; j < n; j = j+1) {
    i = j - 1;
    temp = a[j];
    while ((i >= 0) && (temp < a[i])) {
      a[i+1] = a[i];
      i = i -1;
    }
    if (i != j-1) a[i+1] = temp;
}</pre>
```

Evaluarea algoritmului InsertSort 1/2

Corectitudine

Invariantul buclei for: $\operatorname{Perm}(u,v) \wedge SORTED(a[0..j-1])$, unde u este valoarea curentă a variabilei a

Invariantul buclei while: $a[i+1], \ldots, a[j-1] > temp$.

Invariantul buclei while și $a[i] \le temp \lor i < 0$ asigură determinarea corectă a lui i, i.e. SORTED(a[0..j]).

Evaluarea algoritmului InsertSort 2/2

Timp de execuție

- dimensiune instanță: n (= a.size())
- operații măsurate: comparațiile care implică elementele tabloului
- cazul cel mai nefavorabil: când secvența de intrare este ordonată descrescător
 - căutarea poziției i în subsecvența a $[0 \dots j-1]$ necesită j-1 comparații
- numărul de comparații pentru acest caz este

$$1+2=\cdots+(n-1)=\frac{(n-1)n}{2}=O(n^2)$$

Selecția sistematică

Analiza domeniului problemei Proprietatea MAXHEAP(a):

$$(\forall i \ge 0)2i + 1 < n \implies a[i] \ge a[2i + 1) \land$$
$$2(i + 1) < n \implies a[i] \ge a[2(i + 1))$$

 $MAXHEAP(a) \implies max a = a[0]$

Ideea algoritmului:

- se presupune MAXHEAP(a)
- dacă facem interschimbarea swap(a,0,n-1), noua valoarea a[n-1] e pe locul ei final și tabloul rămas de sortat este a[0..n-2]
- a[0..n-2] se sortează în aceeași manieră

Ideea algoritmului mai algoritmică

```
heapSort(a, n) {
  stabileşte MAXHEAP( a)
  for (r = n-1; r > 0; --r) {
    swap(a, 0, r);
    restabileşte MAXHEAP( a[0..r-1])
}
(Acesta este pseudocod!)
```

Stabilirea proprietății de max-heap

Analiza domeniului problemei

MAXHEAP(a, ℓ):

$$(\forall i \ge \ell)2i + 1 < n \implies a[i] \ge a[2i+1) \land 2(i+1) < n \implies a[i] \ge a[2(i+1))$$

- $\ell \ge n/2 \implies MAXHEAP(a, \ell)$
- dacă $MAXHEAP(a, \ell-1)$ putem stabili $MAXHEAP(a, \ell)$ inserând $a[\ell-1]$ în $a[\ell..n-1]$

De la domeniul problemei la algoritm:

```
j = \ell;
while (există copil/copii a/ai lui j) {
    k = indexul copilului cu valoare maximă;
    if (a[j] < a[k]) swap(a, j, k);
    j = k;
}</pre>
```

Algoritmul HeapSort

```
insertInHeap(a, n, \ell) {
  isHeap = false; j = \ell;
  while ((2*(j-1) \le n-1) \&\& ! isHeap) {
   k = 2*j +1;
    if ((k < n-1) && (a[k] < a[k+1])) k = k+1;
    if (a[j] < a[k]) swap(a, j, k); else isHeap = true;
    j = k;
heapSort(a, n) {
  for (1 = (n-1)/2; 1 \ge 0; 1 = 1-1)
    insertInHeap(a, n, 1);
 r = n-1;
  while (r >= 1) {
    swap(a, 0, r);
    insertInHeap(a, r, 0);
    r = r - 1;
```

Evaluarea algoritmului HeapSort 1/2

Corectitudine Se bazează pe corectitudinea implementării operațiilor peste *max-heap*.

invariantul instrucțiunii while din insertInHeap: $(\forall i \geq \ell)$ dacă j nu este în arborele cu rădăcina în i, atunci MAXHEAP(a,i)

```
invariantul lui for din heapSort: MAXHEAP(a, \ell)
```

invariantul instrucțiunii while din heapSort: $MAXHEAP(a[0..r-1]) \land SORTED(a[r..n-1])$

Evaluarea algoritmului HeapSort 2/2

Timp de execuție

- dimensiune instanță: n (= a.size())
- o perații măsurate: comparațiile care implică elementele tabloului
- cazul cel mai nefavorabil: greu de spus
 - complexitatea timp al operației insertInHeap: $O(\log n)$
 - dar construcția max-heap-ului necesită $O(\log n)$ (de fapt $\Theta(n)$
 - complexitatea lui while:

$$O(\log(n-1) + O(\log n - 2) + \cdots + O(\log 1) = O(n \log n)$$

• numărul de comparații pentru acest caz este $O(n \log n)$

Alți algoritmi de sortare

Exerciții pentru seminar.

Două întrebări despe algoritmii de sortare

- care este numărul minim de comparații executate în cazul cel mai nefavorabil?
- care algoritmi de sortare realizează minimul de comparații, i.e. care algoritmi sunt optimali?

Pentru a putea răspunde la cele două întrebări trebuie mai întâi să precizăm modelul de calcul peste care sunt construiți acești algoritmi.

Arborii de decizie pentru sortare: intuitiv

Presupunere: $a_i \neq a_j$ dacă $i \neq j$

Notație: $i?j \equiv se compară a[i] cu a[j]$

Construcția arborelui ce reprezintă comparațiile făcute de un algoritm:

- vârfurile interne conțin comparații *i* ? *j*;
- subarborele din stânga conține comparațiile făcute în cazul $a_i < a_j$;
- subarborele din dreapta conține comparațiile făcute în cazul $a_i > a_j$;
- vârfurile externe (frontiera) conțin permutări

Algoritmi reprezentați ca arborii de decizie (pentru sortare)

Definition

Arbore de decizie pentru *n* elemente:

- vârfurile interne: *i*?*j*
- vârfurile pe frontieră: permutări ale mulțimii $\{0, 1, \dots, n-1\}$

Definition

Calculul unui arbore de decizie t pentru intrarea $a=(a_0,\ldots,a_{n-1})$: drum de la rădăcină la un vârf pe frontieră cu proprietatea

- dacă $a_i < a_i$: copilul din stânga lui i ? j devine vârf curent;
- altfel copilul din dreapta devine vârf curent

Arbori de decizie pentru sortare

Definition

```
t (pentru n elemente) rezolvă problema sortării:
```

```
\forall intrare a = (a_0, \ldots, a_{n-1})
```

calculul lui
$$t$$
 pentru a se termină în π a. î. $a_{\pi(0)} < \cdots < a_{\pi(n-1)}$

arbore de decizie pentru sortare: arbore de decizie care rezolvă problema sortării

Arborele de decizie pentru InsertSort

Complexitatea sortării

Timpul de execuție minim pentru cazul cel mai nefavorabil:

$$T(n) = \min_{t} \max_{\pi} \operatorname{length}(\pi, t)$$

Theorem

Problema sortării are timpul de execuție pentru cazul cel mai nefavorabil $\Omega(n \log n)$ în modelul arborilor de decizie pentru sortare.

Corollary

Algoritmul HeapSort este optimal în modelul arborilor de decizie pentru sortare.

Plan

- Complexitatea problemelor
- Complexitatea sortării
- 3 Complexitatea căutării divide-et-impera
- 4 Reducerea polinomială problemelor

Problema căutării

Instance o mulțime univers \mathcal{U} , o submulțime $S\subseteq\mathcal{U}$ și un element a din \mathcal{U} ; Question $a\in S$?

Presupunem că $\mathcal U$ este total ordonată și mulțimea S este reprezentată de tabloul s[0..n-1] cu $s[0] < \cdots < s[n-1]$.

Algoritm generic divide-et-impera de căutare: ideea

- se determină m cu $p \le m \le q$;
- dacă a = s[m] atunci căutarea se termină cu succes;
- dacă a < s[m] atunci căutarea continuă cu subsecvența $(s[p], \ldots, s[m-1]);$
- dacă a > s[m] atunci căutarea continuă cu subsecvența $(s[m+1], \ldots, s[q]);$

Cei mai cunoscuți dintre acestia sunt:

- Căutare liniară (secvențială). Se alege m = p.
- Căutare binară. Se alege $m = \lceil \frac{p+q}{2} \rceil$.
- Căutare Fibonacci. Se presupune q+1-p=Fib(k)-1

Algoritm generic divide-et-impera de căutare

```
pos(s, n, a) {
  p = 0; q = n - 1;
  2: alege m intre p şi q
  while ( (a != s[m]) && (p < q)) {
    if (a < s[m]) q = m -1; else p = m + 1;
    5: alege m intre p şi q
  }
  if (a == s[m]) return m; else return -1;
}</pre>
```

Algoritmi reprezentați ca arbori de decizie (pentru căutare)

Definition

Arborele de decizie pentru căutare de dimensiune n: T(0, n-1), unde T(p,q) este definit recursiv astfel:

- dacă p > q atunci T(p,q) este arborele vid;
- altfel, rădăcina este m e dat de instr. 2 sau 5, subarborele stâng este T(p, m-1) și cel drept este T(m+1, q)
- vârfuri pe frontieră: $(-\infty, X_0), (X_0, X_1), \dots, (X_{n-1}, +\infty)$ în această ordine de la stânga la dreapta

T(p,q) grafic

Exemplu de arbore de decizie pentru căutarea binară

Algoritmi reprezentați ca arbori de decizie (pentru căutare)

Definition

Calculul unui arbore de decizie pentru intrarea $[x_0, \ldots, x_{n-1}]$, a: parcurgerea unui drum de la rădăcină spre frontieră cu proprietatea

- **1** dacă vârful curent este (X_i, X_{i+1}) (i.e., extern), atunci $a \in (x_i, x_{i+1})$ și calculul se termină cu insucces;
- ② dacă vârful curent este m și $a = x_m$, atunci calculul se termină cu succes;
- 3 dacă $a < x_m$ atunci rădăcina subarborelui stâng devine vârf curent;
- ① dacă vârful curent este m și $a>x_m$, atunci rădăcina subarborelui drept devine vârf curent.

Cazul particular al căutării binare

Lemma

Fie t arborele de decizie pentru căutare cu n vârfuri corespunzător căutării binare. Dacă $2^{h-1} \le n < 2^h$, atunci înălțimea lui t este h.

Corollary

Timpul de execuție pentru cazul cel mai nefavorabil al căutării binare este $O(\log_2 n)$.

Proprietăți ale arborilor de decizie pentru căutare

Definition

Lungimea internă a lui t: IntLength(t) =suma lungimilor drumurilor de la rădăcină la vârfurile interne.

Lungimea externă a lui t: ExtLength(t) =suma lungimilor drumurilor de la rădăcină la vârfurile de pe frontieră (pendante).

Lemma

Fie t un arbore de decizie pentru căutare cu n vârfuri interne. Atunci:

$$\operatorname{ExtLength}(t) - \operatorname{IntLength}(t) = 2n.$$

Lemma

Lungimea internă minimă a unui arbore de decizie cu *n* vârfuri interne este:

$$(n+1)(h-1)-2^h+2$$

Complexitatea căutării

Theorem

Problema căutării are timpul de execuție în cazul cel mai nefavorabil $\Omega(\log n)$ în modelul arborilor de decizie pentru căutare.

Corollary

Căutarea binară este optimă în modelul arborilor de decizie pentru căutare.

Plan

- Complexitatea problemelor
- Complexitatea sortării
- Complexitatea căutării divide-et-impera
- Reducerea polinomială problemelor

Motivație

Mentalitate: "Dacă știu să rezolv problema Q, pot utiliza acel algoritm să rezolv P?"

Intuitiv: Problema P se reduce la Q dacă un algoritm care rezolvă Q poate ajuta la rezolvarea lui P.

Aplicații:

- proiectarea de algoritmi
- demonstrarea limitelor: daca P este dificilă atunci și Q este dificilă
- clasificarea problemelor

Reducerea Turing/Cook

Problema P se reduce polinomial la problema (rezolvabilă) Q, notăm $P \propto Q$, dacă se poate construi un algoritm care rezolvă P după următoarea schemă:

- se consideră la intrare o instanță p a lui P;
- preprocesează în timp polinomial intrarea p
- se apelează algoritmul pentru Q, posibil de mai multe ori (un număr polinomial)
- $oldsymbol{0}$ se postprocesează rezultatul dat de Q în timp polinomial

Dacă pașii de preprocesare și postprocesare necesită O(g(n)) timp, atunci scriem $P \propto_{g(n)} Q$.

Exemplu: $MAX \propto SORT$

Fie MAX problema determinării elementului maxim dintr-o mulțime:

```
Input O mulțime S total ordonată.

Output Cel mai mare element din S.
```

Următorul algoritm rezolvă MAX:

- reprezintă *S* cu un tablou *s* (preprocesare);
- apelează un algoritm de sortare pentru s;
- 3 întoarce ultimul element din s (postprocesarea);

```
\propto nu e întotdeauna o "reducere de la o problemă mai complexă la una mai simplă"!!!
```

```
∝ e mai degrabă "transformare" ...
```

Variante pentru submulțimea de sumă dată

SSD1

Input O mulțime *S* de numere întregi, *M* număr întreg pozitiv.

Output Cel mai mare număr întreg M^* cu proprietățile $M^* \leq M$ și

există o submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M^*$.

SSD2

Instance O mulțime S de numere întregi, M, K două numere întregi

pozitive cu $K \leq M$.

Question Există număr întreg M° cu proprietățile $K \leq M^{\circ} \leq M$ și

 $\sum_{x \in S'} x = M^{\circ}$ pentru o o submulțime oarecare $S' \subseteq S$?

SSD3

Instance O mulțime S de numere întregi, M un număr întreg pozitiv.

Question Există o submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M$?

Exemplu: SSD1 \propto SSD2

SSD1

Input O mulțime S de numere întregi, M număr întreg pozitiv.

Output Cel mai mare număr întreg M^* cu proprietățile $M^* \leq M$ și există o submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M^*$.

SSD2

Instance O mulțime S de numere întregi, M, K două numere întregi pozitive cu K < M.

Question Există număr întreg M° cu proprietățile $K \leq M^{\circ} \leq M$ și $\sum_{x \in S'} x = M^{\circ}$ pentru o o submulțime oarecare $S' \subseteq S$?

- nu există preprocesare;
- ② caută binar pe M^* în intervalul (0, M] apelând un algoritm care rezolvă SSD2;

Acesta este un exemplu de reducerea unei probleme de optim la versiunea ei ca problemă de decizie.

Exemplu: SSD2 \propto SSD1

SSD1

Input O mulțime S de numere întregi, M număr întreg pozitiv.

Output Cel mai mare număr întreg M^* cu proprietățile $M^* \leq M$ și există o submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M^*$.

SSD2

Instance O mulțime S de numere întregi, M, K două numere întregi pozitive cu K < M.

Question Există număr întreg M° cu proprietățile $K \leq M^{\circ} \leq M$ și $\sum_{x \in S'} x = M^{\circ}$ pentru o o submulțime oarecare $S' \subseteq S$?

- nu există preprocesare;
- ② calculează $M^* \leq M$ apelând un algoritm care rezolvă SSD1;
- dacă $M^* \ge K$ întoarce 'DA', altfel întoarce 'NU';

Exemplu: SSD3 ∝ SSD1

SSD1

Input O mulțime S de numere întregi, M număr întreg pozitiv.

Output Cel mai mare număr întreg M^* cu proprietățile $M^* \leq M$ și există o

submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M^*$.

SSD3

Instance O mulțime S de numere întregi, M un număr întreg pozitiv.

Question Există o submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M$?

- nu există preprocesare;
- ② calculează $M^* \leq M$ apelând un algoritm care rezolvă SSD1;
- **3** dacă $M^* = M$ întoarce 'DA', altfel întoarce 'NU';

Reducerea Karp

Se consideră P și Q probleme de decizie.

Problema P se reduce polinomial la problema (rezolvabilă) Q, notăm $P \propto Q$, dacă se poate construi un algoritm care rezolvă P după următoarea schemă

- se consideră la intrare o instanță p a lui P;
- preprocesează în timp polinomial intrarea p
- se apelează (o singură dată) algoritmul pentru Q
- lacktriangle răspunsul pentru Q este același cu cel al lui P (fără postprocesare)

Dacă pasul de preprocesare necesită O(g(n)) timp, atunci scriem $P \propto_{g(n)} Q$.

Reducerea Karp este un caz particular de reducere Turing/Cook.

Exemplu: SSD3 ∝ SSD2

SSD2

Instance O mulțime S de numere întregi, M, K două numere întregi pozitive cu K < M.

Question Există număr întreg M° cu proprietățile $K \leq M^{\circ} \leq M$ și $\sum_{x \in S'} x = M^{\circ}$ pentru o o submulțime oarecare $S' \subseteq S$?

SSD3

Instance O mulțime S de numere întregi, M un număr întreg pozitiv.

Question Există o submulțime $S' \subseteq S$ cu $\sum_{x \in S'} x = M$?

- 1 nu există preprocesare;
- 2 apelează un algoritm care rezolvă SSD2 pentru instanța S, M, M;

Exemplu: SUBSET ∝ DISJOINT

SUBSET

Instanță Două mulțimi S_1 și S_2 ($S_1, S_2 \subseteq \mathcal{U}, \mathcal{U}$ mulțime univers). *Întrebare* $S_1 \subseteq S_2$?

DISJOINT

İnstanță Două mulțimi S_1 și S_2 . *Întrebare* $S_1 \cap S_2 = \emptyset$?

SUBSET ∝ DISJOINT:

- se consideră la intrare o instanță S_1, S_2 a lui SUBSET;
- ② calculează $t(S_1, S_2) = S_1, \overline{S_2}$
- ① întoarce rezultatul întors de un algoritm care rezolvă DISJOINT pentru instanța $S_1, \overline{S_2}$.

Reducerea: proprietăți

Theorem

- a) Dacă P are complexitatea timp $\Omega(f(n))$ și $P \propto_{g(n)} Q$ (versiunea Karp) atunci Q are complexitatea timp $\Omega(f(n) g(n))$.
- b) Dacă Q are complexitatea O(f(n)) și $P \propto_{g(n)} Q$ (versiunea Karp) atunci P are complexitatea O(f(n) + g(n)).