Análise e Projeto de Algoritmos Análise Assintótica

Prof. André Luiz Moura andre_moura@ufg.br

Apresentação adaptada (ver referências)

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?
- Complexidade do algoritmo
 - "Em quanto tempo esse algoritmo resolve meu problema?

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?
- Complexidade do algoritmo
 - "Em quanto tempo esse algoritmo resolve meu problema?
- Memória requerida
 - "Quanta memória esse algoritmo requer?"

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?
- Complexidade do algoritmo Ordem de Grandeza
 - "Em quanto tempo esse algoritmo resolve meu problema?
- Memória requerida
 - "Quanta memória esse algoritmo requer?"

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?

De uma função

- "Em quanto tempo esse algoritmo resolve meu problema?
- Memória requerida
 - "Quanta memória esse algoritmo requer?"

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?

Que determine quantas operações esse algoritmo executará com base na entrada.

- Complexidade do algoritmo Ordem de Grandeza
 - "Em quanto tempo esse algoritmo resolve meu problema?
- Memória requerida
 - "Quanta memória esse algoritmo requer?"

- Correção do algoritmo
 - "Este algoritmo resolve meu problema?"
 - Se sim, em quanto tempo?

Quantas operações esse algoritmo executará?

- "Em quanto tempo esse algoritmo resolve meu problema?
- Memória requerida
 - "Quanta memória esse algoritmo requer?"

Ordem de grandeza de uma função

- É a taxa/velocidade de crescimento de uma função.
- Uma função pode crescer devagar, rápido ou muito rápido.

Ordem de grandeza de uma função

- É a taxa/velocidade de crescimento de uma função.
- Uma função pode crescer devagar, rápido ou muito rápido.

Notação Assintótica

- É uma abstração que nos permite estudar a taxa de crescimento de funções. Assim, é possível, por exemplo, focar no que ocorre com f(n) quando n cresce indefinidamente.
- São formalismos que indicam limitantes (mínimo e máximo) para funções e que escondem alguns detalhes.
- Ela é necessária porque, para valores pequenos de n, os comportamentos das funções podem variar.

Notação Assintótica

A notação é representada pela ordem de grandeza, que é obtida a partir da expressão de função. Isso se é feito em 3 passos:

Passo 1: Manter apenas o termo de maior ordem da expressão.

Passo 2: Remover a constante multiplicativa associada ao termo de maior ordem.

Passo 3: Incluir o termo obtido no Passo 2 e colocá-lo como parâmetro de uma função assintótica.

- **Por exemplo:** $f(n) = 2n^3 + 4000n^2 + 10000n 47$
 - Após aplicação do Passo 1: 2n³
 - Após aplicação do Passo 2: n³

Notação Assintótica

A notação é representada pela ordem de grandeza, que é obtida a partir da expressão de função. Isso se é feito em 3 passos:

<u>Passo 1:</u> Manter apenas o termo de maior ordem da expressão.

Passo 2: Remover a constante multiplicativa associada ao termo de maior ordem.

Passo 3: Incluir o termo obtido no Passo 2 e colocá-lo como parâmetro de uma função assintótica.

Função assintótica:

- **Por exemplo:** $f(n) = 2n^3 + 4000n^2 + 10000n 47$
 - Após aplicação do Passo 1: 2n³
 - Após aplicação do Passo 2: n³

Notações O, Ω e Θ

- As três notações fornecem limitantes.
- Por exemplo, dada uma função f(n), ela pode ser maior que alguma coisa, menor que alguma coisa ou possuir as duas características ao mesmo tempo.
- As notações assintóticas indicam limitantes para as funções a partir de determinados valores de n.
- A notação O fornece o limitante superior, f(n) ≤ c.g(n).
- A notação Ω fornece o limitante inferior, f(n) ≥ c.g(n).
- A notação Θ fornece, simultaneamente, os limitantes inferior e superior, c1.g1(n) ≤ f(n) ≤ c2.g2(n).

 É uma notação assintótica usada para analisar a eficiência de um algoritmo à medida que os valores de entrada crescem, considerando sempre o pior cenário.

Notação O – Complexidades mais comuns

- **O(1)** = Complexidade constante o tempo de execução do algoritmo independe do tamanho da entrada é bem rápido.
- **O(log(n))** = Complexidade logarítmica o tempo de execução pode ser considerado menor do que uma constante grande. É super rápido
- **O(n)** = Complexidade linear o algoritmo realiza um número fixo de operações sobre cada elemento da entrada
- **O(n log(n))** = Típico de algoritmos que dividem um problema em subproblemas, resolve cada subproblema de forma independente, e depois combina os resultados
- **O(n²)** = Complexidade quadrática. Típico de algoritmos que operam sobre pares dos elementos de entrada
- **O(n³)** = Complexidade cúbica que é útil para resolver problemas pequenos como multiplicação de matrizes
- **O(2ⁿ)** = Complexidade exponencial. Típicos de algoritmos que fazem busca exaustiva (força bruta) para resolver um problema
- **O(n!)** = Complexidade fatorial. É normalmente encontrado ao analisar a complexidade de algoritmos de força bruta, que tentam todas as possibilidades para problemas de otimização combinatória

Notação O – Comparativo das complexidades

	constant	logarithmic	linear	N-log-N	quadratic	cubic	exponential
n	O(1)	O(log n)	O(n)	O(n log n)	$O(n^2)$	$O(n^3)$	O(2 ⁿ)
1	1	1	1	1	1	1	2
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

- A notação O limita funções superiormente, f(n) ≤ c.g(n).
- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que

$$f(n) = O(g(n))$$
 [ou $f(n) \notin O(g(n))$]

se existem constantes positivas **c** e **n**_o, tais que

$$f(n) \le c.g(n) \quad \forall \quad n \ge n_o$$
. (Leia-se: $f(n)$ é limitada a c.g(n).)

É importante destacar que deve existir algum valor de n em que c.g(n) esteja acima de f(n).

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = O(g(n)) se existem constantes positivas
 c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀ (n₀ > 0).
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n)</p>
Gráfico para f(n) = 5n + 3 e g(n) = n

Demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n)</p>

$$5n + 3 <= c.n$$

1. Dividir ambos os lados por n a fim de isolar o valor da constante c.

$$\frac{5n + 3}{n} <= \frac{c.n}{n}$$

$$5 + 3 <= c$$

2. Encontrar um valor inicial para n_o , tal que $n \ge n_o$.

Quando $n \ge 1$, o termo <u>3</u> tende a zero à medida que n aumenta.

n

Assim, escolhendo o valor no = 1, temos:

$$5 + \frac{3}{1} <= c$$

Resolvendo a inequação, temos:

$$5 + 3 \le c$$

$$8 <= c$$

Demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n)</p>

Portanto, pode-se afirmar que 5n + 3 = O(n), $(f(n) \le c.g(n))$, para $n_0 = 1$ e c = 8). Isso significa que $5n + 3 \le 8n$.

Gráfico para f(n) = 5n + 3, g(n) = 8n

1ª demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)</p>

Gráfico para f(n) = 5n + 3, $g(n) = n^2$

1ª demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)</p>

$$5n + 3 \le c.n^2$$

1. Dividir ambos os lados por \mathbf{n}^2 a fim de isolar o valor da constante \mathbf{c} .

$$\frac{5n + 3}{n^2} <= \frac{c.n^2}{n^2}$$

$$\frac{5}{n} + \frac{3}{n^2} <= c$$

2. Encontrar um valor inicial para n_o , tal que $n \ge n_o$.

Quando n >= 1, o termo $\frac{3}{n^2}$ tende a zero à medida que n aumenta.

Assim, escolhendo o valor no = 1, temos:

$$5 + 3 <= c$$

Resolvendo a inequação, temos:

$$5 + 3 \le c$$

$$8 <= c$$

■ 1^a demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)

Portanto, pode-se afirmar que $5n + 3 = O(n^2)$, ou seja, $f(n) \notin O(g2(n))$, para n >= 1 e c=8. Isso significa que $5n + 3 <= 8n^2$.

Gráfico para f(n) = 5n + 3, $g(n) = 8n^2$

2ª demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)</p>

$$5n + 3 \le c.n^2$$

1. Dividir ambos os lados por $\bf c$ a fim de isolar o valor do termo $\bf n^2$.

$$\frac{5n + 3}{c} <= \frac{c \cdot n^2}{c}$$

$$\frac{5n + 3}{c} <= n^2$$

2. Encontrar um valor inicial para c, tal que $c \ge 1$.

Assim, escolhendo o valor c = 1, temos:

$$\frac{5n + 3}{1}$$
 <= n^2 => $5n + 3$ <= n^2

Passar o termo dominante n² para o lado esquerdo, a fim de, posteriormente, obter as raízes (valores de n) por meio de uma equação de 2º Grau, usando a fórmula de Bhaskara.

$$-n^2 + 5n + 3 \le 0$$
 (-1)
 $n^2 - 5n - 3 \ge 0$

2ª demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)</p>

Resolver essa desigualdade quadrática, encontrando os pontos em que a parábola n^2 - 5n - 3 cruza o eixo x (ou seja, onde a desigualdade é satisfeita). Para fazer isso, usar a fórmula quadrática:

$$n=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 ,

onde a, b e c são os coeficientes na equação n^2 - 5n - 3 = 0 (Equação de 2° Grau).

Nesse caso:

$$a = 1$$
, $b = -5$, $c = -3$

Aplicando a fórmula quadrática:

$$D = b^2 - 4ac$$
 (D = Delta = Discriminante)

$$D = (-5)^2 - (4(1)(-3))$$

$$D = 25 + 12$$

D = 37 (Delta > 0 indica que há dois valores para x, onde x = n.)

$$x = \frac{-b + -sqrt(D)}{2a}$$

2ª demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)</p>

a= 1, b= -5, c = -3

$$x = \frac{-b + - sqrt(D)}{2a}$$

$$x = \frac{-(-5) + - sqrt(37)}{2(1)}$$

$$x1 = \frac{5 + 6,0827625}{2}$$

$$x1 = \frac{11,0827625}{2}$$

$$x1 = Teto(5,54138125) \Rightarrow x1 = 6$$

$$x2 = \frac{5 - 6,0827625}{2}$$

$$x2 = -1,0827625 / 2$$

x2 = -0.5413825 (Valor inválido, pois n >= n0, n0 >= 1)

2ª demonstração de que f(n) <= c.g(n), ou seja, que 5n + 3 = O(n²)</p>

Agora, deve-se verificar se os valor de n satisfaz a inequação 5n + 3 <= n²

```
Para n = 6 e c = 1, temos:

5(6) + 3 \le (6)^2

30 + 3 \le 36
```

Portanto, sendo $5n + 3 = O(n^2)$, conclui-se que f(n) = O(g2(n)), para $n \ge 6$ e c=1.

Como f(n) é $O(n^2)$, podemos também afirmar que: f(n) é $O(n^3)$, f(n) é $O(n^{10})$, f(n) é $O(n \log n)$.

Demonstrar que $f(n) \le c.g(n)$, ou seja, que $5n + 3 = O(n^2)$

Gráfico para f(n) = 5n + 3, $g1(n) = n^2$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas <u>c e n_o</u>, tais que f(n) ≤ c.g(n) \forall n ≥ n_o.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas <u>c e n_o</u>, tais que f(n) ≤ c.g(n) \forall n ≥ n_o.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n g2

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

$$\frac{5n + 3}{sqrt(n)} \le \frac{c.sqrt(n)}{sqrt(n)}$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

$$\frac{5n + 3}{\text{sqrt(n)}} \le c$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

$$\frac{5n}{\text{sqrt}(n)} + \frac{3}{\text{sqrt}(n)} \le c$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$
= $n^{1/2}$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

$$5*sqrt(n) + 3 \le c$$

 $sqrt(n)$

c é uma constante, que independe de n

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas. Dizemos que f(n) = O(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?
 $5*sqrt(n) + 3 \le c$
 $sqrt(n)$

c é uma constante, que independe de n

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = O(g(n)) se existem constantes positivas
 c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

$$5*sqrt(n) \le c$$

A expressão à esquerda da desigualdade tende se tornar enorme à medida que **n** cresce.

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = O(g(n)) se existem constantes positivas
 c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

$$5n + 3 \le c.sqrt(n)$$
?

$$5*sqrt(n) \le c$$

Mesmo que c seja 1 trilhão, em algum momento 5*sqrt(n) > c. Logo, f(n) não é O(g3(n)).

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = O(g(n)) se existem constantes positivas
 c e n₀, tais que f(n) ≤ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração:

 $5n + 3 \le c.sqrt(n)$?

 $5*sqrt(n) \le c$

Logo, f(n) não é O(g3(n)). Ou seja, f(n) não é O(sqrt(n)). Assim, f(n) também não é O(log(n)) e f(n) não é O(4).

- A notação Ω limita funções inferiormente, f(n) ≥ c.g(n).
- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que

$$f(n) = \Omega(g(n))$$
 [ou $f(n) \in \Omega(g(n))$]

se existem constantes positivas c e no, tais que

```
f(n) \ge c.g(n) \quad \forall \quad n \ge n_o. (Leia-se: f(n) é limitada a c.g(n))
```

É importante destacar que deve existir algum valor de n em que c.g(n) esteja abaixo de f(n).

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que f(n) ≥ g1(n):

$$5n + 3 \ge 5n$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que f(n) ≥ g1(n):

$$5n + 3 \ge 5n = c.g1(n)$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que f(n) ≥ g1(n):

$$5n + 3 \ge 5n = c.g1(n)$$

Logo,
$$f(n) = \Omega(g1(n))$$
. Ou seja, $f(n) = \Omega(n)$.

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que f(n) ≥ g2(n):

$$5n + 3 \ge c.n^2$$
?

Intuitivamente, não!

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que f(n) ≥ g2(n):

$$5n + 3 \ge c.n^2$$
?

Intuitivamente, não!

Mas, vamos demonstrar por que não.

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

$$5n + 3 \ge c.n^2$$
?

$$\frac{5n+3}{n^2} \ge c$$

$$\frac{5n+3}{n^2} \ge c$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

$$5n + 3 \ge c.n^2$$
?

$$\frac{5n+3}{n^2} \ge c$$

$$\frac{5 + 3}{n} \ge c$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

$$5n + 3 \ge c.n^2$$
?

$$\frac{5n + 3 \ge c}{n^2}$$

$$0 0$$

$$\frac{5 + 3}{n} \ge c$$

$$n n^2$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que não é verdade que f(n) ≥ g2(n):

$$5n + 3 \ge c.n^2$$
?

$$\frac{5n + 3}{n^2} \ge c$$

$$0 \qquad 0$$

$$\frac{5 + 3}{n} \ge c$$

À medida que n cresce, os dois termos tendem a 0.

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

Demonstração de que não é verdade que f(n) ≥ g2(n):

$$5n + 3 \ge c.n^2$$
?

$$\frac{5n + 3 \ge c}{n^2}$$

$$0 0$$

$$\frac{5 + 3}{n} \ge c$$

Como encontrar uma constante positiva menor que o valor da expressão, sendo que a constante c deve ser maior que 0 (zero)?!

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

$$5n + 3 \ge c.n^2$$
?

$$\frac{5n+3 \ge c}{n^2}$$
 Logo, f(n) não é
0 0 $\Omega(g2(n))$. Ou
 $\frac{5+3}{n} \ge c$ seja, f(n) não é
 $\frac{5}{n} = \frac{3}{n^2}$ $\frac{1}{n^2} = \frac{3}{n^2}$ $\frac{1}{n^2} = \frac{3}{n^2}$ $\frac{1}{n^2} = \frac{3}{n^2} = \frac{3}{n^2}$ $\frac{1}{n^2} = \frac{3}{n^2} = \frac{3}{n^2}$ $\frac{1}{n^2} = \frac{3}{n^2} = \frac{3}{n^2}$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3g1(n) = n $g2(n) = n^2$ g3(n) = sqrt(n)

$$5n + 3 \ge c.n^2$$
?

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Ω(g(n)) se existem constantes positivas c e n₀, tais que f(n) ≥ c.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que f(n) ≥ g3(n):

 $cg(n) \quad \begin{array}{ll} 5n + 3 \ge 5n \ge 5.\text{sqrt(n)} \\ 5n + 3n \ge c.\text{sqrt(n)} \end{array}$

Logo, $f(n) \in \Omega(sqrt(n))$

f(n) é $\Omega(\log(n))$, f(n) é $\Omega(1)$

f(n) não é $\Omega(n^{10})$,

f(n) não é Ω (n log n), f(n) não é Ω (n^{1.0001}), f(n) é Ω (n^{0.9999}).

- O objetivo de tais demonstrações é justificar por que algo é O(g(n)), por que algo não é O(g(n)); por que algo é Ω(g(n)), por que algo não é Ω(g(n)).
- Futuramente, usaremos tais notações intuitivamente.

- A notação Θ limita funções inferiormente e superiormente,
 c1.g(n) ≤ f(n) ≤ c2.g(n).
- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que

$$f(n) = \Theta(g(n))$$
 [ou $f(n) \in \Theta(g(n))$]

se existem constantes positivas **c**₁, **c**₂ **e n**₀, tais que

$$c_1.g(n) \le f(n) \le c_2.g(n) \quad \forall n \ge n_o$$

• **Obs.**: $f(n) \in \Theta(g(n))$ se somente se $f(n) \in O(g(n))$ e $\in \Omega(g(n))$.

 n_o

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n_o, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n_o.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$c_2g(n)$$

$$f(n)$$

$$c_1g(n)$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Será possível demonstrar que $c1.n \le 5n + 3 \le c2.n$?

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n₀, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que

$$c_1.g1(n) \le f(n) \le c_2.g1(n)$$
:

$$5n \le 5n + 3 \le 8n$$

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n_o, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n_o.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que

$$c_1.g1(n) \le f(n) \le c_2.g1(n)$$
:

$$5n \le 5n + 3 \le 8n$$

Logo, f(n) é Θ(n).

Demonstração desnecessária, pois já havia sido mostrado que $f(n) = 5n + 3 \in O(n) \in \Omega(n)$.

 n_o

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n_o, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n_o.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$c_2g(n)$$

$$f(n)$$

$$c_1g(n)$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Será possível demonstrar que $c1.n^2 \le 5n + 3 \le c2.n^2$?

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n₀, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que não é verdade que

$$c_1.n^2 \le f(n) \le c_2.n^2$$
:

$$c1.n^2 \le 5n + 3 \le 8n^2$$

Logo, f(n) não é Θ(n²).

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n_o, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n_o.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que não é verdade que

$$c_1.n^2 \le f(n) \le c_2.n^2$$
:

$$c1.n^2 \le 5n + 3 \le 8n^2$$

f(n) é O(n²) somente.

Logo, f(n) não é $\Theta(n^2)$.

- Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas.
 Dizemos que f(n) = Θ(g(n)) se existem constantes positivas
 c₁, c₂ e n₀, tais que c₁.g(n) ≤ f(n) ≤ c₂.g(n) ∀ n ≥ n₀.
- Exemplos: f(n) = 5n + 3

$$g1(n) = n$$

$$g2(n) = n^2$$
 $g3(n) = sqrt(n)$

Demonstração de que não é verdade que

$$c_1.sqrt(n) \le f(n) \le c_2.sqrt(n)$$
:

Como demonstrando anteriormente, f(n) não é O(sqrt(n)); portanto, f(n) não pode ser Θ(sqrt(n)).

Logo, f(n) não é Θ(sqrt(n)).

Referências Bibliográficas

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; (2002). Algoritmos –Teoria e Prática. Tradução da 2ª edição americana. Rio de Janeiro. Editora Campus.
- TAMASSIA, ROBERTO; GOODRICH, MICHAEL T. (2004). Projeto de Algoritmos -Fundamentos, Análise e Exemplos da Internet.
- ZIVIANI, N. (2007). Projeto e Algoritmos com implementações em Java e C++. São Paulo. Editora Thomson.
- Symbolab (utilizado para gerar alguns gráficos)
 - https://pt.symbolab.com/graphing-calculator

Referências de Material

- Adaptado do material de
 - Professora Carla Negri Lintzmayer da UFABC.

