University of Padova Department of Mathematics "Tullio Levi-Civita"

MASTER THESIS IN COMPUTER SCIENCE

Memory-Efficient Continual Learning for Visual Anomaly Detection: A Compressed Replay Approach for Teacher-Student Architectures

SUPERVISOR

Prof. Gian Antonio Susto

ASSISTANT ADVISORS

Dr. Davide Dalle Pezze Ph.D. Student Manuel Barusco

CANDIDATE

Lorenzo D'Antoni

STUDENT ID 2073767

Anomaly Detection

Definition

Anomaly detection is the identification of **observations**, **events** or **data points** that deviate from what is usual, standard or expected

Anomaly Detection ML Strategies

Supervised: needs labeled data (normal + anomalous instances)

Semi-supervised: needs few labeled data (normal + few anomalous instances)

Unsupervised: unlabeled data (normal instances)

(Unsupervised) Visual Anomaly Detection

Metal nut

Transistor

image-level

- anomalous or not?
- not interpretable

pixel-level

- o which pixels cause the anomaly?
- interpretable

Free free

Hazelnut

Bottle

STFPM (Student-Teacher Feature Pyramid Matching)

Feature-based distillation

replicates the teacher's feature representation on normal images.

First problem

Deep Learning is not a one-size-fit-all

PROS

- → handles high-dimensional,
 - complex data
- captures spatial features and
 - hierarchical relationships
- automates feature extraction

CONS

- computationally intensive
- memory, inference time, power
 - constraints limit performance
- large datasets needed for training
- □ limited interpretability

Second problem

Continual Learning strategies are needed since

- data distribution can shift
- new tasks may appear

Static setup Continual setup White the setup is a setup in the setup is a setup in the setup in the setup is a setup in the setup in t

Objective

Memory-efficient approach

for Continual Learning

in Visual Anomaly Detection

using Teacher-Student architectures

reduce memory usage, speed up inference

minimize catastrophic forgetting

maintain high detection accuracy

STFPM on MVTec AD dataset

Lorenzo D'Antoni Thesis objective 7/19

Exploratory Data Analysis

dataset:

- MVTec Anomaly Detection
- 10 objects
- scratches, dents, holes, stains, ...

analyze features extracted by STFPM

gain valuable insights

Feature Importance

Compute the Importance of original features using **PCA** (Principal Component Analysis)

Select only the **top p%** features

Plot **t-SNE** graph (t-distributed Stochastic Neighbor Embedding)

t-SNE plot (top 1% features)

Feature-Selective Fine-Tuning (STFPM)

Using **top-ranked features** preserves anomaly detection performance?

Objects provided sequentially (Naive Fine-Tuning)

F1 Score vs Top Feature Percentage

Returning to the main objective

12/19

PaSTe (Partially Shared Teacher-Student)

MCUNet-in3 lightweight backbone network

AD literature (2024)

Adapt PaSTe to the **Continual Learning** scenario

Resource-efficient replay for edge devices (compressed replay)

Thesis contribution

PaSTe (Partially Shared Teacher-Student)

STFPM

Free weights * Frozen weights Teacher Input Student

PaSTe

Adapt PaSTe for Continual Learning

CL scenario

Replay strategy

Compressed Replay

Unavailable for **STFPM**

 HYP: First layers are crucial for AD (cannot freeze)

Available for **PaSTe**

 HYP: First layers are not crucial for AD (shared, frozen)

Continual Learning Strategies Comparison

Each point shows the average performance (F1 pixel-level) across all tasks up to that point

Continual Learning Strategies Comparison

FRAMEWORK		STFPM	STFPM	PaSTe	PaSTe	PaSTe
BACKBONE		ResNet18	MCUNet	MCUNet	MCUNet	MCUNet
CL		Replay	Replay	Finetuning	Replay	Compressed Replay
Image - level	AUCROC	0.87	0.80	0.54	0.80	0.82
	f_I	0.90	0.88	0.83	0.87	0.89
Pixel - level	AUCROC	0.92	0.90	0.74	0.90	0.91
	f_I	0.46	0.36	0.15	0.40	0.40
	PRAUC	0.42	0.32	0.10	0.36	0.36
	AUPRO	0.84	0.70	0.44	0.74	0.76
Architecture memory [MB]		93.6	1.76	1.68	1.68	1.68
Additional memory [MB]		19.66	19.66	0	19.66	9.83
Average forgetting [%]		0.13	0.20	0.76	0.21	0.19

Lorenzo D'Antoni CL strategies - Table 17/19

Feature Quantization

8-bit quantization applied to the feature maps stored in memory (4x memory reduction)

Lorenzo D'Antoni Memory Usage Comparison 18/19

PCA Feature Compression

Performance dropped significantly: critical info required for AD was lost More advanced feature compression techniques should be explored

FRAMEWORK		PaSTe				
BACKBONE		MCUNet				
CL		Compressed Replay				
COMPRESSION		None	8-bit Feature Quantization	PCA Feature Compression		
Image - level	AUCROC	0.82	0.69	0.67		
	f_I	0.90	0.86	0.86		
Pixel - level	AUCROC	0.91	0.88	0.87		
	f_I	0.40	0.32	0.31		
	PRAUC	0.36	0.26	0.24		
	AUPRO	0.76	0.70	0.70		
Architecture memory [MB]		1.68	1.68	1.68		
Additional memory [MB]		9.83	2.46	$6.89 \to 8.36^*$		
Average forgetting [%]		0.19	0.28	0.29		

Thank you!

Appendix slides

Anomalies vs Outliers

Aspect	Anomaly	Outlier
Definition	Context-specific deviation	Statistical deviation
Significance	Often meaningful	May be noise or irrelevant
Detection	Requires domain knowledge or models	Can be detected through statistics

Anomalies can be outliers, not all outliers are anomalies

Visual Anomaly Detection - Strategies

Reconstruction-based

- learn normal image distribution (training)
- high reconstruction errors for anomalies (testing)
- complex, computationally expensive
- may reconstruct anomalies
- Autoencoders, VAEs, GANs

Feature embedding-based

- pre-trained model embeddings
- feature level
- computationally efficient
- better detection accuracy
- Student-Teacher, Memory Bank, Normalizing Flow

Hazelnut (top 1% features)

Pill (top 1% features)

