Marketing Mix Modeling

Przetwarzanie danych: czynniki zewnętrzne – cz. 1
Wydział Nauk Ekonomicznych | MediaCom Business Science 09 | 11 | 2022

mediacom ousiness science

COVID

Święta i efekty kalendarzowe

Dane makroekonomiczne/ 03 demograficzne/zewnętrzne

Dane trade'owe

W skład bazy wchodzą dane z kilkunastu różnych źródeł

Obszar	Zmienne	Częstotliwość	Źródło
Dane sprzedażowe	Wartość, wolumen, dystrybucja, cena, liczba sklepów	Dz./tyg.	Klient (retail), Nielsen (FMCG), IQVIA (pharma), GfK (FMCG)
Aktywności tradeowe	Standy, faceing, płachty, katalogi, sampling, ulotki	Tyg./mies.	Klient, Nielsen, FOCUS
Aktywności mediowe	Telewizja, radio, social, search, display, VOD	Dz./tyg.	Nielsen, Google, Facebook, TikTok, Radio Track, inni dostawcy
Dane ekonomiczne	CPI, Konsumpcja, urodzenia, CCI	Mies./kw.	GUS, OECD, strony rządowe
Święta i efekty kalendarzowe	Święta, dni handlowe,	Dz./tyg.	Kalendarz, strony rządowe
Pogoda	Opady, temperatura, nasłonecznienie	Dz./tyg.	IMGW, strony rządowe, Dark Sky
Czynniki zewnętrzne	Trendy konsumenckie, COVID	Dz./tyg.	Google Trends, Google Mobility, WHO, agencje badawcze, dane rządowe
Sezonowość	Cykl sezonowości	Dz./tyg.	

W skład bazy wchodzą dane z kilkunastu różnych źródeł

Obszar	Zmienne	Częstotliwość	Źródło
Dane sprzedażowe	Wartość, wolumen, dystrybucja, cena, liczba sklepów	Dz./tyg.	Klient (retail), Nielsen (FMCG), IQVIA (pharma), GfK (FMCG)
Aktywności tradeowe	Standy, faceing, płachty, katalogi, sampling, ulotki	Tyg./mies.	Klient, Nielsen, FOCUS
Aktywności mediowe	Telewizja, radio, social, search, display, VOD	Dz./tyg.	Nielsen, Google, Facebook, TikTok, Radio Track, inni dostawcy
Dane ekonomiczne	CPI, Konsumpcja, urodzenia, CCI	Mies./kw.	GUS, OECD, Euromonitor, strony rządowe
Święta i efekty kalendarzowe	Święta, dni handlowe,	Dz./tyg.	Kalendarz, strony rządowe
Pogoda	Opady, temperatura, nasłonecznienie	Dz./tyg.	IMGW, strony rządowe, Dark Sky
Czynniki zewnętrzne	Trendy konsumenckie, COVID	Dz./tyg.	Google Trends, Google Mobility, WHO, agencje badawcze, dane rządowe
Sezonowość	Cykl sezonowości	Dz./tyg.	

COVID

Wybór zmiennej odzwierciedlającej pandemię:

- Metryka niezawierająca w sobie efektów niezwiązanych z COVID-em
- Metryka mająca bezpośredni wpływ na zmienną objaśnianą
- Metryka mająca interpretację biznesową oraz zdroworozsądkową

	rizykida daliyeli
Lic	zba chorych
Lic	zba nowych przypadków
Lic	zba szczepień
Lic	zba zajętych respiratorów
M	obilność ludności
W	yszukania słów kluczowych w Google
Lo	ckdowny (0-1)
Za	mknięcia sklepów (0-1)
Str	ingency Index

Przykład danych

Przykłady danych COVID-owych – liczba przypadków i zgonów

Przykłady danych COVID-owych – Google Mobility Index

Przykłady danych COVID-owych – Stringency Index

Zadania

- 1) Wczytaj dane covidowe (covid_google_mobility_data.csv) W osobnej ramce danych wybierz zmienną date i zmienną Mobility index dla retailu (kolumna retail_and_recreation_percent_change_from_baseline) i nazwij ją MOBILITY_RETAIL (1 pkt) Zamień częstotliwość zmiennej z dziennej na tygodniową, licząc średnią z 7 dni dla każdego tygodnia (2 pkt)
- Zestaw zmienne mobility index retail i residential (w częstotliwości dziennej)
 na wykresie liniowym
 Zadbaj o to, by wykres był czytelny (1 pkt)

Święta i efekty kalendarzowe

Przykłady

- Zmienna przyjmująca wartość 1 w każdym tygodniu wielkanocnym lub majówkowym
- Zmienna przyjmująca wartość 1 w tygodniach obowiązywania narodowej kwarantanny
- Model dzienny: zmienna przyjmująca wartość 1 w każdy piątek

Best practise

- Zmienne binarne (i zero-jedynkowe) bardzo silnie oddziałują na statystyki modelu, trzeba więc być ostrożnym i nie używać ich liberalnie
- Nigdy nie wykorzystujmy w modelu zmiennych z wartością nierówną jeden w pojedynczym tygodniu (oczywiście są wyjątki)
- Zmienna binarna ZAWSZE musi mieć interpretację w modelu

Zadania

- 3) Stwórz data frame ze zmienną Date, która przyjmuje wartości tygodniowe dat od 2021-01-04 do 2022-05-23. Możesz zastosować funkcję **seq()**. (1 pkt)
- 4) Stwórz 3 zmienne w przedziale dat podanym w zadaniu 2: (2 pkt)
- XMAS która przyjmuje wartość 1, dla 25-tego grudnia każdego roku
- EASTER która przyjmuje wartość 1 dla Niedzieli Wielkanocnej w każdym roku
- Y2022 która przyjmuje wartości 1 dla wszystkich dat w 2022 roku.

Brainstorm – jakie czynniki makroekonomiczne, demograficzne mogą wpływać na sprzedaż piwa

Dane makroekonomiczne / demograficzne / zewnętrzne

Przykłady

- Inflacja
- Konsumpcja prywatna
- Stopa bezrobocia
- CCI
- Urodzenia
- Wojna w Ukrainie ruch na granicy

Źródła danych: GUS, Euromonitor, Dane straży granicznej

Transformacja danych:

- Zmienne zazwyczaj są w częstotliwości miesięcznej lub kwartalnej,
- W celu użycia ich naszych modelach, musimy w pierwszej kolejności je przekształcić do postaci tygodniowej
- Robimy to poprzez przypisanie wszystkim dat z konkretnego miesiąca jednej wartości, natomiast na przełomie miesięcy liczymy (najczęściej) średnie
- Następnie dane wygładzamy

Dane o poziomie bezrobocia – częstotliwość miesięczna

Transformacja danych o bezrobociu z miesięcznych na tygodniowe

Wygładzenie danych tygodniowych

Wygładzenie danych tygodniowych

Zadania

- 5) Wczytaj dane sales_data.xlsx Na podstawie zmiennej *INFLACJA_WOW* (współczynnik inflacji tydzień do tygodnia, czyli np. 1.002 w tygodniu T6 znaczy, że poziom cen w T6 wzrósł o 0.2% w porównaniu do T5) przygotuj zmienne:
 - INFLACJA_BASE, która będzie zawierała skumulowany współczynnik inflacji w odniesieniu do pierwszego tygodnia przed okresem modelowanym (1 pkt)
 - INFLACJA_SMOOTH, która będzie scentrowaną średnią ruchomą z 5 tygodni policzoną na podstawie zmiennej INFLACJA_BASE (1 pkt)

Wynikiem zadania 5 powinna być niezależna ramka danych

