STA 35C: Statistical Data Science III

Lecture 12: Mid-course Review

Dogyoon Song

Spring 2025, UC Davis

Announcement

Midterm 1 solution and scores are available online

- Discussion tomorrow will review the midterm questions
- You may look over your graded exam there (pick it up at the start, return it at the end)

Grade disputes/adjustments

- If you believe your score should be changed for any question, please email the TA by noon on Wednesday (April 30) with:
 - The specific problem(s) you want regraded
 - A clear explanation of why you believe you deserve a different score (e.g., pointing out the key elements in your answer that match the official solution)

Mid-course survey

- Please take 10 minutes to complete the survey on Canvas
- All feedback and any constructive suggestions/requests are welcome

Agenda

- Brief review of what we've covered:
 - Supervised learning
 - Regression
 - Classification
 - Model assessment & the bias-variance tradeoff

Recap: Supervised learning

$$X \to Y$$
predictors response

Goal: "Explain" or model Y using X

• Estimate $f: X \to Y$ so that $y \approx f(x)$

Why?

• Prediction: e.g., forecasting sales, predicting house prices

• Inference: identifying significant predictors, relationships among variables

Depending on the type of Y,

• **Regression**: *Y* is numeric

• Classification: Y is categorical

Recap: Regression

Problem setup

$$X \longrightarrow Y \in \mathbb{R}$$
 predictors

Goal: Estimate $f: X \to Y$ to fit a regression line (or curve)

For what?

- **Prediction:** Given x_{new} , predict $y_{\text{new}} = \hat{f}(x_{\text{new}})$
- Inference: Estimate how X influences Y and assess significance

If we knew the distribution of (X, Y)...

- We might use $\hat{Y} = \mathbb{E}[Y \mid X]$
- In reality, we only have finite data, so we estimate from samples

Linear regression: 1) Estimation & Prediction

Linear regression model: $Y = \beta_0 + \beta_1 X$

• Simple and interpretable

Parameter estimation: Find β_0, β_1 that minimize

RSS =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 where $\hat{y}_i = \beta_0 + \beta_1 x_i$

Prediction: $\hat{y}_{\text{new}} = \hat{\beta}_0 + \hat{\beta}_1 x_{\text{new}}$

Model fit:

- $R^2 = 1 \frac{\mathrm{RSS}}{\mathrm{TSS}} \in [0,1]$: proportion of variance in Y explained by the model
- ullet Higher R^2 indicates better explanatory power
- Adding more predictors always increases R^2 ; R^2_{adj} penalizes for extra variables

Linear regression: 2) Inference

Significance test: Is $\beta_1 \neq 0$? (i.e., is X truly related to Y?)

- Null hypothesis $H_0: \beta_1 = 0$ (no linear relationship)
- ullet If $t=rac{\hat{eta}_1}{\mathrm{SE}(\hat{eta}_1)}$ in magnitude, we reject H_0 and conclude significance

Why this test? You may have got a nonzero slope purely by luck, and want to verify it

- Under H_0 , $\frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$ follows a t-distribution
- Observing a value far out in the tail suggests H_0 is unlikely, so reject it
- If you see a moderate value, you may not be able to reject H_0 (not enough evidence)

z	0.5	1.0	1.5	2.0	2.5	3.0	3.5
Approx. <i>p</i> -value 0.6171		0.3173	0.1336	0.0455	0.0124	0.0027	0.000465

Linear regression: 3) Interpretation

Interpretation of β_1 :

- On average, Y changes by β_1 per unit increase in X
 - Individual outcomes may vary (noise)
 - The true slope could differ across X if the relationship is not perfectly linear
- It does not imply causation; only correlation

Interpretation in multiple linear regression: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

- β_1 is the effect of X_1 holding X_2 fixed (conditional effect)
- Confounding:
 - $\beta_{1,\text{simple}}$ vs. $\beta_{1,\text{multiple}}$ may differ if X_1 and X_2 are correlated
 - Why? $\beta_{1,\text{simple}}$ may include indirect effects through X_2
 - Including X_2 in regression model can change the estimated effect of X_1

Recap: Classification

Problem setup

$$egin{array}{ccc} X & \longrightarrow & Y \ ext{classes} \end{array} \in \{0,1\}$$

Goal: Estimate *f* to define a decision boundary between classes

For what?

- **Prediction:** Given x_{new} , predict its class label
- Inference: Understand which predictors significantly affect the probability Pr(Y=1)

Key ideas:

- If we knew $\Pr[Y = 1 \mid X]$, we could classify Y = 1 if $\Pr[Y = 1 \mid X] \ge p^*$
- ullet In reality, we need to estimate $\Pr[Y=1\mid X]$ from data, and use it
- Two approaches:
 - Discriminative approach: directly model $\Pr[Y = 1 \mid X]$
 - Generative approach: model $Pr[X \mid Y]$, then use Bayes' theorem

Logistic regression: A discriminative approach

Model:

$$\log\left(\frac{\Pr[Y=1|X]}{\Pr[Y=0|X]}\right) = \beta_0 + \beta_1 X$$

• Similar to linear regression, but the response is the log-odds of Y=1

Parameter estimation: Find β_0, β_1 that maximizes the likelihood

Likelihood
$$(\beta_0, \beta_1) = \text{Pr}(\text{data} \mid \beta_0, \beta_1) = \prod_{i=1}^n \text{Pr}(y_i \mid x_i; \beta_0, \beta_1)$$

A higher likelihood means the observed data are more probable under the model

Prediction in two-steps:

- Calculate $\hat{p}_{\mathrm{new}} = \sigma(\hat{eta}_0 + \hat{eta}_1 x_{\mathrm{new}})$, where $\sigma(z) = \frac{1}{1+e^{-z}}$
- Predict Y = 1 if $\hat{p}_{new} \ge p^*$

Example: Classifying 5 crabs via logistic regression

Data: 5 crabs, 2 species, single predictor (weight):

Species A (label 0): $\{1.5, 2.5\}$ vs. Species B (label 1): $\{2.0, 3.0, 4.0\}$

Goal: Classify based on weight X

Fitted Model:

$$\log\left(\frac{p_B(X)}{p_A(X)}\right) = \beta_0 + \beta_1 X \quad \Longrightarrow \quad \hat{\beta}_0 \approx -5.30, \ \hat{\beta}_1 \approx 2.10$$

- Decision boundary near $x \approx 2.52$
- One misclassification is unavoidable (points at 2.0 vs. 2.5)
- Best overall likelihood is achieved by this compromise

Generative models for classification

Bayes' theorem:

$$\Pr[Y = 1 \mid X] = \frac{\Pr[Y = 1 \& X]}{\Pr[X]} = \frac{\pi_1 f_1(x)}{\pi_0 f_0(x) + \pi_1 f_1(x)}$$

- $\pi_k = \Pr[Y = k]$: proportion of class k
- $f_k(x) = \Pr[X = x \mid Y = k]$: probability of X = x conditioned on class k

Classification rule:

- Choose class k that maximizes $\pi_k f_k(x)$
- Requires modeling assumptions for $f_k(x)$
- Note that the marginal or prior probability for class k, π_k , also matters

Generative models for classification: Illustration

$$\pi_1$$
=.3, π_2 =.7

Figure: Generative classification compares likelihoods $f_k(x)$ weighted by π_k (Source: ISLR2 Ch. 4 Slides https://hastie.su.domains/ISLR2/Slides/Ch4_Classification.pdf).

Linear discriminant analysis: A generative approach

To move forward, modeling assumption is required for $f_k(x) := \Pr[X = x \mid Y = k]$

Gaussian density assumption \rightarrow LDA

- Assume $f_k(x)$ is Gaussian with mean μ_k and common variance σ^2
- Then $Pr[Y = k \mid X = x]$ can be expressed using linear discriminant functions

$$\delta_k(x) = \frac{\mu_k}{\sigma^2} x - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$$

- Why this form?

$$k$$
 maximizes $\Pr[Y = 1 \& X = x] = \pi_k f_k(x) \iff k$ maximizes $\log (\pi_k f_k(x))$

- At any given X = x,

$$\log\left(\frac{\Pr[Y=1\mid X=x]}{\Pr[Y=0\mid X=x]}\right) = \delta_1(x) - \delta_0(x)$$

• Predict class k for which $\delta_k(x)$ is largest

Example: Classifying 5 crabs via LDA

Data: 5 crabs, 2 species, single predictor (weight):

Species A (label 0): {1.5, 2.5} vs. Species B (label 1): {2.0, 3.0, 4.0}

Goal: Classify based on weight X

Steps:

- Estimate class priors: $\hat{\pi}_A = \frac{2}{5}$, $\hat{\pi}_B = \frac{3}{5}$ Estimate means: $\hat{\mu}_A = \frac{1.5 + 2.5}{2} = 2$, $\hat{\mu}_B = \frac{2 + 3 + 4}{3} = 3$
- Estimate common variance: $\hat{\sigma}^2 = \frac{1}{5-2}[(0.5^2 + 0.5^2) + (1.0^2 + 0^2 + 1.0^2)] = \frac{5}{6}$
- Form discriminants:

$$\delta_A(x) = \frac{\mu_A}{\sigma^2} x - \frac{\mu_A^2}{2\sigma^2} + \log \hat{\pi}_A = \frac{12}{5} x - \frac{12}{5} + \log \left(\frac{2}{5}\right),$$

$$\delta_B(x) = \frac{\mu_B}{\sigma^2} x - \frac{\mu_B^2}{2\sigma^2} + \log \hat{\pi}_B = \frac{18}{5} x - \frac{27}{5} + \log \left(\frac{3}{5}\right)$$

15 / 15

• Compare $\delta_A(x)$ vs. $\delta_B(x)$ to classify: $\delta_A(x) > \delta_B(x) \iff x < \frac{5}{2} - \frac{5}{6} \log(\frac{3}{2})$