Département de Mathématiques et Informatique

Contrôle Continu : Algèbre 1 (MIL1MI10)

Date : 03/12/2016 Heure: 07h30-9h30 Salle: Préf 5A

Exercice 1: 5pts

Définir:

1. relation d'équivalence ;

2. élément maximal;

3. monoïde :

4. partie stable par une application;

anneau intègre.

Exercice 2: 9pts

Soient $f: E \to F$ une application.

1. Démontrer que :

- (a) f est injective si et seulement si $f(A \cap B) = f(A) \cap f(B)$, pour tous $A, B \in \mathcal{P}(E)$
- (b) f est surjective si et seulement si $f[f^{-1}(B)]) = B$, pour tout $B \in \mathcal{P}(F)$.
- 2. On considère les applications

$$\widehat{f}: \mathcal{P}(E) \to \mathcal{P}(F)$$
 et $\widetilde{f}: \mathcal{P}(F) \to \mathcal{P}(E)$
 $A \mapsto f(A)$ et $\widetilde{f}: \mathcal{P}(F) \to \mathcal{P}(E)$

Démontrer que :

- (a) \hat{f} est surjective si et seulement si f est surjective ;
- (b) \widetilde{f} est injective si et seulement si f est surjective.

Exercice 3: 6pts

Soit la permutation $\sigma \in \mathfrak{S}_{10}$:

- 1. Déterminer les orbites suivant σ . En déduire sa signature ε_{σ} .
- 2. Décomposer σ en produit de cycles à supports disjoints. En déduire une décomposition
- 3. Déterminer la permutation σ^{2035} .