EVD 3

MIND AND MACHINE A COGNITIVE APPROACH

JEROEN VEEN

AGENDA

- Mental representations
- Reasoning
- Visual perception
- Cognitive approach
- Mind as a web
- Al
- Reinforcement learning

COGNITIVE SCIENCE

MENTAL REPRESENTATIONS

- Computational-representational understanding of mind i.e. mind can be considered an information processor
- Examples of representations are concepts, propositions, rules, and analogies.
- Analogue vs symbolic codes or dual coding?
- Propositions rather than images?

REASONING

- Induction: pattern recognition, seeking causality
- Deduction: from general to specific
- Analogical reasoning: from particular to particular
- Abduction: trained intuition

VISUAL PERCEPTION

- Visual system
- LGN
- Primary visual cortex
- Visual association cortex

Source: https://en.wikipedia.org/wiki/Visual_system#/media/File:Human_visual_pathway.svg

The brain does not need much to see a lot – Floris de Lange

VISUAL PERCEPTION

- Visual system
- LGN
- Primary visual cortex
- Visual association cortex

Source: https://en.wikipedia.org/wiki/Visual_system#/media/File:Human_visual_pathway.svg

MEMORY

- Sensory memory (iconic in the context of vision)
- Working memory
- Visual short-term memory (VSTM)
- Long-term memory
 - Explicit
 - Implicit
- Visual imagery, how do we imagine?

Anderson's ACT* model

THEORIES OF MIND

- Mind may be an emergent property of a physical brain
- Mind can be considered an information processor
- -> Cognitive approach, network approach, Al
- Alternative perspectives include philosophical, evolutionary, linguistic...

MIND AS A COMPUTER METAPHOR

- Cognitive approach
- Visual pattern recognition theories
 - Template matching image is matched to an internally generated representation.
 - Feature detection features such as oriented line segments are extracted from the image and used to diagnose object identity
 - Recognition by components (geons) image is matched against structural representations of objects
 - Feature integration features are extracted pre-attentively and then combined in a focused attention stage.

NEUROSCIENCE

- Neocortex
 - Largest part of the cerebral cortex
 - 2mm thick, 6 layers
 - 40 per cent of the brain's mass.
- Billions of neurons
- Brain imaging
- Two streams-hypothesis

HOW TO DEFINE AI?

- Mimic the mind
- Intelligent agents
- Strong vs weak
- Machine perception (e.g. vision)

REINFORCEMENT LEARNING

Source: https://en.wikipedia.org/wiki/Reinforcement_learning

Bellman equation

$$(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{ ext{reward discount factor}}_{ ext{estimate of optimal future value}}^{ ext{temporal difference}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}^{ ext{old value}}$$

new value (temporal difference target)

STRONG AI

- Human minds are, in essence, computer programs
- A hypothetical machine can exist that exhibits behavior at least as skillful and flexible as humans do
- As opposed to weak AI, which is applied only to a narrow task
- Criticism:
 - Human intelligence relies on subconsciousness (Heidegger)
 - Some theories can be neither proved not dis-proved (Gödel)

CAN MACHINES THINK?

- Can human intelligence be simulated?
- Turing test
- Zombie consciousness

https://en.wikipedia.org/wiki/Philosophy_of_artificial_intelligence

LITERATURE

- https://open.spotify.com/show/6QefEeY1IKYVn5w6nUV83Y?si=7J8H3Js2 RYy3_qur6rPANQ
- Cognitive Science An Introduction to the Study of Mind, Jay D. Friedenberg, Gordon W. Silverman.