ADITYA DAS SARMA

Curriculum Vitae

aditya.41200@gmail.com \rightharpoonto github.com/adi666-png \rightharpoonto adi666-png.github.io

EDUCATION

Jadavpur University

2019 - Exp. 2023

Bachelor of Engineering, Electronics & Telecommunications

CGPA: 9.56/10 (till 6th Sem)

TECHNICAL SKILLS

 \bullet C/C++ \bullet Python \bullet Qiskit \bullet PennyLane \bullet DWave Ocean SDK \bullet MATLAB \bullet PyTorch \bullet Bash

DOMAIN INTERESTS

- Solving problems in machine learning and optimization using quantum gate based and annealing approaches
- Optimizing software stack for quantum computers & Optimal synthesis and compilation of Quantum Circuits
- Architectures for Quantum Computing & Efficient simulation of quantum circuits using Tensor representations

RESEARCH EXPERIENCE

Tensor Ring Representations for Quantum Circuits

Sep '22 - Present

Supervised by Dr. Debanjan Konar & Dr. Vaneet Aggarwal

CLAN Labs, Purdue University

West Lafayette, USA

- Working on using Tensor Rings to compress input quantum state for mitigating scalability issues.
- We show that this **approximation scales linearly** with storage and computational time required.

Quantum Kernel Ridge Regression

Jun '22 - Sep '22

Supervised by Dr. Attila Canqi

Helmholtz-Zentrum Dresden-Rossendorf Labs

Dresden, Germany

- Selected as a Summer Intern out of the 30 successful applicants out of a pool of 350 international students.
- Developed quantum kernels for predicting density and total energy of Beryllium atoms.
- Proposed quantum kernel outperformed RBF kernel by two orders of magnitude and gave comparable results to the state of the art neural network models.

Efficient Implementation of Shor's Algorithm

Mar '22 - Present

Supervised by Dr. Anupam Chattopadhyay

Temasek Labs, Nanyang Technological University

Singapore

- Implementing an alternate version of the Ekera-Hastad Algorithm by proposing a novel **genetic algorithm** based approach to the Bounded Distance Decoding Problem.
- Working on potential optimizations to the quantum modular exponentiation circuits.

Hybrid Quantum Spiking Neural Networks

Jun '21 - May '22

Supervised by Dr. Debanjan Konar & Dr. Attila Cangi

Center for Advanced Systems Understanding

Görlitz, Germany

- Implemented novel hybrid model by integrating VQCs with spiking neural networks in **Pennylane**.
- Reported increased noise robustness against classical counterparts of these ML architectures.
- Extended this work to create a hybrid quantum model of Random Neural Networks.

Quantum Enhanced Techniques for Communication Systems

 Dec '21 - Oct '22

Supervised by Dr. M Girish Chandra

TCS Innovation Labs(Research)

Bangalore, India

- Extended **QUBO** formulation with a classical post-processing strategy for decoding LDPC codes.
- Implemented a complete simulation of a communication system in **Python** under different channel noises.
- Achieved lower BER using new formulation in Ocean SDK than classical algorithms in MATLAB.
- Worked on a QUBO for quantum enhanced SVM for detecting BPSK symbols and ran it on DWave Annealer, which gives slightly improved results over classical SVM.

Explorations in Quantum Applications & Simulation

Sep '20 - Present

Supervised by Dr. Amlan Chakrabarti

A.K.Choudhury School of Information Technology, University of Calcutta

Kolkata, India

- Utilized **Grover Adaptive Search**, implemented in **Qiskit**, to successfully arrive at correctly decoded codewords with high probability.
- Worked on fixing bugs and pipelining issues in a boolean logic based quantum simulator (written in C++) under the co-supervision of Prof Kenneth W Regan of SUNY Buffalo.
- Recently started working on **implementing modules for tensor computations for simulation of quantum circuits** as part of an indigenous quantum simulator project.

PUBLICATIONS

(* DENOTES ORAL PRESENTATION GIVEN BY ME)

[1] On Quantum-Assisted LDPC Decoding Augmented with Classical Post-Processing*

Aditya Das Sarma; Utso Majumder; Vishnu Vaidya; M Girish Chandra; A Anil Kumar; Sayantan Pramanik

(Accepted at the 14th International Conference on Parallel Processing and Applied Mathematics)

[2] A Shallow Hybrid Classical-Quantum Spiking Feedforward Neural Network for Noise-Robust Image Classification

Debanjan Konar; $\underline{\mathbf{Aditya}\ \mathbf{Das}\ \mathbf{Sarma}};\ \mathbf{Soham}\ \mathbf{Bhandary};\ \mathbf{Siddhartha}\ \mathbf{Bhattacharyya};\ \mathbf{Vaneet}\ \mathbf{Aggarwal};\ \mathbf{Attila}\ \mathbf{Cangi}$

(Conditionally Accepted at Elsevier Applied Soft Computing)

[3] On Quantum-Enhanced LDPC Decoding for Rayleigh Fading Channels*

Utso Majumder; Aditya Das Sarma; Vishnu Vaidya; M Girish Chandra

(Accepted at ACM/IEEE International Workshop on Quantum Computing)

[4] LDPC Decoding with Ensembles of Quantum-enhanced Annealing-based Support Vector Machines (Poster)*

Aditya Das Sarma; Utso Majumder; M Girish Chandra

(Accepted at the 26th Conference on Quantum Information Processing(QIP))

[5] Deep Spiking Quantum Neural Network (DSQ-Net) for Image Classification in Noisy Environment

Debanjan Konar; Aditya Das Sarma; Soham Bhandary; Siddhartha Bhattacharyya; Vaneet Aggarwal; Attila Cangi

(Accepted at 2023 International Conference on Quantum Computing and Communications (QCC))

[6] Random Quantum Neural Networks (RQNN) for Noisy Image Recognition

Debanjan Konar; Erol Gelenbe; Soham Bhandary; <u>Aditya Das Sarma</u>; Attila Cangi

(Conditionally Accepted at IEEE Transactions on Emerging Topics in Computational Intelligence(TETCI))

[7] Maximum Likelihood LDPC Decoding Using Grover Adaptive Search-based Quantum Optimization

Partha Acharya; Aditya Das Sarma; Utso Majumder; Amlan Chakrabarti

(Awaiting decision at 2023 IEEE International Conference on Communications (ICC))

[8] Quantum Kernel-integrated Ridge Regression for Workflow Modelling of Kohn-Sham Density Functional Theory (DFT)

Aditya Das Sarma; Soham Bhandary; Lenz Fiedler; Debanjan Konar; Attila Cangi

(Under manuscript finalization stage)

PROJECTS

Quantum Machine Learning & Optimization for Finance

Sep '22 - Present

Supervised by: Dr Sergio Gago

Moody's Analytics, New York, USA

- Working on **portfolio optimization** using both analog and digital annealing strategies.
- Working on pricing swaps and derivatives and exploring efficient encoding techniques.
- Successfully orchestrated a Memorandum Of Understanding(MOU) between Moody's Analytics and University of Calcutta for establishing long term research relations.

A cloud-based distributed intelligent color measurement system for predicting the color purity of any object Feb '21 - May '21

Supervised by: Dr Vaclav Snasel

VSB – Technical University of Ostrava, Czech Republic

- Aims to detect color purity of objects, especially crops to detect any infections. A neural network, trained and tested using **PyTorch** and hosted on **Heroku**, makes the prediction once the Raspberry Pi Zero device sends the color readings.
- Finalizing terms with a firm to **commercialize** the product.
- This work has been approved by the German Patent Office as a Utility Model.

SCHOLASTIC ACHIEVEMENTS

- Clinched an All India Rank of 208 in West Bengal JEE among 100k canditates
- Ranked 150 at state level to qualify for final round of National Talent Search Examination

LICENSES & CERTIFICATIONS

- Utility Model license certification from German Patent Office
 - Link: https://drive.google.com/file/d/1aCajEXhxrn1s5VYueDwMfJN5O6ofzJDk/view?usp=sharing
 - Link to Issuing Authority: https://www.dpma.de/english/utility_models/index.html
- C1000-112-ENU: Fundamentals of Quantum Computation Using Qiskit v0.2X Developer
 - Link: https://drive.google.com/file/d/13Vx07biEvscA-leGxuSfwWn4JBrGze5D/view?usp=sharing
 - Link to Issuing Authority: https://www.ibm.com/training/certification/C0010300

COURSES UNDERTAKEN

- Computer Science: Data Structures & Algorithms, Digital Image Processing*, Operating Systems*, Advanced Algorithms *, System Software*, Computer Architecture & Organisation, C Programming & Numerical Methods, Microprocessors & Microcontrollers, Introduction to ARM7 Architecture*
- Electronics & Telecommunications Engineering: Circuit Theory, Queueing Theory, Random Graphs, Probability and Random Processes, Analog Circuits & Systems, Digital Circuits & Systems, Digital Signal Processing, Information Theory, Analog Communications, Digital Communications, Analog & Digital Control Theory, EM Theory, Antennas and Propagation, Microwave Engineering, Analog CMOS, VLSI Design and Algorithms*
- Mathematics: Calculus I & II, Vector Calculus, Linear Algebra, Linear Transformations & Matrices, Special Functions, Abstract Algebra, Complex Analysis, Advanced Probability & Stochastic Process, Ordinary & Partial Differential Equations
- Artificial Intelligence: Pattern Analysis and Machine Intelligence*, Neuro-Fuzzy Control*
 - * indicates that the course is presently being undertaken or is scheduled for an upcoming semester