
1602DB

LCD MODULE USER MANUAL

1. FUNCTIONS & FEATURES

Features

─ Characters: 16×2 Lines

LCD Mode: STN Gray/Transflective, Positive
 Controller IC: SPLC780D or Equivalent
 Driving Method: 1/16 Duty; 1/5Bias
 Viewing Angie: 6 O'clock direction
 6800 serial 8-Bit/4-Bit MPU Interface

— Backlight: LED

Operating Temperature Range: -20 to +70°C;
Storage Temperature Range: -30 to +80°C;

2. MECHANICAL SPECIFICATIONS

ITEM	SPECIFICATIONS	UNIT
Module Size	85.0L×30.0W×13.0 (max) H	mm
View Area	64.5×16.0	mm
Number of Character	16×2 Lines	_
Character Size	2.96×5.56	mm
Character Pitch	3.55×5.95	mm

3. EXTERNAL DIMENSIONS

4. BLOCK DIAGRAM

5. POWER SUPPLY

VDD-V0=Operating voltage for LCD

6. PIN DESCRIPTION

ITEM	SYMBOL	LEVEL	FUNCTION						
1	VDD	5.0V	Power Supply For Logic						
2	VSS	0V	Power Ground						
3	V0	-	Operating Voltage for LCD						
4	RS	H/L	H: Data L: Command						
5	R/W	H/L	H: Read L: Write						
6	Е	H, H->L	Enable Signal						
7-10	DB0-DB3	H/L	Data Bus Line 4-bit Low						
11-14	DB4-DB7	H/L	Data Bus Line 4-bit High						

6.1. Adjusting The LCD Display Contrast

A Variable-Resistor must be connected to the LCD module for providing a reference to V0.The recommended value of the Variable-Resistor is 10K to 20K.

7. MAXIMUM ABSOLUTE LIMIT (Ta=25°C)

Items	Symbol	Min	Max	Unit	Condition
Supply Voltage	Vdd	-0.3	7.0	V	Vss=0V
Input Voltage	Vin	VDD-10.0V	VDD+0.3V	V	Vss=0V
Operating Temperature	Тор	-20	70	$^{\circ}$ C	No Condensation
Storage Temperature	Tst	-30	80	$^{\circ}$	No Condensation

Note: Voltage greater than above may damage the module

All voltages are specified relative to Vss=0V

8. ELECTRICAL CHARACTERISTICS

8.1 DC Characteristics (VDD=+5.0V, VSS=0V, Ta=-0 \sim +50 $^{\circ}$ C)

Items	Symbol	Min	Type	Max	Unit	Condition
Operating Voltage	VDD	4.5V	5.0	5.5	V	VDD
Supply Current	IDD	_	1.5	3.0	mA	except LED backlight
Input High Voltage	Vin	0.7VDD	_	VDD	V	DC DWE DDO DD7
Input Low Voltage	Vil	-0.3	_	0.6	V	RS,RW,E,DB0-DB7
Output High Voltage	Voh	3.9	_	VDD	V	Ioh=-0.1mA,DB0-DB7

Output Low Voltage	Vol	_	_	0.4	V	Iol=0.1mA,DB0-DB7
LCM Driving Voltage	Vop	4.2	4.4	4.6	V	

8.2 AC Characteristics (VDD=+5.0V, VSS=0V, Ta=-20 \sim 75 $^{\circ}$ C)

Items	Symbol	Min	TYP	Max	Unit
E cycle time	tc	1500			nS
E high level width	tpw	175			nS
E rise time	tr			20	nS
E fall time	tf			20	nS
Address set-up time	tas	5			nS
Address hold time	tah	13			nS
Data set-up time	tdsw	50			nS
Data delay time	tddr			125	nS
Data hold time	th	13	<u> </u>	_	nS

MPU write timing

MPU read timing

.....

• Read cycle

VDD= $5.0V\pm10\%$,VSS=0V,Ta=25°C

Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit
Enable cycle time	$t_{ m cyCE}$	-	500	-	-	ns
Enable "H" level pulse width	$t_{ m WEH}$	-	300	-	-	ns
Enable rise/fall time	$t_{rE,} t_{fE}$	-	-	-	25	ns
RS,R/W setup time	t_{AS}	-	60 ¹	-	-	ns
			100 ²			
RS,R/W address hold time	t _{AH}	-	10	-	-	ns
Read data output delay	$t_{ m RD}$	C _L =100pF	-	-	190	ns
Read data hold time	$t_{ m DHR}$		20	1	-	ns

• Write cycle

Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit
Enable cycle time	$t_{ m cycE}$	-	500	-	-	ns
Enable "H" level pulse width	$t_{ m WEH}$	-	300	-	-	ns
Enable rise/fall time	$t_{rE,} t_{fE}$	-	-	-	25	ns
RS,R/W setup time	t_{AS}	-	60 ¹	-	-	ns
			100^{2}			
RS,R/W address hold time	t_{AH}	-	10	-	-	ns
Data setup time	$t_{ m DS}$	-	100	-	-	ns
Write data hold time	$t_{ m DH}$	-	10	-	-	ns

Notes: 1: 8-bit operation mode

2: 4-bit operation mode

9. FUNCTION SPECIFICATIONS

9.1. Basic Setting

To drive the LCD module corretly and provide normally display, please use the following setting:

- ─ N=1, 2-line display
- F=0, 5×8 dots font
- ─ D=1, display on

Note:

- These setting/commands should issue to the LCD module while start up.
- → See the Display Commands section for details.

9.2. Resetting The LCD Module

When turning on the VDD and VSS power supply, LCD module will execute the reset routine automatically. It takes about 50ms. After the reset routine, the LCD module status will be as follow:

- N=1, 2-line display
- Display clear
- ─ DL=1, 8-bit interface
- F=0, 5×8 dot character font
- ─ D=0, Display off
- ─ C=0, Cursor off
- B=0, Blinking off
- ─ I/D=1, Increment by 1
- ─ S=0, No shift

NOTE:

→ Reset routine could not generate the Basic Setting

9.3. Display Memory Map

9.3.1. Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

			High oits Low oits							•	Exa	Example: DDRAM addresses 4E							3		
AC (he	xadec:	imal)	AC6	AC5	AC4	AC3	AC	2 A	.C1	AC	0	1	0		0	1	1	1	0]	
					16	6 Char	s X 2	2 Lin	es I	Disp!	lay										
CharNo	1	2	3	4	5	6	7	8	9		10	11		12	1	3	14		15	16	

1st Line 00 01 02 03 04 05 06 07 08 09 0A0B0C0D0E 0F 2_{nd} Line 40 41 42 43 44 45 47 48 49 4A4B 4C 4D 4E 46 4F

9.3.2. Character Generator RAM(CGRAM)

Character Generator RAM is for storing the User-defined Characters (5×8 dots font). Totally 8 User-defined Characters (character code = 00h-07h) could be created.

The User-defined Character Codes are 00h and 07h. They could be called into DDRAM as normal character.

User-defined Character	CGRAM	CGRAM Dat	a (Font Pattern)
Code	Address	D7 ~ D5	D4 ~ D0
00h (08h)	00h 01h : 06h 07h	Not Use	5 x 8 dots font pattern
01h (09h)	08h 09h : 0Eh 0Fh	Not Use	5 x 8 dots font pattern
02h (0Ah)	10h 11h : 16h 17h	Not Use	5 x 8 dots font pattern
03h (0Bh)	18h 19h : 1Eh 1Fh	Not Use	5 x 8 dots font pattern
04h (0Ch)	20h 21h : 26h 27h	Not Use	5 x 8 dots font pattern
05h (0Dh)	28h 29h : 2Eh 2Fh	Not Use	5 x 8 dots font pattern
06h (0Eh)	30h 31h : 36h 37h	Not Use	5 x 8 dots font pattern
07h (0Fh)	38h 39h : 3Eh 3Fh	Not Use	5 x 8 dots font pattern

CGRAM Address Map

9.3.3. Character code ROM

Please refer to SPLC780D datasheet.

9.4. Display Commands

Instructions					Instru	ıction	Code	;			Description	Execution Time(max)
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		(f _{oc} = 250KHZ)
Clear Display	0	0	0	0	0	0	0	0	0	1	Clear entire display area, restore display from shift, and load address counter with DD RAM address 00H	1.64ms
Display/ Cursor Home	0	0	0	0	0	0	0	0	1	×	Restore display from shift and load address counter with DD RAM address00H	1.64ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Specify direction of cursor movement and display shift mode. This operation takes place after each data transfer(read/write)	40μs
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Specify activation of display (D) cursor (C) and blinking of character at cursor position (B).	4 0μs
Display/ Cursor Shift	0	0	0	0	0	1	S/C	R/L	×	×	Shift display or move cursor.	40μs
Function Set	0	0	0	0	1	DL	N	F	×	×	Set interface data length (D), number of display line (N), and character font (F).	40μs
RAM Address Set	0	0	0	1		•	A	CG	•		Load the address counter with a CG RAM address. Subsequent data access is for CG RAM data.	40μs
DD RAM Address Set	0	0	1				ADD)			Load the address counter with a DD RAM address. Subsequent data access is for DD RAM data.	40 μs
Busy Flag/Address Counter Read	0	1				I	AC				Read Busy Flag (BF) and contents of Address Counter (AC).	40 μs
CG RAM/DD RAM Data Write	1	0			Write data						Write data to CG RAM or DD RAM.	40 μs
CG RAM/DD RAM Data Read	1	1			Read data						Read data from CG RAM or DD RAM	40 μs

NOTE:

[—] Do not use any other commands not listed, or the system malfunction may result.

— For the details of rte display commands, please refer to SPLC780D datasheet.

9.5. Application Circuits

10.DESIGN AND HANDING PRECAUTION

- 10.1.The LCD panel is made by glass. Any mechanical shock (eg. Dropping form high place) will damage the LCD module.Do not add excessive force on the surface of the display, which may cause the Display color change abnormally.
- 10.2. The polarizer on the LCD is easily get scratched. If possible, do not remove the LCD protective film until the last step of installation.
- 10.3. Never attempt to disassemble or rework the LCD module.
- 10.4.Only Clean the LCD with Isopropyl Alcohol or Ethyl Alcohol. Other solvents (eg. water) may damage the LCD.
- 10.5. When mounting the LCD module, make sure that it is free form twisting, warping and distortion.
- 10.6.Ensure to provide enough space(with cushion) between case and LCD panel to prevent external force adding on it, or it may cause damage to the LCD or degrade the display result
- 10.7.Only hold the LCD module by its side. Never hold LCD module by add force on the heat seal or TAB.
- 10.8. Never add force to component of the LCD module. It may cause invisible damage or degrade of the reliability.
- 10.9.LCD module could be easily damaged by static electricity. Be careful to maintain an

- optimum anti-static work environment to protect the LCD module.
- 10.10. When peeling of the protective film form LCD, static charge may cause abnormal display pattern. It is normal and will resume to normal in a short while.
- 10.11. Take care and prevent get hurt by the LCD panel edge.
- 10.12. Never operate the LCD module exceed the absolute maximum ratings.
- 10.13. Keep the signal line as short as possible to prevent noisy signal applying to LCD module.
- 10.14. Never apply signal to the LCD module without power supply.
- 10.15. IC chip (eg. TAB or COG) is sensitive to the light. Strong lighting environment could possibly cause malfunction. Light sealing structure casing is recommend.
- 10.16. LCD module reliability may be reduced by temperature shock.
- 10.17. When storing the LCD module, avoid exposure to the direct sunlight, high humidity, high temperature or low temperature. They may damage or degrade the LCD module