

Analysis und Lineare Algebra

Vorlesung im Wintersemester 2014/2015 Prof. Dr. habil. Christian Heinlein

1. Übungsblatt (9. Oktober 2014)

Aufgabe 1: Grenzwertdefinition

Formulieren Sie die Definition folgender Grenzwerte direkt ohne Verwendung von "Textkästen" und geben Sie jeweils ein passendes Beispiel an:

a)
$$\lim_{x \to \infty} f(x) = \infty$$

a)
$$\lim_{x \to a} f(x) = \infty$$
 b) $\lim_{x \to a^{-}} f(x) = -\infty$ c) $\lim_{x \to -\infty} f(x) = b$

c)
$$\lim_{x \to \infty} f(x) = l$$

Definition: f besitzt an der Stelle $a \in \mathbb{R}$ den (beidseitigen) uneigentlichen Grenzwert ∞ , wenn gilt: Zu jedem Y > 0 gibt es ein zugehöriges $\delta(Y) > 0$, sodass gilt: f(x) > Y für $0 < |x - a| < \delta(Y)$.

Beispiel:
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$

b) Definition: f besitzt an der Stelle $a \in \mathbb{R}$ den linksseitigen uneigentlichen Grenzwert $-\infty$, wenn gilt: Zu jedem Y < 0 gibt es ein zugehöriges $\delta(Y) > 0$, sodass gilt: f(x) < Y für $-\delta(Y) < x - a < 0$.

Beispiel:
$$\lim_{x\to 0-} \frac{1}{x} = -\infty$$

Definition: f besitzt für $x \to -\infty$ den (rechtsseitigen) (eigentlichen) Grenzwert $b \in \mathbb{R}$, wenn gilt: Zu jedem $\varepsilon > 0$ gibt es ein zugehöriges $X(\varepsilon) \in \mathbb{R}$, sodass gilt:

$$|f(x) - b| < \varepsilon \text{ für } x < X(\varepsilon).$$

Beispiel:
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

Aufgabe 2: Grenzwerte

Gegeben sei die Funktion $f(x) = \frac{4x^2 - 4x - 24}{x - 3}$.

- a) Für welche $x \in \mathbb{R}$ ist die Funktion definiert bzw. nicht definiert?
- b) Berechnen Sie einige Funktionswerte in der Nachbarschaft der undefinierten Stelle, um eine Vermutung über den Grenzwert an dieser Stelle zu erhalten!
- c) Beweisen Sie Ihre Vermutung durch Anwendung der Grenzwertdefinition, indem Sie zu einem beliebig vorgegebenen $\varepsilon > 0$ das zugehörige $\delta(\varepsilon)$ angeben!
- d) Wie lauten konkret $\delta(0.01)$ und $\delta(0.001)$?

(

- a) Die Funktion ist für alle $x \neq 3$ definiert.
- b) Funktionswerte in der Nachbarschaft von 3:

х	2.9	2.99	2.999	3.1	3.01	3.001
f(x)	19.6	19.96	19.996	20.4	20.04	20.004

Vermutung: $\lim_{x \to 3} f(x) = 20$

- c) Beweis der Vermutung:
 - Zu zeigen: Zu jedem $\varepsilon > 0$ gibt es ein zugehöriges $\delta(\varepsilon) > 0$, sodass gilt: $|f(x) 20| < \varepsilon$ für $0 < |x 3| < \delta(\varepsilon)$.
 - Sei $\varepsilon > 0$ beliebig vorgegeben.
 - Vorüberlegung zur Wahl von $\delta(\varepsilon)$: Für $x \neq 3$ gilt:

$$|f(x) - 20| = \left| \frac{4x^2 - 4x - 24}{x - 3} - 20 \right| = \left| \frac{4x^2 - 4x - 24 - 20(x - 3)}{x - 3} \right| = \left| \frac{4x^2 - 4x - 24 - 20x + 60}{x - 3} \right| = \left| \frac{4x^2 - 24x + 36}{x - 3} \right| = \left| \frac{4(x^2 - 6x + 9)}{x - 3} \right| = \left| \frac{4(x - 3)^2}{x - 3} \right| = 4|x - 3| < \varepsilon, \text{ wenn } |x - 3| < \frac{\varepsilon}{4}$$

- Wähle daher $\delta(\varepsilon) = \frac{\varepsilon}{4}$.
- Dann gilt für $0 < |x 3| < \delta(\varepsilon)$ aufgrund der Vorüberlegung: $|f(x) 20| < \varepsilon$ q. e. d.
- d) $\delta(0.01) = \frac{0.01}{4} = 0.0025$, $\delta(0.001) = \frac{0.001}{4} = 0.00025$