Periodic solutions of Euler-Lagrange equations with "sublinear nonlinearity" in an Orlicz-Sobolev space setting

Sonia Acinas *

Instituto de Matemática Aplicada San Luis (IMASL)
Universidad Nacional de San Luis and CONICET
Ejército de los Andes 950, (D5700HDW) San Luis, Argentina
Universidad Nacional de La Pampa
(L6300CLB) Santa Rosa, La Pampa, Argentina

sonia.acinas@gmail.com

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto (5800) Río Cuarto, Córdoba, Argentina,

fmazzone@exa.unrc.edu.ar

Abstract

In this paper we obtain existence of periodic solutions, in the Orlicz-Sobolev space $W^1L^\Phi([0,T])$, of hamiltonian systems with a potential function F satisfying the inequality $|\nabla F(t,x)| \leq b_1(t)\varphi_0(|x|) + b_2(t)$, with $b_1(t),b_2(t) \in L^1$ and for certain functions φ_0 .

1 Introduction

The purpose of this paper is to study the existence of periodic solution for the following non-autonomous second-order systems:

$$\begin{cases} \frac{d}{dt} \left(u'(t) \frac{\varphi(|u'|)}{|u'|} \right) = \nabla F(t, u(t)) \quad \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0 \end{cases}$$
 (1)

2010 AMS Subject Classification. Primary: . Secondary: .

Keywords and phrases. .

^{*}SECyT-UNRC, UNSL and CONICET

[†]SECyT-UNRC and CONICET

where T>0, $u:[0,T]\to\mathbb{R}^d$ is absolutely continuous and $\varphi=\Phi'$ where Φ is an differentiable N-function (see preliminaries section for definitions). Furthermore, the potential $F:[0,T]\times\mathbb{R}^d\to\mathbb{R}$ satisfy the following conditions

- (C) F and its gradient ∇F are Carathéodory functions, i.e. they are measurable functions with respect to $t \in [0, T]$, for every $x \in \mathbb{R}^d$, and continuous functions with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0, T]$.
- (A) For a.e. $t \in [0, T]$ we have that

$$|F(t,x)| + |\nabla F(t,x)| \le a(|x|)b(t) \tag{2}$$

In these inequalities we assume that the function $a:[0,+\infty) \to [0,+\infty)$ is continuous and nondecreasing and $0 \le b \in L^1([0,T],\mathbb{R})$.

We call the differential operator.

$$L_{\Phi}[u] = \frac{d}{dt} \left(u'(t) \frac{\varphi(|u'|)}{|u'|} \right)$$

the Φ -laplacian operator. If $\Phi(x) = |x|^p$, $1 , <math>L_{\Phi}$ is the well known p-laplacian operator.

The problem (1) comes from a variational one, that is, the equation in (1) is the Euler-Lagrange equation associeted to the *action integral*

$$I(u) = \int_{0}^{T} \Phi(|u'(t)|) + F(t, u(t)) dt.$$
 (3)

2 Preliminaries

For reader convenience, we give a short introduction to Orlicz and Orlicz-Sobolev spaces of vector valued functions and a list of results that we will use throughout the article. Classic references for Orlicz spaces of real valued functions are [1, 2, 3]. For Orlicz spaces of vector valued functions, see [4] and the references therein.

Hereafter we denote by \mathbb{R}^+ the set of all non negative real numbers. A function $\Phi: \mathbb{R}^+ \to \mathbb{R}^+$ is called an *N*-function if Φ is convex and satisfies that

$$\lim_{t \to +\infty} \frac{\Phi(t)}{t} = +\infty \quad \text{and} \quad \lim_{t \to 0} \frac{\Phi(t)}{t} = 0$$

In addition, in this paper, we asssume that Φ is differentiable, and we call φ to the derivative of Φ . With these assumptions, $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is a homeomorphism, with inverse ψ . We denote by Ψ the primitive of ψ that satisfies $\Psi(0)=0$. Then Ψ is a N-function which is called the *complementary function* of Φ .

There exists several order relations between N-functions (see [3, Section 2.2]). Following [3, Def. 1, p.15] we said that the N-function Φ_2 is essentially stronger than the N-function Φ_2 ($\Phi_1 \ll \Phi_2$) if and only if there exists $x_0 \ge 0$ such that $\Phi_1(x) \le \Phi_2(ax)$, for every a > 0 and $x \ge x_0$.

We say that a function $\eta: \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the Δ_2 -condition, denoted by $\eta \in \Delta_2$, if there exist constants K > 0 and $t_0 \ge 0$ such that

$$\eta(2t) \leqslant K\eta(t) \tag{4}$$

for every $t \ge t_0$. If $t_0 = 0$, we say that a function $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the Δ_2 -condition globally ($\eta \in \Delta_2$ globally).

Let d be a positive integer. We denote by $\mathcal{M}_d := \mathcal{M}_d([0,T],\mathbb{R}^d)$ the set of all measurable functions defined on [0,T] with values on \mathbb{R}^d and we write $u=(u_1,\ldots,u_d)$ for $u \in \mathcal{M}_d$.

Given an N-function Φ we define the modular function $\rho_{\Phi}: \mathcal{M}_d \to \mathbb{R}^+ \cup \{+\infty\}$ by

$$\rho_{\Phi}(u) := \int_0^T \Phi(|u|) \ dt.$$

Here $|\cdot|$ is the euclidean norm of \mathbb{R}^d . The Orlicz class $C_d^{\Phi}=C_d^{\Phi}([0,T],\mathbb{R}^d)$ is given by

$$C_d^{\Phi} := \{ u \in \mathcal{M}_d | \rho_{\Phi}(u) < \infty \}. \tag{5}$$

The Orlicz space $L^{\Phi} = L_d^{\Phi}([0,T], \mathbb{R}^d)$ is the linear hull of C^{Φ} ; equivalently,

$$L^{\Phi} := \{ u \in \mathcal{M}_d | \exists \lambda > 0 : \rho_{\Phi}(\lambda u) < \infty \}. \tag{6}$$

The Orlicz space L^{Φ} equipped with the *Orlicz norm*

$$||u||_{L^{\Phi}} := \sup \left\{ \int_0^T u \cdot v \ dt | \rho_{\Psi}(v) \leqslant 1 \right\},$$

is a Banach space. By $u \cdot v$ we denote the usual dot product in \mathbb{R}^d between u and v. The following alternative expression for the norm, known as *Amemiya norm*, will be useful (see [2, Thm. 10.5] and [5]). For every $u \in L^{\Phi}$,

$$||u||_{L^{\Phi}} = \inf_{k>0} \frac{1}{k} \{1 + \rho_{\Phi}(ku)\}.$$
 (7)

In particular

$$||u||_{L^{\Phi}} \le \frac{1}{k} \{1 + \rho_{\Phi}(ku)\}, \quad \text{for every } k > 0.$$
 (8)

The subspace $E^{\Phi}=E^{\Phi}([0,T],\mathbb{R}^d)$ is defined as the closure in L^{Φ} of the subspace $L_d^{\infty}([0,T],\mathbb{R}^d)$ of all \mathbb{R}^d -valued essentially bounded functions. It is shown that E^{Φ} is the only one maximal subspace contained in the Orlicz class C^{Φ} , i.e. $u\in E^{\Phi}$ if and only if $\rho_{\Phi}(\lambda u)<\infty$ for any $\lambda>0$.

A generalized version of *Hölder's inequality* holds in Orlicz spaces (see [2, Th. 9.3]). Namely, if $u \in L^{\Phi}$ and $v \in L^{\Psi}$ then $u \cdot v \in L^1$ and

$$\int_{0}^{T} v \cdot u \, dt \leqslant \|u\|_{L^{\Phi}} \|v\|_{L^{\Psi}}. \tag{9}$$

If X and Y are Banach spaces such that $Y \subset X^*$, we denote by $\langle \cdot, \cdot \rangle : Y \times X \to \mathbb{R}$ the bilinear pairing map given by $\langle x^*, x \rangle = x^*(x)$. Hölder's inequality shows that $L^{\Psi} \subset [L^{\Phi}]^*$, where the pairing $\langle v, u \rangle$ is defined by

$$\langle v, u \rangle = \int_0^T v \cdot u \, dt \tag{10}$$

with $u \in L^{\Phi}$ and $v \in L^{\Psi}$. Unless $\Phi \in \Delta_2$, the relation $L^{\Psi} = [L^{\Phi}]^*$ will not hold. In general, it is true that $[E^{\Phi}]^* = L^{\Psi}$.

Like in [2], we will consider the subset $\Pi(E^{\Phi},r)$ of L^{Φ} given by

$$\Pi(E^{\Phi}, r) := \{ u \in L^{\Phi} | d(u, E^{\Phi}) < r \}.$$

This set is related to the Orlicz class C^{Φ} by means of inclusions, namely,

$$\Pi(E^{\Phi}, r) \subset rC^{\Phi} \subset \overline{\Pi(E^{\Phi}, r)}$$
 (11)

for any positive r. If $\Phi \in \Delta_2$, then the sets L^{Φ} , E^{Φ} , $\Pi(E^{\Phi}, r)$ and C^{Φ} are equal. We define the *Sobolev-Orlicz space* W^1L^{Φ} (see [1]) by

 $W^1L^{\Phi} := \{u | u \text{ is absolutely continuous in } [0, T] \text{ and } u' \in L^{\Phi}\}.$

 W^1L^{Φ} is a Banach space when equipped with the norm

$$||u||_{W^1L^{\Phi}} = ||u||_{L^{\Phi}} + ||u'||_{L^{\Phi}}.$$
(12)

For a function $u \in L^1_d([0,T])$, we write $u = \overline{u} + \widetilde{u}$ where $\overline{u} = \frac{1}{T} \int_0^T u(t) \ dt$ and $\widetilde{u} = u - \overline{u}$.

As usual, if $(X,\|\cdot\|_X)$ is a Banach space and $(Y,\|\cdot\|_Y)$ is a subspace of X, we write $Y\hookrightarrow X$ and we say that Y is *embedded* in X when the restricted identity map $i_Y:Y\to X$ is bounded. That is, there exists C>0 such that for any $y\in Y$ we have $\|y\|_X\leqslant C\|y\|_Y$. With this notation, Hölder's inequality states that $L^\Psi\hookrightarrow \left[L^\Phi\right]^*$; and, it is easy to see that for every N-function Φ we have that $L_d^\infty\hookrightarrow L^\Phi\hookrightarrow L_d^1$.

Recall that a function $w: \mathbb{R}^+ \to \mathbb{R}^+$ is called a *modulus of continuity* if w is a continuous increasing function which satisfies w(0)=0. For example, it can be easily shown that $w(s)=s\Phi^{-1}(1/s)$ is a modulus of continuity for every N-function Φ . We say that $u:[0,T]\to\mathbb{R}^d$ has modulus of continuity w when there exists a constant C>0 such that

$$|u(t) - u(s)| \leqslant Cw(|t - s|). \tag{13}$$

We denote by $C^w([0,T],\mathbb{R}^d)$ the space of w-Hölder continuous functions. This is the space of all functions satisfying (13) for some C>0 and it is a Banach space with norm

$$||u||_{C^w([0,T],\mathbb{R}^d)} := ||u||_{L^\infty} + \sup_{t \neq s} \frac{|u(t) - u(s)|}{w(|t-s|)}.$$

An important aspect of the theory of Sobolev spaces is related to embedding theorems. There is an extensive literature on this question in the Orlicz-Sobolev space setting, see for example [6, 7, 8, 9, 10]. The next simple lemma, whose proof can be found in [11], will be used systematically.

Lemma 2.1. Let $w(s) := s\Phi^{-1}(1/s)$. Then, the following statements hold:

1. $W^1L^{\Phi} \hookrightarrow C^w([0,T],\mathbb{R}^d)$ and for every $u \in W^1L^{\Phi}$

$$|u(t) - u(s)| \le ||u'||_{L^{\Phi}} w(|t - s|), \qquad (Morrey inequality). \tag{14}$$

$$||u||_{L^{\infty}} \leqslant \Phi^{-1}\left(\frac{1}{T}\right) \max\{1, T\} ||u||_{W^1L^{\Phi}}$$
 (Sobolev inequality). (15)

2. For every $u \in W^1L^{\Phi}$ we have $\widetilde{u} \in L_d^{\infty}$ and

$$\|\widetilde{u}\|_{L^{\infty}} \leqslant T\Phi^{-1}\left(\frac{1}{T}\right)\|\dot{u}\|_{L^{\Phi}}$$
 (Sobolev-Wirtinger inequality). (16)

The following result is analogous to some lemmata in $W^1L_d^p$, see [12].

Lemma 2.2. If
$$||u||_{W^1L^\Phi} \to \infty$$
, then $(|\overline{u}| + ||\dot{u}||_{L^\Phi}) \to \infty$.

Proof. By the decomposition $u = \overline{u} + \tilde{u}$ and some elementary operations, we get

$$||u||_{L^{\Phi}} = ||\overline{u} + \tilde{u}||_{L^{\Phi}} \leqslant ||\overline{u}||_{L^{\Phi}} + ||\tilde{u}||_{L^{\Phi}} = |\overline{u}||1||_{L^{\Phi}} + ||\tilde{u}||_{L^{\Phi}}. \tag{17}$$

It is known that $L_d^{\infty} \hookrightarrow L^{\Phi}$, i.e. there exists $C_1 = C_1(T) > 0$ such that for any $\tilde{u} \in L_d^{\infty}$ we have

$$\|\tilde{u}\|_{L^{\Phi}} \leqslant C_1 \|\tilde{u}\|_{L^{\infty}};$$

and, applying Sobolev's inequality, we obtain Wirtinger's inequality, that is there exists $C_2=C_2(T)>0$ such that

$$\|\tilde{u}\|_{L^{\Phi}} \leqslant C_2 \|u'\|_{L^{\Phi}}. \tag{18}$$

Therefore, from (17), (18) and (12), we get

$$||u||_{W^1L^{\Phi}} \leq C_3(|\overline{u}| + ||u'||_{L^{\Phi}})$$

where $C_3=C_3(T)$. Finally, as $\|u\|_{W^1L^\Phi}\to \infty$ we conclude that $(|\overline{u}|+\|u'\|_{L^\Phi})\to \infty$.

3 Lagrangians satisfying sublinear nonlinearity type conditions

Lemma 3.1. Let Φ, Ψ complementary functions. The next statements are equivalent:

- 1. $\Psi \in \Delta_2$ globally.
- 2. There exists an N-function $\Phi_1 \in \Delta_2$ such that

$$\Phi(rs) \geqslant \Phi_1(r)\Phi(s) \text{ for every } r \geqslant 1, s \geqslant 0.$$
 (19)

Proof. 1) \Rightarrow 2) In virtue of [13, Eq. (2.8)], the Δ_2 -condition on Ψ , [14, Thm. 11.7] and [14, Cor. 11.6], we obtain constants K > 0 and $\alpha_{\Phi} > 1$ such that

$$\Phi(rs) \geqslant Kr^{\nu}\Phi(s) \tag{20}$$

for any $0 < \nu < \alpha_{\Phi}$, $s \geqslant 0$ and r > 1. This proves (19) with $\Phi_1(r) = kr^{\nu}$, which is is an N-function satisfying the Δ_2 -condition.

2)⇒1) Next, we follow [3, p. 32, Prop. 13] and [3, p. 29, Prop. 9]. Assume that

$$\Phi_1(r)\Phi(s) \leqslant \Phi(rs) \ r > 1, \ s \geqslant 0.$$

Let $u = \Phi_1(r) \ge \Phi_1(1)$ and $v = \Phi(s) \ge 0$. By a well known inequality [3, p. 13, Prop. 1] and (19), we have for $u \ge \Phi_1(1)$ and $v \ge 0$

$$\frac{uv}{\Psi^{-1}(uv)} \leqslant \Phi^{-1}(uv) \leqslant \Phi_1^{-1}(u)\Phi^{-1}(v) \leqslant \frac{4uv}{\Psi_1^{-1}(u)\Psi^{-1}(v)},$$

then

$$\Psi_1^{-1}(u)\Psi^{-1}(v) \leqslant 4\Psi^{-1}(uv).$$

If we take $x=\Psi_1^{-1}(u)\geqslant \Psi_1^{-1}(\Phi_1(1))$ and $y=\Psi^{-1}(v)\geqslant 0$, then

$$\Psi\left(\frac{xy}{4}\right) \leqslant \Psi_1(x)\Psi(y).$$

Now, taking $x \ge \max\{8, \Psi_1^{-1}(\Phi_1(1))\}$ we get that $\Psi \in \Delta_2$ globally.

The following lemma generalizes [11, Lemma 5.2].

Lemma 3.2. Let Φ , Ψ be complementary N-functions and suppose that $\Psi \in \Delta_2$ globally. Then

$$\lim_{\|u\|_{L^{\Phi}} \to \infty} \frac{\int_0^T \Phi(|u|) dt}{\Phi_0(\|u\|_{L^{\Phi}})} = \infty, \tag{21}$$

for every Φ_0 with $\Phi_0 = o(\Phi_1)$ at ∞ where Φ_1 is any N-function satisfying (19). Reciprocally if (21) holds for some N-function Φ_0 , then $\Psi \in \Delta_2$ (at ∞).

Proof. By the assumptions on Φ and Φ_1 and the inequality (8), we have, for r > 1,

$$\frac{\int_0^T \Phi(|u|) dt}{\Phi_0(\|u\|_{L^{\Phi}})} \geqslant \Phi_1(r) \frac{\int_0^T \Phi(r^{-1}|u|) dt}{\Phi_0(\|u\|_{L^{\Phi}})} \geqslant \frac{\Phi_1(r)}{\Phi_0(\|u\|_{L^{\Phi}})} \{r^{-1} \|u\|_{L^{\Phi}} - 1\}.$$

Now, we choose $r=\frac{\|u\|_{L^\Phi}}{2}$ and as $\|u\|_{L^\Phi}\to\infty$ we can assume r>1. Next, we use the fact that $\Phi_1\in\Delta_2$ and $\Phi_0=o(\Phi_1)$ at ∞ , and we get

$$\lim_{\|u\|_{L^\Phi}\to\infty}\frac{\int_0^T\Phi(|u|)\,dt}{\Phi_0(\|u\|_{L^\Phi})}\geqslant\lim_{\|u\|_{L^\Phi}\to\infty}\frac{\Phi_1\left(\frac{\|u\|_{L^\Phi}}{2}\right)}{\Phi_0(\|u\|_{L^\Phi})}\geqslant C\lim_{\|u\|_{L^\Phi}\to\infty}\frac{\Phi_1(\|u\|_{L^\Phi})}{\Phi_0(\|u\|_{L^\Phi})}=\infty.$$

The last assertion of the lemma follows from the fact that if Φ_0 is an N-function, then $\Phi_0(u) \geqslant k|u|$ for k small enough and |u1>1. Therefore (21) holds for $\Phi_0(u)=|u|$, then [11, Lemma 5.2] implies $\Psi \in \Delta_2$ at ∞ .

Remark 1. We point out that this lemma can be applied to more cases than [11, Lemma 5.2]. For example, if $\Phi(u) = u^2$, Φ_1 and Φ_0 are N-functions with principal parts equal to $u^2/\log u$ and $u^2/(\log u)^2$ respectively (see [2, p. 16] and [2, Section 7] for the definition and properties of principal part). Then (21) holds for Φ_0 , however $\Phi_0(u)$ is not dominated for any power function $|u|^{\alpha}$ for every $\alpha < 2$.

Definition 3.3. We define the functionals $J_{C,\Phi_0}:L^{\Phi}\to (-\infty,+\infty]$ and $H_{C,\Phi_0}:\mathbb{R}^n\to\mathbb{R}$, where C>0 and Φ_0 is an N-function, by

$$J_{C,\Phi_0}(u) := \rho_{\Phi}(u) - C\Phi_0(\|u\|_{L^{\Phi}}), \tag{22}$$

and

$$H_{C,\Phi_0}(x) := \int_0^T F(t,x)dt - C\Phi_0(|x|), \tag{23}$$

respectively.

Like in [11] we consider Lagrangians \mathcal{L} which are lower bounded as follows

$$\mathcal{L}(t, x, y) \geqslant \alpha_0 \Phi\left(\frac{|y|}{\Lambda}\right) + F(t, x).$$
 (24)

In [15] and [16] was considered, for the p-laplacian case, potentials F satisfying the inequality

$$|\nabla F(t,x)| \leq b_1(t)|x|^{\alpha} + b_2(t),$$

where $b_1, b_2 \in L^1_1$ and α is any power less than p. Thus, they said F is a sublinear nonlinearity. In this paper, we will consider bounds on ∇F of a more general type.

Definition 3.4. We said taht $\nabla F(t,x)$ satisfies a grow ϕ_0 -condition if

$$|\nabla F(t,x)| \leqslant b_1(t)\varphi_0(|x|) + b_2(t),\tag{25}$$

where $\varphi_0 = \Phi'_0$ with Φ_0 an N-function.

The employment of N-functions instead of power functions in inequalities like (25) will allow us to extend some results of [15] and [16] even in the p-laplacian case.

Based on [17] we say that F satisfies the condition (A) if F(t,x) is a Carathéodory function and F is continuously differentiable with respect to x. Moreover, the next inequality holds

$$|F(t,x)| + |D_x F(t,x)| \le a(|x|)b_0(t)$$
, for a.e. $t \in [0,T], \forall x \in \mathbb{R}^d$. (26)

The following theorem establishes coercivity of I assuming sublinear conditions on the nonlinearity ∇F .

Theorem 3.5. Let \mathcal{L} be a lagrangian function satisfying $(\ref{eq:condition})$, $(\ref{eq:condition})$, $(\ref{eq:condition})$, $(\ref{eq:condition})$, $(\ref{eq:condition})$, we assume the following conditions:

1.
$$\Psi \in \Delta_2$$
.

2. Inequality (25) with $b_1, b_2 \in L_1^1$, $\varphi_0 = \Phi_0'$ where Φ_0 is a differentiable N-function that satisfies the Δ_2 -condition globally such that $\Phi_0 = o(\Phi_1)$ at ∞ and Φ_1 verifies (19).

3.

$$\lim_{|x| \to \infty} \frac{\int_0^T F(t, x) dt}{\Phi_0(|x|)} = +\infty. \tag{27}$$

Then the action integral I is coercive.

Proof. By the decomposition $u = \overline{u} + \tilde{u}$, Cauchy-Schwarz's inequality and (25), we have

$$\left| \int_0^T F(t,u) - F(t,\overline{u}) dt \right| = \left| \int_0^T \int_0^1 \nabla F(t,\overline{u} + s\tilde{u}(t)) \cdot \tilde{u}(t) ds dt \right|$$

$$\leq \int_0^T \int_0^1 b_1(t) \varphi_0(|\overline{u} + s\tilde{u}(t)|) |\tilde{u}(t)| ds dt + \int_0^T \int_0^1 b_2(t) |\tilde{u}(t)| ds dt$$

$$= I_1 + I_2.$$
(28)

On the one hand, by Hölder's and Sobolev's inequalities, we estimate I_2 as follows

$$I_2 \leqslant \|b_2\|_{L^1} \|\tilde{u}\|_{L^\infty} \leqslant C_1 \|\dot{u}\|_{L^\Phi},$$
 (29)

where $C_1 = C_1(\|b_2\|_{L^1}, T)$.

On the other hand, since $\Phi_0 \in \Delta_2$ globally, then $\varphi_0 \in \Delta_2$ globally and consequently φ_0 is a quasi-subadditive function, i.e. there exists $C(\varphi_0) > 0$ such that $\varphi_0(a+b) \leqslant C(\varphi_0)(\varphi_0(a)+\varphi_0(b))$ for every $a,b \geqslant 0$. In this way, we have

$$\varphi_0(|\overline{u} + s\tilde{u}(t)|) \leqslant C(\varphi_0)[\varphi_0(|\overline{u}|) + \varphi_0(||\tilde{u}||_{L^{\infty}})], \tag{30}$$

for every $s \in [0, 1]$.

Now, inequality (30), Hölder's and Sobolev's inequalities, the monotonicity, the subadditivity and the Δ_2 -condition on φ_0 , imply that

$$I_{1} \leq C(\varphi_{0}) \bigg\{ \varphi_{0}(|\overline{u}|) \|b_{1}\|_{L^{1}} \|\tilde{u}\|_{L^{\infty}} + \|b_{1}\|_{L^{1}} \varphi_{0}(\|\tilde{u}\|_{L^{\infty}}) \|\tilde{u}\|_{L^{\infty}} \bigg\}$$

$$\leq C_{2} \bigg\{ \varphi_{0}(|\overline{u}|) \|u'\|_{L^{\Phi}} + \varphi_{0}(\|\dot{u}\|_{L^{\Phi}}) \|\dot{u}\|_{L^{\Phi}} \bigg\},$$

$$(31)$$

where $C_2 = C_2(\varphi_0, T, ||b_1||_{L^1})$.

Next, by Young's inequality with complementary functions Φ_0 and Ψ_0 and the fact that $\Phi_0 \in \Delta_2$ globally, Young's equality [2, Eq. 2.7-2.8] and [3, Th. 3-(ii), p. 23], we get

$$\varphi_{0}(|\overline{u}|)\|u'\|_{L^{\Phi}} \leq \Psi_{0}(\varphi_{0}(|\overline{u}|)) + \Phi_{0}(\|u'\|_{L^{\Phi}})$$

$$\leq |\overline{u}|\varphi_{0}(|\overline{u}|) + \Phi_{0}(\|u'\|_{L^{\Phi}})$$

$$\leq C(\Phi_{0})\Phi_{0}(|\overline{u}|) + \Phi_{0}(\|u'\|_{L^{\Phi}})$$
(32)

and

$$\varphi_0(\|\dot{u}\|_{L^{\Phi}})\|\dot{u}\|_{L^{\Phi}} \leqslant C(\Phi_0)\Phi_0(\|\dot{u}\|_{L^{\Phi}}),\tag{33}$$

with $C(\Phi_0)$ the constant that comes from the Δ_2 -condition on Φ_0 .

From (31), (32), (33) and (29), we have

$$I_{1} + I_{2} \leq C_{3} \left\{ \Phi_{0}(|\overline{u}|) + \Phi_{0}(\|u'\|_{L^{\Phi}}) + \|u'\|_{L^{\Phi}} \right\}$$

$$\leq C_{4} \left\{ \Phi_{0}(|\overline{u}|) + \Phi_{0}(\|u'\|_{L^{\Phi}}) + 1 \right\},$$
(34)

with C_3 and C_4 depending on $\Phi_0, T, \|b_1\|_{L^1}$ and $\|b_2\|_{L^1}$. The last inequality follows from the fact that Φ_0 is an N-function, then there exists C > 0 such that $\Phi_0(x) \ge Cx$ for every $x \ge 1$. Thus $x \le C\Phi_0(x) + 1$ for every $x \ge 0$.

In the subsequent estimates, we use (24), (28), (34), the fact that $\Phi_0 \in \Delta_2$ and we get

$$I(u) \geqslant \alpha_{0}\rho_{\Phi}\left(\frac{u'}{\Lambda}\right) + \int_{0}^{T} F(t,u) dt$$

$$= \alpha_{0}\rho_{\Phi}\left(\frac{u'}{\Lambda}\right) + \int_{0}^{T} \left[F(t,u) - F(t,\overline{u})\right] dt + \int_{0}^{T} F(t,\overline{u}) dt$$

$$\geqslant \alpha_{0}\rho_{\Phi}\left(\frac{u'}{\Lambda}\right) - C_{4}\Phi_{0}(\|\dot{u}\|_{L^{\Phi}}) + \int_{0}^{T} F(t,\overline{u}) dt - C_{4}\Phi_{0}(|\overline{u}|) - C_{4}$$

$$\geqslant \alpha_{0}\rho_{\Phi}\left(\frac{u'}{\Lambda}\right) - C_{4}\Phi_{0}(\|\dot{u}\|_{L^{\Phi}}) + H_{C_{4},\Phi_{0}}(\overline{u}) - C_{4}$$

$$\geqslant \alpha_{0}\rho_{\Phi}\left(\frac{u'}{\Lambda}\right) - C_{5}\Phi_{0}\left(\frac{\|\dot{u}\|_{L^{\Phi}}}{\Lambda}\right) + H_{C_{4},\Phi_{0}}(\overline{u}) - C_{4}$$

$$= \alpha_{0}J_{C_{6},\Phi_{0}}\left(\frac{\dot{u}}{\Lambda}\right) + H_{C_{4},\Phi_{0}}(\overline{u}) - C_{4},$$
(35)

where $C_5=C_5(\Phi_0,\Lambda,C_4)$ and $C_6=\frac{C_5}{\alpha_0}$.

Let u_n be a sequence in $\mathcal{E}_d^\Phi(\lambda)$ with $\|u_n\|_{W^1L^\Phi}\to\infty$ and we have to prove that $I(u_n)\to\infty$. On the contrary, suppose that for a subsequence, still denoted by u_n , $I(u_n)$ is upper bounded, i.e., there exists M>0 such that $|I(u_n)|\leqslant M$. As $\|u_n\|_{W^1L^\Phi}\to\infty$, from Lemma 2.2, we have $|\overline{u}_n|+\|u_n'\|_{L^\Phi}\to\infty$. Passing to a subsequence, still denoted u_n , we can assume that $|\overline{u}_n|\to\infty$ or $\|u_n'\|_{L^\Phi}\to\infty$. Now, Lemma 3.2 implies that the functional $J_{C_6,\Phi_0}(\frac{\dot{u}}{\Lambda})$ is coercive; and, by (27), the functional $H_{C_4,\Phi_0}(\overline{u})$ is also coercive, then $J_{C_6,\Phi_0}(\frac{\dot{u}_n}{\Lambda})\to\infty$ or $H_{C_4,\Phi_0}(\overline{u}_n)\to\infty$. From (26), we have that on a bounded set the functional $H_{C_4,\Phi_0}(\overline{u}_n)$ is lower bounded and also $J_{C_6,\Phi_0}(\frac{\dot{u}_n}{\Lambda})\geqslant 0$. Therefore, $I(u_n)\to\infty$ as $\|u_n\|_{W^1L^\Phi}\to\infty$ which contradicts the initial assumption on the behavior of $I(u_n)$.

4 Main result

In order to find conditions for the lower semicontinuity of I, we perform a little adaptation of a result of [18].

Lemma 4.1. Let $\mathcal{L}(t, x, y)$ be a differentiable Carathéodory function. Suppose that F satisfies the condition (A) and the inequality

$$\mathcal{L}(t, x, y) \geqslant \Phi(|y|) + F(t, x), \tag{36}$$

where Φ is an N-function. In addition, suppose that $\mathcal{L}(t,x,\cdot)$ is convex in \mathbb{R}^d for each $(t,x) \in [0,T] \times \mathbb{R}^d$. Let $\{u_n\} \subset W^1L^{\Phi}$ be a sequence such that u_n converges uniformly to a function $u \in W^1L^{\Phi}$ and u'_n converges in the weak topology of L^1_d to u'. Then

$$I(u) \leqslant \liminf_{n \to \infty} I(u_n).$$
 (37)

Proof. First, we point out that (36) and (26) imply that I is defined on W^1L^{Φ} taking values on the interval $(-\infty, +\infty]$. Let $\{u_n\}$ be a sequence satisfying the assumptions of the theorem. We define the differentiable Carathéodory function $\hat{\mathcal{L}} = \mathcal{L} - F$ and we denote by \hat{I} its associated action integral. Using [18, Thm. 2.1, p. 243], we get

$$\int_0^T \hat{\mathcal{L}}(t, u, u') dt \leqslant \liminf_{n \to \infty} \int_0^T \hat{\mathcal{L}}(t, u_n, u'_n) dt.$$
 (38)

Taking account of the uniform convergence of u_n and the fact that F is a Carathéodory function, we obtain that $F(t,u_n(t)) \to F(t,u(t))$ a.e. $t \in [0,T]$. Since the sequence u_n is uniformly bounded, from (26) follows that there exists $g \in L^1_1([0,T])$ such that $|F(t,u_n(t))| \leq g(t)$. Now, by the Dominated Convergence Theorem, we have that

$$\lim_{n \to \infty} \int_0^T F(t, u_n(t)) dt = \int_0^T F(t, u(t)) dt.$$
 (39)

Finally, as a consequence of (38) and (39), we obtain (37).

Lemma 4.2. E^{Φ} is weak* closed in L^{Φ} .

Proof. From [3, Thm. 7, p. 110] we have that $L^{\Phi} = \left[E_d^{\Psi}\right]^*$. Then, L^{Φ} is a dual and therefore we are allowed to speak about the weak* topology of L^{Φ} . Besides, E^{Φ} is separable (see [3, Thm. 1, p. 87]). Let $S = E^{\Phi} \cap \{u \in L^{\Phi} | \|u\|_{L^{\Phi}} \leqslant 1\}$, then S is closed in the norm $\|\cdot\|_{L^{\Phi}}$. Now, according to [3, Cor. 5, p. 148] S is weak* sequentially compact. Thus, S is weak* sequentially closed because is $u_n \in S$ and $u_n \stackrel{*}{\rightharpoonup} u \in L^{\Phi}$ then the weak* sequentially compactness implies the existence of $v \in S$ and a subsequence u_{n_k} such that $u_{n_k} \stackrel{*}{\rightharpoonup} v$. Finally, by the uniqueness of the limit, we get $u = v \in S$. As E_d^{Ψ} is separable and $L^{\Phi} = \left[E_d^{\Psi}\right]^*$, the ball of L^{Φ} $\{u \in L^{\Phi} | \|u\|_{L^{\Phi}} \leqslant 1\}$ is weak* metrizable (see [19, Thm. 5.1, p. 138]). Thus, S is closed respect to the weak* topology. Now, by the Krein-Smulian Theorem, [19, Cor. 12.6, p. 165] implies that E^{Φ} is weak* closed.

Gathering our previous results we obtain existence of solutions.

Let $W^1 E_T^{\Phi} = W^1 L_T^{\Phi} \cap W^1 E_d^{\Phi}$.

Theorem 4.3. Let Φ and Ψ be complementary N-functions. Suppose that the differentiable Carathéodory function $\mathcal{L}(t,x,y)$ is strictly convex at y, $D_y\mathcal{L}$ is T-periodic with respect to t. In addition, assume the same hypothesis than Theorem 3.5. Then, problem (1) has a solution.

Proof. Let $\{u_n\} \subset W^1E_T^{\Phi}$ be a minimizing sequence for the problem $\inf\{I(u)|u\in W^1E_T^{\Phi}\}$. Since $I(u_n)$, $n=1,2,\ldots$ is upper bounded, Theorem 3.5 implies that $\{u_n\}$ is norm bounded in $W^1E_d^{\Phi}$. Hence, in virtue of Corollary [11, Corollary 2.2], we can assume, taking a subsequence if necessary, that u_n converges uniformly to a T-periodic continuous function u. Then, u is bounded and $u \in E^{\Phi}$.

As $u_n' \in E^\Phi \subset L^\Phi$, there exists a subsequence (again denoted by u_n') such that u_n' converges to a function $v \in L^\Phi$ in the weak* topology of L^Φ . Since E^Φ is weak* closed, by Lemma 4.2, $v \in E^\Phi$.

From this fact and the uniform convergence of u_n to u, we obtain that

$$\int_0^T \dot{\boldsymbol{\xi}} \cdot u \, dt = \lim_{n \to \infty} \int_0^T \dot{\boldsymbol{\xi}} \cdot u_n \, dt = -\lim_{n \to \infty} \int_0^T \boldsymbol{\xi} \cdot u_n' \, dt = -\int_0^T \boldsymbol{\xi} \cdot v \, dt$$

for every T-periodic function $\boldsymbol{\xi} \in C^{\infty}([0,T],\mathbb{R}^d) \subset E_d^{\Psi}$. Thus v=u' a.e. $t \in [0,T]$ (see [17, p. 6]) and $u \in E_T^{\Phi}$.

Now, taking into account the relations $\left[L_d^1\right]^*=L_d^\infty\subset E_d^\Psi$ and $L^\Phi\subset L_d^1$, we have that u_n' converges to u' in the weak topology of L_d^1 . Consequently, Lemma 4.1 applied to the N-function $\alpha_0\Phi\left(|\cdot|/\Lambda\right)$ implies that

$$I(u) \leqslant \liminf_{n \to \infty} I(u_n) = \inf_{u \in W^1 E_x^{\Phi}} I(u).$$

As $u \in W^1E_T^{\Phi} \subset \mathcal{E}_d^{\Phi}(\lambda)$ then $I(u) > -\infty$, hence, u is a minimun and therefore $I'(u) \in (W^1E_T^{\Phi})^{\perp}$. Finally, invoking Theorem ??, the proof concludes.

5 Limit case $\mu = \alpha_{\Phi}$

Assuming $||b_1||_{L^1}$ small enough, in [20, 16] coercivity was obtained even for the limit value $\mu = p$ in inequality (25).

OJO que μ no aparece en (25)!!!!. Quizás debería decir $\varphi_0(x)=x^p$. O, mecionarse la ecuación anterior donde aparece $\alpha < p$, no μ .

This result leans on the fact that

$$||u||_{L^{\Phi}}^{\alpha_{\Phi}} = O\left(\int_{0}^{T} \Phi(|u|) dt\right) \quad \text{for } ||u||_{L^{\Phi}} \to \infty, \tag{40}$$

when $\Phi(u) = |u|^p$. Nevertheless, it is no longer the case for any N-function Φ as the following example shows.

In this section, from now on we will suppose that

$$\Phi(u) = \begin{cases} \frac{p-1}{p} u^p & u \le e \\ \frac{u^p}{\log u} - \frac{e^p}{p} & u > e \end{cases}$$

with p > 1. Next, we will establish some properties of this function Φ .

Theorem 5.1. If $p \ge \frac{1+\sqrt{2}}{2}$, then Φ is an N-function.

Proof. We have

$$\varphi(u) = \Phi'(u) = \begin{cases} (p-1)u^{p-1} & := & \varphi_1(u) & \text{if } u \leqslant e \\ \frac{u^{p-1}}{\log u} (p - \frac{1}{\log u}) & := & \varphi_2(u) & \text{if } u \geqslant e \end{cases}$$

First let us see that Φ' is increasing when $p\geqslant \frac{1+\sqrt{2}}{2}$. For this purpose, since $\varphi_1(e)=\varphi_2(e)$, it is enough to see that φ_1 is increasing on [0,e] and φ_2 is increasing on $[e,\infty)$ for every $p\geqslant \frac{1+\sqrt{2}}{2}$. Clearly φ_1 is an increasing function for p>1. On the other hand, an elementary analysis of the function shows that $\varphi_2'(u) > 0$ on $[e, \infty)$ if and only if $p\notin(\frac{1-\sqrt{2}}{2},\frac{1+\sqrt{2}}{2})$. Therefore φ_2 is an icreasing function when $p\geqslant\frac{1+\sqrt{2}}{2}$. Besides $\varphi_2(u)\to\infty$ and $\varphi_1(u)\to0$ as $u\to\infty$ and $u\to0$ respectively, provided

that p > 1. Hence, Φ is an N-function.

Theorem 5.2. For every $\varepsilon > 0$, there exists a positive constant $C = C(p, \varepsilon)$ such that

$$C^{-1}t^{p-\varepsilon}\Phi(u) \leqslant \Phi(tu) \leqslant Ct^p\Phi(u) \quad t \geqslant 1, u > 0, \tag{41}$$

Proof. If $u \le tu \le e$, then $\Phi(tu) = t^p \Phi(u)$ and (41) holds with C = 1.

If $u \leqslant e \leqslant tu$, as $\frac{e^p}{p} > 0$ and $\log(tu) \geqslant 1$, we have $\Phi(tu) \leqslant t^p u^p = \frac{p}{p-1} t^p \Phi(u)$. Thus, the second inequality of (41) holds with $C = \frac{p}{p-1}$. On the other hand, as f(t) = $\frac{t}{\log t}$ is increasing on $[e,\infty)$, then $f((tu)^p) \ge f(e^p) = e^p/p$. Now,

$$\Phi(tu) = \frac{p(tu)^p}{\log(tu)^p} - \frac{e^p}{p}$$

$$= \frac{(p-1)(tu)^p}{\log(tu)^p} + \frac{(tu)^p}{\log(tu)^p} - \frac{e^p}{p}$$

$$\geqslant \frac{p-1}{p} \frac{(tu)^p}{\log(tu)}$$

$$\geqslant \frac{p-1}{p} \frac{t^{\varepsilon}}{\log t + 1} t^{p-\varepsilon} u^p.$$

Since $\varepsilon e^{1-\varepsilon}$ is the minimum value of $t\mapsto \frac{t^\varepsilon}{\log t+1}$ on the interval $[1,+\infty)$ then

$$\Phi(tu) \geqslant \frac{p-1}{p} \varepsilon e^{1-\varepsilon} t^{p-\varepsilon} u^p,$$

which is the first inequality of (41) with $C = \frac{p}{p-1} \varepsilon^{-1} e^{-1+\varepsilon}$.

If $e \leqslant u \leqslant tu$, then

$$\Phi(tu) \leqslant \frac{t^p u^p}{\log(tu)} \leqslant \frac{t^p u^p}{\log(u)} = \frac{pt^p v}{\log v},\tag{42}$$

where $v:=u^p$ and $v\geqslant e^p$. If $\alpha>0$, the function $x\mapsto \frac{x}{x-\alpha}$ is decreasing on (α,∞) and the function $v\mapsto \frac{pv}{\log v}$ is increasing on $[e^p,\infty)$. Therefore, we have

$$\frac{\frac{pv}{\log v}}{\frac{pv}{\log v} - \frac{e^p}{p}} \leqslant \frac{e^p}{e^p - \frac{e^p}{p}} = \frac{p}{p-1}$$

for every $v \ge e^p$. In this way, from (42), we have

$$\Phi(tu) \leqslant \frac{pt^p}{p-1} \left(\frac{pv}{\log v} - \frac{e^p}{p} \right) = \frac{pt^p}{p-1} \left(\frac{u^p}{\log u} - \frac{e^p}{p} \right)$$

and the second inequality of (41) holds with $C = \frac{p}{p-1}$. For the first inequality we have, as it was proved previously,

$$\Phi(tu) \geqslant \frac{p-1}{p} \frac{(tu)^p}{\log(tu)} = \frac{p-1}{p} \frac{t^{\varepsilon} \log u^{\varepsilon}}{\log(t^{\varepsilon}u^{\varepsilon})} \frac{t^{p-\varepsilon}u^p}{\log u}$$

Let $f(s)=\frac{sA}{\log s+A}$ with $s\geqslant 1$ and $A\geqslant \varepsilon$. If $A\leqslant 1$, the function f attains a minimum on $[1,\infty)$ at $s=e^{1-A}$ and the minimum value is $f(e^{1-A})=Ae^{1-A}\geqslant \varepsilon$. If A>1, f is increasing on $[1,\infty)$ and its minimum value is f(1)=1. Then, $f(s)\geqslant \varepsilon$ in any case, therefore

$$\Phi(tu) \geqslant \frac{p-1}{p} \varepsilon \frac{t^{p-\varepsilon} u^p}{\log u} \geqslant \frac{p-1}{p} \varepsilon t^{p-\varepsilon} \Phi(u).$$

Therefore, (41) holds with $C = \frac{p}{\varepsilon(p-1)}$, because this C is the biggest constant that we have obtained in each case under consideration.

Remark 2. The inequality

$$\Phi(tu) \geqslant Ct^p\Phi(u)$$

is false for every C because for every $u \ge e$ we have

$$\lim_{t \to \infty} \frac{\Phi(tu)}{t^p \Phi(u)} = 0$$

Theorem 5.3. $\alpha_{\Phi} = \beta_{\Phi} = p$

Proof. From (??) and (41), we get

$$\beta_{\Phi} = \lim_{t \to \infty} \frac{\log \left[\sup_{u > 0} \frac{\Phi(tu)}{\Phi(u)} \right]}{\log t} \leqslant \lim_{t \to \infty} \frac{\log C + p \log t}{\log t} = p.$$

On the other hand, employing (??) and performing some elementary calculations, we obtain

$$\alpha_{\Phi} = \lim_{t \to 0^{+}} \frac{\log \left[\sup_{u > 0} \frac{\Phi(tu)}{\Phi(u)} \right]}{\log t} = \lim_{s \to \infty} \frac{\log \left[\sup_{v > 0} \frac{\Phi(v)}{\Phi(sv)} \right]^{-1}}{\log s} = \lim_{s \to \infty} \frac{\log \left[\inf_{v > 0} \frac{\Phi(sv)}{\Phi(v)} \right]}{\log s}$$

where v := tu and $s := \frac{1}{t}$. Then, using (41), for every $\varepsilon > 0$ we have

$$\alpha_{\Phi} = \lim_{s \to \infty} \frac{\log \left[\inf_{v > 0} \frac{\Phi(sv)}{\Phi(v)} \right]}{\log s} \geqslant \lim_{s \to \infty} \frac{\log C + (p - \varepsilon) \log s}{\log s} \geqslant p - \varepsilon,$$

therefore $\alpha_{\Phi} \geqslant p$.

Finally, as
$$\alpha_{\Phi} \leq \beta_{\Phi} \leq p$$
, we get $\alpha_{\Phi} = \beta_{\Phi} = p$.

Now, we are able to see that

$$\rho_{\Phi}(u) = \int_{0}^{T} \Phi(|u|) \, dx \geqslant C \|u\|_{L^{\Phi}}^{\alpha_{\Phi}} = C \|u\|_{L^{\Phi}}^{p}$$

is false.

In fact, if we take $u\equiv t>0$, then $\|u\|_{L^\Phi}^p=C_1t^p$ where $C_1=\|1\|_{L^\Phi}$ and $\int_0^T\Phi(|u|)\,dx=C_2\Phi(t)$ with $C_2=T$. Then, if $\rho_\Phi(u)\geqslant C\|u\|_{L^\Phi}^p$ were true, then $\Phi(t)\geqslant Ct^p$ would also be true; however, this last inequality is false.

Acknowledgments

The authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223.

References

- R. Adams, J. Fournier, Sobolev spaces, Elsevier/Academic Press, Amsterdam, 2003.
- [2] M. A. Krasnosel'skiĭ, J. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
- [3] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Vol. 146, Marcel Dekker, Inc., New York, 1991.
- [4] G. Schappacher, A notion of Orlicz spaces for vector valued functions, Appl. Math. 50 (4) (2005) 355–386.
- [5] H. Hudzik, L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000) 573–585.

- [6] A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math. 196 (2) (2000) 283–295.
- [7] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in: Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), Acad. Sci. Czech Repub., Prague, 1999, pp. 50–92.
- [8] N. Clavero, Optimal Sobolev embeddings and Function Spaces, http://www.maia.ub.edu/~soria/sobolev1.pdf, last accessed: 2014-12-22. (2011).
- [9] D. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2) (2000) 307–355.
- [10] R. Kerman, L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (4) (2006) 535–570.
- [11] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, E. Schwindt, Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Analysis, TMA. 125 (2015) 681 698.
- [12] B. Xu, C.-L. Tang, Some existence results on periodic solutions of ordinary *p*-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007) 1228–1236.
- [13] S. Acinas, G. Giubergia, F. Mazzone, E. Schwindt, On estimates for the period of solutions of equations involving the ϕ -Laplace operator, J. Abstr. Differ. Equ. Appl. 5 (1) (2014) 21–34.
- [14] L. Maligranda, Orlicz spaces and interpolation, Vol. 5 of Seminários de Matemática [Seminars in Mathematics], Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
- [15] C.-L. Tang, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (11) (1998) 3263–3270.
- [16] X. Tang, X. Zhang, Periodic solutions for second-order Hamiltonian systems with a *p*-Laplacian, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (1) (2010) 93–113.
- [17] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.
- [18] I. Ekeland, R. Témam, Convex analysis and variational problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.
- [19] J. B. Conway, A Course in Functional Analysis, Springer, USA, 1977.
- [20] F. Zhao, X. Wu, Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2) (2004) 422–434.