Simulations in Physics Week 0

1. Write a FORTRAN program to evaluate the following expressions: (ALL the quantitites are real)

(i)
$$\frac{a^b}{b(b-a)}$$
; for $a = 3.0, b = 4.0$

(ii)
$$\log_{10}(x) + \cos(a) + |x^2 + y^2| + 2\sqrt{xy}$$
; for $x = 1.0, y = 2.0, a = 15^0$

(iii)
$$\frac{1}{a\sqrt{2\pi}}e^{\sqrt{2a(x-m)^3}}$$
; for $x = 2.0$, $m = 1.0$, $a = 2.0$

Compare your numerical result with the corresponding exact result for each case.

2. Write a FORTRAN program to code the following function using IF-THEN-ELSE statement:

$$f(x)=5x^2+3x+2$$
 for x<2
=0 for x=2
=5 x^2 -3x+1 for x>2

Hence, print the value of the function at x=-0.5, 0.1 and 2.5.

3. Single and double factorial of an integer N is defined as

$$\begin{aligned} N! &= N \times (N-1) \times (N-2) \dots \times 3 \times 2 \times 1 \\ N!! &= N \times (N-2) \times (N-4) \dots \times 3 \times 1 \end{aligned} \quad \text{(for N-odd)}$$

Using the concept of do-loop, calculate the factorial and double factorial of a given number. Make sure, N is an odd integer for double factorial evaluation.

4. Use the DO loop to calculate the summations of the following series for given values of x and n

(i)
$$4 - 4/3 + 4/5 - 4/7 + \dots$$
 n-th term,

(ii)
$$1 + x/1! + x^2/2! + x^3/3! + \dots + x^n/n!$$

(iii)
$$1 - x^2/2! + x^4/4! + \dots + (x^2)^n/(2n)!$$

Also compare the result with (i) constant π , (ii) e^x (iii) $\cos(x)$ respectively.