Integers and division

Integers and division

- **Number theory** is a branch of mathematics that explores integers and their properties.
- Integers:
 - Z integers {..., -2,-1, 0, 1, 2, ...}
 - Z⁺ positive integers $\{1, 2, ...\}$
- Number theory has many applications within computer science, including:
 - Indexing Storage and organization of data
 - Encryption
 - Error correcting codes
 - Random numbers generators

Primes

Definition: A positive integer p that is greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

Examples: 2, 3, 5, 7, ...

Primes

Definition: A positive integer p that is greater than 1 and that is divisible only by 1 and by itself (p) is called **a prime**.

Examples: 2, 3, 5, 7, ...

What is the next prime after 7?

• 11

Next?

• 13

Primes

<u>**Definition**</u>: A positive integer that is greater than 1 and is not a prime is called **a composite.**

```
Examples: 4, 6, 8, 9, ... Why?
2 | 4
Why 6 is a composite?
```

Primes

<u>**Definition**</u>: A positive integer that is greater than 1 and is not a prime is called **a composite**.

```
Examples: 4, 6, 8, 9, ... Why?
2 | 4
3 | 6 or 2 | 6
2 | 8 or 4 | 8
3 | 9
```

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

• 12 = ?

The Fundamental theorem of Arithmetic

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- 12 = 2*2*3
- 21 = 3*7
- Process of finding out factors of the product: **factorization**.

Factorization of composites to primes:

- $100 = 2*2*5*5 = 2^2*5^2$
- $99 = 3*3*11 = 3^2*11$

Important question:

• How to determine whether the number is a prime or a composite?

Primes and composites

• How to determine whether the number is a prime or a composite?

Simple approach (1):

• Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.

• How to determine whether the number is a prime or a composite?

Simple approach (1):

- Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.
- Example:
- Assume we want to check if 17 is a prime?
- The approach would require us to check:
- 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

Primes and composites

- Example approach 1:
- Assume we want to check if 17 is a prime?
- The approach would require us to check:
- 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
- Is this the best we can do?
- No. The problem here is that we try to test all the numbers. But this is not necessary.
- **Idea:** Every composite factorizes to a product of primes. So it is sufficient to test only the primes x < n to determine the primality of n.

• How to determine whether the number is a prime or a composite?

Approach 2:

Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find a proper divisor then n is a prime.

Primes and composites

• How to determine whether the number is a prime or a composite?

Approach 2:

- Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find a proper divisor then n is a prime.
- **Example:** Is 31 a prime?
- Check if 2,3,5,7,11,13,17,23,29 divide it
- It is a prime!!

Example approach 2:

Is 91 a prime number?

- Easy primes 2,3,5,7,11,13,17,19 ..
- But how many primes are there that are smaller than 91?

Caveat:

- If *n* is relatively small the test is good because we can enumerate (memorize) all small primes
- But if *n* is large there can be larger not obvious primes

Primes and composites

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Proof:

- If n is composite, then it has a positive integer factor a such that 1 < a < n by definition. This means that n = ab, where b is an integer greater than 1.
- Assume $a > \sqrt{n}$ and $b > \sqrt{n}$. Then $ab > \sqrt{n}\sqrt{n} = n$, which is a contradiction. So either $a \le \sqrt{n}$ or $b \le \sqrt{n}$.
- Thus, *n* has a divisor less than \sqrt{n} .
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than \sqrt{n} .

Primes and composites

Theorem: If n is a composite that n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101} = 10.xxx$ are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

Example 2: Is 91 a prime?

- Primes smaller than $\sqrt{91}$ are: 2,3,5,7
- 91 is divisible by 7
- Thus 91 is a composite

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Proof by Euclid.

- Proof by contradiction:
 - Assume there is a finite number of primes: $p_1,\!p_2,\,...p_n$
- Let $Q = p_1 p_2 ... p_n + 1$ be a number.
- None of the numbers $p_1, p_2, ..., p_n$ divides the number Q.
- This is a contradiction since we assumed that we have listed all primes.

Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with $0 \le r < d$, such that

$$a = dq + r$$
.

Definitions:

- a is called the **dividend**,
- d is called the **divisor**,
- q is called the **quotient** and
- r the **remainder** of the division.

Example: a = 14, d = 3

$$14 = 3*4 + 2$$

$$14 \text{ div } 3 = 4$$

$$14 \mod 3 = 2$$

Relations:

• $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$

Greatest common divisor

A systematic way to find the gcd using factorization:

- Let $a=p_1^{a_1} p_2^{a_2} p_3^{a_3} \dots p_k^{a_k}$ and $b=p_1^{b_1} p_2^{b_2} p_3^{b_3} \dots p_k^{b_k}$
- $gcd(a,b) = p_1^{\min(a1,b1)} p_2^{\min(a2,b2)} p_3^{\min(a3,b3)} \dots p_k^{\min(ak,bk)}$

Examples:

- gcd(24,36) = ?
- $24 = 2*2*2*3=2^{3*}3$
- 36= 2*2*3*3=2^{2*}3²
- gcd(24,36) =

Greatest common divisor

A systematic way to find the gcd using factorization:

- $\bullet \quad Let \ a = p_1{}^{a1} \ p_2{}^{a2} \ p_3{}^{a3} \ \dots \ p_k{}^{ak} \ and \ b = p_1{}^{b1} \ p_2{}^{b2} \ p_3{}^{b3} \ \dots \ p_k{}^{bk}$
- $gcd(a,b)=p_1^{\min(a1,b1)}p_2^{\min(a2,b2)}p_3^{\min(a3,b3)}\dots p_k^{\min(ak,bk)}$

Examples:

- gcd(24,36) = ?
- $24 = 2*2*2*3=2^{3*}3$
- 36= 2*2*3*3=2²*3²
- $gcd(24,36) = 2^{2*}3 = 12$

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The **least common multiple** is denoted as **lcm(a,b)**.

Example:

- What is lcm(12,9) = ?
- Give me a common multiple: ...

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The **least common multiple** is denoted as **lcm(a,b)**.

Example:

- What is lcm(12,9) = ?
- Give me a common multiple: ... 12*9= 108
- Can we find a smaller number?

Least common multiple

Definition: Let a and b are two positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b. The **least common multiple** is denoted as **lcm(a,b)**.

Example:

- What is lcm(12,9) = ?
- Give me a common multiple: ... 12*9= 108
- Can we find a smaller number?
- Yes. Try 36. Both 12 and 9 cleanly divide 36.

Least common multiple

A systematic way to find the lcm using factorization:

- Let $a=p_1{}^{a1}\ p_2{}^{a2}\ p_3{}^{a3}\ ...\ p_k{}^{ak}$ and $b=p_1{}^{b1}\ p_2{}^{b2}\ p_3{}^{b3}\ ...\ p_k{}^{bk}$
- $lcm(a,b) = p_1^{max(a1,b1)} p_2^{max(a2,b2)} p_3^{max(a3,b3)} \dots p_k^{max(ak,bk)}$

Example:

- What is lcm(12,9) = ?
- $12 = 2*2*3 = 2^2*3$
- 9=3*3 =3²
- $lcm(12,9) = 2^2 * 3^2 = 4 * 9 = 36$

Euclid algorithm

Finding the greatest common divisor requires factorization

- $\bullet \quad a = p_1{}^{a1} \; p_2{}^{a2} \; p_3{}^{a3} \; \ldots \; p_k{}^{ak}, \quad b = p_1{}^{b1} \; p_2{}^{b2} \; p_3{}^{b3} \; \ldots \; p_k{}^{bk}$
- $gcd(a,b)=p_1^{\min(a1,b1)}p_2^{\min(a2,b2)}p_3^{\min(a3,b3)}\dots p_k^{\min(ak,bk)}$
- Factorization can be cumbersome and time consuming since we need to find all factors of the two integers that can be very large.
- Luckily a more efficient method for computing the gcd exists:
- It is called **Euclid's algorithm**
 - the method is known from ancient times and named after Greek mathematician Euclid.

Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).

- First divide the larger number (287) by the smaller one (91)
- We get 287 = 3*91 + 14
- (1) Any divisor of 91 and 287 must also be a divisor of 14:
 - 287 3*91 = 14
- Why? [ak cbk] =r \rightarrow (a-cb)k = r \rightarrow (a-cb) = r/k (must be an integer and thus k divides r]
- (2) Any divisor of 91 and 14 must also be a divisor of 287
- Why? $287 = 3 b k + dk \rightarrow 287 = k(3b + d) \rightarrow 287 / k = (3b + d) \leftarrow 287 / k$ must be an integer
- But then gcd(287,91) = gcd(91,14)

Euclid algorithm

- We know that gcd(287,91) = gcd(91,14)
- But the same trick can be applied again:
 - gcd(91,14)
 - 91 = 146 + 7
- and therefore
 - $-\gcd(91,14)=\gcd(14,7)$
- And one more time:
 - $-\gcd(14,7)=7$
 - trivial
- The result: gcd(287,91) = gcd(91,14) = gcd(14,7) = 7

.

Euclid algorithm

Example 1:

- Find the greatest common divisor of 666 & 558
- gcd(666,558)

666=1*558 + 108

 $= \gcd(558,108)$

558=5*108 + 18

 $= \gcd(108,18)$

108 = 6*18 + 0

= 18

Euclid algorithm

Example 2:

- Find the greatest common divisor of 286 & 503:
- gcd(503,286)

503=

Euclid algorithm

Example 2:

- Find the greatest common divisor of 286 & 503:
- gcd(503,286) =gcd(286, 217)

286=

Euclid algorithm

Example 2:

- Find the greatest common divisor of 286 & 503:
- gcd(503,286)

$$= \gcd(69,10)$$

$$=\gcd(10,9)$$

$$= \gcd(9,1) = 1$$

503=1*286+217

$$286=1*217+69$$

$$217 = 3*69 + 10$$

$$69 = 6*10 + 9$$

$$10=1*9+1$$

Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:

- Pseudorandom number generators
- Hash functions
- Cryptology

Pseudorandom number generators

- Some problems we want to program need to simulate a random choice.
- Examples: flip of a coin, roll of a dice

We need a way to generate random outcomes

Basic problem:

- assume outcomes: 0, 1, .. N
- generate the random sequences of outcomes
- Pseudorandom number generators let us generate sequences that look random
- Next: linear congruential method

Pseudorandom number generators

Linear congruential method

- We choose 4 numbers:
 - the modulus m.
 - multiplier a,
 - · increment c, and
 - seed x_0 ,

such that
$$2 = < a < m$$
, $0 = < c < m$, $0 = < x_0 < m$.

- We generate a sequence of numbers $x_1, x_2, x_3, ..., x_n$ such that $0 = < x_n < m$ for all n by successively using the congruence:
 - $x_{n+1} = (a.x_n + c) \mod m$

Pseudorandom number generators

Linear congruential method:

•
$$x_{n+1} = (a.x_n + c) \mod m$$

Example:

- Assume: $m=9,a=7,c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- $x_3 = 60 \mod 9 = 6$
- $x_4 = 46 \mod 9 = 1$
- $x_5 = 11 \mod 9 = 2$
- $x_6 = 18 \mod 9 = 0$
-

A *hash function* is an algorithm that maps data of arbitrary length to data of a fixed length.

The values returned by a hash function are called **hash values** or **hash codes.**

Example:

Hash function

An example of a hash function that maps integers (including very large ones) to a subset of integers 0, 1, .. m-1 is:

$$h(k) = k \mod m$$

Example: Assume we have a database of employes, each with a unique ID – a social security number that consists of 8 digits. We want to store the records in a smaller table with m entries. Using h(k) function we can map a social secutity number in the database of employes to indexes in the table.

Assume: $h(k) = k \mod 111$

Then:

 $h(064212848) = 064212848 \mod 111 = 14$

 $h(037149212) = 037149212 \mod 111 = 65$

- **Problem:** Given a large collection of records, how can we store and find a record quickly?
- **Solution:** Use a hash function calculate the location of the record based on the record's ID.
- Example: A common hash function is
 - $h(k) = k \mod n$,

where n is the number of available storage locations.

Hash function

An example of a hash function that maps integers (including very large ones) to a subset of integers 0, 1, .. m-1 is:

$$h(k) = k \mod m$$

Example: Assume we have a database of employes, each with a unique ID – a social security number that consists of 8 digits. We want to store the records in a smaller table with m entries. Using h(k) function we can map a social secutity number in the database of employes to indexes in the table.

Assume: $h(k) = k \mod 111$

Then:

 $h(064212848) = 064212848 \mod 111 = 14$

 $h(037149212) = 037149212 \mod 111 = 65$

• **Problem:** two documents mapped to the same location

Hash functions

- Solution 1: move the next available location
 - Method is represented by a sequence of hash functions to

try
$$h_0(k) = k \mod n$$

 $h_1(k) = (k+1) \mod n$
...
 $h_m(k) = (k+m) \mod n$
ID: 21 21 3 4 5 6 7 8
21 mod 9 39 mod 9 39 mod 9 39 mod 9 31 mod 9 32 mod 9 31 mod 9 32 mod 9 31 mod 9 32 mod 9 32 mod 9 32 mod 9 32 mod 9 33 mod

• Solution 2: remember the exact location in a secondary structure that is searched sequentially

Cryptology

Encryption of messages.

- · Ceasar cipher:
- Shift letters in the message by 3, last three letters mapped to the first 3 letters, e.g. A is shifted to D, X is shifted to A

How to represent the idea of a shift by 3?

• There are 26 letters in the alphabet. Assign each of them a number from 0,1, 2, 3, .. 25 according to the alphabetical order.

ABCD E F G H I J K L M N O P Q R S T U Y V X W Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH

_

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH
 - L 0LNH GLYFUHVH PDVK.