Homework 3

Zachariah Galdston

9/12/2024

Problem 1

Problem Statement: Determine weather Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t=0

Solution: Picards theorem sates that if f(t,y) is continuous in some region R defined by

$$\{(t,y) \mid a < t < b, c < y < d\}$$

and $(t_0, y_0) \in \mathbb{R}$. Then there exists a postivie number h such that the IVP

$$y' = f(t, y), \quad y(t_0) = y_0$$

Has a solution in an open interval containing $(t_0 - h, t_0 + h)$. The solution is unique if $\frac{\partial f}{\partial y}$ is continuous in R

(a)
$$y' = ty^{\frac{4}{3}}, \quad y(0) = 0$$

Problem Statement: Determine weather Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t=0

Solution: We will start by determining the continutity of the function $f(t) = ty^{\frac{4}{3}}$. We will start by finding the partial derivative of f with respect to y

 $f(t) = ty^{\frac{4}{3}}$ is continuous for all t and y in the region R defined by $a \leq t \leq b$ and $|y - y_0| \leq M$ for some constant M. Therefore, Picard's Theorem can be used to show the existence of a solution in an open interval containing t = 0.

Next we will determine the uniqueness of the solution. We will start by finding the partial derivative of f with respect to y

$$\frac{\partial f}{\partial y} = \frac{4}{3}ty^{\frac{1}{3}}$$

Since $\frac{\partial f}{\partial y}$ is continuous for all t and y in the region R defined by $a \le t \le b$ and $|y-y_0| \le M$ for some constant M, Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t = 0.

(b)
$$y' = ty^{1/3}, \quad y(0) = 0$$

Problem Statement: Determine weather Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t=0

Solution: We will start by determining the continutity of the function $f(t) = ty^{\frac{1}{3}}$

 $f(t) = ty^{\frac{1}{3}}$ is continuous for all t and y in the region R Therefore, Picard's Theorem can be used to show the existence of a solution in an open interval containing t = 0.

Next we will determine the uniqueness of the solution. We will start by finding the partial derivative of f with respect to y

$$\frac{\partial f}{\partial y} = \frac{1}{3}ty^{-\frac{2}{3}}$$

Since $\frac{\partial f}{\partial y}$ is not continuous for all t and y in the region R defined by $a \leq t \leq b$ and $|y - y_0| \leq M$ for some constant M, Picard's Theorem cannot be used to show the existence of a unique solution in an open interval containing t = 0.

(c)
$$y' = ty^{\frac{1}{3}}, \quad y(0) = 1$$

Problem Statement: Determine weather Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t=0

Solution: We will start by determining the continutity of the function $f(t) = ty^{\frac{1}{3}}$

 $f(t) = ty^{\frac{1}{3}}$ is continuous for all t and y in the region R defined by $a \le t \le b$ and $|y - y_0| \le M$ for some constant M. Therefore, Picard's Theorem can be used to show the existence of a solution in an open interval containing t = 0.

Next we will determine the uniqueness of the solution. We will start by finding the partial derivative of f with respect to y

$$\frac{\partial f}{\partial y} = \frac{1}{3}ty^{-\frac{2}{3}}$$

Since $\frac{\partial f}{\partial y}$ is continuous for all t and y in the region R defined by $a \leq t \leq b$ and $|y-y_0| \leq M$ for some constant M, Picard's Theorem can be used to show the existence of a unique solution in an open interval containing t = 0.

Problem 2

Problem Statement: Find the order, linearity, homogeneity, and the variablity of the coefficients of the following:

Problem	Diff Eq	Order	Linearity	Homogeneity	coefficients
(a)	y'' + 2y' + y = 0	2	Linear	Homogeneous	Constant
(b)	$\ddot{x} + 2\dot{x} + tx = \sin(t)$	2	Linear	Non-Homogeneous	Variable
(c)	$\cos(y') + ty = 0$	1	Non-Linear	Homogeneous	Variable
(d)	$y'' + ey' + \pi y = 0$	2	Linear	Homogeneous	Constant
(e)	$y' + \frac{1}{1+t^2}y = 7$	1	Linear	Non-Homogeneous	Variable

Problem 3

Problem Statement: Which of the following operators are linear? **Solution:** An operator is linear if it satisfies the following properties:

$$L(k\vec{\mathbf{u}}) = kL(\vec{\mathbf{u}}), \quad k \in \mathbb{R}$$

 $L(\vec{\mathbf{u}} + \vec{\mathbf{w}}) = L(\vec{\mathbf{u}}) + L(\vec{\mathbf{w}})$

(a)
$$L(\vec{y}) = y' + 2ty$$

Solution: We will start by checking the first property

$$L(k\mathbf{\vec{u}}) = kL(\mathbf{\vec{u}})$$

$$L(ky) = k(y' + 2ty)$$

$$ky' + 2kty = ky' + 2kty$$

$$ky' + 2kty = ky' + 2kty$$

Now we will check the second property

$$L(\vec{\mathbf{u}} + \vec{\mathbf{w}}) = L(\vec{\mathbf{u}}) + L(\vec{\mathbf{w}})$$
$$L(y_1 + y_2) = L(y_1) + L(y_2)$$
$$y'_1 + 2ty_1 + y'_2 + 2ty_2 = y'_1 + 2ty_1 + y'_2 + 2ty_2$$

Since both properties are satisfied, the operator $L(\vec{y}) = y' + 2ty$ is linear

(b)
$$L(\vec{y}) = y'' + (1 - y^2) + y$$

Solution: We will start by checking the first property

$$L(k\vec{\mathbf{u}}) = kL(\vec{\mathbf{u}})$$

$$L(ky) = k(y'' + (1 - y^2) + y)$$

$$ky'' + (1 - (ky)^2) + ky \neq ky'' + k(1 - y^2) + ky$$

This does not satisfy the first property, so the operator $L(\vec{y}) = y'' + (1 - y^2) + y$ is not linear. We will check the second property to be thorough.

$$L(\vec{\mathbf{u}} + \vec{\mathbf{w}}) = L(\vec{\mathbf{u}}) + L(\vec{\mathbf{w}})$$

$$L(y_1 + y_2) = L(y_1) + L(y_2)$$

$$y_1'' + (1 - y_1^2) + y_1 + y_2'' + (1 - y_2^2) + y_2 \neq y_1'' + (1 - y_1^2) + y_1 + y_2'' + (1 - y_2^2) + y_2$$

Since the second property is not satisfied, the operator $L(\vec{y}) = y'' + (1 - y^2) + y$ is not linear.

Problem 4

Problem Statement: Show that if $y_1(t)$ and $y_2(t)$ are solutions of y' + p(t)y = 0, then so are $y_1(t) + y_2(t)$ and $cy_1(t)$ for any constant c.

Solution: We will start by assuming that $y_1(t)$ and $y_2(t)$ are solutions of y' + p(t)y = 0 and follow the properties of linear homogeneous ODEs. Thus,

$$y'_1 + p(t)y_1 = 0$$

 $y'_2 + p(t)y_2 = 0$

Using the first property, we will show that $y_1(t) + y_2(t)$ is a solution of y' + p(t)y = 0

$$(y_1 + y_2)' + p(t)(y_1 + y_2) = 0$$

$$y'_1 + y'_2 + p(t)y_1 + p(t)y_2 = 0$$

$$y'_1 + p(t)y_1 + y'_2 + p(t)y_2 = 0 + 0 = 0$$

This proves that $y_1(t) + y_2(t)$ is a solution of y' + p(t)y = 0. Next we will show that $cy_1(t)$ is a solution of y' + p(t)y = 0

$$(cy_1)' + p(t)(cy_1) = 0$$

$$cy_1' + cp(t)y_1 = 0$$

$$c(y_1' + p(t)y_1) = c \cdot 0 = 0$$

This proves that $cy_1(t)$ is a solution of y' + p(t)y = 0.

Problem 5

Problem Statement: Verify that the given functions $y_1(t)$ and $y_2(t)$ are solutions of the given differential equation. Then show that $c_1y_1(t) + c_2y_2(t)$ is also a solution for any real numbers c_1 and c_2 .

(a)
$$y'' - y' + 6y = 0$$
; $y_1(t) = e^{3t}$, $y_2(t) = e^{-2t}$

Solution: We will start by verifying that $y_1(t)$ and $y_2(t)$ are solutions of the given differential equation.

$$y_1(t) = e^{3t}$$

$$y'_1 = 3e^{3t}$$

$$y''_1 = 9e^{3t}$$

$$9e^{3t} - 3e^{3t} - 6e^{3t} = 0$$

Therefore, $y_1(t)$ is a solution of the given differential equation. Next we will verify that $y_2(t)$ is a solution

$$y_2(t) = e^{-2t}$$

$$y'_2 = -2e^{-2t}$$

$$y''_2 = 4e^{-2t}$$

$$4e^{-2t} + 2e^{-2t} - 6e^{-2t} = 0$$

Therefore, $y_2(t)$ is a solution of the given differential equation. Next we will show that $c_1y_1(t) + c_2y_2(t)$ is also a solution for any real numbers c_1 and c_2 .

$$c_1 y_1(t) + c_2 y_2(t) = c_1 e^{3t} + c_2 e^{-2t}$$

Problem 6

Problem Statement: Find the general solution to the non homogenous ODE $y' + \frac{1}{t+1}y = 2$ **Solution:** We will solve using the superposition principal. $y_{G,NH} = y_{G,H} + y_{P,NH}$

(a)

Problem Satement: Show that $y_p = \frac{t^2 + 2t}{t+1}$ is a particular solution to the Non-Homogeneous ODE $y' + \frac{1}{t+1}y = 2$

Solution: We will start by finding the derivative of y_p

$$y_p = \frac{t^2 + 2t}{t+1}$$

$$y'_p = \frac{(t+1)(2t+2) - (t^2 + 2t)}{(t+1)^2}$$

$$y'_p = \frac{2t^2 + 2t + 2t + 2 - t^2 - 2t}{(t+1)^2}$$

$$y'_p = \frac{t^2 + 4t + 2}{(t+1)^2}$$

Now we will plug y_p and y'_p into the Non-Homogeneous ODE

$$y'_{p} + \frac{1}{t+1}y_{p} = 2$$

$$\frac{t^{2} + 4t + 2}{(t+1)^{2}} + \frac{t^{2} + 2t}{(t+1)^{2}} = 2$$

$$\frac{t^{2} + 4t + 2}{t^{2} + 2t + 1} + \frac{t^{2} + 2}{t^{2} + 2t + 1} = 2$$

$$\frac{2t^{2} + 4t + 2}{t^{2} + 2t + 1} = 2$$

$$\frac{2(t^{2} + 2t + 1)}{t^{2} + 2t + 1} = 2$$

$$2 = 2$$

(b)

Problem Statement: Find the general solution to the Non-Homogeneous ODE $y' + \frac{1}{t+1}y = 2$

Solution: We will use the superposition principal to find the general solution to the Non-Homogeneous ODE

$$y_{G,NH} = y_{G,H} + y_{P,NH}$$

We will start by finding the general solution to the Homogeneous ODE

$$y' + \frac{1}{t+1}y = 0$$

$$\frac{1}{y}dy = -\frac{1}{t+1}dt$$

$$\ln|y| = -\ln|t+1| + c$$

$$y = \frac{c}{t+1}$$

Now we will find the general solution to the Non-Homogeneous ODE

$$y_{G,NH} = \frac{c}{t+1} + \frac{t^2 + 2t}{t+1}$$

Problem 7

Problem 8

Problem Statement: Solve the differential equation $(x+1)\frac{dy}{x} + y = \ln(t)$

Solution: We will solve using the integrating factor method We will start by rewriting the equation

$$\frac{dy}{dt} + \frac{y}{t+1} = \frac{lnt}{t+1}$$

Set right side equal to zero

$$\frac{dy}{dt} + \frac{y}{t+1} = 0$$

Solve for y

$$\frac{dy}{dt} = -\frac{y}{t+1}$$
$$\frac{dy}{y} = -\frac{dt}{t+1}$$

Integrate both sides

$$\int \frac{1}{y} dy = -\frac{1}{t+1} dt$$

$$\ln |y| = -\ln|t+1| + c$$

$$y = e^{-\ln|t+1|+c}$$

$$y = \frac{c}{t+1}$$

Solve for integrating factor μ

$$\mu = \frac{1}{y_{G,H}}$$

$$\mu = t + 1$$

Multiply original equation by μ

$$\mu \frac{dy}{dt} + \mu \frac{y}{t+1} = \mu \frac{\ln t}{t+1}$$

$$D[(t+1)y] = \frac{\ln(t)}{t+1}(t+1)$$

$$(t+1)y = \int \ln(t)$$

$$(t+1)y = t \ln(t) - t + c$$

$$y = \frac{t \ln(t) - t + c}{t+1}$$