01204211 Discrete Mathematics Lecture 11b: Context-free languages and grammars (2)¹

Jittat Fakcharoenphol

September 14, 2023

Review: Definition

A context-free grammer consists of the following components:

- ightharpoonup a finite set Σ , a set of *symbols* (or *terminals*),
- ▶ a finite set Γ disjoint from Σ , a set of <u>non-terminals</u> (you can think of them as variables),
- ▶ a finite set R of production rules of the form $A \to w$ where $A \in \Gamma$ and $w \in (\Sigma \cup \Gamma)^*$ is a string of symbols and variable, and
- a starting non-terminal (usually the non-terminal of the first production rule).

Review: Applying the rules

If you have strings $x,y,z\in (\Sigma\cup\Gamma)^*$ and the production rule

$$A \to y$$

You can apply the rule to the string xAz. This yields the string

$$xyz$$
.

We use the notation

$$xAz \leadsto xyz$$

to describe this application.

Review: Derivation

We say that z derives from x if we can obtain z from x by production rule applications, denoted by $x \rightsquigarrow^* z$. Formally, for any string $x, z \in (\Sigma \cup \Gamma)^*$, we say that $x \rightsquigarrow^* z$ if either

- $\rightarrow x = z$, or
- $\qquad \overline{x \leadsto y} \text{ and } y \leadsto^* z \text{ for some string } y \in (\Sigma \cup \Gamma)^*.$

Review: L(w)

The language L(w) of string $w \in (\Sigma \cup \Gamma)^*$ is the set of all strings in Σ^* that derive from w, i.e.,

$$L(w) = \{ x \in \Sigma^* \mid w \leadsto^* x \}.$$

The language **generated by** a context-free grammar G, denoted by L(G) is the language of its starting non-terminal.

A language L is **context-free** if there exists some context-free grammar G such that L(G) = L.

Review: Parse tree

> 00011

$$\begin{array}{ccc} S & \rightarrow & A \mid B \\ A & \rightarrow & 0A \mid 0C \\ B & \rightarrow & B1 \mid C1 \\ C & \rightarrow & \varepsilon \mid 0C1 \end{array}$$

Ambiguity

$$ightharpoonup 1 + 1 + 1 + 1 + 1$$

$$S \rightarrow 1 \mid S + S \mid S * S$$

- ightharpoonup A string w is **ambiguous** with respect to a grammar G if more than one parse tree for w exists.
- ightharpoonup A grammar G is **ambiguous** if some string is ambiguous with respect to G.

More example

Palindrome in $\{0,1\}^*$

More example

0100010

Palindrome in $\{0,1\}^*$

$$S \ \, \rightarrow \ \, 0S0 \, | \, 1S1 \, | \, 1 \, | \, 0 \, | \, \varepsilon$$

$$S \longrightarrow 0S1 \mid \varepsilon$$

To show that

$$L(S) = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \},$$

we have to prove

Consider the grammar $S \longrightarrow \mathsf{0} S\mathsf{1} \mid \varepsilon$.

Lemma 1

 $S \leadsto^* 0^n 1^n$ for every non-negative integer n.

Proof.

Consider any non-negative integer $n. \rightarrow Goal! O^n 1^n \in LCS$

Induction Hypothesis: Assume that for every non-negative integer k < n, $S \leadsto^* 0^k 1^k$. There are two cases to consider.

Consider the grammar $S \longrightarrow 0S1 \mid \varepsilon$.

Lemma 1

 $S \rightsquigarrow^* 0^n 1^n$ for every non-negative integer n.

Proof.

Consider any non-negative integer n.

Induction Hypothesis: Assume that for every non-negative integer k < n, $S \leadsto^* 0^k 1^k$. There are two cases to consider.

► Case 1: n = 0. Identity $0^{0}1^{0} = \mathcal{E}$, ben' at n = 0. $S \rightarrow \mathcal{E}$ of $n \neq \infty$.

Consider the grammar $S \longrightarrow 0S1 \mid \varepsilon$.

Lemma 1

 $S \rightsquigarrow^* 0^n 1^n$ for every non-negative integer n.

Proof.

Consider any non-negative integer n.

Induction Hypothesis: Assume that for every non-negative integer $\underline{k < n}$, $S \leadsto^* 0^k 1^k$. There are two cases to consider.

- ▶ Case 1: n = 0.
- ► Case 2: n > 0. Goal: $O^{h}1^{h} \in L(S)$.

 And I.H. $O^{n-1}1^{n-1} \in L(S)$, and $O^{n}1^{h} = O \cdot O^{n-1}1^{h-1} \cdot 1 \in L(S)$.

Consider the grammar $S \longrightarrow 0S1 \mid \varepsilon$.

Lemma 1

 $S \leadsto^* 0^n 1^n$ for every non-negative integer n.

Proof.

Consider any non-negative integer n.

Induction Hypothesis: Assume that for every non-negative integer k < n, $S \leadsto^* 0^k 1^k$. There are two cases to consider

- Case 1: n = 0.
- ightharpoonup Case 2: n > 0. From I.H., we know that

$$S \leadsto^* 0^{n-1} 1^{n-1}$$
.

We can apply rule $S \longrightarrow 0S1$ to obtain 0^n1^n , i.e.,

$$S \longrightarrow 0 \\ S \\ 1 \\ \longrightarrow^* 0 \\ 0 \\ 0 \\ 1^{n-1} \\ 1^{n-1} \\ 1 = 0^n \\ 1^n.$$

In both cases, we conclude that $S \leadsto^* 0^n 1^n$, as required.

$$S \longrightarrow 0S1 \mid \varepsilon$$

Lemma 2

$$L(S) \subseteq \{0^n 1^n \mid n \ge 0\}$$

Proof.

$$S \longrightarrow {\rm O}S{\rm 1} \mid \varepsilon$$

Lemma 2

$$L(S) = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

Proof.

Consider any string $w \in L(\overline{\mathcal{S}})$. We show that $w = 0^n 1^n$ for some non-negative integer n.

$$S \longrightarrow 0S1 \mid \varepsilon$$

Lemma 2

$$L(S) = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

Proof.

Consider any string $w \in L(C)$. We show that $w = 0^n 1^n$ for some non-negative integer n.

I.H.: Assume that for any string $x \in L(C)$ such that $|x| < \underline{\lfloor w \rfloor}$, $x = \underline{0^k 1^k}$ for some non-negative integer k.

There are

$$S \longrightarrow \mathsf{O}S1 \mid \varepsilon$$

Lemma 2

$$L(S) = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

Proof.

Consider any string $w \in L(C)$. We show that $w = 0^n 1^n$ for some non-negative integer n.

I.H.: Assume that for any string $x \in L(C)$ such that |x| < |w|, $x = 0^k 1^k$ for some non-negative integer k.

There are 2 cases:

There are 2 cases:
Case 1:
$$w = \varepsilon$$
. $\varepsilon = 0^{\circ}1^{\circ}$, $\varepsilon = 0^{\circ}1^{\circ}$.

$$S \longrightarrow \underline{0S1} \mid \varepsilon$$

Lemma 2

$$L(S) = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

Proof.

Consider any string $w \in L(C)$. We show that $w = \underline{\mathbf{0}^n \mathbf{1}^n}$ for some non-negative integer n.

I.H.: Assume that for any string $x \in L(C)$ such that |x| < |w|, $x = 0^k 1^k$ for some non-negative integer k.

There are 2 cases:

Case 1: $w = \varepsilon$.

Case 2: $\underline{w} = \underline{0x1}$ for some $x \in L(\mathbf{6})$.

$$S \longrightarrow 0S1 \mid \varepsilon$$

Lemma 2

$$L(S) = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

Proof.

Consider any string $w \in L(C)$. We show that $w = 0^n 1^n$ for some non-negative integer n.

I.H.: Assume that for any string $x \in L(C)$ such that $x \in L(C)$ such

There are 2 cases:

Case 1: $w = \varepsilon$.

Case 2: w = 0 for some $x \in L(C)$. Since |x| = |w| - 2 < |w|, we can apply I.H., and get that x = 0 thus w = 0 th

In both case, w - - -

$$W = 7y$$
 $\hat{A}' \times EL(S)$, $y \in L(S)$

- ightharpoonup When using inductive proof, you have to ensure that each part of the string w is shorter than w.
- Consider this grammar

$$S \longrightarrow \widehat{\varepsilon} |SS| |0S1| 1S0.$$

- ▶ When w is created by rule $S \to SS$, we know that w = xy for $x, y \in L(S)$.
- ▶ Do we know that |x| < |w| and |y| < |w|?

Mn7 string higenerate an grammar of 94.0 = 0.1
For all
$$\omega \in L(S)$$
, $\#(0,\omega) = \#(1,\omega)$.
 $\boxed{1,H,\forall x \in L(S)}$ $\Re' |x| < |\omega|$, $\#(0,x) = \#(1,x)$.

Careful

$$S \rightarrow 051 \rightarrow 051 \rightarrow 01$$

$$S \rightarrow 051 \rightarrow 0551 \rightarrow 05551 \rightarrow$$

$$\rightarrow 05551 \rightarrow 05551 \rightarrow 051 \rightarrow 01$$

- When using inductive proof, you have to ensure that each part of the string w is shorter than w.
- Consider this grammar

$$S \longrightarrow \varepsilon \mid SS \mid 0S1 \mid 1S0.$$

- ▶ When w is created by rule $S \to SS$, we know that w = xy for $x, y \in L(S)$.
- ▶ Do we know that |x| < |w| and |y| < |w|?
- ► We can consider a minimum-length derivation in the proof to avoid this problem.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w. Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

There are four cases to consider, depending on the first production in this derivation.

▶ Case 1: The first production is $S \longrightarrow_{\epsilon} \varepsilon_{i}$

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ▶ Case 2: The first production is $S \longrightarrow 0S1$.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ▶ Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x\in L(S)$ such that |x|<|w|, we have #(0,x)=#(1,x).

- ► Case 1: The first production is $S \longrightarrow \varepsilon$.
- ▶ Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $S \longrightarrow SS$.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ▶ Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $S \longrightarrow SS$. In this case w = xy for some $x, y \in L(S)$.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ▶ Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $S \longrightarrow SS$. In this case w = xy for some $x, y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ightharpoonup Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $\underline{S \longrightarrow SS}$. In this case w = xy for some $x, y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because in that case we can shorten the derivation of w.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ▶ Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- Case 4: The first production is $S \longrightarrow SS$. In this case w = xy for some $x,y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because in that case we can shorten the derivation of w. In this case w = xy for some $x,y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because in that case we can shorten the derivation of w. In this case w = xy for some $x,y \in L(S)$.

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

There are four cases to consider, depending on the first production in this derivation.

▶ Case 1: The first production is $S \longrightarrow \varepsilon$.

- X Y W
- ▶ Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $S \longrightarrow SS$. In this case w = xy for some $x, y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because in that case we can shorten the derivation of w.

From I.H., we know that
$$\#(0,x)=\{(1,x)\}$$
 an $\#(0,y)=\underline{\#(1,y)}$; thus,

$$\#(0,w) = \#(0,x) + \#(0,y)$$
 $\forall y > w$

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

There are four cases to consider, depending on the first production in this derivation.

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- \blacktriangleright Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $S \longrightarrow SS$. In this case w = xy for some $x, y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because in that case we can shorten the derivation of w.

From I.H., we know that #(0,x) = \$(1,x) an #(0,y) = #(1,y); thus,

$$\#(0,w) = \#(0,x) + \#(0,y)$$

= $\#(1,x) + \#(1,y)$

Proof.

Consider $w \in L(S)$. Fix a minimum-length derivation of w.

Induction Hypothesis: Assume that for any string $x \in L(S)$ such that |x| < |w|, we have #(0,x) = #(1,x).

There are four cases to consider, depending on the first production in this derivation.

- ▶ Case 1: The first production is $S \longrightarrow \varepsilon$.
- ightharpoonup Case 2: The first production is $S \longrightarrow 0S1$. Case 3: The first production is $S \longrightarrow 1S0$.
- ▶ Case 4: The first production is $S \longrightarrow SS$. In this case w = xy for some $x, y \in L(S)$. Since we assume the minimum-length derivation, x and y cannot be ε because in that case we can shorten the derivation of w.

From I.H., we know that #(0,x) = \$(1,x) an #(0,y) = #(1,y); thus,

$$\#(0,w) = \#(0,x) + \#(0,y)$$

= $\#(1,x) + \#(1,y) = \#(1,w)$

In all cases, we conclude that #(0,w)=#(1,w).

Examples: Not palindromes

Strings in $(0+1)^*$ that are not palindromes.

$$\begin{array}{ccc}
\underline{S} & \longrightarrow & \underline{0S0} & \underline{1S1} & \underline{0Z1} & \underline{1Z0} \\
\underline{Z} & \longrightarrow & \underline{\varepsilon} & \underline{0Z} & \underline{1Z}
\end{array}$$

Why does this work?

Strings with the same number of 0s and 1s

$$L(s) \leq \left\{ \left. \omega \mid \#(o, \omega) = \#(1, \omega) \right\} \right.$$

$$S \longrightarrow \varepsilon \mid \underline{SS} \mid \underline{0S1} \mid \underline{1S0}.$$

We already show that every string in L(S) contains the same number of 0s and 1s. Why does it contain all possible required strings?

Strings in which the number of 0s is greater than or equal to the number of 1s

We can start with the previous grammar

$$S \longrightarrow \varepsilon \mid SS \mid 0S1 \mid 1S0.$$

And try to add more rules.

Strings in which the number of 0s is greater than or equal to the number of 1s

We can start with the previous grammar

$$S \longrightarrow \varepsilon \mid SS \mid 0S1 \mid 1S0.$$

And try to add more rules.

$$S \longrightarrow \varepsilon \mid SS \mid 0S1 \mid 1S0 \mid 0S \mid S0.$$

We can start with the previous grammar E of strings with equal number of 0 and 1.

$$E \longrightarrow \varepsilon \mid EE \mid 0E1 \mid 1E0.$$

There are two cases.

We can start with the previous grammar E of strings with equal number of 0 and 1.

$$E \longrightarrow \varepsilon \mid EE \mid 0E1 \mid 1E0.$$

There are two cases.

$$S \longrightarrow O \mid I$$

We can start with the previous grammar E of strings with equal number of 0 and 1.

$$E \longrightarrow \varepsilon \mid EE \mid \mathsf{0}E\mathsf{1} \mid \mathsf{1}E\mathsf{0}.$$

There are two cases.

$$S \longrightarrow O \mid I$$

$$O \longrightarrow EOO \mid EOE$$

How about I?

We can start with the previous grammar E of strings with equal number of 0 and 1.

$$E \longrightarrow \varepsilon \mid EE \mid \mathsf{0}E\mathsf{1} \mid \mathsf{1}E\mathsf{0}.$$

There are two cases.

$$S \longrightarrow O \mid I$$
 — Fin

$$O \longrightarrow E$$
0 $O \mid E$ 0 E

How about I?

$$I \longrightarrow E\mathbf{1}I \mid E\mathbf{1}E$$

Balanced parentheses

$$S \longrightarrow (S) \mid SS \mid \varepsilon$$

Balanced parentheses

$$S \longrightarrow (S) \mid SS \mid \varepsilon$$

$$S \longrightarrow (S)S \mid \varepsilon$$

Mutual induction

Consider grammar

 $S \longrightarrow 0A1 \mid \varepsilon$

What is
$$L(S)$$
?

 $A \rightarrow 1S0 \mid \varepsilon$ 0.0501 0.005010 0.005010

Mutual induction

Consider grammar

$$S \longrightarrow 0A1 \mid \varepsilon$$
 $A \longrightarrow 1S0 \mid \varepsilon$

What is L(S)?

From inspection, we may guess that $L(S) = (01)^*$. But how can we prove that?

Mutual induction

Consider grammar

$$S \longrightarrow 0A1 \mid \varepsilon$$
 $A \longrightarrow 1S0 \mid \varepsilon$

What is L(S)?

From inspection, we may guess that $L(S) = (01)^*$. But how can we prove that?

To prove $L(S) = (01)^*$, we must also prove $L(A) = (10)^*$ at the same time.

