Les K plus proches voisins

Exemple introductif

Exemple introductif

Données plus complexe

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

Quelle iris est-ce?

Pokémons

- 1. name: The English name of the Pokemon
- 2. japanese_name: The Original Japanese name of the Pokemon
- 3. pokedex_number: The entry number of the Pokemon in the National Pokedex
- 4. percentage_male: The percentage of the species that are male. Blank if the Pokemon is genderless.
- 5. type1: The Primary Type of the Pokemon
- 6. type2: The Secondary Type of the Pokemon
- 7. classification: The Classification of the Pokemon as described by the Sun and Moon Pokedex
- 8. height_m: Height of the Pokemon in metres
- 9. weight_kg: The Weight of the Pokemon in kilograms
- 10. capture rate: Capture Rate of the Pokemon
- 11. base_egg_steps: The number of steps required to hatch an egg of the Pokemon
- 12. abilities: A stringified list of abilities that the Pokemon is capable of having
- 13. experience_growth: The Experience Growth of the Pokemon
- 14. base happiness: Base Happiness of the Pokemon
- 15. against_?: Eighteen features that denote the amount of damage taken against an attack of a particular type
- 16. hp: The Base HP of the Pokemon
- 17. attack: The Base Attack of the Pokemon
- 18. defense: The Base Defense of the Pokemon
- 19. sp_attack: The Base Special Attack of the Pokemon
- 20. sp defense: The Base Special Defense of the Pokemon
- 21. speed: The Base Speed of the Pokemon
- 22. generation: The numbered generation which the Pokemon was first introduced
- 23. is_legendary: Denotes if the Pokemon is legendary.

Est il légendaire ??

Type de variable

- Variables qualitatives ou catégorielles.
 - Ex.: couleur des yeux, type d'engrais, méthode d'enseignement, catégorie grammaticale...
 - Deux types: nominal ou ordinal.
 - On appelle "niveaux" ou "modalités" les valeurs que peuvent prendre une variable qualitative.
- Variables quantitatives ou numériques
 - Elles peuvent être discrètes (à valeurs dans les entiers; example: comptage) ou continues (à valeurs dans les réels).
 - Deux types: intervalle (seule la différence à un sens, ex: heure) ou ratio (le rapport à un sens, ex: vitesse).
 - Ex.: taille, production en maïs, temps de réaction...
- Les procédures statistiques diffèrent en fonction des types des variables.

Variables

Fig. 1.1: Les deux grandes classes de variables.

Exemple introductif

Classification

 Elle permet de **prédire** si un élément est membre d'un groupe ou d'une catégorie donnée.

Classes

- Identification de groupes avec des profils particuliers
- Possibilité de décider de l'appartenance d'une entité à une classe
- Caractéristiques
 - Apprentissage supervisé : classes connues à l'avance
 - Pb : qualité de la classification (taux d'erreur)
 - Ex : établir un diagnostic (si erreur !!!)

Classification - Applications

- Comprendre les critères prépondérants pour l'achat d'un produit ou d'un service
- Isoler les critères explicatifs d'un comportement d'achat
- Analyse de risque: détecter les facteurs prédisant un comportement de non paiement
- Détecter les causes de réclamation

Processus à deux étapes

- Etape 1 :
- Construction du modèle à partir de l'ensemble d'apprentissage (training set)
- Etape 2 :
- Utilisation du modèle : tester la précision du modèle et l'utiliser dans la classification de nouvelles données

Construction du modèle

- •Chaque instance est supposée appartenir à une classe prédéfinie
- •La classe d'une instance est déterminée par l'attribut "classe"
- •L'ensemble des instances d'apprentissage est utilisé dans la construction du modèle
- Le modèle est représenté par des règles de classification, arbres de décision, formules mathématiques, ...

Utilisation du modèle

 Classification de nouvelles instances ou instances inconnues

- Estimer le taux d'erreur du modèle
 - la classe connue d'une instance test est comparée avec le résultat du modèle
 - Taux d'erreur = pourcentage de tests incorrectement classés par le modèle

Validation de la Classification (accuracy)

- Estimation des taux d'erreurs :
- Partitionnement : apprentissage et test (ensemble de données important)
 - Utiliser 2 ensembles indépendents, e.g., ensemble d'apprentissage (2/3), ensemble test (1/3)

Apprentissage D_t

Validation D\D_t

Validation de la Classification (accuracy)

- Validation croisée (ensemble de données modéré)
 - Diviser les données en k sous-ensembles
 - Utiliser k-1 sous-ensembles comme données d'apprentissage et un sous-ensemble comme données test

• Bootstrapping : n instances test aléatoires (ensemble de données réduit)

Exemple: Construction du modèle

Exemple: Utilisation du modèle

Exemple: Utilisation du modèle

Evaluation des méthodes de classification

- Taux d'erreur (Accuracy)
- Temps d'exécution (construction, utilisation)
- Robustesse (bruit, données manquantes,...)
- Extensibilité
- Interprétabilité
- Simplicité

Méthodes de Classification

- Méthode K-NN (plus proche voisin)
- Arbres de décision
- Réseaux de neurones
- Classification bayésienne
- Caractéristiques
 - Apprentissage supervisé (classes connues)

Dis moi qui sont tes amis, je te dirais qui tu es ...

KNN

Méthode des plus proches voisins

- Méthode dédiée à la classification (k-NN : nearest Neighbors).
- Méthode de raisonnement à partir de cas : prendre des décisions en recherchant un ou des cas similaires déjà résolus.
- Pas d'étape d'apprentissage : construction d'un modèle à partir d'un échantillon d'apprentissage (réseaux de neurones, arbres de décision, ...).
- Modèle = échantillon d'apprentissage + fonction de distance + fonction de choix de la classe en fonction des classes des voisins les plus proches,

Nearest-Neighbor

Algorithme kNN (K-nearest neighbors)

- Objectif: affecter une classe à une nouvelle instance
- donnée : un échantillon de m enregistrements classés (x, c(x))
- entrée : un enregistrement y
 - 1. Déterminer les k plus proches enregistrements de y
 - 2. combiner les classes de ces k exemples en une classe c
- sortie: la classe de y est c(y)=c

Qu'est ce qu'être proche?

- Vocabulaire
- Mesure de dissimilarité (DM): plus la mesure est faible plus les points sont similaires (~ distance)
- Mesure de similarité (SM) : plus la mesure est grande, plus les points sont similaires
- DM = borne SM

Mesure de la similarité

- •Il n'y a pas de définition unique de la similarité entre objets
 - Différentes mesures de distances d(x,y)
- •La définition de la similarité entre objets dépend de :
 - Le type des données considérées
 - Le type de similarité recherchée

Mesure de similarité

Distance

• Propriétés d'une distance :

1.
$$d(x,y) \ge 0$$

2.
$$d(x,y) = 0$$
 iff $x = y$

3.
$$d(x,y) = d(y,x)$$

4.
$$d(x,z) \le d(x,y) + d(y,z)$$

Similarité: vérifie s(I,j)=s(j,i), s(i,j) >= 0;
s(i,i)>=s(i,j)

Distance – Données numériques

- Combiner les distances : Soient x=(x1,...,xn) et y=(y1, ...,yn)
- Exemples numériques :
- Distance euclidienne : $d(x,y) = \sqrt{\sum_{n=1}^{n} (x_i y_i)^2}$ Distance de Manhattan : $d(x,y) = \sum_{i=1}^{n} |x_i y_i|^2$
- Distance de Minkowski : $d(x,y) = \sqrt[q]{\sum_{i=1}^{n} |x_i y_i|^q}$
- q=1 : distance de Manhattan.
- q=2 : distance euclidienne

Distance données énumératives

- Champs discrets:
 - Données binaires : d(0,0)=d(1,1)=0, d(0,1)=d(1,0)=1

 Donnée énumératives : distance nulle si les valeurs sont égales et 1 sinon.

 Donnée énumératives ordonnées : idem. On peut définir une distance utilisant la relation d'ordre.

Distance – Données énumératives

•Généralisation des variables binaires, avec plus de 2 états, e.g., rouge, jaune, bleu, vert

- Méthode 1: correpondance simple
 - m: # de correspondances, p: # total de variables

$$d(i,j) = \frac{p-m}{p}$$

Variables Ordinales

- Une variable ordinale peut être discrète ou continue
- L'ordre peut être important, ex: classement
- Peuvent être traitées comme les variables intervalles
 - remplacer \mathbf{x}_{if} par son rang $\mathbf{r}_{if} \in \{1, ..., M_f\}$ Remplacer le rang de chaque variable par une valeur dans [0, 1] en
 - Remplacer le rang de chaque variable par une valeur dans [0, 1] en remplaçant la variable f dans l'objet I par

$$z_{if} = rac{r_{if} - 1}{M_f - 1}$$

Utiliser une distance pour calculer la similarité

Variables Ordinales

- Formulaire de satisfaction
 - Att1: Très satisfait, Satisfait, Neutre, Mécontent
 - Donc 4 valeurs, dont les rangs sont 1,2,3,4

Devient:

(1-1)/(4-1), (2-1)/(4-1), (3-1)/(4-1), (4-1)/(4-1)

Donc Valeurs: 0, 1/3, 2/3, 3/3 (1)

Données mixtes

- Soit transformation des variables numériques en variables catégorielles
- (découpage en intervalles -> pris comme modalités) $d^2(i,j) = \frac{1}{2} \sum_{j=1}^{p} \delta_j(i,j)$ • \rightarrow distance/similarité \mathcal{B} UL tableau disjonctif
- transformation des variables catégorielles en variables numériques
- - utilisation de mesulfes "mixtes » Normaliser !!!!
- Principe:

Données mixtes

Normalisation d'un attribut

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i} \qquad a_i = \frac{v_i - Avg(v_i)}{StDev(v_i)}$$

 Ou directement dans le calcul de la distance Pour une variable numérique :

$$\delta_k(i,j) = \frac{(x_{ik} - x_{jk})}{(\max - \min)}$$

Distance – Données mixtes

- Exemple : (Age, Propriétaire résidence principale, montant des mensualités en cours)
- x=(30,1,1000), y=(40,0,2200), z=(45,1,4000)
- $d(x,y)=sqrt((10/15)^2 + 1^2 + (1200/3000)^2) = 1.27$
- $d(x,z) = sqrt((15/15)^2 + 0^2 + (3000/3000)^2) = 1.41$
- $d(y,z) = sqrt((5/15)^2 + 1^2 + (1800/3000)^2) = 1.21$
- plus proche voisin de x = y
- Distances normalisées.
- Sommation : d(x,y)=d1(x1,y1) + ... + dn(xn,yn)

Classification par plus proche voisin

Choisir k:

- Si k est trop petit, knn sera sensible au bruit
- Si k est trop grand, le voisinage pourrait inclure des points d'autres classes

Definition de Plus Proche Voisin

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

Algorithme kNN: sélection de la classe

- Basé sur l'apprentissage par analogie
- Basée sur une notion de distance et Similarité
- Solution simple : rechercher le cas le plus proche et prendre la même décision (Méthode 1-NN).
- Combinaison des k classes :
 - Heuristique : k = nombre d'attributs + 1
 - Vote majoritaire : prendre la classe majoritaire.
 - Vote majoritaire pondéré : chaque classe est pondérée. Le poids de c(xi) est inversement proportionnel à la distance d(y,xi).
- Confiance : Définir une confiance dans la classe attribuée = rapport entre les votes gagnants et le total des votes.

Vote pondéré

- Rectangulaire (loi uniforme): $\frac{1}{2}I(|d| \le 1)$
- Triangulaire: $(1-|d|)I(|d| \le 1)$
- Epanechnikov: $\frac{3}{4}(1-d^2)I(|d| \le 1)$
- Bi-poids: $\frac{15}{16}(1-d^2)^2I(|d| \le 1)$
- Tri-poids: $\frac{35}{32}(1-d^2)^3I(|d| \le 1)$
- Cosine $\frac{\pi}{4} \cos \left(\frac{\pi}{2} d \right) I(|d| \le 1)$
- $gaussien: \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}d^2)$
- Inverse $\frac{1}{|d|}$

Exemple

8 plus proches voisins

Forces et faiblesses

- Les attributs ont le même poids
 - centrer et réduire pour éviter les biais
 - certains peuvent être moins classant que d'autres
- Apprentissage paresseux
 - rien n'est préparé avant le classement
 - tous les calculs sont fait lors du classement
 - nécessité de technique d'indexation pour large BD
- Calcul du score d'une classe
 - peut changer les résultats; variantes possibles