ثانوية أبو حيان التوحيدي

سلسلة التماريسن

النهايات و الاتصال

السنة الدراسية : 2012-2011 الثانية باك علوم رياضية

أدرس اتصال الدالة f عند x_o في الحالات التالية:

$$\begin{cases} f(x) = \frac{\sqrt{1 + \sin x} - 1}{x}; x \neq 0 \\ f(0) = 1/2 \\ x_o = 0 \end{cases}; x \neq 0 \begin{cases} f(x) = \frac{x^3 - 2x - 1}{x + 2} \\ x_o = -3 \end{cases}$$

$$\begin{cases} f(x) = \frac{x^2 - 3x}{\sqrt{x + 1} - 2}; x \neq 3 \\ f(3) = 3 \\ x_o = 3 \end{cases} \begin{cases} f(x) = \frac{\sin(x - 1)}{x - 1} \\ f(1) = 1 \\ x_o = 1 \end{cases}$$

$$\begin{cases} f(x) = \frac{(\cos x)^3 - 1}{\sin^2 x}; x \neq 0 \\ f(0) = -3/2 \end{cases}; x \neq 0 \end{cases}$$

$$\begin{cases} f(x) = \frac{|x - 2| + 1}{x^2 + 1} \\ x_o = 2 \end{cases}$$

اندر س اتصال f على يسار و يمين x في الحالات التالية: $oldsymbol{arphi}$

$$f(x) = \frac{x - \sqrt{x}}{x - 1}; x < 1$$

$$f(1) = 1/2; x_o = 1$$

$$f(x) = \frac{\sqrt{x - 1}}{x - 1}; x > 1$$

$$f(x) = x - 1 = 0$$

$$f(x) = \frac{|x| + 2x}{x^2 - |x|}; x \neq 0$$

$$f(0) = -3$$

$$x_o = 0$$

 $oldsymbol{\Phi}$ حدد العددين a و b لكى تكون الدالة f متصلة فى $oldsymbol{\Phi}$ $\left\{egin{array}{l} f(x)=rac{x^2+x+a}{x-1}; & x>1 \ f(x)=rac{x+b}{2}; & x\leqslant 1 \end{array}
ight.$

$$\int\limits_{-\infty}^{\infty} f(x) = rac{\sin \pi x}{1-x}; \quad x
eq 1$$
نعتبر الدالة $f(1) = a$

حدد a علما أن f متصلة في a علما أن $\lim_{x \to +\infty} f(x) = 0$

$$\int\limits_{-\infty}^{\infty} f(x) = rac{x \sin x}{1 - \cos x}; \quad x
eq 0$$
 نعتبر الدالة $f(0) = a$

حدد a لکي تکون f متصلة في 0. ثم بين أن f مــُـصلة $.]0;2\pi[$ على

 2π هل f قابلة للتمديد بالاتصال على يسار

$$f(x)=rac{\sqrt{x^2+1}-1}{x};\quad x
eq 0$$
 نعتبر الدالة $f(0)=m$.] $0;+\infty[$ و $]-\infty;0[$ منصلة على f على تكون f متصلة على \mathbb{R}

تمرین 2 ..

$$f(x) = E(x) + (x - E(x))^2$$
 نعتبر الدالة ${f 0}$

- $x_o=2$ أدرس اتصال الدالة f في النقطة) أدرس
- $x_o = \sqrt{2}$ ب) أدرس اتصال الدالة f في النقطة
 - \mathbb{R} أدرس اتصال الدالة f على \mathbb{R}

$$. \left\{ egin{array}{ll} f(x) = x E\left(rac{1}{x}
ight); & x
eq 0 \ f(0) = 1 \end{array}
ight.$$
 $\left. \left\{ egin{array}{ll} f(x) = x E\left(rac{1}{x}
ight); & x
eq 0 \ \end{array}
ight.$

- ب) استنتج أن f متصلة في 0 على اليمين.
 - ج) أدرس اتصال f على اليسار في 0.
- . $\lim_{x o -\infty} f(x)$ و $\lim_{x o +\infty} f(x)$ د) أحسب النهايتين:
 - ه) أدرس اتصال f في 1.
 - $(orall x \in [0;1])$ f(f(x)) = f(x) (و) بين أن f(x) = f(x)

هل الدالة f تقبل تمديدا بالاتصال عند x_o في الحالات

$$\begin{cases} f(x) = \frac{\sqrt{3 + \cos x} - 2}{x^2} \\ x_o = 0 \end{cases} \begin{cases} f(x) = \frac{\sqrt{x + 2} - 2}{\sqrt{2x} - 2} \\ x_o = 2 \end{cases}$$

$$g\begin{cases} f(x) = \frac{-2x}{|x + 1| - |x - 1|} \\ x_o = 0 \end{cases} \begin{cases} f(x) = \frac{x^3 + 8}{x + 2} \\ x_o = -2 \end{cases}$$

$$\begin{cases} f(x) = \frac{|x^2 - 2x| - 8}{x^2 - 5x + 4} \\ x_o = 4 \end{cases} \begin{cases} f(x) = \frac{\sin(\pi x)}{1 + \cos(\pi x)} \end{cases}$$

تمرین 4 . \bullet . \bullet

1)
$$f(x) = \frac{3x^2 - 1}{x - 1}$$
 2) $f(x) = x\sqrt{x - 1}$

1)
$$f(x) = \frac{3x^2 - 1}{x - 1}$$

2) $f(x) = x\sqrt{x - 1}$
3) $f(x) = \cos\sqrt{x}$
4) $f(x) = \tan\left(\frac{\pi}{2x - 1}\right)$

5)
$$f(x) = \frac{x^2 - 3x}{\sqrt{x}}$$
; 6) $f(x) = \frac{x^2 - \sqrt{2 - x}}{|x + 1| - 2}$;

بين أن f متصلة على I ثم حدد f(I) في الحالات التالية ${\cal O}$ $f(x) = x\sqrt{x+1}; I = [0,1]$ و $f(x) = rac{x-4}{x-2}; I = [3,6]$ $\left\{egin{array}{l} f(x)=x+2;\; x\leqslant 1 \ f(x)=3x^2;\; x>1;\; I=[-3,2] \end{array}
ight.$

تمرين 5 . ______ في الحالات التالية، بين أن المعادلة تقبل على الأقل

I=[0,1] في الحالات التالية، بين أن المعادلة تقبل حلا وحيدا $oldsymbol{arTheta}$

و
$$\left\{egin{array}{ll} x+\sin x=1 \ I=\left[0,rac{\pi}{6}
ight] \end{array}
ight.$$
 و $\left\{egin{array}{ll} x+\sin x=1 \ I=\left[-2,-1
ight] \end{array}
ight.$

 $\cos \pi x = \frac{2}{3}x$ $I = \left| \frac{\pi}{6}, \frac{\pi}{3} \right|$

دالة متصلة على [a,b] o [a,b]. بين أن $f: [a,b] o [a,ar{b}]$ و $((\exists lpha \in [a,b])$ نقطة صامدة. (أي أن lpha = lpha

دالة متصلة على [a,b] بحيث f(a)=f(b). بين fأن المعادلة $f(x)=f\left(x+rac{b-a}{2}
ight)$ أن المعادلة أن المعاد

و a عددان حقیقیان بحیث a < b و a < b عددان حقیقیان بحیث a < b و $a \in \mathcal{B}$

 $\exists c\in]a,b[)$ $f(c)=rac{1}{a-c}+rac{1}{b-c}$. بين أن: [a,b] بين أن: g و متصلتين f g

علی [a,b] بحیث $g(x)\leqslant g(x)$. لیکن $x\in [a,b]$ علی

h بين أنه إذا كان لكل من f و g نقطة صامدة، فإن الدالة $h(x) = \lambda f(x) + (1-\lambda)g(x)$ المعرفة على [a,b] بما يلي: تقبل أيضا نقطة صامدة.

أدرس تغيرات الدالة العددية f المعرفة على $\mathbb R$ بما يلي $oldsymbol{arphi}$ نثم إستنتج أن المعادلة f(x)=0 تقبل، ثم إستنتج $r=10^{-1}$ حلا وحيدا lpha و اعط قيمة مقربة له بالدقة

 $(E): \sin x - rac{x}{2} = 0$ نعتبر المعادلة Θ

[-2,2] بين أن حلول المعادلة (E) تنتمي إلى المجال (ا ، ثم اعط عدد حلول المعادلة (E) معللا جوابك.

ب) اعط قيمة مقربة بالدقة $r=10^{-1}$ لأكبر حل من بين حلول المعادلة (E).

تمرین 6

 $f(x)=x-4\sqrt{x}+3$ نعتبر f المعرفة على \mathbb{R}^+ بما يلي:

- \mathbb{R}^+ بین أن f متصلة على $oldsymbol{0}$
- $I=[4;+\infty[$ ليكن ${
 m g}$ قصور الدالة f على المجال ${
 m g}$
- ا) بين أن ${f g}$ تقابل من I نحو مجال J ينبغي تحديده. J ب حدد $\mathbf{g}^{-1}(x)$ ب عدد $\mathbf{g}^{-1}(x)$

- $f(x) = rac{\sqrt{x}}{x-1}$ نعتبر f المعرفة بما يلي:
- بحیث $\left[\frac{5}{4};2\right]$ بحیث α من وجد عدد حقیقی 0
 - $I=]1;+\infty[$ ليكن f قصور الدالة f على المجال @
- ا) بین أن ${f g}$ تقابل من I نحو مجال J ینبغي تحدیده. ب) حدد $\lim_{x \to 0^+} \operatorname{g}^{-1}(x)$ نكل $\lim_{x \to 0^+} \operatorname{g}^{-1}(x)$ نكل $\operatorname{g}^{-1}(x)$

تمرین 8 .

 $f(x)=2\cos(x)-\cos(2x)$ بـ: $f(x)=2\cos(x)$ المعرفة على المع

- أدر س تغيرات الدالة f، ثم أنشئ منحناها في ممهم $.(oldsymbol{O}, \overrightarrow{oldsymbol{i}}, \overrightarrow{oldsymbol{j}})$
 - $I=\left|rac{\pi}{3};\pi
 ight|$ ليكن g قصور الدالة f على المجال @
 - .g بالدالة I صورة المجال المدالة (ا
- ب) ليكن λ من J. بين أن $\mathbf{g}(x)=\lambda$ تقبل حلا وحيدا I في المجال

 $f(x) = an^2(x) - 2\sqrt{3} an(x)$ نعتبر f المعرفة ب

- $I = \left[0; rac{\pi}{3}
 ight]$ ليكن ${f g}$ قصور الدالة f على المجال ${f 0}$
- ا) بین أن ${f g}$ تقابل من I نحو مجال J ینبغي تحدیده. J بیJ حدد $\mathrm{g}^{-1}(x)$ ٹکل x من
 - $I' = \left[2\pi; rac{7\pi}{3}
 ight]$ المجال f على المجال Q
- ينېغي J' نحو مجال J' ينېغي (۱
 - J' ب حدد x من $h^{-1}(x)$ عدد

 $2 ext{Arctg} rac{1}{2} = ext{Arctg} rac{4}{3}$ أثبت المتساويات التائية: $oldsymbol{0}$ $5 \operatorname{Arctg} \frac{1}{7} + 2 \operatorname{Arctg} \frac{3}{79} = \frac{\pi}{4}$ $2 \operatorname{Arctg} \frac{1}{5} + \operatorname{Arctg} \frac{1}{7} + 2 \operatorname{Arctg} \frac{1}{8} = \frac{\pi}{4}$

و $\operatorname{Arctg}(x)$ + $\operatorname{Arctg}\sqrt{3}x = rac{7\pi}{12}$: حل في $\mathbb R$ المعادلات $\operatorname{Arctg}(2x) + \operatorname{Arctg}(3x) = \frac{\pi}{4}$ $\operatorname{Arctg}(x) = 2\operatorname{Arctg} \frac{1}{2}$

 $Arctg(x-3) + Arctg(x) + Arctg(x+3) = \frac{5\pi}{4}$

9 Arctg
$$\left(\frac{\sqrt{1-\cos x}}{\sqrt{1+\cos x}}\right)$$
 9 sin (Arctg(x)) 9 . Arctg $\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ + Arctg $\sqrt{1+x^2}-x$

التالية: $\lim_{x o 0^+} rac{\operatorname{Arctg}(x)}{\operatorname{Arctg}\sqrt{x}}$ و $\lim_{x o 1} rac{\operatorname{Arctg}\left(\sqrt{x}-1
ight)}{x-1}$ و $\lim_{x o 0^+} x \operatorname{Arctg} rac{1}{x}$

$$\lim_{x \to 0} rac{\operatorname{Arctg}\left(rac{1}{x^2}
ight) - rac{\pi}{2}}{x^2}$$
 $\lim_{x \to 0} rac{\operatorname{Arctg}(x^2 + 2x)}{x}$

$$\lim_{x o -\infty} \operatorname{Arctg} rac{\sqrt{3}x}{\sqrt[3]{1-x^3}}$$
 $\lim_{x o +\infty} x \operatorname{Arctg} \left(rac{1}{x\sqrt{x}}
ight)$ $\lim_{x o +\infty} x \left(\operatorname{Arctg}(x) - rac{\pi}{2}
ight)$

$$egin{cases} f(x) = \operatorname{Arctg}\sqrt{rac{x}{1-x}}; & 0 \leqslant x < 1 \ f(1) = rac{\pi}{2} \end{cases}$$

أدرس اتصال f على [0;1]. ثم بين أن f تقابل من [0;1] نحو J من x لكل $f^{-1}(x)$ مجال J من عدد مجال

تمرین 13 f . f دالم معرفه بما یلی:

$$\begin{cases} f(x) = \operatorname{Arctg}\left(\frac{\sqrt{x^2 + 1} - 1}{x}\right); & x \neq 0 \\ f(0) = 0 \end{cases}$$

- أدرس اتصال f في 0. ثم بين أن f دالة فردية.
- $oldsymbol{arphi}$ أدرس رتابة الدالة f ، ثم ضع جدول التغيرات.
- ه بین أن f تقابل من $\mathbb R$ نحو مجال J يتم تحديده. $oldsymbol{\mathfrak{G}}$
 - f(x) عدد f^{-1} ، ثم استنتج تعبيرا مبسطا f

و
$$A=rac{\sqrt[3]{\sqrt{8}}\sqrt{\sqrt[4]{32}}}{\sqrt[5]{2} \sqrt[12]{64}}$$
 : بسط ما يلي $C=rac{27^{rac{2}{3}}.49^{rac{-1}{2}}.16^{rac{3}{4}}}{\left(9\sqrt{3}
ight)^{rac{2}{5}}}$ و $B=rac{\sqrt[15]{3}\sqrt[3]{9}(\sqrt{3})^2}{\sqrt[4]{27}(\sqrt{\sqrt{3}})^2}$ $D=rac{\sqrt[3]{4}\sqrt{8}(\sqrt[5]{\sqrt{2}})^2}{\sqrt[3]{4}}$

 $.\sqrt{2}; \sqrt[3]{7}; \sqrt[4]{10}$ ورتب الأعداد التالية ترتيبا تناقصيا:

$$\sqrt{2}; \sqrt[3]{3}; \sqrt[4]{4}; \sqrt[6]{6}$$
 رتب الأعداد التالية ترتيبا تزايديا: $\sqrt{2}; \sqrt[3]{3}; \sqrt[4]{4}; \sqrt[6]{6}$

- التالية: $rac{\sqrt[3]{1-x}-1}{\sin x}$ 9 $\lim_{x o 1^+}rac{\sqrt{x^2-1}}{\sqrt[3]{x-1}}$ 9 $\lim_{x o 0}rac{1-\sqrt[3]{x+1}}{x}$ $\lim_{x \to 2} \frac{\sqrt[3]{x+6} - \sqrt{x+2}}{x-2}$
- $\lim_{x \to -\infty} \sqrt[3]{5 8x^3} 3x$ و $\lim_{x o +\infty} \sqrt[3]{x^3+1} \, - \, x$ $\lim_{x o -\infty}rac{\sqrt[4]{x^4+x-3}}{3x}$ و $\lim_{x o -\infty}rac{\sqrt{x^2+3}}{\sqrt[3]{2-x^3}}$

تمرین 16 . ـ

 \mathbb{R} نحو \mathbb{R} بما یلی: \mathbb{R} نحو \mathbb{R} بما یلی:

$$\left(orall (x,y) \in \mathbb{R}^2
ight) \quad f(x+y) + 2f(x-y) = rac{f(x)}{f(y)}$$

أحسب f(0)، ثم بين أن f دالة ثابتة.

تمرین 17 .

حل في \mathbb{R} المعادلات التالية: $\sqrt[6]{x}=\sqrt[6]{1-\sqrt{x}}$ و $\sqrt[3]{\sqrt[3]{1+x}} + \sqrt[3]{1-x} = \sqrt[6]{1-x^2}$ و $\sqrt[3]{1+x} + \sqrt[3]{1-x}$ $\left(t = \sqrt[6]{rac{1+x}{1-x}}
ight)$ يمکنڪ وضع

 $x+2>\sqrt[3]{x^2+8}$ المتراجحات التالية: $\mathbb R$ المتراجحات التالية:

$$\sqrt[3]{1+(3+x)\sqrt{x}+3x} - \sqrt[3]{1-(3+x)\sqrt{x}+3x}$$

$$\geqslant x+m$$

-حیث m بار امتر

نعتبر الدالة العددية f المعرفة بمار $f(x) = -2 + \sqrt[3]{8 - x^3}$

- حدد D_f ، ثم أدرس اتصال f على D_f ،
- نحو مجال J يتم تحديده.
 - J لكل x من المجال $f^{-1}(x)$ عدد صيغة ${\mathfrak G}$
 - $x\in J$ حل المعادلة $f^{-1}(x)=-\sqrt[3]{56}$ حيث G
- بين أن المعادلة x-1) بين أن المعادلة x-11;2الأقل في المجال 2;1

نعتبر الدالة العددية f المعرفة بما يلي:

$$\left\{egin{array}{l} f(x)=rac{\pi}{2}+rac{\sqrt[3]{x-1}}{1+\sqrt[3]{x-1}}; & x\geqslant 1 \ f(x)=rctan\left(rac{1+\sqrt{x}}{\sqrt{1-x}}
ight) & x< 1 \end{array}
ight.$$

- $D_f=\mathbb{R}^*$ بين أن $\mathbf{0}$
- $\lim_{x o +\infty}f(x)$ أحسب النهاية $oldsymbol{arrho}$
- $x_0=1$ بين أن الدالة f متصلة في النقطة $oldsymbol{\$}$
- 0;1[بين أن الدالة f متصلة على المجال 0;1[
- ليكن g قصور الدالة f على المجال $[1;+\infty[$ نضع $h(x)=rac{x}{1+x}$
- $(\forall x\in[1;+\infty[)$: $g(x)=h(\sqrt[3]{x-1})+rac{\pi}{2}$ اتحقق من أن g تحقق من أن g تزايدية قطعا على g
- ب) بين أن g تقابل من المجال ∞ [1; نحو مجال
 - J عدد تعبيرا لـ $g^{-1}(x)$ لكل x من المجال $g^{-1}(x)$

تمرین 20 $rac{20}{100}$ لتكن f الدالة المعرفة على $rac{1}{2}$ بما يلي: $f(x) = \frac{1}{2}(4 + \sin x) - x$

- $\lim_{x o +\infty} f(x)$ و $\lim_{x o -\infty} f(x)$ أحسب النهايتين $\mathbf{0}$
- بین أن f تقابل من $\mathbb R$ نحو مجال J يتم تحديده.
 - $\mathbb R$ استنتج أن f(x)=0 تقبل حلا و حيدا lpha
- بین أن $rac{5\pi}{6} < lpha < rac{2\pi}{3}$ ثم حدد إشارة f(x) تبعا لقیم x من $oldsymbol{\Phi}$

تمرین 21 . 21 . 1 لتكن f الدالة المعرفة على $\mathbb R$ بما يلي:

$$f(x) = \text{Arctg}(3x) + 2x - 1$$

- $\mathbb R$ بين أن f تقابل من $\mathbb R$ نحو
- $\mathbb R$ بين أن المعادلة $a=f^{-1}(x)=0$ تقبل حلا و حيدا lpha في $oldsymbol{arrho}$ و أن $lpha < rac{1}{3}$ و
- :نم بین أن $lpha \, = \, 1 ext{Arctg}(3lpha)$ ثم بین أن $.1 - \frac{\pi}{4} < \alpha < \frac{1}{3}$
 - $(orall x \in]lpha; +\infty[): \quad f^{-1}(x) < x$ بين أن $oldsymbol{0}$

f(1)=1 لتكن f دالة معرفة من $\mathbb R$ نحو $\mathbb R$ نفترض أن $f(x)f\left(rac{1}{x}
ight)=1; \quad x
eq 0 \quad (1)$

 $f(x+y)=f(x)+f(y) \quad (x,y)\in \mathbb{R}^2 \quad (2)$

- أحسب f(0) ثم بين أن f دالة فردية.
- $.(orall r\in \mathbb{Q})$ أثبت أن: f(r)=r أثبت أ $oldsymbol{arphi}$
- تحقق أن: $(orall x \in \mathbb{R})$ $f\left(x^2
 ight) = \left(f(x)
 ight)^2$ يمكنڪ $oldsymbol{\mathfrak{G}}$ حساب $f\left(rac{1}{x(1-x)}
 ight)$. ثم استنتج أن f تزايدية.

تمرين 23 $^{\circ}$. $^{\circ}$ لتكن $^{\circ}$ الدالة المعرفة كما يلي:

$$f(x) = \frac{1}{2} \left(\sqrt{\frac{2x}{x+1}} + \sqrt{2x - x^2} \right)$$

- $.D_f$ على أن f متصلة على $.D_f$ حدد
 - :بین أنه یوجد (lpha,eta) من \mathbb{R}^2 بحیث

$$\left(\forall x \in \left[\frac{1}{2}; \frac{3}{2}\right]\right) \ 2\alpha \leqslant \sqrt{\frac{2x}{x+1}} + \sqrt{2x-x^2} \leqslant 2\beta$$

- J نحو مجال I=[0;1] نحو مجال f
 - يكن [a,b] مجالا ضمن I بين أنه: . $(\exists c \in [a,b]) \ / \ f(c) = rac{a-c}{a-2b+c}$

ab < 1 ليكن a و b عددين حقيقيين بحيث

 $.\beta = \operatorname{Arctg}(b)$ $g = \alpha \neq \operatorname{Arctg}(a)$

- . $\cos(\alpha+\beta)=\cos(\alpha)\cos(\beta)$ (1 ab) :بین آن
 - $-rac{\pi}{2}<lpha+eta<rac{\pi}{2}$ استنتج أن: 2
- $\operatorname{Arctg}(a) + \operatorname{Arctg}(b) = \operatorname{Arctg}\left(\frac{a+b}{1-ab}\right)$:بین آن
- $\operatorname{Arctg}(2+\sqrt{3}) \operatorname{Arctg}(2-\sqrt{3})$ استنتج قيمة العدد ${f 0}$
- نعتبر المتتالية $(u_n)_{n\geqslant 1}$ المعرفة بما يلي: $oldsymbol{\Theta}$ $u_n = \operatorname{Arctg}\left(rac{2}{1^2}
 ight) + \operatorname{Arctg}\left(rac{2}{2^2}
 ight) + \ldots + \operatorname{Arctg}\left(rac{2}{n^2}
 ight)$
 - ا) تحقق أنه لكل k من \mathbb{N}^* لدينا:
- $Arctg\left(\frac{2}{k^2}\right) = Arctg(k+1) Arctg(k-1)$
- $u_n = \operatorname{Arctg}(n+1) + \operatorname{Arctg}(n) \frac{\pi}{4}$ ب) استنتج أن:

تمرین 25 .

نعتبر الدالة العددية f المعرفة بما يلي:

$$f(x) = \operatorname{Arctg}\left(\sqrt{1+x^2} - x
ight)$$

$$.(orall x \in \mathbb{R}): \quad 0 < f(x) < rac{\pi}{2}$$
 بين أن: $oldsymbol{0}$

ادينا:
$$\mathbb R$$
 بين أنه لكل x من $\mathbb R$ لدينا:

$$.1 - \tan^2(f(x)) = 2x \tan(f(x))$$

$$x \in \mathbb{R}: \ x = an\left(rac{\pi}{2} - 2f(x)
ight)$$
 : استنتج آن

$$f(x): \ f(x) = rac{\pi}{4} - rac{1}{2} \mathrm{Arctg}(x)$$
 استنتج آن G

26 تمرین

$$f(x) = \operatorname{Arctg}\left(rac{x}{\sqrt{x}-1}
ight)$$
تكن f الدالة المعرفة ب

$$\lim_{x o +\infty} f(x)$$
 عدد \mathscr{D}_f ثم أحسب النهاية: (۱

$$\mathscr{D}_f$$
 بین أن f متصلة علی کل مجال ضمن \mathscr{D}_f

$$x_o=1$$
 هل الدالة $x_o=1$ تقبل تمدیدا بالاتصال في $x_o=1$ علل جوابڪ

لكل
$$x$$
 من \mathscr{D}_f نضع: $\dfrac{x}{\sqrt{x-1}}$. أدرس تغيرات الدالة u على \mathscr{D}_f ، ثم استنتج تغيرات f على g_f .

$$m{J}=[0;1[$$
 ليكن g قصور f على المجال $m{3}$

بين أن
$$g$$
 تقبل دالة عكسية g^{-1} معرفة على مجال J ينبغى تحديده.

$$J$$
 ب $g^{-1}(x)$ با أحسب $g^{-1}(x)$ لكل

- 0=3-

لتكن f و g دالتين متصلتين على قطعة g بحيث: $(\Re): (\forall x \in [a;b]) (\exists y \in [a;b]) \ / \ f(x) = g(y)$ بين أنه يوجد على الأقل عدد حقيقي g من g بحيث: g(c) = g(c)

تمرین 28 .۔

التكن f دالة متصلة على المجال [a;b[بحيث:

$$\lim_{x o a^+}f(x)=+\infty$$
 g $\lim_{x o b^-}f(x)=-\infty$

$$f(lpha).f(eta)<0$$
. بين أنه يوجد $lpha$ و $lpha$ من $a;b[$ بحيث أنه يوجد $lpha$

ر استنتج أن المعادلة
$$f(x)=0$$
 تقبل حلا على الأقل في $[a;b[$

$$c$$
 يبين أنه يوجد $[a;b]$ لتكن g دالة متصلة على المجال $[a;b]$. بين أنه يوجد $[a;b]$ من $[a;b]$

:بحيث
$$]a;b[$$
 بين أنه يوجد d بين أنه يوجد

$$\sqrt{rac{b-d}{d-a}} - \sqrt{rac{d-a}{b-d}} = \sqrt{(b-d)(d-a)}$$