Компьютерные методы небесной механики Метод Адамса

Павел Соболев

23 сентября 2021

Линейные многошаговые методы

Рассмотрим задачу с начальными данными в форме

$$y' = f(t, y), \quad y(t_0) = y_0.$$
 (1)

Результат аппроксимации решения y(t):

$$y_i pprox y(t_i)$$
, где $t_i = t_0 + ih$. (2)

Линейный многошаговый метод:

$$\begin{split} y_{n+s} + a_{s-1} \cdot y_{n+s-1} + a_{s-2} \cdot y_{n+s-2} + \cdots + a_0 \cdot y_n &= \\ &= h \cdot (b_s \cdot f(t_{n+s}, y_{n+s}) + b_{s-1} \cdot f(t_{n+s-1}, y_{n+s-1})) + \\ &\quad + \cdots + b_0 \cdot f(t_n, y_n)). \end{split} \tag{3}$$

Примеры явных методов

Метод Эйлера (s=1, $a_{s-1}=-1$, $b_s=0$):

$$y_{n+1} = y_n + hf(t_n, y_n);$$
 (4)

Двухшаговый метод Адамса–Башфорта

$$(s=2, a_{s-1}=-1, b_s=0)$$
:

$$y_{n+2} = y_{n+1} + \frac{3}{2}hf(t_{n+1}, y_{n+1}) - \frac{1}{2}hf(t_n, y_n); \tag{5}$$

Трёхшаговый метод Адамса-Башфорта

$$(s=3, a_{s-1}=-1, b_s=0)$$
:

$$y_{n+3} = y_{n+2} + \frac{23}{12}hf(t_{n+2}, y_{n+2}) - \frac{16}{12}hf(t_{n+1}, y_{n+1}) + \frac{5}{12}hf(t_n, y_n).$$
(6)

Коэффициенты методов Адамса-Башфорта

Используя полиномиальную интерполяцию, находим многочлен p степени s-1, такой что

$$p(t_{n+i}) = f(t_{n+i}, y_{n+i}), \quad i = 0, \dots, s-1. \tag{7}$$

Интерполяционный многочлен Лагранжа:

$$p(t) = \sum_{j=0}^{s-1} \frac{(-1)^{s-j-1} f(t_{n+j}, y_{n+j})}{j! (s-j-1)! h^{s-1}} \prod_{\substack{i=0\\i\neq j}}^{s-1} (t-t_{n+i}). \tag{8}$$

Решение уравнения y'=p(t) — интеграл от p, а значит,

$$y_{n+s} = y_{n+s-1} + \int_{t_{n+s-1}}^{t_{n+s}} p(t) dt.$$
 (9)

Точность явных методов

Подставляя p в (9), получаем

$$b_{s-j-1} = \frac{(-1)^j}{j! (s-j-1)!} \int_0^1 \prod_{\substack{i=0\\i\neq j}}^{s-1} (u+i) du,$$

$$i = 0, \dots, s-1.$$
(10)

Замена f(t,y) на интерполяционный многочлен p даёт ошибку порядка h^s . Таким образом, s-шаговый явный метод Адамса–Башфорта имеет глобальную ошибку $O(h^s)$.

Примеры неявных методов

Обратный метод Эйлера (s=0, $a_{s-1}=-1$, $b_s \neq 0$):

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}); (11)$$

Метод трапеций (s=1, $a_{s-1}=-1$, $b_s \neq 0$):

$$y_{n+1} = y_n + \frac{1}{2}hf(t_{n+1}, y_{n+1}) + \frac{1}{2}hf(t_n, y_n);$$
 (12)

Двухшаговый метод Адамса-Мультона

$$(s=2, a_{s-1}=-1, b_s \neq 0)$$
:

$$\begin{aligned} y_{n+2} &= y_{n+1} + \frac{5}{12} h f(t_{n+2}, y_{n+2}) + \\ &+ \frac{2}{3} h f(t_{n+1}, y_{n+1} - \frac{1}{12} h f(t_n, y_n)). \end{aligned} \tag{13}$$

Точность неявных методов

Метод получения коэффициентов неявных методов аналогичен тому, что был у явных. Однако теперь в процессе интерполяции участвует и точка t_n :

$$b_{s-j} = \frac{(-1)^j}{j! (s-j)!} \int_0^1 \prod_{\substack{i=0\\i\neq j}}^s (u+i-1) du,$$
(14)

$$j=0,\ldots,s.$$

Добавление этой точки повышает точность метода до $O(h^{s+1})$.

Интегрирование уравнений движения

Уравнения движения

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}, \quad \frac{d\mathbf{v}}{dt} = \varkappa \frac{\mathbf{r}}{r^3}$$
 (15)

интегрируются двухшаговым методом Адамса-Башфорта как

$$r_{i+2} = r_{i+1} + \frac{3}{2}hv_{i+1} - \frac{1}{2}hv_i; {16}$$

$$v_{i+2} = v_{i+1} + \frac{3}{2}h\varkappa \frac{r_{i+1}}{r^3} - \frac{1}{2}h\varkappa \frac{r_i}{r^3}.$$
 (17)

Листинг 1: Реализация двухшагового метода Адамса-Башфорта

```
# < . . . >
# Compute the second value of the solution
# by using the one-step Euler's method
\rho = norm(r)^3
for k in 1:N
    a = x * r[k] / \rho
    r[k] += h * v[k]
    v[k] += h * a
end
# Define a couple of independent coefficients
k_1 = 3 / 2 * h; k_2 = 1 / 2 * h
# Compute the rest in two steps
for in 2:n
    \rho_k = \text{norm}(r)^3
    \rho_{k-1} = \text{norm}(r_{k-1})^3
    # Define a couple of dependent coefficients
    k_3 = k_1 * \chi / \rho_k
    k_4 = k_2 * x / \rho_{k-1}
    for k in 1:N
         a_1 = k_3 * r[k]
         a_2 = k_4 * r_{k-1}[k]
         r_{k-1}[k] = r[k]
         r[k] += k_1 * v[k] - k_2 * v_{k-1}[k]
         v_{k-1}[k] = v[k]
         v[k] += a<sub>1</sub> - a<sub>2</sub>
    end
end
# <...>
```

Результаты интегрирования положений

Начальные данные:

$$\mathbf{r} = (1.0, 0.0), \quad \mathbf{v} = (0.0, 0.5).$$
 (18)

Таблица 1: Сравнение результатов интегрирования положений

h	n	$r_{ab2}[1]$	$r_{ab2}[2]$
10^{-2}	10^{2}	0.432121746394179	0.37815749277595
10^{-3}	10^{3}	0.431860672712581	0.37796026535278
10^{-4}	10^{4}	0.431858022761150	0.37795824197535
10^{-5}	10^{5}	0.431857996224758	0.37795822169228
10^{-6}	10^{6}	0.431857995959396	0.37795822148942
10^{-7}	10^{7}	0.431857995956774	0.37795822148731

Результаты интегрирования скоростей

Таблица 2: Сравнение результатов интегрирования скоростей

h	n	$v_{ab2}[1]$	$v_{ab2}[2]$	
10^{-2}	10^{2}	-1.3165065004310472	0.00568983216741340	
10^{-3}	10^{3}	-1.3171652194392918	0.00501794516416678	
10^{-4}	10^{4}	-1.3171719282657055	0.00501101126551030	
10^{-5}	10^{5}	-1.3171719954650160	0.00501094171752966	
10^{-6}	10^{6}	-1.3171719961370885	0.00501094102188871	
10^{-7}	10^{7}	-1.3171719961438284	0.00501094101492268	

Результаты интегрирования положений за цикл

Таблица 3: Сравнение результатов интегрирования положений за цикл

h	n	$r_{ab2}[1]$	$r_{ab2}[2]$
10^{-2}	271	1.0509719048610	-0.16457519920592
10^{-3}	2714	1.0000767603444	-0.00124383331363
10^{-4}	27141	1.0000000820458	-0.00000190353812
10^{-5}	271408	1.0000000001267	-0.00000058425521
10^{-6}	2714081	1.000000000000009	0.00000002832152
10^{-7}	27140809	0.999999999999	-0.00000002055261

Результаты интегрирования скоростей за цикл

Таблица 4: Сравнение результатов интегрирования скоростей за цикл

h	n	$v_{ab2}[1]$	$v_{ab2}[2]$
10^{-2}	271	0.15737122990461	0.45300615550211
10^{-3}	2714	0.00076998949004	0.49996341808806
10^{-4}	27141	-0.00001339288816	0.49999996625940
10^{-5}	271408	0.00000099650822	0.4999999998835
10^{-6}	2714081	-0.00000005836344	0.500000000000010
10^{-7}	27140809	0.00000004108792	0.500000000000004

Результаты вычисления интеграла энергии

Интеграл энергии вычисляется как

$$\frac{1}{2}v^2 - \frac{\varkappa^2}{r} = E = const. \tag{19}$$

Для указанных начальных данных E = -0.875.

Таблица 5: Сравнение результатов вычисления интеграла энергии

h	n	E	ΔE
10^{-2}	10^{2}	-0.8748722073707290	0.000127792629270984
10^{-3}	10^{3}	-0.8749986881874487	0.000001311812551252
10^{-4}	10^{4}	-0.8749999868440875	0.000000013155912471
10^{-5}	10^{5}	-0.8749999998683713	0.000000000131628708
10^{-6}	10^{6}	-0.874999999985617	0.000000000001438294
10^{-7}	10^{7}	-0.874999999999362	0.0000000000000063838

Результаты вычисления интеграла энергии за цикл

Таблица 6: Сравнение результатов вычисления интеграла энергии за цикл

h	n	E	ΔE
10^{-2}	271	-0.825054247099501	0.049945752900499
10^{-3}	2714	-0.874940466010563	0.000059533989437
10^{-4}	27141	-0.874999934733018	0.000000065266982
10^{-5}	271408	-0.874999999878500	0.000000000121501
10^{-6}	2714081	-0.874999999999061	0.0000000000000939
10^{-7}	27140809	-0.875000000000267	0.0000000000000267

Рис. 1: Визуализация орбиты при $h=10^{-2}$, $n=10^2$

Рис. 2: Визуализация орбиты при $h=10^{-3}$, $n=10^3$

Рис. 3: Визуализация орбиты при $h=10^{-4}$, $n=10^4$

Рис. 4: Визуализация орбиты при $h=10^{-5}$, $n=10^{5}$