| Last Time                                                                  |
|----------------------------------------------------------------------------|
| Bayesion Network - Joint Distribution                                      |
| D                                                                          |
|                                                                            |
| <b>6</b>                                                                   |
| d-separation If all paths between A and B                                  |
| d-separation If all paths between A and B  are d-separated by G then ALBIG |
|                                                                            |
| This Time                                                                  |
| Sampling                                                                   |
| Inference                                                                  |
| Learning                                                                   |
|                                                                            |
|                                                                            |
| BIDIA?                                                                     |
| B (D)                                                                      |
| $G = \{A\}$                                                                |
| 0                                                                          |
| ( )E                                                                       |
| (E)                                                                        |
|                                                                            |
| Path d-separated                                                           |
| B=A→D Yes                                                                  |
| B→ C←D yes                                                                 |
| $B \rightarrow C \leftarrow A \rightarrow D$ Yer                           |
| e. If the advented                                                         |
| Since all paths are d-separated                                            |
| B」D A https://kunalmenda.com/2019/02/21/causation-and-corr                 |
| GBDC? not true https://kunalmenda.com/2019/02/21/causation                 |

BEA >D

## Inference Given: Bayesian Network G, 0 Values of some variables Output: Distributions of Target Variables BN FOMDP Inference Belief Update Trivial Case: Know upstream Know: 5=1, B=1 Infen: P(C| 5=1, B=1) Chair Rule P(C(S,B) = P(C,S,B) = P(S,B)P(C,5,B)= EP(B)P(5)P(E)SB)P(C)E) Harder Case: Know: (=1, D=) Infer: P(B(C=1, D=1) Laterence

Approximate Exact

Exact P(B=1|C=1,D=1) = P(B=1,C=1,D=1) P(D=1,C=1) $P(B=1,D=1,C=1) = \sum_{e,s} P(B=1,S=s,E=e,D=1,C=1)$ 

=  $\sum_{e \in P} P(B=1) P(S=S) P(E=|B=1, S=S) P(D=1|E=e)$  P(C=1|E=e)

$$P(B=1)P(S=S)P(E=|B=1,S=S)P(D=1|E=e)$$

$$P(G=1|E=e)$$

marginalization



| chos | 462 | , |
|------|-----|---|
| 040  | er  |   |
| CY   | de  | 5 |

1. Sum Product Variable Elimination & hand to choose optimal ordering

Z. Beliet Propagation = Efficient if no undirected cycles



Exact Interence on Bayesian Network 15 NP-hand

## Approximate Inference

Method 1: Direct Sampling

1. Sample

Z. Court how many match

(b) s(i) e() d(i) c(i)

P(B=1 (=1,D=1)=[=:1(b()=1) 1(2) 1 \ c()=1)

BSEDC

$$P\left(B=1 \mid C=1, D=1\right) = \frac{O}{2} = O$$

Low probability events have low chance of getting sampled

## Method Z: Likelihood Weighted Sampling

1. Topological Sort

Z, Fix known variables &

3. Sample unknown veriables

5. Court up weights for matches  $P(B=1|D=1,(=1)=\frac{\sum_{i}w_{i}1(b^{(i)}=1)}{\sum_{i}w_{i}}$ 

$$\frac{B \le E D C}{00011} = \frac{W}{P(D=1|E=1)} P(C=1|E=1)$$

$$\frac{100011}{P(D=1|E=1)} P(C=1|E=0)$$

$$\frac{P(B=1|D=1,C=1)}{P(B=1|D=1,C=1)} = \frac{W_3}{W_1+W_2+W_3}$$

BN Demot Weighted Weighted Particle Sampling Filtering

Glbbs Sampling - Markov Choin Monte Carlo

Given: Data

Book

Output: B.N. G, 0