Hierarchical Cut Labelling - Scaling Up Distance Queries on Road Networks

Muhammad Farhan¹, Henning Koehler², Robert Ohms¹, Qing Wang¹

- ¹Graph Research Lab, School of Computing, Australian National University, Australia
- ²School of Mathematical and Computational Sciences, Massey University, New Zealand

1. Overview

HC2L is a scalable algorithm for answering distance queries on large road networks. Our code is publicly available on **GitHub**.

HC2L-Paper

HC2L-Code

2. Road Networks

Let $G = (V, E, \omega)$ be a weighted graph, where

- V represents intersection,
- E represents roads between intersections,
- ω is a weight function.

How to efficiently compute the weight of a shortest path between vertices on road networks?

3. 2-Hop Labelling Approaches

A distance labelling L over G is a 2-hop labeling if for any two vertices $s, t \in V$,

$$d_G(s,t) = \min_{u \in L(s) \cap L(t)} \{ d_G(s,u) + d_G(u,t) \}.$$

Three popular techniques that exploit hierarchical structures to compute 2-hop labellings:

- 1. Hub-based Labellings;
- 2. Highway-based Labellings;
- 3. Tree-Decomposition Labellings.

4. High-Level Framework - An Illustration

There are three main components: hierarchical balanced cuts, balanced tree hierarchy, and hierarchical cut 2-hop labelling (HC2L).

5. Main Ideas in Our Solution

Hierarchical balanced cuts. Our algorithm recursively bisects a graph G in two steps:

- 1. Balanced partitioning: partition $G' \subseteq G$ into two partitions connected via a cut region;
- 2. Minimal vertex cuts: find a minimal vertex cut within the cut region.

Balanced tree hierarchy. A binary tree $H_G = (\mathcal{N}, \mathcal{E}, \ell)$ with tree nodes \mathcal{N} , tree edges \mathcal{E} , and a total surjective function $\ell: V(G) \to \mathcal{N}$, satisfying the following two conditions:

1. For any internal tree node $N_i \in \mathcal{N}$, its left and right subtrees are balanced:

$$|\text{Left}(N_i)|, |\text{Right}(N_i)| \le (1 - \beta) \cdot |\text{Subtree}(N_i)|.$$

2. For any two vertices $s, t \in V$, their lowest common ancestor (LCA) in H_G contains at least one vertex on a shortest-path between s and t.

Hierarchical cut 2-hop labelling (HC2L). Let \leq be the *vertex quasi-order* defined by a balanced tree hierarchy on V(G). A distance labelling L_G over G is a hierarchical cut 2-hop labelling (HC2L) w.r.t. H_G if it satisfies the following conditions:

- 1. For any label L(v), $v \leq u$ holds for any vertex $v \in L(u)$;
- 2. For any two vertices $s, t \in V$, there exists $r \in LCA(s, t)$ such that $(r, \delta_{sr}) \in L(s)$, $(r, \delta_{tr}) \in L(t)$ and $\delta_{sr} + \delta_{tr} = d_G(s, t)$.

Note. For any two vertices $s, t \in V$, LCA(s, t) can be computed as the number of leading zeros of the XOR of the bitstrings of s and t.

6. Results of Query Time, Labelling Size, and Construction Time

Network	Size		Query Time [µs]				Labelling Size				Construction Time [s]				
		E	HC2L	H2H	PHL	HL	HC2L	H2H	PHL	HL	HC2L	$HC2L^p$	H2H	PHL	HL
NY	0.3M	0.7M	0.225	0.432	0.983	0.765	144 MB	341 MB	320 MB	233 MB	15	6	16	34	32
BAY	0.3M	0.8M	0.220	0.563	0.707	0.665	113 MB	339 MB	235 MB	219 MB	12	4	12	18	27
COL	0.4M	1M	0.351	0.750	0.909	0.720	236 MB	217 MB	403 MB	341 MB	27	12	21	38	45
FLA	1M	3M	0.371	0.754	0.965	0.827	487 MB	1.25 GB	1.14 GB	907 MB	68	23	46	121	137
CAL	2M	5M	0.442	1.125	1.106	0.958	1.24 GB	3.87 GB	2.58 GB	1.78 GB	215	57	146	327	318
E	4M	9M	0.555	1.241	1.671	1.218	3.37 GB	9.81 GB	8.44 GB	4.74 GB	654	163	409	1,578	1,149
W	6M	15M	0.583	1.382	1.661	1.163	5.71 GB	18.3 GB	13.5 GB	7.50 GB	1,197	261	702	2,314	1,654
CTR	14M	34M	0.760	1.630	2.503	1.613	24.4 GB	73.9 GB	55.9 GB	25.5 GB	6,203	1,658	4,029	15,882	7,591
USA	24M	58M	0.737	1.940	2.389	1.663	45.1 GB	155 GB	95.6 GB	44.7 GB	11,203	1,977	7,737	26,515	13,157
EUR	18M	43M	0.922	2.414	2.239	1.673	44.1 GB	160 GB	70.9 GB	34.1 GB	12,242	3,083	9,194	20,466	8,728

