

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

FUNDAMENTALS OF OPTIMIZATION

Unconstrained convex optimization

CONTENT

- Unconstrained optimization problems
- Descent method
- Gradient descent method
- Newton method
- Subgradient method

Unconstrained convex optimization

Unconstrained, smooth convex optimization problem:

$$\min f(x)$$

- $f: \mathbb{R}^n \to \mathbb{R}$ is convex and twice differentiable
- dom f = R: no constraint
- Assumption: the problem is solvable with f* = min_x f(x) and x* = argMin_x f(x)
- To find x, solve equation $\nabla f(x^*) = 0$: not easy to solve analytically
- Iterative scheme is preferred: compute minimizing sequence $x^{(0)}$, $x^{(1)}$, ... s.t. $f(x^{(k)}) \rightarrow f(x^*)$ as $k \rightarrow \infty$
- The algorithm stops at some point $x^{(k)}$ when the error is within acceptable tolerance: $f(x^{(k)}) f^* \le \varepsilon$

- x* is a local minimizer for f: Rⁿ → R if f(x*) ≤ f(x) for ||x*-x|| ≤ ε(ε> 0 is a constant)
- x^* is a global minimizer for $f: \mathbb{R}^n \to \mathbb{R}$ if $f(x^*) \le f(x)$ for all $x \in \mathbb{R}^n$

 $f(x) = -x + e^{-x}$ has no minimizer

- x^* is a local minimizer for $f: \mathbb{R}^n \to \mathbb{R}$ if $f(x^*) \le f(x)$ for $||x^*-x|| \le \varepsilon (\varepsilon > 0)$ is a constant)
- x^* is a global minimizer for $f: \mathbb{R}^n \to \mathbb{R}$ if $f(x^*) \le f(x)$ for all $x \in \mathbb{R}^n$

2

-2

-6

 $f(x) = e^x + e^{-x} - 3x^2$ has two global minimizers

• **Theorem** (Necessary condition for local minimum) If x^* is a local minimizer for $f: \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$ (x^* is also called *stationary point* for f)

Example

•
$$f(x,y) = x^2 + y^2 - 2xy + x$$

•
$$\nabla f(x) = \begin{bmatrix} 2x - 2y + 1 \\ 2y - 2x \end{bmatrix} = 0$$
 has no solution

 \rightarrow there is no minimizer of f(x,y)

• **Theorem** (Sufficient condition for a local minimum) Assume x^* is a stationary point and that $\nabla^2 f(x^*)$ is positive definite, then x^* is a local minimizer

$$\nabla^{2}f(x) = \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{1}} \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{2}} \dots \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{n}} \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{1}} \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{2}} \dots \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{n}} \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{n}} \dots \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{n}} \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{1}} \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{2}} \dots \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{n}}$$

• Matrix A_{nxn} is called positive definite if

$$A^{i} = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,i} \\ a_{2,1} & a_{2,2} & \dots & a_{2,i} \\ & \dots & & \\ a_{i,1} & \dots & a_{i,2} & \dots & a_{i,i} \end{pmatrix}$$
, $\det(A^{i}) > 0$, $i = 1,\dots,n$

• **Example** $f(x,y) = e^{x^2 + y^2}$

$$\nabla f(x,y) = \begin{pmatrix} 2xe^{x^2+y^2} \\ 2ye^{x^2+y^2} \end{pmatrix} = 0 \text{ has unique solution } x^* = (0,0)$$

$$\nabla^2 f(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} > 0 \rightarrow (0,0) \text{ is a minimizer of f}$$

• **Example** Find a minimizer of $f(x,y) = x^2 + y^2 - 2xy - x$?

Descent method

```
Determine starting point x^{(0)} \in R^n; k \leftarrow 0; while( stop condition not reach){ Determine a search direction p_k \in R^n; Determine a step size \alpha_k > 0 s.t. f(x^{(k)} + \alpha_k p_k) < f(x^{(k)}); x^{(k+1)} \leftarrow x^{(k)} + \alpha_k p_k; k \leftarrow k+1; }
```

Stop condition may be

- $||\nabla f(x^k)|| \le \varepsilon$
- $||x^{k+1} x^k|| \le \varepsilon$
- k > K (maximum number of iterations)

Gradient descent method

Gradient descent schema

$$x^{(k)} = x^{(k-1)} - \alpha_k \nabla f(x^{(k-1)})$$

```
init x^{(0)};

k = 1;

while stop condition not reach{

specify constant \alpha_k;

x^{(k)} = x^{(k-1)} - \alpha_k \nabla f(x^{(k-1)});

k = k + 1;

}
```

• α_k might be specified in such a way that $f(x^{(k-1)} - \alpha_k \nabla f(x^{(k-1)}))$ is minimized: $\frac{\partial f}{\partial \alpha_k} = 0$

Gradient descent method

Example $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3 + x_1 + x_3 \rightarrow \min$?

Newton method

Second-order Taylor approximation g of f at x is

$$f(x+h) \approx g(x+h) = f(x) + h \nabla f(x) + \frac{1}{2}h^2 \nabla^2 f(x)$$

- Which is a convex quadratic function of h
- g(x+h) is minimized when $\frac{\partial g}{\partial h} = 0 \rightarrow h = -\nabla^2 f(x)^{-1} \nabla f(x)$

Newton method

```
Generate x^{(0)}; // starting point k = 0; while stop condition not reach{ x^{(k+1)} \leftarrow x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)}); k = k + 1;}
```


Newton method

Step	x	у	f
Initialization	[0,0,0]	[1, 1, 1]	0
Step 1	[-1., -1., -1.]	[-2.46519033e-32 1.11022302e-16 2.22044605e-16]	-1.00000000000000004
Step 2	[-1., -1., -1.]	[0., 0., 0.]	-1

Subgradient method

- For minimize nondifferentiable convex function
- Subgradient method is not a descent method: the function value can increase

Subgradient method

- Subgradient of f at x
 - Any vector g such that $f(x') \ge f(x) + g^T(x'-x)$
 - If f is differentiable, only possible choice is $g^{(k)} = \nabla f(x^{(k)})$, \rightarrow the subgradient method reduces to the gradient method

Basic subgradient method

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

- $x^{(k)}$: is at the k^{th} iteration
- $g^{(k)}$: any subgradient of f at $x^{(k)}$
- $\alpha_k > 0$ is the k^{th} step size
- Note: subgradient is not a descent method, thus $f_{best}^{(k)} = \min\{f(x^{(1)}), f(x^{(2)}), \dots, f(x^{(k)})\}$

- Notations: x^{*} is a minimizer of f
- Assumptions
 - Norm of the subgradients is bounded (with a constant G): $||g^{(k)}||_2 \le G$ (this is the case if, for example, f satisfies the Lipschitz condition $|f(u) f(v)| \le G||u-v||_2$)
 - $||x^{(1)} x^*||_2^2 \le R$ (with a known constant R)
- We have $||x^{(k+1)} x^*||_2^2 = ||x^{(k)} \alpha_k g^{(k)} x^*||_2^2$

$$= ||x^{(k)} - x^*||_2^2 - 2\alpha_k g^{(k)T}(x^{(k)} - x^*) + \alpha_k^2 ||g^{(k)}||_2^2$$

$$\leq ||x^{(k)} - x^*||_2^2 - 2\alpha_k(f(x^{(k)}) - f(x^*)) + \alpha_k^2 ||g^{(k)}||_2^2 \text{ (due to the fact that } f(x^*) \geq f(x^{(k)}) + g^{(k)T}(x^* - x^{(k)}))$$
(1)

Apply the inequality (1) recursively, we have

$$\begin{aligned} &||x^{(k+1)} - x^*||_2^2 \le ||x^{(1)} - x^*||_2^2 - 2\sum_{i=1}^k \alpha_i (f(x^{(i)}) - f^*) + \sum_{i=1}^k \alpha_i^2 ||g^{(i)}||_2^2 \text{ (where } f^* \\ &= f(x^*)) \end{aligned}$$

$$\to 2\sum_{i=1}^k \alpha_i (f(x^{(i)}) - f^*) \le R^2 + \sum_{i=1}^k \alpha_i^2 ||g^{(i)}||_2^2$$

- Different cases
 - Constant step size $\alpha_k = \alpha$

$$\Rightarrow f_{best}^{(k)} - f^* \le \frac{R^2 + G^2 \alpha^2 k}{2\alpha k}$$

- $\rightarrow f_{best}^{(k)} f^*$ converges to $G^2 \alpha/2$ when $k \rightarrow \infty$
 - Constant step length $\alpha_k = \gamma / ||g^{(k)}||_2$

$$\rightarrow f_{best}^{(k)} - f^*$$
 converges to $G\gamma/2$ when $k \to \infty$

- Different cases
 - Square summable but not summable

$$\|\alpha\|_2^2 = \sum_{i=1}^{\infty} \alpha_i^2 < \infty$$
 and $\sum_{i=1}^{\infty} \alpha_i = \infty$

$$\rightarrow f_{best}^{(k)} - f^*$$
 converges to 0 as $k \rightarrow \infty$

Example

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

• Finding subgradient: given x, the index j for which

$$a_j^T x + b_j = \max_{i=1,...,m} (a_i^T x + b_i)$$

 \rightarrow subgradient at x is $g = a_j$

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

