

Learning Chaos: Visualizing Sensitivity in the Logistic Map

Vasu Manocha MATH 2030 – Memorial University Instructor: Dr. Alexander Bihlo

Outline

- Motivation
- The Logistic Map
- 3 Key Results

Why Study Chaos?

Key Ideas

- Simple deterministic rules can lead to unpredictable, chaotic behavior.
- Chaos theory explains real-world phenomena: weather, finance, biology.
- The logistic map models population growth, but also period-doubling and chaos.
- It's a simple gateway into understanding how complexity emerges from simplicity.

Model Definition

Logistic Map Formula

$$x_{n+1} = rx_n(1 - x_n)$$

Terms

- x_n : population at step n
- r: growth rate parameter
- Behavior depends heavily on r

Bifurcation Diagram

Sensitivity to Initial Conditions

Feigenbaum Constant Estimation

Observation

- Computed $\delta_2 \approx 4.7263$, $\delta_3 \approx 4.7500$
- Close to the theoretical $\delta \approx 4.669$