Symbol	Importance	Value	Units	
a - acceleration	dv/dt	9.80	m/s ²	_
v - velocity	-dh/dt	050	m/s	Varia
h - height		1000	m	Variables
t - time		10	S	0 1
g - gravity constant		9.8	m/s ²	
C - drag coefficient	Contribute to air drag coefficient K	0.0039	-	Parameters
S - area of crossection			m ²	
ρ - dencity of the air			kg/m ³	
m - skydiver's mass			kg	

$$v=180 \text{ [km/h]} = 180 \ 000/(60*60) \text{ [m/s]} = 50 \text{ [m/s]}$$

$$A = g-(C*S*\rho/2/m)*v^2$$

a=0; g=9.8; v=50;
$$C*S*\rho/2/m = K$$

$$9.8 = K*50*50 => K = 9.8/2500 = 0.0039$$

$$v_1=0.95*50=47.5$$
 [m/s]

1st differential equation:

dh(t)/dt = -v(t)

2nd differential equation:

$$a=dv(t)/dt = g- C*S*\rho/2/m*(v(t)^2)$$

Distance at which the skydiver will be in 10 sec after achieveing 95% speed limit.

