# 1 Basics and Eulerian Graphs

## 1.1 The Seven Bridges of Königsberg

- In 1736 Leonard Euler was confronted in Königsberg with the "seven Bridges of Königsberg" problem:
- Does a Sunday stroll exist in Königsberg that crosses every bridge exactly once?
- Considering this problem, Euler invented graph theory



Fig. 1.1: Map of Königsberg in 1736 and an abstract version as a graph. (No. 516)

- Euler's idea of mathematical modeling:
  - Islands correspond to vertices
  - Bridges correspond to edges
  - Stroll corresponds to a sequence of edges
  - "Sunday Stroll" is a stroll that contains all edges exactly once and ends in the same vertex as it starts
- $\bullet\,$  We start with formal definitions of a graph and the other components of the problem

**Definition 1** (Graph). An undirected graph G = (V, E) consists of a set of vertices V and a multiset of edges  $E \subseteq \{\{u,v\} \mid u,v \in V\}$ . We denote the number of vertices and edges as follows: |V| = n, |E| = m.



Fig. 1.2: Petersen graph (No. 525)

- Note: We almost always consider the graphical visualization of a graph
- More general: a graph models relations (edges) between entities (vertices)
- Let e = uv be an edge, the vertices u and v are called end vertices of e
- Alternative notation:  $e = \{u, v\}$
- An edge e = uv is *incident* to u and v, we denote by  $\delta(v) := \{wu \in E \mid w = v \text{ and } u \in V\}$  all incident edges of  $v \in V$
- $\bullet$  Vertices u and v are adjacent if an edge uv exists
- Special edges:
  - Loops: start and end vertex are the same, i.e., e = vv,  $v \in V$
  - Parallel edges: various edges have the same end vertices



Fig. 1.3: Representation of a graph (No. 515)

**Definition 2** (Simple Graph). A *simple graph* has neither loops nor parallel edges.

• Note: If not stated otherwise, we consider simple graphs

**Definition 3** (Degrees of vertices). The degree  $d(v) \in \mathbb{N}_0$  of a vertex  $v \in V$  denotes the number of edges which are incident to v.

- Special vertices: Vertices v with d(v) = 0 are called *isolated* vertices
- Note: If not stated otherwise, we consider graphs without isolated vertices
- Let's start with the most basic property of a graph

**Lemma 4** (Handshaking-Lemma). Let G = (V, E) be a graph. Then

$$\sum_{v \in V} d(v) = 2|E|.$$

Proof. Counting argument

• Every edge is counted twice, since every edge is incident to two vertices

$$\bullet \Rightarrow$$

$$\sum_{v \in V} d(v) = 2|E|$$

• A nice and often used property is the following:

**Corollary 5.** Let G = (V, E) be a graph. Then the number of vertices with odd degree is even.

Proof. Handshaking-Lemma

• We consider all vertices with even and odd degrees separately:

$$2|E| \stackrel{(1)}{=} \sum_{v \in V} d(v) = \sum_{\substack{v \in V \\ d(v) \text{ even}}} d(v) + \sum_{\substack{v \in V \\ d(v) \text{ odd}}} d(v)$$

(1): Handshaking Lemma

- $\bullet \ \Rightarrow \sum_{\substack{v \in V \\ d(v) \text{ odd}}} d(v)$  is even, but all summands are odd
- $\bullet$   $\Rightarrow$  the number of vertices with odd degree is even

• Let's keep approaching the seven bridge problem

**Definition 6** (Path). Let  $s, t \in V$  be two vertices. A path from s to t, also denoted as (s,t)-path, is an edge sequence  $e_1e_2 \dots e_k$  starting in s and ending in t, where for every edge  $e_i$ ,  $i=1,\ldots,k$ , the end vertex of an edge corresponds to the start vertex of the successor edge, i.e.,  $e_i = v_i v_{i+1} \in E$ ,  $i=1,\ldots,k$  with  $v_1 = s$  and  $v_{k+1} = t$ .



Fig. 1.4: Special paths (No. 517)

- Often, we denote a path p by a sequence of vertices, i.e.,  $p = v_1 v_2 \dots v_k v_{k+1}$
- The vertex  $v_i$  is called predecessor of  $v_{i+1}$  and  $v_i$  is the successor of the vertex  $v_{i-1}$

- We denote with V(p) and E(p) the set of vertices and edges of a path p in a considered graph G=(V,E)
- Special paths:
  - Elementary path is a path without vertex repetition
  - Simple path is a path without edge repetition
  - Eulerian path is a path which visits every edge of the considered graph exactly once
- A path whose start vertex is the same as the end vertex is called a cycle
- A cycle that visits every edge exactly once is called Eulerian cycle or Eulerian tour



Fig. 1.5: Cycle vs. Eulerian cycle (No. 518)

#### **Definition 7.** Eulerian cycle problem

Given: Undirected graph G = (V, E) without isolated nodes

Find: An Eulerian tour if one exists

• When does an Eulerian tour exist?



Fig. 1.6: Eulerian tour? (No. 519)

• First necessary condition: we need to get from any vertex to any other

**Definition 8** (Subgraph and connected component). Let G = (V, E) be an undirected graph.

Version: October 14, 2021 Christina Büsing Winter Term 2021/22

- 1. A subgraph of G is a graph G'=(V',E') with  $V'\subseteq V$  and  $E'\subseteq E.$  We often write  $G'\subseteq G.$
- 2. Let  $V' \subseteq V$ , then G' := (V', E') with  $E' := \{uv \in E \mid u, v \in V'\}$  is the subgraph induces by V'.
- 3. Graph G = (V, E) is called *connected* if there is a (u, v)-path for all  $u, v \in V$ . A maximal connected, induced subgraph G' of G is called *connected component*. Maximal means that adding any vertex yields a disconnected subgraph.



Fig. 1.7: Subgraph (No. 524)

- Connectivity is not sufficient
- Consider the degree of each vertex: if a tour exists the degree is even

**Theorem 9** (Euler 1736, Hierholzer 1873). A graph G without isolated nodes has an Eulerian tour if and only if G is connected and the degree of each vertex is even.

• In order to prove Theorem 9, we need the following property:

**Lemma 10** (Closed-walk). Let G = (V, E) be a graph such that the degree of every vertex  $v \in V$  is even. Let p be a simple path which starts in  $v_0$  and ends in  $v_k$ . If every incident edge of  $v_k$  is also a part of p, then  $v_0 = v_k$  is true. Therefore the path p is a cycle.

*Proof.* Counting the edges

- Let  $p = v_0 v_1 \dots v_k$  be a simple path such that all incident edges of  $v_k$  are a part of p
- $\Rightarrow p$  cannot be extended
- Assume  $v_0 \neq v_k$
- Since  $v_k$  is the end vertex, an odd number of incident edges of  $v_k$  are a part of p
- By assumption there exists an edge  $e' \in \delta(v_k)$  which is not a part of p
- $\Rightarrow$  We can extend path p by e' without using an edge twice  $\Rightarrow$  contradiction



Fig. 1.8: Path p isn't extendable in vertex  $v_k$ , however this doesn't mean that p is an Eulerian tour (No. 531)

• We now proceed with proof of Euler's Theorem

*Proof.* Use the Closed-walk Lemma 10

- " $\Rightarrow$ ": Let T be an Eulerian tour  $\Rightarrow$  the graph is connected
- Let v be a vertex which is crossed k times by T
- $\bullet$  Every time the tour crosses v two incident edges are visited
- $\Rightarrow 2k$  edges are incident to v, i.e.,  $|\delta(v)| = 2k$
- $\bullet \Rightarrow$  All vertices have an even degree



Fig. 1.9: Every vertex has an even degree (No. 653)

- "\( = ": Let G be connected and d(v) even  $\forall v \in V$
- Let  $p = v_0 v_1 \dots v_k$  be a simple path in G with maximum length
- $\Rightarrow p$  cannot be extended, i.e, all incident edges of  $v_k$  are part of p
- $\Rightarrow p$  is a cycle, i.e.,  $v_0 = v_k$  (Closed-walk Lemma)
- Case 1: p uses every edge of  $G \Rightarrow p$  is an Eulerian tour
- Case 2: assume there exists an edge  $e = uv \notin E(p)$ 
  - Case 2.1: e is incident to a vertex of p, i.e.  $v = v_i \in V(p)$  for an  $i = 0, \ldots, k$ 
    - We can define a path

$$p' = uv_i \dots v_k v_1 \dots e_{i-1} v_i$$

with larger length  $\Rightarrow$  contradiction

- Case 2.2: e is not incident to a vertex of p
  - As G is connected, there exists a path  $\overline{p}$  from v to a vertex  $v_i \in V(p)$  with  $E(\overline{p}) \cap E(p) = \emptyset$

- Consider the edge  $e' \in E(\overline{p})$  which is incident to  $v_i$ , i.e.  $e' = v'v_i$
- $\Rightarrow$  setting as in Case 2.1  $\Rightarrow$  contradiction



Fig. 1.10: Proof Eulerian tour (No. 526)

• Note: A graph which contains an Eulerian tour is called *Eulerian graph* 

 $\bullet\,$  Euler only provided a proof for the necessary conditions

• With this, the seven bridges of Königsberg problem was solved

• Hierholzer developed the first algorithm to construct an Eulerian tour in 1871

## 1.2 Hierholzer's Algorithm

### **Algorithms**

- Algorithms are finite descriptions of steps to hopefully get a solution to a considered problem
- Examples:
  - Lego construction manual
  - Recipes
  - IKEA instructions

| Reading | Material |
|---------|----------|
|---------|----------|

• Important components of our algorithms:

Input Given instances to perform an algorithm

Example: Graph G = (V, E), edge weight  $c(e) \in \mathbb{R}$ ,  $\forall e \in E$ 

Output Solution which is generated by the algorithm

Example: (s,t)-path

 $\leftarrow /=$  Assignment

Example:  $x \leftarrow 3$  means that variable x is set to value 3

// Comments for the readers

While-Loop While a statement is true do the following

Example: While  $\exists$  a vertex  $v \in V$  with  $d(v) \geq 3$  and v is not red do

 $\bullet$  Color v red



Fig. 1.11: The algorithm colors vertices with  $d(v) \geq 3$  red. (No. 521)

If-Query If a statement is true then do the following Else do the following

Example: Choose  $v \in V$ 

If  $d(v) \geq 3$  then

 $\bullet$  Color v red

Else

 $\bullet$  Color v blue



Fig. 1.12: Depending on the choice of the vertex it will be colored red or blue. (No. 522)

**For**-Loop **For** a set **do** the following

Example: Choose  $v \in V$ 

For  $(u, v) \in E$  do

 $\bullet$  Color (u, v) blue



Fig. 1.13: The edges which are incident to a selected vertex will be colored blue. (No. 523)

#### **Eulerian Cycle Problem**

- Carl Hierholzer was a German mathematician who habilitated in Königsberg
- After his death in 1871 two colleges published in 1873 his algorithm that solves the

Version: October 14, 2021 Christina Büsing Winter Term 2021/22

Eulerian cycle problem

- Idea of Hierholzer's algorithm
  - Choose a vertex  $v_0$
  - $\bullet$  Construct a cycle by choosing unused edges and mark the edges as visited
  - If the cycle doesn't contain all edges, choose a vertex on the cycle which is incident to an unused edge and construct a new cycle
  - Merge both cycles



Fig. 1.14: Hierholzer's algorithm (No. 527)

#### Algo. 1.1 Hierholzer's algorithm

Input: Connected graph G = (V, E) with d(v) even  $\forall v \in V$ 

Output: Eulerian tour K

Method:

Step 1 • Choose a vertex  $v_0$ 

ullet Successively select unused edges until we obtain a cycle K

Step 2 If K is an Eulerian tour then

**Stop** and **Return** K

Step 3  $\bullet$  Set K' = K

- Choose a vertex  $v_i \in V(K')$  which is incident to an unused edge
- As in Step 1, construct a cycle K'' starting from  $v_i$  with  $E(K'') \cap E(K') = \emptyset$
- Merge K' and K'' to a new cycle K as follows: pass all vertices from  $v_0$  to  $v_i$ , pass through K'' and then pass the rest of K'
- Go to Step 2

**Theorem 11.** Let G be an undirected, connected graph such that all vertices have an even degree. Then, Hierholzer's algorithm constructs an Eulerian tour.

*Proof.* Feasibility of each step

- Step 1: Construction of a path which doesn't use an edge twice and which either is a cycle or isn't extendable ⇒ we get a cycle (Closed-walk Lemma)
- Step 2: Algorithm terminates if an Eulerian tour is found
- Step 3: is valid due to the following two claims

- Claim 1: If K is not an Eulerian Tour, then  $\exists v_i \in V(K')$  which is incident to  $e \in E \setminus E(K)$ .
  - Proof of Claim:
    - K' isn't an Eulerian tour, i.e.  $\exists e = uv \in E(G) \setminus E(K')$
    - Case  $1: u \in V(K')$  or  $v \in V(K') \Rightarrow$  claim holds true
    - Case 2:  $u \notin V(K')$  and  $v \notin V(K')$ 
      - $\bullet$  G is a connected graph
      - Find a path p from v to a vertex of K'
      - The end vertex of p corresponds to a vertex is incident to an edge  $e \in E \backslash E(K)$
- Claim 2: Combining K' and K'' leads to a new cycle. Proof of Claim
  - The graph G' = (V, E') with  $E' = E \setminus E(K')$  has an even degree for all vertices
  - $\bullet$  Thus, G' satisfies the property of the Closed-walk Lemma
  - By construction, K'' is a cycle (Closed-walk Lemma)
  - Let  $K' = v_0 v_1 \dots v_i \dots v_0$  and  $K'' = w_0 w_1 \dots w_j w_0$  be two cycles with  $w_0 = v_i$
  - ⇒

$$K := v_0 \dots v_i w_1 \dots w_i v_i \dots v_0$$

is a cycle

 $\Box C2$ 

- Since Step 3 is executed at most  $\frac{1}{2}|E|$  times, the algorithm terminates with Step 2
- Fleury introduced in 1883 another important algorithm to solve the Eulerian cycle problem
- Here, the Eulerian tour is constructed in one run by choosing the next edge wisely

## 1.3 Special Graph Classes

- Often graphs have special structures
- According to these structures
  - algorithms may behave differently
  - problems become more easy to solve
  - or optimal solutions may have certain properties

#### **Trees**

- Trees are the basic structure of a connected graph
- They combine two opposite concepts:
  - Connection  $\Rightarrow$  (many) edges are necessary
  - $\bullet\,$  No cycles  $\Rightarrow$  not too many edges are allowed

**Definition 12** (Tree). A connected graph G = (V, E) is called a *tree* if contains no cycle. The *leaves* of a tree are the vertices with degree one.

Version: October 14, 2021 Christina Büsing

Winter Term 2021/22



Fig. 1.15: Tree with one root (orange) and seven leaves (blue) (No. 534)

- Often, we select one arbitrary vertex and call it the *root* of the tree
- By means of a root r, we can address other vertices or leaves v with their distances to r, i.e., the number of edges which are between root r and vertex v in tree T. We write  $\operatorname{dist}_T(r,v)$

**Lemma 13.** Let G be a tree with at least two vertices, then G has at least one leaf.

Proof. Exercise

• An important property, we often use for trees, is the following

**Lemma 14.** Let G be a graph. Then G is a tree if and only if there exists a unique path between any two vertices in G.

*Proof.* Exercise  $\Box$ 

- A slight extension of a tree is a forest
- A forest is a graph whose connected components are trees.

**Lemma 15.** Let G be a forest on n vertices with m edges and p connected components. Then n = m + p.

• With G + e and G - e we denote the graph G = (V, E) with an additional edge  $e \notin E$  and without the edge  $e \in E$ , respectively, i.e.  $G + e = (V, E \cup \{e\})$  and  $G - e = (V, E \setminus \{e\})$ 

*Proof.* Induction on the number of edges m



Fig. 1.16: In forests: n = m + p (No. 654)

- I.B.:  $m=0 \Rightarrow$  Each vertex is a separate connected component, i.e. n=p
- I.H.: For every forest on n vertices with m edges, it holds n = m + p
- I.S.: Let G be a forest on n vertices with m+1 edges and p connected components
- Delete an arbitrary edge e to obtain G' = G e
- $\bullet \Rightarrow G'$  is also a forest on n vertices with m edges and p+1 connected components
- $\bullet \Rightarrow$

$$n \stackrel{I.H.}{=} m + p + 1 = (m+1) + p$$

- By the principle of induction, n = m + p is true
- For trees, we obtain with this a nice characterization via the number of edges

**Theorem 16** (Important characteristics of trees). Let G be a graph on n vertices. Then the following statements are equivalent:

- 1. G is a tree (i.e. is connected and has no cycles).
- 2. G has n-1 edges and no cycles.
- 3. G has n-1 edges and is connected.

*Proof.* Number of connected components vs. number of edges

- (1)  $\Rightarrow$  (2): Graph G is a tree, i.e. G has no cycles and is connected by definition.
- Prove: m = n 1
  - By Lemma 15,  $n = m + p \Leftrightarrow m = n p$
  - Since  $p = 1 \Rightarrow m = n 1$
- (2)  $\Rightarrow$  (3): Graph G has no cycles and n-1 edges.
- Prove: p = 1
  - ullet Since G has no cycles, G is a forest
  - Lemma 15:  $m = n p \Rightarrow p = n m = n (n 1) = 1$
  - $\bullet \Rightarrow G$  is connected
- (3)  $\Rightarrow$  (1): Graph G is connected with n-1 edges.

- $\bullet$  Prove: G has no cycles
  - Assume that G has a cycle  $\Rightarrow \exists$  edge such that G e is connected as well
  - Delete edges until the new graph G' has no cycles and is connected



Fig. 1.17: Delete until acyclic (No. 655)

- $\Rightarrow m' < m$  and m' = n 1 since G' is a tree by construction
- However, m = n 1, contradiction

Spanning trees

- Networks and graphs in real-world applications are quite big, e.g., the representation of the internet as graph or of social networks
- Often, one is looking for a simple view of the graph and a way to understand how to get from one vertex to another, if possible
- Spanning trees represent such a simple view of the graph
- The question is, how to we obtain such a tree
- In other words: how to design an algorithm, that visits all nodes and all edges in an efficient way and remembers a tree structure of the graph



Fig. 1.18: Searching a big graph (No. 667)

- In computer science, this is also known as tree traversal, tree search or walking the tree
- Such trees are classified by the order in which the nodes are visited
- The underlying general principle is the following

#### Algorithm 1.1 Generic graph search

Input: Graph G = (V, E), root vertex  $r \in V$ 

Output: Search Tree T

Method:

#### Step 1 Initialization

- Set  $R = \{r\}$  as the set of visited nodes
- Set  $\operatorname{pred}[r] = 0$  and  $\operatorname{pred}[v] = NULL \ \forall v \in V \setminus \{r\}$
- Set  $L = \{r\}$  as the list of candidates for a visit

## Step 2 Search procedure

While  $L \neq \emptyset$  do

• chose  $v \in L$ 

If  $\exists w \in V \backslash R \text{ with } vw \in E \text{ do}$ 

- chose  $w \in V \backslash R$  with  $vw \in E$
- add w to R, set pred[w] = v, addd w to L

**Else** delete v from L

Step 3 **Return** Tree T = (R, E) with  $E = \{\{u, \operatorname{pred}(u)\} \mid u \in R \setminus \{r\}\}.$ 



Fig. 1.19: General graph search (No. 672)

- The output is a tree due to the construction
- If all nodes of a graph are part of a tree, we call it a spanning tree

**Definition 17.** Let G be a connected graph. A subgraph  $T \subseteq G$  is called a *spanning tree* of G if T is a tree which covers all vertices of G, i.e. V(T) = V(G).



Fig. 1.20: Spanning tree (No. 668)

• If a graph is connected, the generic search algorithm computes a spanning tree

- $\bullet$  The output of the generic graph search algorithm depends on the order in which the vertices are chosen from L
- The most famous ones are
  - BFS Breadth First Search: the vertices are always added at the end of L and the first vertex is chosen to be visited next, i.e., First-In-First-Out (FIFO)
  - DFS Depth First Search: the vertices are added at the beginning of L and the first vertex is chosen to be visited next, i.e., Last-In-First-Out (LIFO)



Fig. 1.21: BFS and DFS (No. 673)

• Using BFS or DFS on the same graph, computes spanning trees with different properties

### **Lemma 18.** Let G be an undirected graph and r the root vertex.

- 1. Let  $T_{BFS}$  be a BFS-tree. Then any (r, v)-path is a shortest path with respect to the number of edges.
- 2. Let  $T_{DFS}$  be a DFS-tree. Then any edge that is not in  $T_{DFS}$  connects nodes along a path starting in r.



Fig. 1.22: Properties of BFS and DFS (No. 669)

#### Proof. Construction of the tree

- Property (1): In  $T_{BFS}$  any path starting in r is a shortest path.
  - Let dist(v) be the shortest path length from r to v in G w.r.t. the number of edges

- Let level(v) be the path length from r to v in  $T_{BFS}$
- Claim:  $level(v) = dist(v) \ \forall v \in V$ . Proof of Claim:
  - Since  $T_{BFS}$  is a subgraph of G, level $(v) \ge \operatorname{dist}(v)$  for all  $v \in V$
  - Assume,  $\exists w \in V$  with  $\operatorname{dist}(w) < \operatorname{level}(w)$  and minimum  $\operatorname{dist}(w)$  value, i.e., the "first" vertex that violates the condition according to  $\operatorname{dist}(v)$



Fig. 1.23: w is smallest criminal (No. 670)

- Let p be a shortest path in G from s to w
- Let vw be the last edge on p
- $\bullet \Rightarrow \operatorname{dist}(v) = \operatorname{level}(v)$
- Then,

$$level(w) > dist(w) = dist(v) + 1$$
$$= level(v) + 1$$

- $\bullet$  v is added to L before w
- (BFS): w is added to L when scanning v or from another vertex  $v' \in L$  (which was added even before)

• 
$$\Rightarrow$$
 level(w)  $\leq$  level(v) + 1, contradiction

- Property (2): Any non-tree edge  $e \in E \setminus E(T_{DFS})$  connects only nodes along a path starting in s
  - Assume uv connects two different paths, i.e.,  $v \notin p_{[r,u]}$  and  $u \notin p_{[r,v]}$  with  $p_{[a,b]}$  being the path in T connecting a and b
  - Let w be last vertex with  $w \in p_{[r,v]} \cap p_{[r,u]}$
  - $\bullet$  W.l.o.g. u is added to L before v
  - (DFS): u is scanned before w
  - $\Rightarrow v$  is added to L when u is scanned and pred(v) = u
  - $\Rightarrow uv \in T$ , contradiction



Fig. 1.24: uv does not exist (No. 671)

• BFS and DFS are often subroutines in different, more complex algorithms

| BFS                                                                                                                    | DFS                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>shortest path computation</li> <li>computation of maximum flows</li> <li>choice of shortest cycles</li> </ul> | <ul> <li>test of planarity</li> <li>topological sorting</li> <li>construction of strong<br/>connectivity components</li> </ul> |

## **Bipartite Graphs**

- In real world applications, vertices often represent groups and edges consist just between different groups
  - worker vs. jobs
  - seats vs. persons/people
- Such situations yield so called bipartite graphs

**Definition 19** (Bipartite Graph). A graph G = (V, E) is bipartite if there exists a partition of the vertices  $V = U \cup W$  such that every edge  $e = uw \in E$  has one end vertex in U and one in W.



Fig. 1.25: Bipartite graph (No. 528)

**Theorem 20.** A graph G is bipartite if and only if G has no cycle of odd length.

 ${\bf CombiOpt}$ 

• The length of a cycle equals the number of edges

Proof. Exercise

• Using the idea in the proof, we can easily derive an algorithm to test whether a graph is bipartite

### **Complete Graphs**

• Complete graphs contain the maximum number of edges

**Definition 21.** A graph G = (V, E) in which each two vertices are adjacent is called a *complete graph*.

- We denote the complete graph on n vertices with  $K_n$
- $K_n$  has exactly  $\binom{n}{2}$  edges



Fig. 1.26: Complete graphs  $K_1, \ldots, K_5$  (No. 530)

- For some problems, we assume that a complete graph is given
- The most famous of these problems is the Traveling Salesperson Problem (TSP)

**Definition 22.** Traveling Salesperson Problem (TSP)

Given: Undirected complete graph G = (V, E) and edge costs  $c : E \to \mathbb{Z}$ 

Find: A cycle  $\pi = e_1 e_2 \dots e_n$  which visits every vertex of graph G exactly once with

minimum cost

$$c(\pi) := \sum_{e \in \pi} c(e)$$



Fig. 1.27: TSP (No. 529)

- Size of search space for possible solutions:
  - Each of n cities can be at each position  $\Rightarrow n!$  different ways

- $\bullet$  Cost for tours are the same regardless from which city you start and in which direction you are going
- $\Rightarrow \frac{n!}{2n} = \frac{(n-1)!}{2}$  possible solutions
- Enumeration of all solutions to chose the best tour is no option

| n  | (n-1)!/2             | Comparison                                               |
|----|----------------------|----------------------------------------------------------|
| 2  | 1                    |                                                          |
| 6  | 60                   | 1 min. if per tour 1 sec.                                |
| 11 | 1.814.400            | $\approx 5 \times \text{distance earth to moon (in km)}$ |
| 16 | $6, 5 \cdot 10^{11}$ | Age of Universe $\approx 1, 3 \cdot 10^{10}$ (in years)  |