

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MMM. Papa Cambridge. com

*	
x	
7	
7	
v	
\supset	
7	
x	
\supset	
v	
_	

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/31

Paper 3 (Extended)

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 14 printed pages and 2 blank pages.

•	r-or
1	miner's
	e
•	

For each of the following, name an element which matches the description. (a) It is used as a fuel in nuclear reactors. [1]	
2	
For each of the following, name an element which matches the description.	For miner's
(a) It is used as a fuel in nuclear reactors.	
[1]	Se.Co.
	13
(b) It is the only non-metal which is a good conductor of electricity.	
[1]	ı
(c) Inert electrodes are made from this metal.	
[1]	
(d) This gaseous element is used to fill balloons in preference to hydrogen.	
[1]	
(e) An element which can form an ion of the type X ³	
[1]	
(f) It has the same electron distribution as the calcium ion, Ca ²⁺ .	
[1]	
(g) The element is in Period 5 and Group VI.	
(g) The element is in 1 ened 5 and electron 11.	
[Total: 7]	

© UCLES 2013

1

2	(a)	Give three differences in physical properties between the Group I metal, potassible the transition element, iron.

	1
	2
	3[3]
(b)	The following metals are in order of reactivity.
	potassium
	zinc
	copper
	For those metals which react with water or steam, name the products of the reaction, otherwise write 'no reaction'.
	potassium
	zinc
	copper
	[5]
	[Total: 01

[Total: 8]

[Turn over

3 Ammonia is manufactured by the Haber process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The forward reaction is exothermic.

(a) Describe how the reactants are obtained.

(i) Nitrogen

.....[

(ii)	Hydrogen	

- **(b)** The percentage of ammonia in the equilibrium mixture varies with temperature and pressure.
 - (i) Which pair of graphs, **A**, **B** or **C**, shows correctly how the percentage of ammonia at equilibrium varies with temperature and pressure?

temperature

The pair with **both graphs correct** is[1]

pressure

[Turn over

www.papaCambridge.com 20.0 g of small lumps of calcium carbonate and 40 cm³ of hydrochloric acid, conce 2.0 mol/dm3, were placed in a flask on a top pan balance. The mass of the flask and conwas recorded every minute.

The mass of carbon dioxide given off was plotted against time.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$$

In all the experiments mentioned in this question, the calcium carbonate was in excess.

(a) (i) Explain how you could determine the mass of carbon dioxide given off in the first five minutes.

- (ii) Label the graph F where the reaction rate is the fastest, S where it is slowing down and 0 where the rate is zero. [2]
- (iii) Explain how the shape of the graph shows where the rate is fastest, where it is slowing down and where the rate is zero.

......[2]

(b) Sketch on the same graph, the line which would have been obtained if 20.0 g of small lumps of calcium carbonate and 80 cm³ of hydrochloric acid, concentration 1.0 mol/dm³, had been used. [2]

For miner's e

(c)	Ехр	lain in terms of collisions between reacting particles each of the following.
	(i)	The reaction rate would be slower if 20.0 g of larger lumps of calcium carbonate at 40 cm³ of hydrochloric acid, concentration 2.0 mol/dm³, were used.
		[2]
	(ii)	The reaction rate would be faster if the experiment was carried out at a higher temperature.
		[2]
(d)		culate the maximum mass of carbon dioxide given off when 20.0 g of small lumps of sium carbonate react with 40 cm ³ of hydrochloric acid, concentration 2.0 mol/dm ³ .
		$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$
	nun	nber of moles of HCl used =

mass of carbon dioxide = g [4]

[Total: 15]

www.PapaCambridge.com The alkenes are unsaturated hydrocarbons. They form a homologous series, the mem 5 which have the same chemical properties.

They undergo addition reactions and are easily oxidised.

(a) The following hydrocarbons are isomers.

CH ₃ —CH—CH=CH ₂	CH_3 — CH_2 — CH_2 — CH = CH
 CH ₃	

(i)	Explain why these two hydrocarbons are isomers.					

(ii) Give the structural formula of another hydrocarbon which is isomeric with the above.

[1]

- (b) Give the structural formula and name of each of the products of the following addition reactions.
 - (i) ethene and bromine

structural formula of product

name of product[2]

(ii) propene and hydrogen

structural formula of product

name of product[2]

(iii) but-1-ene and water

structural formula of product

name of product[2]

- (c) Alkenes can be oxidised to carboxylic acids.
- www.PapaCambridge.com (i) For example, propene, $CH_3 - CH = CH_2$, would produce ethanoic acid, $CH_3 - COO$. and methanoic acid, H-COOH. Deduce the formulae of the alkenes which would form the following carboxylic acids when oxidised.

ethanoic acid and propanoic acid

only ethanoic acid

[2]

(ii) Describe the colour change you would observe when an alkene is oxidised with acidified potassium manganate(VII).

(d) Alkenes polymerise to form addition polymers.

Draw the structural formula of poly(cyanoethene), include at least two monomer units. The structural formula of the monomer, cyanoethene, is given below.

$$C = C$$

[3]

[Total: 16]

Lead is an excellent roofing material. It is malleable and resistant to corrosion. Lead becomes coated with basic lead carbonate which protects it from further corrosion.

www.PapaCambridge.com (a) Lead has a typical metallic structure which is a lattice of lead ions surrounded by a 'sea' of mobile electrons. This structure is held together by attractive forces called a metallic bond.

(i)	Explain why there are attractive forces in a metallic structure.	
		[2]
(ii)	Explain why a metal, such as lead, is malleable.	
		[2]

(b) Basic lead(II) carbonate is heated in the apparatus shown below. Water and carbon dioxide are produced.

(i)	Silica gel	absorbs	water.	Silica	gel	often	contains	anhydrous	cobalt(II)	chloride.
	When this	absorbs	water i	t chan	ges	from b	lue to pin	k.		
	Suggest a	reason.								

[1]

(ii)	Soda lime is a mixture of sodium hydroxide and calcium oxide. Why do these two
	substances react with carbon dioxide?

 . [2]

(iii)	Name two substances form	med when soda lim	ne reacts with carbon dioxide.

r,	21
	۷١

Determine x and y from the following information.

$$PbCO_3 \rightarrow PbO + CO_2$$

$$Pb(OH)_2 \rightarrow PbO + H_2O$$

When heated, the basic lead(II) carbonate gave 2.112 g of carbon dioxide and 0.432 g of water.

Mass of one mole of $CO_2 = 44 g$ Mass of one mole of $H_2O = 18g$

Number of moles of CO₂ formed = [1]

Number of moles of H_2O formed = [1]

x = and y =

Formula of basic lead(II) carbonate is[1]

[Total: 12]

(a) The following are two examples of substitution reactions. Only the reaction in 7 chlorine is a photochemical reaction.

$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$

	Many	
	12	
	e following are two examples of substitution reactions. Only the reaction in orine is a photochemical reaction. ${\rm CH_4} + {\rm C} l_2 \rightarrow {\rm CH_3C} l + {\rm HC} l$ ${\rm CH_4} + {\rm Br_2} \rightarrow {\rm CH_3Br} + {\rm HBr}$	For miner's
	$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$	Tage
	$CH_4 + Br_2 \rightarrow CH_3Br + HBr$.6
(i)	Explain the phrase substitution reaction.	
	[1]]
(ii)	How do photochemical reactions differ from other reactions?	
	[4]	,

	[1]
(b)	Bond forming is exothermic, bond breaking is endothermic. Explain the difference between an exothermic reaction and an endothermic reaction.
	[2]
	[-]

(c) Use the bond energies to show that the following reaction is exothermic.

Bond energy is the amount of energy (kJ/mol) which must be supplied to break one of the bond.

Bond energies in kJ/mol

Cl-Cl	+242
C-C1	+338
C-H	+412
H-C1	+431

			[4]
total ene	ergy =		
bonds fo	ormed	energy in kJ/mol	
total ene	ergy =		
bonds b	roken	energy in kJ/mol	
H–Cl	+431		

[Total: 8]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

			16		mm.	O apa Cambridge Co.
0	Heium 2	20 Ne Ne Ne Ne Argan	Kryptom 36 Xenon 54 Xenon 54	Radon 86	Lutetium 71 Lawrencium 103	SCANDA.
		19 Fluorine 9 35.5 C1	80 Br Bromine 35 I 127 I	Astatine 85	Yb Ytterbium 70 No Nobelium	age co
>		16 Oxygen 8 32 Sulfur Sulfur	Seenum 34 128 Te Tellurium 52	Po Pobnium 84	Tmulium 69 Mendelevium 101	
>		Nitrogen 7 31 31 Phosphorus	As Arsenic 33 Artimony 51 209 209	Bismuth 83	167 Erbium 68 Fm Fermium 100	
≥		12 Carbon 6 Labor 28 Silicon	73 Genanium 32 H19 Sn Tin 50 Tin 207	Pb Lead	Holmium 67 Einsteinium 99	(r.t.p.).
=		11 BBoron 5 27 Aluminium	Gallum 31 115 In 149 1204 204	T Thallium 81	162 Dy Dysprosium 66 Cf Californium 98	pressure
			65 Zn Znc 30 Znc 40 Cadmium 48 Cad 201	Hg Mercury 80	Terbium 65 Bk Berkelium 97	ature and
			Cu Cu Copper 29 108 Ag Silver 47	Au Godd 79	Gadolinium 64 Cadolinium 64 Cam Curium 96	m temper
Group			Nickel Nickel 28 106 Pd Pd Palledium 46 195	Platinum 78	Europium 63 Am Americium 95	m³ at rooi
5		1	Cochait 27 Cochait 27 Cochait 45 Cochait 45 Cochait 103 Cochait 45 Cochait 192 Cochait 192 Cochair 192 Cochair 192 Cochair 192 Cochair 193	Irdium	Samarium 62 Pu Plutonium 94	as is 24 d
	T Hydrogen		Fe From 100 190 190 190 190 190 190 190 190 190	Osmium 76	Promethium 61 Np Neptunium 93	of any ga
			25 MA 25 MA 43 H	Rhenium 75	Neodymium 60 238 Uranium 92	one mole
			62 Chromium 24 Moybdenum 42 184	Tungsten 74	Praseodymium 59 Pa Prayedymium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
			Vanadium 23 89 89 Noblum 41 181	Ta Tantalum 73	140 Ce Cerium 58 232 Th Thorium 90	The ,
			48 Ti Ti Ti 22 22 Stroonlum 40 178	Hafnium × 72	mic mass nbol mic) number	
			Scandium 21 89 89 Yttium 39 1139	Lanthanum 57 227 Actinium 89	oid series I series a = relative atomic mass X = atomic symbol b = proton (atomic) number	
=		Be Beylium 4 24 Mg Magnesium	Ca Calcium 20 Calcium 20 Calcium 38 Srontium 38 Calcium 137 Calcium 38 Calciu	Bantum 56 226 Radium 88	anthanc Actinoid	
		Lithium 3 23 8 Na Sodium	39 Potassium 19 Rb	Caesium 55 Fr Francium 87	*58-71 L 190-103 Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.