MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 23rd January 2018 D1 - Lecture 9

Random Attendance

1	170050014	Ansh Verma Absent
2	170050051	Lovesh Kumar Gupta
3	170050065	Prashant Saroj
4	170050067	Rongali Ravi Teja
5	170050075	Didde Harsha
6	170050076	Nakka Anil Kumar
7	170050099	B Nikhil
8	170050106	Shashij Gupta
9	170050111	Sumit
10	170070032	Jaswant Singh
1	170070044	Varrey Rishi Absent
12	17D070002	Patel Vatsal Pareshkumar
13	17D070048	Abhijeet Verma

Linear Span: Definition

Given a collection $S = \{v_1, v_2, \dots, v_n\}$ in a vector space V, the *linear span* of S, denoted Span(S) or Span $\{v_1, \dots, v_n\}$, is the set of all linear combinations of v_1, v_2, \dots, v_n , i.e.,

Span(S) =
$$\{v = a_1v_1 + \cdots + a_nv_n, \text{ for scalars } a_1, \dots, a_n\}.$$

Note:

- If v₁,..., v_n are in ℝ^m, Span{v₁,..., v_n} = C(A) for A = (v₁ ···· v_n), an m × n matrix. Thus v is in Span{v₁,..., v_n} ⇔ Ax = v is consistent.
 Let {v₁,..., v_n} be n vectors in ℝⁿ, A = (v₁ ···· v_n). Then A is invertible ⇔ A has n pivots ⇔ Ax = v is consistent for every v in ℝⁿ ⇔ Span{v₁,..., v_n} = ℝⁿ.
- **Example:** Span $\{e_1, \ldots, e_n\} = \mathbb{R}^n$.

Examples:

- **1** Span $\{0\} = \{0\}$.
- ② If $v \neq 0$ is a vector, Span $\{v\} = \{av$, for scalars $a\}$. Geometrically (in \mathbb{R}^m): Span $\{v\}$ = the line in the direction of v passing through the origin.
- $\mathbf{Span} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} = \mathbb{R}^2.$
- If v_1, \ldots, v_k are the special solutions of A, then Span $\{v_1, \ldots, v_k\} = N(A)$.

Remark: All of the above are subspaces.

Exercise: Span(S) is a subspace of V.

Example 1: Is
$$v$$
 in Span $\{v_1, v_2, v_3, v_4\}$, where: $v = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$, $v_1 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$, $v_2 = \begin{pmatrix} 2 & 4 & 6 \end{pmatrix}^T$, $v_3 = \begin{pmatrix} 3 & 8 & 7 \end{pmatrix}^T$ and $v_4 = \begin{pmatrix} 5 & 12 & 13 \end{pmatrix}^T$?

Let
$$A = (v_1 \cdots v_4)$$
. Recall $Ax = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix} x = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is

solvable $\Leftrightarrow 5b_1 - b_2 - b_3 = 0$.

 \Rightarrow v is not in Span{ v_1, v_2, v_3, v_4 }, and

$$w = (1 \quad 0 \quad 5)^T = 4v_1 + (-1)v_3$$
 is in it.

Observe: $v_2 = 2v_1$ and $v_4 = 2v_1 + v_3$. Hence v_2 , v_4 are in Span $\{v_1, v_3\}$. Therefore, Span $\{v_1, v_3\}$ = Span $\{v_1, v_2, v_3, v_4\}$ = C(A) = the plane P: (5x - y - z = 0).

Q: Is the span of two vectors in \mathbb{R}^3 always a plane?

5/12

Example 2: Is $v = \begin{pmatrix} 4 & 3 & 5 \end{pmatrix}^T$ in Span $\{v_1, v_2, v_3, v_4\}$, where:

$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix} \text{ and } v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}?$$

If yes, write v as a linear combination of $\{v_1, v_2, v_3, v_4\}$.

Let $A = (v_1 \cdots v_4)$. The question can be rephrased as:

Q: Is v in C(A), i.e., is Ax = v solvable? If yes, find a solution.

$$R_2 \mapsto R_2 - R_1$$
, $R_3 \mapsto R_3 - R_1$, followed by $R_3 \mapsto R_3 + R_2$, gives

$$[A|v] = \begin{pmatrix} 2 & 4 & 6 & 4 \mid a \\ 2 & 5 & 7 & 6 \mid b \\ 2 & 3 & 5 & 2 \mid c \end{pmatrix} \longrightarrow [U|w] = \begin{pmatrix} 2 & 4 & 6 & 4 \mid & a \\ 0 & 1 & 1 & 2 \mid & b-a \\ 0 & 0 & 0 & 0 \mid & c+b-2a \end{pmatrix}$$

$$Ax = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix} x = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ is solvable } \Leftrightarrow 2a - b - c = 0$$

 $\Rightarrow v = \begin{pmatrix} 4 & 3 & 5 \end{pmatrix}^T$ is in Span $\{v_1, \dots, v_4\}$,

(and, for example, $\begin{pmatrix} 4 & 3 & 4 \end{pmatrix}^T$ is not in it).

Observe: C(A) is a plane!

Solve Ax = v: Convert U to the row reduced form R:

$$[U|w] = \begin{pmatrix} 2 & 4 & 6 & 4 & | & a \\ 0 & 1 & 1 & 2 & | & b-a \\ 0 & 0 & 0 & | & c+b-2a \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 & 4 & | & 4 \\ 0 & 1 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 1 & -2 & | & 4 \\ 0 & 1 & 1 & 2 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \text{ by } R_1 \mapsto R_1 - 4R_2, \, R_1 \mapsto R_1/2.$$

Particular solution: $\begin{pmatrix} 4 & -1 & 0 & 0 \end{pmatrix}^T$ and $v = 4v_1 + (-1)v_2$.

Linear Independence: Example

With
$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}$

Observe: $v_3 = v_1 + v_2$ and $v_4 = -2v_1 + 2v_2$. Hence v_3 and v_4 are in Span $\{v_1, v_2\}$. Therefore, Span $\{v_1, v_2\}$ = Span $\{v_1, v_2, v_3, v_4\}$ = C(A) = the plane P: (2x - y - z = 0).

Q: Is the span of two vectors in \mathbb{R}^3 always a plane?

A: Not always. If v is a multiple of w, then $Span\{v, w\} = Span\{w\}$, which is a line through the origin or zero.

Q: If v and w are not on the same line through the origin?

A: Yes. v, w are examples of *linearly independent vectors*.

Linear Independence: Definition

The vectors v_1, v_2, \dots, v_n in a vector space V, are linearly independent if $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0 \Rightarrow a_1 = 0, a_2 = 0, \dots, a_n = 0$.

Observe: When $V = \mathbb{R}^m$, if $A = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$, then v_1, v_2, \dots, v_n are linearly independent $\Leftrightarrow Ax = x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$ has only the trivial solution $\Leftrightarrow N(A) = 0$.

The vectors v_1, \ldots, v_n are *linearly dependent* if they are not linearly independent. If $V = \mathbb{R}^m$, this happens \Leftrightarrow

 $Ax = (v_1 \cdots v_n) x = 0$ has non-trivial solutions.

9/12

Linear Independence: Remarks

Remarks/Examples:

- The zero vector 0 is not linearly independent.
- 2 If $v \neq 0$, then it is linearly independent.
- **③** v, w are not linearly independent \Leftrightarrow one is a multiple of the other \Leftrightarrow (for $V = \mathbb{R}^m$) they lie on the same line through the origin.
- **4** More generally, v_1, \ldots, v_n are not linearly independent \Leftrightarrow one of the v_i 's can be written as a linear combination of the others, i.e., v_i is in Span $\{v_j : j = 1, \ldots, n, j \neq i\}$.
- **5** Let A be $m \times n$. Then $\operatorname{rank}(A) = n \Leftrightarrow N(A) = 0 \Leftrightarrow A_{*1}, \cdots, A_{*n}$ are linearly independent. In particular, if A is $n \times n$, A is invertible $\Leftrightarrow A_1, \cdots, A_n$ are linearly independent.

Example: e_1, \ldots, e_n are linearly independent vectors in \mathbb{R}^n .

Linear Independence: Example

Example: Are the vectors v_1, v_2, v_3, v_4 linearly independent, where

$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}, v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix} \text{ and } v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}?$$

For
$$A = (v_1 \quad \cdots \quad v_4)$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

A has only 2 pivots $\Rightarrow N(A) \neq 0$, so v_1, v_2, v_3, v_4 are not independent.

A non-trivial linear combination which is zero is

$$(1)v_1 + (1)v_2 + (-1)v_3 + (0)v_4$$
, or $(2)v_1 + (-2)v_2 + (0)v_3 + (1)v_4$. More generally, if v_1, \ldots, v_n are vectors in \mathbb{R}^m , then $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is $m \times n$.

If m < n, then rank $(A) < n \Rightarrow N(A) \neq 0$. Thus

In \mathbb{R}^m , any set with more than m vectors is linearly dependent.

11 / 12

Summary: Vector Spaces, Span and Independence

- Vector space: A triple (V,+,*) which is closed under + and *
- Subspace: A non-empty subset *W* of *V* closed under linear combinations.
- Span $\{v_1, \dots, v_n\}$ = $\{v = a_1v_1 + \dots + a_nv_n, \text{ for scalars } a_1, \dots, a_n\}.$ Let $V = \mathbb{R}^m, v_1, \dots, v_n$ be in V, and $A = (v_1 \dots v_n).$
- For v in V, v is in Span $\{v_1, \ldots, v_n\} \Leftrightarrow Ax = v$ is consistent
- v_1, \ldots, v_n are linearly independent $\Leftrightarrow N(A) = 0 \Leftrightarrow \operatorname{rank}(A) = n$.
- In particular, with n = m, A is invertible $\Leftrightarrow \operatorname{Span}\{v_1, \dots, v_n\} = \mathbb{R}^n \Leftrightarrow v_1, \dots, v_n$ are linearly independent $\Leftrightarrow \mathcal{N}(A) = 0 \Leftrightarrow \operatorname{rank}(A) = n$.
- Any subset of \mathbb{R}^m with more than m vectors is dependent.