1. (6 pkt.) Załóżmy, że dysk ma 1000 cylindrów, ponumerowanych od 0 do 999. Głowice znajdują się nad cylindrem nr 29 i domyślnie poruszają się w górę. W systemie oczekują odwołania do cylindrów nr: 17, 285, 179, 357, 186, 302, 205, 351, 24 (zgłoszone w tej kolejności). Dla każdej z przedstawionych strategii szeregowania podaj jaki będzie łączny dystans przebyty przez głowice, od aktualnej pozycji, do momentu zrealizowania ostatniego odwołania.

Strategie szeregowania poleceń dostępu do dysku:

- FCFS (first come first served)
- SSTF (shortest seek time first)
- SCAN
- C-SCAN
- LOOK
- C-LOOK

nr operacji	cylinder	dystans
start	29	0
2	17	12
3	285	268
4	179	106
5	357	178
6	186	171
7	302	116
8	205	97
9	351	146
koniec	24	327

|--|

nr operacji	cylinder	dystans
start	29	0
2	24	5
3	17	155
4	179	7
5	186	19
6	205	80
7	285	17
8	302	49
9	351	6
koniec	357	357

SSTF	razem	695

cylinder	dystans	_	nr opera	ıcji	cylinder	dystans
29	0		start		29	0
24	5			2	179	150
17	155			3	186	7
179	7			4	205	19
186	19			5	285	80
205	80			6	302	17
285	17			7	351	49
302	49			8	357	6
351	6			9	999	642
357	357			10	24	975
		-	koniec		17	982
razem	695		SCAN		razem	2927

nr operacji	cylinder	dystans
start	29	0
2	179	150
3	186	7
4	205	19
5	285	80
6	302	17
7	351	49
8	357	6
9	24	333
koniec	17	7

ſ		
LOOK	razem	

nr operacji	cylinder	dystans
start	29	0
2	179	150
3	186	7
4	205	19
5	285	80
6	302	17
7	351	49
8	357	6
9	999	642
10	0	999
11	17	17
koniec	24	7
C-SCAN	razem	1986

nr operacji	cylinder	dystans
start	29	0
2	179	150
3	186	7
4	205	19
5	285	80
6	302	17
7	351	49
8	357	6
9	17	340
koniec	24	7

C-LOOK	razem	675

2. (2 pkt.) Mamy dany dysk o prędkości obrotowej 7200 obr/min. Jakie jest średnie opóźnienie obrotowe tego dysku?

Skoro w 1 minutę dysk wykona 7200 obrotów, znaczy to że jeden obrót trwa 1/7200 min, co jest równe 60/7200 sek = 1/120 sek, co po zmianie jednostki na milisekundy wynosi 1000/120 ms. Po skróceniu otrzymujemy 25/3 ms $\approx 8,33$ ms. Jest to maksymalne opóźnienie obrotowe.

Średnie opóźnienie obrotowe będzie średnią między minimalnym i maksymalnym opóźnieniem, przy czym minimalne opóźnienie równe jest 0 i zachodzi wtedy, gdy głowica znajduje się już nad poszukiwanym sektorem. W związku z powyższym:

3. W bloku 2, był podany przykład opisujący tak zwanych "flower retrievers". Na koniec tego bloku, przeprowadź krótką analizę omówionych strategii i powiedz mi, które z nich mogły by być wykorzystane do optymalnego zbierania kwiatów na lodowisku, a które należałoby zdecydowanie odrzucić, bo żaden "flower retriever" nie będzie zgodnie z nimi pracować. Krótko wytłumacz dlaczego.

Strategie szeregowania poleceń dostępu do dysku w przypadku "zbieraczy kwiatów":

- FCFS polega na zebraniu kwiatów w kolejności ich spadnięcia na taflę lodu skrajnie niepraktyczne, gdyż żaden zbieracz nie będzie zapamiętywał kolejności w jakiej kwiaty dostały się na lód
- **SSTF** prawdopodobnie w naszej sytuacji najefektywniejsza, gdyż zbieracz sięga po najbliższy miejsca w którym aktualnie jest kwiat aż do zebrania wszystkich
- SCAN zbieracz z pewnością popukałby się w głowę słysząc, że ma jeździć w poprzek lodowiska zbierając wszystko, co znajdzie po drodze i nawet jeśli przy skrajnych położeniach tafli nie ma żadnych kwiatów
- C-SCAN jak wyżej, z tymże zbieranie kwiatów "w jednym kierunku" mogłoby być o tyle rozsądne, że w drodze powrotnej zbieracz nie byłby w stanie unieść ich więcej niż już niesie
- LOOK jedna z rozsądniejszych technik (nie nadkłada się wiele drogi), w myśl której zbieracz porusza się do najdalszych kwiatów, po drodze zbierając wszystkie inne
- C-LOOK jak wyżej, z uwagą analogiczną do techniki C-SCAN