



# PrintQueue | Performance Diagnosis via Queue Measurement in the Data Plane

Yiran Lei, Liangcheng Yu, Vincent Liu, Mingwei Xu





## Why performance issue?

Performance issue debugging: hard



Packets reaching destinations: late

Packet-level causes of queuing delay: critical



# Provenance of queuing delay

Observation:



A congestion regime: direct

indirect

original

### Direct culprits



## Indirect culprits

Why direct culprits are delayed?



## Original culprits

A subset of indirect culprits: more blame



## Gap of existing works

Heavy hitter detection: fixed time intervals



Packet mirroring: large overhead

### Overview

#### Passive monitoring framework, new data structures:

- time windows direct, indirect culprits
- queue monitor original culprits

Hardware prototype: 3x accuracy↑, 20x overhead↓



### → Time windows

Queue monitor

Query execution

### Time windows

Hierarchical variant: fit into data-plane stages



### Time windows

#### Save space by slightly sacrificing accuracy:

compress multiple cells into one



#### How to compress:

latest record ∈ cells that stored packets in the previous cycle

#### Proportional property:

compressed packet number : original number = constant

Example:

| Α | В | С | D | <br>A |
|---|---|---|---|-------|
| 2 | 0 | 1 | 1 | <br>• |

| Α | В | $\cup$ | О |
|---|---|--------|---|
| 4 | 2 | 3      | ന |

#### Time windows

Queue monitor

Query execution

### Queue monitor

#### Stack

Strawman: sequence number



overwrite → error

#### Queue monitor: separate in/de-crease

|          |             | _   | preserved   |     |             | stale |  |
|----------|-------------|-----|-------------|-----|-------------|-------|--|
| increase | <b>A</b> ,1 | В,2 | <b>A</b> ,3 | ,   | <b>A,</b> 5 | A,6   |  |
| decrease |             |     | <b>C</b> ,9 | C,8 | C,7         |       |  |

Time windows

Queue monitor

Query execution

## Query execution

#### Asynchronous query

- triggered by users
- concurrently read, write with Mantis; periodic collect, store

#### Data-plane query

- triggered by packets
- freeze, switch registers
- higher accuracy: frozen registers → initial time windows → less compression

### **Evaluation**



github.com/A-Dying-Pig/PrintQueue

~5000 loc

#### Testbed:

- Star topology: 1 Tofino switch, 4 servers
- tcpreplay, netmap, DPDK

#### Workloads:

- Wisconsin trace
- DCTCP, VL2 synthetic trace

#### Methodology:

- Ground truth: packet carry queuing period → receivers
- precision =  $\frac{5}{7}$ , recall =  $\frac{5}{6}$



### PrintQueue achieves high accuracy



### PrintQueue incurs low overhead

- parameters  $\alpha$ , k, T
- bottleneck



Simultaneous activation in 10 ports.

## Summary



- Practical data-plane monitoring system: the provenance of queuing delay
- A congestion regime: direct, indirect, original culprits
- Two data structures: time windows, queue monitor
- Hardware prototype: 3x accuracy↑, 20x overhead↓

