Automated HRTF Individualisation Based on Localization Errors in 3D Space

Robin Yonge

August 2017

Background

TODO: sort out subsubsection topics to make it more elegant, fill out notes'd bits, maybe refer to this bit as introduction or motivation?

How Humans Localise Sound/What do I mean by spatial audio?

add in a bit about this, citing blauert, ez

The Present Importance of Spatial Audio etc

Spatial audio has never been more important. Though there has been a steady stream of interest in applications of spatial audio in fields like defence - primarily applied to Virtual Auditory Displays (VADs)(?) - virtual, augmented, and mixed reality form a large component of the current technological zeitgeist. One major stated goal of these technologies is that of immersion. This doesn't have to mean that the user feels as if they have been transported to somewhere completely new, they just have to believe in the virtual elements of the experience. No matter whether the intended application is entertainment, productivity, or assistance (unsure about this line), the end user must be deceived into believing in what they are experiencing.

Audio has parity with visuals here, as just small errors in either can irreparably break immersion(?).

[something about binaural audio here??? Explain meaning etc??? hrtfs as the principal determinant of sound localisation blah Reproducing spatial audio convincingly involves a number of factors, including reflections and occlusion caused by the room and the objects in it. This project however, will focus entirely on the effect the anthropometry of the listener has on the audio signal the attenuation of the sound caused by the various body parts that they sound waves come into contact with.

Recreating Spatial Audio/Representing this change?? idk

In most applications involving spatial audio, representing this attenuation is done using Head-Related Transfer Functions, or HRTFs, derived from their time-domain counterparts Head-Related Impulse Responses, or HRIRs. HRIR measurements are taken by placing microphones in the ears of a participant (human or mannequin) and measuring the impulse response resulting when a tone is played from a loudspeaker (?). This measurement process should be repeated for as many positions/points of origin around the participant as possible in order to maximise coverage and provide the greatest amount of information when it comes to using the information to process audio. This process is incredibly labour-intensive, requires specialist equipment, and can take hours to perform. As a result, there are few organisations capable of performing these measurements, and generating a set of HRTFs for most people is impractical at best. [maybe a section on databases] There are a few organisations that have assembled databases of HRTFs, that involve measurements from a range of participants. The two main differences in these databases are the number of source positions, and the number of participants.

Source Positions:

The number of source positions varies from database to database [in the case of CIPIC it is every L degrees from N to M, in the case of ARI, it is every Y degree from X to Z, etc] [add diagrams!]

Subjects:

These databases may contain anything from data from a single mannequin in the case of the MIT KEMAR set (?), to the CIPIC database's 45 subjects (?), up to the 110-subjects-and-growing ARI HRTF database (?).

[table of databases by subjects and participants maybe?]

The Problem

Because of the aforementioned difficulty in measuring HRTFs, data from these databases is commonly used in attempts to implement spatial audio solutions. In the simplest implementations, the audio sample is convolved with the HRIR, producing audio that appears to come, convincingly or otherwise, from the position in 3D space that the HRIR was originally measured from.

The problem with using this data in any spatial audio implementations that are to be used in applications for the consumption of a wide range of end users, is that HRTF data is incredibly specific to the person the measurements have been taken from. Just small differences in the anthropometry of the measured participant and the end user can compromise the efficacy of the HRTF used(?). However, when one tries instead to use a generalised HRTF - derived from the average of a set of measurements, or from a mannequin like the KEMAR(?) - the processed audio becomes too average and the same problems arise as using an HRTF from a single human. When using HRTFs that are not well matched to the user, front/back and elevation confusion is very common (?).

Re-mention that VR/AR is popular, and that audio is integral to the progression of the technology!!!!.

It follows, then, that in a system that implements binaural audio, the audio for a user would be processed using a set of HRTFs could be used to recreate audio in such a manner that the user would be able to accurately localise the source of a sound. As we have already established, the traditional method of measuring HRTFs is impractical for the vast majority of users, which leaves us at something of an impasse. We need a method for producing individualised sets of HRTFs with minimal specialist equipment, an easy user experience that does not require expert knowledge, as small a time investment as possible.

Literature Review

Modifying HRTFs/Overview

This idea of generating individualised sets of HRTFs without having to perform the complex measurements that would usually be required has existed since the 1990s (?). The ideal scenario for commonplace spatial audio involves every user having access to an HRTF set that works for them. If traditional methods of measurements are impractical, then alternatives are necessary.

Methods

Investigations into HRTF individualisation have been done using a range method-logies, some involving just simple selection tasks and others complex tuning - adjusting multiple parameters against listening tests. Often these methods hinge on a specific model that is used to decompose the HRTF into individual parameters that can be manipulated independently in order to achieve meaningful control over the customisation process. In some cases these models also seek to make clear the relationship between the features of the HRTF and the features of the user - the morphological properties of the measuree being the primary determinant of generated HRIR this seems a logical approach. In these next few sections I will cover the main of the approaches that have been investigated to date, as well as their efficacy and why they are or are not well suited to this project.

Clustering

Frequency Scaling

Structural Models

Database Matching

Principal Components Analysis

Understanding PCA

PCA and HRTFs/HRIR

test citation (Hölzl, 2012)

Search Methods

Simulated Annealing

Method

Analysis

Discussion

Bibliography

Josef Hölzl. An initial Investigation into HRTF Adaptation using PCA IEM Project Thesis. PhD thesis, Graz University of Technology, 2012. URL https://github.com/jhoelzl/HRTF-Individualization.