OPEN BOUNDARY CONDITIONS TO HELMHOLTZ EQUATION

Ruperto P. Bonet

ruperto.bonet@upc.edu

AN UNBOUNDED PROBLEM GOVERNED BY HELMHOLTZ EQUATION

A BOUNDED PROBLEM GOVERNED BY HELMHOLTZ EQUATION

INTERFACE CONNECTIONS IN DOMAIN DECOMPOSITION METHODS

Non-overlapping

Overlapping

STATEMENT OF A WAVE GUIDE PROBLEM

Steklov – Poincaré Operator

$$egin{aligned} \Delta\phi_1+k^2\phi_1&=0 & in\ \Omega_1\ \phi_1&=g & in\ \Gamma\ & rac{\partial\phi_1}{\partial\mathbf{n}}=0 & on\ \Gamma_h\ \phi_1&=u & on\ \Gamma^t \end{aligned}$$

artificial boundary

$$egin{aligned} \Delta\phi_2+k^2\phi_2&=0 & in~\Omega_2 \ &rac{\partial\phi_2}{\partial\mathbf{n}}=0 & on~\Gamma_h \ &\phi_2&=u & on~\Gamma^t \ +~some~b.c. & ext{at infinity} \end{aligned}$$

Iterative scheme with domain decomposition

RATE OF CONVERGENCE

Numerical Example with k= cte

$$a) g = exp(ikx)$$

b)
$$g = \exp(ik\cos(\pi / 6)x)$$

PRINCIPAL MATHEMATICAL PROBLEM

Given an elliptic differential operator L to get the DtN operator

$$rac{\partial}{\partial \mathbf{n_i}} + DtN$$

- With constant coefficients
- With variable coefficients in the normal direction
- With variable coefficients

The Continuous Case

$$\mathcal{L}(\phi) = rac{\partial^2 \phi}{\partial x^2} + rac{\partial^2 \phi}{\partial y^2} + k^2 \phi = 0 \quad on \quad \Omega$$

$$\frac{\partial \phi^{+}}{\partial x} = +i\mathcal{R}\phi^{+} + G$$

$$\frac{\partial \phi^{-}}{\partial x} = -i\mathcal{R}\phi^{-} - G$$

$$\phi = \phi^{+} + \phi^{-}$$

$$\mathcal{R}^{2} = k^{2}(1 + \frac{1}{k^{2}}\frac{\partial^{2}}{\partial y^{2}})$$

$$\mathbf{G} = ?$$

$$\mathcal{R}^2 = k^2 \left(1 + \frac{1}{k^2} \frac{\partial^2}{\partial y^2}\right)$$

$$G = ?$$

Remarks

$$DtN = -\sum_{m=0}^{N} \frac{\partial^{m}}{\partial y^{m}} (\beta_{m}(x, y) \frac{\partial^{m}}{\partial y^{m}})$$

Band matrix 1 3

DISCRETE NON-LOCAL (DNL) METHOD

HELMHOLTZ EQUATION

$$\Delta \phi + \mathbf{k}_{\mathbf{o}}^2 \phi = 0$$

$$A \phi^{j-1} + B \phi^{j} + A \phi^{j+1} = 0$$
 $j = 1, 2, ..., M,$

FEM

$$\mu^2 + \lambda \mu + 1 = 0$$

OPERATIONAL EQUATION

DNL Matrix Condition Number

DNL GAUSS FILTER METHOD

$$rac{\partial^2 \hat{\psi}}{\partial x^2} + l^2 \hat{\psi} = 0 \qquad in \,\, x_0 \leq x \leq \delta \ \hat{\psi} = g \qquad on \,\, x = x_0 \ \int_{x_0}^{\delta} \!\! \sigma(x) \psi e^{ikx} dx = 0$$

$$\sigma(x_j) = \begin{cases} e^{\frac{-s^2(x_j - x_c)^2}{2}} & \text{for } 0 \le j \le n_j, \\ 0 & \text{for } j < 0 \end{cases}$$

OPTIMIZATION OF DISCRETE FILTERING LAYER

$$\min rac{1}{(M+1)} \sum_{m=0}^{M} \left| R_m(heta_m,s) \right|^2 \cos(heta_m)$$

layer thick	optimal	Average R
(λ)	s value	
1	3.1430	2.7775e-03
2	2.4905	1.3249e-03
3	1.9199	2.7755e-04
4	1.7823	2.8770e-04
5	1.5157	9.6061e-05
6	1.4585	1.1577e-04
7	1.2935	4.5070e-05
8	1.2638	5.8650e-05
9	1.1472	2.4434e-05
10	1.1229	3.0625e-05

 $s \sim 3.2 \, \delta^{-0.45}$

Optimal Numerical Reflection

Figure 1: Optimal numerical reflection coefficient (in Db, i.e. $20log_{10}|R|$) versus angle of incidence in radians, for several number of points per wavelenghts.

Optimal Numerical Reflection

Figure 1: Optimal numerical reflection coefficient (in Db, i.e. $20log_{10}|R|$) versus angle of incidence in radians, for several layer thickness (in wavelengths)

NUMERICAL EXAMPLES

Figure 1: Comparison of boundary conditions along the artificial boundary, for kb=2

Figure 2: Comparison of boundary conditions along the artificial boundary, for kb=4

RELATIVE ERROR ON THE OPEN BOUNDARY

Figure 1: Dependence of the relative error on the layer thickness, for kb=2

RELATIVE ERROR ON THE OPEN BOUNDARY

Figure 1: Dependence of the relative error on the layer thickness, for $kb \equiv 4$

CONCLUSIONS

- The DNL method is suitable way to develop discrete absorbing boundary conditions
- This methodology allows investigate this subject as a particular case of interface connections in DDM philosophy

