Arquitectura de computadores I

Memoria externa

Tipos de memoria externa

- Disco magnético
 - **RAID**
 - Removable
- Ópticos
 - CD-ROM
 - CD-Recordable (CD-R)
 - CD-R/W
 - DVD
- Cinta magnética
- Discos duros estado sólido SSD

Disco magnético

- Plato circular construido con un material no magnético llamado substrato
- El substrato suele ser de aluminio.

Ahora el substrato suele ser de vidrio

- Mejora uniformidad de la superficie
 - Incrementa fiabilidad
 - Reducción en defectos
 - Reduce errores de escritura/lectura
 - Mayor capacidad para resistir golpes y daños

Mecanismos de lectura y escritura

- El grabado y la recuperación se realizan a través de una bobina llamada **cabeza**
- En muchos sistemas hay dos cabezas, una de lectura y otra de escritura
- Durante la lectura/escritura la cabeza está quieta mientras el plato rota
- Mecanismo de escritura
 - Corriente a través de una bobina produce un campo magnético
 - Se envían pulsos a la cabeza
 - Patrones magnéticos grabados en la superficie del disco
 - Mecanismo de lectura
 - Campo magnético produce una corriente
 - La estructura de la cabeza es la misma para lectura y escritura
 - Lectura (contemporanea)
 - Cabezas separadas de lectura y escritura
 - Sensor magnetico-resistivo
 - Resistencia electrica depende de la dirección del campo magnético
 - Mayor velocidad de operación y almacenamiento

Lectura y escritura

Organización de datos y formato

- Anillos concentricos o pistas
 - Cada pista es del mismo ancho que la cabeza
 - Pistas separadas por bandas vacías
 - Mismo número de bits por pista
- Pistas divididas en sectores
- Mayoría de sistemas tienen 512bytes por sector
- Sectores se separan entre sí con sectores vacíos

Organización datos en el disco

Velocidad en el disco

- Un bit cercano al centro rota más despacio que un bit más cerca al borde exterior del disco
- Para compensar este diferencia se incrementa el espacio entre diferentes pistas

Rotación a velocidad angular constante (CAV)

- El disco se divide en sectores en forma de trozo de tarta
 - Los sectores y pistas son direccionables
- La densidad dada en bits/pulgada aumenta que se mueve del exterior al centro
- Grabación en multiples zonas
 - Cada zona tiene un número dado de bits
 - Las zonas más lejanas tienen más bits que las cercanas al centro
 - Circuitería más compleja

Métodos de organización de disco

(b) Grabación en varias zonas

Encontrando sectores

- Debe ser capaz de identificar donde inicia y termina un sector
- Formato de disco
 - Información adicional no disponible para el usuario
 - Marca pistas y sectores
 - Existen formatos de bajo nivel y alto nivel

Formato de disco

- Formato de bajo nivel
 - Máximo 4 particiones primarias
 - Una de las particiones primarias es extendida
 - Las particiones extendidas permiten particiones lógicas
 - Formato de alto nivel
 - Como se asignan los archivos en los sectores
 - Windows: FAT, NTFS y EFS
 - Linux: EXT, JFS, Raiser y SWAP
 - Mac: HFS

Discos removibles

- Disco removible
 - Puede ser removido y reemplazado por otro disco
 - Provee capacidad de almacenamiento ilimitado
 - Fácil transferencia de datos entre sistemas
- Discos no removibles
 - Montado permanentemente

Multiples platos

- Una cabeza por lado
- Las cabezas están juntas y alineadas
- Los sectores están alineados en cada plato
- Datos son localizados por el movimiento del cilindro
 - Reduce el movimiento de la cabeza
 - Incrementa la velocidad de transferencia

Multiples platos

Pistas y cilindros

Disquette

- 8", 5.25", 3.5"
- Poca capacidad
 - 1.44Mbyte (2.88M nunca fue popular)
- Lento
- Universal
- ¿Obsoleto?

https://en.wikipedia.org/wiki/SuperDisk

Velocidad de los discos

- Tiempo de búsqueda
 - Mover la cabeza a la pista correcta
- Latencia rotacional
 - Es el tiempo que se tarda en localizar los datos una vez la cabeza esté en el sector, suele ser de 4ms
- Tiempo de acceso: Búsqueda + Latencia
- Tiempo de transferencia

$$T = \frac{b}{rN}$$

T = Tiempo

b = Número de bytes a transferir

N = Número de bytes en una pista

r = Velocidad en una pista

Tiempo de transferencia de discos

- Es un arreglo de discos independientes redundates
- 6 niveles
- Conjunto de discos físicos vistos como un sólo disco por el sistema operativo
- Los datos están distribuidos a lo largo de los discos físicos
- Puede usarse la capacidad redundante para almacenar información de forma segura

- No hay redundancia
- Datos distribuidos a través de todos los discos
- Mayor capacidad de discos
- Incrementa velocidad
 - Requerimientos de datos probablemente no están
 - en el mismo disco
 - Discos se leen en paralelo
 - Un conjunto de datos es preferiblemente almacenado en multiples discos

- Discos espejos
- Datos son almacenados a través de los discos
- 2 copias de cada dato
- Lectura desde cualquier disco
- Escritura en ambos
- Recuperación de información es sencilla
- Costoso

- Discos están sincronizados
- Corrección de errores a través del calculo de los bits correspondientes en los discos
- Se utiliza corrección de error de Hamming utilizando discos de paridad
- Excesivamente redundante
 - Costoso
 - No usado

- Simlar a RAID 2
- Sólo un disco es redundante
- Un sólo bit de paridad para cada conjunto de bitss
- Datos en discos fallidos pueden ser recuperados desde la información de paridad
- Alta transferencia de datos

- Cada disco opera independientemente
- Buena para discos de intensa escritura y lectura
- El bit de paridad es calculado a través de los datos en cada discok
- Los bits de paridad son almacenados en el disco de paridad

- Como RAID 4
- La paridad es almacenada a través de todos los discos
- Se utilizan técnicas de localización para la paridad
- La información de paridad se encuentra distribuida en todos los discos a diferencia de RAID 4
- Utilizado en los servidores de red

- Dos calculos de paridad
- La paridad es almacenada en bloques separados en diferentes discos
- Si se requieren N discos se deben instalar N+2
- Alta confiabilidad
 - Se necesita que fallen al menos 3 discos
 - Reducción en la velocidad de escritura

RAID 0, 1, 2

(c) RAID 2 (redundancia con código Hamming)

RAID 3 & 4

(b) RAID 4 (paridad en bloques)

RAID 5 & 6

(d) RAID 6 (redundancia doble)

Mapeo de datos para RAID 0

Almacenamiento óptico CD-ROM

- Originalmente para audio
- 650Mbytes o 70 minutes de audio
- Policarbonato con un metal altamente reflectivo, principalmente aluminio
- Datos almacenados como hoyos
- Lectura por un laser reflectivo
- Densidad constante de almacenamiento
- Velocidad constante lineal

Operación del CD

Velocidad de CD-ROM

- Audio es de velocidad única
 - Velocidad constante
 - -1.2 ms⁻¹
 - Pista tiene un largo de 5.27km
 - Toma 4391 seguntos = 73.2 minutos
- Otras velocidad son tomadas como múltiples
- Ejemplo 24x

Formato CD-ROM

- Modo 0=Campo de datos vacio
- Modo 1=2048 byte + corrección errores
- Modo 2=2336 byte de datos

Otros almacenamientos ópticos

- CD-graable (CD-R)
 - Una escritura
 - Varias lecturas
- CD-RW
 - Borrable
 - Puede borrarse entre 500000 y 1 millón de veces
 - Cambio de fase
 - El material tiene dos diferentes estados de reflectividad

Tecnología DVD

- Multicapa
- Alta capacidad (4.7G por capa)
- Finalmente estandarizado
- Solía codificarse la grabación por areas

CD y DVD

Caracteristicas de memoria óptica

Cinta magnética

- Acceso serial
- Lenta
- Muy confiable
- Enfocada a copias de seguridad

- Son un reemplazo de los discos duros HDD
- Tienen componenes en estado solido
- Están compuestos por los mismos componentes que las memorias Flash

- Las memorias Flash trabajan con una capa de oxido
- Para almacenar información se aplica un gran voltaje a través de la capa de oxido.
- Los electrones queda atrapados entre la capa de óxido y la estructura de la celda.
 Generando una capa flotante, que puede tener carga
- Si no hay carga almacenada en la capa flotante se considera como 1, en otro caso como 0

(a) Transistor structure

(b) Flash memory cell in one state

(c) Flash memory cell in zero state

- **Ventajas**
- Son más rapidos que los HDD
- Son menos suceptibles frente a golpes o vibraciones
- Consumen menos energía
- Presentan menor latencia

	NAND Flash Drives	Disk Drives
I/O per second (sustained)	Read: 45,000 Write: 15,000	300
Throughput (MB/s)	Read: 200+ Write: 100+	up to 80
Random access time (ms)	0.1	4–10
Storage capacity	up to 256 GB	up to 4 TB

- Desventajas
- Si se dejan de utilizar mucho tiempo, se pierde información
- Suele garantizarse alrededor de 100 semanas de almacenamiento sin alimentación
- Van perdiendo velocidad a medida del paso de los años

¿Preguntas?

- Próxima clase
 - Dispositivos de entrada y salida