17. Канонические формы предложений в логике первого порядка. Предваренные нормальные формы. Алгоритм приведения любой формулы к префиксному виду, примеры.

Билеты 10.24

Вступление.

Рассмотрим отношение равносильности $A \equiv B \stackrel{def}{\iff} (A \models B) \& (B \models A)$

Очевидно это отношение эквивалентности, оно разбивает множество формул на классы эквивалентности. Возникает желание найти канонические формы формул разных классов. Так каноническими являются префиксные и антипрефиксные формулы.

Префиксные формулы (предваренная нормальная форма).

Формула А называется префиксной, если она имеет вид:

$$A=Q_1x_1Q_2x_2\dots Q_nx_nB,$$

где Q_i – кванторы \forall или \exists ; x_i – индивидные переменные; B – бескванторная формула; ($\forall i$).

На содержательном уровне – это формулы, у которых кванторы вынесены максимально вперед.

Утв.: любую формулу языка логики первого порядка можно привести к префиксному виду.

Алгоритм основан на применении следующих правил:

$1. \neg \forall xA = \exists x \neg A$	$5. \left[\forall x A \right] \& B = \ \forall x [A \& B]$	

* 3-4: А не имеет свободных вхождений переменной у

$$2. \neg \exists xA = \forall x \neg A$$

$$2. \neg \exists x A = \forall x \neg A \qquad 6. [\exists x A] \& B = \exists x [A \& B]$$

* 5-8: B не имеет свободных вхождений переменной x

3.
$$\forall xA = \forall yA_x[y]$$

7.
$$[\forall x A] \cup B = \forall x [A \cup B]$$

*
$$A, B$$
 — формулы, $A_x[y]$ — результат подстановки y вместо

$$4. \exists x A = \exists y A_x [y]$$

4.
$$\exists x A = \exists y A_x[y]$$
 8. $[\exists x A] \cup B = \exists x [A \cup B]$

всех вхождений
$$x$$
 в A

Примеры.

- $[\forall x P(x)] \cup [\forall x Q(x)] = 3 [\forall x P(x)] \cup [\forall y Q(y)] = 7 \forall x [P(x) \cup [\forall y Q(y)]] = 7 \forall x \forall y [P(x) \cup Q(y)]$
- $[\forall x P(x)] \rightarrow [\forall x Q(x)] \neq \forall x \forall y [P(x) \rightarrow Q(y)]$

$$[\forall x P(x)] \rightarrow [\forall x O(x)] = [\exists x \bar{P}(x)] \cup [\forall x O(x)] = [\exists x \bar{P}(x)] \cup [\forall y O(y)] = \exists x \forall y [\bar{P}(x) \cup O(y)] = \exists x \forall y [\bar{P}(x) \cup O(y)] = [\exists x [\bar{P}(x)] \cup [\forall x [\bar{P}(x)] \cup [\forall$$

Продвижение вперед возможно только для булевых связок.