Transport optimal pour la comparaison des fibres courtes du cerveau entre individus

INSTITUT DE NEUROSCIENCES DE LA TIMONE

ÉTABLISSEMENT DE CARTES DE CONNECTIVITÉ

sélection des streamlines

© L. Brun

IRM de diffusion

paramétrisation

Carte de connectivité discrète

Carte continue

TRANSPORT OPTIMAL & DISTANCE DE 2-WASSERSTEIN

Optimal Transport matrix

$$T = \underset{\pi \in \Pi(\mu_s, \mu_t)}{\operatorname{argmin}} < \pi(\mu_s, \mu_t), D_2^2(\mu_s, \mu_t) >$$

Tels que μ_s , μ_t deux densités de probabilité associées à l'espace X et Y

Le problème du déblai et du remblai de Monges [2]

[2] Optimal transport : old and new by Villani Cédric

TRANSPORT OPTIMAL & DISTANCE DE 2-WASSERSTEIN

Optimal Transport matrix

$$T = \underset{\pi \in \Pi(\mu_s, \mu_t)}{\operatorname{argmin}} < \pi(\mu_s, \mu_t), D_2^2(\mu_s, \mu_t) >$$

Distance de 2-Wasserstein

$$W_{2}^{2} = \min_{\pi \in \Pi(\mu_{S}, \mu_{t})} \int_{X \times Y} ||x, y||_{2}^{2} d\pi(x, y)$$
$$= \min_{\pi \in \Pi(\mu_{S}, \mu_{t})} \langle \pi(\mu_{S}, \mu_{t}), D_{2}^{2}(\mu_{S}, \mu_{t}) \rangle$$

Tels que μ_s , μ_t deux densités de probabilité associées à l'espace X et Y

SUJET REPRÉSENTATIF

Moyenne des sujets

Barycentre

Profil individuel aligné

Profil du groupe

BARYCENTRE ITÉRATIF [3]

 $m = \underset{\mu \in (\mathbb{R}^2)^k}{\operatorname{argmin}} \sum_{i=1}^N W_2^2(\mu, \nu_i) [4]$

[3] Population Averaging of Neuroimaging Data Using Lp Distance-based Optimal Transport by Q. Wang, I. Redko, and S. Takerkart

BARYCENTRE ITÉRATIF [3]

 $\mathbf{m} = \underset{\mu \in (\mathbb{R}^2)^k}{\operatorname{argmin}} \sum_{i=1}^{N} \overline{W_2^2(\mu, \nu_i)}$ [4]

[3] Population Averaging of Neuroimaging Data Using Lp Distance-based Optimal Transport by Q. Wang, I. Redko, and S. Takerkart

BARYCENTRE ITÉRATIF [3]

 $\mathbf{m} = \underset{\mu \in (\mathbb{R}^2)^k}{\operatorname{argmin}} \sum_{i=1}^{N} \overline{W_2^2(\mu, \nu_i)}$ [4]

[3] Population Averaging of Neuroimaging Data Using Lp Distance-based Optimal Transport by Q. Wang, I. Redko, and S. Takerkart

BARYCENTRE ITÉRATIF [3]

 $\mathbf{m} = \underset{\mu \in (\mathbb{R}^2)^k}{\operatorname{argmin}} \sum_{i=1}^{N} \overline{W_2^2(\mu, \nu_i)}$ [4]

[3] Population Averaging of Neuroimaging Data Using Lp Distance-based Optimal Transport by Q. Wang, I. Redko, and S. Takerkart

ROBUSTESSE DU BARYCENTRE

Support d'initialisation

Ordre c	les sujets
---------	------------

Nom	Nombre de points	W ₂ à tous les sujets	W ₂ aux barycentres
Minimum	582	13.70	1.17
Random	768	13.69	1.10
Médian	2040	13.67	0.94
Centroïde	3190	13.67	0.92
Maximum	4029	13.67	0.9

Expérience	W_2 à tous les sujets	W ₂ aux barycentres
1	13.66	0.99
2	13.67	0.99
3	13.66	0.99
4	13.66	1.02
5	13.67	0.99

BARYCENTRES

moyenne [1]

barycentre

[1] Etude de la connectivité structurelle des faisceaux d'association courts de la substance blanche du cerveau humain en IRM de diffusion by Alexandre Pron

EXISTE-T-IL UNE STRATIFICATION AU SEIN DE NOS SUJETS?

K-MEDOIDS

"K-Medoids Clustering" in Encyclopedia of Machine Learning

(**DOI:** https://doi.org/10.1007/978-0-387-30164-8_426)

SCORE ELBOW

e: la distance intra-cluster moyenne

SCORE SILHOUETTE

$$s = \frac{a - e}{\max(a, e)}$$

e: la distance intra-cluster moyenne

a: la distance moyenne entre les clusters les plus proches

Matrice de distance réorganisée des

sujets

Cluster 1

Cluster 2

SOUS-BARYCENTRES

COMMENT ÉTUDIER LA VARIABILITÉ DE NOS SUJETS ?

Isomap:

- Principal Component Analysis
- MultiDimensional Scaling

Application to age estimation in living persons

NOMBRE DE VOISINS [7]

[7] Selection of the Optimal Parameter Value for the Isomap Algorithm by Samko, A. D. Marshall, and P. L. Rosin

ISOMAP

7 voisins

BARYCENTRE GLISSANT

BARYCENTRE GLISSANT

INFLUENCE DU NOMBRE DE POINTS SUR L'AXE DE VARIATION

COMPARAISON ENTRE LES DEUX HÉMISPHÈRES

CONCLUSION ET TRAVAUX FUTURS

Sujet représentatif

 Le barycentre déterminé par la métrique de 2-Wasserstein fournit un sujet représentatif mais c'est une solution plus lisse que celle d'Alexandre.

Clustering

• Il semblerait que le clustering ne soit pas pertinent.

Isomap

• L'axe de variation que nous avons mis en évidence correspondrait à la variation de la position de la tâche centrale et à un déplacement de la densité vers la zone ventrale.

Déterminer le paramètre de variabilité de manière certaine

REFERENCES

- [1] Alexandre Pron. « Etude de la connectivité structurelle des faisceaux d'association courts de la substance blanche du cerveau humain en IRM de diffusion ». 2019AIXM0391. PhD thesis. 2019. url: http://www.theses.fr/2019AIXM0391/document (cit. on p. 4).
- [2] Villani Cédric. Optimal transport : old and new / Cédric Villani. eng. Grundlehren der mathematischen Wissenschaften. Berlin: Springer, right 2009. isbn: 978-3-540-71049-3.
- [3] Q. Wang, I. Redko, and S. Takerkart. « Population Averaging of Neuroimaging Data Using Lp Distance-based Optimal Transport ». In: 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI). 2018, pp. 1–4. doi: 10.1109/PRNI. 2018.8423953.
- [4] Marco Cuturi and Arnaud Doucet. « Fast Computation of Wasserstein Barycenters ». In: Proceedings of the 31st International Conference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR, 22–24 Jun 2014, pp. 685–693. url: http://proceedings.mlr.press/v32/cuturi14.html (cit. on p. 5).
- [5] Leonard Kaufman and Peter J. Rousseeuw. Clustering by means of medoids. Ed. by In: Dodge Y and editor. Amsterdam: 1987 (cit. on p. 6).
- [6] Chao Shao and Haitao Hu. « Extension of ISOMAP for Imperfect Manifolds ». In: J. Comput. 7.7 (2012), pp. 1780–1785. doi: 10.4304/jcp.7.7.1780-1785. url: http://www.jcomputers.us/index.php?m=content%5C&c=index%5C&a=show% 5C&catid=121%5C&id=2301 (cit. on p. 7).
- [7]. Samko, A. D. Marshall, and P. L. Rosin. « Selection of the Optimal Parameter Value for the Isomap Algorithm ». In: Pattern Recogn. Lett. 27.9 (July 2006), pp. 968–979. issn: 0167-8655. doi: 10.1016/j.patrec.2005.11.017. url: https://doi.org/10.1016/j.patrec.2005.11.017 (cit. on p. 7).
- [8] Zhong Yi Sun et al. «The effect of handedness on the shape of the central sulcus ». In: NeuroImage 60.1 (2012), pp. 332–339. issn: 1053-8119. doi: https://doi.org/ 10.1016/j.neuroimage.2011.12.050. url: https://www.sciencedirect.com/ science/article/pii/S1053811911014522 (cit. on p. 13).