目录

•	vim 配置	1
•	扩充栈空间	1
•	glibc 内建函数	1
•	快速傅里叶变换(FFT)	1
•	数论变换(NTT)	1
•	多项式的逆元	1
•	多项式的除法	1
•	多项式开根号	1
•	矩阵快速幂	1
•	在线 FFT	1
•	线段树	1
•	Splay	1
•	KD-Tree	2
•	树链剖分	3
•	网络流	3
•	上下界网络流	3
•	费用流	4
•	平面图最小割	4
•	无向图最小割(抄来的)	5
•	有向图最小生成树(抄来的)	5
•	强连通分量	6
•	割点、割边	6
•	二维几何基础	6
•	圆相关	7
•	凸包	8
•	三角形	8
•	平面定理	9
•	高维球	9
•	复数	9
•	扩展欧几里得	9

线性求乘法逆元(mod 为质数)	9
线性筛素数	9
高斯消元	9
欧拉函数	9
大素数判定	9
大数分解	9
莫比乌斯反演	10
波利亚	10
Pell 方程	10
Matrix-Tree 定理	10
Prufer 编码	10
一些计数问题	10
差分序列	10
Java 大数	10
常用大素数	11
约数个数	11
质数个数	11
浮点数求和(Kahan Summation)	11
Simpson	11
二次剩余	11
Hash	11
KMP	11
exKMP	12
Manacher	12
AC 自动机	12
后缀自动机	13
回文自动机	13
后缀数组(倍增)	13
ST	14
Dancing Links(精确覆盖)	14
Dancing Links(模糊覆盖)	15
后缀数组(DC3)(乐神)	16
GAUSS (乐神)	17

•	SPLAY(乐神)	. 17
•	点分治(乐神)	.18
•	分治并查集(乐神)	. 19
•	上下界最大流(乐神)	.20
•	树链剖分(乐神)	.20
•	模线性方程组(乐神)	.21
•	主席树(乐神)	.22
•	主席树+并查集(乐神)	.22
•	主席树套树状数组(乐神)	.23
•	Link-Cut Tree	.24

```
● vim 配置
 set number
                               func! Com()
 set showcmd
                                    exec "w"
 set hls
                                   let cmd="!g++"
filetype on
                                   let flag="-o %< "</pre>
filetype indent on
                                   exec cmd." % ".flag
filetype plugin on
                               endfunc
 colorscheme ron
                               func! Run()
 set ts=4
                                   exec "!./%<"
 set sw=4
                               endfunc
nmap ,s :w<cr>:sh<cr>
                               nmap ,g :call Com()<cr>
                               nmap ,r :call Run()<cr>
nmap ,/ I//<esc>
nmap ,\ I<del><del><esc>
                               nmap ,y mkgg"+yG`k
                               nmap ,p "+p
● 扩充栈空间
extern int main2(void) asm ("main2");
int main2() {
    exit(0);
int main() {
    int size = 256 << 20; // 256 MB</pre>
    char *p = (char *)malloc(size) + size;
    __asm__ __volatile__(
            "mova %0, %%rsp\n"
            "pushq $exit\n"
            "imp main2\n"
            :: "r"(p));
● glibc 内建函数
int builtin ffs (unsigned int x); //返回右起第一个1的位置, 最低位为第1位
int builtin clz (unsigned int x); //返回左起第一个 1 之前的 0 的个数
int builtin ctz (unsigned int x); //返回右起第一个 1 之后的 0 的个数
int builtin popcount (unsigned int x); //返回1的个数
int builtin parity (unsigned int x); //返回 1 的个数的奇偶性 奇数个则返回 1
● 快速傅里叶变换(FFT)
void FFT(Complex a[], int n, int oper) {
    for (int i = 1, j = 0; i < n; i++) {
        for (int s = n; j ^= s >>= 1, ~=j \& s; );
        if (i < j) swap(a[i], a[j]);</pre>
    for (int m = 1; m < n; m *= 2) {
        double p = PI / m * oper;
        Complex w = Complex(cos(p), sin(p));
        for (int i = 0; i < n; i += m * 2) {
            Complex unit = 1;
            for (int j = 0; j < m; j++) {
                Complex &x = a[i + j + m], &y = a[i + j], t = unit * x;
                x = v - t;
                y = y + t;
                unit = unit * w;
```

```
}
    if (oper == -1) for (int i = 0; i < n; i++) a[i] = a[i] / n;
● 数论变换(NTT)
长度 n 必须为 mod - 1 的约数,否则找不到 n 等分点 w,即 pow(w, n) = 1
int w = pow(g, (mod - 1) / (2 * m));
if (oper == -1) w = pow(w, mod - 2);
无法直接 NTT. 则做三次乘法、然后用 CRT 求出、需要用到 int128。
ans = (ans1 * mod2 * mod3 * inv1 + ans2 * mod3 * mod1 * inv2 + ans3 * mod1
* mod2 * inv3) % (mod1 * mod2 * mod3);
常用大素数
 mod1 = (31 * 31 << 20) + 1
                                 g1 = 3
                                                inv1 = 346,612,643
 mod2 = (17 * 59 << 20) + 1
                                 g2 = 6
                                                inv2 = 408,151,354
 mod3 = (3 << 18) + 1
                                 g3 = 10
                                                inv3 = 210,725
也可以将多项式拆成P(x) = P1(x) + \sqrt{mod} * P2(x),然后共做 7 次 FFT,需要用到 long double
● 多项式的逆元
```

● 多项式的除法

设 n 阶多项式 $f_n(x) = q_{n-m}(x)g_m(x) + r_{m-1}(x)$,则q(x)为f(x)/g(x)的商,r(x)为余数 记 $h'_k(x) = x^k h_k(1/x)$,即 h'=reverse(h),则 $q'_{n-m}(x) = f'_n(x) (g'_m(x))^{-1} \pmod{x^{n-m+1}}$

 $g_{2n}(x) \equiv 2g_n(x) - g_n(x)^2 f(x) \pmod{x^{2n}}$

● 多项式开根号

$$g_{2n}(x) \equiv (g_n(x) + f(x)g_n(x)^{-1})/2 \pmod{x^{2n}}$$

● 矩阵快速幂

设递推式为 $h_n = \sum_{i=1}^k a_i h_{n-i}$,令 $X = [h_k, h_{k-1}, ..., h_1]^{-1}$, $M^{n-1}X = [h_{n+k-1}, ..., h_n]^{-1}$ 则 $M^{p+k} = \sum_{i=1}^k a_i M^{p+k-i}$,矩阵相乘变为两个多项式相乘,再将 $2k-2\cdots k$ 的部分合并下去多项式乘可以使用 FFT,合并操作可以视为求除以多项式 $(a_k, a_{k-1}, ..., a_1, -1)$ 的余数

● 在线 FFT

给向量 a 和向量 b, b[0] = 0, 求向量 c 为 a 与 b 的卷积。每次给 a[t], 求 c[t + 1] c[t + 1] += a[t] * b[1]; if (t != 0) for (int m = 1; t % m == 0; m *= 2) c[t + 1 .. t + m * 2] += a[t - m .. t - 1] * b[m + 1 .. m * 2];

● 线段树

若下标在[0, nn]范围内,其中 nn = ~0u >> __builtin_clz(n),即大于等于 n 的最小的 $2^k - 1$,则可以直接用 a[1 + r]表示[1, r]这个节点。

• Splay

```
struct Node {
   Node *ls, *rs, *f;
```

```
int a, b, minb; //按照 a 排序, 保留 b 的最小值
    void update() {
        minb = b;
        if (ls) minb = min(minb, ls->minb);
        if (rs) minb = min(minb, rs->minb);
    Node *clear(int aa, int bb, Node *ff = NULL) {
        a = aa; b = bb; minb = bb;
        f = ff; ls = rs = NULL;
        return this;
    void rot() { //旋转到他的父亲位置
        Node *x = this, *y = f;
        if (x == y->ls) {
             y->1s = x->rs;
             x->rs = y;
             if (y->ls) y->ls->f = y;
        } else {
             y->rs = x->ls;
             x \rightarrow 1s = y;
             if (y->rs) y->rs->f = y;
        x->f = y->f;
        v->f = x;
        if (x -> f) {
             if (x->f->ls == y) x->f->ls = x;
             else x \rightarrow f \rightarrow rs = x;
        y->update();
        x->update();
    int dir() { //判断是父亲的左孩子还是右孩子
        if (this->f) {
             if (this == this->f->ls) return -1;
             else return 1;
        return 0;
    }
Node c[N], *root, *cp;
Node *splay(Node *x, Node *f = NULL) { //将 x 提为根
    while (x->f != f) {
        if (x->f->f == f) x->rot();
        else if (x->dir() == x->f->dir()) {
             x->f->rot();
             x->rot();
        } else {
             x->rot();
             x->rot();
    return x;
```

```
void demo() {
    cp = c;
    root = (cp++)->clear(-INF, INF);
    root->rs = (cp++)->clear(INF, INF, root);
    root->update();
    // 想求第 k 大元素的话,需要维护 size 信息
KD-Tree
int id:
struct Point {
    int x[2];
    friend bool operator < (const Point &a, const Point &b) {</pre>
         return a.x[id] < b.x[id];</pre>
    friend bool operator <= (const Point &a, const Point &b) {</pre>
         return a.x[id] <= b.x[id];</pre>
};
struct Node {
    Point 1, r, x;
    int v, maxv;
};
Point b[N];
Node c[N * 2];
void updateArea(int x, int y) {
    c[x].1.x[0] = min(c[x].1.x[0], c[y].1.x[0]);
    c[x].l.x[1] = min(c[x].l.x[1], c[y].l.x[1]);
    c[x].r.x[0] = max(c[x].r.x[0], c[y].r.x[0]);
    c[x].r.x[1] = max(c[x].r.x[1], c[y].r.x[1]);
void update(int d, int l, int r) {
    int t = (1 + r) >> 1, ls = d << 1, rs = ls | 1;
    c[d].maxv = c[d].v;
    if (1 < t) c[d].maxv = max(c[d].maxv, c[ls].maxv);</pre>
    if (t + 1 < r) c[d].maxv = max(c[d].maxv, c[rs].maxv);</pre>
bool build(int d, int l, int r, int o) { // c[d] \Rightarrow [1..r)
    if (1 >= r) return false;
    int t = (1 + r) >> 1, ls = d << 1, rs = ls | 1;
    id = o;
    nth element(b + 1, b + t, b + r);
    c[d].1 = c[d].r = c[d].x = b[t];
    c[d].v = 0;
    if (build(ls, l, t, o ^ 1)) updateArea(d, ls);
    if (build(rs, t + 1, r, o ^ 1)) updateArea(d, rs);
    update(d, 1, r);
    return true;
void set(int d, int l, int r, int o, Point i, int x) {
    if (1 >= r) return;
```

```
if (c[d].x.x[0] == i.x[0] && c[d].x.x[1] == i.x[1]) {
        c[d].v = max(c[d].v, x);
        update(d, 1, r);
    } else {
        int t = (1 + r) >> 1, ls = d << 1, rs = ls | 1;
        if (i <= c[d].x) set(ls, l, t, o ^ 1, i, x);
        id = o;
        if (c[d].x <= i) set(rs, t + 1, r, o ^ 1, i, x);
        update(d, 1, r);
    }
int get(int d, int l, int r, int o, Point ll, Point rr) {
    if (1 >= r) return 0;
    if (c[d].l.x[0] > rr.x[0] || c[d].l.x[1] > rr.x[1] ||
             c[d].r.x[0] < ll.x[0] | | c[d].r.x[1] < ll.x[1])
        return 0:
    if (c[d].1.x[0] >= 11.x[0] && c[d].1.x[1] >= 11.x[1] &&
             c[d].r.x[0] \leftarrow rr.x[0] & c[d].r.x[1] \leftarrow rr.x[1]
        return c[d].maxv;
    int t = (1 + r) >> 1, ls = d << 1, rs = ls | 1;
    int ans = 0;
    if (c[d].x.x[0] >= 11.x[0] && c[d].x.x[1] >= 11.x[1] &&
             c[d].x.x[0] \leftarrow rr.x[0] && c[d].x.x[1] \leftarrow rr.x[1]
        ans = max(ans, c[d].v);
    ans = max(ans, get(ls, l, t, o ^ 1, ll, rr));
    ans = max(ans, get(rs, t + 1, r, o ^ 1, ll, rr));
    return ans;
void demo() {
    // b 中的元素顺序会被打乱, b 的元素范围在[0, n)内
    build(1, 0, n, 0);
    get(1, 0, n, 0, x, y);
    set(1, 0, n, 0, z, dp[i]);
● 树链剖分
第一次 dfs 求出 f, h, size, zson, 第二次 dfs 求出 top, dfn
● 网络流
struct NetWorkFlow {
    struct Edge {
        int t, f;
        Edge *ne, *p;
        Edge *clear(int tt, int ff, Edge *nee) {
            t = tt; f = ff; ne = nee;
            return this;
        }
    Edge b[M * 2], *p, *fe[N], *cur[N];
    int n, s, t, h[N], vh[N];
    void clear(int nn, int ss, int tt) {
```

```
n = nn; s = ss; t = tt;
        for (int i = 0; i < n; i++) fe[i] = NULL;
        p = b;
    void putedge(int x, int y, int f) {
        fe[x] = (p++)->clear(y, f, fe[x]);
        fe[y] = (p++)->clear(x, 0, fe[y]);
        fe[x]->p = fe[y];
        fe[y]->p = fe[x];
    int aug(int i, int f) {
        if (i == t) return f;
        int minh = n;
        Edge *seg = cur[i], *&j = cur[i];
        do {
            if (j->f) {
                 if (h[j->t] + 1 == h[i]) {
                     int tmp = aug(j->t, min(j->f, f));
                     if (tmp) {
                         j->f -= tmp;
                         j->p->f += tmp;
                         return tmp;
                 minh = min(minh, h[j->t] + 1);
                 if (h[s] == n) return 0;
            i = i \rightarrow ne;
            if (j == NULL) j = fe[i];
        } while (j != seg);
        if (!--vh[h[i]]) h[s] = n;
        else ++vh[h[i] = minh];
        return 0;
    int flow() {
        if (fe[s] == NULL) return 0;
        int ans = 0;
        for (int i = 0; i <= n; i++) {
            cur[i] = fe[i];
            h[i] = vh[i] = 0;
        }
        vh[0] = n;
        while (h[s] < n) ans += aug(s, INF);
        return ans;
    }
};
● 上下界网络流
每条边上除了上界还有一个必须满足的下界,其余条件相同。
1. 加入虚拟源点 vs 和虚拟汇点 vt
2. 若边(u,v) 属于 G 那么这条边也属于 D, cap(u,v) = up(u,v) - low(u,v)
```

```
3. 对于 G 中的每一个点 v, D 中加入边 (vs,v),cap(vs,v) = ed(v)
4. 对于 G 中的每一个点 v, D 中加入边 (v,vt), cap(v,vt) = st(v)
5. 加入边(t,s), cap(t,s) = INF
6. tflow 为所有边的下界的和
7. 求 vs 到 vt 的最大流,若最大流不等于 tflow,则不存在可行流,此问题无解。若相等,恢复原图
求最大流。
● 费用流
struct Node {
    int fe, ln, c, le; //ln 上一个点, le 上一条边, c 为 s 到当前点最小花费
    bool d; //是否在队列内
};
struct Edge {
    int f, t, ne, c;
Node a[N];
Edge b[M * 2];
int s, t, n, p, cost, flow;
void clear(int nn, int ss, int tt) {
    n = nn; s = ss; t = tt;
    for (int i = 0; i < n; i++) a[i].fe = -1;</pre>
    p = cost = flow = 0;
void putedge(int x, int y, int f, int c) {
    b[p].ne = a[x].fe; b[p].t = y; b[p].f = f; b[p].c = c; a[x].fe = p++;
    b[p].ne = a[y].fe; b[p].t = x; b[p].f = 0; b[p].c = -c; a[y].fe = p++;
inline int add(int &p) {
    int ans = p++;
    if (p == N) p = 0;
    return ans:
bool spfa() {
    static int d[N];
    for (int i = 0; i < n; i++) {
        a[i].c = INF;
        a[i].ln = a[i].le = -1;
        a[i].d = false;
    int p = 0, q = 0;
    d[add(q)] = s;
    a[s].d = true;
    a[s].c = 0;
    while (p != q) {
        int u = d[add(p)];
        for (int j = a[u].fe; j != -1; j = b[j].ne) {
            int v = b[j].t;
            if (b[j].f > 0 && b[j].c + a[u].c < a[v].c) {</pre>
                a[v].c = a[u].c + b[j].c;
```

```
a[v].ln = u;
             a[v].le = j;
             if (a[v].d == false) {
                a[v].d = true;
                d[add(q)] = v;
         }
      a[u].d = false;
   if (a[t].c == INF) return false;
   p = INF;
   a = 0;
   for (int i = t; i != s; i = a[i].ln) {
      d[q++]=i;
      if (p > b[a[i].le].f) p = b[a[i].le].f;
   flow += p;
   for (int i = q - 1; i >= 0; i--) {
      int j = a[d[i]].le;
      cost += b[j].c * p;
      b[j].f -= p;
      b[j ^ 1].f += p;
   return true;
void minCostFlow() {
   while (spfa());
● 平面图最小割
将其转为对偶图求最短路,对偶图为稀疏图,应使用堆优化的 di jkstra
对干平面图有如下性质:
  1. (欧拉公式) 如果一个连通的平面图有 n 个点, m 条边和 f 个面, 那么 f=m-n+2
  2. 每个平面图 G 都有一个与其对偶的平面图 G*
  3. G*中的每个点对应 G 中的一个面
  4. 对于 G 中的每条边 e. e 属于两个面 f1、f2. 加入边(f1*, f2*)。
    如果 e 只属于一个面 f, 加入回边(f*, f*)。
平面图 G 与其对偶图 G*之间关系:
  1. G 的面数等于 G*的点数,G*的点数等于 G 的面数,G 与 G*边数相同
  2. G*中的环对应 G 中的割——对应
与 S-T 最小割平面图较规则不同,难点在于将一张图的块求出。大体分如下几步进行:
  1. 把所有的边都拆成两条有向边, 自环删掉。
  2. 将每条有向边在另一个图 G'中用一个点表示。
  3. 考察原图中的每个顶点, 将所有的与之相连的边极角排序。
  4. 遍历每条入边。将其后继设为与之顺时针相邻的出边。也就是在 G'中连一条从
    这个入边的点到其后继的有向边。注意(S, T)的那条新加边要特殊处理
  5. 在 G'中就是一些不相交的有向环。每个有向环就对应一个区域。找出了所有的
    区域、我们要的那张图就简单了。
  6. 根据对偶图构图, 求得 s-t 之间最短路即是对应的最小割
```

至于"死胡同"问题(构不成平面的边)这样会形成一个特殊的区域,相当于进去死胡同再出来。

但是答案不会受到影响,所以直接忽略。

```
Graph b,e;
Point a[N], c[N]; //a 为原始点, c 为原始边
int d[N],next[N],belong[N];
//d 为极角排序数组,next 为下一条边,belong 为左手边的块
int main() {
    int n,m,s,t,i,j,x,y;
    double z;
    scanf("%d%d",&n,&m);
    s=t=0;
    for (i=0;i<n;i++) { //读入原始点
        scanf("%lf%lf",&a[i].x,&a[i].y);
        if (a[i].x<a[s].x) s=i;
        if (a[i].x>a[t].x) t=i;
    b.clear(n);
    c[b.m]=Point(1,0); //添加边框
    b.putedge(t,s,inf);
    c[b.m]=Point(-1,0);
    b.putedge(s,t,inf);
    for (i=0;i<m;i++) { //读入原始边
        scanf("%d%d%lf",&x,&y,&z);
        if (x!=y) {
            c[b.m]=Point(a[y].x-a[x].x,a[y].y-a[x].y);
            b.putedge(x,v,z);
            c[b.m]=Point(a[x].x-a[y].x,a[x].y-a[y].y);
            b.putedge(y,x,z);
    for(i=0;i<n;i++) { //给每个点的原始边排序。求出下一条边
        int dn=0;
        for (j=b.fe[i];~j;j=b.ne[j]) d[dn++]=j;
        sort(d,d+dn,cmp);
        for (j=1;j<dn;j++) next[d[j]^1]=d[j-1];
        next[d[0]^1]=d[dn-1];
    n=0; //计算每一条边左手边的块号
    for (i=0;i<b.m;i++) belong[i]=-1;
    for (i=0;i<b.m;i++) {
        if (belong[i]==-1) {
            for (j=next[i];j!=i;j=next[j])
                belong[i]=n;
            belong[i]=n++;
        }
    e.clear(n); //构建对偶图
    for (i=0;i<b.m;i+=2) {
        e.putedge(belong[i],belong[i^1],b.v[i]);
        e.putedge(belong[i^1],belong[i],b.v[i]);
    printf("%.4f\n",e.dijkstra(belong[0],belong[1]);
```

```
● 无向图最小割(抄来的)
#define typec int // type of res (or long long)
const typec inf = 0x3f3f3f3f; // max of res
const typec maxw = 1000; // maximum edge weight, g[i][j]=g[j][i]
typec g[V][V], w[V]; int a[V], v[V], na[V];
typec mincut(int n){
    int i, j, pv, zj;
                         typec best = maxw * n * n;
    for (i = 0; i < n; i++) v[i] = i; // vertex: 0 ~ n-1
    while (n > 1) {
        for (a[v[0]] = 1, i = 1; i < n; i++) {
             a[v[i]] = 0; na[i - 1] = i; w[i] = g[v[0]][v[i]];
        for (pv = v[0], i = 1; i < n; i++) {
             for (zj = -1, j = 1; j < n; j++)
                 if (!a[v[j]] \&\& (zj < 0 || w[j] > w[zj])) zj = j;
             a[v[zj]] = 1;
             if (i == n - 1) {
                 if (best > w[zj]) best = w[zj];
                 for (i = 0; i < n; i++)
                     g[v[i]][pv] = g[pv][v[i]] += g[v[zj]][v[i]];
                 v[zj] = v[--n]; break;
                pv = v[zj];
             for (j = 1; j < n; j++) if(!a[v[j]]) w[j] += g[v[zj]][v[j]];</pre>
    }} return best;}
● 有向图最小生成树(抄来的)
const int maxn=1100; int n,m , g[maxn][maxn] , used[maxn] , pass[maxn] ;
int eg[maxn] , more , queue[maxn];
void combine (int id , int &sum ) {
    int tot = 0 , from , i , j , k ;
    for ( ; id!=0 && !pass[ id ] ; id=eg[id] ) {
        queue[tot++]=id ; pass[id]=1; }
    for ( from=0; from<tot && queue[from]!=id ; from++);</pre>
    if ( from==tot ) return ;
    more = 1;
    for ( i=from ; i<tot ; i++) {</pre>
        sum+=g[eg[queue[i]]][queue[i]];
        if ( i!=from ) {
             used[queue[i]]=1;
             for ( j = 1 ; j <= n ; j++) if ( !used[j] )</pre>
                 if ( g[queue[i]][j]<g[id][j] ) g[id][j]=g[queue[i]][j] ;}}</pre>
    for ( i=1; i<=n ; i++) if ( !used[i] && i!=id ) {</pre>
        for ( j=from ; j<tot ; j++){ k=queue[j];
            if (g[i][id]>g[i][k]-g[eg[k]][k]) g[i][id]=g[i][k]-g[eg[k]][k];
int mdst( int root ) { // return the total length of MDST
    int i , j , k , sum = 0 ;
    memset ( used , 0 , sizeof ( used ) );
    for ( more =1; more ; ) {
        more = 0; memset (eg,0,sizeof(eg));
        for ( i=1 ; i <= n ; i ++) if ( !used[i] && i!=root ) {</pre>
             for ( j=1 , k=0 ; j <= n ; j ++) if ( !used[j] && i!=j )</pre>
                 if ( k==0 || g[j][i] < g[k][i] ) k=j;
```

```
} memset(pass,0,sizeof(pass));
for ( i=1;i<=n;i++) if (!used[i] && !pass[i] && i!= root )combine(i,sum);</pre>
    for ( i =1; i<=n ; i ++) if ( !used[i] && i!= root ) sum+=g[eg[i]][i];</pre>
    return sum ; }
int main(){
  int i,j,k,test,cases; cases=0; scanf("%d%d",&n,&m);
foru(i,1,n) foru(j,1,n) g[i][j]=1000001;
foru(i,1,m) {scanf("%d%d",&j,&k);j++;k++;scanf("%d",&g[j][k]);}
k=mdst(1); if (k>1000000) printf("Possums!\n"); //===no
else printf("%d\n",k); return 0;}
● 强连诵分量
void clear(int n) {
    for (int i = 0; i < n; i++) {</pre>
        a[i].fe = a[i].scc = a[i].dfn = a[i].low = -1;
        a[i].num = 0;
        a[i].instack = false;
    p = 0;
void tarjan(int u) {
    a[u].dfn = a[u].low = idx++;
    a[u].instack = true;
    stk[p++] = u;
    for (int j = a[u].fe; j != -1; j = b[j].ne) {
        int v = b[j].t;
        if (a[v].dfn == 0) {
             tarjan(v);
             a[u].low = min(a[u].low, a[v].low);
        } else if (a[v].instack) {
             a[u].low = min(a[u].low, a[v].dfn);
    if (a[u].low == a[u].dfn) {
        while (stk[--p] != u) {
             a[stk[p]].instack = false;
             a[stk[p]].scc = u;
             a[u].num++;
        a[u].instack = false;
        a[u].scc = u;
        a[u].num++;
    }
void demo() {
    idx = p = 0;
    for (int i = 0; i < n; i++) if (a[i].dfn == -1) tarjan(i);</pre>
割点、割边
void tarjan(int i, int f) {
```

```
a[i].dfn = a[i].low = idx++;
    for (int j = a[i].fe; j != -1; j = b[j].ne) {
        if (b[j].vis) continue;
        b[j].vis = true;
        b[i ^ 1].vis = true;
        if (a[b[j].t].dfn == -1) {
            tarjan(b[i].t, i);
            a[i].low = min(a[i].low, a[b[i].t].low);
            //if (a[b[j].t].low > a[i].dfn) b[j]是割边
            //if (f == -1) 根节点的几个儿子互不联通
            //else if (a[b[j].t].low >= a[i].dfn) 去掉 i 后,b[j].t 与 f 不连通
        } else a[i].low = min(a[i].low, a[b[i].t].dfn);
    }
void demo() {
    for (int i = 0; i < n; i++) a[i].low = a[i].dfn = -1;
    for (int i = 0; i < bp; i++) b[i].vis = false;
    idx = 0;
    for (int i = 0; i < n; i++) if (a[i].dfn == -1) tarjan(i, -1);</pre>
● 二维几何基础
double dmul(Point a, Point b) { //点积
    return a.x * b.x + a.v * b.v;
double xmul(Point a, Point b) { //叉积, 大于 0 表示 b 在 a 的逆时针方向
    return a.x * b.v - a.v * b.x;
double xmul(Point a, Point b, Point c) { //a->b与a->c的叉积
    return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
int quadrant(Point a) {//象限号,原点为 0,从 x 轴开始顺时针为 1 至 8,第四象限为 8
    const int ans[3][3] = \{\{4, 3, 2\}, \{5, 0, 1\}, \{6, 7, 8\}\};
    return ans [1 - sig(a.y)][sig(a.x) + 1];
bool cmpp(Point a, Point b) { //极角排序
    int p = quadrant(a), q = quadrant(b);
    if (p != q) return p < q;
    double x = xmul(a, b);
    if (sig(x)) return x > 0;
    return square(a) < square(b);</pre>
Point rot(Point a) { //逆时针旋转 90 度
    return Point(-a.v, a.x);
double alpha(Point a, Point b) { //向量 b 在向量 a 的逆时针多少度
    return atan2(xmul(a, b), dmul(a, b));
Point rot(Point a, double p, Point b = Point(0,0)) { //点a绕点b逆时针旋转p
    Point t1 = a - b, t2 = Point(cos(p), sin(p));
    return b + Point(t1.x * t2.x - t1.y * t2.y, t1.x * t2.y + t1.y * t2.x);
```

```
void regular(Line a) { //整理直线,使得直线的极角属干范围(-PI/2,PI/2]
    int x = sig(a.p.x - a.q.x), y = sig(a.p.y - a.q.y);
    if (x == 1 | | (x == 0 \&\& y == 1)) swap(a.p, a.q);
bool isParallel(Line a, Line b) { //判断是否平行
    return sig(xmul(a.q - a.p, b.q - b.p)) == 0;
bool inSameLine(Line a, Line b) { //判断是否共线. 要求 ab 平行
    return sig(xmul(a.q - a.p, a.q - b.p)) == 0;
bool isVertical(Line a, Line b) { //判断是否垂直
    return sig(dmul(a.q - a.p, b.q - b.p)) == 0;
Point cross(Line a, Line b) { //直线 a 与 b 的交点. 要求 ab 不平行
    double t1 = xmul(a.p, a.q, b.p), t2 = -xmul(a.p, a.q, b.q);
    return (b.p * t2 + b.q * t1) / (t1 + t2);
bool cmpLine(Line a, Line b) { //按直线的方向排序
    return cmpp(a.q - a.p, b.q - b.p);
bool inLine(Point a, Line b) { //判断点是否在直线上
    return sig(xmul(a - b.p, a - b.q)) == 0;
Point projection(Point a, Line b) { //点在直线上的投影
    Point tmp = b.q - b.p;
    return b.p + tmp * dmul(a - b.p, tmp) / square(tmp);
double disLine(Point a, Line b) { //点到直线的距离
    return abs(xmul(a - b.p, a - b.q)) / abs(b.p - b.q);
double disSeg(Point a, Line b) { //点到线段距离
    Point x = b.q - b.p, y = a - b.p, z = a - b.q;
    if (sig(dmul(x, y)) <= 0) return abs(y);</pre>
    if (sig(dmul(x, z)) >= 0) return abs(z);
    return abs(xmul(y, z)) / abs(x);
bool inSeg(Point a, Line b) { //判断点是否在线段上,端点返回 true
    if (sig(xmul(a - b.p, a - b.q)) != 0) return false; //不在直线上
    if (sig(dmul(a - b.p, a - b.q)) > 0) return false;
    //不在线段内, 若为端点, 则等于 0
    return true;
Line perpBis(Line a) { //线段 a 的中垂线
    Point t1 = (a.p + a.q) / 2, t2 = rot(a.q - a.p);
    return Line(t1, t1 + t2);
bool hasCross(Line a, Line&b) { //线段之间是否有交点, 重合和端点相交返回 false
    if (sig(xmul(a.p, a.q, b.p)) * sig(xmul(a.p, a.q, b.q)) >= 0)
        return false; //b 的两个端点在 a 的同侧
    if (sig(xmul(b.p, b.q, a.p)) * sig(xmul(b.p, b.q, a.q)) >= 0)
        return false; //a 的两个端点在 b 的同侧
    return true;
```

● 圆相关

```
int cross(Line a, Circle b, Point &ans1, Point &ans2) { //求出直线与圆的交点
    double t1 = a.q.x - a.p.x, t2 = a.p.x - b.c.x;
    double t3 = a.q.y - a.p.y, t4 = a.p.y - b.c.y;
    double k1 = t1 * t1 + t3 * t3, k2 = 2 * (t1 * t2 + t3 * t4);
    double k3 = t2 * t2 + t4 * t4 - b.r * b.r;
    double d = k2 * k2 - 4 * k1 * k3;
    if (sig(d) < 0) return 0; //无交点
    if (sig(d) == 0) d = 0; else d = sqrt(d);
    ans1 = a.p + (a.q - a.p) * (-k2 + d) / (2 * k1);
    ans2 = a.p + (a.q - a.p) * (-k2 - d) / (2 * k1);
    return sig(d) + 1;
int cross(Circle a, Circle b, Point &ans1, Point &ans2) { //求出两圆的交点
    double d = abs(a.c - b.c);
    if (sig(d) == 0)
        if (sig(a.r - b.r) == 0) return -1; //重合, 无数个交点
        else return 0;
    if (sig(a.r + b.r - d) < 0) return 0; //相离
    if (sig(abs(a.r - b.r) - d) > 0) return 0; //内含
    double p1 = alpha(b.c-a.c);
    double p2 = acos(legal((a.r * a.r + d * d - b.r * b.r) / (2 * a.r * d)));
    ans1 = get(a, p1 + p2);
    ans2 = get(a, p1 - p2);
    return sig(p2) + 1;
int tangent(Point a, Circle b, Point &ans1, Point &ans2) { //点与圆的两个切点
    double d = abs(a - b.c);
    if (sig(d - b.r) < 0) return 0; //在圆内,无交点
    double al1 = alpha(a - b.c);
    double al2 = acos(legal(b.r / d));
    ans1 = get(b, al1 + al2);
    ans2 = get(b, al1 - al2);
    return sig(al2) + 1;
int tangent(Circle a, Circle b, Line &ans1, Line &ans2,
        Line &ans3, Line &ans4) { //求出两圆的共切线,返回公切线个数
    if (a.r < b.r) swap(a, b);
    Point t = b.c - a.c;
    double d = abs(t), al1 = alpha(t), al2;
    if (a.c == b.c && sig(a.r - b.r) == 0) return -1; //重合, 无数条公切线
    if (sig(a.r - b.r - d) > 0) return 0; //内含
    if (sig(a.r - b.r - d) == 0) { //内切
        Point p = get(a, al1);
        ans1 = ans2 = Line(p, p + rot(t));
        return 1;
    al2 = acos(legal((a.r - b.r) / d));
    ans1 = Line(get(a, al1 + al2), get(b, al1 + al2));
    ans2 = Line(get(a, al1 - al2), get(b, al1 - al2)); //两条外公切线
```

```
if (sig(a.r + b.r - d) > 0) return 2; //相交
    if (sig(a.r + b.r - d) == 0) { //外切
        Point p = get(a, al1);
        ans3 = ans4 = Line(p, p + rot(t));
        return 3:
    al2 = acos(legal((a.r + b.r) / d));
    ans3 = Line(get(a, al1 + al2), get(b, al1 + PI + al2));
    ans4 = Line(get(a, al1 - al2), get(b, al1 + PI - al2));
    return 4; //相离
  凸包
int convexHull(Point a[], int n, Point ans[]) { //ans[]的大小要为N+1
    sort(a, a + n, cmpxy);
    n = unique(a, a + n) - a;
    if (n == 1) ans[0] = a[0];
    if (n <= 1) return n;</pre>
    int m = 0:
    for (int i = 0; i < n; i++) { //下半圆
        while (m > 1 && sig(xmul(ans[m - 2], ans[m - 1], a[i])) <= 0) m--;</pre>
        //去掉等号则允许边上的点
        ans[m++] = a[i];
    int mm = m:
    for (int i = n - 2; i >= 0; i--) { //上半圆
        while (m > mm && sig(xmul(ans[m - 2], ans[m - 1], a[i])) <=0 ) m--;</pre>
        //去掉等号则允许边上的点
        ans[m++] = a[i];
    return m - 1;
int convexCut(Point a[], int n, Line b, Point ans[]) { //被直线 b 切割,留左手
    int m = 0:
    for (int i = 0; i < n; i++) {</pre>
        Point &p = a[i], &q = a[(i + 1) \% n];
        int t1 = sig(xmul(b.p, b.q, p)), t2 = sig(xmul(b.p, b.q, q));
        if (t1 >= 0) ans[m++] = p;
        if (t1 * t2 < 0) ans[m++] = cross(Line(p, q), b);</pre>
    m = unique(ans, ans + m) - ans; //一条线段被切割时会多出一个点来
    return m;
double convexDiameter(Point a[], int n) {
//旋转卡壳求凸包上的最远点对,要求凸包为逆时针,且边上没有点
    if (n == 1) return 0;
    if (n == 2) return abs(a[0] - a[1]);
    double ans = 0;
    for (int i = 0, j = 1; i < n; i++) {
        int ii = (i + 1) % n, jj = j, t;
        do { //求出所有的对踵点, 可能有重复
            j = jj;
```

```
ii = (i + 1) \% n;
             t = sig(xmul(a[ii] - a[i], a[ji] - a[j]));
            if (t <= 0) ans = max(ans, square(a[i] - a[j])); //对踵点
             if (t == 0) ans = max(ans, square(a[i] - a[jj])); //对踵点
        } while (t > 0);
    return sart(ans);
bool inPolygon(Point a[], int n, Point b) { //点在多边形内,边界返回 false
    int ans = 0;
    for (int i = 0; i < n; i++) {
        Point &p = a[i], &q = a[(i + 1) \% n];
        if (inSeg(b, Line(p, q))) return false; //判断边界返回 false
        int k = sig(xmul(q - p, b - p));
        if (k > 0 && p.y <= b.y + eps && q.y > b.y + eps) ans++;
        if (k < 0 \&\& q.v \le b.v + eps \&\& p.v > b.v + eps) ans--;
    return ans;
int halfPlaneIntersection(Line a[], int n, Point ans[]) {
//半平面交,保留每条直线的左手边,求出的凸包在 ans 中,若凸包已退化,则返回 0
//要求必须有边界,若无边界则手动添加边界
    sort(a, a + n, cmpLine);
    static Line b[N];
    static Point c[N]; //c[i]为 b[i]与 b[i+1]的交点
    int 1 = 0, r = 0;
    b[0] = a[0];
    for (int i = 1; i < n; i++) {
        while (1 < r && sig(xmul(a[i].p, a[i].q, c[r - 1])) <= 0) r--;</pre>
        while (1 < r && sig(xmul(a[i].p, a[i].q, c[l])) <= 0) l++;
        b[++r] = a[i];
        if (sig(xmul(a[i].q - a[i].p, b[r - 1].q - b[r - 1].p)) == 0) {
            if (sig(xmul(b[r].p, b[r].q, a[i].p)) > 0) b[r] = a[i];
        if (1 < r) c[r - 1] = cross(b[r], b[r - 1]);
    while (1 < r && sig(xmul(b[1].p, b[1].q, c[r - 1])) <= 0) r--;
    if (r - l <= 1) return 0; //凸包已退化
    c[r] = cross(b[1], b[r]);
    int m = 0;
    for (int i = 1; i <= r; i++) ans[m++] = c[i];
    return m;
  三角形
中线: M_a = (\sqrt{2(b^2 + c^2)} - a^2)/2 = (\sqrt{b^2 + c^2 + 2bc\cos A})/2
角平分线:T_a = (\sqrt{bc((b+c)^2 - a^2)})/(b+c) = (2bc\cos(A/2))/(b+c)
内切圆半径: r = S/P = 4R \sin(A/2) \sin(B/2) \sin(C/2) = a \sin(B/2) \sin(C/2) / \sin((B+C)/2)
             =\sqrt{(P-a)(P-b)(P-c)/P} = P \tan(A/2) \tan(B/2) \tan(C/2)
```

```
外切圆半径: R = \frac{abc}{AS} = a/(2\sin(A)) = b/(2\sin(B)) = c/(2\sin(C))
内心: P = (aA + bB + cC)/(a + b + c)
خابات : d = 2|\vec{c} \times \vec{a}|^2, \alpha = -\frac{(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{c})}{2}, \beta = \frac{(\vec{b} \cdot \vec{b})(\vec{c} \cdot \vec{a})}{2}, \gamma = \frac{(\vec{c} \cdot \vec{c})(\vec{a} \cdot \vec{b})}{2}, P = \alpha A + \beta B + \gamma C
垂心:\alpha = (\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{c}), \beta = (\vec{b} \cdot \vec{c})(\vec{b} \cdot \vec{a}), \gamma = (\vec{c} \cdot \vec{a})(\vec{c} \cdot \vec{b}), P = (\alpha A + \beta B + \gamma C)/(\alpha + \beta + \gamma)
● 平面定理
多边形重心:三角剖分后,以面积为权值求各个重心的加权平均
皮克定理:格点多边形面积 = 内部格点数 + 边上格点数 /2-1
欧拉定理:对于一个平面图/凸多面体, 顶点个数 + 面数 - 边数 = 2
● 高维球
对于半径为 1 的高维球,已知:V_2 = 2\pi,S_2 = \pi,V_3 = 4\pi,S_3 = \frac{4}{3}\pi
递推式: V_n = \frac{S_n}{r}, S_n = 2\pi V_{n-2}
● 复数
typedef complex<double> Point;
double dmul(const Point &a, const Point &b) {
     return real(conj(a) * b);
double xmul(const Point &a, const Point &b) {
     return imag(conj(a) * b);
Point rot(const Point &a, const double &p, const Point &b = Point(0, 0)) {
     //点 a 绕点 b 逆时针旋转 p, exp(Point(0, p))为模长为 1, 与 x 轴夹角为 p 的向量
     return (a - b) * exp(Point(0, p)) + b;
Point reflect(const Point &p, const Point &a, const Point &b) {
     //点 p 关于直线 ab 的镜像点
     return conj((p - a) / (b - a)) * (b - a) + a;
● 扩展欧几里得
void exgcd(int a, int b, int &x, int &y) \{ // 求解 ax + by = gcd(a, b)
     if (b == 0) {
          x = 1; y = 0;
     } else {
          int k = a / b, c = a % b, p, q;
          exgcd(b, c, p, q);
          x = q; y = -k * q + p;
// 对于乘法逆元,求 ax + mody = 1即可,x 即为 a 的逆元,x 在[-mod, mod)范围内
● 线性求乘法逆元 (mod 为质数)
inv[1] = 1;
inv[i] = mod -(long long)mod / i * inv[mod % i] % mod;
```

```
page 9
● 线性筛素数
for (int i = 2; i < N; i++) {
    if (mpf[i] == 0) mpf[i] = prime[pn++] = i;
    for (int j = 0; j < pn && i * prime[j] < N && prime[j] <= mpf[i]; j++)</pre>
        mpf[i * prime[j]] = prime[j];
● 高斯消元
每列留下绝对值最大的元素, 可以减少精度丢失
● 欧拉函数
\varphi(n)为小于等于n中与n互质的数的个数,若n,m互质,则\varphi(nm) = \varphi(n)\varphi(m)
● 大素数判定
const int S = 20; //S 越大, 判错概率越小
bool Miller Rabin(long long p) { //p 是素数返回 true
    if (p < 2) return false;</pre>
    if (p == 2) return true;
    if ((p & 1) == 0) return false;
    long long x = p - 1, t = 0:
    while ((x \& 1) == 0) \times >= 1, t++;
    for (int i = 0; i < S; i++) {
        long long a = rand() \% (p - 1) + 1;
        if (notpri(a, p, x, t)) return false;
    return true:
● 大数分解
long long mult(long long a, long long b, long long p);//a * b mod p
long long pow(long long a, long long b, long long p); //a ^ b mod p
bool notpri(long long a, long long p, long long x, long long t) {
    long long res = pow(a, x, p);
    long long last = res;
    for (int i = 1; i <= t; i++) {
        res = mult(res, res, p);
        if (res == 1 && last != 1 && last != p - 1) return true;
        last = res;
    if (res != 1) return true;
    return false:
vector<long long> div;
long long Pollard rho(long long x, long long c) {
    long long i = 1, k = 2, x0 = rand() % x, <math>y = x0;
    while (1) {
        i++; x0 = (mul(x0, x0, x) + c) \% x;
        long long d = gcd(y - x0, x);
        if (d != 1 && d != x) return d;
```

if (y == x0) return x;

if (i == k) y = x0, k += k;

```
//质因子存在 div 中,不是有序的
void workfac(long long n) {
    if (Miller Rabin(n)) {
        div.push back(n);
        return ;
    long long p = n;
    while (p == n) {
        p = Pollard rho(p, rand() % (n - 1) + 1);
    workfac(p);
    workfac(n / p);
● 莫比乌斯反演
int mp[N], pri[M], mu[N], len;
void Mobius() {
    memset(mp, 0, sizeof(mp));
    for (int i = 2; i < N; i++) {
        if (!mp[i]) {
             mp[i] = i; mu[i] = -1; pri[len++] = i;
        for (int j = 0; j < len && pri[j] * i < N; j++) {</pre>
             mp[i * pri[j]] = pri[j];
             if (i % pri[j] == 0) {
                 mu[i * pri[j]] = 0; break;
             mu[i * pri[j]] = -mu[i];
● 波利亚
设G = \{\pi_1, \pi_2, \cdots, \pi_k\}是X = \{a_1, a_2, \cdots, a_n\}上的一个置换群,用m种颜色对X中的元素进行染色
那么不同的个数为\frac{1}{|C|}\sum_{i=1}^k m^{C(\pi_i)},其中C(\pi_i)为\pi_i的循环节的个数
● Pell 方程
x^2 - nv^2 = 1. 其中n不是完全平方数
unsigned long long A, B, p[N], q[N], a[N], g[N], h[N];
void pell(int n) {
    p[1] = q[0] = h[1] = 1, p[0] = q[1] = g[1] = 0;
    a[2] = (int)(floor(sqrt(n) + 1e-7));
```

for (int i = 2; i++) {

g[i] = -g[i - 1] + a[i] * h[i - 1];

a[i + 1] = (g[i] + a[2]) / h[i];

p[i] = a[i] * p[i - 1] + p[i - 2];

q[i] = a[i] * q[i - 1] + q[i - 2];

h[i] = (n - 1) + g[i] * g[i] / h[i - 1];

if (1llu * p[i] * p[i] - 1llu * n * q[i] * q[i] == 1) {

A = p[i]; B = q[i];break; } ● Matrix-Tree 定理 给定一个无向图G, 求它的生成树的个数T(G) $D[i][j] = v_i$ 的度数 (i = j) $(A[i][j] = 1 (v_i, v_i$ 有边) $A[i][j] = 0 (v_i, v_i$ 无边) 令矩阵C[G] = D[G] - A[G],那么T(G) = C[G]任何一个n - 1阶主子式的行列式的值 ● Prufer 编码 一棵标号树的 Pufer 编码规则如下:找到标号最小的叶子节点,输出与它相邻的节点到 prufer 序列, 将该叶子节点删去, 反复操作, 直至剩余2个节点。 由 Pufer 编码生成树:任何一个 prufer 序列可以唯一对应到一棵有标号的树, 首先标记所有节 点为未删除,依次扫描 prufer 序列中的数,比如当前扫描到第 k 个数 u,说明有一个叶子节点 连到 u,并在当前操作中被删除,找一个标号最小的未被标记为删除的且在 prufer 序列第 k 个 位置后未出现过的节点 v,在 u.v 间连边并将 v 删除,反复操作,最后剩两个节点未被标记为删 除,在它们之间连边,这样得到的一个图含有 n-1 条边则是一棵树 ● 一些计数问题 有标号有根树: n^{n-1} 有标号无根树: n^{n-2} 无标号二叉树: C(2n,n)/(n+1)标号为 k 的点度为 vk 的无根树: $(n-2)!/\prod (v_k-1)!$ 无标号毛毛虫(除了直径以外的点都是悬挂点的树): $2^{n-4} + 2^{[(n-4)/2]}$ 有标号 DAG,复杂度 $O(N^2)$,F(n,S)为S中的顶点度为0的 DAG 个数, $\text{III}-F(n,\emptyset) = \sum_{1 \le k \le n} (-1)^{k+1} 2^{k(n-k)} C(n,k) F(n-k,\emptyset)$ ● 差分序列 F(n) = c0 * C(n, 0) + c1 * C(n, 1) + ... + cp * C(n, p)

$$F(n) = c0 * C(n, 0) + c1 * C(n, 1) + ... + cp * C(n, p)$$

$$S(n) = F(0) + F(1) + ... + F(n)$$

$$= c0 * C(n + 1, 1) + c1 * (n + 1, 2) + ... + cp * C(n + 1, p + 1)$$

● Java 大数

```
import java.math.BigInteger;
import java.util.Scanner;
Scanner in = new Scanner(System.in);
```

```
int n = in.nextInt();
BigInteger a = in.nextBigInteger();
System.out.println(a);
● 常用大素数
1,000,000,007 100,000,007 10,000,019 1,000,003 100,003 10,007 1,019 103
● 约数个数
                       个数
                              范围
                                     个数
                                             范围
  范围
         个数
                范围
                                                     个数
                                                              范围
                                                                       个数
  10^{3}
         32
                10^{5}
                       128
                               10^{7}
                                      448
                                             10^{9}
                                                     1,344
                                                              int32
                                                                       1,600
                                            10^{18}
  10^{4}
                10^{6}
                              10^{8}
         64
                       240
                                      768
                                                    103,680
                                                              int64
                                                                      161,280
● 质数个数
    范围
                               范围
                                            个数
                                                         范围
                 个数
                                                                      个数
     10^{3}
                  168
                               10^{5}
                                           9.592
                                                         10^{7}
                                                                    664.579
     10^{4}
                 1,229
                               10^{6}
                                           78,498
                                                         10^{8}
                                                                    5,761,455
● 浮点数求和(Kahan Summation)
double ans = 0, c = 0;
void add(double x) {
    double y = x - c;
    double t = ans + v;
    c = (t - ans) - y;
    ans = t:
Simpson
double simpson(const T&f.double a.double b.int n){
    const double h=(b-a)/n; double ans=f(a)+f(b);
    for (int i=1;i<n;i+=2) ans+=4*f(a+i*h);</pre>
    for (int i=2:i<n:i+=2) ans+=2*f(a+i*h);</pre>
    return ans*h/3:
printf("%lf\n", simpson(test, 0, 1, (int) 1e6);
● 二次剩余
// a*x^2+b*x+c==0 (mod P) 求 0..P-1 的根
int pDiv2,P,a,b,c,Pb,d;
inline int calc(int x,int Time){
    if (!Time) return 1; int tmp=calc(x,Time/2);
    tmp=(long long)tmp*tmp%P;
    if (Time&1) tmp=(long long)tmp*x%P;
                                            return tmp;
inline int rev(int x){ if (!x) return 0; return calc(x,P-2);}
inline void Compute(){
    while (1) { b=rand()%(P-2)+2; if (calc(b,pDiv2)+1==P) return; }
int main(){
    srand(time(0)^312314); int T;
    for (scanf("%d",&T);T;--T) {
```

```
scanf("%d%d%d%d",&a,&b,&c,&P);
        if (P==2) {
             int cnt=0; for (int i=0;i<2;++i) if ((a*i*i+b*i+c)%P==0) ++cnt;</pre>
             printf("%d",cnt);
             for (int i=0;i<2;++i) if ((a*i*i+b*i+c)%P==0) printf(" %d",i);</pre>
             puts("");
        }else {
             int delta=(long long)b*rev(a)*rev(2)%P;
             a=(long long)c*rev(a)%P-sqr( (long long)delta )%P;
             a\%=P; a+=P; a\%=P; a=P-a; a\%=P; pDiv2=P/2;
             if (calc(a,pDiv2)+1==P) puts("0");
             else {
                 int t=0,h=pDiv2; while (!(h\%2)) ++t,h/=2;
                 int root=calc(a,h/2);
                 if (t>0) { Compute(); Pb=calc(b,h); }
                 for (int i=1;i<=t;++i) {</pre>
                     d=(long long)root*root*a%P;
                     for (int j=1;j<=t-i;++j) d=(long long)d*d%P;</pre>
                     if (d+1==P) root=(long long)root*Pb%P;
                     Pb=(long long)Pb*Pb%P;
                 root=(long long)a*root%P;
                 int root1=P-root: root-=delta:
                 root%=P; if (root<0) root+=P;</pre>
                 root1-=delta; root1%=P; if (root1<0) root1+=P;</pre>
                 if (root>root1) { t=root;root=root1;root1=t; }
                 if (root==root1) printf("1 %d\n",root);
                 else printf("2 %d %d\n",root,root1);
    }}}return 0;}
Hash
int get(int 1, int r) {
    int tmp = (long long)h[1 - 1] * p[r - 1 + 1] % mod;
    return (h[r] - tmp + mod) % mod:
bool equal(int a, int b, int 1) { //a 开始的和 b 开始的长为 l 的字符串是否相同
    if (1 == 0) return true;
    return get(a, a + 1 - 1) == get(b, b + 1 - 1);
void init() {
    p[0] = 1;
    for (int i = 1; i < N; i++) p[i] = (long long)p[i - 1] * 26 % mod;
    h[0] = 0;
    for (int i = 1; i <= n; i++)</pre>
        h[i] = ((long long)h[i - 1] * 26 + s[i] - 'a') \% mod;
KMP
//next[i] == j 表示满足以下条件的最大的 j
//s2[0..j-1]与 s2[i-j..i-1]相同,且 s2[j]与 s2[i]不同,若不存在,则 next[i] = -1
int kmp(char s1[], char s2[], int next[]) {
    int i, j = 0, k = -1, ans = 0;
    next[0] = -1;
```

```
while (s2[i]!='\0') {
        while (k != -1 && s2[j] != s2[k]) k = next[k];
        j++; k++;
        if (s2[j] != s2[k]) next[j] = k;
        else next[j] = next[k];
    i = j = 0;
    while (s1[i] != '\0') {
        if (j != -1 \&\& s2[j] == '\0') {
            ans++;
             j = 0;
             // 如果要求可重复的 s2,则不令 j=0,而是和平时一样处理 j
        } else {
             while (j != -1 && s1[i] != s2[j]) j = next[j];
             i++; j++;
        }
    if (s2[j] == '\0') ans++;
    return ans;
exKMP
void exkmp(char s1[], char s2[], int next[], int ex[]) {
    int i, j, p;
    for (i = 0, j = 0, p = -1; s1[i] != '\0'; i++, j++, p--) {
        if (p == -1) {
             j = 0;
             do p++; while (s1[i + p] != '\0' \&\& s1[i + p] == s2[j + p]);
             ex[i] = p;
        } else if (next[j] < p) ex[i] = next[j];</pre>
        else if (next[j] > p) ex[i] = p;
        else {
             j = 0;
            while (s1[i + p] != '\0' \&\& s1[i + p] == s2[j + p]) p++;
             ex[i] = p;
        }
    ex[i] = 0;
void demo() {
    nxt[0] = 0;
    exkmp(s2 + 1, s2, nxt, nxt + 1);
    exkmp(s, s2, nxt, ex);
Manacher
// s[i] + a[i] == s[i] - a[i]
void manacher(char s[], int ls, int a[]) {
    a[0] = 0;
    for (int i = 0, j; i < ls; i = j) {
        while (i - a[i] > 0 & s[i + a[i] + 1] == s[i - a[i] - 1]) a[i]++;
        for (j = i + 1;
                 j \le i + a[i] \& i - a[i] != i + i - j - a[i + i - j]; j++)
```

```
a[j] = min(a[i + i - j], i + a[i] - j);
        a[j] = max(i + a[i] - j, 0);
    }
void demo() {
    ls = strlen(s);
    for (int i = 0; i < ls; i++) {
        ss[i + i + 1] = s[i];
        ss[i + i + 2] = '\0';
    ls = ls * 2 + 1;
    ss[0] = ss[1s] = '\0';
    manacher(ss, ls, a);
● AC 自动机
struct Node {
    Node *ch[K], *fail;
    int match;
    Node *clear() {
         memset(this,0,sizeof(Node));
        return this;
};
Node *que[N];
Node a[N], *root, *superRoot, *cur;
void clear() {
    cur = a;
    superRoot = (cur++)->clear();
    root = (cur++)->clear();
    root->fail = superRoot;
    for (int i = 0; i < K; i++) superRoot->ch[i] = root;
    superRoot->match = -1;
void insert(char *s) {
    Node *t = root;
    for (; *s != '\0'; s++) {
        int x = *s - 'a';
        if (t->ch[x] == NULL) t->ch[x] = (cur++)->clear();
        t = t \rightarrow ch[x];
    t->match++;
void build() {
    int p = 0, q = 0;
    que[q++] = root;
    while (p != q) {
        Node *t = que[p++];
        for (int i = 0; i < K; i++) {
             if (t->ch[i]) {
                 t->ch[i]->fail = t->fail->ch[i];
                 que[q++] = t->ch[i];
```

```
else
                 t->ch[i] = t->fail->ch[i];
int run(char *s) {
    int ans = 0;
    Node *t = root;
    for (; *s; s++) {
        int x = *s - 'a';
        t = t \rightarrow ch[x];
        for (Node *u = t; u->match != -1; u = u->fail) {
             ans += u->match;
             u-match = -1;
    return ans;
  后缀自动机
struct Node {
    Node *f, *son[K];
    int maxl, in, v, num;
    Node *clear(int 1 = 0) {
        memset(this, 0, sizeof(Node));
        maxl = 1;
        return this;
    }
};
Node a[2 * N], *ap;
Node *tail, *init;
void clear() {
    ap = a;
    tail = init = (ap++)->clear();
void push back(char c) {
    int x = (c == '#')? 10 : c - '0';
    Node *i = tail;
    tail = (ap++)->clear(i->maxl + 1);
    for (; i != NULL && i->son[x] == NULL; i = i->f) i->son[x] = tail;
    if (i == NULL) tail->f = init;
    else if (i-\max 1 + 1 = i-\sum [x]-\max 1) tail->f = i-\sum [x];
    else {
        Node *p = (ap++)->clear(), *q = i->son[x];
         *p = *a;
        q->f = tail->f = p;
        p->maxl = i->maxl + 1;
        for (; i != NULL && i->son[x] == q; i = i->f) i->son[x] = p;
int ws[N * 2], wv[N * 2];
void sort(int n, Node a[], int ws[], int wv[]) {
```

```
for (int i = 0; i < n; i++) ws[i] = 0;
    for (int i = 0; i < n; i++) ws[a[i].maxl]++;</pre>
    for (int i = 1; i < n; i++) ws[i] += ws[i - 1];
    for (int i = n - 1; i >= 0; i--) wv[--ws[a[i].maxl]] = i;
  回文自动机
const int maxn=100060;
const int sigma=26;
int n=0;
char s[maxn];
struct palindrome_tree {
    struct state {
        int len,link;
        int to[sigma];
        state():len(-1),link(-1){}
    } st[maxn];
    int last,sz;
    palindrome_tree():last(1),sz(2){st[1].len=st[1].link=0;}
    int add letter() {
        char c=s[n-1];
        int p=last;
        while(p!=-1 && c!=s[n-st[p].len-2]) p=st[p].link;
        if(p==-1) {
            last=1;
             return 0;
        int ret=0;
        if(!st[p].to[c]) {
             ret=1;
             int q=last=sz++;
             st[p].to[c]=q;
             st[q].len=st[p].len+2;
             do p=st[p].link; while(p!=-1 && c!=s[n-st[p].len-2]);
             if(p==-1) st[q].link=1;
             else st[q].link=st[p].to[c];
        else last=st[p].to[c];
        return ret;
    }
};
int main() {
    palindrome_tree me;
    s[n++]='#';
    int cur=0;
    while((s[n++]=getchar())!='\n') {
        s[n-1]-='a';
        cout<<(cur+=me.add letter())<<' ';</pre>
  后缀数组(倍增)
inline bool equal(int *r, int p, int q, int 1) {
```

```
return r[p] == r[q] \&\& r[p+1] == r[q+1];
void da(int r[], int sa[], int n, int m) {
    static int wa[N], wb[N], wv[N], ws[N];
    int *x = wa, *y = wb;
    for (int i = 0; i < m; i++) ws[i] = 0;
    for (int i = 0; i < n; i++) ws[x[i] = r[i]]++;
    for (int i = 1; i < m; i++) ws[i] += ws[i - 1];
    for (int i = n - 1; i >= 0; i--) sa[--ws[x[i]]] = i;
    for (int j = 1, p = 1; p < n; j *= 2, m = p) {
        p = 0:
        for (int i = n - j; i < n; i++) y[p++] = i;
        for (int i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
        for (int i = 0; i < n; i++) wv[i] = x[y[i]];
        for (int i = 0; i < m; i++) ws[i] = 0;
        for (int i = 0; i < n; i++) ws[wv[i]]++;</pre>
        for (int i = 1; i < m; i++) ws[i] += ws[i - 1];
        for (int i = n - 1; i >= 0; i--) sa[--ws[wv[i]]] = y[i];
        swap(x, y);
        x[sa[0]] = 0;
        p = 1;
        for (int i = 1; i < n; i++) {
             x[sa[i]] = (equal(y, sa[i - 1], sa[i], j))? p - 1 : p++;
        }
void calh(int r[], int sa[], int h[], char s[], int n) {
    for (int i = 0, k = 0; i < n; i++) {
        if (k > 0) k--;
        for (int j = sa[r[i] - 1]; s[i + k] == s[j + k]; k++);
        h[r[i]] = k;
void demo() {
    for (int i = 0; i < n; i++) r[i] = s[i] - 'a' + 1;
    r[n] = 0;
    da(r, sa, n + 1, 27);
    for (int i = 1; i <= n; i++) r[sa[i]] = i;</pre>
    calh(r, sa, h, s, n);
    calst(lg, st, h, n + 1);

    ST

void calst(int lg[], int st[][K], int h[], int n) {
    for (int i = 1; i <= n; i++) st[i][0] = h[i];</pre>
    for (int k = 1; k < K; k++) {
        for (int i = 0; i + (1 << k) <= n; i++) {
             st[i][k] = min(st[i][k - 1], st[i + (1 << (k - 1))][k - 1]);
    }
inline int get(int 1, int r) {
```

```
int k = \lg[r - 1 + 1];
    return min(st[1][k], st[r - (1 << k) + 1][k]);
void init(int lg[]) {
    lg[0] = -1;
    for (int i = 1; i < N; i++)
        if (i & i - 1) lg[i] = lg[i - 1];
        else lg[i] = lg[i - 1] + 1;
  Dancing Links(精确覆盖)
struct Node {
    Node *up, *down, *left, *right;
    int size; //head 表示自己的 size
    //left 节点用-i-1 表示是哪一行,一般节点用一个非负数表示是哪一列
    Node *clear(int s, Node *l = NULL, Node *d = NULL) {
        size = s:
        if (1 == NULL) left = right = this;
        else {
            right = 1->right;
            left = 1;
            1->right = right->left = this;
        if (d == NULL) up = down = this;
        else {
            d->size++;
            up = d->up;
            down = d:
            d->up = up->down = this;
        return this;
    void disrow() {
        left->right = right;
        right->left = left;
    void discol() {
        up->down = down;
        down->up = up;
    void conrow() {
        left->right = this;
        right->left = this;
    void concol() {
        up->down = this;
        down->up = this;
    }
Node a[N * M + N + M + 1], *ap;
Node *head[M + 1];
Node *left[N];
```

```
void clear(int n, int m) {
    ap = a;
    head[M] = (ap++)->clear(0); //head[M]是额外的点
    for (int i = 0; i < m; i++) head[i] = (ap++)->clear(0, head[M]);
    for (int i = 0; i < n; i++) left[i] = (ap++)->clear(-i - 1);
void addrule(int i, int j) {
    (ap++)->clear(j, left[i], head[j]);
    //表示在第:行第;列插入一个节点,即第:行可以覆盖第;列
void delrow(Node *x) {
    for (Node *i = x->right; i != x; i = i->right)
        if (i->size >= 0) {
            head[i->size]->size--;
            i->discol();
void delcol(int x) {
    head[x]->disrow();
    for (Node *i = head[x]->down; i != head[x]; i = i->down) delrow(i);
void choose(Node *x) {
    Node *i = x:
    do {
        if (i->size >= 0) delcol(i->size);
        else {
            int p = -i->size - 1; //行首, 标记选了第 p 行
        i = i->right;
    } while (i != x);
void conrow(Node *x) {
    for (Node *i = x->left; i != x; i = i->left)
        if (i->size >= 0) {
            head[i->size]->size++;
            i->concol();
void concol(int x) {
    for (Node *i = head[x]->up; i != head[x]; i = i->up) conrow(i);
    head[x]->conrow();
void unchoose(Node *x) {
    Node *i = x->left;
    while (i != x) {
        if (i->size >= 0) concol(i->size);
        i = i->left;
    if (i->size >= 0) concol(i->size);
bool findans() {
    if (head[M]->right == head[M]) return true;
```

```
int minv = INF;
    Node *p;
    for (Node *i = head[M]->right; i != head[M]; i = i->right)
         if (i->size < minv) {</pre>
             minv = i->size;
             p = i;
    if (minv == 0) return false; //某个 head 无法被覆盖
    for (Node *i = p \rightarrow down; i != p; i = i \rightarrow down) {
         choose(i); //尝试用 i 所在的那一行去覆盖 p
         if (findans()) return true;
         unchoose(i);
    return false;
void demo() {
    clear(n, m); //用 n 行覆盖 m 列
    addrule(i, i);
    choose(left[i]); //强制选择第i行
    findans();
  Dancing Links (模糊覆盖)
void delcol(int x) {
    head[x]->disrow();
    for (Node *i = head[x]->down; i != head[x]; i = i->down) i->disrow();
void choose(Node *x) {
    int ans;
    Node *i = x;
    do {
         if (i->size >= 0) {
             delcol(i->size);
             i->conrow();
         } else {
             int p = -i->size - 1; //行首, 标记选了第 p 行
        i = i - right;
    } while (i != x);
void concol(int x) {
    head[x]->conrow();
    for (Node *i = head[x] \rightarrow up; i != head[x]; i = i \rightarrow up) i \rightarrow conrow();
int h() {
    unordered map<Node *, bool> has;
    int ans=0;
    for (Node *i = head[M]->right; i != head[M]; i = i->right)
         if (!has[i]) {
             ans++;
             has[i] = true;
             for (Node *j = i \rightarrow down; j != i; j = j \rightarrow down)
```

```
for (Node *k = j->right; k != j; k = k->right)
                      if (k->size >= 0) has[head[k->size]] = true;
    return ans;
void findans(int cur) {
    if (cur + h() >= ans) return;
    if (head[M]->right == head[M]) {
        ans = min(ans, cur);
        return;
    int minv = INF;
    Node *p;
    for (Node *i = head[M]->right; i != head[M]; i = i->right)
        if (i->size < minv) {</pre>
             minv = i->size;
             p = i:
    if (minv == 0) return; //某个 head 无法被覆盖
    for (Node *i = p \rightarrow down; i != p; i = i \rightarrow down) {
         choose(i); //尝试用i所在的那一行去覆盖p
        findans(cur + 1);
        unchoose(i):
● 后缀数组(DC3)(乐神)
const int maxn=1000010:
int wa[maxn],wb[maxn],wv[maxn],vt[maxn],r[3*maxn],sa[3*maxn];
char str[maxn];
int rank[maxn],height[maxn];
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
int c0(int *r,int a,int b) {
    return r[a]==r[b]&&r[a+1]==r[b+1]&&r[a+2]==r[b+2];
int c12(int k,int *r,int a,int b) {
    if(k==2) return r[a]<r[b]||r[a]==r[b]&&c12(1,r,a+1,b+1);
    else return r[a]<r[b]||r[a]==r[b]&&wv[a+1]<wv[b+1];
void sort(int *r,int *a,int *b,int n,int m) {
    int i;
    for(i=0;i<n;i++) wv[i]=r[a[i]];</pre>
    for(i=0;i<m;i++) wt[i]=0;</pre>
    for(i=0;i<n;i++) wt[wv[i]]++;</pre>
    for(i=1;i<m;i++) wt[i]+=wt[i-1];</pre>
    for(i=n-1;i>=0;i--) b[--wt[wv[i]]]=a[i];
    return;
void dc3(int *r,int *sa,int n,int m) {
    int i,j,*rn=r+n,*san=sa+n,ta=0,tb=(n+1)/3,tbc=0,p;
    r[n]=r[n+1]=0;
```

```
for(i=0;i<n;i++) if(i%3!=0) wa[tbc++]=i;</pre>
    sort(r+2,wa,wb,tbc,m);
    sort(r+1,wb,wa,tbc,m);
    sort(r,wa,wb,tbc,m);
    for(p=1,rn[F(wb[0])]=0,i=1;i<tbc;i++)</pre>
        rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
    if(p<tbc) dc3(rn,san,tbc,p);</pre>
    else for(i=0;i<tbc;i++) san[rn[i]]=i;</pre>
    for(i=0;i<tbc;i++) if(san[i]<tb) wb[ta++]=san[i]*3;</pre>
    if(n%3==1) wb[ta++]=n-1;
    sort(r,wb,wa,ta,m);
    for(i=0;i<tbc;i++) wv[wb[i]=G(san[i])]=i;</pre>
    for(i=0,j=0,p=0;i<ta && j<tbc;p++)
        sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
    for(;i<ta;p++) sa[p]=wa[i++];</pre>
    for(;j<tbc;p++) sa[p]=wb[j++];</pre>
    return:
void calheight(int *r,int *sa,int n) {
    int i, j, k=0;
    for(i=1;i<n;i++) rank[sa[i]]=i;</pre>
    for(i=0;i<n-1; height[rank[i++]] = k )</pre>
        for(k?k--:0,j=sa[rank[i]-1]; r[j+k]==r[i+k];k++);
void init lg() {
    int i;
    lg[1]=0;
    for(i=2;i<102020;i++) lg[i]=lg[i>>1]+1;
void init RMO(int n) {
    int i,j,k;
    for(i=1;i<=n;i++) minv[i][0]=height[i];</pre>
    for(j=1;j<=lg[n];j++) {
        for(k=0;k+(1<<j)-1<=n;k++) {
             }
int lcp(int l,int r) {
    1=Rank[1];
    r=Rank[r];
    if(l>r) swap(l,r);
    1++:
    int k=lg[r-l+1];
    return min(minv[1][k],minv[r-(1<<k)+1][k]);</pre>
int dp[maxn];
int main(){
    while(scanf("%s",str)){
        if(str[0]=='.')return 0;
        int n,m=0;
        for(n=0;str[n];n++)r[n]=str[n],m=max(m,r[n]);
```

```
r[n++]=0;
         dc3(r,sa,n,m+1);
         calheight(r,sa,n);
         dp[rank[0]]=n;
         for(int i=rank[0]+1;i<n;i++)dp[i]=min(dp[i-1],height[i]);</pre>
         for(int i=rank[0]-1;i+1;i--)dp[i]=min(dp[i+1],height[i+1]);
         n--;
         for(int i=n;i;i--){
             if(n%i==0&&dp[rank[n/i]]==n-n/i){printf("%d\n",i);break;}
}}}
● GAUSS (乐神)
const int N=100;
struct mat{
    double a[N+1][N+1];
    mat(){for(int i=0;i<=N;i++)for(int j=0;j<=N;j++)a[i][j]=0;}</pre>
double b[N+1];
double x[N+1];
double *solve(mat m,double *b,bool &yes){
    for(int i=0;i<N;i++) m.a[i][N]=b[i];</pre>
    for(int i=0;i<N;i++) {</pre>
         int tmp=i;
         for(int j=i+1; j<N; j++)</pre>
             if(fabs(m.a[j][i])>fabs(m.a[tmp][i])) tmp=j;
         swap(m.a[tmp],m.a[i]);
         if(fabs(m.a[i][i])<=1e-7)yes=0;
         for(int j=i+1;j<=N;j++)</pre>
             m.a[i][j]/=m.a[i][i];
         for(int j=0;j<N;j++)</pre>
             if(i!=j) {
                  for(int k=i+1;k<=N;k++)</pre>
                      m.a[j][k]-=m.a[i][k]*m.a[j][i];
    for(int i=0;i<N;i++) x[i]=m.a[i][N];</pre>
    yes=1;
    return x;
● SPLAY (乐神)
const int maxn = 220000, inf = 1000111000;
int son[maxn][2],pre[maxn],val[maxn],cnt[maxn],tot,rt;
int laz[maxn],rev[maxn];
int n, m, k1, k2;
int a[maxn];
struct Splay{
    void init(int n){
         tot=0;
         rt=1;
         build(0, son[0][1],1,n);
    void newnode(int fa,int &x,int v){
```

```
x=++tot;
    val[x]=v;
    son[x][0]=son[x][1]=0;
    pre[x]=fa;cnt[x]=1;
    laz[x]=rev[x]=0;
void build(int fa,int &x,int l,int r){
    if(r<1){ x=0; return ;}
    int mid=l+r>>1;
    x=++tot;
    laz[x]=rev[x]=0;
    val[x]=a[mid];
    cnt[x]=r-l+1;
    pre[x]=fa;
    build(x, son[x][0], 1, mid-1);
    build(x, son[x][1], mid+1, r);
void push up(int x){
    cnt[x]=cnt[son[x][0]]+cnt[son[x][1]]+1;
void push down(int x){
    if(rev[x]){
        swap(son[x][0],son[x][1]);
        rev[son[x][0]]^=1;
        rev[son[x][1]]^=1;
        rev[x]=0;
    if(laz[x]){
        for(int i=0;i<2;i++){</pre>
             laz[son[x][i]]+=laz[x];
             val[son[x][i]]+=laz[x];
        laz[x]=0;
    }
void rotate(int x,int c){ //c=1 zig c=0 zag asume pre[x]>0
    int y=pre[x];
    push down(y);
    push down(x);
    son[y][!c]=son[x][c];
    pre[son[x][c]]=y;
    son[x][c]=y;
    pre[x]=pre[y];
    pre[y]=x;
    if(pre[x])son[pre[x]][son[pre[x]][0]!=y]=x;
    push_up(y);
void splay(int x,int goal){
    push_down(x);
    while(pre[x]!=goal){
        int y=pre[x],z=pre[y];
        if(z==goal) rotate(x,son[y][0]==x);
```

```
else { // 同向 yx ,否则 xx
                 if(son[z][0]==y){
                     if(son[y][0]==x)rotate(y,1),rotate(x,1);
                     else rotate(x,0),rotate(x,1);
                 } else {
                     if(son[y][0]==x)rotate(x,1),rotate(x,0);
                     else rotate(y,0),rotate(x,0);
        }}}
        push up(x);
        if(goal==0)rt=x;
    void find(int k){
        int cur=rt;
        while(1){
             push down(cur);
             if(cnt[son[cur][0]]==k-1)break;
             if(k>cnt[son[cur][0]]){
                 k-=cnt[son[cur][0]]+1;
                 cur=son[cur][1];
             else cur=son[cur][0];
        splay(cur,0);
}S;
int main() {
    int ca=1;
    while(cin>>n>>m>>k1>>k2,n){
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);</pre>
        S.init(n);
        printf("Case #%d:\n",ca++);
        char ch[100];
        while(m--){
             scanf("%s",ch);
             int x,k;
             if(ch[0]=='q'){
                 S.find(1);printf("%d\n",val[rt]);
             else if(ch[0]=='a'){
                 scanf("%d",&x);
                 S.find(k2+1);
                 S.push down(rt);
                 int cur=son[rt][0];
                 val[cur]+=x;laz[cur]+=x;
             else if(ch[0]=='r'){
                 S.find(k1+1);
                 S.push down(rt);
                 int cur=son[rt][0];
                 rev[cur]^=1;
             else if(ch[0]=='i'){
```

```
n++;
                 scanf("%d",&x);
                 S.find(2);
                 int cur=son[rt][0];
                 S.push down(cur);
                 S.newnode(cur, son[cur][1],x);
                 S.push up(cur);
                 S.push up(rt);
             else if(ch[0]=='d'){
                 n--;
                 S.find(2);
                 son[rt][0]=0;
                 S.push up(rt);
             else {
                 scanf("%d",&x);
                 if(x==2){
                      S.find(2);
                      int cur=son[rt][0],v=val[cur];
                      son[rt][0]=0;
                      S.push up(rt);
                      S.find(n-1);
                      S.newnode(rt,son[rt][1],v);
                      S.push up(rt);
                 else {
                      S.find(n-1);
                      int cur=son[rt][1],v=val[cur];
                      son[rt][1]=0;
                      S.push up(rt);
                      S.find(1);
                      S.newnode(rt,son[rt][0],v);
                      S.push up(rt);
}}}}
● 点分治 (乐神)
int t,n,m,a[size],K;
vector<int>V[size];
int vis[size], sum[size], id, tmp;
void find(int u,int fa,int num){
    sum[u]=1;int K=0;
    for(int i=0;i<V[u].size();i++){</pre>
        int to=V[u][i];
        if(vis[to]||to==fa)continue;
        find(to,u,num);
        K=max(K,sum[to]);
         sum[u]+=sum[to];
    K=max(K,num-sum[u]);
    if(K<tmp)tmp=K,id=u;</pre>
```

```
P b[size];
int tot;
void dfs(int u,int fa,int mi,int ma){
    sum[u]=1;
    mi=min(mi,a[u]);
    ma=max(ma,a[u]);
    if(ma<=mi+K)b[tot++]=P(mi,ma);</pre>
    for(int i=0;i<V[u].size();i++){</pre>
         int to=V[u][i];
         if(vis[to]||to==fa)continue;
         dfs(to,u,mi,ma);
         sum[u]+=sum[to];
11 gao(int u,int mi,int ma){
    tot=0;
    dfs(u,0,mi,ma);
    sort(b,b+tot);
    11 ans=0;
    for(int i=0;i<tot;i++){</pre>
         int p=lower_bound(b,b+i,P(b[i].second-K,0))-b;
         ans+=i-p;
    }
    return ans:
11 work(int u,int num){
    tmp=n:
    find(u,0,num);
    u=id;
    11 ans=gao(u,a[u],a[u]);
    vis[u]=1;
    for(int i=0;i<V[u].size();i++){</pre>
         int to=V[u][i];
         if(!vis[to])ans-=gao(to,a[u],a[u]);
    for(int i=0;i<V[u].size();i++){</pre>
         int to=V[u][i];
         if(!vis[to])ans+=work(to,sum[to]);
}return ans;}
int main(){
    cin>>t:
    while(t--){
         cin>>n>>K;
         for(int i=1;i<=n;i++)V[i].clear(),scanf("%d",&a[i]),vis[i]=0;</pre>
         for(int i=1;i<n;i++){</pre>
             int x, y;
             scanf("%d%d",&x,&y);
             V[x].push back(v);
             V[y].push back(x);
         cout<<work(1,n)*2<<endl;</pre>
}}
```

```
● 分治并查集 (乐神)
const int size = 60000;
typedef double dd;
int n,m,ans[size],TIM;
struct node{
    int u,v,len,id,st,ed;
}e[size],cpy[size];
int cmp(node a,node s){return a.len<s.len;}</pre>
int fa[size],d[size],sta[size*3],top;
void init(){
    for(int i=1;i<=n;i++)fa[i]=i,d[i]=1;</pre>
    top=0;
int get(int x){
    while(x!=fa[x])x=fa[x];
    return x:
int uni(int x,int y){
    x=get(x);y=get(y);
    if(x==y)return 0;
    if(d[x]>d[y])swap(x,y);
    fa[x]=y;sta[top++]=x;
    if(d[x]==d[y]){sta[top++]=-y;d[y]++;}
    return 1;
void resume(int tmp){
    while(top>tmp){
         if(sta[top-1]<0){</pre>
             d[-sta[top-1]]--;
             fa[sta[top-2]]=sta[top-2];
             top-=2;
         }
        else {
             fa[sta[top-1]]=sta[top-1];
             top--;
}}}
int gao(int l,int r,int m,int ttt,int n){
    for(int i=0;i<=m;i++){</pre>
        if(1>=e[i].st&&r<=e[i].ed){
             n-=(uni(e[i].u,e[i].v));
             swap(e[i--],e[m--]);
        else if(l>e[i].ed||r<e[i].st)swap(e[i--],e[m--]);
    if(n==1){
        TIM=1;
         return 1;
    if(l<r){
         int mid=l+r>>1;
         int i,j;
```

```
for(i=0,j=m;i<=j;i++)</pre>
             if(e[i].st>mid)swap(e[i--],e[j--]);
        if(gao(l,mid,j,top,n))return 1;
         for(i=0,j=m;i<=j;i++)</pre>
             if(e[i].ed<=mid)swap(e[i--],e[j--]);</pre>
         if(gao(mid+1,r,j,top,n))return 1;
    }
    resume(ttt);
    return 0;
int work(int p){
    for(int i=0;i<m;i++)e[i]=cpy[i];</pre>
    int cur=0,pre=0,tim=1;
    while(pre<m){</pre>
         if(cur==m)e[pre++].ed=tim;
         else {
             e[cur].st=tim;
             while(e[cur].len-e[pre].len>p){
                 e[pre].ed=tim-1;pre++;
             tim++;cur++;
    }}
    init();
    return gao(1,tim,m-1,top,n);
上下界最大流(乐神)
const int size= 205 ;
const int inf=100000000;
int S,T,S1,T1;
struct node{
    int to,rev,f,next,id;
}E[1000000];
int head[size],tot,q[size],f,r,lev[size];
int ans[size*size],n,m;
void add(int x,int y,int c){
    E[tot].to=y;E[tot].next=head[x];E[tot].f=c;E[tot].rev=tot+1;
    head[x]=tot++;
    E[tot].to=x;E[tot].next=head[y];E[tot].f=0;E[tot].rev=tot-1;
    head[y]=tot++;
int bfs(int S,int T){
    f=r=0;q[f++]=S;
    memset(lev,-1,sizeof(lev));lev[S]=0;
    while(f!=r){
         int u=q[r++];
         for(int i=head[u];i!=-1;i=E[i].next){
             int to=E[i].to;
             if(E[i].f&&lev[to]==-1)
                 {lev[to]=lev[u]+1;q[f++]=to;if(to==T)return 1;}
}}return 0;}
int dfs(int u,int T,int f){
```

```
if(u==T)return f;
    int ans=0,c;
    for(int i=head[u];i!=-1;i=E[i].next){
        int to=E[i].to;
        if(lev[to]==lev[u]+1&&E[i].f){
             c=dfs(to,T,min(f-ans,E[i].f));
             E[i].f-=c;E[ E[i].rev ].f+=c;
             ans+=c;if(ans==f)return f;
}}return ans;}
int max flow(int S,int T){
    int ans=0:
    while(bfs(S,T)){ans+=dfs(S,T,inf);}
    return ans;
int init(){
    S=0;T=n+1;int sum=0;tot=0;
    memset(head,-1,sizeof(head));
    for(int i=1;i<=m;i++){</pre>
        int a,b,c,d;scanf("%d%d%d%d",&a,&b,&c,&d);
    if(max flow(S,T)==sum)return 1;
    return 0;
树链剖分(乐神)
const int maxn=50010;
vector<int>V[maxn];
typedef long long 11;
int siz[maxn],dep[maxn],top[maxn],son[maxn],fa[maxn],w[maxn],val[maxn];
int n,m,q,x,y,tmp,tot;
int in(){
    char ch:
    while(ch=getchar(),ch<'0'||ch>'9');
    int ans=ch-'0';
    while(ch=getchar(),ch>='0'&&ch<='9')ans=10*ans+ch-'0';</pre>
    return ans;
void bfs(int u,int f){
    siz[u]=1;dep[u]=dep[f]+1;fa[u]=f;
    int to.ma=0:
    for(int i=0;i<V[u].size();i++) if(f!=V[u][i]){</pre>
        to=V[u][i];
        bfs(to,u);
         siz[u]+=siz[to];
        if(siz[to]>siz[ma])ma=to;
    son[u]=ma;
void bfs(int u){
    w[u]=++tot;
    if(!fa[u]||son[fa[u]]!=u)top[u]=u;
    else top[u]=top[fa[u]];
```

```
if(son[u])bfs(son[u]);
    for(int i=0;i<V[u].size();i++)</pre>
        if(fa[u]!=V[u][i]&&son[u]!=V[u][i])
             bfs(V[u][i]);
int lz[maxn*3],date[maxn];
11 seg[maxn*3];
11 build(int p,int l,int r){
    1z[p]=0;
    if(l==r) return seg[p]=date[1];
    int mid=(1+r)/2;
    seg[p]=build(p*2,1,mid)+build(p*2+1,mid+1,r);
void down(int p,int l,int r){
    lz[p*2]+=lz[p];lz[p*2+1]+=lz[p];
    int mid=(1+r)/2;
    seg[p*2]+=lz[p]*(mid-l+1);
    seg[p*2+1]+=lz[p]*(r-mid);
    lz[p]=0;
int get(int p,int l,int r,int x){
    if(l==r)return seg[p];
    if(lz[p])down(p,l,r);
    int mid=(1+r)/2;
    if(mid>=x)return get(p*2,1,mid,x);
    return get(p*2+1,mid+1,r,x);
void add(int p,int l,int r,int L,int R,int x){
    if(L>r||R<1)return ;</pre>
    if(1>=L\&r<=R)lz[p]+=x,seg[p]+=(r-l+1)*x;
    else {
        int mid=(1+r)/2;
        if(lz[p])down(p,1,r);
        add(p*2,1,mid,L,R,x);
         add(p*2+1,mid+1,r,L,R,x);
         seg[p]=seg[p*2]+seg[p*2+1];
void init(){
    for(int i=0;i<=n;i++){</pre>
        V[i].clear();son[i]=fa[i]=w[i]=val[i]=siz[i]=dep[i]=top[i]=tot=0;
    for(int i=1;i<=n;i++)val[i]=in();</pre>
    while(m--){
        x=in();y=in();
        V[x].push back(y);
        V[y].push back(x);
    bfs(1,0);
    bfs(1);
    for(int i=1;i<=n;i++)date[w[i]]=val[i];</pre>
    build(1,1,n);
```

```
void work(int x,int y,int z){//cout<<x<<' '<<y<<' '<<z<<endl;</pre>
    if(dep[x]>dep[y])swap(x,y);
    if(top[x]==top[y])add(1,1,n,w[x],w[y],z);
    else {
        int fy=top[y],fx=top[x];
        if(dep[fy]>dep[fx]){
             add(1,1,n,w[fy],w[y],z);
             work(x,fa[fy],z);
        else {
             add(1,1,n,w[fx],w[x],z);
             work(fa[fx],y,z);
}}}
int main(){
    while(~scanf("%d%d%d",&n,&m,&q)){
        init();
        while(q--){
             char ch;
             scanf(" %c%d",&ch,&x);
             if(ch=='Q')printf("%d\n",get(1,1,n,w[x]));
             else {
                 scanf("%d%d",&y,&tmp);
                 if(ch=='D')tmp*=-1;
                 work(x,y,tmp);
}}}
● 模线性方程组(乐神)
11 extend Euclid(11 a, 11 b, 11 &x, 11 &y) {
    if(b == 0) {
        x = 1;
        y = 0;
        return a ;
    11 ans = extend Euclid(b, a % b, x, y);
    11 tmp = x;
    x = y;
    y = tmp - (a / b) * y;
    return ans;
ll g,l,ans,d;
11 a[size],n,b[size];
ll get(){
    11 x, y;
    g = extend\_Euclid(a[0], b[0], x, y);
    1 = a[0];
    ll a1 = a[0], b1 = b[0], a2, b2, c;
    for(11 i = 1; i < n; i ++){}
        a2 = a[i], b2 = b[i];
        d = extend_Euclid(a1, a2, x, y);
        if( (b2 - b1) % d) return -1;
        x \% = a2;
        c = (b2 - b1) \% a1;
```

```
x *= c / d;
       x += (b2 - b1 - c) / a1;
       1 = 1 / d * a2;
       b1 = (x) \% a2 * a1 + b1;
       a1 = 1:
       b1 %= a1;
   return (b1 % a1 + a1) % a1;
int main(){
   while(cin>>n){
       for(ll i=0;i<n;i++)cin>>a[i]>>b[i];
       ans=get();
       cout<<ans<<end1;</pre>
}}
  主席树(乐神)
/* 静态主席树求区间第 K 大
* poj 2104
* 主要思想
* 1. 将数据离散化
* 2. 用线段树来维护信息,维护处于该区间的数的个数
* 3. 将原有数组中的每一个数依次插入,每次插入一个值的时候新建一棵线段树
    这样就有了 n+1 棵线段树,对于询问(1,r,k),只需查询 T[1-1]和 T[r]两棵线
    段树即可, 其中 T[i]表示插入第 i 个数后的线段树询问过程, 只要利用二分
    思想:若这两棵线段树的左儿子区间的数的个数差不小于 k,则答案往左儿树
    中找,否则往右子树找。
* 4. 上述建树空间复杂度肯定太大, 所以要空间重用。
    注意当插入一个数的时候,插入后的线段树(新)和插入前的线段树(旧)
    之间有很多信息都是一样的,容易发现只有从修改位置到根的 log(n)的路
    径是不一样的,所以新树中的其他不变的子树只要重用旧子树的相应位置就
    好,这样每次建树空间复杂度为 log(n)了。
* 5. 详细见代码
*/
#define m (1+r)/2
const int N = 100100;
const int M = N * 30;
int n, q, num, a[N], b[N], 1, r, k;
int T[M], cnt[M], lson[M], rson[M], tot;
int hash(int a){ return lower bound(b + 1, b + num + 1, a) - b; }
int init(int 1, int r){
   int root = tot ++;
   cnt[root] = 0;
   if(1 < r) lson[root] = init(1, m), rson[root] = init(m + 1, r);
   return root;
int upd(int pre root, int pos, int val){
   int cur root = tot ++, ret = cur root;
   cnt[cur root] = cnt[pre root] + val;
   int l = 1, r = num;
   while (r > 1)
       if(pos <= m){
```

```
rson[cur root] = rson[pre root];
             cur root = lson[cur root] = tot ++;
             pre root = lson[pre root];
             cnt[cur root] = cnt[pre root] + val;
             r = m:
        } else {
             lson[cur root] = lson[pre_root];
             cur root = rson[cur root] = tot ++;
             pre root = rson[pre root];
             cnt[cur root] = cnt[pre root] + val;
             1 = m + 1:
    }}
    return ret;
int query(int pre, int cur, int k){
    int l = 1, r = num;
    while (r > 1)
        if(k <= cnt[lson[cur]] - cnt[lson[pre]]){</pre>
             pre = lson[pre];
             cur = lson[cur];
             r = m;
        } else {
             k -= cnt[lson[cur]] - cnt[lson[pre]];
             pre = rson[pre];
             cur = rson[cur];
             1 = m + 1:
    }}
    return 1&r;
int main(){
    while(~scanf("%d %d", &n, &q)){
        for(int i = 1; i <= n; i ++) scanf("%d",&a[i]), b[i] = a[i];</pre>
        sort(b + 1, b + n + 1);
        num = unique(b + 1, b + n + 1) - b - 1;
        tot = 0;
        T[0] = init(1, num);
        for(int i = 1; i \le n; i ++) T[i] = upd(T[i-1], hash(a[i]), 1);
        while(q --){
             scanf("%d %d %d", &l, &r, &k);
             printf("%d\n", b[query(T[1 - 1], T[r], k)]);
}}}
● 主席树+并查集(乐神)
//BZOJ 3674: 可持久化并查集加强版
int get(int root,int pos,int tag){
    int l=1,r=n;
    while(r>1){
        if(pos<=m)r=m,root=lson[root];</pre>
        else l=m+1,root=rson[root];
    if(tag)return dp[root];
    return fa[root];
```

```
int get fa(int root,int pos){
    int tmp=pos;
    while((tmp=get(root,tmp,0))!=pos)pos=tmp;
    return tmp;
int main(){
    while(~scanf("%d%d",&n,&q)) {
       tot=0;
       T[0]=init(1,n);
       int ans=0:
       for(int i=1;i<=q;i++){</pre>
            int p,a,b; //b=1;
            p=read();a=read();
            if(p==2){
                a^=ans;
               T[i]=T[a];
            if(p==1){
                b=read():
               a^=ans;b^=ans;
               T[i]=T[i-1];
               int fa=get fa(T[i],a),fb=get fa(T[i],b);
               if(fa!=fb){
                    int dpa=get(T[i],fa,1),dpb=get(T[i],fb,1);
                    if(dpa<dpb)swap(dpa,dpb),swap(fa,fb);</pre>
                    T[i]=upd(T[i],fb,fa,0);
                    if(dpa==dpb)T[i]=upd(T[i],fa,dpa+1,1);
            }}
            if(p==3){
               b=read();
               a^=ans;b^=ans;
               T[i]=T[i-1];
               ans=(get fa(T[i],a)==get fa(T[i],b));
               printf("%d\n",ans);
}}}
● 主席树套树状数组 (乐神)
/* ZOJ 2112 动态第 k 大
* 考虑静态第 k 大的主席树做法,第 i 棵树 T[i]保存的是数组前 i 个元素的信息
* 对询问(i, j, k). 只用取出 T[i]和 T[i-1]即可
* 若数组元素有修改,做法也差不多
* 令 T[i]只记录数组前 i 个元素的信息
* 修改 a[i]=j 的时候,需对所有 k>=i 的 T[k]修改
* 对询问. 也只用取出 T[i]和 T[i-1]即可
* 上述操作类似树状数组,所以没必要真的修改那么对 T[k]
int upd(int pre root, int pos, int val){
void UPDATE(int pos, int val, int d){
```

```
for(; pos \leq n; pos += pos & -pos) T[pos] = upd(T[pos], val, d);
int use[N];
int query(int pre, int cur, int k){
    int l = 1, r = num, P = pre, C = cur, pp = S[pre], cc = S[cur];
    for(pre = P; pre > 0; pre -= pre & -pre) use[pre] = T[pre];
    for(cur = C; cur > 0 ; cur -= cur & -cur) use[cur] = T[cur];
    while(r > 1){
        int left sum = cnt[lson[pp]], right sum = cnt[lson[cc]];
        for(pre = P; pre > 0 ; pre -= pre & -pre)
             left sum += cnt[lson[use[pre]]];
        for(cur = C; cur > 0 ; cur -= cur & -cur)
             right sum += cnt[lson[use[cur]]];
         if(k <= right sum - left sum){</pre>
          for(pre = P; pre > 0; pre -= pre & -pre) use[pre] = lson[use[pre]];
          for(cur = C; cur > 0; cur -= cur & -cur) use[cur] = lson[use[cur]];
          pp = lson[pp]; cc = lson[cc]; r = m;
        } else {
          k -= right sum - left sum;
          for(pre = P; pre > 0 ; pre -= pre & -pre) use[pre] = rson[use[pre]];
          for(cur = C; cur > 0 ; cur -= cur & -cur) use[cur] = rson[use[cur]];
          pp = rson[pp]; cc = rson[cc]; l = m + 1;
    }}
    return 1&r;
int main(){
    int t;
    scanf("%d", &t);
    while(t --){
         scanf("%d %d", &n, &a);
        num = 0:
         for(int i = 1; i <= n; i ++) scanf("%d",&a[i]), b[num++] = a[i];</pre>
         for(int i = 0; i < q; i ++) {</pre>
             scanf(" %c%d%d", &Q[i].ch, &Q[i].i, &Q[i].j);
             if(Q[i].ch == 'Q') scanf("%d", &Q[i].k);
             else b[num++] = Q[i].j;
        sort(b, b + num);
        num = unique(b, b + num) - b;
        tot = 0:
        S[0] = T[0] = init(1, num);
        for(int i = 1; i <= n; i ++)
             S[i] = upd(S[i-1], hash(a[i]), 1), T[i] = T[0];
         for(int i = 0; i < q; i ++) {</pre>
             if(0[i].ch == '0'){
                 printf("%d\n", b[query(Q[i].i - 1, Q[i].j, Q[i].k)- 1]);
                 UPDATE(Q[i].i, hash(a[Q[i].i]), -1);
                 UPDATE(Q[i].i, hash(a[Q[i].i] = Q[i].j), 1);
}}}
```

```
    Link-Cut Tree

struct Node{
    Node *fa,*ch[2];
    bool rev, root;
    int val, minv;
Node pool[N];
Node *nil,*tree[N];
int cnt = 0;
void init(){
    cnt = 1;
    nil = tree[0] = pool;
    nil->ch[0] = nil->ch[1] = nil;
    nil->val = 0;
    nil->minv = 0;
Node *newnode(int val, Node *f){
    pool[cnt].fa = f;
    pool[cnt].ch[0]=pool[cnt].ch[1]=nil;
    pool[cnt].rev = false;
    pool[cnt].root = true;
    pool[cnt].val = val;
    pool[cnt].minv = val;
    return &pool[cnt++];
//左右子树反转*****真正把结点变为根
void update rev(Node *x) {
    if(x == nil) return ;
    x \rightarrow rev = !x \rightarrow rev;
    swap(x->ch[0],x->ch[1]);
//splay 向上更新信息*****
void update(Node *x) {
    if(x == nil) return ;
    x->minv = x->val;
    Node*y = x - ch[0];
    if(y->minv > x->minv)
        x->minv = y->minv;
    y = x \rightarrow ch[1];
    if(y->minv > x->minv)
        x->minv = y->minv;
//splay 下推信息*****
void pushdown(Node *x) {
    if(x->rev != false){
        update rev(x->ch[0]);
        update rev(x->ch[1]);
        x->rev = false:
}
```

```
//splay 在 root-->x 的路径下推信息*****
void push(Node *x) {
    if(!x->root) push(x->fa);
    pushdown(x);
//将结点 x 旋转至 splay 中父亲的位置*****
void rotate(Node *x) {
    Node *f = x->fa, *ff = f->fa;
    int t = (f->ch[1] == x);
    if(f->root)
        x->root = true, f->root = false;
    else ff->ch[ff->ch[1] == f] = x;
    x->fa = ff;
    f \rightarrow ch[t] = x \rightarrow ch[t^1];
    x->ch[t^1]->fa = f;
    x->ch[t^1] = f;
    f->fa = x:
    update(f);
//将结点 x 旋转至 x 所在 splay 的根位置*****
void splay(Node *x) {
    push(x);
    Node *f, *ff;
    while(!x->root){
        f = x-fa, ff = f-fa;
        if(!f->root) {
            if((ff->ch[1]==f)&&(f->ch[1]==x))
                 rotate(f);
            else rotate(x);
        rotate(x);
    update(x);
//将 x 到树根的路径并成一条 path*****
Node *access(Node *x) {
    Node *y = nil;
    while(x != nil){
        splay(x);
        x \rightarrow ch[1] \rightarrow root = true;
        (x->ch[1] = v)->root = false;
        update(x);
        y = x;
        x = x-fa;
    return y;
//将结点 x 变成树根*****
void be root(Node *x){
    access(x);
    splay(x);
```

```
update rev(x);
//将 x 连接到结点 f 上*****
void link(Node *x, Node *f){
    be root(x);
    x->fa = f;
}
//将 x,y 分离*****
void cut(Node *x,Node *y){
    be root(x);
    access(x);
    splay(v);
    v \rightarrow fa = nil;
Node *find(Node *root){
    if(root->ch[0] == nil) return root;
    return find(root->ch[0]);
Node*road[N];
int main(){
    int n,q,t;
    Node*x,*y,*z;
    scanf("%d",&t);
    char word[20];
    while(t--){
        scanf("%d",&n);
        init();
        int u,v,t;
        for(int i = 1;i <= n; i++)
             tree[i] = newnode(0,nil);
        for(int i = 1; i < n ; i++){}
             scanf("%d%d%d",&u,&v,&t);
             road[i] = x = newnode(t,nil);
             link(tree[u],x);
             link(tree[v],x);
        while(1){
             scanf("%s",word);
             if(word[0] == 'D') break;
             scanf("%d%d",&u,&v);
             if(word[0] == '0'){
                 be root(tree[u]);
                 y = access(tree[v]);
                 printf("%d\n",y->minv);
             } else {
                 splay(road[u]);
                 road[u]->val = v;
                 update(road[u]);
}}}
```