

MEC501 – MANEJO Y CONVERSIÓN DE ENERGÍA SOLAR

Aspectos generales del curso

RESUMEN

- Información general
- Temario del curso
- Evaluaciones
- Calendarización
- Tareas
- Textos de referencia

INFORMACIÓN GENERAL

Profesor Curso: Francisco Ramírez

• Correo: francisco.ramirez.c@uai.cl

Horario clases: Viernes 15:30 – 18:10

15:30 – 16:40 (Módulo 5)

17:00 – 18:10 (Módulo 6)

Atención alumnos: Lunes, 8:00 – 17:00 (excepto 11:45 – 14:25)

Jueves, 8:00 - 17:00 (excepto 11:45 - 14:25)

(otros horarios, consultar por correo)

Oficina E314

Ayudante Camilo Vásquez <u>camvasquez@alumnos.uai.cl</u>

Ayudantías Miércoles 18:30 – 19:40 (Módulo 7)

TEMARIO DEL CURSO

O. Introducción al curso

- 2. Ondas electromagnéticas en la materia
- 3. Interacción materia-luz
- 4. Dispersión (scattering) de la luz
- 5. Transferencia de energía radiativa
- 6. Fundamentos de la transferencia de calor por radiación
- 7. Radiación Solar
- 8. Colectores estacionarios
- 9. Centrales termosolares
- 10. Celdas fotovoltaicas
- 11. Control pasivo de radiación solar en edificaciones
- 12. Combustibles solares

CALENDARIO EVALUACIONES

EVALUACIÓN	DISPONIBLE	ENTREGA
Tarea 1	30/03/2023	06/04/2023
Tarea 2	20/04/2023	27/04/2023
Tarea 3	18/05/2023	25/05/2023
Prueba Final	23/06/2023	Horas de cátedra

La nota final (NF) se calculará de la siguiente manera:

NF = 60% promedio tareas + 20% promedio cuestionarios + 20% prueba final

Alumnos con nota de presentación, NF ≥ 4,0, aprueban el curso. El curso no considera examen final.

^{*} El promedio de cuestionarios considera las mejores 5 notas (total de 7).

CRONOGRAMA DEL CURSO

Fecha	Clase	Contenido					
03/03	1	Introducción al curso					
10/03	2	Electromagnetismo y ondas electromagnéticas					
17/03	3	Ondas electromagnéticas en un medio					
24/03	4	Interacción materia - luz					
31/03	5	Scattering electromagnético					
07/04		Feriado					
14/04	6	Transferencia de energía radiativa					
21/04	7	Radiación térmica - parte 1					
28/04	8	Radiación térmica - parte 2					
05/05		Semana de pausa					
12/05	9	Radiación solar					
19/05	11	Colectores solares estacionarios					
26/05	12	Centrales termosolares					
02/06	13	Conversión solar fotovoltaica					
09/06	14	Control pasivo de radiación solar en edificaciones					
16/06	15	Combustibles solares					
23/06		Prueba final					

CALENDARIO

	LU	MA	MI	JU	VI	SA	DO	_
			1	2	3	4	5	
MARZO	6	7	8	9	10	11	12	
	13	14	15	16	17	18	19	
	20	21	22	23	24	25	26	
	27	28	29	30	31	1	2	
ABRIL	3	4	5	6	7	8	9	Entrega tarea1
	10	11	12	13	14	15	16	
	17	18	19	20	21	22	23	
	24	25	26	27	28	29	30	Entrega tarea 2
MAYO	1	2	3	4	5	6	7	SEMANA DE PAUSA
	8	9	10	11	12	13	14	
	15	16	17	18	19	20	21	
	22	23	24	25	26	27	28	Entrega tarea 3
	29	30	31	1	2	3	4	
JUNIO	5	6	7	8	9	10	11	
	12	13	14	15	16	17	18	
	19	20	21	22	23	24	25	Prueba Final
	26	27	28	29	30	1	2	Semana exámenes
JULIO	3	4	5	6	7	8	9	Semana exámenes
	10	11	12	13	14	15	16	
	17	18	19	20	21	22	23	
	24	25	26	27	28	29	30	
	31							

EVALUACIÓN

Las evaluaciones están conformadas por 3 pruebas parciales, 3 informes de laboratorio y un examen al final del semestre.

La nota de presentación (NP) se calcula como:

$$NP = 80\%PPP + 20\%PL$$

Donde:

- PPP: Promedio de pruebas parciales. Corresponde a pruebas presenciales. Las fechas de evaluación serán comunicadas al comienzo del semestre.
- PL: Promedio de laboratorios. Considera el promedio los laboratorios (3 en total)

Alumnos con nota de presentación, NP ≥ 5,0, no requieren rendir examen, y aprueban el curso con nota final = NP

Examen. Incluirá todos los contenidos revisados en el curso.

Nota final (NF) se calcula como NF = 70%NP + 30%NE.

Aprobarán el curso aquellos alumnos con NF ≥ 4.0

TAREAS

- Se presentarán en formato jupyter-notebook
- Combinan ejercicios teóricos (lápiz y papel) y prácticos (Python)
- Para los ejercicios prácticos se usará librería empylib

Requisitos (antes del 15 de marzo)

- Instalar anaconda y jupyter-notebook
- Instalar empylib y librerías asociadas

*Se dispondrá de documentación guía para la instalación de herramientas

TEXTOS DE REFERENCIA

- Griffths D. "Introduction to Electrodynamics", 4th Ed. Cambridge University Press, 2017
- Hecht, E. "Óptica", 5ta Ed. Pearson Education, 2017
- Cheng, G. "Nanoscale energy transport and conversion" 1st Ed. Oxford University Press, 2005
- Yunus A. Cengel y Afshin J. Ghajar "Transferencia de Calor y Masa" 4ta Ed. McGraw-Hill, 2011
- Frank P. Incropera, David P. DeWitt "Fundamentos de transferencia de calor"
 4ta Ed. Pearson Prentice Hall, 1999
- Duffie J. A. and Beckman W. A. "Solar Engineering of Thermal Processes, Photovoltaics and wind" 5th Ed. John Wiley & Sons, 2020
- Kalogirou S. A. "Solar Energy Engineering Processes and Systems", 2nd Ed. Academic Press, 2014

