Università di Verona A.Y. 2021-22

Machine Learning & Artificial Intelligence

Parameter Estimation:

Maximum Likelihood approach and

Bayesian approach

Introduction

- To create an optimal classifier that uses the Bayesian decision rule you need to know:
 - Prior probabilities $P(\omega_i)$
 - \circ Class-conditional densities $p(\mathbf{x}\mid\omega_i)$
- The performance of a classifier <u>strongly</u> depends on the <u>goodness</u> of these components

BUT PRACTICALLY ALL THIS INFORMATION IS NEVER AVAILABLE!!

- More often we only have:
 - A vague knowledge of the problem, from which to extract vague apriori probabilities.
 - Some particularly representative patterns, training data, used to train the classifier (often too few!)

 Estimating a-priori probabilities is usually not particularly difficult.

Estimating conditional densities is more complex.

- Given that the knowledge, although approximate, of a-priori densities does not present problems, regarding conditional densities the problems can be divided into:
 - 1. estimate the unknown function $p(\mathbf{x} \mid \omega_j)$
 - 2. estimate unknown parameters of known function $p(\mathbf{x} \mid \omega_i)$

e.g., estimate the vector
$$\; \boldsymbol{\theta}_{j} = (\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \;$$

when
$$p(\mathbf{x} \mid \omega_i) \approx N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

Parameter estimation

 The second point is much simpler (though complex!) and represents a classic problem in statistics.

- Transferred to pattern recognition, a possible approach is to
 - 1) estimate the parameters from the training data
 - 2) use the resulting estimates as true values
 - 3) use the Bayesian decision theory to build a classifier

Overview

Parameter estimation - A priori probability

- Suppose we have a set of n training data in which each pattern is assigned an identity label (i.e., I know for sure which state ω_i the k-th pattern belongs to)
 - → Supervised parameter learning problem
- Then $P(\omega_i) = \frac{n_i}{n}$

where n_i is the number of samples with label ω_i (operation that can be formally proved)

This easy operation is not so useful, because the a-priori probabilities, in practice, are not so useful if compared to the conditional densities.

Parameter estimation - Problem instance

- Suppose we have c sets of data $D_1, D_2, ..., D_c$ sampled independently according to the density $p(x/\omega_j)$, assuming that $p(x/\omega_i)$ has a known parametric form
- The parameter estimation problem consists in estimating the parameters that define $p(x/\omega_i)$
- To simplify the problem, we also assume that:
 - the samples belonging to the set D_i do not give information about the parameters of $p(x/\omega_i)$ if $i \neq j$

Parameter estimation – Two approaches

- Specifically, the problem can be formulated as:
 - o Given a training set $D=\{x_1, x_2,, x_n\}$
 - o $p(\mathbf{x}/\omega)$ is determined by $\mathbf{\theta}$, which is a vector representing the necessary parameters

(e.g.,
$$\theta = (\mu, \Sigma)$$
 if $p(\mathbf{x} \mid \omega) \approx N(\mu, \Sigma)$)

 \circ We want to find the best parameter θ using the training set.

- There are two approaches:
 - Maximum likelihood estimation (ML)
 - Bayesian estimation

Parameter estimation – Two approaches (2)

Maximum Likelihood approach

- Parameters are seen as quantities whose values are fixed but unknown
- The best estimation of their value is defined to be the one that maximizes the probability of obtaining the samples actually observed (training data).

Bayesian approach

- o Parameters are seen as random variables having some known a-priori distribution
- The observation of the samples converts these probabilities to a posterior density, revising our opinion about the true values of the parameters.
- Adding training samples, the result is to refine the shape of the posterior density function, leading to a peak near the true values of the parameters (*Bayesian Learning* phenomenon).
- The results of the two approaches, although procedurally different, are qualitatively similar.

Maximum Likelihood approach

lacktriangle Given the starting hypothesis of the problem, since the patterns of the set lackbreak D are i.i.d. — independent and identically distributed, we have that:

$$p(\mathbf{D} \mid \mathbf{\theta}) = \prod_{k=1}^{n} p(x_k \mid \mathbf{\theta})$$

- Viewed as a function of θ , $p(\mathbf{D} \mid \boldsymbol{\theta})$ is called the *likelihood* of $\boldsymbol{\theta}$ with respect to the set of samples \mathbf{D} .
- The maximum likelihood estimate of θ is, by definition, the value $\hat{\theta}$ that maximizes $p(\mathbf{D} \mid \theta)$;
- lacktriangle Remember the assumption that $oldsymbol{ heta}$ is fixed but unknown

Maximum Likelihood approach (2)

Training points in one dimension, known or assumed to be drawn from a Gaussian of a fixed variance, but unknown mean

4 among the infinite possible Gaussians

NB: the likelihood $p(D|\theta)$ is a function of the mean θ , while the conditional density $p(x|\theta)$ is a function of x

Maximum Likelihood approach (3)

If the number of parameters to be set is p, let's θ denote the pcomponent vector $\theta = (\theta_1, ..., \theta_p)^t$ and let

$$\nabla \mathbf{\theta} \equiv \begin{bmatrix} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_p} \end{bmatrix}$$

be the gradient operator.

- For analytical purposes it is easier to work with the logarithm of the likelihood.
- We define $l(\theta)$ as the log-likelihood function

$$l(\theta) \equiv \ln p(D \mid \theta) = \sum_{k=1}^{n} \ln p(x_k \mid \theta)$$

Maximum Likelihood approach (4)

The goal is to determine the vector

$$\hat{\mathbf{\theta}} = \arg\max_{\mathbf{\theta}} l(\mathbf{\theta})$$

where the dependence on the data set ${f D}$ is implicit.

Thus, to obtain the maximum:

$$l(\mathbf{\theta}) \equiv \ln p(\mathbf{D} | \mathbf{\theta}) = \sum_{k=1}^{n} \ln p(x_k | \mathbf{\theta})$$

$$\nabla_{\theta} l(\mathbf{\theta}) = \sum_{k=1}^{n} \nabla_{\theta} \ln p(x_k | \mathbf{\theta})$$

from which we want to obtain $\nabla_{\theta} l(\boldsymbol{\theta}) = 0$

Maximum Likelihood approach (5)

Formally, once the set of parameters has been estimated, it is necessary to check that the solution found is actually a global maximum, rather than a local maximum or an inflection point or, even worse, a minimum point.

You also need to control what happens at the borders (boundaries) of the parameters space.

15

We now apply the ML approach to some specific cases.

Maximum Likelihood: the Gaussian Case

- Suppose that the samples are drawn from a multivariate normal population with mean μ and covariance matrix Σ .
- For simplicity, let's first consider the case where only the mean μ is unknown.
- Under this condition, we consider a sample point \mathbf{x}_k and find

$$\ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = -\frac{1}{2} \ln \left[(2\pi)^d \left| \boldsymbol{\Sigma} \right| \right] - \frac{1}{2} (\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

$$\nabla_{\boldsymbol{\mu}} \ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = \boldsymbol{\Sigma}^{-1}(\mathbf{x}_k - \boldsymbol{\mu})$$

Maximum Likelihood: the Gaussian Case (2)

• Identifying θ with μ , we see that the Maximum-Likelihood estimate for μ must satisfy:

$$\sum_{k=1}^{n} \mathbf{\Sigma}^{-1} (\mathbf{x}_k - \hat{\boldsymbol{\mu}}) = 0$$

• Multiplying for Σ and rearranging the sum, we obtain

$$\hat{\mathbf{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$$

that is the arithmetic *average* of the training samples, sometimes written as $\hat{\mu}_n$ to clarify its dependence on the number of samples.

Maximum Likelihood: the Gaussian Case (3)

- In the more general (and more typical) multivariate normal case, neither the mean μ nor the covariance matrix Σ is known.
- Consider first the univariate case with $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$
- The log-likelihood of a single point is

$$\ln p(x_k \mid \mathbf{\theta}) = -\frac{1}{2} \ln \left[2\pi \theta_2 \right] - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

And its derivative is

$$\nabla_{\boldsymbol{\theta}} l = \nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{bmatrix}$$

Maximum Likelihood: the Gaussian Case (4)

• Equalizing to 0 and considering all the points we get:

$$\sum_{k=1}^{n} \frac{1}{\theta_{2}} (x_{k} - \hat{\theta}_{1}) = 0 \qquad -\sum_{k=1}^{n} \frac{1}{\hat{\theta}_{2}} + \sum_{k=1}^{n} \frac{(x_{k} - \hat{\theta}_{1})^{2}}{\hat{\theta}_{2}^{2}} = 0$$

where $\hat{\theta}_1$ and $\hat{\theta}_2$ are the ML estimates for θ_1 and θ_2 .

■ By substituting $\hat{\mu} = \hat{\theta}_1$ and $\sigma^2 = \hat{\theta}_2$ we obtain the ML estimates for mean and variance

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2$$

Maximum Likelihood: the Gaussian Case (5)

■ The analysis of the multivariate case is basically very similar, just involving more manipulations. The result is:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \qquad \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}})^{t}$$

■ The maximum likelihood estimate for the variance is biased, that is, the expected value over all data sets of size *n* of the sample variance is not equal to the true variance

$$E\left\{\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2\right\} = \frac{n-1}{n}\sigma^2 \neq \sigma^2$$

Maximum-Likelihood: other cases

Besides the Gaussian density, there are also other density families that constitute as many families of parameters:

• Exponential distribution
$$p(x | \theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0 \\ 0 & \text{altrimenti} \end{cases}$$

$$\circ \quad \textit{Uniform distribution} \qquad p(x \mid \theta) = \begin{cases} 1/\theta & 0 \le x \le \theta \\ 0 & \text{altrimenti} \end{cases}$$

Distribution of multivariate Bernoulli

Maximum-Likelihood – Error model

• In general, if the parametric models are valid, the maximum-likelihood classifier provides excellent results.

- Instead, if incorrect parametric families are used, the classifier produces strong errors
 - This happens even if it is known the parametric family to use, for example, if it is estimated as a parameter within a Gaussian distribution a too wide variance.

Maximum-Likelihood – Error model (2)

In fact, there is no error model that gives a confidence or reliability value to the parameterization obtained.

- In addition, all training data must be available to apply the Maximum-Likelihood estimation
 - If we want to use <u>new</u> training data, we need to repeat again the Maximum-Likelihood estimation procedure.

Bayesian parameter estimation

• Unlike the ML approach, in which we assume θ as fixed but unknown, the Bayesian parameter estimation approach considers θ as a random variable.

In this case the training dataset **D** allows us to convert a prior distribution $p(\theta)$ into a posterior probability density $p(\theta | D)$

$$p(\theta) \longrightarrow p(\theta | \mathbf{D})$$

 Given the difficulty of the argument, it is necessary a step back to the concept of Bayesian classification

Bayesian estimation approach – Core idea

- The computation of the posterior probabilities $P(\omega_i|x)$ lies at the heart of Bayesian classification
- To create an optimal classifier that uses the Bayesian decision rule you need to know:
 - \rightarrow Prior probabilities $P(\omega_i)$
 - \rightarrow Conditional densities $p(x \mid \omega_i)$
- When these quantities are unknown, the best we can do is to compute $p(x | \omega_i)$ using **all of the information at our disposal**.

Bayesian estimation approach – Core idea (2)

Part of this *information* may come from:

1. Prior knowledge

- Functional forms for unknown densities
- Ranges for the values of unknown parameters

2. Training samples

o If we let D denote the set of samples: our goal becomes to compute the posterior probabilities $P(\omega_i|x,D)$

From these probabilities, we can obtain the Bayes classifier.

Bayesian estimation approach – Core idea (3)

• Given the training set D, the Bayes' formula then becomes:

$$P(\omega_i \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_i, D)P(\omega_i \mid D)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j, D)P(\omega_j \mid D)}$$

- Assumptions:
 - \circ Reasonably, $P(\omega_i \mid D) \Rightarrow P(\omega_i)$
 - \circ Since we are treating the supervised learning case, the training set D can be partitioned into c subsets $D_1, D_2, ..., D_c$, with the samples in D_i belonging to ω_i
 - ∘ The samples belonging to D_i have no influence on the parameters of $p(\mathbf{x}|\ \omega_i,D)$ if $\mathbf{i} \neq \mathbf{j}$.

Bayesian estimation approach – Core idea (4)

- These assumptions lead us to two consequences:
 - 1. It allows us to work with each class separately, i.e.

$$P(\omega_{i} \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_{i}, D)P(\omega_{i} \mid D)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_{j}, D)P(\omega_{j} \mid D)}$$

$$P(\omega_{i} \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_{i}, D_{i})P(\omega_{i})}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_{j}, D_{j})P(\omega_{j})}$$

Bayesian estimation approach – Core idea (5)

Because each class can be treated independently, we do not need distinctions among classes, so we can simplify our notation **reducing to** c **different istances of the same problem**, i.e.:

$$P(\omega_i \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_i, D_i) P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j, D_j) P(\omega_j)} \frac{p(\mathbf{x} \mid D)}{p(\mathbf{x})}$$

Use a set of samples D, drawn independently according to the fixed but unknown probability distribution $p(\mathbf{x})$, to determine $p(\mathbf{x}|D)$

Bayesian estimation approach – Core idea (6)

- In practice, the Bayesian learning process estimates a model implicitly, that is, it does not return a vector of parameters $\boldsymbol{\theta}$ visible, but a distribution on it, given by the training set available.
- The fact that $p(\mathbf{x})$ is unknown but with known parametric form is expressed by saying that $p(\mathbf{x}|\mathbf{\theta})$ is completely known.
- It is preferred to write $p(\mathbf{x}|\mathbf{D})$ instead of $p(\mathbf{x}|\mathbf{\theta})$ because it is more meaningful, although an underlying model exists (in fact the term $p(\mathbf{x}|\mathbf{\theta})$ will appear later).
- Any information you have before observing the samples is assumed to be contained in the known a-priori density $p(\theta)$.
- Observations convert the prior $p(\theta)$ into a posterior distribution $p(\theta|D)$ that hopefully assumes a maximum in the true value of θ .

The parameter distribution

Ingredients:

```
o p(\mathbf{x}) : unknown, but with known parametric form;

o \mathbf{\theta} : parameter vector, unknown;

o p(\mathbf{x}|\mathbf{\theta}) : completely known (being the parametric form p(\mathbf{x}));

o p(\mathbf{\theta}) : any <u>a-priori</u> information we might have to observe the samples
```

o $p(\theta|D)$: ... posterior density, sharply peaked about the true value of θ .

The observation of the samples converts this to a ...

The parameter distribution (2)

• What we are doing is actually observing how $p(\mathbf{x}|\mathbf{D})$ is obtained via an implicit parameter model $\mathbf{\theta}$.

- We are therefore realizing the calculation of $p(\mathbf{x}|\mathbf{D})$ to estimate $p(\mathbf{x})$, converting the problem of estimating a probability density to a problem of estimating a parameter vector.
- Reasonably, we have

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x}, \mathbf{\theta} \mid D) d\mathbf{\theta}$$

where the integration extends over the entire parameter space.

32

The parameter distribution (3)

Then
$$p(\mathbf{x} \mid D) = \int p(\mathbf{x}, \mathbf{\theta} \mid D) d\mathbf{\theta}$$

$$= \int p(\mathbf{x} \mid \mathbf{\theta}, D) p(\mathbf{\theta} \mid D) d\mathbf{\theta}$$

Since, by hypothesis, the selection of x is done independently from the training samples in D, given θ ,

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D) d\mathbf{\theta}$$

That is, the distribution of $p(\mathbf{x})$ is known completely once we know the value of the parameter vector $\boldsymbol{\theta}$

The parameter distribution (4)

- The previous equation links explicitly the desired class-conditional density $p(\mathbf{x}|\mathbf{D})$ to the posterior density $p(\boldsymbol{\theta}|\mathbf{D})$ through the unknown parameter vector $\boldsymbol{\theta}$.
- If $p(\theta|D)$ peaks very sharply about some value $\hat{\theta}$, we obtain an estimation of the most likely vector, so

$$p(\mathbf{x}|\mathbf{D}) \approx p(\mathbf{x} \mid \hat{\mathbf{\Theta}})$$

But this approach allows to take into account the effects of all other models, described by the value of the integral function, for all possible models.

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D) d\mathbf{\theta}$$

Example: Gaussian Case

We use the Bayesian estimation techniques to calculate the posterior density $p(\theta|D)$ and the desired density $p(\mathbf{x}|D)$ for the case where

$$p(\mathbf{x} \mid \mathbf{\theta}) \equiv p(\mathbf{x} \mid \mathbf{\mu}) \approx N(\mathbf{\mu}, \mathbf{\Sigma})$$

THE UNIVARIATE CASE:

$$p(\mathbf{x} | \boldsymbol{\mu}) \equiv p(x | \boldsymbol{\mu}) \approx N(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$

 $p(\mathbf{x} \mid \mathbf{\mu}) \equiv p(x \mid \mu) \approx N(\mu, \sigma^2)$ The mean μ is the only unknown parameter $p(\mu) \approx N(\mu_0, \sigma_0^2)$ The prior knowledge about μ , can be expressed by a prior density, where the mass. expressed by a prior density, where the mean and the variance are known

In practice, μ_0 represents our best a-priori guess for the parameter μ , and σ_0^2 measures our uncertainty about this guess

Example: Gaussian Case (2)

We can draw μ from $N(\mu_0, \sigma_0^2)$

It becomes the true value for μ and completely determines the density for x.

Suppose to have n training samples $D = \{x_1, x_2, ..., x_n\}$ and calculate:

Reproduced density
$$p(\mu | D) = \frac{p(D | \mu)p(\mu)}{\int p(D | \mu)p(\mu)d\mu}$$
$$= \alpha \prod_{k=1}^{n} p(x_k | \mu)p(\mu)$$

where α is a normalization factor that depends on D and independent from μ

Example: Gaussian Case (3)

This equation shows how the observation of a set of training samples affects our idea about the true value of μ : it relates the prior density $p(\mu)$ to a posterior density $p(\mu|D)$.

Developing the calculations, we realize that, thanks to the normal prior, $p(\mu/D)$ is also normal, and changes depending on the number of samples that form the training set, evolving in a Dirac impulse for $n \to \infty$ (<u>Bayesian Learning</u> phenomenon).

Formally the following formulas are reached:

Example: Gaussian Case (4)

$$p(\mu \mid D) = \frac{p(D \mid \mu)p(\mu)}{\int p(D \mid \mu)p(\mu)d\mu} = \frac{1}{\sqrt{2\pi}\sigma_n} \exp\{-\frac{(\mu - \mu_n)^2}{2\sigma_n^2}\}$$

dove
$$\mu_n = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \left(\frac{1}{n} \sum_{k=1}^n x_k \right) + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0$$

$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}$$

 μ_n represents our best choice for μ after observing n samples.

 σ_n^2 measures the uncertainty about this guess

Example: Gaussian Case (5)

Vittorio Murino

39

Example: Gaussian Case (6)

Having obtained the a-posteriori density for the mean, $p(\mu|D)$, all that remains is to *obtain the "class-conditional"* density for p(x|D), which, in exact notation, is $p(x/\omega_i, D_i)$. So, we have:

$$p(x|\mathcal{D}) = \int p(x|\mu) p(\mu|\mathcal{D}) d\mu$$

$$= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left[-\frac{1}{2} \left(\frac{\mu-\mu_n}{\sigma_n}\right)^2\right] d\mu$$

$$= \frac{1}{2\pi\sigma\sigma_n} \exp\left[-\frac{1}{2} \frac{(x-\mu_n)^2}{\sigma^2+\sigma_n^2}\right] f(\sigma,\sigma_n), \tag{36}$$

Example: Gaussian Case (7)

$$f(\sigma, \sigma_n) = \int \exp \left[-\frac{1}{2} \frac{\sigma^2 + \sigma_n^2}{\sigma^2 \sigma_n^2} \left(\mu - \frac{\sigma_n^2 x + \sigma^2 \mu_n}{\sigma^2 + \sigma_n^2} \right)^2 \right] d\mu.$$

Observing the equation (36), we notice that

$$p(x \mid D) \approx N(\mu_n, \sigma^2 + \sigma_n^2)$$

If we compare the class conditional-density $p(x|\mathbf{D})$, with its parametric form $p(x|\mu) \approx N(\mu, \sigma^2)$, we observe that the conditional mean is treated as if it were the true mean, and the known variance is proportional to the current degree of uncertainty.

Example: Gaussian Case (8)

To sum up, the obtained density p(x/D) is the desired class-conditional density

$$P(\omega_i \mid \mathbf{x}, D) = \frac{p(\mathbf{x} \mid \omega_i, D)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j, D)P(\omega_j)}$$

which, together with the prior probabilities $P(\omega_i)$, gives us the probabilistic information needed to design the classifier, in contrast with ML methods that only makes point estimates for $\hat{\mu} \in \hat{\sigma}^2$

Bayesian parameter estimation: general theory

Summarizing and extending them to the general case, the main formulas seen are:

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid D) d\boldsymbol{\theta}$$

$$p(\mu \mid D) = \frac{p(D \mid \mu) p(\mu)}{\int p(D \mid \mu) p(\mu) d\mu} = \int \frac{p(D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{\int p(D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}} \neq p(\boldsymbol{\theta} \mid D)$$

$$p(D \mid \boldsymbol{\theta}) = \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \boldsymbol{\theta})$$

Note the similarity with the ML approach, with the difference that here we do not look for the max point $\widehat{m{\Theta}}$

Bayesian parameter estimation: general theory (2)

- There are still questions to be clarified:
 - Convergence of $p(\mathbf{x}|\mathbf{D})$ to $p(\mathbf{x})$
- Convergence: let's suppose $D^n = \{x_1, ..., x_n\}, n > 1$:

$$p(\mathbf{D}^{n} \mid \mathbf{\theta}) = p(\mathbf{x}_{n} \mid \mathbf{\theta}) p(\mathbf{D}^{n-1} \mid \mathbf{\theta})$$

$$p(\mathbf{\theta} \mid D) = \frac{p(D \mid \mathbf{\theta}) p(\mathbf{\theta})}{\int p(D \mid \mathbf{\theta}) p(\mathbf{\theta}) d\mathbf{\theta}} \qquad \text{On line method of Bayesian learning}$$

$$p(\mathbf{\theta} \mid D^{n}) = \frac{p(\mathbf{x}_{n} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D^{n-1})}{\int p(\mathbf{x}_{n} \mid \mathbf{\theta}) p(\mathbf{\theta} \mid D^{n-1}) d\mathbf{\theta}} \qquad \text{Assuming that}$$

$$p(\mathbf{\theta} \mid D^{0}) = p(\mathbf{\theta})$$

Bayesian approach – Conclusions

■ To conclude, extending the notation to the various classes ω_i and corresponding training set D_i , the design of a Bayesian classifier through estimation of parameters with Bayesian approach is subject to the following formulas:

$$p(\theta \mid D_i, \omega_i) = \frac{p(D_i \mid \theta, \omega_i) p(\theta \mid \omega_i)}{\int p(D_i \mid \theta, \omega_i) p(\theta \mid \omega_i) d\theta}$$

$$= \frac{\prod_{k=1}^{n_i} p(x_{i,k} \mid \theta) p(\theta \mid \omega_i)}{\int \prod_{k=1}^{n_i} p(x_{i,k} \mid \theta) p(\theta \mid \omega_i) d\theta}$$

Bayesian approach – Conclusions (2)

• Let
$$D_i^n = \{x_{i,1},...,x_{i,n}\}$$

$$p(\theta \mid D_i^n, \omega_i) = \frac{\prod_{k=1}^{n_i} p(x_{i,k} \mid \theta, \omega_i) \ p(\theta \mid \omega_i)}{\int \prod_{k=1}^{n_i} p(x_{i,k} \mid \theta, \omega_i) \ p(\theta \mid \omega_i) d\theta}$$
$$= \frac{p(x_{i,n_i} \mid \theta) p(\theta \mid D_i^{n-1}, \omega_i)}{\int p(x_{i,n_i} \mid \theta) p(\theta \mid D_i^{n-1}, \omega_i) d\theta}$$

Bayesian approach – Conclusions (3)

- The classifier minimum error rate results
 - o Decide ω_i if $P(\omega_i|x) \ge P(\omega_j|x)$, for j=1,...,c

$$P(\omega_{i} \mid x, D_{i}) = \frac{p(x \mid \omega_{i}, D_{i})P(\omega_{i})}{p(x \mid D_{i})}$$

$$p(x \mid \omega_{i}, D_{i}) = \int p(x, \theta \mid \omega_{i}, D_{i})d\theta$$

$$= \int p(x \mid \theta)p(\theta \mid \omega_{i}, D_{i})d\theta$$

Comparison ML – Bayes estimation

- ML gives us a point estimate $\hat{\boldsymbol{\theta}}$ instead, Bayes approach gives us a distribution on $\boldsymbol{\theta}$.
- ML and Bayes solutions are equivalent in the asymptotic limit of infinite training data.
 - \circ To the limit, $p(\theta/D)$ converges to a Dirac delta function
- Practically, the approaches are different for various reasons:
 - Computational complexity
 - Interpretability
 - Confidence in the prior information
 - Compromise between estimation accuracy and variance