Name:

Komplexe Zahlen

Keine Hilfsmittel, 90 Minuten. Der Lösungsweg muss immer nachvollziehbar dokumentiert sein.

1. Bestimme z: (3P)

$$2 - 9i = (1 - 2i)(z - 3 + 4i)$$

- 2. Sei $f(z) = c + \frac{d}{z}$.
 - a) Bestimme c und $d \in \mathbb{C}$, so dass f(1) = 2 i und f(i) = 1.
 - b) Für welche z liegt das Bild f(z) auf der imaginären Achse? Falls du a) nicht gelöst hast, benutze die (falschen) Werte c = 4 und d = -2i. (7P)
- 3. Sei $f(z) = 1 + z + \frac{1}{z}$.

eine komplexe Abbildung. Für welche z ist $f(z) \in \mathbb{R}$? Für welche z ist f(z) = 0? Stelle die zwei Mengen in der Gauss'schen Ebene dar. (6P)

- 4. Sei $f(z) = z^2$.
 - a) Bestimme f(2-3i) und f(-i).
 - b) Wie wird eine vertikale Gerade durch x_0 von f(z) abgebildet?
 - c) Wie wird ein Kreis mit Radius r und Mittelpunkt im Ursprung abgebildet? (6P)
- 5. Berechne/vereinfache in \mathbb{C} so weit wie möglich: (10P)
 - a) $\sqrt[3]{-27i}$ b) $\frac{2+i}{1-2i}$ c) $\ln^2 i$ d) i^i e) $\ln i^2$

- 6. Sei $z = x + iy \in \mathbb{C}$.
 - a) Für welche $z \in C_1$ gilt |z| = 1? Für welche $z \in C_2$ gilt $\mathrm{Im}(z) = \mathrm{Im}(z^2)$? Für welche $z \in C_3$ gilt $Re(z) = Re(z^2)$? Stelle die drei Mengen im gleichen Diagramm dar.
 - b) Bestimme die Schnittpunkten von C_1 mit C_2 und von C_1 und C_3 .
 - c) Finde eine Gleichung in z (d.h. z ist die Variable) welche diese Schnittpunkten als Lösungen hat. (12P)