#4 Solution	
Let X= old tree diameters -> X~ N(M=5, 0=0.5)	
Y= new tree diameters -> Y~NLM= 3.8, 0= 0.5	
(affected by drought)	
(until containing an angle)	
Find cut off:	
Bottom 5% of trees $P(X \le C) = 0.05$	
From 2-table P(Z ≤ C*) = 0.05 when C*=-1.64	
Now convert to X, X = oc++ M	
X = 0.5(-1.64) + 5 = 4.13	
what percent of new trees are below cut off? $P(Y \le 4.18) = P(\frac{Y-M}{\sigma} \le \frac{4.18-3.8}{0.5}) = P(2 \le 0.76) = 0.7764$	_
-> 77.04% of new trees need to be flagged.	
	_
	_